According to reports, the potential transmission routes of the Coronavirus Disease 2019 (COVID-19) infection include contact, droplet, and airborne transmission.\(^1\,^2\) Therefore, many strategies to reduce aerosol spread by patient coughs during endoscopy have been reported, such as plastic cube barrier, vinyl-box, modified surgical mask, and glove-covered mouthpiece.\(^3\,^4\) Endoscopic biopsy for suspected malignancies should be performed for diagnosis confirmation even in the COVID-19 era.\(^7\,^8\) However, to our knowledge, there are no reports of precautions focusing on potential contamination during biopsy. First, a patient's contaminated fluids, which potentially exist in the instrument channel of the endoscope, could splash from the biopsy valve on the channel port into the endoscopist's face. Moreover, infection risk is higher because of the close distance to the endoscopist's face.\(^9\) Second, it should also be considered that long and elastic biopsy forceps have an unexpected risk of contact transmission when the forceps are pulled out from the channel port. Here, we present a method without harmful effects of using an alcohol swab not only to prevent contaminated fluid splash during biopsy, but also to deactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for the reduction of contact transmission after biopsy. We performed a demonstration to inspect the protective effect of the swab using an upper gastrointestinal training simulator (LM-022; KOKEN CO., LTD., Tokyo, Japan) and fluorescent dye (see Supplementary Video 1). The first demonstration shows the endoscopic biopsy procedure using a training simulator without precaution for potential contamination. After the forceps were pulled out by an assistant, many fluorescent dye droplets were identified on the right forearm, chest, neck, and mask of the endoscopist by illuminating with ultraviolet light (Fig. 1A, B).

Next, we present the alcohol swab technique during biopsy to reduce contamination. Ahead of biopsy, an alcohol swab package was placed with a cellophane tape near the instrument channel port in order to quickly obtain the swab (Fig. 2A). The endoscopist removes the swab and continues to hold down the top of the biopsy valve, “sandwiching” the forceps to stabilize until the forceps are slowly pulled out by an assistant (Fig. 2B). The last demonstration shows the endoscopic biopsy procedure with an alcohol swab. After the assistant pulled out the forceps, the fluorescent dye was absorbed in the swab. Ultraviolet light illumination revealed no scattering of dye on the endoscopist. For further clinical examination, we evaluated the aerosol spread using the portable HHPC6 + Handheld Particle Counter (Beckman Coulter, Inc., Brea, CA, USA), while actual biopsies were performed using esophagogastrroduodenoscopy (EGD). This device was positioned at the face height of the endoscopist and recorded the quantity of particles (0.3-2.0 μm) per cubic feet every 5 seconds in order to verify the en-
Fig. 1. (A) Droplets of fluorescent dye illuminated with ultraviolet light identified on the neck and mask of an endoscopist. (B) Droplets of fluorescent dye found on endoscopist’s chest.

Fig. 2. (A) Ahead of biopsy, an alcohol swab package taped near the instrument channel port. (B) The endoscopist continues to hold down the top of the biopsy valve, “sandwiching” the forceps by the swab to stabilize until the forceps are slowly pulled out by an assistant.

Fig. 3. The temporal changes of particle counts in each size per cubic feet during esophagogastroduodenoscopy. The red and blue arrows are the timing of biopsies without and with alcohol swab, respectively.
The authors have no potential conflicts of interest.

None.

Conceptualization: Shusei Fukunaga, Taku Manabe, Yasuaki Nagami
Data curation: Akira Higashimori

Video 1. A new method using an alcohol swab to reduce contamination during biopsy and simple demonstrations using fluorescent dye to inspect the protective effect. (https://doi.org/10.5946/ce.2021.027.v001).

Supplementary Material

Supplementary Table 1: Summary of particle counts during EGD.

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.

Morawska L, Cao J. Airborne transmission of SARS-CoV-2: the world should face the reality. Environ Int 2020;139:105730.

Sagami R, Nishikiori H, Sato T, Murakami K. Endoscopic shield: barrier enclosure during the endoscopy to prevent aerosol droplets during the COVID-19 pandemic. VideoGIE 2020;5:445-448.

Kobara H, Nishiyama N, Masaki T. Shielding for patients using a single-use vinyl-box under continuous aerosol suction to minimize SARS-CoV-2 transmission during emergency endoscopy. Dig Endosc 2020;32:e114-e115.

Maruyama H, Higashimori A, Yamamoto K, et al. Coronavirus disease outbreak: a simple infection prevention measure using a surgical mask during endoscopy. Endoscopy 2020;52:E461-E462.

Sasaki S, Nishikawa J, Sakaida I. Use of a Glove-Covered Mouthpiece during Upper Endoscopy to Prevent COVID-19 Transmission. Clin Endosc. 2021;54:289-290.

Soetikno R, Teoh AYB, Kaltenbach T, et al. Considerations in performing endoscopy during the COVID-19 pandemic. Gastrointest Endosc 2020;92:176-183.

Hao J, Kim ET. Sharing our experience of operating an endoscopy unit in the midst of a covid-19 outbreak. Clin Endosc 2020;53:243-245.

Benter T, Klüs L, Teichgräber UK, Riechert F, Ludwig WD, Dörken B. Need for safety goggles for endoscopy. Endoscopy 2003;35:803-806.