Experimental Outcomes of Comparing Tilted Fiber Bragg Gratings Sensor to Existing Conventional Bragg Sensors

Aliya Kalizhanova1,2, Murat Kunelbayev1, Ainur Kozbakova1,3, Didar Yedilkhan1,6, Zhalau Aitkulov1,4, Zhassulan Orozbekov5

1Institute of Information and Computational Technologies CS MES RK, Almaty, 050010, Kazakhstan
2Almaty University of Power Engineering and Telecommunications, Almaty, 050010, Kazakhstan
3Almaty University of Technology, Almaty, 050010, Kazakhstan
4Academy of Logistics and Transport, Almaty, 050010, Kazakhstan
5Abai Kazakh National Pedagogical University, Almaty, 050010, Kazakhstan
6Astana IT University, Nur-Sultan, 020000, Kazakhstan

Received: May 19, 2021. Revised: May 18, 2022. Accepted: June 19, 2022. Published: July 27, 2022.

Abstract- The study describes sensors with an inclined grid designed to monitor the condition of structures installed on the bridge. The aim of the study is to study the possibility of using the developed sensors with an inclined grid to monitor the condition of structures by checking the deformation of various parts of bridges under highway loads, as well as comparing the characteristics of sensors with an inclined grid with conventional Bragg sensors. In this paper, experimental observations show that the results of using sensors with an inclined grid are in excellent agreement with the results obtained using conventional Bragg sensors. Also, a change in the wavelength of the VBR was detected and a comparison of the deformation characteristics for measuring temperature without deformation and the VBR for measuring deformation characteristics on a sensitive Bragg sensor for 700 seconds.

Keywords- Experimental results, sensors with inclined fiber bragg gratings, conventional bragg sensors

I. INTRODUCTION

The technology of bridge structural health monitoring attracts wide attention in the transport sector. Probing technology is hardcore and the basis for engineering structures and health system monitoring. Therefore, researches and probing technologies development have an important significance for securing subsequent monitoring of structural health. In the work [1], the technology of measuring FBG is considered and methods of foundation control are being developed quickly, thanks to numerous studies. In [2], corrosion resistance, resistance to electromagnetic influences, waterproofing and high measurement accuracy were calculated using fiber Bragg grating (FBG). In the article [3], periodic changes in optical fibers were studied, at which the refractive index, the refracted Bragg lattice, and its deformation change. Works [4-6] speak about sensor technology, which is, recently, been gradually applied to monitoring the engineering health of different structures and engineering-geological monitoring [7, 8]. Also, it was widely applied to definite application areas, including such objects as roads [9], and bridges [10, 11].

Fig.1 presents the configuration scheme and fabrication process of being offered smart plate from carbon fiber reinforced plastic (CFRP) [11], displaced tub by submerged resin at expense of the moving source, created with two sets of contra rotation wheels with constant speed, and afterwards, FBG sensors go through a preliminary designed bore in the middle of separating plate and enter CFRP fibers through multiplexer plates and then are uniformly distributed along the plate’s cross-section. Further, the fabrication process was continued with heating fibers, armoured with polymer in the oven, having a heat regulator. Thanks to the high-temperatures effect (about 200 °C) of the heating machine, a smart, hardened resin. Subsequent to producing a plate from CFRP, a built-in FBG will be expanded at one edge to create front/rear connection elements, melting together additional cladding fibers.
Mechanical information related to the environment, for example, movement, can be obtained using the survey technique. Fig. 2 a, b that a sensitive sensor is offered. Certain designs and studies were intensive in the article [12], a surface displacement sensor was used to successfully monitor the range of traffic and its changes on the motorway through the channel due to the load pressure of the vehicle. Kesavan et al. [13] offered FBG sensor application to measure interphase deformation, armoured polymer, hardened with proved, matrix defines the start separation.

That approach was selected, as it was cheap, and fast in fabrication. Construction [14] consisted of bar fiber. Fiber area, containing active subjected influence at the edge, perforated cap, on 3D-printer, which is easily removed for checking (or redesigning or replacing in case of mud accumulation). That sensor package is illustrated in Fig. 6, where also can be seen compared with commercial electrical sensors (used in assessment tests in sewerage).
Figure 6. Basic sensor system on the basis of Bragg grating with ability to transmit or reflect [15]

It is embedded in an optical fiber by exposing it to intense ultraviolet radiation. This effect creates periodic fiber changes. The results of the experiment showed that both sensors can support accurate deformation measurements. It was proposed to use FBG and their design was demonstrated, which makes it possible to reduce structural damage by increasing the voltage applied to the FBG sensor by about 36 times [16].

The article [17] presents an experimental application of the measurement method based on a reflectometer for monitoring deformation curves. It was demonstrated that the proposed method provides results corresponding to the results of direct spectral measurements. To accurately measure the physical and mechanical properties of the soil, a probing technique was proposed [18]. To study the law of deformation and the evolutionary characteristics of the internal stresses of overlying layers after the development of shallow and powerful coal seams, a model of fiber Bragg physical similarity sensors embedded in the model for tracking the deformation of overlying layers during coal mining was developed and built. The research results are of great importance for promoting the use of fiber-optic sensors in the mining industry [19]. In the study [20], an inversion model of tunnel precipitation based on the measurement of deformations of a distributed optical fiber was proposed, and the feasibility of the model was confirmed by laboratory tests. Based on field observations, the characteristics of deformation of the distribution of optical fibers and changes in the mechanical properties of the tunnel were analyzed taking into account the destruction process. The article [21] proposes an innovative intelligent multi-layer deformation monitoring system for the inverted arc of a tunnel made of salt-bearing rocks, which combines a laser deformation level monitor and a Bragg grating with a tender fiber for careful control of filling and internal deformation of the inverted arc of the tunnel. The article [22] shows the results of the application of engineering examples and proves that the method of detecting singular flash values can effectively analyze local singular features of data and better detect singular values. The article [23] describes experimental monitoring of structural deformations using ground-based laser scanning and ground-based radar interferometry. The procedures of measurement, analysis of the obtained spatial data and the results of deformation monitoring are explained and described. The objective of the given work is comparison of FBG sensor with tilted grating to existing conventional Bragg sensors.

II. PROBING PRINCIPLE, BASED ON FBG

Fiber-optic sensors are a fragment of an optical fiber subjected to a certain modification. When using optical fibers as sensing elements, there is no influence on the measurement result of electromagnetic fields, random electromagnetic radiation or crosstalk interference, there are no problems associated with the grounding circuit and displacements at the joints of dissimilar conductors, electrical safety is sufficiently increased, there are no problems with sparking, and sparkling. Fiber-optic sensors are highly resistant to dangerous environmental influences; they have small size and weight, high mechanical strength, resistance to high temperatures, vibrations, etc., as well as high data transfer rate. In addition, fiber-optic sensors can be used in explosive environments due to their absolute explosion safety. They are chemically inert, have a simple design and are highly reliable. Fiber Bragg gratings turned out to be different due to differences in the structure and photosensitivity of the fibers used, as well as the peculiarities of the recording conditions and the lasers with which the recording is performed. The recording features are the exposure time and the recording dynamics, that is, the radiation density. There are many methods for constructing sensor systems based on Bragg lattices in Fig. 3.

![Figure 7. Scheme of sensor](image)

Signal from the source is reflected by sensor element. Reflection wavelength is fixed with an analyzer block. As a rule, analyzer represents a narrow-band spectrometer.

III. MANUFACTURING TILTED GRATING FBG SENSORS

We have developed and experimentally investigated a sensor with inclined fiber Bragg gratings.
IV. RESEARCH OUTCOMES

Experimental tests were carried out on the river.

Offered system of distant monitoring operates as follows. Built-in fiber optic sensors with tilted Bragg grating transfer data to the own system of signal conditioner along fiber-optic cables, located in the channels for protecting from the environment. The signal from the power unit is reliably connected via telephone to the Internet, from where the data can be easily extracted and processed from the office by means of MatLab software.

The purpose of this study is to monitor the bridge, various measurements were carried out, including night measurements with a duration of hours, sampling near which will detect the dynamics during the movement of the car. Results, obtained, using G sensor with tilted grating were, as well, compared to the outcomes, obtained...
by means of existing optical sensors with direct Bragg gratings.

Figure 14. (a, b) wavelength changes and comparison of deformation characteristics, measured with tilted grating (point) FBG sensor and conventional Bragg sensor (line), accordingly

Fig. 14 (a) and (b) show the change in the wavelength of the FBG and a comparison of the characteristics of deformation without deformation of the FBG, which was affected by both thermal and deformation effects.

Figure 15. (c) comparison of deformation responses at sensitive point

Fig.15 (c) gives a comparison of deformation responses at sensitive with the Bragg sensor within 700 seconds. Approximately during 425, 567 and 678 seconds about 10 vehicles moved along the bridge. Experimental data shows, that FBG outcomes well match.

Figure 16. Comparison of FBG sensors (lower) and conventional ones (upper), installed on the bridge. FBG sensors with tilted grating and conventional Bragg sensors turned out to be very similar and automobiles motion might be clearly revealed.

Figure 17. Comparison of the bridge bar

FBG sensor sampling time constitutes 0.0612 ms. Filter, with sliding average FBG sensor and spectral bandwidth, is decreased approximately to 2 Hz. There is detected a big similarity between the sensors.

V. CONCLUSIONS

The given work presents the technology of fiber Bragg gratings. There has been developed a new fiber-optic sensor with tilted Bragg grating. There have been successfully conducted experimental tests with FBG sensors on the bridge of Issyk river, Almaty region, Republic of Kazakhstan. There have been applied FBG sensors and interrogation systems for monitoring the dynamic load on the bridge. Offered methodology for applying to structural health monitoring, which can perfectly and correctly define dynamic deformational bridge's reactions, caused by automobile movement on the bridge. Outcomes of interrogation system measurements were in excellent acceptance with the results, obtained by means of measurements. FBG sensors with tilted gratings possess many advantages, compared to conventional Bragg sensors. They are remote probing, ease of installation, corrosion absence and much lower expenditures on technical maintenance.
ACKNOWLEDGMENTS
This work is supported by grant from the Ministry of Education and Science of the Republic of Kazakhstan within the framework of the Project № AP09259547 «Development of a system of distributed fibre-optic sensors based on fibre Bragg gratings for monitoring the state of building structures», Institute of Information and Computational Technologies CS MES RK. Experimental researches have been carried out in the laboratories of optoelectronics at the Electric engineering and computer sciences faculty of Lublin Technical University.

REFERENCES
[1] K. Hill, Y. Fuji, D. Johnson, B. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl Phys Lett 32(10), pp.647–649, 1978.
[2] G. Meltz, W. Morey, W. Glenn, “Formation of Bragg grating in optical fiber by the transverse holographic method,” Opt Lett 14(15), pp.823–825, 1988.
[3] P Coll, “Holographically written Bragg gratings in photosensitive optical fiber,” Research project report, University of Sydney/OFTC 1993.
[4] W. Morey, G. Ball, G. Meltz, “Photo-induced Bragg gratings in optical fibers,” Optics and Photonics News, pp.8–14, 1994.
[5] A. Kersey, W. Morey, “Multiplexed Bragg grating fiber-laser strain sensor system with mode-locked interrogation,” Electron Lett 1,112–4, 1993.
[6] K. Hill, B. Malo, F. Bilodeau, D. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by exposure through a phase mask,” Appl Phys Lett 62, pp.1035–1037, 1993.
[7] W. Morey, G. Meltz, W. Glenn, “Fiber optic Bragg grating sensors,” SPIE 1169, pp.98–107, 1989.
[8] S. Melle, K. Liu, R. Measures, “Strain sensing using a fiber optic Bragg grating,” SPIE 1588, pp.255–263, 1991.
[9] S. Huang, M. LeBlanc, M. Ohn, R. Measure, “Bragg integrating structural sensing,” Appl Opt 34, pp.5003–5009, 1995.
[10] E. Friebele, C. Askins, A. Bosse, A. Kersey, H. Patrick, W. Pogue et al., “Optical fiber sensors for spacecraft applications,” Smart Mater Struct 8, pp.813–838, 1999.
[11] P. Foote, “Fiber Bragg grating strain sensors for aerospace smart structures,” In: Proc to 2nd European conf on smart structures and materials, pp.290–293, 1994.
[12] P. Foote, D. Roberts, “Carbon spars for superyachts and smart mast technology,” In: RINA Proc of the conf on the modern yacht 13, 1999.
[13] N. Fisher, J. Surowiec, D. Webb, D. Jackson, L. Gavriloj, J. Hand et al., “In-fiber Bragg gratings for ultrasonic medical applications,” Meas Sci Technol 8, pp.1050–1054, 1997.
[14] M. Davis, A. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron Lett 30(1), pp.5–7, 1994.
[15] Y. Rao, “In-fiber Bragg grating sensors,” Meas Sci Technol 8, pp.355–375, 1997.
[16] P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, M. Bugaud, “Applications of Bragg grating sensors in Europe,” Optical society of America technical digest series 16, pp.14–19, 1997.
[17] Y. Rao, “Recent progress in applications of in-fiber Bragg grating sensors,” Opt Lasers Eng 31, pp.297–324, 1999.
[18] K. Kuang, W. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: a review,” Appl Mech Rev 56(5), pp.493–513, 2003.
[19] W. Schulz, E. Udd, J. Seim, G. McGill, “Advanced fiber grating strain sensor systems for bridges, structures and highways. In: Liu SC, editor. Smart structures and materials 1998: Smart systems for bridges, structures, and highways, SPIE 3325, pp.212–221, 1998.
[20] B. Sun, Y. Ni, J. Ko, “Optical fiber sensor applications in civil engineering,” Research report. Hong Kong: The Hong Kong Polytechnic University, 1999.
[21] M. Bugaud, P. Ferdinando, S. Rougeault, V. Dewaynter-Marty, P. Parniex, D. Lucas, “Health-monitoring of composite plastic waterworks lock gates using in-fiber Bragg grating sensors,” Smart Mater Struct 9, 322–327, 2000.
[22] M. Vries, V. Bhatia, T. D’Alberto, V. Arya, R. Clause, “Photo-induced grating-based fiber optic sensors for structural analysis and control,” Eng Struct 20(3), pp.205–210, 1998.
[23] H. Li, D. Li, G. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng Struct 26, pp.1647–1657, 2004.
[24] W. Du, X. Tao, H. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,” IEEE Photon Technol Lett 11(1), pp.105–107, 1999.
[25] W. Du, X. Tao, H. Tam, “Temperature independent strain measurement with a fiber grating tapered cavity sensor,” IEEE Photon Technol Lett 11(5), pp.596–598, 1999.
[26] B. Guan, H. Tam, X. Tao, X. Dong, “Simultaneous strain &temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon Technol Lett 12(6), pp.675–677, 2000.
[27] B. Guan, H. Tam, S. Ho, S. Michael Liu, X. Dong, “Simultaneous strain and temperature measurement using a single fiber Bragg grating,” Electron Lett 36(12), pp.1018–1019, 2000.
[28] Y. Yu, H. Tam, W. Chung, M. Demokan, “Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature,” Opt Lett 25(16), pp.1141–1143, 2000.
[29] B. Guan, H. Tam, H. Chan, C. Choy, M. Demokan, “Discrimination between strain and temperature with a single fiber Bragg grating,” Microw Opt Technol Lett 33(3–5), pp.200–202, 2002.
[30] K. Wong, C. Lau, “Planning and implementation of the structural health monitoring system for cable-supported bridges in Hong Kong. In: Aktan AE, Gosselin SR, editors. Nondestructive evaluation of highways, utilities, and pipelines IV,” SPIE 3995, pp.266–275, 2000.
[31] T. Chan, L. Yu, H. Tam, Y. Ni, “Fiber Bragg Grating sensors for structural health monitoring of Tsing Ma bridge: Measurement and discussion,” Engineering Structures 28(5), pp.648–659, 2006.
Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

-Aliya Kalizhanova, Murat Kunelbayev carried out the simulation and the optimization.
-Ainur Kozbakova, Didar Yedilkhan has implemented the Construction
-Zhalau Aitkulov, Zhassulan Orazbekov has organized and executed the experiments of Section 4.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US