Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Prevalence of anxiety in health care professionals during the COVID-19 pandemic: A rapid systematic review (on published articles in Medline) with meta-analysis

Javier Santabárbara, Juan Bueno-Notivio, Darlen M. Lipnicki, Beatriz Olaya, María Pérez-Moreno, Patricia Gracia-García, Nahia Idoiaga-Mondragon, Naiara Ozamiz-Etxebarría

ARTICLE INFO

Keywords:
Health care workers
Anxiety
Professional categories
COVID-19

ABSTRACT

During the COVID-19, healthcare workers are exposed to a higher risk of mental health problems, especially anxiety symptoms. The current work aims at contributing to an update of anxiety prevalence in this population by conducting a rapid systematic review and meta-analysis. Medline and Pubmed were searched for studies on the prevalence of anxiety in health care workers published from December 1, 2019 to September 15, 2020. In total, 71 studies were included in this study. The pooled prevalence of anxiety in healthcare workers was 25% (95% CI: 21%–29%), 27% in nurses (95% CI: 20%–34%), 17% in medical doctors (95% CI: 12%–22%) and 43% in frontline healthcare workers (95% CI: 25%–62%). Our results suggest that healthcare workers are experiencing significant levels of anxiety during the COVID-19 pandemic, especially those on the frontline and nurses. However, international longitudinal studies are needed to fully understand the impact of the pandemic on healthcare workers’ mental health, especially those working at the frontline.

1. Introduction

The COVID-19 outbreak has led to an increment of psychological distress levels in the general population. Some contributing risk factors for this increment are the unpredictable nature of the disease, home isolation and confinement, a lack of clarity from leaders regarding the seriousness of the risk, or the emotional contagion between individuals (Huremović, 2019). The psychological impact has been reported to be especially high in healthcare workers (HCW), who face additional group-specific stressors (Cheng and Li Ping Wah-Pun Sin, 2020; C. Zhang et al., 2020). Very intense work-related stressors include long working hours, strict instructions and safety measures, a permanent need for concentration and vigilance, reduced social contact, and the performance of tasks which they may not have been prepared for (Vieta et al., 2020).

This emotional distress experienced by HCW during the COVID-19 pandemic has been significantly associated with depression, stress and anxiety (Elbay et al., 2020; Lai et al., 2020), with anxiety being frequently observed in HCW (García-Iglesias et al., 2020). Recent studies have shown that frontline HCW may be experiencing the highest levels of anxiety (Buselli et al., 2020), because they are usually responsible for the care of patients with COVID-19, and more mentally overwhelmed by...
the lack of specific treatment guidelines or adequate support (Liu et al., 2020b). A previous study reported that nurses with a higher level of stress were more likely to develop anxiety (Mo et al., 2020) and HCW women seem also to be at higher risk for anxiety (Babore et al., 2020).

Three systematic reviews and meta-analyses have reported prevalence rates of anxiety among HCW during the COVID-19 pandemic. The first, based on 13 cross-sectional studies, reported an overall prevalence of 23.2% (Pappa et al., 2020). The second meta-analysis included seven studies from China and reported an increased risk of anxiety among HCW (OR=1.32, 95% CI=1.09–1.6) compared with other professionals (da Silva and Neto, 2021). The third study found that the prevalence of anxiety and depression was similar among HCW and the general population (33%), but higher among patients with pre-existing conditions and COVID-19 infection (55%) (Luo et al., 2020). These systematic reviews and meta-analyses were conducted in April/May 2020. Since then, there has been a growing number of studies analyzing the prevalence of anxiety in HCW during the COVID-19 pandemic. Thus, the current meta-analysis aims to update the evidence on the prevalence of anxiety in HCW during the COVID-19 pandemic. Furthermore, and due to the evidence that suggests that the psychological impact of the COVID-19 pandemic might differ across different professional categories, we also investigated the prevalence of anxiety separately for professional groups (i.e., medical doctors, nurses, and frontline HCW).

2. Materials and methods

This study was conducted in accordance with the PRISMA guidelines for reporting systematic reviews and meta-analysis (Moher et al., 2009) (Table S1).

2.1. Search strategy

Two researchers (JBN and MPM) searched for cross-sectional studies reporting the prevalence of anxiety published from December 1, 2019 through September 15, 2020, using MEDLINE via PubMed. The search strategy was: (covid OR covid-19 OR Coronavirus OR "corona virus" OR SARS-CoV-2 OR "Coronavirus'[Mesh] OR "Severe acute respiratory syndrome coronavirus 2'[Supplementary Concept] OR "COVID-19'[Supplementary Concept] OR "Coronavirus Infections/epidemiology'[Mesh] OR "Coronavirus Infections/prevention and control'[Mesh] OR "Coronavirus Infections/psychology'[Mesh] OR "Coronavirus Infections/statistics and numerical data'[Mesh]) AND (anxiety OR anxiety symptoms OR anxiety disorders OR anxious OR "Trauma and Stressor Related Disorders'[Mesh] OR "Anxiety'[Mesh] OR "Anxiety Disorders'[Mesh] OR "Anxiety/epidemiology'[Mesh] OR "Anxiety/statistics and numerical data'[Mesh] OR depression OR depressive OR "Depression'[Mesh] OR "Depressive Disorder'[Mesh] OR "Depression/statistics and numerical data'[Mesh]) AND ("health care workers" OR "medical staff" OR "health care professionals" OR "health care workers" OR "health professionals" OR "health personnel" OR "Health Personnel'[Mesh]). No language restriction was made. References from selected articles were inspected to detect additional potential studies. Any disagreement was resolved by consensus among two more reviewers (JS and BO).

2.2. Selection criteria

Studies were included if they: (1) reported cross-sectional data on the prevalence of anxiety during the COVID-19 pandemic; (2) were focused on samples of HCW; and (3) described the methods used to assess or diagnose anxiety. We excluded abstracts without the full text available and review articles.

A pre-designed data extraction form was used to extract the following information: country, sample size, prevalent rates of anxiety, proportion of women, average age, instruments used to assess anxiety, response rate and sampling methods.

2.3. Methodological quality assessment

Articles were assessed by two independent reviewers (JBN and MPM) for methodological validity before inclusion in the review using the Joanna Briggs Institute (JBI) standardized critical appraisal instrument for prevalence studies (Moola et al., 2017). Quality was evaluated with a score of zero or one for each of nine criteria: 1) Was the sample frame appropriate to address the target population?; 2) Were study participants recruited in an appropriate way?; 3) Was the sample size adequate?; 4) Were the study subjects and setting described in detail?; 5) Was data analysis conducted with sufficient coverage of the identified sample?; 6) Were valid methods used for the identification of the condition?; 7) Was the condition measured in a standard, reliable way for all participants?; 8) Was there appropriate statistical analysis?; 9) Was the response rate adequate, and if not, was the low response rate managed appropriately?

Disagreements between the reviewers were resolved through discussions, or by consulting two more reviewers (JS and BO).

2.4. Data extraction and statistical analysis

A generic inverse variance method with a random effect model was used to estimate the pooled prevalence (DerSimonian and Laird, 1986). Random-effects model attempts to generalize findings beyond the included studies by assuming that the selected studies are random samples from a larger population (Cheung et al., 2012).

The Hedges Q statistic was reported to check heterogeneity across studies, with statistical significance set at p < 0.10. The I² statistic and 95% confidence interval was also used to quantify heterogeneity (von Hippel, 2015). I² values between 25% and 50% are considered as low, 50%–75% as moderate, and 75% or more as high (Higgins et al., 2003). Heterogeneity of effects between studies occurs when differences in results for the same exposure-disease association cannot be fully explained by sampling variation. Sources of heterogeneity can include differences in study design or demographic characteristics. We performed meta-regression and subgroup analyses (Thompson and Higgins, 2002) to explore sources of heterogeneity expected in meta-analyses of observational studies (Egger et al., 1998). We also conducted a sensitivity analysis to determine the influence of each individual study on the overall result by omitting studies one by one. Publication bias was determined through visual inspection of a funnel plot and also with the Egger’s test (Egger et al., 1997) (p value < 0.05 indicates publication bias) since funnel plots were found to be an inaccurate method for assessing publication bias in meta-analyses of proportion studies (Hunt et al., 2014).

Statistical analyses were conducted by JS and run with STATA statistical software (version 10.0; College Station, TX, USA) and R (R Core Team, 2019).

3. Results

3.1. Identification and selection of articles

Figure 1 shows the flowchart of the literature search strategy and study selection process. Initially, 354 potential records were identified, from which 1 duplicate was removed, 168 were excluded after screening the titles and abstracts for not meeting the inclusion criteria and 2 of them were then excluded because full text was not available. After reading the remaining 184 articles in full, we finally included 71 in our meta-analysis (Almater et al., 2020; Aparasrhpanarak et al., 2020; Ayhan Bajer et al., 2020; Badahah et al., 2020; Cai et al., 2020; Chen et al., 2020b; Cheng et al., 2020; Chew et al., 2020; Civantos et al., 2020; Consolo et al., 2020; Dal Bosco et al., 2020; Di Tella et al., 2020; Došil Santamaría et al., 2020; Elbay et al., 2020; Elhadi et al., 2020; Gai et al., 2020; Giusti et al., 2020; Gupta et al., 2020a; Gupta et al., 2020b; Huang et al., 2020a; Huang et al., 2020b; Huang and Zhao, 2020;
3.2. Characteristics of the included studies

Table 1 shows the characteristics of those studies (n = 59) that reported prevalence rates of anxiety in HCW (without distinction of the type of workers); Table 2 displays characteristics of studies reporting data from nurses (n = 17); Table 3 for medical doctors (n = 13), and Table 4 for frontline HCW (n = 13).

The sample size of the studies ranged from 46 to 8817 participants. Only 30 studies reported the mean age of participants, which ranged from 29 to 47 years. All but two studies included men and women, with women outnumbering men in most of the studies that included this data (58/65). Fifty studies included general samples of HCWs, with 13 of these also including data on specific subgroups: nurses and doctors (7 studies), frontline HCWs (4 studies), and nurses, doctors and workers assisting COVID-19 patients (Frontline HCW). Four studies included samples of pediatric HCWs, with data specifically on nurses and doctors in only one of these. Five studies only included frontline HCW, with one providing data on subsamples of frontline nurses and doctors. Three studies focused only on nurses, and another two on frontline nurses, while two studies only included doctors. The remaining 5 studies focused on professional groups considered to be HCW: dental workers, laboratory HCW, physiotherapists, and non-physician HCW (with a subpopulation of nurses). A total of 33 studies were conducted in China, 5 studies in Italy, 4 studies from Turkey, 3 studies from each of India and USA, 2 studies from Ecuador, Peru, Saudi Arabia, Singapore, Spain, and a single study from each of Bolivia, Brazil, Cameroon, Croatia, Germany, Iran, Jordan, Kosovo, Libya, Nepal, Oman, Pakistan, Poland, Serbia, South Korea and Thailand. All studies were performed using online questionnaires, and of those that reported sampling methodology, all but four used non-random approaches. The response rate was reported by 38 studies and ranged from 18.5% to 100%. All studies measured anxiety by means of standardized scales, most commonly the Generalized Anxiety Disorder scale (GAD, 35 studies), the Zung Self-rating Anxiety Scale (SAS, 10 studies), the Hospital Anxiety and Depression Scale (HADS, 10 studies), and the Depression, Anxiety, and Stress Scale (DASS, 9 studies).
Table 1
Characteristics of the studies included in the meta-analysis based on samples of healthcare workers.

Author (Publication year)	Population	Country	Mean age (SD)	% Females (n)	Sample size (n)	Response rate (%)	Sampling method	Anxiety assessment	Diagnostic Criteria	Prevalence	Quality assessment		
Apisarnthanarak et al. (2020)	HCW	Thailand	32 (23-62)	59.00% (95)	160	NR	NR	GAD-7	≥10	19.38%	31	6	
Ayhan Basın et al. (2020)	HCW	Turkey	NR	NR	426	98%	NR	NR	GAD-7	≥10	24.41%	104	7
Badahdah et al. (2020)	HCW	Oman	37.67 (7.68)	80.30% (407)	509	NR	NR	GAD-7	≥10	25.93%	132	7	
Chen et al. (2020b)	HCW	China	36.54 (8.57)	68.63% (619)	902	NR	NR	GAD-7	≥10	16.63%	150	7	
Chen et al. (2020c)	Pediatric HCW	China	32.6 (6.5)	90.48% (95)	105	NR	Convenience	GAD-7	≥10	14.00%	79	8	
Cheng et al. (2020b)	Pediatric HCW	China	34.52% (87)	252	62.84%	Convenience	SAS	≥50	7	28.17%	7		
Cheng et al. (2020d)	Pediatric HCW	China	32.6 (6.5)	90.48% (95)	105	84.68%	Convenience	SAS	≥50	7	19.38%	31	6
Consolo et al. (2020)	Dental Workers	Italy	NR	82.4% (440)	356	40.00%	Convenience	GAD-7	≥10	8.72%	79	8	
Consolo et al. (2020)	Dental Workers	Italy	NR	39.6% (141)	105	NR	Convenience	GAD-7	≥10	23.88%	85	8	
Di Tella et al. (2020)	HCW	Italy	42.9 (11.2)	72.4% (141)	356	40.00%	Convenience	GAD-7	≥10	28.74%	121	7	
Dosil Santamaría et al. (2020)	HCW	Spain	36.05 (8.69)	56.8% (251)	421	NR	NR	GAD-7	≥10	35.29%	156	7	
Elbay et al. (2020)	HCW	Turkey	33.3 (7.4)	51.94% (363)	745	NR	NR	GAD-7	≥10	46.71%	348	8	
Gallop et al. (2020)	HCW	Kosovo	39 (10.37)	61.32% (363)	592	NR	NR	GAD-7	≥10	44.59%	264	7	
Giusti et al. (2020)	HCW	Italy	44.6 (13.5)	62.42% (206)	330	NR	NR	GAD-7	≥10	71.20%	418	8	
Gupta et al. (2020a)	HCW	Nepal	29.5 (8.69)	56.8% (251)	442	NR	NR	GAD-7	≥10	35.29%	156	7	
Gupta et al. (2020b)	HCW	India	NR	54.96% (216)	393	NR	NR	GAD-7	≥10	42.12%	123	6	
Huang and Zhao (2020)	HCW	China	NR	76.69% (964)	1257	68.69%	Convenience	GAD-7	≥10	12.25%	154	8	
Huang et al. (2020a)	HCW	China	NR	81.31% (214)	364	NR	NR	GAD-7	≥10	35.64%	802	7	
Huang et al. (2020b)	HCW	China	NR	81.31% (214)	364	NR	NR	GAD-7	≥10	23.04%	85	6	
Kannampallil et al. (2020)	HCW	USA	NR	54.96% (216)	393	NR	NR	GAD-7	≥10	18.58%	73	6	
Keubo et al. (2020)	HCW	Cameroon	35.6 (8.5)	54.45% (159)	292	NR	NR	GAD-7	≥10	42.12%	123	6	
Koksal et al. (2020)	HCW	Turkey	35.6 (8.5)	54.32% (363)	592	NR	NR	GAD-7	≥10	44.59%	264	7	
Lai et al. (2020)	HCW	China	NR	76.69% (964)	1257	68.69%	Convenience	GAD-7	≥10	25.20%	110	8	
Li et al. (2020a)	HCW	China	NR	100% (4369)	4369	82.17%	Convenience	GAD-7	≥10	35.64%	802	7	
Li et al. (2020b)	HCW	China	NR	84.57% (433)	512	NR	NR	GAD-7	≥10	12.21%	248	7	
Lin et al. (2020)	HCW	China	NR	85.52% (1737)	2031	NR	NR	GAD-7	≥10	42.12%	123	6	
Liu et al. (2020a)	Nonphysician HCW	Italy	NR	77.64% (1785)	2299	94.88%	NR	HAMA	≥7	24.75%	569	8	
Magnavita et al. (2020)	HCW	Italy	NR	70.10% (417)	595	73.46%	Convenience	GAD-7	≥5	16.64%	99	8	
Mahendran et al. (2020)	HCW	China	NR	72.5% (87)	120	96.00%	Convenience	GAD-7	≥10	32.50%	59	7	
Nasir et al. (2020)	HCW	Jordan	NR	56.1% (653)	1163	NR	NR	GAD-7	≥10	32.76%	81	7	
Ning et al. (2020)	HCW	China	NR	72.88% (446)	612	NR	NR	GAD-7	≥10	16.34%	100	7	
Prasad et al. (2020)	HCW	Croatia	NR	90.8% (315)	347	NR	NR	GAD-7	≥10	31.70%	110	7	
Que et al. (2020)	HCW	China	31.06 (6.99)	69.06% (1578)	2285	NR	NR	GAD-7	≥10	11.60%	265	7	
Şahin et al. (2020)	HCW	Turkey	NR	66.03% (620)	939	NR	NR	GAD-7	≥10	18.96%	178	7	
Salopek-Ziha et al. (2020)	HCW	Croatia	NR	77.64% (1785)	2299	94.88%	NR	HAMA	≥7	24.75%	569	8	
Si et al. (2020)	HCW	Germany	NR	70.68% (610)	863	NR	NR	GAD-7	≥10	32.50%	59	7	
Skoda et al. (2020)	HCW	Germany	NR	75.99% (1690)	2224	NR	NR	GAD-7	≥10	9.49%	211	6	

(continued on next page)
Table 1 (continued)

Author (Publication year)	Population	Country	Mean age (SD)	% Females (n)	Sample size (n)	Response rate (%)	Sampling method	Anxiety assessment	Diagnostic Criteria	Quality assessment	
Stojanov et al. (2020)	HCW	Serbia	40.5 (8.37)	66.17% (133)	201	NR	NR	GAD-7	≥10	25.37% 51 6	
Suryavanshi et al. (2020)	HCW	India	NR	51.27% (101)	197	20.40%	Snowball	GAD-7	≥9	28.43% 56 6	
Temsah et al. (2020)	HCW	Saudi Arabia	NR	75.09% (437)	582	71.76%	Convenience	GAD-7	≥10	31.79% 185 8	
Teng et al. (2020)	HCW	China	NR	51.27% (133)	201	NR	NR	Snowball	SAS	≥50	13.31% 45 6
Teo et al. (2020)	Laboratory HCW	Singapore	34 (NR)	73.77% (90)	103	84.43%	NR	GAD-7	≥10	24.27% 25 7	
Vanni et al. (2020)	HCW	Italy	47 (10.37)	65.22% (30)	46	90.20%	Convenience	DASS-21	≥10	28.26% 13 7	
Wang et al. (2020a)	HCW	China	NR	85.84% (897)	1045	73.18%	Convenience	HADS	≥10	20.00% 209 7	
Wang et al. (2020d)	HCW	China	37 (NR)	77.37% (212)	274	NR	Convenience	GAD-7	≥10	13.87% 38 6	
Wang et al. (2020c)	Pediatric HCW	China	33.75 (8.41)	90.24% (111)	123	52.44%	Convenience	SAS	≥50	7.32% 9 7	
Wang et al. (2020b)	HCW	China	33.5 (8.89)	64.52% (1291)	2001	72.06%	Convenience	HADS	>7	22.59% 452 8	
Wankowicz et al. (2020)	HCW	Poland	40.25 (5.25)	52.15% (230)	441	NR	NR	GAD-7	>5	64.40% 284 7	
Xiao et al. (2020)	HCW	China	NR	67.22% (644)	958	NR	NR	HADS	>7	54.07% 518 6	
Xiaoming et al. (2020)	HCW	China	33.25 (8.26)	77.93% (6874)	8817	90.62%	Convenience	GAD-7	≥10	5.09% 449 8	
Yang et al. (2020a)	Physical Therapists	South Korea	NR	47.69% (31)	65	89.04%	Convenience	GAD-7	>5	32.31% 21 7	
Yang et al. (2020b)	HCW	China	NR	47.69% (31)	65	89.04%	Convenience	GAD-7	>5	32.31% 21 7	
Yaniez et al. (2020)	HCW	Peru	NR	64.03% (194)	303	75.75%	NR	GAD-7	≥10	20.71% 66 7	
Zhang et al. (2020a)	HCW	China	NR	82.73% (1293)	1563	80.32%	Convenience	GAD-7	≥10	12.92% 202 8	
Zhang et al. (2020b)	HCW	Bolivia, Ecuador, Peru	38.9 (10.1)	67.98% (484)	712	59.2%	Cluster	GAD-7	≥10	23.03% 164 9	
Zhu et al. (2020b)	HCW	China	NR	85.03% (4304)	5062	77.07%	Convenience	GAD-7	≥8	24.06% 1218 8	

Note. *Quality score based on the Joanna Briggs Institute (JBI) standardized critical appraisal instrument for prevalence studies (Moola et al., 2017; see Table S2). HCW = Healthcare workers; NR = not reported; BAI = Beck Anxiety Inventory; DASS-21 = Depression, Anxiety and Stress scales; GAD-7 = General Anxiety Disorder-7; HADS = Hospital Anxiety and Depression Scale; HAMA = Hamilton Anxiety Rating Scale; SAS = Zung Self-Rating Scale; STAI-S = State-trait Anxiety Scale.
3.3. Quality assessment

The risk of bias scores ranged from 5 to 9, with a mean score of 7.01 (Table S2). The most common sources of bias were: (a) recruitment of inappropriate participants (67 studies), (b) response rate not reported or large number of non-responders (39 studies), and (c) sample size too small to ensure good precision of the final estimate (24 studies).

3.4. Meta-analysis of the prevalence of anxiety

The estimated overall prevalence of anxiety was 25% in overall samples of HCW (95% CI: 21%–29%) (Fig. 2), 27% in nurses (95% CI: 20%–34%) (Fig. 3), 17% in medical doctors (95% CI: 12%–22%) (Fig. 4), and 43% in Frontline HCW (95% CI: 25%–62%) (Fig. 5), with significant heterogeneity between studies (Q test: $p < 0.001$) in HCW overall, nurses, doctors and frontline HCW.

3.5. Meta-regression and subgroup analysis

Potential sources of heterogeneity were investigated across the studies. Our subgroup analysis showed that the prevalence of anxiety was lower for studies using the DASS-21, a convenience sampling method, with high methodological quality, or studies conducted in China (Table S5).

3.6. Sensitive analysis

Excluding each study one-by-one from the analysis did not substantially change the pooled prevalence of anxiety. This indicated that no single study had a disproportional impact on the overall prevalence (data not shown).

3.7. Risk of publication bias

Visual inspection of the funnel plot (Fig. 6) suggested a small publication bias for the estimation of the pooled prevalence in HCW, nurses and medical doctors, confirmed by significant Egger’s test results ($p < 0.05$). In contrast, no publication bias was identified in the estimation of the pooled prevalence in frontline HCW (Egger’s test: $p = 0.804$)

4. Discussion

4.1. Summary of main findings

The COVID-19 pandemic is having an unprecedented impact on HCW, with anxiety being one of most commonly reported mental condition. The present study provides an up-to-date meta-analysis of studies reporting the prevalence of anxiety in HCW during the COVID-19 pandemic. Our meta-analysis is based on 71 studies, and to the best of our knowledge, we are the first to report overall prevalence rates of anxiety in different occupational categories of HCW (i.e., nurses, medical doctors and frontline HCW). Our findings show that HCW, nurses and doctors report high anxiety levels (25%, 27% and 17%, respectively), and up to 43% of the frontline HCW display high levels of anxiety symptoms. The prevalence found in HCW is similar to the one reported by Pappa et al. (23.2%) (Pappa et al., 2020) but lower than the

Table 2

Author	Population	Country	Mean age (SD)	% Females (n)	Sample size (n)	Response rate (%)	Sampling method	Anxiety assessment	Diagnosis Criteria	Prevalence (%)	n	Quality assessment
Dal’ Bosco et al. (2020)	Nurses	Brazil	NR	NR (89.8)	88	18.49%	Convenience	HADS	>7	48.90%	43	6
Gupta et al. (2020b)	Nurses	India	NR	NR	207	79.45%	Quota	HADS	>7	49.76%	103	6
Huang et al. (2020a)	Nurses	China	NR	NR (694)	764	68.69%	Convenience	GAD-7	>10	12.70%	97	8
Keubo et al. (2020)	Nurses	Cameroon	NR	NR	168	NR	Snowball	HADS	>10	44.64%	75	5
Lai et al. (2020)	Nurses	China	NR (90.84)	NR (694)	160	93.50%	Cluster	SAS	≥50	26.88%	43	7
Li et al. (2020b)	Frontline	China	NR	NR (77.27%)	176	NR	Convenience	HAMA	≥7	77.27%	136	6
Liu et al. (2020a)	Nurses	China	NR	NR (136)	1173	NR	Convenience	DASS-21	>10	12.87%	151	6
Ning et al. (2020)	Nurses	China	NR (97.97%)	NR (289)	295	NR	Snowball	SAS	≥50	20.34%	60	6
Pouralizadeh et al. (2020)	Nurses	Iran	36.34 (8.74)	95.2%	441	NR	NR	GAD-7	>10	38.78%	171	7
Prasad et al. (2020)	Nurses	USA	NR	93.1% (231)	248	NR	Convenience	GAD-7	>10	34.27%	85	6
Que et al. (2020)	Nurses	China	35.94 (8.17)	97.75% (195)	208	NR	Convenience	GAD-7	>10	14.90%	31	6
Sahin et al. (2020)	Nurses	Turkey	NR	NR (254)	254	NR	Convenience	GAD-7	>10	21.65%	55	5
Skoda et al. (2020)	Nurses	Germany	NR	86.83% (1511)	1511	NR	Convenience	GAD-7	>10	11.38%	172	6
Tu et al. (2020)	Frontline	China	34.44 (5.85)	100% (100)	100	100%	Cluster	GAD-7	>10	7.00%	7	8
Wang et al. (2020a)	Nurses	China	NR	773	73.18%	Convenience	HADS	>10	20.70%	160	7	
Xiong et al. (2020a)	Nurses	China	NR	97.31 (217)	223	61.80%	Convenience	GAD-7	>10	12.11%	27	7
Zhu et al. (2020a)	Frontline	Nurses	NR	86	NR	Convenience	SAS	≥50	27.91%	24	5	

Note. *Quality score based on the Joanna Briggs Institute (JBI) standardized critical appraisal instrument for prevalence studies (Moola et al., 2017; see Table S2). NR = not reported; DASS-21 = Depression, Anxiety and Stress scales; GAD-7 = General Anxiety Disorder-7; HADS = Hospital Anxiety and Depression Scale; HAMA = Hamilton Anxiety Rating Scale; SAS = Zung Self-Rating Scale.
Table 3
Characteristics of the studies included in the meta-analysis based on samples of medical doctors.

Author (Publication year)	Population	Country	Mean age (SD)	% Females (%)	Sample size (n)	Response rate (%)	Sampling method	Anxiety assessment	Diagnostic Criteria	Prevalence (%)	Quality assessment
Almater et al. (2020)	MD	Saudi Arabia	32.9 (9.6)	43.9%	107	30.60%	Convenience sampling	GAD-7 ≥10	21.50%	23	6
Guintos et al. (2020)	MD	USA	NR	39.26%	349	NR	Convenience sampling	GAD-7 ≥10	18.91%	66	7
Gupta et al. (2020b)	MD	India	NR	79.45%	749	NR	Quota sampling	HADS ≥7	35.25%	264	7
Huang et al. (2020a)	MD	China	NR	93.50%	70	NR	Snowball sampling	SAS ≥50	14.29%	10	7
Krebo et al. (2020)	MD	Cameroon	NR	NR	74	NR	Snowball sampling	HADS ≥10	36.49%	27	5
Lai et al. (2020)	MD	China	NR	54.77% (270)	493	68.69%	Convenience sampling	GAD-7 ≥10	11.56%	57	8
Liu et al. (2020a)	MD	China	NR	NR	858	NR	Convenience sampling	DASS-21 ≥10	11.31%	97	6
Nig et al. (2020)	MD	China	NR	49.53% (157)	317	NR	Snowball sampling	SAS ≥50	12.62%	40	6
Que et al. (2020)	MD	China	33.69 (7.44)	63.49% (546)	860	NR	Convenience sampling	GAD-7 ≥10	11.98%	103	7
Sahin et al. (2020)	MD	Turkey	NR	NR	580	NR	Convenience sampling	GAD-7 ≥10	18.62%	108	6
Skoda et al. (2020)	MD	Germany	NR	65.65% (323)	492	NR	Convenience sampling	GAD-7 ≥10	5.89%	29	7
Wang et al. (2020a)	MD	China	NR	73.18%	149	NR	Convenience sampling	SAS ≥50	20.13%	30	6
Zhu et al. (2020a)	MD	Frontline	China	64.56% (51)	79	NR	Convenience sampling	SAS ≥50	11.39%	9	6

Note. *Quality score based on the Joanna Briggs Institute (JBI) standardized critical appraisal instrument for prevalence studies (Moola et al., 2017; see Table S2). MD = Medical doctor; NR = not reported; DASS-21 = Depression, Anxiety and Stress scales; GAD-7 = General Anxiety Disorder-7; HADS = Hospital Anxiety and Depression Scale; SAS = Zung Self-Rating Scale.

Table 4
Characteristics of the studies included in the meta-analysis based on samples of frontline healthcare workers.

Author (Publication year)	Population	Country	Mean age (SD)	% Females (%)	Sample size (n)	Response rate (%)	Sampling method	Anxiety assessment	Diagnostic Criteria	Prevalence (%)	Quality assessment
Cai et al. (2020)	Frontline HCW	China	30.6 (8.8)	68.82% (819)	1173	NR	Non-probabilistic sampling	BAI ≥16	15.69%	184	7
Kannampallil et al. (2020)	Frontline HCW	USA	NR	51.38% (112)	218	15.85%	NR	DASS-21 ≥8	21.56%	47	5
Lai et al. (2020)	Frontline HCW	China	NR	68.69% (157)	522	NR	Convenience sampling	GAD-7 ≥10	16.09%	84	7
Li et al. (2020a)	Frontline HCW	China	NR	77.27% (136)	176	NR	Convenience sampling	HAMA ≥7	77.27%	136	6
Luceno-Moreno et al. (2020)	Frontline HCW	Spain	43.88 (10.82)	86.40% (1228)	1422	92.40%	Non-probabilistic sampling	HADS ≥7	79.32%	1128	8
Sandesh et al. (2020)	Frontline HCW	Pakistan	NR	42.86% (48)	112	NR	Convenience sampling	DASS-21 ≥10	85.71%	96	5
Stojanov et al. (2020)	Frontline HCW	Serbia	39.1 (7.3)	65.25% (77)	118	NR	NR	GAD-7 ≥10	31.36%	37	6
Yu et al. (2020)	Frontline Nurses	China	34.44 (5.85)	100% (100)	100	100%	Cluster Sampling	GAD-7 ≥10	7.00%	7	8
Wang et al. (2020a)	Frontline HCW	China	NR	73.18%	401	73.18%	HADS ≥10	24.69%	99	7	
Wang et al. (2020b)	Frontline HCW	China	NR	72.06% (395)	661	NR	Convenience sampling	HADS ≥7	28.74%	190	8
Wanekowicz et al. (2020)	Frontline HCW	Poland	40.47 (4.93)	56.31% (116)	206	NR	Convenience sampling	GAD-7 ≥5	99.03%	204	6
Zhou et al. (2020)	Frontline HCW	China	35.77 (6.13)	81.19% (492)	606	NR	NR	GAD-7 ≥5	45.38%	275	7
Zhu et al. (2020a)	Frontline HCW	China	34.16 (8.06)	83.03% (137)	165	NR	Convenience sampling	SAS ≥50	20.00%	33	6

Note. *Quality score based on the Joanna Briggs Institute (JBI) standardized critical appraisal instrument for prevalence studies (Moola et al., 2017; see Table S2). HCW = healthcare worker; NR = not reported; BAI = Beck Anxiety Inventory; DASS-21 = Depression, Anxiety and Stress scales; GAD-7 = General Anxiety Disorder-7; HADS = Hospital Anxiety and Depression Scale; HAMA = Hamilton Anxiety Rating Scale; SAS = Zung Self-Rating Scale.
Prevalence of Anxiety in Health Care Workers

Study	ES (95% CI)	% Weight
Apisaranthanara et al. (2020)	0.19 (0.14, 0.26)	1.65
Ayhan-Baser et al. (2020)	0.24 (0.20, 0.29)	1.71
Badahdah et al. (2020)	0.26 (0.22, 0.30)	1.71
Chen J. et al. (2020)	0.17 (0.14, 0.19)	1.72
Chen X. et al. (2020)	0.28 (0.23, 0.34)	1.68
Chen Y. et al. (2020)	0.18 (0.11, 0.27)	1.61
Cheng Y. et al. (2020)	0.14 (0.11, 0.17)	1.71
Chew et al. (2020)	0.09 (0.07, 0.11)	1.72
Consolo. et al. (2020)	0.24 (0.20, 0.29)	1.70
Di Tella et al. (2020)	0.71 (0.63, 0.78)	1.64
Dosil-Santamaría et al. (2020)	0.29 (0.24, 0.33)	1.70
Elbay et al. (2020)	0.35 (0.31, 0.40)	1.71
Eilhami et al. (2020)	0.47 (0.43, 0.50)	1.72
Gallopin et al. (2020)	0.45 (0.41, 0.49)	1.71
Giusti et al. (2020)	0.71 (0.66, 0.76)	1.70
Gupta A.K. et al. (2020)	0.10 (0.06, 0.16)	1.65
Gupta S. et al. (2020)	0.37 (0.34, 0.40)	1.73
Huang & Zhao (2018)	0.36 (0.34, 0.38)	1.73
Huang J. et al. (2020)	0.23 (0.18, 0.29)	1.68
Huang L. et al. (2020)	0.23 (0.19, 0.28)	1.70
Kannampaill et al. (2020)	0.19 (0.15, 0.23)	1.70
Keubo et al. (2020)	0.42 (0.36, 0.48)	1.69
Koksai et al. (2020)	0.58 (0.54, 0.61)	1.72
Lai et al. (2020)	0.12 (0.10, 0.14)	1.73
Li G. et al. (2020)	0.25 (0.24, 0.27)	1.74
Liang et al. (2020)	0.14 (0.12, 0.17)	1.72
Lin et al. (2020)	0.41 (0.39, 0.43)	1.73
Liu et al. (2020)	0.12 (0.10, 0.16)	1.71
Lu et al. (2020)	0.12 (0.11, 0.14)	1.73
Magnavita et al. (2020)	0.17 (0.14, 0.20)	1.71
Mahendran et al. (2020)	0.32 (0.24, 0.42)	1.62
Nasser et al. (2020)	0.33 (0.30, 0.36)	1.73
Ning et al. (2020)	0.16 (0.13, 0.20)	1.72
Prasad et al. (2020)	0.32 (0.27, 0.37)	1.70
Que et al. (2020)	0.12 (0.10, 0.13)	1.73
Sahin et al. (2020)	0.19 (0.16, 0.22)	1.72
Salopek-Ziha et al. (2020)	0.17 (0.11, 0.25)	1.63
Si et al. (2020)	0.08 (0.06, 0.10)	1.72
Skoda et al. (2020)	0.09 (0.08, 0.11)	1.73
Stojanov et al. (2020)	0.25 (0.20, 0.32)	1.67
Suryavanshi et al. (2020)	0.28 (0.22, 0.35)	1.67
Temsah et al. (2020)	0.32 (0.28, 0.36)	1.71
Teng et al. (2020)	0.13 (0.10, 0.17)	1.70
Teo et al. (2020)	0.24 (0.16, 0.34)	1.61
Vanni et al. (2020)	0.28 (0.16, 0.43)	1.47
Wang H. et al. (2020)	0.20 (0.18, 0.23)	1.73
Wang L.Q. et al. (2020)	0.14 (0.10, 0.19)	1.69
Wang S. et al. (2020)	0.07 (0.03, 0.13)	1.63
Wang W. et al. (2020)	0.23 (0.21, 0.24)	1.73
Wankowicz et al. (2020)	0.64 (0.60, 0.69)	1.71
Xiao et al. (2020)	0.54 (0.51, 0.57)	1.72
Xiaoming et al. (2020)	0.05 (0.05, 0.06)	1.74
Yang S. et al. (2020)	0.32 (0.21, 0.45)	1.54
Yang X. et al. (2020)	0.29 (0.25, 0.34)	1.71
Yañez X. et al. (2020)	0.22 (0.17, 0.27)	1.69
Zhang C. et al. (2020)	0.13 (0.11, 0.15)	1.73
Zhang S.X. et al. (2020)	0.23 (0.20, 0.26)	1.72
Zhu Z. et al. (2020)	0.24 (0.23, 0.25)	1.74
Overall (I^2 = 99.12%, p = 0.00)	0.25 (0.21, 0.29)	100.00

Figure 2. Forest plot for the prevalence of anxiety among healthcare workers
one reported by Luo et al. (33%) (Luo et al., 2020). These discrepancies might be explained in light of the different number of studies included or the origin of the samples (i.e., China).

Some previous systematic reviews and meta-analyses have been conducted to report the prevalence of anxiety in the general population. A recent meta-analysis conducted from December 2019 to August 2020 and based on 43 population-based studies reported an overall prevalence of anxiety of 25% (Santabarbara et al., 2021). Similarly, a recent systematic review (Xiong et al., 2020a) found that the prevalence of anxiety symptoms ranged from 6.3% to 50.9% in the general population during the COVID-19 outbreak (based on 11 population-based studies). The present study reports similar prevalence rates of anxiety in HCW to that reported in the general population, although the proportion of anxiety in frontline HCW appears to be higher (43%).

The finding of frontline HCW as the workers with the highest levels of anxiety is consistent with previous literature (Alshekaili et al., 2020; Buselli et al., 2020; Cabarkapa et al., 2020). Frontline HCW are directly responsible for caring for patients with COVID-19, and are exposed to several risk factors for anxiety such as burnout, lack of treatment guidelines, and feeling inadequately supported (Lai et al., 2020; Rajkumar, 2020). The exposure to critical medical situation and death and trauma make frontline HCW especially vulnerable to post-traumatic stress disorder (PTSD) (Carmassi et al., 2020). Despite the fact that the present meta-analysis is based on studies that evaluated anxiety symptoms with standardized questionnaire, they correspond to overall anxiety, but do not specifically assess the presence of PTSD. However, symptoms of PTSD might be also indirectly captured by these instruments.

The relatively high anxiety levels observed in nurses (27%) is also consistent with some previous reports showing that nurses are particularly affected by severe emotional distress (Dennison Himmelfarb and Baptiste, 2020). Nurses have direct contact with patients and therefore have more direct emotional contact. Recent systematic reviews have shown that being a nurse in the COVID-19 pandemic is a risk factor for anxiety (Cabarkapa et al., 2020; Sanghera et al., 2020). Factors promoting anxiety include fear of being infected or infecting others (Mo et al., 2020), lack of personal protective equipment, lack of access to COVID-19 testing, and lack of accurate information about the disease (Shanafelt et al., 2020).

![Forest plot for the prevalence of anxiety among nurses.](image-url)
4.2. Strengths and limitations

Some strengths of our meta-analysis are the inclusion of a large body of literature and the use of a rigorous approach to identify publication bias (i.e., Egger’s test). These results show that there is a small bias in the estimation of the pooled prevalence of anxiety for HCW, nurses and medical doctors but null for frontline HCW.

However, some limitations should be considered when interpreting our results. First, the majority of the studies included were based on cross-sectional data and non-probabilistic samples. The epidemiological status of COVID-19 is constantly changing worldwide, and thus longitudinal studies are necessary to determine whether the elevated levels of anxiety are sustained, reduced or increased over time (Pierce et al., 2020). Second, the studies used a variety of self-report anxiety scales, and the use of some tests was associated with significantly higher prevalence of anxiety than others. Ideally, studies should use the same measure of anxiety, and if possible, include a diagnosis based on clinical interviews. However, this is not always possible, and the use of brief, self-reported standardized questionnaires appears as a common practice in epidemiological studies. Finally, while we were able to include studies from many countries, the majority of studies were focused on Asian countries, particularly on Chinese samples. Europe and America are both highly affected by the COVID-19 pandemic, thus there is still need for epidemiological studies in these regions using randomized sampling design, when possible.

5. Conclusions

This meta-analysis confirms the huge mental toll of the COVID-19 pandemic in HCW, especially in frontline HCW and nurses. Therefore, there is an urgent need to prevent and treat common mental health problems in this population. Several strategies have been recommended to support the mental health and well-being of HCW. These include accurate work-related information, regular breaks, adequate rest and sleep, a healthy diet, physical activity, peer support, family support, avoidance of unnecessary coping strategies, limiting the use of social media and professional counselling or psychological services (Pollock et al., 2020). In addition, psychological support based on coping strategies should be provided to control anxiety. Spiritual care programs and other approaches developed for end-of-life and palliative care could also be helpful (Chirico et al., 2020).

Since the beginning of the COVID-19 pandemic, psychological support for health workers has been implemented in different countries. In China, different groups of mental health providers used social networking platforms and telephone aids to implement mental health support by offering guidance and supervision to solve psychological

Study	ES (95% CI)	% Weight
Almater et al. (2020)	0.21 (0.14, 0.30)	7.20
Civantonos et al. (2020)	0.19 (0.15, 0.23)	7.99
Gupta S. et al. (2020)	0.35 (0.32, 0.39)	8.20
Huang et al. (2020)	0.14 (0.07, 0.25)	6.71
Keubo et al. (2020)	0.36 (0.26, 0.48)	6.78
Lai et al. (2020)	0.12 (0.09, 0.15)	8.10
Liu et al. (2020)	0.11 (0.09, 0.14)	8.23
Ning et al. (2020)	0.13 (0.09, 0.17)	7.95
Que et al. (2020)	0.12 (0.10, 0.14)	8.23
Sahin et al. (2020)	0.19 (0.16, 0.22)	8.15
Skoda et al. (2020)	0.06 (0.04, 0.08)	8.10
Wang H. et al. (2020)	0.20 (0.14, 0.27)	7.50
Zhu J. et al. (2020)	0.11 (0.05, 0.21)	6.86
Overall (I² = 95.55%, p = 0.00)	0.17 (0.12, 0.22)	100.00

Figure 4. Forest plot for the prevalence of anxiety among medical doctors.
problems (Chen et al., 2020a; Cheng et al., 2020a). In Iran, consistent measures were taken to prevent, screen and treat mental health disorders among staff serving patients with COVID-19 (Zandifar et al., 2020). In the UK, in the first three weeks of the outbreak, a digital learning package was developed and evaluated. This e-learning package included evidence-based guidance, support and signage related to psychological well-being for all health care workers in the UK (Blake et al., 2020). In Spain, the Ministry of Health and the General Council of Psychologists activated a telephone support line for professionals with direct intervention in the management of the pandemic, such as health frontline care workers (Spanish Government, 2020). Finally, it is worth to mention the use of interventions based on cognitive behavior therapy to mitigate maladaptive coping strategies and change cognitive bias (Ho et al., 2020). These interventions can be delivered through e-health platforms (such as the Internet) and have been widely proved to be cost-effective for treating anxiety disorders (Zhang and Ho, 2017).

These are only examples of the psychological support being given in different countries. We advocate that the psychological support provided should be adapted to specific groups of workers and that further research should be carried out into which measures are most effective in minimizing the psychological impact of the COVID-19 pandemic in HCW.

Figure 5. Forest plot for the prevalence of anxiety among frontline healthcare workers.

Ethical statement for solid state ionics

Hereby, I Beatriz Olaya consciously assure that for the manuscript “Prevalence of anxiety in health care professionals during the COVID-19 pandemic: A rapid systematic review with meta-analysis” the following is fulfilled:

1) This material is the authors’ own original work, which has not been previously published elsewhere.
2) The paper is not currently being considered for publication elsewhere.
3) The paper reflects the authors’ own research and analysis in a truthful and complete manner.
4) The paper properly credits the meaningful contributions of co-authors and co-researchers.
5) The results are appropriately placed in the context of prior and existing research.
6) All sources used are properly disclosed (correct citation). Literally copying of text must be indicated as such by using quotation marks and giving proper reference.
7) All authors have been personally and actively involved in substantial work leading to the paper, and will take public responsibility for its content.
Table 5
Overall prevalence rates of anxiety according to study characteristics.

Healthcare Workers (HCW)	Nurses	Medical Doctors	Frontline HCW
No. of studies	No. of studies	No. of studies	No. of studies
Prevalence (%) (95% CI)			
p*	p*	p*	p*

- Anxiety assessment
 - GAD-7: 29 (18-28) vs. 0.179
 - HADS: 8 (30-51) vs. 0.919
 - DASS-21: 8 (12-26) vs. 0.502
 - SAS: 9 (17-22) vs. 0.711
 - STAI: 2 (71-67.5) vs. 0.919

- Sampling method
 - Convenience: 36 (24-19.9) vs. 0.005
 - Other (BAI/HAMA/GAD/GSTAI): 3 (23-21.25) vs. 0.005

- Quality rating
 - Medium (-7): 13 (27-16.38) vs. 0.018
 - High (≥7): 46 (25-21.29) vs. 0.021

Note: * No. of studies = not reported; BAI = Beck Anxiety Inventory; DASS-21 = Depression, Anxiety and Stress scales; GAD-7 = General Anxiety Disorder-7; HADS = Hospital Anxiety and Depression Scale; HAMA = Hamilton Anxiety Rating Scale; SAS = Zung Self-Rating Scale; STAI = State-Trait Anxiety Scale.

- p value obtained from univariate meta-regression.

Figure 6. Funnel plot for the prevalence of anxiety.

The violation of the Ethical Statement rules may result in severe consequences.

To verify originality, your article may be checked by the originality detection software iThenticate. See also http://www.elsevier.com/editors/plagdetect.

I agree with the above statements and declare that this submission follows the policies of Solid State Ionics as outlined in the Guide for Authors and in the Ethical Statement.

Funding

This work has been supported by grants from the Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Spanish Ministry of Economy and Competitiveness, Madrid, Spain [grants 94/1562, 97/1321E, 98/0103, 01/0255, 03/0815, 06/0617, G03/128 and 19/01874]. BO’s work is supported by the PERIS program 2016-2020 “Ajuts per a la Incorporació de Científics i Tecnòlegs” [grant number SLT006/17/00066], with the support of the Health Department from the Generalitat de Catalunya, and by the Miguel Servet programme (reference CP20/00040), funded by Instituto de Salud Carlos III and co-funded by European Union (ERDF/ESF, ‘Investing in your future’). Sponsors had no involvement in the study design, in the collection, analysis and interpretation of data, in the writing of the manuscript, or in the decision to submit the article for publication.

Declaration of Competing Interest

None.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pnpbp.2021.110244.

References

Li, G., Miao, J., Wang, H., Xu, S., Sun, W., Fan, Y., Zhang, C., Zhu, S., Zhu, Z., Wang, W., 2020a. Psychological impact on women health workers involved in COVID-19 outbreak in Wuhan: a cross-sectional study. In J Neurol Neurosurg Psychiatry. Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China. Nursing Department, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, pp. 895-897. https://doi.org/10.1136/jnnp-2020-323134.

Temsah, M.H., Al-Sohime, F., Alamro, N., Al-Eyadhy, A., Al-Hasan, K., Jamal, A., Al-Maglouth, I., Aljamaan, F., Al-Amri, M., Barry, M., Al-Subaie, S., Somilyj, A.M., 2020. The psychological impact of COVID-19 pandemic on health care workers in a MERS-CoV endemic country. J. Infect. Public Health. https://doi.org/10.1016/j.jiph.2020.05.021.

Temsah, M.H., Al-Sohime, F., Alamro, N., Al-Eyadhy, A., Al-Hasan, K., Jamal, A., Al-Maglouth, I., Aljamaan, F., Al-Amri, M., Barry, M., Al-Subaie, S., Somilyj, A.M., 2020. The psychological impact of COVID-19 pandemic on health care workers in a MERS-CoV endemic country. J. Infect. Public Health. https://doi.org/10.1016/j.jiph.2020.05.021.

Almater, A., Tobagi, M., Younis, A., Alaqeel, M., Abouammoh, M., 2020. Effect of 2019 coronavirus pandemic on ophthalmologists practicing in Saudi Arabia: a...
Chew, N.W.S., Lee, G.K.H., Tan, B.Y.Q., Jing, M., Goh, Y., Ngiam, N.J.H., Yeo, L.L.L., Cheung, M.W.L., Ho, R.C.M., Lim, Y., Mak, A., 2012. Conducting a meta-analysis: basics and good practices. Int. J. Rheum. Dis. 15, 129–135. https://doi.org/10.1111/j.1600-0404.2011.01305.x

Chen, J.S.O., Li Ping Wah-Pun Sin, E., 2020. The effects of nonconventional palliative care on frontline and non-frontline medical workers during the coronavirus disease 2019 outbreak in China. Soc. Public Heal. Surveill 6, e20737. https://doi.org/10.2196/20737.

Chen, Q., Liang, M., Li, Guo, J., Fei, D., Wang, L., He, L., Sheng, C., Cai, Y., Li, X., Wang, J., Zhang, Z., 2020a. Mental health care for medical staff in China during the COVID-19 outbreak. Lancet Psychiatry 7, e15–e16. https://doi.org/10.1016/S2215-0366(20)30078-X.

Chen, J., Liu, X., Wang, D., Jin, Y., He, M., Ma, Y., Zhao, X., Song, S., Zhang, L., Xiang, Y., Song, L., Jiang, S., Bai, H., Hou, X., 2020b. The mental health of frontline and non-frontline medical workers during the coronavirus disease 2019 (COVID-19) outbreak in China: a case-control study. J. Affect. Disord. 275, 210–215. https://doi.org/10.1016/j.jad.2020.06.031.

Chen, X., Liang, S., Zhang, X., Zhao, S., Li, X., Yang, Y., 2019. The psychological impact of COVID-19 on the mental health of healthcare workers in China: a cross-sectional survey study. Front. Psychol. 10, 2634. https://doi.org/10.3389/fpsyg.2019.02634.

Chen, M., Hu, L., Li, Z., Wang, R., 2020a. Prevalence of anxiety and depression among the healthcare workers in Nepal during the COVID-19 pandemic. Psychiatry Res. https://doi.org/10.1016/j.psychres.2020.113103.

Chen, M., Hu, L., Li, Z., Wang, R., 2020b. Prevalence of anxiety and depression among the healthcare workers in Nepal during the COVID-19 pandemic. Psychiatry Res. https://doi.org/10.1016/j.psychres.2020.113103.

Chen, B., Liu, Y., Zhao, N., 2020. Generalized anxiety disorder, depressive symptoms and sleep disturbance among medical staff in China during the COVID-19 pandemic. Biomed. Reports 10, 110244. https://doi.org/10.1016/j.bmr.2020.110244.

Chen, N., Gao, X., Wang, J., 2020a. Prevalence of anxiety and depression among the healthcare workers in China during the COVID-19 pandemic. Psychiatry Res. https://doi.org/10.1016/j.psychres.2020.113005.

Chen, J., Komalkumar, R.N., Meenakshi, P.V., Shah, K., Patel, B., Chan, B.P.L., Sunny, S., Chandra, B., Ong, J.J.Y., Paliwal, P.R., Wong, L.Y.H., Sagayanathan, R., Chen, J.T., 2020b. Prevalence of anxiety and depression among healthcare workers deployed during the COVID-19 outbreak in China. Soc. Public Heal. Surveill 6, e20737. https://doi.org/10.2196/20737.

Chen, H., Ouyang, K., Pan, J., Li, Q., Fu, B., Deng, Y., Liu, Y., 2020. The mental health impact of COVID-19 on healthcare workers: a digital learning package. Int. J. Cardiaco. Nurs. 35, 215. https://doi.org/10.1177/1061785319880500.

Chen, X., Xie, S., Cai, L., Liu, Y., Jiang, Y., 2020. The psychological impact of COVID-19 on the mental health of healthcare workers exposed to Sars-Cov-2 (COVID-19). Int. J. Environ. Res. Public Health 17, 6180. https://doi.org/10.3390/ijerph17166180.

Chen, W., Xiao, S., Liu, X., Li, X., Guo, C., Zhang, X., 2020. Mental health and mental health-related stress among medical workers in China during the COVID-19 pandemic: a cross-sectional study. Medicine (Baltimore) 99, 24737. https://doi.org/10.1097/MD.0000000000002779.

Cheng, J.O.S., Li Ping Wah-Pun Sin, E., 2020. The effects of nonconventional palliative care on frontline and non-frontline medical workers and ways to address it: a rapid systematic review. Brain. Behav. Immun. Health 88, 100144. https://doi.org/10.1016/j.bbihi.2020.100144.

Choo, K., Fung, H., Huang, J., Wang, M., Wang, Q., Lu, X., Xie, Y., Wang, X., Liu, Z., Hu, J., 2020. The mental health of frontline and non-frontline medical workers during the coronavirus disease 2019 (COVID-19) outbreak in China: a case-control study. J. Affect. Disord. 275, 210–215. https://doi.org/10.1016/j.jad.2020.06.031.

Carmassi, C., Foghi, B., Del Giorno, V., Cordone, A., Bertelloni, C.A., Buti, E., Dell’Oss, L., 2020. PTSD symptoms in healthcare workers facing the three coronavirus outbreaks: What can we expect after the COVID-19 pandemic. Psychiatry Res. https://doi.org/10.1016/j.psychres.2020.113212.

Cabello, J., Santabarbara, E., 2020. The impact of COVID-19 on patients with other chronic conditions and good practices. Int. J. Rheum. Dis. 15, 129–135. https://doi.org/10.1111/ihr.13516.

Candelori, C., Bramanti, S.M., Trumello, C., 2020. Psychological effects of the COVID-19 pandemic: perceived stress and coping strategies among healthcare professionals. BMC Med. Res. Methodol. 15, 35. https://doi.org/10.1186/s12874-015-01684-z.

Cao, X., Zhang, Y., Wang, Y., 2020a. Prevalence of anxiety and depression among the healthcare workers in China during the COVID-19 pandemic. Psychiatry Res. https://doi.org/10.1016/j.psychres.2020.113005.

Carvalho, D.C., Bem, P., zgic, J., Pereira, H.S., 2020. Spurious prediction? Meta-analysis of Egger’s bias. J. Clin. Epidemiol. 113, 135. https://doi.org/10.1016/j.jclinepi.2020.05.004.

Carvalho, D.C., Bem, P., zgic, J., Pereira, H.S., 2020. Spurious prediction? Meta-analysis of Egger’s bias. J. Clin. Epidemiol. 113, 135. https://doi.org/10.1016/j.jclinepi.2020.05.004.

Carvalho, D.C., Bem, P., zgic, J., Pereira, H.S., 2020. Spurious prediction? Meta-analysis of Egger’s bias. J. Clin. Epidemiol. 113, 135. https://doi.org/10.1016/j.jclinepi.2020.05.004.

Carvalho, D.C., Bem, P., zgic, J., Pereira, H.S., 2020. Spurious prediction? Meta-analysis of Egger’s bias. J. Clin. Epidemiol. 113, 135. https://doi.org/10.1016/j.jclinepi.2020.05.004.
Mahendran, K., Patel, S., Sproat, C., 2020. Psychosocial effects of the COVID-19 pandemic on staff in a dental teaching hospital. Br. Dent. J. 229, 127–132. https://doi.org/10.1038/s41415-020-1792-3.

Pappu, S., Stella, V., Giannakas, T., Giannakoulis, V.G., Papoutsi, E., Katsouounou, P. 2020. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: a systematic review and meta-analysis. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2020.05.026.

Pe, M.K., McManus, S., Jensen, C., John, A, Hotopf, M., Ford, J., Hatch, S., Wesely, S., Abel, K.M., 2020. Says who? The significance of sampling in mental health surveys during COVID-19. Lancet Psychiatry 7, 567–568. https://doi.org/10.1016/S2215-0330(20)30225-1.

Pollock, A., Campbell, P., Cheyne, J., Cowie, J., Davis, B., McCullum, J., McGill, K., Elders, A., Hagen, S., McClurg, D., Torrens, C., Maxwell, M., 2020. Interventions to support the resilience and mental health of frontline health and social care professionals during and after a disease outbreak, epidemic or pandemic: a mixed methods systematic review. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD013779.

Pourlizadeh, M., Iostani, Z., Maroufizadeh, S., Ghanbari, A., Khosh Bahm, M., Alavi, S.A., Ashrafi, S., 2020. Anxiety and depression and the related factors in nurses of Guilan University of Medical Sciences hospitals during COVID-19: A web-based cross-sectional study. Int. J. Afr. Nurs. Sci. 13, 100223. https://doi.org/10.1016/j.ijnr.2020.100223.

Prasad, A., Civantos, A.M., Byrnes, Y., Chorath, K., Poonia, S., Chang, C., Graboyes, E.M., Bur, A.M., Thakkar, P., Deng, J., Seth, R., Trosman, S., Wong, A., Laitman, B.M., Shah, J., Stubbs, V., Long, Q., Choby, G., Raszehl, C.H., Thaler, E.R., Rajasekaran, K., 2020. Snapshot impact of COVID-19 on mental wellness in nonphysician emergency medicine health care workers: a national study. OT open 4, 247937x2019048835. https://doi.org/10.1037/jam.2020.5893.

Que, J., Shi, L., Deng, J., Liu, J., Zhang, W., Liu, S., Gong, Y., Huang, W., Yuan, K., Yan, W., Sun, Y., Ran, M., Bao, T., Lu, L., 2020. Psychological impact of the COVID-19 pandemic on healthcare workers in Wuhan. Front. Psychiatry 33, e100259. https://doi.org/10.3389/fpsyt.2020.100259.

Rajkumar, R.P., 2020. COVID-19 and mental health: a review of the existing literature. Asian J. Psychiatr. 52, 102066. https://doi.org/10.1016/j.ajp.2020.102066.

Sahin, M.K., Aker, S., Sahin, G., Karabekiroglu, A., 2020. Prevalence of depression, anxiety, distress and insomnia related factors in healthcare workers during COVID-19 pandemic in Turkey. J. Community Health. https://doi.org/10.1007/s10909-020-02921-w.

Salez, Z., Zada, H., Haviati, M., Gzoovanovic, Z., Gatic, M., Placento, J., Jakic, H., Klapan, D., Simic, H., 2020. Differences in distress and coping with the COVID-19 stressor in nurses and physicians. Psychiatr. Danub. 32, 287–293. https://doi.org/10.15840/1413-9824-2020-3-3.

Sandeh, S., Shahid, B., Raj, G., Mubarak, N., Sharif, P., Ikram, A., Riswan, A., 2020. Impact of COVID-19 on the mental health of healthcare professionals in Pakistan. Cures 12, e8974. https://doi.org/10.1097/cures.8974.

Sanghera, J., Pattani, N., Hashmi, Y., Varley, K.F., Cherruva, M.S., Bradley, A., Burke, J. R., 2020. The impact of SARS-CoV-2 on the mental health of healthcare workers in a hospital setting—a systematic review. J. Occup. Health 62, e12175. https://doi.org/10.1532/jo.19-0385.

Santabarbara, J., Lasheras, I., Lipnicki, D.M., Bueno-Novitel, J., Perez-Moreno, M., Lopez-Anton, R., De la Cámara, C., Lobo, A., Gracia-Garcia, P., 2021. Prevalence of anxiety in the COVID-19 pandemic: an updated meta-analysis of community-based studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 109, 110207. https://doi.org/10.1016/j.pnpbp.2020.110207.

Shanafelt, T., Ripp, J., Trockel, M., 2020. Understanding and addressing sources of anxiety among health care professionals during the COVID-19 pandemic. JAMA 323, 2133. https://doi.org/10.1001/jama.2020.3895.

Si, M.Y., Su, X.Y., Jiang, Y., Li, L., Jiang, X.F., Yang, I., Li, J., Zhang, S.K., Ren, Z.F., Ren, R., Liu, Y.L., Qiao, Y.L., 2020. Psychological impact of COVID-19 on medical care workers in China. Infect. Dis. Poverty 9, 113. https://doi.org/10.1186/s40249-020-00724-9.

da Silva, F.C.T., Neto, M.L.R., 2021. Psychological effects caused by the COVID-19 outbreak. Neuro-Psychopharmacol. Biol. Psychiatry. https://doi.org/10.1016/j.pnpbp.2021.03.051.

Sokola, P., Tenfel, M., Stang, A., Jickel, K.H., Junne, F., Weismüller, B., Betke, M., Musche, V., Kohler, H., Dornier, K., Schweda, A., Bostani, Z., Maroufizadeh, S., Ghanbari, A., Khoshbakht, M., Alavi, S.A., Ashrafi, S., 2020. Anxiety and depression and the related factors in nurses of Guilan University of Medical Sciences hospitals during COVID-19: A web-based cross-sectional study. Int. J. Afr. Nurs. Sci. 13, 100223. https://doi.org/10.1016/j.ijnr.2020.100223.
Xiong, J., Lipsitz, O., Nasri, F., Lui, L.M.W., Gill, H., Phan, L., Chen-Li, D., Iacobucci, M., Xiao, X., Zhu, X., Fu, S., Hu, Y., Li, X., Xiao, J., 2020. Psychological impact of healthcare workers during COVID-19 outbreak: a cross-sectional study. J. Environ. Res. Public Health 17. https://doi.org/10.3390/ijerph17103723.

Yang, X., Zhang, Y., Li, S., Chen, X., 2020b. Risk factors for anxiety of otolaryngology healthcare workers in Hubei province fighting coronavirus disease 2019 (COVID-19). Soc. Psychiatry Psychiatr. Epidemiol. https://doi.org/10.1007/s00127-020-02163-3.

Zandifar, A., Karim, H., Querbani, M., Badrism, R., 2020. Mental health care for medical staff in Iran during the COVID-19 pandemic: different performance in Alborz Province. Iran. J. Psychiatry 15, 243–247. https://doi.org/10.18502/ijps.v15i3.3817.

Zhang, M.W., Ho, R.C., 2017. Moodle: the cost effective solution for internet cognitive behavioral therapy (I-CBT) interventions. Technol. Health Care 25 (1), 163–165. https://doi.org/10.3233/THC-161261.

Zhang, C., Yang, L., Liu, S., Ma, S., Wang, Y., Cai, Z., Du, H., Li, R., Kang, L., Su, M., Zhang, J., Liu, Z., Zhang, B., 2020a. Survey of insomnia and related social psychological factors among medical staff involved in the 2019 novel coronavirus disease outbreak. Front. Psychiatry 11, 306. https://doi.org/10.3389/ fpsyt.2020.00306.

Zhang, S.X., Sun, S., Afshar Jahanshahi, A., Alvarez-Risco, A., Ibarra, V.G., Li, J., Patty-Tito, R.M., 2020b. Developing and testing a measure of COVID-19 organizational support of healthcare workers - results from Peru, Ecuador, and Bolivia. Psychiatry Res. 291, 113174. https://doi.org/10.1016/j.psychres.2020.113174.

Zhou, Y., Wang, W., Sun, Y., Qian, W., Liu, Z., Wang, R., Qi, L., Yang, J., Song, X., Zhou, X., Zeng, L., Liu, T., Li, Z., Zhang, X., 2020. The prevalence and risk factors of psychological disturbances of frontline medical staff in China under the COVID-19 epidemic: Workload should be concerned. J. Affect. Disord. 277, 514–517. https://doi.org/10.1016/j.jad.2020.06.095.

Zhu, J., Sun, L., Zhang, L., Wang, H., Fan, A., Yang, B., Li, W., Xiao, S., 2020a. Prevalence and influencing factors of anxiety and depression symptoms in the first-line medical staff fighting against COVID-19 in Gansu. Front. Psychiatry 11, 386. https://doi.org/10.3389/fpsyt.2020.00386.

Zhu, Z., Xu, S., Wang, H., Liu, Z., Wu, J., Li, G., Miao, J., Zhang, C., Yang, Y., Sun, W., Zhu, S., Fan, Y., Chen, Y., Hu, J., Liu, J., Wang, W., 2020b. COVID-19 in Wuhan: sociodemographic characteristics and hospital support measures associated with the immediate psychological impact on healthcare workers. eClinicalMedicine 24. https://doi.org/10.1016/j.eclinm.2020.100443.