Customising flood damage functions to estimate the carbon footprint of flood-related home repairs

Elizabeth Matthews1 | Carol Friedland2 | Ahossin Alsadi3

1Civil Engineering & Construction Engineering Technology, Louisiana Tech University, Ruston, Louisiana
2Bert S. Turner Department of Construction Management, Louisiana State University, Baton Rouge, Louisiana
3Trenchless Technology Center, Louisiana Tech University, Ruston, Louisiana

Correspondence
Elizabeth Matthews, Civil Engineering & Construction Engineering Technology, College of Engineering Science, Louisiana Tech University, P.O. Box 10384, Ruston, LA 71270.
Email: ematt@latech.edu

Funding information
Louisiana Tech University; Louisiana Board of Regents Graduate Fellowship at Louisiana State University

Abstract
Flood damage functions are important tools used to estimate potential damage to the built environment from various types of flood-related hazard events (e.g., hurricanes, riverine flooding). Oftentimes these damage estimates are used to determine the feasibility of flood protection or mitigation projects or to plan for future disasters. While existing standardised functions are used to estimate potential economic loss for residential buildings, functions can be customised to assess the environmental impacts of flood damages for specific building designs. This study presents a methodology for customising functions to estimate the carbon footprint of flood-related building repairs. Unlike regular home repairs, which are based on material life expectancy, flood repairs are dependent on the severity of the flood hazard (i.e., flood depth) and probability of hazard occurrence within the lifespan of a building. To demonstrate the methodology, customised functions are developed for a case study home design in Saint Petersburg, Florida.

KEYWORDS
benefit-cost appraisal, flood damages, sustainability

1 | INTRODUCTION

Every year flood events in the US account for billions of dollars in damage to communities. Some data indicates that these events are only becoming more common and the frequency of these events are predicted to increase in the future (NOAA National Centers for Environmental Information (NCEI), 2020). The US National Flood Insurance Program (NFIP) has experienced over 1.1 million flood insurance claims in the 20-year period 1998–2017, with total payments of nearly $69 billion (Federal Emergency Management Agency (FEMA), 2019). For the same period, National Oceanic and Atmospheric Administration (NOAA) (2018) estimates that total (insured and uninsured) direct flood losses exceed $233 billion (2019 dollars) – a loss of over $11 billion every year with approximately 70% of that cost borne by the uninsured (National Oceanic and Atmospheric Administration (NOAA), 2018). These losses are crippling for individuals and local economies and further stress federal resources through disaster response and recovery. However, while economic loss is the most commonly used metric to communicate the impacts of natural hazards, this metric ignores the immense environmental resources needed to remediate and rebuild flood-damaged homes. In an effort to build sustainable communities in flood-prone areas, it is important to assess the environmental impact of building designs considering flood damage.
1.1 Flood damage estimation

Flood damage or loss functions are often used to estimate the impact of flood events on the built environment. These functions have specific uses, such as providing a measure for determining the feasibility of flood control structures and flood proofing projects, or as a tool for assessing the need for changes in policy or building code requirements. Typically flood functions quantify the economic loss associated with damage.

Standard flood loss functions for single-family residential (SFR) buildings typically relate the percent building damage as a function of economic loss (relative) or monetary damages (absolute) for multiple residential building types over a range of flood depths (Merz, Kreibich, Schwarze, & Thieken, 2010). Two primary methods are used to create flood damage functions for residential buildings: (a) empirical or historical and (b) synthetic (Friedland, 2009; Merz et al., 2010). The historical method involves averaging historical damage or loss data, whereas the synthetic method derives potential damage or loss data using expert opinion or theoretical analysis (Friedland, 2009). While historical flood damage data can be collected for existing residential buildings, synthetic functions (Gulf Engineers & Consultants (GEC), 1996, 1997, 2006; Penning-Rossell et al., 2005), which are developed based on an assumed building model, are more readily customizable to different building configurations and designs.

In the development of synthetic functions, panels of construction experts derive a list of itemised building components and estimate the damage (i.e., cost to repair) for each component over an incremental range of flood depths. Component damages are summed and the percent damage (PD) for each flood depth increment is calculated according to Equation (1):

$$\text{PD} = \sum \frac{\text{Component repair cost ($)}}{\text{Total new building replacement value ($)}} \times 100$$

(1)

The result is a function showing the total percent building damage over a range of flood depths. These functions can then be used to estimate total building damage ($) for similar residential buildings. While functions are useful in estimating damage to buildings, there is great interest in quantifying other impacts (e.g., environmental).

1.2 Life-cycle assessment

Life-cycle assessment (LCA), which quantifies life-cycle environmental impacts, is a widely accepted methodology that considers multiple indicators for environmental impact (e.g., energy consumption, carbon footprint, and water consumption) (Ashby, 2009; Scientific Applications International Corporation (SAIC), 2006; Dixit, Fernández-Solís, Lavy, & Culp, 2012) LCA has been utilised in many studies to quantify the environmental impacts of SFR buildings (Asif, Muneer, & Kelley, 2005; Hammond & Jones, 2008; Rossi, Mariche, & Reiter, 2012; Zabalza Bribián, Aranda Usón, & Scarpellini, 2009). Life-cycle impacts are typically calculated for the manufacturing of building materials, initial construction, operation, and end-of-life activities associated with the building. LCA has also been utilised to calculate the environmental impacts of life-cycle SFR repairs due to regular maintenance (Blengini, 2009; Keoleian, Blanchard, & Reppe, 2000; Mithraratne & Vale, 2004; Peuportier, 2001), as well as natural hazard repairs (Matthews, Friedland, & Orooji, 2016; Petit-Boix et al., 2017).

Carbon footprint, which is a measure of the total greenhouse gas (GHG) emissions (CO₂, Methane, etc.), is often used to evaluate the environmental impact of products and activities (Alsadi, 2019). Carbon footprint is often expressed in terms of carbon dioxide equivalents, where GHG emission are summed by first converting all greenhouse gasses by their corresponding global warming potential (Environmental Protection Agency (EPA), 2020). Defining the carbon emissions of flood damage repairs helps to further define life-cycle impacts tied to the operation phase of a building. To define the carbon footprint of flood damages, it is necessary to break down damages into separate material components, which requires component-level damage functions.

Stand-alone component-level depth-damage functions are rarely presented in literature. Instead these functions are presented as part of the methodology for synthetic aggregated damage curves for specific building types (Gulf Engineers & Consultants (GEC), 1996, 1997, 2006), calculated using Equation (1). In one of the few sources describing component-level flood damage, Gulf Engineers and Consultants (GEC) (1997) developed synthetic, depth-loss relationships for five residential structure types for the US Army Corps of Engineers (USACE) New Orleans District. GEC developed a set of 18 tables presenting component-level flood damage dollar estimates for five residential building types (one-story on piers, one-story on slab, two-story on piers, two-story on slab, and manufactured home) for three flood conditions (short-duration: freshwater and saltwater; long-duration: saltwater; and long-duration: freshwater). A model design was assumed for each building type and damages in dollars were estimated for 23 components using opinions from a panel of experts. While the GEC tables are a useful source for estimating damage, the design component list...
used to develop these tables is limited in the variety of some materials (e.g., flooring) and level of detail of components which can be broken down more specifically (e.g., built-in appliances) (Gulf Engineers & Consultants (GEC), 2006).

FEMA’s “Substantial Damage Estimator (SDE) User Manual and Workbook” (Federal Emergency Management Agency (FEMA), 2014), provides guidance on assigning percent damage for building components while using the SDE to estimate damage to flood-damaged residential buildings. The guidance includes a table of component-level damage descriptions that are associated with ranges of percent damage and flood depths. The descriptions are organised according to 11 major categories: foundation; superstructure; roof covering; exterior finish; interior finish; doors and windows; cabinets and countertops; floor finish; plumbing; electrical; appliances and heating, ventilating and air conditioning (HVAC) (Federal Emergency Management Agency (FEMA), 2014). The SDE manual does not include damage functions but does provide standardised descriptions of damage that are useful for building synthetic damage functions or expanding existing sets of functions.

While previous work has introduced integrated methodologies for quantifying the environmental impacts of flood damages (Hennequin et al., 2018, 2019; Matthews et al., 2016; Petit-Boix et al., 2017), this study’s focus is on presenting an expanded methodology for developing customised carbon footprint functions associated with flood damages for user-specific SFR designs. Demonstrating application of these curves to design optimization and specific cost–benefit case studies is beyond the scope of this article; however, Matthews et al. (2016) and Hennequin et al. (2018, 2019) demonstrate how quantifying customised carbon footprint and other environmental impacts can be utilised for design optimization and cost–benefit analysis.

While these studies (Hennequin et al., 2018, 2019; Matthews et al., 2016) explore defining environmental impacts due to flood damages utilising similar approaches, the primary purpose of this article is the expand upon the methodology for creating carbon footprint curves for flood damages related to specific building configurations. It is possible to apply this same approach to other environmental impact indicators so as to take a full LCA approach; however, the main intent of this study is to show how to adapt very detailed component flood depth–damage curves so that anyone can customise curves for a specific analysis. This is important because LCAs are dependent on material quantities which can vary from building to building. This is especially applicable for small-scale cost–benefit studies that incorporate one or a few SFR buildings (e.g., house elevations).

The aim of this study is to present a set of synthetic flood depth–damage, component-level functions for SFR type structures that are (a) flexible in their application to individual SFR building designs and (b) can be utilised to create customised whole-building functions for estimating the environmental impact (i.e., carbon footprint) associated with flood repairs. Inundation-only, non-velocity flooding is considered in the development of the component-level depth–damage functions. The functions are also applicable to both one-story and two-story SFR wood-frame building designs, and flexible enough to account for variations in design (e.g., interior finishes).

This methodology can be utilised to develop customised flood damage functions for specific projects, which are more applicable and appropriate to a specific design rather than relying on functions developed using model designs or averaged historical data. To demonstrate how the component-level functions are utilised to develop whole-building functions for estimating the carbon footprint of hazard-related repairs for specific designs, a case study is presented. The case study SFR building is a one-story home located in Saint Petersburg, Florida. A sensitivity analysis to investigate the variability in the carbon footprint curves developed for the case study building is also presented.

2 | DEVELOPMENT OF COMPONENT DEPTH–DAMAGE FUNCTIONS

The set of customizable component-level, SFR depth–damage functions were developed utilising (Gulf Engineers & Consultants (GEC), 2006) and (Federal Emergency Management Agency (FEMA), 2014) for the purpose of quantifying the carbon footprint of repairs. Since the approach taken utilizes damage assumptions and does not rely on historical data, the methodology used to create these functions is synthetic. There were three main steps taken to develop the functions:

1. Compile a list of building components.
2. Develop a set of building and damage assumptions.
3. Derive customizable component functions based on the assumption made.

The list of building components was adapted and expanded from the component lists within Gulf Engineers and Consultants (GEC) (2006) and Federal Emergency Management Agency (FEMA) (2014). The goal was to capture as many components as possible; however, some components connected to the site were not included due to difficulty in quantifying damage as a...
Component	Assumptions	Source
Gypsum board	GEC, 2006	GEC, 2006
1 Gypsum board	GEC, 2006	GEC, 2006
Wall paper-faced	25% damage (0–0.5 m); 50% damage at 0.6 m; 100% damage at 1.2 m.	GEC, 2006
Wall/ceiling, paperless	No damage.	a
Ceiling paper-faced	100% damage at 2.4 m.	b
2 Bottom cabinets	All cabinets are particle board cabinets. Damaged as soon as flooded.	GEC, 2006
3 Upper cabinets	All cabinets are particle board cabinets. Replace at 1.2 m flood water.	FEMA, 2014
4 Countertops	Replace when bottom cabinets are replaced.	GEC, 2006
5 Water heater	Water heater is on first floor level. Replace water heater at 0 m of water.	GEC, 2006
6 Insulation	GEC, 2006	GEC, 2006
Floor insulation	Completely damaged at −0.3 m of water.	GEC, 2006
7 Subflooring	Warps at 0 m. Needs to be replaced when warped.	GEC, 2006
8 Exterior siding and sheathing	GEC, 2006	GEC, 2006
One-story, short duration	Average of GEC exterior siding functions for one-story, short duration flooding.	GEC, 2006
One-story, long duration	Average of GEC exterior siding functions for one-story, long duration flooding.	GEC, 2006
Two-story, short duration	Average of GEC exterior siding functions for two-story, short duration flooding.	GEC, 2006
Two-story, long duration	Average of GEC exterior siding functions for two-story, long duration flooding.	GEC, 2006
9 Brick/stone siding materials	No damage sustained. Siding remains adhered (cleaning and drying needed).	GEC, 2006, FEMA, 2014
10 Base moulding	Totally damaged at 0 m of water.	GEC, 2006
11 Interior paint/ wallpaper	At 0 m, entire wall covering replaced because of colour matching.	GEC, 2006
12 Exterior paint	At 0.2 m, entire wall covering replaced because of colour matching.	GEC, 2006
13 Wainscoting	Graduate rate from 0 to 1.2 m, cut and replace.	GEC, 2006
14 Electrical	Destroyed at 0 m. Wiring with wet ends replaced.	GEC, 2006
Floor receptacles	Destroyed at 0 m. Wiring with wet ends replaced.	GEC, 2006, FEMA, 2014
Wall receptacles	Destroyed at 0.2 m. Wiring with wet ends replaced.	FEMA, 2014
Switches	Destroyed at 1.5 m. Wiring with wet ends replaced.	GEC, 2006
Fixtures	Destroyed at 1.5 m. Wiring with wet ends replaced.	GEC, 2006
Component	Assumptions	Source
--------------------	--	--
15 Built-in appliances		
Dishwasher	Replace at 0 m.	Gulf Engineers & Consultants (GEC), 2006
Clothes dryer	Replace at 0.2 m.	Federal Emergency Management Agency (FEMA), 2014
Clothes washer	Replace at 1.2 m.	Federal Emergency Management Agency (FEMA), 2014
Hood	Replace at 1.2 m.	Gulf Engineers & Consultants (GEC), 2006
16 Foundation		
Pier	Average of GEC foundation functions for pier buildings.	Gulf Engineers & Consultants (GEC), 2006
Slab	Average of GEC foundation functions for slab buildings.	Gulf Engineers & Consultants (GEC), 2006
17 Structural frame	Average of GEC all structural frame functions.	Gulf Engineers & Consultants (GEC), 2006
18 Windows		
Floor level	Replace at 0.2 m.	Federal Emergency Management Agency (FEMA), 2014
Sill height	Replace at 1.2 m.	Federal Emergency Management Agency (FEMA), 2014
High windows	Replace at 1.5 m (window 1.2 m from floor).	Federal Emergency Management Agency (FEMA), 2014
19 Doors		
Interior	Replace at 0.3 m.	Federal Emergency Management Agency (FEMA), 2014
Exterior	Replace at 0.5 m.	Federal Emergency Management Agency (FEMA), 2014
20 Finish flooring		
All wood substrate	Replace at 0 m.	Federal Emergency Management Agency (FEMA), 2014
Vinyl, carpet, wood on slab	Replace at 0 m.	Federal Emergency Management Agency (FEMA), 2014
Ceramic on slab	No damage.	Federal Emergency Management Agency (FEMA), 2014
21 Roof		
Covering	Replace at >2.1 m of water or when any portion inundated.	Gulf Engineers & Consultants (GEC), 2006
Sheathing	Replace inundated portions.	
Soffits, one-story	Average of GEC soffit functions for one-story buildings.	Gulf Engineers & Consultants (GEC), 2006
Soffits, two-story	Average of GEC soffit functions for two-story buildings.	Gulf Engineers & Consultants (GEC), 2006
22 Condenser unit	Replace at 0.3 m of flooding. Condenser unit assumed to be at first floor.	Federal Emergency Management Agency (FEMA), 2014
23 Heating		
Heating unit (first floor)	Assumed to be gas or oil fired. Replaced when unit is flooded with 0.3 m.	Federal Emergency Management Agency (FEMA), 2014
Ductwork (below first)	Totally damaged when flooded. Assumed to be flooded at −0.3 m.	Federal Emergency Management Agency (FEMA), 2014
LANDSCAPING, for example, can vary from one site to another making it difficult to predict damage. Further, only permanent components of the structures were considered, and any components considered movable were outside the scope of this study (e.g., contents). In total, 25 component categories were compiled. Of the 25 component categories, interior wallboard, insulation, electrical, windows, doors, finished flooring, built-in appliances, roof, and heating were subdivided into more detailed components.

General building assumptions were defined to develop the curves, which limits the applicability of these curves to some structures. While some of these assumptions may exclude certain building designs, the general assumptions are meant to capture most designs (especially in the southern and coastal regions) and simplify the development of customizable functions. It was assumed that buildings are constructed with wood stud framing, floor to ceiling heights are 2.4 m and there is a one-foot gap between first and second stories. It was also assumed; no HVAC or built-in appliance equipment exists below the first-floor level (excluding ductwork) and there are no basements (typical of southern and coastal construction). Plumbing outside of the building footprint were excluded and only simple roof configurations were considered to simplify the development of the depth–damage functions.

Damage assumptions that define the level of damage associated with specific flood conditions and depths for all components are shown in Table 1. Further, the level of detail provided in the methodology is intended to allow development of component level functions for other building designs (e.g., different ceiling heights). Most of the damage assumptions were adapted from assumptions and damage descriptions provided in Gulf Engineers and Consultants (GEC) (2006), Federal Emergency Management Agency (FEMA) (2014), and information regarding the source of the assumptions is provided in Table 1. Flood depths shown in Table 1 are referenced to the top of the first-floor elevation. To further define assumptions for materials that are more flood resistant, Federal Emergency Management Agency (FEMA) (2014) was consulted to determine if certain materials are less likely to result in damage.

TABLE 1 (Continued)

Component	Assumptions	Source
Heating unit (second floor)	Assumed to be gas or oil fired. Replaced when unit is flooded with 0.3 m.	Federal Emergency Management Agency (FEMA), 2014
Ductwork (second flood)	Totally damaged when flooded. Assumed to be flooded at 2.7 m.	Federal Emergency Management Agency (FEMA), 2014
Ductwork (third floor)	Totally damaged when flooded. Assumed to be at 5.5 m.	Federal Emergency Management Agency (FEMA), 2014
Pier foundation	Average of GEC stair functions for pier foundation	Gulf Engineers & Consultants (GEC), 2006
Slab foundation	Average of GEC stair functions for slab foundation	Gulf Engineers & Consultants (GEC), 2006
Fireplace	Two-story, short duration Average of GEC fireplace functions for short duration flooding.	Gulf Engineers & Consultants (GEC), 2006
	Two-story, long duration Average of GEC fireplace functions for long duration flooding.	Gulf Engineers & Consultants (GEC), 2006

Paperless Gypsum Board is a material used for wet flood proofing, which can stay in place and dry after flooding. See Federal Emergency Management Agency (FEMA), (2008).

It was assumed paper-faced gypsum on the ceiling is completely damaged once water reaches ceiling height.

Insulation (other than closed-cell foam) is assumed to be damaged 100% when water touches the insulation (i.e., at a ceiling height of 2.4 m).

Roof sheathing is assumed to need replacement as it is inundated, since typical sheathing material warps when soaked with water.

FIGURE 1 Example component depth–damage function
Component	Floor depth relative to first floor (m)	0.3	0.2	0	0.3	0.5	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3	3.4	3.7	4.0	4.3	4.6
Gypsum board	Wall paper-faced	0	0	25	25	25	50	50	100	100	100	100	100	100	100	100	100	100	100	
Gypsum board	Wall paperless	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gypsum board	Ceiling paper-faced	0	0	0	0	0	0	0	0	0	0	0	0	100	100	100	100	100	100	
Gypsum board	Ceiling paperless	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bottom cabinets	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
Upper cabinets	0	0	0	0	0	0	0	0	100	100	100	100	100	100	100	100	100	100	100	
Countertops	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
Water heater	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
Insulation	Floor insulation closed-cell foam	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Insulation	Floor insulation all other types	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
Insulation	Wall insulation closed-cell foam	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Insulation	Wall insulation all other types	0	0	25	25	25	50	50	100	100	100	100	100	100	100	100	100	100	100	
Insulation	Ceiling insulation closed-cell foam	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Insulation	Ceiling insulation all other types	0	0	0	0	0	0	0	0	100	100	100	100	100	100	100	100	100	100	
Subflooring	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
Base moulding	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
Paint/wallpaper	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
Wainscoting	0	0	0	12.5	25	37.5	50	75	100	100	100	100	100	100	100	100	100	100	100	
Electrical	Electrical—floor receptacles	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Electrical	Electrical—wall receptacles	0	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Electrical	Electrical—switches	0	0	0	0	0	0	0	0	100	100	100	100	100	100	100	100	100	100	
Electrical	Electrical—fixtures	0	0	0	0	0	0	0	0	100	100	100	100	100	100	100	100	100	100	
Built-in appliances	Dishwasher	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Built-in appliances	Clothes dryer	0	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Built-in appliances	Clothes washer	0	0	0	0	0	0	0	0	100	100	100	100	100	100	100	100	100	100	
Built-in appliances	Kitchen Hood	0	0	0	0	0	0	0	0	100	100	100	100	100	100	100	100	100	100	
It should be noted that in developing the damage assumptions, thought was given not just to the actual direct physical damage, but also to actions taken by construction professionals while restoring damaged homes. For example, if only a portion of a roof were flooded, it was assumed that all shingles were replaced since color matching might be difficult when replacing only a portion of the roof. Also, in cases where removing one item would lead to the removal of another item (e.g., kitchen cabinets and countertops), both items were assumed to be completely damaged simultaneously even when one item might not be flooded.

Using these component-level damage assumptions, the component-level, depth-damage functions were then developed. As with the flood depths in Table 1, the flood depths for the functions are also referenced to the top of the first-floor elevation. As an example, Figure 1 shows the component damage function for paper-faced gypsum board that was developed from the damage assumptions. The functions were modelled as step functions, to represent typical repair/replacement recommendations. For example, with paper-faced gypsum for any flood depth starting at zero and up to 0.6 m, it is recommended a homeowner replace up to 0.6 m (25%) of gypsum board to account for the wicking of moisture into paper above the waterline. Within the 0.6–0.9 m flood depth range, 1.2 m (50%) of gypsum would be replaced. Any flood depths 1.2 m or higher, requires total replacement.

For some of the components, the component percent damage functions were directly taken from the GEC tables (exterior siding, foundation, structural frame, roof, stairs, and fireplace) (Gulf Engineers & Consultants (GEC), 2006). For GEC components where multiple functions were calculated based on the building type and flood duration, similar functions were averaged to reduce the number of functions per component.

For one component, roof sheathing, there was not enough description from GEC or the SDE Manual to determine the percent damage (Gulf Engineers & Consultants (GEC), 2006; Federal Emergency Management Agency (FEMA), 2014). While GEC provides damage estimates for the roof from which functions could be developed, it was determined because GEC had to assume a roof configuration to make the estimates (Gulf Engineers & Consultants (GEC), 2006), the results from these functions might not match other roof configurations. It was decided that roof damage would be calculated based on the assumption that only inundated sheathing would require replacement. To determine the percent of roof sheathing that would need to be replaced, Equation (2) was utilised.

\[
\% \text{Damaged sheathing} = \frac{\text{Area of inundated sheathing}}{\text{Total area of sheathing}} \times 100
\]
Component	Floor depth relative to first floor (m)
	−0.3 −0.2 0 0.2 0.3 0.5 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.4 3.7 4.0 4.3 4.6
Gypsum board	
Wall, paper-faced	0 0 0 0 0 0 0 0 0 0 0 0 25 25 50 50 100 100 100
Wall, paperless	0 0
Ceiling, paper-faced	0 0
Ceiling, paperless	0 0
Bottom cabinets	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Top cabinets	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Countertops	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Plumbing fixtures (WH)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Wall insulation CCF	0 0
Wall insulation (other)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 25 50 50 100 100 100
Ceiling insulation CCF	0 0
Ceiling insulation (other)	0 0
Subflooring	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Base moulding	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Paint/wallpaper	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Wainscoting	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 50 75 100 100 100
Electrical	
Floor receptacles	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Wall receptacles	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Switches	0 100
Fixtures	0 100
Built-in appliances	
Dishwasher	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Clothes dryer	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Clothes washer	0 100
Hood	0 100
Windows and doors	
Floor level	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100
Sill height	0 100
Also, to account for variation in the design of components at the first- and second-flow (i.e., attic of a two-story) of a SFR building, all components except for six were separated into two sets of depth-damage functions for the first and second floor levels. Only exterior siding, foundation, structural frame, roof, stairs, and fireplace depth damage functions include all the floors combined. These components were not separated by story because there was not enough information from GEC or the SDE Manual to split damage percentage by building level (Gulf Engineers & Consultants (GEC), 2006; Federal Emergency Management Agency (FEMA), 2014). The first-floor, second-floor, and combined depth damage functions can be found in Tables 2–4).

To utilize the tables for a specific building, the first-floor, second-floor, and combined functions that are applicable to the specific design in question are identified. As an example, for a one-story building, most applicable functions will be taken from Tables 2 and 4. If the equipment is located in the attic (e.g., ductwork, heating unit, and water heater) then functions from Table 4 may also be applicable to a one-story building since this equipment is located at the second-story level.

The carbon footprint to repair each component is calculated according to Equation (3):

$$CF_{i,j} = \frac{TCO_2 i \times PD_{i,j}}{100}$$

where, $CF_{i,j}$ is the carbon footprint of repairs to component i at flood depth j, $TCO_2 i$ is the total carbon footprint to replace component i, and $PD_{i,j}$ is the percent damage for component i at flood depth j. Repeating this for all components, the result is a table of carbon footprint repair values for all components over the full range of flood depth. Finally, the component carbon footprint values are summed at each flood depths. The summed carbon footprint values represent the total carbon footprint for building repairs as a function of flood depth. TCO2 values can be derived from literature, which is further demonstrated in following section. Since TCO2 values for individual materials can have a range of estimated values, an uncertainty analysis should be carried out to investigate the variability in the carbon footprint curves produced.

The uncertainty analysis is carried out investigating both the variability in carbon footprint values and materials quantities. Variability in carbon footprint values were characterized by utilising the maximum and minimum carbon footprint values for individual materials derived from literature. By applying the maximum and minimum values to the curve development methodology, maximum and minimum carbon footprint curves base on
Table 4 First and second floor combined depth damage functions

Component	Floor depth relative to first floor (meters)	−0.3	−0.2	0	0.2	0.3	0.5	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3	3.4	3.7	4.0	4.3	4.6	
Exterior wall/siding																						
One-story, S.D.³		0	0	2	12.5	13.2	16.1	16.6	19.9	21.8	24.1	24.5	26.8	27.2	28.3	28.7	29.2	29.7	30.1	30.6		
One-story, L.D.³		0	0	0	15.4	27.6	35.9	41.1	42.2	45.5	54.7	58.1	58.6	60.8	61.3	62.4	62.8	63.3	63.7	64.2	64.6	
Two-story, S.D.		0	0	0	1.3	7.8	7.8	11	11	16.1	16.5	18.3	18.3	19.8	19.8	20.1	22.6	22.6	27.1	27.1	27.1	27.1
Two-story, L.D.		0	0	0	1.9	13.7	15.5	21.8	22.1	29.6	30.8	33.2	34	38.3	46.3	46.3	48.8	50.1	55.1	56.8	59.4	
Brick/stone siding		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Foundation																						
Pier		0.7	1.1	3.2	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	
Slab		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Structural frame		0	0	0	2.3	3.2	3.2	3.7	4.1	4.7	5.2	5.4	5.4	6	6.3	6.3	6.3	6.3	6.3	6.3	6.3	
Soffits/fascia, one-story		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Soffits/fascia, two-story		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Stairs—pier foundation		0	0	0	7.7	31.6	44.9	63.4	67.6	69.1	77.6	79	80.4	82	82.6	82.6	82.6	82.6	82.6	82.6	82.6	82.6
Stairs—slab foundation		0	0	0	5.5	16.6	24.5	25.9	44.3	46.4	56.2	58.8	60.2	61.6	62.9	62.9	62.9	62.9	62.9	62.9	62.9	62.9
Fireplace—two-story, S.D.		0	0	0	18.4	38.5	45.3	47.3	47.3	47.3	47.3	47.3	47.3	47.3	47.3	52.3	52.3	52.3	52.3	52.3	52.3	52.3
Fireplace—Two-story, L.D.		0	0	0	21.9	51.7	61.9	65.9	65.9	65.9	65.9	65.9	65.9	70.9	70.9	70.9	70.9	70.9	70.9	70.9	70.9	70.9

³S.D., short-duration flooding; L.D., long-duration flooding.
Design component	Units	Quantity	Min TCO₂ (kg CO₂ Eq. × 10³)	Mean TCO₂ (kg CO₂ Eq. × 10³)	Max TCO₂ (kg CO₂ Eq. × 10³)	TCO₂ data sources
Gypsum board—walls	S.M.	363.8 b	8.27 b	8.27 b	National Institute of Standards and Technology (NIST), 2018	
Gypsum board—ceiling	S.M.	191 b	4.34 b	4.34 b	National Institute of Standards and Technology (NIST), 2018	
Bottom cabinets	L.M.	7.2 0.145	0.155 0.162	Ashby, 2009		
Upper cabinets	L.M.	7.3 0.103	0.108 0.112	Ashby, 2009		
Countertops	S.M.	9.1 0.087	0.118 0.122	Ashby, 2009		
Hot water heater	Each	1 0.108	0.126 0.136	Ashby, 2009		
Insulation—walls	S.M.	146.7 0.384	0.292 0.417	National Institute of Standards and Technology (NIST), 2018		
Insulation—ceiling	S.M.	191 0.384	0.736 1.09	National Institute of Standards and Technology (NIST), 2018		
Wood siding	S.M.	146.7 b	0.335 b	National Institute of Standards and Technology (NIST), 2018		
Exterior wall sheathing	S.M.	146.7 b	0.644 b	National Institute of Standards and Technology (NIST), 2018		
Base moulding	S.M.	13.2 0.096	0.102 0.106	Ashby, 2009		
Paint/wall coverings	S.M.	411.2 b	0.984 b	National Institute of Standards and Technology (NIST), 2018		
Electrical outlets	Each	24 0.003	0.003 0.003	Ashby, 2009		
Electrical switches	Each	19 0.006	0.007 0.007	Ashby, 2009		
Electrical fixtures	Each	26 a	a a a	Ashby, 2009		
Dishwasher	Each	1 0.260	0.265 0.269	Ashby, 2009		
Clothes washer	Each	1 0.340	0.360 0.375	Ashby, 2009		
Clothes dryer	Each	1 0.303	0.318 0.330	Ashby, 2009		
Kitchen Hood	Each	1 a	a a a	Ashby, 2009		
Heating unit†	Each	1 0.483	0.539 0.595	Ashby, 2009		
Slab	S.M.	161.3 5.77	6.46 7.15	National Institute of Standards and Technology (NIST), 2018		
Wall and roof framing	Kg	7,725 4.19	4.47 4.74	Ashby, 2009		
Sill height windows	S.M.	3.3 0.116	0.131 0.146	Ashby, 2009		
High windows	S.M.	9 0.312	0.352 0.392	Ashby, 2009		
Interior doors	S.M.	10.9 0.058	0.061 0.064	Ashby, 2009		
Exterior doors	S.M.	14.2 0.111	0.120 0.129	Ashby, 2009		
Wood flooring	S.M.	49.2 0.392	0.409 0.425	Ashby, 2009		
Carpet	S.M.	50.3 0.463	0.821 2.06	National Institute of Standards and Technology (NIST), 2018		
Ceramic flooring	S.M.	35.9 b	0.792 b	National Institute of Standards and Technology (NIST), 2018		
Variability in carbon footprint were developed. Variability in material quantities due to errors in estimation were simulated by adding and subtracting 10% to the estimated quantity for each material component. Minimum and maximum carbon footprint curves were then created incorporating both the minimum and maximum carbon footprint value with the minus and plus 10% material variation, respectively. These curves help to demonstrate the potential variability of curve development based on both variations in carbon footprint values and material estimations.

3 | CASE STUDY

The following case study illustrates how the component depth–damage functions can be utilised for individual building designs to develop design-specific, whole-building functions for estimating carbon footprint impacts of repairs. A one-story, slab-on-grade, wood-framed, hipped roof SFR structure with three bedrooms and two baths was used for this case study. The home is typical of coastal, southeastern construction in Saint Petersburg, Florida (Matthews et al., 2016), and flooding was assumed to be of short-duration, fresh, or saltwater flooding.

Table 5 shows the material quantities and total carbon footprint for each component in the case study house. It was assumed that there was no difference between the carbon footprint of the new installation and the repair of each component. While there might be carbon emissions associated with the removal of damaged materials, it was assumed differences in carbon footprint between new installation and repairs was negligible.

Table 5 (Continued)

Design component	Units	Quantity	Min TCO$_2$ (kg CO$_2$ Eq. x 10^3)	Mean TCO$_2$ (kg CO$_2$ Eq. x 10^3)	Max TCO$_2$ (kg CO$_2$ Eq. x 10^3)	TCO$_2$ data sources
Roof cover	S.M.	291.9	4.515	4.515	4.515	National Institute of Standards and Technology (NIST), 2018
Roof sheathing	S.M.	291.9	1.280	1.280	1.280	National Institute of Standards and Technology (NIST), 2018
Fascia	S.M.	10.7	0.057	0.063	0.065	Ashby, 2009
Soffits	S.M.	53.3	0.101	0.111	0.113	Ashby, 2009
AC condensing unit	Each	1	0.623	0.688	0.752	Ashby, 2009
Ductwork	Per story	1	0.395	0.441	0.487	Ashby, 2009
Total			36.24	38.41	41.42	

aData not available.

bMinimum and maximum data same as mean; limited data available to develop range of data values.

Includes furnace and fan coil unit.
TABLE 6 Case study calculations for carbon footprint (−0.3 to 4.5 m)

Component	Floor depth relative to first floor (m)	TCO₂ (kg CO₂ Eq. x 10³)
	−0.3 − 0.2 0 0.2 0.3 0.5 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.4 3.7 4.0 4.3 4.6	
First floor Wall, paper-faced		8.27
Ceiling, paper-faced		4.34
Bottom cabinets		0.155
Upper cabinets		0.108
Countertops		0.118
Water heater		0.126
Wall insulation		0.292
Ceiling insulation		0.736
Base moulding		0.102
Paint/ wallpaper		0.984
Wall receptacles		0.003
Switches		0.007
Fixtures		
Dishwasher		0.265
Clothes washer		0.360
Clothes dryer		0.318
Hood		
Sill height		0.131
High windows		0.352
Interior doors		0.061
Exterior doors		0.120
Wood flooring (slab)		0.409
Carpet (slab)		0.821
Ceramic (slab)		0.792
AC condenser unit		0.688
Second floor Fixtures		
Roof covering		4.515
Roof's heating		1.280
Heating unit (attic)		0.599
Ductwork (attic)		0.441
Combined Siding		0.335
Exterior Wall sheathing		0.644
Foundation—slab		6.46
Structural frame		4.47
Roof—Soffits/ fascia		0.174
Sum		36.24

Note: The table provides detailed calculations for the carbon footprint of various building components at different floor depths relative to the first floor.
need to be replaced, at 1.2 m most interior materials below 2.4 m would be damaged and at 2.4 m roof and ceiling materials would need to be repaired. For a one-story building, once floodwater exceeds 2.4 m, most material damage in the building has occurred, which explains the flattening of the curve for higher flood depths. The flattening of the curve between 1.22 and 2.44 m is also expected since only additional damage to interior and exterior wall finishes and sheathing would be damaged.

The case study demonstrates how the customizable depth–damage functions developed in this study can be used to estimate the environmental impacts of damage repairs over a range of flood depths. While this study used carbon footprint to measure environmental impact, other environmental impact indicators could also be utilised (e.g., embodied energy, water consumptions).

These functions can be used by benefit–cost analysts when quantifying the effectiveness of designs to mitigate impacts beyond economic loss. This metric, when added to benefit cost analysis, enables a more holistic approach to sustainable construction practice that ideally should consider all economic, social and environmental impacts. For example, the Federal Emergency Management Agency already utilizes some limited environmental benefits to quantify the overall benefit of Hazard Mitigation Grant Program projects to determine feasibility for funding (Federal Emergency Management Agency (FEMA), 2013). By applying monetary values to reductions in carbon footprint associated with avoided flood losses, these benefits could be easily be integrated into the current environmental benefits utilised in FEMA cost–benefit methodologies. Customizable curves could also be integrated into cost–benefit approaches such as the one presented in Hennequin et al. (2018), which analysed whether constructing flood protection structures were more environmentally beneficial than repairing flood damages associated with the potentially protected buildings. These are just some examples of how developing carbon footprint curves for specific buildings can be utilised for analysis related to specific projects.

4 | UNCERTAINTY ANALYSIS

The same calculations shown in Table 6 were also carried out for the minimum and maximum values. The range of total carbon footprint is shown in Figure 3. The minimum and maximum curves follow the same trend as the mean curve. The greatest percent difference between minimum and maximum values exist at flood depths between 0 and
1.2 \text{ m} with differences of 35–23\%, respectively. At depths
1.2 \text{ m} or greater the percent difference between minimum
and maximum values fall between 13 and 16\%.

When taking into account both variability in carbon
footprint and material quantity variation (±10\%), the
range of total carbon footprint increases (Figure 4). The
greatest percent difference between minimum and maximum
values range from 54 to 43\% between 0 and 1.2 \text{ m},
respectively. At depths greater than 1.2 \text{ m} the percent
difference between minimum and maximum values fall
between 32 and 36\%. For both Figures 3 and 4, as depth
increases from 0 \text{ m} the percent difference between mini-
mum and maximum carbon footprint decreases.

5 | CONCLUSION

A set of component-level, synthetic depth–damage func-
tions for SFR type structures were developed and applied
to case study building. These functions, while traditionally
used to quantify damage in dollars, were applied to
quantify the environmental impact of an individual
building as demonstrated by the case study provided. The
functions presented in the study target the most conven-
tional type of SFR construction (i.e., wood-framed).
Inundation-only, nonvelocity flooding is considered in
the development of these functions. The functions are
applicable to both one-story and two-story SFR building
designs, and flexible enough to account for variations in
most SFR designs. The case study includes a wood-frame
SFR building design typical of coastal, southeastern
United States. The depth-damage functions were applied
to the case study building to calculate the carbon foot-
print of flood damage over a range of flood depths. An
uncertainty analysis of carbon footprint values was also
completed to show the range (minimum and maximum)
of possible carbon footprint values for flood depths −0.3
to 4.6 \text{ m}. When accounting for variation in carbon foot-
print values, the percent difference between minimum
and maximum curves ranged from 13 to 35\% from 4.6 to
0 \text{ m}, respectively. When taking into account both varia-
tion in carbon footprint values and materials quantities
the percent difference between minimum and maximum
curves ranged from 32 to 54\% from 4.6 to 0 \text{ m}, respec-
tively. The greatest percent difference in both cases
occurred at lower flood depths (0–1.2 \text{ m}). The customiz-
able component functions presented in this article serve
as a tool for creating depth–damage carbon-footprint
building functions specific to individual designs.

6 | LIMITATIONS AND FUTURE
STUDY

The methodology in this study is limited to cases with
inundation-only, nonvelocity flooding. The functions are
only applicable to both one-story and two-story SFR
wood-frame building designs. Moveable objects and con-
tents of buildings were not included. Due to need to for
detailed materials component quantities, this methodol-
ogy is more easily applied to cases where only one or a
few buildings are of interest. While this approach can be
applied to quantify other environmental impacts, the case
study presented is limited to quantifying carbon foot-
print. Recommended future studies include quantifying
other environmental impact factors and investigating the
incorporation of this analysis into cost–benefit studies for
flood mitigation strategies. This could include applying a
monetary value to reductions in carbon footprint associ-
ated with avoided flood losses, so that additional environ-
mental benefit can be incorporate into the FEMA
benefit–cost analysis approach. Furthermore, since quan-
tifying material quantities for large groups of buildings is
difficult, it would also be beneficial to investigate
approaches for utilising LCA approaches for estimating
the environmental impacts of flood damage case studies
utilising large groups of buildings.

ACKNOWLEDGEMENTS
This work was supported through a Louisiana Board of
Regents Graduate Fellowship at Louisiana State Univer-
sity and through funding provided by Louisiana Tech
University.

CONFLICTS OF INTEREST
No conflict of interest has been declared by the authors.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new
data were created or analyzed in this study.
REFERENCES

Alsadi, A. (2019). Evaluation of carbon footprint during the life-cycle of four different pipe materials (Dissertation Thesis). Louisiana Tech University, Ruston, LA.

Ashby, M. F. (2009). Materials and the environment: Eco-informed material choice. Burlington, MA: Elsevier, Inc.

Asif, M., Munee, T., & Kelley, R. (2005). Life cycle assessment: A case study of a dwelling home in Scotland. Building and Environment, 42(3), 1391–1394.

Blengini, G. (2009). Life cycle of buildings, demolition and recycling potential: A case study in Turin, Italy. Building and Environment, 44(2), 319–330.

Dixit, M., Fernández-Solís, J., Lavy, S., & Culp, C. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, 16(6), 3730–3743.

Environmental Protection Agency (EPA). (2020). How do i get carbon dioxide equivalent (CO2e) results for nonroad equipment? https://www.epa.gov/moves/how-do-i-get-carbon-dioxide-equivalent-co2e-results-nonroad-equipment

Federal Emergency Management Agency (FEMA). (2008). Flood damage-resistant materials requirements. Washington, DC: Department of Homeland Security.

Federal Emergency Management Agency (FEMA). (2013). FEMA mitigation policy – FP-108-024-01: Consideration of environmental benefits in the evaluation of acquisition projects under the Hazard mitigation assistance (HMA) programs. Washington DC: Department of Homeland Security.

Federal Emergency Management Agency (FEMA). (2014). Substantial damage estimator (SDE) user manual and workbook. Washington DC: Department of Homeland Security.

Federal Emergency Management Agency (FEMA). (2019). Statistics by calendar. Washington DC: Department of Homeland Security. https://www.fema.gov/statistics-calendar-year

Friedland, C. J. (2009). Residential building damage from hurricane storm surge: Proposed methodologies to describe, assess and model building damage. Baton Rouge, LA: Louisiana State University.

Gulf Engineers & Consultants (GEC). (1996). Depth-damage relationships for structures, contents, and vehicles and content-to-structure value ratios (CSVR) in support of the Jefferson and Orleans flood control feasibility studies. Baton Rouge, LA: GEC.

Gulf Engineers & Consultants (GEC). (1997). Depth-damage relationships for structures, contents, and vehicles and content-to-structure value ratios (CSVR) in support of the lower Atchafalaya reevaluation and Morganza to the Gulf. Baton Rouge, LA: Louisiana Feasibility Studies.

Gulf Engineers & Consultants (GEC). (2006). Depth-damage relationships for structures, contents, and vehicles and content-to-structure value ratios (CSVR) in support of the Donaldsonville to the Gulf, Louisiana Feasibility Study 2006. Baton Rouge, LA: GEC.

Hammond, G., & Jones, C. (2008). Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers-Energy, 161(2), 87–98.

Keoleian, G., Blanchard, S., & Reppe, P. (2000). Life-cycle energy, costs, and strategies for improving a single family house. Journal of Industrial Ecology, 4(2), 135–156.

Matthews, E., Friedland, C., & Orooji, F. (2016). Integrated environmental sustainability and resilience assessment model for coastal flood hazards. Journal of Building Engineering, 8, 141–151.

Merz, B., Kreibich, H., Schwarze, R., & Thienek, A. (2010). Review article “Assessment of economic flood damage”. Natural Hazards and Earth System Sciences (NHESS), 10(8), 1697–1724.

Mithraratne, N., & Vale, B. (2004). Life cycle analysis model for New Zealand houses. Building and Environment, 39(4), 483–492.

Penning-Rossell, E., Johnson, C., Tunstall, S., Tapsell, S., Morris, J., Chatterton, J., & Green, C. (2005). The benefits of flood and coastal risk management: A handbook of assessment techniques (p. 2005). London, UK: Middlesex University Press.

National Institute of Standards and Technology (NIST) (2018). Building for Environmental and Economic Sustainability (BEES). http://www.nist.gov/el/economics/BEESSoftware.cfm

National Oceanic and Atmospheric Administration (NOAA) (2018). NWS Annual Flood Loss Summary Reports to U.S. Army Corps of Engineers. https://www.nws.noaa.gov/os/water/

NOAA National Centers for Environmental Information (NCEI) (2020). U.S. Billion-Dollar Weather and Climate Disasters. https://www.ncdc.noaa.gov/billions/. Doi: https://doi.org/10.25921/stkw-7w73

Peupportier, B. (2001). Life cycle assessment applied to the comparative evaluation of single family houses in the French context. Energy and Buildings, 33(5), 443–450.

Petit-Boix, A., Sevigné-Itoiz, E., Rojas-Gutierrez, L. A., Barbassa, A. P., Josa, A., Rieradevall, J., & Gabarrell, X. (2017). Floods and consequential life cycle assessment: Integrating flood damage into the environmental assessment of stormwater best management practices. Journal of Cleaner Production, 162, 601–608.

Rossi, B., Marique, A., & Reiter, S. (2012). Life-cycle assessment of residential buildings in three different European locations, case study. Building and Environment, 51, 402–407.

Scientific Applications International Corporation (SAIC). (2006). Life cycle assessment: Principals and practice. Cincinnati, OH: National Risk Management Research Laboratory, U.S. Environmental Protection Agency. http://www.epa.gov/nrmrl/std/lca/lca.html

Zabalza Bribián, I., Aranda Usón, A., & Scarpellini, S. (2009). Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Building and Environment, 44(12), 2510–2520.

How to cite this article: Matthews E, Friedland C, Alsadi A. Customising flood damage functions to estimate the carbon footprint of flood-related home repairs. J Flood Risk Management. 2021;14:e12708. https://doi.org/10.1111/jfr3.12708