Binaural Auditory Outcomes in Patients with Postlingual Profound Unilateral Hearing Loss: 3 Years after Cochlear Implantation

Griet Mertens, Andrea Kleine Punte, Marc De Bodt, Paul Van de Heyning

Department Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, and University of Antwerp, Antwerp, Belgium

Key Words
Asymmetrical hearing loss · Binaural hearing · Cochlear implants · Profound unilateral hearing loss · Single-sided deafness · Speech perception in noise

Abstract
The value of cochlear implants (CI) in patients with profound unilateral hearing loss (UHL) and tinnitus has recently been investigated. The authors previously demonstrated the feasibility of CI in a 12-month outcome study in a prospective UHL cohort. The aim of this study was to investigate the binaural auditory outcomes in this cohort 36 months after CI surgery. The 36-month outcome was evaluated in 22 CI users with postlingual UHL and severe tinnitus. Twelve subjects had contralateral normal hearing (single-sided deafness – SSD group) and 10 subjects had a contralateral, mild to moderate hearing loss and used a hearing aid (asymmetric hearing loss – AHL group). Speech perception in noise was assessed in two listening conditions: the CI off and the CI on condition. The binaural summation effect (SnN0), binaural squelch effect (S0N0) and the combined head shadow effect (S0N0) were investigated. Subjective benefit in daily life was assessed by means of the Speech, Spatial and Qualities of Hearing Scale (SSQ). At 36 months, a significant binaural summation effect was observed for the study cohort (2.00, SD 3.82 dB; p < 0.01) and for the AHL subgroup (3.34, SD 5.31 dB; p < 0.05). This binaural effect was not significant 12 months after CI surgery. A binaural squelch effect was significant for the AHL subgroup at 12 months (2.00, SD 4.38 dB; p < 0.05). A significant combined head shadow and squelch effect was also noted in the spatial configuration S0N0 for the study cohort (4.00, SD 5.89 dB; p < 0.01) and for the AHL subgroup (5.67, SD 6.66 dB; p < 0.05). The SSQ data show that the perceived benefit in daily life after CI surgery remains stable up to 36 months at CI on. CI can significantly improve speech perception in noise in patients with UHL. The positive effects of CI on speech perception in noise increase over time up to 36 months after CI surgery. Improved subjective benefit in daily life was also shown to be sustained in these patients.

Introduction
In the last few years, there has been a growing understanding and recognition of the effects of profound unilateral hearing loss (UHL) on social, educational and professional development [Wie et al., 2010]. Reduced speech perception in noise, sound localisation and quality of life are well documented problems in subjects suffering from UHL [Arndt et al., 2011; Firstz, 2012a, b; Hassepass et al., 2013; Gartrell et al., 2014].

A distinction between two UHL groups of individuals is made in the literature. Researchers have referred to patients with single-sided deafness (SSD group) in the case of the contralateral ear displaying normal hearing, which is limited to a pure-tone average (PTA3, 5, 1 2 and 4 kHz) maximum of 30 dB HL via air conduction and to patients with a contralateral mild-to-moderate hearing loss as the asymmetric hearing loss group (AHL) [Arndt et al., 2011; Gartrell et al., 2014].

Specific cues that contribute to improved speech recognition in bilateral listening conditions are the head shadow effect, the binaural squelch effect and the binaural summation effect. The head shadow effect is a physical effect caused by diffraction of the signal by the head [Dillon, 2001]. For spatially separated sources, the signal-to-noise ratio (SNR) at each ear will be different due to the head shadow effect. By attending to the ear with the best SNR, speech perception improves. Patients with UHL will reduce speech reception when the poorer SNR is on the side of the functioning ear [Bronkhorst and Plomp, 1988; Dillon, 2001]. The binaural squelch effect is an improvement in speech perception in noise as a result of the addition of an acoustic input with a poorer SNR to the contralateral ear. The interaural time and level differences of spatially separated signals allow improved speech recognition [Bronkhorst and Plomp, 1988; Dubno et al., 2008]. Binaural summation occurs when speech and noise originate from the same location, and the same signal arrives at the two ears simultaneously. Binaural summation can improve the speech reception threshold (SRT) by 0.5–2 dB in normal-hearing subjects [Cox et al., 1981]. For both the binaural summation and the squelch effect to take place, central neural integration from both sides is required. The head shadow effect, on the other hand, can be seen as a monaural phenomenon that does not require any auditory integration of the two signals.

Common treatment modalities for SSD consist of no treatment, a bone conduction device or a CROS (contralateral routing of signal) hearing aid. These modalities do not allow for real binaural hearing because the brain only receives and processes auditory input from one side. The cochlear implant (CI) is the only choice to restore useful hearing to a profoundly deaf ear and, therefore, the only choice in SSD individuals to restore binaural hearing. Vermeire and Van de Heyning [2009] reported 12-month post-CI outcomes in 22 subjects with UHL. A significant combined head shadow and squelch effect was noted in an SSD group. In the AHL group, the effects of CI were larger, and a significant squelch effect of +3.8 dB, and a combined head shadow and squelch effect of...
To maximize speech recognition, interleaved sampling (CIS)-based speech coding strategies in order to the CI fitting in bilateral deafness and subjects used the CI fitting procedure with full electrode insertion up to the marker ring through a common surgical posterior tympanotomy for CI was performed. The CI fitting procedure was similar to CI fitting in bilateral deafness and subjects used continuous interleaved sampling (CIS)-based speech coding strategies in order to maximize speech recognition.

Methods

Subjects. Twenty-two patients with postlingual UHL and incapacitating tinnitus lasting less than 10 years were included in the study (table 1) [Van de Heyning et al., 2008]. The mean age of the subjects was 48 years and 8 months at the time of surgery, and average duration of deafness was 8 years and 6 months. Ten patients (S1–S10) were implanted with a MED-EL COMBI 40+ with a medium electrode and 12 patients (S11–S22) received a MED-EL PULSAR CI100 implant with a FLEXoff electrode. In all subjects, a standard surgical posterior tympanotomy for CI was performed with full electrode insertion up to the marker ring through a cochleostomy in the scala tympani. The CI fitting procedure was similar to CI fitting in bilateral deafness and subjects used continuous interleaved sampling (CIS)-based speech coding strategies in order to maximize speech recognition.

All patients had severe to profound sensorineural UHL with PTA of ≥85 dB HL. The 10 SSD subjects had contralateral normal hearing limited to a PTA at maximum 30 dB HL in air conduction. The 12 subjects in the AHL subgroup had a contralateral mild to moderate hearing loss. The PTA of the non-CI ears are listed in table 1. The mean PTA was 19.5 dB HL in the SSD subgroup and 64.4 dB HL in the AHL subgroup at the 36-month follow-up. Two patients were excluded from the follow-up: S2 lost contralateral hearing due to idiopathic sudden deafness 2 years after CI, and S9 also lost contralateral hearing 2 years after CI due to hemosiderosis. The study was approved by the Ethical Committee of the Antwerp University Hospital and was in accordance with the Declaration of Helsinki and Good Clinical Practice. All patients signed an informed consent form prior to participating in the study.

Audiological Testing. All subjects were evaluated 36 months after fitting of their first CI. Speech perception in noise was determined using the LIST (Leuven Intelligibility Sentences Test) [van Wieringen and Wouters, 2008]. An adaptive procedure was used to determine the SRT. The level of the speech-weighted noise was held constant at 65 dB SPL and the level of the sentences varied in steps of 2 dB adaptively in a one-down, one-up procedure according to the subject’s response. The SRT was ascertained on the basis of the level of the last six sentences of one list, including an imaginary 11th sentence. Tests were conducted in free field in an audiometric soundproof booth. Loudspeakers were at ear level and at a distance of 1 m from the listener. Three spatial speech-in-noise configurations were used: both speech and noise presented from the front (0° azimuth, S0 N0) for measurement of binaural squelch effect, speech from the front and noise from the CI side (90° azimuth, S0 NCI) for measurement of binaural summation effect, speech from the front and noise from the CI side (90° azimuth, S0 N2) for measurement of a combined head shadow and squelch effect. Testing was performed without the CI (Clsoft) and with the CI activated (Clhard). In the S0N2 condition, binaural summation was investigated. In the S0N2 condition, binaural squelch was investigated. The combined head shadow and squelch effect was investigated in the S0N2 condition. Patients who used a hearing aid in daily life also used it during testing.

The Speech, Spatial and Qualities of Hearing Scale (SSQ) [Gatehouse and Noble, 2004] was used to investigate subjective im-

Table 1. Subject details concerning age, duration and cause of deafness, CI type, side of implantation, contralateral PTA and use of a contralateral hearing aid (HA)

Subject No.	Age at surgery, years/months	Duration of deafness, years	Aetiology	CI type	CI ear	PTA of the non-CI ear, dB HL	HA use on non-CI ear
1	35/10	8.5	Temporal bone fracture	COMBI 40+ M	R	28	No
2	50/4	3.5	Autoimmune	COMBI 40+ M	R	69	Yes
3	67/9	10.5	Iatrogenic causes	COMBI 40+ M	L	38	Yes
4	49/3	2.5	Late posttraumatic	COMBI 40+ M	L	46	Yes
5	38/2	2.5	Labyrinthitis	COMBI 40+ M	L	15	No
6	44/8	2.5	Hydrops	COMBI 40+ M	R	49	Yes
7	41/7	20.5	Temporal bone fracture	COMBI 40+ M	L	74	Yes
8	71/7	50.5	Otoxicity	COMBI 40+ M	L	79	Yes
9	49/3	25.5	Hemosiderosis	COMBI 40+ M	R	66	Yes
10	70/1	4	Presbyacusis	COMBI 40+ M	L	51	Yes
11	53/7	13.5	Sudden hearing loss	PULSAR CI100 FLEXoff	R	10	No
12	62/6	2	Sudden hearing loss	PULSAR CI100 FLEXoff	R	10	No
13	59/1	5.5	Hydrops	PULSAR CI100 FLEXoff	R	25	No
14	55/5	6.5	Posttraumatic	PULSAR CI100 FLEXoff	L	25	No
15	22/11	2.5	Sudden hearing loss	PULSAR CI100 FLEXoff	R	11	No
16	40/8	8	Labyrinthitis	PULSAR CI100 FLEXoff	R	11	No
17	64/3	2.5	Otosclerosis	PULSAR CI100 FLEXoff	R	21	Yes
18	47/2	10.5	Viral cochleitis	PULSAR CI100 FLEXoff	L	20	No
19	49/1	3.5	Herpes zoster	PULSAR CI100 FLEXoff	L	15	No
20	49/2	1.5	Otosclerosis	PULSAR CI100 FLEXoff	L	39	No
21	44/6	2.5	Posttraumatic	PULSAR CI100 FLEXoff	L	6	No
22	55/7	2	Posttraumatic	PULSAR CI100 FLEXoff	R	53	Yes

+6.5 dB were found. This paper reports on long-term speech perception in noise and the subjective benefit of UHL subjects 36 months after CI on.
Fig. 1. SRT (in dB SNR) for all subjects, the SSD subgroup and the AHL subgroup in CI on and CI off conditions for the spatial speech configurations S0N0, S0N1 and S1N0 12 months (12M) and 36 months (36M) after cochlear implantation. *p < 0.05; **p < 0.01.

Statistical Analysis. Because of the small sample size, a Wilcoxon signed-rank test was used to assess whether speech reception results changed with CI for each spatial configuration within the two subject groups. To detect differences between the SSD and AHL groups, unpaired t tests were performed. Statistically significant differences (p < 0.01 or p < 0.05) are displayed in the graphs.
and for post hoc analysis the Bonferroni correction was applied. Statistical analysis of the SSQ questionnaire was performed with repeated-measure ANOVA.

Results

Box plots of the speech-in-noise test results for the two listening conditions and the three spatial configurations (S₀N₀, S₀N_{CI} and S_{CI}N₀) for all subjects, and the SSD and AHL subgroups are shown in figure 1. Median, minimum and maximum values are shown in the tables included in figure 1.

The binaural summation effect that is calculated as the difference between the SRT in CI_{on} and CI_{off} in the S₀N₀ condition was significant after 36 months for the study cohort (2.00, SD 3.82 dB) and for the AHL subgroup (3.34, SD 5.31 dB). No significant binaural summation effect was found 12 months after CI surgery in the SSD and AHL subgroups, and after 36 months for the SSD subgroup only.

A significant squelch effect was only established after 12 months for the AHL subgroup (2.00, SD 4.38 dB). This binaural squelch effect was calculated as the difference between CI_{on} and CI_{off} SRT in the S₀N₀ condition.

A combined head shadow and squelch effect, calculated as the difference in SRT between CI_{on} and CI_{off} in the S₀N_{CI} condition, was significant for the study cohort after 12 months (3.33, SD 4.50 dB) and 36 months (4.00, SD 5.89 dB). This effect was also significant for the SSD subgroup after 12 months (2.00, SD 2.09 dB) and for the AHL subgroup after 12 months (5.00, SD 6.05 dB) and 36 months (5.67, SD 6.66 dB).

Results of the SSQ questionnaire are shown in figure 2. For the SSD subgroup, the SSQ total score and for the speech and spatial subscales significantly increased up to 36 months after implantation (speech: p = 0.0058; spatial: p = 0.013; qualities: p = 0.10; total: p = 0.0047). For the AHL subgroup, the SSQ total score and for the speech subsection significantly improved up to 36 months after implantation compared to before CI surgery (speech: p = 0.042; spatial: p = 0.42; qualities: p = 0.70; total: p = 0.017). No significant correlations were found between speech reception in noise and scores on the SSQ questionnaire.

Discussion

The present data demonstrate that the average speech perception in noise improves in patients with acquired UHL in the CI_{on} condition compared to the CI_{off} condition. The results of this study show that the restoration of binaural effects is possible following CI treatment in patients with UHL and normal hearing (SSD group)/moderate hearing loss in the contralateral ear (AHL group).

However, the ability to use binaural inputs takes several years of CI use. This is in line with the findings of studies in bilateral CI showing that several years of CI use are necessary to fully take advantage of binaural cues available from the second implant [Eapen et al., 2009]. These authors found that the binaural squelch effect continues to develop for up to 4 years of bilateral CI use. It was suggested that this was due to the need for greater cortical integration of inputs. Similarly, a considerable amount of time seems to be necessary for the integration of electric input via the CI when normal auditory input is available from the other ear.

Although no significant summation effect was seen in the data collected 12 months after cochlear implantation [Ramos et al., 2012; Gartrell et al., 2014], a significant summation effect was present 36 months after CI in our series. Therefore, binaural processing strategies may develop with continued use of the implant over time, indicating the importance of long-term follow-up studies of binaural evaluation.

In the spatial configuration S₀N₀, we can calculate a combination of the head shadow and squelch effect when listening in the CI_{on} condition as compared to listening in the CI_{off} condition. The addition of the CI resulted in a significant improvement in speech perception in noise.

The results of improved speech perception in noise over time with the CI compared to acoustic hearing only are also reflected by the improved SSQ scores. In the SSD subgroup, a benefit in daily life was shown for speech understanding and for spatial hearing. In the AHL subgroup, a significant improvement in the speech subscale was noted. The speech subscale assesses how well a person can understand speech in quiet and noisy situations, the ratings for which would be expected to be linked to the audiometric results for speech reception tests in noise. For the quality subscale, no significant difference was found between scores before and 36 months after implantation. However, no significant correlations between SSQ scores and speech perception in noise were found. This may be due to a relatively small variation in SSQ scores after 36 months and to the small size of the study group. This also shows that the SSQ and speech in noise tests each measure different aspects of hearing with the CI.

In other studies on CI patients with UHL, results were comparable to those found in this study. Arndt et al. [2011] reported improved speech perception in noise and sound localisation in CI-treated SSD cases 6 months after implantation and suggested that the improvements were due to restored binaural hearing. The benefits of CI also outweighed the benefits obtained through treatment with CROS or bone conduction devices.

Buechner et al. [2010] reported on 5 subjects with SSD and ipsilateral tinnitus 12 months after cochlear implantation. In these subjects, CI surgery did not improve speech perception when the
noise was presented from the front or the side of the CI, but only improved in the spatial configuration of noise on the normal-hearing side and speech from the front (S\textsubscript{N}\textsubscript{AH}, head shadow effect). In our SSD group, no significant benefit of CI could be detected in the S\textsubscript{N}\textsubscript{N0} and S\textsubscript{N}\textsubscript{CI} configurations at 12 months, too. In the S\textsubscript{N}\textsubscript{AH} condition, 4 of 9 subjects showed an improvement in speech perception when the CI was added and 2 subjects had a slightly negative effect [Vermeire and Van de Heyning, 2009].

Another observation is the recently documented influence of tinnitus in the unilateral deaf ear on speech perception in the contralateral normal-hearing ear [Mertens et al., 2013]. The presence of tinnitus can elevate speech perception thresholds in the opposite ear when the implant is switched off, which may confound the ideological performance of the patient in the CI\textsubscript{off} condition.

Our patient population used their CI constantly. The tinnitus relief resulting from CI stimulation was probably an important motivating/driving factor for constant/daily CI use [Van de Heyning et al., 2008; Punte et al., 2011]. This reinforcement to wear a CI may have an influence on the speech reception results obtained with a CI in SSD patients. All patients, both those with normal hearing and those with a moderate hearing loss in one ear, experienced a subjective benefit after CI surgery, as evaluated by the SSQ questionnaire. Of note, self-rating of hearing capabilities using the SSQ is low in unilateral deaf patients, particularly in the unaided condition. This indicates that the experienced handicap caused by UHL is substantial, which has also been reported in the previous literature.

The underlying neural correlate of enhanced speech-in-noise recognition in the binaural stimulation mode with electric and acoustic inputs is still under debate and has been recently investigated by different researchers. Most evidence points to central integration at the higher auditory integration centres of the primary and secondary auditory cortex [Rohl et al., 2011; Straka et al., 2013]. Signals, whether acoustically or electrically evoked, from the auditory nerve follow mainly a crossed pathway, but an ipsilateral route exists, too. The signals from both sides may also integrate at the brainstem level and may as well independently be conveyed in different layers in the same tracts and nuclei [Straka et al., 2013].

The main cortical theory implies that it is not just a mean summation of stimuli but rather the integration and better processing of the information [Goycoolea et al., 2011]. Moreover, this may be different for threshold and suprathreshold functions. For directional hearing, merging of input from both sides occurs at the superior olivary nuclei [Grotte et al., 2010; van der Heijden et al., 2013]. Theoretical models, however, focus on threshold recognition at the brainstem level [Heil, 2014]. Theoretical and experimental models imply that the acoustic nerve information is similar from the acoustic and the electric stimulated side.

Schoof et al. [2013] could not demonstrate binaural unmasking based on interaural time differences and only weak, inconsistent, overall spatial release from masking in a similar condition, where the CI used an envelope feature extraction algorithm. In this experiment, fine-structure analysis for frequencies under 1,500 Hz were used. Whether this is characteristic of summation effects has not yet to be proven.

In this series of patients, all subjects had acquired unilateral deafness. It is unknown whether and when plastic changes can occur after prolonged periods of differentiation, which occurs for example in congenital unilateral deafness [Kral et al., 2015]. However, there is a risk that in some UHL cases where auditory deprivation is experienced for more than 10 years, the potential for binaural hearing advantages to develop may be absent.

The cortical integration theory for enhanced binaural speech recognition also supports the importance of long-term auditory rehabilitation training and explains the observation that enhanced speech recognition ability in noise is demonstrated only after long periods of CI experience of up to 3 years, as shown in our series of UHL patients.

Conclusion

CI can significantly improve speech perception ability in noise for patients with UHL. The positive effects of CI on speech perception in noise increase over time, up to 36 months after implantation. The improvement in the subjective benefit of hearing ability in daily life was also shown to be sustained in these patients over time.

Disclosure Statement

The Antwerp University Hospital is holding a grant from MED-EL and Cochlear. The University of Antwerp is holding a research TOPBOF grant.

References

- Arndt S, Aschendorff A, Laszig R, Beck R, Schild C, Kroeger S, Wesarg T: Comparison of pseudobinaural hearing to real binaural hearing rehabilitation after cochlear implantation in patients with unilateral deafness and tinnitus. Otol Neurotol 2011;32:39–47.
- Bronkhorst AW, Plomp R: The effect of head-induced interaural time and level differences on speech intelligibility in noise. J Acoust Soc Am 1988;83:1508–1516.
- Buchner A, Brendel M, Lesinski-Schiedat A, Wenzel G, Frohne-Buchner C, Jaeger B, Lenarz T: Cochlear implantation in unilateral deaf subjects associated with ipsilateral tinnitus. Otol Neurotol 2010;31:1381–1385.
- Cox RM, DeChiczchis AR, Wark, DJ: Demonstration of binaural advantage in audiometric test rooms. Ear Hear 1981;2:194–201.
- Dillon H: Hearing Aids. Sydney, Boomerang Press, 2001, pp 370–402.
- Dubno JR, Ahiltro JM, Horwitz AR: Binaural advantage for younger and older adults with normal hearing. J Speech Lang Hear Res 2008;51:539–556.
- Eapen BJ, Buss E, Adunka MC, Pillbury HC, 3rd, Buchman CA: Hearing-in-noise benefits after bilateral simultaneous cochlear implantation continue to improve 4 years after implantation. Otol Neurotol 2009;30:153–159.
- Firszt JB, Holden LL, Reeder RM, Cowdry L, King S: Cochlear implantation in adults with asymmetric hearing loss. Ear Hear 2012a;33:521–533.
- Firszt JB, Holden LL, Reeder RM, Waltzman SB, Arndt S: Auditory abilities after cochlear implantation in adults with unilateral deafness: a pilot study. Otol Neurotol 2012b;33:1339–1346.
- Garrell BC, Jones HG, Kan A, Buhr-Lawler M, Gubbelts SP, Litovsky RY: Investigating long-term effects of cochlear implantation in single-sided deafness: a best practice model for longitudinal assessment of spatial hearing abilities and tinnitus handicap. Otol Neurotol 2014;35:1525–1532.
- Gatehouse S, Noble W: The Speech, Spatial and Qualities of Hearing Scale (SSQ). J Int Audiol 2004;43:85–99.
- Goycoolea M, Mena I, Neubauer S: Functional studies (NeuroSPECT) of the human auditory pathway after stimulating binaurally with pure tones. Acta Otolaryngol 2011;131:371–376.
- Grotte B, Pecka M, McAlpine D: Mechanisms of sound localization in mammals. Physiol Rev 2010;90:983–1012.

Proceedings

Audiol Neurotol 2015;20(suppl 1):67–72

DOI: 10.1159/000380751
Hassepass F, Aschendorff A, Wesarg T, Kroger S, Laszig R, Beck RL, Arndt S: Unilateral deafness in children: audiologic and subjective assessment of hearing ability after cochlear implantation. Otol Neurotol 2013;34:53–60.

Heil P: Towards a unifying basis of auditory thresholds: binaural summation. J Assoc Res Otolaryngol 2014;15:219–234.

Kral A, Hubka P, Tillein J: Strengthening of hearing ear representation reduces binaural sensitivity in early single-sided deafness. Audiol Neurotol 2015;20(suppl 1):7–12.

Mertens G, Kleine Punte A, De Ridder D, Van de Heyning P: Tinnitus in a single-sided deaf ear reduces speech reception in the non-tinnitus ear. Otol Neurotol 2013;34:662–666.

Punte AK, Vermeire K, Hofkens A, De Bodt M, De Ridder D, Van de Heyning P: Cochlear implantation as a durable tinnitus treatment in single-sided deafness. Cochlear Implants Int 2011;12(suppl 1):S26–S29.

Ramos A, Polo R, Masgoret E, Artiles O, Lisner I, Zaballos ML, Osorio A: Cochlear implant in patients with sudden unilateral sensorineural hearing loss and associated tinnitus (in Spanish). Acta Otorrinolaringol Esp 2012;63:15–20.

Rohl M, Kollmeier B, Uppenkamp S: Spectral loudness summation takes place in the primary auditory cortex. Hum Brain Mapp 2011;32:1483–1496.

Schoof T, Green T, Faulkner A, Rosen S: Advantages from bilateral hearing in speech perception in noise with simulated cochlear implants and residual acoustic hearing. J Acoust Soc Am 2013;133:1017–1030.

Straka MM, Schendel D, Lim HH: Neural integration and enhancement from the inferior colliculus up to different layers of auditory cortex. J Neurophysiol 2013;110:1009–1020.

van der Heijden M, Lorteije JA, Plauška A, Roberts MT, Golding NL, Borst JG: Directional hearing by linear summation of binaural inputs at the medial superior olive. Neuron 2013;78:936–948.

Van de Heyning P, Vermeire K, Diebl M, Nop P, Anderson I, De Ridder D: Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation. Ann Otol Rhinol Laryngol 2008;117:645–652.

van Wieringen A, Wouters J: LIST and LINT: sentences and numbers for quantifying speech understanding in severely impaired listeners for Flanders and the Netherlands. Int J Audiol 2008;47:348–355.

Vermeire K, Van de Heyning P: Binaural hearing after cochlear implantation in subjects with unilateral sensorineural deafness and tinnitus. Audiol Neurootol 2009;14:163–171.

Wie OB, Pripp AH, Tvetø C: Unilateral deafness in adults: effects on communication and social interaction. Ann Otol Rhinol Laryngol 2010;119:772–781.

Corresponding author:
Griet Mertens
Dienst Neus-Keel-Oorziekten
Universitair Ziekenhuis Antwerpen
Wilrijkstraat 10, BE–2650 Edgegem (Belgium)
E-Mail griet.mertens@ua.be