Identification of Fibroblast Growth Factor Receptor 3 (FGFR3) as a Protein Receptor for Botulinum Neurotoxin Serotype A (BoNT/A)

Birgitte P. S. Jacky1, Patton E. Garay1, Jérôme Dupuy2*, Jeremy B. Nelson1, Brian Cai1, Yanira Molina1, Joanne Wang1, Lance E. Steward1, Ron S. Broide1, Joseph Francis1, K. Roger Aoki1, Raymond C. Stevens2, Ester Fernández-Salas1*

1 Allergan, Department of Biological Sciences, Irvine, California, United States of America, 2 The Scripps Research Institute, Department of Molecular Biology, La Jolla, California, United States of America

Abstract

Botulinum neurotoxin serotype A (BoNT/A) causes transient muscle paralysis by entering motor nerve terminals (MNTs) where it cleaves the SNARE protein Synaptosomal-associated protein 25 (SNAP25) to yield SNAP25197. Cleavage of SNAP25 results in blockage of synaptic vesicle fusion and inhibition of the release of acetylcholine. The specific uptake of BoNT/A into pre-synaptic nerve terminals is a tightly controlled multistep process, involving a combination of high and low affinity receptors. Interestingly, the C-terminal binding domain region of BoNT/A, Hc/A, is homologous to fibroblast growth factors (FGFs), making it a possible ligand for Fibroblast Growth Factor Receptors (FGFRs). Here we present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3) as a high affinity receptor for BoNT/A in neuronal cells. Hc/A binds with high affinity to the two extra-cellular loops of FGFR3 and acts similar to an agonist ligand for FGFR3, resulting in phosphorylation of the receptor. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete for binding to FGFR3 and block BoNT/A cellular uptake. These findings show that FGFR3 plays a pivotal role in the specific uptake of BoNT/A across the cell membrane being part of a larger receptor complex involving ganglioside- and protein-protein interactions.

Introduction

Botulinum neurotoxin serotype A (BoNT/A) is produced by Clostridium botulinum and is a member of the Clostridial neurotoxin family that includes BoNT/A-G and Tetanus neurotoxin (TeNT). BoNT/A causes transient muscle paralysis by entering motor nerve terminals (MNTs) where it cleaves nine amino acids from the C-terminus of the soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein SNAP25 (SNAP25206) to yield SNAP25197 [1]. Intact SNAP25 is required for neurotransmitter release and cleavage of SNAP25 disrupts exocytosis, which blocks neurotransmitter release [2–5]. BoNT/A has become a useful pharmacological and biological tool. Because of its high potency and specificity for pre-synaptic nerve terminals, BoNT/A at picomolar concentrations, is used to treat a wide range of neuromuscular disorders [6–8], pain disorders including migraine [9], and excessive sweating [10]. The key to the exceptional specificity of BoNT/A is believed to be the mechanism of uptake across the presynaptic membrane of neurons that involves a combination of low and high affinity interactions known as the double receptor model [11–13].

The low affinity receptor for BoNT/A is the ganglioside GT1b with a binding pocket within the C-terminal portion of the receptor binding domain [12,14,15]. According to the APR receptor model [13], an array of presynaptic receptors (APRs), clustered in microdomains at the presynaptic membrane, are responsible for specific uptake of neurotoxins, including BoNT/A. It is the binding to high density ganglioside GT1b that mediates the initial binding step and via a low affinity interaction concentrates BoNT/A on the cell surface. GT1b has been shown to bind BoNT/A with a KD~200 nM in vitro [16]. Once anchored in the membrane, lateral movements within the plasma membrane facilitate intermolecular interaction of BoNT/A with additional lower density but higher affinity protein receptors, including the three isoforms of Synaptic Vesicle (SV) glycoprotein 2, SV2A (ENSG00000159164), B (ENSG00000185318) and C (ENSG00000122012) that are exposed on the outer plasma membrane after fusion of synaptic vesicles to the presynaptic membrane [17–22]. BoNT/A specifically recognizes the fourth luminal domain (LD4) of SV2 [17,18]. The specific sequence in the BoNT/A binding domain that interacts with SV2 has not been identified [23]. Glycosylated SV2A, B, and C have also been

* E-mail: fernandez_ester@allergan.com
** Current address: Institut de Biologie Structurale, Université Grenoble I, Grenoble, France.
FGFR3 Is a Functional Protein Receptor for BoNT/A

Author Summary

Botulinum neurotoxin serotype A (BoNT/A) is one of seven neurotoxins (BoNT/A-G), produced by the bacteria Clostridium botulinum that are both poisons and versatile therapeutics. These toxins enter motor neurons where they prevent the release of acetylcholine at the neuromuscular junction. The specific uptake of BoNT/A across the neuronal cell membrane is dependent on specific receptor interactions. Binding to high density ganglioside GT1b mediates the initial binding step and via a low affinity interaction concentrates BoNT/A on the cell surface. Once anchored in the membrane, lateral movements within the plasma membrane facilitate intermolecular interactions of BoNT/A with additional lower density but higher affinity protein receptors. Here we present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3) as a high affinity receptor for BoNT/A. We show that BoNT/A binds to FGFR3 with high affinity and functions as an agonist ligand for FGFR3. The identification of this novel receptor for BoNT/A represents an important advance in the understanding of the mechanism of action of BoNT/A, especially on the initial steps of neuronal uptake, and can be the basis for the development of new specific countermeasures and new BoNT/A-based therapeutics.

Highlights

- Recombinant Hc/A binds to the two extra-cellular loops of FGFR3b with a Kd~15 nM.
- Recombinant Hc/A acts as an agonist ligand for FGFR3.
- The level of BoNT/A uptake is dependent on FGFR3 expression.
- FGFR3 is expressed in motor nerve terminals.

Identified as receptors for BoNT/F [22,24] and glycosylated SV2A and B have been identified as receptors for BoNT/E [20]. BoNT/D was reported to enter neurons via two ganglioside binding sites, one site at a position previously identified in BoNT/A, B, E, F, and G, and the other site resembling the second ganglioside-binding pocket of TeNT [25]. Recently, BoNT/D has also been shown to use SV2 (all three isoforms) to enter hippocampal neurons, but BoNT/D bound SV2 via a mechanism distinct from BoNT/A and E [26]. Surprisingly, SV2A and SV2B have also been reported to mediate binding and entry of TeNT into central neurons [27].

Analysis of the first crystallographic structure of BoNT/A revealed a ganglioside binding site with structural homology to that within TeNT [28,29](Figure 1A). A potential protein binding site was also identified with structural homology to basic fibroblast growth factor (FGFb or FGF2; ENSG00000138685), agglutinin, and the toxin abrin. The report of a potential FGFb protein binding site within BoNT/A served as the basis for the identification of FGFR3 (Fibroblast Growth Factor Receptor 3, ENSG00000138685) as a receptor for BoNT/A. FGFR3 [30,31] is one of four receptor-tyrosine kinases (FGFR1–4) that act as receptors for FGFs. FGFRs are composed of an extra-cellular ligand-binding domain consisting of three immunoglobulin-like loops (L1–L3), a transmembrane domain, and a split cytoplasmic tyrosine kinase domain. FGFRs are activated by dimerization induced by ligand binding that enables the cytoplasmic kinase domains to transphosphorylate one another at specific tyrosine residues [32–35]. FGFR1–3, but not FGFR4, exist in three different splice variants that differ in the C-terminal half of L3 and determine their individual ligand affinity and specificity. The splice variants are referred to as “a”, “b”, and “c” [36–39]. The “b” and “c” variants are expressed on the cell surface, while the “a” splice variant, which lacks the transmembrane domain [40], becomes a secreted extra-cellular FGF-binding protein [41]. Among the 22 known FGFs, FGFI (ENSG00000138685), members of the subfamilies FGF8 (FGF8, 17, 18) and FGF9 (FGF9; ENSG00000102678, 16, 20) have been shown to function as ligands for both FGFR3b and c but with different levels of affinity. FG2, and the subfamilies FGF4 (FGF4, 5, 6) and FGF19 (FGF19, 21, 23) have been shown to function as ligands for FGFR3c [39,42]. Moreover, FGFs bind their receptors in the presence of one or more low affinity co-factors including heparin sulfate (HS), gangliosides, neuropilin-1, Klotho, and anosmin that function to modulate receptor activity [43–48].

The studies presented in this manuscript identify FGFR3 expressed in motor neurons at MNTs as a functional protein receptor for BoNT/A. The C-terminal binding domain of BoNT/A, Hc/A, binds to the second and third extra-cellular ligand binding domain of FGFR3 and results in the phosphorylation of FGFR3. It is demonstrated that cellular uptake of BoNT/A is dependent on the level of FGFR3 expression. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete for binding to FGFR3 and block BoNT/A uptake in a cell-based assay. Moreover, peptides derived from the FGFR3 subtype b and c extra-cellular domain block BoNT/A uptake in neuronal cells. Both FGFR3 subtype b and c bind to rHc/A, but FGFR3b has the highest affinity with a Kd~15 nM in vitro. These data suggest that FGFR3 is a potential high affinity component of a receptor complex for BoNT/A on the presynaptic membrane.

Results

Identification of FGFR3 as a functional receptor for BoNT/A

Analysis of the BoNT/A crystal structure (Figure 1A) revealed that the Hc/A subdomain has structural homology to basic fibroblast growth factor (FGF) [28]. To investigate the interaction of BoNT/A and FGFs, pull-down assays were performed with Neuro-2a and PC-12 cell lines that have been shown to take up BoNT/A with high efficacy after differentiation by serum starvation and trophic factors, and Nerve Growth Factor (NGF) for PC-12 cells [49,50]. Figure S1A shows a representative experiment of how differentiation increases BoNT/A uptake in PC-12 cells. BoNT/A uptake was determined by treatment of cells with BoNT/A, followed by incubation and Western blot analysis of the SNAP25197 cleavage product. After optimization of differentiation and treatment conditions, differentiated Neuro-2a and PC-12 cells were treated with BoNT/A and EG29 values of 60±5 pM and 47.1±13 pM, respectively were determined (Figure S1B).

A complex containing BoNT/A and its receptor was isolated using three alternative pull-down methods, the results from two of these methods are shown here. First, Sulfo-SBED BoNT/A was used in a biotin transfer experiment to pull down the receptor from intact Neuro-2a cells. Antibodies against FGFR3 detected a band of the correct molecular weight for FGFR3 as part of a 250 kDa complex with BoNT/A. Figure S1C, D, and E demonstrate that a 250 kDa protein complex was isolated and that specific bands for FGFR3 within this complex could be detected using antibodies specific to BoNT/A or FGFR3. Second, a complex containing both BoNT/A and FGFR3 was isolated from Neuro-2a cells treated with biotin labeled BoNT/A and the cross linking reagent Bis(Sulfosuccinimidyl) suberate (data not shown). Finally, the recombinant binding domain of BoNT/A, His-Hc/A, was used to pull down FGFR3 from differentiated PC-12 cell lysates without the use of cross-linking reagents, demonstrating a strong interaction (Figure 1B).
Having identified FGFR3 as a binding partner for BoNT/A, we investigated the role of FGFR3 as a functional receptor for BoNT/A. Competition experiments utilizing native ligands for FGFR3; FGF1, FGF2, and FGF9 [39,42], demonstrated that these ligands competed for binding to FGFR3 and blocked BoNT/A uptake in a cell-based assay with differentiated Neuro-2a cells (Figure 1C–D). rHC/A, was used as a positive control and produced a strong blockade of BoNT/A uptake. As a negative control, FGF10 (ENSG00000070193), which is not a ligand for FGFR3, but closely related to the other FGF ligands tested, was used. Pre-incubation transfer to pull down the receptor from intact Neuro-2a cells are shown in Figure S1C, D, and E. (C) BoNT/A cell-based competition assay demonstrating that native ligands for FGFR3; FGF1, FGF2, and FGF9 were able to compete with BoNT/A for binding to the receptor. Neuro-2a cells were pre-treated for 30 min with increasing concentrations of FGF1, FGF2, FGF9 (native ligands for FGFR3) or FGF10 (not a ligand for FGFR3, negative control) before treatment with 1 nM BoNT/A. In parallel, cells were incubated with rHC/A (positive control). SNAP25 cleavage, as a measure for BoNT/A uptake and activity, was decreased when cells were pre-incubated with rHC/A, FGF1, FGF2, or FGF9. No decrease was observed after pre-incubation with FGF10. Data from a minimum of 4 experiments are included. (D) The data was fitted to a non-linear exponential decay model; Y = 100*e^-CC*log(concentration). As a measure for competition, the Competition Constant (CC) and standard error (SE) for each competitor are shown. The three native ligands for FGFR3; FGF1, FGF2, and FGF9 competed equally well. There was no significant difference between the CC values of FGF1, FGF2, and FGF9, P-value = 0.2354. The CC value for FGF10 was significant lower than the other CC values, P-value = 0.0011, and the CC value for rHC/A was higher than the other CC values, P-value = 0.0069. (E–F) Immunoprecipitation (IP) and Western Blot assay, using anti-phosphotyrosine conjugated beads to capture phosphorylated proteins and Anti-FGFR3 to identify and visualize FGFR3 among these captured phosphorylated proteins. The IP was performed with cells that were either kept untreated (negative control) (E: Lane 1), or treated, for 10 minutes, with either 0.5 (E: Lane 2) or 50 nM (E: Lane 3) FGF2 (positive control), or 0.5 (E: Lane 4) or 50 nM (E: Lane 5) rHC/A. (F) Graphic presentation of the calculated Western blot band intensities. An increase in phosphorylated FGFR3, ~30-fold, was observed after treatment with either FGF2 (Light grey) or rHC/A (Black), compared to the untreated control (Gray). There was no difference in phosphorylated FGFR3 between the 0.5 and 50 nM concentration of either FGF2 or rHC/A.

doi:10.1371/journal.ppat.1003369.g001

Having identified FGFR3 as a binding partner for BoNT/A, we investigated the role of FGFR3 as a functional receptor for BoNT/A. Competition experiments utilizing native ligands for FGFR3; FGF1, FGF2, and FGF9 [39,42], demonstrated that these ligands competed for binding to FGFR3 and blocked BoNT/A uptake in a cell-based assay with differentiated Neuro-2a cells (Figure 1C–D). rHC/A, was used as a positive control and produced a strong blockade of BoNT/A uptake. As a negative control, FGF10 (ENSG00000070195), which is not a ligand for FGFR3, but closely related to the other FGF ligands tested, was used. Pre-incubation
FGFR3b Loop 2,3 binds to rHC/A with high affinity

The ligand binding site for FGFR3 has been identified as the second and third extra-cellular loops of FGFR3 (Figure 2A) [39,51,52]. To further verify the functional role of FGFR3 as a receptor for BoNT/A, we demonstrated that pre-incubation of BoNT/A with a peptide spanning the second and third extra-cellular loops of FGFR3 (FGFR3b Loop 2,3) inhibited BoNT/A uptake presumably via binding to the receptor binding domain of BoNT/A (Figure 2C). Inhibition, although to a lesser extent, was also observed using the peptide spanning the luminal domain (LD4) of SV2C, SV2C29–579 (Figure 2C). SV2C29–579 (Figure 2B) has previously been reported as the minimal peptide region for binding to BoNT/A [17]. As a positive control for inhibition, BoNT/A was pre-incubated with a neutralizing monoclonal antibody directed to the binding domain of BoNT/A, Anti-HC/A. As a negative control, Synaptotagmin II (aa1–20, Syt II1–20), the faster association, k_a is estimated to be 10 times higher for the binding affinity of the two receptor surrogate peptides, 1/Ms, k_d = 2.47E-04 1/s (Figure 3A,C). The difference in affinity than SV2C529–579 (Figure 2D).

In order to compare the binding affinity of FGFR3b Loop 2,3 to rHC/A to the binding affinity of native ligands for FGFR3, the binding affinity of FGFR3b Loop 2,3 to FGF2 and FGF9 was also measured in the SPR binding assay. FGFR3b Loop 2,3 bound to FGF2 with an average K_D = 12.3±4 nM, n = 3, k_a = 1.65E+04 1/Ms, k_d = 1.59E-04 1/s. FGFR3b Loop 2,3 bound to FGF9 with an average K_D = 31.2±1 nM, n = 3, k_a = 2.92E+03 1/Ms, k_d = 9.25E-05 1/s (Figure 3C-E).

Having identified rHC/A as an agonist ligand for FGFR3 (Figure 1E-F) and shown that rHC/A binds to FGFR3b Loop 2,3 in vitro with similar affinity as native ligands for FGFR3, we evaluated if FGFR3 would facilitate uptake of rHC/A and native ligands in a similar fashion. We utilized HEK 293 cells as a model system, because they express FGFR3 but no measurable levels of any of the SV2 isoforms (Figure S1G). Consequently, uptake of rHC/A via SV2 should be absent in these cells. HEK 293 cells do not express SNARES and therefore SNAP25 cleavage could not be used as a measure for BoNT/A uptake. Instead, uptake was measured as an increase in intracellular fluorescence after addition of fluorescently labeled rHC/A or FGF2, a native ligand for FGFR3. The results showed slightly less uptake of rHC/A compared to FGF2, but similar kinetics (Figure S1H). The slightly higher uptake of FGF2 compared to rHC/A could be due to FGF2 having more receptor targets, since it is a general ligand for FGFRs. These data suggest that FGFR3 can mediate BoNT/A uptake independently of SV2.

To explore the binding sites of FGFR3b Loop 2,3 and SV2C29–579 on the binding domain of BoNT/A, we performed a series of dual binding experiments using the BLAcore. We tested if the peptides and anti-HC/A, the neutralizing monoclonal antibody previously used in the cell based inhibition assay (Figure 2C & D), could bind to rHC/A simultaneously. rHC/A was captured by anti-HC/A monoclonal and FGFR3b Loop 2,3 or SV2C29–579 were flowed across. The results show that binding of anti-HC/A monoclonal blocks binding of FGFR3b Loop 2,3, but not SV2C29–579 to rHC/A in vitro (Figure 3F-G), demonstrating that FGFR3 and SV2 bind to different sites on the BoNT/A binding domain. Interestingly, these data also suggest that inhibition of BoNT/A uptake by the neutralizing monoclonal anti-HC/A antibody in the cell based assay is due to blockage of FGFR3 binding.

These results demonstrate that FGFR3b Loop 2,3 and SV2C29–579 can both inhibit the activity of BoNT/A in a cell-based assay, but FGFR3b Loop 2,3 is a stronger inhibitor than SV2C29–579. They show that in an in vitro binding assay, the binding affinity for FGFR3b Loop 2,3 upon binding to rHC/A is higher, due to an estimated 10 times faster association, than the binding affinity for SV2C29–579 upon binding to rHC/A. The binding affinity for FGFR3b Loop 2,3 to rHC/A is similar or identical, to the binding affinity for FGFR3b Loop 2,3 upon binding to FGF2 and FGF9, two native ligands for FGFR3. Also, uptake of rHC/A in HEK 293 cells, that express FGFR3, but not SV2, is comparable to uptake of FGF2, supporting a case for uptake of BoNT/A via FGFR3 independent of the presence of SV2. Finally, dual in vitro binding studies using a neutralizing antibody to HC/A, show that the FGFR3 and SV2C peptides bind to rHC/A at different sites, FGFR3 at a site close to or overlapping the binding site for the anti-HC/A, and SV2C in a site distal from the anti-HC/A binding site. Different binding sites for FGFR3 and SV2 would allow a multi-receptor complex to form.

FGFR3 expression levels affect the sensitivity of cells to BoNT/A

Differentiation of neuronal cells increases BoNT/A uptake (Figure S1A and B). It has been suggested that the increased
Figure 2. FGFR3b Loop 2,3 and SV2C529–579 block BoNT/A uptake in a cell-based assay. (A) Schematic presentation of FGFR3 and the FGFR3b Loop 2,3 peptide consisting of the second and third loops of FGFR3b that have previously been identified as the ligand binding domain [39,52]. (B) Schematic presentation of SV2C and the peptide SV2C529–579. SV2C is a 12 transmembrane vesicular protein that contains three N-
FGFR3 is a Functional Protein Receptor for BoNT/A

FGFR3 is expressed at rat Motor Nerve Terminals

BoNT/A causes transient muscle paralysis through presynaptic blockade of acetylcholine release at the neuromuscular junction. If FGFR3 functions as a receptor for BoNT/A in vivo, then it would be reasonable to presume that FGFR3 should be expressed at the MNJs. The expression pattern of the FGFR3 receptor was examined on cross-sections of rat skeletal muscle to look for potential co-expression with SV2C, SNAP25, and nicotinic acetylcholine receptors (nAChRs). Overall, immuno-reactive (IR) staining for SV2C and SNAP25 were co-expressed exclusively at neuromuscular junctions (NMJs) throughout the muscle (Figure 5A, A–D). These NMJs were specifically defined by using fluorescently labeled α-bungarotoxin (α-Bgtx) nAChRs. In contrast, FGFR3-IR was not only detected at NMJs, but also in extra-synaptic structures, such as myoblasts and blood vessels (Figure 5A, E). At the NMJs however, the FGFR3 staining pattern corresponded to that of SNAP25 and nAChRs (Figure 5A, E–H). To verify expression of SV2C and FGFR3 within BoNT/A sensitive NMJs, we treated rat Tibialis Anterior (TA) muscles with BoNT/A and analyzed the staining patterns for SV2C and FGFR3 together with IR-staining for cleaved SNAP25 (SNAP25ΔC). Focusing on individual synapses, we observed overlapping patterns for SV2C-IR and SNAP25ΔC-IR that were adjacent to the pattern of post-synaptic nAChR expression (Figure 5A, I–L). Similarly, the patterns for FGFR3-IR and SNAP25ΔC-IR at the NMJ were overlapping and appeared adjacent to the pattern of nAChR expression (Figure 5A, M–P). Saline-treated rat muscles showed no immuno-staining for SNAP25ΔC (Figure 5B). These qualitative results demonstrate that FGFR3 receptors are present on MNJs and are co-expressed with SV2C and SNAP25.

The second and third extra-cellular loop of FGFR3 is the minimal optimal binding site for Hc/A

We have shown that FGFR3b Loop 2,3 binds to BoNT/A with low nanomolar affinity. To further identify the binding site for BoNT/A and to test whether the two subtypes of FGFR3, subtype b and c, bound with similar affinities, we constructed eight deletion mutants of FGFR3, containing either FGFR3 Loop 1,2,3 (long or short version), Loop 2,3, or Loop 3 of both subtypes (Figure 6A). The difference between FGFR3b and FGFR3c lies in the most C-terminal glycosylation sites within the LD4 luminal domain and it is highly glycosylated in vivo [20,71,72]. The red arrows mark the 6 kDa peptide, SV2C529-579, which spans part of the LD4 luminal domain of SV2C. (C) Pre-incubation of BoNT/A with FGFR3b Loop 2,3 or SV2C529-579 inhibit BoNT/A uptake in Neuro-2a cells. BoNT/A, at 1 nM concentration, was incubated for 20 min with increasing concentrations of FGFR3b Loop 2,3 or SV2C529-579 before treatment of cells. In parallel, BoNT/A was incubated with neutralizing antibodies to Hc/A (positive control), or with Syt II,20 (negative control). Data are shown as the percentage inhibition compared to inhibition after addition of Anti-Hc/A. SNAP25 cleavage, as a measure of BoNT/A uptake, decreased when BoNT/A was pre-incubated with Anti-Hc/A, FGFR3b Loop 2,3, or SV2C529-579. No inhibition was observed after addition of Syt II,20. The averages of three or more experiments are included. (D) Data was fitted to a non-linear exponential decay model; Y=Y0*e^(-IC*log(concentration)). As a measure for inhibition, the Inhibition Constant (IC) and standard error (SE) for each inhibitor are shown. The IC values are all significantly different from each other, P-value=0.0045. (E–F) Protein Complex Immunoprecipitation (Co-IP) and Western blot (WB). IPs were performed with antibody to FGFR3 (sc-123), SV2A (sc-28955), SV2B (sc-28956), and SV2C (sc-123) (E) and SV2B (sc-28956) (F). FGFR3 and SV2 are glycosylated in vivo and multiple bands are detected on WB. The predicted MW for non-glycosylated protein is 88 kDa for FGFR3 and 77 kDa for SV2B. The positive control, IP and WB with the same antibody, showed clear bands on both blots and the negative control (antibody only, no lysate) showed no bands. An interaction between FGFR3 and SV2 was detected, in both directions, using the Anti-SV2B (sc-28956) antibody that recognizes SV2B and, to a lesser extent, SV2A and SV2C.

doi:10.1371/journal.ppat.1003369.g002

FGFR3 Is a Functional Protein Receptor for BoNT/A

We have shown that FGFR3b Loop 2,3 binds to BoNT/A with low nanomolar affinity. To further identify the binding site for BoNT/A and to test whether the two subtypes of FGFR3, subtype b and c, bound with similar affinities, we constructed eight deletion mutants of FGFR3, containing either FGFR3 Loop 1,2,3 (long or short version), Loop 2,3, or Loop 3 of both subtypes (Figure 6A). The difference between FGFR3b and FGFR3c lies in the most C-terminal sensitivity in differentiated PC-12 cells is due to increased expression of the SNAP25b subtype that is most sensitive to BoNT/A [50]. Since the increased sensitivity could also be a result of increased expression of a receptor for BoNT/A, we studied the expression of FGFR3 as well as SV2A, B, and C before and after differentiation in both Neuro-2a and PC-12 cells. FGFR3 expression levels were similar in both cell lines and the amount of FGFR3 was unchanged after differentiation. Neuro-2a cells expressed mostly SV2C, while PC-12 cells expressed all three SV2 isoforms. Surprisingly, differentiation resulted in decreased expression of SV2 isoforms in both cell lines (Figure S1F).

Assuming FGFR3 is a functional receptor for BoNT/A, one would expect overexpression of FGFR3 to result in increased binding of BoNT/A on the cell membrane. If receptor binding is a rate-limiting step, this should also result in increased sensitivity to BoNT/A. Experiments to test the sensitivity to BoNT/A were performed under non-depolarizing conditions, where the exposure of SV2 on the cell surface is presumed to be limited. Overexpression of FGFR3 in PC-12 and Neuro-2a cells increased the sensitivity to BoNT/A and produced higher efficacy (increased maximal signal), in a Western blot SNAP25ΔC cell-based assay, while overexpression of SV2C did not (Figure 4A–B).

FGFR3 overexpression also increased binding of transfected cell membranes to Hc/A in a SPR binding assay, while overexpression of SV2C did not (Figure S2A and C), suggesting that if there is more FGFR3 on the cell surface more BoNT/A will bind, while more SV2C does not increase BoNT/A binding. Human neuroblastoma SH-SY5Y cells were also evaluated in the SPR binding assay because they have low sensitivity to BoNT/A [58] and express very little endogenous SV2C. Even in this situation, there was no effect as a result of over expressing SV2C (Figure S2B).

We also demonstrated, utilizing shRNA, that reduced expression of FGFR3 resulted in reduced sensitivity to BoNT/A. A 65% reduction of FGFR3 protein expression resulted in a 5.7-fold decrease in potency and a ~5-fold increase in EC50 when compared to control cells (Figure 2C). No change in the protein expression levels of either SV2A, B, or C was detected in those samples. A separate experiment with siRNAs for FGFR3 and SV2C demonstrated that a 4.2-fold reduction in SV2C mRNA resulting in a 2-fold reduction in protein levels did not cause a reduction in BoNT/A uptake (Figure S2E–F). While a 3-fold reduction of FGFR3 mRNA resulting in a 2-fold reduction in protein levels reduced sensitivity to BoNT/A causing a 3-fold shift in relative potency when compared to control cells (Figure S2D and F), confirming that, under non-depolarizing conditions, binding to FGFR3 is a rate-limiting step in BoNT/A uptake.

The interaction between FGFR3 and Hc/A was also observed in a photobleaching experiment using the FRET partners AF-488 and TMR. We detected an increase in the fluorescent signal from the AF-488 labeled Hc/A (donor) after photobleaching the TMR labeled FGFR3 (acceptor). The data shows that FGFR3 and Hc/A are proximal enough within PC-12 cells to FRET, suggesting that FGFR3 not only binds BoNT/A on the cell surface, but it is also trafficking with BoNT/A within the cells. There was little change in the fluorescence observed when the experiment was performed with TMR labeled SV2C as the acceptor (Figure 4E–G).
part of Loop 3 (Figure S3A). All the deletion mutant FGFR3 peptides were able to inhibit BoNT/A uptake in a cell-based inhibition assay, presumably via binding to the receptor binding domain of BoNT/A and preventing binding to cells [Figure 6B–C]. However, in a SPR binding assay a significantly lower affinity was observed for the peptides spanning only Loop 3 compared to the peptides spanning Loop 2 or Loop 1,2,3. The association (on-rate) of the peptides spanning only Loop 3 was ~10 times lower than the on-rate of the longer peptides, while the dissociation (off-rate) was similar (Figure 6E and S3B–C). The similar off-rate can explain why the peptides are able to inhibit equally well BoNT/A binding to the receptor in the cell-based inhibition assay. In the cell-based inhibition assay sufficient time (20 min) is available for even slow associating peptides to bind and the ability to inhibit relies more on a slow dissociation. In the SPR binding assay, on the other hand, binding is observed in real time (5–10 min). Based on the lower on-rate of the Loop 3 peptides observed in the SPR binding assay, Loop 2,3, which is the binding region for native FGF ligands, was identified as the minimal optimal binding region for BoNT/A. FGFR3b bound with slightly higher affinity than FGF3c (Figure 6D).

Discussion

In this study we identified FGFR3 as a high affinity protein receptor for BoNT/A. Pull-down experiments with neuronal cells resulted in the identification of a protein complex containing BoNT/A and FGFR3. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete with rHC/A for binding to the receptor and binding of rHC/A results in phosphorylation of FGFR3, demonstrating that BoNT/A acts as an agonist ligand for FGFR3. Since ligand binding and activation of FGFRs are known to result in receptor-mediated endocytosis of both receptor and ligand [59], we propose that binding of BoNT/A to FGFR3 also results in endocytosis and that FGFR3 may mediate BoNT/A uptake in both stimulation independent and stimulation dependent manners. This hypothesis is supported by the fact that depolarization of nerve cells increases uptake (stimulation dependent), while at the same time BoNT/A uptake can take place in resting neurons (stimulation independent) [3,4,60–63]. This is also supported by the observation that the uptake, but not the initial binding step, is altered by nerve stimulation [64].

Motor neurons at MNTs take up BoNT/A with high affinity, resulting in inhibition of exocytosis and muscle paralysis. Thus, MNTs should presumably express a BoNT/A receptor(s), and our results clearly demonstrated that both FGFR3 and SV2C are present at MNTs. These data support the hypothesis that FGFR3 functions as a high affinity receptor for BoNT/A uptake, and that most likely, SV2 is only available as a receptor for BoNT/A after depolarization and vesicular exocytosis. Using a SPR binding assay, we demonstrated that a peptide spanning the second and third extra-cellular loops of FGFR3, FGFR3b Loop 2,3, binds to rHC/A with a Kd=15 nM affinity for binding of rHC/A toLoop 2,3 was similar or identical to the affinity for binding of two native ligands for FGFR3, FGF2 and FGF9 to FGFR3b Loop 2,3 in the same assay. Also, comparable uptake of rHC/A and FGF2 was observed in HEK 293 cells, a cell line that express FGFR3 and not any of the SV2 isoforms, suggesting that FGFR3 can mediate uptake of BoNT/A independently of SV2.

A recent publication [63] clearly supports our findings. The authors observed limited co-localization of SV2C and HC/A or BoNT/A after treatment of spinal cord motor neurons under resting conditions and this co-localization did not significantly increase under depolarizing conditions. Moreover, inhibition of exocytosis by pre-treatment with BoNT/D did not prevent the internalization of HC/A. The authors concluded that BoNT/A may exploit an alternative pathway(s), largely independent of stimulated synaptic endo-exocytosis, to enter neuronal cells in both resting and depolarizing conditions. Pre-incubation of BoNT/A with the FGFR3 and SV2C peptides before treatment of cells, blocked uptake in neuronal cells, presumably by interacting with the binding domain of FGFR3 Is a Functional Protein Receptor for BoNT/A
FGFR3 is a Functional Protein Receptor for BoNT/A

BoNT/A and preventing binding to the receptor on cells. In accordance with the observed lower affinity for SV2C 529–579 compared to Loop 2,3 of FGFR3, the FGFR3 peptide produced a stronger blockade than the SV2C peptide. These data suggest that FGFR3 may function as a high affinity receptor for BoNT/A and that SV2C may function as a medium affinity receptor.

SPR experiments demonstrated that the FGFR3b and SV2C peptides bind to different sites on Hc/A. FGFR3 in a site overlapping the epitope of a neutralizing monoclonal antibody to Hc/A (6B1, provided by Dr. L. Smith, USAMRIID) and SV2C in a site distal from both. So far the binding site for SV2 has not been identified, but it has been suggested that SV2 binds to the C-terminal half of the binding domain, Hcc, similar to how Synaptotagmin II binds to BoNT/B [23]. Different binding sites for FGFR3 and SV2 on the binding domain of BoNT/A would allow formation of a multi-receptor complex. Interestingly, Co-IP experiments show that FGFR3 and SV2 can interact in live Neuro-2a cells, suggesting a step-wise binding and/or formation of a multi-receptor BoNT/A complex.

We concur with others in the field that the specificity of BoNT/A for neuronal cells and specially motor neurons, which is higher than binding to a single receptor can explain, is due to the fact that uptake of BoNT/A is a multi-step process involving at least two crucial steps [13,23]. The first crucial step is binding to gangliosides like GT1b (KD≈200 nM) that are abundantly present in the outer leaflet of the plasma membrane of neuronal

Figure 4. Binding to FGFR3 is a rate-limiting step for BoNT/A uptake in neuronal cells under resting conditions. (A) PC-12 cells transfected with FGFR3c, SV2C, or empty vector were treated with 0–30 nM BoNT/A for 6 hours, and the amount of cleaved SNAP25 was detected by Western blot. (B) The dose response curve for one representative experiment is shown. Cells transfected with FGFR3c had a higher maximum signal (higher efficacy) than the cells transfected with SV2C or empty vector (pcDNA3.1). (B) Table showing the average fold increase in maximal signal response and the average fold decrease in EC50 after transfection of PC-12 or Neuro-2a cells with FGFR3c, compared to cells transfected with empty vector (See also Figure S2). (C) shRNA knockdown of FGFR3. Dose response curves of PC-12 cells stably transfected with Scrambled (negative control) or FGFR3 shRNAs and then treated with 0–30 nM BoNT/A for 6 hours. The curves were plotted as cleaved SNAP25 (SNAP25197) vs. BoNT/A concentration. Cells transfected with shFGFR3 were less sensitive to BoNT/A, the EC50 was ~5-fold higher, compared to cells transfected with random control shRNA. (D) Table showing the average fold difference in relative potency. The relative potency is calculated by dividing the potency of a test sample with the potency of a reference sample. A relative potency of 1 means that both samples are identical. If the test sample is more potent than the reference the relative potency is smaller than 1. If the sample is less potent than the reference, then the relative potency is higher than one. We conclude that, cells transfected with FGFR3 shRNA are 5.7-fold less sensitive than cells transfected with scrambled shRNA (See also Figure S2). (E–F) Photobleaching experiment where the recovery of AF-488 labeled Hc/A (donor) fluorescence was measured after photobleaching of either TMR labeled FGFR3 (E) or TMR labeled SV2C (acceptor). (G) Table showing the fluorescence intensity values before and after photobleaching for three separate experiments.

doi:10.1371/journal.ppat.1003369.g004

PLOS Pathogens | www.plospathogens.org 9 May 2013 | Volume 9 | Issue 5 | e1003369
Figure 5. FGFR3 and SV2C are both expressed on motor nerve terminals in rat skeletal muscle. (A) Photomicrographs from normal rat TA muscle cross-sections (A–H) and from muscles pre-treated with 10 U of BOTOX (I–P). Sections show immunostaining for SV2C (red, A, I), FGFR3 (red, E, M), SNAP25 (green, B, F) and SNAP25\textsubscript{197} (green, J, N). Nicotinic acetylcholine receptors (nAChR) are labeled by \(\alpha\)-bungarotoxin Alexa-Fluor 647 (blue, C, G, K, O). The last column shows a merge of the staining patterns within that row on a muscle fiber background imaged by DIC optics (M+DIC). BV, Blood Vessel; MB, Myoblast; MF, myofiber; NMJ, neuromuscular junction. Note the overlap in IR signal for FGFR3 and SV2C with SNAP25\textsubscript{197} and directly adjacent to the pattern of post-synaptic nAChR expression. Scale bar = 10 \(\mu\)m in H (A–H) and P (I–P). (B) A photomicrograph from a saline-treated rat TA muscle cross-section showing immune-staining for FGFR3 (red) co-localized with \(\alpha\)-bungarotoxin-labeled nAChRs (blue). No staining was observed for SNAP25\textsubscript{197} (green) in these sections. A normal rat muscle cross-section immune-stained with peptide-quenched FGFR3 antibodies and lacking the SNAP25 primary antibody shows only \(\alpha\)-Bgt-labeled nAChRs. Scale bar = 10 \(\mu\)m. BV, Blood Vessel; MF, myofiber; NMJ, neuromuscular junction.

doi:10.1371/journal.ppat.1003369.g005
peptides were flowed across a CM5 sensor chip covered with rHC/A. The curves were fitted to a 1:1 kinetic-binding model (A).

Eight FGFR3 deletion mutant peptides in a BIAcore SPR binding assay. Increasing concentrations, 0–4000 nM of each of the deletion mutant FGFR3 peptides. The averages of three or more experiments were included. The data was fitted to a non-linear exponential decay model; Y = 100*e^{-K*IC*log(concentration)}. As a measure for inhibition, the Inhibition Constant (IC) and standard error (SE) for each inhibitor are shown. The IC value for FGFR3c Loop 2,3 is 10-fold higher than ka for FGFR3b Loop 3 (See also Figure S3). (B–C) Pre-incubation of BoNT/A with eight deletion mutant FGFR3 peptides, corresponding to the extra-cellular loops of FGFR3b/c (A) inhibit BoNT/A uptake in Neuro-2a cells. BoNT/A at 1 nM was incubated for 20 min with increasing concentrations of individual FGFR3 peptides before treatment of cells. In parallel, BoNT/A was pre-incubated with antibodies to H/A (positive control), or Syt II₁₋₂₀ (negative control). Data are shown as percentage BoNT/A uptake relative to the uptake after pre-incubation with the negative control Syt II₁₋₂₀. SNAP25 cleavage, as a measure of BoNT/A uptake, was decreased when BoNT/A was pre-incubated with Anti-H/A or with any of the eight deletion mutant FGFR3 peptides.

There are several lines of evidence suggesting that the initial binding to gangliosides is critical to specifically accumulate BoNT/ A on the membrane of neuronal cells. For example, it has been shown [66] that, in the absence of GT1b, Neuro-2a cells are insensitive to BoNT/A and that knockout mice defective in the production of polysialogangliosides show reduced sensitivity to BoNT/A and BoNT/B [20,26,67]. Moreover, a mutant version of H/A, W1266L & Y1267S that does not bind to GT1b, does not extend paralysis time caused by BoNT/A in murine phrenic nerve-hemidiaphragm preparations demonstrating an impaired ability to bind to neuronal cells [68]. Here we propose that only after BoNT/A is anchored at the neuronal membrane the second crucial step, binding to FGFR3 and/or SV2, bind to the receptor, and undergo endocytosis representing a second crucial step.

In conclusion, this paper presents evidence for FGFR3 as a high affinity receptor for BoNT/A, potentially being part of a larger receptor complex involving sugar- and protein-protein interactions. FGFR3 is present in the target motor neurons. Overexpression of FGFR3 in several neuronal cells increases efficacy and sensitivity to BoNT/A while decreased FGFR3 expression renders the cells less sensitive. BoNT/A binds to FGFR3 at the same extra-cellular region and with the same affinity as native ligands for FGFR3 and functions as an agonist ligand inducing FGFR3 phosphorylation. Moreover, BoNT/A uptake can be blocked by native FGFR3 ligands or by peptide fragments containing the extra-cellular region of FGFR3. Together, these results expand our knowledge of BoNT/ A uptake in neuronal cells and present a potential new pathway mediating BoNT/A entry and trafficking into neurons under both resting and depolarizing conditions.

Materials and Methods

Cell lines and growth conditions

Unless otherwise stated tissue culture reagents were from Invitrogen (Carlsbad, CA)

PC-12- Rat pheochromocytoma cell line (CRL-1721; ATCC) was cultured in collagen IV plates (354528; BD). Growth media: RPMI media with 2 mM GlutaMAX, 5% Fetal Bovine Serum (heat-inactivated), 15% Equine Serum, 10 mM HEPES, 1 mM Sodium Pyruvate, 100 U/ml Penicillin, and 100 μg/ml Streptomycin. Differentiation media: RPMI media with 2 mM GlutaMAX, 1x B27 supplement, 1x N2 supplement, 10 mM HEPES, 1 mM Sodium Pyruvate, 50 ng/ml NGF, 100 U/ml Penicillin, and 100 μg/ml Streptomycin. **Neuro-2a**- Mouse neuroblastoma cell line (CCL-131; ATCC) was cultured in Costar Tissue Culture Flasks (CLS3150; Corning). Growth media: EMEM with 2 mM GlutaMAX, 0.1 mM Non-Essential Amino-Acids, 10 mM

Figure 6. BoNT/A binds to FGFR3 Loop 2,3 with the highest affinity in vitro. (A) Schematic presentation of the eight deletion mutant FGFR3 peptides. FGFR3b Loop 1,2,3 and FGFR3c Loop 1,2,3 (long and short version); FGFR3b Loop 2,3 and FGFR3c Loop 2,3; and FGFR3b Loop 3 and FGFR3c Loop 3. (B) Acid; Box; HBS: Heparin Binding Site. The purple area highlights the region where subtype b and c differ in sequence (Figure modified from [73] (See also Figure S3)). (C–D) Pre-incubation of BoNT/A with eight deletion mutant FGFR3 peptides, corresponding to the extra-cellular loops of FGFR3b/c (A) inhibit BoNT/A uptake in Neuro-2a cells. BoNT/A at 1 nM was incubated for 20 min with increasing concentrations of individual FGFR3 peptides before treatment of cells. In parallel, BoNT/A was pre-incubated with antibodies to H/A (positive control), or Syt II₁₋₂₀ (negative control). Data are shown as percentage BoNT/A uptake relative to the uptake after pre-incubation with the negative control Syt II₁₋₂₀. SNAP25 cleavage, as a measure of BoNT/A uptake, was decreased when BoNT/A was pre-incubated with Anti-H/A or with any of the eight deletion mutant FGFR3 peptides. The averages of three or more experiments were included. The data was fitted to a non-linear exponential decay model; Y = 100*e^{-K*IC*log(concentration)}. As a measure for inhibition, the Inhibition Constant (IC) and standard error (SE) for each inhibitor are shown. The IC value for Syt II₁₋₂₀ was significantly lower than all the other IC values, p=0.0096 and p=0.0003 respectively. The IC value for Anti-H/A was significantly higher than all the other IC values, p=0.0125 and p=0.0068 respectively. The IC value for the other FGFR3 peptides, p-value=0.0489. There was no significant difference in IC value among the FGFR3c peptides. (D) Results from testing the extra-cellular deletion mutant peptides in a BIAcore SPR binding assay. Increasing concentrations, 0–4000 nM of each of the deletion mutant FGFR3 peptides were flowed across a CMS sensor chip covered with rHC/A. The curves were fitted to a 1:1 kinetic-binding model (A + B ↔ AB) with the BiAevaluation 3.0 software. The table shows the calculated K₅’s ± SEM of all eight FGFR3 deletion mutant peptides upon binding to rHC/A. The average K₅’s (association constants (1/Ms)) and kₛ’s (dissociation constants (1/s)) are shown in figure S3B. The K₅ values for the FGFR3b Loop 1,2,3 peptides are significantly lower than the K₅ values for the FGFR3c Loop 1,2,3 peptides, P-value=0.0005 and the K₅ values for FGFR3b/c Loop 3 and FGFR3c Loop 2,3 are significantly higher than the K₅ values for the longer FGFR3b/c peptides, P-value=0.0024. Loop 2,3 of FGFR3 can therefore be identified as the minimal optimal binding region of FGFR3 (See also Figure S3). (E) Comparison of FGFR3b Loop 2,3 and FGFR3c Loop 3 association (or on-rate) after normalization. The 1000 nM curves of three different runs were normalized using BiACore evaluation software version 4.1. The on-rate for FGFR3b Loop 2,3 was faster than the on-rate for FGFR3c Loop 3. The average k₅ (1/Ms), kₛ (1/s), and K₅ (K₅ = k₅/kₛ (M)) are shown. k₅ for FGFR3b Loop 2,3 is ∼10-fold higher than k₅ for FGFR3c Loop 3 (See also Figure S3). doi:10.1371/journal.ppat.1003369.g006

FGFR3 Is a Functional Protein Receptor for BoNT/A
HEPES, 1 mM Sodium Pyruvate, 100 U/ml Penicillin, 100 μg/ml Streptomycin, and 10% Fetal Bovine Serum. Differentiation media: EMEM with 2 mM GlutaMAX, 0.1 mM Non-Essential Amino-Acids, 10 mM HEPEs, 1 x N2 supplement, and 1 x B27 supplement.

SY3 - Human neuroblastoma cell line (94053904; ECACC) was cultured in Costar Tissue Culture Flasks (CLS3150; Corning). Growth media: EMEM with 2 mM GlutaMAX/F12, 0.1 mM Non-Essential Amino-Acids, 10 mM HEPEs, 1 x N2 supplement, and 1 x B27 supplement. **HEK 293** - Human Embryonic Kidney 293 cells (CRL-1573; ATCC) were cultured in Costar Tissue Culture Flasks (CLS3150; Corning). Growth media: EMEM with 2 mM GlutaMAX, 0.1 mM Non-Essential Amino-Acids, 10 mM HEPEs, 1 x N2 supplement, and 1 x B27 supplement.

Affinity purification of rHc/A and FGFR3b/c peptides

FGFR3b/c peptides and rHc/A were expressed from pET-29b (+) in E.Coli. Acetobacter Electrophoretic BI.21 DE3 (42649; Edge Biosystems). Expression was induced by 1 mM IPTG (V9355; Promega) at either 37°C for 16 hours (FGFR3b/c peptides) or at 16°C for 16 hours (rHc/A). For purification of rHc/A, the supernatant was collected after centrifugation and the protein was purified using the MagneHis Protein Purification System (V8500; Promega). FGFR3b/c peptides were purified from inclusion bodies. After expression, cells were first lysed for 1 hour in five times the cell wet weight in lysis buffer containing 50 mM Tris-HCl pH 8.0, 10 mM EDTA, 100 mM NaCl, 10 mM DTT, 5% (v/v) glycerol, protease inhibitor (P1860; Sigma), 150 μg/ml lysozyme (71110; EMD Chemicals), and 50 μg/ml benzonase nuclease (70746; EMD Chemicals), and then sonicated for 5 minutes. Pellets were collected by centrifugation and washed three times, first time with wash buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 10 mM DTT, 5% glycerol and 2% Triton X-100) plus 10 mM EDTA, second time with wash buffer only, and third time with wash buffer plus 2 M urea. The inclusion bodies were dissolved in 50 mM Tris-HCl pH 8.0, 500 mM NaCl, 10 mM DTT, 8 M urea, 10 mM imidazole and the peptides were isolated using the MagneHis Protein Purification Resin (V8500; Promega). Wash buffer: 50 mM Tris-HCl pH 8.0, 500 mM NaCl, 10 mM DTT, 10 M urea, and 20 mM imidazole. Elution buffer: 50 mM Tris-HCl pH 8.0, 500 mM NaCl, 10 mM DTT, 8 M urea, and 500 mM imidazole. After elution, the buffer was exchanged to 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 3.8 mM GSH, 1.2 mM GSSG and 1 M arginine using a FastDialyzer fitted with 5 Kd MWCO cellulose acetate membranes (Harvard Apparatus).

His tag pull-down assay

The assay was performed according to the protocol from Pierce (21277; Pierce). 150 μg of rHc/A (26 mg/ml stock conc.) was used as “Bait” protein and 500 μl of differentiated PC-12 cell lysate (from 1.5 x 10^7 cells) was used as “Prey” protein. As negative controls, samples without either “Bait” or “Prey” protein were run in parallel. The eluted samples were analyzed by SDS-PAGE and Western blot analysis.

Pull-down using Sulfo-SBED (Biotin transfer)

10 μg BoNT/A was reacted with 2 mM Sulfo-SBED (33073; Thermo Scientific) (solubilized at 125 mM in DMSO) in 0.1 ml PBS for 2 hours. The reaction was stopped by addition of 0.1 μl 0.4 M Tris. As a control 10 μg of BSA was also reacted with 2 mM Sulfo-SBED. Sulfo-SBED BoNT/A and BSA were added to 1 x 10^9 Neuro-2a cells and mixed by rotisserie at 4°C for 4 hours. The reagent was photoactivated for 15 minutes with a UV light source. The cells were washed 4 times with cold TBS and then lysed by incubation for 2 hours in T-X-100 lysis buffer (50 mM Tris, 150 mM NaCl, 1% Triton X-100, 10 mM EDTA, pH 7.2). The biotinylated proteins were precipitated using Monomeric Avidin (Thermo Scientific), washed 4 times in the TX100 lysis buffer and then analyzed by SDS-PAGE and Western Blot Analysis.

SDS-PAGE and Western blot analysis

Samples were dissolved in 2× SDS-PAGE loading buffer (LC2676; Invitrogen), heated to 95°C for 10 min, resolved in 12% 26-well Criterion gels (345-019; Bio-Rad) or 12% Bis-Tris Novex NuPage gels (NP0341BOX; Invitrogen), transferred to 0.45 μm nitrocellulose membranes (62-0233; Bio-Rad), blocked for 1 hour in TBS buffer (170-6435; BioRad) plus 0.1% Tween 20 (161-0701; BioRad) (TBS-T) and 2% blocking agent (RP1410V; GE Healthcare), and incubated overnight with primary antibody, either: anti-SNAP25 (Allergan) rabbit polyclonal antibody diluted to 1 μg/ml, anti-Hc/A (Allergan) rabbit polyclonal antibody diluted to 1 μg/ml, anti-FGFR3 (1:500, sc-123; Santa Cruz Biotechnology), anti-FGFR3 (1:1000, Ab113644; Abnova), anti-SV2A (1:200, sc-20953; Santa Cruz Biotechnology), anti-SV2B (1:200, sc-20956; Santa Cruz Biotechnology), anti-SV2C (1:500, sc-20957; Santa Cruz Biotechnology) or anti-Syntaxin (1:200, sc-12736; Santa Cruz Biotechnology) in TBS-T plus 2% blocking agent. Secondary antibody was anti-rabbit IgG H+L HRP conjugate (81-6120; Invitrogen), anti-rabbit IgG veniBlot for IP secondary antibody (HRP (ab131366, Abcam) (used for IP only), and anti-mouse IgG H+L HRP conjugate (62-6520; Invitrogen) diluted 1:5000 in TBS-T plus 2% blocking agent. Membranes were developed using ECL Plus Western Blotting System Detection Reagents (RP2132; GE Healthcare). The Chemiluminescence was captured using a Typhoon 9140 (GE Healthcare) set to the following parameters: 455 nm excitation laser and detector set to all wavelengths below 520 nm emissions. The intensity of the gel bands were calculated using Image Quant software TL V2005 (GE Healthcare). The data was analyzed using PLAsigmaPlot v 10.0 (Syystat Software Inc.). Intensity values were plotted against concentration of BoNT/A in log scale and fitted to a 4-parameter logistics function (Y = Y0 + (X - X0)^{m}) without constraints. Based on the fitted curves the EC50 values, corresponding to “Xd”, were determined.

Transfection of cells and membrane extraction

Cells were transfected with pdDNA3.1 (+) (V790-20; Invitrogen), FGFR3 (EX-Y090650; GeneCopoeia), SV2C (EX-82660-M050; GeneCopoeia), RNAi Hi GC (12935-400; Invitrogen), FGFR3 siRNA-89 (FGFR3RS331408; Invitrogen), FGFR3 siRNA-99 (FGFR3RS331499; Invitrogen), SV2C-1 siRNA (AM16708; Ambion). Membrane extractions were performed with a Native Membrane Protein Extraction kit (444810; Calbiochem). Total protein concentration was measured using Bradford Reagent (500-0205; Bio-Rad).

Immunoprecipitation of phosphorylated membrane proteins

Differentiated Neuro-2a cells transfected with FGFR3 were treated with 0.5 mM or 50 mM FGF2 (233-FB; R&D Systems) or

PLOS Pathogens | www.plospathogens.org 13 May 2013 | Volume 9 | Issue 5 | e1003369
overnight incubation. Cells lysates were analyzed by SDS-PAGE and was then removed and replaced with fresh media followed by A plus competitor/inhibitor for 2 hours. The toxin containing media and 200 molar excess of BoNT/A. Cells were incubated with BoNT/MRNIFKRNQEPIVAPATTTA-NH2; negative control). The Western blot analysis, using antibody against cleaved SNAP25, Anti-SNAP25197 (Allergan). Blots were quantified and the amount of SNAP25197 produced at each concentration, as a measure of BoNT/A uptake, for each competitor/inhibitor was compared to the negative control. Each experiment was conducted at least more independent experiments were used to generate inhibition curves. The curves were fitted to a non-linear exponential model; $b \log(\text{concentration})$, where “b” was defined as either the competition constant (CC) or the inhibition constant (IC).

BoNT/A cell-based competition/inhibition assays

For competition, before treatment with 1 nM BoNT/A (150 kDa, Metabiologics). Neuro-2a cells were pre-treated for 30 min with increasing concentrations of FGFR1, FGFR2, FGFR9, FGFR10 (negative control) (120-FA; 233-FB; 273-FH, and 345-FG; R&D Systems), or rHC/A (Figure 1A, positive control). For inhibition, before treatment onto cells, 1 nM BoNT/A (150 kDa, Metabiologics) was incubated for 20 min with increasing concentrations of either; FGFR3/b/c deletion mutant peptides (Figure 6A), SV2C292-379 (PTT Peptide Technologies; aa29-279, H-NTYFKNCIFTDFVNTDFTFEPYK-FIDFSEFKNSFFHNTKGGCQTTDSDYA-NH2; Figure 2B, monoclonal anti-HC/A 6B1 (Provided by Dr. L. Smith, USAMRIID; positive control), or Synaptotagmin II 1–20 (JPT, aa1–20, H-MRNIFKNQEPVAPATTTA-NH2; negative control). The competitor/inhibitor was added at concentrations of 2, 5, 20, 50, and 200 molar excess of BoNT/A. Cells were incubated with BoNT/A plus competitor/inhibitor for 2 hours. The toxic containing media was then removed and replaced with fresh media followed by overnight incubation. Cells lysates were analyzed by SDS-PAGE and Western blot analysis, using antibody against cleaved SNAP25, anti-SNAP25197 (Allergan). Blots were quantified and the amount of SNAP25197 produced at each concentration, as a measure of BoNT/A uptake, was used to calculate the percent competition/inhibition. The amount of BoNT/A uptake for each competitor/inhibitor was compared to the amount of BoNT/A uptake after pre-treatment/pre-incubation with the negative control. Each experiment was conducted at least three independent times and each dose was tested in triplicates in each individual experiment, the percent average for each of the three or more independent experiments were used to generate inhibition curves. The curves were fitted to a non-linear exponential model; $Y = 100 \times e^{-b \log(\text{concentration})}$, where “b” was defined as either the competition constant (CC) or the inhibition constant (IC).

Protein Complex Immunoprecipitation (Co-IP)

Differenitated Neuro-2a cells were washed with PBS and then lysed by incubation at 4°C for 30 minutes in lysis buffer containing 20 mM Tris, 150 mM NaCl, 1% Triton X-100, 1 mM EDTA, and 1 mM EGTA pH 7.2 plus complete protease inhibitor cocktail (1 873 380 001; Roche). The supernatant was collected by centrifugation and the total protein concentration was measured using Bradford Reagent (500-0205; Bio-Rad). The Co-IP reaction was performed by mixing 1 mg of cell lysate with 10 µg antibody in a total volume of 1 ml. The reaction was incubated at 4°C overnight. As negative controls, a sample without antibody (lysate only) and a sample without lysate (antibody only) were prepared in parallel. Then 100 µl Protein A/G Magnetic Beads (30802; Thermo Scientific) was added and the reaction was incubated at 4°C for 1 hour. Three times the beads were sedimented using a dynamag-2 magnet (Invitrogen; 12321D) and washed with PBS. Finally, the beads were re-suspended in 2× SDS-PAGE running buffer and Western blot was performed. Cell lysate was run in parallel.

Labeling of rHC/A and FG2

Purified rHC/A (0.4 mg) was dialyzed against 4 L of 50 mM HEPES pH 7.0–7.2 150 mM NaCl in a 0.5 ml dialysis unit (Harvard Apparatus) for 16 hours at 4°C using a 25 kDa cut-off cellulose acetate membrane. FG2 (0.2 mg) (233-FB/CF; R&D Systems) was re-suspended in 0.5 ml of 50 mM HEPES pH 7.2, 150 mM NaCl. rHC/A was labeled with either Alexa Fluor 488 C5-maleimide (A10254; Invitrogen) (cell imaging and photo-bleaching) or Alexa Fluor 633 C5-maleimide (A20342; Invitrogen) (rHC/A/uptake) and FG2 was labeled with Alexa Fluor 633 C5-maleimide (10.1 molar free label to protein) overnight at 4°C in the dark. To remove free label, the proteins were either dialyzed again, using the conditions listed above, or ran on a PD-10 desalting column (17-0051-01; GE Healthcare). The column was equilibrated with 50 mM HEPES pH 7.2 150 mM NaCl. The concentrations of rHC/A and FG2 were determined by measuring the UV absorbance at 280 nm using a Beckman Coulter DU 800.

Uptake of rHC/A and FG2 in HEK 293 cells

Cells were plated at 20,000 cells per well in a Cell Carrier microplate (Perkin Elmer) in culture media and then allowed to attach overnight. Cells were treated with 1 µg/ml Cell Tracker Green CMFDA (C2925; Invitrogen) and Hoechst 33342 (H10295; Invitrogen) for 30 minutes prior to adding fluorescently labeled rHC/A or FG2. After removing the staining media, 0.1 ml of 0–25 nM of Alexa Fluor 633-rHC/A or -FGF2 was added. Fluorescence was measured using the Operetta High Content Imaging System (Perkin Elmer), set to the following parameters: 20× WD objective, 9 fields, non-confocal, 15% excitation, Blue (Ex 390–410/Em 430–460), Green (Ex 460–490 nm/Em 500–550 nm) and Far Red (Ex 630–645 nm/Em 660–900 nm). Uptake, measured as increasing amounts of Far Red signal in the cells, was monitored for 15 hours, with 30 minutes time points. The results were analyzed using Harmony 3.1 software.

Cell imaging and photobleaching

PC-12 cells transfected with Halo tagged FGFR3 or SV2C were plated on Collagen IV coated glass bottom dishes (P35GCOL-0-10-C; MatTek) and differentiated for 3 days. The cells were incubated with 5 µM Halotag TMR ligand (G8251; Promega) for 15 minutes and washed 3 times for 10 minutes with fresh media. Cells were then treated with 1 µM Alexa Fluor 488 labeled rHC/A. After 2 hours incubation, the cells were fixed using 5% paraformaldehyde. Cells were imaged using a LSM710 confocal microscope and analyzed using ZEN 2009 software (Carl Zeiss INT, Germany). The Alexa Fluor 488 label and TMR star labels were imaged using the following respective settings: excitation 488 nm/emission 500–510 nm, excitation 561 nm/emission 595–620 nm. The TMR was photobleached by exciting the fluor with the 561 nm laser 100 times for 0.1 s with 5% laser power. The amount of fluorescence density of the donor fluor (AF-488) was measured before and after photobleaching of the acceptor (TMR).

Immunostaining

Sprague-Dawley rats (200–250 g; Charles River) were injected with 10 units of BOTOX (Allergan) into the tibialis anterior (TA)
muscle of the right hind limb. Animals receiving injections of 0.9% saline into their TA muscle served as controls. Rats were sacrificed 3 days following injections and their TA muscles were harvested. Muscles were embedded in OCT compound, frozen in liquid nitrogen and stored at −80°C. Prior to staining, muscles were cross-sectioned (10 μm) using a cryostat (Leica), mounted onto microscope slides and stored at −20°C until use. Frozen, slide-mounted muscle sections were thawed to room temperature and immediately fixed with 2% paraformaldehyde for 10 min. Sections were blocked with 5% normal serum in PBS, pH 7.4 for 60 minutes and then incubated with primary antibodies for 3 hours at room temperature: rabbit anti-SV2C (1:400, sc-29957; Santa Cruz Biotechnology), rabbit anti-FGFR3 (1:200, sc-123; Santa Cruz Biotechnology), mouse anti-SNAP25 (1:200, SMI-91, Covance), and mouse anti-SNAP25 (1:200, Allergan). Muscle nicotinic acetylcholine receptors (nAChR) were labeled with α-bungarotoxin (α-Bgt) Alexa-Flour 647 conjugate (1:500, Invitrogen). Sections were then washed and incubated with secondary antibodies for 30 minutes at room temperature. Following a final wash, slides were coverslipped and analyzed. Images were acquired using a Zeiss LSM-710 confocal microscope (Carl Zeiss INT).

Surface Plasmon Resonance (SPR) binding analysis

Experiments were performed on a BIACore 3000 instrument (GE Healthcare). Ligands, rHC/A, anti-HC/A 681 (Provided by Dr. L. Smith, USAMRIID), FGF2, or FGF9 (233-F9; and 273-F9; R&D Systems), were immobilized on a CM5 chip (BR-1000-99, GE Healthcare) using an amine coupling kit (BR-1000-50, GE Healthcare). Antibodies, either SV2C[25, 57] [JPT Peptide Technologies, dissolved in 100% DMSO], FGFR3b/c deletion mutant peptides (Figure 6A), rHC/A, or membrane extracts were injected over the ligand surfaces at concentrations ranging from 0–5000 nM, or for the membrane extractions at 5-50 m. The flow rate was set to 20 or 30 μl/min. Running buffer: HBS-EP buffer (BR-1006-91, GE Healthcare). The surfaces were re-generated by two 1-min injections at 30 μl/min of 10 mM Glycine, pH 1.5 (rHC/A) or 1-min injections at 30 μl/min of either: 10 mM Glycine, pH 1.5 and 0.125% SDS (FGFR3), 10 mM Glycine, pH 1.5 and 20 mM CHAPS (Membrane extracts), or 10 mM NaOH (SV2C). The sensorgram curves were evaluated using the BIAevaluation 3.0 software. The curves were fitted to a 1:1 Langmuir binding model (A + B ↔ AB, where A is the analyte and B is the ligand immobilized on the sensor surface). Based on the fitted curves the association constant, kₐ, the dissociation constant, k₈, and the equilibrium constant, K_D (K_D = k₈/kₐ) were determined. The FGFR3b/c peptide curves were also visually compared using the “normalization” wizard in the BIAevaluation 4.1 software.

T-test

To assess the significance of the differences from the BoNT/A cell-based competition/inhibition assays and the SPR Binding Analysis assays t-tests were performed using online Graphpad software; www.graphpad.com/quickcalcs/test1.cfm?Format = SEM (GraphPad Software Inc).

ID numbers for genes and proteins mentioned in the text

FGFR3 (ENSG00000185332), SV2A (ENSG000001359164), SV2B (ENSG000001185518), SV2C (ENSG00000122012), FGF1 (ENSG00000113578), FGF2 (ENSG00000138685), FGF9 (ENSG00000102678), and FGF10 (ENSG00000170193).

Supporting Information

Figure S1 Isolation of a BoNT/A-FGFR3 protein complex and BoNT/A sensitivity and expression of SV2 and FGFR3 before and after differentiation. (A) Undifferentiated and differentiated PC-12 cells were treated with BoNT/A for 6 hours followed by overnight incubation in toxin-free media. Western Blot of PC-12 cell lysates using antibodies specific to SNAP25,797. Western blot band intensities were plotted against BoNT/A concentration in log scale using SigmaPlot v 10.0 and the EC₅₀ values were calculated by fitting the curves to a 4-parameter logistics (4PL) function. PC-12 cells were more sensitive to BoNT/A after differentiation, observed as an increase in both potency and efficacy. The EC₅₀ before differentiation was 800±20 pM, the EC₅₀ after differentiation was 270±30 pM, and the efficacy of uptake was increased 2.5-fold (representative experiment of n = 3). (B) Three days differentiated Neuro-2a and PC-12 cells were treated with BoNT/A for 24 hours followed by two day incubation in toxin-free media. With longer treatment and incubation Neuro-2a and PC-12 cells were both very sensitive to BoNT/A. (Ba) Neuro-2a cells, EC₅₀ = 60±2.5 pM and (Bb) PC-12 cells, EC₅₀ = 47.1±13 pM (representative experiment of n≥4). Western Blot of cell lysates using antibodies specific to SNAP25,797 were plotted against BoNT/A concentration in log scale using SigmaPlot v 10.0 and fitted to a 4PL function. The SNAP25,797 antibody is specific for the cleaved product and does not cross-react with SNAP25,306 (No signal at the 0 pM concentration). (C–E) Isolation of a BoNT/A-FGFR3 protein complex in Neuro-2a cells. (C) Non-reducing SDS-PAGE, silver stained, showing the Avidin isolated ~250 kDa protein complex from Neuro-2a cells treated with BoNT/A (150 kDa) carrying the cross-linking reagent Sulfo-SBED. As a negative control the pull down was performed with Sulfo-SBED BSA (Control). (D–E) Western blot under reducing conditions resulting in separation of BoNT/A and its receptor. The blot was probed with antibody against BoNT/A heavy chain (D) or FGFR3 (E) demonstrating that both BoNT/A and FGFR3 were present in the complex. The negative control with Sulfo-SBED BSA was run in parallel (Control). (F) Expression of FGFR3 and SV2 in Neuro-2a and PC-12 cells, before and after 3 days differentiation. Lysates of differentiated and non-differentiated cells were analyzed by Western blot using antibodies to FGFR3 and SV2A, B and C. The lysates, 6 μg per lane for FGFR3 and SV2A and B, and 3 μg per lane for SV2C, were run in parallel to allow direct comparison of intensities. According to the manufacturer the antibody to FGFR3 (Ab133644) recognizes a single band for FGFR3 just below 100 kDa. The antibodies to SV2 recognize multiple diffuse bands for SV2, partly because SV2 proteins are highly glycosylated in vivo [19]. The predicted size for each of them, based on their protein sequence, ~80 kDa, is shown and an arrow is pointing to the band size expected to be SV2 for each lane. Interestingly, the band size for SV2 is higher in PC-12 than in Neuro-2a cells, suggesting different levels of glycosylation. As a loading control the blots we re-blotted using an antibody to Syntaxin. According to the manufacturer, the antibody for Syntaxin, sc-12736 recognizes a single band just above 34 kDa. Expression of FGFR3 was unchanged after differentiation, while the expression of SV2A, B and C was decreased in both cell lines. (G) Expression of FGFR3 and SV2 isoforms in HEK 293 cells. Lysates of HEK 293 cells (6 μg per lane) were analyzed by Western blot using antibodies to FGFR3 and SV2A, B and C. As a positive control, lysates from PC-12 cells were run in parallel. HEK 293 cells express FGFR3, but little or no SV2. (H) Uptake of rHC/A in HEK 293 cells. Uptake of 0–25 nM Alexa Fluor 633.
labeled rHC/A (Hb) was measured, as an increase in intracellular fluorescence over time, using the Operetta High Content Imaging System. For comparison, internalization of Alexa Fluor 633 labeled FGF2 (Ha), a native ligand for FGFR3, was measured in parallel. The results show that rHC/A binds to and enters HEK 293 cells and that up-take of rHC/A is comparable to up-take of FGF2, even if slightly lower.

Figure S2 Overexpression of FGFR3, but not SV2C, increases binding to rHC/A. Reduced expression of FGFR3 but not SV2C decreased sensitivity to BoNT/A. (A–C) Affinity measurements with membrane extracts from PC-12 cells (A) or SH-SY5Y cells (B) transfected with FGFR3, SV2C2, or empty vector (pcDNA3.1). Increased binding to rHC/A was observed using membrane extracts from cells transfected with FGFR3c compared to cells transfected with empty vector. No increase in response was observed using membrane extracts from cells transfected with SV2C2 compared to cells transfected with empty vector. (C) Table showing the average percentage increase in response was observed using membrane extracts from cells transfected with empty vector. (D–F) siRNA knockdown of FGFR3 and 95% confidence interval, and fold-difference in mRNA and protein compared to the scrambled control for the FGFR3 and SV2C siRNAs used.

Figure S3 FGFR3 Loop 2,3 is the minimal optimal binding site for rHC/A. (A) Sequence alignment using Espirit (from IBCP, Lyon, France) of the third extra-cellular loop of FGFR3 subtype b and c showing the amino acid sequence differences in loop 3 between the two subtypes. (B) Binding affinities of the eight FGFR3 deletion mutant peptides in a BIAcore SPR binding assay. Increasing concentrations, 0–4000 nM of each of the FGFR3 peptides were flowed across a CM5 sensor chip covered with rHC/A. The curves were fitted to a 1:1 kinetic-binding model (A + B ↔ AB) with the BIAevaluation 5.0 software. The table shows the calculated k_{on} (1/MS), k_{off} (1/s), and K_{D} (k_{off}/k_{on} [M]) for all eight FGFR3 deletion mutant peptides upon binding to rHC/A. To assess the significance of the differences t-tests were performed, comparing each peptide to the lowest peptide of the same subtype and comparing the subtype b peptides that were not significantly different from the longest FGFR3b peptide to the subtype c peptides that were not significantly different from the longest FGFR3c peptide. P-values are shown in the table. Unmarked p-values indicate that the difference is not significant. FGFR3b peptides bound slightly better than subtype c peptides. For both subtypes, the peptides that contained only Loop 3 bound with significantly lower affinity compared to the peptides that spanned Loop 2,3 or Loop 1,2,3. The average K_{D} for FGFR3c Loop 2,3 fell in the middle, being about 3 times higher than the average K_{D} for FGFR3c Loop 1,2,3. There was no significant difference in binding of FGFR3b Loop 2,3 and FGFR3b Loop 1,2,3, showing that Loop 2,3 of FGFR3 is the minimal optimal binding region for rHC/A. (C) Visual comparison of FGFR3c Loop 1,2,3, FGFR3c Loop 2,3, and FGFR3c Loop 3. The 1000 nM curves of one or two runs for each peptide were normalized using BIAcore evaluation software version 4.1. The on-rate of FGFR3c Loop 1,2,3 and FGFR3c Loop 2,3 are faster than the on-rate for FGFR3c Loop 3. (TIF)

Acknowledgments

Fitting of data from the BoNT/A competition and inhibition experiments was performed by Thomas Kim.

Author Contributions

Conceived and designed the experiments: BPSJ PEG JD JBN YM JW LES KRA RCS EFS. Performed the experiments: BPSJ PEG JD JBN BC YM JW. Analyzed the data: BPSJ PEG JD JBN YM JW RCS EFS. Contributed reagents/materials/analysis tools: BPSJ PEG JD JBN YM JW BC LES RKA RCS EFS. Wrote the paper: BPSJ EFS. Contributed reagents/materials/analysis tools: BPSJ PEG JD JBN YM JW BC LES RKA RCS EFS. Performed the experiments: BPSJ PEG JD JBN BC YM JW. Analyzed the data: BPSJ PEG JD JBN YM JW RCS EFS. Contributed reagents/materials/analysis tools: BPSJ PEG JD JBN YM JW BC LES RKA RCS EFS. Wrote the paper: BPSJ EFS.

References

1. Blasi J, Chapman ER, Link E, Binz T, Yamazaki S, et al. (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365: 160–163. 10.1038/365160a0 [doi].
2. Montecucco C, Papini E, Schiaovo G (1994) Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 346: 92–98.
3. Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neuroblastoma cells. Neuro-2a, or SH-SY5Y cells with FGFR3, compared to cells transfected with empty vector. (D–F) siRNA knockdown of FGFR3c compared to cells transfected with empty vector. No increase in response was observed using membrane extracts from cells transfected with SV2C2 compared to cells transfected with empty vector. (C) Table showing the average percentage increase in membrane extracts binding to rHC/A after transfection of PC-12, Neuro-2a, or SH-SY5Y cells with FGFR3c, compared to cells transfected with empty vector. (D–F) siRNA knockdown of FGFR3 or SV2C. Dose response curves of PC-12 cells transfected with Scrambled (negative control), FGFR3 siRNAs (D), or SV2C siRNA (E) and then treated with 0–30 nM BoNT/A for 6 hours. The curves were plotted as percent SNAP25 cleavage vs. BoNT/A concentration. (F) Table showing the calculated relative potency and 95% confidence interval, and fold-difference in mRNA and protein compared to the scrambled control for the FGFR3 and SV2C siRNAs used.

10.1038/365160a0 [doi].

14. Rummel A, Mahnold S, Bigalke H, Binz T (2004) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying a receptor specific carbohydrate interaction. Mol Microbiol 51: 631–643.
15. Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b/insight into the toxin-neuron interaction. PLoS Pathog 4: e1000129. 10.1371/journal.ppat.1000129 [doi].
16. Yowler BC, Schengrund CL (2004) Botulinum neurotoxin A changes conformation upon binding to ganglioside GT1b. Biochemistry 43: 9725–9731.
17. Mahnold S, Rummel A, Bigalke H, Dautov R, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phagic nerves. FEBS Lett 580: 2011–2014.
18. Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, et al. (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312: 592–596.
19. Verderio C, Rossetto O, Grumelli C, Fiascon A, Montecucco C, et al. (2006) Entering neurons: botulinum toxins and synaptic vesicle recycling. EMBO Rep 7: 995–999.
20. Dong M, Liu H, Tepp WH, Johnson EA, Jain R, et al. (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19: 5226–5237.
21. Baldwin MR, Barbieri JT (2009) Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxins 1: 1–9.
22. Montecucco C, Rossetto O, Schiaovo G (2004) Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol 12: 442–446.

PLOS Pathogens | www.plospathogens.org 16 May 2013 | Volume 9 | Issue 5 | e1003369

FGFR3 Is a Functional Protein Receptor for BoNT/A

10.1007/s11232-013-0357-9 [doi].

23. Rummel A (2013) Double Receptor Anchorage of Botulinum Neurotoxins

22. Rummel A, Hafner K, Mahrhold S, Darashchonak N, Holt M, et al. (2009) Three isoforms of SV2 as second receptor. J Neurochem 110: 1942–1954.
21. Baldwin MR, Barbieri JT (2009) Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxins 1: 1–9.
20. Dong M, Liu H, Tepp WH, Johnson EA, Jain R, et al. (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19: 5226–5237.
21. Baldwin MR, Barbieri JT (2009) Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxins 1: 1–9.
20. Dong M, Liu H, Tepp WH, Johnson EA, Jain R, et al. (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19: 5226–5237.
21. Baldwin MR, Barbieri JT (2009) Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxins 1: 1–9.
20. Dong M, Liu H, Tepp WH, Johnson EA, Jain R, et al. (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19: 5226–5237.
48. Hu Y, Guimond SE, Travers P, Cadman S, Hohenester E, et al. (2009) Novel
47. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, et al. (2006)
45. Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast
44. Toledo MS, Suzuki E, Handa K, Hakomori S (2005) Effect of ganglioside and
29. Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the
28. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal
27. Yeh EL, Dong M, Yao J, Tepp WH, Lin G, et al. (2010) SV2 mediates entry of
tetanus neurotoxin into central neurons. PLoS Pathog 6: e1000207. 10.1371/journal.ppat.1000207 [pii] [doi]
26. Peng L, Tepp WH, Johnson EA, Dong M (2011) Botulinum Neurotoxin D Uses
25. Eswarakumar VP, Lozano-Cuesta I, Schlessinger J (2005) Alternative splicing
24. Florez AL, Tepp WH, Johnson EA, Nandi A, et al. (2007) Mechanism of entry of
23. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
22. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
21. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
20. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
19. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
18. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
17. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
16. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
15. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
14. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
13. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
12. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
11. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
10. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
9. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
8. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
7. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
6. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
5. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
4. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
3. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
2. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of
1. Zhang Z, Ibrahimi OA, Olsen SK, Raucci A, Zhang F, et al. (2005) The role of