SOCE and cancer: Recent progress and new perspectives

Jiansheng Xie1, Hongming Pan1,2, Junlin Yao2, Yubin Zhou3 and Weidong Han1,2
1 Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
2 Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
3 Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX

Ca2+ acts as a universal and versatile second messenger in the regulation of a myriad of biological processes, including cell proliferation, differentiation, migration and apoptosis. Store-operated Ca2+ entry (SOCE) mediated by ORAI and the stromal interaction molecule (STIM) constitutes one of the major routes of calcium entry in nonexcitable cells, in which the depletion of intracellular Ca2+ stores triggers activation of the endoplasmic reticulum (ER)-resident Ca2+ sensor protein STIM to gate and open the ORAI Ca2+ channels in the plasma membrane (PM). Accumulating evidence indicates that SOCE plays critical roles in cancer cell proliferation, metastasis and tumor neovascularization, as well as in antitumor immunity. We summarize herein the recent advances in our understanding of the function of SOCE in various types of tumor cells, vascular endothelial cells and cells of the immune system. Finally, the therapeutic potential of SOCE inhibitors in the treatment of cancer is also discussed.

Ca2+, one of the most versatile and universal signaling molecules, is known to regulate numerous cellular activities, ranging from short-term responses such as contraction and secretion to long-term control of transcription, cell division and cell death.1,2 Ca2+ homeostasis in mammalian cells is maintained through the coordinated actions of a repertoire of Ca2+ signaling components, including Ca2+ channels, pumps and exchangers, that are situated in the plasma membrane (PM) or in intracellular organelles such as the endoplasmic reticulum (ER) and mitochondria.3–5 Interruptions in Ca2+ homeostasis may result in human diseases such as cardiovascular disease, immunodeficiency, diabetes and cancer.6,7 Invasive cancer is the leading cause of death.8 Accumulating evidence suggests that Ca2+-related signaling pathways represent promising new therapeutic targets for cancer.2 Compared with nonmalignant cells, cancer cells undergo constant remodeling of Ca2+ signaling, with remarkable alterations in the expression and/or activity of calcium channels and pumps,9 as well as in intracellular Ca2+-dependent signaling components. Cancer cells do this to sustain their own proliferation and to avoid cell death response.10 An understanding of the remodeling of Ca2+ signaling and of channel proteins in cancer is certainly anticipated to provide novel opportunities for therapeutic intervention. Store-operated calcium channels (SOCCs) are some of the most abundantly expressed channels in nonexcitable cells in which the emptying of intracellular Ca2+ stores activates Ca2+ influx through the PM.11,12 In this review, we primarily focus on the role of store-operated Ca2+ entry (SOCE) in cancer.

Overview of SOCE
Back in 1980 sec, Putney proposed that the depletion of Ca2+ store directly results in the activation of Ca2+ channels in the PM, a process now referred to as SOCE.13 SOCE can be activated by ligand-induced activation of membrane receptors or by pharmacological manipulations that empty the intracellular Ca2+ stores that are located primarily in the ER. The most well-studied example of store-operated channel (SOC) is the calcium release-activated calcium (CRAC) channel that was initially characterized in human T cells and mast cells.14,15 Under physiological conditions, stimulation of diverse PM receptors such as G-protein-coupled receptors (GPCR) activates phospholipase C (PLC), which hydrolyzes...
phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3). IP3 binds to the Ca$^{2+}$-permeable IP3 receptor (IP3R) on the ER membrane and evokes Ca$^{2+}$ release from the stores into the cytosol.\(^{16}\) Once the stromal interaction molecule (STIM) protein senses a drop in ER Ca$^{2+}$ levels, it undergoes conformational changes with subsequent migration toward the PM to open ORAI channels through direct physical coupling.\(^{12,17–20}\) Functional interactions between the IP3 receptors and transient receptor potential (TRP) channels have also been reported to play modulatory roles during SOCE in certain types of cells.\(^{21,22}\)

Implications of STIM-ORAI in SOCE

During the last decade, the two major protein families STIM and ORAI\(^{12,17–19}\) were identified. STIM proteins (STIM1 and STIM2) are type I single-pass transmembrane proteins that are located predominantly in the ER.\(^{23}\) As shown in Figure 1a, the domain structure of STIM1 includes the following: an N-terminal signal peptide, a canonical EF hand Ca$^{2+}$-binding motif, a hidden non-Ca$^{2+}$-binding EF hand and a sterile α-motif (SAM) domain in the ER luminal region, a putative coiled-coil domain (CCD), a STIM-ORAI activating region (SOAR) or CRAC activation domain (CAD), a serine- or proline-rich clusters and a polybasic C-tail in the cytoplasmic region.\(^{24}\) The EF-hand domain is responsible for sensing the Ca$^{2+}$ fluctuation in the ER lumen, whereas the cytoplasmic domain, in particular the SOAR/CAD domain,\(^{25,26}\) directly gates and opens the ORAI channels. At rest, STIM1 is evenly distributed throughout the ER membrane. On depletion of Ca$^{2+}$ stores, STIM1 undergoes rapid dimerization/oligomerization and moves into regions at the ER–PM junctions (termed puncta) so that they can physically interact with ORAI channels and elicits Ca$^{2+}$ influx within a few seconds.\(^{27}\) The STIM1 homologue STIM2 acts as a weaker activator of ORAI channels and is responsible for the maintenance of stable cytosolic and ER Ca$^{2+}$ concentrations to prevent uncontrolled activation of SOCE.\(^{28,29}\)

ORAI1 is a four-pass transmembrane protein whose N- and C- termini face the cytoplasm and is postulated to assemble as a tetramer or hexamer in the PM (Fig. 1b).\(^{30–32}\) The first transmembrane segment of ORAI1 forms the ion-conducting pathway, which mediates Ca$^{2+}$ influx.\(^{32–34}\) The intracellular C-terminus of ORAI1 has been shown to form a coiled-coil structure, which interacts with the SOAR/CAD domain of STIM1.\(^{19,26,30,35–37}\) Disruption of coiled-coil formations in the C-tail of ORAI1 impairs STIM1-mediated activation of ORAI channels.\(^{35}\) The N-terminus of ORAI1 is also essential for STIM1-mediated gating. It contains a calmodulin (CaM)-binding domain, which is involved in fast Ca$^{2+}$-dependent inactivation of ORAI channels.\(^{38}\) In mammals, ORAI1 has two other homologues (ORAI2 and 3) that

Figure 1. Schematic diagram of SOCE mediated by ORAI1 and STIM1. (a) STIM1 protein consists of a canonical EF hand, a hidden EF hand and a SAM domain in the ER luminal domain, and CCD, SOAR and ERM domains as well as serine- or proline- and lysine-rich clusters on the cytosolic side. (b) The ORAI1 protein contains four membrane-spanning regions and intracellular N- and C-termini. It also has a unique R/P-rich region in the N-terminus and a putative coiled-coil domain in its intracellular C-terminus. (c) The stimulation of PM receptors activates PLC, which leads to the production of the second messenger IP3. IP3 binds to the IP3R and elicits rapid Ca$^{2+}$ release from the ER lumen. STIM1 senses Ca$^{2+}$ decrease in ER and undergoes conformational changes to mediate ORAI gating, which results in Ca$^{2+}$ influx through ORAI channels. The Ca$^{2+}$ increase activates NFAT and a number of other transcription factors such as NF-κB and CREB, among others, which play crucial roles in cancer cells, endothelial cells, cells of the immune system and other nonhematopoietic cells.
can also be gated by STIM1 following store depletion. However, the ORAI1 protein has the highest potency in the conduction of Ca\(^{2+}\) currents, and thus the genetic depletion of ORAI1 substantially impairs SOCE.\(^{39}\)

Sustained elevation of intracellular Ca\(^{2+}\) through CRAC channels leads to the activation of the ubiquitous Ca\(^{2+}\) sensor CaM, which further activates the Ca\(^{2+}\)/CaM-dependent phosphatase calcineurin.\(^{40}\) Calcineurin dephosphorylates multiple phosphoserines in the regulatory domain of the nuclear factor of activated T cells (NFAT), which leads to the nuclear translocation of NFAT within minutes (Fig. 1c). In the nucleus, NFAT can cooperate with multiple transcription factors such as the activator protein 1 (AP1), forkhead box P-family protein (FOXP) and GATA to initiate the expression of multiple genes. These genes can then regulate diverse cellular functions,\(^{40}\) including cell survival, proliferation, migration, invasion and angiogenesis. SOCE could also activate a number of other transcription factors such as cAMP-responsive element-binding protein (CREB) and nuclear factor-κB (NF-κB) via the activation of calmodulin-dependent protein kinase II/IV (CaMKII/IV) and 1κB kinase (IKK), respectively.\(^{41–43}\) It has been shown that SOCE-mediated CREB activation promotes the proliferation of vascular smooth muscle cells (VSMCs).\(^{34}\) NF-κB, which is stimulated by SOCE, is well known for its function in innate immunity, inflammation and oncogenesis.\(^{45,46}\) In turn, NF-κB stimulates the transcription of ORAI1 and STIM1, which play important roles in the regulation of platelet sequestration, aggregation and thrombus formation.\(^{47}\)

Implications of TRP Channels in SOCE

The TRP proteins are nonselective cation channels that were first identified in the trp mutant of Drosophila.\(^{48}\) To date, approximately 30 different mammalian TRP channels have been identified according to their sequence homology. The TRP proteins have a common structure, including six transmembrane-spanning domains (S1-S6) with a loop region between the S5 and S6 domains and intracellular N- and C-termini.\(^{49}\) The role of Drosophila TRP proteins in SOCE was controversial as they were later found to behave as non-SOCs.\(^{50}\) However, as the identification of TRP homologues in mammals, a body of evidence has supported a role for TRP channels in the conduction of SOCE, especially the transient receptor potential canonical (TRPC) subfamily members; these can be activated in response to stimuli, which results in PIP2 hydrolysis.\(^{51}\) For example, the inhibition of transcription of native TRPC1 and TRPC3 channels in HEK cells could reduce Ca\(^{2+}\) influx after the depletion of Ca\(^{2+}\) stores.\(^{52}\) The knockdown of other TRPC channels such as TRPC4 can inhibit SOCE in human corneal epithelial cells.\(^{53}\) Together, these findings provide evidence to support a possible implication of TRP channels in SOCE in certain types of cells.\(^{53–55}\)

Interaction Between STIM1, ORAI and TRPC Proteins

STIM1 can interact with all three ORAI proteins to induce SOCE.\(^{56}\) Following the depletion of Ca\(^{2+}\) stores, the EF-SAM domains of STIM1 undergo oligomerization and initiate the translocation of STIM1 into the ER–PM junctions, which activates ORAI channels.\(^{27}\) As a precise feedback mechanism, an elevation in the intracellular Ca\(^{2+}\) concentration leads to rapid Ca\(^{2+}\)-dependent inactivation (CDI) of the ORAI channel or dissociation of the STIM1–ORAI complex, which protects cells from ER Ca\(^{2+}\) overload.\(^{57}\)

The activation of ORAI channels is strictly dependent on STIM1, while the involvement of STIM1 in TRPC activation remains controversial.\(^{58}\) It was reported that STIM1 could activate TRPC1, 2 and 4, where the ezrin/radixin/moesin (ERM) domain and the cationic lysine-rich region of STIM1 are required for the binding and gating of TRPC channels, respectively.\(^{59}\) STIM1 does not interact with TRPC3 directly as it mediates the heteromultimerization of TRPC1 with TRPC3.\(^{60}\) DeHaven et al. also reported that TRPC3 functions as a STIM1-dependent channel in the presence of TRPC1.\(^{61}\)

Overall, current evidence suggests that the depletion of Ca\(^{2+}\) stores results in a dynamic interplay between STIM1, ORAI and the TRPC proteins, where STIM1 communicates information from the ER lumen to the Ca\(^{2+}\) channels at the PM.\(^{62}\) ORAI channels may mediate Ca\(^{2+}\) influx either independently or together with the TRPC proteins.\(^{55,64}\) The coordination of the STIM1, ORAI and TRPC proteins in mediating SOCE, as well as their possible regulatory mechanisms, is still a topic of debate and warrants further investigation.

Role of SOCE in Cancer

SOCE mediated by the STIM and ORAI proteins has recently been implicated in various processes during oncogenic transformation such as malignant transformation, apoptosis, proliferation, angiogenesis, metastasis and antitumor immunity. At the tumor initiation stage, Ca\(^{2+}\) signaling mediated by SOCE is needed to induce genetic changes in premalignant cells. These genetic alterations ultimately reprogram cells and cause them to undergo malignant transformation.\(^{65}\) At the tumor development stage, blood vessels are necessary for tumor nutritional support. In cancer cells, SOCE promotes the secretion of vascular endothelial growth factor (VEGF),\(^{66}\) which activates SOCE in endothelial cells by binding to its receptor; this subsequently promotes the proliferation of endothelial cells.\(^{67}\) Interestingly, calcium signaling mediated by SOCE also plays a critical role in the antitumor activity of cytotoxic T lymphocytes (CTLs).\(^{68}\) The following sections summarize recent advances in our understanding of SOCE in tumor cells as well as in other cell types within the tumor environment.

SOCE Regulates Apoptotic Cell Death, Proliferation and Metastasis of Cancer Cells

Sabbioni et al. reported that mRNA expression of STIM1 was absent in human rhabdomyosarcoma and rhabdoid tumor cell lines, and the forced expression of STIM1 caused growth arrest in these cells.\(^{69,70}\) More recently, Flourakis et al. demonstrated that the endogenous SOCE mediated by ORAI1 is the principal source of Ca\(^{2+}\) influx that triggers apoptotic cell

Xie et al.: 2069

Int. J. Cancer: 13B, 2067–2077 (2016) © 2015 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC
death of human prostate cancer (PCa) cells. The inhibition of SOCE through the knockdown of ORAI1 protects PCa cells from death induced by diverse apoptosis-inducing stimuli.71 These findings led to the hypothesis that SOCE might serve as part of a tumor-suppressing mechanism. Nonetheless, accumulating evidence indicates that STIM/ORAI-mediated SOCE promotes tumor growth and metastasis in a variety of cancer types. Microarray data from 295 breast cancer samples showed that breast cancer patients with a STIM1(high)/STIM2-low profile demonstrated abnormally augmented SOCE and displayed a significantly poorer prognosis.72 Enhanced expression of ORAI1 and STIM1 as well as enhanced SOCE were also reported in therapy-resistant ovarian carcinoma cells.73 Furthermore, STIM1 or ORAI1 was overexpressed in tumor tissues when compared with precancerous tissues in patients with colorectal,74,75 cervical,66 liver,76 lung77 and clear cell renal cancers.78 The potential anticancer and therapeutic value of targeting SOCE is strongly supported by the fact that the knockdown or pharmacological inhibition of STIM1–ORAI1 can efficiently restrain the growth and metastasis of breast,79 colorectal,74,75 cervical,66 liver,76 nasopharyngeal,80 epidermoid,81 glioma,82 melanoma83 and clear cell renal cancer cells.78 In addition, the blockade of STIM1-mediated SOCE can significantly enhance chemotherapy-induced apoptosis in lung and pancreatic cancer cells.77,84 Recent studies also indicate that ORAI3-mediated SOCE is involved in the tumorigenesis of estrogen receptor-positive breast cancer and non-small cell lung cancer.85,86

The molecular mechanisms of SOCE in the regulation of cancer cell proliferation and migration can be summarized as follows: (i) Inhibition of SOCE through STIM1 knockout results in the upregulation of p21 and the downregulation of Cdc25C, cyclin E, cyclin D, CDCK2 and CDCK4, which eventually elicits cell cycle arrest.66,82 (ii) SOCE blockade through STIM1 or ORAI1 knockdown impairs focal adhesion turnover and cell migration.66,76,79 Aberrant SOCE causes the activation of the Ca^{2+}-regulated protease calpain and the cytoplasmatic kinase Pyk2, which regulate the focal adhesion dynamics of migratory cervical cancer cells.66 The small GTPases Ras and Rac are also regulators of focal adhesion turnover. The expression of constitutively active Ras and Rac could rescue the defects of focal adhesion turnover and migration induced by the inhibition of SOCE in breast cancer cells.79 (iii) Enhanced SOCE through STIM1 overexpression promotes the migration of colorectal cancer cells via an increase in the expression of cyclooxygenase-2 (COX-2) and the production of prostaglandin E2 (PGE2).74 Ca^{2+}-dependent transcription factor NFAT may play an important role in this process.87 NFAT also induces the transcription of many other proinvasive genes such as autotoxin.88 As described above, STIM/ORAI-mediated SOCE plays important roles in the proliferation and metastasis of cancer cells. The exact function and mechanism are complicated and context-dependent, as summarized in Table 1 below.

SOCE Regulates Tumor Angiogenesis

The recruitment of new blood vessels, or angiogenesis, represents one of the central hallmarks of cancer that is necessary to support tumor growth and metastasis. During angiogenesis, endothelial cells proliferate so that new capillary blood vessels can develop from preexisting microvessels; they then form tubes and connect the tips of these tubes to create loops to tolerate blood flow.94,95 VEGF and its receptors function as critical regulators during angiogenesis.96 After binding to its receptor, VEGF can elicit Ca^{2+} entry via PLCγ activation, thereby inducing SOCE in human endothelial cells. The knockdown of STIM or ORAI could reduce VEGF-induced Ca^{2+} influx in human umbilical vein endothelial cells (HUVECs), and consequently inhibit cell proliferation, migration and tube formation.87,97 On the other hand, in cancer cells, SOCE can control the secretion of VEGF. For example, in a mouse xenograft model, the inhibition of SOCE resulted in decreased VEGF secretion in cervical cancer cells, which led to a reduction in neovascularization and tumor growth.96

Endothelial progenitor cells (EPCs) are a population of progenitor cells that may proliferate, migrate and acquire a mature endothelial phenotype.99 After acute vascular injury, EPCs are recruited from the bone marrow (BM) to sites of tissue regeneration where they sustain neovascularization, which is triggered by the increased availability of angiogenic growth factors or chemokines such as VEGF and angiopoietin.99 Emerging evidence indicates that EPCs contribute to the sprouting of new tumor vessels to accelerate tumor proliferation and metastasis.100,101 SOCE is essential for the proliferation, motility and tubulogenesis of EPCs.102–104 A recent study revealed that SOCE is upregulated and controls proliferation and tubulogenesis in renal cellular carcinoma (RCC)-EPCs.105 The higher amplitude of SOCE in these cells is associated with the overexpression of STIM1, ORAI1 and TRPC1. The suppression of SOCE in RCC-EPCs represents a novel and promising method for ameliorating vascularization in RCC.105

Collectively, augmented SOCE appears to promote angiogenesis through the following possible mechanisms: (i) SOCE in cancer cells regulates the production of VEGF, which is critical for the formation of new blood vessels66; (ii) SOCE in endothelial cells regulates the cell cycle and proliferation of these cells79; (iii) Ca^{2+}-dependent activation of NFAT regulates the expression of molecules such as tissue factor (TF) and COX-2, which are essential for endothelial cell migration, tube formation and angiogenesis.106–108

SOCE Regulates Antitumor Immunity

An increase in the intracellular Ca^{2+} concentration is required for a variety of cellular immune functions. Ca^{2+} influx in immune cells occurs predominantly through the SOCE process. Defects in SOCE that are caused by mutations in the STIM or ORAI genes result in dysfunction of immune...
Aberrant SOCE in different cancer cells

Ca²⁺ channel	Cancer type	Major effects	Possible mechanisms	Ref.
STIM1–ORAI1	Cervical cancer SiHa and Caski cells	Promotion of tumor cell growth, migration and invasion	STIM1 knockdown induces cell cycle arrest, abolishes focal adhesion and actomyosin formation, and tumorigenesis	66,89
STIM1–ORAI1	Ovarian cancer A2780 cells	Contribution to cisplatin resistance	ORAI1/STIM1 enhances AKT activity	73
STIM1–ORAI1	Breast cancer MDA-MB-231 and 4T1 cells	Promotion of tumor metastasis	Blockade of SOCE impairs focal adhesion turnover	79
STIM1–ORAI1	Colorectal cancer cells	Promotion of cell motility	STIM1 overexpression causes upregulated expression of COX-2 and PGE2 and promotes EMT	74,75
STIM1–ORAI1	Hepatocarcinoma HCC-LM3 cells	Promotion of cell migration and invasion	STIM1 knockdown impairs focal adhesion turnover	76
STIM1–ORAI1	Glioblastoma U251 cells	Promotion of cell proliferation and invasion	STIM1 suppression induces cell cycle arrest	82
STIM1–ORAI1	Epidermoid carcinoma A431 cells	Promotion of cell and tumor growth	STIM1 knockdown inhibits DNA synthesis and decreases EGFR phosphorylation	81
STIM1–ORAI1	Melanoma cells	Promotion of cell proliferation and migration	SOCE activates the ERK signaling pathway	83
ORAI3	Breast cancer MCF-7 cells	Promotion of cell growth, invasion and tumorigenesis	ORAI3 knockdown reduces c-Myc expression and activity	90
TRPC3	Ovarian cancer SKOV-3 cells	Increase in cell proliferation and tumor formation	TRPC3 inhibition dephosphorylates Cdc2 and induces G2/M phase arrest	91
TRPC6	Gastric cancer AGS and MKN45 cells	Increase in cell growth and tumor formation in mice	TRPC6 blockade induces G2/M phase arrest	92
TRPC6	Glioblastoma U373 MG and HMEC-1 cells	Promotion of cell growth, invasion and angiogenesis	TRPC6 is coupled to the activation of the calcineurin–NFAT pathway	93

SOCE was found to regulate CD40L expression in CD4⁺ T cells, which is essential for the maintenance of memory CD8⁺ T cells and their ability to mediate recall responses and protection against secondary viral infections. Recurrent and chronic viral infections such as EBV, CMV and human herpes virus 8 (HHV-8) result in the development of virus-associated tumors in SOCE-deficient patients. For example, it was shown that T-cell immunodeficiency caused by STIM1 mutation accelerated the development of lethal Kaposi sarcoma (KS) upon infection with HHV-8. Orai- and STIM-mediated SOCE is also required for the cell differentiation and functions of traditional effector CD4⁺ T cells, including Th1 and Th2 cells. Notably, the proliferation of Th17 cells also appears to require SOCE. SOCE-deficient CD4⁺ T cells grown under Th17 polarizing conditions in vitro failed to produce IL-17, which acts as a proinflammatory molecule to induce angiogenesis during tumor progression. The production of IFN-γ and IL-2 by Th1 cells is also decreased in the absence of SOCE. However, IFN-γ and IL-2 are commonly regarded as tumor inhibitory cytokines. Thus, the exact role of CD4⁺ T-helper cells in tumor development is determined by its differentiation status. Interestingly, effector CD4⁺ T cells appear to require varying degrees of SOCE for their maximal activity and exhibit differential sensitivity toward SOC inhibitors. For instance, the levels of SOCE required for the differentiation
and function of Th17 cells are higher than that of Th1 and Th2 cells. Kim et al. reported that Th17 cells showed higher sensitivity to the SOCE inhibitor than Th1 and Th2 cells.

Until now, the possible mechanism of the regulation of antitumor immunity by SOCE could be summarized as follows: (i) SOCE induces the activation of Ca\(^{2+}\)-dependent transcription factors, which are essential for the development and normal function of immune cells such as NFAT, CREB or activating transcription factor (ATF) and (ii) SOCE mediates the production of cytokines and chemokines that can directly kill cancer cells.

Because the function of the immune system during cancer progression is paradoxical, it is necessary to be aware that not all of the immune responses that are regulated by SOCE are cancer protective. Thus, a clarification of the mechanisms and functions of SOCE in different types of immune cells in different stages of tumor development is important for a deeper understanding of the role of SOCE in antitumor immunity. In the early stages of tumorigenesis, SOCE is important for the normal function of immune surveillance system, which can prevent tumorigenesis. Once pathogens or cells escape immune surveillance, more immune cells are recruited and an inflammatory microenvironment is formed. It has been shown that chronic inflammation is the cause of various human cancers. For example, patients with inflammatory bowel disease (IBD) have an increased risk for colorectal cancer. Sustained Ca\(^{2+}\) influx via SOCE is necessary for the activation of immune cells in cases of chronic inflammation. Therefore, it is possible to avoid the initiation of tumor formation by inhibiting SOCE-involved chronic inflammation. However, as mentioned above, the functions of different types of immune cells are diverse, and their role in tumor immunity is sometimes different even for cells of the same cell type. For example, Th17 cells can promote tumor growth through IL-17 secretion, but it also prevents tumor development via the induction of the recruitment and activation of cytotoxic CD8\(^{+}\) T cells within tumors. Briefly, the role of SOCE in antitumor immunity is complicated and requires investigation in specific conditions. In particular, Weidinger et al. demonstrated that SOCE in CD8\(^{+}\) T cells is critical for their cytotoxic activity against tumor cells. The model used in this study was the engraftment of melanoma and colon carcinoma cells into conditional gene knockout mice, rather than a spontaneous tumor formation model. The function of CD8\(^{+}\) T cells against xenogeneic and allogeneic tumor cells may be different. The results should therefore be explained cautiously.

As mentioned above, distinct T-cell types need different amounts of Ca\(^{2+}\) influx for their function. Th17 and cancer cells appear to require relatively large amounts of Ca\(^{2+}\) influx. For example, genetic depletion of STIM1 alone can readily lead to impaired Th17 cell function, suggesting that Th17 cells react very sensitively to even partial blockade of SOCE. By contrast, CTLs requires very little residual Ca\(^{2+}\) influx for their function. Thus, the cytotoxicity of CTLs and antiviral immunity mediated by CD8\(^{+}\) T cells are only impaired if both STIM1 and STIM2 are deleted in mice, in which no residual Ca\(^{2+}\) influx is present. Such CTL defects were not observed in either STIM1 or STIM2 single knockout mice, where moderate SOCE is still present in CD8\(^{+}\) T cells. The differential sensitivity of T lymphocytes and cancer cells toward Ca\(^{2+}\) influx might open a therapeutic window, in which SOCE of cancer cells and proinflammatory Th17 cells can be targeted without affecting antitumor functions of CTLs, thereby maximizing the antitumor efficacy.

In summary, SOCE can directly regulate apoptotic cell death, proliferation and metastasis of cancer cells. SOCE also promotes VEGF secretion, which subsequently stimulates SOCE in vascular endothelial cells and leads to their proliferation for angiogenesis. Interestingly, in immune cells, SOCE plays a paradoxical role during cancer development. Figure 2 presents an overview of the primary signaling pathways that are regulated by SOCE in cancer cells and in cells of the tumor microenvironment. Because the function of immune cells in cancer is complicated, the xenograft model that was used in the latest work could not fully mimic the tumor initiation and development process in vivo. Therefore, other well-designed experiments should be conducted before a final conclusion can be made with regard to the role of SOCE in modulating antitumor immunity.

Therapeutic Potential of SOCE in the Treatment of Cancer

As knowledge of SOCE in human disease accumulates, there has been an increased interest in the development of SOCE inhibitors that can be used to fight against cancer. Several small-molecule SOCE inhibitors have been developed over the past decades, which hold promise in the treatment of cancer.

SKF-96365

Primarily introduced as an inhibitor of receptor-operated calcium entry (ROCE), the imidazole compound SKF-96365 was found to block SOCE in various cells such as mast, rat basophilic leukemia (RBL) and Jurkat cells. SKF-96365 could block STIM1 overexpression-induced SOCE augmentation and NFAT nuclear translocation; this indicates that STIM1 is one of its potential targets. As an inhibitor of SOCE, SKF-96365 prevented tumor cell metastasis in a mouse model of breast cancer. In another study, the blockade of SOCE by SKF-96365 retarded the growth and angiogenesis of cervical cancer cells. However, SKF-96365 is not selective for CRAC channels and could block other Ca\(^{2+}\) channels, and thus more studies need to be performed to specifically delineate its mechanisms in various types of cancer cells.
2-APB

Initial studies reported that 2-APB could inhibit IP3-induced Ca\(^{2+}\) release in rat cerebellar microsomes in a dose-dependent manner.\(^{135}\) Later, it was found that its inhibitory effect was mainly due to a blockade of SOCE.\(^{136}\) In addition, this inhibitory effect was IP3 receptor-independent and was more potent when it was applied extracellularly.\(^{137}\) In native immune cells, 2-APB modulates SOCE activity in a paradoxical manner in that it exerts stimulatory effects at low concentrations and inhibitory effects at high concentrations.\(^{137}\) This dual regulation is also observed in HEK293 cells.\(^{138}\) It is speculated that low doses of 2-APB stimulate Ca\(^{2+}\) influx by promoting STIM1–ORAI1 interactions, while high doses inhibit SOCE in part due to its inhibition of STIM1 redistribution.\(^{138}\) Interestingly, high doses of 2-APB could forcefully activate the ORAI3 channel and change its ion selectivity independently of STIM1 or Ca\(^{2+}\) store depletion.\(^{56,139}\) It has been postulated that 2-APB directly binds to the ORAI3 channel, which results in an increase in channel conductance and limits selectivity. 2-APB was reported to inhibit the proliferation of hepatoma, cervical and gastric cancer cells\(^{66,140,141}\) and the migration of cervical and colorectal cancer cells.\(^{74,89}\)

Bistrifluoromethyl-pyrazole derivative, BTP2

First identified as a compound that blocks IL-2 production in lymphocytes,\(^{142}\) BTP2 could potently and specifically inhibit SOCE in T lymphocytes without interference with other important Ca\(^{2+}\) influx pathways.\(^{143}\) Additionally, BTP2 does not appear to affect STIM1 redistribution or STIM1–ORAI1 coupling.\(^{144}\) Preincubation of Jurkat T-cells with BTP2 inhibits SOCE at an IC\(_{50}\) of approximately 10 nM.\(^{145}\) As mentioned above, the blockade of SOCE by BTP2 prevented antigen-induced T-cell responses through the inhibition of the antihost CTL response, donor T-cell expansion and IFN-\(\gamma\) production in mouse models of GvHD.\(^{111}\) BTP2 could also inhibit antigen-induced cytokine secretion in mast cells, which is important in inflammation and antimturum immunity.\(^{145}\) Mercer et al. showed that the actin reorganizing protein Drebrin was the target of BTP2 because the knockdown of Drebrin in Jurkat T cells inhibited SOCE similar to what occurred after treatment with BTP2.\(^{146}\)

Anti-ORAI1 monoclonal antibodies

Because the ORAI1 protein is the pore subunit of the calcium channel responsible of SOCE and may serve as an attractive therapeutic target, specific anti-human ORAI1 monoclonal antibodies (mAbs) have been generated.\(^{147}\) Recently, Cox et al. described a newly generated anti-ORAI1 mAb with specificity for the second extracellular loop that can inhibit T-cell activation \(in vitro\) and T-cell-mediated GvHD \(in vivo\). This indicates its therapeutic potential for the treatment of autoimmune diseases and prevention of xenograft rejection.\(^{148}\)

Other small molecular inhibitors

In recent years, several other small molecules have been developed as specific inhibitors of SOCE.\(^{120,149,150}\) For

Figure 2. Proposed roles of SOCE in cancer. In tumor cells, SOCE promotes cancer cell proliferation via the upregulation of Cdc25C and the downregulation of p21. It also promotes cancer cell metastasis via the modulation of calpain- and Pyk2-mediated focal adhesion turnover or through upregulating the expression of COX-2, PGE2 and autotoxin. SOCE also contributes to drug resistance through an enhancement of AKT activity. In cancer cells, SOCE boosts the secretion of VEGF, which facilitates endothelial cell proliferation, angiogenesis and tumor growth. SOCE-mediated chronic inflammation through activation of Th17 cells is speculated to promote tumor growth. However, in NK, CD8\(^{+}\) T and Th1 cells, SOCE is required to inhibit tumor progression.
example, the blockade of calcium influx by RO2959, which was developed by Roche, could inhibit proliferation and activation of human T cells as well as cytokine production in these cells. Kim et al. reported that compound 5D prevented the development of experimental autoimmune encephalomyelitis (EAE) in mice, potentially via the inhibition of the differentiation of Th17 cells according to tests in animal models. Until now, no SOCE inhibitors have been approved to treat cancer patients. Carboxyamidotriazole (CAI), a novel synthetic compound that can inhibit stimulated calcium uptake, was reported to exert potent antitumor effects, and has recently been investigated in preclinical studies and clinical trials. Several phase I/II/III clinical trials (http://clinicaltrials.gov/) that involve CAI are currently underway. A phase II trial of CAI in patients with relapsed epithelial ovarian cancer showed that CAI could promote disease stabilization in these patients. Given its limited toxicity profile, it may serve as a maintenance therapy for this disease.

Conclusions and Perspectives

SOCE, an essential component involved in maintaining intracellular Ca²⁺ homeostasis, regulates several aspects of the malignant behavior of cancer cells, including tumor growth, angiogenesis and metastasis. SOCE represents a promising target for anticancer therapy. The molecular mechanisms and the consequences of aberrant SOCE signaling are context-dependent. As shown in Supporting Information Figure 1, AKT, ERK, NFAT and COX-2 are critical molecules that act downstream of SOCE. Because the molecular compositions of SOCE and their interactions are complicated, our understanding of the role of SOCE in cancer cells is still limited. STIM/ORAI-mediated SOCE appears to play a dual function during tumorigenesis. On one hand, augmented SOCE has been reported to promote tumor growth and metastasis in a number of cancer types. On the other hand, STIM1 causes growth arrest in the human rhabdomyosarcoma and rhabdoid tumor cell lines RD and G401. In addition, ORAI1 has been reported to facilitate apoptosis of PCa cells, and the knockdown of ORAI1 leads to drug resistance. Thus, the function of SOCE in tumors is inconsistent in different cell types and tumor stages. A careful analysis is necessary to determine the effects of SOCE on tumors.

More attention should be paid to the role of SOCE in immunosuppression. As discussed above, SOCE participates in cytotoxic T-cell differentiation and activation, and during the process of tumorigenesis, the host immune system plays an important role in immune surveillance. In the early stages of tumorigenesis, a small number of premalignant epithelial cells act independently of oncogenic pathways and angiogenesis. Hence, SOCE inhibitors may not exert anticancer effects, but rather, they may promote tumorigenesis because of their immunosuppressive function. After tumor formation, tumor cells acquire immune tolerance, and immune cells in the tumor tissue secrete large amounts of inflammatory cytokines that in turn promote the proliferation of tumor cells and angiogenesis. Based on the aforementioned discussion, there might be specific thresholds of SOCE signaling, so as a therapeutic window might exist, in which functions of cancer cells and proinflammatory Th17 cells can be targeted with moderate SOCE inhibition without affecting antineoplastic functions of NK, CTL and Th1 cells. The blockage of SOCE could suppress tumor growth through the following three mechanisms: (i) the inhibition of proliferation and metastasis of cancer cells; (ii) the inhibition of the activation of immune cells that secrete tumor-promoting inflammatory cytokines and (iii) the inhibition of vascular endothelial cell proliferation, migration, tube formation and angiogenesis.

Because the STIM and ORAI proteins are ubiquitously expressed, toxicity to normal cells should also be considered when SOCE inhibitors are applied systemically. An ideal solution is to develop a class of chemical modulators of CRAC channels that specifically targets tumor cells or tumor vascular endothelial cells. Alternatively, local drug administration could achieve enhanced antitumor effects while reducing toxicity. Furthermore, some known downstream signaling pathways that are regulated by SOCE such as AKT, ERK, COX-2 and NFAT are specifically overexpressed or activated in tumor tissues. These pathways can also be considered for cancer intervention. Since the discovery of the STIM and ORAI proteins, we have witnessed tremendous progress in the mechanistic dissection of SOCE and functional characterization of SOCE deficiency in murine models. Because SOCE plays paradoxical roles in tumorigenesis and tumor progression, the specific role of SOCE in different stages of and types of cancer warrants further investigation.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 81272593) to H.P., the National Natural Science Foundation of China (NSFC-81372621, 81572361) to W.H. and the National Institutes of Health (R01GM112003) to Y.Z.

References

1. Bertrand MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000;1:11–21.
2. Montemith GR, McAndrew D, Faddy HM, et al. Calcium and cancer: targeting Ca²⁺ transport. Nat Rev Cancer 2007;7:519–30.
3. Carafoli E. The calcium-signalling saga: tap water and protein crystals. Nat Rev Mol Cell Biol 2003;4:326–32.
4. Carafoli E. Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA 2002;99:1115–22.
5. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev 1999;79:763–854.
6. Rizzuto R, Pozzan T. When calcium goes wrong: genetic alterations of a ubiquitous signaling route. Nat Genet 2003;34:135–41.
7. Parekh AB. Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov 2009;8:399–410.
8. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin 2011;61:69–90.
9. Monteith GR, Davis FM, Roberts-Thomson SJ. Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 2012;287:31666–73.
10. Roderick HL, Cook SJ. Ca2+ signalling: points in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 2008;8:361–75.
11. Prevarskaya N, Skryma R, Shuba Y. Calcium in tumour metastasis: new roles for known actors. Nat Rev Cancer 2011;11:609–18.
12. Hogan PG, Lewis RS, Rao A. Molecular basis of calcium signaling in lymphocytes: STIM and RACK1. Annu Rev Immunol 2010;28:491–533.
13. Putney JW Jr. A model for receptor-regulated calcium entry. Cell Calcium 1986;7:1–12.
14. Lewis RS, Cahalan MD. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul 1989;1:19–92.
15. Møllby P, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992;355:353–6.
16. Lewis RS. The molecular choreography of a store-operated calcium channel. Nature 2007;446:284–7.
17. Soboloff J, Rothberg BS, Maden M, et al. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012;13:549–65.
18. Lewis RS. Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb Perspect Biol 2013;5:a003970.
19. Gudlur A, Zhou Y, Hogan PG. STIM-ORAI interactions that control the CRAC channel. Curr Top Membr 2013;71:33–58.
20. Ma G, Wei M, He L, et al. Inside-out Ca signal entry in human platelets. J Biol Chem 2009;284:22501–5.
21. Jardin I, Lopez JJ, Salido GM, et al. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 2008;283:8014–22.
22. Zhou Y, Mezner P, Kwon HT, et al. STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 2010;17:112–16.
23. Zhou Y, Srinivasan P, Razavi S, et al. Initial activation of STIM1, the regulator of store-operated calcium entry. Nat Struct Mol Biol 2013;20:973–81.
24. Mullins FM, Park CY, Dolmetsch RE, et al. STIM1 and calmodulin interact with ORAI1 to induce Ca2+-dependent inactivation of CRAC channels. Proc Natl Acad Sci USA 2009;106:15495–500.
25. Mercer JC, Dehaven W, Smyth JT, et al. Large store-operated calcium selective currents due to co-expression of ORAI or ORAI2 with the intracellular calcium sensor, Stim1. J Biol Chem 2006;281:24979–89.
26. Muller MB, Rao A. NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 2010;10:645–56.
27. Pulver RA, Rose-Curtis P, Roe MW, et al. Store-operated Ca2+ entry activates the CREB transcription factor in vascular smooth muscle. Circ Res 2004;94:1351–8.
28. Bird GS, Hwang SY, Smyth JT, et al. STIM1 is a calcium sensor required for digital signaling. Curr Biol 2009;19:1724–9.
29. Wang X, Wang Y, Zhou Y, et al. Distinct Orai coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat Commun 2014;5:3183.
30. Stathopoulos PB, Schindl R, Fahrner M, et al. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 2013;4:2963.
31. Penna A, Demuro A, Yeromin AV, et al. The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 2008;456:11–20.
32. Hou X, Pedi L, Diver MM, et al. Crystal structure of the calcium release-activated calcium channel Orai. Science 2012;338:1308–13.
33. Zhou Y, Ramachandran S, Oh-Hora M, et al. Port architecture of the ORAI1 store-operated calcium channel. Proc Natl Acad Sci USA 2010;107:4896–901.
34. McNally RA, Yamashita M, Engh A, et al. Structural determinants of ion permeation in CRAC channels. Proc Natl Acad Sci USA 2009;106:22516–21.
35. Muik M, Frischauf I, Ferfer I, et al. Dynamic coupling of the CRAC channel with ORAI1. Cell Calcium 2007;31:97–107.
36. Lewis RS. Rapid inactivation of store-operated (SOCE) coupling domain of CRAC channels due to local calcium feedback. J Gen Physiol 1995;105:209–26.
37. Deng X, Wang Y, Zhou Y, et al. STIM and Orai: dynamic intermembrane coupling to control cellular calcium signals. J Biol Chem 2009;284:22501–5.
38. Huang GN, Zeng W, Kim JY, et al. STIM1 carboxyl-terminal activates native SOC1 (icrac) and TRPC1 channels. Nat Cell Biol 2006;8:1033–10.
39. Yuan JP, Kim MS, Zeng W, et al. TRPC channels as STIM1-regulated SOCs. Channels (Austin) 2009;3:221–5.
40. DeHaven WL, Jones BF, Petranova JG, et al. TRPC channels function independently of STIM1 and Orai1. J Biol Chem 2009;284:22757–63.
41. Liao Y, Erxleben C, Abramowitz J, et al. Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/icrac channels. Proc Natl Acad Sci USA 2008;105:2895–900.
42. Liao Y, Erxleben C, Abramowitz J, et al. Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/icrac channels. Proc Natl Acad Sci USA 2008;105:2895–900.
43. Feske S. Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 2007;7:690–702.
44. Takahashi Y, Watanabe H, Murakami M, et al. Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells. Biochem Biophys Res Commun 2007;361:934–40.
45. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010;140:883–99.
46. DiDonato JA, Mercurio F, Karin M. NF-kappaB activation but not for vision in Drosophila. Neuron 1997;18:881–7.
47. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem 2007;76:387–417.
48. Chen YF, Chiu WT, Chen YJ, et al. Calcium store sensor stromal-interaction molecule 1-
dependent signaling plays an important role in cancer cell growth, migration, and angiogenesis.

Weidinger C, Shaw PJ, Feske S. STIM1 and SOCE and cancer.

Sabbioni S, Veronese A, Trubia M, et al. Exon structure and promoter identification of STIM1 (alias GOK), a human gene causing growth arrest of the human tumor cell lines G401 and RD. Cytogenet Cell Genet 1999;86:214–18.

Flourakis M, Lehen'kyi V, Beck B, et al. Orai1 deletion in mice results in a growth arrest of the human tumor cell lines G401 and RD. Cancer Res 1999;59:4940–8.

Umemura M, Baljinnyam E, Feske S, et al. GOK: a gene at 11p15 involved in rhabdoid tumor development. Cancer Res 1999;59:4493–7.

McAndrew D, Grice DM, Peters AA, et al. Orai1 and STIM1 expression as well as store-operated Ca2+ entry important for endothelial cell proliferation. Mol Cell Biol 2010;30:12952–62.

Lee GM, Zhang Z, Wang R, et al. Suppression of stromal interaction molecule 1 (STIM1) suppresses store-operated calcium entry and endothelial tube formation. J Biol Chem 2011;286:2573–80.

Kondratska K, Kondratskyi A, Yassine M, et al. Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic adenocarcinoma. Biochim Biophys Acta 2014;1843:2263–9.

Miotani RK, Zhang X, Harmon KE, et al. Orai1 is an estrogen receptor alpha-regulated Ca2+(2+) channel that promotes tumorigenesis. FASEB J 2013;27:63–75.

Ay AS, Benzerdeh N, Sevrest H, et al. Orai1 constitutes a native store-operated calcium entry that regulates non small cell lung adenocarcinoma cell proliferation. PLoS One 2013;8:e72889.

Mancini M, Toker A. NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 2009;9:810–8.

Qi J, Nag S, Wang W, et al. NFAT as cancer target: Mission possible? Biochim Biophys Acta 2014;1846:297–311.

Chen YT, Chen YF, Chiu WT, et al. The ER Ca2+(2+) sensor STIM1 regulates actomyosin contractility of migratory cells. J Cell Sci 2013;126:5120–31.

Faouzi M, Kischel P, Hague F, et al. ORA1 silencing alters cell proliferation and cell cycle progression via c-myc pathway in breast cancer cells. Biochim Biophys Acta 2013;1833:752–60.

Yang SL, Cao Q, Zhou KC, et al. Transient receptor potential channel C3 contributes to the progression of human ovarian cancer. Oncogene 2009;28:1320–8.

Cai R, Ding X, Zhou K, et al. Blockade of TRPC6 channels induced G2/M phase arrest and suppressed growth in human gastric cancer cells. Mol Cancer 2009;8:2281–7.

Chigurupati S, Venkataraman R, Herrera D, et al. Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res 2010;70:418–27.

EApproxunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977;14:53–65.

Klappbrun M, Moses MA. Molecular angiogenes- sis. Chem Biol 1999;6:R217–R224.

Shibuya M. Structure and function of VEGF/VEGF receptor system involved in angiogenesis. Cell Struct Funct 2001;26:25–35.

Abdullaev IF, Bisaillon JM, Potier M, et al. STIM1 and Orai mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 2008;103:1289–99.

Pompili G, Capogrossi MC, Pesce M, et al. Endothelial progenitor cell and cardiovascular homeostasis: clinical implications. Int J Cardiol 2009;131:156–67.

Hattori K, Dias S, Heissig B, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001;193:1005–14.

McAllister SS, Gilford AM, Greiner AL, et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 2008;133:994–1005.

Gao D, Nolan DJ, Mellick AS, et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 2008;320:195–8.

Dragoni S, Laforenza U, Bonetti E, et al. Vascular endothelial growth factor stimulates endothelial colony forming cells proliferation and tubulogenesis by inducing oscillations in intracellular Ca2+ concentration. Stem Cells 2011;29:1898–907.

Kuang CY, Yu Y, Guo RW, et al. Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells. Biochem Biophys Res Commun 2010;398:315–20.

Sanchez-Hernandez Y, Laforenza U, Bonetti E, et al. Store-operated Ca2+(2+) entry is expressed in human endothelial progenitor cells. Stem Cells Dev 2010;19:1967–81.

Lodola F, Laforenza U, Bonetti E, et al. Store-operated Ca2+(2+) entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients. PLoS One 2012;7:e42541.

Armstrong AL, Lorenzo E, Gomez del Arco P, et al. Vascular endothelial growth factor activates nuclear factor of activated T cells in human endothelial cells: a role for tissue factor gene expression. Mol Cell Biol 1999;19:2032–43.

van den Berg WY, Osanto S, Rettsma PH, et al. The relationship between tissue factor and cancer progression: insights from bench and bed. Blood 2012;119:924–32.

Hernandez GL, Volpert OV, Iniguez MA, et al. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclo- sporin A: roles of the nuclear factor of activated T cells and cycloxygenase 2. J Exp Med 2001;193:607–20.

Shaw PJ, Feske S. Physiological and pathophysi- ological functions of SOCE in the immune system. Front Biosci (Elite Ed) 2012;4:2253–68.

Maul-Pavicic A, Zhang SC, Rensing EHL A, et al. ORAI1-mediated calcium influx is required for human cytolytic lymphocyte degradation and target cell lysis. Proc Natl Acad Sci USA 2011;108:3322–9.

Obga K, Takezawa R, Araki Y, et al. Characterization of YM-58483/BTP2, a novel store-operated Ca2+(2+) entry blocker, on T cell-mediated immune responses in vivo. Int Immunopharma- col 2008;8:1787–92.

Fuchs S, Rensing-Ehl A, Speckmann C, et al. Vascular endothelial growth factor A: roles of the nuclear factor of activated T cells and cyclooxygenase. J Immunol 2009;183:522–30.

Bynum M, Abhayankar A, Lelarge V, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med 2010;207:2307–12.

Ma J, McColloch CA, Khalil S, et al. Tcell-specific deletion of STIM1 and STIM2 protects mice from EAE by impairing the effector functions of Th1 and Th17 cells. Eur J Immunol 2010;40:3028–42.

Gwack Y, Sakanti S, Oh-Hora M, et al. Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol Cell Biol 2008;28:5209–22.

Lowes MA, Bishop GA, Crotty K, et al. T helper 1 cytokine mRNA is increased in spontaneously regressing primary melanomas. J Invest Dermato- tol 1997;108:914–19.

Wang RP. The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol 2001;22:269–76.
119. Shaw PJ, Feske S. Regulation of lymphocyte function by ORAI and STIM proteins in infection and autoimmunity. J Physiol 2012;590:4157–67.

120. Kim KD, Srikanth S, Tan YV, et al. Calcium signaling via Orai1 is essential for induction of the nuclear orphan receptor pathway to drive Th17 differentiation. J Immunol 2014;192:110–22.

121. Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 2005;5:472–84.

122. Anderson KA, Kane CD. Ca²⁺/calmodulin-dependent protein kinase IV and calcium signaling in human peripheral blood mononuclear cells. Eur J Biochem 1999;263:1075–84.

123. Kreideweiss S, Ahlers C, Nordheim A, et al. Ca²⁺-induced 3P8/SAPK signalling inhibited by the immunosuppressant cyclosporin A in human peripheral blood mononuclear cells. Eur J Biochem 1999;263:1075–84.

124. de Visser KE, Eichten A, Cousens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006;6:24–37.

125. Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res 2008;659:15–30.

126. Bernstein CN, Blanchard JF, Klewer E, et al. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 2001;91:854–62.

127. Martin-Orozco N, Muranski P, Chung Y, et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 2009;31:787–98.

128. Schummann MK, Stegner D, Berna-Erro A, et al. Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol 2010;184:1536–42.

129. McCleary CA, Khalil S, Ma J, et al. Store-operated Ca²⁺ entry through ORAI1 is critical for T cell-mediated autoimmune and allograft rejection. J Immunol 2010;185:5845–58.

130. Merritt JE, Armstrong WP, Benham CD, et al. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J 1990;271:515–22.

131. Franzius D, Hoth M, Penner R. Non-specific effects of calcium entry antagonists in mast cells. Pflugers Arch 1994;428:433–8.

132. Kozak JA, Kirschbaum HH, Cahalan MD. Distinct properties of CRAC and MIC channels in RBL cells. J Gen Physiol 2002;120:221–35.

133. Chung SC, McDonald TV, Gardner P. Inhibition by SK&F 96365 of Ca²⁺ current, IL-2 production and activation in T lymphocytes. Br J Pharmacol 1994;113:861–8.

134. Liu J, Kim ML, Heo WD, et al. STIM is a Ca²⁺ sensor essential for Ca²⁺-store-depletion-triggered Ca²⁺ influx. Curr Biol 2005;15:1235–41.

135. Maruyama T, Kanaji T, Nakade S, et al. 2APB, 2-aminoethoxylphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P³-induced Ca²⁺ release. J Biochem 1997;122:498–505.

136. Bootman MD, Collins TJ, Mackenzie L, et al. STIM is a novel inhibitor of InsP3-induced Ca²⁺ release. FASEB J 2002;16:1145–50.

137. Prakriya M, Lewis RS. Potentiation and inhibition of Ca(2⁺)-release-activated Ca(2⁺) entry by an inconsistent inhibitor of InsP3-induced Ca²⁺ release. Biophys J 2001;80:331–43.

138. Ishikawa J, Ohga K, Yoshino T, et al. A pyrazole derivative BTP2. J Biol Chem 2004;279:12427–32.

139. Peinelt C, Lis A, Beck A, et al. 2Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels. J Physiol 2001;536:19–39.

140. Enfissi A, Prigent S, Colosetti P, et al. The blocking of capacitative calcium entry by 2-aminoethyl diphenylborate (2-APB) and carboxyamidotriazole (CAI) inhibits proliferation in Hep G2 and Huh-7 human hepatoma cells. Cell Calcium 2004;36:1061–73.

141. Enfissi A, Prigent S, Colosetti P, et al. The blocking of capacitative calcium entry by 2-aminoethyl diphenylborate (2-APB) and carboxyamidotriazole (CAI) inhibits proliferation in Hep G2 and Huh-7 human hepatoma cells. Cell Calcium 2004;36:459–67.

142. Sakakura C, Miyagawa K, Fukuda K, et al. [Possible involvement of inositol 1, 4, 5-trisphosphate receptor type 3 (IP3R3) in the peritoneal dissemination of gastric cancers]. Gann to Kagaku Ryoho 2003;30:1784–7.

143. Ishikawa J, Ohga K, Yoshino T, et al. A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca²⁺ influx and IL-2 production in T lymphocytes. J Immunol 2003;170:4414–8.

144. Zitt C, Strauss B, Schwarz EC, et al. Potent inhibition of Ca²⁺-release-activated Ca²⁺ channels and T-lymphocyte activation by the pyrazole derivative BTP2. J Biol Chem 2004;279:12427–37.

145. Joyman A, Prakriya M. Molecular pharmacology of store-operated CRAC channels. Channels (Austin) 2013;7:402–14.

146. Law M, Morales JL, Mottram LF, et al. Structural requirements for the inhibition of calcium mobilization and mast cell activation by the pyr- azole derivative BTP2. Int J Biochem Cell Biol 2011;43:1228–39.

147. Mercer JC, Qi Q, Mottram LF, et al. Chemico-genetic identification of drebrin as a regulator of calcium responses. Int J Biochem Cell Biol 2010;42:337–45.

148. Lin FF, Elliott R, Colombero A, et al. Generation and characterization of fully human monoclonal antibodies against human Orai1 for autoimmune disease. J Pharmocol Exp Ther 2013;345:225–38.

149. Cox JH, Russell S, Sondерgaard H, et al. Anti-body-mediated targeting of the Orai1 calcium channel inhibits T cell function. PLoS One 2013;8:e82944.

150. Derle C, Schindler R, Fritsch R, et al. The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium 2013;53:139–51.

151. Chen G, Panicker S, Lau KY, et al. Characterization of a novel CRAC inhibitor that potently blocks human T cell activation and effector functions. Mol Immunol 2013;54:355–67.

152. Kohn EC, Liotta LA. L651582: a novel antiprolifera- tive and antimetastasis agent. J Natl Cancer Inst 1990;82:54–60.

153. Kohn EC, Feller CC, Jacobs W, et al. Structure-function analysis of signal and growth inhibition by carboxyamidotriazole, CAI. Cancer Res 1994;54:935–42.

154. Hussain MM, Kotz H, Minasian L, et al. Phase II trial of carboxyamidotriazole in patients with relapsed epithelial ovarian cancer. J Clin Oncol 2003;21:4356–63.