Faster Kernel Matrix Algebra via Density Estimation

Arturs Backurs* Piotr Indyk† Cameron Musco‡ Tal Wagner§

Abstract

We study fast algorithms for computing fundamental properties of a positive semidefinite kernel matrix \(K \in \mathbb{R}^{n \times n} \) corresponding to \(n \) points \(x_1, \ldots, x_n \in \mathbb{R}^d \). In particular, we consider estimating the sum of kernel matrix entries, along with its top eigenvalue and eigenvector.

We show that the sum of matrix entries can be estimated to \(1 + \epsilon \) relative error in time sublinear in \(n \) and linear in \(d \) for many popular kernels, including the Gaussian, exponential, and rational quadratic kernels. For these kernels, we also show that the top eigenvalue (and an approximate eigenvector) can be approximated to \(1 + \epsilon \) relative error in time subquadratic in \(n \) and linear in \(d \).

Our algorithms represent significant advances in the best known runtimes for these problems. They leverage the positive definiteness of the kernel matrix, along with a recent line of work on efficient kernel density estimation.

1 Introduction

Kernels are a ubiquitous notion in statistics, machine learning, and other fields. A kernel is a function \(k : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R} \) that measures the similarity\(^1\) between two \(d \)-dimensional vectors. Many statistical and machine learning methods, such as support vector machines, kernel ridge regression and kernel density estimation, rely on appropriate choices of kernels. A prominent example of a kernel function is the Radial Basis Function, a.k.a. Gaussian kernel, defined as

\[
k(x, y) = \exp(-\|x - y\|^2).
\]

Other popular choices include the Laplace kernel, exponential kernel, etc. See [Shawe-Taylor et al., 2004, Hofmann et al., 2008] for an overview.

Kernel methods typically operate using a kernel matrix. Given \(n \) vectors \(x_1, \ldots, x_n \in \mathbb{R}^d \), the kernel matrix \(K \in \mathbb{R}^{n \times n} \) is defined as \(K_{i,j} = k(x_i, x_j) \). For most popular kernels, e.g., the Gaussian kernel, \(k \) is a positive definite function, and so \(K \) is positive semidefinite (PSD). Furthermore, it is often the case that \(K \)'s entries are in the range \([0,1]\), with 1’s on the diagonal – we assume this throughout.

Although popular, the main drawback of kernel methods is their efficiency. Most kernel-based algorithms have running times that are at least quadratic in \(n \); in fact, many start by explicitly materializing the kernel matrix \(K \) in preprocessing. This quadratic runtime is likely necessary as

*Toyota Technological Institute at Chicago. backurs@ttic.edu
†Massachusetts Institute of Technology. indyk@mit.edu
‡University of Massachusetts Amherst. musco@cs.umass.edu
§Microsoft Research. talw@mit.edu

\(^1\)This should be contrasted with distance functions that measure the dissimilarity between two vectors.
long as exact (or high-precision) answers are desired. Consider perhaps the simplest kernel problem, where the goal is to compute the sum of matrix entries, i.e., $s(K) = \sum_{i,j} K_{i,j}$. It was shown in Backurs et al. [2017] that, for the Gaussian kernel, computing $s(K)$ up to $1+\epsilon$ relative error requires $n^{2-o(1)}$ time under the Strong Exponential Time Hypothesis (SETH), as long as the dimension d is at least polylogarithmic in n, and $\epsilon = \exp(-\omega(\log^2 n))$. The same limitations were shown to apply to kernel support vector machines, kernel ridge regression, and other kernel problems.

Fortunately, the aforementioned lower bound does not preclude faster algorithms for larger values of ϵ (say, $\epsilon = \Theta(1)$). Over the last decade many such algorithms have been proposed. In our context, the most relevant ones are those solving kernel density evaluation [Charikar and Siminelakis, 2017, Backurs et al., 2018, 2019, Siminelakis et al., 2019, Charikar et al., 2020]. Here, we are given two sets of vectors $X = \{x_1, \ldots, x_m\}$, and $Y = \{y_1, \ldots, y_n\}$, and the goal is to compute the values of $k(y_i) = \frac{1}{m} \sum_j k(x_j, y_i)$ for $i = 1, \ldots, m$. For the Gaussian kernel, the best known algorithm, due to Charikar et al. [2020], estimates these values to $1 + \epsilon$ relative error in time $O(dm/(\mu^{0.173+o(1)}\epsilon^2))$, where μ is a lower bound on $k(x_i)$.

Applying this algorithm directly to approximating the Gaussian kernel sum yields a runtime of roughly $O(dn^{1.173+o(1)}/\epsilon^2)$, since we can set $\mu = 1/n$ and still achieve $(1 + \epsilon)$ approximation as $k(x_i, x_i) = 1$ for all x_i. It is a natural question whether this bound can be improved and if progress on fast kernel density estimation can be extended to other fundamental kernel matrix problems.

Our results In this paper we give much faster algorithms for approximating two fundamental quantities: the kernel matrix sum and the kernel matrix top eigenvector/eigenvalue. Consider a kernel matrix K induced by n points $x_1, \ldots, x_n \in \mathbb{R}^d$ and a kernel function with values in $[0, 1]$ such that the matrix K is PSD and has 1’s on the diagonal. Furthermore, suppose that the kernel k is supported by a kernel density evaluation algorithm with running time of the form $O(dm/(\mu^{p} \epsilon^2))$ for m points, relative error $(1 + \epsilon)$, and density lower bound μ. Then we give:

1. An algorithm for $(1 + \epsilon)$-approximating $s(K)$ in time:

 $$O\left(\frac{dn^{2+5p}}{\epsilon^{2+5p}} / \sqrt{p} \log^2 n\right).$$

 For many popular kernels the above runtime is sublinear in n – see Table 1. Our algorithm is based on subsampling $O(\sqrt{n})$ points from x_1, \ldots, x_n and then applying fast kernel density evaluation to these points. We complement the algorithm with a (very simple) lower bound showing that sampling $\Omega(\sqrt{n})$ points is necessary to estimate $s(K)$ up to a constant factor. This shows that our sampling complexity is optimal.

2. An algorithm that returns an approximate top eigenvector $z \in \mathbb{R}^n$ with $\|z\|_2 = 1$ and $z^T K z \geq (1 - \epsilon) \cdot \lambda_1(K)$, where $\lambda_1(K)$ is K’s top eigenvalue, running in time:

 $$O\left(\frac{dn^{1+p} \log(n/\epsilon)^{2+p}}{\epsilon^{2+3p}}\right).$$

 For many popular kernels, this runtime is subquadratic in n – see Table 1. This is the first subquadratic time algorithm for top eigenvalue approximation and a major improvement over forming the full kernel matrix. By a simple argument, $\Omega(dn)$ time is necessary even for constant factor approximation, and thus our algorithm is within an $\tilde{O}(n^p)$ factor of optimal. Our algorithm is also simple and practical, significantly outperforming baseline methods empirically – see Section 5.
Table 1: Instantiations of our main results, giving sublinear time kernel sum approximation and subquadratic time top eigenvector approximation. All running times are up to polylogarithmic factors assuming constant accuracy parameter ϵ and kernel parameter β. The KDE runtime depends on m, the number of query points and μ, a lower bound on the density for each query point.

Application An immediate application of our kernel sum algorithm is a faster algorithm for estimating the kernel alignment [Cristianini et al., 2002], a popular measure of similarity between kernel matrices. Given K and K', the alignment between K and K' is defined as

$$\hat{A}(K, K') = \frac{\langle K, K' \rangle}{\sqrt{\langle K, K \rangle \langle K', K' \rangle}},$$

where $\langle K, K' \rangle = \sum_{i,j} K_{i,j} K'_{i,j}$ is the inner product between the matrices K and K' interpreted as vectors. Our algorithm yields an efficient algorithm for estimating $\hat{A}(K, K')$ as long as the product kernels $K \circ K$, $K' \circ K'$ and $K \circ K'$ are supported by fast kernel density evaluation algorithms as described earlier. This is the case for e.g., the Gaussian or Laplace kernels.

Related work The problem of evaluating kernel densities, especially for the Gaussian kernel, has been studied extensively. In addition to the recent randomized algorithms discussed in the introduction, there has been a considerable amount of work on algorithms in low dimensional spaces, including Greengard and Strain [1991], Yang et al. [2003], Lee et al. [2006], Lee and Gray [2009], March et al. [2015]. We present a streamlined version of the Fast Gauss Transform algorithm of Greengard and Strain [1991] in the appendix. In addition, there has been a considerable effort designing core-sets for this problem [Phillips and Tai, 2018a,b].

The sum of kernel values can be viewed as a similarity analog of the sum of pairwise distances in metric spaces. The latter quantity can be approximated in time linear in the number n of points in the metric space [Indyk, 1999, Chechik et al., 2015, Cohen et al., 2018]. Note that it is not possible to achieve an $o(n)$-time algorithm for this problem, as a single point can greatly affect the overall value. To the best of our knowledge, our algorithms for the kernel matrix sum are the first that achieve sublinear in n running time and give $O(1)$-approximation for a nontrivial kernel problem.

Computing the top eigenvectors of a kernel matrix is a central problem – it is the primary operation behind kernel principal component analysis [Schölkopf et al., 1997]. Projection onto these eigenvectors also yields an optimal low-rank approximation to the kernel matrix, which can be used Low-rank approximation is widely used to approximate kernel matrices, to speed up kernel learning methods [Williams and Seeger, 2001, Fine and Scheinberg, 2001]. Significant work has focused on fast low-rank approximation algorithms for kernel matrices or related distance matrices [Musco and Musco, 2017, Musco and Woodruff, 2017, Bakshi and Woodruff, 2018, Indyk et al., 2019, 3
Bakshi et al., 2020]. These algorithms have runtime scaling roughly linearly in n. However, they do not give any nontrivial approximation to the top eigenvalues or eigenvectors of the kernel matrix themselves, unless we assume that the matrix is near low-rank. To the best of our knowledge, prior to our work, no subquadratic time approximation algorithms for the top eigenvalue were known, even for $\Theta(1)$ approximation.

Our Techniques: Kernel Sum We start by noting that, via a Chernoff bound, a simple random sampling of kernel matrix entries provides the desired estimation in linear time.

Claim 1. For a positive definite kernel $k : \mathbb{R}^d \times \mathbb{R}^d \to [0, 1]$ with $k(x, x) = 1 \forall x$, uniformly sample $t = O\left(\frac{n \log(1/\delta)}{\epsilon^2}\right)$ off-diagonal entries of K, $K_{i_1,j_1}, \ldots, K_{i_t,j_t}$ and let $\tilde{s}(K) = n + \frac{n(n-1)}{t}\sum_{\ell=1}^t K_{i_\ell,j_\ell}$. Then with probability $\geq 1 - \delta$, $\tilde{s}(K) \in (1 \pm \epsilon) \cdot s(K)$.

Our goal is to do better, giving $1 \pm \epsilon$ approximation to $s(K)$ in sublinear time. We achieve this by (a) performing a more structured random sampling, i.e., sampling a principal submatrix as opposed to individual entries, and (b) providing an efficient algorithm for processing this submatrix. Subsampling the matrix requires a more careful analysis of the variance of the estimator. To accomplish this, we use the fact that the kernel matrix is PSD, which implies that its “mass” cannot be too concentrated. For the second task, we use fast kernel density estimation algorithms, combined with random row sampling to reduce the running time.

Our Techniques: Top Eigenvector Our algorithm for top eigenvector approximation is a variant on the classic power method, with fast approximate matrix vector multiplication implemented through kernel density evaluation. Kernel density evaluation on a set of n points with corresponding kernel matrix $K \in \mathbb{R}^{n \times n}$, can be viewed as approximating the vector $Kz \in \mathbb{R}^n$ where $z(i) = 1/n$ for all i. Building on this primitive, it is possible to implement approximate multiplication with general $z \in \mathbb{R}^n$ [Charikar and Siminelakis, 2017]. We can then hope to leverage work on the ‘noisy power method’, which approximates the top eigenvectors of a matrix using just approximate matrix vector multiplications with that matrix [Hardt and Price, 2014]. However, existing analysis assumes random noise on each matrix vector multiplication, which does not align with the top eigenvector. This cannot be guaranteed in our setting. Fortunately, we can leverage additional structure: if the kernel k is non-negative, then by the Perron-Frobenius theorem, K’s top eigenvector is entrywise non-negative. This ensures that, if our noise in approximating Kz at each step of the power method is entrywise non-negative, then this noise will have non-negative dot product with the top eigenvector. We are able to guarantee this property, and show convergence of the method to an approximate top eigenvector, even when the error might align significantly with the top eigenvector.

2 Preliminaries

Throughout, we focus on *nice* kernels satisfying:

Definition 2 (Nice Kernel Function). A kernel function $k : \mathbb{R}^d \times \mathbb{R}^d \to [0, 1]$ is nice if it is positive definite and satisfies $k(x, x) = 1$ for all $x \in \mathbb{R}^d$.
Many popular kernels, such as the Gaussian kernel, the exponential kernel and the rational quadratic kernel described in the introduction, are indeed nice. We also assume that k admits a fast KDE algorithm. Specifically:

Definition 3 (Fast KDE). A kernel function k admits a $O(dm/(\mu^p\epsilon^2))$ time KDE algorithm, if given a set of m points $x_1, \ldots, x_n \in \mathbb{R}^d$, we can process them in $O(dm/(\mu^p\epsilon^2))$ time for some $p \geq 0$ such that we can answer queries of the form $\frac{1}{n}\sum_i k(y, x_i)$ up to $(1+\epsilon)$ relative error in $O(d/(\mu^p\epsilon^2))$ time for any query point $y \in \mathbb{R}^d$ with probability $\geq 2/3$ assuming that $\frac{1}{n}\sum_i k(y, x_i) \geq \mu$.

Note that for a kernel function satisfying Def. 3, evaluating $k(y_j)$ for m points $Y = \{y_1, \ldots, y_m\}$ against m points $X = \{x_1, \ldots, x_m\}$ requires $O(dm/(\mu^p\epsilon^2))$ total time.

3 Sublinear Time Algorithm for Kernel Sum

Our proposed kernel sum approximation algorithm will sample a set A of $s = \Theta(\sqrt{n})$ input points and look at the principal submatrix K_A of K corresponding to those points. We prove that the sum of off-diagonal entries in K_A (appropriately scaled) is a good estimator of the sum of off-diagonal entries of K. Since for a nice kernel, the sum of diagonal entries is always n, this is enough to give a good estimate of the full kernel sum $s(K)$. Furthermore, we show how to estimate the sum of off-diagonal entries of K_A quickly via kernel density evaluation, in $ds^{2-\delta}/\epsilon^O(1) = dn^{1-\delta/2}/\epsilon^O(1)$ time for a constant $\delta > 0$. Overall this yields:

Theorem 4. Let $K \in \mathbb{R}^{n \times n}$ be a kernel matrix defined by a set of n points and a nice kernel function k (Def. 2) that admits $O(dm/(\mu^p\epsilon^2))$ time approximate kernel density evaluation (Def. 3). After sampling a total of $O(\sqrt{n}/\epsilon^2)$ points, we can in $O\left(dn^{2+2p}\log^2(n)/\epsilon^{2+6p}\right)$ time approximate the sum of entries of K within a factor of $1 + \epsilon$ with high probability $1 - n^{O(1)}$.

For any square matrix K, let $s_o(K)$ be the sum of off diagonal entries. Crucial to our analysis will be the lemma:

Lemma 5 (PSD Mass is Spread Out). Let $K \in \mathbb{R}^{n \times n}$ be a PSD matrix with diagonal entries all equal to 1. Let $s_o,i(K)$ be the sum of off diagonal entries in the i^{th} row of K. If $s_o(K) \geq \epsilon n$ for some $\epsilon \leq 1$, then $\forall i$:

$$s_o,i(K) \leq 2\sqrt{s_o(K)/\epsilon}.$$

Lemma 5 implies that if the off-diagonal elements contribute significantly to $s(K)$ (i.e., $s_o(K) \geq \epsilon n$), then the off diagonal weight is spread relatively evenly across at least $\Omega(1/\epsilon \cdot s_o(K)) = \Omega(\sqrt{n})$ rows/columns. This allows our strategy of sampling a principal submatrix with just $\Theta(\sqrt{n})$ rows to work.

Proof. Assume for the sake of contradiction that there is a row with $s_o,i(K) > 2\sqrt{s_o(K)/\epsilon}$. Let x be the vector that has value $-\sqrt{s_o(K)/\epsilon}$ at index i and 1 elsewhere. Then:

$$x^TKx \leq \frac{s_o(K)}{\epsilon} - \frac{4 \cdot s_o(K)}{\epsilon} + s_o(K) + n \leq -\frac{s_o(K)}{\epsilon},$$

where the last inequality follows from the assumptions that $s_o(K) \geq \epsilon n$ and $\epsilon \leq 1$. The above contradicts K being PSD, completing the lemma. \qed
3.1 Our Estimator

For a subset \(A \subseteq [n] \), let \(K_A \) be the corresponding kernel matrix (which is a principal submatrix of \(K \)). Suppose that \(A \) is chosen by adding every element \(i \in [n] \) to \(A \) independently at random with probability \(p \) (we will later set \(p = 1/\sqrt{n} \)). Then \(Z \triangleq n + s_o(K_A)/p^2 \) is an unbiased estimator of \(s(K) \). That is, \(\mathbb{E}[Z] = s(K) \). We would like to show that the variance \(\text{Var}[Z] \) is small. In fact, in Lemma 6 below, we show that \(\text{Var}[Z] = O(s(K)^2) \). Thus, taking \(\text{Var}[Z]/(\epsilon^2 \mathbb{E}[Z]^2) = O(1/\epsilon^2) \) samples of \(Z \) and returning the average yields a \(1 + \epsilon \) approximation of \(s(K) \) with a constant probability. To amplify the probability of success to \(1 - \delta \) for any \(\delta > 0 \), we take the median of \(O(\log(1/\delta)) \) estimates and apply Chernoff bound in a standard way. Our variance bound follows:

Lemma 6. \(\text{Var}[Z] = O(s(K)^2) \).

Proof. Let \(Z_o \triangleq Z - n = s_o(K_A)/p^2 \).

\[
\text{Var}[Z] = \text{Var}[Z_o] = \mathbb{E}[Z_o^2] - \mathbb{E}[Z_o]^2 \\
\leq \mathbb{E}[Z_o^2] \\
= \frac{1}{p^4} \mathbb{E}[s_o(K_A)^2] \\
= \frac{1}{p^4} \left(p^2 \sum_{i,j \in [n], i \neq j} K_{i,j}^2 + 2p^3 \sum_{i,j,j' \in [n], |\{i,j,j'\}|=3} K_{i,j}K_{i,j'} + p^4 \sum_{i,j,j',j'' \in [n], |\{i,j,j',j''\}|=4} K_{i,j}K_{i',j'} \right).
\]

We upper bound each term of the above expression separately. We start with the first term:

\[
p^{-2} \sum_{i,j \in [n], i \neq j} K_{i,j}^2 = n \sum_{i,j \in [n], i \neq j} K_{i,j}^2 \leq n \cdot s(K) \leq s(K)^2,
\]

where in the equality we set \(p = 1/\sqrt{n} \) and in the first inequality we use the fact that \(0 \leq K_{i,j} \leq 1 \) for every \(i, j \). We have \(s(K) \geq n \) since all diagonal entries are 1, giving the last inequality.

We upper bound the third term:

\[
\sum_{i,j,j',j'' \in [n], |\{i,j,j',j''\}|=4} K_{i,j}K_{i',j'} \leq \sum_{i,j,j',j'' \in [n]} K_{i,j}K_{i',j'} = s(K)^2.
\]

To upper bound the second term we consider two cases.

Case \(s_o(K) \leq n \). In this case we can use Lemma 5 with \(\epsilon = s_o(K)/n \) to conclude that

\[
s_{o,i}(K) \leq 2\sqrt{s_o(K)/\epsilon} = 2\sqrt{s_o(K) \cdot n/s_o(K)} = 2\sqrt{n}
\]

With this bound we can bound the second term by

\[
p^{-1} \sum_{i,j,j' \in [n], |\{i,j,j'\}|=3} K_{i,j}K_{i,j'} \leq p^{-1} \cdot s_o(K) \max_i s_{o,i}(K) \leq 2ns_o(K) \leq 2s(K)^2,
\]

where we substituted \(p = 1/\sqrt{n} \).
Case $s_0(K) > n$. In this case we proceed as follows.

\[
p^{-1} \sum_{i,j,j' \in [n] \mid \{i,j,j'\} = 3} K_{i,j}K_{i,j'} \leq p^{-1} \sum_i \left(\sum_{j: j' \neq i} K_{i,j} \right)^2 \\
= p^{-1} \sum_i s_{o,i}(K)^2.
\]

Since $\sum_i s_{o,i}(K)$ is fixed (and is equal to $s_0(K)$), the last expression is maximized when some $s_{o,i}$ take as large values as possible and the rest are set to 0. Since $s_{o,i}(K) \leq t \triangleq 2\sqrt{s_0(K)}$ (by Lemma 5 with $\epsilon = 1$), we have that in the worst case for $s_0(K)/t$ values of i we have $s_{o,i} = t$ and $s_{o,i} = 0$ for the rest of i. Therefore,

\[
p^{-1} \sum_i s_{o,i}(K)^2 \leq p^{-1} t^2 s_0(K) \\
= \frac{2}{p\sqrt{s_0(K)}} s_0(K)^2 \\
\leq 2s_0(K)^2 \\
\leq 2s(K)^2,
\]

where we use $s_0(K) > n$ and $p = \frac{1}{\sqrt{n}}$. \qed

3.2 Approximating the Value Of The Estimator

To turn the argument from the previous section into an algorithm, we need to approximate the value of $Z = n + s_0(K_A)/p^2$ for $p = 1/\sqrt{n}$ efficiently. It is sufficient to efficiently approximate $Z = n + n \cdot s_0(K_A)$ when $s_0(K_A) = \Omega(\epsilon)$, as otherwise the induced loss in approximating $s(K)$ is negligible since we always have $s(K) \geq n$.

Let K' be a kernel matrix of size $m \times m$ for which $s_0(K') \geq \Omega(\epsilon)$. We show that for such a kernel matrix it is possible to approximate $s_0(K')$ in time $m^{2-\delta}$ for a constant $\delta > 0$. This is enough to yield a sublinear time algorithm for estimating Z since K_A is $m \times m$ with $m \approx pn = \sqrt{n}$.

A simple algorithm. We note that it is sufficient to approximate the contribution to $s_0(K')$ from the rows i for which the sum of entries $s_{o,i}$ is $\Omega(\epsilon/m)$, as the contribution from the rest of the rows in negligible under the assumption that $s_0(K') = \Omega(\epsilon)$. So fix an i and assume that $s_{o,i} \geq \Omega(\epsilon/m)$. To estimate $s_{o,i}$, we use a kernel density evaluation algorithm. Our goal is to approximate

\[
s_{o,i} = \sum_{j: j \neq i} K_{i,j}' = \sum_{j: j \neq i} k(x_i, x_j).
\]

The approach is to first process the points x_1, \ldots, x_m using the algorithm for the KDE. The KDE query algorithm then allows us to answer queries of the form $\frac{1}{m} \sum_j k(q, x_j)$ for an arbitrary query point q in time $O(d/\mu^p \epsilon^2)$, where μ is a lower bound on $\frac{1}{m} \sum_j k(q, x_j)$. So we set $\mu = \Omega(\epsilon/m^2)$ and query the KDE data structure on all $q = x_1, \ldots, x_m$.

The above does not quite work however – to estimate the off-diagonal sum we need to answer queries of the form $\frac{1}{m} \sum_{j: j \neq i} k(x_i, x_j)$ instead of $\frac{1}{m} \sum_j k(x_i, x_j)$. This could be solved if the KDE
data structure were dynamic, so that we could remove any point \(x_i \) from it. Some of the data structures indeed have this property. To provide a general reduction, however, we avoid this requirement by building several “static” data structures and then answering a single query of the form \(\frac{1}{m} \sum_{j:j \neq i} k(x_i, x_j) \) by querying \(O(\log m) \) static data structures. Assume w.l.o.g. that \(m \) is an integer power of 2. Then we build a data structure for points \(x_1, \ldots, x_m/2 \) and another for \(x_{m/2+1}, \ldots, x_m \). We also build 4 data structures for sets \(x_1, \ldots, x_{m/4} \) and \(x_{m/4+1}, \ldots, x_{m/2} \), and \(x_{m/2+1}, \ldots, x_{3m/4} \), and \(x_{3m/4+1}, \ldots, x_m \). And so forth for \(\log m \) levels. Suppose that we want to estimate \(\frac{1}{m} \sum_{j:j \neq i} k(x_1, x_j) \). For that we query the data structures on sets \(x_{m/2+1}, \ldots, x_m \) and \(x_{m/4+1}, \ldots, x_{m/2} \), and \(x_{m/8+1}, \ldots, x_{m/4} \) and so forth for a total of \(\log m \) data structures – one from each level. Similarly we can answer queries for an arbitrary \(i \). The threshold \(\mu \) for all the data structures is the same as before: \(\mu = \Omega(\epsilon/m^2) \).

Since we need to query \(O(\log m) \) data structures for every \(x_i \) and we also need to amplify the probability of success to, say, \(1 - 1/m^2 \). Thus, the final runtime of the algorithm is

\[
O(m \cdot d/(\mu^p \epsilon^2) \log^2 m) = O(dm^{1+2p} / \epsilon^{2+p} \log^2 m).
\]

A faster algorithm. We note that in the previous case, if \(s_{o,i} = \Theta(\epsilon/m) \) for every \(i \), then we can approximate \(s_o(K') \) efficiently by sampling a few \(i \), evaluating the corresponding \(s_{o,i} \) exactly (in \(O(dm) \) time) and returning the empirical mean of the evaluated \(s_{o,i} \). This works since the variance is small. There can be, however, values of \(i \) for which \(s_{o,i} \) is large. For these values of \(i \), we can run a kernel density evaluation algorithm. More formally, we define a threshold \(t > 0 \) and run a kernel density evaluation algorithm on every \(i \) with \(\mu = t/m^2 \) (similarly as in the previous algorithm). This reports all \(i \) for which \(s_{o,i} \geq t/m^2 \). This takes time

\[
O(dm \log^2 m \cdot 1/(\mu^p \epsilon^2)) = O(dm^{1+2p} \log^2 m/(\epsilon^2 t^p)).
\]

Let \(I \) be the set of remaining \(i \). To estimate the contribution from \(s_{o,i} \) with \(i \in I \), we repeatedly sample \(i \in I \) and evaluate \(s_{o,i} \) exactly using the linear scan, and output the average of the evaluated \(s_{o,i} \) scaled by \(|I| \) as an estimate of the contribution of \(s_{o,i} \) from \(i \in I \). Since we can ignore the contribution from \(i \in I \) with \(s_{o,i} \leq o(\epsilon/m) \), we can assume that \(t/m \geq s_{o,i} \geq \Omega(\epsilon/m) \) for every \(i \in I \) and then

\[
\text{Var}[s_{o,i}]/(\epsilon^2 E[s_{o,i}]) \leq O(t^2/\epsilon^4)
\]

samples are sufficient to get a \(1 + \epsilon \) approximation. This step takes time \(O(t^2dm/\epsilon^4) \). The final runtime is

\[
O(dm^{1+2p} \log^2 m/(\epsilon^2 t^p) + dt^2m/\epsilon^4) = O(dm^{2+5p} \log^2(m)/\epsilon^{4+4p})
\]

by setting \(t = m^{2p}/\epsilon^{2+p} \). Since \(m = \Theta(\sqrt{n}) \) with high probability, we achieve \(O(dm^{2+5p} \log^2(m)/\epsilon^{4+4p}) \) runtime for approximating the random variable \(Z = n + n \cdot s_o(K_A) \). Since we evaluate the random variable \(Z O(1/\epsilon^2) \) times, the final runtime to approximate the sum of entries of the kernel matrix \(K \) within a factor of \(1 + \epsilon \) is \(O(n^{2+5p} \log^2(n)/\epsilon^{4+4p}) \).

3.3 Sample Complexity Lower Bound

We next prove a lower bound, which shows that sampling just \(O(\sqrt{n}) \) data points, as is done in our algorithm, is optimal up to constant factors.
Theorem 7. Consider any nice kernel \(k \) such that \(k(x, y) \to 0 \) as \(\|x - y\| \to \infty \). In order to estimate \(\sum_{i,j}^n k(x_i, x_j) \) within any constant factor, we need to sample at least \(\Omega(\sqrt{n}) \) points from the input \(x_1, \ldots, x_n \).

Proof. Suppose that we want to approximate \(s(K) = \sum_{i,j}^n k(x_i, x_j) \) within a factor of \(C > 0 \).

Consider two distributions of \(x_1, \ldots, x_n \). For the first distribution \(x_1, \ldots, x_n \) are sampled independently from a large enough domain such that \(k(x_i, x_j) \approx 0 \) for all \(i \neq j \) with high probability. In this case \(s(K) \approx n \). For the other distribution we sample again \(x_1, \ldots, x_n \) independently at random as before and then sample \(s_1, \ldots, n \sqrt{2Cn} \) from \(1, \ldots, n \) without repetition. Then we set \(x_{s_t} = x_{s_1} \) for \(t = 2, \ldots, \sqrt{2Cn} \). For this distribution \(s(K) \approx 2Cn \). To distinguish between these two distributions we need to sample at least \(\Omega(\sqrt{n/C}) = \Omega(\sqrt{n}) \) points from \(x_1, \ldots, x_n \).

3.4 Application to Kernel Alignment

Our algorithm can be immediately used to estimate the value of the kernel alignment \(\hat{A}(K, K') \) as defined in the introduction. The only requirement is that the submatrices of product kernels \(K \circ K' \), \(K' \circ K \) and \(K \circ K' \) are supported by fast kernel density evaluation algorithms. We formalize this as follows. Let \(C \) be a set of nice kernels defined over pairs of points in \(\mathbb{R}^d \). For any two kernel functions \(k, k' \in C \), the product kernel \(k \circ k' : \mathbb{R}^{2d} \times \mathbb{R}^{2d} \to [0, 1] \) is such that for any \(p, q, p', q' \in \mathbb{R}^d \) we have

\[
(k \circ k')(p, p')(q, q') = k(p, q) \cdot k'(p', q')
\]

Definition 8. Let \(C = C^1, C^2, \ldots \) be a sequence of sets of nice kernels, such that \(C^d \) is defined over pairs of points in \(\mathbb{R}^d \). We say that \(C \) is closed under product if for any two \(k, k' \in C^d \), the product kernel \(k \circ k' \) belongs to \(C^{2d} \).

It is immediate that the Gaussian kernel, interpreted as a sequence of kernels for different values of the dimension \(d \), is closed under product. Thus we obtain the following:

Corollary 9. Given two Gaussian kernel matrices \(K, K' \in \mathbb{R}^{n \times n} \), each defined by a set of \(n \) points in \(\mathbb{R}^d \), and \(\epsilon \in (0, 1) \), \(\hat{A}(K, K') \) can be estimated to \(1 \pm \epsilon \) relative error in time \(O(\sqrt{n/C}) \) with high probability \(1 - 1/n^{\Theta(1)} \).

4 Subquadratic Time Top Eigenvector

We now present our top eigenvector approximation algorithm, which is a variant on the ‘noisy power method’ with approximate matrix vector multiplication implemented through kernel density evaluation. Existing analysis of the noisy power method assumes random noise on each matrix vector multiplication, which has little correlation with the top eigenvector [Hardt and Price, 2014, Balcan et al., 2016]. This prevents this top direction from being ‘washed out’ by the noise. In our setting this cannot be guaranteed – the noise distribution arising from implementing matrix multiplication with \(K \) using kernel density evaluation is complex.

To avoid this issue, we use that since the kernel \(k \) is nice, \(K \) is entrywise non-negative, and by the Perron-Frobenius theorem, so is its top eigenvector. Thus, if our noise in approximating \(Kz \) is entrywise non-negative (i.e., if we overestimate each weighted kernel density), then the noise
will have non-negative dot product with the top eigenvector, and will not wash it out, even if it is
highly correlated with it.

We formalize this analysis in Theorem 11, first giving the required approximate matrix vector
multiplication primitive that we use in Definition 10. We give a full description of our noisy power
method variant in Algorithm 1. In Section 4.1 we discuss how to implement the matrix vector
multiplication primitive efficiently using existing KDE algorithms.

Definition 10 (Non-negative Approximate Matrix Vector Multiplication). An ϵ-non-negative ap-
proximate MVM algorithm for a matrix $K \in \mathbb{R}^{n \times n}$ takes as input a non-negative vector $x \in \mathbb{R}^n$ and
returns $y = Kx + e$ where e is an entrywise non-negative error vector satisfying: $\|e\|_2 \leq \epsilon \|Kx\|_2$.

Algorithm 1 Kernel Noisy Power Method

\begin{algorithm}
\begin{align*}
\textbf{input:} & \quad \text{Error parameter } \epsilon \in (0, 1). \text{ Iteration count } I. \ \epsilon^2/12\text{-non-negative approximate MVM} \\
\textbf{output:} & \quad z \in \mathbb{R}^n \text{ with } \|z\|_2 = 1 \\
1: & \quad \text{Initialize } z_0 \in \mathbb{R}^n \text{ with } z_0(i) = \frac{1}{\sqrt{n}} \text{ for all } i. \\
2: & \quad \text{Initialize } \lambda := 0. \\
3: & \quad \text{for } i = 0 \text{ to } I \text{ do} \\
4: & \quad \quad z_{i+1} := K(z_i). \\
5: & \quad \quad \text{if } z_i^T z_{i+1} > \lambda \text{ then} \\
6: & \quad \quad \quad z := z_i. \\
7: & \quad \quad \quad \lambda := z_i^T z_{i+1}. \\
8: & \quad \quad \text{end if} \\
9: & \quad \quad z_{i+1} := z_{i+1}/\|z_{i+1}\|_2. \\
10: & \quad \text{end for} \\
11: & \quad \text{return } z.
\end{align*}
\end{algorithm}

Theorem 11. The kernel noisy power method (Algorithm 1) run for $I = O\left(\frac{\log(n/\epsilon)}{\epsilon}\right)$ iterations
outputs a unit vector z with $z^T Kz \geq (1 - \epsilon) \cdot \lambda_1(K)$.

Proof. Let $V\Lambda V^T = K$ be K’s eigendecomposition. Λ is diagonal containing the eigenvalues in
decreasing order $\lambda_1 \geq \ldots \geq \lambda_n \geq 0$. V is orthonormal, with columns equal to the corresponding
eigenvectors of K: v_1, \ldots, v_n. Let m be the largest index such that $\lambda_m \geq (1 - \epsilon/4) \cdot \lambda_1$.

Let $c_i = V^T z_i$ be the ith iterate, written in the eigenvector basis. Let $c_{i,m}$ be its first m
components and $c_{i,n-m}$ be the last $n - m$ components. We will argue that for $I = O\left(\frac{\log(n/\epsilon)}{\epsilon}\right)$
iterations, there is at least one iteration $i \leq I$ where $\|c_{i,m}\|_2^2 \geq (1 - \epsilon/4)$, and so z_i aligns mostly
with large eigenvectors. Formally this gives

\[z_i^T Kz_i = c_i^T \Lambda c_i \geq \|c_{i,m}\|_2^2 \cdot (1 - \epsilon/4) \cdot \lambda_1 \]
\[\geq (1 - \epsilon/4)^2 \cdot \lambda_1 \]
\[\geq (1 - \epsilon/2) \cdot \lambda_1. \]

Further, when we check to set $z := z_i$ at line (4) we have

\[z_i^T z_{i+1} = z_i^T Kz_i = z_i^T Kz_i + z_i^T e. \]
Since \(z_0, K, \) and \(e \) are all entrywise non-negative, \(z_i \) is entrywise non-negative for all \(i \). Thus, \(z^T e \geq 0 \). By our bound on \(\|e\|_2 \) we also have \(z^T e \leq \|e\|_2 \leq \epsilon^2 /12 \cdot \|Kz_{i-1}\|_2 \leq \epsilon^2 /12 \cdot \lambda_1 \). Overall this gives

\[
z_i^T K z_i \leq z_i^T z_{i+1} \leq z_i^T K z_i + \epsilon^2 /12 \cdot \lambda_1.
\]

So, if there is an \(i \) with \(\|c_{i,m}\|_2^2 \geq (1 - \epsilon/4) \) and thus \(z_i^T K z_j \geq (1 - \epsilon/2 - \epsilon^2/12) \cdot \lambda_1 \), we will not output \(z = z_j \) with \(z_j^T K z_j \leq (1 - \epsilon/2 - \epsilon^2/12) \cdot \lambda_1 \), ensuring our final error bound.

To prove that there is some iterate with \(\|c_{i,n} - m\|_2^2 \geq (1 - \epsilon/4) \), since \(\|z_i\|_2^2 = \|c_i\|_2^2 = 1 \), it suffices to argue that \(\|c_{i,n-m}\|_2^2 \leq \epsilon/4 \). Assume for the sake of contradiction that for all \(i \leq I \) we have \(\|c_{i,n-m}\|_2^2 > \epsilon/4 \). This gives a contradiction since for \(I = O(\log(n/\epsilon)/\epsilon) \) it would imply that \(1 \geq c_I(1)^2 \geq 4 \|c_{I,n-m}\|_2^2 \) and thus we must have \(\|c_{I,n-m}\|_2^2 < \epsilon/4 \). This contradiction proves the theorem.

Base case. Initially, \(z_0 \) has all entries equal to \(1/\sqrt{n} \). Thus

\[
\frac{c_0(1)}{\|c_{0,n-m}\|_2} \geq c_0(1) = v_i^T z_0 = \frac{1}{\sqrt{n}} \sum_{j=1}^n v_1(j)
= \frac{1}{\sqrt{n}} \|v_1\|_1 \geq \frac{1}{\sqrt{n}},
\]

where we use that \(v_1 \) is a non-negative unit vector by the Perron-Frobenius theorem so \(\sum_{j=1}^n v_1(j) \geq \|v_1\|_2 = 1 \).

Inductive step. Assume inductively that \(\frac{c_i(1)}{\|c_{i,n-m}\|_2} \geq \frac{(1 + \epsilon/6)^i}{\sqrt{n}} \). Before normalization at step (7) we have \(z_{i+1} = Kz_i + e \). Normalization doesn’t affect the ratio between \(c_{i+1}(1) \) and \(\|c_{i+1,n-m}\|_2 \) — thus we can ignore this step.

For all \(j \in 1, \ldots, n \) we have \(c_{i+1}(j) = \lambda_j \cdot c_i(j) + v_j^T e \). Since both \(e \) and \(v_1 \) are all non-negative, this gives \(c_{i+1}(1) \geq \lambda_1 \cdot c_i(1) \). Further, by triangle inequality and the fact that for \(j > m \), \(\lambda_j < (1 - \epsilon/4) \),

\[
\|c_{i+1,n-m}\|_2 \leq (1 - \epsilon/4) \lambda_1 \cdot \|c_{i,n-m}\|_2 + \|e\|_2
\leq (1 - \epsilon/4) \lambda_1 \cdot \|c_{i,n-m}\|_2 + \epsilon^2/12 \cdot \|Kz_i\|_2
\leq (1 - \epsilon/2) \lambda_1 \cdot \|c_{i,n-m}\|_2 + \epsilon^2/12 \cdot \lambda_1.
\]

By our assumption (for contradiction) that \(\|c_{i,n-m}\|_2 \geq \epsilon/4 \) we then have

\[
\|c_{i+1,n-m}\|_2 \leq \left(1 - \epsilon/2 + \frac{\epsilon^2/12}{\epsilon/4} \right) \|c_{i,n-m}\|_2 \cdot \lambda_1
\leq (1 - \epsilon/6) \cdot \|c_{i,n-m}\|_2 \cdot \lambda_1.
\]

Overall, this gives that

\[
\frac{c_{i+1}(1)}{\|c_{i+1,n-m}\|_2} \geq \frac{\lambda_1 \cdot c_i(1)}{(1 - \epsilon/6) \cdot \|c_{i,n-m}\|_2 \cdot \lambda_1}
\geq (1 + \epsilon/6) \cdot \frac{c_i(1)}{\|c_{i,n-m}\|_2} \geq \frac{(1 + \epsilon/6)^i}{\sqrt{n}},
\]

by our inductive assumption. This gives our contradiction, completing the proof. \(\square \)
4.1 Approximate Kernel Matrix Vector Multiplication

We next show how to use fast a KDE algorithm to instantiate the non-negative approximate MVM primitive (Definition 10) required by Algorithm 1. A similar approach was taken by Charikar et al. [2020]. We provide our own analysis, which applies black box to any KDE algorithm.

Theorem 12. Let k be a nice kernel (Def. 2) admitting $O(dm/\mu^p\epsilon^2)$ time approximate kernel density evaluation (Def. 3). Let $K \in \mathbb{R}^{n \times n}$ be the associated kernel matrix for n points in d dimensions. There is an ϵ-non-negative approximate MVM algorithm for K running in time $O\left(\frac{dn^{1+p}\log(n/\epsilon)^{2+p}}{\epsilon^{1+p}}\right)$.

Combined with Theorem 11, Theorem 12 immediately gives our final subquadratic time eigenvalue approximation result:

Corollary 13. Let k be a nice kernel (Def. 2) admitting $O(dm/\mu^p\epsilon^2)$ time approximate kernel density evaluation (Def. 3). Let $K \in \mathbb{R}^{n \times n}$ be the associated kernel matrix for n points in d dimensions. There is an algorithm running in time $O\left(\frac{dn^{1+p}\log(n/\epsilon)^{1+p}}{\epsilon\mu^p}\right)$, which outputs a unit vector z with $z^T K z \geq (1 - \epsilon) \cdot \lambda_1(K)$.

Proof. Algorithm 1 requires $I = O\left(\frac{\log(n/\epsilon)}{\epsilon}\right)$ approximate MVMs, each with error parameter $\epsilon^2/12$. By Theorem 12, each matrix vector multiply requires time $O\left(\frac{dn^{1+p}\log(n/\epsilon)^{1+p}}{\epsilon^{1+p}}\right)$. Multiplying by I gives the final bound.

Proof of Theorem 12. We seek an algorithm that computes $Kx + e$ where e is a non-negative error vector with $\|e\|_2 \leq c\|Kx\|_2$ for some fixed constant c. Note that we can always scale x so that $\|x\|_2 = 1$, and then scale back after multiplication, without effecting the error ϵ. Thus we assume going forward that $\|x\|_2 = 1$. We can also adjust ϵ by a constant factor to have error bounded by $\epsilon\|Kx\|_2$ rather than $c\|Kx\|_2$. Since K has all non-negative entries and ones on the diagonal,

$$\|Kx\|_2^2 = \|x\|_2^2 + \|(K - I)x\|_2^2 + 2x^T(K - I)x \geq \|x\|_2^2,$$

since $K - I$ also have all non-negative entries. Thus $\|Kx\|_2 \geq 1$.

Rounding x: We split the entries of x into $b = c_1\left(\frac{\log(n/\epsilon)}{\epsilon}\right)$ buckets consisting of values lying in the range $[(1 - \epsilon/2)^i, (1 - \epsilon/2)^{i-1}]$ for $i = 1, \ldots, b$ for some fixed constant c_1. Let \bar{x} have all values in bucket i rounded to $(1 - \epsilon/2)^{i-1}$. This rounding increases each entry in x by at most a $1/(1 - \epsilon/2) \leq 1 + \epsilon$ multiplicative factor, and so increases all values in Kx also by at most a $1 + \epsilon$ multiplicative factor. Thus, $\|K\bar{x} - Kx\|_2 \leq \epsilon\|Kx\|_2$. By triangle inequality, it suffices to compute $z = K\bar{x} + e$ where e is non-negative and $\|e\|_2 \leq c\|K\bar{x}\|_2$ for some constant c.

Let $\bar{x}_i \in \mathbb{R}^n$ be \bar{x} with only the entries in bucket i kept and the rest set to zero. Let $\bar{x}_{b+1} \in \mathbb{R}^n$ be the set of entries not falling into any bucket – note that these entries have not been rounded. We have $K\bar{x} = \sum_{i=1}^{b+1} K\bar{x}_i$. Thus, to achieve our final error bound, it suffices to return $z = \sum_{i=1}^{b+1} z_i$ where $z_i = K\bar{x}_i + e_i$, for non-negative error vector e_i with $\|e_i\|_2 \leq \frac{\epsilon}{b+1}\|K\bar{x}\|_2$. This gives that $z = K\bar{x} + e$ where $e = \sum_{i=1}^{b+1} e_i$ is non-negative and by triangle inequality has $\|e\|_2 \leq \epsilon\|K\bar{x}\|_2$, satisfying the required guarantees.

Remainder Entries: We first focus on the entries not lying in any bucket, \bar{x}_{b+1}. For large enough c_1 (recall that $b = c_1\left(\frac{\log(n/\epsilon)}{\epsilon}\right)$), \bar{x}_{b+1} only includes entries with value $< \frac{\epsilon}{(b+1)n^{3/2}}$. Since
all entries of K are bounded by 1, all entries of $K\bar{x}_{b+1}$ are bounded by $\frac{\epsilon}{(b+1)^{1/2}n}$. Thus, if we let z_{b+1} have value $\frac{\epsilon}{(b+1)^{1/2}n}$ in each entry, we have $z_{b+1} = K\bar{x}_{b+1} + e$ where e is non-negative and $\|e\|_2 \leq \frac{\epsilon}{(b+1)^{1/2}} \|K\bar{x}\|_2$, as required.

Estimation within a Bucket: We next consider approximating $K\bar{x}_i$, which amounts to kernel density evaluation with query points corresponding to all n points in our data set and target points X_i corresponding to the non-zero entries of \bar{x}_i. We have

$$[K\bar{x}_i](j) = (1 - \epsilon/2)^{-1} \sum_{x \in X_i} k(x, x_j) = |X_i|(1 - \epsilon/2)^{-1} \cdot \frac{1}{|X_i|} \sum_{x \in X_i} k(x, x_j).$$

If we round any $[K\bar{x}_i](j)$ with value $\leq \frac{\epsilon}{(b+1)^{1/2}n}$ up to $\frac{\epsilon}{(b+1)^{1/2}n}$, this will affect our final error by at most $\frac{\epsilon}{(b+1)^{1/2}n} \cdot \|K\bar{x}\|_2$. Thus, to achieve our designed error, we set our KDE relative error to ϵ and minimum density value to $\mu = \frac{\epsilon}{(b+1)^{1/2}n} \cdot |X_i|(1-\epsilon/2)^{-1}$. We multiply each estimate by a $1/(1 - \epsilon)$ factor to ensure that it is an overestimate of the true entry in $K\bar{x}_i$. Since $\|\bar{x}\|_2 \leq (1 + \epsilon)\|x\|_2 = (1 + \epsilon)$, we have $|X_i| \leq \min \left(n, \frac{(1+\epsilon)^2}{(1-\epsilon/2)^{2i-1}}\right)$. Thus,

$$\frac{1}{|X_i|(1 - \epsilon/2)^{-1}} \geq \max \left(\frac{1}{n(1 - \epsilon/2)^{-i-1}}, \frac{(1-\epsilon/2)^{-i-1}}{(1+\epsilon)^2}\right) \geq \frac{1}{4\sqrt{n}}.$$

In turn, this gives $\mu = \frac{\epsilon}{(b+1)^{1/2}n} \cdot \frac{1}{|X_i|(1-\epsilon/2)^{-1}} \geq \frac{\epsilon}{(b+1)^{4n}}$.

Finally, we plug in our KDE runtime of $O(dn/\mu^p\epsilon^2)$. For each bucket, we must process $|X_i|$ points to evaluate the density against. Since $\sum_{i=1}^b |X_i| \leq n$ the total runtime here is $O(dn/\mu^p\epsilon^2)$. We then must evaluate the density of all n points against the points in each bucket, requiring total time $O(b \cdot dn/\mu^p\epsilon^2)$. Recalling that $b = O\left(\frac{\log(n/\epsilon)}{\epsilon}\right)$ and $\mu = \frac{\epsilon}{(b+1)^{4n}}$ gives total runtime:

$$O\left(\frac{dn^{1+p}}{\epsilon^{2+p}}\right) = O\left(\frac{dn^{1+p} \log(n/\epsilon)^{1+p}}{\epsilon^{3+2p}}\right).$$

\[\square\]

4.2 Lower Bound

It is easy to see that $\Omega(dn)$ time is necessary to estimate $\lambda_1(K)$ to even a constant factor. Thus, for $\epsilon = \Theta(1)$, the runtime of Corollary 13 is tight, up to an $n^p \log(n)^{2+p}$ factor.

Theorem 14. Consider any nice kernel k such that $k(x, y) \to 0$ as $\|x - y\| \to \infty$. Let $K \in \mathbb{R}^{n \times n}$ be the associated kernel matrix of n points $x_1, \ldots, x_n \in \mathbb{R}^d$. Estimating $\lambda_1(K)$ to any constant factor requires $\Omega(nd)$ time.

Proof. Let c be any constant. Consider two input cases. In the first, no two points in x_1, \ldots, x_n are identical. In the second, a random set of c points are exact duplicates of each other. Scaling up these point sets by an arbitrarily large constant value, we can see that their kernel matrices are arbitrary close to $K = I$ in the first case and $K = I + E$ in the second, where E has a 1 at positions (i, j) and (j, i) if i, j are in the duplicate set, and zeros everywhere else. We can check that $\lambda_1(I) = 1$ while $\lambda_1(I + E) = c$. Thus, to approximate the top eigenvalue up to a c factor we must distinguish the two cases. If we read $o(n/c)$ points, then with good probability we will see no duplicates. Thus, we must read $\Omega(n/c)$ points, requiring $\Omega(nd/c)$ time. \[\square\]
5 Empirical evaluation

In this section we empirically evaluate the kernel noisy power method (Algo. 1) for approximating the top eigenvalue of the kernel matrix $K \in \mathbb{R}^{n \times n}$ associated with an input dataset of n points.

The reason we focus our evaluation on approximating the top eigenvector (Section 4), and not on approximating the kernel matrix sum (Section 3) is that the latter problem admits a fast algorithm by vanilla random sampling (in time $O(n)$, see Claim 1), which is very fast in practice. We observed this baseline method obtains comparable empirical running times to our method. We thus focus our experiments on the kernel power method. All previous algorithms for approximating the top eigenvector have running time $\Omega(n^2)$, which is very slow in practice even for moderate n, raising a stronger need for empirical improvement.

For evaluating the kernel noisy power method, we use the Laplacian kernel, $k(x, y) = \exp(-\|x - y\|_1/\sigma)$. It is a nice kernel (by Def. 2), and furthermore, a Fast KDE implementation for it (as per Def. 3) with $p = 0.5$ was recently given in Backurs et al. [2019], based on the Hashing-Based Estimators (HBE) technique of Charikar and Siminelakis [2017]. This can be plugged into Corollary 13 to obtain a provably fast and accurate instantiation of the kernel noisy power method. The resulting algorithm is referred to in this section as KNPM.

Evaluated methods. We compare KNPM to two baselines: The usual (Full) power method, and a Uniform noisy power method. The latter is similar to KNPM, except that the KDE subroutine in Corollary 13 is evaluated by vanilla uniform sampling instead of a Fast KDE.

In more detail, denote by $UniKDE(y, X)$ a randomized algorithm for $KDE(y, X)$ on a point y and a pointset X, that draws a uniformly random sample X' of X and returns the mean of $k(y, x)$ over all $x \in X'$. By Bernstein’s inequality, if the sample size is $\Omega(1/(\mu\epsilon^2))$ then this returns a $(1 \pm \epsilon)$-approximation of $KDE(y, X)$ in time $O(d/(\mu\epsilon^2))$. Therefore, it is a Fast KDE algorithm as defined in Definition 3, with $p = 1$. This algorithm is indeed used and analyzed in many prior works on KDE approximation. Since Algorithm 1 reduces the kernel power method to a sequence of approximate KDE computations (cf. Corollary 13), we may use $UniKDE$ for each of them, thus obtaining the natural baseline we call Uniform. While it asymptotically does not lead to subquadratic running time, it empirically performs significantly better than the full power method, as our experiments will show.

Evaluation metrics. The computational cost of each algorithm is measured by the number of kernel evaluations performed (i.e., how many entries of K are computed). Computed kernel values are not carried over across iterations. The full power methods computes the entire matrix in each iteration, since it is too large to be stored in memory. The other two methods use a small sample of entries. We use the number of kernel evaluations as a proxy for the running time since:

- The three algorithms we evaluate compute power method by a sequence of kernel computations, differing in the choice of points for evaluation (Full computes $k(x, y)$ for all x, y, while Uniform and KNPM choose pairs at random according to their different sampling schemes). Thus this measure of efficiency allows for a direct comparison between them.
- The measure is software and architecture-free, unaffected by access to specialized libraries (e.g., BLAS, MATLAB) or hardware (e.g., SIMD, GPU). This is important with linear algebraic operations, which behave very differently in different environments, resulting in artifacts when measuring runtimes.
• Compatibility with prior literature (e.g., Backurs et al. [2019]).

Nonetheless, we believe that methodologically sound wall-clock time experiments would be valuable, and we leave this for future work.

The accuracy of each method is evaluated in each iteration by the relative error, \(1 - z^T K z / \lambda_1(K)\), where \(z\) is the unit vector computed by the algorithm in that iteration, and \(\lambda_1(K)\) is the true top eigenvalue. \(\lambda_1(K)\) is computed by letting the full power method run until convergence. This error measure corresponds directly to \(\epsilon\) from Corollary 13.

Datasets. We use classes of the Forest Covertype dataset [Blackard and Dean, 1999], which is a 54-dimensional dataset often used to evaluate kernel methods in high dimensions [Siminelakis et al., 2019, Backurs et al., 2019]. We use 5 of the 7 classes (namely classes 3–7), whose sizes range from 2.7K to 35.7K points. We have omitted the two larger classes since we could not compute an accurate groundtruth \(\lambda_1(K)\) for them, and hence could not measure accuracy. We also use the full training set of the MNIST dataset (60K points in 784 dimensions).

Parameter setting. We use bandwidth \(\sigma = 0.05\) (other choices produce similar results). The full power method has no parameters. The Uniform and KNPM methods each have a single parameter that governs the sampling rate. For both, we start with a small sampling rate, and gradually increase it by multiplying by 1.1 in each iteration. In this way, the approximate matrix multiplication becomes more accurate as the method converges closer to the true top eigenvalue.

Results. All results are reported in Figure 1 on the following page. Both the Uniform and KNPM variants of the noisy power method give a much better tradeoff in terms of accuracy vs. computation than the full power method. Additionally, KNPM consistently outperforms Uniform.

6 Conclusion

We have shown that fast kernel density evaluation methods can be used to give much faster algorithms for approximating the kernel matrix sum and its top eigenvector. Our work leaves open a number of directions. For top eigenvector computation – it is open if the gaps between the linear in \(n\) lower bound of Theorem 14 and our slightly superlinear runtimes for the Gaussian and exponential kernels can be closed. Extending our techniques to approximate the top \(k\) eigenvectors/values in subquadratic time would also be very interesting, as this is a key primitive in kernel PCA and related methods. Finally, it would be interesting to identify other natural kernel matrix problems that can be solved in sublinear or subquadratic time using fast KDE methods. Conversely, one might hope to prove lower bounds ruling this out. Lower bounds that hold for error \(\epsilon = \Theta(1)\) would be especially interesting – known lower bounds against e.g., subquadratic time algorithms for the kernel sum, only hold when high accuracy \(\epsilon = \exp(-\omega(\log^2 n))\) is demanded.

Acknowledgments

This research was supported in part by the NSF TRIPODS program (awards CCF-1740751 and DMS-2022448); NSF award CCF-2006798; NSF award CCF-2006806; MIT-IBM Watson collaboration; a Simons Investigator Award; NSF awards IIS-1763618 and CCF-2046235; and an Adobe Research grant.
Figure 1: Results for the Full, Uniform and Kernel Noisy variants of the power method, on classes 3–7 of the Forest Covertype dataset, and on the MNIST dataset. We can see that the noisy power method implemented with KDE (KNPM) achieves a significantly better tradeoff between accuracy and number of kernel evaluations, as compared to the baselines.
References

Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-grained complexity of empirical risk minimization: Kernel methods and neural networks. In *Advances in Neural Information Processing Systems 27 (NIPS)*, pages 4308–4318, 2017.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation for smooth kernels. In *Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 615–626, 2018.

Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density estimation in high dimensions. In *Advances in Neural Information Processing Systems 32 (NIPS)*, pages 15799–15808, 2019.

Ainesh Bakshi and David Woodruff. Sublinear time low-rank approximation of distance matrices. In *Advances in Neural Information Processing Systems 31 (NIPS)*, pages 3782–3792, 2018.

Ainesh Bakshi, Nadiia Chepurko, and Rajesh Jayaram. Testing positive semi-definiteness via random submatrices. *Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, 2020.

Maria-Florina Balcan, Simon Shaolei Du, Yining Wang, and Adams Wei Yu. An improved gap-dependency analysis of the noisy power method. In *Proceedings of the 29th Annual Conference on Computational Learning Theory (COLT)*, pages 284–309, 2016.

Jock A Blackard and Denis J Dean. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. *Computers and electronics in agriculture*, 24(3):131–151, 1999.

M Charikar, M. Kapralov, Nouri N., and P. Siminelakis. Kernel density estimation through density constrained near neighbor search. In *Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, 2020.

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimensions. In *Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 1032–1043, 2017.

Shiri Chechik, Edith Cohen, and Haim Kaplan. Average distance queries through weighted samples in graphs and metric spaces: High scalability with tight statistical guarantees. *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques*, page 659, 2015.

Edith Cohen, Shiri Chechik, and Haim Kaplan. Clustering small samples with quality guarantees: Adaptivity with one2all PPS. In *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.

Nello Cristianini, John Shawe-Taylor, Andre Elisseeff, and Jaz S Kandola. On kernel-target alignment. In *Advances in Neural Information Processing Systems 15 (NIPS)*, pages 367–373, 2002.

Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank kernel representations. *Journal of Machine Learning Research*, 2(Dec):243–264, 2001.
Leslie Greengard and John Strain. The fast Gauss transform. *SIAM Journal on Scientific and Statistical Computing*, 12(1):79–94, 1991.

Moritz Hardt and Eric Price. The noisy power method: a meta algorithm with applications. In *Advances in Neural Information Processing Systems 27 (NIPS)*, pages 2861–2869, 2014.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine learning. *The Annals of Statistics*, pages 1171–1220, 2008.

Piotr Indyk. Sublinear time algorithms for metric space problems. In *Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC)*, pages 428–434, 1999.

Piotr Indyk, Ali Vakilian, Tal Wagner, and David Woodruff. Sample-optimal low-rank approximation of distance matrices. *Proceedings of the 32nd Annual Conference on Computational Learning Theory (COLT)*, 2019.

Dongryeol Lee and Alexander G Gray. Fast high-dimensional kernel summations using the Monte Carlo multipole method. In *Advances in Neural Information Processing Systems 22 (NIPS)*, 2009.

Dongryeol Lee, Andrew W Moore, and Alexander G Gray. Dual-tree fast Gauss transforms. In *Advances in Neural Information Processing Systems 19 (NIPS)*, 2006.

William B March, Bo Xiao, and George Biros. ASKIT: Approximate skeletonization kernel-independent treecode in high dimensions. *SIAM Journal on Scientific Computing*, 37(2):A1089–A1110, 2015.

Cameron Musco and Christopher Musco. Recursive sampling for the Nyström method. In *Advances in Neural Information Processing Systems 30 (NIPS)*, pages 3836–3848, 2017.

Cameron Musco and David P Woodruff. Sublinear time low-rank approximation of positive semidefinite matrices. In *Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 672–683, 2017.

Jeff M Phillips and Wai Ming Tai. Improved coresets for kernel density estimates. In *Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 2718–2727, 2018a.

Jeff M. Phillips and Wai Ming Tai. Near-optimal coresets of kernel density estimates. In *34th International Symposium on Computational Geometry (SoCG)*, 2018b.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component analysis. In *International Conference on Artificial Neural Networks*, pages 583–588. Springer, 1997.

John Shawe-Taylor, Nello Cristianini, et al. *Kernel methods for pattern analysis*. Cambridge University Press, 2004.

Paris Siminelakis, Kexin Rong, Peter Bailis, Moses Charikar, and Philip Levis. Rehashing kernel evaluation in high dimensions. In *Proceedings of the 36th International Conference on Machine Learning (ICML)*, pages 5789–5798, 2019.
Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel machines. In *Advances in Neural Information Processing Systems 14 (NIPS)*, pages 682–688, 2001.

Changjiang Yang, Ramani Duraiswami, Nail A Gumerov, and Larry Davis. Improved fast gauss transform and efficient kernel density estimation. In *Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 2003.
A Simpler Algorithm for the Fast Gauss Transform

In this section we provide a simpler version of the algorithm of Greengard and Strain [1991] for approximate Gaussian kernel density estimation in low dimensions. This version uses ideas that are similar to those in the original algorithm, but reduces it to the necessary essentials, removing e.g., the use of Hermite polynomials.

Theorem 15. Given \(n \) points \(p_1, \ldots, p_n \), we can preprocess them in \(n \log(1/\epsilon)^{O(d)} \) time so that we can answer queries of the form \(\frac{1}{n} \sum_i k(q, p_i) \) for \(k(q, p) = \exp(-\|q - p\|^2) \) within an additive factor of \(\epsilon \) in \(\log(1/\epsilon)^{O(d)} \) query time.

Proof. We first note that, if \(\|q - p_i\|^2 \geq \log(1/\epsilon) \), then we can discard such points and this changes the average of the kernel values by at most an additive factor of \(\epsilon \).

In the preprocessing step we partition the space into \(d \)-dimensional hypercubes of diameter \(\log(1/\epsilon) \). When a query point \(q \) comes, we only examine those hypercubes (and the points of the dataset within) that are at distance at most \(5 \log(1/\epsilon) \) from the query point \(q \). This ensures that don’t ignore any point \(p_i \) that is at distance less than \(\log(1/\epsilon) \) from \(q \). Furthermore, the total volume of all inspected hypercubes is less than the volume of a \(d \)-dimensional Euclidean ball of radius \(10 \log(1/\epsilon) \). A simple volume argument shows that such a Euclidean ball can contain at most \(2^{O(d)} \) hypercubes of diameter \(\log(1/\epsilon) \). Thus, our algorithm will only examine at most \(2^{O(d)} \) hypercubes. Since this is asymptotically negligible compared to the promised query time, from now on we will assume that all points \(p_i \) are satisfy \(\|q - p_i\|^2 \leq 10 \log(1/\epsilon) \).

We calculate the Taylor expansion of \(\exp(-\|q - p_i\|^2) \). We denote \(x = -\|q - p_i\|^2 \) obtaining:

\[
\exp(-\|q - p_i\|^2) = \exp(x) = 1 + x + x^2/2! + x^3/3! + \ldots
\]

Since \(|x| \leq 10 \log(1/\epsilon) \), we can truncate the expansion after \(O(\log(1/\epsilon)) \) terms such that the truncation error is at most \(\epsilon \). Consider a term \(x^r/r! \) with \(r \leq O(\log(1/\epsilon)) \). Since \(r \leq O(\log(1/\epsilon)) \), it suffices to have an \(r^{O(d)} \) time algorithm (to get the promised final runtime) to answer the queries of the form \(\sum_i \|q - p_i\|^{2r} \). This is sufficient because then we can do separate queries for all \(r \leq O(\log(1/\epsilon)) \) and combine them according to the Taylor expansion to approximate \(\exp(-\|q - p_i\|^2) \).

To answer the queries of the form \(\sum_i \|q - p_i\|^{2r} \) efficiently, it is sufficient to answer the queries of the form \(\sum_i (q \cdot p_i)^r \) efficiently, where \(q \cdot p_i = q(1)p_i(1) + \ldots + q(d)p_i(d) \) denotes the inner product between the two vectors.

To achieve a fast query algorithm we observe that

\[
(q \cdot p_i)^r = (q(1)p_i(1) + \ldots + q(d)p_i(d))^r
\]

consists of \(r^{O(d)} \) different monomials after opening the parentheses. Thus, we can write

\[
(q \cdot p_i)^r = X(q) \cdot Y(p_i)
\]

for some efficiently computable maps \(X, Y : \mathbb{R}^d \to \mathbb{R}^{r^{O(d)}} \). We get that

\[
\sum_i (q \cdot p_i)^r = X(q) \cdot \sum_i Y(p_i).
\]

It remains to note that we can precompute quantities \(\sum_i Y(p_i) \) for every hypercube in the preprocessing step and then examine the relevant hypercubes during the query step. \(\square \)

Note. Similar algorithms work for kernels \(\log \|q - p_i\|, 1/(1 + \|q - p_i\|) \) etc.: do Taylor expansion and precompute the quantities \(\sum_i Y(p_i) \).