Displacement Analysis Due To Time History Load Case Study Building C And D Itera

Siska Apriwelni1*, Ahmad Yudi1, Thio Tilameo1

1 Civil Engineering, Institut Teknologi Sumatera, Lampung, Indonesia
*email: siska.apriwelni@si.itera.ac.id

Abstract. Geologically Indonesia is located on the confluence of three major tectonic plates, namely Indo-Australia, the Eurasian plate, the Pacific plate as well as a micro-plate, namely micro-Plate Philippines. The above conditions with Indonesia being one of the countries that suffers earthquakes either tectonic or volcanic. A case study of building C and D ITERA is an adjacent building, then from that researchers want to discuss about the displacement that occurred at the confluence of the structure. The purpose of this research is to know the value of displacement i.e. inter-story drifts, maximum displacement, and the junction between the building happens in the meeting structure building C and D ITERA when given dynamic load time history and to know the minimum distance between buildings so as not to occur collisions (pounding effect). Dynamic analysis for earthquake resistant building design important completed because a more accurate for evaluation against the response structure due to earthquake loads. Earthquake load (time history) used is The Loma Prieta, The Northridge, The Kobe, The Trinidad, and The Hollister has in matching with response spectrum design area of building C and D ITERA.

Keywords : displacement, inter-story drift, maximum displacement; pounding effect; time history

1. Introduction

Indonesia is one of the archipelagic countries in the world, Indonesia is located in an area with the Earth latitude position 07o N - 12o latitude and longitude 95o east longitude - 141o east longitude and is located between 2 continents, namely the continent of Asia and the continent of Australia and 2 oceans, namely the Indian Ocean, and the Pacific Ocean. Geologically, Indonesia is on the junction of three main tectonic plates, namely the Indo-Australian Plate, Eurasian Plate, Pacific Plate and one micro plate, namely the Philippine Micro Plate.

The development of development in Indonesia is increasing rapidly, such as the construction of buildings and other infrastructure. As a result of the rapid development of infrastructure, the land used is decreasing so that multi-storey buildings are built with a distance close to Building C and D of the Sumatra Institute of Technology is one example of infrastructure built close together in Indonesia that is used for educational facilities. This building was built at the Sumatra Institute of Technology, South Lampung Regency with a plan to use the SNI 1726: 2012 earthquake standard.

In this study, the authors want to analyze the behavior of structures in the form of displacement due to time history loads that have been matched with the response spectrum of the ITERA building area C and D building area.

The formulation of the problem of this research is how the effect of time history load on inter-story drifts, maximum deviation and deviation between buildings at the meeting of ITERA C and D building structures, at what joint is the meeting of ITERA C and D building structures which have the maximum horizontal deviation due to time load history, and what is the minimum distance needed so that there is no pounding effect at the meeting of the ITERA building C and D structure.
2. Literature Review

According to Edy Purnomo (2018), dynamic analysis for the design of earthquake-resistant structures is carried out if a more accurate evaluation of the earthquake forces acting on the structure is needed, and to determine the response of the structure due to earthquake loads. Analysis can be performed elastically or inelastically, which is carried out on high-level structures or irregular structures. In the elastic method it is divided into 2, namely Time History Modal Analysis where data is needed in the form of earthquake acceleration and Response Spectrum Analysis, where in this way the maximum response of each vibration variety that occurs is obtained from the Plan Response Spectrum. (Design Spectra). This elastic dynamic analysis is carried out by means of direct integration where this method is widely used because it is simpler.

Planning on a building structure must be planned against dead load, live load, wind load, earthquake load or a combination of these loads. The amount of load working on the structure is taken from SNI 1727-2013 concerning the minimum load for planning buildings and other structures, Indonesian Loading Regulations for Buildings (PPIUG) 1983, and SNI 1726: 2012 concerning procedures for earthquake resistance planning for building and non-structural structures. building.

Response Spectra is the maximum response of a Single Degree of Freedom (SDOF) structural system both acceleration (a), velocity (v), and displacement (d) with the structure being loaded by certain external forces. Referring to SNI 1726-2012, the response spectrum can be determined based on the soil type factor and the earthquake zone zoning factor.

Accelergam is a recording of ground acceleration according to the time function which is completely recorded. The parameters arising from the movement of the land range from simple to complex. According to Edi Supriyanto (2017), the parameters of ground motion are discussed mainly to determine earthquake characteristics as well as their effect on buildings. The ground acceleration due to the earthquake is very important data, especially for engineering purposes. In general, the history of time acceleration is divided into three stages, namely:

1. Initial weak stage.
2. Strong part stage.
3. Weak part final stage.

Analysis of the non-linear time history response should consist of the analysis of a structural mathematical model that directly takes into account the non-linear hysterical behavior of structural elements in order to determine their response by means of a numerical integration method to a compatible set of time history ground motion accelerations with the response spectrum design for the site under review. (SNI 1726-2012).

In SNI 1726-2012 the determination of the deviation between the floors of the design level (perbedaan) must be calculated as the difference in deflection at the center of mass at the top and bottom levels being reviewed. The deviation between design points (Δ) shall be calculated as the greatest difference from the deflection of points above and below the observed level which are in a vertical line along one edge of the wind structure. The deflection of the center of mass at the rate x (δx) (mm) must be determined according to the following equation:

\[\delta_x = \frac{C_d \delta_{xe}}{I_x} \]

(1a)

According to SNI 03-1726-2012, the structural separator must be able to accommodate the maximum inelastic response displacement (δM). δM must be calculated at a critical location taking into account the translational and rotational displacement of the structure, including torque magnification (if any), using the following equation:

\[\delta_M = \frac{C_d \delta_{max}}{I_x} \]

(1b)

According to the 2006 edition of the International Building Code and regulations around the world, the minimum separation distance (Lopez Garacia in International Journal Volume 4, Number 4, 2015) can be calculated using 2 methods, namely:

\[\delta_M = \frac{C_d \delta_{max}}{I_x} \]

(1c)
3. Research Method

The Indonesian territory is located at the confluence of 3 main tectonic plates and micro plates which result in frequent earthquakes. The earthquake that occurs will be a burden on the building structure and it must be ensured that the building structure remains safe if an earthquake occurs. Structures that are commonly used in infrastructure development are reinforced concrete structures, precast concrete, and steel structures where ITERA C and D buildings have been built using reinforced concrete structures. Because an earthquake is a major problem in the planning of a building and the two buildings are close together, when an earthquake occurs, it can be seen the possibility of collisions between buildings. Data is taken from asbuilt and field conditions. At this stage of data collection, the data supports the research in the form of building structure data C and D of the Sumatra Institute of Technology (existing) and data on building conditions in fact.

The as built image of building C and D of the Sumatra Institute of Technology is modeled with a reinforced concrete structure are shown in Figure 1 and 2. The data are as follows:
- Building location : South Lampung
- Building function : Lecture hall
- Soil Type : Medium Soil (SD)
- Number of floors : 4
- Floor height : 4.2 m
- Building height : 15.55 m

The quality of the concrete material used in structural modeling is reinforced concrete with
- f_c' : 24.9 MPa,
- earthquake modulus, E : 23.5 Gpa,
- shear modulus, G : 9,792 GPa,
- modulus of elasticity, Ec : $4700 f_c^{0.5}$.

Figure 1. The structural model of the ITERA C building
The loading used refers to SNI 1727-2013 and PPIUG 1983 for static loads. The live load used is 2.4 kN / m² and SIDL 100 kg / m². The wind load used in this final project is 40 kg / m² in each direction is shown in Figure 3.

Earthquake load used is response spectra and time history. The values of Ss, S1, Fa, Fv, SDs, and SD1 were taken from the web puskim.pu.go.id for the design response spectra with the following values is shown in Figure 4:

- SS = 0.718
- S1 = 0.311
- Fa = 1.226
- Fv = 1.779
- SDs = 0.368
- SD1 = 0.586
The time history used in this study is The Loma Prieta (USA), The Northridge (USA), The Kobe (Japan), The Trinidad (USA), and The Hollister (USA) which have been matched so that the response spectrum time history resembles the response spectrum of design is shown in Figure 5-9.

Figure 5. The Loma Prieta TH1 accelerogram

Figure 6. The Northridge TH 2 Accelogram

Figure 7. The Kobe TH 3 Accelerogram

Figure 8. Accelerogram TH 4 The Trinidad
4. Results

The analysis used is a time history nonlinear dynamic analysis. The analysis uses 2 earthquake directions, namely X or Y in each building according to the direction to be reviewed. The area under review is a meeting between building structures symbolized in the form of numbers, the meeting of structures can be seen in table 1.

Joint	Joint	Joint
53-13	54-9	52-2
70-73	68-57	55-56
265-246	263-230	251-229
416-385	414-104	402-6
684-648	839-646	674-614

The deviation results obtained from the analysis at the joint meeting of ITERA building C and D are:

4.1. Inter-Story Drifts

Deviation between floors that occurs can be seen in the table below:

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)	Deviation (mm)
13	0,000	9	0,000	2	0,000	62,25
73	11,477	57	11,249	56	10,945	63
246	13,541	230	13,607	229	13,768	63
385	7,594	104	8,312	6	8,829	63
648	1,601	646	6,626	614	3,894	45
Table 3. Deviation between floors of building C due to the earthquake in The Northridge.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)	Deviation (mm)
13	0,000	9	0,000	2	0,000	62,25
73	9,280	57	9,115	56	8,873	63
246	10,685	230	10,765	229	10,927	63
385	5,940	104	6,329	6	6,813	63
648	1,289	646	5,650	614	2,966	45

Table 4. Deviation between floors of building C due to the earthquake in The Kobe.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)	Deviation (mm)
13	0,000	9	0,000	2	0,000	62,25
73	10,688	57	10,435	56	10,171	63
246	12,551	230	12,536	229	12,566	63
385	7,022	104	7,737	6	7,700	63
648	0,430	646	0,455	614	3,146	45

Table 5. Deviation between floors of building C due to the earthquake in The Trinidad.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)	Deviation (mm)
13	0,000	9	0,000	2	0,000	62,25
73	8,543	57	8,419	56	8,221	63
246	10,127	230	10,245	229	10,424	63
385	5,661	104	6,230	6	6,725	63
648	1,334	646	5,709	614	2,996	45

Table 6. Deviation between floors of building C due to The Hollister earthquake.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)	Deviation (mm)
13	0,000	9	0,000	2	0,000	62,25
73	10,014	57	9,878	56	9,713	63
246	12,808	230	12,896	229	12,991	63
385	7,678	104	8,569	6	8,606	63
648	0,571	646	0,997	614	3,678	45

Table 7. Deviation between floors of building D due to the earthquake in The Loma Prieta.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)	Deviation (mm)
53	0,000	54	0,000	52	0,000	62,25
70	14,095	68	14,216	55	14,289	63
265	18,080	263	18,209	251	18,348	63
416	11,092	414	11,506	402	11,506	63
684	0,710	839	3,337	674	3,095	45
Table 8. Deviation between floors of building D due to the earthquake in The Northridge.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)	Deviation (mm)
53	0	54	0	52	0	62.25
70	11,682	68	11,781	55	11,836	63
265	14,183	263	14,311	251	14,458	63
416	8,631	414	8,624	402	9,009	63
684	1,886	839	7,953	674	2,772	45

Table 9. Deviation between floors of building D due to the earthquake in The Kobe.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)	Deviation (mm)
53	0,000	54	0,000	52	0,000	62.25
70	11,689	68	11,796	55	11,876	63
265	15,305	263	15,404	251	15,525	63
416	10,630	414	10,567	402	10,527	63
684	1,888	839	7,993	674	3,142	45

Table 10. Deviation between floors of building D due to the earthquake in The Trinidad.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)	Deviation (mm)
53	0,000	54	0,000	52	0,000	62.25
70	9,724	68	9,742	55	9,728	63
265	12,335	263	12,360	251	12,397	63
416	7,392	414	7,718	402	8,030	63
684	1,211	839	5,577	674	1,995	45

Table 11. Deviation between floors of building D due to The Hollister earthquake.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)	Deviation (mm)
53	0,000	54	0,000	52	0,000	62.25
70	10,087	68	10,256	55	10,399	63
265	13,515	263	13,658	251	13,834	63
416	9,713	414	9,574	402	9,588	63
684	1,912	839	7,634	674	2,878	45

From the data above, it is obtained that the maximum deviation between floors in building C is at joint 229 of 13,769 mm and building D which is at join 251 is 18,348 mm, each of which was caused by the earthquake of The Loma Prieta (USA) earthquake of October 18, 1989. The irregularities that occur indicate that the deviation between floors is still allowed because it meets the requirements, namely ≤ 63 mm

4.2. Maximum Deviation

In the calculation of inter-story drifts, the maximum deviation that occurs at the meeting of ITERA's C and D building structures will be obtained. Deviation that occurs at the meeting of structures can be seen in the following table:
Table 12. Deviation of building C due to The Loma Prieta earthquake.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)
13	0.000	9	0.000	2	0.000
73	11.477	57	11.249	56	10.945
246	25.018	230	24.856	229	24.713
385	32.611	104	33.169	6	33.543
648	38.482	646	39.794	614	37.437

Table 13. Deviation of building C due to the earthquake in The Loma Northridge.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)
13	0.000	9	0.000	2	0.000
73	9.280	57	9.115	56	8.873
246	19.965	230	19.881	229	19.800
385	25.905	104	26.209	6	26.613
648	30.631	646	31.860	614	29.579

Table 14. Deviation of building C due to the earthquake in The Kobe.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)
13	0.000	9	0.000	2	0.000
73	10.688	57	10.435	56	10.171
246	23.239	230	22.972	229	22.737
385	30.261	104	30.708	6	30.437
648	31.838	646	31.163	614	33.583

Table 15. Deviation of building C due to the earthquake in The Trinidad.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)
13	0.000	9	0.000	2	0.000
73	8.543	57	8.419	56	8.221
246	18.671	230	18.663	229	18.645
385	24.332	104	24.893	6	25.370
648	29.223	646	30.602	614	28.365

Table 16. Deviation of building C due to The Hollister earthquake.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)
13	0.000	9	0.000	2	0.000
73	10.014	57	9.878	56	9.713
246	22.821	230	22.774	229	22.704
385	30.499	104	31.343	6	31.310
648	32.593	646	32.340	614	34.987

Table 17. Deviation of building D due to The Loma Prieta earthquake.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)
53	0.000	54	0.000	52	0.000
70	14.095	68	14.216	55	14.289
From the results of data processing, the maximum deviation in building C that occurs is 39,794 mm at the 646 joint and building D is 47,681 mm at the 674 joint, each of which is caused by the earthquake load (time history) The Loma Prieta (USA) earthquake of October 18, 1989.

4.3. Deviation Between Buildings

The minimum distance between buildings is calculated using the ABS (ABSolute Sum) method as described in the previous chapter. Deviation that occurs must be reviewed at critical points, the critical points in this study are the intersections between buildings. From equation (1b) the distance between buildings caused by each earthquake load (time history) at the points being reviewed can be seen in table 22.

Table 18. Deviation of building D due to The Loma Northridge earthquake.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)
53	0,000	54	0,000	52	0,000
70	11,682	68	11,781	55	11,836
265	25,865	263	26,092	251	26,294
416	34,424	414	34,716	402	35,303
684	45,870	839	42,669	674	38,075

Table 19. Deviation of building D due to the earthquake in The Kobe.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)
53	0,000	54	0,000	52	0,000
70	11,689	68	11,796	55	11,876
265	26,994	263	27,199	251	27,401
416	37,624	414	37,767	402	37,928
684	44,546	839	45,760	674	41,070

Table 20. Deviation of building D due to the earthquake in The Trinidad.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)
53	0,000	54	0,000	52	0,000
70	9,724	68	9,742	55	9,728
265	22,059	263	22,103	251	22,125
416	29,451	414	29,821	402	30,155
684	33,891	839	35,398	674	32,149

Table 21. Deviation of building D due to The Hollister earthquake.

Joint	Displacement (mm)	Joint	Displacement (mm)	Joint	Displacement (mm)
53	0,000	54	0,000	52	0,000
70	10,087	68	10,256	55	10,399
265	23,602	263	23,914	251	24,233
416	33,315	414	33,488	402	33,821
684	40,326	839	41,122	674	36,700
Table 22. Minimum distance between buildings

No	Earthquake Load	Min Distance Joint 1	Min Distance Joint 2	Min Distance Joint 3
1	The Loma Prieta (USA)	84.352	87.061	85.118
2	The Northridge (USA)	72.043	74.529	67.652
3	The Kobe (Japan)	76.384	76.923	74.653
4	The Trinidad (USA)	63.114	66.000	60.515
5	The Hollister (USA)	72.919	73.462	71.687

It is obtained that the minimum distance caused by the earthquake load of The Loma Prieta (USA) earthquake of October 18, 1989 and is the greatest distance, which is 87.061 mm at meeting 2 which is calculated from the axles to the axles of each column. Therefore, the minimum distance required for building structures C and D ITERA is 587.061 mm. In order to avoid collisions between buildings, the structures must be separated by a distance greater than 587,061 mm.

5. Conclusion
The conclusions obtained from this study include:

5.1. Plastic Joints
Plastic joints formed due to earthquake loads (time history) are:
a. The Loma Prieta (USA) earthquake of October 18, 1989.
b. The Northridge (USA) earthquake of January 17, 1994.
c. The Kobe (Japan) earthquake of January 16, 1995.
d. The Trinidad (USA) earthquake of August 24, 1983.
e. The Hollister (USA) earthquake of April 09, 1961.

Shows the result where some of the dots are in the elastic boundary state followed by the first melt indicated in pink (B). This shows that the building structures C and D ITERA are still safe against earthquake loads that occur.

5.2. Inter-story Drifts (Deviation between Floors)
Deviation between floors that occurs due to earthquake loads (time history) at the meeting of ITERA building C and D structures still meets the requirements of SNI 1726: 2012. The maximum deviation value that occurs in building C is at joint 229 of 13,769 mm and in building D which is at joint 251 of 18,348 mm, each of which was caused by the earthquake of The Loma Prieta (USA) earthquake of October 18, 1989 which shows that the deviation between floors that occur is still allowed because it meets the requirements, namely ≤ 63 mm.

5.3. Maximum Deviation
The maximum deviation that occurs at the meeting of the structure caused by the earthquake load (time history) in building C that occurs is 39.794 mm at joint 684 and building D is 47.681 mm at joint 674, each of which is caused by the earthquake load (time history) of The Loma Prieta (USA) earthquake of October 18, 1989.

5.4. Minimum Distance between Buildings
The analysis carried out to determine the minimum distance between buildings due to earthquake loads (time history) shows that the recommended minimum distance between buildings is 587.061 mm due to the earthquake load of The Loma Prieta (USA) earthquake of October 18, 1989. To avoid collisions between buildings (pounding effect) the separation distance of the structures must be greater than 587,061 mm.
6. Suggestions
In this study, there were also many obstacles that occurred unexpectedly, resulting in delays in doing this final project. Therefore, the authors provide suggestions, including:
1. The earthquake load that should be used is a record of the earthquake (time history) that occurred in the area under review.
2. The structural modeling parameters in the structural analysis software used must be considered properly.
3. The observed structural behavior can be developed in order to obtain a theoretical state of the structure in line with the structure in the field.

References
[1] Bayyinah, D. A. L. N., dan Fainun. 2017. “Studi Perbandingan Analisis Respon Spektra dan Time History untuk Desain Gedung”, dalam Jurnal Teknik ITS Volume 6 No 1. Surabaya: Institut Teknologi Sepuluh November.
[2] Departemen Pekerjaan Umum. 1983. “Peraturan Pembebanan Indonesia Untuk Bangunan Gedung (PPIUG 1983)”. Bandung: Yayasan Lembaga Penyelidikan Masalah Bangunan.
[3] Kumar, M Phani, J D Chaitanya Kumar. 2015. “Seismic Pounding of The Adjacent Building with Different Heights”, dalam International Journal of Engineering Research and Science & Technology Volume 4 No 4.
[4] M.D.J, Sumajouw, Wallah S.E., Windah R.S. 2012. “Optimasi Jarak Antar Dua Bangunan Gedung Ber tingkat Yang Bersebelahan Dengan Memperhitungkan Pengaruh Gempa” dalam Jurnal Sipil Statik Vol.1 No. 1, halaman (1-7).
[5] Nadeak, Rijuli. 2018. “Analisis Perilaku Struktur Beton dan Baja dengan Metode Levelling Time History (Studi Kasus Gedung E ITERA). Lampung Selatan: Institut Teknologi Sumatera.
[6] Purba Akhmad Akbar, Rahmi K. 2017. “Analisa Struktur Gedung Kantor Kepanduan Belawan Terhadap Beban Gempa Dengan Analisa Pushover”. Dalam jurnal Sipil Universitas Sumatera Utara Volume 6 No 1.
[7] Purnomo, Edy. Edy Purwanto., dan Agus Supriyadi. 2014. “Analisis Kinerja Struktur Pada Gedung Bertingkat dengan analisis Dinamik Respon Spektrum Menggunakan Software ETABS (Studi Kasus: Bangunan Hotel di Semarang)”, dalam e-Journal Matriks Teknik Sipil. Surakarta: Universitas Sebelas Maret.
[8] SNI 1726-2012. 2012. “Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung”. Badan Standarisi Indonesia. Jakarta.
[9] SNI 1727-2013. 2013. “Beban Minimum Untuk Perancangan Bangunan Gedung dan Struktur Lain”. Badan Standarisi Indonesia. Jakarta.
[10] Supriyanto, Edi. 2017. “Analisa Ragam Riwayat Waktu (Time History Analysis)”, di https://www.slideshare.net/edisupriyanto5/time-history-analysis?from action=save (diakses pada tanggal 5 Maret).
[11] Syamsi, M. I. 2013. “Respon Model Gedung Beton Bertulang dengan Penambahan Dinding Pengisi terhadap Beban Gempa”. dalam Semesta Teknika Volume 21 No 1 (page.33-42).