SUPPLEMENTARY MATERIAL

The genus *Artemisia* L. in the Northern region of Saudi Arabia: Essential oil variability and antibacterial activities.

Arbi Guetata,b, Faraj A. Al-Ghamdia,c Ahmed K. Osmana,d

(a) Northern Border University, College of Sciences, Department of Biology, Arar Saudi Arabia.
(b) University of Carthage, National Institute of Applied Sciences and Technology, Laboratory of Plant Biotechnology B.P. 676, 1080 Tunis Cedex, Tunisia.
(c) King Abdulaziz University, Faculty of Science, Department of Biology, Jeddah, Saudi Arabia.
(d) South Valley University Faculty of Science, Qena, Botany Department, Egypt.

Abstract

Four species of the genus *Artemisia* L. (*A. monosperma*, *A. scoparia*, *A. judaica* and *A. sieberi*) growing in the Northern region of Saudi Arabia were investigated with respect to their volatile oil contents. The yield of oil varied between 0.30% and 0.41%, % (w/w). *A. monosperma* showed the highest number of compounds with 30 components representing 93.78% of the oil composition. However, *A. judaica* showed the lowest number of compounds with only 16 components representing 87.47% of the essential oil. *A. scoparia* and *A. sieberi* are both composed of 17 components, representing 97.14% and 94.2% of the total oil composition. *A. sieberi* and *A. judaica* were dominated by spathulenol (30.42% and 28.41% respectively). For *A. monosperma*, butanoic acid (17.87%) was a major component. However, *A. scoparia* was a chemotype of acenaphthene (83.23%). Essential oil of studied species showed high antibacterial activities against common human pathogens.

Key words: Chemical diversity, *Artemisia* L., Saudi Arabia, Spathulenol, Butanoic acid, Acenaphthene, antibacterial activities.
Appendix S1.

Material and methods

Plant material

Artemisia specimens were collected during the full bloom stage (between May and June 2015) from wild plants growing in Wadi Arar (Wadi of the Anizah tribe: 30° 55' 13'' N, 41° 0' 3''E) in the Northern region of Saudi Arabia. The specimens were identified in the department of Biology, College of Sciences, Northern Border University. Voucher specimens were deposited (AS823, AS824, AS825, AS826) in the herbarium of the college of Science.

Isolation of essential oil

The air-dried aerial parts (100 g) were subjected to hydro-distillation during four hours using a Clevenger apparatus. The oil obtained, was dried over anhydrous sodium sulfate yielding 0.3 to 0.41 % (w/w) on the dry weight basis, and stored in dark vial at 4°C before analysis.

Gas chromatography

The gas chromatography (GC) analyses of the oil samples were carried out using Agilent (HP7890 GC) gas chromatograph equipped with a Flame Ionization Detector (FID) and a HP-5MS fused silica column (30 m x 0.32 mm, 0.25 µm film thickness). The sample was injected directly into the column and Nitrogen was used as a carrier gas during analysis. The injector and detector temperature were maintained at 210°C and 230°C, respectively. The column oven temperature was programmed from 60°C to 220°C with an increase in rate of 3°C/min. The injection volume was 0.2 µL.

Gas chromatography-mass spectrometry

Analyses of the oils were performed on Agilent mass spectrometer (Model HP 5975 C) coupled to an Agilent gas chromatograph with a HP-5MS capillary column (30 mx250 µm coated with 5% phenyl methyl silicone, 95% dimethylpolysiloxane, and 0.25 µm film thickness). The sample was injected directly in split less mode. Helium was used as the carrier gas (flow rate 0.8 ml/min). The oven temperature was programmed to rise from 60 to 220°C at a rate of 4°C/min; the transfer line temperature was 230°C.

GC (FID) Analyses

Quantitative analyses of the essential oils was carried out using an Agilent 6890 N gas chromatograph equipped with a flame ionization detector (FID) and an electronic pressure control (EPC) injector. Nonpolar HP-5 MS column (30 m x 250 µm, 0.25 µm film phenyl methyl siloxane) was used. The carrier gas was helium with a flow rate of 1mL/min. The split ratio was 200:1. All analyses were performed using the following temperature ramp: oven kept isothermally at 50 °C for 2 min, increased from 50 to 280°C at the rate of 5°C/min and then kept at 280 °C for 3 min. Injector and detector temperatures were held at 270 and 320°C, respectively.

Antimicrobial activities

Essential oils from the 4 studied species were tested against a panel of microorganisms, including Gram-positive and Gram-negative bacteria. Microorganisms were provided from the culture collection of the Laboratory of Natural Substances, at the National Institute of Research and Physico-Chemical Analyses.

The antimicrobial activities of essential oil were tested against 5 bacterial strains, including two Gram-negative bacteria; Escherichia coli (strain ATCC 8739) and Salmonella typhimurium (strain ATCC 14028) and three Gram-positive bacteria; staphylococcus aureus (strain ATCC 6538), Streptococcus agalactiae; and Enterococcus fecacium (strain ATCC 19434).

The antimicrobial activity of essential oils was assessed by the paper-disk diffusion method (NCCLS, 1997). Briefly, a suspension of the tested microorganisms was spread on the solid Mueller–Hinton media plates. The essential oils were dissolved in dimethylsulfoxide (DMSO) (1:1; v: v). 15µL of each sample were deposited per filter discs individually and incubated with tested microorganisms. Disc with DMSO alone were used as a negative control. Ampicillin (USP grade, BIOMATIK, Germany) (15µg/disc) was used as a positive reference to compare the sensitivity of strain toward this antibiotic. The Petri dishes were kept at 4°C/2h. Then, these plates were incubated at 37°C. Antimicrobial activities were evaluated by measuring the diameter of the growth inhibition zones in mm (including disc diameter of 6mm) for the test organisms. When the inhibitory zone diameter is lower or equal to 6mm, the sample tested was considered as not active.

Identification of components

The identification of constituents was performed on the basis of retention index (RI), relative to the homologous series of n-alkanes, C8-C24 under same analytical conditions and by matching their recorded mass spectra with the MS library (NIST/Pfleger/Wiley) and available literature (Adams, 2007).

References

Adams RP. 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA.
Bakkali F, Averbeck S, Averbeck D, Idaomar M. 2008. Biological effects of essential oils – a review. Food Chem. Toxicol. 46:446-475.

Bauer K, Garbe D, Surburg H. 2001. Common Fragrance and Flavor Materials: Preparation, Properties and Uses, 2nd edn. Wiley-VCH, Weinheim.

Ensieh G, Yadollah Y, Nader B, Fatemeh S. 2007. Comparative analysis of the oil and supercritical CO2 extract of Artemisia sieberi. J Food Eng. 79:306–311.

Günter Berger R. 2007. Flavors and Fragrances Chemistry, Bioprocessing and Sustainability. Springer p. 649.

Janačković P, Novaković J, Soković Ma, Vujisić L, Giweli AA, Dajić-Stevanović Z, Marin PD. 2015. Composition and antimicrobial activity of essential oils of Artemisia judaica, A. herba-alba and A. arborescens from Libya. Arch Biol Sci. 67:455-466.

Joshi, RK, Padalia RC, Mathela CS. 2010. Phenyl alkyynes rich essential oil of Artemisia scoparia. J Food Eng. 79:306–311.

Kazemi M, Dakhili M, Rustaiyan A, Larijani K, Ahmadi MA, Mozaffarian V. 2009. Chemical composition and antimicrobial activity of Artemisia tschernieviana Besser from Iran. Pharmacog Res. 1:120-124.

Khan M, Mousa AA, Syamasundar KV, Alkhathlan. 2012. HZ. Determination of chemical constituents of leaf and stem essential oils of Artemisia monosperma from central Saudi Arabia. Nat Prod Comm. 7:1079-1082.

Khosravi AR, Shokri H, Kermani S, Dakhili M, Madani M, Parsa S. 2011. Antifungal properties of Artemisia sieberi and Origanum vulgare essential oils against Candida glabrata isolates obtained from patients with vulvovaginal candidiasis. J Mycol Méd. 21:93-99.

National Committee for Clinical Laboratory Standards. 1997. Performance standards for antimicrobial disk susceptibility tests. Approved standard M2-A6. (National Committee for Clinical Laboratory Standards, Wayne, Pa).

Negahban M, Moharramipour S, Sefidkon F. 2006. Chemical composition and insecticidal activity of Artemisia scoparia essential oil against three coleopteran stored-product Insects. J Asia Pac Entomol. 9:381-388.

Negahban M, Moharramipour S, Sefidkon F. 2007. Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J Stored Prod Res. 43:123-128.

Putievsky, E., Ravid, U., Dudai, N., Katzir, I., Carmeli, D., & Eshel, A. (1992). Variations in the volatile oil Artemisia judaica L. Chemotypes related to phonological and environmental factors. Flavour Frag J. 7 (5): 253–257.

Sallam SM, Abdelgaleilo SA, Bueno IC, Nasser ME, Araujo RL, Abdalla AL. 2011. Effect of some essential oil on in vitro methane emission. Arch Anim Nutr. 65:203-214.

Samaneh ET, Tayebeh R, Hassan E, Vahid N. 2010. Composition of essential oils in subterranean organs of three species of Valeriana L. Nat Prod Res. 43:123-128.

Sharopov, F.S.; Setzer, W.N. The essential oil of Artemisia scoparia from Tajikistan is dominated by phenylidacetylenes. Nat Prod Comm. 6: 119–122.

Sobahi TR et Abdel-Mogib M. 2001. GC/MS Analysis of the volatile constituents of Artemisia monosperma. Saudi J Biol Sci. 13: 125-129.

Xie Y, Wang J, Yang F, Lei C. 2011. Comparative analysis of essential oil components of two Cryptomeria species from China. Ind Crop Prod. 34:1226-1230.

Zhu L, Dai JL, Yang L, Qiu J. 2013. In vitro ovicidal and larvicidal activity of the essential oil of Artemisia lancea against Haemonchus contortus (Strongylida). Vet Parasitol. 195:112-117.
Table 1: Chemical composition of 4 species of genus *Artemisia* L. essential oil from Northern region of Saudi Arabia.

Compounds	RI	A. monosperma	A. scoparia	A. judaica	A. seiberi
Butanoic acid	763	**17.87**	6.14	---	---
β-pinene	938	1.1	0.37	---	---
Benzene, 1,2,3-trimethyl-	985	---	2.5	0.85	
Benzene, 1-methyl-3-(1-methylethyl)	1010	---	---	0.85	
Benzene, 1,3,5-trimethyl	1013	---	---	---	0.92
β-linalool	1101	2.25	---	5.08	0.31
3,7-Dimethyl-6-octen-1-ol	1153	0.8	---	---	---
trans-Geraniol	1235	---	0.35	---	---
2-Cyclohexen-1-one, 3-methyl-6-(1-methylethyl)	1241	0.48	1.33	5.08	5.21
2,6-Octadien-1-ol, 3,7-dimethyl	1254	1.08	---	---	---
α-citral	1265	1.12	---	---	---
Benzene, 2,4-pentadiynyl	1279	---	0.61	1.39	---
Thymol	1293	---	---	---	0.64
Berkheyaradulen	1377	1.57	0.47	---	---
Methyl cinnamate	1379	---	---	0.5	---
Geranayl acetate	1382	6.2	---	---	---
1-Phenyl 1-(1-propynyl) cyclopropan	1384	---	0.38	---	---
Isohomogenol	1401	3.27	---	---	---
Compounds	RI	A. monosperma	A. scoparia	A. judaica	A. seiberi
--	-----	---------------	-------------	------------	------------
19 Naphthalene, 1,2,4a,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)	1405	5.8	0.23	1.33	---
20 Benzene, 1,2-dimethoxy-4-(1-propenyl)	1408	4.64	0.73	---	---
21 Longifolene	1416	1.66	0.22	---	---
22 Caryophyllene	1417	2.34	1.6	---	---
23 Isolongifolene	1419	---	---	---	0.38
24 Acenaphthene	1425	2.38	83.23	9.18	11.34
25 γ- Elemene	1433	0.64	---	0.3	---
26 Davana ether	1450	---	---	4.11	5.84
27 α-Caryophyllene	1462	0.66	0.2	---	---
28 Clovene	1465	6.29	---	---	---
29 Aristolene	1472	5.8	---	---	---
30 γ-curcumene	1483	4.76	---	---	---
31 Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl	1486	5.75	0.64	---	---
32 2-Isopropenyl-1-6-isopropyl-3-methyl-3-vinyl cyclohexanone	1489	2.99	---	---	---
33 Methyl trans-Isoeugenol	1492	3.27	---	---	---
34 γ-Selinene	1494	---	0.1	---	---
Compounds	RI	A. monosperma	A. scoparia	A. judaica	A. seiberi
-----------------------------------	-----	---------------	-------------	------------	------------
35 7H-Purine, 2-methoxy-7-methyl-6-(2-propenyl)oxy)	1505	0.65	---	---	---
36 12-Norcyrenone-B	1558	---	---	---	0.18
37 1,3-Cyclopentadiene, 5,5-dimethyl-1-ethyl-	1567	---	---	0.91	0.94
38 Spathuleneol	1578	4.69	---	28.42	30.41
39 Isospathuleneol	1628	---	0.23	1.27	2.76
40 Murolol	1644	1.72	---	---	---
41 Dihydroxy-isocalamendiol	1645	1.67	---	---	---
42 α-cadinol	1649	0.82	---	---	---
43 Isoelemicin	1650	---	0.31	---	---
44 Apol	1677	---	---	0.9	0.76
45 α-bisabolol	1685	0.62	---	---	---
46 α-Bisabolene epoxide	1814	---	---	0.49	0.49
47 Cyrenene 4	1832	---	---	1.05	---
48 Isocalamendiol	1853	0.89	---	---	---
49 Longifolraldehyde	1876	---	---	0.27	---
50 2-Propenoic acid, 3-phenyl-ethyl ester	2149	---	---	22.46	20.71
Table 1 (continued)

	A. monosperma	A. scoparia	A. judaica	A. seiberi
Monoterpenoids (hydrocarbons, Aldehydes, Alcohols,…)	6.83	2.05	33.12	26.87
Sesquiterpenoids (hydrocarbons)	3.95	83.7	9.18	22.68
Oxygenated Sesquiterpenoids	43.62	2.99	34.59	40.15
Phenylpropanoids	7.91	1.04	0	0
Other compounds	31.47	7.36	10.58	4.5
Total	93.78	97.14	87.47	94.2

* Compounds are listed in order of their elution from HP-5MS capillary column

* Linear retention index on HP-5MS capillary column, experimentally determined using homologous series of C5- C24 alkanes.
Appendix S3.

Table 2. Main volatile constituents of the essential oils from *Artemisia* ssp. reported in the literature.

Taxa	Parts and yields	Origin	Compounds	Reference
A. monosperma	Stems	China	1,8-cineole (34.56%) and camphor (16.65%)	Zhu et al., 2013
			β-pinene (50.3%), α-terpinolene (10.0%), limonene (5.4%)	Khan et al., 2012
A. monosperma	Leaves and stems	Saudi Arabia	β-Citronellyl propanoate (21.5%), Geraniol (12.12%), γ-cadinene (15.8%)	Sobahi et Abdel-Mogib 2001
A. scoparia	Aerial parts	Saudi Arabia	β-pinene (21.3)	Sharopov and Setzer al., 2011
		Iran	α-thujone (81.7%), β-thujone (14.5%)	Negahban et al., 2006
A. scoparia	Aerial parts	India	γ-terpinene (11.1%)	Joshi et al., 2010
A. judaica	Aerial parts	Tajikistan	β-pinene (21.3)	
A. judaica L.	Aerial parts	Egypt	Camphor (34.5)	Sallam et al., 2011
A. judaica L.	Aerial parts	Libya	Piperitone (30.21%)	Janačkovič et al., 2015
A. sieberi	Aerial parts	Sinai Peninsula, Egypt	Piperitone (32.4%), camphor (20.6%)	Putievsky et al., 1992
		Iran	α-thujone (10.5%), β-thujone (19.8%)	Negahban et al., 2007
A. sieberi	Aerial parts	Iran	Camphor (54.7%), camphene (11.7%), 1,8-cineol (9.9%)	Ensieh et al., 2007
A. sieberi	Aerial parts	Iran	β-thujone (23%), camphor (19.5%) and α-thujone (15%)	Khosravi et al., 2011