Appendix A
Small 3D structural motifs

Alpha-Beta motif
A motif of five consecutive residues and two H-bonds in which:
- H-bond between CO of residue(i) and NH of residue(i+4)
- H-bond between CO of residue(i) and NH of residue(i+3)
- \(\phi \) angles of residues(i+1), (i+2) and (i+3) are negative.

Asx-motif
A motif of five consecutive residues and two H-bonds in which:
- residue(i) is Aspartate or Asparagine (Asx)
- side-chain O of residue(i) is H-bonded to the main-chain NH of residue(i+2) or (i+3)
- main-chain CO of residue(i) is H-bonded to the main-chain NH of residue(i+3) or (i+4)

Asx-turn
A motif of three consecutive residues and one H-bond in which:
- residue(i) is Aspartate or Asparagine (Asx)
- the side-chain O of residue(i) is H-bonded to the main-chain NH of residue(i+2).

Sub-categories

Type I
- residue(i): \(-140^\circ < \chi_i - 120^\circ < -20^\circ\)
- \(-90^\circ < \psi < 120^\circ < 40^\circ\)
- residue(i+1): \(-140^\circ < \phi < -20^\circ\)
- \(-90^\circ < \psi < 40^\circ\)

Type II
- residue(i): \(-140^\circ < \chi_i - 120^\circ < -20^\circ\)
- \(80^\circ < \psi < 120^\circ < 180^\circ\)
- residue(i+1): \(20^\circ < \phi < 140^\circ\)
- \(-40^\circ < \psi < 90^\circ\)

Types I' and II'
- Left-handed form of Type I and II consequently
Beta-bulge

A motif of three residues within a β-sheet in which the main chains of two consecutive residues are H-bonded to that of the third, and in which the dihedral angles are as follows:

\[
\begin{align*}
\text{residue}(i): & \quad -140^\circ < \varphi < -20^\circ \quad -90^\circ < \psi < 40^\circ \\
\text{residue}(i+1): & \quad -180^\circ < \varphi < -25^\circ \text{ or } 120^\circ < \varphi < 180^\circ \quad 40^\circ < \psi < 180^\circ \text{ or } -180^\circ < \psi < -120^\circ
\end{align*}
\]

Beta-bulge loop

A motif of three residues within a β-sheet consisting of two H-bonds in which:

- the main-chain NH of residue(i) is H-bonded to the main-chain CO of residue(i+4) (Type 1) or residue(i+5) (Type 2)
- the main-chain CO of residue i is H-bonded to the main-chain NH of residue(i+3) (Type 1) or residue(i+4) (Type 2)

Beta-turn

A motif of four consecutive residues that may contain one H-bond, which, if present, is between the main-chain CO of the first residue and the main-chain NH of the fourth. It is characterized by the dihedral angles of the second and third residues, which are the basis for sub-categorization:

Sub-categories

Type I

\[
\begin{align*}
\text{residue}(i): & \quad -140^\circ < \varphi < -20^\circ \quad -90^\circ < \psi < 40^\circ \\
\text{residue}(i+1): & \quad -140^\circ < \varphi < -20^\circ \quad -90^\circ < \psi < 40^\circ
\end{align*}
\]

Type II

\[
\begin{align*}
\text{residue}(i): & \quad -140^\circ < \varphi < -20^\circ \quad 80^\circ < \psi < 180^\circ \\
\text{residue}(i+1): & \quad 20^\circ < \varphi < 140^\circ \quad -40^\circ < \psi < 90^\circ
\end{align*}
\]

Type I' and II'

Left-handed form of Type I and II consequently
Nest

A motif of two consecutive residues with dihedral angles as follows (for the RL form):

Sub-categories

Type RL

\[
\begin{align*}
\text{residue}(i): & \quad -140^\circ < \varphi < -20^\circ \quad -90^\circ < \psi < 40^\circ \\
\text{residue}(i+1): & \quad 20^\circ < \varphi < 140^\circ \quad -40^\circ < \psi < 90^\circ
\end{align*}
\]

Type LR

In LR nests the \(\varphi\) and \(\psi\) values for (i) and (i+1) are interchanged.

Nest should not have Proline as any residue.

Schellmann loop

A motif of six consecutive residues (common type) or seven consecutive residues (wide type) that contains two H-bonds in which:

- the main-chain CO of residue(i) is H-bonded to the main-chain NH of residue(i+5) (common type) or residue(i+6) (wide type)
- the main-chain CO of residue(i+1) is H-bonded to the main-chain NH of residue(i+4) (common type) or residue(i+5) (wide type)

ST-motif

A motif of five consecutive residues and two H-bonds in which:

- residue(i) is Serine (S) or Threonine (T)
- side-chain O of residue(i) is H-bonded to the main-chain NH of residue(i+2) or (i+3)
- main-chain CO of residue(i) is H-bonded to the main-chain NH of residue(i+3) or (i+4)
ST-staple

A motif of four or five consecutive residues and one H-bond in which:
- residue(i) is Serine (S) or Threonine (T)
- the side-chain OH of residue(i) is H-bonded to the main-chain CO of residue(i-3) or (i-4)
- \(\phi \) angles of residues(i-1), (i-2) and (i-3) are negative.

ST-turn

A motif of three consecutive residues and one H-bond in which:
- residue(i) is Serine (S) or Threonine (T)
- the side-chain O of residue(i) is H-bonded to the main-chain NH of residue(i+2).

Sub-categories

Type I

residue(i): \(-140^\circ < \chi < -120^\circ < -20^\circ\)
\(-90^\circ < \psi + 120^\circ < 40^\circ\)
residue(i+1): \(-140^\circ < \phi < -20^\circ\)
\(-90^\circ < \psi < 40^\circ\)

Type II

residue(i): \(-140^\circ < \chi < -120^\circ < -20^\circ\)
\(80^\circ < \psi + 120^\circ < 180^\circ\)
residue(i+1): \(20^\circ < \phi < 140^\circ\)
\(-40^\circ < \psi < 90^\circ\)

Types I' and II'

Left-handed form of Type I and II consequently

Catmat

A motif of 3 or 4 consecutive residues with dihedral angles as follows:

residue (i-1): no limitations on \(\varphi/\psi \)
residue (i): \(-120^\circ < \varphi < -60^\circ\)
\(-50^\circ < \psi < 30^\circ\)
residue (i+1): \(-100^\circ < \varphi < -50^\circ\)
\(110^\circ < \psi < 170^\circ\)

or

residue (i-1): no limitations on \(\varphi/\psi \)
residue (i): \(-120^\circ < \varphi < -60^\circ\)
\(-50^\circ < \psi < 30^\circ\)
residue (i+1): \(-120^\circ < \varphi < -60^\circ\)
\(-50^\circ < \psi < 30^\circ\)
residue (i+2): \(-100^\circ < \varphi < -50^\circ\)
\(110^\circ < \psi < 170^\circ\)
Gamma-turn

A motif of three consecutive residues $i, i+1, i+2$ and one H-bond in which:

- the main-chain O of residue(i) is H-bonded to the main-chain NH of residue($i+2$).

Sub-categories

Type classic

residue($i+1$): $35° < \phi < 115°$
$-104° < \psi < -24°$

Type inverse

residue($i+1$): $-115° < \phi < -35°$
$24° < \psi < 104°$