ORIGINAL RESEARCH

Screening of Multiple Biomarkers Associated With Ischemic Stroke in Atrial Fibrillation

Ziad Hijazi, MD, PhD; Lars Wallentin, MD, PhD; Johan Lindbäck, MSc; John H. Alexander, MD, MHS; Stuart J. Connolly, MD; John W. Eikelboom, MD; Michael D. Ezekowitz, MBChB, DPhil; Christopher B. Granger, MD; Renato D. Lopes, MD, PhD; Tymon Pol, MD; Salim Yusuf, MD, PhD; Jonas Oldgren, MD, PhD; Agneta Siegbahn, MD, PhD

BACKGROUND: To explore the pathophysiological features of ischemic stroke in patients with atrial fibrillation (AF), we evaluated the association between 268 plasma proteins and subsequent ischemic stroke in 2 large AF cohorts receiving oral anticoagulation.

METHODS AND RESULTS: A case-cohort sample of patients with AF from the ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) trial, including 282 cases with ischemic stroke or systemic embolism and a random sample of 4124 without these events, during 1.9 years of follow-up was used for identification. Validation was provided by a similar case-cohort sample of patients with AF from the RE-LY (Randomized Evaluation of Long-Term Anticoagulation Therapy) trial, including 149 cases with ischemic stroke/systemic embolism and a random sample of 1062 without these events. In plasma obtained before randomization, 268 unique biomarkers were measured with OLINK proximity extension assay panels (CVD II, CVD III, and Inflammation) and conventional immunoassays. The association between biomarkers and outcomes was evaluated by random survival forest and adjusted Cox regression. According to random survival forest or Cox regression analyses, the biomarkers most strongly and consistently associated with ischemic stroke/systemic embolism were matrix metalloproteinase-9, NT-proBNP (N-terminal pro-B-type natriuretic peptide), osteopontin, sortilin, soluble suppression of tumorigenesis 2, and trefoil factor-3. The corresponding hazard ratios (95% CIs) for an interquartile difference were as follows: 1.18 (1.00–1.38), 1.55 (1.28–1.88), 1.28 (1.07–1.53), 1.19 (1.02–1.39), 1.23 (1.05–1.45), and 1.19 (0.97–1.45), respectively.

CONCLUSIONS: In patients with AF, of 268 unique biomarkers, the 6 biomarkers most strongly associated with subsequent ischemic stroke/systemic embolism represent fibrosis/remodeling (matrix metalloproteinase-9 and soluble suppression of tumorigenesis 2), cardiac dysfunction (NT-proBNP), vascular calcification (osteopontin), metabolism (sortilin), and mucosal integrity/ischemia (trefoil factor-3).

REGISTRATION: URL: https://www.clinicaltrials.gov. Unique Identifiers: NCT00412984 and NCT00262600.

Key Words: atrial fibrillation ■ biomarkers ■ ischemic stroke ■ pathophysiological features ■ screening

Atrial fibrillation (AF) is a common arrhythmia and constitutes a major health problem worldwide mainly because of its associated increased risk of stroke.2 Several clinical characteristics are associated with an increased risk of ischemic stroke in patients with AF regardless of oral anticoagulation, most importantly older age, prior stroke, and cardiovascular comorbidity.4,5 In recent years, protein biomarkers, such as...
Hijazi et al Screening for Novel Stroke Biomarkers in AF

as cardiac troponin, reflecting myocardial damage, and NT-proBNP (N-terminal pro-B-type natriuretic peptide), reflecting cardiac stress and dysfunction, have been shown to be more important for prediction of ischemic stroke than all clinical information, except prior stroke, in patients with AF.4,6 Biomarkers reflecting pathways of inflammation, renal function, coagulation, and platelet activity have also been investigated, although without consistent evidence of association with risk.7 To better understand the remaining risk of ischemic stroke in anticoagulated patients with AF, there is a need to further explore additional mechanisms.

Recently, a highly sensitive proteomic assay platform has been developed, the proximity extension assay (PEA), which allows high-throughput multiplex screening of proteins in a resource-efficient procedure using small amounts of plasma.8 We explored this new biomarker screening approach to identify plasma biomarkers associated with subsequent risk of ischemic stroke or systemic embolism (SE) and to improve the mechanistic understanding of ischemic stroke risk in patients with AF on oral anticoagulation.

METHODS

The data, analytical methods, and study materials will not be made available to other researchers for purposes of reproducing the results or replicating the procedure.

Patient Population

Identification Cohort

Briefly, the ARISTOTLE trial was a double-blind, double-dummy, randomized clinical trial that enrolled 18 201 patients with AF and at least 1 risk factor for stroke or SE between December 2006 and April 2010. Patients were randomized to warfarin (n=9081) or apixaban (n=9120). Exclusion criteria included conditions other than AF that required anticoagulation (eg, prosthetic heart valve) and severe renal insufficiency (serum creatinine >2.5 mg/dL [>221 µmol/L] or calculated creatinine clearance <25 mL/min).

Validation Cohort

The RE-LY (Randomized Evaluation of Long-Term Anticoagulation Therapy) trial was a prospective, multicenter, randomized trial comparing 2 blinded doses of dabigatran with open-label warfarin that enrolled 18 113 patients with AF between December 2005 and March 2009.2,10 Exclusion criteria included severe heart valve disorder, recent stroke, creatinine clearance of <30 mL/min, or active liver disease.

In both trials, patients at certain centers participated in biomarker substudies and provided, before randomization, venous blood samples into vacutainer tubes containing EDTA, which were centrifuged immediately. Plasma was frozen in aliquots

Nonstandard Abbreviations and Acronyms

ADAMTS13 a disintegrin and metalloproteinase with thrombospondin motifs 13
ARISTOTLE Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation
cTnT-hs high-sensitivity cardiac troponin T
MMP matrix metalloproteinase
PEA proximity extension assay
RE-LY Randomized Evaluation of Long-Term Anticoagulation Therapy
SE systemic embolism
sST2 soluble suppression of tumorigenesis 2
ST2 suppression of tumorigenesis 2
TFF3 trefoil factor 3

What Is New?

• In this study, the novel proximity extension assay protein screening technology was for the first time used for mass screening to identify biomarkers associated with ischemic stroke or systemic embolism during ongoing anticoagulation treatment in patients with atrial fibrillation.
• The identified biomarkers represent fibrosis/remodeling (matrix metalloproteinase-9 and soluble suppression of tumorigenesis 2), cardiac dysfunction (NT-proBNP [N-terminal pro-B-type natriuretic peptide]), vascular calcification (osteopontin), metabolism (sortilin), and mucosal integrity/ischemia (trefoil factor-3).

What Are the Clinical Implications?

• The results represent an important contribution in the step toward a better mechanistic understanding of ischemic stroke in patients with atrial fibrillation.
• These markers could help guide research into new therapeutic targets beyond anticoagulation in patients with atrial fibrillation at risk for stroke, and potentially even identify the population of patients who are at risk for thromboembolic stroke.

CLINICAL PERSPECTIVE

What Is New?

• In this study, the novel proximity extension assay protein screening technology was for the first time used for mass screening to identify biomarkers associated with ischemic stroke or systemic embolism during ongoing anticoagulation treatment in patients with atrial fibrillation.
• The identified biomarkers represent fibrosis/remodeling (matrix metalloproteinase-9 and soluble suppression of tumorigenesis 2), cardiac dysfunction (NT-proBNP [N-terminal pro-B-type natriuretic peptide]), vascular calcification (osteopontin), metabolism (sortilin), and mucosal integrity/ischemia (trefoil factor-3).

What Are the Clinical Implications?

• The results represent an important contribution in the step toward a better mechanistic understanding of ischemic stroke in patients with atrial fibrillation.
• These markers could help guide research into new therapeutic targets beyond anticoagulation in patients with atrial fibrillation at risk for stroke, and potentially even identify the population of patients who are at risk for thromboembolic stroke.

CLINICAL PERSPECTIVE

What Is New?

• In this study, the novel proximity extension assay protein screening technology was for the first time used for mass screening to identify biomarkers associated with ischemic stroke or systemic embolism during ongoing anticoagulation treatment in patients with atrial fibrillation.
• The identified biomarkers represent fibrosis/remodeling (matrix metalloproteinase-9 and soluble suppression of tumorigenesis 2), cardiac dysfunction (NT-proBNP [N-terminal pro-B-type natriuretic peptide]), vascular calcification (osteopontin), metabolism (sortilin), and mucosal integrity/ischemia (trefoil factor-3).

What Are the Clinical Implications?

• The results represent an important contribution in the step toward a better mechanistic understanding of ischemic stroke in patients with atrial fibrillation.
• These markers could help guide research into new therapeutic targets beyond anticoagulation in patients with atrial fibrillation at risk for stroke, and potentially even identify the population of patients who are at risk for thromboembolic stroke.
and stored at –70°C until analyzed centrally at the Uppsala Clinical Research Center, an academic platform for analyses of biomarkers at the Uppsala University Hospital, Uppsala, Sweden. In both trials, ethics committee approval was obtained for all investigational sites, and all patients provided written informed consent.

Multimarker Screening Study Design

The inclusion of patients in this multimarker substudy was based on an unstratified case-cohort design. The ARISTOTLE trial multimarker subset consisted of all 282 cases with ischemic stroke or SE during follow-up of patients in the biomarker substudy, which is compared with a random sample of 4124 without these events. The RE-LY trial multimarker subset consisted of all 149 cases with ischemic stroke or SE and a random sample of 1062 without these events during follow-up of patients in the RE-LY trial biomarker substudy. As such, and in accordance with the traditional case-cohort method, individuals with events may be selected to the random sample of controls. The median follow-up time in both multimarker substudy cohorts was 1.9 years.

Outcome Assessment

All strokes were adjudicated by an international team of adjudicators blinded to treatment assignment. Stroke was defined as the sudden onset of a focal neurologic deficit in a location consistent with the territory of a major cerebral artery and categorized as ischemic, hemorrhagic, or unspecified. SE was defined as an acute vascular occlusion of an extremity or organ, documented by means of imaging, surgery, or autopsy. The predefined primary outcome event for these substudies was ischemic stroke (including unspecified) or SE.

Biochemical Analyses

The plasma concentrations of high-sensitivity cardiac troponin T (cTnT-hs), NT-proBNP, and growth differentiation factor 15 (precommercial assay) were determined by Roche immunoassays using a Cobas e601 (Roche Diagnostics, Penzberg, Germany) and interleukin 6 high-sensitivity sandwich ELISA immunoassays (R&D Systems Inc, Minneapolis, MN). Cystatin C was analyzed with the ARCHITECT system ci8200 (Abbott Laboratories, Abbott Park, IL) using the particle-enhanced turbidimetric immunoassay from Gentian (Moss, Norway). Estimated glomerular filtration rate was calculated on the basis of centrally determined creatinine levels using the Chronic Kidney Disease Epidemiology Collaboration equation.

The proteomic analyses were performed at the Clinical Biomarkers Facility, Science for Life Laboratory, Uppsala University, without information on any other data. The determinations were performed using a high-throughput technique using the OLINK Proteomics Multiplex CVD II⁹⁶x⁹⁶, CVD III⁹⁶x⁹⁶, and Inflammation⁹⁶x⁹⁶ panels, which together simultaneously measured 276 selected proteins in plasma potentially related to cardiovascular disease and inflammation. The PEA technology uses a homogeneous assay that uses pairs of antibodies equipped with DNA reporter molecules. In the kits, 92 oligonucleotide-labeled antibody probe pairs are allowed to bind to their respective target if present in the sample. As only the correctly matched antibody pairs produce a signal, the technology has an exceptionally high specificity. When binding to their correct targets, they produce new DNA amplicons, with each identifier barcoding its respective antigens. The amplicons are subsequently quantified using a Fluidigm BioMark HD real-time polymerase chain reaction platform. The analyses were run using the internal controls for the PEA, including 2 incubation controls and extension and detection controls. For sample control in each plate, there is an interplate control used for normalization and it compensates for interplate variation. For each plate, a negative control, buffer without antigen, and 2 positive controls, pooled plasma, are used. All samples were analyzed in one set. Interplate variability was adjusted by intensity normalization. The resulting relative values, normalized protein expression data, were log2 transformed and a high value corresponded to a high protein concentration. For data analysis, the OLINK wizard was used and all statistical analyses were performed at Uppsala Clinical Research Center. The PEA assays have shown high reproducibility and repeatability, with mean intra-assay and interassay coefficients of variation around 8% and 12%, respectively; average intersite variation has been reported at 15%. Prior validation studies have also showed that biomarkers analyzed with the PEA technique have an adequate concordance with conventional immunoassays. The protein markers in the identification cohort included 3 panels, CVD II, CVD III, and Inflammation, and are detailed in Table S1 and S2. Of the 276 PEA proteins, 10 were available on >1 panel, resulting in 266 unique markers. As initial results in the identification cohort identified biomarkers from the CVD II and CVD III panels as more strongly associated with the outcome, the Inflammation panel was omitted in the external validation.

Statistical Analysis

The pairwise association between PEA biomarkers and established conventional biomarkers was assessed by the Spearman correlation.
A random survival forest algorithm15 was used to evaluate the simultaneous association between ischemic stroke/SE and biomarkers. The evaluation included levels of 263 PEA markers, 4 conventional markers (NT-proBNP, cTnT-hs, growth differentiation factor 15, and interleukin 6), renal function, and 13 clinical characteristics (randomized treatment, age, sex, body mass index, smoking, hypertension, diabetes mellitus, hemoglobin, previous myocardial infarction, stroke/transient ischemic attack, peripheral artery disease, heart failure, and bleeding). The number of trees was 5000, splits were done according to a maximally selected statistic criterion, and the variables were ranked according to their permutation variable importance. Subjects with all PEA markers missing were excluded. There were only a few partially missing values, and these were singly imputed using multivariate imputations by chained equations.16 Three PEA markers were omitted as they were also measured as conventional markers. An identical approach was used in the RE-LY trial evaluation, with a total of 184 PEA markers.

Cox regression analyses were performed, including each of the established standard immunoassays (naturally log transformed) and the PEA biomarkers, one at a time, assuming a linear association with the log hazard rate. Sampling weights were used to account for the case-cohort design. The randomly sampled controls were given weights equal to \(1/0.2945632\), corresponding to the reciprocal of the sampling probability of being selected for the PEA substudy. The Cox regression analyses were performed in 2 steps, first unadjusted and second adjusting for baseline characteristics (age, sex, body mass index, smoking, hypertension, diabetes mellitus, prior myocardial infarction, prior stroke/transient ischemic attack, peripheral artery disease, heart failure, and randomized treatment), renal function (cystatin C in ARISTOTLE trial and Chronic Kidney Disease Epidemiology Collaboration equation in RE-LY trial), and established biomarkers (NT-proBNP and cTnT-hs). Time to event was defined as the time since randomization until the occurrence of an ischemic stroke/SE or, if no ischemic stroke/SE occurs, the event is censored at last day of follow-up at the end of the study or death. Results were presented as the relative hazard for an interquartile difference of each marker with corresponding 95% CIs and \(P\) values. Thus, the hazard ratio (HR) can be interpreted as the relative hazard comparing the 2 biomarker values defining the inner 50% of the distribution (ie, the third versus the first quartile). On the inflammation panel, 16 of the proteins had >80% of the measurements below the limit of detection and these were not included in the Cox regression models.

Because of the large number of biomarkers evaluated, only biomarkers of high ranking in the random survival forest analysis (top 20) or with significant association in the adjusted Cox regression analysis, in both the identification and external validation cohorts, were considered to have confirmed association with the risk of ischemic stroke/SE.

All analyses were done using the R environment for statistical computing, version 3.3.1,17 using the ranger18 package.

RESULTS

Baseline Characteristics and Distribution of Biomarkers

The baseline characteristics of the multimarker sub-study identification and validation cohorts are presented in Tables 1 and 2, respectively, according to occurrence of ischemic stroke/SE during follow-up. Baseline characteristics were similar between the identification and screening cohort, with only slight differences in regard to age and renal function (Tables 1 and 2). Patients with ischemic stroke/SE events were slightly older and to a larger extent had a history of stroke/transient ischemic attack. There were substantial differences in the levels of conventional biomarkers at baseline (eg, higher concentrations of NT-proBNP and cardiac troponin and lower estimated glomerular filtration rate in cases versus noncases). The relative concentration (normalized protein expression values) and limit of detection of all 266 biomarkers in the identification cohort are shown in Tables S1 and S2 for the external validation cohort. The biomarkers in general showed a low correlation with the established cardiovascular biomarkers. Correlation data for the biomarkers are presented in Tables S3 and S4, which show that several biomarkers were correlated with renal function.

Evaluation of Prognostic Biomarkers for Ischemic Stroke/SE

The median normalized protein expression values in both cohorts, divided by cases and noncases, are presented in Table S1 and S2.

In the identification cohort, of the 268 unique biomarkers and 13 clinical variables, the variables most strongly associated with ischemic stroke/SE in the random survival forest analysis are presented in Figure 1A. Among the biomarkers most strongly associated with the outcome, most were from the OLINK CVD II and CVD III panels. Thus, the Inflammation panel was not analyzed in the external validation cohort. The results from the validation process in
the external cohort, on the basis of 186 biomarkers and 12 clinical variables, are presented in Figure 2B. Among the top 20 markers in both cohorts, 5 variables (prior stroke, NT-proBNP, trefoil factor 3 [TFF3], soluble suppression of tumorigenesis 2 (sST2), and cardiac biomarkers (NT-proBNP and cTnT-hs)) in the identification cohort (Figure 2A, with unadjusted results in Figure S1A), and 20 in the validation cohort (Figure 2B, with unadjusted results in Figure S1B). Of these, 3 biomarkers were consistently associated with ischemic stroke/SE in both cohorts (Table 3): NT-proBNP, sortilin, and matrix metalloproteinase (MMP)-9 (Table 3). For these biomarkers, the HR (95% CI) per interquartile range in the Cox regression analyses adjusted for clinical variables, renal function, and the cardiac biomarkers, was 1.55 (1.28–1.88) for NT-proBNP, 1.19 (1.02–1.39) for sortilin, and 1.18 (1.00–1.38) for MMP9. The corresponding HRs in the external validation cohort are presented in Table 3.

Among the few biomarkers associated with decreased risk of ischemic stroke/SE, according to both random survival forest and adjusted Cox regression analyses, was a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13); however, this finding was not consistent in the validation cohort (Table 3).

The correlation between these top candidate prognostic biomarkers and established cardiovascular (NT-proBNP, cTn-hs, and cTnT-hs) and renal biomarkers (cystatin C) is shown in Table 4. TFF3 was moderately correlated with renal function (p = 0.59). Beyond that, no strong patterns of correlation were seen (p < 0.5). The baseline concentrations of these top candidate prognostic biomarkers are summarized in Table S5, and their associations with ischemic stroke/SE, by using splines, are shown in Figure S2.
Figure 1. Variable importance for ischemic stroke/systemic embolism, according to random survival forest. A, Identification cohort. Red indicates biomarkers analyzed on CVD II panel; green, biomarkers analyzed on CVD III panel; and blue, biomarkers analyzed on Inflammation panel. Biomarkers listed in black were analyzed with conventional immunoassays. Only the top 50 variables are shown. The evaluation included 263 proximity extension assay (PEA) markers, 4 conventional markers (NT-proBNP [N-terminal pro-B-type natriuretic peptide], high-sensitivity cardiac troponin T [cTnT-hs], growth differentiation factor 15 [GDF-15]), and interleukin 6 (IL-6), renal function, and 13 clinical characteristics. Protein names and UniProt numbers are found in Table S1. B, Validation cohort. Red indicates biomarkers analyzed on CVD II panel; green, biomarkers analyzed on CVD III panel; and blue, biomarkers analyzed on Inflammation panel. Biomarkers listed in black were analyzed with conventional immunoassays. Only the top 50 variables are shown. The evaluation included 182 PEA markers, 4 conventional markers (NT-proBNP, cTnT-hs, GDF-15, and IL-6), renal function, and 13 clinical characteristics. Protein names and UniProt numbers are found in Table S2. MI indicates myocardial infarction; ST2, suppression of tumorigenesis 2; and TIA, transient ischemic attack.

DISCUSSION

In the present study, on the basis of 2 separate cohorts with anticoagulated patients with AF, a comprehensive and systematic screening of 268 protein biomarkers to identify those associated with ischemic stroke/SE was performed. An unbiased evaluation of the most important prognostic variables

Figure 2. Forest plot of biomarkers associated with ischemic stroke or systemic embolism, according to adjusted Cox regression analysis. A, Identification cohort. A forest plot showing all 255 biomarkers is available in Figure S1. Red indicates biomarkers analyzed on CVD II panel; green, biomarkers analyzed on CVD III panel; and blue, biomarkers analyzed on Inflammation panel. Biomarkers listed in black were analyzed with conventional immunoassays. Model adjusted for baseline characteristics, renal function, and cardiac biomarkers (NT-proBNP [N-terminal pro-B-type natriuretic peptide] and high-sensitivity cardiac troponin T [cTnT-hs]). Low and High correspond to the first and third sample quartiles of the respective biomarkers. Protein names and UniProt numbers are found in Table S1. B, Validation cohort. Red indicates biomarkers analyzed on CVD II panel; green, biomarkers analyzed on CVD III panel. Biomarkers listed in black were analyzed with conventional immunoassays. Model adjusted for baseline characteristics, renal function, and cardiac biomarkers (NT-proBNP and cTnT-hs). Low and High correspond to the first and third sample quartiles of the respective biomarkers. Protein names and UniProt numbers are found in Table S2. HR indicates hazard ratio; and ST2, suppression of tumorigenesis 2.
Biomarker	Low (ng/L)	High (ng/L)	HR [95% CI]	P
A				
NT-proBNP	404	1438	1.549 [1.275, 1.880]	1.004e−05
CCL16	5.784	6.494	1.330 [1.130, 1.566]	6.046e−04
TFPI	8.356	8.828	1.297 [1.086, 1.550]	4.158e−03
CTSZ	4.775	5.303	1.291 [1.077, 1.549]	5.748e−03
vWF	5.854	7.059	1.285 [1.091, 1.514]	2.638e−03
cTnT-hs	7.9	18.38	1.282 [1.063, 1.545]	9.237e−03
OPN	5.034	5.796	1.275 [1.065, 1.525]	8.002e−03
LDL receptor	4.17	5.02	1.269 [1.065, 1.513]	7.618e−03
RARRES2	11.88	12.23	1.265 [1.039, 1.539]	9.101e−02
PAi	5.591	6.889	1.261 [1.050, 1.514]	1.291e−02
TGM2	7.805	8.776	1.245 [1.038, 1.483]	3.816e−02
BLM hydrolase	5.055	6.066	1.241 [1.055, 1.459]	9.018e−03
IL−8	5.97	6.77	1.238 [1.090, 1.406]	9.890e−04
t−PA	5.892	6.667	1.232 [1.053, 1.442]	9.091e−03
ST2	3.894	4.61	1.231 [1.050, 1.446]	1.054e−02
CTSL1	5.767	6.452	1.231 [1.037, 1.462]	1.769e−02
ICAM−2	5.003	5.533	1.204 [1.005, 1.443]	4.384e−02
THPO	1.932	2.35	1.200 [1.010, 1.426]	3.810e−02
RETN	6.534	7.257	1.196 [1.003, 1.425]	4.569e−02
EGFR	1.759	2.047	1.193 [1.011, 1.409]	3.692e−02
SORT1	6.207	6.543	1.193 [1.024, 1.360]	2.352e−02
PECAM−1	4.542	5.01	1.192 [1.013, 1.404]	3.452e−02
CD163	7.613	8.245	1.184 [1.001, 1.401]	4.883e−02
MCP−3	1.92	2.46	1.184 [1.056, 1.327]	3.816e−03
PI3	3.786	4.68	1.218 [1.004, 1.436]	4.428e−02
CASP−8	2.38	3.53	1.176 [1.016, 1.361]	2.992e−02
AXL	7.925	8.397	1.175 [0.999, 1.363]	5.159e−02
MMP−9	3.711	4.736	1.175 [1.000, 1.381]	5.041e−02
SPON1	2.107	2.553	1.172 [1.014, 1.355]	3.119e−02
PARP−1	3.021	3.819	1.121 [1.000, 1.257]	4.975e−02
SLAMF7	2.387	2.793	1.114 [1.008, 1.232]	3.441e−02
ADAM−TS13	5.078	5.268	0.865 [0.778, 0.963]	7.921e−03
GDF−1	4.936	6.204	0.860 [0.743, 0.979]	4.492e−02
IL−17D	2.573	2.956	0.857 [0.739, 0.993]	4.034e−02
Protein BOC	4.686	5.043	0.834 [0.730, 0.954]	8.004e−03
REN	6.796	8.21	0.817 [0.683, 0.977]	2.689e−02

A Hazard Ratio Analysis

- **NT-proBNP** (ng/L)
- **Low**: 435
- **High**: 1696
- **HR [95% CI]**
- **P**: 0.00633

B Hazard Ratio Analysis

- **NT-proBNP** (ng/L)
- **Low**: 435
- **High**: 1696
- **HR [95% CI]**
- **P**: 0.00633
by a random survival forest approach and traditional Cox regression analyses identified NT-proBNP and 5 novel biomarkers (MMP9, osteopontin, sortilin, sST2, and TFF3) as having independent association with ischemic stroke/SE in patients with AF on oral anticoagulation. Furthermore, one additional biomarker may be of potential interest, as it was associated with reduced risk: ADAMTS13. These findings provide new opportunities to improve the mechanistic understanding of ischemic stroke in patients with AF as well as further refining risk assessment and clinical decision making in these patients.

Candidate Biomarkers and Potential Mechanisms

NT-proBNP demonstrated the strongest and most consistent association with ischemic stroke/SE. NT-proBNP is a previously established risk marker in cardiovascular disease and widely integrated in healthcare systems worldwide.\(^6\) This study provides strong evidence that the association is not only robust, but it is independent of a comprehensive set of other protein cardiovascular biomarkers. Natriuretic peptides have repeatedly shown independent association with stroke, other cardiovascular outcomes, and death in many patient settings, including AF.\(^6\) NT-proBNP has been suggested to be of atrial origin in AF because of myocyte stress in the atria, reflecting atrial dysfunction, which is an established risk factor for thrombosis formation in AF. This may be one plausible mechanism for the relation between NT-proBNP and thrombosis.\(^{17}\) However, the exact mechanism behind the association with ischemic stroke in AF is still elusive, although several possible concepts have been suggested previously and revolve around pathways of myocardial damage.\(^{19}\)

Recently, the biomarker was also included in a biomarker-based risk score for stroke in AF and has also been proposed for possible use for further refinement of stroke risk in international AF guidelines.\(^4,5\) Among the 5 newly identified biomarkers showing consistent association with ischemic stroke, TFF3 and osteopontin were moderately correlated and sortilin, sST2, and MMP9 were weakly correlated with established cardiovascular biomarkers, such as troponin and natriuretic peptides. Thus, they appear to represent different pathways, including metabolism, mucosal integrity, remodeling/fibrosis, and vascular calcification (Figure 3).

Table 3. Biomarkers Consistently Associated With Ischemic Stroke/SE, According to RF or Adjusted Cox Regression Analyses

Variable	RF Ranking	Low	High	Hazard Ratio (95% CI)	P Value	Hazard Ratio (95% CI)	P Value
Identification cohort							
NT-proBNP	1	404	1438	1.646 (1.379–1.963)	3.19E-08*	1.549 (1.275–1.880)	1.0036E-05
TFF3	3	5.338	6.043	1.278 (1.098–1.488)	0.00153	1.188 (0.974–1.450)	0.0899
ST2	10	3.894	4.61	1.419 (1.231–1.633)	1.44E-06	1.232 (1.050–1.446)	0.0105
Osteopontin	14	5.034	5.796	1.574 (1.347–1.838)	1.09E-08	1.275 (1.065–1.525)	0.0080
ADAMTS13	16	5.078	5.268	0.856 (0.779–0.941)	0.00130	0.865 (0.778–0.963)	0.00792
Sortilin	116	6.207	6.543	1.257 (1.089–1.451)	0.00182	1.193 (1.024–1.390)	0.0235
MMP9	183	3.71	4.736	1.213 (1.036–1.420)	0.0165	1.175 (1.000–1.381)	0.0504
External validation cohort							
NT-proBNP	3	435	1696	1.736 (1.342–2.248)	2.65E-05	1.485 (1.118–1.972)	0.00633
Osteopontin	14	7.127	7.936	1.426 (1.130–1.798)	0.00276	1.156 (0.878–1.521)	0.302
TFF3	19	4.856	5.551	1.354 (1.142–1.606)	0.0005	1.041 (0.783–1.384)	0.780
ST2	20	4.16	4.887	1.179 (0.954–1.457)	0.128	1.020 (0.803–1.296)	0.869
MMP9	28	4.583	5.698	1.297 (1.051–1.601)	0.01547	1.320 (1.057–1.648)	0.01443
Sortilin	76	8.356	8.739	1.310 (1.090–1.574)	0.00405	1.245 (1.028–1.507)	0.02501

Biomarkers identified as top markers by 2 different statistical methods, an RF (top 20 biomarkers) or an adjusted Cox regression analysis (model B; P<0.05), were included in the table.

Analyses based on 4075 patients and 261 events, with all covariates available in the identification cohort, and 1196 patients and 129 events in the external validation.

Model A: Cox regression model adjusted for baseline characteristics: age, sex, body mass index, smoking, hypertension, diabetes mellitus, prior myocardial infarction, prior stroke/transient ischemic attack, peripheral artery disease, heart failure, and randomized treatment. Model B: same as A with addition of renal and cardiac biomarkers (NT-proBNP and high-sensitivity cardiac troponin T).

Hazard ratios per interquartile range. Figure S2 shows unadjusted nonlinear associations of these biomarkers with ischemic stroke/SE. ADAMTS13 indicates a disintegrin and metalloproteinase with thrombospondin motifs 13; MMP, matrix metalloproteinase; NT-proBNP, N-terminal pro-B-type natriuretic peptide; RF, random survival forest; SE, systemic embolism; ST2, suppression of tumorigenesis 2; and TFF3, trefoil factor-3.
Osteopontin has also been suggested with higher concentrations in the presence of cardiac fibrosis,27,28 osteopontin has been described to be a mediator of cardiac fibrosis, and myoblasts.27,28 Osteopontin has been described to be a multifunctional cytokine involved in many physiological and pathological processes, including inflammation.27,28 In cardiology, osteopontin has been described to be a mediator of cardiac fibrosis, with higher concentrations in the presence of cardiac fibrosis.27 Osteopontin has also been suggested to be involved in vascular calcification and coronary atherosclerosis and associated with cardiovascular events, such as myocardial infarction and cardiovascular death.29 Not much is known about osteopontin in the setting of AF. However, recently, osteopontin was described to be associated with atrial fibrosis30 and identified as a prognostic biomarker for incident AF in community-dwelling adults in a protein profiling program.31 The association of osteopontin with ischemic stroke/SE in patients with AF is novel.

Sortilin is expressed in several tissues and belongs to a family of Vps10p-domain receptors.32 Sortilin has been described to be involved in the hepatic metabolism of low-density lipoproteins.33 In several genome-wide association studies, the sortilin locus has consistently been associated with low-density lipoprotein concentrations.34,35 Sortilin has therefore been suggested as a lipoprotein receptor that mediates the uptake of low-density lipoprotein particles into cells.35 In addition, sortilin has been indicated to play a role in vascular calcification and potentially also in neuronal apoptosis.32,33 The role of sortilin in AF has, to our knowledge, not been investigated previously. The present results show sortilin to be a consistent risk marker of ischemic stroke in AF. It is unclear if it plays a casual role through its involvement in calcification or exhibits secondary relations by pathways of atherosclerotic disease via lipid metabolism. Potentially, multiple effects may also be involved as a soluble form of sortilin is released from activated platelets.36

Among the newly identified biomarkers associated with ischemic stroke/SE, sST2 is probably the most recognized and most explored in the cardiovascular field.37 Similar to the natriuretic peptides, the main focus of research on sST2 has been in heart failure. Suppression of tumorigenesis 2 (ST2) is a member of the interleukin 1 receptor family, with 2 main isoforms: transmembrane or cellular and soluble or circulating (sST2) forms. sST2 is considered to be a marker of myocardial stress, fibrosis, and remodeling.38 Interleukin 33 binds to the transmembrane form of ST2 and has antihypertrophic and antifibrotic effects. The soluble form of ST2 (sST2), however, acts as a decoy receptor and blocks the cardioprotective effects. It is plausible that sST2 is associated with stroke in patients with AF in part via a similar pathophysiologic pathway as for the natriuretic peptides. However, beyond its myocardial role, the interleukin 33/ST2 system has recently also been shown to induce tissue factor, the main initiator of blood coagulation, expression and activity, in a subset of human monocytes and monocyte-derived procoagulant microvesicles and thus possibly represents another pathway for ischemic stroke/SE in patients with AF.39

Recently, sST2 was shown to be associated with incident stroke in ambulatory individuals from the...
TFF3, a member of the trefoil family, is mainly secreted from goblet cells in the gastrointestinal system and is involved in supporting mucosal integrity. TFF3 has been associated with inflammation and different types of malignancies, as both conditions carry higher TFF3 concentrations. Studies of TFF3 in cardiovascular disease are limited. Some studies have demonstrated increased concentrations in states of myocardial ischemia, and TFF3 has also been associated with cardioprotective effects in experimental animal models. Its potential role in AF is thus novel. It may, however, be possible that TFF3 is simply a marker of underlying myocyte damage/ischemia rather than possessing direct causal effects in thrombus formation and ischemic stroke/SE in AF.

Of the 255 biomarkers in the identification cohort, few were associated with a reduced risk of ischemic stroke/SE. Among the biomarkers most strongly associated with lower risk of ischemic stroke/SE in this cohort with AF was ADAMTS13, also known as von Willebrand factor–cleaving protease. ADAMTS13 cleaves von Willebrand factor multimers into smaller less procoagulant forms and thereby exerts an inhibitory effect on platelet thrombus formation. Low concentration of ADAMTS13 has also been associated with increased atherosclerosis in animal models.
Some smaller case-control studies in humans have shown low concentrations of ADAMTS13 to be associated with higher risk of ischemic stroke; however, inconsistencies exist.\(^4\) However, the result concerning ADAMTS13 needs to be interpreted with caution because it could not be confirmed in the external validation cohort. Still, the rather unique association of this biomarker with lower risk of stroke may merit it for more in-depth studies with quantitative assays in prospective materials in the efforts to further understand and mitigate the risk of stroke in AF.

Implications

In this study, the novel PEA protein screening technology was, for the first time, used for mass screening to identify biomarkers associated with ischemic stroke or SE during ongoing anticoagulation treatment in patients with AF. Several biomarkers, reflecting different pathophysiological pathways for ischemic stroke/SE in AF, were consistently identified. The present results thus represent an important contribution in the step toward a better mechanistic understanding of ischemic stroke in patients with AF. These markers could help guide research into new therapeutic targets beyond anticoagulation in patients with AF at risk for stroke, and potentially even identify a population of patients (including those without clinical AF) who are at risk for thromboembolic stroke. The novel candidate biomarkers therefore need to be further evaluated using quantitative assays in prospective materials, and evaluated with mendelian randomization analyses and functional studies to better understand their pathophysiological links and causality to the disease processes.

Strengths and Limitations

The use of a well-defined clinical cohort with complete follow-up data and a stringent method of statistical evaluation applied, using 2 separate cohorts for an identification and validation process, strengthens the results. This approach therefore provides a large degree of certitude about the identified novel prognostic biomarkers. Also, 2 different statistical methods were used. The random survival forest treated all variables simultaneously and allowed, inherently, for nonlinear associations and complex interactions among the variables. The Cox regression, on the other hand, assumed a linear association between the log relative hazard of ischemic stroke/SE and each marker one at a time, making it possible to estimate average adjusted HRs in a more conventional way. The 2 methods thus captured different aspects of the possibly complex relationship between the biomarkers and the risk for ischemic stroke/SE and by that complemented each other in the process of screening for top biomarkers. Because of the high number of biomarkers in relation to number of events, the analyses focused on taking advantage of the availability of 2 separate AF cohorts instead of using specific methods to account for multiple testing, such as Bonferroni. There were slight differences between the 2 cohorts in regard to age and renal function. This may influence the results to some degree. Likewise, 3 panels were initially used in the identification cohort, and only 2 panels, containing more prognostically relevant biomarkers, were used in the external validation cohort. Thus, it is possible that some additional biomarkers of potential interest remained unconfirmed despite the thorough evaluation. For instance, this includes ADAMTS13 or spindlin-1 in the identification cohort and T-cell immunoglobulin mucin receptor 1 or MMP12 in the validation cohort, as these biomarkers only showed strong associations with ischemic stroke in 1 of the 2 cohorts. Also, all patients were on oral anticoagulation and the results may thus not be fully generalizable to patients without antithrombotic treatment, although this data set may be especially valuable to explore “residual risk.” For the PEA method, a limitation is the lack of absolute values; however, prior validation studies have shown that biomarkers analyzed with the PEA technique have an adequate concordance with conventional immunoassays.\(^1\)

CONCLUSIONS

In patients with AF on oral anticoagulation, of 268 biomarkers, 1 established biomarker, NT-proBNP, and 5 novel biomarkers, representing different pathophysiological pathways, showed consistent association with the risk of ischemic stroke/SE; MMP9 and sST2 (remodeling/fibrosis), osteopontin (vascular calcification), sortilin (metabolism), and TFF3 (mucosal integrity). Further evaluation of these novel biomarkers and pathways associated with ischemic stroke in patients with AF is warranted.

ARTICLE INFORMATION

Received September 1, 2020; accepted November 4, 2020.

Affiliations

From the Department of Medical Sciences, Cardiology (Z.H., L.W., T.P., J.O.) and Uppsala Clinical Research Center (Z.H., L.W., J.L., J.O., A.S.), Uppsala University, Uppsala, Sweden; Duke Clinical Research Institute, Duke Health, Durham, NC (J.H.A., C.B.G., R.D.L.); Population Health Research Institute, Hamilton, ON, Canada (S.J.C., J.W.E., S.Y.); Thomas Jefferson University, Philadelphia, PA (M.D.E.); Cardiovascular Medicine, Lankenau Institute for Medical Research, Wynnewood, PA (M.D.E.); and Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, Sweden (A.S.).

Sources of Funding

The ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) trial was funded by Bristol-Myers Squibb Co, Princeton, NJ, and Pfizer Inc, New York, NY, and coordinated by the Duke
Clinical Research Institute, Durham, NC, and Uppsala Clinical Research Center, Uppsala, Sweden. The RE-LY (Randomized Evaluation of Long-Term Anticoagulation Therapy) trial was funded by Boehringer Ingelheim, Ingelheim, Germany. The analyses were supported by The Swedish Foundation for Strategic Research (grant RB13-0197), the Swedish Heart-Lung Foundation (grant 20090183), and Science for Life Laboratory, Uppsala University, Uppsala, Sweden. Dr Hijazi reports research support from the Swedish Heart-Lung Foundation (20110718) and the Swedish Society for Medical Research (S17-0133). Roche Diagnostics, Rotkreuz, Switzerland, provided the precommercial assay of growth differentiation factor 15.

Disclosures
Dr Hijazi has received lecture fees from Boehringer Ingelheim, Roche, Bristol-Myers Squibb, and Pfizer, and consulting fees from Meck Sharp & Dohme, Roche, Bristol-Myers Squibb, and Pfizer. The growth differentiation factor 15 (GDF-15) assays were provided by Roche. Dr Wallentin has received institutional research grants, consultancy fees, lecture fees, and travel support from Bristol-Myers Squibb/Pfizer, AstraZeneca, GlaxoSmithKline, and Boehringer Ingelheim. Dr Wallentin also received institutional research grants from Merck & Co and Roche, provided consultancy fees from Abbott, and holds 2 patents involving GDF-15.

Dr Lindbäck received institutional research grants from Boehringer Ingelheim and Bristol-Myers Squibb/Pfizer. Dr Alexander has received institutional research grants, consulting fees, and honoraria from Bristol-Myers Squibb, Regado Biosciences, and Merck, and consulting fees and honoraria from Pfizer, AstraZeneca, Boehringer Ingelheim, Ortho-McNeil-Janssen, Polymedix, and Bayer. Dr Connolly has received consulting fees and research grants from Boehringer Ingelheim, Bristol-Myers Squibb, Bayer, and Portola, consulting fees and research grants from Sanofi-Aventis, and research grants from Boston Scientific.

Dr Eikelboom has received institutional research grants and honoraria from AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb/Pfizer, Daiichi-Sankyo, Eli Lilly, Glaxo Smith Kline, Janssen, and Sanofi. Dr Ezekowitz has received grants and consultant fees from Boehringer Ingelheim, Bristol-Myers Squibb, and Pfizer, and consultant fees from Bristol Scientific, Anthos Therapeutic, and Alfa Therapeutics. Dr Granger has received grants and personal fees from GlaxoSmithKline, Boehringer Ingelheim, Bristol-Myers Squibb, Pfizer, Sanofi-Aventis, Takeda, The Medicines Company, Janssen, Bayer, and Hoffmann-La Roche, grants from Medtrons Foundation, Merck & Co, and Armetheon, and personal fees from Lilly, AstraZeneca, Daiichi Sankyo, Ross Medical Corporation, Salix Pharmaceuticals, and Gilead. Dr Lopes has received an institutional research grant and consulting fees from Bristol-Myers Squibb, an institutional research grant from GlaxoSmithKline, and consulting fees from Bayer, Boehringer Ingelheim, Pfizer, Merck, and Portola. Dr Yusuf has received grants, speaker fees, and paid travel expenses from Boehringer Ingelheim. Dr Oldgren has received consulting and lecture fees from Boehringer Ingelheim, Bayer, Bristol-Myers Squibb, and Pfizer. Dr Siegbahn has received institutional research grants from AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb/Pfizer, GlaxoSmithKline, and Roche Diagnostics, and consulting fees from OLINK Proteomics. Dr Pol has no disclosures to report.

Supplementary Material
Tables S1–S5
Figures S1–S2

REFERENCES
1. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener H-C, Hohnloser SH, Husted S, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2017;38:147–231.

2. Gersh BJ, Granger CB, Hanna M, Horowitz J, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One. 2014;9(5):e95192.

3. Granger CB, Alexander JH, McMurray JJV, Lopes RD, Oldgren J, Siegbahn A, Steward RAH, et al. The ABC (age, biomarkers, clinical history) stroke risk score: a biomarker-based risk score for predicting stroke in atrial fibrillation. Eur Heart J. 2016;37:1582–1590.

4. Hijazi Z, Lindbäck J, Alexander JH, Hanna M, Held C, Hylek EM, Lopes RD, Oldgren J, Siegbahn A, Steward RAH, et al. The ABC (age, biomarkers, clinical history) stroke risk score: a biomarker-based risk score for predicting stroke in atrial fibrillation. Eur Heart J. 2016;37:1582–1590. DOI:10.1093/eurheartj/hew054

5. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener H-C, Hohnloser SH, Husted S, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37:2983–2962. DOI:10.1093/eurheartj/hew210

6. Hijazi Z, Oldgren J, Siegbahn A, Granger CB, Wallentin L. Biomarkers in atrial fibrillation: a clinical review. Eur J Heart Fail. 2013;15:1475–1480. DOI:10.1093/eurheartj/eht024

7. Hijazi Z, Oldgren J, Siegbahn A, Wallentin L. Application of biomarkers for risk stratification in patients with atrial fibrillation. Clin Chem. 2017;63:152–164. DOI:10.1373/clinchem.2016.255182

8. Assarsson E, Lundberg M, Holmqvist G, Björksten J, Buch Thorsen S, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edelfelt G, et al. Homogenous 96-plex PEA immunosay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One. 2014;9(5):e95192.

9. Lopes RD, Alexander JH, Al-Khatib SM, Ansell J, Diaz R, Easton JD, Gersh BJ, Granger CB, Hanna M, Horowitz J, et al. Apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE) trial: design and rationale. Am Heart J. 2010;159:331–339. DOI:10.1016/j.ahj.2009.07.035

10. Ezekowitz MD, Connolly S, Parekh A, Reilly PA, Varrone J, Wang S, Oldgren J, Thmeles E, Wallentin L, Yusuf S. Rationale and design of RE-LY: randomized evaluation of long-term anticoagulant therapy, warfarin, compared with dabigatran. Am Heart J. 2009;157:805–810.e2. DOI:10.1016/j.ahj.2009.02.005

11. Hohnloser SH, Hijazi Z, Thomas L, Alexander JH, Amerena J, Hanna M, Keltai M, Lanas F, Lopes RD, Lopez-Sendon J, et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. Eur Heart J. 2012;33:2821–2830. DOI:10.1093/eurheartj/ehs274

12. Hijazi Z, Hohnloser SH, Andersson U, Alexander JH, Hanna M, Keltai M, Parkhomenko A, Lopez-Sendon JL, Lopes RD, Siegbahn A, et al. Efficacy and safety of apixaban compared with warfarin in patients with atrial fibrillation in relation to renal function over time: insights from the ARISTOTLE randomized clinical trial. JAMA Cardiol. 2018;3:451–460. DOI:10.1001/jamacardio.2016.1170

13. Ebadi T, Kamali-Moghaddam M, Landegren U. Parallel protein detection by solid-phase proximity ligation assay with real-time PCR or sequencing. Curr Protoc Mol Biol. 2015;109:21–25. DOI:10.1002/0471142727. mb2013109

14. Siegbahn B, Eriksson S, Lindbäck J, Wallentin L. A comparison of the proximity extension assay with established immunoassays. In Advancing Precision Medicine: Current and Future Proteogenomic Strategies for Biomarker Discovery and Development. Science 2017;22–25.

15. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Annals Appl Stat. 2008;2:841–860.

16. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. J Stat Softw. 2011;45:1–67.

17. R, Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.

18. Wright MN, Ziegler A. ranger: A Fast Implementation of Random forests for High Dimensional Data in C++ and R. J Stat Softw. 2017;77:1–7.

19. Hijazi Z, Oldgren J, Anderson U, Connolly SJ, Ezekowitz MD, Hohnloser SH, Reilly PA, Vinereanu D, Siegbahn A, Yusuf S, et al. Cardiovascular biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation. 2012;125:1605–1616.

20. Yabuchansky A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology (Bethesda). 2013;28:99–108.

21. Dhingra R, Pencina MJ, Schroder P, Wang TJ, Levy DC, Pencina K, Sivik DA, Colucci WS, Benjamin EJ, Vasan RS. Relations of matrix remodeling biomarkers to blood pressure progression and incidence of hypertension in the community. Circulation. 2009;119:1101–1107. DOI:10.1161/CIRCULATIONAHA.108.821769

22. Collier P, Watson CJ, Voon V, Phelan D, Jan A, Mak G, Martos R, Baugh JA, Ledwidge MT, McDonald KM. Can emerging biomarkers of...
myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? Eur J Heart Fail. 2011;13:1087–1095. DOI:10.1039/euhrhftr079

23. Kelly D, Khan SQ, Thompson M, Cockerill G, Ng LL, Samani N, Squire IB. Plasma tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9: novel indicators of left ventricular remodelling and prognosis after acute myocardial infarction. Eur Heart J. 2006;29:2116–2124.

24. Lopez-Andrés N, Rossignol P, Iraj J, Fay R, Nune J, Ghio S, Cleland JG, Zannad F, Lacolley P. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dysynchrony: insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail. 2012;14:74–81.

25. Polyakovka V, Miyagawa S, Szalay Z, Risteli J, Kostin S. Atrial extracellular matrix remodelling in patients with atrial fibrillation. J Cell Mol Med. 2008;12:189–208.

26. Stanciu AE, Vatasescu RG, Stanciu MM, Serduarivici N, Dorobantu M. The role of pro-fibrotic biomarkers in paroxysmal and persistent atrial fibrillation. Cytokine. 2018;103:63–68.

27. Collins AR, Schnee J, Wang W, Kim S, Fishbein MC, Bruemmer D, Law RE, Nicholas S, Ross RS, Hsueh WA. Osteopontin modulates angiotensin II-induced fibrosis in the intact murine heart. J Am Coll Cardiol. 2004;43:1698–1705.

28. Zhao H, Chen Q, Alam A, Cui J, Suen KC, Soo AP, Eguchi S, Gu J, Ma D. The role of osteopontin in the progression of solid organ tumour. Cell Death Dis. 2018;9:356.

29. Minoretti P, Falcone C, Calcagnino M, Emanuele E, Buzzi MP, Coen E, Geroldi D. Prognostic significance of plasma osteopontin levels in patients with chronic stable angina. Eur Heart J. 2006;27:802–807.

30. Lin R, Wu S, Zhu D, Qin M, Liu X. Osteopontin induces atrial fibrosis by activating Akt/GSK-3beta/beta-catenin pathway and suppressing autophagy. Life Sci. 2020;245:117328.

31. Molvin J, Jujic A, Melander O, Pareek M, Råstam L, Lindblad U, Daka B, Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen RE, Nicholas S, Ross RS, Hsueh WA. Osteopontin modulates angiotensin II-induced fibrosis in the intact murine heart. Eur J Heart Fail. 2012;14:74–81.

32. Schmidt V, Willnow TE. Protein sorting gone wrong–VPS10P domain receptors in cardiovascular and metabolic diseases. Atherosclerosis. 2016;245:194–199. DOI:10.1016/j.atherosclerosis.2015.11.027

33. Stojkovic S, Thulin Å, Hell L, Thaler B, Rauscher S, Baumgartner C, Kliemannel M, Schwarz E, Willnow TE, et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature. 2004;427:843–848. DOI:10.1038/nature02319

34. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, Saleheen D, Kyrilakou T, Nelson OP, Hopewell JC, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–1130.

35. Zeller T, Blankenberg S, Dierent P. Genomewide association studies in cardiovascular disease—an update 2011. Clin Chem. 2012;58:92–103. DOI:10.1373/clinchem.2011.170431

36. Ogawa K, Ueno T, Iwasaki T, Kujiraoka T, Ishihara M, Kunimoto S, Takayama T, Kanai T, Hirayama A, Hattori H. Soluble sortilin is released by activated platelets and its circulating levels are associated with cardiovascular risk factors. Atherosclerosis. 2016;249:110–115. DOI:10.1016/j.atherosclerosis.2016.03.041

37. Januzzi JL Jr. ST2 as a cardiovascular risk biomarker: from the bench to the bedside. J Cardiovasc Transl Res. 2013;6:493–500. DOI:10.1007/s12265-013-9459-y

38. de Boer RA, Daniels LB, Maisel AS, Januzzi JL Jr. State of the art: newer biomarkers in heart failure. Eur J Heart Fail. 2015;17:559–569. DOI:10.1002/ejhf.273

39. Stojkovic S, Thulin Å, Hell L, Thaler B, Rauscher S, Baumgartner J, Gröger M, Ay C, Demyanets S, Neumayer C, et al. IL-33 stimulates the release of procoagulant microvesicles from human monocytes and differentially increases tissue factor in human monocyte subsets. Thromb Haemost. 2017;117:1379–1390. DOI:10.1160/TH16-10-0784

40. Andersson C, Preis SR, Beiser A, DeCarli C, Wollert KC, Wang TJ, Januzzi JL Jr, Vasan RS, Seshadri S. Associations of circulating growth differentiation factor-15 and ST2 concentrations with subclinical vascular brain injury and incident stroke. Stroke. 2015;46:2568–2575. DOI:10.1161/STROKEAHA.115.009026

41. Hofmann W. Trefoil factors TFF (trefoil factor family) peptide-triggered signals promoting mucosal restitution. Cell Mol Life Sci. 2005;62:2932–2938. DOI:10.1007/s00018-005-5481-9

42. Taupin D, Podolsky DK. Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol. 2003;4:721–732. DOI:10.1038/nrm1203

43. Liu SQ, Tefft BJ, Roberts DT, Zhang LQ, Ren Y, Li YC, Huang Y, Zhang D, Phillips HR, Wu YH. Cardioprotective proteins upregulated in the liver in response to experimental myocardial ischemia. Am J Physiol Heart Circ Physiol. 2012;303:H1446–1458. DOI:10.1152/ajpheart.00362.2012

44. Sonneveld MA, de Maat MP, Leebeek FW. Von Willebrand factor and ADAMTS13 in arterial thrombosis: a systematic review and meta-analysis. Blood Rev. 2014;28:167–178.
SUPPLEMENTAL MATERIAL
Table S1. Baseline NPX values (arbitrary units) and limit of detection (LoD) of proximity extension assay (PEA) biomarkers in the identification cohort.

Variable	UniProt No.	No	Ischemic stroke/SE	LoD				
ACE2	Q9BYF1	3.9 (3.5 -- 4.4) [203]	4.0 (3.6 -- 4.5) [12]	1.1				
ADAM-TS13	Q76LX8	5.2 (5.1 -- 5.3) [203]	5.2 (5.1 -- 5.2) [12]	1.4				
ADM	P35318	7.5 (7.2 -- 7.8) [203]	7.6 (7.3 -- 7.9) [12]	1.9				
AGRP	O00253	3.2 (3.0 -- 3.5) [203]	3.3 (3.0 -- 3.6) [12]	0.7				
AMBP	P02760	7.1 (7.0 -- 7.2) [203]	7.1 (7.0 -- 7.3) [12]	1.3				
ANG-1	Q15389	8.9 (8.1 -- 9.6) [203]	9.0 (8.1 -- 9.8) [12]	2.2				
BMP-6	P22004	5.7 (5.4 -- 6.0) [203]	5.8 (5.5 -- 6.1) [12]	1.4				
BNP	P16860	4.0 (3.0 -- 4.9) [203]	4.5 (3.7 -- 5.4) [12]	1.6				
CASA	P35218	2.6 (2.1 -- 3.3) [203]	2.7 (2.2 -- 3.3) [12]	1.3				
CCL17	Q92583	6.9 (6.3 -- 7.6) [203]	6.9 (6.3 -- 7.7) [12]	1.7				
CCL3	P10147	2.8 (2.5 -- 3.1) [203]	2.9 (2.6 -- 3.2) [12]	1.6				
CD4	P01730	4.7 (4.5 -- 4.9) [203]	4.7 (4.5 -- 5.0) [12]	1.3				
CD40-L	P29965	4.1 (3.5 -- 5.1) [203]	4.2 (3.6 -- 5.1) [12]	1.2				
CD84	Q0UIB8	5.3 (5.1 -- 5.6) [203]	5.4 (5.1 -- 5.7) [12]	1.4				
CEACAM8	P31997	4.2 (3.9 -- 4.7) [203]	4.3 (3.9 -- 4.7) [12]	1.6				
CTRC	Q99895	10.2 (9.7 -- 10.7) [203]	10.1 (9.7 -- 10.6) [12]	2.6				
CTSL1	P07711	6.1 (5.7 -- 6.4) [203]	6.1 (5.9 -- 6.6) [12]	0.9				
CXCL1	P09341	8.3 (7.4 -- 8.9) [203]	8.2 (7.5 -- 8.9) [12]	2.7				
DCN	P07585	5.4 (5.3 -- 5.6) [203]	5.5 (5.3 -- 5.6) [12]	3.6				
DECR1	Q16698	3.1 (2.5 -- 3.8) [203]	3.1 (2.5 -- 4.0) [12]	2.0				
Dkk-1	O94907	8.9 (8.5 -- 9.3) [203]	9.0 (8.6 -- 9.4) [12]	2.1				
FABP2	P12104	9.2 (8.6 -- 9.7) [203]	9.2 (8.6 -- 9.7) [12]	2.1				
FGF-21	Q9NSA1	7.7 (6.8 -- 8.6) [203]	7.9 (7.0 -- 8.8) [12]	2.6				
Protein	Description	Accession	Median Value [Range]	Min. Value [Range]	Max. Value [Range]	Ratio		
-------------------------	--	-----------	----------------------	-------------------	-------------------	-------		
FGF-23	Fibroblast growth factor 23	Q9GZV9	4.3 (3.8 -- 4.9)	4.3 (4.0 -- 4.9)	1.4			
FS	Follistatin	P19883	12.0 (11.7 -- 12.3)	12.0 (11.8 -- 12.3)	3.6			
Gal-9	Galectin-9	O00182	7.0 (6.8 -- 7.2)	7.0 (6.8 -- 7.2)	1.5			
GDF-2	Growth/differentiation factor 2	Q9UK05	4.6 (4.2 -- 4.9)	4.6 (4.2 -- 5.0)	1.5			
GH	Growth hormone	P01241	8.5 (7.0 -- 10.1)	8.9 (7.6 -- 10.1)	1.8			
GIF	Gastric intrinsic factor	P27352	5.6 (5.0 -- 6.2)	5.5 (4.8 -- 6.4)	1.4			
GLO1	Lactoylglutathione lyase	Q04760	6.1 (5.7 -- 6.7)	6.2 (5.7 -- 6.7)	1.9			
GT	Gastrotropin	P51161	1.9 (1.6 -- 2.4)	1.9 (1.6 -- 2.4)	1.2			
HAOX1	Hydroxyacid oxidase 1	Q9UJM8	4.6 (3.7 -- 5.7)	4.7 (3.7 -- 5.7)	1.1			
HB-EGF	Proheparin-binding EGF-like growth factor	Q99075	5.8 (5.6 -- 6.1)	5.9 (5.6 -- 6.1)	0.8			
HO-1	Heme oxygenase 1	P09601	11.7 (11.4 -- 11.9)	11.6 (11.4 -- 12.0)	4.4			
hOSCAR	Osteoclast-associated immunoglobulin-like receptor	Q8IY55	9.8 (9.6 -- 9.9)	9.8 (9.6 -- 9.9)	3.0			
HSP 27	Heat shock 27 kDa protein	P04792	10.2 (9.6 -- 10.6)	10.2 (9.5 -- 10.6)	2.4			
IDUA	Alpha-L-iduronidase	P35475	4.6 (4.1 -- 5.0)	4.5 (4.1 -- 4.9)	1.6			
Ig G Fc receptor II-b	Low affinity immunoglobulin gamma Fc region receptor II-b	P31994	1.7 (1.4 -- 2.1)	1.8 (1.4 -- 2.1)	1.3			
IL-17D	Interleukin-17D	Q8TAD2	2.7 (2.6 -- 2.9)	2.8 (2.6 -- 2.9)	1.2			
IL-18	Interleukin-18	Q14116	8.7 (8.4 -- 9.1)	8.8 (8.3 -- 9.2)	2.5			
IL-1ra	Interleukin-1 receptor antagonist protein	P18510	4.5 (4.1 -- 5.0)	4.7 (4.2 -- 5.1)	2.4			
IL-4RA	Interleukin-4 receptor subunit alpha	P24394	3.2 (2.9 -- 3.5)	3.3 (3.0 -- 3.6)	1.2			
IL-6	Interleukin-6	P05231	4.0 (3.5 -- 4.6)	4.1 (3.6 -- 4.5)	1.3			
IL16	Pro-interleukin-16	Q14005	5.3 (5.0 -- 5.6)	5.3 (5.0 -- 5.7)	1.0			
IL1RL2	Interleukin-1 receptor-like 2	Q9HB29	4.6 (4.3 -- 4.9)	4.7 (4.3 -- 4.9)	1.5			
IL-27	Interleukin-27	Q8NEV9,	4.5 (4.2 -- 4.7)	4.5 (4.3 -- 4.8)	1.9			
ITGB1BP2	Melusin	Q9UKP3	3.0 (3.0 -- 4.5)	3.1 (3.0 -- 4.8)	3.0			
LEP	Leptin	P41159	6.7 (6.0 -- 7.4)	6.7 (5.9 -- 7.3)	2.2			
LOX-1	Lectin-like oxidized LDL receptor 1	P78380	6.9 (6.5 -- 7.3)	6.9 (6.6 -- 7.4)	2.7			
LPL	Lipoprotein lipase	P06858	9.5 (9.2 -- 9.8)	9.6 (9.3 -- 9.8)	2.7			
Gene Symbol	Protein Name	Uniprot ID	Fold Change	Standard Deviation	P-Value	Gene Name		
-------------	--------------	------------	-------------	--------------------	---------	-----------		
MARCO	Macrophage receptor MARCO	Q9UEW3	6.2 (6.1 -- 6.4)	[203]	1.3			
MERTK	Tyrosine-protein kinase Mer	Q12866	4.5 (4.2 -- 4.7)	[203]	1.6			
MMP-12	Matrix metalloproteinase-12	P39900	7.8 (7.3 -- 8.3)	[203]	1.9			
MMP-7	Matrix metalloproteinase-7	P09237	7.3 (6.3 -- 8.1)	[203]	3.3			
NEMO	NF-kappa-B essential modulator	Q9Y6K9	4.2 (3.7 -- 5.0)	[203]	1.9			
PAPPA	Pappalysin-1	Q13219	3.2 (2.9 -- 3.6)	[203]	1.5			
PAR-1	Proteinase-activated receptor 1	P25116	7.4 (7.1 -- 7.7)	[203]	1.8			
PARP-1	Poly [ADP-ribose] polymerase 1	P09874	3.4 (3.0 -- 3.8)	[203]	1.9			
PD-L2	Programmed cell death 1 ligand 2	Q9BQ51	3.1 (2.9 -- 3.3)	[203]	1.9			
PDGF subunit B	Platelet-derived growth factor subunit B	P01127	8.9 (8.1 -- 9.6)	[203]	2.7			
PlgR	Polymeric immunoglobulin receptor	P01833	6.5 (6.4 -- 6.5)	[203]	1.8			
PIGF	Placenta growth factor	P49763	8.1 (7.9 -- 8.3)	[203]	1.5			
PRELP	Prolargin	P51888	6.7 (6.6 -- 6.8)	[203]	1.5			
Protein BOC	Brother of CDO	Q9BWW1	4.9 (4.7 -- 5.0)	[203]	1.2			
PRSS27	Serine protease 27	Q9BQR3	8.1 (7.8 -- 8.4)	[203]	2.0			
PRSS58	Prostasin	Q16651	9.2 (9.0 -- 9.5)	[203]	1.4			
PSGL-1	P-selectin glycoprotein ligand 1	Q14242	5.0 (4.8 -- 5.1)	[203]	1.3			
PTX3	Pentraxin-related protein PTX3	P26022	3.7 (3.4 -- 4.0)	[203]	1.7			
RAGE	Receptor for advanced glycosylation end products	Q15109	5.3 (5.0 -- 5.6)	[203]	1.1			
REN	Renin	P00797	7.5 (6.8 -- 8.1)	[203]	2.0			
SCF	Stem cell factor	P21583	9.7 (9.4 -- 9.9)	[203]	2.6			
SERPINA12	Serpin A12	Q8I7W75	3.6 (3.0 -- 4.4)	[203]	3.0			
SLAMF7	SLAM family member 7	Q9NQ25	2.4 (2.4 -- 2.8)	[203]	2.4			
SOD2	Superoxide dismutase [Mn], mitochondrial	P04179	8.9 (8.7 -- 9.0)	[203]	1.8			
SORT1	Sortilin	Q99523	6.4 (6.2 -- 6.5)	[203]	1.6			
SPON2	Spondin-2	Q9BUD6	9.0 (8.9 -- 9.1)	[255]	2.1			
SRC	Proto-oncogene tyrosine-protein kinase Src	P12931	5.5 (4.4 -- 7.0)	[203]	1.4			
STK4	Serine/threonine-protein kinase 4	Q13043	1.9 (1.2 -- 3.5)	[203]	1.2			
TF	Tissue factor	P13726	5.8 (5.6 -- 6.0)	[203]	1.3			
Gene Symbol	Gene Name	Description	NCBI ID	Gene Symbol	Gene Name	Description	NCBI ID	
-------------	-----------	-------------	---------	-------------	-----------	-------------	---------	
TGM2	Protein-glutamine gamma-glutamyltransferase 2	P21980	8.3 (7.8 -- 8.8) [203]	8.4 (7.9 -- 8.9) [12]	1.9			
THBS2	Thrombospondin-2	P35442	6.0 (5.9 -- 6.2) [271]	6.1 (5.9 -- 6.3) [18]	1.1			
THPO	Thrombopoietin	P40225	2.1 (1.9 -- 2.3) [203]	2.1 (1.9 -- 2.4) [12]	0.7			
TIE2	Angiopoietin-1 receptor	Q02763	8.1 (7.9 -- 8.3) [203]	8.1 (7.9 -- 8.3) [12]	2.0			
TM	Thrombomodulin	P07204	8.4 (8.2 -- 8.7) [203]	8.5 (8.2 -- 8.7) [12]	2.3			
TIM	T-cell immunoglobulin mucin receptor 1	Q96D42	10.0 (9.5 -- 10.6) [203]	10.2 (9.7 -- 10.8) [12]	3.2			
TNFRSF10A	Tumor necrosis factor receptor superfamily member 10A	O00220	3.7 (3.4 -- 3.9) [203]	3.8 (3.5 -- 4.0) [12]	1.7			
TNFRSF11A	Tumor necrosis factor receptor superfamily member 11A	Q9Y6Q6	5.8 (5.5 -- 6.2) [203]	5.9 (5.5 -- 6.3) [12]	1.7			
TNFRSF13B	Tumor necrosis factor receptor superfamily member 13B	O14836	8.4 (8.1 -- 8.7) [203]	8.5 (8.2 -- 8.8) [12]	2.3			
TRAIL-R2	TNF-related apoptosis-inducing ligand receptor 2	Q14763	5.8 (5.5 -- 6.1) [203]	5.9 (5.6 -- 6.2) [12]	1.9			
VEGF-D	Vascular endothelial growth factor D	O43915	7.4 (7.2 -- 7.7) [203]	7.5 (7.2 -- 7.8) [12]	1.3			
VSIG2	V-set and immunoglobulin domain-containing protein 2	Q96IQ7	4.0 (3.6 -- 4.3) [203]	4.1 (3.7 -- 4.4) [12]	1.8			
XCL1	Lymphotactin	P47992	5.4 (5.0 -- 5.7) [203]	5.5 (5.1 -- 5.8) [12]	1.4			
ALCAM	CD166 antigen	Q13740	4.9 (4.7 -- 5.1) [23]	4.9 (4.7 -- 5.1) [0]	1.7			
AP-N	Aminopeptidase N	P15144	5.1 (4.9 -- 5.3) [23]	5.2 (5.0 -- 5.4) [0]	0.8			
AXL	Tyrosine-protein kinase receptor UFO	P30530	8.1 (7.9 -- 8.4) [23]	8.2 (8.0 -- 8.4) [0]	1.9			
AZU1	Azurocidin	P20160	3.0 (2.5 -- 3.7) [23]	3.1 (2.6 -- 3.7) [0]	2.5			
BLM hydrolase	Bleomycin hydrolase	Q13867	5.7 (5.5 -- 6.0) [162]	5.8 (5.5 -- 6.1) [8]	5.4			
CASP-3	Caspase-3	P42574	6.5 (5.7 -- 7.8) [23]	6.6 (5.8 -- 7.8) [0]	3.3			
CCL15	C-C motif chemokine 15	Q16663	7.3 (7.0 -- 7.7) [23]	7.4 (7.1 -- 7.8) [0]	2.2			
CCL16	C-C motif chemokine 16	Q15467	6.1 (5.8 -- 6.5) [23]	6.3 (6.0 -- 6.6) [0]	0.4			
CCL22	C-C motif chemokine 22	Q00175	2.3 (2.0 -- 2.8) [23]	2.4 (2.0 -- 2.7) [0]	1.3			
CCL24	C-C motif chemokine 24	Q00175	5.8 (5.2 -- 6.4) [23]	5.8 (5.3 -- 6.4) [0]	2.5			
CD163	Scavenger receptor cysteine-rich type 1 protein M130	Q86VB7	7.9 (7.6 -- 8.2) [23]	8.0 (7.7 -- 8.3) [0]	2.3			
CD93	Complement component C1q receptor	Q9NPY3	9.9 (9.6 -- 10.1) [23]	9.9 (9.7 -- 10.2) [0]	2.3			
CDH5	Cadherin-5	Q9NPY3	3.8 (3.5 -- 4.0) [23]	3.8 (3.6 -- 4.1) [0]	1.2			
Gene	Description	Accession	Expression	Log2 Fold Change	p Value			
-------	---	-----------	------------	-----------------	---------			
CHI3L1	Chitinase-3-like protein 1	P36222	7.4	6.8 -- 8.2 [23]	3.3			
CHIT1	Chitotriosidase-1	Q13231	3.4	2.6 -- 4.1 [23]	-1.2			
CNTN1	Contactin-1	Q12860	3.2	3.0 -- 3.4 [23]	0.5			
COL1A1	Collagen alpha-1(l) chain	P02452	2.5	2.2 -- 2.8 [23]	-0.1			
CPA1	Carboxypeptidase A1	P15085	4.6	4.2 -- 5.1 [23]	0.9			
CPB1	Carboxypeptidase B	P15086	4.1	3.7 -- 4.6 [23]	0.6			
CSTB	Cystatin-B	P04080	5.1	4.8 -- 5.6 [93]	4.1			
CTSZ	Cathepsin Z	P07339	4.3	4.0 -- 4.7 [23]	3.5			
CXCL16	C-X-C motif chemokine 16	Q9H2A7	6.3	6.1 -- 6.5 [23]	0.7			
DK1	Protein delta homolog 1	P80370	5.4	5.0 -- 5.8 [23]	0.7			
EGFR	Epidermal growth factor receptor	P00533	1.9	1.8 -- 2.1 [23]	-0.1			
Ep-CAM	Epithelial cell adhesion molecule	P16422	4.0	3.5 -- 4.7 [23]	0.9			
EPHB4	Ephrin type-B receptor 4	P54760	2.3	2.1 -- 2.5 [23]	1.4			
FABP4	Fatty acid-binding protein, adipocyte	P15090	5.1	4.5 -- 5.7 [23]	1.2			
FAS	Tumor necrosis factor receptor superfamily member 6	P25445	5.0	4.8 -- 5.2 [23]	1.3			
Gal-3	Galectin-3	P17931	5.7	5.4 -- 5.9 [23]	4.0			
Gal-4	Galectin-4	P56470	3.8	3.4 -- 4.2 [23]	0.9			
GDF-15	Growth/differentiation factor 15	Q99988	5.3	4.9 -- 5.8 [23]	1.9			
GRN	Granulins	P28799	3.5	3.3 -- 3.7 [23]	-0.5			
ICAM-2	Intercellular adhesion molecule 2	P13598	5.3	5.0 -- 5.5 [23]	1.1			
IGFBP-1	Insulin-like growth factor-binding protein 1	P08833	5.4	4.4 -- 6.2 [23]	1.4			
IGFBP-2	Insulin-like Growth Factor-Binding Protein 2	P18065	8.1	7.5 -- 8.5 [23]	1.2			
IGFBP-7	Insulin-like growth factor-binding protein 7	Q16270	4.6	4.3 -- 4.9 [23]	0.8			
IL-17RA	Interleukin-17 receptor A	Q96F46	4.2	3.8 -- 4.5 [23]	1.5			
IL-18BP	Interleukin-18-binding protein	Q95998	6.7	6.5 -- 7.0 [23]	1.2			
IL-1RT1	Interleukin-1 receptor type 1	P14778	6.6	6.4 -- 6.8 [23]	1.7			
IL-1RT2	Interleukin-1 receptor type 2	P27930	5.2	5.0 -- 5.5 [23]	1.8			
IL-6RA	Interleukin-6 receptor subunit alpha	P08887	11.0	10.7 -- 11.3 [23]	4.0			
Gene Symbol	Protein Name	Entrez ID	Value	Value Range	p	Ratio		
-------------	--	-----------	---------------------	-------------	---	-------		
IL2-RA	Interleukin-2 receptor subunit alpha	P01589	4.2 (3.9 -- 4.6) [23]	4.4 (4.0 -- 4.7) [0]	1.1			
ITGB2	Integrin beta-2	P05107	5.7 (5.5 -- 6.0) [23]	5.7 (5.5 -- 6.0) [0]	1.7			
JAM-A	Junctional adhesion molecule A	Q9Y624	4.4 (4.1 -- 4.8) [23]	4.5 (4.2 -- 4.9) [0]	1.2			
KLK6	Kallikrein-6	Q92876	3.5 (3.5 -- 3.6) [23]	3.5 (3.5 -- 3.7) [0]	3.5			
LDL receptor	Low-density lipoprotein receptor	P01130	4.6 (4.2 -- 5.0) [23]	4.7 (4.3 -- 5.0) [0]	0.9			
LTBR	Lymphoxygen-beta receptor	P36941	3.9 (3.7 -- 4.1) [23]	4.0 (3.7 -- 4.3) [0]	1.1			
MB	Myoglobin	P02144	7.3 (6.9 -- 7.7) [23]	7.3 (6.9 -- 7.7) [0]	1.5			
MCP-1	Monocyte chemotactic protein 1	P13500	3.4 (3.2 -- 3.6) [23]	3.4 (3.2 -- 3.6) [0]	0.6			
MEPE	Matrix extracellular phosphoglycoprotein	Q9NQ76	3.4 (3.1 -- 3.7) [23]	3.4 (3.1 -- 3.8) [0]	1.6			
MMP-2	Matrix metalloproteinase-2	P08253	4.1 (3.9 -- 4.4) [23]	4.2 (4.0 -- 4.4) [0]	0.2			
MMP-3	Matrix metalloproteinase-3	P08254	7.5 (7.0 -- 7.9) [23]	7.6 (7.1 -- 8.0) [0]	2.1			
MMP-9	Matrix metalloproteinase-9	P14780	4.2 (3.7 -- 4.7) [23]	4.3 (3.7 -- 4.7) [0]	1.6			
MPO	Myeloperoxidase	P05164	4.4 (4.1 -- 4.7) [23]	4.4 (4.1 -- 4.7) [0]	2.4			
NOTCH-3	Neurogenic locus notch homolog protein 3	Q9UM47	4.4 (4.1 -- 4.7) [23]	4.4 (4.2 -- 4.8) [0]	1.7			
NT-proBNP	N-terminal prohormone brain natriuretic peptide	NA	2.8 (2.1 -- 3.4) [23]	3.2 (2.6 -- 3.7) [0]	1.5			
OPG	Osteoprotegerin	O00300	3.6 (3.4 -- 3.9) [23]	3.7 (3.5 -- 4.0) [0]	0.8			
OPN	Osteopontin	P10451	5.4 (5.0 -- 5.7) [23]	5.6 (5.2 -- 5.9) [0]	0.9			
PAI	Plasminogen activator inhibitor 1	P05121	6.2 (5.6 -- 6.9) [23]	6.4 (5.7 -- 6.9) [0]	1.2			
PCSK9	Proprotein convertase subtilisin/kexin type 9	Q8NBP7	2.9 (2.6 -- 3.2) [23]	2.9 (2.7 -- 3.4) [0]	1.4			
PDGF subunit A	Platelet-derived growth factor subunit A	P04085	3.1 (3.4 -- 3.7) [23]	3.1 (2.5 -- 3.9) [0]	0.0			
PECAM-1	Platelet endothelial cell adhesion molecule	P16284	4.8 (4.5 -- 5.0) [23]	4.8 (4.6 -- 5.0) [0]	0.7			
PGLYRP1	Peptidoglycan recognition protein 1	Q75594	7.7 (7.4 -- 8.0) [23]	7.8 (7.4 -- 8.2) [0]	1.9			
PI3	Elafin	P19957	4.2 (3.7 -- 4.6) [89]	4.3 (3.9 -- 4.9) [6]	2.8			
PLC	Perlecan	P98160	6.9 (6.7 -- 7.2) [23]	7.0 (6.8 -- 7.3) [0]	3.4			
PON3	Paraoxonase	Q15166	5.7 (5.3 -- 6.1) [23]	5.6 (5.2 -- 6.0) [0]	1.2			
PRTN3	Myeloblastin	P24158	4.7 (4.4 -- 5.1) [23]	4.7 (4.4 -- 5.2) [0]	3.9			
PSP-D	Pulmonary surfactant-associated protein D	P35247	2.8 (2.3 -- 3.3) [23]	2.8 (2.3 -- 3.2) [0]	1.4			
RARRES2	Retinoic acid receptor responder protein 2	Q99969	12.1 (11.9 -- 12.2) [23]	12.1 (11.9 -- 12.3) [0]	4.5			
RETN	Resistin	Q9HD89	6.9 (6.5 -- 7.2) [23]	7.0 (6.6 -- 7.4) [0]	2.5			
Gene Symbol	Description	Entrez ID	Mean (95% CI) [ref]	Mean (95% CI) [ref]	Mean (95% CI)	Mean (95% CI)		
-------------	-------------	-----------	---------------------	---------------------	---------------	---------------	-----------	
SCGB3A2	Secretoglobin family 3A member 2	Q96PL1	2.6 (2.2 -- 3.2) [23]	2.7 (2.3 -- 3.3) [0]	0.4	0.4		
SELE	E-selectin	P16581	2.5 (2.1 -- 2.8) [23]	2.5 (2.2 -- 2.8) [0]	0.7	0.7		
SELP	P-selectin	P16109	9.1 (8.7 -- 9.5) [23]	9.1 (8.7 -- 9.6) [0]	2.5	2.5		
SHPS-1	Tyrosine-protein phosphatase non-receptor type substrate 1	P78324	4.0 (3.7 -- 4.3) [23]	4.0 (3.7 -- 4.3) [0]	1.5	1.5		
SPON1	Spondin-1	Q9HCB6	2.3 (2.1 -- 2.5) [23]	2.4 (2.2 -- 2.6) [0]	1.4	1.4		
ST2	ST2 protein	Q01638	4.2 (3.9 -- 4.6) [23]	4.4 (4.0 -- 4.7) [0]	1.5	1.5		
t-PA	Tissue-type plasminogen activator	P00750	6.3 (5.9 -- 6.7) [23]	6.4 (6.0 -- 6.8) [0]	1.1	1.1		
TFF3	Trefoil factor 3	Q07654	5.6 (5.3 -- 6.0) [23]	5.7 (5.4 -- 6.2) [0]	2.9	2.9		
TFPI	Tissue factor pathway inhibitor	P10646	8.6 (8.3 -- 8.8) [23]	8.6 (8.4 -- 8.9) [0]	1.7	1.7		
TIMP4	Metalloproteinase inhibitor 4	Q99727	5.2 (4.8 -- 5.5) [23]	5.3 (5.0 -- 5.7) [0]	0.7	0.7		
TLT-2	Trem-like transcript 2 protein	Q5T2D2	4.2 (3.9 -- 4.5) [23]	4.2 (3.9 -- 4.6) [0]	1.5	1.5		
TNF-R1	Tumor necrosis factor receptor 1	P19438	5.3 (5.0 -- 5.6) [23]	5.4 (5.1 -- 5.8) [0]	1.2	1.2		
TNF-R2	Tumor necrosis factor receptor 2	P20333	4.9 (4.6 -- 5.2) [23]	5.0 (4.7 -- 5.4) [0]	1.1	1.1		
TNFRSF10C	Tumor necrosis factor receptor superfamily member 10C	Q14798	6.1 (5.8 -- 6.4) [23]	6.0 (5.7 -- 6.4) [0]	1.5	1.5		
TNFRSF14	Tumor necrosis factor receptor superfamily member 14	Q92956	5.0 (4.8 -- 5.4) [23]	5.1 (4.9 -- 5.5) [0]	1.3	1.3		
TNFSF13B	Tumor necrosis factor ligand superfamily member 13B	Q9Y275	6.5 (6.3 -- 6.8) [23]	6.5 (6.3 -- 6.8) [0]	1.6	1.6		
TR	Transferrin receptor protein 1	Q01638	5.2 (4.8 -- 5.6) [23]	5.3 (4.9 -- 5.7) [0]	1.2	1.2		
TR-AP	Tartrate-resistant acid phosphatase type 5	P13686	5.0 (4.7 -- 5.3) [23]	5.0 (4.7 -- 5.3) [0]	2.7	2.7		
U-PAR	Urokinase plasminogen activator surface receptor	Q03405	4.8 (4.5 -- 5.1) [23]	4.9 (4.6 -- 5.2) [0]	1.9	1.9		
uPA	Urokinase-type plasminogen activator	P00749	5.0 (4.8 -- 5.2) [23]	5.0 (4.8 -- 5.3) [0]	1.0	1.0		
vWF	von Willebrand factor	P04275	6.4 (5.8 -- 7.0) [23]	6.6 (6.1 -- 7.3) [0]	1.4	1.4		
4E-BP1	Eukaryotic translation initiation factor 4E-binding protein 1	Q13541	8.4 (7.8 -- 9.1) [188]	8.5 (8.0 -- 9.3) [18]	1.4	1.4		
ADA	Adenosine Deaminase	P00813	4.1 (3.9 -- 4.4) [188]	4.1 (3.9 -- 4.4) [18]	0.3	0.3		
ARTN	Artemin	QST4W7	0.2 (0.2 -- 0.2) [188]	0.2 (0.2 -- 0.2) [18]	0.2	0.2		
AXIN1	Axin-1	O15169	1.6 (1.4 -- 2.5) [188]	1.6 (1.4 -- 2.7) [18]	1.4	1.4		
BDNF	Brain-derived neurotrophic factor	P23560	2.4 (2.4 -- 6.2) [188]	2.4 (2.4 -- 5.9) [18]	2.4	2.4		
Protein	Description	Accession	Ratio	Lower Limit	Upper Limit	P01138 Ratio	P01138 Lower Limit	P01138 Upper Limit
---------	-------------	-----------	-------	--------------	-------------	---------------	-------------------	-------------------
Beta-NGF	Beta-nerve growth factor	P01138	1.6 (1.4 -- 1.8)	1.6 (1.5 -- 1.8)	0.8			
CASP-8	Caspase 8	Q14790	2.8 (2.4 -- 3.5)	3.0 (2.4 -- 3.7)	1.0			
CCL11	Eotaxin-1	P51671	8.1 (7.9 -- 8.4)	8.2 (7.9 -- 8.5)	1.3			
CCL19	C-C motif chemokine 19	Q99731	9.4 (9.0 -- 10.0)	9.6 (9.0 -- 10.1)	1.4			
CCL20	C-C motif chemokine 20	P78556	6.6 (6.1 -- 7.3)	6.8 (6.1 -- 7.5)	1.8			
CCL23	C-C motif chemokine 23	P55773	10.0 (9.7 -- 10.4)	10.1 (9.9 -- 10.4)	1.1			
CCL25	C-C motif chemokine 25	Q15444	6.9 (6.5 -- 7.3)	6.9 (6.5 -- 7.3)	1.0			
CCL28	C-C motif chemokine 28	Q9NRJ3	1.0 (0.8 -- 1.2)	1.1 (0.9 -- 1.3)	0.1			
CCL4	C-C motif chemokine 4	P13236	5.8 (5.5 -- 6.2)	5.9 (5.5 -- 6.3)	0.3			
CD244	Natural killer cell receptor 2B4	Q9BZW8	6.0 (5.8 -- 6.2)	6.0 (5.8 -- 6.3)	1.7			
CD40	CD40L receptor	P25942	9.3 (9.1 -- 9.6)	9.4 (9.2 -- 9.7)	1.3			
CD5	T-cell surface glycoprotein CD5	P06127	3.4 (3.2 -- 3.7)	3.5 (3.3 -- 3.8)	-0.4			
CD6	T cell surface glycoprotein CD6 isoform	Q8WWJ7	4.0 (3.7 -- 4.2)	4.0 (3.7 -- 4.3)	0.8			
CDCP1	CUB domain-containing protein 1	Q9HSV8	3.0 (2.6 -- 3.4)	3.1 (2.7 -- 3.6)	0.0			
CSF-1	Macrophage colony-stimulating factor 1	P09603	8.0 (7.8 -- 8.1)	8.0 (7.9 -- 8.1)	0.6			
CST5	Cystatin D	P28325	7.0 (6.6 -- 7.4)	7.0 (6.6 -- 7.4)	3.2			
CX3CL1	Fractalkine	P78423	5.8 (5.5 -- 6.0)	5.8 (5.5 -- 6.2)	1.6			
CXCL10	C-X-C motif chemokine 10	P02778	10.3 (9.8 -- 10.8)	10.4 (10.0 -- 11.0)	2.0			
CXCL11	C-X-C motif chemokine 11	O14625	6.9 (6.4 -- 7.5)	7.0 (6.4 -- 7.7)	1.7			
CXCL5	C-X-C motif chemokine 5	P42830	10.7 (9.5 -- 11.7)	10.8 (9.6 -- 11.8)	3.7			
CXCL6	C-X-C motif chemokine 6	P80162	7.3 (6.8 -- 7.9)	7.4 (6.9 -- 7.9)	1.3			
CXCL9	C-X-C motif chemokine 9	Q07325	8.5 (8.0 -- 9.1)	8.6 (8.1 -- 9.2)	1.9			
DNER	Delta and Notch-like epidermal growth factor-related receptor	Q8NFT8	7.1 (6.9 -- 7.3)	7.1 (6.9 -- 7.3)	0.6			
EN-RAGE	Protein S100-A12	P80511	2.7 (2.1 -- 3.2)	2.8 (2.3 -- 3.3)	0.7			
FGF-19	Fibroblast growth factor 19	O95750	8.1 (7.4 -- 8.8)	8.2 (7.4 -- 8.9)	1.1			
FGF-5	Fibroblast growth factor 5	Q8NF90	1.9 (1.7 -- 2.1)	1.9 (1.8 -- 2.1)	1.4			
Flt3L	Fms-related tyrosine kinase 3 ligand	P49771	9.3 (9.1 -- 9.6)	9.4 (9.1 -- 9.6)	1.8			
hGDNF	Glial cell line-derived neurotrophic factor	P39905	2.2 (2.0 -- 2.5)	2.3 (2.0 -- 2.5)	1.5			
Protein	Gene	ID	Regulation	P14210	7.5 (7.2 -- 7.8)	7.6 (7.4 -- 7.9)	0.8	
---------------------------------	-----------	-------------	------------	--------	-----------------	-----------------	-----------------------	
IFN-gamma	P01579	1.1 (1.1 -- 1.1)	1.1 (1.1 -- 1.1)	1.7 (1.7 -- 1.7)	1.7 (1.7 -- 1.7)	1.7 (1.7 -- 1.7)	1.7 (1.7 -- 1.7)	1.7
IL-1 alpha	P01583	IL-10	4.3 (4.0 -- 4.6)	4.3 (4.0 -- 4.6)	2.1 (2.1 -- 2.1)	2.1 (2.1 -- 2.1)	2.1 (2.1 -- 2.1)	2.1
IL-10	P22301	0.9 (0.9 -- 0.9)	0.9 (0.9 -- 0.9)	0.9 (0.9 -- 0.9)	0.9 (0.9 -- 0.9)	0.9 (0.9 -- 0.9)	0.9 (0.9 -- 0.9)	0.9
IL-10RA	Q13651	6.7 (6.5 -- 6.9)	6.7 (6.5 -- 7.0)	0.8 (0.8 -- 0.8)	0.8 (0.8 -- 0.8)	0.8 (0.8 -- 0.8)	0.8 (0.8 -- 0.8)	0.8
IL-12B	P29460	4.8 (4.4 -- 5.3)	5.0 (4.5 -- 5.4)	0.9 (0.9 -- 0.9)	0.9 (0.9 -- 0.9)	0.9 (0.9 -- 0.9)	0.9 (0.9 -- 0.9)	0.9
IL-13	P35225	1.1 (1.1 -- 1.1)	1.1 (1.1 -- 1.1)	1.1 (1.1 -- 1.1)	1.1 (1.1 -- 1.1)	1.1 (1.1 -- 1.1)	1.1 (1.1 -- 1.1)	1.1
IL-15RA	Q13261	1.1 (0.9 -- 1.3)	1.1 (0.9 -- 1.3)	0.5 (0.5 -- 0.5)	0.5 (0.5 -- 0.5)	0.5 (0.5 -- 0.5)	0.5 (0.5 -- 0.5)	0.5
IL-17A	Q16552	0.5 (0.4 -- 0.8)	0.5 (0.4 -- 0.8)	1.5 (1.5 -- 1.8)	1.5 (1.5 -- 1.8)	1.5 (1.5 -- 1.8)	1.5 (1.5 -- 1.8)	1.5
IL-17C	Q9P0M4	Q9UHF4	0.9 (0.9 -- 0.9)	0.9 (0.9 -- 0.9)	2.3 (2.3 -- 2.3)	2.3 (2.3 -- 2.3)	2.3 (2.3 -- 2.3)	2.3
IL-18R1	Q13478	7.5 (7.2 -- 7.8)	7.6 (7.3 -- 7.8)	0.8 (0.8 -- 0.8)	0.8 (0.8 -- 0.8)	0.8 (0.8 -- 0.8)	0.8 (0.8 -- 0.8)	0.8
IL-2	P60568	1.4 (1.4 -- 1.4)	1.4 (1.4 -- 1.4)	1.4 (1.4 -- 1.4)	1.4 (1.4 -- 1.4)	1.4 (1.4 -- 1.4)	1.4 (1.4 -- 1.4)	1.4
IL-20	Q9NYY1	0.8 (0.8 -- 0.8)	0.8 (0.8 -- 0.8)	1.5 (1.5 -- 1.5)	1.5 (1.5 -- 1.5)	1.5 (1.5 -- 1.5)	1.5 (1.5 -- 1.5)	1.5
IL-20RA	Q9UHF4	0.9 (0.9 -- 0.9)	0.9 (0.9 -- 0.9)	2.3 (2.3 -- 2.3)	2.3 (2.3 -- 2.3)	2.3 (2.3 -- 2.3)	2.3 (2.3 -- 2.3)	2.3
IL-24	Q13007	0.4 (0.4 -- 0.4)	0.4 (0.4 -- 0.4)	1.7 (1.7 -- 1.7)	1.7 (1.7 -- 1.7)	1.7 (1.7 -- 1.7)	1.7 (1.7 -- 1.7)	1.7
IL-22 RA1	Q8N6P7	1.6 (1.6 -- 2.0)	1.6 (1.6 -- 2.0)	3.3 (2.8 -- 3.8)	3.3 (2.8 -- 3.8)	3.3 (2.8 -- 3.8)	3.3 (2.8 -- 3.8)	3.3
LAP TGF-beta-1	P14784	0.8 (0.8 -- 0.8)	0.8 (0.8 -- 0.8)	1.7 (1.7 -- 1.7)	1.7 (1.7 -- 1.7)	1.7 (1.7 -- 1.7)	1.7 (1.7 -- 1.7)	1.7
LIF	P015112	P01137	6.3 (6.1 -- 6.6)	6.4 (6.1 -- 6.7)	0.8 (0.8 -- 0.8)	0.8 (0.8 -- 0.8)	0.8 (0.8 -- 0.8)	0.8
LIF R	P015112	P15018	0.6 (0.6 -- 0.6)	0.6 (0.6 -- 0.6)	1.4 (1.4 -- 1.4)	1.4 (1.4 -- 1.4)	1.4 (1.4 -- 1.4)	1.4
MCP-2	P42702	4.0 (3.8 -- 4.1)	4.0 (3.8 -- 4.2)	2.3 (2.3 -- 2.3)	2.3 (2.3 -- 2.3)	2.3 (2.3 -- 2.3)	2.3 (2.3 -- 2.3)	2.3
MCP-3	P80075	9.1 (8.6 -- 9.5)	9.1 (8.6 -- 9.5)	5.1 (5.1 -- 5.1)	5.1 (5.1 -- 5.1)	5.1 (5.1 -- 5.1)	5.1 (5.1 -- 5.1)	5.1
MCP-3	P80098	2.1 (1.9 -- 2.4)	2.2 (1.9 -- 2.5)	1.9 (1.9 -- 2.1)	1.9 (1.9 -- 2.1)	1.9 (1.9 -- 2.1)	1.9 (1.9 -- 2.1)	1.9
Gene Symbol	Description	Accession	Median (Q1--Q3) [Reference]	Median (Q1--Q3) [Reference]	Difference			
-------------	-------------	-----------	-----------------------------	-----------------------------	------------			
MCP-4	Monocyte chemotactic protein 4	Q99616	2.3 (1.9 -- 2.7) [188]	2.3 (2.0 -- 2.8) [18]	0.3			
MMP-1	Matrix metalloproteinase-1	P03956	7.5 (6.8 -- 8.3) [188]	7.6 (6.9 -- 8.4) [18]	-0.3			
MMP-10	Matrix metalloproteinase-10	P09238	9.3 (8.9 -- 9.7) [188]	9.3 (8.8 -- 9.7) [18]	2.1			
NRTN	Neurturin	Q99748	1.2 (1.2 -- 1.2) [188]	1.2 (1.2 -- 1.2) [18]	1.2			
NT-3	Neurotrophin-3	P20783	1.9 (1.7 -- 2.2) [188]	2.0 (1.7 -- 2.2) [18]	0.6			
OSM	Oncostatin-M	P13725	2.6 (2.1 -- 3.1) [188]	2.7 (2.2 -- 3.2) [18]	0.5			
PD-L1	Programmed cell death 1 ligand 1	Q9NZQ7	5.0 (4.8 -- 5.3) [188]	5.1 (4.8 -- 5.4) [18]	2.4			
SIRT2	SiR2-like protein 2	Q8IXJ6	4.1 (3.4 -- 5.3) [188]	4.2 (3.6 -- 5.4) [18]	2.0			
SLAMF1	Signaling lymphocytic activation molecule	Q13291	3.5 (3.2 -- 3.9) [188]	3.5 (3.2 -- 3.9) [18]	1.8			
ST1A1	Sulfrtransferase 1A1	P50225	1.3 (0.5 -- 2.7) [188]	1.3 (0.5 -- 2.8) [18]	0.3			
STAMPB	STAM-binding protein	O95630	3.3 (2.9 -- 4.1) [188]	3.4 (3.0 -- 4.2) [18]	1.3			
TGF-alpha	Transforming growth factor alpha	P01135	1.2 (1.0 -- 1.4) [188]	1.3 (1.0 -- 1.5) [18]	-1.0			
TNF	Tumor necrosis factor	P01375	0.9 (0.9 -- 0.9) [188]	0.9 (0.9 -- 0.9) [18]	0.0			
TNFB	TNF-beta	P01374	3.1 (2.8 -- 3.3) [188]	3.1 (2.8 -- 3.3) [18]	0.6			
TNFRSF9	Tumor necrosis factor receptor superfamily member 9	Q07011	6.5 (6.1 -- 6.8) [188]	6.6 (6.2 -- 6.9) [18]	1.7			
TNFSF14	Tumor necrosis factor ligand superfamily member 14	O43557	2.6 (2.3 -- 3.0) [188]	2.7 (2.4 -- 3.0) [18]	-0.0			
TRAIL	TNF-related apoptosis-inducing ligand	P50591	7.6 (7.4 -- 7.8) [188]	7.6 (7.4 -- 7.8) [18]	6.4			
TRANCE	TNF-related activation-induced cytokine	O14788	4.6 (4.2 -- 5.0) [188]	4.6 (4.1 -- 5.0) [18]	1.4			
TSLP	Thymic stromal lymphopoietin	Q969D9	1.1 (1.1 -- 1.1) [188]	1.1 (1.1 -- 1.1) [18]	1.1			
TWEAK	Tumor necrosis factor (Ligand) superfamily, member 12	Q4ACW9	8.3 (8.1 -- 8.5) [188]	8.3 (8.0 -- 8.5) [18]	0.7			
VEGF-A	Vascular endothelial growth factor A	P15692	10.1 (9.9 -- 10.4) [188]	10.2 (10.0 -- 10.5) [18]	2.3			

Continuous variables presented as median (Q1-Q3). Number of missing values presented in [n]. SE, systemic embolism.

The CVDII panel were used for biomarkers ranging from ACE2 to XCL1; CVDIII panel for ALCAM to vWF; and Inflammation panel for 4E-BP1 to VEGF-A.
Table S2. Baseline NPX values (arbitrary units) and limit of detection (LoD) of proximity extension assay (PEA) biomarkers in the validation cohort.

Variable	UniProt No.	No	Ischemic stroke/SE	LoD		
ACE2	Q9BYF1	4.4 (3.9 -- 4.8)	4.4 (4.1 -- 5.0)	0.3		
ADAM-TS13	Q76LX8	5.9 (5.8 -- 6.0)	5.9 (5.8 -- 6.0)	1.1		
ADM	P35318	7.3 (6.9 -- 7.6)	7.3 (7.0 -- 7.7)	1.2		
AGRP	O00253	5.0 (4.7 -- 5.3)	5.1 (4.8 -- 5.3)	0.8		
AMBP	P02760	7.5 (7.3 -- 7.6)	7.5 (7.3 -- 7.7)	0.8		
ANGPT1	Q15389	8.0 (7.1 -- 8.8)	8.2 (7.2 -- 9.1)	0.6		
BMP-6	P22004	4.8 (4.5 -- 5.1)	4.9 (4.6 -- 5.2)	0.8		
BNP	P16860	5.4 (4.0 -- 6.4)	5.7 (4.4 -- 6.8)	1.5		
Protein BOC	Q9BWV1	3.9 (3.7 -- 4.1)	3.9 (3.7 -- 4.2)	1.0		
CASA	Q92583	2.2 (1.7 -- 2.9)	2.3 (1.8 -- 3.0)	1.6		
CCL17	P10147	7.7 (7.1 -- 8.5)	7.8 (7.4 -- 8.7)	1.3		
CCL3	P01730	6.3 (5.9 -- 6.7)	6.4 (6.1 -- 6.9)	1.2		
CD4	P29965	5.3 (5.1 -- 5.5)	5.4 (5.2 -- 5.6)	0.7		
CD40-L	Q9UIB8	3.6 (3.0 -- 4.6)	3.9 (3.3 -- 5.2)	0.8		
CD84	P31997	4.1 (3.8 -- 4.4)	4.2 (3.9 -- 4.4)	1.6		
CEACAM8	Q99895	4.3 (3.9 -- 4.7)	4.3 (4.0 -- 4.7)	1.7		
CTRC	P07711	10.2 (9.7 -- 10.7)	10.2 (9.8 -- 10.8)	1.9		
CTS1L	P09341	6.9 (6.7 -- 7.1)	7.0 (6.7 -- 7.3)	0.9		
CXCL1	P07585	8.8 (7.9 -- 9.6)	9.0 (8.0 -- 9.7)	2.1		
DCN	Q16698	4.9 (4.7 -- 5.1)	5.0 (4.8 -- 5.2)	0.9		
DECR1	O94907	3.7 (3.1 -- 4.6)	3.9 (3.2 -- 4.7)	1.7		
Dkk-1	P12104	8.4 (8.1 -- 8.9)	8.6 (8.3 -- 9.1)	0.8		
FABP2	Q9NSA1	8.8 (8.2 -- 9.4)	8.8 (8.3 -- 9.4)	1.5		
Protein Name	Description	GeneID	Mean	Range	Fold Change	
-------------------	---	--------	------------	-----------	-------------	
FGF-21	Fibroblast growth factor 21	Q9GZV9	7.9 (7.0 -- 8.8)	7.7 (7.1 -- 8.6)	1.8	
FGF-23	Fibroblast growth factor 23	P19883	4.7 (4.3 -- 5.2)	5.1 (4.5 -- 5.7)	2.0	
FS	Follistatin	O00182	11.4 (11.1 -- 11.7)	11.4 (11.2 -- 11.7)	2.0	
GAL-9	Galectin-9	Q9UK05	7.8 (7.5 -- 8.0)	7.8 (7.6 -- 8.1)	1.2	
GDF-2	Growth/differentiation factor 2	P01241	9.0 (8.6 -- 9.3)	9.1 (8.7 -- 9.3)	1.4	
GH	Growth hormone	P27352	7.5 (5.9 -- 8.9)	7.7 (6.3 -- 9.1)	1.1	
GIF	Gastric intrinsic factor	Q04760	7.7 (7.1 -- 8.4)	7.8 (7.1 -- 8.3)	1.4	
GLO1	Lactoylglutathione lyase	P51161	4.3 (3.8 -- 4.9)	4.4 (3.9 -- 4.9)	1.1	
GDF-2	Galectin-9	P01241	9.0 (8.6 -- 9.3)	9.1 (8.7 -- 9.3)	1.4	
GH	Growth hormone	P27352	7.5 (5.9 -- 8.9)	7.7 (6.3 -- 9.1)	1.1	
GIF	Gastric intrinsic factor	Q04760	7.7 (7.1 -- 8.4)	7.8 (7.1 -- 8.3)	1.4	
GLO1	Lactoylglutathione lyase	P51161	4.3 (3.8 -- 4.9)	4.4 (3.9 -- 4.9)	1.1	
GT	Gastrotropin	Q9UJM8	1.9 (1.5 -- 2.4)	1.8 (1.5 -- 2.3)	0.5	
HAOX1	Hydroxyacid oxidase 1	Q99075	5.4 (4.4 -- 6.4)	5.3 (4.4 -- 6.8)	1.0	
HBP-EGF	Proheparin-binding EGF-like growth factor	P09601	5.3 (5.0 -- 5.7)	5.4 (5.1 -- 6.0)	0.8	
HO-1	Heme oxygenase 1	Q8IY55	11.4 (11.1 -- 11.6)	11.4 (11.2 -- 11.6)	1.7	
hOSCAR	Osteoclast-associated immunoglobulin-like receptor	P04792	10.4 (10.2 -- 10.5)	10.4 (10.3 -- 10.6)	1.8	
HSP-27	Heat shock 27 kDa protein	P35475	9.1 (8.5 -- 9.6)	9.2 (8.7 -- 9.6)	2.5	
IDUA	Alpha-L-iduronidase	P31994	5.4 (5.0 -- 5.7)	5.5 (5.2 -- 5.7)	-0.5	
Ig Fc receptor II-b	Low affinity immunoglobulin gamma Fc region receptor II-b	Q8TAD2	3.2 (2.5 -- 3.8)	3.4 (2.9 -- 4.0)	1.1	
IL-17D	Interleukin-17D	Q14116	2.7 (2.4 -- 2.8)	2.7 (2.4 -- 2.9)	1.4	
IL-1ra	Interleukin-1 receptor antagonist protein	P18510	4.6 (4.2 -- 5.1)	4.7 (4.3 -- 5.2)	1.0	
IL-27	Interleukin-27	Q8NEV9, Q14213	5.8 (5.5 -- 6.1)	5.8 (5.4 -- 6.2)	1.1	
IL-4RA	Interleukin-4 receptor subunit alpha	P24394	1.9 (1.6 -- 2.1)	1.9 (1.7 -- 2.2)	1.1	
IL16	Pro-interleukin-16	Q14005	6.4 (6.1 -- 6.7)	6.4 (6.1 -- 6.8)	-0.2	
IL-18	Interleukin-18	Q14116	8.5 (8.2 -- 8.9)	8.6 (8.4 -- 9.0)	1.1	
IL1RL2	Interleukin-1 receptor-like 2	Q9HB29	4.5 (4.2 -- 4.7)	4.5 (4.2 -- 4.8)	1.3	
IL6	Interleukin-6	P05231	3.5 (3.0 -- 4.1)	3.7 (3.2 -- 4.2)	1.2	
ITGB1BP2	Melusin	Q9UKP3	2.7 (2.5 -- 4.2)	2.8 (2.5 -- 4.2)	2.5	
LEP	Leptin	P41159	7.0 (6.3 -- 7.7)	7.0 (6.2 -- 7.7)	1.4	
LOX-1	Lectin-like oxidized LDL receptor 1	P78380	6.6 (6.2 -- 7.0)	6.7 (6.4 -- 7.0)	1.4	
Gene	Description	UniProtID	Median (25% -- 75%)	95% (90% -- 99%)	Fold Change	
-------	--	-----------	---------------------	------------------	-------------	
LPL	Lipoprotein lipase	P06858	9.5 (9.1 -- 9.8)	9.5 (9.1 -- 9.8)	2.2	
MARCO	Macrophage receptor MARCO	Q9UEW3	6.3 (6.1 -- 6.4)	6.3 (6.1 -- 6.4)	1.4	
MERTK	Tyrosine-protein kinase Mer	Q12866	6.0 (5.7 -- 6.2)	6.0 (5.7 -- 6.3)	1.4	
MMP-12	Matrix metalloproteinase-12	P39900	7.0 (6.5 -- 7.5)	7.3 (6.8 -- 7.9)	0.1	
MMP-7	Matrix metalloproteinase-7	P09237	10.2 (9.8 -- 10.5)	10.3 (9.8 -- 10.7)	3.0	
NEMO	NF-kappa-B essential modulator	Q9Y6K9	3.2 (2.7 -- 4.0)	3.3 (2.8 -- 4.0)	1.5	
PAPPA	Pappalysin-1	Q13219	3.4 (3.0 -- 3.8)	3.5 (3.1 -- 3.9)	0.8	
PAR-1	Proteinase-activated receptor 1	P25116	8.6 (8.3 -- 8.9)	8.7 (8.4 -- 9.0)	1.2	
PARP-1	Poly [ADP-ribose] polymerase 1	P09874	3.0 (2.6 -- 3.3)	3.0 (2.6 -- 3.4)	1.4	
PD-L2	Programmed cell death 1 ligand 2	Q9ISS51	3.1 (2.9 -- 3.3)	3.2 (3.0 -- 3.5)	0.9	
PDGF subunit B	Platelet-derived growth factor subunit B	P01127	8.7 (7.8 -- 9.6)	9.0 (8.0 -- 9.8)	1.9	
PIGF	Placenta growth factor (PIGF)	P49763	7.9 (7.7 -- 8.2)	8.0 (7.8 -- 8.2)	1.1	
PIGR	Polymeric immunoglobulin receptor	P01833	6.3 (6.2 -- 6.4)	6.3 (6.2 -- 6.4)	2.3	
PRELP	Prolargin	P51888	8.1 (8.0 -- 8.3)	8.2 (8.0 -- 8.3)	0.8	
PRSS27	Serine protease 27	Q9BQR3	8.3 (8.0 -- 8.6)	8.4 (8.1 -- 8.8)	0.9	
PRSS8	Prostasin	Q16651	8.5 (8.2 -- 8.7)	8.5 (8.3 -- 8.7)	0.1	
PSGL-1	P-selectin glycoprotein ligand 1	Q14242	3.8 (3.7 -- 4.0)	3.9 (3.7 -- 4.0)	0.7	
PTX3	Pentraxin-related protein PTX3	P26022	4.3 (4.0 -- 4.7)	4.4 (4.1 -- 4.7)	1.1	
RAGE	Receptor for advanced glycosylation end products	Q15109	13.3 (13.0 -- 13.6)	13.5 (13.0 -- 13.8)	2.3	
REN	Renin	P00797	6.9 (6.2 -- 7.6)	7.0 (6.4 -- 7.7)	1.3	
SCF	Stem cell factor	P21583	8.7 (8.4 -- 9.0)	8.7 (8.4 -- 9.0)	1.2	
SERPINA2	Serpin A12	Q8H7W5	2.5 (2.0 -- 3.2)	2.6 (2.0 -- 3.2)	0.6	
SLAMF7	SLAM family member 7	Q9NQ25	4.0 (3.6 -- 4.5)	4.0 (3.7 -- 4.4)	2.1	
SOD2	Superoxide dismutase [Mn], mitochondrial	P04179	9.4 (9.4 -- 9.5)	9.4 (9.4 -- 9.5)	1.3	
SORT1	Sortilin	Q99523	8.5 (8.3 -- 8.7)	8.6 (8.4 -- 8.8)	1.2	
SPON2	Spondin-2	Q9BUD6	8.2 (8.0 -- 8.3)	8.2 (8.1 -- 8.3)	0.6	
SRC	Proto-oncogene tyrosine-protein kinase Src	P12931	5.1 (3.9 -- 6.8)	5.1 (4.1 -- 6.8)	0.6	
STK4	Serine/threonine-protein kinase 4	Q13043	2.4 (1.3 -- 4.2)	2.5 (1.3 -- 4.0)	1.3	
TF	Tissue factor	P13726	5.2 (5.0 -- 5.4)	5.2 (5.1 -- 5.4)	0.7	
Gene Symbol	Gene Name	Accession	Mean Log2 Expression	90% CI	Fold Change	
------------	---	-----------	----------------------	--------------	-------------	
TGM2	Protein-glutamine gamma-glutamyltransferase 2	P21980	8.7 (8.3 – 9.2)	8.8 (8.4 – 9.2)	2.5	
THBS2	Thrombospondin-2	P35442	5.6 (5.4 – 5.8)	5.6 (5.5 – 5.8)	0.2	
THPO	Thrombopoi etin	P40225	2.7 (2.5 – 2.9)	2.7 (2.5 – 3.0)	0.6	
TIE2	Angiopoietin-1 receptor	Q02763	7.2 (7.0 – 7.3)	7.2 (7.0 – 7.4)	1.4	
TM	Thrombomodulin	P07204	10.3 (10.0 – 10.5)	10.3 (10.1 – 10.6)	2.3	
TIM	T-cell immunoglobulin mucin receptor 1	Q96D42	7.4 (6.9 – 7.9)	7.7 (7.3 – 8.4)	1.7	
TNFRSF10A	Tumor necrosis factor receptor superfamily member 10A	O00220	3.8 (3.5 – 4.0)	3.9 (3.6 – 4.1)	1.4	
TNFRSF11A	Tumor necrosis factor receptor superfamily member 11A	Q9Y6Q6	5.8 (5.5 – 6.1)	5.9 (5.6 – 6.2)	1.3	
TNFRSF13B	Tumor necrosis factor receptor superfamily member 13B	O14836	10.1 (9.9 – 10.4)	10.2 (9.8 – 10.5)	1.4	
TRAIL.R2	TNF-related apoptosis-inducing ligand receptor 2	O14763	5.9 (5.7 – 6.2)	6.0 (5.9 – 6.4)	1.5	
VEGFD	Vascular endothelial growth factor D	O43915	7.6 (7.4 – 7.9)	7.7 (7.4 – 8.0)	0.7	
VSIG2	V-set and immunoglobulin domain-containing protein 2	Q96IQ7	4.8 (4.5 – 5.2)	4.9 (4.6 – 5.3)	1.6	
XCL1	Lymphotactin	P47992	5.0 (4.6 – 5.4)	5.0 (4.6 – 5.4)	0.3	
ALCAM	CD166 antigen	Q13740	7.2 (7.0 – 7.3)	7.2 (7.0 – 7.4)	1.2	
AP-N	Aminopeptidase N	P15144	4.7 (4.5 – 4.9)	4.7 (4.6 – 4.9)	1.1	
AXL	Tyrosine-protein kinase receptor UFO	P30530	8.8 (8.6 – 9.1)	8.9 (8.7 – 9.1)	2.4	
AZU1	Azurocidin	P20160	2.5 (2.1 – 3.1)	2.5 (2.1 – 3.1)	0.6	
BLM hydrolase	Bleomycin hydrolase	Q13867	2.1 (1.9 – 2.4)	2.1 (1.9 – 2.4)	-0.6	
CASP-3	Caspase-3	P42574	4.7 (3.9 – 6.1)	4.7 (4.0 – 6.0)	0.7	
CCL15	C-C motif chemokine 15	Q16663	7.1 (6.8 – 7.5)	7.2 (6.9 – 7.5)	1.2	
CCL16	C-C motif chemokine 16	O15467	6.7 (6.4 – 7.0)	6.8 (6.4 – 7.1)	0.4	
CCL24	C-C motif chemokine 24	O00175	5.0 (4.4 – 5.7)	4.9 (4.3 – 5.6)	0.8	
CD163	Scavenger receptor cysteine-rich type 1 protein M130	Q86V87	7.7 (7.4 – 8.0)	7.8 (7.5 – 8.0)	1.2	
CD93	Complement component C1q receptor	Q9NPY3	10.9 (10.6 – 11.1)	11.0 (10.7 – 11.2)	1.7	
CDH5	Cadherin-5	Q9NPY3	4.3 (4.1 – 4.5)	4.3 (4.1 – 4.5)	1.4	
CHI3L1	Chitinase-3-like protein 1	P36222	4.6 (3.9 – 5.3)	4.8 (4.2 – 5.4)	-0.8	
CHIT1	Chitotriosidase-1	Q13231	5.3 (4.6 – 6.1)	5.5 (4.7 – 6.3)	0.8	
CNTN1	Contactin-1	Q12860	4.3 (4.1 – 4.6)	4.4 (4.1 – 4.6)	0.7	
COL1A1	Collagen alpha-1(I) chain	P02452	2.7 (2.5 – 2.9)	2.8 (2.5 – 3.0)	0.5	
Gene	Description	UniProt ID	Mean Value	95% Confidence Interval	Variance	
---------	--	------------	------------	--------------------------	----------	
CPA1	Carboxypeptidase A1	P15085	5.7 (5.3 -- 6.2)	5.8 (5.3 -- 6.2)	1.3	
CPB1	Carboxypeptidase B	P15086	5.6 (5.1 -- 6.0)	5.6 (5.1 -- 6.0)	0.6	
CSTB	Cystatin-B	P04080	4.0 (3.7 -- 4.4)	4.1 (3.9 -- 4.5)	1.9	
CTD	Cathepsin D	P07339	2.4 (2.1 -- 2.7)	2.4 (2.1 -- 2.8)	0.1	
CTS2	Cathepsin Z	Q9UBR2	5.1 (4.9 -- 5.4)	5.2 (5.0 -- 5.4)	1.0	
CXCL16	C-X-C motif chemokine 16	Q9H2A7	5.2 (5.1 -- 5.4)	5.3 (5.1 -- 5.4)	1.4	
DLK.1	Protein delta homolog 1	P80370	5.8 (5.3 -- 6.1)	5.8 (5.3 -- 6.2)	1.4	
EGFR	Epidermal growth factor receptor	P00533	2.8 (2.6 -- 2.9)	2.7 (2.6 -- 2.9)	0.3	
EP.CAM	Epithelial cell adhesion molecule	P16422	5.1 (4.5 -- 5.8)	5.0 (4.5 -- 5.7)	2.0	
EPHB4	Ephrin type-B receptor 4	P54760	5.5 (5.2 -- 5.7)	5.5 (5.3 -- 5.8)	1.6	
FABP4	Fatty acid-binding protein, adipocyte	P15090	5.7 (5.1 -- 6.3)	5.8 (5.3 -- 6.4)	2.0	
FAS	Tumor necrosis factor receptor superfamily member 6	P25445	5.8 (5.6 -- 6.0)	5.8 (5.6 -- 6.1)	0.6	
Gal-3	Galectin-3	P17931	3.2 (2.9 -- 3.4)	3.2 (3.0 -- 3.4)	-1.1	
Gal-4	Galectin-4	P56470	4.1 (3.8 -- 4.5)	4.2 (3.9 -- 4.6)	1.0	
GDF-15	Growth/differentiation factor 15	Q99988	6.2 (5.9 -- 6.7)	6.5 (6.1 -- 7.0)	0.6	
GP6	Platelet glycoprotein VI	Q9HCN6	1.9 (1.6 -- 2.4)	2.0 (1.7 -- 2.4)	1.1	
GRN	Granulins	P28799	5.4 (5.2 -- 5.6)	5.5 (5.3 -- 5.7)	0.4	
ICAM-2	Intercellular adhesion molecule 2	P13598	5.4 (5.1 -- 5.6)	5.5 (5.2 -- 5.7)	1.6	
IGFBP-1	Insulin-like growth factor-binding protein 1	P08833	4.8 (3.9 -- 5.6)	4.8 (4.2 -- 5.7)	1.6	
IGFBP-2	Insulin-like Growth Factor-Binding Protein 2	P18065	8.2 (7.6 -- 8.6)	8.4 (8.0 -- 8.7)	0.8	
IGFBP-7	Insulin-like growth factor-binding protein 7	Q16270	7.9 (7.6 -- 8.1)	8.0 (7.7 -- 8.3)	1.4	
IL-1RA	Interleukin-1 receptor A	Q96F46	4.0 (3.7 -- 4.3)	4.1 (3.7 -- 4.3)	1.6	
IL-18BP	Interleukin-18-binding protein	Q95998	5.8 (5.6 -- 6.1)	5.9 (5.7 -- 6.2)	1.3	
IL-1RT1	Interleukin-1 receptor type 1	P14778	6.3 (6.2 -- 6.5)	6.4 (6.2 -- 6.7)	2.1	
IL-1RT2	Interleukin-1 receptor type 2	P27930	4.9 (4.7 -- 5.1)	4.8 (4.6 -- 5.1)	0.8	
IL-6RA	Interleukin-6 receptor subunit alpha	P08887	11.6 (11.3 -- 11.9)	11.6 (11.3 -- 11.8)	2.7	
IL2-RA	Interleukin-2 receptor subunit alpha	P01589	3.8 (3.5 -- 4.1)	3.9 (3.6 -- 4.1)	1.8	
ITGB2	Integrin beta-2	P05107	5.4 (5.1 -- 5.6)	5.4 (5.2 -- 5.7)	1.0	
JAM-A	Junctional adhesion molecule A	Q9Y624	3.8 (3.5 -- 4.1)	3.9 (3.7 -- 4.3)	0.2	
Gene	Description	UniProt ID	Mean	Median	Standard Deviation	
----------	--	------------	--------	--------	--------------------	
KLK6	Kallikrein-6	Q92876	2.4 (2.1 -- 2.6)	2.4 (2.2 -- 2.7)	0.3	
LDL receptor	Low-density lipoprotein receptor	P01130	3.7 (3.4 -- 4.1)	3.7 (3.3 -- 4.1)	0.2	
LTBR	Lymphotoxin-beta receptor	P36941	3.9 (3.7 -- 4.2)	4.0 (3.8 -- 4.3)	1.5	
MB	Myoglobin	P02144	7.7 (7.3 -- 8.1)	7.7 (7.3 -- 8.0)	2.4	
MCP-1	Monocyte chemotactic protein 1	P13500	4.2 (3.9 -- 4.4)	4.2 (4.0 -- 4.5)	1.1	
MEPE	Matrix extracellular phosphoglycoprotein	Q9NQ76	5.6 (5.3 -- 5.9)	5.6 (5.3 -- 5.9)	1.3	
MMP-2	Matrix metalloproteinase-2	P08253	3.7 (3.5 -- 3.9)	3.7 (3.5 -- 4.0)	2.5	
MMP-3	Matrix metalloproteinase-3	P08254	7.7 (7.2 -- 8.1)	7.7 (7.4 -- 8.1)	1.7	
MMP-9	Matrix metalloproteinase-9	P14780	5.1 (4.6 -- 5.7)	5.3 (4.8 -- 5.8)	1.3	
MPO	Myeloperoxidase	P05164	3.0 (2.8 -- 3.3)	3.0 (2.8 -- 3.3)	0.6	
Notch 3	Neurogenic locus notch homolog protein 3	Q9UM47	5.7 (5.4 -- 6.0)	5.8 (5.5 -- 6.0)	1.3	
NT-proBNP	N-terminal prohormone brain natriuretic peptide	NA	6.7 (5.9 -- 7.3)	6.9 (6.1 -- 7.7)	2.2	
OPG	Osteoprotegerin	O00300	3.9 (3.7 -- 4.2)	4.0 (3.8 -- 4.3)	1.5	
OPN	Osteopontin	P10451	7.4 (7.0 -- 7.8)	7.6 (7.2 -- 8.0)	1.3	
PAI	Plasminogen activator inhibitor 1	P05121	5.3 (4.7 -- 6.0)	5.4 (4.7 -- 6.1)	1.0	
PCSK9	Proprotein convertase subtilisin/kexin type 9	Q8NB7	3.1 (2.9 -- 3.4)	3.2 (2.9 -- 3.4)	0.9	
PDGF subunit A	Platelet-derived growth factor subunit A	P04085	3.1 (2.6 -- 3.8)	3.4 (2.7 -- 4.1)	1.3	
PECAM-1	Platelet endothelial cell adhesion molecule	P16284	4.1 (3.9 -- 4.3)	4.2 (4.0 -- 4.4)	1.0	
PGLYR1	Peptidoglycan recognition protein 1	Q75594	7.3 (6.9 -- 7.6)	7.4 (7.0 -- 7.7)	0.4	
P33	Elafin	P19957	2.4 (2.0 -- 2.9)	2.5 (2.1 -- 3.1)	-0.0	
PLC	Perlecan	P98160	7.9 (7.7 -- 8.1)	7.9 (7.7 -- 8.2)	1.0	
PON3	Paraoxonase	Q15166	5.7 (5.3 -- 6.1)	5.7 (5.4 -- 6.1)	1.0	
PRTN3	Myeloblastin	P24158	3.7 (3.4 -- 4.1)	3.8 (3.4 -- 4.1)	0.3	
PSP-D	Pulmonary surfactant-associated protein D	P35247	3.2 (2.6 -- 3.8)	3.3 (2.8 -- 3.8)	1.2	
RARRES2	Retinoic acid receptor responder protein 2	Q99699	11.4 (11.3 -- 11.6)	11.5 (11.3 -- 11.6)	1.9	
RETN	Resistin	Q9HD89	6.0 (5.7 -- 6.3)	6.1 (5.8 -- 6.4)	0.6	
SCGB3A2	Secretoglobin family 3A member 2	Q96PL1	2.7 (2.3 -- 3.2)	2.7 (2.3 -- 3.2)	0.9	
SELE	E-selectin	P16581	11.7 (11.3 -- 12.1)	11.8 (11.4 -- 12.2)	3.5	
SELP	P-selectin	P16109	9.3 (9.0 -- 9.7)	9.4 (9.2 -- 9.8)	1.7	
Protein Name	Description	Protein ID	Median (Q1-Q3)	Lower (Q1-Q3)	Upper (Q1-Q3)	Ratio
-------------------	--	------------	------------------------	------------------------	------------------------	-------
SHPS-1	Tyrosine-protein phosphatase non-receptor type substrate 1	P78324	3.6 (3.3 -- 3.9)	3.7 (3.4 -- 4.0)	1.3	
SPON1	Spondin-1	Q9HCB6	2.3 (2.1 -- 2.5)	2.4 (2.2 -- 2.6)	1.6	
ST2	ST2 protein	Q01638	4.5 (4.1 -- 4.8)	4.5 (4.2 -- 4.9)	1.4	
T-PA	Tissue-type plasminogen activator	P00750	6.8 (6.4 -- 7.1)	6.8 (6.3 -- 7.2)	1.7	
TFF3	Trefoil factor 3	Q07654	5.1 (4.8 -- 5.4)	5.2 (5.0 -- 5.5)	1.3	
TFPI	Tissue factor pathway inhibitor	P10646	8.9 (8.7 -- 9.2)	9.0 (8.8 -- 9.2)	1.2	
TIMP4	Metalloproteinase inhibitor 4	Q99727	3.7 (3.4 -- 4.0)	3.7 (3.4 -- 4.0)	1.2	
TLT-2	Trem-like transcript 2 protein	Q5T2D2	4.7 (4.4 -- 5.0) [2]	4.7 (4.5 -- 5.0) [0]	2.1	
TNF-R1	Tumor necrosis factor receptor 1	P19438	6.7 (6.4 -- 7.0)	6.9 (6.5 -- 7.2)	1.6	
TNF-R2	Tumor necrosis factor receptor 2	P20333	5.7 (5.4 -- 6.0)	5.8 (5.5 -- 6.2)	1.8	
TNFRSF10C	Tumor necrosis factor receptor superfamily member 10C	O14798	6.7 (6.4 -- 7.1)	6.8 (6.3 -- 7.1)	1.8	
TNFRSF14	Tumor necrosis factor receptor superfamily member 14	Q92956	4.5 (4.3 -- 4.8)	4.7 (4.3 -- 4.9)	1.4	
TNFSF13B	Tumor necrosis factor ligand superfamily member 13B	Q9Y275	6.9 (6.7 -- 7.2)	7.0 (6.8 -- 7.2)	1.4	
TR	Transferrin receptor protein 1	P02786	5.6 (5.1 -- 6.0)	5.6 (5.0 -- 6.1)	0.8	
TR-AP	Tartrate-resistant acid phosphatase type 5	P13686	3.1 (2.9 -- 3.4)	3.1 (2.8 -- 3.3)	-0.4	
U-PAR	Urokinase plasminogen activator surface receptor	Q03405	5.5 (5.2 -- 5.7)	5.6 (5.4 -- 5.9)	1.1	
uPA	Urokinase-type plasminogen activator	P00749	4.6 (4.4 -- 4.8)	4.6 (4.4 -- 4.9)	0.1	
vWF	von Willebrand factor	P04275	6.2 (5.7 -- 6.7)	6.2 (5.7 -- 6.7)	1.8	

Continuous variables presented as median (Q1-Q3). Number of missing values presented in [n]. SE, systemic embolism. The CVDII panel were used for biomarkers ranging from ACE2 to XCL1; CVDIII panel for ALCAM to vWF.
Table S3. Spearman correlation between selected proximity extension assay (PEA) biomarkers and established biomarkers in identification cohort.

	Cystatin C	NT-proBNP	Troponin T
CCL16	0.326057	0.116803	0.216475
TFPI	0.116171	0.027273	0.071213
CTSZ	0.419811	0.089237	0.255986
vWF	0.223911	0.128312	0.156687
OPN	0.369751	0.279303	0.339888
LDL receptor	-0.01631	-0.23105	-0.14058
RARRES2	0.384146	0.065364	0.167948
PAI	-0.01812	-0.10743	-0.05619
TGM2	0.130266	0.034768	0.054574
BLM hydrolase	0.012694	0.026024	0.046392
IL-8	0.229656	0.158906	0.210904
t-PA	0.142776	0.00769	0.070268
ST2	0.129105	0.233633	0.227892
CTS1	0.195729	0.13611	0.18377
ICAM-2	0.218761	0.103348	0.167416
THPO	0.104614	-0.02697	0.019508
RETN	0.423148	0.184607	0.243007
EGFR	-0.17501	-0.22745	-0.18511
SORT1	0.102739	0.16729	0.128806
PECAM-1	0.139443	0.053568	0.108929
CD163	0.209344	0.04723	0.109585
MCP-3	0.251239	0.067235	0.197417
PI3	0.43205	0.184406	0.330276
CASP-8	0.174668	0.061145	0.099539
AXL	0.325201	0.149479	0.188641
MMP-9	0.1419	0.028383	0.05646
SPON1	0.36497	0.37444	0.34543
PARP-1	0.163689	0.067256	0.083399
SLAMF7	0.193701	0.18533	0.162963
ADAM-TS13	-0.13264	-0.1052	-0.13527
GIF	0.081056	-0.03373	0.059539
IL-17D	0.256782	0.280115	0.227042
Protein BOC	0.03653	0.129242	0.12147
REN	0.20946	-0.06636	0.161811

Correlation analyses for the PEA biomarkers associated with ischemic stroke according to adjusted Cox-regression analyses (model B). Cystatin C represents renal function, N-terminal prohormone brain natriuretic peptide (NT-proBNP) cardiac dysfunction, and troponin T myocyte damage.
Table S4. Spearman correlation between selected proximity extension assay (PEA) biomarkers and established biomarkers in validation cohort.

	Cystatin C	NT-proBNP	Troponin T
TIM	0.199422	0.137887	0.222042
MMP-12	0.263789	0.210639	0.218399
Ig G Fc receptor II-b	0.108278	0.094566	0.046282
Gal-9	0.542171	0.221024	0.194315
SHPS-1	0.236335	0.102631	0.115044
MMP-9	0.128594	0.021436	0.059973
IL-1RT1	0.140452	0.205891	0.229196
PDGF subunit B	0.033149	0.012021	-0.03668
ALCAM	0.217539	0.153672	0.07557
PD-L2	0.22183	0.176829	0.164531
PRSS27	0.173877	-0.01033	0.057556
IL-1ra	0.275154	0.028785	0.032681
GDF-15	0.461178	0.358954	0.472604
PDGF subunit A	0.039029	0.02956	-0.02062
CD40-L	0.078597	0.039913	-0.01413
Dkk-1	0.125303	0.049636	0.038688
SORT1	0.037477	0.1309	0.08599
IL-18	0.18602	0.106796	0.091669
GT	0.228407	0.176812	0.120412

Correlation analyses for the PEA biomarkers associated with ischemic stroke according to adjusted Cox-regression analyses (model B). Cystatin C represents renal function, N-terminal prohormone brain natriuretic peptide (NT-proBNP) cardiac dysfunction, and troponin T myocyte damage.
Table S5. Baseline concentrations of the identified proximity extension assay (PEA) biomarkers associated with ischemic stroke/systemic embolism (SE).

Identification cohort	No event (n=4,124)	Ischemic stroke/SE (n=282)	p-value
MMP9	4.2 (3.7 -- 4.7)	4.3 (3.7 -- 4.7)	0.0592
OPN	5.4 (5.0 -- 5.7)	5.6 (5.2 -- 5.9)	1.09E-08
SORT1	6.4 (6.2 -- 6.5)	6.4 (6.2 -- 6.6)	1.05E-04
ST2	4.2 (3.9 -- 4.6)	4.4 (4.0 -- 4.7)	1.44E-06
TFF3	5.6 (5.3 -- 6.0)	5.7 (5.4 -- 6.2)	4.16E-09

Validation cohort	No event (n=1,062)	Ischemic stroke/SE (n=149)	p-value
MMP9	5.1 (4.6 -- 5.7)	5.3 (4.8 -- 5.8)	0.0155
OPN	7.4 (7.0 -- 7.8)	7.6 (7.2 -- 8.0)	0.0028
SORT1	8.5 (8.3 -- 8.7)	8.6 (8.4 -- 8.8)	0.0041
ST2	4.5 (4.1 -- 4.8)	4.5 (4.2 -- 4.9)	0.1278
TFF3	5.1 (4.8 -- 5.4)	5.2 (5.0 -- 5.5)	4.95E-04

P-value according to unadjusted Cox-regression models. Number of missing values presented in [n]. MMP9, matrix metalloproteinase-9; OPN, osteopontin; SORT1, sortilin; ST2, suppression of tumorigenesis 2; TFF3, trefoil factor-3.
Figure S1A

Association of all 255 biomarkers with ischemic stroke or systemic embolism according to unadjusted Cox-regression analysis in the identification cohort
Figure S1B

Association of all 188 biomarkers with ischemic stroke or systemic embolism according to unadjusted Cox-regression analysis in the validation cohort

Protein	Hazard ratio (HR) [95% CI]	P value
NT-proBNP (ng/L)	1.237 [1.102, 1.389]	0.002
TIM	1.322 [1.194, 1.457]	0.0001
CTSL1	1.408 [1.270, 1.559]	0.0001
TNFRSF10A	1.551 [1.338, 1.806]	0.0001
OPN	1.595 [1.351, 1.886]	0.0001
CT14	1.649 [1.413, 1.931]	0.0001

Hazard ratio (HR) and 95% confidence interval (CI) for each biomarker are shown.
Figure S2A

Association of the top biomarkers (Table 3) with ischemic stroke/systemic embolism by using splines in the identification cohort
Figure S2B
Association of the top biomarkers (Table 3) with ischemic stroke/systemic embolism by using splines in the validation cohort