EMISSION PATTERNS AND LIGHT CURVES OF GAMMA RAYS IN THE PULSAR MAGNETOSPHERE WITH A CURRENT-INDUCED MAGNETIC FIELD

X. Li and L. Zhang
Department of Physics, Yunnan University, Kunming, China; lizhang@ynu.edu.cn
Received 2011 May 4; accepted 2011 August 30; published 2011 November 29

ABSTRACT

We study the emission patterns and light curves of gamma rays in the pulsar magnetosphere with a current-induced magnetic field perturbation. Based on the solution of a static dipole with the magnetic field induced by some currents (perturbation field), we derive the solutions of a static as well as a retarded dipole with the perturbation field in the Cartesian coordinates. The static (retarded) magnetic field can be expressed as the sum of the pure static (retarded) dipolar magnetic field and the static (retarded) perturbation field. We use the solution of the retarded magnetic field to investigate the influence of the perturbation field on the emission patterns and light curves, and apply the perturbed solutions to calculate the gamma-ray light curves for the case of the Vela pulsar. We find that the perturbation field induced by the currents will change the emission patterns and then the light curves of gamma rays, especially for a larger perturbation field. Our results indicate that the perturbation field created by the outward-flowing (inward-flowing) electrons (positrons) can decrease the rotation effect on the magnetosphere and makes emission pattern appear to be smoother relative to that of the pure retarded dipole, but the perturbation field created by the outward-flowing (inward-flowing) positrons (electrons) can make the emission pattern less smooth.

Key words: gamma rays: stars – pulsars: general – stars: neutron
Online-only material: color figures

1. INTRODUCTION

Since pulsed gamma-ray emission from a large number of pulsars by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope have been discovered (Abdo et al. 2010), much information has become available for constraining pulsar magnetosphere geometry. Rotation-powered pulsars are widely believed to have magnetospheres in which charged particles are accelerated to relativistic energy and generate multiband spectra of pulsed emission. In order to simulate the pulsar magnetosphere, various approximations have been proposed. A vacuum magnetosphere model is an analytic model for the electromagnetic field of a rotating magnetic dipole (Deutsch 1955), but it is not an appropriate physical model of an active pulsar magnetosphere filled with charges and currents. The force-free magnetosphere is probably a closer approximation to a real pulsar than the vacuum solution; however, it is not a truly self-consistent model since the production of pair plasma requires particle acceleration and thus a breakdown of force-free conditions in some regions of the magnetosphere. At present, there are two kinds of three-dimensional emission models: one is based on a geometrical consideration such as the two-pole caustic (TPC) model in the frame of a retarded dipole (e.g., Dyks & Rudak 2003; Dyks et al. 2004; Fang & Zhang 2010) and annular gap model in the frame of free-force approximation (Bai & Spitkovsky 2010a); another is based on both physical and geometrical considerations such as slot gap (SG; Harding et al. 2008) and outer gap models (e.g., Romani & Yadigaroglu 1995; Cheng et al. 2000; Zhang & Cheng 2000, 2001, 2002; Tang et al. 2008; Zhang & Li 2009; Watters et al. 2009; Li & Zhang 2010; Wang et al. 2011).

How can we describe a pulsar magnetosphere filled with charges and currents? Since the currents will induce magnetic field perturbation, resulting in a distorted magnetic field relative to dipole field, Muslimov & Harding (2009) described an approximate perturbation field for a pair-starved current flow in the open zone in the frame of the static magnetic dipole. In their treatment, the magnetic field is described as \(B = B^{(d)} + \epsilon B^{(1)} \), where \(B^{(d)} \) is a pure dipole magnetic field anchored into the neutron star (NS), \(\epsilon \) is the perturbation amplitude which determines the strength of the \(B^{(1)} \) relative to the dipole one, and \(B^{(1)} \) is the magnetic field generated by the self-consistent electric currents in the domain of the magnetosphere with open field lines, where a singularity exists on the symmetry axis (see details in Muslimov & Harding 2009). However, although basic features of the pulsar magnetosphere in a static dipolar magnetic field approximation can be understood, it is more realistic that the magnetosphere be approximated as a rotating inclined magnetic dipole. The magnetic field lines of a rotating inclined dipole are especially different from those of a static dipole for large inclination angles. Romani & Watters (2010) investigated the magnetic field structure with a current-induced field in the frame of the retarded magnetic dipole. To apply the solution of Muslimov & Harding (2009) to the retarded dipole, Romani & Watters (2010) made the following treatments: (1) they shifted the magnetic axis \((r, \theta_0, \phi_0)\) to match that of the swept back dipole (i.e., mapped the magnetic axis line onto the swept back curve), and (2) they exponentially tapered the singularity that appeared on the symmetry axis so that the field lines could be integrated to determine the last closed field line surface. Obviously, such a treatment method is highly simplified.

In this paper, we study the emission patterns and light curves in the pulsar magnetosphere with a current-induced magnetic field perturbation. We derive the analytic solution of the retarded magnetic field with a current-induced magnetic field; this solution is that of Muslimov & Harding (2009) when rotating effects are ignored. We find that our calculated results are different from those given by Romani & Watters (2010), for example, open zone boundary (polar cap) footpoints. Using such a solution, we calculate emission patterns and light curves for the Vela pulsar with different inclination angles in the frame of the two-pole outer gap model, where a self-consistent treatment...
is that both simulation of the magnetosphere and relativistic effects are performed in the inertial observer’s frame (IOF; e.g., Takata et al. 2007; Bai & Spitkovsky 2010b). The paper is organized as follows: In Section 2, the solution of the magnetic field structure with the current-induced magnetic field is given. Various emission patterns and light curves are calculated in Section 3. Finally, a brief discussion and conclusions are given in Section 4.

2. MAGNETIC FIELD STRUCTURE

In a pulsar magnetosphere, radiating charges accelerated in gaps will create some currents in the open zone. If the gap-closing pair front produces densities comparable to the corotation value for at least some of the open field lines, this current will induce a magnetic field (e.g., Muslimov & Harding 2009; Romani & Watters 2010). For a static dipole, the local magnetic field can be described as (Muslimov & Harding 2009)

$$B = B^{(d)} + \epsilon B^{(1)},$$

(1)

where $B^{(d)}$ is the pure dipole magnetic field and is given by

$$B^{(d)} = \frac{1}{r^3} [3(m \cdot \mathbf{r}) \mathbf{r} - m],$$

(2)

where m is the magnetic moment and its three components in Cartesian coordinates can be expressed as (the derivation is shown in Appendix A)

$$m_x = \frac{r}{2} \left[(3x^2 - 2r^2) B^{(d)}_x + 3xy B^{(d)}_y + 3xz B^{(d)}_z \right],$$

$$m_y = \frac{r}{2} \left[3yx B^{(d)}_x + (3y^2 - 2r^2) B^{(d)}_y + yz B^{(d)}_z \right],$$

$$m_z = \frac{r}{2} \left[3zx B^{(d)}_x + 3yz B^{(d)}_y + (3z^2 - 2r^2) B^{(d)}_z \right],$$

(3)

where $r = \sqrt{x^2 + y^2 + z^2}$, and $B^{(d)}_x$, $B^{(d)}_y$, and $B^{(d)}_z$ are three components of the magnetic field given by Equation (2). In Equation (1), ϵ is the perturbation amplitude, and $B^{(1)}$ is the magnetic field generated by the self-consistent electric currents in the domain of the magnetosphere with open field lines. After introducing cosine of the angle between the NS rotation axis and radius vector of a given point $s = \cos \alpha \cos \theta + \sin \alpha \sin \theta \cos \phi$ and its derivatives over θ and ϕ, Muslimov & Harding (2009) derived the analytic expressions of Equation (1) in magnetic polar coordinates for the static dipole, where $s = 1$ determines the symmetry axis in magnetic coordinates, which is the NS rotation axis. In Appendix A, we change expressions (B_s, B_θ, B_ϕ) of Equation (1) in magnetic polar coordinates to those (B_x, B_y, B_z) in Cartesian coordinates, and then give three components of the magnetic moment m in which the magnetic field is given by Equation (1) (i.e., the perturbation field is included) by changing ($B^{(d)}_x$, $B^{(d)}_y$, $B^{(d)}_z$) to (B_x, B_y, B_z) in Equation (3). In such a treatment, the magnetic moment m in the pure dipole magnetic field changes to m' in the magnetic field given by Equation (1). We identify m' as an effective magnetic moment. The difference between m and m' depends on the perturbation amplitude ϵ; $\delta m = |m - m'| = 0$ when $\epsilon = 0$.

Since the perturbation field becomes singular along the rotation axis where $s \to \pm 1$, Romani & Watters (2010) exponentially tapered this singularity ($\propto 1 - \exp[|s| - 1/\sigma_1]$, with $\sigma_1 = 0.25$) so that the field lines can be integrated to determine the last closed field line surface. We will use this method here.

![Figure 1](https://example.com/figure1.png)

Figure 1. Changes in open zone boundary (polar cap) footpoints with phase for the $\alpha = 70^\circ$ static dipole with current-induced perturbations $\epsilon = 0, \pm 0.05$, and ± 0.1. The Vela pulsar parameters are used.

(A color version of this figure is available in the online journal.)

The structure of the magnetosphere can still only be described by specific features such as the last closed field lines. The footprints of the last closed field lines on the stellar surface define the polar cap shape. In the static approximation, the polar cap shape is a circle with radius $R_{pc} = R_0(R_0/R_1)^{1/2}$ for an aligned dipole, where $R_1 \equiv c \Omega^{-1}$ is the light cylinder radius and R_0 is the radius of the NS. We define the initial polar cap’s edge using $R_{pc} \cos(\phi_0)$, $R_{pc} \sin(\phi_0)$, $(R_0^2 - R_{pc}^2)^{1/2}$, where ϕ_0 is the azimuthal angle about the magnetic axis. Then, we try to find the scaling factors a_0 such that $(x_0', y_0', z_0') = [a_0 x_0, a_0 y_0, (R_0^2 - a_0^2 R_{pc}^2)^{1/2}]$ by using the Runge–Kutta method (Zheng & Cheng 2001). Next we define another scaling factor a_1 to denote the footprints of the open field lines as $(x, y, z) = (a_1 x_0', a_1 y_0', [R_0^2 - (x^2 + y^2)^{1/2}]$.

As an example, we show the variation of open zone boundary (polar cap) footpoints with phase for the $\alpha = 70^\circ$ static dipole with current-induced perturbations $\epsilon = 0$, ± 0.05, and ± 0.1 for Vela pulsar parameters (i.e., its period is $P = 0.0893$ s and surface magnetic field is $B = 3.3 \times 10^{12}$ G) in Figure 1. It can be seen that the open zone boundary appears as two symmetric peaks if the current-induced B perturbation is not included (i.e., $\epsilon = 0$). However, such a symmetry breaks when the current-induced B perturbation is included (i.e., $\epsilon \neq 0$).

For an inclined dipole of constant magnitude, rotating with angular frequency Ω about the z-axis in which the magnetic field consists of a pure retarded dipolar magnetic field and a perturbation field, the magnetic moment is

$$m^r = m^p + \epsilon m^p,$$

(4)

where m^r and m^p are the magnetic moments of pure retarded dipolar magnetic field B^r and perturbation magnetic field B^p, respectively. The expressions are given in Appendix B.

In such a case, the magnetic field is

$$B^r = B^p + \epsilon B^p,$$

(5)

where the expressions of B^r and B^p are given in Appendix B.

In Figure 2, we show the variation of open zone boundary footpoints with phase for the $\alpha = 70^\circ$ retarded dipole with current-induced perturbations $\epsilon = 0$, ± 0.05, and ± 0.1 for comparison with the results of Romani & Watters (2010). Since the rotating effect in the retarded dipole is included,
Figure 2. Changes in open zone boundary (polar cap) footpoints with phase for the $\alpha = 70^\circ$ retarded dipole with current-induced perturbations $\epsilon = 0, \pm 0.05$, and ± 0.1. The Vela pulsar parameters are used. (A color version of this figure is available in the online journal.)

Figure 3. Changes in open zone boundary (polar cap) footpoints with phase for the $\alpha = 70^\circ$ retarded dipole with $\epsilon = 0$ for the periods of the Crab, Vela, and Geminga pulsars.

Figure 4. Three-dimensional view of last closed field lines for a retarded dipole with or without the perturbation field inclined to the rotation axis with angle $\alpha = 50^\circ$ for the Vela pulsar. The magnetic field is given by Equation (5). The panels from top to bottom represent the cases of $\epsilon = 0.1$, $\epsilon = 0$, and $\epsilon = -0.1$. For each panel, the thick red line marked by A represents the magnetic axis of the pure static dipole, and the thick green curved line marked by B represents the magnetic axis of the retarded magnetic field given by Equation (5). (A color version of this figure is available in the online journal.)

The Astrophysical Journal, 743:113 (9pp), 2011 December 20

Li & Zhang

two symmetric peaks disappear even the current-induced B perturbation is not included (i.e., $\epsilon = 0$). This result with $\epsilon = 0$ is consistent with that of Romani & Watters (2010) (see their top panel of Figure 2), but there is a small difference between our result and the result of Romani & Watters (2010). In fact, the shape of the open zone boundary footpoints depends not only on the magnetic inclination angle but also on the pulsar’s period. We show the shapes for the periods of Crab, Vela, and Geminga with $\alpha = 70^\circ$ in Figure 3 to account for this fact. Moreover, the cylindrical radius $r_L = 1.2R_L = 1.2c/\Omega$ was used in Romani & Watters (2010), but r_L is used in our treatment, leading to the difference. With increasing B perturbation (i.e., increasing ϵ), the open zone boundary is significantly different from that with $\epsilon = 0$, as shown in Figure 2. More importantly, for the singularity in the pair-starved field of Muslimov & Harding (2009), we use the smooth method of Romani & Watters (2010) to deal with it in the static dipole field (see Figure 1), so this singularity does not exist in the retarded dipole field. However, Romani & Watters (2010) took the solution of Muslimov & Harding (2009), and shifted the magnetic axis to match the retarded dipole by simply mapping the magnetic axis line onto the swept back curve. Therefore, our results with $\epsilon \neq 0$ are very different from those given by Romani & Watters (2010). Physically, the perturbation fields with $\epsilon < 0$ and $\epsilon > 0$ should have opposite roles in the pure retarded dipole field. Our results show this property, so we believe that our results are reasonable.

In the retarded dipole, the magnetic axis is curved relative to that of the pure static dipole. In Figure 4, we show a three-dimensional view of the last closed field lines for a retarded dipole with or without the perturbation field inclined to the rotation axis with angle $\alpha = 50^\circ$, where the thick red line marked by A represents the magnetic axis of the pure static
Figure 5. Emission projections onto the (ζ, Φ)-plane for various magnetic inclination angles and for ε = 0.1, 0, and −0.1. The black lines represent the emission from one pole and the gray lines represent the emission from another pole. Vela pulsar parameters are used.

dipole, and the thick green curved line marked by B represents the magnetic axis of the retarded dipole with the perturbation field (ε ≠ 0). It can be seen that the perturbation field has an important role in both the shapes of both the last closed field lines and the magnetic axis. For example, when ε > 0, the shape of the last closed field lines becomes smoother, and the magnetic axis is more curved on the side of the magnetic axis of the pure retarded dipole (see the top panel of Figure 4).

3. EMISSION PATTERNS AND LIGHT CURVES

In order to determine photon emission from the outer gaps, the three-dimensional pulsar’s magnetosphere should be simulated and relativistic effects including photon aberration and time-of-flight phase shifts need to be taken into account. The geometry of the photon emission is usually expressed as (ζ, Φ), where ζ is the polar angle from the rotation axis and Φ is the phase of rotation of the star. Here we consider the photon emissions from two poles of the pulsar magnetosphere and the photon emission geometries in the IOF.

The particle motion in the IOF is described by Takata et al. (2007)

\[
n = [\beta_0 \cos \varphi(r)]b + [\beta_0 \sin \varphi(r)]b_{\perp} + \beta_{\infty} e_{\phi},
\]

where \(\varphi(r) \) is the pitch angle. The third term represents corotation with the star, \(\beta_{\infty} = \rho \Omega/c \). The quantity \(\beta_0 \) at each point is determined by the condition that \(|n| = 1 \). The unit vector \(b_{\perp} \) perpendicular to the magnetic field line is

\[
b_{\perp} \equiv \pm [(\cos \delta \phi)k + (\sin \delta \phi)k \times b],
\]

where \(\pm \) corresponds to the gyration of the positrons (+) or electrons (−), \(\delta \phi \) refers to the phase of the gyration, and \(k = (b \cdot \nabla)b / |(b \cdot \nabla)b| \) represents the unit vector of the curvature of the magnetic field line. Therefore, the emission direction (ζ, Φ) in the IOF is

\[\cos \zeta = n_z,\]

and

\[\Phi = -\Phi_n - r \cdot n,\]

where \(-\Phi_n \) is the azimuthal angle of the emission direction and \(r \) is the emitting location in units of the light radius.

We now consider the emission patterns; the examples are shown in Figure 5. In this figure, the emission patterns with ε = 0.1, 0, and −0.1 for α = 50°, 60°, and 70° are given. For the magnetic field with the perturbation field, the emission patterns are different from those for the pure retarded dipole. The emission pattern for ε > 0 appears to be smoother relative to that of the pure retarded dipole, but the emission pattern for ε < 0 is less smooth (see Figure 5). Note that the differences depend on the value of ε.

Before calculating the light curves, we consider the change of the null charge surface with the phase. In the TPC model of Dyks & Rudak (2003), photons are emitted uniformly in the gap, and the gap extending from the star surface to high altitudes is confined to the last open field lines. Fang & Zhang (2010) made a revised version of the TPC model, pointing out that although acceleration gaps can extend from the star surface to high altitudes along near the last open field lines, the extension of the gaps along the azimuthal direction is limited because of the photon–photon pair production process. In such gaps, high-energy photons are emitted uniformly and tangentially to the field lines but cannot be efficiently produced along these field lines where the distances to the null charge surface are larger than \(\sim 0.9 \) times the distance of the light cylinder. In Figure 6, we show the changes in the null charge surface with the phase for α = 50° but different values of ε. It can be seen from this figure that there is a substantial difference between the null charge surfaces of the pure retarded dipole with and without
Figure 6. Radial distances to the null charge surface for the last open field lines for $\alpha = 50^\circ$ and different values of ϵ. The Vela pulsar parameters are used. (A color version of this figure is available in the online journal.)

the perturbation field, and the difference becomes larger when ϵ increases.

In calculating the light curves, we use the method given by Fang & Zhang (2010), i.e., the emission region is limited in the range of $r_{\text{null}}/R_L \leq 0.9$ and $\rho_{\text{max}}/R_L = 0.95$, where ρ_{max} is the distance from the rotation axis. On the other hand, we use the method given by Dyks & Rudak (2003) to smooth the light curves, i.e., the model light curve was calculated for electrons distributed evenly along the polar cap rim; the density profile across the rim was assumed to be the Gaussian function $f(\theta_m)$ symmetrical about $\theta_m = \theta_{\text{pc}}$, with $\sigma = 0.025\theta_{\text{pc}}$, where θ_m is the magnetic colatitude of the magnetic field lines’ footprints at the star surface, and $\theta_{\text{pc}} \approx (r_{\text{ns}}/R_L)^{1/2}$ is the magnetic colatitude of the rim. We show the light curves in different magnetic inclinations and view angles for $\epsilon = -0.1$, 0, and 0.1 in Figure 7, where we have assumed that the inner boundary of the outer gap is located on the stellar surface. It can be seen that the change of the light curves with $\epsilon \neq 0$ is remarkable relative to those with $\epsilon = 0$, particularly for larger value of ϵ. Compared to the light curves with $\epsilon = 0$, the light curves with $\epsilon \neq 0$ have following features: (1) the peak shapes are changed although the peak separations are roughly the same, and (2) the light curves with $\epsilon > 0$ are smoother, but those with $\epsilon < 0$ become more complicated. In Figure 8, we show the light curves predicted in the frame of the two-pole outer gap model and compare them with those observed in the energy region from 0.1 GeV to 10 GeV of the Vela pulsar (Abdo et al. 2009). The predicted light curve in the upper panel is calculated in the retarded field without any perturbation, while the lower panel is calculated in the retarded field with a perturbation of $\epsilon = -0.1$. In our calculations for Figure 8, the inner boundary of the outer gap is assumed to be the null charge surface; the predicted light curves are mainly produced by the emission of one pole, although the contributions of two poles are included when the values of α and ζ listed in the figure are used. Note that the light curves predicted in Romani & Watters (2010) are based on their one-pole outer model given by Romani (1996); we can reproduce their result with $\epsilon = 0$ in this one-pole outer gap model when we use the parameters (i.e., $\alpha = 72^\circ$ and $\xi = 64^\circ$) listed in Figure 5 of Romani & Watters (2010). Comparing our results with theirs, we reached the same conclusion, i.e., that the light curve with $\epsilon < 0$ is more consistent with the observed one for the Vela pulsar.

4. DISCUSSION AND CONCLUSIONS

Since some currents in the open zone will be created by the radiating charges accelerated in the gaps, and the currents will...
induce the magnetic field (e.g., Muslimov & Harding 2009; Romani & Watters 2010), it is important to study the structure of the magnetic field with the perturbation field, emission patterns, and light curves in the pulsar magnetosphere. In this paper, we derive the solution of the static (retarded) magnetic field with the perturbation field in the Cartesian coordinates, which can be expressed as the sum of the pure static (retarded) dipolar magnetic field and the perturbation field in the Cartesian coordinates. We have confirmed the reliability of our results by using the solution of the static magnetic field with the perturbation field (see Figure 1), and then we have used the solution of the retarded magnetic field with the perturbation field to investigate the emission patterns and light curves in the pulsar magnetosphere (the parameters of the Vela pulsar are used). Our results show that the photon emission pattern and light curves for the retarded magnetic field with the perturbation field are changed with respect to those for the pure retarded dipolar magnetic field (see Figures 5 and 7).

Romani & Watters (2010) have studied the emission patterns and light curves of the retarded magnetic field with the perturbation field by using a highly simplified method. However, our method is totally different from their method, and the results obtained for these two methods are different (see Figures 2 and 8). It should be noted that a more realistic field to describe pulsar magnetosphere is the force-free field (Bai & Spitkovsky 2010b), but such a filled magnetosphere lacks the acceleration fields required to produce powerful γ-rays. Romani & Watters (2010) pointed out that the force-free field can possibly be approximated as a vacuum dipole field with current-induced perturbation field. Therefore, further works for modeling γ-ray light curves for individual pulsars observed by Fermi are needed in the frame of more realistic models such as SG (e.g., Harding et al. 2008; Harding & Muslimov 2011) and outer gap models (e.g., Romani 1996; Zhang & Cheng 1998; Zhang et al. 2004; Hirotani 2008) models in which both physical and geometrical considerations are taken into account.

We thank the anonymous referee for his/her very constructive comments. This work is partially supported by the National Natural Science Foundation of China (NSFC 10778702, 11173020), the 973 Program (2009CB824800), and Yunnan Province under grant 2009 OC.

APPENDIX A

THE STATIC DIPOLE FIELD

Three components of the static dipole field (Equation (2)) in Cartesian coordinates are

\[
\begin{align*}
B_x^{(d)} &= \frac{3}{r^3} (x^2 m_x + x y m_y + z m_z) - \frac{m_x}{r^3}, \\
B_y^{(d)} &= \frac{3}{r^3} (x m_x + y^2 m_y + z m_z) - \frac{m_y}{r^3}, \\
B_z^{(d)} &= \frac{3}{r^3} (z m_x + y m_y + z^2 m_z) - \frac{m_z}{r^3}.
\end{align*}
\]

From this set of equations, we can derive three components \((m_x, m_y, m_z)\) of magnetic moment \(\mathbf{m}\), which is given in Equation (3). After including the perturbation field \(\mathbf{B}^{(p)}\), the magnetic moment \(\mathbf{m}\) is changed to \(\mathbf{m}' = \mathbf{m} + \epsilon \mathbf{m}_p\) and the form of Equation (3) is still valid. Muslimov & Harding (2009) derived the analytic expressions of Equation (1) in magnetic polar coordinates for the static dipole, which are

\[
\begin{align*}
B_r &= \frac{B_0}{n^3} \left(\cos \theta + \epsilon \chi \frac{s}{1 - s^2} \right), \\
B_\theta &= \frac{B_0}{n^3} \left[\frac{1}{2} \sin \theta + \epsilon \chi \frac{1}{1 - s^2} \left(\frac{\partial s}{\partial \theta} + \frac{1}{\sqrt{1 - s^2}} \frac{1}{\sin \theta} \frac{\partial s}{\partial \phi} \right) \right], \\
B_\phi &= \frac{B_0}{n^3} \frac{\epsilon \chi}{1 - s^2} \left(\frac{1}{\sin \theta} \frac{\partial s}{\partial \phi} - \frac{1}{\sqrt{1 - s^2}} \frac{\partial s}{\partial \theta} \right),
\end{align*}
\]

\(\text{Figure 8. Comparison of light curves (black solid lines) predicted in the two-pole outer gap model with observed light curve (red lines with error bars) in the energy region from 0.1 GeV to 10 GeV of the Vela pulsar (Abdo et al. 2009). The predicted light curves in the upper and bottom panels are calculated in the retarded field without any perturbation and with a perturbation of } \epsilon = -0.1 \text{, respectively. Note that the predicted light curves come mainly from the contribution of one pole since the contribution (gray lines) of another pole can be neglected when the values of } \alpha \text{ and } \zeta \text{ listed in the figure are used. (A color version of this figure is available in the online journal.)}\)
where $\eta = r/R$, R is the NS radius; $\chi = r/R_L$ and R_L is the light cylinder radius; $s = \cos \alpha \cos \theta + \sin \alpha \sin \theta \cos \phi$, and α is the angle between the rotation axis and magnetic axis. Since the magnetic field in Equation (A2) is expressed in magnetic polar coordinates, the transformation between magnetic polar coordinates and Cartesian coordinates is

\[
\begin{align*}
e_x &= \sin \theta \cos \phi \hat{\mathbf{x}}_m + \sin \theta \sin \phi \hat{\mathbf{y}}_m + \cos \theta \hat{\mathbf{z}}_m, \\
e_\theta &= \sin(\theta + \pi/2) \cos \phi \hat{\mathbf{x}}_m + \sin(\theta + \pi/2) \sin \phi \hat{\mathbf{y}}_m + \cos(\theta + \pi/2) \hat{\mathbf{z}}_m, \\
e_\phi &= \cos(\phi + \pi/2) \hat{\mathbf{x}}_m + \sin(\phi + \pi/2) \hat{\mathbf{y}}_m.
\end{align*}
\]

where $\hat{\mathbf{z}}_m$ is parallel to the magnetic axis. Therefore, the components of the magnetic field in the Cartesian coordinates are given by

\[
\begin{align*}
B_{xm} &= \sin \theta \cos \phi B_x + \sin(\theta + \pi/2) \cos \phi B_\theta + \sin(\theta + \pi/2) B_\phi, \\
B_{ym} &= \sin \theta \sin \phi B_x + \sin(\theta + \pi/2) \sin \phi B_\theta + \sin(\theta + \pi/2) B_\phi, \\
B_{zm} &= \cos \theta B_x + \cos(\theta + \pi/2) B_\theta.
\end{align*}
\]

In principle, converting the above components of the magnetic field in the magnetic polar coordinates into those in the Cartesian coordinates where the spin axis of the dipole is assumed to be along the $\hat{\mathbf{z}}$-axis, we can obtain the expressions of the magnetic field (Equation (1)) in the Cartesian coordinates. However, since the perturbation field $\mathbf{B}^{(1)}$ will make the magnetic axis curve, we use (α_0, ϕ_0) to describe the deflection of the magnetic axis in both the magnetic inclination and azimuthal directions. Through fitting the results of the numerical simulation, we find that α_0 and ϕ_0 are approximated as

\[
\begin{align*}
\alpha_0 &= \chi_1 \frac{\epsilon_{rx}}{0.01 R_L}, \\
\phi_0 &= \chi_2 \frac{\epsilon_{ry}}{0.01 R_L}, \\
\chi_1 &= -0.02391 - 0.07578a + 0.10575a^2 - 0.03825a^3, \\
\chi_2 &= 0.00189 - 0.08582e^{-2.4973a^2},
\end{align*}
\]

where r_{xy} is the distance to the spin axis. After eliminating the influence of the curved magnetic axis, we can use the following expressions to obtain the expressions of the magnetic field (Equation (1)) in the Cartesian coordinates:

\[
\begin{align*}
B_x &= \cos(\alpha)B_{xm} + \sin(\alpha)B_{zn}, \\
B_y &= B_{ym}, \\
B_z &= \cos(\alpha)B_{zn} - \sin(\alpha)B_{xm}.
\end{align*}
\]

Replacing $B_x^{(d)}$, $B_y^{(d)}$, and $B_z^{(d)}$ with B_x, B_y, and B_z in Equation (3), three components of magnetic moment \mathbf{m}' of the magnetic field given by Equation (1) can be obtained as follows:

\[
\begin{align*}
m_x' &= \frac{r}{2} [(3x^2 - 2r^2)B_x + 3xyB_y + 3xzB_z], \\
m_y' &= \frac{r}{2} [3yxB_x + (3y^2 - 2r^2)B_y + yzB_z], \\
m_z' &= \frac{r}{2} [3zxB_x + 3yzB_y + (3z^2 - 2r^2)B_z],
\end{align*}
\]

where the perturbation magnetic moment \mathbf{m}_p can be expressed as

\[
\begin{align*}
m_{px} &= \frac{r}{2} [(3x^2 - 2r^2)B_x^{(1)} + 3xyB_y^{(1)} + 3xzB_z^{(1)}], \\
m_{py} &= \frac{r}{2} [3yxB_x^{(1)} + (3y^2 - 2r^2)B_y^{(1)} + yzB_z^{(1)}], \\
m_{pz} &= \frac{r}{2} [3zxB_x^{(1)} + 3yzB_y^{(1)} + (3z^2 - 2r^2)B_z^{(1)}].
\end{align*}
\]

APPENDIX B

THE RETARDED DIPOLE FIELD

B.1. Retarded Magnetic Moment

For an inclined dipole without the perturbation field of constant magnitude, rotating with angular frequency Ω about the $\hat{\mathbf{z}}$-axis, the magnetic moment is expressed as

\[
\mathbf{m}' = m(\sin \alpha \cos (\Omega t) \hat{\mathbf{x}} + \sin \alpha \sin (\Omega t) \hat{\mathbf{y}} + \cos \alpha \hat{\mathbf{z}}),
\]
i.e., the magnetic moment for the static dipole rotates along the rotational direction by \(\Omega t = (r_0 - r)/R_L \). For the same reason, three components for rotating perturbation magnetic moment \(\mathbf{m}_p^r \) are given by

\[
\begin{align*}
 m_{px}^r &= m_{px} \cos(\Omega t) + m_{py} \sin(\Omega t), \\
 m_{py}^r &= m_{px} \sin(\Omega t) + m_{py} \cos(\Omega t), \\
 m_{pz}^r &= m_{pz}.
\end{align*}
\]

(B2)

Therefore, the magnetic moment that includes the perturbation field is given by

\[
\mathbf{m}^r = \mathbf{m}^r + \epsilon \mathbf{m}_p^r.
\]

(B4)

B.2. Magnetic Field with the Perturbation Field

For the pure retarded dipole, the magnetic field is expressed as (Cheng et al. 2000)

\[
\mathbf{B}^r = \hat{r} \left[\hat{r} \cdot \left(\frac{3\mathbf{m}^r}{r^3} + \frac{3\mathbf{m}_p^r}{cr^2 + c^2r} \right) - \left(\frac{\mathbf{m}^r}{r^3} + \frac{\mathbf{m}_p^r}{cr^2 + c^2r} \right) \right],
\]

(B5)

where \(r \) is the radial distance, \(\hat{r} \) is the radial unit vector, and \(c \) is the light speed. Replacing \(\mathbf{m}^r = \mathbf{m}^r + \epsilon \mathbf{m}_p^r \) in the above equation, the magnetic field with the perturbation field is given by

\[
\mathbf{B}^r = \mathbf{B}^r + \epsilon \mathbf{B}_p^r,
\]

(B6)

where the rotating perturbation field \(\mathbf{B}_p^r \) is given by

\[
\mathbf{B}_p^r = \hat{r} \left[\hat{r} \cdot \left(\frac{3\mathbf{m}_p^r}{r^3} + \frac{3\mathbf{m}_p^r}{cr^2 + c^2r} \right) - \left(\frac{\mathbf{m}_p^r}{r^3} + \frac{\mathbf{m}_p^r}{cr^2 + c^2r} \right) \right].
\]

(B7)

The three components in the Cartesian coordinates can expressed as

\[
\begin{align*}
 B_{px}^r &= \hat{x} \cdot \mathbf{B}_p^r = \frac{1}{r^3} \left[C_x \cos \left(\frac{R - r}{R_L} \right) + D_x \sin \left(\frac{R - r}{R_L} \right) + 3xz m_{pz} \right], \\
 B_{py}^r &= \hat{y} \cdot \mathbf{B}_p^r = \frac{1}{r^3} \left[C_y \cos \left(\frac{R - r}{R_L} \right) + D_y \sin \left(\frac{R - r}{R_L} \right) + 3yz m_{pz} \right], \\
 B_{pz}^r &= \hat{z} \cdot \mathbf{B}_p^r = \frac{1}{r^3} \left[C_z \cos \left(\frac{R - r}{R_L} \right) + D_z \sin \left(\frac{R - r}{R_L} \right) + (r^2 - 3z^2) m_{pz} \right],
\end{align*}
\]

(B8)

where

\[
\begin{align*}
 C_x &= (r^2 m_{px} - xym_{py} - x^2 m_{px}) \frac{r^2}{R_L^2} - (r^2 m_{py} - 3xym_{px} - 3x^2 m_{py}) \frac{r}{R_L} - (r^2 m_{px} - 3xym_{py} - 3x^2 m_{px}), \\
 D_x &= (r^2 m_{py} - xym_{px} - x^2 m_{py}) \frac{r^2}{R_L^2} + (r^2 m_{px} - 3xym_{py} - 3x^2 m_{px}) \frac{r}{R_L} - r^2 m_{py} - 3xym_{px} - 3x^2 m_{py}, \\
 C_y &= (r^2 m_{px} - xym_{py} - y^2 m_{px}) \frac{r^2}{R_L^2} - (r^2 m_{py} - 3xym_{px} - 3y^2 m_{py}) \frac{r}{R_L} - r^2 m_{px} - 3xym_{py} - 3y^2 m_{px}, \\
 D_y &= (r^2 m_{py} - xym_{px} - y^2 m_{py}) \frac{r^2}{R_L^2} + (r^2 m_{px} - 3xym_{px} - 3y^2 m_{px}) \frac{r}{R_L} - r^2 m_{py} - 3xym_{px} - 3y^2 m_{px}, \\
 C_z &= (-xzm_{px} - yzm_{py}) \frac{r^2}{R_L^2} + (3xzm_{py} + 3yzm_{px}) \frac{r}{R_L} + (3xzm_{px} + 3yzm_{py}), \\
 D_z &= (-xzm_{py} - yzm_{px}) \frac{r^2}{R_L^2} - (3xzm_{px} + 3yzm_{py}) \frac{r}{R_L} + (3xzm_{py} + 3yzm_{px}).
\end{align*}
\]
REFERENCES

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJS, 187, 460
Abdo, A. A., Ackermann, M., Atwood, W. B., et al. 2009, ApJ, 696, 1084
Bai, X. -N., & Spitkovsky, A. 2010a, ApJ, 715, 1282
Bai, X. -N., & Spitkovsky, A. 2010b, ApJ, 715, 1270
Cheng, K. S., Ruderman, M. A., & Zhang, L. 2000, ApJ, 537, 964
Deutsch, A. J. 1955, Ann. Astrophys., 18, 1
Dyks, J., Harding, A. K., & Rudak, B. 2004, ApJ, 606, 1124
Dyks, J., & Rudak, B. 2003, ApJ, 598, 1201
Fang, J., & Zhang, L. 2010, ApJ, 709, 605
Harding, A. K., & Muslimov, A. G. 2011, ApJ, 726, L10
Harding, A. K., Stern, J. V., Dyks, J., & Frackowiak, M. 2008, ApJ, 680, 1378
Hirotani, K. 2008, ApJ, 688, L25
Li, X., & Zhang, L. 2010, ApJ, 725, 2225

Muslimov, A. G., & Harding, A. K. 2009, ApJ, 692, 140
Romani, R. W. 1996, ApJ, 470, 469
Romani, R. W., & Watters, K. P. 2010, ApJ, 714, 810
Romani, R. W., & Yadigaroglu, I.-A. 1995, ApJ, 438, 314
Takata, J., Chang, H.-K., & Cheng, K. S. 2007, ApJ, 656, 1044
Tang, A. P. S., Takata, T., Jia, J. J., & Cheng, K. S. 2008, ApJ, 676, 562
Wang, Y., Takata, J., Chang, H.-K., & Cheng, K. S. 2011, MNRAS, 414, 2664
Watters, K. P., Romani, R. W., Weltevrede, P., & Johnston, S. 2009, ApJ, 695, 1289
Zhang, L., & Cheng, K. S. 1998, MNRAS, 294, 177
Zhang, L., & Cheng, K. S. 2000, A&A, 363, 575
Zhang, L., & Cheng, K. S. 2001, MNRAS, 320, 477
Zhang, L., & Cheng, K. S. 2002, ApJ, 569, 872
Zhang, L., Cheng, K. S., Jiang, Z. J., & Leung, P. 2004, ApJ, 604, 317
Zhang, L., & Li, X. 2009, ApJ, 707, L169