The nuSTORM experiment

Kenneth Long
Imperial College London and STFC, Exhibition Road, London SW7 2AZ, UK
E-mail: k.long@imperial.ac.uk

Abstract. The nuSTORM facility will provide ν_e and ν_μ beams from the decay of low energy muons confined within a storage ring. The instrumentation of the ring, combined with the excellent knowledge of muon decay, will make it possible to determine the neutrino flux at the %-level or better. The neutrino and anti-neutrino event rates are such that the nuSTORM facility serving a suite of near detectors will be able to measure ν_eN and $\nu_\mu N$ cross sections with the %-level precision required to allow the next generation of long-baseline neutrino-oscillation experiments to fulfil their potential. By delivering precise cross section measurements with a pure weak probe nuSTORM may have the potential to make measurements important to understanding the physics of nuclei. The precise knowledge of the initial neutrino flux also makes it possible to deliver uniquely sensitive sterile-neutrino searches. The concept for the nuSTORM facility will be presented together with an evaluation of its performance. The status of the planned consideration of nuSTORM at CERN in the context of the Physics Beyond Colliders workshop will be summarised.

1. Introduction
nuSTORM ("Neutrinos from Stored Muons") is a facility based on a low-energy muon decay ring (see figure 1) [1, 2]. Pions, produced in the bombardment of a target, are captured in a magnetic channel. The magnetic channel is designed to deliver a pion beam with central energy E_π and energy spread $\sim \pm 20\% E_\pi$ to the muon decay ring. The pion beam is injected into the production straight of the decay ring. Roughly half of the pions decay as the beam passes through the production straight. At the end of the straight, the return arc selects a muon beam of central energy $E_\mu < E_\pi$ and energy spread $\sim \pm 10\% E_\mu$ that then circulates. Undecayed pions are directed to a beam dump. A detector placed on the axis of the production straight will receive a bright flash of muon neutrinos from pion decay followed by a series of pulses of muon and electron neutrinos from subsequent turns of the muon beam. Appropriate instrumentation in the decay ring and production straight will be capable of determining the integrated neutrino flux with a precision of $\lesssim 1\%$ [2]. The flavour composition of the neutrino beam from muon decay is known and the neutrino-energy spectrum can be calculated precisely using the Michel parameters and the optics of the muon decay ring. The pion and muon energies (E_π and E_μ) can be optimised to:

- Measure $\nu_e A$ ($\bar{\nu}_e A$) and $\nu_\mu A$ ($\bar{\nu}_\mu A$) interactions with per-cent-level precision; and
- Search for sterile neutrinos with exquisite sensitivity.
2. Neutrino-nucleus scattering

2.1. Impact on searches for leptonic CP-invariance violation

The search for CP-invariance violation (CPIV) in present and planned long-baseline neutrino-oscillation experiments relies on the measurement of the rate of ν_e ($\bar{\nu}_e$) appearance in ν_μ ($\bar{\nu}_\mu$) beams. The phenomenological description of the effect relies on the assumption of three neutrino-mass eigenstates that mix to produce the three neutrino flavours [3, 4, 5, 6]. CPIV arises in this framework if the value of a phase parameter, δ, is such that $\sin\delta \neq 0$.

The oscillation probability is a function of the source-detector distance (the baseline) and the neutrino energy. Typical baselines range from 295km for T2K [7] and the proposed Hyper-K experiment [8, 9, 10, 11], 800km for NOνA [12] and 1300km for the DUNE experiment [13, 14, 15, 16]. Neutrino interactions that occur as the neutrino beam passes through the earth introduce a “matter effect” that causes the oscillation probability of neutrinos to differ from that of anti-neutrinos. This introduces an “apparent” CPIV effect that depends on the neutrino mass hierarchy. The discovery of CPIV in neutrino oscillations requires that the “true” CPIV that depends on δ be distinguished from the apparent CPIV that arises from neutrino interactions with the earth.

The projected sensitivity to CPIV of the DUNE experiment is plotted as a function of exposure in figure 2 [14]. An exposure of 288 kt MW years will be achieved after seven years of running, with the planned staging to reach a total detector mass of 40 kt and a proton beam-power of 1.2 MW [17]. Equal exposures in neutrino and antineutrino mode have been assumed. The DUNE collaboration presents the sensitivity as a function of the assumed normalisation uncertainties on the ν_e and $\bar{\nu}_e$ appearance signals. Reducing the $\bar{\nu}_e$ normalisation uncertainty from 3% to 1% brings the exposure required to exclude CP invariance at the 3σ confidence level over 75% of all possible values of δ down from ~ 1200 kt MW years to ~ 600 kt MW years.

The projected sensitivity of the Hyper-K experiment, updated from [9], is also shown in figure 2. An exposure of $13\,\text{MW} \times 10^7$ s will be achieved after ten years assuming a 1:3 ratio between neutrino and anti-neutrino running. The planned staged implementation of two 187 kt detectors is indicated, a proton beam-power of 1.3 MW at 30 GeV has been assumed. The systematic uncertainties assumed by the Hyper-K collaboration in their estimation of the CPIV sensitivity of their experiment dominated by the combined “flux and near-detector” and the “cross-section model” uncertainties [9].

In addition to systematic uncertainties, a lack of knowledge of $\nu_{e,\mu}A$ ($\bar{\nu}_{e,\mu}A$) cross sections or inaccuracies in the simulation of the hadronic final state can lead to biases in the parameters extracted from the data. Such biases may arise, for example, from mis-classification of events [18] or mis-reconstruction of the energy of the incident neutrino [19, 20, 21, 22]. A discussion of possible sources of bias is presented in [23]. When searching for CPIV, any effect that differs in ν_eA and $\bar{\nu}_eA$ scattering and is not quantitatively understood is particularly pernicious since such a difference may be mis-interpreted as a signal for CPIV.
Figure 2. Left panel: Expected sensitivity of the DUNE experiment to CP-invariance violation plotted as a function of exposure in kt·MW-years assuming equal running in neutrino and antineutrino mode, for a range of values for the ν_e and $\bar{\nu}_e$ signal-normalisation uncertainties (from 5% to 1%) added in quadrature to an uncertainty of 5% on the normalisation of the background. The sensitivities shown are for the exclusion of CP-invariance conservation over 75% of the available range of values of δ assuming the normal hierarchy. The two bands represent a range of potential beam designs: the blue hashed band is for the CDR Reference Design and the solid green band is for the optimised design. The figure is taken from [14]. Right panel: fraction of all values of the CPiV phase, $\delta = \delta_{\text{CP}}$, for which $\delta = 0, \pi$ can be excluded at 3σ (red) or 5σ (blue) plotted as a function of running time. An exposure of 13MW $\times 10^7$ s is expected to be achieved after 10 years of operation. Figure updated from [9].

The next generation of long-baseline neutrino-oscillation experiments, DUNE and Hyper-K have the potential to observe CPiV violation. To maximise the scientific impact of the large, exquisitely-precise data sets that they will collect requires that the ν_e ($\bar{\nu}_e$) and ν_μ ($\bar{\nu}_\mu$) cross sections be known with percent-level precision and that uncertainties associated with cross-section models are also under control at the percent level.

2.2. Potential for impact on understanding of the structure of the nucleus

Theoretical understanding of the structure of the nucleon is detailed and precise and can be used to predict cross sections for a wide variety of processes over a wide kinematic range. However, a number of measurements, such as the spin structure of the nucleon, challenge the present understanding [24]. The theoretical description of the structure of the nucleus is not quite as accurate and requires development, for example to describe correlations among the nucleons that make up the nucleus [25]. Phenomenological models of lepton-nucleus scattering are based on the present understanding of nuclear physics and exploit a wealth of data to determine a number of phenomenological parameters. Such models have been shown to give a reasonable description of some of the present neutrino-nucleus scattering data but may fail when used to extrapolate beyond the range of energies, nuclei, or types of process on which they have been “tuned” [26]. A review of the challenges that must be overcome to deliver a good description of the hadronic final states is presented in [27].

A vibrant experimental programme is underway to extend and improve the scattering database on which the theoretical and phenomenological description of the nucleus relies. In the case of electron-nucleus scattering, the 12 GeV upgrade to the CEBAF accelerator at Jefferson Laboratory combined with the new experimental facilities and detector upgrades will provide a
wealth of new data that will, most likely, lead to new insights (see for example [28]). Neutrino-nucleus scattering has made both seminal and historic contributions to the development of nuclear structure. The neutrino offers a probe that is polarised and is sensitive to flavour and isospin. It is conceivable that neutrino-nucleus scattering has a role to play in unravelling issues such as the orbital contribution to the spin of the nucleon and the nature of nucleon-nucleon correlations. A facility that is able to deliver a precisely calibrated flux is required if neutrino-nucleus scattering measurements are to contribute to the understanding of nuclear structure.

3. nuSTORM and the CERN Physics Beyond Colliders study

A detailed study of nuSTORM that includes consideration of the implementation of the facility at FNAL may be found in [2, 29, 30]. A preliminary investigation of possible options for siting the facility at CERN may be found in [31, 32]. In these studies the facility was optimised for the search for a light sterile neutrino. A short description of the principal considerations that will inform the re-optimisation of the facility for the study of neutrino-nucleus scattering will be given here.

In September 2016 CERN established the Physics Beyond Colliders (PBC) study group to consider ways in which the accelerators at CERN could be used or extended to support a diverse physics programme to complement the energy-frontier physics being pursued using the LHC [33]. The feasibility of implementing nuSTORM at CERN was included as a work package in the PBC study. Within the PBC context, the scientific objectives of nuSTORM are:

- To make detailed and precise measurements of neutrino-nucleus interactions not only as a service to the long- and short-baseline neutrino oscillation programmes but also as a means of studying the nucleus using a weak probe and seeking evidence for non-standard interactions; and
- To take forward the search for light sterile neutrinos should the results of the Short Baseline Neutrino (SBN) programme at FNAL [34] indicate that such a programme is required.

The potential for nuSTORM to establish a new technique for the study of fundamental particles and their interactions is recognised. The PBC study does not include consideration of a possible six-dimensional-cooling experiment (see for example [35]) to follow the demonstration of the reduction of normalised transverse emittance that will be provided by the international Muon Ionization Cooling Experiment (MICE) [36].

nuSTORM will provide a beam of precisely known flavour for which the flux will be known to 1% or better. Instrumented with a detector capable of making measurements of exclusive final states and of reconstructing Q^2 and W, nuSTORM can deliver the data required for precise models of the nucleus and of neutrino-nucleus scattering to be developed if the neutrino-beam energy spans the range $1 \lesssim E_\nu \lesssim 6 \text{ GeV}$. These considerations lead to the following specification for the energy of the circulating muon beam:

- Maximum stored muon energy, $E_\mu = 6 \text{ GeV}$; and
- It must be possible to vary the muon-beam energy in the range $1 \lesssim E_\mu \lesssim 6 \text{ GeV}$.

Since the neutrino-energy spectrum is precisely known once the muon-beam energy is specified, the falling edge of the neutrino-energy spectrum can be used to calibrate the energy response of the neutrino detectors. Further, by combining data taken with different stored-muon energies, as described for NuPRISM in [37], cross sections may be determined in narrow neutrino-energy bands.

A sketch of the proposed siting of nuSTORM at CERN is shown in figure 3. The existing fast-extraction from the SPS that serves beam to the West Area will be exploited. Protons will be extracted into a new transfer line and delivered to a target/capture system that will select $\sim 8 \text{ GeV}$ pions and transport them to the decay ring. The design of the decay ring will be
revised to accommodate the maximum muon-beam energy of 6 GeV and to provide the ability to
store muon beams with energies in the range $1 \lesssim E_\mu \lesssim 6$ GeV. The feasibility study will take into
account the number of protons on target required and the extracted-beam parameters and will
consider the fast extraction from the SPS and the proton-beam transport to the pion-production
target. Preliminary investigations of the engineering of the target, horn, target complex and
proton-beam absorber will be carried out. An important aspect of the feasibility study will
be consideration of the radiation-protection issues raised by the target and the pion and muon
fluxes.

The potential of the cross-section-measurement programme was evaluated in [2] assuming a
neutrino detector with the performance of the HiResM ν detector [38]. This analysis showed
that nuSTORM has the potential to improve the systematic uncertainty on muon-neutrino
(muon-anti-neutrino) CCQE cross section measurements by a factor of $\sim 5 - 6$. The $\nu_e A$ ($\bar{\nu}_e A$)
cross-section measurements that can be made with nuSTORM will be unique.

4. Conclusions

The Neutrinos from Stored Muons (nuSTORM) facility is capable of delivering measurements
of $\nu_{e,\mu} N$ ($\bar{\nu}_{e,\mu} N$) scattering for which the flux uncertainty can be reduced to 1% or better.
Such measurements will reduce the systematic uncertainties and biases in future long-baseline
neutrino-oscillation experiments thereby enhancing their sensitivity to leptonic CP-invariance
violation and improving the precision of their measurements of the oscillation parameters. The
cross-section-measurement programme at nuSTORM has the potential to contribute to the
understanding of nuclear physics through the use of a pure weak probe that is 100% polarised.
Should the results of the FNAL Short Baseline Neutrino Program indicate that future searches
for light sterile neutrinos are required, nuSTORM can support an exquisitely sensitive sterile-
neutrino search programme.

The implementation of nuSTORM at CERN is being studied within the Physics Beyond
Colliders Study Group. The goals of the study are to provide a preliminary proposal for siting
the facility at CERN, to re-optimise the facility for the neutrino-scattering programme and to
demonstrate through simulation that the normalisation of the neutrino flux can be constrained
to $\lesssim 1\%$.

Figure 3. Preliminary sketch of the proposed implementation of muSTORM at CERN. The
blue solid lines show the existing tunnels and transfer lines serving the West Area at CERN.
The proposed transfer line to serve nuSTORM and the nuSTORM storage ring location are
indicated by the black solid lines. (I. Efthimiopoulos, private communication.)
Acknowledgements

I thank the organisers for giving me the opportunity presenting nuSTORM. I gratefully acknowledge the help, advice, and support of my many colleagues within the neutrino and muon-beam communities who have freely discussed their results with me and allowed me to use their material.

References

[1] Kyberd P et al. (nuSTORM Collaboration) 2012 (Preprint 1206.0294)
[2] Adey D et al. (nuSTORM) 2013 nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC Tech. rep. Fermi National Accelerator Laboratory (Preprint 1308.6822)
[3] Pontecorvo B 1958 Sov. Phys. JETP 7 172–173
[4] Pontecorvo B 1968 Sov. Phys. JETP 26 984–988
[5] Maki Z, Nakagawa M and Sakata S 1962 Prog. Theor. Phys. 28 870–880
[6] Patrignani C et al. (Particle Data Group) 2016 Chin. Phys. C40 100001
[7] The T2K collaboration 2013 T2K http://t2k-experiment.org
[8] Abe K et al. (Hyper-Kamiokande Working Group) 2014 (Preprint 1412.4673) URL http://inspirehep.net/record/1334360/files/arXiv:1412.4673.pdf
[9] Abe K et al. (Hyper-Kamiokande Proto-Collaboration) 2015 PTEP 2015 053C02 (Preprint 1502.05199)
[10] Abe K et al. (Hyper-Kamiokande) 2016 URL http://www.hyperk.org/?p=215
[11] Abe K et al. (Hyper-Kamiokande proto-) 2016 (Preprint 1611.06118)
[12] The NOvA collaboration 2016 NOvA Neutrino Experiment https://www-nova.fnal.gov
[13] Acciarri R et al. (DUNE) 2016 (Preprint 1601.05471).
[14] Acciarri R et al. (DUNE) 2015 (Preprint 1512.05148).
[15] Strait J et al. (DUNE) 2016 (Preprint 1601.05822).
[16] Acciarri R et al. (DUNE) 2016 (Preprint 1601.02984).
[17] Cao J et al. 2017 (Preprint 1704.08181).
[18] Coloma P and Huber P 2013 Phys. Rev. Lett. 111 221802 (Preprint 1307.1243).
[19] Coloma P, Huber P, Jen C M and Mariani C 2014 Phys. Rev. D89 073015 (Preprint 1311.4506).
[20] Ankowski A M, Coloma P, Huber P, Mariani C and Vagnoni E 2015 Phys. Rev. D92 091301 (Preprint 1507.08561).
[21] Ankowski A M, Benhar O, Coloma P, Huber P, Jen C M, Mariani C, Meloni D and Vagnoni E 2016 Nuovo Cim. C39 233.
[22] Ankowski A M 2017 (Preprint 1704.07835).
[23] Ankowski A M and Mariani C 2017 J. Phys. G44 054001 (Preprint 1609.00258).
[24] Yang Y B, Sufian R S, Alexandru A, Draper T, Glatzmaier M J, Liu K F and Zhao Y 2017 Phys. Rev. Lett. 118 102001 (Preprint 1609.05937).
[25] Hen O, Miller G A, Piasetzky E and Weinstein L B 2016 (Preprint 1611.09748).
[26] Benhar O 2016 JPS Conf. Proc. 12 010001.
[27] Alvarez-Ruso L et al. 2017 (Preprint 1706.03621).
[28] McKeown R 2017 Jefferson lab science opportunities at 12 gev Presented at the 28th International Symposium on Lepton Photon Interactions at High Energies, Guangzhou, 7–12 August 2017.
[29] Lackowski T, Dixon S, Jedziniak R, Blewitt M and Fink L 2013 nuSTORM Project Definition Report Tech. rep. Fermi National Accelerator Laboratory (Preprint 1309.1389).
[30] Kyberd P et al. 2013 nustorm costing document URL https://indicospacetogetfilepy/~access?resId=0&materialId=8&confId=6847.
[31] Adey D et al. 2013 Neutrinos from stored muons (storm): Expression of interest Tech. Rep. CERN-SPSC-2013-015. SPSC-EOI-009 CERN Geneva.
[32] Adey D, Agarwalla S, Ankenbrandt C, Aslanyanov R, Back J et al. 2013 (Preprint 1305.1419).
[33] Jaeckel J and Lamont M and Vallee, C 2016 Physics Beyond Colliders http://pbc.web.cern.ch
[34] The Short Baseline Neutrino Program 2014 The Short Baseline Neutrino Program https://web.fnal.gov/collaboration/sbn/layouts/15/start.aspx#/SitePages/Home.aspx
[35] Stratakis D 2014 ICFA Beam Dyn. Newslett. 65 54–62.
[36] The MICE collaboration INTERNATIONAL MUON IONIZATION COOLING EXPERIMENT http://mice.iit.edu
[37] Wilking M 2017 E61: The j-parc intermediate water cherenkov detector Presented at the EPS Conference on High Energy Physics, Venice, Italy 5–12 July 2017.
[38] Mishra S 2010 Prog.Part.Nucl.Phys. 64 202–204 URL http://www.fnal.gov/directorate/Longrange/-Steering_Public/files/LOI-08-02-18-HiResMnu.pdf