Recent progress in vaccine development against Leishmania species infections

Barbara Papadopoulou PhD, Martin Olivier PhD, Marc Ouellette PhD

The understanding of the immunobiology of infections caused by the protozoan parasite leishmania is now extensive and has pinpointed the importance of T cell-mediated immunity. Several vaccination strategies using either killed parasites, subunit vaccines, DNA vaccines or live attenuated strains have been used successfully with and without adjuvants to induce cellular immunity and protect against leishmania infections. The most recent progress in leishmania vaccine development is described.

Key Words: Leishmania; T cell-mediated immunity; Vaccine development

The protozoan leishmania is the cause of a wide spectrum of diseases in humans and domestic animals. The clinical manifestations of leishmaniasis vary with the species, encompassing cutaneous leishmaniasis (oriental sore), mucocutaneous leishmaniasis (espundia) and visceral leishmaniasis (kala-azar), the most severe form of the disease, which is often fatal if untreated. The flagellated promastigote leishmania is transmitted to humans by the phlebotomine sand fly. After its ingestion and entry into the phagolysosome of the host macrophages, the promastigote differentiates into the aflagellated amastigote, which then replicates within the macrophage. Leishmania are distributed worldwide, and between 10 and 15 million people are estimated to be infected, with 400,000 new cases reported every year (1). More than one-third of the world’s population lives in endemic areas and is at risk of contracting an infection (2). Increases in travel and intervention in regional conflicts such as ‘Operation Desert Storm’ (3) have increased the number of leishmania cases in nonendemic areas. The incidence of leishmaniasis is also rising because of the lack of vaccines, difficulty of vector control and increased resistance to chemotherapy (4). Leishmania has also emerged as a serious opportunistic pathogen in human immunodeficiency virus (HIV)-infected humans, and several cases have been reported around the Mediterranean littoral (5).

There have been few, if any, vaccines for the treatment of protozoan parasites that infect several hundred million people worldwide and are the cause of substantial morbidity and mortality. Several reports have suggested, however, that vac-
Once internalized into phagosomes, Leishmania transform T cells. Thus, intracellular compartmentalization of Leishmania is responsible for the presentation of peptide antigens in the context of MHC class II molecules, which are recognized by CD4+ T cells.

PROTECTIVE IMMUNE EFFECTOR MECHANISMS NECESSARY FOR RESOLVING LEISHMANIA INFECTIONS

Leishmania metacyclics bind macrophages to cell surfaces through numerous receptors, but in physiological conditions the main ones appear to complement receptors type 1 (CR1) and type III (CR3). These receptors bind to complement components attached to the plasma membrane of the parasite (6). Once internalized into phagosomes, Leishmania transform into amastigotes, the developmental form in which they remain in the vertebrate host. Amastigotes replicate by binary fission, eventually rupturing macrophages, and invade uninfected cells probably via the FcgR and CR3 receptors (7). Normally, phagocytosis of intracellular pathogens induces macrophages to produce cytokines, chemokine factors such as chemokinetic, activating and modulatory factors, and hematopoietic-stimulating factors; however, in the case of Leishmania infection, the entry of the parasite into macrophages is relatively silent and generally occurs in the absence of macrophage-derived cytokines (8). It has been shown that major histocompatibility complex (MHC) class II molecules are localized in the membrane of the parasitophorous vacuole, suggesting a mechanism by which the immune response to this pathogen becomes class II and CD4+-dependent (9). Thus, intracellular compartmentalization of leishmania is responsible for the presentation of peptide antigens in the context of MHC class II molecules, which are recognized by CD4+ T cells.

Experimental murine leishmaniasis has been studied extensively for the past decade and has provided one of the first examples of the importance of T helper type 1 and T helper type 2 (Th1/Th2) cell subsets in the development of the disease. In murine leishmaniasis, the genetically resistant C57BL/6 mice display a Th1 response, whereas the susceptible BALB/c mice develop a clear Th2 phenotype (8). T cell lines isolated from mice vaccinated with various soluble fractions of leishmanial antigens have shown that Th1-producing interferon-gamma (IFN-γ) and interleukin-2 (IL-2) transferred protection, whereas cells of Th2 lineage that produced IL-4, IL-5 and IL-10 exacerbated disease (8,10,11). It is important to emphasize that resistance and/or susceptibility to leishmanial infection in the murine model system appears to be controlled by several mechanisms that will be briefly discussed here.

Resistance to leishmanial infections is associated with the induction and expansion of a discrete subset of CD4+ T cells, designated Th1, that are restricted by MHC class II and produce IFN-γ (8,12). IFN-γ activates the inducible nitric oxide synthase in macrophages, leading to the production of reactive nitrogen radicals that are toxic for the parasite (13). IFN-γ plays a key role in the control of Leishmania major infection. It has been shown that mice with disrupted genes for IFN-γ or IFN-γ receptor failed to resolve their lesions (14,15). IL-12 also favours Th1 cell development through its capacity to stimulate IFN-γ production by Th1 cells (16) and is crucial for cure. Mature Th1 cells could, thus, expand in number and release more IFN-γ, which increases IL-12 production by the macrophages. It is possible that IL-12 is produced by macrophages upon leishmanial infection and that it induces Th1 cells to secrete IL-12. Both IL-12 and IFN-γ may drive CD4+ T cell differentiation towards the Th1 lineage (17) and are required for effective resolution of leishmaniasis (18). The essential role of IL-12 in Th1 development has been confirmed by results showing that neutralization of IL-12 or deletion of the IL-12 gene in resistant mice led to the development of a Th2 response after leishmanial infection (18,19).

In contrast, susceptibility to leishmania is characterized by a Th2 response, which produces predominantly IL-4. This cytokine promotes high antibody titres directed towards the parasite but does not activate macrophages for parasite killing. Cytokines produced by Th2 cells exert a macrophage deactivating function. IL-4 has been shown to hamper the activation of macrophages induced by IFN-γ and to suppress the up-regulation of the gene for interferon regulatory factor 1 (20). Several reports support the crucial role of cytokines in directing CD4+ T cell differentiation and, consequently, the outcome of the disease. Macrophages pre-incubated in vitro with cytokines before infection with leishmania acquired the capacity to kill the intracellular parasites (21). Moreover, cytokines such as IFN-γ, tumour necrosis factor-alpha (TNF-α), IL-12 and granulocyte-macrophage colony-stimulating factor (GM-CSF) have been used as antileishmanial therapy in experimental models (22-26) and in human Leishmania donovani infection (27).

Natural killer (NK) cells have also been suggested to play a role in the development of a Th1 response by secreting IFN-γ at early stages following leishmanial infection, and it has been shown that depletion of NK cells in resistant mice favours parasite multiplication (28). Accessory molecules such as the CD40 cell surface molecule (CD40L) on activated T cells have also been shown to be necessary for the generation of a protective cell-mediated immune response to leishmania, presumably via its interaction with the CD40 receptor (CD40R) on primed monocytes/macrophages, which induces IL-12 secretion (29). Resistant mice deficient in either the CD40 or its ligand molecules failed to generate a Th1 response and were unable to control infection (30,31). It is, therefore, possible that during infection of resistant mouse strains, macrophages present leishmanial antigens to T cells, resulting in CD40L activation, which in conjunction with IFN-γ induces IL-12 production by the macrophages (30). CD40L may also have a direct effect on the synthesis of nitric oxide (32). Several studies have reported that antigen-specific CD8+ T cells are similarly important in the resolution of cutaneous and visceral infections (33,34). However, it is unclear how these cells execute this function because results from several investigations attempting to demonstrate recognition of leishmania-infected
TABLE 1
Live or killed parasites, antigens and adjuvants for vaccination against leishmaniasis

| Killed polyvalent leishmania promastigotes (reference 40) |
| Killed leishmania promastigotes + BCG (references 41,42,74) |
| BCG (reference 75) |
| Low parasite dose (references 43,44) |
| T cell antigens (reference 76) |
| Membrane antigens into liposomes (references 77,78) |
| Amastigote antigens (A2,P4,P8) (reference 52) |
| Leishmanial antigens + interleukin-12 (adjuvant) (references 72,79) |
| Synthetic lipopeptides (gp63 epitopes) (reference 80) |
| Anti-CD40 mAb (reference 81) |
| Cytotoxic gene expression (reference 45) |

| BCG Bacille Calmette-Guerin: gp63 Glycoprotein 63 |

TABLE 2
Subunit antileishmanial vaccines

| Glycoprotein 63 (references 47,82) |
| Promastigote surface antigen 2 (reference 83) |
| T cell LACK antigen + interleukin-12 (reference 49) |
| Thiol-specific antioxidant protein (reference 84) |

Experimental, avirulent, temperature-sensitive mutants obtained by chemical mutagenesis, lethally irradiated or heat killed, or soluble extracts of promastigotes have been used successfully in immunizing mice against cutaneous leishmaniasis (37-39). First-generation vaccines based on killed parasites with or without adjuvant have reached various stages of phase I, II or III trials in humans (2) (Table 1). In Venezuela, over 16,000 individuals have been vaccinated with killed *Leishmania mexicana* and/or *Leishmania braziliensis* with or without Bacille Calmette-Guerin (BCG) (2). In Brazil, efforts to develop a nonliving promastigote vaccine against American cutaneous leishmaniasis have been made by using killed polyvalent promastigotes derived from *Leishmania mexicana*, *Leishmania amazonensis*, *Leishmania guyanensis* and *Leishmania braziliensis* (40). Vaccinated individuals in the above studies showed an enhanced level of IFN-γ production and CD8+ T-specific cells. In a recent study in Ecuador, over 70% of vaccinated children with killed leishmania promastigotes of three strains (*L. braziliensis*, *L. guyanensis* and *L. amazonensis*) combined with BCG were protected from cutaneous leishmaniasis (41). Two recent vaccine trials in Iran with killed *L. major* promastigotes plus BCG were encouraging, but showed lesser efficiency relative to the incidence of the disease (42). Live parasites have also been used for vaccination, administered either in a low dose (43,44) or as recombinant parasites expressing a cytotoxic gene (45). Both studies have demonstrated a protective immune response in susceptible BALB/c mice against infectious challenge.

Fractionation is an improvement over using the whole parasite in terms of both standardization and reduction of unwanted side effects, and effective immunization against leishmaniasis. Leishmanial antigens, either coated with lipids or uncoated, or in the presence of adjuvants or not, as well as T cell antigens, have been used as vaccines mainly in murine experimental systems (Table 1). Second-generation vaccine candidates, including recombinant molecules that constitute major components of the parasite membrane such as glycoprotein 63 (gp63) or glycoprotein 46 (gp46), have been tested in an experimental murine system (Table 2). An oral recombinant gp63 vaccine (46) was shown to confer protective immunity against cutaneous leishmaniasis (47), and an improved version of this vector conferred considerable cross-resistance to *L. donovani* (48). The leishmania-specific CD4+ T cell LACK antigen administered as a recombinant protein has been shown to transfer protection against *L. major* in susceptible BALB/c mice (49). T cells generated during the cure of leishmanial infections in humans recognize a broad range of leishmanial antigens, suggesting that although single-molecule
vaccines such as gp63 or lipophosphoglycan have success in inducing mice, the search for a single major protective antigen for vaccination against disease in humans may be fruitless (50). Polymorphism for MHC class I and II molecules on the surface of infected cells in genetically diverse human populations also makes a single-antigen vaccine less attractive because some members of the population may fail to bind the antigen for presentation to T cells (51). However, as Soong et al (52) reported, this may be different with the use of a multiple amastigote antigen vaccine.

The protease gp63 has also been administered as a DNA vaccine, and a Th1 response was found to be associated with protection in vaccinated mice (53) (Table 3). Immunization with plasmid DNA has been shown to induce protective immunity in a variety of experimental systems through both MHC class I- and class II-restricted T cell responses (54,55). Vaccination with DNA encoding the immunodominant LACK parasite antigen also confers protective immunity to mice infected with L major (56), and protection seemed to be associated with IL-12 production. Similarly, vaccination with promastigote-specific antigen 2 DNA can protect mice against L major infection by developing a Th1 type response (56).

Live recombinant attenuated vectors are widely used for vaccination as vehicles to express immunogenic proteins from several pathogens. Genetically or naturally attenuated microbes such as salmonella, BCG and vaccinia-expressing leishmanial antigens, toxins or cytokines have been administered as vaccines in murine experimental systems (Table 4). Attempts to generate live attenuated leishmania strains for vaccination purposes have also been recently undertaken. Our ability to introduce stable new genes and disrupt or delete endogenous ones has provided the tools necessary to generate genetically less virulent or avirulent parasites that may be used as safe live vaccines for protozoal diseases. Development of live parasites attenuated by molecular means has been a driving force in the recent years (Table 5). Null mutants by gene targeting have been generated in L major (dhfr-ts [57] hsp100, [58], and L mexicana (cysteine proteinase gene [lmcpB] [59]). Parasites in which a large cluster of cysteine proteinase genes were replaced by gene targeting were found to be less virulent and to confer protection against challenge (60). Using antisense RNA against the amastigote specific L donovani A2 gene, parasites became less virulent and animals were protected against challenge (61). Disruption of the L major hsp100 gene has resulted in markedly delayed lesion development in mice (58). Although encouraging, protection was often not perfect and a minor population of the parasites was reverting to virulence, indicating that further work is required (60,61). We have disrupted the gene encoding for trypanothione reductase (TR), an enzyme keeping trypanothione into its reduced form (62). The pivotal role of TR in oxidative stress management suggests that it might be an attractive target for the production of avirulent strains. Attempts to yield a null mutant for the TR gene obtained a TR trisomic mutant with two alleles successfully disrupted by the two selectable markers and a third wild-type allele as a result of genomic translocation (63). The resulting polyploidy strongly suggests that TR gene is essential for leishmania promastigotes. A similar conclusion has been drawn for the dhfr-ts gene (64) and for a cdc2-related kinase (59). Despite that one TR allele was left, susceptible BALB/c vaccinated with a L donovani TR disruption mutant were protected against reinfection with a wild-type L donovani strain. Tovar et al (65) reported similar results more recently.

Other putatively interesting targets for the development of live vaccines against leishmaniasis using gene targeting technologies may be the amastigote-specific genes because their inactivation should alter either the capacity of the parasite to efficiently differentiate or its capacity to survive once inside the phagolysosomes. New targets identified through the ongoing L major sequence project may also be chosen for the generation of live attenuated mutants. Ideally, an attenuated live vaccine should cover a large spectrum of different species because the epidemiology of strains responsible for leishmaniasis is not the same in the New World and in the Old World, and, therefore, vaccine composition should change accordingly. Given that T cell-mediated immunity is required for the development of a protective immune response against leishmania infections, live attenuated vaccines should be ideal candidates for vaccination. Live attenuated vaccines have been used against a number of human and animal pathogens with high efficacy and safety. Several viral (66,67) and bacterial (68-70) pathologies can be prevented efficiently using live
attenuated pathogens as vaccines. BCG, a naturally live attenuated *Mycobacterium bovis* strain, is one of the most widely used vaccines in the world, being administered to approximately 100 million children each year. All BCG strains used so far as vaccines are safe (70). Auxotrophic strains of BCG were recently made to obviate potential adverse effects of BCG vaccine in HIV-positive severely immunocompromised individuals (71). Although side effects were not seen in several studies of HIV-seropositive children (71), the safety of live attenuated BCG strains and of other live attenuated vaccine candidates needs to be carefully addressed.

The elaboration of an efficient vaccine involves the generation of short lived effector cells, but also generation of long term protective memory cells. The nature of the cells that confer immune memory against parasitic infections and the mechanisms by which it is obtained are unknown. To assess the requirements for the development of a long term immunity following a leishmania infection, we have developed a suicide-type system based on the expression of the thymidine kinase gene of Herpes simplex virus-1 (tk) gene in leishmania that become hypersensitive to treatment with ganciclovir, and we have tested the potential of using these recombinant parasites as a vaccination approach (45). Mice infected with T-K recombinant leishmania and treated four days later with ganciclovir to clear the parasites that were protected against infective challenge (45).

Adjuvants in vaccines are thought to function in several ways, including targeting of antigens to macrophages, CD4+ T cell subset differentiation and macrophage activation, but the studies of HIV-seropositive children (71), the safety of live immune memory against parasitic infections and the candidates needs to be carefully addressed.

Recently, the adjuvant effect of certain cytokines has been demonstrated. Vaccination of BALB/c mice with leishmanial antigens and IL-12 promoted the development of CD4+ T cell response (72), suggesting that IL-12 can substitute for bacterial adjuvants (Table 1). In Kenya, IL-12 has been tested in vaccination experiments in primates (73). In other cases IL-2, IFN-γ and TNF-α have been expressed by recombinant attenuated bacteria and tested as vaccines against *L major* infections (Table 4). We have also tested the potential of expressing cytokine genes by the parasite to induce macrophage activation. GM-CSF-expressing leishmania were used to infect BALB/c mice, and the overproduction of this cytokine seems to control the level of infection during the first weeks.

CONCLUSIONS

In recent years, considerable progress has been made concerning the understanding of the immunobiology of leishmania infections, in the genetics of leishmania and in the isolation of parasite surface molecules. This knowledge has been used to develop ingenious and effective strategies for vaccination against leishmaniasis. With further basic and clinical research, it is possible that for the first time an effective vaccine will be available for an intracellular parasite.

ACKNOWLEDGEMENTS: This work is supported by the Canadian University Research Program of Pasteur Mérite Connaught and the Medical Research Council-University Industry Program, and by Medical Research Council Group Grant gr4500 in Infectious Diseases. Drs B Papadopoulos, M Oliver and M Ouellette are a Medical Research Council scholar, a Fonds de Recherche en Santé du Québec scholar and a Medical Research Council scientist, respectively. Drs M Oliver and M Ouellette are recipients of the Burroughs Wellcome Fund New Investigator Award in molecular parasitology.

REFERENCES

1. Ashford RW, Desjeux P, deRaadt P. Estimation of population at risk of infection and number of cases of leishmaniasis. *Parasitol Today* 1992;8:194-5.
2. Modabber F. Vaccines against leishmaniasis. *Ann Trop Med Parasitol* 1995;89(Suppl 1):83-8.
3. Magill AJ, Grogli M, Gasser RA Jr, Sun W, Oster CN. Visceral infection caused by *Leishmania tropica* in veterans of Operation Desert Storm. *N Engl J Med* 1992;326:1583-7.
4. Ouellette M, Papadopoulos B. Mechanisms of drug resistance in leishmania. *Parasitol Today* 1995;9:150-3.
5. Alvar J, Caraveo C, Gutierrez-Solar B, et al. Leishmania and human immunodeficiency virus coinfection: the first 10 years. *Clin Microbiol Rev* 1997;10:298-319.
6. Mosser DM, Rosenthal LA. Leishmania-macrophage interactions: multiple receptors, multiple ligands and diverse cellular responses. *Semin Cell Biol* 1993;4:315-22.
7. Guy RA, Belosevic M. Comparison of receptors required for entry of *Leishmania major* amastigotes into macrophages. * Infect Immun* 1993;61:1555-8.
8. Reiner SL, Locksley RM. The regulation of immunity to *Leishmania major*. *Annu Rev Immunol* 1995;13:151-72.
9. Lang T, de Chastellier C, Frehel C. Distribution of MHC class I and of MHC class II molecules in macrophages infected with *Leishmania amazonensis*. *J Cell Sci* 1994;107:69-82.
10. Locksley RM, Heinzell FP, Holaday BJ, Mutha SS, Reiner SL, Sadick MD. Induction of T1 and T2 CD4+ subsets during murine *Leishmania major* infection. *Res Immunol* 1991;142:28-32.

11. Reed SG, Scott P. T-cell and cytokine responses in leishmaniasis. *Curr Opin Immunol* 1993;5:524-51.
12. Heinzell FP, Reker RM, Hatam P, Locksley RM. IL-2 is necessary for the progression of leishmaniasis in susceptible murine hosts. *J Immunol* 1993;150:3924-31.
13. Asserre J, Cunha FQ, Epperlein M, et al. Production of nitric oxide and superoxide by activated macrophages and killing of *Leishmania major*. *Eur J Immunol* 1994;24:672-6.
14. Wang ZE, Zheng S, Corry DB, et al. Interferon gamma production and diminishes interleukin 4 inhibition of gamma production and diminishes interleukin 4 inhibition of *Leishmania major*. *Eur J Immunol* 1994;24:672-6.
15. Scharton-Kersten T, Scott P, The role of the innate immune response in *Th1* cell development following *Leishmania major* infection. *J Leukoc Biol* 1995;57:515-22.
16. Heinzell FP, Reker RM, Ahmed F, Pearlman E. Endogenous IL-12 is required for control of Th2 cytokine responses capable of exacerbating leishmaniasis in normally resistant mice. *J Immunol* 1995;155:750-9.
19. Magram J, Connaughton SE, Warrier RR, et al. IL-12-deficient mice are defective in IFN-gamma production and type 1 cytokine responses. Immunology 1996;4:471-81.

20. Ohmori Y, Hamilton TA. IL-4-induced STAT6 suppresses IFN-gamma-stimulated STAT1-dependent transcription in mouse macrophages. J Immunol 1997;159:5474-82.

21. Ho JL, Reed SG, Wick EA, Giordano M. Granulocyte-macrophage and macrophage colony-stimulating factors activate intraacellular killing of Leishmania mexicana amazonensis. J Infect Dis 1990;162:224-30.

22. Liew FY, Li Y, Yang DM, Severn A, Cox FE. TNF-alpha reverses the disease-exacerbating effect of subcutaneous immunization against murine cutaneous leishmaniasis. Immunology 1991;74:304-9.

23. Heinzl FP, Schoenhaut DS, Reker RM, Rosser LE, Gately MK, Recombinant interleukin-12 cures mice infected with Leishmania major. J Exp Med 1995;177:1505-

24. Murray HW, Hariprashad J. Interleukin 12 is effective treatment for established systemic intracellular infection: experimental visceral leishmaniasis. J Exp Med 1995;181:387-91.

25. Murray HW, Cervia JS, Hariprashad J, Taylor AP, Stoeckle MY, Hockman H. Effect of granulocyte-macrophage colony-stimulating factor in experimental visceral leishmaniasis. J Clin Invest 1998;102:183-92.

26. Hondowicz BO, Scharton-Kersten TM, Jones OE, Scott P. Natural killer cells are a source of IFN-gamma in experimental visceral leishmaniasis. Infect Immun 1996;64:2631-9.

27. Ghalib HW, Whittle J, Kubin M, et al. IL-12 enhances TH1-type responses in human Leishmania donovani infections. J Immunol 1998;160:4629-9.

28. Scharton TM, Scott P. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J Exp Med 1993;178:567-77.

29. Shu U, Kiniwa M, Wu CY, et al. Activated T cells induce interleukin-12 production by monocytes via CD40-CD40 ligand interaction. Eur J Immunol 1995;25:1125-8.

30. Campbell KA, Ovendale PJ, Kennedy MK, Fanslow WC, Reed SG, Maliszewski CR. CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunology 1996;4:285-9.

31. Kamanaka M, Yu P, Yasui T, et al. Cytotoxic CD8+ T cells are required for generation of immunity to Leishmania major. Infect Immun 1997;65:2839.

32. Stout RD, Sutcliffe J, Karp SI, Flavell RA. Impaired cell-mediated immunity to Leishmania major in mice vaccinated with live recombinant parasites expressing a cytotoxic gene. J Infect Dis 1998;177:188-95.

33. Button LL, McMaster WR. Molecular cloning of the major surface antigen of leishmania. J Exp Med 1988;167:724-9.

34. Yamagami T, Fairweather N, Button LT, McMaster WR, Kahl LP, et al. Oral Salmonella typhimurium (Arbo) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces Th1 helper cells and protective immunity against leishmaniasis. J Immunol 1990;1:452281-5.

35. Mousopoulou A, Olivier M, Harvie P, Bergeron MG, Ouettele M, Papadopoulou B. Protection against Leishmania major challenge infection in mice vaccinated with live recombinant parasites expressing a cytotoxic gene. J Infect Dis 1998;177:188-95.

36. Bottomley TD, McComber PW. Molecular cloning of the major surface antigen of leishmania. J Exp Med 1988;167:724-9.

37. Bottomley TD, McComber PW. Molecular cloning of the major surface antigen of leishmania. J Exp Med 1988;167:724-9.

38. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:8711.

39. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

40. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

41. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

42. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

43. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

44. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

45. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

46. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

47. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

48. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

49. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

50. Scott P, Pearce E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

51. Scott P, Pearl E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

52. Scott P, Pearl E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

53. Scott P, Pearl E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

54. Scott P, Pearl E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

55. Scott P, Pearl E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

56. Scott P, Pearl E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

57. Scott P, Pearl E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

58. Scott P, Pearl E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

59. Scott P, Pearl E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.

60. Scott P, Pearl E, Natovitz P, Sher A. Vaccination against Leishmania major. J Immunol 1996;156:811.
to survive oxidative stress in macrophages. EMBO J 1997;16:2590-8.

64. Cruz AK, Titus R, Beverley SM. Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proc Natl Acad Sci USA 1995:90:1599-603.

65. Tovar J, Cunningham ML, Smith AC, Croft SL, Fairlamb AH. Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: effect on parasite intracellular survival. Proc Natl Acad Sci USA 1998;95:5311-6.

66. Gruber WC, Belshe RB, King JC, et al. Evaluation of live attenuated influenza vaccines in children 6-18 months of age: safety, immunogenicity, and efficacy. National Institute of Allergy and Infectious Diseases, Vaccine and Treatment Evaluation Program and the Wyeth-Ayerst Influenza Vaccine Investigators Group. J Infect Dis 1996;173:1313-9.

67. Meurice F, De Bouyer JL, Vandevoorde D, Woods S, Bogaerts H. Immunogenicity and safety of a live attenuated varicella vaccine (Oka/SB Bio) in healthy children. J Infect Dis 1996;174(Suppl 3):S324-9.

68. Coster TS, Killeen KP, Waldor MK, et al. Safety, immunogenicity, and efficacy of live attenuated Vibri0 cholerae O139 vaccine prototype. Lancet 1995;345:949-52.

69. Kotloff KL, Noriega F, Losonsky GA, et al. Safety, immunogenicity, and efficacy of live attenuated varicella vaccine (Oka/SB Bio) in healthy children. J Infect Dis 1996;174(Suppl 3):S324-9.

70. Kollhoff KL, Noriega F, Lesonsky GA, et al. Safety, immunogenicity, and transmissibility in humans of CVD 1203, a live oral Shigella flexneri 2a vaccine candidate attenuated by deletions in ara0 and virG. Infect Immun 1996;64:4584-8.

71. Guarner H, Kew OM, Weller J, et al. Safety, immunogenicity, and efficacy of oral live attenuated Shigella flexneri 2a vaccine given to healthy boys. J Infect Dis 1996;174(Suppl 3):S324-9.

72. Afonso LC, Scharton TM, Vieira LQ, wysocka M, Trinchieri G, Fortier AH, Mock BA, Meltzer MS, Nacy CA, Bloom BR. Auxotrophic vaccines for tuberculosis. Nat Med 1995;2:323-7.

73. Russell DG, Alexander J. Effective immunization against cutaneous leishmaniasis using an intrinsically adjuvantive synthetic lipopeptide vaccine. Vaccine 1996;14:923-9.

74. Ferlin VG, von der Welt T, Cottrez F, Ferrick DA, Coffman RL, Howard MC. The induction of a protective response in Leishmania major-infected BALB/c mice with anti-CD40 mAb. Eur J Immunol 1998;28:525-31.

75. Walker PS, Scharton-Kersten T, Rowton ED, et al. Genetic immunization with glycoprotein 63 cDNA results in a helper T cell type 1 immune response and protection in a murine model of leishmaniasis. Hum Gene Ther 1998;9:1899-907.

76. Gurunathan S, Prussin C, Sacks DL, Seder RA. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nat Med 1998;4:1409-15.

77. Xu D, McSorley SJ, Chatfield SN, Dougan G, Liew FY. Protection against Leishmania major infection in genetically susceptible BALB/c mice by gp63 delivered orally in attenuated Salmonella typhimurium (aroA–aroD–). Immunology 1998;95:1-7.

78. Soo SS, Villarer-Ramos B, Anjam Khan CM, Hornaeche CE, Blackwell JM. Genetic control of immune response to recombinant antigens carried by an attenuated Salmonella typhimurium vaccine strain: Nramp1 influences T-helper subset responses and protection against leishmanial challenge. Infect Immun 1998;66:1910-7.

79. Xu D, McSorley SJ, Tetley L, et al. Protective effect on Leishmania major infection of migration inhibitory factor, TNF-alpha, and IFN-gamma administered orally via attenuated Salmonella typhimurium. J Immunol 1998;160:1285-9.

80. Connell ND, Medina-Acosta E, McMaster WR, Bloom BR, Russell DG. Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin expressing the leishmania surface proteinase gp63. Proc Natl Acad Sci USA 1993;90:11473-7.

81. Abdelhak S, Louzir H, Timm J, et al. Recombinant BCG expressing the leishmanial surface antigen gp63 induces protective immunity against Leishmania major infection in BALB/c mice. Microbiol 1995;141:1585-92.

82. McMahon-Pratt D, Rodriguez D, Rodriguez JR, et al. Recombinant vaccinia viruses expressing GP46/M-2 protect against Leishmania infection. Infect Immun 1993;61:3351-9.

83. Tovar J, Wilkinson S, Mottram JC, Fairlamb AH. Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Mol Microbiol 1998;29:653-60.

Can J Infect Dis Vol 10 Suppl C May 1999 15C
