Performance of lambs grazing on the sub-alpine pastures of Kashmir Himalayas

SHAHID HASSAN MIR1, H A AHMED2 and A M GANAI3

Sher-e-Kashmir University of Animal Sciences and Technology, Shuhama Campus, Srinagar, Jammu and Kashmir 191 202 India

Received: 17 May 2018; Accepted: 18 July 2018

ABSTRACT

The study aimed to evaluate the feed intake and growth performance of the local Kashmir merino lambs grazing on the sub-alpine pastures of the Kashmir valley in 2 seasons (summer and autumn). Kashmir merino male weaner lambs (50), 25 in each season were selected for the experiment. A 10-day digestion trial in each season was conducted by the indirect indicator method with chromium oxide as external indicator. Apparent digestibility of nutrients was higher in summer than in autumn. Feed and nutrient intakes (DMI, DMI/kg, MEI and CPI) were higher in summer than in autumn. Average daily gain was slightly more in summer (41 g/day) than in autumn (30 g/day) and animals suffered serious liveweight loss in the last two fortnights of autumn. Results indicated that sub-alpine pastures of Kashmir valley did not provide sufficient nutrients to sustain healthy sheep production thus necessitating supplementation.

Key words: Feed efficiency, Growth performance, Kashmir valley, Lambs, Nutrient digestibility, Sub-alpine pastures

Pastures across the world play a vital role in the sustenance of livestock production. Half of the world’s grazing land is classified as pastures (Haan et al. 2002). Kashmir valley is also bestowed with natural temperate pastures (114 thousand ha) at alpine and subalpine altitudes (Forest Report 2017). Sub-alpine pastures are located close to the suburb areas of the valley and are indispensable for the livelihood of the people (Ahmad et al. 2018) especially for nomadic people (Gujjar, Bakerwals, Chopans, Changpas and Gaddies) which constitute 25% of the population (Pratap and Wani 2015). According to 19th Livestock Census, livestock population of Kashmir is 73.905 lakh with 42.11% sheep population. Most of the livestock (sheep and goat) in Kashmir are kept under extensive management system and are fed exclusively on range land grasses. The profitability of sheep enterprise depends on the performance of the sheep. The performance of sheep measured in terms of average daily gain from the natural pastures varies from 250 g/day to –42 g/day (Nicole et al. 2010, Xu et al. 2017). Livestock tend to acclimatize with the locally available plants and try to get maximum nutrition possible (Mir et al. 2018). However, many a times, animals may not get the adequate nutrients from the pastures, thus supplementation become inevitable or the production losses become visible (Xu et al. 2017). The people of the valley have been using these pastures from hundreds of years for the grazing of the livestock (especially small ruminants); however, hardly any work has been done to measure the performance of the grazing animals in these pastures except one done by Ahmed et al. (2015) on alpine pastures. The present study was designed to quantify the performance of growing lambs on the sub-alpine pastures of Kashmir valley so that adequate steps can be taken at the earliest to mitigate any losses in the production.

MATERIALS AND METHODS

The study was conducted on the sub-alpine pastures of the Zaberwan hills (34° 09’ N, 74° 55’ E) which are associated with the Govt. Sheep Breeding Farm and Dachigam National Park. These pastures are grazed upon by small domestic and wild ruminants like sheep and red deer (Hangul). The pasture is situated at the base of mountain range with an average height of 1760 m above mean sea level. The study was conducted in 2 seasons (summer and autumn). The climate of the area is humid continental with severe and moist winter and short summers. The average temperature during the study period was 25°C and 13°C in summer and autumn respectively.

Kashmiri Merino male weaner lambs (50), 25 in each season, were selected for the experiment. Animals were weighed fortnightly for 60 days in each season. The experimental animals were allowed to graze on their respective pastures for 8 h/day without any feed...
supplementation. Animals were housed in well-ventilated pens at night and subjected to managemental practices approved by the Institutional Animal Ethics Committee. Clean drinking water was provided twice daily. At the middle of the each season, 5 animals were randomly selected for the 10 day digestion experiment.

Digestibility of the pasture grasses grazed by animals was determined by double indicator method with chromic oxide (Cr₂O₃) as an external indicator. The digestibility experiment was conducted for 10 days, during which the animals were dosed with 1 g of chromic oxide (Cr₂O₃) green twice daily in the morning and evening (Sankhyan et al. 1999). After collection, the pooled fecal samples were dried at 65±5°C till constant weight was obtained for estimation of chromic oxide content. Small amounts of fecal samples were also preserved in 25% (w/v) H₂SO₄ for estimation of crude protein. Representative grass samples were collected by simulating the grazing patterns of sheep after closely examining for their propensities (Sun and Zhou 2007). The grass samples were pooled to make a composite grass sample.

Representative samples (composite grasses and faecal samples) were dried at 65±5°C for 48 h and ground to pass through a 1-mm screen using Wiley mill for subsequent chemical analyses (AOAC 2005) like ether extract (EE), ash, Kjeldahl nitrogen (N), neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin. Calcium and phosphorus content of samples were estimated as per Talapatra et al. (1940). Chronic oxide was estimated as per the method given by Hill and Anderson (1958).

Dry matter digestibility (%), dry matter intake (g/day/animal), and faeces voided (g/day/animal) by the experimental animals was measured using the following equations (Crampton and Harris 1969).

\[
\text{DM digestibility (\%) = 100 - \left(100 \times \frac{\% \text{ indicator in feed}}{\% \text{ indicator in faeces}} \right) }
\]

\[
\text{Pasture consumption (g/day) = \frac{\text{Faeces voided (g)}}{\text{Indigestibility of pasture grasses (\%)}} \times 100}
\]

\[
\text{Faeces voided (g/day) = \frac{\text{Chronic oxide fed daily (g)}}{\text{Chronic oxide content per g of faeces (\%)}}}
\]

TDN of composite grasses was calculated from the intake of nutrients and their corresponding digestibility coefficients, which was converted to metabolisable energy (ME) (ICAR 2013). RFQ, a forage quality index, was estimated using the following equation (Moore et al. 2007)

\[
\text{RFQ = \frac{\text{DMD (\%) \times DMI (\% of BW)}}{1.29}}
\]

An individual animal was used as the experimental unit for all data. Statistical differences of variables between two seasons were evaluated by the comparison of means using independent sample t-test procedure by Statistical Package for the Social Sciences (SAS Studio, SAS University Edition, version 3.6, Basic Edition) and significant differences were assessed based on the P values (P<0.05) and the values are presented as value±SE.

RESULTS AND DISCUSSION

Pastures were dominated mostly by browse species. The shrub plants found were *Berberis lyceum*, *Cotoneaster nummularia*, *Indigofera heterentha*, *Parrotiopsis jacquemontiana*, *Rosa macrophylla*, *Rosa webbiana* and *Crataegus songarica* and the grass species include *Cynodon dactylon*, *Lolium perene*, *Poa spp., Poa pretense*, *Medicago sativa*, *Lolium perene*, *Trifolium pretense*, *Iris sp*, *Orchid Grass*, *Trifolium repense* and *Trifolium alexandrinum*.

The chemical composition of grasses grazed by sheep in the 2 seasons showed that protein content decreased, while cellulose and lignin content increased with the advancement of season (Table 1).

Dry matter content of the pasture grasses grazed by animals increased from summer to autumn. This might be due to the increase in cell wall and lignin content of plants with maturity (Mayouf and Arbouche 2015). The decline in the CP values was possibly due to the relative increase in fibre values. Dogra et al. (1994) and Bayble et al. (2007) also reported the decline in crude protein content as the plant matures. Moreover, decrease in the concentration of Rubisco, the most abundant protein in plants, due to reduced expression of its mRNAs with senescence may also be responsible the decrease in the crude protein values with maturity (Suzuki et al. 2010). Also, as the plant matures, it loses its ability of photosynthesis, becoming metabolically docile thus reducing the number of proteins required. This phenomenon is more prominent in leaves which start wilting as they mature, losing colour and ability to photosynthesize. Ether extract content in pasture plants increased from summer to autumn. Similar findings were also reported by Garino (1986) in the study on chemical composition and *in vitro* digestibility of indigenous pasture plants in different plant groups. Lignin

Chemical composition (\% DM)	Summer	Autumn	P-value
Dry matter	24.89±0.23	33.93±0.63	<0.001
Organic matter	92.67±0.77	90.43±0.50	0.07
Crude protein	14.41±0.63	10.23±0.34	0.004
Ether extract	1.86±0.06	0.92±0.02	<0.001
Total ash	7.33±0.77	9.57±0.50	0.07
NDF	68.70±0.60	68.90±1.06	0.88
ADF	42.00±1.05	43.80±0.42	0.18
ADL	8.90±0.45	11.60±0.31	<0.001
Hemicellulose	26.70±1.65	25.10±1.45	0.51
Cellulose	26.90±0.83	33.90±0.53	0.002
D value	645.1±5.35	460.0±2.55	<0.001
RF	224.91±34.69	113.27±4.87	0.013
content of plants increased with the advancement of season in pasture grasses. As plants grow there is a greater need for fibrous tissues to maintain their structure and therefore the main structural carbohydrates and lignin increases. Similar findings were also reported by Mayouf and Arbouche (2015) and Mir and Ahmed (2017). Total ash content of pasture grasses grazed by animals increased from summer to autumn. The quality of pasture grasses determined by D-value and RF of grasses decreased with the advancement of season. Apparent digestibility coefficient of all nutrients decreased from summer to autumn while that of DM, OM, NDF and cellulose decreased significantly with season (Table 2). This might be due to the increase in cell wall and lignin contents on maturity. These results were consistent with the findings of Bovolenta et al. (2008) and Mir et al. (2018). Dry matter intake decreases during autumn so does the energy and protein intake. The decrease in DMI (%BW) with the advancement of season might be due to increase in maturity, fibre and lignin content and decrease in crude protein content of the feed that directly affects the intake by decreasing the palatability. The decrease in energy and protein intake with the advancement of season could be attributed to lower content of these nutrients in the autumn. Nutritive value of composite grasses decreased from summer to autumn which might be due to the decrease in digestibility of most of the nutrients in autumn. DCP content of plants decreased because of the decrease in the digestibility and crude protein content of plants with the season, as there exists a direct relation between the three. There is decline in nutritive value of feed grazed by animals because of higher fibre and lower CP content in autumn. Hughes et al. (2012) while studying the effect of season on chemical composition, metabolizable energy and in vitro organic matter digestibility of rotationally grazed tropical pastures also found that season significantly (P<0.05) affected the chemical composition of plants selected by animals.

Average daily gain was 41 and 30 g/day in summer and autumn respectively, which was quite lower than expected of a successful enterprise. Conversely, Ahmed et al. (2015) reported that alpine pastures of Kashmir valley can support ADG of 100–150 g/day. Similarly, Mohammed and Yagoub (2016) found that male Sudanian desert lamb grows at the rate of 120.7 g/day while grazing on the natural pastures for 8 h. However, Piaggio et al. (2015) reported that lambs grow only at the rate of 45 ADG while grazing on the natural pastures. These variations among other things reflect the quality of pastures on which animals graze. Total weight gain, fortnight weight gain and per day weight gain were significantly lower in autumn due to decreased energy content of the pastures. However, feed efficiency remained same across the seasons. Fortnight weight changes during last two fortnights in autumn were in negative (Fig. 1). The negative weight gain per day (-42 g/day) was also reported by Xu et al. (2017) in Tibetan sheep in cold season.

Table 2. Nutrient intake, apparent digestibility (%) and body weight changes of lambs in different seasons

Nutrient intake	Summer	Autumn	
Dry matter intake (DMI)			
DMI (% BW)	4.14±0.40	3.23±0.07	0.038
Total DMI (g/day)	992.48±105.10	674.45±11.99	0.017
DMI (g/kg W0.75)	97.70±10.35	69.13±1.32	0.000
Energy (ME) intake			
TDN intake (g/day)	663.12±90.83	328.33±11.22	0.006
ME intake (Mcal/day)	2.37±0.08	1.75±0.03	0.000
Protein intake			
CP intake (g/day)	148.87±15.77	94.42±1.68	0.009
DCP intake (g/day)	77.21±11.84	51.67±3.44	0.055
Apparent digestibility (%)			
Dry matter	63.04±3.43	45.09±1.18	0.001
Organic matter	69.61±2.70	50.87±0.99	0.001
Crude protein	58.17±3.89	54.64±3.18	0.509
Either extract	61.37±3.58	64.19±0.77	0.465
NDF	59.55±4.40	46.74±1.31	0.024
ADF	46.67±6.04	33.64±1.09	0.067
Hemicellulose	64.14±4.46	57.10±0.92	0.161
Cellulose	68.36±2.93	59.81±0.23	0.024
Body weight (BW) changes during the experiment			
Initial BW (kg)	16.18±0.27	19.99±0.31	–
Final BW (kg)	18.64±0.30	21.8±0.36	–
Total gain (kg)	2.45±0.11	1.81±0.22	–
ADG (g/15 day)	6/3.64±54.34	451.70±77.31	0.001
ADG (g/day)	40.91±3.63	30.11±5.41	0.001
Feed efficiency	0.04±0.0005	0.04±0.0026	0.999

It can be concluded that the sub-alpine pasture cannot sustain the maintenance and growth requirements of the lambs hence warrants supplementation especially in the autumn months to prevent losses in the production performance of sheep.

ACKNOWLEDGEMENTS

Authors acknowledge the Dean, SKUAST-K for providing necessary research amenities to accomplish this study. The authors are also thankful to Dr Anzar A Khuroo, Senior Assistant Professor, Centre for Biodiversity and Taxonomy, University of Kashmir, Srinagar for the identification of the plant species in the pastures.
REFERENCES

Ahmad S, Mir N H, Bhat S S and Singh J P. 2018. High altitude pasture lands of Kashmir Himalaya: Current status, issues and future strategies in a changing climatic scenario. Current Journal of Applied Science and Technology 27: 2231–843.

Ahmed H A, Ganai A M, Afzal Y, Reshi P A and Sheikh G G. 2015. Palatability and nutritive value of alpine pasture in Kashmir valley. Indian Journal of Animal Nutrition 32: 110–12.

AOAC. 2005. Animal feed. Official Methods of Analysis. 18 edn. Association of Official Analytical Chemists International, Maryland, USA.

Bayble T, Melaku S and Prasad N K. 2007. Effects of cutting dates on nutritive value of Napier (Pennisetum purpureum) grass planted sole and in association with Desmodium (Desmodium intortum) or Lablab (Lablab purpureus). Livestock Research for Rural Development 19: 120–36.

Bovolenta S, Spanghero M, Dovier S, Orlandi D and Clementel A. 2004. Botanical composition, chemical composition and net energy content of alpine pasture species during the grazing season. Animal Feed Science and Technology 146: 178–91.

Crampton E W and Haris L E. 1969. Comparison of metabolizable energy and productive energy determinations with growing chicks. Journal of Nutrition 64: 587–603.

Hughes M P, Jennings P G A, Mlambo V and Lallo C H O. 2012. Effect of season and harvesting method on chemical composition, predicted metabolizable energy and in vitro organic matter digestibility of rotationally grazed tropical pastures. Online Journal of Animal and Feed Research 2: 405–17.

ICAR. 2013. Nutrient Requirement of Sheep, Goat and Rabbit. Indian Council of Agricultural Research, Krishi Anusandhan Bhavan-I, Pusa, New Delhi, India.

Mayouf R and Arbouche F. Seasonal variations in the chemical composition and nutritional characteristics of three pastoral species from Algerian arid rangelands. Livestock Research for Rural Development 27: 3.

Mir S and Ahmed H. 2017. Effect of season on the chemical composition and nutritive value of shrub foliage (Cotoneaster spp.) of sub-alpine pasture of Kashmir valley. International Journal of Livestock Research 7: 289–94.

Mir S H, Ahmed H A, Ganai A M and Afzal Y. 2018. Effect of season on diet composition, dry matter intake and digestibility in adult sheep grazed on sub-alpine pastures of Kashmir valley. Indian Journal of Animal Nutrition 35: 53–58.

Mohammed A H and Yagoub Y M. 2016. Effect of concentrate supplementation on the performance and carcass characteristics of natural grazing Sudanese desert lambs. Journal of Agricultural Science and Engineering 2: 1–4.

Moore J, Adesogan A, Coleman S and Ursnder D. 2007. Predicting forage quality. Part VII. Forage Quality. pp 553–568.

Nicole A M, Bryant R H, Ridgway M J and Edwards G R. 2010. Liveweight gain per head and per ha throughout the year of lambs grazing conventional pastures and those that switch from grass to clover. Proceedings of the New Zealand Grassland Association 72: 211–16.

Piaggio L, Marichal M D and Pastorin A. 2015. A 'protein bank' of Lotus uliginosus cv. Maku as an alternative to conventional protein supplements for weaned lambs grazing on natural pastures during summer and autumn. Animal Production Science 55: 27–30.

Prapat T and Wani S A. 2015. Pastures and Fodder Lands of Jammu. Kashmir and Ladkah. Policy Research Series/DR-SKUAST-K/2015/2015/03, SKUAST-Kashmir.

Sankhyan S K, Shinde A K, Bhattal R and Karim S A. 1999. Comparison of faecal output by faecal bag and indicator method for determining dry matter intake and pasture utilization in sheep. Indian Journal of Animal Sciences 69: 333–35.

Sun H X and Zhou D W. 2007. Seasonal changes in voluntary intake and digestibility by sheep grazing introduced Leymus chinensis pasture. Asian Australasian Journal of Animal Science 20: 872–79.

Suzuki Y, Kihara-Doi T, Kawazu T, Miyake C and Makino A. 2010. Differences in rubisco content and its synthesis in leaves at different positions in Eucalyptus globulus seedlings. Plant Cell and Environment 33: 1314–23.

Talapatra S K, Roy S C and Sen K C. 1940. The analysis of mineral constituents in biological materials. Estimation of phosphorus, chlorine, calcium, manganese, sodium and potassium in foodstuffs. Indian Journal of Veterinary Science and Animal Husbandry 10: 243–58.

Xu T, Xu S, Hu L, Zhao N, Liu Z, Ma L, Liu H and Zhao X. 2017. Effect of dietary types on feed intakes, growth performance and economic benefit in Tibetan sheep and yaks on the Qinghai-Tibet plateau during cold season. PLoS ONE 12: e0169187.