Dynamics of Histone Acetylation in *Chlamydomonas reinhardtii* *

(Received for publication, May 26, 1998, and in revised form, August 6, 1998)

Jakob H. Waterborg‡

From the Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499

The dynamic character of core histone post-translational acetylation in the unicellular green alga *Chlamydomonas reinhardtii* was studied by tritiated acetate incorporation. Histone H3 is the major target of acetylation, steady state, and in pulse and pulse-chase analyses. Acetylation turnover rates were measured by tracer labeling under steady-state conditions. Half-lives of 1.5–3 min were found for penta- to mono-acetylation of H3, dynamically acetylated to the 30% level. Twenty percent of H3 was multi-acetylated, on average with 3.2 acetyl-lysines, all with rapid turnover. Deacetylase inhibitor trichostatin A (TSA) caused doubling of average acetylation levels, primarily as penta-acetylated H3, but half of H3 was not acetylated at all. The level of histone H4 acetylation was only half that of H3 and a major fraction of mono- and di-acetylated forms appeared static. The dynamic fraction had an average half-life of 3.5 min with higher turnover rates for more highly acetylated H4 forms. TSA, inhibiting less effectively deacetylases active on H4, strongly increased multi-acetylated H4 levels and doubled average acetylation. As for H3, half of histone H4 remained unacetylated. Acetylation of histone H2B was low and of H2A was barely measurable. Despite turnover with half-lives of approximately 2 min, no increase beyond di-acetylation was seen upon TSA treatment.

The study of histone acetylation has its origin more than 30 years ago when Allfrey (1) established for the first time the correlation between high levels of histone acetylation and gene transcription. This was followed by the realization that histone acetylation is dynamic (2). In animal cells, histone acetylation has turnover half-lives of 3–30 min (3–7). Thus, locally highly acetylated chromatin on or near transcriptionally active or poised genes results from a localized shift in the dynamic equilibrium between histone acetyltransferase and deacetylase activities in favor of acetylation (8). In some cases, like *Saccharomyces cerevisiae*, the significant steady-state level of acetylation of H3 and H4 histones (9) is achieved under conditions of rather slow turnover with a half-life of 2 h (10). In recent years, histone H4 and H3, highly acetylated at some or all amino-terminal lysines, has been studied intensively by specific antibodies (11–14). This has confirmed the general relationship between high acetylation and gene transcription, although high acetylation at some sites is more clearly correlated with deposition of newly synthesized histone or even with gene or chromosome silencing (15).

* This work was supported by a University of Missouri Research Board grant. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed: Rm. 414 BSB, 5007 Rockhill Rd., Kansas City, MO 64110-2499. Tel.: 816-235-2591; Fax: 816-235-5158; E-mail: waterborg@ctcr.umkc.edu.

The recognition that n-butyrat inhibited histone deacetylase in vivo and caused general and extensive hyperacetylation of chromatin led to experiments that in general supported correlation between high acetylation and gene transcription. It allowed measurements of acetylation turnover rates upon release of inhibition (5, 16). In recent years, many and more specific inhibitors of histone deacetylase have been discovered, including the reversible inhibitor trichostatin A (TSA) and irreversible inhibitor trapoxin (17–19).

With the recent cloning of some histone acetyltransferases, starting with *Tetrahymena* (20), and the recognition that many transcription factors, co-activators, and basal transcription initiation complex proteins are, localize, or contain acetyltransferases in species from yeast to man, it has become apparent that multiple acetylating enzymes, each with potentially unique enzymatic substrate specificities and/or with unique localization mechanisms, act on chromatin and away from the transcription initiation complex (15, 21, 22). Also, more and diverse histone deacetylase activities, and their localization adapters (23, 24), have been identified, from yeast to man and higher plants (22, 25–28). To date, all deacetylase activities described and tested can be inhibited in vivo by TSA, but with different efficiencies (29). In general, the correlation between acetylation and gene expression has been confirmed (22, 30–33) even while repression of some genes and functions has also become more clearly described (23, 29, 34).

Most studies of histone acetylation have been performed in animal cells, in fungi like *S. cerevisiae* or protists like *Tetrahymena*. In all these, histone H4 is the predominant target of histone acetylation, followed by histone H3, whereas acetylation of H2B and H2A core histones is lower. In higher plants, histone H3 is the predominant target of histone acetylation with rather high steady-state levels, especially of replacement variant forms which are preferentially localized in transcriptionally active chromatin domains (35–37). Acetylation levels of histone H4 are lower, and levels of H2B are lower still, whereas acetylation of histone H2A is barely detectable (38). In the unicellular green algae *Chlamydomonas reinhardtii*, this difference is even more pronounced, and steady-state levels of multi-acetylated H3 are remarkably high (39). Also, histone acetylation in *Chlamydomonas* appeared rather fast, as detected during analysis of histone synthesis throughout the cell cycle (39). This prompted study of the dynamics of histone acetylation. Described below is a unique quantitative analysis of the rate of turnover of acetylation with the highest rates of turnover for histone acetylation reported to date. It describes how fast and to which extent TSA induces hyperacetylation of histones, limited by histone methylation, and reports that a remarkably high fraction of the algal chromatin cannot be acetylated.

1 The abbreviations used are: TSA, trichostatin A; AUT, acid/urea/Triton X-100; HPLC, high pressure liquid chromatography; HSM, high salt medium.

*2 This work was supported by a University of Missouri Research Board grant. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
EXPERIMENTAL PROCEDURES

Culture of C. reinhardtii—Cell wall-deficient strain CC-400 cw-15 mt+ clone DG-1 (39) was maintained on Sueoka’s high salt medium (HSM) on 0.8% agarose at 25 °C and continuous light. Phototrophic culture at 28 °C, exposed to continuous white light at 75 μEinsteins/m²·s, was harvested by centrifugation for 5 min at 650 g. The supernatant was discarded, and the cell pellet was resuspended at a density of 0.5 mg/ml (1.67 mM) and was used at a final concentration of 100 μg/ml from fresh, non-sterile stock (2 mg/ml in 50% ethanol) 10 min prior to the addition of acetate. For labeling to steady state, 0.1 M NH₄Ac was added to 0.2 mM final concentration 5 min prior to the addition of tritiated acetate. High specific activity [³H]NH₄Ac (9 × 10¹⁵ Bq/mmol, NEN Life Science Products) was added at 3.7 × 10⁸ Bq (1 μCi) per 40 ml of concentrated culture (to 10 μg acetate), and cells were incubated at room temperature for various lengths of time. Acetate incorporation was stopped by transfer to melting ice and collection of cells by centrifugation for 5 min at 7000 g.

Pulse-Chase Experiments—Culture of C. reinhardtii was synchronized by a light-dark regimen in acetate-free minimal medium during phototrophic growth (39). Labeled acetate is rapidly metabolized and incorporated into newly synthesized protein, which is observed as label incorporation into all histone species, separated by reversed-phase HPLC, after labeling for 60 min. Reducing the time of labeling to 5 min abolished most but not all label incorporation into non-acetylated histone forms (39) (results not shown). Preincubation of cells with translation inhibitor cycloheximide (10 μg/ml) completely abolished acetate incorporation into the translationally, amino-terminally acetylated linker histone H1 species and into the many low abundance proteins observed during HPLC fractionation of the crude histone preparation. Acid-urea-Triton (AUT) gel analysis and fluorography (Fig. 1) confirmed these observations and the absence of any acetate label incorporation into non-acetylated core histones, including histone H4 and H2A, histones that are typically co-translationally acetylated at the amino termini of newly synthesized polypeptides. Provided cycloheximide was added at least 5 min prior to the addition of tritiated acetate, (co)translational labeling of histones by acetate was prevented for more than 2 h.

The relative levels of post-translational incorporation of acetate into core histones following a short incubation with tritiated acetate differed markedly between histone species (Table I) and correlated well with steady-state acetylation levels of each histone, determined by Coomassie staining and densitometry of AUT gels (39) (compare lanes G and H in Fig. 1). Whereas in animal cells histone acetylation is highest in histone H3 (35–38), histone acetylation of H3 is predominant, acetylation of H4 is lower but significant, and acetylation of H2B and H2A is low, especially when judged by the relative post-translational incorporation of radioactive acetate (Table I).

Instability of Lysine Acetylation Measured by Pulse and Pulse-Chase Experiments—Turnover rates of dynamic, post-
translational acetylation of histones are high with reported half-lives measured by pulse-chase experiments ranging from 3 min in mammalian cells in culture for the fastest dynamic component (4) to 2 h for the rather stable acetylation of H4 in S. cerevisiae (10). Less quantitative analyses provide rough estimates of half-lives of 10 or 20 min for higher plants (38). *Chlamydomonas* grown phototrophically, free of a carbon source other than CO₂, appeared to be well suited to perform pulse-chase experiments. Very rapid incorporation of radioactive acetate, applied at a concentration of 10 μM, was followed by apparent rapid exhaustion of the small labeled acetyl-CoA pool, as judged by the pattern of acetate incorporation into individual histones (Fig. 2) and into acetylated forms of these histones (Fig. 1). Incorporation of acetate into cells upon addition of tritiated acetate, immediately followed by collection of cells and lysis as the start of preparing nuclei, typically gave label incorporation between 50 and 80% of the maximum value reached after incubation for 2 or 3 min. Between 2 and 20 min, apparent exponential decay of the specific radioactivity in each core histone species was observed with a half-life of 6 ± 1 min (Fig. 2). This value should be considered an upper limit for the turnover rate because no real chase, i.e. dilution of the acetate pool, was applied.

The relative rate of acetyl-lysine turnover of a histone species at each level of modification can be determined from the change in specific radioactivity of each modification level by densitometry of Coomassie-stained and fluorographed AUT gels. The pattern observed for histone H3, acetylated at 5 sites (Fig. 1A), is clearly different from that of histone H4 (Fig. 1B), despite the fact that H4 is also acetylated at 5 lysines. The rate of acetyl-lysine turnover is essentially identical for each level of modification of H3 (Fig. 3) yielding a pattern that is fading over time as radioactively labeled acetyl-lysines are turned into non-radioactive ones, without a change in distribution (Fig. 1A). In contrast, it is clear from the much more rapid fading of the multi-acetylated bands in the histone H4 pattern (Fig. 1B) that turnover is faster for penta- and tetra-acetylated forms than for di- or mono-acetylated species (Fig. 3B). This does not imply that highly acetylated forms of H4 lose acetyl groups and are converted into less and less modified forms because the steady-state pattern of H4 acetylation, measured from the Coomassie Blue distribution in AUT gels, does not change over time. The labeled acetylation pattern of histone H2B, with most label in mono- and di-acetylated forms, showed a slight shift over time (Fig. 1C) and a slight tendency for a higher turnover rate for higher modified forms (Fig. 3C). A similar result was deduced for histone H2A, but the overlapping pattern of two variant protein forms (39) prevents quantitative analysis.

A pulse-chase protocol was used to measure turnover rates of histone acetylation. A 450-fold excess of unlabeled acetate was added 2 min after addition of tritiated acetate to cultures, pre-treated with cycloheximide. Histones were prepared, and their specific radioactivity was determined during HPLC fractionation (results not shown) and by densitometric analysis of stained and fluorographed AUT gels (Fig. 2). The instantaneous sharp drop in labeling of all histone species clearly demonstrated that the acetyl-CoA pool in *Chlamydomonas*, growing phototrophically, is very small. It also showed that acetylation turnover is very fast, faster than can be measured with reasonable accuracy by the experimental method used. Although cooled quickly at the end of each incubation, cells must be collected by centrifugation before they can be lysed in the

TABLE I

Histone	HPLC labeling	AUT gel labeling	Coomassie densitometry	Fluorograph densitometry
	MultiAc^b	AcLys/H^c	*MultiAc^b	*AcLys/H^c
H3	24 ± 1% (n = 6)	0.92 ± 0.05 (n = 6)	83 ± 1% (n = 5)	2.94 ± 0.17 (n = 8)
H4	10.0 ± 0.4% (n = 7)	0.47 ± 0.01 (n = 6)	66%	2.25
H2B	3.3 ± 0.3% (n = 7)	0.18 ± 0.01 (n = 7)	(29%)	(1.6 ± 0.1 (n = 5))
H2A	0.14	0.03	(36%)	(1.38 ± 0.03 (n = 3))

^a Cells were incubated with tritiated acetate as shown in Fig. 2. The specific radioactivity “labeling” of histones was measured as cpm per absorbance at 214 nm during HPLC fractionation (39) and by densitometry of Coomassie-stained and fluorographed AUT gels (Fig. 1). Values were standardized on histone H3 which incorporated approximately 50,000 cpm per nmol of histone H3 when 1.8 × 10⁶ cells were incubated for 2 min with 1 mCi of tritiated acetate.

^b Densitometry of Coomassie-stained AUT gels yields the percentage of histone existing in each acetylated form and the fraction of histone with more than 1 acetylated lysine per molecule (multiAc). Constant values are given as average with standard deviation and number of independent samples (n). Densitometry of fluorographs yields the same data, for those histones labeled by tritiated acetate (*multiAc). The values obtained after 2 min and, within parentheses, after 60 min are given when levels decreased.

^c The level of lysine acetylation of each histone species can be expressed as the average number of acetylated lysines per unlabeled (AcLys/H) molecule (*AcLys/H), taking into account the number of acetylated lysines in each form (39). It facilitates comparison of acetylation levels among histone forms that differ in distribution patterns (Fig. 1).

^d AUT gel overlap of variant H2A forms prevents quantitation.
Dynamic Acetylation in Chlamydomonas

Fig. 3. Comparison of relative rates of acetyl-lysine turnover during acetate pulse labeling. The relative specific radioactivity of histone H3 (A), H4 (B), and H2B (C), obtained in the experiment of Fig. 2 when no non-radioactive acetate was added, was plotted per level of histone acetylation, relative to the specific activity of each form achieved after 2 min labeling with tritiated acetate in the presence of cycloheximide. Acetylation levels between 1 and 5 are marked by circles, squares, triangles, and diamond symbols, respectively, and by numbers along the data. A single line in A represents all data, except for mono-acetylated H3 which is marked by a broken line. Penta-acetylated H4 in B is shown by a broken line.

procedure to prepare nuclei and histones. During this time, acetylation incorporation and turnover will occur, as judged by loss of acetate incorporation after “0”-min chase (Fig. 2).

Turnover rates of Acetyl-lysines by Labeling to Steady State—One can measure rates of turnover from the pattern of specific radioactivity if conditions are used that allow labeling under steady-state conditions. An apparent steady-state condition of the acetyl-CoA pool in phototrophically growing Chlamydomonas cells could be achieved for a period of 1 h by the addition of a single dose of ammonium acetate to a final concentration of 200 µM. This was experimentally established by determining whether labeling to a constant specific radioactivity of histone H3 and H4 in HPLC elution profiles could be achieved, lasting for at least 1 h, when 10 µM tritiated acetate was added between 5 and 30 min after addition of ammonium acetate to 50, 100, 200, 400, and 800 µM to cycloheximide-treated cultures. Ammonium acetate at 200 µM represented the optimal choice of an apparently stable acetyl-CoA pool into which the tritiated acetate could be added as tracer, without excessively reducing the specific radioactivity of the pool and of acetylated histones. Fig. 4 gives a representative example of the rise in specific radioactivity measured during reversed-phase chromatography and by densitometric analysis of stained and fluorographed gels. SDS gel analysis at several gel loading levels was combined with different fluorography exposures to ensure that specific activities were determined within linear ranges of Coomassie staining and film darkening. AUT gel analysis of histone H3 and H4 was used to determine the pattern of specific radioactivity over time for each acetylated form. The data were fitted by nonlinear regression to a pattern of an exponential rise to a maximum value, and single component fits were obtained for all data. Half-life values calculated were 1.4 ± 0.3 min for H2B (Fig. 4), 2 ± 1 min for H2A, 3.5 ± 1.1 min for H4, and 1.7 ± 0.2 min for four independent measurements of total histone H3. Table II lists half-life values calculated for each of the acetylation levels of histone H3. As expected from the pulse label experiments (Figs. 1A and 3A), the rates of turnover at each level of histone H3 acetylation were very similar. Although not significantly different, consistent with the relative rates of turnover during pulse label experiments (Fig. 3A), comparison across the acetylated forms suggests that highly acetylated forms of H3 may be deacetylated somewhat faster than less modified forms (Table II), a weak reflection of the limited accuracy in measuring the amounts of multi-acetylated histone H4 forms in Coomassie-stained AUT gels (Fig. 1B). Due to the reproducible half-life values for individual acetylated forms of histone H4 could not be calculated.

Labeling to steady state allows one to assess to which degree steady-state patterns of histone acetylation are dynamic or excluded from turnover. Data fit analysis to any experimental data set that converged properly (Fig. 4) showed the presence of only a single rate component for acetyl-lysine turnover. The specific radioactivity levels attained for histone H3 was analyzed for each of the five acetyl-lysine levels from stained and fluorographed AUT gels (not shown). It was standardized to the overall level of histone acetylation, on average 0.75 acetyl-lysine groups per histone H3 molecule (Table II). In case every acetyl-lysine is deacetylated and subsequently acetylated to the specific radioactivity of the acetyl-CoA pool, this standardization will yield specific radioactivity values identical to the number of acetyl-lysines per histone molecule. Within experimental accuracy, this was observed for histone H3 (Table II). The somewhat low value for penta-acetylated H3 may reflect that not every penta-acetylated H3 is subject to turnover or, more likely, that one of the five acetyl-lysines is less accessible.

Fig. 4. Radioactive acetylation of histone H2B under steady-state acetyl-CoA pool conditions. The specific radioactivity pattern of histone H2B is shown as a representative example of specific radioactivity measurements made in HPLC fractions (open symbols) and by densitometry of Coomassie-stained and fluorographed gel lanes (solid symbols) when 10 µM tritiated acetate is added to a culture of Chlamydomonas cells, preincubated for 15 min at 10 µg/ml cycloheximide and for 5 min at 200 µM ammonium acetate in minimum medium and phototrophic growth conditions. The data were fitted to a nonlinear regression pattern of exponential rise to a maximum (shown as 100%), and the fitted curve is shown. The standard error in this example was calculated as 17% for the slope and 10% for the maximum.

The somewhat low value for penta-acetylated H3 may reflect that not every penta-acetylated H3 is subject to turnover or, more likely, that one of the five acetyl-lysines is less accessible.
Overall, the close correlation between specific radioactivity levels and level of acetylation suggests that all acetylated histone H3 molecules, at every available amino-terminal lysine (9, 14, 18, 23, and 27 (39)), are continuously deacetylated and re-acetylated with a half-life of approximately 2 min (Table II).

The same analysis applied to histone H4 yields completely different results. Although the absolute level of acetylated H3 and H4 molecules in Chlamydomonas is comparable, the distribution over mono- through penta-acetylated forms is not (Table II). Based on the relative labeling levels, at most all of tetra-acetylated H4 could be subject to dynamic acetylation at all sites. In this case, at least 40% of the acetyl-lysine groups in di- and 60% in mono-acetylated H4 are stable (Table II). Consequently, maximally 16% of histone H4 with an average level of 1.6 acetyl-lysines per molecule can be involved in dynamic acetylation in Chlamydomonas relative to maximally 32% for histone H3 with, on average, 2.4 acetyl-lysines. A previous estimate, based on different experimental analyses, noted that 19% of total histone H3, multi-acetylated with an average level of 3.2 acetylated lysines, might be involved in dynamic acetylation (39). Limited to multi-acetylated forms as before, the current study concludes that maximally 20.3% of histone H3 is dynamic and multi-acetylated with, on average, 3.2 acetylated lysines. The absolute specific radioactivity of histones H3 and H4 was calculated as cpm per absorbance in reversed-phase chromatography fractions following steady-state labeling. Setting the observed specific radioactivity of histone H3 to 100%, histone H4 was labeled at the 57 ± 9% level. This level is higher than after a 2-min pulse label (Table I), consistent with a slower rate of turnover (see above). As far as can be concluded from these necessarily rough calculations, it appears likely that at least a major fraction if not all of tetra-acetylated H4 at all sites is subject to acetyl turnover and thus that close to 15% of histone H4 is involved in dynamic acetylation.

Induction of Histone Hyperacetylation by TSA—TSA has been shown to act as a potent reversible inhibitor of histone deacetylases, effective at micromolar concentrations (17). Treatment *in vivo* leads rapidly to extensive hyperacetylation of core histones. TSA has been used in Phaseolus (beans), and chromosome acetylation levels were affected, as detected by acetyl-lysine-specific antibodies (41). To date, concentration and time dependence of TSA effects in plants and the extent of induced hyperacetylation have not been studied.

A range of concentrations of TSA was applied to Chlamydomonas culture for 1 h to determine an effective concentration. Measured as increasing levels of histone acetylation, e.g., of histone H4 (Fig. 5A), steady-state acetylation increased detectably even at the lowest concentrations tested (5 ng/ml). It reached stable levels at a concentration of 100 ng/ml (0.33 μM) (Fig. 5C) after doubling the level of H4 acetylation (Fig. 5C) by increasing the abundance of each multi-acetylated form, at the expense of a 20% drop in unmodified histone H4 (Fig. 5B). Similar hyperacetylation was observed for histone H4 when Chlamydomonas cells were cultured phototrophically for up to 25 h at 100 ng/ml TSA (Fig. 5F). In both experiments, the pattern of H3 hyperacetylation was qualitatively different from that of H4. The rise in H3 acetylation was almost completely due to increases in the amount of the penta-acetylated histone form (Fig. 5E), the highest discrete level of modification seen for H3 (Fig. 5D). Under neither condition were any changes detected in the low levels of charge-modified forms of H2B and H2A (results not shown).

Histone deacetylase inhibitors like butyrate or TSA induce hyperacetylation of histone H4 in animal cells until the non-acetylated form becomes a minor component and highly acetylated, tri-, and tetra-acetylated forms accumulate. Tetra-acetylated H4 is the maximally acetylated form in animals because lysine 20 in animal H4 is quantitatively methylated, which, as an irreversible modification, prevents acetylation (2). In Chlamydomonas, maximally acetylated histone H4 does not accumulate upon incubation with TSA (Fig. 5B). Penta-acetylated H4 is the highest level of acetylated histone H4 detected (Fig. 1B). Based on the deduced primary protein sequence (42, 43) and the fact that histone H4 in all plants analyzed is unmethylated (44), apparently all amino-terminal lysines at positions 5, 8, 12, 16, and 20 can be acetylated in Chlamydomonas. In contrast to H4, histone H3 does accumulate its maximally acetylated form, penta-acetylated H3 (Figs. 5E and 6G), which has been shown to undergo acetylation at lysines 9, 14, 18, 23, and 27, due to virtually complete methylation of lysine 4 (39). The detectable rise in tetra-acetylated H3 (Figs. 5E and 6G) may also represent a completely modified histone.
Dynamic Acetylation in Chlamydomonas

H3 molecule since it is known that 1 in 4 lysine residues at position 27 are methylated (39). However, even for histone H3, the steady-state level of histone acetylation induced by TSA remains limited (Fig. 5).

The failure to induce extensive hyperacetylation in Chlamydomonas could result from an inherent difference between animals and algae or plants. Preliminary experiments in alfalfa have studied histone hyperacetylation in response to TSA. (i) The two histone H3 variants accumulate increasing levels of maximally acetylated H3. (ii) Histone H4 and H2B acetylation levels increase without reaching maximal acetylation status. (iii) The average level of histone acetylation only increased by 50–100%. To date, more distinct histone deacetylase activities have been described for plants than animals (25–28), and their sensitivity to inhibitors like TSA has not been established in every case. It may be that partial or selective inhibition of algal deacetylases establishes a new balance between histone acetylation and de-acetylation when TSA is added to cultures of Chlamydomonas.

The following experiment was designed to evaluate this hypothesis. Chlamydomonas cells in cycloheximide were incubated for increasing lengths of time with TSA. During the last 3 min, tritiated acetate was added to achieve maximum label incorporation (Fig. 2) in order to demonstrate to which extent dynamic histone acetylation was inhibited, either due to the direct inhibition of histone deacetylase activity or due to the resulting absence of potential acetylation substrate sites. Fig. 6 presents some of the results observed for histone H4 (Fig. 6, A—D) and H3 (Fig. 6, E—H). During incubation of cells with TSA for up to 1.5 h, histone H4 shows increasing levels of multi-acetylated forms (Fig. 6A), whereas histone H3 shows increasing levels of penta-acetylated histone (Fig. 6E). The quantitation of these changes (Fig. 6, C and G) gives patterns similar to those reported above (Fig. 5, B and E).

During this experiment, distinct phases can be identified, based on the results of the acetate tracer study. In the first phase of 10–15 min, representing less than 10 half-lives (Table II), steady-state histone acetylation levels are only just beginning to rise. However, a dramatic increase by at least a factor of 3 is seen in acetate incorporation into histone H4 (Fig. 6D) and H3 (Fig. 6H), which both become labeled to a similar specific radioactivity. Even histone H2B becomes stronger labeled, reaching 0.3% of the specific radioactivity of H4 and the steady-state acetylation level may increase from 0.007 to 0.010 acetyl-lysiners per molecule (results not shown). At much higher levels, H4 and H3 acetylation levels approximately double, as before (Fig. 5, C and F). It has been deduced that histone hyperacetylation will make chromatin less compact and more accessible to enzymes like DNase I and acetyltransferases (2, 45). However, the changes seen here are much too small to explain the strong increase in label incorporation. Most likely, TSA treatment affects labeling of the acetyl-CoA pool. Thus, the changes seen in tracer incorporation may not quantitatively reflect the extent to which histone deacetylases are inhibited by TSA in vivo. Despite this caveat, it is clear that the rate of histone acetylation slows down dramatically during the initial 40 min of TSA treatment; the rising slopes in hyperacetylation of H4 and H3 forms flatten out (Fig. 6, C and G), and levels of tracer incorporation decrease, with apparent exponential half-lives of 12 ± 2 min for histone H4 and 9 ± 1 min for histone H3. This analysis revealed some additional differences in dynamic acetylation of these histones. Acetate incorporation into histone H3 became negligible by 90 min (Fig. 6H) when the hyperacetylation rate of H3 decreased to 0.1 acetyl-lysine addition per h per molecule (Fig. 6G). Tracer incorporation for histone H4 decreased to 40% (Fig. 6D), the same level as observed for H2B (results not shown), with a hyperacetylation rate of 0.4 acetyl-lysine addition per h per H4 after 90 min treatment with TSA (Fig. 6C). This rate apparently slows down further as no additional increase in H4 acetylation was detected between 7 and 25 h of culture with TSA (results not shown).

The pattern of tracer incorporation into acetylated forms of histone H4 (Fig. 6B) and H3 (Fig. 6F) confirms the conclusions.
of relative turnover rates and dynamic site usage reached by acetate labeling studies in the absence of TSA. Although the absolute levels of label incorporation in histone H3 changes with time, the relative intensity of all bands stays approximately equal (Fig. 6F), roughly in proportion to the acetylation level between 1 and 5 (Fig. 6H). This is consistent with an equal but slowing rate of acetate label incorporation and turnover at every site in acetylated histone H3 molecules. In contrast, the faster turnover of acetylation in higher acetylated forms of histone H4 upon TSA treatment (Fig. 3B) results in a gradual shift with tracer incorporation into more highly acetylated forms (Fig. 6B) because only at these levels will residual deacetylase activity (Fig. 6D) create deacetylated lysines that can incorporate the acetate tracer during the last minutes of incubation.

DISCUSSION

Histone acetylation is a dynamic process that involves a significant fraction of the cellular chromatin, with high acetylation levels within transcribed chromatin domains and within gene and whole DNA loop domains that are potentioted for transcription (14, 45). In plants, the fraction of the genome involved in dynamic acetylation displayed a clear correlation with the size of the genome (36), being higher in plants with smaller genomes where the fraction of transcribed chromatin is higher. *Chlamydomonas* may represent an extreme example. It has quite a small, haploid genome (10⁹ base pairs, 0.1 pg of DNA). Assuming that nucleosomes with dynamically, multi-acetylated histone H3 also contain dynamically acetylated H4, an assumption generally made and generically supported by a wide variety of experimental analyses, approximately 20% of the chromatin of *Chlamydomonas* is dynamically multi-acetylated with a half-life of approximately 2 min, the highest value reported to date. Nucleosomes in this chromatin would contain 10 or more acetylated lysines as follows: 3.2 acetyl-lysines on each of the two H3 histones, 1.6 dynamic and likely 0.2 non-dynamic acetyl-lysines on each of two H4 molecules and possibly pairs of H2B and H2A histones, each with less than 0.1 acetylated lysines. A similar level for total core histone acety-
Dynamic Acetylation in Chlamydomonas

REFERENCES

1. Allfrey, V. G. (1977) in Chromatin and Chromosome Structure (Li, H. J., and Eckhardt, R. A., eds) pp. 167–191, Academic Press, New York
2. Matthews, H. R., and Waterborg, J. H. (1985) in The Enzymology of Post-translational Modifications of Proteins (Freedman, R. B., and Hawkins, H. C., eds) Vol. 2, pp. 125–285, Academic Press, London
3. Sealy, L., and Chalkley, R. (1978) Cell 14, 115–121
4. Jackson, V., Shires, A., Chalkley, R., and Graner, D. K. (1975) J. Biol. Chem. 250, 4856–4863
5. Covault, J., and Chalkley, R. (1980) J. Biol. Chem. 255, 9110–9116
6. Zhang, D. E., and Nelson, D. A. (1988) Biochem. J. 250, 233-240
7. Waterborg, J. H., and Matzmann, A. (1988) Biochemistry 27, 440–496
8. Davie, J. R., and Hendzel, M. J. (1994) J. Cell. Biochem. 55, 98–105
9. Nelson, D. A., and Alonso, W. R. (1983) Biochim. Biophys. Acta 741, 269–276
10. Nelson, D. A. (1982) J. Biol. Chem. 257, 1565–1568
11. Waterborg, J. H., and Matzmann, A. (1988) J. Cell Biol. 109, 375–384
12. Lin, R., Leone, J. W., Cook, R. G., and Allis, C. D. (1989) J. Cell Biol. 108, 1577–1588
13. Grunstein, M., Sabel, R. E., Allis, C. D., Turner, B. M., and Broach, J. R. (1996) Mol. Cell. Biol. 16, 4349–4356
14. Hebbs, T. R., Thurme, A. W., and Crane-Robinson, C. (1988) EMBO J. 7, 1385–1402
15. Grunstein, M. (1997) Nature 389, 349–352
16. Zhang, D. E., and Nelson, D. A. (1988) Biochem. J. 250, 241–246
17. Yoshida, M., Horinouchi, S., and Beppu, T. (1995) BioEssays 17, 423–430
18. Kwan, H. W., Owa, T., Hassig, C. A., Shimada, J., and Schreiber, S. L. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 13565–13570
19. Darkin-Rattray, S. J., Gurnett, A. M., Myers, R. W., Dulski, P. M., Crumley, T. M., Alocco, J. L., Cannova, C., Menke, P. T., Colletti, S. L., Bednarek, M. S., Singh, S. B., Goettl, M. A., Dombrowski, W., Poliheko, J. D., and Schattschneider, C. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11314–11317
20. Brownell, J. E., Zhou, J. X., Ranalli, T., Kobayashi, R., Edmondson, D. G., Roth, S. T., and Allis, C. D. (1996) Cell 84, 845–851
21. Kadonaga, J. T. (1998) Cell 92, 307–314
22. Mizzen, C. A., and Allis, C. D. (1998) Cell Mol. Life Sci. 54, 6–29
23. Hassig, C. A., Tong, J. K., Fleischer, T. C., Owa, T., Grable, P. G., Ayer, D. E., and Schreiber, S. L. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 3519–3524
24. Wolfe, A. P. (1997) Nature 387, 16–17
25. Lopez-Rodas, G., Georgieva, E. I., Sendra, R., and Lodig, P. (1991) J. Biol. Chem. 266, 18745–18750
26. Lusser, A., Brosch, G., Leidl, A., Haas, H., and Lodig, P. (1997) Science 277, 88–91
27. Lechner, T., Lusser, A., Brosch, G., Eberharter, A., Goralik-Schramel, M., and Lodig, P. (1996) Biochem. Biophys. Acta 1296, 181–188
28. Sendra, R., Rodrigo, I., Salvador, M. L., and Franco, L. (1988) Plant Mol. Biol. 11, 857–868
29. Rundlett, S. E., Carmen, A. A., Kobayashi, R., Bavykin, S., Turner, B. M., and Grunstein, M. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14503–14508
30. Kuo, M.-H., Brownell, J. E., Sabel, R. E., Ranalli, T. A., Cook, R. G., Edmondson, D. G., Roth, S. T., and Allis, C. D. (1996) Nature 383, 269–272
31. Wade, P. A., Pruss, D., and Wolfe, A. P. (1997) Trends Biochem. Sci. 22, 128–131
32. Struhl, K. (1998) Genes Dev. 12, 599–606
33. Almouzni, G., Koechlin, S., Dimitrov, S., and Wolfe, A. P. (1994) Dev. Biol. 165, 654–669
34. Rundlett, S. E., Carmen, A. A., Suka, N. N., and Grunstein, M. (1998) Nature 392, 831–835
35. Waterborg, J. H. (1991) Plant Physiol. (Bethesda) 96, 453–458
36. Waterborg, J. H. (1992) Plant Mol. Biol. 18, 181–187
37. Waterborg, J. H. (1993) J. Biol. Chem. 268, 4912–4917
38. Waterborg, J. H., Harrington, R. E., and Winicov, I. (1990) Biochem. Biophys. Acta 1049, 324–330
39. Waterborg, J. H., Robertson, A. J., Tatar, D. L., Borza, C. M., and Davie, J. R. (1995) Plant Physiol. (Bethesda) 109, 393–407
40. Waterborg, J. H. (1990) J. Biol. Chem. 265, 17157–17161
41. Belyaev, N. D., Heuben, A., Baranawczuk, P., and Schubert, I. (1997) Chromosoma 106, 193–198
42. Fabry, S., Muller, K., Lindauer, A., Park, P. B., Cornelius, T., and Schmitt, B. (1985) Curr. Genet. 20, 325–345
43. Walther, Z., and Hall, J. L. (1995) Nucleic Acids Res. 23, 3766–3783
44. Waterborg, J. H. (1992) Biochemistry 31, 6211–6219
45. Hebbs, T. R., Clayton, A. L., Thorne, A. W., and Crane-Robinson, C. (1994) J. Mol. Biol. 240, 1823–1830
46. Thomas, J. O. (1984) J. Cell Sci. 1, suppl. 1–20
47. Allan, J., Harborne, N., Rau, D. C., and Gould, H. (1982) J. Cell Biol. 93, 285–297
48. Allan, J., Mitchell, T., Harborne, N., Bohm, L., and Crane-Robinson, C. (1986) J. Mol. Biol. 187, 591–602
49. Luger, K., Mader, A. W., Richmond, K. R., Sargent, D. F., and Richmond, T. J. (1997) Nature 389, 251–260
50. Pruss, D., Bartholomew, B., Persinger, J., Hayes, J., Arents, G., Moudrianakis, E. N., and Wolfe, A. P. (1996) Science 274, 614–617
51. Hayes, J. J. (1996) Biochemistry 35, 11931–11937
52. Van Holde, K. E. (1989) Chromatography, Springer-Verlag Inc., New York
53. Kurochkina, L. P., and Kolomijtseva, G. Y. (1992) Biochem. Biophys. Res. Commun. 187, 261–287
54. An, W. J., Leuba, S. H., Van Holde, K., and Zlatanov, J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 3389–3401
55. Marvin, K. W., Yau, P., and Bradbury, E. M. (1990) J. Biol. Chem. 265, 19839–19847
56. Pantazis, P., and Bonner, W. M. (1982) J. Cell. Biochem. 20, 225–235

Acknowledgments—I gratefully acknowledge the research opportunities created by Dr. M. Martinez-Carrion, fruitful discussions with Dr. T. Kapros, and the use of the CO2 air compressor of Dr. M. Schaefer.