Observation of Quantum Criticality with Ultracold Atoms in Optical Lattices

Xibo Zhang,* Chen-Lung Hung, Shih-Kuang Tung, Cheng Chin*

Quantum criticality emerges when a many-body system is in the proximity of a continuous phase transition that is driven by quantum fluctuations. In the quantum critical regime, exotic, yet universal properties are anticipated; ultracold atoms provide a clean system to test these predictions. We report the observation of quantum criticality with two-dimensional Bose gases in optical lattices. On the basis of in situ density measurements, we observe scaling behavior of the equation of state at low temperatures, locate the quantum critical point, and constrain the critical exponents. We observe a finite critical entropy per particle that carries a weak dependence on the atomic interaction strength. Our experiment provides a prototypical method to study quantum criticality with ultracold atoms.

In the vicinity of a continuous quantum phase transition, a many-body system enters the quantum critical regime, where quantum fluctuations lead to nonclassical universal behavior (1, 2). Quantum criticality not only provides novel routes to new material design and discovery (1, 3–6), but also provides a common framework for problems in condensed matter, nuclear physics (7, 8), and cosmology (1, 9). Quantum criticality plays a central role in strongly correlated systems such as heavy-fermion materials (5), spin dimer systems (10), Ising ferromagnets (11), and chromium at high pressure (12).

Ultracold atoms offer a clean setting for quantitative and precise investigation of quantum phase transitions (13–16) and critical phenomena (17). For example, the superfluid-to-Mott insulator quantum phase transition can be realized by loading atomic Bose-Einstein condensates into optical lattices (13). In recent experiments, scaling behavior of physical observables was reported in interacting Bose gases in three (17) and two dimensions (18), and in Rydberg gases (19), where collective behavior is insensitive to microscopic details. In addition, suppression of the superfluid critical temperature near the Mott transition was observed in three-dimensional (3D) optical lattices (20).

Studying quantum criticality in cold atoms on the basis of finite-temperature thermodynamic measurements, however, remains challenging and has attracted increasing theoretical interest in recent years (21–24). We report the observation of quantum critical behavior of ultracold cesium atoms in a two-dimensional (2D) optical lattice across the vacuum-to-superfluid transition. This phase transition can be viewed as a transition between a Mott insulator with zero occupation number and a superfluid, and can be described by the Bose-Hubbard model (25).

Our measurements are performed on atomic samples near the normal-to-superfluid transition, connecting the vacuum-to-superfluid quantum phase transition in the zero-temperature limit.

The quantum phase transition and quantum critical regime in this study are illustrated in Fig. 1. The zero-temperature vacuum-to-superfluid transition occurs when the chemical potential μ approaches its critical value μ_0. Sufficiently close to the quantum critical point, the critical temperature T_c for the normal-to-superfluid transition is expected to decrease according to the following scaling (25)

$$\frac{k_B T_c}{t} = c \left(\frac{\mu - \mu_0}{t} \right)^z$$

(1)

where k_B is the Boltzmann constant, t is the tunneling energy, z is the dynamical critical exponent, ν is the correlation length exponent, and c is a constant. In the quantum critical regime (in the shaded area in Fig. 1), the temperature T_c provides the zero energy scale, and all thermodynamic observables are expected to scale with T (25). Thus, the equation of state is predicted to obey the following scaling (21)

$$\tilde{N} = F(\tilde{\mu})$$

(2)

in which $F(x)$ is a generic function, and

$$\tilde{N} = \frac{N - N_c}{(k_B T)^{2+1/v}} \quad \text{and} \quad \tilde{\mu} = \frac{\mu - \mu_0}{(k_B T)^{1/v}}$$

(3)

are the scaled occupation number and scaled chemical potential, respectively. Here, N is the occupation number, D is the dimensionality, and N_c is the nonuniversal part of the occupation number. For the vacuum-to-superfluid transition in the 2D Bose-Hubbard model, we have $N_c = 0$ and $D = 2$, and the predicted critical exponents are $z = 2$ and $\nu = 1/2$, characteristics of the dilute Bose gas universality class (2, 22, 25). We note that in a 2D system, there can be logarithmic corrections to scaling functions, including those in this study, near the quantum critical point (2). Within the temperature range of our experiment, however, the measurement is consistent with the above scaling laws in the absence of logarithmic corrections. Scaling behavior of T_c in the quantum critical regime was also observed in 2D condensates of spin triplets (10).

Our experiment is based on 2D atomic gases of cesium-133 in 2D square optical lattices (26, 27). The 2D trap geometry is provided by the weak horizontal (r-) confinement and strong vertical (z-) confinement (27), with envelope trap frequencies $f_r = 9.6$ Hz and $f_z = 1940$ Hz, respectively. Typically, 4000 to 20,000 atoms are loaded into the lattice. The lattice constant is $d = \lambda/2 = 0.532 \mu m$ and the depth is $V_L = 6.8 E_R$, where $E_R = k_B \times 63.6$ nK is the recoil energy, $\lambda = 1064$ nm is the lattice laser wavelength, and h is the Planck constant. In the lattice, the tunneling energy is $t = k_B \times 2.7$ nK, the on-site interaction is $U = k_B \times 17$ nK, and the scattering length is $a = 15.9$ nm. The sample temperature is controlled in the range of 5.8 to 31 nK.

We determine the equation of state $n(\mu,T)$ of the sample from the measured in situ density distribution $n(x,t)$ (18, 26). The chemical potential $\mu(x,t)$ and the temperature T are obtained by fitting the low-density tail of the sample where the atoms are normal. The fit is based on a mean-field model that accounts for interaction (28–30).

*To whom correspondence should be addressed. E-mail: xibo@uchicago.edu (X.Z.); cchin@uchicago.edu (C.C.)
Equation of state measured near the quantum critical point can reveal essential information on quantum criticality, as proposed in (28).

We locate the quantum critical point by noting that at the critical chemical potential \(\mu = \mu_0 \), the scaled occupation number \(\tilde{N} = N t / k_B T \) is temperature-independent, as indicated by Eq. 2. Here, we have applied a predicted exponent \(v = 1/2 \). We plot \(\tilde{N} \) as a function of \(\mu \) in the low-temperature range of 5.8 to 15 nK, and indeed observe a crossing point at \(\mu_0 = -4.5 t \) (Fig. 2A, inset). We identify this point as the critical chemical potential \(\mu_0 \) based on Eq. 3. We then evaluate how well the scaled equation of state in the range of \(T = 5.8 \) to 15 nK can collapse to a single curve by computing the reduced chi-squared \(\chi^2 \). The best-fit exponents (Fig. 2B) are determined as \(z = 2.2^{+1.0}_{-0.5} \) and \(v = 0.52^{+0.09}_{-0.10} \). The uncertainties correspond to a 95% confidence level. The predicted values are \(z = 2 \) and \(v = 1/2 \).

From 5.8 to 15 nK, which are high compared to the tunneling scale \(t / k_B = 2.7 \) nK. Deviations become obvious at higher temperatures.

We examine the range of critical exponents \(z \) and \(v \) that allow the scaled equation of state at low temperatures to overlap within experimental uncertainties. Taking \(\mu_0 = -4.5 t \) and various values of \(z \) and \(v \) in the range of \(0 < z < 4 \) and \(0 < v < 1 \), we compute the corresponding scaled occupation numbers \(\tilde{N} \) and scaled chemical potentials \(\tilde{\mu} \) based on Eq. 3. We then evaluate how well the scaled equation of state in the range of \(T = 5.8 \) to 15 nK can collapse to a single curve by computing the reduced chi-squared \(\chi^2 \). The best-fit exponents (Fig. 2B) are determined as \(z = 2.2^{+1.0}_{-0.5} \) and \(v = 0.52^{+0.09}_{-0.10} \). The uncertainties correspond to a 95% confidence level. On the basis of the theoretical value of \(\mu_0 = -4.5 t \), we find the exponents to be \(z = 2.2^{+1.0}_{-0.5} \) and \(v = 0.52^{+0.09}_{-0.10} \). In the following analyses, we adopt \(z = 2 \), \(v = 1/2 \), and \(\mu_0 = -4.5 t \).

Our measurements at different temperatures allow us to investigate the breakdown of quantum criticality at high temperatures. To quantify the deviations, we focus on the temperature dependence of the scaled occupation number \(\tilde{N} \) at the critical chemical potential \(\tilde{\mu} = \mu_0 \) (Fig. 3).

We derive the entropy per particle \(S / N \) as a function of the scaled chemical potential \(\tilde{\mu} = (\mu - \mu_0) / k_B T \) (Fig. 4A). We find the exponents to be \(z = 2.2^{+1.0}_{-0.5} \) and \(v = 0.52^{+0.09}_{-0.10} \). The uncertainties correspond to a 95% confidence level.
Reactions of Solvated Electrons Initiated by Sodium Atom Ionization at the Vacuum-Liquid Interface

William A. Alexander,1 Justin P. Wiens,2 Timothy K. Minton,1,* Gilbert M. Nathanson2*

Solvated electrons are powerful reagents in the liquid phase that break chemical bonds and thereby create additional reactive species, including hydrogen atoms. We explored the distinct chemistry that ensues when electrons are liberated near the liquid surface rather than within the bulk. Specifically, we detected the products resulting from exposure of liquid glycerol to a beam of sodium atoms. The Na atoms ionized in the surface region, generating electrons that reacted with deuterated glycerol, C₃D₅(OD)₃, to produce D atoms, D₂, D₂O, and glycerol fragments. Surprisingly, 43 ± 4% of the D atoms traversed the interfacial region and desorbed into vacuum before attacking C-D bonds to produce D₂.

Radiolysis experiments provide fundamental insights into electron reactivity in protic liquids such as water and alcohols through the use of ionizing reagents, including gamma rays and high-energy electrons, which penetrate deeply into solution. These reagents energize and ionize solvent molecules, creating hydrogen atoms and other free radicals, as well as solvated electrons, e⁻ₐ, often in high enough concentrations to react with each other (I, 2). Electrons and radicals created at the vacuum-liquid interface may behave differently from those in the bulk because of their partial solvation (3–6) and because transient neutral intermediates may evaporate before reacting further. Recent photoionization experiments show that partially to fully solvated electrons persist for ≈10⁻¹⁰ s at the surface of water, potentially leading to enhanced destruction of organic molecules in contact with these electrons (6–8). Molecular beam methods, using gas-phase sodium atoms as neutral precursors, provide a previously unexplored alternative for generating interfacial electrons in protic liquids. These electrons initiate a wide range of chemical events, including the production of atomic and molecular radicals that react at and near the surface or escape by evaporating from solution.

We performed the experiments by directing a weak effusive beam of sodium atoms at the surface of a liquid glycerol (1,2,3-propanetriol) film in vacuum. These Na atoms rapidly ionize into Na⁺ and e⁻ in the interfacial region. We chose glycerol because of its low vapor pressure (10⁻⁴ torr) and water-like ability to solvate ions and electrons (9, 10). Solvated electrons react in more diverse ways with alcohols than with water. In the latter case, the primary pathways are slow dissociation, e⁻ + H₂O → H⁺ + OH⁻, and fast recombination, 2e⁻ + 2H₂O → H₃ + 2OH⁻ (2, 11). The low flux of our effusive Na beam ensures that similar electron-electron recombination and additional radical-radical reactions do not compete with electron-solvent and radical-solvent reactions, whereas the soft landing and gentle ionization of Na generates ele-

pical equation of state analogous to the ideal gas law (30)

\[P = Cn^x(k_bT)^y \]

where \(P \) is the pressure of the 2D gas, \(x = 2/(1 + b) = 0.95(5), y = 2b/(1 + b) = 1.05(5), C = 0.82(2)(x^2) \) is a constant, and \(w = (1 - b)/(1 + b) = -0.05(5) \).

Finally, we observe a weak dependence of the critical entropy per particle on the atomic interaction. Noting that a weakly interacting 2D Bose gas follows similar scaling laws near \(\mu = 0 \) (18) because it belongs to the same underlying dilute Bose gas universality class (2, 32), we apply similar analysis and extract the critical entropy per particle \(S_c/N \) at four interaction strengths \(g \approx 0.05, 0.13, 0.19, 0.26 \), shown together with the lattice data (\(g \approx 2.4 \)) in Fig. 4B. We observe a slow growing of \(S_c/N \) with \(g \) and compare the measurements with mean-field calculations. The measured \(S_c/N \) is systematically lower than the mean-field predictions, potentially as a consequence of quantum critical fluctuations.

References and Notes

1. P. Coleman, A. J. Schefel, Nature 433, 226 (2005).
2. S. Sachdev, Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999).
3. D. van der Marel et al., Nature 425, 271 (2003).
4. H. v. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007).
5. P. Gegenwart, Q. Si, F. Steglich, Nat. Phys. 4, 186 (2008).
6. S. Sachdev, Nat. Phys. 4, 173 (2008).
7. U. Al Khawaja, H. Stoof, Nature 411, 918 (2001).
8. T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, M. P. A. Fisher, Science 303, 1490 (2004).
9. S. Sachdev, M. Müller, J. Phys. Condens. Matter 21, 164216 (2009).
10. S. E. Sebastian et al., Nature 441, 617 (2006).
11. R. Coldea et al., Science 327, 177 (2010).
12. R. Jaramillo, Y. Feng, J. Wang, T. F. Rosenbaum, Proc. Natl. Acad. Sci. U.S.A. 107, 13631 (2010).
13. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, I. Bloch, Nature 415, 39 (2002).
14. K. Baumann, C. Guérin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010).
15. E. Haller et al., Nature 466, 597 (2010).
16. J. Simon et al., Nature 472, 307 (2011).
17. T. Donner et al., Science 315, 1556 (2007).
18. C.-L. Hung, X. Zhang, N. Gemelke, C. Chin, Nature 470, 236 (2011).
19. R. Uów et al., Phys. Rev. A 80, 033422 (2009).
20. S. Trotzky et al., Nat. Phys. 6, 998 (2010).
21. O. Zhou, T.-L. Ho, Phys. Rev. Lett. 105, 245702 (2010).
22. K. R. A. Hazzard, E. J. Mueller, Phys. Rev. A 84, 013604 (2011).
23. S. Fang, C.-M. Chung, P.-N. Ma, P. Chen, D.-W. Wang, Phys. Rev. A 83, 031605(R) (2011).
24. Y. Kato, Q. Zhou, N. Kawashima, N. Trivedi, Nat. Phys. 4, 617 (2008).
25. M. P. A. Fisher, P. B. Weichman, G. Grinstein, D. S. Fisher, Phys. Rev. B 40, 546 (1989).
26. N. Gemelke, X. Zhang, C.-L. Hung, C. Chin, Nature 460, 995 (2009).
27. C.-L. Hung, X. Zhang, N. Gemelke, C. Chin, Phys. Rev. Lett. 104, 160403 (2010).
28. X. Zhang, C.-L. Hung, S.-K. Tung, N. Gemelke, C. Chin, New J. Phys. 13, 045011 (2011).
29. B. Capogrosso-Sansone et al., New J. Phys. 12, 043010 (2010).
30. Materials and methods are available as supporting online material on Science Online.
31. T. Yefsah, R. Desbuquois, L. Chomaz, K. J. Günter, J. Dalibard, Phys. Rev. Lett. 107, 130401 (2011).
32. S. Sachdev, E. R. Dunkel, Phys. Rev. B 73, 085116 (2006).

Acknowledgments: We thank N. Prokof'ev and D.-W. Wang for discussions and numerical data; Q. Zhou, K. Hazzard, and N. Trivedi for discussions; and N. Gemelke and C. Parker for discussions and reading of the manuscript. The work was supported by NSF (grants PHY-0747907 and NSF-MRSEC DMR-0217145), the Packard foundation, and a grant from the Army Research Office with funding from the Defense Advanced Research Projects Agency Optical Lattice Emulator program. The data presented in this paper are available upon request sent to cchin@uchicago.edu.

Supporting Online Material

www.sciencemag.org/cgi/content/full/science.1217990/DC1 Materials and Methods

Fig. S1

References (33, 34)

15 December 2011; accepted 30 January 2012

Published online 16 February 2012; 10.1126/science.1217990

www.sciencemag.org