The A_5 Hamiltonian

Richard Cushman

We discuss in detail the example of the holomorphic A_5 Hamiltonian given in [1]. In particular, we use the finite group of discrete symmetries of the Hamiltonian to build a discrete subgroup of the 2-dimensional Euclidean group whose orbit space is affine model of an affine Riemann surface, which is a level set of the A_5 Hamiltonian. Our treatment differs from the one given in [2] because the map, which develops the affine Riemann surface, is not constructed from a Schwarz-Christoffel transformation. Also we do not describe the monodromy of the A_5 Hamiltonian, as it is fully discussed in [1].

1 The Hamiltonian system

Consider the holomorphic Hamiltonian system $(H, \mathbb{C}^2, \Omega = d\xi \wedge d\eta)$ with holomorphic Hamiltonian

$$H : \mathbb{C}^2 \to \mathbb{C} : (\xi, \eta) \mapsto \frac{1}{2}\eta^2 + \xi^6 - 1.$$ \hspace{1cm} (1)

The Hamiltonian vector field X_H on (\mathbb{C}^2, Ω) corresponding to H is $\eta \frac{\partial}{\partial \xi} - 6\xi^5 \frac{\partial}{\partial \eta}$.

A holomorphic integral curve $\gamma : \mathbb{C} \to \mathbb{C}^2 : \tau \mapsto (\xi(\tau), \eta(\tau))$ of X_H satisfies the holomorphic form of Hamilton’s equations

$$\frac{d\xi}{d\tau} = \frac{\partial H}{\partial \eta} = \eta,$$

$$\frac{d\eta}{d\tau} = -\frac{\partial H}{\partial \xi} = -6\xi^5. \hspace{1cm} (2)$$

Because H is constant on the holomorphic integral curves of X_H, X_H is a holomorphic vector field on the affine Riemann surface

$$S = H^{-1}(0) = \{ (\xi, \eta) \in \mathbb{C}^2 | \frac{1}{2}\eta^2 = 1 - \xi^6 \}. \hspace{1cm} (3)$$

2 Topology of S

To begin the study of the geometry of the integral curves of X_H, we determine the topology of the affine Riemann surface $S \subseteq \mathbb{C}^2$. The projective Riemann surface $S \subseteq \mathbb{CP}^2$ corresponding to S is defined by

$$G(\xi, \eta, \zeta) = \frac{1}{2}\eta^2 \zeta^4 + \xi^6 - \zeta^6 = 0.$$

The singular points of S are determined by

$$\frac{\partial G}{\partial \xi} = 6\xi^5 = 0; \quad \frac{\partial G}{\partial \eta} = \zeta^4 \eta = 0; \quad \text{and} \quad \frac{\partial G}{\partial \zeta} = 2\zeta^3(\eta^2 - 3\zeta^2) = 0.$$
Thus $\xi = 0$. If $\zeta \neq 0$, then the second equation gives $\eta = 0$ and the third
$0 = \eta^2 - 3\zeta^2 = -3\zeta^2$, that is, $\zeta = 0$, which is a contradiction. So $\zeta = 0$
and η is arbitrary. Hence $[0 : 1 : 0]$ is the only singular point of S. Thus
$S = S \cap \{\zeta = 1\} = S \setminus \{[0 : 1 : 0]\}$ is nonsingular.

Lemma 2.1 The projection mapping

$$\pi : \mathbb{C}P^2 \to \mathbb{C}P : [\xi : \eta : \zeta] \to [\xi : \zeta],$$

when restricted to S presents S as a branched double covering of $\mathbb{C}P$ with branch
points at $\{[\xi : 0 : 1] \in \mathbb{C}P^2 | \xi^6 = 1\}$.

Proof. Observe that the affine map corresponding to π is the projection map

$$\pi : \mathbb{C}P^2 \cap \{\zeta = 1\} = \mathbb{C}^2 \to \mathbb{C}P \cap \{\zeta = 1\} = C : (\xi, \eta) \mapsto \xi,$$

whose tangent at (ξ, η) is $T_{(\xi, \eta)}\pi(X \frac{\partial}{\partial \xi} + Y \frac{\partial}{\partial \eta}) = X \frac{\partial}{\partial \xi}$. The complex tan-
gent space $T_{(\xi, \eta)}S$ to S at (ξ, η) is equal to $\ker dH(\xi, \eta)$, which is spanned by
$X_H(\xi, \eta) = \eta \frac{\partial}{\partial \xi} - 6\xi^5 \frac{\partial}{\partial \eta}$. Thus

$$(T_{(\xi, \eta)}\pi|_S)(X_H(\xi, \eta)) = \eta \frac{\partial}{\partial \xi}. \quad (5)$$

Hence $T_{(\xi, \eta)}\pi|_S$ is a complex linear isomorphism of $T_{(\xi, \eta)}S$ onto $T_{(\xi, \eta)}C$ if and
only if $(\xi, \eta) \in S^\dagger = S \setminus \{(\xi, 0) \in S | \xi^6 = 1\}$. So $\pi|_{S^\dagger}$ is a local
holomorphic diffeomorphism of S^\dagger onto $C^\dagger = \mathbb{C} \setminus \{\xi^6 = 1\}$. It is a covering map
having two sheets, since $(\pi|_{S^\dagger})^{-1}(\xi) = \{(\xi, \pm \eta) \in S^\dagger\}$ for every $\xi \in C^\dagger$. The six
points $\xi_k = e^{2\pi ik/6}$ for $k = 0, \ldots, 5$ are branch values of the projection mapping
$\pi|_S$ because near ξ_j we have

$$\eta = (1 - \xi^6)^{1/2} = \prod_{k=0}^5 (\xi - \xi_k)^{1/2}$$

$$= (\xi_j - \xi_k)^{1/2}(\xi - \xi_j)^{1/2} \prod_{k \neq j} (1 + (\xi_j - \xi_k)^{-1}(\xi - \xi_j))^{1/2}.$$

Each factor in the last product is a holomorphic function of $\xi - \xi_j$ when $|\xi - \xi_j|$ is
sufficiently small. \qed
The following argument shows that the genus of S is 2. In figure 1 (right) the points at ∞ are identified and the edges from ∞ to a vertex of the regular hexagon are identified. With these identifications figure 1 (right) gives the triangulation of $S^2 = \mathbb{C}P^2$ in figure 1 (left) having $V = 8$ vertices; $E = 18$ edges; $F = 12$ faces. Thus the Euler characteristic χ of S^2 is $V - E + F = 8 - 18 + 12 = 2$, which is $2 - 2g$. Hence the genus g of S^2 is 0, as expected. Taking two copies of figure 1 (right) with the same identifications as above and then identifying the darkened vertices of the regular hexagon gives a triangulation of S having $V' = 10 = 2V - 6$ vertices; $E' = 36 = 2E$ edges; $F' = 24 = 2F$ faces. Thus the Euler characteristic χ' of S is $\chi' = V' - E' + F' = -2$. Hence $-2 = 2 - 2g$, where g is the genus of S. So $g = 2$.

Let K be the closed stellated regular hexagon formed by repeatedly rotating the closed quadrilateral $Q' = OD'C'D'$ by R through an angle $2\pi/6$, see figure 2. We now use the stellated regular hexagon K to construct a Riemann surface of the same genus as S^1, see [3].

Let R be a rotation of \mathbb{C} given by multiplication by $e^{2\pi i/6}$ and let U be the reflection given by complex conjugation. Let G^\vee be the group generated by the reflections $S_k = R^k SR^{-k} = R^{2k+1}U$ for $k = 0, 1, \ldots, 5$. Here $S = RU = S_0$ is the reflection, which leaves the closed ray $\ell = \{te^{2\pi i/6} | t \in OD'\}$ fixed, and S_k is the reflection, which leaves the ray $R^{2k}\ell$ fixed. Note that $G^\vee = \langle R, U \mid R^6 = e = U^2, RU = UR^{-1} \rangle$. Define an equivalence relation on K by saying that two points x and y in K are equivalent, $x \sim y$, if and only if 1) x and y lie on ∂K with x on the closed edge E and y on the closed edge of K, where $y = S_m(x) \in S_m(E)$ for some reflection $S_m \in G^\vee$ or 2) if x and y lie in the interior of K and $x = y$. Two edges of K are equivalent if they contain equivalent points. Geometrically two edges are equivalent if they extend to lines in \mathbb{C} which are parallel. Let K^\sim be the space of equivalence classes of points in K and let

$$\rho : K \to K^\sim : p \mapsto [p]$$

be the identification map which sends a point $p \in K$ to its equivalence class $[p]$, which contains p. Give K the topology induced from \mathbb{C}. Placing the quotient topology on K^\sim turns it into a compact connected topological manifold without boundary, see the argument below. Let K^* be K less its vertices.

Proposition 2.2 With O the center of K^* the identification space $(K^* \setminus O)^\sim = \rho(K^* \setminus O)$ is a connected 2-dimensional smooth manifold without boundary.

Proof. Let E_+ be an open edge of K^*. For $p_+ \in E_+$ let D_{p_+} be a disk in \mathbb{C} with center at p_+, which does not contain a vertex of K. Set $D^+_{p_+} = K^* \cap D_{p_+}$. Let E_- be an open edge of K^*, which is equivalent to E_+ via the reflection S_m. Let $p_- = S_m(p_+)$ and set $D^-_{p_-} = S_m(D^+_{p_+})$. Then $V[p] = \rho(D^+_{p_+} \cup D^-_{p_-})$ is an open neighborhood of $[p] = [p_+] = [p_-]$ in $(K^* \setminus O)^\sim$, which is a smooth 2-disk, since the identification mapping ρ is the identity on int K^*. It follows that $(K^* \setminus O)^\sim$ is a smooth 2-dimensional manifold without boundary. \(\square\)
Proposition 2.3 The identification space K^\sim is a connected compact topological manifold with a conical singular point at each vertex of K and at the center O of K.

Proof. We now handle the vertices of K. Let v_+ be a vertex of K^* and set $D_{v_+} = \overline{D} \cap K^*$, where \overline{D} is a disk in \mathbb{C} with center at the vertex $v_+ = r_0e^{i\pi\theta_0}$. The map

$$W_{v_+} : D_+ \subseteq \mathbb{C} \to D_{v_+} \subseteq \mathbb{C} : r e^{i\pi\theta} \mapsto |r - r_0|e^{i\pi s(\theta - \theta_0)}$$

with $r \geq 0$ and $0 \leq \theta \leq 1$ is a homeomorphism, which sends the wedge with angle π to the wedge with angle πs. The latter wedge is formed by the closed edges E_+^\prime and E_- of K^*, which are adjacent at the vertex v_+ such that $e^{i\pi s}E_+^\prime = E_+$ with the edge E_+^\prime being swept out through int K^* during its rotation to the edge E_+. Because K^* is a rational stellated regular hexagon, the value of s is a rational number for each vertex of K^*. Let $E_- = S_m(E_+)$ be an edge of K^*, which is equivalent to E_+ and set $v_- = S_m(v_+)$. Then v_- is a vertex of K^*, which is the center of the disk $D_{v_-} = S_m(D_{v_+})$. Set $D_+ = \overline{D}_+$. Then $D = D_+ \cup D_-$. The map $W : D \to \rho(D_{v_+} \cup D_{v_-})$, where $W|D_+ = \rho W_{v_+}$ and $W|D_- = \rho S_m \circ W_{v_+} \circ \rho^*$, is a homeomorphism of D into a neighborhood $\rho(D_{v_+} \cup D_{v_-})$ of $[v] = [v_+] = [v_-]$ in $(K^*)^\sim$.

The center O of K is a conical singular point of K^\sim because it is a fixed point of the linear action of G^γ on \mathbb{C}.

Consequently, the identification space $(K^*)^\sim$ is a topological manifold with a conical singularity at a point corresponding to a vertex or the center O of K.

Let $\tilde{G} = \langle R \mid R^6 = e \rangle$. Then \tilde{G} is the abelian group \mathbb{Z} mod 6. The usual \tilde{G}-action $\tilde{G} \times K \subseteq \tilde{G} \times \mathbb{C} \to K \subseteq \mathbb{C} : (g, z) \mapsto g(z)$ preserves equivalent edges of K and is free on $K^* \setminus O$. Hence it induces a \tilde{G} action on $(K^* \setminus O)^\sim$, which is free and proper with orbit map

$$\sigma : (K^* \setminus O)^\sim \to (K^* \setminus O)^\sim / \tilde{G} = \tilde{S}^\dagger : z \mapsto z\tilde{G}$$

Proposition 2.4 The orbit space $\tilde{S}^\dagger = \sigma((K^* \setminus O)^\sim)$ is a connected smooth complex manifold.

Proof. Since the action of \tilde{G} on $(K^* \setminus O)^\sim$ is free and proper, its orbit space $\sigma((K^* \setminus O)^\sim)$ is a smooth 2-dimensional manifold that is the orientated. This orientation is induced from an orientation of $K^* \setminus O$, which comes from the orientation \mathbb{C}. So \tilde{S}^\dagger has a complex structure, since each element of \tilde{G} is a conformal mapping of \mathbb{C} into itself.

\[\square\]
Figure 2. The triangulation $\mathcal{T}_{cl(K^*)}$ of the regular stellated hexagon $cl(K^*)$.

Next we specify the topology of \overline{S}^1. The stellated regular hexagon $K^* \setminus O$ less the origin has a triangulation $T_{K^* \setminus O}$ made up of 12 open triangles $R^j(\triangle OCD')$ and $R^j(\triangle OCD')$ for $j = 0, 1, \ldots, 5$; 24 open edges $R^j(OC)$, $R^j(OCD')$, and $R^j(CD')$ for $j = 0, 1, \ldots, 5$; and 12 vertices $R^j(D')$ and $R^j(C)$ for $j = 0, 1, \ldots, 5$, see figure 2.

Consider the set E of unordered pairs of equivalent closed edges of K, that is, E is the set $[E, S_k(E)]$ for $k = 0, 1, \ldots, 5$, where E is a closed edge of K and $S_k \in G^\vee$. Table 1 lists the elements of E. G^\vee acts on E, namely, $g \cdot [E, S_k(E)] = [g(E), gS_kg^{-1}(g(E))]$, for $g \in G^\vee$. This G^\vee action is well defined, since gS_kg^{-1} is a reflection in the line $g(R^k\ell)$. This argument shows that G acts on E, since G is a subgroup of G^\vee.

Table 1. Elements of the set E of unordered pairs of equivalent closed edges of K. Here $D'_k = R^k(D')$ and $\overline{D}'_k = R^k(\overline{D}')$ for $k = 0, 2, 4$ and $C_k = R^k(C)$ for $k = \{0, 1, \ldots, 5\}$, see figure 2.

We now look at the G^\vee-orbits on E. We compute the G^\vee-orbit of $d \in E$ as follows.

$$(UR) \cdot d = [UR(\overline{D}'_2C_2), UR(S_2(\overline{D}'_2C_2))] = [UR(\overline{D}'_2C_2), UR(\overline{D}'_2C_3)]$$

$$(UR) \cdot d = [UR(\overline{D}'_2C_3), UR(D'_4C_4)] = [\overline{D}'_2C_3, D'_2C_2] = d,$n

$R^2 \cdot d = R^2 \cdot [\overline{D}'_2C_2, S_2(\overline{D}'_2C_2)] = [R^2(\overline{D}'_2C_2), R^2S_2R^{-2}(R^2(\overline{D}'_2C_2))]$$

$R^4 \cdot d = [R^4(\overline{D}'_2C_2), R^4S_2R^{-4}(R^4(\overline{D}'_2C_2)))]$
Thus the G' orbit $G' \cdot d$ of $d \in \mathcal{E}$ is $H \cdot d = \{a, d, e\}$, which is a \tilde{G} orbit, since $H = G'/\langle UR \rangle \langle UR \rangle^2 = e = (V = R^2 \mid V^3 = e)$ is a subgroup of \tilde{G}. Similarly, the G'-orbit $G' \cdot f$ of $f \in \mathcal{E}$ is $H \cdot f = \{b, c, f\}$. Since $G' \cdot d \cup G' \cdot f = \mathcal{E}$, we have found all G'-orbits and hence all the \tilde{G}-orbits on \mathcal{E}.

The end points of the elements of the orbit $G' \cdot d$ are $a = \{\mathcal{D}', C, \mathcal{D}'_2, C_1\}$; $d = \{\mathcal{D}_2', C_2, \mathcal{D}'_4, C_3\}$; and $e = \{\mathcal{D}_4', C_4; \mathcal{D}', C_5\}$, see figure 2. Thus $\{\mathcal{D}', \mathcal{D}'_2, \mathcal{D}'_4\}$, $\{C, C_2, C_4\}, \{\mathcal{D}_2', \mathcal{D}_4', \mathcal{D}'\}$ and $\{C_1, C_3, C_5\}$ are G' orbits of vertices of K. They are also G orbits. Similarly the end points of the orbit $G' \cdot f$ are $b = \{D', C_1, D'_3, C_2\}; c = \{D'_3, C_3, D'_4, C_4\}$ and $f = \{D'_4, C_5, D', C\}$. So $\{D', D'_2, D'_4\}, \{C_1, C_3, C_5\}, \{D'_3, D'_4, D'\}$ and $\{C_2, C_4, C\}$ are G' orbits of vertices of K. They are also G orbits.

To determine the topology of the \tilde{G} orbit space \tilde{S}^1 we find a triangulation of its closure. Note that the triangulation $T_{K \setminus \tilde{O}}$ of $K^+ \setminus \tilde{O}$, illustrated in figure 2, is \tilde{G}-invariant. Its image under the identification map ρ is a \tilde{G}-invariant triangulation $T_{(K^+ \setminus \tilde{O})^\circ}$ of $(K^+ \setminus \tilde{O})^\circ$ with vertices $\rho(v)$, where v is a vertex of K; open edges $\rho(E)$ having $\rho(O)$ as an end point, where E is an edge of $T_{K \setminus \tilde{O}}$ having O as an end point; or $\rho([F, F'])$, where $[F, F']$ is an unordered pair of equivalent edges in K; open triangles $\rho(T)$, where T is a triangle in $T_{K \setminus \tilde{O}}$. The triangulation $T_{(K^+ \setminus \tilde{O})^\circ}$ is invariant under the induced \tilde{G} action on $(K^+ \setminus \tilde{O})^\circ$. It follows that $\sigma(\rho(v)), \sigma(\rho(E))$ or $\sigma(\rho([F, F']))$, and $\sigma(\rho(T))$ is a vertex, an open edge, and an open triangle, respectively, of a triangulation $T_{\tilde{S}}$ of \tilde{S}. The triangulation $T_{\tilde{S}}$ has 1) 4 vertices, corresponding to the $\sigma \circ \rho$ image of the \tilde{G} orbits $\{D', D'_2, D'_4\}, \{C_1, C_3, C_5\}, \{\mathcal{D}_2, \mathcal{D}_4, \mathcal{D}'\}$ and $\{C_2, C_4, C\}$ of vertices of K. 2) 8 open edges corresponding to $\sigma \circ \rho$ image of the \tilde{G} orbits of the two edge pairs d and f of K and $\sigma \circ \rho$ image of the six \tilde{G} orbits $\{R^j(OC)\}$ and $\{R^{2j}(OD')\}$ for $j = 0, 1, 2$ and $\{R^{j}(R(OC))\}$ and $\{R^{j}(R(OD'))\}$ for $j = 0, 1, 2$ and $\{R^{j}(CD')\}$ and $\{R^{j}(C_1D_2)\}$ for $j = 0, 1, 2$; 3) 2 open triangles corresponding to the $\sigma \circ \rho$ image of \tilde{G} orbits of the triangles $\triangle OCD'$ and $\triangle OCD'$. Thus the Euler characteristic $\chi(\tilde{S}')$ of \tilde{S}' is $4 - 2 + 2 - 2 = 2$. Since \tilde{S}' is a 2-dimensional smooth real manifold, $\chi(\tilde{S}') = 2 - 2g$, where g is the genus of \tilde{S}'. Hence $g = 2$. So \tilde{S}' is a smooth 2-sphere with 2 handles, less a finite number of points, which lies in a compact topological space K°/G, that is its closure.

3 The developing mapping

Consider the mapping

$$
F: \mathbb{C}^+ = \mathbb{C} \setminus \{\xi^6 = 1\} \to \mathbb{C}: \xi \mapsto z = \frac{1}{\sqrt{2}} \int_0^\xi \frac{dw}{\sqrt{1 - w^6}}.
$$

\footnote{Note that the end points of the edges of these six \tilde{G} orbits are \tilde{G} orbits of end points of equivalent edges or the center O of K.}
F is holomorphic except at the sixth roots of unity \(\{ \xi \in \mathbb{C} \mid \xi^6 = 1 \} \), since $dz = \frac{1}{\sqrt{1-\xi^6}} \, d\xi$. In addition, F is a local holomorphic diffeomorphism on \mathbb{C}^\dagger, because $F' \neq 0$. Let $\omega = e^{2\pi i/6}$ and set $R : \mathbb{C} \to \mathbb{C} : \xi \mapsto \omega \xi$. Since

$$F(\omega \xi) = \int_0^{\omega \xi} \frac{dw}{\sqrt{1-w^6}} = \int_0^\xi \frac{dw'}{\sqrt{1-\omega^6 w'^6}}; \text{ where } w = \omega w',$$

the map F intertwines the \mathbb{Z}_6 action on $\mathbb{C}^\dagger = \mathbb{C} \setminus \{ \xi^6 = 1 \}$ generated by R, that is, $F(R\xi) = R^{-1}(F(\xi))$ for every $\xi \in \mathbb{C}^\dagger$. So $F(\omega^k) = \omega^{-k} F(1)$ for $k = 0, 1, \ldots, 5$. Let T be the closed triangle with edges 01, 1ω, and 0ω, see figure 3 (left).

![Figure 3. The mapping F.](image)

The image of T under the mapping F is the triangle T' with edges $F(01) = \overline{0C}$, $F(\omega 1) = C(-\omega)\overline{C}$, and $F(0\omega) = \omega^{-1} F(01) = 0(-\omega C)$, see figure 3 (right). Here $C = F(1) = \int_0^1 \frac{dw}{\sqrt{1-w^6}}$.

Let $H = \bigcup_{\nu=0}^5 R^\nu(T)$. Then H is a closed regular hexagon whose vertices are at the sixth roots of unity. Since H is simply connected, the complex square root is single valued there. Hence $D = (\pi_{|S^\dagger})^{-1}(H)$ is one sheet of the projection map $\pi_{|S^\dagger}$. Since $\pi_{|S^\dagger}$ is a twofold branched covering map, the other sheet is $D' = (\pi_{|S^\dagger})^{-1}(K \setminus H)$, where K is the stellated regular hexagon formed by adding an equilateral triangle with an edge in common with the hexagon H for each edge of H, see figure 1 (right). The image of \mathbb{C}^\dagger under the mapping F is the closed stellated regular hexagon K in \mathbb{C} with center at the origin and side length C.

Using (5) we get

$$(T \xi F \circ \pi_{|S^\dagger})(X_H(\xi, \eta)) = T \xi F (T(\xi,\eta) \pi_{|S^\dagger}(X_H(\xi, \eta))) = T \xi F(\eta \frac{\partial}{\partial \xi}) = \frac{\partial}{\partial z}, \quad (8)$$

since equation (7) gives $dz = dF = \frac{1}{\eta} \, d\xi$, where $\eta = \sqrt{2(1-\xi^6)}$. Thus the
mapping
\[\delta = F \circ \pi_{S^1} : S^1 \subseteq \mathbb{C}^2 \rightarrow K \subseteq \mathbb{C}^\omega = \mathbb{C} \setminus \{ z^6 = 0 \} \subseteq \mathbb{C} \] (9)

straightens the holomorphic vector field \(X_H \) on \(S^1 \), that is, on \(D \) and \(D' \).
Moreover, \(\delta_{\mathcal{D}} \) and \(\delta_{\mathcal{D}'} \) are holomorphic diffeomorphisms of \(D \) and \(D' \) onto the hexagon \(H \) less its vertices and \(K \setminus H \), less its vertices, respectively.

Consider the hermitian metric \(\gamma = dz \odot d\bar{z} \) on \(\mathbb{C}^\omega \). Pulling \(\gamma\vert_{K} \) back by the map \(\delta \) gives the hermitian metric \(\Gamma = \frac{1}{\eta} d\xi \odot \frac{1}{\eta} d\bar{\xi} \) on \(S^1 \), since
\[
\Gamma(X_H(\xi, \eta), X_H(\xi, \eta)) = \frac{1}{\eta} \frac{d\xi}{d\xi} (\eta \frac{\partial}{\partial \xi} - 6\xi^5 \frac{\partial}{\partial \eta}) \odot \frac{1}{\eta} \frac{d\bar{\xi}}{d\xi} (\eta \frac{\partial}{\partial \xi} - 6\xi^5 \frac{\partial}{\partial \eta}) \\
= \frac{1}{\eta} \frac{d\xi}{d\xi} \odot \frac{1}{\eta} \frac{d\bar{\xi}}{d\xi} = \frac{d\xi}{d\xi} \odot \frac{d\bar{\xi}}{d\xi} = 1.
\]
The metric \(\Gamma \) on \(S^1 \) is flat, because the metric \(\gamma\vert_{K} \) on \(\mathbb{C}^\omega \) is flat. The map \(\delta \) is a developing map. Since the real integral curves of \(\alpha \frac{\partial}{\partial \xi} \), \(\alpha \in S^1 \), on \(\mathbb{C}^\omega, \gamma \) are geodesics, which are straight lines that make an angle \(\theta \), where \(\alpha = e^{i\theta} \), with the \(x \)-axis, the real integral curves of \(X_{\alpha H} \) on \((S^1, \Gamma) \) are geodesics for the hermitian metric \(\Gamma \). Because the image under \((T\theta)^{-1} \) of the vector field \(\alpha \frac{\partial}{\partial \xi} \) is the vector field \(X_{\alpha H} \) on \(S^1 \), the image of a real integral curve of \(\alpha \frac{\partial}{\partial \xi} \) is the image of a real integral curve of \(X_H \) and hence is a geodesic on \((S^1, \Gamma) \).

4 Metric geometry of \(S^1 \)

In this section we discuss some properties of geodesics on the smooth affine Riemann surface \(S^1 \).

Lemma 4.1 The mappings \(\mathcal{R} : S^1 \subseteq \mathbb{C}^2 \rightarrow S^1 \subseteq \mathbb{C}^2 : (\xi, \eta) \mapsto (\omega \xi, \eta) \), where \(\omega = e^{2\pi i/6} \) and \(\mathcal{U} : S^1 \subseteq \mathbb{C}^2 \rightarrow S^1 \subseteq \mathbb{C}^2 : (\xi, \eta) \mapsto (\bar{\xi}, \bar{\eta}) \) are isometries of \((S^1, \Gamma) \).

Proof. We compute.
\[
\mathcal{R}^* \Gamma(\xi, \eta) = \mathcal{R}^* \left(\frac{1}{\eta} d\xi \odot \frac{1}{\eta} d\bar{\xi} \right) = \frac{1}{\eta} d(\omega \xi) \odot \frac{1}{\eta} d(\bar{\omega \xi}) = \frac{1}{\eta} d\xi \odot \frac{1}{\eta} d\bar{\xi} = \Gamma(\xi, \eta).
\]
\(\mathcal{U} \) maps \(H^{-1}(0) \) into itself, for if \((\xi, \eta) \in H^{-1}(0) \), then \(\frac{1}{2} \xi^2 + \xi^6 - 1 = \frac{1}{2} \eta^2 + \xi^6 - 1 \)
\(= 0 \). So \((\bar{\xi}, \bar{\eta}) \in H^{-1}(0) \). The set \(\{ \xi^6 = 1 \} \) is mapped onto itself by \(\mathcal{U} \). Hence \(\mathcal{U} \) preserves \(S^1 \). Now
\[
\mathcal{U}^* \Gamma(\xi, \eta) = \mathcal{U}^* \left(\frac{1}{\eta} d\xi \odot \frac{1}{\eta} d\bar{\xi} \right) = \frac{1}{\eta} d\xi \odot \frac{1}{\eta} d\bar{\xi} = \frac{1}{\eta} d\xi \odot \frac{1}{\eta} d\bar{\xi} = \Gamma(\xi, \eta).
\]
Thus \(\mathcal{U} \) is an isometry of \((S^1, \Gamma)\). \(\square \)
So the group \(\hat{G} = \langle R, U \mid R^6 = U^2 = e, \& RU = UR^{-1} \rangle \) is a group of isometries of \((S^1, \Gamma)\).

Lemma 4.2 The image of a geodesic on \((S^1, \Gamma)\) under the action of the group of isometries \(\hat{G} \) is a geodesic on \(S^1 \).

Proof. This follows because a geodesic is locally length minimizing, which is a property preserved by an isometry. \(\square \)

Let \(\hat{G} \) be the group of invertible linear maps of \(\mathbb{C} \) into itself generated by

\[
R : \mathbb{C} \to \mathbb{C} : z \mapsto \omega z \quad \text{and} \quad U : \mathbb{C} \to \mathbb{C} : z \mapsto \overline{z},
\]

which satisfy the relations \(R^6 = U^2 = e \) and \(RU = UR^{-1} \). The elements of \(\hat{G} \) preserve \(\mathbb{C}' = \mathbb{C} \setminus \{z^0 = C^0\} \).

Claim 4.3 The developing map \(\delta : S^1 \subseteq \mathbb{C}' \to \mathbb{C}' \) intertwines the \(\hat{G} \) action \(\Phi \) on \(S^1 \) with the \(\hat{G} \) action \(\phi \) on \(\mathbb{C}' \). Specifically, for every \(g \in \hat{G} \) and every \((\xi, \eta) \in S^1 \) we have

\[
\delta(\Phi_g(\xi, \eta)) = \phi_{\psi(g)}(\delta(\xi, \eta)),
\]

where \(\psi : \hat{G} \to \hat{G} \) is the isomorphism defined by \(\psi(R) = R \) and \(\psi(U) = U \).

Proof. The following computation shows that equation \((10)\) holds when \(g \) is \(R \) and \(U \), respectively.

1. \(g = R \).

\[
\delta(\Phi_R(\xi, \eta)) = F(\omega \xi) = \omega F(\xi) = R(\delta(\xi, \eta)) = \phi_{\psi(R)}(\delta(\xi, \eta)).
\]

2. \(g = U \).

\[
\delta(\Phi_U(\xi, \eta)) = \delta(\overline{\xi}, \overline{\eta}) = F(\pi(\overline{\xi}, \overline{\eta})) = F(\overline{\xi}) = U(\delta(\xi, \eta)) = \phi_{\psi(U)}(\delta(\xi, \eta)).
\]

The fourth equality above follows by changing the variable \(w \) to \(\overline{w} \) in the integral

\[
\frac{1}{\sqrt{2}} \int_0^\xi \frac{dw}{\sqrt{1 - w^2}}
\]

\(\square \).

Corollary 4.3A The developing map \(\delta \) intertwines the action of \(\hat{G} \) on \(S^1 \) with the action \(\phi \) of \(\hat{G} \) restricted to the stellated hexagon \(K \).

Corollary 4.3B \((S^1, \Gamma)\) is geodesically incomplete.

Proof. Since \((S^1, \Gamma)\) is isometric to \((\mathbb{C}', dz \circ d\overline{z})\), which is \(((\mathbb{R}^2)', \varepsilon = dx \circ dx + dy \circ dy)\), where

\[
(\mathbb{R}^2)' = \mathbb{R}^2 \setminus \{(C \cos \frac{2\pi k}{6}, C \sin \frac{2\pi k}{6}) \in \mathbb{R}^2 \mid k = 0, 1, \ldots, 5\},
\]

it suffices to show that there are integral curves of the geodesic vector field \(\frac{\partial}{\partial x} \) on \(((\mathbb{R}^2)', \varepsilon)\) which run off \((\mathbb{R}^2)'\) in finite time. Consider the horizontal line segment

\[
\gamma : [0, 1] \to \mathbb{R}^2 : t \mapsto (1 - t)(C \cos \frac{4\pi}{6}, C \sin \frac{4\pi}{6}) + t(C \cos \frac{5\pi}{6}, C \sin \frac{5\pi}{6})
\]

\[
= C(-\frac{1}{2} + t, \frac{\sqrt{3}}{2}),
\]
which is a horizontal side of a regular hexagon centered at \((0,0)\) with side length \(C\). Since \(\gamma\) is an integral curve of \(\frac{\partial}{\partial x}\) and hence is a geodesic on \(((\mathbb{R}^2)^\gamma, \varepsilon)\), it takes time \(C = \int_0^1 |\frac{d\gamma}{dt}| \, dt\) to go from \((C \cos \frac{4\pi}{6}, C \sin \frac{4\pi}{6})\) to \((C \cos \frac{5\pi}{6}, C \sin \frac{5\pi}{6})\). Thus \(\gamma\) runs off \(((\mathbb{R}^2)^\gamma, \varepsilon)\) in finite time. □

We remove the incompleteness of the geodesic vector field on \((K, \gamma|_{K})\) by imposing the following condition: when a geodesic starting at a point in \(\text{int} \, K\) meets \(\partial K\) at a point on an open edge, it undergoes a reflection in that edge; otherwise it meets \(K\) at a vertex, where it reverses its motion. Such motions in the stellated regular hexagon \(K\), called billiard motions, are defined for all time.

5 An affine model of \(S^\dagger\)

In this section we construct an affine model of the affine Riemann surface \(S^\dagger\). In other words, we find a discrete subgroup \(\mathcal{G}\) of the 2-dimensional Euclidean group \(E(2)\), which acts freely and properly on \(\mathbb{C} \setminus \mathbb{V}^+\) and has the stellated regular hexagon \(K\) less its vertices and center, as its fundamental domain. Here \(\mathbb{V}^+\) is a discrete subset of \(\mathbb{C}\) formed by translating the vertices of \(K\) and its center. After constructing the identification space \((\mathbb{C} \setminus \mathbb{V}^+)\sim\), we show that its \(\mathcal{G}\) orbit space \((\mathbb{C} \setminus \mathbb{V}^+)\sim/\mathcal{G}\) is holomorphically diffeomorphic to \(S^\dagger\).

First we specify the set \(\mathbb{V}^+\). We label the edges of the regular hexagon \(H\) of the stellated regular hexagon \(K\) in order by \(\{0, 1, \ldots, 5\}\). Reflecting the regular hexagon \(H\) in its edge \(k_0\) gives the regular hexagon \(H_{k_0}\), which uniquely determines the reflected stellated regular hexagon \(K_{k_0}\), see figure 4.

![Figure 4. The reflection of the regular stellated hexagon K in the edge e of the regular hexagon H gives the regular stellated hexagon K_e.](image)

Then we reflect in the edge \(k_1\) of \(K_{k_0}^*\) giving the stellated hexagon \(K_{k_0k_1}^*\). After \(n + 1\) repetitions we get \(K_{k_0k_1 \ldots k_n}^*\). Repeat this indefinitely and obtain the triangle tiling in figure 5.
Consider the translations
\[\tau_k : C \rightarrow C : z \mapsto z + u_k, \]
where \(u_k = \sqrt{3}CR^h \) for \(k = 0, 1, \ldots, 5 \).

The set of centers of the iteratively reflected stellated regular hexagons is
\[\{(\tau_0^{\ell_0} \circ \cdots \circ \tau_5^{\ell_5})(0) \in C \mid (\ell_0, \ell_1, \ldots, \ell_5) \in \mathbb{Z}^5\}. \]

The set of vertices of \(K \) is
\[V = \{V_2 = CR^{2\ell}, V_{2\ell-1} = \frac{\sqrt{3}}{2}CR^{2\ell-1} \text{, for } \ell = 0, 1, \ldots, 5\}. \]

The set of centers and vertices the hexagonal tiling of \(C \) is
\[V^+ = \{\tau_0^{\ell_0} \circ \cdots \circ \tau_5^{\ell_5}(V^+) \in C \mid V^+ = V \cup \{0\} \& (\ell_0, \ldots, \ell_5) \in \mathbb{Z}^5\}, \]
see figure 5.

Let \(T \) be the abelian subgroup of \(E(2) \) generated by the translations \(\tau_k \), \(k = 0, \ldots, 5 \), see (11). \(T \) is isomorphic to the additive group \(\mathbb{Z}^5 \). By definition \(K^* \setminus O \) is a fundamental domain for the action of \(T \) on \(C \setminus V^+ \). Let \(\mathfrak{G} = G \ltimes T \subseteq G \times T \). An element of \(\mathfrak{G} \) is the affine mapping
\[(R^j, u_k) : C \rightarrow C : z \mapsto R^jz + u_k, \text{ for } j, k \in \{0, \ldots, 5\}. \]

Multiplication \(\cdot \) in \(\mathfrak{G} \) is given by
\[(R^h, u_\ell) \cdot (R^j, u_k) = (R^{(h+j) \mod 6}, R^hu_k + u_\ell) = (R^{(h+j) \mod 6}, u_{(k+\ell) \mod 6} + u_k). \]

The group \(\mathfrak{G} \) acts on \(C \) just as \(E(2) \) does, namely, by affine orthogonal mappings. Denote this action by
\[\psi : \mathfrak{G} \times C \rightarrow C : ((g, \tau), z) \mapsto \tau(g(z)). \]
Lemma 5.1 The set V^+ is invariant under the \mathfrak{G} action ψ.

Proof. Let $v \in V^+$. For some $(k_0, \ldots, k_n) \in \{0, \ldots, 5\}^{n+1}$ and some $w \in V^+$

$$v = \tau_{k_n} \circ \cdots \circ \tau_{k_0}(w) = \psi(e, u)(w),$$

where $u = \sum_{j=0}^{5} \ell_j u_j$ with $(\ell_0, \ldots, \ell_5) \in \mathbb{Z}^6$. Each ℓ_j is uniquely determined by $(k_0, \ldots, k_n) \in \{0, \ldots, 5\}^{n+1}$. For $(R^j, u') \in \mathfrak{G}$ with $j = 0, \ldots, 5$ and $u' \in \mathcal{T}$

$$\psi_{(R^j, u')}(v) = \psi_{(R^j, u')}(\psi(e, u)(w)) = \psi_{(R^j, u')}(w) = \psi_{(e, R^j u + u')}(w) = \psi_{(e, R^j u + u')}(w'),$$

where $w' = \psi_{(R^j, 0)}(w) \in V^+$. Since $(e, u') \in \mathcal{T}$ and

$$R^j u = \sum_{k=0}^{5} \ell_k R^j u_k = \sum_{k=0}^{5} \ell_k u_{(k+j) \mod 6},$$

it follows that $(e, R^j u + u') \in \mathcal{T}$. Hence $\psi_{(R^j, u)}(v) \in V^+$, as desired. \hfill \square

Lemma 5.2 The action of \mathfrak{G} on $\mathbb{C} \setminus V^+$ is free.

Proof. Suppose that for $v \in \mathbb{C} \setminus V^+$ there is $(R^j, u) \in \mathfrak{G}$ such that $v = \psi_{(R^j, u)}(v)$. Then v lies in the stellated hexagon $K^*_{k_0 \cdots k_n}$ given by reflecting K^* in the successive edges k_0, k_1, \ldots, k_n. So for some $v' \in K^*$

$$v = (\tau_{k_n} \circ \cdots \circ \tau_{k_0})(v') = \psi(e, u')(v'),$$

where $u' = \sum_{j=0}^{5} \ell_j u_j$ for some $(\ell_0, \ldots, \ell_5) \in \mathbb{Z}^6$, which is uniquely determined by $(k_0, \ldots, k_n) \in \{0, \ldots, 5\}^{n+1}$. Thus

$$\psi_{(e, u')}(v') = \psi_{(R^j, u)}(\psi_{(e, u')}(v')) = \psi_{(R^j u, R^j u + u)}(v'),$$

which implies $R^j = e$, that is, $j = 0 \mod 6$ and $u' = R^j u' + u = u' + u$, that is, $u = 0$. Hence $(R^j, u) = (e, 0)$, which is the identity element of \mathfrak{G}. \hfill \square

Lemma 5.3 The action of \mathcal{T} (and hence of \mathfrak{G}) on

$$\mathbb{C} \setminus V^+ = K^* \cup \{ \cup_{n \geq 0} \cup_{0 \leq j \leq n} \cup_{0 \leq k_j \leq 5} K^*_{k_0 \cdots k_n} \}$$

is transitive.

Proof. Let $K^*_{k_0 \cdots k_n}$ and $K^*_{k'_0 \cdots k'_n}$ lie in $\mathbb{C} \setminus V^+$. Since $K^*_{k_0 \cdots k_n} = (\tau_{k_n} \circ \cdots \circ \tau_{k_0})(K^*)$ and $K^*_{k'_0 \cdots k'_n} = (\tau_{k_n} \circ \cdots \circ \tau_{k_0})(K^*)$, it follows that

$$K^*_{k_0 \cdots k_n} = (\tau_{k_n} \circ \cdots \circ \tau_{k_0})(K^*_{k_n \cdots k'_n} \circ \tau_{k_n} \circ \cdots \circ \tau_{k_0})^{-1}(K^*),$$

Thus the action of \mathcal{T} on $\mathbb{C} \setminus V^+$ is transitive. \hfill \square
The action of \(\mathcal{G} \) on \(\mathbb{C} \setminus \mathbb{V}^+ \) is proper because \(\mathcal{G} \) is a discrete subgroup of \(E(2) \), having no accumulation points.

Let \(E_{k_0 \ldots k_n} = (\tau_{k_n} \circ \ldots \circ \tau_{k_0})(E) \in K_{k_0 \ldots k_n}^* \). Then \(E_{k_0 \ldots k_n} \) is an open edge in \(\mathbb{C} \setminus \mathbb{V}^+ \) of the stellated hexagon \(K_{k_0 \ldots k_n}^* \). So \(\mathcal{E} = \{ E_{k_0 \ldots k_n} \mid n \geq 0, \ 0 \leq j \leq n \ & 0 \leq k_j \leq 5 \} \) is the set of open edges of \(\mathbb{C} \setminus \mathbb{V}^+ \). By definition \(\mathcal{E} \) is invariant under translations in \(T \).

Lemma 5.4 The \(\mathcal{G} \) action \(\psi [12] \) leaves the subset \(\mathcal{E} \) of \(\mathbb{C} \setminus \mathbb{V}^+ \) invariant.

Proof. Let \(F \in \mathcal{E} \). For some \((k_0, \ldots, k_n) \in \{0, \ldots, 5\}^{n+1} \) and some open edge \(E \) of \(K^* \)

\[
F = (\tau_{k_n} \circ \ldots \circ \tau_{k_0})(E) = \psi(e,u')(E),
\]

where \(u' = \sum_{j=0}^5 \ell_j u_j \) with \((\ell_0, \ldots, \ell_5) \in \mathbb{Z}^6 \). Each \(\ell_j \) is uniquely determined by \((k_0, \ldots, k_n) \in \{0, \ldots, 5\}^{n+1} \). For \((R^j, u) \in \mathcal{G} \) with \(j = 0, 1, \ldots, 5 \) and \(u \in T \)

\[
\begin{align*}
\psi(R^j, u)(F) &= \psi(R^j, u) \circ \psi(e,u')(E) = \psi(R^j, u)(\psi(e,u')(E)) \\
&= \psi(R^j, R^j u' + u)(E) = \psi(e, R^j u' + u)(R^j, 0)(E) \\
&= \psi(e, R^j u' + u)(\psi(R^j, 0)(E)) = \psi(e, R^j u' + u)(E'),
\end{align*}
\]

where \(E' = \psi(R^j, 0)(E) = R^j E \) is an open edge of \(K^* \). Since \((e, u) \in \mathcal{G} \) and

\[
R^j u' = \sum_{i=0}^5 \ell_i R^j u_i = \sum_{i=0}^5 \ell_i u_{(j+i) \bmod 6},
\]

it follows that \((e, R^j u' + u) \in T \). Hence \(\psi(e, R^j u' + u)(E') \in \mathcal{E} \). So \(\psi(R, u)(F) \in \mathcal{E} \), as desired. \(\square \)

We say that two open edges in \(\mathcal{E} \) are equivalent if they are parallel in \(\mathcal{C} \). The \(\mathcal{G} \) action \(\psi [12] \) on \(\mathcal{E} \) preserves the relation of equivalence of edges.

Proposition 5.5 The identification space \((\mathcal{C} \times \mathbb{V}^+)\sim \) formed by identifying equivalent open edges in \(\mathcal{E} \) is equal to the identification space \((K^* \setminus O)\sim \) formed by identifying equivalent open edges of the stellated regular hexagon \(K^* \) less its vertices.

Proof. This follows from the observation that every equivalence class of open edges in \(\mathcal{E} \) contains a unique equivalence class of open edges of \(K^* \).

Corollary 5.5A The \(\mathcal{G} \) orbit space \((\mathcal{C} \times \mathbb{V}^+)\sim / \mathcal{G} \) is equal to the \(\tilde{G} \) orbit space \((K^* \setminus O)\sim / \tilde{G} \), which is a 1-dimensional complex manifold.

Proof. Since the action of \(\mathcal{G} \) on \(\mathbb{C} \times \mathbb{V}^+ \) is proper and free, it induces a free and proper action on the identification space \((\mathcal{C} \times \mathbb{V}^+)\sim \). Hence the orbit space \((\mathcal{C} \times \mathbb{V}^+)\sim / \mathcal{G} \) is a complex manifold, which is equal to the orbit space \((K^* \setminus O)\sim / \tilde{G} \). \(\square \)

The orbit space \((\mathcal{C} \times \mathbb{V}^+)\sim / \mathcal{G} = \tilde{S}^1 \) is an affine model of the affine Riemann surface \(S^1 \), since \((K^* \setminus O)\sim / \tilde{G} \) is holomorphically diffeomorphic to \(S^1 \).
Theorem 5.6 The image of a \mathcal{G} invariant geodesic on (S^r, Γ) under the developing map δ is a G invariant billiard motion in K^*.

Proof. Because R^j and R^j are isometries of (S^r, Γ) and $(K^*, \gamma_{|K^*})$, respectively, it follows that the surjective map $\delta : (S^r, \Gamma) \rightarrow (K^*, \gamma_{|K^*})$ is an isometry, because δ pulls back the metric $\gamma_{|K^*}$ to the metric Γ. Hence δ is a local developing map. Using the local inverse of δ, it follows that a billiard motion in $\text{int}(K^* \setminus O)$ is mapped onto a geodesic in (S^r, Γ), which is possibly broken at the points $(\xi_i, \eta_i) = \delta^{-1}(p_i)$. Here $p_i \in \partial K^*$ are the points where the billiard motion undergoes a reflection or a reversal. But the geodesic on S^r is smooth at (ξ_i, η_i) since the geodesic vector field is holomorphic on S^r. Thus the image of a geodesic under the developing map δ is a billiard motion. If the geodesic is \mathcal{G} invariant, then the image billiard motion is \mathcal{G} invariant, because the developing map intertwines the \mathcal{G} action on S^r with the G action on K^*. \hfill \square

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure6.png}
\caption{Reflect the stellated regular hexagon K^* with center O in the line ℓ, which is an extension of its edge e. This gives another stellated hexagon K^e with center O_e. The reflection of the straight line segment geodesic s in the edge E of K^* gives a straight line segment geodesic s_e, which extends s so that $s \cup s_e$ is a straight line segment.}
\end{figure}

Theorem 5.7 Under the restriction of the mapping
\begin{equation}
\nu = \sigma \rho : \mathbb{C} \setminus V^+ \rightarrow (\mathbb{C} \setminus V^+)\sim /\mathfrak{G} = \tilde{S}^r \tag{13}
\end{equation}
to $K^* \setminus O$ the image of a \mathcal{G} invariant billiard motion λ_z is a smooth geodesic $\tilde{\lambda}_{\nu(z)}$ on $(\tilde{S}^r, \tilde{\gamma})$. Here $\tilde{\gamma}$ is the metric on \tilde{S}^r whose pull back under the mapping ν is the metric $\gamma_{|K^*}$.

Proof. Since the Riemannian metric γ on \mathbb{C} is invariant under the group of Euclidean motions, the Riemannian metric $\gamma_{|K^* \setminus O}$ on $K^* \setminus O$ is G-invariant. Hence $\gamma_{|K^* \setminus O}$ is invariant under the reflection S_m for $m \in \{0, 1, \ldots, 5\}$. So $\gamma_{|K^* \setminus O}$ piece together to give a Riemannian metric γ^\sim on the identification space $(K^* \setminus O)^\sim$. In other words, the pull back of γ^\sim under the map $\rho_{|K^* \setminus O} : K^* \setminus O \rightarrow (K^* \setminus O)^\sim$, which identifies equivalent edges of K^*, is the metric $\gamma_{|K^* \setminus O}$. Since $\rho_{|K^* \setminus O}$ intertwines the \mathcal{G}-action on $K^* \setminus O$ with the G-action on $K^* \setminus O$.

14
(\(K^* \setminus O\))^\sim, the metric \(\gamma^\sim\) is \(\tilde{\Gamma}\)-invariant. It is flat because the metric \(\gamma\) is flat.

Since the billiard motion \(\lambda_z\) is a \(\tilde{\Gamma}\)-invariant broken geodesic on \((K^* \setminus O, \gamma_{K^* \setminus O})\), it gives rise to a continuous broken geodesic \(\lambda^\sim_{\rho(z)}\) on \(((K^* \setminus O)^\sim, \gamma^\sim)\), which is \(\tilde{\Gamma}\)-invariant. Thus \(\tilde{\lambda}_{\nu(z)} = \nu(\lambda_z)\) is a piecewise smooth geodesic on the smooth \(\tilde{\Gamma}\)-orbit space \(((K^* \setminus O)^\sim/\tilde{\Gamma} = \tilde{S}^\dagger, \tilde{\gamma})\). We need only show that \(\tilde{\lambda}_{\nu(z)}\) is smooth.

To see this we argue as follows. Let \(s \subseteq K^*\) be a closed segment of a billiard motion \(\gamma_z\), that does not meet a vertex of \(K\). Then we may assume that \(s\) is a horizontal straight line motion in \(K^*\), perpendicular to the direction \(u_k\), which is first met by \(s\) and let \(P_k\) be the meeting point. Let \(S_k\) be the reflection in \(E_k\). The continuation of the motion \(s\) at \(P_k\) is the horizontal line \(RS_k(s)\) in \(K^*\). Recall that \(K^*\) is the translation of \(K^*\) by \(\tau_k\). Using a suitable sequence of reflections in the edges of a suitable \(K^*\), each followed by a rotation \(R\) and then a translation in \(T\) corresponding to their origins, we extend \(s\) to a smooth straight line \(\lambda\) in \(\mathbb{C} \setminus \mathbb{V}^+\), see figure 6.

The line \(\lambda\) is a geodesic in \((\mathbb{C} \setminus \mathbb{V}^+, \gamma|_{\mathbb{C} \setminus \mathbb{V}^+})\), which in \(K^*\) has image \(\tilde{\lambda}_{\nu(z)}\) under the \(\mathfrak{G}\)-orbit map \(\nu\) that is a smooth geodesic on \((\tilde{S}^\dagger, \tilde{\gamma})\). The geodesic \(\nu(\lambda)\) starts at \(\nu(z)\). Thus the smooth geodesic \(\nu(\lambda)\) and the geodesic \(\tilde{\lambda}_{\nu(z)}\) are equal.

In other words, \(\tilde{\lambda}_{\nu(z)}\) is a smooth geodesic.

The affine orbit space \(\tilde{S}^\dagger = (\mathbb{C} \setminus \mathbb{V}^+)\sim/\mathfrak{G}\) with flat Riemannian metric \(\tilde{\gamma}\) is the affine analogue of the Poincaré model of the Riemann surface \(S^\dagger\) as an orbit space of a discrete subgroup of \(\text{PGl}(2, \mathbb{C})\) acting on the unit disk in \(\mathbb{C}\) with the Poincaré metric, see [4].

References

[1] L. Bates and R. Cushman, Complete integrability beyond Liouville-Arnol'd, Rep. Math. Phys. 56 (2005) 77–91.
[2] R. Cushman, An affine model of a Riemann surface associated to a Schwarz-Christoffel mapping, Axioms 10 (2021), paper number 49, 30 pp.
[3] P.J. Richens and M.V. Berry, Pseudointegrable systems in classical and quantum mechanics, Physica 2D (1981) 495–512.
[4] H. Weyl, “Die Idee der Riemannschen Fläche”, B.G. Teubner Verlagsgesellschaft, Leipzig, 1913. English translation: “The Concept of a Riemann Surface”, Dover Publications, Mineola, N.Y. 2009.