Effects of Fuel Injection Pressure to Fuel Consumption and Exhaust Gas Emissions of SI Engine

Joko Sriyanto¹*, Agus Budiman¹, Akmal Irfan Majid¹,², Luqman Al Huda³, Lilik Chaerul Yuswono¹, Wardan Suyanto¹, Sukoco¹

¹Department of Automotive Engineering Education, Faculty of Engineering, Yogyakarta State University, Jl. Colombo No. 1 Kampus Karang Malang Yogyakarta 55281 – Indonesia.
²Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2 Kampus UGM Yogyakarta 55281 – Indonesia.
³Center for Energy Studies, Universitas Gadjah Mada, Sekip K1-A, Yogyakarta 55281 – Indonesia.

E-mail: joko_sriyanto@uny.ac.id

Abstract. The present study investigated the effects of fuel injection pressure to fuel consumption and exhaust gas emissions for the Spark Ignition (SI) engine. A series of experiments were carried out in 4-cylinders gasoline engine with capacity of 1500 cc. The default fuel injection pressure was 2.8 kg/cm². In this study, the fuel injection pressures were varied from 1.4 to 4.2 kg/cm². The engine speeds were retained on 800, 2000, and 3000 rpm. Fuel consumption was evaluated by using a burette under static condition and a gas analyser was used to measure exhaust gas emission. As a result, fuel injection pressure affects significantly to the fuel consumption and exhaust gas emission. The lowest fuel consumption and gas (CO and HC) emissions were reached when the injection pressure was 2 kg/cm² for all engine speeds. When the injection pressure indicated above and below the default engine specification, a higher fuel consumption and gas emission occurred. Therefore, a better control of the fuel injection system needs to be considered during the engine operation to reduce fuel consumption and exhaust gas emission.

1. Introduction
Since Indonesia agreed to the COP 21 (Conference of Parties) agreement in 2015, regarding the climate change and greenhouse gas effects, some strategic programs were set to reduce carbon emission until 29% by 2030. One of the important issues is the improvement of the automotive sectors, contributed significantly for Indonesia oil demand during last decades and 30% of energy emissions (lower than 42% of power generation emission). Here, about 90% of transportation emissions comes from road transportation whereas land transportation contributes around 12% of total national CO₂ emissions and almost 90% of urban air pollution (CO, HC, NOx, SOx, PM, O₃) [1-2]. Consequently, the development of automotive sectors especially on the class of internal combustion engine should notice the reduction of greenhouse gas emissions, by considering the engine fuel economy and emission from combustion process. Hence, the recent technologies that are contributed to yield highly efficient combustion during
the engine operation, are engineered to meet such demands, for instance precise fuel consumption control, application of Exhaust Gas Recirculation (EGR), and emission control [3-6].

The inefficient fuel consumption and the uncontrollable exhaust gas emissions become the common problems of automotive engines. Those phenomena become an intricate challenge for the automotive producer during the recent years to develop solutions to increase fuel consumption efficiency and reduce gas emission residue into the surroundings. Among several parameters, fuel injection pressure plays a significant role related to fuel supply and combustion quality. For Compressed Ignition (CI) engine, many works proved that injection pressure contributed significantly in fuel spray and droplet size, impacted to the mixture quality during combustion process [4,5,7,8]. Celikten [7] also conducted that injection pressure affected the performance and exhaust emission of diesel engine. More recent, Budiman et al. [8] also investigated that injection pressure and timing to the gas opacity, equipped by several statistics approaches. However, those works were mainly concerned on the analysis of Compressed Ignition (CI) engine. In recent years, there are lack studies which investigate the gasoline engine, especially for combustion improvement. Even though, the Indonesian car population is still dominated by gasoline-engine car, especially wagon-type car [9].

Considering those reasons, the study on the basic phenomena of injection pressure still attract the previous scholars. They underlined that fuel injection has important features for Spark Ignition (SI) engine which has closely related to engine efficiency and emissions [6,10-12]. Moreover, if it is neglected, an inappropriate injection strategy leads to an abnormal combustion, as stated recently by Pischinger et al. [13]. Meanwhile, either due to economic reasons or life-style people sometimes prefer to maintain their old car. Consequently, the decrease of engine performance and combustion quality should be anticipated. A good understanding on the fuel injection pressure is very important to optimize the engine performance and prevent the excessive emissions. This study was aimed to investigate the effects of fuel injection pressure to the fuel consumption and exhaust gas emissions of SI Engine. Results of this study can be further used as the engineering consideration to arrange the gasoline engine maintenance, especially for passenger car.

2. Research Methodology
This experiment was conducted at the Automotive Laboratory of Yogyakarta State University. Here, a 4-cylinder Spark Ignition (SI) engine with capacity of 1500 cc was coupled by an Eddy current dynamometer and installed at a dedicated engine test bed. The engine used was TIMOR (KIA Sephia) Engine produced in 1994. Fuel was supplied through a multi-point injection method, controlled by an ECU. In the present work, “Pertamax” (gasoline produced by Pertamina—the Indonesia’s state oil company) was used in the experiments. Table 1 and 2 present the important features of engine and fuel specifications, respectively.

Parameter	Characteristics	Parameter	Characteristics
Engine	1500 cc, 16 V GL (88 Hp)	Cylinder Bore	78 mm.
Power	88 hp/5000 rpm.	Piston Stroke	78.4 mm
Maximum speed	180 km/h	Compression ratio	9.3
Fuel tank volume	50 litre	Number of valves per cylinder	4
Engine displacement	1498 cm³	Fuel Type	Petrol (Gasoline)
Torque	135 Nm/4000 rpm.	Number of Gears	5 (manual transmission)
Fuel System	Multi-point injection	Position of cylinders / number	Inline / 4 cylinders
Table 2. Pertamax fuel specifications

No	Properties	Unit	Limit	Test Methods	
1	Research Octane Number	RON	92.0	D 2699	
2	Oxidation Stability	Minutes	480	D 525	
3	Sulphur content	% m/m	0.05	D 2622/D 4294	
4	Lead content (Pb)	gr/liter	0.013	D 3237	
5	Phosphorus content	mg/l	-	D 3231	
6	Metal content (Mn, Fe, etc.)	mg/l	-	D 3831	
7	Silicon content	mg/kg	-	D 4200	
8	Oxygen content	% m/m	2.7	D 4815	
9	Olefin content	% v/v	-	D 3139	
10	Aromatic content	% v/v	50.0	D 3139	
11	Benzene content	% v/v	5.0	D 4420	
12	Distillation:			D 86	
13	10% evaporation volume	°C	-	70	
	50% evaporation volume	°C	77	110	
	90% evaporation volume	°C	130	180	
	Final boiling point	°C	-	215	
	Residue	% v/v	-	2.0	
14	Unwashed Gum	mg/100 ml	- 70	D 381	
15	Washed Gum	mg/100 ml	- 5	D 381	
16	Steam Pressure	kPa	45	60	
17	Specific Gravity (at 15 °C)	kg/m³	715	770	
18	Copper strip corrosion merit		1st Class 1	D 310	
19	Doctor test		Negative		
20	Mercaptan sulfur	% mass	-	0.002	D 3227
21	Visual appearance		Clear and bright		
22	Color		Blue		
23	Dye content	gr/1001	-	0.13	

According to its specification, the engine has a default injection pressure at 2.8 kg/cm². To study the effects of injection pressure to fuel consumption and exhaust gas emission, we investigated those variables in various injection pressures of 1.4 to 4.2 kg/cm². The engine speeds used in this work were 800, 2000, and 3000 rpm. Figure 1 shows a schematic diagram of the experimental apparatus.
Figure 2 shows documentation of experimental activities. Here, fuel consumption was measured by connecting a burette to the engine fuel pump. The engine was operated during a particular period and the fuel consumption could be observed. For the sake of high-quality experimental result, this method was repeated at least 3 times for each variation of engine speed and fuel injection pressure. Meanwhile, the exhaust gas emission was measured by using Stargas 898 Gas Analyzer which showed levels of CO\textsubscript{2}, O\textsubscript{2}, and emissions of CO, HC. The equivalence ratio (lambda-“λ”), an indicator of air-fuel mixture, was also identified by the device.

3. Results and Discussion

3.1. Influence of injection pressure to fuel consumption and air-fuel mixture

Figure 3 (a) shows that fuel economy went up as engine speed increased. In low fuel injection pressure, engine required more fuel supply for combustion process. For all engine speeds, in low injection pressures (below 2.0 kg/cm2) engine needed more fuel supply compared to medium injection pressures (2.0 to 3.6 kg/cm2). Similar to the low pressure condition, the fuel consumptions at very high injection pressure (4.2 kg/cm2) also achieved a relatively high fuel consumption for each engine speed.

![Figure 3](image)

(a) Figure 3. Effects of fuel injection pressure to (a) fuel consumption (b) air-fuel equivalence ratio.

The measurements from the gas analyzer were able to show the air-fuel mixture quality, addressed as the “λ”, a ratio between stochiometric AFR (air to fuel ratio) to actual AFR. This symbol is also known as air-fuel equivalence ratio. Figure 3 (b) shows that when injection pressure decreased, λ tended to increase. As engine speed increased, injection pressure also increased. Specifically, in medium and high engine speeds (2000 rpm and 3000 rpm), the low injection pressure contributed to form rich-fuel mixture...
but a lean-fuel mixture was influenced by a high injection pressure. It can be referred that injection pressure contributed as the important factor to the engine fuel consumption and air-fuel mixture.

3.2. Influence of injection pressure to exhaust gas emission

As a product of a combustion reaction, the exhaust gas emission should be controlled to prevent the environmental harmful and cleaner combustion process. Here, the emission was analyzed on the basis of the change of fuel injection pressure, as presented in Figure 4 (a) and (b). The presence of CO\textsubscript{2} was analyzed to indicate the combustion quality, whether included as the complete combustion or no. Figure 4 (a) indicates that as the engine speed increases, the CO\textsubscript{2} formed became higher. It means that a better quality of combustion process was obtained. The highest CO\textsubscript{2} formed at the injection pressure of 2.8 kg/cm2, which was the engine default injection pressure. However, the lower levels were obtained at the point of both lower and upper than the default injection pressure. Therefore, it can be stated that the combustion process aside of 2.8 kg/cm2 were less optimum where the same phenomena existed for all engine speeds (800 to 3000 rpm).

![Figure 4](image)

(a) (b)

Figure 4. Effects of fuel injection pressure to (a) CO\textsubscript{2} emission (b) CO emission.

Figure 4 (b) depicts that CO emission increased significantly as fuel injection pressure and engine speed increased at the condition of larger than 2 kg/cm2 or above the engine default injection pressure. This diagram reveals that combustion process above 2 kg/cm2 is an incomplete combustion, indicated by the higher content of CO (carbon-monoxide). When fuel is injected in high injection pressure, the fuel droplets became smaller [14] and then lossed their energy to bind with oxygen. Thus, a heterogeneous mixture occurred and caused incomplete combustion. Also, the carbon in fuel was partially oxidized (not fully oxidized to be carbon dioxide), thus formed a CO [6].

![Figure 5](image)

(c) (d)

Figure 5. Effects of fuel injection pressure to (a) HC emission (b) O\textsubscript{2} excess.
The effects of fuel injection pressure to Hydrocarbon (HC) emission and O\textsubscript{2} excess are presented by Figure 5 (a) and (b). A quite high HC emission were found at the lowest injection pressure of 800 and 2000 rpm, whilst the lowest injection pressure shows a low HC emission at 3000 rpm, as shown in Figure XX (a). At the lower and higher injection pressures than 2 kg/cm2, the HC emission tended to be higher. Moreover, since fuel was supplied in the low injection pressure, a large fuel droplet size was performed and inhibited the fuel evaporation process. Therefore, Hydrogen (H) contained in the fuel did not maximally bound with oxygen, then produce high HC emissions. Besides, at low injection pressure (less than 2.8 kg/cm2) the O\textsubscript{2} content, as the excess air product, is still relatively high, shown in Figure 5 (b). In this condition, a large fuel droplet size was obtained and fuel did not perfectly bind with oxydator (or oxygen). Hence, the volume of O\textsubscript{2} content in reaction product was still high. Meanwhile, the O\textsubscript{2} content was relatively similar for high injection pressure (more than 2.8 kg/cm2), both for 2000 and 3000 rpm.

4. Conclusion
The experiments to investigate effects of injection pressure to fuel consumption and exhaust gas emission were obtained. As a result, we found that fuel injection pressure was contributed significantly to fuel consumption, both in low and high engine speed. When the injection pressure was set under or over the standard condition (original specification), a higher fuel consumption was obtained. Fuel injection pressure also affects the quality of combustion process and emission quality, especially the amount of CO, CO Cor, and HC emissions. In practical side, it is suggested to operate the engine in the range of 2.0 to 2.8 kg/cm2 (about the engine’s standard injection pressure) to obtain relatively low fuel consumption and low emission (CO).

Acknowledgments
The authors would like to acknowledge the financial support from Yogyakarta State University.

5. References
[1] Yudha, SW, 2017, Air pollution and its implications for Indonesia: Challenge and imperatives for change, World Bank Publication and Documentation: (20 April 2017). Accessed online via website: http://pubdocs.worldbank.org/en/18320149693594434/200417-AirQualityAsia-Air-Pollution.pdf
[2] Sukarno I, Mastumoto, H., Susanti, L., 2016, Transportation energy consumption and emissions - a view from city of Indonesia, Future Cities and Environment, 2-11
[3] Park, S.K., Lee, J., Kim, K., Park, S., Kim, H-M., 2015, Experimental characterization of cooled EGR in a gasoline direct injection engine for reducing fuel consumption and nitrogen oxide emission, Heat Mass Transfer (2015) 51:1639–1651.
[4] Priyadarsini, C.I., Kishor, K., UshaSri, P., Murali Khrisna, M.V.S., 2013, Control of Exhaust Emissions from Spark Ignition Engine, American International Journal of Research in Science, Technology, Engineering & Mathematics, 13-166, 208-212.
[5] Brijesh, P., Sreedhara, S., 2013, Exhaust emissions and its control methods in compression ignition engines: A review, International Journal of Automotive Technology, Vol 14 No 2, 195-206.
[6] Sharaf J, 2013, Exhaust Emissions and Its Control Technology for an Internal Combustion Engine, International Journal of Engineering Research and Applications, Vol. 3, Issue 4, Jul-Aug 2013, 947-960.
[7] Celikten, I, 2003, An experimental investigation of the effect of the injection pressure on engine performance and exhaust emission in indirect injection diesel engines, *Applied Thermal Engineering* 23, 2051–2060.

[8] Budiman, A., Majid, A.I., Pambayun, N.A.Y., Yuswono, L.C., Sukoco, 2016, Effects of injection pressure and injection timing to exhaust gas opacity for a conventional indirect diesel engine, AIP Conference Proceedings 1737, 020002.

[9] _______, 2016, Indonesia’s growing automotive aftermarket landscape, Ipsos Business Consulting, August 2016, Accessed online via website: https://www.ipsos.com/sites/default/files/2016-09/Indonesia-growing-automotive-aftermarket-landscape.pdf

[10] Jiang C, Li Z, Qian Y, Wang X, Zhang Y, Lu X, 2018, Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoline surrogates, *Energy* 157, 173-187.

[11] Koszarowski T, 2015, Effects of the injection strategy on the mixture formation and combustion characteristics in a DISI (direct injection spark ignition) optical engine, *Energy*, 93:1758-1768.

[12] Keskinen K, Kaario O, Nuutinen M, Vuorinen V, Künsch Z, Liavåg LO, et al., 2016, Mixture formation in a direct injection gas engine: numerical study on nozzle type, injection pressure and injection timing effects, *Energy*, 94, 542-556.

[13] Pischinger S, Gunther M, Budak O, 2017, Abnormal combustion phenomena with different fuels in a spark ignition engine with direct fuel injection, *Combustion and Flame* 175, 123–137.

[14] Lee S, Park S, 2014, Experimental study on spray break-up and atomization processes from GDI injector using high injection pressure up to 30 MPa, *Int J Heat Fluid Flow*, 45, 14-22.