Degenerations of binary Lie and nilpotent Malcev algebras

Ivan Kaygorodova, Yury Popovb, and Yury Volkovc

aCMCC, Universidade Federal do ABC, Santo André, Brazil; bIMECC, Universidade Estadual de Campinas, Campinas, Brazil; cSaint Petersburg State University, Saint Petersburg, Russia

\begin{abstract}
We describe degenerations of four-dimensional binary Lie algebras, and five- and six-dimensional nilpotent Malcev algebras over \mathbb{C}. In particular, we describe all irreducible components of these varieties.
\end{abstract}

\section{Introduction}
Degenerations of algebras is an interesting subject, which was studied in various papers (see, for example, [2–9, 11, 14–18, 21–24, 29, 31, 32, 35]). In particular, there are many results concerning degenerations of algebras of low dimensions from some variety defined by a set of identities. One of important problems in this direction is the description of so-called rigid algebras. These algebras are of big interest, since the closures of their orbits under the action of generalized linear group form irreducible components of a variety under consideration (with respect to Zariski topology). For example, the problem of finding rigid algebras was solved for low-dimensional associative (see [11, 31, 32]), and Leibniz (see [18]) algebras. There are significantly less works where the full information about degenerations was found for some variety of algebras. This problem was solved for two-dimensional pre-Lie algebras in [2], for two-dimensional Jordan algebras in [1], for three-dimensional Novikov algebras in [3], for three-dimensional Jordan algebras in [15], for four-dimensional Lie algebras in [7], for four-dimensional Zinbiel algebras in [21], for nilpotent four-dimensional Leibniz algebras in [21], for nilpotent five- and six-dimensional Lie algebras in [17, 35], and for all two-dimensional algebras in [22].

The notions of Malcev and binary Lie (BL for short) algebras were introduced by Malcev in [30]. The structure theory and some properties of Malcev algebras were studied by Kuzmin and other authors (see, for example, [10, 19, 20, 25, 26, 28, 33, 34]). Note that any Lie algebra is a Malcev algebra and any Malcev algebra is a BL algebra. Note also that any alternative algebra can be turned to a Malcev algebra by defining a new multiplication $[\cdot,\cdot]$ by $[x,y] = xy - yx$. Any Malcev algebra is a tangent algebra of a suitable locally analytic Moufang loop (see [26]).

In this paper we give the full information about degenerations of BL algebras of dimension 4 and nilpotent Malcev algebras of dimensions 5 and 6. More precisely, we construct a graph of primary degenerations. The vertices of this graph are isomorphism classes of algebras from the variety under consideration. An algebra A degenerates to an algebra B iff there is a path from the vertex corresponding to A to the vertex corresponding to B. Thus, we obtain a generalization of analogous results of [7, 17, 35].
for Lie algebras. Also we describe rigid algebras and irreducible components for these varieties of algebras.

2. Definitions and notation

All spaces in this paper are considered over \mathbb{C}, and we write simply \dim, Hom and \otimes instead of $\dim_{\mathbb{C}}$, $\text{Hom}_{\mathbb{C}}$ and $\otimes_{\mathbb{C}}$. An algebra A is a set with a structure of vector space and a binary operation that induces a bilinear map from $A \times A$ to A.

Given an n-dimensional vector space V, the set $\text{Hom}(V \otimes V, V) = V^* \otimes V^* \otimes V$ is a vector space of dimension n^3. This space has the structure of the affine variety \mathbb{C}^{n^3}. Indeed, let us fix a basis e_1, \ldots, e_n of V. Then any $\mu \in \text{Hom}(V \otimes V, V)$ is defined by structure constants $c^{k}_{ij} \in \mathbb{C}$ such that $\mu(e_i \otimes e_j) = \sum_{k=1}^{n} c^{k}_{ij} e_k$. A subset of $\text{Hom}(V \otimes V, V)$ is called closed if it can be defined by a set of polynomial equations in variables c^{k}_{ij} ($1 \leq i, j, k \leq n$).

Let T be a set of polynomial identities. All algebra structures on V satisfying polynomial identities from T form a Zariski-closed affine subset of the variety $\text{Hom}(V \otimes V, V)$. We denote this subset by $\mathbb{L}(T)$. The general linear group $\text{GL}_n(\mathbb{C})$ operates on $\mathbb{L}(T)$ by conjugation:

$$(g * \mu)(x \otimes y) = g(\mu(g^{-1}(x) \otimes g^{-1}(y)))$$

for $x, y \in V$, $\mu \in \mathbb{L}(T) \subset \text{Hom}(V \otimes V, V)$ and $g \in \text{GL}_n(\mathbb{C})$. Thus, $\mathbb{L}(T)$ is decomposed into $\text{GL}_n(\mathbb{C})$-orbits that correspond to the isomorphism classes of algebras. Let $O(\mu)$ denote the orbit of $\mu \in \mathbb{L}(T)$ under the action of $\text{GL}_n(\mathbb{C})$. Correspondingly, $\overline{O(\mu)}$ is the Zariski closure of $O(\mu)$.

Let A and B be two n-dimensional algebras satisfying identities from T. Let μ and λ from $\mathbb{L}(T)$ represent A and B respectively. We say that A degenerates to B and write $A \rightarrow B$ if $\lambda \in \overline{O(\mu)}$. Note that in this case we have $\overline{O(\lambda)} \subset \overline{O(\mu)}$. Hence, the definition of degeneration does not depend on the choice of μ and λ. We write $A \not\rightarrow B$ if $\lambda \notin \overline{O(\mu)}$.

Let A be represented by the structure $\mu \in \mathbb{L}(T)$. The algebra A is called rigid in $\mathbb{L}(T)$ if $O(\mu)$ is an open subset of $\mathbb{L}(T)$. Recall that a subset of a variety is called irreducible if it can’t be represented as a union of two non-trivial closed subsets. A maximal irreducible closed subset of a variety is called an irreducible component. In particular, A is rigid in $\mathbb{L}(T)$ iff $O(\mu)$ is an irreducible component of $\mathbb{L}(T)$. Let $\text{Irr}(\mathbb{L}(T))$ and $\text{Rig}(\mathbb{L}(T))$ denote the set of irreducible components of $\mathbb{L}(T)$ and the set of rigid algebras in $\mathbb{L}(T)$ respectively. It is well known that any affine variety can be represented as a finite union of its irreducible components in a unique way.

Table 1. Binary Lie algebras of dimension 4.

A	Multiplication table	Der(A)	Z(A)	A^2	Type
$n_3 \oplus \mathbb{C}$	$e_1 e_2 = e_3$	10	2	1	Lie
n_4	$e_1 e_2 = e_3, e_1 e_3 = e_4$	7	1	2	Lie
$r_2 \oplus \mathbb{C}^2$	$e_1 e_2 = e_2$	8	2	1	Lie
$r_2 \oplus r_2$	$e_1 e_2 = e_2, e_1 e_4 = e_4$	4	0	2	Lie
$s_2 \oplus \mathbb{C}$	$e_1 e_2 = e_2, e_1 e_3 = e_3, e_2 e_3 = e_1, e_1 e_4 = e_4$	12	0	3	Lie
g_1	$e_1 e_2 = e_2, e_1 e_3 = e_3, e_1 e_4 = e_4$	8	0	3, $\beta \neq 0$; $2, \beta = 0$	Lie
$g_2(\beta)$	$e_1 e_2 = e_2, e_1 e_3 = e_3, e_1 e_4 = e_4 + \beta e_4$	7	0	3	Lie, for $\beta = 2$, Malcev, for $\beta = -1$
$g_3(\beta)$	$e_1 e_2 = e_2, e_1 e_3 = e_3, e_1 e_4 = e_4, e_1 e_5 = \beta e_5, e_2 e_3 = e_3, e_2 e_4 = e_4$	6	0	3, $\alpha \neq 0 \neq \beta$; $2, \alpha \beta = 0$	Lie, $\alpha = 1$, $\beta = 0$
$g_4(\alpha, \beta)$	$e_1 e_2 = e_2, e_1 e_3 = e_3, e_1 e_4 = e_4 + \alpha e_2, e_1 e_5 = \beta e_5$	5	0	3, $\alpha \neq 0$	Lie
$g_5(\alpha)$	$e_1 e_4 = (\alpha + 1) e_4, e_2 e_3 = e_3, e_2 e_4 = e_4$	7	0	1	BL
Table 2. Nilpotent Malcev algebras of dimension 5.

A	Multiplication table	Der(A)	Z2(A)	A2	A3
n3 ⊕ C2	e1e2 = e3	16	2 + 13	1	0
n4 ⊕ C	e1e2 = e3, e1e3 = e4	12	1 + 124	2	1
g5,1	e1e2 = e5, e3e4 = e5	11	15	1	0
g5,2	e1e2 = e5, e4e3 = e5	15	25	2	0
g5,3	e1e2 = e3, e1e4 = e5, e2e3 = e5	10	135	2	1
g5,4	e1e2 = e3, e1e3 = e4, e2e3 = e5	10	235	3	2
g5,5	e1e2 = e3, e1e3 = e4, e4e3 = e5	9	1235	3	2
g5,6	e1e2 = e3, e1e3 = e4, e1e4 = e5, e2e3 = e5	8	1235	3	2
M5	e1e2 = e4, e2e3 = e5	9	135	2	0

Table 3. Nilpotent Malcev algebras of dimension 6.

A	Multiplication table	Der(A)	Z2(A)	A2	A3
g1	e1e2 = e3, e1e3 = e4, e1e4 = e5, e2e3 = e6, e2e4 = e6	11	1346	3	2
g2	e1e2 = e3, e1e3 = e4, e1e4 = e6, e2e3 = e6	12	1346	3	2
g3	e1e2 = e3, e1e3 = e5, e4e5 = e6	14	146	2	1
g4	e1e2 = e3, e1e4 = e5, e2e3 = e6, e2e4 = e6	9	12346	4	3
g5	e1e2 = e3, e1e4 = e5, e2e3 = e5, e2e4 = e6	8	12346	4	3
g6	e1e2 = e3, e1e3 = e4, e1e4 = e5, e2e3 = e6, e2e4 = e6	10	12346	4	3
g7	e1e2 = e3, e1e3 = e4, e2e3 = e5, e2e4 = e5	9	12346	3	2
g8	e1e2 = e3, e1e3 = e4, e2e3 = e5, e2e4 = e5	11	12346	4	3
g9	e1e2 = e3, e1e3 = e5, e2e3 = e6, e2e4 = e5	12	136	3	1
g10	e1e2 = e3, e1e3 = e4, e1e4 = e5, e2e3 = e5, e2e4 = e5	13	246	3	2
g11	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	12	246	3	2
g12	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	15	246	3	1
g13	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	14	246	3	1
g14	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	17	26	2	0
g15	e1e2 = e3, e1e3 = e4, e1e4 = e5, e2e3 = e5, e2e4 = e5	11	2346	4	3
g16	e1e2 = e3, e1e3 = e4, e1e4 = e5, e2e3 = e5, e2e4 = e5	16	36	3	0
g17	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	21	1 + 15	1	0
g18	e1e2 = e3, e1e3 = e4, e1e4 = e5, e2e3 = e5, e2e4 = e5	19	1 + 25	2	0
g19	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	15	1 + 135	2	1
g20	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	15	1 + 235	3	2
g21	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	12	1 + 135	3	2
g22	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	16	13 + 13	2	0
g23	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	17	2 + 124	2	1
g24	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	24	3 + 13	1	0
g25	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	14	1 + 135	2	1
g26	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	13	126	2	1
g27	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	12	136	2	1
g28	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	11	126	2	1
g29	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	12	246	3	1
g30	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	13	136	3	1
g31	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	11	136	3	1
g32	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	10	1346	3	2
g33	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	10	1236	3	2
g34	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	11	1246	3	2
g35	e1e2 = e3, e1e3 = e5, e1e4 = e5, e2e3 = e5, e2e4 = e5	10	1246	3	2

A, C, C₂, C³ denote Malcev algebras of dimension 5, 6, 7, respectively.
Let A be an algebra. For $x, y, z \in A$ we define their Jacobian $J(x, y, z)$ by the equality $J(x, y, z) = (xy)z + (yz)x + (zx)y$. The algebra A is called a Malcev algebra if it satisfies the identities

$$xy = -yx, \ J(x, y, xz) = J(x, y, z)x.$$

The algebra A is called a binary Lie (BL for short) algebra if all its 2-generated subalgebras are Lie algebras. It was shown by Gainov in [12] that A is a BL algebra iff it satisfies the identities

$$xy = -yx, \ J(x, y, xy) = 0.$$

It is easy to see that any Lie algebra is a Malcev algebra and any Malcev algebra is a BL algebra. It was shown in [13] that any three-dimensional BL algebra is a Lie algebra. The classification of four-dimensional BL algebras was obtained in [13, 27]. The classification of five-dimensional and nilpotent six-dimensional non-Lie Malcev algebras is given in [25].

Let BL_n, Mal_n and Lie_n denote the varieties of n-dimensional BL, Malcev and Lie algebras respectively, and $NBL_n, NMal_n$ and $NLie_n$ denote their subvarieties formed by nilpotent algebras.

Define the sets A^l by the equalities $A^1 = A$ and $A^l = A^{l-1}A$ $(l > 1)$. Also define the central series $Z_l(A)$ $(l > 0)$ of A in the following way. We define $Z_1(A) = Z(A)$ as the center of A, and, for $l > 1$, $Z_l(A)$ is the full inverse image of $Z(A/Z_{l-1}(A))$ under the canonical projection from A to $A/Z_{l-1}(A)$.

We collect all the information that we need about the algebras under consideration in Tables 1–3. In these tables in the first column we write the names of the algebras. In the second column we give the multiplication tables in some fixed basis e_1, \ldots, e_n of V. All products of basis elements, which are not described in the table, are zero or can be deduced from one of the described products and the anticommutativity identity. In the third column we give the dimensions of algebras of derivations. In the columns named $Z_l(A)$, A^2 and A^3 we give the dimensions of the corresponding spaces. In the column named $Z_l(A)$ we give the dimensions of the members of central series of A. Also, in the last column of Table 1 we have “Lie” for Lie algebras, “Malcev” for Malcev non-Lie algebras and “BL” for BL non-Malcev algebras.

The names of four-dimensional Lie algebras are from [5]. The classification of BL non-Lie algebras is taken from [27]. One of them is called $g_3(\beta)$ here, since for $\beta = 2$ we obtain the algebra g_3 in the notation of [5]. The remaining BL non-Lie algebra is called g_6.

The names of five- and six-dimensional nilpotent Lie algebras are taken from [35]. The classification of Malcev non-Lie algebras of corresponding dimensions is deduced from [25]. We give names containing the letter “M” to these algebras. So in our notation a five- or six-dimensional algebra is Malcev and non-Lie iff it contains a letter “M” in its name, except the algebras M_6 and M_7 that correspond to the algebras $g_{6,4}$ and $g_{6,12}$ respectively in the notation of [35].

3. Methods

In the present work we use the methods that were applied for Lie algebras in [7, 16, 17, 35]. First of all, it is well known that if $A \rightarrow B$ and $A \not\cong B$, then $\dim Der(A) < \dim Der(B)$, where $Der(A)$ is the algebra of derivations of A. We have computed the dimensions of algebras of derivations and have checked the assertion $A \rightarrow B$ only for such A and B that $\dim Der(A) < \dim Der(B)$. Secondly, it is well known that if $A \rightarrow C$ and $C \rightarrow B$, then $A \rightarrow B$. If there is no C such that $A \rightarrow C$ and $C \rightarrow B$, then the assertion $A \rightarrow B$ is called a primary degeneration. If $\dim Der(A) < \dim Der(B)$ and there are no C and D such that $C \rightarrow A$, $B \rightarrow D$ and $C \not\rightarrow D$, then the assertion $A \not\rightarrow B$ is called a primary non-degeneration. It is enough to prove only primary degenerations and non-degenerations to describe all degenerations in the variety under consideration. It is easy to see that any algebra degenerates to the algebra with zero multiplication.

Degenerations of four-dimensional and nilpotent five- and six-dimensional Lie algebras were described in [7, 17, 35]. Since the set $L(T)$ is closed for any T, a Lie algebra can’t degenerate to a non-Lie algebra. So when we want to add Malcev or BL algebras to Lie algebras we don’t have to check the degenerations from Lie algebras to any of the added algebras.
To prove the primary degenerations we construct the families of matrices parametrized by \(t \). Namely, let \(A \) and \(B \) be two algebras represented by the structures \(\mu \) and \(\lambda \) from \(\mathbb{L}(T) \) respectively. Let \(e_1, \ldots, e_n \) be a basis of \(V \), for which \(\lambda \) is defined by structure constants \(c_{ij}^k (1 \leq i, j, k \leq n) \). If there exist \(d_i^j(t) \in \mathbb{C} \) \((1 \leq i, j \leq n, t \in \mathbb{C}^*) \) such that \(E^j_i = \sum_{j=1}^n d_i^j(t)e_j \) is a basis of \(V \) for \(t \in \mathbb{C}^* \) and the structure constants of \(\mu \) in the basis \(E^1_1, \ldots, E^n_n \) are such polynomials \(c_{ij}^k(t) \in \mathbb{C}[t] \) that \(c_{ij}^k(0) = c_{ij}^k \), then \(A \rightarrow B \). In this case \(E^1_1, \ldots, E^n_n \) is called a parametrized basis for \(A \rightarrow B \).

Tables 4 and 5 give parametrized bases for primary degenerations between four-dimensional BL algebras and six-dimensional nilpotent Malcev algebras respectively. These tables include all primary degenerations of the form \(A \rightarrow B \), where \(A \) is a non-Lie algebra.

We now describe the methods for proving primary non-degenerations. The main tool for this is the following lemma.

Lemma 1 ([4, 17]). Let \(B \) be a Borel subgroup of \(GL_n(\mathbb{C}) \) and \(\mathcal{R} \subset \mathbb{L}(T) \) be a \(B \)-stable closed subset. If \(A \rightarrow B \) and \(A \) can be represented by a structure \(\mu \in \mathcal{R} \), then there is a structure \(\lambda \in \mathcal{R} \) representing \(B \).

Since any Borel subgroup of \(GL_n(\mathbb{C}) \) is conjugate to the subgroup of upper triangular matrices, Lemma 1 can be applied in the following way. Let \(A \) and \(B \) be two algebras. Let \(\mu, \lambda \) be some structures in \(\mathbb{L}(T) \) representing \(A \) and \(B \) respectively. Suppose that there is a set of equations \(Q \) in variables \(X_{ij}^k \) \((1 \leq i, j, k \leq n) \) such that \(X_{ij}^k = c_{ij}^k (1 \leq i, j, k \leq n) \) is a solution of all equations from \(Q \), then \(X_{ij}^k = c_{ij}^k \) \((1 \leq i, j, k \leq n) \) is a solution for all equations from \(Q \) too in the following cases:

1. If \(c_{ij}^k = \alpha \epsilon_{ij}^k c_{ij}^k \) for some \(\alpha \in \mathbb{C}^* \) \((1 \leq i \leq n) \);
2. If there are some numbers \(1 \leq u < v \leq n \) and some \(\alpha \in \mathbb{C} \) such that

\[
\begin{align*}
\epsilon_{ij}^k &= \begin{cases}
 \epsilon_{ij}^k, & \text{if } i, j \neq u \text{ and } k \neq v, \\
 \epsilon_{ij}^k + \alpha \epsilon_{ij}^k, & \text{if } i = u, j \neq u \text{ and } k \neq v, \\
 \epsilon_{ij}^k + \alpha \epsilon_{ij}^k, & \text{if } i \neq u, j = u \text{ and } k \neq v, \\
 \epsilon_{ij}^k - \alpha \epsilon_{ij}^k, & \text{if } i, j \neq u \text{ and } k = v, \\
 \epsilon_{ij}^k + \alpha (\epsilon_{ij}^k + \epsilon_{ij}^k) + \alpha^2 \epsilon_{ij}^k, & \text{if } i = j = u \text{ and } k \neq v, \\
 \epsilon_{ij}^k + \alpha (\epsilon_{ij}^k - \epsilon_{ij}^k), & \text{if } i = u, j \neq u \text{ and } k = v, \\
 \epsilon_{ij}^k + \alpha (\epsilon_{ij}^k - \epsilon_{ij}^k) - \alpha^2 \epsilon_{ij}^k, & \text{if } i \neq u, j = u \text{ and } k = v, \\
 \epsilon_{ij}^k + \alpha (\epsilon_{ij}^k + \epsilon_{ij}^k) + \alpha^2 (\epsilon_{ij}^k - \epsilon_{ij}^k) - \alpha^3 \epsilon_{ij}^k, & \text{if } i = j = u \text{ and } k = v.
\end{cases}
\end{align*}
\]

Assume that there is a basis \(f_1, \ldots, f_n \) of \(V \) such that the structure constants of \(\mu \) in this basis form a solution for all equations from \(Q \), but there is no basis \(\tilde{f}_1, \ldots, \tilde{f}_n \) of \(V \) such that the structure constants of \(\lambda \) in it form a solution for all equations from \(Q \). Then \(A \not\rightarrow B \).

We will often use two particular cases of Lemma 1. Firstly, if \(\dim A^\perp < \dim B^\perp \) for some \(l > 0 \), then \(A \not\rightarrow B \). Secondly, if \(\dim Z_l(A) > \dim Z_l(B) \) for some \(l > 0 \), then \(A \not\rightarrow B \). In the cases where these two criteria can’t be applied, we define \(\mathcal{R} \) by some conditions, which can be expressed in terms of a set of equations \(Q \) satisfying the property described above, and give a basis for \(V \), in which the structure constants of \(\mu \) satisfy all equations from \(Q \). We omit everywhere the verification of the fact that \(Q \) satisfies the required conditions and the verification of the fact that structure constants of \(\lambda \) in any basis do not satisfy some equation from \(Q \). These verifications can be done by direct calculations.

Table 4. Degenerations of binary Lie algebras of dimension 4.

Degenerations	Parametrized bases
\(g_3(\beta) \rightarrow g_2(\beta) \)	\(E_1^1 = e_1 + e_2, E_2^2 = e_2, E_3^3 = (1 - \beta)e_3 + e_4, E_4^4 = e_3 + e_4 \)
\(g_6 \rightarrow r_2 \oplus \mathbb{C}^2 \)	\(E_1^1 = e_1, E_2^2 = e_3, E_3^3 = e_1, E_4^4 = te_2 \)
Another argument for the non-degeneration that we use is the so-called \((i,j)\)-invariant for the algebra \(A\) if

\[
\text{tr}(ad\,x)^i \cdot \text{tr}(ad\,y)^j = c_{ij}\text{tr}((ad\,x)^i \circ (ad\,y)^j)
\]

for all \(x, y \in A\). If \(c_{ij}\) is an \((i,j)\)-invariant for \(A\), but at the same time it is not an \((i,j)\)-invariant for \(B\), then \(A \not\sim B\).

We give the proof of primary non-degenerations in Tables 6 and 7, where for each primary non-degeneration we give one of the arguments mentioned above.

If the number of orbits under the action of \(GL_n(\mathbb{C})\) on the variety \(\mathbb{L}(T)\) is finite, then the graph of primary degenerations gives the whole picture. In particular, the description of rigid algebras and irreducible components can be easily obtained. But in this work in some cases the situation is not so
Table 6. Non-degenerations of binary Lie algebras of dimension 4.

Non-degenerations	Arguments
$g_3(\beta) \not\cong t_2 \oplus C^2, g_1(\beta \neq 1), g_2(\gamma \neq \beta)$	$c_j(g_3(\beta)) = \frac{(\beta^2+2j)(\beta^2+2)}{\beta^{2j}+2}$, but $c_j(t_2 \oplus C^2) = 1$, $c_j(g_1) = 3$ and $c_j(g_2(\gamma)) = \frac{(\gamma^2+2j)(\gamma^2+2)}{\gamma^{2j}+2}$
$g_6 \not\cong g_1, g_2(\beta)$	$\dim (g_6)^2 < \dim (g_1(\beta))^2 \leq \dim (g_1)^2$

Table 7. Non-degenerations of nilpotent Malcev algebras of dimension 6.

Non-degenerations	Arguments
$M^1_2 \not\cong g_9, g_{23}$	$\mathcal{R} = \left\{ A \mid A = (f_1, f_2, f_3, f_4, f_5, f_6), A^2 \subset (f_4, f_5, f_6), \left(f_3, f_4, f_5, f_6 \right)^2 = 0, A(f_3, f_4, f_5, f_6) \subset (f_4, f_5, f_6) \right\}$
$M^1_2 \not\cong M^2_2 (\epsilon \neq 0), M^0_2$	
$M^1_2 \not\cong M^0_2, M^1_{0,0}$	$\dim Z(M^0_2) = \dim Z(M^1_2) = \dim Z(M^1_{0,0})$
$M^1_6 \not\cong g_5 \oplus g_7$	$\dim (g_5)^2 > \dim (M_6)^2$
$M^1_6 \not\cong g_9, g_{23}$	$\dim (g_9)^2 > \dim (M_6)^2$
$M^1_6 \not\cong M^1_{0,0} (\epsilon = 0)$	$\dim (g_4)^2 = \dim (M_6)^2 > \dim (M^1_{0,0})^2$
$M^0_6 \not\cong g_9, g_{23}$	$\mathcal{R} = \left\{ A \mid A = (f_1, f_2, f_3, f_4, f_5, f_6), A^2 \subset (f_4, f_5, f_6), \left(f_3, f_4, f_5, f_6 \right)^2 = 0, x(yz) = x(yz) \forall x \in A, y, z \in (f_2, f_3, f_4, f_5, f_6)$
$M^0_6 \not\cong g_7, g_4$	$\dim (g_4)^2 = \dim (M_6)^2 > \dim (M^0_6)^2$
$M^0_6 \not\cong g_9 \oplus g_{12} (\epsilon = -1)$	
$M^1_2 \not\cong n_3 \oplus n_3 (\epsilon = -1)$	$\mathcal{R} = \left\{ A \mid A = (f_1, f_2, f_3, f_4, f_5, f_6), A^2 \subset (f_4, f_5, f_6), \left(f_3, f_4, f_5, f_6 \right)^2 = 0, A(f_3, f_4, f_5, f_6) \subset (f_4, f_5, f_6) \right\}$
$M^0_6 \not\cong g_9, g_{10}, M^1_{0,0}, M^1_{1,0}, M^4_{4,0}$	$\dim (M_6)^2 > \dim (g_7)^2 > \dim (M^1_{1,0})^2$
$M^1_{1,1} \not\cong M^2_4, g_{17}, g_{24}$	$\mathcal{R} = \left\{ A \mid A = (f_1, f_2, f_3, f_4, f_5, f_6), A^2 \subset (f_4, f_5, f_6), \left(f_3, f_4, f_5, f_6 \right)^2 = 0, A(f_3, f_4, f_5, f_6) \subset (f_4, f_5, f_6) \right\}$
$M^1_{1,0} \not\cong g_4, g_4$	$\dim (g_4)^2 > \dim (M_6)^2$
$M^1_{1,0} \not\cong M^0_1, M^0_{1,1}$	$\dim (g_4)^2 > \dim (M^1_{1,0})^2$
$M^0_6 \not\cong g_9, g_9$	$\dim (g_9)^2 > \dim (M_6)^2$

good. Then we have to be able to verify a little more complicated assertions. Let $A_\alpha = \{ A_\alpha \}_{\alpha \in I}$ be a set of algebras and B be some other algebra. Suppose that A_α is represented by the structure $\mu_\alpha (\alpha \in I)$ and B is represented by the structure λ. Then $A_* \to B$ means $\lambda \in \bigcup_{\alpha \in I} O(\mu_\alpha)$, and $A_* \not\to B$ means $\lambda \not\in \bigcup_{\alpha \in I} O(\mu_\alpha)$.

Let $A_\alpha, B, \mu_\alpha (\alpha \in I)$ and λ be as above. To prove that $A_* \to B$ we have to construct a family of pairs $(f(t), g(t))$ parametrized by t, where $f(t) \in I$ and $g(t) \in GL_n(C)$. Namely, let e_1, \ldots, e_n be a basis of V, for which λ is defined by structure constants $c_{ijk}^l (1 \leq i, j, k \leq n)$. If we construct $d_1^k(t) \in C (1 \leq i, j, k \leq n, t \in C^*)$ and $f : C^* \to I$ such that $E_t^i = \sum_{j=1}^n d_1^j(t) e_j$ is a basis of V for $t \in C^*$ and the structure constants of $\mu_f(t)$ in the basis E^i_1, \ldots, E^i_n are such polynomials $c_{ijk}^l(t) \in C[t]$ that $c_{ijk}^l(0) = c_{ijk}^l$, then $A_* \to B$. In this case E^i_1, \ldots, E^i_n and $f(t)$ are called a parametrized basis and a parametrized index for $A_* \to B$ respectively.
We now explain how to prove that \(A^* \not\rightarrow B \). First of all, if \(\dim \text{Der}(A_\alpha) > \dim \text{Der}(B) \) for all \(\alpha \in I \), then \(A^* \not\rightarrow B \). One can use also the following generalization of Lemma 1, whose proof is the same as the proof of Lemma 1.

Lemma 2. Let \(B \) be a Borel subgroup of \(\text{GL}_n(\mathbb{C}) \) and \(R \subset \mathbb{L}(T) \) be a \(B \)-stable closed subset. If \(A^* \rightarrow B \), and for any \(\alpha \in I \) the algebra \(A_\alpha \) can be represented by a structure \(\mu_\alpha \in R \), then there is a structure \(\lambda \in R \) representing \(B \).

4. Binary Lie algebras of dimension 4

The Table 1 contains the classification and some invariants of four-dimensional BL algebras. It collects results from [5, 27].

The algebra \(g_4(\alpha_1, \beta_1) \) is isomorphic to \(g_4(\alpha_2, \beta_2) \) iff the proportions \(1 : \alpha_1 : \beta_1 \) and \(1 : \alpha_2 : \beta_2 \) coincide after some permutation. The algebra \(g_5(\alpha) \) is isomorphic to \(g_5(\beta) \) iff \(\alpha \beta = 1 \) or \(\alpha = \beta \). Apart from these two exceptions, any two algebras with different names from Table 1 are not isomorphic.

Theorem 3. The graph of primary degenerations for binary Lie algebras of dimension 4 has the form presented in Figure 1.

Proof. Tables 4 and 6 give the proofs for all primary degenerations and non-degenerations including non-Lie algebras.

Corollary 4. \(\text{Irr}(\text{BL}_4) = \{C_i\}_{1 \leq i \leq 5}, \) where

\[
C_1 = O(sl_2 \oplus \mathbb{C}) = O(\{sl_2 \oplus \mathbb{C}, g_5(-1), g_4(-1, 0), n_4, n_3 \oplus \mathbb{C}, \mathbb{C}^4\}), \\
C_2 = \overline{O(r_2 \oplus r_2)} = O\left(\{r_2 \oplus r_2, g_5(0), g_2(0), r_2 \oplus \mathbb{C}^2, n_4, n_3 \oplus \mathbb{C}, \mathbb{C}^4\} \cup \bigcup_{\alpha \in C} \{g_4(\alpha, 0)\}\right),
\]
In particular, if \(\text{Rig}(BL_4) = \text{Rig}(\text{Lie}_4) = \{ sl_2 \oplus \mathbb{C}, r_2 \oplus r_2 \} \).

Proof. In view of Theorem 3 and the fact that \(\text{Lie}_4 \) is a closed subset of \(BL_4 \) it is enough to prove that

\[
g_5(*) \not\rightarrow g_4(\alpha, \beta) \quad \text{for any} \quad \gamma \in \mathbb{C}, 1, \quad g_5(*) \not\rightarrow r_2 \oplus \mathbb{C}^2, g_5(*) \not\rightarrow g_2(2), g_5(*) \not\rightarrow g_1, \quad g_4(\ast, \ast) \not\rightarrow g_3(2), g_3(*) \not\rightarrow n_4.
\]

where \(g_5(*) = \{ g_5(\alpha) \}_{\alpha \in \mathbb{C}}, g_4(\ast, \ast) = \{ g_4(\alpha, \beta) \}_{\alpha, \beta \in \mathbb{C}} \) and \(g_3(*) = \{ g_3(\beta) \}_{\beta \in \mathbb{C}} \). Let us define

\[
\mathcal{R} = \begin{cases}
A = (f_1, f_2, f_3, f_4), (f_3, f_4)^2 = 0, (f_2, f_3, f_4)^2 \subset \langle f_4 \rangle, A(f_2, f_3, f_4) \subset \langle f_2, f_3, f_4 \rangle, A(f_3, f_4) \subset \langle f_3, f_4 \rangle, \\
A(f_4) \subset \langle f_4 \rangle, c_{1,2}^2 + c_{1,3}^2 = c_{1,4}^2, \text{ where } f_i f_j = \sum_{k=1}^{4} c_{i,j}^k f_k \text{ for all } 1 \leq i, j \leq 4 \end{cases}
\]

One can take \(f_1 = e_1, f_2 = e_3, f_3 = e_2 \) and \(f_4 = e_4 \) and check that \(g_5(\alpha) \in \mathcal{R} \) for all \(\alpha \in \mathbb{C} \).

Let us prove that \(g_2(\beta) \not\in \mathcal{R} \) if \(\beta \neq 0, 2 \). Assume that there is some basis \(\tilde{f}_i \) \((1 \leq i \leq 4)\) of \(V \) such that the structure constants \(c_{ij}^k \) of \(g_2(\beta) \) in it satisfy all required conditions. Let \(U = (\tilde{f}_2, \tilde{f}_3, \tilde{f}_4) \) and \(L : U \rightarrow U \) be the operator of left multiplication by \(\tilde{f}_1 \). It follows from the definition of \(\mathcal{R} \) that the matrix of \(L \) in the basis \(\tilde{f}_2, \tilde{f}_3, \tilde{f}_4 \) is lower triangular. Hence, \(\tilde{c}_{1,2}^2, \tilde{c}_{1,3}^2 \) and \(\tilde{c}_{1,4}^2 \) are eigen values of \(L \). On the other hand, it is easy to see that \(U = (e_2, e_3, e_4) \) and \(\tilde{f}_1 = c e_1 + \nu \) for some \(c \in \mathbb{C}^* \) and \(\nu \in U \). Then the eigen values of \(L \) are \(c, c \) and \(\beta c \). Then we have \(c = (\beta + 1) c \) or \(\beta c = 2c \), i.e. \(\beta = 0 \) or \(\beta = 2 \).

Analogously one can prove that \(g_4(\alpha, \beta) \not\in \mathcal{R} \) if \(\alpha - \beta \neq 1, \alpha - \beta \neq -1 \) and \(\alpha + \beta \neq 1 \), and \(r_2 \oplus \mathbb{C}^2, g_1 \not\in \mathcal{R} \).

Since \((e_2, e_3, e_4) \) is an abelian subalgebra of \(g_4(\alpha, \beta) \) and there is no three-dimensional abelian subalgebra in \(g_3(2) \), we have \(g_4(\ast, \ast) \not\rightarrow g_3(2) \) by Lemma 2. Let now define

\[
\mathcal{R} = \begin{cases}
A = (f_1, f_2, f_3, f_4), (f_2, f_3, f_4)^2 \subset \langle f_4 \rangle, A(f_2, f_3, f_4) \subset \langle f_2, f_3, f_4 \rangle, A(f_3, f_4) \subset \langle f_3, f_4 \rangle, A(f_4) \subset \langle f_4 \rangle, \\
c_{1,2}^2 = c_{1,3}^3, c_{1,2}^3 = 0, \text{ where } f_i f_j = \sum_{k=1}^{4} c_{i,j}^k f_k \text{ for all } 1 \leq i, j \leq 4
\end{cases}
\]
One can take \(f_i = e_i \) (1 \(i \leq 4 \)) and check that \(g_3(\beta) \in \mathcal{R} \) for all \(\beta \in \mathbb{C} \). On the other hand, it is not hard to check that \(n_4 \not\in \mathcal{R} \). Finally, to prove that \(g_3(\ast) \rightarrow g_6 \) it is enough to take the parametrized basis \(E_1 = e_2, E_2 = e_3, E_3 = e_4, E_4 = -te_1 \) and the parametrized index \(\beta((t)) = \frac{1}{t} \). \(\square \)

Corollary 5. \(\text{Irr}(\text{Mal}_4) = \{C_i\}_{1 \leq i \leq 4} \cup \{C_5^\prime\} \), where \(C_i \) (1 \(i \leq 4 \)) are the same as in Corollary 4, and \(C_5^\prime = \overline{O(g_3(-1))} = O(\{(g_3(-1), g_2(-1), n_3 \oplus \mathbb{C}, \mathbb{C}^4)\}) \). In particular, \(\text{Rig}(\text{Mal}_4) = \{s_2 \oplus \mathbb{C}, r_2 \oplus r_2, g_3(-1)\} \).

Proof. Everything follows from Theorem 3, Corollary 4 and Table 1. \(\square \)

5. Degenerations of nilpotent Malcev algebras of dimension 5

For five-dimensional nilpotent Malcev algebras we have the following table, which is constructed using results of [17] and [25].

Theorem 6. The graph of primary degenerations for nilpotent Malcev algebras of dimension 5 has the form presented in Figure 2.

Proof. It is enough to verify the assertions of the form \(M_5 \rightarrow A \) for such \(A \) that \(\text{dim Der}(A) < 9 \). So we have to check that \(M_5 \rightarrow g_5,3 \) and \(M_5 \not\rightarrow g_5,4 \). The parametrized basis formed by \(E_1 = e_1 - e_4, E_2 = te_2 + te_3, E_3 = te_4 + te_5, E_4 = t^2 e_3 \) and \(E_5 = t^2 e_5 \) gives the required degeneration. The assertion \(M_5 \not\rightarrow g_5,4 \) follows from the fact that \(\text{dim } (g_5,4)^2 > \text{dim } (M_5)^2 \). \(\square \)

Corollary 7. \(\text{Irr}(\text{NM}_5) = \{C_1, C_2\} \), where \(C_1 = \overline{O(g_5,6)} = \text{NLie}_5 \) and \(C_2 = \overline{O(M_5)} = \text{NM}_5 \setminus \{g_5,6, g_5,5, g_5,4\} \). In particular, \(\text{Rig}(\text{NM}_5) = \{g_5,6, M_5\} \).

Proof. Since there is only finite number of isomorphism classes of five-dimensional nilpotent Malcev algebras, everything follows from Theorem 6. \(\square \)

6. Degenerations of nilpotent Malcev algebras of dimension 6

We use the table of invariants for nilpotent six-dimensional Lie algebras from [35] and classification of nilpotent six-dimensional Malcev non-Lie algebras from [25] to construct the table containing important invariants for nilpotent six-dimensional Malcev algebras. To simplify the notation we write \(g_i \) instead of \(g_{6,i} \), and \(g_i^C \) and \(M_i^C \) instead of \(g_{5,i} \ominus \mathbb{C} \) and \(M_5 \ominus \mathbb{C} \) respectively.

The algebra \(M_5^\epsilon \) is isomorphic to \(M_2^{\epsilon'} \) iff \(\epsilon \epsilon' = 1 \) or \(\epsilon = \epsilon' \). Apart from this exception any two algebras with different names from Table 3 are not isomorphic.

Theorem 8. The graph of primary degenerations for nilpotent Malcev algebras of dimension 6 has the form presented in Figure 3.

Proof. Tables 4 and 6 give the proofs for all primary degenerations and non-degenerations including non-Lie algebras. \(\square \)

Corollary 9. \(\text{NM}_6 = \{C_1, C_2\} \), where \(C_1 = \overline{O(g_6)} = \text{NLie}_6 \) and \(C_2 = \bigcup_{\epsilon \in \mathbb{C}} O(M_6^\epsilon) = \text{NM}_6 \setminus \{g_6, g_5, g_8, g_7, g_{14}, g_9, g_{23}\} \). In particular, \(\text{Rig}(\text{NM}_6) = \text{Rig}(\text{NLie}_6) = \{g_6\} \).
Figure 3. The graph of primary degenerations for six-dimensional nilpotent Malcev algebras.

Proof. In view of Theorem 8 it is enough to prove that $M^*_6 \not\rightarrow g_9, M^*_6 \not\rightarrow g_{23}, M^*_6 \rightarrow M^1_7$ and $M^*_6 \rightarrow M^1_7$, where $M^*_6 = \{M^*_6\}_{\epsilon \in C}$. The first two assertions follow from the fact that $dim (g_9)^2 = dim (g_{23})^2 > dim A^2$ for any $A \in M^*_6$.

To prove that $M^*_6 \rightarrow M^1_7$ one can choose the parametrized basis

$$E'_1 = e_1, E'_2 = e_2 - e_4, E'_3 = te_4, E'_4 = e_3, E'_5 = e_5, E'_6 = e_6$$

and the parametrized index $\epsilon(t) = \frac{1}{7}$.

To prove that $M^*_6 \rightarrow M^1_7$ one can choose the parametrized basis

$$E'_1 = e_2, E'_2 = te_1, E'_3 = e_4, E'_4 = -te_3, E'_5 = -t^2e_5, E'_6 = te_6$$

and the parametrized index $\epsilon(t) = -t^2$. \qed
Acknowledgments

The authors are grateful to Prof. Dietrich Burde for some constructive comments.

Funding

The work was supported by RFBR 16-31-00004, FAPESP 14/24519-8, 14/19521-3, 16/16445-0 and by R & D 6.38.191.2014 of Saint-Petersburg State University, “Structure theory, classification, geometry, K-theory and arithmetics of algebraic groups and related structures”.

ORCID

Ivan Kaygorodov http://orcid.org/0000-0003-2084-9215

References

[1] Ancochea Bermúdez, J. M., Campoamor-Stursberg, R., García Vergnolle, L., Sánchez Hernández, J.(2008). Contractions d’algèbres de Jordan en dimension 2. J. Algebra 319(6):2395–2409.
[2] Benes, T., Burde, D. (2009). Degenerations of pre-Lie algebras. J. Math. Phys. 50(11):112102.
[3] Benes, T., Burde, D. (2014). Classification of orbit closures in the variety of three-dimensional Novikov algebras. J. Algebra Appl. 13(2):1350081.
[4] Burde, D. (1999). Degenerations of nilpotent Lie algebras. J. Lie Theory 9(1):193–202.
[5] Burde, D. (2003). Sur les degenerations d’algèbres de Lie. https://homepage.univie.ac.at/Dietrich.Burde/papers/penalty-@Mburde_15_rapp_deg.pdf.
[6] Burde, D. (2005). Degenerations of 7-dimensional nilpotent Lie algebras. Commun. Algebra 33(4):1259–1277.
[7] Burde, D., Steinhoff, C. (1999). Classification of orbit closures of 4–dimensional complex Lie algebras. J. Algebra 214(2):729–739.
[8] Casas, J., Khudoyberdiyev, A., Ladra, M., Omirov, B. (2013). On the degenerations of solvable Leibniz algebras. Linear Algebra Appl. 439(2):472–487.
[9] Chouhy, S. On geometric degenerations and Gerstenhaber formal deformations. ArXiv:1708.02933.
[10] Filippov, V. (2000). On δ-derivations of prime alternative and Malcev algebras. Algebra Logic 39(5):618–625.
[11] Gabriel, P. (1975). Finite representation type is open. In: Proceedings of the International Conference on Representations of Algebras, Carleton University, Ottawa, Ontario, 1974. Lecture Notes in Mathematics, Vol. 488, pp. 132–155.
[12] Gainov, A. (1957). Identical relations for binary Lie rings (Russian). Uspehi Mat. Nauk N.S. 12(3(75)):141–146.
[13] Gainov, A. (1963). Binary Lie algebras of lower ranks (Russian). Algebra i Logika Sem. 2(4):21–40.
[14] Gorbatsevich, V. (1994). Anticommutative finite-dimensional algebras of the first three levels of complexity. St. Petersburg Math. J. 5(3):505–521.
[15] Gorkoshov, I., Kaygorodov, I., Popov, Y. Degenerations of Jordan algebras. ArXiv:1707.08836.
[16] Grunewald, F., O’Halloran, J. (1988). A characterization of orbit closure and applications. J. Algebra 116:163–175.
[17] Grunewald, F., O’Halloran, J. (1988). Varieties of nilpotent Lie algebras of dimension less than six. J. Algebra 112:315–325.
[18] Ismailov, N., Kaygorodov, I., Volkov, Y. (2018). The geometric classification of Leibniz algebras. Int. J. Math., 29. doi: 10.1142/S0129167X18500350.
[19] Kaygorodov, I. (2014). On $(n + 1)$-ary derivations of simple n-ary Malcev algebras. St. Petersburg Math. J. 25(4):575–585.
[20] Kaygorodov, I., Popov, Y. (2016). A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations. J. Algebra 456:323–347.
[21] Kaygorodov, I., Popov, Y., Pozhidaev, A., Volkov, Y. (2018). Degenerations of Zinbiel and nilpotent Leibniz algebras. Linear Multilinear Algebra 66(4):704–716.
[22] Kaygorodov, I., Volkov, Y. The variety of 2-dimensional algebras over an algebraically closed field. ArXiv:1701.08233.
[23] Khudoyberdiyev, A. (2015). The classification of algebras of level two. J. Geom. Phys. 98:13–20.
[24] Khudoyberdiyev, A., Omirov, B. (2013). The classification of algebras of level one. Linear Algebra Appl. 439(11):3460–3463.
[25] Kuzmin, E. (1970). Malcev algebras of dimension five over a field of characteristic zero. Algebra Logic 9:416–421.
[26] Kuzmin, E. (1971). The connection between Malcev algebras and analytic Moufang loops. Algebra Logic 10:3–22.
[27] Kuzmin, E. (1998). Binary Lie algebras of small dimension. Algebra Logic 37(3):181–186.
[28] Kuzmin, E. (2014). Structure and representations of finite dimensional Malcev algebras. Quasigroups Relat. Syst. 22(1):97–132.
[29] Lauret, J. (2003). Degenerations of Lie algebras and geometry of Lie groups. Differ. Geom. Appl. 18(2):177–194.
[30] Malcev, A. (1955). Analytic loops (Russian). Mat. Sb. N.S. 36:569–576.
[31] Mazzola, G. (1979). The algebraic and geometric classification of associative algebras of dimension five. Manuscripta Math. 27:81–101.
[32] Mazzola, G. (1980). Generic finite schemes and Hochschild cocycles. Comment. Math. Helv. 55:267–293.
[33] Pozhidaev, A. (2001). n-ary Malcev algebras. Algebra Logic 40(3):170–182.
[34] Sagle, A. (1961). Malcev algebras. Trans. Am. Math. Soc. 101:426–458.
[35] Seeley, C. (1990). Degenerations of 6-dimensional nilpotent Lie algebras over C. Commun. Algebra 18:3493–3505.