Anatomic reconstruction of the anterior cruciate ligament of the knee with or without reconstruction of the anterolateral ligament: A meta-analysis

Jianjian Yin, Kaiyuan Yang, Dong Zheng and Nanwei Xu

Abstract
Purpose: To systematically analyze the effectiveness between combined anterior cruciate ligament and anterolateral ligament reconstruction (ACL+ALLR) and isolated anterior cruciate ligament reconstruction (ACLR) for treatment of patients with injured ACL. Methods: We performed a systematic search in MEDLINE, EMBASE, PubMed, Web of Science, Cochrane databases, Chinese Biomedical Literature Database, CNKI, and Wanfang Data for all relevant studies. All statistical analysis was performed using Review Manager version 5.3. Results: A total of six articles with 460 study subjects were included, with 193 patients in ACL+ALL reconstruction group and 267 patients in ACL reconstruction group. The results of the meta-analysis showed that the ACL+ALL reconstruction group had significantly lower KT measured value (P < 0.00001), Lachman test positive-rate (P = 0.02), Pivot-shift test positive-rate (P < 0.00001) and graft rupture rate (P = 0.02) compared with the ACL reconstruction group. Higher IKDC score (P < 0.00001) and Lysholm score (P < 0.00001) were measured in ACL+ALL reconstruction group, while infection rate (P = 0.86) and other complications rate (P = 0.29) showed no significant differences between the two groups. Conclusions: Anatomic reconstruction of the ACL of the knee with reconstruction of the ALL indicates better postoperative knee function and clinical outcomes compared with isolated ACL reconstruction. The infection rate and other complications rate showed no significant difference between two groups.

Keywords
anterior cruciate ligament reconstruction, anterolateral ligament reconstruction, graft rupture, IKDC score, KT measured value, Lachman test, Lysholm score, meta-analysis, Pivot-shift test

Introduction
Anterior cruciate ligament (ACL) rupture is one of the most common sports injuries in the knee and particularly significant ratio of all knee ligament surgeries involves ACL surgery.1 ACL reconstruction has conventionally been recommended for the restoration of anterior-posterior as well as rotatory knee laxity in young healthy patients with the desire to engage in pivoting sports.2,3 However, after ACL reconstruction, it was reported that rotational instability of knee joint was still residual in up to 30% of all patients,
which eventually lead to the failure of ACL reconstruction surgery. Rotation instability of the knee joint is associated with a number of factors, including increased tibial slope, injury of the lateral meniscus, posterolateral structure, and recently, the important role of anterolateral ligament (ALL) in maintaining the rotational stability have been discovered. During the last few years, several contributions have investigated the anatomical features and biomechanical role of ALL. Whatever anatomical structure, whereas based on biomechanical evidence, isolated ACL reconstruction cannot restore normal knee kinematics when ACL and ALL structures are simultaneously injured with a positive pivot shift.

As results of anatomic and biomechanical studies, several ALL reconstruction techniques have emerged along with ACL reconstruction to reduce anterolateral rotational instability. However, related problems such as over-constrain, infection and prolonged operation time come with additional surgical procedures. The aim of this meta-analysis is to evaluate whether combined ALL reconstruction can improve the clinical results of ACL rupture’s treatment.

Materials and methods

Study selection and search strategy
A comprehensive search was performed in MEDLINE, EMBASE, PubMed, Web of Science, Cochrane databases Chinese Biomedical Literature Database, CNKI, and Wanfang Data databases to identify all relevant studies available from their inception to January 31st 2020. We also searched trial registries of ongoing trials. When the criteria for inclusion or exclusion of a study were controversial, the corresponding author was consulted. The search strategy followed the identification and screening guidelines established by PRISMA statement. The following Mesh search headings and key words were used: (“anterior cruciate ligament reconstruction, anterolateral ligament reconstruction, ACL, ALL, ALLR, ACL+ALLR, combined ACL+ALLR”). These terms were used in different Boolean combinations. We retrieved all eligible studies and evaluated the reference lists of the identified studies and reviews.

Inclusion criteria
We included the following studies from the meta-analysis: (1) study design: comparing ACL+ALLR reconstruction with ACL reconstruction for treatment of ACL injuries patients, (2) include more than 20 patients in each group, (3) studies provided surgical complication outcomes, and (4) available data for each surgical regimen. The most recent was used if dual (or multiple) studies were reported by the same institution. Study designs included randomized controlled trials and retrospective/prospective cohort or case-control studies.

Exclusion criteria
Studies were excluded if they met the following criteria: (1) studies that included patients suffering from meniscus repairs, joint infection, acute fracture, tumor, deformity, osteoporosis or rheumatoid arthritis. (2) duplicate studies; review articles; case reports; biomechanical and cadaveric studies. (3) studies involving non arthroscopic surgery or reoperation.

Data extraction
Two reviewers (Jianjian Yin and Kaiyuan Yang) independently extracted the relevant data from the reports. The extracted data described the characteristics of the investigations regarding study design, gender, time from injury to surgery, mean age, sample size and follow-up period. The outcomes pooled in this analysis included KT measured value, IKDC score, Lysholm score, Lachman test positive-rate, Pivot-shift test positive-rate, graft rupture rate, infection rate and other complications rate. Disagreements were resolved by a third referee.

Risk of bias assessment
As for risk of bias, the risk of bias of four randomized clinical trials (RCTs) was evaluated using the Cochrane Collaboration tool. And the risk of bias of the cohort studies was assessed using the Newcastle-Ottawa Scale. Risk of bias of the included studies were independently assessed by two review authors (Jianjian Yin and Kaiyuan Yang). Any disagreement during the process of data extraction and quality assessment would be solved by discussion with the third author.

Data synthesis and statistical analysis
This study was statistical analyzed by using Review Manager version 5.3 (Cochrane Collaboration). Odds ratio (OR) is used to calculate the dichotomous data in this meta-analysis. The continuous data were calculated by mean difference (MD) with 95% CI. We derived the missing standard deviations from other statistics, such as P values or CI if needed. For example, $P = 0.00001$ was assumed when a P value was reported as $P < 0.00001$. Cochran’s test and the degree of inconsistency (I^2) were used to assess heterogeneity among combined study results. A fixed-effects model was used if a $P > 0.05$ and $I^2 < 50\%$. Otherwise, data were pooled by using the random-effects. $P < 0.05$ indicated statistical significance in the integration results. Publication bias in outcomes was assessed and treated using standard methodology. The funnel plots were used to analyze publication bias.
Study characteristics

The detailed results of the search for relevant literature based on the strategy described above was shown in Figure 1. A total of six articles22–30 that enrolled 460 patients (193 cases for ACL+ALL group and 267 cases for ACL group) met the inclusion criteria. Of the six studies, four articles25,28–30 were randomized studies, and two studies26,27 were retrospective studies. Of all study participants included had minimum 5-months follow-up. The concrete characteristics of the included studies were summarized in Table 1. Evaluation index data in included study were summarized in Table 2.

Study quality assessment

The quality assessments for RCTs according to NOS were listed in Table 3. The quality of non-randomized trials was assessed by Newcastle-Ottawa Scale (Table 4). Two non-randomized studies were seven and eight points (low RoB). In general, the quality of included studies was moderate to high.

Meta-analysis results

KT measured value

The KT (KT-1000/2000 arthrometer) measured value were analyzed in three studies including 103 patients in the ACL+ALL group and 130 patients in the ACL group. Analysis indicated that there was high heterogeneity among the studies ($P < 0.00001$, $I^2 = 99\%$) and a random effect model was used. Based on the complete analysis, there was no significant difference between the ACL+ALL and ACL groups (MD, -1.67; 95\% CI, -4.09 to 0.75) (Figure 2(a)). Subgroup analysis evaluated just for studies measured with...
KT-1000 value \((P = 0.35, I^2 = 0\%\) because of the high heterogeneity. And based on the subgroup analysis, the KT measured value (MD, \(-0.59; 95\% \text{ CI}, -0.88 \text{ to } -0.30\)) were significantly lower in the ACL+ALL group than in the ACL group (Figure 2(b)).

IKDC score

The IKDC score were analyzed in four studies including 101 patients in the ACL+ALL group and 178 patients in the ACL group. Analysis indicated that there was low heterogeneity among the studies \((P = 0.31, I^2 = 16\%)\) and a

Table 1. Baseline characteristics of the studies included in the meta-analysis.

Study (author, years)	Design	Operation	Patients (M/F)	Age (years)	Time from injury to surgery (m)	Follow-up (m)	Operation and graft
Goncharov, 2019	RCT	ACL	30	16-40	NA	24	Anatomic single-bundle ACL reconstruction (patellar tendon)
		ACL+ALL	18	16-40	NA	24	Gracilis or semitendinosus tendon
Helito, 2018	Retrospective	ACL	68 (59/9)	33.9 ± 6.1	14 (12-30)	26 (24-29)	Anatomic single-bundle ACL reconstruction (double gracilis and double semitendinosus tendons)
		ACL+ALL	33 (30/3)	33.1 ± 8.8	15 (13-18)	25 (24-28)	Remaining gracilis tendons
Helito, 2019	Retrospective	ACL	60 (28/32)	29.9 ± 8.1	12.4 ± 14.2	29.6 ± 6.2	Anatomic single-bundle ACL reconstruction (triple semitendinosus and single gracilis tendons)
Ibrahim, 2017	RCT	ACL+ALL	30 (13/17)	27.0 ± 9.1	13.1 ± 12.8	27.1 ± 4.2	Remaining gracilis tendons
		ACL	50 (50/0)	26 (21-32)	3 (2.0-4.6)	27 (25-30)	Anatomic single-bundle ACL reconstruction (triple semitendinosus and single gracilis tendons)
Zhang, 2016	RCT	ACL+ALL	39 (20/19)	35.98 ± 3.18	NA	5	Double gracilis tendon
		ACL	20 (13/7)	22.3 ± 5.3	12.3 ± 4.3	12	Iliotibial band tendon
		ACL+ALL	20 (12/8)	26.3 ± 6.8	16.3 ± 3.6	12	Iliotibial band tendon

Table 2. Evaluation index data in included study.

Study (author, years)	Operation	KT measured value (mm)	IKDC score	Lysholm score	Lachman test positive-rate	Pivot-shift test positive-rate	Graft rupture rate	Infection rate	Other complications
Goncharov, 2019	ACL	NA	90.3 ± 3.7	92.1 ± 3.9	5 (16.7%)	11 (36.7%)	NA	NA	NA
	ACL+ALL	NA	96.3 ± 1.8	97.4 ± 1.18	0 (0%)	0 (0%)	NA	NA	NA
Helito, 2018	ACL	NA	87.1 ± 9.0	90.0 ± 7.1	NA	24 (35.3%)	5 (7.4%)	NA	2 (2.9%)
	ACL+ALL	NA	92.7 ± 5.9	95.4 ± 5.3	NA	3 (9.1%)	0 (0%)	NA	1 (3.0%)
Helito, 2019	ACL	2.3 ± 1.4	84.3 ± 9.8	86.3 ± 7.8	NA	31 (51.7%)	13 (21.7%)	1 (1.7%)	0.00%
	ACL+ALL	1.5 ± 1.1	86.9 ± 9.3	88.3 ± 7.3	NA	8 (26.7%)	1 (3.3%)	0%	1 (3.3%)
Ibrahim, 2017	ACL	1.8 ± 1.22	NA	96 ± 5.3	5 (10%)	6 (12%)	NA	0%	NA
	ACL+ALL	1.3 ± 0.3	NA	98 ± 5.6	4 (7.5%)	5 (9.4%)	NA	1 (1.9%)	NA
Wang, 2019	ACL	7.1 ± 0.3	89.1 ± 2.6	89.3 ± 2.3	10 (50%)	11 (55%)	NA	1 (5%)	0%
	ACL+ALL	3.4 ± 0.2	96.2 ± 1.6	96.3 ± 1.6	5 (25%)	4 (20%)	NA	0%	1 (5%)
fixed effect model was used. Based on the complete analysis, the IKDC score (MD, 6.15; 95% CI, 5.29 to 7.02) were significantly higher in the ACL+ALL group than in the ACL group (Figure 3).

Lysholm score

The Lysholm score were analyzed in six studies including 193 patients in the ACL+ALL group and 267 patients in the ACL group. Analysis indicated that there was high heterogeneity among the studies ($P < 0.0001$, $I^2 = 81\%$) and a random effect model was used. Based on the complete analysis, the Lysholm score (MD, 5.40; 95% CI, 3.41 to 7.38) were significantly higher in the ACL+ALL group than in the ACL group (Figure 4).

Lachman test positive-rate

The Lachman test positive-rate were analyzed in four studies including 130 patients in the ACL+ALL group and 139 patients in the ACL group. Analysis indicated that there was low heterogeneity among the studies ($P = 0.68$, $I^2 = 0\%$) and a fixed effect model was used. Based on the complete analysis, the Lachman test positive-rate (OR = 0.46, 95% CI, 0.24 to 0.86) were significantly lower in the ACL+ALL group than in the ACL group (Figure 5).

Pivot-shift test positive-rate

The Pivot-shift test positive-rate were analyzed in five studies including 154 patients in the ACL+ALL group and
228 patients in the ACL group. Analysis indicated that there was low heterogeneity among the studies \((P = 0.31, I^2 = 16\%)\) and a fixed effect model was used. Based on the complete analysis, the Pivot-shift test positive-rate \((\text{OR} = 0.27, 95\% \text{CI}, 0.16 \text{ to } 0.48)\) were significantly lower in the ACL+ALL group than in the ACL group (Figure 6).

Graft rupture rate

The graft rupture rate was analyzed in three studies including 102 patients in the ACL+ALL group and 167 patients in the ACL group. Analysis indicated that there was low heterogeneity among the studies \((P = 0.69, I^2 = 0\%)\) and a fixed effect model was used. Based on the complete analysis, the graft rupture rate \((\text{OR} = 0.19, 95\% \text{CI}, 0.05 \text{ to } 0.73)\) were significantly lower in the ACL+ALL group than in the ACL group (Figure 7).

Infection rate

The infection rate was analyzed in three studies including 103 patients in the ACL+ALL group and 130 patients in the ACL group. Analysis indicated that there was low heterogeneity among the studies \((P = 0.63, I^2 = 0\%)\) and a fixed effect model was used. Based on the complete analysis, there was no significant difference between the ACL+ALL and ACL groups \((\text{OR} = 0.86, 95\% \text{CI}, 0.16 \text{ to } 4.62)\) (Figure 8).
Other complications rate

The other complications rate was analyzed in three studies including 83 patients in the ACL+ALL group and 148 patients in the ACL group. Analysis indicated that there was low heterogeneity among the studies ($P=0.67$, $I^2=0\%$) and a fixed effect model was used. Based on the complete analysis, there was no significant difference between the ACL+ALL and ACL groups (OR = 2.31, 95% CI, 0.49 to 10.91) (Figure 9).

Discussion

Abnormal and severely abnormal IKDC scores in 36.4% of patients with hyperlaxity undergoing ACL reconstruction with hamstrings tendons and in 20% of patients undergoing reconstruction with patellar tendons were reported in Kim et al.’s systematic review.31 What’s more, a greater laxity index closely related to greater residual postoperative instability and lower IKDC and Lysholm functional scale scores. One study32 showed that almost one-third of patients with hyperlaxity and ACL reconstruction experienced graft rupture, contralateral ACL rupture, or excessive laxity. Above data encourage search for methods of additional rotation stabilization of the knee joint, one of them being reconstruction of anterolateral ligament of the knee. That does not mean ALL reconstruction should not be performed routinely for patients undergoing ACL reconstruction. ALL reconstruction is now recognized as a reliable option to control rotatory instability during the surgery of ACL reconstruction.17 Sonnery-Cottet et al.33 proposed that combined ACL and ALL reconstruction should be considered for patients who present at least with one
decisive criteria which including ACL revision, grade 2 or 3 positive pivot shift, Segond fracture, pivoting sport and hyperlax. Contralateral ACL rupture, Lachman test >7 mm, deep lateral femoral notch sign and less than 25 years old were defined as secondary criteria, patients suffered two of the secondary criteria were also recommended for combined ALL reconstruction. Some published literature shows that combined anterior cruciate ligament and anterolateral ligament reconstruction improves the postoperative results. The review of Saithna et al. indicated that the results of combined ACLR+ALL reconstruction demonstrate significant advantages over isolated ACLR with respect to these key clinical outcomes. Based on 502 high-risk young patients who underwent ACL reconstruction alone or combined with ACL reconstruction, Sonnery-Cottet et al. found no significant difference in Lysholm score and IKDC score with minimum follow-up of 2 years. In our meta-analysis, the Lysholm score, IKDC score, KT-1000 value, Lachman test positive-rate, Pivot-shift test positive-rate are significant better in ACL+ALL reconstruction group compared with ACL reconstruction group. Although, combined with more incision, more tendon grafts, additional surgical procedure and longer operation time, the results of Lysholm score and IKDC score indicate that ACLR+ALL reconstruction gains better postoperative knee function. Clinical outcomes after combined ACL and ALL reconstruction are promising despite the long-term functional effect of all reconstruction still needs further study.

It is generally known that KT-1000 value and Lachman test are more objective and accurate to evaluate laxity after ACL reconstruction, and Pivot-shift test is the most important index to evaluate the rotation stabilization of knee joint. In the biomechanical experiment of anterior cruciate ligament transection model, the Pivot-shift test of knee joint rarely exceeds grade 1. However, ACL injury patients with Pivot-shift test grade 2 or 3 are often encountered in clinical work. There should be additional anatomic structural damage that leads to the increase of Pivot-shift test theoretically. At present, ALL injury is considered to be one of the factors leading to the high grade of Pivot-shift test. Compared with isolated ACL reconstruction group, anteroposterior and rotation stabilization of the knee joint showed significant improvement in combined group based on our meta-analysis.

Clinical results after isolated ACL reconstruction in a high-risk population are disappointing. Some scholars reported that the risk of the recurrent rupture is 1.8 to 14% after isolated ACL reconstruction. And the rate of patients who return to their pre-injury level of sport remains low. However, the failure rate decreases more than 50% by adding the extra-articular reconstruction. According to the study of Inderhaug et al., the extra-articular reconstruction restores normal knee biomechanics in combined injuries of the ACL and the anterolateral structures, and another biomechanical study found that the forces in the ACL graft decreases by approximately 43% when a lateral extra-articular tenodesis was added. A study of 502 patients confirmed that anterolateral ligament reconstruction is associated with significantly reduced ACL graft rupture rates. And patients are more likely to return to pre-injury level of sports activities. Graft failure rates of <3% were seen in the two studies from the SANTI group with a minimum follow-up of 2 years. Our meta-analysis demonstrated a significant lower graft rupture rate compared with isolated ACL reconstruction. ALL reconstruction may protect the ACL graft and may therefore serve as a complement to ACL reconstruction.

Postoperative infection is a very rare complication in the article of Panisset et al., with only 1 case (0.2%) in 392 patients. Brophy et al. reported 0.8% in a series of 2198 patients, and diabetes, allograft and hamstring graft as risk factors. ALL reconstruction was indicated as a risk factor of postoperative infection with incidence rate of 0.61%. However, in our meta-analysis, there was no significant increasing in postoperative infection and while combined with ALL reconstruction. As well, Thaunat et al. do not support concerns regarding a potentially increased risk of infection-related complications when ALL reconstruction is added. It is likely related to the minimally invasive technique of ALL reconstruction compared with traditionally large incisions.

The addition of an ALL reconstruction demonstrated a very low complication rate (0.5%) related to the ALL graft. Some specific complications of ALL reconstruction were observed in included studies, such as pretibial infections and peroneal nerve palsy. However, the incidence rate of these complications was low, and the overall complication rate was acceptable. Moreover, the minimally invasive technique of ALL reconstruction significantly reduces postoperative pain and improves patient satisfaction.

Study or Subgroup	ACL+ALL Events	Total	ACL Events	Total	Weight	Odds Ratio M-H, Fixed, 95% CI
Helito 2018	1	33	2	68	61.8%	1.03 [0.99, 1.10]
Helito 2019	1	30	0	60	15.6%	6.15 [0.24, 155.65]
Zhang 2016	1	20	0	20	22.6%	3.15 [0.12, 82.16]
Total (95% CI)	83	148	100.0%			2.31 [0.49, 10.91]

Figure 9. The forest plot for other complications rate between two groups.
cyst formation in tunnel, femoral anchor loosening with irritation of the lateral soft parts of the knee, cyclops-type lesion formation and arthroscopic removal of the arthrofibrosis was required. As well, no significant difference in other complications rate was observed between two groups. Combined ACL and ALL reconstruction have proven to be a safe procedure with an overall reoperation rate that is comparable with those reported for isolated ACL reconstructions. Schön et al. showed in a cadaveric study that anatomic ALLR in conjunction with an ACLR significantly reduced rotatory laxity of the knee beyond 30° of knee flexion, but resulted in significant over constraint of the knee at any fixation angle. Although the study was carried out on specimens, the results still have some guiding significance and deserve our deep thinking. Further investigation into the application and target population for ALLR is strongly recommended.

The authors acknowledge some limitations to the meta-analysis. Except for four randomized controlled trial, two included studies are retrospective and have a non-randomized design. In these studies, the risk of selection bias could not be excluded. Second, the heterogeneity of meta-analyses for some clinical variables was obvious, which might lower the reliability of the results.

The Pivot-shift test and Lachman test usually measured by subjective physical exam which may cause measurement errors between observers in different studies. What’s more, the severity of these test cannot be only represented based on the positive or negative rate. It is hoped that more specific and detailed classification of injury degree can be adopted, so as to interpret the clinical results more accurately. Third, the presence of meniscal injuries, preoperative pivot-shift and preoperative KT-1000 showed no significant difference between the two groups based on the characteristics of our included studies. However, we found that whether ACL injury patient combined with ALL injury pre-operation may affecting the measurement of Pivot-shift test and cause certain impact on the accuracy of the results. The authors did not make definite diagnosis on the presence or absence of ALL injury. At present, there is no specific clinical examination to diagnose ALL injury. Of all the visualized anterolateral ligaments, 162 (78.8%) knees demonstrated radiological combined ALL abnormalities in the MR images of 206 included knees. The primary diagnosis of ALL injury is mainly through injury mechanism, physical examination and imaging examination. Another limitation is the lack of long-term follow-up studies that could minimize reoperation rates, which is known to increase with time elapsed from the surgery. Therefore, randomized controlled clinical trials and studies with longer follow-up times are needed to confirm the compelling clinical evidence for the efficacy of combined ACL and ALL reconstruction. Despite these limitations, the current study still provided new evidence to surgeons selecting the appropriate reconstruction for ACL injury patient.

Conclusion

Anatomic reconstruction of the ACL of the knee with reconstruction of the ALL indicates better postoperative knee function and clinical outcomes compared with isolated ACL reconstruction. The infection rate and other complications rate showed no significant difference between two groups.

Authors’ note

Jianjian Yin and Kaiyuan Yang are the co-first authors.

Author contributions

Jianjian Yin and Kaiyuan Yang wrote the main manuscript text, and Jianjian Yin prepared figures and detected the data.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by the GUKEXUE (grant no XK201603).

ORCID iD

Dong Zheng https://orcid.org/0000-0001-6272-5662

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

1. Gianotti SM, Marshall SW, Hume PA, et al. Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. *J Sci Med Sport* 2009; 12(6): 622–627.
2. Musahl V and Karlsson J. Anterior cruciate ligament tear. *N Engl J Med* 2019; 380(24): 2341–2348.
3. Richmond JC. Anterior cruciate ligament reconstruction. *Sports Med Arthrosc Rev* 2018; 26(4): 165–167.
4. Chambat P, Guier C, Sonnery-Cottet B, et al. The evolution of ACL reconstruction over the last fifty years. *Int Orthop* 2013; 37: 181–186.
5. Feucht MJ and Zens M. The anterolateral ligament of the knee: anatomy, biomechanics, and clinical implications. *Curr Orthop Pract* 2016; 27: 247–253.
6. Nedeff DD and Bach BR. Arthroscopic anterior cruciate ligament reconstruction using patellar tendon autografts. *Orthopedics* 2002; 25: 343–357.
7. Zaffagnini S and Urrizola F. Residual rotatory laxity after anterior cruciate ligament reconstruction: how do we diagnose it? Curr Orthop Pract 2016; 27: 241–246.
8. Noyes FR, Huser LE, and Levy MS. Rotational knee instability in ACL-deficient knees: role of the anterolateral ligament and iliotibial band as defined by tibiofemoral compartment translations and rotations. J Bone Joint Surg Am 2017; 99(4): 305–314.
9. Ferretti A, Monaco E, and Vadalà A. Rotatory instability of the knee after ACL tear and reconstruction. J Orthop Trauma 2014; 15(2): 75–79.
10. Matsumoto H and Seedhom BB. Treatment of the pivot-shift intra-articular versus extra-articular or combined reconstruction procedures: a biomechanical study. Clin Orthop Relat Res 1994; 299: 298–304.
11. Bull AMJ and Amis A. The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee 1998; 5(1): 141–158.
12. Claes S, Vereecke E, Maes M, et al. Anatomy of the anterolateral ligament of the knee. J Anat 2013; 223(4): 321–328.
13. Vincent JP, Magnussen RA, Gezmuez F, et al. The anterolateral ligament of the human knee: an anatomic and histologic study. Knee Surg Sports Traumatol Arthrosc 2012; 20(1): 147–152.
14. Nitri M, Rasmussen MT, Williams BT, et al. An in vitro robotic assessment of the anterolateral ligament: II. Anterolateral ligament reconstruction combined with anterior cruciate ligament reconstruction. Am J Sports Med 2016; 44(3): 593–601.
15. Vieira EL, Vieira EA, da Silva RT, et al. An anatomic study of the iliotibial tract. Arthroscopy 2007; 23(3): 269–274.
16. Guenther D, Iarrázaval S, Bell KM, et al. The role of extra-articular tenodesis in combined ACL and anterolateral capsular injury. J Bone Joint Surg Am 2017; 99(19): 1654–1660.
17. Sonnery-Cottet B, Vieira TD, and Ouanezar H. Anterolateral ligament of the knee: diagnosis, indications, technique, outcomes. Arthroscopy 2019; 35(2): 302–303.
18. DePhillipo NN, Cinque ME, Chahla J, et al. Anterolateral ligament reconstruction techniques, biomechanics, and clinical outcomes: a systematic review. Arthroscopy 2017; 33(8): 1575–1583.
19. Tavolo M, Eljaja S, Jensen JT, et al. The role of the anterolateral ligament in ACL insufficient and reconstructed knees on rotatory stability: a biomechanical study on human cadavers. Scand J Med Sci Sports 2016; 26: 960–966.
20. Spencer L, Burkhart TA, Tran MN, et al. Biomechanical analysis of simulated clinical testing and reconstruction of the anterolateral ligament of the knee. Am J Sports Med 2015; 43: 2189–2197.
21. Panisset JC, Pailhé R, Schlatterer B, et al. Short-term complications in intra- and extra-articular anterior cruciate ligament reconstruction. Comparison with the literature on isolated intra-articular reconstruction. A multicenter study by the French Arthroscopy Society. Orthop Traumatol Surg Res 2017; 103(8S): S231–S236.
22. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339: b2700.
23. Higgins JPT and Green S. Cochrane handbook for systematic reviews of interventions, version 5.1.0. London: The Cochrane Collaboration, 2011.
24. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603–605.
25. Goncharov EN, Koval OA, Dubrov VE, et al. Clinical experience with combined reconstruction of the anterior cruciate and anterolateral ligaments of the knee in sportsmen. Int Orthop 2019; 43(12): 2781–2788.
26. Helito CP, Camargo DB, Sobrado MF, et al. Combined reconstruction of the anterolateral ligament in chronic ACL injuries leads to better clinical outcomes than isolated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2018; 26(12): 3652–3659.
27. Helito CP, Sobrado MF, Giglio PN, et al. Combined reconstruction of the anterolateral ligament in patients with anterior cruciate ligament injury and ligamentous hyperlaxity leads to better clinical stability and a lower failure rate than isolated anterior cruciate ligament reconstruction. Arthroscopy 2019; 35(9): 2648–2654.
28. Ibrahim SA, Shoody EM, Marwan Y, et al. Anatomic reconstruction of the anterior cruciate ligament of the knee with or without reconstruction of the anterolateral ligament: a randomized clinical trial. Am J Sports Med 2017; 45(7): 1558–1566.
29. Wang T, Shi C, Shi W, et al. Effect of anterior cruciate ligament reconstruction combined with anterior lateral ligament reconstruction on treating anterior cruciate ligament injury with high-grade pivot-shift. J Clin Med Pract 2019; 23(11): 86–89.
30. Zhang H, Qiu M, Zhou A, et al. Anatomic anterolateral ligament reconstruction improves postoperative clinical outcomes combined with anatomic anterior cruciate ligament reconstruction. J Sports Sci Med 2016; 15(4): 688–696.
31. Kim SJ, Kumar P, and Kim SH. Anterior cruciate ligament reconstruction in patients with generalized joint laxity. Clin Orthop Surg 2010; 2: 130–139.
32. Larson CM, Bedi A, Dietrich ME, et al. Generalized hypermobility, knee hyperextension, and outcomes after anterior cruciate ligament reconstruction: prospective, case-control study with mean 6 years follow-up. Arthroscopy 2017; 33: 1852–1858.
33. Sonnery-Cottet B, Daggett M, Fayard J, et al. Anterolateral Ligament Expert Group consensus paper on the management of internal rotation and instability of the anterior cruciate ligament-deficient knee. J Orthop Traumatol 2017; 18: 91–106.
34. Helito CP, Bonadio MB, Gobbi RG, et al. Combined intra- and extra-articular reconstruction of the anterior cruciate ligament: three construction of the knee anterolateral ligament. Arthrosc Tech 2015; 4(3): 239–244.
35. Sonnery-Cottet B, Thaunat M, Freychet B, et al. Outcome of a combined anterior cruciate ligament and anterolateral ligament reconstruction technique with a minimum 2-year follow-up. *Am J Sports Med* 2015; 43(7): 1598–1605.

36. Sonnery-Cottet B, Saithna A, Cavalier M, et al. Anterolateral ligament reconstruction is associated with significantly reduced ACL graft rupture rates at a minimum follow-up of 2 years. *Am J Sports Med* 2017; 45: 1547–1557.

37. Saithna A, Daggett M, Helito CP, et al. Clinical results of combined ACL and anterolateral ligament reconstruction: a narrative review from the SANTI study group. *J Knee Surg* Epub ahead of print 5 February 2020.

38. Diermann N, Schumacher T, Schanz S, et al. Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. *Arch Orthop Trauma Surg* 2009; 129(3): 353–358.

39. Ayeni OR, Evaniew N, Ogilvie R, et al. Evidence-based practice to improve outcomes of anterior cruciate ligament reconstruction. *Clin Sports Med* 2013; 32(1): 71–80.

40. Mariscalco MW, Flanigan DC, Mitchell J, et al. The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) cohort study. *Arthroscopy* 2013; 29(12): 1948–1953.

41. Van Eck CF, Schkrohowsky JG, Working ZM, et al. Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft. *Am J Sports Med* 2012; 40(4): 800–807.

42. McCullough KA, Phelps KD, Spindler KP, et al. Return to high school- and college-level football after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) cohort study. *Am J Sports Med* 2012; 40: 2523–2529.

43. Trojani C, Beaufils P, Burdin G, et al. Revision ACL reconstruction: influence of a lateral tenodesis. *Knee Surg Sports Traumatol Arthrosc* 2012; 20: 1565–1570.

44. Inderhaug E, Stephen JM, Williams A, et al. Biomechanical comparison of anterolateral procedures combined with anterior cruciate ligament reconstruction. *Am J Sports Med* 2017; 45: 347–354.

45. Engbergten L, Lew WD, Lewis JL, et al. The effect of an iliobial tenodesis on intraarticular graft forces and knee joint motion. *Am J Sports Med* 1990; 18: 169–176.

46. Thaunat M, Clowez G, Saithna A, et al. Reoperation rates after combined anterior cruciate ligament and anterolateral ligament reconstruction: a series of 548 patients from the SANTI study group with a minimum follow-up of 2 years. *Am J Sports Med* 2017; 45: 2569–2577.

47. Brophy RH, Schmitz L, Wright RW, et al. Return to play and future ACL injury risk after ACL reconstruction in soccer athletes from the Multicenter Orthopaedic Outcomes Network (MOON) group. *Am J Sports Med* 2012; 40: 2517–2522.

48. Sonnery-Cottet B, Archbold P, Zayni R, et al. Prevalence of septic arthritis after anterior cruciate ligament reconstruction among professional athletes. *Am J Sports Med* 2011; 39(11): 2371–2376.

49. Delaloye JR, Murar J, Gonzalez M, et al. Clinical outcomes after combined anterior cruciate ligament and anterolateral ligament reconstruction. *Arthroscopy* 2013; 29(12): 225–231.

50. Kartus J, Magnusson L, Stener S, et al. Complications following arthroscopic anterior cruciate ligament reconstruction. A 2-5-year follow-up of 604 patients with special emphasis on anterior knee pain. *Knee Surg Sports Traumatol Arthrosc* 1999; 7: 2–8.

51. Schon JM, Moatshe G, Brady AW, et al. Anatomic anterolateral ligament reconstruction of the knee leads to overconstraint at any fixation angle. *Am J Sports Med* 2016; 44: 2546–2556.

52. Kraeutler MJ, Welton KL, Chahla J, et al. Current concepts of the anterolateral ligament of the knee: anatomy, biomechanics, and reconstruction. *Am J Sports Med* 2018; 46(5): 1235–1242.

53. Claes S, Bartholomeeusen S, and Bellemans J. High prevalence of anterolateral ligament abnormalities in magnetic resonance images of anterior cruciate ligament-injured knees. *Acta Orthop Belg* 2014; 80(1): 45–49.