ONE-POINT EXTENSIONS OF LOCALLY COMPACT PARACOMPACT SPACES

M.R. KOUSHESH

Abstract. A space Y is called an extension of a space X if Y contains X as a dense subspace. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X point-wise. For two (equivalence classes of) extensions Y' and Y'' of X let $Y' \leq Y''$ if there is a continuous function of Y' into Y which fixes X point-wise. An extension Y of X is called a one-point extension if $Y \setminus X$ is a singleton. An extension Y of X is called first-countable if Y is first-countable at points of $Y \setminus X$. Let \mathcal{P} be a topological property. An extension Y of X is called a \mathcal{P}-extension if it has \mathcal{P}.

In this article, for a given locally compact paracompact space X, we consider the two classes of one-point Čech-complete \mathcal{P}-extensions of X and one-point first-countable locally-\mathcal{P} extensions of X, and we study their order-structures, by relating them to the topology of a certain subspace of the outgrowth $\beta X \setminus X$. Here \mathcal{P} is subject to some requirements and include σ-compactness and the Lindelöf property as special cases.

1. Introduction

A space Y is called an extension of a space X if Y contains X as a dense subspace. If Y is an extension of X then the subspace $Y \setminus X$ of Y is called the remainder of Y. Extensions with a one-point remainder are called one-point extensions. Two extensions of X are said to be equivalent if there exists a homeomorphism between them which fixes X point-wise. This defines an equivalence relation on the class of all extensions of X. The equivalence classes will be identified with individuals when this causes no confusion. For two extensions Y and Y' of X we let $Y \leq Y'$ if there exists a continuous function of Y' into Y which fixes X point-wise. The relation \leq defines a partial order on the set of extensions of X (see Section 4.1 of [16] for more details). An extension Y of X is called first-countable if Y is first-countable at points of $Y \setminus X$, that is, Y has a countable local base at every point of $Y \setminus X$. Let \mathcal{P} be a topological property. An extension Y of X is called a \mathcal{P}-extension if it has \mathcal{P}. If \mathcal{P} is compactness then \mathcal{P}-extensions are called compactifications.

This work was mainly motivated by our previous work [9] (see [1], [7], [8], [11], [12] and [13] for related results) in which we have studied the partially ordered set of one-point \mathcal{P}-extensions of a given locally compact space X by relating it to the topologies of certain subspaces of its outgrowth $\beta X \setminus X$. In this article we continue our studies by considering the classes of one-point Čech-complete \mathcal{P}-extensions and one-point first-countable locally-\mathcal{P} extensions of a given locally compact paracompact space X. The topological property \mathcal{P} is subject to some requirements and

2010 Mathematics Subject Classification. 54D20, 54D35, 54D40, 54D45, 54E50.

Key words and phrases. Stone-Čech compactification; One-point extension; One-point compactification; Locally compact; Paracompact; Čech complete; First-countable.

This research was in part supported by a grant from IPM (No. 86540012).
include σ-compactness, the Lindelöf property and the linearly Lindelöf property as special cases.

We review some of the terminology, notation and well-known results that will be used in the sequel. Our definitions mainly come from the standard text [3] (thus, in particular, compact spaces are Hausdorff, etc.). Other useful sources are [5] and [16].

The letters I and \mathbb{N} denote the closed unit interval and the set of all positive integers, respectively. For a subset A of a space X we let $\text{cl}_X A$ and $\text{int}_X A$ denote the closure and the interior of A in X, respectively. A subset of a space is called clopen if it is simultaneously closed and open. A zero-set of a space X is a set of the form $Z(f) = f^{-1}(0)$ for some continuous $f : X \to I$. Any set of the form $X \setminus Z$, where Z is a zero-set of X, is called a cozero-set of X. We denote the set of all zero-sets of X by $Z(X)$ and the set of all cozero-sets of X by $\text{Coz}(X)$.

For a Tychonoff space X the Stone-Čech compactification of X is the largest (with respect to the partial order \leq) compactification of X and is denoted by βX. The Stone-Čech compactification of X can be characterized among all compactifications of X by either of the following properties:

- Every continuous function of X to a compact space is continuously extendible over βX.
- Every continuous function of X to I is continuously extendible over βX.
- For every $Z, S \in Z(X)$ we have $\text{cl}_{\beta X}(Z \cap S) = \text{cl}_{\beta X} Z \cap \text{cl}_{\beta X} S$.

A Tychonoff space is called zero-dimensional if it has an open base consisting of its clopen subsets. A Tychonoff space is called strongly zero-dimensional if its Stone-Čech compactification is zero-dimensional. A Tychonoff space X is called Čech-complete if its outgrowth $\beta X \setminus X$ is an F_σ in βX. Locally compact spaces are Čech-complete, and in the realm of metrizable spaces X, Čech-completeness is equivalent to the existence of a compatible complete metric on X.

Let \mathcal{P} be a topological property. A topological space X is called locally-\mathcal{P} if for every $x \in X$ there exists an open neighborhood U_x of x in X such that $\text{cl}_X U_x$ has \mathcal{P}.

A topological property \mathcal{P} is said to be hereditary with respect to closed subsets if each closed subset of a space with \mathcal{P} also has \mathcal{P}. A topological property \mathcal{P} is said to be preserved under finite (closed) sums of subspaces if a Hausdorff space has \mathcal{P}, provided that it is the union of a finite collection of its (closed) \mathcal{P}-subspaces.

Let (P, \leq) and (Q, \leq) be two partially ordered sets. A mapping $f : (P, \leq) \to (Q, \leq)$ is said to be an order-homomorphism (anti-order-homomorphism, respectively) if $f(a) \leq f(b)$ ($f(b) \leq f(a)$, respectively) whenever $a \leq b$. An order-homomorphism (anti-order-homomorphism, respectively) $f : (P, \leq) \to (Q, \leq)$ is said to be an order-isomorphism (anti-order-isomorphism, respectively) if $f^{-1} : (Q, \leq) \to (P, \leq)$ (exists and) is an order-homomorphism (anti-order-homomorphism, respectively). Two partially ordered sets (P, \leq) and (Q, \leq) are called order-isomorphic (anti-order-isomorphic, respectively) if there exists an order-isomorphism (anti-order-isomorphism, respectively) between them.
2. Motivations, notations and definitions

In this article we will be dealing with various sets of one-point extensions of a given topological space X. For the reader’s convenience we list these sets all at the beginning.

Notation 2.1. Let X be a topological space. Denote

- $\mathcal{E}(X) = \{Y : Y$ is a one-point Tychonoff extension of $X\}$
- $\mathcal{E}^*(X) = \{Y \in \mathcal{E}(X) : Y$ is first-countable at $Y \setminus X\}$
- $\mathcal{E}^C(X) = \{Y \in \mathcal{E}(X) : Y$ is Čech-complete\}$
- $\mathcal{E}^K(X) = \{Y \in \mathcal{E}(X) : Y$ is locally compact\}$

and when P is a topological property

- $\mathcal{E}_P(X) = \{Y \in \mathcal{E}(X) : Y$ has $P\}$
- $\mathcal{E}_{local-P}(X) = \{Y \in \mathcal{E}(X) : Y$ is locally-P.\}$

Also, we may use notations which are obtained by combinations of the above notations, e.g.

$\mathcal{E}_{local-P}^*(X) = \mathcal{E}_P^*(X) \cap \mathcal{E}_{local-P}(X)$.

Definition 2.2 (10). For a Tychonoff space X and a topological property P, let

$\lambda_P X = \bigcup \{\text{int}_\beta X \text{cl}_\beta C : C \in \text{Coz}(X) \text{ and cl}_X C \text{ has } P\}$.

Definition 2.3 (14). We say that a topological property P satisfies Mrówka’s condition (W) if it satisfies the following: If X is a Tychonoff space in which there exists a point p with an open base B for X at p such that $X \setminus B$ has P for each $B \in B$, then X has P.

Mrówka’s condition (W) is satisfied by a large number of topological properties; among them are (regularity $+$) the Lindelöf property, paracompactness, metacompactness, subparacompactness, the para-Lindelöf property, the σ-para-Lindelöf property, weak θ-refinability, θ-refinability (or submetacompactness), weak $\delta\theta$-refinability, $\delta\theta$-refinability (or the submeta-Lindelöf property), countable paracompactness, $[\theta, \kappa]$-compactness, κ-boundedness, screenability, σ-metacompactness, Dieudonné completeness, N-compactness (15), realcompactness, almost realcompactness and zero-dimensionality (see 10, 12 and 13 for proofs and 2, 17 and 18 for definitions).

In 11 we have obtained the following result.

Theorem 2.4 (11). Let X and Y be locally compact locally-P non-P spaces where P is either pseudocompactness or a closed hereditary topological property which is preserved under finite closed sums of subspaces and satisfies Mrówka’s condition (W). The following are equivalent:

1. $\lambda_P X \setminus X$ and $\lambda_P Y \setminus Y$ are homeomorphic.
2. $(\mathcal{E}_P(X), \leq)$ and $(\mathcal{E}_P(Y), \leq)$ are order-isomorphic.
3. $(\mathcal{E}_K(X), \leq)$ and $(\mathcal{E}_K(Y), \leq)$ are order-isomorphic.
4. $(\mathcal{E}_K^C(X), \leq)$ and $(\mathcal{E}_K^C(Y), \leq)$ are order-isomorphic, provided that X and Y are moreover strongly zero-dimensional.

There are topological properties, however, which do not satisfy the assumption of Theorem 2.4 (σ-compactness, for example, does not satisfy Mrówka’s condition (W); see 10). The purpose of this article is to prove the following version of Theorem 2.4. Specific topological properties P which satisfy the requirements of
Theorem 2.5 below are σ-compactness, the Lindelöf property and the linearly Lindelöf property. Note that in Theorem 3.19 of [9] we have shown that conditions (1) and (3) of Theorem 2.5 are equivalent, if \(P \) is σ-compactness, and in Theorem 3.21 of [9] we have shown that conditions (1) and (2) of Theorem 2.5 are equivalent, if \(P \) is the Lindelöf property. Thus, in some sense, Theorem 2.5 generalizes Theorems 3.19 and 3.21 of [9], and at the same time, brings them under a same umbrella.

Theorem 2.5. Let \(X \) and \(Y \) be locally compact paracompact spaces and let \(P \) be a closed hereditary topological property of compact spaces which is preserved under finite sums of subspaces and coincides with σ-compactness in the realm of locally compact paracompact spaces. The following are equivalent:

1. \(\lambda_P X \setminus X \) and \(\lambda_P Y \setminus Y \) are homeomorphic.
2. \((\mathcal{E}^c_P(X), \leq) \) and \((\mathcal{E}^c_P(Y), \leq) \) are order-isomorphic.
3. \((\mathcal{E}^*_{local-P}(X), \leq) \) and \((\mathcal{E}^*_{local-P}(Y), \leq) \) are order-isomorphic.

We now introduce some notation which will be widely used in this article.

Notation 2.6. Let \(X \) be a Tychonoff space. For a subset \(A \) of \(X \) denote

\[
A^* = \text{cl}_\beta X \setminus A.
\]

In particular, \(X^* = \beta X \setminus X \).

Remark 2.7. Note that the notation given in Notation 2.6 can be ambiguous, as \(A^* \) can mean either \(\beta A \setminus A \) or \(\text{cl}_\beta X \setminus A \). However, since for \(C^* \)-embedded subsets these two notions coincide, this will not cause any confusion.

Definition 2.8 ([7]). For a Tychonoff space \(X \), let

\[
\sigma X = \bigcup \{ \text{cl}_\beta X H : H \subseteq X \text{ is } \sigma \text{-compact} \}.
\]

Notation 2.9. Let \(X \) be a locally compact paracompact non-compact space. Then \(X \) can be represented as

\[
X = \bigoplus_{i \in I} X_i
\]

for some index set \(I \), with each \(X_i \) for \(i \in I \), being \(\sigma \)-compact and non-compact (see Theorem 5.1.27 and Exercise 3.8.C of [3]). For any \(J \subseteq I \) denote

\[
X_J = \bigcup_{i \in J} X_i.
\]

Thus, using the notation of Notation 2.6, we have

\[
X_J^* = \text{cl}_\beta X \left(\bigcup_{i \in J} X_i \right) \setminus X.
\]

Remark 2.10. Note that in Notation 2.9 the set \(X_J^* \) is homeomorphic to \(\beta X_J \setminus X_J \), as \(\text{cl}_\beta X_J \) is homeomorphic to \(\beta X_J \) (see Corollary 3.6.8 of [3]). Thus, when \(J \) is countable (since \(X_J \) is \(\sigma \)-compact and locally compact) \(X_J^* \) is a zero-sets in \(\text{cl}_\beta X_J \) (see 1B of [19]). But \(\text{cl}_\beta X_J \) is clopen in \(\beta X \), as \(X_J \) is clopen in \(X \) (see Corollary 3.6.5 of [3]) therefore, \(X_J^* \) is a zero-sets in \(\beta X \). Also, note that with the notation given in Notation 2.6 we have

\[
\sigma X = \bigcup \{ \text{cl}_\beta X_J : J \subseteq I \text{ is countable} \}.
\]

Note that \(\sigma X \) is open in \(\beta X \) and it contains \(X \).
3. Partially ordered set of one-point extensions as related to topologies of subspaces of outgrowth

In Lemma 3.3 we establish a connection between one-point Tychonoff extensions of a given space X and compact non-empty subsets of its outgrowth X^*. Lemma 3.3 (and its preceding lemmas) is known (see e.g. [12]). It is included here for the sake of completeness.

Lemma 3.1. Let X be a Tychonoff space and let C be a non-empty compact subset of X^*. Let T be the space which is obtained from βX by contracting C to a point p. Then the subspace $Y = X \cup \{p\}$ of T is Tychonoff and $\beta Y = T$.

Proof. Let $q : \beta X \to T$ be the quotient mapping. Note that T is Hausdorff, and thus, being a continuous image of βX, it is compact. Also, note that Y is dense in T. Therefore, T is a compactification of Y. To show that $\beta Y = T$, it suffices to verify that every continuous $h : Y \to I$ is continuously extendable over T. Let $h : Y \to I$ be continuous. Let $G : \beta X \to I$ continuously extend $hq|(X \cup C) : X \cup C \to I$ (note that $\beta(X \cup C) = \beta X$, as $X \subseteq X \cup C \subseteq \beta X$; see Corollary 3.6.9 of [3]). Define $H : T \to I$ such that $H|(\beta X \setminus C) = G|(\beta X \setminus C)$ and $H(p) = h(p)$. Then $H|Y = h$, and since $Hq = G$ is continuous, the function H is continuous.

Notation 3.2. Let X be a Tychonoff space and let $Y \in E(X)$. Denote by

$$\tau_Y : \beta X \to \beta Y$$

the (unique) continuous extension of id_X.

Lemma 3.3. Let X be a Tychonoff space and let $Y = X \cup \{p\} \in E(X)$. Let T be the space which is obtained from βX by contracting $\tau_Y^{-1}(p)$ to the point p, and let $q : \beta X \to T$ be the quotient mapping. Then $T = \beta Y$ and $\tau_Y = q$.

Proof. We need to show that Y is a subspace of T. Since βY is also a compactification of X and $\tau_Y|X = \text{id}_X$, by Theorem 3.5.7 of [3], we have $\tau_Y(X^*) = \beta Y \setminus X$. For an open subset W of βY, the set $q(\tau_Y^{-1}(W))$ is open in T, as $q^{-1}(q(\tau_Y^{-1}(W))) = \tau_Y^{-1}(W)$ is open in βX. Therefore

$$Y \cap W = Y \cap q(\tau_Y^{-1}(W))$$

is open in Y, when Y is considered as a subspace of T. For the converse, note that if V is open in T, since

$$Y \cap V = Y \cap (\beta Y \setminus \tau_Y(\beta X \setminus q^{-1}(V)))$$

and $\tau_Y(\beta X \setminus q^{-1}(V))$ is compact and thus closed in βY, the set $Y \cap V$ is open in Y in its original topology. By Lemma 3.1 we have $T = \beta Y$. This also implies that $\tau_Y = q$, as $\tau_Y, q : \beta X \to \beta Y$ are continuous and coincide with id_X on the dense subset X of βX.

Lemma 3.4. Let X be a Tychonoff space. Let $Y_i \in E(X)$, where $i = 1, 2$, and denote by $\tau_i = \tau_{Y_i} : \beta X \to \beta Y_i$ the continuous extension of id_X. The following are equivalent:

1. $Y_1 \subseteq Y_2$.
2. $\tau_2^{-1}(Y_2 \setminus X) \subseteq \tau_1^{-1}(Y_1 \setminus X)$.

Proof. Let \(Y_i = X \cup \{ p_i \} \) where \(i = 1, 2 \). (1) implies (2). Suppose that (1) holds. By definition, there exists a continuous \(f : Y_2 \to Y_1 \) such that \(f|X = \text{id}_X \). Let \(f_{\beta} : \beta Y_2 \to \beta Y_1 \) continuously extend \(f \). Note that the continuous functions \(f_{\beta}, \tau_1 : \beta X \to \beta Y_1 \) coincide with \(\text{id}_X \) on the dense subset \(X \) of \(\beta X \), and thus \(f_{\beta} \tau_2 = \tau_1 \). Note that \(X \) is dense in \(\beta Y_i \) (where \(i = 1, 2 \)), as it is dense in \(Y_i \), and therefore, \(\beta Y_i \) is a compactification of \(X \). Since \(f_{\beta}|X = \text{id}_X \), by Theorem 3.5.7 of [3], we have \(f_{\beta}(\beta Y_2 \setminus X) = \beta Y_1 \setminus X \), and thus \(f_{\beta}(p_2) \in \beta Y_1 \setminus X \). But \(f_{\beta}(p_2) = f(p_2) \), which implies that \(f_{\beta}(p_2) \in Y_1 \setminus X = \{ p_1 \} \). Therefore
\[
\tau_2^{-1}(p_2) \leq \tau_2^{-1}(f_{\beta}^{-1}(f_{\beta}(p_2)))
\]
\[
= (f_{\beta} \tau_2)^{-1}(f_{\beta}(p_2)) = \tau_1^{-1}(f_{\beta}(p_2)) = \tau_1^{-1}(p_1).
\]

(2) implies (1). Suppose that (2) holds. Let \(f : Y_2 \to Y_1 \) be defined such that \(f(p_2) = p_1 \) and \(f|X = \text{id}_X \). We show that \(f \) is continuous, this will show that \(Y_1 \subseteq Y_2 \). Note that by Lemma 3.4, the space \(\beta Y_2 \) is the quotient space of \(\beta X \) which is obtained by contracting \(\tau_2^{-1}(p_2) \) to a point, and \(\tau_2 \) is its corresponding quotient mapping. Thus, in particular, \(Y_2 \) is the quotient space of \(X \cup \tau_2^{-1}(p_2) \), and therefore, to show that \(f \) is continuous, it suffices to show that \(f \tau_2|(X \cup \tau_2^{-1}(p_2)) \) is continuous. We show this by verifying that \(f \tau_2(t) = \tau_1(t) \) for each \(t \in X \cup \tau_2^{-1}(p_2) \). This obviously holds if \(t \in X \). If \(t \in \tau_2^{-1}(p_2) \), then \(\tau_2(t) = p_2 \), and thus \(f \tau_2(t) = p_1 \). But since \(t \in \tau_2^{-1}(\tau_2(t)) \), we have \(t \in \tau_1^{-1}(p_1) \), and therefore \(\tau_1(t) = p_1 \). Thus \(f \tau_2(t) = \tau_1(t) \) in this case as well. \(\square \)

Lemma 3.5. Let \(X \) be a Tychonoff space. Define a function
\[
\Theta : (\mathcal{E}(X), \leq) \to (\{ C \subseteq X^* : C \text{ is compact} \}\setminus \{ \emptyset \}, \subseteq)
\]
by
\[
\Theta(Y) = \tau_Y^{-1}(Y \setminus X)
\]
for any \(Y \in \mathcal{E}(X) \). Then \(\Theta \) is an anti-order-isomorphism.

Proof. To show that \(\Theta \) is well-defined, let \(Y \in \mathcal{E}(X) \). Note that since \(X \) is dense in \(Y \), the space \(X \) is dense in \(\beta Y \). Thus \(\tau_Y : \beta X \to \beta Y \) is onto, as \(\tau_Y (\beta X) \) is a compact (and therefore closed) subset of \(\beta Y \) and it contains \(X = \tau_Y(X) \). Thus \(\tau_Y^{-1}(Y \setminus X) \neq \emptyset \). Also, since \(\tau_Y|X = \text{id}_X \) we have \(\tau_Y^{-1}(Y \setminus X) \subseteq X^* \), and since the singleton \(Y \setminus X \) is closed in \(\beta Y \), its inverse image \(\tau_Y^{-1}(Y \setminus X) \) is closed in \(\beta X \), and therefore it is compact. Now we show that \(\Theta \) is onto, Lemma 3.4 will then complete the proof. Let \(C \) be a non-empty compact subset of \(X^* \). Let \(T \) be the quotient space of \(\beta X \) which is obtained by contracting \(C \) to a point \(p \). Consider the subspace \(Y = X \cup \{ p \} \) of \(T \). Then \(Y \in \mathcal{E}(X) \), and thus, by Lemma 3.1 we have \(\beta Y = T \). The quotient mapping \(q : \beta X \to T \) is identical to \(\tau_Y \), as it coincides with \(\text{id}_X \) on the dense subset \(X \) of \(\beta X \). Therefore
\[
\Theta(Y) = \tau_Y^{-1}(p) = q^{-1}(p) = C.
\]
\(\square \)

Notation 3.6. For a Tychonoff space \(X \) denote by
\[
\Theta_X : (\mathcal{E}(X), \leq) \to (\{ C \subseteq X^* : C \text{ is compact} \}\setminus \{ \emptyset \}, \subseteq)
\]
the anti-order-isomorphism defined by
\[
\Theta_X(Y) = \tau_Y^{-1}(Y \setminus X)
\]
for any \(Y \in \mathcal{E}(X) \).
Lemmas 3.7 and 3.8 below are known results (see [9]).

Lemma 3.7. Let X be a Tychonoff space. For a $Y \in \mathcal{E}(X)$ the following are equivalent:

1. $Y \in \mathcal{E}^*(X)$.
2. $\Theta_X(Y) \in \mathcal{E}(\beta X)$.

Proof. Let $Y = X \cup \{ p \}$. (1) implies (2). Suppose that (1) holds. Let $\{ V_n : n \in \mathbb{N} \}$ be an open base at p in Y. For each $n \in \mathbb{N}$, let V'_n be an open subset of βY such that $Y \cap V'_n = V_n$, and let $f_n : \beta Y \to \mathbb{I}$ be continuous and such that $f_n(p) = 0$ and $f_n(\beta Y \setminus V'_n) \subseteq \{ 1 \}$. Let

$$Z = \bigcap_{n=1}^{\infty} Z(f_n) \in \mathcal{E}(\beta Y).$$

We show that $Z = \{ p \}$. Obviously, $p \in Z$. Let $t \in Z$ and suppose to the contrary that $t \neq p$. Let W be an open neighborhood of p in βY such that $t \notin \text{cl}_{\beta Y} W$. Then $Y \cap W$ is an open neighborhood of p in Y. Let $k \in \mathbb{N}$ be such that $V_k \subseteq Y \cap W$. We have

$$t \in Z(f_k) \subseteq V'_k \subseteq \text{cl}_{\beta Y} V'_k \subseteq \text{cl}_{\beta Y} (Y \cap V'_k) = \text{cl}_{\beta Y} (Y \cap W) \subseteq \text{cl}_{\beta Y} W$$

which is a contradiction. This shows that $t = p$ and therefore $Z \subseteq \{ p \}$. Thus $\{ p \} = Z \in \mathcal{E}(\beta Y)$, which implies that $\tau^{-1}_Y(p) \in \mathcal{E}(\beta X)$.

(2) implies (1). Suppose that (2) holds. Let $\tau^{-1}_Y(p) = Z(f)$ where $f : \beta X \to \mathbb{I}$ is continuous. Note that by Lemma 3.8 the space βY is obtained from βX by contracting $\tau^{-1}_Y(p)$ to p with $\tau_Y : \beta X \to \beta Y$ as the quotient mapping. Then for each $n \in \mathbb{N}$ the set $\tau_Y(f^{-1}([0,1/n]))$ is an open neighborhood of p in βY. We show that the collection

$$\{ Y \cap \tau_Y(f^{-1}([0,1/n])) : n \in \mathbb{N} \}$$

of open neighborhoods of p in Y constitutes an open base at p in Y, this will show (1). Let V be an open neighborhood of p in Y. Let V' be an open subset of βY such that $Y \cap V' = V$. Then $p \in V'$ and thus

$$\bigcap_{n=1}^{\infty} f^{-1}([0,1/n]) = Z(f) = \tau^{-1}_Y(p) \subseteq \tau^{-1}_Y(V').$$

By compactness we have $f^{-1}([0,1/k]) \subseteq \tau^{-1}_Y(V')$ for some $k \in \mathbb{N}$. Therefore

$$Y \cap \tau_Y(f^{-1}([0,1/k])) \subseteq Y \cap \tau_Y(f^{-1}([0,1/k])) \subseteq Y \cap \tau_Y(\tau^{-1}_Y(V')) \subseteq Y \cap V' = V.$$

□

Lemma 3.8. Let X be a locally compact space. For a $Y \in \mathcal{E}(X)$ the following are equivalent:

1. $Y \in \mathcal{E}^C(X)$.
2. $\Theta_X(Y) \in \mathcal{E}(X^*)$.
Proof. Let $Y = X \cup \{p\}$. (1) implies (2). Suppose that (1) holds. Then Y^* is an F_σ in βY. Let $Y^* = \bigcup_{n=1}^\infty K_n$ where each K_n is closed in βY for $n \in \mathbb{N}$. Then

$$X^* = \tau_{\beta Y}^{-1}(p) \cup \bigcup_{n=1}^\infty K_n$$

(recall that βY is the quotient space of βX which is obtained by contracting $\tau_{\beta Y}^{-1}(p)$ to p and τ_Y is its quotient mapping; see Lemma 3.3). For each $n \in \mathbb{N}$, let $f_n : \beta X \to I$ be continuous and such that $f_n(\tau_{\beta Y}^{-1}(p)) = \{0\}$ and $f_n(K_n) \subseteq \{1\}$.

Let $f = \sum_{n=1}^\infty f_n/2^n$. Then $f : \beta X \to I$ is continuous and

$$\tau_{\beta Y}^{-1}(p) = Z(f) \cap X^* \in \mathcal{F}(X^*).$$

(2) implies (1). Suppose that (2) holds. Let $\tau_{\beta Y}^{-1}(p) = Z(g)$ where $g : X^* \to I$ is continuous. Then, using Lemma 3.3, we have

$$Y^* = X^* \setminus \tau_{\beta Y}^{-1}(p) = X^* \setminus Z(g) = g^{-1}([0,1]) = \bigcup_{n=1}^\infty g^{-1}([1/n,1])$$

and each set $g^{-1}([1/n,1])$, for $n \in \mathbb{N}$, being closed in X^*, is compact (note that since X is locally compact, X^* is compact) and thus closed in βY. Therefore, Y^* is an F_σ in βY, that is, Y is Čech-complete. □

The following lemma justifies our requirement on \mathcal{P} in Theorem 3.16. We simply need $\lambda_{\mathcal{P}}X$ to have a more familiar structure.

Lemma 3.9. Let \mathcal{P} be a topological property which is preserved under finite closed sums of subspaces. The following are equivalent:

1. The topological property \mathcal{P} coincides with σ-compactness in the realm of locally compact paracompact spaces.
2. For every locally compact paracompact space X we have
$$\lambda_{\mathcal{P}}X = \sigma X.$$

Proof. (1) implies (2). Suppose that (1) holds. Let X be a locally compact paracompact space. Assume the notation of Notation 2.9. Let $J \subseteq I$ be countable. Then X_J is σ-compact and thus (since it is also locally compact and paracompact) it has \mathcal{P}. Note that X_J is clopen in X thus it has a clopen closure in βX, therefore

$$\text{cl}_{\beta X}X_J = \text{int}_{\beta X}\text{cl}_{\beta X}X_J \subseteq \lambda_{\mathcal{P}}X$$

that is, $\sigma X \subseteq \lambda_{\mathcal{P}}X$. To see the reverse inclusion, let $C \in \text{Coz}(X)$ be such that $\text{cl}_X C$ has \mathcal{P}. Then (since $\text{cl}_X C$ being closed in X is also locally compact and paracompact) $\text{cl}_X C$ is σ-compact. Therefore

$$\text{int}_{\beta X}\text{cl}_{\beta X}C \subseteq \text{cl}_{\beta X}C \subseteq \sigma X$$

which shows that $\lambda_{\mathcal{P}}X \subseteq \sigma X$. Thus $\lambda_{\mathcal{P}}X = \sigma X$.

(2) implies (1). Suppose that (2) holds. Let X be a locally compact paracompact space. By assumption we have $\lambda_{\mathcal{P}}X = \sigma X$. We verify that X has \mathcal{P} if and only
if X is σ-compact. Assume the notation of Notation 2.9. Suppose that X has \mathcal{P}. Then $\lambda_{\mathcal{P}}X = \beta X$ and thus $\sigma X = \beta X$. Now, by compactness, we have

$$\beta X = \text{cl}_{\beta X}X_{J_1} \cup \cdots \cup \text{cl}_{\beta X}X_{J_n}$$

for some $n \in \mathbb{N}$ and some countable $J_1, \ldots, J_n \subseteq I$. Therefore

$$X = X_{J_1} \cup \cdots \cup X_{J_n}$$

is σ-compact. For the converse, suppose that X is σ-compact. Then $\sigma X = \beta X$ and (since $\lambda_{\mathcal{P}}X = \sigma X$) we have $\beta X = \lambda_{\mathcal{P}}X$. Thus, by compactness, we have

$$\beta X = \text{int}_{\beta X}\text{cl}_{\beta X}C_1 \cup \cdots \cup \text{int}_{\beta X}\text{cl}_{\beta X}C_n$$

for some $n \in \mathbb{N}$ and some $C_1, \ldots, C_n \in Coz(X)$ such that $\text{cl}_{\beta X}C_i$ has \mathcal{P} for any $i = 1, \ldots, n$. Now, using our assumption, the space

$$X = \text{cl}_{\beta X}C_1 \cup \cdots \cup \text{cl}_{\beta X}C_n$$

being a finite union of its closed \mathcal{P}-subspaces, has \mathcal{P}.

\textbf{Lemma 3.10.} Let X be a locally compact paracompact space and let \mathcal{P} be a closed hereditary topological property of compact spaces which is preserved under finite sums of subspaces and coincides with σ-compactness in the realm of locally compact paracompact spaces. For a $Y \in \mathcal{E}(X)$ the following are equivalent:

1. $Y \in \mathcal{E}_{\mathcal{P}}^{\mathcal{G}}(X)$.
2. $\Theta_X(Y) \in \mathcal{E}(X^*)$ and $\beta X \setminus \lambda_{\mathcal{P}}X \subseteq \Theta_X(Y)$.

Thus, in particular

$$\Theta_X(\mathcal{E}_{\mathcal{P}}^{\mathcal{G}}(X)) = \{ Z \in \mathcal{E}(X^*) : \beta X \setminus \lambda_{\mathcal{P}}X \subseteq Z \} \setminus \{ \emptyset \}.$$

\textit{Proof.} Let $Y = X \cup \{ p \}$. (1) implies (2). Suppose that (1) holds. By Lemma 3.8 we have $\tau_{\mathcal{P}}^{-1}(p) \in \mathcal{E}(X^*)$. Note that by Lemma 3.9 we have $\lambda_{\mathcal{P}}X = \sigma X$. Let $t \in \beta X \setminus \sigma X$ and suppose to the contrary that $t \notin \tau_{\mathcal{P}}^{-1}(p)$. Let $f : \beta X \to I$ be continuous and such that $f(t) = 0$ and $f(\tau_{\mathcal{P}}^{-1}(p)) = \{ 1 \}$. Since $\tau_{\mathcal{P}}(f^{-1}([0, 1/2]))$ is compact, the set

$$T = X \cap f^{-1}([0, 1/2]) = Y \cap f^{-1}(f^{-1}([0, 1/2]))$$

being closed in Y, has \mathcal{P}. But T, being closed in X, is locally compact and paracompact, and thus, having \mathcal{P}, it is σ-compact. Therefore, by the definition of σX we have $\text{cl}_{\beta X}T \subseteq \sigma X$. But since

$$t \in f^{-1}([0, 1/2]) \subseteq \text{cl}_{\beta X}f^{-1}([0, 1/2]) \subseteq \text{cl}_{\beta X}(X \cap f^{-1}([0, 1/2])) \subseteq \text{cl}_{\beta X}(X \cap f^{-1}([0, 1/2])) = \text{cl}_{\beta X}T$$

we have $t \in \sigma X$, which contradicts the choice of t. Thus $t \in \tau_{\mathcal{P}}^{-1}(p)$ and therefore $\beta X \setminus \sigma X \subseteq \tau_{\mathcal{P}}^{-1}(p)$.

(2) implies (1). Suppose that (2) holds. Note that since X is locally compact, the set X^* is closed in (the normal space) βX and thus, since $\tau_{\mathcal{P}}^{-1}(p) \in \mathcal{E}(X^*)$ (using the Tietze-Urysohn Theorem) we have $\tau_{\mathcal{P}}^{-1}(p) = Z \cap X^*$ for some $Z \in \mathcal{E}(\beta X)$. Note that by Lemma 3.9 we have $\lambda_{\mathcal{P}}X = \sigma X$. Now, since $\beta X \setminus \sigma X \subseteq \tau_{\mathcal{P}}^{-1}(p) \subseteq Z$
we have \(\beta X \setminus Z \subseteq \sigma X \). Therefore, assuming the notation of Notation 2.9 (since \(\beta X \setminus Z \), being a cozero-set in \(\beta X \), is \(\sigma \)-compact) we have

\[
\beta X \setminus Z \subseteq \bigcup_{n=1}^{\infty} \operatorname{cl}_{\beta X} X_{J_n} \subseteq \operatorname{cl}_{\beta X} X_J
\]

where \(J_1, J_2, \ldots \subseteq I \) are countable and \(J = J_1 \cup J_2 \cup \cdots \). But

\[
Y = \tau_Y(Z) \cup (X \setminus Z) \subseteq \tau_Y(Z) \cup X_J
\]

and thus we have

\[
Y = \tau_Y(Z) \cup X_J.
\]

(3.1)

Now, since \(X_J \) has \(\mathcal{P} \), as it is \(\sigma \)-compact (and being closed in \(\beta X \), it is locally compact and paracompact) and \(\tau_Y(X) \) has \(\mathcal{P} \), as it is compact, from (3.1) it follows that the space \(Y \), being a finite union of its \(\mathcal{P} \)-subspaces, has \(\mathcal{P} \). The fact that \(Y \) is Čech-complete follows from Lemma 3.3.

The following generalizes Lemma 3.18 of [9].

Lemma 3.11. Let \(X \) be a locally compact paracompact space and let \(\mathcal{P} \) be a closed hereditary topological property of compact spaces which is preserved under finite sums of subspaces and coincides with \(\sigma \)-compactness in the realm of locally compact paracompact spaces. For a \(Y \in \mathcal{E}(X) \) the following are equivalent:

1. \(Y \in \mathcal{E}^*_{\operatorname{local-}\mathcal{P}}(X) \).
2. \(\Theta_X(Y) \in \mathcal{F}(\beta X) \) and \(\Theta_X(Y) \subseteq \lambda_{\mathcal{P}} X \).

Thus, in particular

\[
\Theta_X(\mathcal{E}^*_{\operatorname{local-}\mathcal{P}}(X)) = \{ Z \in \mathcal{F}(\beta X) : Z \subseteq \lambda_{\mathcal{P}} X \} \backslash \{ \emptyset \}.
\]

Proof. Let \(Y = X \cup \{ p \} \). (1) implies (2). Suppose that (1) holds. Since \(Y \in \mathcal{E}^*(X) \), by Lemma 3.3, we have \(\tau_Y^{-1}(p) \in \mathcal{F}(\beta X) \). Let \(\tau_Y^{-1}(p) = Z(f) \) for some continuous \(f : \beta X \to I \). Since \(Y \) is locally-\(\mathcal{P} \), there exists an open neighborhood \(V \) of \(p \) in \(Y \) such that \(\operatorname{cl}_Y V \) has \(\mathcal{P} \). Let \(V' \) be an open subset of \(\beta Y \) such that \(Y \cap V' = V \). Then \(p \in V' \), and thus since

\[
\bigcap_{n=1}^{\infty} f^{-1}([0,1/n]) = Z(f) = \tau_Y^{-1}(p) \subseteq \tau_Y^{-1}(V')
\]

by compactness, we have \(f^{-1}([0,1/k]) \subseteq \tau_Y^{-1}(V') \) for some \(k \in \mathbb{N} \). Now, for each \(n \geq k \), since

\[
Y \cap \tau_Y(f^{-1}([0,1/n]) \setminus f^{-1}([0,1/(n+1)]))
\]

\[
\subseteq Y \cap \tau_Y(f^{-1}([0,1/k])) \subseteq Y \cap \tau_Y(\tau_Y^{-1}(V')) \subseteq Y \cap V' = V \subseteq \operatorname{cl}_Y V
\]

the set

\[
K_n = X \cap (f^{-1}([0,1/n]) \setminus f^{-1}([0,1/(n+1)]))
\]

being closed in \(\operatorname{cl}_Y V \), has \(\mathcal{P} \), and therefore (since being closed in \(X \) it is locally compact and paracompact) it is \(\sigma \)-compact. (It might be helpful to recall that by
Lemma 3.3 the space βY is obtained from βX by contracting $\tau_Y^{-1}(p)$ to p with τ_Y as its quotient mapping.) Thus, the set

$$X \cap f^{-1}([0, 1/k]) = \bigcup_{n=k}^{\infty} K_n$$

is σ-compact, and therefore, by the definition of σX, we have

$$\text{cl}_{\beta X}(X \cap f^{-1}([0, 1/k])) \subseteq \sigma X.$$

But

$$Z(f) \subseteq f^{-1}([0, 1/k]) \subseteq \text{cl}_{\beta X}f^{-1}([0, 1/k]) = \text{cl}_{\beta X}(X \cap f^{-1}([0, 1/k])) \subseteq \text{cl}_{\beta X}(X \cap f^{-1}([0, 1/k]))$$

from which it follows that $\tau_Y^{-1}(p) \subseteq \sigma X$. Finally, note that by Lemma 3.9 we have $\lambda_P X = \sigma X$.

(2) implies (1). Suppose that (2) holds. By Lemma 3.7 we have $Y \in \mathcal{E}^*(X)$. Therefore, it suffices to verify that Y is locally-\mathcal{P}. Also, since by assumption X is locally compact, it is locally-\mathcal{P}, as \mathcal{P} is assumed to be a topological property of compact spaces. Thus, we need only to verify that p has an open neighborhood in Y whose closure in Y has \mathcal{P}. Let $f : \beta X \to I$ be continuous and such that $Z(f) = \tau_Y^{-1}(p)$. Then since

$$\bigcap_{n=1}^{\infty} g^{-1}([0, 1/n]) = Z(f) \subseteq \lambda_P X$$

by compactness (and since $\lambda_P X$ is open in βX) we have $g^{-1}([0, 1/k]) \subseteq \lambda_P X$ for some $k \in \mathbb{N}$. Note that by Lemma 3.9 we have $\lambda_P X = \sigma X$. Assume the notation of Notation 2.9. By compactness, we have

$$g^{-1}([0, 1/k]) \subseteq \text{cl}_{\beta X}X_{J_1} \cup \cdots \cup \text{cl}_{\beta X}X_{J_n} = \text{cl}_{\beta X}X_J$$

where $n \in \mathbb{N}$, the sets $J_1, \ldots, J_n \subseteq I$ are countable and $J = J_1 \cup \cdots \cup J_n$. The set $X \cap g^{-1}([0, 1/k]) \subseteq X_J$, being closed in the latter (σ-compact space) is σ-compact, and therefore (since being closed in X, it is locally compact and paracompact) it has \mathcal{P}. Let

$$V = Y \cap \tau_Y\left(g^{-1}([0, 1/k])\right).$$

Then V is an open neighborhood of p in Y. We show that $\text{cl}_Y V$ has \mathcal{P}. But this follows, since

$$\text{cl}_Y V \subseteq Y \cap \tau_Y\left(g^{-1}([0, 1/k])\right) = \left(X \cap \tau_Y\left(g^{-1}([0, 1/k])\right)\right) \cup \{p\} = \left(X \cap g^{-1}([0, 1/k])\right) \cup \{p\}$$

and the latter, being a finite union of its \mathcal{P}-subspaces (note that the singleton $\{p\}$, being compact, has \mathcal{P}) has \mathcal{P}, and thus, its closed subset $\text{cl}_Y V$, also has \mathcal{P}. □

Lemmas 3.12, 3.13 are from [8].

Lemma 3.12. Let X be a locally compact paracompact space. If $Z \in \mathcal{Z}(\beta X)$ in non-empty then $Z \cap \sigma X \neq \emptyset$
Proof. Let \(\{x_n\}_{n=1}^{\infty} \) be a sequence in \(\sigma X \). Assume the notation of Notation 2.9. Then \(\{x_n : n \in \mathbb{N}\} \subseteq \text{cl}_{\beta X} X_J \) for some countable \(J \subseteq I \). Therefore \(\{x_n : n \in \mathbb{N}\} \) has a limit point in \(\text{cl}_{\beta X} X_J \subseteq \sigma X \). Thus \(\sigma X \) is countably compact, and therefore is pseudocompact, and \(\nu(\sigma X) = \beta(\sigma X) = \beta X \) (note that the latter equality holds, as \(X \subseteq \sigma X \subseteq \beta X \)). The result now follows, as for any Tychonoff space \(T \), any non-empty zero-set of \(\nu T \) meets \(T \) (see Lemma 5.11 (f) of [10]).

Lemma 3.13. Let \(X \) be a locally compact paracompact space. If \(Z \in \mathcal{Z}(X^*) \) is non-empty then \(Z \cap \sigma X \neq \emptyset \).

Proof. Let \(S \in \mathcal{Z}(\beta X) \) be such that \(S \cap X^* = Z \) (which exists, as \(X^* \) is closed in (the normal space) \(\beta X \), as \(X \) is locally compact, and thus, by the Tietze-Urysohn Theorem, every continuous function from \(X^* \) to \(I \) is continuously extendible over \(\beta X \)). By Lemma 3.12 we have \(S \cap \sigma X \neq \emptyset \). Suppose that \(S \cap (\sigma X \setminus X) = \emptyset \). Then \(S \cap \sigma X = X \cap S \). Assume the notation of Notation 2.9. Let \(J = \{i \in I : X_i \cap S \neq \emptyset\} \). Then \(J \) is finite. Note that since \(X_J \) is clopen in \(X \), it has a clopen closure in \(\beta X \). Now

\[T = S \cap (\beta X \setminus \text{cl}_{\beta X} X_J) \in \mathcal{Z}(\beta X) \]

misses \(\sigma X \), and therefore, by Lemma 3.12 we have \(T = \emptyset \). But this is a contradiction, as \(Z = S \cap (\beta X \setminus \sigma X) \subseteq T \). This shows that

\[Z \cap (\sigma X \setminus X) = S \cap (\sigma X \setminus X) \neq \emptyset. \]

Lemma 3.14. Let \(X \) be a locally compact paracompact space. For any \(S, T \in \mathcal{Z}(X^*) \), if \(S \cap \sigma X \subseteq T \cap \sigma X \) then \(S \subseteq T \).

Proof. Suppose to the contrary that \(S \setminus T \neq \emptyset \). Let \(s \in S \setminus T \). Let \(f : \beta X \to I \) be continuous and such that \(f(s) = 0 \) and \(f(T) \subseteq \{1\} \). Then \(Z(f) \cap S \) is non-empty, and thus by Lemma 3.13 it follows that \(Z(f) \cap S \neq \emptyset \). But this is not possible, as

\[Z(f) \cap S \cap \sigma X \subseteq Z(f) \cap T = \emptyset. \]

The following lemma is from [9].

Lemma 3.15. Let \(X \) and \(Y \) be locally compact spaces. The following are equivalent:

1. \(X^* \) and \(Y^* \) are homeomorphic.
2. \((\mathcal{E}^C(X), \leq) \) and \((\mathcal{E}^C(Y), \leq) \) are order-isomorphic.

Proof. This follows from the fact that in a compact space the order-structure of the set of its all zero-sets (partially ordered with \(\subseteq \)) determines its topology.

The proof of the following theorem is essentially a combination of the proofs we have given for Theorems 3.19 and 3.21 in [9] with the appropriate usage of the preceding lemmas. The reasonably detailed proof is included here for the reader’s convenience.

Theorem 3.16. Let \(X \) and \(Y \) be locally compact paracompact (non-compact) spaces and let \(\mathcal{P} \) be a closed hereditary topological property of compact spaces which is preserved under finite sums of subspaces and coincides with \(\sigma \)-compactness in the realm of locally compact paracompact spaces. The following are equivalent:

1. \(\lambda_{\mathcal{P}} X \setminus X \) and \(\lambda_{\mathcal{P}} Y \setminus Y \) are homeomorphic.
(2) \((\mathcal{E}_{\sigma}^C(X), \leq) \) and \((\mathcal{E}_{\sigma}^C(Y), \leq) \) are order-isomorphic.
(3) \((\mathcal{E}_{\text{local-p}}^C(X), \leq) \) and \((\mathcal{E}_{\text{local-p}}^C(Y), \leq) \) are order-isomorphic.

Proof. Let
\[
X = \bigoplus_{i \in I} X_i \quad \text{and} \quad Y = \bigoplus_{j \in J} Y_j
\]
for some index sets \(I \) and \(J \) with each \(X_i \) and \(Y_j \) for \(i \in I \) and \(j \in J \) being \(\sigma \)-

compact and non-compact. We will use notation of Notation 2.9 and Remark 2.10
without reference. Note that by Lemma 3.9 we have \(\lambda p X = \sigma X \) and \(\lambda p Y = \sigma Y \).

Let
\[
\omega \sigma X = \sigma X \cup \{\Omega\} \quad \text{and} \quad \omega \sigma Y = \sigma Y \cup \{\Omega\}
\]
denote the one-point compactifications of \(\sigma X \) and \(\sigma Y \), respectively.

(1) implies (2). Suppose that (1) holds. Suppose that either \(X \) or \(Y \), say \(X \), is \(\sigma \)-

compact. Then \(\sigma Y \setminus Y \) is compact, as it is homeomorphic to \(\sigma X \setminus X = X^* \), and
the latter is compact, as \(X \) is locally compact. Thus
\[
\sigma Y \setminus Y = Y_{H_1}^* \cup \cdots \cup Y_{H_n}^* = Y_{H}^*
\]
where \(n \in \mathbb{N} \), the sets \(H_1, \ldots, H_n \subseteq J \) are countable and
\[
H = H_1 \cup \cdots \cup H_n.
\]
Now, if there exists some \(u \in J \setminus H \), then since \(Y_u \cap Y_H = \emptyset \) we have
\[
\text{cl}_{\beta Y} Y_u \cap \text{cl}_{\beta Y} Y_H = \emptyset.
\]
Therefore \(\text{cl}_{\beta Y} Y_u \subseteq Y \), contradicting the fact that \(Y_u \) is non-compact. Thus \(J = H \)
and \(Y \) is \(\sigma \)-compact. Therefore \(\sigma Y \setminus Y = Y^* \). Note that by Lemmas 3.8 and 3.10
we have \(\mathcal{E}_{\sigma}^C(X) = \mathcal{E}^C(X) \) and \(\mathcal{E}_{\sigma}^C(Y) = \mathcal{E}^C(Y) \). The result now follows from
Lemma 3.19.

Suppose that \(X \) and \(Y \) are non-\(\sigma \)-compact. Let \(f : \sigma X \setminus X \rightarrow \sigma Y \setminus Y \)
denote a homeomorphism. We define an order-isomorphism
\[
\phi : (\Theta_X(\mathcal{E}_{\sigma}^C(X)), \leq) \rightarrow (\Theta_Y(\mathcal{E}_{\sigma}^C(Y)), \leq).
\]
Since \(\Theta_X \) and \(\Theta_Y \) are anti-order-isomorphisms, this will prove (2). Let \(D \in \Theta_X(\mathcal{E}_{\sigma}^C(X)) \). By Lemma 3.10 we have \(D \in \mathcal{P}(X^*) \) and \(\beta X \setminus X \subseteq D \). Since \(X^* \setminus D \subseteq X^* \), being a cozero-set in \(X^* \) is \(\sigma \)-compact, there exists a countable
\(G \subseteq I \) such that \(X^* \setminus D \subseteq X^*_G \). Now, since \(D \cap X^*_G \in \mathcal{P}(X^*_G) \), we have
\[
f(D \cap X^*_G) \in \mathcal{P}(f(X^*_G)).
\]
Since \(X^*_G \) is open in \(\sigma X \setminus X \), its homeomorphic image \(f(X^*_G) \) is open in \(\sigma Y \setminus Y \), and
thus, is open in \(Y^* \). But \(f(X^*_G) \) is compact, as it is a continuous image of a compact space, and therefore, \(f(X^*_G) \) is clopen in \(Y^* \). Thus
\[
f(D \cap X^*_G) \cup (Y^* \setminus f(X^*_G)) \in \mathcal{P}(Y^*).
\]
Let
\[
\phi(D) = f(D \cap (\sigma X \setminus X)) \cup (\beta Y \setminus \sigma Y).
\]
Note that since
\[
f(D \cap (\sigma X \setminus X)) = f((D \cap X^*_G) \cup ((\sigma X \setminus X) \setminus X^*_G)) = f(D \cap X^*_G) \cup ((\sigma Y \setminus Y) \setminus f(X^*_G))
\]
we have
\[
\phi(D) = f(D \cap (\sigma X \setminus X)) \cup (\beta Y \setminus \sigma Y)
\]
\[
= f(D \cap X^*_G) \cup ((\sigma Y \setminus Y) \setminus f(X^*_G)) \cup (\beta Y \setminus \sigma Y)
\]
\[
= f(D \cap X^*_G) \cup (Y^* \setminus f(X^*_G))
\]
which shows that \(\phi \) is well-defined. The function \(\phi \) is clearly an order-homomorphism. Since \(\sigma X \setminus X \) also is a homeomorphism, as above, it induces an order-homomorphism
\[
\psi : (\Theta_Y (\sigma_Y (Y)), \subseteq) \rightarrow (\Theta_X (\sigma_X (X)), \subseteq)
\]
which is defined by
\[
\psi(D) = f^{-1}(D \cap (\sigma Y \setminus Y)) \cup (\beta Y \setminus \sigma Y)
\]
for any \(D \in \Theta_Y (\sigma_Y (Y)) \). It is now easy to see that \(\psi = \phi^{-1} \), which shows that \(\phi \) is an order-isomorphism.

(2) implies (1). Suppose that (2) holds. Suppose that either \(X \) or \(Y \), say \(X \), is \(\sigma \)-compact (and non-compact). Then \(\sigma X = \beta X \), and thus, by Lemmas 3.8 and 3.10 we have \(\sigma_X (X) = \sigma_X (X) \). Suppose that \(Y \) is non-\(\sigma \)-compact. Note that \(X \), being paracompact and non-compact, is non-pseudocompact (see Theorems 3.10.21, 5.1.5 and 5.1.20 of [3]) and therefore, \(X^* \) contains at least two elements, as almost compact spaces are pseudocompact (see Problem 5U (1) of [16]; recall that a Tychonoff space \(T \) is called almost compact if \(\beta T \setminus T \) has at most one element). Thus, there exist two disjoint non-empty zero-sets of \(X^* \) corresponding to two elements in \(\sigma_X (X) \) with no common upper bound in \(\sigma_X (X) \). But this is not true, as \(\sigma_X (X) \) is order-isomorphic to \(\sigma_Y (Y) \), and any two elements in the latter have a common upper bound in \(\sigma_Y (Y) \). (Note that since \(Y \) is non-\(\sigma \)-compact, the set \(\beta Y \setminus \sigma Y \) is non-empty, and by Lemma 3.10 the image of any element in \(\sigma_Y (Y) \) under \(\Theta_Y \) contains \(\beta Y \setminus \sigma Y \).) Therefore, \(Y \) also is \(\sigma \)-compact and by Lemmas 3.8 and 3.10 we have \(\sigma_Y (Y) = \sigma_X (X) \). Now, since \(\sigma Y = \beta Y \), the result follows from Lemma 3.10.

Next, suppose that \(X \) and \(Y \) are both non-\(\sigma \)-compact. We show that the two compact spaces \(\omega X \setminus X \) and \(\omega Y \setminus Y \) are homeomorphic, by showing that their corresponding sets of zero-sets (partially ordered with \(\subseteq \)) are order-isomorphic. Since \(\Theta_X \) and \(\Theta_Y \) are anti-order-isomorphisms, condition (2) implies the existence of an order-isomorphism
\[
\phi : (\Theta_X (\sigma_X (X)), \subseteq) \rightarrow (\Theta_Y (\sigma_Y (Y)), \subseteq)
\]
We define an order-isomorphism
\[
\psi : (\mathcal{P}(\omega X \setminus X), \subseteq) \rightarrow (\mathcal{P}(\omega Y \setminus Y), \subseteq)
\]
as follows. Let \(Z \in \mathcal{P}(\omega X \setminus X) \). Suppose that \(\Omega \in Z \). Then, since \((\omega X \setminus X) \setminus Z \) is a cozero-set in (the compact space) \(\omega X \setminus X \), it is \(\sigma \)-compact. Thus \((\omega X \setminus X) \setminus Z \subseteq X^*_G \) for some countable \(G \subseteq I \). Since \(X^*_G \) is clopen in \(X^* \), we have
\[
(Z \setminus \Omega) \cup (\beta X \setminus \sigma X) = (Z \setminus X^*_G) \cup (X^* \setminus X^*_G) \in \mathcal{P}(X^*).
\]
In this case, we let
\[
\psi(Z) = (\phi((Z \setminus \Omega)) \cup (\beta X \setminus \sigma X)) \cup (\beta Y \setminus \sigma Y) \cup \{\Omega\}.
\]
Now, suppose that \(\Omega \notin Z \). Then \(Z \subseteq \sigma X \setminus X \), and therefore \(Z \subseteq X^{\ast} \) for some countable \(G \subseteq I \), and thus, using this, one can write

\[
(3.2) \quad Z = X^{\ast} \setminus \bigcup_{n=1}^{\infty} Z_n \text{ where } \beta X \setminus \sigma X \subseteq Z_n \in \mathcal{P}(X^{\ast}) \text{ for any } n \in \mathbb{N}.
\]

In this case, we let

\[
\psi(Z) = Y^{\ast} \setminus \bigcup_{n=1}^{\infty} \phi(Z_n).
\]

We check that \(\psi \) is well-defined. Assume the representation given in (3.2). Since \(Y^{\ast} \setminus \phi(Z_n) \subseteq \sigma Y \) for all \(n \in \mathbb{N} \), there exists a countable \(H \subseteq J \) such that \(Y^{\ast} \setminus \phi(Z_n) \subseteq Y^*_H \) for all \(n \in \mathbb{N} \).

Claim 3.17. For a \(Z \in \mathcal{P}(\omega \sigma X \setminus X) \) with \(\Omega \notin Z \) assume the representation given in (3.2). Let \(H \subseteq J \) be countable and such that \(Y^{\ast} \setminus \phi(Z_n) \subseteq Y^*_H \) for all \(n \in \mathbb{N} \). Let \(A \) be such that \(\phi(A) = Y^{\ast} \setminus Y^*_H \). Then

\[
Y^{\ast} \setminus \bigcup_{n=1}^{\infty} \phi(Z_n) = \phi(A \cup Z) \setminus \phi(A).
\]

Proof of the claim. Suppose that \(y \in Y^{\ast} \) and \(y \notin \phi(Z_n) \) for all \(n \in \mathbb{N} \). If \(y \notin \phi(A \cup Z) \setminus \phi(A) \), then since \(y \notin \phi(Z) \) we have \(y \notin \phi(A \cup Z) \). Therefore, there exists some \(B \in \mathcal{P}(Y^{\ast}) \) containing \(y \) such that \(B \cap \phi(A \cup Z) = \emptyset \) and \(B \cap \phi(Z_n) = \emptyset \) for all \(n \in \mathbb{N} \). Let \(C \) be such that \(\phi(C) = B \cup \phi(A \cup Z) \), and let \(S_n \) for any \(n \in \mathbb{N} \), be such that

\[
\phi(S_n) = \phi(C) \cap \phi(Z_n) = (B \cup \phi(A \cup Z)) \cap \phi(Z_n) = \phi(A \cup Z) \cap \phi(Z_n).
\]

Since \(A \subseteq Z_n \), as \(\phi(A) \subseteq \phi(Z_n) \) and \(Z \cap Z_n = \emptyset \), we have \(A \cap Z = \emptyset \), which implies that

\[
(A \cup Z) \cap Z_n = (A \cap Z_n) \cup (Z \cap Z_n) = A
\]

for all \(n \in \mathbb{N} \). Clearly \(S_n \subseteq (A \cup Z) \cap Z_n \), as by above \(\phi(S_n) \subseteq \phi(A \cup Z) \) and \(\phi(S_n) \subseteq \phi(Z_n) \) for any \(n \in \mathbb{N} \). Thus, \(\phi(S_n) \subseteq \phi(A) \) for all \(n \in \mathbb{N} \). But since \(\phi(A) \subseteq \phi(Z_n) \), we have \(\phi(A) \subseteq \phi(S_n) \), and therefore

\[
\phi(C \cap Z_n) \subseteq \phi(C) \cap \phi(Z_n) = \phi(S_n) \subseteq \phi(A)
\]

for any \(n \in \mathbb{N} \). This implies that \(C \cap Z_n \subseteq A \) for all \(n \in \mathbb{N} \). Thus

\[
C \setminus Z = C \cap \bigcup_{n=1}^{\infty} Z_n = \bigcup_{n=1}^{\infty} (C \cap Z_n) \subseteq A.
\]

Therefore \(C \subseteq A \cup Z \) and we have \(B \subseteq \phi(C) \subseteq \phi(A \cup Z) \), which is a contradiction, as \(B \cap \phi(A \cup Z) = \emptyset \). This shows that

\[
Y^{\ast} \setminus \bigcup_{n=1}^{\infty} \phi(Z_n) \subseteq \phi(A \cup Z) \setminus \phi(A).
\]

Now, suppose that \(y \in \phi(A \cup Z) \setminus \phi(A) \). Suppose to the contrary that \(y \in \phi(Z_n) \) for some \(n \in \mathbb{N} \). Then

\[
y \in \phi(Z_n) \cap \phi(A \cup Z) = \phi(D)
\]
for some D. Clearly $D \subseteq Z_n$ and $D \subseteq A \cup Z$, as $\phi(D) \subseteq \phi(Z_n)$ and $\phi(D) \subseteq \phi(A \cup Z)$. This implies that

$$D \subseteq Z_n \cap (A \cup Z) = (Z_n \cap A) \cup (Z_n \cap Z) = Z_n \cap A \subseteq A$$

and thus $y \in \phi(A)$, as $\phi(D) \subseteq \phi(A)$, which is a contradiction. This proves the claim.

Now, suppose that

$$S = X^* \setminus \bigcup_{n=1}^{\infty} S_n \quad \text{and} \quad Z = X^* \setminus \bigcup_{n=1}^{\infty} Z_n$$

are two representations for some $Z \in \mathcal{P}(\omega \sigma X \setminus X)$ with $\Omega \notin Z$ such that each $S_n, Z_n \in \mathcal{P}(X^*)$ contains $\beta X \setminus \sigma X$ for $n \in \mathbb{N}$. Choose a countable $H \subseteq J$ such that

$$Y^* \setminus \phi(S_n) \subseteq Y^*_H \quad \text{and} \quad Y^* \setminus \phi(Z_n) \subseteq Y^*_H$$

for all $n \in \mathbb{N}$. Then, by the claim, we have

$$Y^* \setminus \bigcup_{n=1}^{\infty} \phi(S_n) = \phi(A \cup Z) \setminus \phi(A) = Y^* \setminus \bigcup_{n=1}^{\infty} \phi(Z_n)$$

where A is such that $\phi(A) = Y^* \setminus Y^*_H$. This shows that ψ is well-defined. Next, we show that ψ is an order-isomorphism. Suppose that $S, Z \in \mathcal{P}(\omega \sigma X \setminus X)$ and $S \subseteq Z$. We consider the following cases.

Case 1: Suppose that $\Omega \in S$. Then $\Omega \in Z$, and clearly

$$\psi(S) = (\phi\left(\{S\setminus\{\Omega\}\} \cup (\beta X \setminus \sigma X)\right) \setminus \{\Omega\}) \cup \{\Omega\}$$

$$\subseteq (\phi\left(\{Z\setminus\{\Omega\}\} \cup (\beta X \setminus \sigma X)\right) \setminus \{\Omega\}) \cup \{\Omega\} = \psi(Z).$$

Case 2: Suppose that $\Omega \notin S$ but $\Omega \in Z$. Let

$$E = \phi\left(\{Z\setminus\{\Omega\}\} \cup (\beta X \setminus \sigma X)\right)$$

and let

$$S = X^* \setminus \bigcup_{n=1}^{\infty} S_n$$

where each $S_n \in \mathcal{P}(X^*)$ contains $\beta X \setminus \sigma X$ for $n \in \mathbb{N}$. Clearly $Y^* \setminus E \subseteq \sigma Y$. Let $H \subseteq J$ be countable and such that $Y^* \setminus \phi(S_n) \subseteq Y^*_H$ for all $n \in \mathbb{N}$ and $Y^* \setminus E \subseteq Y^*_H$. By the claim, we have $\psi(S) = \phi(A \cup S) \setminus \phi(A)$, where $\phi(A) = Y^*_H \setminus Y^*_H$. Since $Y^*_H \setminus Y^*_H \subseteq E$, we have

$$A \subseteq (Z \setminus \{\Omega\}) \cup (\beta X \setminus \sigma X).$$

Now

$$\psi(S) = \phi(A \cup S) \setminus \phi(A) \subseteq \phi(A \cup S) \subseteq \phi\left(\{Z\setminus\{\Omega\}\} \cup (\beta X \setminus \sigma X)\right)$$

which implies that

$$\psi(S) \subseteq (\phi\left(\{Z\setminus\{\Omega\}\} \cup (\beta X \setminus \sigma X)\right) \setminus \{\Omega\}) \cup \{\Omega\} = \psi(Z).$$

Case 3: Suppose that $\Omega \notin Z$. Then $\Omega \notin S$. Let

$$S = X^* \setminus \bigcup_{n=1}^{\infty} S_n \quad \text{and} \quad Z = X^* \setminus \bigcup_{n=1}^{\infty} Z_n$$
where each \(S_n, Z_n \in \mathcal{G}(X^*) \) contains \(\beta X \setminus \sigma X \) for \(n \in \mathbb{N} \). Clearly,

\[
S = S \cap Z = (X^* \setminus \bigcup_{n=1}^{\infty} S_n) \cap (X^* \setminus \bigcup_{n=1}^{\infty} Z_n) = X^* \setminus \bigcup_{n=1}^{\infty} (S_n \cup Z_n)
\]

and thus, since \(\phi(Z_n) \subseteq \phi(S_n \cup Z_n) \) for all \(n \in \mathbb{N} \), it follows that

\[
\psi(S) = Y^* \setminus \bigcup_{n=1}^{\infty} \phi(S_n \cup Z_n) \subseteq Y^* \setminus \bigcup_{n=1}^{\infty} \phi(Z_n) = \psi(Z).
\]

Note that since

\[
\phi^{-1} : (\Theta_Y(\mathcal{G}^*(Y)), \subseteq) \to (\Theta_X(\mathcal{G}^*(X)), \subseteq)
\]

also is an order-isomorphism, as above, it induces an order-isomorphism

\[
\gamma : (\mathcal{G}(\omega \sigma Y \setminus Y), \subseteq) \to (\mathcal{G}(\omega \sigma X \setminus X), \subseteq)
\]

which is easy to see that \(\gamma = \psi^{-1} \). Therefore, \(\psi \) is an order-isomorphism. It then follows that there exists a homeomorphism \(f : \omega \sigma X \setminus X \to \omega \sigma Y \setminus Y \) such that \(f(Z) = \psi(Z) \), for any \(Z \in \mathcal{G}(\omega \sigma X \setminus X) \). Now since for each countable \(G \subseteq I \) we have

\[
f(X_G) = \psi(X_G) \subseteq \sigma Y \setminus Y
\]

it follows that \(f(\sigma X \setminus X) = \sigma Y \setminus Y \). Thus \(\sigma X \setminus X \) and \(\sigma Y \setminus Y \) are homeomorphic.

(1) implies (3). Suppose that (1) holds. Suppose that either \(X \) or \(Y \), say \(X \), is \(\sigma \)-compact. Then \(\sigma X = \beta X \) and thus, arguing as in part (1) \(\Rightarrow \) (2), it follows that \(Y \) also is \(\sigma \)-compact. Therefore, \(\sigma Y = \beta Y \). Note that by Lemmas 3.7 and 3.11 we have \(\mathcal{G}^*_{\text{local}-p}(X) = \mathcal{G}^*(X) \) and since \(X^* \in \mathcal{G}(\beta X) \) (as \(X \) is \(\sigma \)-compact and locally compact; see 1B of [19]) by Lemmas 3.7 and 3.8 we have \(\mathcal{G}^*(X) = \mathcal{G}^C(X) \). Thus \(\mathcal{G}^*_{\text{local}-p}(X) = \mathcal{G}^C(X) \) and similarly \(\mathcal{G}^*_{\text{local}-p}(Y) = \mathcal{G}^C(Y) \). The result now follows from Lemma 3.11.

Suppose that \(X \) and \(Y \) are non-\(\sigma \)-compact. Let \(f : \sigma X \setminus X \to \sigma Y \setminus Y \) be a homeomorphism. We define an order-isomorphism

\[
\phi : (\Theta_X(\mathcal{G}^*_{\text{local}-p}(X)), \subseteq) \to (\Theta_Y(\mathcal{G}^*_{\text{local}-p}(Y)), \subseteq)
\]

as follows. Let \(Z \in \Theta_X(\mathcal{G}^*_{\text{local}-p}(X)) \). By Lemma 3.11 we have \(Z \in \mathcal{G}(\beta X) \) and \(Z \subseteq \sigma X \setminus X \). Thus \(Z \subseteq X_G^G \) for some countable \(G \subseteq I \). Now \(f(Z) \in \mathcal{G}(\sigma Y \setminus Y) \) and since \(f(Z) \) is compact, as it is a continuous image of a compact space, it follows that \(f(Z) \subseteq Y_H^G \) for some countable \(H \subseteq J \). Therefore \(f(Z) \in \mathcal{G}(Y_H^G) \) and then \(f(Z) \in \mathcal{G}(\text{cl}_{\beta Y} Y_H) \). Since \(\text{cl}_{\beta Y} Y_H \) is clopen in \(\beta Y \) we have \(f(Z) \in \mathcal{G}(\beta Y) \). Define

\[
\phi(Z) = f(Z).
\]

It is obvious that \(\phi \) is an order-homomorphism. If we let

\[
\psi : (\Theta_Y(\mathcal{G}^*_{\text{local}-p}(Y)), \subseteq) \to (\Theta_X(\mathcal{G}^*_{\text{local}-p}(X)), \subseteq)
\]

be defined by

\[
\psi(Z) = f^{-1}(Z)
\]

for any \(Z \in \Theta_Y(\mathcal{G}^*_{\text{local}-p}(Y)) \), then \(\psi = \phi^{-1} \) which shows that \(\phi \) is an order-isomorphism.

(3) implies (1). Suppose that (3) holds. Suppose that either \(X \) or \(Y \), say \(X \), is \(\sigma \)-compact (and non-compact). Then \(\sigma X = \beta X \), and thus, by Lemmas 3.7 and 3.11 we have \(\mathcal{G}^*_{\text{local}-p}(X) = \mathcal{G}^*(X) \). Therefore, since \(X^* \in \mathcal{G}(\beta X) \) the set \(\mathcal{G}^*_{\text{local}-p}(X) \) has the smallest element (namely, its one-point compactification \(\omega X \)).
Thus $\mathcal{E}_{\text{local-}P}(Y)$ also has the smallest element; denote this element by T. Then, for each countable $H \subseteq J$ we have

$$Y_H^* \in \Theta_Y(\mathcal{E}_{\text{local-}P}(Y))$$

and therefore $\sigma Y \setminus Y \subseteq \Theta_Y(T)$. By Lemma 3.14 (with $\Theta_Y(T)$ and Y^* as the zero-sets in its statement) we have $Y^* \subseteq \Theta_Y(T)$. This implies that $Y^* \in \mathcal{Z}(\beta Y)$ which shows that Y is σ-compact. Thus $\sigma Y = \beta Y$, and by Lemmas 3.7 and 3.11 we have $\mathcal{E}_{\text{local-}P}(Y) = \mathcal{E}(Y)$. Therefore, in this case (and since by Lemmas 3.7 and 3.8 we have $\mathcal{E}(X) = \mathcal{E}(X)$ and $\mathcal{E}(Y) = \mathcal{E}(Y)$) the result follows from Lemma 3.15.

Next, suppose that X and Y are both non-σ-compact. Since Θ_X and Θ_Y are both anti-order-isomorphisms, there exists an order-isomorphism

$$\phi : (\Theta_X(\mathcal{E}_{\text{local-}P}(X)), \subseteq) \to (\Theta_Y(\mathcal{E}_{\text{local-}P}(Y)), \subseteq).$$

We extend ϕ by letting $\phi(\emptyset) = \emptyset$. We define a function

$$\psi : (\mathcal{Z}(\omega\sigma X \setminus X), \subseteq) \to (\mathcal{Z}(\omega\sigma Y \setminus Y), \subseteq)$$

and verify that it is an order-isomorphism. Let $Z \in \mathcal{Z}(\omega\sigma X \setminus X)$ with $\Omega \in Z$. Since $Z \subseteq X_G^*$ for some countable $G \subseteq I$, we have $Z \in \mathcal{Z}(\beta X)$, and therefore

$$Z \in \Theta_X(\mathcal{E}_{\text{local-}P}(X)) \cup \{\emptyset\}.$$

In this case, let

$$\psi(Z) = \phi(Z).$$

Now, suppose that $Z \in \mathcal{Z}(\omega\sigma X \setminus X)$ and $\Omega \in Z$. Then $(\omega\sigma X \setminus X) \setminus Z$ is a cozero-set in $\omega\sigma X \setminus X$, and we have

$$Z = (\omega\sigma X \setminus X) \setminus \bigcup_{n=1}^{\infty} Z_n$$

where $Z_n \in \mathcal{Z}(\omega\sigma X \setminus X)$ for any $n \in \mathbb{N}$.

Thus, as above, it follows that

$$Z_n \in \Theta_X(\mathcal{E}_{\text{local-}P}(X)) \cup \{\emptyset\}$$

for any $n \in \mathbb{N}$. We verify that

$$\bigcup_{n=1}^{\infty} \phi(Z_n) \in \text{Coz}(\omega\sigma Y \setminus Y).$$

To show this, note that since $\phi(Z_n) \subseteq \sigma Y \setminus Y$ there exists a countable $H \subseteq J$ such that $\phi(Z_n) \subseteq Y_H^*$ for all $n \in \mathbb{N}$.

Claim 3.18. For a $Z \in \mathcal{Z}(\omega\sigma X \setminus X)$ with $\Omega \in Z$ assume the representation given in (3.3). Let $H \subseteq J$ be countable and such that $\phi(Z_n) \subseteq Y_H^*$ for all $n \in \mathbb{N}$. Let A be such that $\phi(A) = Y_H^*$. Then

$$\phi(A \cap Z) = \phi(A) \setminus \bigcup_{n=1}^{\infty} \phi(Z_n).$$
Proof of the claim. For each \(n \in \mathbb{N} \), since \(A \cap Z \cap Z_n = \emptyset \), we have \(\phi(A \cap Z) \cap \phi(Z_n) = \emptyset \), as otherwise, \(\phi(A \cap Z) \) and \(\phi(Z_n) \) will have a common lower bound in \(\Theta_Y(\ell^{*}_{\text{local-p}}(Y)) \), that is, \(\phi(A \cap Z) \cap \phi(Z_n) \), whereas \(A \cap Z \) and \(Z_n \) do not have. Also \(\phi(A \cap Z) \subseteq \phi(A) \). Therefore
\[
\phi(A \cap Z) \subseteq \phi(A) \setminus \bigcup_{n=1}^{\infty} \phi(Z_n).
\]
To show the reverse inclusion, let \(y \in \phi(A) \) be such that \(y \notin \phi(Z_n) \) for all \(n \in \mathbb{N} \). There exists some \(B \in \mathcal{Z}(\beta Y) \) such that \(y \in B \) and \(B \cap \phi(Z_n) = \emptyset \) for all \(n \in \mathbb{N} \). If \(y \notin \phi(A \cap Z) \), then there exists some \(C \in \mathcal{Z}(\beta Y) \) such that \(y \in C \) and \(C \cap \phi(A \cap Z) = \emptyset \). Let \(D = \phi(A) \cap B \cap C \) and let \(E \) be such that \(\phi(E) = D \). For each \(n \in \mathbb{N} \), since \(\phi(E) \cap \phi(Z_n) = \emptyset \), we have \(E \cap Z_n = \emptyset \), and thus \(E \subseteq Z \). On the other hand, since \(\phi(E) \subseteq \phi(A) \) we have \(E \subseteq A \), and therefore \(E \subseteq A \cap Z \). Thus \(\phi(E) \subseteq \phi(A \cap Z) \), which implies that \(\phi(E) = \emptyset \), as \(\phi(E) \subseteq C \). This contradiction shows that \(y \in \phi(A \cap Z) \), which proves the claim.

Let \(A \) be such that \(\phi(A) = Y_N \). Now, \(\phi(A \cap Z) \in \mathcal{Z}(\omega \sigma Y \setminus Y) \), as \(\phi(A \cap Z) \subseteq \phi(A) \). By the claim we have

\[
(\omega \sigma Y \setminus Y) \setminus \bigcup_{n=1}^{\infty} \phi(Z_n) = \left(\phi(A) \setminus \bigcup_{n=1}^{\infty} \phi(Z_n) \right) \cup ((\omega \sigma Y \setminus Y) \setminus \phi(A))
\]

\[
= \phi(A \cap Z) \cup ((\omega \sigma Y \setminus Y) \setminus \phi(A)) \in \mathcal{Z}(\omega \sigma Y \setminus Y)
\]

and (3.4) is verified. In this case, we let

\[
\psi(Z) = (\omega \sigma Y \setminus Y) \setminus \bigcup_{n=1}^{\infty} \phi(Z_n).
\]

Next, we show that \(\psi \) is well-defined. Assume that

\[
Z = (\omega \sigma X \setminus X) \setminus \bigcup_{n=1}^{\infty} S_n
\]

with \(S_n \in \mathcal{Z}(\omega \sigma X \setminus X) \) for all \(n \in \mathbb{N} \), is another representation of \(Z \). We need to show that

\[
(3.5) \quad \bigcup_{n=1}^{\infty} \phi(Z_n) = \bigcup_{n=1}^{\infty} \phi(S_n).
\]

Without any loss of generality, suppose to the contrary that there exists some \(m \in \mathbb{N} \) and \(y \in \phi(Z_m) \) such that \(y \notin \phi(S_n) \) for all \(n \in \mathbb{N} \). Then there exists some \(A \in \mathcal{Z}(\beta Y) \) such that \(y \in A \) and \(A \cap \phi(S_n) = \emptyset \) for all \(n \in \mathbb{N} \). Consider

\[
A \cap \phi(Z_m) \in \Theta_Y(\ell^{*}_{\text{local-p}}(Y)).
\]

Let \(B \) be such that \(\phi(B) = A \cap \phi(Z_m) \). Since \(\phi(B) \subseteq A \) we have \(\phi(B) \cap \phi(S_n) = \emptyset \) from which it follows that \(B \cap S_n = \emptyset \) for all \(n \in \mathbb{N} \). But \(B \subseteq Z_m \), as \(\phi(B) \subseteq \phi(Z_m) \), and we have

\[
B \subseteq \bigcup_{n=1}^{\infty} Z_n = \bigcup_{n=1}^{\infty} S_n
\]

which implies that \(B = \emptyset \). But this is a contradiction, as \(\phi(B) \neq \emptyset \). Therefore (3.5) holds, and thus \(\psi \) is well-defined. To prove that \(\psi \) is an order-isomorphism, let \(S, Z \in \mathcal{Z}(\omega \sigma X \setminus X) \) and \(S \subseteq Z \). The case when \(S = \emptyset \) holds trivially. Assume that \(S \neq \emptyset \). We consider the following cases.
Case 1: Suppose that $\Omega \notin Z$. Then $\Omega \notin S$ and we have
\[\psi(S) = \phi(S) \subseteq \phi(Z) = \psi(Z). \]

Case 2: Suppose that $\Omega \notin S$ but $\Omega \in Z$. Let
\[Z = (\omega \sigma X \setminus X) \bigcup_{n=1}^{\infty} Z_n \]
with $Z_n \in \mathcal{P}(\omega \sigma X \setminus X)$ for all $n \in \mathbb{N}$. Then, since $S \subseteq Z$ we have $S \cap Z_n = \emptyset$, and therefore $\phi(S) \cap \phi(Z_n) = \emptyset$ for all $n \in \mathbb{N}$. Thus
\[\psi(S) = \phi(S) \subseteq (\omega \sigma Y \setminus Y) \bigcup_{n=1}^{\infty} \phi(Z_n) = \psi(Z). \]

Case 3: Suppose that $\Omega \in S$. Then $\Omega \in Z$. Let
\[S = (\omega \sigma X \setminus X) \bigcup_{n=1}^{\infty} S_n \text{ and } Z = (\omega \sigma X \setminus X) \bigcup_{n=1}^{\infty} Z_n \]
where $S_n, Z_n \in \mathcal{P}(\omega \sigma X \setminus X)$ for all $n \in \mathbb{N}$. Therefore
\[S = S \cap Z = ((\omega \sigma X \setminus X) \bigcup_{n=1}^{\infty} S_n) \cap ((\omega \sigma X \setminus X) \bigcup_{n=1}^{\infty} Z_n) \]
\[= (\omega \sigma X \setminus X) \bigcup_{n=1}^{\infty} (S_n \cup Z_n). \]

Thus, since $\phi(Z_n) \subseteq \phi(S_n \cup Z_n)$ for all $n \in \mathbb{N}$, we have
\[\psi(S) = (\omega \sigma Y \setminus Y) \bigcup_{n=1}^{\infty} \phi(S_n \cup Z_n) \subseteq (\omega \sigma Y \setminus Y) \bigcup_{n=1}^{\infty} \phi(Z_n) = \psi(Z). \]

This shows that ψ is an order-homomorphism. To show that ψ is an order-isomorphism, we note that
\[\phi^{-1} : (\Theta_Y(\mathcal{E}_{\text{local}}^*(Y)), \subseteq) \to (\Theta_X(\mathcal{E}_{\text{local}}^*(X)), \subseteq) \]
is an order-isomorphism. Let
\[\gamma : (\mathcal{P}(\omega \sigma Y \setminus Y), \subseteq) \to (\mathcal{P}(\omega \sigma X \setminus X), \subseteq) \]
be the induced order-homomorphism which is defined as above. Then it is straightforward to see that $\gamma = \psi^{-1}$, that is, ψ is an order-isomorphism. This implies the existence of a homeomorphism $f : \omega \sigma X \setminus X \to \omega \sigma Y \setminus Y$ such that $f(Z) = \psi(Z)$ for every $Z \in \mathcal{P}(\omega \sigma X \setminus X)$. Therefore, for any countable $G \subseteq I$, since $X_G^* \in \mathcal{P}(\omega \sigma X \setminus X)$, we have
\[f(X_G^*) = \psi(X_G^*) = \phi(X_G^*) \subseteq \sigma Y \setminus Y. \]
Thus $f(\sigma X \setminus X) \subseteq \sigma Y \setminus Y$, which shows that $f(\Omega) = \Omega'$. Therefore $\sigma X \setminus X$ and $\sigma Y \setminus Y$ are homeomorphic. \qed

Example 3.19. The Lindelöf property and the linearly Lindelöf property (besides σ-compactness itself) are examples of topological properties \mathcal{P} satisfying the assumption of Theorem 3.16. To see this, let X be a locally compact paracompact space. Assume a representation for X as in Notation 3.16. Recall that a Hausdorff space X is said to be linearly Lindelöf if provided that every linearly ordered (by set inclusion \subseteq) open cover of X has a countable subcover, equivalently, if every
For the converse, note that if X is an uncountable subset of X has a complete accumulation point in X. (Recall that a point $x \in X$ is called a complete accumulation point of a set $A \subseteq X$ if for every neighborhood U of x in X we have $|U \cap A| = |A|$.) Note that if X is non-σ-compact then (using the notation of Notation 2.9) the set I is uncountable. Let $A = \{x_i : i \in I\}$ where $x_i \in X_i$ for each $i \in I$. Then A is an uncountable subset of X without (even) accumulation points. Thus X cannot be linearly Lindelöf as well. For the converse, note that if X is not linearly Lindelöf, then, obviously, X is not Lindelöf, and therefore, is non-σ-compact, as it is well-known that σ-compactness and the Lindelöf property coincide in the realm of locally compact paracompact spaces (this fact is evident from the representation given for X in Notation 2.9).

Theorem 3.16 might leave the impression that $(\mathcal{E}_P^C(X), \leq)$ and $(\mathcal{E}_{\sigma_{\mathcal{P}}}(X), \leq)$ are order-isomorphic. The following is to settle this, showing that in most cases this indeed is not going to be the case.

Theorem 3.20. Let X be a locally compact paracompact (non-compact) space and let \mathcal{P} be a closed hereditary topological property of compact spaces which is preserved under finite sums of subspaces and coincides with σ-compactness in the realm of locally compact paracompact spaces. The following are equivalent:

1. X is σ-compact.
2. $(\mathcal{E}_P^C(X), \leq)$ and $(\mathcal{E}_{\sigma_{\mathcal{P}}}(X), \leq)$ are order-isomorphic.

Proof. Since X is locally compact, the set X^* is closed in (the normal space) βX and thus, using the Tietze-Urysohn Theorem, every zero-set of X^* is extendible to a zero-set of βX. Now if X is σ-compact (since X is also locally compact) we have $X^* \in \mathcal{Z}(\beta X)$ and therefore every zero-set of X^* is a zero-set of βX. Note that $X_{\mathcal{P}} = \sigma X = \beta X$. Thus using Lemmas 3.10 and 3.11 we have

$$\Theta_X(\mathcal{E}_P^C(X)) = \mathcal{Z}(X^*) \setminus \{\emptyset\} = \Theta_X(\mathcal{E}_{\sigma_{\mathcal{P}}}(X))$$

from which it follows that

$$\mathcal{E}_P^C(X) = \mathcal{E}_{\sigma_{\mathcal{P}}}(X).$$

If X is non-σ-compact, then any two elements of $\mathcal{E}_P^C(X)$ has a common upper bound while this is not the case for $\mathcal{E}_{\sigma_{\mathcal{P}}}(X)$. To see this, note that by Lemma 3.10 the set $\Theta_X(\mathcal{E}_P^C(X))$ is closed under finite intersections (note that the finite intersections are non-empty, as they contain $\beta X \setminus \sigma X$ and the latter is non-empty, as X is non-σ-compact) while there exist (at least) two elements in $\Theta_X(\mathcal{E}_{\sigma_{\mathcal{P}}}(X))$ with empty intersection; simply consider X^*_i and X^*_j for some distinct $i, j \in I$ (we are assuming the representation for X given in Notation 2.9).

We conclude this article with the following.

Project 3.21. Let X be a (locally compact paracompact) space and let \mathcal{P} be a (closed hereditary) topological property (of compact spaces which is preserved under finite sums of subspaces and coincides with σ-compactness in the realm of locally compact paracompact spaces). Explore the relationship between the order structures of $(\mathcal{E}_P^C(X), \leq)$ and $(\mathcal{E}_{\sigma_{\mathcal{P}}}(X), \leq)$.

References

[1] G. Beer, On convergence to infinity, *Monatsh. Math.* **129** (2000) 267–280.
[2] D.K. Burke, Covering properties, in: K. Kunen and J.E. Vaughan (Eds.), Handbook of Set-theoretic Topology, Elsevier, Amsterdam, 1984, pp. 347–422.
[3] R. Engelking, General Topology, Second edition. Heldermann Verlag, Berlin, 1989.
[4] Z. Frolik, A generalization of realcompact spaces, Czechoslovak Math. J. 13 (1963) 127–138.
[5] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York-Heidelberg, 1976.
[6] C. Good, The Lindelöf property, in: K.P. Hart, J. Nagata and J.E. Vaughan (Eds.), Encyclopedia of General Topology, Elsevier, Amsterdam, 2004, pp. 182–184.
[7] M. Henriksen, L. Janos and R.G. Woods, Properties of one-point completions of a noncompact metrizable space, Comment. Math. Univ. Carolin. 46 (2005) 105–123.
[8] M.R. Koushesh, On one-point metrizable extensions of locally compact metrizable spaces, Topology Appl. 154 (2007) 698–721.
[9] M.R. Koushesh, On order structure of the set of one-point Tychonoff extensions of a locally compact space, Topology Appl. 154 (2007) 2607–2634.
[10] M.R. Koushesh, Compactification-like extensions, Dissertationes Math. (Rozprawy Mat.) 476 (2011), 88 pp.
[11] M.R. Koushesh, The partially ordered set of one-point extensions, Topology Appl. 158 (2011) 509–532.
[12] J. Mack, M. Rayburn and R.G. Woods, Local topological properties and one-point extensions, Canad. J. Math. 24 (1972) 338–348.
[13] J. Mack, M. Rayburn and R.G. Woods, Lattices of topological extensions, Trans. Amer. Math. Soc. 189 (1974) 163–174.
[14] S. Mrówka, On local topological properties, Bull. Acad. Polon. Sci. 5 (1957) 951–956.
[15] S. Mrówka, Some comments on the author’s example of a non-R-compact space, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970) 443–448.
[16] J.R. Porter and R.G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, New York, 1988.
[17] R.M. Stephenson, Jr., Initially κ-compact and related spaces, in: K. Kunen and J.E. Vaughan (Eds.), Handbook of Set-theoretic Topology, Elsevier, Amsterdam, 1984, pp. 603–632.
[18] J.E. Vaughan, Countably compact and sequentially compact spaces, in: K. Kunen and J.E. Vaughan (Eds.), Handbook of Set-theoretic Topology, Elsevier, Amsterdam, 1984, pp. 569–602.
[19] R.C. Walker, The Stone-Čech Compactification, Springer-Verlag, Berlin, 1974.

DEPARTMENT OF MATHEMATICAL SCIENCES, ISFAHAN UNIVERSITY OF TECHNOLOGY, ISFAHAN 84156–83111, IRAN

SCHOOL OF MATHEMATICS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM), P.O. BOX: 19395–5746, TEHRAN, IRAN

E-mail address: koushesh@cc.iut.ac.ir