Study of $J/\psi \rightarrow p\bar{p}$, $\Lambda\bar{\Lambda}$ and Observation of $\eta_c \rightarrow \Lambda\bar{\Lambda}$ at Belle

C.-H. Wu, M.-Z. Wang, K. Abe, I. Adachi, H. Aihara, V. Aulchenko, T. Aushev, S. Bahinipati, A. M. Bakich, V. Balagura, A. Bay, K. Belous, U. Bitenc, I. Bizjak, S. Blyth, A. Bondar, Bozek, T. E. Browder, Y. Chao, A. Chen, B. G. Cheon, Y. Choi, Y. K. Choi, A. Chuvikov, S. Cole, J. Dalseno, M. Danilov, M. Dash, S. Eidelman, N. Gabyshhev, T. Gershon, A. Go, G. Gokhroo, A. Gorišek, H. Ha, J. Haba, K. Hayasaka, H. Hayashi, M. Hazumi, D. Heffernan, T. Hokuue, S. Hou, W.-S. Hou, Y. B. Hsiung, T. Iijima, K. Inami, A. Ishikawa, R. Itoh, M. Iwasaki, J. H. Kang, S. U. Kataoka, N. Katayama, H. Kawai, T. Kawasaki, H. R. Khan, H. Kichimi, H. J. Kim, H. O. Kim, Y. J. Kim, P. Križan, P. Krokovný, R. Kulasić, R. Kumar, C. C. Kuo, A. Kuzmin, Y.-J. Kwon, G. Leder, J. Lee, Y.-J. Lee, T. Lesiak, S.-W. Lin, D. Livintsev, G. Majumder, M. Matsumoto, A. Matyja, S. McOnie, W. Mitrano, K. Miyabayashi, H. Miyake, Y. Miyata, Y. Miyazaki, R. Mizuk, T. Mori, E. Nakano, M. Nakao, Z. Natkaniec, S. Nishida, O. Nitoh, S. Ogawa, T. Ohshima, T. Okabe, S. Okuno, S. L. Olsen, Y. Onuki, P. Pakhlov, H. Palka, H. Park, K. S. Park, R. Pestotnik, L. E. Pilønen, Y. Sakai, T. Schietinger, O. Schneider, A. J. Schwartz, R. Seidl, M. E. Sevior, M. Shibuya, V. Sidorov, A. Sokolov, N. Soni, S. Stanič, M. Starič, H. Stoeck, T. Sumiyoshi, F. Takasaki, M. Tanaka, G. N. Taylor, Y. Teramoto, X. C. Tian, T. Tsuboyama, T. Tsukamoto, S. Uehara, T. Ueno, S. Uno, P. Urquijo, Y. Usov, G. Varner, C. C. Wang, C. H. Wang, Y. Watanabe, E. Won, B. D. Yabsley, A. Yamaguchi, Y. Yamashita, L. M. Zhang, and Z. P. Zhang (Belle Collaboration)

1 Budker Institute of Nuclear Physics, Novosibirsk
2 Chiba University, Chiba
3 Chonnam National University, Kwangju
4 University of Cincinnati, Cincinnati, Ohio 45221
5 University of Hawaii, Honolulu, Hawaii 96822
6 High Energy Accelerator Research Organization (KEK), Tsukuba
7 University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
8 Institute of High Energy Physics, Vienna
9 Institute of High Energy Physics, Protvino
10 Institute for Theoretical and Experimental Physics, Moscow
11 J. Stefan Institute, Ljubljana
12 Kanagawa University, Yokohama
13 Korea University, Seoul
14 Kyungpook National University, Taegu
15 Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
16 University of Ljubljana, Ljubljana
17 University of Melbourne, Victoria
18 Nagoya University, Nagoya
19 National Women’s University, Nara
20 National Central University, Chung-li
21 National United University, Miao Li
22 Department of Physics, National Taiwan University, Taipei
23 H. Niewodniczanski Institute of Nuclear Physics, Krakow
24 Nippon Dental University, Niigata
25 University of Nova Gorica, Nova Gorica
26 Osaka City University, Osaka
27 Osaka University, Osaka
28 Panjab University, Chandigarh
29 Peking University, Beijing
30 Princeton University, Princeton, New Jersey 08544
31 RIKEN BNL Research Center, Upton, New York 11973
32 University of Science and Technology of China, Hefei
33 Seoul National University, Seoul

PRL 97, 162003 (2006) PHYSICAL REVIEW LETTERS week ending 20 OCTOBER 2006

© 2006 The American Physical Society
We study the baryonic charmonium decays of B mesons $B^+ \rightarrow \eta_c K^+$ and $B^+ \rightarrow J/\psi K^+$, where the η_c and J/ψ subsequently decay into a $p\bar{p}$ or $\Lambda\bar{\Lambda}$ pair. We measure the $J/\psi \rightarrow p\bar{p}$ and $\Lambda\bar{\Lambda}$ anisotropy parameters $\alpha_B = -0.60 \pm 0.13 \pm 0.14 (p\bar{p})$, $-0.44 \pm 0.51 \pm 0.31 (\Lambda\bar{\Lambda})$ and compare to results from $e^+e^- \rightarrow J/\psi$ formation experiments. We also report the first observation of $\eta_c \rightarrow \Lambda\bar{\Lambda}$. The measured branching fraction is $\mathcal{B}(\eta_c \rightarrow \Lambda\bar{\Lambda}) = (0.87^{+0.22}_{-0.12}(\text{stat})^{+0.09}_{-0.12}(\text{syst}) \pm 0.27(\text{PDG})) \times 10^{-3}$. This study is based on a 357 fb$^{-1}$ data sample recorded on the Y(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider.

DOI: 10.1103/PhysRevLett.97.162003

PACS numbers: 13.25.Gv, 13.40.Hq, 14.40.Gx
$-0.1 \text{ GeV} < \Delta E < 0.2 \text{ GeV}$. The signal peaks at $M_{bc} = 5.279 \text{ GeV}/c^2$ and $\Delta E = 0$.

The dominant background arises from continuum $e^+ e^- \rightarrow q\bar{q}$ processes. The background from $b \rightarrow c$ and from B decays into charmless final states is negligible. In the $Y(4S)$ rest frame, continuum events are jetlike while BB events are more spherical. The reconstructed momenta of final state particles are used to form several event shape variables (e.g., thrust angle, Fox-Wolfram moments, etc.) in order to categorize each event. We follow the scheme described in Ref. [20] that combines seven event shape variables into a Fisher discriminant to suppress continuum background.

Probability density functions (PDFs) for the Fisher discriminant and the cosine of the angle between the B flight direction and the beam direction in the $Y(4S)$ rest frame are combined to form the signal likelihood L_s and the background likelihood L_b. The signal PDFs are determined from GEANT-based Monte Carlo (MC) simulation, and the background PDFs are obtained from sideband data with $M_{bc} < 5.26 \text{ GeV}/c^2$. We require the likelihood ratio $\mathcal{R} = L_s/(L_s + L_b)$ to be greater than 0.4 for both $p\bar{p}K^+$ and $\Lambda \Lambda K^+$ modes. These selection criteria suppress approximately 69% (66%) of the background while retaining 92% (91%) of the signal for the $p\bar{p}K^+$ ($\Lambda \Lambda K^+$) mode. If there are multiple B candidates in an event, we select the one with the best χ^2 value from the B decay vertex fit. Multiple B candidates are found in less than 2% (5%) of events for the $p\bar{p}K^+$ ($\Lambda \Lambda K^+$) mode.

We use an unbinned extended maximum likelihood fit to estimate the B signal yield. For the signal PDF, we use a Gaussian in M_{bc} and a double Gaussian in ΔE. We fix the parameters of these functions to the values determined from MC simulation [21]. Background shapes are fixed from fitting to the sideband events in the region $3.14 \text{ GeV}/c^2 < M_{p\bar{p}} < 3.34 \text{ GeV}/c^2$. The M_{bc} background is modeled using a parametrization used by the ARGUS Collaboration [22]. The ΔE background shape is modeled by a first order polynomial.

We determine B signal yields in 10 MeV/c^2-wide $M_{p\bar{p}}$ ($M_{\Lambda\Lambda}$) mass bins from the kinematic threshold to 4.5 GeV/c^2; the result is shown in Fig. 1(a) [Fig. 1(b)]. There are clear η_c and J/ψ peaks [and a possible $\psi(2S)$ signal] in the mass spectrum. We use a relativistic Breit-Wigner function for the η_c peak, a Gaussian for the J/ψ peak, and a linear function for the nonresonant background. The Breit-Wigner function is convolved with the detector response function, which is taken from Ref. [20] and previous Belle [25] measurements.

![Graphs showing B signal yield versus $M_{p\bar{p}}$ and B signal yield versus $M_{\Lambda\Lambda}$](image)

Fig. 1. (a) B signal yield versus $M_{p\bar{p}}$ and (b) B signal yield versus $M_{\Lambda\Lambda}$. The inset shows the $\eta_{c}-J/\psi$ mass region. The curves represent the unbinned likelihood fits to the data.

For analysis of the angular distribution, we define a likelihood L_e,
FIG. 2. (a) Likelihood fit and (b) χ^2 fit results of the $J/\psi \to p \bar{p}$ helicity angle distribution. In the maximum likelihood fit plot, the solid, dotted solid, and dashed lines represent the combined fit result, fitted signal, and fitted background, respectively. In the χ^2 fit plot, the inset shows the fit result for $B^+ \to J/\psi K^+$, $J/\psi \to \mu^+ \mu^-$.

where α_B is a fit parameter in addition to N_s and N_b, $\epsilon(\cos \theta_X)$ is the efficiency function, and ϵP is normalized to 1. The efficiency $\epsilon(\cos \theta_X)$ obtained from the signal MC simulation is flat as a function of $\cos \theta_X$. From a study of a signal MC simulation, we find that there is no correlation between M_{bc}, ΔE, and θ_X. The background PDF as a function of M_{bc}, ΔE, and $\cos \theta_X$ is determined from $M_{\bar{p}p}$ sideband data. Figure 2(a) shows the result of the fit to the $J/\psi \to p \bar{p}$ candidates in the entire M_{bc}, ΔE region. We determine α_B to be -0.60 ± 0.13. As a cross-check, we use a χ^2 method and fit the efficiency corrected B signal yields in bins of $\cos \theta_X$ to a $1 + \alpha_B \cos^2 \theta_X$ parametrization. The results of the fit are shown in Fig. 2(b). We obtain $\alpha_B = -0.53 \pm 0.15$, with χ^2/d.o.f. = 0.9, consistent with the result of the unbinned fit. We measure the angular distribution of $J/\psi \to \mu^+ \mu^-$ decays from $B^+ \to J/\psi K^+$ to verify the fitting procedure. The result is shown in the inset in Fig. 2(b). The fitted value agrees with the expectation for massless fermions.

We determine the systematic error in α_B by varying the value of various selection cuts and parameters of PDFs to check for trends in the value of α_B. These trends are parametrized by a linear function. We then quote the change in α_B along the line between the selected point and the far end of the tested region as a systematic error. Note that this is a conservative estimate, since statistical fluctuations also contribute to changes in α_B. We assign a systematic error of 0.08 for the T selection, 0.06 for proton or kaon selection, and 0.02 for fitting PDFs. Other systematic errors are negligible. The observed difference between the maximum likelihood method and the χ^2 method is also included in the systematic error. The total systematic uncertainty in α_B is 0.13.

There are several complicating factors in the analysis of $B^+ \to \Lambda \bar{K} K^+$ decays relative to $B^+ \to p \bar{p} K^+$ decays. The efficiency for detecting slow pion from Λ decays is small. As a result, the Λ reconstruction efficiency is nonuniform as a function of the polar angle ($\cos \theta_p$) of the secondary proton in the Λ helicity frame and is correlated with $\cos \theta_X$, where θ_X refers to the Λ polar angle in the J/ψ helicity frame. The likelihood function is similar to the previous one except that the angular part contains two more vari-

TABLE I. Measured branching fractions for $J/\psi, \eta_c \to p \bar{p}, \Lambda \bar{\Lambda}$.

Modes	Yield	Efficiency (%)	Branching fraction product (10^{-6})	$\mathcal{B}(J/\psi, \eta_c \to p \bar{p}, \Lambda \bar{\Lambda})(10^{-3})$
$B^+ \to \eta_c K^+$, $\eta_c \to p \bar{p}$	195^{+16}_{-15}	$35.8^{+0.3}_{-0.3}$	$1.42^{+0.11+0.16}_{-0.11-0.20}$	$1.58 \pm 0.12^{+0.18+0.2}_{-0.22-0.2} \pm 0.47^a$
$B^+ \to \eta_c K^+$, $\eta_c \to \Lambda \bar{\Lambda}$	$19.5^{+5.2}_{-4.5}$	$5.3^{+0.1}_{-0.1}$	$0.95^{+0.25+0.08}_{-0.22-0.11}$	$0.87^{+0.24+0.09}_{-0.21-0.14} \pm 0.27^b$
$B^+ \to J/\psi K^+$, $J/\psi \to p \bar{p}$	317^{+19}_{-18}	$37.3^{+0.4}_{-0.4}$	$2.21^{+0.13+0.10}_{-0.13-0.10}$	$2.21 \pm 0.13 \pm 0.31 \pm 0.10^c$
$B^+ \to J/\psi K^+$, $J/\psi \to \Lambda \bar{\Lambda}$	$45.9^{+7.7}_{-6.7}$	$5.9^{+0.3}_{-0.3}$	$2.00^{+0.34}_{-0.29} \pm 0.34$	$2.00^{+0.34}_{-0.29} \pm 0.34 \pm 0.08^c$

$^a\mathcal{B}(B^+ \to \eta_c K^+) = 0.9 \pm 0.27 \times 10^{-3}$ [23].

bWe use $\mathcal{B}(B^+ \to \eta_c K^+, \eta_c \to \Lambda \bar{\Lambda})/\mathcal{B}(B^+ \to \eta_c K^+, \eta_c \to p \bar{p}) = 0.67^{+0.19}_{-0.16} \pm 0.12$ measured in this Letter and $\mathcal{B}(\eta_c \to p \bar{p}) = 1.3 \pm 0.4 \times 10^{-3}$ [23].

$^c\mathcal{B}(B^+ \to J/\psi K^+) = 1.00 \pm 0.04 \times 10^{-3}$ [23].
bles, $\cos \theta_p$ and $\cos \theta_{\bar{p}}$. The efficiency function $e(\cos \theta_K, \cos \theta_{\bar{p}}, \cos \theta_p)$ is obtained from a signal MC sample with 4×10^6 events. The background PDF is determined from $M_{\Lambda \bar{\Lambda}}$ sideband data in the region $3.14 \text{ GeV}/c^2 < M_{\Lambda \bar{\Lambda}} < 3.54 \text{ GeV}/c^2$. The value of α_B obtained from the maximum likelihood fit is $-0.44 \pm 0.51 \pm 0.31$, where the systematic error is determined from the same procedure as that used for $J/\psi \rightarrow p\bar{p}$ decays.

We define an η_c signal region as $2.94 \text{ GeV}/c^2 < M_{\Lambda \bar{\Lambda}} < 3.02 \text{ GeV}/c^2$. Signal peaks are visible in the M_{B_c} and ΔE distributions. The fitted B signal yield, efficiency, and obtained branching fraction are shown in Table I. The maximum likelihood fit for $B^+ \rightarrow \eta_c K^+$, $\eta_c \rightarrow \Lambda \bar{\Lambda}$ gives a yield of $19.5^{+3.1}_{-4.4}$ with a statistical significance of 7.9 standard deviations. The significance is defined as $\sqrt{-2\ln(L_0/L_{\text{max}})}$, where L_0 and L_{max} are the likelihood values returned by the fit with the signal yield fixed to zero and at its best fit value, respectively. The fit yield is consistent with the yield (18.2 ± 4.8) obtained from the first fit shown in Fig. 1(b). As a cross-check, the obtained $B(J/\psi \rightarrow p\bar{p}, \Lambda \bar{\Lambda})$ are in good agreement with the world average and with the latest BES result [13]. We also determine the branching fraction ratios: $B(\eta_c \rightarrow \Lambda \bar{\Lambda})/B(\eta_c \rightarrow p\bar{p}) = 0.67^{+0.19}_{-0.16} \pm 0.12$ and $B(J/\psi \rightarrow \Lambda \bar{\Lambda})/B(J/\psi \rightarrow p\bar{p}) = 0.90^{+0.15}_{-0.14} \pm 0.10$, where common systematic errors in the numerator and denominator cancel.

Systematic uncertainties are studied using high statistics control samples. For proton identification, we use a $\Lambda \rightarrow p\pi^-$ sample, while for K/π identification, we use a $D^{*+} \rightarrow D^0\pi^+, D^0 \rightarrow K^-\pi^+$ sample. The tracking efficiency is studied with fully and partially reconstructed D^+ samples. The modeling of the requirement on the likelihood ratio R for background suppression is studied with a topologically similar control sample $B^+ \rightarrow J/\psi K^+$, $J/\psi \rightarrow \mu^+\mu^-$. For Λ reconstruction, we have an additional uncertainty on the efficiency for detecting tracks away from the IP. The size of this uncertainty is determined from the difference between Λ decay-time distributions in data and MC simulation. Based on these studies, we assign a 1% error for each track, 2% for each proton identification, 1% for each kaon or pion identification, an additional 3% for Λ reconstruction, and 3% for the R selection.

The systematic uncertainty in the fit yield is studied by varying the parameters of the signal and background PDFs and is approximately 5%. The MC statistical uncertainty and modeling contributes a 5% error. The error on the number of $B\bar{B}$ pairs is determined to be 1%, where the branching fractions of $Y(4S)$ to neutral and charged $B\bar{B}$ pairs are assumed to be equal. The noncharmonium feeddown background below the η_c mass region is estimated to be 8% and 12% for the $p\bar{p}$ and $\Lambda \bar{\Lambda}$ modes, respectively.

The correlated errors are added linearly and combined quadratically with the uncorrelated errors in the systematic error calculation. The total systematic uncertainties are 14% and 17% for the $p\bar{p}K^+$ and $\Lambda \bar{\Lambda}K^+$ modes, respectively.

In summary, using $386 \times 10^6 B\bar{B}$ events, we measure the branching fractions of $J/\psi \rightarrow p\bar{p}$, $\eta_c \rightarrow p\bar{p}$, $J/\psi \rightarrow \Lambda \bar{\Lambda}$, and $\eta_c \rightarrow \Lambda \bar{\Lambda}$ from $B^+ \rightarrow p\bar{p}K^+$ and $B^+ \rightarrow \Lambda \bar{\Lambda}K^+$ decays. We measure the parameter α_B for baryonic J/ψ decays. The parameters α_B are $-0.60 \pm 0.13 \pm 0.14$ and $-0.44 \pm 0.51 \pm 0.31$ for $J/\psi \rightarrow p\bar{p}$ and $J/\psi \rightarrow \Lambda \bar{\Lambda}$, respectively. This gives an α value for $J/\psi \rightarrow p\bar{p}$ of $0.43 \pm 0.13 \pm 0.14$, which is smaller than, but still consistent with, the current world average 0.66 ± 0.05. We also report the first observation of $\eta_c \rightarrow \Lambda \bar{\Lambda}$ decays with $B(\eta_c \rightarrow \Lambda \bar{\Lambda}) = (3.72^{+0.24}_{-0.21} \pm 0.27) \times 10^{-3}$. The observed ratio $B(\eta_c \rightarrow \Lambda \bar{\Lambda})/B(\eta_c \rightarrow p\bar{p})$ is $0.67^{+0.19}_{-0.16} \pm 0.12$, which is consistent with theoretical expectation [16].

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient operation, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC and KIP of CAS (Contracts No. 10575109 and No. IHEP-U-503, China); DST (India); the BK21 program of MOEHRD and the CHEP SRC and BR (Grant No. R01-2005-000-10089-0) programs of KOSEF (Korea); KBN (Contract No. 2P03B 01324, Poland); MIST (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (U.S.A.).

[1] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 88, 181803 (2002).
[2] M.Z. Wang et al. (Belle Collaboration), Phys. Rev. Lett. 90, 201802 (2003).
[3] M.Z. Wang et al. (Belle Collaboration), Phys. Rev. Lett. 92, 131801 (2004).
[4] Y.J. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 93, 211801 (2004).
[5] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 72, 051101 (2005).
[6] M.Z. Wang et al. (Belle Collaboration), Phys. Lett. B 617, 141 (2005).
[7] R. Brandelik et al., Z. Phys. C 1, 233 (1979).
[8] D. Pallin et al., Nucl. Phys. B292, 653 (1987).
[9] I. Peruzzi et al., Phys. Rev. D 17, 2901 (1978).
[10] M.W. Eaton et al., Phys. Rev. D 29, 804 (1984).
[11] J.Z. Bai et al. (BES Collaboration), Phys. Lett. B 591, 42 (2004).
[12] J.Z. Bai et al. (BES Collaboration), Phys. Lett. B 424, 213 (1998).
[13] M. Ablikim et al. (BES Collaboration), Phys. Lett. B 632, 181 (2006).
[14] S.J. Brodsky and G.P. Lepage, Phys. Rev. D 24, 2848 (1981); M. Claudson, S.L. Glashow, and M.B. Wise,
Throughout this Letter, inclusion of the charge conjugate mode is always implied unless otherwise stated.

M. Anselmino, F. Caruso, S. Forte, and B. Pire, Phys. Rev. D 38, 3516 (1988).

S. Kurokawa et al., Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003).

A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002).

K. Abe et al. (Belle Collaboration), Phys. Rev. D 65, 091103 (2002).

K. Abe et al. (Belle Collaboration), Phys. Lett. B 517, 309 (2001).

There are corrections (~2.3 and 0.5 MeV in the mean shift on ΔE and M_{bc} and 0.98 and 1.14 in the width scale on ΔE and M_{bc}, respectively) applied to these parameters based on the measured difference between data and MC simulation for $B \to D\pi$ decays.

H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 229, 304 (1989).

S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).

B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 92, 142002 (2004).

F. Fang et al. (Belle Collaboration), Phys. Rev. Lett. 90, 071801 (2003).

F. Murgia and M. Melis, Phys. Rev. D 51, 3487 (1995).