Epidemiology of Extended-Spectrum β-Lactamase Producing Escherichia coli in the Stools of Returning Japanese Travelers, and the Risk Factors for Colonization

Kenichiro Yaita1, Kotaro Aoki2, Takumitsu Suzuki1, Kazuhiko Nakaharai1, Yukihiro Yoshimura1, Sohei Harada3, Yoshikazu Ishii2, Natsuo Tachikawa1

1 Department of Infectious Diseases, Yokohama Municipal Citizen’s Hospital, Yokohama, Japan, 2 Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan, 3 Department of Infectious Diseases, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan

Abstract

Objective: Travel overseas has recently been considered a risk factor for colonization with drug-resistant bacteria. The purpose of this study was to establish the epidemiology and risk factors associated with the acquisition of drug-resistant bacteria by Japanese travelers.

Methods: Between October 2011 and September 2012, we screened the stools of 68 Japanese returning travelers for extended-spectrum β-lactamase (ESBL) producing Escherichia coli. All specimens were sampled for clinical reasons. Based on the results, the participants were divided into an ESBL-producing E. coli positive group (18 cases; 26%) and an ESBL-producing E. coli negative group (50 cases; 74%), and a case-control study was performed. Microbiological analyses of ESBL-producing strains, including susceptibility tests, screening tests for metallo-β-lactamase, polymerase chain reaction amplification and sequencing of blaCTX-M genes, multilocus sequence typing, and whole genome sequencing, were also conducted.

Results: In a univariate comparison, travel to India was a risk factor (Odds Ratio 13.6, 95% Confidence Interval 3.0–75.0, p<0.0001). There were no statistical differences in the characteristics of the travel, such as backpacking, purpose of travel, interval between travel return and sampling stool, and duration of travel. Although 10 of 13 analyzed strains (77%) produced CTX-M-15, no ST131 clone was detected.

Conclusion: We must be aware of the possibilities of acquiring ESBL-producing E. coli during travel in order to prevent the spread of these bacteria not only in Japan but globally.

Introduction

In this era of globalization, drug-resistant bacteria are not only nosocomial, but may also be community-acquired. Acquiring extended-spectrum β-lactamase (ESBL)-producing bacteria during travel in developing countries is becoming a more serious threat. Moreover, colonization during overseas travel has become a risk factor for community-acquired infection (ex. urinary tract infection, bloodstream infection) due to ESBL-producing Escherichia coli [1] and the duration of colonization of ESBL-producing E. coli is longer than previously expected (10% of patients continued to carry at a 3-year follow-up) [2].

The reasons for the colonization of ESBL-producing bacteria during travel are expected to be exposure to a foreign environment (ex. poor-quality drinking water, and poor sewage disposal) [3] that is contaminated with drug-resistant organisms along with selection caused by antibiotic usage after the acquisition of such organisms [4,5].

These situations cannot be overlooked even in developed countries such as Japan. Approximately 17 million Japanese now travel abroad each year, according to the Japan Tourism Agency (https://www.mlit.go.jp/kankocho/siryou/toukei/in_out.html). In particular, business trips between Japan and Asia (ex. India) have recently increased with the trend toward a global economy. However, no report has examined the relationship between Japanese travelers and ESBL-producing E. coli colonization, although infections and risk factors have been published. The purpose of our study was to clarify the epidemiology and risk factors associated with ESBL-producing E. coli colonization in Japanese returning travelers.

Patients and Methods

This was a single-center research conducted by the Department of Infectious Diseases of Yokohama Municipal Citizen’s Hospital, a 650-bed tertiary care medical center. Between October 2011
and September 2012 (one year), returning travelers with Japanese citizenship whose stool specimens were sampled for clinical reasons (ex. traveler’s diarrhea, fever after travel) were included in this study. Infectious disease physicians selected these participants from patients presenting with health problems that may have been related to recent travels. Retrospectively, we checked the electronic medical charts of participants and classified their factors as follows: age, sex, the symptoms (diarrhea, fever, abdominal pain), ESBL-producing \(E. \) coli colonization, travel destination (India, Asia except India, Oceania, Africa, North America, Central America, South America, Europe), backpacking travelers, purpose of travel (vacation, business/education/volunteer work, visiting friends and relatives (VFR)), the interval between travel return and stool sampling (>10 days or not), duration of travel (>10 days or not), antibiotic treatment before the visit to our clinic. Diarrhea was defined as the passage of 3 or more unformed stools in a day. Fever was defined as 37.5°C or more, of axillary body temperature at least once before consultation to our clinic.

We selectively cultured stool samples collected from participants for ESBL producing Enterobacteriaceae using ChromID ESBL agar (SYSMEX bioMerieux Co., Ltd., Tokyo, Japan) as the initial screen test. We selected colonies that were consistent with producing ESBL for further identification. For the identification of \(E. \) coli, we referred to the combination of the biochemical results [6]. Susceptibility was assessed by a broth microdilution method using Dry Plate (Eiken Chemical Co., Ltd., Tokyo, Japan) according to the guidelines of the Clinical Laboratory Standards Institute [7]. ESBL production was confirmed by using the combination disk method according to the Clinical and Laboratory Standards Institute criteria [8]. In addition, the dipicolinic acid-based (DPA) disk method was used for evaluation of the production of metallo-\(\beta \)-lactamase [9].

\(E. \) coli harboring ESBL were subjected to PCR amplification and sequencing of \(\text{bla}_{\text{CTX-M}} \) genes and multilocus sequence typing (MLST). \(\text{bla}_{\text{CTX-M}} \) genes were screened as described previously [10]. For PCR amplification of \(\text{bla}_{\text{CTX-M}} \), we used three sets of PCR primers: \(\text{ISEp}_1\text{U1-CTX-M-2-group}, \text{ISEp}_1\text{U1-CTX-M-3-group}, \text{and ISEp}_1\text{U1-CTX-M-9-group}. \) The forward primer is common in three sets: \(\text{ISEp}_1\text{U1} \) (5′-AAA AAT GAT TGA AAG GTG GT-3′) [11]. The reverse primers were as follows: 5′-TGA TGG CCT GGT ATG CGC AAG-3′ for the CTX-M-2 group, 5′-TGG CCT GGT ATG CGC AAG-3′ for the CTX-M-3 group, and 5′-GGA CCT TAT TAT TGT AGG GTG-3′ for the CTX-M-9 group. MLST was performed for seven housekeeping genes (\(\text{adk}, \text{fumC}, \text{gyb}, \text{idc}, \text{mdh}, \text{purA}, \) and \(\text{recA} \)), and we collated them with MLST databases at the EKI, University College Cork web site (http://mlst.ucc.ie/mlst/dbs/Ecoli).

In addition, whole genome sequencing (WGS) was performed to screen for the presence of additional antimicrobial resistance genes other than \(\text{bla}_{\text{CTX-M}} \). The sequencing library was prepared with the Nextera XT DNA Sample Prep Kit (Illumina, San Diego, CA, USA) and sequencing was performed using a MiSeq sequencer (Illumina) in a 2×300-bp paired-end run. Genome assembly was performed using the A3-miseq assembly pipeline [12]. Antimicrobial resistance genes were identified from WGS data using the ResFinder 2.1 Website (http://cge.cbs.dtu.dk/services/ResFinder/).

We divided patients into an ESBL-producing \(E. \) coli positive group (returning travelers in whose stools ESBL-producing \(E. \) coli were detected) and an ESBL-producing \(E. \) coli negative group (returning travelers in whose stools ESBL-producing \(E. \) coli were not detected) and performed a case-control study between these two groups. All statistical analyses were performed with EZR (Saitama Medical Center, Jichi Medical University), which is a graphical user interface for R (The R Foundation for Statistical Computing, version 2.14.1) [13]. Categorical data were tested using a Fisher’s exact test, and continuous data were tested using a student’s t test. A \(p \)-value \(<0.05 \) was considered to be statistically significant.

The Yokohama Municipal Citizen’s Hospital Research Ethics Committee approved the study. The ethics committee waived the need for the written informed consent for using participant’s samples and analyzing clinical case records because of preserved anonymity. However, from the participants in the ESBL-producing \(E. \) coli positive group, the written informed consent was obtained for performing the advanced microbiological analysis and reporting of the detailed information, in accordance with the committee’s counsel.

Results

Of 179 returning Japanese travelers who visited our clinic between October 2011 and September 2012, 68 patients whose stools were cultured, participated in this study. The mean age was 34.5 (range, 0 to 76) years, and 48 patients (71%) were male. The mean interval between the day of return to Japan and the day their stools were sampled was 5.5 (range, 0 to 67) days. The mean duration of travel was 16.7 (range, 2 to 248) days. Of the total, 57 patients (84%) had traveled to Asian countries and 14 patients (21%) to India which was the most frequent travel destination. Eighteen (26%) of the participants were found to be positive for ESBL-producing \(E. \) coli (ESBL-producing \(E. \) coli positive group), and 50 (74%) were found to be negative for ESBL-producing \(E. \) coli in their stools (ESBL-producing \(E. \) coli negative group).

The univariate comparisons of variables between the ESBL-producing \(E. \) coli positive group and the ESBL-producing \(E. \) coli negative group are summarized in Table 1. Of the 18 travelers who traveled for less than 10 days, 14 had ESBL-producing \(E. \) coli in their stools. Only 4 travelers in the ESBL-producing \(E. \) coli positive group had been prescribed antibiotics before consultation to our clinic.

India as a travel destination was a significant risk factor for the occurrence of ESBL-producing \(E. \) coli in the stools (Odds Ratio 13.6, 95% Confidence Interval (CI) 3.0–75.6, \(p<0.0001 \)). Of 14 travelers to India, 10 travelers carried ESBL-producing \(E. \) coli. Among these travelers to India, there were no statistical differences in other travel factors such as backpacking travelers, purpose of travel, interval between travel return and sampling stool, duration of travel and antibiotics treatment before consultation to our clinic (Table 2).

Table S1 lists the details of ESBL-producing \(E. \) coli positive travelers including microbiological findings. Two participants declined to be listed in Table S1. No strain belonged to CC131 (including ST131). Of the 13 analyzed strains, 10 carried \(\text{bla}_{\text{CTX-M-15}} \) and 8 carried \(\text{bla}_{\text{TEM-1}} \).

In Table S2, we summarized the minimum inhibitory concentrations of the strains of ESBL-producing \(E. \) coli. No strain was resistant to carbapenems, and 5 strains were resistant to quinolones. The DPA disk method and WGS also revealed no strain producing carbapenemases including metallo-\(\beta \)-lactamase.

Discussion

In this study, the prevalence of the colonization of ESBL-producing \(E. \) coli in returning Japanese travelers was 26%, and this value was compatible with past reports (23–30%) [14–17]. We did not compare travelers with non-travelers as a control group. However, a previous study showed that ESBL-producing \(E. \) coli is colonized in only 5% of the stools of healthy adults in Japan [18].
This result is similar to a previous study in Canada (4% of non-travelers had ESBL-producing \textit{E. coli}) [13]. From these results, traveling abroad is considered a risk factor for the acquisition of ESBL-producing \textit{E. coli}.

In particular, traveling to India was a significant risk factor for ESBL-producing \textit{E. coli} colonization. This result is compatible with the following published reports [1,14,15,19,20]. Tängde˚n et al. reported that 88% of travelers to India acquired ESBL-producing \textit{E. coli}, and the symptoms of gastroenteritis were considered a risk of the acquisition of ESBL-producing \textit{E. coli} [14]. Laupland et al. revealed that traveling to India was an important risk factor for community-acquired ESBL-producing \textit{E. coli} infection (Relative Risk 145.6) [1]. This is because India has a higher rate of ESBL-producing \textit{E. coli} contamination. Hawser et al. established that the frequency of ESBL-producing strains of \textit{E. coli} from patients with intra-abdominal infections in India were the highest (79%) of all Asian-Pacific regions (20%) [21]. In our study, diarrhea-suffering travelers in the ESBL-producing \textit{E. coli} positive group (100%) numbered more than those in the ESBL-producing \textit{E. coli} negative group (86%), although there was no statistical significance between the groups. From these results, we concluded that those in the ESBL-producing \textit{E. coli} positive group were more likely to be exposed to food or water contaminated with gastrointestinal pathogenic bacteria (the cause of traveler’s diarrhea) and ESBL-producing \textit{E. coli}. A high prevalence of ESBL-producing \textit{E. coli} in communities of India and a lack of proper hygienic handling of food and/or water [3], are considered to be the factors promoting ESBL-producing \textit{E. coli} colonization in travelers to India [14].

Travel to other regions of Asia (except India) and Africa is also considered to be a risk factor for the acquisition of ESBL-producing \textit{E. coli} [1]. However, there were no other statistically significance in our study. The reason for no ESBL-producing \textit{E. coli} positive cases in returning travelers from Africa might have been the small size of our samples. Based on the results of past reports [1,14,15,17] combined with the results of our study, travel to Asia (except India) and Africa is not considered a high risk compared with India. The data concerning the ratio of ESBL-producing \textit{E. coli} in Asia and Africa were limited, but were reported as follows (these data are calculated from specimens, isolated from intra-abdominal infections); China (55%), Thailand (30.8%), Vietnam (34.4%), and South Africa (7.6%) [21,22]. No country has reported a higher prevalence of ESBL-producing \textit{E. coli} than India. This may explain the higher risk of colonization in India.

There were no risk factors connected with the characteristics of travel (backpacking, purpose of travel, interval between travel return and sampling stool, duration of travel, and antibiotic treatment before consultation to our clinic) in this study, which agreed with a previous report [14]. The acquisition of ESBL-producing \textit{E. coli} could happen even within a short stay such as a

| Table 1. The characteristics of ESBL-producing \textit{E. coli} positive/negative groups. |
|-----------------------------------|-------------------------------|-------------------------------|--------------------------|
| Age, mean ± SD (year) | ESBL-producing \textit{E. coli} positive group (n = 18) (%) | ESBL-producing \textit{E. coli} negative group (n = 50) (%) | \(p\) value |
| Sex (male) | 11 (61) | 37 (74) | 0.37² |
| Symptoms | | | |
| Diarrhea | 18 (100) | 43 (86) | 0.18² |
| Fever (> = 37.5 °C) | 8 (44) | 32 (64) | 0.17² |
| Abdominal pain | 11 (61) | 34 (68) | 0.77² |
| Travel destination | | | |
| India | 10 (56) | 4 (8) | <0.0001² |
| Asia except India | 9 (50) | 36 (72) | 0.15² |
| Oceania | 0 (0) | 1 (2) | 1.00² |
| Africa | 0 (0) | 5 (10) | 0.32² |
| North America | 0 (0) | 2 (4) | 1.00² |
| Central America | 0 (0) | 1 (2) | 1.00² |
| South America | 0 (0) | 1 (2) | 1.00² |
| Europe | 1 (6) | 2 (4) | 1.00² |
| Backpacking travelers | 1 (6) | 3 (6) | 1.00² |
| Purpose of travel | | | |
| Vacation | 10 (56) | 29 (58) | 1.00² |
| Business/Education/ Volunteer work | 7 (39) | 20 (40) | 1.00² |
| VFR | 1 (6) | 4 (8) | 1.00² |
| Interval between travel return and sampling stool >10 days | 2 (11) | 7 (14) | 1.00² |
| Duration of travel >10 days | 4 (22) | 13 (26) | 1.00² |
| Antibiotics treatment before consultation to our clinic | 4 (22) | 12 (24) | 1.00² |

¹Student’s t-test, ² Fisher’s exact test.
ESBL = extended-spectrum \(\beta\)-lactamase; SD = standard deviation; VFR = visiting friends and relatives; doi:10.1371/journal.pone.0098000.t001
In our study, most of the strains produced CTX-M-15 (included in the CTX-M-1 group), however, sequence types were diverse. In India, it is well known that CTX-M-15-producing *E. coli* is predominant [4,24]. On the other hand, the CTX-M-9-group is now spreading in Japan followed by the CTX-M-2 and the CTX-M-1-groups [25–27]. Some studies have already shown that most of the strains of *E. coli* that the patients acquired in India had the CTX-M-15 enzyme [1,17,20]. Interestingly, there is a diversity of sequence types and no strain included in CC131 (ST131 belongs) was detected in this study. Although the ST131 clone is spreading globally and is dominant [28,29], other studies [15,16,30] have reported that other strains are also producing CTX-M-15. In Pitout's report, half of the strains producing CTX-M-15 of travel-related ESBL-Producing *E. coli* Isolates did not belong to ST131 [30].

Our study had some limitations. First, since this was a retrospective case-control study, we could not distinguish between colonization before travel and its acquisition during travel. Second, we could not check the stools of all returning travelers who visited our clinic. The reason for sampling the participant’s stools for this study was clinically necessity (ex. detection of the organisms causing traveler’s diarrhea, a part of the fever-workup). There is the possibility that the results would change, if the stools of all returning travelers were collected. This inclusion criteria might have negated the rate of diarrhea-suffering travelers between ESBL-producing *E. coli* positive groups and negative groups, which would have been different from the past study [14].

In conclusion, travel in India is a risk factor for ESBL-producing *E. coli* colonization in Japanese travelers, even for short durations of travel. In addition, the characteristics of travel might not be related to the risk of colonization. The results of this study have alerted us to the necessity of considering ESBL-producing *E. coli* beyond situations of only hospital-acquired/community-acquired to include situations of “travel-acquired.” The spread of these strains should be prevented globally, and not only in Japan.

Supporting Information

Table S1 The list of ESBL-producing *E. coli* colonizing travelers, characteristics of the travel, sequence types of MLST and ESBL encoding genes.

(XLS)

Table S2 Minimum inhibitory concentrations of the strains of ESBL-producing *E. coli*.

(XLS)

Acknowledgments

The authors thank the nurses, clerks, laboratory technicians, pharmacists, and resident doctors of our clinic for their vigorous contribution to our practice.

Author Contributions

Conceived and designed the experiments: KA YI. Performed the experiments: KA YI. Analyzed the data: KY NT. Wrote the paper: KY KA TS KN YY SH YI NT.
References

1. Laupland KB, Church DL, Vidakovich J, Mucenski M, Pitout JD (2008) Community-onset extended-spectrum β-lactamase (ESBL) producing Escherichia coli: importance of international travel. J Infect 57: 441–448.

2. Tham J, Walder M, Melander E, Edelholz I (2012) Duration of colonization with extended-spectrum β-lactamase-producing Escherichia coli in patients with travelers’ diarrhoea. Scand J Infect Dis 44: 573–577.

3. Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11: 355–362.

4. Hawkey PM (2008) Prevalence and clonality of extended-spectrum β-lactamases in Asia. Clin Microbiol Infect 14 Suppl 1: 159–165.

5. Woodford N (2011) Unwanted souvenirs travel and multi-resistant bacteria. J Travel Med 18: 297–298.

6. Donnenberg MS (2009) Enterobactriacae. In: Mandell GL, Bennett JE, Dolin R, editors. Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases. 7th ed. Philadelphia: Churchill Livingstone. 2015–2833.

7. Clinical and Laboratory Standards Institute (2011) Methods For Dilution Antimicrobial Susceptibility Tests For Bacteria That Grow Aerobically. CLSI document M7-A9. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania.

8. Clinical and Laboratory Standards Institute (2010) Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement. CLSI document M100-S20. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania.

9. Kimura S, Ishii Y, Yamaguchi K. (2005) Evaluation of dipicolinic acid for detection of IMP- or VIM-type metallo-β-lactamase-producing Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis. 53: 241–244.

10. Xu L, Enser V, Gossain S, Nye K, Hawkey P (2005) Rapid and simple detection of blaCTX-M genes by multiplex PCR assay. J Med Microbiol. 54: 1103–1107.

11. Saladin M, Cao VT, Lambert T, Donay JL, Herrmann JL, et al. (2002) Diversity of CTX-M beta-lactamasas and their promoter regions from E. coli isolates in three Parisian hospitals. FEMS Microbiol Lett 209: 161–168.

12. Tritt A, Eisen JA, Facicott MI, Darling AE (2012) An integrated pipeline for de novo assembly of microbial genomes. PLoS One 7: e42304.

13. Kanda Y (2012) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 1–7.

14. Tängde´n T, Cars O, Melhus A, Lowdin E (2010) Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum β-lactamases. Scand J Infect Dis 42: 763–767.

15. Peirano G, Laupland KB, Gregson DB, Pitout JD (2011) Colonization of returning travelers with CTX-M-producing Escherichia coli. J Travel Med 18: 299–303.

16. Weisenberg SA, Mediavilla JR, Chen L, Alexander EL, Rhee KY, et al. (2012) Extended spectrum β-lactamase-producing enterobacteriaceae in international travelers and non-travelers in New York City. PLoS One 7: e45141.

17. Ostholt-Balkhed A, Tarnberg M, Nåsson M, Nilsson LE, Hanberger H, et al. (2013) Travel-associated faecal colonization with ESBL-producing Enterobacteriaceae incidence and risk factors. J Antimicrob Chemother 68: 2144–2153.

18. Laxmanharav CO, Hirai I, Niki M, Nakata A, Yoshinaga A, et al. (2011) Prevalence of faecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae among healthy adult people in Japan. J Infect Chemother 17: 722–725.

19. Islam S (2012) High rates of ESBL-producing Escherichia coli in young children who travelled recently to India. Pediatr Infect Dis J 31: 1103.

20. Freeman JT, McBride SJ, Helferan H, Bathgate T, Pope C, et al. (2008) Community-onset genitourinary tract infection due to CTX-M-15-producing Escherichia coli among travelers to the Indian subcontinent in New Zealand. Clin Infect Dis 47: 689–692.

21. Havser SP, Bouchillon SK, Hoban DJ, Badal RE, Hsuhe PR, et al. (2009) Emergence of high levels of extended-spectrum β-lactamase-producing Gram-negative bacilli in the Asia-Pacfic region data from the Study for Monitoring Antimicrobial Resistance Trends (SMART) program, 2007. Antimicrob Agents Chemother 53: 3280–3284.

22. Brink AJ, Botha RF, Powsa X, Serenkl M, Badal RE, et al. (2012) Antimicrobial susceptibility of Gram-negative pathogens isolated from patients with complicated intra-abdominal infections in South African hospitals (SMART Study 2004–2009) impact of the new carbapenem breakpoints. Surg Infect (Larchmt) 13: 45–49.

23. Deresinski S (2011) Travels with ESBLs. Clin Infect Dis 52: iii–iv.

24. Enser VM, Shahid M, Evans JT, Hawkey PM (2006) Occurrence, prevalence and genetic environment of CTX-M β-lactamases in Enterobacteriaceae from Indian hospitals. J Antimicrob Chemother 58: 1260–1263.

25. Chong Y, Yakkashi H, Ito Y, Kamimura T (2011) Clinical and molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan. Eur J Clin Microbiol Infect Dis 30: 83–87.

26. Shibata N, Kurokawa H, Doi Y, Yagi T, Yamane K, et al. (2006) PCR classification of CTX-M-type β-lactamase genes identified in clinically isolated Gram-negative bacilli in Japan. Antimicrob Agents Chemother 50: 791–795.

27. Suzuki S, Shibata N, Yamane K, Wachino J, Ito K, et al. (2009) Change in the prevalence of extended-spectrum β-lactamase-producing Escherichia coli in Japan by clonal spread. J Antimicrob Chemother 63: 72–79.

28. Coque TM, Newan A, Carattoli A, Poutrel L, Pitout J, et al. (2008) Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg Infect Dis 14: 193–200.

29. Nicolas-Chanoine MH, Blanco J, Leffon-Guibout V, Demarty R, Alonso MP, et al. (2008) Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 61: 273–281.

30. Pitout JD, Campbell L, Church DL, Gregson DB, Laupland KB (2009) Molecular characteristics of travel-related extended-spectrum β-lactamase-producing Escherichia coli isolates from the Calgary Health Region. Antimicrob Agents Chemother 53: 2539–2543.