Changes in the Management of Urinary Tract Infections in Women: Impact of the New Recommendations on Antibiotic Prescribing Behavior in France, Between 2014 and 2019

Arthur Piraux (arthur.piraux@univ-angers.fr)
University of Angers

Sébastien Faure
University of Angers

Kurt G. Naber
Technical University of Munich

Jakhongir F. ALIDJANOV
University of Giessen

Aline Ramond-Roquin
University of Angers

Research Article

Keywords: Urinary tract infection, antimicrobial resistance, antibiotic consumption, guideline adherence, prescriber-pharmacist collaboration, educational intervention, antibiotic resistance

DOI: https://doi.org/10.21203/rs.3.rs-228459/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Urinary tract infections (UTIs) are among the most common infections that require antibiotic therapy. In December 2015, new guidelines for UTI management were published in France with the aim of reducing antibiotic misuse and the risk of antimicrobial resistance.

Objectives

To analyze changes in antibiotic prescribing behavior for acute uncomplicated UTI in women in France from 2014 to 2019.

Methods

Retrospective study using data extracted from the medico-administrative database 'OpenMedic' that is linked to the French National Health Data System and collects data on the reimbursement of prescribed drugs. The analyses focused on the number of boxes of antibiotics delivered by community pharmacies, the molecule class, and the prescriber's specialty.

Results

Overall, antibiotic dispensing by community pharmacies increased by 8% between 2014 and 2019, but with differences in function of the antibiotic class. The use of antibiotics recommended as first-line and second-line treatment increased (+ 41% for fosfomycin, + 7.53% for pivmecillinam). Conversely, the dispensing of lomefloxacin and norfloxacin decreased by 80%, and that of ciprofloxacin by 23%. Some antibiotics were mostly prescribed by general practitioners (lomefloxacin, pivmecillinam) and others by secondary care physicians (ofloxacin). The dispensing increase was higher for antibiotics prescribed by secondary care physicians than general practitioners (+21% and +5% between 2014 and 2019).

Conclusion

These data suggest that the new recommendations are followed, as indicated by the increased prescription of fosfomycin and pivmecillinam and decreased prescription of fluoroquinolones. However, the efficient transmission and implementation of new recommendations by practitioners requires time, means and dedicated tools.

Background

Urinary tract infections (UTIs) are among the most common bacterial infections[1], particularly in women2. Yet, UTI incidence is difficult to estimate because this is not a reportable disease in many countries and in primary care settings the diagnosis may not be always confirmed by urine testing. Previous studies found that about 10% of >18-year-old women presented UTI symptoms in the 12
months preceding the survey, and that approximately 50% of women had at least one episode of cystitis during their life[2, 3]. In France, 4 to 6 million people have UTI each year. It is one of the main reasons for consulting a general practitioner (GP), after chest infections[1, 4, 5].

UTIs, particularly acute uncomplicated cystitis, are usually treated with short-course antibiotic regimens. However, bacterial resistance to some antibiotics currently used for managing community-acquired UTIs has been detected in primary care settings and hospitals worldwide[6–8]. Antimicrobial resistance (AMR) is considered one of the most important threats to modern medicine by the World Health Organization (WHO)[7, 9, 10]. According to a recent WHO report, in almost 40% of infections, bacterial resistance has been found in developed countries[11]. In the case of UTIs, antibiotic resistance is associated with delayed symptom resolution, and this affects the patient's daily activities, and might cause pyelonephritis[12, 13]. Therefore, to limit AMR increase, recommendations on UTI management are regularly updated by the health authorities and scientific societies[6, 14, 15]. For instance, the current guidelines indicate that in women with uncomplicated UTI, fluoroquinolones (e.g. lomefloxacin and norfloxacin) should only be prescribed as last-line treatment [16, 17]. In France, the Société de pathologie infectieuse de langue française (French infectious disease society) and the Haute autorité de la santé (French national health authority) updated their guidelines on UTI management in December 2015 and recommend now a single dose of fosfomycin for acute uncomplicated cystitis (Table 1). Moreover, to limit the use of lomefloxacin and norfloxacin, the French authorities decided to stop their reimbursement from June 2019. Additionally, several public health campaigns have been deployed to make people aware of AMR risk and to explain the correct use of antibiotics[9, 18–20].

The objective of this study was to analyze how antibiotic prescriptions for the management of acute uncomplicated UTI in women changed in France between 2014 and 2019 to determine whether and to what extent these new guidelines have been implemented. Indeed, to reduce AMR, it is important to study the impact of health policies, recommendations, and awareness campaigns on the physicians’ prescribing behaviors.

Method

Study Design

Retrospective study based on data extracted from a medico-administrative database linked to the Système National Interrégimes de l’Assurance Maladie (French National Health Insurance System).

Choice of Database

The 'OpenMedic' database collects data from the Système National des données de santé (National Health Data System) and was selected because it provides exhaustive information on drugs (Anatomical Therapeutic Chemical, ATC, classification) dispensed by community pharmacies since 2014[21]. This database, available online and with an open license, allows determining the origin of drug prescriptions presented to community pharmacies and that have been reimbursed by the Caisse Nationale de...
Choice of Antibiotics

Only data on antibiotics included in the 2015 guidelines[1, 6, 22, 23] on UTI management were selected from the 'OpenMedic' database (Table 1). Some of these antibiotics are only used for treating acute cystitis (fosfomycin, nitrofurantoin, and lomefoxacin), while others are prescribed for UTI management in general (pivmecillinam and noroxacin) and also for other infection types (ciprofloxacin, ofloxacin and norfloxacin).

Table 1
French guidelines for the treatment of acute uncomplicated cystitis

	Before December 2015[24]	From December 2015[9,25]
First line	Fosfomycin as a single dose	Fosfomycin as a single dose
Second line	Nitrofurantoin for 5 days	Pivmecillinam for 5 days
	Fluoroquinolone* as single dose (ciprofloxacin, ofloxacin)	
	Fluoroquinolone* for 3 days (ciprofloxacin, lomefoxacin, norfloxacin, ofloxacin)	
Third line	Nitrofurantoin for 5 days	Fluoroquinolone* as single dose (ciprofloxacin, ofloxacin)

* The use of fluoroquinolone is not indicated if another quinolone has been taken in the previous six months, regardless of the indication.

Inclusion Criteria and Study Variables

As the OpenMedic database does not give the reason (i.e. diagnosis) that led to the antibiotic prescription, some of the variables available in this database (Appendix Table 1) were selected as inclusion criteria to obtain a patient typology as close as possible to that of a woman with acute uncomplicated cystitis:

- Female sex (exclusion of men and unknown sex);
- Age between 20 and 59 years (age > 65 years may be a risk factor for UTI complications, according to the French recommendations[22]);
- Living in France;
- The selected antibiotics were identified using the fifth level (i.e. chemical substances) of the ATC classification.

Statistical Analysis
For the analysis, the number of boxes dispensed and not the number of consumers was selected because the database counts the deliveries per patient over a year in a binary way (no = 0/yes = 1), regardless of the number of deliveries during that year (1 episode = 1 delivery / 5 episodes = 1 delivery).

To facilitate the analysis, the 25 different types of prescribers (Appendix Table 1) were grouped in three categories: general practitioners (GPs), secondary care physicians (including emergency services and physicians/GPs working in private clinics and residential care homes), and other physicians (i.e. specialists who can be contacted directly by the patient or through a referral system).

The various analyses focused on the number of boxes of the main antibiotics indicated for UTI delivered by community pharmacies for each year and the prescriber type.

Results

Changes in Antibiotic Delivery from 2014 to 2019

Overall, the number of antibiotic boxes commonly used for acute cystitis treatment and dispensed by community pharmacies (Fig. 1A) increased by 12% in 2016, and then slightly decrease (-4%) in 2019 (+8% between 2014 and 2019). However, this relative stable trend hid differences among antibiotic classes (Fig. 1B). Specifically, the prescription of pivmecillinam, an antibiotic that is now recommended as second-line treatment, progressively and rapidly increased (+434% in 2015, +4,107% in 2017, +7,430% in 2019; 6,000 boxes were delivered in 2014 and more than 467,000 in 2019). The delivery of fosfomycin (the first-line drug for uncomplicated UTI) also progressively increased, but more slowly (+9% in 2015, +28% in 2017, and +41% in 2019). Ofloxacin delivery also increased by more than 40% in 2016, but then decreased by 10% in 2019, compared with 2014. On the other hand, the delivery of lomefloxacin and norfloxacin strongly decreased, particularly in 2019 (~81% and ~85%, respectively, compared with 2014). Ciprofloxacin showed a smaller decrease (~23%), while nitrofurantoin delivery remained stable (-0.6%) during the study period.

GPs were the most common prescribers of antibiotics for acute cystitis management (75% of all reimbursed antibiotic prescriptions for UTI; approximately 4.5 million antibiotic boxes per year reimbursed by the French National Health Insurance system), followed by secondary care physicians (15% of all reimbursed antibiotic prescriptions). These two categories alone accounted for nearly 90% of the prescriptions among the 25 practitioner types identified in the database (Appendix Table 1).

Changes in Antibiotics Delivered Depending on the Prescriber’s type

To evaluate the implementation of the 2015 UTI recommendations, the prescribing patterns of GPs and secondary care physicians were investigated (Fig. 2). During the study period, their prescribing behavior changed in line with the national recommendations, but some differences could be observed between GPs (Fig. 2A) and secondary care physicians (Fig. 2B).
Fosfomycin remained the most prescribed molecule, and its delivery by community pharmacies significantly increased over time (+38% for GPs and +74% for secondary care physicians). Conversely, the prescription of pivmecillinam, which is now recommended as a second-line treatment, increased more among GPs than secondary care physicians (respectively +8.207% and +3.913%). However, nitrofurantoin prescription frequency did not change in both groups. Ciprofloxacin and ofloxacin were preferentially prescribed by secondary care physicians than by GPs. These two molecules represented 42% and 25% of the molecules prescribed by secondary care physicians and GPs, respectively, in 2019. Conversely, lomefloxacin and norfloxacin, which are no longer reimbursed since June 2019, were more frequently prescribed by GPs than secondary care physicians: 26% and 10% of all prescriptions in 2014, but only 4% and 2% in 2019, for GPs and secondary care physicians, respectively.

Overall, the main trends observed in Fig. 1 (increase in 2016 before a slight decrease in 2019) were detected also for the antibiotic prescribing behaviors of GPs (+5% between 2014 and 2019), but not of secondary care physicians (+21% for the same period).

Discussion

Main Results

The OpenMedic data, which reflect the antibiotic delivery by community pharmacies, showed variations according to the molecule class and the prescriber considered. We observed the emergence of pivmecillinam, an increase of fosfomycin, and a large decrease of norfloxacin and lomefloxacin prescriptions. Some molecules were more specific to a specific prescriber. For example, pivmecillinam was prescribed mainly by GPs, and ofloxacin by secondary care physicians. About 46% of fosfomycin prescriptions were by secondary care physicians who are working in centers in which the resources and technical facilities are not designed to manage acute uncomplicated UTI. This could mirror the increase in patients' antibiotic use of the emergency department even for minor health problems, particularly during weekends and weeknights (i.e. when GPs are often not on duty in France). Indeed, such prescriptions were mainly issued in a hospital, but the antibiotic was dispensed by a community pharmacy.

The high percentage of fluoroquinolone (ciprofloxacin, ofloxacin) prescriptions by secondary care physicians also should be taken with caution because they are prescribed for many infections that are often more serious than UTI. Conversely, the proportion of pivmecillinam prescriptions increased in both groups but much more in the GP group. Overall, these differences can be explained by the fact that uncomplicated UTIs are, in theory, managed by GPs, while complicated infections are treated in hospital and do not have the same recommendations and treatments[6, 14].

The overall increase in antibiotic consumption was mainly due to the sharp rise of ofloxacin deliveries (+67% between 2015 and 2016). We cannot explain this sudden increase. The analysis of the number of consumers (and not the number of boxes) showed similar results for this period. Based on the molecule
indications, this may suggest an increase of UTIs and/or respiratory infections, with treatments prescribed mainly in primary care settings because the hospital prescriptions of ofloxacin remained relatively stable in the last years.

Impact of Expert Recommendations and Health Policies

The year 2016, when the new recommendations were implemented, was characterized by the strong increase in the delivery of pivmecillinam, which officially entered the therapeutic arsenal, and the significant decrease of ciprofloxacin. However, as the physicians’ adherence to recommendations is poor[23–28], policymakers should combine the publication of new guidelines with interventions to convince prescribers. For example, in England, to reduce inappropriate UTI management, and to limit the risk of trimethoprim resistance, the National Health Service introduced the ‘Quality Premium’ program in 2016[29] with the aim of reducing trimethoprim prescriptions through financial incentives. Similarly, the French health authorities concluded that lomefloxacin and norfloxacin have insufficient medical value and decided to stop their reimbursement at the beginning of 2019 to limit their use. This measure seems to be useful, as indicated by the very strong decrease in their delivery in 2019 and was supported by a broad-based communication (scientific congresses, websites and newsletters) to promote the new recommendations. For example, some very synthetic ‘memos’, including the key messages of the new recommendations were proposed[22].

How to Improve the Implementation of Recommendations

Besides the application of recommendations in terms of drug choice, it is important also to use the most adapted care pathway. Indeed, acute cystitis should be managed only by GPs and community pharmacists. However, uncomplicated UTIs are still a frequent reason to visit emergency departments[30, 31].

Moreover, all physicians, and particularly GPs should be aware of the need to comply with the latest recommendations to reduce AMR[32]. One of the keys to the successful implementation of new recommendations is knowledge transfer[33], and many solutions are already available. For example, a computerized decision support platform can be a tool to translate complex healthcare knowledge into every day practice[34]. In France, several quick and simple computer tools (e.g. Antibioclic© and Vidal Recos®[35, 36]) are already available to find the recommended care pathway and most suitable treatment.

Some barriers need to be overcome. Communication, especially between GPs and institutions, is an important point[37]. Scientific societies and institutions have to work with physicians to make these recommendations more “user-friendly”. Physicians could be included in the groups involved in guideline drafting to make them accessible to all and as close as possible to the real practice conditions. All the main concerned parties (clinicians, researchers, knowledge users, and institutions) should be brought together to identify common challenges and success factors for the implementation of a new program[38].
More than insufficient knowledge, lack of agreement with the recommendations and lack of applicability seem to be the main barriers to guideline adherence\[39\]. To overcome these barriers, education sessions could be proposed where small groups of GPs (or other healthcare professionals) can analyze their current practices and find ways to include the new recommendations\[28, 40\]. This approach is useful, but possibly not in the long term\[41\]. Moreover, the collaboration between physicians and community pharmacists could be strengthened, particularly when they work in the same community. The pharmacist could contribute to optimize the prescription of antibiotics for UTIs and help to limit unnecessary antibiotic exposure\[42–44\]. Different quality indicators (e.g. dosage, duration, antibiotic/antibiogram suitability) were improved after a pharmacist’s intervention (> 96% of conformity for treatment duration and 98% for posology)\[42\].

Limitations

The lack of knowledge on the diagnosis is one of the biggest limits of this study. Despite the inclusion criteria based on sex and age, we cannot be sure that the delivered antibiotics were prescribed for UTI, although some of them (e.g. fosfomycin) should be used only for acute uncomplicated UTI in women. Moreover, the lack of information on the diagnosis did not allow checking the relevance of the antibiotic prescriptions.

The analysis of the number of boxes dispensed did not allow knowing the number of UTI episodes per year. Some treatments, for an episode, requires two boxes of antibiotics (pivmecillinam) and in other cases, the antibiotic can be used continuously for the prevention of recurrent cystitis (fosfomycin). Therefore, this analysis was based on an exhaustive result. The number of consumers, also available in this database, induced other biases (if a woman had three UTI episodes in the same year and was treated with the same antibiotic, she would have been counted only as one consumer).

Only the antibiotics recommended for UTI were selected, but others are probably prescribed to treat UTI (e.g. trimethoprim-sulfamethoxazole). Moreover, a drug dispensed in a pharmacy may be not taken by the patient for different reasons, including negative results of the urine culture. Finally, the non-reimbursement of lomefloxacin and norfloxacin from 2019 may have led to underreporting of their dispensing.

Future Research

It should be important to code each medical procedure to allow a more detailed and objective analysis of antibiotic prescription practices and adherence to recommendations\[13, 29, 45\]. The knowledge of the diagnosis should also be useful for community pharmacists to check the antibiotic prescription appropriateness.

Besides, it would be interesting to follow a cohort of patients to analyze their care pathway (category of practitioners, time required to receive the diagnosis and treatment, etc.) to identify and propose strategies to improve adherence to healthcare guidelines.
Conclusion

To limit AMR, the French authorities reviewed their recommendations for UTI management in 2015 and fluoroquinolones are now only recommended as a last resort for uncomplicated infection. The new recommendations seem to be increasingly followed, on the basis of the changes in the delivery of antibiotics recommended for UTI treatment: an increase of fosfomycin and pivmecillinam, and a decrease of fluoroquinolones.

However, there is still place for improvement. Health policymakers must encourage and promote adherence to such recommendations. Financial motivations, audits and feedback, educational interventions, implication of primary healthcare professionals, prescriber-pharmacist collaborations are among the many resources available to help physicians. These approaches are particularly useful in primary care, where most patients go for UTI and where the potential is high to significantly limit AMR.

Abbreviations

AMR: Antimicrobial resistance

ATC: Anatomical Therapeutic Chemical

GP: General practitioner

UTI: Urinary tract infections

WHO: World Health Organization

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

The datasets analysed during the current study are available in the 'OpenMedic' database collects data from the Système National des données de santé (National Health Data System), https://www.data.gouv.fr/fr/datasets/open-medic-base-complete-sur-les-depenses-de-medicaments-interregimes/
Competing interests
The authors declare that they have no competing interests

Funding
Not applicable

Authors' contributions
AP analyzed and interpreted the data. ARR interpreted the data and was a major contributor in writing the manuscript. SF, KGN and JFA have substantively revised the work. All authors read and approved the final manuscript.

Acknowledgements
This study is part of the French network of University Hospitals HUGO (‘Hôpitaux Universitaires du Grand Ouest’)

References
1. Société de pathologie infectieuse de langue française. Deuxième conférence de consensus en thérapeutique anti-infectieuse. Médecine Mal Infect. 1990;20:620–3.
2. Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med. 2002;113:5–13.
3. The European Association of Urology. XVth Congress of the European Association of Urology. Brussels, Belgium, April. Eur Urol. 2000;37 Suppl 2:1–175.
4. Elkharrat D, Arrouy L, Benhamou F, Dray A, Grenet J, Corre AL. Épidémiologie de l’infection urinaire communautaire de l’adulte en France. In: Lobel B, Soussy C-J, editors. Les infections urinaires. Paris: Springer Paris; 2007. p. 1–20.
5. Bruyère F, Boiteux J-P. Épidémiologie, diagnostic et traitement des cystites aiguës isolées ou récidivantes de l’adulte. EMC - Urol. 2011;4:1–11.
6. Société de pathologie infectieuse de langue française. Diagnostic et antibiothérapie des infections urinaires bactériennes communautaires de l’adulte. 2015.
http://www.infectiologie.com/UserFiles/File/spilf/recos/infections-urinaires-spilf-argumentaire.pdf. Accessed 27 Dec 2018.
7. World Health Organization, editor. Antimicrobial resistance: global report on surveillance. Geneva, Switzerland: World Health Organization; 2014.
8. Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis. 2014;14:13.

9. World Health Organization, editor. Global action plan on antimicrobial resistance. 2015. https://apps.who.int/iris/handle/10665/193736. Accessed 21 Jul 2020.

10. World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) report - Early implementation 2020. 2020. https://apps.who.int/iris/bitstream/handle/10665/332081/9789240005587-eng.pdf?ua=1. Accessed 20 Oct 2020.

11. IACG. No time to wait: Securing the future from drug-resistant infections. Report to the Secretary-General of the United Nations. 2019. https://www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG_final_report_EN.pdf?ua=1. Accessed 20 Oct 2020.

12. Little P, Merriman R, Turner S, Rumsby K, Warner G, Lowes JA, et al. Presentation, pattern, and natural course of severe symptoms, and role of antibiotics and antibiotic resistance among patients presenting with suspected uncomplicated urinary tract infection in primary care: observational study. The BMJ. 2010;340. doi:10.1136/bmj.b5633.

13. Sigler M, Leal JE, Bliven K, Cogdill B, Thompson A. Assessment of appropriate antibiotic prescribing for urinary tract infections in an internal medicine clinic. South Med J. 2015;108:300–4.

14. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, et al. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52:e103–20.

15. Professionals S-O. EAU Guidelines: Urological Infections. Uroweb. https://uroweb.org/guideline/urological-infections/#1. Accessed 21 Jul 2020.

16. Bader MS, Loeb M, Brooks AA. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad Med. 2017;129:242–58.

17. Geerlings SE. Clinical Presentations and Epidemiology of Urinary Tract Infections. Microbiol Spectr. 2016;4. doi:10.1128/microbiolspec.UTI-0002-2012.

18. European Commission. A European One Health Action Plan against Antimicrobial Resistance. 2017. https://ec.europa.eu/health/amr/sites/health/files/antimicrobial_resistance/docs/amr_2017_action-plan.pdf. Accessed 21 Jul 2020.

19. Ministère des Solidarité et de la Santé, editor. National health strategy 2018-2022. 2017. https://solidarites-sante.gouv.fr/IMG/pdf/dossier_sns_2017_synthesev6-10p_anglaisv2.pdf.

20. Maugat Sylvie, Berger-Carbonne Anne. Consommation d’antibiotiques et résistance aux antibiotiques en France: une infection évitée, c’est un antibiotique préservé! 2018. https://www.santepubliquefrance.fr/content/download/186827/2320191. Accessed 21 Jul 2020.

21. Caisse nationale de l’assurance maladie. Open Medic: base complète sur les dépenses de médicaments interrégimes. /fr/datasets/open-medic-base-complete-sur-les-depenses-de-medicaments-interregimes/. Accessed 21 Jul 2020.
22. Haute autorité Santé. Cystite aiguë simple, à risque de complication ou récidivante de la femme. 2016. https://www.has-sante.fr/portail/upload/docs/application/pdf/2016-11/v1-fm_cystite_aigue_cd-151116.pdf. Accessed 27 Dec 2018.

23. Agut S. Prise en charge déclarée des cystites aiguës simples et récidivantes par les médecins généralistes français: étude de l'adéquation aux recommandations publiées par la SPILF en 2014. :67.

24. Llor C, Rabanaque G, Lopez A, Cots JM. The adherence of GPs to guidelines for the diagnosis and treatment of lower urinary tract infections in women is poor. Fam Pract. 2011;28:294–9.

25. Kabbara WK, Meski MM, Ramadan WH, Maaliki DS, Salameh P. Adherence to International Guidelines for the Treatment of Uncomplicated Urinary Tract Infections in Lebanon. Can J Infect Dis Med Microbiol J Can Mal Infect Microbiol Médicale. 2018;2018. doi:10.1155/2018/7404095.

26. Zatorski C, Zocchi M, Cosgrove SE, Rand C, Brooks G, May L. A single center observational study on emergency department clinician non-adherence to clinical practice guidelines for treatment of uncomplicated urinary tract infections. BMC Infect Dis. 2016;16:638.

27. Taur Y, Smith MA. Adherence to the Infectious Diseases Society of America Guidelines in the Treatment of Uncomplicated Urinary Tract Infection. Clin Infect Dis. 2007;44:769–74.

28. Grover ML, Bracamonte JD, Kanodia AK, Bryan MJ, Donahue SP, Warner A-M, et al. Assessing Adherence to Evidence-Based Guidelines for the Diagnosis and Management of Uncomplicated Urinary Tract Infection. Mayo Clin Proc. 2007;82:181–5.

29. Croker R, Walker AJ, Goldacre B. Why did some practices not implement new antibiotic prescribing guidelines on urinary tract infection? A cohort study and survey in NHS England primary care. J Antimicrob Chemother. 2019;74:1125–32.

30. Le Conte P, Elkharrat D, Potel G. Prise en charge des infections urinaires communautaires dans les Service d'Accueil et d'Urgence Français. Antibiotiques. 2004;6:237–9.

31. Sondik EJ, Madans JH, Sadagursky MH, Madans JH, Hunter EL, Sisk JE, et al. National Center for Health Statistics. :73.

32. Butler CC, Hillier S, Roberts Z, Dunstan F, Howard A, Palmer S. Antibiotic-resistant infections in primary care are symptomatic for longer and increase workload: outcomes for patients with E.coli UTIs. Br J Gen Pract. 2006;56:686–92.

33. Pappano D, Connors G, McIntosh S, Humiston S, Roma D. Sources of knowledge transfer among primary care pediatic health care providers. Clin Pediatr (Phila). 2008;47:930–4.

34. Abidi S, Vallis M, Piccinini-Vallis H, Imran SA, Abidi SSR. Diabetes-Related Behavior Change Knowledge Transfer to Primary Care Practitioners and Patients: Implementation and Evaluation of a Digital Health Platform. JMIR Med Inform. 2018;6:e25.

35. Antibioclic: Antibiothérapie rationnelle en soins primaires. https://antibioclic.com/. Accessed 16 Sep 2020.

36. VIDAL - Recommandations. https://www.vidal.fr/recommandations/. Accessed 4 Nov 2020.
37. Slade SC, Kent P, Patel S, Bucknall T, Buchbinder R. Barriers to Primary Care Clinician Adherence to Clinical Guidelines for the Management of Low Back Pain: A Systematic Review and Metasynthesis of Qualitative Studies. Clin J Pain. 2016;32:800–16.

38. Ahmed S, Ware P, Visca R, Bareil C, Chouinard M-C, Desforges J, et al. The prevention and management of chronic disease in primary care: recommendations from a knowledge translation meeting. BMC Res Notes. 2015;8:571.

39. Lugtenberg M. Guidelines on uncomplicated urinary tract infections are difficult to follow: perceived barriers and suggested interventions. 2010;8.

40. Hecker MT, Fox CJ, Son AH, Cydulka RK, Siff JE, Emerman CL, et al. Effect of a Stewardship Intervention on Adherence to Uncomplicated Cystitis and Pyelonephritis Guidelines in an Emergency Department Setting. PLoS ONE. 2014;9:e87899.

41. Willems L, Denckens P, Philips H, Henriquez R, Remmen R. Can we improve adherence to guidelines for the treatment of lower urinary tract infection? A simple, multifaceted intervention in out-of-hours services. J Antimicrob Chemother. 2012;67:2997–3000.

42. Rochefolle A, Maison O, Chazaud C, Rioufol C, Rode G, Luaute J, et al. Impact des interventions pharmaceutiques sur l’antibiothérapie des infections urinaires en service de soins de suite et de réadaptation. Prog En Urol. 2017;27:439–45.

43. Zhang X, Rowan N, Pflugeisen BM, Alajbegovic S. Urine culture guided antibiotic interventions: A pharmacist driven antimicrobial stewardship effort in the ED. Am J Emerg Med. 2017;35:594–8.

44. Gendrin V, Letranchant L, Hénard S, Frentiu E, Demore B, Burty C, et al. Amélioration de la prescription des fluoroquinolones dans les infections urinaires. Revue de pertinence à deux tours. Presse Médicale. 2012;41:e10–4.

45. Romero LY, Lopez AH, Araujo DF, Lara MM, Marquez-Gomez I. 4CPS-063 Appropriateness of antibiotic prescribing in urinary tract infections in the emergency department of a tertiary hospital. Eur J Hosp Pharm. 2018;25 Suppl 1:A70–1.