Characterization of the *Taenia* spp HDP2 sequence and development of a novel PCR-based assay for discrimination of *Taenia saginata* from *Taenia asiatica*

Luis M González¹, Begoña Bailo¹, Elizabeth Ferrer², Maria D Fernandez García¹, Leslie JS Harrison³, Michael RE Parkhouse⁴, Donald P McManus⁵ and Teresa Gárate*¹

Abstract

A previously described *Taenia saginata* HDP2 DNA sequence, a 4-kb polymorphic fragment, was previously used as the basis for developing PCR diagnostic protocols for the species-specific discrimination of *T. saginata* from *T. solium* and for the differentiation of *T. saginata* from *T. asiatica*. The latter was shown subsequently to lack the required specificity, so we undertook genetic studies of the HDP2 sequence from *T. saginata* and *T. asiatica* to determine why, and to develop a novel HDP2-PCR protocol for the simultaneous unambiguous identification of human taeniids. Sequencing and further analysis of the HDP2 DNA fragments of 19 Asiatic isolates of *T. saginata* and *T. asiatica* indicated that the HDP2 sequences of both species exhibited clear genomic variability, due to polymorphic variable fragments, that could correspond to the non-transcribed region of ribosomal DNA. This newly observed polymorphism allowed us to develop a novel, reproducible and reliable HDP2-PCR protocol which permitted the simultaneous discrimination of all *T. saginata* and *T. asiatica* isolates examined. This species-specific identification was based on, and facilitated by, the clear size difference in amplicon profiles generated: fragments of 1300 bp, 600 bp and 300 bp were produced for *T. asiatica*, amplicons of 1300 bp and 300 bp being obtained for *T. saginata*. Control *T. solium* samples produced one amplicon of 600 bp with the HDP2-PCR protocol. The assay has the potential to prove useful as a diagnostic tool in areas such as South East Asia where *T. saginata*, *T. asiatica* and *T. solium* coexist.

Findings

Human taeniasis results from intestinal infection with the adult tapeworms *Taenia saginata*, *Taenia asiatica* or *Taenia solium*. Ingestion of eggs of *T. saginata* and *T. solium*/*T. asiatica* causes cysticercosis in cattle and pigs, respectively. Importantly, *T. solium* eggs can also infect man, giving rise to human cysticercosis, with the frequent localization of the metacestodes in the brain, causing potentially fatal neurocysticercosis (NCC) [1-3]. Infection with *T. solium* is therefore a serious public health problem, notably in endemic areas (Latin America, Africa, Asia), but also in non-endemic areas due to imported cases [4]. Hence, and as an essential part of transmission control programs, there is an immediate and practical need for reliable and species-specific diagnosis of human taeniasis caused by *T. saginata*, *T. asiatica* and *T. solium* in order to identify tapeworm carriers, particularly those with *T. solium*, thus helping to avoid transmission of cysticercosis/NCC.

Until recently, species-specific diagnosis of taeniasis was unsatisfactory. Conventional clinical and morphological identification has low specificity and sensitivity [5]. Moreover, adult worms of *T. saginata* and *T. asiatica* are frequently confused due to their morphological similarities [6]. Copro-antigen diagnosis by ELISA, that detects parasite antigens in patient feces, is based on the use of polyclonal antibody reagents although it does not distinguish among the human intestinal taeniids [7,8]. More recently, serological diagnosis for *T. solium* taeniasis has...
been reported with recombinant ES antigens [9,10], but this assay not necessarily indicates active infection.

Various PCR approaches have been developed for species-specific identification of DNA from *T. saginata*, *T. asiatica* and *T. solium* [6,11-26]. Thus, the previously described *T. saginata* HDP2 DNA sequence [12,27], a 4-kb polymorphic fragment, was the basis for various PCR-based diagnostic protocols for the species-specific detection of *T. saginata* and *T. solium* taeniasis [12,17,25,26], as well as for the specific differentiation of *T. saginata* and *T. asiatica* samples [22]; however, the developed HDP2-PCR protocol was later shown to lack the required specificity to discriminate *T. saginata* from *T. asiatica*.

Although the genomic structure of the HDP2 fragment had been partially described for *T. saginata* and *T. solium* [12], its homologue in the taxonomically closely related *T. asiatica* had not [19,28-32]. Therefore, the aims of this study were: (i) to undertake genetic analysis of the HDP2 DNA sequence [12,27] from *T. saginata* and *T. asiatica* isolates, and (ii) to develop a novel HDP2-PCR protocol for the simultaneous species-specific identification of *T. saginata* and *T. asiatica*, as well as for the specific differentiation of *T. saginata* and *T. asiatica* samples [22]; however, the developed HDP2-PCR protocol was later shown to lack the required specificity to discriminate *T. saginata* from *T. asiatica*.

Table 1: Geographical origin of the 6 *Taenia saginata* and 13 *Taenia asiatica* samples analyzed.a.

Sample origin	Sample code number and species*
Indonesia	#12
Korea	#16, #19
Philippines	#7, #11
Taiwan	#4, #8, #10, #14
Thailand	#1, #3, #6, #9, #13, #15, #17, #18
Asia (country unknown)	#5

aAll samples were identified to species level by two separate PCRs; a multiplex PCR [6] and the novel HDP2-PCR III described in this study. The numbers shown in bold correspond to samples that could not be differentiated by the HDP2-multiplex-PCR [22].
Our analysis showed that the Asian samples could clearly be differentiated using the multiplex PCR described by Yamasaki et al. [6], but not by the HDP2-based multiplex PCR (Fig. 2a/2b) reported by González et al. [22], as samples #3, #12, #16, #17 and #19 were incorrectly identified as *T. saginata*. This finding prompted us to undertake further analysis of the genomic structure and sequence analysis of the HDP2 DNA fragments from the Asian taeniid isolates as now described.

After *Cla I* digestion of gDNAs from the Asian isolates, *T. saginata* and *T. solium* controls, and IPHDP2 probe hybridization as described above, different restriction enzyme product profiles were identified (Fig. 3b). With *T. saginata*, bands of 4.5, 3, 2, 1 and 0.7 kb were produced, whereas with *T. asiatica* bands of 4, 1 and 0.7 kb were obtained. As an alternative and complementary approach for studying the molecular organization of the HDP2 sequence, *T. saginata* and *T. asiatica* gDNA samples were amplified with primers derived from the IHDP2 probe (HDP2 PCR I); three amplicons for *T. saginata* were observed, but only one for *T. asiatica* (Fig. 3a). Taking these results together, *T. saginata* and *T. asiatica* showed polymorphism in their HDP2 DNA sequences.

To explore the contribution of nucleotide variability to the observed HDP2 sequence polymorphism, a fragment of 1896 bp from the IHDP2 region was obtained from all 19 Asian taeniid DNA samples using the HDP2 PCR II protocol. A comparison of all the IHDP2 fragments

![Figure 1](Strategy for amplification and verification of the HDP2 sequences. The location of probe IHDP2 used in Southern-blot is indicated by a discontinuous line below the *T. saginata* HDP2 sequence [GenBank: AJ133740]. The locations of the oligonucleotide primers within the *T. saginata* HDP2 DNA sequence [GenBank: AJ133740] for the different molecular protocols used, and the directions of these are indicated by arrows: HDP2F2 and HDP2R2 (PCR I: HDP2 (F2-R2)-PCR); Pts7535F1 and HDP2R1 (PCR II: Pts7535F1-HDP2R1-PCR); HDP2F2 and HDP2R3 (PCR III: HDP2-PCR). The location of the sequences with similarity to the *T. saginata* and *T. asiatica* partial HDP2 DNA fragments (Pts7535F1-HDP2R1 amplicon), pTSgr 3.1, pTSgr 2.4 (Fukumori et al., 1991) and pTTr 3.1, are indicated by the black area of the bar. The restriction enzyme sites are indicated by the lines.}

Table 2: PCR names, primer sequences and amplification conditions used.

PCR primer name	Primer sequence	Amplification conditions (Taq polymerase; BIOTOOLS, Spain)
HDP2 PCR I:		94°C for 30 sec, 55°C for 30 sec, 72°C for 1 min, 72°C for 7 min (35 cycles)
HDP2F2	5'-GCTGTACCAGCACCTAACCRTCC-3'	
HDP2R2	5'-GCAACAAACCGGCAATGGTGCT-3'	
HDP2 PCR II:		94°C for 30 sec, 56.5°C for 30 sec, 72°C for 2 min, 72°C for 7 min (35 cycles)
Pts7535F1	5'-CAGTGCCGATACGAGGGAGA-3'	
HDP2R1	5'-GCGGAAGATGGATCGACCTGATGG-3'	
HDP2 PCR III:		94°C for 30 sec, 60°C for 30 sec, 72°C for 2 min, 72°C for 7 min (35 cycles)
HDP2F2	5'-GCTGTACCAGCACCTAACCRTCC-3'	
HDP2R3	5'-ATCCCTGCTCCATGTGCCTTCTAGC-3'	
obtained [GenBank: FM212953-FM212971] by Clustal W2, revealed a high degree of homology, particularly in regard to the *T. saginata* isolates. Thus, alignment of the 1896 bp fragment from the control *T. saginata* HDP2 sequence [GenBank: AJ133740] with the amplified fragments from the Asian *T. saginata* samples yielded nucleotide identities from 99.6-99.7%. Alignment of the control *T. saginata* HDP2 sequence with the *T. asiatica* fragments yielded 97.0-98.8% nucleotide identity. This, the Asian *T. asiatica* HDP2 fragments showed a sequence divergence of 0.1% to 2.1%, compared with divergence of 0.0-0.1% recorded for the Asian *T. saginata* isolates and the control Spanish *T. saginata* isolate, thereby confirming low nucleotide variability between the two cestode taxa. Consequently, this structural analysis suggested that the HDP2 sequence polymorphism could be explained by variable representation of partially repeated sequences in the mid region of the HDP2 fragment, IHDP2, rather than due to nucleotide sequence divergence.

Seqman II-alignment of the partial HDP2 DNA fragments for *T. saginata* and *T. asiatica* within the NTR of the rDNA sequences of *T. saginata* (pTSgr 3.1, pTSgr 2.4)
and *T. asiatica* (pTTr 3.1) [21,36], revealed that the sequences were identical. Accordingly, the HDP2 sequence could thus also represent a variable repetitive fragment, being part of the NTR from rDNA. Notably, the identities among the sequences were restricted to nucleotides 859-1049 and 1738-1868 of the HPD2 DNA plus strand; pTSgr 3.1 and pTTr 3.1 has a 0.7 kb internal fragment, whereas pTSgr 2.4 does not (Fig. 1). This genetic variability in the NTR of the rDNA of *T. saginata* and *T. asiatica* allowed us to design a PCR protocol (HDP2 PCR III) for the simultaneous differential identification of the two species (Fig. 1). The HDP2F2/HDP2R3 primer set was designed from this region in the mid variable central part of HDP2 (Fig. 1).

Using 10 ng of gDNA from the Asian isolates and control samples, and following the PCR conditions described in Table 2, unambiguous species-specific amplification was obtained for all the samples analyzed (Fig. 2c). Three amplicons were evident with the *T. asiatica* samples (1300 bp, 600 bp and 300 bp), and two amplicons were generated for *T. saginata* (a strong band of 1300 bp and a weak band of 300 bp); the control *T. solium* samples produced one amplicon (600 bp) (Fig. 2c). Therefore, the novel HDP2 PCR III yielded results similar to those of
Yamasaki et al. [6] (Fig. 2b). These assays will prove particularly useful in areas such as South East Asia where *T. saginata*, *T. asiatica* and *T. solium* coexist [37,38].

In conclusion, this study showed and defined genetic polymorphism in the HDP2 sequence of the human taenid cestodes *T. saginata* and *T. asiatica*. An unexpected but, nevertheless notable finding, was that HDP2 may be a repetitive fragment of the NTR within taenid rDNA. This could explain the success of the published PCR protocols derived from this sequence in the sensitive diagnosis of taeniasis and NCC [12,13,17,25,26,39]. These findings were used to design a new HDP2 based PCR protocol, which demonstrated to be useful for the unambiguous discrimination of *T. saginata* from *T. asiatica*.

Authors’ contributions

LMG, LJSH, RMEP, DPM and TG conceived and designed the experiments. LMG, BB, EF and MDFG performed the experiments. LMG, EF, DPM and TG analyzed the data. LMG, TG, LJSH, MREP and DPM wrote the paper. All authors read and approved the final manuscript.

Abbreviations

NCC: neurocysticercosis; ELISA: enzyme-linked immunosorbent assay; PCR: Polymerase chain reaction; ES: excretion-secretion; DNA: Deoxyribonucleic acid; DNAg: genomic DNA; rDNA: ribosomal DNA; NTR: non-translated region; HDP2: a 4-kb polymorphic DNA fragment.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We would like to thank Prof. PC Fan (now deceased), Dr. J Cross and Prof. P Craig for supplying the *Taenia* isolates used for analysis. This work was also supported by a grant from FIS (97/0141 and 00/407) and the Spanish Ministry of Science and Innovation and the Instituto de Salud Carlos III within the Network of Tropical Diseases Research (RICET RD06/0021/0019). L.M. Gonzalez was sponsored by fellowships from the ISCIII and RICET.

Author Details

1Parasitology Department, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain, 2BOMED and Parasitology Department, Universidad de Carabobo Sede Aragua, Maracay, Venezuela, 3Sir Alexander Robertson Building, The University of Edinburgh, Easter Bush Veterinary Centre, Easter Bush, Roslin, Midlothian, Scotland; EH25 9RG UK, 4Instituto Gulbenkian de Ciencia, R. Quinta Grande 6, Oeiras, Portugal and 5 Molecular Parasitology Laboratory, Australian Centre for International and Tropical Health, Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Brisbane, Queensland 4029, Australia

Received: 12 February 2010 Accepted: 11 June 2010 Published: 11 June 2010

References

1. Floriss A. *Identification of tapeworms*. South Afric Med J 1972, 46:234-236.
2. Yamasaki H, Allain JC, Sato MO, Nakao M, Sako Y, Nakaya K, Qiu D, Mamuti W, Craig PS, Ito A. DNA differential diagnosis of Taeniasis and cysticercosis by multiplex PCR. J Clin Microbiol 2004, 42:548-553.
3. Avila G, Garcia Noval J, Flisser A, Craig PS. Immunodiagnosis of taeniasis by coproantigen detection. Parasitology 1990, 101:473-477.
4. Deplazes P, Eckert J, Pawlowski Z, Machowska L, Gottstein B: An enzyme-linked immunosorbent assay for diagnostic detection of *Taenia saginata* copro-antigens in humans. Trans R Soc Trop Med Hyg 1991, 85:391-396.
5. Levine MZ, Calderón JC, Wilkins PP, Lane WS, Asara JM, Hancock K, King ME, Gilman RH, Tsang VC. Characterization, cloning, and expression of two diagnostic antigens for *Taenia solium* tapeworm infection. J Parasitol 2004, 90:631-638.
6. Levine MZ, Lewis MM, Rodríguez S, Jimenez JA, Khan A, Lin S, Garcia HH, Gonzalez AL, Gilman RH, Tsang VC. Development of an enzyme-linked immunoelectrotransfer blot (EITB) assay using two baculovirus expressed recombinant antigens for diagnosis of *Taenia solium* taeniasis. J Parasitol 2007, 93:409-417.
7. Dias AK, Aoki SM, Garcia JP, Nunes CM: *Taenia solium* and *Taenia saginata*: identification of sequence characterized amplified region (SCAR) markers. Exp Parasitol 2007, 117:9-12.
8. Gonzalez LM, Montero E, Harrison LJ, Parkhouse RM, Garate T: Differential diagnosis of *Taenia saginata* and *Taenia solium* infection by PCR. J Clin Microbiol 2000, 38:737-744.
9. Gonzalez LM, Montero E, Pujante S, Lopez-Velez R, Hernandez M, Sculato E, Harrison LJ, Parkhouse RM, Garate T: PCR tools for the differential diagnosis of *Taenia saginata* and *Taenia solium* taeniasis/cysticercosis from different geographical locations. Diagn Microbiol Infect Dis 2002, 42:243-249.
10. Ito A, Craig PS: Immunodiagnostic and molecular approaches for the detection of taenid cestode infections. Trends Parasitol 2003, 19:377-381.
11. Mayta H, Taley A, Gilman RH, Jimenez J, Verastegui M, Ruiz M, Garcia HH, Gonzalez AE: Differentiating *Taenia solium* and *Taenia saginata* infections by simple hematoxylin–eosin staining and PCR-restriction enzyme analysis. J Clin Microbiol 2000, 38:133-137.
12. Nunes CM, Dias AK, Dias FE, Aoki SM, de Paula HB, Lima LG, Garcia JP: *Toenia saginata*: differential diagnosis of human taeniasis by polymerase chain reaction-restriction fragment length polymorphism assay. Exp Parasitol 2005, 110:412-425.
13. Nunes CM, Lima LG, Mancol CS, Pereira RN, Nakano MM, Garcia JP: *Taenia saginata*: polymerase chain reaction for diagnosis of human taeniasis in human fecal samples. Exp Parasitol 2003, 104:67-69.
14. Rodriguez-Hidalgo R, Greyson D, Bentez-Ortiz W, Geerts S, Brandt J: Comparison of conventional techniques to differentiate between *Taenia solium* and *Taenia saginata* and an improved polymerase chain reaction-restriction fragment length polymorphism assay using a mitochondrial 12S rDNA fragment. J Parasitol 2002, 88:1007-1011.
15. Bowles J, McManus DP: Genetic characterization of the Asian *Taenia*, a newly described *Taeniiid cestode of Humans*. Am J Trop Med Hyg 1994, 50:33-44.
16. Eom KS, Jeon HK, Kong Y, Hwang UW, Yang Y, Li X, Xu L, Feng Z, Pawlowski ZS, Rim HJ: Identification of *Taenia asiatica* in China: molecular, morphological, and epidemiological analysis of a Luzhui isolate. J Parasitol 2002, 88:758-759.
17. Zarfenga DS, McManus DP, Fan PC, Cross JH: Characterization and detection of a newly described Asian taenid using cloned ribosomal DNA fragments and sequence amplification by the polymerase chain reaction. Exp Parasitol 1991, 72:174-183.
18. Gonzalez LM, Montero E, Morakote N, Puentes S, Diaz De Tuesta JL, Serra T, Lopez-Velez R, McManus DP, Harrison LJ, Parkhouse RM, Garate T: Differential diagnosis of *Taenia saginata* and *Taenio asiatica* taeniasis through PCR. Diagn Microbiol Infect Dis 2004, 49:183-188.
19. Jeon HK, Choi YJ, Kong Y, Waikagul J, Insisiengmay B, Rim HJ, Eom KS: Differential diagnosis of *Taenia asiatica* using multiplex PCR. Exp Parasitol 2009, 121:151-156.
20. Nikouaeva A, Sako Y, Nakao M, Nakaya K, Ito A, Loop-Mediated Isothermal Amplification Method for Differentiation and Rapid Detection of *Taenia Species*. J Clin Microbiol 2008, 46:167-174.
25. Montero E, Gonzalez LM, Puente S, Garate T: Diagnosis of human taeniasis by multiplex-PCR. Med Clin 2003, 120:37.

26. Villalobos N, Gonzalez LM, Fuentes I, Puente S, Garate T: Differential diagnosis of human taeniasis in the Department of Parasitology, Centro Nacional de Microbiologia, Instituto de Salud Carlos III. In Proceedings IX European Multicolloquium of Parasitology Edited by: Bologna. Valencia: Monduzzi; 2004:241-244.

27. Harrison LJS, Delgado J, Parkhouse RME: Differential diagnosis of Taenia saginata and Taenia solium with DNA probes. Parasitology 1990, 100:459-461.

28. De Queiroz A, Alkire NL: The phylogenetic placement of Taenia cestodes that parasitize humans. J Parasitol 1998, 84:379-383.

29. Fan PC, Chung WC. Taenia saginata asiatica: epidemiology, infection, immunological and molecular studies. J Microbiol Immunol Infect 1998, 31:84-89.

30. McManus DP, Bowles J: Asian (Taiwan) Taenia: species or strain? Parasitol Today 1994, 10:273-275.

31. Okamoto M, Bessho Y, Kamiya M, Kurosawa T, Hori T: Phylogenetic relationships within Taenia taeniaeformis variants and other taenid cestodes inferred from the nucleotide sequence of the cytochrome c oxidase subunit I gene. Parasitol Res 1995, 81:451-458.

32. Hobberg EP, Jones A, Rausch RL, Ezen K, Gardner SL: A phylogenetic hypothesis for species of the genus Taenia (Eucestoda: Taeniidae). J Parasitol 2000, 86:89-98.

33. Sambrook J, Russell DW: Molecular cloning: a laboratory manual. 3rd edition. Cold Spring Harbor Laboratory, Cold Spring Harbor: New York; 2003.

34. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.

35. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.

36. Simpson AJ, Dame JB, Lewis FA, McCutchan TF. The arrangement of ribosomal RNA genes in Schistosoma mansoni. Identification of polymorphic structural variants. Eur J Biochem 1984, 139:41-45.

37. Fan PC, Chung WC, Lin CY, Wu CC: Experimental infection of Thailand Taenia (Chiangmai strain) in domestic animals. Int J Parasitol 1990, 20:121-123.

38. Ito A, Nakao M, Wandra T: Human Taeniasis and cysticercosis in Asia. Lancet 2003, 362:1918-1920.

39. Hernández M, Gonzalez LM, Fleury A, Saenz B, Parkhouse RM, Harrison L, Garate T, Sciutto E: Neurocysticercosis: detection of Taenia solium DNA in human cerebrospinal fluid using a semi-nested PCR based on HDP2. Ann Trop Med Parasitol 2008, 102:317-323.

doi: 10.1186/1756-3305-3-51
Cite this article as: González et al, Characterization of the Taenia spp HDP2 sequence and development of a novel PCR-based assay for discrimination of Taenia saginata from Taenia asiatica Parasites & Vectors 2010, 3:51