Influence of Slip and Heat and Mass Transfer Effects on Peristaltic motion of Power-law fluid Prone to the Tube

N. Subadra1* and K. Maruthi Prasad2 and S. Ravi Prasad Rao3

1*Department of Mathematics, Geethanjali College of Engineering and Technology, Cheeryal (V), Keesara (M), Medchal Dist., Telangana, India-501301
2Department of Mathematics, School of Technology, GITAM University, Hyderabad Campus, Hyderabad, Telangana, India-502329
3Department of Mathematics, Kamala Institute of Technology and Science, Huzurabad, Telangana, India-505468

Email: nemani.subhadra@gmail.com

Abstract. Present study deals with the study of peristaltic motion of a power-law fluid with nanoparticles in a tube with permeable walls. Heat and mass transfer effects and slip effect are studied in this investigation. Axial velocity, pressure gradient and frictional force are expressed analytically and investigated various parameter effects on these flow variables. The present model revealed that, heat transfer coefficient and mass transfer coefficients increases in the region [-1, 0] and decreases in the region [0, 1] with the increase of thermophoresis parameter and shows an opposite behavior with the increase of Brownian motion parameter. Pressure drop increases with the increase of slip parameter. Frictional force decreases with the increase of slip parameter and converges to 1.

1. Introduction

Peristalsis is very important phenomena in the human body. This phenomenon has many biological and industrial applications. Many researchers have done investigations in the peristaltic transport. (Brasseur et al. (1987), Valanis and Sun (1969), Mishra and Ramachandra Rao (2003), K. M. Prasad (2009), Hayat et al. (2014), Chandra and Pandey (2018)).

“Power-law law fluid is a fluid in which the shear stress at any point is proportional to the shear rate at that point raised to some power”. The problems based on non-Newtonian fluids have many applications and hence good number of researchers started working in this area. Ostwald-de Waele model is widely used model for non-Newtonian fluids focusing on power-law rheology. Power-law fluids are classified into three different types of fluids as given below:

n	Type of Fluid
<1	Shear-Thinning Fluids
=1	Newtonian Fluid
>1	Shear-Thickening Fluids

Many researchers done their research in this field (El Naby and El Shamy (2007), Hayat et al. (2006), Shukla and Gupta (1982)).

Nanofluids have many biomedical and industrial applications. New techniques are used using nanofluids for cancer treatments and for safer surgery for the delivery of drugs. A good amount of
research has been done by researchers because of its applications. (S. U.S. Choi (1995), Buongiorno
(2005), Akbar and Nadeem (2013), Ellahi (2018) and Narayanan and Rakesh (2018).
Most of the researchers have done their study using no slip boundary condition at the walls of the
vessels. But the blood vessel walls may be movable, flexible and permeable in nature. (Chu and Fang
(2000), El Naby and El Shamy (2007), Tasawar Hayat et al. (2014).
Motivated by all the above studies, influence of slip and heat and mass transfer effects on peristaltic
motion of a power-law fluid in a tube with permeable walls have been studied. Expressions for axial
velocity, pressure drop and frictional force are derived and graphs have been drawn for various
parameters.

2. Mathematical Formulation
An incompressible power-law fluid with nanoparticles in a uniform tube with permeable walls have been
considered. The geometry of the wall surface is described by the following figure.

The wall deformation is explained by the equation

\[R = H(z,t) = a_1 + b_1 \sin \frac{2\pi}{\lambda_1} (z - c_1 t_1) \]

(1)

here radius of the tube is represented by \(a_1 \), amplitude is represented by \(b_1 \), wave speed is represented by \(c_1 \) and wave length is represented by \(\lambda_1 \).

Applying the transformations below to transform from fixed frame of reference to moving frame of
reference

\[z = Z - c_1 t_1, \quad r = R, \quad \theta = \theta, \quad w_1 = W - c_1, \quad u = U \]

and also applying the non-dimensional quantities; low Reynolds number and long wave length
approximations, the constituent equations are as follows:

\[\frac{\partial p}{\partial z} = -\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{\partial w_1}{\partial r} \right)^n + G_r \theta_1 + B_r \sigma_1 \]

(2)

\[\frac{\partial p}{\partial r} = 0 \]

(3)

\[0 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \theta_1}{\partial r} \right) + N_b \left(\frac{\partial \sigma_1}{\partial r} \right) + N_t \left(\frac{\partial \theta_1}{\partial r} \right)^2 \]

(4)

\[0 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \sigma_1}{\partial r} \right) + N_b \left(\frac{\partial \theta_1}{\partial r} \right)^2 + N_t \left(\frac{\partial \sigma_1}{\partial r} \right) \frac{\partial \theta_1}{\partial r} \]

(5)

Here axial velocity is represented by \(w_1 \), temperature profile by \(\theta_1 \), nanoparticle phenomena by \(\sigma_1 \),
Brownian motion parameter by \(N_b \), thermophoresis parameter by \(N_t \), local temperature Grashof number
by \(G_r \) and local nanoparticle Grashof number by \(B_r \).

Non-dimensional boundary conditions are as follows:

\[\frac{\partial w_1}{\partial r} = 0, \quad \frac{\partial \theta_1}{\partial r} = 0, \quad \frac{\partial \sigma_1}{\partial r} = 0 \quad \text{at} \quad r = 0 \]

(6)

\[w_1 = -kn \frac{\partial w_1}{\partial r}, \quad \theta_1 = 0, \quad \sigma_1 = 0 \quad \text{at} \quad r = h(x) \]

(7)
Here, k is slip parameter and n represents power-law index.

3. Solution of the problem

The coupled equations (4) and (5) of temperature profile and nanoparticle phenomena are solved by using Homotopy Perturbation Method with the initial conditions $\theta_0(r,z) = \frac{r^2-h^2}{4}$ and $\sigma_0(r,z) = -\left(\frac{r^2-h^2}{4}\right)$, then the solutions for above said parameters is given by

$$\theta_1 = \frac{r^4-h^4}{64} \left(N_b - N_t \right)$$

$$\sigma_1 = -\left(\frac{r^2-h^2}{4}\right) \left(N \right)$$

(8)

Using equations (8) and (9) in equation (2) and applying boundary conditions equations (6) and (7), the expression for axial velocity is given by

$$w_1 = \frac{r^{n+1}}{n+1} \frac{n}{1+n} \left(\frac{dp}{dz} \right)^\frac{1}{n} - n \left(\frac{h^n}{2} \right)^\frac{1}{n} \left(k + \frac{h}{n+1} \right) \left(\frac{dp}{dz} \right)^\frac{1}{n}$$

$$- \left(\frac{G_r}{64} (N_b - N_t) \right)^\frac{1}{n} \left(\frac{w}{n} \right)^\frac{2}{n} \left(2 - 2 + \frac{4}{n} \right)^\frac{1}{n}$$

$$\left(\frac{3h^3r + r^3}{3h^2} \right)^\frac{1}{n} HypergeometricPFQRegularized \left[\left\{ \left(\frac{1}{4} \right)^\left(\frac{1}{n} \right), -1 \right\}, \left\{ \left(\frac{1}{4} \right)^\left(\frac{1}{n} \right), \frac{1}{3} \right\} \right]$$

$$\left(\frac{h_3}{4} \right)^\frac{1}{n} \left(\frac{w}{n} \right)^\frac{2}{n} \left(2 - 2 + \frac{4}{n} \right)^\frac{1}{n}$$

$$\left(\frac{3h^3r + r^3}{3h^2} \right)^\frac{1}{n} HypergeometricPFQRegularized \left[\left\{ \left(\frac{1}{4} \right)^\left(\frac{1}{n} \right), -1 \right\}, \left\{ \left(\frac{1}{4} \right)^\left(\frac{1}{n} \right), \frac{1}{3} \right\} \right]$$

(9)

The dimension less flux q in the moving frame is given by

$$q = q^h 2 r w_1 d r$$

(10)

The expression for $\frac{dp}{dz}$ is calculated by substituting equation (11) into equation (10).

The pressure drop over a wave length Δp_x is given by

$$\Delta p_x = \int_0^1 \frac{dp}{dz} dz$$

(11)

By using the expression for $\frac{dp}{dz}$ in equation (12), the expression for Δp_x is

$$\Delta p_x = q^h L_1 + L_2$$

(12)

where $L_1 = \int_0^1 \frac{1}{n} dz$ and

$$L_2 = -\left(\frac{G_r}{64} (N_b - N_t) \right) \left(\frac{n}{1+n} \right)^n \left(\frac{1}{\Gamma \left(\frac{1}{n} \right)} \right)^n \left(\frac{1}{\Gamma \left(\frac{1}{4} \cdot \left(\frac{5}{1} + \frac{1}{n} \right) \right)} \right)^n$$

$$\int_0^1 \frac{h^{3n+5}}{A^n} \left(\frac{3}{2} + \frac{1}{n} \right) HypergeometricPFQRegularized \left[\left\{ \left(\frac{1}{1} \right)^\left(\frac{1}{n} \right), -1 \right\}, \left\{ \left(\frac{1}{1} \right)^\left(\frac{1}{n} \right), \frac{1}{3} \right\} \right]$$

$$+ \Gamma \left(\frac{1}{4} \cdot \left(\frac{1}{n} \right) \right) HypergeometricPFQRegularized \left[\left\{ \left(\frac{1}{4} \cdot \left(\frac{1}{n} \right) \right), -1 \right\}, \left\{ \left(\frac{1}{4} \cdot \left(\frac{1}{n} \right) \right), \frac{1}{3} \right\} \right]$$

$$\int_0^1 \frac{G_r}{64} (N_b - N_t) \left(\frac{n}{1+n} \right)^n \left(\frac{3}{2} + \frac{1}{n} \right) HypergeometricPFQRegularized \left[\left\{ \left(\frac{1}{1} \right)^\left(\frac{1}{n} \right), -1 \right\}, \left\{ \left(\frac{1}{1} \right)^\left(\frac{1}{n} \right), \frac{1}{3} \right\} \right]$$

$$\int_0^1 \frac{h^{3n+5}}{A^n} \left(\frac{3}{2} + \frac{1}{n} \right) HypergeometricPFQRegularized \left[\left\{ \left(\frac{1}{1} \right)^\left(\frac{1}{n} \right), -1 \right\}, \left\{ \left(\frac{1}{1} \right)^\left(\frac{1}{n} \right), \frac{1}{3} \right\} \right]$$

$$\int_0^1 \frac{h^{3n+5}}{A^n} \left(\frac{3}{2} + \frac{1}{n} \right) HypergeometricPFQRegularized \left[\left\{ \left(\frac{1}{1} \right)^\left(\frac{1}{n} \right), -1 \right\}, \left\{ \left(\frac{1}{1} \right)^\left(\frac{1}{n} \right), \frac{1}{3} \right\} \right]$$

(13)
\begin{equation}
\frac{-B_r}{4} \left(\frac{N_t}{N_b} \right) \int_0^1 h^3+2n \ A^n \ n^n \ \left(\frac{k^n}{3} + \left(\frac{h}{1+n} \right)^{n+1} \right) \ \text{Hypergeometric2F1} \left[\frac{-1}{n}, \frac{1+n}{2n}, \frac{1}{2} \left(3 + \frac{1}{n} \right), \frac{1}{2} \right] \ dz
\end{equation}

\begin{equation}
A = \frac{-n^2}{(n+1)(3n+1)} 2^{n-1} n^n \ h^3 \ n + 2^{-1/n} h^{2n+1/n} \left(k + \frac{h}{n+1} \right)
\end{equation}

The same procedure is adopted as done by Shapiro et al. (1969), the time averaged flux over one period in laboratory frame \bar{Q} is given by

\begin{equation}
\bar{Q} = 1 + \frac{\epsilon^2}{2} + q
\end{equation}

The dimension less frictional force at the wall is expressed as

\begin{equation}
\bar{F} = \int_0^1 h^2 \left(\frac{-dp}{dz} \right) \ dz
\end{equation}

Heat transfer coefficient at the wall is

\begin{equation}
Z_\theta (r, z) = \left(\frac{\partial h}{\partial z} \right) \left(\frac{\partial \theta_1}{\partial r} \right)
\end{equation}

Mass transfer coefficient at the wall is

\begin{equation}
Z_\sigma (r, z) = \left(\frac{\partial h}{\partial z} \right) \left(\frac{\partial \sigma_1}{\partial r} \right)
\end{equation}

4. Results and Discussions

Equations for axial velocity, pressure drop, time averaged flux, frictional force, heat, and mass transfer coefficients are expressed in the above section. Graphs on these flow variables have been drawn using Mathematica 11.0 software.

It is noticed from Figs. 2.1 to 2.6 that, pressure drop Δp_λ and frictional force \bar{F} both increases with the increase of Brownian motion parameter N_b. Pressure drop Δp_{λ} increases with the increase of local temperature Grashof number G_r, and decreases with the increase of local nanoparticle Grashof number B_r, thermophoresis parameter N_t. But frictional force \bar{F} shows opposite behaviour with the increase of above parameters. Especially pressure drop Δp_{λ} increases with the increase of slip parameter k, whereas frictional force \bar{F} decreases with the increase of slip parameter k and converges to 1. Further pressure drop and frictional force decreases in the case of $n = 1$ i.e. for Newtonian fluids and parallel to axis for non-Newtonian fluids i.e. for $n > 1$.

The present model also revealed that, heat transfer coefficient and mass transfer coefficient increases in the region $[-1, 0]$ and decreases in the region $[0, 1]$ with the increase of thermophoresis parameter and shows an opposite behavior with the increase of Brownian motion parameter.

Fig. 2.1 Plots for the Pressure Drop Δp_{λ} showing the effects of changing local nanoparticle Grashof number B_r and local temperature Grashof number G_r.
Fig. 2.2 Plots for the Pressure Drop Δp_{λ} showing the effects of changing Brownian motion parameter N_B.

Fig. 2.3 Plots for the Pressure Drop Δp_{λ} showing the effects of changing slip parameter.

Fig. 2.4 Plots for the Frictional force F showing the effects of changing local nanoparticle Grashof number B_r and local temperature Grashof number G_r.

Fig. 2.5 Plots for the Frictional force F showing the effects of changing local nanoparticle Grashof number B_r and
5. Conclusions
The study of peristaltic motion of a power-law fluid with nanoparticles in a tube with permeable walls. Heat and mass transfer effects and slip effect are studied in this investigation. Axial velocity, pressure gradient and frictional force are expressed analytically.

The main points observed are
a. Pressure drop Δp_λ increases with the increase of local temperature Grashof number G_r, and decreases with the increase of local nanoparticle Grashof number B_r, thermophoresis parameter N_t.
But frictional force F_λ shows opposite behaviour with the increase of above parameters.
b. Especially pressure drop Δp_λ increases with the increase of slip parameter k, whereas frictional force F_λ decreases with the increase of slip parameter k and converges to 1.
c. Further pressure drop and frictional force decreases in the case of \(n = 1 \) i.e. for Newtonian fluids and parallel to axis for non-Newtonian fluids i.e. for \(n > 1 \).

d. The present model also revealed that, heat transfer coefficient and mass transfer coefficient increases in the region \([-1, 0]\) and decreases in the region \([0, 1]\) with the increase of thermophoresis parameter and shows an opposite behavior with the increase of Brownian motion parameter.

References

[1] Akbar, Noreen Sher, and S Nadeem. 2013. “Peristaltic Flow of a Micropolar Fluid with Nano Particles in Small Intestine.” Applied Nanoscience 3(6): 461–68.

[2] Brasseur, James G., Stanley Corrsin, and Nan Q. Lu. 1987. “The Influence of a Peripheral Layer of Different Viscosity on Peristaltic Pumping with Newtonian Fluids.” Journal of Fluid Mechanics 174: 495–519.

[3] Buongiorno, J. 2005. “Convective Transport in Nanofluids.” Journal of Heat Transfer 128(3): 240–50.

[4] Chandra, Subhash, and Sanjay Pandey. 2018. “A Study on Peristaltic Flow of Micropolar Fluids: An Application to Sliding Hiatus Hernia.” Journal of Physics: Conference Series 1141: 012092.

[5] Chu, W Kwang-Hua, and J Fang. 2000. “Peristaltic Transport in a Slip Flow.” The European Physical Journal B-Condensed Matter and Complex Systems 16(3): 543–47.

[6] El Naby, Abd El Hakeem Abd, and IIE El Shamy. 2007. “Slip Effects on Peristaltic Transport of Power-Law Fluid through an Inclined Tube.” Applied Mathematical Sciences 1(60): 2967–80.

[7] Ellahi, Rahmat. 2018. “Special Issue on Recent Developments of Nanofluids.” Applied Sciences 8: 192.

[8] Hayat, T, E Momoniat, and FM Mahomed. 2006. “Endoscope Effects on MHD Peristaltic Flow of a Power-Law Fluid.” Mathematical Problems in Engineering 2006: 1–19.

[9] Hayat, Tasawar, Fahad Munir Abbasi, Bashir Ahmad, and Ahmed Alsaedi. 2014. “Peristaltic Transport of Carreau-Yasuda Fluid in a Curved Channel with Slip Effects.” PloS one 9(4): e95070.

[10] K. M. Prasad, G. Radhakrishnamacharya. 2009. “Effect of Peripheral Layer on Peristaltic Transport of a Micropolar Fluid.” Nonlinear Analysis. Modelling and Control 1(1).

[11] Mishra, M., and A. Ramachandra Rao. 2003. “Peristaltic Transport of a Newtonian Fluid in an Asymmetric Channel.” Zeitschrift für angewandte Mathematik und Physik ZAMP 54(3): 532–50.

[12] Narayanan, M. Vishnu, and S. G. Rakesh. 2018. “Nanofluids: A Review on Current Scenario and Future Prospective.” IOP Conference Series: Materials Science and Engineering 377: 012084.

[13] S. U.S. Choi, J. A. Eastman. 1995. “Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME FED.” Proceedings of the ASME International Mechanical Engineering Congress and Exposition 66.

[14] Shapiro, A. H., M. Y. Jaffrin, and S. L. Weinberg. 1969. “Peristaltic Pumping with Long Wavelengths at Low Reynolds Number.” Journal of Fluid Mechanics 37(04): 799–825.

[15] Shapiro, Ascher H. 1967. “Pumping and Retrograde Diffusion in Peristaltic Waves.” In , 109–26.

[16] Shukla, JB, and SP Gupta. 1982. “Peristaltic Transport of a Power-Law Fluid with Variable Consistency.” Journal of biomechanical engineering 104(3): 182–86.

[17] Valanis, KC, and CT Sun. 1969. “Poiseuille Flow of a Fluid with Couple Stress with Applications to Blood Flow.” Biorheology 6(2): 85.