Impacto de la COVID-19 en el tratamiento del infarto agudo de miocardio con elevación del segmento ST. La experiencia española

Oriol Rodríguez-Leor1,b,c*, Belén Cid-Álvarez4, Armando Pérez de Pradoe, Xavier Rossellof,g,b, Soledad Ojeda1b, Ana Serrador11,b, Ramón López-Palop1, Javier Martín-Moreira1k,b, José Ramón Rumoroso1, Ángel Cequier1m, Borja Ibáñez1b,fn, Ignacio Cruz-González1k,b, Rafael Romaguera1m, Raúl Moreno1o,b y en representación de los investigadores del Grupo de Trabajo sobre Código Infarto de la Asociación de Cardiología Intervencionista de la Sociedad Española de Cardiología1c

* Instituoi del Cor, Hospital Universitarior Germans Trias i Pujol, Badalona, Barcelona, España
b Centro di de Investigación Biomédica en Red Enfermedades Cardiovascula2res (CIBERCV), Instituto de Salud Carlos III, Madrid, España
b Centro de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, España
b Servicio de Cardiología, Hospital Clínico de Santiago de Compostela, Santiago de Compostela, A Coruña, España
b Servicio de Cardiología, Hospital de León, León, España
c Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España
d Servicio de Cardiología, Instituto d’Investigació Sanitària de les Illes Balears (IdisBa), Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, España
e Servicio de Cardiología, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, España
f Servicio de Cardiología, Hospital Clínico de Valladolid, Valladolid, España
g Servicio de Cardiología, Hospital Virgen de la Arrixaca, El Palmar, Murcia, España
h Servicio de Cardiología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, España
i Servicio de Cardiología, Hospital de Galdakao-Uxamaio, Galdakao, Vizcaya, España
j Servicio de Cardiología, Hospital de Bellvitge-Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, España
k Servicio de Cardiología, Hospital Universitario JII-Fundación Jiménez Díaz, Madrid, España
l Servicio de Cardiología, Hospital Universitario La Paz, Madrid, España

RESUMEN

Introducción y objetivos: El impacto del brote de COVID-19 en el tratamiento del infarto agudo de miocardio con elevación del segmento ST (IAMCEST) no está claro. El objetivo de este estudio es evaluar los cambios en el tratamiento del IAMCEST durante el brote de COVID-19.

Métodos: Se utilizó un registro multicéntrico, nacional, retrospectivo y observacional de pacientes consecutivos atendidos en 75 centros, se compararon las características de los pacientes y de los procedimientos y los resultados hospitalarios en 2 cohortes según se los hubiera tratado antes o durante la COVID-19.

Resultados: Los casos con sospecha de IAMCEST disminuyeron el 27,6% y los pacientes con IAMCEST confirmado se redujeron de 1.305 a 1.009 (22,7%). No hubo diferencias en la estrategia de reperfusión (más del 94% tratados con angioplastia primaria). El tiempo de isquemia fue más largo durante la COVID-19 (233 [150-375] frente a 200 [140-332] min; p < 0,001), sin diferencias en el tiempo primer contacto médico-reperfusión. La mortalidad hospitalaria fue mayor durante la COVID-19 (el 7,5 frente al 5,1%; OR bruta = 1,50; IC95%, 1,07-2,11; p < 0,001); esta asociación se mantuvo tras ajustar por factores de confusión (OR ajustada = 1,88; IC95%, 1,12-3,14; p = 0,017). La incidencia de infección confirmada por SARS-CoV-2 fue del 6,3%.

Conclusión: El brote de COVID-19 ha implicado una disminución en el número de pacientes con IAMCEST, un aumento del tiempo entre el inicio de los síntomas y la reperfusión y un aumento en la mortalidad hospitalaria. No se han detectado cambios en la estrategia de reperfusión. La combinación de infección por SARS-CoV-2 e IAMCEST fue relativamente infrecuente.

© 2020 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

VÉASE CONTENIDO RELACIONADO:
https://doi.org/10.1016/j.recesp.2020.09.022
* Autor para correspondencia: Unidad de Cardiología Intervencionista, Hospital Germans Trias i Pujol, Carretera del Canyet s/n, 08916 Badalona, Barcelona, España.
Correo electrónico: oriolrodriguez@gmail.com (O. Rodríguez-Leor).
En el anexo se listan los investigadores, las instituciones y las organizaciones que forman el Grupo de Trabajo sobre Código Infarto de la Asociación de Cardiología Intervencionista de la Sociedad Española de Cardiología.

https://doi.org/10.1016/j.recesp.2020.07.033
0300-8932/ © 2020 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
Impact of COVID-19 on ST-segment elevation myocardial infarction care. The Spanish experience

ABSTRACT

Introduction and objectives: The COVID-19 outbreak has had an unclear impact on the treatment and outcomes of patients with ST-segment elevation myocardial infarction (STEMI). The aim of this study was to assess changes in STEMI management during the COVID-19 outbreak.

Methods: Using a multicenter, nationwide, retrospective, observational registry of consecutive patients who were managed in 75 specific STEMI care centers in Spain, we compared patient and procedural characteristics and in-hospital outcomes in 2 different cohorts with 30-day follow-up according to whether the patients had been treated before or after COVID-19.

Results: Suspected STEMI patients treated in STEMI networks decreased by 27.6% and patients with confirmed STEMI fell from 1305 to 1009 (22.7%). There were no differences in reperfusion strategy (> 943 treated with primary percutaneous coronary intervention in both cohorts). Patients treated with primary percutaneous coronary intervention during the COVID-19 outbreak had a longer ischemic time [233 [150-375] vs 200 [140-332] minutes, P < .001] but showed no differences in the time from first medical contact to reperfusion. In-hospital mortality was higher during COVID-19 (7.5% vs 5.1%; unadjusted OR, 1.50; 95%CI, 1.07-2.11; P < .001); this association remained after adjustment for confounders (risk-adjusted OR, 1.88; 95%CI, 1.12-3.14; P = .017). In the 2020 cohort, there was a 6.3% incidence of confirmed SARS-CoV-2 infection during hospitalization.

Conclusions: The number of STEMI patients treated during the current COVID-19 outbreak fell vs the previous year and there was an increase in the median time from symptom onset to reperfusion and a significant 2-fold increase in the rate of in-hospital mortality. No changes in reperfusion strategy were detected, with primary percutaneous coronary intervention performed for the vast majority of patients. The co-existence of STEMI and SARS-CoV-2 infection was relatively infrequent.

© 2020 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

Abreviaturas

COVID-19: enfermedad por coronavirus de 2019
IAMCEST: infarto agudo de miocardio con elevación del segmento ST
ICP: intervención coronaria percutánea
ICPp: intervención coronaria percutánea primaria
PCR: reacción en cadena de la polimerasa

INTRODUCCIÓN

El 31 de diciembre de 2019 se notificó una agrupación de casos de neumonía de etiología desconocida en Wuhan, provincia de Hubei (China). El 9 de enero de 2020 se identificó un nuevo coronavirus, el SARS-CoV-2, como agente causal de este brote epidémico, y la enfermedad asociada a este virus se denominó enfermedad por coronavirus 2019 (COVID-19). La infección se propagó rápidamente y el 11 de marzo la Organización Mundial de la Salud declaró que la COVID-19 constituía una pandemia. El 1 de mayo de 2020 se habían diagnosticado ya 1.6 millones de casos en 179 países de los 5 continentes, con casi 100.000 muertes confirmadas. El 14 de marzo, el Gobierno de España activó el estado de alarma, que limitaba la movilidad de todos los ciudadanos, excepto los que trabajaban en hospitales o centros de salud y en instituciones financieras o en la venta de alimentos, productos farmacéuticos o en la cobertura de necesidades básicas.

Las repercusiones de esta nueva enfermedad en el comportamiento de la sociedad y en el funcionamiento del sistema de asistencia sanitaria no tienen precedentes en la historia reciente. Durante el actual brote de la COVID-19, algunos estudios preliminares han resaltado una disminución del número de pacientes con infarto agudo de miocardio con elevación del segmento ST (IAMCEST) que han sido atendidos en los hospitales de Europa y Norteamérica, pero apenas se dispone de información sobre cómo el brote ha afectado a las redes de IAMCEST por lo que respecta a demora hasta la reperfusión, las estrategias de revascularización y los resultados clínicos.

El objetivo de este estudio es comparar las características clínicas, el tratamiento y los resultados hospitalarios en una cohorte de ámbito nacional de pacientes con IAMCEST que fueron atendidos en los primeros 30 días siguientes al confinamiento aplicado en España durante el actual brote de COVID-19 con las de los pacientes que fueron atendidos en antes de la COVID-19.

MÉTODOS

Registro español de IAMCEST

En España existen 17 redes regionales de servicio público de asistencia del IAMCEST, que incluyen 83 hospitales con capacidad de intervención coronaria percutánea primaria (ICPp) en programas que están en funcionamiento ininterrumpido todos los días del año. En 2018, se realizaron 21.261 intervenciones por IAMCEST (el 91.6% ICPp, el 3.2% ICP de rescate y el 5.1% estrategias de ICP ordinaria temprana tras la fibrinólisis), lo cual representa 417 ICPp/millón de habitantes.

En 2019, la Asociación de Cardiología Intervencionista de la Sociedad Española de Cardiología patrocinó un registro prospectivo de pacientes consecutivos con IAMCEST que fueron tratados en estas redes de asistencia al IAMCEST. El objetivo de este Registro de Código Infarto de España es detectar las diferencias interregionales en el tratamiento del IAMCEST. Se recogió información sobre el número de casos, las características clínicas, el tratamiento clínico y los resultados obtenidos en los pacientes con IAMCEST. Entre abril y junio de 2019, se incluyó en este registro a 5.240 pacientes consecutivos.

Durante el brote actual de COVID-19, la Asociación de Cardiología Intervencionista puso en marcha un registro paralelo, con una recogida retrospectiva de información de todos los pacientes consecutivos con IAMCEST de los mismos centros que participaban en el registro en 2019. Se registró retrospectivamente información sobre el número de casos, las características clínicas,
el tratamiento y los resultados obtenidos a partir del 16 de marzo, es decir, inmediatamente después de la activación en España del estado de alarma y el confinamiento en todo el país.

El protocolo de investigación fue aprobado por el Grupo de Trabajo sobre Código IAMCEST de la Asociación de Cardiología Intervencionista y por un comité de ética central de las Áreas Sanitarias de León y El Bierzo.

Diseño del estudio

Se trata de un estudio de cohortes, observacional, multicéntrico y retrospectivo, en el que se han evaluado las intervenciones registradas en la base de datos del Registro Código Infarto de España para determinar si el brote actual de COVID-19 ha tenido alguna repercusión de interés en el tratamiento del IAMCEST en cuanto al número de casos, características clínicas, demora hasta la reperfusión, tratamiento hospitalario y resultados clínicos hospitalarios. Se establecieron 2 cohortes de pacientes en función de que se hubieran tratado entre el 1 y el 30 de abril de 2019 (cohorte previa a la COVID-19) o entre el 16 de marzo y el 14 de abril de 2020 (cohorte durante la COVID-19). El análisis incluyó datos de 75 hospitales en los que se incluyó a pacientes en los 2 periodos. Los intervalos de tiempo considerados se definieron según la guía europea pertinente9. A los pacientes con un diagnóstico final distinto del de IAMCEST no se los incluyó en el análisis final. La recogida de los datos se realizó examinando las historias clínicas. El objetivo primario fue la mortalidad hospitalaria.

Análisis estadístico

Las variables continuas se resumen mediante la media ± desviación estándar, mientras que las variables cualitativas se presentan en forma de frecuencia y porcentaje. Las comparaciones de las 2 cohortes en la situación basal se realizaron con la prueba de la t de Student o la prueba de la χ², según procediera. Las variables con una distribución muy asimétrica (es decir, los tiempos hasta el primer contacto médico, inicio de los síntomas, llegada al laboratorio de hemodinámica y reperfusión) se presentan en forma de mediana [intervalo intercuartílico] y se compararon con la prueba de la U de Mann-Whitney no paramétrica. Se elaboraron modelos de regresión logística univariantes para evaluar la asociación entre el grupo de cohorte y la mortalidad hospitalaria. Se elaboraron modelos de regresión logística multivariantes para eliminar los posibles factores de confusión y evaluar la uniformidad de los resultados. Las covariables incluidas en los modelos multivariantes (tiempo del inicio de los síntomas a la reperfusión, edad, sexo, clase de Killip y resultado positivo de la prueba de reacción en cadena de la polimerasa [PCR] para la COVID-19) se eligieron en función del conocimiento médico disponible y de los resultados del análisis univarianente. Se utilizaron los valores de odds ratio (OR) ajustada y sus correspondientes intervalos de confianza del 95% (IC95%) para estimar la asociación entre la cohorte y el resultado clínico.

La robustez de los resultados se evaluó mediante 2 análisis de sensibilidad: a) excluyendo a los individuos con COVID-19 de los análisis principales con objeto de tener en cuenta su posible contribución a un aumento en los resultados, y b) utilizando un modelo de regresión mixto, que incluía el hospital como variable aleatoria, lo cual permitía cierta heterogeneidad para tener en cuenta las diferencias esperadas entre los hospitales (variación interhospitalaria) ponderando según ello a cada hospital para obtener una estimación global. Los valores de p bilaterales < 0,05 se consideraron estadísticamente significativos. Todos los análisis se llevaron a cabo con el programa informático STATA versión 15.1 (Stata Corp, Estados Unidos).

RESULTADOS

Pacientes

Las redes de IAMCEST de 75 hospitales atendieron a un total de 1.113 pacientes durante el brote de COVID-19 frente los 1.538 tratados en el mismo periodo del año anterior, lo cual representa una reducción del 27,6%. En la figura 1 se muestra un diagrama de flujo de los pacientes tratados en las redes de IAMCEST en los 2 periodos de tiempo. Los pacientes con un diagnóstico confirmado de IAMCEST fueron 1.009 y 1.305 respectivamente (una disminución del 22,7%). La tendencia fue uniforme en los distintos centros (65 de los 75 centros [87%] notificaron menos eventos de IAMCEST). También hubo diferencias significativas en el número de pacientes que necesitaron asistencia de las redes de IAMCEST pero cuyo diagnóstico final fue un infarto agudo de miocardio sin elevación del segmento ST: 232 (15,1%) en 2019 frente a 104 (9,3%) en 2020 (p < 0,001).

En la figura 2 se indica el número absoluto de ICPp practicadas por día en los 2 periodos de tiempo, así como el número oficial de casos confirmados según los datos del Gobierno de España7. Durante el brote de COVID-19, solo 33 pacientes (3,3%) tenían diagnóstico confirmado de COVID-19 al ingreso; durante el ingreso se diagnosticó COVID-19 a otros 30 pacientes más (3,0%), con lo que hubo un total de 63 (6,3%) con diagnóstico de COVID-19. En la figura 3 se muestra la vía por la que se estableció el diagnóstico de COVID-19 en la cohorte de 2020.

Las características clínicas basales de los pacientes se muestran en la tabla 1. Con la excepción de la enfermedad coronaria previa (más frecuente en la cohorte durante la COVID-19), las características clínicas no mostraron diferencias entre los grupos. En lo que respecta a la forma de presentación, si se evidenciaron diferencias significativas entre los grupos: durante el COVID-19, los pacientes llegaron con más frecuencia al hospital a través del servicio de emergencias médicas extrahospitalario y, una vez en...
Características el Figura de TIMI indican trombectomía glucoproteína. Tiempos directo PCR. síntomas COVID-19: 94%. Durante Las tiempo de de los pacientes, debe señalarse que en muchos centros no se disponía de pruebas de PCR al inicio de la pandemia, cuando se llevó a cabo este estudio.

e el hospital con capacidad de ICPp, fue más frecuente el ingreso directo en el laboratorio de hemodinámica.

Características angiográficas y de la intervención

Las características angiográficas y el tratamiento aplicado se indican en la tabla 2. La vía de acceso radial fue más frecuente en la cohorte de la COVID-19 y, aunque no hubo diferencias en los flujos TIMI basal y final, en esta cohorte se observó un aumento en trombectomía mecánica y administración de un inhibidor de la glucoproteína IIb/IIIa. No hubo diferencias en la estrategia de reperfusión tras la coronariografía, de tal manera que se trató hasta el 94% de los pacientes mediante ICPp en ambas cohortes y a menos del 2% de los pacientes no se les practicó ICP.

Tiempos entre el inicio de los síntomas y la reperfusión

Durante el brote de COVID-19, hubo un aumento del intervalo de tiempo entre el inicio de los síntomas y el primer contacto médico [105 [45-222] frente a 71 [30-180] min; p < 0,001] y del intervalo entre el inicio de los síntomas y la reperfusión [233 [150-375] frente a 200 [140-332] min; p < 0,001]. En cambio, no se observaron diferencias en el tiempo entre el primer contacto médico y la reperfusión [110 [80-155] frente a 110 [81-151] min; p = 0,54]. En la tabla 3 y la figura 4 se presentan 5 intervalos diferentes entre el inicio de los síntomas y la reperfusión.

Resultados hospitalarios

Las diferencias observadas entre las 2 cohortes en cuanto a los resultados hospitalarios se muestran en la tabla 4. La mortalidad por cualquier causa durante la COVID-19 fue del 7,5%, en comparación con el 5,1% en el grupo del periodo previo (OR sin ajustar = 1,50; IC95%, 1,07-2,11; p < 0,001). Esta asociación se mantuvo de manera uniforme tras aplicar un ajuste por la edad, el sexo, la clase de Killip y la demora entre el inicio de los síntomas y la reperfusión (OR = 1,88; IC95%, 1,12-3,14; p = 0,017), pero se atenuó tras aplicar un ajuste adicional por el diagnóstico confirmado de COVID-19 (OR = 1,56; IC95%, 0,91-2,67; p = 0,108).

![Figura 2](image-url) Número absoluto de ICP primarias/día durante los 2 periodos de tiempo y número oficial de casos de COVID-19 confirmados. El número de casos de COVID-19 confirmados procede de los datos oficiales del Gobierno de España. ICP: intervención coronaria percutánea.

Estado diagnóstico de COVID-19 al ingreso	Estado diagnóstico de COVID-19 durante la hospitalización
Desconocido	No disponible
	111 (11%)
	1 (0,9%)
	PCR no realizada
	79 (71,2%)
	PCR realizada
	31 (27,9%)
	Negativa
	30 (27%)
	Positiva
	1 (0,9%)
Sin síntomas compatibles con la COVID-19	No disponible
	9 (1,1%)
	PCR no realizada
	575 (71,6%)
	PCR realizada
	219 (27,3%)
	Negativa
	212 (26,4%)
	Positiva
	7 (0,9%)
Con síntomas compatibles con COVID-19	No disponible
Sin PCR previa	63 (6,2%)
	3 (3,2%)
	PCR no realizada
	4 (6,3%)
	PCR realizada
	57 (90,5%)
	Negativa
	35 (55,6%)
	Positiva
	22 (34,9%)
Prueba de PCR previa positiva	No disponible
	0
	PCR no realizada
	10 (30,3%)
	PCR realizada
	23 (69,7%)
	Negativa
	3 (9,1%)
	Positiva
	20 (60,6%)

![Figura 3](image-url) Ruta diagnóstica de COVID-19. Se clasificó a los pacientes a su ingreso en 4 grupos según su estado de posible COVID-19: desconocido; ausencia de síntomas compatibles con la COVID-19 y sin prueba previa de reacción en cadena de la polimerasa (PCR); síntomas compatibles con la COVID-19 pero sin prueba de PCR previa, y resultado positivo de PCR previa. Aunque es necesario realizar una PCR al ingreso a todos los pacientes, debe señalarse que en muchos centros no se disponía de pruebas de PCR al inicio de la pandemia, cuando se llevó a cabo este estudio.
Análisis de sensibilidad

La robustez de nuestros resultados se evaluó mediante 2 análisis de sensibilidad. Al excluir de los análisis principales a los pacientes con COVID-19, se eliminó su posible contribución al aumento de los resultados clínicos y se confirmó que el exceso de mortalidad se explicaba en parte por la propia COVID-19: pacientes de 2020, OR = 1,28 (IC95%, 0,77-1,83; p = 0,173), y continuó siendo no significativo tras un ajuste por los factores de confusión: OR = 1,56 (IC95%, 0,90-2,68; p = 0,11). Al emplear modelos de efectos aleatorios, se permitió cierta heterogeneidad aleatoria entre los distintos hospitales y se obtuvo una significación estadística similar (p = 0,044) para la asociación entre la mortalidad hospitalaria y los pacientes incluidos durante el brote de COVID-19 en comparación con los reclutados 1 año antes: los pacientes con un IAMCEST durante el brote de COVID-19 presentaban un mayor riesgo de mortalidad hospitalaria tras un ajuste por los factores de confusión (p = 0,033), pero esta asociación significativa desapareció al introducir en el modelo el diagnóstico de COVID-19 (p = 0,203), lo cual indica que la COVID-19 es el factor que motiva el aumento de mortalidad hospitalaria en la comparación de las 2 cohortes.

Menos pacientes con IAMCEST y mayores demoras hasta la reperfusión

Un estudio previo de nuestro grupo había revelado una disminución del 40% de los pacientes tratados por IAMCEST durante la primera semana del actual brote1. De modo análogo, un estudio de Estados Unidos ha indicado una reducción estimada del 38% en las intervenciones del laboratorio de hemodinámica por IAMCEST en 9 centros de gran volumen durante la fase inicial de la pandemia de COVID-1915. Nuestros resultados confirman una disminución uniforme del número de pacientes tratados por IAMCEST (en hasta un 87% de los centros), si bien de una magnitud inferior (22,7%) a la que se creía inicialmente3. Además, hubo una disminución significativa del número de pacientes tratados en las redes de IAMCEST cuyo diagnóstico final fue distinto del IAMCEST, lo cual respalda la creencia de que los pacientes evitaron acudir a los hospitales. Por otra parte, los tiempos hasta la reperfusión fueron más largos, debido en gran parte a que los pacientes contactaron más tarde con el sistema de salud, ya que no se observaron diferencias en cuanto al tiempo entre el primer contacto médico y la reperfusión. El tiempo de isquemia es un factor determinante en el tamaño del infarto de los pacientes con IAMCEST, y la identificación rápida y la aplicación temprana del tratamiento agudo del IAMCEST son cruciales para reducir la morbilidad y la mortalidad16-18. Tiene interés señalar que la cohorte de COVID-19 mostró una prevalencia superior de antecedentes de enfermedad coronaria y tenía con más frecuencia una enfermedad multivaso, lo cual indica que los pacientes con antecedentes de cardiopatía isquémica pudieron haber sido menos reacios a acudir al hospital. A pesar de las dificultades logísticas causadas por el brote de COVID-19, no se detectó una mayor demora entre el primer contacto médico y la reperfusión, lo cual indica una buena adaptación de las redes de IAMCEST a la presente crisis. En cambio, hubo un aumento del tiempo entre la llegada al laboratorio

DISCUSIÓN

En nuestro estudio se evaluó la influencia del brote de COVID-19 en el tratamiento de los pacientes con IAMCEST atendidos en redes de asistencia específicas de toda España, uno de los países más afectados por la actual pandemia. Se compararon los datos de un registro nacional estableciendo 2 cohortes diferentes de pacientes de 30 días: antes del brote de COVID-19 (del 1 al 30 de abril de 2019) y durante el brote (del 16 de marzo al 14 de abril de 2020).
de hemodinámica y la reperfusión, probablemente por el tiempo empleado en la aplicación de las medidas de protección necesarias para las intervenciones13. Las posibles explicaciones de estos resultados podrían estar en una combinación de la evitación de la asistencia médica a causa del distanciamiento social y la preocupación por contraer la COVID-19 en los hospitales. El brote epidémico que se está produciendo ha sido objeto de una cobertura masiva en los medios de comunicación, en los que se ha hecho especial énfasis en las formas más frecuentes de infección y los lugares en que el SARS-CoV-2 se propaga con mayor facilidad. El temor es un bien conocido factor determinante de la evitación de la asistencia médica14 y las pandemias se han relacionado con conductas de evitación de los hospitales15.

Estrategias de reperfusión y resultados angiográficos en el IAMCEST durante el brote de COVID-19

Durante el brote de COVID-19, diversas sociedades científicas han elaborado recomendaciones sobre la estrategia de reperfusión que pueden ser contradictorias en función de las condiciones existentes en cada país. En China, el Peking Union Medical College
Hospital recomienda la trombolisis como tratamiento de primera línea y recomienda la intervención coronaria solo una vez descartada la COVID-19 incluso para pacientes con contraindicación para la trombolisis. El American College of Cardiology Interventional Council y la Society for Cardiovascular Angiography & Interventions afirman que cabe considerar la fibrinolisis para los pacientes con IAMCEST y COVID-19 activa relativamente estables, con objeto de evitar la exposición de los profesionales que los atienden. En España, no ha habido cambios en la estrategia de reperfusión, de tal manera que más del 98% de los IAMCEST han sido tratados con ICPp y no se ha producido un aumento de las trombolisis, siguiendo las recomendaciones de la Asociación de Cardiología Intervencionista de España sobre el tratamiento del IAMCEST durante el brote de COVID-19.

Dos series pequeñas de pacientes con COVID-19 y elevación del segmento ST recientemente publicadas han mostrado una gran prevalencia de enfermedad no obstructiva. En términos generales, no se observa un aumento del número de pacientes sin lesiones obstructivas. Esto podría deberse a que: a) se analizó solo a los pacientes con diagnóstico de IAMCEST confirmado, por lo que se excluyeron otras causas de infarto de miocardio con arterias coronarias sin obstrucción, como la miocardiitis, el síndrome de tako-tsubo, el infarto agudo de miocardio sin elevación del segmento ST y la embolia pulmonar, que representaron alrededor

Tabla 3
Intervalos de tiempo entre el inicio de los síntomas y la reperfusión

	Mediana [intervalo intercuartílico]	p
Del inicio de los síntomas al primer contacto médico (min)		
Antes de la COVID-19 (n=1.160)	71 [30-180]	<0.001
Durante la COVID-19 (n=901)	105 [45-222]	<0.001
Del inicio de los síntomas a la reperfusión (min)		
Antes de la COVID-19 (n=895)	200 [140-332]	<0.001
Durante la COVID-19 (n=895)	233 [150-375]	<0.001
Del primer contacto médico a la reperfusión (min)		
Antes de la COVID-19 (n=892)	110 [81-151]	0.54
Durante la COVID-19 (n=892)	110 [80-155]	0.54
Del primer contacto médico a la llegada al laboratorio de hemodinámica (min)		
Antes de la COVID-19 (n=1.174)	86 [59-125]	0.089
Durante la COVID-19 (n=904)	83 [55-125]	0.089
De la llegada al laboratorio de hemodinámica a la reperfusión (min)		
Antes de la COVID-19 (n=898)	20 [15-30]	<0.001
Durante la COVID-19 (n=906)	24 [17-31]	<0.001

Figura 4. Intervalos de tiempo entre el inicio de los síntomas y la reperfusión.

Tabla 4
Desenlaces hospitalarios de los pacientes con diagnóstico de IAMCEST confirmado

	Antes de la COVID-19 n=1.305	Durante la COVID-19 n=1.009	p
Mortalidad	67 (5,1)	75 (7,5)	0.019
Trombosis aguda del stent	11 (0,8)	11 (1,1)	0.54
Hemorragia mayor	8 (0,6)	11 (1,1)	0,21
Shock cardiogénico después de la ICP	75 (5,7)	48 (4,8)	0,29
Edema pulmonar después de la ICP	30 (2,3)	17 (1,7)	0,30
Ventilación mecánica después de la ICP	31 (2,4)	19 (1,9)	0,42
Complicación mecánica	5 (0,4)	9 (0,9)	0,12

IAMCEST: infarto agudo de miocardio con elevación del segmento ST; ICP: intervención coronaria percutánea. Los valores expresan n (%).
de un 10% de los pacientes de nuestra serie, o b) los datos publicados anteriormente probablemente fueran de pacientes no consecutivos y muy seleccionados.

Repercusiones del brote de COVID-19 en la mortalidad relacionada con IAMCEST

Una observación de especial importancia en nuestro estudio es el preocupante aumento de la mortalidad hospitalaria durante el brote de COVID-19. Este aumento se mantuvo inalterado tras aplicar un ajuste los factores edad, sexo, clase de Killip y demora entre el inicio de los síntomas y la reperfusión.

Los datos epidemiológicos recientes indican un aumento significativo de la mortalidad durante este periodo que no puede explicarse por completo por los pacientes con COVID-19 sola-
mente. En la actual situación, los pacientes evitan acudir a los servicios de urgencias o van más tarde, y ello podría explicar el aumento de las paradas cardíacas extrahospitalarias que se ha descrito recientemente en Italia. Aunque resulta difícil determi-
nar la prevalencia real de la parada cardíaca extrahospitalaria en el contexto de un IAMCEST, no se observa un aumento de los casos de fibrilación ventricular o asistolia o que requirieran ventilación mecánica antes de la llegada al laboratorio de hemodinámica de los pacientes con un IAMCEST confirmado. Se calcula que hasta un 75% de las muertes se producen antes del contacto con el sistema de salud y la principal forma de prevenir la parada cardíaca extrahospitalaria es que los pacientes acudan al hospital lo antes posible tras la aparición de los síntomas de IAMCEST. Así pues, es posible que un aumento de las paradas cardíacas extrahospitala-
rias no se haya reflejado en nuestro estudio.

La falta de acceso al tratamiento de reperfusión también implicaría un aumento de las complicaciones subagudas del IAMCEST, como la insuficiencia cardíaca y/o el shock cardiogénico, la formación de un trombo intraventricular y embolia periférica, y las complicaciones mecánicas. Estos pacientes no están incluidos en el presente registro, puesto que no eran candidatos a una ICP, pero contribuyen indudablemente al exceso de mortalidad relacionada con IAMCEST.

Por último, a largo plazo, una revascularización deficiente y un mayor tamaño del infarto aumentarán las complicaciones aso-
ciadas con un peor remodelado ventricular, como la insuficiencia cardíaca crónica y las arritmias ventriculares.

Limitaciones

Este estudio tiene las limitaciones inherentes al análisis de datos observacionales de carácter multicéntrico. Cada clinico-
investigador evaluó los datos basales y de seguimiento de cada centro, sin una confirmación centralizada, y ello podría producir inexactitudes y errores de clasificación. No obstante, los datos de cardiología intervencionista están bastante estandarizados en todo el mundo y se diseñó un formulario de recogida de datos electrónico que pudieran rellenar intuitivamente todos los clínicos. Además, se aplicó un modelo de regresión mixto, incluyendo el hospital como variable aleatoria, para tener en cuenta las diferencias del hospital e interhospitalarias a lo largo del tiempo. En cualquier caso, la posible variabilidad entre los clínicos aproxima nuestros resultados a los de la práctica clínica real y mejora su generalizabilidad. Se abordó cualquier posible sesgo de selección mediante un ajuste de las regresiones logísticas por los posibles factores de confusión con consecuencias pronósticas, pero podría persistir algún factor de confusión residual (medido o no medido) en el modelo multivariante.

CONCLUSIONES

Este estudio observacional de ámbito nacional muestra una disminución del número de pacientes con IAMCEST tratados durante el actual brote de COVID-19, con una prolongación del tiempo entre el inicio de los síntomas y la reperfusión y un incremento de la mortalidad hospitalaria al doble. No se detectaron cambios en la estrategia de reperfusión. La concomitancia de infección por el SARS-CoV-2 con IAMCEST fue poco frecuente, pero tuvo repercusión en la mortalidad hospitalaria.

¿QUÉ SE SABE DEL TEMA?

– Algunos estudios preliminares han resaltado una disminución del número de pacientes con IAMCEST atendidos en los hospitales durante el actual brote de COVID-19.
– Hay poca información sobre la influencia del brote de COVID-19 en la asistencia del IAMCEST y los resultados en este grupo de pacientes.

¿QUÉ APORTA DE NUEVO?

– Se observa una disminución significativa del número de pacientes con IAMCEST tratados en las redes de asistencia específica en España durante la COVID-19.
– En comparación con una cohorte del año anterior, los pacientes tratados durante el brote de COVID-19 tuvieron más tiempo de isquemia y un aumento de la mortalidad, aunque no hubo diferencias en la estrategia de reperfusión utilizada.

CONFLICTO DE INTERESES

A. Pérez de Prado ha recibido pagos personales de iVascular, Boston Scientific, Terumo, B. Braun y Abbott Laboratories. Á. Cequier ha recibido pagos personales de Ferrer International, Terumo, AstraZeneca y Biotronik. Todos los demás autores han indicado no tener relaciones relevantes que declarar en relación con el contenido de este artículo.

ANEXO. INVESTIGADORES DEL GRUPO DE TRABAJO SOBRE CÓDIGO INFARTO DE LA ASOCIACIÓN DE CARDIOLOGÍA INTERVENCIONISTA

Personal clave y centros de estudio participantes

Manuel Villa, Hospital Universitario Virgen del Rocío; Rafael Ruiz-Salmerón, Hospital Universitario Virgen Macarena; Francisco Molano, Hospital Universitario Virgen de Valme; Carlos Sánchez, Hospital Universitario General de Málaga; Erika Muñoz-García, Hospital Universitario Virgen de la Victoria; Luis Íñigo, Hospital Costa del Sol; Juan Herrador, Hospital Universi-
tario de Jaén; Antonio Gómez-Menchero, Hospital Universitario Juan Ramón Jiménez; Eduardo Molina, Hospital Universitario Virgen de las Nieves; Juan Caballero, Hospital Universitario San Cecilio; Soledad Ojeda, Hospital Universitario Reina Sofía; Mérida Cárdenas, Hospital Punta de Europa; Livia Gheorghe, Hospital Universitario Puerta del Mar; Jesús Oneto, Hospital Universitario de Jerez de la Frontera; Francisco Morales, Hospital Universitario de Puerto Real; Félix Valencia, Hospital Universi-

BIBLIOGRAFÍA

1. World Health Organization. Coronavirus disease 2019 situation report. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports), Consultado 22 Jul 2020.

2. Gobierno de España. Boletín Oficial del Estado. Real Decreto 463/2020, de 14 de marzo, por el que se declara el estado de alarma para la gestión de la crisis sanitaria ocasionada por el COVID-19. AOE-LEMON, 17 de abril de 2020, páginas 25390 a 25400 (11 págs.), 1 Disposiciones generales. Disponible en: http://www.boe.es/eli/es/2020/03/14/6, Consultado 22 Jul 2020.

3. Rodríguez-Leor O, Cid-Alvarez B, Ojeda S, et al. Impact of COVID-19 pandemic on interventional cardiology activity in Spain. Rev Interv Cardiol. 2020;2:82–85.

4. García S, Albaghdadi MS, Mejran PM, et al. Reduction in ST-segment elevation myocardial infarction catheterization laboratory activations in the United States during COVID-19 pandemic. J Am Coll Cardiol. 2020;75:2850–2859.

5. de Filipo O, D’Ascenso F, Angelini F, et al. Reduced rate of hospital admissions for ACS during Covid-19 outbreak in northern Italy. N Engl J Med. 2020;383:88–89.

6. Romagúera R, Ribera A, Guehl-Vilaplana F, et al. Decrease in ST-segment elevation myocardial infarction admissions in Catalonia during the COVID-19 pandemic. Rev Esp Cardiol. 2020;73:778–780.

7. Moreno R, Alonso JJ, Caballero R, et al. Impact of age and gender on arrival of patients with ST-segment elevation acute myocardial infarction to tertiary centers during COVID-19 pandemic. Experience of Madrid Spain STEM Network (Código Infarto Madrid) Am J Emerg Med. 2020. doi:10.1016/j.ajem.2020.06.013.

8. Cid-Alvarez AB, Rodríguez-Leor O, Moreno R, Pérez de Prado A, Spanish Cardiac Catheterization and Coronary Intervention Registry. 28th Official Report of the Spanish Society of Cardiology Working Group on Cardiac Catheterization and Interventional Cardiology (1990-2018). Rev Esp Cardiol. 2019;72:1043–1053.

9. Ibanez B, James S, Ageval S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39:119–177.

10. De Luca G, Suryapranata H, Ottervanger JP, Antman EM. Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: every minute of delay counts. Circulation. 2004;109:1223–1225.

11. Brodie BR, Webb J, Cox DA, et al. Impact of time to treatment on myocardial reperfusion and infarct size with primary percutaneous coronary intervention for acute myocardial infarction (from the EMERALD Trial). Am J Cardiol. 2007;99:1680–1686.

12. Rossello X, Lobo-Gonzalez M, Ibanez B. Editor’s Choice–Pathophysiology and therapy of myocardial ischemia/reperfusion syndrome. Eur Heart J Acute Cardiomyol Care. 2019;8:443–456.

13. Romagúera R, Cruz-González I, Ojeda S, et al. Consensus document of the Interventional Cardiology and Heart Rhythm Associations of the Spanish Society of Cardiology on the management of invasive cardiac procedure rooms during the COVID-19 coronavirus outbreak. REC Interv Cardiol. 2020;2:106–111.

14. Kannan DV, Vaezie PJ. Predictors of avoiding medical care and reasons for avoidance behavior. Med Care. 2014;52:336–345.

15. Lau JT, Griffiths S, Chos KC, Tsui HY. Avoidance behaviors and negative psychological responses in the general population in the initial stage of the H1N1 pandemic in Hong Kong. BMC Infect Dis. 2010;10:139.

16. Jung ZC, Zhu HD, Yan XW, Chai WZ, Zhang S. Recommendations from the Peking Union Medical College Hospital on the management of patients with acute myocardial infarction during the COVID-19 outbreak. Eur Heart J. 2020;41:1791–1794.

17. Welt FGP, Shah PB, Aronow HD, et al. Catheterization laboratory considerations during the coronavirus (COVID-19) pandemic: From the ACC's Interventional Cardiology Council. JACC Interv Cardiol. 2020;7:272–279.

18. Romagúera R, Cruz-González I, Jurado-Román A, et al. Considerations on the invasive management of ischemic and structural heart disease during the COVID-19 coronavirus outbreak. Consensus statement of the Interventional Cardiology Association and the Ischemic Heart Disease and Acute Cardiac Care Care Association of the Spanish Society of Cardiology. REC Interv Cardiol. 2020;2:112–117.

19. Bangalore S, Sharma A, Slotswiner A, et al. ST-segment elevation in patients with COVID–19 – A cases series. N Engl J Med. 2020;382:2478–2480.

20. Stefanini GC, Montorfano M, Trabattini D, et al. ST-segment elevation myocardial infarction in patients with COVID-19: clinical and angiographic outcomes. Circulation. 2020;141:2113–2116.

21. Instituto de Salud Carlos III (ISCIII). Vigilancia de los excesos de mortalidad por todas las causas. Situación a 28 de abril de 2020. Disponible en: http://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/MoMoDocumentos/informesMoMo2020/MoMo_Situacion20%2028%20abril_CNE.pdf Consultado 22 jul 2020.

22. Bask E, Sechi GM, Mare C, et al. Out-of-hospital cardiac arrest during the COVID-19 outbreak in Italy. N Engl J Med. 2020;383:496–498.

23. Dudas K, Lappas G, Stewart S, Rosengren A. Trends in out-of-hospital deaths due to coronary heart disease in Sweden (1991 to 2006). Circulation. 2011;123:46–52.

24. Kajoor A, Bañeres A, Ballesteros J, et al. Incidence, mortality, and outcome-predictors of sudden cardiac arrest complicating myocardial infarction prior to hospital admission. Circ Cardiovasc Interv. 2019;12:007081.

25. Moroni F, Gramenna M, et al. Collateral damage: medical care avoidance behavior among patients with myocardial infarction during the COVID-19 pandemic. JACC. Cases Reports. https://doi.org/10.1016/j.jaccs.2020.04.010.

26. John Sutton M, Lee D, Rouleau J, et al. Left ventricular remodeling and ventricular arrhythmias after myocardial infarction. Circulation. 2003;107:2577–2582.