Profile of sleep disordered breathing in heart failure with preserved ejection fraction

Nitesh Gupta1, Sumita Agrawal2, Akhil D. Goel3, Pranav Ish1, Shibdas Chakrabarti1, J.C. Suri4

1Department of Pulmonary, Critical Care and Sleep Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi; 2Pulmonary Medicine, Medipulse Hospital, Jodhpur; 3Community and Family Medicine, All India Institute of Medical Sciences, Jodhpur; 4Meder JCS Institute of Pulmonary, Critical Care and Sleep Medicine, New Delhi, India

Abstract

Heart failure (HF) with preserved ejection fraction (HFpEF) represents nearly half of HF cases and is increasingly being recognized as a cause of morbidity and mortality. Hypertension (essential or secondary) is an important risk factor of HFpEF, owing to permanent structural changes in heart. A common cause of secondary hypertension is obstructive sleep apnea (OSA). In the present study, we have attempted to seek the frequency and characteristics of sleep disordered breathing (SDB) in HFpEF. Also, we tried to investigate if any correlation exists between the severity of SDB and the severity of diastolic dysfunction. This was a prospective, cross-sectional, case-control study in which 25 case patients with HFpEF and 25 control subjects were included. All the case patients and control subjects went through a detailed clinical, biochemical, echocardiography evaluation and overnight polysomnography. SDB was seen in 64% of the case patients having HFpEF and in 12% of control group with [odds ratio (OR)=12.2, 95% confidence interval (CI)=2.83-52.74; p=0.001]. A significant correlation of apnea hypopnea index (AHI) severity was observed with degree of diastolic dysfunction (r=0.67; p=0.001). Among HFpEF patients with SDB (16/25), 13 had OSA and only 3 had central sleep apnea (CSA). CSA was present in patients with severe diastolic dysfunction. There were no clinical or sleep quality differences among the OSA and the CSA group. To conclude, higher frequency of SDB is observed in HFpEF patients. AHI severity correlates with degree of diastolic dysfunction. The underlying mechanisms of correlation between SDB and diastolic dysfunction either through uncontrolled hypertension or direct causation warrant further evaluation.

Introduction

Heart failure (HF) is a common cause of cardiovascular morbidity and mortality and is a global health problem, affecting individuals in both developing and developed countries [1]. Despite improvements in therapy, the mortality rate in patients with HF has remained unacceptably high, making early detection of susceptible persons who would benefit from preventive measures imperative [2].

Epidemiological data have shown that the prevalence of sleep disordered breathing (SDB) is approximately 10% in the general population. In the heart failure with reduced ejection fraction population (HFrEF), SDB has been identified in up to 75% of cases, while in heart failure with preserved ejection Fraction (HFpEF), existing data support a prevalence of SDB of approximately 55%.1 The Sleep Heart Health Study, a prospective study comprising 6,424 men and women, indicated that the presence of Obstructive sleep apnea (OSA) (defined as an apnea hypopnea index, AHI ≥10 per h) favored the appearance of heart failure independently of other known risk factors, with a 2.20 relative risk [3]. The data suggest SDB may be a modifiable risk factor in HFpEF.

It is also hypothesized that the SDB may be associated with the onset and severity of hypertension, degree and severity of diastolic dysfunction, and that SDB may be an amenable factor in the management of HFpEF (Figure 1). A prospective cohort study of 1889 participants, during 21003 person-years of follow-up, in
comparison with participants without OSA concluded that the presence of OSA was associated with increased adjusted risk of incident hypertension [4]. Fung et al. investigated 68 OSA patients for parameters of diastolic dysfunction and stated that more severe SDB was associated with a higher degree of diastolic dysfunction [5]. Sidana et al. reported diastolic dysfunction was more prevalent in moderate-to-severe OSA [6].

Central sleep apnea (CSA) has been recognized more as a consequence than a cause of HF. The bidirectional relationship has potential therapeutic implications, given the evidence that the treatment of CSA can diminish sympathetic activity. However, the evidence of benefit of treating CSA is not as robust as for OSA. Optimizing treatment of heart failure in CSA is, therefore, more important before attempting positive airway pressure (PAP) therapy.

In the present study, we have attempted to seek the frequency and characteristics of SDB in HFrEF. Also, we tried to investigate, if any correlation exists between the severity of SDB and the severity of diastolic dysfunction.

Methods

The observational case-control study was carried out over a period of 18 months in the Department of Pulmonary, Critical care and Sleep Medicine, at the tertiary care center in North India. A total of 25 subjects in the age group of ≥50 years, diagnosed with HFrEF were recruited [1]. Exclusion criteria included acute congestive heart failure, acute coronary syndrome, stroke or renal failure. Age and sex matched family members without any cardiac illness and any clinical or echocardiographic evidence of heart failure were recruited as a control group. For the calculation of sample size, we considered the risk of SDB in HFrEF as 55% and in controls as 10%. We thus estimated a sample size of 25 per group at 80% power. Written informed consent was obtained from all the subjects. Institutional Ethical Committee (IEC) clearance was obtained. Data were collected from all the subjects on demographic, clinical (age, sex, sleep history including snoring, choking, sleep disturbances and Epworth Sleepiness Scale self-report), anthropometric (body mass index BMI in kg/m²) and risk factors including arterial hypertension, diabetes mellitus, chronic obstructive pulmonary disease.

Hypertension (HTN) was determined when patients had systolic blood pressure (SBP) ≥140 mmHg and/or diastolic blood pressure (DBP) ≥90 mmHg for more than two days in the stable phase, and those who were previously diagnosed with hypertension and were receiving hypertensive treatment. The degree of HTN was classified as stage 0 SBP<140 mmHg and/or DBP<90 mmHg; Stage 1 SBP – 140-159 mmHg and/or DBP –90-99 mmHg; Stage 2 SBP – 160-179 mmHg and/or DBP 100-109 mmHg; Stage 3 SBP≥180 mmHg and/or DBP ≥110 mmHg as per European Society of Cardiology 2018 guidelines [7].

Trans-thoracic echocardiography (TTE) was done using Epiq 7 (Philips Respironics, USA). Left ventricular ejection fraction (LVEF) measurement was done using modified biplane Simpson’s rule [8]. LV end diastolic volume (LVEDV) and LV end systolic volume (LVESV) were obtained from apical four- and two-chamber views and DeceT (deceleration time of MV-E); E′ (early diastolic tissue velocity); E/e′ (a ratio between early mitral inflow velocity and mitral annular early diastolic velocity); IVRT (isovolumetric relaxation time); MV-A (mitral valve late diastolic inflow) and MV-E (mitral valve early diastolic inflow) were measured. HFrEF was diagnosed when all the following three conditions were fulfilled [1]: 1. The presence of symptoms and/or signs of HF

Results

The study cohort consisted of 25 diagnosed patients of HFrEF and 25 age and sex matched controls (healthy subjects). Hypertension (88%) was a common co-morbidity in HFrEF group. Significant ESS score was not present in either HFrEF patients or controls. However, history of Snoring was present in 64% of cases. Arterial blood gas analysis revealed a lower oxygen (Po2) in the HFrEF group along with high lactate (mean of 0.94±0.13 as compared to 0.50±0.06, p<0.001) levels as compared to controls (Table 1). HFrEF patients in comparison to controls had significantly lower sleep efficiency, longer WASO, longer N1 and N2 with shorter N3 and REM sleep stage (Table 1).

SDB was seen in 64% of the case patients and in 12% of control group with [odds ratio (OR) = 12.2, 95% confidence interval (CI) = 2.83-52.74; p<0.001]. Patients with HFrEF and SDB in present study had a higher E/A ratio and a shortened IVRT compared to those without SDB, indicating that SDB may be associated with more severe diastolic dysfunction in HFrEF patients (Table 2). A significant correlation of AHI severity was observed with degree of diastolic dysfunction (r=0.67; p<0.001). Among HFrEF patients with SDB (16/25), 13 had OSA and 3 had CSA (Table 3). CSA was present in severe diastolic dysfunction patients. However, the sleep quality and arterial blood gas analysis was similar in both OSA and CSA groups (Table 4).

Discussion

Epidemiologic data have shown that the prevalence of SDB is approximately 10% in the general population [1]. SDB in HFrEF has been reported in variable frequency among various studies.
Bitter et al. from Germany, evaluated 244 patients with HFpEF; SDB was documented in 169 patients (69.3%), of these 97 patients (39.8%) presented with OSA [10]. A study by Chan et al., from Hong Kong, showed that 55% of the patients (11/20) had significant SDB; 7 of these patients had predominantly obstructive sleep apnea (OSA) [11]. Herrscher et al., from Norway, have also reported HFpEF patients had SDB in 80% of the cases, 62% had OSA [12]. The recent study by Akiwara et al. from Japan, reported presence of SDB in 67% of 58 patients under evaluation [13]. The criteria used for SDB, the method used for evaluating it and the degree of diastolic dysfunction contributes to these varied figures. In our study, from India, among 25 HFpEF patients, 16 had SDB (64%), of which 13 had OSA as the major SDB. The proportion of SDB in control group was only 12%; all of them diagnosed as OSA. This was documented by a level 1 PSG in all the patients included in the study.

We tried to seek a correlation between the severity of degree of diastolic dysfunction and SDB. We observed that, with increasing severity of diastolic dysfunction, there was an associated increase in AHI severity, decline in sleep efficiency, along with occurrence of CSA in severe diastolic dysfunction patients. Various studies have indicated that with worsening diastolic dysfunction, SDB worsens. Bitter et al. [10] reported that with increasing impairment of diastolic function, proportion SDB and particularly CSA increased. Fung et al. [5] evaluated 68 OSA patients, reported that more severe SDB was associated with a higher degree of diastolic dysfunction. HF and CSA patients are characterized by a high sympathetic activation during both day and night. This sympathetic activation is linked to the frequency of apneas. Additionally, the frequency and severity of hypoxia through chemoreflex activation contribute to the degree of sympathetic activation. These mechanisms suggest that CSA can have a causative role in worsening the clinical condition of patients with HF, emphasizing the existence of a bidirectional relationship between two conditions.

In past studies, LV wall thickness has been shown to be increased in normotensive patients with OSA vs normotensive control subjects, suggesting that OSA by itself can cause LV hypertrophy and diastolic dysfunction apart from any effect on diurnal systemic BP [14,15]. Thus, OSA may have been an etiology of HFpEF in our patients, or may have worsened it by causing hypertension.

Table 1. Baseline characteristics and polysomnographic parameters of cases and controls.

Parameters	Cases (n=25) n (%)	Controls (n=25) n (%)	p
Gender			
Male	21 (84)	19 (76)	0.47
Female	4 (16)	6 (24)	
Age (mean±SD) (years)	60.5±9.8	57.9±6.5	0.22
BMI (mean±SD) (kg/m²)	28.3±1.62	28.30±1.24	
Snoring	16 (64.0)	4 (16.0)	<0.001
Hypertension	25 (100)	4 (6.25)	<0.001
Duration of hypertension (mean±SD) (years)	7.2±2.1	0.2±0.1	<0.001
Blood pressure [systolic (mean±SD) / diastolic (mean±SD)]	148.4±23.18 / 89.5±12.8	124.1±10.2 / 79.6±5.9	0.016
pH (mean±SD)	7.42±0.02	7.40±0.02	0.001
pCO₂ (mean±SD) (mmHg)	37.17±1.51	40.26±1.30	<0.05
pO₂ (mean±SD) (mmHg)	66.45±2.70	79.28±6.96	<0.001
HCO₃⁻ (mean±SD) (meq/l)	22.20±1.14	24.04±0.80	<0.05
Lactate (mean±SD) (mMol/l)	0.94±0.13	0.50±0.06	<0.001
NT-ProBNP (mean±SD) (pg/ml)	500.28±201.73	62.56±18.31	<0.001
PSG (ii)			
AHI <5	09 (36.0%)	22 (88.0%)	<0.001
AHI ≥5	16 (64.0%)	6 (24.0%)	
SDB (AHI ≥5 + signs/symptoms or medical disorder)	16 (88%)	3 (12%)	<0.001
PSG_TST	415.64±9.22	417.88±14.53	0.518
PSG_sleep_efficiency (%)	87.88±3.38	62.00±9.95	<0.001
PSG_sleep_onset (min)	8.94±1.63	14.60±3.04	<0.001
PSG_WASO (min)	64.50±4.25	120.10±11.98	<0.001
PSG_N1 (%TST)	22.76±1.31	28.01±8.18	0.003
PSG_N2 (%TST)	42.17±1.67	54.22±13.05	<0.001
PSG_N3 (%TST)	22.97±1.22	10.38±8.25	<0.001
PSG_R (%TST)	12.16±2.30	7.45±3.84	<0.001
AHI (mean ± SD)	7.64±4.49	2.56±2.22	<0.001
RDI (index) (mean ± SD)	8.08±4.40	2.56±2.22	<0.001
Snoring episodes (mean ± SD)	56.36±36.44	31.56±25.00	0.007
Average HR (mean ± SD)	84.40±8.12	69.97±7.28	<0.001

BMI, body mass index; HCO₂, bicarbonate level; NT-ProBNP N-terminal pro b type natriuretic peptide; HCO₃⁻, bicarbonate level; PSG, polysomnography; TST, total sleep time; WASO, wake time after sleep onset; AHI, apnea hypopnea index; RDI, respiratory disturbance index. All p-values calculated using Fischer Exact Test.
In the present study, on evaluation of sleep quality by PSG, HFrEF patients in comparison to controls had similar TST, but had significantly lower sleep efficiency, longer WASO, longer N1 and N2 with shorter N3 and REM sleep stage. This difference in WASO, N1, N2 and N3 were not seen among the HFrEF with SDB and without SDB groups. The finding is consistent with previous studies [16-18]. ACC/AHA guidelines have identified lack of or poor sleep as a barrier to self-care and treatment adherence in HF patients, providing yet another route to increased risk of morbidity and mortality [1]. The absence of deep sleep, excess stage 1 sleep, and frequent arousals, along with insomnia and wakefulness, collectively could result in increased heart rate and sympathetic activity, with deleterious cardiovascular effect. This state of autonomic imbalance increases blood pressure and heart rate, contributing to the progressive nature of chronic heart failure [19,20].

HFrEF patients with SDB may be candidates for treatment of the underlying SDB with aim to prevent recurrence and improve quality of life. A few recent studies have shown evidence that positive airway pressure (PAP) treatment in patients with HFrEF and OSA has improved respiratory function (AHI), functional capacity (cardiopulmonary exercise testing), cardiac function and NYHA functional class [10,18]. In an observational prospective study by Yoshina et al., treated 109 HFrEF patients with adaptive servo ventilation (ASV) (n=31) vs usual care (n=78), followed up 6 months and found a decrease in cardiac death and hospitalizations due to cardiac disease (p<0.05), demonstrating mortality benefit of ASV in HFrEF patients [21]. However, ASV was associated with increased all-cause and cardiovascular mortality in patients who had HFrEF with predominantly central sleep apnea. The ADVENT-HF study is enrolling patients with ejection fraction below or equal to 45% with OSA (without excessive daytime sleepiness) or CSA [22].

Thus, identifying the predominant SDB, whether OSA or CSA is important as PAP therapy will be the treatment of choice for OSA and will also help in improving cardiac function and functional capacity. Whereas, treating CSA with PAP may or may not be as beneficial for the patient. Differentiating them is best possible by a level 1 PSG with thoracic and abdominal belts to evaluate the effort with the apnea/hypopnea. Most of the reported literature is of home sleep study or a level 3 PSG. Besides, in our study, sleep quality and laboratory parameters in OSA and CSA patients were found comparable as shown in Table 4, thereby providing no potential of predicting the dominant SDB without a PSG.

Limitations and strengths

A limitation of our study was the small sample size; we had only 25 patients, and we had insufficient numbers for subgroup analysis. We excluded acute heart failure patients; hence our cohort may not be representative of the whole heart failure population seen.

Table 2. Polysomnography, arterial blood gas and echocardiography of HFrEF patients with and without sleep disordered breathing.
Variable
Age (years)
58.7
BMI (kg/m²)
Duration (years)
pH
PCO₂ (nmHg)
PGO (nmHg)
HCO₃ (meq/l)
Lactate (mmol/l)
NT-ProBNP (pg/ml)
PSG_TST (min)
PSG_sleeep_efficiency (%)
PSG_sleeep_onset (min)
PSG_WASO (min)
PSG_N1 (%TST)
PSG_N2 (%TST)
PSG_N3 (%TST)
PSG_R (%TST)
PSG_A+H (index)
PSG_snooring episodes
PSG_avg HR (min)
Echo_ejection fraction (%)
Echo_deceleration time (m/s)
Echo_early filling/atrial filling (E/A) (m/s)
Echo_isovolumetric relaxation time (m/s)

SD, sleep disordered breathing; BMI, body mass index; HCO₃, bicarbonate level; NT-ProBNP, N-terminal pro b-type natriuretic peptide; PSG, polysomnography; TST, total sleep time; WASO, wake time after sleep onset; A+H, apnea+hypopnea; HR, heart rate.
Table 3. Obstructive sleep apnea and central sleep apnea patients in HFrEF.

Variable	OSA (n=13)	%	CSA (n=3)	%
Sex				
Male	11	84.6	2	66.7
Female	2	15.4	1	33.3
Dyspnea (NYHA)				
2	4	30.8	0	0.0
3	6	46.2	2	66.7
4	3	23.1	1	33.3
Epworth sleepiness score				
0	9	69.2	0	0.0
1	1	7.7	1	33.3
2	0	0.0	2	66.7
3	1	7.7	0	0.0
4	1	7.7	0	0.0
6	1	7.7	0	0.0
PSG_A+H (index)	9.1	...	13.2	...
PSG_N1 (%TST)	28.2	...	25.3	...
PSG_sleep_onset (min)				
2.9	...	13.2	...	23.9
Stage of hypertension				
0	1	7.7	0	0.0
1	7	53.8	0	0.0
2	5	38.5	2	66.7
3	0	0.0	1	33.3
No of drugs for hypertension				
0	1	7.7	0	0.0
1	10	76.9	0	0.0
2	2	15.4	2	66.7
3	0	0.0	1	33.3
Grade of diastolic dysfunction				
1	5	38.5	0	0.0
2	5	38.5	0	0.0
3	3	23.1	3	100

OSA, obstructive sleep apnea; CSA, central sleep apnea; NYHA, New York Heart Association; SDB, sleep disordered breathing.

Table 4. Arterial blood gas analysis and polysomnography findings of OSA and CSA patients in HFrEF.

Variable	Mean (n=13)	SD	Mean (n=3)	SD	p
Age	58.4	9.8	60.0	10.0	0.801
BMI	27.9	1.6	29.4	0.6	0.142
Duration (years)	2.9	1.1	3.5	2.2	0.493
ABG_pH	7.4	0.0	7.4	0.0	0.835
ABG_PCO2	40.3	1.6	40.0	1.7	0.760
ABG_PO2	66.5	2.6	64.9	4.6	0.408
ABG_HCO3	24.3	1.3	24.3	1.3	0.948
Lactate	1.0	0.1	1.0	0.1	0.906
NT-PrBNP	471.3	218.8	751.3	122.1	0.054
PSG_TST	417.5	14.2	428.7	21.5	0.281
PSG Sleep_efficiency (%)	60.2	7.2	51.7	6.7	0.082
PSG Sleep_onset (min)	14.4	3.4	13.2	1.4	0.589
PSG WASO (min)	121.1	12.3	123.1	2.6	0.796
PSG N1 (%)TST	28.2	7.0	25.3	16.2	0.620
PSG N2 (%)TST	57.9	12.9	58.2	17.8	0.968
PSG N3 (%)TST	7.9	8.9	9.1	4.1	0.832
PSG R (%)TST	6.0	3.4	7.4	2.2	0.515
PSG A+H (index)	9.1	4.0	13.2	3.3	0.121
PSG Snoring episodes	61.8	45.5	51.0	23.9	0.700
PSG average HR	87.4	5.3	89.0	10.0	0.691

BMI, body mass index; ABG, arterial blood gas analysis; HCO3, bicarbonate level; NT-PrBNP, N-terminal pro-B-type natriuretic peptide; PSG, polysomnography; TST, total sleep time; WASO, wake time after sleep onset; R, random eye movement; A+H: apnea+hypopnea; HR, heart rate.
frequently in routine clinical practice. The strength of present study was evaluation was done using level 1 PSG. This allowed for characterization into central and obstructive apneas and labelling the profile on the basis of the dominant disorder. Furthermore, blinded visual analysis of all polysomnographic data was performed at a single center thus minimizing inter-observer variability.

Conclusions

In conclusion, given the high frequency of SDB, especially OSA, in HFpEF patients, the effects on degree of impairment of diastolic function, and the possibility of improvements with PAP therapy, screening for SDB in all HFpEF patients may be justified, notably in those who have snoring and hypertension. The patients with OSA should be offered PAP therapy in a pursuit of improved outcomes. The SDB must be evaluated by a level 1 PSG as these patients may have co-existing CSA, treatment of which needs to be individualized besides optimizing heart failure medications.

References

1. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2016;37:2129–200.
2. Oldenburg O, Lamp B, Faber L, et al. Sleep-disordered breathing in patients with symptomatic heart failure: A contemporary study of prevalence in and characteristics of 700 patients. Eur J Heart Fail 2007;9:251–7.
3. Javaheri S. Sleep dysfunction in heart failure. Curr Treat Options Neurol 2008;10:323–35.
4. Marin J, Agustí A, Villar I, et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA 2012;307:2169-76.
5. Fung JWH, Li TST, Choy DKL, et al. Severe obstructive sleep apnea is associated with left ventricular diastolic dysfunction. Chest 2002;121:422–9.
6. Sidana J, Aronow WS, Ravipati G, et al. Prevalence of moderate or severe left ventricular diastolic dysfunction in obese persons with obstructive sleep apnea. Cardiology 2005;104:107–9.
7. Bergler-Klein J. What’s new in the ESC 2018 guidelines for arterial hypertension: The ten most important messages. Wien Klin Wochenschr 2019;131:180–5.
8. Russo C, Hahn RT, Jin Z, et al. Comparison of echocardiographic single-plane versus biplane method in the assessment of left atrial volume and validation by real time three-dimensional echocardiography. J Am Soc Echocardiogr 2010;23:954–60.
9. Zuconi M, Ferri R. Assessment of sleep disorders and diagnostic procedures - 1. Classification of sleep disorders. In: C Bassetti, Z Dogas, P Peigneux, editors. ESRS Sleep Medicine Textbook. Regensburg: European Sleep Research Society (ESRS); 2014. pp. 95-109. Accessed on: 20 May 2012. Available from: https://esrs.eu/wp-content/uploads/2018/09/ESRS_Sleep_Medicine_Textbook_Chapter_B1.pdf
10. Bitter T, Faber L, Hering D, et al. Sleep-disordered breathing in heart failure with normal left ventricular ejection fraction. Eur J Heart Fail 2009;11:602-8.
11. Chan J, Sanderson J, Chan W et al. Prevalence of sleep-disordered breathing in diastolic heart failure. Chest 1997;111:1488-93.
12. Herrscher TE, Akre H, Øverland B, et al. High prevalence of sleep apnea in heart failure outpatients: Even in patients with preserved systolic function. J Card Fail 2011;17:420-5.
13. Arikawa T, Toyoda S, Haruyama A, et al. Impact of obstructive sleep apnoea on heart failure with preserved ejection fraction. Heart Lung Circ 2016;25:435-4.
14. Agrawal S, Gupta N, Ish P, Chakrabarti S. Sleep disordered breathing in heart failure - A complex bidirectional pathophysiology. Indian Sleep Med 2019;14;70-5.
15. Hedner J, Ejnell H, Caidahl K. Left ventricular hypertrophy independent of hypertension in patients with obstructive sleep apnoea. J Hypertens 1990;8:941-6.
16. Heider K, Arzt M, Lerzer C, et al. Adaptive servo-ventilation and sleep quality in treatment emergent central sleep apnea and central sleep apnea in patients with heart disease and preserved ejection fraction. Clin Res Cardiol 2018;107:421-9.
17. Hetzenecker A, Roth T, Birner C, et al. Adaptive servo-ventilation therapy of central sleep apnoea and its effect on sleep quality. Clin Res Cardiol 2016;105:189-95.
18. Oldenburg O, Bitter T, Wellmann B, et al. Trilevel adaptive servoventilation for the treatment of central and mixed sleep apnea in chronic heart failure patients. Sleep Med 2013;14:422-7.
19. Mansukhani MP, Kara T, Caples SM, Somers VK. Chemoreflexes, sleep apnea, and sympathetic dysregulation. Curr Hypertens Rep 2014;16:476.
20. Szollosi I, Krum H, Kaye D, Naughton MT. Sleep apnea in heart failure increases heart rate variability and sympathetic dominance. Sleep 2007;30:1509-14.
21. Yoshihisa A, Suzuki S, Yamauchi H, et al. Beneficial effects of positive airway pressure therapy for sleep-disordered breathing in heart failure patients with preserved left ventricular ejection fraction. Clin Cardiol 2015;38:413-21.
22. Bradley TD, Floras JS, ADVENT-HF Investigators. The SERVE-HF Trial. Can Respir J 2015;22:313.