Class II HLA genotype in fulminant type 1 diabetes: A nationwide survey with reference to glutamic acid decarboxylase antibodies

Chiharu Tsutsumi1, Akihisa Imagawa2*, Hiroshi Ikegami3, Hideichi Makino4, Tetsuro Kobayashi5, Toshiaki Hanafusa1
on behalf of the Japan Diabetes Society Committee on Type 1 Diabetes Mellitus Research†

ABSTRACT

Aims/Introduction: Fulminant type 1 diabetes is a subtype of type 1 diabetes characterized by a remarkably abrupt onset of insulin-deficient hyperglycemia within a few days. The aim of the present study was to clarify characteristic class II HLA genotypes in a large number of patients with fulminant type 1 diabetes to date.

Materials and Methods: We analyzed the HLA-DRB1 and DQB1 genotypes, and their haplotypes in 207 patients with fulminant type 1 diabetes and 325 control subjects in the Japanese population.

Results: The frequencies of the DRB1*04:05-DQB1*04:01 and DRB1*09:01-DQB1*03:03 haplotypes were significantly higher, and those of the DRB1*01:01-DQB1*05:01, DRB1*15:02-DQB1*06:01 and DRB1*08:03-DQB1*06:01 haplotypes were significantly lower in patients with fulminant type 1 diabetes than in the control subjects. Combination analysis showed that the frequencies of homozygotes with DRB1*04:05-DQB1*04:01 (odds ratio (OR) 7.0) and DRB1*09:01-DQB1*03:03 (OR 9.5) were significantly higher in patients with fulminant type 1 diabetes. Within a limited portion of patients with fulminant type 1 diabetes with antibodies to glutamic acid decarboxylase (GADab; n = 25), the frequency of DRB1*09:01-DQB1*03:03, but not DRB1*04:05-DQB1*04:01, was significantly higher than in control subjects (44.0% vs 13.7%; P < 0.05, OR 5.0).

Conclusions: Our large-scale study showed the characteristic class II HLA genotypes in fulminant type 1 diabetes, and implicated that genetic contribution to disease susceptibility is distinct between GADab-positive and GADab-negative fulminant type 1 diabetes. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2011.00139.x, 2012)

KEY WORDS: Fulminant type 1 diabetes, HLA, Glutamic acid decarboxylase

INTRODUCTION

Fulminant type 1 diabetes is a novel subtype of type 1 diabetes identified in 20001–3. It is defined as diabetes that results from the extremely rapid and almost entire destruction of pancreatic β-cells within a few days. The clinical characteristics of this subtype are different in many aspects from those of typical type 1A diabetes5. Although fulminant type 1 diabetes resembles the typical form of type 1 diabetes in that it is characterized by high plasma glucose levels accompanied by ketosis or ketoacidosis, it clearly differs by an extremely acute onset of diabetes, which is confirmed by nearly normal HbA1c levels against high plasma glucose concentration, and virtually no C-peptide secretion at the onset of the disease, indicating that the process of pancreatic β-cell destruction is very rapid.

Fulminant type 1 diabetes is common in the Asian population; it accounts for approximately 20% of ketosis-onset type 1 diabetes in Japan2,3 and 7% in Korea4,5. Furthermore, several cases have been reported from China6, Taiwan7, the Philippines8, Malaysia9 and France10.

It is suggested that both genetic factors11–13 and environmental factors, such as viral infection14–19, contribute to the pathogenesis of this disease. In regard to genetic factors, it has been reported that class II HLA strongly confers susceptibility to the development of fulminant type 1 diabetes. In the analysis of the serological typing of class II HLA, we have shown that HLA-DR4-DQ4 was significantly more frequent in fulminant type 1 diabetes. In the national survey, the frequencies of the DRB1*04:05-DQB1*04:01 and DRB1*09:01-DQB1*03:03 haplotypes were significantly higher, and those of the DRB1*01:01-DQB1*05:01, DRB1*15:02-DQB1*06:01 and DRB1*08:03-DQB1*06:01 haplotypes were significantly lower in patients with fulminant type 1 diabetes than in the control subjects. Combination analysis showed that the frequencies of homozygotes with DRB1*04:05-DQB1*04:01 (odds ratio (OR) 7.0) and DRB1*09:01-DQB1*03:03 (OR 9.5) were significantly higher in patients with fulminant type 1 diabetes. Within a limited portion of patients with fulminant type 1 diabetes with antibodies to glutamic acid decarboxylase (GADab; n = 25), the frequency of DRB1*09:01-DQB1*03:03, but not DRB1*04:05-DQB1*04:01, was significantly higher than in control subjects (44.0% vs 13.7%; P < 0.05, OR 5.0).

Conclusions: Our large-scale study showed the characteristic class II HLA genotypes in fulminant type 1 diabetes, and implicated that genetic contribution to disease susceptibility is distinct between GADab-positive and GADab-negative fulminant type 1 diabetes.
The aim of the present study was thus to investigate the class II HLA genotypes and re-evaluate the contribution of the class II HLA to susceptibility and resistance to fulminant type 1 diabetes in a large number of patients.

MATERIALS AND METHODS
Subjects and Methods
We examined 207 patients with fulminant type 1 diabetes and 325 healthy control subjects in Japan. Among them, 152 patients with fulminant type 1 diabetes were registered with the committee of the Japan Diabetes Society, and data for the other 55 patients were collected from reports in the literature from June 2000 to March 2007.

Inclusion criteria for fulminant type 1 diabetes were: (i) ketosis or ketoacidosis within a week after the onset of hyperglycemic symptoms; (ii) urinary C-peptide excretion <10 μg/day or fasting serum C-peptide <0.3 ng/ml (0.10 nmol/L) or serum C-peptide <0.5 ng/ml (0.17 nmol/L) after glucagon injection or meal load soon after disease onset; and (iii) plasma glucose level <0.5 ng/mL (0.17 nmol/L) after glucagon injection or meal load soon after disease onset; and (iii) plasma glucose level ≥16.0 mmol/L (288 mg/dL) and HbA1c <8.9% at the first visit. Healthy control subjects had normal glucose tolerance as assessed by a 75 g oral glucose tolerance test, had no family history of diabetes, and resided in the Ehime and Osaka areas as described previously.

GAD antibodies (GADab) were positive in 25 patients and negative in 182 patients (Table 1). We also analyzed 15 patients with pregnancy-associated fulminant type 1 diabetes (PF), 51 female patients of child-bearing age (13–49 years) with fulminant type 1 diabetes that was not associated with pregnancy (NPF) and 70 female control subjects of child-bearing age.

The present study was approved by the ethics committee of the Japan Diabetes Society, and informed consent was obtained from all subjects. The detailed characteristics of these subjects are shown in Table 1.

The value for HbA1c (%) was estimated as a National Glycohemoglobin Standardization Program (NGSP) equivalent value (%) calculated by the formula HbA1c (%) = HbA1c (JDS) (%) + 0.4%, considering the relational expression of HbA1c (JDS) (%) measured by the previous Japanese standard substance and measurement methods and HbA1c (NGSP)²⁴.

Typing of HLA-DR and -DQ
HLA-DRB1 and -DQB1 were genotyped by the PCR sequence-specific primer and PCR sequence-specific oligonucleotide methods (Invitrogen, Carlsbad, CA, USA). The most probable DRB1-DQB1 haplotypes were deduced from known linkage disequilibria.

Statistical Analysis
Clinical data of GADab-negative and -positive fulminant type 1 diabetes was analyzed by using chi-squared-test or Kruskal-Wallis test. Allele frequencies were estimated by direct counting. Genotypes, whose total frequencies in both total subjects with fulminant type 1 diabetes and control subjects were five or more than five, were listed in the present study. The significance of the difference in distribution of alleles between patients with fulminant type 1 diabetes and healthy control subjects was determined by a chi-squared-test. P-values were corrected by using the number of different alleles tested (denoted as Pc). Statistical significance was defined as Pc < 0.05.

RESULTS
Characteristics of GADab-Negative and -Positive Fulminant Type 1 Diabetes
GADab was detected in 25 (12.1%) of 207 patients with fulminant type 1 diabetes in the present study. Therefore, first of all, we compared detailed characteristics between GADab-negative and -positive fulminant type 1 diabetes (Table 1). There were no differences between the two groups in age, body mass index, mean HbA1c level at onset and presence or absence of family history of type 1 or type 2 diabetes in first-degree relatives. One, but not another, allele of class II HLA haplotype was common between two patients (father and his son) with a family history of type 1 diabetes.

Table 1 | Clinical characteristics of patients with fulminant type 1 diabetes

| Total | With GADab | Without GADab | Control |
|-------|------------|---------------|---------|
| n     | 207        | 25 (12.1)     | 182 (87.9) | 325 |
| Sex (male/female) | 118/89 (57.0) | 20/5 (80.0) | 98/84 (53.8) | 202/123 (62.2) |
| Pregnancy (PF*/NPF†) | 15/51 (22.7) | 0/5 (0.0) | 15/49 (23.4) | ND |
| Age at disease onset (years) | 41 (0–87) | 43 (0–75) | 41 (1–87) | 47 (25–78) |
| Body mass index (kg/m²) | 21.1 ± 3.2‡ | 20.9 ± 3.4§ | 21.2 ± 3.2¶ | ND |
| Family history of type 1 diabetes | 5/157 (3.1) | 0/20 (0.0) | 5/137 (3.5) | 0/0 (0.0) |
| Family history of type 2 diabetes | 11/151 (6.8) | 2/18 (10.0) | 9/133 (6.3) | 0/0 (0.0) |
| Family history of unclassified diabetes | 6/156 (3.7) | 1/19 (5.0) | 5/137 (3.5) | 0/0 (0.0) |
| HbA1c at disease onset (%) | 6.6 ± 0.8 | 6.7 ± 0.7 | 66 ± 0.8 | ND |

GADab, antibodies to glutamic acid decarboxylase; ND, not determined.
Data are n, median (range), mean ± SD, (±), or n (%).
*Pregnancy-associated fulminant type 1 diabetes; †Female patients of child-bearing age (13–49 years) with fulminant type 1 diabetes not associated with pregnancy; ‡except seven children; §except two children; ¶except five children.
fulminant type 1 diabetes. GADab was measured by radioimmunoassay, except for one patient in whom GADab was measured by radioligand binding assay. There were no differences in sensitivity and specificity between the two assays. GADab was determined within a week after the onset of diabetes, except for two patients in each hospital. GADab was negative in one patient measured 6 months after the onset and positive in another patient measured 16 years after the onset. The median level of GADab was 3.0 U/mL (range 1.5–20.0 U/mL). In 78% of GADab-positive patients, the titer was <10 U/mL at the onset of disease and GADab became negative within 2 years during the follow up. Of 25 GADab-positive patients with fulminant type 1 diabetes, IA-2ab was negative in 16 patients and not measured in the other nine patients. In GADab-positive patients with fulminant type 1 diabetes, median duration of hyperglycemic symptoms was 4 days (range 0–11 days); median HbA1c level was 6.7% (range 5.6–8.3%) despite very high plasma glucose levels (median 700, range 313–1944 mg/dL), showing the similarity in the clinical features, except the positivity of GADab, between GADab-positive and GADab-negative fulminant type 1 diabetes.

Table 2 | DRB1 and DQB1 alleles in patients with fulminant type 1 diabetes and control subjects

| Fulminant | Total (n = 414†) | GADab(+) (n = 50†) | GADab(−) (n = 364†) | Control (n = 650†) | Total vs control | GADab(+) vs control | GADab(−) vs control |
|-----------|-----------------|-------------------|--------------------|------------------|-----------------|-------------------|-------------------|
|           | n (%)           | n (%)             | n (%)              | n (%)            | Pc              | OR                | OR                |
| DRB1      |                 |                   |                    |                  |                 |                   |                   |
| *01:01    | 9 (2.2)         | 0 (0.0)           | 9 (2.5)            | 50 (7.7)         | 2.8 × 10−3      | 0.27              | NS                |
| *04:01    | 6 (1.4)         | 1 (2.0)           | 5 (1.4)            | 5 (0.8)          | NS              | NS                | NS                |
| *04:03    | 6 (1.4)         | 1 (2.0)           | 5 (1.4)            | 21 (3.2)         | NS              | NS                | NS                |
| *04:05    | 133 (32.6)      | 11 (22.0)         | 124 (34.0)         | 92 (14.2)        | 1.7 × 10−11     | 2.9               | 2.4 × 10−12       |
| *04:06    | 3 (0.7)         | 1 (2.0)           | 2 (0.5)            | 23 (3.5)         | NS              | NS                | NS                |
| *04:07    | 1 (0.2)         | 0 (0.0)           | 1 (0.3)            | 5 (0.8)          | NS              | NS                | NS                |
| *04:10    | 13 (3.1)        | 0 (0.0)           | 13 (3.6)           | 9 (1.4)          | NS              | NS                | NS                |
| *08:02    | 14 (3.4)        | 2 (4.0)           | 12 (3.3)           | 30 (4.6)         | NS              | NS                | NS                |
| *08:03    | 13 (3.1)        | 1 (2.0)           | 12 (3.3)           | 58 (8.9)         | 5.0 × 10−3      | 0.33              | 0.015             |
| *09:01    | 106 (25.6)      | 22 (44.0)         | 84 (32.1)          | 90 (13.8)        | 3.1 × 10−5      | 2.1               | 4.6 × 10−7        |
| *10:01    | 1 (0.2)         | 0 (0.0)           | 1 (0.3)            | 9 (1.4)          | NS              | NS                | NS                |
| *11:01    | 3 (0.7)         | 0 (0.0)           | 3 (0.8)            | 13 (2.0)         | NS              | NS                | NS                |
| *12:01    | 7 (1.7)         | 1 (2.0)           | 6 (1.6)            | 27 (4.2)         | NS              | NS                | NS                |
| *12:02    | 5 (1.2)         | 2 (4.0)           | 3 (0.8)            | 9 (1.4)          | NS              | NS                | NS                |
| *13:02    | 23 (5.6)        | 1 (2.0)           | 22 (6.0)           | 26 (4.0)         | NS              | NS                | NS                |
| *14:01    | 7 (1.7)         | 1 (2.0)           | 6 (1.6)            | 23 (3.5)         | NS              | NS                | NS                |
| *14:03    | 1 (0.2)         | 0 (0.0)           | 1 (0.3)            | 6 (0.9)          | NS              | NS                | NS                |
| *14:05    | 3 (0.7)         | 0 (0.0)           | 3 (0.8)            | 12 (1.8)         | NS              | NS                | NS                |
| *14:06    | 3 (0.7)         | 0 (0.0)           | 3 (0.8)            | 7 (1.1)          | NS              | NS                | NS                |
| *15:01    | 22 (5.3)        | 3 (6.0)           | 19 (5.2)           | 45 (6.9)         | NS              | NS                | NS                |
| *15:02    | 16 (3.9)        | 0 (0.0)           | 16 (4.4)           | 73 (11.2)        | 5.1 × 10−3      | 0.32              | 4.9 × 10−3        |
| *16:02    | 8 (1.9)         | 2 (4.0)           | 6 (1.6)            | 6 (0.9)          | NS              | NS                | NS                |
| Others    | 9 (2.2)         | 1 (2.0)           | 8 (2.2)            | 11 (1.6)         |                 |                   |                   |
| DQB1      |                 |                   |                    |                  |                 |                   |                   |
| *03:01    | 18 (4.3)        | 3 (6.0)           | 15 (4.1)           | 62 (9.5)         | 0.019           | 0.43              | 0.020             |
| *03:02    | 21 (5.1)        | 2 (4.0)           | 19 (5.2)           | 67 (10.3)        | 0.028           | 0.46              | NS                |
| *03:09    | 109 (26.3)      | 22 (44.0)         | 87 (33.9)          | 97 (14.9)        | 4.9 × 10−6      | 2.0               | 1.5 × 10−6        |
| *04:01    | 133 (32.1)      | 11 (22.0)         | 122 (33.5)         | 91 (14.0)        | 1.7 × 10−11     | 2.9               | 2.8 × 10−12       |
| *04:02    | 22 (5.3)        | 2 (4.0)           | 20 (5.5)           | 27 (4.2)         | NS              | NS                | NS                |
| *05:01    | 11 (2.7)        | 0 (0.0)           | 11 (3.0)           | 59 (9.1)         | 4.2 × 10−3      | 0.27              | 2.9 × 10−3        |
| *05:02    | 11 (2.7)        | 3 (6.0)           | 8 (2.2)            | 19 (2.9)         | NS              | NS                | NS                |
| *05:03    | 8 (1.9)         | 1 (2.0)           | 7 (1.9)            | 23 (3.5)         | NS              | NS                | NS                |
| *06:01    | 30 (7.2)        | 1 (2.0)           | 29 (8.0)           | 132 (20.3)       | 8.1 × 10−8      | 0.31              | 0.030             |
| *06:02    | 21 (5.1)        | 3 (6.0)           | 18 (4.9)           | 44 (6.8)         | NS              | NS                | NS                |
| *06:04    | 20 (4.8)        | 1 (2.0)           | 19 (5.2)           | 26 (4.0)         | NS              | NS                | NS                |
| Others    | 10 (2.4)        | 1 (2.0)           | 9 (2.5)            | 4 (0.6)          |                 |                   |                   |

GADab, antibodies to glutamic acid decarboxylase; NS, not significant.
Pc, P-values corrected for number of different alleles tested (*22 for DRB1 and x11 for DQB1).†Allele number.
Frequencies of Alleles of HLA-DRB1 and DQB1

As shown in Table 2, the allele frequencies of DRB1*04:05, DRB1*09:01, DQB1*04:01 and DQB1*03:03 were significantly higher, and those of DRB1*01:01, DRB1*08:03, DRB1*15:02, DQB1*03:01, DQB1*05:01 and DQB1*06:01 were significantly lower in total subjects with fulminant type 1 diabetes than in control subjects.

Similarly, the allele frequencies of DRB1*04:05, DRB1*09:01, DQB1*04:01 and DQB1*03:03 were significantly higher, and those of DRB1*01:01, DRB1*08:03, DRB1*15:02, DQB1*03:01, DQB1*05:01 and DQB1*06:01 were significantly lower in GADab-negative patients with fulminant type 1 diabetes than in control subjects.

In contrast, the allele frequencies of DRB1*09:01 and DQB1*03:03 were significantly higher, and that of DQB1*06:01 was significantly lower in GADab-positive patients with fulminant type 1 diabetes than in control subjects (Table 2).

Frequencies of the Genotypes of DRB1-DQB1 Haplotypes

As shown in Table 3, DRB1*04:05-DQB1*04:01 and DRB1*09:01-DQB1*03:03 are significantly more frequent in total subjects with fulminant type 1 diabetes than in controls, DRB1*15:02-DQB1*06:01, but not DRB1*15:01-DQB1*06:02, was significantly less frequent in these patients than in control subjects. Furthermore, DRB1*01:01-DQB1*05:01 and DRB1*08:03-DQB1*06:01 were significantly less frequent in these patients than in controls.

Similarly, the frequencies of DRB1*04:05-DQB1*04:01 and DRB1*09:01-DQB1*03:03 were significantly higher and those of DRB1*01:01-DQB1*05:01, DRB1*15:02-DQB1*06:01 and DRB1*08:03-DQB1*06:01 were significantly lower in

Table 3 | DRB1-DQB1 haplotypes in patients with fulminant type 1 diabetes and control subjects

| DRB1-DQB1 | Fulminant | Control | Total vs control | GADab(+) vs control | GADab(-) vs control |
|-----------|-----------|---------|-----------------|---------------------|---------------------|
|           | Total | GADab(+) | GADab(-) | (n = 650) | (n = 414) | (n = 364) | n (%) | n (%) | n (%) | n (%) | OR |
|           |        | (n = 50) | (n = 36) |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| *01:01-05:01 | 9 (2.2) | 0 (0.0) | 9 (2.5) | 50 (7.7) | 3.1 \times 10^{-3} | 0.27 | NS | 0.12 | 0.016 | 0.30 |
| *04:01-03:01 | 3 (0.7) | 1 (2.0) | 2 (0.5) | 5 (0.7) | NS | NS | NS | NS |
| *04:03-03:02 | 6 (1.4) | 1 (2.0) | 5 (1.4) | 22 (3.2) | NS | NS | NS | NS |
| *04:05-04:01 | 135 (32.6) | 11 (22.0) | 124 (31.4) | 92 (14.2) | 2.0 \times 10^{-11} | 2.9 | NS | 1.7 | 2.7 \times 10^{-12} | 3.1 |
| *04:06-03:02 | 3 (0.7) | 1 (2.0) | 2 (0.5) | 23 (3.5) | NS | NS | NS | NS |
| *04:07-03:02 | 1 (0.2) | 0 (0.0) | 1 (0.3) | 5 (0.7) | NS | NS | NS | NS |
| *04:10-04:02 | 13 (3.1) | 0 (0.0) | 13 (3.6) | 9 (1.3) | NS | NS | NS | NS |
| *08:02-03:02 | 6 (1.4) | 0 (0.0) | 6 (1.6) | 15 (2.2) | NS | NS | NS | NS |
| *08:02-04:02 | 8 (1.9) | 2 (4.0) | 6 (1.6) | 16 (2.3) | NS | NS | NS | NS |
| *08:03-06:01 | 13 (3.1) | 1 (2.0) | 12 (3.3) | 58 (8.9) | 5.7 \times 10^{-5} | 0.33 | NS | 0.21 | 0.017 | 0.35 |
| *09:01-03:03 | 105 (25.4) | 22 (44.0) | 83 (22.8) | 89 (13.7) | 3.8 \times 10^{-5} | 0.31 | NS | 0.21 | 0.017 | 0.35 |
| *10:01-05:01 | 1 (0.2) | 0 (0.0) | 1 (0.3) | 10 (1.5) | NS | NS | NS | NS |
| *11:01-03:01 | 1 (0.2) | 0 (0.0) | 1 (0.3) | 13 (1.9) | NS | NS | NS | NS |
| *12:01-03:01 | 1 (0.2) | 0 (0.0) | 1 (0.3) | 13 (1.9) | NS | NS | NS | NS |
| *13:01-03:01 | 1 (0.2) | 0 (0.0) | 1 (0.3) | 13 (1.9) | NS | NS | NS | NS |
| *14:01-05:02 | 5 (1.2) | 1 (2.0) | 4 (1.1) | 13 (1.9) | NS | NS | NS | NS |
| *14:03-03:01 | 1 (0.2) | 0 (0.0) | 1 (0.3) | 6 (0.9) | NS | NS | NS | NS |
| *15:01-05:03 | 1 (0.2) | 0 (0.0) | 1 (0.3) | 13 (1.9) | NS | NS | NS | NS |
| *16:02-05:02 | 7 (1.7) | 2 (4.0) | 5 (1.4) | 6 (0.9) | NS | NS | NS | NS |
| Others | 24 (5.8) | 2 (4.0) | 22 (6.0) | 20 (2.9) | NS | NS | NS | NS |

GADab, antibodies to glutamic acid decarboxylase; NS, not significant.
P* values corrected for number of different haplotypes tested (k<25).

†Allele number.
GADab-negative patients with fulminant type 1 diabetes than in control subjects.

In contrast, only DRB1*09:01-DQB1*03:03 was significantly more frequent in GADab-positive patients with fulminant type 1 diabetes than in controls. The frequency of DRB1*09:01-DQB1*03:03 was significantly higher (44.0 vs 22.8%, \( P_c = 0.031 \)) in GADab-positive patients than in GADab-negative patients with fulminant type 1 diabetes.

**Comparison between DRB1*04:05-DQB1*04:01 and DRB1*09:01-DQB1*03:03 Haplotypes**

To clarify the difference in the genetic contribution of the two major HLA haplotypes, DRB1*04:05-DQB1*04:01 and DRB1*09:01-DQB1*03:03, to fulminant type 1 diabetes, we analyzed the frequencies of homozygotes and heterozygotes with DRB1*04:05-DQB1*04:01 and/or DRB1*09:01-DQB1*03:03 in patients with this form of diabetes and control subjects. As shown in Table 4, homozygotes with both DRB1*04:05-DQB1*04:01 and DRB1*09:01-DQB1*03:03 were significantly more frequent in total subjects of fulminant type 1 diabetes than in control subjects. Heterozygotes with DRB1*04:05-DQB1*04:01, but not DRB1*09:01-DQB1*03:03, were also significantly more frequent in these patients than in control subjects.

Similarly, both homozygotes and heterozygotes with DRB1*04:05-DQB1*04:01 were significantly more frequent in GADab-negative patients with fulminant type 1 diabetes than in control subjects. Homozygotes, but not heterozygotes, with DRB1*09:01-DQB1*03:03 were present significantly more frequently in GADab-negative patients than in control subjects.

In contrast, both homozygotes and heterozygotes with DRB1*09:01-DQB1*03:03 were significantly more frequent in GADab-positive patients with fulminant type 1 diabetes than in control subjects. Furthermore, neither homozygotes nor heterozygotes with DRB1*04:05-DQB1*04:01 were associated with GADab-negative patients with fulminant type 1 diabetes.

When analyzed by using a 2 × 3 contingency table (homozygote, heterozygote and null of DRB1*04:05-DQB1*04:01 or DRB1*09:01-DQB1*03:03 between GADab-positive and GADab-negative patients; Table 4), there was a significant difference in the frequency of DRB1*09:01-DQB1*03:03 (\( P = 0.0093 \)), but not in the frequency of DRB1*04:05-DQB1*04:01 (\( P = 0.29 \)), between GADab-positive and GADab-negative patients.

To further investigate the disease susceptibility and protection provided by HLA haplotypes in fulminant type 1 diabetes, we examined the genotypic combinations classified as high-frequency haplotypes (DRB1*04:05-DQB1*04:01 and DRB1*09:01-DQB1*03:03) and low-frequency haplotypes (DRB1*01:01-DQB1*05:01, DRB1*08:03-DQB1*06:01 and DRB1*15:02-DQB1*06:01) in patients with fulminant type 1 diabetes and in control subjects. As shown in Table 5, none of low-frequency haplotypes, such as DRB1*01:01-DQB1*05:01, DRB1*08:03-DQB1*06:01 and DRB1*15:02-DQB1*06:01, conferred protection to fulminant type 1 diabetes in combination with high-frequency haplotypes, such as DRB1*04:05-DQB1*04:01 and DRB1*09:01-DQB1*03:03, although the number of patients was small.

**Frequencies of the Genotypes of DRB1-DQB1 Haplotypes in Pregnancy**

DRB1*04:05-DQB1*04:01 was found to be significantly more frequent in the NPF group than in control subjects, whereas DRB1*09:01-DQB1*03:03 was not significantly more frequent in either PF or NPF group compared with the controls (Table S1).

Homzygotes with DRB1*04:05-DQB1*04:01 were significantly more frequent in the NPF group than in control subjects (Table S2). The frequency of homozygotes with DRB1*04:05-DQB1*04:01 tended to be lower in the PF group than in the NPF group, but there was no significant difference between the groups. In contrast, neither homozygotes nor heterozygotes with DRB1*09:01-DQB1*03:03 were associated with either the PF or NPF groups compared with the controls.

| Table 4: Combination of HLA-DRB1-DQB1 haplotype in patients with fulminant type 1 diabetes and control subjects |
|---------------------------------------------------|-------------------|-------------------|---------------------------------|------------------|-------------------|------------------|
| DRB1-DQB1/DRB1-DQB1 | Fulminant (n = 207) | Control (n = 325) | Total vs control | GADab(+) vs control | GADab(–) vs control |
|                     | n (%) | n (%) | n (%) | n (%) | \( P_c \) | OR | n (%) | n (%) | \( P_c \) | OR | n (%) | n (%) | \( P_c \) | OR |
| *04:05-*04:01/*04:05-*04:01 | 31 (150) | 2 (8.0) | 29 (15.9) | 8 (2.5) | 2.0 × 10^{-5} | 7.0 | NS | 3.4 | 6.6 × 10^{-6} | 7.5 |
| *04:05-*04:01/X | 73 (35.3) | 7 (28.0) | 66 (36.3) | 76 (23.4) | 8.8 × 10^{-3} | 1.8 | NS | 1.3 | 5.8 × 10^{-3} | 1.9 |
| X/X | 103 (49.8) | 16 (64.0) | 87 (47.8) | 241 (74.2) | 2.9 × 10^{-4} | 0.35 | NS | 0.62 | 7.8 × 10^{-9} | 0.32 |
| *09:01-*03:03/*09:01-*03:03 | 22 (106) | 5 (20.0) | 17 (9.3) | 4 (1.2) | 8.0 × 10^{-5} | 9.5 | 1.3 × 10^{-6} | 20.1 | 9.4 × 10^{-5} | 8.3 |
| *09:01-*03:03/Y | 61 (295) | 12 (48.0) | 49 (26.9) | 81 (24.9) | NS | 1.3 | 0.035 | 2.8 | NS | 1.1 |
| Y/Y | 124 (599) | 8 (32.0) | 116 (63.7) | 240 (73.8) | 2.2 × 10^{-5} | 0.53 | 2.8 × 10^{-5} | 0.17 | NS | 0.62 |

NS, not significant; GADab, antibodies to glutamic acid decarboxylase.

\( P_c \), \( P \)-values corrected for number of different haplotypes tested. X does not contain DRB1*04:05-DQB1*04:01. Y does not contain DRB1*09:01-DQB1*03:03.

© 2011 Asian Association for the Study of Diabetes and Blackwell Publishing Asia Pty Ltd
**DISCUSSION**

The two important findings obtained from the present study were as follows: (i) the contribution of HLA genes to fulminant type 1 diabetes was clearly shown in a large-scale study; and (ii) the contribution of HLA genes to fulminant type 1 diabetes was different between GADab-positive and GADab-negative patients.

First, the present large-scale study has clarified the contribution of HLA genes to fulminant type 1 diabetes. We have reconfirmed that DRB1*04:05-DQB1*04:01, but not DRB1*04:10-DQB1*04:02, which also encodes DR4-DQ4, confers a strong predisposition to fulminant type 1 diabetes. Analysis of the combination of the HLA-DRB1-DQB1 haplotype in patients with fulminant type 1 diabetes and control subjects showed that the frequency of DR2-DQ1 was significantly lower in patients with fulminant type 1 diabetes than in the control[12].

Table 5 | Genotypic combination of DRB1-DQB1 haplotype in patients with fulminant type 1 diabetes and control subjects

| Allele frequency | Fulminant (n = 207) | Control (n = 325) | Total vs control | GADab(+) vs control | GADab(−) vs control |
|------------------|-------------------|-------------------|-----------------|-------------------|-------------------|
|                  | (n = 25)          | (n = 182)         | P | OR | P | OR | P | OR |
| *04:05-*04:01/   |                   |                   |           |      |    |     |    |     |
| *01:01-*05:01    | 2 (1.0)           | 0 (0.0)           | 2 (1.1) | 1.1 | NS | 0.31 | NS | 0.59 | NS | 0.35 |
| *04:05-*04:01    | 4 (1.9)           | 0 (0.0)           | 4 (2.2) | 2.2 | NS | 1.6  | NS | 1.4  | NS | 1.8  |
| *04:05-*04:01    | 5 (2.4)           | 0 (0.0)           | 5 (2.7) | 2.7 | NS | 0.87 | NS | 0.65 | NS | 0.99 |
| *09:01-*03:03/   |                   |                   |           |      |    |     |    |     |
| *01:01-*05:01    | 1 (0.5)           | 0 (0.0)           | 1 (0.5) | 0.5 | NS | 0.22 | NS | 0.83 | NS | 0.25 |
| *08:03-*06:01    | 4 (1.9)           | 0 (0.0)           | 4 (2.2) | 2.2 | NS | 0.90 | NS | 0.83 | NS | 1.0  |
| *15:02-*06:01    | 2 (1.0)           | 0 (0.0)           | 2 (1.1) | 1.1 | NS | 0.037 | 0.20 | NS | 0.39 | NS | 0.23 |

GADab, antibodies to glutamic acid decarboxylase; NS, not significant.

In the present study, we analyzed the serological subtype of HLA-DR-DQ and showed that the frequency of DR2-DQ1 was significantly lower in fulminant type 1 diabetes than in the control[12]. The present study has shown that DRB1*15:02-DQB1*06:01, but not DRB1*15:01-DQB1*06:02, which encode DR2-DQ1, was negatively associated with fulminant type 1 diabetes. Regarding the combination analysis, in the Japanese population, protective haplotypes, such as DRB1*15:01-DQB1*06:02 and DRB1*15:02-DQB1*06:01, provide strong protection against type 1A diabetes regardless of the presence of susceptible haplotypes, such as DRB1*09:01-DQB1*03:03 and DRB1*04:05-DQB1*04:01[13,26–31]. However, no such protective effect was observed in fulminant type 1 diabetes. This might show that protective haplotypes are not superior to susceptible haplotypes in fulminant type 1 diabetes.

DRB1*09:01-DQB1*03:03, in addition to DRB1*04:05-DQB1*04:01, haplotype was positively associated with fulminant type 1 diabetes. Recently, we have reported the differences in the contribution of HLA to genetic susceptibility to three subtypes of Japanese type 1 diabetes, acute-onset, fulminant and slowly-progressive, and that DRB1*04:05-DQB1*04:01, but not DRB1*09:01-DQB1*03:03, was associated with fulminant type 1 diabetes[13]. However, DRB1*09:01-DQB1*03:03 was also high in frequency in the present study. We have two hypotheses to explain this discrepancy. One is that the maximum number of samples in the present study enabled us to re-evaluate the association of class II HLA genotype with fulminant type 1 diabetes. Another is the high frequency of DRB1*09:01-DQB1*03:03 haplotype in GADab-positive patients with fulminant type 1 diabetes included in the present study. DRB1*09:01-DQB1*03:03 conferred strong susceptibility to GADab-positive fulminant type 1 diabetes (OR 5.0). In addition, it has been reported that DRB1*09:01-DQB1*03:03, confers strong susceptibility to the disease development in pregnancy-associated fulminant type 1 diabetes in Japanese[32]. A similar trend was also observed in the present study, although the difference was not significant.

Second, the present study has clarified that the contribution of HLA genes to fulminant type 1 diabetes was different between GADab-positive and GADab-negative patients despite the similar clinical status. In the present large-scale study, the majority of fulminant type 1 diabetes, GADab-negative patients, was characterized by the predominance of DRB1*04:05-DQB1*04:01 both in homozygous and heterozygous states. In contrast, DRB1*09:01-DQB1*03:03, but not DRB1*04:05-DQB1*04:01, was predominant in GADab-positive patients with fulminant type 1 diabetes. In addition, the protective effect of the DRB1*15:02-DQB1*06:01 haplotype tended to be stronger in GADab-positive (0.0%, OR 0.07) than in GADab-negative
fulminant type 1 diabetes (4.4%, OR 0.33). In contrast, it is well known that the DRB1*09:01-DQBI*03:03 haplotype is frequent in GADab-positive or typical autoimmune diabetic patients in Japan.13,27,28,31. Kawabata et al. showed that the DRB1*09:01-DQBI*03:03 haplotype confers much stronger susceptibility to Japanese typical autoimmune type 1 diabetes when present in a homozygous state and that the DRB1*09:01-DQBI*03:03 haplotype predisposes in a recessive fashion. DRB1*15:02-DQBI*06:01 also shows strong protection to classical type 1A diabetes.30. High frequency of DRB1*09:01-DQBI*03:03 homozygous state was also observed in GADab-positive fulminant type 1 diabetes in the present study (OR 20.1). Taken together, these findings suggest the similarity in underlying genetic backgrounds between classical autoimmune type 1 diabetes and GADab-positive fulminant type 1 diabetes, but not GADab-negative fulminant type 1 diabetes.

In conclusion, the present large-scale study showed the characteristic class II HLA genotypes in fulminant type 1 diabetes. The present study also implied that genetic contribution to disease susceptibility is distinct between GADab-positive and GADab-negative fulminant type 1 diabetes. Consequently, this disorder might be heterogeneous, as reflected by class II HLA and GADab, and further divided into at least two subtypes.

ACKNOWLEDGEMENTS
The present study was carried out under the auspices of the Japan Diabetes Society and partly supported by a grant-in-aid from the Japan Diabetes Society and a grant from the Japan Diabetes Association. The present study was carried out with the assistance of collecting data and Dr. Yuko Murase-Mishiba of the Japan Medical Association and a grant from the Japan Diabetes Society. We thank Ms. Sayaka Ikeda and Ms. Shinobu Mitsui for the assistance of collecting data and Dr. Yuko Murase-Mishiba for the useful suggestions. No potential conflicts of interest relevant to this article were reported.

REFERENCES
1. Imagawa A, Hanafusa T, Miyagawa J, et al. A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. N Engl J Med 2000; 342: 301–307.
2. Imagawa A, Hanafusa T, Uchigata Y, et al. Fulminant type 1 diabetes: a nationwide survey in Japan. Diabetes Care 2003; 26: 2345–2352.
3. Hanafusa T, Imagawa A. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab 2007; 3: 36–45.
4. Cho YM, Kim JT, Ko KS, et al. Fulminant type 1 diabetes in Korea: high prevalence among patients with adult-onset type 1 diabetes. Diabetologia 2007; 50: 2276–2279.
5. Kim NH, Kim HY, Seo JA, et al. A pooled analysis of 29 patients with fulminant type 1 diabetes in Korea: a comparison with a nationwide survey in Japan. Diabetes Res Clin Pract 2009; 86: e43–e45.
6. Zheng C, Zhou Z, Yang L, et al. Fulminant type 1 diabetes mellitus exhibits distinct clinical and autoimmunity features from classical type 1 diabetes mellitus in Chinese. Diabetes Metab Res Rev 2011; 27: 70–78.
7. Chiou CC, Chung WH, Hung SI, et al. Fulminant type 1 diabetes mellitus caused by drug hypersensitivity syndrome with human herpes virus 6 infection. J Am Acad Dermatol 2006; 2(Suppl): S14–S17.
8. Taniyama M, Katsumata R, Aoki K, et al. A Filipino patient with fulminant type 1 diabetes. Diabetes Care 2004; 27: 842–843.
9. Tan F, Loh WK. Fulminant type 1 diabetes associated with pregnancy: a report of 2 cases from Malaysia. Diabetes Res Clin Pract 2010; 90: e30–e32.
10. Moreau C, Drui D, Arnault-Ouary G, et al. Fulminant type 1 diabetes in Caucasians: a report of three cases. Diabetes Metab 2008; 34: 529–532.
11. Kawasaki E, Imagawa A, Makino H, et al. Differences in the contribution of the CTLA4 gene to susceptibility to fulminant and type 1A diabetes in Japanese patients. Diabetes Care 2008; 31: 1608–1610.
12. Imagawa A, Hanafusa T, Uchigata Y, et al. Different contribution of class II HLA in fulminant and typical autoimmune type 1 diabetes mellitus. Diabetologia 2005; 48: 294–300.
13. Kawabata Y, Ikegami H, Awata T, et al. Differential association of HLA with three subtypes of type 1 diabetes: fulminant, slowly progressive and acute-onset. Diabetologia 2009; 52: 2513–2521.
14. Shimada A, Maruyama T. Encephalomyocarditis-virus-induced diabetes model resembles “fulminant” type 1 diabetes in humans. Diabetologia 2004; 47: 1854–1855.
15. Imagawa A, Hanafusa T, Makino H, et al. High titres of IgA antibodies to enterovirus in fulminant type 1 diabetes. Diabetologia 2005; 48: 290–293.
16. Sano H, Terasaki J, Tsutsumi C, et al. A case of fulminant type 1 diabetes mellitus after influenza B infection. Diabetes Res Clin Pract 2008; 79: e8–e9.
17. Akatsuka H, Yano Y, Gabazza EC, et al. A case of fulminant type 1 diabetes with coxsackie B4 virus infection diagnosed by elevated serum levels of neutralizing antibody. Diabetes Res Clin Pract 2009; 84: e50–e52.
18. Tanaka S, Nishida Y, Aida K, et al. Enterovirus infection, CXC chemokine ligand 10 (CXCL10), and CXCR3 circuit: a mechanism of accelerated beta-cell failure in fulminant type 1 diabetes. Diabetes 2009; 58: 2285–2291.
19. Shibasaki S, Imagawa A, Tauriainen S, et al. Expression of toll-like receptors in the pancreas of recent-onset fulminant type 1 diabetes. Endocr J 2010; 57: 211–219.
20. Tanaka S, Kobayashi T, Nakashita K, et al. Association of HLA-DQ genotype in autoantibody-negative and rapid-onset type 1 diabetes. Diabetes Care 2002; 25: 2302–2307.
21. Nakamura T, Nagasaka S, Kusaka I, et al. HLA-DR-DQ haplotype in rapid-onset type 1 diabetes in Japanese. Diabetes Care 2003; 26: 1640–1641.
22. Katahira M, Ishiguro T, Segawa S, et al. Reevaluation of human leukocyte antigen DR-DQ haplotype and genotype
in type 1 diabetes in the Japanese population. Horm Res 2008; 69: 284–289.
23. Takeda H, Kawasaki E, Shimizu I, et al. Clinical, autoimmune, and genetic characteristics of adult-onset diabetic patients with GAD autoantibodies in Japan (Ehime Study). Diabetes Care 2002; 25: 995–1001.
24. Seino Y, Nanjo K, Tajima N, et al. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Invest 2010; 1: 212–228.
25. Kasuga A, Shimada A, Ozawa Y, et al. IgG1 is the dominant subclass of antibody against glutamic acid decarboxylase among type 1 diabetes in Japanese. Endocr J 2000; 47: 57–62.
26. Saito S, Ota S, Yamada E, et al. Allele frequencies and haplo-
typic associations defined by allelic DNA typing at HLA class I and class II loci in the Japanese population. Tissue Antigens 2000; 56: 522–529.
27. Ikegami H, Kawaguchi Y, Yamato E, et al. Analysis by the polymerase chain reaction of histocompatibility leucocyte antigen-DR9-linked susceptibility to insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1992; 75: 1381–1385.
28. Awata T, Kuzuya T, Matsuda A, et al. Genetic analysis of HLA class II alleles and susceptibility to type 1 (insulin-dependent) diabetes mellitus in Japanese subjects. Diabetologia 1992; 35: 419–424.
29. Ikegami H, Ogihara T. Genetics of insulin-dependent diabetes mellitus. Endocr J 1996; 43: 605–613.
30. Kawabata Y, Ikegami H, Kawaguchi Y, et al. Asian-specific HLA haplotypes reveal heterogeneity of the contribution of HLA-DR and -DQ haplotypes to susceptibility to type 1 diabetes. Diabetes 2002; 51: 545–551.
31. Murao S, Makino H, Kaino Y, et al. Differences in the contribution of HLA-DR and -DQ haplotypes to susceptibility to adult- and childhood-onset type 1 diabetes in Japanese patients. Diabetes 2004; 53: 2684–2690.
32. Shimizu J, Makino H, Imagawa A, et al. Clinical and immuno-
genetic characteristics of fulminant type 1 diabetes associated with pregnancy. J Clin Endocrinol Metab 2006; 91: 471–476.

APPENDIX
Other members of the Japan Diabetes Society Committee on Type 1 Diabetes Mellitus Research: Takuya Awata (Division of Endocrinology and Diabetes, Department of Medicine, Saitama Medical University); Yasuko Uchigata (Diabetes Center, Tokyo Women's Medical University School of Medicine); Minoru Okubo (Department of Endocrinology and Metabolism, Toran-
ponent Hospital); Haruhiko Osawa (Department of Molecular and Genetic Medicine, Ehime University Graduate School of Medicine); Hiroshi Kajio (Department of Endocrinology and Metabolism, National Center for Global Health and Medicine); Hisashi Kami (Department of Medicine, Nagaoka Red Cross Hospital); Eiji Kawasaki (Department of Metabolism/Diabetes and Clinical Nutrition, Nagasaki University Hospital); Yumiko Kawabata (Department of Endocrinology, Metabolism and Dia-
betes, Kinki University School of Medicine); Jo Sato (Department of Diabetes and Metabolism, Iwate Medical University); Akira Shimada (Department of Internal Medicine, Saiseikai Central Hospital); Ikki Shimizu (Department of Internal Medicine, Ehime Prefectural Iwami Hospital); Kazuma Takahashi (Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University School of Medicine); Shoichiro Tanaka (Third Department of Internal Medicine, Interdis-
ciplinary Graduate School of Medicine and Engineering, University of Yamashita); Masao Nagata (Department of Internal Medicine, Kagokawa Municipal Hospital); Koji Nakanishi (Department of Internal Medicine, Fuji Toranomon Orthopaedic Hospital); Sumie Fuji (Department of Internal Medicine, Ishikawa Prefectural Central Hospital); Taro Maruyama (Department of Internal Medicine, Saitama Social Insurance Hospital); Junnosuke Miura (Diabetes Center, Tokyo Women's Medical University School of Medicine); Satoshi Murao (Diabetes Center, Takamatsu Hospital).

We would like to extend our appreciation to the following doctors who referred the patients to the Japan Diabetes Society Committee on Type 1 Diabetes Mellitus Research: J Adachi, S Aizawa, K Aizu, T Akutsu, N Azuma, Y Fujita, M Fujiwara, A Fujita, T Fukui, M Fukutome-Sakaguchi, Y Funase, K Hama-
saki, K Harada, T Hayakawa, Y Hayashi, S Hidaka, M Hosoi, K Imaeda, N Inagaki, S Ishikawa, J Iwao, T Iwao, F Jo, T Kakegawa, T Kato, K Kobayashi, N Koga, S Kondo, N Kusada, J Matsuda, M Matsuda, M Matsumoto, H Matsunaga, T Miki, T Miyake, Y Miyoshi, M Mogi, T Momotsu, T Moriai, S Moroboshi, S Nagasaka, T Nakao, R Nishimura, A Nitta, K Oba, D Ogawa, K Ohno, S Oikawa, M Okamoto, M Okamoto, Y Okamura, K Oki, T Oki, Y Ono, M Ozaki, Y Saio, T Saitoh, E Sakamoto, S Sakaue, M Sakurai, T Sasaki, T Sekigami, K Shiga, K Shimoda, N Shirai, K Sugiyama, Y Suzuki, K Suzuki, K Suzuki, N Takahira, K Takahashi, K Takebayashi, M Tano-
shima-Takei, K Takekoma, M Takeshita, M Tanaka, T Tanaka, T Taniguchi, K Tokinaga, M Tomokami, M Tomiyama, T Tsutsu-
umi, T Uragami, T Wasada, S Yamada, N Yamada, H Yokoyama, S Yoshida, M Yoshida, Y Yoshima, G Yoshino, S Yuki and M Yuzawa.

SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article:
Table S1 | DRB1-DQB1 haplotypes in female patients with PF and NPF and in control subjects
Table S2 | Combination of HLA-DRB1-DQB1 haplotype in female patients with PF and NPF and in control subjects

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.