Erratum to: A representation of a compressed de Bruijn graph for pan-genome analysis that enables search

Timo Beller and Enno Ohlebusch*

Erratum to: Algorithms Mol Biol (2016) 11:20
DOI 10.1186/s13015-016-0083-7

After publication of the original article [1], the authors noticed errors in Algorithm 2 and the caption of Table 4. In Algorithm 2, the term “rank_1(B_{i}, i−1) + 1” should be included on line 28 and not line 29. In addition, in the caption of Table 4, the word “BV_l” should be replaced by “B_l” and the word “BV_r” should be replaced by “B_r.” The correct versions of Algorithm 2 and Table 4 are included in this erratum.

Table 4 Breakdown of the space usage of the variants of Algorithm A4

Algorithm	Part	62 E.coli	7 x Chr1	7 x HG
A4	wt-bwt	0.42 (23.83%)	0.44 (36.23%)	0.43 (22.68%)
A4	Nodes	0.10 (5.94%)	0.03 (2.61%)	0.04 (2.02%)
A4	B_r	0.16 (8.93%)	0.16 (12.86%)	0.16 (8.25%)
A4	B_l	0.14 (8.04%)	0.14 (11.57%)	0.14 (7.42%)
A4	wt-doc	0.93 (53.26%)	0.45 (36.73%)	1.13 (59.63%)
A4compr1	wt-bwt	0.42 (28.57%)	0.44 (47.83%)	0.43 (26.85%)
A4compr1	Nodes	0.10 (7.12%)	0.03 (3.44%)	0.04 (2.39%)
A4compr1	B_r	0.00 (0.23%)	0.00 (0.12%)	0.00 (0.09%)
A4compr1	B_l	0.00 (0.23%)	0.00 (0.12%)	0.00 (0.08%)
A4compr1	wt-doc	0.93 (63.85%)	0.45 (48.49%)	1.13 (70.59%)
A4compr2	wt-bwt	0.16 (13.03%)	0.22 (31.01%)	0.22 (15.62%)
A4compr2	Nodes	0.10 (8.67%)	0.03 (4.55%)	0.04 (2.76%)
A4compr2	B_r	0.00 (0.28%)	0.00 (0.16%)	0.00 (0.10%)
A4compr2	B_l	0.00 (0.28%)	0.00 (0.16%)	0.00 (0.10%)
A4compr2	wt-doc	0.93 (77.74%)	0.45 (64.11%)	1.13 (81.42%)

The first column shows the algorithm used in the experiment (the k-mer size is 50). The second column specifies the different data structures used: wt-bwt stands for the wavelet tree of the BWT (including rank and select support), nodes stands for the array of nodes (the implicit graph representation), B_r and B_l are the bit vectors described in “Computation of right-maximal k-mers and node identifiers” section (including rank support), and wt-doc stands for the wavelet tree of the document array. The remaining columns show the memory usage in bytes per base pair and, in parentheses, their percentage.

*Correspondence: Enno.ohlebusch@uni-ulm.de
Institute of Theoretical Computer Science, Ulm University, James-Franck-Ring O27/537, 89069 Ulm, Germany

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Algorithm 2 Construction of the implicit compressed de Bruijn graph.

1: function CREATE-COMPRRESSED-GRAPH(k, BWT)
2: create an empty graph G
3: create an empty queue Q
4: \((B_r, B_l) \leftarrow \text{CREATE-BIT-VECTORS}(k, \text{BWT, } G, Q)\)
5: \(\text{rightMax} \leftarrow \text{rank}_1(B_r, n)/2\)
6: \(\text{leftMax} \leftarrow \text{rank}_3(B_l, n)\)
7: for \(s \leftarrow 1\) to \(d\) do \(\triangleright\) add the stop nodes for the \(d\) sequences
8: \(id \leftarrow \text{rightMax} + \text{leftMax} + s\)
9: \(G[id] \leftarrow (1, s, 1, s)\)
10: enqueue(Q, id)
11: \(B[s] \leftarrow 0\)
12: while Q is not empty do
13: \(id \leftarrow \text{dequeue}(Q)\)
14: repeat
15: \(\text{extendable} \leftarrow \text{false}\)
16: \(lb \leftarrow G[id].lb\)
17: \(rb \leftarrow lb + G[id].size - 1\)
18: \(\text{list} \leftarrow \text{getIntervals}(\text{lb}, \text{rb})\)
19: for each \((c, [i..j])\) in list do
20: \(\text{ones} \leftarrow \text{rank}_1(B_r, i)\)
21: if \(\text{ones} \text{ is even and } B_r[i] = 0\) then
22: if \(c \notin \{\#, \$\}\) then \(\triangleright\) Case 1
23: if list contains just one element then
24: \(\text{extendable} \leftarrow \text{true}\)
25: \(G[id].len \leftarrow G[id].len + 1\)
26: \(G[id].lb \leftarrow i\)
27: else \(\triangleright\) Case 2
28: \(\text{newId} \leftarrow \text{rightMax} + \text{rank}_1(B_l, i - 1) + 1\)
29: \(G[\text{newId}] \leftarrow (k, i, j - i + 1, i)\)
30: enqueue(Q, newId)
31: until not extendable

The online version of the original article can be found under doi:10.1186/s13015-016-0083-7.

Received: 9 November 2016 Accepted: 9 November 2016
Published online: 28 November 2016

Reference
1. Beller T, Ohlebusch E. A representation of a compressed de Bruijn graph for pan-genome analysis that enables search. Algorithms Mol Biol. 2016;11:20. doi:10.1186/s13015-016-0083-7.

Submit your next manuscript to BioMed Central and we will help you at every step:
• We accept pre-submission inquiries
• Our selector tool helps you to find the most relevant journal
• We provide round the clock customer support
• Convenient online submission
• Thorough peer review
• Inclusion in PubMed and all major indexing services
• Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit