The Pacemaker Current in Cardiac Purkinje Myocytes

MARIO VASSALLE,* HANGANG YU, and IRA S. COHEN

From the Department of Physiology and Biophysics, State University of New York, Health Science Center, Stony Brook, New York 11794; and *Department of Physiology, State University of New York, Health Science Center, Brooklyn, New York 11203

ABSTRACT It is generally assumed that in cardiac Purkinje fibers the hyperpolarization activated inward current \(i_h \) underlies the pacemaker potential. Because some findings are at odds with this interpretation, we used the whole cell patch clamp method to study the currents in the voltage range of diastolic depolarization in single canine Purkinje myocytes, a preparation where many confounding limitations can be avoided. In Tyrode solution ([K\(^+\)]\(_o\) = 5.4 mM), hyperpolarizing steps from \(V_h = -50 \text{ mV} \) resulted in a time-dependent inwardly increasing current in the voltage range of diastolic depolarization. This time-dependent current \((i_{kad}) \) appeared around \(-60 \text{ mV} \) and reversed near \(E_K \). Small superimposed hyperpolarizing steps (5 mV) applied during the voltage clamp step showed that the slope conductance decreases during the development of this time-dependent current. Decreasing [K\(^+\)]\(_o\) from 5.4 to 2.7 mM shifted the reversal potential to a more negative value, near the corresponding \(E_K \). Increasing [K\(^+\)]\(_o\) to 10.8 mM almost abolished \(i_{kad} \). Cs\(^+\) (2 mM) markedly reduced or blocked the time-dependent current at potentials positive and negative to \(E_K \). Ba\(^{2+}\) (4 mM) abolished the time-dependent current in its usual range of potentials and unmasked another time-dependent current (presumably \(i_f \)) with a threshold of \(-90 \text{ mV} \) (>20 mV negative to that of the time-dependent current in Tyrode solution). During more negative steps, \(i_f \) increased in size and did not reverse. During \(i_f \), the slope conductance measured with small (8–10 mV) superimposed clamp steps increased. High [K\(^+\)]\(_o\) (10.8 mM) markedly increased and Cs\(^+\) (2 mM) blocked \(i_f \). We conclude that: (a) in the absence of Ba\(^{2+}\), a time-dependent current does reverse near \(E_K \) and its reversal is unrelated to K\(^+\) depletion; (b) the slope conductance of that time-dependent current decreases in the absence of K\(^+\) depletion at potentials positive to \(E_K \) where inactivation of \(i_{kad} \) is unlikely to occur; (c) Ba\(^{2+}\) blocks this time-dependent current and unmask another time-dependent current \((i_f) \) with a more negative (>20 mV) threshold and no reversal at more negative values; (d) Cs\(^+\) blocks both time-dependent currents recorded in the absence and presence of Ba\(^{2+}\). The data suggest that in the diastolic range of potentials in Purkinje myocytes there is a voltage- and time-dependent K\(^+\) current \((i_{kad}) \) that can be separated from the hyperpolarization-activated inward current \(i_h \).

Address correspondence to Dr. Ira S. Cohen, Department of Physiology and Biophysics, SUNY, Health Science Center, Nicholls Road, Stony Brook, NY 11794

J. GEN. PHYSIOL. © The Rockefeller University Press · 0022-1295/95/07/559/20 $2.00
Volume 106 September 1995 559–578
INTRODUCTION

For several years, it was believed that the pacemaker potential in cardiac Purkinje fibers was caused by the decline of a potassium specific current that activates during the action potential and deactivates during the subsequent diastole (i_{K1}) (Vassalle, 1966; Noble and Tsien, 1968). This interpretation was based on our findings that the time-dependent current reverses near the potassium equilibrium potential (E_K) and that the slope conductance decreases as a function of time when the membrane potential is clamped at the maximum diastolic potential (Vassalle, 1966). In addition, the reversal potential for this time-dependent current shifted 61 mV/tenfold change in $[K^+]_o$ (Noble and Tsien, 1968; Peper and Trautwein, 1969).

Later, it was demonstrated that K$^+$ depletion in narrow extracellular spaces occurred (probably through the background K$^+$ channels) during the large hyperpolarization required to attain the reversal potential of the putative K$^+$ specific pacemaker current. The time-dependent change in this K$^+$ depletion current during hyperpolarization could result in a spurious reversal of the time-dependent current (Cohen, Daut and Noble, 1976; Baumgarten and Isenberg, 1977; DiFrancesco, Ohba and Ojeda, 1979).

In order to eliminate the confounding effects of K$^+$ depletion, DiFrancesco (1981a, b) used 5–10 mM Ba$^{2+}$ to block the background K$^+$ current i_{K1}. In the presence of Ba$^{2+}$, on hyperpolarization a time-dependent current was present which no longer reversed near E_K and, instead, continued to increase at more negative potentials. The reversal potential of this current (called i_+ by DiFrancesco, 1981b) was found in the plateau range of potentials. i_+ was blocked by low concentrations of Cs$^+$ (1–4 mM) and demonstrated an increasing slope conductance during hyperpolarizing voltage clamp steps. On the basis of these findings, DiFrancesco (1981a, b) proposed that in Purkinje fibers the pacemaker current is i_+, an inward current activated on hyperpolarization and carried by Na$^+$ and K$^+$.

Computer reconstructions provided further support for this interpretation of the pacemaker current (DiFrancesco and Noble, 1985). Thus, it was computed that K$^+$ depletion could also account for the observed time-dependent decrease in slope conductance on hyperpolarization because of the $[K^+]_o$ dependence (Sakmann and Trube, 1984) of the background current i_{K1}. The apparent shift of the reversal potential in different $[K^+]_o$ could be accounted for by the dependence of i_{K1} (and thus of K$^+$ depletion) on $[K^+]_o$ (DiFrancesco and Noble, 1985).

The i_+ hypothesis is generally accepted and, yet, several findings related to the use of Ba$^{2+}$ and Cs$^+$ cast doubts as to its correctness (see Discussion). Therefore, we decided to investigate the pacemaker current in the absence of K$^+$ depletion (as well as of Ba$^{2+}$) by using one obvious approach, namely, isolated Purkinje myocytes. Because these myocytes have no restricted extracellular spaces (Eisenberg and Cohen, 1983; Callewaert, Carmeliet, and Vereecke 1984; Mathias, Eisenberg, Datyner, Gintant, and Cohen, 1985), a current reversal could not be due to K$^+$ depletion.

In the present investigation, we examined the properties of the time-dependent current in the diastolic potential range in isolated canine Purkinje myocytes. We could then adopt procedures intended to identify the ionic nature of the time-dependent current elicited in response to hyperpolarizing voltage steps and study the effects of Ba$^{2+}$ and Cs$^+$ on such a current.
As will be demonstrated below, in Tyrode solution (in the absence of Ba\(^{2+}\)) there is a time-dependent current in the diastolic depolarization range (\(i_{\text{Kd}}\)) which deactivates on hyperpolarization and is blocked by both Ba\(^{2+}\) and Cs\(^{+}\). In the presence of Ba\(^{2+}\) (4 mM), \(i_{\text{Kd}}\) is no longer present and \(i_{k}\) appears at substantially more negative potentials. These and other results lead us to suggest that the current underlying the pacemaker potential in Purkinje fibers may not be \(i_{k}\), but instead a voltage- and time-dependent K\(^{+}\) current, as was originally proposed by one of us (Vassalle, 1966) and by others (Noble and Tsien, 1968; Peper and Trautwein, 1969).

MATERIALS AND METHODS

Adult dogs of either sex were euthanized by injection of sodium pentobarbital (86 mg/Kg). The hearts were immediately removed and rinsed in warm (40°C), oxygenated (95% O\(_2\), 5% CO\(_2\)) Tyrode solution of the following composition (in millimoles): NaCl, 140; NaHCO\(_3\), 12; NaH\(_2\)PO\(_4\), 0.4; MgCl\(_2\), 2; KCl, 8; CaCl\(_2\), 4; dextrose, 10. Purkinje strands with attached pieces of ventricular muscle were excised, placed in a chamber perfused with warm (40°C) Tyrode solution and stimulated at 0.8 Hz for 30 min. The strands were then dissected free from ventricular muscle and cut into 4–6 mm segments. After an additional 30 min stimulation, the fibers were placed in a test tube, washed three times with calcium-free solution and incubated for 10 min in the same calcium-free solution with the addition of 25 mM taurine, 5 mM beta-hydroxybutyric acid and 5 mM Na pyruvate. The tissue was then dissociated.

The dissociation procedure essentially followed that of Gintant, Datyner, and Cohen (1985), utilizing a mechanical "triturator" that passed the fibers repeatedly through successively smaller bore pipettes. The rate and pattern of agitation were controlled by a Z-80 based microprocessor interfaced to a linear actuator and piston/cylinder (Datyner, Gintant and Cohen, 1985a). Each digestion lasted ~20 min. The digestion solutions contained either type B or type D collagenase (Boehringer Mannheim Corporation, Indianapolis, IN) and bovine serum albumin (Sigma Chemical Co., St. Louis, MO) in the following concentrations of collagenase/albumin (in milligrams/milliliter): 1.4 type B/1.7; 1.2 type D/1.7; 1.0 type D/4.0; and 0.8 type B/4.0. The collagenase/albumin mixture was dissolved in an oxygenated solution containing (in millimolar): KCl, 140; KHCO\(_3\), 8; KH\(_2\)PO\(_4\), 0.4; MgCl\(_2\), 2; dextrose, 10; taurine, 25; \(\beta\)-hydroxybutyric acid, 5; Na pyruvate, 5. This solution was used for the first two digestions. Collagenase and albumin were dissolved in the calcium-free Tyrode solution described above for the last two digestions. An aliquot of 50 \(\mu\)l of 2.5 mM CaCl\(_2\) was added to the first three digestion solutions of 5-ml vol. Following the third digestion, the solution was centrifuged at 50 g for 5 min, the supernatant discarded and the pellet digested with the collagenase/albumin mixture. The final suspension was again centrifuged and the pellet resuspended in calcium-free Tyrode solution.

The single Purkinje cells were placed on a poly-L-lysine (mol wt 55,000) coated glass coverslip at the bottom of a small volume (0.5 ml) perfusion chamber heated to 37°C (held within 0.5°C) (Datyner, Gintant, and Cohen, 1985b). The chamber was located on the stage of an inverted microscope equipped with Hoffman modulation contrast optics (at a magnification of 200). The cells were superfused with Tyrode solution of the following composition (in millimoles): NaCl, 137.7; NaOH 2.3; KCl, 5.4; CaCl\(_2\), 1.8; MgCl\(_2\), 1; dextrose, 10; Hepes, 5; pH = 7.4. The cells were studied within eight hours following completion of a dissociation procedure.

We employed the whole cell patch clamp technique using an Axopatch 1B amplifier. The pipettes had a resistance of 2–4 M\(\Omega\) when filled with the following solution (in millimoles): NaCl, 6.0; K-aspartate, 150.0; MgCl\(_2\), 4.0; EGTA, 11.0; Hepes, 10.0; Na\(_2\)ATP, 2.0; Na-GTP, 0.1; CaCl\(_2\), 5.0. In some of the initial experiments, 0.2 mM cAMP was added to the pipette solution. The pH was adjusted to 7.2 by adding KOH. The pipette resistance usually increased two- to threefold in the whole cell configuration. The liquid junction potential between the pipette solution and the nor-
mal Tyrode solution was 9 mV (pipette side negative). Because the exchange is never complete
due to membrane transport (Mathias, Cohen and Oliva, 1990), no correction was made for this ef-
fect. On the assumption of 5–8 MΩ series resistance and a maximal current of 1 nA in 5.4 mM
\([K^+]_o\), the offset due to series resistance was at most 8 mV. This offset is in the opposite direction
to the liquid junction offset and again no correction was applied. Data were recorded using the
pClamp program (Axon Instruments Inc., Foster City, CA) and analyzed after low pass filtering at
10–15 Hz.

Most recent studies of time-dependent currents at diastolic potentials in Purkinje fibers have
employed blockers of potentially overlapping currents, so that the hyperpolarization activated
current \(i_e\) could be observed without contamination. We decided to begin our study of the isolated
canine Purkinje myocyte in the absence of any of these usual channel blockers (Ba\(^{2+}\), Cd\(^{2+}\), Mn\(^{2+}\),
TTX, et cetera). We chose this approach because we were concerned that these blockers may not
be specific, and may modify what we were attempting to study, as is in fact shown below for Ba\(^{2+}\).

The time-dependent currents flowing during the hyperpolarizing steps were followed by in-
creasing outward tails whose amplitude reflected the degree of change of the time-dependent cur-
rents during the steps (e.g., Fig. 1). However, since on purpose we did not generally use blockers
of other currents, the tails are likely to be contaminated by other currents flowing on repolariza-
tion to the holding potential. This appears to be confirmed by the fact that in some experiments
we applied hyperpolarizing steps in the presence of 30 μM TTX: the time-dependent current dur-
ing the step and the direction of the decaying tails were not altered, but the amplitude of the tails
was reduced, presumably because an inward TTX-sensitive Na\(^+\) current component activated by
the previous hyperpolarization was eliminated.

RESULTS

The results obtained will be reported in three major sections: in normal Tyrode so-
lution, in the presence of cesium and in the presence of barium.

NORMAL TYRODE SOLUTION

The Time-dependent Current Reverses Near \(E_K\)

We first examined the time-dependent diastolic current in Purkinje myocytes su-
perfused in 5.4 mM K\(^+\) Tyrode solution. In Fig. 1, \(V_h\) was \(-50\) mV and, when a 3-s
hyperpolarizing voltage clamp step was applied to \(-55\) mV, the initial jump was fol-
lowed by a relatively unchanging current. However, during the following step to
\(-65\) mV, there was a time-dependent increase in a net inward current. The time-
dependent increase was larger during the step to \(-75\) mV, but then the time-
dependent component changed direction at \(-85\) mV and the direction change was
even more conspicuous at \(-95\) mV.

In 21 preparations perfused in 5.4 mM [K\(^+\)]\(_o\) Tyrode solution, the average
threshold for diastolic time-dependent current was at \(-61 \pm 5\) mV (mean \pm SD).
Thus, in isolated canine Purkinje myocytes, a slow time-dependent current appears
in the potential range of diastolic depolarization. At \(-75\) mV, the amplitude of this
current was \(44 \pm 24\) pA \((n = 16)\). This current does not continue to increase with
hyperpolarization and, instead, it reverses near the predicted equilibrium potential
for potassium (in 25 preparations, \(E_{rev}\) was \(-84 \pm 5\) mV, which is fairly close to an
\(E_K\) of \(-87\) mV). This time-dependent current will be referred to as \(i_{Kdd}\), because it
flows in the voltage range of diastolic depolarization and reverses near \(E_K\). The
The presence of a threshold potential indicates that i_{kad} is related to the pacemaker potential, because it begins to change with time within the range of potentials of diastolic depolarization.

Shift of the Reversal Potential of i_{kad} in Lower [K+]o

If i_{kad} is indeed a K⁺ current, its reversal should shift to a more negative value in lower [K+]₀. The results of decreasing [K⁺]₀ from 5.4 to 2.7 mM are illustrated in Fig. 2. The hyperpolarizing steps were applied from a $V_h = -50$ mV both in 5.4 mM [K⁺]₀ (A) and in 2.7 mM [K⁺]₀ (B). It is apparent that the reversal potential shifted from about −85 mV in 5.4 mM K⁺ to −105 mV in 2.7 mM K⁺ solution.

FIGURE 2. The reversal potential of i_{kad} shifts with [K⁺]₀. The current traces were recorded in 5.4 mM K⁺ Tyrode solution in A and in 2.7 mM K⁺ Tyrode solution in B. The holding potential was −50 mV in both solutions. In 5.4 mM K⁺, the current traces were recorded during 3-s voltage clamp steps to −65, −75, −85, −95, and −105 mV. In 2.7 mM K⁺, the current traces were recorded during similar steps to −75, −85, −95, −105, −115, and −125 mV. The reversal potential shifted from −85 mV in 5.4 mM K⁺ to −105 mV in 2.7 mM K⁺. In B, the current trace for the step to −75 mV was shifted upward by 10 pA to avoid overlap of current traces. The graphs are plots of i_{kad} and indicate that the reversal potential was determined as the intersection with the 0 current axis. The mean holding current at −50 mV was +21 pA (A) and −44 pA (B).
In eight experiments, E_{rev} shifted from $-86 \pm 7 \text{ mV}$ in 5.4 mM K$^+$ to $-104 \pm 7 \text{ mV}$ in 2.7 mM K$^+$, as the predicted E_K simultaneously shifted from -87 to -106 mV. Thus, changing $[K^+]_o$ shifts the reversal potential of i_{Kdd} approximately in accordance with the Nernst equilibrium potential for K$^+$.

It is apparent that even in the absence of narrow extracellular spaces there is a clear reversal of i_{Kdd} which depends in a predictable way on extracellular [K$^+$]. The reversal of this current is unlikely to be due to depletion of extracellular [K$^+$] because no restricted spaces exist.

Although we cannot be sure that the inactivation of i_{K1} did not contribute to the decay of time-dependent current at least at more negative potentials, there should be little inactivation of i_{K1} at potentials positive to E_k (Sakmann and Trube, 1984; Tromba and Cohen, 1990). Further, in Purkinje strands the reversal near E_K may be a complex waveform due to the sum of several currents (Cohen et al., 1976). In general, no such mixed reversals were observed in isolated myocytes in the present experiments (e.g., see Figs. 1, 2, 3, and 7).

Decrease of i_{Kad} in High [K$^+$]$_o$

In high [K$^+$]$_o$, i_t increases in magnitude (DiFrancesco, 1981a) whereas diastolic depolarization decreases or disappears (Vassalle, 1965). We examined i_{Kdd} in a higher [K$^+$]$_o$ (10.8 mM) to find out whether the conductance of our time-dependent current had the same K$^+$ dependence as that of i_t.

In Fig. 3, an isolated Purkinje myocyte was exposed to Tyrode solution containing either 5.4 mM [K$^+$]$_o$ (A) or 10.8 mM [K$^+$]$_o$ (C). Upon elevation of [K$^+$]$_o$, i_{Kdd} was abolished. Similar results were obtained in three experiments in 10.8 mM [K$^+$]$_o$. The results in B and D will be discussed below.

Change in Slope Conductance during i_{Kad}

In multicellular Purkinje preparations, the slope conductance of the pacemaker current decreases during hyperpolarizing voltage clamp steps positive and negative to E_K (Vassalle, 1966; Vassalle et al., 1992). These results suggested that the pacemaker current deactivates on hyperpolarization. However (as mentioned above), it has been proposed that at more negative potentials the decrease in slope conductance with time on hyperpolarization might be due to the depletion of K$^+$ in narrow extracellular spaces (DiFrancesco and Noble, 1985). To determine whether the i_{Kdd} channels are opening or closing during hyperpolarization in the absence of possible K$^+$ depletion (and of Ba$^{2+}$), we measured in Tyrode solution the changes in slope conductance in response to relatively brief (250 ms) and small (5 mV) hyperpolarizing pulses superimposed on larger (5-65 mV) hyperpolarizing voltage clamp steps.

The results of one such experiment are illustrated in Fig. 4. V_h was -50 mV, and 3.6-s hyperpolarizing steps were applied to -70, -80, and -90 mV. At each voltage, the small superimposed voltage pulses caused a small step current which progressively decreased in amplitude during the parent pulse.

In 19 preparations, the slope conductance consistently declined during the hyperpolarizing steps. At -75 mV, the mean ratio of the slope conductance mea-
In Tyrode solution, the reversal of i_{mod} shifted to a less negative value in 10.8 mM [K+]o. In the presence of Ba^{2+}, i_{mod} was absent and i_d appeared at a potential of -95 mV and did not reverse at negative potentials (B and D). The mean holding current at -50 mV was -20 pA (A) and -160 pA (B). The mean holding current at -40 mV was +88 pA (C) and -120 pA (D).

Figure 3. High [K+]o decreases the time-dependent diastolic current in Tyrode solution and increases the time-dependent inward current in the presence of Ba^{2+}. All traces are from the same Purkinje myocyte, which also was exposed to a higher [K+]o (10.8 mM) in the absence (C) and in the presence (D) of Ba^{2+}. The holding potential was -50 mV in normal and -40 mV in the higher [K+]o. In C (10.8 mM K+), 3 s hyperpolarizing steps were applied to -45, -55, -65, and -75 mV. In D (in the presence of 10.8 mM K+ and 4 mM Ba^{2+}), the hyperpolarizing steps were applied to -75, -85, -95, -105, and -115 mV. The time-dependent diastolic current was smaller in 10.8 mM [K+]o than in 5.4 mM [K+]o. In contrast, the time-dependent inward current in the presence of Ba^{2+} increased in the higher [K+]o (B and D; note the different calibrations for the current).

Figure 4. Decrease in slope conductance during i_{mod} in Tyrode solution. In Ba^{2+}-free Tyrode solution, i_{mod} was elicited upon membrane hyperpolarization from a V_h of -50 mV to -70, -80, and -90 mV. The 5-mV small pulses superimposed on the parent step show that the membrane conductance decreases during the development of i_{mod} at all three potentials. Dashed lines from the i_{mod} current traces without slope conductance measurements are superimposed for a better visualization of the slope conductance changes. The mean holding current at -50 mV was +25 pA.
sured at the end of the parent pulse to that measured at the beginning was 0.75 ± 0.07 (n = 11), a decrease in conductance similar to that found in multicellular strands (Vassalle, 1966; Vassalle et al., 1992).

These results demonstrate that, in the absence of [K⁺]o fluctuations in normal Tyrode solution (no Ba²⁺), the slope conductance declines with time on hyperpolarization. This observation is not consistent with the i_p hypothesis.

Possible Contribution of the Decay of i_K to i_Kdd

It might be proposed that i_{Kdd} is due to deactivation of the delayed rectifier current i_K. However, if this were the case, no discrete threshold would ever be present on hyperpolarization from a V_h of −50 mV. Instead, a threshold was present in 57% of cases. To directly assess a possible contribution of i_K to i_{Kdd}, two protocols were adopted to gradually activate i_K to a greater extent and to examine whether on hyperpolarization to a fixed voltage the decay of a larger i_K would increase i_{Kdd}.

As seen in Fig. 5 A, in the first protocol, the conditioning steps were 1 s in duration and their amplitude was progressively increased by 10 mV to a maximum depolarization of +5 mV. These conditioning steps were followed by a test step to −75 mV. In Fig. 5 B, in the second protocol, a depolarizing clamp step to 0 mV was progressively lengthened from 100 ms to 1.7 s in steps of 200 ms (the steps shorter than 700 ms are not shown) and again was followed by a test pulse to −75 mV. Neither protocol altered the amplitude of the subsequent i_{Kdd}, as shown in Fig. 5 by the traces and by the graphs. In the graphs, the amplitude of i_{Kdd} has been plotted as a function of the previous depolarization (A) and of the duration of the conditioning steps (including the steps <700 ms) (B). Similar results were obtained in a total of five experiments (three experiments for the A protocol and two for the B protocol).

That indeed i_K was activated during the depolarizing steps is shown in the boxed inset: a depolarizing 3-s step from V_h −50 mV to −15 mV activated the delayed rectifier and on return to V_h a decaying current tail was present. A similar decay of i_K on repolarization to a potential positive to the threshold for i_{Kdd} was found in six experiments.

The absence of a significant change in the time-dependent current after the predepolarizations also argues against significant extracellular K⁺ accumulation during the depolarizing steps. The absence of K⁺ fluctuations was also supported by two experiments in which a predepolarization of 1 s to −20 mV from a V_h of −50 mV failed to alter the reversal potential of i_{Kdd} (not shown).

Effects of Cesium

In Purkinje fibers, cesium blocks the pacemaker current in Tyrode solution (Isenberg, 1976; DiFrancesco, 1981a; Vassalle et al., 1992) as well as i_p in the presence of Ba²⁺ (DiFrancesco, 1981a). Although Cs⁺ in low concentrations (2 mM or less) is considered a specific blocker of i_p, the possible role of i_{Kdd} in the pacemaker potential led us to reexamine the effects of Cs⁺ on this time-dependent current elicited on hyperpolarization in normal Tyrode solution.
FIGURE 5. Different degrees of activation of the delayed rectifier i_d do not modify $i_{K_{dd}}$ in Tyrode solution. In A, the holding potential was -50 mV and 1-s conditioning voltage clamp steps were applied to -45, -35, -25, -15, -5, and $+5$ mV. Each of the steps were followed by a 3-s test step at -75 mV. In B, a 100-ms conditioning step to 0 mV was gradually prolonged to 1.7 s in 200-ms steps. To avoid overcrowding, the currents flowing during the first three steps have been omitted. The amplitude of $i_{K_{dd}}$ is plotted in pA (ordinate) vs the voltage of the conditioning step in mV (abscissa) (A, right) or versus the duration of the conditioning step in s (abscissa) (B, right). In this panel, the amplitude of $i_{K_{dd}}$ after all conditioning steps is shown. In the boxed inset, the activation of the delayed rectifier current during a depolarizing step to -15 mV and the decaying current tail on returning to V_h are shown. The mean holding current at -50 mV was $+6$ pA (A) and $+18$ pA (B).

Cesium Block of $i_{K_{dd}}$

To find out whether Cs$^+$ blocks $i_{K_{dd}}$, we studied the effects of 2 mM Cs$^+$ in normal Tyrode solution. Fig. 6 shows current traces in response to steps from $V_h = -50$ mV to -75, -85, and -95 mV before, during and after washout of Cs$^+$ containing Tyrode solution. Clearly, Cs$^+$ markedly reduced the diastolic current recorded throughout this potential range. In a total of five preparations, Cs$^+$ reduced $i_{K_{dd}}$ recorded at -75 mV by 72 ± 34% (mean ± SD).

EFFECTS OF BARIUM

Barium Blocks $i_{K_{dd}}$ and Unmasks i_f

In the presence of 5–10 mM Ba$^{2+}$, a time-dependent current is present which does not reverse at negative potentials (i_b) (DiFrancesco, 1981a,b). In our previous experiments in isolated canine Purkinje myocytes, there was a time-dependent current (i_k) in the presence of Ba$^{2+}$, but only at potentials negative to -89 mV (Yu,
Chang, and Cohen, 1993). Since the present results suggest that in the absence of Ba\(^{2+}\) a current (i\(_{\text{Kdd}}\)) exists at more positive potentials (threshold -61 mV), the possibility arose that the different thresholds for the two time-dependent currents might result from the fact that Ba\(^{2+}\) abolishes i\(_{\text{Kdd}}\) and unmasking i\(_{\text{K}}\). For this reason, we compared the threshold for time-dependent currents in the absence and presence of Ba\(^{2+}\) in the same canine Purkinje myocytes.

In Fig. 3, A and B, in each panel the holding potential was -50 mV. In A (Con.), in the absence of Ba\(^{2+}\), i\(_{\text{Kdd}}\) increased with time during the steps to -65 and -75 mV and reversed at more negative potentials. Instead, in the presence of 4 mM Ba\(^{2+}\) (4 Ba, B), no time-dependent current was observed positive to -95 mV, and the current did not reverse at potentials as negative as -115. Thus, i\(_{\text{Kdd}}\) was suppressed in the presence of Ba\(^{2+}\) and the time-dependent current i\(_{\text{K}}\) with a more negative threshold and no reversal at potentials more negative than E\(_{\text{K}}\) appeared. The changes induced by Ba\(^{2+}\) were reversible, since on washout of Ba\(^{2+}\) the current patterns returned towards control (data not shown).

In nine experiments, in Tyrode solution (no Ba\(^{2+}\)), the average threshold for i\(_{\text{Kdd}}\) was -62 ± 5 mV (mean ± SD). In the presence of 4 mM Ba\(^{2+}\), in the same Purkinje myocytes, the threshold for the time-dependent current was -88 ± 10 mV (mean ± SD). Negative to E\(_{\text{K}}\), in the absence of Ba\(^{2+}\) i\(_{\text{Kdd}}\) reversed whereas in the presence of Ba\(^{2+}\) i\(_{\text{K}}\) did not reverse. These results suggest that barium either blocked i\(_{\text{Kdd}}\) and unmasked i\(_{\text{K}}\), or caused a dramatic shift in the activation range for i\(_{\text{Kdd}}\) which is inconsistent with previous data (DiFrancesco, Porciatti, and Cohen, 1991).

Because i\(_{\text{K}}\) is a time-dependent increasing inward current, it might contaminate our measure of the reversal of i\(_{\text{Kdd}}\). However, in 5.4 mM K\(^{+}\), the threshold for i\(_{\text{K}}\) is negative to the reversal of i\(_{\text{Kdd}}\). To determine the threshold for the activation of i\(_{\text{K}}\) in lower [K\(^{+}\)]\(_{o}\) (where the reversal potential is more negative), hyperpolarizing steps were applied in the absence and presence of Ba\(^{2+}\) in 2.7 mM K\(^{+}\) (Fig. 7). In Tyrode
Time-dependent Currents in Lower [K+]o. All panels were recorded from a Purkinje myocyte superfused with 2.7 mM [K+]o. The holding potential was -50 mV and hyperpolarizing pulses were applied to -55, -65, -75, -85, -95, -105, -115, and -125 mV in the absence (A) and to -55, -65, -75, -85, -95, -105, -115, -125, -135, and -145 mV in the presence of 4 mM Ba2+ (B). In C, the changes in slope conductance during k\text{dd} were measured by applying small hyperpolarizing steps superimposed on the parent pulse in Tyrode solution (no Ba2+). In A, the -55 mV trace was shifted upward by 150 pA and the -65 mV trace by 60 pA to avoid overlap of the current traces. The mean holding current at -50 mV was +137 pA (A), +38 pA (B) and +152 pA (C).

In six experiments in 2.7 mM [K+]o, in the absence of Ba2+, the reversal of k\text{dd} was -105 mV (A); in the presence of Ba2+, k\text{dd} was blocked and the threshold for k activation was -95 mV. Note that at -95 mV, k in the presence of Ba2+ (B) had a smaller amplitude and different kinetics than k\text{dd} in the Tyrode solution (A). Also in 2.7 mM [K+]o (no Ba2+), the slope conductance decreased during the decay of k\text{dd} (C).

In six experiments in 2.7 mM [K+]o, in the absence of Ba2+, the reversal of k\text{dd} was -106 ± 10 mV, whereas in the presence of Ba2+ the threshold for k activation was at -95 ± 6 mV. Thus, in the lower K+ a small contribution of k might have shifted the k\text{dd} reversal a few mV more negative. This assumes that the k activation threshold in the Ba2+ containing solution is identical to that in normal Tyrode solution and would raise the question of how a clean reversal like that observed in Fig. 7 could be observed.

Time-dependent Current and Slope Conductance in the Presence of Ba2

If Ba2+ eliminated k\text{dd} (by blocking a decaying potassium conductance) while unmasking the hyperpolarization activated k, the slope conductance should increase during the time-dependent current in the presence of Ba2+ (DiFrancesco, 1981a) (in contrast to the above demonstrated decrease in slope conductance during k\text{dd} in Ba2+-free Tyrode solution).

In Fig. 8, hyperpolarizing voltage clamp steps were applied from a V_h of -50 mV. In Tyrode solution (top), during a hyperpolarizing voltage clamp step to -75 mV,
Figure 8. Increase in slope conductance during the time-dependent current in the presence of Ba²⁺. The myocyte was first perfused in Tyrode solution in the absence of Ba²⁺ (top). The decrease in amplitude of the current steps in response to the 5-mV pulses superimposed on the 6.4 s test step to −75 mV show that the slope conductance decreases during \(\frac{i}{k_{\text{Ca}}-75} \) in the absence of Ba²⁺. In the presence of 4 mM Ba²⁺ (bottom), the increase in amplitude of the current steps in response to the 8-mV pulses superimposed on the test steps to −105 and −115 mV show that the slope conductance increases during the activation of \(i_e \). The dashed lines, showing the same \(\frac{i}{k_{\text{Ca}}} \) and \(i_e \) traces without slope conductance measurements, have been added for a better visualization of the slope conductance changes. The current trace for the step to −105 mV was shifted upward by 130 pA to avoid current overlap. The graphs show the changes in the amplitude of the small current pulses during \(\frac{i}{k_{\text{Ca}}} \) (top graph, ●) in Tyrode solution and during \(i_e \) at −105 (▼) and −115 (■) mV in the presence of Ba²⁺ (bottom). In the graphs, the time constants of the currents changes (dashed lines) have been superimposed on the changes in slope conductance (symbols). The time constants of the time-dependent current and slope conductance changes were as follows. For \(\tau[-75(i_{k_{\text{Ca}}})] \): onset current (s) 1.757, slope conductance (s) 1.803. The corresponding numbers for \([-105(i_e)] \) were 2.436 and 2.070; and for \([-115(i_e)] \) 0.615 and 0.664, respectively. The mean holding current at −50 mV in Tyrode was +181 pA and in Tyrode + 4Ba was −58 pA.

The fact that the slope conductance decreases during \(\frac{i}{k_{\text{Ca}}} \) in the absence of Ba²⁺ whereas it increases during \(i_e \) in the presence of Ba²⁺ supports the notion that Ba²⁺ blocks one conductance within the diastolic potential range, while revealing another which activates at much more negative potentials. Similar results were observed in a total of three experiments in Tyrode solution with Ba²⁺.

That the time-dependent currents in the absence and presence of Ba²⁺ are different is supported also by the findings illustrated in Fig. 3. As already discussed, in
the absence of Ba$^{2+}$, increasing [K$^+$]$_o$ from 5.4 to 10.8 mM shifted the reversal potential and markedly reduced the amplitude of i_{Kad} (A and C). Instead, in the presence of Ba$^{2+}$ (B and D), increasing [K$^+$]$_o$ increased the amplitude of hyperpolarization activated current (note the different current calibrations in B and D) and did not change its voltage range or direction (as would be expected for i_h, DiFrancesco, 1981a).

Cs$^+$ Effects on the Time-dependent Current in the Presence of Ba$^{2+}$

Low concentrations of Cs$^+$ block i_h in Purkinje fibers (DiFrancesco, 1981a) and in sinus node myocytes (DiFrancesco, Ferroni, Mazzanti, and Tromba, 1986). The results illustrated in Fig. 9 show that 2 mM Cs$^+$ blocked the time-dependent current in the presence of Ba$^{2+}$ also in our Purkinje myocytes. Similar results were obtained in a total of three experiments. Thus, Cs$^+$ (which has been used as a fingerprint for the i_h current) blocks a diastolic current associated with a decreasing membrane conductance in the absence of Ba$^{2+}$ as well as time-dependent current associated with an increasing membrane conductance in the presence of Ba$^{2+}$.

DISCUSSION

The initial investigations of the pacemaker current in Purkinje fibers indicated that diastolic depolarization was caused by the decay of a K$^+$ current (Vassalle, 1966; Noble and Tsien, 1968; Peper and Trautwein, 1969). This interpretation was challenged by the experiments of DiFrancesco (1981a,b) and the role of a decaying K$^+$...
current (\(i_{K2}\)) as the pacemaker current was replaced by \(i_k\). Our results suggest that the pacemaker current was not initially misinterpreted, but rather that to avoid certain technical limitations (e.g., K\(^+\) depletion) experimental procedures were adopted (e.g., block of \(i_{K1}\) by Ba\(^{2+}\)) that lead to the study of a different time-dependent current. To clarify the factors involved in this controversy, it is necessary to first consider the findings that led to the two different interpretations of the pacemaker current in Purkinje fibers and then examine how our results shed light on this controversial matter.

The Evidence for and Against the K\(^+\) Pacemaker Current

The pacemaker current was believed to be a K\(^+\) current on the basis that it was associated with a decrease in slope conductance (Vassalle, 1966), that it reversed near the potassium equilibrium potential (Vassalle, 1966; Noble and Tsien, 1968; Peper and Trautwein, 1969), and that its reversal potential shifted as a function of [K\(^+\)]\(_o\) (Noble and Tsien, 1968; Peper and Trautwein, 1969).

The relationship between the action potential and the pacemaker current was believed to be as follows (Vassalle, 1966). The pacemaker current would be partially activated at the resting potential. During the action potential the pacemaker current would activate and during phase 3 repolarization the increased membrane conductance induced by the pacemaker channel would allow the potential to approach \(E_k\). However, the pacemaker channel would slowly deactivate at negative potentials and diastolic depolarization would ensue. If [K\(^+\)]\(_o\) is lowered, the action potential is followed by a larger undershoot and a larger diastolic depolarization as the activation of \(i_{\text{fald}}\) during the action potential would allow the membrane to approach the more negative \(E_k\) (Vassalle, 1965).

This series of events appeared straightforward. However, there were findings that could not be easily explained on the basis of a simple K\(^+\) selective pacemaker current. The reversal potential was found to be somewhat more negative than the theoretical value (Cohen et al., 1976; Peper and Trautwein, 1969). In addition, there was evidence that in ungulate Purkinje fibers (the preparation most often studied) there were fluctuations of [K\(^+\)] in narrow clefts between cells (Cohen et al., 1976; Baumgarten and Isenberg, 1977). Further, the reversal potential was not fixed but shifted to less negative potentials if the hyperpolarizing clamp step was preceded by a depolarizing step, consistent with fluctuations in [K\(^+\)] in the narrow clefts during each voltage clamp step (DiFrancesco et al., 1979).

These findings prompted the suggestion that the reversal of the time-dependent current might not reflect the ionic selectivity of the pacemaker current. Instead, large hyperpolarizing voltage steps would deplete cleft [K\(^+\)] and cause a time-dependent decline in the background K\(^+\) current \(i_{K1}\). The inward current that decreases as a function of time would then not be the reversed \(i_{\text{fald}}\), but instead it would be the declining \(i_{K1}\) due to K\(^+\) depletion. The depletion would be largest at potentials negative to \(E_k\), because the driving force for K\(^+\) becomes inward directed and \(i_{K1}\) conductance increases: according to this hypothesis, the reversal of the time-dependent current negative to \(E_k\) would be spurious.
The Evidence for and Against the i_f Pacemaker Current

The possible role of K^+ depletion in determining a spurious reversal potential was investigated by blocking i_{K1} with Ba^{2+} (5–10 mM) (DiFrancesco, 1981a, b). It was reasoned that the block of i_{K1} (by preventing the K^+ depletion) would abolish the depletion current through the i_{K1} channel. If the reversal were due to K^+ depletion, it should no longer occur in the presence of Ba^{2+}. Indeed, in the presence of Ba^{2+}, a time-dependent current (i_τ) was present that was associated with an increasing slope conductance and did not reverse at negative potentials. It was concluded that the evidence supporting the K^+ current was spurious and that in fact the pacemaker current was i_f (DiFrancesco, 1981a, b).

The actions of Cs^+ on the time-dependent current in Tyrode solution appeared to further support the i_f hypothesis. The elimination of an outward pacemaker current was expected to cause a larger inward jump on hyperpolarization. Because Cs^+ abolished the pacemaker current, but did not increase the initial jump during a hyperpolarizing step, it was concluded that Cs^+ was a specific blocker of the inward pacemaker current i_f (DiFrancesco, 1981a).

Computer simulations by DiFrancesco and Noble (1985) lent additional support to the i_f hypothesis by accounting for some of the findings which had been presumed to support i_{K1}. Thus, the dependence of the apparent reversal on $[K^+]_o$ could be accounted for by a similar dependence of K^+ depletion on $[K^+]_o$. Also, the decrease in slope conductance (in the absence of Ba^{2+}) was explained by the progressive decline of cleft $[K^+]$ which reduces i_{K1} conductance. However, in this connection, it should be pointed out that we found that the slope conductance decreases during the pacemaker current at potentials positive to E_K (Vassalle, 1966; Vassalle et al., 1992), where several different tests (with Ba^{2+}, Cs^+, and high $[K^+]_o$) failed to detect K^+ depletion at those potentials (Vassalle et al., 1992).

The i_f hypothesis has gained wide acceptance. However, some findings emerged that could not be readily fitted by the explanation offered. We found that the depletion current was not large enough to be responsible for the pseudo-reversal near E_K (Cohen and Falk, 1980). Further, Ba^{2+} reduced or eliminated the time-dependent current at the most positive diastolic potentials (Cohen, Falk, and Mulrine, 1983). Also, in canine Purkinje strands the extracellular spaces are larger than in the ungulate tissue (Eisenberg and Cohen, 1983) and yet the pacemaker current still reversed near the expected E_K (Cohen et al., 1983).

The interpretation of many of the experiments supporting the i_f hypothesis relies on specific actions of Ba^{2+} and Cs^+: a specific block of the background potassium current i_{K1} by Ba^{2+} and a specific block of i_f by Cs^+. It is necessary to consider how specific the actions of these agents are.

Ba^{2+} Blocks Currents Other Than i_{K1}

Ba^{2+} blocks i_{K1} in Purkinje fibers (DiFrancesco, 1981a, 1982), and so it was employed to eliminate the K^+ depletion on hyperpolarization. However, Ba^{2+} also blocks other K^+ currents such as the delayed rectifier i_K (Gintant et al., 1985), the K^+ current induced by acetylcholine (Carmeliet and Mubagwa, 1986) and the one dependent on ATP (Kakei and Noma, 1984). Therefore, if a time- and voltage-
dependent K⁺ current exists in the diastolic potential range as we suggest, it is not surprising that the application of 5-10 mM Ba²⁺ to study the pacemaker current would eliminate iKdd.

Effects of Cesium on ΔNd, Membrane Potential, and Membrane Currents

Because Cs⁺ did not increase the instantaneous current on hyperpolarization, it was concluded that Cs⁺ blocks not an outward current but the inward iₙ (Di-Francesco, 1981a). Because of this finding, Cs⁺ has been employed as a fingerprint for iₙ.

However, the above rationale appears uncertain: the steady state holding current changes in an inward direction when Cs⁺ is applied (Isenberg, 1976; Vassalle et al., 1992). This would occur if Cs⁺ blocks an outward K⁺ pacemaker current. In Cs⁺ containing Tyrode solution, the residual outward pacemaker current would be smaller, because the maximal conductance is reduced. Therefore, on voltage clamp hyperpolarization the instantaneous decrease in outward current would be less and the instantaneous current jump would be smaller (Vassalle et al., 1992).

Cs⁺ decreases ΔNd, and it has been proposed that it does so by blocking iₙ (Glitsch, Pusch, and Verdonck, 1986; Chae, Wang, Gong, and Lee, 1990). However, Cs⁺ stimulates the Na⁺/K⁺ pump activity in Purkinje fibers (Eisner and Lederer, 1980) and therefore it could decrease ΔNd by that mechanism, as several of our experiments indicate (Iacono and Vassalle, 1990). Thus, Cs⁺ decreases ΔNd also in the absence of iₙ, e.g., in the absence of diastole or in zero [K⁺]ₒ (where iₙ is absent, Di-Francesco, 1982), or in quiescent myocardial fibers. Cs⁺ does not decrease ΔNd in the presence of toxic doses of strophanthidin (Iacono and Vassalle, 1990), which do not affect (Lederer and Tsien, 1976) the pacemaker current but block the Na⁺/K⁺ pump. In quiescent Purkinje fibers, Cs⁺ causes a transient hyperpolarization, which might be attributable to a block of iₙ. However, this transient hyperpolarization also occurs when iₙ is absent or deactivated, but not when the Na⁺/K⁺ pump is almost maximally stimulated or is blocked (Sternlicht and Vassalle, 1992).

In guinea pig ventricular myocytes, Ba²⁺ induces a diastolic depolarization and a K⁺-selective pacemaker current (see Valenzuela and Vassalle, 1991) in a voltage range where there is no iₙ. Cs⁺ (4 mM) abolishes the Ba²⁺-induced pacemaker potential and current (Shen and Vassalle, 1994), providing another example that Cs⁺ is not a specific blocker of iₙ.

Contribution by Other Currents to iKdd

During the action potential, iₖ is activated at the plateau and its decay could conceivably contribute to the pacemaker potential. Our results show that iKdd is little affected by different degrees of iₖ activation up to 1.7 s in duration and therefore the decay of iₖ seems to contribute little to diastolic depolarization in Purkinje fibers. We have not tested whether the full activation of iₖ (iₖr and iₖu) would distort the measurements of iKdd, but none of our protocols used to analyze the time-dependent currents on hyperpolarization would give rise to the complete activation of iₖu. Therefore, it would appear that neither component of iₖ is responsible or distorts our measurement of iKdd with the protocols we employed.
The background i_{K1} can undergo time-dependent inactivation (e.g., Tromba and Cohen, 1990). However, the inactivation of i_{K1} occurs at potentials negative to E_K, i.e., outside the range of the pacemaker potential (Sakmann and Trube, 1984; Tromba and Cohen, 1990). Therefore, the time-dependent current positive to E_K should not be due to a time-dependent inactivation of i_{K1}. Although we cannot be sure that inactivation of i_{K1} does not contribute to the reversed i_{Kdd}, it is worth pointing out that the time constant of decay of i_{Kdd} is similar at potentials immediately positive and immediately negative to E_{rev}. In this regard, it should be pointed out that the decrease in conductance during i_{Kdd} occurred at potentials both positive and negative to E_K, showing that we are not dealing with i_t artificially reversed by the inactivation of i_{K1}. The absence of mixed reversals supports this conclusion. It should be added that even if the time-dependent current positive to E_K were to be due to the inactivation of i_{K1}, it would still be a K^+ time-dependent pacemaker current. However, such an inactivation of i_{K1} at potential positive to E_K is contrary to actual findings (Sakmann and Trube, 1984; Tromba and Cohen, 1990) and would raise the question as to why i_{K1} inactivation should occur in Purkinje but not in myocardial fibers.

One might inquire as to whether the overlapping of i_t should shift the reversal potential of i_{Kdd} to more negative values. The answer seems to be that the threshold for i_t is negative to E_K in both 5.4 and 10.8 mM $[K^+]_o$, and therefore i_t would not interfere with the reversal potential of i_{Kdd}. In 2.7 mM $[K^+]_o$, we found that the average threshold for i_t (-95 mV) was fairly close to the reversal potential of i_{Kdd} (-106 mV). Therefore, in some experiments i_t could have shifted the reversal potential in 2.7 mM K^+. However, this suggestion assumes that the threshold for i_t is the same in the absence and presence of Ba^{2+}. We have no way to prove or disprove this point since i_t was not apparent in Tyrode solution in the absence of Ba^{2+}. If i_t was contaminating i_{Kdd} in Tyrode solution, the kinetics of i_t and i_{Kdd} would have to be perfectly matched since mixed reversals were not observed (see Fig. 3, A and B, and Fig. 7).

Conclusions

Our results show that at negative potentials two time-dependent currents are present in Purkinje myocytes that have several distinguishing characteristics. Thus, the time-dependent current that occurs in the range of diastolic depolarization (i_{Kdd}) appears at a less negative threshold, reverses near E_K, its reversal depends on $[K^+]_o$, undergoes a decrease in slope conductance at potentials positive and negative to E_K, decreases in high $[K^+]_o$, is blocked by Cs^+ and disappears in the presence of Ba^{2+}. These findings are consistent with a voltage- and time-dependent decay of a K^+ current.

The other time-dependent current that appears in the presence of Ba^{2+} (i_t) has an average threshold near or negative to the predicted E_K in 5.4 and 2.7 mM $[K^+]$, does not reverse at more negative potentials, increases in high $[K^+]_o$, undergoes an increase in slope conductance on hyperpolarization and is blocked by Cs^+ but not by Ba^{2+}. Most of these characteristics are consistent with the i_t (or i_h) found also in cardiac (Earm, Shimoni, and Spindler, 1983; Yu et al., 1993) and noncardiac (e.g., see Schlichter, Bader, and Bernheim, 1991) tissues that do not have a pacemaker current.
The block of both i_{Kd} and i_f by Cs^+ shows that Cs^+ is not a selective blocker of i_f and the block of i_{Kd} but not of i_f by Ba^{2+} shows that Ba^{2+} is not a selective blocker of i_f. Thus, for both Ba^{2+} and Cs^+, assumptions about their selectivity led to potentially erroneous conclusions concerning the role of i_f in Purkinje pacemaker activity.

Our experiments argue for the existence of a time- and voltage-dependent decaying K^+ conductance which is important for diastolic depolarization in Purkinje myocytes. The absolute magnitude of the measured current at -75 mV (44 pA) could generate a change in the pacemaker depolarization rate of 160 mV/s in a Purkinje myocyte of average capacitance 280 pF (Cohen, Datyner, Gintant, Mulrine, and Pennefather, 1987). This current has been missed by some of the previous investigators, either because they employed Ba^{2+} in their bathing solution which blocks this current, or did not attempt to investigate the conductance changes in the diastolic range of potentials. We also employed a pipette solution with a [Ca] buffered to the physiologic range (see Methods), which differs from most previous patch clamp investigations.

Finally, it is not surprising that a function as important as pacemaker activity has a number of potentially redundant mechanisms. Although a decaying K^+ current may be important in the normal pacemaker potential, i_f could play a role in preventing excessive hyperpolarization. For example, following periods of rapid activity, i_f could antagonize the Na^+/K^+ pump current, activated to a larger degree (see Vassalle, 1987) because of the increased Na load.

This work was supported by the National Institutes of Health (Grants HL20558, HL28958, and HL27098).

Original version received 21 July 1994 and accepted version received 18 April 1995.

REFERENCES

Baumgarten, C. M., and G. Isenberg. 1977. Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization. Pfliigers Arch. 368:19-31.

Callewaert, G., E. Carmeliet, and J. Vereecke. 1984. Single cardiac Purkinje cells: general electrophysiology and voltage-clamp analysis of the pace-maker current. Journal of Physiology. 349:643-661.

Carmeliet, E., and K. Mubagwa. 1986. Characterization of the acetylcholine-induced potassium current in rabbit cardiac Purkinje fibres. Journal of Physiology. 371:219-237.

Chae, S. W., D. Y. Wang, Q. Y. Gong, and C. O. Lee. 1990. Effect of norepinephrine on Na^+/K^+ pump and Na^+ influx in sheep cardiac Purkinje fibers. American Journal of Physiology. 258:C713-C722.

Cohen, I., N. B. Datyner, G. A. Gintant, N. K. Mulrine, and P. Pennefather. 1987. Properties of an electrogenic sodium-potassium pump in isolated canine Purkinje myocytes. Journal of Physiology. 383:251-267.

Cohen, I. S., J. Daut, and D. Noble. 1976. The effects of potassium and temperature on pace-maker current, i_{Kd}, in Purkinje fibres. Journal of Physiology. 260:55-74.

Cohen, I. S., and R. T. Falk. 1980. The pace-maker current in canine Purkinje fibres. Journal of Physiology. 308:30-31P. (Abstr.)

Cohen, I. S., R. T. Falk, and N. K. Mulrine. 1983. Actions of barium and rubidium on membrane currents in canine Purkinje fibres. Journal of Physiology. 338:589-612.

Datyner, N., G. Gintant, and I. S. Cohen. 1985a. Microprocessor controlled trituration device for the
dissociation of cardiac and other tissues. Pflügers Archiv. 405:105–108.
Datyner, N., G. Gintant, and I. S. Cohen. 1985. Versatile temperature controlled tissue bath for the
studies of isolated cells using an inverted microscope. Pflügers Archiv. 403:318–323.
DiFrancesco, D. 1981a. A new interpretation of the pace-maker current in calf Purkinje fibres. Journal
of Physiology. 314:359–376.
DiFrancesco, D. 1981b. A study of the ionic nature of the pace-maker current in calf Purkinje fibres. Journal
of Physiology. 314:377–393.
DiFrancesco, D. 1982. Block and activation of the pace-maker channel in calf Purkinje fibres: effects of
potassium, caesium and rubidium. Journal of Physiology. 329:485–507.
DiFrancesco, D., A. Ferroni, M. Mazzanti, and C. Tromba. 1986. Properties of the hyperpolarizing-
activated current (i_h) in cells isolated from the rabbit sino-atrial node. Journal of Physiology. 377:61–88.
DiFrancesco, D., and D. Noble. 1985. A model of cardiac electrical activity incorporating ionic pumps and
concentration changes. Philosophical Transactions of the Royal Society B. 307:555–598.
DiFrancesco, D., M. Ohba, and C. Ojeda. 1979. Measurement and significance of the reversal potential
for the pace-maker current (i_{P0}) in sheep Purkinje fibres. Journal of Physiology. 297:155–162.
DiFrancesco, D., F. Porciani, and I. S. Cohen. 1991. The effects of manganese and barium on i_h in
rabbit sino-atrial node. Experientia. 47:449–452.
Earm, Y. E., Y. Shimoni, and A. J. Spindler. 1983. A pace-maker-like current in the sheep atrium and
its modulation by catecholamines. Journal of Physiology. 342:569–590.
Eisenberg, B., and I. S. Cohen. 1983. The ultrastructure of the canine Purkinje strand in the dog: a
morphometric analysis. Proceedings of the Royal Society of London B. 217:191–213.
Eisner, D. A., and W. J. Lederer. 1980. The relationship between sodium pump activity and twitch
tension in cardiac Purkinje fibres. Journal of Physiology. 308:475–494.
Gintant, G. A., N. B. Datyner, and I. S. Cohen. 1985. Gating of delayed rectification in acutely isolated
canine cardiac Purkinje myocytes. Biophysical Journal. 48:1059–1064.
Glitsch, H. G., H. Pusch, and F. Verdonck. 1986. The contribution of Na and K ions to the pacemaker
current in sheep cardiac Purkinje fibres. Pflügers Archiv. 406:464–471.
Iacono, G., and M. Vassalle. 1990. The interrelationships of cesium, intracellular sodium activity, and
pacemaker potential in cardiac Purkinje fibers. Canadian Journal of Physiology and Pharmacology. 68:
1236–1246.
Isenberg, G. 1976. Cardiac Purkinje fibers: cesium as a tool to block inward rectifying potassium cur-
rents. Pflügers Archiv. 365:99–106.
Kakei, M., and A. Noma. 1984. Adenosine-5’-triphosphate-sensitive single potassium channel in the
atrio-ventricular node cell of the rabbit heart. Journal of Physiology. 352:265–284.
Lederer, W. J., and R. W. Tsien. 1976. Transient inward current underlying arrhythmogenic effects of
cardiotonic steroids in Purkinje fibres. Journal of Physiology. 268:73–100.
Mathias, R. T., I. S. Cohen, and C. Oliva. 1990. Limitations of the whole cell patch clamp technique in
the control of intracellular concentrations. Biophysical Journal. 58:759–770.
Mathias, R. T., B. R. Eisenberg, N. B. Daytner, G. A. Gintant, and I. S. Cohen. 1985. Impedance and
morphology of isolated canine cardiac Purkinje myocytes: comparison with intact strand prepara-
tions. Biophysical Journal. 47:499a. (Abstr.)
Noble, D., and R. W. Tsien. 1968. The kinetics and rectifier properties of the slow potassium current in
cardiac Purkinje fibres. Journal of Physiology. 195:185–214.
Peper, K., and W. Trautwein. 1969. A note on the pacemaker current in Purkinje fibers. Pflügers Ar-
chiv. 309:356–361.
Sakmann, B., and G. Trube. 1984. Conductance properties of single inwardly rectifying potassium
channels in ventricular cells from guinea-pig heart. Journal of Physiology. 347:641–657.
Schlichter, R., C. R. Bader, and L. Bernheim. 1991. Development of anomalous rectification (I_h) and of a tetrodotoxin-resistant sodium current in embryonic quail neurons. *Journal of Physiology.* 442: 127–145.

Shen, J.-B., and M. Vassalle. 1994. Cesium abolishes the barium-induced pacemaker potential and current in guinea pig ventricular myocytes. *J. Cardiovasc. Electrophysiol.* 5:1031–1044.

Sternlicht, J., and M. Vassalle. 1992. Cesium abolishes diastolic depolarization of Purkinje fibers by blocking a K⁺ conductance. *FASEB Journal.* 6:A1165. (Abstr.)

Tromba, C., and I. S. Cohen. 1990. A novel action of isoproterenol to inactivate a cardiac K⁺ current is not blocked by beta and alpha adrenergic blockers. *Biophysical Journal.* 58:791–795.

Valenzuela, F., and M. Vassalle. 1991. Role of membrane potential in Ba²⁺-induced automaticity in guinea pig cardiac myocytes. *Cardiovascular Research.* 25:421–430.

Vassalle, M. 1965. Cardiac pacemaker potentials at different extra- and intracellular K concentrations. *American Journal of Physiology.* 208:770–775.

Vassalle, M. 1966. Analysis of cardiac pacemaker potential using a "voltage clamp" technique. *American Journal of Physiology.* 210:1335–1341.

Vassalle, M. 1987. Contribution of the Na⁺/K⁺-pump to the membrane potential. *Experientia.* 43: 1135–1140.

Vassalle, M., H. Kotake, and C.-I. Lin. 1992. Pacemaker current, membrane resistance, and K⁺ in sheep cardiac Purkinje fibres. *Cardiovascular Research.* 26:383–391.

Yu, H., F. Chang, and I. S. Cohen. 1993. Pacemaker current exists in ventricular myocytes. *Circulation Research.* 72:232–236.