Gut microbiota variations in patients diagnosed with major depressive disorder-A systematic review

Knudsen, Julie Kristine; Bundgaard-Nielsen, Caspar; Hjerrild, Simon; Nielsen, René Ernst; Leutscher, Peter; Sørensen, Suzette

Published in:
Brain and Behavior

DOI (link to publication from Publisher):
10.1002/brb3.2177

Creative Commons License
CC BY 4.0

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Knudsen, J. K., Bundgaard-Nielsen, C., Hjerrild, S., Nielsen, R. E., Leutscher, P., & Sørensen, S. (2021). Gut microbiota variations in patients diagnosed with major depressive disorder-A systematic review. Brain and Behavior, 11(7), [e02177]. https://doi.org/10.1002/brb3.2177
Gut microbiota variations in patients diagnosed with major depressive disorder—A systematic review

Julie Kristine Knudsen1,2 | Caspar Bundgaard-Nielsen1,2 | Simon Hjerrild3,4 | Peter Leutscher1,2 | Suzette Sørensen1,2

Correspondence
Julie Kristine Knudsen, Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark.
Email: Julie.knudsen@rn.dk

Abstract
Objective: The etiology of major depressive disorder (MDD) is multi-factorial and has been associated with a perturbed gut microbiota. Thus, it is therefore of great importance to determine any variations in gut microbiota in patients with MDD.

Methods: A systematic literature search was conducted including original research articles based on gut microbiota studies performed in patients with MDD. Demographic and clinical characteristics, applied methodology and observed gut microbiota composition were compared between included studies.

Results: Seventeen studies were included with a total of 738 patients with MDD and 782 healthy controls using different DNA purification methods, sequencing platforms and data analysis models. Four studies found a reduced α-diversity in patients with MDD, while gut microbiota compositions clustered separately according to β-diversity between patients and controls in twelve studies. Additionally, there was an increase in relative abundance of Eggerthella, Atopobium, and Bifidobacterium and a decreased relative abundance of Faecalibacterium in patients with MDD compared with healthy controls.

Conclusion: Gut microbiota differs significantly when comparing patients with MDD and healthy controls, though inconsistently across studies. The heterogeneity in gut microbiota compositions between the studies may be explained by variations in study design.

KEYWORDS
depression, gut-brain axis, major depressive disorder, microbiome, microbiota, unipolar depression

1 | INTRODUCTION

The etiology of major depressive disorder (MDD) is characterized by complex interactions between genetic, biological, and environmental factors (Saveanu & Nemeroff, 2012). Patients with MDD often have gastrointestinal disturbances, such as abdominal pain, cramping, bloating, diarrhea, and/or constipation (Walker et al., 1992). A direct causative link between the gastrointestinal disturbances and MDD has not yet been established, but the gut microbiota has been suggested to be involved, though its role not yet fully elucidated (Bastiaanssen et al., 2020; Capuco et al., 2020; Carlessi et al., 2019; Caspani et al., 2019; Clarke, 2020; Cruz-Pereira et al., 2019).
et al., 2020; Dinan & Cryan, 2019; Du et al., 2020; Kelly et al., 2019; Simpson et al., 2020). Gut microbiota has suggested to play a role in the bidirectional communication between the gastrointestinal system and the brain, also known as the gut-brain axis (Capuco et al., 2020; Cryan & Dinan, 2012). The study by Sudo et al. indicated an association between gastrointestinal bacteria and altered behavior (Sudo et al., 2004). In this study, colonization of germ-free mice with Escherichia coli resulted in a significantly altered behavior when exposed to stress compared to specific pathogen-free mice. The altered behavior in the mice was associated with a pro-inflammatory profile and inoculation with a strain of Bifidobacterium attenuated both behavioral and immunological changes. This experiment displayed how a negative behavioral effect can be produced by a specific bacterial pathogen, but also rescued by introduction of a beneficial species.

Other studies have shown that gut microbes interact with the central nervous system by signaling through bacterial components recognized by the immune system (Schroeder & Backhed, 2016), or by various derived metabolites (Fischbach & Segre, 2016). A study in rats showed that intravenous administration of lipopolysaccharide (LPS), a cell wall component of gram-negative bacteria, induced a depression-like phenotype as well as increased levels of white blood cells and pro-inflammatory cytokines (Wrotek et al., 2016). Furthermore, increased plasma concentrations of IgM and IgA antibodies against Gram-negative enterobacteria were observed in patients with MDD (Maes et al., 2012). Meta-analyses have reported low-grade systemic inflammation in patients with MDD, indicated by higher levels of C-reactive protein (Osimo et al., 2019) and pro-inflammatory cytokines (Osimo et al., 2020). Importantly, patients diagnosed with MDD have a dysfunctional microbiota-host signaling and interactions (Cruz-Pereira et al., 2020) characterized by increased plasma cortisol levels (Furtado & Katzman, 2015; Otte et al., 2016) and T-cell dysregulation (Beurel & Lowell, 2017; Cruz-Pereira et al., 2020; Furtado & Katzman, 2015; Otte et al., 2016).

Not all metabolites produced by the gut microbiota have detrimental effects on emotional and cognitive functions. Short-chain fatty acids (SCFAs), produced by beneficial species such as Faecalibacterium from indigestible fibers, can induce vagus nerve stimulation in the colon (Cawthon & Serre, 2018; Chun et al., 2016; Schroeder & Backhed, 2016), microglia maturation and activation (Sharon et al., 2016; Yang & Chiu, 2017), as well as produce brain-derived neurotrophic factor (BDNF) (Sandberg et al., 2018), a neural growth hormone. In clinical trials, healthy volunteers consuming probiotic supplements, of which several species produce SCFAs, experienced improved cognition (Marotta et al., 2019; Tillisch et al., 2013) or mood (Benton et al., 2007; Marotta et al., 2019). Combined, these experiments suggest an association between gastrointestinal bacterial species and behavioral alterations, which may become potential therapeutic targets for MDD treatment.

Recently, several clinical studies have explored the association between a specific composition of gut microbiota and depressive features (Barandouzi et al., 2020; Cheung et al., 2019; Sanada et al., 2020). In the assessment of gut microbiota, however, the study design itself may affect the overall gut microbiota composition. Diet has been found to have a major impact on bacterial species in the gut microbiota (Conlon & Bird, 2014). In the experimental processing, choice of DNA purification methods (Costea et al., 2017) and primers targeting the 16S rRNA gene for sequencing (Albertsen et al., 2015; Hamady & Knight, 2009; Lozupone et al., 2013) can considerably affect the observed composition of the gut microbiota. In determining if the gut microbiota is altered in patients with MDD, it is imperative to assess the methods used to characterize the gut microbiota.

The aim of this review was to evaluate and compare studies of gut microbiota composition in patients with MDD compared with healthy controls.

2 | METHODS

A protocol for this systematic review was uploaded and accepted into the (PROSPERO) server under the ID number CRD42018104925.

2.1 | Information sources

The databases PubMed, Embase (Ovid), and PsycINFO (Ovid) were searched for articles published up until November 13th, 2020. The literature search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines (Moher et al., 2009). The search strategies are described Supporting information 1. All fields (including title and abstract) were explored to ensure completeness of the literature search.

2.2 | Inclusion and exclusion criteria

Articles were included if they met the following inclusion criteria:

- Clinical studies performed on patients diagnosed with MDD according to criteria in the Diagnostic and Statistical Manual of Mental Disorders (DSM) or the International Classification of Diseases (ICD).
- Assessment of the gut microbiota composition through genomic analysis, including both targeted and nontargeted approaches.
- Inclusion of a control group of nondepressed individuals.

Studies were excluded if they met the following exclusion criteria:

- The focus of the study was inclusion of patients with known co-morbidities, such as assessing the gut microbiota in patients with both MDD and inflammatory bowel disorders.
- Assessment of the effect of pro-, pre-, syn- or antibiotics on a group of patients with MDD with no baseline measurement of the original gut microbiota.
2.3 | Study selection

Studies identified in the systematic literature search were imported into the EndNote software (Clarivate Analytics) for removal of duplicates. Files generated from these databases were imported into the Systematic Review Facility (SyRF) app (http://app.syrf.org.uk). SyRF was then used for screening of papers and data were extracted manually. Authors JKK and CBN independently reviewed and selected studies based on title and abstract presented by the SyRF app, and later manually reviewing the full-text. Both reviewers consistently agreed upon which studies to include and there was thus no need to include a third reviewer. JKK extracted outcome measures as described below.

2.4 | Outcome measures

Demographic and clinical data were extracted from the patient and control groups. Sample processing and analyses were focused on the methods applied to analyze the bacterial community: fecal storage conditions, DNA extraction process, choice of primers, and platforms for DNA sequencing, bioinformatics analysis programs, and databases used for taxonomic classification. The gut microbiota composition results of each study were extracted and focused on \(\alpha \)- and \(\beta \)-diversity measures and overall significant differences in composition between the two groups. Significantly altered bacteria was included for taxa phylum, family and genus level, only.

3 | RESULTS

Screening of articles was performed according to PRISMA guidelines (Figure 1). The literature search identified 3,718 articles, of which 3,701 were subsequently excluded. Thus, this left seventeen articles for further analysis (Aizawa et al., 2016; Chen et al., 2018, 2020; Chung et al., 2019; Jiang et al., 2015; Kelly et al., 2016; Lai et al., 2019; Lin et al., 2017; Liu et al., 2020; Mason et al., 2020; Naseribafrouei et al., 2014; Stevens et al., 2020; Zheng et al., 2016); the remaining studies used the ICD criteria (Hiller et al., 1994; Huang et al., 2018; Naseribafrouei et al., 2014; Vinberg et al., 2019) (Table 2). Eight of the studies excluded patients with comorbid psychiatric disorders (Chen et al., 2018, 2020; Chung et al., 2019; Jiang et al., 2015; Lai et al., 2019; Mason et al., 2020; Rong et al., 2019; Zheng et al., 2020), while six of the studies excluded patients with inflammatory bowel disorders (Chen et al., 2018; Huang et al., 2018; Jiang et al., 2015; Kelly et al., 2016; Vinberg et al., 2019; Zheng et al., 2020). Otherwise, there was no consensus between studies on exclusion criteria for specific psychiatric or somatic disorders. Four studies also examined a subset of patients with either bipolar disorder (Rong et al., 2019; Vinberg et al., 2019; Zheng et al., 2020) or comorbid anxiety (Mason et al., 2020). Data from these subgroups are not included in this review.

3.1 | Clinical information reveals highly heterogeneous study populations

Sixteen of the included studies were designed as cross-sectional, case-control studies comparing the gut microbiota of patients with MDD and healthy controls. One study was a longitudinal study, where each participant provided fecal samples at three different time points (Lin et al., 2017). The seventeen studies included a total of 738 patients diagnosed with MDD and 782 healthy controls (Table 1).
TABLE 1 Demographic characteristics

Study and Authors	Participants	Age mean (SD)	Male (%)	Education (%)	Employed (%)	
Naseribafrouei et al. (Naseribafrouei et al., 2014)	Controls	n = 18	46.1 (13.9)	39	13.5	
	Patients	n = 37	49.2 (13.9)	46	12.7	
Jiang et al. (Jiang et al., 2015)	Controls	n = 30	26.8 (5.4)	50	43	
	A-MDD	n = 29	25.3 (5.4)	62	31	
	R-MDD	n = 17	27.1 (5.4)	53	24	
Zheng et al. (Zheng et al., 2016)	Controls	n = 63	41.8 (12.3)	37		
	Patients	n = 58	40.5 (11.7)	38		
Aizawa et al. (Aizawa et al., 2016)	Controls	n = 43	42.8 (12.7)	58	15.3	
	Patients	n = 57	39.4 (10.0)	39	15.2	
Kelly et al. (Kelly et al., 2016)	Controls	n = 33	45.8 (11.9)	58	79	
	Patients	n = 34	45.8 (11.5)	62	24	
Lin et al. (Lin et al., 2017)	Controls	n = 10	38.1 (2.9)	60	13.8	
	Patients	n = 10	36.2 (10.1)	60	15.3	
Chen et al. (Chen et al., 2018)	Controls	n = 44	42.8 (15.1) (M)	45		
	Patients	n = 44	40.1 (11.1) (M)	45		
Rong et al. (Rong et al., 2019)	Controls	n = 30	38.5 (10.2)	47		
	Patients	n = 30	41.6 (10.4)	71		
Chung et al. (Chung et al., 2019)	Controls	n = 36	41.2 (12.7)	38	15.8 (2.2)	
	Patients	n = 37	45.8 (14.1)	18	13.8 (3.2)	
Huang et al. (Huang et al., 2018)	Controls	n = 27	42.3 (14.1)	26		
	Patients	n = 27	48.7 (12.8)	26		
Vinberg et al. (Vinberg et al., 2019)	Low-risk	n = 22	37.2 (7.7)	28		
	High-risk	n = 32	38.2 (9.4)	28		
	Affected	n = 45	37.7 (8.9)	25		
Chen et al. (Chen et al., 2020)	Controls	n = 27 (Y)	25.0 (2.3) (Y)	30 (Y) 23 (M)		
	n = 44 (M)	47.2 (8.1) (M)				
	Patients	n = 25 (Y)	24.0 (3.7) (Y)	28 (Y) 31 (M)		
	n = 45 (M)	45.0 (7.8) (M)				

(Continues)
TABLE 1 (Continued)

Demographic data of patients with MDD and healthy controls	Participants	Age mean (SD)	Male (%)	Education (%)	Employed (%)
Lai et al. (Lai et al., 2019)	Controls	39.4 (11.0)	45		
	Patients	43.7 (11.5)	31		
Lai et al. (Lai et al., 2019)	Controls	21.7 (2.1)	27		
	Patients	22.7 (1.8)	15		
Mason et al. (Mason et al., 2020)	Controls	33.0 (8.4)	40		
	Patients	41.9 (12.0)	21		
Stevens et al. (Stevens et al., 2020)	Controls	n = 20	50		
	Patients	n = 20	30		
Zheng et al. (Zheng et al., 2020)	Controls	n = 171 (D)	42 (D)	52 (V)	
		n = 46 (V)	45.5 (7.1) (V)		
	Patients	n = 122 (D)	37 (D)	33 (V)	
		n = 43 (V)	37.1 (9.2) (V)		

Note: Data are presented as mean (Standard deviation, SD) or percentage. Several studies assessed subgroups, which are designated in the table: A-MDD, treatment-resistant patients with MDD; R-MDD, Patients with MDD responding to antidepressant medical treatment; M, Male; F, Female; Low- and High-risk, Healthy twin siblings with assessed genetic risk of MDD; Y, Young; MA, Middle-aged; D, Discovery population; V, Validation population. BMI: Body Mass Index.

TABLE 2 Clinical information

Clinical information about patients with MDD and healthy controls	Participants	HDRS	MADRS mean (SD)	BDI mean (SD)	BMI mean (SD)	Antidepressant treatment
Naseribafrouei et al. (Naseribafrouei et al., 2014)	Controls	n = 18	7.2 (4.8)	24.7 (3.3)	0.1 (0.2)	Antidepressant treatment, mean (SD)
	Patients	n = 37	26.3 (7.6)	25.9 (4.2)	0.7 (0.5)	SSRIs or SNRIs treatment, No. (%)
Jiang et al. (Jiang et al., 2015)	Controls	n = 30	NA	NA	19.6 (3.4)	0
	A-MDD	n = 29	29.8 (7.6)	27.4 (8.5)	20.3 (3.4)	21 (72)
	R-MDD	n = 17	8.3 (4.6)	6.9 (4.3)	21.8 (3.4)	17 (100)
Zheng et al. (Zheng et al., 2016)	Controls	n = 63	0.3 (0.7)	22.6 (2.5)	0	
	Patients	n = 58	22.8 (4.4)	22.0 (2.4)	19 (33)	
Aizawa et al. (Aizawa et al., 2016)	Controls	n = 43	NA	22.3 (3.7)	NA	
	Patients	n = 57	16.9 (6.8)	23.2 (3.6)	187.7 (152.7)	

(Continues)
Clinical information about patients with MDD and healthy controls

Study	HDRS	MADRS mean (SD)	BDI mean (SD)	BMI mean (SD)	Antidepressant treatment
Kelly et al. (2016)		HAMD-17 median (range)			SSRIs treatment, No. (%)
Controls n = 33	NA	NA	24.6 (2.7)	0	
Patients n = 34		19.5 (14)	26.2 (4.5)	34 (100)	
Lin et al. (2017)		HAMD-17			Escitalopram daily, No. (%)
Controls n = 10	NA	24.2 (2.0)	0		
Patients n = 10		23.8 (1.9)	37 (100)		
Chen et al. (2018)		HAMD-17 median (range)			Antidepressant treatment, No. (%)
Controls n = 44	NA	22.2 (2.2) (F)	NA		
Patients n = 44		23.9 (3.7)	0		
Rong et al. (2019)		HAMD-17 mean (SD)			Escitalopram 5-20mg daily
Controls n = 30	NA	22.0 (3.2)	23 (74.2)		
Patients n = 30		20.4 (3.4)			
Chung et al. (2019)					Antidepressant treatment
Controls n = 36		4.5 (4.9)	24.0 (3.9)	0	
Patients n = 37		19.2 (12.5)	22.8 (4.2)	31 (86.1)	
Huang et al. (2018)					Antidepressant treatment
Controls n = 27		23.4 (2.9)	NA		
Patients n = 27		23.8 (2.8)	0		
Vinberg et al. (2019)					Antidepressant treatment, %
Low-risk	n = 22	2.4 (2.4)	24.5 (3.1)	NA	
High-risk	n = 32	2.7 (2.5)	23.9 (3.1)	NA	
Affected	n = 71	4.9 (3.9)	26.5 (7.0)	49 (69)	
Chen et al. (2020)		HDRS mean (SD)			Antidepressant treatment, %
Controls n = 27		0.3 (0.6) (Y) 0.3 (0.7) (M)	21.5 (2.4) (Y) 23.2 (2.3) (M)		
Patients n = 25		22.6 (3.2) (Y) 23.2 (4.6) (M)	22.1 (2.2) (Y) 22.6 (2.6) (M)		
Lai et al. (2019)		HAMD-17 mean (SD)			Antidepressant treatment, %
Controls n = 29	NA	21.1 (2.2)	NA		
Patients n = 26		21.2 (2.2)	81		
Liu et al. (2020)					Antidepressant treatment, %
Controls n = 47		2.0	65		
Patients n = 43		2.0			

(Continues)
In conclusion, participant demographics and clinical characteristics varied between the studies, thus limiting comparability and generalizability.

3.2 Methodology and bioinformatics analyses of gut microbiota composition varied considerably between studies

In all studies, fecal samples were collected to determine the gut microbiota composition of both patient and control groups (Table 3). The majority of the studies used DNA sequencing to assess the gut microbiota: thirteen performed 16S ribosomal ribonucleic acid (rRNA) gene sequencing (Janda & Abbott, 2007; Jovel et al., 2016) and two used shotgun sequencing (Jovel et al., 2016). The remaining two studies used targeted reverse transcriptase-quantitative polymerase chain reaction (qRT-PCR) with species-specific primers (Aizawa et al., 2016) or a combination of 16S rRNA gene sequencing and qRT-PCR (Mason et al., 2020).

The studies performing 16S rRNA gene analysis or metagenomic sequencing primarily applied one of three distinct sequencing platform (Illumina MiSeq, Illumina HiSeq, or 454 sequencing platforms), bioinformatics analysis pipelines (Mothur, QIIME, or RStudio) or taxonomic classification databases (Ribosomal Database Project, GreenGenes, or SILVA). However, there were substantial differences in methodology. Choice of nucleic acid purification kits varied extensively and the primers targeting the hypervariable regions of the 16S rRNA gene were different. In studies exploring the same region of interest, the primer constructs were not identical, except in two studies targeting the V4 region using the 515F/806R primer pair (Chung et al., 2019; Liu et al., 2020), or in two studies targeting the V3–V4 region using the 314F/805R primer pair (Huang et al., 2018; Stevens et al., 2020).

Aizawa et al. did not extract bacterial DNA, but rather RNA with the Intestinal Flora-SCAN (Yakult). The Intestinal Flora-SCAN targets the 16S or 23S rRNA sequences in a subset of bacteria using primer pairs blasted against the Ribosomal Database Project (Aizawa et al., 2016). Mason et al. likewise used targeted qPCR, but purified bacterial DNA and designed primers for distinct bacterial species, as well as used nontargeted 16S rRNA gene sequencing (Mason et al., 2020).

Overall, the studies were highly heterogeneous regarding choice of nucleic acid extraction method, 16S rRNA gene target region and bioinformatics analysis program, as well as database for taxonomic classification.

3.3 Both diversity and specific taxa were reported significantly different across studies

Despite methodological heterogeneity, the studies observed several variations in gut microbiota composition between patients and controls. Observations of differences in α- or β-diversity indices between patients and controls are presented in Table 4. Generally, results on bacterial diversity differed extensively between studies. The majority of the studies did not find significant differences in α-diversity, using several diversity indices (Chen et al., 2018, 2020;
TABLE 3 Sample preparation and processing in the seventeen studies assessed

Study	Storage method	DNA/RNA extraction kit	Sequencing system	Target hypervariable region of the 16S rRNA gene (primer pair specification)	Bioinformatic analysis program	Database used for taxonomic classification
Naseribafrouei et al. (2014)	−70°C	Mag mini kit (LGC) + bead beating	MiSeq (Illumina)	k-mer frequency based approach combined with QIIME	RDP	
Jiang et al. (2015)	−80°C	QIAamp DNA Stool Mini Kit (QIAGEN) + bead beating	GS FLX Titanium system (454 Life Sciences, Roche)	V1-V3 (none)	Mothur v1.25.0	RDP
Zheng et al. (2016)	−80°C	PowerSoil (MoBio)	V3-V5: GS FLX Titanium system (454 Life Sciences, Roche)	V3-V5 (none)	V3-V5: Mothur v1.31.2	RDP
	RNAlater at room temperature	Intestinal Flora-SCAN (Yakult)	Primers targeting specific bacteria, see table legend for specification	V3-V5: GS FLX Titanium system (454 Life Sciences, Roche)	V4-V5: Mothur v1.31.2	RDP
Kelly et al. (2016)	−80°C	QIAamp DNA Stool Mini Kit (QIAGEN)	MiSeq (Illumina)	QIIME	SILVA v111	
Lin et al. (2017)	−70°C	Tiagen DNA Stool Mini Kit (Tiagen Biotech)	MiSeq (Illumina)	V3-V4 (none)	Mothur v1.30	SILVA v119
Chen et al. (2018)	−80°C	PowerSoil (MoBio)	GS FLX Titanium system (454 Life Sciences, Roche)	V3-V5 (none)	Mothur v1.31.2	RDP
Rong et al. (2019)	−80°C	StoolGen DNA kit (CWBiotech)	HiSeq (Illumina)	Shotgun sequencing	Rstudio	
Chung et al. (2019)	Transported at 4°C, stored at −80°C	QIAamp DNA Stool Mini Kit (QIAGEN) OR phenol-chloroform + bead beating	MiSeq (Illumina)	53 samples: V3-V4 (515F and 805R primers)	QIIME	Greengenes
Huang et al. (2018)	−80°C	PowerSoil (MoBio)	HiSeq2500 (Illumina)	V3-V4 (314F and 805R primers)	Demographic data: QIIME, Bioinformatics: Rstudio	Greengenes

(Continues)
Fecal sample preparation and processing, and bioinformatics analysis methods	Storage method	DNA/RNA extraction kit or method	Sequencing system	Target hypervariable region of the 16S rRNA gene (primer pair specification)	Bioinformatic analysis program	Database used for taxonomic classification
Vinberg et al. (Vinberg et al., 2019)	Room temperature for 24−72h, then −80°C	Nucleospin 96 Soil kit (Macherey-Nagel) + bead beating	MiSeq (Illumina)	V3-V4 (S-D-Bact-0,341-b-S-17 and S-D-Bact-0,785-a-A-21)	Mothur v1.38.1	RDP
Chen et al. (2020) (Chen et al., 2020)	Frozen	PowerSoil (MoBio)	454 Sequencing (454 Life Science, Roche)	V3-V5	Mothur v1.31.2	RDP
Lai et al. (Lai et al., 2019)	−80°C	StoolGen DNA kit (CWBiotech)	HiSeq2500 (Illumina)	Shotgun sequencing		MEGAN5
Liu et al. (Liu et al., 2020)	−80°C	ZymoBIOMICS 96 DNA kit (Zymo Research)	MiSeq (Illumina)	V4 (515F and 806R primers)	QiIME2	SILVA v132
Mason et al. (Mason et al., 2020)	−80°C	Phenol/chloroform/isoamyl alcohol extraction + bead beating	454 Titanium System (454 Life Science, Roche)	V4 (563F and 926BSR primers)	QiIME	SILVA
Stevens et al. (Stevens et al., 2020)	−80°C	EZNA DNA Extraction kit (Omega Biotek)	MiSeq (Illumina)	V3-V4 (314F and 805R primers)	Rstudio	SILVA v132
Zheng et al. (Zheng et al., 2020)	Frozen	OMEGA-soil DNA kit (Omega Biotek)	MiSeq (Illumina)	V3-V4 (338F and 806R primers)	Rstudio	RDP

Note: Sixteen of the studies used next generation gene sequencing, with either 16S rRNA gene sequencing or shotgun metagenomics sequencing for bacterial characterization. Two studies performed targeted qPCR; Aizawa et al. and Mason et al. Distinct species targeted in the study by Aizawa et al. by qRT-qPCR were Enterococcus spp., Staphylococcus spp. Enterobacteriaceae spp., Prevotella spp., Lactobacillus spp., Pseudomonas spp., Bifidobacterium spp., and Lactobacillus spp. The authors additionally included six subspecies, Clostridium spp. and an additional subspecies, Bacteroidetes fragilis and the Atopobium cluster. Mason et al. performed qPCR with primers designed against Eubacteria, Enterobacteriaceae, Eubacterium rectale/Clostridium cluster XIVa, Lactobacillus/Enterococcus group, Bacteroides, and the Clostridium leptum group. QiIME, Quantitative Insights Into Microbial Ecology; RDP, Ribosomal Database Project.
Chung et al., 2019; Jiang et al., 2015; Kelly et al., 2016; Lai et al., 2019; Liu et al., 2020; Mason et al., 2020; Naseribafrouei et al., 2014; Rong et al., 2019; Vinberg et al., 2019; Zheng et al., 2016, 2020). Some studies, however, observed a reduction in bacterial α-diversity in patients with MDD compared with controls (Huang et al., 2018; Kelly et al., 2016; Rong et al., 2019; Vinberg et al., 2019), except in the study by Jiang et al., where an increased Shannon index was observed in patients defined as antidepressant treatment resistant (Jiang et al., 2015). Similarly, contradicting results were also found in the analyses of β-diversity. Distinguishing between patients and healthy controls was possible in twelve of the seventeen studies using a variety of different analytical methods (Chen et al., 2018, 2020; Chung et al., 2019; Huang et al., 2018; Lai et al., 2019; Lin et al., 2017; Liu et al., 2020; Naseribafrouei et al., 2014; Stevens et al., 2020; Zheng et al., 2016, 2020). Overall, sixteen of the seventeen analyses found compositional differences using either α- or β-diversity indices in the gut microbiota between patients and healthy controls despite methodological heterogeneity.

Although not all studies agreed upon a different composition of the gut microbiota between patients and controls, sixteen out of seventeen studies showed variations in relative abundance of individual taxa between cases and controls. A list of all bacterial taxa significantly different in relative abundance in patients compared with controls is presented in Supporting information 2. A selected fraction of these is also presented in Table 4. In total, 5 phyla, 36 families, and 78 genera of bacteria were found to be significantly altered in relative abundance between patients and healthy controls. At phylum level, Actinobacteria and Bacteroidetes were observed to be significantly altered in relative abundance, but often with opposing directions of change, thus making comprehensive conclusions difficult. On the other hand, Bifidobacteriaceae and Coriobacteriaceae, both belonging to the Actinobacteria phylum, were consistently increased in relative abundance in MDD in five (Chen et al., 2018; Chung et al., 2019; Lai et al., 2019; Rong et al., 2019; Zheng et al., 2020) and four (Chen et al., 2018, 2020; Rong et al., 2019; Zheng et al., 2016) studies, respectively. Three bacterial genera, belonging to either the Bifidobacteriaceae or Coriobacteriaceae family, were also increased in relative abundance in patients; Eggerthella in six studies (Chen et al., 2018, 2020; Chung et al., 2019; Lai et al., 2019; Naseribafrouei et al., 2014; Rong et al., 2019) and Atopobium (Chen et al., 2018; Lai et al., 2019; Rong et al., 2019) and Bifidobacteria (Chen et al., 2018; Chung et al., 2019; Lai et al., 2019; Rong et al., 2019) in four study populations. Four of these studies were conducted in the People’s Republic of China or the Republic of China and had similar study designs. There was a decreased relative abundance of one taxa belonging to the Firmicutes phylum, Faecalibacterium, in seven studies (Chen et al., 2018, 2020; Jiang et al., 2015; Lai et al., 2019; Rong et al., 2019; Stevens et al., 2020; Zheng et al., 2016, 2020), but their study designs were not similar. For the remaining taxa showing differences between patients with MDD and controls, no similarities were found between studies; taxa were often observed to be increased in one study, but decreased in another, with most taxa only showing significant differences between groups in one or two studies. This suggests that...
these singular observations may be unique to their respective study populations, and not applicable to gut microbiota variations associated with MDD on a global scale. Opposite the other studies, Aizawa et al. (Aizawa et al., 2016) used targeted qRT-PCR and discovered less Bifidobacterium counts in their patient group. Mason et al. did not find any association between specific bacteria and MDD diagnosis using qPCR, but only between the Clostridium cluster IV and the severity of depression (Mason et al., 2020).

Overall, the gut microbiota composition of patients and controls clustered separately in two-thirds of the studies. Additionally, the relative abundance of Eggerthella, Atopobium, and Bifidobacterium was increased, while it was decreased for Faecalibacterium in a subset of studies.

4 | DISCUSSION

Of the seventeen included studies, sixteen observed significant differences in gut microbiota composition between patients with MDD and healthy controls. An increase in relative abundance of Eggerthella, Atopobium, and Bifidobacterium and a decrease in relative abundance of Faecalibacterium was a frequent finding. Despite methodological heterogeneity, it was possible to distinguish between patients with MDD and healthy controls in almost all of the included studies based on either α- or β-diversity. These results were based on highly heterogeneous study designs, with various study populations, clinical assessments, and experimental setups.

Bacterial taxa increased in relative abundance may affect signaling pathways in MDD such as bile acids signaling in the brain. Some strains of Eggerthella can facilitate bile acid oxidation (Harris et al., 2018), while Bifidobacterium can hydrolyze bile salts (Kumar et al., 2006). This was supported by the study by Chung et al., which showed perturbed bile acid metabolism in patients and a positive correlation between the relative abundance of Eggerthella and Beck Depression Index scores (Chung et al., 2019). Increased bile acid stimulation of the farnesoid X receptor inhibits the production of BDNF (Huang, Wang, Hu, Wang, et al., 2016). This neural growth hormone has been observed to be decreased in MDD (Dwivedi, 2009), which was also observed by Jiang et al. (Jiang et al., 2015), linking gut microbiota alterations to bile acid metabolism and symptoms in patients with MDD.

In contrast to increases in relative abundance, a loss of relative abundance of Faecalibacterium was reported in seven studies. The study by Jiang et al. reported that levels of Faecalibacterium correlated negatively with severity of depressive symptoms (Jiang et al., 2015). Lack of Faecalibacterium in patients with MDD may exacerbate chronic low-grade inflammation associated with the disorder (Beurel & Lowell, 2017; Furtado & Katzman, 2015; Otte et al., 2016). This was supported by the studies by Huang et al. and Stevens et al., whom found elevated genetic pathways for LPS metabolism in patients with MDD, in addition to loss of Faecalibacterium (Huang et al., 2018; Stevens et al., 2020). This taxa is known to have anti-inflammatory properties (Quevrain et al., 2016; Sokol et al., 2008). This genus produces SCFAs (Koh et al., 2016), which downregulate the production of pro-inflammatory cytokines (Lopez-Siles et al., 2017). The study by Kelly et al. found increased pro-inflammatory cytokines as well as a loss of the genus Prevotella (Kelly et al., 2016), another known producer of SCFA (Chen et al., 2017). This indicates that loss of SCFA producers may lead to loss of regulatory interactions with the immune system. This is supported by clinical studies where supplementation with probiotics, which produce SCFAs, reduced depressive symptoms in patients with MDD (Huang et al., 2016), presumably caused by limiting low-grade inflammation (Jakobsen et al., 2017; Park et al., 2018; Yu et al., 2017).

Overall, changes in these genera may be involved in the pathology of MDD. These changes were not observed across all studies in this review, and interpretation of the results should thus be made with caution. Despite heterogeneity concerning changes in taxa, twelve out of eighteen studies were able to distinguish patients from healthy controls based on β-diversity. This suggests that the gut microbiota as a whole, rather than singular bacterial taxa, differentiates patients from healthy controls. Reasons for the heterogeneity in results may lie in the variations in study design and populations.

4.1 | Standardization of study populations and applied methods may limit heterogeneity

Several factors may affect the results of different analyses in studies on gut microbiota. These include demographic variations in study populations, clinical assessment of MDD, and the experimental setup, such as bacterial nucleotide purification and 16S rRNA gene primer design.

Firstly, it is well established that dietary, geographical, and cultural impacts influence the stability, functionality, and structure of the bacterial communities (Conlon & Bird, 2014; Singh et al., 2017; Yatsunenko et al., 2012). This might explain the consistent increase in the relative abundance of the three genera Eggerthella, Atopobium, and Bifidobacteria observed in studies based in either the Peoples Republic of China (Chen et al., 2018; Lai et al., 2019; Rong et al., 2019) or the Republic of China (Chung et al., 2019). These countries have similar ethnic populations and dietary preferences, which may explain similar observations in bacterial alterations. Moreover, previous demographic studies have reported diet to influence gut microbiota composition to a greater extent than ethnic background (Khine et al., 2019). As the remaining included studies were from non-Asian countries such as Ireland (Kelly et al., 2016), Norway (Naseribafrouei et al., 2014), the United States (Mason et al., 2020), and Denmark (Vinberg et al., 2019), regional dietary preferences may have obscured similarities in gut microbiota composition between ethnic groups. Furthermore, dietary improvements in MDD have been associated with symptom relief in a meta-analysis of intervention studies (Firth et al., 2019), which indicates that gut microbiota alterations and MDD symptoms may be associated with dietary patterns rather than causal mechanisms.
Secondly, heterogeneity in clinical characteristics of patients may have resulted in gut microbiota composition differences between studies. The studies in this review focused on depression, but the diagnostic criteria used to determine the diagnosis differed between studies. For example, assessment of bipolar disorder was only performed in some studies (Chen et al., 2018, 2020; Chung et al., 2019; Jiang et al., 2015; Lai et al., 2019; Mason et al., 2020; Rong et al., 2019; Zheng et al., 2020). Interestingly, the study by Zheng et al. (2020) also examined patients with bipolar disorder, and found that patients with bipolar disorder and depression, respectively, were distinguishable based on gut microbial composition (Zheng et al., 2020). Likewise, comorbid inflammatory bowel disorder only led to exclusion in some studies (Chen et al., 2018; Huang et al., 2018; Jiang et al., 2015; Kelly et al., 2016; Vinberg et al., 2019; Zheng et al., 2020). Heterogeneity in patient characteristics may therefore have led to differences in gut microbiota composition between studies. The active pharmaceutical treatment can also have affected the gut microbiota composition in patients. Nonantimicrobial drugs have the potential to either influence the bacterial composition (Maier et al., 2018; Vich Vila et al., 2020), or be metabolized into bioactive compounds (Enright et al., 2016; Li et al., 2016). Additionally, different types of antidepressants may give rise to different side effects such as altered appetite with subsequent diet and weight changes (Fava, 2000; Lee et al., 2016), thereby affecting the gut microbiota. Furthermore, antidepressant drugs have documented antimicrobial properties (Vich Vila et al., 2020) specifically on gram-positive bacteria (Macedo et al., 2017). The studies by Jiang et al. and Kelly et al. reported that use of specific selective serotonin reuptake inhibitors reduced relative abundance of Dialister, a gram-positive bacterium (Jiang et al., 2015; Kelly et al., 2016). On the other hand, Chen et al. and Huang et al. only agreed on a reduction of Ruminococcaceae in their treatment-naïve patients compared with the controls (Chen et al., 2018; Huang et al., 2018). In contrast, Liu et al. found elevated Ruminococcaceae in their cohort of patients using antidepressants, suggesting that antidepressant treatment is not solely responsible for the observed changes.

Thirdly, the DNA purification method, choice of primer pairs used for amplification, and database used for taxonomic assignments have been shown to affect experimental outcomes (Costea et al., 2017; Voigt et al., 2015). However, it was not obvious if the choice of method affected the observed variability in bacterial compositions. Two studies applied the same laboratory setup and observed an increase in relative abundance of Eggertbella, Atopobium and Bilidobacterium (Lai et al., 2019; Rong et al., 2019). Three additional studies also had the exact same setup for characterization of gut microbiota composition (Chen et al., 2018, 2020; Zheng et al., 2016), but they only agreed upon an increase in relative abundance of Lachnospiraceae. Despite their similar molecular approaches, the discrepancies suggest that the choice of patient population may affect the gut microbiota composition to a greater extent than the DNA purification method and sequencing platform.

Fourthly, the choice of hypervariable regions of the 16S rRNA gene is particularly important, as different primer pairs have been shown to induce selective bias in the detection of bacteria (Albertsen et al., 2015; Hamady & Knight, 2009; Lozupone et al., 2013). Notably, studies using the 314F/805R primer pair did not consistently observe the same differences; they did, however, agree on a reduction in relative abundance of Faecalibacterium (Huang et al., 2018; Stevens et al., 2020). Additionally, the 16S rRNA gene sequencing method has limitations, as the 97% clustering of OTUs generally only allows taxonomic assignment at genus level (Poretsky et al., 2014). This lack of sensitivity and specificity may account for the contrasting directions of change observed across studies as alterations at species level may obscure observations at genus level. Two studies performed shotgun metagenomics and found that species belonging to the Bilidobacterium genus, such as B. longum and B. dentium were increased in relative abundance in patients with MDD. This is in accordance with the other studies who observed a relative increase in Bilidobacterium at genus level, further strengthening the association between this genus and MDD.

5 | CONCLUSION

Sixteen out of seventeen studies reported a difference in the gut microbiota composition between patients and controls. Several studies found either a higher relative abundance of Eggertbella, Atopobium and/or Bilidobacterium, or a lower relative abundance of Faecalibacterium or Dialister in patients with MDD. However, there was limited agreement between the studies, possibly due to heterogeneity in the experimental design.

6 | SUMMATIONS

Gut microbiota was observed significantly different in most of the included studies.

Eggertbella was increased while Faecalibacterium was decreased in patients with MDD.

Variability in methodology makes generalization across studies difficult.

7 | LIMITATIONS

This systematic review has some limitations. It was not possible to perform a meta-analysis due to laboratory methodological heterogeneity between the studies. We did not perform a quality assessment of the studies, but relied on the studies meeting eligibility criteria. Publication bias was not investigated on the same grounds, resulting in a lack of statistical approximations.

ACKNOWLEDGMENTS

We would like to thank associate professor Manimozhiyan Arumugam, MD for providing expert insight into the bioinformatics processing of 16S rRNA sequencing data.
REFERENCES

Aizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., Ota, M., Koga, N., Hattori, K., & Kunugi, H. (2016). Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. *Journal of Affective Disorders*, 202, 254–257. https://doi.org/10.1016/j.jad.2016.05.038

Albertsen, M., Karst, S. M., Ziegler, A. S., Kirkegaard, R. H., & Nielsen, P. H. (2015). Back to basics—the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. *PLoS One*, 10(7), e0132783. https://doi.org/10.1371/journal.pone.0132783

American Psychiatric Association (1994). *American Psychiatric Association: xxxvii, 943.

American Psychiatric Association (2000). *American Psychiatric Association: Task Force on DSM-IV*. Diagnostic and statistical manual of mental disorders: DSM-IV. 4th ed. : American Psychiatric Association; xxvii, 886.

American Psychiatric Association (2020). *American Psychiatric Association: Task Force on DSM-IV*. Diagnostic and statistical manual of mental disorders : DSM-IV-TR. 4th ed. : American Psychiatric Association; xxxvii, 943.

Barandouzi, Z. A., Starkweather, A. R., Henderson, W. A., G Yamfli, A., & Cong, X. S. (2020). Altered composition of gut microbiota in depression: A systematic review. *Frontiers in Psychiatry*, 11, 541. https://doi.org/10.3389/fpsyg.2020.00541

Bastiaanssen, T. F. S., Cussotto, S., Claesson, M. J., Clarke, G., Dinan, T. G., & Cryan, J. F. (2020). Gutted! unraveling the role of the microbiome in major depressive disorder. *Harvard Review of Psychiatry*, 28(1), 26–39. https://doi.org/10.1097/HRP.0000000000000243

Benton, D., Williams, C., & Brown, A. (2007). Impact of consuming a milk drink containing a probiotic on mood and cognition. *European Journal of Clinical Nutrition*, 61(3), 355–361. https://doi.org/10.1038/sj.ejn.1602546

Beurel, E., & Lowell, J. A. (2017). Th17 cells in depression. *Brain, Behavior, and Immunity*, 69, 28–34. https://doi.org/10.1016/j.bbi.2017.08.001

Capuco, A., Urits, I., Hasoon, J., Chum, R., Gerald, B., Wang, J. K. (2020). Current Perspectives on Gut Microbiome Dysbiosis and Depression. *Advances in Therapy*, 37(4), 1328–1346. https://doi.org/10.1007/s12235-020-01272-7

Capuco, A., Urits, I., Hasoon, J., Chum, R., Gerald, B., Wang, J. K., Ngo, A. L., Simopoulos, T., Kaye, A. D., Colontonio, M. M., Parker-Actis, T. Q., Fuller, M. C., & Viswanath, O. et al. (2020). Gut Microbiome Dysbiosis and Depression: A Comprehensive Review. *Current Pain and Headache Reports*, 24(7), 36. https://doi.org/10.1007/s11916-020-00871-x

Carlessi, A. S., Borba, L. A., Zungo, A. I., Quevedo, J., & Reus, G. Z. (2019). Gut microbiota-brain axis in depression: The role of neuroinflammation. *The European Journal of Neuroscience*. https://doi.org/10.1111/ejn.14631

Caspani, G., Kennedy, S., Foster, J. A., & Swann, J. (2019). Gut microbial metabolites in depression: Understanding the biochemical mechanisms. *Microb Cell.*, 6(10), 454–481. https://doi.org/10.1056/mbc2019.10.693

Cawthon, C. R., & de La Serre, C. B. (2018). Gut bacteria interaction with vagal afferents. *Brain Research*, 1693(Pt B), 134–139. https://doi.org/10.1016/j.brainres.2018.01.012

Chen, J. J., He, S., Fang, L., Wang, B., Bai, S. J., Xie, J., Zhou, C. J., Wang, W., & Xie, P. (2020). Age-specific differential changes on gut microbiota composition in patients with major depressive disorder. *Aging (Albany NY)*, 12(3), 2764–2776. https://doi.org/10.18632/aging.102775

Chen, J. J., Zheng, P., Liu, Y. Y., Zhong, X. G., Wang, H. Y., Guo, Y. J., & Xie, P. (2018). Sex differences in gut microbiota in patients with major depressive disorder. *Neuropsychiatric Disease and Treatment*, 14, 647–655.

Chen, T., Long, W., Zhang, C., Liu, S., Zhao, L., & Hamaker, B. R. (2017). Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominat gut microbiota. *Scientific Reports*, 7(1), 2594. https://doi.org/10.1038/s41598-017-02995-4

Cheung, S. G., Goldenthal, A. R., Uhlemann, A. C., Mann, J. J., Miller, J. M., & Sublette, M. E. (2019). Systematic review of gut microbiota and major depression. *Frontiers in Psychiatry*, 10, 34. https://doi.org/10.3389/fpsyg.2019.00034

Chun, C., Zheng, L., & Colgan, S. P. (2016). Tissue metabolism and host-microbial interactions in the intestinal mucosa. *Free Radical Biology and Medicine*. https://doi.org/10.1016/j.freeradbiomed.2016.09.027

Chung, Y.-C., Chen, H.-C., Chou, H.-C., Chen, I. M., Lee, M.-S., Chuang, L.-C., Liu, Y. W., Lu, M. L., Chen, C. H., Wu, C. S., Huang, M. C., Liao, S. C., Ni, Y. H., Lai, M. S., Shihi, W. L., & Kuo, P. H. (2019). Exploration of microbiota targets for major depressive disorder and mood related traits. *Journal of Psychiatric Research.*, 111, 74–82. https://doi.org/10.1016/j.jpsychires.2019.01.016

Clarke, G. (2020). The gut microbiome and depression: Finding a way through troubled waters where the river meets the sea. *Expert Review of Gastroenterology & Hepatology.*, 14(5), 301–304. https://doi.org/10.1080/17474124.2020.1754796

Conlon, M. A., & Bird, A. R. (2014). The impact of diet and lifestyle on gut microbiota and human health. *Nutrients*, 7(1), 17–44. https://doi.org/10.3390/nu7010017

Costea, P. I., Zeller, G., Sunagawa, S., Pelletier, E., Alberti, A., Levenez, F. (2017). Towards standards for human fecal sample processing in metagenomic studies. *Nature Biotechnology*, 35(11), 1069–1076. https://doi.org/10.1038/nbt.3960

Cruz-Pereira, J. S., Rea, K., Nolan, Y. M., O’Leary, O. F., Dinan, T. G., & Cryan, J. F. (2020). Depression’s unholy trinity: Dysregulated stress, immunity, and the microbiome. *Annual Review of Psychology*, 71, 49–78. https://doi.org/10.1146/annurev-psych-122216-011613

Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. *Nature Reviews Neuroscience*, 13(10), 701–712. https://doi.org/10.1038/nrn3346

Dinan, T. G., & Cryan, J. F. (2019). Gut microbes and depression: Still waiting for Godot. *Brain, Behavior, and Immunity*, 79, 1–2. https://doi.org/10.1016/j.bbi.2019.02.007

Du, Y., Gao, X. R., Peng, L., & Ge, J. F. (2020). Crosstalk between the microbiota-gut-brain axis and depression. *Heliyon*, 6(6), e04097. https://doi.org/10.1016/j.heliyon.2020.e04097

Dwivedi, Y. (2009). Brain-derived neurotrophic factor: Role in depression and suicide. *Neuropsychiatric Disease and Treatment*, 5, 433–449. https://doi.org/10.2147/NDT.S5700

Enright, E. F., Gahan, C. G., Joyce, S. A., & Griffin, B. T. (2016). The impact of the gut microbiota on drug metabolism and clinical outcome. *Yale Journal of Biology and Medicine*, 89(3), 375–382.
Huang, C., Wang, J., Hu, W., Wang, C., Lu, X., Tong, L., Wu, F., & Zhang, W. (2016). Identification of functional farmesoid X receptors in brain neurons. FEBS Letters, 590(18), 3233–3242. https://doi.org/10.1002/1873-3468.12373

Huang, R., Wang, K., & Hu, J. (2016). Effect of probiotics on depression: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 8(8). https://doi.org/10.3390/nu8080483

Huang, Y., Li, Z., Shen, Y., Shi, X., Wang, L., Li, G., Yuan, Y., Wang, J., Zhang, Y., Zhao, L., Zhang, M., Kang, Y., & Liang, Y. (2018). Possible association of firmicutes in the gut microbiota of patients with major depressive disorder. Neuropsychiatric Disease and Treatment, 14, 3329–3337.

Jakobsen, J. C., Katakam, K. K., Schou, A., Hellmuth, G. S., stalknecht, S. E., Leth-Moller, K., Iversen, M., Banke, M. B., Petersen, I. J., Klingenberg, S. L., Krogh, J., Ebert, S. E., Timm, A., Lindschou, J., & Glud, C. (2017). Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and Trial Sequential Analysis. BMC Psychiatry, 17(1). https://doi.org/10.1186/s12888-016-1173-2

Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761–2764. https://doi.org/10.1128/JCM.01228-07

Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., Wang, W., Tang, W., Tan, Z., Shi, J., Li, L., & Ruan, B. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity., 48, 186–194. https://doi.org/10.1016/j.bbi.2015.03.016

Jovel, J., Patterson, J., Wang, W., Hotte, N., O’Keefe, S., Mitchel, T., Perry, T., Kao, D., Mason, A. L., Madsen, K. L., & Wong, G. K. S. (2016). Characterization of the gut microbiome using 165 or shotgun metagenomics. Frontiers in Microbiology, 7, 459. https://doi.org/10.3389/fmicb.2016.00459

Kelly, J. R., Borre, Y., O’Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F., & Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019

Kelly, J. R., Keane, V. O., Cryan, J. F., Clarke, G., & Dinan, T. G. (2019). Mood and Microbes: Gut to Brain Communication in Depression. Gastroenterology Clinics of North America, 48(3), 389–405. https://doi.org/10.1016/j.gtc.2019.04.006

Khine, W. W. T., Zhang, Y., Goie, G. J. Y., Wong, M. S., Liong, M., Lee, Y. Y., Cao, H., & Lee, Y. K. (2019). Gut microbiome of pre-adolescent children of two ethnicities residing in three distant cities. Scientific Reports, 9(1), 7831. https://doi.org/10.1038/s41598-019-44369-y

Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Backhed, F. (2016). From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165(6), 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

Kumar, R. S., Brannigan, J. A., Prabhune, A. V., Dodson, G. G., Dodson, E. J., & Suresh, C. G. (2006). Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. Journal of Biological Chemistry, 281(34), 32516–32525. https://doi.org/10.1074/jbc.M604172200

Lai, W. T., Deng, W. F., Xu, S. X., Zhao, J., Xu, D., Liu, Y. H., Guo, Y. Y., Wang, M. B., He, F. S., Ye, S. W., Yang, Q. F., Liu, T. B., Zhang, Y. L., Wang, S., Li, M. Z., Yang, Y. J., Xie, X. H., & Rong, H. (2019). Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychological Medicine, 1–12. https://doi.org/10.1017/S0033291719003027

Lee, S. H., Paz-Filho, G., Macnstroniard, C., Licinio, J., & Wong, M. L. (2016). Is increased antidepressant exposure a contributory factor to the obesity pandemic? Translational Psychiatry., 6, e759. https://doi.org/10.1038/tp.2016.25

Li, H., He, J., & Jia, W. (2016). The influence of gut microbiota on drug metabolism and toxicity. Expert Opinion on Drug Metabolism & Toxicology, 12(1), 31–40. https://doi.org/10.1517/17425255.2016.1121234

Lin, P., Ding, B., Feng, C., Yin, S., Zhang, T., Qi, X., Lv, H., Guo, X., Dong, K., Zhu, Y., & Li, Q. (2017). Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. Journal of Affective Disorders., 207, 300–304. https://doi.org/10.1016/j.jad.2016.09.051

Liu, R. T., Rowan-Nash, A. D., Sheehan, A. E., Walsh, R. F. L., Sanzari, C. M., Korry, B. J., & Belenky, P. (2020). Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain, Behavior, and Immunity, 88, 308–324. https://doi.org/10.1016/j.bbi.2020.03.026

Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J., & Martinez-Medina, M. (2017). Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. The ISME Journal, 11(4), 841–852. https://doi.org/10.1038/ismej.2016.176

Lozupone, C. A., Stombaugh, J., Gonzalez, A., Ackermann, G., Wendel, D., Vazquez-Baeza, Y. (2013). Meta-analyses of studies of the human microbiota. Genome Research, 23(10), 1704–1714. https://doi.org/10.1101/gr.151803.112

Macedo, D., Chaves Filho, M. A. J., de Sousa, C. N. S., Quevedo, J., Barichello, T., Junior, H. V. N., & de Lucena, D. F. (2017). Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. Journal of Affective Disorders., 208, 22–32. https://doi.org/10.1016/j.jad.2016.09.012

Maes, M., Kubera, M., Leunis, J. C., & Berk, M. (2012). Increased IgA and IgM responses against gut commensals in chronic depression: Further evidence for increased bacterial translocation or leaky gut. Journal of Affective Disorders., 141(1), 55–62. https://doi.org/10.1016/j.jad.2012.02.023

Maier, L., Pruteanu, M., Kuhn, M., Zeller, G., Telzerow, A., Anderson, E. E. (2018). Extensive impact of non-antibiotic drugs on human gut...
bacteria. Nature, 555(7698), 623–628. https://doi.org/10.1038/nature25979

Marotta, A., Sarno, E., Del Casale, A., Pane, M., Mogna, L., Amoroso, A., Felis, G. E., & Fiorio, M. (2019). Effects of Probiotics on Cognitive Reactivity, Mood, and Sleep Quality. Frontiers in Psychiatry, 10, 164. https://doi.org/10.3389/fpsyt.2019.00164

Mason, B. L., Li, Q., Minhajuddin, A., Czysz, A. H., Coughlin, L. A., Hussain, S. K. (2020). Reduced anti-inflammatory gut microbiota are associated with depression and anhedonia. Journal of Affective Disorders, 266, 394–401. https://doi.org/10.1016/j.jad.2020.01.137

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Prisma Group (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 339, b2535. https://doi.org/10.1136/bmj.b2535

Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linlokken, A., Wilson, R., & Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterology and Motility, 26(8), 1155–1162. https://doi.org/10.1111/nmo.12378

Osimo, E. F., Baxter, L. J., Lewis, G., Jones, P. B., & Khandaker, G. M. (2019). Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychological Medicine, 49(12), 1958–1970. https://doi.org/10.1017/s0033291719001454

Osimo, E. F., Pillinger, T., Rodriguez, I. M., Khandaker, G. M., Pariente, C. M., & Howes, O. D. (2020). Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain, Behavior, and Immunity, 87, 901–909. https://doi.org/10.1016/j.bbi.2020.02.010

Otte, C., Gold, S. M., Penninx, B. W., Pariente, C. M., Etkin, A., Fava, M., Mohr, D. C., & Schatzberg, A. F. (2016). Major depressive disorder. Nature Reviews Disease Primers, 2, 16065. https://doi.org/10.1038/nrdp.2016.65

Park, C., Brietzke, E., Rosenblat, J. D., Musial, N., Zuckerman, H., Raggatt, R. M. (2018). Probiotics for the treatment of depressive symptoms: An anti-inflammatory mechanism? Brain, Behavior, and Immunity, 73, 115–124. https://doi.org/10.1016/j.bbi.2018.07.006

Poretsky, R., Rodriguez, R. L., Luo, C., Tsemzentzi, D., & Konstantinidis, K. T. (2014). Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One, 9(4), e93827. https://doi.org/10.1371/journal.pone.0093827

Quevrain, E., Maubert, M. A., Michon, C., Chain, F., Marquant, R., Tailhades, J., Miquel, S., Carlier, L., Bermúdez-Humarán, L. G., Pigneur, B., Lequin, O., Krartt, P., Thomas, G., Rainteau, D., Aubry, C., Breyner, N., Afonso, C., Lavielle, S., Grill, J. P., Chatel, J. F., Chassaing, G., Chatel, J., Pigneur, B., Lequin, O., Kharrat, P., Thomas, G., Rainteau, D., Aubry, C., Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X. N., Kubo, C., & Koga, Y. (2004). Postnatal microbial colonisation programs the hypothalamic-pituitary-adrenal system for stress response in mice. Journal of Physiology, 558(Pt 1), 263–275. https://doi.org/10.1113/jphysiol.2004.063388

Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Lengrain-Raspaud, S., Troin, B., Naliboff, B., & Mayer, E. A. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology, 144(7), 1394–401.

Vich Vila, A., Collil, V., Sanna, S., Sinha, T., Imhann, F., Bourgonje, A. R., Mujagic, Z., Jonkers, D. M. A. E., Maslee, A. A. M., Fu, J., Kurilshikov, A., Wijmenga, C., Zernakova, A., & Weersma, R. K. (2020). Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nature Communications, 11(1), 362. https://doi.org/10.1038/s41467-019-14177-z

Vinberg, M., Ottensen, N. M., Meluken, I., Sorensen, N., Pedersen, O., Kessing, L. V., & Miskowiak, K. W. (2019). Remitted affective disorders and high familial risk of affective disorders associate with aberrant intestinal microbiota. Acta Psychiatrica Scandinavica., 139(2), 174–184. https://doi.org/10.1111/acps.12976

Voigt, A. Y., Costea, P. I., Kultima, J. R., Li, S. S., Zeller, G., Sunagawa, S., & Bork, Peer (2015). Temporal and technical variability of human gut metagenomes. Genome Biology, 16, 73. https://doi.org/10.1186/s13059-015-0639-8

Walker, E. A., Katon, W. J., Jemelka, R. P., & Roy-Bryne, P. P. (1992). Comorbidity of gastrointestinal complaints, depression, and anxiety in the Epidemiologic Catchment Area (ECA) Study. American Journal of Medicine, 92(1A), 265–305. https://doi.org/10.1016/0002-9343(92)90133-V

Wrotek, S., Jedrzejewski, T., Nowakowska, A., & Kozak, W. (2016). LPS alters pattern of sickness behavior but does not affect glutathione level in aged male rats. Biogerontology, 17(4), 715–723. https://doi.org/10.1007/s10522-016-9636-x

Yang, N. J., & Chiu, I. M. (2017). Bacterial Signaling to the Nervous System through Toxins and Metabolites. Journal of Molecular Biology, 429(5), 587–605. https://doi.org/10.1016/j.jmb.2016.12.023

Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M. (2012). Human gut microbiome viewed across
age and geography. Nature, 486(7402), 222-227. https://doi.org/10.1038/nature11053
Yu, M., Jia, H., Zhou, C., Yang, Y., Zhao, Y., Yang, M., & Zou, Z. (2017). Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. Journal of Pharmaceutical and Biomedical Analysis, 138, 231-239. https://doi.org/10.1016/j.jpba.2017.02.008
Zheng, P., Yang, J., Li, Y., Wu, J., Liang, W., Yin, B. (2020). Gut microbial signatures can discriminate unipolar from bipolar depression. Advanced Science, 7(7), 1902862. https://doi.org/10.1002/advs.201902862
Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., Zeng, L., Chen, J., Fan, S., Du, X., Zhang, X., Yang, D., Yang, Y., Meng, H., Li, W., Melgiri, N. D., Licinio, J., Wei, H., & Xie, P. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Molecular Psychiatry, 21(6), 786-796. https://doi.org/10.1038/mp.2016.44

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Knudsen JK, Bundgaard-Nielsen C, Hjerrild S, Nielsen RE, Leutscher P, Sørensen S. Gut microbiota variations in patients diagnosed with major depressive disorder—A systematic review. Brain Behav. 2021;11:e02177. https://doi.org/10.1002/brb3.2177