Treatment for chronic myeloid leukemia (CML) has evolved from chemotherapy (busulfan, hydroxyurea) to interferon-α (IFNα), and finally to tyrosine kinase inhibitors such as imatinib. Although imatinib has profoundly improved outcomes for patients with CML, it has limitations. Most significantly, imatinib cannot eradicate CML primitive progenitors, which likely accounts for the high relapse rate when imatinib is discontinued. IFNα, unlike imatinib, preferentially targets CML stem cells. Early studies with IFNα in CML demonstrated its ability to induce cytogenetic remission. Moreover, a small percentage of patients treated with IFNα were able to sustain durable remissions after discontinuing therapy and were probably cured. The mechanisms by which IFNα exerts its antitumor activity in CML are not well understood; however, activation of leukemia-specific immunity may have a role. Some clinical studies have demonstrated that the combination of imatinib and IFNα is superior to either therapy alone, perhaps because of their different mechanisms of action. Nonetheless, the side effects of IFNα often impede its administration, especially in combination therapy. Here, we review the role of IFNα in CML treatment and the recent developments that have renewed interest in this once standard therapy for patients with CML.

Keywords: chronic myeloid leukemia; interferon-α; imatinib; tyrosine kinase inhibitor

INTRODUCTION TO CHRONIC MYELOID LEUKEMIA

Chronic myeloid leukemia (CML) is characterized by excessive myeloid proliferation and a recurrent cytogenetic abnormality known as the Philadelphia chromosome (Ph). The abnormality results from a balanced translocation between chromosomes 9 and 22, t(9;22)(q34;q11.2), which fuses the breakpoint cluster region (BCR) gene on chromosome 22 to the ABL gene on chromosome 9. The resultant BCR-ABL oncogene encodes a constitutively active fusion BCR-ABL p210 oncoprotein. The activity of BCR-ABL is central to the pathogenesis of CML because it alters the proliferation, natural death processes and migration of the neoplastic cells. As a consequence, the leukemic clone gradually replaces normal hematopoiesis. Residual normal hematopoiesis is present in the vast majority of patients with CML, but since it is suppressed, most of the blood cells are Ph⁺.

OVERVIEW OF TREATMENTS FOR CML

Until the early 1980s, CML therapy was based on busulfan or hydroxyurea, which had a negligible effect on the natural course of the disease. Talpaz et al. carried out the first pilot clinical trial of partially pure IFNα for the management of CML followed by a larger study. The pivotal finding was that IFNα induced cytogenetic responses, which were more durable and reproducible than those induced by chemotherapy. Although initially used in the partially pure form, recombinant forms—α2a (Hoffman La Roche, Basel, Switzerland) and α2b (Merck & Co. Inc. (formerly Schering Plough), Whitehouse Station, NJ, USA)—became the dominant IFNs used in clinical studies at doses similar to those used with partially pure IFNα (that is, 2–5 MU/m² daily). Recombinant IFNα therapy achieved response rates similar to those observed with the purified human product. Results from over 1500 randomized patients demonstrated that although both IFNα and chemotherapy (hydroxyurea or busulfan) could induce hematological responses in CML, IFNα significantly improved patient survival, with a 5-year survival rate of 50–59% compared with 29–44% for patients receiving busulfan or hydroxyurea. In a study of 1303 IFNα-treated patients, median survival was 8.2 years for low-risk patients, 5.4 years for intermediate-risk patients and 3.5 years for high-risk patients.

The studies of single-agent IFNα are summarized in Table 1. In an effort to improve outcomes, IFNα was also combined with chemotherapeutic agents, such as cytarabine, hydroxyurea and busulfan, and even with intensive chemotherapy regimens (Table 2). With the exception of cytarabine, the combination therapies were not usually superior to IFNα alone.

To improve its pharmacokinetic characteristics, IFNα has been attached to polyethylene glycol, which protects it from proteolytic breakdown. The resulting pegylated IFNα (PegIFNα) has been approved for the treatment of chronic hepatitis B and C and melanoma. In addition, a phase I trial evaluated escalating doses of PegIFNα-2a ± cytarabine in patients with IFNα-resistant chronic phase CML (CML-CP). Dose-limiting toxicity was not observed at the highest dose of 630 μg per week. The safety profile of PegIFNα was similar to that of unmodified IFNα. While phase I trials suggested that PegIFNα induced better response rates compared with the unmodified form, randomized trials showed mixed results.

By 1990, the constitutive tyrosine kinase activity of BCR-ABL was linked to the pathogenesis of CML. This discovery spurred the
development of the molecular-targeted therapy imatinib (Gleevec/
Glivec; Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA),
which proved selective for killing cells expressing the BCR-ABL
protein. Clinical trials with imatinib followed and demonstrated
impressive response rates in patients who had not responded to IFNα
therapy. Of the patients in late CML-CP, 95% achieved a complete
hematological remission (CHR), 60% a major cytogenetic response (MCyR) and 41% a complete cytogenetic response (CCyR).44,45

Initiated in June of 2000, the phase III International Randomized Study of Interferon and STI571 (IRIS) was the first large-scale trial to compare imatinib (400 mg daily) with IFNα plus low-dose cytarabine, the standard of care at that time.36 The results in 1106 patients with newly diagnosed CML-CP demonstrated that imatinib was better tolerated and induced higher CHR and CCyR rates than previously achieved in patients with CML and that the addition of IFNα may broaden imatinib’s therapeutic potential in CML.

EVALUATING THERAPY WITH IFNα
Kinetics and predictors of response to IFNα
Patients respond more quickly to imatinib than to IFNα. Patients on IFNα therapy achieve CCyR at a median time of 19 months compared with 6 months on imatinib treatment.54,55 This variation may be because of the different mechanisms of action of the two drugs.

Response to IFNα depends on the phase and duration of CML disease. In general, IFNα therapy best benefitted patients with early-stage disease and favorable prognostic factors. A low-risk prognostic profile included <1 year since diagnosis, no peripheral blood basophilia, no additional cytogenetic abnormalities, Caucasian descent and age <60 years; such patients achieved higher hematologic and cytogenetic response rates with IFNα than their high-risk counterparts.56 In addition, patients in accelerated phase and blast crisis did not typically respond to IFNα. IFNα also had limited effects in late CML-CP.

Toxicities
Acute side effects to IFNα therapy commonly present as flu-like symptoms (anorexia, fever, chills, myalgias and headaches); these are not typically dose limiting and usually resolve in a few days. Chronic side effects include fatigue, weight loss, myalgias/arthralgias, depression and immune-mediated complications, such as autoimmune hemolytic anemia/thrombocytopenia, collagen vascular disorders, hypothyroidism and immune-mediated nephritic syndrome. Cases of cardiac dysfunction, including dysrhythmias and congestive heart failure, are rare but require immediate discontinuation of IFNα. Chronic fatigue and neurotoxicity, such as depression and cognitive impairment, are common dose-limiting side effects and typically worsen with continued treatment.57 As these toxicities have hindered compliance with therapy, three joint prospective studies examined whether a lower dose of IFNα at 3 MU/m² five times a week would be as effective as the standard dose of 5 MU/m² daily.58 The studies found that overall survival and response rates did not dramatically differ between groups.

Significance of cytogenetic responses to IFNα
The critical finding of the IFNα trials was the correlation between cytogenetic response and survival. IFNα treatment led to MCyR in 10–40% of patients and CCyR in 5–30% of patients.59,60 A group of European investigators created a registry of 317 patients with CML in CCyR after standard IFNα therapy alone or with hydroxyurea.61 The median time to first CCyR was 19 months. After 10 years, 72% of these patients were alive and 46% were in continuous CCyR. Similarly, Kantarjian et al.62 analyzed the long-term significance of cytogenetic responses to IFNα-based therapies. Of the 512 patients in early chronic phase, 27% achieved a CCyR within a median time of 16 months. These responders had a survival rate of 78% at a median follow-up of 127 months (range, 88 to 191 months). The induced CCyR was durable; patients who maintained cytogenetic remission for more than 2 years on IFNα therapy remained in remission for an average of 6 years after discontinuing treatment. These results, along with an additional study,63 confirmed that CCyR predicts long-term survival in patients with CML and that IFNα may induce stable remissions in some patients with CML.
INr MECHANISMS OF ACTION IN CML

Although INr has been around for many years, we still do not know how it exerts its antileukemic effects. According to in vitro studies, INr modulates gene expression, promotes cell differentiation and apoptosis, directly inhibits cell growth and proliferation, restores regulation by the bone marrow microenvironment and induces an immunomodulatory response. Microarray analyses have shown that IFNα can induce expression of over 300 different genes. These genes encode apoptotic proteins (i.e., TRAIL, Fas, caspase-4, caspase-8 and XAF-1), anti-viral proteins (that is, PKR, 2′,5′A oligoadenylate synthetase and Mx proteins), immunomodulatory proteins (that is, MHC I and II, LMP-2 and C1 inhibitor), host defense proteins (that is, PKR, IFN-α, 1-9, interleukin-15 and interleukin-6) and transcription factors (that is, signal transducer and activator of transcription 1, signal transducer and activator of transcription 2, ISG3-γ and IRF-1-7). The precise function of many of the gene products induced by INr remains unknown; however, several of the identified genes encode well-known pro-apoptotic proteins, including TRAIL/Apo2L and Fas/CD95. In CML progenitor cells, IFNα enhances the expression of the Fas receptor, thereby increasing cell sensitivity to Fas ligand. In addition to activating apoptosis, IFNα directly targets key regulators of the cell cycle, including retinoblastoma protein,cdc25A,cyclins (cyclin D3, cyclin E and cyclin A) and cyclin-dependent kinases (cdk4 and cdk6). Such targeting can block and/or lengthen the cell cycle phases, allowing cells to differentiate or undergo apoptosis.

In bone marrow hematopoietic progenitors, IFNα directly inhibits proliferation by suppressing the production of hematopoietic stimulatory cytokines, such as granulocyte–macrophage colony-stimulating factor and interleukin-3. It also increases the synthesis of inhibitory cytokines, including interleukin-1 receptor antagonist and transforming growth factor-β. In addition, IFNα may inhibit the proliferation of CML progenitors by restoring normal hematopoietic mechanisms. In normal progenitors, β1-integrin receptors mediate cell adhesion to the bone marrow stroma, and stimulation of these receptors transmits antiproliferation signals. These two regulatory mechanisms are defective in CML progenitors, but Bhatia et al. have shown that IFNα can restore them. Lastly, the growth-inhibitory effects of IFNα seem to require activation of the mitogen-activated protein kinase p38 in CML progenitors. IFNα treatment activates p38 by phosphorylation, which in turn leads to the transcription of IFNα-inducible genes.

In addition to directly inhibiting cell proliferation, IFNα may attenuate CML by activating host immune cells, including B and T lymphocytes, natural killer cells and antigen-presenting dendritic cells. The increased incidence of immune-mediated complications with INr therapy supports such immune activation. Addition of INr both in vitro and in vivo caused CML mononuclear cells to differentiate into dendritic cells; the dendritic cells then served as antigen-presenting cells for CML-specific peptides. Similarly, in the presence of INr and granulocyte–macrophage colony-stimulating factor in vitro, CML bone marrow mononuclear cells differentiated into dendritic cells with specific antileukemia function. This may have clinical relevance because addition of granulocyte–macrophage colony-stimulating factor to treatment with INr in patients who failed to achieve a CMR (n = 14) improved cytogenetic responses for half of the patients. Lastly, INr (but not imatinib) induces cytotoxic T cells (CTLs) specific for CML progenitors.

Given the potential benefits of combination therapy with imatinib and INr, a recent study investigated the effect of BCR-ABL signaling on INrα activity in a CML cell line. The study showed that expression of BCR-ABL in non-CML cells attenuated INrα signaling; however, pre-treatment of CML cells with imatinib augmented the antigrowth effects of INr exposure. In addition, imatinib pre-treatment enhanced signal transducer and activator of transcription 1 phosphorylation induced by INr. These results, in addition to providing insights into the mechanism of action of the combination therapy, may translate into a clinical strategy to increase the sensitivity of CML cells to INr.

USING MINIMAL RESIDUAL DISEASE TO DETERMINE TREATMENT PLAN

With the introduction of reverse transcriptase-polymerase chain reaction (RT–PCR) analysis, residual leukemic clones could be detected in patients thought to be in complete remission. In fact, RT–PCR is sensitive enough to detect one BCR-ABL+ cell per 10−12–10−15 normal cells. Lee et al. demonstrated that all 29 patients with a CCyR by INr harbored some residual Ph+ cells. Even so, 21 of the patients maintained their CCyR at a median follow-up of 13 months after RT–PCR analysis. These findings suggested that PCR positivity for BCR-ABL does not predict immediate disease relapse. A clinical trial with longer follow-up of IFNα treatment revealed that cytogenetic remission can last for years, even when MRD resides in the early hematopoietic progenitor cells of patients with CML. One explanation is that IFNα puts tumor cells in a dormant state, which prevents residual leukemia cells from regenerating clinically significant leukemia.

Regardless of how remission is maintained in the presence of residual disease, the studies evaluating RT–PCR analysis raised the following two questions: (1) how long should patients continue INr therapy once they achieve a CCyR, and (2) can RT–PCR analysis guide the decision to discontinue therapy? To address these questions, Hochhaus et al. continuously monitored BCR-ABL transcript levels by RT–PCR in 54 patients who were treated with INr and achieved CCyR. Over a median observation period of 1.9 years, the 14 patients who relapsed demonstrated a significantly higher median BCR-ABL ratio than those who maintained a CCyR (0.49% vs 0.021%; P < 0.0001). These findings suggested that the degree of residual disease could predict the probability of relapse. When IFNα was withdrawn in six of the patients, one patient relapsed and was subsequently found to possess increasing levels of MRD; thus, the authors advised that IFNα be continued at least until low levels of BCR-ABL transcripts were achieved. The IRIS trial was the first randomized trial to evaluate molecular disease by RT–PCR in patients with CML. The results showed that BCR-ABL transcript levels fell by 3 log or greater (defined as MMR) in 57% of patients with a CCyR after 12 months of imatinib treatment. In comparison, only 24% of patients with a CCyR in the INr group had at least a 3-log reduction in BCR-ABL transcripts. Importantly, all patients who achieved a MMR remained progression free at the 24-month follow-up. A long-term follow-up of the IRIS trial examined patients who achieved a CCyR with imatinib (163 out of 553 patients at 18-month follow-up). Of these patients, 127 achieved an MMR by 18 months and none had CML progression at the 84-month follow-up. The authors concluded that once a CCyR was reached, RT–PCR assessment of minimal residual disease could replace cytogenetic analysis of patient response. In support of this, Kantarjian et al. reported that all 20 patients with persistent PCR-negative CML-CP maintained an MCyR at the last long-term follow-up 10 years from the first CCyR. Altogether, these studies validated molecular testing in CML and redefined how clinicians should measure patient responses and predict clinical outcomes.

To determine whether patients with sustained undetectable BCR-ABL transcript levels were fully cured or continued to generate leukemic stem cells in their bone marrow, a recent study was conducted in patients who achieved undetectable MRD for > 3 years with IFNα (n = 3), imatinib after IFNα failure (n = 2) or dasatinib after imatinib intolerance (n = 1). In all patients,
leukemic stem cells expressing BCR-ABL were identified. At this time, whether undetected MRD correlates with risk of disease relapse is not known and warrants further investigation.

POTENTIAL RE-EMERGENCE OF IFN

Durable responses after discontinuation of IFN

Several cases of continuous cytogenetic remission after the cessation of IFN therapy have generated excitement about the curative potential of IFN. These patients usually maintained a CCyR for more than 24 months before discontinuing IFN and maintained remission for an average of 6 years after discontinuing therapy. Outside of allogeneic hematopoietic stem cell transplantation, this represents the closest evidence of a clinical ‘cure’ for CML. Note that only approximately 20% of patients who receive IFN achieve a durable CCyR, but those who reach this milestone demonstrate prolonged survival.

Several preclinical studies provide possible reasons why imatinib may not be sufficient to cure CML. First, primitive CML milestones demonstrate prolonged survival.

In the German CML-Study IV, recruitment to the imatinib plus PegIFN-α arm was more active against a CCyR with imatinib. Thus, since imatinib does not eliminate the malignant progenitors that cause the disease, it is probably not curative in the majority of cases. These progenitors can escape imatinib toxicity because they do not depend on BCR-ABL mechanisms for survival and proliferation. In support of this, a recent *in vitro* study demonstrated that while imatinib does inhibit the BCR-ABL kinase and its downstream signaling in CML primitive progenitors, the drug fails to facilitate death in these cells. This finding implies that CML stem cells are not ‘addicted’ to the BCR-ABL oncogene.

In contrast to therapy with imatinib, evidence suggests that IFN actually targets the residual leukemic stem cells that cause disease relapse. Short-term colony-forming and long-term culture-initiating cell assays showed that IFN was more active against primitive CML progenitors, whereas imatinib preferentially targeted more mature, differentiated CML progenitors. These findings may explain why the clinical responses to IFN are slower but more durable than those to imatinib. Imatinib acts quickly on the more differentiated progenitors that make up the bulk of the leukemia. By contrast, since IFN actually targets the rare CML stem cell (<1% of the CML population), its effects may not manifest as early on in treatment. More recent data in mice have shown that IFN administered to dormant stem cells activates and thereby sensitizes them to subsequent killing by chemotherapeutic agents.

A small clinical trial investigating the value of prior IFN treatment in maintaining remission after discontinuing imatinib therapy is currently ongoing (ClinicalTrials.gov, Identifier: NCT01073436).

Combining IFN with imatinib and second-generation TKIs

To identify optimal imatinib-based regimens for CML-CP, two large multicenter, randomized treatment optimization studies were initiated: the German CML-Study IV (imatinib 400 mg vs imatinib plus IFN 1.5–3 MU thrice weekly) vs imatinib plus cytosine arabinoside vs imatinib after IFN failure vs imatinib 800 mg; n = 1023) and the French STISI1 Prospective Randomized Trial (SPIRIT; imatinib 400 mg vs imatinib 600 mg vs imatinib plus cytosine arabinoside vs imatinib plus PegIFN-α; n = 636). Of note, the German CML-Study IV used IFNα, whereas the French study used PegIFNα-2a (Pegasys; Hoffmann-La Roche Inc, Nutley, NJ, USA).

In the German CML-Study IV, recruitment to the imatinib plus cytosine arabinoside and the imatinib after IFN failure study arms was terminated early because of feasibility and compliance issues. At 12 months, a higher rate of MMR was observed with tolerability-adapted imatinib 800 mg compared with the imatinib 400 mg ± IFN arms (P = 0.003; Table 3). Significantly higher rates of CCyR were also observed with imatinib 800 mg over the first 24 months, as well as superior molecular responses at the 1, 0.1 and 0.01% BCR-ABL transcript levels according to the International Scale (IS). Treatment approaches were well tolerated with similar grade 3 and 4 adverse events. The investigators suggested that the superior remission rates in the high-dose imatinib arm were a result of the strategy applied (high dose early on and maintenance around 600 mg per day according to tolerability). The earlier and faster remissions with tolerability-adapted high-dose imatinib are expected to translate into better survival with longer follow-up.

In contrast to the German CML-Study IV, the French SPIRIT study reported significantly faster and better molecular response rates with the combination of imatinib plus PegIFNα-2a compared with imatinib alone (400 and 600 mg per day) and combined with cytarabine (Table 3). Specifically, the 12-, 18- and 24-month rates and cumulative incidences of major and superior (>4-log reduction in BCR-ABL transcripts) molecular responses were significantly higher in this group. Enrollment in the imatinib 600 mg and imatinib plus cytosine arabinoside arms was stopped primarily because of low rates of molecular responses and observed toxicity, respectively. Furthermore, 45% of patients discontinued PegIFNα-2a in the first year primarily because of adverse effects; however, when the dose was reduced from 90 to 45 μg per week, treatment was better tolerated. A major finding of the study was that long-term maintenance of imatinib plus PegIFNα-2a (particularly more than 12 months) correlated with a better rate of molecular responses. However, event-free survival did not differ across all the arms of the study after 4 years of follow-up. The second part of the trial will focus on whether the earlier and faster response rates with this combination translate into better survival.

At 12-month follow-up, the incidence of MMR with imatinib 400 mg per day was 31% in CML-Study IV and 38% in SPIRIT, both of which were comparable with the 39% MMR rate observed in IRIS. In contrast, the 12-month MMR rate in the imatinib plus IFN arm of CML-Study IV was 35% compared with 57% in the imatinib plus PegIFNα-2a arm of SPIRIT. The patient populations in the two studies were not different, and it is possible that use of the pegylated form of IFNα, which was designed to have a longer half-life in the blood, improved the efficacy of the combination in the SPIRIT trial.

Three smaller phase II studies of imatinib plus PegIFNα-2b (Pegintron; Merck) reported discordant results. The Nordic group study (n = 112) compared the combination of PegIFNα-2b 50 μg per week and imatinib 400 mg per day with imatinib 400 mg per day alone in patients with low- or intermediate-risk CML. The MMR rate was significantly higher in the combination arm (82%) compared with the monotherapy arm (54%) at 12 months. Even a short exposure to PegIFNα-2b (3–6 months) improved response to imatinib. Notably, 34 of the 56 patients in the combination arm discontinued PegIFNα-2b, mainly owing to adverse events, such as neutropenia and constitutional symptoms. To manage adverse events, the starting dose of PegIFNα-2b (50 μg per week) was lowered to 30 μg per week. Of those who continued therapy with PegIFNα-2b for more than 3 months, 91% vs 49% (P < 0.001) achieved MMR at 12 months. These results are consistent with those from the IRIS trial and the Nordic study. The second two-arm study (n = 94) examined the addition of PegIFNα-2b (0.5 μg/kg per week) and granulocyte–macrophage colony-stimulating factor to high-dose imatinib (800 mg per day) vs the continuation of high-dose imatinib alone in patients with early CML-CP. Unlike the Nordic and SPIRIT trials, this study found no differences in the cytogenetic or molecular response rates between the two arms. Owing to treatment-related toxicity, the combination arm had a high dropout rate, which may have hampered potential benefits of the immunotherapy. Adherence to PegIFNα-2b was also very low (13%) in an earlier study of imatinib plus PegIFNα-2b conducted by the Italian Cooperative Study Group. The starting doses of PegIFNα-2b (50, 100 and 150 μg per week) were lower than the maintenance doses observed in the Nordic group study.
likely too high in combination with imatinib, leading to grade 3 or 4 neutropenia in 63% and grade 3 or 4 non-hematologic adverse events in 52% of patients. The German, SPIRIT and Nordic studies, which used lower doses of IFNα, reported comparatively fewer grade 3 and 4 hematological and non-hematological adverse events in patients taking imatinib plus IFNα. A retrospective analysis of the Italian study showed that CCyR and MMR rates were higher in patients receiving the combination at early time points, but were comparable with the imatinib-only arm at longer survival. The durability of responses, event-free survival and overall survival were also similar between the two arms.102,103

Interestingly, the early and fast response rates with imatinib 800 mg and with imatinib plus PegIFNα are similar to those recently reported for the second-generation TKIs dasatinib104 and nilotinib.105 Studies investigating the combination of IFNα with nilotinib or dasatinib are ongoing. A phase I German study (NICOLI) is investigating the maximum-tolerated dose of low-dose IFNα in combination with nilotinib in patients with imatinib-resistant CML-CP (ClinicalTrials.gov, Identifier: NCT01294618). The phase II French NILOPEG trial (ClinicalTrials.gov, Identifier: NCT01294618) is studying the efficacy of nilotinib plus PegIFNα-2a (45 μg per week) in the first-line setting. The phase II German CML-Study V (ClinicalTrials.gov, Identifier: NCT01657604; EudraCT, Number: 2010-024262-22), which was activated in August 2012, is comparing nilotinib, nilotinib plus IFNα, maintenance with nilotinib and maintenance with IFNα (four arms). Two small phase II studies are investigating the value of adding PegIFNα-2a (45 μg per week in one study and 180 μg per week in the other) for 2 years to the treatment regimen of patients who achieved CCyR and <0.5% BCR-ABL/ABL transcript with imatinib, nilotinib or dasatinib (ClinicalTrials.gov, Identifier: NCT01392170 and NCT00573378).

Value of IFNα in patients with the T315I mutation

Treatment of patients with the T315I mutation (threonine-to-isoleucine mutation at amino acid 315) in BCR-ABL is challenging, as this mutation confers resistance to treatment with imatinib, as well as second-generation TKIs. The frequency of this mutation ranges from 2–20% of imatinib-resistant CML patients. The National Comprehensive Cancer Network guidelines recommend hematopoietic stem cell transplantation, if available, or participation in a clinical trial for this patient population.104 Currently, a number of agents are under investigation, including ponatinib105 (a reversible Abl-Src inhibitor), DCC-2036 (a switch-pocket inhibitor) and homoharringtonine (omacetaxine).106

Although no clinical studies have investigated the value of IFNα in treating patients with the T315I mutation, two case reports have recently been published. One patient with the T315I mutation achieved a CCyR after 12 months of treatment with imatinib (400 mg per day), but developed resistance after 18 months of treatment. The patient was treated with a combination of imatinib and IFNα (6 MU per week). After 51 months of combination treatment, he achieved MMR, and the T315I mutation was not detected by direct sequencing or pyrosequencing. While the patient experienced grade 2 anemia and grade 1 neutropenia, he could continue the treatment with no dose reduction.107 In the second case, the patient was treated with KW-2449, a T315I-specific inhibitor, after losing the CCyR induced by 800 mg per day imatinib. While KW-2449 appeared to reverse the T315I mutation, his response did not improve; furthermore, he developed the F359I mutation. On switching to combination treatment with dasatinib (50 mg twice daily) and PegIFNα (9 MU per day), the patient achieved a CCyR and an MMR with a BCR-ABL/ABL ratio of 0.05 after 4 months.108 These reports point to the potential value of IFNα in eradicating resistance to TKI treatment in the presence of the T315I mutation. More robust data are needed to confirm these treatment benefits.

Table 3. Efficacy data from CML-Study IV and SPIRIT

	Imatinib 400 mg per day (n = 159)	Imatinib 600 mg per day (n = 160)	Imatinib 400 mg per day + PegIFNα-2a (n = 158)	Imatinib 400 mg per day + PegIFNα-2a (n = 159)	Imatinib 800 mg per day (n = 328)	Imatinib 400 mg per day + PegIFNα-2a (n = 316)
Molecular response						
12-Month major response	38 (30–46)	49 (41–57)	46 (38–54)	57 (49–65)	9 (5–11)	18 (14–23)
12-Month superior response	14 (9–21)	17 (11–24)	15 (10–22)	30 (23–37)	31 (27–36)	35 (29–39)
18-Month major response	42 (34–50)	50 (42–58)	53 (45–61)	62 (54–69)	50 (44–56)	68 (62–73)
18-Month superior response	18 (13–25)	22 (16–29)	19 (13–26)	35 (27–43)	63 (57–68)	76 (71–81)
24-Month major response	43 (35–50)	53 (45–60)	54 (46–62)	64 (56–71)	63 (57–68)	63 (57–68)
24-Month superior response	21 (15–28)	26 (20–34)	26 (19–34)	38 (30–46)	NA	NA
36-Month major response	9 (5–14)	8 (4–13)	8 (4–13)	16 (12–24)	NA	NA
Complete cytogenetic response	NA	NA	Unadjusted P = 0.01	Unadjusted P = 0.01	NA	NA
6 Months			NA	NA	79 (74–84)	82 (76–86)
12 Months	50 (42–58)	69 (61–76)	59 (51–67)	57 (49–65)	21 (16–26)	32 (26–37)
18 Months	58 (50–66)	65 (57–72)	70 (62–77)	66 (58–73)	49 (43–54)	63 (56–68)
24 Months	NA	NA	66 (59–71)	69 (63–74)	75 (69–79)	70 (78–81)

Abbreviations: CML, chronic myeloid leukemia; NA, not available; PegIFNα, pegylated IFNα; SPIRIT, STI571 Prospective Randomized Trial.

Induction of CML-specific immunity by IFNα and implications for maintenance therapy

As mentioned above, IFNα is known to activate leukemia-specific immunity, but the underlying mechanism is still not well understood. One current hypothesis is based on early work by
Moldrem et al. examined the immunogenicity of proteinase 3, a serine protease highly expressed in various myeloid leukemia cells, including CML. A peptide derived from proteinase 3 known as PR1 was identified with high affinity for HLA-A2.1. Of significance, CTLs specific for PR1 eliminated CML progenitors, but not normal marrow cells. A subsequent investigation detected circulating PR1-specific CD8+ T cells in 11 out of 12 IFNα responders, but not in non-responders (0 of 7). Kanodia et al. recently hypothesized that IFNα induces stable remissions at least in part by increasing the expression of PR1 in CML cells. As IFNα induces the expansion of self-renewing memory CTLs specific for PR1, the PR1-expressing CML progenitors become a prime target for immune-mediated killing. In support of this, PR1-CTLs were found to be increased in CML patients with a CCyR after IFNα cessation. Moreover, the PR1-CTLs secreted IFNγ in response to stimulation with PR1 peptide. By contrast, PR1-CTLs from the three patients who relapsed after IFNα withdrawal lost their ability to secrete IFNγ. These findings suggest that loss of functional PR1-CTLs may contribute to relapse in patients with CML.

Given the potential for developing imatinib resistance and/or intolerance with continued imatinib treatment, maintenance therapy with IFNα may allow patients to discontinue imatinib by keeping CML progenitors suppressed. A recent report on the use of PegIFNα-2a maintenance after induction treatment with imatinib and PegIFNα-2a demonstrated sustained remission in 15 out of 20 CML-CP patients at a median of 2.4 years after imatinib discontinuation. This impressive outcome was thought to involve a T-cell response because proteinase 3 mRNA levels and frequencies of PR1-CTLs increased during maintenance therapy with IFNα. To minimize toxicity from long-term IFNα use, a later study administered PegIFNα-2a 9 months before and 3 months after imatinib discontinuation. This regimen improved the remission status of 5 of the 11 patients over a median follow-up of 47 months. These studies support further exploration of the role of IFNα consolidation or maintenance therapy after TKI induction.

OPTIMIZING THERAPY: EARLY RESPONSE PREDICTORS

Before the imatinib era, the Hasford or Euro score (developed from a study of 1303 IFNα-treated patients) was used to predict prognosis at diagnosis based on spleen size, percent blasts, age, platelet count, eosinophilia and basophilia. A new prognostic score called EUTOS (European Treatment and Outcome Study score) has since been developed to predict clinical responses to imatinib. The score was developed from a study of 2060 patients treated with imatinib, including imatinib at 800 mg and in combination with IFNα. Using only two variables (spleen size and basophil percentage in peripheral blood), the score discriminates between high- and low-risk groups and predicts that 34% of high-risk patients will fail to achieve CCyR. This score predicts treatment failure with better sensitivity and specificity than the Sokal or Euro scores.

A further advance is response prediction at 3 months. CML patients at risk of progression are candidates for change of therapy, including addition of IFNα to front-line TKI treatments. Identifying patient response to a drug early on in the treatment is key for optimizing treatment protocols. Early response predictors for CML are summarized in Table 4. Patients who achieve a cytogenetic remission (CCyR or MCyR) or reach a molecular response (MR) within 3 months predicted MCyR.

CONCLUSIONS

The reduced tolerability and slower response kinetics of IFNα compared with TKIs have reduced the enthusiasm for this therapy. However, therapy with imatinib and other TKIs may be limited by drug resistance, intolerance and, when therapy is discontinued, relapse. In contrast to targeted therapies, IFNα has a broad range of therapeutic effects that may reduce the likelihood of resistance or relapse, especially when used in combination with other CML therapies. These factors along with the proven efficacy of pegylated forms of IFNα, even at low doses, have revived interest in IFNα therapy for CML.

CONFLICT OF INTEREST

JC is a consultant for and has received research funding from BMS, Novartis, Ariad and Chemogenex. MT has chaired a satellite symposium for Merck and has received drugs from Merck for clinical studies. The remaining authors declare no conflict of interest.

ACKNOWLEDGEMENTS

Editorial assistance was provided by Meenakshi Subramanian, PhD, CMPP, of Evidence Scientific Solutions, and funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co. Inc., Whitehouse Station, NJ, USA.
Role of interferon in chronic myeloid leukemia

M Talpaz et al

REFERENCES

1 Nowell PC. The minute chromosome (Ph1) in chronic granulocytic leukaemia. Blut 1962; 8: 65–66.

2 Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

3 de Klein A, van Kessel AG, Grosveld G, Bartam CR, Hagemejer A, Boutorna D et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 1982; 300: 765–767.

4 Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature 1990; 344: 251–253.

5 Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukaemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 826–830.

6 Talpaz M, McCredie KB, Navlitis GM, Gutterman JU. Leukocyte interferon-induced myeloid cytorredution in chronic myelogenous leukaemia. Blood 1983; 62: 689–692.

7 Talpaz M, Kantarjian HM, McCredie KB, Keating MJ, Trujillo J, Gutterman J. Clinical investigation of human alpha interferon in chronic myelogenous leukaemia. Blood 1987; 69: 1280–1288.

8 Talpaz M, Kantarjian H, Kurzrock R, Trujillo JM, Gutterman JU. Interferon-alpha produces sustained cytogenetic responses in chronic myelogenous leukaemia. Philadelphia chromosome-positive patients. Ann Intern Med 1991; 114: 532–538.

9 Kantarjian HM, Deisseroth A, Kurzrock R, Estrov Z, Talpaz M. Chronic myelogenous leukaemia: a concise update. Blood 1993; 82: 691–703.

10 Ouer H, George SJ, Schiffer CA, Rao K, Rao PN, Wurster-Hill DH et al. Prolonged subcutaneous administration of recombinant alpha 2b interferon in patients with previously untreated Philadelphia chromosome-positive chronic-phase chronic myelogenous leukemia: effect on remission duration and survival: Cancer and Leukemia Group B study 8583. Blood 1993; 82: 2975–2984.

11 Almenna G, Morra E, Lazzarino M, Liberati AM, Montefusco E, Inverardi D et al. Interferon alpha-2b as therapy for patients with PH-positive chronic myelogenous leukemia. Eur J Haematol Suppl 1990; 52: 25–28.

12 Thaler J, Gast G, Fluckinger T, Niederwieser D, Huber H, Seewann H et al., The Austrian Biological Response Modifier (BRM) Study Group. Treatment of chronic myelogenous leukaemia with interferon alfa-2c: response rate and toxicity in a phase II multicenter study. Semin Hematol 1993; 30: 17–19.

13 Niederehe N, Klokke U, Wandel UB, Becher R, Moritz T, Opalka B. Long-term treatment of chronic myelogenous leukaemia with different interferons: results from three studies. Leuk Lymphoma 1993; 9: 111–119.

14 Italian Cooperative Study Group on Chronic Myeloid Leukemia. Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med 1996; 330: 820–825.

15 Jehle R, Heimpel H, Hasford J, Kolb HJ, Pfalle H, Hessfeld DK et al., The German CML Study Group. Randomized comparison of interferon-alpha1b with busulfan and hydroxyurea in chronic myelogenous leukemia. Blood 1994; 84: 4064–4077.

16 Ohnishi K, Ohno R, Tomonaga D, Kamada N, Onozawa K, Kuramoto A. The German CML-Study Group. Randomized comparison of interferon alfa-2a with cytarabine in Philadelphia chromosome-positive chronic myelogenous leukaemia. Br J Haematol 1999; 106: 1013–1019.

17 Guilhot F, Chastang C, Michallet M, Gueuri, A, Harousseau JL, Maloisel F et al., for the French Chronic Myeloid Leukemia Study Group. Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. N Engl J Med 1997; 337: 223–229.

18 Baccarani M, Rosti G, de Vivo A, Bonifazi F, Russo D, Martinelli G et al., for the Italian Cooperative Study Group on Myeloid Leukemia. A randomized study of interferon-alfa versus interferon-2 alpha and low-dose arabinosyl cytosine in chronic myeloid leukemia. Blood 2002; 99: 1527–1535.

19 Talpaz M, Rakshit A, Rittweger K, O'Brien S, Cortes J, Fettner S et al., Phase I evaluation of a 40-kDa branched-chain long-acting pegylated IFN-α2a with and without cytarabine in patients with chronic myelogenous leukemia. Clin Cancer Res 2005; 11: 6247–6255.

20 Talpaz M, O'Brien S, Rose E, Gupta S, Shan J, Cortes J et al., Phase I study of polyanhydride glycol subcutaneous formulation of interferon-2B (Scherig 54031) in Philadelphia chromosome-positive chronic myelogenous leukemia. Blood, 2001; 98: 1708–1713.

21 Lipton JH, Khoroshko N, Golenvok A, Abdulkadyrov K, Nair K, Raghunadhara D et al., on behalf of the Pegasys CML Study Group. Phase II, randomized, multi-center, comparative study of peginterferon-α2a (40 K) (Pegasys®) versus interferon-α2a (Roferon® A) in patients with treatment-naive, chronic-phase chronic myelogenous leukemia. Leuk Lymphoma 2007; 48: 497–505.

22 Michallet M, Maloisel F, Delain M, Hellmann A, Rosais A, Silver RT et al., for the PEG-Intron CML Study Group. Pegylated recombinant interferon alpha-2b vs recombinant interferon alpha-2b for the initial treatment of chronic-phase chronic myelogenous leukaemia: a phase III study. Leukemia 2004; 18: 2453–2460.

23 Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al., Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

24 Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al., Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

25 Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al., for the International STIC51 CML Study Group. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

26 O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al., for the IFN- Investigators. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-chronic phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

27 Kantarjian HM, O'Brien S, Cortes J, Giles FJ, Rios MB, Shan J et al., Imatinib mesylate therapy improves survival in patients with newly diagnosed Philadelphia chromosome-positive chronic myelogenous leukemia in the chronic phase: comparison with historic data. Cancer 2003; 98: 2636–2642.

28 Kantarjian HM, Talpaz M, O'Brien S, Jones D, Giles F, Garcia-Manero G et al., Survival benefit with imatinib mesylate versus interferon-alpha-based regimens in newly diagnosed chronic-phase chronic myelogenous leukemia. Blood 2006; 108: 1833–1840.

29 Roy L, Guilhot J, Krahneki T, Guerci-Bresler A, Druker BJ, Larson RA et al., Survival advantage from imatinib compared with the combination interferon-α plus cytarabine in chronic-phase chronic myelogenous leukaemia: historical comparison between two phase 3 trials. Blood 2006; 108: 1478–1484.

30 Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C et al., for the ENESTnd Investigators. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 2010; 362: 2251–2259.

31 Kantarjian H, Sukhov FC, Shah N, Hochhaus A, Cortes J, Shah S, Ayala M et al., Dasatinib versus imatinib in newly diagnosed chronic-chronic phase chronic myeloid leukemia. N Engl J Med 2010; 362: 2260–2270.

32 Baccarani M, Cortes J, Pane P, Niederwieser D, Saglio G, Apperley J et al., Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol 2009; 27: 6041–6051.

33 National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Chronic Myelogenous Leukemia. National Comprehensive
Role of interferon in chronic myeloid leukemia

M Talpaz et al

Cancer Network 2011. http://www.nccn.org/professionals/physician_glslf_guideLines.aspx (accessed 25 August 2011).

44 Hehlmann R, Berger U, Pfirrmann M, Heinpel H, Hochhaus A, Hasford J et al. Drug treatment is superior to allografting as first-line therapy in chronic myeloid leukemia. Blood 2007; 109: 4686–4692.

45 Alimena G, Breccia M, Luciano L, Quarantelli F, Diverio D, Izzo B et al. Imatinib mesylate therapy in chronic myeloid leukemia patients in stable complete cytogenetic response after interferon-alpha treatment in a very high complete molecular response rate. Leuk Res 2008; 32: 255–261.

53 Ross DM, Branford S, Seymour JF, Schwarzer A, Arthur C, Bartley PA et al. Imatinib mesylate dissection in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 2007; 109: 58–60.

54 Deininger M, O’Brien SG, Guilhot F, Larson RA, Gathmann I, So C, Waltzman R et al. The p38 MAPK pathway mediates the growth inhibitory effects of interferon-α in BCR-ABL-expressing cells. J Biol Chem 2001; 276: 28570–28577.

61 Mahon FX, Delbrel X, Cony-Makhoul P, Fabères C, Boiron JM, Barthe C et al. Interferon-α improves the cytogenetic response obtained with interferon-alpha therapy in chronic myeloid leukemia. J Clin Oncol 1995; 13: 2401–2407.

62 Paquette RL, Hsu N, Said J, Mohammed M, Rao NP, Shih G et al. Role of interferon in chronic myeloid leukemia. Cancer 1998; 82: 1033–1041.

64 Lee MS, Kantarjian H, Talpaz M, Freireich EJ, Deisseroth A, Trujillo JM et al. Detection of two alternative bcr/abl mRNA junctions and minimal residual disease in Philadelphia chromosome positive chronic myelocytic leukemia by polymerase chain reaction. Blood 1998; 93: 2165–2170.

65 Lee MS, Chang SK, Cooney MY, Smith SD, Champlin R, Witte ON et al. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA 1988; 85: 5689–5702.

66 Lee MS, Kantarjian H, Talpaz M, Freireich EJ, Deisseroth A, Trujillo JM et al. Detection of minimal residual bcr/abl transcripts by a modified polymerase chain reaction. Blood 1988; 72: 893–897.

67 Peschel C, Aulitzky WE, Huber C. Influence of interferon-α on cytokine expression by the bone marrow microenvironment—impact on treatment of myeloproliferative disorders. Leuk Lymphoma 1996; 22: 129–134.

68 Bhatia R, Verfaillie CM. The effect of interferon-α on beta1 integrin mediated adhesion and growth regulation in chronic myelogenous leukemia. Leuk Lymphoma 1998; 28: 241–254.

69 Zou X, Calame K. Signaling pathways activated by oncogenic forms of Bcr-Abl tyrosine kinase. J Biol Chem 1999; 274: 18141–18144.

70 Kantarjian HM, O’Brien S, Anderlini P, Talpaz M. Treatment of myelogenous leukemia after cessation of interferon alfa. Follow-up of complete cytogenetic remission in patients with chronic myeloid leukemia: prospective collaboration of 3 joint trials by the MRC and HOVON groups. Blood 2004; 103: 4408–4415.

71 Andrews III DF, Singer JW, Collins SJ. Effect of recombinant α interferon on the expression of the bcr-abl fusion gene in human chronic myelogenous human leukemia cell lines. Cancer Res 1987; 47: 6629–6632.

72 Kantarjian HM, O’Brien S, Cohen PH, Pierce S, Talpaz M. Immunemediated and unusual complications during interferon α therapy in chronic myeloid leukemia. J Clin Oncol 1995; 13: 2401–2407.

73 Paquette RL, Hsu N, Said J, Mohammed M, Rao NP, Shih G et al. Interferon-α induces dendritic cell differentiation of CML mononuclear cells in vitro and in vivo. Leukemia 2002; 16: 1484–1489.

74 Cortes J, Kantarjian H, O’Brien S, Kurzrock R, Reing R, Talpaz M et al. Detection of two alternative bcr/abl mRNA junctions and minimal residual disease in Philadelphia chromosome positive chronic myelocytic leukemia by polymerase chain reaction. Blood 1998; 93: 2165–2170.

75 Kawasaki ES, Clark SS, Cooney MY, Smith SD, Champlin R, Witte ON et al. Detection of chronic myeloid and acute lymphocytic leukemias by detection of leukaemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA 1988; 85: 5689–5702.
Role of interferon in chronic myeloid leukemia
M Talpaz et al

87 Hughes TP, Hochhaus A, Branford S, Muller MC, Kaeda JS, Foroni L et al., on behalf of the IRIS investigators. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood 2010; 116: 3758–3765.

88 Chomel JC, Bonnet ML, Sorel N, Bertrand A, Meunier MC, Fichelson S et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood 2011; 118: 3657–3660.

89 Veneri D, Tecchio C, De Mattiis G, Paviati E, Benati M, Franchini M et al. Long-term persistence of molecular response after discontinuation of interferon-alpha in two patients with chronic myeloid leukemia. Blood Transfus 2012; 10: 233–234.

90 Graham SM, Jørgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. The role of interferon in chronic myeloid leukemia. Br J Haematol 2005; 130: 373–381.

91 Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA et al. The role of interferon in chronic myeloid leukemia. Br J Haematol 2010; 150: 2640–2653.

92 Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 458–459.

93 Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 458–459.

94 Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Drucker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011; 121: 396–409.

95 Angstreich GR, Matsui W, Huff CA, Vala MS, Barber J, Hawkins AL et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 despite inhibition of BCR-ABL in vitro. Blood 2002; 99: 319–325.

96 Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA et al. The role of interferon in chronic myeloid leukemia. Br J Haematol 2010; 150: 2640–2653.

97 Preudhomme C, Guilhot J, Nicolini FE, Guerci-Bresler A, Rigal-Huguet F, et al. The role of interferon in chronic myeloid leukemia. Br J Haematol 2003; 122: 232–238.

98 Simonsson B, Gedde-Dahl T, Markeván B, Remes K, Stenstro¨m J, Almqvist A et al. The role of interferon in chronic myeloid leukemia. Br J Haematol 2008; 142: 686–692.

99 Burchert A, Muller MC, Kostrewa P, Erben P, Bostel T, Liebler S et al. Sustained molecular response with interferon alfa maintenance after induction therapy with imatinib plus interferon alfa in patients with chronic myeloid leukemia. J Clin Oncol 2010; 28: 1429–1435.

100 Hasford J, Baccarani M, Hoffmann V, Guilhot J, Saussele S, Rosti G et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood 2011; 118: 686–692.

101 Hainaut P, Hantoniemi P, Edalati G, Zou Y, Schrappe M, Kremer J et al. Interferon alfa treatment delays disease progression in first chronic phase chronic myeloid leukemia. Blood 2010; 116: 3228–3235.

102 Cortes J, Quintás-Cardama A, Jones D, Ravandi F, Garcia-Manero G, Verstovsek S et al. Immune modulation of minimal residual disease in early chronic phase chronic myelogenous leukemia: a randomized trial of frontline high-dose imatinib mesylate with or without pegylated interferon alpha-2b and granulocyte-macrophage colony-stimulating factor. Cancer 2011; 117: 572–580.

103 Palandri F, Iacobucci I, Castagnetti F, Testoni N, Poerio A, Amabile M et al., on behalf of the GIMEMA Working Party on Chronic Myeloid Leukemia. Imatinib and pegylated interferon-alpha in early chronic-phase chronic myeloid leukemia. Blood 2009; 114: 3731–3739.

104 National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Chronic Myelogenous Leukemia, version 2.2012. National Comprehensive Cancer Network 2012. http://www.nccn.orgprofessionals/physician_gls/f_guidelines.aspx (accessed 4 May 2012).

105 Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 2012; 367: 2075–2088.

106 Burke AC, Swords RT, Kelly K, Giles FJ. Current status of agents active against the T315I chronic myeloid leukemia phenotype. Expert Opin Emerg Drugs 2011; 16: 85–103.

107 Itonaga H, Tsushima H, Hata T, Matsuo E, Imanishi D, Imaizumi Y et al. Successful treatment of a chronic-phase T315I-mutated chronic myelogenous leukemia patient with a combination of imatinib and interferon-alpha. Int J Hematol 2012; 95: 209–213.

108 Comelis AM, Welch MA, Koller C, Jabbour E, Dasatinib combined with interferon-alpha induces a complete cytogenetic response and major molecular response in a patient with chronic myelogenous leukemia harboring the T315I BCR-ABL1 mutation. Clin Lymphoma Myeloma Leukemia 2011; 11: S111–S113.

109 Mollèdrem J, Demmire S, Parker K, Jiang YZ, Mavroudis D, Hensel N et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 1996; 88: 2450–2457.

110 Kanodia S, Wieder E, Lu S, Talpaz M, Alatrash G, Clise-Dwyer K et al. PRI-specific T cells are associated with unmaintained cytogenetic remission of chronic myelogenous leukemia after interferon withdrawal. PLoS One 2010; 5: e11770.

111 Burchert A, Müller MC, Kostrewa P, Erben P, Bostel T, Liebler S et al. Sustained molecular response with interferon alfa maintenance after induction therapy with imatinib plus interferon alfa in patients with chronic myeloid leukemia. J Clin Oncol 2010; 28: 1429–1435.

112 Hardan I, Stanevsky A, Volchek Y, Tohami T, Amariglio N, Trakhtenbrot L et al. Treatment with interferon alpha prior to discontinuation of imatinib in patients with chronic myeloid leukemia. Cytokine 2012; 57: 290–293.

113 Hasford J, Baccarani M, Hoffmann V, Guilhot J, Saussele S, Rosti G et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood 2011; 118: 686–692.

114 Müller MC, Cross NC, Erben P, Schenk T, Hanfstein B, Ernst T et al. Harmonization of molecular monitoring of CML therapy in Europe. Leukemia 2009; 23: 1957–1963.

115 Hanfstein B, Müller MC, Hehlmann R, Erben P, Lauseker M, Fabarius A et al. Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia 2012; 26: 2096–2102.

116 Marin D, Ibrahim AR, Lucas C, Gerrard G, Wang L, Sylldo RM et al. Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol 2012; 30: 232–238.

117 Mahon FX, Faberes C, Puyeo S, Coney-Makhoul P, Salmi R, Boiron JM et al. Response at three months is a good predictive factor for newly diagnosed chronic myeloid leukemia patients treated by recombinant interferon-α. Blood 1998; 92: 4095–4066.

118 Fabarius A, Luehning M, Hochhaus A, Muller MC, Hanfstein B, Haferlach C et al., for the Schweizerische Arbeitsgemeinschaft für Klinische Krebsforschung (SARK) and the German CML Study Group. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV. Blood 2011; 118: 6760–6768.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/