THE STEINBERG CURVE

HÉLÈNE ESNAULT AND MARC LEVINE

Abstract. Let E and E' be elliptic curves over \mathbb{C}, with Tate parametrizations $p : \mathbb{C}^* \to E$, $p' : \mathbb{C}^* \to E'$. We have the map $p*p' : \mathbb{C}^* \otimes \mathbb{C}^* \to F^2\text{CH}^2(E \times E')$ sending $u \otimes v$ to the class of the zero cycle $(x, y) - (x, 0) - (0, y) + (0, 0)$, where $x = p(u)$, $y = p'(v)$.

We show that, for general $u \in \mathbb{C}^*$, $p*p'(u \otimes (1 - u))$ is not zero in CH^2. We also show that the cycle $p*p'(u \otimes (1 - u))$ is not detectable by a certain class of cohomology theories, including the cohomology of the analytic motivic complex involving the dilogarithm function defined by S. Bloch in [3]. This is in contrast to its étale version defined by S. Lichtenbaum [8], which contains the Chow group.

1. Tate curves and line bundles

For a scheme X over \mathbb{C}, we let X_{an} denote the set of \mathbb{C}-points with the classical topology. We let $\mathcal{O}_{X_{\text{an}}}$ denote the sheaf of holomorphic functions on X_{an}.

We begin by describing a construction of the universal analytic Tate curve over \mathbb{C}. We first form the analytic manifold $\hat{\mathbb{C}}^*$ as the quotient of the disjoint union $\bigcup_{i=-\infty}^{\infty} U_i$, with each $U_i = \mathbb{C}^2$, by the equivalence relation $(x, y) \in U_i \setminus \{Y = 0\} \sim (\frac{1}{y}, xy^2) \in U_{i+1} \setminus \{X = 0\}$.

The function $\tilde{\pi}(x, y) = xy$ on $\hat{\mathbb{C}}^*$ is globally defined. Letting $D \subset \mathbb{C}$ be the disk $\{|z| < 1\}$, we define $\mathbb{C}^* = \tilde{\pi}^{-1}(D)$, so $\tilde{\pi}$ restricts to the analytic map $\pi : \mathbb{C}^* \to D$. We let $0 : D \to \mathbb{C}^*$ be the section $z \mapsto (z, 1) \in U_0$.

Let $D^* \subset D$ be the punctured disk $z \neq 0$. Since the map $(x, y) \mapsto (\frac{1}{y}, xy^2)$ is an automorphism of $(\mathbb{C}^*)^2$, the open submanifold $\pi^{-1}(D^*)$ of \mathbb{C}^* is isomorphic to $(\mathbb{C}^*)^2$, and the restriction of the map π is just

1991 Mathematics Subject Classification. Primary 14C25; Secondary 14C99, 19E15.

Key words and phrases. analytic motivic cohomology, algebraic cycles.

Partially supported by the NSF and by the DFG-Forschergruppe “Arithmetik und Geometrie”.

1
the map \((x, y) \mapsto xy\). Thus, the projection \(p_2 : (\mathbb{C}^*)^2 \to \mathbb{C}^*\) gives an isomorphism of the fiber \(C^*_t := \pi^{-1}(t)\) with \(\mathbb{C}^*\), for \(t \in D^*\).

The fiber \(\pi^{-1}(0)\), on the other hand, is an infinite union of projective lines. Indeed, define the map \(f_i : \mathbb{CP}^1 \to C_0^*\) by sending \((a : 1) \in \mathbb{CP}^1 \setminus \infty\) to \((a, 1) \in U_i\), and \(\infty = (1 : 0)\) to \((0, 0) \in U_{i+1}\), and let \(C_i = f_i(\mathbb{CP}^1)\). Then \(\pi^{-1}(0) = \bigcup_{i=-\infty}^{\infty} C_i\), with \(\infty \in C_i\) joined with \(0 \in C_{i+1}\). Note in particular that the value \(\tilde{0}(0)\) of the zero section avoids the singularities of \(\pi^{-1}(0)\).

Define the automorphism \(\phi\) of \(\mathcal{C}\) over \(D\) by sending \((x, y) \in U_i\) to \((x, y) \in U_{i-1}\). This gives the action of \(\mathbb{Z}\) on \(\mathbb{C}^*\), with \(n\) acting by \(\phi^n\). It is easy to see that this action is free and proper, so the quotient space \(\mathcal{E} := \mathcal{C}^*/\mathbb{Z}\) exists as a bundle \(\pi : \mathcal{E} \to D\). The section \(0 : D \to \mathcal{C}^*\) induces the section \(\tilde{0}(0) : \mathcal{E}_0 \setminus \ast\).

Take \(t \in D^*\). Identifying \(C^*_t\) with \(\mathbb{C}^*\) as above, we see that \(\phi\) restricts to the automorphism \(z \mapsto tz\). Thus, the fiber \(\mathcal{E}_t := \pi^{-1}(t)\) for \(t \in D^*\) is the Tate elliptic curve \(\mathbb{C}^*/t\mathbb{Z}\), with identity \(0(t)\). On \(C_0^*\), however, \(\phi\) is the union of the “identity” isomorphisms \(C_i \to C_{i-1}\). Thus \(\phi(\infty \in C_i) = 0 \in C_i\), so the restriction of \(\mathcal{C}_0^* \to \mathcal{E}_0\) to \(C_0\) identifies \(\mathcal{E}_0\) with the nodal curve \(\mathbb{CP}^1/0nds \sim \infty\). We let \(* \in \mathcal{E}_0\) denote the singular point. Then \(\tilde{0}(0) \in \mathcal{E}_0 \setminus \ast\).

The map \((t, w) \in D \times \mathbb{C}^* \mapsto (t, w, w) \in U_0 \) gives an isomorphism \(\psi : D \times \mathbb{C}^* \to U_0 \setminus \{Y = 0\}\) over \(D\). The composition
\[
D \times \mathbb{C}^* \to \mathbb{C}^* \to \mathcal{E}
\]
defines the map \(p : D \times \mathbb{C}^* \to \mathcal{E}\) over \(D\), with image \(\mathcal{E} \setminus \ast\).

Take \(u \in \mathbb{C}^*\). We have the local system on \(\mathcal{E}\)
\[
\mathcal{L}_u := \mathcal{C}^* \times \mathbb{C}/(z, \lambda) \sim (\phi(z), u\lambda) \to \mathcal{E},
\]
and the associated holomorphic line bundle \(\mathcal{L}^\text{an}_u\) on \(\mathcal{E}\).

Let \(E_t\) be the algebraic elliptic curve associated to the analytic variety \(\mathcal{E}_t\), let \(L_u(t)\) and \(L^\text{an}_u(t)\) denote the restriction of \(L_u\) and \(\mathcal{L}^\text{an}_u\) to \(\mathcal{E}_t\), and let \(L^\text{alg}_u(t)\) be the algebraic line bundle on \(E_t\) corresponding to \(L^\text{an}_u(t)\) via [13]. The restriction of \(p\) to \(t \times \mathbb{C}^*\) defines the map \(p_t : \mathbb{C}^* \to E_{t\text{an}}\). For \(t \neq 0\), \(p_t\) is a covering space of \(E_{t\text{an}}\). The map \(p_0 : \mathbb{C}^* \to E_{0\text{an}}\) is the analytic map associated to the algebraic open immersion
\[
\mathbb{P}^1 \setminus \{0, \infty\} \xrightarrow{j} \mathbb{P}^1 \to \mathbb{P}^1/0nds \sim \infty = E_0.
\]

If \(E\) be an elliptic curve over \(\mathbb{C}\), then \(E_{\text{an}} \cong \mathbb{C}/\Lambda\), where \(\Lambda \subset \mathbb{C}\) is a lattice spanned by 1 and some \(\tau\) in the upper half plane. Taking \(t = e^{2\pi i\tau}\) gives the isomorphism \(E_{\text{an}} \cong \mathcal{E}_t\), so each elliptic curve over \(\mathbb{C}\) occurs as an \(E_t\) for some (in fact for infinitely many) \(t \in D^*\).
Sending $u \in \mathbb{C}^*$ to the isomorphism class of $L_u^{\text{alg}}(t)$ defines a homomorphism $\tilde{p}_t : \mathbb{C}^* \to \text{Pic}(E_t)$. We denote the identity $0(t) \in E_t$ simply by 0 if t is given.

Lemma 1.1. For all $t \in D$, $c_1(L_u^{\text{alg}}(t)) = (p_t(u)) - (0)$.

Proof. We first handle the case $t \neq 0$. Let $q : \mathbb{C} \to E := E_t$ be the map $q(z) = p_t(e^{2\pi iz})$, let $\tau \in \mathbb{C}$ be an element with $e^{2\pi i\tau} = t$, and let $\Lambda \subset \mathbb{C}$ be the lattice generated by 1 and τ. The map q identifies E with \mathbb{C}/Λ, and $L_u(t)$ with the local system defined by the homomorphism $\rho : \Lambda \to \mathbb{C}^*$, $\rho(a + b\tau) = u(b)$.

There is a unique cocycle θ in $Z^1(\Lambda, H^0(\mathbb{C}, \mathcal{O}_E^{\text{can}}))$ with $\theta(1) = 1$, $\theta(\tau) = e^{-2\pi iz}$; let L be the corresponding holomorphic line bundle on E. Computing $c_1^{\text{top}}(L) \in H^2(E, \mathbb{Z})$ by using the exponential sequence, we find that $\deg(L) = 1$. By Riemann-Roch, we have $H^0(E, L) = \mathbb{C}$; let $\Theta(z)$ be the corresponding global holomorphic function on \mathbb{C}, i.e.,

$$\Theta(z + 1) = \Theta(z), \quad \Theta(z + \tau) = e^{-2\pi iz}\Theta(z),$$

and the divisor of Θ on E is (x), with $L \cong \mathcal{O}_E(x)$.

Take $v, w \in \mathbb{C}$ with $u = e^{2\pi iv}$ and $q(w) = x$. Let $f(z) = \frac{\Theta(z+w-v)}{\Theta(z+w)}$. Then

$$f(z + 1) = f(z), \quad f(z + \tau) = uf(z),$$

and $\text{Div}(f) = (p(u)) - (0)$. Thus, multiplication by f defines an isomorphism

$$\times f : \mathcal{O}_{E_0}(\mathbb{C}) \to \mathcal{O}_{E_0}(\mathbb{C}).$$

The proof for $E_0 = \mathbb{P}^1/0 \sim \infty$ is essentially the same, where we replace $\frac{\Theta(z+w-v)}{\Theta(z+w)}$ with the rational function $\frac{X}{X-1}$. \hfill \Box

Thus, the image of \tilde{p}_t in $\text{Pic}(E_t)$ is $\text{Pic}^0(E)$. After identifying the smooth locus of E_t^0 of E_t with $\text{Pic}^0(E_t)$ by sending $x \in E_t^0$ to the class of the invertible sheaf $\mathcal{O}_{E_t}(x) - (0))$, we have $\tilde{p}_t = p_t$.

2. The Albanese kernel and the Steinberg relation

Let X be a smooth projective variety. We let $\text{CH}_0(X)$ denote the group of zero cycles on X, modulo rational equivalence, $F^1\text{CH}_0(X)$ the subgroup of cycles of degree zero, and $F^2\text{CH}_0(X)$ the kernel of the Albanese map $\alpha_X : F^1\text{CH}_0(X) \to \text{Alb}(X)$. The choice of a point $0 \in X$ gives a splitting to the inclusion $F^1\text{CH}_0(X) \to \text{CH}_0(X)$.

Let E, E' be smooth elliptic curves. As $\text{Alb}(E \times E') = E \times E'$, the inclusion $F^1\text{CH}_0(E \times E') \to F^1\text{CH}_0(E \times E')$ is split by sending $(x, y) - (0, 0)$ to $(x, y) - (x, 0) - (0, y) + (0, 0)$. Thus $F^2\text{CH}_0(E \times E')$
is generated by zero-cycles of the form $(x, y) - (x, 0) - (0, y) + (0, 0)$. Choosing an isomorphism $E \cong E_1$, $E' \cong E_1'$, we have the covering spaces $p : \mathbb{C}^* \to E_{\text{an}}$, $p' : \mathbb{C}^* \to E'_{\text{an}}$, and the map

$$(2.1) \quad p * p' : \mathbb{C}^* \otimes \mathbb{C}^* \to F^2 \text{CH}_0(E \times E')$$

$$u \otimes v \mapsto p(u) * p'(v) := (p(u), p'(v)) - (p(u), 0) - (0, p'(v)) + (0, 0).$$

By the theorem of the cube [10], the map $p * p'$ is a group homomorphism, and thus is surjective.

In case one or both of E, E' is the singular curve E_0, we will need to use the theory of zero-cycles mod rational equivalence defined in [6]. If X is a reduced, quasi-projective variety over a field k with singular locus X_{sing}, the group $\text{CH}_0(X)$ (denoted $\text{CH}_0(X, X_{\text{sing}})$ in [7]) is defined as the quotient of the free abelian group on the regular closed points of X, modulo the subgroup generated by zero-cycles of the form $\text{Div} f$, where f is a rational function on a dimension one closed subscheme D of X such that

1. No irreducible component of D is contained in X_{sing}.
2. In a neighborhood of each point of $D \cap X_{\text{sing}}$, the subscheme D is a complete intersection.
3. f is in the subgroup $\mathcal{O}_{D,D\cap X_{\text{sing}}}^* k(D)^*$.

It follows in particular from these conditions that $\text{Div} f$ is a sum of regular points of X.

For X a reduced curve, sending a regular closed point $x \in X$ to the invertible sheaf $\mathcal{O}_X(x)$ extends to give an isomorphism $\text{CH}_0(X) \cong \text{Pic}(X)$.

We extend the definition of $F^i \text{CH}_0$ to $E \times E'$ with either $E = E_0$ or $E' = E_0$ or $E = E' = E_0$, by defining $F^1 \text{CH}_0(E \times E')$ as the subgroup of $\text{CH}_0(E \times E')$ generated by the differences $[x] - [y]$, and $F^2 \text{CH}_0(E \times E')$ the subgroup generated by expressions $[(x, y)] - [(x, 0)] - [(0, y)] + [(0, 0)]$, where x is a smooth point of E and y a smooth point of E'. The surjection $p * p' : \mathbb{C}^* \otimes \mathbb{C}^* \to F^2 \text{CH}_0(E \times E')$ is then defined by the same formula as (2.1).

Proposition 2.1 (The Steinberg relation). Take $E = E' = E_0$. Then $p(u) * p(1 - u) = 0$ in $\text{CH}_0(E_0 \times E_0)$ for all $u \in \mathbb{C} \setminus \{0, 1\}$.

Proof. Let X be a quasi-projective surface over a field k. By [7], there is an isomorphism $\phi : H^2(X, \mathcal{K}_2) \to \text{CH}_0(X)$. The product $\mathcal{O}_X^* \otimes \mathcal{O}_X^* \to \mathcal{K}_2$ gives the cup product

$$H^1(X, \mathcal{O}_X^*) \otimes H^1(X, \mathcal{O}_X^*) \cup H^2(X, \mathcal{K}_2).$$
In addition, let D, D' be Cartier divisors which intersect properly on X, and suppose that $\text{supp } D \cap \text{supp } D' \cap X_{\text{sing}} = \emptyset$. Then
\begin{equation}
(2.2) \quad \phi(\mathcal{O}_X(D) \cup \mathcal{O}_X(D')) = [D \cdot D'],
\end{equation}
where \cdot is the intersection product and $[-]$ denotes the class in CH_0.

Since $L_{u}^\text{alg} = \mathcal{O}_{E_0}(p(u) - 0)$, (2.2) implies
\begin{equation}
\phi(u) \ast \phi(1 - u) = \rho(p_1^* L_{u}^\text{alg} \cup p_2^* L_{1-u}^\text{alg}),
\end{equation}
so it suffices to show that $p_1^* L_{u}^\text{alg} \cup p_2^* L_{1-u}^\text{alg} = 0$ in $H^2(E_0 \times E_0, \mathcal{K}_2)$.

Write X for $E_0 \times E_0$. Let $\bar{\mathcal{K}}_2$ be the image of \mathcal{K}_2 in the constant sheaf $\mathcal{K}_2(\mathbb{C}(X))$. By Gersten’s conjecture, the surjection $\pi: \mathcal{K}_2 \to \bar{\mathcal{K}}_2$ is an isomorphism at each regular point of X, hence π induces an isomorphism on H^2.

Let $q: \mathbb{P}^1 \to E_0$ be the normalization, giving the normalization $q \times q: \mathbb{P}^1 \times \mathbb{P}^1 \to X$. Let $i: * \to E_0$ be the inclusion of the singular point. We have the exact sequence of sheaves on E_0
\begin{equation}
(2.3) \quad q_* \mathcal{K}_1 \xrightarrow{\beta} i_* \mathcal{K}_1(\mathbb{C}) \to 0
\end{equation}
and the exact sequence of sheaves on X:
\begin{equation}
(2.4) \quad (q \times q)_* \mathcal{K}_2 \xrightarrow{\alpha} (i \times q)_* \mathcal{K}_2 \oplus (q \times i)_* \mathcal{K}_2 \to (i \times i)_* \mathcal{K}_2(\mathbb{C}) \to 0,
\end{equation}
with augmentations $\epsilon_1: \mathcal{K}_1 \to (2.3)$, $\epsilon_2: \bar{\mathcal{K}}_1 \to (2.4)$. The various cup products in K-theory give the map of complexes
\begin{equation}
(2.5) \quad p_1^* (2.3) \otimes p_2^* (2.3) \to (2.4)
\end{equation}
over the cup product
\begin{equation}
(2.6) \quad p_1^* \mathcal{K}_1 \otimes p_2^* \mathcal{K}_1 \to \bar{\mathcal{K}}_2.
\end{equation}

The augmentation $\epsilon_1: \mathcal{K}_1 \to \ker \beta$ is an isomorphism. The augmentation $\epsilon_2: \bar{\mathcal{K}}_1 \to \ker \alpha$ is an injection, and the cokernel is supported on $\ast \times \ast$, so $\epsilon_2: \bar{\mathcal{K}}_2 \to \ker \alpha$ induces an isomorphism on H^2. Thus, the complexes (2.3) and (2.4) give rise to maps
\begin{align*}
\delta_2 &: K_2(\mathbb{C}) \to H^2(X, \ker \alpha) = H^2(X, \bar{\mathcal{K}}_2) = H^2(X, \mathcal{K}_2) \\
\delta_1 &: \mathbb{C}^* = K_1(\mathbb{C}) \to H^1(E_0, \mathcal{K}_1).
\end{align*}

The compatibility of (2.5) with (2.6) yields the commutativity of the diagram
\begin{equation}
\begin{array}{ccc}
\mathbb{C}^* \otimes \mathbb{C}^* & \xrightarrow{\cup} & K_2(\mathbb{C}) \\
\downarrow{\delta_1 \otimes \delta_1} & & \downarrow{\delta_2} \\
H^1(E_0, \mathcal{K}_1) \otimes H^1(E_0, \mathcal{K}_1) & \xrightarrow{p_1^* \cup p_2^*} & H^2(X, \mathcal{K}_2).
\end{array}
\end{equation}
Since $L_v^{\text{alg}} = \delta_1(v)$ for each $v \in \mathbb{C}^*$, we have
\[
p_1^* L_u^{\text{alg}} \cup p_2^* L_{1-u}^{\text{alg}} = \delta_2(\{u, 1-u\}) = 0.
\]

The main point of this section is that the Steinberg relation is not satisfied in $\text{CH}_0(E \times E')$ except in the case $E = E' = E_0$. We first require the following lemma:

Lemma 2.2. Let $s : \mathbb{C} \setminus \{0, 1\} \to E \times E'$ be the analytic map $s(u) = (p(u), p'(1-u))$. Then $s(\mathbb{C} \setminus \{0, 1\})$ is not contained in any algebraic curve on $E \times E'$, except in case $E = E' = E_0$.

Proof. We first consider the case in which both E and E' are smooth elliptic curves, $E = E_t$, $E' = E_{t'}$, where t and t' are in \mathbb{C}^* and $|t| < 1$, $|t'| < 1$. We have the maps
\[p : \mathbb{C}^* \to E, \; p' : \mathbb{C}^* \to E',\]
which are group homomorphisms with $\ker p = t^\mathbb{Z}$, $\ker p' = t'^\mathbb{Z}$.

Suppose that $s(\mathbb{C}^*)$ is contained in an algebraic curve $D \subset E \times E'$. For each $x \in E$, $(x \times E') \cap D$ is a finite set (possibly empty), hence, for each $u \in \mathbb{C} \setminus \{0, 1\}$, the set of points of $\mathbb{C}^* \times \mathbb{C}^*$ of the form $(t^n u, 1 - t^n u)$ has finite image in $E \times E'$. Thus, for each u, there are integers n, m and p, depending on u, such that $n \neq m$ and
\[
1 - t^m u = t^p (1 - t^n u). \tag{2.7}
\]

Since there are uncountably many u, there is a single choice of n, m and p for which (2.7) holds for uncountably many u. But then
\[
(t^p t^n - t^m) u = 1 - t^p. \tag{2.8}
\]

If $t^p t^n - t^m = 0$, then $|t'| = 1$, contradicting the condition $|t'| < 1$. If $t^p t^n - t^m \neq 0$, then we can solve (2.8) for u, so (2.7) only holds for this single u, a contradiction.

If say $E' = E_0$, then $p' : \mathbb{C}^* \to E'$ is injective, and we have the infinite set of points $p'(1 - t^p u)$ in the image of s, all lying over the single point $p(u)$.

Theorem 2.3. Let $E = E_t$, $E' = E_{t'}$, with at least one of E, E' non-singular. Then, for all u outside a countable subset of $\mathbb{C} \setminus \{0, 1\}$, $p(u) * p'(1-u)$ is not a torsion element in $F^2 \text{CH}_0(E \times E')$.

\[\square\]
Proof. We first give the proof in case E and E' are both non-singular. For a quasi-projective \mathbb{C}-scheme X, we let $S^n X$ denote the nth symmetric power of X. For X smooth, we have the map

$$\rho_n : S^n X(\mathbb{C}) \times S^n X(\mathbb{C}) \to \text{CH}_0(X)$$

$$(\sum_{i=1}^n x_i, \sum_{j=1}^n y_j) \mapsto [\sum_{i=1}^n x_i - \sum_{j=1}^n y_j].$$

For each integer $n \geq 1$, we have the morphism

$$\phi_n : E \times E' \to S^{2n}(E \times E') \times S^{2n}(E \times E')$$

$$(x, y) \mapsto (n(x, y) + n(0, 0), n(x, 0) + n(0, y)),$$

By [12, Theorem 1], $(\rho_n \circ \phi_n)^{-1}(0)$ is a countable union of Zariski closed subsets of $E \times E'$.

On the other hand, since $p_g(E \times E') = 1$, the Albanese kernel $F^2 \text{CH}_0(E \times E')$ is “infinite dimensional” [9]; in particular, $F^2 \text{CH}_0(E \times E') \otimes \mathbb{Q} \neq 0$. Since $F^2 \text{CH}_0(E \times E')$ is generated by cycles of the form $p(u) \ast p(v)$, it follows that $(\rho_n \circ \phi_n)^{-1}(0)$ is a countable union of proper closed subsets of $E \times E'$. If D is a proper algebraic subset of $E \times E'$, then, by Lemma 2.2, $s^{-1}(D)$ is a proper analytic subset of $\mathbb{C} \setminus \{0, 1\}$, hence $s^{-1}(D)$ is countable. Thus, the set of $u \in \mathbb{C} \setminus \{0, 1\}$ such that $p(u) \ast p'(1 - u)$ is torsion is countable, which completes the proof in case both E and E' are non-singular.

If say $E' = E_0$, we use essentially the same proof. We let X be the open subscheme $E \times (E_0 \setminus \{\ast\})$ of $E \times E_0$. We have the map $\rho_n : S^n X(\mathbb{C}) \times S^n X(\mathbb{C}) \to \text{CH}_0(E \times E_0)$ defined as above. By [6, Theorem 4.3], $(\rho_n \circ \phi_n)^{-1}(0)$ is a countable union of closed subsets D_i of X. By [14], we have the similar infinite dimensionality result for $\text{CH}_0(E \times E_0)$ as in the smooth case, from which it follows that each D_i is a proper closed subset of X. Thus, the closure of each D_i in $E \times E_0$ is a proper algebraic subset of $E \times E_0$. The same argument as in the smooth case finishes the proof.

3. Indetectability

The zero-cycle $p(u) \ast p(1 - u)$ is indetectable by cohomology theories built on the sheaf $\mathcal{O}_{E_{an} \times E_{an}}^*$. We first consider the following abstract situation.

Let $\Gamma_0(2)$ be the complex:

$$\mathbb{Z}[\mathbb{C} \setminus \{0, 1\}] \to \mathbb{C}^* \otimes \mathbb{C}^*$$

$$u \mapsto u \otimes (1 - u),$$

with $\mathbb{C}^* \otimes \mathbb{C}^*$ in degree two.
Let $X = E \times E'$, and let $\Gamma(2)_{\text{an}}$ be a complex of sheaves on X_{an} with the following properties:

\[(3.1)\]

1. There is a group homomorphism $\text{cl} : \text{CH}_0(X) \to \mathbb{H}^4(X_{\text{an}}, \Gamma(2)_{\text{an}})$.
2. There is a map in the derived category of sheaves $D^b(\text{Sh}_{X_{\text{an}}})$, $\rho : \mathcal{O}_{X_{\text{an}}}^* \otimes \mathcal{O}_{X_{\text{an}}}^*[-2] \to \Gamma(2)_{\text{an}}$.
3. The composition

\[\mathbb{C}^* \otimes \mathbb{C}^*[-2] \to \mathcal{O}_{X_{\text{an}}}^* \otimes \mathcal{O}_{X_{\text{an}}}^*[-2] \to \Gamma(2)_{\text{an}}\]

extends to a map in $D^b(\text{Sh}_{X_{\text{an}}})$, $\Gamma_0(2) \to \Gamma(2)_{\text{an}}$.
4. The composition

\[\text{Pic}(X) \otimes \text{Pic}(X) \cong H^1(X_{\text{an}}, \mathcal{O}_{X_{\text{an}}}^*) \otimes H^1(X_{\text{an}}, \mathcal{O}_{X_{\text{an}}}^*)\]

\[\cup \to H^2(X_{\text{an}}, \mathcal{O}_{X_{\text{an}}}^* \otimes \mathcal{O}_{X_{\text{an}}}^*) \xrightarrow{\rho} \mathbb{H}^4(X_{\text{an}}, \Gamma(2)_{\text{an}})\]

agrees with the composition

\[\text{Pic}(X) \otimes \text{Pic}(X) \xrightarrow{\cup} \text{CH}_0(X) \xrightarrow{\text{cl}} \mathbb{H}^4(X_{\text{an}}, \Gamma(2)_{\text{an}}).\]

Theorem 3.1. Let $E = E_t$ and $E' = E_{t'}$, and let $\Gamma(2)_{\text{an}}$ be a complex of sheaves on $E_{\text{an}} \times E'_{\text{an}}$ satisfying the conditions (3.1). Then $\text{cl}(p(u) * p(1 - u)) = 0$ for all $u \in \mathbb{C} \setminus \{0, 1\}$.

Proof. We give the proof in case both E and E' are non-singular; the singular case is similar, but easier, and is left to the reader.

Since

\[p(u) * p(1 - u) = [p_1^* c_1(L_{u})] \cap [p_2^* c_1(L_{1-u})],\]

it follows from (3.1)(4) that we need to show that $\rho([L_{an}^u] \cup [L_{an}^{1-u}]) = 0$. The class $[L_{an}^u] \in H^1(E_{\text{an}}, \mathcal{O}_{E_{\text{an}}}^*)$ is the image of $[L_u] \in H^1(E_{\text{an}}, \mathbb{C}^*)$ under the map of sheaves $\mathbb{C}^* \to \mathcal{O}_{E_{\text{an}}}^*$, and similarly for L_{1-u} and L_{an}^{1-u}. Thus, by (3.1)(3), it suffices to see that $p_1^*[L_u] \cup p_2^*[L_{1-u}] \in H^2(E \times E', \mathbb{C}^* \otimes \mathbb{C}^*)$ vanishes in $\mathbb{H}^4(E \times E', \Gamma_0(2))$.

The \mathbb{Z}-covers $p : \mathbb{C}^* \to E = E_t$, $p' : \mathbb{C}^* \to E' = E_{t'}$ give natural maps

\[\alpha : H^*(\mathbb{Z}, H^0(\mathbb{C}^*, \mathbb{C}^*)) \to H^*(E_{\text{an}}, \mathbb{C}^*),\]
\[\beta : H^*(\mathbb{Z}, H^0(\mathbb{C}^*, \mathbb{C}^*)) \to H^*(E'_{\text{an}}, \mathbb{C}^*).\]

Similarly, the \mathbb{Z}^2-cover $p \times p' : \mathbb{C}^* \times \mathbb{C}^* \to E \times E'$ gives the natural map

\[\gamma : \mathbb{H}^*(\mathbb{Z}^2, H^0(\mathbb{C}^* \times \mathbb{C}^*, \Gamma_0(2))) \to \mathbb{H}^*(E_{\text{an}} \times E'_{\text{an}}, \Gamma_0(2)).\]
Letting $\iota : \mathbb{C}^* \otimes \mathbb{C}^* \rightarrow \Gamma_0(2)$ denote the natural inclusion, the maps above are compatible with the respective cup products:
\[
\iota \circ (\alpha(a) \cup \beta(b)) = \gamma \circ \iota(a \cup b).
\]

Each $v \in \mathbb{C}^*$ gives the corresponding homomorphism $v : \mathbb{Z} \rightarrow \mathbb{C}^*$, $v(n) = v^n$. Since $[L_u] \in H^1(E_{\text{an}}, \mathbb{C}^*)$ is $\alpha(u : \mathbb{Z} \rightarrow \mathbb{C}^*)$ and $[L_{1-u}] \in H^1(E_{\text{an}}', \mathbb{C}^*)$ is $\beta(1-u : \mathbb{Z} \rightarrow \mathbb{C}^*)$, it suffices to show that $\iota(p_1^*u \cup p_2^*(1-u)) = 0$ in $\mathbb{H}^4(\mathbb{Z}^2, \Gamma_0(2))$, where $p_1^*u, p_2^*(1-u) : \mathbb{Z}^2 \rightarrow \mathbb{C}^*$ are the respective homomorphisms $(a, b) \mapsto u^a$, and $(a, b) \mapsto (1-u)^b$

We have the spectral sequence
\[
E_2^{p,q} = H^p(\mathbb{Z}^2, H^q(\Gamma_0(2))) \Rightarrow \mathbb{H}^{p+q}(\mathbb{Z}^2, \Gamma_0(2)).
\]

Since \mathbb{Z}^2 has cohomological dimension two, and since $H^q(\Gamma_0(2)) = 0$ for $q \neq 1, 2$, it follows that the natural map $\mathbb{H}^4(\mathbb{Z}^2, \Gamma_0(2)) \rightarrow H^2(\mathbb{Z}^2, H^2(\Gamma_0(2)))$ is an isomorphism. Since $H^2(\Gamma_0(2)) = K_2(\mathbb{C})$, we need to show that the image of $p_1^*u \cup p_2^*(1-u)$ in $H^2(\mathbb{Z}^2, K_2(\mathbb{C}))$ is zero.

By definition of the cup product in group cohomology, we have
\[
[p_1^*u \cup p_2^*(1-u)]((a, b), (c, d)) = p_1^*u(a, b) \otimes p_2^*(1-u)(c-a, d-b) = u^a \otimes (1-u)^{d-b},
\]

which clearly vanishes in $K_2(\mathbb{C})$.

\[\square\]

Example 3.2. In [B], S. Bloch defines a quotient complex $\mathcal{B}(2)$ of the analytic complex $\mathcal{O}_{X_{\text{an}}}^*(1) \xrightarrow{2\pi i \otimes 1} \mathcal{O}_{X_{\text{an}}} \otimes \mathcal{O}_{X_{\text{an}}}^*$ fulfilling $\mathcal{H}^i(\mathcal{B}(2)) = 0$ for $i \neq 1, 2$,

\[
\mathcal{H}^1(\mathcal{B}(2)) = \operatorname{Im}(r : K_{3, \text{ind}}(\mathbb{C}) \rightarrow \mathbb{C}/\mathbb{Z}(2)) =: \Delta^*(1),
\]

where r is the regulator map, and $\mathcal{H}^2(\mathcal{B}(2)) = K_{2, \text{an}}$. He shows in the same article that $r(K_{3, \text{ind}}(\mathbb{C})) = r(K_{3, \text{ind}}(\overline{\mathbb{Q}}))$, thus $\Delta^*(1)$ is a countable subgroup of $\mathbb{C}/\mathbb{Z}(2)$, and also that $\mathcal{B}(2)$ maps to the complex $\mathbb{Z}(2) \rightarrow \mathcal{O}_{X_{\text{an}}} \rightarrow \Omega^1_{X_{\text{an}}}$ which computes the Deligne cohomology $H^4_D(X, \mathbb{Q})$ when X is projective smooth over \mathbb{C}. In fact, the cycle map $\text{CH}^2(X) \rightarrow H^4_D(X, 2)$ is shown to factor through $H^4_D(X_{\text{an}}, \mathcal{B}(2))$ (B). S. Bloch ([B]) asked whether the cycle map $\text{CH}^2(X) \rightarrow H^4_D(X_{\text{an}}, \mathcal{B}(2))$ could possibly be injective. The computations of this article show that it is not. Indeed, by Lemma (1.3) of [B], the complex $\Gamma_0(2)$ maps to the complex
\[
e (\mathbb{Z}/\mathbb{C} \setminus \{0, 1\}) \rightarrow \mathbb{C} \otimes \mathbb{C}^*,
\]
where ϵ is defined via the dilogarithm function

$$
\epsilon(a) = [\log(1 - a) \otimes a] + [2\pi i \otimes \exp\left(\frac{-1}{2\pi i} \int_0^a \log(1 - t) \frac{dt}{t}\right)],
$$

and the latter complex maps to

$$
\mathcal{B}(2)_X : \mathcal{O}^*_{X_{an}}(1) \xrightarrow{2\pi i \otimes 1} \mathcal{O}_{X_{an}} \otimes \mathcal{O}^*_{X_{an}}/\left(\epsilon(\mathbb{Z}\setminus \{0, 1\})\right)
$$

for $X = \text{Spec} \mathbb{C}$. Let us take $\Gamma(2)_{an} = \mathcal{B}(2)$. We now verify the conditions 3.1. The condition 1 is given by [5]. Indeed, one computes the Leray spectral sequence associated to $\alpha : X_{an} \to X_{\text{Zar}}$ and the first term entering $H^4(\mathcal{B}(2))$ is

$$
E_{2}^{2,2} = H^2_{\text{Zar}}(R\alpha_* \mathcal{B}(2)) = H^2(\mathcal{K}_{2,\mathbb{Z}}),
$$

where $\mathcal{K}_{2,\mathbb{Z}} := \text{Ker} \left(\alpha_* \mathcal{K}_{2,an} \xrightarrow{d\log \wedge d\log} H^2(\mathbb{C}/\mathbb{Z}(2))\right)$. Then the cycle map cl is induced by $\mathcal{K}_2 \to \mathcal{K}_{2,\mathbb{Z}}$ on X_{Zar}, which is obviously compatible with the product in Pic. Thus we have 4. We have already discussed 2 and 3. Hence we can apply Theorem 2.3 to take a 0-cycle $p(u) * p(1 - u)$ on $E \times E'$ where both E and E' are smooth elliptic curves which does not die in the Chow group $\text{CH}_0(E \times E')$, whereas it dies by Theorem 3.1 in $H^4(\mathcal{B}(2))$.

In [8], S. Lichtenbaum constructs an étale version $\Gamma(2)$ of S. Bloch’s analytic complex $\mathcal{B}(2)$, the cohomology of which contains $\text{CH}_2(X)$. This contrasts with the examples discussed above.

Over a p-adic field, W. Raskind and M. Spieß ([11]) show that the Albanese kernel modulo n of a product of two Tate elliptic curves is dominated by $K_2(k)/n$. This result is not immediately comparable to ours, but is obviously related.

4. The Relative Situation

In this section, we study the cycles constructed in section 2 on $X = E \times E_0$, where as there, E is smooth, and E_0 is a nodal curve. Let $\nu = 1 \times q : E \times \mathbb{P}^1 \to X$ be the normalization. We define

$$
\mathcal{K}_2 = \text{Ker} \left(\nu_* \mathcal{K}_2 \xrightarrow{|E \times 0| \wedge |E \times \infty|} \mathcal{K}_2|_E\right)
$$

Lemma 4.1. One has

$$
\text{CH}_2(X) = H^2(X, \mathcal{K}_2),
$$

and the Chow group $\text{CH}_0(X)$ fits into an exact sequence

$$
0 \to H^1(E, \mathcal{K}_2) \xrightarrow{\gamma} \text{CH}_0(X) \xrightarrow{\nu^*} \text{CH}_0(E \times \mathbb{P}^1) = \text{Pic}(E) \otimes \text{Pic}(\mathbb{P}^1) \to 0.
$$
Moreover, the map γ is defined by

$$\gamma(\sum_{x \in E(1)} x \otimes \lambda_x) = \sum_{x \in E(1)} (x, p_0(\lambda_x)) - (x, 0).$$

Proof. The map $\nu^* : \mathcal{K}_2 \to \mathcal{K}_2$ is obviously surjective, and by the Gersten resolution on the smooth points of X, the kernel is supported in codimension 1. Thus ν^* induces an isomorphism on H^2.

On the other hand,

$$H^1(E \times \mathbb{P}^1, \mathcal{K}_2) = H^1(E, \mathcal{K}_2) \oplus H^0(E, \mathcal{K}_1) \cup c_1(\mathcal{O}(1)).$$

The term $H^1(E, \mathcal{K}_2)$ maps to 0 via the difference of the restrictions to $E \times 0$ and $E \times \infty$, while $c_1(\mathcal{O}(1))$ restricts to 0 to either $E \times 0$ or $E \times \infty$. This shows the long exact sequence associated to the short one defining \mathcal{K}_2.

Finally, the value $\gamma(x \otimes \lambda_x)$ of the map is given by the boundary morphism $C^* \to H^1(X, \mathcal{O}^*_X)$ induced by the normalization sequence

$$0 \to \mathcal{O}^*_X \to q_*\mathcal{O}^*_{\mathbb{P}^1} \xrightarrow{[0]-\infty} \mathbb{C}^* \to 0$$

on the right argument λ_x. The formula for γ thus follows from Lemma 1.1. \hfill \Box

Let $Nm : H^1(E, \mathcal{K}_2) \to \mathbb{C}^*$ be the norm map defined by

$$Nm\left(\sum_{x \in E(1)} x \otimes \lambda_x\right) = \prod_{x \in E(1)} \lambda_x. \tag{4.2}$$

We set

$$V(E) = \text{Ker}Nm. \tag{4.3}$$

One has

Lemma 4.2. $F^2\text{CH}_0(X) = \gamma\left(V(E)\right)$.\hfill \Box

Proof. By the definition given in §2, $F^2\text{CH}_0(X)$ is generated by the expressions $[(x, y)] - [(x, 0)] - [(0, y)] + [(0, 0)]$, with $x \in E(\mathbb{C})$ and $y \in E_0(\mathbb{C}) \setminus \{\ast\}$. By the formula for γ given in Lemma 1.1, this expression is $\gamma(x \otimes y - 0 \otimes y)$, after identifying $y \in \mathbb{C}^*$ with $p_0(y) \in E_0(\mathbb{C})$. Clearly $V(E)$ is generated by the elements of $H^1(E, \mathcal{K}_2)$ of the form $x \otimes y - 0 \otimes y$, whence the lemma. \hfill \Box

Next we want to map $\text{CH}_0(X)$ to a relative version of S. Bloch’s analytic motivic cohomology. So we define

$$\mathcal{B}(2) = \text{Ker}\left(\nu^*\mathcal{B}(2) \xrightarrow{|E \times 0| - |E \times \infty|} \mathcal{B}(2)|_E\right) \tag{4.4}$$
In particular, $\bar{B}(2)$ is an extension of

$$\bar{K}_{2,an} = \text{Ker}\left(\nu_*, \bar{K}_{2,an} \xrightarrow{|E \times 0 - |E \times \infty} \bar{K}_{2,an}|_E\right)$$

placed in degree 2, by $\Delta^*(1)$, placed in degree 1. In other words, $\bar{B}(2)$ is the pull-back of $\bar{B}(2)$ via the map $\nu^* : \bar{K}_{2,an} \to \bar{K}_{2,an}$, and in particular, it receives the complex $\Gamma_0(2)$ as explained in the example 3.2.

Considering again the Leray spectral sequence attached to the identity $\alpha : X_{an} \to X_{zar}$, we see that

$$(\bar{K}_{2,\mathbb{Z}} := \text{Ker}\left(\alpha_* \bar{K}_{2,an} \to \mathcal{H}^2(\mathbb{C}/\mathbb{Z}(2))\right))$$

receives \bar{K}_2 and that the first map of the spectral sequence is then

$$(4.6)\quad H^2(X, \bar{K}_{2,\mathbb{Z}}) \to \mathbb{H}^4(X_{an}, \bar{B}(2)).$$

In conclusion, we have shown

Lemma 4.3. One has a cycle map

$$\psi_X : \text{CH}_0(X) \to \mathbb{H}^4(X_{an}, \bar{B}(2))$$

compatible with the cycle map

$$\psi_{E \times \mathbb{P}^1} : \text{CH}_0(E \times \mathbb{P}^1) \to \mathbb{H}^4((E \times \mathbb{P}^1)_{an}, \mathcal{B}(2))$$

on the normalization. Moreover, ψ_X fulfills the conditions described in 3.1.

Proof. We just have to verify the condition 4 of 3.1. From the normalization sequence

$$0 \to \mathcal{O}_X^* \xrightarrow{\nu_* \mathcal{O}_{E \times \mathbb{P}^1}^*} \xrightarrow{|E \times 0 - |E \times \infty} \mathcal{O}_E^* \to 0,$$

one has a natural map

$$\mathcal{O}_{X_{an}}^* \otimes \mathcal{O}_{X_{an}}^* \to \bar{K}_{2,an}$$

which obviously fulfills [3.1] 4. \Box

Now we can apply Theorem 3.1 to conclude

Theorem 4.4. The 0-cycles defined by the Steinberg curve on $E \times E_0$ die in the analytic motivic cohomology $\mathbb{H}^4(X_{an}, \bar{B}(2))$.

Let K be a subfield of \mathbb{C}. We next consider for any algebraic variety Z defined over K, the cycle map with values in the absolute Hodge cohomology

$$(4.7)\quad H^m(Z, \mathcal{K}_2) \xrightarrow{d \log \wedge d \log} H^m(Z, \Omega^2_{Z/\mathbb{Q}}).$$
induced by the absolute \(d \log \) map

\[
\mathcal{O}_Z \xrightarrow{d \log} \Omega^1_{Z/Q}.
\]

This cycle map is obviously compatible with the map \(\gamma \), and with extension of scalars.

Let \(E \to \text{Spec} \, K \) be an elliptic curve over a subfield \(K \) of \(\mathbb{C} \). We have the exact sheaf sequence

\[
0 \to \mathcal{O}_E \otimes \Omega^1_{K/Q} \to \Omega^1_{E/Q} \to \Omega^1_{E/K} \to 0,
\]

which induces a two-term filtration \(F^i \Omega^2_{E/Q} \) of \(\Omega^2_{E/Q} \) with \(F^2 \Omega^2_{E/Q} = \mathcal{O}_E \otimes \Omega^2_{K/Q} \). This gives us the natural maps

\[
\begin{align*}
\gamma_1 & : H^*(E, \mathcal{O}_E) \otimes \Omega^1_{K/Q} \to H^*(E, \Omega^1_{E/Q}) \\
\gamma_2 & : H^*(E, \mathcal{O}_E) \otimes \Omega^2_{K/Q} \to H^*(E, \Omega^2_{E/Q}).
\end{align*}
\]

We have the norm map \(\text{Nm} : H^1(E, \mathcal{K}_2) \to H^0(K, \mathcal{K}_1) = K^* \) as in \(\text{[1.2]} \), but over \(K \); we let \(V(E) \subset H^1(E, \mathcal{K}_2) \) be the kernel of \(\text{Nm} \) (see \(\text{[4.3]} \)).

Lemma 4.5. Let \(K \) be an algebraically closed subfield of \(\mathbb{C} \), \(E \to \text{Spec} \, K \) an elliptic curve over \(K \). Then the cycle map with values in absolute Hodge cohomology maps \(V(X) \) to the subgroup \(\gamma_2[H^1(E, \mathcal{O}_E) \otimes \Omega^2_{E/Q}] \) of \(H^1(E, \Omega^2_{E/Q}) \).

Proof. The kernel of the composition

\[
\text{Pic}(E) = H^1(E, \mathcal{K}_1) \xrightarrow{d \log} H^1(E, \Omega^1_{E/Q}) \to H^1(E, \Omega^1_{E/K}) \cong K
\]

is the composition

\[
\text{Pic}(E) \xrightarrow{\deg} \mathbb{Z} \subset K,
\]

hence the \(d \log \) map sends \(\text{Pic}^0(E) \) to the subgroup \(\gamma_1[H^1(E, \mathcal{O}_E) \otimes \Omega^1_{K/Q}] \) of \(H^1(E, \Omega^1_{E/Q}) \).

Take \(\tau \in \text{Pic}^0(E) \), \(u \in H^0(E, \mathcal{K}_1) = K^* \), and let \(\xi = \tau \cup u \in H^1(E, \mathcal{K}_2) \). Then

\[
d \log(\xi) = d \log(\tau) \cup d \log(u).
\]

Since \(d \log : K^* \to \Omega^1_{K/Q} \) is just the absolute \(d \log \) map, we see that \(d \log(\xi) \) lands in the image of the cup product map

\[
[H^1(E, \mathcal{O}_E) \otimes \Omega^1_{K/Q}] \otimes \Omega^1_{K/Q} \to H^1(E, \Omega^2_{E/Q}),
\]

which is \(\gamma_2[H^1(E, \mathcal{O}_E) \otimes \Omega^2_{K/Q}] \).

Since \(K \) is algebraically closed, the cup product \(\text{Pic}(E) \otimes K^* \to H^1(E, \mathcal{K}_2) \) is surjective, from which one sees that the cup product maps
Pic\(^0\)(E) \(\otimes\) K\(^*\) onto V(E). Combining this with the computation above completes the proof.

From the surjectivity of the cup product Pic\(^0\)(E) \(\otimes\) K\(^*\) \(\rightarrow\) V(E) for K algebraically closed, we see that the injection \(H^1(E, \mathcal{K}_2) \rightarrow \text{CH}_0(X)\) sends V(E) isomorphically onto \(F^2\text{CH}_0(X)\).

Let K be a subfield of \(\mathbb{C}\). We say that an element \(\xi\) of \(\text{CH}_0(X)\) is defined over K if there is a K-scheme \(X^0\), an element \(\xi^0\) of \(\text{CH}_0(X^0)\) and an isomorphism \(\alpha : X^0_C \rightarrow X\) such that \(\xi = \alpha_* (\xi^0_C)\). From Lemma 4.5 and the compatibility of \(d\log\) with extension of scalars, we have

Lemma 4.6. Take \(K = \mathbb{C}\), and let \(\xi\) be an element of \(F^2\text{CH}_0(X) = V(E)\). If \(\xi\) is defined over a field of transcendence degree one over \(\mathbb{Q}\), then \(\xi\) vanishes under the cycle map to absolute Hodge cohomology.

Corollary 4.7. If \(E\) is an elliptic curve with complex multiplication, then there are non-torsion cycles \(\xi \in F^2\text{CH}_0(X)\) dying in the analytic motivic cohomology as well as in absolute Hodge cohomology.

Proof. By the remark above, we may replace \(F^2\text{CH}_0(X)\) with \(V(E)\). Let \(\bar{E}\) be a model for \(E\), with equation \(y^2 = 4x^3 - ax - b\) defined over a number field \(K \subset \mathbb{C}\). Let \(\omega = \frac{dx}{y}\) be the standard global one-form on \(\bar{E}\).

Choosing an isomorphism \(\bar{E}_C \cong E_C\) defines the period lattice \(L_\omega \subset \mathbb{C}\) for \(\omega\). Choose a basis for \(L_\omega\) of the form \(\{\Omega, \tau\Omega\}\), and let \(t = e^{2\pi i \tau}\). Let

\[\mathcal{P} : \mathbb{C} \rightarrow \mathbb{CP}^1\]

be the Weierstraß \(P\)-function for the lattice \(L_\omega\).

The map \(\times \Omega^{-1} : \mathbb{C} \rightarrow \mathbb{C}\) gives rise to the isomorphism of Riemann surfaces \(\alpha_{an} : \bar{E}_{an} \rightarrow \bar{E}_t\) making the diagram

\[
\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\times \Omega^{-1}} & \mathbb{C} \\
\downarrow & & \downarrow \text{exp} \\
\mathbb{C}^* & \xrightarrow{p} & \bar{E}_{an} \rightarrow \bar{E}_t^{an} \\
\downarrow & & \downarrow \alpha_{an} \\
\end{array}
\]

commute, i.e.,

\[p(u) = \alpha_{an}(\mathcal{P}(\frac{\Omega}{2\pi i} \log u), \mathcal{P}'(\frac{\Omega}{2\pi i} \log u)).\]

We let

\[\alpha : \bar{E}_C \rightarrow E_t\]
be the corresponding isomorphism of algebraic elliptic curves over \(\mathbb{C} \).

By [1], th\' eor\' eme 1, \(\mathcal{P}(\frac{\Omega}{2\pi i}\log u) \) has transcendence degree 1 over \(\bar{\mathbb{Q}} \) for all \(u \in \mathbb{N}, u \geq 2 \). (We thank Y. Andr\'e for giving us this reference). Fix a \(u \geq 2 \), let \(K \) be the algebraic closure of the field \(\mathbb{Q}(\mathcal{P}(\frac{\Omega}{2\pi i}\log u)) \), and let \(x \in \bar{E}(K) \) be the point \((\mathcal{P}(\frac{\Omega}{2\pi i}\log u), \mathcal{P}'(\frac{\Omega}{2\pi i}\log u)) \). Then \(x \) is a generic point of \(\bar{E} \) over \(\bar{\mathbb{Q}} \).

We take

\[\xi := p(u) * p(1 - u). \]

By construction, \(\xi = \alpha(\xi_K \times_K \mathbb{C}) \), where \(\xi_K \in H^1(\bar{E}, \mathcal{K}_2) \) is the element \([(x) - (0)] \cup [1 - u] \). Here \([(x) - (0)] \) denotes the class in \(\text{Pic}(\bar{E}) = H^1(\bar{E}, \mathcal{K}_1) \), and \([1 - u] \) denotes the class in \(H^0(\bar{E}, \mathcal{K}_1) = K^\ast \). Since \(K \) has transcendence degree one over \(\bar{\mathbb{Q}} \), the class of \(\xi \) in the absolute Hodge cohomology of \(\bar{E} \) vanishes, by Lemma 4.6. By Theorem 4.4, \(\xi \) dies in the analytic motivic cohomology of \(\bar{E} \) as well. It remains to show that \(\xi \) is a non-torsion element of \(H^1(E_K, \mathcal{K}_2) \).

We give an analytic proof of this using the regulator map with values in Deligne-Beilinson cohomology.

Let \(Y \) be a smooth projective surface over \(\mathbb{C} \), and let \(\text{NS}(Y) \) denote the Néron-Severi group of divisors modulo homological equivalence. Then Hodge theory implies that

\[\text{NS}(Y) = \{(z, \varphi) \in (H^2(Y_{\text{an}}, \mathbb{Z}(1)) \times F^1H^2(Y_{\text{an}}, \mathbb{C})), z \otimes \mathbb{C} = \varphi\}, \]

and that

\[\text{NS}(Y) \cap F^2H^2_{DR}(Y) = \emptyset. \]

We note that the map \(\text{Pic}(Y) \otimes \mathbb{C}^\ast \to H^2_{DR}(Y, \mathbb{Z}(2)) \) induced by the cup product in Deligne cohomology factors through \(\text{NS}(Y) \otimes \mathbb{C}^\ast \), and that the induced map \(\iota : \text{NS}(Y) \otimes \mathbb{C}^\ast \to H^2_{DR}(Y, \mathbb{Z}(2)) \) is injective. Indeed,

\[H^2_{DR}(Y, \mathbb{Z}(2)) = H^2(Y_{\text{an}}, \mathbb{C}/\mathbb{Z}(2))/F^2. \]

Now take \(Y = E \times E \), and let \(U \subset E \) be the complement of a non-empty finite set \(\Sigma \) of points of \(E \). Let \([E \times 0] \) be the class of \(E \times 0 \) in \(\text{NS}(Y) \), and let \(\gamma : \mathbb{C}^\ast \to \text{NS}(Y) \otimes \mathbb{C}^* \) be the map \(\gamma(v) = [E \times 0] \otimes v \).

Let

\[\iota_U : \text{NS}(Y) \otimes \mathbb{C}^\ast \to H^3_{DR}(E \times U, \mathbb{Z}(2)) \]

be the composition of \(\iota \) with the restriction map \(H^3_{DR}(Y, \mathbb{Z}(2)) \to H^3_{DR}(E \times U, \mathbb{Z}(2)) \). We claim that the sequence

\[\mathbb{C}^\ast \xrightarrow{\gamma} \text{NS}(Y) \otimes \mathbb{C}^\ast \xrightarrow{\iota_U} H^3_{DR}(E \times U, \mathbb{Z}(2)) \]

is exact. Indeed, we have the localization sequence

\[\bigoplus_{s \in \Sigma} H^1_{DR}(E \times s, \mathbb{Z}(1)) \xrightarrow{\oplus \iota_{ts}} H^3_{DR}(Y, \mathbb{Z}(2)) \to H^3_{DR}(E \times U, \mathbb{Z}(2)) \to, \]
the isomorphism $H^2_b(E \times s, \mathbb{Z}(1)) \cong \mathbb{C}^*$ and the identity
\[\iota_s(v) = \gamma(v), \quad v \in \mathbb{C}^*, \]
which proves our claim.

In particular, let $[\Xi] = [\Delta - \{0\} \times E] \otimes v$, where Δ is the diagonal, v is an element of \mathbb{C}^* which is not a root of unity, and $[\Delta - \{0\} \times E]$ is the class in $\text{NS}(Y)$. Since $[\Delta - \{0\} \times E]$ is not torsion in $\text{NS}(Y)/[E \times \{0\}]$, we see that $[\Xi]$ has non-torsion image $[\Xi]$ in
\[H^3_D(E \times \mathbb{C} \mathbb{C}(E), \mathbb{Z}(2)) := \lim_{\varnothing \neq U \subset E} H^3_D(E \times U, \mathbb{Z}(2)), \]
where the limit is over non-empty Zariski open subsets U of E.

Let Ξ be the image of $(\Delta - 0 \times E) \otimes v$ in $H^1(Y, \mathcal{K}_2)$. Then $[\Xi]$ is the image of Ξ under the regulator map $H^1(Y, \mathcal{K}_2) \to H^3_D(Y, \mathbb{Z}(2))$. Similarly, letting $\Xi_{\mathbb{C}(E)}$ be the pull-back of Ξ to $E \times \mathbb{C} \mathbb{C}(E)$, $[\Xi_{\mathbb{C}(E)}]$ is the image of $\Xi_{\mathbb{C}(E)}$ under the regulator map $H^1(E \times \mathbb{C} \mathbb{C}(E), \mathcal{K}_2) \to H^3_{\mathbb{D}}(E \times \mathbb{C} \mathbb{C}(E), \mathbb{Z}(2))$. Thus, $\Xi_{\mathbb{C}(E)}$ is a non-torsion element of $H^1(E \times \mathbb{C} \mathbb{C}(E), \mathcal{K}_2)$ for each non-torsion element $v \in \mathbb{C}^*$.

Let Δ be the diagonal in $\bar{E} \times \bar{E}$, let ξ be the image of $(\Delta - 0 \times \bar{E}) \otimes (1 - u)$ in $H^1(E, \mathcal{K}_2)$, and let $\xi_{\mathbb{Q}(E)}$ be the image of ξ in $H^1(\bar{E} \times \mathbb{Q} \mathbb{Q}(\bar{E}), \mathcal{K}_2)$. Clearly, after choosing a complex embedding $\mathbb{Q} \subset \mathbb{C}$, $\Xi_{\mathbb{C}(E)}$ (for $v = 1 - u$) is the image of $\xi_{\mathbb{Q}(E)}$ under the extension of scalars $\mathbb{Q}(\bar{E}) \to \mathbb{C}(\bar{E}) \cong \mathbb{C}(E)$, hence $\xi_{\mathbb{Q}(E)}$ is a non-torsion element of $H^1(\bar{E} \times \mathbb{Q} \mathbb{Q}(\bar{E}), \mathcal{K}_2)$.

Since x is a geometric generic point of \bar{E} over \bar{Q}, there is an embedding $\sigma : \bar{Q}(E) \to \mathbb{C}$ such that $x : \text{Spec} \mathbb{C} \to \bar{E}$ is the composition $\text{Spec} \mathbb{C} \to \text{Spec} \mathbb{Q}(\bar{E}) \to \bar{E}$. Thus, ξ is the image of ξ_1 under $(\text{id} \times x)^* : H^1(E \times \mathbb{Q} \mathbb{Q}(\bar{E}), \mathcal{K}_2) \to H^1(E, \mathcal{K}_2)$, and hence ξ is the image of $\xi_{\mathbb{Q}(E)}$ under the map $\text{id} \times \sigma_* : H^1(\bar{E} \times \mathbb{Q} \mathbb{Q}(\bar{E}), \mathcal{K}_2) \to H^1(E, \mathcal{K}_2)$ induced by the extension of scalars σ.

Since the kernel of $\text{id} \times \sigma_*$ is torsion, it follows that ξ is a non-torsion element of $H^1(E, \mathcal{K}_2)$, as desired. \[\square\]

Remark 4.8. Going back to $X = E \times E'$, where both elliptic curves are smooth, we are lacking the transcendence theorem which would force the existence of a cycle $0 \neq \xi = p(u) * p(1 - u) \in F^2\text{CH}_{0}(X)$ dying both in $\mathbb{H}^4(X, \mathcal{B}(2))$ and in absolute Hodge cohomology.

References

[1] Bertrand, D.: Valeurs de fonctions thêta et hauteurs p-adiques, Progress in Math. 22 (1982), 1-11, Birkhäuser Verlag.
[2] Biswas, J.; Srinivas V.: Chow ring of a singular surface, appendix to “Roitmann theorem for singular projective varieties”, preprint 1995, to appear in Compositio.
[3] Bloch, S.: Applications of the dilogarithm function in algebraic K-theory and algebraic geometry, Int. Symp. on Alg. Geom., Kyoto (1977), 2036-2060.
[4] Bloch, S.: letter to H. Esnault, March 30, 1988.
[5] Esnault, H.: A note on the cycle map, J. reine angew. Math. 411 (1990), 51-65.
[6] Levine, M.; Weibel, C.: Zero-cycles and complete intersections on affine surfaces, J. Reine u. Ang. Math. 359 (1985) 106-120.
[7] Levine, M.: Bloch’s formula for a singular surface, Topology 124 No. 2(1985) 165-174.
[8] Lichtenbaum, S.: The construction of weight-two motivic cohomology, Invent. math. 88 (1987), 183-215.
[9] Mumford, D.: Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968) 195-204.
[10] Mumford, D.: Abelian Varieties, Oxford University Press (1970).
[11] Raskind, W.; Spieß, M.: Milnor K-groups and zero-cycles on products of curves over p-adic fields, preprint 31 pages.
[12] Roitman, A. A.: Γ-equivalence of zero-dimensional cycles. Mat. Sb. (N.S.) 86(128) (1971) 557-570.
[13] Serre, J.-P.: Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1-42.
[14] Srinivas, V.: Zero cycles on singular avrieties, preprint 1998, 26 pages, appears in the Proceedings of the Banff conference on algebraic cycles.

Universität GH Essen, FB6 Mathematik und Informatik, 45117 Essen, Germany, and Department of Mathematics, Northeastern University, Boston, MA 02115, USA

E-mail address: esnault@uni-essen.de marc@neu.edu