Modelling the Increasing Differential Effects of the First Inter-Competition Coefficient on the Biodiversity Value; Competition between two Phytoplankton Species

P. Y. Igwe¹, J. U. Atsu², E.N. Ekaka-a³, and A.O. Nwaoburu³

¹Department of Mathematics, Federal College of Education (Technical), Omoku, Rivers State, Nigeria.
²Department of Mathematics/Statistics, Cross River University of Technology, Calabar, Nigeria.
³Department of Mathematics, Rivers State University, Nkpolu, Port Harcourt, Nigeria.

Abstract— One of the intrinsic factors that affects the growth of two phytoplankton species is called the inter-competition coefficient. When this parameter value is decreased, the first phytoplankton specie benefit from biodiversity gain whereas the second phytoplankton specie is vulnerable to biodiversity loss. In contrast, when the same parameter value is increased from the value of 0.0525 to 0.099 the first phytoplankton specie dominantly suffers from a biodiversity loss whereas the second phytoplankton specie benefits from a biodiversity gain. The novel results that we have obtained have not been seen elsewhere but compliments our current contribution to knowledge in this challenging interdisciplinary research; these full results are presented and discussed quantitatively.

Keywords— Differential effect, inter-competition coefficient, phytoplankton specie, biodiversity richness, continuous differential equation.

I. INTRODUCTION

Heterogeneity of species is a very important factor in biodiversity richness. Phytoplankton play a very crucial role in ocean ecology [Saha and Bandyopadhyay 2009]. While some species of phytoplankton are known to produce toxins which can contaminate seafood, others are high producers of biomass which in high concentrations can cause mortalities of marine life. However, the toxin producing phytoplankton are known to play very significant roles in the growth of zooplankton [Bandyopadhya et al 2008]. Atsu & Ekaka-a (2017) have shown that as fractional order dimension increases from 0.1 to 0.75, there is a reduction in specie depletion. The implication is that an increased fractional order dimension results in a biodiversity gain.

II. MATERIALS AND METHODS

We have considered the following Lotka–Volterra model equations of competition indexed by a system of continuous non-linear first order ordinary differential equations:

\[
\frac{dN_1(t)}{dt} = N_1(t)[\alpha_1 - \beta_1N_1(t) - \gamma_1N_2(t)] \tag{1}
\]

\[
\frac{dN_2(t)}{dt} = N_2(t)[\alpha_2 - \beta_2N_2(t) - \gamma_2N_1(t)] \tag{2}
\]

Here, the initial conditions are defined by \(N_1(0)=N_{10} \geq 0\) and \(N_2(0)=N_{20} \geq 0\), whereas \(N_1(t)\) and \(N_2(t)\) specify the densities of the two phytoplankton species (measured as the number of cells per liter). For the purpose of this formulation, \(\alpha_1\) and \(\alpha_2\) specify the cell proliferation rate per day; \(\beta_1\) and \(\beta_2\) specify the rate of intra-specific competition terms for the first and second species; \(\gamma_1\) and \(\gamma_2\) specify the rate of inter-specific competition. The units of \(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \) and \(\gamma_2\) are per day per cell and day is the unit of time.

Following the parameter values as proposed by Bandyopadhya et al., 2008, where \(\alpha_1 = 2, \alpha_2 = 1, \beta_1 = 0.07, \beta_2 = 0.08, \gamma_1 = 0.05, \gamma_2 = 0.015\). The method is hereby stated step by step as follows:

Step 1: Consider a scenario where \(N_1(\text{old})\) is the predicted biomass \([N_1(\text{old})\text{ is the population density of the first phytoplankton species otherwise called the biomass of the first phytoplankton species when all other parameter values are fixed at time } t]\).

Step 2: Replace \(N_1(\text{old})\) with \(N_1(\text{new})\) due to a variation of the inter-competition coefficient \(\gamma_1\).
Step 3: If $N_1(\text{new})$ is strictly less than $N_1(\text{old})$, it indicates that the variation of γ_1 has predicted a depletion which mimics biodiversity loss. In this scenario, the appropriate mathematically formula for the quantification of biodiversity loss is defined as follows:

$$\text{BL}(\%) = 100\left(\frac{N_1(\text{old}) - N_1(\text{new})}{N_1(\text{old})}\right)$$

Step 4: If $N_1(\text{new})$ is strictly greater than $N_1(\text{old})$, due to the variation of γ_1, then a biodiversity gain has occurred which can be similarly defined as follows:

$$\text{BG}(\%) = 100\left[1 - \frac{N_1(\text{new})}{N_1(\text{old})}\right]$$

III. RESULTS

On the application of the above mentioned methods, we have obtained the following empirical results that we have not seen elsewhere.

Table 1: Evaluating the extent of biodiversity for $\gamma_1 = 0.049$ with experimental time of 10 years using ODE 45

N_1	$N_{1m}^{BG}(\%)$	$N_2N_{2m}^{BL}(\%)$
4.0000	4.0000	0
10.6819	10.2618	3.9310.6904
17.3033	16.4754	4.7910.1236
20.5151	19.6507	4.2194452
21.7063	20.9031	3.7089593
22.1823	21.4256	3.4186637
22.4060	21.6763	3.2684908
22.5238	21.8095	3.1783900
22.5896	21.8844	3.1283312
22.6273	21.9277	3.0982967

Table 2: Evaluating the extent of biodiversity for $\gamma_1 = 0.0525$ with experimental time of 10 years using ODE 45

N_1	$N_{1m}^{BL}(\%)$	$N_2N_{2m}^{BG}(\%)$
4.0000	4.0000	0
10.6819	10.2618	3.9310.6904
17.3033	16.4754	4.7910.1236
20.5151	19.6507	4.2194452
21.7063	20.9031	3.7089593
22.1823	21.4256	3.4186637
22.4060	21.6763	3.2684908
22.5238	21.8095	3.1783900
22.5896	21.8844	3.1283312
22.6273	21.9277	3.0982967

Table 3: Evaluating the extent of biodiversity for $\gamma_1 = 0.055$ with experimental time of 10 years using ODE 45

N_1	$N_{1m}^{BL}(\%)$	$N_2N_{2m}^{BG}(\%)$
4.0000	4.0000	0
10.6819	10.2618	3.9310.6904
17.3033	16.4754	4.7910.1236
20.5151	19.6507	4.2194452
21.7063	20.9031	3.7089593
22.1823	21.4256	3.4186637
22.4060	21.6763	3.2684908
22.5238	21.8095	3.1783900
22.5896	21.8844	3.1283312
22.6273	21.9277	3.0982967

Table 4: Evaluating the extent of biodiversity for $\gamma_1 = 0.0575$ with experimental time of 10 years using ODE 45

N_1	$N_{1m}^{BL}(\%)$	$N_2N_{2m}^{BG}(\%)$
4.0000	4.0000	0
10.6819	10.2618	3.9310.6904
17.3033	16.4754	4.7910.1236
20.5151	19.6507	4.2194452
21.7063	20.9031	3.7089593
22.1823	21.4256	3.4186637
22.4060	21.6763	3.2684908
22.5238	21.8095	3.1783900
22.5896	21.8844	3.1283312
22.6273	21.9277	3.0982967

Table 5: Evaluating the extent of biodiversity for $\gamma_1 = 0.06$ with experimental time of 10 years using ODE 45

N_1	$N_{1m}^{BL}(\%)$	$N_2N_{2m}^{BG}(\%)$
4.0000	4.0000	0
10.6819	10.2618	3.9310.6904
17.3033	16.4754	4.7910.1236
20.5151	19.6507	4.2194452
21.7063	20.9031	3.7089593
22.1823	21.4256	3.4186637
22.4060	21.6763	3.2684908
22.5238	21.8095	3.1783900
22.5896	21.8844	3.1283312
22.6273	21.9277	3.0982967

Table 6: Evaluating the extent of biodiversity for $\gamma_1 = 0.095$ with experimental time of 10 years using ODE 45

N_1	$N_{1m}^{BL}(\%)$	$N_2N_{2m}^{BG}(\%)$
4.0000	4.0000	0
10.6819	10.2618	3.9310.6904
17.3033	16.4754	4.7910.1236
20.5151	19.6507	4.2194452
21.7063	20.9031	3.7089593
22.1823	21.4256	3.4186637
22.4060	21.6763	3.2684908
22.5238	21.8095	3.1783900
22.5896	21.8844	3.1283312
22.6273	21.9277	3.0982967

www.ijaems.com
Table 7: Evaluating the extent of biodiversity for $\gamma_1 = 0.0975$ with experimental time of 10 years using ODE 45

N_1	N_{1m}BL(%)	N_2	N_{2m}BG(%)
4.0000	4.0000	10.0000	10.0000
10.6819	7.1914	32.68	10.8004
17.3033	10.0462	41.94	10.8196
20.5151	12.0143	41.44	10.5739
21.7063	13.2174	39.11	8.9593
22.1823	13.9344	37.18	10.1041
22.4060	14.3678	35.88	9.9574
22.5238	14.6356	35.02	9.8580
22.5896	14.8041	34.47	9.7920
22.6273	14.9113	34.10	9.7487

Table 8: Evaluating the extent of biodiversity for $\gamma_1 = 0.099$ with experimental time of 10 years using ODE 45

N_1	N_{1m}BL(%)	N_2	N_{2m}BG(%)
4.0000	4.0000	10.0000	10.0000
10.6819	7.0987	33.5510	6.094
17.3033	9.8468	43.09	10.1236
20.5151	11.7501	42.73	9.4452
21.7063	12.9272	40.45	8.9593
22.1823	13.6374	38.52	8.6637
22.4060	14.0713	37.20	8.4908
22.5238	14.3415	36.33	8.3900
22.5896	14.5127	35.76	8.3312
22.6273	14.6223	35.38	8.2967

IV. DISCUSSION OF RESULTS

With an inter-competition coefficient value of $\gamma_1 = 0.049$ and an experimental time of ten (10) years, the biodiversity gain percentage value has maintained a maximum value of 0.96 and biodiversity loss maximum percentage value of 0.31 from the sixth month. As γ_1 increases to 0.0525, the maximum biodiversity gain percentage value is 2.40 occurring at the second month while the maximum biodiversity loss percentage value of 0.79 starts occurring from the seventh month. At an γ_1 value of 0.055, the maximum biodiversity gain percentage value is 4.79 and biodiversity loss percentage value is 1.60. When the γ_1 value is 0.0575, the maximum biodiversity gain percentage value is 7.16 while the maximum biodiversity loss percentage value is 2.42. An γ_1 value of 0.06 results in a maximum biodiversity gain percentage value of 9.51 at the second month while the maximum biodiversity loss percentage value is 3.25 occurring at the seventh and eighth months. When γ_1 is 0.095, the maximum biodiversity gain percentage value is 39.99 and maximum biodiversity loss percentage value is 16.47. At $\gamma_1 = 0.0975$, the maximum biodiversity gain value is 41.94 while maximum biodiversity loss value is 17.54 and when $\gamma_1=0.099$, maximum biodiversity gain percentage value is 43.09 and maximum biodiversity loss percentage value is maintained at 18.18. Predominantly a biodiversity gain is predicted at the second month while a biodiversity loss is predicted from the seventh month and higher.

V. CONCLUSION

The MATLAB ODE45 numerical scheme has been used to predict biodiversity gain and biodiversity loss resulting from inter-competition between two phytoplankton species at increasing inter-competition coefficient levels. A relatively higher inter-competition coefficient would result in a relatively lower biodiversity gain.

REFERENCES

[1] Anderson D.M. (1989). Toxic algae blooms and red tides: a global perspective, in: T. Okaichi, D.M. Anderson, T. Nemoto (Eds.), Red Tides: Biology, Environ. Sci. Toxicol., Elsevier, New York, pp. 11–21.

[2] Atsu, J. U. & Ekaka-a, E. N.(2017). Modelling intervention with respect to biodiversity loss: A case study of forest resource biomass undergoing changing length of growing season. International Journal of Engineering, Management and Science. 3(9).

[3] Bandyopadhyay M., Saha T., Pal R. (2008). Deterministic and Stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment, Elsevier, 2:958–970.

[4] Bandyopadhyay M. (2006). Dynamical analysis of a allelopathic phytoplankton model, J. Biol. Sys. 14: 205–218.

[5] Chattopadhyay J., Sarkar R.R., Mondal S. (2002). Toxin-producing phytoplankton may act as a biological control for planktonic blooms-field study and mathematical modeling, J. Theor. Biol. 215: 333–344.
[6] Chattopadhyay J. (1996). Effects of toxic substances on a two-species competitive system, Ecol. Model. 84: 287–289.

[7] Common, M., Perrings, C. (1992). Towards an ecological economics of sustainability. Ecol. Economics 6, 7–34.

[8] Duinker J., Wefer G (1994). Das CO₂ und die rolle des ozeans, Naturwissenschalten, 81:237–242.

[9] Ekaka-a E.N (2009). Computational and mathematical modelling of plant species interactions in a harsh climate. Ph.D Thesis, Department of Mathematics, The University of Liverpool and The University of Chester, United Kingdom, 2009.

[10] Hallegraeff G.M. (1993). A review of harmful algae blooms and the apparent global increase, Phycologia 32:79–99.

[11] Hernández-Bermejo, B., Fairén, V., (1995). Lotka-Volterra representation of general nonlinear systems. Math. Biosci. 140: 1–32.

[12] Loreau, M., (2000). Biodiversity and ecosystem functioning: recent theoretical advances. Oicos 91(1), 3–17.

[13] May R.M. (2001). Stability and Complexity in Model Ecosystems, Princeton University Press, New Jercy.

[14] Maynard-Smith J. (1974), Models in Ecology, Cambridge University Press, Cambridge.

[15] Nisbet R.M., Gurney W.S.C. (1982). Modelling Fluctuating Populations, Wiley Interscience, New York.

[16] Perrings, C. (1995). Ecological resilience in the sustainability of economic development. Economie Appliquée 48(2), 121–142.

[17] Pykh Yu, A. (2002). Lyapunov functions as a measure of biodiversity: theoretical background, Ecological Indicators 2: 123–133.

[18] Rice E. (1984). Allelopathy, Academic Press, New York.

[19] Saha, T. & Bandyopadhyay, M. (2009). Dynamical analysis of toxin producing phytoplankton interactions. Nonlinear Analysis, Real World Applications 10: 314-332.

[20] Sarkar R.R., Chattopadhyay J. (2003). The role of environmental stochasticity in a toxic phytoplankton-non-toxic phytoplankton-zooplankton system, Environmetrics, 14: 775–792.

[21] Smayda T. (1990). Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic, In: E. Graneli, B. Sundstrom, L. Edler, D.M. Anderson (Eds.), Toxic Marine Phytoplankton, Elsevier, New York, pp. 29–40.

[22] Solé J., García-Ladona E., Ruarij P., Estrada M. (2005). Modelling allelopathy among marine algae, Ecol. Model. 183:373–384.

[23] Tapaswi P.K., Mukhopadhyay A. (1999). Effects of environmental fluctuation on plankton allelopathy, J. Math. Biol. 39: 39–58