Research Article

Xiaoyong Xu* and Fengying Zhou

Crank-Nicolson orthogonal spline collocation method combined with WSGI difference scheme for the two-dimensional time-fractional diffusion-wave equation

https://doi.org/10.1515/math-2020-0007
Received April 20, 2019; accepted January 18, 2020

Abstract: In this paper, a discrete orthogonal spline collocation method combining with a second-order Crank-Nicolson weighted and shifted Grünwald integral (WSGI) operator is proposed for solving time-fractional wave equations based on its equivalent partial integro-differential equations. The stability and convergence of the schemes have been strictly proved. Several numerical examples in one variable and in two space variables are given to demonstrate the theoretical analysis.

Keywords: diffusion-wave equation; Crank-Nicolson method; weighted and shifted Grünwald integral operator; orthogonal spline collocation method; Caputo derivative

MSC 2010: 65M12; 26M33

1 Introduction

Recently, fractional partial differential equations (FPDEs) have attracted more and more attention, which can be used to describe some physical and chemical phenomenon more accurately than the classical integer-order differential equations. For example, when studying universal electromagnetic responses involving the unification of diffusion and wave propagation phenomena, there are processes that are modeled by equations with time fractional derivatives of order \(\gamma \in (1, 2) \) [1]. Generally, the analytical solutions of fractional partial differential equations are difficult to obtain, so many authors have resorted to numerical solution techniques based on convergence and stability. Various kinds of numerical methods for solving FPDEs have been proposed by researchers, such as finite element method [2, 3], finite difference method [4–6], meshless method [7, 8], wavelets method [9], spline collocation method [10–12] and so forth.

In this study, we consider the following two-dimensional time-fractional diffusion-wave equation

\[
\frac{\Gamma(\gamma)}{\Gamma(1-\gamma)} D_\gamma^\alpha u(x, y, t) = \Delta u(x, y, t) - u(x, y, t) + f(x, y, t), \quad (x, y, t) \in \Omega \times (0, T]
\] (1.1)

subject to the initial condition

\[
u(x, y, 0) = \varphi(x, y), \quad \frac{\partial u(x, y, 0)}{\partial t} = \varphi(x, y), \quad (x, y) \in \Omega,
\] (1.2)

*Corresponding Author: Xiaoyong Xu: School of Science, East China University of Technology, Nanchang, Jiangxi 330013, China; E-mail: xxy@ecit.cn
Fengying Zhou: School of Science, East China University of Technology, Nanchang, Jiangxi 330013, China; E-mail: zhoufengying@ecit.cn

Open Access. © 2020 Xiaoyong Xu and Fengying Zhou, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 License.
and the boundary condition
\[u(x, y, t) = 0, (x, y, t) \in \partial \Omega \times (0, T], \] (1.3)
where \(\Delta \) is Laplace operator, \(\Omega = [0, 1] \times [0, 1] \) with boundary \(\partial \Omega \), \(\phi(x, y), \varphi(x, y) \) and \(f(x, y, t) \) are given sufficiently smooth functions in their respective domains and \(\frac{\partial D_{\gamma}^{\frac{\partial}{\partial t}}}{\partial t} \) denotes the Caputo derivative of order \(\gamma \) \((1 < \gamma < 2)\), which reads as follows:
\[\frac{\partial D_{\gamma}^{\frac{\partial}{\partial t}}}{\partial t} u(x, y, t) = \frac{1}{\Gamma(2 - \gamma)} \int_{0}^{t} \frac{\partial^2 u(x, y, s)}{\partial s^2} (t - s)^{1-\gamma} ds, \]
in which \(\Gamma(\cdot) \) is the Gamma function. Without loss of generality, we assume that \(\phi(x, y) \equiv 0 \) in (1.2), since we can solve the equation for \(v(x, y, t) = u(x, y, t) - \phi(x, y) \) in general.

Most of the numerical algorithms in [1–8] employed the \(L_1 \) scheme to approximate fractional derivatives. Recently, Tian et al. [13] proposed second-and third-order approximations for Riemann-Liouville fractional derivative via the weighted and shifted Grünwald difference (WSGD) operators. Thereafter, some related research work covering the WSGD idea were done by many scholars. In [14], Liu et al developed a high-order local discontinuous Galerkin method combined with WSGD approximation for a Caputo time-fractional sub-diffusion equation. In [15], Chen considered the numerical solutions of the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients, which the time fractional derivative was approximated by WSGD operator. In [16], Yang proposed a new numerical approximation, using WSGD operator with second order in time direction and orthogonal spline collocation method in spatial direction, for the two-dimensional distributed-order time fractional reaction-diffusion equation. Following the idea of WSGD operator, Wang and Vong [17] used compact finite difference WSGI scheme for the temporal Caputo fractional diffusion-wave equation. However, the numerical methods with WSGI approximation have been rarely studied. Cao et al. [18] applied the idea of WSGI approximation combining with finite element method to solve the time fractional wave equation.

Orthogonal spline collocation (OSC) method has evolved as a valuable technique for solving different types of partial differential equations [19–23]. The popularity of OSC is due to its conceptual simplicity, wide applicability and easy implementation. Comparing with finite difference method and the Galerkin finite element method, OSC method has the following advantages: the calculation of the coefficients in the equation determining the approximate solution is fast since there is no need to calculate the integrals; and it provides approximations to the solution and spatial derivatives. Moreover, OSC scheme always leads to the almost block diagonal linear system, which can be solved by the software packages efficiently [24]. Another feature of OSC method lies in its super-convergence [25].

Motivated and inspired by the work mentioned above, the main goal of this paper is to propose a high-order OSC approximation method combined with second order WSGI operator for solving two-dimensional time-fractional wave equation, which is abbreviated as WSGI-OSC in forthcoming sections. The remainder of the paper is organized as follows. In Section 2, some notations and preliminaries are presented. In Section 3, the fully discrete scheme combining WSGI operator with second order and orthogonal spline collocation scheme is formulated. Stability and convergence analysis of WSGI-OSC scheme are presented in Section 4. Section 5 provides detailed description of the WSGI-OSC scheme. In Section 6, several numerical experiments are carried out to confirm the convergence analysis. Finally, the conclusion is drawn in Section 7.

2 Discrete-time OSC scheme

2.1 Preliminaries

In this section, we will introduce some notations and basic lemmas. For some positive integers \(N_x \) and \(N_y \), \(\delta_x \) and \(\delta_y \) are two uniform partitions of \(T = [0, 1] \) which are defined as follows:
\[\delta_x : 0 = x_0 < x_1 < \cdots < x_{N_x} = 1, \quad \delta_y : 0 = y_0 < y_1 < \cdots < y_{N_y} = 1, \]
and \(h_i^x = x_i - x_{i-1}, h_j^y = (y_j - y_{j-1}, 1 \leq i \leq N_x, 1 \leq j \leq N_y \), \(h = \max \{ \max h_i^x, \max h_j^y \} \). Let \(M_r(\delta_x) \) and \(M_r(\delta_y) \) be the space of piecewise polynomial of degree at most \(r \geq 3 \), defined by

\[
M_r(\delta_x) = \{ v \in C^1[0, 1] : v|_{I_i^y} \in P_r, 1 \leq i \leq N_x, v(0) = v(1) = 0 \}, \\
M_r(\delta_y) = \{ v \in C^1[0, 1] : v|_{I_j^x} \in P_r, 1 \leq j \leq N_y, v(0) = v(1) = 0 \},
\]

where \(P_r \) denotes the set of polynomial of degree at most \(r \). It is easy to know that the dimension of the spaces \(M_r(\delta_x) \) and \(M_r(\delta_y) \) are \((r+1)N_x \) and \((r+1)N_y \), respectively.

Let \(\delta = \delta_x \otimes \delta_y \) be a quasi-uniform partition of \(\Omega \), and \(M_r(\delta) = M_r(\delta_x) \otimes M_r(\delta_y) \) with the dimension of \(M_r(\delta) \). Let \(\{ \lambda_i \}_{i=1}^{N_x} \) denotes the nodes for the \((r+1) \)-point Gaussian quadrature rule on the interval \(I \) with corresponding weights \(\{ \omega_i \}_{i=1}^{N_x} \). Denote by

\[
\xi_{i,l} = x_{i-1} + h_i^x \lambda_l, \quad \xi_{j,m} = y_{j-1} + h_j^y \lambda_m, \quad 1 \leq l, m \leq r - 1.
\]

as the sets of Gauss points in \(x \) and \(y \) direction, respectively, where

\[
\xi_{i,l} = x_{i-1} + h_i^x \lambda_l, \quad \xi_{j,m} = y_{j-1} + h_j^y \lambda_m, \quad 1 \leq l, m \leq r - 1.
\]

Let \(\mathcal{G} = \{ \xi = (\xi^x, \xi^y) : \xi^x \in \mathcal{G}_x, \xi^y \in \mathcal{G}_y \} \). For the functions \(u \) and \(v \) defined on \(\mathcal{G} \), the inner product \(\langle u, v \rangle \) and norm \(\| v \|_{M_r} \) are respectively defined by

\[
\langle u, v \rangle = \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} h_i^x h_j^y \sum_{l=1}^{r-1} \sum_{m=1}^{r-1} \omega_l \omega_m (v(\xi_{i,l}, \xi_{j,m})) = \langle v, u \rangle.
\]

For \(m \) a nonnegative integer, let \(H^m(\Omega) \) denotes the usual Sobolev space with norm

\[
\| v \|_{H^m} = \left(\sum_{l=0}^{m} \sum_{i+j=l} \left\| \frac{\partial^{i+j} v}{\partial x^i \partial y^j} \right\|^2 \right)^{\frac{1}{2}},
\]

where the norm \(\| \cdot \| \) denotes the usual \(L_2 \) norm, sometimes it is written as \(\| \cdot \|_{H^0} \) for convenience. The following important lemmas are required in our forthcoming analysis. First, we introduce the differentiable (resp. twice differentiable) map \(W : [0, T] \rightarrow M_r(\delta) \) by

\[
\Delta (u - W) = 0 \quad \text{on} \quad \mathcal{G} \times [0, T], \quad (2.1)
\]

where \(u \) is the solution of the Eqs.(1.1)-(1.3) . Then we have the following estimates for \(u - W \) and its time derivatives.

Lemma 2.1. [26] If \(\partial^l u / \partial t^l \in H^{r+3-l}, \) for all \(t \in [0, T], l = 0, 1, 2, j = 0, 1, 2, and W is defined by (2.1), then there exists a constant \(C \) such that

\[
\frac{\partial^{l} (u - W)}{\partial t^l} \|_{H^{r+3-l}} \leq C h^{r+1-j} \| \frac{\partial^{l} u}{\partial t^l} \|_{H^{r+1-j}}, \quad (2.2)
\]

Lemma 2.2. [26] If \(\partial^l u / \partial t^l \in H^{r+3}, \) for \(t \in [0, T], i = 0, 1, \) then

\[
\frac{\partial^{l} (u - W)}{\partial x^i \partial y^j \partial t^l} \|_{M_r} \leq C h^{r+1-l} \| \frac{\partial^{l} u}{\partial t^l} \|_{H^{r+1}}, \quad (2.3)
\]

where \(0 \leq l = l_1 + l_2 \leq 4 \).

Lemma 2.3. [27] If \(u, v \in M_r(\delta) \), then

\[
\langle -\Delta u, v \rangle = \langle u, -\Delta v \rangle, \quad (2.4)
\]
and there exists a positive constant C such that
\[\langle -\Delta u, u \rangle \geq C\|\nabla u\|^2 \geq 0. \tag{2.5} \]

Lemma 2.4. [28] The norms $\| \cdot \|_{M}$ and $\| \cdot \|$ are equivalent on $M_{r}(\delta)$.

Throughout the paper, we denote $C > 0$ a constant which is independent of mesh sizes h and τ. The following Young’s inequality will also be used repeatedly,
\[XY \leq \varepsilon X^2 + \frac{1}{4\varepsilon} Y^2, \quad X, Y \in \mathbb{R}, \varepsilon > 0. \tag{2.6} \]

2.2 Construction of the fully discrete orthogonal spline collocation scheme

In this subsection, we consider discrete-time OSC schemes for solving the Eqs. (1.1)-(1.3). Our main idea of the proposed method is to transform the time fractional diffusion-wave equation into its equivalent partial integro-differential equation. To construct the continuous-time OSC scheme to the solution u of (1.1), we introduce the Riemann-Liouville fractional integral which is defined by
\[\mathcal{I}_{t}^{\alpha}u(x, y, t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} u(x, y, s) \frac{ds}{(t-s)^{1-\alpha}}, \tag{2.7} \]
where $0 < \alpha = \gamma - 1 < 1$.

We integrate the equation (1.1) using Riemann-Liouville fractional integral operator \mathcal{I}_{t}^{α} defined in (2.7), then the problem is transformed into its equivalent partial integro-differential equation as follows
\[u_{t}(x, y, t) - \mathcal{I}_{t}^{\alpha}\Delta u(x, y, t) + \mathcal{I}_{t}^{\alpha}u(x, y, t) = \mathcal{I}_{0}^{\alpha}f(x, y, t) + \varphi(x, y). \tag{2.8} \]

Let $t_{k} = k\tau$, $k = 0, 1, \ldots, N$, where $\tau = T/N$ is the time step size. For the convenience of description, we define $D_{t}u^{n+1} = \frac{u^{n+1} - u^{n}}{\tau}$, and $u^{n+\frac{1}{2}} = \frac{u^{n+1} + u^{n}}{2}$, where $u^{n} = u(x, y, t_{n})$. Based on the idea of weighted and shifted Grünwald difference operator, Wang and Vong ([17]) established the second order accuracy approximation formula of the Riemann-Liouville fractional integral operator $\mathcal{I}_{t}^{\alpha}u^{n+1}$, which is called as WSGI approximation,
\[\mathcal{I}_{t}^{\alpha}u^{n+1} = \tau^{\alpha} \sum_{k=0}^{n} \lambda_{k}^{(a)} u^{n+1-k} + \bar{E} \equiv \mathcal{I}_{t}^{\alpha}u^{n+1} + \bar{E}, \tag{2.9} \]
where $\bar{E} = O(\tau^{3})$ and
\[\lambda_{0}^{(a)} = (1 - \frac{a}{2})\omega_{0}^{(a)}, \quad \lambda_{k}^{(a)} = (1 - \frac{a}{2})\omega_{k}^{(a)} + \frac{a}{2}\omega_{k-1}^{(a)}, \quad k \geq 1, \tag{2.10} \]
here
\[\omega_{0}^{(a)} = (-1)^{k} \left(-\frac{a}{k} \right), \quad \omega_{0}^{(a)} = 1, \quad \omega_{k}^{(a)} = \left(1 + \frac{a-1}{k} \right)\omega_{k-1}^{(a)}, \quad k \geq 1. \tag{2.11} \]

By using the Crank-Nicolson difference scheme and WSGI approximation formula to discretize the equation (2.8), we obtain the semi-discrete scheme in time direction
\[D_{t}u^{n+1} - \mathcal{I}_{t}^{\alpha}\Delta u^{n+\frac{1}{2}} + \mathcal{I}_{t}^{\alpha}u^{n+\frac{1}{2}} = g^{n+\frac{1}{2}} + E^{n+\frac{1}{2}}, \tag{2.12} \]
where $g^{n+\frac{1}{2}} = \mathcal{I}_{t}^{\alpha}f^{n+\frac{1}{2}} + \varphi(x, y)$, $E^{n+\frac{1}{2}} = \bar{E} + E^{n+\frac{1}{2}}$ is $O(\tau^{2})$, $E^{n+\frac{1}{2}} = D_{t}u^{n+\frac{1}{2}} - u_{t}(t_{n+\frac{1}{2}}) = O(\tau^{2})$. Then by using (2.9),(2.12), the fully discrete WSGI-OSC scheme for Eqs.(1.1) consists in finding $(u_{h}^{n})_{n=0}^{N-1} \subset M_{r}(\delta)$ such that
\[\frac{u_{h}^{n+1} - u_{h}^{n}}{\tau} = \tau^{\alpha} \sum_{k=0}^{n} \lambda_{k}^{(a)} \Delta u_{h}^{n+1-k} + \tau^{a} \sum_{k=0}^{n} \lambda_{k}^{(a)} u_{h}^{n+1-k} = g^{n+\frac{1}{2}}. \tag{2.13} \]
For the needs of analysis, we give the following equivalent Galerkin weak formulation of the equation (2.12) by multiplying the equation with \(v \in H_0^1 \) and integrating with respect to spatial domain \(\Omega \)

\[
(D_t u^{n+1}, v) + (a I_f \nabla u^{n+\frac{1}{2}}, \nabla v) + (a I_f^2 u^{n+\frac{1}{2}}, v) = (g^{n+\frac{1}{2}}, v) + (E^{n+\frac{1}{2}}, v). \tag{2.14}
\]

We take the space \(M_\delta(\beta) \subset H_0^1 \) and obtain the fully discrete scheme as follows:

\[
\left(\frac{u_h^{n+1} - u_h^n}{\tau}, v_h \right) + \tau a \sum_{k=0}^{n} \lambda^{(a)}_k (\nabla u_h^{n+\frac{1}{2} - k}, \nabla v_h) + \tau a \sum_{k=0}^{n} \lambda^{(a)}_k (u_h^{n+\frac{1}{2} - k}, v_h) = (g^{n+\frac{1}{2}}, v_h), \forall v_h \in M_\delta(\beta) \tag{2.15}
\]

3 Stability and convergence analysis of WSGI-OSC scheme

In this section, we will give the stability and convergence analysis for fully-discrete WSGI-OSC scheme (2.13). To this end, we further need the following lemmas.

Lemma 3.1. [17] Let \(\{\lambda^{(a)}_k\} \) defined in (2.10), then for any positive integer \(k \) and real vector \((v_1, v_2, \cdots, v_k)^T \in \mathbb{R}^k \), it holds that

\[
\sum_{n=0}^{k-1} \left(\sum_{p=0}^{n} \lambda^{(a)}_p v_{n+1-p} \right) v_{n+1} \geq 0.
\]

Lemma 3.2. (Gronwall’s inequality) [29] Assume that \(k_n \) and \(p_n \) are nonnegative sequence, and the sequence \(\phi_n \) satisfies

\[
\phi_0 \leq g_0, \quad \phi_n \leq \phi_0 + \sum_{l=0}^{n-1} p_l + \sum_{l=0}^{n-1} k_l p_l, \quad n \geq 1,
\]

where, \(g_0 \geq 0 \). Then the sequence \(\phi_n \) satisfies

\[
\phi_n \leq \left(g_0 + \sum_{l=0}^{n-1} p_l \right) \exp \left(\sum_{l=0}^{n-1} k_l \right), \quad n \geq 1.
\]

Theorem 3.1. The fully-discrete WSGI-OSC scheme (2.15) is unconditionally stable for sufficiently small \(\tau > 0 \), it holds

\[
\|u_h^{L+1}\|^2 \leq C \left(\|u_h^0\|^2 + \max_{0 \leq n \leq N-1} \|g^{n+\frac{1}{2}}\|^2 \right), 1 \leq L \leq N - 1. \tag{3.1}
\]

Proof. Taking \(v_h = u_h^{n+\frac{1}{2}} = u^{n+1}_h + u^n_h \) in (2.15) and applying the Cauchy-Schwarz inequality and Young inequality, it gives that

\[
\frac{1}{2\tau} \left(\|u_h^{n+1}\|^2 - \|u_h^n\|^2 \right) + \tau a \sum_{k=0}^{n} \lambda^{(a)}_k \left(\nabla u_h^{n+\frac{1}{2} - k}, \nabla v_h \right) \leq \frac{1}{2} \left(\|g^{n+\frac{1}{2}}\|^2 + \|u_h^{n+\frac{1}{2}}\|^2 \right). \tag{3.2}
\]

Summing (3.2) for \(n \) from 0 to \(L(0 \leq n \leq N - 1) \), we obtain

\[
\frac{1}{2\tau} \sum_{n=0}^{L} \left(\|u_h^{n+1}\|^2 - \|u_h^n\|^2 \right) + \tau a \sum_{n=0}^{L} \sum_{k=0}^{n} \lambda^{(a)}_k \left(\nabla u_h^{n+\frac{1}{2} - k}, \nabla v_h \right) \leq \frac{1}{2} \sum_{n=0}^{L} \left(\|g^{n+\frac{1}{2}}\|^2 + \|u_h^{n+\frac{1}{2}}\|^2 \right). \tag{3.3}
\]

Multiplying the above equation by \(2\tau \), also using Lemma 1, then dropping the nonnegative terms

\[
2\tau a \sum_{n=0}^{L} \sum_{k=0}^{n} \lambda^{(a)}_k \left(\nabla u_h^{n+\frac{1}{2} - k}, \nabla v_h \right),
\]
we have
\[
||u_h^{n+1}||^2 \leq ||u_h^n||^2 + \tau \sum_{n=0}^{L} (||g^{n+\frac{1}{2}}||^2 + ||u_h^{n+\frac{1}{2}}||^2)
\]
\[
\leq ||u_h^n||^2 + T \max_{0 \leq t \leq N-1} ||g^{n+\frac{1}{2}}||^2 + \tau \sum_{n=0}^{L} ||u_h^{n+\frac{1}{2}}||^2
\]
\[
\leq ||u_h^n||^2 + T \max_{0 \leq t \leq N-1} ||g^{n+\frac{1}{2}}||^2 + \tau \sum_{n=1}^{L} (||u_h^{n+1}||^2 + ||u_h^n||^2).
\] (3.4)

Then, it gives that,
\[
(1 - \frac{1}{2} \tau)||u_h^{n+1}||^2 \leq (1 + \frac{1}{2} \tau)||u_h^n||^2 + T \max_{0 \leq t \leq N-1} ||g^{n+\frac{1}{2}}||^2 + \tau \sum_{n=1}^{L} ||u_h^n||^2.
\] (3.5)

Provided the time step \(\tau\) is sufficiently small, there exists a positive constant \(C\) such that
\[
||u_h^{n+1}||^2 \leq C(||u_h^n||^2 + \max_{0 \leq t \leq N-1} ||g^{n+\frac{1}{2}}||^2).
\] (3.6)

Using Gronwall’s Lemma 3.2, we get
\[
||u_h^{L+1}||^2 \leq C(||u_h^0||^2 + \max_{0 \leq t \leq N-1} ||g^{n+\frac{1}{2}}||^2).
\] (3.7)

The proof is complete.

Theorem 3.2. Suppose \(u\) is the exact solution of (1.1)-(1.3), and \(u^n_h(0 \leq n \leq N - 1)\) is the solution of the problem (2.13) with \(u^0_h = W^0\), then there exists a positive constant \(C\), independent of \(h\) and \(\tau\) such that
\[
||u(t_n) - u^n_h||^2 \leq C(\tau^2 + h^{r+1}).
\] (3.8)

Proof. With \(W\) defined in (2.1), we set
\[
\eta^n = W^n - u^n, \quad \zeta^n = u^n_h - W^n, \quad 0 \leq n \leq N,
\] (3.9)

thus we have
\[
u^n = u^n - u^n_h = \eta^n + \zeta^n.
\] (3.10)

Because the estimate of \(\eta^n\) are provided by Lemma 2.2, it is sufficient to bound \(\zeta^n\), then use the triangle inequality to bound \(u^n - u^n_h\). Firstly, from (1.1),(2.1),(2.13),and(2.15), then for \(\nu_h \in M_\tau(\delta)\), we obtain
\[
\left(\frac{\eta^{n+1} - \eta^n}{\tau}, \nu_h\right) + \tau^a \sum_{k=0}^{n} a_k^{(a)}(\nabla \eta^{n+\frac{1}{2}-k}, \nabla \nu_h) + \tau^a \sum_{k=0}^{n} a_k^{(a)}(\zeta^{n+\frac{1}{2}-k}, \nu_h)
\]
\[
= -\tau^a \sum_{k=0}^{n} a_k^{(a)}(\zeta^{n+\frac{1}{2}-k}, \nu_h) - \left(\frac{\zeta^{n+1} - \zeta^n}{\tau}, \nu_h\right) + (\nu_h^{n+\frac{1}{2}}, \nu_h),
\] (3.11)

where \(\nu_h^{n+\frac{1}{2}}\) is defined in (2.12). Taking \(\nu_h = \eta^{n+\frac{1}{2}}\) in (3.11), we have
\[
\left(\frac{\eta^{n+1} - \eta^n}{\tau}, \eta^{n+\frac{1}{2}}\right) + \tau^a \sum_{k=0}^{n} a_k^{(a)}(\nabla \eta^{n+\frac{1}{2}-k}, \eta^{n+\frac{1}{2}}) + \tau^a \sum_{k=0}^{n} a_k^{(a)}(\eta^{n+\frac{1}{2}-k}, \eta^{n+\frac{1}{2}})
\]
\[
= -\tau^a \sum_{k=0}^{n} a_k^{(a)}(\eta^{n+\frac{1}{2}-k}, \eta^{n+\frac{1}{2}}) - \left(\frac{\zeta^{n+1} - \zeta^n}{\tau}, \eta^{n+\frac{1}{2}}\right) + (\nu_h^{n+\frac{1}{2}}, \eta^{n+\frac{1}{2}}).
\] (3.12)
Multiplying (3.12) by 2τ, and summing from $n = 0$ to $n = L - 1$ ($1 \leq n \leq N + 1$), it follows that
\begin{align*}
\sum_{n=0}^{L-1} \left(\|\eta_{n+1}\|^2 - \|\eta_n\|^2 \right) + 2\tau^{n+1} \sum_{n=0}^{L-1} \sum_{k=0}^{n} a_k^{(a)} \left((\nabla \eta_{n+1}^{\frac{1}{2} - k}, \nabla \eta_n^{\frac{1}{2}}) + (\eta_{n+1}^{\frac{1}{2} - k}, \eta_n^{\frac{1}{2}}) \right)
&= -2\tau a^{n+1} \sum_{n=0}^{L-1} \sum_{k=0}^{n} a_k^{(a)} (\chi^{n+\frac{1}{2} - k}, \eta_n^{\frac{1}{2}}) - 2\tau \sum_{n=0}^{L-1} \left(\frac{\xi^{n+\frac{1}{2}} - \xi^n}{\tau}, \eta_n^{\frac{1}{2}} \right) + 2\tau \sum_{n=0}^{L-1} (E^{n+\frac{1}{2}}, \eta_n^{\frac{1}{2}}) \\
&= I_1 + I_2 + I_3. \tag{3.13}
\end{align*}

Next, we will give the estimate of I_1, I_2 and I_3, respectively.
\begin{align*}
I_1 &= -2\tau a^{n+1} \sum_{n=0}^{L-1} \sum_{k=0}^{n} a_k^{(a)} (\chi^{n+\frac{1}{2} - k}, \eta_n^{\frac{1}{2}}) \\
&= -2\tau a^{n+1} \sum_{n=0}^{L-1} \left(\frac{t_n}{2} \xi_{\frac{n+1}{2}} - \bar{E}, \eta_n^{\frac{1}{2}} \right) \\
&= -2\tau a^{n+1} \sum_{n=0}^{L-1} \int_0^{t_{n+1}} \xi(x, y, s) \frac{t_n}{(t_{n+1} - s)^{1-a}} \, ds + \int_0^{t_n} \xi(x, y, s) \frac{t_n}{(t_n - s)^{1-a}} \, ds - 2\bar{E}, \eta_n^{\frac{1}{2}} \right) \\
&\leq \tau \sum_{n=0}^{L-1} \left(-\frac{1}{f(a)} [t_{n+1} - s]^{a} [t_n - s]^{a} \max_{0 \leq \alpha \leq 1} \|\xi(x, y, s)\| + ||2\bar{E}|| \right) ||\eta_n^{\frac{1}{2}}|| \\
&\leq \frac{\tau}{f(a + 1)} \sum_{n=0}^{L-1} \left(2\tau a \max_{0 \leq \alpha \leq 1} ||\xi(x, y, t)|| + ||\bar{E}|| \right) ||\eta_n^{\frac{1}{2}}|| \\
&\leq C\tau \sum_{n=0}^{L-1} \left((1 + \max_{0 \leq \alpha \leq 1} ||\xi(x, y, t)||^2 + ||\eta_n^{\frac{1}{2}}||^2 \right), \tag{3.14}
\end{align*}

Taking advantages of mean value theorem and Cauchy-Schwarz inequality as well as Young inequality, we have $t_n \leq t_{n+\theta} \leq t_{n+1}$
\begin{align*}
I_2 + I_3 &= -2\tau \sum_{n=0}^{L-1} \left(\frac{\xi^{n+\frac{1}{2}} - \xi^n}{\tau}, \eta_n^{\frac{1}{2}} \right) + 2\tau \sum_{n=0}^{L-1} (E^{n+\frac{1}{2}}, \eta_n^{\frac{1}{2}}) \\
&= \tau \sum_{n=0}^{L-1} \left(||\xi(x, y, t_{n+\theta})||^2 + ||E^{n+\frac{1}{2}}||^2 + 2||\eta_n^{\frac{1}{2}}||^2 \right). \tag{3.15}
\end{align*}

Using Lemma 1, we obtain
\begin{align*}
2\tau a^{n+1} \sum_{n=0}^{L} \sum_{k=0}^{n} a_k^{(a)} \left((\nabla \eta_{n+1}^{\frac{1}{2} - k}, \nabla \eta_n) + (\eta_{n+1}^{\frac{1}{2} - k}, \eta_n) \right) \geq 0. \tag{3.16}
\end{align*}

Substituting (3.14),(3.15),(3.16) in (3.13) and removing the nonnegative terms, we attain
\begin{align*}
||\eta^T||^2 \leq ||\eta^0||^2 + C\tau \sum_{n=0}^{L-1} \left(r^4 + \max_{0 \leq \alpha \leq 1} ||\xi(x, y, t)|| + ||\eta_n^{\frac{1}{2}}||^2 \right) + \tau \sum_{n=0}^{L-1} \left(||\xi(x, y, t_{n+\theta})||^2 + ||E^{n+\frac{1}{2}}||^2 + 2||\eta_n^{\frac{1}{2}}||^2 \right), \tag{3.17}
\end{align*}

that is
\begin{align*}
(1 - C\tau)||\eta^T||^2 \leq C\tau \sum_{n=0}^{L-1} ||\eta_n^T||^2 + C\tau \sum_{n=0}^{L-1} \left(r^4 + \max_{0 \leq \alpha \leq 1} ||\xi(x, y, t)||^2 + ||\xi(x, y, t_{n+\theta})||^2 \right). \tag{3.18}
\end{align*}
Using the Gronwall’s inequality, Lemma 2.2 and triangle inequality, in the case that the time step τ is sufficiently small, there exists a positive constant C such that

$$\|\eta^L\|^2 \leq \exp(C\tau)C\sum_{n=0}^{L-1} \left(\tau^4 + Ch^{2r+2}\|u\|^2_{L^p} + Ch^{2r+2}\|u_t\|^2_{L^p} \right) \leq C(\tau^4 + h^{2r+2})$$

(3.19)

and

$$\|u(t) - u_h^L\|^2 \leq (\|\eta^L\| + \|\zeta^L\|)^2 \leq C(\tau^4 + h^{2r+2})$$

(3.20)

which completes the proof.

4 Description of the WSGI-OSC scheme

It can be observed from the fully discrete scheme (2.13) that we need to handle a two-dimensional partial differential equation for each time level, that is

$$(1 + \frac{1}{2}r^n\beta_0)u_h^{n+1} - \frac{1}{2}r^n\beta_0 \sum_{k=1}^{n+1} \lambda_k(a) (\Delta u_h^{n+1-k} + u_h^{n+1-k})$$

$$- \frac{1}{2}r^n\beta_0 \sum_{k=0}^{n} \lambda_k(a) (\Delta u_h^{n-k} + u_h^{n-k}) + \tau \frac{\mathbf{g}_n + \mathbf{g}_{n-1}}{2} + u_h^n$$

(4.1)

We denote $\alpha_0 = \frac{1}{2}r^n\beta_0$ and $\beta_0 = \frac{1}{2}r^n\beta_0$, then the above equation can be rewritten as

$$(1 + \alpha)u_h^{n+1} - \alpha_0 \Delta u_h^{n+1} = \beta_0 \sum_{k=1}^{n+1} \lambda_k(a) (\Delta u_h^{n+1-k} - u_h^{n+1-k}) + \beta_0 \sum_{k=0}^{n} \lambda_k(a) (\Delta u_h^{n-k} - u_h^{n-k}) + \tau \frac{\mathbf{g}_n + \mathbf{g}_{n-1}}{2} + u_h^n,$$

$$n = 0, \cdots, N - 1.$$ (4.2)

For applying the numerical schemes, firstly, we usually represent u^n_h by the base functions of $M_t(\delta)$, then solve the coefficients of the representation formula. Letting

$$M_t(\delta_x) = \text{span}\{ \Phi_1, \Phi_2, \cdots, \Phi_{M_t-1}, \Phi_{M_t} \},$$

$$M_t(\delta_y) = \text{span}\{ \Psi_1, \Psi_2, \cdots, \Psi_{M_t-1}, \Psi_{M_t} \},$$

then

$$u^n_h(x, y) = \sum_{j=1}^{M_t} \sum_{i=1}^{M_t} \hat{u}^n_{i,j} \Phi_i(x) \Psi_j(y),$$

where $\{\hat{u}^n_{i,j}\}_{i,j=1}^{M_t,M_t}$ are unknown coefficients to be determined. Setting

$$\hat{u} = [\hat{u}^n_{1,1}, \hat{u}^n_{1,2}, \cdots, \hat{u}^n_{1,M_t}, \hat{u}^n_{2,1}, \hat{u}^n_{2,2}, \cdots, \hat{u}^n_{M_t,M_t}]^T,$$

then the equation (4.2) can be written in the following form by Kronecker product

$$\left\{ (1 + \alpha)B^T \otimes B^j + \alpha_0(A^t \otimes B^j + B^t \otimes A^j) \right\} \hat{u}^{n+1} = -\beta_0 \left\{ A^x \otimes B^j + B^x \otimes A^j + B^y \otimes B^j \right\} \left(\sum_{k=1}^{n+1} \lambda_k(a) \hat{u}^{n+1-k} \right)$$

$$+ \sum_{k=0}^{n} \lambda_k(a) \hat{u}^{n-k} + (B^x \otimes B^j) \hat{u}^n + \frac{1}{2}r \frac{\mathbf{g}_n + \mathbf{g}_{n-1}}{2},$$

(4.3)

where

$$A^x = (a_{i,j}^x)_{i,j=1}^{M_t}, a_{i,j}^x = -\Phi_j''(\xi_i^x), B^x = (b_{i,j}^x)_{i,j=1}^{M_t}, b_{i,j}^x = \Phi_j(\xi_i^x).$$
functions at the Gauss point and their second-order derivatives. They are defined as follows:

\[A^r = (a^r_{i,j})_{i,j=1}^{M_x}, a^r_{i,j} = -\Psi_j''(\xi_i^r), \quad B^r = (b^r_{i,j})_{i,j=1}^{M_y}, \quad b^r_{i,j} = \Psi_j'(\xi_i^r), \quad (4.4) \]

and

\[G_1^{r+1} = [g^{n+1}(\xi_1^r, \xi_1^r), g^{n+1}(\xi_1^r, \xi_2^r), \ldots, g^{n+1}(\xi_i^r, \xi_i^r), g^{n+1}(\xi_{M_y}^r, \xi_i^r)]^T, \]
\[G_2^{r+1} = [g^n(\xi_1^r, \xi_1^r), g^n(\xi_1^r, \xi_2^r), \ldots, g^n(\xi_i^r, \xi_i^r), g^n(\xi_{M_y}^r, \xi_i^r)]^T. \]

The matrices \(A^x, B^x, A^r \) and \(B^r \) are \(M_x \times M_y \) having the following structure,

\[
\begin{bmatrix}
 x \times x \\
 x \times x \\
 x \times x \\
 x \times x \\
 \cdot \cdot \cdot \cdot \cdot \cdot \\
 x \times x \\
 x \times x \\
\end{bmatrix}.
\]

We carry out the WSGI-OSC scheme in piecewise Hermite cubic spline space \(M_3(\delta) \), which satisfies zero boundary condition. Detailedly, we choose the basis of cubic Hermite polynomials [30], namely, for \(1 \leq i \leq K - 1 \), it follows that

\[\phi_i(x) = \begin{cases}
\frac{-2(x-x_{i-1})^3 + 3(x-x_{i-1})^2}{n^3}, & x_{i-1} \leq x \leq x_i, \\
\frac{2(x-x_i)^3 + 3(x-x_i)^2}{n^3}, & x_i \leq x \leq x_{i+1}, \\
0, & x < x_{i-1} \text{ or } x > x_{i+1}, \end{cases} \]

and

\[\psi_i(x) = \begin{cases}
\frac{(x-x_{i-1})^2(x-x_i)}{n^2}, & x_{i-1} \leq x \leq x_i, \\
\frac{(x-x_i)^2(x-x_{i+1})}{n^2}, & x_i \leq x \leq x_{i+1}, \\
0, & x < x_{i-1} \text{ or } x > x_{i+1}. \end{cases} \]

Note that functions \(\phi_i(x), \psi_i(x) \) satisfy zero boundary conditions \(\phi_i(0) = \phi_i(1) = \psi_i(0) = \psi_i(1) = 0 \). Renumber the basis functions and let

\[\{ \psi_0, \psi_1, \psi_2, \ldots, \psi_{K-1}, \psi_{K-1}, \psi_K \} = \{ \Phi_1, \Phi_2, \Phi_3, \ldots, \Phi_{2K} \}, \]

then

\[M_3(\delta) = \text{span}\{ \Phi_1, \Phi_2, \Phi_3, \ldots, \Phi_{2K} \}, \quad M_3(\delta) = \text{span}\{ \Phi_1, \Phi_2, \Phi_3, \ldots, \Phi_{2K} \}. \]

In order to recover the coefficient matrix of the equations (4.3), we need to calculate the values of the basis functions at the Gauss point and their second-order derivatives. They are defined as follows:

\[H_1(u_j) = (1 + 2u_j)(1 - u_j)^2, \quad H_2(u_j) = u_j(1 - u_j)^2 h_k, \quad H_3(u_j) = u_j^2(3 - 2u_j), \quad H_4(u_j) = u_j^2(u_j - 1)h_k, \]
\[I_1(u_j) = (12u_j^3 - 6)/h_k^2, \quad I_2(u_j) = (6u_j - 4)/h_k, \quad I_3(u_j) = (6 - 12u_j)/h_k^2, \quad I_4(u_j) = (6u_j - 2)/h_k, \]

(4.10)

where \(u_1 = (3 - \sqrt{3})/6, \ u_2 = (3 + \sqrt{3})/6, \ H_i \) and \(I_i \) denotes the formulas of Hermite polynomials and their second-order derivatives at Gauss points, respectively. Based on the above descriptions of basis functions, we give an example of matrix \(A^x \) and \(B^x \) in the case of \(N_x = N_y = 5 \) and \(h_k = 1/N_x \). We have

\[A^x = \begin{bmatrix}
I_2(u_1) & I_3(u_1) & I_4(u_1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
I_2(u_2) & I_3(u_2) & I_4(u_2) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I_1(u_1) & I_2(u_1) & I_3(u_1) & I_4(u_1) & 0 & 0 & 0 & 0 & 0 \\
0 & I_1(u_2) & I_2(u_2) & I_3(u_2) & I_4(u_2) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I_1(u_1) & I_2(u_1) & I_3(u_1) & I_4(u_1) & 0 & 0 & 0 \\
0 & 0 & 0 & I_1(u_2) & I_2(u_2) & I_3(u_2) & I_4(u_2) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_1(u_1) & I_2(u_1) & I_3(u_1) & I_4(u_1) & 0 & 0 \\
0 & 0 & 0 & 0 & I_1(u_2) & I_2(u_2) & I_3(u_2) & I_4(u_2) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & I_1(u_1) & I_2(u_1) & I_3(u_1) & I_4(u_1) & 0 \\
0 & 0 & 0 & 0 & 0 & I_1(u_2) & I_2(u_2) & I_3(u_2) & I_4(u_2) & 0 \\
\end{bmatrix} \]

(4.11)
the corresponding convergence order defined by
\[\frac{\log(e_m/e_{m+1})}{\log(h_m/h_{m+1})} \]
where \(h_m = 1/K \) is the time step size and \(e_m \) is the norm of the corresponding error.

Example 1 We consider the following one-dimensional time-fractional diffusion-wave equation
\[
\frac{\partial^\gamma u(x, t)}{\partial t^\gamma} = \frac{\partial^2 u(x, t)}{\partial x^2} - f(x, t), \quad 0 < x < 1, \quad 0 < t \leq 1,
\]
\[
\begin{align*}
\gamma &= \frac{1}{4}, & f(x, t) &= \frac{1}{\Gamma(\gamma+1)} t^{\gamma} x^2 (1-x)^2 e^x - 2 t^3 e^x (1+2x+4x^2).
\end{align*}
\]
where \(f(x, t) = \frac{1}{\Gamma(\gamma+1)} t^{\gamma} x^2 (1-x)^2 e^x - 2 t^3 e^x (1-4x+4x^3) \). The analytical solution of this equation is \(u(x, t) = t^\gamma x^2 (1-x)^2 e^x \).

From the theoretical analysis, the numerical convergence order of WSGI-OSC (4.2) is expected to be \(O(t^2 + h^4) \) when \(r = 3 \). In order to check the second order accuracy in time direction, we select \(\tau = h \) so that the error caused by the spatial approximation can be negligible. Table 1 lists \(L_\infty \) and \(L_2 \) errors at \(T = 1 \) and the corresponding convergence order defined by

It can be seen from the tensor product calculation that the WSGI-OSC scheme requires the solution of an almost block diagonal linear system at each time level, which can be solved efficiently by the software package COLROW [24].

5 Numerical experiments

In this section, four examples are given to demonstrate our theoretical analysis. In our implementations, we adopt the space of piecewise Hermite bicubics \((r = 3)\) on uniform partitions of \(I \) in both \(x \) and \(y \) directions with \(N_x = N_y = K \). The forcing term \(f(x, y, t) \) is approximated by the piecewise Hermite interpolant projection in the Gauss points. To check the accuracy of WSGI-OSC scheme, we present \(\| u - u_h \|_\infty \) and \(\| u - u_h \|_L^2 \) errors and the corresponding convergence order defined by

\[
\text{Convergence order} = \frac{\log(e_m/e_{m+1})}{\log(h_m/h_{m+1})},
\]
where \(h_m = 1/K \) is the time step size and \(e_m \) is the norm of the corresponding error.

Example 1 We consider the following one-dimensional time-fractional diffusion-wave equation
\[
\frac{\partial^\gamma u(x, t)}{\partial t^\gamma} = \frac{\partial^2 u(x, t)}{\partial x^2} - f(x, t), \quad 0 < x < 1, \quad 0 < t \leq 1,
\]
where
\[
\begin{align*}
\gamma &= \frac{1}{4}, & f(x, t) &= \frac{1}{\Gamma(\gamma+1)} t^{\gamma} x^2 (1-x)^2 e^x - 2 t^3 e^x (1-4x+4x^3).
\end{align*}
\]
where \(f(x, t) = \frac{1}{\Gamma(\gamma+1)} t^{\gamma} x^2 (1-x)^2 e^x - 2 t^3 e^x (1-4x+4x^3) \). The analytical solution of this equation is \(u(x, t) = t^\gamma x^2 (1-x)^2 e^x \).

From the theoretical analysis, the numerical convergence order of WSGI-OSC (4.2) is expected to be \(O(t^2 + h^4) \) when \(r = 3 \). In order to check the second order accuracy in time direction, we select \(\tau = h \) so that the error caused by the spatial approximation can be negligible. Table 1 lists \(\| u - u_h \|_\infty \) and \(\| u - u_h \|_L^2 \) errors at \(T = 1 \) and the corresponding convergence orders of WSGI-OSC scheme for \(\gamma \in (1, 2) \). We observe that our scheme generates the temporal accuracy with the order 2. To test the spatial approximation accuracy, Table 2 shows that our scheme has the accuracy of 4 in spatial direction, where the temporal step size \(\tau = h^2 \) is fixed. Numerical solution and global error for \(\gamma = 1.3, \quad h = 1/32, \quad \tau = 1/32 \) are shown in Figure 1.

Example 2 Consider the following one-dimensional fractional diffusion-wave equation
\[
\frac{\partial^\gamma u(x, t)}{\partial t^\gamma} = \frac{\partial^2 u(x, t)}{\partial x^2} - f(x, t), \quad 0 < x < 1, \quad 0 < t \leq 1,
\]
where
\[
\begin{align*}
\gamma &= \frac{1}{4}, & f(x, t) &= \frac{1}{\Gamma(\gamma+1)} t^{\gamma} x^2 (1-x)^2 e^x - 2 t^3 e^x (1-4x+4x^3).
\end{align*}
\]
Table 1: The L_{∞}, L_2 errors and temporal convergence orders with $\tau = h$ for Example 1.

γ	τ	L_{∞} error	Convergence order	L_2 error	Convergence order		
1.1	$\frac{1}{10}$	7.0727 x 10^{-5}	4.4681 x 10^{-5}	1.1979	1.9747	1.2748 x 10^{-6}	2.0022
	$\frac{1}{20}$	1.7932 x 10^{-5}	4.1012 x 10^{-5}	1.993	1.9937	2.748 x 10^{-6}	2.0022
	$\frac{1}{50}$	4.5623 x 10^{-6}	1.993	2.748 x 10^{-6}	2.0022		
1.3	$\frac{1}{10}$	1.1483 x 10^{-6}	6.8758 x 10^{-7}	1.993	1.9937	2.748 x 10^{-6}	2.0022
	$\frac{1}{20}$	2.6081 x 10^{-6}	1.993	2.748 x 10^{-6}	2.0022		
	$\frac{1}{50}$	6.6648 x 10^{-7}	1.993	2.748 x 10^{-6}	2.0022		
1.5	$\frac{1}{10}$	4.1657 x 10^{-6}	2.7911 x 10^{-6}	1.993	1.9937	2.748 x 10^{-6}	2.0022
	$\frac{1}{20}$	1.0633 x 10^{-6}	6.8593 x 10^{-7}	1.993	1.9937	2.748 x 10^{-6}	2.0022
	$\frac{1}{50}$	2.6736 x 10^{-7}	1.993	2.748 x 10^{-6}	2.0022		
1.7	$\frac{1}{10}$	6.7115 x 10^{-6}	4.2405 x 10^{-6}	1.993	1.9937	2.748 x 10^{-6}	2.0022
	$\frac{1}{20}$	5.3422 x 10^{-6}	3.6265 x 10^{-6}	1.993	1.9937	2.748 x 10^{-6}	2.0022
	$\frac{1}{50}$	3.4419 x 10^{-6}	2.2160 x 10^{-6}	1.993	1.9937	2.748 x 10^{-6}	2.0022
1.9	$\frac{1}{10}$	8.6292 x 10^{-6}	5.5175 x 10^{-6}	1.993	1.9937	2.748 x 10^{-6}	2.0022
	$\frac{1}{20}$	5.7600 x 10^{-6}	3.9339 x 10^{-6}	1.993	1.9937	2.748 x 10^{-6}	2.0022
	$\frac{1}{50}$	3.7391 x 10^{-6}	2.4112 x 10^{-6}	1.993	1.9937	2.748 x 10^{-6}	2.0022
1.95	$\frac{1}{10}$	9.3633 x 10^{-6}	5.9996 x 10^{-6}	1.993	1.9937	2.748 x 10^{-6}	2.0022
	$\frac{1}{20}$	5.6941 x 10^{-6}	3.8862 x 10^{-6}	1.993	1.9937	2.748 x 10^{-6}	2.0022
	$\frac{1}{50}$	3.6917 x 10^{-6}	2.3812 x 10^{-6}	1.993	1.9937	2.748 x 10^{-6}	2.0022

Figure 1: Numerical solution (a) and global error (b) for Example 1 with $\gamma = 1.3$, $h = 1/32$, $\tau = 1/32$.
The results in Tables 3 and 4 demonstrate the expected convergence rates of 2 order in time and 4 order in space. To check the convergence order in space, the time step shown in Figure 2.

In order to test the temporal accuracy of the proposed method, we choose \(\tau = h^2 \) to avoid contamination of the spatial error. The maximum \(L_{\infty} \), \(L_2 \) errors and temporal convergence orders are shown in Table 3. To check the convergence order in space, the time step \(\tau \) and space step \(h \) are chosen such that \(\tau = h^2 \), and \(\gamma = 1.1, 1.3, 1.5, 1.7, 1.9, 1.95 \). Table 4 presents the maximum \(L_{\infty}, L_2 \) errors and spatial convergence orders. The results in Tables 3 and 4 demonstrate the expected convergence rates of 2 order in time and 4 order in space simultaneously. Numerical solution and global error at \(T = 1 \) with \(\gamma = 1.5, h = 1/32, \tau = 1/32 \) are shown in Figure 2.

Example 3 Consider the following two-dimensional fractional diffusion-wave equation

\[
{}^\gamma D_t^\gamma u(x, y, t) - \Delta u(x, y, t) + u(x, y, t) = f(x, y, t),
\]

\[
u(x, y, 0) = 0, \quad \frac{\partial u(x, y, 0)}{\partial t} = 0, \quad (x, y) \in \Omega,
\]

\[
u(x, y, t) = 0, \quad (x, y, t) \in \partial \Omega \times (0, T],
\]

where \(f(x, t) = \left[\frac{2}{(\pi t)^2} \right] \sin \pi x \). The analytical solution of this equation is \(u(x, t) = (t^2 - t) \sin \pi x \).

Table 2: The \(L_{\infty}, L_2 \) errors and spatial convergence orders with \(\tau = h^2 \) for Example 1.

\(\gamma \)	\(h \)	\(L_{\infty} \) error	Convergence order	\(L_2 \) error	Convergence order
1.1	\(\tau \)	2.4371 \times 10^{-6}	1.7740 \times 10^{-6}	4.0329	
	\(\frac{1}{10} \)	1.5377 \times 10^{-7}	3.9863	1.0837 \times 10^{-7}	4.0172
	\(\frac{1}{10} \)	9.6290 \times 10^{-9}	3.9972	6.6928 \times 10^{-9}	4.0088
	\(\frac{1}{100} \)	6.0225 \times 10^{-10}	3.9989	4.1576 \times 10^{-10}	4.0008
1.3	\(\tau \)	3.8377 \times 10^{-6}	2.6750 \times 10^{-6}	4.0338	
	\(\frac{1}{10} \)	2.4364 \times 10^{-7}	3.9774	1.6332 \times 10^{-7}	4.0174
	\(\frac{1}{10} \)	1.5241 \times 10^{-8}	3.9987	1.0085 \times 10^{-8}	4.0089
	\(\frac{1}{100} \)	9.5308 \times 10^{-10}	3.9992	6.2644 \times 10^{-10}	4.0009
1.5	\(\tau \)	4.7527 \times 10^{-6}	3.2535 \times 10^{-6}	4.0347	
	\(\frac{1}{10} \)	3.0159 \times 10^{-7}	3.9781	1.9851 \times 10^{-7}	4.0177
	\(\frac{1}{10} \)	1.8863 \times 10^{-8}	3.9990	1.2256 \times 10^{-8}	4.0089
	\(\frac{1}{100} \)	1.1798 \times 10^{-9}	3.9990	7.6129 \times 10^{-10}	4.0090
1.7	\(\tau \)	5.1530 \times 10^{-6}	3.4857 \times 10^{-6}	4.0354	
	\(\frac{1}{10} \)	3.2579 \times 10^{-7}	3.9834	2.1258 \times 10^{-7}	4.0178
	\(\frac{1}{10} \)	2.0382 \times 10^{-8}	3.9986	1.3123 \times 10^{-8}	4.0090
	\(\frac{1}{100} \)	1.2754 \times 10^{-9}	3.9982	8.1509 \times 10^{-10}	4.0091
1.9	\(\tau \)	4.6730 \times 10^{-6}	3.0735 \times 10^{-6}	4.0361	
	\(\frac{1}{10} \)	2.9311 \times 10^{-7}	3.9948	1.8735 \times 10^{-7}	4.0181
	\(\frac{1}{10} \)	1.8412 \times 10^{-8}	3.9927	1.1563 \times 10^{-8}	4.0090
	\(\frac{1}{100} \)	1.1509 \times 10^{-9}	3.9999	7.1819 \times 10^{-10}	4.0090
1.95	\(\tau \)	4.3316 \times 10^{-6}	2.8280 \times 10^{-6}	4.0364	
	\(\frac{1}{10} \)	2.7151 \times 10^{-7}	3.9958	1.7235 \times 10^{-7}	4.0182
	\(\frac{1}{10} \)	1.7062 \times 10^{-8}	3.9922	1.0637 \times 10^{-8}	4.0091
	\(\frac{1}{100} \)	1.0665 \times 10^{-9}	3.9999	6.6066 \times 10^{-10}	4.0091
Table 3: The L_{∞}, L_2 errors and temporal convergence orders with $\tau = h$ for Example 2.

γ	τ	L_{∞} error	Convergence order	L_2 error	Convergence order
1.1	$\frac{1}{10}$	2.7779x10^{-5}	1.8686x10^{-5}	1.6912x10^{-5}	1.0597x10^{-5}
	$\frac{1}{20}$	6.9405x10^{-6}	2.0099	4.5452x10^{-6}	2.0395
	$\frac{1}{40}$	1.7225x10^{-6}	2.0105	1.1135x10^{-6}	2.0292
	$\frac{1}{80}$	4.2704x10^{-7}	2.0121	2.7427x10^{-7}	2.0215
1.3	$\frac{1}{10}$	6.8399x10^{-5}	4.6042x10^{-5}	1.6912x10^{-5}	1.0597x10^{-5}
	$\frac{1}{20}$	1.6912x10^{-5}	2.0159	1.1079x10^{-5}	2.0551
	$\frac{1}{40}$	4.1818x10^{-6}	2.0158	2.7032x10^{-6}	2.0352
	$\frac{1}{80}$	1.0385x10^{-6}	2.0134	6.6503x10^{-7}	2.0232
1.5	$\frac{1}{10}$	1.0251x10^{-6}	6.9519x10^{-5}	1.6912x10^{-5}	1.0597x10^{-5}
	$\frac{1}{20}$	2.5114x10^{-5}	2.0292	1.6555x10^{-5}	2.0701
	$\frac{1}{40}$	6.2025x10^{-6}	2.0176	4.0327x10^{-6}	2.0375
	$\frac{1}{80}$	1.5384x10^{-6}	2.0114	9.9335x10^{-7}	2.0214
1.7	$\frac{1}{10}$	1.4424x10^{-6}	9.9816x10^{-5}	1.6912x10^{-5}	1.0597x10^{-5}
	$\frac{1}{20}$	3.5642x10^{-5}	2.0168	2.4001x10^{-5}	2.0562
	$\frac{1}{40}$	8.8717x10^{-6}	2.0063	5.8868x10^{-6}	2.0275
	$\frac{1}{80}$	2.2116x10^{-6}	2.0041	1.4572x10^{-6}	2.0143
1.9	$\frac{1}{10}$	1.9061x10^{-6}	1.2932x10^{-4}	1.6912x10^{-5}	1.0597x10^{-5}
	$\frac{1}{20}$	4.7290x10^{-5}	2.0110	3.1561x10^{-5}	2.0347
	$\frac{1}{40}$	1.1810x10^{-5}	2.0015	7.7937x10^{-6}	2.0178
	$\frac{1}{80}$	2.9519x10^{-6}	2.0003	1.9367x10^{-6}	2.0087
1.95	$\frac{1}{10}$	2.0110x10^{-6}	1.3455x10^{-4}	1.6912x10^{-5}	1.0597x10^{-5}
	$\frac{1}{20}$	4.9930x10^{-5}	2.0099	3.2930x10^{-5}	2.0306
	$\frac{1}{40}$	1.2482x10^{-5}	2.0001	8.1369x10^{-6}	2.0169
	$\frac{1}{80}$	3.1218x10^{-6}	1.9994	2.0222x10^{-6}	2.0085

Figure 2: Numerical solution (a) and global error (b) for Example 2 with $\gamma = 1.5$ at $T = 1$ ($h = 1/32$, $\tau = 1/32$).
Example 4 Consider the following two-dimensional fractional diffusion-wave equation

$$\frac{\partial}{\partial t^\gamma} u(x, y, t) - \Delta u(x, y, t) + u(x, y, t) = f(x, y, t),$$

$$u(x, y, 0) = 0, \quad \frac{\partial u(x, y, 0)}{\partial t} = 0, (x, y) \in \Omega,$$

$$u(x, y, t) = 0, (x, y, t) \in \partial \Omega \times (0, T)$$

where $\Omega = [0, 1] \times [0, 1], T = 1, f(x, y, t) = \left[\frac{\Gamma(1+\gamma)}{\Gamma(1+\gamma)} \right] t^{2+\gamma} \sin \pi x \sin \pi y$. The exact solution of the equation is $u(x, y, t) = t^{2+\gamma} \sin \pi x \sin \pi y$.

Tables 7 and 8 display L_∞ and L_2 errors and the corresponding convergence orders in time and space for some $\gamma \in (1, 2)$. Once again, the expected convergence rates with second-order accuracy in time direction.
Table 5: The L_{∞}, L_2 errors and temporal convergence orders for Example 3.

γ	N	L_{∞} error	Convergence order	L_2 error	Convergence order
1.1	10	1.6611$\times10^{-4}$		8.3486$\times10^{-5}$	
	15	7.5461$\times10^{-5}$	1.9461	3.7876$\times10^{-5}$	1.9493
	20	4.2909$\times10^{-5}$	1.9624	2.1509$\times10^{-5}$	1.9669
	25	2.7589$\times10^{-5}$	1.9792	1.3841$\times10^{-5}$	1.9754
1.3	10	5.1729$\times10^{-4}$		2.6164$\times10^{-4}$	
	15	2.3249$\times10^{-4}$	1.9724	1.1769$\times10^{-4}$	1.9704
	20	1.3148$\times10^{-4}$	1.9813	6.6585$\times10^{-5}$	1.9799
	25	8.4565$\times10^{-5}$	1.9779	4.2760$\times10^{-5}$	1.9847
1.5	10	7.7899$\times10^{-4}$		3.9475$\times10^{-4}$	
	15	3.4829$\times10^{-4}$	1.9853	1.7651$\times10^{-4}$	1.9850
	20	1.9648$\times10^{-4}$	1.9899	9.9627$\times10^{-5}$	1.9882
	25	1.2607$\times10^{-4}$	1.9886	6.3896$\times10^{-5}$	1.9905
1.7	10	9.8958$\times10^{-4}$		5.0659$\times10^{-4}$	
	15	4.3990$\times10^{-4}$	1.9995	2.2433$\times10^{-4}$	2.0090
	20	2.4748$\times10^{-4}$	1.9995	1.2609$\times10^{-4}$	2.0028
	25	1.5841$\times10^{-4}$	1.9994	8.0685$\times10^{-5}$	2.0006
1.9	10	1.1985$\times10^{-3}$		6.2808$\times10^{-4}$	
	15	5.3173$\times10^{-4}$	2.0044	2.7856$\times10^{-4}$	2.0052
	20	2.9891$\times10^{-4}$	2.0022	1.5657$\times10^{-4}$	2.0026
	25	1.9123$\times10^{-4}$	2.0015	1.0018$\times10^{-4}$	2.0014

Figure 3: Numerical solution (a) and global error (b) for Example 3 with $\gamma = 1.7$ at $T = 1$ ($h = 1/32, \tau = 1/32$).

and fourth-order accuracy in spatial direction can be observed from two tables. Numerical solution and global error at $T = 1$ with $\gamma = 1.9, h = 1/32, \tau = 1/32$ are displayed in Figure 4.
Table 6: The L_∞, L_2 errors and spatial convergence orders for Example 3.

γ	N	L_∞ error	Convergence order	L_2 error	Convergence order
1.1	10	1.7277×10^{-6}		5.8164×10^{-7}	
	15	3.7129×10^{-7}	3.7921	1.1583×10^{-7}	3.9799
	20	1.2237×10^{-7}	3.8582	3.6753×10^{-8}	3.9902
	25	5.1343×10^{-8}	3.8922	1.5074×10^{-8}	3.9942
1.3	10	4.5383×10^{-6}		2.0806×10^{-6}	
	15	8.9315×10^{-7}	4.0091	4.1188×10^{-7}	3.9946
	20	2.8185×10^{-7}	4.0092	1.3042×10^{-7}	3.9974
	25	1.1523×10^{-7}	4.0083	5.3439×10^{-8}	3.9984
1.5	10	7.1532×10^{-6}		3.3974×10^{-6}	
	15	1.4118×10^{-6}	4.0021	6.7176×10^{-7}	3.9976
	20	4.4624×10^{-7}	4.0036	2.1262×10^{-7}	3.9988
	25	1.8263×10^{-7}	4.0037	8.7104×10^{-8}	3.9993
1.7	10	9.2188×10^{-6}		4.4527×10^{-6}	
	15	1.8187×10^{-6}	4.0031	8.7956×10^{-7}	4.0000
	20	5.7483×10^{-7}	4.0038	2.7830×10^{-7}	3.9999
	25	2.3526×10^{-7}	4.0036	1.1399×10^{-7}	3.9999
1.9	10	1.1444×10^{-5}		5.7230×10^{-6}	
	15	2.2505×10^{-6}	4.0110	1.1299×10^{-6}	4.0011
	20	7.1020×10^{-7}	4.0091	3.5746×10^{-7}	4.0005
	25	2.9046×10^{-7}	4.0068	1.4641×10^{-7}	4.0003

Figure 4: Numerical solution (a) and global error (b) for Example 4 with $\gamma = 1.9$ at $T = 1$ ($h = 1/32$, $\tau = 1/32$).
Table 7: The L_∞, L_2 errors and temporal convergence orders for Example 4.

γ	N	L_∞ error	Convergence order	L_2 error	Convergence order
1.1	10	8.8381×10^{-4}		4.4449×10^{-4}	
	15	3.9978×10^{-4}	1.9566	2.0073×10^{-4}	1.9607
	20	2.2738×10^{-4}	1.9615	1.1385×10^{-4}	1.9711
	25	1.4625×10^{-4}	1.9775	7.3238×10^{-5}	1.9771
1.3	10	3.1514×10^{-3}		1.5847×10^{-3}	
	15	1.4225×10^{-3}	1.9617	7.1426×10^{-4}	1.9654
	20	8.0814×10^{-4}	1.9656	4.0464×10^{-4}	1.9752
	25	5.1939×10^{-4}	1.9811	2.6009×10^{-4}	1.9807
1.5	10	5.3058×10^{-3}		2.6680×10^{-3}	
	15	2.3861×10^{-3}	1.9709	1.1981×10^{-3}	1.9745
	20	1.3534×10^{-3}	1.9711	6.7766×10^{-4}	1.9808
	25	8.6906×10^{-4}	1.9851	4.3519×10^{-4}	1.9847
1.7	10	7.2062×10^{-3}		3.6236×10^{-3}	
	15	3.2347×10^{-3}	1.9755	1.6242×10^{-3}	1.9792
	20	1.8321×10^{-3}	1.9760	9.1737×10^{-4}	1.9857
	25	1.1754×10^{-3}	1.9893	5.8858×10^{-4}	1.9889
1.9	10	8.0346×10^{-3}		4.0402×10^{-3}	
	15	3.6198×10^{-3}	1.9665	1.8175×10^{-3}	1.9701
	20	2.0516×10^{-3}	1.9736	1.0273×10^{-3}	1.9833
	25	1.3162×10^{-3}	1.9893	6.5910×10^{-4}	1.9888
Table 8: The L_{∞}, L_2 errors and spatial convergence orders for Example 4.

γ	N	L_{∞} error	Convergence order	L_2 error	Convergence order
1.1	10	1.2725×10^{-5}		6.5169×10^{-5}	
	15	2.5700×10^{-6}	3.9453	1.2858×10^{-5}	4.0029
	20	8.0847×10^{-7}	4.0202	4.0665×10^{-5}	4.0014
	25	3.3300×10^{-7}	3.9751	1.6653×10^{-5}	4.0009
1.3	10	3.6079×10^{-5}		1.8230×10^{-5}	
	15	7.1968×10^{-6}	3.9758	3.6064×10^{-6}	3.9964
	20	2.2773×10^{-6}	3.9997	1.1417×10^{-6}	3.9982
	25	9.3472×10^{-7}	3.9907	4.6773×10^{-7}	3.9989
1.5	10	5.7773×10^{-5}		2.9133×10^{-5}	
	15	1.1491×10^{-5}	3.9829	5.7620×10^{-6}	3.9968
	20	3.6402×10^{-6}	3.9959	1.8240×10^{-6}	3.9984
	25	1.4930×10^{-6}	3.9942	7.4725×10^{-7}	3.9991
1.7	10	7.6488×10^{-5}		3.8541×10^{-5}	
	15	1.5190×10^{-5}	3.9868	7.6189×10^{-6}	3.9981
	20	4.8133×10^{-6}	3.9948	2.4113×10^{-6}	3.9991
	25	1.9734×10^{-6}	3.9959	9.8780×10^{-7}	3.9994
1.9	10	8.4694×10^{-5}		4.2666×10^{-5}	
	15	1.6803×10^{-5}	3.9892	8.4290×10^{-6}	3.9997
	20	5.3240×10^{-6}	3.9951	2.6670×10^{-6}	3.9999
	25	2.1823×10^{-6}	3.9968	1.0924×10^{-6}	4.0000
6 Conclusion

In this paper, we have constructed a Crank-Nicolson WSGI-OSC method for the two-dimensional time-fractional diffusion-wave equation. The original fractional diffusion-wave equation is transformed into its equivalent partial integro-differential equations, then Crank-Nicolson orthogonal spline collocation method with WSGI approximation is developed. The proposed method holds a higher convergence order than the convergence order $O(\tau^{3-\alpha})$ of general L_1 approximation. The stability and convergence analysis are derived. Some numerical examples are also given to confirm our theoretical analysis.

Acknowledgement: The authors would like to thank the referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper. This work was supported by the National Natural Science Foundation of China (Grant No.11601076) and the Ph.D. Research Start-up Fund Project of East China University of Technology (Grant No.DHBK2019213).

References

[1] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[2] Y.D. Zhang, Y.M. Zhao, F.L. Wang, and Y.F. Tang, High-accuracy finite element method for 2D time fractional diffusion-wave equation on anisotropic meshes, Int. J. Comput. Math. 95 (2018), no. 1, 218–230. DOI: 10.1080/00207160.2017.1401708.
[3] L.M. Li, D. Xu, and M. Luo, Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation, J. Comput. Phys. 255 (2013), 471–485. DOI: 10.1016/j.jcp.2013.08.031.
[4] Z.Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56 (2006), no. 2, 193–209. DOI: 10.1016/j.apnum.2005.03.003.
[5] J.F. Huang, Y.F. Tang, L. Vázquez, and J.Y. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algorithms 64 (2013), no. 4, 707–720. DOI: 10.1007/s11075-012-9689-0.
[6] Y.N. Zhang, Z.Z. Sun, and X. Zhao, Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM J. Numer. Anal. 50 (2012), no. 3, 1535–1555. DOI: 10.1137/110840959.
[7] M. Aslefallah and E. Shivanian, An efficient meshless method based on RBFs for the time fractional diffusion-wave equation, Afr. Mat. 29 (2018), no. 7-8, 1203–1214. DOI: 10.1007/s13370-018-0616-y.
[8] M. Dehghan, M. Abbaszadeh, and A. Mohammadi, Analysis of a meshless method for the time fractional diffusion-wave equation, Numer. Algorithms 73 (2016), no. 2, 445–476. DOI: 10.1007/s11075-016-0103-1.
[9] M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, and C. Cattani, Wavelets method for the time fractional diffusion equation, Phys. Lett. A 379 (2015), no. 3, 71–76. DOI: 10.1016/j.physleta.2014.11.012.
[10] G. Fairweather, X.H. Yang, D. Xu, and H.X. Zhang, An ADI Crank-Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation, J. Sci. Comput. 65 (2015), no. 3, 1217–1239. DOI: 10.1007/s10915-015-0003-x.
[11] M. Yaseen, M. Abbas, T. Nazir, and D. Baleanu, A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation, Adv. Differ. Equ. 2017 (2017), 274. DOI: 10.1186/s13662-017-1330-z.
[12] A. Esen, O. Tasbozan, Y. Ucar, and N.M. Yagmurlu, A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations, Tbilisi Math. J. 8 (2015), no. 2, 181–193. DOI: 10.1515/tmj-2015-0020.
[13] W.Y. Tian, H. Zhou, and W.H. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput. 84 (2015), no. 294, 1298–1314. DOI: 10.1090/S0025-5718-2015-02917-2.
[14] Y. Liu, M. Zhang, H. Li, and J.C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl. 73 (2017), no. 6, 1298–1314. DOI: 10.1016/j.camwa.2016.08.015.
[15] H. Chen, S. Lü, and W. Chen, A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients, J. Comput. Appl. Math. 330 (2018), 380–397. DOI: 10.1016/j.cam.2017.09.011.
[16] X. Yang, H. Zhang, and D. Xu, WSGD-OSC Scheme for two-dimensional distributed order fractional reaction-diffusion equation, J. Sci. Comput. 76 (2018), no. 3, 1502–1520. DOI: 10.1007/s10915-018-0672-3.
[17] Z. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys. 277 (2014), 1–15. DOI: 10.1016/j.jcp.2014.08.012.
[18] Y. Cao, B.L. Yin, Y. Liu, and H. Li, Crank-Nicolson WSGI difference scheme with finite element method for multi-dimensional time-fractional wave problem, Comput. Appl. Math. 37 (2018), no. 4, 5126–5145. DOI: 10.1007/s40314-018-0626-2.
[19] B. Bialecki and G. Fairweather, Orthogonal spline collocation methods for partial differential equations, J. Comput. Appl. Math. 128 (2001), no. 1-2, 55–82. DOI: 10.1016/S0377-0427(00)00509-4.
[20] C.E. Greenwell-Yanik and G. Fairweather, *Analyses of spline collocation methods for parabolic and hyperbolic problems in two space variables*, SIAM J. Numer. Anal. **23** (1986), no. 2, 282–296, DOI: 10.1137/0723020.

[21] C. Li, T.G. Zhao, W.H. Deng, and Y.J. Wu, *Orthogonal spline collocation methods for the subdiffusion equation*, J. Comput. Appl. Math. **255** (2014), 517–528, DOI: 10.1016/j.cam.2013.05.022.

[22] L. Qiao and D. Xu, *Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation*, Int. J. Comput. Math. **95** (2018), no. 8, 1478–1493, DOI: 10.1080/00207160.2017.1324150.

[23] H.X. Zhang, X.H. Yang, and D. Xu, *A high-order numerical method for solving the 2D fourth-order reaction-diffusion equation*, Numer. Algorithms **80** (2019), no. 3, 849–877, DOI: 10.1007/s11075-018-0509-z.

[24] G. Fairweather and I. Gladwell, *Algorithms for almost block diagonal linear systems*, SIAM Rev. **46** (2004), no. 1, 49–58, DOI: 10.1137/S003614450240506X.

[25] A.K. Pani, G. Fairweather, and R.I. Fernandes, *ADI orthogonal spline collocation methods for parabolic partial integro-differential equations*, IMA J. Numer. Anal. **30** (2010), no. 1, 248–276, DOI: 10.1093/imanum/drp024.

[26] C.E. Greenwell-Yanik and G. Fairweather, *Analyses of spline collocation methods for parabolic and hyperbolic problems in two space variables*, SIAM J. Numer. Anal. **23** (1996), no. 2, 282–296, DOI: 10.1137/0723020.

[27] M.P. Robinson and G. Fairweather, *Orthogonal spline collocation methods for Schrödinger-type equations in one space variable*, Numer. Math. **68** (1994), no. 3, 355–376, DOI: 10.1007/s002110050067.

[28] B. Li, G. Fairweather, and B. Bialecki, *Discrete-time orthogonal spline collocation methods for Schrödinger equations in two space variables*, SIAM J. Numer. Anal. **35** (1998), no. 2, 453–477, DOI: 10.1137/S0036142996302396.

[29] A. Quarteroni and A. Valli, *Numerical Approximation of Partial Differential Equations*, Springer, Berlin, 1997.

[30] S. Arora, I. Kaur, H. Kumar, and V.K. Kukreja, *A robust technique of cubic hermite collocation for solution of two phase nonlinear model*, Journal of King Saud University – Engineering Sciences **29** (2017), no. 2, 159–165, DOI: 10.1016/j.jsues.2015.06.003.