Two Loop Radiative Seesaw and X-ray line Dark Matter

with

Global $U(1)$ Symmetry

Hiroshi Okada1,*

1School of Physics, KIAS, Seoul 130-722, Korea

(Dated: March 17, 2015)

Abstract

We study a two loop induced radiative neutrino model with global $U(1)$ symmetry at 0.1 GeV scale, in which we consider a keV scale of dark matter candidate recently reported by XMN-Newton X-ray observatory using data of various galaxy clusters and Andromeda galaxy. We also discuss the vacuum stability of singly charged bosons, lepton flavor violation processes, and a role of Goldstone boson.

Keywords: Radiative seesaw, Goldstone Boson, X-ray Line

*Electronic address: hokada@kias.re.kr
TABLE I: Contents of lepton and scalar fields and their charge assignment under $SU(2)_L \times U(1)_Y \times U(1)$.

	Lepton Fields	Scalar Fields
$SU(2)_L$	L_L e_R N_R	Φ χ^+_1 χ^+_2 φ
$U(1)_Y$	$-1/2$ -1 0	$+1/2$ $+1$ $+1$ 0
$U(1)$	$-x$ $-x$ $x/3$	0 $2x$ $2x/3$ $-2x/3$

One of the promising scenarios simultaneously to explain between Neutrinos and dark matter (DM) physics is to generate neutrino masses at multi-loop level \[1\text{–}47\], \[48\text{–}61\], \[62\], in which DM could be a mediated field in the neutrino loop.

As for the DM sector, X-ray line signal at 3.55 keV from the analysis of XMM-Newton X-ray observatory data of various galaxy clusters and Andromeda galaxy \[63\text{,}64\] can be easily understood by decaying scenario, in which the DM mass be 7.1 keV and mixing angle between DM and the active neutrinos be $\sin^2 2\theta \approx 10^{-10}$. Due to these simple implications, many works have been studied \[61\text{,}65\text{–}109\].

In our paper, we propose a two loop induced radiative neutrino model with a global $U(1)$ symmetry, in which such a small mixing between DM and neutrinos can be generated at one-loop level. Observed relic density can be thermally obtained by the annihilation process with Goldstone boson (GB) final state that is the consequence of the global $U(1)$ symmetry.

This paper is organized as follows. In Sec. II, we show our model building including Higgs potential, neutrino masses. In Sec. III, we analyze DM properties including relic density and X-ray line. We conclude in Sec. VI.

II. MODEL SETUP

We discuss a two-loop induced radiative neutrino model. The particle contents and their charges are shown in Tab. II. We add three gauge singlet Majorana fermions N_R, two singly-charged singlet scalars (χ^+_1, χ^+_2), and a neutral singlet scalar φ to the SM. We assume
that only the SM-like Higgs Φ and φ have vacuum expectation values (VEVs), which are symbolized by v and v' respectively. We also introduce a global $U(1)$ symmetry, under which $x \neq 0$ is an arbitrary number of the charge of $U(1)$ symmetry, and their assignments can realize our neutrino model at two loop level.

The relevant Lagrangian under these assignments are given by

$$\mathcal{L}_Y \simeq y_L L e_R + f_{ij} L_i^c \cdot L_j \chi_1^+ + g_{ij} \tilde{N}_R \epsilon^c_{Rj} \chi_2^- + \frac{1}{2} y_N \varphi \tilde{N}_R^c N_R + \lambda_0 \varphi^2 \chi_1^+ \chi_2^- + \text{h.c.}, \quad (I.1)$$

where the first term of \mathcal{L}_Y can generates the SM charged-lepton masses, and we assume λ_0 to be real. The Majorana mass ($M_N \equiv y_N v'/\sqrt{2}$) can be generated after the spontaneous breaking of φ. The scalar fields can be parameterized as

$$\Phi = \left[\begin{array}{c} w^+ \\ v + \phi + iz \end{array} \right], \quad \varphi = \frac{v' + \sigma}{\sqrt{2}} e^{i G/v'}, \quad (I.2)$$

where $v \simeq 246$ GeV is the VEV of the Higgs doublet, and w^\pm and z are respectively (non-physical) GB which are absorbed by the longitudinal component of W and Z boson. Since the CP even bosons (ϕ, σ) and singly-charged bosons (χ_1^+, χ_2^+) mix each other through the term $|\Phi|^2 |\varphi|^2$ and $\varphi^2 \chi_1^+ \chi_2^-$ respectively, each of the resulting mass eigenstate and mixing matrix is reparametrized as [60]

$$\left[\begin{array}{c} \sigma \\ \phi \end{array} \right] \equiv V^\dagger \left[\begin{array}{c} h_1 \\ h_2 \end{array} \right], \quad \left[\begin{array}{c} \chi_1^+ \\ \chi_2^- \end{array} \right] \equiv O^\dagger \left[\begin{array}{c} h_1^+ \\ h_2^+ \end{array} \right], \quad (I.3)$$

where h_2 is the SM-like Higgs, h_1 is an additional CP-even Higgs mass eigenstate, (h_1^+, h_2^+) is the singly charged boson mass eigenstate, and each of O and V is 2×2 unitary mixing matrix.

Constraints for the charged bosons: The vacuum stability should be satisfied for the pure quartic couplings of $\chi_{1,2}^+$. This condition up to the one-loop level can be given as

$$\lambda_a \simeq \lambda_{ha}^0 - \frac{3}{2(4\pi)^2} (v' X_{ba} + v Y_{ba})^4 \left[\frac{(m_{h_a}^2 + m_{h_b}^2) \ln \left[\frac{m_{h_a}^2}{m_{h_b}^2} \right]}{(m_{h_a}^2 - m_{h_b}^2)^3} \right]$$

$$+ \sum_{a,i,j,k,l} \frac{4 M_{N_j} M_{N_i}}{(4\pi)^2} \left(g_{k,i} a_a^i a_a^{j,l} a_{a}^l \right) \int \frac{da db dc dd \delta(a + b + c + d - 1)}{a m_{\ell_k}^2 + b m_{\ell_k}^2 + c M_{N_i}^2 + d M_{N_j}^2} \gtrsim 0, \quad (I.4)$$

$$\lambda_{ha} \equiv \lambda_{\chi_1} |O_{1a}|^4 + \lambda_{\chi_2} |O_{2a}|^4, \quad X_{ba} \equiv \frac{1}{2} V_{1b}^\dagger (\lambda_{\varphi \chi_1} |O_{1a}|^2 + \lambda_{\varphi \chi_2} |O_{2a}|^2), \quad (I.5)$$

$$Y_{ba} \equiv \frac{1}{2} V_{2b}^\dagger (\lambda_{\Phi \chi_1} |O_{1a}|^2 + \lambda_{\Phi \chi_2} |O_{2a}|^2), \quad (I.6)$$

where the trivial quartic coupling $\lambda_{h_1h_2}$ is defined to be the coefficient of $|h_1|^2|h_2|^2$. Here there exist two contributions; boson mediated one and fermion mediated one.

A. Neutrino mass matrix

At first we redefine some terms in Lagrangian that can be replaced by the mass eigenstate as

$$\mathcal{L}_Y \sim f_{ij}(O^1)_{ja}L_L^c \cdot L_L h_a^- + g_{ij}(O^2)_{2a} N_R e_R c, h_a^- + \frac{y_N V_{1b}}{\sqrt{2}} h_b^0 N_R N_R + h.c.$$

$$\equiv f_{ij} L_L^c \cdot L_L h_a^- + g_{ij} N_R e_R c, h_a^- + \frac{y_N^b}{2} h_b^0 N_R N_R + h.c.,$$

where $f_{ij} \equiv f_{ij}(O^1)_{ja}$, $g_{ij} \equiv g_{ij}(O^2)_{2a}$, and $y_N V_{1b}/\sqrt{2} \equiv y_N^b$.

The dominant active neutrino mass matrix m_ν is then given at two-loop level by

$$(m_\nu)_{ij} = -(m_D)_{ik} M_N^{-1} (m_D)^T_{kj},$$

$$(m_D)_{ik} = \frac{1}{(4\pi)^2} \sum_a \sum_{j=1}^{1-3} f_{ij}^a m_\ell_j g_{kj}^a \frac{\ln \epsilon_{aj}}{1 - \epsilon_{aj}},$$

where $\epsilon_{aj} \equiv (m_\ell_j/m_{h_a^+})^2$, M_N is diagonal, and $m_\ell = (m_e, m_\mu, m_\tau)$ is the charged-lepton mass that is also diagonal without loss of the generality.

Notice here another diagram with Zee-Babu like diagram can be tiny enough, since the maximum mass scale of the right-handed neutrino N_R is expected to be $\mathcal{O}(100)$ MeV that comes from the analysis of X-ray DM as can be seen later. This formula can be found in the Appendix.

The observed mixing matrix; PMNS(Pontecorvo-Maki-Nakagawa-Sakata) matrix (U_{PMNS}) [110], can be realized by introducing the Casas-Ibarra parametrization [111] 2. In our case, the Dirac type Yukawa parameters can be given by

1 The perturbativity and the avoiding the global minimum can be straightforwardly satisfied if each of quartic coupling does not exceeds π and each of the sum of mass terms and the couplings is positive.

2 Even if the matrix is rank 2, this parametrization is adaptable [112].
To obtain the observed neutrino mass (≈ 0.1 eV), $\sum_a f^a g^{aT}$ can be estimated as $O(10^{-5})$, fixing $m_{h^+} \approx 100$ GeV and $M_N \approx 0.1$ GeV.

B. Lepton Flavor Violations (LFVs)

1. $\ell_i^- \rightarrow \ell_j^+ \ell_k^- \ell_l^-$ process

 The constraints from the $\ell_i^- \rightarrow \ell_j^+ \ell_k^- \ell_l^-$ process can be given at one-loop level through g term as

 \[
 \frac{4}{(4\pi)^2} \sum_{\alpha, \beta} \sum_{a, b}^{1-3} g_{a}^{g} g_{b}^{g} \left(g_{a}^{g} g_{b}^{g} - g_{a}^{g} g_{b}^{g} \right) \ln \left(\frac{m_{h^+}^{2}}{m_{h^+}^{0}} \right) \lesssim R(i^- \rightarrow j^+ k^- l^-) \left(\frac{m_{h^+}}{\text{TeV}} \right)^2, \quad (\text{II.12})
 \]

 where each of $R(i^- \rightarrow j^+ k^- l^-)$ is given by $R(\mu^- \rightarrow e^+ e^- e^-) \approx 2.3 \times 10^{-5}$, $R(\tau^- \rightarrow e^+ e^- e^-) \approx 0.009$, $R(\tau^- \rightarrow e^+ e^- \mu^-) \approx 0.005$, $R(\tau^- \rightarrow e^+ \mu^- \mu^-) \approx 0.007$, $R(\tau^- \rightarrow \mu^+ e^- e^-) \approx 0.007$, $R(\tau^- \rightarrow \mu^+ e^- \mu^-) \approx 0.007$, and $R(\tau^- \rightarrow \mu^+ \mu^- \mu^-) \approx 0.008$ [113].

 Here notice that the left-hand side is exactly zero if $k = l$. Hence a process such as $\mu^- \rightarrow e^+ e^- e^-$ (that provides the most stringent constraint; $R(\mu \rightarrow e e e) = 2.3 \times 10^{-5}$) does not give any constraints. The other processes constrain $g \lesssim O(0.1)$, when we fix $m_{h^+} \approx 100$ GeV.
2. ℓ_i/ℓ_j universality

The constraint of the ℓ_i/ℓ_j universality is given as

$$\sum_{a}^{1,2} |f_{ik}^a|^2 - |f_{jk}^a|^2 < R(\ell_i/\ell_j) \left(\frac{m_{h^+_1}}{\text{TeV}} \right)^2,$$ \hspace{1cm} (II.13)

where $i \neq j \neq k$, and each of $R(\ell_i/\ell_j)$ is given by $R(\mu/e) \approx 0.024$, $R(\tau/\mu) \approx 0.035$, and $R(\tau/e) \approx 0.04 \[113\]$. The processes constrain $f \lesssim O(0.01)$, when we fix $m_{h^+} \approx 100 \text{ GeV}.$

3. $\ell_i \to \ell_j \gamma$ process

The constraint of the $\ell_i \to \ell_j \gamma$ process is given as

$$\sum_{a,b}^{1,2} \left(r_{ab}^2 |f_{jk}^a|^2 + 16 |d_{jk}^{b*}g_{ki}^{b*}|^2 \right) < R(\ell_i \to \ell_j \gamma) \left(\frac{m_{h^+_1}}{\text{TeV}} \right)^2,$$ \hspace{1cm} (II.14)

where $i \neq j \neq k$, $r_{ab} \equiv (m_{h^+_b}/m_{h^+_a})^2$, and $R(\ell_i \to \ell_j \gamma)$ is given by $R(\mu \to e\gamma) \approx 1.6 \times 10^{-6}$ (that is the most stringent constraint), $R(\tau \to e\gamma) \approx 0.52$, and $R(\tau \to \mu\gamma) \approx 0.7 \[113\]. Then it constrains $(f, g) \lesssim O(0.01)$, when we fix $m_{h^+} \approx 100 \text{ GeV}$ and $f \approx g$.

Considering all these processes, $(f, g) \lesssim O(0.01)$ is obtained. But this constraint is milder than the one of neutrino mass scale estimation.

III. DARK MATTER

We have a fermionic DM candidate $X \equiv N_{R_1}$, which is assumed to be the lightest particle of N_{R_i}. However since X decays into the SM particles ($\nu_L + \gamma$) at the one-loop level, heavier mass $\gtrsim O(1) \text{ GeV}$ cannot be allowed due to its too fast decay. Hence we focus on the explanation of the X-ray line at 3.55 keV. Then its mass $M_X \equiv M_{N_1}$ should be around 7.1 keV with small mixing θ between X and the active neutrinos; $\theta \approx 5 \times 10^{-6}$. The observed relic density can be thermally generated through the process of the GB final state due to the global $U(1)$ symmetry.

Relic density: Due to the global symmetry, we have the annihilation process with the GB final state; $2X \to 2G$. Then the relativistic cross section of X is given by

$$(\sigma v_{\text{rel}}) \approx \frac{M_X^4}{32 \pi \nu^2 (m_{h^+_1}^2 - 4M_X^2)^2} v_{\text{rel}}^2,$$ \hspace{1cm} (III.1)
FIG. 1: Allowed region between v' and m_{h_1} to satisfy the observed relic density $\Omega_X h^2 \approx 0.12$. It implies each of the allowed region can be 1.0×10^{-3} GeV $\lesssim m_{h_1} \lesssim 3.8 \times 10^{-3}$ GeV, and 5.0×10^{-3} GeV $\lesssim v' \lesssim 0.1$ GeV.

where we neglect the contribution of the SM Higgs h_2 and fix $|V_{11}|^4 \approx \mathcal{O}(1)$. To obtain the observed relic density $\Omega_X h^2 \approx 0.12$ [114], the cross section should be

$$(\sigma v)_{rel} \approx 2.6 \times 10^{-9} \text{ GeV}^{-2}.$$

We plot the allowed region in terms of v' and m_{h_1} in Fig. 1 in which each of the allowed region can be obtained by 1.0×10^{-3} GeV $\lesssim m_{h_1} \lesssim 3.8 \times 10^{-3}$ GeV, and 5.0×10^{-3} GeV $\lesssim v' \lesssim 0.1$ GeV. Since the right-handed neutrino masses are generated through v', the maximum mass value cannot exceed $\mathcal{O}(0.1)$ GeV. This is because the maximum value of M_{N_i} is set to be 0.1 GeV.

The mixing θ between X and the active neutrinos at one-loop level can be given by

$$\theta = \frac{(m_D)_{i1}}{M_X} \approx 5 \times 10^{-6} \rightarrow (m_D)_{i1} \approx 0.036 \text{ eV}.$$

Although the above Dirac mass cannot generate a typical neutrino mass scale, we find a solution due to one massless neutrino in our model.

IV. CONCLUSIONS

We have constructed a two-loop induced neutrino model with a global $U(1)$ symmetry at 0.1 GeV scale, in which various LFV processes do not conflict with the explanation of the
keV scale DM recently reported by XMN-Newton X-ray observatory using data of various galaxy clusters and Andromeda galaxy. To explain such a DM candidate, we have found the following allowed ranges on the analysis of the observed relic density: 1.0×10^{-3} GeV $\lesssim m_{h_1} \lesssim 3.8 \times 10^{-3}$ GeV, and 5.0×10^{-3} GeV $\lesssim \nu' \lesssim 0.1$ GeV.

Appendix

The Zee-Babu type neutrino mass formula can be given by

$$
(m_\nu)_{nm} = -\sum_{a,b} \sum_{j,k,l} f_{aj}^a m_{\ell_j} g_{kj}^b M_{N_k} g_{kl}^a m_{\ell_l} f_{bm}^b,
$$

$$
\times \int dx dy dz \delta(x + y + z - 1) \int dx' dy' dz' \frac{\delta(x' + y' + z' - 1)}{(y^2 - y)y' X_{h_1}^+ - (y X_{N_k} + z X_{h_1}^+)} z',
$$

(IV.1)

where $X_f \equiv (m_f/M)^2$, and $M \equiv \text{Max}(m_{h_1}^+, m_{h_b}^+, M_{N_k}) \approx \text{Max}(m_{h_1}^+, m_{h_b}^+)$. The lower bound of the singly-charged boson can be obtained by the LEP experiment; 80 GeV $\leq m_{h_1}$ [114]. When we fix the following scale in order to maximize the neutrino mass; $M \approx 80$ GeV, $M_{N} \approx 0.1$ GeV (that is expected to be the X-ray DM analysis), $(f^a g^b g^a f^b) \approx 10^{-9}$ that is required to generate the observed neutrino mass from the dominant contribution with $m_{\ell} \approx m_\tau = 1.777$ GeV. As a result, the the observed neutrino mass scale can be obtained at around $O(10^{-9})$ eV that can be negligible.

Acknowledgments:

Author thanks to Prof. Seungwon Baek, Dr. Kenji Nishiwaki, Dr. Yuta Orikasa, Dr. Takashi Toma, and Dr. Kei Yagyu for fruitful discussions.

[1] E. Ma, Phys. Rev. D 73, 077301 (2006) [hep-ph/0601225].

[2] M. Aoki, J. Kubo and H. Takano, arXiv:1302.3936 [hep-ph].

[3] B. Dasgupta, E. Ma and K. Tsumura, arXiv:1308.4138 [hep-ph].

[4] L. M. Krauss, S. Nasri and M. Trodden, Phys. Rev. D 67, 085002 (2003) arXiv:hep-ph/0210389.

3 The loop function is $O(1)$ at most.
[5] M. Aoki, S. Kanemura and O. Seto, Phys. Rev. Lett. 102, 051805 (2009) [arXiv:0807.0361].

[6] D. Schmidt, T. Schwetz and T. Toma, Phys. Rev. D 85, 073009 (2012) [arXiv:1201.0906 [hep-ph]].

[7] R. Bouchand and A. Merle, [arXiv:1205.0008] [hep-ph].

[8] M. Aoki, J. Kubo, T. Okawa and H. Takano, Phys. Lett. B 707, 107 (2012) [arXiv:1110.5403 [hep-ph]].

[9] Y. Farzan and E. Ma, [arXiv:1204.4890] [hep-ph].

[10] F. Bonnet, M. Hirsch, T. Ota and W. Winter, [arXiv:1204.5862] [hep-ph].

[11] K. Kumericki, I. Picek and B. Radovcic, [arXiv:1204.6597] [hep-ph].

[12] K. Kumericki, I. Picek and B. Radovcic, [arXiv:1204.6599] [hep-ph].

[13] E. Ma, [arXiv:1206.1812] [hep-ph].

[14] G. Gil, P. Chankowski and M. Krawczyk, [arXiv:1207.0084] [hep-ph].

[15] H. Okada and T. Toma, Phys. Rev. D 86, 033011 (2012) [arXiv:1207.0864] [hep-ph].

[16] D. Hehn and A. Ibarra, Phys. Lett. B 718, 988 (2013) [arXiv:1208.3162] [hep-ph].

[17] P. S. B. Dev and A. Pilaftsis, Phys. Rev. D 86, 113001 (2012) [arXiv:1209.4051] [hep-ph].

[18] Y. Kajiyama, H. Okada and T. Toma, [arXiv:1210.2305] [hep-ph].

[19] H. Okada, [arXiv:1212.0492] [hep-ph].

[20] M. Aoki, S. Kanemura, T. Shindou and K. Yagyu, JHEP 1007, 084 (2010) [Erratum-ibid. 1011, 049 (2010)] [arXiv:1005.5159] [hep-ph].

[21] S. Kanemura, O. Seto and T. Shimomura, Phys. Rev. D 84, 016004 (2011) [arXiv:1101.5713 [hep-ph]].

[22] M. Lindner, D. Schmidt and T. Schwetz, Phys. Lett. B 705, 324 (2011) [arXiv:1105.4626 [hep-ph]].

[23] S. Kanemura, T. Nabeshima and H. Sugiyama, Phys. Rev. D 85, 033004 (2012) [arXiv:1111.0599] [hep-ph].

[24] S. Kanemura and H. Sugiyama, Phys. Rev. D 86, 073006 (2012) [arXiv:1202.5231] [hep-ph].

[25] P. -H. Gu and U. Sarkar, Phys. Rev. D 77, 105031 (2008) [arXiv:0712.2933] [hep-ph].

[26] P. -H. Gu and U. Sarkar, Phys. Rev. D 78, 073012 (2008) [arXiv:0807.0270] [hep-ph].

[27] M. Gustafsson, J. M. No and M. A. Rivera, Phys. Rev. Lett. 110, 211802 (2013) [arXiv:1212.4806] [hep-ph].

[28] Y. Kajiyama, H. Okada and K. Yagyu, Nucl. Phys. B 874, 198 (2013) [arXiv:1303.3463].
[29] Y. Kajiyama, H. Okada and T. Toma, Phys. Rev. D 88, 015029 (2013) [arXiv:1303.7356].
[30] A. E. Carcamo Hernandez, I. d. M. Varzielas, S. G. Kovalenko, H. P?ys and I. Schmidt, Phys. Rev. D 88, 076014 (2013) [arXiv:1307.6499] [hep-ph].
[31] A. E. Carcamo Hernandez, R Martinez and F. Ochoa, [arXiv:1309.6567] [hep-ph].
[32] K. L. McDonald, JHEP 1311, 131 (2013) [arXiv:1310.0609] [hep-ph].
[33] H. Okada and K. Yagyu, [arXiv:1311.4360] [hep-ph].
[34] S. Baek, H. Okada and T. Toma, [arXiv:1312.3761] [hep-ph].
[35] E. Ma, [arXiv:1401.3284] [hep-ph].
[36] S. Baek, H. Okada and T. Toma, [arXiv:1401.6921] [hep-ph].
[37] A. Ahriche, S. Nasri and R. Soualah, [arXiv:1403.5694] [hep-ph].
[38] S. Kanemura, T. Nabeshima and H. Sugiyama, Phys. Lett. B 703, 66 (2011) [arXiv:1106.2480] [hep-ph].
[39] S. Kanemura, T. Matsui and H. Sugiyama, Higgs Doublet Model," Phys. Lett. B 727, 151 (2013) [arXiv:1305.4521] [hep-ph].
[40] H. Okada and K. Yagyu, [arXiv:1405.2368] [hep-ph].
[41] S. Kanemura, T. Matsui and H. Sugiyama, [arXiv:1405.1935] [hep-ph].
[42] C. -S. Chen, K. L. McDonald and S. Nasri, [arXiv:1404.6033] [hep-ph].
[43] A. Ahriche, K. L. McDonald and S. Nasri, [arXiv:1404.5917] [hep-ph].
[44] H. Okada, [arXiv:1404.0280] [hep-ph].
[45] A. Ahriche, C. -S. Chen, K. L. McDonald and S. Nasri, [arXiv:1404.2696] [hep-ph].
[46] M. Aoki and T. Toma, [arXiv:1405.5870] [hep-ph].
[47] M. Lindner, S. Schmidt and J. Smirnov, [arXiv:1405.6204] [hep-ph].
[48] Y. H. Ahn and H. Okada, Phys. Rev. D 85, 073010 (2012) [arXiv:1201.4436] [hep-ph].
[49] E. Ma, A. Natale and A. Rashed, [arXiv:1206.1570] [hep-ph].
[50] Y. Kajiyama, H. Okada and K. Yagyu, JHEP 10, 196 (2013) [arXiv:1307.0480] [hep-ph].
[51] Y. Kajiyama, H. Okada and K. Yagyu, arXiv:1309.6234 [hep-ph].
[52] E. Ma, [arXiv:1311.3213] [hep-ph].
[53] E. Ma and A. Natale, [arXiv:1403.6772] [hep-ph].
[54] S. Kanemura, M. Kikuchi and K. Yagyu, [arXiv:1502.07716] [hep-ph].
[55] S. Bahrami and M. Frank, [arXiv:1502.02680] [hep-ph].
[56] S. Baek, H. Okada and K. Yagyu, arXiv:1501.01530 [hep-ph].
[57] H. Hatanaka, K. Nishiwaki, H. Okada and Y. Orikasa, arXiv:1412.8664 [hep-ph].
[58] H. Okada and Y. Orikasa, arXiv:1412.3616 [hep-ph].
[59] D. Aristizabal Sierra, A. Degee, L. Dorame and M. Hirsch, JHEP 1503, 040 (2015) arXiv:1411.7038 [hep-ph].
[60] H. Okada, T. Toma and K. Yagyu, Phys. Rev. D 90, no. 9, 095005 (2014) arXiv:1408.0961 [hep-ph].
[61] Hiroshi Okada, Yuta Orikasa, Phys. Rev. D90, 075023 (2014), arXiv:1407.2543 [hep-ph].
[62] J. March-Russell, C. McCabe and M. McCullough, JHEP 1003, 108 (2010) arXiv:0911.4489 [hep-ph].
[63] E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein and S. W. Randall, arXiv:1402.2301 [astro-ph.CO].
[64] A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, arXiv:1402.4119 [astro-ph.CO].
[65] D. P. Finkbeiner and N. Weiner, arXiv:1402.6671 [hep-ph].
[66] J. Jaeckel, J. Redondo and A. Ringwald, arXiv:1402.7335 [hep-ph].
[67] H. M. Lee, S. C. Park and W. -I. Park, arXiv:1403.0865 [astro-ph.CO].
[68] K. Kong, J. -C. Park and S. C. Park, arXiv:1403.1536 [hep-ph].
[69] M. Frandsen, F. Sannino, I. M. Shoemaker and O. Svendsen, arXiv:1403.1570 [hep-ph].
[70] S. Baek and H. Okada, arXiv:1403.1710 [hep-ph].
[71] J. M. Cline, Y. Farzan, Z. Liu, G. D. Moore and W. Xue, arXiv:1404.3729 [hep-ph].
[72] K. P. Modak, arXiv:1404.3676 [hep-ph].
[73] K. S. Babu and R. N. Mohapatra, arXiv:1404.2220 [hep-ph].
[74] F. S. Queiroz and K. Sinha, arXiv:1404.1400 [hep-ph].
[75] S. V. Demidov and D. S. Gorbunov, arXiv:1404.1339 [hep-ph].
[76] P. Ko, Z. kang, T. Li and Y. Liu, arXiv:1403.7742 [hep-ph].
[77] R. Allahverdi, B. Dutta and Y. Gao, arXiv:1403.5717 [hep-ph].
[78] C. Kolda and J. Unwin, arXiv:1403.5580 [hep-ph].
[79] M. Cicoli, J. P. Conlon, M. C. D. Marsh and M. Rummel, arXiv:1403.2370 [hep-ph].
[80] E. Dudas, L. Heurtier and Y. Mambrini, arXiv:1404.1927 [hep-ph].
[81] K. -Y. Choi and O. Seto, arXiv:1403.1782 [hep-ph].
[82] H. Okada and T. Toma, arXiv:1404.4795 [hep-ph].
[83] N. Chen, Z. Liu and P. Nath, arXiv:1406.0687 [hep-ph].
[84] J. P. Conlon and F. V. Day, arXiv:1404.7741 [hep-ph].
[85] D. J. Robinson and Y. Tsai, arXiv:1404.7118 [hep-ph].
[86] S. P. Liew, JCAP 1405, 044 (2014) arXiv:1403.6621 [hep-ph], arXiv:1403.6621.
[87] S. Chakraborty, D. K. Ghosh and S. Roy, arXiv:1405.6967 [hep-ph].
[88] T. Tsuyuki, arXiv:1403.5053 [hep-ph].
[89] B. Dutta, I. Gogoladze, R. Khalid and Q. Shafi, arXiv:1407.0863 [hep-ph].
[90] C. -W. Chiang and T. Yamada, arXiv:1407.0460 [hep-ph].
[91] C. -Q. Geng, D. Huang and L. -H. Tsai, arXiv:1406.6481 [hep-ph].
[92] H. Ishida and H. Okada, arXiv:1406.5808 [hep-ph].
[93] S. Baek, P. Ko and W. -I. Park, arXiv:1405.3730 [hep-ph].
[94] P. Agrawal, Z. Chacko, C. Kilic and C. B. Verhaaren, arXiv:1503.03057 [hep-ph].
[95] H. M. Lee, C. B. Park and M. Park, arXiv:1501.05479 [hep-ph].
[96] G. Arcadi, L. Covi and F. Dradi, arXiv:1412.6351 [hep-ph].
[97] S. K. Kang and A. Patra, arXiv:1412.4899 [hep-ph].
[98] S. Patra, N. Sahoo and N. Sahu, arXiv:1412.4253 [hep-ph].
[99] A. Harada, A. Kamada and N. Yoshida, arXiv:1412.1592 [astro-ph.CO].
[100] K. Cheung, W. C. Huang and Y. L. S. Tsai, arXiv:1411.2619 [hep-ph].
[101] D. Iakubovskyi, arXiv:1410.2852 [astro-ph.HE].
[102] S. Baek, arXiv:1410.1992 [hep-ph].
[103] A. Adulpravitchai and M. A. Schmidt, JHEP 1501, 006 (2015) arXiv:1409.4330 [hep-ph].
[104] S. Patra and P. Pritimita, arXiv:1409.3656 [hep-ph].
[105] G. Faisel, S. Y. Ho and J. Tandean, Phys. Lett. B 738, 380 (2014) arXiv:1408.5887 [hep-ph].
[106] Y. Farzan and A. R. Akbarieh, JCAP 1411, no. 11, 015 (2014) arXiv:1408.2950 [hep-ph].
[107] T. E. Jeltema and S. Profumo, arXiv:1408.1699 [astro-ph.HE].
[108] J. M. Cline and A. R. Frey, JCAP 1410, 013 (2014) arXiv:1408.0233 [hep-ph].
[109] N. Haba, H. Ishida and R. Takahashi, Phys. Lett. B 743, 35 (2015) arXiv:1407.6827 [hep-ph].
[110] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
[111] J. A. Casas and A. Ibarra, Nucl. Phys. B 618, 171 (2001) hep-ph/0103065.
[112] W. l. Guo, Z. z. Xing and S. Zhou, Int. J. Mod. Phys. E 16, 1 (2007) hep-ph/0612033.
[113] J. Herrero-Garcia, M. Nebot, N. Rius and A. Santamaria, Nucl. Phys. B 885, 542 (2014) arXiv:1402.4491 [hep-ph].

[114] K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014).