INCREASED OUABAIN-SENSITIVE 86RUBIDIUM$^+$ UPTAKE
AFTER MITOGENIC STIMULATION OF QUIESCENT CHICKEN
EMBRYO FIBROBLASTS WITH PURIFIED
MULTIPLICATION-STIMULATING ACTIVITY

GARY L. SMITH
From the School of Life Sciences, University of Nebraska, Lincoln, Nebraska 68588

ABSTRACT
Multiplication-stimulating activity (MSA), a protein which stimulates DNA synthesis and growth of chicken embryo fibroblasts, was purified from serum-free medium conditioned by the growth of a rat liver cell line. Purified MSA was shown to rapidly stimulate ouabain-sensitive Na$^+$,K$^+$-ATPase activity as measured by both enzyme assay and rate of 86Rubidium uptake. Labeled ouabain binding was also shown to increase after stimulation of quiescent cells by serum or purified MSA. Conditions which interfere with the ability of the cells to accumulate potassium, such as the presence of the specific inhibitor, ouabain; incubation in potassium-free medium; or the presence of the potassium ionophore, valinomycin, were all demonstrated to inhibit the stimulation of DNA synthesis by serum or purified MSA. These results suggest that an early event in the stimulation of DNA synthesis by purified MSA is an activation of membrane Na$^+$,K$^+$-ATPase with a resulting accumulation of potassium ions inside the cell.

The mechanism by which serum growth factors stimulate stationary fibroblasts to enter the cell cycle, synthesize DNA, and divide has not yet been defined. However, many investigations strongly indicate that the cell surface plays a crucial role in the regulation of cell proliferation and indeed many parameters of membrane function have been shown to correlate with multiplication rate or with viral transformation. Due to the complexity of serum it has been difficult to determine which of the effects of serum on cells is important for the stimulation of cell multiplication. To probe this question it is necessary to have purified factors which possess growth-stimulating properties. The use of purified factors alleviates the possibility that biochemical events observed after stimulation of cells are due to other substances in serum.

One such purified growth factor is multiplication-stimulating activity (MSA), a polypeptide of about 10,000 mol wt which has been purified from serum-free medium conditioned by the growth of a rat liver cell line (8, 9, 33). This protein has multiplication-stimulating activity for chicken embryo fibroblasts and nonsuppressible insulin-like activity (NSILA) (8). In addition to stimulating DNA synthesis and growth, MSA enhances the transport of glucose and amino acids and is functionally similar to insulin and somatomedin (33).

Several recent investigations have implicated potassium fluxes in the regulation of cell growth (2, 5, 6, 23, 30). Serum has been demonstrated to stimulate 86Rubidium (86Rb$^+$) influx in 3T3 cells (24), and increased Na$^+$,K$^+$-ATPase activity has been found in virus-transformed cells (13). In or-
Stimulation of DNA Synthesis

Reagents

Culture fluid to fresh medium containing serum or MSA was used to determine whether purified MSA would influence the ouabain-sensitive Na⁺,K⁺-ATPase of stationary chicken embryo fibroblasts. The data indicate that purified MSA on S phase uptake in chicken embryo fibroblasts was determined. As shown in Fig. 1,

MATERIALS AND METHODS

Reagents

MSA was purified from rat liver cell conditioned medium as described previously (33). Dulbecco's modified Eagle's medium (DME) and calf serum were obtained from Grand Island Biological Co. (Grand Island, N.Y.). [3H]Thymidine (20 Ci/mmol), [3H]Ouabain (12 Ci/mmol) and [3H]Rubidium (12 Ci/mmol) were obtained from New England Nuclear (Boston, Mass.). Valinomycin and ouabain were obtained from Calbiochem (San Diego, Calif.).

Cell Culture and Assay for the Stimulation of DNA Synthesis

Primary cultures of chicken embryo fibroblasts were prepared by trypsinization of the body walls of 10-12-day-old embryos. Cells were maintained in DME plus 10% calf serum, 10% U/ml of penicillin and 100 μg/ml of streptomycin in a humidified atmosphere of 5% CO₂ at 37°C. For experimentation, secondary cultures were prepared by transferring cells to 35-mm plastic tissue culture dishes at a concentration of 3 × 10⁵ cells per dish in 2 ml of DME containing 0.25% calf serum. Cells prepared in this manner exhibited little if any cell division and entered a resting, quiescent stage in which little DNA synthesis occurred. 3 days after plating, less than 2% of the cells were in S phase at any one time as determined by autoradiography after a 1-h pulse of labeled thymidine (data not shown). At this time, cells were used for experimentation and were stimulated by changing the culture fluid to fresh medium containing serum or MSA and the various test materials. DNA synthesis was determined in stimulated cells by exposure to [3H]Thymidine (0.2 μCi/ml) for 2 h during the peak in the rate of DNA synthesis, which occurred at about 12 h (data not shown). At the end of the pulse period, the cultures were washed 3 times with cold PBS and extracting for 1 h with 1 ml of cold 10% TCA. The TCA extract was added to 10 ml of water and the radioactivity was determined by Cerenkov radiation in a liquid scintillation counter.

Ouabain Binding

Rubidium uptake and labeled ouabain binding

Potassium influx was measured with [3H]Rubidium as a tracer because of its longer half-life and because it has been shown to be taken up by cultured cells in the same way as potassium (13, 35). [3H]Rubidium uptake was determined by directly adding 5 μCi [3H]Rubidium to each culture. After 15 min (unless otherwise indicated), uptake was terminated by washing the cells three times with cold PBS and extracting for 1 h with 1 ml of cold 10% TCA. The TCA extract was added to 10 ml of water and the radioactivity was determined by Cerenkov radiation in a liquid scintillation counter.

Labeled ouabain binding was determined by removing the medium and washing the cells once with serum-free medium. One ml of DME containing 2 × 10⁻⁷ M [3H]Ouabain was added to the cells, and the cultures were incubated for 1 h. At the end of the incubation period, the cultures were washed 3 times with cold 0.15 M NaCl, the cells were dissolved in 1 ml of 1% sodium dodecylsulfate, and aliquots were taken for determination of cell-bound radioactivity. Specific binding was determined by subtracting cell-bound cpm in the presence of excess unlabeled ouabain (10⁻⁴ M).

Enzyme Assay

Na⁺,K⁺-ATPase activity was assayed in crude cell homogenates as previously described by Kimelberg and Mayhew (13) and Kimelberg and Papahadjopoulos (14). Two hr after stimulation, cells to be assayed were washed three times with cold 0.15 M NaCl and frozen at −70°C. Upon thawing, the cells were scraped from the dish with a rubber policeman into 1.5 ml of medium containing 100 mM NaCl, 10 mM KCl, 50 mM Tris acetate, 0.1 mM Na EDTA, and 3 mM MgCl₂ at pH 7.2. Enzyme assays were carried out, after brief homogenization in a Dounce homogenizer, by the addition of 5 μmoles of adenosine triphosphate (ATP). Values given are ouabain-sensitive release of PO₄³⁻ from ATP in micromoles per culture in a 1-h incubation.

RESULTS

The effect of mitogenic stimulation by serum or purified MSA on [3H]Rubidium uptake in chicken embryo fibroblasts was determined. As shown in Fig. 1,
both serum and MSA caused an increase in the rate of uptake of ⁸⁶Rb⁺ after 2 h of stimulation. It is also evident that both the basal rate and the stimulated rate of ⁸⁶Rb⁺ uptake in these cells are almost totally inhibited by ouabain, a specific inhibitor of Na⁺,K⁺-ATPase activity (27, 32). The observed rate of ⁸⁶Rb⁺ uptake is linear for over 15 min but tends to level off at later times. The plateau level for unstimulated cells is lower than that for stimulated cells (data not shown), indicating that stimulated cells have an increased capacity to accumulate potassium ions.

To determine when this increase in cation influx becomes evident after stimulation, a time course of the stimulation of ⁸⁶Rb⁺ transport was performed and is shown in Fig. 3. Mitogenic stimulation by both serum and MSA causes an enhancement of ⁸⁶Rb⁺ transport, and this increase is evident as early as 15 min after stimulation and reaches a maximum by 1 h. No increase is seen

FIGURE 1 Uptake of ⁸⁶Rb⁺ 2 h after stimulation. Stationary cells were prepared as described in Materials and Methods. 3 days later, cultures were stimulated by changing the culture fluid to fresh medium containing no serum (A), 2% serum (Ø), or 1 μg/ml MSA (O) with (—) or without (—) 10⁻⁵ M ouabain. 2 h later, 5 μCi of ⁸⁶Rb⁺ were added directly to each culture. Uptake was terminated at the times indicated by washing duplicate cultures three times with cold PBS and extracting for 1 h with 1 ml of cold 10% TCA.

FIGURE 2 ⁸⁶Rb⁺ efflux. Stationary cells were prepared by growth in low serum-containing medium for 3 days as described in Materials and Methods. 10 μCi ⁸⁶Rb⁺ were directly added to the culture medium and the cells were incubated for 6 h. Preloaded cells were then washed, and fresh culture fluid was added which contained no serum (A), 2% serum (Ø), or 1 μg/ml MSA (O). At the times indicated, duplicate cultures were assayed for the amount of cell-associated radioactivity.
FIGURE 3 Time course of $^{86}\text{Rb}^+$ uptake. Stationary cells were prepared by growth in low serum-containing medium for 3 days as described in Materials and Methods. Cells were stimulated by changing the culture fluid to fresh medium containing no serum (A), 2% serum (O), or 1 μg/ml MSA (○). At the times indicated, 5 μCi $^{86}\text{Rb}^+$ were added to duplicate cultures in each set and uptake was measured over a 15-min interval.

![Figure 3](image)

Fig. 4 shows the dependence of $^{86}\text{Rb}^+$ transport rate at 1 h on the concentration of serum or MSA. Results show that $^{86}\text{Rb}^+$ transport increases in linear fashion at low concentrations of serum or MSA. A plateau level is reached in both cases at concentrations which also stimulate maximally DNA synthesis (33, and data not shown).

In view of the above data implicating the involvement of membrane Na⁺,K⁺-ATPase activity in the stimulation of DNA synthesis by purified MSA, it was of interest to examine the effects of an inhibitor of this enzyme on the incorporation of [³H]thymidine. Ouabain, which has already been shown to inhibit $^{86}\text{Rb}^+$ transport (Fig. 1), also totally inhibits the incorporation of [³H]thymidine by fibroblasts stimulated with serum or MSA (Table I). In control experiments (data not shown), this inhibition by ouabain was shown to be completely reversible and is therefore not due to cell killing or cytotoxicity. In addition, this inhibition of incorporation of [³H]thymidine by ouabain is not due to an effect on thymidine transport, an important consideration since Na⁺,K⁺-ATPase is known to be coupled to several transport processes in addition to cation fluxes (28).

Also shown in Table I is the effect of valinomycin, a potassium ionophore, on DNA synthesis. Valinomycin drastically reduces the levels of [³H]thymidine incorporation, probably by allowing potassium to leak out of the cells. This mode of action for valinomycin inhibition is verified, since, in cells that have been preloaded with $^{86}\text{Rb}^+$, the rate of $^{86}\text{Rb}^+$ efflux is twice as fast in the presence of valinomycin (data not shown).

The absence of potassium from the medium also is inhibitory to DNA synthesis (Table I), again suggesting the importance of potassium influx for progression into S phase to occur. These three experiments with the inhibitors ouabain and valinomycin and potassium-free medium all demonstrate an inhibitory effect on the stimulation of DNA synthesis by serum or MSA. All of these procedures have the same effect on cells, namely the deprivation of potassium. These results, coupled to the rubidium uptake data presented earlier, suggest that the intracellular accumulation of potassium after stimulation by serum or purified MSA is a necessary early event leading to DNA synthesis.

![Figure 4](image)

FIGURE 4 Dose-response curve. Stationary cells were prepared by growth in low serum-containing medium for 3 days as described in Materials and Methods. Cells were stimulated by changing the culture fluid to fresh medium containing various concentrations of serum (○) or purified MSA (○). $^{86}\text{Rb}^+$ transport was measured 2 h after stimulation during a 15-min interval after the addition of 5 μCi $^{86}\text{Rb}^+$ to duplicate samples.
TABLE I

Effect of Ouabain, Valinomycin and the Absence of K⁺ on Serum- and MSA-Induced DNA Synthesis*

Inhibitor	Control w/o Serum	10% Serum	MSA 1 μg/ml	Serum	MSA
	cpm per culture %				
None	690	9,040	3,560	0	0
Ouabain					
(10⁻³ M)	170	610	390	94	89
(10⁻⁴ M)	90	95	110	99	97
Valinomycin					
(0.1 μg/ml)	500	2,240	1,620	75	54
(1.0 μg/ml)	440	1,260	1,580	86	56
Potassium-free medium	55	280	350	97	90

* Stationary cultures of chicken embryo fibroblasts were prepared as described in Methods and Materials. After 3 days, cells were stimulated by changing the culture fluid to fresh medium containing the indicated additions. At 12 h, [³H]thymidine incorporation was determined. Values shown are the averages of duplicate cultures. Duplicates did not vary by more than 10%.

Calf serum used in the potassium-free medium was extensively dialyzed against 0.15 M NaCl to remove potassium. This serum was equally as active as undialysed serum in stimulating DNA synthesis in complete medium.

TABLE II

Na⁺,K⁺-ATPase Activity, and Ouabain Binding after Stimulation by Serum or MSA*

System	Na⁺,K⁺-ATPase activity	Ouabain-sensitive release of PO₄	Specific [³H]ouabain binding
	µmol/min/culture	cpm/culture	
Control (no serum)	0.076 ± 0.006	550 ± 90	
10% serum	0.112 ± 0.008	740 ± 95	
MSA (1 μg/ml)	0.090 ± 0.003	675 ± 120	

* Stationary cultures were prepared as described in Materials and Methods. After 3 days, cells were stimulated by changing the culture fluid to fresh medium containing no or 10% serum or 1 μg/ml MSA. 2 h after stimulation, triplicate cultures were assayed for enzyme activity and quadruplicate cultures were assayed for ouabain binding. Data are given ± one standard deviation.

DISCUSSION

The data reported in this communication clearly demonstrate that purified MSA from rat liver cell-conditioned medium stimulates potassium transport after addition to stationary chicken embryo fibroblasts. This increased potassium transport is due to an activation of Na⁺,K⁺-ATPase activity as indicated by direct measurements of enzyme activity and by the marked sensitivity to the specific inhibitor, ouabain. Other techniques which drastically reduce the capacity of the cells to accumulate potassium such as potassium-free conditions or the presence of the potassium ionophore, valinomycin, also inhibit DNA synthesis.

Increased specific ouabain binding was also demonstrated after stimulation by MSA. Ouabain
binding has been used to estimate the number of sodium pumps present on the cell surface (10); however, it is difficult to eliminate the possibility that increased binding is due to changes in the affinity of the enzyme for the inhibitor (2). Most important was the direct demonstration of an increased ouabain-sensitive \(\text{Na}^+,\text{K}^+\)-ATPase activity after stimulation of stationary cells. These results suggest that serum and purified MSA may exert their mitogenic effect by stimulating membrane \(\text{Na}^+,\text{K}^+\)-ATPase activity. This may involve a direct interaction of the growth factor with the enzyme on the cell surface or it might be a result of secondary interactions with other membrane components involved in growth control. It is not yet possible to speculate as to whether the cells respond to (a) an increase in the rate of potassium influx \textit{per se}, or (b) an increased intracellular potassium concentration, or (c) a change in transmembrane potential. Investigations are currently in progress to examine these possibilities.

Cation fluxes have previously been implicated in the regulation of cell proliferation. Rates of DNA synthesis have been shown to vary in proportion to the external potassium ion concentration (16, 21) and potassium uptake increases in lymphocytes upon stimulation with mitogens (2, 22). Other workers have correlated internal potassium ion concentrations with proliferative rate in mouse lymphoblasts (5, 6), and increased rates of potassium uptake have been demonstrated in virus-transformed 3T3 and BHK cells (13). It has also been suggested that the electrical transmembrane potential is involved in contact inhibition of cell division (4). Cellular growth has been found to be directly related to the amount of sodium pumping activity in mouse lymphoblasts (30), and serum has been shown to stimulate ouabain-sensitive \(\text{Rb}^+ \) influx in 3T3 cells (24) although no changes in enzyme activity of cell homogenates were detected.

Ouabain is known to prevent the stimulation of lymphocytes by phytohemagglutinin (PHA) (22, 23) and it inhibits the multiplication of Ehrlich ascites cells (19), canine kidney cells (1), BHK cells (20), and mouse lymphoblasts (5).

It is interesting to note that other investigators have demonstrated that insulin, a known growth-promoting protein, stimulates \(\text{Na}^+,\text{K}^+\)-Mg2+-ATPase in rat uterus (17), diaphragm (12) and liver (18). Insulin also stimulates \(\text{Na}^+,\text{K}^+\)-ATPase activity in rat (3) and frog (10) muscle.

Membrane \(\text{Na}^+,\text{K}^+\)-ATPase is responsible for the intracellular accumulation of potassium ions and the maintenance of membrane potential. However, in some systems this enzyme activity is coupled to the transport of sugars and amino acids (28). A vast literature exists which demonstrates that glucose transport rates increase rapidly after the addition of growth-promoting substances to cultured cells (25, 26, 29, 33, 34), and it has been suggested that changes in nutrient transport rates are critical to the regulation of cell growth (7, 11). It is conceivable that the stimulation of cell multiplication by purified growth factors involves the direct activation of membrane \(\text{Na}^+,\text{K}^+\)-ATPase with secondary enhancement of nutrient transport rates. Such an interaction is currently under active investigation.

The excellent technical assistance of Dwight Burbank is gratefully acknowledged. I wish to thank Donna Dinges for preparation of the manuscript. Thanks are also extended to Dr. H. Temin who supplied the rat liver cell line.

This investigation was supported by Public Health Service Research grant CA17620 from the National Cancer Institute.

Received for publication 23 August 1976, and in revised form 28 January 1977.

REFERENCES

1. ABAZA, N. J., LEIGHTON, S., and SCHULTZ. 1974. Effects of ouabain on the function and structure of a cell line (MDCK) derived from canine kidney. \textit{In Vitro} (Rockville). \textbf{10}:172-183.

2. AVERDUNK, R., and LAUF. 1975. Effects of mitogens on sodium-potassium transport, 3H-ouabain binding, and adenosine triphosphatase activity in lymphocytes. \textit{Exp. Cell Res.} \textbf{93}:331-342.

3. BRODAL, B. P., E. JEBENS, V. ÖY, and O.-J. IVESSEN. 1974. Effect of insulin on \(\text{Na}^+,\text{K}^+\)-activated adenosine triphosphatase activity in rat muscle sarcolemma. \textit{Nature} (Lond.). \textbf{249}:61-63.

4. CONE, C. D., JR., and M. TONGIER, JR. 1973. Contact inhibition of division: involvement of the electrical transmembrane potential. \textit{J. Cell. Physiol.} \textbf{82}:373-386.

5. CUFF, J. M., and M. A. LICHTMAN. 1975. The early effects of ouabain on potassium metabolism and rate of proliferation of mouse lymphoblasts. \textit{J. Cell. Physiol.} \textbf{85}:209-215.

6. CUFF, J. M., and M. A. LICHTMAN. 1975. The effects of ouabain on the cell mitotic cycle of mouse lymphoblasts. \textit{J. Cell. Physiol.} \textbf{85}:227-234.

7. CUNNINGHAM, D., and A. PARDEE. 1969. Transport changes rapidly initiated by serum addition to...
"contact inhibited" 3T3 cells. *Proc. Natl. Acad. Sci. U. S. A.* 64:1049-1054.

8. **DULAK, N. C., and H. M. TEMIN.** 1973. A partially purified polypeptide from rat liver cell conditioned medium with multiplication-stimulating activity for embryo fibroblasts. *J. Cell. Physiol.* 81:153-160.

9. **DULAK, N. C., and H. M. TEMIN.** 1973. Multiplication-stimulating activity for chicken embryo fibroblasts from rat liver cell conditioned medium: a family of small polypeptides. *J. Cell. Physiol.* 81:161-170.

10. **GRINSTEIN, S., and D. ERLII.** 1974. Insulin unmasks latent sodium pump sites in frog muscle. *Nature (Lond.)* 251:57-58.

11. **HOLLEY, R.** 1972. A unifying hypothesis concerning the nature of malignant growth. *Proc. Natl. Acad. Sci. U. S. A.* 69:2840-2841.

12. **HORN, R., O. WALAAS, and E. WALAAS.** 1973. The influence of sodium, potassium and lithium on the response of glycogen synthetase I to insulin and epinephrine in the isolated rat diaphragm. *Biochim. Biophys. Acta.* 313:296-309.

13. **KIMELBERG, H., and E. MAYHEW.** 1975. Increased ouabain-sensitive Rb+ uptake and sodium and potassium ion-activated adenosine triphosphatase activity in transformed cell lines. *J. Biol. Chem.* 250:100-104.

14. **KIMELBERG, H., and D. PAPAHADJOPOULOS.** 1972. Phospholipid requirements for (Na+ + K+)-ATPase activity: head-group specificity and fatty acid fluidity. *Biochim. Biophys. Acta.* 282:277-292.

15. **KLETZIEN, R., M. PARIZA, J. BECKER, V. POITER, and F. BURCHER.** 1976. Induction of amino acid transport in primary cultures of adult rat liver parenchymal cells by insulin. *J. Biol. Chem.* 251:3014-3020.

16. **KUCHLER, R.** 1967. The role of sodium and potassium in regulating amino acid accumulation and protein synthesis in LM-strain mouse fibroblasts. *Biochim. Biophys. Acta.* 136:473-483.

17. **LOSTROH, A., and M. KRAHL.** 1973. Insulin action: accumulation in vitro of Mg2+ and K+ in rat uterus: ion pump activity. *Biochim. Biophys. Acta.* 291:260-268.

18. **LUTY, R., O. BARNABEL, and E. TRIB.** 1972. Hormonal control in vitro of plasma membrane-bound (Na+ - K+)-ATPase of rat liver. *Biochim. Biophys. Acta.* 282:447-552.

19. **MAYHEW, E., and C. LEVINSON.** 1968. Reversibility of ouabain-induced inhibition of cell division and cation transport in Ehrlich ascites cells. *J. Cell. Physiol.* 72:73-76.

20. **McDONALD, T., H. SACHS, C. ORR, and J. EBERT.** 1972. Multiple effects of ouabain on BHK cells. *Exp. Cell Res.* 74:201-206.

21. **Orr, C., M. YOSHIIKAWA-FUKADA, and J. EBERT.** 1972. Potassium: effect on DNA synthesis and multiplication of baby-hamster kidney cells. *Proc. Natl. Acad. Sci. U. S. A.* 69:243-247.

22. **QUASTEL, M., and J. KAPLAN.** 1970. Phagocytosis: the effect of ouabain on nucleic acid and protein synthesis. *Exp. Cell Res.* 62:407-420.

23. **QUASTEL, M., and J. KAPLAN.** 1970. Early stimulation of potassium uptake in lymphocytes treated with PHA. *Exp. Cell Res.* 63:230-233.

24. **ROZENGURT, E., and L. HEPPEL.** 1975. Serum rapidly stimulates ouabain-sensitive Rb+ influx in quiescent 3T3 cells. *Proc. Natl. Acad. Sci. U. S. A.* 72:4492-4495.

25. **RUBIN, H.** 1971. pH and population density in the regulation of animal cell multiplication. *J. Cell Biol.* 51:686-702.

26. **RUBIN, H., and T. KOIDE.** 1973. Stimulation of DNA synthesis and 2-deoxy-D-glucose transport in chick embryo cultures by excessive metal concentrations and by a carcinogenic hydrocarbon. *J. Cell. Physiol.* 81:387-396.

27. **SCHATZMANN, H.** 1953. Herzglukoside als hemmstoffe für den aktiven Kalium-und Natriumtransport durch die Erythrocyten-membran. *Helv. Physiol. Pharmacol. Acta.* 11:346-354.

28. **SCHULTZ, S., and P. CURRAN.** 1970. Coupled transport of sodium and organic solutes. *Physiol. Rev.* 50:637-710.

29. **SEPTON, B., and H. RUBIN.** 1971. Stimulation of glucose transport in cultures of density inhibited chick embryo cells. *Proc. Natl. Acad. Sci. U. S. A.* 68:3154-3157.

30. **SHANK, B., and N. SMITH.** 1976. Regulation of cellular growth by sodium pump activity. *J. Cell. Physiol.* 87:377-388.

31. **SHAW, S., and H. AMOS.** 1973. Insulin stimulation of glucose entry in chick fibroblasts and Hela cells. *Biochem. Biophys. Res. Commun.* 53:357-365.

32. **SKOU, J.** 1965. Enzymatic basis for active transport of Na+ and K+ across cell membrane. *Physiol. Rev.* 45:596-617.

33. **SMITH, G. L., and H. M. TEMIN.** 1974. Purified multiple-stimulating activity from rat liver cell conditioned medium: comparison of biological activities with calf serum, insulin and somatomedin. *J. Cell. Physiol.* 84:181-192.

34. **VASHI, A., E. RUOSLAHTI, T. HOY, and S. NORDLUND.** 1973. Stimulation of density-inhibited cell cultures by insulin. *J. Cell. Physiol.* 81:355-364.

35. **VAUGHAN, G., and J. COOK.** 1972. Regeneration of cation-transport capacity in HeLa cell membranes after specific blockade by ouabain. *Proc. Natl. Acad. Sci. U. S. A.* 69:2627-2631.

Gary L. Smith *Increased Ouabain-Sensitive Rubidium Uptake* 767