N-Acetyl-glucosamine influences the biofilm formation of *Escherichia coli*

Jean-Félix Sicard¹, Philippe Vogeleer¹, Guillaume Le Bihan¹, Yaîndrys Rodriguez Olivera¹, Francis Beaudry¹, Mario Jacques² and Josée Harel¹*

Abstract

Background: The intestinal mucus layer is a physical barrier that limits the contact between bacteria and host epithelial cells. There is growing evidence that microbiota-produced metabolites can also be specifically sensed by gut pathogens as signals to induce or repress virulence genes. Many *E. coli*, including adherent and invasive (AIEC) strains, can form biofilm. This property can promote their intestinal colonization and resistance to immune mechanisms. We sought to evaluate the impact of mucus-derived sugars on biofilm formation of *E. coli*.

Results: We showed that the mucin sugar N-acetyl-glucosamine (NAG) can reduce biofilm formation of AIEC strain LF82. We demonstrated that the inactivation of the regulatory protein NagC, by addition of NAG or by mutation of *nagC* gene, reduced the biofilm formation of LF82 in static condition. Interestingly, real-time monitoring of biofilm formation of LF82 using microfluidic system showed that the mutation of *nagC* impairs the early process of biofilm development of LF82. Thus, NAG sensor NagC is involved in the early steps of biofilm formation of AIEC strain LF82 under both static and dynamic conditions. Its implication is partly due to the activation of type 1 fimbriae. NAG can also influence biofilm formation of other intestinal *E. coli* strains.

Conclusions: This study highlights how catabolism can be involved in biofilm formation of *E. coli*. Mucus-derived sugars can influence virulence properties of pathogenic *E. coli* and this study will help us better understand the mechanisms used to prevent colonization of the intestinal mucosa by pathogens.

Keywords: *Escherichia coli*, AIEC, Biofilms, Mucus, N-Acetyl-glucosamine

Background

Escherichia coli is a highly versatile bacterial species commonly found as part of the intestinal microbiota of warm-blooded animals. Most isolates are harmless but some have acquired virulence genes that allow them to cause numerous diseases within the gut (intestinal pathogenic *E. coli*, InPEC) or extra-intestinally (extra-intestinal pathogenic *E. coli*; ExPEC). Commensal *E. coli* colonize the large intestine in vertebrates and appear to reside inside the mucus layer without contacting the underlying epithelium [1]. In contrast, InPEC possess the ability to penetrate the mucus layer and colonize the mucosa causing disease such as diarrhea [2]. Adherent-invasive *E. coli* (AIEC) strains share many genetic and phenotypic features with ExPEC strains but are rather involved in inflammatory bowel disease (IBD), including Crohn’s disease (CD) [3–5].

The mucus layer that covers the intestinal epithelium plays a critical role in gut homeostasis. The intestinal mucus contains mucins which are highly O-glycosylated proteins. Mucins play an important role in shaping the intestinal microbiota as an alteration of the glycan availability modifies the microbiota composition [6]. By producing specific glycosidases, several species of the gut microbiota release sugars from O-glycans into the intestinal lumen [7, 8]. Released mucus-derived sugars, including N-acetylglucosamine (NAG), N-acetylneuraminic acid (NANA), galactose, fucose, mannose and...
N-acetylgalactosamine provide direct source of carbohydrates and promote the growth of commensal and pathogenic bacteria including *E. coli* [7–10]. In addition to their role as nutrients, some mucus-derived sugars can act as regulatory signals that influence bacterial colonization and adherence to intestinal cells [11–14]. Enterohemorrhagic *E. coli* (EHEC) uses fucose, NAG and NANA as signaling molecules to modulate its metabolism and regulate the expression of its virulence repertoire [12, 15]. We recently showed that the catabolism of NAG and NANA inhibits EHEC adhesion to epithelial cells through down-regulation of the locus of enterocytes effacement expression under NagC regulatory control [16].

Biofilms could play a key role in bacterial colonization of the healthy gut and in intestinal diseases. Mucin has been reported to be involved in biofilm formation by *E. coli* [17, 18], suggesting its potential role in modulating *E. coli* colonization in the intestinal tract. The ability of biofilm formation in vitro varies extensively among *E. coli* isolates [19] and many *E. coli* strains are believed to form biofilm in the intestinal tract [20]. As such, AIEC are known to be higher biofilm producers than non-AIEC strains [21]. The ability to form biofilm could be part of the etiology of IBD since an increased presence of biofilms formed by the *Bacteroides fragilis* group and the *Enterobacteriaceae* family has been observed in intestinal biopsy specimens of people affected with these diseases [22, 23].

Alteration of the gut mucosal integrity and of microbiota could also change the mucus-derived sugars availability. Our hypothesis is that in healthy conditions, the integrity of the intestinal mucus and the functions of gut microbiota prevent biofilm formation of pathogenic *E. coli*. We evaluated the influence of mucus-derived sugars on biofilm formation of AIEC reference strain LF82. We show that NAG can reduce biofilm formation of LF82 and that the transcriptional regulator of NAG catabolism, NagC appears to be involved in the early steps of its biofilm formation. We also showed that mucus-derived sugars can influence biofilm formation of different *E. coli* strains from other pathotypes.

Methods

Bacterial strains and growth conditions

Bacterial strains used in this study are listed in Table 1. Bacteria were routinely cultured on lysogeny broth (LB) agar [1% (wt/vol) tryptone, 0.5% (wt/vol) yeast extract, 1% (wt/vol) NaCl, 1.5% (wt/vol) agar] at 37 °C and single colonies were transferred in liquid LB. When required, the growth medium was supplemented with kanamycin (50 μg/ml) and/or chloramphenicol (25 μg/ml). A set of commensal and pathogenic *E. coli* that comprises AIEC strain LF82, EHEC strain EDL933, enteroaggregative *E. coli* (EAEC) strain 17.2, laboratory *E. coli* (K-12) strain MG1655 as well as commensal murine *E. coli* strain NC101 were included in the biofilm studies.

Mutagenesis and complementation

The LF82ΔnagC mutant was constructed by allelic exchange using a suicide vector as described in our previous work [16]. Primers used for mutagenesis are listed in Additional file 1: Table S1. Briefly, the suicide vector

Table 1 List of strains and plasmids used in this study

Strains	Characteristics	Origin	Disease	References
LF82	Wild type AIEC O83:H1 AmpR	Human	Crohn's disease	[4]
LF82ΔnagC	LF82 ΔnagC AmpR KanR	Human	This study	
MG1655	Laboratory *E. coli* K-12	Human	Healthy	[47]
EDL933	Wild type EHEC O157:H7	Human	Diarrhea, HUS	[48]
17.2	Wild type EAEC	Human	Diarrhea	[49]
NC101	Wild type commensal (AIEC-like)	Mouse	Mouse colitis	[50]
χ7213	thi-1 thr-1 leuB6 glnV44 thrA21 lacY1 recA1 R34-2-Tc-Mu Apir ΔmidA44 Δzehf-2-Tn10	Mouse		[51]

Plasmids	Characteristics	References
pGEM®-T	Cloning vector	Promega Corp., Madison, WI, USA
pMEG-375	Suicide vector sacRB mobRP4 oriR6K; CmR ApR	Roy Curtiss III, Arizona State University, Tempe, AZ, USA
pΔnagC	pMEG-375 with ΔnagC: KmR	[16]
pTrc99a	expression vector with IPTG inducible lacI promoter; ApR	[52]
pnagC	pTrc99a with nagC	[16]
pnagC-JFS	pnagC with Cm®	This study
pMEG-375 containing the kanamycin resistance cassette from pKD13 flanked with 500 pb sequences upstream and downstream of the nagC open reading frame was transformed in a diaminopimelic acid auxotrophic *E. coli* strain 7213 (λpir and ΔasdA4). 7213 was used as a donor to transfer the plasmid in *E. coli* strain LF82 by conjugation. Single crossover mutants were selected on LB agar without diaminopimelic acid, containing kanamycin. A second selection of double crossovers mutants was made using the sacB counter selection on LB agar without NaCl, containing 10% (wt/vol) of sucrose [24]. The mutation of nagC was confirmed by PCR and sequencing of an amplicon containing the region of interest. Complementation was performed using a derivative of the expression vector. The ORF of nagC was amplified in *E. coli* strain LF82 and inserted downstream of the pTrc promoter in the expression plasmid forming the pnmagC. A resistance cassette of chloramphenicol was amplified from pACYC184 and inserted in pnmagC, forming the pnmagC-1FS.

Static biofilm assay

The assay of biofilm formation was done in 96-well microtiter plates as previously described [25]. Isolated colonies from LB agar were resuspended in fresh LB (5 ml) and incubated at 37 °C with shaking (180 rpm). Overnight cultures were diluted (1:100) in fresh medium; either LB, LB without salt (LBWS) or M9 medium with 0.4% glucose (wt/vol) and minerals (1.2 mM MgSO_4_, 2 μM FeCl_3_, 8 μM CaCl_2_, and 16 μM MnCl_2_). When required, the growth medium was supplemented with NAG, NANA or fucose (Sigma-Aldrich, St. Louis, MO, USA) at a concentration of 1 mM. A volume of 150 μl of these cultures was deposited in triplicate in the wells. Plates were incubated either at 30 or 37 °C for 24 h, without shaking. After incubation, total growth was measured at OD_630_ with a microplate reader (PowerWave; BiTek Instruments, Winooski, VT, USA). Afterwards, the media were discarded, and each well washed three times with phosphate-buffered saline (PBS) to remove unattached cells. The biofilms were stained with crystal violet 0.1% (wt/vol) for 2 min at room temperature. The crystal violet solution was removed, and the biofilms washed six times with PBS. Finally, an 80% (vol/vol) ethanol and 20% (vol/vol) aceton solution was added to release the stain and the amount of biofilm quantified by measuring at OD_595_. Specific biofilm formation (SBF) index was calculated [21, 26]. Results are the ratio of biofilm measured at OD_595_ over total growth measured at OD_630_. To evaluate the effects of mucus-derived sugars addition on biofilm formation of different strains, one-way ANOVA with Dunnett’s multiple comparison test was performed to calculate P-values. To evaluate the impact of the mutation of nagC on AIEC strain LF82, two-way ANOVA with Tukey’s multiple comparison test was performed to calculate P-values. The concentration of NAG was added to the medium at a final concentration of 1 mM. The concentration of an initial suspension of approximately 2 × 10^{11} CFU/ml in PBS was reduced by twofold serial dilutions in microtiter plate (Corning,

Flow-through biofilm assay (BioFlux device)

The biofilm formation assay in the BioFlux 200 device (Fluxion Biosciences, South San Francisco, CA, USA) was adapted from our previous work [25]. Biofilm formation occurs in the microfluidic channel of the device where fresh media constantly flow through causing a shear force that is similar to physiological condition [25]. *E. coli* strains were isolated on LB agar and resuspended in 5 ml of fresh LB medium. They were incubated overnight at 37 °C with shaking (180 rpm). A 0.5 ml volume of culture was transferred to a microtube and bacteria were collected by centrifugation (13,000g, 2 min). LB medium was used to resuspend the pellet to an OD_600_≈ 1. Pre-warmed LB ± NAG (1 mM) was injected in the microfluidic system to fill the channels. Bacteria were injected from the output reservoir for 30 s at 0.5 dyne/cm². The microfluidic plate was incubated at 30 °C for 2 h to allow the adhesion of bacteria on the surface of the channels. After adhesion, prewarmed LB ± NAG (1 mM) was added to the inlet wells and the microfluidic plate was connected to the BioFlux system. Temperature was adjusted to 30 °C and the flow was initiated at 1.0 dyne/cm². After 4 h, the used medium was removed from the outlet well and prewarmed fresh medium was added in the inlet well. Flow was then reduced at 0.5 dyne/cm² for the next 18 h. Images of the BioFlux biofilms were obtained with an inverted optic microscope equipped with a 40 × objective (CKX41; Olympus, Markham, ON, Canada), a digital camera (Retiga EX; QImaging, Surrey, BC, Canada), and the software provided with the BioFlux 200 device. Images were treated using the software imageJ (National Institutes of Health, Bethesda, MD, USA) to quantify the amount of biofilm in the microfluidic channel. The 16-bit grayscale images were adjusted with the threshold function to include the bacterial structure before particle analysis. One-way ANOVA with Dunnett’s multiple comparison test was performed to calculate P-values.

Detection of type 1 fimbriae

The capacity of LF82 and the nagC mutant to produce type 1 fimbriae was evaluated by the ability to agglutinate to *Saccharomyces cerevisiae* cells in a mannose-dependant way. As previously described [27], cultures were grown at 30 °C in 20 ml of LB for 24 h without shaking to enhance expression of type 1 fimbriae. NAG was added in the medium at a final concentration of 1 mM. The concentration of an initial suspension of approximately 2 × 10^{11} CFU/ml in PBS was reduced by twofold serial dilutions in microtiter plate (Corning,
An equal volume of a commercial yeast suspension in PBS 3% (wt/vol) (Fleischmann’s Active Dry) was added to each well. After 30 min of incubation at 4 °C, yeast agglutination was observable by precipitation of cells in the wells of the plate. The agglutination titer was recorded as the most diluted bacterial sample giving a positive aggregation reaction. Yeast agglutination was considered dependent of type 1 fimbriae if α-d-mannopyranose 5% (wt/vol) (Sigma-Aldrich) inhibited agglutination. One-way ANOVA with Dunnett’s multiple comparison test was performed to calculate P-values.

Quantitative RT-PCR (qRT-PCR)

Bacteria were precultured as described in previous section. A dilution (1:100) was done in 40 ml of LB ± NAG (1 mM) and bacteria were incubated in polystyrene petri dish overnight at 30 °C. Biofilms were washed with PBS and recovered with a cell scraper. RNA was extracted from biofilm cells using Ambion® RiboPure™-Bacteria Kit (ThermoFisher Scientific, Burlington, ON, Canada), according to the manufacturer’s recommendations. As described in [15], the absence of residual DNA in RNA samples was confirmed by PCR with primers targeting rpoA. Complementary DNA (cDNA) was synthetized from 10 μg of RNA, using a reverse transcriptase and random hexanucleotide primers. A standard curve was performed to determine the copy number of targeted transcript in 50 ng of cDNA. Primers used are listed in Additional file 1: Table S1. Results are presented as the ratios between the cDNA copy number of the gene of interest and the cDNA copy number of the housekeeping gene. One-way ANOVA with Dunnett’s multiple comparison test was performed to calculate P-values.

Results

NAG reduces biofilm formation of AIEC strain LF82

We investigated the impact of mucus-derived sugars, including NAG, NANA and fucose, on biofilm formation of the AIEC reference strain LF82. LB culture medium was selected for optimal growth of biofilms in static condition. Upon the addition of 1 mM of NAG, the specific biofilm formation (SBF) index of LF82 was significantly lower (P < 0.01) than the SBF index of LF82 grown in LB alone. Addition of NANA and fucose in the medium did not influence the biofilm formation of the strain (Fig. 1). The three mucus-derived sugars did not affect the growth of the strain after 24 h (data not shown). A time course measurement of NAG consumption by LF82 grown in LB supplemented with 1 mM of NAG indicated that NAG was catabolized within 4 h (Additional file 2: Figure S1).

NAG reduces specific biofilm formation of LF82 by inactivating the transcriptional regulator NagC

The regulation of AIEC strain LF82 biofilm formation by NAG was further investigated. The activity of the regulator NagC is inactivated by the presence of NAG-6-P, a catabolic derivate of NAG. Therefore, a mutant strain in nagC gene was created. The SBF index of LF82ΔnagC mutant was significantly lower (P < 0.05) than the SBF index of the WT strain. This reduction of biofilm formation was similar to that observed upon the addition of NAG (Fig. 2). The wild-type phenotype was restored in the complemented strain expressing nagC. Interestingly, no additional repression was observed upon the addition of NAG in the ΔnagC mutant. This indicates that LF82 biofilm repression by NAG is NagC dependent.

NagC is involved in the first steps of biofilm formation of LF82 in presence of a shear force

To further investigate the role of NagC on biofilm formation of LF82, the dynamics of biofilm formation were monitored and visualized in real time using the BioFlux device (Fig. 3a). Real time imaging with LF82 clearly revealed the apparition of microcolonies 6 h after the initiation of the flow. These microcolonies grew over-time and the production of polymeric matrix became more apparent at 10 h. After 18 h, the channel was almost entirely covered with biofilm. At 24 h, mature biofilms were formed. The kinetics of biofilm formation of LF82ΔnagC was different from that of the WT LF82. In early time points, a reduced number of microcolonies
Type 1 pili production was restored in the complemented LF82Δ nagC mutant in comparison to WT strain (Fig. 4b). Supplementation of NAG in medium on the expression of fimA showed a significant (P < 0.01) reduction of 3.5-fold of expression compared to WT strain (Fig. 4a). The expression of fimA was restored in the complemented strain. However, the effect of supplementation of NAG in medium is variable, strain-dependent and did not affect the growth of bacteria as measured by optical density (Additional file 4: Figure S3). Our data showed that the mean OD value of biofilm formed by murine strain NC101 was significantly decreased in the presence of all three sugars (P < 0.01). Supplementation of the medium with NAG (P < 0.01) or NANA (P < 0.05), significantly reduced biofilm formation of EHEC strain EDL933. A slight reduction was also observed upon the addition of NAG in EAEC strain 17.2 and K-12 strain MG1655 (Fig. 5).

Discussion

There is growing evidence that microbiota-produced metabolites can also be specifically sensed by pathogens as signals to induce or repress virulence genes [28]. We show that the mucin sugars NAG, NANA and fucose can reduce the biofilm formation of AIEC strain LF82 and other pathogenic E. coli. A recent study showed that fucose modulated biofilm formation of Campylobacter jejuni [29]. We observed that the influence of mucus-derived sugars on biofilm formation was strain-dependent, reflecting the high genetic diversity and the variability of metabolic patterns between E. coli strains [30, 31]. It is known that E. coli preference for

The impact of mucus-derived sugars on biofilm formation varies among E. coli strains

Biofilm formation of a set of distinct E. coli strains was tested in different culture media to determine optimal conditions. LB medium was used for strains 17.2 and MG1655, whereas LBWS and M9 with glucose were used as the optimized culture media for biofilm formation of strains NC101 and EDL933, respectively. The effect of addition of NAG, NANA or fucose on biofilm formation was evaluated in static condition. The influence of mucus-derived sugars was variable, strain-dependent and did not affect the growth of bacteria as measured with optical density (Additional file 4: Figure S3). Our data showed that the mean OD value of biofilm formed by murine strain NC101 was significantly decreased in the presence of all three sugars (P < 0.01). Supplementation of the medium with NAG (P < 0.01) or NANA (P < 0.05), significantly reduced biofilm formation of EHEC strain EDL933. A slight reduction was also observed upon the addition of NAG in EAEC strain 17.2 and K-12 strain MG1655 (Fig. 5).

The mutation of nagC impaired the production of type 1 fimbriae of LF82

To determine the role of type 1 pili in the NagC-dependent reduction of biofilm formation of LF82, the expression and the production of type 1 fimbriae were evaluated in the mutant strain. The expression of fimA, encoding the major structural subunit of type 1 fimbriae, was measured in grown biofilms (Fig. 4a). Results showed a significant (P < 0.01) reduction of 3.5-fold of expression compared to WT strain (Fig. 4a). The expression of fimA was restored in the complemented strain. However, the effect of supplementation of NAG in medium on the expression of fimA was not statistically significant but slightly increased (Fig. 4a). Type 1 pili production was restored in the complemented strain. Addition of NAG during growth did not affect the production of type 1 fimbriae. Interestingly, NAG is rapidly consumed within 4 h of bacterial growth in LB medium supplemented with NAG, as measured by mass spectrometry (Additional file 2). Thus, the repressive effect of NAG on type 1 fimbriae production might be transient. Addition of mannose was previously reported to reduce the biofilm of LF82 by interfering with type 1 fimbriae adhesion [40]. In presence of mannose, biofilm formation of LF82 was decreased in either LB or NAG supplemented medium indicating that type 1 fimbriae is involved in biofilm in these conditions (Additional file 3: Figure S2). Taken together these results show that expression and production of type 1 fimbriae are regulated by NagC in LF82. Type 1 fimbriae or other structures participating to LF82 biofilm might be influenced by NAG supplementation.
mucus-derived sugars varies from one strain to another [10, 32, 33]. Interestingly, the repressor effect of NAG was common among the tested E. coli strains as NAG supplementation reduced biofilm formation of AIEC strain LF82, murine strain NC101, EHEC strain EDL933 and to a lower extent EAEC strain 17.2 and K-12 strain MG1655.

We demonstrated that the effect of NAG on biofilm formation of AIEC strain LF82 is NagC-dependent. NagC is a repressor of nag operon involved in catabolism of NAG in E. coli [34, 35]. The uptake of this sugar leads to the production of intracellular NAG-6-P that will inactivate the regulator NagC [36]. Our study shows that the inactivation of NagC, whether it is caused by the catabolism of NAG or by a mutation of nagC, is responsible for the decreased biofilm formation. Thus, NagC is a positive regulator of biofilm formation in LF82. Interestingly, NagC is also involved in the expression of the locus of enterocytes effacement virulence genes of EHEC as well as type 1 fimbriae of E. coli K-12 [13, 16, 36].

The real-time monitoring of LF82 biofilm formation using microfluidic system showed that early steps are impaired by the mutation of nagC. Biofilm formation initially required the attachment of the bacteria to
a surface and the cell-to-cell adhesion that leads to the formation of microcolonies. Thus, during these steps, NagC might influence the expression of structures involved in early adhesion of bacteria. In contrast to the situation in static conditions, the biofilm in dynamic conditions was insensitive to the presence of NAG. It is possible that constant renewal of media in dynamic conditions influences NAG catabolism and thus NagC activity.

Type 1 fimbriae are key factors that facilitate adhesion to a surface and cell-to-cell aggregation during establishment of biofilm on abiotic surfaces [37, 38]. They also participate in biofilm formation and in the adhesion-and-invasion process in AIEC strains such as LF82 [21, 39, 40]. In the present study, we show that NagC activates the gene expression and the production of type 1 fimbriae of AIEC strain LF82. This is similar to the work showing NagC regulation on type 1 fimbriae in E. coli K-12 MG1655 [13]. Based on NagC consensus DNA binding site generated from known NagC binding sequences [13, 16, 41, 42], two different binding sites were found upstream of the promoter of fimB recombinase in LF82. FimB is involved in the OFF-to-ON switching of type 1 fimbriation and sequences found in LF82 were identical and in the same distance to those of fimB promoter in K-12 strain MG1655 [13] (Additional file 5: Figure S4). This indicates that NagC control on type 1 fimbriae could influence at least in part the biofilm formation of LF82. In contrast, NAG supplementation did not influence type 1 fimbriae production of LF82 strain. It is possible that NAG-dependant repression on type 1 fimbriae was transient because NAG is rapidly consumed by the strain. NAG might also influence other factors contributing to biofilm formation of LF82 as NAG was also shown to influence the production of curli in E. coli K-12 [11].

Dysbiosis that occurs during IBD can favor AIEC growth and probably biofilm formation [43]. As glycosylation of the mucin is defective in CD [44] and microbiota activity is modified, it is possible that the availability of mucin sugars will influence not only the metabolic activity but also the virulence behavior including the pathogens' ability of biofilm formation. Thus, factors that regulate biofilm formation could signal to repress expression of the type 1 fimbriae and other factors contributing to biofilm of LF82. By affecting the concentration of free NAG available in the digestive tract, gut bacterial species expressing N-acetylglucosaminidase [6] might therefore influence E. coli biofilm formation through a modulation of NagC activity. Interestingly, administration of glucosamine can reduce production of pro-inflammatory cytokines and therefore intestinal inflammation in murine model of IBD could influence the activity of the flora including AIEC and reduce their biofilm formation and colonization ability [45, 46].

Fig. 4 NagC influences the expression and the production of type 1 fimbriae of LF82. a The expression of type 1 fimbriae subunit fimA was measured by qRT-PCR in LF82 WT strain, its ΔnagC derivative and the complemented mutant grown as biofilm in LB media. NAG was also supplemented at a concentration of 1 mM in media used for WT strain. Results are shown as the ratio of copy number of fimA transcript/copy numbers of tufA transcript. b Production of type 1 fimbriae was also evaluated for each strain by mannose specific agglutination to the yeast S. cerevisiae. LB medium was used in the experiments and NAG was supplemented at a concentration of 1 mM when needed. Results are the mean values and standard error of 3 biological experiments. Statistical analyzes were made using one-way ANOVA with Dunnett’s multiple comparison test *P 0.05; **P 0.01
Conclusion

In conclusion, the presence of mucin-derived sugars can influence biofilm formation of different *E. coli* strains. This study highlights that the diminution of biofilm formation of AIEC strain LF82 in the presence of NAG is NagC-dependent. Indeed, the NAG sensor NagC is involved in the early steps of biofilm formation of strain LF82 and its implication could be partly due to the control of type 1 fimbriae.

Abbreviations

AIEC: adherent and invasive *E. coli*; NAG: N-acetyl-glucosamine; InPEC: intestinal pathogenic *E. coli*; ExPEC: extra-intestinal pathogenic *E. coli*; IBD: inflammatory bowel disease; CD: Crohn’s disease; NANA: N-acetylneuraminic acid; EHEC: enterohemorrhagic *E. coli*; LB: lysogeny broth; EAEC: enteroaggregative *E. coli*; LBWS: LB without salt; PBS: phosphate-buffered saline; OD: optical density; SBF: specific biofilm formation; cDNA: complementary DNA.

Authors’ contributions

The experiments were performed mainly by JFS with the help of PV. JFS and JH performed the data analysis. The study was designed by JH, JFS, GLB and PV. All authors read and approved the final manuscript.

Author details

1 Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada.
2 Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada.

Acknowledgements

We thank Joan Pena and Yaindrys Rodriguez Olivera for their help with qRT-PCR assays. We also thank Jean-Charles Côté for proofreading the manuscript.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was supported by a Team Grant from the Fonds de Recherche du Québec, Nature et Technologies (FRQNT PT165375), to JH, MJ and FB and by the Discovery grant program of the Natural Sciences and Engineering Research Council of Canada (RGPIN-2015-05373 to JH and RGPIN-2016-04203 to MJ). JFS is a recipient of a scholarship from the NSERC Collaborative Research and Training Experience Program in Milk Quality, and PV is a recipient of a scholarship from the FRQNT Québec Wallonie program.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fig. 5 Mucus-derived sugars can influence the specific biofilm formation of different strains of *E. coli*. Strain specific optimized conditions for biofilm formation were identified. LB was used for EAEC strain 17.2 and K-12 strain MG1655. LBWS was used for AIEC strain NC101 and M9 with glucose was used for EHEC strain EDL933. Biofilms were formed under static conditions at 30 °C except for strain EDL933 that was grown at 37 °C. NAG, NANA and fucose were supplemented at a concentration of 1 mM. SBF values are the mean and standard error of at least 3 biological experiments. Statistical analysis was made using one-way ANOVA with Dunnett’s multiple comparison test *P* 0.05; **P** 0.01; ***P** 0.001
References

1. Poulsen LK, Lan F, Kristensen CS, Hobolth P, Molin S, Kroghfeldt KA. Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect Immun. 1994;62(11):5914–5919.

2. Torres AG, Zhou X, Kaper JB. Adherence of diarrheagenic Escherichia coli strains to epithelial cells. Infect Immun. 2005;73(1):18–29.

3. Darfeuille-Michaud A, Adherent-invasive Escherichia coli: a putative new E.coli pathotype associated with Crohn’s disease. Int J Med Microbiol. 2002;292(3–4):185–93.

4. Darfeuille-Michaud A, Boudou J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA, Sidiswini A, Beaugerie L, Colombel JF. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127(2):412–21.

5. Martines-Medina M, Garcia-Gal LJ. Escherichia coli in chronic inflammatory bowel diseases: an update on adherent invasive Escherichia coli pathogenicity. World J Gastroenterol. 2014;20(53):213–27.

6. Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008;5(5):447–57.

7. Bertin Y, Chaucheyras-Durand F, Robbe-Masselot C, Durand A, de la Libération V. N-acetylneuraminic (sialic) acid recognition by the Escherichia coli NagC repressor in vivo. Mol Microbiol. 1993;10(5):973–81.

8. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, Naidu N, Choudhury B, Weimer BC, Monack DM, et al. Microbiota-driven hormone production and enterohaemorrhagic Escherichia coli pathogenicity. World J Gastrointest Pathophysiol. 2014;5(3):213–27.

9. Conway T, Cohen PS. Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr. 2015. https://doi.org/10.1128/microbiolspec.MBP-0006-2014

10. Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D, McHargue JW, Hightower GA, Smith JT, Autieri SM, et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun. 2008;76(3):1143–52.

11. Barnhart MM, Lynem J, Chapman MR. GlcNAc-6P levels modulate the expression of pathogenic Escherichia coli virulence genes. Proc Natl Acad Sci USA. 2004;101(19):6748–53.

12. Vogt SL, Pena-Diaz J, Finlay BB. Chemical communication in the gut: effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe. 2015;34:106–15.

13. Le Bihan G, Jubelin G, Ganneau P, Bernailler-Donadille A, Martin C, Beaudry F, Harel J. Transcriptome analysis of Escherichia coli O157:H7 grown in vitro in the sterile-filtered cecal content of human gut microbiota associated rat reveals an adaptive expression of metabolic and virulence genes. Microbes Infect. 2015;17(12):23–33.

14. Le Bihan G, Sicard JF, Ganneau P, Bernailler-Donadille A, Gobert AP, Gavirier A, Martin C, Hay AG, Beaudry F, Harel J, et al. The NAG sensor NagC regulates LEE gene expression and contributes to gut colonization by Escherichia coli O157:H7. Front Cell Infect Microbiol. 2017;7:134.

15. Bollinger RR, Barbato BS, Bush EL, Lin SS, Parker W. Biofilms in the normal human large bowel: fact rather than fiction. Gut. 2007;56(10):1481–2.

16. Bollinger RR, Everett ML, Wahl SD, Lee YH, Orndorff PE, Parker W. Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili. Mol Immunol. 2006;43(4):378–87.

17. Reiser A, Kroghfeldt KA, Klein BM, Zechner EL, Molin S. In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J Bacteriol. 2006;188(10):3572–81.
43. Agus A, Massier S, Darfeuille-Michaud A, Billard E, Barnich N. Understanding host-adherent-invasive Escherichia coli interaction in Crohn’s disease: opening up new therapeutic strategies. Biomed Res Int. 2014;2014:567929.
44. Strugala V, Dettmar PW, Pearson JP. Thickness and continuity of the adherent colonic mucus barrier in active and quiescent ulcerative colitis and Crohn’s disease. Int J Clin Pract. 2008;62(5):762–9.
45. Azuma K, Osaki T, Kurozumi S, Kiyose M, Tsuka T, Murahata Y, Imagawa T, Itoh N, Minami S, Sato K, et al. Anti-inflammatory effects of orally administered glucosamine oligomer in an experimental model of inflammatory bowel disease. Carbohydr Polym. 2015;115:448–56.
46. Bak YK, Lampe JW, Sung MK. Effects of dietary supplementation of glucosamine sulfate on intestinal inflammation in a mouse model of experimental colitis. J Gastroenterol Hepatol. 2014;29(5):957–63.
47. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997;277(5331):1453–62.
48. Perna NT, Plunkett G 3rd, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, et al. Genome sequence of enterohemorrhagic Escherichia coli O157:H7. Nature. 2001;409(6819):529–33.
49. Rich C, Favre-Bonte S, Sapena F, Joly B, Forestier C. Characterization of enteroaggregative Escherichia coli isolates. FEMS Microbiol Lett. 1999;173(1):55–61.
50. Kim SC, Tonkonogy SL, Albright CA, Tsang J, Ballish EJ, Braun J, Huycke MM, Sartor RB. Variable phenotypes of enteroocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 2005;128(4):891–906.
51. Roland K, Curtiss R 3rd, Szemere D. Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis. 1999;43(3):429–41.
52. Amann E, Ochs B, Abel KJ. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. 1988;69(2):301–15.