Observation of $B_s^0 \rightarrow D_s^{(*)-} \pi^+$, $B_s^0 \rightarrow D_s^{(*)-} \rho^+$ and $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$ and Estimate of $\Delta \Gamma_{CP}$ at Belle

Sevda Esen
University of Cincinnati
E-mail: esens@mail.uc.edu

The large data sample being recorded with the Belle detector at the $\Upsilon(5S)$ energy provides a unique opportunity to study the less-well-known B_s meson decays. Following our recent measurement of $B_s^0 \rightarrow D_s^- \pi^+$ in a sample of 23.6 fb^{-1}, we extend the analysis to include decays with photons in the final state. Using the same sample, we report the first observation of three other dominant exclusive B_s^0 decays, in the modes $B_s^0 \rightarrow D_s^{(*)-} \pi^+$, $B_s^0 \rightarrow D_s^- \rho^+$ and $B_s^0 \rightarrow D_s^{(*)-} \rho^+$. We measure their respective branching fractions and, using helicity-angle distributions, the longitudinal polarization fraction of the $B_s^0 \rightarrow D_s^{(*)-} \rho^+$ decay.

We also present a measurement of the branching fractions for the decays $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$. In the heavy quark limit, this branching fraction is directly related to the width difference between the B_s CP-even and CP-odd eigenstates.
1. Introduction

Beginning in 2005, the Belle experiment running KEKB e^+e^- collider [1] has recorded several data sets at the center-of-mass energy corresponding to the $\Upsilon(5S)$ resonance. Belle has used this data sets to measure several B^0_d properties and branching fractions. The total of 120 fb$^{-1}$ at the $\Upsilon(5S)$ ($\sqrt{s} \approx 10.87$ GeV) has been recorded. The results presented here correspond to the first 23.6 fb$^{-1}$.

The total e^+e^- to $b\bar{b}$ cross section at the $\Upsilon(5S)$ energy was measured to be $\sigma_{bb} = (302 \pm 14)$ pb [2, 3], with the fraction $f_{e} = \sigma(e^+e^- \rightarrow B_s^{(*)}\bar{B}_s^{(*)})/\sigma_{bb} = (19.3 \pm 2.9\%)$ [4]. The dominant B_s^0 production mode is $e^+e^- \rightarrow B_s^0\bar{B}_s^0$, with a fraction $f_{B_s^0} = (90.1^{+3.8}_{-4.0} \pm 0.2\%)$ of the $b\bar{b} \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$ events [5]. Thus for 23.6 fb$^{-1}$ the total number of $e^+e^- \rightarrow B_s^0\bar{B}_s^0$ events is $(1.24 \pm 0.2) \times 10^6$.

All signal B_s^0 decays are fully reconstructed from final-state particles using two quantities: the beam-energy-constrained mass $M_{bc} = \sqrt{E^2_b - P^2_{B_s}}$, and the energy difference $\Delta E = E_B - E_{\bar{B}_s}$, where P_{B_s} and E_B are the reconstructed momentum and energy of the B_s^0 candidate, and $E_{\bar{B}_s}$ is the beam energy. These quantities are evaluated in the e^+e^- center-of-mass frame. Although the B_s^0 always decays to $B_s^0\gamma$, the γ is not reconstructed because of its extremely low momentum.

2. Observation of $B_s^0 \rightarrow D_s^-\pi^+$ and $D_s^{(*)}-\rho^+$ Decays and Polarization Measurement of $B_s^0 \rightarrow D_s^-\rho^+$

Three CKM-favored decays with relatively large branching fractions, $B_s^0 \rightarrow D_s^-\pi^+$ and $D_s^{(*)}-\rho^+$, have been observed recently by Belle [6]. Three D_s^- decay modes are considered: $\phi(\rightarrow K^+K^-)\pi^+$, $K_S(\rightarrow \pi^+\pi^-)K^+$ and $K^{*0}(\rightarrow K^+\pi^-)K^+$. Since only four charged tracks and up to one γ and π^0 are required, these final states have relatively large signals. The continuum events are removed using the ratio of the second to zeroth Fox-Wolfram moments [7]. This ratio differs for spherical B events and jet-like continuum events.

Only one B_s^0 candidate is allowed per event. This candidate is chosen based on the intermediate-particle reconstructed masses. The M_{bc} and ΔE distributions of the selected B_s^0 candidates are shown in Figure 1. For the $B_s^0 \rightarrow D_s^-\rho^+$ candidates, the helicity angles $\theta_{D_s^-}$ and θ_{ρ^+} are also reconstructed. These are defined as the angle between the D_s^- or π^+ and the opposite direction of the B_s^0 in the $D_s^-\rho^+$ rest frame. The distributions of $\cos \theta_{D_s^-}$ and $\cos \theta_{\rho^+}$ are fitted to determine the longitudinal polarization fraction f_\perp (see Table 1).

3. Observation of $B_s \rightarrow D_s^{(*)}-D_s^{(*)}$ Decays and a Determination of the $\Delta \Gamma_s$

Decays of $B_s \rightarrow D_s^{(*)}-D_s^{(*)}$ are interesting due to their large CP-even fraction. The pure CP-even D_s^+ state and predominantly CP-even $D_s^0D_s^{(*)}$ states are Cabibbo-favored and expected to dominate the width difference of the $B_s^0 - \bar{B}_s^0$ system. In the heavy quark limit, assuming negligible CP violation, the relative width difference is $\Delta \Gamma_s^{CP}/\Gamma_s = 2\beta/(1 - \beta)$, where β is the total branching fraction of $B_s \rightarrow D_s^{(*)}-D_s^{(*)}$ decays [8].

For this study [9], D_s^+ candidates are reconstructed in six modes, $\phi\pi^+, K_SK^+, K^{*0}K^+, \phi\rho^+, K^+K_S$ and K^+K^{*0}. B_s^0 candidates are reconstructed from two oppositely charged $D_s^{(*)}$ mesons. As the daughter photon of the D_s^* has very low momentum, more than half of the events yield more than one B_s^0 candidate sharing the same D_s pair. Only one candidate per event is selected.
using a selection criteria based on M_{D_s} and $M_{D_s} - M_{D_s}$ information. After rejecting continuum events using a Fisher discriminant based on a set of modified Fox-Wolfram moments [7, 10], the remaining background events are largely $B_{(s)} \rightarrow D_{s}^{(*)} X$ decays, where X is an accidental particle combination with a reconstructed mass within the D_s mass window. The $B^0 \rightarrow D_s^+ D_s^{-}, D_s^{-} D_s^{+},$ and $D_s^{+} D_s^{-} + 1$ modes are fitted simultaneously; the fit projections are shown in Figure 2.

The signal yields, branching fractions, and resulting value of $\Delta \Gamma/\Gamma_{CP}$ are listed in Table 1. Various systematic uncertainties are studied, and the resulting systematic errors are listed after the statistical errors. The second systematic error is due to uncertainty of f_s for $B_s^0 \rightarrow D_s^{(*)} \pi^+$, $D_s^{(*)} \rho^+$ modes. For $B^0 \rightarrow D_s^{(*)} D_s^{(*)}$ modes, it also includes uncertainties of D_s branching fractions, $\sigma_T(55)$, and $f_{BS/BS}$. Our results are in good agreement with the theoretical predictions [11, 12] and existing measurements[13].

Figure 1: Projections of $B^0_s \bar{B}_s^0$ signal region in M_{bc} and ΔE for fits of $B^0_s \rightarrow D_s^{+} \pi^+$ (top-left), $D_s^+ \rho^+$ (bottom-left), and $D_s^+ \rho^+$ (top-right). The bottom-right figure shows the helicity distributions for $D_s^+ \rho^+$ mode. The solid-blue line represents the total fit, while the red-dashed(black-dotted) curve is the signal(background).

Figure 2: ΔE (top) and M_{bc} (bottom) distributions for $D_s^+, D_s^{*-}, D_s^{*-} D_s^{+}$ and $D_s^+ D_s^{*}$, from left to right respectively. The red-dashed curve represents correctly reconstructed signal events, the black curve is the total fit.
Observation of $B^0 \rightarrow D_s^- \pi^+$, $B^0_s \rightarrow D_s^{(*)-} \rho^+$ and $B^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$ and Estimate of $\Delta \Gamma_{CP}$

Sevda Esen

Mode	$N_{B_s \bar{B}_s}$	S	ε	\mathcal{B}(%)	World Average
$B^0 \rightarrow D_s^- \pi^+$	$53.4^{+10.3}_{-9.4}$	7.1	9.13×10^{-2}	$0.24^{+0.05}_{-0.04} \pm 0.03 \pm 0.04$	1st Measurement
$B^0 \rightarrow D_s^- \rho^+$	$92.2^{+14.2}_{-13.2}$	8.2	4.40×10^{-2}	$0.85^{+0.13}_{-0.12} \pm 0.11 \pm 0.13$	1st Measurement
$B^0_s \rightarrow D_s^{(*)+} \rho^+$	$77.8^{+14.5}_{-13.4}$	7.4	2.67×10^{-2}	$1.19^{+0.22}_{-0.20} \pm 0.17 \pm 0.18$	1st Measurement
$f_t(B^0 \rightarrow D_s^- \bar{D}_s^+)$	$1.05^{+0.08}_{-0.10} + 0.03$				1st Measurement
$B^0 \rightarrow D_s^- D_s^+$	$8.5^{+3.2}_{-2.6}$	6.2	3.31×10^{-4}	$1.03^{+0.39}_{-0.32} + 0.13 \pm 0.21$	(1.04 ± 0.35)%
$B^0_s \rightarrow D_s^{(*)-} D_s^+$	$9.2^{+2.8}_{-2.4}$	6.6	1.35×10^{-4}	$2.75^{+0.83}_{-0.71} \pm 0.40 \pm 0.56$	1st Observation
$B^0 \rightarrow D_s^- D_s^+$	$4.9^{+1.9}_{-1.7}$	3.1	0.643×10^{-4}	$3.08^{+1.22}_{-1.04} + 0.57 \pm 0.63$	1st Evidence
$B^0_s \rightarrow D_s^{(*)-} D_s^{(*)+}$	$22.6^{+4.7}_{-3.9}$				(4.0 ± 1.5)%
$\Delta \Gamma_s/\Delta \Gamma$	$0.147^{+0.036}_{-0.030} + 0.042$				0.080 ± 0.030

Table 1: Summary of the results. Signal yields in the $B^0_s \bar{B}_s$ production mode, $N_{B_s \bar{B}_s}$; significances, S (including systematics); total signal efficiencies, ε (including all sub-decay branching fractions); and branching fractions, \mathcal{B}. The first error is statistical, while the latter two are systematic and arise from internal and external sources. The significance $S = \sqrt{-2 \ln(L_0/L_{max})}$, where L_0/L_{max} are likelihood values when the signal yield is fixed to zero (floated).

4. Conclusion

We presented recent branching fraction measurements of B^0_s decays obtained from 23.6 fb$^{-1}$ of $\Upsilon(5S)$ data recorded by the Belle experiment. Also, the longitudinal polarization fraction is measured for the $B^0_s \rightarrow D_s^- \rho^+$ mode and $\Delta \Gamma_{s CP}/\Gamma_s$ is estimated using $D_s^{(*)-} D_s^{(*)+}$ modes.

References

[1] A. Abashian et al. (Belle Collaboration) Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); S. Kurokawa and E. Kikutani Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003).
[2] A. Drutskoy et al. (Belle Collaboration) Phys. Rev. Lett. 98, 052001 (2007).
[3] G. S. Huang et al. (CLEO Collaboration) Phys. Rev. D 75, 012002 (2007).
[4] C. Amsler et al. (Particle Data Group) Phys. Lett. B 667, 1 (2008).
[5] R. Louvot et al. (Belle Collaboration) Phys. Rev. Lett. 102, 021801 (2009).
[6] R. Louvot et al. (Belle Collaboration) Phys. Rev. Lett. 104, 231801 (2010).
[7] G. C. Fox and S. Wolfram Phys. Rev. Lett. 41, 1581 (1978).
[8] I. Dunietz, R. Fleischer, and U. Nierste, Phys. Rev. D 63, 114015 (2001); I. Dunietz, Phys. Rev. D 52, 3048 (1995); R. Aleksan et al., Phys. Lett. B 316, 567 (1993).
[9] S. Esen et al. (Belle Collaboration) Phys. Rev. Lett. 105, 201802 (2010).
[10] S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
[11] A. Deandrea et al. Phys. Lett. B 318, 549 (1993).
[12] A. Lenz and U. Nierste, J. High Energy Phys. 06 (2007), 072.
[13] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 021803 (2008); V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 102, 091801 (2009).