Electrical current noise of a beam splitter as a test of spin-entanglement

P. Samuelsson, E.V. Sukhorukov and M. Büttiker
Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland
(Dated: March 22, 2022)

We investigate the spin entanglement in the superconductor-quantum dot system proposed by Recher, Sukhorukov and Loss, coupling it to an electronic beam-splitter. The superconductor-quantum dot entangler and the beam-splitter are treated within a unified framework and the entanglement is detected via current correlations. The state emitted by the entangler is found to be a linear superposition of non-local spin-singlets at different energies, a spin-entangled two-particle wavepacket. Colliding the two electrons in the beam-splitter, the singlet spin-state gives rise to a bunching behavior, detectable via the current correlators. The amount of bunching depends on the relative positions of the single particle levels in the quantum dots and the scattering amplitudes of the beam-splitter. It is found that the bunching-dependent part of the current correlations is of the same magnitude as the part insensitive to bunching, making an experimental detection of the entanglement feasible. The spin entanglement is insensitive to orbital dephasing but suppressed by spin dephasing. A lower bound for the concurrence, conveniently expressed in terms of the Fano factors, is derived. A detailed comparison between the current correlations of the non-local spin-singlet state and other states, possibly emitted by the entangler, is performed. This provides conditions for an unambiguous identification of the non-local singlet spin entanglement.

PACS numbers: 03.67.Mn, 73.50.Td, 73.23.Hk

I. INTRODUCTION

Ever since the concept of entanglement was introduced, it has been at the heart of conceptual discussions in quantum mechanics. The discussions have mainly concerned the non-local properties of entanglement. Two entangled, spatially separated particles, an Einstein-Podolsky-Rosen (EPR) pair, are correlated in a way which can not be described by a local, realistic theory, i.e. the correlations give rise to a violation of a Bell Inequality. In optics, the non-local properties of entangled pairs of photons have been intensively investigated over the last decades. Recently, the interest has turned to possible applications making use of the properties of entangled particles. Entanglement plays an important role in many quantum computation and information schemes, and quantum cryptography as prominent examples.

Compared to optics, the investigation of entanglement in solid state systems is only in its infancy. However, a controlled creation, manipulation and detection of entanglement is a pre-requisite for a large-scale implementation of quantum computation and information schemes, making it of large interest to pursue the investigation of entanglement in solid state systems. Considerable experimental and theoretical progress has already been made in the understanding of entangled qubits implemented with Josephson junctions.

For the entanglement of individual electrons, recently several important steps towards an experimental realization in mesoscopic conductors were taken. A scheme for entanglement of orbital degrees of freedom was proposed in Ref. 13, allowing for control of the entanglement with experimentally accessible electronic beam-splitters. Moreover, several proposals for detecting entanglement via a violation of a Bell Inequality, expressed in terms of zero-frequency noise correlators, have been put forth. Very recently, following a proposal by Beenakker et al. 21, several works have discussed the possibility of electron-hole and post-selected electron-electron entanglement. In particular, entanglement in the electrical analog of the optical Hanbury Brown Twiss effect was investigated in a mesoscopic conductor in the quantum Hall regime, transporting electrons along single edge-states and using quantum point contacts as beam-splitters. Moreover, a scheme for energy-time entanglement has been proposed. The consequences of dephasing for orbital entanglement have been investigated as well.

Earlier proposals for electronic entanglement have been based on creating and manipulating spin entanglement, in normal-superconducting systems. Spins in semiconductors have been shown to have dephasing times approaching microseconds, making spins promising candidates for carriers of quantum information. However, a direct detection of spin entanglement in mesoscopic conductors is difficult. The natural quantity to measure is the electrical charge current. To investigate spin current, one thus in principle has to convert the spin current to charge current via e.g. spin-filters. Although efficient spin-filters have very recently been realized experimentally, there are considerable remaining experimental complications in manipulating and detecting individual spins on a mesoscopic scale. In particular, to detect the entanglement by a violation of a Bell Inequality, one needs two spin filters with independent and locally controllable directions to mimic the polarizers in optical schemes.

An alternative idea to detect spin entanglement was proposed by Burkard, Loss and Sukhorukov 30 and also...
discussed qualitatively by Oliver, Yamaguchi and Yamamoto. They proposed to use the relation between the spin and orbital part of the wavefunction, imposed by the antisymmetry of the total wavefunction under exchange of two particles. A state with an antisymmetric, singlet spin wavefunction has a symmetric orbital wavefunction and vice versa for the spin triplet. When colliding the electrons in a beam-splitter, spin singlets and triplets show a bunching and anti-bunching behavior respectively. These different bunching behaviors were found to be detectable via the electrical current correlations, i.e. the properties of the orbital wavefunction were used to deduce information about the spin state. This approach was later extended to all moments of the current. Moreover, it was recently further elaborated in Ref. [39], taking spin dephasing and non-ideal beam-splitters into account.

In comparison to detecting spin entanglement via a violation of a Bell Inequality, the approach of Ref. [30] however has a fundamental limitation. The antisymmetric spin singlet is an entangled state while symmetric, triplet spin states are not necessarily entangled. Considering e.g. the standard singlet-triplet basis, only one of the three triplets $|\uparrow\downarrow\rangle$, $|\uparrow\uparrow\rangle$ and $|\downarrow\downarrow\rangle$ is spin entangled. However, all spin-triplet states, having the same symmetrical orbital wavefunction, give rise to the same anti-bunching behavior in the current correlators. As a consequence, in contrast to a Bell Inequality test, the approach of Ref. [30] can not be employed to distinguish between entangled and non-entangled triplet states. To be able to distinguish between different triplet state, one would need to consider more involved schemes, implementing in addition e.g. single spin rotations.

Despite this fundamental limitation, the approach of Ref. [30] is due to its comparable simplicity still of interest for entanglers emitting non-local spin-singlets. However, the investigations in Ref. [30] were carried out assuming a discrete spectrum of the electrons and a mono-energetic entangled state incident on the beam-splitter. While giving a qualitatively correct picture of the physics, it does not quantitatively describe the situation in a conductor connected to electronic reservoirs, where the spectrum is continuous and the entangled electrons generally have a wave-packet nature, i.e. the wavefunction is a linear superposition of entangled electrons at different energies. Moreover, the wavefunction in Ref. [30] was not derived considering a specific entangler, it was instead taken to be an incoming plane wave with unity amplitude. This makes the calculated current correlations inapplicable to most of the entanglers considered theoretically, which operate in the tunneling regime and emit entangled states with a low amplitude.

In this paper, we revisit the approach of detection of spin-singlet entanglement presented in Ref. [30]. The abovementioned shortcomings are bypassed by treating the entangler and the beam-splitter within a unified theoretical framework. As a source of non-local spin-singlets, the superconductor-quantum dot entangler (see Fig. 1) investigated in detail by Recher, Sukhorukov and Loss in Ref. [32], is considered. Using a formal scattering approach, the wavefunction of the electrons emitted from the entangler is calculated. It is found to be a linear superposition of pairs of spin-entangled electrons at different energies, a two electron wavepacket, similar to what was found for the superconducting orbital entangler in Ref. [15]. The amplitude at each energy depends on the position of the single particle levels in the dots. Both the process where the electrons tunnel through different dots, creating the desired non-local EPR-pair, as well as the unwanted process when both electrons tunnel through the same dot, are investigated. In both cases the spin wavefunction is a singlet, preserving the spin-state of the Cooper pair tunneling out of the superconductor, however the orbital states are different.

The electrons emitted by the entangler are then colliding in a beam-splitter and detected in two electronic reservoirs. Due to the singlet spin state, electrons tunneling through different dots show a bunching behavior when colliding in the beam-splitter. Both the auto and cross correlations between currents flowing into the normal reservoirs (but not the average current) depend on the degree of bunching. We find that the bunching is proportional to the wavefunction overlap of the two colliding electrons. This overlap depends strongly on the position of the single-particle levels in the dot, being maximal for both levels aligned with the chemical potential of the superconductors. The part of the current correlators sensitive to bunching is of the same magnitude as the part insensitive to bunching, making an experimental detection of the spin-singlet entanglement feasible.

The current correlators are independent of scattering phases and thus insensitive to orbital dephasing. However spin dephasing generally leads to a mixed spin state with a finite fraction of triplets. Since the spin triplets have a tendency to anti-bunch, the spin dephasing results in a reduction of the overall bunching behavior and eventually, for strong spin-dephasing, to a cross-over to an anti-bunching behavior. A simple expression for the
concurrence, quantifying the entanglement in the presence of spin dephasing, is derived in terms of the Fano factors.

For electrons tunneling through the same dot, the wavefunction is a linear superposition of states for the pair tunneling through dots 1 and 2. Both the cross- and auto correlators contain a two-particle interference term, sensitive to the position of the single-particle interference term, sensitive to the position of the single-particle levels in the dots, however in a different way than the bunching dependent term for tunneling through different dots. In particular, the correlators depend on the scattering phases, providing a way to distinguish between the two tunneling processes by modulating e.g. the the Aharonov-Bohm phase. Moreover, the phase dependence makes the correlators sensitive to orbital dephasing, while the spin part of the wavefunction is insensitive to dephasing.

II. THE SUPERCONDUCTOR-QUANTUM DOT ENTANGLER

A schematic picture of the system is shown in Fig. 1. A superconducting (S) electrode is connected to quantum dots (1 and 2) via tunnel barriers. The dots are further contacted, via normal leads to a controllable single-mode electronic beam-splitter characterized by the forward scattering amplitudes r; t, r' and t'. The arms going out from the beam-splitter are connected to normal electron reservoirs A and B.

We first concentrate on a description of the entangler, the superconductor-quantum dot part of the structure in Fig. 1 investigated in great detail in Ref. 32. The entangler was also recently examined within a density matrix approach. The role of the beam-splitter is discussed further below, after a discussion of the quantum state emitted by the entangler. To simplify our presentation we carry over the notation from Ref. 32 when nothing else is stated.

An energy diagram of the superconductor-quantum dot-normal lead part of the structure is shown in Fig. 2. A negative bias $-eV$ is applied to the normal reservoirs while the superconductor is grounded. The chemical potential of the superconductor is taken as a reference energy, $\mu_S = 0$, giving the chemical potential of both normal reservoirs $\mu_{NA} = \mu_{NB} \equiv \mu_N = -eV$. Each dot 1 and 2 contain a single, spin-degenerate level in the energy range $-eV$ to eV, with energy ε_1 and ε_2 respectively. The level spacing in the dots is assumed to be much larger than the applied bias, so no other levels of the dots participate in the transport. The temperature is much lower than the applied bias (but much larger than the Kondo temperature).

The tunnel barriers between the dots and the superconductor are much stronger than the tunnel barriers between the dots and the normal leads. As a consequence, the broadening γ of the levels in the dots (taken the same for both dots) results entirely from the coupling to the normal leads. The voltage is applied such that the entire broadened resonances are well within the bias window, i.e. $eV - |\varepsilon_j| \gg \gamma$ with $j = 1, 2$. The quantum dots are in the Coulomb blockade regime, i.e. it costs a charging energy U to put two electrons on the same dot. The ground state contains an even number of electrons in the lower lying levels, i.e. anti-ferromagnetic filling of the dots.

The transport takes place as Cooper pairs tunnel from the superconductor, through the dots and out into the normal leads. Due to the dominating tunnel barrier at the dot-superconductor interface, one pair that tunnelled onto the dots leaves the dots well before the next pair tunnels. There are two distinct possibilities for the Cooper pair to tunnel from the superconductor to the normal leads, shown in Fig. 3:

- I, the pair splits and one electron tunnels through each dot, 1 and 2.
- II, both electrons tunnel through the same dot, 1 or 2.

It was shown in Ref. 32 that under the conditions stated above, all other tunneling processes could be neglected.
The process I creates the wanted EPR-pair, a spin singlet state with the two electrons spatially separated. However, in an experiment one cannot exclude the second, unwanted process, II. One thus has to investigate process II as well, to provide criteria for an unambiguous experimental identification of emission of EPR-pairs.

The first process, I, with the two electrons tunneling through different dots, is suppressed below the single particle tunneling probability squared, since the two electrons have to leave the superconductor from two spatially separated points, i.e. effectively breaking up the Cooper pair. The tunneling amplitude for a ballistic, three dimensional superconductor is $A_0 \propto \exp(-d/\xi)/(k_F S d)$ where d is the distance between the superconductor-dot connection points, $k_F S$ the Fermi wave number in the superconductor and ξ the superconducting coherence length. This amplitude is in general larger for lower dimensional superconductors. An investigation of the dependence of A_0 on the geometry of the contacts to the superconductor was performed in Refs. \[32,41\]. We point out that ways to avoid the suppression due to pair breaking by means of additional dots have been discussed in a similar context in Ref. \[15\]. However, since more dots complicate the calculation as well as the experimental realization, we consider the simpler geometry in Fig. 1.

The second process, II, with both electrons tunneling through the same dot, is suppressed by the Coulomb blockade in the dots, as $1/|U|$. In addition, there is a process which avoids double occupancy of the dots but instead requires a pair breaking, leading to suppression of the order $1/\Delta$. Together, this gives an amplitude $B_0 \propto (1/|U| + 1/\Delta)$. The exact expression for the constants A_0 and B_0 in terms of tunnel amplitudes between the dots and the superconductor and the dots and the leads can be found in Ref. \[22\], for our purposes these expressions are not necessary.

We point out that possibilities candidates for experimental realization of the proposed system are the extensively investigated \[32\] heterostructures with superconductors contacted to metallic superconducting electrodes. Electron transport through double dots in semiconductor systems have been recently been reviewed \[12\], with an emphasis on experimental advances.

III. THE WAVEFUNCTION OF THE SPIN-ENTANGLED ELECTRONS.

To calculate the wavefunction of the electrons emitted from the superconductor-quantum dot entangler, we employ the formal scattering theory with the Lippman-Schwinger equation expressed in terms of the transfer matrix (T-matrix). The total Hamiltonian of the system can be written as $H = H_0 + H_T$, where H_0 is the Hamiltonian of the superconductor, the quantum dots, and the normal leads. The perturbation H_T describes tunneling between the superconductor, dots, and leads. The exact many-particle state $|\Psi\rangle$ satisfies the Schrödinger equation $(E - H)|\Psi\rangle = 0$. In the absence of a perturbation, $H_T = 0$, the system is in the ground state $|0\rangle = |0\rangle_0 |0\rangle_D |0\rangle_N$, with different chemical potentials, $\mu_S = 0$, and $\mu_N = -eV$. The perturbation H_T causes the electrons to tunnel from the superconductor, via the quantum dots, to the normal leads.

We use the local nature of the tunneling perturbation and take the formal scattering approach to the problem. According to this approach the state $|\Psi\rangle$ can be obtained by solving the Lippman-Schwinger equation in Fock-space

$$|\Psi\rangle = |0\rangle + \hat{G}(0) H_T |\Psi\rangle,$$

where the retarded operator $\hat{G}(E) = [E - H_0 + i0]^{-1}$ gives a state describing particles going out from the scattering region. Note that the total energy of the ground state $|0\rangle$ is $E = 0$. The formal solution of Eq. (1) can be written as

$$|\Psi\rangle = |0\rangle + \hat{G}(0) T(0) |0\rangle,$$

where

$$T(E) = H_T + H_T \sum_{n=1}^{\infty} [\hat{G}(E) H_T]^n$$

is the T-matrix. One then inserts a complete set of many body states $1 = \sum_N |N\rangle \langle N|$ with $|N\rangle$ the eigenbasis of the Hamiltonian H_0, i.e. the basis of Fock-states of electrons and quasi-particles in the leads, dots and superconductor respectively. The quantum number N collectively denotes the energies, spins, lead and dot indices etc of the individual particles. The eigenenergy of the state $|N\rangle$, i.e. the total energy of the individual particles, is E_N. This gives an expression for the state

$$|\Psi\rangle = |0\rangle - \sum_N \frac{1}{E_N - i0} |N\rangle \langle N| T(0) |0\rangle.$$ (4)

In the system under consideration, all relevant matrix elements $\langle N| T(0) |0\rangle$ are analytic in the upper part of the complex energy plane. As a consequence, in the integration over energies of the individual particles in $|N\rangle$, the pole arising from the denominator $E_N - i0$ can be replaced by a $\delta(E_N)$-function, imposing a total energy $E_N = 0$, equal to the chemical potential energy of the superconductor. This gives the wavefunction

$$|\Psi\rangle = |0\rangle - 2\pi i \sum_N \delta(E_N) |N\rangle \langle N| T(0) |0\rangle.$$ (5)

It was shown in Ref. \[32\], that under the conditions stated above and to lowest order in coupling between the superconductor and the dots, the operator T creates from the vacuum $|0\rangle$ a two-electron spin-entangled state. As pointed out above, depending on the relation between the amplitudes A_0 and B_0, the transport of the two electrons
through the same (process II) or different (process I) dots dominates. Below we consider for simplicity only the
limiting cases, where either I or II is completely dominating, however our analysis can straightforwardly be extended
to a situation where they are of comparable strength.

A. Electrons tunneling through different dots.

We first consider process I, when the amplitude for tunneling through different dots is much larger than the
amplitude to tunnel through the same dot. This creates the desired EPR-pair, a non-local spin-entangled pair of
electrons. The quantities in this limit are denoted with a I. The wavefunction for two spin-entangled electrons at
energies E_1 and E_2 is

$$|E_1, E_2\rangle_I = \frac{1}{\sqrt{2}} (b_{1\uparrow}(E_1)b_{2\downarrow}(E_2) - b_{1\downarrow}(E_1)b_{2\uparrow}(E_2))|0\rangle,$$

(6)

where the operator $b_{\sigma}(E)$ creates an outgoing (from the dots towards the beam-splitter) electron plane wave with
spin $\sigma = \uparrow, \downarrow$ and momentum $k(E) = k_F + E/\hbar v_F$ in the normal lead $l = 1, 2$. Here k_F and v_F is the Fermi wave
number and velocity respectively, same for both normal leads. The amplitude for this process was found in Ref. [32] to have a double-resonant form

$$\langle E_1, E_2|T(0)|0\rangle_I = \frac{iA_0 e^{|\pi \sqrt{2} |}}{(E_1 + \varepsilon_1 - i\gamma/2)(E_2 + \varepsilon_2 - i\gamma/2)}.$$

(7)

With this we are able to obtain the asymptotics of the outgoing spin-entangled state. For doing so we substitute
Eq. (7) into Eq. (5) and find

$$|\Psi_I\rangle = |0\rangle + \int_{-\epsilon V}^{\epsilon V} dE A(E)|b_{1\uparrow}(E)b_{2\downarrow}(-E) - b_{1\downarrow}(E)b_{2\uparrow}(-E)||0\rangle$$

(8)

with

$$A(E) = \frac{A_0 \varepsilon}{(E + \varepsilon_1 - i\gamma/2)(-E + \varepsilon_2 - i\gamma/2)}$$

(9)

i.e. $A(E) = (-i\pi \sqrt{2} E, -E|T(0)|0\rangle_I$. This state is the sum of the unperturbed groundstate and an entangled,
two electron state. The entangled state is a linear superposition of spin singlets at different energies, an entangled
two-particle wavepacket. The singlet state results from the singlet state of the Cooper-pair, conserved in the
tunneling from the superconductor. Moreover, the two electrons in each singlet have opposite energies E and $-E$ (counted from $\mu_S = 0$), a consequence of the
Cooper-pairs having zero total energy with respect to the chemical potential of the superconductor.

Several important observations can be made regarding the state in Eq. (5). First, the properties, including the
two-particle wavepacket structure, can be clearly seen by writing the wavefunction in first quantization. Introducing $|1, E\rangle \otimes |\uparrow\rangle$ for $b_{1\uparrow}(E)|0\rangle$, the properly symmetrized wavefunction is given by (omitting the ground state $|0\rangle$)

$$|\Psi_I\rangle = \int_{-\epsilon V}^{\epsilon V} dE A(E)|1, \mu, E\rangle + |2, -E\rangle_{\nu} + |2, -E\rangle_{\mu}|1, E\nu\rangle \otimes (|\uparrow\rangle_\mu |\downarrow\rangle_\nu - |\downarrow\rangle_\mu |\uparrow\rangle_\nu)$$

(10)

with μ, ν the particle index. The coordinate dependent wavefunction $\Psi_I(x_{\mu}, x_{\nu}) = \langle x_{\mu}, x_{\nu}|\Psi_I\rangle$ can then be written ($x = 0$ at the lead-dot connection points)

$$\Psi_I(x_{\mu}, x_{\nu}) = \psi(x_{\mu}, x_{\nu}) (\chi_{\mu}^1 \chi_{\nu}^2 + \chi_{\mu}^2 \chi_{\nu}^1) (\chi_{\mu}^1 \chi_{\nu}^2 - \chi_{\mu}^2 \chi_{\nu}^1)$$

(11)

with

$$\psi(x_{\mu}, x_{\nu}) = \frac{2i\gamma A_0}{2\varepsilon - i\gamma} \times \exp[i k_F(x_{\mu} + x_{\nu}) - i(\varepsilon - i\gamma/2)|x_{\nu} - x_{\mu}|/\hbar v_F]$$

(12)

where for simplicity the case with energies $\varepsilon_1 = \varepsilon_2 = \varepsilon$ is considered. To arrive at Eq. (11) we first introduced the wavefunctions $\langle x_{\nu}|E\rangle = \exp[i k_F x_{\nu}]$, $l = \mu, \nu$, the spin spinors $\langle x_{\nu}|\uparrow\rangle = \chi_{\nu}^1$, $\langle x_{\nu}|\downarrow\rangle = \chi_{\nu}^2$ and the orbital spinors $\langle x_{\nu}|1\rangle = \lambda_{\nu}^1$, $\langle x_{\nu}|2\rangle = \lambda_{\nu}^2$ and then performed the integral over energy. The orbital spinors describe the wavefunction in the space formed by the lead indices 1 and 2, a pseudo-spin space, as discussed in Ref. [15]. We note that the beam-splitter, discussed below, only act in the orbital 12-space (i.e. spin independent scattering). Moreover, it is the property of the state in 12-space that determines the current correlators discussed below.

As is clear from Eq. (11), the state is a direct product state between the spin and orbital part of the wavefunction.

The spin state is antisymmetric under exchange of the two electrons, a singlet, while the orbital state is symmetric, a triplet. The probability to jointly detect one electron at x_{μ} in lead 1 and one at x_{ν} in lead 2 decay exponentially with the distance $|x_{\mu} - x_{\nu}|$, an effect of the two electrons being emitted at essentially the same time (separated by a small time \hbar/Δ) to points $x_{\mu} = 0$ and $x_{\nu} = 0$ respectively. Note that the state $|\Psi_I\rangle$, a stationary scattering state, does not describe wave packets in the traditional sense with two electrons moving out from the dots as time passes (as a solution to the time independent many particle Schrödinger Equation, $|\Psi_I\rangle$ has a trivial time dependence). To obtain such a wavefunction, one must break time translation invariance by introducing a time dependent perturbation, e.g. a variation of the tunnel barrier strength or dot-level energies in time.

In this context it is worth to mention that such a time dependent wavefunction was recently considered by Hu and Das Sarma [19] for a double-dot turnstile entangler. However, in Ref. [19], the entangled wavefunction was not derived from a microscopic calculation but merely

postulated. The wavefunction had an amplitude of order unity (no tunneling limit) and contained a double integral over energy. This is different from our wavefunction in Eq. (8) and moreover gives rise to a qualitatively different result for the currents as well as the current correlators studied below.

Second, the entangled state in Eq. (8) has just the same form as the pair-split state obtained in the normal-superconducting system of Ref. [15], where a scattering approach based on the Bogoliubov-de Gennes equation was used. This shows rigorously that the effect of the strong Coulomb blockade, prohibiting two electrons to tunnel through the same dot, can be incorporated in a scattering formalism by putting the amplitude for Andreev reflection back into the same dot to zero. From this observation it follows that the rest of the calculation in the paper where the state in Eq. (8) is employed could in principle be carried out strictly within the scattering approach based on the Bogoliubov-de Gennes equation. However, in such a calculation the entanglement is not directly visible, which makes the interpretation of the result difficult. Instead, below we work directly with the state in Eq. (8).

Third, it is also interesting to note the close connection between the emission of a Cooper pair and the process of spontaneous, parametric down-conversion of pairs of photons investigated in optics, where a single photon from a pump-laser is split in a non-linear crystal into two photons. From the point of view of the theoretical approach, expanding the outgoing state in a ground state and, to first order in perturbation, an emitted pair of particles, is similar to the work in e.g. Ref. [52]. The resulting state, Eq. (8), is a spin singlet, while a state with polarization entanglement is, under appropriate conditions, produced in the down-conversion process (type II). Moreover, the emission of the two electrons is “spontaneous”, i.e. random and uncorrelated in time, just in the same way as for the down-converted photons. One can also point out the maybe less obvious relation that the two electrons emitted from the superconductor carry information about the phase of the superconducting condensate, just as the two photons carry information of the phase of the field of the pump-laser. A coherent superposition of states of pairs of electrons emitted from different points of the superconductor, can give rise to observables sensitive to the difference in superconducting phase between the two emission points, as was demonstrated in Ref. [12]. This has its analog in the photonic experiment with a single, coherent laser pumping two separate non-linear crystals, presented in Ref. [53].

B. Electrons tunneling through the same dot.

We then turn to process II, when the amplitude for tunneling through the same dot is much larger than the amplitude to tunnel through different dots. The wavefunction for two electrons to tunnel to energies E_1 and E_2 in lead j is

$$|E_1, E_2⟩_I = \frac{1}{\sqrt{2}}[b^†_{jI}(E_1)b^†_{jI}(E_2) - b^†_{jI}(E_1)b^†_{jI}(E_2)]|0⟩_I$$

(13)

The amplitude for this process, $\langle E_1, E_2|T(0)|0⟩_I$, was found in Ref. [32] to have a single resonant form, different from Eq. (4),

$$\langle E_1, E_2|T(0)|0⟩_I = \frac{iB_0}{\pi 2\sqrt{2}} \times \left(\frac{1}{E_1 + \varepsilon_j - i\gamma/2} + \frac{1}{E_2 + \varepsilon_j - i\gamma/2}\right).$$

(14)

Here, for simplicity the two dot-superconductor contacts are taken to be identical. Since the superconductor is a macroscopically coherent object, the total state is a linear combination of the states corresponding to two electrons tunneling through dot 1 and dot 2. To obtain the asymptotics of the outgoing spin-entangled state, we substitute Eq. (13) into Eq. (8) and find

$$|Ψ_I⟩ = |0⟩ + \int e^{iE_d} dE \left[B_1(E)b^†_{1I}(E)b^†_{1I}(-E) + B_2(E)b^†_{2I}(E)b^†_{2I}(-E)\right]$$

(15)

with

$$B_j(E) = \frac{B_0(\varepsilon_j - i\gamma/2)}{(E + \varepsilon_j - i\gamma/2)(-E + \varepsilon_j - i\gamma/2)}$$

(16)
i.e. $B_j(E) = (-i2\sqrt{2})\langle E, -E|T(0)|0⟩_I$. Arriving at Eq. (15) we used the property $B(-E) = B(E)$ and the anti-commutation relations of the fermionic operators.

This state is a linear superposition of the states for two electrons tunneling through the same dot. Comparing to the state $|Ψ_I⟩$ in Eq. (11) for the two electrons tunneling through different dots, we can make the following comments: (i) Just as $|Ψ_I⟩$, the wavefunction $|Ψ_{II}⟩$ in first quantization is a product of a an orbital and a spin wavefunction. The spin wavefunction is, as for $|Ψ_I⟩$, a singlet $\lambda_\mu^λ_ν^λ_μ^λ_ν^λ_μ^λ_ν^λ$. The orbital wavefunction for the simplest situation $\varepsilon_1 = \varepsilon_2$ is however proportional to $\lambda_μ^λ_ν^λ_μ^λ_ν^λ_μ^λ_ν^λ$, one of the Bell states, an orbitally entangled state. (ii) The state $|Ψ_{II}⟩$ is the same that would be obtained within scattering theory (as was shown in Ref. [13]), taking $B_j(E)$ to be the effective Andreev reflection amplitude at dot j and assuming no crossed Andreev reflection between the dots, i.e. zero probability for an incident electron in lead 1 to be back-reflected as a hole in lead 2 and vice versa.

With the state in Eq. (15) and the state for two electrons tunneling through different dots, in Eq. (8), we are in a position to analyze the transport properties.

IV. CURRENT CORRELATORS

The two electrons emitted from the dot-superconductor entangler propagate in the leads 1
and 2 towards the normal reservoirs A and B. As shown in Fig. 1, the two normal leads are crossed in a single mode reflectionless beam-splitter. The beam-splitter is characterized by a spin- and energy independent unitary scattering matrix connecting outgoing and ingoing operators as

\[
\left(\begin{array}{c} b_A \\ b_B \end{array} \right) = \left(\begin{array}{cc} r & t' \\ t & r' \end{array} \right) \left(\begin{array}{c} b_1 \\ b_2 \end{array} \right),
\]

(17)

where the subscript \(\alpha = A, B \) denotes towards what reservoir the electron is propagating. The electrons are then detected in the normal reservoirs A and B.

We point out that beam-splitters without backscattering are not easily produced experimentally, thus in a more detailed model one should also take the effect of back scattering into account. Several aspects of back scattering were recently investigated by Burkard and Loss \[39\] extending the model in Ref. \[30\]. Although back-scattering can be incorporated in our model as well, this would complicate the calculations and make the result less transparent. Below, we instead neglect the effect of backscattering (however, some qualitative aspects are just the same expression as in Ref. \[32\], where the leads of the entangler were contacted directly to the normal reservoirs (no beam-splitter). The current is maximal for an asymmetric setting of the resonances \(\varepsilon_1 = -\varepsilon_2 \). This two-particle resonance reflects the fact that the two electrons in the Cooper pairs are emitted at opposite energies with respect to the superconducting chemical potential. The current contains no information about the entanglement of the emitted state. In fact, the same current would be obtained by considering a product state of one electron in lead 1 and one in lead 2, independent of their spins.

We also note that in the typical system of interest, with a lateral size \(L \) in the micrometer range, the energy-dependent part of the phase \(\sim L \gamma/\hbar E \) picked up by the electrons when propagating in the leads is negligibly small. Energy independent phases due to propagation can be included in the scattering amplitudes of the beam-splitter.

The properties of the electrons emitted by the entangler are investigated via the current and the zero-frequency current correlators. The electrical current operator in lead \(\alpha \) is given by

\[
\hat{I}_\alpha = \frac{e}{\hbar} \int dEdE' e^{i(E-E')t}/\hbar \sum_{\sigma} \left[b_{\alpha \sigma}^\dagger(E)b_{\alpha \sigma}(E') - a_{\alpha \sigma}^\dagger(E)a_{\alpha \sigma}(E') \right],
\]

(18)

where \(a_{\alpha \sigma}^\dagger(E) \) creates an electron plane wave incoming from the normal reservoir \(\alpha \) with spin \(\sigma = \uparrow, \downarrow \) and momentum \(k(E) \). The averaged current is given by

\[
I_\alpha = \langle \hat{I}_\alpha \rangle,
\]

(19)

where \(\langle ... \rangle \equiv \langle \Psi | ... | \Psi \rangle \). The zero-frequency correlations between the currents in the leads \(\alpha \) and \(\beta \) are

\[
S_{\alpha \beta} = \int dt \langle \Delta \hat{I}_\alpha(t) \Delta \hat{I}_\beta(0) \rangle + \Delta \hat{I}_\beta(0) \Delta \hat{I}_\alpha(t) \rangle,
\]

(20)

where \(\Delta \hat{I}_\alpha(t) = I_\alpha(t) - I_\alpha \) is the fluctuating part of the current in lead \(\alpha \). We study the two cases with electrons tunneling through different dots and the same dot separately.

V. TUNNELING THROUGH DIFFERENT DOTS.

For electrons tunneling through different dots, the question is how the degree of spin-singlet entanglement is reflected in the current and current correlators. The averaged current, evaluated with the state \(|\Psi_I\rangle \) in Eq. \[3\], becomes

\[
I_\alpha = \frac{2e}{\hbar} \int_{-\varepsilon V}^{\varepsilon V} dE |A(E)|^2,
\]

(21)

same for both \(\alpha = A \) and \(B \). Since the two resonances \(\varepsilon_1 \) and \(\varepsilon_2 \) are well within the voltage range, i.e. \(\varepsilon V - |\varepsilon_1|, \varepsilon V - |\varepsilon_2| \gg \gamma \), we get the current

\[
I_\alpha = \frac{2e}{\hbar} \frac{4\pi |A_0|^2 \gamma}{(\varepsilon_1 + \varepsilon_2)^2 + \gamma^2},
\]

(22)

just the same expression as in Ref. \[32\], where the leads of the entangler were contacted directly to the normal reservoirs. The current is maximal in the micrometer range, the energy-dependent part of the phase \(\sim L \gamma/\hbar E \) picked up by the electrons when propagating in the leads is negligibly small. Energy independent phases due to propagation can be included in the scattering amplitudes of the beam-splitter.

This two-particle resonance reflects the fact that the two electrons in the Cooper pairs are emitted at opposite energies with respect to the superconducting chemical potential. The current contains no information about the entanglement of the emitted state. In fact, the same current would be obtained by considering a product state of one electron in lead 1 and one in lead 2, independent of their spins.

To obtain information about the entanglement, we turn to the current correlators. Inserting the expression for the state \(|\Psi_I\rangle \) into Eq. \[20\], following Ref. \[51\], we get the expressions for the auto-correlations

\[
S_{AA} = S_{BB} = \frac{4e^2 \varepsilon V}{\hbar} \int_{-\varepsilon V}^{\varepsilon V} dE \left\{ 1 + 2RT \right\} |A(E)|^2
\]

(23)

as well as the cross-correlations

\[
S_{AB} = S_{BA} = \frac{4e^2 \varepsilon V}{\hbar} \int_{-\varepsilon V}^{\varepsilon V} dE \left\{ T^2 + R^2 \right\} |A(E)|^2
\]

(24)

where \(R = |r|^2 = |r'|^2 \) and \(T = |t|^2 = |t'|^2 = 1 - R \). We note that the total noise \(S_I \) of the current flowing out of the superconductor is twice the Poissonian, i.e.

\[
S_I = S_{AB} + S_{BA} + S_{AA} + S_{BB} = 4e(I_A' + I_B'),
\]

(25)

describing an uncorrelated emission of pairs of electrons. This result, an effect of the tunneling limit, is different from the one in Ref. \[30\], where an entangled state with unity amplitude was considered and the total noise was found to be zero.

It is clear from the calculation that the second term in Eqs. \[23\] and \[24\] depends directly on the symmetry.
properties of the orbital wavefunction, and thus, due to the anti-symmetry of the total wavefunction, indirectly on the symmetry properties of the spin wavefunction. For a spin-triplet state $|\Psi_f\rangle$ the last term in Eqs. \(23\) and \(24\) would have opposite sign. Since all the three possible triplets, with spin wavefunctions $\chi^\uparrow_s\chi^\downarrow_s + \chi^\uparrow_s\chi^\downarrow_s$ and $\chi^\downarrow_s\chi^\uparrow_s$ have the same anti-symmetric orbital wavefunction $(\lambda^\uparrow_s\lambda^\downarrow_s - \lambda^\downarrow_s\lambda^\uparrow_s$ for $\epsilon_1 = \epsilon_2$) they give rise to the same noise correlators. As a consequence, performing a noise correlation measurement, one can only distinguish between spin-singlets and spin-triplets, but not between entangled $\chi^\uparrow_s\chi^\downarrow_s + \chi^\uparrow_s\chi^\downarrow_s$ and non-entangled $\chi^\uparrow_s\chi^\downarrow_s$, $\chi^\downarrow_s\chi^\uparrow_s$ spin-triplets. This was pointed out already in Ref. \(30\).

We note that it is possible to distinguish between the different triplets in a more advanced beamsplitter scheme, using controlled single spin rotations via a e.g. local Rashba interaction\(34\). Such a scheme is straightforwardly included into our theoretical treatment, however, it demands a more involved experimental setup and is therefore not considered here, we restrict our investigation to the simplest possible system.

To investigate the properties of the current correlators in detail, the remaining integral over energy in Eqs. \(23\) and \(24\) is carried out, giving

\[
\int dE A(E)A^\ast(-E) = \frac{4\pi|A_0|^2\gamma^3}{(\epsilon_1 - \epsilon_2)^2 + \gamma^2}(\epsilon_1 + \epsilon_2)^2 + \gamma^2).
\]

This shows that, unlike the current, the noise is sensitive to both the difference and the sum of the dot energy levels. We note that the integral of $A(E)A^\ast(-E)$ is manifestly positive and smaller than the integral of $|A(E)|^2$ for all ϵ_1, ϵ_2 except for $\epsilon_1 = \epsilon_2$, when they are equal.

From these observations we can draw several conclusions and compare our results to the results in Ref. \(30\):

(i) The second term in Eqs. \(23\) and \(24\), dependent on the orbital symmetry of the wavefunction, leads to a suppression of the cross-correlation but an enhancement of the auto-correlation. This is an effect of the bunched behavior of the spin-singlet, i.e. the two electrons show an increased probability to end up in the same normal reservoir\(35\). For a symmetric beam-splitter, $R = T = 1/2$ and aligned dot-levels $\epsilon_1 = \epsilon_2$, the cross-correlations are zero (to the leading order in tunneling probability considered here). This is a signature of perfect bunching of the two electrons.

(ii) The last term in Eqs. \(23\) and \(24\) is proportional to the spectral overlap $\int dE A(E)A^\ast(-E)$. The spectral overlap physically corresponds to the overlap between the wavefunctions of the two electrons colliding in the beamsplitter. For single-particle levels at different energies $\epsilon_1 \neq \epsilon_2$, the spectral amplitudes of the emitted electrons are centered at different energies and consequently\(30\) the Pauli principle responsible for the bunching is less efficient.

It is important to note that the last term in Eqs. \(23\) and \(24\), dependent on the bunching, generally is of the same magnitude as the first term. We emphasize that this result is qualitatively different from what was found in Ref. \(31\), where the bunching dependent part of the current correlator was proportional to a Kronecker delta-function in energy, a consequence of considering a discrete spectrum. Our result clearly shows that it should be experimentally feasible to detect the bunching, and thus demonstrate that spin singlets are emitted from the entangler. We note that the same qualitative result was found in Ref. \(19\).

(iii) The cross correlations are positive for any transparency of the beam-splitters (note that $R^2 + T^2 \geq 2RT$). This is different from the result in Ref. \(30\), where negative cross correlations were predicted. The negative correlations are again a result of the unity amplitude of the incoming entangled state considered in Ref. \(30\). In this context, we point out that positive cross-correlations have been predicted in several few mode\(36\) and many mode\(30\) normal-superconductors hybrid systems as well as purely normal systems in the presence of interactions\(37\). In several of these cases, the positive correlations were explained with semiclassical models. Thus, the presence of positive correlations can not itself be taken as a sign of spin-entanglement.

We point out that the expression for the energy dependent integrand of the cross correlators in Eq. \(24\) can be understood in an intuitive way, by considering the elementary scattering processes contributing to the noise, shown in Fig. 4. Let us consider the probability for the two electrons emitted from the superconductor to end up, one with spin up and energy E in reservoir A and the other with spin down and energy $-E$ in reservoir B. There are two paths the electrons can take from the superconductor to the reservoirs: (a) the electron with spin up and energy E via dot 1 and the electron with spin down and energy $-E$ via dot 2. This process has an amplitude $tt' A(E)$ (b) the electron with spin down and energy $-E$ via dot 1 and the electron with spin down and energy $-E$ via dot 2. This process has an amplitude $rr' A(-E)$. Since the two processes have the same initial and final states, they are indistinguish-
able and their amplitudes must be added. This gives together the energy dependent joint detection probability \(|t^*t^a(E)+r^*r^a(E)|^2 = T^2|A(E)|^2 + R^2|A(-E)|^2 + r^*r^aA^*(E) + r^*r^*t^*t^aA^*(-E)\). In analogy to the noise correlators for the entangler with energy independent tunneling probabilities in Ref. 13, it is found that the noise correlator \(S'_{AB} \) is simply proportional to integral over energy of the joint detection probability. Using that the integral in Eq. (24) goes from \(-eV\) to \(eV\) and that the unitarity of the scattering matrix in Eq. \(S \) is given by \(STS^\dagger = I \), we get the expression in the integrand in Eq. (24).

For the auto-correlation, a similar interpretation in terms of probabilities for two-particle scattering processes only is not possible, one also has to consider single particle probabilities. Formally, this is the case since auto-correlations contain exchange effects between the two particles scattering to the same reservoir.

A. Fano factors

A quantitative analysis of the current correlators is most naturally performed via the Fano factors \(F_{\alpha\beta} = S_{\alpha\beta}/(2\epsilon \sqrt{I_{\alpha}I_{\beta}}) \). The Fano factor isolates the dependence of the noise on various parameters, not already present in the current. For the cross- and auto-correlations respectively, we have

\[
F_{AB}^I = F_{BA}^I = T^2 + R^2 - 2RT |H(\varepsilon_1 - \varepsilon_2)|^2 \tag{27}
\]

and

\[
F_{AA}^I = F_{BB}^I = 1 + 2RT + 2RT |H(\varepsilon_1 - \varepsilon_2)|^2 \tag{28}
\]

where

\[
H(\varepsilon_1 - \varepsilon_2) = \frac{i\gamma}{\varepsilon_1 - \varepsilon_2 + i\gamma}. \tag{29}
\]

We note that only the last terms in Eqs. (27) and (28) depend on the energies \(\varepsilon_1 \) and \(\varepsilon_2 \) of the levels in the dots. The Fano factor as a function of energy difference \(\varepsilon_1 - \varepsilon_2 \) is plotted for several values of transparency of the beam splitter in Fig. 5. For the cross-correlators, the Fano factor has a minimum for the two resonant levels aligned, \(\varepsilon_1 = \varepsilon_2 \). The value at this minimum decreases monotonically from 1 to 0 when increasing the transparency \(T \) of the beam-splitters from 0 to 0.5 (the Fano factor for transmission probability \(T \) is the same as for \(1 - T \)). Thus, for a completely symmetric beam-splitter, \(T = R = 0.5 \), the Fano factor is zero. This corresponds to the case of perfect bunching. For the auto-correlators, the picture is the opposite. The Fano factor has a maximum for the two resonances aligned, \(\varepsilon_1 = \varepsilon_2 \). The value at this maximum increases monotonically from 1 to 2 when increasing the transparency \(T \) of the beam-splitters from 0 to 0.5. Thus, for a symmetric beam-splitter, \(T = R = 0.5 \), the Fano factor is now two.

B. Decoherence

Considering the robustness of the bunching behavior, it is important to note that the Fano factors in Eqs. (27) and (28) only depend on the transmission and reflection probabilities \(T \) and \(R \). All information about the scattering phases, from the beam-splitter as well as from the propagation in the leads, drops out. As a consequence, the correlators are insensitive to dephasing of the orbital part of the wavefunction, i.e. processes that cause slow and energy independent fluctuations of the scattering phases. This insensitivity, different from schemes based on orbital entanglement, can be understood by considering the first quantized version [in Eq. (11)] of the wavefunction \(\Psi_I \). Any orbital phase picked up by an electron in e.g. lead 1 just gives rise to an overall phasefactor of the total orbital wavefunction, since each term in the wavefunction corresponds to one electron in lead 1 and one in lead 2. Moreover, any orbital “pseudo spin flip” would imply a scattering of particles between the leads 1 and 2 and is not allowed in the non-local geometry.

The situation is different for spin decoherence, energy independent spin-flip or spin-dephasing processes tending to randomize the spin directions. Spin decoherence generally modifies the Fano factors in Eqs. (27) and (28). Formally, the (mixed) state in the presence of decoherence is described by a density matrix \(\rho \). Writing \(\rho \) in a spin singlet-triplet basis, as shown in the Appendix, only the diagonal elements \(\rho_{SS} \) (singlet) and \(\rho_{TT} \) (triplet) contribute to the current correlators. As discussed above, all the spin triplets give rise to the same Fano factors. The spin-triplet Fano factors are given by the spin-singlet ones in Eqs. (27) and (28) by changing the sign of the last term \(2RT |H(\varepsilon_1 - \varepsilon_2)|^2 \), i.e. from bunching to anti-bunching.
the effect of spin decoherence is to renormalize only the part of the Fano factors dependent on the dot-level energies as

$$|H(\varepsilon_1 - \varepsilon_2)|^2 \to (2\rho_{SS} - 1)|H(\varepsilon_1 - \varepsilon_2)|^2.$$ \hfill (30)

The renormalization factor is thus the singlet weight minus the total triplet weight, $$\rho_{SS} - (\rho_{T_0T_0} + \rho_{T_+T_+} + \rho_{T_-T_-}) = 2\rho_{SS} - 1.$$ This clearly displays how decoherence, reducing the singlet weight and consequently increasing the triplet weight, leads to a cross-over at $$\rho_{SS} = 1/2$$ from a bunching to an anti-bunching behavior of the noise correlators. For a completely dephased spin state, with an equal mixture of singlets and triplets ($$\rho_{SS_0} = \rho_{T_0T_0} = \rho_{T_+T_+} = \rho_{T_-T_-} = 1/4$$), the renormalization factor $$2\rho_{SS} - 1$$ saturates at the value $$-1/2$$.

We point out that this discussion might be modified when considering other types of effects causing decoherence, such as e.g. inelastic scattering. A more detailed investigation (see e.g. Refs. [58]), going beyond the scope of the paper, is needed to address these issues.

C. Spin entanglement bound

In the absence of spin decoherence the spin state of the emitted pair is a singlet, a maximally entangled state. For finite spin decoherence, this is no longer the case and the question arises how to obtain quantitative information about the spin entanglement from the measurements of the current correlators.

We stress that our interest here is the spin entanglement of the emitted pair of electrons and thus only sensitive to the spin part of $$\rho$$ [see Eq. (30)].

The spin part of $$\rho$$ can be described by the $$4 \times 4$$ spin density matrix $$\rho_{\sigma}$$, rigorously defined in the Appendix (note that $$\rho$$, due to the continuous energy variable, is infinite dimensional). Formally, $$\rho_{\sigma}$$ is the density matrix obtained when tracing $$\rho$$, for aligned dot-levels $$\varepsilon_1 = \varepsilon_2$$, over energies. The question is thus how to determine the entanglement of $$\rho_{\sigma}$$. In general, knowledge of all the matrix elements is needed. This information can however not be obtained within our approach, since the Fano factors only provides information of the spin singlet weight, as is clear from Eq. (30). It is nevertheless possible, as described in detail in the Appendix, to follow the ideas of Burkard and Loss and obtain a lower bound for the spin entanglement.

There are several different measures of entanglement for the mixed state of two coupled spin-1/2 systems. Here we consider the concurrence, with $$C = 0$$ ($$C = 1$$) for an unentangled (maximally entangled) state. To establish the lower bound, it can be shown that the concurrence $$C(\rho_{\sigma})$$ is larger than or equal to the concurrence $$C(\rho W)$$ of the so Werner state described by the density matrix $$\rho W$$. The Werner state, defined as the average of $$\rho_{\sigma}$$ over identical and local random rotations, has the same singlet weight $$\rho_{SS}$$ as $$\rho_{\sigma}$$. The concurrence of the Werner state has the appealing property that it is a function of the spin singlet weight only, $$C_W = \max \{2\rho_{SS} - 1, 0\}$$.

The findings above thus lead to the simple and important result that the renormalization, Eq. (30), of the Fano factors in Eqs. (24) and (25) due to spin decoherence can be written as (for $$C_W > 0$$)

$$|H(\varepsilon_1 - \varepsilon_2)|^2 \to C_W|H(\varepsilon_1 - \varepsilon_2)|^2$$ \hfill (31)

where $$C_W$$ thus provides a lower bound for the spin entanglement of the emitted pair of electrons (for the pure singlet $$\rho_{SS} = 1$$, $$C_W$$ and $$C(\rho_{\sigma})$$ are equal and maximal). Thus, as long as the Fano factors display a bunching behavior, the spin entanglement is finite, $$C_W > 0$$. For a cross-over to anti-bunching behavior, $$C_W = 0$$ and one can no longer conclude anything about the entanglement of the spins state. The value of $$C_W$$ can be extracted directly from the experimentally determined Fano factors, as the amplitude of the modulation of the Fano factors with respect to dot level amplitudes $$\varepsilon_1 - \varepsilon_2$$ divided by $$2RT$$. The values of $$R, T$$ can be extracted independently from the Fano factors at dot levels such that $$H(\varepsilon_1 - \varepsilon_2) \approx 0$$.

The result in Eq. (31) thus provides a simple relation between the Fano-factors and the minimum spin entanglement $$C_W$$. It is clear, however, that since the Fano factors only provide information of the singlet weight, full information of the spin entanglement can not be obtained by the beam-splitter approach employed here. It should be noted that the result in Eq. (31) is quantitatively different from what was obtained in Ref. [38], a consequence of the different states considered for the
emitted electrons, as discussed above in connection with the current correlators.

VI. TUNNELING THROUGH THE SAME DOT.

We then turn to the situation when the two electrons tunnel through the same dot. To be able to distinguish this process II from process I, it is important to study the current as well as the noise in detail. The averaged current in Eq. (19), evaluated with the state in Eq. (16), becomes for reservoirs A and B

\[
I_A^{II} = \frac{2e}{h} \int_{-eV}^{eV} dE \left(R |B_1(E)|^2 + T |B_2(E)|^2 \right),
I_B^{II} = \frac{2e}{h} \int_{-eV}^{eV} dE \left(T |B_1(E)|^2 + R |B_2(E)|^2 \right).
\] (32)

Since the two resonances \(\epsilon_1\) and \(\epsilon_2\) are well within the voltage range, i.e. \(eV - |\epsilon_1|, eV - |\epsilon_2| \gg \gamma\), we can perform the integrals and get the current \[I_{\alpha}^{II} = \frac{2e}{h} \pi |B_0|^2 / \gamma, \] (33)
the same for both reservoirs \(\alpha = A, B\). We note that the two-particle resonance in the current, present in the pair-splitting case I, is absent due to the Coulomb blockade, as pointed out in Ref. [32]. A difference from Ref. [32] is however that due to the absence of back-scattering at the beam-splitter, there is no scattering-phase dependence of the current. Consequently, there is no dependence on a possible difference in the superconducting phase at the two emission points or an Aharonov-Bohm phase due to a magnetic flux in the area between the superconductor, the dots and the beam-splitter. It should be pointed out that this is not a generic result for normal-superconducting systems. In a situation with backscattering, which is inevitable in e.g. the three-terminal fork-like geometries, Andreev interferometers, studied extensively in both diffusive and ballistic conductors, the current is indeed sensitive to a superconducting phase difference as well as the Aharonov-Bohm phase.

Regarding the spin entanglement, just as for process I, no information is provided by the averaged current. The same result would have been obtained considering an incoherent superposition of two electrons in lead 1 and two in lead 2, independent on spin state. Turning to the current correlators, inserting the expression for the state \(\Psi_{II}\) into Eq. (20), one gets the expressions for the auto-correlations

\[
S_{AA}^{II} = \frac{4e^2}{h} \int dE \left\{ R(1 + R) |B_1(E)|^2 + T(1 + T) |B_2(E)|^2 + 2 \text{Re} \left[(r^* t')^2 B_1^*(E) B_2(E) \right] \right\},
S_{BB}^{II} = \frac{4e^2}{h} \int dE \left\{ T(1 + T) |B_1(E)|^2 + R(1 + R) |B_2(E)|^2 + 2 \text{Re} \left[(r^* t')^2 B_1^*(E) B_2(E) \right] \right\}
\] (34)

with \(\text{Re}[..]\) denoting the real part, as well as the cross-correlations

\[
S_{AB}^{II} = S_{BA}^{II} = \frac{4e^2}{h} \int dE \left\{ RT |B_1(E)|^2 + |B_2(E)|^2 - 2 \text{Re} \left[(r^* t')^2 B_1^*(E) B_2(E) \right] \right\}. \] (35)

The integrals over \(|B_2(E)|^2\) were carried out above, Eq. (33). Performing the integral over \(B_1(E)B_2^*(-E)\) in the limit \(eV - |\epsilon_1|, eV - |\epsilon_2| \gg \gamma,\) we get

\[
\int dE B_1^*(E) B_2(E) = \frac{\pi |B_0|^2}{\epsilon_1 - \epsilon_2 + i\gamma}, \] (36)

The expressions for the correlators above give that the total noise \(S_{II}\) of the current flowing out of the superconductors is,

\[
S_{II} = S_{AA}^{II} + S_{BB}^{II} + S_{AA}^{II} + S_{BB}^{II} = 4e(I_A^{II} + I_B^{II}), \] (37)

twice the Poissonian, describing, just as in case I, an uncorrelated emission of pairs of electrons.

We note that in contrast to the current and the transport properties in case I, when the two electrons tunnel through different dots, the noise contains information about the scattering phases (via \(r^* t'\)). Quite generally, one can write

\[
(r^* t')^2 = RT e^{i\phi}, \] (38)

where \(\phi\) is a scattering phase of the beam-splitter. Scattering phases picked up during propagation in the leads simply add to \(\phi\). As a consequence, \(\phi\) can be modulated by e.g. an electrostatic gate changing the length of the lead 1 or 2 or by an Aharonov-Bohm flux threading the region between the dots, the superconductor and the beam-splitter. An important consequence of this phase dependence of the current correlators is that it can be used to distinguish between tunneling via process II and between process I, since the current correlators of the latter show no phase dependence. This was pointed out in Ref. [32].

This phase dependence shows that the correlators in Eqs. (34) and (35) are sensitive to dephasing affecting the orbital part of the wavefunction. For complete dephasing, the last term in Eqs. (34) and (35) are suppressed. The orbital entanglement in Eq. (18), the linear superposition of states corresponding to tunneling through dot 1 and 2, is lost. This sensitivity to orbital dephasing is different from the one for process I discussed above. However, again in contrast to process I, the current correlators are insensitive to spin-dephasing. This can be understood by considering the first quantized wavefunction \(\Psi_{II}\), discussed below Eq. (16), keeping in mind that the wavefunction is a direct product of a spin part and an orbital part. The spin wavefunction is a singlet, \(\chi_{\mu} \chi_{\nu} - \chi_{\nu} \chi_{\mu}\), but the orbital wavefunction is a combination of triplets, \(\lambda_{\mu} \lambda_{\nu} + \lambda_{\nu} \lambda_{\mu}\) for \(\epsilon_1 = \epsilon_2\). Since no scattering between the leads is possible, i.e. no “pseudo
spin flip”, orbital dephasing can not change the triplet character of the orbital wavefunction and as a result, the spin wavefunction is bound to be a singlet. Thus, the spin entanglement in \(|\Psi_f\rangle\) is protected against decoherence.

Turning to the Fano factor, the auto and cross correlations are

\[
F_{AA}^\gamma = F_{BB}^\gamma = 1 + T^2 + R^2 + 2RT \text{Re} \left[e^{i\phi} H(\varepsilon_1 - \varepsilon_2) \right]
\]

and

\[
F_{AB}^\gamma = F_{BA}^\gamma = 2RT - 2RT \text{Re} \left[e^{i\phi} H(\varepsilon_1 - \varepsilon_2) \right]
\]

respectively, where \(H(\varepsilon_1 - \varepsilon_2)\) is given in Eq. (39).

\[
\begin{align*}
F_{AA}^\gamma & = 1 + T^2 + R^2 + 2RT \text{Re} \left[e^{i\phi} H(\varepsilon_1 - \varepsilon_2) \right] \\
F_{BB}^\gamma & = 1 + T^2 + R^2 + 2RT \text{Re} \left[e^{i\phi} H(\varepsilon_1 - \varepsilon_2) \right] \\
F_{AB}^\gamma & = 2RT - 2RT \text{Re} \left[e^{i\phi} H(\varepsilon_1 - \varepsilon_2) \right]
\end{align*}
\]

The Fano factor as a function of energy difference \(\varepsilon_1 - \varepsilon_2\) is plotted in Figs. 7 and 8 for several values of the transparency of the beam splitter. For zero phase difference \(\phi = 0\), the Fano factor for the cross-correlations shows a dip for aligned resonant levels. At \(\varepsilon_1 - \varepsilon_2 = 0\), the Fano factor is zero, independent on the beamsplitter transparency \(T\). This is a signature of perfect bunching. For finite phase-difference \(\phi \neq 0\), the Fano factor becomes asymmetric in \(\varepsilon_1 - \varepsilon_2\), showing a Fano-shaped resonance. For finite phase-difference \(\phi \neq 0\), the Fano factor becomes asymmetric, with the maximum Fano-factor shifted away from \(\varepsilon_1 = \varepsilon_2\).

We point out that similarly to case I, the integrand of the cross correlators can be understood by considering the basic two-particle scattering processes. They are shown in Fig. The general explanation is along the same line as for process I, discussed above.

FIG. 8: Elementary scattering processes (shown at the beamsplitter) contributing to the cross correlators \(S_{AB}^\gamma\). The two processes (a) and (b) transport a pair of electrons \(|\uparrow, E\rangle\) and \(|\downarrow, -E\rangle\) from the superconductor to the reservoirs \(A\) and \(B\) respectively.

FIG. 7: The Fano factor for the auto-correlations \(F_{AA}^\gamma = F_{BB}^\gamma\) for phase difference \(\phi = 0\) (left panel) \(\phi = \pi/2\) (right panel) and as a function of the normalized energy difference \((\varepsilon_1 - \varepsilon_2)/\gamma\) for various beam-splitter transparencies.

FIG. 6: The Fano factor for the cross-correlations \(F_{AB}^\gamma = F_{BA}^\gamma\) for phase difference \(\phi = 0\) (left panel) \(\phi = \pi/2\) (right panel) and as a function of the normalized energy difference \((\varepsilon_1 - \varepsilon_2)/\gamma\) for various beam-splitter transparencies.

VII. DISCUSSION AND CONCLUSIONS.

In conclusion, we have investigated the spin entanglement in the superconductor-quantum dot system proposed by Recher, Sukhorukov and Loss. Using a formal scattering theory we have calculated the wavefunction of the electrons emitted by the entangler and found that it is a superposition of spin-singlets at different energies, a two particle wavepacket. Both the wavefunction for the two electrons tunneling through different dots, creating the desired nonlocal EPR-pair, as well as the wavefunction for the two electrons tunneling through the same dot, were calculated.

The two electrons in the emitted pair collide in a beamsplitter before exiting into normal reservoirs. Due to the symmetrical orbital state, a consequence of the antisymmetrical singlet spin-state, the electrons tunneling through different dots show a tendency to bunch. This bunching can be detected via the current correlations. It was found that the amount of bunching depends on the position of the single particle levels in the dots as well as on the scattering properties of the beam splitter. Importantly, the magnitude of the bunching dependent term in the cross correlations was found to be of the same order as the bunching independent term, implying that an ex-
perimental detection of the bunching, and thus indirectly the spin-singlet entanglement, is feasible.

The current correlators for electrons tunneling through different dots were found to be sensitive to orbital dephasing. Spin dephasing, on the contrary, tends to randomize the spin state, leading to a mixed spin-state with a finite fraction of triplets. Since singlet and triplet spin states give rise to a bunching and anti-bunching behavior respectively, when colliding in the beam-splitter, strong dephasing will suppress the bunching behavior and eventually cause a crossover to anti-bunching. To quantify the entanglement in the presence of spin dephasing, we have derived an expression for the concurrence in terms of the Fano factors. In addition, via the current correlations, it is not possible to distinguish between entangled and non-entangled singlet-triplet states, since all triplets show the same bunching behavior. This implies that the method of detecting spin entanglement via current correlations in the beam-splitter geometry has a fundamental limitation compared to the experimentally more involved Bell Inequality test.

We have also investigated the current correlations in the case where the two electrons tunnel through the same dot. The wavefunction was found to be a linear superposition of states for the pair tunneling through dots 1 and 2. The cross- and auto correlators are sensitive to the position of the single-particle levels in the dots, however in a different way than for tunneling through different dots. Moreover, the correlators were found to be dependent on the scattering phases, providing a way to distinguish between the two tunneling processes by modulating the phase.

VIII. ACKNOWLEDGEMENTS.

We acknowledge discussions with Guido Burkard. The work was supported by the Swiss National Science Foundation and the Swiss network for Materials with Novel Electronic Properties.

APPENDIX A

In the presence of spin decoherence, the state of the pair of electrons emitted through different dots can be described by a density matrix ρ, which can be written as

$$\rho = \left(\int dE |A(E)|^2 \right)^{-1} \sum_{q,q'} \rho_{qq'} \int dE dE' \times A(E) A^*(E') \langle \Psi_q(E) | \Psi_{q'}(E') \rangle | \langle \Psi_{q'}(E') |$$ \hspace{1cm} (A1)

noting that the normalization gives $\sum_q \rho_{qq} = 1$. The index q runs over the states in the singlet-triplet basis $\{ q \} = \{ S, T_0, T_+, T_- \}$, i.e.

$$|\Psi_S(E)\rangle = \frac{1}{\sqrt{2}} \left[b_{1S}^\dagger(E)b_{2S}^\dagger(-E) - b_{1S}^\dagger(E)b_{2S}^\dagger(-E) \right] |0\rangle$$

$$|\Psi_{T_0}(E)\rangle = \frac{1}{\sqrt{2}} \left[b_{1T_0}^\dagger(E)b_{2T_0}^\dagger(-E) + b_{1T_0}^\dagger(E)b_{2T_0}^\dagger(-E) \right] |0\rangle$$

$$|\Psi_{T_+}(E)\rangle = b_{1T_+}^\dagger(E)b_{2T_+}^\dagger(-E) |0\rangle$$

$$|\Psi_{T_-}(E)\rangle = b_{1T_-}^\dagger(E)b_{2T_-}^\dagger(-E) |0\rangle$$ \hspace{1cm} (A2)

The coefficients $\rho_{qq'}$ depend in general on the nature and the strength of the spin decoherence. As pointed out in the text, only energy independent spin decoherence is considered, and consequently the coefficients $\rho_{qq'}$ are independent on energy.

The current operators conserve the individual spins. As a consequence, the off-diagonal elements of ρ do not contribute to the noise correlators. As discussed in the text, all triplets contribute equally to the correlators. Since the singlet and triplet states contribute with opposite sign to the last term in Eqs. (27) and (28), the effect of spin-decoherence on the Fano factors can be incorporated by renormalizing $|H(\varepsilon_1 - \varepsilon_2)|^2 \rightarrow (2\rho_{SS} - 1)|H(\varepsilon_1 - \varepsilon_2)|^2$, with the renormalization factor expressed in terms of ρ_{SS} only (using $\rho_{SS} + \rho_{ST_0} + \rho_{ST_+} + \rho_{ST_-} = 1$), the weight of the singlet component in ρ.

It is a difficult (and in general not analytically tractable) problem to evaluate the entanglement of the full density matrix, since ρ contains information about both the energy-dependent orbital part of the state as well as the spin-part. In particular, due to the continuous energy variable, the dimension of ρ is infinite. Here, we are however only interested in the spin entanglement of ρ. To determine the spin entanglement one has to consider measurement schemes where the observables O are sensitive only to the spin part of ρ. Such observables satisfy the property

$$\int dEdE' A(E) A^*(E') \langle \Psi_q(E) | O | \Psi_{q'}(E') \rangle = \langle \Psi_q | O_\sigma | \Psi_{q'} \rangle \int dE |A(E)|^2$$ \hspace{1cm} (A3)

where $|\Psi_{q'}\rangle$ are given from $|\Psi_{q'}(E)\rangle$ in Eq. (A2) by removing the energy dependence, e.g. $|\Psi_{T_+}\rangle = b_{1T_+}^\dagger b_{2T_+}^\dagger |0\rangle$. The operator O_σ is a function of the energy independent b-operators. Using the property in Eq. (A3) we can write

$$\langle O \rangle = \text{tr}[\rho O] = \left(\int dE |A(E)|^2 \right)^{-1} \sum_{q,q'} \rho_{qq'} \times \int dEdE' A(E) A^*(E') \langle \Psi_q(E) | O | \Psi_{q'}(E') \rangle$$

$$= \sum_{q,q'} \rho_{qq'} \langle \Psi_q | O_\sigma | \Psi_{q'} \rangle = \text{tr}[\rho_\sigma O_\sigma].$$ \hspace{1cm} (A4)

The 4×4 spin density matrix ρ_σ is thus

$$\rho_\sigma = \sum_{q,q'} \rho_{qq'} |\Psi_q\rangle \langle \Psi_{q'}|.$$ \hspace{1cm} (A5)
It is straightforward to show that for the special ρ for aligned dot levels $\varepsilon_1 = \varepsilon_2$, the current correlators in Eq. 20 are insensitive to the wave-packet structure of ρ. In this case, ρ_σ is directly obtained from ρ by tracing over energies. More generally, independent of $\varepsilon_1, \varepsilon_2$, the spin current correlators between lead 1 and 2 (i.e. in the absence of the beamsplitter) are insensitive to the wave-packet structure of ρ. These latter correlators can be used to test a Bell Inequality, along the lines of Ref. 15-17.

Our interest is thus to investigate the entanglement of ρ_σ, conveniently expressed in terms of the concurrence 59. The concurrence C is defined as

$$C(\rho_\sigma) = \max \left\{ 0, \sqrt{\lambda_1} - \sqrt{\lambda_2} - \sqrt{\lambda_3} - \sqrt{\lambda_4} \right\} \quad (A6)$$

where the λ's are the real and positive eigenvalues, in decreasing order, of $\rho_\sigma \tilde{\rho}_\sigma$. The matrix $\tilde{\rho}_\sigma$ is defined as

$$\tilde{\rho}_\sigma = (\sigma_y \otimes \sigma_y) \rho_\sigma^* (\sigma_y \otimes \sigma_y) \quad (A7)$$

where σ_y are Pauli matrices, rotating locally the spins in lead 1 and 2 respectively. Importantly, in Eq. A7, the density matrix ρ_σ is written in the spin-up/spin-down basis, i.e. $b_{1L}^\dagger b_{1L}^\dagger |0\rangle$ etc. The concurrence is $C = 0$ for an unentangled state and $C = 1$ for a state which is maximally entangled.

To determine $C(\rho_\sigma)$, full information of ρ_σ is needed. In the approach taken here, investigating the spin entanglement via a beam-splitter and current correlators, one can however not determine all elements of the density matrix ρ_σ. As a consequence, the spin entanglement of the emitted pair can not be determined precisely. It is nevertheless possible, following the ideas of Burkard and Loss 59 to obtain a lower bound for the spin entanglement.

To obtain the lower bound, we first note two important properties of $C(\rho_\sigma)$: (i) $C(\rho_\sigma)$ is invariant under local rotations, i.e. $C(\rho_\sigma) = C(\rho_\sigma)$ for $\rho_\sigma = (U_1 \otimes U_2) \rho_\sigma (U_2^\dagger \otimes U_1^\dagger)$, where U_1 and U_2 are unitary 2×2 matrices acting locally on the spins in lead 1 and 2 respectively. (ii) $C(\rho_\sigma)$ is a convex function, i.e. for a density matrix $\rho_\sigma = \sum_i p_i \rho_{i\sigma}$, with $\sum_i p_i = 1$, the entanglement of the total density matrix is smaller than or equal to the weighted entanglement of the parts (a consequence of information being lost when adding density matrices).

Consider then the density matrix ρ_W obtained by averaging ρ_σ with respect to all possible local rotations $U \otimes U$, i.e. the same rotation in lead 1 and 2. Formally, $\rho_W = (\langle U \otimes U \rangle \rho_\sigma (U^\dagger \otimes U^\dagger))_U$ is calculated, where $\langle _ _ \rangle_U$ denotes an average with respect to U, uniformly distributed in the group of unitary 2×2 matrices. This gives the Werner state 60.

$$\rho_W = \rho_{SS} |\Psi_S\rangle \langle \Psi_S| + \frac{1 - \rho_{SS}}{3} \quad (A8)$$

where we note that the singlet component is unaffected by the rotation $U \otimes U$. Importantly, the entanglement of the Werner state is a function of the singlet coefficient ρ_{SS} only. Using the two properties (i) and (ii) of the entanglement stated above, we can write

$$C(\rho_W) = C([\langle U \otimes U \rangle \rho_\sigma (U^\dagger \otimes U^\dagger)])_U \leq \langle \langle U \otimes U \rangle \rho_\sigma (U^\dagger \otimes U^\dagger) \rangle_U \leq \langle C(\rho_\sigma) \rangle_U = C(\rho_\sigma) \quad (A9)$$

This shows that the concurrence of the Werner state $C_W = C(\rho_W)$ provides a lower bound for the entanglement of the full spin state $C(\rho_\sigma)$. The concurrence of the Werner state is $C_W = \max\{2\rho_{SS} - 1, 0\}$. The renormalization of the Fano factors in Eqs. 22 and 23 due to spin decoherence can now simply be written $\langle H(\varepsilon_1 - \varepsilon_2)^2 \rangle \rightarrow C_W |H(\varepsilon_1 - \varepsilon_2)^2|$ where $C_W \geq 0$ is a lower bound for the concurrence of the spin state in the presence of decoherence. This is Eq. 31 in the text.

1. E. Schrödinger, Naturwissenschaften, 23, 807 (1935); 23, 844 (1935).
2. A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).
3. N. Bohr, Phys. Rev. 48, 696 (1935).
4. D. Bohm and Y. Aharonov, Phys. Rev. 108, 1070 (1957).
5. J.S. Bell, Physics 1, 195 (1965); Rev. Mod. Phys. 38, 447 (1966).
6. A. Aspect, Nature 398, 189 (1999).
7. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 81, 3563 (1998).
8. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter and A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998).
9. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).
10. N. Gisin G. Ribordy, W. Tittel and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
11. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett 70, 1895 (1993).
12. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Phys. Rev. Lett. 80, 1121 (1998); D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger Nature 390, 575 (1997).
13. Yu. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin and J. S. Tsai, Nature 421, 823 (2003).
14. Y. Makhlin, Gerd Schönb, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).
15. P. Samuelsson, E.V. Sukhorukov and M. Böttiker, Phys. Rev. Lett. 91, 1570002 (2003).
16. R.C. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Nature 391, 263 (1998); W.D. Oliver, J. Kim, R.C. Liu, and Y. Yamamoto, Science 284, 299 (1999).
17. M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. En-
