Methods of the Theory of Radiation Transfer for Bathymetry Problems

A A Sushchenko¹,², E R Lyu², V A Kan¹,²

¹Institute of Applied Mathematics FEB RAS, 7, Radio Street, Vladivostok, 690041, Russia
²Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690090, Russia

E-mail: liu.er@students.dvfu.ru

Abstract. Based on the mathematical model of the propagation of an acoustic signal in a fluctuating medium, the inverse problem is formulated, which includes determination a function that describes the deviation of the bottom level from the average specified horizontal plane. In the double scattering approximation and the narrow directivity pattern of the receiving antenna, the solution of the direct problem is obtained. As a solution of the inverse problem, a nonlinear differential equation is obtained for the function describing the deviation of the seafloor relief. A numerical analysis of the solution is carried out.

1. Introduction

The study of the ocean is still a priority for the world community. A large number of research complexes are being developed to solve bathymetry problems (see e.g. [1-4]). Autonomous underwater robotic systems management vehicles [7]. Nowadays, the problem of mapping the ocean floor using side scan sonars (SSS) which were equipped of an autonomous unmanned underwater vehicle, is very relevant and promising [6, 8]. The study of the ocean properties by using SSS generates a very interesting problem of determining the relief of the seafloor. The sonar operation is based on the periodic emission of pulsed sound parcels and the detection of reflected echo signal from remote seabed areas. When the sonar antenna is moved, an acoustic image is formed on both sides of the underwater vehicle.

2. Formulation of the problem

The process of propagation of acoustic radiation is described by the transfer equation [1-5, 9]:

\[
\frac{1}{c} \frac{\partial j(r, k, t)}{\partial t} + k \cdot V_j l(r, k, t) + \mu l(r, k, t) = \frac{\sigma}{2\pi} \int_{\Omega} l(r, k', t) d\Omega + J(r, k, t),
\]

(1)

here \(r \in \mathbb{R}^2, t \in [0, T] \) and wave vector \(k \) belongs to the unique sphere \(\Omega = \{k \in \mathbb{R}^2; |k| = 1\} \). The function \(l(r, k, t) \) is interpreted as radiation intensity of wave in moment \(t \) in point \(r \), propagated in the direction \(k \) with constant velocity \(c \). The coefficients \(\mu \) and \(\sigma \) denote the attenuation and the scattering, correspondingly. \(J(r, k, t) \) describes the density of inner sources.

The process of echo signal propagation occurs in the domain \(G := \{r \in \mathbb{R}^2; \gamma_2 > -l + u(r_1)\} \), which is the upper half-space bounded from below by the curve,
\[\partial G = \gamma = \{ y \in \mathbb{R}^2 : y_2 = -l + u(y_1) \} \], where the function \(u(y_1) \) describes the change of the ocean bottom relief.

We assume that the function \(J(r, k, t) \) describes a point isotropic sound source [7-10]:
\[
J(r, k, t) = J_0 \delta(r) \delta(t),
\]
where \(\delta \) – Dirac delta function and \(J_0 \) – source power.

Initial and boundary conditions for (1) [6,7]:
\[
I(y, k, t) = 2\sigma_d \int_{\Omega_+ (y)} \mid n(y) \cdot k' \mid I(y, k', t) dk',
\]
where \(\Omega_+ (y) = \{ k \in \Omega, sgn(k \cdot n(y)) = \pm 1 \} \), \(\sigma_d \) is the constant seabottom reflection coefficient, \(n(y) \) denotes external normal to \(\partial G \).

The solution of the initial-boundary problem (1), (3), (4) is deduced to the integral equation:
\[
I(r, k, t) = \int_0^{d(r, -k)} \exp(-\mu t') J_0 \left(r - t' k, k, t - \frac{t'}{c} \right) dt +
+ 2\sigma_d \exp(-\mu d(r, -k)) \int_{\Omega_+ (y-d(r, -k))} \mid n \cdot k' \mid I_{t'} \left(r - d(r, -k) k, k', t - \frac{d(r, -k)}{c} \right) dk' +
+ \int_0^{\frac{d(r, -k)}{c}} \exp(-\mu t') \frac{\sigma}{4\pi} \int_I \left(r - t' k, k, t - \frac{t'}{c} \right) dk' dt'
\]
where \(d(r, -k) \) – distance from the point \(r \in G \) in the \(-k \) direction to the boundary of the region \(G \).

Using approximation of non-scattering media (\(\sigma = 0 \)) last term is vanished.

For solving (5) authors construct a simple iteration method. Denote the initial approximation as
\[I_0 = \int_0^{d(r, -k)} \exp(-\mu t') J_0 \left(r - t' k, k, t - \frac{t'}{c} \right) dt'. \]

Thus, signal, received by sonar in the moment \(t \), is modified to
\[
I(t) = \frac{\sigma_d \varepsilon c J_0 \exp(-\mu |y|) (y_1 u' + l - u)^2}{|y|^2 \sqrt{1 + u'^2} |(l - u) u' - y_1|}
\]
where \(|y| = \frac{ct}{s} \).

3. The inverse problem

Further, we consider the inverse problem, which consists in determining the function \(u \) from (6). We obtain a nonlinear equation with respect to \(u' \). To increase the stability of the solution, we use the expansion of the function \(\sqrt{1 + u'^2} \) in the Taylor series:
\[
\sqrt{1 + u'^2} = \sqrt{1 + v_0^2} + O((u' - v_0)^2),
\]
then
In the numerical algorithm, we represent the function \(v_{ei} = u'_i - 1 \). For an approximate solution of the differential equation (9), we need to set 2 initial conditions:

\[
\begin{align*}
\left. u \right|_{t=0} &= u_0, \\
\left. u' \right|_{t=0} &= \nu_0.
\end{align*}
\]

4. Computational experiment

In the case of a narrow reception antenna pattern, the problem of remote sensing of the side-scan sonar, moving with a constant velocity \(V \) along the axis \(r_3 \), is reduced to solving the problem (1) - (4) and is solved independently at each probing interval.

To carry out the computational experiment, the parameters from the echolocation sounding were taken from the values in Table I. [9,11] To solve the differential (7), the Euler method used.

Table 1. Probing parameters.

\(\mu, \text{m}^{-1} \)	\(\sigma_d \)	\(c, \text{m/c} \)	\(l_0, \text{m} \)	\(y_1, \text{m} \)
0.018	1	1500	1	20
		[0, 300]		

Original bottom relief described by the following function:

\[
u(y_1, y_3) = \exp\left(-\frac{(y_1 - 100)^2 + (y_3 - 60)^2}{10^2}\right) - \exp\left(-\frac{(y_1 - 170)^2 + (y_3 - 60)^2}{10^2}\right)\]

Fig. 1 shows the solution of (7). As can be seen from the plot, the solution was obtained with an error of 1.8% (Fig. 2).
Figure 1. Restoration of the seabed relief for function (8).

In the following experiment, the bottom surface is given by a more variable function and has the form:

\[
u(y_1, y_3) = 1.5 \exp \left(- \frac{(y_1 - 120)^2 + (y_3 - 75)^2}{17^2} \right) - \right.
- 0.7 \exp \left(- \frac{(y_1 - 165)^2 + (y_3 - 70)^2}{25^2} \right) + \left. 0.5 \exp \left(- \frac{(y_1 - 155)^2 + (y_3 - 30)^2}{12^2} \right) - \right.
\left. 0.3 \exp \left(- \frac{(y_1 - 110)^2 + (y_3 - 40)^2}{15^2} \right) \right)
\]

(9)

Figure 3. Restoration of the seabed relief for function (9).

Figure 2. Observational error.

Figure 4. Observational error.
Fig. 3 shows the seabed profile based on the processing, the received signal, according to the (7). Maximum error $\delta u = 1.6\%$ (Fig. 4).

In the next experiment the input signal is computed in the case of finite directivity pattern of the receiving antenna with aperture 8°.

The seabottom relief is described as (10):

$$u(y_1, y_3) = \exp \left(-\frac{(y_1 - 100)^2 + (y_3 - 25)^2}{10^2} \right) - \exp \left(-\frac{(y_1 - 170)^2 + (y_3 - 25)^2}{10^2} \right)$$

(Fig. 5).

The Fig. 5, 6 are shown numerical error increase with increasing slant range, and objects is defocused along axes y_2. The fig. 7 are shown the maximum error is equal 40%.

(Fig. 6. View from above of Fig. 5.

(Fig. 7. Observational error.)
5. Conclusions
The series of computational experiments has shown that a small change in the bottom surface has little effect on the bottom profile recovery result in the case of a narrow beam pattern of the receiving antenna. A numerical algorithm is proposed for determining the characteristics of the bottom based on the signal obtained from the side-scan sonar, using formula (9). Also, the results of computational experiments prove its effectiveness. Thus, the authors carried out a study in the field of seabed mapping using the kinetic model of radiation transfer. During the work, the solution of the inverse problem in the form of a first-order differential equation is obtained, consisting in determining the function describing the deviation of the seabed relief from a given depth.

6. References
[1] Prokhorov I V and Sushchenko A A 2015 Studying the Problem of Acoustic Sounding of the Seabed Using Methods of Radiative Transfer Theory Acoustical Physics vol 61(3) pp 368-375
[2] Prokhorov I V, Sushchenko A A and Kan V A 2016 Determining the bottom surface according to data of side-scan sonars Proceedings of SPIE - The International Society for Optical Engineering vol 10035 (1003518)
[3] Prokhorov I V, Sushchenko A A and Kan V A 2015 Investigation of the problem of acoustic sounding of the sea bottom by the methods of the theory of radiation transfer Acoustic journal vol 61(3) pp 400-408
[4] Quijano J E and Zurk L M 2009 Radiative transfer theory applied to ocean bottom modeling The Journal of the Acoustical Society of America 126(4) pp 711-1723
[5] Ageev A L, Igumnov G A, Kostousov V B, Agafonov I B, Zolotorev V V and Madison E A 2013 Aperture synthesizing for multichannel side-scan sonar with compensation of trajectory instability Izvestiya SFedU. Engineering Sciences vol 140(3) pp 140-148
[6] Griffiths G 2002 Technology and Applications of Autonomous Underwater Vehicles CRC Press
[7] Matvienko Yu V, Voronin V A, Tarasov S P, Sknarya A V and Tutyrin E V 2009 Some Ways to Improve Technologies for Sonar Survey of the Seabed Using the Autonomous Underwater Unmanned Vehicle Podvodnye Issledovaniya i Robototekhnika vol 8(2) pp 4-15
[8] Prokhorov I V and Sushchenko A A 2015 Imaging the problem of acoustic sounding of the seabed using methods of radiative transfer theory Acoustic Physics vol 61(3) pp 400-408
[9] Prokhorov I V and Sushchenko A A 2015 Imaging Based on Signal from Side-Scan Sonar Applied Mechanics and Materials vol 756 pp 678-68
[10] Mendus V I and Postnov G A 1993 On Angular Intensity Distribution of High-Frequency Ambient Dynamic Noise of the Ocean Acoustical Physics vol 39(6) pp 1107-1116
[11] Prokhorov I and Sushchenko A 2015 Analysis of the impact of volume scattering and radiation pattern on the side-scan sonar images Proceedings of Meetingson Acoustics vol 24 pp 005007
[12] Prokhorov I V, Sushchenko A A and Kan V A 2016 Determining the bottom surface according to data of side-scan sonars Proceedings of SPIE - The International Society for Optical Engineering vol 10035 (1003518)
[13] Sokoletsy L G, Budak V P, Shen F and Kokhanovsky A A 2014 Comparative analysis of radiative transfer approaches for calculation of plane transmittance and diffuse attenuation coefficient of plane-parallel light scattering layers Applied Optics 53(3) pp 459-468
[14] Anikonov Yu E, Kovyantyuk A E and Neshchadim M V 2011 Some mathematical problems of acoustic probing Journal of Inverse and Ill-Posed Problems 18 (8) pp 877-883
[15] Prokhorov I V 2012 Solvability of the initial-boundary value problem for an integro-differential equation Siberian mathematical journal 53 (2) pp 301-309
[16] Prigrain S M 2017 Monte Carlo simulation of the effects caused by multiple scattering of ground-based and spaceborne lidar pulses in clouds Atmospheric and Oceanic Optics 30(1) pp 79-83
[17] Anikonov D S 1999 Integro-differentiation indicator of non-homogeneity in a tomography problem J. Inverse and Ill-Posed Problems 7(1) pp 17-59
[18] Kovtanyuk A E, Nefedev K V and Prokhorov I V 2010 Advanced computing method for solving of the polarized-radiation transfer equation *Lecture Notes in Computer Science* 6083 pp 268-276

[19] Prokhorov I V 2013 The Cauchy problem for the radiative transfer equation with generalized conjugation conditions *Comput. Math. Math. Phys.* 53(5) pp 588-600

[20] Anikonov D S, Kovtanyuk A E and Prokhorov I V 1999 Tomography through the transport Equation *Proceedings IMA Volumes in Mathematics and its Applications “Computational Radiology and Imaging: Therapy and Diagnostics”* 110 pp 33-44

[21] Yu X 2000 Wireline Quality Wireless Communication Using High Speed Acoustic Modems *MTS/IEEE Oceans 2000* 1 pp 417-422

Acknowledgments

The reported study was funded by RFBR according to the research project № 18-31-00050.