Canonical p-dimensions of algebraic groups and degrees of basic polynomial invariants

K. Zainoulline

Abstract

In the present notes we provide a new uniform way to compute a canonical p-dimension of a split algebraic group G for a torsion prime p using degrees of basic polynomial invariants described by V. Kac. As an application, we compute the canonical p-dimensions for all exceptional simple algebraic groups.

The notion of a canonical dimension of an algebraic structure was introduced by Berhuy and Reichstein [1]. For a split algebraic group G and its torsion prime p the canonical p-dimension of G was studied by Karpenko and Merkurjev in [5]. In particular, this invariant was shown to be related with the size of the image of the characteristic map

$$\phi_G : S^*(\hat{T}) \to \text{CH}^*(X),$$

(1)

where \hat{T} is the character group of a maximal split torus T, X is the variety of complete flags and S^* stands for the symmetric algebra. Namely, one has the following formula for the canonical p-dimension of a group G

$$\text{cd}_p(G) = \min\{i \mid \overline{\text{Ch}}_i(X) \neq 0\},$$

(2)

where $\overline{\text{Ch}}_i(X)$ stands for the image of ϕ_G in the modulo p Chow group $\text{Ch}(X) = \text{CH}(X)/p \cdot \text{CH}(X)$ (see [5, Theorem 6.9]). Using this remarkable fact together with the explicit description of the image $R_p = \overline{\text{Ch}}(X)$ Karpenko and Merkurjev computed the canonical p-dimensions for all classical algebraic groups G (see [5, Section 8]).

The goal of the present notes is to relate the work by V. Kac [4] devoted to the study of the p-torsion part of the cohomology ring of an algebraic
group G with the canonical p-dimensions of G, hence, providing a different and uniform approach of computing those invariants. As a consequence, we compute canonical p-dimensions for all exceptional algebraic groups, hence, completing the computations started in [5].

Theorem 1. Let G be a split simple algebraic group of rank n and p be an odd torsion prime. Then

$$cd_p(G) = N + n - (d_{1,p} + d_{2,p} + \ldots + d_{n,p}),$$

where N stands for the number of positive roots of G and integers $d_{1,p}, \ldots, d_{n,p}$ are the degrees of basic polynomial invariants modulo p.

Proof. Consider the characteristic map (1) modulo p

$$(\phi_G)_p: S^*(\hat{T}) \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z} \to \text{Ch}^*(X)$$

According to [7, Cor. 3.9.(ii)] the kernel of this map I_p is generated by a regular sequence of n homogeneous polynomials of degrees $d_{1,p}, \ldots, d_{n,p}$.

Recall that a Poincare polynomial $P(A, t)$ for a graded module M over a field k is defined to be $\sum_i \dim_k M^i \cdot t^i$ (see [8]). Hence, the Poincare polynomial for the $\mathbb{Z}/p\mathbb{Z}$-module R_p is equal to

$$P(R_p, t) = \prod_{i=1}^{n} \frac{1 - t^{d_{i,p}}}{1 - t}.$$

Indeed, we identify R_p with the quotient of the polynomial ring in n variables $\mathbb{Z}/p\mathbb{Z}[\omega_1, \ldots, \omega_n]$ modulo the ideal I_p. The formula (4) then follows immediately by [6, Cor. 3.3].

According to (2) the canonical p-dimension is equal to the difference

$$\dim(X) - \deg P(R_p, t) = N - \sum_{i=1}^{n}(d_{i,p} - 1).$$

Remark 2. The fact that the ideal I_p is generated by a regular sequence of elements was extensively used in [4]. Unfortunately, the original proof of it (provided in [4]) contains a mistake. Another proof of this fact which works only for odd torsion primes can be found in [7].

The next theorem relates $cd_p(G)$ with the Chow group of G modulo p.

Theorem 3. Let G be a split simple group and p be its torsion prime. Then

$$cd_p(G) = \max\{i \mid \text{Ch}^i(G) \neq 0\}$$
Proof. It is known that \(\text{Ch}(G) = \text{Ch}(X)/J_p \) (see [2]), where \(J_p \) is the ideal generated by the non-constant part of \(R_p \). Since \(\text{Ch}(X) \) is a free \(R_p \)-module (see [4, Appendix]), we have \(P(\text{Ch}(X)/J_p, t) \cdot P(R_p, t) = P(\text{Ch}(X), t) \) and, hence, for the degrees \(\deg(P(\text{Ch}(G), t)) + \deg(P(R_p, t)) = \dim(X) \). The proof is completed since \(\deg(P(R_p, t)) = \dim(X) - \text{cd}_p(G) \). \(\square \)

Corollary 4. Let \(d_1, d_2, \ldots, d_r \) be the set of \(p \)-exceptional degrees (introduced in [4, Thm. 3]) for a group \(G \) and its odd torsion prime \(p \). Then the canonical \(p \)-dimension of \(G \) is equal to the sum

\[
\text{cd}_p(G) = \sum_{i=1}^{r} d'_i \cdot (p^{k_i} - 1),
\]

where the integers \(d'_i \) and \(p^{k_i} \) are the factors of the decompositions \(d_i = d'_i \cdot p^{k_i}, \) \(p \nmid d'_i \).

Proof. Follows by the last isomorphism of [4, Theorem 3.(ii)]. \(\square \)

Corollary 5. We obtain the following values for the canonical \(p \)-dimensions of groups of types \(F_4, E_6, E_7 \) and \(E_8 \) (here \(G^{sc} \) and \(G^{ad} \) stand for the simply-connected and adjoint forms of a group \(G \))

\begin{align*}
\text{cd}_2 F_4 &= 3, & \text{cd}_3 F_4 &= 8 \\
\text{cd}_2 E_6 &= 3, & \text{cd}_3 E_6^{sc} &= 8, & \text{cd}_3 E_6^{ad} &= 16 \\
\text{cd}_2 E_7^{sc} &= 17, & \text{cd}_2 E_7^{ad} &= 18 & \text{cd}_3 E_7 &= 8 \\
\text{cd}_2 E_8 &= 60, & \text{cd}_3 E_8 &= 28 & \text{cd}_5 E_8 &= 24
\end{align*}

Proof. The case of odd torsion primes follows immediately by Theorem 1 or Corollary 4 and Table 2 of [4].

The case \(p = 2 \) can be computed using Theorem 3 as follows. Consider the canonical map \(\pi : G \to X \). Note that the Chow group \(\text{Ch}(G) \) can be identified with the image \(\text{Im} \pi^* \) of the induced pull-back (see [2]). According to [3, Thm. 1.1 and Lem. 1.3], the cohomology ring of \(G \) can be represented as the tensor product of two algebras

\[
H(G; \mathbb{Z}/p\mathbb{Z}) \cong \text{Im} \pi^* \otimes \Delta(a_1, \ldots, a_n),
\]

where each \(a_i \) is of odd degree, all elements of \(\text{Im} \pi^* \) are of even degree and \(\Delta(a_1, \ldots, a_n) \) denotes the submodule spanned by the simple monomials \(a_1^{\epsilon_1}, \ldots, a_n^{\epsilon_n} (\epsilon_i = 0 \text{ or } 1) \) which are linearly independent. Knowing this
representation and the cohomology ring of G, one immediately obtains

$$cd_p(G) = \frac{1}{2}(\deg P(H(G; \mathbb{Z}/p\mathbb{Z}), t) - \sum_{i=1}^{n} \deg(a_i)).$$

To finish the proof observe that the cohomology ring of an exceptional algebraic group modulo 2 and degrees of the elements a_i can be found in the literature (see the references of paper [3]).

Acknowledgements. I am grateful to Burt Totaro and Larry Smith for very useful comments concerning paper [4].

References

[1] Berhuy, G., Reichstein, Z. On the notion of canonical dimension for algebraic groups. Advances in Math., in press, doi: 10.1016/j.aim.2004.12.004.

[2] Grothendieck, A., Torsion homologique et sections rationnelles in *Anneaux de Chow et applications*, Séminaire C. Chevalley 2, 1958.

[3] Ishitoya, K., Kono, A., Toda, H. Hopf Algebra Structure of mod 2 Cohomology of Simple Lie Groups. *Publ. RIMS, Kyoto Univ.*, 12 (1976), 141–167.

[4] Kac, V. Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups. *Invent. Math.* 80 (1985), 69–79.

[5] Karpenko, N., Merkurjev, A. Canonical p-dimension of algebraic groups. Advances in Math., in press, doi: 10.1016/j.aim.2005.07.013.

[6] Stanley, R. Hilbert functions of graded algebras. *Advances in Math.* 28 (1978), 57–83.

[7] Neumann, F., Neusel, M., Smith, L. Rings of generalized and stable invariants and classifying spaces of compact Lie groups in *Higher homotopy structures in top. and math. physics (Poughkeepsie, NY, 1996)*, Contemp. Math., 227 (1999), 267–285.