Tools and resources for Romanian text-to-speech and speech-to-text applications

Tiberiu Boros, Stefan Daniel Dumitrescu and Vasile Pais
Research Institute for Artificial Intelligence “Mihai Draganescu”, Romanian Academy
Calea 13 Septembrie, nr. 13
{tibi, sdumitrescu, pais}@racai.ro

Abstract
In this paper we introduce a set of resources and tools aimed at providing support for natural language processing, text-to-speech synthesis and speech recognition for Romanian. While the tools are general purpose and can be used for any language (we successfully trained our system for more than 50 languages and participated in the Universal Dependencies Shared Task), the resources are only relevant for Romanian language processing.

Keywords: natural language processing, text-to-speech synthesis, Romanian language, multilingual, low-resourced environments, decision trees, neural networks, LSTMs

1. Introduction
Natural language processing (NLP), text-to-speech synthesis (TTS) and automatic speech recognition (ASR) are key components of modern applications especially those that rely on human-computer-interaction via voice input/output. As smart phones and gadgets are gaining ground on their competitors (laptops and desktops), they are the most likely candidates to serve as front-ends in the Internet-of-Thing (IoT) landscape. However, these devices rely mostly on low-powered chips that need to run live/responsive user interfaces. Our work is focused in providing support for NLP, TTS and ASR applications in low-resourced environments by providing a set of tools that is designed to easily scale, depending on the available application and computational resources. Given the success of the widely spread and well-known lightweight ASR system PocketSphinx [Huggins-Daines et al., 2006] we only address NLP and TTS with our tools. We do however, introduce a newly created text-to-speech synthesis corpus that is intended to consolidate currently available speech resources for the Romanian language and a newly created speech recognition corpus which is composed of a freely available sub-corpus and license-restricted one. Though we are able to provide transcription and phoneme-level alignments for the non-free section of the ASR corpus, obtaining the recorded speech is the subject of a different process that involves a third party (the RADOR press agency). As we are currently working on a neural-based speech recognition and keyword spotting tool for Romanian, providing pre-trained models on the entire speech corpus will not be a problem and will mitigate the license restrictions. Also, we have to mention that the audio data can be indirectly obtained by systematically using the Oral Corpus Query Platform (OCQP) (later described in section 2.3) from the COROLA project based on our aligned data.

The paper is structured as follows: (a) the first part introduces two ready-to-use frameworks that are freely available for download with no license restrictions; (b) the second part describes a freely available speech corpus for Romanian, focusing on corpora-composition and annotations; (c) the third part discusses our road-map for future developments and enhancements.

2. Tools description
2.1. Natural Language Processing
Most natural language processing (NLP) tasks require a certain level of text preprocessing aimed at segmenting the input into standard processing units (often into sentences and words but, depending on the application, also syllables, phonemes etc.) and at enriching these units with additional features designed to reduce the effect of data sparsity (lemmas, part-of-speech tags, morphological attributes etc.). Because this is a ground-zero requirement, the literature is abundant with methods and techniques for low-level text processing, but multilingual text-processing is still a challenging task. This has been proven by the well-known shared task on Universal Dependencies (UD) parsing [Zeman et al., 2017]. One very important conclusion is that while some algorithms have an overall better performance than others - and we draw the attention to Stanford’s [Dozat et al., 2017] graph-based parser, there is no “one size fits all” algorithm that is language and corpora-size independent.

While accuracy carries a great weight in NLP applications, there are two other factors that impact the design of such systems: computational cost and memory footprint. With this in mind we introduced support for three very different machine learning algorithms applied on the same set of
The MLPLA architecture (Figure 1) (initially introduced in [Zafiu et al., 2015]) is composed of three main layers: (a) input; (b) processing pipeline and (c) output. For overcoming language-dependent and approach-based limitations, our system is built using a scalable plug-and-play methodology. The processing units are built so that they implement one of three different interfaces depending on the module under which they operate. The three interfaces are (a) the data input processor - an implementation of this interface must be able to receive the input text as a character sequence and perform any necessary preprocessing in order to obtain a tokenized text; (b) the base processor interface – an implementation receives a sequence of tokens, each token containing standard attributes (part-of-speech, lemma, phonetic transcription, syllables, accent, chunk and dependencies) but also allowing the insertion of non-standard attributes through a key-value table - each processor is responsible for building its own feature set using all available data, performing the NLP task it was designed for and filling in either a value for a standard attribute or adding a custom attribute; (c) the feature-based output – an implementation must take a sequence of tokens and convert it into a feature-based output, depending on the application in which MLPLA is used. The order in which the base processors are chained is controlled externally from a configuration file (see Figure 2 for details).

Our recent work has been centered on extending the existing system and addressing multilingual text processing. Given that we are able to easily interchange between models/modules and classifiers, we focused our efforts into assessing what is the best trade-off between speed/accuracy and model size because versatility is an important feature of our framework.

NOTE: The performance of each model processing steps are currently not the focus of this paper. However, they can be looked up in [Zafiu et al., 2015] for Romanian specific data and in [Dumitrescu et al., 2017] for the complete list of languages supported by UD. If this article is accepted as a long paper we plan to include more results using a stacked bidirectional LSTM model that we’ve worked on recently.

We note that the system supports tokenization, lemmatization, chunking, part-of-speech tagging, parsing, syllabification, stress prediction on words and letter-to-sound (for text-to-speech purposes). Each of these processing tasks uses one or more of the algorithms shortly described below; for example, tagging can be done either with a linear model or with LSTMs. The configuration file allows easy prototyping of solutions using our platform.

2.2. Text-to-speech synthesis

The speech synthesis tool is called SSLA which stands for Speech Synthesis for Lightweight Applications. We implemented statistical parametric speech synthesis because it offers constant quality and a small footprint in contrast to the concatenative (unit-selection) approach that might sound more natural at times (if enough data is available, otherwise worse than parametric synthesis) and a significantly larger memory requirement. We use decision trees to independently model frame-by-frame speech parameters for the spectral envelope, phone-state duration and voice.

![Figure 1: Overview of the MLPLA architecture](image-url)
For the effective speech synthesis process it can switch between the classical Mel-Log Spectral Approximation (MLSA) filter (Imai et al., 1983) and Speech Transformation and Representation using Adaptive Interpolation of weighted spectrum (STRAIGHT) (Kawahara et al., 1999). The reason for this is that while STRAIGHT results are superior in quality, it is way more computationally expensive than the MLSA counterpart and, for some applications this can be a really important bottleneck.

The input models are fully compatible with the HMM Speech Synthesis (HTS) Toolkit (Zen et al., 2007), which in fact we use for training and compiling models. Currently we only support multinomial training and we treat features as “bag-of-words”. There are no constraints regarding the feature format, except that features should not contain spaces or the special character ‘/’ which is the feature delimiter.

The standard feature-set used by our speech synthesis back-end is:

- **Phonetic context**: (a) current phoneme accompanied by two preceding phonemes and two succeeding phonemes; (b) articulatory information for all phones inside the feature window;

- **Syllable information**: (a) the identity of frequent syllables is used as a feature along side with information which is present regardless of the syllables frequency such as: lexical accent, relative syllable position inside the word and sentence, the total number of syllables in the sentence (which is actually a feature used for the global variance), distance from the previous and distance to the next punctuation mark;

- **Global context information**: the type of the sentence (declarative, interrogative or exclamation), the identity of the previous and the next punctuation marks and the total number of words inside the utterance;

- **Local morphosyntactic information**: previous, current and next part-of-speech together with the relative position of the syllable and word inside syntactic chunks as defined in Ion (2007b).

2.3 Oral Corpus Query Platform

The Oral Corpus Query Platform is an on-line tool designed to help linguists in their study of spoken language. It enables one to query our oral corpus using combinations of wordforms, lemmas and part-of-speech tags. It is currently part of the COROLA project (Tufis et al., 2015) and it is hosted in the RACAI cloud, but, if desired we are willing to provide access to our code-base and help deploy the platform on-site.

The data currently available on this platform contains the Romanian oral corpus which is described in the next section, as well as additional speech corpora from the Institute of Computer Science of the Romanian Academy (IIT).

In order to fully support indexing and searching through the corpus we used the flat start monophones procedure of HTK (Young et al., 2002) in order to obtain phoneme-level alignments between the transcriptions and speech data. Because HTK only uses words and their phonetic transcriptions we realigned the raw text data with the phoneme-level information using dynamic programming. Also, the raw text data was tokenized, lemmatized and tagged using an external tool called TTL (Ion, 2007a). The reason for not using our own tool-chain was that COROLA required consistent annotations over the entire corpora and the text-component was already processed using this standard tool.

3. Speech corpus

As previously mentioned our speech data is composed of a section aimed at text-to-speech synthesis (composed of high-quality recordings) and another section which is intended to provide support for speech recognition applications.

3.1 The text-to-speech synthesis corpus

3.1.1 Corpora composition

One of the prerequisites in developing a TTS corpus states that the corpus must provide a good coverage over the target language and domain. In other words this means that (a) the corpus must be phonetically balanced in terms of target speech units (i.e. phonemes, diphones etc.) and (b) a single unit must appear in multiple prosodic contexts in order to enable the TTS system to learn the prosodic patterns that relate to the language, the target domain and the speaking style of the speaker himself. Taking into consideration the above mentioned conditions we decided to construct a Romanian speech corpus composed of two sections:

(a) The first section (section A) is based on Wikipedia (for Romanian) and contains a number of sentences that were chosen using a greedy algorithm (that will be presented later in this paper) in order to ensure the completeness of the phonetic domain of the Romanian language. The sentences are treated as individual prompts (no larger context is provided), thus the speaker must record each individual sentence “out of the blue” and he is forced to limit his narrative interpretation to the utterance itself.

(b) The second section of the corpus (section B) is composed of the Romanian adaptation after Allen Carr’s book “Easy way to stop smoking”. The book contains a lot of motivational and persuasive passages which are carefully crafted by the

3 In our experiments we set the threshold to 5 for frequent syllables

4 http://korap.racai.ro/corola_sound_search/index.php
author to convince smokers quit their habit. Additional to the prompts themselves, we also made use of an existing audiobook. Originally, this audiobook was recorded by a male actor and has approximately two and a half hours of high quality studio recordings at 48KHz. This lead the actor to make use of highly prosodic rhetoric speech with the purpose of (a) reshaping the cognitive state of (b) and relying embedded messages to the listener. Gaining access to the low-level prosodic parameters (F0, phone duration and pauses) that make up such a speech is an asset to research in the field of natural TTS systems. The matching prompts (from the audiobook) were made available to our speakers (one male and one female) in order to act as a baseline and a guide in their voice shaping process.

The second section of our corpus (the book section) is not as well balanced as the first section. The corpus from which section A sentences were extracted was the full dump of the Romanian Wikipedia as of June 2012, because, belonging to the encyclopedic genre, it contains a wide range of domains and different word types. Because the Wikipedia dump contains a lot of errors and is far from a clearly readable text, we had to employ a number of heuristic rules to remove and/or correct sentences. Below we enumerate the processing steps applied:

(a) Sentence-split the corpus and tokenize it, keeping only the ones that were not longer than 20 words. Using our in-house developed sentence splitter (based on a Maximum Entropy engine), we obtained over 5 million such sentences.

(b) Remove all leading and trailing spaces or non-printable characters.

(c) Remove all lines that contain any of the following characters: ‘½’, ‘¼’, ‘¾’, ‘½’, ‘¾’, ‘½’; brackets, slashes, quotes, etc. (several characters we manually input), as well as all the lines that contain abbreviations or tokens like: sos., cal., .ro., uk., www., etc. All these rules were input manually because there is a large number of sentences that contain these tokens and are not suitable for recording. Some of the rules are regexes like a word having Latin a-z characters; others were simple conditions that a line should not have a certain substring.

(d) Remove all lines that contain numbers.

(e) Remove all lines that are all caps (usually titles)

(f) Remove all lines with less than three words with the following exceptions: if the sentence length is one, then that word should be in the Romanian Lexicon, thus removing a significant number of foreign sentences existing in Wikipedia.

(g) Remove all lines that do not have at least 90% words in the lexicon (excepting proper nouns). This rule ensured that a lot of erroneous sentences were removed because they contained words in foreign languages (even though we used the Romanian Wikipedia dump, we still found a great number of sentences that are or at least contain words in other languages).

(h) Remove all lines that do not have at least 90% words with diacritics, skipping the majority of existing foreign sentences.

(i) Correct the Romanian i-of-i (î) words to the correct form of i-of-a (â). For example, the old word form “cîte” (meaning “how many”) was corrected to the new writing “câte”. While deterministic, this process is not straightforward relying on a lexicon, backing off to a specific set of rules that involve word decomposition.

Step by step, the number of sentences decreased to approx. 252000 (only 19% of sentences passed the cleaning and correction phase). Interestingly, most lines that were removed were because they had numbers (d) or did not contain the minimum percent of words in the lexicon (g). On this set of sentences we applied the triphones balancing algorithm described next. To keep the number of triphones from each type as balanced as possible (a perfect balancing is not possible because there are triphones that are intrinsically rare) we have applied the following algorithm:

1. Compile an initial frequency of triphones from the whole corpus;
2. If a sentence contained a rare triphones (with a frequency below 100), keep it;
3. If a sentence contained only very frequent triphones (with frequencies over the H index of the initial distribution), discard it.
4. Default action: keep the sentence.
5. Finally, sort the sentences according to the least common triphones first: this will ensure a balanced corpus from the start, no matter how many sentences we record out of the entire corpus.

3.1.2. Recording details

The corpus was recorded in studio conditions by two professional speakers (male and female). This speech corpus is freely available for download and use. It is composed of 6h:30m:23s (female speakers) and 6h:03m:46s (male speakers) and the archive contains the speech prompts (one file each), corresponding audio files, phonetic transcription lexicon and time-aligned phoneme sequences for each prompt-audio pair. Table 1 shows a quantitative evaluation of the speech corpus. For a qualitative evaluation, we provide statistical parametric speech synthesis models that are compatible with our platform, both for the STRAIGHT
Table 1: Individual speaker statistics extracted from the phoneme-level aligned speech corpus

Speaker	Phoneme	Occ	Tot. length						
Speaker 1 (female)	@	3301	225150	3963	278330	4529	277930	2540	177530
	a	10942	951670	14932	1376420	17279	1384770	1094	67540
	a@	992	73270	1294	121470	1682	133220	365	26670
	ch	1539	164230	1965	227920	2206	262139	839	72760
	d	3624	213640	4897	318940	5652	362660	1946	127410
	dz	332	32940	634	70390	731	78530	125	9740
Speaker 2 (female)	e	11701	770900	14678	976310	16991	1053870	5390	362330
	e@	1042	54360	1364	70680	1598	102870	436	31750
	f	1482	138980	1734	185380	2012	216239	925	67540
	g	904	60610	1193	98320	1376	102870	43	3210
	h	280	29320	393	46449	488	61060	43	3210
Speaker 3 (male)	i	7596	484880	9737	685550	11240	718580	3436	235340
	ij	1655	76460	2028	111459	2388	140870	693	44200
	j	2030	133060	2493	184670	3366	216239	1042	72040
	k	4418	368310	5473	436100	6373	530070	2128	152020
	l	5139	277920	7111	400320	8172	476540	1850	101680
	m	2985	228550	3800	313770	4382	370190	2057	145020
	n	6886	378840	9191	98320	1376	102870	3286	187470
	o	4471	354630	5794	450240	6631	442470	1804	146520
	o@	413	266380	4246	364239	4894	424840	1481	113430
	p	3394	266380	4246	364239	4894	424840	1481	113430
	paus	1985	526943	2186	3373752	2490	3883761	1412	1541130
	r	7965	351600	10428	483170	12079	569870	3200	137040
	s	4351	424560	5672	575170	6525	739510	2096	183390
	sh	1145	122640	1543	180770	1848	235920	702	64010
	sp	5216	243840	3739	3736331	5023	1029306	1700	137580
Speaker 4 (male)	t	7045	498910	8613	619090	9965	729590	3380	231820
	ts	1365	136910	1640	171210	1895	205560	705	59370
	u	5855	359180	7680	474569	8876	464020	2822	166780
	v	1427	97560	1641	143560	1906	139430	711	47320
	w	703	58710	846	74960	1000	87060	113	9610
	z	922	85960	1017	103760	1242	123720	453	39990
	zh	410	44910	475	56680	551	69340	89	8470

Total (h) | 2.32 | 4 | 4.58 | 1.46 |
Overall (h) | 12.36 |

and MLSA vocoders. In the near future we intend to extend our speech synthesis platform to support WORLD (Morise et al., 2016) for real-time high-quality vocoding and we will include pre-trained models as well. Currently SSLA can be queried online5 for speech synthesis using one male and one female voice.

3.2. The speech recognition corpus

As earlier stated, the speech recognition corpus is composed of two subsections: the non-free sections which contains recordings from the RADOR agency and a collection of audio-books provided by IIT and the free-section which was internally created based on volunteers who recorded utterances from a predefined set of data. The quality of the recordings varies within the entire speech corpus, from sampling rate to noise conditions. The lowest recording sample rate is 16Khz and the highest is 48Khz. In terms of recording conditions we have studio recordings, semi-studio recordings (high quality equipments but no hemianechoic room) and standard desktop/laptop/headset recording equipment in noisy environments.

The corpus is sentence-split and each sentence is time-aligned with the speech data at phoneme level. Also we keep internal an internal-track of the source and recording conditions for every sentence. However, in this paper we will only provide quantitative information regarding the corpora composition divided between the two sections: free and non-free.

The corpus construction is still an on-going work. Aside from the data described in Table 2 we will enhance the free section of the corpus with at least another 20 hours of speech data, which is currently being processed.

5http://slp.racai.ro/index.php/ssla/
Table 2: Phoneme distribution and duration for the two sections of the ASR corpus: free and non-free

Phoneme	Occurrences	Non-free	Total duration	Mean dur.	Fre	Occurrences	Total duration	Mean dur.
@	52117	410821	78.83		73516	5580501	75.91	
a	168665	14646891	86.84		248419	21268426	85.62	
a@	25805	2158373	83.64		36451	2896279	79.46	
b	13971	872960	62.48		20620	1302030	63.14	
ch	26430	2431859	92.01		38491	3522853	91.52	
d	58951	3436241	58.29		85621	5032471	58.78	
dz	4062	332270	81.80		5985	478950	80.03	
e	186060	13077767	70.29		271792	18861070	69.40	
e@	14495	638588	44.06		21093	934677	44.31	
f	17927	1548020	86.35		26928	2253210	83.68	
g	10674	657900	61.64		15900	991005	62.33	
h	1599	117870	75.61		2259	165015	73.03	
i	109493	6623230	60.49		163033	9928170	60.90	
ij	30917	1949659	63.06		44094	2680152	60.78	
j	32366	2138951	66.09		47568	3135555	65.92	
k	64171	4671150	72.79		92329	6786150	73.50	
l	75989	3497292	45.79		113536	5220485	45.11	
m	52091	3614139	69.38		74572	5106568	68.48	
n	109934	5741698	52.23		159700	8360862	52.35	
o	69089	5166650	74.78		102393	7529220	73.53	
o@	6956	370200	53.22		9781	481665	49.24	
p	53568	3810840	71.14		78439	5634345	71.83	
pau	21672	6198915	286.03		33459	1081797	313.27	
r	119344	5049519	42.31		176946	7288335	41.19	
s	70045	6348160	90.63		101028	8991750	89.00	
sh	20623	2118431	102.72		29284	2957326	100.99	
sp	50862	12363894	243.09		72142	15154882	210.07	
t	109401	7008668	64.06		160231	1039795	64.91	
ts	19940	1811200	90.83		29230	2653155	90.77	
u	88979	5529020	62.14		130866	7798155	59.59	
v	21825	1309280	59.99		31038	1862353	60.00	
w	11053	881050	79.71		16323	1225815	75.10	
z	15409	1203250	78.09		23503	1807170	76.89	
zh	3654	335310	91.77		5407	489360	90.50	
Total (hours)		36.59			Overall (hours)		89.14	

As mentioned, the data varies in quality across the entire speech corpus. In order to test if this corpus is relevant at all for automatic speech recognition we constructed a character-level (not phoneme-level) speech recognition system which uses Mel-generalized cepstral coefficients extracted using a 5-ms sliding window, which are fed into a two layer bidirectional LSTM (400 cells in each direction – total 800 cells per layer) on top of which we use a softmax layer, trained using Connectionist Temporal Classification (CTC) loss (Graves et al., 2013). This system architecture combined with a RNN language model for word segmentation will be fully described in our future work. However, we must state that after 4 training epochs on the entire training dataset, we obtained a character-level accuracy rate of 89.52%. To our knowledge, this is the only character-level speech recognition system for Romanian and the results, which are consistent with those reported for other languages, show that this corpus can indeed be used to train ASR systems.

Whereas we are unable to say anything about the fidelity of the transcriptions for the non-free section, our speech data is carefully crafted and the error count is surely low. Additionally, our transcriptions take into account recoding and speech artifacts (noise, laughter, caught etc.) as well as foreign words (which are transliterated) and regional accents (for which we account by introducing the academic form of the word and the transliterated version that follows the actual pronunciation).

4. Future development plans

There are three main directions we want to proceed to in the near future: (a) extension of the tool-set; (b) pre-training models and (c) creation of additional resources for Romanian.
Extension of the tool-set: For the NLP module we seek to introduce a graph-based dependency parser which uses a complex network architecture composed of stacked Bidirectional LSTMs for feature extraction and a multilayer perceptron for word-arc scoring, similar to the approaches proposed in Dozat and Manning (2016) and Kiperwasser and Goldberg (2016). Also, based on the success of deep-learning applied to TTS (Oord et al., 2016) we plan to extend our speech synthesis back-end to include neural speech synthesis support;

Pre-trained models: Depending on the language and training corpora size and composition, all models require some fine-tuning, whether we are talking about model hyper-parameters for neural-networks or feature-combinations for linear models. As such, we plan to provide pre-trained NLP models for all languages included in the Universal Dependencies Treebank (Nivre et al., 2017)

Text-to-speech corpora: During our subjective internal evaluation of the speech models we noticed that the TTS system had a poor quality (in terms of prosody) when used in dialogue-style conversations. Intuitively, this is because neither the Wikipedia section nor the Audibook section did include short dialogue sentences in our speech corpus. However, this type of interaction is typical for assistive systems, thus our future development plans include the extension of the speech corpus and inclusion of short dialogue sentences.

Speech recognition corpora: As already mentioned, we are still working on extending our speech recognition corpus with new data.

5. Conclusions

We have presented two ready-to-use tools and a speech resource that enable to construction and deployment of NLP and TTS applications in low-resourced environments. Of course, every component is independent and can be used in a standalone scenario to provide functionality (NLP or TTS tool) or to be used as input in training other systems.

The speech corpus is intended for Romanian, but the tools can be trained for any language. In fact, our demo shows how we trained NLP support for more than 50 languages.

The tool set is available for download (code and binaries) and was tested both on desktop/server environments as well as on mobile devices (Android 5 and 6).

Furthermore, on request, we are happy to provide more pre-trained TTS and NLP models that are not currently available on the website.

Acknowledgments

The corpora construction work described in this paper was supported though the the Heimdallr project, which is funded by the Romanian Government through the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI), programme "Experimental demonstration project (PED) PED-2016", project ID: PN-II-P2-2.1-PED-2016-1974, contract number 229PED.

We also want to thank all contributors and volunteers who supported us through recordings performed on the Romanian Anonymous Speech Corpus (RASC) platform.

6. Bibliographical References

Dozat, T., and Manning, C. D. (2016). Deep biaffine attention for neural dependency parsing. arXiv preprint arXiv:1611.01734.

Dozat, T., Qi, P., and Manning, C. D. (2017). Stanford’s graph-based neural dependency parser at the conll 2017 shared task. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 20–30, Vancouver, Canada, August. Association for Computational Linguistics.

Dumitrescu, S. D., Boros, T., and Tufis, D. (2017). Racai’s natural language processing pipeline for universal dependencies. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 174–181, Vancouver, Canada, August. Association for Computational Linguistics.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international conference on, pages 6645–6649. IEEE.

Huggins-Daines, D., Kumar, M., Chan, A., Black, A. W., Ravishankar, M., and Rudnicky, A. I. (2006). Pocketphinx: A free, real-time continuous speech recognition system for hand-held devices. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, volume 1, pages I–I. IEEE.

Imai, S., Sumita, K., and Furuichi, C. (1983). Mel log spectrum approximation (mlsa) filter for speech synthesis. Electronics and Communications in Japan (Part I: Communications), 66(2):10–18.

Ion, R. (2007a). Ttl: A portable framework for tokenization, tagging and lemmatization of large corpora. Bucharest: Romanian Academy.

Ion, R. (2007b). Word sense disambiguation methods applied to english and romanian. PhD thesis. Romanian Academy, Bucharest.

Kawahara, H., Masuda-Katsuse, I., and De Cheveigne, A. (1999). Restructuring speech representations using a pitch-adaptive time–frequency smoothing and an instantaneous-frequency-based f0 extraction: Possible role of a repetitive structure in sounds. Speech communication, 27(3):187–207.

6http://slp.racai.ro/mlpla-new
7http://slp.racai.ro/
8http://rasc.racai.ro/
Kiperwasser, E. and Goldberg, Y. (2016). Simple and accurate dependency parsing using bidirectional lstm feature representations. *arXiv preprint arXiv:1603.04351*.

Morise, M., Yokomori, F., and Ozawa, K. (2016). World: A vocoder-based high-quality speech synthesis system for real-time applications. *ICE Transactions on Information and Systems, 99*(7):1877–1884.

Nivre, J., Agić, Ž., Ahrenberg, L., et al. (2017). Universal Dependencies 2.0. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics, Charles University, Prague.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. *arXiv preprint arXiv:1609.03499*.

Tufis, D., Mititelu, V. B., Irimia, E., Dumitrescu, S. D., Boros, T., Teodorescu, H. N., Cristea, D., Scutelnicu, A., Bolea, C., Moruz, A., et al. (2015). Corola starts blooming—an update on the reference corpus of contemporary romanian language. *Challenges in the Management of Large Corpora (CMLC-3)*, page 5.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., et al. (2002). The htk book. *Cambridge university engineering department*, 3:175.

Zafiu, A., Dumitrescu, S. D., and Boros, T. (2015). Modular language processing framework for lightweight applications (mlpla). In *7th Language & Technology Conference*.

Zeman, D., Ginter, F., Hajíč, J., Nivre, J., Popel, M., Straka, M., and et al. (2017). CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. In *Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*, pages 1–20. Association for Computational Linguistics.

Zen, H., Nose, T., Yamagishi, J., Sako, S., Masuko, T., Black, A. W., and Tokuda, K. (2007). The hmm-based speech synthesis system (hts) version 2.0. In *SSW*, pages 294–299.