Study of Stability constant of binary & ternary complexes of Cefpodoxime and glycine with some metal ions by potentiometric titration method

SAYYED HUSSAIN², AMMAR QASEM¹,²* and MOHAMMAD MOHSIN¹

¹P.G. & Research Centre, Maulana Azad College, Aurangabad. (M. S.) India
²Sir Sayyed College of Arts, Commerce & Science, Aurangabad (M.S.) India

Corresponding Author Email: - mdmohsin12323@rediffmail.com
http://dx.doi.org/10.22147/juc/120302

Acceptance Date 21st Sep., 2016, Online Publication Date 2nd Nov. 2016

Abstract

A potentiometric titration technique has been used to determine the stability constants for the various complexes of Co(II), Ni(II), Cu(II) and Zn(II) with Cefpodoxime drugs and Glycine have been determined pH metrically at room temperature and 0.01 M ionic Strength (NaClO₄). The formation of various possible species has been evaluated by computer program and discussed in terms of various relative stability parameters.

Keywords: Stability constant, complexes, ternary, binary, metal ions, amino acid.

Introduction

Potentiometric titration is accepted as a powerful and simple electroanalytical technique for determination of stability constants. The complexes are the compounds forming coordinate bonds between electron pair donor as the ligand and electron pair acceptors as the metal atoms or ions. The number of electron pairs donated to the metal is known as its coordination number and thereby many complexes exist which exhibit coordination number of two, four or six. In order for a pair of electrons to be donated from ligand to a metal ion, there must be an empty (d) orbital on the metal ion to accept the pair of electrons. The electron configuration is (d) because the (s) and (p) orbitals are empty and can be hybridized to give a set of empty (sp) hybrid orbital. This set of hybrid orbitals could accommodate pairs of electrons donated by ligand. In a complex, a central atom or ion is coordinated by one or more molecules or ions (ligands) which act as Lewis base, forming coordinate bonds with the central atom or ion; the latter acts as a Lewis acid. Atoms in the ligands that are directly bonded to the central atom or ion are donor atoms. Divalent metal ions such as copper, nickel and cobalt metal ions are known essential metals in the human body for maintaining health. Although they have beneficial effects in humans, these ions can be toxic if over-accumulated in the human body. To prevent certain
diseases caused by metal poisoning and to reduce the concentration of metal ions in blood and urine in the body, the coordination chemistry of some chelating agents of such metals or recently known ligand therapy has been studied extensively. Metal ligand complexes are made up of a central metal ion and ligands in addition to the solvent molecules required to make up the coordination sphere of the metal ion such metal ion ligand complexes are quite common in biological and analytical systems. Thus understanding of the significance of metal ions in biological systems may unravel the mysteries surrounding the protein-substrate interactions and the control mechanisms that determine the coordination and coordination tendency of the metal ions bound at the active sites of many enzymes in enzyme-metal ion-substrate reactions. Apart from this, the formation of mixed-ligand complexes is also important in understanding the behavior of pollutants in natural waters, considering the high affinity of ion for donor atoms like oxygen and nitrogen etc. Glycine is essential amino acid behaves as a uni-negative bidentate ligand with N and O donor sites and coordinated to the metal ions via N-amine group and deprotonated carboxylic oxygen

Cefpodoxime is an oral third generation cephalosporin antibiotic. It is active against most Gram positive and Gram negative bacteria. Cefpodoxime inhibits cell wall synthesis by inhibiting final transpeptidation step of peptidoglycan synthesis in cell walls. It has well established pharmacokinetic profile with absorption of 50%. It is indicated in Community Acquired Pneumonia, Uncomplicated Skin and Skin Structure Infections and Uncomplicated Urinary Tract Infections.

Materials and Methods

All the chemicals and reagents used were of AR grade. Potentiometric titrations were carried out in aqueous solution at room temperature and ionic strength 0.01M (NaClO₄) against 0.2 M NaOH, using glass electronics pH meter with an accuracy of ± 0.01 pH. This protonation constant of the ligands and the formation constants of the binary complexes were determined under the same experimental conditions. For this, solutions containing metal ions and the ligands in the ratio 1:1 and 1:2 (M2+:L) have been titrated against standard alkali. The values have been refined using a computer program. The values of the protonation constants of the ligands and the formation constants of binary complexes are in close agreement. These values were used as constants in calculating the formation constants of the ternary complexes. The formation constants of the ternary complexes were determined by the titration of aqueous solutions (50 ml) of the reactants of concentrations 0.002M and 0.001M in ratios M2+:Lₚ:Lₛ =1:1:1 and 1:1:2, against carbonate-free NaOH. Titrations of each set were carried out twice to check the reproducibility of the data. Formation constants were refined using the SCOGS computer program. The values of the protonation and the formation constants of the binary and ternary complexes and the Δ log K values have been presented in Tables 1 and 2

Potentiometric Procedure: In the study of binary and ternary chelates by the potentiometric titration technique. The following sets were prepared in the standard:

1. Free HClO₄
2. Free HClO₄ + Ligand (Lₚ)
3. Free HClO₄ + Ligand (Lₛ) + Metal ion
4. Free HClO₄ + Ligand (Lₛ) + Metal ion
5. Free HClO₄ + Ligand (Lₛ) + Metal ion (M)
(6) Free HClO₄ + Ligand (Lp) + Ligand (Ls) + Metal ion (M).

In general, an experimental run involves collecting equilibrium data points throughout the entire pH range, between 2.0 and 10.50 as a function of milliliter standard sodium hydroxide, the pH measurement method for investigating the dependency of complexation to pH for calculating protonation constants of medicinal compounds and glycine, and stability constants of respective complexes with metal ions was carried out according to Irving-Rossetti expression. In a typical experiment, a solution containing about 0.01 mmol of ligands (drugs) was placed in the cell. The required amount of NaClO₄ (from 0.1M stock solution), HClO₄ (from 0.2M stock solution) were added. Finally the required amount of doubly distilled water was added to the cell to a total volume of 50 ml. The second solution contains the same amounts of component plus about 0.01 mmol of each metal ions and doubly distilled water was added to the same total volume. The potentiometric study carried out at the metal: ligand molar ratios of 1:1, 1:2 for binary systems. The ternary system contains the same amounts of component plus glycine and doubly distilled water was added to the same total volume. The potentiometric study carried out at the metal: drug: amino acid molar ratios of 1:1:1, 1:1:2 for ternary systems.

Results and Discussion

Binary complexes: The proton ligand stability constants (pK) are shown in Table 1 and metal ligand stability constants (logK) of Co(II), Ni(II), Cu(II) and Zn(II) transition metal ions with Cefpodoxime and glycine have been determined for the purpose of comparison with those of ternary systems by using Calvin Bjerrum titration techniques as modified by Irving and Rossotti. The pK values ranges between 0.2 to 0.8 and 1.2 to 1.8 indicates the presence of only two pK in drug and is due to the dissociation of carboxylic group present and amino group. The pK₃ for 1:1 and 3.40 for 1:2 metal ligand ratio is because of carboxylic group and the pK₉ for 1:1 and 8.73 for 1:2 metal ligand ratio is because of amino group, this suggest the formation of 1:1 and 1:2 complexes. The stability constants of transition metal complexes obtained follows the usual natural order (Irving William natural order) of stability.

Mixed ligand complexes: The formation of 1:1:1, 1:1:2 and mixed ligand complexes (MLpLs) were identified by the pH of precipitation of MLp, MLs, and MLpLs titration curves which suggest the higher value of pH of precipitation of ternary system than corresponding binary systems. The range of mixed ligand titration curves indicates that complex formation takes place in the pH range of 2.30 to 8.00 in most of the systems. There was no any solid phase formed during the course of titrations. The relative stability of binary and ternary complexes were explained in terms of Δ logK, KLp, KLs and Kr values as and shown in Table 2.

System	logK₁₁₁	logK₁₁₂	logK₁₀₂	logK₀₁	ΔlogK₁₁₁, KLp, KLs, Kr
Cu(II)L₁sL₀₂					

The mixed ligand stability constants of Cu(II)L₁pL₀₂ and Ni(II)L₁pL₀₂ systems shows higher stability whereas low stability of Co(II) and Zn(II) ternary systems of (1:1:1). And the mixed ligand stability constants of Cu(II)L₁pL₀₂ and Co(II)L₁pL₀₂ systems shows higher stability whereas low stability of Ni(II) and Zn(II) ternary systems of (1:1:2). The trends in logβ for different ratios are as follows:

\[\Delta \log K = \log K_{111} - \log K_{01} - \log K_{02} \]

The comparison of log β₁₁₁ with logβ₁₀₂ and logβ₀₁₂ of these systems reveals the preferential formation of ternary complexes binary systems. The positive values of K₁₁₁ and K₁₀₂ indicate less stability of ternary complexes with respect to binary complexes of primary as well as secondary ligands. The positive values of Kr also support the extra stability of mixed ligand complexes which may be attributed to the interactions outside the coordinated sphere such as the formation of hydrogen bonding between coordinated ligands, charge neutralization, chelate effect and electrostatic interactions between non coordinated charge groups of ligands. The negative values of ΔlogK suggests the formation of ternary complexes but less stable having destabilized nature of complexes which has been valid for N and O donors.
ΔlogK in some cases is attributed to the extra stability of ternary complexes. If ΔlogK is positive, it indicates that ternary complexes are more stable than binary. And the negative values of ΔlogK indicates favorable binary complexation composed to ternary hence,Cu(II) in 1:1:2 shows negative ΔlogK_1 therefore binary complex of Cu(II) one strong than ternary complexes. If ΔlogK is more than or equal to 0.6, the geometry of complex may be octahedral only in the case Cu(II) at 1:1:2 ratio the ΔLogK value is less than 0.6.

6. The species distribution curve shows the formation of ternary complexes and deprotonation of amino groups.

The species Distribution Curves: The species Distribution Curves for ternary complexes are show in fig a tod for ratio 1:1:1. It is absorbed that for (a) Co(II)-glycine- Cefpodoxime complexes start at(pH 7.50 – 9.17) and (b) Ni (II)-glycine- Cefpodoxime complexes start at (pH 6.50 – 8.85) and (c) Cu(II)-glycine-Cefpodoxime complexes start at(pH 7 – 8.56) and (d) Zn(II)-glycine- Cefpodoxime complexes start at (pH 6 – 8.59) and (e) Cu(II)-glycine-Cefpodoxime complexes start at (pH 7.25 – 7.97) and (d) Zn(II)-glycine- Cefpodoxime complexes start at (pH 6.25 – 8.44) and (f) Cu(II)-glycine-Cefpodoxime complexes start at (pH 7 – 8.56).

Acknowledgement

We are thankful to Dr. Mazahar Farooquifor providing laboratory and library facilities to complete this work.

Table 1. The proton ligand stability constants

Ratio	Cefpodoxime	glycine		
	pK1	pK2	pK1	pK2
1:1	3.03	9.49	2.39	9.46
1:2	3.40	8.73	2.9	9.22

Table 2. Parameter of formations of mixed ligand complexes between metal ions and Cefpodoxime & glycine

Parameter	1:1:1	1:1:2						
logk_{10}	Co$^{2+}$	Ni$^{2+}$	Cu$^{2+}$	Zn$^{2+}$	Co$^{2+}$	Ni$^{2+}$	Cu$^{2+}$	Zn$^{2+}$
logk_{01}	4.22	4.95	4.18	5.11	4.65	5.02	8.28	4.56
logβ_{20}	4.19	3.82	8.04	4.65	4.40	4.23	3.99	4.01
logβ_{02}	4.22	4.95	4.18	5.11	4.65	5.02	8.28	4.56
logβ_{11}	4.19	3.82	8.04	4.65	4.40	4.23	3.99	4.01
logβ_{112}	10.12	11.2	13.47	11.13	11.30	10.85	11.87	11.07
K_f	2.41	2.55	2.34	1.93	1.93	2.34	2.58	
KLp	2.41	2.26	3.22	2.18	2.43	2.16	1.43	2.43
KLs	2.41	2.93	1.67	2.39	2.57	2.56	2.97	2.76
ΔlogK	1.71	2.43	1.25	1.37	2.25	1.6	-0.4	2.5
The observed trend in $\Delta \log K$ values is as follows:

- 1:1:1 Ni (II) Co (II) Zn (II) Cu (II)
- 1:1:2 Zn (II) Co (II) Ni (II) Cu (II)

The positive values of K_L^p and K_L^s indicate that the formation of binary complexes over ternary complexes is favoured. The K_r values are found positive, indicating stable ternary complexes. The trends in K_r values are as follows:

- 1:1:1 Ni (II) Co (II) Zn (II) Cu (II)
- 1:1:2 Zn (II) Co (II) Ni (II) Cu (II)

The distribution of cefpodoxime-glycine metal ions complexes with 1:1:1 and 1:1:2 ratios in solution. The concentration of the formation of ternary complexes represented as function of pH.

In M(II) – Cef – Gly system following equilibria are expected:

- Cef + Gly \rightarrow M(II) + Cef

In all there cares the binary complexes are formed between pH 4.5 to 5.5 and ternary complexes are stable and formed in alkaline media. If the ratio is changed (1:1:2), the peak for binary complexes species broadens.
Species distribution curve of M (II)-glycine-cefpodoxime system of (1:1:2) ratio (pH versus % concentration of various possible species) (A) Co (II) (B) Ni (II) (C) Cu (II) (D) Zn (II)

References

1. W. M. Hosny, S. M. El-Medani, M. M. Shoukry, Equilibrium studies of the binary and ternary complexes involving tetracycline and amino acid or DNA constituents, *Talanta*, 48, 913-921 (1999).
2. Catherine E. Housecroft and Alan G. Sharpe, inorganic chemistry, Second edition, Pearson Education Limited (2005).
3. Erzalina Hernowo, Artik Elisa Angkawijaya, Ahmed E. Fazary, Suryadi Ismadji, and Yi-Hsu Ju, Complex Stability and Molecular Structure Studies of Divalent Metal Ion with L-Norleucine and Vitamin B3. *Chem. Eng. Data*, 56, 4549-4555 (2011).
4. M. S. Balakrishnan and M. Santappa, Ternary Complexes Equilibrium Studies of Mixed-Ligand Complexes of Uranyl Ion With Dicarboxylic Acids In Aqueous Solution, *J. Inorg. Nucl.*
5. Maria Celina M.M. Fernandes, Eucler B. Paniagob, and Sandra Carvalho, Copper (II) mixed ligands complexes of hydroxamic acids with glycine, histamine and histidine, *J. Braz. Chem. Soc.* 8(5), 537-548 (1997).

6. Peter Gans, Antonio Sabatini, Alberto Vacca, Investigation of equilibria in solution. Determination of equilibrium constants with the Hyperquad suite of programs. *Talanta*, 43, 1739-1753 (1996).

7. A. A. Shoukry, M. M. Shoukry, Coordination properties of hydralazine Schiff base Synthesis and equilibrium studies of some metal ion complexes, *Journal of spectrochimicaActa* Part A, 70, 686-691 (2008).

8. R. Ware, M. Farooqui, S. D. Naikwade, Equilibrium studies on mixed ligand complexes of Copper (II) metal ion with some antihypertension drugs and amino acids, *International Journal of Emerging Technologies in Computational and Applied Sciences*; 123-127 (2013).

9. Abdulbaset A. Zaid, MazaharFarooqui and D. M. Janrao, Study of Stability constant of binary & ternary complexes of Gabapentin withtransition metal ions using potentiometric titration, *Asian Journal of Biochemical and Pharmaceutical Research*, 4, 1, 2231-2560 (2011).

10. B.K. Magare, Solution Studies on Ternary Copper Complexes of Piperacillin Drug with Alanine and Glycine Amino Acids, *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 1081-1089 (2014).

11. Baban K. Magarea and Milind B. Ubaleb, Solution Behavior of Copper Complexes with Antibacterial Drugs and Amino Acids, Pelagia Research Library, *Der Chemica Sinica*, 2, 158-164 (2011).

12. Osamu Yamauchi, Akira Odani, Electrostatic ligand-ligand interactions in ternary amino acid-palladium (II) complexes; *Synthetic studies and spectroscopic evidence; J. Am. Chem. Soc.*; 103, 2, 391-398 (1981).