Effectiveness of a stepped-care intervention to prevent major depression in patients with type 2 diabetes mellitus and/or coronary heart disease and subthreshold depression: A pragmatic cluster randomized controlled trial

Alide D. Pols, Susan E. van Dijk, Judith E. Bosmans, Trynke Hoekstra, Harm W. J. van Marwijk, Maurits W. van Tulder, Marcel C. Adriaanse

Department of Health Sciences and EMGO Institute for Health and Care Research, VU University Amsterdam, Amsterdam, the Netherlands, Department of General Practice & Elderly Care Medicine and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands, Department of Epidemiology and Biostatistics, VU University Amsterdam, Amsterdam, the Netherlands, CLAHRC Greater Manchester and NIHR School for Primary Care Research, the University of Manchester, Manchester, United Kingdom

Purpose

Given the public health significance of poorly treatable co-morbid major depressive disorders (MDD) among patients with type 2 diabetes mellitus (DM2) and coronary heart disease (CHD), we need to investigate whether strategies to prevent the development of major depression could reduce its burden of disease. We therefore evaluated the effectiveness of a stepped-care program for subthreshold depression in comparison with usual care in patients with DM2 and/or CHD.

Methods

A cluster randomized controlled trial, with 27 primary care centers serving as clusters. A total of 236 DM2 and/or CHD patients with subthreshold depression (nine item Patient Health Questionnaire (PHQ-9) score ≥ 6, no current MDD according to DSM-IV criteria) were allocated to the intervention group (N = 96) or usual care group (n = 140). The stepped-care program was delivered by trained practice nurses during one year and consisted of four sequential treatment steps: watchful waiting, guided self-help, problem solving treatment and referral to the general practitioner. The primary outcome was the 12-month cumulative incidence of MDD as measured with the Mini International Neuropsychiatric Interview (MINI). Secondary outcomes included severity of depression (measured by PHQ-9) at 3, 6, 9 and 12 months.
Results
Of 236 patients (mean age, 67.5 (SD 10) years; 54.7% men), 210 (89%) completed the MINI at 12 months. The cumulative incidence of MDD was 9 of 89 (10.1%) participants in the intervention group and 12 of 121 (9.9%) participants in the usual care group. We found no statistically significant overall effect of the intervention (OR = 1.21; 95% confidence interval (0.12 to 12.41)) and there were no statistically significant differences in the course or severity of depressive symptoms between the two groups.

Conclusions
This study suggest that Step-Dep was not more effective in preventing MDD than usual care in a primary care population with DM2 and/or CHD and subthreshold depression.

Introduction
Depression is projected to be the second cause of disease burden worldwide by 2030[1]. Depression and chronic illnesses such as diabetes mellitus type 2 (DM2) and coronary heart disease (CHD) often occur together and this can lead to a vicious circle, with each being a risk factor for the other[2]. Furthermore, such co-morbidity adversely affects self-care and medication adherence[3,4], quality of life[5], health status and increases mortality[6,7], and healthcare costs[8,9]. Subthreshold depression, i.e. clinically relevant depressive symptoms without fulfilling the criteria for major depressive disorder (MDD), is the strongest predictor for its onset[10,11]. In addition, people with both subthreshold depression and a history of depression are at even higher risk of another episode of MDD[12]. About a third of the patients with DM2 and/or CHD has subthreshold depression and more than 40% of those will develop MDD within two years[13–15].

Significant obstacles exist in the reduction of the burden of disease of depression. About one-third of those who receive treatment do not respond to current approaches, and over half of those who experience a first episode of MDD, will experience one or more recurrences[16]. Therefore, the burden of depression could be reduced considerably if the influx of new cases of depression could be prevented by early recognition and treatment of patients at risk, such as those with subthreshold depression. In comparison to control groups, preventative psychological interventions can overall reduce the incidence of MDD with a risk difference of 5%[10,17], but there is considerable heterogeneity.

Offering preventative psychological interventions in a stepped-care format is a possible solution, but the current evidence is both limited and conflicting[18,19]. Whereas some studies on prevention found beneficial effects of stepped-care as compared to usual care on the incidence of depression in the long-term[20–22], other studies found minor and short-term effects[23], or no beneficial effects at all[13,24,25]. Effects also seem to differ in various populations, and across efficacy and effectiveness studies (i.e., under practice circumstances)[26]. We investigated whether a pragmatic nurse-led stepped-care program is effective in reducing the incidence of MDD at 12-months follow-up in comparison to usual care among patients with type 2 diabetes mellitus and/or coronary heart disease and subthreshold depression (Step-Dep trial).
Methods

Design
The Step-Dep study was a pragmatic cluster randomized controlled trial with a one-year follow-up. Step-Dep was conducted between January 2013 and November 2015, including recruitment and one year follow-up. The clusters consisted of primary care centers in the Netherlands, with 2000–8000 enlisted patients. Multiple general practitioners (GPs) at one location were considered one center and a single cluster.

Trial registration and ethical approval
The study was performed in accordance with the declaration of Helsinki (2008) and the Dutch Medical Research involving Human Subjects Act (WMO). The protocol was approved by the medical ethics committee of the VU University Medical Centre (NL39261.029.12, registration number 2012/223), and registered in the Dutch Trial Register (NTR3715 http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=3715) and published elsewhere[27].

Setting
Primary care centers were recruited through local research networks of general practitioners. In total, 27 primary care centers with 53 general practitioners (GPs), 26 practice nurses (PN) and 128,280 enlisted patients consented to participate in the Step-Dep trial. Of these, 18 centers with 33 GPs, 18 PNs and 76,340 enlisted patients were located in urban areas, and 9 centers with 20 GPs, 8 PNs and 51,940 enlisted patients in rural areas. In order to resemble clinical daily practice as much as possible, only practice nurses already working at the participating centers administered the program.

Randomization and blinding
Using a computer generated list of random numbers, a statistician blinded to the characteristics of the centers, performed the (cluster) randomization. Randomization was done at the level of the primary care center which corresponds to the participating practice nurse to avoid contamination between the treatment groups, and was stratified for size (less or more than 5000 patients). Due to the nature of the intervention, it was not possible to blind GPs or PNs to the intervention. All patients were informed about their treatment allocation before providing informed consent. All outcomes were assessed blinded to treatment allocation.

Population
To identify eligible patients, the electronic patient record system at each primary care center was searched to select patients aged 18 years or more who had an International Classification of Primary Care (ICPC) diagnosis of DM2 and/or CHD (S1 Appendix). Participating GPs excluded patients with cognitive impairment, psychotic illnesses or a terminal illness, patients who were currently taking anti-depressant medication, had suffered the loss of a significant other in the past six months, or had a history of suicide attempt(s). Also, patients who were visually impaired, currently pregnant, had a bipolar disorder, or a borderline personality disorder or any difficulties completing written questionnaires or visiting the primary care center were excluded by the GP. All remaining patients received information about the study by mail, accompanied by an invitation from their own GP to participate and a PHQ-9 form to screen for depressive symptoms. Patients with a PHQ-9 score of six or higher were considered to have subthreshold depression[28,29]. After informed consent for a telephone interview, these patients were contacted within two weeks by trained research assistants, who administered the
Mini International Neuropsychiatric Interview (MINI); a structured interview based on the
criteria for MDD according to the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-IV)[30,31]. All patients diagnosed with current MDD according to the
MINI were excluded. Remaining patients were considered eligible to participate and received
detailed information about the study together with an informed consent form by mail. Patients
who returned a signed informed consent form were included in the study.

Intervention

Step-Dep was modelled after the effective stepped-care intervention by van ’t Veer-Tazelaar
et al[20]. It consisted of four steps that increased in treatment intensity. All steps had a dura-
tion of three months; at the end of each step, depressive symptoms were evaluated by the PN
using the PHQ-9[28,32]. Subsequently, when a patient had a PHQ-9 score of 6 or higher, more
intensive steps were initiated. A PHQ-9 score below six, resulted in a period of watchful wait-
ing. Patients showing recurrent subthreshold depressive symptoms (i.e. a PHQ-9 ≥ 6) after a
period of remission (i.e. a PHQ-9 < 6) were offered the next sequential step they had not yet
received. All steps of the intervention were implemented by the PN who coordinated the inter-
vention and consulted the GP when necessary.

Step 1 consisted of watchful waiting starting with an introductory meeting with the PN. In
this step, no active care was provided, because spontaneous recovery from subthreshold
depressive symptoms occurs frequently[20].

Step 2 entailed a written guided self-help course that was especially developed to reduce
depressive symptoms in patients with a chronic medical condition[33]. During this step, the
PN called the patient every other week to monitor progress and motivate the patient.

Step 3 consisted of problem solving treatment (PST) provided by the PN. PST is a brief,
proven effective cognitive behavioral intervention to treat depressive symptoms by focusing
on practical skill building[34,35]. In Step-Dep, it consisted of a maximum of 7 sessions during
12 weeks. During the treatment, the stages of problem solving were explained and applied to
problems a patient experienced in daily life.

In Step 4, patients were referred to their GP. This was initiated when subthreshold depres-
sion was still present after completing PST, or when the patient was diagnosed with MDD or
expressed suicidal ideation according to the DSM-IV or DSM-V at any time during the inter-
vention. If necessary, patients were referred to specialized mental health care or prescribed
anti-depressant medication.

Training of the practice nurses

Practice nurses in the intervention arm received a two-day training. This training focused on
how to implement the stepped-care program, how to provide guidance with the self-help
course using motivational interviewing techniques and how to provide the PST. The training
was developed and provided by a qualified trainer in collaboration with team members (SVD
and AP). During the trial, all practice nurses were regularly supervised by the training staff and
they could contact the training staff to discuss any questions or problems. Additional informa-
tion about the training has been previously provided[27].

Usual care

Patients in the usual care condition had unrestricted access to care as normally provided
according to existing Dutch clinical guidelines by their GP[36]. GPs and PNs working in usual
care centers did not receive any additional training or detailed protocol information about
Step-Dep. Because of medical ethical considerations, participation of patients was reported to their GP.

Outcomes

The primary outcome was the cumulative incidence of MDD according to the DSM-IV, as measured with the MINI at 6 and 12 months of follow-up. Trained research assistants who were blinded to group allocation administered the MINI by telephone. The MINI is considered a reliable and valid instrument to diagnose MDD[30]. With an administration time of approximately 15 minute, the MINI has become the structured interview of choice for psychiatric evaluation in many clinical trials and epidemiological studies.

Secondary outcomes included depression severity and anxiety. Depression severity was measured by the PHQ-9 (range 0–27 with higher scores indicating more severe depression) [28]. The PHQ-9 is a widely used and validated instrument and performs well in patients with chronic medical illnesses[29,37]. Anxiety was measured by Hospital Anxiety and Depression Scale Anxiety (HADS-A; range 0–21 with higher scores indicating more severe anxiety)[38]. Depression severity and anxiety were measured at baseline and at 3, 6, 9 and 12 months using web-based questionnaires. When patients did not have access to the internet or preferred questionnaires on paper, these were provided.

Patient characteristics were assessed at baseline and included demographics (gender, age, marital status (together with spouse or alone), level of education (low, average, high), excessive alcohol use (more than 10 standard units per week for men and 5 units per week for women according to the Dutch standards[39]), current smoking behavior (yes/no), body-mass index (BMI) based on self-reported weight and height, exercise behavior (cut off for healthy exercise: 10 minutes a day, five days a week[40]) and ethnic origin (Dutch or non-Dutch). Additionally, we measured the number of depressive episodes in the past and the age of onset of the first depressive episode using a subset of the Diagnostic Interview Schedule (DIS)[41], the presence of co-morbid chronic illnesses using the self-reported Dutch Questionnaire Chronic Illnesses [42], locus of control (range 0–20, higher scores indicating a more external locus of control) [43,44], and social support (range 0–48, higher scores indicating more perceived social support)[45] at baseline.

Sample size

Based on previous findings, we expected that, without any intervention, approximately 30% of patients would develop an MDD within one year follow-up, and that half of all new cases could be prevented by the Step-Dep intervention[10,20,46]. Thus, this trial was powered to detect a difference of 15% in the incidence of depression between both treatment groups. The power calculation was corrected for clustering within the multilevel setting at three levels (primary care centers, patients and repeated measurements). Assuming measurements are clustered within patients with an Intra Class Correlation Coefficient (ICC) of .45 and patients within the primary care centers with an ICC of .05, we needed a total of 177 patients, using 80% power and an alpha of 5%. After allowance for 25% attrition, a sample size of 236 patients (118 patients in each group) was needed.

Statistical analyses

All analyses were conducted according to the intention to treat principle. First, all baseline variables were described; continuous variables as means (SD) and categorical variables as percentages. Secondly, the effectiveness of the intervention on the primary and secondary outcomes over time was analyzed with mixed models for longitudinal data; linear mixed models were
used for continuous outcome variables and logistic mixed models for binary outcome variables. Mixed model analyses take the dependence of the repeated measurements into account, while maximizing the use of information that is present in the data without having to impute when data are missing at random (MAR)\[47,48\]. For each outcome an overall effect over time and separate effects at different time points were estimated by taking time into account as a categorical variable (with four categories: 0–3 months, 3–6 months, 6–9 months and 9–12 months of follow-up)\[47,49\].

The main analyses consisted of fully corrected models that were corrected for baseline values of the respective outcome and additionally included the covariates gender\[2\], age\[50\], and any other possible confounding variable on which the treatment groups differed at baseline (marital status, employment status, level of education, co-existence of DM2 and CHD, alcohol use, number of depressive episodes in history and age of onset of depression). The absolute baseline differences were judged by the researchers, rather than statistically tested, since relying on statistical testing of baseline differences ignores the prognostic strength of confounders \[51\].

Results

Participants

“Fig 1” shows the sampling of the study participants. In total, 7458 patients were selected by their GPs as potentially eligible to participate in the Step-Dep study of whom 4094 (55%) returned the PHQ-9, and 594 (8%) had a score of 6 or more on the PHQ-9 and were interested
in participating. Based on the MINI interviews, 382 patients (5%) were eligible to participate of whom 236 (3%) gave informed consent to participate in the study. Of these, 140 patients (63% of eligible patients from usual care centers) were included in the usual care group and 96 patients (61% of eligible patients from intervention centers) were included in the intervention group. Of all participants in both groups, 209 patients and 210 patients (89%) completed the MINI interview at six and 12 months respectively.

The mean age of the total sample was 67.5 years (standard deviation (SD) 10.0), 107 participants (45%) were female and the mean baseline PHQ-9 score in the total sample was 9.4 (SD 3.2). The baseline characteristics of all participants are summarized in "Table 1".

Uptake of the intervention

Of the 96 patients who were included in the intervention group, 90 patients (94%) started the intervention. In total, 60 patients (63%) received only watchful waiting (step 1), and 25 (26%) patients received guided self-help (step 2). Another 11 patients were offered the guided self-help course, but declined. Nine patients (9%) started PST (step 3), and 6 (6%) declined. Three patients were referred to the GP at the end of the program, and 5 other patients were referred to the GP during another treatment step. In total, 25 patients (26%) dropped out from the intervention due to frailty (n = 7), time restraints (n = 2), lack of motivation (n = 7), moving away (n = 2), or for unknown reasons (n = 7).

Effectiveness of intervention

The number of participants with a MDD at 6 months was 5 of 84 (6.0%) in the intervention group and 10 of 125 (8.0%) in the usual care group. The cumulative incidence of MDD at 12 months was 9 of 89 (10.1%) participants in the intervention group and 12 of 121 (9.9%) participants in the usual care group ("Table 2"). There was no statistically significant overall treatment effect over 12 months of the intervention (OR = 1.21; 95% confidence interval (0.12 to 12.41)). Due to the low incidence of MDD, the analyses of the differences between the different time points did not converge. Therefore, only overall results are presented.

In both groups, the PHQ-9 score decreased almost 3 points between baseline and 3 months. After 3 months, PHQ-9 scores remained quite stable in both groups ("Fig 2"). There were no significant differences in PHQ-9 scores between the study groups at any time point. The course of PHQ-9 scores over time did not differ significantly between the groups. The anxiety scores in the intervention group at 6 months of follow-up were statistically significantly lower than in the usual care group. However, there were no statistically significant differences at the other time points nor a statistically significant difference in the course of anxiety symptoms over time between the groups.

Discussion

Main findings

This study found no statistically significant difference over 12 months between the Step-Dep intervention and usual care in the onset of MDD in primary care patients with DM2 and/ or CHD who screened positively for subthreshold depression. It showed that there were no statistically significant differences in secondary outcomes (PHQ-9, HADS-D and perceived recovery) between groups, and the symptoms in both groups showed virtually the same course. However, there was a statistically significant difference in anxiety scores at 6 months of follow-up, but this difference was not clinically relevant. Also, this was not seen at any other time
point nor was the overall effect in anxiety scores statistically significant. Therefore, we think that this was most probably due to multiple testing.

Findings in relation to other studies

Step-Dep is the first study that evaluates the effectiveness of a stepped-care program to prevent MDD in comparison with usual care in patients with DM2 and/or CHD and subthreshold depression in a primary care setting. Our negative findings are in line with preventative

Table 1. Patients' baseline characteristics at baseline in intervention group, care as usual group and total sample.

Characteristics	Intervention (N = 96)	Care as usual (N = 140)	Total sample (N = 236)
Female	42 (43.8)	65 (46.4)	107 (45.3)
Age, mean (SD)	67.8 (9.2)	67.3 (10.5)	67.5 (10.0)
Marital status			
Married/living together	55 (57.3)	67 (47.9)	122 (51.7)
Single/divorced/widowed	35 (36.5)	63 (45)	98 (41.5)
Not reported	6 (6.3)	10 (10.4)	16 (6.8)
Both parents born in the Netherlands	74/90 (82.2)	112/130 (86.2)	186/220 (84.5)
Rural residential area	42 (43.8)	57 (40.7)	99 (41.9)
Unemployed/sick	12/90 (13.3)	14/130 (10.8)	26/220 (11.8)
Level of education			
Low	33 (34.4)	56 (40)	89 (37.7)
Average	22 (22.9)	38 (27.1)	60 (25.4)
High	35 (36.5)	36 (25.7)	71 (30.1)
Not reported	6 (6.3)	10 (7.1)	16 (6.8)
Diabetes Mellitus type 2 (DM2)	60 (62.5)	90 (64.3)	150 (63.6)
Coronary Heart Disease (CHD)	58 (60.4)	90 (64.3)	148 (62.7)
DM2 and CHD	22 (22.9)	40 (28.6)	62 (26.3)
Nr of chronic diseases, median (25th-75th percentile)	3 (2–5)	3 (2–5)	3 (2–5)
DM2 treated with insulin or oral medication	42/57 (73.7)	64/83 (77.1)	106/140 (75.7)
CHD treated with chronic medication	46/54 (85.2)	65/85 (76.5)	111/139 (79.9)
Current smoker	16/90 (17.8)	23/129 (17.8)	39/219 (17.8)
Alcohol use above norm	29/90 (32.2)	34/129(26.4)	63/219 (28.8)
Exercise under norm	56/90 (62.2)	85/129(65.9)	141/219 (64.4)
BMI, mean (SD)	29.4 (6.8)	28.5 (5.6)	28.9 (6.1)
Locus of Control, mean (SD)	8.3 (4.2)	7.6 (4.1)	7.9 (4.2)
Social support, mean (SD)	35.8 (9.0)	36.7 (9.5)	36.3 (9.2)
Dysthymia	6.6 (3.3)	7 (5.0)	13 (5.5)
Nr of depression in history			
0	35 (36.5)	65 (46.4)	100 (42.4)
1	14 (14.6)	11 (7.8)	25 (10.6)
2 or more	40 (41.7)	43 (30.7)	83 (35.2)
Not reported	7 (7.3)	21 (15)	28 (11.9)
Onset of depression after age of 55	38/89 (42.7)	63/121 (52.1)	101/210 (48.1)
PHQ-9 at baseline, mean (SD)	9.5 (3.1)	9.3 (3.2)	9.4 (3.2)
Depression HADS, mean (SD)	6.9 (3.9)	6.1 (3.7)	6.5 (3.8)
Anxiety HADS, mean (SD)	6.9 (3.7)	6.3 (3.9)	6.5 (3.8)

Figures are numbers (percentage) unless stated otherwise; Abbreviations: BMI = Body Mass Index; EQ-5D-5L = Euroqol 5 dimensions 5 levels, PHQ-9, Patient Health Questionnaire-9; HADS, Hospital Anxiety and Depression Scale; SD, Standard Deviation.

https://doi.org/10.1371/journal.pone.0181023.t001
stepped-care studies among primary care patients with subthreshold depression and/or anxiety in Hong Kong[25], in community dwelling older adults[23], and older adults in general practice[24], but in contrast with studies in other groups of older adults[20,21], and in visually impaired older adults[22].

The first potential explanation for the heterogeneity in findings is that the incidence of depression in the current studies was lower than in previous studies[20–22]. This may indicate that the risk of developing a MDD in our study was lower than in those study populations. More stringent inclusion criteria might have prevented this. Van ‘t Veer et al[20], for example,
only included respondents who had elevated depression scores on two consecutive occasions. Moreover, the cut-off score of 6 on the PHQ-9 that we used for this study may have been too low; a score of eight or higher might have been more appropriate[52]. A higher cut-off may be necessary, because symptoms of depression and DM2 and/ or CHD partly overlap (e.g. fatigue, change of appetite), which potentially results in a high risk of over-diagnosing (sub-threshold) depression in this group[53]. Also, stepped-care may be more effective patients with more severe symptoms[54]. However, we do believe to have included an adequate patient population as patients had an average PHQ-9 score of 9.4 at inclusion and about 58% of the total sample had a (self-reported) history of depression. Secondly, in our study, fewer patients than expected were eligible for the more intensive treatment steps due to their low PHQ-9 scores of 6.7 on average at three months after baseline measurements, whereas the cut-off for a more intensive treatment step was set at 6 or higher. The drop in PHQ-9 scores between baseline and three months follow-up in both groups exceeds the expectations of spontaneous recovery alone[20]. It is not likely to be caused by treatment either. In the intervention condition, patients were offered watchful waiting during this period. In the usual care condition, it is unlikely that notifying general practitioners which participants met criteria for subthreshold depression led to any treatment in this period, because screening for depression alone does not lead to changes in the management of depression[55]. Additionally, the Dutch clinical Guidelines advice an initial period of watchful waiting for subthreshold depression[36]. Perhaps the decrease in depressive symptoms is partly caused by attention or patients’ self-insight into their mental problems. Thirdly, a considerable proportion of patients (29%) did not want to start one or more of the treatment steps. The treatment delivery rates were similar to those in other trials that did not find a significant effect[23–25], but considerably lower than in trials that did find a significant effect on depression outcomes [20–22]. Thus, the uptake of the intervention may have influenced the outcomes. This may indicate that our program did not match the need for care in this population. Finally, depressive and anxiety symptoms slightly improve over time in both groups. This might indicate that usual care is already of reasonable quality and, therefore, the room for improvement for new interventions over usual care is limited.
Strengths and limitations

The most important strengths of Step-Dep were its randomized controlled trial design, the use of reliable and clinically meaningful outcome measures, and the low dropout rate during one-year follow-up. Another strength is its pragmatic approach; the intervention was tested in a real life setting, which increases the generalizability of the findings of the study.

This study also has some limitations. First, the combination of an unforeseen low incidence of MDD and a relatively small size made this study underpowered to rule out a clinically relevant difference between groups. However, given the lack of statistically significant or clinically relevant differences in all secondary outcome measures, it seems unlikely that the intervention was superior to usual care in preventing MDD. Second, neither patients nor healthcare providers could be blinded to the intervention. Third, from all DM2 and/or CHD patients who were initially invited to be screened, only 21% returned a completed PHQ-9 screening form and were interested in participation. Fourth, due to the cluster randomization and ethical considerations, we had to inform patients before inclusion which treatment group they would be in if they participated. This could have resulted in selection bias. However, the percentages of invited and eligible patients are comparable between groups. Also, there were no clinically relevant differences in key baseline characteristics between the two treatment groups, making it unlikely that the groups originated from different patient populations. Finally, some adjustments were made to the published protocol[27]. The implemented inclusion procedure did not contain a preliminary screening with the two-item Patient Health Questionnaire (PHQ-2), since it resulted in a large number of false positive screening results, making it not feasible to interview all patients with a positive screening result by telephone. Biomedical outcome measures (blood pressure, low-density lipoprotein cholesterol and glycosylated haemoglobin) were not measured at baseline and 12 months of follow-up, since patients had to pay for these measurements outside their regular check-ups themselves. The HADS-D and the perceived recovery scale were added before the inclusion of patients started which was approved in an amendment by the medical ethical review board.

Conclusions

In conclusion, this study suggest that Step-Dep was not superior to care as usual in the prevention of MDD in a population with DM2 and/or CHD that screened positively for subthreshold depression. Widespread implementation of Step-Dep in clinical practice in patients screened for subthreshold depression is, therefore, currently not recommended. We recommend further research to evaluate the effectiveness of targeting interventions to patients with more severe depressive symptoms on two consecutive occasions, but only after further exploring their need for care. Our results feed the ongoing debate on the feasibility of stepped-care and screening on (subthreshold) depression in the chronically ill.

Supporting information

S1 Appendix. International classifications of primary care codes. (DOCX)

S2 Appendix. CONSORT-checklist. (DOC)

S3 Appendix. Original protocol METC October 2013. (DOCX)
Acknowledgments

The authors would like to thank Anna Jansen, Lennart van der Zwaan, Timo Velzeboer, Marleen Reuser, Wendy Kerstens, Jet Bessem, and Walter van Raaij for their contribution in the data collection for this study.

We also would like to thank all the participating general practices and the research networks of general practitioners (ANH, THOON and LEON) for their participation and collaboration in the implementation and execution of the study.

Furthermore, this study has been possible thanks to all Step-Dep participants, Michiel de Boer; our independent statistician and performed the randomization, Petra Elders who contributed in the design of the study and the recruitment of general practices in the Amsterdam region, and Hanna Joosten, who helped us design the search strategy in the electronic patient record system of the general practices.

Author Contributions

Conceptualization: Alide D. Pols, Susan E. van Dijk, Judith E. Bosmans, Harm W. J. van Marwijk, Maurits W. van Tulder, Marcel C. Adriaanse.

Data curation: Alide D. Pols, Susan E. van Dijk.

Formal analysis: Alide D. Pols, Susan E. van Dijk, Trynke Hoekstra.

Funding acquisition: Susan E. van Dijk, Judith E. Bosmans, Harm W. J. van Marwijk, Maurits W. van Tulder, Marcel C. Adriaanse.

Investigation: Alide D. Pols, Susan E. van Dijk, Judith E. Bosmans, Marcel C. Adriaanse.

Methodology: Alide D. Pols, Susan E. van Dijk, Judith E. Bosmans, Trynke Hoekstra, Harm W. J. van Marwijk, Maurits W. van Tulder, Marcel C. Adriaanse.

Project administration: Alide D. Pols, Susan E. van Dijk.

Resources: Alide D. Pols, Susan E. van Dijk, Judith E. Bosmans, Harm W. J. van Marwijk, Maurits W. van Tulder, Marcel C. Adriaanse.

Software: Alide D. Pols, Susan E. van Dijk.

Supervision: Harm W. J. van Marwijk, Maurits W. van Tulder, Marcel C. Adriaanse.

Validation: Alide D. Pols, Susan E. van Dijk, Judith E. Bosmans, Trynke Hoekstra, Harm W. J. van Marwijk, Maurits W. van Tulder, Marcel C. Adriaanse.

Visualization: Alide D. Pols, Susan E. van Dijk, Judith E. Bosmans, Trynke Hoekstra, Harm W. J. van Marwijk, Maurits W. van Tulder, Marcel C. Adriaanse.

Writing – original draft: Alide D. Pols, Susan E. van Dijk.

Writing – review & editing: Judith E. Bosmans, Trynke Hoekstra, Harm W. J. van Marwijk, Maurits W. van Tulder, Marcel C. Adriaanse.

References

1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006; 3: 2011–2030.

2. Ali S, Stone MA, Peters JL, Davies MJ, Khunti K. The prevalence of co-morbid depression in adults with Type 2 diabetes: a systematic review and meta-analysis. Diabet Med. 2006; 23: 1165–1173. https://doi.org/10.1111/j.1464-5491.2006.01943.x PMID: 17054590
3. Lin EHB, Katon W, Von Korff M, Rutter C, Simon GE, Oliver M, et al. Relationship of depression and diabetes self-care, medication adherence, and preventive care. Diabetes Care. 2004; 27: 2154–2160. PMID: 15333477

4. Gehi Anil, Haas Donald, Sharon Pipkin MAW. —Depression and medication adherence in outpatients with coronary heart disease. Arch Intern Med. 2005; 165: 2508–2513. https://doi.org/10.1001/archinte.165.21.2508 PMID: 16314548

5. Ali S. The association between depression and health-related quality of life in people with type 2 diabetes: a systematic literature review. Diabetes Metab Res Rev. 2010; 26: 75–89. https://doi.org/10.1002/dmrr.1065 PMID: 20186998

6. Katon W, Lin EHB, Von Korff M, Ciechanowski P, Ludman E, Young B, et al. Integrating depression and chronic disease care among patients with diabetes and/or coronary heart disease: The design of the TEAMcare study. Contemp Clin Trials. Elsevier Inc.; 2010; 31: 312–322. d

7. Sullivan M, O’Connor P, Feeney P, Hire D, Simmons DL, Raisch D, et al. Depression Predicts All-Cause Mortality. Diabetes Care. 2012; 35: 1708–1715. https://doi.org/10.2337/dc11-1791 PMID: 22619083

8. Rutledge T, Bittner V, Olson MB, Linke SE, Cornell CE, Eteiba W, et al. Depression and Cardiovascular Health Care Costs Among Women With Suspected Myocardial Ischemia (Women’s Ischemia Syndrome Evaluation) Study. J. Am. College of Cardiology Foundation; 2009; 53: 176–183.

9. Bosmans JE, Adriaanse MC. Outpatient costs in pharmaceutically treated diabetes patients with and without a diagnosis of depression in a Dutch primary care setting. BMC Health Serv Res. 2012; 12: 46. https://doi.org/10.1186/1472-6963-12-46 PMID: 23361361

10. Cuijpers P, van Straten A, Smit F, Mihalopoulos C, Beekman A. Preventing the onset of depressive disorders: a meta-analytic review of psychological interventions. Am J Psychiatry. 2008; 165: 1272–1280. https://doi.org/10.1176/appi.ajp.2008.07091422 PMID: 18765483

11. Davidson SK, Harris MG, Dowrick CF, Wachtler CA, Pirkis J, Gunn JM. Mental health interventions and future major depression among primary care patients with subthreshold depression. J Affect Disord. Elsevier; 2015; 177: 65–73.

12. Karsten J, Hartman CA, Smit JH, Zitman FG, Beekman ATF, Cuijpers P, et al. Psychiatric history and subthreshold symptoms as predictors of the occurrence of depressive or anxiety disorder within 2 years. Br J Psychiatry. 2011; 198: 206–212. https://doi.org/10.1192/bjp.bp.110.080572 PMID: 21357879

13. Bot M, Pouwer F, Ormel J, Slaets JPJ, de Jonge P. Predictors of incident major depression in diabetic outpatients with subthreshold depression. Diabet Med. 2010; 27: 1295–301. https://doi.org/10.1111/j.1464-5491.2010.03119.x PMID: 20950389

14. Thombs BD, Bass EB, Ford DE, Stewart KJ, Tsilidis KK, Patel U, et al. Prevalence of Depression in Survivors of Acute Myocardial Infarction. J Gen Intern Med. 2005; 21: 30–38.

15. Hance M, Carney R, Freedland K, Skala J. Depression in patients with coronary heart disease: a 12-month follow-up. Gen Hosp Psychiatry. 1996; 18: 61–65. PMID: 8666215

16. Chisholm D, Sanderson K, Ayuso-Mateos JL, Saxena S. Reducing the global burden of depression: Population-level analysis of intervention cost-effectiveness in 14 world regions. Br J Psychiatry. 2004; 184: 393–403. PMID: 15123502

17. van Zoonen K, Buntrock C, Ebert DD, Smit F, Reynolds CF, Beekman ATF, et al. Preventing the onset of major depressive disorder: A meta-analytic review of psychological interventions. Int J Epidemiol. 2014; 43: 318–329. https://doi.org/10.1093/ije/dyt175 PMID: 24760873

18. Muñoz RF, Cuijpers P, Smit F, Barrera AZ, Leykin Y. Prevention of Major Depression. Annu Rev Clin Psychol. 2010; 6: 181–212. https://doi.org/10.1146/annurev-clinpsy-033109-132040 PMID: 20192789

19. Bower P, Gilbody S. Stepped care in psychological therapies: Access, effectiveness and efficiency. Narrative literature review. Br J Psychiatry. 2005; 186: 11–17. https://doi.org/10.1192/bjp.186.1.11 PMID: 15630118

20. van’t Veer-Tazelaar PJ, van Marwijk HWJ, van Oppen P, van Hout HPJ, van der Horst HE, Cuijpers P, et al. Stepped-care prevention of anxiety and depression in late life: a randomized controlled trial. Arch Gen Psychiatry. 2009; 66: 297–304. https://doi.org/10.1001/archgenpsychiatry.2008.555 PMID: 19255379

21. Dozeman E, van Marwijk HWJ, van Schaik DJF, Smit F, Stek ML, van der Horst HE, et al. Contradictory effects for prevention of depression and anxiety in residents in homes for the elderly: a pragmatic randomized controlled trial. Int Psychogeriatrics. 2012; 24: 1242–1251.

22. van der Aa HPA, van Rens GHMB, Comijs HC, Margrain TH, Gallindo-Garre F, Twisk JWR, et al. Stepped care for depression and anxiety in visually impaired older adults: multicentre randomised controlled trial. BMJ. 2015; h6127. https://doi.org/10.1136/bmj.h6127 PMID: 26597263
23. van Beljouw IM, van Exel E, van de Ven PM, Joling KJ, Dhondt TD, Stek ML, et al. Does an Outreaching Stepped Care Program Reduce Depressive Symptoms in Community-Dwelling Older Adults? A Randomized Implementation Trial. Am J Geriatr Psychiatry. Elsevier Inc; 2014; 23: 807–817.

24. Van der Weele GM, De Waal MWM, Van den Hout WB, De Craen AJM, Spinhoven P, Stijnen T, et al. Effects of a stepped-care intervention programme among older subjects who screened positive for depressive symptoms in general practice: The PROMODE randomised controlled trial. Age Ageing. 2012; 41: 482–488. https://doi.org/10.1093/ageing/afs027 PMID: 22427507

25. Zhang DX, Lewis G, Araya R, Tang WK, Mak WWS, Cheung FMC, et al. Prevention of anxiety and depression in Chinese: a randomized clinical trial testing the effectiveness of a stepped care program in primary care. J Affect Disord. Netherlands; 2014; 169: 212–220.

26. Schwartz D, Lellouch J. Explanatory and Pragmatic Attitudes in Therapeutical Trials. J Clin Epidemiol. Elsevier Inc.; 2009; 62: 499–505.

27. van Dijk SEM, Pols AD, Adriaanse MC, Bosmans JE, Elders PJM, van Marwijk HWJ, et al. Cost-effectiveness of a stepped-care intervention to prevent major depression in patients with type 2 diabetes mellitus and/or coronary heart disease and subthreshold depression: design of a cluster-randomized controlled trial. BMC Psychiatry. 2013; 13: 128. https://doi.org/10.1186/1471-244X-13-128 PMID: 23651614

28. Kroenke K SR. The PHQ-9: a new depression diagnostic and severity measure. Psychiatr Ann. 2002; 32: 509–515.

29. Lamers F, Jonkers CCM, Bosma H, Penninx BWJH, Knottnerus JA, van Eijk JTM. Summed score of the Patient Health Questionnaire-9 was a reliable and valid method for depression screening in chronically ill elderly patients. J Clin Epidemiol. 2008; 61: 679–87. https://doi.org/10.1016/j.jclinepi.2007.07.018 PMID: 18538262

30. Sheehan DV, Lecrubier Y SK. The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998; 59: 22–33.

31. Van Vliet IM, De Beurs E. Het Mini Internationaal Neuropsychiatriч Interview (MINI): Een kort gestructureerd diagnostisch psychiatrisch interview voor DSM-IV-en ICD-10-stoornissen. Tijdschr Psychiatr. 2007; 49: 393–397.

32. Wittkampf K, van Ravesteijn H, Baas K, van de Hoogen H, Schene A, Bindels P, et al. The accuracy of Patient Health Questionnaire-9 in detecting depression and measuring depression severity in high-risk groups in primary care. Gen Hosp Psychiatry. Elsevier Inc.; 2009; 31: 451–459.

33. Voordouw I, van Osch B TM. De cursus leven met een chronische ziekte. Handreiking voor coördinatoren en begeleiders: Trimbos-instituut. 2005.

34. Bosmans JE, Schreuders B, van Marwijk HW, Smit JH, van Oppen P, van Tulder MW. Cost-effectiveness of problem-solving treatment in comparison with usual care for primary care patients with mental health problems: a randomized trial. BMC Fam Pract. 2012; 13: 98. https://doi.org/10.1186/1471-2296-13-98 PMID: 23052105

35. Mynors-Wallis L. Problem-solving treatment for anxiety and depression: A practical guide: Oxford university press. 2005.

36. Depressie N. M44 NHG-Standaard Depressie. Huisarts&Wetenschap. 2012; 55: 252–9.

37. Meader N, Mitchell AJ, Chew-graham C, Goldberg D, Rizzo M, Bird V, et al. Case identification of depression in patients with chronic physical health problems: a diagnostic accuracy meta-analysis of 113 studies. 2011; 808–820.

38. Spinholen P, Ormel J, Sloekers PP, Kempen GI, Speckens AE, Van Hemert AM. A validation study of the Hospital Anxiety and Depression Scale (HADS) in different groups of Dutch subjects. Psychol Med. 1997; 27: 363–70. PMID: 9089829

39. van Harten D. Over de geest en de fles. Ned Tijdschr voor Evid Based Pract. 2010; 8: 4–7.

40. Hildebrandt V, Chorus A, Stubbe J. Bewegen en Gezondheid 2008/2009. 2010.

41. Robins LN, Helzer JE, Croughan J, Ratcliff KS. National Institute of Mental Health Diagnostic Interview Schedule. Arch Gen Psychiatry. 1981; 38: 381–389. PMID: 6260053

42. Kriegsman DMW, Penninx BWJH, Van Eijk JTM, Boeke AJP, Deeg DJH. Self-reports and general practitioner information on the presence of chronic diseases in community dwelling elderly. A study on the accuracy of patients’ self-reports and on determinants of inaccuracy. J Clin Epidemiol. 1996; 49: 1407–1417. PMID: 8970491

43. Pearlin L. The structure of coping. J Heal Soc Behav. 1978; 19: 2–21.

44. Jansen A. Sense of competence questionnaire among informal caregivers of older adults with dementia symptoms: a psychometric evaluation. Clin Pract Epidemiol Ment Heal. 2007; 11: 1–10.
45. Penninx BW, van Tilburg T, Kriegsman DM, Deeg DJ, Boeke a J, van Eijk JT. Effects of social support and personal coping resources on mortality in older age: the Longitudinal Aging Study Amsterdam. Am J Epidemiol. 1997; 146: 510–519. PMID: 9290512

46. van’t Veer-Tazelaar PJ, van Marwijk HW. Prevention of late-life anxiety and depression has sustained effects over 24 months: a pragmatic randomized trial. Am J Geriatr Psychiatry. 2011; 19: 230–9. PMID: 21425519

47. Twisk JW. Applied longitudinal data analysis for epidemiology: a practical guide. Cambridge University Press; 2013.

48. Graham JW. Missing Data Analysis: Making It Work in the Real World. Annu Rev Psychol. 2009; 60: 549–576. https://doi.org/10.1146/annurev.psych.58.110405.085530 PMID: 18652544

49. McCulloch CE N J. Generalized Linear Mixed Models. Encyclopedia of Biostatistics. John Wiley & Sons; 2005.

50. Comijs HC, Nieuwesteeg J, Kok R, van Marwijk HW, van der Mast RC, Naarding P, et al. The two-year course of late-life depression; results from the Netherlands study of depression in older persons. BMC Psychiatry. BioMed Central; 2015; 15: 1.

51. de Boer MR, Waterland WE, Kuijper L, Steenhuis I, Twisk J. Testing for baseline differences in randomized controlled trials: an unhealthy research behavior that is hard to eradicate. Int J Behav Nutr Phys Act. 2015; 12: 4. https://doi.org/10.1086/s12966-015-0162-z PMID: 25616598

52. van der Zwaan GL, van Dijk SEM, Adriaanse MC, van Marwijk HWJ, van Tulder MW, Pols AD, et al. Diagnostic accuracy of the Patient Health Questionnaire-9 for assessment of depression in type II diabetes mellitus and/or coronary heart disease in primary care. J Affect Disord. 2015; 190: 68–74. https://doi.org/10.1016/j.jad.2015.09.045 PMID: 26480213

53. Reddy P, Philpot B, Ford D, Dunbar JA. Identification of depression in diabetes: the efficacy of PHQ-9 and HADS-D. Br J Gen Pract. England; 2010; 60: e239–45.

54. Cuijpers P, Koole SL, van Dijke A, Roca M, Li J, Reynolds CF. Psychotherapy for subclinical depression: meta-analysis. Br J Psychiatry. 2014; 205: 268–74. https://doi.org/10.1192/bjp.bp.113.138784 PMID: 25274315

55. Gilbody S, Sheldon T, House A. Screening and case-finding instruments for depression: A meta-analysis. Cmaj. 2008; 178: 997–1003. https://doi.org/10.1503/cmaj.070281 PMID: 18390942