Cold tolerance of ScCBL6 is associated with photosynthesis and tonoplast transporters in Arabidopsis

CURRENT STATUS: POSTED

Yanli Zhou
Kunming Institute of Botany Chinese Academy of Sciences

Changhong Zhao
Yunnan Agricultural University

Guangqiang Long
Yunnan Agricultural University

Chengli Zhou
Yunnan University

Xudong Sun
Kunming Institute of Botany Chinese Academy of Sciences

Yunqiang Yang
Kunming Institute of Botany Chinese Academy of Sciences

Chengjun Zhang
Kunming Institute of Botany Chinese Academy of Sciences

Yongping Yang

Corresponding Author
ORCiD: https://orcid.org/0000-0002-0327-2664

DOI: 10.21203/rs.2.16643/v1

SUBJECT AREAS
Plant Physiology and Morphology

KEYWORDS
Calcineurin B-like protein, cold tolerance, Stipa capillacea, transcriptome, antioxidant
Abstract
Plant adapted in the fragile zone offer enormous opportunity to understand the stress biology under ecological scenario. Stipa capillacea is widely distributed in the frigid and arid region of Tibet Plateau, but its signal system has never been investigated yet. In this study, we isolated a signal transduction gene, ScCBL6, in Stipa capillacea, to characterize its cold tolerance capacity by ectopic expression in Arabidopsis. The results suggested that full length ScCBL6 encodes 227 amino acids, and phylogenetically clustered with CBL6 protein in Stipa purpurea and Oryza sativa. In comparison with wild type (WT) plants, ScCBL6 overexpressing plants (ScCBL6-OXP) are tolerant to cold stress but not drought stress, which attested by the higher photosynthetic capacity (Fv/Fm) and survival rate of ScCBL6-OXP under cold stress. We further compared their cold-responsive transcriptome profiles through RNA-Seq. Totally, 3931 genes were differentially expressed by introduction of ScCBL6. They are participated in multiple processes like immune system, lipid catabolic, secondary metabolic and mainly enriched in plant hormone signal transduction and biomacro-molecule metabolism as regard to KEGG pathway. Differential expressed genes (DEGs) were predicted to locate in chloroplast, mitochondrion, vacuole, and so on, suggesting multitudinous function of ScCBL6. Based on the integrated analysis of ScCBL6-OXP, we inferred that ScCBL6 improve plant cold stress tolerance via regulate photosynthesis redox and vacuole metabolites transport in Arabidopsis.

Background
Sessile plants are confronted with ubiquitous environmental stimulus which shaping their geographical distribution [1, 2]. In the long-term biology-environment interaction, plant signal system elaborately orchestrates with functional protein to confer stress defense. Ca\(^{2+}\) is regarded as life in cell and developmental biology for its constituent role and flexible oscillation within cell parts [3], thus act as central hubs of plant signaling networks to coordinate plant growth [4]. Under the natural condition, Ca\(^{2+}\) keep nanomole range in cytoplasm and millimole range in cellular compartment [5, 6]; while cell organelles supported by double membrane (such as chloroplasts) promoted Ca\(^{2+}\) wave upon stress initiation [7]. However, as a signaling messenger in plant cell, Ca\(^{2+}\) is decoded by several kinds of proteins like CDPKs, CaMs and CBLs [8, 9], so that well connected the stress signal with
tolerance response.

Unlike CaMs and CDPKs exert regulations in nucleus [10], the CBLs protein could be membrane anchored by myristylation and acylation but gain flexible regulations roundly through interact with CBL-interacting protein kinase (shorted as CIPK). Structurally, CBLs proteins characterized by conical EF-hand motif and share sequence similarity with yeast calcineurin B subunit of yeast and animal neuronal calcium sensor [11–13]. There are 10 family members in Arabidopsis and Oryza sativa. AtCBL1 was differentially responsive to multiple stress including salt, drought and cold stress [14]. AtCBL7 was documented to modulates plant low nitrate response [15]. Other CBLs proteins of Arabidopsis were also supported to mediate physiological response like osmotic regulation and ion homeostasis [16, 17], and also seed development [18]. However, gene clone and functional characterization of CBL6 and CBL8 are still at a juvenile stage, both for model and non-model plants.

Cold stress is one of the environmental factors that cause physiological disorder and impair plant growth [17]. Low temperature lead to mechanical strain on cell wall and membrane rigidification by the lamellar to hexagonal II phase transitions lesion [19–21]. As responses, plants on one hand accumulate solutes like malate, fumarate and proline to enhance freezing tolerance [22], and one the other hand adjust gene expression to reprogramme the cell structures and redress physiological metabolism [23]. Unraveling corresponding cold responsive gene and network are of benefits to crop improvement engineering. However, ICE-CBF is the best-know cold stress tolerance cascade [24], more other components need to be investigated.

Stipa capillacea is a constructive species and important forage that tolerant to multiple abiotic stressors. Because of the long-established domestication in alpine climate of Tibet Plateau, S. capillacea provided a well system to resolve cold stress tolerance mechanism. In the previous study, SpCBL6 of its sibling species, Stipa purpurea, was found to enhance cold tolerance in Arabidopsis. In this study, we isolated its homologous CBL6-like protein from cold-hardy species Stipa capillacea, to study whether ScCBL6 share the same functionality and explore the extent to which the integrated regulation and cold tolerance was conditioned by CBL6 protein. By ectopic transformation in Arabidopsis, comparative transcriptomic analysis was employed to unravel the molecular mechanism
of ScCBL6 at transcriptional level.

Results
Bioinformatic character of ScCBL6
ScCBL6 was cloned from S. capillacea based on its homologus gene in S. purpurea. After sequencing, an ORF contains 681 bp was designated as ScCBL6. The full length encodes a putative protein with 226 aa residues. Blastp search against NCBI found that ScCBL6 share highest similarity with calcineurin B-like protein 6 in Hordeum vulgare subsp. vulgare (accession no. BAJ86242.1), calcineurin B-like protein in S. purpurea (accession no. AML23198.1), calcineurin B-like protein 6 in Aegilops tauschii ssp. tauschii (accession no. XP_020176977.1), calcineurin B-like protein 6 in Brachypodium distachyon (accession no. XP_003563139.1), respectively (Fig. 1A). All these proteins share four classical EF-hand in the motif scan analysis. ScCBL6 clustered with OsCBL6 in the phylogenetic analysis (Fig. 1B). The subcellular location result found ScCBL6 protein mainly resided at tonoplast and plasma membrane (Fig. 1C).

ScCBL6 Overexpressed Arabidopsis enhanced cold tolerance
To explore the biological function of ScCBL6 in vivo, we generated transgenic Arabidopsis carrying ScCBL6 under the promoter of cauliflower mosaic virus 35S. Three independent transgenic lines were obtained by gene-specific PCR (Fig. S1). Under the natural greenhouse condition, ScCBL6 over-expressed plants (short as ScCBL6-OXP) did not show much growth difference from wild type (WT) Arabidopsis, which also applied to the drought treatment as revealed by survival rate and Fv/Fm in Fig. 2. Under freezing condition, ScCBL6-OXP outgrew WT in term of both survival rate and Fv/Fm. In subsequent recovery process of cold treated plants, WT get perish for losing of regeneration, while ScCBL6-OXP retrieve normal growth gradually, indicating the better tolerance of ScCBL6-OXP than WT in response to cold stress. We also characterized the water loss rate of cold treated plants, and found that there is no significant difference between ScCBL6-OXP than WT (Fig. 3).

Comparative transcriptome analysis revealed transcriptional regulation of ScCBL6
To further investigate the molecular regulation excited by ScCBL6, we compared transcriptome variation between ScCBL6-OXP and WT for both cold and normal condition. In total, we sought out 6916 different expressed genes (DEGs) based on $|\log_{2}FC|\geq 2$ and FDR≤0.05, which varied between
ScCBL6-OXP and WT irrespective of stress treatment. 4582 DEGs were found to be regulated by cold treatment in Col background (WT), however, 2185 DEGs were purely modified by the over expression of ScCBL6. In terms of cold response, ScCBL6-OXP share 43.64% (1300) overlaps with WT responders, the remaining 1679 (933+746) showed ScCBL6 dependency (Fig. 4). Among the 1300 overlaps, only 23.08% DEGs could be activated without cold treatment, suggesting the capability of ScCBL6 in response to cold stress.

For all the ScCBL6 regulated DEGs, the metabolic process, membrane and transferase activity contributed to the largest part for biological process (BP), cellular component (CC) and molecular function (MF), respectively (Fig. 5A). Further GO enrichments found that these DEGs involved in immune system process (GO:0002376), lipid catabolic process (GO:0016042), secondary metabolic process (GO:0019748), small molecule catabolic process (GO:0044282), organonitrogen compound catabolic process (GO:1901565), cutin biosynthetic process (GO:0010143), fatty acid metabolic process (GO:000661), and response to karrikin, auxin and insect (GO:0080167, GO:0009733 and GO:0009625) (Fig. 5B). While in terms of pathways, these mapped DEGs are mainly enriched in plant hormone signal transduction, starch and sucrose metabolism, cysteine and methionine metabolism, glycerophospholipid metabolism and fatty acid degradation, and so on (Fig. 5C).

Prospective cold tolerance mechanism mediated by ScCBL6
As documented in Zhang et al [25] and results of subcellular location of ScCBL6 (Fig. 1C), we inferred that ScCBL6 mediated cold tolerance by targeting of organelle located proteins. Therefore, ScCBL6 regulated DEGs were sequence extracted and searched against signal peptide database. The prediction of subcellular location indicated that most of the annotated DEGs located in chloroplast (266) and engaged in secretory pathway (472), only 12 proteins located at tonoplast (Fig. 6).

However, most of the tonoplast resided genes showed down-regulated expression, only two protein, i.e., polyamine choline transporter CAT2 and carbohydrate transporter TMT1 up-regulated their expression in response to cold treatment (Table 1). On the other hand, better chlorophyll fluorescence was observed in Fig. 2. We then further ranked the chloroplast located DEGs by |log2FC|, and plotted their expression profiles, 70% of top chloroplast DEGs up-regulated their expression levels (Fig. 7).
Two up-regulated genes among the top 20 coresets, vicinal oxygen chelate (VOC) superfamily member members AT1G80160 and glutathione transferase GSTU3, pertains to the redox regulation. As indicated by the GR enzyme activity assays, antioxidant ability of ScCBL6-OXP overexpression lines were indeed improved (Fig. 8).

Discussion

The signal transduction is of great importance to the well domestication of alpine plants. Ca\(^{2+}\) mediated signal transduction has been widely documented in plant kingdom [26]. CBL protein convey a broad range of stimulus signal via reversible Ca\(^{2+}\) docking in its EF-hand domain [27, 28], and expanded from one member in chlorophytes Ostreococcus lucimarinus to more ten members in higher plant like Arabidopsis[29]. Stipa capillacea has long distributed in Qinghai-tibet plateau, and its signal transduction has not been investigated ever. Based on transcriptome data, we use homology-based method to isolate one CBL gene from Stipa capillacea successfully. Sequence analysis found that ScCBL6 protein was very conservative, at least among grass types (Fig.1A). Phylogenetically, ScCBL6 showed paralogous relationship with CBL2 and CBL3 in both Oryza sativa and Arabidopsis thaliana, suggesting earlier gene divergence before speciation. However, CBL2 and CBL3 are well-known chloroplast located protein [18], lending support to the tonoplast target of CBL6 in Arabidopsis [25]. CBL2 and CBL3 proved to affect seed size and embryonic development by transgenic operation in Arabidopsis [18]. However, up to date, functional characterization of CBL6 merely reported in Stipa purpurea and Triticum dicoccoides [30], all of which provided novel insight but just catch a little glimpse of its talents. In this study, we enforced functional analysis for ScCBL6 by ectopic expression in Arabidopsis, followed by comparative transcriptome analysis between its wild type (WT) and transgenic lines as regard to cold stress response.

Gain-of-function mutants, ScCBL6-OXP, enhanced cold tolerance but not drought tolerance in Arabidopsis (Fig. 2), which is highly consistent with the performance in transgenic SpCBL6 plants [31]. ScCBL6 share 96.77% similarity with SpCBL6 at the nucleotide level, and only 2 aa different at protein level. The two sites were not thought to functional divergent, which supported by the KaKs calculator results (\(\omega<1, p<0.05\)). As cold stress impose damage on plant body mainly through membrane
damage and dehydration [23, 32, 33], we speculated that ScCBL6 confer the cold tolerance mainly through membrane functions, as we did not find significant difference for water loss between WT and transgenic lines (Fig. 3).

In the transcriptome analysis, ScCBL6 totally regulated the expression levels of 3931 genes (Fig. 4). They are widely enriched in plant hormone signal transduction, secondary metabolism, fatty acid and protein regulation (Fig. 5C), indicating the miscellaneous role of ScCBL6 in plant \textit{in vivo}. However, after cold stress, 31.37% (1233) of 3931 differently expressed genes (DEGs) were further regulated and 746 DEGs act as the ScCBL6 specific cold-inductive responder, they should constitute the core repertoire of cold tolerance mechanism imparted by ScCBL6. They execute holistic regulation across tissues like chloroplast, mitochondrion and cytoplasm, and so on (Fig. 6). However, only 12 genes were thought as tonoplast resided, the up-regulated gene CAT2 could interact with glutathione metabolism protein (OXP1), and tyrosine catabolism protein (HGO) in STRING network (Fig. S2).

Additionally, 266 genes were predicted to chloroplast resided, and they are involved in enzyme classification (carbon-oxygen lyase, transferase and oxidoreductase), solute transport (calcium cation-transporting ATPase), cell wall (xyloglucan synthesis, rhamnogalacturonan modification, APGs protein glycosylation, CCoA-OMT and lipid formation), protein modification (cyclophilin protein folding catalyst, LSF phosphoglucan phosphatase dephosphorylation, GSK kinase phosphorylation, TKL kinase phosphorylation), RNA biosynthesis (GRF-GIF transcriptional complex, transcription factor ERF, BBX, ARF, TAZ and NAC activation), DNA damage response (ZDP base excision repair), cell cycle (cohesin dissociation, RAD9, DNA helicase complex MCM5 preinitiation), chromatin organization (Rad54 chromation remodeling, H2A-type histone), phytohormones (brassinosteroid signal, ethylene synthesis and GASA peptides), redox homeostasis (DHAR), secondary metabolism (mevalonate, methlyerythritol and terpenoid), polyamine metabolism (spermine conjugation), lipid metabolism (campesterol synthesis and GIPC biosynthesis) and photosynthesis related (glycine cleavage, cytochrome c oxidase and amylose synthesis) (Fig. S3). As the photosynthetic nature of chloroplast, the cold responsive leave growth advantage of ScCBL6-OXP quantified by chlorophyll fluorescence could tenably ascribe to the photosynthetic protection of ScCBL6. Especially, GULLO2, AT1G80160,
PCAP2, SAUR36, BT2, AT2G44010, AT2G14095, CCOAMT, IRX7 and AT5G25770 showed top 10 upregulation. GULLO2 encodes a homolog of rat L-gulono-1,4-lactone (L-GulL) oxidase, which involved in the biosynthesis of L-ascorbic acid. BT2 encode telomerase component, serve as scaffold protein and commonly regulated by a bZIP-mediated SnRK-dependent pathway [34]. IRX7 participate in secondary cell wall biosynthesis, is required for proper anchoring of seed coat mucilage to reduced xylan to form high molecular weight polymer [35]. Together with the membrane positioning of ScCBL6, it is reasonable to postulate that ScCBL6 enhanced cold tolerance through redox regulation and structure maintenance.

Direct interactions of ScCBL6 with these targets were not expected, because they are most probably subject to phosphorylation by CIPKs. In this study, CIPK12, CIPK16, CIPK17, CIPK22 and CIPK25 were documented to up-regulated by cold stress in WT, and all of them except CIPK12 are the same for cold-treated ScCBL6-OXP. Especially, CIPK16 and CIPK25 increased 27.33 and 17.02 times in cold-treated ScCBL6-OXP, indicating their potential interaction with ScCBL6. However, for the untreated comparison of WT and ScCBL6-OXP, no CIPK was significantly up-regulated, this result well correlated with the temperature dependence of CBL6/CIPK complex formation documented in Zhang et al [25]. In total, for cold stress response conferred by ScCBL6, many genes like GULLO2 and PCAP2 were potential targets to improve cold tolerance in other crop plant, however, for the lack of transformation system for Stipa capillacea, their underlying functional mechanism and pros and cons plasticity in other plant need more experimental investigation.

Conclusions

This study provided a well paradigm for the complexity and polyfunctionality of environmental signal transduction system. In this study, ScCBL6 isolated from Stipa capillacea caught variations in nearly whole cell part. In ScCBL6 overexpressing transgenic Arabidopsis, cold stress tolerance was verified by higher survival rate and better photosynthetic capacity. Further RNA-Seq revealed that genes related to metabolites transporter in tonoplast and genes related to redox regulation in chloroplast showed preferential up-regulation in cold treated ScCBL6-OXP. That is also confirmed by the enzyme of GR. Vacuole as the largest plant cell compartment, ScCBL6 as a membrane anchored protein, its
controlled functions are important for the environmental adaptation.

Methods

Plant preparation and controlled stress

S. capillacea seeds used for experiment were collected from Qinghai-Tibet Plateau (33°26´56.5" N, 79°48´58.4" E). As *S. capillacea* is not endangered and distributed widely in semi-arid hillside of alpine steppe (Fig. S4), collection of the samples does not need any necessary permission. The plants were taxonomic identified by Dr. Jiahui Chen, and corresponding voucher specimen number was 1270425. In this study, seeds were obtained from National Wild Seed Resource Center of Kunming Institute of Botany under the ID of 868710085206. After been picked visually, mature and plump seeds were surface sterilized with 2% *HgCl*₂ reagent, then rinsed with double distilled *H₂O* and sowed in pots filled with nutrient soil directly. Seeds were allowed to germinate in a transparent growth chamber with natural ventilation and illumination. One month-old seedlings were used for stress treatments, and the whole aboveground part was sampled for RNA extraction. Drought was done by withholding water for 7, 14 and 21 days. Cold was carried out by putting seedlings in cooled incubator at 4 °C for 0, 1, 3 and 12 h, respectively.

Isolation and sequence analysis of ScCBL6

ScCBL6 was isolated from *Stipa capillacea* by the homology-based cloning methods. Total RNA was extracted by kit as referenced in Zhou et al [36]. Primers of forward (5´-ATGGTTGATTTCCCCGGAAGG-3´) and reverse (5´-TCAAGCGTCCTCAACCTGAG-3´) were used to amplify the complete coding sequence. The PCR reaction amplified with Q5 and recycled as follows: 94°C for 30s, 52°C for 30s and 1 min at 72°C for extension. PCR products was purified and ligated to pMD18-T vector (Takara) and transformed into *Escherichia coli* by heat shock at 42°C for 90s. After selected by kanamycin, positive clone was picked and confirmed by sequencing. Full length sequence of was aligned with CBL protein of several Poaceae species and the structural motif of ScCBL6 was predicted online by Motif Scan software (https://myhits.isb-sib.ch/cgi-bin/motif_scan). The phylogenetic relationship with their homologous genes in *Oryza sativa* and *Arabidopsis thaliana* was provided by MEGA6 with maximum likelihood (ML) method.
Plasmid construction and transgenic plants manipulation

To obtain overexpressing construct of ScCBL6, its coding sequence was amplified with extended primers: ScCBL6-F (5-GTCGACCCCGGGggtaccATGGTGGATTTCGCCGAAG–3) and ScCBL6-R (5-TCAAGATTCCGATCCggtaccAGCGTCCTCAACCTGAGAG–3). The 5’ end of primers are sticky to plant binary vector pRI101-GFP, which could initiate the expression of chimeric protein contains target gene fused with GFP sequence by CaMV–35S promoter. After Kpn I digestion of binary vector, PCR products was sub-cloned into vector pRI101-GFP by recombinase. Resultant construct was introduced into Agrobacterium tumefaciens strain GV3101 and infected wild type Arabidopsis () by floral-dip method [37]. Transgenic seeds were screened by kanamycin and positive transformants were identified by gene-specific primers. Two lines of ScCBL6 overexpressing Arabidopsis were used for further analysis.

Subcellular location of ScCBL6

Agrobacterium tumefaciens carrying the recombinant vector pRI101-ScCBL6GFP was inoculated into LB solution and propagated overnight. Agrobacterium tumefaciens were introduced into leaf abaxial epidermis of Nicotiana tabacum by syringe injection. Green fluorescence excited by GFP protein was imaged in Olympus FV1000 laser confocal microscopy (Olymplus, Japan).

Transcriptome analysis of ScCBL6 over-expressed transgenic plants in response to cold treatment

Soil cultured transgenic Arabidopsis were subjected to cold treatment, in comparison with the control of wild type Arabidopsis (Columbia eco-type). One-month old plants were acclimated at 4°C for 12 h and then suffered –6°C treatment for 2 h. All plants were recovered at room temperature for another 4 days. Samples were taken both before and after cold treatments, and frozen in liquid nitrogen for RNA isolation. Total RNA was quality controlled by Nanodrop and used for transcriptome analysis by Illumina Hiseq-PE150. The raw reads were filtered by Trimmomatic 3.6, and then clean reads were quality controlled by FastQC. Clean reads of each sample was pair-end assembled in Tophat2.1.1, and differential expressed genes (DEGs) were identified by Cufflinks pipeline with parameters of FDR ≤0.05 and log2FC≥2. DEGs were functional annotated by gene ontology and enriched with clusterProfiler package in R. Subcellular locations of DEGs were predicted in TargetP (https://omictools.com/targetp-tool). Sequence extraction and formatting was handled in TBtools [38].
Water loss assay

To explore the water loss rate under dehydration conditions, leaves of 4-week-old wild type and transformant *Arabidopsis* plants were cut off and allowed to dry on Whatman paper at room temperature, and net weights were documented at the 0.5, 1, 2, 4, 6 h, respectively. Water loss rate was calculated as weight loss per unit time.

Antioxidative enzyme activity assays

The enzymatic activity was assayed according to [39] with small modifications. About 0.1 g fresh leaves were extracted in 50 mM Tris buffer of pH 7.0, which containing 1 mM AsA, 1 mM DTT, 1 mM GSH, 1 mM EDTA, 5 mM MgCl$_2$.6H$_2$O, 20% glycerol and 1% PVPP. Then the homogenate were centrifuged at 4 °C for 6 min (12000 g), with supernatents re-centrifuged at same condition for 16 min. The GR activity was characterized as the ability of crude extractant to reduce GSSG by the NADPH auxiliary, which quantified in the absorption at 340 nm per minute per gram fresh weight.

Abbreviations

ScCBL6-OXP: ScCBL6 gene overexpressing plants

CBL: Calcineurin B-like protein

DEGs: differential expressed genes

ORF: open reading frame

FDR: false discovery rate

AsA: Ascorbate acid

DTT: Dithiothreitol

GSH: Glutathione

EDTA: Ethylene Diamine Tetraacetic Acid

Declarations

Ethics approval and consent to participate

Not Applicable.

Consent to publish

Not Applicable.
Availability of data and materials
All data and resources in the manuscript are available upon reasonable request to the corresponding authors.

Competing interests
All authors declare that there is no financial competing interests and other non-financial conflicts.

Funding
This work was financially supported by the CAS “Light of West China” Program (No. 292017312D11022), and partly supported by the open funds of the National Key Laboratory of Crop Genetic Improvement (No. ZK201605). The funders had no role in the experimental design, data collection and analysis or writing the manuscript.

Authors’ contributions
YPY and CJZ designed the idea; YLZ wrote the manuscript; CHZ and CLZ conducted the experiments; GQL guided some analysis; XDS and YQY guided some experiments. All authors have read and approved the manuscript.

Acknowledgments
We thank Elie Ntirenganya for the critical reading of this manuscript.

Authors’ Information
YLZ and CHZ contributed equally. 1CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.

2Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. 3College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan 650201, China. 4School of Information Science and Engineering, Yunnan University, Kunming, Yunnan 650201, China.

References
1.Janská A, Maršík P, Zelenková S, Ovesná J: Cold stress and acclimation—what is important for metabolic adjustment? Plant Biol 2010, 12(3):395-405.
2. Fu X, Chang J, An L, Zhang M, Xu S, Chen T, Liu Y, Xin H, Wang J: Association of the cold-hardiness of Chorispora bungeana with the distribution and accumulation of calcium in the cells and tissues. *Environ Exp Bot* 2006, 55(3):282–293.

3. Feijó JA, Wudick MM: ‘Calcium is life’. *J Exp Bot* 2018, 69(17):4147–4150.

4. Yu Q, An L, Li W: The CBL–CIPK network mediates different signaling pathways in plants. *Plant Cell Rep* 2014, 33(2):203–214.

5. Day IS, Reddy VS, Shad Ali G, Reddy A: Analysis of EF-hand-containing proteins in Arabidopsis. *Genome biology* 2002, 2002 v.3 no.10(no. 10):pp. 393–393.

6. Knight H: Calcium Signaling during Abiotic Stress in Plants. In: *Int Rev Cytol*. Edited by Jeon KW, vol. 195: Academic Press; 1999: 269–324.

7. Xiang Y, Huang Y, Xiong L: Characterization of Stress-Responsive CIPK Genes in Rice for Stress Tolerance Improvement. *Plant Physiol* 2007, 144(3):1416–1428.

8. Reddy ASN, Ali GS, Celesnik H, Day IS: Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression. *The Plant Cell* 2011, 23(6):2010–2032.

9. Miura K, Furumoto T: Cold Signaling and Cold Response in Plants. *International Journal of Molecular Sciences* 2013, 14(3):5312.

10. Charpentier M: Calcium signals in the plant nucleus: origin and function. *J Exp Bot* 2018, 69(17):4165–4173.

11. Zhang H, Yin W, Xia X: Calcineurin B-Like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. *Plant Growth Regulation* 2008, 56(2):129–140.

12. Du W, Lin H, Chen S, Wu Y, Zhang J, Fuglsang AT, Palmgren MG, Wu W, Guo Y: Phosphorylation of SOS3-Like Calcium-Binding Proteins by Their Interacting SOS2-Like Protein Kinases Is a Common Regulatory Mechanism in Arabidopsis. *Plant Physiol* 2011, 156(4):2235–2243.

13. Gong D, Gong Z, Guo Y, Zhu J-K: Expression, Activation, and Biochemical Properties of a Novel Arabidopsis Protein Kinase. *Plant Physiology* 2002, 129(1):225–234.

14. Cheong YH, Kim K-N, Pandey GK, Gupta R, Grant JJ, Luan S: CBL1, a Calcium Sensor That
Differentially Regulates Salt, Drought, and Cold Responses in Arabidopsis. *The Plant Cell* 2003, 15(8):1833–1845.

15. Ma Q, Tang R-J, Zheng X-J, Wang S-M, Luan S: The calcium sensor CBL7 modulates plant responses to low nitrate in *Arabidopsis*. *Biochem Biophys Res Commun* 2015, 468(1):59–65.

16. Cheong YH, Sung SJ, Kim B-G, Pandey GK, Cho J-S, Kim K-N, Luan S: Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. *Molecules and Cells* 2010, 29(2):159–165.

17. Xu J, Li H-D, Chen L-Q, Wang Y, Liu L-L, He L, Wu W-H: A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in *Arabidopsis*. *Cell* 2006, 125(7):1347–1360.

18. Eckert C, Offenborn JN, Heinz T, Armarego-Marriott T, Schültke S, Zhang C, Hillmer S, Heilmann M, Schumacher K, Bock R et al: The vacuolar calcium sensors CBL2 and CBL3 affect seed size and embryonic development in *Arabidopsis thaliana*. *The Plant Journal* 2014, 78(1):146–156.

19. Knight MR, Knight H: Low-temperature perception leading to gene expression and cold tolerance in higher plants. *New Phytol* 2012, 195(4):737–751.

20. Webb MS, Uemura M, Steponkus PL: A comparison of freezing-injury in oat and rye - 2 cereals at the extremes of freezing tolerance. *Plant Physiol* 1994, 104(2):467–478.

21. Olien CR, Smith MN: Ice Adhesions in Relation to Freeze Stress. *Plant Physiol* 1977, 60(4):499–503.

22. Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O: Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. *The Plant Journal* 2012, 69(3):529–541.

23. Chinnusamy V, Zhu J, Zhu J-K: Cold stress regulation of gene expression in plants. *Trends Plant Sci* 2007, 12(10):444–451.

24. Kim YS, Lee M, Lee J-H, Lee H-J, Park C-M: The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. *Plant Mol Biol* 2015, 89(1):187–201.

25. Zhang C, Beckmann L, Kudla J, Batistič O: N-terminal S-acylation facilitates tonoplast targeting of
the calcium sensor CBL6. *FEBS Lett* 2017, 591(22):3745–3756.

26. Ranty B, Aldon D, Cotelle V, Galaud J-P, Thuleau P, Mazars C: Calcium Sensors as Key Hubs in Plant Responses to Biotic and Abiotic Stresses. *Frontiers in Plant Science* 2016, 7(327).

27. Sánchez-Barrena M, Martínez-Ripoll M, Albert A: Structural Biology of a Major Signaling Network that Regulates Plant Abiotic Stress: The CBL-CIPK Mediated Pathway. *International Journal of Molecular Sciences* 2013, 14(3):5734.

28. Lan W, Lee S, Che Y, Jiang Y, Luan S: Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions. *Mol Plant* 2011, 4(3):527–536.

29. Kleist TJ, Spencley AL, Luan S: Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. *Frontiers in Plant Science* 2014, 5(187).

30. Chen L, Ren J, Shi H, Zhang Y, You Y, Fan J, Chen K, Liu S, Nevo E, Fu J et al: TdCBL6, a calcineurin B-like gene from wild emmer wheat (*Triticum dicoccoides*), is involved in response to salt and low-K+ stresses. *Molecular Breeding* 2015, 35(1):50.

31. Zhou Y, Cheng Y, Yang Y, Li X, Supriyo B, Sun X, Yang Y: Overexpression of *SpCBL6*, a calcineurin B-like protein of *Stipa purpurea*, enhanced cold tolerance and reduced drought tolerance in transgenic *Arabidopsis*. *Mol Biol Rep* 2016, 43(9):957–966.

32. Yadav SK: Cold Stress Tolerance Mechanisms in Plants. In: *Sustainable Agriculture Volume 2*. Edited by Lichtfouse E, Hamelin M, Navarrete M, Debaeke P. Dordrecht: Springer Netherlands; 2011: 605–620.

33. Thomashow MF: Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. *Annu Rev Plant Physiol Plant Mol Biol* 1999, 50:571–599.

34. Delatte TL, Sedijani P, Kondou Y, Matsui M, de Jong GJ, Somsen GW, Wiese-Klinkenberg A, Primavesi LF, Paul MJ, Schluepmann H: Growth Arrest by Trehalose–6-Phosphate: An Astonishing Case of Primary Metabolite Control over Growth by Way of the SnRK1 Signaling Pathway. *Plant Physiology* 2011, 157(1):160–174.

35. Hu R, Li J, Yang X, Zhao X, Wang X, Tang Q, He G, Zhou G, Kong Y: Irregular xylem 7 (IRX7) is
required for anchoring seed coat mucilage in Arabidopsis. *Plant Mol Biol* 2016, 92(1):25–38.

36. Zhou Y, Cheng Y, Yang Y, Li X, Supriyo B, Sun X, Yang Y: Overexpression of SpCBL6, a calcineurin B-like protein of Stipa purpurea, enhanced cold tolerance and reduced drought tolerance in transgenic Arabidopsis. *Mol Biol Rep* 2016, 43(9):957–966.

37. Clough S, Bent A: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. *Plant J* 1998, 16(6):735–743.

38. Chen C, Xia R, Chen H, He Y: TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. *bioRxiv* 2018:289660.

39. Shu D-F, Wang L-Y, Duan M, Deng Y-S, Meng Q-W: Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. *Plant Physiology and Biochemistry* 2011, 49(10):1228–1237.

Tables

Table 1 Information of tonoplast resided DEGs

Transcript_id	Gene_id	Locus	log2FC	Description
XLOC_002346	AT1G07607	1:18517585-18521781	-1.52	Antisense long noncoding RNA
XLOC_004339	AT1G04830	1:1356083-1362019	-1.53	Ypt/Rab-GAP domain of gyp1p superfamily protein
XLOC_005225	TUB5	1:6937718-6940832	-2.13	Beta tubulin
XLOC_006801	CAT2	1:21464000-21468505	2.05	Encodes a member of transporter
XLOC_005279	TMT1	1:7242895-7248588	2.10	Carbohydrate transporter
XLOC_007227	AT1G65920	1:24525101-24529362	-4.39	Regulator of chromosome
XLOC_007791	TUB1	1:28449904-28453820	-4.99	Beta tubulin
XLOC_008966	AT2G21220	2:8987583-9198383	-4.22	SAUR-like auxin-responsive protein
XLOC_011932	TUB7	2:12642502-12646057	-2.49	Beta tubulin
XLOC_016150	AT3G62570	3:23142484-23144747	-2.08	Tetratricopeptide repeat superfamily
XLOC_019943	AT4G05275	4:4676542-4855814	-2.31	Long noncoding RNA
XLOC_023442	AT4G27270	4:13661200-13663371	-2.48	Quinone reductase family

Note: Transcript id were the assembly outputs in cufflinks, and corresponding gene id and locus were obtained from reads mapping against gff files. Log2FC were calculated from FPKM ratio of before and after cold treated ScCBL6-OXP.

Figures
Figure 1

Biological property of ScCBL6. (A) Amino acid sequence alignment of CBL6 protein from Sitpa capillacea (ScCBL6), Hordeum vulgare subsp. vulgare (BAJ86242.1), Stipa purpurea (AML23198.1), Aegilops tauschii subsp. tauschii (XP_020176977.1), Brachypodium distachyon (XP_003563139.1). The cyan and pink color are bases with identity larger than 75% and 50%, respectively. (B) Phylogenetic tree of ScCBL6, SpCBL6 and CBL family member in Arabidopsis thaliana and Oryza sativa. Blue dot signifies the gene of interest for this paper. (C) Subcellular location of ScCBL6 protein. Green fluorescent protein excited at 488 nm was captured by Olympus FV1000 laser confocal microscopy.
Figure 2

Seedling growth and survival rate comparison between ScCBL6-OXP and WT under drought and cold stress. Upper part indicated the morphology and photosynthetic efficiency (Fv/Fm) change after drought and cold treatment. Lower part showed the statistical survival rate of different lines after controlled drought and cold treatment, which based on at least seven biological replicates.
Figure 3

Water loss rate of ScCBL6-OXP and WT leaves. The water loss rate was calculated as weight difference between individual time point and original weight. Col, Colombia ecotype Arabidopsis; numbers followed # denoted different transgenic lines of ScCBL6-OXP.
Figure 4

Veen diagram showed the overlap and specialty of DEGs affiliated to different condition. CLQ, before cold treatment; CLH, after cold treatment; ScCBL6 means the overexpressing Arabidopsis.
Figure 5

Functional enrichment of ScCBL6 regulated differentially expressed genes (DEGs). (A) Summary of GO annotation classified into three main categories. (B) Directed Acyclic Graph of GO enrichment for DEGs. (C) KEGG enrichment of DEGs against Arabidopsis background set in Clusterprofiler.
Figure 6

Subcellular location prediction of differential expressed genes. M, Mitochondrion (158); S, Secretory pathway (472); C, Chloroplast (266); T, tonoplast (12); Other (799); Unknown (2226). Tonoplast resided protein were predicted by blastx based search of proteins identified in Endler et al (2009) and Szponarski et al (2004), the other locations were predicted in targetP.
Figure 7

Expression levels of top 20 chloroplast resided DEGs. The FPKM of ScCBL6-OXP were normalized by log scale and plotted in TBtools. CLQ, before cold treatment; CLH, after cold treatment.
Fig. 8

![Bar chart showing GR activities of Arabidopsis leaf in response to cold treatment.](image)

Figure 8

GR activities of Arabidopsis leaf in response to cold treatment.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Additional files.doc