Abstract: Psychoneuroimmunology is the science that links psychological processes and the immune system. Many studies showed that psychological stress has immune modulatory activity. This article describes a typical psychoneuroendocrine-immune network in response to acute stress. Finally, it has been shown that acute time limited stressors have immune stimulatory activities which are unnecessary and harmful to one’s homeostasis.

Keywords: Psychoneuroimmunology, stress, HPA axis, glucocorticoids, β-endorphin and Met-enkephalin

Introduction
The modern medical science is highly influenced by mechanistic view, which describes mind and body as separate entities. The reductionism of the past also led us into the trap of supposing that the autonomic nervous system, the endocrine and immune systems are independent and autonomous self-regulating structures (Rossi, 1993; Sternberg, 2000). However, this narrow focus has also tended to obscure the importance of the interactions between mind and body and to overshadow the possible importance of the mind in producing and alleviating disease. But during the past three decades, there has been a powerful scientific movement to explore the mind’s capacity to affect the body and has been shown that autonomic nervous system, the endocrine and immune systems constitute a cybernetic whole (Felton et al. 1991; Sternberg, 2000; Glaser and Kiecolt-Glaser, 2005); any division is merely the hallucination of somewhat blinkered theorists. Psychoneuroimmunology (PNI) is the broad interdisciplinary research field that describes some aspects of joined-up-ness of the nervous, endocrine and immune systems (Biondi and Zannino, 1997; Rabin, 1999; Ader, 2000; Ader et al, 2001).

Studies undertaken the past three decades have provided evidence that immune alterations are stimulated by stressful events. Stress is a complex process involving social, psychological and physiological elements. According to psychobiological theories stress is determined by “the balance between the perceived demands from the environment and the individual’s resources to meet those demands” (Frankenhaeuser, 1986; Lundberg, 1995). More broadly, psychobiological stress ensues when events or environmental demands exceed an individual’s perceived ability to cope (Cohen et al, 1998). Some researchers have been categorized stressors on two important
dimensions: duration and course (Elliot and Eisdorfer, 1982). According to them acute time-limited stressors ranging from 5 to 100 minutes that involves laboratory challenges such as public speaking or mental arithmetic (Segerstrom and Miller, 2004). And some studies supported that acute time limited stressor showed immune stimulatory or immune modulatory activity (Dopp et al., 2000; Sapolsky, 1998).

On the basis of these findings in this study a typical psycho-neuro-endocrine-immune network has been shown (Fig. 1). From this network Corticotropin Releasing Factor (CRF), Adrenocorticotropic Hormone (ACTH), Glucocorticoids (GC), β-endorphin and Met-enkephalin are found as important endocrine components, and T cells, B cells, monocytes/macrophages, Natural Killer(NK) cells and their cytokines that is Tumor Necrosis Factor-α (TNF-α), Interferon Gamma (IFN-γ) and interleukins such as IL-1, IL-2, IL-4, IL-6, IL-10, IL-12 etc. are found as important immune components. Finally, it has been shown that, acute stressors have immune modulatory activities which are harmful to one’s homeostasis.

Methods and Materials
The classical markers for acute stress are cortisol, epinephrine, heart rate and blood pressure, which will increase rapidly to stress exposure. There is a disadvantage with epinephrine, heart rate and blood pressure is that these measures will not reflect the emotional value of the stressor and are rather nonspecific. Also activation associated with positive mood and pleasant activities will increase the levels of these measures. For this it has been proposed by some experts (Lundberg and Frankenhaeuser, 1980), that cortisol is a better marker if the emotional value is of interest. Hence, in our study we have taken cortisol as the marker of stress.

Results
Psychoneuroendocrine network: All organisms, from bacteria to humans, have evolved mechanisms to deal with significant changes in their external or internal environments, that is, stressors. First the environmental and psychological stresses are perceived and processed in the cerebral cortex of the forebrain. Then through cortical and limbic forebrain structure hypothalamus is stimulated. As a result hypothalamus secretes stress hormone CRH (Corticotropin Releasing Hormone) (Chrousos, 1995; Straub et al., 1998). CRH of the hypothalamus peptide plays the major role in regulation of pituitary corticotrope tropic activity (Gertz et al., 1987) and POMC (proopiomelanocortin) gene transcription (Autelitano et al., 1990). CRH is the major physiologic regulator of the basal and stress-induced release of POMC-derived peptides from the anterior pituitary (Dunn and Berridge, 1990; Owens and Nemeroff, 1991).

POMC gets glycosylated and then cleaved to give a number of neurohormones. The anterior pituitary hormones ACTH (adrenocorticotropic hormone) and LPH (lipotropin hormone) are derived from POMC in the pars distalis of the anterior pituitary. In the pars intermedia area of the anterior pituitary, the ACTH derived from cleavage of POMC is cleaved further to produce γ-MSH (melanocyte-stimulating hormone). Thus, POMC is processed differently in different areas of the pituitary. We can also get β-end (endorphin) out of POMC cleavage, which means POMC is a source of an endogenous opioid peptide. In fact, POMC is the precursor to ACTH, α-, β-LPH (lipotropin hormone), α-, β-, γ-MSH (melanocyte-stimulating hormone), α-, β-, γ-end, and met-enk (enkephalin) (Foye et al., 1995).

ACTH the processed product of POMC stimulates the secretion of glucocorticoids (Felton et al., 1991; Chrousos, 1995), corticosterone in rodents, and cortisol in primates by the cells of the adrenal cortex (Munck et al. 1984). Glucocorticoids help maintain blood pressure and form an essential component of the body's response to stress. Cortisol feeds back to the pituitary and hypothalamus to suppress levels of ACTH and CRH. Under basal (non-stress) conditions, cortisol is secreted with a pronounced circadian rhythm, with higher levels early in the morning and low levels late in the evening. Under stressful conditions, the circadian variation is blunted (Foye et al. 1995).
Regulatory activity of endocrine components on immune system: CRH is a mediator of endocrine, autonomic and immune responses to stress (Dunn and Berridge, 1990; De Souza, 1995). CRH plays a significant role in integrating the stress-related responses to immunological agents through its coordinated actions in the nervous, endocrine and immune systems (Blalock, 1989; Owens and Nemeroff, 1991; Webster, et al., 1991). CRH has direct effects on immune function and inflammatory processes. CRH induces the secretion of POMC derived peptides such as ACTH and β-endorphin in human peripheral blood and mouse splenic leukocytes. Furthermore, CRH stimulates the secretion of IL (interleukin)-1 and IL-2, as well as lymphocyte proliferation and IL-2 receptor expression in peripheral blood leukocytes (De Souza, 1995). CRH also stimulates B cell proliferation and NK cell activity and IL-6 production (Leu and Singh, 1992). Receptors for CRH have been found on immune cells (Webster, et al., 1990), providing a mechanism for these effects.

Fig. 1. A typical psycho-neuro-endocrine-immune network (Φ: activating reaction; Θ: inhibiting reaction; Δ: releasing activity)
It was observed that the increase in β-end actually causes the increase in the count of NK cells and also increases cytotoxicity in a dose dependent manner and that the effects seem to be mediated by μ and δ opioid receptors (Jonsdottir, et al., 1997). Thus an increase in endogenous opioids leads to an increase in NK cells which may enhance one’s immunity. On the other hand the Met-enk stimulates B- and T-cell proliferation (Kowalski, 1998) and also able to stimulate the migration of monocytes, lymphocytes and neutrophils in vitro towards the site of injection (Stefano et al. 1996; Weigent and Blalock, 1997). Met-enk stimulates the release of proinflammatory cytokines such as IL-6 (Goumon, et al., 1998). Moreover, pro-enk mRNA levels in peripheral human blood monocytes are increased in response to IL-6 (Goumon et al. 1998; Kamphuis et al. 1998). Met-enk also influences intracellular signal transduction with T-cells, as the Ca2+ levels were lower in T-cells incubated with met-enk, as compared with controls (Sorensen and Claesson, 1998; Li, 1998). Prepro-enk mRNA and Met-enk are present at higher levels in TH2 cultures compared with TH1 cultures (Hook et al. 1999). They concluded that prepro-enk has a role in enhancing TH2 cell function (Hook, et al., 2000). Met-enk is now considered as a new cytokine (Plotnikoff, et al., 1997), probably implicated as a pro-inflammatory signal in the immune response (Stefano, et al., 1998; Salzet et al. 2000; Tasiemski, et al., 2000). However, high concentration of Met-enk inhibits the inflammatory response like do the POMC derived peptides such as ACTH and MSH (Lipton and Catania, 1997).

Glucocorticoids also have immune modulatory activity. Macrophage functions are relatively sensitive to glucocorticoids inhibitory action (Parrillo and Fauci, 1979). Glucocorticoids alter macrophage functions that effect cell function. Glucocorticoids induce a monocytopenia, suppressed committed marrow monocyte forming stem cells, and block the differentiation of monocytes into macrophages (Bar-Shavit, et al., 1984). By blocking the production of IFN-γ, glucocorticoids can also decrease the levels of Fc receptors on monocytes and macrophages (Larsen and Henson, 1983); these receptors facilitate the phagocytosis of particular antigens and other functions of the cells in the inflammatory responses (Swanson and Hoppe, 2004). Thus, glucocorticoids block the ability of the monocytes to bind to antibody coated cells, elicit bactericidal activity and cytotoxicity (Parrillo and Fauci, 1979). Glucocorticoids suppress macrophage production of IL-1, which is involved in T cell mitogenesis and of chemokines that prevent the exit of macrophages from inflammatory sites (Fahey et al. 1981). Glucocorticoids block the production of IFNγ and TNF-α by T cells and their actions on macrophages (Munck et al. 1984). They suppress T lymphocyte production of IFN-γ and IL-2 and they inhibit NK cell activity (Fahey et al. 1981; Munck et al. 1984). Glucocorticoids do not suppress ADCC (antibody dependent cellular cytotoxicity) of human cells (Parrillo and Fauci, 1979). Antibody production by B cells results from a series of steps involving early activation, later, B cell growth factor mediated proliferation, and final differentiation to the antibody producing state. These steps are affected by suppressor T cell and helper T cell functions and can be suppressed by glucocorticoids (Claman, 1975; Parrillo and Fauci, 1979; Fahey et al. 1981). In vitro studies suggested that glucocorticoids affect substantially the early activation, have a lesser effect on the B cell growth factor response, and do not affect the stage of maturation (Cupp, et al., 1985). Thus, glucocorticoid’s effects on B cell functions are very modest. Cortisol and other glucocorticoids increase glucose production, inhibit protein synthesis and increase protein breakdown, stimulate lipolysis, and affect immunological and inflammatory responses (Foye et al. 1995).

Effects of acute time limited stress: Data from a number of studies have shown that various stressors can adversely affect immune function (Graham et al 2006; Felton et al.1991). Stress has long been suspected of playing a role in the etiology of many diseases, and numerous studies have shown that stress can be immunosuppressive and hence may be detrimental to health.
Sobhani, M.-E., Haque, N., Islam, A.T.M.K., Ahmed, A., Salma, U., Haque, A.K.M.F. and Mukti, I.J. 2010. Effects of acute time-limited stressors on immune modulation. *Khulna University Studies* 10 (1&2): 121-130

(Khansari *et al.*, 1990; Herbert and Cohen, 1993; Maier *et al.* 1994; Kiecolt-Glaser *et al.*, 1996; Marucha *et al.*, 1998). Both meta-analytic (Herbert and Cohen, 1993) and enumerative (Kiecolt-Glaser *et al.*, 1992; Kiecolt-Glaser and Glaser, 1995) reviews clearly showed that chronic stress can lead to fewer circulating B cells, T cells, and large granular lymphocytes, to decreased proliferative responses of lymphocytes to several mitogens as well as to decreased natural killer cell activity (NKCA). In the case of chronic stress, the downregulation of components of the immune system may lead to increased susceptibility to infections (colds, herpes, HIV) and worsen existing disease processes, such as cancer (Rosen *et al.*, 1984; Kiecolt-Glaser and Glaser, 1995). A reduced functioning of the immune system could possibly contribute to increased physical morbidity and mortality (Shekelle and Raynor, 1981; Whiteside *et al.*, 1990; Weiss, 1992). On the other hand it has been found that Brief naturalistic stressors cause decrease of TH1 type cytokine IFN-γ and increases TH2 type cytokine IL-6 (Maes *et al.*, 1999). These also increase the production of IL-10 (Kiecolt-Glaser *et al.*, 2002) which inhibits TH1 cytokine production. At that time production of IL-12 also decreased (Elenkov *et al.*, 2006), as a result NK-cell activity inhibited. Brief naturalistic stressors thus cause shift of TH1 to TH2 cytokine response or cellular to humoral immunity (Mahbub-E-Sobhani *et al.*, 2008). In this article we briefly review some of the immunological changes that have been associated with acute time limited stress as well as evidence for the efficacy of various interventions.

Acute stressors elicit various patterns of immune change across a wide spectrum of durations ranging from 5 to 100 minutes and irrespective of whether they involved social (e.g., public speaking), cognitive (e.g., mental arithmetic), or experiential (e.g., parachute jumping) forms of stressful experience (Segerstrom and Miller, 2004). Secretory immunoglobulin A (sIgA), measured in saliva, is a convenient and much used indicator of immune status. Measurement of this parameter is thought to be indicative of the functional status of the entire mucosal immune system (Mestecky, 1993). Numerous studies have shown that salivary sIgA is sensitive to psychological variables. Recent it was suggested that the acute response to a psychological challenge is a rise in sIgA, albeit transient (Evans *et al.*, 1997). This mobilisation of sIgA has been reported in response to acute laboratory psychophysiological stress tests, such as public speaking (Bristow *et al.*, 1997), computer game challenge (Carroll *et al.*, 1996), cold pressure task and mental arithmetic (Willemsen *et al.*, 1998). However, the study of Carroll *et al.* (1996) revealed that the sIgA response only characterised novice players. Following an acute stressor, increase in both sIgA and cortisol were found in several findings (Evans *et al.*, 1994).

Reliable effects of acute time limited stressors on the immune system include increase in immune parameters, especially natural immunity. The most robust effect of this kind of experience was a marked increase in the number of NK cells and large granular lymphocytes in peripheral blood (Segerstrom and Miller, 2004). This effect is consistent with the view that acute stressors cause immune cells to redistribute into the compartments in which they will be most effective (Dhabhar and McEwen, 1997). However, other types of lymphocytes do not show robust redistribution effects: whereas, B cells and T-helper cells show a very little change. T-cytotoxic lymphocytes tend to increase reliably in peripheral blood, though to a lesser degree than their natural immunity counterparts; this increase drives a reliable decline in the T-helper:T-cytotoxic ratio (Segerstrom and Miller, 2004). Other indicators of upregulated natural immunity include increased neutrophil numbers in peripheral blood, increased production of a proinflammatory cytokine (IL-6) (Maes *et al.*, 1995; Dentino *et al.*, 1999; Lutgendorf *et al.*, 1999), and increased production of a cytokine (IFN-γ) that potently stimulates macrophages and NK cells as well as T cells (Segerstrom and Miller, 2004). The only exception to this pattern is the increased secretion of IgA antibody, which is a product of the specific immune response (Segerstrom and Miller,
The data for acute stressors, therefore, support an upregulation of natural immunity (Dhabhar and McEwen, 1997; Dhabhar and McEwen, 1999; Dopp et al., 2000), as reflected by increased number of NK cells in peripheral blood, and potential down regulation of specific immunity, as reflected by decreased proliferative responses (Segerstrom and Miller, 2004).

Discussion

Acute time limited stressors increase the number of natural killer cells and large granular lymphocytes in peripheral blood (Segerstrom and Miller, 2004). Moreover, it increases the production of a proinflammatory cytokine IL-6 (Dentino et al. 1999; Lutgendorf et al. 1999; Maes et al. 1999), and cytokine IFN-γ that potent stimuliates macrophages and natural killer cells as well as T cells (Segerstrom and Miller, 2004). That means, acute stressor upregulate natural immunity and some components of humoral immunity. This upregulation may be occurred due to the action of CRH and CRH induced secretion of POMC-derived peptides such as met-enk and β-end.

Just after the perception of stress, CRH level in the blood becomes high (Claes, 2004). Immunoreactive CRH and CRH mRNA are expressed in human peripheral blood leukocytes. The CRH has direct effects on immune function and inflammatory processes (De Souza and Grigoriadis, 1995) and receptors for CRH have been found on immune cells (Webster et al. 1990) which may facilitate the mechanism of inflammatory responses by the immune cells (Kane et al. 2006). Furthermore, CRH stimulates the secretion of IL-1, IL-2 and IL-6 as well as lymphocyte proliferation and IL-2 receptor expression in peripheral blood leukocytes (De Souza and Grigoriadis, 1995). So by increasing the secretion of ILs CRH may activate the immune cells and facilitate their proliferation.

On the other hand POMC derived Met-enk is also found to be able to stimulate the migration of monocytes, lymphocytes and neutrophils in vitro towards the site of injection (Padros et al. 1989; Stefano et al. 1996) and also stimulate the release of proinflammatory cytokines such as IL-6 (Goumon et al. 1998). Met-enk is probably implicated as a pro-inflammatory signal in the immune response (Stefano et al. 1998; Salzet et al. 2000; Tasiemski et al. 2000). The only exception to this pattern is the increased secretion of IgA antibody, which is a product of the specific immune response (Evans et al. 1994, 1997; Carroll et al. 1996; Bristow et al. 1997; Willemsen et al. 1998; Segerstrom and Miller, 2004). But the time frame of these acute stressors is too short for the a significant mount of new antibody; therefore, this increase is probably due to the release of already synthesized antibody from plasma cells and increased translocation of antibody across the epithelium and into saliva (Bosch et al., 2002). This effect therefore represents relocation, albeit of an immune protein rather than immune cells.

References

Ader R. 2000. On the development of psychoneuroimmunology. *European Journal of Pharmacology* 405:167-76

Ader, R., Felten, D.L. and Cohen, N. (eds). 2001. *Psychoneuroimmunology*, Academic Press, San Diego, USA

Autelitano, D.J., Blum, M., Lopingco, M., Allen, R.G. and Roberts, J.L. 1990. CRF differentially regulates anterior and intermediate pituitary lobe propiomelanocortin gene transcription, nuclear precursor RNA and mature mRNA in vivo. *Neuroendocrinology* 51:123–130

Bar-Shavit, Z., Kahn, A.J., Pegg, L.E., Stone, K.R. and Teitelbaum, S.L. 1984. Glucocorticoids modulate macrophage surface oligosaccharides and their bone binding activity. *Journal of Clinical Investigation* 73:1277
Sobhani, M-E., Haque, N., Islam, A.T.M.K., Ahmed, A., Salma, U., Haque, A.K.M.F. and Mukt, I.J. 2010. Effects of acute time-limited stressors on immune modulation. *Khulna University Studies* 10 (1&2): 121-130

Biondi, M. and Zanmno, L.G. 1997. Psychological stress, neuroimmunomodulation, and susceptibility to infectious diseases in animals and man: a review. *Psychotherapy and Psychosomatics* 66:3-26

Blalock, J.E. 1989. A molecular basis for bi-directional communication between the immune and neuroendocrine systems. *Physiological Reviews* 69:1-32

Bosch, J.A., Ring, C., de Geus, E.J.C., Veerman, E.C.I. and Amerongen, A.V.N. 2002. Stress and secretory immunity. *International Review of Neurobiology* 52: 213–253

Bristow, M., Hucklebridge, F., Clow, A. and Evans, P. 1997. Modulation of secretory Immunoglobulin A in relation to an acute episode of stress and arousal. *Journal of Psychophysiology* 11: 248-255

Carroll, D., Ring, C., Shrimpton, J., Evans, P., Willemsen, G. and Hucklebridge, F. 1996. Secretory immunoglobulin A and cardiovascular responses to acute psychological challenge. *International Journal of Behavioral Medicine* 3: 266-279

Chrousos, G.P. 1995. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. *New England Journal of Medicine* 332: 1351-1362

Claes, S.J. 2004. Corticotropin releasing hormone (CRH) in psychiatry: from stress to psychopathology. *Annals of Medicine* 36: 50-61

Claman, N.H. 1975. How cortocosteroids work. *Journal of Allergy and Clinical Immunology* 55:145

Cohen, S.; Frank, E.; Doyle, W.J.; Skoner, D.P.; Rabin, B.S. and Gwaltney Jr, J.M. 1998. Types of stressors that increase susceptibility to the common cold in healthy adults. *Health Psychology*, 17: 214–223.

Cupps, T.R., Gerrard, T.L., Falkoff, R.F.M., Whalen, G. and Fauci, A.S. 1985. Effects of in vitro corticosteroids on B cell activation, proliferation, and differentiation. *Journal of Clinical Investigation* 75: 754

De Souza E.B. 1995. Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. *Psychoneuroendocrinology* 20:789–819

Dentino, A.N.; Pieper, C.F.; Rao, K.M.K.; Currie, M.S.; Harris, T.; et al. 1999. Association of interleukin-6 and other biologic variables with depression in older people living in the community. *Journal of the American Geriatrics Society*, 47:6–11

Dhabhar, F. S. and McEwen B. S. 1997. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. *Brain, Behavior, and Immunity* 11: 286–306

Dhabhar, F.S. and McEwen, B.S. 1999. Enhancing versus suppressive effects of stress hormones on skin immune function. *Proceeding of National Academy of Science*, USA 96: 1059–1064

Dopp, J.M., Miller, G.E.; Myers, H.F. and Fahey, J.L. 2000. Increased natural killer-cell mobilization and cytotoxicity during marital conflict. *Brain, Behavior, and Immunity* 14: 10–26

Dunn, A.J. and Berridge, C.W. 1990. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? *Brain Research - Brain Research Review* 15:71–100

Elenkov, I.J., Chrousos, G.P. and Wilder, R.L. 2006. Neuroendocrine regulation of IL-12 and TNF-α/IL-10 balance: clinical implications. *Annals of the New York Academy of Sciences* 917: 94-105

127
Elliot, G.R. and Eisdorf, C. 1982. *Stress and human health: An analysis and implications of research. A study by the Institute of Medicine, National Academy of Sciences.* Springer Publishing, New York

Evans, P., Bristow, M., Hucklebridge, F.H. and Clow A. 1994. Stress, arousal, cortisol and secretory immunoglobulin A in students undergoing assessment. *British Journal of Clinical Psychology* 33: 575-576

Evans, P., Clow, A. and Hucklebridge, F. 1997. Stress and the immune system: current issues and directions in research. *The Psychologist* 10: 303-307

Fahey, J.V., Guyre, P.M. and Munck, A. 1981. Mechanisms of anti-inflammatory action of glucocorticoids. p 21. In: Weissman, G. (ed). *Advances in inflammatory Research*, Raven, New York, vol 2

Felton, D.L., Cohen, N., Ader, R., Felten, S.Y., Carlson, S.L. and Roszman, T. 1991. Central neural circuits involved in neural-immune interactions. pp 3-25. In: Ader, R., Felton, D.L. and Cohen, N. (eds). *Psychoneuroimmunology*. Academic Press, Boston

Foye, W.O., Lemke, T.L. and Williams, D.A. 1995. *Principles of Medicinal Chemistry*. Williams & Wilkins

Frankenhaeuser, M. 1986. A psychobiological framework for research on human stress and coping. Pp 101-116. In: Appley, H.H. and Trumbull, R. (eds). *Dynamics of stress: Physiological, psychological and social perspective*. Plenum Press, New York

Gertz, B.J., Contreras, L.N., McComb, D.J., Kovacs, K., Tyrell, J.B. and Dallman, M.F. 1987. Chronic administration of corticotropin-releasing factor increases pituitary corticotroph number. *Endocrinology* 120: 381-388

Glaser, R. and Kiecolt-Glaser, J.K. 2005. Stress-induced immune dysfunction: implication for health. *Nature Reviews Immunology* 5: 243-251

Goumon, Y., Lugardon, K., Kieffer, B., Lefevre, J.F., Dorsselaer, A.V., Aunis, D. and Metz-Boutigue, M.H. 1998. Characterization of antibacterial COOH-terminal proenkephalin-A-derived peptides (PEAP) in infectious fluids. Importance of enkelytin, the antibacterial PEAP209-237 secreted by stimulated chromaffin cells. *Journal of Biological Chemistry* 273: 29847-56

Graham, J.E., Christian1, L.M. and Kiecolt-Glaser, J.K. 2006. Stress, age, and immune function: toward a lifespan approach. *Journal of Behavioral Medicine* 29: 389-400

Herbert, T.B. and Cohen, S. 1993. Stress and immunity in humans: A meta-analytic review. *Psychosomatic Medicine* 55: 364-379

Hook, S., Camberis, M., Prout, M., Konig, M., Zimmer, A., Heeke, G.V. and Gros, G.L. 1999. Preproenkephalin is a Th2 cytokine but is not required for Th2 differentiation in vitro. *Immunology and Cell Biology* 77:385-90

Hook, S., Prout, M., Camberis, M., Konig, M., Zimmer, A., Heeke, G.V. and Gros, G.L. 2000. Th2-dependent airway eosinophilia is regulated by preproenkephalin. *Journal of Neuroimmunology* 107: 59-65

Jonsdottir, I., Hoffmann, P. and Thoren P. 1997. Physical Exercise, endogenous opioids and immune function. *Acta Physiologica Scandinavica Supplementum* 640: 47-50

Kamphuis, S., Eriksson, F., Kavelaars, A., Zijlstra, J., Van de Pol, M., Kuis, W. and Heijnen, C.J. 1998. Role of endogenous pro-enkephalin A derived peptides in human T cell proliferation and monocyte IL-6 production. *Journal of Neuroimmunology* 84:53-60

Kane, M.O., Murphy, E.P. and Kirby, B. 2006. The role of corticotropin-releasing hormone in immune-mediated cutaneous inflammatory disease. *Experimental Dermatology* 15:143-153
Sobhani, M.-E., Haque, N., Islam, A.T.M.K., Ahmed, A., Salma, U., Haque, A.K.M.F. and Mukti, I.J. 2010. Effects of acute time-limited stressors on immune modulation. Khulna University Studies 10 (1&2): 121-130

Khansari, D.N., Murgo, A.J. and Faith R.E. 1990. Effects of stress on the immune system. Immunology Today 11: 170–175

Kiecolt-Glaser, J.K., Glaser, R., Gravenstein, S., Malarkey, W.B. and Sheridan, J. 1996. Chronic stress alters the immune response to influenza virus vaccine in older adults. Proceeding of National Academy Science, USA 93:3043–47

Kowalski, J. 1998. Immunologic action of [Met5] enkephalin fragments. European Journal of Pharmacology 347: 95-99

Larsen, G.L. and Henson, P.M. 1983. Mediators of inflammation. Annual Review of Immunology 1:335-359

Leu S-J.C. and Singh, V.K. 1992. Stimulation of interleukin-6 production by corticotropin-releasing factor. Cellular Immunology 143:220–227

Li, X.Y. 1998. Immunomodulating effects of methionine enkephalin. Zhongguo Yao Li Xue 19:3-6

Lipton, J.M. and Catania, A. 1997. Anti-inflammatory actions of the neuroimmunomodulator alpha-MSH. Immunology Today 18:140–145

Lundberg, U. 1995. Methods and applications of stress research. Technology and Health Care 3: 3-9

Maes, M., Lin, A., Delmeire, L., Gastel, A.V., Kenis, G. 1999. Elevated serum interleukin-6 (IL-6) and IL-6 receptor concentrations in posttraumatic stress disorder following accidental man-made traumatic events. Biological Psychiatry 45:833–39

Mahbub-E-Sobhani, Haque, N., Islam, A.T.M.K., Salma, U., Ahmed, A., Mukti I.J. and Haque, A.K.M.F. 2008. Brief Naturalistic Stressors Cause shift of TH1 to TH2 Cytokine Response and Increase Disease Susceptibility. Biotechnology 7: 623-629

Maier, S.F., Watkins, L.R. and Fleshener, M. 1994. The interface between behavior, brain, and immunity. The American Psychologist 49: 1004-17

Marucha, P.T., Kiecolt-Glaser, J.K. and Favagehi, M. 1998. Mucosal wound healing is impaired by examination stress. Psychosomatic Medicine 60: 362–365

Mestecky,J. 1993. Saliva as a manifestation of the common mucosal immune system. Annales of the New York Academy of Sciences 694: 184-194

Munck, A., Guyre, P.M. and Holbrook, N.J. 1984. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews 5: 25–55

Owens, M.J. and Nemeroiff, C.B. 1991. Physiology and pharmacology of corticotropin-releasing factor. Pharmacological Reviews 43:425-473

Padros, M.R., Vindrola, O., Zanszain, P., Fainboin, L., Finkielman, S. and Nahmod, V.E. 1989. Mitogenic activation of the human lymphocytes induces the release of proenkephalin derived peptides. Life Science 45:1805-11

Parrillo, J.E. and Fauci, A.S. 1979. Mechanisms of glucocorticoid action on immune processes. Annual Review of Pharmacology and Toxicology 19: 179-201

Plotnikoff, N.P., Faith, R.E., Murgo, A.J., Heberman, R.B. and Good, R.A. 1997. Methionine enkephalin A: new cytokine-human studies. Clinical Immunology and Immunopathology 82:93-101

Rabin, B.S. 1999. Stress, Immune Function, and Health: the Connection, Wiley-Liss & Sons, New York, USA

129
Rossi, E.L. 1993. *The psychobiology of mind-body healing: new concepts of therapeutic hypnosis*, Rev. edn., Norton & Co., New York

Salzet, M., Vieau, D. and Day, R. 2000. Cross-Talk Between Nervous and Immune systems through the animal kingdom: focus on opioids. *Trends in Neuroscience* 23:550–555

Sapolsky, R.M. 1998. *Why zebras don’t get ulcers: An updated guide to stress, stress-related disease, and coping*. W. H. Freeman & Co, New York

Segerstrom, S.C. and Miller, G.E. 2004. Psychological Stress and the Human Immune System: A meta-Analytical study of 30 years of inquiry. *Psychological Bulletin* 130: 601-630

Sorensen, A.N. and Claesson, M.H. 1998. Effect of the opioid methionine enkephalinamide on signal transduction in human T-lymphocytes. *Life Science* 62: 1251-1259

Stefano, G.B., Salzet, B. and Fricchione, G. 1998. Enkelytin and opioid peptide association in invertebrate and vertebrate: immune activation and pain. *Immunology Today* 19: 243-8

Stefano, G.B., Scharrer, B., Smith, E.M., Hughes, T.K., Magazine, H.I., Bilfinger, T.V., Hartman, A.R., Fricchione, G.L., Liu, Y. and Makman, M. 1996. Opioid and opiate immunoregulatory processes. *Critical Review of Immunology* 16:109-44

Sternberg, E.M. 2000. *The Balance Within*. W. H. Freeman & Co, New York

Straub, R.H. 1998. Dialogue Between the CNS and the Immune System in Lymphoid Organs. *Immunology Today* 19: 409–13

Swanson, J. and Hoppe, A. 2004. The coordination of signaling during Fc receptor-mediated phagocytosis. *Journal of Leukocyte Biology* 76: 1093-103

Tasiemski, A., Verger-Bocquet, M., Cadet, M., Goumon, Y., Metz-Boutigue, M., Aunis, D., Stefano, G.B. and Salzet, M. 2000. Proenkephalin A-derived peptides in invertebrate innate immune processes. *Molecular Brain Research* 76:237-52

Webster, E.L., Grigoriadis, D.E. and De Souza, E.B. 1991. Corticotropin-releasing factor receptors in the brain-pituitary-immune axis, pp 233-260. In: McCubbin, J.A., Kaufmann, P.G., Nemeroff, C.B. (eds). *Stress, neuropeptides, and systemic disease*. Academic Press, San Diego

Webster, E.L., Tracey, D.E., Jutila, M.A., Wolfe, S.A. and De Souza, E.B. 1990. Corticotropin-releasing factor receptors in mouse spleen: identification of receptor-bearing cells as resident macrophages. *Endocrinology* 127:440–452

Weigent, D.A. and Blalock, J.E. 1997. Production of peptide hormones and neurotransmitters by the immune system. *Neuroimmunoendocrinology* 69:1-30

Willemens, G., Ring, C., Evans, P., Clow, A., Hucklebridge, F. and Carroll, D. 1998. Secretory immunoglobulin A and cardiovascular reactions to mental arithmetic and cold pressor. *Psychophysiology* 35: 252-259