Spin resolved Hall effect driven by spin-orbit coupling

Jian Li1, Liangbin Hu2, and Shun-Qing Shen1

1Department of Physics, The University of Hong Kong, Pukfulam Road, Hong Kong, China
2Department of Physics, South China Normal University, Guangzhou 510631, China

(Dated: January 18, 2005)

Spin and electric Hall currents are calculated numerically in a two-dimensional mesoscopic system with Rashba and Dresselhaus spin-orbit coupling by means of the Landauer-Büttiker formalism. It is found that both electric and spin Hall currents circulate when two spin-orbit couplings coexist, while the electric Hall conductance vanishes if either one is absent. The electric and spin Hall conductances are suppressed in strong disorder, but survive in weak disorder. Physically it can be understood that the spinomotive transverse "force" generated by spin-orbit coupling is responsible for the formation of the spin Hall current and the lack of transverse reflection symmetry is the origin of the electric Hall current.

PACS numbers: 72.25.-b, 75.47.-m

When a metallic sample is subjected to a perpendicular external magnetic field, the Lorentz force acting on the charge carriers gives rise to a transverse voltage between two edges of the sample, this is well known as the ordinary Hall effect. Actually the Hall effect family has numbers of important members. The anomalous Hall effect may occur even in the absence of an external magnetic field in a ferromagnetic metal with spin-orbit coupling.1,2,3,4,5,6,7,8 In the past few years it has been recognized that the spin-orbit coupling may provide an efficient way to manipulate a spin resolved current in metals and semiconductors.9,10,11,12,13,14,15 In a two-dimensional electron gas (2DEG) lacking bulk and structure inversion symmetries, the effective Hamiltonian is given by

\[H = \frac{p^2}{2m^*} + \lambda (\sigma^x p_y - \sigma^y p_x) + \beta (\sigma^x p_x - \sigma^y p_y) \] \hspace{1cm} (1)

where the second term is the Rashba spin-orbit coupling and the third one is the Dresselhaus spin-orbit coupling. \(\sigma^\mu \) (\(\mu = x, y, z \)) are the Pauli matrices and the coupling parameters \(\lambda \) and \(\beta \) have the dimension of velocity. Using the Heisenberg equation of motion the second derivative of the position operator \(r \) gives

\[m^* \frac{\partial^2 r}{\partial t^2} = \frac{2m^*(\lambda^2 - \beta^2)\sigma^z}{\hbar} \mathbf{p} \times \dot{\mathbf{z}}. \] \hspace{1cm} (2)

Compared with the Lorentz force brought by the magnetic field upon a charged particle, the spin-orbit coupling produces a spinomotive transverse "force" on a moving electron. It has no classical counterpart as the coefficient is divided by \(\hbar \), but it reflects the tendency of spin asymmetric scattering of a moving electron subject to the spin-orbit coupling. When charge carriers are driven by an external electric field, this "force" tends to form a transverse spin current.

In this paper we calculate the spin and electric Hall conductances in a 2DEG mesoscopic system with Rashba and Dresselhaus coupling by using the Landauer-Büttiker formula and the Green’s function technique. It is found that both electric and spin Hall currents circulate while these two types of spin-orbit coupling coexist, but the electric Hall current disappears when either one is absent. The spin and electric Hall conductances are suppressed in strong disorder, but survive in weak disorder. The numerical results are in good agreement with the symmetry analysis of the system.

We consider a cross-shape device with four semi-infinite metallic leads. The spin-orbit coupling is supposed to exist in the shadowed area only, and the effect of the semi-infinite leads is treated exactly through self-energy terms.

![FIG. 1: Cross-shape device with four semi-infinite metallic leads. The spin-orbit coupling is supposed to exist in the shadowed area only, and the effect of the semi-infinite leads is treated exactly through self-energy terms.](image-url)
Rashba and Dresselhaus coupling strength in the unit of t, respectively, and the local spin current operator $J_{i,\alpha}^\mu$ is defined as

$$J_{i,\alpha}^\mu = -it \sum_{\sigma,\sigma'} \left(c_{i,\sigma}^\dagger \sigma_\alpha \sigma_{\alpha'}^\mu c_{i+\alpha,\sigma'} - h.c. \right).$$

(4)

where α stands for the unit vector along axes of the lattice and μ stands for the direction of spin polarization.

The calculation of electric and spin currents is based on the Landauer-Büttiker formalism. Assume $T_{q,p}^{\nu,\mu}$ to be the spin-resolved transmission probability of electrons transmitted from spin channel ν of lead q to spin channel μ of lead p. Then, V_{p} to be the electric voltage in lead p, and V_{q} to be the electric voltage in lead q. Generally speaking, the electric Hall conductance is asymmetric such that the spin Hall conductance vanishes at the band center, $E_{f} = 0$. This is consistent with the symmetry analysis for the tight binding Hamiltonian. In the case of the Rashba or Dresselhaus coupling, the electric Hall conductance disappears, but the spin Hall conductance still exists. In the two cases of $t_{SO}^R = 1$ and $t_{SO}^D = 1/2$ and of $t_{SO}^D = 1/2$ and $t_{SO}^D = 1$, the electric Hall conductances are equal. However, the spin Hall conductances G_{zH}^x differ by a minus sign, with G_{zH}^x and G_{yH}^x swapped, and the former is consistent with Shen and Sinitsyn et al’s works for free 2DEG systems. A special case is at the symmetric point of $t_{SO}^R = t_{SO}^D$. The spin Hall conductance G_{zH}^x is zero, while G_{yH}^x and G_{zH}^y are equal and non-zero, which means the current is polarized within the y-x plane. In this case the operator σ^z remains unchanged. At the symmetric point, $t_{SO}^R = t_{SO}^D$, our numerical results are shown in Fig. 3. It indicates clearly that the electric conductance is also non-zero. The longitudinal conductances are about one order larger than the Hall conductances in magnitude, i.e., $I_{1}/I_{2} \sim 10$. And the electric conductance is also symmetric with respect to the Fermi energy, just like the electric Hall conductance, while the longitudinal spin current is antisymmetric. According to the symmetry properties of such a system, under the transformation: $\sigma^x \rightarrow \sigma^y$, $\sigma^y \rightarrow \sigma^x$, and $\sigma^z \rightarrow -\sigma^z$, $t_{SO}^R \rightarrow t_{SO}^D$ and $t_{SO}^D \rightarrow t_{SO}^R$, correspondingly $G_{yH}^x \rightarrow G_{zH}^x$, $G_{yH}^y \rightarrow G_{zH}^y$, and $G_{zH}^x \rightarrow -G_{zH}^x$ while the electric Hall conductance remains unchanged. At the symmetric point, $t_{SO}^R = t_{SO}^D$, it yields that $G_{zH}^x = G_{yH}^y$ and $G_{yH}^z = 0$. Our numerical results obviously agree with this symmetry analysis.

The Hall conductances as functions of the Rashba coupling strength are also evaluated, with specific Dresselhaus coupling strength $t_{SO}^D = 1.0$ and electron Fermi energy $E_{f} = -2.0t$ as shown in Fig. 3. It indicates clearly that the electric Hall conductance increases with increas-
FIG. 3: Electric and spin Hall conductances as functions of the Rashba coupling strength with a fixed Dresselhaus coupling strength $t_{so}^R = 1.0$ at $E_f = -2.0t$ and $L = 40$. Similar results are obtained for the Hall conductances as functions of the Dresselhaus coupling strength with a fixed Rashba coupling strength, which are consistent with symmetry analyses.

FIG. 4: Electric and spin Hall conductances divided by sample size L as functions of the electron Fermi energy. Here the Rashba and Dresselhaus coupling strength are equal and the results for $L = 20, 30, 40$, and 50 are shown simultaneously. It implies a size effect that both Hall conductances are proportional to L in this calculation.

FIG. 5: Electric and spin Hall conductances as functions of logarithm of the disorder strength W/t. Results are obtained with equal Rashba and Dresselhaus coupling strength at $E_f = -2.0t$ and $L = 30$. Standard deviations in the calculation are shown through the error bars.

To see the finite size effect we calculate the electric and spin Hall conductances for $L = 20, 30, 40$, and 50. G_{eH}/L and G_{sH}/L as functions of E_f are plotted in Fig. 4. We notice that these curves for different sizes fit a single one very well. Thus we conclude that both electric and spin Hall conductances are proportional to the size L of the sample. In other words, in our calculation the electric and spin Hall currents are determined by both the number of the incident channels and that of the outgoing channels. Thus the Hall current induced by a specified longitudinal electric field are not proportional to the size L linearly, but to $L \times L$.

The disorder effect is an interesting issue in the spin Hall effect in 2DEG. It is still greatly controversial whether the spin Hall effect may survive when the impurity scattering is taken into account. We consider the disorder effect by including the disorder potential term $V_{\text{disorder}} = \sum_{i,\sigma} \epsilon_i c_i^\dagger c_i^{\sigma}$ in Eq. (3) where ϵ_i are randomly distributed between $[-W/2, +W/2]$. Selectively the electric and spin Hall conductances, G_{eH} and G_{sH}^{\pm}, for two couplings with equal strength are plotted in Fig. 5. G_{sH}^{\pm} is exactly equal to zero according to the symmetry. It shows that both electric and spin Hall conductances can survive in weak disorder, but be suppressed in strong disorder. We also did calculation for several other cases, and obtained similar results. The
case of pure Dresselhaus coupling is in agreement with Sheng et al’s work for pure Rashba coupling.

Physically the spin Hall conductance can be well understood from the spinomotive transverse “force” caused by the spin-orbit coupling in Eq. (2). The electric field drives electrons moving along the field such that the electrons with spin-up or -down experience opposite transverse “force” and thus a non-zero spin current is induced perpendicular to the field. The relative ratio of the two coupling strength determines the direction of the spin Hall current as the spinomotive force changes its sign around \(\lambda = \beta \) and vanishes at the point. All calculated results are consistent with this. However, the spinomotive force is not a direct origin of the non-zero \(G_{cH} \), since \(G_{cH} \) arises only when two couplings are present simultaneously. From the symmetry properties of the system we notice that the Hamiltonian with pure Rashba coupling is invariant under the transformation: \(k_x \to k_x, k_y \to -k_y \) and \(\sigma^y \to -\sigma^y \). Similarly the Hamiltonian with pure Dresselhaus coupling is invariant under the transformation: \(k_x \to k_x, k_y \to -k_y \) and \(\sigma^x \to \sigma^x, \sigma^y \to -\sigma^y, \sigma^z \to -\sigma^z \). This is why the electric Hall current vanishes in these two cases, while the spin Hall current circulates because there is no symmetry constraint on it as both \(k_y \) and \(\sigma^x \) change their signs under such transformation. On the other hand, the Hamiltonian with both Rashba and Dresselhaus couplings does not possess the reflection symmetry of both couplings breaks the reflection symmetry of the system, which makes the electric current not parallel to the electric field such that it gives rise to a nonvanishing Hall conductance \(G_{cH} \). This unconventional Hall conductance may be related to some discussions in terms of the anomalous Hall effect due to parity anomaly and additional band crossing. Moreover, since the diagonal spin conductance is non-zero in this case, the diagonal spin current along leads 1 and 2 might generate a charge Hall current via the reciprocal spin Hall effect.

In conclusion, we studied the electric Hall conductance as well as the spin Hall conductance for a finite-size system with four leads. Both electric and spin Hall conductances are non-zero when both Rashba and Dresselhaus couplings are present, thus the current is actually spin polarized. Unlike the anomalous Hall effect, the present electric Hall current is driven by the spin-orbit coupling, not by the exchange coupling with the magnetic impurities. This effect also differs from the one resulted from a spin polarized current via the Rashba coupling. Though the incident current is not spin polarized, the Hall current is polarized in our case.

The authors would like to thank L. Sheng and D. N. Sheng for helpful discussions. This work was supported by the Research Grant Council of Hong Kong (SQR), and by the National Science Foundation of China under Grant No.: 10474022 (LBH).

1. C. L. Chien and C. R. Westgate (eds.), The Hall Effect and its Applications (Plenum, New York, 1980)
2. R. Karpplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954)
3. J. Smit, Physica (Amsterdam) 21, 887 (1955)
4. L. Berger, Phys. Rev. B 2, 4559 (1970)
5. M. Onoda and N. Nagaosa, J. Phys. Soc. Jpn. 71, 19 (2002)
6. T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002)
7. M. Onoda and N. Nagaosa, Phys. Rev. Lett. 90, 206601 (2003)
8. Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K. Terakura, Science 302, 92 (2003)
9. M. I. D’yakonov and V. I. Perel, JETP Lett. 13, 467 (1971)
10. J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999)
11. S. Zhang, Phys. Rev. Lett. 85, 393 (2000)
12. L. Hu, J. Gao, and S. Q. Shen, Phys. Rev. B 68, 115302 (2003); ibid. 68, 153303 (2003)
13. S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003)
14. J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004)
15. S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004); S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169
16. S. Q. Shen, Phys. Lett. A 235, 403 (1997)
17. The unit of the spin current operator is at \(a \) is the lattice space), and here we take \(a = 1 \).
18. M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986)
19. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)
20. We take \(+\mu \) as up (\(\uparrow \)) and \(-\mu \) as down (\(\downarrow \)) as the indices of the rotation matrix \(R \).
21. T. P. Pareek, Phys. Rev. Lett. 92, 076601 (2004)
22. E. M. Hankiewicz, L. W. Molenkamp, T. Jungwirth, and J. Sinova, Phys. Rev. B 70, 241301 (2004)
23. L. Sheng, D. S. Shen, and C. S. Ting, Phys. Rev. Lett. 94, 016602 (2005)
24. B. K. Nikolic, L. P. Zaro, and S. Souma, cond-mat/0408693
25. S. Q. Shen, Phys. Rev. B 70, 081311 (2004)
26. N. A. Sinitsyn, E. M. Hankiewicz, W. Teizer, and J. Sinova, Phys. Rev. B 70, 081312 (2004)
27. J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett. 90, 146801 (2003)
28. K. Nomura, J. Sinova, T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. B 71, 041304 (2005)
29. J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Phys. Rev. B 70, 041303 (2004)
30. E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev. B 70, 045327 (2004)
31. E. I. Rashba, Phys. Rev. B 70, 081311 (2004)
32. E. M. Hankiewicz, L. W. Molenkamp, T. Jungwirth, and J. Sinova, Phys. Rev. B 70, 241301 (2004)
33. L. Sheng, D. S. Shen, and C. S. Ting, Phys. Rev. Lett. 94, 016602 (2005)
34. S. Q. Shen, Phys. Rev. B 70, 081311 (2004)
35. B. K. Nikolic, L. P. Zaro, and S. Souma, cond-mat/0408693
36. S. Q. Shen, Phys. Rev. B 70, 081311 (2004)
37. N. A. Sinitsyn, E. M. Hankiewicz, W. Teizer, and J. Sinova, Phys. Rev. B 70, 081312 (2004)
38. J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett. 90, 146801 (2003)
39. K. Nomura, J. Sinova, T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. B 71, 041304 (2005)
40. J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Phys. Rev. B 70, 041303 (2004)
41. E. I. Rashba, Phys. Rev. B 70, 241309 (2004)
42. E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev. Lett. 93, 226602 (2004)
43. E. I. Rashba, Phys. Rev. B 70, 201309 (2004)
44. E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev. Lett. 93, 226602 (2004)
45. E. I. Rashba, Phys. Rev. B 70, 241309 (2004)
46. P. Zhang, J. Shi, D. Xiao, and Q. Niu, cond-mat/0503505
47. D. Culcer, A. MacDonald, and Q. Niu, Phys. Rev. B 68, 045327 (2003)
48. E. N. Bulgakov, K. N. Pichugin, A. F. Sadreev, P. Streda, and P. Seba, Phys. Rev. Lett. 83, 376 (1999)