Neural Machine Translation: Challenges, Progress and Future

Jiajun Zhang1,2,* & Chengqing Zong1,2,3,*

1National Laboratory of Pattern Recognition, CASIA, Beijing, China; 2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; 3CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China

Machine translation (MT) is a technique that leverages computers to translate human languages automatically. Nowadays, neural machine translation (NMT) which models direct mapping between source and target languages with deep neural networks has achieved a big breakthrough in translation performance and become the \textit{de facto} paradigm of MT. This article makes a review of NMT framework, discusses the challenges in NMT, introduces some exciting recent progresses and finally looks forward to some potential future research trends. In addition, we maintain the state-of-the-art methods for various NMT tasks at the website https://github.com/ZNLP/SOTA-MT.

neural machine translation, Transformer, multimodal translation, low-resource translation, document translation

1 Introduction

The concept of machine translation (MT) was formally proposed in 1949 by Warren Weaver [138] who believed it is possible to use modern computers to automatically translate human languages. From then on, machine translation has become one of the most challenging task in the area of natural language processing and artificial intelligence. Many researchers of several generations dedicated themselves to realize the dream of machine translation.

From the viewpoint of methodology, approaches to MT mainly fall into two categories: rule-based method and data-driven approach. Rule-based methods were dominant and preferable before 2000s. In this kind of methods, bilingual linguistic experts are responsible to design specific rules for source language analysis, source-to-target language transformation and target language generation. Since it is very subjective and labor intensive, rule-based systems are difficult to be scalable and they are fragile when rules cannot cover the unseen language phenomena.

In contrast, the data-driven approach aims at teaching computers to learn how to translate from lots of human-translated parallel sentence pairs (parallel corpus). The study of data-driven approach has experienced three periods. In the middle of 1980s, [93] proposed example-based MT which translates a sentence by retrieving the similar examples in the human-translated sentence pairs.

From early 1990s, statistical machine translation (SMT) has been proposed and word or phrase level translation rules can be automatically learned from parallel corpora using probabilistic models [16, 27, 70]. Thanks to the availability of more and more parallel corpora, sophisticated probabilistic models such as noisy channel model and log-linear model achieve better and better translation performance. Many companies (e.g. Google, Microsoft and Baidu) have developed online SMT systems which much benefit the users. However, due to complicated integration of multiple manually designed components such as translation model, language model and reordering model, SMT cannot make full use of large-scale parallel corpora and translation quality is far from satisfactory.

No breakthrough has been achieved more than 10 years
Neural machine translation (NMT) has been a significant advancement in the field of machine translation. Since the introduction of deep learning into MT, NMT has rapidly progressed. In 2014, neural machine translation (NMT) based on deep neural networks has quickly developed [8, 45, 116, 122]. In 2016, through extensive experiments on various language pairs, [65, 143] demonstrated that NMT has made a big breakthrough and obtained remarkable improvements compared to SMT, and even approached human-level translation quality [55]. This article attempts to give a review of NMT framework, discusses some challenging research tasks in NMT, introduces some exciting progresses and forecasts several future research topics.

The remainder of this article is organized as follows: Sec. 2 first introduces the background and state-of-the-art paradigm of NMT. In Sec. 3 we discuss the key challenging research tasks in NMT. From Sec. 4 to Sec. 7, the recent progresses are presented concerning each challenge. Sec. 8 discusses the current state of NMT compared to expert translators and future research topics.

2 Neural machine translation

2.1 Encoder-Decoder Framework

Neural machine translation is an end-to-end model following an encoder-decoder framework that usually includes two neural networks for encoder and decoder respectively [8, 45, 116, 122]. As shown in Fig. 1, the encoder network first maps each input token of the source-language sentence into a low-dimensional real-valued vector (aka word embedding) and then encodes the sequence of vectors into distributed semantic representations, from which the decoder network generates the target-language sentence token by token \(^1\) from left to right.

From the probabilistic perspective, NMT models the conditional probability of the target-language sentence \(y = y_0, \ldots, y_i, \ldots, y_T\) given the source-language sentence \(x = x_0, \ldots, x_i, \ldots, x_T\) as a product of token-level translation probabilities.

\[
P(y|x, \theta) = \prod_{i=0}^{T} P(y_i | y_{<i}, \theta)
\]

where \(y_{<i} = y_0, \ldots, y_{i-1}\) is the partial translation which has been generated so far. \(x_0, y_0\) and \(x_T, y_T\) are often special symbols \(<s>\) and \(</s>\) indicating the start and end of a sentence respectively.

The token-level translation probability can defined as follows:

\[
P(y_i | x, y_{<i}, \theta) = \frac{\exp\left(g(x, y_{<i}, y_i, \theta)\right)}{\sum_{y' \in V} \exp\left(g(x, y_{<i}, y', \theta)\right)}
\]

in which \(V\) denotes the vocabulary of the target language and \(g(\cdot)\) is a non-linear function that calculates a real-valued score for the prediction \(y_i\) conditioned on the input \(x\), the partial translation \(y_{<i}\) and the model parameters \(\theta\). The non-linear function \(g(\cdot)\) is realized through the encoder and decoder networks. The input sentence \(x\) is abstracted into hidden semantic representations \(h\) through multiple encoder layers. \(y_{<i}\) is summarized into the target-side history context representation \(z\) with decoder network which further combines \(h\) and \(z\) using an attention mechanism to predict the score of \(y_i\).

The network parameters \(\theta\) can be optimized to maximize the log-likelihood over the bilingual training data \(D = \{(x^{(m)}, y^{(m)})\}_{m=1}^{M}\):

\[
\theta = \text{argmax}_{\theta} \sum_{m=1}^{M} \log P(y^{(m)} | x^{(m)}, \theta^*)
\]

These years have witnessed the fast development of the encoder-decoder networks from recurrent neural network [8, 116], to convolutional neural network [45] and then to self-attention based neural network Transformer [122]. At present, Transformer is the state-of-the-art in terms of both quality and efficiency.

\(^1\) Currently, subword is the most popular translation token for NMT [109].
2.2 Transformer

In Transformer\(^2\), the encoder includes \(N\) identical layers and each layer is composed of two sub-layers: the self-attention sub-layer followed by the feed-forward sub-layer, as shown in the left part of Fig. 2. The self-attention sub-layer calculates the output representation of a token by attending to all the neighbors in the same layer, computing the correlation score between this token and all the neighbors, and finally linearly combining all the representations of the neighbors and itself. The output of the \(N\)-th encoder layer is the source-side semantic representation \(h\). The decoder as shown in the right part in Fig. 2 also consists of \(N\) identical layers. Each layer has three sub-layers. The first one is the masked self-attention mechanism that summarizes the partial prediction history. The second one is the encoder-decoder attention sub-layer determining the dynamic source-side contexts for current prediction and the third one is the feed-forward sub-layer. Residual connection and layer normalization are performed for each sub-layer in both of the encoder and decoder.

It is easy to notice that the attention mechanism is the key component. There are three kinds of attention mechanisms, including encoder self-attention, decoder masked self-attention and encoder-decoder attention. They can be formalized into the same formula.

\[
\text{Attention}(q, K, V) = \text{softmax}(\frac{qK^T}{\sqrt{d_k}})V
\]

where \(q\), \(K\) and \(V\) stand for a query, the key list and the value list respectively, \(d_k\) is the dimension of the key.

For the encoder self-attention, the queries, keys and values are from the same layer. For example, considering we calculate the output of the first layer in the encoder at the \(j\)-th position, let \(x\) be the sum vector of input token embedding and the positional embedding. The query is vector \(x_j\). The keys and values are the same and both are the embedding matrix \(x = [x_0, \cdots, x_J]\). Then, multi-head attention is proposed to calculate attentions in different subspaces.

\[
\text{MultiHead}(q, K, V) = \text{Concat}(\text{head}_i)W_W
\]

\[
\text{head}_i = \text{Attention}(qW_Q^i, KW_K^i, VW_V^i)
\]

in which \(W_Q^i, W_K^i, W_V^i\) and \(W_W\) denote projection parameter matrices.

Using Equation 5 followed by residual connection, layer normalization and a feed-forward network, we can get the representation of the second layer. After \(N\) layers, we obtain the input contexts \(C = [h_0, \cdots, h_J]\).

The decoder masked self-attention is similar to that of encoder except that the query at the \(i\)-th position can only attend to positions before \(i\), since the predictions after \(i\)-th position are not available in the autoregressive left-to-right unidirectional inference.

\[
z_i = \text{Attention}(q_i, K_{\sim i}, V_{\sim i}) = \text{softmax}(\frac{q_iK_{\sim i}^T}{\sqrt{d_k}})V_{\sim i}
\]

The encoder-decoder attention mechanism is to calculate the source-side dynamic context which is responsible to predict the current target-language token. The query is the output of the masked self-attention sub-layer \(z_i\). The keys and values are the same encoder contexts \(C\). The residual connection, layer normalization and feed-forward sub-layer are then applied to yield the output of a whole layer. After \(N\) such layers, we obtain the final hidden state \(z_i\). Softmax function is then employed to predict the output \(y_i\), as shown in the upper right part of Fig. 2.

2) Model and codes can be found at https://github.com/tensorflow/tensor2tensor
3 Key challenging research tasks

Although Transformer has significantly advanced the development of neural machine translation, many challenges still remain to be addressed. Obviously, designing better NMT framework must be the most important challenge. However, since the innovation of Transformer, almost no more effective NMT architecture has been proposed. [22] presented an alternative encoder-decoder framework RNMT+ which combines the merits of RNN-based and Transformer-based models to perform translation. [129, 150] investigated how to design much deeper Transformer model and [78] presented a Reformer model enabling rich interaction between encoder and decoder. [141] attempted to replace self-attention with dynamic convolutions. [112] proposed the evolved Transformer using neural architecture search. [83] aimed to improve Transformer from the perspective of multi-particle dynamic system. Note that these models do not introduce big change on the NMT architecture. Pursuing to design novel and more effective NMT framework will be a long way to go. In this section, we analyze and discuss the key challenges facing NMT from its formulation.

From the introduction in Sec. 2.1, NMT is formally defined as a sequence-to-sequence prediction task in which four assumptions are hidden in default. First, the input is a sentence rather than paragraphs and documents. Second, the output sequence is generated in a left-to-right autoregressive manner. Third, the NMT model is optimized over the bilingual training data which should include large-scale parallel sentences in order to learn good network parameters. Fourth, the processing objects of NMT are the pure texts (tokens, words and sentences) instead of speech and videos. Accordingly, four key challenges can be summarized as follows:

1. **Document neural machine translation.** In NMT formulation, sentence is the basic input for modeling. However, some words in the sentence are ambiguous and the sense can only be disambiguated with the context of surrounding sentences or paragraphs. And when translating a document, we need to guarantee the same terms in different sentences lead to the same translation while performing translation sentence by sentence independently cannot achieve this goal. Moreover, many discourse phenomena such as coreference, omissions and coherence, cannot be handled in the absence of document-level information. Obviously, it is a big challenge how to take full advantage of contexts beyond sentences in neural machine translation.

2. **Non-autoregressive decoding and bidirectional inference.** Left-to-right decoding token by token follows an autoregressive style which seems natural and is in line with human reading and writing. However, it has several drawbacks. On one hand, the decoding efficiency is quite limited since the i-th translation token can be predicted only after all the previous $i-1$ predictions have been generated. On the other hand, predicting the i-th token can only access the previous history predictions while cannot utilize the future context information in autoregressive manner, leading to inferior translation quality. Thus, it is a challenge how to break the autoregressive inference constraint. Non-autoregressive decoding and bidirectional inference are two solutions from the perspectives of efficiency and quality respectively.

3. **Low-resource translation.** There are thousands of human languages in the world and abundant bitexts are only available in a handful of language pairs such as English-German, English-French and English-Chinese. Even in the resource-rich language pair, the parallel data are unbalanced since most of the bitexts mainly exist in several domains (e.g. news and patents). That is to say, the lack of parallel training corpus is very common in most languages and domains. It is well-known that neural network parameters can be well optimized on highly repeated events (frequent word/phrase translation pairs in the training data for NMT) and the standard NMT model will be poorly learned on low-resource language pairs. As a result, how to make full use of the parallel data in other languages (pivot-based translation and multilingual translation) and how to take full advantage of non-parallel data (semi-supervised translation and unsupervised translation) are two challenges facing NMT.

4. **Multimodal neural machine translation.** Intuitively, human language is not only about texts and understanding the meaning of a language may need the help of other modalities such as speech, image and videos. Concerning the well-known example that determines the meaning of the word bank when translating the sentence "he went to the bank", it will be correctly translated if we are given an image in which a man is approaching a river. Furthermore, in many scenarios, we are required to translate a speech or a video. For example, simultaneous speech translation is more and more demanding in various conferences or international live events. Therefore, how to perform multimodal translation under the encoder-decoder architecture is a big challenge of NMT. How to make full use of different modalities in multimodal translation and how to balance the quality and latency in simultaneous speech translation are two specific challenges.

In the following sections, we briefly introduce the recent progress for each challenge.

3) [69, 80, 156] have also discussed various challenges.
4 Document-level neural machine translation

As we discussed in Sec. 3 that performing translation sentence by sentence independently would introduce several risks. An ambiguous word may not be correctly translated without the necessary information in the surrounding contextual sentences. A same term in different sentences in the same document may result in inconsistent translations. Furthermore, many discourse phenomena, such as coreference, omissions and cross-sentence relations, cannot be well handled. In a word, sentence-level translation will harm the coherence and cohesion of the translated documents if we ignore the discourse connections and relations between sentences.

In general, document-level machine translation (docMT) aims at exploiting the useful document-level information (multiple sentences around the current sentence or the whole document) to improve the translation quality of the current sentence as well as the coherence and cohesion of the translated document. docMT has already been extensively studied in the era of statistical machine translation (SMT), in which most researchers mainly propose explicit models to address some specific discourse phenomena, such as lexical cohesion and consistency [46, 144, 145], coherence [15] and coreference [104]. Due to complicate integration of multiple components in SMT, these methods modeling discourse phenomenon do not lead to promising improvements.

The NMT model dealing with semantics and translation in the distributed vector space facilitates the use of wider and deep document-level information under the encoder-decoder framework. It does not need to explicitly model specific discourse phenomenon as that in SMT. According to the types of used document information, document-level neural machine translation (docNMT) can roughly fall into three categories: dynamic translation memory [71, 120], surrounding sentences [61, 90, 125, 128, 146, 148, 153] and the whole document [87, 88, 117].

[120] presented a dynamic cache-like memory to maintain the hidden representations of previously translated words. The memory contains a fixed number of cells and each cell is a triple \((c_t, s_t, y_t)\) where \(y_t\) is the prediction at the \(t\)-th step, \(c_t\) is the source-side context representation calculated by the attention model and \(s_t\) is the corresponding decoder state. During inference, when predicting the \(i\)-th prediction for a test sentence, \(c_i\) is first obtained through attention model and the probability \(p(c_i|c_i)\) is computed based on their similarity. Then memory context representation \(m_i\) is calculated by linearly combining all the values \(s_i\) with \(p(c_i|c_i)\). This cache-like memory can encourage the words in similar contexts to share similar translations so that cohesion can be enhanced to some extent.

The biggest difference between the use of whole document and surrounding sentences lies in the number of sentences employed as the context. This article mainly introduces the methods exploiting surrounding sentences for docNMT. Relevant experiments further show that subsequent sentences on the right contribute little to the translation quality of the cur-
rent sentence. Thus, most of the recent work aim at fully exploring the previous sentences to enhance docNMT. These methods can be divided into two categories. One just utilizes the previous source-side sentences [61, 119, 128, 153]. The other uses the previous source sentences as well as their target translations [90, 146].

If only previous source-side sentences are leveraged, the previous sentences can be concatenated with the current sentence as the input to the NMT model [119] or could be encoded into a summarized source-side context with a hierarchical neural network [128]. [153] presented a cascaded attention model to make full use of the previous source sentences. As shown in the left part of Fig. 3, previous sentence together with the document-level context are both leveraged to predict the target word. The probability of translation sentence given the current sentence and the previous context sentences is formulated as follows:

\[
P(y|x, \text{doc}_{s}; \theta) = \prod_{i=0}^{I} P(y_i|x_i, x, \text{doc}_{s}; \theta) \tag{7}
\]

where doc$_s$ denotes the source-side document-level context, namely previous sentences.

If both of previous source sentences and their translations are employed, two-pass decoding is more suitable for the docNMT model [146]. As illustrated in the right part of Fig. 3, the sentence-level NMT model can generate preliminary translations for each sentence in the first-pass decoding. Then, the second-pass model will produce final translations with the help of source sentences and their preliminary translation results. The probability of the target sentence in the second pass can be written by:

\[
P(y|x, \text{doc}_{s}, \text{doc}_{c}; \theta) = \prod_{i=0}^{I} P(y_i|x_i, x, \text{doc}_{s}, \text{doc}_{c}; \theta) \tag{8}
\]

in which doc$_c$ denotes the first-pass translations of doc$_s$.

Since most methods for docNMT are designed to boost the overall translation quality (e.g. BLEU score), it still remains a big problem whether these methods indeed well handle the discourse phenomena. To address this issue, [10] conducted an empirical investigation of the docNMT model on the performance of processing various discourse phenomena, such as coreference, cohesion and coherence. Their findings indicate that multi-encoder model exploring only the source-side previous sentences performs poorly in handling the discourse phenomena while exploiting both source sentences and target translations leads to the best performance. Accordingly, [123, 124] recently focused on designing better document-level NMT to improve on specific discourse phenomena such as deixis, ellipsis and lexical cohesion for English-Russian translation.

\[
P_{\text{NAT}}(y|x; \theta) = P_{\text{L}}(I|x; \theta) \cdot \prod_{i=0}^{I} P(y_i|x; \theta) \tag{9}
\]

To determine the output length, [49] proposed to use the fertility model which predicts the number of target words that should be translated for each source word. We can perform word alignment on the bilingual training data to obtain the gold fertilities for each sentence pair. Then, the fertility model can be trained together with the translation model. For each source word x_j, suppose the predicted fertility is $\Phi(x_j)$. The output length will be $I = \sum_{j=0}^{I} \Phi(x_j)$.

Another issue remains that AT let the previous generated output y_{i-1} be the input at the next time step to predict the i-th target word but NAT has no such input in the decoder network. [49] found that translation quality is particularly poor.
if omitting the decoder input in NAT. To address this, they resort to the fertility model again and copy each source word as many times as its fertility \(\Phi(x_j) \) into the decoder input. The empirical experiments show that NAT can dramatically boost the decoding efficiency by 15\times speedup compared to AT. However, NAT severely suffers from accuracy degradation.

The low translation quality may be due to at least two critical issues of NAT. First, there is no dependency between target words although word dependency is ubiquitous in natural language generation. Second, the decoder inputs are the copied source words which lie in different semantic space with target words. Recently, to address the shortcomings of the original NAT model, several methods are proposed to improve the translation quality of NAT while maintaining its efficiency [54, 75, 110, 127, 137, 139].

[127] proposed a semi-autoregressive Transformer model (SAT) to combine the merits of both AT and NAT. SAT keeps the autoregressive property in global but performs NAT in local. Just as shown in Fig. 4, SAT generates \(K \) successive target words at each time step in parallel. If \(K = 1 \), SAT will be exactly AT. It will become NAT if \(K = I \). By choosing an appropriate \(K \), dependency relation between fragments are well modeled and the translation quality can be much improved with some loss of efficiency.

To mimic the decoder input in the AT model, [54] introduced a simple but effective method that employs a phrase table which is the core component in SMT to convert source words into target words. Specifically, they first greedily segment the source sentence into phrases with maximum match algorithm. Suppose the longest phrase in the phrase table contains \(K \) words. \(x_{0:K-1} \) is a phrase if it matches an entry in the phrase table. Otherwise they iteratively check \(x_{0:K-2} \), \(x_{0:K-3} \) and so on. If \(x_{0:h} \) is a phrase, then they start to check \(x_{h+1:h+K} \). After segmentation, each source phrase is mapped into target translations which are concatenated together as the new decoder input, as shown in Fig. 4. Due to proper modeling of the decoder input with a highly efficient strategy, translation quality is substantially improved while the decoding speed is even faster than baseline NAT.

5.2 Bidirectional inference

From the viewpoint of improving translation quality, autoregressive model can be enhanced by exploring the future context on the right. In addition to predicting and estimating the future contexts with various models [151, 169, 171], researchers find that left-to-right (L2R) and right-to-left (R2L) autoregressive models can generate complementary translations [57, 79, 161, 172]. For example, in Chinese-to-English translation, experiments show that L2R can generate better prefix while R2L is good at producing suffix. Intuitively, it is a promising direction to combine the merits of bidirectional inferences and fully exploit both history and future contexts on the target side.

To this end, many researchers resort to exploring bidirectional decoding to take advantages of both L2R and R2L inferences. These methods are mainly fall into four categories: 1, enhancing agreement between L2R and R2L predictions [79, 164]; 2, reranking with bidirectional decoding [79, 106, 107]; 3, asynchronous bidirectional decod-
The reranking algorithm is widely used in machine translation, and the R2L model can provide an estimation score for L2R inference can be improved. [79, 164] introduced agreement constraint or regularization as R2L decoding. Under this reasonable assumption, [154, 172, 173].

Ideally, L2R decoding should generate the same translation as R2L decoding. Under this reasonable assumption, [115, 161] proposed a synchronous bidirectional decoding model (SBD) that produces outputs using both L2R and R2L decoding simultaneously and interactively. Specifically, a new synchronous attention model is proposed to conduct interaction between L2R and R2L inferences. The top part in Fig. 5 gives a simple illustration of the proposed synchronous bidirectional inference model. The dotted arrows in color on the target side is the core of the SBD model. L2R and R2L inferences interact with each other in an implicit way illustrated by the dotted arrows. All the arrows indicate the information passing flow. Solid arrows show the conventional history context dependence while dotted arrows introduce the future context dependence on the other inference direction. For example, besides the past predictions \((y^{2r}_0, y^{2l}_0)\), L2R inference can also utilize the future contexts \((y^{2r}_1, y^{2l}_1)\) generated by the R2L inference when predicting \(y^{2r}_2\). The conditional probability of the translation can be written as follows:

\[
P(y|x) = \begin{cases}
\prod_{t=0}^{T} P(y^2_t | y^2_{t-1}, x, \tilde{y}^r_0 \cdots \tilde{y}^r_{t-1}) & \text{if L2R} \\
\prod_{t=0}^{T} P(y^2_t | y^2_{t-1}, x, \tilde{y}^l_0 \cdots \tilde{y}^l_{t-1}) & \text{if R2L}
\end{cases}
\]

(10)

To accommodate L2R and R2L inferences at the same time, they introduced a novel beam search algorithm. As shown in the bottom right of Fig. 5, at each timestep during decoding, each half beam maintains the hypotheses from L2R and R2L decoding respectively and each hypothesis is generated by leveraging already predicted outputs from both directions. At last, the final translation is chosen from L2R and R2L results according to their translation probability. Thanks
to appropriate rich interaction, the SBD model substantially boosts the translation quality while the decoding speed is only 10% slowed down.

[173] further noticed that L2R and R2L are not necessary to produce the entire translation sentence. They let L2R generate the left half translation and make R2L produce the right half, and then two halves are concatenated to form the final translation. Using proper training algorithms, they demonstrated through extensive experiments that both translation quality and decoding efficiency can be significantly improved compared to the baseline Transformer model.

6 Low-resource Translation

Most NMT models assume that enough bilingual training data is available, which is the rare case in real life. For a low-resource language pair, a natural question may arise that what kind of knowledge can be transferred to build a relatively good NMT system. This section will discuss three kinds of methods. One attempts to share translation knowledge from other resource-rich language pairs, in which pivot translation and multilingual translation are the two key techniques. Pivot translation assumes that for the low-resource pair A and B, there is a language C that has rich bitexts with A and B respectively [26, 142]. This section mainly discusses the technique of multilingual translation in the first category. The second kind of methods resort to semi-supervised approach which takes full advantages of limited bilingual training data and abundant monolingual data. The last one leverages unsupervised algorithm that requires monolingual data only.

6.1 Multilingual neural machine translation

Let us first have a quick recap about the NMT model based on encoder-decoder framework. The encoder is responsible for mapping the source language sentence into distributed semantic representations. The decoder is to convert the source-side distributed semantic representations into target language sentence. Apparently, the encoder and the decoder (excluding the cross-language attention component) are just single-language dependent. Intuitively, the same source language in different translation systems (e.g. Chinese-to-English, Chinese-to-Hindi) can share the same encoder and the same target language can share the same decoder (e.g. Chinese-to-English and Hindi-to-English). Multilingual neural machine translation is a framework that aims at building a unified NMT model capable of translating multiple languages through parameter sharing and knowledge transferring.

[36] is the first to design a multi-task learning method which shares the same encoder for one-to-many translation (one source language to multiple target languages). [176] proposed to share the decoder for many-to-one translation (many source languages to one target language). [43, 44] proposed to share attention mechanism for many-to-many translation (many source languages to many target languages). Despite performance improved for low-resource languages, these methods are required to design a specific encoder or decoder for each language, hinders their scalability in dealing with many languages.

[64] goes a step further and let all source languages share the same encoder and all the target languages share the same decoder. They have successfully trained a single encoder-decoder NMT model for multilingual translation. The biggest issue is that the decoder is unaware of which target language should be translated to at the test phase. To this end, [64] introduced a simple strategy and added a special token indicating target language (e.g. en and zh) at the beginning of the source sentence. By doing this, low-resource languages have the biggest chance to share translation knowledge from other resource-rich languages. It also enables zero-shot translation as long as the two languages are employed as source and target in the multilingual NMT model. In addition, this unified multilingual NMT is very scalable and could translate all the languages in one model ideally. However, experiments find that the output is sometimes mixed of multiple languages even using a translation direction indicator. Furthermore, this paradigm enforces different source/target languages to share the same semantic space, without considering the structural divergency among different languages. The consequence is that the single model based multilingual NMT yields inferior translation performance compared to individually trained bilingual counterparts. Most of recent research work mainly focus on designing better models to well balance the language-independent parameter sharing and the language-sensitive module design.

[13] augmented the attention mechanism in decoder with language-specific signals. [134] proposed to use language-sensitive positions and language-dependent hidden presentations for one-to-many translation. [98] designed an algorithm to generate language-specific parameters. [118] designed a language clustering method and forced languages in the same cluster to share the parameters in the same semantic space. [135] attempted to generate two languages simultaneously and interactively by sharing encoder parameters. [136] proposed a compact and language-sensitive multilingual translation model which attempts to share most of the parameters while maintaining the language discrimination.

As shown in Fig. 6, [136] designed four novel modules in the Transformer framework compared to single-model based multilingual NMT. First, they introduced a representor to re-
place both encoder and decoder by sharing weight parameters of the self-attention block, feed-forward and normalization blocks (middle part in Fig. 6). It makes the multilingual NMT model as compact as possible and maximizes the knowledge sharing among different languages. The objective function over L language pairs becomes:

$$L(\theta) = \sum_{l=1}^{L} \sum_{m=1}^{M} \log P(y_l^{(m)} | x_l^{(m)}, \theta_{rep}, \theta_{att})$$ (11)

where θ_{rep} and θ_{att} denote parameters of representor and attention mechanism respectively.

However, the representor further reduces the ability to discriminate different languages. To address this, they introduced three language-sensitive modules.

1. Language-sensitive embedding (bottom part in Fig. 6): they compared four categories of embedding sharing patterns, namely language-based pattern (different languages have separate input embeddings), direction-based pattern (languages in source side and target side have different input embeddings), representor-based pattern (shared input embeddings for all languages) and three-way weight tying pattern proposed by [101], in which the output embedding of the target side is also shared besides representor-based sharing.

2. Language-sensitive attention (middle part in Fig. 6): this mechanism allows the model to select the cross-lingual attention parameters according to specific translation tasks dynamically.

3. Language-sensitive discriminator (top part in Fig. 6): for this module, they employed a neural model f_{dis} on the top layer of representor h_{top}, and this model outputs a language judgment score P_{lang}.

$$P_{lang} = \text{softmax}(W_{dis} \times f_{dis}(h_{top}^{rep}) + b_{dis})$$ (12)

Combining the above four ideas together, they showed through extensive experiments that the new method significantly improves multilingual NMT on one-to-many, many-to-many and zero-shot scenarios, outperforming bilingual counterparts in most cases. It indicates that low-resource language translation can greatly benefit from this kind of multilingual NMT, and so do zero-resource language translations.

6.2 Semi-supervised neural machine translation

Semi-supervised neural machine translation is a paradigm which aims at building a good NMT system with limited bilingual training data $D = \{x^{(m)}, y^{(m)}\}^{M}_{m=1}$ plus massive source monolingual data $D_x = \{x^{(l)}\}^{L}_{l=1}$ or target monolingual data $D_y = \{y^{(l)}\}^{L}_{l=1}$ or both.

Monolingual data plays a very important role in SMT where the target-side monolingual corpus is leveraged to train a language model (LM) to measure the fluency of the translation candidates during decoding [27, 68, 70]. Using monolingual data as a language model in NMT is not trivial since it needs to modify the architecture of the NMT model [52, 53] integrated NMT with LM by combining hidden states of both models, making the model much complicated.

As for leveraging the target-side monolingual data, back-translation (BT) proposed by [108] may be one of the best solutions up to now. BT is easy and simple to use since it is model agnostic to the NMT framework [38, 58]. It only requires to train a target-to-source translation system to translate the target-side monolingual sentences back into source language. The source translation and its corresponding target sentence are paired as pseudo bitexts which combined together with original bilingual training data to train the source-to-target NMT system. It has been proved to be particularly useful in low-resource translation [66]. [38] conducted a deep analysis to understand BT and investigate various methods for synthetic source sentence generation. [131] proposed to measure the confidence level of synthetic bilingual sentences so as to filter the noise.

In order to utilize the source-side monolingual data, [157] proposed two methods: forward translation and multi-task learning. Forward translation is similar to BT, and the multi-task learning method performs source-to-target translation...
task and source sentence reordering task by sharing the same encoder.

Many researchers resort to use both side monolingual data in NMT at the same time [25, 56, 163, 170]. We summarize two methods in Fig. 7: the auto-encoder based semi-supervised learning method [25] and the dual learning method [56]. For a source-side monolingual sentence \(x \), [25] employed source-to-target translation as encoder to generate latent variable \(y \) and leverage target-to-source translation as decoder to reconstruct the input leading to \(x' \). They optimize the parameters by maximizing the reconstruction probability as shown in Fig. 7(a). The target-side monolingual data is used in a symmetric way. Fig. 7(b) shows the objective function for the dual learning method. [56] treated source-to-target translation as the primal task and target-to-source translation as the dual task. Agent A sends through the primal task a translation of the source monolingual sentence to the agent B. B is responsible to estimate the quality of the translation with a language model and the dual task. The rewards including the similarity between the input \(x \) and reconstructed one \(x' \), and two language model scores \(LM(y) \), \(LM(x') \), are employed to optimize the network parameters of both source-to-target and target-to-source NMT models. Similarly, the target-side monolingual data is used in a symmetric way in dual learning.

[163] introduced an iterative back-translation algorithm to exploit both source and target monolingual data with an EM optimization method. [170] proposed a mirror-generative NMT model, that explores the monolingual data by unifying the source-to-target NMT model, the target-to-source NMT model, and two language models. They showed better performance can be achieved compared to back-translation, iterative back-translation and dual learning.

6.3 Unsupervised neural machine translation

Unsupervised neural machine translation addresses a very challenging scenario in which we are required to build a NMT model using only massive source-side monolingual data \(D_s = \{x^{(i)}, l_s^{(i)}\}_{i=1} \) and target-side monolingual data \(D_t = \{y^{(i)}, l_t^{(i)}\}_{i=1} \).

Unsupervised machine translation can date back to the era of SMT, in which decipherment approach is employed to learn word translations from monolingual data [37, 96, 102] or bilingual phrase pairs can be extracted and their probabilities can be estimated from monolingual data [67, 155].

Since [91] found that word embeddings from two languages can be mapped using some seed translation pairs, bilingual word embedding learning or bilingual lexicon induction has attracted more and more attention [4, 21, 31, 41, 158, 159]. [4] and [31] applied linear embedding mapping and adversarial training to learn word pair matching in the distribution level and achieve promising accuracy for similar languages.

Bilingual lexicon induction greatly motivates the study of unsupervised NMT on sentence level. And two techniques of denoising auto-encoder and back-translation make it possible for unsupervised NMT. The key idea is to find a common latent space between the two languages. [5] and [72] both optimized dual tasks of source-to-target and target-to-source translation. [5] employed shared encoder to force two languages into a same semantic space, and two language-dependent decoders. In contrast, [72] ensured the two languages share the same encoder and decoder, relying on an identifier to indicate specific language similar to single-model based multilingual NMT [64]. The architecture and training objective functions are illustrated in Fig. 8.

The top in Fig. 8 shows the use of denoising auto-encoder. The encoder encodes a noisy version of the input \(x \) into hidden representation \(z_{src} \), which is used to reconstruct the input with the decoder. The distance (auto-encoder loss \(L_{auto} \)) between the reconstruction \(x' \) and the input \(x \) should be as small as possible. To guarantee source and target languages share the same semantic space, an adversarial loss \(L_{adv} \) is introduced to fool the language identifier.

The bottom in Fig. 8 illustrates the use of back-translation. A target sentence \(y \) is first back-translated into \(x' \) using an old
target-to-source NMT model (the one optimized in previous iteration, and the initial model is the word-by-word translation model based on bilingual word induction). Then, the noisy version of the translation \(x' \) is encoded into \(z_{\text{src}} \) which is then translated back into target sentence \(y' \). The new NMT model (encoder and decoder) is optimized to minimize the translation loss \(L_{\text{trans}} \), which is the distance between the translation \(y' \) and the original target input \(y \). Similarly, an adversarial loss is employed in the encoder module. This process iterates until convergence of the algorithm. Finally, the encoder and decoder can be applied to perform dual translation tasks.

[147] argued that sharing some layers of encoder and decoder while making others language-specific could improve the performance of unsupervised NMT. [6] further combined the NMT and SMT to improve the unsupervised translation quality. Most recently, [30, 103, 113] resorted to pre-training techniques to enhance the unsupervised NMT model. For example, [30] proposed a cross-lingual language model pre-training method under BERT framework [33]. Then, two pre-trained cross-lingual language models are employed as the encoder and decoder respectively to perform translation.

for machine translation are not publicly available currently. Recently, IWSLT-2020[^4] organized the first evaluation on video translation in which annotated video data is only available for validation and test sets.

Translation for paired image-text, offline speech-to-text translation and simultaneous translation have become increasingly popular in recent years.

7.1 Image-Text Translation

Given an image and its text description as source language, the task of image-text translation aims at translating the description in source language into the target language, where the translation process can be supported by information from the paired image. It is a task requiring the integration of natural language processing and computer vision. WMT[^5] organized the first evaluation task on image-text translation (they call it multimodal translation) in 2016 and also released the widely-used dataset Multi30K consisting of about 30K images each of which has an English description and translation in German, French and Czech[^6]. Several effective models have been proposed since then. These methods mainly differ in the usage of the image information and we mainly discuss four of them in this section.

[^4]: http://iwslt.org/doku.php?id=evaluation
[^5]: https://www.statmt.org/wmt16/multimodal-task.html
[^6]: https://github.com/multi30k/dataset

\[x \sim D_{\text{src}} \rightarrow \text{add noise} \rightarrow \text{Enc}(\text{src}) \rightarrow z_{\text{src}} \rightarrow \text{Dec}(\text{src}) \rightarrow x' \rightarrow L_{\text{auto}} \rightarrow x \]

\[y \sim D_{\text{tgt}} \rightarrow \text{add noise} \rightarrow \text{Enc}(\text{tgt}) \rightarrow z_{\text{tgt}} \rightarrow \text{Dec}(\text{tgt}) \rightarrow y' \rightarrow L_{\text{auto}} \rightarrow y \]

\[y \sim D_{\text{tgt}} \rightarrow \text{NMT}_{\text{cross}} \rightarrow x' \rightarrow \text{add noise} \rightarrow \text{Enc}(\text{src}) \rightarrow \text{Dec}(\text{src}) \rightarrow x' \rightarrow L_{\text{trans}} \rightarrow x \]

\[x \sim D_{\text{src}} \rightarrow \text{NMT}_{\text{cross}} \rightarrow y' \rightarrow \text{add noise} \rightarrow \text{Enc}(\text{tgt}) \rightarrow \text{Dec}(\text{tgt}) \rightarrow y' \rightarrow L_{\text{trans}} \rightarrow y \]

Figure 8 architecture of the unsupervised NMT model. The top shows denosing auto-encoder that aims at reconstructing the same language input. The bottom demonstrates back-translation which attempt to reconstruct the input in the other language using back-translation (target-to-source) and forward translation (source-to-target). The auto-encoder loss \(L_{\text{auto}} \), the translation loss \(L_{\text{trans}} \) and the language adversarial loss \(L_{\text{adv}} \) are used together to optimize the dual NMT models.
[19] presented a doubly-attentive decoder for the image-text translation task. The major difference from [59] is that they design textual encoder and visual encoder respectively, and employ two separate attention models to balance the contribution of text and image during prediction at each timestep.

[39] introduced a multi-task learning framework to perform image-text translation. They believe that one can imagine the image given the source language sentence. Based on this assumption, they use one encoder and two decoders in a multi-task learning framework. The encoder first encodes the source sentence into distributed semantic representations. One decoder generates the target language sentence from the source-side representations. The other decoder is required to reconstruct the given image. It is easy to see that the images are only employed in the training stage but are not required during testing. From this perspective, the multi-task learning framework can be applicable in more practical scenarios.

[20] further proposed a latent variable model for image-text translation. Different from previous methods, they designed a generative model in which a latent variable is in charge of generating the source and target language sentences, and the image as well.

Fig. 9 illustrates the comparison between the doubly-attentive model and the image imagination model for image-text translation. In doubly attentive model, the image is encoded as an additional input feature. While in image imagination model, the image is decoded output from the source sentence.

\[L(\theta) = \sum_{m=1}^{M} \log P(y^{(m)}|x^{(m)}, IM^{(m)}; \theta) \] \hspace{1cm} (13)

In contrast, the image imagination model has the following objective function which includes two parts, one for text translation and the other for image imagination.

\[L(\theta) = \sum_{m=1}^{M} \left(\log P(y^{(m)}|x^{(m)}, \theta) + \log P(IM^{(m)}|x^{(m)}, \theta) \right) \] \hspace{1cm} (14)

All the above methods are proved to significantly improve the translation quality. But it remains a natural question that when and how does the image help the text translation. [18] conducted a detailed error analysis when translating both visual and non-visual terms. They find that almost all kinds of translation errors (not only the terms having strong visual connections) have decreased after using image as the additional context.

Alternatively, [17] attempted to answer when the visual information is needed in the image-text translation. They designed an input degradation method to mask crucial information in the source sentence (e.g. masking color words or entities) in order to see whether the paired image would make up the missing information during translation. They find that visual information of the image can be helpful when it is complementary rather than redundant to the text modality.

7.2 Offline Speech-to-Text Translation

Speech-to-Text translation abbreviated as speech translation (ST) is a task that automatically converts the speech in the source language (e.g. English) into the text in the target language (e.g. Chinese). Offline speech translation indicates that the complete speech (e.g. a sentence or a fragment in a time interval) is given before we begin translating. Typically, ST is accomplished with two cascaded components. Source language speech is first transcribed into the source language text using an automatic speech recognition (ASR) system. Then, the transcription is translated into target language text with a neural machine translation system. It is still the mainstream approach to ST in real applications. In this kind of paradigm,
ASR and NMT are not coupled and can be optimized independently.

Nevertheless, the pipeline method has two disadvantages. On one hand, the errors propagate through the pipeline and the ASR errors are difficult to make up during translation. On the other hand, the efficiency is limited due to the two-phase process. [175] believed in early years that end-to-end speech translation is possible with the development of memory, computational capacity and representation models. Deep learning based on distributed representations facilitates the end-to-end modeling for speech translation. [12] presented an end-to-end model without using any source language transcriptions under an encoder-decoder framework. Different from the pipeline paradigm, the end-to-end model should be optimized on the training data consisting of instances (source speech, target text). We list some of the recently used datasets in Table. 1, including IWSLT [7], Augmented Librispeech [8], Fisher and Callhome [9], MuST-C [10] and TED-Corpus [11].

It is easy to find from the table that the training data for end-to-end ST is much less than that in ASR and MT. Accordingly, most of recent studies focus on fully utilizing the data or models of ASR and NMT to boost the performance of ST. Multi-task learning [2, 11, 140], knowledge distillation [63, 81] and pre-training [9, 126] are three main directions.

In the multi-task learning framework, the ST model is jointly trained with the ASR and MT models. Since the ASR and MT models are optimized on massive training data, the ST model can be substantially improved through sharing encoder with the ASR model and decoder with the MT model. [140] showed that great improvements can be achieved under multi-task learning. While [11] demonstrated that multi-task learning could also accelerate the convergence in addition to better translation quality.

In contrast to the multi-task learning framework, the pre-training method first pre-trains an ASR model or an MT model, then the encoder of ASR or the decoder of MT can be utilized to directly initialize the components of the ST model. [9] attempted to pre-train ST model with the ASR data to promote the acoustic model and showed that pre-training a speech encoder on one language can boost the translation quality of ST on a different source language. To further bridge the gap between pre-training and fine-tuning, [126] only pre-trained the ASR encoder to maximize Connectionist Temporal Classification (CTC) objective function [47]. Then, they share the projection matrix between the CTC classifica-

![Model Diagram](image)

Figure 10 the illustration of the knowledge distillation model for ST. The right part is an MT model, which is a teacher. The left part is the ST model which is the student. The input of the ST model is raw speech and the input of the MT model is the transcription of the speech. The distillation loss in the top part makes the student model learn output probability distributions from the teacher model (mimic the behavior of the teacher).

Different from the multi-task learning framework and the pre-training methods which attempt to share network parameters among ASR, ST and MT, the knowledge distillation methods consider the ST model as a student and make it learn from the teacher (e.g. the MT model). [81] proposed the knowledge distillation model as shown in Fig. 10. Given the training data of ST $D = \{(s^{(m)}, x^{(m)}, y^{(m)})\}_{m=1}^M$, where s denotes the speech segment, x is the transcription in source language and y is the translation text in target language.

The objective function for ST is similar to MT and the only difference is that the input is speech segment rather than a text.

7) http://i13pc106.ira.uka.de/ mmuller/iwslt-corpus.zip
8) https://persyval-platform.univ-grenoble-alpes.fr/DS91/detaildataset
9) https://github.com/joshua-decoder/fisher-callhome-corpus
10) mustc.fbk.eu
11) https://drive.google.com/drive/folders/1sFe6Qht4vGD49v7_qbREOsLPOX9V1n?usp=sharing
translation, the quality of both models can be significantly improved. As shown in Fig. 11, the dynamic outputs of each model can be used as the context to perform synchronous decoding. As proposed in [94, 95], interactive models can be helpful to predict the Chinese translation at time step $T = 1$. Likewise, the translation at time step $T = 1$ is also beneficial to generate the transcriptions of the ASR model in the future time steps.

7.3 Simultaneous Machine Translation

Simultaneous machine translation (SimMT) aims at translating concurrently with the source-language speaker speaking. It addresses the problem where we need to incrementally produce the translation while the source-language speech is being received. This technology is very helpful for live events and real-time video-call translation. Recently, Baidu and Facebook organized the first evaluation task on SimMT in ACL-2020\(^{12}\) and IWSLT-2020\(^{13}\) respectively.

Obviously, the methods of offline speech translation introduced in the previous section cannot be applicable in these scenarios, since the latency must be intolerable if translation begins after speakers complete their utterance. Thus, balancing between latency and quality becomes the key challenge for the SimMT system. If it translates before the necessary information arrives, the quality will decrease. However, the delay will be unnecessary if it waits for too much source-language contents.

[94, 95] proposed to directly perform simultaneous speech-to-text translation, in which the model is required to generate the target-language translation from the incrementally incoming foreign speech. In contrast, more research work focus on the simultaneous text-to-text translation where they assume that the transcriptions are correct [1, 3, 7, 32, 48, 51, 86, 105, 106].

\(^{12}\) https://autosimtrans.github.io/shared

\(^{13}\) http://iwslt.org/doku.php?id=simultaneous_translation

Table 1

Corpus Name	Source Language	Target Language	Hours	Sentents
IWSLT [60]	En	De	273	171,121
Augmented Librispeech	En	Fr	236	131,395
Fisher and Callhome	En	Es	160	153,899
MuST-C [34]	En	De, Es, Fr, It, Ni, Pt, Ro, Ru	385-504	4.0M-5.3M
TED-Corpus [82]	En	De, Fr, Zh, Ja	520	235K-299K

Some datasets used in the end-to-end ST. En, De, Fr, Es, It, Ni, Pt, Ro, Ru, Zh and Ja denote English, German, French, Spanish, Italian, Dutch, Portuguese, Romanian, Russian, Chinese and Japanese respectively.

The sentence.

$$L_{ST}(\theta) = -\sum_{(s,y) \in D} \log P(y^{(m)}|s^{(m)}; \theta)$$

(15)

$$\log P(y|s, \theta) = \sum_{i=0}^{L} \sum_{v=1}^{V} \mathbb{I}(y_i = v) \log P(y_i|s, y_{<i}, \theta)$$

(16)

where V denotes the vocabulary size of the target language and $\mathbb{I}(y_i = v)$ is the indication function which indicates whether the i-th output token y_i happens to be the ground truth.

Given the MT teacher model pre-trained on large-scale data, it can be used to force decode the pair (x, y) from the triple (s, x, y) and will obtain a probability distribution for each target word y_i: $Q(y_i|x, y_{<i}; \theta_{MT})$. Then, the knowledge distillation loss can be written as follows:

$$L_{KD}(\theta) = -\sum_{(x,y) \in D} \sum_{i=0}^{L} \sum_{v=1}^{V} Q(y_i|x, y_{<i}; \theta_{MT}) \log P(y_i|x, y_{<i}, \theta)$$

(17)

The final ST model can be trained by optimizing both of the log-likelihood loss $L_{ST}(\theta)$ and the knowledge distillation loss $L_{KD}(\theta)$.

In order to fully explore the integration of ASR and ST, [82] further proposed an interactive model in which ASR and MT perform synchronous decoding. As shown in Fig. 11, the dynamic outputs of each model can be used as the context to improve the prediction of the other model. Through interaction, the quality of both models can be significantly improved while keeping the efficiency as much as possible.
The probability of the whole target sentence becomes:

$$P(y; x; \theta) = \prod_{i=0}^{l} P(y_i | y_{<i}, x_{<i+k}; \theta)$$ \hspace{1cm} (18)$$

In contrast to previous sequence-to-sequence NMT training paradigm, [86] designed a prefix-to-prefix training style to best explore the wait-k policy. If Transformer is employed as the basic architecture, prefix-to-prefix training algorithm only needs a slight modification. The key difference from Transformer is that prefix-to-prefix model conditions on the first $i+k$ rather than all source words at each time-step i. It can be easily accomplished by applying the masked self-attention during encoding the source sentence. In that case, each source word is constrained to only attend to its predecessors and the hidden semantic representation of the $i+k$-th position will summarize the semantics of the prefix $x_{<i+k}$.

However, the wait-k policy is a fixed-latency model and it is difficult to decide k for different sentences, domains and languages. Thus, adaptive policy is more appealing. Early attempts for adaptive policy are based on reinforcement learning (RL) method. For example, [51] presented a two-stage model that employs the pre-trained sentence-based NMT as the base model. On top of the base model, read or translate actions determine whether to receive a new source word or output a target word. These actions are trained using the RL method by fixing the base NMT model.

Differently, [167] proposed an end-to-end simMT model for adaptive policies. They first add a special delay token $\langle e \rangle$ into the target-language vocabulary. As shown in the bottom part of Fig. 12, if the model predicts $\langle e \rangle$, it needs to receive a new source word. To train the adaptive policy model, they design dynamic action oracles with aggressive and conservative bounds as the expert policy for imitation learning. Suppose the prefix pair is (s, t). Then, the dynamic action oracle can be defined as follows:

$$\Pi^{*}_{x,y,\alpha,\beta}(s, t) = \begin{cases}
\{\langle e \rangle\} & \text{if } s \neq x \text{ and } |s| - |t| \leq \alpha \\
\{y_{|t|+1}\} & \text{if } t \neq y \text{ and } |s| - |t| \geq \beta \\
\{\langle e \rangle, y_{|t|+1}\} & \text{otherwise}
\end{cases}$$

where α and β are hyper-parameters, denoting aggressive and conservative bounds respectively. $|s| - |t|$ calculates the distance between two prefixes. That is to say if the current target

![Figure 12](image-url)
prefix \(t \) is no more than \(\alpha \) words behind the source prefix \(s \), we can read a new source word. If \(t \) is shorter than \(s \) with more than \(\beta \) words, we generate the next target prediction.

8 Discussion and Future Research Tasks

8.1 NMT vs. Human

We can see from Sec.4-7 that great progresses have been achieved in neural machine translation. Naturally, we may wonder whether current strong NMT systems could perform on par with or better than human translators. Exciting news were reported in 2018 by [55] that they achieved human-machine parity on Chinese-to-English news translation and they found no significant difference of human ratings between their MT outputs and professional human translations. Moreover, the best English-to-Czech system submitted to WMT 2018 by [99] was also found to perform significantly better than the human-generated reference translations [14]. It is encouraging that NMT can achieve very good translations in some specific scenarios and it seems that NMT has achieved the human-level translation quality.

However, we cannot be too optimistic since the MT technology is far from satisfactory. On one hand, the comparisons were conducted only on news domain in specific language pairs where massive parallel corpora are available. In practice, NMT performs quite poorly in many domains and language pairs, especially for the low-resource scenarios such as Chinese-Hindi translation. On the other hand, the evaluation methods on the assessment of human-machine parity conducted by [55] should be much improved as pointed out by [73]. According to the comprehensive investigations conducted by [73], human translations are much preferred over MT outputs if using better rating techniques, such as choosing professional translators as raters, evaluating documents rather than individual sentences and utilizing original source texts instead of source texts translated from target language. Current NMT systems still suffer from serious translation errors of mistranslated words or named entities, omissions and wrong word order. Obviously, there is much room for NMT to improve and we suggest some potential research directions in the next section.

8.2 Future Research Tasks

In this section, we discuss some potential research directions for neural machine translation.

1. Effective document-level translation and evaluation

It is well known that document translation is important and the current research results are not so good. It remains unclear what is the best scope of the document context needed to translate a sentence. It is still a question whether it is reasonable to accomplish document translation by translating the sentences from first to last. Maybe translation based on sentence group is a worthy research topic which models many-to-many translation. In addition, document-level evaluation is as important as the document-level MT methods, and it serves as a booster of MT technology. [55] argued that MT can achieve human parity in Chinese-to-English translation on specific news tests if evaluating sentence by sentence. However, as we discussed in the previous section that [73, 74] demonstrated a stronger preference for human over MT when evaluating on document-level rather than sentence-level. Therefore, how to automatically evaluate the quality of document translation besides BLEU [97] is an open question although some researchers introduce several test sets to investigate some specific discourse phenomena [92].

2. Efficient NMT inference

People prefer the model with both high accuracy and efficiency. Despite of remarkable speedup, the quality degradation caused by non-autoregressive NMT is intolerable in most cases. Improving the fertility model, word ordering of decoder input and dependency of the output will be worthy of a good study to make NAT close to AT in translation quality. Synchronous bidirectional decoding deserves deeper investigation due to good modeling of history and future contexts. Moreover, several researchers start to design decoding algorithm with free order [40, 50, 114] and it may be a good way to study the nature of human language generation.

3. Making full use of multilinguality and monolingual data

Low-resource translation is always a hot research topic since most of natural languages are lack of abundant annotated bilingual data. The potential of multilingual NMT is not fully explored and some questions remain open. For example, how to deal with data unbalance problem which is very common in multilingual NMT? How to build a good incremental multilingual NMT model for incoming new languages? Semi-supervised NMT is more practical in real applications but the effective back-translation algorithm is very time consuming. It deserves to design a much efficient semi-supervised NMT model for easy deployment. Deeply integrating pre-trained method with NMT may lead to promising improvement in the semi-supervised or unsupervised learning framework and [62, 174] have already shown some good improvements. The achievements of unsupervised MT in similar language pairs (e.g. English-German and English-French) make us very optimistic. However, [76] showed that unsupervised MT performs poorly on distant language pairs, obtaining no more than 10 BLEU scores in most cases. Obviously, it is challenging to design better unsupervised MT
models on distant language pairs.

4. Better exploiting multimodality in NMT

In multimodal neural machine translation, it remains an open problem when and how to make full use of different modalities. The image-text translation only translates the image captions and is hard to be widely used in practice. It is a good research topic to find an appropriate scenario where images are indispensable during translation. In speech translation, despite of big improvement, the end-to-end framework currently cannot perform on par with the cascaded method in many cases, especially when the training data is limited [82]. In addition to enlarging the training data, closing the gap between different semantic spaces of ST, ASR and MT is worthy of further exploration. As for simultaneous translation, it is still on the early stage of research and many practical issues such as repetition and correction in speech are unexplored. Moreover, combining summarization and translation may be a good research direction that provides the audiences the gist of the speaker’s speech with low latency.

5. NMT with background modeling

In many cases, machine translation is not about texts, speeches and images, but is highly related to culture, environment, history and etc. Accordingly, this kind of background information should be well captured by a novel model which guides NMT to generate translations in line with the background.

6. Incorporating prior knowledge into NMT

Note that some research topics are not mentioned in this article due to space limit. For example, it is a difficult and practical issue how to integrate prior knowledge (e.g. alignment, bilingual lexicon, phrase table and knowledge graphs) into the NMT framework. Since it is still unclear how to bridge discrete symbol based knowledge and distributed representation based NMT, it remains an interesting and important direction to explore although some progress has been achieved [42, 84, 89, 121, 132, 133, 152, 165, 166].

7. Better domain adaption models

Domain adaptation has been always a hot research topic and attracts attentions from many researchers [28, 29, 77, 85, 130, 149, 162, 177]. Different from methods used in SMT, domain adaptation in NMT is usually highly related with parameter fine-tuning. It remains a challenge how to address the problem of unknown test domain and out-of-domain term translations.

8. Bridging the gap between training and inference

The inconsistency between training and inference (or evaluation) is a critical problem in most sequence generation tasks in addition to neural machine translation. This problem is well addressed in the community of machine translation [111, 160] but it is still worthy of exploring especially on the efficiency of the methods.

9. Designing explainable and robust NMT

So far, the NMT model is still a black box and it is very risky to use it in many scenarios in which we have to know how and why the translation result is obtained. [35] attempted to visualize the contribution of each input to the output translation. Nevertheless, it will be great to deeply investigate the explanation of the NMT models or design an explainable MT architecture. Furthermore, current NMT systems are easy to attack through perturbing the input. [23, 24] presented novel robust NMT models to handle noisy inputs. However, the real input noise is too difficult to anticipate and it still remains a big challenge to design robust NMT models which are immune to real noise.

10. New NMT architectures

Finally, designing better NMT architectures beyond Transformer must be very exciting to explore despite of the difficulty.

Reference

1. Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar. Prediction improves simultaneous neural machine translation. In Proceedings of EMNLP, pages 3022–3027, 2018.
2. Antonios Anastasopoulos and David Chiang. Tied multitask learning for neural speech translation. In Proceedings of NAACL, 2018.
3. Naveen Arivazhagan, Colin Cherry, Wolfgang Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruoming Pang, Wei Li, and Colin Raffel. Monotonic infinite lookback attention for simultaneous machine translation. In Proceedings of ACL, 2019.
4. Mikael Arntte, Gorka Labaka, and Eneko Agirre. Learning bilingual word embeddings with (almost) no bilingual data. In Proceedings of ACL, pages 451–462, 2017.
5. Mikael Arntte, Gorka Labaka, and Eneko Agirre. Unsupervised statistical machine translation. In Proceedings of EMNLP, 2018.
6. Mikael Arntte, Gorka Labaka, and Eneko Agirre. An effective approach to unsupervised machine translation. In Proceedings of ACL, 2019.
7. Philip Arthur, Trevor Cohn, and Gholamreza Haffari. Learning coupled policies for simultaneous machine translation. arXiv preprint arXiv:2002.04306, 2020.
8. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In Proceedings of ICLR, 2015.
9. Sameer Bansal, Herman Kamper, Karen Livescu, Adam Lopez, and Sharon Goldwater. Pre-training on high-resource speech recognition improves low-resource speech-to-text translation. In Proceedings of NAACL, 2019.
10. Rachel Bawden, Rico Sennrich, Alexandra Birch, and Barry Haddow. Evaluating discourse phenomena in neural machine translation. In Proceedings of NAACL, 2018.
11. Alexandre Bédrard, Laurent Besacier, Ali Can Kocabiyikoglu, and Olivier Pietquin. End-to-end automatic speech translation of audiobooks. In Proceedings of ICASSP, pages 6224–6228. IEEE, 2018.
12. Alexandre Bédrard, Olivier Pietquin, Christophe Servan, and Laurent Besacier. Listen and translate: A proof of concept for end-to-end speech-to-text translation. In Proceedings of NIPS, 2016.
13. Graeme Blackwood, Miguel Ballesteros, and Todd Ward. Multilingual neural machine translation with task-specific attention. In
16 Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Leo Born, Mohsen Mesgar, and Michael Strube. Using a graph-based coherence model in document-level machine translation. In Proceedings of the Third Workshop on Discourse in Machine Translation, pages 26–35, 2017.
15 Iacer Calixto, Miguel Rios, and Wilker Aziz. Latent variable model parameter estimation. Computational linguistics, 19(2):263–311, 1993.
17 Ozan Caglayan, Pranava Madhyastha, Lucia Specia, and Loïc Barrault. Probing the need for visual context in multimodal machine translation. In Proceedings of NAACL, 2019.
18 Iacer Calixto and Qun Liu. An error analysis for image-based multi-modal neural machine translation. Machine Translation, 33(1-2):155–177, 2019.
19 Iacer Calixto, Qun Liu, and Nick Campbell. Doubly-attentive decoder for multi-modal neural machine translation. In Proceedings of ACL, 2017.
20 Iacer Calixto, Miguel Rios, and Wilker Aziz. Latent variable model for multi-modal translation. In Proceedings of ACL, 2019.
21 Hailong Cao and Tiejun Zhao. Point set registration for unsupervised bilingual lexicon induction. In IJCAI, pages 3991–3997, 2018.
22 Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster, Llion Jones, Niki Parmar, Mike Schuster, Zhifeng Chen, et al. The best of both worlds: Combining recent advances in neural machine translation. In Proceedings of ACL, pages 76–86, 2018.
23 Yong Cheng, Lu Jiang, and Wolfgang Macherey. Robust neural machine translation with doubly adversarial inputs. In Proceedings of ACL, 2019.
24 Yong Cheng, Zhaopeng Tu, Fandong Meng, Junjie Zhai, and Yang Liu. Towards robust neural machine translation. In Proceedings of ACL, 2018.
25 Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. Semi-supervised learning for neural machine translation. In Proceedings of ACL, 2016.
26 Yong Cheng, Qian Yang, Yang Liu, Maosong Sun, and Wei Xu. Joint training for pivot-based neural machine translation. In Proceedings of IJCAI, 2017.
27 David Chiang. A hierarchical phrase-based model for statistical machine translation. In Proceedings of ACL, pages 263–270. Association for Computational Linguistics, 2005.
28 Chenhui Chu, Raj Dabre, and Sadao Kurohashi. An empirical comparison of simple domain adaptation methods for neural machine translation. In Proceedings of ACL, 2017.
29 Chenhui Chu and Rui Wang. A survey of domain adaptation for neural machine translation. In Proceedings of COLING, 2018.
30 Alexis Conneau and Guillaume Lample. Cross-lingual language model pretraining. In Advances in Neural Information Processing Systems, pages 7057–7067, 2019.
31 Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. Word translation without parallel data. In Proceedings of ICLR, 2018.
32 Fahim Dalvi, Nadir Durran, Hassan Sajjad, and Stephan Vogel. Incremental decoding and training methods for simultaneous translation in neural machine translation. In Proceedings of NAACL, 2018.
33 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL, 2019.
34 Mattia A Di Gangi, Roldano Cattoni, Luisa Bentivogli, Matteo Negri, and Marco Turchi. Must-c: a multilingual speech translation corpus. In Proceedings of NAACL, 2019.
35 Yanzhuo Ding, Yang Liu, Huanbo Luan, and Maosong Sun. Visualizing and understanding neural machine translation. In Proceedings of ACL, pages 1150–1159, 2017.
36 Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. Multi-task learning for multiple language translation. In Proceedings of ACL-IJCNLP, pages 1723–1732, 2015.
37 Qing Dou and Kevin Knight. Large scale decipherment for out-of-domain machine translation. In Proceedings of EMNLP-CoNLL, pages 266–275. Association for Computational Linguistics, 2012.
38 Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at scale. In Proceedings of EMNLP, 2018.
39 Desmond Elliott and Akos Kádár. Imagination improves multimodal translation. In Proceedings of IJCNLP, 2017.
40 Dmitrii Emelianenko, Elena Voita, and Pavel Serydyukov. Sequence modeling with unconstrained generation order. In Advances in Neural Information Processing Systems, pages 7698–7709, 2019.
41 Manaal Faruqui and Chris Dyer. Improving vector space word representations using multilingual correlation. In Proceedings of EACL, pages 462–471, 2014.
42 Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at scale. In Proceedings of EMNLP, 2018.
43 Qing Dou and Kevin Knight. Large scale decipherment for out-of-domain machine translation. In Proceedings of EMNLP-CoNLL, pages 266–275. Association for Computational Linguistics, 2012.
44 Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. Multi-way, multilingual neural machine translation with a shared attention mechanism. In Proceedings of NAACL, 2016.
45 Orhan Firat, Kyunghyun Cho, Baskaran Sankaran, Fatos Y Yaran Vural, and Yoshua Bengio. Multi-way, multilingual neural machine translation. Computer Speech & Language, 45:236–252, 2017.
46 Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional sequence to sequence learning. In Proceedings of ICML, 2017.
47 Zhengxian Gong, Min Zhang, and Guodong Zhou. Cache-based document-level statistical machine translation. In Proceedings of EMNLP, pages 909–919. Association for Computational Linguistics, 2011.
48 Alvin Grissom II, He He, Jordan Boyd-Graber, John Morgan, and Hal Daumé III. Don’t until the final verb wait: Reinforcement learning for simultaneous machine translation. In Proceedings of EMNLP, pages 1342–1352, 2014.
49 Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive neural machine translation. In Proceedings of ICLR, 2018.
50 Jiatao Gu, Qi Liu, and Kyunghyun Cho. Insertion-based decoding with automatically inferred generation order. Transactions of the Association for Computational Linguistics, 7:661–676, 2019.
51 Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Victor OK Li. Learning to translate in real-time with neural machine translation. In Proceedings of EACL, 2017.
52 Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loïc Barrault, Hui-Chi Lin, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. On using monolingual corpora in neural machine translation. arXiv preprint arXiv:1501.01355, 2015.
53 Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, and Yoshua Bengio. On integrating a language model into neural machine translation. Computer Speech & Language, 45:137–148, 2017.
54 Junliang Guo, Xu Tan, Di He, Tao Qin, Linli Xu, and Tie-Yan Liu. Non-autoregressive neural machine translation with enhanced decoder input. In Proceedings of the AAAI, volume 33, pages 3723–
3730, 2019.

55 Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, et al. Achieving human parity on automatic chinese to english news translation. arXiv preprint arXiv:1803.05567, 2018.

56 Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Yang Ma. Dual learning for machine translation. In Advances in neural information processing systems, pages 820–828, 2016.

57 Cong Duy Vu Hoang, Gholamreza Haffari, and Trevor Cohn. Decoding as continuous optimization in neural machine translation. arXiv preprint arXiv:1701.02854, 2017.

58 Yu Cong Duy Hoang, Philipp Koehn, Gholamreza Haffari, and Trevor Cohn. Iterative back-translation for neural machine translation. In Proceedings of the 2nd Workshop on Neural Machine Translation and Generation, pages 18–24, 2018.

59 Po-Yao Huang, Frederick Liu, Sz-Rung Shiang, Jean Oh, and Chris Dyer. Attention-based multimodal neural machine translation. In Proceedings of WMT, pages 639–645, 2016.

60 Niehues Jan, Roldano Cattoni, Stikker Sebastian, Mauro Cettolo, Marco Turchi, and Marcello Federico. The iwslt 2018 evaluation campaign. In Proceedings of WSLT, 2018.

61 Sebastien Jean, Stanislas Lauly, Orhan Firat, and Kyunghyun Cho. Does neural machine translation benefit from larger context? arXiv preprint arXiv:1704.05135, 2017.

62 Bajun Ji, Zhirui Zhang, Xiangyu Duan, Min Zhang, Boxing Chen, and Weihua Luo. Cross-lingual pre-training based transfer for zero-shot neural machine translation. In Proceedings of AAAI, 2020.

63 Ye Jia, Melvin Johnson, Wolfgang Macherey, Ron J Weiss, Yuan Cao, Chung-Cheng Chiu, Naveen Ari, Stella Laurenzo, and Yonghui Wu. Leveraging weakly supervised data to improve end-to-end speech-to-text translation. In Proceedings of ICASSP, pages 7180–7184. IEEE, 2019.

64 Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernando Viégas, Martin Wattenberg, Greg Corrado, et al. Googles multilingual neural machine translation system: Enabling zero-shot translation. Transactions of the Association for Computational Linguistics, 5:339–351, 2017.

65 Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu Hoang. Is neural machine translation ready for deployment? A case study on 30 translation directions. arXiv preprint arXiv:1610.01108, 2016.

66 Alina Karakanta, Jon Dehdari, and Josef van Genabith. Neural machine translation for low-resource languages without parallel corpora. Machine Translation, 32(1-2):167–189, 2018.

67 Alexandre Klementiev, Ann Irvine, Chris Callison-Burch, and David Yarowsky. Toward statistical machine translation without parallel corpora. In Proceedings of EACL, pages 130–140. Association for Computational Linguistics, 2012.

68 Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al. Moses: Open source toolkit for statistical machine translation. In Proceedings of ACL, pages 177–180, 2007.

69 Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. arXiv preprint arXiv:1706.03872, 2017.

70 Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In Proceedings of NAACL, pages 48–54. Association for Computational Linguistics, 2003.

71 Shaohui Kuang, Deyi Xiong, Weihua Luo, and Guodong Zhou. Modeling coherence for neural machine translation with dynamic and topic caches. In Proceedings of COLING, 2018.

72 Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised machine translation using monolingual corpora only. In Proceedings of ICLR, 2018.

73 Samuel Läubli, Sheila Castilho, Graham Neubig, Rico Sennrich, Qinlan Shen, and Antonio Toral. A set of recommendations for assessing human–machine parity in language translation. Journal of Artificial Intelligence Research, 67:653–672, 2020.

74 Samuel Läubli, Rico Sennrich, and Martin Volk. Has machine translation achieved human parity? a case for document-level evaluation. In Proceedings of EMNLP, 2018.

75 Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural sequence modeling by iterative refinement. In Proceedings of EMNLP, 2018.

76 Yichong Leng, Xu Tan, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. Unsupervised pivot translation for distant languages. In Proceedings of ACL, 2019.

77 Xiaqing Li, Jiajun Zhang, and Chengqing Zong. One sentence one model for neural machine translation. In Proceedings of LREC, 2018.

78 Yanyang Li, Liang Huang, Tong Xiao, Tongran Liu, and Jingbo Zhu. Neural machine translation with joint representation. In Proceedings of AAAI, 2020.

79 Lema Li, Masao Utiyama, Andrew Finch, and Eiichiro Sumita. Agreement on target-bidirectional neural machine translation. In Proceedings of NAACL, pages 411–416, 2016.

80 Yang Liu and Jiajun Zhang. Deep learning in machine translation. In Deep Learning in Natural Language Processing, pages 147–183. Springer, 2018.

81 Yuchen Liu, Hao Xiong, Zhongjun He, Jiajun Zhang, Hua Wu, Haifeng Wang, and Chengqing Zong. End-to-end speech translation with knowledge distillation. In Proceedings of Interspeech, 2019.

82 Yuchen Liu, Jiajun Zhang, Hao Xiong, Long Zhou, Zhongjun He, Hua Wu, Haifeng Wang, and Chengqing Zong. Synchronous speech recognition and speech-to-text translation with interactive decoding. In Proceedings of AAAI, 2020.

83 Yiping Lu, Zhuohan Li, Di He, Zhiqing Sun, Bin Dong, Tao Qin, Liwei Wang, and Tie-Yan Liu. Understanding and improving transformer from a multi-particle dynamic system point of view. arXiv preprint arXiv:1906.02762, 2019.

84 Yu Lu, Jiajun Zhang, and Chengqing Zong. Exploiting knowledge graph in neural machine translation. In China Workshop on Machine Translation, pages 27–38. Springer, 2018.

85 Minh-Thai Luong and Christopher D. Manning. Stanford neural machine translation systems for spoken language domain. In International Workshop on Speech Language Translation, 2015.

86 Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng, Chuanqiang Zhang, Zhongjun He, Hairong Liu, Xing Li, et al. Stac: Simultaneous translation with implicit anticipation and controllable latency using prefix- to-prefix framework. In Proceedings of ACL, 2019.

87 Sameen Maruf and Gholamreza Haffari. Document context neural machine translation with memory networks. In Proceedings of ACL, 2018.

88 Sameen Maruf, André FT Martins, and Gholamreza Haffari. Selective attention for context-aware neural machine translation. In Proceedings of ACL, 2019.

89 Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe Ittycheriah. Coverage embedding models for neural machine translation. In Proceedings of EMNLP, 2016.

90 Lesly Miculicich, Dhananjay Ari, Stella Laurenzo, and Yonghui Wu. Document-level neural machine translation with hierarchical attention networks. In Proceedings of EMNLP, 2018.

91 Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168, 2013.

92 Mathias Müller, Annette Rios, Elena Voita, and Rico Sennrich. A large-scale test set for the evaluation of context-aware pronoun trans-
lation in neural machine translation. In *Proceedings of WMT*, 2018.

93 Makoto Nagao. A framework of a mechanical translation between Japanese and English by analogy principle. *Artificial and human intelligence*, pages 351–354, 1984.

94 Jan Niehues, Thai Son Nguyen, Eunah Cho, Thanh-Le Ha, Kevin Kilgour, Markus Müller, Matthias Sperber, Sebastian Stüker, and Alex Waibel. Dynamic transcription for low-latency speech translation. In *Interspeech*, pages 2513–2517, 2016.

95 Jan Niehues, Ngoc-Quan Pham, Thanh-Le Ha, Matthias Sperber, and Alex Waibel. Low-latency neural speech translation. In *Proceedings of Interspeech*, 2018.

96 Matte Nuhn, Arne Mauser, and Hermann Ney. Deciphering foreign language by combining language models and context vectors. In *Proceedings of ACL*, pages 156–164. Association for Computational Linguistics, 2012.

97 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In *Proceedings of ACL*, pages 311–318, 2002.

98 Emmanouil Antonios Platanios, Mrimnaya Sachan, Graham Neubig, and Tom Mitchell. Contextual parameter generation for universal neural machine translation. In *Proceedings of EMNLP*, 2018.

99 Martin Popel. Cuni transformer neural mt system for wmt18. In *Proceedings of WMT*, pages 482–487, 2018.

100 Matt Post, Gaurav Kumar, Adam Lopez, Damianos Karakos, Chris Callison-Burch, and Sanjeev Khudanpur. Improved speech-to-text translation with the Fisher and Callhome Spanish–English speech translation corpus. In *Proceedings of IWSLT*, 2013.

101 Ofr Press and Lior Wolf. Using the output embedding to improve language models. In *Proceedings of EACL*, 2017.

102 Sujith Ravi and Kevin Knight. Deciphering foreign language. In *Proceedings of ACL*, pages 12–21, 2011.

103 Shuo Ren, Yu Wu, Shujie Liu, Ming Zhou, and Shuai Ma. Explicit cross-lingual pre-training for unsupervised machine translation. In *Proceedings of EMNLP-IJCNLP*, 2019.

104 Annette Rios and Don Tuggener. Co-reference resolution of elided subjects and possessive pronouns in Spanish–English statistical machine translation. In *Proceedings of EACL*, 2017.

105 Harsh Satija and Joelle Pineau. Simultaneous machine translation using deep reinforcement learning. In *ICML 2016 Workshop on Abstraction in Reinforcement Learning*, 2016.

106 Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich Germann, Barry Haddow, Kenneth Heafield, Antonio Valerio Miceli Barone, and Philip Williams. The university of edinburgh’s neural mt system for wmt17. In *Proceedings of WMT*, 2017.

107 Rico Sennrich, Barry Haddow, and Alexandra Birch. Edinburgh neural machine translation systems for wmt 16. In *Proceedings of WMT*, pages 371–376, 2016.

108 Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models with monolingual data. In *Proceedings of ACL*, 2016.

109 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units. In *Proceedings of ACL*, 2016.

110 Chenzhe Shao, Yang Feng, Jinhao Zhang, Fandong Meng, Xilin Chen, and Jie Zhou. Retrieving sequential information for non-autoregressive neural machine translation. In *Proceedings of ACL*, 2019.

111 Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. Minimum risk training for neural machine translation. In *Proceedings of ACL*, 2016.

112 David R So, Chen Liang, and Quoc V Le. The evolved transformer. In *Proceedings of ICML*, 2019.

113 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mass: Masked sequence to sequence pre-training for language generation. In *Proceedings of ICML*, 2019.

114 Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer: Flexible sequence generation via insertion operations. *arXiv preprint arXiv:1902.03249*, 2019.

115 Jinsong Su, Xiangwen Zhang, Qian Lin, Yue Qin, Junfeng Yao, and Yang Liu. Exploiting reverse target-side contexts for neural machine translation via asynchronous bidirectional decoding. *Artificial Intelligence*, 277:103168, 2019.

116 Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In *Proceedings of NIPS*, 2014.

117 Xin Tan, Longyin Zhang, Deyi Xiong, and Guodong Zhou. Hierarchical modeling of global context for document-level neural machine translation. In *Proceedings of EMNLP-IJCNLP*, pages 1576–1585, 2019.

118 Xu Tan, Jiale Chen, Di He, Yingce Xia, Tao Qin, and Tie-Yan Liu. Multilingual neural machine translation with language clustering. In *Proceedings of EMNLP-IJCNLP*, 2019.

119 Jörg Tiedemann and Yves Scherrer. Neural machine translation with extended context. In *Proceedings of the Third Workshop on Discourse in Machine Translation*, 2017.

120 Zhaopeng Tu, Yang Liu, Shuming Shi, and Tong Zhang. Learning to remember translation history with a continuous cache. *Transactions of the Association for Computational Linguistics*, 6:407–420, 2018.

121 Zhaopeng Tu, Zhendong Lu, Yang Liu, Xiaohua Liu, and Hang Li. Modeling coverage for neural machine translation. In *Proceedings of ACL*, 2016.

122 Ashish Vawhani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *arXiv preprint arXiv:1706.03762*, 2017.

123 Elena Voita, Rico Sennrich, and Ivan Titov. Context-aware monolingual repair for neural machine translation. In *Proceedings of EMNLP-IJCNLP*, 2019.

124 Elena Voita, Rico Sennrich, and Ivan Titov. When a good translation is wrong in context: Context-aware machine translation improves on deixis, ellipsis, and lexical cohesion. In *Proceedings of ACL*, 2019.

125 Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan Titov. Context-aware neural machine translation learns anaphora resolution. In *Proceedings of ACL*, 2018.

126 Chengyi Wang, Yu Wu, Shujie Liu, Zhenglu Yang, and Ming Zhou. Bridging the gap between pre-training and fine-tuning for end-to-end speech translation. In *Proceedings of AAAI*, 2020.

127 Chunqi Wang, Ji Zhang, and Haqing Chen. Semi-autoregressive neural machine translation. In *Proceedings of EMNLP*, 2018.

128 Longyue Wang, Zhaopeng Tu, Andy Way, and Qun Liu. Exploiting cross-sentence context for neural machine translation. In *Proceedings of EMNLP*, 2017.

129 Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao. Learning deep transformer models for machine translation. In *Proceedings of ACL*, 2019.

130 Rui Wang, Masao Utiyama, Lemiao Liu, Kehai Chen, and Eiichiro Sumita. Instance weighting for neural machine translation domain adaptation. In *Proceedings of EMNLP*, pages 1482–1488, 2017.

131 Shuo Wang, Yang Liu, Chao Wang, Huanbo Luan, and Maosong Sun. Improving back-translation with uncertainty-based confidence estimation. In *Proceedings of EMNLP*, 2019.

132 Xing Wang, Zhaopeng Tu, Deyi Xiong, and Min Zhang. Translating phrases in neural machine translation. In *Proceedings of EMNLP*, 2017.

133 Xing Wang, Zhaopeng Tu, and Min Zhang. Incorporating statistical machine translation word knowledge into neural machine translation. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 26(12):2255–2266, 2018.

134 Yining Wang, Jiajun Zhang, Feifei Zhai, Jingfang Xu, and Chengqing Zong. Three strategies to improve one-to-many multilingual transla-
tion. In Proceedings of EMNLP, pages 2955–2960, 2018.
135 Yining Wang, Jiajun Zhang, Long Zhou, Yuchen Liu, and Chengqing Zong. Synchronously generating two languages with interactive decoding. In Proceedings of the EMNLP-IJCNLP, 2019.
136 Yining Wang, Long Zhou, Jiajun Zhang, Feifei Zhai, Jingfang Xu, Chengqing Zong, et al. A compact and language-sensitive multilingual translation method. In Proceedings of ACL, 2018.
137 Yiren Wang, Fei Tian, Di He, Tao Qin, Chenguang Zhai, and Tie-Yan Liu. Non-autoregressive machine translation with auxiliary regularization. In Proceedings of the AAAI, 2019.
138 Warren Weaver. Translation. Machine translation of languages, 14:15–23, 1955.
139 Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang Lin, and Xu Sun. Imitation learning for non-autoregressive neural machine translation. In Proceedings of ACL, 2019.
140 Ron J Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui Wu, and Ziheng Chen. Sequence-to-sequence models can directly translate foreign speech. In Proceedings of Interspeech, 2017.
141 Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. Pay less attention with lightweight and dynamic convolutions. In Proceedings of ICLR, 2019.
142 Hua Wu and Haifeng Wang. Pivot language approach for phrase-based statistical machine translation. Machine Translation, 21(3):165–181, 2007.
143 Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.
144 Tong Xiao, Jingbo Zhu, Shujie Yao, and Hao Zhang. Document-level consistency verification in machine translation. In Proceedings of the 13th Machine Translation Summit, 13:131–138, 2011.
145 Deyi Xiong, Yang Ding, Min Zhang, and Chew Lim Tan. Lexical chain based cohesion models for document-level statistical machine translation. In Proceedings of EMNLP, pages 1563–1573, 2013.
146 Hao Xiong, Zhongjue He, Hua Wu, and Haifeng Wang. Modeling coherence for discourse neural machine translation. In Proceedings of the AAAI, volume 33, pages 7338–7345, 2019.
147 Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. Unsupervised neural machine translation with weight sharing. In Proceedings of ACL, 2018.
148 Zhengxin Yang, Jinchao Zhang, Fangdong Meng, Shuhao Gu, Yang Feng, and Jie Zhou. Enhancing context modeling with a query-guided capsule network for document-level translation. 2019.
149 Jiali Zeng, Yang Liu, Jinsong Su, Yubing Ge, Yaojie Lu, Yongjie Yin, and Jiebo Luo. Iterative dual domain adaptation for neural machine translation. In Proceedings of EMNLP-IJCNLP, 2019.
150 Biao Zhang, Ivan Titov, and Rico Sennrich. Improving deep transformer with depth-scaled initialization and merged attention. In Proceedings of EMNLP-IJCNLP, 2019.
151 Biao Zhang, Deyi Xiong, Jinsong Su, and Jiebo Luo. Future-aware knowledge distillation for neural machine translation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(12):2278–2287, 2019.
152 Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu, and Maosong Sun. Prior knowledge integration for neural machine translation using posterior regularization. In Proceedings of ACL, 2017.
153 Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei Zhai, Jingfang Xu, Min Zhang, and Yang Liu. Improving the transformer translation model with document-level context. In Proceedings of EMNLP, 2018.
154 Jiajun Zhang, Long Zhou, Yang Zhao, and Chengqing Zong. Synchronous bidirectional inference for neural sequence generation. Artificial Intelligence, page 103234, 2020.
155 Jiajun Zhang, Chengqing Zong, et al. Learning a phrase-based translation model from monolingual data with application to domain adaptation. In Proceedings of ACL, 2013.
156 Jiajun Zhang, Chengqing Zong, et al. Deep neural networks in machine translation: An overview. IEEE Intelligent Systems, 2015.
157 Jiajun Zhang, Chengqing Zong, et al. Exploiting source-side monolingual data in neural machine translation. In Proceedings of EMNLP, 2016.
158 Meng Zhang, Yang Liu, Huanbo Luan, and Maosong Sun. Adversarial training for unsupervised bilingual lexicon induction. In Proceedings of ACL, pages 1959–1970, 2017.
159 Meng Zhang, Yang Liu, Huanbo Luan, and Maosong Sun. Earth movers distance minimization for unsupervised bilingual lexicon induction. In Proceedings of EMNLP, pages 1934–1945, 2017.
160 Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun Liu. Bridging the gap between training and inference for neural machine translation. In In Proceedings of ACL, pages 4334–4343, 2019.
161 Xiangwen Zhang, Jinsong Su, Yue Qin, Yang Liu, Rongrong Ji, and Hongji Wang. Asynchronous bidirectional decoding for neural machine translation. In Proceedings of AAAI 2018, 2018.
162 Xuan Zhang, Pamela Shapiro, Gaurav Kumar, Paul McNamee, Marine Carpuat, and Kevin Dub. Curriculum learning for domain adaptation in neural machine translation. In Proceedings of NAACL, 2019.
163 Zhizhi Zheng, Shujie Liu, Mu Li, Ming Zhou, and Enhong Chen. Joint training for neural machine translation models with monolingual data. In Thirty-Second AAAI, 2018.
164 Zhizhi Zheng, Shuangzhi Wu, Shujie Liu, Mu Li, Ming Zhou, and Tong Xu. Regularizing neural machine translation by target-bidirectional agreement. In Proceedings of the AAAI, 2019.
165 Yang Zhao, Yining Wang, Jiajun Zhang, and Chengqing Zong. Phrase table as recommendation memory for neural machine translation. In Proceedings of EMNLP, 2018.
166 Yang Zhao, Jiajun Zhang, Zhongjun He, Chengqing Zong, and Hua Wu. Addressing troublesome words in neural machine translation. In Proceedings of EMNLP, pages 391–400, 2018.
167 Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang Huang. Simpler and faster learning of adaptive policies for simultaneous translation. In Proceedings of EMNLP, 2019.
168 Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang Huang. Simultaneous translation with flexible policy via restricted imitation learning. In Proceedings of ACL, 2019.
169 Zaixiang Zheng, Shujian Huang, Zhaopeng Tu, Xin-Yu Dai, and Jiajun Chen. Dynamic past and future for neural machine translation. In Proceedings of EMNLP-IJCNLP, 2019.
170 Zaixiang Zheng, Hao Zhou, Shujian Huang, Lei Li, Xin-Yu Dai, and Jiajun Chen. Mirror-generative neural machine translation. In Proceedings of ICLR, 2020.
171 Zaixiang Zheng, Hao Zhou, Shujian Huang, Lili Mou, Xinyu Dai, Jiajun Chen, and Zhaopeng Tu. Modeling past and future for neural machine translation. In TACL, volume 6, pages 145–157, 2018.
172 Long Zhou, Jiajun Zhang, and Chengqing Zong. Synchronous bidirectional neural machine translation. In TACL, 2019.
173 Long Zhou, Jiajun Zhang, Chengqing Zong, and Heng Yu. Sequence generation: From both sides to the middle. In Proceedings of IJCAI, 2019.
174 Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqiang Li, and Tie-Yan Liu. Incorporating bert into neural machine translation model from monolingual data with application to domain adaptation. In Proceedings of EMNLP, 2018.
175 Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqiang Li, and Tie-Yan Liu. Incorporating bert into neural machine translation model from monolingual data with application to domain adaptation. In Proceedings of EMNLP, 2018.
176 Barret Zoph and Kevin Knight. Multi-source neural translation. In Proceedings of NAACL, 2016.
177 Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Transfer learning for low-resource neural machine translation. In Proceedings of EMNLP, 2016.