ON SOME NESTED FLOOR FUNCTIONS AND THEIR JUMP DISCONTINUITIES

LUCA ONNIS

ABSTRACT. This paper investigates some particular limits involving nested floor functions. We’ll prove some cases and then we’ll show a more general result. Then we’ll count the discontinuity points of those functions, and we’ll prove a method to find them all. Surprisingly the set of the jump discontinuities of \(f_n \) is a subset of the set of the jump discontinuities of \(f_{n+1} \), \(\forall n \in \mathbb{Z}^+ \) where:

\[
fn(x) = \left\lfloor \left\lfloor \left\lfloor \cdots \left\lfloor x \right\rfloor \cdots \right\rfloor \right\rfloor \right\rfloor \quad \text{n times}
\]

Furthermore we’ll give some generalizations of the result and lots of considerations; for example we’ll prove that the cardinality of the set of the discontinuities of \(f_n \) in a given limited interval approaches infinity as \(n \to \infty \).

CONTENTS

1. Introduction 1
 1.1. First problem 2
 1.2. Example 2
2. First generalization 2
3. Jump discontinuities 4
 3.1. First considerations 7
 3.2. Generalizations 7
 3.3. Script in Mathematica language 10
 3.4. Considerations of conjecture 11
4. Other generalizations 12
References 12

1. INTRODUCTION

Definition. In mathematics and computer science, the floor function is the function that takes as input a real number \(x \), and gives as output the greatest integer less than or equal to \(x \), denoted \(\lfloor x \rfloor \).

Date: March 2022.
1.1. First problem. Let \(k \in \mathbb{Z}^+ \setminus \{1\} \) and \(n \in \mathbb{Z}^+ \); we want to compute the following limit:

\[
\lim_{x \to k^-} \left[\underbrace{x \lfloor x \lfloor \ldots \lfloor}_{n \text{ times}} \right]
\]

by varying \(k, n \).

1.2. Example. Let \(k = 3 \) and \(n = 2 \), we want to compute:

\[
\lim_{x \to 3^-} \left[x \lfloor x \right]
\]

The answer of this case is 5, and it’s possible to prove it using the definition of limit:

\[
\forall \varepsilon > 0 \exists \delta > 0 \text{ such that: } \left\| \left[x \lfloor x \right] - 5 \right\| < \varepsilon \forall x \in (3 - \delta, 3)
\]

Using \(\delta = \frac{1}{2} \), we have \(x \in (\frac{5}{2}, 3) \). So:

\[
\frac{5}{2} < x < 3 \implies \lfloor x \rfloor = 2
\]

And then, by replacying it in our definition we have:

\[
\left\| 2x - 5 \right\| < \varepsilon
\]

But furthermore since \(\frac{5}{2} < x < 3 \) we know that:

\[
\frac{5}{2} < x < 3 \implies 5 < 2x < 6 \implies \lfloor 2x \rfloor = 5
\]

and finally:

\[
|5 - 5| = 0 < \varepsilon \forall \varepsilon \in \mathbb{R}^+
\]

So:

\[
\lim_{x \to 3^-} \left[x \lfloor x \right] = 5
\]

2. First generalization

In this section we will generalize the example 1.2

Theorem 1. Let \(k \in \mathbb{Z}^+ \setminus \{1\} \) and \(n \in \mathbb{Z}^+ \):

\[
\lim_{x \to k^-} \left[\underbrace{x \lfloor x \lfloor \ldots \lfloor}_{n \text{ times}} \right] = \frac{1}{k - 1} \left[(k - 2) \cdot k^n + 1 \right]
\]

Proof. It is sufficient to prove that \(\forall k \in \mathbb{Z}^+ \setminus \{1\} \) and \(\forall n \in \mathbb{Z}^+ \exists \delta_n = \frac{k - 1}{(k - 2)k^{n - 1}} \) such that

\[
\left\| \underbrace{x \lfloor x \lfloor \ldots \lfloor}_{n \text{ times}} \right\| = \frac{1}{k - 1} \left[(k - 2) \cdot k^n + 1 \right] \forall x \in (k - \delta_n, k)
\]

The base case is when \(n = 1 \). We have that:

\[
|x| = k - 1 \forall x \in (k - \frac{1}{k - 1}, k)
\]
and this identity is true because \(k \) is a positive integer.
Suppose that this identity holds for \(n \) and we’ll prove it right for \(n + 1 \).
Since \(k^n > k^{n-1} \forall n \in \mathbb{Z}^+ \forall k \in \mathbb{Z}^+ \setminus \{1\} \), consider:

\[
\delta_{n+1} = \frac{k-1}{(k-2)k^n+1} < \frac{k-1}{(k-2)k^{n-1}+1} = \delta_n
\]

we want to show that:

\[
\left\lfloor \frac{1}{(k-2)k^{n+1}+1} \right\rfloor \forall x \in (k - \delta_{n+1}, k)
\]

but since \(\delta_{n+1} < \delta_n \) we have that:

\[
\left\lfloor \frac{1}{(k-2)k^{n+1}+1} \right\rfloor = \left\lfloor \frac{k-1}{1} \left((k-2) \cdot k^n + 1 \right) x \right\rfloor \forall x \in I = (k - \delta_{n+1}, k) \subset (k - \delta_n, k)
\]

Furthermore:

\[
\left\lfloor \frac{1}{(k-2)k^{n+1}+1} \right\rfloor = \left\lfloor \frac{k-1}{1} \left((k-2) \cdot k^n + 1 \right) x \right\rfloor \forall x \in I = (k - \delta_{n+1}, k)
\]

This is true in fact:

\[
I = (k - \delta_{n+1}, k) = \left(\frac{k^{n+2} - 2k^{n+1} + 1}{k^{n+1} - 2k^n + 1}, k \right)
\]

So:

\[
\frac{k^{n+2} - 2k^{n+1} + 1}{k^{n+1} - 2k^n + 1} < x < k \Rightarrow \frac{k^{n+2} - 2k^{n+1} + 1}{k^{n+1} - 2k^n + 1} < (k^{n+1} - 2k^n + 1)x < k^{n+2} - 2k^{n+1} + k
\]

\[
(k - 2)k^{n+1} + 1 < (k - 2)k^n + 1 < (k - 2)k^{n+1} + k
\]

And dividing all by \(\frac{1}{k-1} \), we’ll get:

\[
\frac{(k - 2)k^{n+1}}{k-1} + \frac{1}{k-1} < \frac{1}{k-1} \left((k - 2)k^n + 1 \right) x < \frac{(k - 2)k^{n+1}}{k-1} + \frac{k}{k-1}
\]

Call \(n_1 \) the left hand side of the inequality and \(n_2 \) the right hand side. We’ll prove that they are in fact natural numbers in the next section. Note that:

\[
0 < n_2 - n_1 = 1
\]

So the number \(\frac{1}{k-1} \left((k - 2)k^n + 1 \right) x \) is strictly between \(n_1, n_2 \), which are positive integers whose distance between each others is equal to 1. So the floor of

\[
\frac{1}{k-1} \left((k - 2)k^n + 1 \right) x
\]

must be equal to \(n_1 \) (which is the nearest integer less than or equal to \(\frac{1}{k-1} \left((k - 2)k^n + 1 \right) x \)).
Let $\delta_n = \frac{k-1}{(k-2)k^n+1}$. We want to show that:

$$\left\lfloor x \left\lfloor x \left\lfloor \ldots \right\rfloor \right\rfloor \right\rfloor - \frac{1}{k-1} (k-2) \cdot k^n + 1 \right\rfloor < \varepsilon \forall x \in (k-\delta_n, k)$$

But now this is obvious because:

$$\left\lfloor x \left\lfloor x \left\lfloor \ldots \right\rfloor \right\rfloor \right\rfloor = \frac{1}{k-1} (k-2) \cdot k^n + 1 \right\rfloor \forall x \in (k-\delta_n, k)$$

And finally $\forall \varepsilon > 0$:

$$\left\lfloor x \left\lfloor x \left\lfloor \ldots \right\rfloor \right\rfloor \right\rfloor - \frac{1}{k-1} (k-2) \cdot k^n + 1 \right\rfloor = 0 < \varepsilon \forall x \in (k-\delta_n, k)$$

And the thesis follows from the limit definition. □

Lemma 2. n_1 and n_2 defined in Theorem 1 are positive integers.

We want to prove that:

$$(k-2)k^{n+1} + 1 \equiv 0 \pmod{(k-1)}$$

$$(k^{n+2} - 2k^{n+1} + 1 \equiv 0 \pmod{(k-1)}$$

$\forall k \in \mathbb{Z}^+ \setminus \{1\}$ and $n \in \mathbb{Z}^+$.

Proof. Note that:

$$k^{n+2} - 2k^{n+1} + 1 = (k-1)(k^{n+1} - k^n - k^{n-1} - \ldots - k - 1)$$

So the numerator of n_1 is a multiple of $(k-1)$. Since the numerator of n_2 is equal to the numerator of n_2 plus $k - 1$ we conclude that also n_2 is an integer (because its numerator is again a multiple of $k - 1$). □

3. Jump Discontinuities

Let $f(x)$ be the function:

$$f_n(x) = \left\lfloor x \left\lfloor x \left\lfloor \ldots \right\rfloor \right\rfloor \right\rfloor$$

Note that:

$$\lim_{x \to k^-} f_n(x) = \frac{1}{k-1} (k-2) \cdot k^n + 1 \right\rfloor \text{ while } \lim_{x \to k^+} f_n(x) = k^n \forall k \in \mathbb{Z}^+$$

From these relations we know that $x = k$ is a point of discontinuity of the first kind $\forall k \in \mathbb{Z}^+$ with jump’s length equal to:

$$|J(k, f_n)| = k^n - \frac{1}{k-1} (k-2) \cdot k^n + 1 \right\rfloor = \frac{k^n - 1}{k-1}$$

But the function $f_n(x)$ has more jump discontinuities than these. For example:

$$f_2(x) = \left\lfloor x \right\rfloor$$
has a jump discontinuity in $x = \frac{10}{3}$, in fact:

$$\lim_{x \to \frac{10}{3}^-} \lfloor x \rfloor = 9 \text{ while } \lim_{x \to \frac{10}{3}^+} \lfloor x \rfloor = 10$$

As you can see from these graphs:

![Graphs of $f_2(x)$](image)

Figure 1. Graph of $f_2(x)$

Remark 3. Let $f_1(x) = \lfloor x \rfloor$, $P(a, b, f_1)$ the set of discontinuity points of $f_1(x)$ in the interval $[a, b)$ and $P(f_1)$ the set of all discontinuity points over the domain $x \geq 1$. Then:

$$P(f_1) = \mathbb{Z}^+$$

In fact every $x = k$ (where $k \in \mathbb{Z}^+$) is a jump discontinuity for f_1, where:

$$J(k, f_1) = 1 \ \forall k \in P(f_1)$$

Theorem 4. Let $f_2(x)$ be defined as before, $P(a, b, f_2)$ the set of discontinuity points of $f_2(x)$ in the open interval $[a, b)$ and $P(f_2)$ the set of all discontinuity points over the domain $x \geq 1$. Then:

$$P(f_2) = \bigcup_{k=1}^{+\infty} P(k, k+1, f_2) = \bigcup_{k=1}^{+\infty} \left\{ k, k + \frac{1}{k}, k + \frac{2}{k}, \ldots, k + \frac{k-1}{k} \right\}$$

Or:

$$P(f_2) = \bigcup_{k=1}^{+\infty} \bigcup_{r=0}^{k-1} \left\{ k + \frac{r}{k} \right\}$$

where:

$$|J(k, f_2)| = \frac{k^2 - 1}{k - 1} = k + 1 \ \forall k \in \mathbb{Z}^+$$

and:

$$\left| J\left(k + \frac{r}{k}, f_2\right) \right| = 1 \ \forall k \in \mathbb{Z}^+ \text{ where } r \in \{1, 2, \ldots, k - 1\}$$

3.0.1. Examples. For example, consider the function $f_2(x)$ and the interval $[4, 5)$. Assuming true Theorem 2 we know that:

$$P(4, 5, f_2) = \left\{ 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4} \right\}$$

In fact:

$$\lim_{x \to 4^-} f_2(x) = 11 \land \lim_{x \to 4^+} f_2(x) = 16$$

and:

$$|J(4, f_2)| = 4 + 1 = 5$$

the jump is in fact: $16 - 11$
While:
\[
\lim_{x \to \frac{17}{4}^-} f_2(x) = 16 \land \lim_{x \to \frac{17}{4}^+} f_2(x) = 17 \\
\lim_{x \to \frac{9}{2}^-} f_2(x) = 17 \land \lim_{x \to \frac{9}{2}^+} f_2(x) = 18 \\
\lim_{x \to \frac{19}{4}^-} f_2(x) = 18 \land \lim_{x \to \frac{19}{4}^+} f_2(x) = 19
\]

So:
\[
\left| J\left(\frac{17}{4}, f_2\right) \right| = \left| J\left(\frac{9}{2}, f_2\right) \right| = \left| J\left(\frac{19}{4}, f_2\right) \right| = 1
\]

As you can see from this image:

![Figure 2. Graph of $f_2(x)$ in $I = [4, 5)$](image)

Proof. We've already proved that $x = k$ is a discontinuity point $\forall k \in \mathbb{Z}^+$, we should prove that:
\[
\left\{ k + \frac{1}{k}, \ldots, k + \frac{k-1}{k} \right\}_{k=1}^{k=+\infty}
\]
are the only others discontinuity points of f_2

So we're proving that:
\[
\bigcup_{k=1}^{+\infty}\left\{ k, k + \frac{1}{k}, k + \frac{2}{k}, \ldots, k + \frac{k-1}{k} \right\} \subseteq P(f_2) \land P(f_2) \subseteq \bigcup_{k=1}^{+\infty}\left\{ k, k + \frac{1}{k}, k + \frac{2}{k}, \ldots, k + \frac{k-1}{k} \right\}
\]

Let:
\[
\lim_{x \to \left(k + \frac{r}{k}\right)^-} f_2(x) = L(k, r)^- \text{ and } \lim_{x \to \left(k + \frac{r}{k}\right)^+} f_2(x) = L(k, r)^+
\]

Then we’ll prove that $\forall r \in \{1, 2, \ldots, k-1\}$:
\[
L(k, r)^- = k^2 + r - 1 \land L(k, r)^+ = k^2 + r
\]

Using $\delta = \frac{1}{k}$ we have that:
\[
\left| \lfloor x \rfloor - (k^2 + r - 1) \right| < \varepsilon \ \forall x \in (k + \frac{r-1}{k}, k + \frac{r}{k})
\]

We know that:
\[
k + \frac{r-1}{k} < x < k + \frac{r}{k} \Rightarrow \lfloor x \rfloor = k \ \forall x \in (k + \frac{r-1}{k}, k + \frac{r}{k})
\]

And:
\[
k + \frac{r-1}{k} < x < k + \frac{r}{k} \Rightarrow k^2 + r - 1 < kx < k^2 + r \Rightarrow \lfloor kx \rfloor = k^2 + r - 1
\]

So:
\[
\left| \lfloor x \rfloor - (k^2 + r - 1) \right| = \left| \lfloor kx \rfloor - (k^2 + r - 1) \right| = \left| k^2 + r - 1 - (k^2 + r - 1) \right| = 0 < \varepsilon
\]
Similarly, using $\delta = \frac{1}{k}$ again it’s possible to prove with the same technique that:
\[
\left| f(x) - (k^2 + r) \right| < \varepsilon \forall x \in (k + \frac{r}{k}, k + \frac{r+1}{k})
\]
We prove the first inequality. In order to prove the second inequality it’s sufficient to note that f_2 is a monotone increasing function over its domain and that $f_2(x) \in \mathbb{N}, \forall x \geq 1$.
Furthermore:
\[
|J\left(k + \frac{r}{k}, f_2 \right)| = 1 \forall k \in \mathbb{Z}^+ \text{ where } r \in \{1, 2, \ldots, k - 1\}
\]
Since:
\[
L(k, r)^- = k^2 + r - 1 \land L(k, r)^+ = k^2 + r
\]
So we have that:
\[
k^2 + r - 1 \leq f_2(x) < k^2 + r \forall x \in \left[k + \frac{r-1}{k}, k + \frac{r}{k}\right]
\]
But $f_2(x) \in \mathbb{N}$, so the function in that interval is constant, and is equal to:
\[
f_2(x) = k^2 + r - 1 \forall x \in \left[k + \frac{r-1}{k}, k + \frac{r}{k}\right]
\]
Finally we prove that every discontinuity point of f_2 are elements of the following set:
\[
P(f_2) = \bigcup_{k=1}^{+\infty} \left\{ k + \frac{1}{k}, k + \frac{2}{k}, \ldots, k + \frac{k-1}{k} \right\}
\]
Or:
\[
P(f_2) = \bigcup_{k=1}^{+\infty} \bigcup_{r=0}^{k-1} \left\{ k + \frac{r}{k} \right\}
\]
\吸入{-}\]

3.1. First considerations.
The set of discontinuity points of $f_2(x)$ is a countable set. In fact it’s the countable union of countable sets. \吸入{-}\]
So:
\[
|P(f_2)| = |\mathbb{N}| = \aleph_0
\]
Let $h \in \mathbb{Z}^+ \setminus \{1\}$, the cardinality of the finite set defined as:
\[
|P(1, h, f_2)| = \left| \bigcup_{k=1}^{h-1} \left\{ k + \frac{1}{k}, k + \frac{2}{k}, \ldots, k + \frac{k-1}{k} \right\} \right|
\]
is equal to:
\[
|P(1, h, f_2)| = 1 + 2 + 3 + \cdots + h - 1 = \frac{h(h - 1)}{2}
\]

3.2. Generalizations.
If we consider the functions $f_3, f_4, f_5, \ldots, f_n$ it’s easy to see that there are more and more discontinuity points as n increases. Back to the f_2 case, it’s possible to construct a partition of a generic interval $I = [a, b]$, made of the discontinuity points of f_2 in that interval. For example, let $I = [3, 4)$, then:
\[
P(3, 4, f_2) = \left\{ 3, 3 + \frac{1}{3}, 3 + \frac{2}{3} \right\}
\]
while we’ll prove that:
\[
P(3, 4, f_3) = \left\{ 3, 3 + \frac{1}{9}, 3 + \frac{2}{9}, 3 + \frac{3}{3}, 3 + \frac{2}{5}, 3 + \frac{1}{2}, 3 + \frac{3}{5}, 3 + \frac{2}{3}, 3 + \frac{8}{11}, 3 + \frac{9}{11}, 3 + \frac{10}{11} \right\}
\]
Note that:
\[P(3, 4, f_2) \subset P(3, 4, f_3) \land |P(3, 4, f_2)| < |P(3, 4, f_3)| \]

Theorem 5. Let \(P(f_n) \) denotes the set of the discontinuity points of the function \(f_n \). Then:
\[P(f_1) \subset P(f_2) \subset \cdots \subset P(f_n) \forall n \in \mathbb{Z}^+ \]

Proof. We’ll prove this result by induction on \(n \).
The base case \((n = 2)\) has been already proved before. So we know that
\(P(f_1) \subset P(f_2) \).
Suppose that \(P(f_1) \subset P(f_2) \subset \cdots \subset P(f_{n-1}) \). We’ll prove that:
\[P(f_{n-1}) \subset P(f_n) \]
Let \(d \) be an element of \(P_{n-1} \); consider the following limits:
\[\lim_{x \to d^-} f_{n-1}(x) = L_d^- \land \lim_{x \to d^+} f_{n-1}(x) = L_d^+ \]
From the induction hypothesis we know that:
\[L_d^- \neq L_d^+ \]
So \(\exists \delta^-, \delta^+ > 0 \) such that:
\[|f_{n-1}(x) - L_d^-| = 0 \forall x \in (d - \delta^-, d) \]
\[|f_{n-1}(x) - L_d^+| = 0 \forall x \in (d, d + \delta^+) \]
But from the definition of \(f_n \) we have that:
\[f_n(x) = [x \cdot f_{n-1}(x)] \]
So:
\[\lim_{x \to d^-} f_n(x) = \lim_{x \to d^-} [x \cdot f_{n-1}(x)] \]
\[\lim_{x \to d^+} f_n(x) = \lim_{x \to d^+} [x \cdot f_{n-1}(x)] \]
But \(f_{n-1} = L_d^- \forall x \in (d - \delta^-, d) \) and \(f_{n-1} = L_d^+ \forall x \in (d, d + \delta^+) \), so substituing in we will obtein:
\[\lim_{x \to d^-} f_n(x) = \lim_{x \to d^-} [x \cdot L_d^-] \]
\[\lim_{x \to d^+} f_n(x) = \lim_{x \to d^+} [x \cdot L_d^+] \]
This last step is motivated by using the limit definition.
But we know that \(L_d^-, L_d^+ \in \mathbb{Z}^+ \), and since \(f_n \) is monotone increasing and \(L_d^- \neq L_d^+ \) we can conclude that:
\[L_d^+ > L_d^- \implies L_d^+ = L_d^- + k \text{ for some } k \in \mathbb{Z}^+ \]
So:
\[\lim_{x \to d^-} f_n(x) = \lim_{x \to d^-} [x \cdot L_d^-] \]
\[\lim_{x \to d^+} f_n(x) = \lim_{x \to d^+} [x \cdot L_d^- + kx] \]
But using \(\delta = \min\{\delta^-, \delta^+\} \) we have:
\[d < x < d + \delta \implies kd < kx < kd + k\delta \]
And finally we have that kx in this interval is bigger than kd (which is a positive rational number bigger than or equal to 1). So:

$$\lim_{x \to d^+} f_n(x) = \lim_{x \to d^+} |x \cdot L_d^- + kx| = \lim_{x \to d^+} [x \cdot L_d^- + kx - \lfloor kx \rfloor + \lfloor kx \rfloor] \geq 0$$

and combining all the inequalities we’ll get:

$$\lim_{x \to d^+} f_n(x) = \lim_{x \to d^+} [x \cdot L_d^- + kx - \lfloor kx \rfloor + \lfloor kx \rfloor] \geq \lim_{x \to d^-} [x \cdot L_d^- + |kd|] > \lim_{x \to d^-} f_n(x)$$

\[\square \]

Theorem 6. Given the interval $[k, k + 1)$ where $k \in \mathbb{Z}^+$, then:

$$\lim_{n \to \infty} |P(k, k + 1, f_n)| = \infty$$

Where $|P(k, k + 1, f_n)|$ represents the cardinality of the set of all the discontinuity points of f_n in the interval $[k, k + 1)$.

Proof. Since from Theorem 5 we know that:

$P(f_1) \subset P(f_2) \subset \cdots \subset P(f_n) \implies P(k, k+1, f_1) \subset P(k, k+1, f_2) \subset \cdots \subset P(k, k+1, f_n)$

it’s sufficient to show that $\forall n \geq 2, \exists d \in P(k, k+1, f_n) \setminus P(k, k+1, f_{n-1})$. In fact we’ll show that:

$$d = k + \frac{1}{k^{n-1}} \in P(k, k+1, f_n) \setminus P(k, k+1, f_{n-1})$$

First we want to prove that:

$$k + \frac{1}{k^n} \in P(k, k+1, f_{n+1})$$

Or, using the definition of this set:

$$\lim_{x \to (k + \frac{1}{k^n})^-} f_{n+1}(x) \neq \lim_{x \to (k + \frac{1}{k^n})^+} f_{n+1}(x)$$

In fact we’ll prove by induction on $n \geq 2$ that using $\delta = \frac{1}{k^n}$:

$$f_{n+1}(x) = k^{n+1} \forall x \in \left(k + \frac{1}{k^n} - \delta, k + \frac{1}{k^n}\right) \text{ while } f_{n+1}(x) = k^{n+1} + 1 \forall x \in \left(k + \frac{1}{k^n}, k + \frac{1}{k^n} + \delta\right)$$

Assuming that true we will have:

$$\lim_{x \to (k + \frac{1}{k^n})^-} f_{n+1}(x) = k^{n+1} \text{ while } \lim_{x \to (k + \frac{1}{k^n})^+} f_{n+1}(x) = k^{n+1} + 1$$

which is our thesis.

By the induction hypothesis:

$$f_n(x) = k^n \forall x \in \left(k, k + \frac{1}{k^n}\right)$$

$$f_n(x) = k^{n+1} + 1 \forall x \in \left(k + \frac{1}{k^n}, k + \frac{2}{k^n}\right)$$

But using the definition of f_{n+1} with $\delta = \frac{1}{k^n} < \frac{1}{k^{n-1}}$ we’ll have:

$$f_{n+1} = [x \cdot f_n(x)] = [x \cdot k^n] \forall x \in \left(k, k + \frac{1}{k^n}\right) \subset \left(k, k + \frac{1}{k^{n-1}}\right)$$

$$f_{n+1} = [x \cdot f_n(x)] = [x \cdot k^n] \forall x \in \left(k + \frac{1}{k^n}, k + \frac{2}{k^n}\right) \subset \left(k, k + \frac{1}{k^{n-1}}\right)$$
But furthermore:

\[k < x < k + \frac{1}{k^n} \implies k^{n+1} < k^n x < k^{n+1} + 1 \]
\[k + \frac{1}{k^n} < x < k + \frac{2}{k^n} \implies k^{n+1} + 1 < k^n x < k^{n+1} + 2 \]

And finally:

\[f_{n+1} = \lfloor x \cdot k^n \rfloor = k^{n+1} \forall x \in \left(k, k + \frac{1}{k^n}\right) \]
\[f_{n+1} = \lfloor x \cdot k^n \rfloor = k^{n+1} + 1 \forall x \in \left(k + \frac{1}{k^n}, k + \frac{2}{k^n}\right) \]

Now we know that \(k + \frac{1}{k^n}, k + \frac{2}{k^n} \in P(k, k + 1, f_{n+1}) \), and we want to prove that \(+ \frac{1}{k^n} \leq P(k, k + 1, f_n) \). This is true in fact:

\[
\lim_{x \to (k + \frac{1}{k^n})^-} f_n(x) = \lim_{x \to (k + \frac{1}{k^n})^+} f_n(x) = k^n
\]

In order to prove it, as seen before, we know that:

\[f_n(x) = k^n \forall x \in \left(k, k + \frac{1}{k^n}\right) \]

But then:

\[f_n(x) = k^n \forall x \in \left(k, k + \frac{1}{k^n}\right) \subset \left(k + \frac{1}{k^n}, k + \frac{2}{k^n}\right) \]
\[f_n(x) = k^n \forall x \in \left(k + \frac{1}{k^n}, k + \frac{2}{k^n}\right) \subset \left(k + \frac{2}{k^n}, \ldots, k + \frac{1}{k^n}\right) \]

\[\forall k \geq 2, \forall n \geq 1. \text{ So we’ll have:} \]

\[\{k + \frac{1}{k}, \ldots\} \subset \{k + \frac{1}{k}, k + \frac{1}{k^2}, \ldots\} \subset \ldots \subset \{k + \frac{1}{k}, k + \frac{1}{k^2}, \ldots, k + \frac{1}{k^n}, \ldots\} \]

\[P(k, k + 1, f_2) \subset P(k, k + 1, f_3) \subset \ldots \subset P(k, k + 1, f_{n+1}) \]

Where \(P(k, k + 1, f_{n+1}) \) has \(n \) terms of the form \(k + \frac{1}{k^r} \), where \(r \in \{1, \ldots, n\} \).

\[\square \]

3.3. **Script in Mathematica language.** In order to compute discontinuity points of the function \(f_n \) in a given interval, is possible to use this script: [2]

Listing 1. To compute discontinuity points of \(f_3 \) in \(I = (2, 3) \)

```mathematica
FunctionDomain[{Floor[x*Floor[x-Floor[x]]], x}, 2 < x < 3, x]
```

which gives:

\[
\text{Always } 2 < x < 9/4 \parallel 9/4 < x < 5/2 \parallel 5/2 < x < 13/5 \parallel 13/5 < x < 14/5 \parallel 14/5 < x < 3+
\]

where \(\frac{9}{4}, \frac{5}{2}, \frac{13}{5}, \frac{14}{5} \) are in fact all the discontinuity points in that interval.

Conjecture 7. Let \(f_3(x) \) be defined as before, \(P(a, b, f_3) \) the set of discontinuity points of \(f_3(x) \) in the open interval \([a, b) \) and \(P(f_3) \) the set of all discontinuity points over the domain \(x \geq 1 \). Then:

\[P(f_3) = P(f_3) \cup P(f_2) \cup \bigcup_{k=1}^{+\infty} \bigcup_{i=0}^{k-1} \left\{ k + \frac{(k+1)i}{k^2+i} \right\} \]

Or:

\[P(f_3) = P(f_3) \cup P(f_2) \cup \bigcup_{k=1}^{+\infty} \bigcup_{i=0}^{k-1} \bigcup_{p=0}^{k-1} \left\{ k + \frac{(k+1)i + p}{k^2+i} \right\} \]
where:
\[|J(k, f_3)| = \frac{k^3 - 1}{k - 1} = k^2 + k + 1 \forall k \in \mathbb{Z}^+ \]

and:
\[|J(k + \frac{r}{k}, f_3)| = k + 1 \forall k \in \mathbb{Z}^+ \text{ where } r \in \{1, 2, \ldots, k - 1\} \]

and:
\[|J(p, f_3)| = 1 \forall p \in P(f_3) \setminus P(f_2) \cap P(f_1) \]

For example, consider the interval \([3, 4)\). We’ve already said that:
\[P(3, 4, f_3) = \left\{ 3, 3 + \frac{1}{9}, 3 + \frac{2}{9}, 3 + \frac{3}{9}, 3 + \frac{4}{9}, 3 + \frac{5}{9}, 3 + \frac{6}{9}, 3 + \frac{7}{9}, 3 + \frac{8}{9}, 3 + \frac{9}{9} \right\} \]

This should represent this set:
\[P(3, 4, f_1) \cup P(3, 4, f_2) \cup \bigcup_{i=0}^{2} \bigcup_{p=0}^{2} \left\{ 3 + \frac{4i + p}{9 + i} \right\} (k = 3 \text{ in the formula above}) \]

In fact:
\[P(3, 4, f_3) = \left\{ 3 \right\} \cup \left\{ 3 + \frac{1}{3}, 3 + \frac{2}{3} \right\} \cup \left\{ 3, 3 + \frac{1}{9}, 3 + \frac{2}{9}, 3 + \frac{4}{9}, 3 + \frac{5}{9}, 3 + \frac{6}{9}, 3 + \frac{7}{9}, 3 + \frac{8}{9}, 3 + \frac{9}{9} \right\} \]

3.4. Considerations of conjecture \[7\] As in Theorem \[4\] we would like to prove our result using double inclusion of sets. But from Theorem \[5\] we know that:
\[P(f_1) \subset P(f_2) \subset P(f_3) \]

So it’s to sufficient to prove that all the elements in the set \(P(f_3) \setminus P(f_1) \cup P(f_2) \) are jump discontinuities for \(f_3 \) (because we already known that the elements in \(P(f_1) \cup P(f_2) \) are jump discontinuities for \(f_3 \)). In general, the set: \(P(f_3) \setminus P(f_1) \cup P(f_2) \) is given by:
\[P(f_3) \setminus P(f_1) \cup P(f_2) = \bigcup_{k=1}^{+\infty} \bigcup_{i=0}^{k-1} \bigcup_{p=0}^{k-1} \left\{ k + \frac{(k + 1)i + p}{k^2 + i} \right\} \setminus \{k\} \]

We would like to show that:
\[\lim_{x \to (k + \frac{(k + 1)i + p}{k^2 + i})^-} f_3(x) = k^3 + 2ik + i + p - 1 \]

While:
\[\lim_{x \to (k + \frac{(k + 1)i + p}{k^2 + i})^+} f_3(x) = k^3 + 2ik + i + p \]

For example:
\[\lim_{x \to (3 + \frac{4}{3})^-} f_3(x) = \lim_{x \to \frac{11}{3}} f_3(x) = 3^3 + 2 \cdot 1 \cdot 3 + 0 - 1 = 33 \]
4. OTHER GENERALIZATIONS

Given the result obtained before, it’s trivial to prove that under the same conditions:

\[\forall m \in \mathbb{Z}^+ \]

\[
\lim_{x \to k^-} \left(x^m \left\lfloor x^m \right\rfloor \ldots \right) = \frac{1}{k^m - 1} \left[(k^m - 2) \cdot k^{m-n} + 1 \right]
\]

For example, for \(k = 4, n = 3, m = 2 \) we have that:

\[
\lim_{x \to 4^-} \left(x^2 \left\lfloor x^2 \right\rfloor \ldots \right) = 3823 = \frac{1}{4^2 - 1} \left[(4^2 - 2) \cdot 4^{2-3} + 1 \right] = \frac{57345}{15}
\]

REFERENCES

[1] Union of countably many countable sets is countable. (2021). MathStackExchange.math.stackexchange.com

[2] Jump discontinuities in Mathematica. (2022). MathematicaStackExchange.mathematica.stackexchange.com. Available online at: https://mathematica.stackexchange.com/questions/264829/jump-discontinuities-in-mathematica