Abstract. Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder. It is widely believed that IBS is caused by a deficient intake of dietary fiber, and most physicians recommend that patients with IBS increase their intake of dietary fiber in order to relieve their symptoms. However, different types of dietary fiber exhibit marked differences in physical and chemical properties, and the associated health benefits are specific for each fiber type. Short-chain soluble and highly fermentable dietary fiber, such as oligosaccharides, results in rapid gas production that can cause abdominal pain/discomfort, abdominal bloating/distension and flatulence in patients with IBS. By contrast, long-chain, intermediate viscous, soluble and moderately fermentable dietary fiber, such as psyllium, results in a low gas production and the absence of the symptoms related to excessive gas production. The effects of type of fiber have been documented in the management of IBS, and it is known to improve the overall symptoms in patients with IBS. Dietary fiber acts on the gastrointestinal tract through several mechanisms, including increased fecal mass with mechanical stimulation/irritation of the colonic mucosa with increasing secretion and peristalsis, and the actions of fermentation byproducts, particularly short-chain fatty acids, on the intestinal microbiota, immune system and the neuroendocrine system of the gastrointestinal tract. Fiber supplementation, particularly psyllium, is both safe and effective in improving IBS symptoms globally. Dietary fiber also has other health benefits, such as lowering blood cholesterol levels, improving glycemic control and body weight management.
fiber supplementation in the treatment of IBS, the type of dietary fiber that should be recommended, and the mechanisms underlying the effects of dietary fiber, particularly those concerning the interaction between fibers, microbiota, the immune system and the neuroendocrine regulatory system of the gut.

2. Types and characteristics of dietary fiber

Different types of dietary fiber are characterized by marked differences in physical and chemical structure, with the health benefits of dietary fiber being specific to each fiber type (23).

Dietary fiber can be divided into soluble types (i.e., dissolving in water) and insoluble types based on their physical and chemical properties (47,48). Soluble dietary fiber can be subdivided into viscous (gel forming) and non-viscous (23,47). Dietary fiber can be divided further into short-chain and long-chain carbohydrates, and fermentable or non-fermentable types (49-53).

Fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) are closely associated with the focus of this review, and are to be considered to be the short-chain carbohydrate, soluble, and highly fermentable type of dietary fiber.

Short-chain, soluble and highly fermentable dietary fiber (e.g., oligosaccharides) results in rapid gas production that can impact the ability of the gastrointestinal tract to absorb gas into the bloodstream for final elimination through the lungs. This imbalance can cause abdominal pain/discomfort, abdominal bloating/distension and flatulence (23,51,54). On the other hand, long-chain, intermediate viscous, soluble and moderately fermentable dietary fiber (e.g., psyllium) results in a low gas production and the absence of the symptoms related to excessive gas production (23,54,55).

3. Mechanisms of action of dietary fiber in IBS

Laxative effects. Insoluble dietary fiber increases fecal mass and accelerates colonic transit via mechanical stimulation/irritation of the colonic mucosa with increasing secretion and peristalsis (23,56-63). Soluble dietary fiber is fermented by bacteria in the large intestine, which increases the stool bulk by increasing the biomass by fermentation byproducts, such as gas and short-chain fatty acids (61,62). The oro-anal transit time and sensation are affected by these changes and probably also through other effects on microbiota, immune cells, intestinal endocrine cell, enteric nervous system and permeability (64-75) (Fig. 1). Soluble viscous dietary fiber (e.g., psyllium) is minimally fermented and forms a gel that is preserved during its passage through the large bowel and normalizes the stool form (26,76-79).

Interaction of dietary fiber with microbiota and the immune system. There is an increasing body of evidence to indicate that dietary fiber acts as a prebiotic that influences the composition of the intestinal microbiota (80-88) (Fig. 1). Furthermore, the fermentation of dietary fiber byproducts, such as short-chain fatty acids (acetate, propionate and butyrate) and the decrease in luminal colonic pH promote the growth of beneficial bacteria, such as lactobacilli and bifidobacteria (80-88).

Butyrate is one of the short-chain fatty acids that are produced by the fermentation of dietary fiber (23,54). Butyrate has been recently reported to suppress colonic inflammation in two ways: i) by inducing T-cell apoptosis, thus eliminating the source of inflammation, and ii) by suppressing interferon-γ (IFN-γ)-mediated inflammation (Fig. 1) (89-91).

Interaction between dietary fiber and the neuroendocrine system (NES) of the gastrointestinal tract. The NES of the gastrointestinal tract comprises gastrointestinal endocrine cells and the enteric nervous system (Fig. 1). Various different types of endocrine cells are scattered between the epithelial cells of the mucosa (1,92-97). These endocrine cells constitute approximately 1% of all epithelial cells in the gastrointestinal tract (92,93,98-100) and they have specialized sensors in the form of microvilli that project into the lumen and respond to luminal stimuli by releasing hormones (101-113). The distribution, functions and modes of action of the most important gastrointestinal endocrine cells have been described in detail elsewhere (95,114,115).

Briefly, each cell type secretes one or more signaling substances into the lamina propria, where these substances act directly on nearby structures (autocrine/paracrine mode), indirectly via an endocrine mode of action (by circulating in the blood to reach distant targets), and/or through a synaptic mode of action (116). The enteric nervous system comprises two plexi: the submucosal plexus and myenteric plexus. The NES regulates several functions of the gastrointestinal tract, including sensation, motility, secretion, absorption, local immune defense and food intake (22,92,93,95,117). The components of the NES interact and integrate with each other, the autonomic nervous system, and the afferent and efferent nerve fibers of the central nervous system (22,95,117,118).

Dietary fiber appears to improve the global symptoms in patients with IBS, abdominal discomfort/pain, abdominal bloating/distension and altered bowel habit, probably by affecting the NES. Changes in the luminal intestinal pH and pressure can stimulate the release of the hormone serotonin, which is known to play a pivotal role in visceral sensitivity (95). The short-chain fatty acids produced by the fermentation of dietary fiber appear to affect several intestinal hormones, such as peptide YY (PYY) and glucagon-like peptide-1 (119-122). PYY is known to stimulate the absorption of water and electrolytes, and regulate the ‘ileal brake’ (123-128). Furthermore, PYY inhibits prostaglandin E2 and vasoactive intestinal polypeptide, which stimulate intestinal fluid secretion (129-131). This can explain the effect of dietary fiber on gastrointestinal transit and secretion. It has recently been reported that changing from a typical Norwegian diet to a FODMAP-reduced diet is accompanied by changes in densities of the gastrointestinal endocrine cells in patients with IBS (132-138). Since FODMAPs by definition constitute dietary fiber, these observations show that changing the dietary fiber intake is associated with changes in the gastrointestinal endocrine cells.

Short-chain fatty acids, particularly butyrate, produced by the fermentation of dietary fiber have been found to affect neurons of the enteric nervous system (119,139). Whether this is a direct effect on the enteric nervous system or involves indirect effects on the gastrointestinal endocrine cells remains to be determined.

4. Fiber supplementation in the treatment of IBS

Physicians (particularly those in the primary care system) usually recommend patients with IBS to increase their intake
of dietary fiber to 20-35 g daily in order to regulate the stools and reduce abdominal pain and meteorism (140-143). Supplementation with long-chain, intermediate viscous, soluble and moderately fermentable dietary fiber such as psyllium improves the global symptoms of IBS (26,144-147). A recent meta-analysis that evaluated dietary fiber supplementation in 14 randomized controlled trials involving 906 patients with IBS found that fiber supplementation (especially with psyllium) was effective in improving global IBS symptoms compared to placebo (46).

Dietary fiber supplementation seems to be safe (46,147), although transient abdominal bloating/distention can occur if it is introduced too rapidly (23,148). Recommending fiber supplementation to patients with IBS is also inexpensive while having documented effects on IBS symptoms and other health benefits (23,147,149).

5. Conclusion

Dietary fiber affects the bowel habits through increasing the stool bulk with mechanical stimulation of the colonic mucosa. The fermentation of dietary fiber by intestinal microbiota lowers the luminal pH and has several byproducts, such as gas and short-chain fatty acids. The gas increases the luminal pressure while short-chain fatty acids, particularly butyrate, affect the NES and consequently affect gastrointestinal secretion and motility. Dietary fiber has additional health benefits such as lowering the blood cholesterol level, improving glycemic control, and body weight management (23,54,55).

The different types of dietary fiber exhibit marked differences in physical and chemical properties, and not all types of fiber are beneficial for patients with IBS. A general recommendation to increase fiber intake in this group of patients would be inappropriate since it could worsen the symptoms (39). Long-chain, intermediate viscous, soluble, and moderately fermentable dietary fiber (e.g., psyllium) has documented affects in the management of IBS, and can improve the overall symptoms of patients with IBS (23,41,46,51,54). Supplementation with this type of dietary fiber should be recommended to patients with all of the IBS subtypes, namely IBS-D, IBS-M, and IBS-C. When beginning a fiber supplementation regimen, a transient period of abdominal bloating/distension, discom-
fort, and change in the bowel habits may occur (150). Fiber supplementation should therefore be started gradually, with the intake increased by no more than 5 g/day each week (23).

Acknowledgements

The studies conducted by the authors and cited in this review were supported by grants from Helse-Vest, Norway (grant no. 911978), and Helse-Fonna Norway (grant no. 40415).

References

1. El-Salhy M, Gunderson D, Hatlebakk JG and Hausken T: Irritable Bowel Syndrome: Diagnosis, Pathogenesis and Treatment Options. Nova Science Publishers, Inc., New York, NY, 2012.

2. Thompson WG: A world view of IBS. In: Irritable bowel syndrome. Camilleri M and Spiller RC (eds). Saunders, Philadelphia and London, pp17-26, 2002.

3. Agreus L, Svärdssudd K, Nyrén O and Tibblin G: Irritable bowel syndrome and dyspepsia in the general population: Overlap and lack of stability over time. Gastroenterology 109: 671-680, 1995.

4. Thompson WG, Irvine EJ, Pare P, Ferrazzi S and Rance L: Functional gastrointestinal disorders in Canada: First population-based survey using Rome II criteria with suggestions for improving the questionnaire. Dig Dis Sci 47: 225-235, 2002.

5. Kennedy TM, Jones RH, Hungin AP, O’Flanagan H and Kelly P: Irritable bowel syndrome, gastroduodenal reflux, and bronchial hyper-responsiveness in the general population. Gut 45: 770-774, 1998.

6. Drossman DA, Li Z, Andruzzi E, Temple RD, Talley NJ, Thompson WG, Whitehead WE, Janssens J, Funch-Jensen P, Corazzieri E, et al: U.S. householder survey of functional gastrointestinal disorders. Prevalence, sociodemographics, and health impact. Dig Dis Sci 38: 1569-1580, 1993.

7. Talley NJ, Gabriel SE, Harmsen WS, Zinsmeister AR and Evans RW: Medical costs in community subjects with irritable bowel syndrome. Gastroenterology 109: 1736-1741, 1995.

8. Hungin AP, Whorwell PJ, Tack J and Mearin F: The prevalence, patterns and impact of irritable bowel syndrome: An international survey of 40,000 subjects. Aliment Pharmacol Ther 17: 643-650, 2003.

9. Jones R and Lydeard S: Irritable bowel syndrome in the general population. BMJ 304: 87-90, 1992.

10. Birdie AK: Functional disorders of the colon. J Indian Med Assoc 88: 451-456, 1972.

11. O’Keefe EA, Talley NJ, Zinsmeister AR and Jacobsen SJ: Bowel disorders impair functional status and quality of life in the elderly: A population-based study. J Gerontol A Biol Sci Med Sci 55: M184-M189, 1998.

12. Everhart JE and Renault PF: Irritable bowel syndrome in office-based practice in the United States. Gastroenterology 100: 998-1005, 1991.

13. Wilson S, Roberts L, Roalfe A, Bridge P and Singh S: Prevalence of irritable bowel syndrome: A community survey. Br J Gen Pract 54: 495-502, 2004.

14. Quigley EM, Locke GR, Mueller-Lissner S, Paulo LG, Tytgat GN, El-Salhy M, Gundersen D, Hatlebakk JG and Hausken T: Use of a psyllium bulking agent: a pilot study. Can Oncol Nurs J 10: 96-100, 2000.

15. Everhart JE, Renault PF and Blackwood SB: Diet and irritable bowel syndrome: The male connection. J Clin Gastroenterol 38: 558-560, 2004.
Gastroint Liver Physiol 302: G1075-G1084, 2012.

Camilleri M and Katzka DA: Irritable bowel syndrome: Methods, mechanisms, epidemiology and pharmacogenetics in irrigable bowel syndrome. Am J Gastroenterol 109 (Suppl 1): S2-26; quiz S27, 2014.

McRorie J, Kesler J, Bishop L, Filloon T, Allgood G, Sutton M, Mattoo AK, Desai A: Analyses of human colonic mucus obtained by an in vivo sampling technique. Dig Liver Dis 41: 559-564, 2009.

Hammer HM, Jonas D, Renes IB, Vanhoutvin SA, Kodea A, Troost FJ, Venema K and Brummer RJ: Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin Nutr 28: 88-93, 2009.

Vanhoutvin SA, Troost FJ, Kodea A, Brummer RJ: Prebiotic effects: Metabolic and health benefits. Br J Nutr 104 Suppl 2: S1-S63, 2010.

Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall RA and Rastall RA: Dietary modulation of the human colonic microbiota: Updating the concepts of prebiotics. Nutr Res Rev 17: 259-275, 2004.

Gibson GR and Roberfroid MB: Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr 125: 1401-1412, 1995.

Roberfroid M: Prebiotics: The concept revisited. J Nutr 137 (Suppl 2): 830S-837S, 2007.

Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, et al: Prebiotic effects: Metabolic and health benefits. Br J Nutr 104 Suppl 2: S1-S63, 2010.

Gibson GR, Beatty ER, Wang X and Cummings JH: Selective fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J Hum Nutr Diet 24: 154-176, 2011.

Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall RA and Roberfroid MB: Dietary modulation of the human colonic microbiota. Nutr Res Rev 17: 259-275, 2004.

Gibson GR and Roberfroid MB: Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr 125: 1401-1412, 1995.

Roberfroid M: Prebiotics: The concept revisited. J Nutr 137 (Suppl 2): 830S-837S, 2007.

Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, et al: Prebiotic effects: Metabolic and health benefits. Br J Nutr 104 Suppl 2: S1-S63, 2010.

Gibson GR, Beatty ER, Wang X and Cummings JH: Selective fructan, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J Hum Nutr Diet 24: 154-176, 2011.

Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall RA and Roberfroid MB: Dietary modulation of the human colonic microbiota. Nutr Res Rev 17: 259-275, 2004.

Gibson GR and Roberfroid MB: Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr 125: 1401-1412, 1995.

Roberfroid M: Prebiotics: The concept revisited. J Nutr 137 (Suppl 2): 830S-837S, 2007.

Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, et al: Prebiotic effects: Metabolic and health benefits. Br J Nutr 104 Suppl 2: S1-S63, 2010.

Gibson GR, Beatty ER, Wang X and Cummings JH: Selective fructan, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J Hum Nutr Diet 24: 154-176, 2011.

Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall RA and Roberfroid MB: Dietary modulation of the human colonic microbiota. Nutr Res Rev 17: 259-275, 2004.

Gibson GR and Roberfroid MB: Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr 125: 1401-1412, 1995.

Roberfroid M: Prebiotics: The concept revisited. J Nutr 137 (Suppl 2): 830S-837S, 2007.

Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, et al: Prebiotic effects: Metabolic and health benefits. Br J Nutr 104 Suppl 2: S1-S63, 2010.

Gibson GR, Beatty ER, Wang X and Cummings JH: Selective fructan, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J Hum Nutr Diet 24: 154-176, 2011.

Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall RA and Roberfroid MB: Dietary modulation of the human colonic microbiota. Nutr Res Rev 17: 259-275, 2004.

Gibson GR and Roberfroid MB: Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr 125: 1401-1412, 1995.

Roberfroid M: Prebiotics: The concept revisited. J Nutr 137 (Suppl 2): 830S-837S, 2007.

Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, et al: Prebiotic effects: Metabolic and health benefits. Br J Nutr 104 Suppl 2: S1-S63, 2010.
Fat-induced ileal brake in humans: A dose-dependent phenomenon correlated to the plasma levels of peptide YY. Gastroenterology 105: 733-739, 1993.

Ruggeri E, Tosetti C, Poggioli G, Morselli Labate AM, Monetti N, Ruggeri A, Moneta G, Stanghellini V, Miglioli M, Corinaldesi R, De Giorgio R, et al: Differential effects of two fermentable carbohydrates on jejunal motility and release of neurotensin, enteroendocrine peptides. Front Physiol 6: 246, 2015.

Lönroth H, Håkanson R, Lundell L and Sundler F: Histamine chromogranin A-immunoreactive cell densities in patients with irritable bowel syndrome (Review). Int J Mol Med 29: 935-940, 2013.

Stempelj M, Kedinger M, Augenlicht L and Klampfer L: Essential role of the JAK/STAT1 signaling pathway in the expression of inducible nitric-oxide synthase in intestinal epithelial cells and its regulation by butyrate. J Biol Chem 282: 9797-9804, 2007.

Buchan AM: Nutrient Tasting and Signaling Mechanisms in the intestinal chemosensing. Am J Physiol Gastrointest Liver Physiol 302: G457-G461, 2012.

Schonhoff SE, Giel-Moloney M and Leiter AB: Minireview: Enteroendocrine functions and metabolism. Curr Opin Pharmacol 13: 935-940, 2013.

Rindi G, Inzani F and Solcia E: Pathology of gastrointestinal disorders. Endocrinol Metab Clin North Am 39: 713-727, 2010.

Seim I, El-Salhy M, Hausken T, Sandström O and El-Salhy M: Ageing and endocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 92: 219-231, 2011.

Cani PD and Cani PD: Gut microbiota and GLP-1. Rev Endocr Metabol Disord 15: 189-196, 2014.

Verdant E and Cani PD: Gut microbiota and GLP-1. Rev Endocr Metabol Disord 15: 189-196, 2014.

Luo S: A possible role in the pathophysiology and clinical implications (Review). Int J Mol Med 29: 723-731, 2012.

El-Salhy M: Ostgaard H, Gundersen D, Hatlebakk JG and Hausken T: The role of diet in the pathogenesis and management of irritable bowel syndrome (Review). Int J Mol Med 29: 723-731, 2012.

Balasubramaniam A, Laburthe M and Rozé C: Several receptors mediate the antisecretory effect of peptide YY, neuropeptide Y, glucagon, and peptide YY. Gut 29: 1042-1051, 1988.

Sharma RK, Swann JR, Deaville ER, Sleeth ML, Thomas EL, Montesini C, Rovero AM, Mantovani A, et al: Differential effects of two fermentable carbohydrates on central appetite regulation and body composition. PLoS One 7: e43526, 2012.

Maljaars PW, Keszthelyi D and Mascalce AA: An ileal brake through? Am J Clin Nutr 92: 467-468, 2010.

Van Citters GW and Lin HC: Ileal brake: Neuropeptidergic control of intestinal transit. Curr Gastroenterol Rep 8: 367-373, 2006.

Lin HC, Zhao XT, Wang L and Wong H: Fat-induced ileal brake in the dog depends on peptide YY. Gastroenterology 110: 1491-1495, 1996.

Pironi L, Stanelli V, Miglioli M, Corinaldesi R, De Giorgio R, Ruggeri E, Tosetti C, Poggioli G, Morabito S, Monetti N, et al: Differential effects of two fermentable carbohydrates on jejunal motility and release of neurotensin, enteroendocrine peptides and peptide YY. Gastroenterology 105: 733-739, 1993.

Spiller RC, Trovat IF, Adrian TE, Bloom SR, Misiewicz JJ and Silk DB: Further characterisation of the ‘ileal brake’ reflex in man - effect of ileal infusion of partial digests of fat, protein, and starch on jejunal motility and release of neurotensin, enteroglucagon, and peptide YY. Gut 29: 1042-1051, 1988.

Spiller RC, Trovat IF, Higgins BE, Ghatei MA, Grimbale GK, Lee YC, Bloom SR, Misiewicz JJ and Silk DB: The ileal brake - inhibition of jejunal motility after ileal fat perfusion in man. Gut 25: 365-374, 1984.

Ghrelin and the brain-gut axis as a pharmacological target for metabolic disorders. J Clin Endocrinol Metab 98: 2913-2922, 2013.

Gershon MD: 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 15: 73-78, 2008.

Tamada Y, Endou H and Crock R: Secretion of insulin-like growth factor-1 by human enterochromaffin-like cells. J Biol Chem 262: 14803-14807, 1987.

Stempelj M, Kedinger M, Augenlicht L and Klampfer L: Essential role of the JAK/STAT1 signaling pathway in the expression of inducible nitric-oxide synthase in intestinal epithelial cells and its regulation by butyrate. J Biol Chem 282: 9797-9804, 2007.

Lee YC, Bloom SR, Misiewicz JJ and Silk DB: The ileal brake - inhibition of jejunal motility after ileal fat perfusion in man. Gut 25: 365-374, 1984.

Ghrelin and the brain-gut axis as a pharmacological target for metabolic disorders. J Clin Endocrinol Metab 98: 2913-2922, 2013.

Gonulcan M, Vosoin T, Lorinet AM, Ducroc R, Tsocas A, Rozé C, Rouet-Benizine P, Herzog H, Balasubramianam A and Laburthe M: The peptide YY-prefering receptor mediating inhibition of small intestinal secretion is a peripheral Y1 (2) receptor: Pharmacological evidence and molecular cloning. Mol Pharmacol 60: 124-134, 2001.

Souli A, Chariot J, Voisin T, Presset O, Tsocas A, Balasubramianam A, Laburthe M and Rozé C: Several receptors mediate the antisecretory effect of peptide YY, neuropeptide Y, and pancreatic polypeptide on VIP-induced fluid secretion in the rat jejumum in vivo. Peptides 18: 551-557, 1997.

Whang EE, Hines OJ, Reeve JR Jr, Grant D, Moser JA, Bilchik AJ, Zinner MJ, McFadden DW and Ashley SW: Antisecretory mechanisms of peptide YY in rat distal colon. Dig Dis Sci 42: 1121-1127, 1997.

Mazzarri T and El-Salhy M: Changes in small intestinal chymotrypsin A-immunoreactive cell densities in patients with irritable bowel syndrome after receiving dietary guidance. Int J Mol Med 37: 1247-1253, 2016.
133. Mazzawi T, Gundersen D, Hausken T and El-Salhy M: Increased gastric chromogranin A cell density following changes to diets of patients with irritable bowel syndrome. Mol Med Rep 10: 2322-2326, 2014.

134. Mazzawi T, Gundersen D, Hausken T and El-Salhy M: Increased chromogranin A cell density in the large intestine of patients with irritable bowel syndrome after receiving dietary guidance. Gastroenterol Res Pract 2015: 823897, 2015.

135. Mazzawi T, Hausken T, Gundersen D and El-Salhy M: Effect of dietary management on the gastric endocrine cells in patients with irritable bowel syndrome. Eur J Clin Nutr 69: 519-524, 2015.

136. Mazzawi T and El-Salhy M: Changes in duodenal enteroendocrine cells in patients with irritable bowel syndrome following dietary guidance. Exp Biol Med: 0: 1-8, 2017. DOI: 10.1177/1535370217699537.

137. Mazzawi T, Hausken T, Gundersen D and El-Salhy M: Dietary guidance normalizes large intestinal endocrine cell densities in patients with irritable bowel syndrome. Eur J Clin Nutr 70: 175-181, 2016.

138. Mazzawi T and El-Salhy M: Dietary guidance and ileal enteroendocrine cells in patients with irritable bowel syndrome. Exp Ther Med 12: 1398-1404, 2016.

139. Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP and Neunlist M: Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138: 1772-1782, 2010.

140. Bellini M, Gambaccini D, Salvadori S, Tosetti C, Urbano MT, Costa F, Monicelli P, Mumolo MG, Ricchiuti A, De Bortoli N, et al: Management of chronic constipation in general practice. Tech Coloproctol 18: 543-549, 2014.

141. Furnari M, de Bortoli N, Martinucci I, Bodini G, Revelli M, Marabotto E, Moscatelli A, Del Nero L, Savarino E, Gianini EG, et al: Optimal management of constipation associated with irritable bowel syndrome. Ther Clin Risk Manag 11: 691-703, 2015.

142. Alaimo K, McDowell MA, Briefel RR, Bischoff AM, Caughman CR, Loria CM and Johnson CL: Dietary intake of vitamins, minerals, and fiber of persons ages 2 months and over in the United States: Third National Health and Nutrition Examination Survey, Phase 1, 1988-91. Adv Data 258: 1-28, 1994.

143. Briefel RR, Sembros CT, McDowell MA, Chien S and Alaimo K: Dietary methods research in the third National Health and Nutrition Examination Survey: Underreporting of energy intake. Am J Clin Nutr 65 (Suppl 4): 1203S-1209S, 1997.

144. McRorie JW Jr: Evidence-based approach to fiber supplements and clinically meaningful health benefits, Part 2: What to look for and how to recommend an effective fiber therapy. Nutr Today 50: 90-97, 2015.

145. McRorie JW Jr: Evidence-based approach to fiber supplements and clinically meaningful health benefits, Part 1: What to look for and how to recommend an effective fiber therapy. Nutr Today 50: 82-89, 2015.

146. Rutten JM, Korterink JJ, Venmans LM, Benninga MA and Tabbers MM: Nonpharmacologic treatment of functional abdominal pain disorders: A systematic review. Pediatrics 135: 522-535, 2015.

147. Shah SL and Lacy BE: Dietary interventions and irritable bowel syndrome: A review of the evidence. Curr Gastroenterol Rep 18: 41, 2016.

148. Ansari R, Attari F, Razjouyan H, Etemadi A, Amjadi H, Merat S and Malekzadeh R: Ulcerative colitis and irritable bowel syndrome: Relationships with quality of life. Eur J Gastroenterol Hepatol 20: 46-50, 2008.

149. Ford AC, Chey WD, Talley NJ, Malhotra A, Spiegel BM and Moayyedi P: Yield of diagnostic tests for celiac disease in individuals with symptoms suggestive of irritable bowel syndrome: Systematic review and meta-analysis. Arch Intern Med 169: 651-658, 2009.

150. Brandt LJ, Prather CM, Quigley EM, Schiller LR, Schoenfeld P and Talley NJ: Systematic review on the management of chronic constipation in North America. Am J Gastroenterol 100 (Suppl 1): S5-S21, 2005.