A Rough Energy Landscape to Describe Surface-Linked Antibody and Antigen Bond Formation

Laurent Limozin, Pierre Bongrand & Philippe Robert

Antibodies and B cell receptors often bind their antigen at cell-cell interface while both molecular species are surface-bound, which impacts bond kinetics and function. Despite the description of complex energy landscapes for dissociation kinetics which may also result in significantly different association kinetics, surface-bound molecule (2D) association kinetics usually remain described by an on-rate due to crossing of a single free energy barrier, and few experimental works have measured association kinetics under conditions implying force and two-dimensional relative ligand-receptor motion. We use a new laminar flow chamber to measure 2D bond formation with systematic variation of the distribution of encounter durations between antigen and antibody, in a range from 0.1 to 10 ms. Under physiologically relevant forces, 2D association is 100-fold slower than 3D association as studied by surface plasmon resonance assays. Supported by brownian dynamics simulations, our results show that a minimal encounter duration is required for 2D association; an energy landscape featuring a rough initial part might be a reasonable way of accounting for this. By systematically varying the temperature of our experiments, we evaluate roughness at 2k_BT in the range of previously proposed rough parts of landscapes models during dissociation.

Ligand-receptor interactions have long been described with the formalism elaborated by chemists for reactions in solution, i.e., affinity at equilibrium, and kinetics by on-rate and off-rates. However, ligand-receptor interactions occurring at cell-cell interfaces may differ significantly from what happens in solution. First, forces may be applied to the interaction either directly (e.g. via molecular motors) or indirectly (e.g. via hydrodynamic forces). Second, relative ligand-receptor motion is bi dimensional (2D) instead of tri dimensional (3D), being limited to the membrane plane, with further confinement arising from objects such as membrane domains or cytoskeleton. Such alterations in transport should strongly affect kinetics of bond formation1,2. For example, the kinetics of the B Cell Receptor (BCR, structurally identical to an antibody linked to a B-cell surface) interaction with antigen may differ strongly from the kinetics of antibody-antigen interaction in solution (as was already shown for the similar T Cell Receptor-Major Histocompatibility Complex bound peptide (TCR-pMHC) interaction3–6). Both BCR-antigen bond formation and bond rupture occur in 2D conditions, and are critical for B cell activation during the immune response. First, most of the antigen detected in a lymph node by B lymphocytes prior to their activation is not in soluble form but linked to resident macrophages or dendritic cells7–9. B lymphocytes make <endocytic synapses> with these cells10,11, and indeed the B lymphocyte was shown to pull on its BCR, this pulling being critical to ligand discrimination12. Second, during somatic hypermutation (which may follow B lymphocyte activation and where several mutation-selec tion cycles in the lymph node lead to a strong increase in antibody affinity, from 10^4M up to 10^10M13,14) B cells also do probe their ligand by exerting a force on the BCR-antigen bond. This pulling phase is also of considerable importance for ligand discrimination15,16. In addition, association kinetics of the BCR-antigen bond (and resulting antibody-antigen bond) could be specifically modified during affinity maturation. Foote and Milstein early described an increase in on-rate16, which was recently confirmed in another model17,18.

The effect of a disruptive force on off-rate has been measured for numerous molecular interactions at the single molecular level, and plays a direct physiological role in interactions such as selectin-PSGL119,20 and TCR-pMHC3–5, thus emphasizing the need for such measurements. On-rate measurements in 2D remain scarce and could benefit from further exploration4,21. Indeed, while the relationship between bond rupture...
and complex energy landscapes describing molecular interaction has been extensively studied\(^2\), the description of bond formation is still based on on-rates, corresponding to one free energy barrier (\(\Delta E_A\)) leading to one free energy well (see Fig. 1a). Probability of bond formation as a function of encounter duration \(t_e\), is given by

\[
P(t_e) = 1 - \exp(-k_{on} \times t_e)\]

(1)

where \(k_{on}\) is the on-rate. Recently, we observed discrepancies between bond formation measurements performed with the laminar flow chamber and the on-rate model. Probability of bond formation was not proportional to encounter duration: we proposed a bond formation model\(^{23,24}\) based on a rough initial part in the energy landscape (the rough energy landscape being a concept first suggested by Zwanzig\(^25\) in another context). In this model, the first part of the energy landscape is made of numerous small energy peaks (forming the rough part of the landscape, of length \(l\) and roughness \(\varepsilon\)) before a free energy well (again, only the first well of several possible is shown, and further parts of energy landscape are suggested by dotted line). Probability of crossing the rough part of the energy landscape as a function of encounter duration \(t_e\), is given by

\[
P(t_e) = f_E \times \text{erfc}\left(\frac{f_{on}}{t_e}\right)\]

(2)

where \(f_E\) is a phenomenological factor assumed to represent the proportion of properly folded and functional molecules, \(\text{erfc}\) is the complementary error function, and \(t_{on}\) is a characteristic time of the bond. From a theoretical point a view, recent reports suggest that binding kinetics of membrane attached molecules can be recalculated by accounting for membrane fluctuation and roughness\(^{26-28}\). However, the molecular intrinsic association rate is not questioned in these studies.

Figure 1. **Two alternative energy landscapes for bond formation.** (a) classical energy landscape formed by a free energy peak \(\Delta E_A\) followed by a free energy well (only the first well of several possible is shown, with further parts of energy landscape suggested by dotted line). Probability of crossing \(\Delta E_A\) as a function of encounter duration \(t_e\), is given by \(P(t_e) = 1 - \exp(-k_{on} \times t_e)\). (b) rough energy landscape with numerous small peaks resulting in first part of roughness \(\varepsilon\) and length \(l\) followed by a free energy well (again, only the first well of several possible is shown, and further parts of energy landscape are suggested by dotted line). Probability of crossing the rough part of the energy landscape as a function of encounter duration \(t_e\), is given by \(P(t_e) = f_E \times \text{erfc}\left(\frac{f_{on}}{t_e}\right)\).
In a laminar flow chamber, receptor-coated microspheres move in a shear flow on top of a surface bearing ligand molecules. If a receptor binds its ligand, the microsphere stops, while a force is immediately applied to the bond. During an experiment at a given shear rate, the number of association events and the total distance travelled by microspheres after sedimentation are measured, their ratio being called “binding linear density” (in \(\mu m^{-1} \)). A first simulation work follows to describe the microspheres and ligand and receptor movements responsible for bringing ligand and receptor together prior to their interaction, thus calculating the distribution of the durations during which one ligand may interact with one receptor (or “encounter durations”) for the experimental condition. A second simulation work uses binding models to retrieve simulated binding linear density, and permits comparison of these models to the experimental binding linear density\(^24,29,30\). The distribution of durations during which one ligand may interact with one receptor (or “encounter durations”) is essential for calculation of kinetic rates\(^30,31\). In assays where one of the reactants is in solution such as surface plasmon resonance, this distribution depends solely on diffusion. This distribution is directly controlled in a laminar flow chamber, usually by varying the shear rate\(^25\). In the present study, we added two innovative features to the laminar flow chamber: first, the distance between microsphere and surface was varied by tilting the set-up (see Fig. 2a,b). This changed the distribution of encounter durations independently of shear, thus independently of applied force. This allowed us to obtain a large number of experimental conditions, differing either by shear rate or average microsphere distance to the surface, that were fitted for each binding model with the same set of parameter. This permitted to compare the validity of each binding model, and supported at the same time the validity of the model of microsphere and molecular movement. Second, temperature was controlled and systematically varied to obtain quantitative information on the thermodynamics of the process. Besides, to measure kinetics, it is necessary to collect a large number of individual association and dissociation events due to their stochastic nature. We built a new automated laminar flow chamber set-up in order to maximize data acquisition, used to measure the association and dissociation kinetics of a model antibody-antigen system at the single molecular level. We systematically varied shear rate and tilt angle to put our numerical models to test and to compare two alternative models of binding kinetics. One model was based on one free energy barrier, giving a classical on-rate (\(k_{on} \)), the second model was based on an energy landscape featuring a rough initial part, giving a minimum encounter time model (\(t_{m} \)). We show that 2D association kinetics strongly differs from 3D association kinetics measured using surface plasmon resonance.

Figure 2. (a) new automated flow chamber set-up consisting of two syringe pumps, an agitator and a thermally regulated bath connected to a controller, and a flow chamber with inner thermal regulation piping mounted on a hinged microscope stage. A section of a single flow chamber is represented here for clarity (the actual device consists in eight independent chambers machined side-by-side in a single brass block). (b) tilted set-up. (c) principle view of the flow chamber. Distance (\(h \)) between microsphere surface and underneath chamber floor depends on its weight (\(W \)) and thermal energy. G is the shear rate. \(h \) is minimal with the chamber parallel to the horizontal plane. (d) principle view of a flow chamber tilted of angle \(\theta \) reducing the component of weight directed toward the chamber’s wall and increasing \(h \).
and that a rough energy landscape resulting in a minimal encounter time may be more suitable than an on-rate
to describe association kinetic. By varying the temperature, we described more precisely the energy landscape, as
we estimated the roughness of its initial part.

Results

Surface plasmon resonance measurements. Surface plasmon resonance was used to measure the
kinetics of this antibody-antigen bond in soluble form (see Supplementary Fig. S1). Incremental amounts of solu-
able anti-HLA were incubated on pMHC coated surfaces and the SPR response was monitored with time. On-rate
(k_{on}) was determined by fitting directly the kinetics of the surface plasmon resonance signal, using standard
equation implemented in surface plasmon resonance analysis software. As off-rate (k_{off}) was low, its measurement
by kinetics of the surface plasmon resonance signal was feared imprecise, so affinity (K_D) was measured at equi-
librium and off-rate calculated as

$$k_{off} = K_D \times k_{on}$$

Results were as follows: $k_{on} = 1.4 \pm 0.3 \times 10^{5} M^{-1} s^{-1}$, $K_D = 1 \pm 0.3 \times 10^{-8} M$, calculated $k_{off} = 1.4 \times 10^{-3} s^{-1}$.

Evidencing single molecular association under 2D conditions. Single bond measurements were per-
formed using the usual method for laminar flow chamber experiments. Flow chamber experiments were per-
formed on substrates coated either without ligand as a negative control, or coated with seven different amounts
of ligand, doubling from one condition to the next, thus varying relatively from one to sixty-four (incubation
concentrations were varied from 0.0025 µg/ml to 0.16 µg/ml). Experiments were repeated on average 7 times per
density condition; 6 shear rate conditions were applied for each density condition, from 20s⁻¹ to 120s⁻¹. Force on
bond was calculated as

$$F = \sqrt{a/2R(T+\Gamma/a)}$$

with

$$T = 1.7005 \times 6\pi \mu a^2 G$$

and

$$\Gamma = 0.9440 \times 4\pi \mu a^2 G$$

(with T the hydrodynamic traction on the microsphere, Γ the torque on the microsphere, a the microsphere
diameter (4.5µm), R the total bond length (24 nm), μ the medium viscosity (10⁻³ Pa.s), and G the shear rate)³²,
exerting hydrodynamic forces on the bonds from 38pN to 228pN respectively. For the four lowest amounts of
ligand (0.0025 µg/ml, 0.005 µg/ml, 0.01 µg/ml and 0.02 µg/ml, forming an eight-fold range), shape of survival
curves for a given shear rate remained unchanged, while binding linear density varied proportionally to the
amount of deposited ligand (see Fig. 3a,b). In this range, arrests were therefore considered as being the conse-
quence of formation of single molecular bonds. We chose the second highest density (0.01 µg/ml) in this range for
the following experiments.

Besides, we quantified the HLA A2 antigen deposited on these surfaces by immunofluorescence. The amount
of HLA A2 antigen deposited at 0.01 µg/ml was of 1 molecule/µm², which was consistent with single molecular
association for evenly distributed ligand molecules on the chamber surface.32,33. Initial off-rates were calculated
as the initial slope of the bond survival curve (measured between bond detection to 0.5sec). Values ranged from
1.8s⁻¹ for applied force of 38pN to 3.4s⁻¹ for applied force of 228pN.

Effect of microsphere height on association kinetics. The probability of bond formation strongly
depends on the distance between antibody and antigen, which determines the distribution of "encounter
durations". We systematically varied the average distance between the antibody-bearing microspheres and the
antigen-bearing glass surface, and thus the experimental distribution of encounter durations. The time-averaged
microsphere distance relative to an underlying horizontal surface depends on thermal motion, on microsphere
weight and on surface forces that we measured under similar conditions in a previous work. The micro-
sphere distance relative to an underlying horizontal surface depends on thermal motion, on microsphere
weight and on surface forces that we measured under similar conditions in a previous work.32. Micros-
pheres toward the chamber surface was reduced when the angle was increased from horizontal plane
(see Fig. 2a,b). Average microsphere height thus increased with angle relative to horizontal plane (see Fig. 4a,b).
Change in microsphere velocity due to the weight component parallel to the chamber surface was small relatively
to the microsphere velocity range; modification of force applied on a ligand-receptor interaction was therefore
also small, as was shown by numerical simulations of microsphere motion (see Fig. 4a). Thus, the distribution
of encounter durations was experimentally varied as a function of chamber's angle and of shear rate (see Fig. 4c
for examples resulting of numerical simulations). Experiments were performed with the chamber set at 0°, 30°,
40°, 45°, 50°, 60°, 65°, 70°, 75° and 80° relative to the horizontal plane, and with 6 different shear rates for each tilt
angle of the chamber. For each given angle a strong decrease of binding linear densities was seen when velocity
increases (see Fig. 5a to j). A moderate increase of the off-rate (less than twofold, from 1.8s⁻¹ to 3.4s⁻¹) was also
observed. Besides, for a given velocity, angle increase led to a strong diminution of binding linear densities (up to
nine fold, see Figs 4d and Fig. 5a to i), while off-rates remained unchanged (data not shown).
We used numerical simulations to calculate the distributions of encounter durations for each experimental condition (see Fig. 4c). We compared two bond formation models by calculating for each experimental condition the binding linear densities predicted by our models according to distributions of encounter duration t_{e}. One experimental condition consists of one angle of the set-up and one shear rate. We report in total $n = 35$ different experimental conditions represented each by one point in Fig. 5a to i and also Fig. 6a, b. The first bond model described bond formation with a classical on-rate k_{on}^{2D} (i.e., one free energy barrier leading to one free energy well), following Eq. 1, the 2D on-rate k_{on}^{2D} being the sole free parameter to fit experimental data. The second bond model defined bond formation as kinetically limited by slow diffusion through a rough part of energy landscape leading to a free energy well23. The rough energy landscape led to a minimal encounter duration and contained two free parameters, following Eq. 2.

One adjustable parameter was the minimal encounter duration t_{on}, the other adjustable parameter was the prefactor f_E with both values depending on bond geometrical parameters φ_{max} and ΔR_{max} (see Fig. 6) that define the diffusion volumes of both reactive species. We estimated the effect of ΔR_{max} and φ_{max} by calculating the values of binding kinetics obtained through each bond model with systematic variation of φ_{max} values (from 0.1 rad to 1.5 rad) and ΔR_{max} values (from 0.5 nm to 2 nm, see Fig. 7a, b). f_E parameter ranged from $f_E = 0.2$ for $\Delta R_{max} = 2$ nm to $f_E = 0.9$ for $\Delta R_{max} = 0.5$ nm (see Fig. 7c). While these parameters showed an effect on the quality of fit of the on-rate (k_{on}^{2D}) model, they had very little effect on quality of fit by the rough landscape (t_{on}) model (see Fig. 7d). To limit the number of free parameters, we set geometrical parameters at $\Delta R_{max} = 1$ nm and $\varphi_{max} = 0.5$ rad for further calculations and discussion as both values were reasonable, and as their effect on t_{on} was limited. Simulated binding linear densities were calculated for each experimental condition (i.e., angle of the set-up and shear rate) using the best adjustable parameters for the whole set of data, for both on-rate and rough energy landscape models. The on-rate (k_{on}^{2D}) model best fitted data with $k_{on}^{2D} = 22 s^{-1}$ (correlation coefficient $r = 0.870 \pm 0.086$), while the rough landscape (t_{on}) model best fitted experimental data with prefactor $f_E = 0.42$ and minimal encounter duration t_{on}.

Figure 3. Proof of single molecular bond measurements: four HLA A2 densities (0.0025 μg/ml, 0.005 μg/ml; 0.01 μg/ml, 0.02 μg/ml) were used in the flow chamber, experiments were performed for 6 shear rates (or microsphere velocity). For one given shear rate, (here, $60s^{-1}$) binding linear densities (a) increased roughly linearly with the amount of ligand (red line is a linear fit of data), while the shapes of survival curves (with instantaneous slope equal to k_{off} at a given time point) did not change (b).
duration \(t_{on} = 0.25 \text{ ms} \) (correlation coefficient \(r = 0.959 \pm 0.049 \)), see Fig. 5a to j and also Fig. 6a,b. Overall, the rough landscape \((t_{on})\) model fitted the experimental data better as was assessed by two different statistical tests: First, Fisher’s Z-test showed a significant difference between the two correlations, with \(p = 0.024 \). Second, by noting \(e_i \) the linear density of binding in experimental condition \(i \), \(s_i \) was the corresponding simulated linear density of binding obtained from the global fit of the with one of the bond models, and \(n \) was the total number of experimental conditions, parameters of linear regression were written as follows:

\[
e_i = \beta_0 + \beta_1 s_i + \text{error}_i
\]

(7)

Expected values of the parameters were \(\beta_0 = 0, \beta_1 = 1 \). Parameters \(\beta_0 \) and \(\beta_1 \) may be estimated as

\[
\beta_{E0} = \frac{\sum_{i} e_i - \beta_{E1} \sum_{i} s_i}{n}
\]

(8)

and as

\[
\beta_{E1} = \frac{\sum_{i} s_i \sum_{i} e_i - n \sum_{i} s_i e_i}{(\sum_{i} s_i)^2 - n \sum_{i} s_i^2}
\]

(9)

respectively for each bond models. The on-rate \((k_{on2D})\) model yielded values of \(\beta_{E0} = 0.00057, \beta_{E1} = 0.4287 \). The rough landscape \((t_{on})\) model yielded better values of \(\beta_{E0} = 0.00021, \beta_{E1} = 0.8411 \). Finally, to rule out the possibility that two adjustable parameters in rough landscape \((t_{on})\) could explain its better fitting of experimental results compared to the on-rate \((k_{on2D})\) model, we tested the fit of experimental data by the rough landscape \((t_{on})\) model with several fixed values of prefactor \(f_E \) and a single free parameter (minimal encounter duration \(t_{on} \)) (see Table 1):
Figure 5. (a–i) Binding linear densities measured in single molecular bond conditions for various shear rates and various set-up angles: for a given angle, binding linear density is plotted versus average microsphere velocity, for angles ranging from 0 to 75° (80° is not plotted as adhesion was very low and only one single velocity condition had a significant number of adhesion events). For each individual graphic, results of a global fit of the data by either the t_{on} model (continuous red line) or the k_{on} model (dotted black line) for the corresponding condition is shown to illustrate the general better fitting of the t_{on} model. (i) Binding linear densities plotted versus average microsphere velocity after normalization. Normalization is done for a given condition by dividing the total number of adhesion events by the fraction of simulated microspheres trajectories during which the lower surface is below 24 nm (i.e., the fraction of time during which ligand and receptor are at reach, see Fig. 4B). Normalized fit of the data by t_{on} model is shown by a continuous red line for each condition, normalized fit of the data by the k_{on} model is shown by a dotted black line for each condition.
Temperature and roughness measurement. We measured the kinetics of bond formation and rupture for temperatures 15 °C, 20 °C, 25 °C, 30 °C, 35 °C, 40 °C and 45 °C, during flow chamber experiments performed in single molecular bond condition, with a horizontal chamber and using the same 6 different shear rates. Bond formation kinetics increased with temperature (Fig. 8a), while bond rupture kinetics remained relatively unchanged (data not shown). We applied the rough energy landscape model for each experimental condition (i.e., temperature and shear rate) by calculating the binding linear densities predicted by our model according to distributions of encounter duration t_{enc}. We set the prefactor parameter at $f_E = 0.15$ in order to keep the bond intrinsic parameter t_{on} identical to the value obtained at similar temperature in the previous set of experiments.
Figure 7. Molecular geometry used to simulate encounter durations. (a) Antibodies were linked covalently to a microsphere’s surface (grey, top), and were hinged between Fc fragment (of length $L_1 = 8\, \text{nm}$) and Fab fragment (of length $L_2 = 8\, \text{nm}$) through a 6 amino acids chain; HLA A2 (of length $L_3 = 8\, \text{nm}$) were linked to a streptavidin surface through a BirA sequence-linked biotin. We assumed that both binding sites were able to diffuse in shell-shaped volumes described by their thickness ΔL_2 and ΔL_3 both equal to $\Delta R_{\text{max}}/2$ (in red) and respectively angle ϕ_1 and angle ϕ_2 (both in red with maximum equal to $\phi_{\text{max}}/2$). Effect of systematic variation of bond geometry parameters:

- $\Delta R_{\text{max}} = 0.5\, \text{nm}$
- $\Delta R_{\text{max}} = 1\, \text{nm}$
- $\Delta R_{\text{max}} = 1.5\, \text{nm}$
- $\Delta R_{\text{max}} = 2\, \text{nm}$

Effect of systematic variation of bond geometry parameters:

- t_{on}
- k_{on}
- $\Delta R_{\text{max}} = 0.5\, \text{nm}$
- $\Delta R_{\text{max}} = 1\, \text{nm}$
- $\Delta R_{\text{max}} = 1.5\, \text{nm}$
- $\Delta R_{\text{max}} = 2\, \text{nm}$
Effect of bond length play $\Delta R = \Delta L_2 + \Delta L_3$ and of maximum rotation angle $\phi_{\text{max}} = \phi_1 + \phi_2$ on calculated k_{on} and t_{on} obtained by fitting all experimental data with each bond model: (b) prefactor f_n in the t_{on} model plotted versus ϕ_{max} for ΔR_{max} varying from 0.5 nm to 2 nm; (c) effect of systematic variation of ΔR_{max} and ϕ_{max} on residuals from fits of all experimental data with each bond model. A residual ϵ was defined as $\epsilon = \sum (\log e_i - \log s_i)^2$ where e_i was the binding linear density in experimental condition, s_i was the corresponding simulated binding linear density obtained from the global fit of the data with one of the bond models, and $n = 35$ was the total number of experimental conditions; (d) t_{on} plotted versus ϕ_{max} for ΔR_{max} varying from 0.5 nm to 2 nm; (e) $k_{\text{on}2D}$ plotted versus ϕ_{max} for ΔR_{max} varying from 0.5 nm to 2 nm. On the whole, t_{on} model was less dependent on bond geometry parameters than $k_{\text{on}2D}$ model, while residual of t_{on} model was systematically smaller.

Correlation between experimental and simulated binding linear densities were calculated (Fig. 8a). The results again showed that the rough landscape (t_{on}) model satisfactorily fitted experimental data, with correlation coefficient $r = 0.934 \pm 0.062$. Linear regression parameters were calculated as shown for microsphere height variation assays, with $\beta_2 = 0.00025$, $\beta_3 = 0.8080$. The variation of $t_{\text{on}}(T)$ as a function of temperature T allowed us to estimate the roughness of the energy landscape. Conversely, we could not satisfactorily fit the Arrhenius law to the temperature dependence of $k_{\text{on}2D}$ further supporting the rough landscape (t_{on}) model. The diffusion coefficient $D(T)$ in a rough energy landscape varies as a function of temperature T following

$$D(T) = D_0 e^{-\beta (k T)^2}$$ \hspace{1cm} (10)

where ε is the roughness of the energy landscape23. We defined bond formation as the diffusive crossing of a rough section of the energy landscape, which depends on duration $D/I(T)$ where I is a parameter intrinsic to the bond with the dimension of a length23. Variation of t_{on} as a function of temperature can thus be written as

$$t_{\text{on}}(T) = t_{\text{on}}^{2D} e^{(k T)^2}$$ \hspace{1cm} (11)

We fitted this function to experimental $t_{\text{on}}(T)$ measured at different temperatures to retrieve roughness ε (Fig. 8b). This gave approximately $\varepsilon = 7 \times 10^{-21} \text{foulde}$, a value close to $2kT$ at 273K.

Discussion

In this work, we measured association kinetics of an antibody and its antigen in two radically different conditions to allow comparison between 2D and 3D association. It was first measured in a classical 3D assay using surface plasmon resonance. In surface plasmon resonance assays, one molecular specie is tied to a surface, while the other diffuses freely in solution. Surface plasmon resonance retrieved here $k_{\text{on}} = 1.4 \pm 0.3 \times 10^9 \text{M}^{-1} \text{s}^{-1}$, in the usual range for antibody-antigen interactions. Second, association kinetics was measured in a 2D assay. In such assays, both molecular species are linked to surfaces. Several biophysical methods can measure 2D association kinetics at the single molecular level, including atomic force microscopy, optical tweezers, biomembrane force probe and the laminar flow chamber23,24,31,34. The latter method arguably provides the best way of controlling the duration of very brief encounters. Ligand bearing surface and receptor bearing surface are approached to put ligand-receptor in the vicinity and to allow interaction, then they are pulled apart for bond detection and lifetime measurement. The pulling phase implies a force exerted on the bond. This was done here with the laminar flow chamber, retrieving $k_{\text{on}2D} = 22 \text{ s}^{-1}$. We thus had the opportunity to directly compare on-rates measured in the two conditions. In principle, 2D and 3D quantities are related trough (see refs 31 and 35):

$$k_{\text{on}2D} = c^* \times k_{\text{on}3D}$$ \hspace{1cm} (12)

where c^* represents the effective concentration of one ligand in the diffusion volume. Following our geometrical hypotheses (Fig. 6), the diffusion volume $V_{\phi_{\text{max}}}$ is written:

$$V_{\phi_{\text{max}}} = (R^3 - (R - \Delta R_{\text{max}})^3) (1 - \cos \phi_{\text{max}})^2 (2 + \cos \phi_{\text{max}}) \pi/3$$ \hspace{1cm} (13)

The effective concentration is written

$$c^* = 1/(6 \times 10^{23} \times V_{\phi_{\text{max}}})$$ \hspace{1cm} (14)

in moles per unit volume.

This yields $k_{\text{on}3D} = V_{\phi_{\text{max}}} \times 6 \times 10^{23} \times k_{\text{on}2D} \times 10^{-15}$ with $V_{\phi_{\text{max}}}$ in μm^3 and $k_{\text{on}2D}$ in ms^{-1}. Taking total bond length $R = 24 \text{nm}$, $\Delta R_{\text{max}} = 1 \text{nm}$ and $\phi_{\text{max}} = 0.5 \text{ rad}$, we obtained $k_{\text{on}3D} = 946 \text{M}^{-1} \text{s}^{-1}$. Strikingly the interaction displayed two orders of magnitude slower association rate measured in 2D than measured in 3D. While this result depends on the values of parameters ΔR_{max} and ϕ_{max} for a large range of these parameters, $k_{\text{on}2D}$ remains largely inferior to the k_{on} value measured with surface plasmon resonance. Importantly, the laminar flow chamber measures association kinetics by counting individual binding events subjected to a disruptive force very shortly after binding: therefore, it measures interactions submitted to a certain amount of force, with a certain temporal resolution. As a consequence, single interactions with a sufficient strength and a sufficient lifetime may be selected, reflecting therefore a relatively deep part of the energy landscape. In contrast, surface plasmon resonance measures kinetics in the absence of force other than molecules thermal motion. The relevance of 3D measurements where short-lived or weak interactions account for association kinetics as well as longer interactions, and where no mechanical force is applied, is therefore questionable for 2D molecular interactions. We propose that the
The definition of 2D association kinetics should be function-oriented, that is, include a force resistance or lifetime parameter. In our experiments, the kinetics were measured with forces ranging from 38pN to 228pN, which match the order of magnitude of forces exerted by cells on receptors during the immune response. The high difference between 2D and 3D association kinetics could be due to early breaking in 2D of short-lived bonds, not detected during flow chamber experiment but detected in surface plasmon resonance, and that could have evolved toward stronger bonds in the absence of force through the previously evidenced spontaneous maturation process. Such an increase in initial off-rate could be due to direct force-facilitated rupture, or to force-impaired...
reinforcement. Indeed, bond survival curves (see Fig. 3b) showed fast initial bond rupture, especially if compared with ruptures occurring after several seconds of lifetime.

We measured association kinetics in the laminar flow chamber while systematically varying the distribution of encounter durations between ligand and receptor, either through microsphere’s height variation or through shear rate variation. We found that the rough energy landscape model introduced earlier achieved significantly better correlation than the on-rate model with data. The rough energy landscape model uses two free parameters (minimal encounter duration t_{\min} and prefactor f_E), while the on-rate model uses one free parameter (on-rate k_{on}). Comparison of on-rate model and minimal encounter duration model with a single free parameter and various pre-set f_E still showed better fit of experimental data by the minimal encounter time model (see Table 1). We interpreted the minimal encounter duration t_{\min} as a direct consequence of slow diffusion through the rough part of the landscape and it was the main value describing bond formation. We interpreted the prefactor f_E (that is rather close to one) as a phenomenological parameter that represent the proportion of functional ligand and receptor on the surfaces, with losses due to protein denaturation or incorrect orientation. In an on-rate model, this aspect would be lost, as any loss of functional ligand or receptor would appear as a lowered on-rate. As a major function of proteins is to bind other proteins or molecules, association kinetics are of primary importance, and the classical on-rate model has proved extremely useful. Several methods, as described earlier, are able to measure association kinetics at the single molecular level (atomic force microscopy, optical tweezers and biomembrane force probe). Yet, all of them present relatively large encounter durations (50 ms in a study using biomembrane force probe44; 60 ms in a study employing AFM51). Other methods operating in 2D conditions but not at the single molecular level exist, such as the “thermal fluctuation assay”52 or interferometry of giant liposomes39. In these methods, neither a disruptive force nor encounter durations are controlled43,44. In addition, several theoretical works have quantified association rates between moving surface-bound molecules21,29,30,40,42, including the effect of a compressive force41. In this body of work, intrinsic bond association kinetics was described as an on-rate. Yet, the on-rate model arose experimentally from solution chemistry, where encounter durations are governed solely by thermal agitation and are not otherwise experimentally adjustable, and where, conceptually, single activation energy peaks are often suitable to describe energy landscapes. In a laminar flow chamber, the effect of change in the distribution of encounter durations on molecular interactions can be measured. Short encounter durations are generated, distributed from 0.1 to 10 ms. The data obtained here challenge the on-rate model, and favor a minimum encounter duration model. A complex landscape with successive energy wells may also account for this set of data, but the high number of free parameters in such a model renders its validation difficult53. Roughness appears as a robust means to describe this complex part of the energy landscape that leads to binding. The rough part of the energy landscape might contain the short-lived or weak bound states envisioned earlier, that would not be detected by the laminar flow chamber but by surface plasmon resonance. Indeed, the $2kT$ roughness value is of the order of magnitude of the binding energy of some surface-bound molecular interactions41. It is also comparable with the order of magnitude of roughness measured during dissociation of biotin-streptavidin bond (4.5kT to 8kT ± 1kT)40,44 or during folding and unfolding of N terminal domain of phosphoglycerate kinase (4kT to 5kT)55. Roughness could results from diffusive displacement of peptidic chains before the actual free energy gain may take place46,47. Such conformational change suits the model of antigen-antibody binding as the sum of numerous weak interactions between amino acids residues after conformational adjustment48.

The 2D quantification of antibody-antigen or BCR-antigen kinetics under force is fully relevant to the physiology of the immune system, as molecular interactions taking place at surface-surface interfaces are indeed common. A most important case is the interaction between a BCR and its ligand in a lymph node, during the initial detection of its ligand by a B cell that may trigger its activation. B lymphocytes seem to detect mainly the affinity of BCR-antigen interaction49 at a very early stage, through poorly understood mechanisms. These may include the facts that B cell pulls on the antigen10 thus strongly reducing the lifetime of BCR-antigen bonds, and that BCR forms very early oligomers then microclusters50 at interaction sites with the antigen, without the need for multivalent antigen10,51. In order to decipher how the B lymphocyte may sense affinity through oligomer formation, we suggest that strong signaling differences could arise from bonds whose association kinetics are governed by minimal encounter durations rather than by on-rate. Oligomerization depends on association kinetics of forming interactions, during a time limited by dissociation kinetics of already established interactions. Following an on-rate model, the number of newly formed interactions would be linearly dependent on lifetime of formed interactions. Strikingly, a minimal encounter duration would act as a threshold: only interactions with lifetime beyond the minimal encounter duration would ensure oligomerization, and thus signal propagation. This could be a way to discretize cell response to ligand-receptor binding properties, on a short timescale as observed during B cell responses49. In T-cell, in a recent work, force generation and transmission through TCR was linked to the activation potency of ligands prior to cell activation, showing supramolecular complex formation implying LCK while under tension46. More generally, the modulation of t_{\min} might allow cells to analyze surrounding surfaces likely to expose diverse ligands with brief touches of controlled duration.

Conclusion

The laminar flow chamber allows to measure 2D association kinetics of biomolecules. 2D and 3D association kinetics of an antibody-antigen bond are strongly different, suggesting that a relevant quantification of 2D binding should include a reference to force. Here, association kinetics are measured in a force range relevant to cell biology. The laminar flow chamber offers also a unique control on the distribution of short-lived encounters durations that challenges the classical on-rate model. A rough energy landscape model appears more suitable than a single activation energy landscape to describe antibody-antigen or BCR-antigen binding, with roughness evaluated at $2k_F$. Additionally, we describe an enhanced laminar flow chamber set-up for time-efficient and enriched quantification of 2D binding kinetics.
Materials and Methods

The automated flow chamber apparatus. We built a new laminar flow chamber set-up with automated agitation and injection of microspheres, automated camera control and automated change of shear rate; additionally the microscope stage could be manually tilted, and sample temperature could be chosen. The experimental set-up is as follows (more details are given in Supplementary Informations section, including Supplementary Fig. 2). Eight independent chambers (8 × 2 × 0.15 mm²) were machined side-by-side in a single brass block roughly the size of a glass slide (75 × 25 mm²), forming a multi-chamber device. Each chamber had a clear PMMA window for sample illumination. A single glass slide formed the bottom of the eight chambers, which were separated by their individual gasket. An inner piping was machined at the periphery for circulation of temperature regulating fluid. The complete set-up (see Fig. 2a) consisted in the multi-chamber device set on an inverted microscope (Leica, Germany) equipped with a video camera (Sony, France) and a × 20 objective lens. A controller (based on a Mega2560 microcontroller, Arduino, Italy) actuated an agitating device holding a reservoir for microsphere suspension connected to one chamber entry, a first syringe pump connected to the microsphere reservoir, a second syringe pump connected to the chamber entry, and controlled microscope illumination. During a typical operating cycle, microsphere suspension was agitated, then injected in the chamber by the first syringe pump. The second syringe pump then established the shear flow at a chosen shear rate, while the camera (IDS, Germany) recorded microsphere displacement (see Fig. 2c) at 50 images per second. Movies were compressed on-the-fly by the IDS U-Eye software using its native M-JPEG codec. The automaton repeated such cycles with a new shear rate until all chosen shear conditions were recorded. Piping was then manually connected to the next chamber. Microsphere height could be controlled by varying the component of gravity directed toward chamber’s bottom (Fig. 2b,d). For this purpose, the microscope and flow chamber were tilted relatively to the horizontal plane, the microscope being bolted to a plate hinged to the bench and held at a chosen angle. Temperature was controlled through circulation of water from a thermally regulated bath in the dedicated piping of the flow chamber device.

Microsphere and surfaces preparation. The functionalized surfaces used in the flow chamber were prepared as follows: 75 × 25 mm² glass slides (VWR, France) were rinsed twice in ethanol then in water. The glass slides were cleaned in a “piranha” solution, a heated mix of 70% H₂SO₄, (Fisher Bioblock, France) and 30% H₂O₂ (50% in water, Sigma-Aldrich, France), for ten minutes, rinsed and stored in deionized water. The glass slides were coated with a poly-L-lysine solution (150000–300000Da, Sigma-Aldrich, France) in 0.02 M phosphate buffer, pH 7.4, 100 μg/ml for 30 minutes, rinsed in phosphate buffered saline (PBS), then incubated with a glutaraldehyde solution (2.5% in 0.1 M borate buffer, pH 9.5, Sigma-Aldrich, France) for 10 minutes, and rinsed in PBS. Glass slides were then incubated with a saturating solution of biotinylated bovine serum albumin (BSA) (100 μg/ml, Sigma-Aldrich, France) in PBS, for 30 minutes, then rinsed with PBS. Glass slides were incubated for 30 minutes in a blocking solution of glycin (0.2 M) and BSA (1 mg/ml) in PBS, rinsed in PBS, then incubated in a saturating streptavidin solution (10 μg/ml in PBS, Sigma-Aldrich, France) for 30 minutes, then rinsed with PBS. One glass slide was mounted in the multi-chamber device, with each well afterwards independently incubated with biotinylated Human Leukocyte Antigen A2 (HLA A2, a Major Histocompatibility Complex class II molecule with antigenic peptide) at a given concentration. HLA A2 molecules were expressed in E. colifrom amino acid 1 to amino acid 278, corresponding to the entire extracellular domain plus 4 amino acids; a biotinylation sequence of 15 amino acids for BirA enzyme was added at the C-terminal end, with biotin linked to the tenth amino acid of this sequence. Functionalized microspheres were prepared as follows: Dynabeads M450 Tosylactivated microspheres (diameter: 4.5 μm, Invitrogen, France) were coated with a monoclonal mouse anti-human HLA A, B, C antibody (MCA485G, Serotec, France), according to the manufacturer’s protocol. Briefly, microspheres were rinsed in 0.1 M pH 9 borax buffer, incubated for 24 h, then rinsed in PBS, and reacted with a glutaraldehyde solution (2.5% in 0.1 M borate buffer, pH 9.5, Sigma-Aldrich, France) for 10 minutes, and rinsed in PBS. Microspheres were then incubated with a saturating solution of TRIS 0.1 M and BSA 0.1% for 4 h at 37 °C. Between experiments, microspheres were stored in this solution at 4 °C with 0.01% sodium azide added.

Trajectories experiments and arrest statistics. Statistics of bond formation was determined by counting the number of microspheres arrests and the total distance travelled by microspheres after sedimentation, as previously described⁰. Statistics of bond rupture was determined by measuring the distances of microspheres arrests (Java plug-ins incorporated in ImageJ (NIH, USA) were written for both purposes). Briefly, a microsphere was considered to be arrested if its position did not change by more than dx = 0.5 μm during τ = 0.2 s, and its velocity before the arrest was within the velocity range of microspheres moving in the shear flow after sedimentation. This range was defined from the histogram of microspheres velocities, as the velocity interval bordering the peak of microsphere velocities that is due to sedimented microspheres. The interval was set at two times the velocity range after sedimentation. The expression of the bond duration true app was obtained with the correction

\[
d_{\text{true}} = d_{\text{app}} + \tau - 2dx/v
\]

where v was the mean velocity of microspheres moving in the shear after sedimentation. The binding linear density under a given condition (i.e., a given shear rate, a given ligand surface density, a given temperature and a given set-up angle relative to the horizontal plane) was defined as the number of arrests divided by the total distance travelled by the microspheres after sedimentation. The binding linear density of specific association was calculated by subtracting from the binding linear density measured with assay surfaces the binding linear density obtained with control surfaces (without HLA A2 molecules). Statistics of bond rupture under a given condition (i.e., a given shear rate, a given ligand surface density, a given temperature and a given set-up angle relative to the horizontal plane) were described by building survival curves of the bonds, obtained by counting the fraction of arrests exceeding the duration t versus t. Standard deviation SD was calculated as the experimental SD between
individual experiments performed in identical conditions. The specific binding linear densities for the reference condition used here (25 °C, horizontal chamber, single molecular bonds observed at 0.01 μg/ml, and 6 different shear rates ranging from 20s⁻¹ to 100s⁻¹) were in average more than twelve time higher than the non-specific binding linear densities under the same conditions. Value of this specific over non-specific binding linear densities ratio ranged from 5 to 39 for all shear rates ranging from 20s⁻¹ to 100s⁻¹ in these conditions, allowing proper measurement of antigen-antibody bond survival and assessment of single molecular bond measurement. This ratio was lower in conditions strongly reducing antibody-antigen interactions (highest shear rates and steep angle of the chamber relatively to horizontal plane). This was not considered a concern as in this work only binding linear densities were considered in such conditions and not bond durations.

Surface plasmon resonance measurements. Surface plasmon resonance experiments were performed using a BIACore T200 (General Electric Healthcare, USA). Surfaces were coated with the biotinylated HLA A2 (0.84 μg/ml perfused for 60s at 30 μl/min) and passivated by BSA (0.01% in PBS infused for 60s at 30 μl/min), while the mouse anti-human HLA A, B, C antibody was used in soluble form (1.88 nM, 3.75 nM, 7.5 nM, 15 nM, 30 nM and 60 nM). Kinetics of association and dissociation were followed through measurement of the surface plasmon resonance signal in single cycle kinetic mode, without regeneration (measurement durations were 480s for association and 600s for dissociation); affinity was measured at equilibrium. Association rate and affinities were obtained by standard fitting of the binding curve using the BIACore analysis software (see Supplementary Fig. 1). Experiments were repeated twice under each condition with consistent results.

Immunofluorescence for HLA A2 quantification. Principle is to tag HLA A2 molecules on typical flow chamber surfaces with a fluorescent antibody, to measure the fluorescence signal per area unit, then to compare it with the fluorescence signal per area unit of known amounts of the same fluorescent antibody in solution forming a thin layer between a glass slide and a coverslide. Test glass slides were prepared as for flow chamber experiment, mounted in the laminar flow chamber and coated with 1 μg/ml, 0.1 μg/ml or 0.01 μg/ml of biotinylated HLA A2 solution, then rinsed twice with PBS, then incubated with 5 μg/ml fluorescent anti-HLA antibody solution (Serotec, France) in the chamber for 20 minutes, then rinsed twice with PBS. The calibration was performed with solutions of fluorescent anti HLA antibody (Serotec, France) of 50 μg/ml, 5 μg/ml, 0.5 μg/ml, 0.05 μg/ml and 0.005 μg/ml in 0.1% BSA in PBS, with 5 μl of each solution deposited between a glass slide and a 22 × 22 mm² coverslide and sealed with nail varnish. Fluorescence signal was measured by a camera (Andor, France) on an Axiovert 200 microscope with a 20 objective with a numerical aperture of 0.8 (Zeiss, Germany); a calibration curve was drawn from signal from antibody solutions then compared to signal from surfaces prepared as for flow chamber experiments for quantification.

Numerical simulations. Numerical simulations were used to assess the microsphere motion and distribution of molecular encounter durations as a function of experimental conditions (shear rate, set-up tilt angle, temperature), they combine dynamics of a microsphere in laminar flow with a calculation of the diffusion volumes of antibody and ligand reactive sites. A molecular encounter was defined to begin and last as long as the diffusion confinement of width equal to 1, and the functions α, Fx, Fy, Fz and Δt are random numbers, with a Gaussian distribution of width equal to 1, and the functions Fx, Fy, Fz and Ks account for the hydrodynamics friction next to the wall.

\[
x(t + \Delta t) - x(t) \approx \left[G \alpha K_y - \frac{\partial U}{\partial z} \sin \theta \right] \Delta t + \frac{2D_o \Delta t \omega_x}{F_x}
\]

\[
y(t + \Delta t) - y(t) \approx \frac{2D_o \Delta t \omega_y}{F_y}
\]

\[
z(t + \Delta t) - z(t) \approx \left[-\frac{D_o \partial F_z}{F_z^2} \frac{\partial U}{\partial z} + \frac{\partial U}{\partial z} \cos \theta + \frac{\partial U}{\partial z} \right] \frac{1}{6\pi \mu a F_z} \Delta t + \frac{2D_o \Delta t \omega_z}{F_z}
\]

\[
D_o = k_B T / 6\pi \mu a
\]

is the bulk diffusion coefficient in absence of wall. μ is the medium viscosity, which is taken to be the one of water. Δt is the time step of the simulation. ωx, ωy, ωz are random numbers, with a Gaussian distribution of width equal to 1, and the functions Fx, Fy, Fz and Ks account for the hydrodynamics friction next to the wall. They are evaluated at z(t), following

\[
F_x(z) = F_y(z) = \exp(0.00332 \ln(z/a)^3 + 0.0193 \ln(z/a)^2 - 0.183 \ln(z/a) + 0.327)
\]

\[
F_z(z) = \exp(0.00577 \ln(z/a)^3 + 0.0922 \ln(z/a)^2 - 0.527 \ln(z/a) + 0.770)
\]

and

\[
K_s(z) = \exp(0.00376 \ln(z/a)^3 + 0.0723 \ln(z/a)^2 + 0.548 \ln(z/a) + 0.689)
\]
using a cubic approximation of numerical results provided by Goldman et al.33,34 as done in our previous works32. The microsphere potential is the sum of gravity potential $U_g(z)$ and interaction with the surface potential $U_i(z)$ following

$$U(z) = U_g(z) + U_i(z) \quad (22)$$

The microsphere-surface potential $U_{\phi,0}(z)$ has been measured previously, in a horizontal configuration (corresponding to $\theta = 0^\circ$)34. Briefly, the method is based on the measurement of the bead-surface distance by Reflection Interference Contrast Microscopy52. Microbeads imaged in RICM appears as Newton's rings, the radius of which is related to the bead-surface distance, through a calibration established previously32. The statistical distribution of bead-surface distance z is obtained from the time-sequence recording of several beads. The histogram of the z distribution $\phi_{\phi,0}(z)$ is used to deduce the bead-surface potential $U_{\phi,0}(z)$ in the form

$$\phi_{\phi,0}(z) \approx \exp(-U_{\phi,0}(z)/k_B T) \quad (23)$$

The force of interaction dU/dz is derived from the measured potential $U(z)$ and approximated with the formula

$$\frac{dU_{\phi,0}}{dz} = a \left(A_1 + A_2 e^{\frac{z - z_0}{\zeta}} \right) \quad (24)$$

with a the microsphere radius, allowing to retrieve parameters $A_1 = -0.1 \mu \text{N/m}$, $A_2 = 0.5 \mu \text{N/m}$, $z_0 = 0 \text{nm}$. For non-zero angle θ, force of interaction dU/dz is written (see ref. 24)

$$\frac{dU}{dz} = a \left(A_1 \cos(\theta) + A_2 e^{\frac{z - z_0}{\zeta}} \right) \quad (25)$$

The initial position of the beads is set in order to follow the bead height distribution

$$\varphi(z) \approx e^{-U(z)/k_B T} \quad (26)$$

using a rejection method24. The influence of microsphere rotation is taken into account as follows24: shear-induced rotation of the microsphere is not modeled, but its effect is calculated as a 0.43-fold reduction of relative surface velocity, effect of rotational diffusion can be largely neglected in our conditions, as demonstrated earlier. Indeed, the rotational diffusion time becomes less than the convection time only for the lowest shear rates and $z \sim L$. The same set of equations is used to account for the effect of temperature on brownian motion, with tilt angle $\theta = 0$ in this case, and explicit dependence of viscosity on temperature55.

Calculation of diffusion volumes of reactive sites is as follows. Antigen-binding site is at the extremity of the Fab fragment of the antibody; Fc fragment (of length $L_1 = 8 \text{ nm}$) and Fab fragment (of length $L_2 = 8 \text{ nm}$) are hinged through a 6 amino acids chain. Recognized epitope is on the distal α_1 domain of the HLA A2 molecule (of length $L_3 = 8 \text{ nm}$), while the C-terminal end of the HLA α_3 domain is linked to the biotin by a 14 amino acids chain. We assume that in both molecules chains non included in immunoglobulin domains give degrees of rotational freedom and some length variability considered as follows: the anchoring points on each surface are separated by a distance equal to $(L_2 + L_3) \pm \Delta R_{\max}/2$, the respective azimuthal angles φ_1 and φ_2, defined as the angles between the segments linking the anchoring points and the vertical, are $\varphi_1 < \varphi_{\max}/2$ and $\varphi_2 < \varphi_{\max}/2$ (for simplicity we lumped these conditions in $\varphi_1 + \varphi_2 < \varphi_{\max}$). In summary, both binding sites are able to diffuse rapidly in shell-shaped volumes described by their thicknesses ΔL_2 and ΔL_3 respectively with $\Delta L_2 + \Delta L_3 = \Delta R_{\max}$ and by their angles φ_1 and φ_2 respectively (see Fig. 7).

The duration of molecular encounter between a ligand (on chamber floor) and a receptor (on bead surface) is estimated with several physical assumptions (see also24): (i) the density of ligand is low and the density of receptors is high; (ii) reactive sites describe shell-shaped diffusion volumes described above (see Fig. 7); (iii) the encounter starts as soon as and hold as long as geometrical conditions defining the intersection of diffusion volumes are fulfilled. These geometrical conditions are defined by the distance and angle between the reactive sites (see Fig. 7). The numerical simulation records all the positions fulfilling the above rules, using a time step $\Delta t = 0.01 \text{ ms}$. As hypothesized in (iii), each encounter duration t_e corresponds to the number of successive time steps where the geometrical conditions are continuously satisfied.

References

1. Yago, T., Zarnitsyna, V. I., Klopopi, A. G., McEver, R. P. & Zhu, C. Transport governs flow-enhanced cell tethering through L-selectin at threshold shear. *Biophys* / 92(1), 330–342 (2007).
2. Bell, G. I. Models for the specific adhesion of cells. *Nature* 464(7290), 932–936 (2010).
3. Huang, K. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. *Nature* 461(7290), 932–936 (2010).
4. Puech, P.-H. et al. Force measurements of TCR/pMHC recognition at T cell surface. *PloS One* 7(6), e22344 (2011).
5. Bergfeld, A., Desai, D. D., Gavhane, A. & Clynes, R. Cell surface recycling of internalized antigen permits dendritic cell priming of B-cells. *Immunity* 23(5), 503–514 (2005).
6. Carrasco, Y. R. & Batista, F. D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. *Immunity* 27(1), 160–171 (2007).
54. Goldman, A. J., Cox, R. G. & Brenner, H. Slow viscous motion of a sphere parallel to a plane wall II Couette flow. *Chemical engineering science* **22**(4), 653–660 (1967).

55. CRC Handbook of chemistry and physics, 44th edition. (Chemical Rubber Publishing, 1963).

Acknowledgements

We thank Dr Anton van der Merwe for the kind gift of HLA A2 molecules, Dr. Pascale Zimmermann, Dr. Antonio Egea Jimenez and Frédérique Lembo for their skilled support with SPR measurements and Dr Pierre-Henri Puech and Dr Kheya Sengupta for fruitful discussions and proof-checking.

Author Contributions

L.L. designed the numerical models, performed the data analysis and the SPR and immunofluorescence experiments, and revised critically the manuscript. P.B. initiated the rough energy model and revised critically the manuscript. P.R. initiated the study, designed the modifications of the laminar flow chamber method, built the automaton, wrote the dedicated analysis programs, performed the laminar flow chamber experiments and wrote the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Limozin, L. *et al.* A Rough Energy Landscape to Describe Surface-Linked Antibody and Antigen Bond Formation. *Sci. Rep.* **6**, 35193; doi: 10.1038/srep35193 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016