Obesity is a major public health challenge that contributes to type 2 diabetes and cardiovascular disease. Evidence that sugar consumption is fuelling this epidemic has stimulated the increasing popularity of nonnutritive sweeteners, including aspartame, sucralose and stevioside. In 2008, more than 30% of Americans reported daily intake of nonnutritive sweeteners, and this proportion is increasing. Researchers have suggested that nonnutritive sweeteners may have adverse effects on glucose metabolism, gut microbiota and appetite control. Moreover, studies involving animals have reported that chronic exposure to nonnutritive sweeteners leads to increased food consumption, weight gain and adiposity.

The position of the Academy of Nutrition and Dietetics is that nonnutritive sweeteners can help limit energy intake as a strategy to manage weight or blood glucose. However, consumption of nonnutritive sweeteners has been paradoxically associated with increased BMI and cardiometabolic risk. Further research is needed to fully characterize the long-term risks and benefits of nonnutritive sweeteners.
with weight gain and incident obesity. A previous meta-analysis reported conflicting evidence: randomized controlled trials (RCTs) showed potential benefits (modest weight loss), whereas observational studies showed a small but significant association with increased body mass index (BMI). However, the review did not evaluate outcomes beyond body composition. Several studies involving more than 100,000 new participants and representing several new geographic settings have since been published.

Our objective was to synthesize evidence addressing this question: Is routine consumption of nonnutritive sweeteners by adults and adolescents associated with adverse long-term cardiometabolic effects in RCTs and prospective cohort studies?

Methods

This review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses following a registered protocol.

Search strategy and selection criteria

The search strategy was developed by an information specialist (M.F.) to overcome the limitations of previous reviews. Our MEDLINE strategy (Appendix 1, available at www.cmaj.ca/lookup/suppl/doi:10.1503/cmaj.161390/-/DC1, Table S1) was peer reviewed and also translated for searches in Embase and The Cochrane Central Register of Controlled Trials. We included the following terms, among others: nonnutritive sweeteners, aspartame, saccharin, sucralose, xylitol, stevia, carbonated beverages, calories and food frequency. We did not limit the search by using terms related to outcomes of interest.

We conducted the searches from the time of database inception to January 2016 with no language restrictions; translation services were accessed to evaluate non-English citations. We also searched conference proceedings from the American Society for Nutrition, American Diabetes Association and Obesity Society. We manually searched reference lists of pertinent reviews and searched conference proceedings from the American Society for Nutrition, American Diabetes Association and Obesity Society. We developed, piloted and deployed a standardized form for data extraction in DistillerSR (version 2, Evidence Partners Inc., Ottawa). A team of 5 reviewers (A.A., B.C., R.R., L.C., M.A.) independently extracted study data in duplicate that included baseline characteristics; interventions for nonnutritive sweeteners and comparators (for trials) or consumption of nonnutritive sweeteners and confounders or covariates (for cohorts); type, dose and duration of exposure to nonnutritive sweeteners; duration of follow-up; and cardiometabolic outcomes. For RCTs, we preferentially extracted data from intention-to-treat analyses or requested the data from authors. For cohorts, we extracted adjusted effect estimates in 2 formats: ratios comparing the highest versus lowest category of nonnutritive sweetener intake, and beta estimates quantifying linear associations per unit of nonnutritive sweetener intake. If multiple adjusted estimates were reported, we extracted the estimate from the statistical model that included the largest number of covariates. Data that were presented in nonextractable formats were requested from authors.

Assessment of study quality

Four reviewers (M.A., J.L., L.C., B.C.) assessed potential bias in RCTs using the Cochrane Collaboration Risk of Bias tool and evaluated the quality of cohort studies using the 9-point Newcastle–Ottawa Scale. Based on previous research, we designated 2 critical confounders for cohort studies: baseline body composition (BMI or other measure of body composition) and diet quality (total energy or sugar intake, or a diet pattern or quality score).

Statistical analysis

For the meta-analysis of continuous outcomes, we calculated mean differences (MD) or standardized MDs. For binary outcomes, we calculated pooled odds ratios (ORs), risk ratios (RRs) or hazard ratios (HRs), and 95% confidence intervals (CIs). When nonnutritive sweetener intake units differed between cohort studies, we converted OR estimates to t values (OR/standard error) to generate a unitless metric and calculated the pooled mean correlation. Subgroup analyses were planned a priori to explore heterogeneity and determine associations in prespecified strata. We conducted the analyses with random-effects models using Comprehensive Meta-Analysis Software (version 2.2.064) or RevMan (version 5.3.5). Statistical heterogeneity was quantified using the statistic. We assessed publication bias using funnel plots, and the trim and fill method.

Results

From 11,774 citations, we assessed 938 full-text articles for eligibility, and 37 studies involving a total of 406,910 individuals met our inclusion criteria: 7 RCTs and 30 cohort studies (Figure 1).
The 7 RCTs enrolled a total of 1003 participants who were obese, overweight or hypertensive (Table 1). The interventions for nonnutritive sweeteners included beverages sweetened with aspartame or unspecified nonnutritive sweeteners, stevioside capsules or consumption of aspartame at the discretion of the participant. The duration of interventions ranged from 6 to 24 months (median 6 mo, interquartile range [IQR] 6–14). Most RCTs were at unclear or high risk of bias (Table 1 and Appendix 1, Table S3).

The 30 observational studies reported outcomes from 22 distinct cohorts involving a total of 405,907 individuals (Table 2). Most of the studies used food frequency questionnaires to evaluate beverages containing nonnutritive sweeteners. More than 85% controlled for baseline body composition, diet quality, age, sex, smoking and physical activity, whereas less than 50% controlled for ethnicity and socioeconomic status (Appendix 1, Table S4). The duration of follow-up ranged from 1 to 38 years (median 10 yr, IQR 6–22). Most cohort studies were of moderate quality (Table 2 and Appendix 1, Table S5).

Secondary outcomes

Weight

Among 5 RCTs evaluating interventions using nonnutritive sweeteners in participants who were obese, overweight or hypertensive there was no consistent effect on change in weight (standardized MD –0.17; 95% CI –0.54 to 0.21; P = 0.11; 5 trials; 791 participants) (Table 3, Figure 2A). The duration of follow-up ranged from 6 to 24 months of the intervention (median 6 mo, IQR 6–14). Heterogeneity across the 5 trials was partially explained by differences in study duration: 2 longer trials showed significant weight loss over 16 to 24 months of the intervention (standardized MD –0.55, 95% CI –0.75 to –0.34; P = 0%; 2 trials), and 3 shorter (6 mo) trials showed no effect for the use of nonnutritive sweeteners (standardized MD 0.13, 95% CI 0.34 to 0.59; P = 65%; 3 trials) (p for subgroup differences = 0.009; Appendix 1, Table S6). Weight-loss effects also tended to be...
stronger in RCTs with industry sponsorship19,34,38 (standardized MD \(-0.37; 95\%\ CI \(-0.71\) to \(-0.03; \ p = 0.001\); \(I^2 83\%\)) compared with RCTs that were not funded by industry20,35 (standardized MD 0.30, 95\% CI 0.38 to 0.99; \(I^2 55\%\); 2 trials) \((p \text{ for subgroup differences } = 0.09; \text{ Appendix 1, Table S6})\). Notably, both longer-term RCTs were funded by industry10,38 making it impossible to isolate the effect of trial duration and industry sponsorship in subgroup analyses. In addition, all 5 RCTs that evaluated weight change were at high risk of bias, prohibiting subgroup analyses according to this metric.

Two observational studies reported on intake of nonnutritive sweeteners and subsequent weight change in 4 cohorts over periods of 2 to 4 years21,57 (Table 3, Figure 2D). There was a significant positive correlation between intake of nonnutritive sweeteners and weight gain (weighted mean correlation 0.06, 95\% CI 0.05 to 0.07; \(I^2 46\%\); 4 cohorts; 32 405 participants) (Table 3).

\textbf{Adiposity and overweight}

Three RCTs involving participants who were obese and consuming diet soda as part of a weight-loss program reported inconsistent effects on waist circumference (standardized MD \(-0.16; 95\%\ CI \(-0.56\) to 0.25; \(I^2 83\%\); 3 trials; 683 participants) (Table 3, Appendix 1, Figure S1A). Heterogeneity across studies was related to the duration of intervention, with one 12-month trial showing a significant reduction in waist circumference39 and two 6-month interventions finding no effect20,34 \((p \text{ for subgroup differences } 0.001)\). One 6-month trial reported no effect on percentage of body fat35.

In contrast to RCTs, cohort studies with 4 to 9 years of follow-up showed that higher intake of nonnutritive sweeteners was associated with increasing waist circumference (MD 2.27 cm, 95\% CI 0.96 to 3.58; 3 trials; 683 participants)38 (Table 3), higher incidence of abdominal obesity (OR 1.59, 95\% CI 1.23 to 2.07; 1 cohort; 5011 participants)60 (Table 3) and higher incidence of abdominal obesity (OR 1.59, 95\% CI 1.23 to 2.07; 1 cohort; 7917 participants)12,50,59 (Table 3 and Appendix 1, Figure S1B).

\textbf{Metabolic outcomes}

Incidence for metabolic syndrome and type 2 diabetes was not reported in the RCTs. Pooled data from cohort studies with 4 to 24 years of follow-up showed higher risk of metabolic syndrome (RR 1.31, 95\% CI 1.23 to 1.40; \(I^2 0\%\); 5 cohorts; 27 914 participants)39,47,48,54,60 (Table 3 and Appendix 1, Figure S2A) and type 2 diabetes (RR 1.14, 95\% CI 1.05 to 1.25; \(I^2 52\%\); 9 cohorts; 400 571 participants)16,24,43,49,55,56,58,60 for the highest versus lowest quan-

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline
\textbf{Study* country} & \textbf{No. of participants randomly assigned (% completed)} & \textbf{Sex} & \textbf{Population} & \textbf{Age, mean ± SD; yr} & \textbf{BMI, mean ± SD; kg/m\(^2\)} & \textbf{Duration, mo} & \textbf{Type and source of NNS} & \textbf{Daily dose of NNS} & \textbf{Comparator(s)} & \textbf{Outcomes} & \textbf{Risk of bias†} \\
\hline
Blackburn et al. 1997,38 USA & 163 (53) & F & Obese, on weight-loss program & 44 ± 10 & 37 ± 5 & 16 & Aspartame ASB, packets, foodstuffs & Participants’ discretion & Aspartame avoidance & • & High \\
Hsieh et al. 2003,36 China & 174 (97) & M, F & Mild hypertension & 52 ± 7 & 23 ± 3 & 24 & Stevioside capsules & 1500 mg & Placebo & • & Low \\
Ferri et al. 2006,35 Denmark & 14 (86) & M, F & Overweight, on weight-loss program & 45 ± 7 & 27 ± 3 & 6 & Stevioside capsules & 3 phases: 3.8, 7.5, 15.0 mg/kg & Placebo & • & • Unclear \\
Tate et al. 2012,34 USA & 213 (86) & M, F & Overweight, on weight-loss program & 42 ± 11 & 36 ± 6 & 6 & Unspecified ASB & Recommended ≥ 2 servings & Water, attention control\textsuperscript‡ & • & • High \\
Maersk et al. 2012,38 USA & 33 (76) & M, F & Overweight & 39 ± 8 & 33 ± 4 & 6 & Aspartame ASB & 1 L of diet cola & Water & • & • High \\
Peters et al. 2016,35 USA & 308 (72) & M, F & Overweight, on weight-loss program & 48 ± 11 & 34 ± 4 & 12 & Unspecified ASB & At least 710 mL & Water with ASB avoidance & • & • High \\
Madjd et al. 2015,39 Iran & 71 (87) & F & Overweight, on weight-loss program & 32 ± 7 & 34 ± 3 & 6 & Unspecified ASB & 250 mL & Water & • & • High \\
\hline
\end{tabular}
\caption{Randomized controlled trials that evaluated nonnutritive sweetener interventions and long-term cardiometabolic health}
\end{table}

Note: ASB = artificially sweetened beverage, BMI = body mass index, F = female, HOMA-IR = homeostatic model assessment for insulin resistance, M = male, NNS = nonnutritive sweetener, SD = standard deviation.

*Sorted by year of publication.

†Risk of bias was assessed using the Cochrane Risk of Bias tool.30 See Appendix 1, Table S3 for detailed risk of bias results for quality assessment.

‡Data from multiple comparator groups were combined.
Table 2 (part 1 of 2): Prospective cohort studies evaluating intake of nonnutritive sweetener and long-term cardiometabolic health

Study*	Cohort	Country, year of baseline NNS intake	No. of participants	Sex	Age at baseline, mean ± SD, or range; yr	BMI at baseline, mean ± SD, or % OW; kg/m²	Follow-up, yr	Type or source of NNS intake categories, servings†	Measure of continuous NNS intake	Outcome		
Lutsey et al. 2008††	ARIC USA, 1987	9154 M, F	54 ± 6	–	9	AS soda	Extreme tertiles	–	•		BMI	
Bomback et al. 2010‡	ARIC USA, 1987	14 002 M, F	54 ± 6	28 ± 5	9	AS soda	> 1/d v. < 1/d	–	•	CKD	9	
Palmer et al. 2008‡‡	BWHS USA, 2001	43 960 F	38 ± 10	28 ± 7	4	AS soda	≥ 1/d v. < 1/mo	–	•			6
Duffey et al. 2012‡‡	CARDIA USA, 1986	3728 M, F	25 ± 26	25 ± 5	20	ASB	None v. any	–	•	IGT	8	
Haines et al. 2007‡	EAT USA, 1998	2516 M, F	15 ± 2	11% OW	5	AS soda	–	serving/d	•			7
Lana et al. 2015§	ENRICA Spain, 2008	2030 M, F	18–60	26 ± 5	4	AS soda	≥ 1/d v. < 1/wk	–	•		9	
Fagherazzi et al. 2013¶	EPIC-E3N France, 1993	66 118 F	53 ± 7	19% OW	17	ASB	> 603 mL/wk v. never	–	•		8	
O’Connor et al. 2015¶	EPIC-Norfolk UK, 1993	24 653 M, F	58 ± 9	26 ± 4	11	ASB	≥ 169 mL/d v. 0 serving/d	–	•		8	
Dhingra et al. 2007‡	FOS USA, 1992	1864 M, F	55 ± 10	27 ± 5	4	AS soda	1/d v. < 1/wk	–	•		9	
Field et al. 2014‡	GUTS II USA, 2004	7559 M, F	13 ± 2	20 ± 3	3	AS soda	–	serving/d	•			6
Bernstein et al. 2012‡	HPFS USA, 1986	43 371 M	62 ± 11	26 ± 3	22	AS soda	≥ 1/d v. none	serving/d	–	Stroke		8
Bhupathiraju et al. 2013**	HPFS USA, 1986	39 059 M	53 ± 10	25 ± 5	22	AS soda	≥ 1/d v. < 1/mo	serving/d	–			7
Cohen et al. 2012‡	HPFS USA, 1986	37 360 M	40–75	25 ± 3	22	ASB	≥ 1/d v. < 1/mo	–	•		8	
de Koning et al. 2012‡	HPFS USA, 1986	42 883 M	40–75	26 ± 3	22	ASB	> 4/wk v. none	serving/d	–	CHD	8	
Smith et al. 2015†	HPFS USA, 1986	21 472 M	47 ± 6	25 ± 1	24	ASB	–	serving/d	–		6	
Gearon et al. 2014‡	MCCS Australia, 1990	13 697 M, F	55 ± 9	26 ± 4	13	ASB	–	serving/wk	•		8	
Nettelton et al. 2009‡	MESA USA, 2000	5011 M, F	62 ± 11	28 ± 6	5	ASB	≥ 1/d v. rare or never	–	•	Waist		6
Fung et al. 2009‡	NHS I USA, 1980	88 520 F	34–59	24 ± 2	24	ASB	≥ 2/d v. < 1/mo	–	•	CHD	8	
Bernstein et al. 2012‡	NHS I USA, 1980	84 085 F	58 ± 10	26 ± 5	28	ASB	≥ 1/d v. none	serving/d	–	Stroke	8	
Bhupathiraju et al. 2013**	NHS II USA, 1991	74 749 F	50 ± 7	25 ± 5	24	ASB	≥ 1/d v. < 1/mo	serving/d	–			7
Cohen et al. 2012††	NHS II USA, 1991	97 991 F	27–42	23 ± 4	16	ASB	≥ 1/d v. < 1/mo	–	•		8	
Smith et al. 2015††	NHS II USA, 1991	48 071 F	38 ± 4	23 ± 2	16	ASB	–	serving/d	•			6

NNS	Extreme NNS intake categories, servings†	Measure of continuous NNS intake	Outcome					
BMI	Weight	Overweight/obesity	Metabolic syndrome	Type 2 diabetes	Hypertension	Other	Quality score:	

† Servings/day.
‡ Weight change.
§ Metabolic syndrome.
¶ Type 2 diabetes.
** Hypertension.
†† Other.
‡‡ Quality score.

E933
tiles of nonnutritive sweetener intake (Table 3, Figure 2E). In subgroup analyses, heterogeneity was not explained by baseline weight status, study quality, duration of follow-up or dose of nonnutritive sweetener (Appendix 1, Table S7). Among 4 cohorts that reported continuous effect estimates, we found a 3% higher risk of type 2 diabetes per additional daily serving of nonnutritive sweetener (RR 1.03, 95% CI 1.01 to 1.05; I² 0%; 4 cohorts; 221 363 participants)\(^{14,42,53,54}\) (Table 3 and Appendix 1, Figure S2B). We found no statistically significant associations for insulin resistance (3 trials; Appendix 1, Figure S3), glycosylated hemoglobin (1 trial), glucose tolerance (1 cohort) or gestational diabetes (1 cohort) (Table 3).

Cardiorenal outcomes
Cardiorenal outcomes were not reported in the RCTs. Among cohort studies, we found that high nonnutritive sweetener intake was associated with a higher risk of hypertension over 5 to 38 years of follow-up (HR 1.13, 95% CI 1.06 to 1.20; I² 64%; 5 cohorts; 232 630 participants)\(^{45,48,60}\) (Table 3 and Appendix 1, Figure S4A). In addition, high intake of nonnutritive sweetener was associated with a higher risk of stroke (RR 1.14, 95% CI 1.04 to 1.26; I² 0%; 2 cohorts; 128 176 participants)\(^{14}\) and cardiovascular events (RR 1.12; 95% CI 1.15 to 1.52; I² 0%; 2 cohorts; 62 178 participants)\(^{17,52}\) whereas there was no significant association with coronary heart disease (RR 0.98; 95% CI 0.90 to 1.07; I² 0%)

Table 2 (part 2 of 2): Prospective cohort studies evaluating intake of nonnutritive sweetener and long-term cardiometabolic health

Study*	Cohort	Country, year of baseline	NNS intake	No. of participants	Sex	Age at baseline, mean ± SD, or range, yr	BMI at baseline, mean ± SD, or % OW; kg/m²	Follow-up, yr	Type or source of NNS	Extreme NNS intake categories, servings†	Measure of continuous NNS intake	Outcome
Gardner et al. 2012\(^{22}\)	NOMAS USA, 1993	2564	M, F	69 ± 10	28 ± 6	10	AS soda	≥ 1/d v. < 1/mo serving/wk	CVD	7		
Parker et al. 1997\(^{27}\)	PHHP USA, 1986	465	M, F	47 ± 14	27 ± 5	4	Saccharin	– log g/d	–	9		
Fowler et al. 2008\(^{24}\)	SAHS USA, 1979	3371	M, F	44 ± 11	27 ± 6	8	ASB	≥ 22/wk v. none	–	7		
Fowler et al. 2015\(^{1,12}\)	SALSA USA, 1992	384	M, F	70 ± 3	28 ± 5	9	AS soda	≥ 1/d v. none	–	Waist	5	
Sakurai et al. 2013\(^{11}\)	Japan, 2003	2037	M	46 ± 6	23 ± 3	7	AS soda	≥ 1/wk v. none	–	8		
Barrio-Lopez et al. 2015\(^{9,19}\)	SUN Spain, 1999	8157	M, F	36 ± 11	23 ± 3	6	ASB	– Extreme quintiles	–	7		
Bes-Rastrollo et al. 2006\(^{51}\)	SUN Spain, 1999	7194	M, F	37 ± 12	–	2	ASB	– Extreme quintiles	–	Gain > 1 kg	8	
Renault et al. 2015\(^{21}\)	TOP Denmark, 2009	347	F	31 ± 4	34 ± 4	0.8	ASB	≥ 1/d v. none	–	GWG	7	
Vyas et al. 2013\(^{11}\)	WHI USA, 1993	59 614	F	63 ± 7	59% OW	9	ASB	≥ 2/d v. ≤ 3/mo	–	CVD	6	
Stinson et al. 2013\(^{34}\)	WHI USA, 1996	62 082	F	50–9	9–14	14	ASB	≥ 3/d v. < 3/mo	–	6		
Table 3: Results from meta-analyses (where possible) or individual studies for intake of nonnutritive sweeteners and long-term cardiometabolic health outcomes in randomized controlled trials and cohort studies

Outcome:	No. of studies* (participants)	Comparison	Estimate of NNS effect (95% CI) from meta-analysis or individual studies	Assoc.	Citation(s)*	Figure
BMI	3 (242)	NNS v. control	MD –0.37 kg/m^2 (−1.10 to 0.36), I^2 9% NS	20, 36, 37		
Weight	5 (791)	NNS v. control	SMD −0.17 (-0.54 to 0.21), I^2 81% NS	19, 20, 34, 35, 38		
Percentage of fat mass	1 (25)	NNS v. control	MD -1.01% (−3.01 to 0.99) NS	35 –		
Waist circumference	3 (683)	NNS v. control	SMD −0.16 (−0.56 to 0.25), I^2 83% NS	19, 20, 34, 35, 38		
Insulin resistance: HOMA-IR	3 (99)	NNS v. control	SMD +0.10 (−0.57 to 0.76), I^2 55% NS	20, 35, 37		
HbA1c	1 (62)	NNS v. control	MD +0.07% (−0.00 to 0.14) NS	20 –		
Cohort studies						
BMI	2 (21 256)	Continuous correlation	WMC +0.05 (0.03 to 0.06), I^2 0% NS	14, 15		
Weight	4 (32 405)	Continuous correlation	WMC +0.06 (0.05 to 0.07), I^2 46% NS	21, 57		
Gestational weight gain	1 (347)	Highest v. lowest NNS intake quantile	MD +2.5 kg (0.5 to 4.5) NS	23 –		
Weight gain > 1 kg	1 (7,194)	Highest v. lowest NNS intake quantile	OR 1.05 (0.93 to 1.19) NS	41 –		
Waist circumference	1 (384)	Daily v. no NNS consumption	MD +2.27 cm (0.96 to 3.58) NS	18 –		
Incident abdominal obesity	1 (5011)	Highest v. lowest NNS intake quantile	HR 1.59 (1.23 to 2.07) NS	60 –		
Incident overweight/obesity	3 (7917)	Highest v. lowest NNS intake quantile	OR 1.84 (1.28 to 2.66), I^2 0% NS	22, 50, 59		
Metabolic syndrome	5 (27 914)	Highest v. lowest NNS intake quantile	RR 1.31 (1.23 to 1.40), I^2 0% NS	39, 47, 48, 54, 60		
Type 2 diabetes	4 (221 363)	Per daily serving of NNS	RR 1.03 (1.01 to 1.05), I^2 0% NS	24, 42, 56		
Gestational diabetes	1 (13 475)	Highest v. lowest NNS intake quantile	RR 0.87 (0.71 to 1.02) NS	44 –		
Impaired glucose tolerance	1 (3728)	No v. any NNS consumption	HR 1.07 (0.91 to 1.26) NS	48 –		
Hypertension	5 (232 630)	Highest v. lowest NNS intake quantile	HR 1.12 (1.08 to 1.13), I^2 53% NS	45, 48, 60		
Stroke	2 (128 176)	Highest v. lowest NNS intake quantile	RR 1.14 (1.04 to 1.26), I^2 0% NS	40 –		
Cardiovascular events†	2 (62 178)	Highest v. lowest NNS intake quantile	RR 1.32 (1.15 to 1.52), I^2 0% NS	17, 52		
Coronary heart disease	2 (131 403)	Highest v. lowest NNS intake quantile	RR 0.98 (0.90 to 1.07), I^2 0% NS	46, 51		
Chronic kidney disease	1 (14 002)	Highest v. lowest NNS intake quantile	OR 0.80 (0.64 to 1.00) NS	43 –		

Note: BMI = body mass index, CI = confidence interval, HbA1c = glycosylated hemoglobin, HOMA-IR = homeostatic model assessment for insulin resistance, HR = hazard ratio, MD = mean difference, NNS = nonnutritive sweetener, NS = not significant, OR = odds ratio, RR = risk ratio, SMD = standardized mean difference, WMC = weighted mean group correlation (unitless).

*Number of studies does not always equal the number of citations, because some citations report results from multiple studies.
†Defined by the study authors as coronary heart disease, heart failure, myocardial infarction, coronary revascularization procedure, ischemic stroke, peripheral arterial disease and cardiovascular death;52 or stroke, myocardial infarction and vascular death.52
‡Appendix 1, available at www.cmaj.ca/lookup/suppl/doi:10.1503/cmaj.161390/-/DC1.
Figure 2: Forest plots of consumption of NNS and selected cardiometabolic health outcomes. (A) Differences in mean BMI between NNS consumption and control groups for RCTs. A value less than 0 represents reduced BMI with NNS consumption. (B) Correlation of BMI change per unit of NNS intake for cohort studies. A value less than 0 represents a reduced BMI. (C) Standard mean differences in weight between NNS consumption and control groups for RCTs. A value less than 0 represents weight loss. (D) Correlation of weight change per unit NNS intake for cohort studies. A value less than 0 represents a lower risk of type 2 diabetes. Additional outcomes are shown in Table 3, and Appendix 1, Figures S1–4. Squares represent effect estimates within each study, with 95% CIs represented by horizontal lines. Square size is proportional to the weight of each study. Diamonds represent the weighted mean effect estimates. Cohort acronyms are defined in Table 2. Note: BMI = body mass index, CI = confidence interval, MD = mean difference, NNS = nonnutritive sweetener, RCT = randomized controlled trial, RR = risk ratio, SD = standard deviation, SE = standard error, SMD = standardized mean difference.
Evidence from small RCTs with short follow-up (median 6 mo) suggests that consumption of nonnutritive sweeteners is not consistently associated with decreases in body weight, BMI or waist circumference. However, in larger prospective cohort studies with longer follow-up periods (median 10 yr), intake of nonnutritive sweeteners is significantly associated with modest long-term increases in each of these measures. Cohort studies further suggest that consumption of nonnutritive sweeteners is associated with higher risks of obesity, hypertension, metabolic syndrome, type 2 diabetes, stroke and cardiovascular disease events; however, publication bias was indicated for type 2 diabetes, and there are no data available from RCTs to confirm these observations.

Previous reviews concluded that, although data from RCTs support weight-loss effects from sustained nonnutritive sweetener interventions, observational studies provide inconsistent results. Building on these findings, we included new studies and found that consumption of nonnutritive sweeteners was not generally associated with weight loss among participants in RCTs, except in long-term (≥12 mo) trials with industry sponsorship. In addition, we found that consumption of nonnutritive sweeteners was associated with modest long-term weight gain in observational studies. Our results also extend previous meta-analyses that showed higher risks of type 2 diabetes and hypertension with regular consumption of nonnutritive sweeteners.

Our results highlight both the value and challenge of incorporating observational studies when examining the effect of real-world exposures on health outcomes that develop slowly over time. Although RCTs provide the highest quality of scientific evidence, they often fail to recapitulate chronic dietary exposures that are captured in decades-long cohort studies. However, it is not uncommon for hypotheses based on observational evidence to fail when tested in RCTs, and these data should therefore be interpreted with caution.

Strengths of our systematic review include use of a registered protocol and sensitive, peer-reviewed search strategy. We synthesized evidence from both RCTs and observational studies, assessed multiple cardiometabolic outcomes and focused on long-term effects.

Limitations

The main limitation of our review is the unavoidable grouping of exposure and outcome variables. We could not evaluate different types or formulations of nonnutritive sweeteners because most studies did not report this information, and we could not assess dose effects owing to the limited number of RCTs and the semi-quantitative nature of the reporting of nonnutritive sweetener intake in cohort studies. In addition, some cardiometabolic outcomes could not be evaluated individually because of the way they were combined and reported in the original studies (e.g., “overweight and obesity,” “cardiovascular events”). Finally, meta-analysis was not always possible because of reporting differences and the paucity of eligible studies.

The individual studies included in our review also have limitations. Most RCTs were at high risk of bias, and most cohort studies achieved only moderate quality scores. In the cohort studies, the ascertainment of exposure to nonnutritive sweeteners by self-report was likely incomplete, and the comparison of extreme intake quantiles may have yielded biased results. Furthermore, these studies evaluated consumption of artificially sweetened beverages before 2004; however, nonnutritive sweeteners are increasingly found in other foods, and consumption has increased considerably in recent years.

Observational studies are also subject to confounding bias, particularly when the exposure (e.g., nonnutritive sweeteners) is a potential “treatment” for the outcomes under investigation. However, critical confounders (baseline body composition and diet quality) were largely accounted for in the included studies, and we limited confounding by reverse causation by including only prospective studies that documented intake of nonnutritive sweeteners before weight change and disease incidence.

Randomized controlled trials of nonnutritive sweetener interventions also have known limitations. All were relatively short in duration, and the majority were conducted as part of multifaceted weight loss programs in obese individuals, which does not address routine consumption of nonnutritive sweeteners by healthy individuals. In addition, some trials evaluated nonnutritive sweeteners in capsule form, which may alter their physiologic effects, while others were subject to potential bias from lack of blinding and industry sponsorship. Finally, several studies focused on BMI and waist circumference, which are imperfect indices of body composition, despite being established predictors of cardiovascular disease.

Conclusion

Evidence from RCTs does not clearly support the intended benefits of nonnutritive sweeteners for weight management. In contrast, observational data suggest that routine consumption of nonnutritive sweeteners may be associated with a long-term increase in BMI and elevated risk of cardiometabolic disease; however, these associations have not been confirmed in experimental studies and may be influenced by publication bias. New studies are needed to compare different types and formulations of nonnutritive sweeteners, and to evaluate the net effect of substituting nonnutritive sweeteners for sugar. Improved assessment tools and biomarker approaches should be used to accu-
rately capture consumption of nonnutritive sweeteners, and confounding bias must be carefully addressed. Given the wide-spread and increasing use of nonnutritive sweeteners, caution is warranted until the long-term risks and benefits of these products are fully characterized.

References

1. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014;384:766-81.

2. Johnson RK, Appel LJ, Brands M, et al. Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation 2009;120:1011-20.

3. Siervo M, Montagnese C, Mathers JC, et al. Sugar consumption and global prevalence of obesity and hypertension: an ecological analysis. Public Health Nutr 2014;17:587-96.

4. Gardner C, Wylie-Rosett J, Gidding SS, et al. Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 2012;35:1798-808.

5. Sylvestry AC, Welch JA, Brown PJ, et al. Low-calorie sweetener consumption is increasing in the United States. Am J Clin Nutr 2012;96:640-6.

6. Sylvestry AC, Rother KI. Trends in the consumption of low-calorie sweeteners. Physiol Behav 2016;164(Pt B):446-50.

7. Swisher SE. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol Metab 2013;24:431-41.

8. Nettleton JE, Reimer RA, Shearer J. Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance? Physiol Behav 2016;164(Pt B):488-93.

9. Fowler SP. Low-calorie sweetener use and energy balance: results from experimental studies in animals, and large-scale prospective studies in humans. Physiol Behav 2016;164(Pt B):517-23.

10. Fitch C, Keim KS. Position of the academy of nutrition and dietetics: use of nutritive and nonnutritive sweeteners. J Acad Nutr Diet 2012;112:739-58.

11. Pereira MA. Diet beverages and the risk of obesity, diabetes, and cardiovascular disease: a review of the evidence. Nutr Rev 2013;71:433-40.

12. Miller PE, Perez V. Low-calorie sweeteners and body weight and composition: a meta-analysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr 2014;100:765-77.

13. Pan A, Hu FB. Question about a recent meta-analysis of low-calorie sweeteners and body weight. Am J Clin Nutr 2014;100:1604.

14. Field AE, Sonnville KR, Falbe J, et al. Association of sports drinks with weight gain among adolescents and young adults. Obesity (Silver Spring) 2014;22:2238-43.

15. Gearon E, Peeters A, Hodge A, et al. The role of dietary and physical activity interventions and lifestyle changes on weight loss in middle-aged Japanese men. J Nutr 2014;143:251-8.

16. Vyas A, Rubenstein L, Robinson J, et al. Diet drink consumption and the risk of cardiovascular events: a report from the women’s health initiative. J Gen Intern Med 2015;30:462-8.

17. Fowler SP, Williams K, Hazuda HP. Diet soda intake is associated with long-term increases in waist circumference in a biethnic cohort of older adults: the San Antonio Longitudinal Study of Aging. J Am Geriatr Soc 2015;63:708-15.

18. Peters JC, Beck J, Cardel M, et al. The effects of water and non-nutritive sweeteners and sugar-sweetened beverages for weight loss in adults: main results of the Choose Healthy Options Consiously Everyday (CHOICE) randomized clinical trial. Am J Clin Nutr 2012;95:555-63.

19. Smith JD, Hou T, Hu FB, et al. A comparison of different methods for evaluating diet, physical activity, and long-term weight gain in 3 prospective cohort studies. J Nutr 2015;145:2527-34.

20. Lanu A, Lopez-Garcia E, Rodriguez-Artalejo F. Consumption of soft drinks and health-related quality of life in the adult population. Eur J Clin Nutr 2015;69:1226-32.

21. Renault KM, Carlsen EM, Norgaard K, et al. Intake of sweets, snacks and soft drinks predicts weight gain in obese pregnant women: detailed analysis of the results of a randomised controlled trial. PLoS One 2015;10:e0133041.
Competing interests: Jonathon McGavock has received speaker fees from Medtronic. No other competing interests were declared.

This article has been peer reviewed.

Affiliations: George & Fay Yee Centre for Healthcare Innovation (Azad, Abou-Setta, Chauhan, Rabban, Lys, Copstein, Mann, Jeyaraman, Flander, Zarychanski); Children’s Hospital Research Institute of Manitoba (Azad, Chauhan, McGavock, Wicklow); Department of Pediatrics and Child Health (Azad, McGavock, Wicklow); Department of Community Health Sciences (Abou-Setta); College of Pharmacy (Chauhan); Max Rady College of Medicine (Reid); Department of Human Nutritional Sciences (Azad, Mackay); Department of Internal Medicine (Zarychanski), University of Manitoba; Department of Hematology and Medical Oncology, CancerCare Manitoba (Zarychanski), Winnipeg, Man.

Contributors: Meghan Azad conceptualized and coordinated the study. Meghan Azad and Ashleigh Reid drafted the initial protocol. Michelle Flander developed the search strategy, Ashleigh Reid, Justin Lys, Leslie Copstein, Amrinder Mann and Maya Jeyaraman screened citations and assessed studies for eligibility. Rasheda Rabban, Bhupendrasinh Chauhan, Ahmed Abou-Setta, Leslie Copstein and Meghan Azad extracted data. Meghan Azad, Justin Lys, Leslie Copstein and Bhupendrasinh Chauhan performed quality assessments. Rasheda Rabban performed statistical analyses. Dylan MacKay, Jon McGavock and Brandy Wicklow provided content expertise in nutrition and metabolic health. Ryan Zarychanski, Bhupendrasinh Chauhan and Ahmed Abou-Setta provided methodologic expertise in knowledge synthesis and resolved disagreements regarding study eligibility or quality assessments. Dylan MacKay, Jon McGavock, Brandy Wicklow, Ryan Zarychanski, Bhupendrasinh Chauhan and Ahmed Abou-Setta critically reviewed the manuscript for important intellectual content. All of the authors gave final approval of the version to be published and agreed to be accountable for all aspects of the work.

Funding: No funding was specifically obtained for this study. Ryan Zarychanski received a New Investigator Award from the Canadian Institutes of Health Research (CIHR). Jon McGavock holds the CIHR Applied Public Health Chair in Resilience and Childhood Obesity. CIHR had no role in the design, conduct or reporting of the study.

Acknowledgements: The authors thank information specialist consultant Becky Skidmore for her critical review of the search strategy. They also thank the following study authors for contributing additional unpublished data: Maira Bes-Rastrollo and colleagues (Seguimiento Universidad de Navarra [SUN] cohort), Emma Gearon and colleagues (Melbourne Collaborative Cohort Study [MC3S] cohort), and Esther Lopez-Garcia and colleagues (Study on Nutrition and Cardiovascular Risk in Spain [ENRICA] cohort).

Accepted: Mar. 10, 2017.

Correspondence to: Meghan Azad, meghan.azad@umanitoba.ca