Crystal structures of trans-dichloridotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN³]iron(II), trans-dibromidotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN³]iron(II) and trans-dibromidotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN³]iron(II) diethyl ether disolvate

Roger Mafua, Titus Jenny, Gael Labat, Antonia Neels and Helen Stoeckli-Evans

*Department of Chemistry, University of Fribourg, Av. de Perolles, CH-1700 Fribourg, Switzerland, †Beneficii Crystallography Service, University of Neuchâtel, Av. de Bellvaux 51, CH-2000 Neuchâtel, Switzerland, and §Institute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. *Correspondence e-mail: titus.jenny@unifr.ch, helen.stoeckli-evans@unine.ch

The title compounds, [FeCl₂(C₁₅H₁₄N₂)₄], (I), [FeBr₂(C₁₅H₁₂N₂)₄], (II), and [FeBr₂(C₁₅H₁₂N₂)₄]-2C₂H₅O, (IIb), respectively, all have triclinic symmetry, with (I) and (II) being isotypic. The Fe⁺⁺ atoms in each of the structures are located on an inversion center. They have octahedral FeX₄ (X = Cl and Br, respectively) coordination spheres with the Fe⁺⁺ atom coordinated by two halide ions in a trans arrangement and by the tertiary N atom of four arylimidazole ligands [1-(2,6-diisopropylphenyl)-1H-imidazole] in the equatorial plane. In the two independent ligands, the benzene and imidazole rings are almost normal to one another, with dihedral angles of 88.19 (15) and 79.26 (14)° in (I), 87.0 (3) and 79.2 (3)° in (II), and 84.71 (11) and 80.58 (13)° in (IIb). The imidazole rings of the two independent ligand molecules are inclined to one another by 70.04 (15), 69.3 (3) and 61.55 (12)°, respectively, while the benzene rings are inclined to one another by 82.83 (13), 83.0 (2) and 88.16 (12)°, respectively. The various dihedral angles involving (IIb) differ slightly from those in (I) and (II), probably due to the close proximity of the diethyl ether solvent molecule. There are a number of C—H···halide hydrogen bonds in each molecule involving the CH groups of the imidazole units. In the structures of compounds (I) and (II), molecules are linked via pairs of C—H···halogen hydrogen bonds, forming chains along the a axis that enclose R₂(12) ring motifs. The chains are linked by C—H···π interactions, forming sheets parallel to (001). In the structure of compound (IIb), molecules are linked via pairs of C—H···halogen hydrogen bonds, forming chains along the b axis, and the diethyl ether solvent molecules are attached to the chains via C—H···O hydrogen bonds. The chains are linked by C—H···π interactions, forming sheets parallel to (001). In (I) and (II), the methyl groups of an isopropyl group are disordered over two positions [occupancy ratio = 0.727 (13):0.273 (13) and 0.5:0.5, respectively]. In (IIb), one of the ethyl groups of the diethyl ether solvent molecule is disordered over two positions (occupancy ratio = 0.5:0.5).

1. Chemical context

The use of organometallic complexes as catalysts is an important development in the field of material chemistry. However, despite this, only a very few of them contain iron(II), except the tridentate diimine pyridine complex (Small et al., 1998; Small & Brookhart, 1998; Britovsek et al., 1998) used in olefin polymerization. Unfortunately, this model
suffers from its lack of tolerance towards the minor changes carried out in its envelope, resulting in a drastic reduction of its catalytic activity. Neutral and cationic complexes of iron(II) chloride and bromide with nitrogen bases are well known for imidazole, pyridine and pyrazoles (Schröder et al., 2009; Christie et al., 1993). For this reason, we set out to prepare new iron complexes containing more electron-donating and bulky ligands. Only a few analogous bulky arylimidazoles have been reported so far (Reisner et al., 2007).

We focused our attention on the use of bis-N-heterocyclic carbene Fe^{II} complexes in hydrogenation and polymerization of olefins (Mafua, 2006). During the preparation of these complexes, several other complexes of Fe^{II} and Fe^{III} were isolated, among them the title compounds, (I), (II) and (IIb). Compound (I) was isolated by deprotonation of bis-imidazoliummethylene tetrachloridoferrate(III) (L1 in Fig. 7) with NaH in THF at reflux. When the same reaction was conducted at room temperature, only the starting material was recovered after recrystallization. Compounds (II) and (IIb) were isolated when bisimidazoliummethylene tetrabromido-ferrate(III) (L2 in Fig. 7) was reacted with NaH in THF at reflux. The main result in the structure of these compounds is the loss of the bridging methylene group of the starting bisimidazolium cation. Thus two independent N-1-arylimidazolyl groups are formed for each starting bisimidazolium cation. Additionally, this result demonstrates a possible fragility of methylene-bisimidazole ligands when used in harsh reaction conditions. The question of the reduction of Fe^{III} to Fe^{II} remains to be elucidated.

2. Structural commentary

The structures of (I) and (II) are isotypic whereas (IIb) differs due to the presence of solvent diethyl ether molecules. The whole molecule of each compound, (I), (II) and (IIb), is generated by inversion symmetry (Figs. 1, 2 and 3, respectively). The Fe^{II} atom, Fe1, is located on an inversion center.
Table 1
Hydrogen-bond geometry (Å, °) for (I).

D—H···A	D—H	H···A	D····A	D—H···A
C1—H1—Cl1	0.95	2.62	3.257 (3)	125
C2—H2—Cl1	0.95	2.92	3.433 (3)	115
C16—H16—Cl1	0.95	2.76	3.294 (3)	117
C17—H17—Cl1	0.95	2.82	3.375 (3)	118
C18—H18—Cl1	0.95	2.70	3.629 (3)	166
C27—H27A—Cg3m	0.98	2.79	3.562 (4)	136
C30—H30C—Cg3m	0.98	2.92	3.901 (4)	176

Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) x − 1, y, z; (iii) −x + 1, −y − 1, −z + 1; (iv) −x, −y, −z + 1.

Table 2
Hydrogen-bond geometry (Å, °) for (II).

D—H···A	D—H	H···A	D····A	D—H···A
C1—H1—Br1	0.95	2.71	3.368 (4)	127
C2—H2—Br1	0.95	2.91	3.477 (5)	119
C16—H16—Br1	0.95	2.81	3.373 (4)	119
C17—H17—Br1	0.95	2.91	3.484 (4)	120
C18—H18—Br1	0.95	2.77	3.707 (5)	167
C27—H27A—Cg4m	0.98	2.92	3.639 (6)	131
C30—H30C—Cg3m	0.98	2.88	3.862 (6)	177

Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) x − 1, y, z; (iii) −x + 1, −y − 1, −z + 1; (iv) −x, −y, −z + 1.

Table 3
Hydrogen-bond geometry (Å, °) for (IIb).

D—H···A	D—H	H···A	D····A	D—H···A
C1—H1—Br1	0.95	2.76	3.399 (2)	125
C2—H2—Br1	0.95	2.89	3.479 (2)	121
C16—H16—Br1	0.95	2.86	3.4119 (18)	118
C17—H17—Br1	0.95	3.02	3.542 (2)	116
C18—H18—O1m	0.95	2.40	3.337 (3)	170
C15—H15A—Cg3m	0.98	2.92	3.801 (3)	150
C25—H25—C2g	1.00	2.61	3.413 (2)	137
C26—H26A—Cg3m	0.98	2.87	3.682 (3)	140
C34B—H34E—Cg2m	0.98	2.92	3.627 (9)	130

Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) −x + 2, −y + 2, −z + 1; (iii) −x + 1, −y + 3, −z + 1; (iv) −x + 1, −y + 2, −z + 2; (v) −x + 1, y, z − 4.

and has an octahedral FeX₄N₄ (X = Br, Cl) coordination sphere. It is coordinated by the tertiary N atoms of four imidazole ligands [1-(2,6-disopropylphenyl)-1H-imidazole], in the equatorial plane, while the axial positions are occupied by the halogen ions. In (I), the axial Fe1—Cl1 bond length is 2.5356 (9) Å, while the equatorial Fe1—N1 and Fe1—N3 bond lengths are 2.188 (2) and 2.161 (2) Å, respectively. In the structures of compounds (II) and (IIb), the Fe—Br1 bond lengths are 2.7040 (5) and 2.7422 (3) Å, respectively. The Fe—N1 and Fe1—N3 bond lengths are 2.190 (3) and 2.161 (3) Å in (II), and 2.1889 (16) and 2.1789 (15) Å in (IIb). In each molecule, all of the imidazole C-bound H atoms are involved in intramolecular C—H···halogen hydrogen bonds (see Tables 1, 2 and 3).

In the two independent ligands of (I), the benzene rings (C4—C9 and C19—C24) are inclined to their attached imidazole rings (N1/N2/C1—C3 and N3/N4/C16—C18, respectively) by 88.19 (15) and 79.26 (14)°. In (II) and (IIb), the corresponding angles are 87.0 (3) and 79.2 (3)°, and 84.71 (11) and 80.58 (13)°, respectively. The imidazole rings (N1/N2/C1—C3 and N3/N4/C16—C18) of the two independent ligand molecules are inclined to one another by 70.04 (15), 69.3 (3) and 74.58 (14)° for clarity).
61.55 (12)$^\circ$ in (I), (II) and (IIb), respectively, while the benzene rings (C4–C9 and C19–C24) are inclined to one another by 82.83 (13), 83.0 (2) and 88.16 (12)$^\circ$, respectively. The various dihedral angles involving (IIb) differ slightly from those in (I) and (II) due to steric hindrance owing to the close proximity of the diethyl ether solvent molecule of crystallization.

3. Supramolecular features

In the crystal structures of all three compounds, (I), (II) and (IIb), molecules are linked via pairs of C–H···halogen hydrogen bonds, forming chains along the a axis [(I) and (II)] and the b axis, respectively, for (IIb) that enclose $R_2^2(12)$ ring motifs (Figs. 4, 5 and 6, respectively, and Tables 1, 2 and 3, respectively). They are linked by C–H···π interactions, forming sheets parallel to (001). In the crystal structure of compound (IIb), the diethyl ether solvent molecules are attached to the chains via C–H···O hydrogen bonds, and within the chains there are a series of C–H···π interactions present (Fig. 6 and Table 3).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002) indicated the presence of five tetrakis(N-substituted imidazole) iron halide complexes. Two of these involve iron(II), that is trans-dichloridotetrakis(5-chloro-1-methyl-1H-imidazole-N-iron(III)] chloride hydrate (Schröder et al., 2009) and trans-difluoridotetrakis(1-methylimidazole)iron(III) tetrafluoroborate (Christie et al., 1993). Two compounds containing aryl-substituted imidazoles where found, namely (μ_2-oxido)-tetrachloridotetrakis(1-phenyl-1H-imidazole-N)diiiron(II) and (μ_2-oxido)tetrachloridotetrakis[1-(2,6-disiopropylphenyl)-1H-imidazole-N]diiiron(II) (Schröder et al., 2009). The crystal structure of dichloridotetrakis(1-methylimidazole-N3)iron(II) has also been reported (Reisner et al., 2007).

5. Synthesis and crystallization

The synthesis of the precursors bisimidazolium methylene tetrachlorido- and tetrabromidoferate(III) ([L1] and [L2], respectively, in Fig. 7) have been reported elsewhere (Mafua, 2006). Compound (I) was prepared as follows: to a solution of ([L1] 0.34 g, 0.5 mmol) in 20 ml of THF was added 0.09 g (2.3 mmol) of NaH 60% and 0.01 g (0.1 mmol) of 'BuOK, and the reaction mixture was heated at 340 K for 8 h. The solution was then filtered and the solvent evaporated under vacuum yielding an orange solid. Yellow crystals were obtained by slow diffusion of diethyl ether into a THF solution of the isolated orange solid. UV–vis (THF, 200–800 nm): 364, 290. Compounds (II) and (IIb) were prepared in a similar manner. To a solution of ([L2] 0.29 g, 0.5 mmol) in 20 ml of THF was added 0.09 g (2.3 mmol) of NaH 60% and 0.01 g (0.1 mmol) of 'BuOK at 273 K, and the reaction mixture was heated at reflux for 8 h. The solution was then filtered and the solvent evaporated under vacuum yielding a yellow–brown solid. Yellow crystals were obtained by slow diffusion of diethyl ether into a THF solution of the isolated orange solid. UV–vis (THF, 200–800 nm): 292. Two types of crystals were obtained: yellow plates for (II) and yellow blocks for (IIb).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. In all three compounds, the H atoms were included in calculated positions and treated as riding atoms: C–H = 0.95, 1.00 and 0.98 Å for CH(aromatic), CH and CH$_3$ H atoms, respectively, with U_{iso}(H) = 1.5U_{eq}(C-methyl) and = 1.2U_{eq}(C) for other H atoms. In (I) and (II), the methyl groups of an isopropyl group are disordered over two positions [occupancy ratio = 0.727 (13)/0.273 (13) in (I) and fixed at 0.50:0.5 for (II)]. In (IIb), one of the ethyl groups of the diethyl ether solvent molecule is disordered over two positions (occupancy ratio fixed at 0.50:0.5).
Table 4
Experimental details.

	(I)	(II)	(IIIb)
M	[FeCl(H₂N₂)₃]	[FeBr₂(H₂N₂)₃]	[FeBr₂(C₁₀H₂₈N₄)₄]·2C₄H₁₀O
	1040.07	1128.99	1277.22
Crystal system, space group	Triclinic, P1	Triclinic, P1	Triclinic, P1
Temperature (K)	173	173	173
a, b, c (Å)	8.877 (2), 12.628 (3), 13.810 (4)	9.0391 (11), 12.7658 (11), 13.689 (2)	11.6710 (8), 12.4758 (9), 13.5759 (10)
α, β, γ (°)	74.68 (2), 74.48 (2), 83.105 (18)	74.502 (9), 74.481 (12), 84.343 (9)	64.464 (5), 81.515 (6), 88.982 (6)
V (Å³)	1436.6 (7)	1466.0 (3)	1761.8 (2)
Z	1	1	1
Radiation type	Mo K	Mo K	Mo K
μ (mm⁻¹)	0.40	1.66	1.39
Crystal size (mm)	0.25 × 0.20 × 0.15	0.20 × 0.17 × 0.10	0.50 × 0.50 × 0.50
Data collection			
Diffractometer	Stoe IPDS 2	Stoe IPDS 2	Stoe IPDS 2
Absorption correction	Multi-scan (MULscanABS in PLATON; Spek, 2009)	Multi-scan (MULscanABS in PLATON; Spek, 2009)	Multi-scan (MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax	0.966, 1.000	0.457, 0.496	0.557, 0.672
No. of measured, independent and observed [I > 2σ(I)] reflections	14618, 5214, 3012	17613, 5312, 3013	15799, 6374, 5714
Rint	0.082	0.118	0.030
(sin θ/λ)max (Å⁻¹)	0.600	0.600	0.600
Refinement			
R(F²) = 2σ(F²), wR(F²), S	0.043, 0.069, 0.80	0.046, 0.081, 0.81	0.031, 0.077, 1.03
No. of reflections	5214	5312	6374
No. of parameters	339	350	378
No. of restraints	4	2	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
Δρmax, Δρmin (e Å⁻³)	0.23, −0.19	0.59, −0.64	0.44, −0.37

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2006), SHELXS97 and SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and pubCIF (Westrip, 2010).

Acknowledgements

Financial support from the Swiss National Science Foundation and the University of Fribourg is gratefully acknowledged.

References

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Britovsek, G. J. P., Gibson, V. C., Kimberley, B. S., Maddox, P. J., McTavish, S. I., Solan, G. A., White, A. J. P. & William, D. J. (1998). Chem. Commun. pp. 849–850.

Christie, S., Subramanian, S., Wang, L. & Zaworotko, M. J. (1993). Inorg. Chem. 32, 5415–5417.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Mafua, R. (2006). PhD thesis (No. 1503), University of Fribourg, Switzerland.

Reinser, E., Telser, J. & Lippard, S. J. (2007). Inorg. Chem. 46, 10754–10770.

Schröder, K., Enthaler, S., Bitterlich, B., Schulz, T., Spannenberg, A., Tse, M. K., Junge, K. & Beller, M. (2009). Chem. Eur. J. 15, 5471–5481.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Small, B. L. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 7143–7144.

Small, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc. 120, 4049–4050.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Crystal structures of trans-dichloridotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN³]iron(II), trans-dibromidotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN³]iron(II) and trans-dibromidotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN³]iron(II) diethyl ether disolvate

Roger Mafua, Titus Jenny, Gael Labat, Antonia Neels and Helen Stoeckli-Evans

Computing details

For all compounds, data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(I) trans-Dichloridotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN³]iron(II)

Crystal data

\[\text{[FeCl}_2\text{C}_{15}\text{H}_{20}\text{N}_2\text{]}_4\]
\(Z = 1\)
\(F(000) = 556\)
\(D_x = 1.202 \text{ Mg m}^{-3}\)
\(\text{Mo Kα radiation, } \lambda = 0.71073 \text{ Å}\)
Cell parameters from 7147 reflections
\(\theta = 0.1–24.9°\)
\(\mu = 0.40 \text{ mm}^{-1}\)
\(T = 173 \text{ K}\)
Block, colourless
0.25 × 0.20 × 0.15 mm

Data collection

Stoe IPDS 2 diffractometer
14618 measured reflections
5214 independent reflections
3012 reflections with \(I > 2\sigma(I)\)
\(R_{int} = 0.082\)
\(\theta_{\text{max}} = 25.3°, \theta_{\text{min}} = 1.6°\)
\(h = -10→10\)
\(k = -15→15\)
\(l = -16→16\)
supporting information

Refinement

Refinement on F^2

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.043$

$wR(F^2) = 0.069$

$S = 0.80$

5214 reflections

339 parameters

4 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

$w = 1/[\sigma^2(F_c^2) + (0.0176P)^2]$

where $P = (F_c^2 + 2F_s^2)/3$

$(\Delta/\sigma)_{\text{max}} = 0.001$

$\Delta\rho_{\text{max}} = 0.23 \, \text{e} \, \text{Å}^{-3}$

$\Delta\rho_{\text{min}} = -0.19 \, \text{e} \, \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2)

	x	y	z	U_{eq}	Occ. (<1)
Fe1	0.5000	0.0000	0.5000	0.02088 (16)	
Cl1	0.70366 (8)	-0.15905 (5)	0.50114 (5)	0.02791 (18)	
N1	0.5146 (2)	0.01056 (16)	0.33706 (16)	0.0268 (5)	
N2	0.4532 (3)	0.06854 (17)	0.18661 (15)	0.0276 (5)	
N3	0.3206 (2)	-0.11518 (16)	0.53380 (15)	0.0242 (5)	
N4	0.2109 (2)	-0.26733 (16)	0.54788 (16)	0.0253 (5)	
C1	0.4309 (3)	0.0828 (2)	0.28262 (19)	0.0272 (7)	
H1	0.3626	0.1386	0.3081	0.033*	
C2	0.5931 (3)	-0.0546 (2)	0.2729 (2)	0.0353 (7)	
H2	0.6631	-0.1152	0.2910	0.042*	
C3	0.5573 (3)	-0.0208 (2)	0.1802 (2)	0.0364 (7)	
H3	0.5960	-0.0522	0.1223	0.044*	
C4	0.3853 (3)	0.1369 (2)	0.10628 (19)	0.0287 (7)	
C5	0.2450 (3)	0.1095 (2)	0.09679 (19)	0.0326 (7)	
C6	0.1819 (4)	0.1781 (2)	0.0180 (2)	0.0435 (8)	
H6	0.0857	0.1619	0.0087	0.052*	
C7	0.2585 (4)	0.2685 (3)	-0.0459 (2)	0.0500 (9)	
H7	0.2158	0.3134	-0.1001	0.060*	
C8	0.3955 (4)	0.2953 (2)	-0.0330 (2)	0.0474 (8)	
H8	0.4447	0.3595	-0.0772	0.057*	
C9	0.4638 (3)	0.2302 (2)	0.0439 (2)	0.0355 (7)	
C10	0.1572 (4)	0.0119 (2)	0.1701 (2)	0.0423 (8)	
H10A	0.2349	-0.0377	0.2039	0.051*	0.727 (13)
H10B	0.2081	-0.0198	0.2287	0.051*	0.273 (13)
C11A	0.0312 (9)	0.0456 (5)	0.2559 (6)	0.0590 (19)	0.727 (13)
H11A	0.0779	0.0835	0.2933	0.088*	0.727 (13)
H11B	-0.0186	-0.0199	0.3039	0.088*	0.727 (13)
H11C	-0.0475	0.0951	0.2262	0.088*	0.727 (13)

Acta Cryst. (2014). E70, 72-76

sup-2
C12A	0.0892 (13)	−0.0560 (8)	0.1187 (8)	0.078 (3)	0.727 (13)
H12A	0.0538	−0.1247	0.1687	0.117*	0.727 (13)
H12B	0.1694	−0.0728	0.0598	0.117*	0.727 (13)
H12C	0.0002	−0.0146	0.0944	0.117*	0.727 (13)
C11B	−0.0112 (19)	0.0578 (14)	0.2122 (15)	0.0590 (19)	0.273 (13)
H11D	−0.0654	0.0800	0.1562	0.088*	0.273 (13)
H11E	−0.0058	0.1216	0.2387	0.088*	0.273 (13)
H11F	−0.0687	0.0008	0.2682	0.088*	0.273 (13)
C12B	0.159 (4)	−0.073 (2)	0.112 (3)	0.078 (3)	0.273 (13)
H12D	0.1249	−0.0384	0.0489	0.117*	0.273 (13)
H12E	0.0880	−0.1302	0.1559	0.117*	0.273 (13)
H12F	0.2656	−0.1056	0.0946	0.117*	0.273 (13)
C13	0.6097 (4)	0.2615 (2)	0.0631 (2)	0.0444 (8)	
H13	0.6631	0.1923	0.0958	0.053*	
C14	0.5694 (4)	0.3354 (3)	0.1394 (3)	0.0716 (11)	
H14A	0.5236	0.4063	0.1075	0.086*	
H14B	0.6648	0.3473	0.1572	0.086*	
H14C	0.4939	0.3000	0.2024	0.086*	
C15	0.7269 (4)	0.3182 (3)	−0.0346 (3)	0.0669 (11)	
H15A	0.7469	0.2747	−0.0863	0.080*	
H15B	0.8251	0.3247	−0.0174	0.080*	
H15C	0.6839	0.3917	−0.0626	0.080*	
C16	0.3362 (3)	−0.2225 (2)	0.55469 (18)	0.0253 (6)	
H16	0.4257	−0.2639	0.5726	0.030*	
C17	0.1766 (3)	−0.0894 (2)	0.5126 (2)	0.0301 (7)	
H17	0.1321	−0.0168	0.4946	0.036*	
C18	0.1064 (3)	−0.1826 (2)	0.5210 (2)	0.0308 (7)	
H18	0.0063	−0.1879	0.5105	0.037*	
C19	0.1907 (3)	−0.38269 (19)	0.5634 (2)	0.0259 (6)	
C20	0.2662 (3)	−0.4342 (2)	0.4836 (2)	0.0309 (7)	
C21	0.2407 (3)	−0.5445 (2)	0.5010 (2)	0.0385 (7)	
H21	0.2882	−0.5822	0.4484	0.046*	
C22	0.1479 (4)	−0.6007 (2)	0.5928 (2)	0.0450 (8)	
H22	0.1314	−0.6762	0.6027	0.054*	
C23	0.0796 (3)	−0.5482 (2)	0.6698 (2)	0.0381 (7)	
H23	0.0175	−0.5885	0.7332	0.046*	
C24	0.0987 (3)	−0.4372 (2)	0.6576 (2)	0.0292 (6)	
C25	0.3709 (3)	−0.3722 (2)	0.3836 (2)	0.0350 (7)	
H25	0.4332	−0.3231	0.4023	0.042*	
C26	0.2778 (4)	−0.2999 (3)	0.3121 (2)	0.0568 (10)	
H26A	0.2138	−0.3454	0.2931	0.068*	
H26B	0.3494	−0.2599	0.2494	0.068*	
H26C	0.2095	−0.2472	0.3472	0.068*	
C27	0.4861 (4)	−0.4467 (3)	0.3262 (2)	0.0492 (9)	
H27C	0.5622	−0.4022	0.2696	0.059*	
H27B	0.4297	−0.4885	0.2979	0.059*	
H27A	0.5410	−0.4977	0.3741	0.059*	
C28	0.0214 (3)	−0.3808 (2)	0.7438 (2)	0.0333 (7)	
Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0218 (4)	0.0163 (3)	0.0257 (3)	−0.0025 (3)	−0.0081 (3)	−0.0043 (3)
Cl1	0.0265 (4)	0.0220 (4)	0.0379 (4)	0.0027 (3)	−0.0120 (3)	−0.0093 (3)
N1	0.0268 (4)	0.0244 (12)	0.0299 (12)	0.0021 (10)	−0.0099 (10)	−0.0066 (10)
N2	0.0325 (14)	0.0284 (12)	0.0217 (12)	0.0013 (11)	−0.0088 (10)	−0.0047 (10)
N3	0.0211 (13)	0.0185 (12)	0.0329 (12)	−0.0032 (9)	−0.0086 (10)	−0.0030 (10)
N4	0.0213 (13)	0.0189 (11)	0.0373 (13)	−0.0039 (10)	−0.0096 (10)	−0.0062 (10)
C1	0.0306 (17)	0.0260 (15)	0.0248 (15)	0.0020 (13)	−0.0061 (13)	−0.0080 (12)
C2	0.0389 (19)	0.0299 (16)	0.0362 (17)	0.0103 (14)	−0.0113 (14)	−0.0095 (14)
C3	0.045 (2)	0.0317 (16)	0.0340 (17)	0.0107 (15)	−0.0116 (14)	−0.0141 (13)
C4	0.0371 (18)	0.0250 (15)	0.0231 (15)	0.0061 (13)	−0.0082 (13)	−0.0069 (12)
C5	0.0391 (19)	0.0339 (16)	0.0271 (15)	0.0023 (14)	−0.0090 (14)	−0.0121 (13)
C6	0.045 (2)	0.050 (2)	0.0411 (18)	0.0104 (16)	−0.0220 (16)	−0.0140 (16)
C7	0.069 (3)	0.044 (2)	0.0357 (18)	0.0143 (18)	−0.0220 (18)	−0.0054 (16)
C8	0.064 (2)	0.0342 (18)	0.0362 (18)	−0.0012 (17)	−0.0106 (17)	0.0024 (14)
C9	0.0412 (19)	0.0334 (17)	0.0276 (15)	−0.0013 (14)	−0.0012 (14)	−0.0074 (13)
C10	0.045 (2)	0.0419 (18)	0.0443 (18)	−0.0084 (15)	−0.0189 (16)	−0.0069 (15)
C11A	0.076 (4)	0.051 (3)	0.041 (4)	−0.019 (3)	0.001 (3)	−0.006 (3)
C12A	0.112 (10)	0.050 (4)	0.073 (3)	−0.019 (5)	−0.008 (7)	−0.025 (3)
C11B	0.076 (4)	0.051 (3)	0.041 (4)	−0.019 (3)	0.001 (3)	−0.006 (3)
C12B	0.112 (10)	0.050 (4)	0.073 (3)	−0.019 (5)	−0.008 (7)	−0.025 (3)
C13	0.046 (2)	0.0368 (18)	0.0445 (19)	−0.0098 (15)	−0.0051 (16)	−0.0018 (15)
C14	0.060 (3)	0.074 (3)	0.089 (3)	−0.027 (2)	−0.007 (2)	−0.035 (2)
C15	0.059 (3)	0.064 (2)	0.064 (2)	−0.014 (2)	0.001 (2)	−0.0027 (19)
C16	0.0206 (16)	0.0251 (15)	0.0303 (16)	−0.0025 (12)	−0.0099 (13)	−0.0026 (12)
C17	0.0248 (16)	0.0184 (14)	0.0446 (17)	0.0005 (12)	−0.0095 (14)	−0.0032 (12)
C18	0.0214 (16)	0.0219 (15)	0.0510 (18)	0.0021 (12)	−0.0145 (14)	−0.0077 (13)
C19	0.0239 (16)	0.0168 (13)	0.0410 (16)	−0.0021 (12)	−0.0127 (13)	−0.0084 (12)
C20	0.0285 (17)	0.0274 (15)	0.0386 (16)	−0.0017 (12)	−0.0094 (13)	−0.0097 (13)
C21	0.041 (2)	0.0302 (17)	0.0468 (19)	−0.0017 (14)	−0.0055 (16)	−0.0195 (14)
C22	0.052 (2)	0.0234 (16)	0.059 (2)	−0.0089 (15)	−0.0063 (18)	−0.0134 (15)
C23	0.041 (2)	0.0232 (16)	0.0449 (18)	−0.0090 (14)	0.0001 (15)	−0.0074 (14)
C24	0.0247 (16)	0.0211 (14)	0.0395 (16)	−0.0043 (12)	−0.0061 (13)	−0.0042 (12)
C25	0.0353 (18)	0.0357 (17)	0.0360 (16)	−0.0063 (13)	−0.0062 (14)	−0.0127 (13)
C26	0.056 (2)	0.057 (2)	0.046 (2)	0.0057 (19)	−0.0088 (18)	−0.0019 (17)
C27	0.042 (2)	0.061 (2)	0.0399 (19)	0.0060 (17)	−0.0046 (16)	−0.0137 (17)
Geometric parameters (Å, °)

Fe1—N3	2.161 (2)	C12B—H12D	0.980			
Fe1—N3	2.161 (2)	C12B—H12E	0.980			
Fe1—N1	2.188 (2)	C12B—H12F	0.980			
Fe1—N1	2.188 (2)	C13—C15	1.527 (4)			
Fe1—Cl1	2.5356 (9)	C13—C14	1.532 (4)			
Fe1—Cl1	2.5356 (9)	C13—H13	1.0000			
N1—C1	1.313 (3)	C14—H14A	0.980			
N1—C2	1.365 (3)	C14—H14B	0.980			
N2—C1	1.344 (3)	C14—H14C	0.980			
N2—C3	1.376 (3)	C15—H15A	0.980			
N2—C4	1.437 (3)	C15—H15B	0.980			
N3—C16	1.307 (3)	C15—H15C	0.980			
N3—C17	1.369 (3)	C16—H16	0.9500			
N4—C16	1.342 (3)	C17—C18	1.362 (4)			
N4—C18	1.371 (3)	C17—H17	0.9500			
N4—C19	1.441 (3)	C18—H18	0.9500			
C1—H1	0.9500	C19—C24	1.387 (4)			
C2—C3	1.349 (4)	C19—C20	1.403 (4)			
C2—H2	0.9500	C20—C21	1.385 (4)			
C3—H3	0.9500	C20—C25	1.517 (4)			
C4—C5	1.379 (4)	C21—C22	1.377 (4)			
C4—C9	1.399 (4)	C21—H21	0.9500			
C5—C6	1.400 (3)	C22—C23	1.367 (4)			
C5—C10	1.517 (4)	C22—H22	0.9500			
C6—C7	1.370 (4)	C23—C24	1.393 (4)			
C6—H6	0.9500	C23—H23	0.9500			
C7—C8	1.368 (4)	C24—C28	1.512 (4)			
C7—H7	0.9500	C25—C26	1.508 (4)			
C8—C9	1.390 (4)	C25—C27	1.513 (4)			
C8—H8	0.9500	C25—H25	1.0000			
C9—C13	1.505 (4)	C26—H26A	0.9800			
C10—C12B	1.489 (17)	C26—H26B	0.9800			
C10—C11A	1.509 (6)	C26—H26C	0.9800			
C10—C12A	1.509 (8)	C27—H27C	0.9800			
C10—C11B	1.553 (14)	C27—H27B	0.9800			
C10—H10A	1.0000	C27—H27A	0.9800			
C10—H10B	1.0000	C28—C30	1.515 (4)			
C11A—H11A	0.9800	C28—C29	1.522 (4)			
C11A—H11B	0.9800	C28—H28	1.0000			
C11A—H11C	0.9800	C29—H29A	0.9800			
C12A—H12A	0.9800	C29—H29B	0.9800			
C12A—H12B	0.9800	C29—H29C	0.9800			
C12A—H12C 0.9800 C30—H30C 0.9800
C11B—H11D 0.9800 C30—H30B 0.9800
C11B—H11E 0.9800 C30—H30A 0.9800
C11B—H11F 0.9800

N3—Fe1—N3i 180.0 H12D—C12B—H12E 109.5
N3—Fe1—N1 85.67 (8) C10—C12B—H12F 109.5
N3—Fe1—N1i 94.33 (8) H12D—C12B—H12F 109.5
N1—Fe1—N1i 85.67 (8) C9—C13—C15 114.4 (3)
N1—Fe1—N1i 180.0 C9—C13—C14 111.1 (3)
N3—Fe1—Cl1 89.14 (6) C15—C13—C14 108.7 (3)
N3—Fe1—Cl1 90.86 (6) C9—C13—H13 107.5
N1—Fe1—Cl1 90.37 (6) C15—C13—H13 107.5
N1—Fe1—Cl1i 89.63 (6) C13—C14—H14A 109.5
N3—Fe1—Cl1i 90.86 (6) C13—C14—H14B 109.5
N1—Fe1—Cl1i 90.37 (6) C13—C14—H14C 109.5
C1—N1—C2 105.1 (2) H14A—C14—H14B 109.5
C1—N1—Fe1 123.17 (17) C13—C14—H14C 109.5
C2—N1—Fe1 131.53 (16) N3—C16—N4 112.0 (2)
C1—N2—C3 106.4 (2) C16—N3—Fe1 125.16 (16) N3—C16—H16 124.0
C1—N2—C4 126.0 (2) N4—C16—H16 124.0
C3—N2—C4 127.5 (2) C18—C17—N3 110.3 (2)
C16—N3—C17 105.2 (2) C18—C17—H17 124.9
C16—N3—Fe1 127.93 (17) N3—C16—N4i 112.0 (2)
C17—N3—Fe1 125.16 (16) N3—C16—H16 124.0
C16—N4—C18 107.2 (2) N4—C16—H16 124.0
C16—N4—C19 126.7 (2) C18—C17—N3i 124.9
C18—N4—C19i 126.1 (2) C18—C17—H17 124.9
N1—C1—N2 112.1 (2) N3—C17—H17 124.9
N1—C1—H1 124.0 C17—C18—N4 105.3 (2)
N2—C1—H1 124.0 C17—C18—H18 127.4
C3—C2—N1 110.5 (2) N4—C18—H18 127.4
C3—C2—H2 124.8 C24—C19—C20 123.5 (2)
N1—C2—H2 124.8 C24—C19—N4 117.9 (2)
C2—C3—N2 105.9 (2) C20—C19—N4 118.5 (2)
C2—C3—H3 127.0 C21—C20—C19 116.6 (2)
N2—C3—H3 127.0 C21—C20—C25 121.9 (3)
C5—C4—C9 123.6 (2) C19—C20—C25 121.6 (2)
C5—C4—N2 118.8 (2) C22—C21—C20 121.5 (3)
C9—C4—N2 117.5 (3) C22—C21—H21 119.3
C4—C5—C6 117.3 (3) C20—C21—H21 119.3
C4—C5—C10 122.4 (2) C23—C22—C21 120.2 (3)
C6—C5—C10 120.3 (3) C23—C22—H22 119.9
C7—C6—C5 120.2 (3) C21—C22—H22 119.9
Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
C7—C6—H6	119.9	C22—C23—C24	121.7 (3)		
C5—C6—H6	119.9	C22—C23—H23	119.2		
C8—C7—C6	121.2 (3)	C24—C23—H23	119.2		
C8—C7—H7	119.4	C19—C24—C23	116.6 (3)		
C6—C7—H7	119.4	C19—C24—C28	122.7 (2)		
C7—C8—C9	121.1 (3)	C23—C24—C28	120.7 (2)		
C7—C8—H8	119.4	C26—C25—C27	109.4 (2)		
C9—C8—H8	119.4	C26—C25—C20	112.0 (2)		
C8—C9—C4	116.5 (3)	C27—C25—C20	113.2 (2)		
C8—C9—C13	122.0 (3)	C26—C25—H25	107.3		
C4—C9—C13	121.5 (2)	C27—C25—H25	107.3		
C12B—C10—C5	109.1 (14)	C20—C25—H25	107.3		
C11A—C10—C5	111.8 (3)	C25—C26—H26A	109.5		
C11A—C10—C12A	109.9 (4)	C25—C26—H26B	109.5		
C5—C10—C12A	114.9 (5)	H26A—C26—H26B	109.5		
C12B—C10—C11B	112.4 (13)	C25—C26—H26C	109.5		
C5—C10—C11B	105.9 (7)	H26A—C26—H26C	109.5		
C11A—C10—H10A	106.6	H26B—C26—H26C	109.5		
C5—C10—H10A	106.6	C25—C27—H27C	109.5		
C12A—C10—H10A	106.6	C25—C27—H27B	109.5		
C12B—C10—H10B	109.8	H27C—C27—H27B	109.5		
C5—C10—H10B	109.8	C25—C27—H27A	109.5		
C11B—C10—H10B	109.8	H27C—C27—H27A	109.5		
C10—C11A—H11A	109.5	H27B—C27—H27A	109.5		
C10—C11A—H11B	109.5	C24—C28—C30	110.7 (2)		
H11A—C11A—H11B	109.5	C24—C28—C29	112.6 (2)		
C10—C11A—H11C	109.5	C30—C28—C29	110.6 (2)		
H11A—C11A—H11C	109.5	C24—C28—H28	107.6		
H11B—C11A—H11C	109.5	C30—C28—H28	107.6		
C10—C12A—H12A	109.5	C29—C28—H28	107.6		
C10—C12A—H12B	109.5	C28—C29—H29A	109.5		
H12A—C12A—H12B	109.5	C28—C29—H29B	109.5		
C10—C12A—H12C	109.5	H29A—C29—H29B	109.5		
H12A—C12A—H12C	109.5	C28—C29—H29C	109.5		
H12B—C12A—H12C	109.5	H29A—C29—H29C	109.5		
C10—C11B—H11D	109.5	H29B—C29—H29C	109.5		
C10—C11B—H11E	109.5	C28—C30—H30C	109.5		
H11D—C11B—H11E	109.5	C28—C30—H30B	109.5		
C10—C11B—H11F	109.5	H30C—C30—H30B	109.5		
H11E—C11B—H11F	109.5	C28—C30—H30A	109.5		
C10—C12B—H12D	109.5	H30C—C30—H30A	109.5		
C10—C12B—H12E	109.5	H30B—C30—H30A	109.5		
C2—N1—C1—N2	−0.9 (3)	C8—C9—C13—C14	87.8 (3)		
Fe1—N1—C1—N2	−176.06 (17)	C4—C9—C13—C14	−88.7 (3)		
C3—N2—C1—N1	1.0 (3)	C17—N3—C16—N4	0.2 (3)		
C4—N2—C1—N1	−176.7 (2)	Fe1—N3—C16—N4	−165.34 (16)		

Acta Cryst. (2014). E70, 72-76
C1—N1—C2—C3 0.5 (3) C18—N4—C16—N3 −0.3 (3)
C1—N1—C2—C3 175.1 (2) C19—N4—C18—C17 −178.5 (2)
N1—C2—C3—N2 0.1 (3) C16—N4—C19—C24 101.2 (3)
C1—N2—C4—C5 −0.6 (3) C16—N4—C19—C20 100.5 (3)
C3—N2—C4—C5 177.1 (3) C18—N4—C19—C20 −177.5 (2)
C9—C4—C5—C6 1.9 (5) C19—N4—C18—C17 101.2 (3)
N2—C4—C5—C6 179.8 (2) C19—N4—C18—C17 −178.5 (2)
C9—C4—C5—C10 −175.9 (3) C16—N4—C19—C24 101.2 (3)
C3—N2—C4—C9 86.0 (3) C16—N4—C19—C20 100.5 (3)
C1—N2—C4—C9 −92.0 (3) C16—N4—C19—C24 101.2 (3)
C4—C5—C6—C7 1.9 (4) C16—N4—C19—C20 100.5 (3)
C5—C4—C9—C8 −1.8 (4) C16—N4—C19—C24 101.2 (3)
C5—C4—C9—C13 174.8 (3) C16—N4—C19—C20 100.5 (3)
N2—C4—C9—C8 −91.3 (3) C16—N4—C19—C24 101.2 (3)
N2—C4—C9—C13 179.7 (2) C16—N4—C19—C20 100.5 (3)
C4—C5—C10—C12B −112.5 (13) C22—C23—C24—C19 102.9 (3)
C6—C5—C10—C12B 69.8 (14) C22—C23—C24—C19 179.8 (3)
C4—C5—C10—C11A 96.3 (5) C22—C23—C24—C19 0.0 (4)
C6—C5—C10—C11A −81.4 (5) C22—C23—C24—C19 102.9 (3)
C4—C5—C10—C12A −137.6 (5) C22—C23—C24—C19 179.8 (3)
C6—C5—C10—C12A 44.7 (6) C22—C23—C24—C19 0.0 (4)
C4—C5—C10—C11B 126.4 (9) C22—C23—C24—C19 179.8 (3)
C6—C5—C10—C11B −51.4 (9) C22—C23—C24—C19 0.0 (4)
C8—C9—C13—C15 −35.7 (4) C22—C23—C24—C19 179.8 (3)
C4—C9—C13—C15 147.8 (3) C22—C23—C24—C19 179.8 (3)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of rings C4–C9 and C19–C24, respectively.

D—H···A	D—H	H···A	D···A	D—H···A
C1—H1···C11i	0.95	2.62	3.257 (3)	125
C2—H2···C11	0.95	2.92	3.433 (3)	115
C16—H16···C11	0.95	2.76	3.294 (3)	117
C17—H17···C11	0.95	2.82	3.375 (3)	118
C18—H18···C11a	0.95	2.70	3.629 (3)	166
C27—H27A···Cg4ii	0.98	2.79	3.562 (4)	136
C30—H30C···Cg3v	0.98	2.92	3.901 (4)	176

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y, z; (iii) −x+1, −y, −z+1; (iv) −x, −y, −z+1.
(II) *trans*-Dibromidotetrakis[1-(2,6-diisopropylphenyl)-1*H*-imidazole-κ*N*3]iron(II)

Crystal data

\[\text{[FeBr}_2(\text{C}_{15}\text{H}_{20}\text{N}_2)_4] } \]

- \(M_r = 1128.99 \)
- Triclinic, \(P\overline{1} \)
- Hall symbol: -P 1
- \(a = 9.0391 \) (11) Å
- \(b = 12.7658 \) (11) Å
- \(c = 13.689 \) (2) Å
- \(\alpha = 74.502 \) (9)°
- \(\beta = 74.481 \) (12)°
- \(\gamma = 84.343 \) (9)°
- \(V = 1466.0 \) (3) Å³
- \(Z = 1 \)
- \(F(000) = 592 \)
- \(D_x = 1.279 \) Mg m⁻³
- Mo \(K\alpha \) radiation, \(\lambda = 0.71073 \) Å
- Cell parameters from 7257 reflections
- \(\theta = 0.1–24.9\degree \)
- \(\mu = 1.66 \) mm⁻¹
- \(T = 173 \) K
- Plate, yellow

Data collection

- Stoe IPDS 2 diffractometer
- Radiation source: fine-focus sealed tube
- Plane graphite monochromator
- \(\phi + \omega \) scans
- Absorption correction: multi-scan
- (MULscanABS in PLATON; Spek, 2009)
- \(T_{\text{min}} = 0.457, T_{\text{max}} = 0.496 \)
- 17613 measured reflections
- 5312 independent reflections
- 3013 reflections with \(I > 2 \sigma(I) \)
- \(R_{int} = 0.118 \)
- \(\theta_{\text{max}} = 25.2\degree, \theta_{\text{min}} = 1.6\degree \)
- \(h = -10 \rightarrow 10 \)
- \(k = -15 \rightarrow 15 \)
- \(l = -16 \rightarrow 16 \)

Refinement

- Refinement on \(F^2 \)
- Least-squares matrix: full
- \(R[F^2 > 2 \sigma(F^2)] = 0.046 \)
- \(wR(F^2) = 0.081 \)
- \(S = 0.81 \)
- 5312 reflections
- 350 parameters
- 2 restraints

Hydrogen site location: inferred from neighbouring sites

- H-atom parameters constrained

\(\Delta \rho_{\text{max}} = 0.59 \) e Å⁻³
\(\Delta \rho_{\text{min}} = -0.64 \) e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	\(x \)	\(y \)	\(z \)	\(U_{eq} \)
Fe1	0.5000	0.0000	0.5000	0.0194 (2)
Br1	0.70958 (6)	−0.16630 (4)	0.49630 (4)	0.02557 (14)
N1	0.5093 (4)	0.0144 (3)	0.3354 (3)	0.0234 (8)
N2	0.4486 (4)	0.0707 (3)	0.1838 (3)	0.0260 (9)
N3	0.3197 (4)	−0.1141 (2)	0.5363 (3)	0.0203 (8)
N4	0.2095 (4)	−0.2665 (3)	0.5529 (3)	0.0238 (8)
C1	0.4300 (5)	0.0853 (3)	0.2808 (3)	0.0265 (11)
H1	0.3663	0.1411	0.3060	0.032*
C2	0.5844 (6)	−0.0508 (4)	0.2709 (4)	0.0356 (13)
Supporting Information

Atom	U1	U2	U3	U1-U2	U1-U3	U2-U3	U1-U2-U3	U1-U3-U2	U2-U3-U1	U1-U2-U3-U4
H2	0.6517	-0.1106	0.2890	0.043*	0.0362	0.12				
C3	0.5470 (5)	-0.0162 (4)	0.1766 (4)	0.0288	0.0307	0.11				
H3	0.5827	-0.0467	0.1180	0.043*	0.0362	0.12				
C4	0.3836 (6)	0.1393 (4)	0.1024 (3)	0.0288	0.0307	0.11				
C5	0.2450 (5)	0.1109 (3)	0.0933 (3)	0.0288	0.0307	0.11				
C6	0.1847 (6)	0.1782 (4)	0.0137 (4)	0.0288	0.0307	0.11				
H6	0.0900	0.1615	0.0046	0.051*	0.0362	0.12				
C7	0.2617 (7)	0.2686 (4)	-0.0516 (4)	0.0457	0.0307	0.11				
H7	0.2213	0.3127	-0.1068	0.055*	0.0362	0.12				
C8	0.3959 (6)	0.2954 (4)	-0.0377 (4)	0.0448	0.0307	0.11				
H8	0.4459	0.3592	-0.0828	0.054*	0.0362	0.12				
C9	0.4613 (5)	0.2325 (4)	0.0401 (4)	0.0337	0.0307	0.11				
C10	0.1572 (6)	0.0135 (4)	0.1677 (4)	0.0426	0.0307	0.11				
H10A	0.2393	-0.0198	0.2040	0.051*	0.0307	0.11				
H10B	0.2132	-0.0342	0.2179	0.051*	0.0307	0.11				
C11A	0.041 (2)	0.0434 (18)	0.2621 (10)	0.051*	0.0307	0.11				
H11A	0.0954	0.0745	0.3004	0.061*	0.0307	0.11				
H11B	-0.0110	-0.0222	0.3087	0.061*	0.0307	0.11				
H11C	-0.0349	0.0967	0.2373	0.061*	0.0307	0.11				
C12A	0.153 (2)	-0.0733 (15)	0.1164 (19)	0.079 (6)	0.0307	0.11				
H12A	0.1077	-0.0442	0.0565	0.095*	0.0307	0.11				
H12B	0.0900	-0.1325	0.1664	0.095*	0.0307	0.11				
H12C	0.2573	-0.1012	0.0920	0.095*	0.0307	0.11				
C11B	0.001 (2)	0.0529 (19)	0.2171 (14)	0.100 (9)	0.0307	0.11				
H11D	0.0113	0.1088	0.2518	0.119*	0.0307	0.11				
H11E	-0.0553	-0.0081	0.2689	0.119*	0.0307	0.11				
H11F	-0.0544	0.0838	0.1631	0.119*	0.0307	0.11				
C12B	0.077 (2)	-0.0471 (16)	0.1146 (18)	0.059 (5)	0.0307	0.11				
C12D	0.0408	-0.1168	0.1629	0.070*	0.0307	0.11				
H12E	0.1487	-0.0603	0.0512	0.070*	0.0307	0.11				
H12F	-0.0115	-0.0030	0.0957	0.070*	0.0307	0.11				
C13	0.6051 (6)	0.2642 (4)	0.0597 (4)	0.0441 (13)	0.0307	0.11				
H13	0.6536	0.1964	0.0959	0.053*	0.0307	0.11				
C14	0.5652 (7)	0.3400 (5)	0.1332 (5)	0.077 (2)	0.0307	0.11				
H14A	0.5271	0.4103	0.0971	0.093*	0.0307	0.11				
H14B	0.6573	0.3508	0.1538	0.093*	0.0307	0.11				
H14C	0.4857	0.3075	0.1957	0.093*	0.0307	0.11				
C15	0.7247 (7)	0.3167 (5)	-0.0404 (5)	0.075 (2)	0.0307	0.11				
H15A	0.7432	0.2709	-0.0898	0.090*	0.0307	0.11				
H15B	0.8208	0.3241	-0.0229	0.090*	0.0307	0.11				
H15C	0.6863	0.3887	-0.0723	0.090*	0.0307	0.11				
C16	0.3330 (5)	-0.2203 (3)	0.5594 (3)	0.0246 (10)	0.0307	0.11				
H16	0.4198	-0.2602	0.5785	0.030*	0.0307	0.11				
C17	0.1796 (5)	-0.0909 (3)	0.5136 (4)	0.0300 (11)	0.0307	0.11				
H17	0.1374	-0.0196	0.4938	0.036*	0.0307	0.11				
C18	0.1090 (5)	-0.1837 (3)	0.5234 (3)	0.0312 (11)	0.0307	0.11				
H18	0.0113	-0.1899	0.5123	0.037*	0.0307	0.11				
C19	0.1856 (5)	-0.3798 (3)	0.5707 (3)	0.0255 (10)	0.0307	0.11				
Atomic displacement parameters (Å²)										

	U^{ij}									
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}				
Fe1	0.0196 (5)	0.0193 (5)	0.0200 (5)	-0.0042 (4)	-0.0058 (4)	-0.0044 (4)				
Br1	0.0234 (3)	0.0243 (3)	0.0308 (3)	0.0020 (2)	-0.0083 (2)	-0.0093 (2)				
N1	0.022 (2)	0.026 (2)	0.021 (2)	0.0000 (16)	-0.0046 (17)	-0.0062 (16)				
N2	0.031 (2)	0.029 (2)	0.018 (2)	-0.0003 (17)	-0.0067 (17)	-0.0041 (16)				
N3	0.018 (2)	0.0173 (19)	0.024 (2)	-0.0015 (15)	-0.0029 (16)	-0.0046 (15)				
N4	0.021 (2)	0.022 (2)	0.027 (2)	-0.0030 (16)	-0.0038 (17)	-0.0052 (16)				
C1	0.031 (3)	0.026 (3)	0.024 (3)	0.001 (2)	-0.007 (2)	-0.011 (2)				
C2	0.037 (3)	0.038 (3)	0.030 (3)	0.007 (2)	-0.009 (2)	-0.008 (2)				
C3	0.044 (3)	0.035 (3)	0.029 (3)	0.012 (2)	-0.008 (2)	-0.013 (2)				
C4	0.038 (3)	0.029 (3)	0.020 (3)	0.005 (2)	-0.007 (2)	-0.010 (2)				
C5	0.038 (3)	0.034 (3)	0.021 (3)	0.000 (2)	-0.010 (2)	-0.007 (2)				
C6	0.042 (3)	0.059 (3)	0.033 (3)	0.007 (3)	-0.016 (3)	-0.018 (3)				
C7	0.062 (4)	0.044 (3)	0.025 (3)	0.016 (3)	-0.014 (3)	-0.003 (2)				
C8	0.055 (4)	0.045 (3)	0.025 (3)	0.002 (3)	-0.005 (3)	0.002 (2)				
C9	0.035 (3)	0.036 (3)	0.025 (3)	0.003 (2)	-0.003 (2)	-0.006 (2)				
C10	0.044 (3)	0.047 (3)	0.040 (3)	-0.011 (3)	-0.016 (3)	-0.008 (3)				
Geometric parameters (Å, °)

Fe1—N3	2.161 (3)	C12B—H12D	0.9800			
Fe1—N3	2.161 (3)	C12B—H12E	0.9800			
Fe1—N1	2.190 (3)	C12B—H12F	0.9800			
Fe1—N1	2.190 (3)	C13—C14	1.528 (7)			
Fe1—Br1	2.7040 (5)	C13—C15	1.534 (7)			
Fe1—Br1	2.7040 (5)	C13—H13	1.0000			
N1—C1	1.300 (5)	C14—H14A	0.9800			
N1—C2	1.377 (5)	C14—H14B	0.9800			
N2—C1	1.354 (5)	C14—H14C	0.9800			
N2—C3	1.360 (5)	C15—H15A	0.9800			
N2—C4	1.442 (5)	C15—H15B	0.9800			
N3—C16	1.309 (5)	C15—H15C	0.9800			
N3—C17	1.370 (5)	C16—H16	0.9500			
N4—C16	1.346 (5)	C17—C18	1.359 (6)			
N4—C18	1.373 (5)	C17—H17	0.9500			
N4—C19	1.429 (5)	C18—H18	0.9500			
C1—H1	0.9500	C19—C24	1.397 (6)			
C2—C3	1.369 (6)	C19—C20	1.409 (6)			
C2—H2	0.9500	C20—C21	1.381 (6)			
C3—H3	0.9500	C20—C25	1.528 (6)			
C4—C5	1.383 (6)	C21—C22	1.381 (7)			
C4—C9	1.393 (6)	C21—H21	0.9500			
C5—C6	1.396 (6)	C22—C23	1.371 (6)			

Table: Crystallographic parameters

C11A	0.076 (10)	0.50 (8)	0.016 (8)	−0.017 (7)	0.007 (7)
C12A	0.093 (17)	0.046 (11)	0.081 (12)	−0.006 (11)	−0.002 (14)
C11B	0.14 (2)	0.065 (11)	0.060 (15)	−0.045 (13)	0.042 (13)
C12B	0.068 (13)	0.054 (12)	0.061 (9)	−0.006 (8)	−0.006 (10)
C13	0.041 (3)	0.047 (3)	0.037 (3)	−0.011 (3)	−0.003 (3)
C14	0.064 (4)	0.088 (5)	0.088 (5)	−0.039 (4)	0.003 (4)
C15	0.055 (4)	0.084 (5)	0.068 (5)	−0.020 (4)	0.006 (4)
C16	0.017 (2)	0.031 (3)	0.025 (3)	−0.002 (2)	−0.007 (2)
C17	0.021 (3)	0.020 (2)	0.043 (3)	−0.001 (2)	−0.005 (2)
C18	0.028 (3)	0.023 (2)	0.039 (3)	−0.001 (2)	−0.005 (2)
C19	0.023 (2)	0.018 (2)	0.037 (3)	−0.0024 (19)	−0.008 (2)
C20	0.027 (3)	0.026 (3)	0.038 (3)	−0.004 (2)	−0.005 (2)
C21	0.046 (3)	0.038 (3)	0.040 (3)	0.004 (3)	−0.003 (3)
C22	0.055 (4)	0.027 (3)	0.058 (4)	−0.008 (3)	0.001 (3)
C23	0.048 (3)	0.026 (3)	0.047 (3)	−0.014 (2)	0.011 (3)
C24	0.030 (3)	0.018 (2)	0.040 (3)	−0.002 (2)	−0.002 (2)
C25	0.039 (3)	0.045 (3)	0.034 (3)	−0.007 (2)	−0.004 (2)
C26	0.057 (4)	0.069 (4)	0.040 (3)	0.002 (3)	0.003 (3)
C27	0.046 (4)	0.067 (4)	0.038 (3)	0.005 (3)	0.004 (3)
C28	0.037 (3)	0.024 (2)	0.031 (3)	−0.004 (2)	−0.002 (2)
C29	0.050 (4)	0.053 (3)	0.045 (3)	−0.002 (3)	−0.013 (3)
C30	0.042 (3)	0.053 (3)	0.042 (3)	0.012 (3)	−0.008 (3)
Crystal Structure

Bond	Distance	Angle	Orientation
C5—C10	1.515 (6)		
C6—C7	1.374 (7)		
C6—H6	0.950		
C7—C8	1.366 (7)		
C7—H7	0.950		
C8—C9	1.384 (6)		
C8—H8	0.950		
C9—C13	1.508 (7)		
C10—C12A	1.472 (16)		
C10—C11B	1.492 (17)		
C10—C12B	1.536 (18)		
C10—C11A	1.541 (16)		
C10—H10A	1.000		
C10—H10B	1.000		
C11A—H11A	0.980		
C11A—H11B	0.980		
C11A—H11C	0.980		
C12A—H12A	0.980		
C12A—H12B	0.980		
C12A—H12C	0.980		
C11B—H11D	0.980		
C11B—H11E	0.980		
C11B—H11F	0.980		

Bond Angles (deg)

Bond	Angle	Orientation
N3—Fe1—N3	180.0	
N3—Fe1—N1	93.99 (12)	
N3—Fe1—N1	86.01 (12)	
N3—Fe1—N1	86.01 (12)	
N3—Fe1—N1	93.99 (12)	
N1—Fe1—N1	180.0	
N3—Fe1—Br1	90.60 (8)	
N3—Fe1—Br1	89.40 (8)	
N1—Fe1—Br1	89.70 (8)	
N1—Fe1—Br1	90.30 (8)	
N3—Fe1—Br1	89.40 (8)	
N3—Fe1—Br1	90.60 (8)	
N1—Fe1—Br1	90.30 (8)	
N1—Fe1—Br1	89.70 (8)	
C1—N1—C2	105.3 (3)	
C1—N1—Fe1	124.7 (3)	
C2—N1—Fe1	129.8 (3)	
C1—N2—C3	106.8 (4)	
C1—N2—C4	125.9 (3)	
C3—N2—C4	127.2 (4)	
C16—N3—C17	104.8 (3)	
C16—N3—Fe1	127.3 (3)	
C17—N3—Fe1	126.0 (3)	

Acta Cryst. (2014). E70, 72-76
Bond/Centers	Distance (Å)	Bond/Centers	Distance (Å)
C16—N4—C18	107.1 (3)	N4—C16—H16	123.9
C16—N4—C19	127.6 (3)	C18—C17—N3	110.8 (4)
C18—N4—C19	125.3 (4)	C18—C17—H17	124.6
N1—C1—N2	112.4 (4)	N3—C17—H17	124.6
N1—C1—H1	123.8	C17—C18—N4	105.1 (4)
N2—C1—H1	123.8	C17—C18—H18	127.5
C3—C2—N1	109.5 (4)	N4—C18—H18	127.5
C3—C2—H2	125.3	C24—C19—C20	122.3 (4)
N1—C2—H2	125.3	C24—C19—N4	118.7 (4)
N2—C3—C2	106.0 (4)	C20—C19—N4	118.9 (4)
N2—C3—H3	127.0	C21—C20—C19	117.2 (4)
C2—C3—H3	127.0	C21—C20—C25	121.7 (4)
C5—C4—C9	123.8 (4)	C19—C20—C25	121.1 (4)
C5—C4—N2	118.2 (4)	C20—C21—C22	121.2 (4)
C9—C4—N2	118.0 (4)	C20—C21—H21	119.4
C4—C5—C6	117.1 (4)	C22—C21—H21	119.4
C4—C5—C10	122.5 (4)	C23—C22—C21	120.0 (5)
C6—C5—C10	120.3 (5)	C23—C22—H22	120.0
C7—C6—C5	120.4 (5)	C21—C22—H22	120.0
C7—C6—H6	119.8	C22—C23—C24	121.9 (5)
C5—C6—H6	119.8	C22—C23—H23	119.1
C8—C7—C6	120.5 (5)	C24—C23—H23	119.1
C8—C7—H7	119.7	C23—C24—C19	117.3 (4)
C6—C7—H7	119.7	C23—C24—C28	120.8 (4)
C7—C8—C9	122.0 (5)	C19—C24—C28	121.9 (4)
C7—C8—H8	119.0	C26—C25—C27	110.5 (4)
C9—C8—H8	119.0	C26—C25—C20	111.9 (4)
C8—C9—C4	116.1 (5)	C27—C25—C20	112.3 (4)
C4—C9—C13	122.5 (5)	C26—C25—H25	107.3
C12A—C10—C5	121.4 (4)	C27—C25—H25	107.3
C12B—C10—C5	121.4 (10)	C20—C25—H25	107.3
C11B—C10—C5	108.1 (10)	C25—C26—H26A	109.5
C11B—C10—C12B	86.9 (11)	C25—C26—H26B	109.5
C5—C10—C12B	113.7 (10)	H26A—C26—H26B	109.5
C12A—C10—C11A	129.6 (13)	C25—C26—H26C	109.5
C5—C10—C11A	112.4 (9)	H26A—C26—H26C	109.5
C12A—C10—H10A	97.7	H26B—C26—H26C	109.5
C5—C10—H10A	97.7	C25—C27—H27C	109.5
C11A—C10—H10A	97.7	C25—C27—H27B	109.5
C11B—C10—H10B	115.0	H27C—C27—H27B	109.5
C5—C10—H10B	115.0	C25—C27—H27A	109.5
C12B—C10—H10B	115.0	H27C—C27—H27A	109.5
C10—C11A—H11A	109.5	H27B—C27—H27A	109.5
C10—C11A—H11B	109.5	C30—C28—C29	110.3 (4)
H11A—C11A—H11B	109.5	C30—C28—C24	110.4 (4)
C10—C11A—H11C	109.5	C29—C28—C24	112.0 (4)
H11A—C11A—H11C	109.5	C30—C28—H28	108.0
H11B—C11A—H11C	109.5	C29—C28—H28	108.0
C10—C12A—H12A 109.5
C10—C12A—H12B 109.5
H12A—C12A—H12B 109.5
C10—C12A—H12C 109.5
H12A—C12A—H12C 109.5
H12B—C12A—H12C 109.5
C10—C11B—H11D 109.5
C10—C11B—H11E 109.5
H11D—C11B—H11E 109.5
C10—C11B—H11F 109.5
H11D—C11B—H11F 109.5
H11E—C11B—H11F 109.5
C10—C12B—H12D 109.5
C10—C12B—H12E 109.5
C2—N1—C1—N2 −0.1 (5)
Fe1—N1—C1—N2 −175.1 (3)
C3—N2—C1—N1 0.1 (5)
C4—N2—C1—N1 −176.3 (4)
C1—N1—C2—C3 0.0 (5)
Fe1—N1—C2—C3 174.7 (3)
C1—N2—C3—C2 −0.1 (5)
C4—N2—C3—C2 176.2 (4)
N1—C2—C3—N2 0.0 (6)
C1—N2—C3—C2 −94.1 (5)
C3—N2—C4—C5 90.3 (6)
C1—N2—C4—C5 83.6 (6)
C3—N2—C4—C5 −92.0 (5)
C9—C4—C5—C6 2.8 (7)
C9—C4—C5—C6 −175.2 (4)
N2—C4—C5—C6 −179.7 (4)
C9—C4—C5—C10 2.3 (6)
N2—C4—C5—C10 −175.2 (4)
C4—C5—C6—C7 −0.2 (6)
C4—C5—C6—C7 177.8 (4)
C5—C6—C7—C8 −1.8 (7)
C6—C7—C8—C9 1.4 (8)
C7—C8—C9—C4 1.0 (7)
C7—C8—C9—C13 −176.9 (5)
C5—C4—C9—C8 −3.1 (7)
N2—C4—C9—C8 179.4 (4)
C5—C4—C9—C13 174.7 (4)
N2—C4—C9—C13 −2.8 (6)
C4—C5—C10—C12A −112.3 (9)
C6—C5—C10—C12A 69.8 (9)
C4—C5—C10—C11B 122.2 (9)
C6—C5—C10—C11B −55.7 (10)
C4—C5—C10—C12B −143.2 (7)
C6—C5—C10—C12B 39.0 (8)
C24—C28—H28 108.0
C28—C29—H29A 109.5
C28—C29—H29B 109.5
H29A—C29—H29B 109.5
C28—C29—H29C 109.5
H29A—C29—H29C 109.5
C28—C29—H29C 109.5
H29B—C29—H29C 109.5
C28—C30—H30C 109.5
C28—C30—H30B 109.5
H30C—C30—H30B 109.5
C28—C30—H30A 109.5
H30C—C30—H30A 109.5
C28—C30—H30A 109.5
C8—C9—C13—C15 −38.0 (7)
C4—C9—C13—C15 144.3 (5)
C17—N3—C16—N4 −0.1 (5)
Fe1—N3—C16—N4 −164.9 (3)
C19—N4—C16—N3 0.0 (5)
Fe1—N4—C16—N3 178.8 (4)
C16—N3—C17—C18 0.1 (5)
Fe1—N3—C17—C18 165.2 (3)
N3—C17—C18—N4 −0.1 (5)
C16—N4—C18—C17 0.1 (4)
C19—N4—C18—C17 −178.7 (4)
C16—N4—C19—C24 100.9 (5)
C18—N4—C19—C24 −80.5 (5)
C19—N4—C19—C20 100.9 (5)
C16—N4—C19—C20 −77.7 (6)
C18—N4—C19—C20 100.9 (5)
C16—N4—C19—C21 3.6 (7)
N4—C19—C20—C21 −177.9 (4)
C24—C19—C20—C25 −176.6 (4)
C4—C19—C20—C25 1.9 (6)
C19—C20—C21—C22 −1.8 (7)
C25—C20—C21—C22 178.4 (5)
C20—C21—C22—C23 0.1 (8)
C21—C22—C23—C24 0.0 (8)
C22—C23—C24—C19 1.7 (8)
C22—C23—C24—C28 179.8 (5)
C20—C19—C24—C23 −3.5 (7)
N4—C19—C24—C23 177.9 (4)
C20—C19—C24—C28 178.3 (4)
N4—C19—C24—C28 −0.2 (6)
C21—C20—C25—C26 103.5 (5)
C19—C20—C25—C26 −76.2 (6)
C21—C20—C25—C27 −21.4 (7)
C19—C20—C25—C27 158.8 (4)
Acta Cryst. (2014). E70, 72-76

supporting information

C4—C5—C10—C11A 91.2 (8) C23—C24—C28—C30 −74.1 (6)
C6—C5—C10—C11A −86.7 (8) C19—C24—C28—C30 104.0 (5)
C8—C9—C13—C14 86.1 (6) C23—C24—C28—C29 49.2 (6)
C4—C9—C13—C14 −91.6 (6) C19—C24—C28—C29 −132.7 (5)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)
Cg3 and Cg4 are the centroids of rings C4–C9 and C19–C24, respectively.

\[\begin{array}{cccc}
D—H···A & D—H & H···A & D···A \\
C1—H1···Br1^i & 0.95 & 2.71 & 3.368 (4) & 127 \\
C2—H2···Br1 & 0.95 & 2.91 & 3.477 (5) & 119 \\
C16—H16···Br1 & 0.95 & 2.81 & 3.373 (4) & 119 \\
C17—H17···Br1^i & 0.95 & 2.91 & 3.484 (4) & 120 \\
C18—H18···Br1^ii & 0.95 & 2.77 & 3.707 (5) & 167 \\
C27—H27A···Cg4^iii & 0.98 & 2.92 & 3.639 (6) & 131 \\
C30—H30C···Cg3^iv & 0.98 & 2.88 & 3.862 (6) & 177 \\
\end{array} \]

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z; (iii) −x+1, −y, −z+1; (iv) −x, −y, −z+1.

(IIb) trans-Dibromidotetrakis[1-(2,6-diisopropylphenyl)-1H-imidazole-κN^3]iron(II) diethyl ether disolvate

Crystal data
[FeBr₂(C₁₅H₂₀N₂)₄]·₂C₄H₁₀O

\[Z = 1 \]
\[F(000) = 676 \]

Triclinic, \(P \)

\[a = 11.6710 (8) \text{ Å} \]
\[b = 12.4758 (9) \text{ Å} \]
\[c = 13.5759 (10) \text{ Å} \]
\[α = 64.464 (5)° \]
\[β = 81.515 (6)° \]
\[γ = 88.982 (6)° \]

\[V = 1761.8 (2) \text{ Å}^³ \]

Data collection

Stoe IPDS 2
diffractometer
Radiation source: fine-focus sealed tube
Plane graphite monochromator
\(ϕ + ω \) scans
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
\(T_{\text{min}} = 0.557, T_{\text{max}} = 0.672 \)

Refinement

Refinement on \(F^2 \)
Least-squares matrix: full
\(R[F^2 > 2σ(F^2)] = 0.031 \)
\(wR(F^2) = 0.077 \)
\(S = 1.03 \)
6374 reflections
378 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
supporting information

where \(P = (F_o^2 + 2F_c^2)/3 \)

\[\Delta \rho_{\text{max}} = 0.44 \text{ e Å}^{-3} \]

\[\Delta \rho_{\text{min}} = -0.37 \text{ e Å}^{-3} \]

Special details

Geometry. All e.s.d.’s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.’s are taken into account individually in the estimation of e.s.d.’s in distances, angles and torsion angles; correlations between e.s.d.’s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.’s is used for estimating e.s.d.’s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

Atom	x	y	z	Uiso/Ueq	Occ. (<1)	
Fe1	0.5000	1.0000	0.5000	0.02343 (9)		
Br1	0.37430 (2)	0.79434 (2)	0.64396 (2)	0.02939 (7)		
N1	0.46601 (13)	1.07022 (14)	0.62346 (13)	0.0270 (3)		
N2	0.48075 (14)	1.18785 (14)	0.70489 (13)	0.0278 (3)		
N3	0.65641 (13)	0.93155 (14)	0.57112 (13)	0.0271 (3)		
N4	0.75321 (13)	0.80847 (14)	0.69892 (13)	0.0277 (3)		
C1	0.50151 (17)	1.17670 (17)	0.60955 (16)	0.0285 (4)		
H1	0.5371	1.2375	0.5410	0.034*		
C2	0.42078 (17)	1.01038 (18)	0.73346 (17)	0.0315 (4)		
H2	0.3885	0.9310	0.7684	0.038*		
C3	0.42911 (18)	1.08153 (18)	0.78454 (17)	0.0330 (4)		
H3	0.4042	1.0619	0.8604	0.040*		
C4	0.51202 (18)	1.29018 (17)	0.72041 (16)	0.0293 (4)		
C5	0.61769 (19)	1.29155 (18)	0.75702 (17)	0.0344 (4)		
C6	0.6449 (2)	1.3901 (2)	0.77407 (19)	0.0437 (5)		
H6	0.7154	1.3940	0.7998	0.052*		
C7	0.5708 (3)	1.4816 (2)	0.75409 (19)	0.0491 (6)		
H7	0.5910	1.5477	0.7664	0.059*		
C8	0.4679 (2)	1.47935 (19)	0.71658 (19)	0.0462 (6)		
H8	0.4186	1.5440	0.7027	0.055*		
C9	0.43549 (19)	1.38246 (18)	0.69876 (17)	0.0355 (5)		
C10	0.7014 (2)	1.1920 (2)	0.7763 (2)	0.0439 (5)		
H10	0.6593	1.1250	0.7725	0.053*		
C11	0.8047 (3)	1.2317 (3)	0.6846 (3)	0.0823 (11)		
H11A	0.8487	1.2969	0.6861	0.099*		
H11B	0.7776	1.2589	0.6131	0.099*		
H11C	0.8547	1.1648	0.6952	0.099*		
C12	0.7368 (4)	1.1444 (4)	0.8904 (3)	0.0943 (13)		
H12C	0.7884	1.0789	0.9003	0.113*		
H12B	0.6674	1.1154	0.9467	0.113*		
H12A	0.7773	1.2081	0.8976	0.113*		
C13	0.3209 (2)	1.3778 (2)	0.6609 (2)	0.0454 (5)		
H13	0.3215	1.3104	0.6396	0.054*		
C14	0.2197 (3)	1.3530 (3)	0.7540 (3)	0.0751 (10)		
H14A	0.2156	1.4191	0.7751	0.090*		
H14B	0.2313	1.2792	0.8180	0.090*		
Atom	x	y	z	Ueq		
------	---------	---------	---------	---------		
H14C	0.1472	1.3448	0.7290	0.090*		
C15	0.3026 (3)	1.4921 (3)	0.5592 (2)	0.0691 (8)		
H15A	0.3672	1.5066	0.4992	0.083*		
H15B	0.2992	1.5595	0.5784	0.083*		
H15C	0.2297	1.4831	0.5351	0.083*		
C16	0.66540 (16)	0.82018 (17)	0.64133 (16)	0.0271 (4)		
H16	0.6160	0.7559	0.6503	0.033*		
C17	0.74340 (17)	0.99506 (18)	0.58507 (18)	0.0339 (4)		
H17	0.7588	1.0786	0.5454	0.041*		
C18	0.80359 (17)	0.92076 (18)	0.66367 (18)	0.0347 (5)		
H18	0.8673	0.9417	0.6892	0.042*		
C19	0.77470 (17)	0.70242 (18)	0.79383 (18)	0.0336 (4)		
H20	0.7010 (2)	0.67551 (19)	0.89322 (19)	0.0395 (5)		
C20	0.7219 (3)	0.5728 (2)	0.9846 (2)	0.0537 (6)		
H21	0.6734	0.5507	1.0537	0.064*		
C22	0.8125 (3)	0.5027 (2)	0.9759 (3)	0.0635 (8)		
H22	0.8257	0.4336	1.0392	0.076*		
C23	0.8837 (2)	0.5320 (2)	0.8765 (3)	0.0563 (7)		
H23	0.9452	0.4826	0.8722	0.068*		
C24	0.86670 (18)	0.6333 (2)	0.7823 (2)	0.0417 (5)		
C25	0.6018 (2)	0.7531 (2)	0.90310 (19)	0.0436 (5)		
H25	0.6034	0.8222	0.8292	0.052*		
C26	0.6170 (3)	0.8022 (3)	0.9863 (2)	0.0613 (7)		
H26A	0.6150	0.7362	1.0598	0.074*		
H26B	0.5540	0.8546	0.9883	0.074*		
H26C	0.6916	0.8474	0.9640	0.074*		
C27	0.4846 (2)	0.6854 (2)	0.9333 (2)	0.0513 (6)		
H27C	0.4228	0.7357	0.9430	0.062*		
H27B	0.4834	0.6129	1.0023	0.062*		
H27A	0.4724	0.6639	0.8740	0.062*		
C28	0.9445 (2)	0.6657 (2)	0.6726 (2)	0.0525 (7)		
H28	0.9153	0.7391	0.6165	0.063*		
C29	0.9413 (3)	0.5689 (3)	0.6332 (3)	0.0709 (8)		
H29A	0.9677	0.4951	0.6878	0.085*		
H29B	0.9924	0.5936	0.5623	0.085*		
H29C	0.8618	0.5555	0.6243	0.085*		
C30	1.0691 (3)	0.6943 (4)	0.6787 (4)	0.0895 (12)		
H30C	1.1168	0.7180	0.6062	0.107*		
H30B	1.1001	0.6237	0.7334	0.107*		
H30A	1.0706	0.7595	0.7006	0.107*		
O1	0.96877 (19)	1.0413 (2)	0.2300 (2)	0.0818 (7)		
C31	0.9192 (4)	1.1111 (4)	0.1369 (4)	0.1043 (14)		
H31A	0.8628	1.1632	0.1541	0.125*		
H31B	0.8777	1.0599	0.1133	0.125*		
C32	1.0118 (4)	1.1834 (5)	0.0486 (4)	0.1199 (18)		
H32A	1.0544	1.2315	0.0737	0.180*		
H32B	0.9780	1.2359	−0.0165	0.180*		
H32C	1.0650	1.1313	0.0294	0.180*		
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
-------	---------	---------	---------	---------	---------	---------
Fe1	0.02406 (18)	0.01970 (18)	0.0303 (2)	0.00385 (13)	−0.00785 (14)	−0.01329 (16)
Br1	0.02990 (11)	0.02252 (10)	0.03696 (12)	0.00061 (7)	−0.00611 (7)	−0.01369 (8)
N1	0.0280 (8)	0.0245 (8)	0.0330 (9)	0.0040 (6)	−0.0080 (6)	−0.0156 (7)
N2	0.0342 (8)	0.0222 (8)	0.0294 (8)	0.0015 (6)	−0.0043 (7)	−0.0135 (7)
N3	0.0247 (8)	0.0249 (8)	0.0330 (9)	0.0024 (6)	−0.0068 (6)	−0.0132 (7)
N4	0.0250 (8)	0.0253 (8)	0.0329 (9)	0.0037 (6)	−0.0086 (6)	−0.0115 (7)
C1	0.0331 (10)	0.0238 (9)	0.0314 (10)	0.0026 (7)	−0.0039 (8)	−0.0149 (8)
C2	0.0347 (10)	0.0243 (10)	0.0351 (11)	−0.0027 (8)	−0.0043 (8)	−0.0125 (8)
C3	0.0412 (11)	0.0268 (10)	0.0301 (10)	−0.0038 (8)	−0.0016 (8)	−0.0125 (9)
C4	0.0423 (11)	0.0216 (9)	0.0262 (10)	−0.0019 (8)	−0.0006 (8)	−0.0135 (8)
C5	0.0438 (11)	0.0286 (10)	0.0300 (10)	−0.0056 (9)	−0.0018 (9)	−0.0128 (9)
C6	0.0598 (14)	0.0357 (12)	0.0372 (12)	−0.0131 (10)	−0.0058 (10)	−0.0173 (10)
C7	0.0852 (19)	0.0279 (11)	0.0364 (12)	−0.0125 (11)	−0.0013 (12)	−0.0179 (10)
C8	0.0772 (17)	0.0226 (10)	0.0358 (12)	0.0077 (10)	0.0014 (11)	−0.0133 (9)
C9	0.0493 (12)	0.0251 (10)	0.0288 (10)	0.0055 (9)	0.0004 (9)	−0.0109 (9)
C10	0.0427 (12)	0.0370 (12)	0.0562 (14)	0.0005 (10)	−0.0146 (11)	−0.0219 (11)
C11	0.0598 (18)	0.062 (2)	0.117 (3)	0.0044 (15)	0.0155 (18)	−0.040 (2)
C12	0.121 (3)	0.090 (3)	0.086 (3)	0.050 (2)	−0.059 (2)	−0.039 (2)
C13	0.0495 (13)	0.0399 (13)	0.0452 (13)	0.0150 (10)	−0.0078 (10)	−0.0173 (11)
C14	0.0509 (16)	0.098 (3)	0.0563 (17)	0.0181 (16)	−0.0052 (13)	−0.0164 (17)
C15	0.082 (2)	0.068 (2)	0.0461 (16)	0.0163 (16)	−0.0181 (14)	−0.0116 (14)
C16	0.0258 (9)	0.0245 (9)	0.0340 (10)	0.0034 (7)	−0.0076 (7)	−0.0145 (8)
C17	0.0312 (10)	0.0255 (10)	0.0435 (12)	−0.0023 (8)	−0.0101 (9)	−0.0119 (9)
C18	0.0289 (10)	0.0306 (11)	0.0454 (12)	−0.0002 (8)	−0.0137 (9)	−0.0146 (9)
C19	0.0340 (10)	0.0260 (10)	0.0394 (11)	0.0025 (8)	−0.0165 (9)	−0.0095 (9)
C20	0.0491 (13)	0.0320 (11)	0.0372 (12)	0.0002 (9)	−0.0137 (10)	−0.0124 (10)
C21	0.0744 (18)	0.0425 (14)	0.0386 (13)	0.0002 (12)	−0.0210 (12)	−0.0084 (11)
C22	0.081 (2)	0.0366 (14)	0.0631 (18)	0.0086 (13)	−0.0413 (16)	−0.0030 (13)
C23	0.0499 (14)	0.0365 (13)	0.078 (2)	0.0128 (11)	−0.0308 (14)	−0.0146 (13)
C24	0.0311 (11)	0.0319 (11)	0.0608 (15)	0.0057 (9)	−0.0182 (10)	−0.0155 (11)
Geometric parameters (Å, °)

Fe1—N3	2.1789 (15)	**C18—H18**				0.9500
Fe1—N3	2.1789 (15)	**C19—C20**				1.397 (3)
Fe1—N1	2.1889 (16)	**C19—C24**				1.399 (3)
Fe1—N1	2.1889 (16)	**C20—C21**				1.396 (3)
Fe1—Br1	2.7422 (3)	**C20—C25**				1.523 (3)
Fe1—Br1	2.7422 (3)	**C21—C22**				1.384 (4)
N1—C1	1.324 (2)	**C21—H21**				0.9500
N1—C2	1.373 (3)	**C22—C23**				1.378 (4)
N2—C1	1.347 (2)	**C22—H22**				0.9500
N2—C3	1.375 (3)	**C23—C24**				1.395 (3)
N2—C4	1.442 (2)	**C23—H23**				0.9500
N3—C16	1.316 (2)	**C24—C28**				1.516 (4)
N3—C17	1.382 (2)	**C25—C27**				1.527 (4)
N4—C16	1.347 (2)	**C25—C26**				1.530 (3)
N4—C18	1.380 (3)	**C25—H25**				1.0000
N4—C19	1.445 (3)	**C26—H26A**				0.9800
C1—H1	0.9500	**C26—H26B**				0.9800
C2—C3	1.354 (3)	**C26—H26C**				0.9800
C2—H2	0.9500	**C27—H27C**				0.9800
C3—H3	0.9500	**C27—H27B**				0.9800
C4—C5	1.399 (3)	**C27—H27A**				0.9800
C4—C9	1.400 (3)	**C28—C29**				1.521 (4)
C5—C6	1.395 (3)	**C28—C30**				1.526 (4)
C5—C10	1.522 (3)	**C28—H28**				1.0000
C6—C7	1.376 (4)	**C29—H29A**				0.9800
C6—H6	0.9500	**C29—H29B**				0.9800
C7—C8	1.376 (4)	**C29—H29C**				0.9800
C7—H7	0.9500	**C30—H30C**				0.9800
C8—C9	1.399 (3)	**C30—H30B**				0.9800
C8—H8	0.9500	**C30—H30A**				0.9800
C9—C13	1.512 (3)	**O1—C31**				1.393 (5)
C10—C11	1.516 (4)	**O1—C33B**				1.416 (9)
Bond	Distance	Bond	Distance			
----------------------	------------	----------------------	------------			
C10—C12	1.519 (4)	O1—C33A	1.539 (9)			
C10—H10	1.0000	C31—C32	1.462 (6)			
C11—H11A	0.9800	C31—H31A	0.9900			
C11—H11B	0.9800	C31—H31B	0.9900			
C11—H11C	0.9800	C32—H32A	0.9800			
C12—H12C	0.9800	C32—H32B	0.9800			
C12—H12B	0.9800	C32—H32C	0.9800			
C12—H12A	0.9800	C33A—C34A	1.473 (14)			
C13—C14	1.525 (4)	C33A—H33A	0.9900			
C13—C15	1.538 (4)	C33A—H33B	0.9900			
C13—H13	1.0000	C33B—C34B	1.433 (14)			
C14—H14A	0.9800	C33B—H33D	0.9900			
C14—H14B	0.9800	C33B—H33E	0.9900			
C14—H14C	0.9800	C34A—H34A	0.9800			
C15—H15A	0.9800	C34A—H34B	0.9800			
C15—H15B	0.9800	C34A—H34C	0.9800			
C15—H15C	0.9800	C34B—H34D	0.9800			
C16—H16	0.9500	C34B—H34E	0.9800			
C17—C18	1.355 (3)	C34B—H34F	0.9800			
C17—H17	0.9500					

N3—Fe1—N3 180.00 (3) C17—C18—N4 105.81 (17)
N3—Fe1—N1 93.88 (6) C17—C18—H18 127.1
N3—Fe1—N1' 86.12 (6) N4—C18—H18 127.1
N3—Fe1—N1'' 86.12 (6) C20—C19—C24 123.7 (2)
N3—Fe1—N1'' 93.88 (6) C20—C19—N4 116.99 (18)
N1—Fe1—N1' 180.00 (6) C24—C19—N4 119.3 (2)
N3—Fe1—Br1 88.74 (4) C21—C20—C24 116.8 (2)
N3—Fe1—Br1' 91.26 (4) C21—C20—C25 120.8 (2)
N1—Fe1—Br1 89.88 (4) C19—C20—C25 122.40 (19)
N1—Fe1—Br1' 90.12 (4) C22—C21—C20 120.9 (3)
N3—Fe1—Br1' 91.26 (4) C22—C21—H21 119.6
N3—Fe1—Br1' 88.74 (4) C20—C21—H21 119.6
N1—Fe1—Br1' 90.12 (4) C23—C22—C21 120.8 (2)
N1—Fe1—Br1' 89.88 (4) C23—C22—H22 119.6
Br1—Fe1—Br1' 180.0 C21—C22—H22 119.6
C1—N1—C2 105.58 (16) C22—C23—C24 120.9 (2)
C1—N1—Fe1 125.49 (13) C22—C23—H23 119.6
C2—N1—Fe1 128.27 (13) C24—C23—H23 119.6
C1—N2—C3 106.83 (16) C23—C24—C19 116.9 (2)
C1—N2—C4 126.10 (16) C23—C24—C28 121.1 (2)
C3—N2—C4 127.01 (16) C19—C24—C28 122.0 (2)
C16—N3—C17 105.29 (16) C20—C25—C27 111.2 (2)
C16—N3—Fe1 123.77 (12) C20—C25—C26 111.3 (2)
C17—N3—Fe1 127.33 (13) C27—C25—C26 110.9 (2)
C16—N4—C18 107.06 (16) C20—C25—H25 107.7
C16—N4—C19 125.48 (16) C27—C25—H25 107.7
C18—N4—C19 126.45 (16) C26—C25—H25 107.7
Bond	Distance (Å)	Angle (°)	
N1—C1—N2	111.41 (17)		
N1—C1—H1	124.3		
N2—C1—H1	124.3		
C3—C2—N1	109.73 (17)		
C3—C2—H2	125.1		
N1—C2—H2	125.1		
C2—C3—N2	106.44 (18)		
C2—C3—H3	126.8		
N2—C3—H3	126.8		
C5—C4—C9	123.38 (18)		
C5—C4—N2	117.93 (17)		
C9—C4—N2	118.68 (18)		
C6—C5—C4	117.0 (2)		
C6—C5—C10	120.6 (2)		
C4—C5—C10	122.40 (18)		
C7—C6—C5	120.8 (2)		
C7—C6—H6	119.6		
C5—C6—H6	119.6		
C6—C7—C8	121.4 (2)		
C6—C7—H7	119.3		
C8—C7—H7	119.3		
C7—C8—C9	120.5 (2)		
C7—C8—H8	119.8		
C9—C8—H8	119.8		
C8—C9—C4	117.0 (2)		
C8—C9—C13	120.7 (2)		
C4—C9—C13	122.26 (19)		
C11—C10—C12	112.6 (3)		
C11—C10—C5	110.5 (2)		
C12—C10—C5	112.1 (2)		
C11—C10—H10	107.1		
C12—C10—H10	107.1		
C5—C10—H10	107.1		
C10—C11—H11A	109.5		
C10—C11—H11B	109.5		
H11A—C11—H11B	109.5		
C10—C11—H11C	109.5		
H11A—C11—H11C	109.5		
H11B—C11—H11C	109.5		
C10—C12—H12C	109.5		
C10—C12—H12B	109.5		
H12C—C12—H12B	109.5		
C10—C12—H12A	109.5		
H12C—C12—H12A	109.5		
C9—C13—C14	111.1 (2)		
C9—C13—C15	112.4 (2)		
C14—C13—C15	110.0 (2)		
Bond	Distance	Angles	Error
-----------------------	----------	----------------------------------	-------
C9—C13—H13	107.7	O1—C33A—H33B	110.3
C14—C13—H13	107.7	H33A—C33A—H33B	108.5
C15—C13—H13	107.7	O1—C33B—C34B	108.2
C13—C14—H14A	109.5	O1—C33B—H33D	110.1
C13—C14—H14B	109.5	C34B—C33B—H33D	110.1
H14A—C14—H14B	109.5	O1—C33B—H33E	110.1
C13—C14—H14C	109.5	C34B—C33B—H33E	110.1
H14A—C14—H14C	109.5	H33D—C33B—H33E	108.4
H14B—C14—H14C	109.5	C33A—C34A—H34A	109.5
C13—C15—H15A	109.5	C33A—C34A—H34B	109.5
C13—C15—H15B	109.5	H34A—C34A—H34B	109.5
H15A—C15—H15B	109.5	C33A—C34A—H34C	109.5
C13—C15—H15C	109.5	H34A—C34A—H34C	109.5
H15A—C15—H15C	109.5	H34B—C34A—H34C	109.5
C3—N1—C1—C2	177.60	C33B—C34B—H34D	109.5
C4—N2—C1—C3	0.2 (2)	N3—C17—C18—N4	0.3 (2)
C1—N1—C2—C3	0.2 (2)	C16—N4—C18—C17	−0.5 (2)
Fe1—N1—C2—C3	171.21 (14)	C19—N4—C18—C17	−169.40 (19)
N1—C2—C3—N2	−0.1 (2)	C16—N4—C19—C20	−74.2 (3)
C1—N2—C3—C2	−0.1 (2)	C18—N4—C19—C20	92.7 (2)
C4—N2—C3—C2	−177.42 (19)	C16—N4—C19—C24	106.0 (2)
C1—N2—C4—C5	−93.7 (2)	C18—N4—C19—C24	−87.0 (3)
C3—N2—C4—C5	83.2 (3)	C24—C19—C20—C21	−0.4 (3)
C1—N2—C4—C9	86.6 (2)	N4—C19—C20—C21	179.86 (19)
C3—N2—C4—C9	−96.5 (2)	C24—C19—C20—C25	179.7 (2)
C9—C4—C5—C6	1.2 (3)	N4—C19—C20—C25	0.0 (3)
N2—C4—C5—C6	−178.47 (18)	C19—C20—C21—C22	0.6 (4)
C9—C4—C5—C10	−177.9 (2)	C25—C20—C21—C22	−179.5 (2)
N2—C4—C5—C10	2.4 (3)	C20—C21—C22—C23	−0.5 (4)
C4—C5—C6—C7	−0.8 (3)	C21—C22—C23—C24	0.3 (4)
C10—C5—C6—C7	178.4 (2)	C22—C23—C24—C19	−0.1 (4)
C5—C6—C7—C8	−0.1 (4)	C22—C23—C24—C28	−179.8 (2)
C6—C7—C8—C9	0.6 (4)	C20—C19—C24—C23	0.2 (3)
C7—C8—C9—C4	−0.2 (3)	N4—C19—C24—C23	179.87 (19)
C7—C8—C9—C13	178.1 (2)	C20—C19—C24—C28	179.9 (2)
C5—C4—C9—C8	−0.8 (3)	N4—C19—C24—C28	−0.4 (3)
N2—C4—C9—C8	178.94 (18)	C21—C20—C25—C27	−63.4 (3)
C5—C4—C9—C13	−179.07 (19)	C19—C20—C25—C27	116.5 (2)

Acta Cryst. (2014). E70, 72-76
N2—C4—C9—C13 0.6 (3) C21—C20—C25—C26 60.8 (3)
C6—C5—C10—C11 −73.6 (3) C19—C20—C25—C26 −119.3 (2)
C4—C5—C10—C11 105.5 (3) C23—C24—C28—C29 59.7 (3)
C6—C5—C10—C12 52.9 (3) C19—C24—C28—C29 −120.0 (3)
C4—C5—C10—C12 −128.0 (3) C23—C24—C28—C30 −64.2 (3)
C8—C9—C13—C14 −72.8 (3) C19—C24—C28—C30 116.1 (3)
C4—C9—C13—C14 105.4 (3) C33B—O1—C31—C32 −174.6 (6)
C8—C9—C13—C15 51.0 (3) C33B—O1—C31—C32 165.9 (6)
C4—C9—C13—C15 −130.8 (2) C31—O1—C33A—C34A 88.5 (8)
C17—N3—C16—N4 −0.3 (2) C33B—O1—C33A—C34A 44.2 (12)
Fe1—N3—C16—N4 0.5 (2) C19—C24—C28—C30 116.1 (7)
C18—N4—C16—N3 0.5 (2) C31—O1—C33B—C34B −46.0 (12)

Symmetry code: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, †)

Cg2 and Cg3 are the centroids of rings N3/N4/C16–C18 and C4–C9, respectively.

D—H···A	D—H	H···A	D···A	D—H···A
C1—H1···Br1i	0.95	2.76	3.399 (2)	125
C2—H2···Br1	0.95	2.89	3.479 (2)	121
C16—H16···Br1	0.95	2.86	3.4119 (18)	118
C17—H17···Br1i	0.95	3.02	3.542 (2)	116
C18—H18···O1ii	0.95	2.40	3.337 (3)	170
C15—H15A···Cg3iii	0.98	2.92	3.801 (3)	150
C25—H25···Cg2	1.00	2.61	3.413 (2)	137
C26—H26A···Cg3iv	0.98	2.87	3.682 (3)	140
C34B—H34E···Cg2v	0.98	2.92	3.627 (9)	130

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+3, −z+1; (iv) −x+1, −y+2, −z+2; (v) x, y, z−4.