Materials Research Express

Effect on microstructure and corrosion resistance of semi-solid slurry of 7A04 aluminum alloy by electromagnetic stirring

Yanli Zhu, Xiaolong Xu, Junwen Zhao and Guangzhong Hu

1 Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, People’s Republic of China
2 Sichuan Atlantic Welding Consumables CO., LTD, Zigong 643010, People’s Republic of China
3 School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, People’s Republic of China

E-mail: 1184644896@qq.com(Yanli Zhu)

Keywords: 7A04 aluminum alloy, semi-solid, phases, element distribution, corrosion resistance

Abstract

The microstructures and corrosion resistance of electromagnetic stirring (EMS) semi-solid slurry and as-cast 7A04 aluminum alloy were compared in this work. The results show that the primary microstructure of the as-cast 7A04 aluminum alloy is mainly dendritic and columnar dendrite with obvious elements segregation. In contrast, semi-solid processing can effectively form homogeneous and round primary α-Al grains, and significantly reducing element segregation. In addition, the main phases of the two forming methods (as-cast and semi-solid) both involved α-Al, η-MgZn$_2$, θ-Al$_5$Cu. With the decrease of solidification temperature, the semi-solid alloy formed by electromagnetic stirring increases the precipitation of brittle phase β-Al$_5$CuMg. The self-corrosion potential of the semi-solid alloy is greater than that of the as-cast alloy, and the polarization curve has obvious passivation characteristics. Semi-solid processing could improve corrosion resistance of 7A04 aluminum alloy obviously.

1. Introduction

High strength Al–Zn–Mg–Cu system aluminum alloys (type 7A04) are widely used in aerospace and rail transit due to the advantages of light quality, big ratio intension, good plasticity and recyclability [1–6]. In traditional casting, the microstructure of aluminum alloys show obviously dendrite with irregular coarse grain because of the wide solidification temperature range [7, 8]. As a result, segregation, shrinkage and hot crack defects are difficult to avoid in aluminum alloy [9–11], which may induce the weak of corrosion resistance [12–15]. Therefore, it is easy to form a weak area of corrosion and fracture. With the increasing demand of aerospace industry for aluminum alloy, the development of forming process to optimize the microstructure and corrosion properties of 7xxx series alloys has been widely concerned.

Semi-solid forming technology [16–18] is appropriate for low-cost near-net forming. The alloy was strongly stirred during solidification in the semisolid temperature range (between solidus and liquidus). The primary dendrites were fully crushed and obtained certain spherical primary solid phase. In addition, semi-solid forming technology can also effectively reduce segregation. Ordinary electromagnetic stirring is regarded as a good method for the rheological forming of semi-solid slurry due to non-contact, easy control, no pollution and simple operation [19–21]. It can inhibit the growth of dendrite arm and homogenize the composition and temperature distribution so as to obtain uniform small spherical primary particles. In our previous work, a large-volume semi-solid slurry of 7A04 aluminum alloy with primary α-Al particles of average equivalent diameter of 73.5 μm and shape factor of 0.57 was prepared with a pouring temperature of 650 $^\circ$C combined with nominal stirring power of 0.6 kW kg$^{-1}$ for 40 s [22]. The microstructure and phase about as-cast 7xxx series aluminum alloy have been widely studied [23–25]. Some study has done on microstructure of semi-solid 7xxx series aluminum alloy [26, 27], but rarely on comparison between semi-solid and as-cast 7xxx series aluminum alloy slurry on major phases and corrosion behavior.
In this work, the microstructure, element segregation and corrosion resistance of as-cast and semi-solid 7A04 aluminum alloy slurry were comparatively studied by optical microscope (OM), X-ray diffraction (XRD), energy dispersive x-ray (EDX), polarization curves and electrochemical impedance spectroscopie (EIS). The ultimate purpose is to obtain 7A04 aluminum alloy with semi-solid microstructure and higher corrosion resistance with temperature-controllable electromagnetic stirrer.

2. Material and methods

7A04 aluminum alloy was used in this study and the chemical composition is shown in table 1. Semi-solid slurry of 7A04 aluminum alloy was prepared by electromagnetic stirring (EMS) with temperature-controllable electromagnetic stirrer. Primarily, the alloy was heated to 700 °C until fully melted, then stop heating but continue stirring. Furthermore, the samples were gathered at selected temperatures under the optimal process parameter combination (EMS voltage of 230 V, EMS frequency of 5 Hz) and then were quickly quenched in cold water. According to the differential scanning calorimetry (DSC) curve (figure 1), the solidus and liquidus temperatures were 478 °C and 652 °C, respectively. Because the solid phase ratio of the alloy is sensitive to temperature change, and the characteristics of electromagnetic stirring are considered, the temperature of slurry preparation is set in the range of 635 °C–645 °C. In contrast, samples of as-cast 7A04 aluminum alloy were prepared by water quenching without stirring under the same conditions.

The microstructures were characterized using optical microscope (OM), X-ray diffractometer (XRD) and energy dispersive x-ray (EDX). Samples for metallographic OM characterization were prepared according to the standard procedure and etched in mixed acid solution (1 vol% HF, 1.5 vol% HCl, 2.5 vol% HNO₃ and 95 vol% H₂O). Metallographs were carried out using a laser scanning confocal microscope (VHX-1000). Image Pro Plus software was used to estimate the average equivalent diameter \(D \) and average shape factor \(F \) of primary \(\alpha \)-Al grains to characterize the slurry quality under different experimental conditions. \(D \) and \(F \) were determined as follow [28]:

\[
D = \left(\frac{4A}{\pi}\right)^{1/2}
\]

\[
F = \frac{4\pi A}{P^2}
\]

Where \(A \) represents the average area of a primary \(\alpha \)-Al grain in \(\mu m^2 \), \(P \) represents the average circumference of a primary \(\alpha \)-Al grain in \(\mu m \), respectively.

The phases in the alloy were characterized by XRD using Cr- \(K\alpha \) target with a scan rate of 2° min⁻¹ on a XXQ2505D-XK3.2 x-ray diffractometer. The element segregation were characterized on HITACHI JSM-
6490LV scanning electron microscope (SEM) equipped with model GENESS 2000XMS energy dispersive x-ray (EDX) spectroscope.

In order to comparatively study the corrosion resistance, dynamic polarization and electrochemical impedance spectroscope tests in 3.5 wt% NaCl solution were performed on a CS310 electrochemical workstation. The scanning rate during dynamic polarization was set as 1 mV s\(^{-1}\) with the potential range of \(-0.5\) to 0.5 V relative to open circuit potential. EIS tests were carried out with frequencies from 100 kHz to 0.01 Hz. Ten points per tenfold frequency was chosen, and 5 mV perturbation amplitude was set.

3. Results and discussion

3.1. Influence of different molding methods on microstructures

Figure 2 shows the metallographic images of the as-cast and semi-solid samples. Primary solid phase and liquid phase can be observed in both samples. The liquid phases can be observed at the grain boundaries which mainly refers to a small amount of eutectic phase dissolved and distributed near the grain boundaries [10]. As shown in

![Figure 2. Metallographic images of (a) as-cast and (b) semi-solid 7A04 aluminum alloy.](image)

![Figure 3. XRD patterns for 7A04 aluminum alloy of as-cast and semi-solid sample.](image)
The dendrite size is significantly larger than that of semi-solid round grain [29]. In comparison, as shown in figure 2(b), the semi-solid sample is mainly composed of spherical or nearly spherical primary α-Al grains, α_2-Al and liquid phases. The primary α-Al grains are round and evenly distributed.

Figure 3 shows the XRD pattern of as-cast and semi-solid 7A04 aluminum alloy. They both consist of three main phases, i.e. α-Al, η-MgZn$_2$ and θ-Al$_2$Cu. Figures 4(a) and 5(c) show the element distribution of as-cast and semi-solid primary grain inner. The main elements of as-cast grain inner are Al, Zn, Mg and Cu, with content of 96.78 at%, 0.91 at%, 1.27 at% and 0.13 at%, respectively. Combined with XRD pattern, the main phase are
matrix phase α-Al, the strengthened phase η-MgZn$_2$ and the intermediate phase θ-Al$_2$Cu, in an irregular continuous network distribution. In contrast, the main elements of semi-solid grain inner are Al, Zn, Mg, with content of 95.26 at%, 2.14 at% and 2.60 at%, respectively, without Cu element. Combined with XRD pattern, the main phase are α-Al and η-MgZn$_2$. Figures 5(b) and (d) show the element distribution of as-cast and semi-solid primary grain boundary. The main elements of as-cast grain boundary are Al, Zn, Mg and Cu, with content of 88.10 at%, 1.84 at%, 1.96 at% and 6.69 at%, respectively. Likewise, the main elements of semi-solid grain inner are also Al, Zn, Mg and Cu, with content of 79.76 at%, 2.04 at%, 2.73 at% and 15.47 at%, respectively. Combined with XRD pattern, the main phases at primary boundary of as-cast and semi-solid are both α-Al, η-MgZn$_2$ and θ-Al$_2$Cu. The results show that there was no significant difference in main phase species and distribution of as-cast and semi-solid alloy. Therefore, the main reasons for the optimization performance of semi-solid technology may be morphology change and element homogenization rather than phase species change.

3.2. Effect of different solidification temperature on microstructures

Semi-solid rheological slurry samples are prepared by EMS at voltage of 230 V and frequency of 5 Hz at a near liquidus temperature of 645 °C, at 640 °C and 637 °C in semi-solid temperature range. The microstructure is shown in figure 5, and average equivalent diameter (D) and average shape factor (F) of the alloy is quantitatively analyzed at a given temperature and shown in figure 6. The sample electromagnetic stirred at 645 °C, which was slightly lower than the liquidus temperature, exhibits dendritic or columnar dendritic primary α-Al without semi-solid round grain appeared. The average equivalent diameter of primary α-Al is 50 μm but the average shape factor was only 0.14. The sample electromagnetic stirred at 640 °C, which was in the range of semi-solid forming temperature, exhibits microstructure of primary α-Al appears obviously round grains with average equivalent diameter of 63 μm and average shape factor of 0.27. When the EMS temperature decreased to 637 °C, the melt solid ratio increased. Microstructure of primary α-Al still presents round grains, but the average equivalent diameter increased to 75 μm. Average shape factor decreased slightly to 0.23, and the primary α-Al grain roundness decreased.

In conclusion, the overall quality of the water-quenched tissue is the best at 637 °C. This is probably because when the temperature of the alloy drops from above the liquidus to 641 °C, the dendrite arm is broken under the effect of electromagnetic stirring, and only a small part of the grains grow into semi-solid grains with relatively large size. When the melt temperature continues to drop to 638 °C, most of the branching crystals are broken up and grow into larger semi-solid grains with a large increase. When the temperature further decreases, the primary α-Al grain in the appropriate orientation will 'weld' at the contact point in the collision and gradually gather into a group, forming a 'large structure' with obvious agglomeration and resulting in an increase in grain size, which is consistent with the analysis in literature [30].
Figure 7 shows the main phases of semi-solid 7A04 aluminum alloy by electromagnetic stirring quenched at 645 °C, 640 °C and 637 °C. The main phases at 645 °C and 640 °C are α-Al, η-MgZn2 and θ-Al2Cu. When the temperature decreases to 640 °C, besides α-Al, η-MgZn2 and θ-Al2Cu, brittle phase S-Al2CuMg precipitates in grain boundary in a continuous network structure [25]. Figures 8(a), (c) and (e) show the element distribution of semi-solid primary grain inner at different temperature. The main elements at 645 °C and 637 °C are Al, Zn, Mg and Cu. The contents at 645 °C are 79.76 at%, 2.04 at%, 2.73 at% and 15.47 at%, respectively. Meanwhile, the contents at 645 °C are 79.76 at%, 2.04 at%, 2.73 at% and 15.47 at%, respectively. Combined with XRD pattern, the main phases are α-Al, η-MgZn2 and θ-Al2Cu at 645 °C and 637 °C. In contrast, the main elements at 640 °C are Al, Zn, Mg, with content of 96.80 at%, 1.73 at% and 1.47 at% respectively. Combined with XRD pattern, the main phases are α-Al and η-MgZn2. Figures 8(b), (d) and (f) show the element distribution of semi-solid primary grain boundary at different temperature. The main elements at 645 °C, 640 °C and 637 °C are Al, Zn, Mg and Cu. The main content at 645 °C are 88.10 at%, 1.84 at%, 1.96 at% and 6.69 at% respectively. The main content at 640 °C are 80.95 at%, 6.34 at%, 2.38 at% and 3.90 at%, respectively. Combined with XRD pattern, the main phases are α-Al, η-MgZn2, θ-Al2Cu and brittle phase S-Al2CuMg. This is probably because that the solid phase ratio is too high at 637 °C to homogenize alloy by EMS.

Figure 8. Energy-dispersive x-ray (EDX) analysis of primary grains of 7A04 alloy by Electromagnetic Stirring at 645 °C of (a) grain inner and (b) grain boundary, 640 °C of (c) grain inner and (d) grain boundary, and 645 °C of (e) grain inner and (f) grain boundary.
The results show that the samples at 645 °C and 640 °C are mainly composed of matrix phase α-Al, strengthening phase η-MgZn$_2$ and aging strengthening phase θ-Al$_2$Cu. However, 645 °C is near the liquidus, so the microstructure is dendritic. With further decreasing of temperature, besides η-MgZn$_2$ and θ-Al$_2$Cu, brittle phase S-Al$_2$CuMg precipitates at 637 °C. Taken together, 640 °C in semisolid temperature range is better than...
645 °C and 637 °C to form better microstructure and phase. Therefore, proper temperature control is beneficial to round primary grain formation, alloy homogenization and brittle phase inhibition.

3.3. Influence of different molding methods on corrosion behavior

Figure 9 shows the polarization curves of the as-cast and semi-solid 7A04 aluminum alloy in 3.5 wt% NaCl solution measured by the three-electrode system. The electrochemical parameters of corrosion are listed in Table 2. The self-corrosion potential of the semi-solid sample is higher than that of the as-cast sample, and its polarization curve has obvious passivation characteristics. The corrosion current density, corrosion rate and E_p (pitting potential) of the semi-solid sample are both lower than that of the as-cast sample, meanwhile R_p (polarization resistance) and $|E_p - E_{corr}|$ are higher. All of this indicates that the semi-solid sample has higher corrosion resistance than that of the as-cast sample.

Figure 10 shows the electrochemical impedance spectrum (EIS) of the as-cast and semi-solid 7A04 aluminum alloy. The Bode curve is presented in Figure 10(a). The electrochemical impedance spectrum (EIS) of the as-cast 7A04 aluminum alloy consists of a high and medium frequency capacitive reactance arc and a medium and low frequency inductive reactance arc. The impedance spectrum of the semi-solid 7A04 aluminum alloy shows two capacitive reactance arcs, located in the high and low frequency regions respectively, and an inductive reactance arc. The high frequency region reflects the information between the original oxide film on the alloy surface and the corrosion solution which the alloy contacts with. While the low frequency region reflects the electrochemical action between the alloy and Cl$^-$ infiltrating into the fresh bare matrix metal surface after the passivation film is destroyed. The inductive reactance arcs of as-cast and semi-solid alloy are often considered to be caused by the weakened protection of the passivation film on the metal matrix during the pitting induction period [31, 32].

Table 2. Parameters of polarization curves of 7A04 aluminum alloys in 3.5 wt% NaCl solution.

State	E_{corr} (V)	I_{corr} (A.cm$^{-2}$)	Corrosion rate (mm/a)	E_p (V)	R_p (Ω.cm$^{-2}$)	$E_p - E_{corr}$ (V)
As-cast	-0.83	8.592×10^{-3}	0.938	-0.81	303.61	0.02
Semi-solid	-0.75	3.094×10^{-3}	0.338	-0.69	842.96	0.06

Figure 11. Energy-dispersive x-ray (EDX) line scanning of (a) as-cast sample and (b) semi-solid sample.
Table 3. Fitting results of EIS equivalent circuits of as-cast and semi-solid 7A04 aluminum alloy.

State	$R_{\text{en}}/(\Omega \cdot \text{cm}^2)$	$R_{\text{ao}}/(\Omega \cdot \text{cm}^2)$	$Y/(\Omega \cdot \text{cm}^{-2} \cdot \text{S}^{-1})$	n	$R_{\text{p}}/(\Omega \cdot \text{cm}^2)$	$L/(\text{H} \cdot \text{cm}^2)$	$R_{\text{ct}}/(\Omega \cdot \text{cm}^2)$
As-cast	104.6	1920	1.266×10^{-4}	0.8684	—	2.518 $\times 10^{-4}$	4740
Semi-solid	1×10^{-7}	109.2	—	—	3140	1.55×10^{-3}	5401

Comparing the impedance spectra of semi-solid and as-cast 7A04 aluminum alloy, it can be found that the semi-solid alloy has a large capacitive reactance arc. On the one hand, the semi-solid process changed the microstructure of 7A04 aluminum alloy to form compact, round and semi-solid alloy has extra capacitive reactance arc. On the other hand, the scanning results show that the as-cast α-Al grain is enriched with higher Cu at the grain boundary. While the distribution of elements in the semi-solid α-Al grain is relatively uniform, which also indicates that the semi-solid process can significantly reduce element segregation and make the distribution of elements more uniform due to electromagnetic stirring. The second phases of 7A04 aluminum alloy mainly contain Al$_7$Cu$_2$Fe, (AlCu)$_6$(FeCu) and MgZn$_2$. Among them, the potential of the Cu-rich second phases are more positive compared with α aluminum matrix, so the Cu-rich second phases is as cathode in the local corrosion. Semi-solid process significantly promotes the Cu element evenly distributed. Also it decreases the ratio of Cu of grain boundary and inner smaller than as-cast alloy, which reduces the cathodic and anodic area ratio of the galvanic corrosion. So it is easier to form a dense barrier layer on the surface of semi-solid alloy, effectively preventing Cl$^-$ from penetrating into the interior of the matrix metal. The manifestation on the curve is an extra capacitive resistance arc of semi-solid alloy.

Figure 10(b) is the Nyquist curve of the as-cast and semi-solid 7A04 aluminum alloy. The impedance value and phase angle of the as-cast and semi-solid aluminum alloys in the high-frequency region are not much different. It indicates that the corrosion performances at the beginning has little difference. In the low frequency range, the impedance modulus of the as-cast alloy is significantly lower than that of the semi-solid alloy. It probably indicates that the corrosion depth of the as-cast alloy is likely to be higher than that of the semi-solid alloy. This may be due to the large and irregular dendrite of the as-cast sample. The grain boundaries between the coarse dendrites are twisted and crossed, meanwhile the stress concentration is higher. So it becomes the weak areas of corrosion, and the corrosion pits are easily extended in the depth direction. The semi-solid alloy has obvious phase angle peaks in the low frequency range. It indicates that the matrix of the semi-solid alloy is corroded obviously. This may be because the semi-solid alloy has a large number of rounded grains whose overall size is smaller than the as-cast dendrites. Under the same corrosion time, the number of small semi-solid round grains falling off is more than as-cast alloy. In summary, the surface of the as-cast alloy has less grain separation, but the corrosion depth is higher. Meanwhile small grains on the surface of the semi-solid alloy matrix are more than as-cast alloy, but the corrosion depth is relatively shallow. The electrochemical analysis results are consistent with the three-dimensional morphology of literature.

ZSimpwin software was used to fit the equivalent circuit model of electrochemical impedance spectrum, as shown in figure 12. As can be seen from the impedance diagram, there are two time constants in the as-cast aluminum alloy. The equivalent circuit model $R(Q(\text{RL}))$ is shown in figure 12(a), where the solution resistance is R_s, the constant phase angle of the outer layer is Q, the oxidation film (outer layer) resistance is R_{ao}.

![Figure 12. EIS equivalent circuits of (a) as-cast and (b) semi-solid 7A04 aluminum alloy.](image-url)
the capacitance of Q is Y, the dispersion effect index is n, the inductance is L, and R_t is the charge transfer resistance. According to the impedance diagram, it can be seen that there are three time constants of the semi-solid aluminum alloy. The equivalent circuit model $R(C(R(CR)))CLR$ is shown in figure 12(b). In addition to the above introduced parameters, there are also external layer capacitor C_1, double layer capacitor C_3, barrier layer capacitor C_2 and barrier layer resistor R_b. Table 3 shows the parameter comparison of fitting results between as-cast and semi-solid 7A04 aluminum alloy. It can be seen from table 3 that the oxidation film resistance R_o of as-cast aluminum alloy is higher than that of semi-solid aluminum alloy. This may be caused by the formation of a compact barrier layer on the stable and flat matrix surface of semi-solid aluminum alloy which thins the oxide film due to the absorption of most components. The time constant of semi-solid aluminum alloy is more than that of as-cast aluminum alloy, which may be due to the barrier layer formed between the oxide film and the matrix of semi-solid aluminum alloy. The double layer resistance R_t of semi-solid aluminum alloy is higher than that of as-cast aluminum alloy. This may be due to the relatively compact structure formed by the fine round semi-solid primary grain. Meanwhile, the homogeneity of the composition reduces the anode and cathode potential difference of the matrix. These can prevent the corrosion from deepening.

The above analysis indicates that compared with the dendrite microstructure in as-cast alloy, the distribution of elements in semi-solid near-spherical microstructure tends to be obviously homogeneous. The semi-solid forming technology can greatly reduce the element segregation, which can significantly improve the corrosion resistance of the alloy.

4. Conclusions

(1) The primary microstructure of the as-cast 7A04 aluminum alloy is mainly dendritic and columnar dendrite. The main phases are α-Al, η-MgZn$_2$, θ-Al$_2$Cu. The semi-solid 7A04 aluminum alloy shows homogeneous and round primary α-Al grains. The main phases are α-Al, η-MgZn$_2$, θ-Al$_2$Cu, which are the same as the as-cast sample.

(2) With the decrease of water quenching temperature, the primary grain of 7A04 aluminum alloy changes from dendrite to round grain, and then the size of round grain increased again. The main precipitated phases start with α-Al, η-MgZn$_2$, θ-Al$_2$Cu, and then increased the brittle phase Al$_2$CuMg at 637 °C.

(3) The polarization curve of semi-solid 7A04 aluminum alloy has obvious passivation characteristics. And its impedance spectrum has a extra capacitive reactance arc compared with as-cast alloy. The results of polarization curve and electrochemical impedance spectroscopy show that the corrosion resistance of the semi-solid sample is better than that of the as-cast sample.

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (No. 2682013CX003) and the National Natural Science Foundation of China(No. 51275432), which were gratefully acknowledged.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Yanli Zhu https://orcid.org/0000-0003-4767-1437

References

[1] Warner T 2006 Recently-developed aluminium solutions for aerospace applications Mater. Sci. Forum 521 1233–8
[2] Pan F S and Zhang D F 2006 Aluminum Alloy and its Application (Beijing: Chemical Industry Press) 326–31
[3] Xie G, Thompson D J and Jones C J C 2006 A modelling approach for the vibroacoustic behaviour of aluminum extrusions used in railway vehicles J. Sound Vib. 293 921–32
[4] Tolga D and Costas S 2014 Recent developments in advanced aircraft aluminium alloys Mater. Des. 56 862–71
[5] Balasubramanian V, Ravisankar V and Madhusudhanreddy G 2008 Effect of pulsed current welding on fatigue behaviour of high strength aluminium alloy joints Mater. Des. 29 492–500
[6] Fang H C, Chen K H, Chao H, Chen X and Ye D F 2009 Current research status and prospects of ultra strength Al–Zn–Mg–Cu aluminum alloy Materials Science and Engineering of Powder Metallurgy 14 351–8

[7] Yan D J, Liu X S, Fang H Y, Zhao H S, Peng A L, Yang J G and Zhang J 2012 Fatigue crack propagation characteristics of high strength aluminum alloy welded joint used by high speed train The Chinese Journal of Nonferrous Metals 22 3313–3319

[8] Eskin D G, Suyitno and Katgeaman I 2004 Mechanical properties in the semi-solid state and hot tearing of aluminum alloys Prog. Mater. Sci. 49 629–711

[9] Fu J et al 2016 Microstructure evolution and thixoforming behavior of 7075 aluminum alloy in the semi-solid state prepared by RAP method Int. J. Miner. Metall. Mater. 23 1404–15

[10] Fu J, Wang S and Wang K 2018 Influencing factors of the coarsening behaviors for 7075 aluminum alloy in the semi-solid state J. Mater. Sci. 53 9790–805

[11] Li S et al 2020 Microstructure analysis of quenched semi-solid A356 aluminum alloy slurry by using weck’s reagent Mater. Trans. 61 1077–83

[12] Cao X et al 2020 Composition optimization and stress corrosion cracking resistance using machine learning Mater. Res. Express 7 046506

[13] Xu X, Jiang Z, Mao Q, Zhang T, Du D, Zhu C and Wang H 2019 Effect of multi-stage solution and aging process on microstructure and properties of Al-10.7Zn–2.8Mg–1.2Cu–0.2Zr aluminum alloy extrusion materials Mater. Res. Express 6 066504

[14] Chen X et al 2018 Enhanced stress corrosion cracking resistance and electrical conductivity of a T761 treated Al-Zn-Mg-Cu alloy thin plate Mater. Res. Express 5 016521

[15] Sun L, Chen M A and Deng Y L 2019 The effect of grain structure on the corrosion resistance of 7050 aluminum alloy Int. J. Mod. Phys. B 33 940011

[16] Lashkari O and Ghomashchi R 2007 The implication of rheology in semi-solid metal processes: an overview J. Mater. Process. Technol. 182 229–40

[17] Liu J et al 2018 Microstructure and properties of Al–60wt%Si composites prepared by powder semi-solid squeeze Powder Technol. 345 95–110.

[18] Zhang Y et al 2015 Preparation and rheo-squeeze casting of semi-solid AZ91–2 wt% Ca magnesium alloy by gas bubbling process J. Mater. Res. 30 825–32

[19] Li Y K, Mao W M, Zhu W Z, Yang B and Zhu D P 2013 Rheological behavior of semi-solid 7075 aluminum alloy in continuously cooling process The Chinese Journal of Nonferrous Metals 23 3289–93

[20] Zhao J W, Dai G Z, Wu S S, Huang X M and Han J 2012 Effect of slurry pouring temperature on microstructure and mechanical properties of rheo-diecasting The Chinese Journal of Nonferrous Metals 22 2777–82

[21] Santara F, Delamony Y and Autruffe A 2012 Electromagnetic stirring and retention to improve segregation in silicon for photovoltaics J. Cryst. Growth 340 41–6

[22] Zhao J W et al 2016 Preparation of large-volume semi-solid slurry of Al–Zn–Mg–Cu aluminum alloy by weak electromagnetic stirring The Chinese Journal of Nonferrous Metals 26 499–505

[23] Zhu P C, Jiang L J, Xiang K N, Huang J, Yao D and Yu X X 2020 Elimination of AlCuMg phase during homogenization in Al-8.0Zn–2.0Mg–2.1Cu alloy Heat Treatment of Materials 45 40–4

[24] Liao F, Fan S T, Deng Y L and Zhang J 2016 First-principle calculations of mechanical properties of AlCu, AlCuMg and MgZn2 intermetallics in high strength aluminum alloys Journal of Aeronautical Materials 36 1–8

[25] Wang G and Li X Y 2008 The chemical composition and phase composition of aluminum alloy 7035 and its performance characteristics Shanghai Nonferrous Metals 29 116–22

[26] Xiao G F, Jiang J F, Liu Y Z, Wang Y and Guo B Y 2019 Recrystallization and microstructure evolution of hot extruded 7075 aluminum alloy during semi-solid isothermal treatment Mater. Charact. 156 109874

[27] Atkinson H V and Vaneetveld G 2008 Recrystallisation in the semi-solid state in 7075 aluminium alloy Materials Science and Engineering A 490 266–76

[28] Li Y L, Li Y D, Li C and Wu H H 2012 Microstructure characteristics and solidification behavior of wrought aluminum alloy 2024 rheo-diecast with self-inoculation method China Foundry 9 328–36

[29] Xie S S, Li X G, Wang H and Zhang Y 2012 Semi-Solid Metal Process Technology, (Beijing: Metallurgical Industry Press) 118–28

[30] Keddam M, Kunz C, Takenouth H, Schuster D and Zuili D 1997 Exfoliation corrosion of aluminum alloys examined by electrode impedance Electrochemical Acta 42 87–97

[31] Cao C N, Wang J and Lin H C 1989 Effect of Cl− ion on the impedance of passive-film-covered electrodes Journal of Chinese Society for Corrosion and Protection 9 261–70

[32] Dong C F, An Y H, Li X G, Sheng H and Xiao K 2009 Electrochemical performance of initial corrosion of 7A04 aluminum alloy in marine atmosphere The Chinese Journal of Nonferrous Metals 19 346–52

[33] Mathathieu S, Rapin C, Hazan J and Steinmetz P 2002 Corrosion behavior of high pressure die-cast and semi-solid cast AZ91D alloys Corros. Sci. 44 2737–56

[34] Zhu Y L, Zhao J W, Li W, Zhu Z Y, Dai G Z and Zhang K 2014 Effect of the electromagnetic stirring on microstructure of the large-volume semi-solid slurry of 7A04 aluminum alloy The Chinese Journal of Nonferrous Metals 24 2735–42

[35] Zhu Y L, Hu G Z, Xu X L, Pan X H and Zhao J W 2015 Comparison of corrosion behaviors of semi-solid and as-cast 7A04 aluminum alloy The Chinese Journal of Nonferrous Metals 25 3293–9