INTRODUCTION

The World Health Organization (WHO) defines diabetes mellitus (DM) as a degenerative and chronic disease that occurs when the pancreas does not produce enough insulin, or when the body cannot effectively use insulin [1]. It is a disorder of the metabolism of carbohydrates, fats, and lipids, which is characterized by a high fasting blood sugar [2]. It manifests as chronic hyperglycemia and leads to the development of diabetes-specific micro vascular pathology in the retina, glomerulus and peripheral nerve culminating into serious complications affecting the eyes, kidneys and arteries [3,4].

WHO statistics shows that worldwide 347 million people have diabetes and 80% of diabetic deaths occur in low and middle-income countries [1]. According to the International Diabetes Federation, India is ranked second only to China in the list of top ten countries for a number of people with diabetes. [5]. In Africa, it is estimated that about 19.8 million adults have diabetes with Nigeria and South Africa having 3.9 and 2.6 million, respectively. It is estimated that by 2035, the percentage of diabetic patients in Africa would cross an alarming figure of 58% [5].

Type 2 diabetes, is the major form of diabetes accounting for 90-95% of all diabetic cases [6] and nearly half of all patients suffering from the disease are older than 65 years of age [7]. It is a complicated and divergent disease which in addition to blood sugar control requires the management of lipid parameters, blood pressure and thrombotic factors [8].

The treatment for diabetes is both difficult and tedious; it is expensive, costly and not affordable by majority of African and Asian populations [9]. The current treatments for DM include the use of insulin and synthetic drugs such as sulfonylurea, metformin, alpha-glucosidase inhibitors and thiazolidinedione’s in addition to lifestyle adjustments. These synthetic drugs are valuable but restricted by their limited actions, secondary failure rates, and side-effects; and unaffordable to the majority of the population. Hence, the need to screen for more medicinal plants with antidiabetic ability due to the fact that plants are; biodegradable, safe and cheap with fewer side-effects. In this review article, we have presented the current status of diabetes in India and Nigeria and the role of some less commonly used medicinal plants from both countries that have antidiabetic potential.

ABSTRACT

The incidence of diabetes mellitus continue to rise annually all over the world with India and Nigeria having recorded cases of 65.1 and 3.9 million respectively in 2013 and expected to increase by a large amount in 2035. Hyperglycemia is a pre-condition for the development of diabetic complications and is accompanied by an increase in the production of free radicals. The present available treatment option for diabetes like sulfonylurea, metformin and alpha-glucosidase are restricted by their limited actions, secondary failure rates, and side-effects; and unaffordable to the majority of the population. Hence, the need to screen for more medicinal plants with antidiabetic ability due to the fact that plants are; biodegradable, safe and cheap with fewer side-effects. In this review article, we have presented the current status of diabetes in India and Nigeria and the role of some less commonly used medicinal plants from both countries that have antidiabetic potential.

KEY WORDS: Antidiabetic plants, diabetes, hypoglycaemic activity, medicinal plants, oxidative stress
galegine, from *Calega officinalis* L., which is a model for the synthesis of metformin and other biguanidine-type antidiabetic drugs, papaverine from *Papaver somniferum* which forms the basis of cerapramil used in the treatment of hypertension, [17]. *Artemisia annua* (Quinhasu) gave rise to artememinin, this compound and its analogs are now used as antimarial therapy in many countries [18]. Pachitaxel (Taxol®), the most exciting plant-derived anticancer drug discovered in recent years, is derived from several key precursors (the baccatins) in the leaves of various Taxus species; *Taxus brevifolia* [19].

Although the role of natural product in new drug discovery is encouraging and has frequently resulted in development of new drugs [20], the success of drug discovery depends on evolving stringent criteria to avoid false positive drug candidates. Surfeit of information warrants proper documentation. The evaluation of the scientific efficacy of traditional systems of medicine is an area of great interest especially in developing economies where sometimes the cost of medication may be prohibitive. Excellent reviews [13,21-23] on antidiabetic plants have already been written. This current review aims to bring in focus and document the use of less commonly used antidiabetic plants on which fewer studies have been conducted. Some of these plants, albeit less researched, hold immense potential as antidiabetic therapeutic agents in India and Nigeria.

ANTIDIABETIC PLANTS USED IN NIGERIA AND INDIA

The climatic conditions in Nigeria and India support the growth and thriving of various plant species and hence the use of these plants by the poor population to ameliorate disease conditions. There are about 800 plants that may possess antidiabetic properties according to ethno botanical information [24]. Most of the current drugs available have been directly or indirectly derived from plants. An example is metformin that was derived from the plant *G. officinalis* L.

The plants with antioxidant and antidiabetic potential included in this review are *Azadirachta indica* (AI) A. Juss, *Mangifera indica* (MI) L, *Terminalia arjuna* Roxb. Ex DC, *Terminalia catappa* L, *Terminalia chebula* Retz, *Syzygium cumini* (L) Skeels, *Syzygium aromaticum* (L) Merr. and L.M. Perry, *Vernonia amygdalina* (VA) Delile and *Xylopia aethiopica* (XA) (Dunal) A. Rich.

The general botanical data, taxonomic data, distribution in the world, experimental design, compounds isolated, mechanism of action, the antidiabetic and antioxidant capability of the plants are presented below:

Mangifera indica L. (Common Name: Mango)

Mango in an important species of the family anacardiaceae and the genus *Mangifera*, it is native to South East Asia from where it spread all over the world, it is the most popular fruit in the tropical and subtropical regions of the world. It is the national fruit of India, Pakistan, Philippines and the national tree of Bangladesh [25].

The plant is widely grown in Nigeria, where in addition to the fruit consumption it is used for the treatment and management of diabetes [26]. The peel and pulp of the plant contain carotenoids, and polyphenols such as quercetin, kaempferol, gallic acid, caffeic acid, catechins, tannins, mangiferin, leucocyanidin, epicatechin, quercetin and chromogenic acid [27]. Phenolics have scavenging activity on free radicals mainly due to the presence of hydroxyl groups. Recently, Mohan *et al.* [28] isolated a compound 1, 2, 3, 4, 6-penta-O-gallolyl-β-D-glucose from the methanolic extract fraction of mango that is a potent inhibitor of 11-β-hydroxysteroid dehydrogenase enzyme and ameliorates high fat diet (HFD) induced diabetes in C57BL/6 mice.

Mangiferin (1, 3, 6, 7-tetrahydroxy-xanthone-C2-β-D-glucoside) a bioactive compound isolated from MI possesses a wide range of pharmacological actions including being anticancer [29,30], antibacterial [31], anti HIV [32], antioxidants [33], and antidiabetic [34,35].

The administration of mangiferin at a dose of 10 and 20 mg/Kg body weight (i.p.) in type 1 and 2 diabetic rats for 30 days showed significant antidiabetic, hypo-lipidemic, alpha amylase and alpha-glucosidase inhibitory effect [36]. This glucoside has also been shown by Li *et al.* [37] to improve renal function of diabetic nephropathy in rats and its inhibitory effect on overexpression of transforming growth factor-β1, advanced glycation end and extracellular matrix accumulation, Polyol pathway activation, reactive oxygen species (ROS) generation and mesangial cells proliferation. Miura *et al.* [38] demonstrated that the mangiferin exerts its antidiabetic activity by decreasing the insulin resistance.

The ethanolic extracts of MI showed significant free radical scavenging activity and have cytoprotective (anti-apoptotic) effect; the leaves and fruits extract reduce the absorption of glucose in type 2 diabetes and stimulate glycogenesis in liver causing reduction in blood glucose level [39].

Vernonia amygdalina Delile (Asteraceae)

VA is a perennial shrub-like plant with green leaves growing up to 1.3-3 m high that is native to Africa, widely grown in Nigeria and West Africa. It is reported to contain phytochemicals useful in the treatment and management of certain diseases. It has been introduced into India and is now being cultivated in parts of central and eastern India [40].

VA is rich in amino acids, minerals and vitamins [41]. The decoction from the leaves is often used in the African traditional treatment for the management of diabetes, malaria, infertility, and sexually transmitted diseases [42-47]. The plant is said to have antimalarial compounds like alkaloids, tannins, and saponins [48] and also anticancer properties [49]. In comparison to other plants, VA accounted for 9.2% of medicinal plants used as an alternative medicine in central Nigeria [50]. In Nigeria, a dosage form of freeze-dried aqueous leaf extract of this plant has been developed and formulated, which is suitable for therapeutic use in the management of DM. Mostly in Nigeria, the decoction
from the leaf is often used in combination with that of other plants by traditional healers and medical practitioners to treat diabetes, fever and gastrointestinal problems [51].

The ethanolic extracts of the plant has a strong bioactive compound that has blood sugar lowering action in rats and can serve as an effective antioxidant [52], Ong et al. [53] showed that VA has anti-hyperglycemic effect on streptozotocin (STZ)-induced diabetic rat model and this effect is mediated through the inhibition of key hepatic G6pase, which causes an increase in expression and translocation of GLUT4 in skeletal muscles. The combined leaf extract of A. indica (AI) and VA ameliorates hyperglycemia and hepatic oxidative stress in diabetic rats [54] and the methanolic extract of VA has the ability to mitigate cycasin-induced oxidative damage in colonic tissues [55].

The composite decoctions of VA, Congenema latifolium (Benth) and Occinum gratissimum (Linn) reduced the postprandial blood glucose concentrations of diabetic subjects [56]. Two flavonoids and terpenoids: Vernolide and etodites have been isolated from the VA plant. Octahydrovernomalin is the most important bitter principle in the plant [57]. Ong et al. [58] also isolated four main polyphenols in the ethanolic extract namely dicaffeoyl-quinic acid, chlorogenic acid, 1,5-dicaffeoyl-quinic acid and luteolin-7-O-glucosidase. Dicaffeoyl-quinic acid is the most abundant in the plant. The administration of 400 mg/Kg body weight of VA extract is found to exert most effective anti-hyperglycemic activity [59].

The two major glucose transporters that regulate glucose uptake into the tissues are GLUT1 (non-insulin responsive) and GLUT4 (insulin-responsive). While G6pase is one of the rate-limiting gluconeogenic enzymes that regulate, the synthesis of glucose and results has shown strong suppression of G6pase activity by extracts of VA [60]. VA extract was found also to protect pancreatic β-cells and the polyphenols present are responsible for this action especially dicaffeoyl-quinic acid.

Most of the traditional uses of the plant have been systematically and scientifically validated and the study of oxidative stress in diabetic rats showed that the aqueous extracts of VA decrease the levels of serum malondialdehyde an indication of the antioxidant property of the plant [60].

Xylopia aethiopica (Dunal) A. Rich

XA, also known as the African pepper or Ethiopian pepper, belongs to the family annonaceae and the genus Xylopia. It is a tropical, slim, tall and aromatic tree that grows up to 15-30 m. It is found in the west, central and southern Africa in humid forest zones, native to Nigeria, Ghana, Kenya, Ethiopia, Senegal and Uganda.

XA is a common ethno medicine in West Africa where it is used in the treatment of rheumatism and arthritis, cough, stomachache, bronchitis, biliousness and dysentery [61]. The fruit and vegetable have many medicinal properties and contains phytochemicals, vitamins and minerals. Phytochemicals like flavonoids are potentially anti-allergic, anti-carcinogenic, anti-viral and antioxidants, the ethanolic extract of XA was found to increase steroid hormone [62], the aqueous extract was also shown to have anti-amylase and anti-lipase activity with antioxidant potentials [63].

A poly-herbal formulation sold in Nigeria containing the following: Stachytarpheta angustifolia, Alstonia congensis, and XA in the ratio 3:2:1 was found to have hypoglycemic and hypolipidemic activities [64].

Syzygium aromaticum (Linn.) Merrill and Perry (Myrtaceae) (Common Name: Cloves)

S. aromaticum (clove) belongs to the family myrtaceae and the genus *Syzygium*. Native to Indonesia, this plant can grow to a height of 8-12 m, it is an aromatic flower bud commonly used in Africa, Asia and other parts of the world for the preparation of different spicy dishes. In Nigeria most traditional medical practitioners use the fruits and cloves by boiling in water and the decoction is administered to patients for the treatment of cough, chest congestion and catarrh and the compound eugenol present in this plant is responsible for the aroma and has antioxidative and antimycotic ability [65].

A triterpenoid compound extracted from the clove plant named oleanolic acid has potent diuretic/saluretic, anti-hyperlipidemic, antioxidant and hypoglycemic effects [66], Ngubane et al. [67] showed that oleanolic acid exhibited anti-hyperglycemic effect in STZ-induced diabetic rats by the attenuation of the activities of glycomytic enzymes and the compound eugenol present in this plant is responsible for the aroma and has antioxidative and antimycotic ability. The oil from the extract of this plant protects experimental animals from hepato-nephrotoxicity and oxidative stress due to aflatoxins [68].

Clove bud powder (CBP) possesses high phenolic content, free radical scavenging activity and metal chelating and reducing properties, the major phenolic compounds found are Kaempferol, isoquercitrin, gallic acid, ellagic acid, and caffeic acid [69]. Dietary supplementation of CBP in type 2 diabetic rats showed anti-hyperglycemic, hepatoprotective, hypolipidemic and antioxidant activities, by suppressing oxidative stress and delaying carbohydrate digestion [70].

Oleanolic acid (3 β-hydroxy-olea-12-en-28-oic acid) and maslinic acid have been reported to modulate the activity of the intestinal glucose transporters and carbohydrate hydrolyzing enzymes thus reducing postprandial hyperglycaemia and that the ethanolic extract of this plant suppresses elevated blood glucose levels in type 2 diabetic KK-A’ mice [70].

Free and bound phenolic extract of clove bud was found to inhibit carbohydrate hydrolyzing enzymes; alpha-amylase and alpha-glucosidase in a dose-dependent manner (200-500 μg/ml) [71]. Decreasing the postprandial hyperglycemia peak is very crucial in the treatment of diabetes; there is a strong correlation between the phenolic content of clove and the enzyme inhibitory
activities and with a strong antioxidant property which is the mechanism and the basis for its anti-diabetic action [71].

Azadirachta indica A. Juss (Common Name: Neem)

AI A. Juss is a member of the Meliaceae family and the genus Azadirachta. It is a fast-growing tree that can reach up to 15-20 m and can sometimes reach 40 m. The plant is native to India and adapted to sub-arid and sub-humid tropical climates. It is widely grown in India, Pakistan, Indonesia, Sri Lanka, Caribbean, Nigeria, South and Central America. It is called “Dogonyaro” in Nigeria and grown all over the country, especially in the northern region. The plant has been used in the Indian Ayurveda traditional medicine for over 2000 years for the healing of various diseases and ailments [72].

The composite leaf extract of AI and VA at 500 mg/Kg body weight ameliorates hypoglycemia and hepatic oxidative stress in STZ-induced diabetic rats [54]. AI leaves glucosamine an active component of neem leaves is responsible for immunostimulatory activity in albino mice [73].

The chloroform extract of AI administered on murine diabetic model for 21 days significantly reduced the fasting blood sugar and islet regeneration and protection properties [74]. The administration of 500 mg/kg body weight of AI leaf extract and AI bark extract was effective in improving the antioxidant status in cardiac and skeletal muscles [75]. Khosla et al. [76] showed that azadirachtin and nimbin are the active ingredients in AI and they have the ability to regenerate the pancreatic beta cell. Recently Tiwari et al. [77] showed that the administration of the composite extract of Aegle marmelos, AI, Murraya koengi, Ocimum sanctum, and S. cumini at 100 mg/Kg body weight caused a significant reduction in the blood sugar level, total cholesterol, triglyceride, low-density lipoproteins and an increase in the level of high-density lipoproteins.

Syzygium cumini (L.) Skeels

This plant belongs to the family myrtaceae and the genus Syzygium; it is an evergreen tropical plant native to South East Asia and widely grown in Africa. The fruit of the plant is widely used in cooking as spice and condiments to add flavor to foods. S. cumini is well-known for its antidiabetic properties; gallic acid, rutin and chlorogenic acid are the main phenolic present in this plant and the extracts of all parts of the plant is used in traditional medicine [78]. Aqueous extract is found to improve endothelial dysfunction, antioxidant, anti-inflammatory and anti-thrombic properties of adenosine deaminase activity in erythrocytes [78].

A dose of 400 mg/kg body weight of aqueous seed extract of S. cumini has hypoglycemic, insulin sensitizing and hypo-lipidemic activity in HFD-STZ induced rats due to an increase in peroxisome proliferator-activated receptor (PPARγ), and PPARγ protein expression [79]. The active fraction of S. cumini was found to regenerate pancreatic islets and insulin secretion in STZ-induced diabetic mice [80]. Sharma et al. [81] demonstrated that the aqueous extract of S. cumini seed when given orally to mice at a dose of 250 mg/kg body weight for 21 days effected and repaired the liver damage associated with alloxan diabetes. The extract of this plant inhibits alpha-glucosidase and alpha-amylase, which are the two enzymes responsible for the metabolism of carbohydrate, and this limits the postprandial glucose and consequently controlling diabetes [82]. The seed extract is found to act as a chemo-protective agent against in vivo oxidative stress and genomic damage [83].

Terminalia catappa. L.

This plant belongs to the family Combretaceae and to the genus Terminalia found growing in the warmer parts of India, Asia, Africa and Australia. The tree is primarily used as an ornamental and as a shade tree; the seeds are edible like almonds. The extracts of the bark and leaves are reported to have antitumor and aphrodisiac capability [84], antioxidant and anti-inflammatory [85] and anti-malarial [86]. This may be as a result of high contents of tannins in the plant making them a good source of antioxidants [87]. Kinoshita et al. [88] isolated chebulagic acid and corilagin from the 50% ethanol extract of the plant with a strong free radical scavenging activity and these compounds are found to have hepatoprotective and antioxidant actions, by suppressing the generation of ROS followed by the inhibition of apoptosis.

Terminalia arjuna (Roxb) Wight and Arn

This is a plant belonging to the family Combretaceae and genus Terminalia commonly called arjuna. It is a large tree found throughout the South Asia region, and it is an exotic tree in India, it can grow up to a height of 25-30 m. The bark and fruits of this plant is used in traditional Indian medicine as an anti-dysenteric, anti-pyretic, astringent, cardiotonic, lithotriptic, anticoagulant, hypolipidemic and anti-microbial, the large amount of flavonoids is responsible for the antioxidant and anti-microbial properties [89]. The bark contains arjunine a lactone, arjunetin, essential oils and reducing sugars. The methanolic extract exhibited analgesic activity and acute anti-inflammatory activity [90]. The extracts of this plant have the presence of alkaloids, triterpenoids, tannins and flavonoids. Gallic acid, apigenin, luteolin, quercetin, epicatechin, ellagic acid and 1-O-galloyl glucose are some of the compounds that have been isolated from this plant [91].

A dose of 250 and 500 mg/kg body weight of T. arjuna extract was found to have reno-protective and antioxidant ability in isolated perfused kidneys [92]. The leaf extracts when administered at a dose of 100 and 200 mg/kg body weight orally to STZ-induced diabetic rats was found to significantly normalize blood glucose level and this is due to its antioxidant role [93]. Due to the presence of tannins, saponin, and flavonoids, the bark extract exhibited antioxidant activity by enhancing the peripheral utilization of glucose by correcting the impaired liver and kidney glycosis and by limiting gluconeogenic formation, an action similar to that of insulin [94]. Perveen et al. [95] showed that
Table 1: Summary of the selected plant species with their active component and their therapeutic effects

Plant species name	Used component	Property/effect	References
MI L.	1, 2, 3, 4, 6-penta-O-gallloyl-β-D-glucose	Inhibits 11β-hydroxysteroid hydrogenase enzyme.	[23]
	Mangiferin (1, 3, 6, 7-tetrahydroxyy-xanthone-C2-β-D-glucoside)	Decrease insulin resistance	[29,30,32,33]
VA Delile	Ethanol extracts	Lowsers blood sugar	[48]
	Dicapheoyl-quinic acid	Protect pancreatic β cells	[55]
VA (Dunal) A. Rich.	Aqueous extract	Anti-amylase, anti-lipase activity with antioxidant potentials	[58]
S. aromaticum (Linn.)	Oleanolic acid	Anti-hyperlipidemic, antioxidant and hyperglycaemic	[6]
Merrill and Perry	Oleanolic acid and maslinic	Reducing postprandial hyperglycaemia	[65]
AI A. Juss	Chloroform extract	Reduced fasting blood sugar, islet regeneration	[70]
	Azadiracthin and Nimbil	Regeneration of pancreatic beta cells	[72]
S. cumini (L.) Skeels	Aqueous seed extract	Hypoglycaemic, insulin sensitising and hypo-lipidemic	[74,76]
T. catappa. L	Chebulagic acid and Corilagin	Antioxidants	[83]
T. arjuna (Roxb)	Leaf extracts	Normalise blood glucose levels	[88]
Wight and Arn	Ethanolic extracts	Inhibit oxidation and lipid degradation	[91]
T. chebula Retz	Methanolic extracts	Plant inhibits lipid peroxide formation and scavenges hydroxyl and superoxide radicals	[94]

The present review presents the current scientific literature with respect to the antidiabetic and antioxidant potential of Al, MI, T. arjuna, T. catappa, T. chebula, S. cumini, S. aromaticum, S. cumini: Syzygium cumini, T. catappa: Terminalia catappa, T. arjuna: Terminalia arjuna, T. chebula: Terminalia chebula, HFD: High fat diet, STZ: Streptozotocin

CONCLUSION

Abubakar Mohamed is presently a D. Phil Scholar in the Department of Biochemistry, University of Allahabad, India. His permanent position is at Department of Biochemistry, Bauchi State University, Gadau PMB 065. Bauchi State, Nigeria.

ACKNOWLEDGMENT

REFERENCES

1. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: Report of a WHO/IDF consultation. Geneva: World Health Organization; 2006.
2. Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TP. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 2007;40:163-73.
3. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-20.
4. Mehdi U, Toto RD. Anemia, diabetes, and chronic kidney disease. Diabetes Care 2009;32:1320-6.
5. Guariguata L, Nova T, Beagley J, Linnenkamp U, Jacqmain O. IDF Diabetes Atlas. 6th ed. Brussels, Belgium: International Diabetes Federation; 2013.
6. Philippe J, Raccab D. Treating type 2 diabetes: How safe are current therapeutic agents? Int J Clin Pract 2009;63:321-32.
Antihyperglycemic effects of three extracts from *Momordica charantia* L. J Ethnopharmacol 2003;88:107-11.

8. Mohammed A, Ibrahim MA, Islam MS. African medicinal plants with antidiabetic potentials: A review. Planta Med 2014;80:354-77.

9. Bosi E. Metformin – The gold standard in type 2 diabetes: What does the evidence tell us? Diabetes Obes Metab 2009;11 Suppl 2:3-8.

10. Asche CV, McDard-Marcx C, Shane-McWhorter L, Sheng X, Flachsinat A. Association between oral antidiabetic use, adverse events and outcomes in patients with type 2 diabetes. Diabetes Obes Metab 2008;10:638-45.

11. Jacobsen IB, Henriksen JE, Beck-Nielsen H. The effect of metformin in overweight patients with type 1 diabetes and poor metabolic control. Basic Clin Pharmacol Toxicol 2009;105:145-9.

12. Ji W, Gao W, Tang Bull 1996;21:1389-90.

13. Dineshkumar B, Mitra A, Manjunatha M. Studies on the antidiabetic and hypolipidemic potentials of mangiferin (Xanthone glucoside) in STZ-induced type 1 and type 2 diabetic models. Int J Adv Pharm Sci 2010;1:75-86.

14. Li X, Cui X, Sun X, Li X, Zhu Q, Li W. Mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats. Phytother Res 2010;24:693-9.

15. Mohammed, A, Ibrahim MA, Islam MS. African medicinal plants with antidiabetic potentials: A review. Planta Med 2014;80:354-77.

16. Inayat-ur-Rahman, Malik SA, Bashir M, Khan R, Iqbal M. Antihyperglycemic effects of mangiferin in STZ-induced diabetic rats. J Health Sci 2009;55:206-14.

17. Ichiki H, Miura T, Kubo M, Ishihara E, Komatsu Y, Tanigawa K, et al. Type 1 diabetes mellitus (T1DM) patients with the presence of anti-β-cell autoantibodies: Clinical characteristics and treatment. Diabetes Obes Metab 2009;11 Suppl 2:3-8.

18. Miller LH, Su X. Artemisinin: Discovery from the Chinese herbal medicine for drug discovery. Environ Health Perspect 2001;109 Suppl 1:69-75.

19. Miller LH, Su X. Artemisinin: Discovery from the Chinese herbal garden. Cell 2011;146:855-8.

20. Newman DJ, Cragg GM. Natural products as sources of new drugs. J Nat Prod 2008;71:417-26.

21. Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Therapeutic potential of Indian medicinal plants in diabetic condition. Ann Phytomed 2013;2:37-43.

22. Groover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002;81:81-100.

23. Loh SP, Hadira O. Mangiferin induces apoptosis by suppressing Bcl-xL and XIAP expression in HL-60 cells. Arch Pharm (Weinheim) 2007;366:351-5.

24. Sharma MC, Sharma S. Pharmacognostic and phytochemical studies of *Vernonia amygdalina* Del (Asteraceae) - An African medicinal plants introduced in India. Zoo’s Print 2013;28:18-20.

25. Eleyinmi AF, Sporns P, Bressler DL, et al. Antioxidant and anti-diabetic properties of leaves from *Vernonia amygdalina* Del. Int J Pharmacol 2007;3:143-8.

26. Das J, Ghosh J, Roy A, Sil PC. Mangiferin exerts hepatoprotective effects on streptozotocin-induced diabetic rats. J Health Sci 2009;55:206-14.

27. Ichiki H, Miura T, Kubo M, Ishihara E, Komatsu Y, Tanigawa K, et al. Type 1 diabetes mellitus (T1DM) patients with the presence of anti-β-cell autoantibodies: Clinical characteristics and treatment. Diabetes Obes Metab 2009;11 Suppl 2:3-8.

28. Mohan CG, Viswanatha GL, Savinay G, Rajendra CE, Halemani PD. Hypoglycaemic and hypolipidaemic effects of *Withania somnifera* root and leaf extracts on alloxan-induced diabetic rats. Int J Mol Sci 2009;9:107-16.

29. Loh SP, Hadira O. Mangiferin induces apoptosis by suppressing Bcl-xL and XIAP expression in HL-60 cells. Arch Pharm (Weinheim) 2007;366:351-5.

30. Fasoli E, Righetti PG. The peel and pulp of mango fruit: A proteomic study. J Proteome Res 2011;129:102-7.

31. Ichiki H, Hashimoto I, Iwamoto N, Kato M, Kubo M, et al. Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine 2001;8:85-7.

32. Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002;81:81-100.

33. Fasoli E, Righetti PG. The peel and pulp of mango fruit: A proteomic study. J Proteome Res 2011;129:102-7.

34. Erasto P, Van de Venter M, Roux S, Grierson DS, Afolayan AJ. Antioxidant versus anti-diabetic properties of leaves from *Vernonia amygdalina* Del against resistant strains. Molecules 2011;16:4264-77.

35. Ichiki H, Hashimoto I, Iwamoto N, Kato M, Kubo M, et al. Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine 2001;8:85-7.

36. Loh SP, Hadira O. Mangiferin induces apoptosis by suppressing Bcl-xL and XIAP expression in HL-60 cells. Arch Pharm (Weinheim) 2007;366:351-5.

37. Ichiki H, Hashimoto I, Iwamoto N, Kato M, Kubo M, et al. Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine 2001;8:85-7.

38. Fasoli E, Righetti PG. The peel and pulp of mango fruit: A proteomic study. J Proteome Res 2011;129:102-7.

39. Loh SP, Hadira O. Mangiferin induces apoptosis by suppressing Bcl-xL and XIAP expression in HL-60 cells. Arch Pharm (Weinheim) 2007;366:351-5.

40. Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002;81:81-100.

41. Loh SP, Hadira O. Mangiferin induces apoptosis by suppressing Bcl-xL and XIAP expression in HL-60 cells. Arch Pharm (Weinheim) 2007;366:351-5.

42. Ichiki H, Hashimoto I, Iwamoto N, Kato M, Kubo M, et al. Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine 2001;8:85-7.

43. Loh SP, Hadira O. Mangiferin induces apoptosis by suppressing Bcl-xL and XIAP expression in HL-60 cells. Arch Pharm (Weinheim) 2007;366:351-5.

44. Loh SP, Hadira O. Mangiferin induces apoptosis by suppressing Bcl-xL and XIAP expression in HL-60 cells. Arch Pharm (Weinheim) 2007;366:351-5.
Azadirachta indica on hepatic morphology and hepatotoxicity markers in streptozotocin-induced diabetic rats. Zhong Yi Yi Jie He Xue Bao 2011;9:1373-9.

50. Lollodi O, Eriyamremu GE. Effect of methanolic extract of Vernonia amygdalina (common bitter leaf) on lipid peroxidation and antioxidant enzymes in rats exposed to cycasin. Pak J Biol Sci 2013;16:642-6.

51. Bhat M, Kothiwale SK, Tirmale AR, Bhargava SY, Joshi BN. Antidiabetic effects of Terminalia catappa leaves and fruits in streptozotocin-induced diabetic rats. Phytomedicine 2011;18:137-46.

52. Yeap SK, Ho WY, Beh BK, Liang WS, Ky H, Yousr AH, et al. Evid Based Complement Alternat Med 2008;5:391-3.

53. Ong KW, Hsu A, Tan BK. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol 2013;85:1341-51.

54. El-Refaei M, Attia A, El-Refaei A, Abd El-Aziz E, El-Deeb T. Effect of aqueous extract of Terminalia catappa L. (bitter almond leaf) on the blood glucose level and the lipid profile in streptozotocin-induced diabetic rats. J Ethnopharmacol 2012;149:111-6.

55. Bhat M, Kothiwale SK, Tirmale AR, Bhargava SY, Joshi BN. Antidiabetic and anti-lipidemic effects of aqueous extract of Vernonia amygdalina (Del.) Gongronema latifolium (Benth.) and Occimum gratissimum (Linn.) in aequous decoctions. J Ethnopharmacol 2013;149:111-6.

56. Ejike CE, Awazie SO, Nwangozi PA, Godwin CD. Synergistic effects of dietary clove (Syzygium aromaticum) and curcumin on hepatic morphology and hepatotoxicity markers in murine diabetes model. Evid Based Complement Alternat Med 2013;2013:863-5.

57. Ngubane PS, Masola B, Musabayane CT. The effects of V. amygdalina (Del.) bark extract on hepatic morphology and hepatotoxicity markers in streptozotocin-induced diabetic rats. Phytomedicine 2011;18:137-46.

58. Tiwari BK, Kumar D, Abidi AB, Rizvi SI. Efficacy of composite extract from leaves and fruits of medicinal plants used in traditional diabetic therapy against oxidative stress in alloxan-induced diabetic rats. ISRN Pharmacol 2014;2014:608590.

59. De Bona KS, Bonfanti G, Bitencourt PE, da Silva TP, et al. Syzygium cumini is more effective in preventing the increase of erythrocytic ADA activity than phenolic compounds under hydroporphic conditions in vitro. J Physiol Biochem 2014;70:321-30.

60. Sharma AK, Bharti S, Kumar K, Krishnamurthy B, Bhatia J, Kumari S, et al. Syzygium cumini ameliorates insulin resistance and β-cell dysfunction via modulation of PPAR-α, dyslipidemia, oxidative stress and TNF-α in type 2 diabetic rats. J Pharmacol Sci 2012;119:205-13.

61. Skaltsa H. Antimicrobial activity of essential oils of Xylopia aethiopica and Bougainvillea spectabilis or macrovascular complication in diabetic rat model: Compared effects of Vernonia amygdalina, Catharanthus roseus and chloropamide. Asian J Biochem 2008;3:228-34.

62. Woode E, Alhassan A, Abaidoo CS. Effect of ethanolic fruit extract of Xylopia aethiopica on reproductive function of male rats. Int J Pharm Biomed Res 2011;2:161-5.

63. Omen J, Etoundi CB, Kuate D, Ngondi JL. Anti-amylase, anti-lipase and antioxidant effect of aqueous extracts of some Cameroonian spices. J Nat Prod 2010;3:165-71.

64. Ogbonna SO, Mbaka GO, Adekunle A, Anyika EN, Gbodole OE, Nwakakwa N. Effect of a poly-herbal formulation, Okudiatan, on alloxan-induced diabetic rats. Agric Biol J North Am 2010;1:139-45.

65. Ene AC, Atawodi SE. Ethno-medical survey of plants used by the Kanuri’s of North-eastern Nigeria. Indian J Tradit Knowl 2012;11:640-5.

66. Somova LO, Nadar A, Rammanan P, Shode FO. Cardiovascular, anti-hyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 2003;10:115-21.

67. Ngubane PS, Mbasa B, Musabayane CT. The effects of Syzygium aromaticum-derived oleanolic acid on glycogenic enzymes in streptozotocin-induced diabetic rats. Pharm Biol 2011;49:335-41.

68. Adefega SA, Oboh G, Adetoge OM, Boligon AA, Athaide ML. Anti-hyperglycemic, hypolipidemic, hepatoprotective and antioxidative effects of dietary clove (Syzygium aromaticum) bud powder in a high-fat diet/streptozotocin-induced diabetic rats model. J Sci Food Agric 2014;94:2726-37.

69. Khathi A, Serumula MR, Myburg RB, Van Heerden FR, Musabayane CT. Effects of Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-induced diabetic rats following carbohydrate challenge. PLoS One 2013;8:e81832.

70. Kuroda M, Mimaki Y, Ohtomo T, Yamada J, Nishiya T, Maet T, et al. Hypoglycemic effects of clove (Syzygium aromaticum, flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients. J Nat Med 2012;66:394-9.

71. Adefega SA, Oboh G. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe2+/H2O2-induced lipid peroxidation in rat pancreas. Asian J Phytopharmacol 2012;2:774-81.

72. Subapriya R, Nagini S. Medicinal properties of neem leaves: A review. Curr Med Chem Anticancer Agents 2005;5:149-6.

73. Kumar VS, Navaratnam V, Ramachandran S. Isolation and characterization of glucosamine from Azadirachta indica leaves: An evaluation of immunostimulant activity in mice. Asian J Crop Sci 2012;5:1561-7.

74. Bhat M, Kothiwale SK, Tirmale AR, Bhargava SY, Joshi BN. Antidiabetic properties of Azadirachta indica and Bougainvillaea spectabilis: In vivo studies in murine diabetes model. Evid Based Complement Alternat Med 2011;2011:561625.

75. Shailey S, Basir SF. Protective role of Azadirachta indica against oxidative damage in skeletal and cardiac muscle of alloxan diabetic rats. Int J Pharm Sci 2012;4:471-7.
Antidyslipidemic and antioxidant activities of different fractions of *Terminalia arjuna* stem bark. Indian J Clin Biochem 2004;19:141-8.

97. Morshed MA, Haque A, Rokeya B, Ali L. Anti-hyperglycaemic and lipid lowering effect of *Terminalia arjuna* bark extracts on STZ-induced type 2 diabetic model rats. Int J Pharm Pharm Sci 2011;3:450-4.

98. Juang LJ, Sheu SJ, Lin TC. Determination of hydrolyzable tannins in the fruit of *Terminalia chebula* Retz. by high-performance liquid chromatography and capillary electrophoresis. J Sep Sci 2004;27:718-24.

99. Bag A, Bhattacharyya SK, Chattopadhyay RR. The development of *Terminalia chebula* Retz. (Combretaceae) in clinical research. Asian Pac J Trop Biomed 2013;3:244-52.

100. Manosroi A, Jantrawut P, Ogihara E, Yamamoto A, Fukatsu M, Yasukawa K, et al. Biological activities of phenolic compounds and triterpenoids from the galls of *Terminalia chebula*. Chem Biodivers 2013;10:1448-63.

© SAGEYA. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited.

Source of Support: Nil. Conflict of Interest: None declared.