MITOGENOME ANNOUNCEMENT

The complete chloroplast genome of *Blastus auriculatus* (Melastomataceae)

Guangwen Tan, Bingqian Han, Yongqi Wang, Zihua Li, Yangyang Zhao, Shuiuo Luo, Xiaozhou Liu, Ying Liu and Qiujie Zhou

Pubang Landscape Architecture Co., Ltd, Guangzhou, China; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China

ABSTRACT

Blastus auriculatus, a shrub sparsely distributed in Yunnan, China, occurs only in bamboo forests at an elevation of below 200 m. It is categorized as “Critically Endangered (CR)” in China Biodiversity Red List. In addition, the phylogenetic position of *Blastus* within the Melastomataceae family is still unclear. This study generated the complete chloroplast genome sequence of *B. auriculatus* with aims to provide genetic resources for conservation genetics and to resolve the phylogenetic position of *Blastus*. The size of the chloroplast genome of *B. auriculatus* is 155,981 bp, including a large single-copy (LSC) region of 85,955 bp and a small single-copy (SSC) region of 16,434 bp, separated by a pair of identical inverted repeat regions (IRs) of 26,796 bp each. The chloroplast genome contains a total of 125 genes, including 80 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis showed that *B. auriculatus* is closest to *Barthea barthei* among species in Melastomataceae with available chloroplast genome sequences.

After quality filtering, approximately 5.97 Gb high-quality reads were used to assemble the chloroplast genome using NOVOPlasty (Dierckxsens et al. 2017) with the *rbcl* sequence of *Melia toba candium* (GenBank accession GQ436728) as the seed sequence. The chloroplast genome sequence of *B. auriculatus* was annotated using the DOGMA (Wyman et al. 2004) and submitted to GenBank with the accession number MK335944.

The complete chloroplast genome of *B. auriculatus* has a circular molecular structure of 155,981 bp in length with 37.03% of GC content. It has a large single copy (LSC) region of 85,955 bp and a small single copy (SSC) region of 16,434 bp, separated by a pair of identical inverted repeat regions (IRs) of 26,796 bp each. The chloroplast genome contains a total of 125 genes, including 80 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.

To clarify the phylogenetic position of *Blastus* within Melastomataceae, phylogenetic analyses were performed based on 20 species in Melastomataceae (Reginato et al. 2016; Ng et al. 2017; Zhou et al. 2018) as well as *Eucalyptus globulus* (Myrtaceae) as an outgroup. These sequences were aligned using MAFFT (Katoh and Standley 2013). The ML tree was produced by RAxML (Stamatakis 2014) using 1000 bootstrap replicates. As shown in the phylogenetic tree (Figure 1), *B. auriculatus* is closest to *Barthea barthei* in the family Melastomataceae among closely related species with available chloroplast genome sequences. The chloroplast genome reported here offers a useful resource for conservation genetics and phylogenetic studies.
Disclosure statement

No potential conflict of interest was reported by the authors.

References

Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45:e18.8.

Hien NT, Thanh NT. 2017. A taxonomic study of the genus Blastus Lour. (Melastomataceae) in Vietnam. VNU J Sci. 32:1S.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780.

Ng WL, Cai Y, Wu W, Zhou R. 2017. The complete chloroplast genome sequence of Melastoma candidum (Melastomataceae). Mitochondr DNA B. 2:242–243.

Reginato M, Neubig KM, Majure LC, Michelangeli FA. 2016. The first complete plastid genomes of Melastomataceae are highly structurally conserved. PeerJ. 4:e2715

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312–1313.

Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organelar genomes with DOGMA. Bioinformatics. 20:3252–3255.

Zhou QJ, Ng WL, Wu W, Zhou RC, Liu Y. 2018. Characterization of the complete chloroplast genome sequence of Tigridiopalma magnifica (Melastomataceae). Conservation Genet Resour. 10:571–573.

Figure 1. Maximum likelihood tree based on complete chloroplast genome sequences of 20 species of Melastomataceae with Eucalyptus globulus as an outgroup showing the phylogenetic position of Blastus auriculatus. The bootstrap support values shown next to the nodes were based on 1000 replicates. Scale in substitutions per site.