Supplementary Information

Syntheses, Spectroscopic, Redox, and Structural Properties of Homoleptic Iron(III/II) Dithione Complexes

Kyle J. Colston, a Sara A. Dille, a Benjamin Mogesa, b Jacilynn Brant, c Victor N. Nemykin, d Matthias Zeller, e and Partha Basu* a

a Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis IN, 46202
b Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh PA, 15282
c The Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433
d Department of Chemistry, University of Tennessee, Knoxville TN, 37996
e Department of Chemistry, Purdue University, West Lafayette IN, 47907

* Corresponding author: basup@iupui.edu
Refinement details for $[2][\text{PF}_6]_2$ and $[3][\text{FeCl}_4][\text{PF}_6]_2$

Methods for vibrating sample magnetometry of solid-state sample.

Figure S1. 1H NMR spectrum of $[4][\text{PF}_6]_3$.

Figure S2. 1H NMR spectrum of $[3][\text{PF}_6]_3$.

Figure S3. Inverse molar magnetic susceptibility of $[4][\text{PF}_6]_3$.

Figure S4. FeIII based couples of $[1][\text{PF}_6]_2$, $[2][\text{PF}_6]_2$, $[3][\text{PF}_6]_3$, and $[4][\text{PF}_6]_3$.

Figure S5. Ligand-based couples and DPV of $[1][\text{PF}_6]_2$.

Figure S6. Ligand-based couples at different scan rates and DPV of $[3][\text{PF}_6]_3$.

Figure S7. EDDMs of 1.

Figure S8. Molecular orbital diagram for 3.

Table S1. Temperature dependent δ_{para} for $[3][\text{PF}_6]_3$ and $[4][\text{PF}_6]_3$.

Table S2. TD-DFT predicted excited states transitions of 1.

Table S3. Electronic spectra for 1, $[2][\text{PF}_6]_2$, $[3][\text{PF}_6]_3$, and $[4][\text{PF}_6]_3$.

Table S4. Optimization energies of high and low spin states of 2 and 3.

Table S5. Optimized coordinates of 1.

Table S6. Optimized coordinates 3.
Refinement details for [2][PF₆]₂ and [3][FeCl₄][PF₆]₂

All nonhydrogen atoms were refined anisotropically by full matrix least squares against F². H atoms were positioned geometrically and constrained to ride on their parent atoms. C-H bond distances were constrained to 0.99 and 0.98 Å for CH₂ and CH₃ moieties, respectively. Methyl CH₃ were allowed to rotate but not to tip to best fit the experimental electron density. Uᵦₒ(H) values were set to a multiple of Uₑₒ(C) with 1.5 for CH₃ and 1.2 for CH₂ units, respectively.

The crystal of [2][PF₆]₂ was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell_Now, with the two components being related by a 180° rotation around the reciprocal axis (1 0 0). The two components were integrated using Saint and corrected for absorption using Twinabs. The structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.1680(8).

One of the [PF₆]⁻ anions was found to be disordered by a rotation about the central atom. A two-fold disorder model was used for refinement. The major and minor moieties were restrained to have similar geometries (SAME restraint of Shelxl). For the minor moiety, the P-F distances were restrained to be similar. The ADPs of the major and minor P atoms and of F8 and F8B were each constrained to be identical. Uᵦᵦ components of atomic anisotropic displacement parameters (ADPs) for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratios refined to 0.646(6) to 0.354(6).

In the structure of [3][FeCl₄][PF₆]₂, three of the six isopropyl groups were refined as disordered by a slight rotation around the C-N bond (C5, C6, C7; C8, C9, C10; and C25, C26, C27). The major and minor disordered moieties were each restrained to have similar geometries (SAME and SADI commands of Shelxl). Uᵦᵦ components of ADPs for the disordered atoms closer to each other less than 2.0 Å were restrained to be similar. Subject to these conditions, the occupancy ratios refined to 0.736(18) to 0.264(18), to 0.745(12) to 0.255(12), and to 0.58(3) to 0.42(3).

The two [PF₆]⁻ and the [FeCl₄]⁻ units were found to be disordered by a rotation about the central atom. A two-fold disorder model was used for all three anions. The [PF₆]⁻ anions were restrained to be
close to octahedral in shape by restraining all P-F bond distances and all cis-F•••F contacts to be similar in length for each \([\text{PF}_6]^-\) anion. The \([\text{FeCl}_4]^-\) anion moieties were restrained to be close to tetrahedral by restraining all Fe-Cl bond distances and all Cl•••Cl distances to be similar in length for both moieties. \(U_{ij}\) components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratios refined to 0.706(6) to 0.294(6) for the first \([\text{PF}_6]^-\) anion, to 0.344(8) to 0.656(8) for the second \([\text{PF}_6]^-\) anion, and to 0.413(12) to 0.587(12) for the \([\text{FeCl}_4]^-\) anion.

Methods for vibrating sample magnetometry of solid-state sample

The raw data were converted to inverse molar magnetic susceptibility \((\chi_M^{-1})\) and fit with Curie-Weiss law:

\[\chi = C/(T - \theta) \]

for \(T > 75\text{K}\) using \(1/\chi = 46.118 + 1.7964(T)\).

Given the equation \(1/\chi = A + B \cdot T\), the Weiss temperature \((\theta)\), the effective magnetic moment of Fe \((\mu_{Fe})\) can be derived as follows

\[\theta = -A/B, \quad C = 1/B, \quad \mu_{Fe} = 2.828 \times \sqrt{C} \]

The results are \(\theta = -25.67\), \(C = 0.56 \text{ emu K/mol Oe}\) and \(\mu_{Fe} = 2.1 \mu_B\). A negative value for \(\theta\) implies antiferromagnetic interactions dominate. The magnetization data for \(H = 5\) kOe was converted to \(\chi_M^{-1}\) and fit to the same Curie-Weiss Law for all temperatures (\(T = 1.9\) K - 300 K) using \(1/\chi = 7.9187 + 2.5817(T)\). The \((\mu_{Fe})\) was derived using eqn. X with \(\theta = -3.07\), \(C = 0.39 \text{ emu K/mol Oe}\) and \(\mu_{Fe} = 1.8 \mu_B\). The value for \(\theta\) is negative but smaller than what was observed at \(H = 1\) kOe indicating weak antiferromagnetic interactions dominate the system. The \(\mu_{Fe}\) at both \(H = 1\) kOe and 5 kOe support low spin Fe(III).
Figure S1. 1H NMR spectrum of $[4][\text{PF}_6]_3$ collected in CD ($\delta = 1.93$ ppm) at 296 K.

Figure S2. 1H NMR spectrum of $[3][\text{PF}_6]_3$ recorded as described in Figure S1.
All electrochemical data presented below is recorded as described in Figure 3.

Figure S4. Fe^{III} based redox couples for [1][PF₆]₂ (blue), [2][PF₆]₂ (orange), [3][PF₆]₃ (red), and [4][PF₆]₃ (gray).
Figure S5. Ligand-based couples (left) and DPV (right) of [1][PF$_6$]$_2$.

Figure S6. Ligand-based couples at different scan rates (left) and DPV (right) of [3][PF$_6$]$_3$.
Figure S7. Electron density difference maps (EDDMs) of 1. PCM-TD-DFT calculations for 1 were performed in acetonitrile using B3LYP with 6-311G* for light atoms and the LANL2DZ effective core potential for Fe. Attempts to model the electronic spectra for 1 with full electron basis sets for Fe were unsatisfactory in both gas and solution phase calculations, and all attempts to model the electronic spectra of 3 were unsuccessful. Electron accepting orbitals are colored green while electron donating orbitals are blue. Transition energies and participating orbitals are included for each EDDM. TD-DFT output for each complex excited state is included in Table S2.

Figure S8. Frontier orbitals and energy diagrams of 3. Energies are relative and each molecular orbital is paired with its corresponding energy on the diagram. HOMO and LUMO are highlighted blue for clarity.
Table S1. \(\delta_{\text{para}} \) shifts for [3][PF\(_6\)]\(_3\) and [4][PF\(_6\)]\(_3\) at various temperatures.

[4][PF\(_6\)]\(_3\)

T (K)	\(H_A \) (1H)	\(H_B \) (1H)	\(H_C \) (2H)	\(H_D \) (2H)	\(H_E \) (2H)	\(H_F \) (9H)	\(H_G \) (9H)	\(H_H \) (4H)
296	30.88	24.52	17.86	6.06	5.46	3.81	3.55	-0.39
286	31.92	25.56	18.66	6.12	5.54	3.80	3.52	-0.40
273	33.95	26.85	19.66	6.16	5.60	3.80	3.53	-0.41
263	35.53	27.79	20.41	6.20	5.63	3.78	3.51	-0.42
253	37.21	28.79	21.25	6.231	5.66	3.77	3.50	-0.42
243	39.17	29.95	22.14	6.27	5.70	3.78	3.49	-0.43

[3][PF\(_6\)]\(_3\)

T (K)	\(\text{CH}_2 \)	\(\text{CH} \) (6H)	\(\text{CH}_3 \)	\(\text{CH}_3 \) (6H)						
296	26.70	24.17	6.15	5.60	5.34	4.83	3.72	2.74	1.34	0.45
286	27.90	25.25	6.21	5.66	5.33	4.64	3.68	2.84	1.32	0.35
273	29.53	26.67	6.31	5.76	5.35	4.44	3.69	3.00	1.34	0.26
263	30.83	27.72	6.34	5.79	5.30	4.23	3.64	3.06	1.30	0.13
253	32.28	28.92	6.40	5.86	5.29	4.05	3.63	3.18	1.29	0.03
243	33.76	30.08	6.45	5.93	5.28	3.87	3.62	3.27	1.27	-0.06
Table S2. TD-DFT calculated excited states for 1.

Excited State	Singlet-A	E (eV)	λ (nm)	f	<S^2>
1	Singlet-A	1.1068	1120.25	0.0004	0.000
180 - 197	0.18776				
181 - 198	-0.18484				
192 - 194	-0.15289				
192 - 198	-0.39899				
193 - 195	0.15596				
193 - 197	0.40655				

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -4017.06446100

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	Singlet-A	E (eV)	λ (nm)	f	<S^2>
2	Singlet-A	1.1419	1085.77	0.0000	0.000
180 - 197	-0.12010				
181 - 198	-0.12330				
187 - 197	0.23442				
191 - 195	0.13988				
191 - 197	0.33114				
191 - 198	0.12939				
192 - 195	-0.11429				
192 - 197	-0.24589				
192 - 198	-0.17915				
193 - 194	0.11361				
193 - 197	-0.17206				
193 - 198	0.24673				

Excited State	Singlet-A	E (eV)	λ (nm)	f	<S^2>
3	Singlet-A	1.1425	1085.22	0.0000	0.000
180 - 198	0.12194				
181 - 197	-0.12146				
187 - 198	0.23473				
191 - 194	0.13972				
191 - 197	-0.13026				
191 - 198	0.33103				
192 - 194	0.11521				
192 - 197	-0.17649				
192 - 198	0.24964				
193 - 195	0.11248				
193 - 197	0.24214				
193 - 198	0.17548				

Excited State	Singlet-A	E (eV)	λ (nm)	f	<S^2>
4	Singlet-A	2.0414	607.34	0.0000	0.000
180 - 198	0.14802				
181 - 197	0.14939				
192 - 195	0.24490				
192 - 197	0.38817				
193 - 194	0.24444				
193 - 198	0.38605				

Excited State	Singlet-A	E (eV)	λ (nm)	f	<S^2>
5	Singlet-A	2.1144	586.38	0.0002	0.000
180 - 197	0.10640				
181 - 198	0.10673				
187 - 197	0.22698				
191 - 194	-0.14651				
191 - 195	0.18801				
191 - 197	0.35974				
Energy (eV)	Wavelength (nm)	Oscillator Strength	Transition Probability	sq. Overlap	
------------	----------------	---------------------	------------------------	-------------	
2.1151	586.19	0.0002	0.000	0.000	
2.8249	438.89	0.0034	0.000	0.000	
2.8492	435.16	0.0184	0.000	0.000	
2.8497	435.08	0.0192	0.000	0.000	
2.9574	419.24	0.0000	0.000	0.000	
2.9931	414.23	0.0205	0.000	0.000	
2.9938	414.13	0.0211	0.000	0.000	
Excited State	Singlet-A	Energy (eV)	Wavelength (nm)	f	\(<S^2> \)
---------------	-----------	-------------	-----------------	---	-----------
13	3.0756	403.13	0.0022	0.000	
14	3.0781	402.80	0.0022	0.000	
15	3.2140	385.77	0.0038	0.000	
16	3.3187	373.59	0.1009	0.000	
17	3.3207	373.37	0.1009	0.000	
18	3.3751	367.35	0.0001	0.000	
19	3.3944	365.26	0.0039	0.000	
20	3.4216	362.35	0.0819	0.000	
Excited State 21: Singlet-A

190 -> 194 0.23054
190 -> 195 -0.25258

Energy: 3.4225 eV Wavelength: 362.26 nm Oscillator Strength: 0.0824

Excited State 22: Singlet-A

188 -> 194 0.44737
189 -> 195 -0.25258
190 -> 194 0.18494
190 -> 195 0.19882

Energy: 3.5967 eV Wavelength: 344.72 nm Oscillator Strength: 0.0000

Excited State 23: Singlet-A

184 -> 194 -0.18999
185 -> 195 -0.18664
186 -> 196 0.24145
188 -> 194 -0.11711
188 -> 195 -0.11820
190 -> 196 0.38414

Energy: 3.6379 eV Wavelength: 340.81 nm Oscillator Strength: 0.0782

Excited State 24: Singlet-A

184 -> 194 0.14874
184 -> 195 -0.16971
184 -> 196 -0.17209
185 -> 194 -0.17481
185 -> 195 -0.14370
186 -> 194 0.23093
186 -> 196 0.40774
190 -> 194 -0.31469

Energy: 3.6390 eV Wavelength: 340.71 nm Oscillator Strength: 0.0797

Excited State 25: Singlet-A

184 -> 194 0.16889
184 -> 195 0.14235
185 -> 194 0.14298
185 -> 195 -0.16872
186 -> 195 0.17362
186 -> 196 -0.22934
187 -> 194 0.10022
188 -> 196 0.40991
190 -> 195 0.30762

Energy: 3.6895 eV Wavelength: 336.05 nm Oscillator Strength: 0.0015

Excited State 26: Singlet-A

184 -> 195 -0.10545
185 -> 194 -0.10608
186 -> 195 0.11887
187 -> 194 0.60682
188 -> 196 0.13764
191 -> 198 -0.13115

Energy: 3.6907 eV Wavelength: 335.93 nm Oscillator Strength: 0.0019

Excited State 27: Singlet-A

184 -> 194 -0.10684
185 -> 195 0.10480
186 -> 194 -0.12017
187 -> 195 0.60141
189 -> 196 0.15752
191 -> 197 -0.13017

Energy: 3.6907 eV Wavelength: 335.93 nm Oscillator Strength: 0.0019
Excited State	Energy (eV)	Wavelength (nm)	f	\langle S^2 \rangle
27: Singlet-A	3.7425	331.29	0.0032	0.000
184 -> 195	0.15753			
185 -> 194	0.16458			
186 -> 194	-0.19680			
187 -> 195	-0.25875			
189 -> 196	0.51796			
190 -> 194	0.11421			
28: Singlet-A	3.7439	331.17	0.0033	0.000
184 -> 194	-0.16982			
184 -> 195	-0.10342			
185 -> 194	-0.10089			
185 -> 195	0.15442			
186 -> 195	0.20194			
187 -> 194	-0.24366			
188 -> 196	0.51715			
190 -> 195	-0.11194			
29: Singlet-A	3.7856	327.51	0.0000	0.000
184 -> 194	0.28972			
184 -> 195	0.14155			
185 -> 194	-0.14263			
185 -> 195	0.30397			
190 -> 196	0.50416			
30: Singlet-A	3.8015	326.14	0.0002	0.000
184 -> 194	0.20378			
184 -> 195	-0.41363			
184 -> 197	-0.14948			
185 -> 194	0.42371			
185 -> 195	0.20312			
185 -> 198	0.15173			
31: Singlet-A	3.8481	322.20	0.0851	0.000
184 -> 194	-0.22983			
184 -> 195	0.22072			
185 -> 194	0.20773			
185 -> 195	0.22381			
186 -> 194	0.52348			
32: Singlet-A	3.8495	322.08	0.0845	0.000
184 -> 194	0.21436			
184 -> 195	0.23365			
185 -> 194	0.21993			
185 -> 195	-0.22084			
186 -> 195	0.52071			
33: Singlet-A	3.9497	313.90	0.0100	0.000
182 -> 194	-0.13235			
182 -> 195	-0.11529			
183 -> 194	0.11723			
183 -> 195	-0.13266			
187 -> 196	0.61321			
191 -> 196	-0.11297			
34: Singlet-A	4.0437	306.61	0.0059	0.000
180 ->195 0.11322
181 ->194 -0.12087
182 ->194 0.31362
182 ->195 0.25929
183 ->194 -0.28034
183 ->195 0.29989
187 ->196 0.29202

Excited State 35: Singlet-A 4.0619 eV 305.24 nm f=0.0025 <S**2>=0.000
182 ->195 0.15891
183 ->194 0.15039
184 ->196 0.11335
185 ->196 0.57645
186 ->195 0.16469

Excited State 36: Singlet-A 4.0637 eV 305.11 nm f=0.0023 <S**2>=0.000
182 ->194 -0.16034
183 ->195 0.15652
183 ->196 -0.10006
184 ->196 0.57539
185 ->196 -0.11563
186 ->194 0.16017

Excited State 37: Singlet-A 4.0788 eV 303.97 nm f=0.0000 <S**2>=0.000
184 ->194 0.16698
185 ->195 0.15944
186 ->196 0.59964
188 ->197 0.11082
189 ->198 -0.11662
190 ->196 -0.13906

Excited State 38: Singlet-A 4.0930 eV 302.91 nm f=0.0160 <S**2>=0.000
179 ->194 -0.12461
182 ->194 -0.19994
182 ->195 0.30278
182 ->196 0.20231
183 ->194 0.29220
183 ->195 0.21626
183 ->196 -0.16785
184 ->196 -0.11150
185 ->196 -0.23325

Excited State 39: Singlet-A 4.0948 eV 302.78 nm f=0.0160 <S**2>=0.000
179 ->195 0.12434
182 ->194 -0.29456
182 ->195 -0.20758
182 ->196 -0.17085
183 ->194 -0.21053
183 ->195 0.29534
183 ->196 -0.20525
184 ->196 -0.23696
185 ->196 0.10493

Excited State 40: Singlet-A 4.1564 eV 298.30 nm f=0.0214 <S**2>=0.000
188 ->197 0.43519
189 ->198 0.47365
190 ->197 -0.16028

Excited State 41: Singlet-A 4.1565 eV 298.29 nm f=0.0225 <S**2>=0.000
188 ->198 -0.44100
189 ->197 0.49117

Excited State 42: Singlet-A 4.1616 eV 297.92 nm f=0.0000 <S**2>=0.000
186 ->196 -0.15381
188 ->197 0.47028
189 ->198 -0.44740

Excited State 43: Singlet-A 4.1671 eV 297.53 nm f=0.0086 <S**2>=0.000
188 ->198 0.47319
189 ->197 0.41428
192 ->198 0.11080
193 ->197 -0.10088

Excited State 44: Singlet-A 4.2047 eV 294.87 nm f=0.0830 <S**2>=0.000
190 ->197 0.35928
190 ->198 0.54019

Excited State 45: Singlet-A 4.2048 eV 294.86 nm f=0.0845 <S**2>=0.000
188 ->197 0.13530
190 ->197 0.52287
190 ->198 -0.35935

Excited State 46: Singlet-A 4.2800 eV 289.68 nm f=0.0000 <S**2>=0.000
180 ->194 0.17144
180 ->195 0.10770
181 ->194 -0.10966
181 ->195 0.17170
182 ->194 0.27559
182 ->195 -0.31065
183 ->194 0.31373
183 ->195 0.27416
186 ->196 -0.12090

Excited State 47: Singlet-A 4.3116 eV 287.56 nm f=0.0042 <S**2>=0.000
187 ->195 -0.12053
187 ->197 0.55260
187 ->198 0.13190
191 ->197 -0.33731

Excited State 48: Singlet-A 4.3118 eV 287.54 nm f=0.0042 <S**2>=0.000
187 ->194 -0.11995
187 ->197 -0.13177
187 ->198 0.55331
191 ->198 -0.33817

Excited State 49: Singlet-A 4.3221 eV 286.86 nm f=0.0055 <S**2>=0.000
184 ->195 -0.13553
184 ->197 0.45133
185 ->194 0.13351
185 ->198 -0.45107

Excited State 50: Singlet-A 4.4334 eV 279.66 nm f=0.0006 <S**2>=0.000
Excited State	Type	Energy (eV)	Wavelength (nm)	f	S^2
51	Singlet-A	4.4418	279.13	0.0339	0.000
52	Singlet-A	4.4422	279.11	0.0362	0.000
53	Singlet-A	4.4540	278.37	0.0751	0.000
54	Singlet-A	4.4556	278.27	0.0753	0.000
55	Singlet-A	4.4675	277.52	0.0060	0.000
56	Singlet-A	4.4940	275.89	0.0518	0.000
Transition	Coefficient	Energy (eV)	Wavelength (nm)	Oscillator Strength (f)	Squared Transition Dipole Moment (S^2)
------------	-------------	-------------	-----------------	------------------------	-------------------------------------
184 -> 197	0.35803	4.4942	275.87	0.0511	0.000
184 -> 198	-0.14104	4.5804	270.69	0.0929	0.000
185 -> 197	0.14009	4.5813	270.63	0.0942	0.000
185 -> 198	0.35632	4.6573	266.22	0.0035	0.000

Excited State 57: Singlet-A
Excited State 58: Singlet-A
Excited State 59: Singlet-A
Excited State 60: Singlet-A
Table S3: Electronic spectral data of dithiolene complexes.

Compound	λ_{max} (nm)	ε (M$^{-1}$ cm$^{-1}$)	Ref.
[Fe(IV)(mnt)$_2$]$^{2-}$	806(3,300), 609(1,100), 404(8,000), 247(75,000)		1
[Fe(III)(mnt)$_3$]$^{3-}$	990(700), 714(1,100), 602(sh, 1,200), 363(37,000), 250(84,000)		1
[1][PF$_6$]$_2$	923(4,040); 805(3,960); 593 (sh, 7,500); 362 (sh, 15 510); 305 (19 410); 218(33 550)		
[2][PF$_6$]$_2$	887 (3,380); 779 (3,280); 349 (13 310); 292 (23 270); 216 (37 050)		
[3][PF$_6$]$_3$	657 (sh, 3,790); 537 (sh, 4,920); 353 (27 620); 292 (29 010); 228 (33 530)		
[4][PF$_6$]$_3$	882 (4,550); 529 (3,470); 342 (28 900); 281(35 460) 215 (44 030)		

Table S4. Optimization energies (eV) for 3 and 2

Spin	Energy (eV)	Spin	Energy (eV)
HS(S=5/2)	-140303.29442758	HS(S=2)	-127485.38134359
IS(S=3/2)	-140303.80485436	IS(S=1)	-127486.29726489
LS(S=1/2)	-140304.71820637	LS(S=0)	-127487.32960766
Table S5. Optimized coordinates of 1.

Element	X	Y	Z
Fe	0.000000	-0.000000	-0.000000
S	1.926000	0.846000	-1.402000
S	-1.754000	-1.160000	1.401000
S	1.882000	-0.939000	1.401000
S	-0.229000	-2.091000	-1.401000
S	-0.127000	2.099000	1.401000
S	-1.695000	1.244000	-1.402000
C	-1.073000	3.174000	0.503000
C	-2.036000	5.304000	-0.013000
H	-1.735000	5.534000	-1.028000
H	-2.121000	6.227000	0.535000
C	-3.358000	4.582000	0.014000
H	-3.715000	4.453000	1.029000
H	-4.089000	5.153000	-0.534000
C	-2.088000	2.620000	-0.504000
C	-0.002000	5.165000	1.481000
H	0.770000	4.435000	1.651000
C	-5.660000	2.915000	-0.719000
H	-5.601000	2.431000	0.250000
H	-6.432000	2.417000	-1.294000
H	-5.981000	3.940000	-0.577000
C	-4.341000	2.796000	-1.481000
H	-4.146000	1.753000	-1.651000
C	0.612000	6.338000	0.719000
H	-0.077000	7.162000	0.577000
H	0.987000	6.027000	-0.250000
H	1.448000	6.718000	1.294000
	X	Y	Z
---	---------	---------	---------
H	-4.334000	-4.949000	0.535000
C	-2.213000	-2.516000	0.504000
C	-4.472000	-2.583000	1.481000
H	-4.226000	-1.550000	1.651000
C	-5.795000	-2.637000	0.719000
H	-6.165000	-3.646000	0.577000
H	-5.713000	-2.157000	-0.250000
H	-6.541000	-2.103000	1.294000
C	-0.252000	-5.158000	-1.481000
H	0.554000	-4.468000	-1.651000
C	5.183000	-3.699000	0.721000
H	4.726000	-3.869000	-0.248000
H	5.093000	-4.613000	1.296000
H	6.241000	-3.515000	0.579000
C	5.356000	3.444000	-0.720000
H	4.907000	3.635000	0.248000
H	5.311000	4.360000	-1.296000
H	6.404000	3.209000	-0.578000
C	-4.350000	3.518000	-2.826000
H	-4.540000	4.581000	-2.720000
H	-5.140000	3.108000	-3.446000
H	-3.410000	3.381000	-3.347000
C	5.223000	2.007000	-2.827000
H	6.239000	1.640000	-2.720000
H	5.263000	2.895000	-3.447000
H	4.634000	1.261000	-3.347000
C	-0.604000	5.562000	2.827000
H	0.167000	6.004000	3.446000
Element	X	Y	Z
---------	-------	-------	-------
H	-0.998000	4.698000	3.347000
H	-1.395000	6.298000	2.720000
C	-0.873000	-5.527000	-2.826000
H	-0.124000	-6.006000	-3.446000
H	-1.224000	-4.644000	-3.347000
H	-1.699000	-6.222000	-2.720000
C	0.304000	-6.360000	-0.719000
H	-0.424000	-7.150000	-0.577000
H	0.694000	-6.067000	0.250000
H	1.120000	-6.780000	-1.294000
C	-4.516000	-3.303000	2.827000
H	-4.757000	-4.356000	2.720000
H	-5.284000	-2.856000	3.446000
H	-3.570000	-3.212000	3.347000
Table S6. Optimized coordinates for 3.

Element	X	Y	Z
Fe	0.021000	-0.250000	-0.146000
S	-0.942000	1.400000	-1.355000
S	1.048000	-1.833000	1.110000
S	1.152000	1.299000	1.027000
S	1.672000	-0.491000	-1.668000
S	-1.614000	-0.220000	1.410000
S	-1.224000	-1.743000	-1.303000
C	-2.900000	-1.075000	0.748000
C	-5.217000	-1.738000	0.590000
H	-5.583000	-1.273000	-0.178000
H	-5.927000	-1.862000	1.238000
C	-4.684000	-3.064000	0.167000
H	-4.421000	-3.574000	0.949000
H	-5.376000	-3.560000	-0.298000
C	-2.636000	-1.968000	-0.422000
C	-4.516000	0.161000	2.129000
H	-3.702000	0.517000	2.542000
C	-3.603000	-5.241000	-1.491000
H	-3.127000	-5.436000	-0.680000
H	-3.291000	-5.819000	-2.191000
H	-4.542000	-5.383000	-1.353000
C	-3.359000	-3.776000	-1.889000
H	-2.428000	-3.704000	-2.190000
C	-5.148000	1.232000	1.313000
H	-5.966000	0.905000	0.932000
H	-4.550000	1.494000	0.608000
H	-5.335000	1.991000	1.870000
N -4.134000 -0.944000 1.184000
N -3.520000 -2.887000 -0.723000
C -0.537000 2.821000 -0.518000
C 2.496000 3.947000 1.514000
H 2.799000 3.019000 1.610000
C -0.795000 5.118000 0.139000
H -1.138000 5.921000 -0.284000
H -1.166000 5.064000 1.033000
C 0.628000 2.788000 0.420000
C 0.669000 5.185000 0.214000
H 0.930000 5.909000 0.804000
H 1.030000 5.371000 -0.667000
C -2.414000 4.049000 -1.505000
H -2.660000 3.153000 -1.817000
C 2.282000 4.478000 2.874000
H 1.918000 5.365000 2.818000
H 3.118000 4.505000 3.344000
H 1.667000 3.911000 3.347000
N -1.201000 3.932000 -0.642000
N 1.226000 3.919000 0.716000
N 4.183000 -0.964000 -1.005000
N 3.419000 -2.933000 0.822000
C 2.928000 -1.167000 -0.761000
C 5.219000 -1.697000 -0.195000
H 6.045000 -1.771000 -0.699000
H 5.404000 -1.212000 0.625000
C 4.699000 -3.042000 0.121000
H 4.579000 -3.546000 -0.699000
1. Best, S. P.; Clark, R. J. H.; McQueen, R. C. S.; Walton, J. R., Spectroelectrochemical (electronic and FTIR) studies of trismaleonitriledithiolate) complexes. *Inorg. Chem.* **1988**, 27 (5), 884-90.