kaighobadi_stevens_rcode.R
Created by Jeffrey R. Stevens on 1 Sept 2012 (jeffrey.r.stevens@gmail.com),
Summary: This script calculates statistics and generates figures for the
analysis of women's intertemporal choice data across their ovulatory cycle.
Instructions: Place this file and the data files (kaighobadi_stevens_data[2/3].csv)
in the same directory. Create a folder called "figures". Set the R
working directory to this directory. At the R command prompt, type
> source("kaighobadi_stevens_rcode.R")
This will run the script, adding all of the calculated variables to the
workspace and saving PDF versions of the figures in the figures directory.
Uses: This script can be reproduced and modified for personal and scientific use.
Data files: Description of the data columns:
kaighobadi_stevens_data2--intertemporal and risky choice data
subject - participant number
age - participant age
condition - experimental condition (experimental [male image] or control [neutral landscape image])
fertility - fertility status (peak or low)
date - date of experiment
time - time of day for experiment
session - session number (1 or 2)
task - order of experimental tasks
tasktype - experimental task (Discounting [intertemporal choice] or Risk [risky choice])
block - block number for blocks of questions
switchpt - indifference point calculated for question
amount1 - small amount
time1 - short delay
amount2 - large amount
time2 - long delay
prepost - flag for whether question occurs before or after exposure to images
kaighobadi_stevens_data3--attractiveness ratings
Subject - participant number
Fertility - fertility status (peak or low)
Image - image number with code for male image ("man") or landscape image ("L")
Rating - participant rating of image from 0 (very unattractive) to 9 (very attractive)
RT - response time--time between exposure to image and rating response (in ms)

Clear variables, load libraries, include external functions, define local functions
library(epicalc, quietly = T) # for aggregate with multiple functions
library(Hmisc, quietly = T) # for xYplots
library(latticeExtra, quietly = T) # for layer overlaying of plots
library(boot) # for bootstrapping CIs
library(nparLD) # for non-parametric repeated measures stats
within$ffertility <- factor(within$ffertility, labels = c("peak", "low")) # create factor for fertility
within$condition <- factor(within$condition, labels = c("control", "experimental"))# create factor for condition
within$fprepost <- factor(within$fprepost, labels = c("pre", "post")) # create factor for prepost

Intertemporal choice

disc <- subset(within, tasktype == "Discounting") # select intertemporal choice (discounting) questions
disc <- subset(disc, substr(block, 8, 8) == "7") # select data rows with the same question
disc$time2 <- as.character(disc$time2) # change time2 column to characters
disc_preexposure <- subset(disc, fprepost == "pre") # extract pre-exposure questions
disc_preexposure$subject <- as.factor(disc_preexposure$subject) # convert subject to factor

Indifference point data

disc_indiff_subj <- aggregate(disc_preexposure$switchpt, by = list(disc_preexposure$ffertility, disc_preexposure$subject), FUN = c("mean", "median", "length", "sd")) # aggregate indifference points by subject, prepost, fertility, and condition
names(disc_indiff_subj) <- c("fertility", "subject", "indiff", "median", "n", "sd")
disc_indiff <- aggregate(disc_indiff_subj$indiff, by = list(disc_indiff_subj$ffertility), FUN = c("mean", "median", "length", "sd")) # aggregate indifference points by fertility
names(disc_indiff) <- c("fertility", "indiff", "median", "N", "sd")

95% confidence intervals

boot.indiff.peak <- boot(subset(disc_indiff_subj, fertility == "peak")$indiff, function(u,i) mean(u[i]), R = 999) # bootstrap peak confidence intervals
boot.indiff.low <- boot(subset(disc_indiff_subj, fertility == "low")$indiff, function(u,i) mean(u[i]), R = 999) # bootstrap low confidence intervals
indiff_peak_ci <- boot.ci(boot.indiff.peak, type = "norm") # calculate 95% confidence intervals
indiff_low_ci <- boot.ci(boot.indiff.low, type = "norm") # calculate 95% confidence intervals

disc_indiff$ubci <- c(indiff_peak_ci$normal[2], indiff_low_ci$normal[2]) # add CIs to dataframe
disc_indiff$lbci <- c(indiff_peak_ci$normal[3], indiff_low_ci$normal[3]) # add CIs to dataframe

Create list of colors and line types

subject_lty <- c("#0072B2", ":D55E00", ":#009E73", ":E69F00", ":F0E442", ":CC79A7") # create list of colors
subject_col <- c(rep(c(2, 2), times = 7)) # create list of line types

disc_indiff_plot <- stripplot(jitter(disc_preexposure$switchpt) ~ fffertility, groups = subject, data = disc_preexposure, pch = 4, cex = 2, xlab = "Fertility", ylab = "Indifference point", aspect = 0.55, par.settings = list(axis.text = list(cex = 2), par.xlab.text = list(cex = 2.5)), par.ylab.text = list(cex = 2.5), layout.heights = list(strip = 2)), panel = function(x, y, ...) {
 mean.values <- tapply(y, x, mean, na.rm=T) # calculates means
 panel.stripplot(x, y, type = "b", lty = subject_lty, ...)
 panel.average(x, y, fun = mean, lwd = 4, col = "black", ...)# plot line connecting means
 panel.points(mean.values, pch = 16, cex = 2, col = "black") # plot means as diamonds
```r

## Difference score data

disc_diff_subj <- aggregate(disc$switchpt, by = list(disc$ffertility, disc$condition, disc$subject), FUN = "diff")  # create difference score (post - pre) as a function of fertility, condition, and subject
names(disc_diff_subj) <- c("fertility", "condition", "subject", "diff")
disc_diff_raw <- aggregate(disc_diff_subj$diff, by = list(disc_diff_subj$ffertility, disc_diff_subj$condition), FUN = c("mean", "median", "length", "sd"))  # aggregate difference score by fertility and condition
names(disc_diff_raw) <- c("fertility", "condition", "diff", "median", "N", "sd")
disc_diff_expt_all <- subset(disc_diff_subj, condition == "experimental")  # create subset of experimental condition data
disc_diff_expt <- aggregate(disc_diff_expt_all$diff, by = list(disc_diff_expt_all$ffertility, disc_diff_expt_all$condition), FUN = c("mean", "median", "length", "sd"))  # aggregate experimental data by fertility and condition
disc_diff_control_all <- subset(disc_diff_subj, condition == "control")  # create subset of control condition data
disc_diff_control <- aggregate(disc_diff_control_all$diff, by = list(disc_diff_control_all$ffertility, disc_diff_control_all$condition), FUN = c("mean", "median", "length", "sd"))  # aggregate control data by fertility and condition
names(disc_diff_control) <- c("fertility", "condition", "mean", "median", "N", "sd")
disc_diff <- data.frame(condition = c("experimental", "experimental", "control", "control"), rbind(disc_diff_expt, disc_diff_control))  # combine experimental and control condition
disc_diff$diff <- disc_diff_raw[c(3, 4, 1, 2), 3]  # append raw difference means

## Non-parametric statistics

wilcox.test(disc$switchpt ~ disc$ffertility, data = disc$preexposure)  # Wilcoxon signed rank test

# within-subjects ANOVA

# Parametric statistics

```
CIs to dataframe

disc_diff_plot <- stripplot(jitter(diff, amount = 0.5) ~ fertility | condition, groups = subject, data = disc_diff_subj, pch = 4, cex = 2, subscripts = T, xlab = "Fertility", ylab = "Difference score (Post - Preexposure)", #main = "Intertemporal choice (within subjects)",
strip = strip.custom(factor.levels = c("Neutral Image", "Male Image"), par.strip.text = list(cex = 2)),
par.settings = list(axis.text = list(cex = 2), par.xlab.text = list(cex = 2.5), layout.heights = list(strip = 2)),
panel = function(x, y, ...) {
 # x2 <<- tapply(as.numeric(x), x, mean)
 mean.values <<- tapply(y, x, mean, na.rm=T) # calculates means
 panel.stripplot(x, y, type = "b", lty = subject_lty, ...) # plot line connecting means
 panel.average(x, y, fun = mean, lwd = 4, col = "black") # plot means as diamonds
 panel.abline(h = 0, lty = 2) # mark 0 line
}
addWithinCI <- layer_(panel.arrows(x, lbci[subscripts], x, ubci[subscripts], col = "black", length = 0.3, subscripts = T, monunit = "native", angle = 0, code = 3, lwd = 2), data = disc_diff, under = FALSE) # add layer for bootstrapped CIs

png(file = "figures/disc_diff_score_within.png", width = 900, height = 700) # create PNG file
plot(disc_diff_plot + addWithinCI)
dev.off()

Parametric stats

disc_diff_aov <- aov(diff ~ condition * fertility + Error(subject/(fertility)), data = disc_diff_subj) # mixed effect ANOVA
shapiro.test(residuals(disc_diff_aov$subject)) # test assumption of normality of residuals (failed--unbalanced data)

Non-parametric stats

my.t<- c(2:1) # create fertility predictions
my.pat <- rbind(c(2:1), c(2:1)) # create fertility predictions
disc_npar <- f1.ld.f1(y = disc_diff_subj$diff, time = disc_diff_subj$fertility, group = disc_diff_subj$condition, subject = disc_diff_subj$subject, w.t=my.t, w.pat=my.pat, description = F) # conduct non-parametric analysis
disc_diff_npaov <- disc_npar$ANOVA.test # extract statistical test
disc_diff_pairedcomp <- disc_npar$pattern.time # extract pairwise comparison

Effect size of interaction effect (calculates Glass's delta [using low ferility standard deviation as control standard deviation because standard deviations differed slightly between high and low fertility conditions]
disc_diff_effect_size <- (disc_diff$mean[1] - disc_diff$mean[2])/disc_diff$sd[2]

Risky choice

risk <- subset(within, tasktype == "Risk") # select intertemporal choice (discounting) questions
risk <- subset(risk, substr(block, 8, 8) == "4") # select data rows with the same question
risk_preexposure <- subset(risk, fprepost == "pre") # extract pre-exposure questions
risk_preexposure$subject <- as.factor(risk_preexposure$subject)
Indifference point data

```r
risk_indiff_subj <- aggregate(risk_preexposure$switchpt, by = list(risk_preexposure$fertility, risk_preexposure$subject), FUN = c("mean", "median", "length", "sd"))  # aggregate indifference points by subject, prepost, fertility, and condition
names(risk_indiff_subj) <- c("fertility", "subject", "indiff", "median", "n", "sd")
risk_indiff <- aggregate(risk_indiff_subj$indiff, by = list(risk_indiff_subj$fertility), FUN = c("mean", "median", "length", "sd"))  # aggregate indifference points by fertility
names(risk_indiff) <- c("fertility", "indiff", "median", "N", "sd")

boot_indiff_peak <- boot(subset(risk_indiff_subj, fertility == "peak")$indiff, function(u,i) mean(u[i]), R = 999)  # bootstrap peak

boot_indiff_low <- boot(subset(risk_indiff_subj, fertility == "low")$indiff, function(u,i) mean(u[i]), R = 999)  # bootstrap low

indiff_peak_ci <- boot.ci(boot_indiff_peak, type = "norm")  # calculate 95% confidence intervals

indiff_low_ci <- boot.ci(boot_indiff_low, type = "norm")  # calculate 95% confidence intervals

risk_indiff$ubci <- c(indiff_peak_ci$normal[3], indiff_low_ci$normal[3])  # add CIs to dataframe
risk_indiff$lbci <- c(indiff_peak_ci$normal[2], indiff_low_ci$normal[2])  # add CIs to dataframe

risk_indiff_plot <- stripplot(jitter(risk_indiff$switchpt) ~ ffertility, groups = risk_preexposure$subject, data = risk_preexposure, aspect = 0.65, pch = 4, cex = 2, xlab = "Fertility", ylab = "Indifference point", #main = "Risky choice (within subjects)",
strip = strip.custom(factor.levels = c("Neutral Image", "Male Image"), par.strip.text = list(cex = 2)),
par.settings = list(axis.text = list(cex = 2), par.xlab.text = list(cex = 2.5),
par.ylab.text = list(cex = 2.5), layout.heights = list(strip = 2)),
panel = function(x, y, ...) {
  x2 <- tapply(as.numeric(x), x, mean)
  mean.values <- tapply(y, x, mean, na.rm=T)  # calculates means
  panel.stripplot(x, y, type = "b", lty = subject_lty, ...)
  panel.average(x, y, fun = mean, lwd = 4, col = "black", ...) # plot line between means
  panel.points(mean.values, pch = 16, cex = 1.5, col = "black") # plot means as diamonds
}

addWithinCI <- layer_(panel.segments(x, lbci[subscripts], x, ubci[subscripts], col = "black", length = 0,
  unit = "native", angle = 90, code = 3, lwd = 2), data = risk_indiff, under = FALSE)  # add layer for bootstrapped CIs

png(file = "figures/risk_indifference_within.png", width = 900, height = 600)
plot(risk_indiff_plot + addWithinCI)
dev.off()
```

```r
# Parametric stats
risk_preexp_aov <- aov(switchpt ~ ffertility + Error(subject/ffertility), data = risk_preexposure)  # within-subjects ANOVA
shapiro.test(residuals(risk_preexp_aov$subject))  # test assumption of normality of residuals (passed)
summary(risk_preexp_aov)  # no main effects or interactions

# Non-parametric stats
wilcox.test(switchpt ~ ffertility, data = risk_preexposure, paired = T)
```

```
####

# Difference score data
```
risk_diff_subj <- aggregate(risk$switchpt, by = list(risk$fertility, risk$fcondition, risk$subject), FUN = "diff") # create difference score (post - pre) as a function of fertility, condition, and subject
names(risk_diff_subj) <- c("fertility", "condition", "subject", "diff")
risk_diff_raw <- aggregate(risk_diff_subj$diff, by = list(risk_diff_subj$fertility, risk_diff_subj$condition), FUN = c("mean", "median", "length", "sd")) # aggregate difference score by fertility and condition
names(risk_diff_raw) <- c("fertility", "condition", "diff", "median", "N", "sd")
risk_diff_expt_all <- subset(risk_diff_subj, condition == "experimental") # create subset of experimental condition data
risk_diff_expt <- aggregate(risk_diff_expt_all$diff, by = list(risk_diff_expt_all$fertility, risk_diff_expt_all$condition), FUN = c("mean", "median", "length", "sd")) # aggregate experimental data by fertility and condition
risk_diff_subj <- aggregate(risk_diff_subj$diff, by = list(risk_diff_subj$fertility, risk_diff_subj$condition), FUN = c("mean", "median", "length", "sd")) # aggregate experimental data by fertility and condition
names(risk_diff_expt) <- names(risk_diff_control) <- c("fertility", "condition", "mean", "median", "N", "sd")
risk_diff_data.frame(condition = c("experimental", "experimental", "control", "control"), rbind(risk_diff_expt, risk_diff_control)) # combine experimental and control condition
diff_peak_exp <- boot(risk_diff_subj, fertility == "peak" & condition == "experimental")$diff, function(u,i) mean(u[i]), R = 999) # bootstrap peak fertility/experimental data
boot_diff_peak_cont <- boot(risk_diff_subj, fertility == "peak" & condition == "control")$diff, function(u,i) mean(u[i]), R = 999) # bootstrap peak fertility/control data
boot_diff_low_exp <- boot(risk_diff_subj, fertility == "low" & condition == "experimental")$diff, function(u,i) mean(u[i]), R = 999) # bootstrap low fertility/experimental data
boot_diff_low_cont <- boot(risk_diff_subj, fertility == "low" & condition == "control")$diff, function(u,i) mean(u[i]), R = 999) # bootstrap low fertility/control data
diff_peak_exp_ci <- boot.ci(boot_diff_peak_exp, type = "norm") # calculate 95% confidence intervals
diff_peak_cont_ci <- boot.ci(boot_diff_peak_cont, type = "norm") # calculate 95% confidence intervals
diff_low_exp_ci <- boot.ci(boot_diff_low_exp, type = "norm") # calculate 95% confidence intervals
diff_low_cont_ci <- boot.ci(boot_diff_low_cont, type = "norm") # calculate 95% confidence intervals
diff_peak_exp_subci <- c(diff_peak_exp_ci$normal[3], diff_low_exp_ci$normal[3], diff_peak_cont_ci$normal[3], diff_low_cont_ci$normal[3]) # add CIs to dataframe
diff_peak_exp_lbci <- c(diff_peak_exp_ci$normal[2], diff_low_exp_ci$normal[2], diff_peak_cont_ci$normal[2], diff_low_cont_ci$normal[2]) # add CIs to dataframe

risk_diff_plot <- stripplot(jitter(diff) ~ fertility | condition, groups = subject, data = risk_diff_subj, pch = 4, cex = 2, subscripts = T, xlab = "Fertility", ylab = "Difference score (Post - Preexposure)", main = "Risky choice (within subjects)", strip = strip.custom(factor.levels = c("Neutral Image", "Male Image"), par.strip.text = list(cex = 2)), par.settings = list(axis.text = list(cex = 2), par.xlab.text = list(cex = 2.5), par.ylab.text = list(cex = 2.5), layout.heights = list(strip = 2)), panel = function(x, y, ...) {
 x2 <- tapply(as.numeric(x), x, mean)
 mean.values << tapply(y, x, mean, na.rm=T)
 panel.stripplot(x, y, type = "b", lty = subject_lty, ...)
 panel.average(x, y, fun = mean, lwd = 4, col = "black", ...) # plot line between means
 panel.points(mean.values, pch = 16, cex = 1.5, col = "black") # plot means as diamonds
 panel.abline(h = 0, lty = 2) # mark 0 line
})
addWithinCI <- layer_(panel.segments(x, ubci[subscripts], x, ubci[subscripts], col = 'black', length = 0, unit = "native", angle = 0, code = 3, lwd = 2), data = risk_diff, under = FALSE) # add layer for bootstrapped CIs

generates risk_diff_plot + addWithinCI

dev.off()

Inferential stats
risk_diff_aov <- aov(diff ~ condition * fertility + Error(subject/(fertility)), data = risk_diff_subj) # mixed-effects ANOVA
shapiro.test(residuals(risk_diff_aov$subject)) # test assumption of normality of residuals (failed--unbalanced data)

Non-parametric stats
risk_npar <- fl.lf.fl(y = risk_diff_subj$diff, time = risk_diff_subj$fertility, group = risk_diff_subj$condition, subject = risk_diff_subj$subject, description = F) # conduct non-parametric analysis
risk_diff_npaov <- risk_npar$ANOVA.test # extract ANOVA-like statistics

###
Attractiveness ratings
###

input data
rating_all <- read.csv("data/ov_rating_data.csv")

create factor for fertility
rating_all$fertility <- factor(rating_all$fertility, labels = c("peak", "low"))

aggregate rating data by fertility and subject
ratings <- aggregate(rating_all$rating, by = list(rating_all$fertility, rating_all$subject), FUN = "mean")

merge discounting and rating data frames
rating_disc <- merge(disc_diff_subj, ratings)

subset peak and experimental data
rating_disc_peak_exp <- subset(rating_disc, fertility == "peak" & condition == "experimental")

subset low and experimental data
rating_disc_low_exp <- subset(rating_disc, fertility == "low" & condition == "experimental")

subset peak and control data
rating_disc_peak_cont <- subset(rating_disc, fertility == "peak" & condition == "control")

subset low and control data
rating_disc_low_cont <- subset(rating_disc, fertility == "low" & condition == "control")

Ratings fertility by condition
rating_raw <- aggregate(rating_disc$rating, by = list(rating_disc$condition, rating_disc$fertility), FUN = c("mean", "length", "sd")) # aggregate rating by fertility and condition
names(rating_raw) <- c("condition", "fertility", "rating", "N", "sd")
boot_rating_peak_exp <- boot(subset(rating_disc, fertility == "peak" & condition == "experimental")$rating, function(u,i) mean(u[i]), R = 999) # bootstrap peak fertility/experimental data
boot_rating_peak_cont <- boot(subset(rating_disc, fertility == "peak" & condition == "control")$rating, function(u,i) mean(u[i]), R = 999) # bootstrap peak fertility/control data
boot_rating_low_exp <- boot(subset(rating_disc, fertility == "low" & condition == "experimental")$rating, function(u,i) mean(u[i]), R = 999) # bootstrap low fertility/experimental data
boot_rating_low_cont <- boot(subset(rating_disc, fertility == "low" & condition == "control")$rating, function(u,i) mean(u[i]), R = 999) # bootstrap low fertility/control data

boot_rating_peak_exp_ci <- boot.ci(boot_rating_peak_exp, type = "norm") # calculate 95% confidence intervals
boot_rating_peak_cont_ci <- boot.ci(boot_rating_peak_cont, type = "norm")
boot_rating_low_exp_ci <- boot.ci(boot_rating_low_exp, type = "norm")
boot_rating_low_cont_ci <- boot.ci(boot_rating_low_cont, type = "norm")

rating_peak_exp_ci$normal[3], rating_peak_exp_ci$normal[3], rating_low_cont_ci$normal[3], rating_low_exp_ci$normal
[3]) # add CIs to dataframe
rating_raw$lbci <- c(rating_peak_cont_ci$normal[2], rating_peak_exp_ci$normal[2], rating_low_cont_ci$normal[2], rating_low_exp_ci$normal[2]) # add CIs to dataframe
rating_raw$ci <- rating_raw$ubci - rating_raw$rating

Ratings fertility
rating_fert <- aggregate(rating_disc$rating, by = list(rating_disc$fertility), FUN = c("mean", "length", "sd")) # aggregate ratings by fertility
names(rating_fert) <- c("fertility", "rating", "N", "sd")
boot_rating_peak <- boot(subset(rating_disc, fertility == "peak")$rating, function(u,i) mean(u[i]), R = 999) # bootstrap peak fertility data
boot_rating_low <- boot(subset(rating_disc, fertility == "low")$rating, function(u,i) mean(u[i]), R = 999) # bootstrap low fertility data
rating_peak_ci <- boot.ci(boot_rating_peak, type = "norm") # calculate 95% confidence intervals
rating_fert$ubci <- c(rating_peak_ci$normal[3], rating_low_ci$normal[3]) # add CIs to dataframe
rating_fert$lbci <- c(rating_peak_ci$normal[2], rating_low_ci$normal[2]) # add CIs to dataframe
rating_fert$ci <- rating_fert$ubci - rating_fert$rating

Ratings condition
rating_cond <- aggregate(rating_disc$rating, by = list(rating_disc$condition), FUN = c("mean", "length", "sd")) # aggregate ratings by condition
names(rating_cond) <- c("condition", "rating", "N", "sd")
boot_rating_exp <- boot(subset(rating_disc, condition == "experimental")$rating, function(u,i) mean(u[i]), R = 999) # bootstrap experimental condition data
boot_rating_cont <- boot(subset(rating_disc, condition == "control")$rating, function(u,i) mean(u[i]), R = 999) # bootstrap control condition data
rating_exp_ci <- boot.ci(boot_rating_exp, type = "norm") # calculate 95% confidence intervals
rating_cond$ubci <- c(rating_cont_ci$normal[3], rating_exp_ci$normal[3]) # add CIs to dataframe
rating_cond$lbci <- c(rating_cont_ci$normal[2], rating_exp_ci$normal[2]) # add CIs to dataframe
rating_cond$ci <- rating_cond$ubci - rating_cond$rating