Supplementary Materials for

Harmony COVID-19: A ready-to-use kit, low-cost detector, and smartphone app for point-of-care SARS-CoV-2 RNA detection

Nuttada Panpradist, Enos C. Kline, Robert G. Atkinson, Michael Roller, Qin Wang, Ian T. Hull, Jack H. Kotnik, Amy K. Oreskovic, Crissa Bennett, Daniel Leon, Victoria Lyon, Shane D. Gilligan-Steinberg, Peter D. Han, Paul K. Drain, Lea M. Starita, Matthew J. Thompson, Barry R. Lutz*

*Corresponding author. Email: blutz@uw.edu

Published 15 December 2021, Sci. Adv. 7, eabj1281 (2021)
DOI: 10.1126/sciadvabj1281

The PDF file includes:

Supplementary Text
Figs. S1 to S10
Tables S1 to S5
References

Other Supplementary Material for this manuscript includes the following:

Movies S1 and S2
Supplementary Text
Development of lyophilized RT-LAMP formulation
Trehalose can stabilize several enzymes, but we found that 2.5% (w/v) trehalose resulted in a slower reaction at 63°C, the optimal reaction temperature of the excipient-free RT-LAMP. An increase of reaction temperature to 65°C can speed up the trehalose-containing RT-LAMP reactions but resulted in unreliable detection at 20 RNA copies/reaction (Fig. S1).
Fig. S1. Effects of excipients on fresh RT-LAMP reactions tested on a commercial real-time thermal cycler.

(A) Time to detection of SARS-CoV-2 RNA and IAC targets in the RT-LAMP containing 2.5\% (w/v) trehalose and 0-2000 copies of SARS-CoV-2 RNA/40µL reaction. N/A means undetectable. For each condition, two technical replicates were run at 4 different reaction temperatures (i.e., 55°C, 59°C, 63°C, and 65°C).

(B) Time to detection of SARS-CoV-2 RNA and IAC targets in the RT-LAMP reactions containing 0 or 20 copies of SARS-CoV-2 RNA/reaction, with and without 2.5\% (w/v) mannitol, at 63°C.
Fig. S2. Cross-reactivity of MERS and SARS in lyophilized RT-LAMP.

Detection time (min) of SARS-CoV-2 RNA and IAC targets in the presence of 4000 copies of either SARS-CoV-1 RNA or MERS RNA in 40µL RT-LAMP reactions at 63°C. Two technical replicates were conducted in each condition. In the reactions without SARS-CoV-2 RNA, we did not observe amplification of FAM signal but observed IAC amplification indicating the amplification reaction was functioning properly in each replicate. 100 copies of SARS-CoV-2 RNA were amplified in each positive control replicate, indicating proper function of SARS-CoV-2 amplification in this master mix.

non-SARS-CoV-2 RNA (copies/reaction)	SARS-CoV-2 RNA (copies/reaction)	min to detection
4000 copies SARS-CoV-1	0	N/A
4000 copies SARS-CoV-1	100	23.5, 24.1
4000 copies MERS	0	N/A
4000 copies MERS	100	24.7, 24.7

Fig. S2. Cross-reactivity of MERS and SARS in lyophilized RT-LAMP.

Detection time (min) of SARS-CoV-2 RNA and IAC targets in the presence of 4000 copies of either SARS-CoV-1 RNA or MERS RNA in 40µL RT-LAMP reactions at 63°C. Two technical replicates were conducted in each condition. In the reactions without SARS-CoV-2 RNA, we did not observe amplification of FAM signal but observed IAC amplification indicating the amplification reaction was functioning properly in each replicate. 100 copies of SARS-CoV-2 RNA were amplified in each positive control replicate, indicating proper function of SARS-CoV-2 amplification in this master mix.
Fig. S3. Heat block used in Harmony COVID-19 device.

Drawing credit: Bryan Willman.
Fig. S4. The design of optical and heater circuit boards for the Harmony COVID-19 device. (A) LED board (B) the detector board
Fig. S5. Circuit board assembly and required parts. (A) LED board. (B) LED board assembled to the lid heater board. (C) Custom-cut filter pieces. (D) Detector board and the main board. Each device require the following parts: thick film resistors (RCL12251R20FKEG, RCL12252R20FKEG, CRCW08050000Z0EBC and RCL12254R70FKEG from Vishey; RN73C1J75RBTDF from TE Connectivity; FTS-105-03-F-DV from Samtec; CR0402AJW-472GAS from Bourns), thin film resistors (RN73H1ETTP3003B25 from KOA Speer; ERJ-2RKF22R0X from Panasonic), multilayer ceramic capacitors (C0402C104M4RACAUTO, KEMET; 0603YC105KAT2A, AVX),
multilayer ceramic capacitor (GRM188R60J226MEA0D, Murata), USB connectors (10118193-0001LF and 10118192-0001LF, FCI / Amphenol), FFC & FPC connector (52745-1497, Molex), standard yellow LEDs (LY E63B-CBEA-26-1-Z, Osram Opto Semiconductor), standard blue LEDs (150141BS63140, Wurth Elektronik), board-to-board & mezzanine connector (CLP-105-02-F-D and FLE-105-01-G-DV-K-TR, Samtec), FFC/FPC jumper cables (15166-0143, Molex), FFC & FPC connector (52559-1452, Molex), 2 headers & wire Housings (FTSH-105-01-F-DH, Samtec), MOSFET (FDMA410NZ, ON Semiconductor), 2 board-mount temperature sensors (PTS060301B100RP100 from Vishay), ARM Microcontrollers (CY8C5888LTI-LP097, Cypress Semiconductor), Photodiodes (SFH 2201, Opto Semiconductor).
Fig. S6. Device assembly.

(A), Top part (B), Bottom part of the device are assembled using 10 screws, 2 compression springs, and 2 torsion springs (McMaster-Carr, Elmhurst, IL) including: Torsion Spring 90 Degree Angle, Left-Hand Wound, 0.204" OD (9271K109), Torsion Spring 90 Degree Angle, Right-Hand Wound, 0.204" OD (9271K143), Black-Oxide Alloy Steel Socket Head Screw M3 x 0.5 mm Thread, 5 mm Long (91290A110), Black-Oxide Alloy Steel Socket Head Screw M3 x 0.5 mm Thread, 10 mm Long (91290A115), Black-Oxide Alloy Steel Socket Head Screw M3 x 0.5 mm Thread, 15 mm Long (91290A572), Black-Oxide Alloy Steel Socket Head Screw M3 x 0.5 mm Thread, 20 mm Long (91290A123), Black-Oxide Alloy Steel Socket Head Screw M3 x 0.5 mm Thread, 25 mm Long (91290A125), Black-Oxide Alloy Steel Socket Head Screw M3 x 0.5 mm Thread, 30 mm Long, Partially Threaded (91290A130), Music-Wire Steel Compression Springs 0.875" Long, 0.36" OD, 0.296" ID (9434K73).
Fig. S7. Analysis of XPRIZE panel of contrived samples containing less than 20 copies/reaction.
Fig. S8. Real-time amplification curves of samples analyzed by HARMONY Covid-19. (A) XPRIZE panel of contrived specimens (B) Extracted RNA from VTM specimens (C) VTM specimens without extraction. Data were exported from the software as .txt file and plotted using in-house Python code available at https://zenodo.org/record/5502373#.YT7XsZ5KgsM
Fig. S9. Standard curves of RT-qPCR using CDC N1 and N2 primers. (A) Amplification curves of N1 assay and (B) N2 assay ranging from 0 to 10^7 copies/reaction (rxn) of SARS-CoV-2 synthetic RNA. Calibration curves for (C) N1 and (D) N2 assays.
Fig. S10. Real-time amplification curves of RT-qPCR using CDC primers/probes. (A) N1 assay. (B) N2 assay. (C) RP assay. Data were exported from the CFX Maestro (Biorad).
Table S1.
Summary of RT-LAMP based technologies that have received the US FDA emergency use authorization as of July 15th, 2021. Note that multiple tests were previously approved but recently removed from the list. Information was gathered from the package inserts and patents. Some aspects of the tests are not available, so listed as not available (N/A).

Developer	Intended use	Product name	Core technology	DNA polymerase	SARS-CoV-2 target(s)	Control	# reaction/sample tested	LAMP multiplexity	Reported LoD	Samples require nucleic acid extraction prior to RT-LAMP	Reagent set up from wet reaction (no lyophilized reaction)	Additional reaction setup after RT-LAMP	Post-reaction analysis			
Mammoth Biosciences, Inc OR University of California, San Francisco (UCSF) and Mammoth Biosciences	H	SARS-CoV-2 DETECTR™ Reagent Kit	RT-LAMP, CRISPR	Bst	N	Human RP	2	Single-target LAMP	12	20	100	Yes, EZ1 Virus Mini Kit v2.0 with automated extraction	Yes, reagents are thawed at room temperature but kept on ice throughout setting up.	Yes, CRISPR	Yes, based on the difference of end-point fluorescence signal from baseline signal	
MobileDetect Bio Inc.	H, M	MobileDetect Bio BCC19 (MD-Bio BCC19) Test Kit	RT-LAMP	Not provided	N,E	N/A	1	Two-target, single readout	75	N/A	75	No, 1uL VTM sample directly amplified in 25uL reaction.	Yes, reagents must be thawed on ice 30 min prior to set up.	No	Yes, cell phone analysis based on color difference of positive and negative.	
SEASON BIOMATERIALS, Inc.	H	AQ-TOP™ COVID-19 Rapid Detection Kit PLUS	RT-LAMP	Bst	N, ORF	Human RP	2	Biplexed FAM/H EX-VIC-JOE with amp control	1	5	50	1.67	Yes, multiple authorized kits	Yes, reagents are thawed at room temperature but kept on ice throughout setting up.	No	Yes, based on automatic CT call by RT-qPCR machine
Company	Target	Kit Name	RT-LAMP	Primers Provided	Primer Description	Human RP	Human Port	Human Type	Human Sensitivity	Human Specificity	CRISPR Reaction	CRISPR Specificity	CRISPR Sensitivity	CRISPR Tools	Calculation of Signal Ratio	
-------------------------------	--------	---	---------	-----------------	---	----------	------------	------------	-------------------	------------------	------------------	---------------------	-------------------	--------------	-------------------------	
Sherlock BioSciences, Inc.	H	Sherlock™ CRISPR SARS-CoV-2 Kit	RT-LAMP	Not provided	N, ORF	3	6.75	45	360	Yes	Not provided	Yes, 2 components	Yes, manual calculation of signal ratio			
Color Health, Inc.	H	Color SARS-CoV-2 RT-LAMP Diagnostic Assay	RT-LAMP	Not provided	N, E 2	3	0.75	N/A	N/A	Yes	No	Yes, Viral DNA/RNA 300 Kit H96 (Perkin Elmer, CMG-1033)	Yes	No	Yes, manual calculation of signal ratio	
Lucira Health, Inc.	H, M, W	Lucira™ CHECK-IT COVID-19 Test Kit	RT-LAMP	Bst or GspM	N (2 regions)	5	0.9	N/A	N/A	No	No	No	No, real-time analysis based on the color change of halochromic agent(s) due to pH change as an outcome from amplification			
Continued Table. S1.

Developer	Intended use	Product name	Amplicon exposure after LAMP	Estimated operating time	Test batch size (reaction, samples)	Cost	Equipment involved
Mammoth Biosciences, Inc OR University of California, San Francisco (UCSF) and Mammoth Biosciences	H	SARS-CoV-2 DETECTR™ Reagent Kit	Yes	**85 min excluding analysis step** 20-min automatic extraction; 30-min RT-LAMP; 15-min CRISPR (anticipated minimal 20-min hands-on from thawing, mixing, and aliquoting reactions for both steps)	96 (reaction), 48 (samples)	N/A	• Qiagen EZ1 Advanced benchtop automated extraction (48 samples)
• ABI 7500 Fast Dx Real-Time PCR system (Thermo Scientific) with software							
• Minicentrifuges							
• Multichannel or single channel pipette and barrier tips (10 µL – 200 µL);							
• PCR plate/tube strip support frame/racks							
• PCR cooler rack							
MobileDetect Bio Inc.	H, M	MobileDetect Bio BCC19 (MD-Bio BCC19) Test Kit	No	**60 min excluding post-analysis step** 30-min thawing reagents, 30-min RT-LAMP; (anticipated 10-min hands-on from mixing and aliquoting reagents)	8 or 96	N/A	• Custom heater or thermal cycler
• Cell phone with software							
• Minivortex							
• Reaction set up station							
• Reaction analysis station							
• Micropipettes							
• Filtered tips							
SEASUN BIOMATERIALS, Inc.	H	AQ-TOP™ COVID-19 Rapid Detection Kit PLUS	No	**70 min excluding analysis step** 30-min manual extraction; 30 min RT-LAMP (anticipated minimal 10-min hands-on from thawing, mixing, and aliquoting reactions)	96 (reaction), 48 (samples)	N/A	• Real-time PCR system (CFX 96 real-time PCR detection system with software CFX manager V3.1 or Applied Biosystems real-time PCR system 7500 with Software 2.0.6)
• Centrifuge							
• Micropipettes							
• Filtered tips							
• Vortex							
Sherlock BioSciences, Inc.	H	Sherlock™ CRISPR SARS-CoV-2 Kit	Yes	**110 min excluding analysis step** 30-min manual extraction; 40 min RT-LAMP; 10-min CRISPR (anticipated minimal 30 -min hands-on from thawing, mixing, and aliquoting reactions)	383(reaction), 30 (samples)	N/A	• Heat block with a heated lid capable of maintaining 61°C or PCR instrument with a heated lid
• Vortex							
• Microcentrifuge							
• Cold blocks							
• Micropipettes							
• Filtered tips							
Color Health, Inc.	H	Color SARS-CoV-2 RT-LAMP Diagnostic Assay	No	**110 min excluding analysis step** 20-min bead-based RNA extraction; 70 min RT-LAMP; (anticipated minimal 20-min hands-on from thawing, mixing, and aliquoting reactions with robots)	384 (reaction), 128(samples)	N/A	• Hamilton STAR/STARlet automated liquid handler with Venus 4 software
• Agilent Bravo automated liquid handling platform with software							
Lucira Health, Inc.	Home, H, M, W	Lucira™ CHECK-IT COVID-19 Test Kit	No	30-min sample run time (with anticipated 2-min handson). Positive samples are called as soon as finished	1	$50/test	• Perkin Elmer Chemagic 360 extraction instrument platform and Chemagic software v6.3.0.3 • Biotek Synergy NEO2 multi-mode microplate reader with Gen5 software v3.9

SARS-CoV-2 DETECTR Reagent Kits (53, 54)
MobileDetect Bio BCC19 (MD-Bio BCC19) Test Kit (55, 56)
AQ-TOP COVID-19 Rapid Detection Kit PLUS (57)
Sherlock CRISPR SARS-CoV-2 Kit (58)
Color SARS-CoV-2 RT-LAMP Diagnostic Assay (59)
Lucira CHECK-IT COVID-19 Test Kit (60, 61)

1 H (High complexity CLIA labs), M (Moderate complexity CLIA labs), W (CLIA-waived, patient care settings), Home (used at home)
2 ORF assay is available but removed from the current kits.
Table S2.

Primers, probes, and control sequences. For primers and probes F2/B2 sequences are underlined, non-template linker sequences are italicized, and adapter sequences are in bold.

SARS-CoV-2 NC1 Primers	Sequence (5’ to 3’)
NC1 FIP	CCACCTGCGTTCTCCATTTCGCCATACGTGTTGTTG
NC1 BIP	GCGTCAAAACAACTCGGTTATTGCCATGTTGAGAGAGCG
NC1 LF	TGGTTACTGCGAGTTGAGATTG
NC1 LB + T Adapter	ACCAACACCTCACATCACACACATAATAGGTTTTACCATGACGAGAGG
NC1 F3	TGGACCCAAATACAGCG
NC1 B3	ATCTGGACTGCTATTGAGTTGTTTA
SARS-CoV-2 NC2 Primer	Sequence
NC2 FIP	CAGCTTCTGCGGAATGTTGTTGAGACGTTGAAATG
NC2 BIP	CTTCCCTATGCTGCTAAACAAAGGCAATTGGGCGGTCATTG
NC2 LF	GTAGTAGAAATACCATCTGGAG
NC2 LB + T Adapter	ACCAACACCTCACATCACACACATAATAGGTTTTACCATGACGAGAGG
NC2 F3	CTACCTACGAAGACGCTACG
NC2 B3	GACAGTTGTTAGGAGGAG
SARS-CoV-2 NC3 Primer	Sequence
NC3 FIP	TGTGTAGGGTCAACACGTTGCGTCGTCGAG
NC3 BIP	TGGCCATCAAAATGGAGATGACAAAGGCTTTCATTGAGTCCATG
NC3 LF + T Adapter	ACCAACACCTCACATCACACACATAATAGGTTTTACCATGACGAGAGG
NC3 LB	CCAAAATTCAAGATCAGTAC
NC3 F3	GACCAGAAACTTACAGCAAG
NC3 B3	GCTTGAATTTCACTAGCAGTTC
IAC (NC1) primer	Sequence
IAC FL + C Adapter	ACCACACCTACACACACACCATATAACTAACCTCACGACATCCATCCTACCA
Target UDP	Sequence
CoV UDP Probe	FITC – CCATCAGCAACAAAGACTACCCACCTCGCCACAAAACCAACACCTC
CoV UDP Quencher	ACATCACATACATAA TTGGTGGCGGAGGTTGAGTCTTTTGGGTGATGG – Iowa Black® FQ
Control UDP	Sequence
IAC UDP Probe	Tex615 – CCTGACACTTCCGAACCCACACCTACGACAGAACCACACCTAC
IAC UDP Quencher	CACACTAATAACTAA AGAAGAAGTGGTGGTGACGAGTCCAGAGG – BH2
IAC Template	Sequence
IAC (NC1) ssDNA	AAT GGA CCC CAA AAT CAG CGA AAT GCA CCC CGC ATT ATC TTT GGT GGA CCC TGT GGA TGT GTC AAT GGG TGG TGC CAG AAT GGA GAA CGC AGT GGG CGA TCA AAA CAA CGT CGG CCC CAA GGT GAT GTC CAG CCA TCC TCA CCA TCG TCC ACC CCA CTG CTC ACT CAA CAT GGC AAG AAT TAA CAC CAA TAG CAG TCC AGA TG
Sample transfer methods at the POC
Volumetric transfer pipettes are used in POC tests, but we have not identified a unified dispenser used in commercial pathogen tests. A unified dispenser integrating the swab and the buffer container in a single unit could reduce opportunities for sample mix-up when multiple samples are processed simultaneously. A simple workflow is crucial, especially in busy settings like clinics. However, in our hands, the in-house built dispenser led to variable dispensed fluid volumes and had a higher failure rate than those of the transfer pipette method. While the unified dispenser has many attractive features, we would not recommend using this in-house assembled dispenser unit until the method has been optimized to achieve a more accurately dispensed volume.

Table. S3.
Feedback from the HCWs
Among HCWs, 30% (3/10) reported problems dispensing the fluid using the unified system. However, 20% (2/10) of HCWs agreed that the unified dispenser offered an advantage in its similarity to other tools used in healthcare settings, and 30% (3/10) HCWs were concerned about contaminating the sample or the environment with the transfer pipette compared to the unified dispenser system. Only 1/10 (10%) HCW preferred the smallest tube (0.2mL) for either method, and 5/10 (50%) reported that larger (1.5mL) tubes were helpful for the unified system, while 40% (4/10) of HCWs said receptacle size did not make a difference when using the transfer pipette, and none reported preference for tube size when using the unified dispenser system. HCWs reported higher confidence in correctly completing the second kit compared to the first kit of each method, indicating a similar learning curve.

(A) User preference for reaction tube size
Note: Cells with 0% response were left empty to aid data visualization.

Question	User response, n (%)				
	0.2 mL	0.5 mL	1.5 mL	0.5mL or 1.5mL	no difference
Which tube size were you most confident using with the unified dispenser swab?	4 (40%)	5 (50%)	1 (10%)		
Which tube size were you most confident using with the transfer pipette?	1 (10%)	4 (40%)	1 (10%)	4 (40%)	

(B) User responses to survey questions during sample transfer usability testing.
Users were asked to provide their response on a Likert scale: (1) Not at all, (2) Slightly, (3) Somewhat, (4) Fairly, (5) Completely. Note: Phrasing of the questions below was slightly modified to be clear outside of the context of the written protocol/survey (original survey here). Cells with 0% response were left empty to aid data visualization.

Question	User response, n (%)				
	(1)	(2)	(3)	(4)	(5)
How confident were you that you added the correct amount of liquid to each reaction tube using the **unified dispenser system**?

| | 2 (20%) | 1 (10%) | 4 (40%) | 3 (30%) |

How confident were you that you completed the protocol correctly using the **unified dispenser system** with the first kit?

| | 2 (20%) | 1 (10%) | 4 (40%) | 3 (30%) |

How confident were you that you completed the protocol correctly using the **unified dispenser system** with the second kit?

| | 5 (50%) | 5 (50%) |

How confident were you that you added the correct amount of liquid to each reaction tube using the **transfer pipette**?

| | 2 (20%) | 2 (20%) | 6 (60%) |

How confident were you that you completed the protocol correctly using the **transfer pipette** with the first kit?

| | 3 (30%) | 4 (40%) | 3 (30%) |

How confident were you that you completed the protocol correctly using the **transfer pipette** with the second kit?

| | 5 (50%) | 5 (50%) |

How confident were you that you completed the **on-screen instructions correctly**?

| | 1 (10%) | 4 (40%) | 5 (50%) |

(C) **User reported errors/challenges between two sample transfer methods.** Cells with no response were left empty to aid data visualization.

Reported error	Number of occurrences for the unified dispensing system	Number of occurrences for the transfer pipette
The transfer method was hard to aim at the receiving reaction tube.	1	
Transfer method dripped/leaked before dispensing to the reaction tube.	2	
The materials were too small or difficult to handle.		3
It was hard to execute specific instructions due to unfamiliarity with the sample transfer device.	2	1
Challenging to dispense a consistent amount of fluid.		3
Not confident liquid was dispensed to the tube.		2
Concerned about contaminating samples or the environment.		3
Table S4.
Detailed reagent and device cost at a production scale of 10,000 units

Item	Supplier	Cost/device (US$)
Detector boards	Macrofab	$7 each x 2 ($14 total)
Main board	Macrofab	$25 each
LED board	Macrofab	$9 each
Lid Heater	Oshpark	$7 each
Heat block	Bryan Willman	$12 each
Housing	Xometry – HP MultiJet Fusion	$50 (costs here should be reduced for scale-up production)
	3D printing, no volume discount	
Red filters	Newport	$10 each, $40 in total
Green filters	Newport	$20 each, $80 in total
Assembly	N/A	$30 (half an hour assembly time at $60/hour cost)
Total		**$267 per unit**

Item	Supplier	Cost/device (US$)
Detector boards	Macrofab	$7 each x 2 ($14 total)
Main board	Macrofab	$25 each
LED board	Macrofab	$9 each
Lid Heater	Oshpark	$7 each
Heat block	Bryan Willman	$12 each
Housing	Xometry – HP MultiJet Fusion	$50 (costs here should be reduced for scale-up production)
	3D printing, no volume discount	
Red filters	Newport	$10 each, $40 in total
Green filters	Newport	$20 each, $80 in total
Assembly	N/A	$30 (half an hour assembly time at $60/hour cost)
Total		**$267 per unit**
Table S5.
Consumable costs per test

Item	Supplier	Costs per kit (US$)
Sampling components ($2 maximum)	Multiple sources	$2
Desiccant	Multiple sources	$0.5
PCR tube	Multiple sources	Negligible
DNA polymerase	Produced in-house	Negligible
Reverse transcriptase	New England Biolabs	$3.5
Thermostable inorganic pyrophosphatase	New England Biolabs	$0.23
Primers	Integrated DNA Technologies	$0.03
Fluorescent probe/quenchers	Integrated DNA Technologies	$0.24
Triton-X100	Sigma-Aldrich	Negligible
dNTPs	New England Biolabs	$0.38
Mannitol	OPS Diagnostics	Negligible
DL-Dithiothreitol (DTT)	Promega	Negligible
Nuclease-free water	VWR	Negligible
1X Tris low-EDTA buffer	VWR	Negligible
Rnasin ribonuclease inhibitor	Promega	$0.71
DNA internal amplification control	Integrated DNA Technologies	$0.01
Cost of goods		**$8.00**
REFERENCES AND NOTES

1. D. Cucinotta, M. Vanelli, WHO declares COVID-19 a pandemic. *Acta Biomed.* 91, 157–160 (2020).

2. World Health Organization, WHO Coronavirus (COVID-19) Dashboard (2021); https://covid19.who.int/.

3. A. Sandford, Coronavirus: Half of humanity now on lockdown as 90 countries call for confinement (Euronews, 2021); www.euronews.com/2020/04/02/coronavirus-in-europe-spain-s-death-toll-hits-10-000-after-record-950-new-deaths-in-24-hou.

4. G. Bonaccorsi, F. Pierri, M. Cinelli, A. Flori, A. Galeazzi, F. Porcelli, A. L. Schmidt, C. M. Valensise, A. Scala, W. Quattrociocchi, F. Pammolli, Economic and social consequences of human mobility restrictions under COVID-19. *Proc. Natl. Acad. Sci. U.S.A.* 117, 15530–15535 (2020).

5. R. A. Teran, K. A. Walblay, E. L. Shane, S. Xydis, S. Gretsch, A. Gagner, U. Samala, H. Choi, C. Zelinski, S. R. Black, Postvaccination SARS-CoV-2 infections among skilled nursing facility residents and staff members - Chicago, Illinois, December 2020-March 2021. *MMWR Morb. Mortal. Wkly Rep.* 70, 632–638 (2021).

6. C. M. Brown, J. Vostok, H. Johnson, M. Burns, R. Gharpure, S. Sami, R. T. Sabo, N. Hall, A. Foreman, P. L. Schubert, G. R. Gallagher, T. Fink, L. C. Madoff, S. B. Gabriel, B. MacInnis, D. J. Park, K. J. Siddle, V. Harik, D. Arvidson, T. Brock-Fisher, M. Dunn, A. Kearns, A. S. Laney, Outbreak of SARS-CoV-2 Infections, Including COVID-19 Vaccine Breakthrough Infections, Associated with Large Public Gatherings — Barnstable County, Massachusetts, July 2021 (US CDC, 2021); www.cdc.gov/mmwr/volumes/70/wr/mm7031e2.htm?s_cid=mm7031e2_w#contribAff.

7. Centers for Disease Control and Prevention, Requirement for Proof of Negative COVID-19 Test or Recovery from COVID-19 for All Air Passengers Arriving in the United States (2021); www.cdc.gov/coronavirus/2019-ncov/travelers/testing-international-air-travelers.html.
8. E. C. Kline, N. Panpradist, I. T. Hull, Q. Wang, A. K. Oreskovic, P. D. Han, L. M. Starita, B. R. Lutz, Multiplex target-redundant RT-LAMP for robust detection of SARS-CoV-2 using novel fluorescent universal displacement probes. medRxiv 2021.08.13.21261995 (2021).

9. V. L. Dao Thi, K. Herbst, K. Boerner, M. Meurer, L. P. M. Kremer, D. Kirrmaier, A. Freistaedter, D. Papagiannidis, C. Galmozzi, M. L. Stanifer, S. Boulant, S. Klein, P. Chlanda, D. Khalid, I. Barreto Miranda, P. Schnitzler, H. G. Kräusslich, M. Knop, S. Anders, A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci. Transl. Med. 12, eabc7075 (2020).

10. S. Wu, X. Liu, S. Ye, J. Liu, W. Zheng, X. Dong, X. Yin, Colorimetric isothermal nucleic acid detection of SARS-CoV-2 with dye combination. Heliyon 7, e06886 (2021).

11. J. Xu, J. Wang, Z. Zhong, X. Su, K. Yang, Z. Chen, D. Zhang, T. Li, Y. Wang, S. Zhang, S. Ge, J. Zhang, N. Xia, Room-temperature-storable PCR mixes for SARS-CoV-2 detection. Clin. Biochem. 84, 73–78 (2020).

12. N. Panpradist, I. A. Beck, J. Vrana, N. Higa, D. McIntyre, P. S. Ruth, I. So, E. C. Kline, R. Kanthula, A. Wong-On-Wing, J. Lim, D. Ko, R. Milne, T. Rossouw, U. D. Feucht, M. Chung, G. Jourdain, N. Ngo-Giang-Huong, L. Laomanit, J. Soria, J. Lai, E. D. Klavins, L. M. Frenkel, B. R. Lutz, OLA-Simple: A software-guided HIV-1 drug resistance test for low-resource laboratories. EBioMedicine 50, 34–44 (2019).

13. N. Panpradist, I. A. Beck, P. S. Ruth, S. Ávila-Ríos, C. García-Morales, M. Soto-Nava, D. Tapia-Trejo, M. Matías-Florentino, H. E. Paz-Juarez, S. del Arenal-Sanchez, G. Reyes-Terán, B. R. Lutz, L. M. Frenkel, Near point-of-care, point-mutation test to detect drug resistance in HIV-1: A validation study in a Mexican cohort. AIDS 34, 1331–1338 (2020).

14. J. D. Vrana, N. Panpradist, N. Higa, D. Ko, P. Ruth, R. Kanthula, J. J. Lai, Y. Yang, S. R. Sakr, B. Chohan, M. H. Chung, L. M. Frenkel, B. R. Lutz, E. Klavins, I. A. Beck, Implementation of an interactive mobile application to pilot a rapid assay to detect HIV drug resistance mutations in Kenya. medRxiv (2021); https://www.medrxiv.org/content/10.1101/2021.05.06.21256654v1.full.pdf+html.
15. B. Moon, M. Jones, J. Valdez, Lyophilized beads containing mannitol (Cepheid, 2021); https://patents.google.com/patent/US20050069898A1/en.

16. D.-C. Nyan, L. E. Ulitzky, N. Cehan, P. Williamson, V. Winkelman, M. Rios, D. R. Taylor, Rapid detection of hepatitis B virus in blood plasma by a specific and sensitive loop-mediated isothermal amplification assay. *Clin. Infect. Dis.* **59**, 16–23 (2014).

17. A. N. Spiess, N. Mueller, R. Ivell, Trehalose is a potent PCR enhancer: Lowering of DNA melting temperature and thermal stabilization of taq polymerase by the disaccharide trehalose. *Clin. Chem.* **50**, 1256–1259 (2004).

18. Y. Mori, K. Nagamine, N. Tomita, T. Notomi, Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. *Biochem. Biophys. Res. Commun.* **289**, 150–154 (2001).

19. K. Tone, R. Fujisaki, T. Yamazaki, K. Makimura, Enhancing melting curve analysis for the discrimination of loop-mediated isothermal amplification products from four pathogenic molds: Use of inorganic pyrophosphatase and its effect in reducing the variance in melting temperature values. *J. Microbiol. Methods* **132**, 41–45 (2017).

20. S. Xie, Y. Yuan, Y. Chai, R. Yuan, Tracing phosphate ions generated during loop-mediated isothermal amplification for electrochemical detection of nosema bombycis genomic DNA PTP1. *Anal. Chem.* **87**, 10268–10274 (2015).

21. I. New England Biolabs, Thermostable Inorganic Pyrophosphatase (2021); www.neb.com/products/m0296-thermostable-inorganic-pyrophosphatase#Product%20Information.

22. T. Lennox, B. E. Slatko, L. E. Sears, Purified thermostable inorganic pyrophosphatase obtainable from thermococcus litoralis (New England Biolabs Inc., 2021); https://patents.google.com/patent/US5861296A/en.
23. U.S. Centers for Disease Control and Prevention, CDC 2019- Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel For Emergency Use Only (U.S. Food and Drug Administration, 2021); www.fda.gov/media/134922/download.

24. Thermo Fisher Scientific, OpenArray Technology Overview (2021); www.thermofisher.com/us/en/home/life-science/pcr/real-time-pcr/real-time-openarray/open-array-technology.html.

25. C. B. F. Vogels, A. E. Watkins, C. A. Harden, D. E. Brackney, J. Shafer, J. Wang, C. Caraballo, C. C. Kalinich, I. M. Ott, J. R. Fauver, E. Kudo, P. Lu, A. Venkataraman, M. Tokuyama, A. J. Moore, M Catherine Muenker, A. Casanovas-Massana, J. Fournier, S. Bermejo, M. Campbell, R. Datta, A. Nelson; Yale IMPACT Research Team, C. S. Dela Cruz, A. I. Ko, A. Iwasaki, H. M. Krumholz, J D Matheus, P. Hui, C. Liu, S. F. Farhadian, R. Sikka, A. L. Wyllie, N. D. Grubaugh, SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity. Med 2, 263–280.e6 (2021).

26. R. Wolfel, V. M. Corman, W. Guggemos, M. Seilmaier, S. Zange, M. A. Müller, D. Niemeyer, T. C. Jones, P. Vollmar, C. Rothe, M. Hoelscher, T. Bleicker, S. Brünink, J. Schneider, R. Ehmann, K. Zwirglmaier, C. Drosten, C. Wendtner, Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465–469 (2020).

27. J. Zhu, J. Guo, Y. Xu, X. Chen, Viral dynamics of SARS-CoV-2 in saliva from infected patients. J. Infect. 81, e48–e50 (2020).

28. B. Pang, J. Xu, Y. Liu, H. Peng, W. Feng, Y. Cao, J. Wu, H. Xiao, K. Pabbaraju, G. Tipples, M. A. Joyce, H. A. Saffran, D. L. Tyrrell, H. Zhang, X. C. Le, Isothermal amplification and ambient visualization in a single tube for the detection of SARS-CoV-2 using loop-mediated amplification and CRISPR technology. Anal. Chem. 92, 16204–16212 (2020).

29. P. Craw, W. Balachandran, Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review. Lab Chip 12, 2469–2486 (2012).
30. E. Gonzalez-Gonzalez, I. Montserrat Lara-Mayorga, I. P. Rodríguez-Sánchez, Y. S. Zhang, S. O. Martínez-Chapa, G. Trujillo-de Santiago, M. M. Alvarez, Colorimetric loop-mediated isothermal amplification (LAMP) for cost-effective and quantitative detection of SARS-CoV-2: The change in color in LAMP-based assays quantitatively correlates with viral copy number. *Anal. Methods* **13**, 169–178 (2021).

31. J. Rodríguez-Manzano, K. Malpartida-Cardenas, N. Moser, I. Pennisi, M. Cavuto, L. Miglietta, A. Moniri, R. Penn, G. Satta, P. Randell, F. Davies, F. Bolt, W. Barclay, A. Holmes, P. Georgiou, Handheld point-of-care system for rapid detection of SARS-CoV-2 extracted RNA in under 20 min. *ACS Cent. Sci.* **7**, 307–317 (2021).

32. Chai Bio (Santa Clara, CA).

33. W. Putri, D. J. Muscatello, M. S. Stockwell, A. T. Newall, Economic burden of seasonal influenza in the United States. *Vaccine* **36**, 3960–3966 (2018).

34. Centers for Diseases Control and Prevention, Estimated influenza illnesses, medical visits, hospitalizations, and deaths in the United States — 2019–2020 influenza season. (1 October 2021); https://www.cdc.gov/flu/about/burden/2019-2020.html.

35. N. Panpradist, Q. Wang, P. S. Ruth, J. H. Kotnik, A. K. Oreskovic, A. Miller, S. W. A. Stewart, J. Vrana, P. D. Han, I. A. Beck, L. M. Starita, L. M. Frenkel, B. R. Lutz, Simpler and faster Covid-19 testing: Strategies to streamline SARS-CoV-2 molecular assays. *EBioMedicine* **64**, 103236 (2021).

36. G. K. Gulati, N. Panpradist, S. W. A. Stewart, I. A. Beck, C. Boyce, A. K. Oreskovic, C. García-Morales, S. Avila-Ríos, P. D. Han, G. Reyes-Terán, L. M. Starita, L. M. Frenkel, B. R. Lutz, J. J. Lai, Inexpensive workflow for simultaneous monitoring of HIV viral load and detection of SARS-CoV-2 infection. *medRxiv* 2021.08.18.21256786 (2021).

37. N. Morant, Novel thermostable DNA polymerases for isothermal DNA amplification. Thesis, University of Bath (2015).
38. Addgene, Ligation Independent Cloning (2021); www.addgene.org/protocols/lic/.

39. N. Panpradist, B. J. Toley, X. Zhang, S. Byrnes, J. R. Buser, J. A. Englund, B. R. Lutz, Swab sample transfer for point-of-care diagnostics: Characterization of swab types and manual agitation methods. *PLOS ONE* **9**, e105786 (2014).

40. R. Mack, J. B. Robinson, When novices elicit knowledge: Question asking in designing, evaluating, and learning to use software, in *The Psychology of Expertise: Cognitive Research and Empirical AI*, R. R. Hoffman, Ed. (Springer, 1992), pp. 245–268.

41. FPbase, Spectra viewer (2020); www.fpbase.org/spectra/.

42. Newport, Optical Filters (2021); www.newport.com/c/optical-filters.

43. Mouser Electronics, LED lighting (2021); www.mouser.com/Optoelectronics/LED-Lighting/_/N-74g9t.

44. A. Alekseenko, D. Barrett, Y. Pareja-Sanchez, R. J. Howard, E. Strandback, H. Ampah-Korsah, U. Rovšnik, S. Zuniga-Veliz, A. Klenov, J. Malloo, S. Ye, X. Liu, B. Reinius, S. J. Elsässer, T. Nyman, G. Sandh, X. Yin, V. Pelechano, Direct detection of SARS-CoV-2 using non-commercial RT-LAMP reagents on heat-inactivated samples. *Sci. Rep.* **11**, 1820 (2021).

45. B. A. Rabe, C. Cepko, SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. *Proc. Natl. Acad. Sci. U.S.A.* **117**, 24450–24458 (2020).

46. S. Wei, E. Kohl, A. Djandji, S. Morgan, S. Whittier, M. Mansukhani, E. Hod, M. D’Alton, Y. Suh, Z. Williams, Direct diagnostic testing of SARS-CoV-2 without the need for prior RNA extraction. *Sci. Rep.* **11**, 2402 (2021).

47. L. Bokelmann, O. Nickel, T. Maricic, S. Pääbo, M. Meyer, S. Borte, S. Riesenberger, Point-of-care bulk testing for SARS-CoV-2 by combining hybridization capture with improved colorimetric LAMP. *Nat. Commun.* **12**, 1467 (2021).
48. W. Yamazaki, Y. Matsumura, U. Thongchankaew-Seo, Y. Yamazaki, M. Nagao, Development of a point-of-care test to detect SARS-CoV-2 from saliva which combines a simple RNA extraction method with colorimetric reverse transcription loop-mediated isothermal amplification detection. *J. Clin. Virol.* **136**, 104760 (2021).

49. J. Qian, S. A. Boswell, C. Chidley, Z. X. Lu, M. E. Pettit, B. L. Gaudio, J. M. Fajnzylber, R. T. Ingram, R. H. Ward, J. Z. Li, M. Springer, An enhanced isothermal amplification assay for viral detection. *Nat. Commun.* **11**, 5920 (2020).

50. M. Patchsung, K. Jantarug, A. Pattama, K. Aphicho, S. Suraritdechachai, P. Meesawat, K. Sappakaw, N. Leelakahorn, T. Ruenkam, T. Wongsatit, N. Athipanyasilp, B. Eiamthong, B. Lakkanasirorat, T. Phoodokmai, N. Nilijianskul, D. Pakotiprapha, S. Chanarat, A. Homchan, R. Tinikul, P. Kamutira, K. Phiwkaow, S. Soithongcharoen, C. Kantiwiriyawanitch, V. Pongsupasa, D. Trisrivirat, J. Jaroensuk, T. Wongnate, S. Maenpuen, P. Chaiyen, S. Kamnerdnakta, J. Swangsri, S. Chuthapisith, Y. Sirivatanauksorn, C. Chaimayo, R. Sutthent, W. Kantakamalakul, J. Joung, A. Ladha, X. Jin, J. S. Gootenberg, O. O. Abudayyeh, F. Zhang, N. Horthongkham, C. Uttamapinant, Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. *Nat. Biomed. Eng.* **4**, 1140–1149 (2020).

51. J. Joung, A. Ladha, M. Saito, M. Segel, R. Bruneau, M.-L. W. Huang, N.-G. Kim, X. Yu, J. Li, B. D. Walker, A. L. Greninger, K. R. Jerome, J. S. Gootenberg, O. O. Abudayyeh, F. Zhang, Point-of-care testing for COVID-19 using SHERLOCK diagnostics. *medRxiv*, 2020.05.04.20091231 (2020).

52. J. P. Broughton, X. Deng, G. Yu, C. L. Fasching, V. Servellita, J. Singh, X. Miao, J. A. Streithorst, A. Granados, A. Sotomayor-Gonzalez, K. Zorn, A. Gomez, E. Hsu, W. Gu, S. Miller, C. Y. Pan, H. Guevara, D. A. Wadford, J. S. Chen, C. Y. Chiu, CRISPR-Cas12-based detection of SARS-CoV-2. *Nat. Biotechnol.* **38**, 870–874 (2020).

53. Mammoth Biosciences Inc., INSTRUCTIONS FOR USE SARS-CoV-2 DETECTRTM Reagent Kit (2021); www.fda.gov/media/141765/download.
54. UCSF Health Clinical Laboratories UCSF Clinical Labs at China Basin, SARS-CoV-2 RNA DETECTR Assay (2021); www.fda.gov/media/139937/download.

55. MobileDetect Bio. Inc., MobileDetect-BIO BCC19 Test Kit for SARS-CoV-2 Detection (2021); www.fda.gov/media/141791/download.

56. MobileDetect Bio. Inc. (2021), vol. 2021.

57. SEASUN BIOMATERIALS Inc., AQ-TOPTM COVID-19 Rapid Detection Kit PLUS (2021); www.fda.gov/media/142800/download.

58. Sherlock Biosciences Inc., INSTRUCTIONS FOR USE SherlockTM CRISPR SARS-CoV-2 kit (2021); www.fda.gov/media/137746/download.

59. Color Health Inc., Color SARS-CoV-2 RT-LAMP Diagnostic Assay EUA Summary (2021); www.fda.gov/media/138249/download.

60. Lucira Health, Lucira™ CHECK-IT COVID-19 Test Kit (2021); www.fda.gov/media/147494/download.

61. D. Mitralvan, K. Dimov, J. R. Waldeisen, Colorimetric Detection of Nucleic Acid Amplification (2021); https://patents.google.com/patent/US20170044599A1/pt-pt.