Nearly optimal scaling in the SR decomposition✩

Heike Faßbendera, Miroslav Rozložník, Sanja Singer

aInstitute for Numerical Analysis, Technische Universität Braunschweig, Universitätsplatz 2, 38106 Braunschweig, Germany
bInstitute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-115 67 Prague 1, Czech Republic
cUniversity of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10000 Zagreb, Croatia

Abstract

In this paper we analyze the nearly optimal block diagonal scalings of the rows of one factor and the columns of the other factor in the triangular form of the SR decomposition. The result is a block generalization of the result of the van der Sluis about the almost optimal diagonal scalings of the general rectangular matrices.

Keywords: SR decomposition, scaling, condition number

2000 MSC: 65F25, 65F35, 65F05

1. Introduction

The QR factorization and the closely related QR algorithm are one of the workhorses in solving general eigenvalue problems. It is well-known that the QR algorithm preserves the symmetric structure of the matrix whose eigenvalues are to be computed such that the computed eigenvalues will all be real (even so rounding errors are unavoidable). Unfortunately, there are a number of structured problems whose structure is not preserved by the QR algorithm. Thus, general QR-like methods, in which the QR factorizations are replaced by other factorizations have been studied by several authors, see, e.g., [14]. Here we consider the SR decomposition which can be used in the SR algorithm which preserves the symplectic as well as the Hamiltonian structure.

For a matrix $G \in \mathbb{R}^{2m \times 2m}$ an SR decomposition is given by

$$G = \tilde{S}\tilde{R} = \tilde{S} \begin{pmatrix} \tilde{R}_{11} & \tilde{R}_{12} \\ \tilde{R}_{21} & \tilde{R}_{22} \end{pmatrix},$$

(1.1)
where \tilde{S} is symplectic, i.e., $\tilde{S}^T J \tilde{S} = J$ for the skew-symmetric matrix J defined as

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \in \mathbb{R}^{2m,2m}.$$

As usual, $I \in \mathbb{R}^{m,m}$ denotes the identity matrix. The matrix \tilde{R} is J-triangular, that is, R_{ij} are upper triangular, and R_{21} has zero diagonal. The SR decomposition (1.1) exists if all leading submatrices of even dimension of $PG^T JGP^T$ are nonsingular (see, e.g., [6, Theorem 11] or [3, Theorem 3.8]), and P is the (perfect shuffle) permutation matrix $P = (e_1, e_3, \ldots, e_{2m-1}, e_2, e_4, \ldots, e_{2m})$, where $e_k, k = 1, \ldots, m$ are vectors of the canonical basis. The set of $2m \times 2m$ SR decomposable matrices is thus dense in $\mathbb{R}^{2m,2m}$.

The SR decomposition is not unique as with $G = \tilde{S}\tilde{R}$ also $G = S\tilde{R}$ is an SR decomposition of G where $S = \tilde{S}\tilde{D}^{-1}$ and $\tilde{R} = \tilde{D}\tilde{R}$ for a matrix

$\tilde{D} = \begin{pmatrix} C & F \\ 0 & C^{-1} \end{pmatrix},$

with diagonal matrices $C, F \in \mathbb{R}^{m,m}$. If uniqueness is required, there are various possibilities how to make it unique by adding requirements on S or \tilde{R} (see, e.g., [4] for a summary of the typical suggestions).

Symplectic matrices may be arbitrarily ill-conditioned. Thus, one is interested in making use of the non-uniqueness of the SR decomposition by choosing \tilde{S} (or \tilde{R}) so that its condition is as good as possible. Some first-order componentwise and normwise perturbation bounds for a certain unique SR decomposition (diag$(R_{11}) = |\text{diag}(R_{22})|$), diag$(R_{21}) = 0$) can be found in [4] (see also [5], while in [7] it is discussed how to choose the entries of the 2×2 submatrices

$$(\tilde{R}_{11})_{jj} \quad (\tilde{R}_{12})_{jj} \\ 0 \quad (\tilde{R}_{22})_{jj}$$

of the J-triangular matrix \tilde{R} in order to minimize the condition number of \tilde{R} or the condition number of \tilde{S}.

Assume that $G = \tilde{S}\tilde{R}$ is a SR decomposition of G. We will consider the question on how to choose the matrix \tilde{D} as in (1.2) such that the SR decomposition

$G = S\tilde{R}, \quad S = \tilde{S}\tilde{D}^{-1}, \quad \tilde{R} = \tilde{D}\tilde{R}$

of G has either an nearly optimally conditioned S or an nearly optimally conditioned \tilde{R}. In particular, we try to answer the questions on how to choose \tilde{D}_r and \tilde{D}_c such that

$$\kappa_2(\tilde{D}_r, \tilde{R}) \leq \alpha_R \min_{\tilde{D} \in \mathcal{D}}(\tilde{D}\tilde{R})$$ \hspace{1cm} (1.3)$$

and

$$\kappa_2(\tilde{S}(\tilde{D}_c)^{-1}) \leq \alpha_C \min_{\tilde{D} \in \mathcal{D}}(\tilde{S}\tilde{D}^{-1}),$$ \hspace{1cm} (1.4)$$

where \mathcal{D} is the set of diagonal matrices $D \in \mathbb{R}^{m,m}$.
where \(\tilde{D} \) denotes the set of all nonsingular \(2m \times 2m \) matrices of the form \(\{\alpha R, \alpha C \} \), and \(\alpha_R, \alpha_C \in \mathbb{R} \).

It is well-known that equilibration tends to reduce the condition number of a matrix. Equilibration means the scaling of the rows (and/or columns) of a matrix such that the norms of all rows (and/or columns) obtain equal norms. This has already been studied by van der Sluis in [13] (see also [9]). If \(G \) is a full rank matrix, then

\[
\kappa_2(\Sigma_r G) \leq \sqrt{m \min_{\Sigma \in S_k}(\Sigma G)}
\]

for

\[
\Sigma_r = \text{diag}([\|G_{c_1}\|_2^{-1}, \ldots, \|G_{c_n}\|_2^{-1}])
\]

and

\[
\kappa_2(G \Sigma_c) \leq \sqrt{n \min_{\Sigma \in S_k}(\Sigma G)}
\]

for

\[
\Sigma_c = \text{diag}([\|e_{c_1}^T G\|_2^{-1}, \ldots, \|e_{c_m}^T G\|_2^{-1}]),
\]

where \(S_k \) denotes the set of all nonsingular \(k \times k \) diagonal matrices and \(e_k \) the \(k \)th column of the identity matrix. In this paper we will generalize these results.

To be precise, we will consider not just the scaling of the SR decomposition of square matrices \(G \in \mathbb{R}^{2m,2m} \), but we will allow for rectangular \(G \in \mathbb{R}^{2m,2n} \) where \(m \geq n \). Its standard SR decomposition is given by

\[
G = \tilde{S} \tilde{R} = \tilde{S} \begin{pmatrix} \tilde{R}_{11} & \tilde{R}_{12} \\ 0_{m-n} & 0_{m-n} \\ \tilde{R}_{21} & \tilde{R}_{22} \\ 0_{m-n} & 0_{m-n} \end{pmatrix}
\]

where \(\tilde{S} \in \mathbb{R}^{2m,2m} \) is symplectic, \(\tilde{R}_{11}, \tilde{R}_{12}, \tilde{R}_{22} \in \mathbb{R}^{n,n} \) are upper triangular, \(\tilde{R}_{21} \in \mathbb{R}^{m,n} \) is upper triangular with zero diagonal and \(0_{m-n} \in \mathbb{R}^{m-n,n} \) denotes a zero matrix.

The rest of the paper is organized as follows. In Section 2 some preliminary observations are given which will be helpful for the later discussion. In Section 3 we find the almost optimal block-diagonal scaling from the left-hand side of the triangular factor \(R \) in the SR decomposition. Section 4 contains similar results for the right-hand block-diagonal scalings of the symplectic factor \(S \). In Section 5 some connections to other types of factorizations are given. In particular, the symplectic QR factorization [12] and the Cholesky-like factorization of skew-symmetric matrices presented in [2] (see also [1]) are considered. The results obtained in Sections 3 and 4 apply immediately. In the final section the theoretical results are illustrated on four examples – two for column scalings of the triangular factor \(R \) and two for the scalings of the factor permuted symplectic factor \(S \), respectively.

2. Preliminary lemmata

Before we tackle these two problems in the next sections, we will derive two helpful lemmata. The first lemma is a straightforward consequence of the Leibniz formula for the determinant of a \(2 \times 2 \) matrix.
Lemma 2.1. For all matrices $B := (B_1, B_2)$, $B_1, B_2 \in \mathbb{R}^n$ it holds
\[
\det(B^T B) = \|B_1\|_2^2 \|B_2\|_2^2 - (B_1^T B_2)^2.
\]

Next we will proof a formulae for the condition number of a 2×2 matrix. For this, we make use of the following well-known facts (see, e.g., [8]) for $A, B \in \mathbb{R}^{n \times n}$ and the singular value decomposition $B = U \Sigma V^T$ with $U^T U = V^T V = I$, $\Sigma = \text{diag}(\sigma_1(B), \ldots, \sigma_n(B))$

\[
\det(AB) = \det(A) \det(B), \quad \det(B^T) = \det(B), \quad \det(B) = \prod_{k=1}^n \sigma_k(B), \quad \|B\|_F = \sum_{k=1}^n \sigma_k^2(B), \quad |B|_2 = \sigma_{\max}(B).
\]

Lemma 2.2. For any matrix $B \in \mathbb{R}^{2 \times 2}$ its spectral condition number in terms of its determinant and Frobenius norm can be written as
\[
\kappa_2(B) = \frac{\sigma_{\max}(B)}{\sigma_{\min}(B)} = \frac{\|B\|_F^2 + \sqrt{\|B\|_F^4 - 4 \det^2(B)}}{2 |\det(B)|}
\]
where $\sigma_{\max}(B)$ and $\sigma_{\min}(B)$ are the maximal and minimal singular values of B.

Proof. For $B \in \mathbb{R}^{2 \times 2}$ we have
\[
\|B\|_F^2 = \sigma_{\max}(B)^2 + \sigma_{\min}(B)^2 \quad \text{(2.1)}
\]
and
\[
\det(B^T B) = \det^2(B) = \sigma_{\max}(B)^2 \cdot \sigma_{\min}(B)^2. \quad \text{(2.2)}
\]
Note that (2.1) and (2.2) are Vieta's formulas for the sum and the product of the roots $\sigma_{\max}(B)$ and $\sigma_{\min}(B)$ of the quadratic equation
\[
(\tau - \sigma_{\max}(B))(\tau - \sigma_{\min}(B)) = \tau^2 - |B|_F^2 \tau + \det^2(B) = 0.
\]
Therefore, squares of the singular values can be written by using the coefficients of the polynomial,
\[
\sigma_{\max}(B)^2 = \frac{\|B\|_F^2 + \sqrt{\|B\|_F^4 - 4 \det^2(B)}}{2},
\]
\[
\sigma_{\min}(B)^2 = \frac{\|B\|_F^2 - \sqrt{\|B\|_F^4 - 4 \det^2(B)}}{2}.
\]
Hence, the spectral condition number of B can be expressed as
\[
\kappa_2(B) = \frac{\sigma_{\max}(B)}{\sigma_{\min}(B)} = \frac{\sigma_{\max}(B)^2}{|\det(B)|} = \frac{\|B\|_F^2 + \sqrt{\|B\|_F^4 - 4 \det^2(B)}}{2 |\det(B)|}.
\]
3. Nearly optimal block-row scaling of \tilde{R}

Now we are ready to consider the problem (1.3). It is easy to see that for a J-triangular matrix $\tilde{R} \in \mathbb{R}^{2n \times 2n}$ the permuted matrix $\tilde{P}\tilde{R}\tilde{P}^T$ is an upper triangular matrix. Similarly, a matrix $\tilde{D} \in \mathbb{R}^{2n \times 2n}$ of the form (1.2) is permuted to the block diagonal matrix

$$D = \tilde{P}\tilde{D}\tilde{P}^T = \text{diag}\left(\begin{pmatrix} c_{11} & f_{11} \\ 0 & c_{11}^{-1} \end{pmatrix}, \ldots, \begin{pmatrix} c_{nn} & f_{nn} \\ 0 & c_{nn}^{-1} \end{pmatrix}\right) \in \mathbb{R}^{2n \times 2n}.$$ \hspace{1cm} (3.1)

As

$$DR = (\tilde{P}\tilde{D}\tilde{P}^T)(\tilde{P}\tilde{R}\tilde{P}^T) = \tilde{P}\tilde{D}\tilde{R}\tilde{P}^T$$

and as the spectral norm is unitary invariant, we have $\kappa_2(\tilde{D}\tilde{R}) = \kappa_2(DR)$. Thus, instead of (1.3) we will actually consider the following equivalent problem. Given an upper triangular matrix $R \in \mathbb{R}^{2n \times 2n}$ find a matrix D, such that

$$\kappa_2(D) \leq \alpha_R \min_{D \in \mathcal{D}}(DR)$$ \hspace{1cm} (3.2)

where \mathcal{D} denotes the set of all nonsingular $2n \times 2n$ matrices of the form (3.1) and $\alpha_R \in \mathbb{R}$.

As any $D \in \mathcal{D}$ is a block diagonal matrix with 2×2 blocks on the diagonal, we will block R accordingly

$$R = \begin{pmatrix} R_{11} & \cdots & R_{1n} \\ 0 & \ddots & \vdots \\ 0 & 0 & R_{nn} \end{pmatrix},$$ \hspace{1cm} (3.3)

with $R_{ij} \in \mathbb{R}^{2 \times 2}$ for $i = 1, \ldots, j$, $j = 1, \ldots, n$ and diagonal blocks

$$R_{jj} = \begin{pmatrix} r_{11}^{(j)} & r_{12}^{(j)} \\ 0 & r_{22}^{(j)} \end{pmatrix}, \quad r_{11}^{(j)} r_{22}^{(j)} \neq 0$$

for $j = 1, \ldots, n$. Thus, we will consider

$$X = D R = \text{diag}(D_1, \ldots, D_n) R,$$

where jth block-row of the matrix X is

$$X_j = D_j \cdot \begin{pmatrix} 0_2 & \cdots & 0_2 & R_{jj} & \cdots & R_{jn} \end{pmatrix} \in \mathbb{R}^{2 \times 2n},$$ \hspace{1cm} (3.4)

and

$$D_j = \begin{pmatrix} f_{jj} & f_{j3} \\ 0 & f_{jj}^{-1} \end{pmatrix},$$

for $j = 1, \ldots, n$.

Let L be

$$L = R^T = (L_1, \ldots, L_n), \quad L_j \in \mathbb{R}^{2n \times 2}$$ \hspace{1cm} (3.5)

such that L_j^T denotes the jth block row of the matrix R. Denote the two columns of L_j by L_{j1} and L_{j2}, respectively,

$$L_j = (L_{j1}, L_{j2}), \quad L_{j1}, L_{j2} \in \mathbb{R}^{2n}.$$
We will tackle our problem in three steps. First we will see that it is possible to choose \(D_j \) such that \(D_j \) minimizes the Frobenius norm of \(X_j \) and the two rows of \(X_j \) have the same Frobenius norm \(\beta_j \). Next we will discuss how to choose \(D_r \) such that all rows of \(X \) have the same Frobenius norm \(\beta \geq \beta_j \). Finally, we will give an answer for \((3.2)\).

Thus, we start our discussion by first seeing what can be achieved locally by looking at the \(j \)th block row of \(X \). We are looking for \(D_j \) that minimizes the Frobenius norm of \(X_j \).

The Frobenius norm of \(X_j \) can now be expressed as

\[
\|X_j\|_F^2 = \|D_j L_j^T\|_F^2 = \|L_j D_j^T\|_F^2 = \|(c_{jj} L_{j1} + f_{jj} L_{j2}) c_{jj}^{-1} L_{j2}\|_F^2
\]

\[
= \|c_{jj} L_{j1} + f_{jj} L_{j2}\|_2^2 + \|c_{jj}^{-1} L_{j2}\|_2^2
\]

\[
= c_{jj}^2 \|L_{j1}\|_2^2 + 2c_{jj} f_{jj} L_{j1}^T L_{j2} + f_{jj}^2 \|L_{j2}\|_2^2 + \frac{\|L_{j2}\|_2^2}{c_{jj}^2}.
\] (3.6)

With this we are ready to state an optimal scaling \(D_j \) for the \(j \)th block row of \(R \).

Theorem 3.1. Let \(R \in \mathbb{R}^{2n,2n} \) as in \((3.3)\) be given. Let \(L = R^T \) as in \((3.5)\) and \(X_j = D_j L_j^T \) as in \((3.4)\). The Frobenius norm of \(X_j \), \(\|X_j\|_F = \|X_j^T\|_F = \|L_j D_j^T\|_F \) is minimized for

\[
\hat{D}_j = \begin{pmatrix}
\hat{c}_{jj} & \hat{f}_{jj} \\
0 & \hat{c}_{jj}
\end{pmatrix},
\] (3.8)

where

\[
\hat{c}_{jj} = \frac{\|L_{j2}\|_2}{\sqrt{\det(L_j^T L_j)}},
\] (3.9)

\[
\hat{f}_{jj} = -\frac{L_{j1}^T L_{j2}}{\|L_{j2}\|_2^4 \sqrt{\det(L_j^T L_j)}}.
\] (3.10)

Thus, for the Frobenius norm of the \(j \)th block row of \(R \) for the optimal \(\hat{D}_j \) it holds

\[
\|X_j\|_F = \|L_j \hat{D}_j^T\|_F = \sqrt{2} \beta_j
\]

with

\[
\beta_j := \sqrt{\det(L_j^T L_j)}.
\] (3.11)

Proof. The partial derivatives of \(\|X_j\|_F \) with respect to \(c_{jj} \) and \(f_{jj} \) need to be equal to zero. Differentiating \((3.6)\) gives

\[
0 = c_{jj} \|L_{j1}\|_2^2 + f_{jj} L_{j1}^T L_{j2} - \frac{\|L_{j2}\|_2^2}{c_{jj}},
\]

\[
0 = c_{jj} L_{j1}^T L_{j2} + f_{jj} \|L_{j2}\|_2^2.
\]
Rewriting the second equation as
\[f_{jj} = \frac{c_{jj} L_j^T L_j}{\|L_{j2}\|^2} \]
and substituting this expression into the first equation yields
\[0 = c_{jj}^4 \left(\frac{\|L_{j1}\|^2}{\|L_{j2}\|^2} - \frac{(L_j^T L_{j2})^2}{\|L_{j2}\|^2} \right) - \|L_{j2}\|^2, \]
that is,
\[c_{jj}^4 = \frac{\|L_{j2}\|^4}{(\|L_{j1}\|^2 \|L_{j2}\|^2 - L_j^T L_{j2})^2}. \]

With Lemma 2.1 we obtain (3.9), and therefore (3.10). As the Hessian matrix
\[\hat{c}_{jj} \] and \(\hat{f}_{jj} \) as in (3.9) and (3.10) give the global minimum of \(\min_{c_{jj},f_{jj}} \|L_j D_j^T F\|_F \).

By substituting the optimal \(\hat{c}_{jj} \) and \(\hat{f}_{jj} \) into (3.7) we obtain with Lemma 2.1
\[\|D_j L_j^T \|^2_F = \frac{\|L_{j2}\|^2 \|L_{j1}\|^2}{\det(L_j^T L_j)} - 2 \left(\frac{(L_j^T L_{j2})^2}{\det(L_j^T L_j)} + \frac{(L_j^T L_{j1})^2}{\det(L_j^T L_j)} \right) + \frac{\sqrt{\det(L_j^T L_j)}}{\det(L_j^T L_j)} \]
\[= \left(\frac{\|L_{j2}\|^2 \|L_{j1}\|^2}{\det(L_j^T L_j)} - \frac{(L_j^T L_{j2})^2}{\det(L_j^T L_j)} + \frac{\sqrt{\det(L_j^T L_j)}}{\det(L_j^T L_j)} \right) \]
\[= \left(\frac{\sqrt{\det(L_j^T L_j)}}{\det(L_j^T L_j)} + \frac{\det(L_j^T L_j)}{\sqrt{\det(L_j^T L_j)}} \right) = 2 \sqrt{\det(L_j^T L_j)} = 2 \beta_j^2. \]

It also holds that the two rows of \(X_j \) have the same norm.

Corollary 3.2. It holds that
\[\|c_{j1}^T X_j\|_2 = \|c_{j2}^T X_j\|_2 = \beta_j. \]

Proof. Recall that
\[X_j^T = (c_{jj} L_{j1} + f_{jj} L_{j2}, c_{jj}^{-1} L_{j2}) \]
holds. By inserting value of \(\hat{c}_{jj} \) from (3.9) into \(\|\hat{c}_{jj}^{-1} L_{j2}\|^2 \), it is easy to compute the squared norm of the second row of \(X_j \),
\[\|\hat{c}_{jj}^{-1} L_{j2}\|^2 = \frac{\|L_{j2}\|^2}{\hat{c}_{jj}^2} = \sqrt{\det(L_j^T L_j)} = \beta_j^2. \]

(3.12)
Therefore, from (3.6), it follows that for the squared norm of the first row of X_j that
\[\| c_{jj} L_{j1} + f_{jj} L_{j2} \|_2^2 = \beta_j^2, \] (3.13)
holds, i.e., both rows of $X_j = \hat{D}_j L_j^T$ have the same norm β_j.

The spectral condition number of the matrix \hat{D}_j from (3.8), as well as the Frobenius condition number can be obtained easily.

Theorem 3.3. Let \hat{D}_j be as in Theorem 3.1. Then
\[\kappa_2(\hat{D}_j) = \frac{\| L_j \|_F^2 + \sqrt{\| L_j \|_F^4 - 4 \det(L_j^T L_j)}}{2 \sqrt{\det(L_j^T L_j)}}, \]
\[\kappa_F(\hat{D}_j) = \frac{\| L_j \|_F^2}{\sqrt{\det(L_j^T L_j)}} = \frac{\| L_j \|_F^2}{\| L_j \|_2 \sigma_{\text{min}}(L_j)}. \]

Proof. The spectral condition number is a direct consequence of Lemma 2.2
\[\kappa_2(\hat{D}_j) = \frac{\| \hat{D}_j \|_F^2 + \sqrt{\| \hat{D}_j \|_F^4 - 4 \det(\hat{D}_j)}}{2 |\det(\hat{D}_j)|} \]
and the following observation obtained with the help of Lemma 2.1
\[\| \hat{D}_j \|_F^2 = c_{jj}^2 + c_{22}^2 + c_{jj}^{-2} = \frac{\| L_{j2} \|_2^4 + (L_{j1}^T L_{j2})^2 + \det(L_j^T L_j)}{\| L_{j2} \|_2^2 \sqrt{\det(L_j^T L_j)}} \]
\[= \frac{\| L_{j2} \|_2^4 + (L_{j1}^T L_{j2})^2 + \| L_{j1} \|_2^2 \| L_{j2} \|_2^2 - (L_j^T L_j)^2}{\| L_{j2} \|_2^2 \sqrt{\det(L_j^T L_j)}} \]
\[= \frac{\| L_{j2} \|_2^4 + \| L_{j1} \|_2^4}{\sqrt{\det(L_j^T L_j)}} = \frac{\| L_j \|_2^2}{\sqrt{\det(L_j^T L_j)}}. \]
The expression for
\[\kappa_F(\hat{D}_j) = \| \hat{D}_j \|_F \| \hat{D}_j^{-1} \|_F \]
follows immediately from (2.2) as $|\hat{D}_j^{-1}|_F = ||\hat{D}_j||_F$.

The following connection between columns L_j and the matrix \hat{D}_j^{-1} will be useful later on.

Proposition 3.4. Let L_j be the jth block column of the matrix R_j^T as in (3.5), and \hat{D}_j as in Theorem 3.3. Let the QL factorization (3.1) of L_j be given by
\[L_j = V_j \begin{pmatrix} 0 \\ \hat{L}_{j3} \end{pmatrix} \]
with the orthogonal matrix \(V_j \in \mathbb{R}^{2n \times 2n} \), \(V_j^T V_j = I_{2n} \) and the lower triangular factor \(\tilde{L}_{jj} \in \mathbb{R}^{2 \times 2} \),
\[
\tilde{L}_{jj} = \begin{pmatrix} \tilde{l}_{11} & 0 \\ \tilde{l}_{21} & \tilde{l}_{22} \end{pmatrix}, \quad \tilde{l}_{11}, \tilde{l}_{22} > 0.
\]

Then it holds for all \(j = 1, \ldots, n \) that
\[
\tilde{L}_{jj} = \beta_j \tilde{D}_j^{-T}.
\]

Proof. We immediately have
\[
L_j^T L_j = (0, \tilde{L}_{jj}^T V_j^T V_j \begin{pmatrix} 0 \\ \tilde{L}_{jj} \end{pmatrix}) = \tilde{L}_{jj} L_j.
\]

Then, from
\[
L_j^T \tilde{L}_{jj} = \begin{pmatrix} \|L_j\|_2^2 & L_j^T L_{jj} \\ L_j^T L_{jj} & \|L_{jj}\|_2^2 \end{pmatrix} = \tilde{L}_{jj}^T \tilde{L}_{jj} = \begin{pmatrix} (\tilde{l}_{11})^2 + (\tilde{l}_{21})^2 & \tilde{l}_{11} \tilde{l}_{21} \\ \tilde{l}_{11} \tilde{l}_{21} & (\tilde{l}_{22})^2 \end{pmatrix},
\]

it follows that
\[
\tilde{l}_{11} = \frac{\sqrt{\|L_j\|_2^2 \|L_{jj}\|_2^2 - (L_j^T L_{jj})^2}}{\|L_{jj}\|_2} = \sqrt{\det(L_j^T L_j)}.
\]

With (3.8)–(3.11) we obtain
\[
\tilde{l}_{11} = \beta_j \tilde{c}_{jj}^{-1}, \quad \tilde{l}_{22} = \beta_j \tilde{c}_{jj}, \quad \tilde{l}_{21} = -\beta_j \tilde{f}_{jj},
\]

so that \(\tilde{L}_{jj} = \beta_j \tilde{D}_j^{-T} \) holds.

The following lemma is an easy consequence of Proposition 3.4. It will be helpful in proving the main theorem of this section.

Lemma 3.5. Let \(L_j \) be the \(j \)th block column of the matrix \(R^T \) defined by (3.5) with the QL factorization as in Proposition 2.7 and \(\tilde{D}_j \) as in Theorem 3.1. For any matrix \(B \in \mathbb{R}^{2 \times 2} \) it holds
\[
\|B \tilde{D}_j^{-1}\|_2 = \frac{\|B L_j^T\|_2}{\beta_j}.
\]

Proof. From (3.13) it follows
\[
B \tilde{D}_j^{-1} = \frac{1}{\beta_j} B \tilde{L}_{jj}^T,
\]

and by using the unitary invariance of the spectral norm we obtain
\[
\|B \tilde{D}_j^{-1}\|_2 = \frac{\|B \tilde{L}_{jj}^T\|_2}{\beta_j} = \frac{\|B(0, \tilde{L}_{jj}^T)\|_2}{\beta_j} = \frac{\|B(0, \tilde{L}_{jj}^T V_j^T)\|_2}{\beta_j} = \frac{\|B L_j^T\|_2}{\beta_j}.
\]

\[\Box \]
Our findings so far allow to construct a scaling matrix \(\hat{D}_r = \text{diag}(\hat{D}_1, \ldots, \hat{D}_n) \) such that the Frobenius norm of each block row is minimized and the two rows in the \(j \)th block row of \(\hat{D}_r R \) have the same Frobenius norm \(\beta_j \). Our next goal is to determine a scaling \(\tilde{D}_r = \text{diag}(\tilde{D}_1, \ldots, \tilde{D}_n) \in \mathcal{D} \) such that (similarly to the result obtained by van der Sluis) all rows of the matrix \(\tilde{D}_r R \) have the same Frobenius norm equal to \(\beta \).

Theorem 3.6. Let \(R \in \mathbb{R}^{2n \times 2n} \) as in (3.3) be given. Let \(L = R^T \) be as in (3.5) and \(D_j, j = 1, \ldots, n \) given as in (3.4). Let \(\beta_j \) be as in Theorem 3.1 and let \(\beta \geq \beta_j \). All rows of \(\tilde{D}_r R \) have the same norm \(\beta \) for \(\tilde{D}_r = \text{diag}(\tilde{D}_1, \ldots, \tilde{D}_n) \in \mathcal{D} \) where

\[
\tilde{D}_j = \begin{pmatrix} \tilde{c}_{jj} & \tilde{f}_{jj} \\ 0 & \tilde{c}_{jj}^{-1} \end{pmatrix} \quad (3.15)
\]

for \(j = 1, \ldots, n \) with

\[
\tilde{c}_{jj} = \frac{\|L_{j2}\|_2}{\beta}, \quad (3.16)
\]

\[
\tilde{f}_{jj} = \frac{-L_{j1}^T L_{j2} \pm \sqrt{\beta^4 - \beta_j^4}}{\|L_{j2}\|_2}. \quad (3.17)
\]

Proof. The requirement that all rows of \(\tilde{D} R = \tilde{D} L^T \) should have the same norm \(\beta \) gives relations analogous to (3.12)–(3.13) for all \(j = 1, \ldots, n \)

\[
\beta^2 = |c_{22} L_{j2}^T|^2 = \frac{\|L_{j2}\|_2^2}{c_{jj}^2} \quad (3.18)
\]

\[
\beta^2 = |\tilde{c}_{jj} L_{j1} + \tilde{f}_{jj} L_{j2}|_2^2 = \tilde{c}_{jj}^2 \|L_{j1}\|_2^2 + 2 L_{j1}^T L_{j2} \tilde{c}_{jj} \tilde{f}_{jj} + \tilde{f}_{jj}^2 \|L_{j2}\|_2^2. \quad (3.19)
\]

Relation (3.18) immediately implies the choice of \(\tilde{c}_{jj} \).

Substituting (3.16) into (3.19) yields the quadratic equation for \(\tilde{f}_{jj} \)

\[
\tilde{f}_{jj}^2 + \frac{2 L_{j1}^T L_{j2}}{\beta \|L_{j2}\|_2} \tilde{f}_{jj} + \frac{\|L_{j1}\|_2^2}{\beta^2} = 0.
\]

If \(\beta \geq \beta_j \), the equation has two real solutions (3.17),

\[
\tilde{f}_{jj} = \frac{-L_{j1}^T L_{j2}}{\beta \|L_{j2}\|_2} \pm \sqrt{\frac{(L_{j1}^T L_{j2})^2 - \|L_{j1}\|_2^2 \|L_{j2}\|_2^2 + \beta_j^4}{\beta^2 \|L_{j2}\|_2^2}} = \frac{-L_{j1}^T L_{j2}}{\beta \|L_{j2}\|_2} \pm \sqrt{\frac{-\beta_j^4 + \beta^4}{\beta^2 \|L_{j2}\|_2^2}}
\]

with \(\beta_j^2 = \sqrt{|\det(L_{j1}^T L_{j2})|} \) as in (3.11).

It is not possible to achieve the a row scaling with a diagonal block scaling.
Remark 3.7. If instead of the upper triangular \tilde{D}_j as in the previous theorem a diagonal block scaling matrix of the form

$$\tilde{D}_j = \text{diag}(\tilde{e}_{jj}, \tilde{e}_{jj}^{-1})$$

is used, then it is not always possible to find \tilde{e}_{jj} such that the rows of the matrix D_L^T have equal norms.

Proof. The requirement that all rows of $\tilde{D}R = \tilde{D}L^T$ should have the same norm β gives, in analogy to (3.12)–(3.13) and (3.18)–(3.19) for all $j = 1, \ldots, n$

$$\tilde{e}_{jj}\|L_j\|_2 = \beta, \quad \frac{|L_{j2}|_2}{\tilde{e}_{jj}} = \beta.$$

These two equations imply that the products $|L_{j2}|_2|L_j|_2$ have to be identical for all indices j, which is only valid for very special cases.

Now we are ready for the main theorem in the section. Taking any $\beta \geq \max_{j=1,\ldots,n} \{\beta_j\}$

Theorem 3.6 gives a block scaling \tilde{D}_i such that all rows of the matrix \tilde{D}_iR have the same norm equal to β. Indeed, its condition number could be close to the optimal scaling as it is in the standard case due to the result of van der Sluis.

Theorem 3.8. Let $R \in \mathbb{R}^{2n,2n}$ as in (3.3) be given. Let $L = R^T$ be as in (3.5) and D_j, $j = 1, \ldots, n$ given as (5.4). Let \tilde{D}_j, $j = 1, \ldots, n$ be as in (3.8) and Theorem 3.7. Let β_j, $j = 1, \ldots, n$ be as in Theorem 3.7. Finally, let β and γ be defined as

$$\beta := \max_{j=1,\ldots,n} \{\beta_j\}, \quad \gamma := \min_{j=1,\ldots,n} \{\beta_j\}.$$

(3.20)

Let \tilde{D}_i and \tilde{D}_j, $j = 1, \ldots, n$ be as in (3.16) and Theorem 3.6. Then \tilde{D}_iR is nearly optimally scaled. More precisely, it holds

$$\min_{D \in \mathcal{D}} \kappa_2(DR) \leq \kappa_2(\tilde{D}_iR) \leq \sqrt{2n} \beta \frac{\sqrt{\beta^2 + \sqrt{\beta^4 - \gamma^4}}}{\gamma^2} \min_{D \in \mathcal{D}} \kappa_2(DR).$$

Proof. According to Theorem 3.6 all rows of the matrix $X = \tilde{D}_iR$ have the same norm β. Therefore,

$$\|X\|_2 = \|\tilde{D}_iR\|_2 \leq \|\tilde{D}_iR\|_F = \sqrt{2n} \beta.$$

(3.21)

In order to be able to give a bound on $\kappa_2(X) = \|X\|_2\|X^{-1}\|_2$ we need to find a bound on $\|X^{-1}\|_2$. Since the spectral norm is submultiplicative, for any nonsingular matrix D we have

$$\|X^{-1}\|_2 = \|R^{-1}\tilde{D}_r^{-1}\|_2 \leq \|R^{-1}D^{-1}\|_2 \cdot \|D\tilde{D}_r^{-1}\|_2.$$

(3.22)

In particular, this holds for a block-diagonal matrix $D = \text{diag}(D_1, \ldots, D_n) \in \mathcal{D}$. With this, we have

$$DD_r^{-1} = \text{diag}(D_1\tilde{D}_1^{-1}, \ldots, D_n\tilde{D}_n^{-1})$$
and
\[|D\hat{D}_r^{-1}|_2 = \max_{j=1,\ldots,n} |D_j\hat{D}_j^{-1}|_2 \leq \max_{j=1,\ldots,n} (|D_j\hat{D}_j^{-1}|_2|\hat{D}_j\hat{D}_j^{-1}|_2) \]
(3.23)
for \(\hat{D}_j, j = 1, \ldots, n \) as in \[\text{3.8}\]. From Lemma \[\text{3.5}\] with \(B = D_j \) we obtain
\[\|D_j\hat{D}_j^{-1}\|_2 = \frac{\|D_jL_j^T\|_2}{\beta_j}. \]
(3.24)

Estimation of \(\|\hat{D}_j\hat{D}_j^{-1}\|_2 \) is more tedious. A straightforward calculation shows that
\[\hat{D}_j\hat{D}_j^{-1} = \left(\begin{array}{cc} \frac{\beta_j^2}{\beta_j^2} & \pm \frac{\sqrt{\beta_j^4 - \beta_j^2}}{\beta_j^2} \\ 0 & \frac{\beta_j^2}{\beta_j^2} \end{array} \right). \]

In order to determine \(\|\hat{D}_j\hat{D}_j^{-1}\|_2^2 \) we compute
\[(\hat{D}_j\hat{D}_j^{-1})^T\hat{D}_j\hat{D}_j^{-1} = \left(\begin{array}{cc} \frac{\beta_j^4}{\beta_j^2} & \pm \frac{\sqrt{\beta_j^4 - \beta_j^2}}{\beta_j^2} \\ \mp \frac{\sqrt{\beta_j^4 - \beta_j^2}}{\beta_j^2} & \frac{\beta_j^4}{\beta_j^2} \end{array} \right). \]
its characteristic polynomial
\[0 = \left(\frac{\beta_j^2}{\beta_j^2} - \lambda \right)^2 - \frac{\beta_j^4 - \beta_j^4}{\beta_j^4} = \lambda^2 - 2\frac{\beta_j^2}{\beta_j^2}\lambda + 1, \]
and the roots
\[\lambda_{1,2} = \frac{\beta_j^2}{\beta_j^2} \pm \sqrt{\frac{\beta_j^4 - \beta_j^4}{\beta_j^4}}. \]

Thus,
\[\|\hat{D}_j\hat{D}_j^{-1}\|_2^2 = \frac{\beta_j^2 + \sqrt{\beta_j^4 - \beta_j^4}}{\beta_j^2}. \]
(3.25)

By inserting \[\text{3.24} - 3.25\] into \[\text{3.23}\] we obtain
\[\|D\hat{D}_r^{-1}\|_2 \leq \max_{j=1,\ldots,n} (|D_j\hat{D}_j^{-1}|_2|\hat{D}_j\hat{D}_j^{-1}|_2) = \max_{j=1,\ldots,n} \left(\sqrt{\frac{\beta_j^2 + \sqrt{\beta_j^4 - \beta_j^4}}{\beta_j^2}}\right) \|D_jL_j^T\|_2 \]
\[\leq \sqrt{\frac{\beta_j^2 + \sqrt{\beta_j^4 - \gamma^2}}{\gamma^2}} \max_{j=1,\ldots,n} \|D_jL_j^T\|_2, \]
(3.26)
with \(\gamma \) as in \[\text{3.20}\].

As \(D_jL_j^T \) represent the \(j \)th block row of \(DR \) we can write
\[D_jL_j^T = M_jDR, \]
12
with
\[M_j = (e_{2j-1}, e_{2j})^T. \]

Since the spectral norm is submultiplicative and \(|M_j|_2 = 1\), we have
\[\|D_j L_j^T\|_2 = \|M_j DR\|_2 \leq \|M_j\|_2 \|DR\|_2 = \|DR\|_2 \]
for all \(j = 1, \ldots, n \). By inserting this result in (3.26) it holds
\[|D_{\tilde{r}}^{-1}|_2 \leq \frac{\sqrt{\beta^2 + \beta^4} - \gamma^4}{\gamma^2} \|DR\|_2. \] (3.27)

From (3.21)–(3.22) and (3.27) we obtain
\[\kappa_2(D_r R) \leq \sqrt{2n}\beta \frac{\sqrt{\beta^2 + \beta^4} - \gamma^4}{\gamma^2} \kappa_2(DR). \]

Since the previous formula is valid for all block diagonal matrices \(D \in \mathcal{D} \) the statement of the theorem follows.

4. Nearly optimal block-column scaling of \(\tilde{S} \)

In this section we consider the problem (1.4). As in the previous section, we will consider an equivalent problem stated using permuted version of the matrices under consideration. In particular, we will make use of the permuted version of the matrix \(\tilde{D} \) as in (3.1), and of the permuted version \(\tilde{S} \) of the symplectic matrix \(S \), where
\[\tilde{S} = (s_1, s_2, \ldots, s_{2n-1}, s_{2n}) \in \mathbb{R}^{2m,2n} \]
\[S = \tilde{S} \tilde{P}^T = (s_1, s_{n+1}, s_2, s_{n+2}, \ldots, s_n, s_{2n}). \]

For\[\tilde{J} := PJPT = \text{diag}(J_1, \ldots, J_1) \in \mathbb{R}^{2m,2m}, \quad J_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \mathbb{R}^{2,2}. \]
it holds
\[S^TJS = (\tilde{S} \tilde{P}^T)^T J \tilde{S} \tilde{P}^T = \tilde{P} \tilde{J} \tilde{P}^T = \tilde{J}(1:2n, 1:2n), \]
where
\[\tilde{J} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \in \mathbb{R}^{2n,2n}. \]

As \(SD = (\tilde{S} \tilde{P}^T)(\tilde{P} \tilde{D} \tilde{P}^T) = \tilde{S} \tilde{D} \tilde{P}^T \) and as the spectral norm is unitary invariant, we have \(\kappa_2(\tilde{S} \tilde{D}) = \kappa_2(SD) \).

Thus, instead of (1.4) we will consider the following problem. Given a permuted symplectic matrix \(\tilde{S} \in \mathbb{R}^{2m,2n} \) with \(S^TJS = \tilde{J}(1:2n, 1:2n) \) find a matrix \(D_c \) such that
\[\kappa_2(SD_c^{-1}) \leq \alpha_{C, \min}(SD^{-1}) \] (4.1)
where \(\mathcal{D} \) denotes the set of all nonsingular \(2n \times 2n \) matrices of the form (3.1) and \(\alpha_C \in \mathbb{R} \).
Remark 4.1. The optimal choice \(\tilde{D}_r \) from Theorem 3.6 is in general not optimal for (4.1), that is \(\kappa_2(S\tilde{D}_r^{-1}) \) is not always less or equal to \(\alpha_C \min_{D \in \mathcal{D}} \|SD^{-1}\|_F \). See Example 6.3 for an illustration.

We will proceed in three steps as in the previous section to find an answer to (4.1). In the first step we look for upper triangular blocks

\[
D_j^{-1} = \begin{pmatrix}
 c_{jj}^{-1} & -f_{jj} \\
 0 & c_{jj}
\end{pmatrix}
\]

such that they minimize the Frobenius norm of the product \(S_j D_j^{-1} \), where the columns of \(S_j \) are

\(S_j = (s_j, s_{n+j}) \).

We obtain a theorem similar to Theorem 3.1.

Theorem 4.2. Let \(S = (s_1, s_{n+1}, s_2, s_{n+2}, \ldots, s_n, s_{2n}) \in \mathbb{R}^{2n \times 2n} \) with \(S^TJS = \tilde{J}(1 : 2n, 1 : 2n) \) be given. For \(j = 1, \ldots, n \) let \(S_j = (s_j, s_{n+j}) \) and \(D_j \) as in (4.2). The Frobenius norm \(\|S_j D_j^{-1}\|_F \), \(j = 1, \ldots, n \) is minimized for

\[
\tilde{D}_j^{-1} = \begin{pmatrix}
 c_{jj}^{-1} & -f_{jj} \\
 0 & c_{jj}
\end{pmatrix},
\]

where

\[
c_{jj} = \frac{\|s_j\|_2}{\sqrt{\det(S_j^T S_j)}} \quad f_{jj} = \frac{s_j^T s_{n+j}}{\|s_j\|_2 \sqrt{\det(S_j^T S_j)}}.
\]

Thus, for the Frobenius norm of the \(j \)th block column \(S_j \) of \(S \) for the optimal \(\tilde{D}_j \) it holds

\[
\|S_j \tilde{D}_j^{-1}\|_F = \sqrt{2} \delta_j
\]

with

\[
\delta_j := \sqrt{\det(S_j^T S_j)}.
\]

The proof is analogous to the one of Theorem 3.1 and it is therefore omitted here. In addition, it is easy to prove that the two columns of \(S_j \tilde{D}_j^{-1} \) have the same norm.

Corollary 4.3. It holds that

\[
\|S_j \tilde{D}_j^{-1} e_1\|_2 = \|S_j \tilde{D}_j^{-1} e_2\|_2 = \delta_j.
\]

Proof. The assertion follows immediately,

\[
\|S_j \tilde{D}_j^{-1} e_1\|_2 = c_{jj}^{-1} \|s_j\|_2 = \sqrt{\det(S_j^T S_j)} = \delta_j
\]

and

\[
2\delta_j^2 = \|S_j \tilde{D}_j^{-1}\|_F^2 = \|S_j \tilde{D}_j^{-1} e_1\|_2^2 + \|S_j \tilde{D}_j^{-1} e_2\|_2^2.
\]
Next we state a theorem similar to Theorem 3.6. That is, we determine a scaling $D_c = \text{diag}(D_1,\ldots,D_n) \in D$ such that all columns of the matrix $S D_c^{-1}$ have the same Frobenius norm δ.

Theorem 4.4. Let $S = (s_1, s_{n+1}, s_2, s_{n+2},\ldots,s_n, s_{2n}) \in \mathbb{R}^{2m, 2n}$ with $S^T J S = \tilde{J}(1:2n,1:2n)$ be given. Let δ_j be as in Theorem 3.4. Let $\delta \geq \delta_j$. All columns of $S D_c^{-1}$ have the same norm δ for $D_c = \text{diag}(D_1,\ldots,D_n) \in D$ where

$$D_j = \begin{pmatrix} \hat{c}_{jj} & \hat{f}_{jj} \\ 0 & \hat{c}_{jj} \end{pmatrix}$$

for $j = 1,\ldots,n$ with

$$\hat{c}_{jj} = \frac{|s_j|_2}{\delta}, \quad \hat{f}_{jj} = \frac{s_j^T s_{n+j} \pm \sqrt{\delta^4 - \det(S_j^T S_j)}}{|s_j|_2 \delta}.$$

The proof is analogous to the one of Theorem 3.6 and it is therefore omitted here.

Finally, we state the main theorem on the block scaling of S similar to Theorem 3.8.

Theorem 4.5. Let $S = (s_1, s_{n+1}, s_2, s_{n+2},\ldots,s_n, s_{2n}) \in \mathbb{R}^{2m, 2n}$ with $S^T J S = \tilde{J}(1:2n,1:2n)$ be given. Let δ_j be as in Theorem 3.4. Let δ and μ be defined as

$$\delta := \max_{j=1,\ldots,n} \{\delta_j\}, \quad \mu := \min_{j=1,\ldots,n} \{\delta_j\}.$$

Let D_c and $D_j, j = 1,\ldots,n$ be as in (4.3) and Theorem 4.4. Then $S \tilde{D}_c^{-1}$ is nearly optimally scaled. More precisely, it holds

$$\min_{D_c \in D} \kappa_2(S D^{-1}) \leq \kappa_2(S \tilde{D}_c^{-1}) \leq \sqrt{2n} \frac{\delta \sqrt{\delta^2 + \sqrt{\delta^4 - \mu^4}} - \mu^2}{\mu^2} \min_{D_c \in D} \kappa_2(S D^{-1}).$$

The proof is analogous to the one of Theorem 3.8 and it is therefore omitted here.

Remark 4.6. The optimal choice \tilde{D}_c from Theorem 4.5 is in general not optimal for (3.2), that is $\kappa_2(\tilde{D}_c R)$ is not always less or equal to $\alpha_R \min_{D \in D} \kappa_2(D R)$. See Example 6.3 for an illustration.

5. Connections to related factorizations

In the next two subsections we show that the stated results are valid for the both factors obtained from the symplectic QR factorization of matrix, and the factor R obtained by the skew-symmetric (Cholesky-like) factorization of a (skew symmetric) matrix A.

15
5.1. Symplectic QR factorization

The symplectic QR factorization of a matrix $G \in \mathbb{R}^{2m,2n}$ into the product QR with an upper triangular matrix R and an matrix Q which satisfies $Q^T J Q = \tilde{J}(1 : 2n, 1 : 2n)$ has been proposed in [12]. If $G^T J G$ is nonsingular, then G can be factorized as $G P = QR$ where P is a suitable permutation matrix.

The result of Section 3 is valid as stated since the symplectic QR factorization computes the upper triangular factor R. The results of Section 4 can be applied to matrix Q since $P Q \hat{=} S$. Therefore, we have

$$S^T J S = (QP)^T J P Q = Q^T \tilde{J} Q = \tilde{J}(1 : 2n, 1 : 2n)$$

and, due to unitary equivalence of the spectral norm

$$\kappa_2(QD_\varepsilon^{-1}) = \kappa_2(SD_\varepsilon^{-1})$$

for $D_\varepsilon \in \mathcal{D}$.

5.2. Skew-symmetric Cholesky-like factorization

For any $G \in \mathbb{R}^{2m,2n}$, $m \geq n$ the matrix $G^T J G$ is skew-symmetric as $J^T = -J$. Assume that we are given a permuted SR decomposition of G, $G = SR$ with the permuted symplectic matrix S (that is, $S^T J S = \tilde{J}(1 : 2n, 1 : 2n)$) and an upper triangular matrix R. Then

$$A := G^T J G = R^T S^T J S R = R^T \tilde{J}(1 : 2n, 1 : 2n) R. \tag{5.1}$$

This factorization of A (almost) corresponds to the Cholesky-like factorization of skew-symmetric matrices given in [2] (see also [1]). In these papers it is proven that any skew-symmetric matrix $B \in \mathbb{R}^{2m,2n}$ whose leading principal submatrices of even dimension are nonsingular has a unique factorization

$$A = L^T \tilde{J} L$$

where L is upper triangular with $\ell_{2j-1,2j} = 0$, $\ell_{2j-1,2j-1} > 0$ and $\ell_{2j,2j} = \pm \ell_{2j-1,2j-1}$ for $j = 1, \ldots, m$. Thus L has 2×2 blocks of the form

$$\begin{pmatrix} \ell & 0 \\ 0 & \pm \ell \end{pmatrix}$$

running down the main diagonal.

Thus, if R in (5.1) is such that its 2×2 diagonal blocks are matrices of the form

$$\begin{pmatrix} r & 0 \\ 0 & \pm r \end{pmatrix}$$

the decomposition (5.1) (and hence the SR decomposition of G) is unique (the fact concerning the unique SR decomposition has already been noted in [10]). Moreover, Theorem 3.8 can be applied to R and we obtain not only an optimal scaled R in the SR decomposition of G, but also the unique Cholesky-like factorization with optimal block scaling.
But usually, R will have diagonal blocks $R_{jj}, j = 1, \ldots, n$ which are upper triangular,

$$R_{jj} = \begin{pmatrix} r_{11}^{(j)} & r_{12}^{(j)} \\ 0 & r_{22}^{(j)} \end{pmatrix}, \quad r_{11}^{(j)} r_{22}^{(j)} \neq 0$$

for $j = 1, \ldots, n$. Again, Theorem 3.8 can be applied to R and we obtain not only an optimal scaled R in the SR decomposition of G, but also a non-unique Cholesky-like factorization with optimal block scaling.

From the factorization $A = L^T \tilde{J} L$ it can be seen that any scaling matrix D_L applied to L needs to satisfy

$$D_L^T \tilde{J} D_L = \tilde{J}$$

so that

$$A = L^T \tilde{J} L = (D_L L)^T \tilde{J} (D_L L)$$

holds.

6. Numerical examples

In this section we show behavior of the nearly optimal scalings of the factors R and S. The first example shows that the condition number of the scaled matrix $\tilde{D}_L R$ can be significantly smaller than the condition number of R, while the second example shows that the bound

$$\alpha_R = \sqrt{2n \beta} + \sqrt{\beta^2 - \gamma^2}$$

can be significantly larger than 1, and the condition number of the scaled matrix can rise.

Example 6.1. Let

$$R = \begin{pmatrix} a & 0 & a^{-2} & a^{-2} & a^{-2} \\ a & a^{-2} & 0 & a^{-2} & a^{-2} \\ a & a^{-2} & a^{-2} & 0 & a^{-2} \\ a \cdot a^{-2} & 0 & 0 & a^{-2} & a^{-2} \\ a^{-1} & a^{-2} & a^{-2} & a^{-2} & 0 \end{pmatrix}$$

be obtained by the SR decomposition, where a is a small parameter, $0 < a < 1$.

If, for example, $a = 0.1$ then the optimal block-diagonal scaling from Theorem 3.8 applied from the left to the rows of R is

$$\tilde{D}_L \approx \begin{pmatrix} 20.0000 & -19.9520 \\ -14.1421 & -14.0714 \\ 0.0500 & 0.0707 \\ 1.0000 & 0.0000 \\ 1.0000 & 1.0000 \end{pmatrix}.$$
while the final scaled matrix $\tilde{D}_r R$ is
\[
\tilde{D}_r R \approx \begin{pmatrix}
2.0000 & -1.9952 & 0.4976 & 0.4976 & 0.4976 \\
0.0050 & 5.0000 & 5.0000 & 5.0000 & 5.0000 \\
0.1414 & -0.1407 & 7.0697 & 7.0697 \\
0.0007 & 7.0711 & 7.0711 \\
10.0000 & 10.0000 \\
0.1414 & 0.1407 & 7.0697 & 7.0697 \\
0.0007 & 7.0711 & 7.0711 \\
10.0000 & 10.0000 \\
\end{pmatrix},
\]
with all row norms equal to $\beta = 10$. Note that $\beta_1 \approx 5.3183$, $\gamma = \beta_2 \approx 1.4142$, while $\beta = \beta_3 = 10$. Therefore, the parameter α_R in the statement of Theorem 3.8 is $\alpha_R \approx 244.9367$.

For different parameters a we have different values for the condition numbers of the matrices R and $\tilde{D}_r R$.

a	5.0e−01	1.0e−01	5.0e−02	1.0e−02
$\kappa_2(R)$	5.1810e+03	1.6803e+09	4.1985e+11	1.6080e+17
$\kappa_2(\tilde{D}_r R)$	1.5089e+03	1.5829e+08	1.9053e+10	1.3925e+15
β	2.3796e+00	1.0000e+01	2.0000e+01	1.0000e+02
γ	1.4146e+00	1.4142e+00	1.4142e+00	1.4142e+00
α_R	1.3638e+01	2.4494e+02	9.7978e+02	2.4495e+04

Since the factor R has quite wildly scaled rows, with the nontrivial elements in each 2×2 diagonal block significantly smaller than the elements in the rest of the corresponding rows, the scaled triangular factor $\tilde{D}_r R$ has a significantly lower condition number than R.

Example 6.2. Let

$$R = \begin{pmatrix}
 a^{-1} & 0 & a^{-1} & a^{-1} & a^{-1} \\
 a^{-1} & a^{-1} & a^{-1} & a^{-1} & a^{-1} \\
 a & 0 & a & a & a \\
 a & a & a & 0 & a \\
 a^{-1} & 0 & a^{-1} & a^{-1} & a^{-1}
\end{pmatrix},$$

be obtained by the SR decomposition, where a is a small parameter, $0 < a < 1$.

If, for example, $a = 1 \cdot 10^{-1}$ then the optimal block-scaling from Theorem 3.8 is

$$\tilde{D}_r \approx \begin{pmatrix}
 1.2910 & -1.0328 \\
 0.0100 & 99.9933 \\
 0.0100 & 99.9933 \\
 \end{pmatrix},$$

$$\tilde{D}_r \approx \begin{pmatrix}
 0.5774 & 1.6330 \\
 0.0100 & 100.0000 \\
 0.5774 & 1.6330 \\
 \end{pmatrix},$$

$$\tilde{D}_r \approx \begin{pmatrix}
 1.2910 & -1.0328 \\
 0.0100 & 99.9933 \\
 0.0100 & 99.9933 \\
 \end{pmatrix},$$
while the optimally scaled matrix \tilde{D}_R is equal to

$$\tilde{D}_R \approx \begin{pmatrix} 12.9099 & -10.3280 & 2.5820 & 2.5820 & 2.5820 \\ 7.7460 & 7.7460 & 7.7460 & 7.7460 \\ 0.0010 & 9.9993 & 10.0003 & 10.0003 \\ 10.0000 & 10.0000 & 10.0000 \\ 5.7735 & 16.3299 & 17.3205 \end{pmatrix},$$

with all rows-norms equal to $\beta \approx 17.3205$.

For different parameters α we have different values for the condition numbers of the matrices R and \tilde{D}_R.

α	5.0e-01	1.0e-01	5.0e-02	1.0e-02
$\kappa_2(R)$	5.500e+01	1.015e+03	4.015e+03	1.000e+05
$\kappa_2(\tilde{D},R)$	1.352e+02	7.747e+04	1.239e+06	7.746e+08
β	3.464e+01	1.732e+01	3.464e+01	1.732e+02
γ	7.476e-01	1.495e-01	7.476e-02	1.495e-02
α_R	1.051e+02	6.572e+04	1.051e+06	6.572e+08

This example shows that the optimal scaling, such that all rows have the same norm, can worsen the condition number of R.

The third example shows that the condition number of $S\tilde{D}^{-1}$ can be significantly smaller than the condition number of S, while the fourth example shows that the bound

$$\alpha_C = \sqrt{2n} \frac{\delta \sqrt{\delta^2 + \beta^4} - \mu^4}{\mu^2}$$

can be larger than 1, and the condition number of the scaled matrix can rise.

Matrices S in the next two examples are computed in the 80-bit extended precision arithmetic. The easiest way to produce the examples is to compute the matrix Q by the symplectic QR factorization (see [12]) and then permute the rows, $S = PQ$, to obtain S. Note that the matrices R are not needed for conclusion about the optimal scaling of the factor S in the SR decomposition. If G is needed, any triangular matrix R will do. Then G is computed in multiple precision arithmetic as $G = SR$.

Example 6.3. Now suppose that S is computed by the SR decomposition of the matrix

$$G \approx \begin{pmatrix} -8.000e-08 & 5.999e-10 & -9.999e-06 & -2.081e-07 & -1.002e-05 & -1.000e-01 \\ 2.000e+03 & -9.841e+03 & 2.108e-01 & 8.665e-03 & 1.600e+02 & 1.000e+03 \\ 1.999e+00 & -9.839e+00 & -1.100e+01 & -2.290e-01 & -1.488e-01 & -1.099e-01 \\ -1.000e+03 & 2.000e+05 & 9.901e-06 & 1.020e-05 & 1.000e+00 & -1.010e-03 \\ 9.999e-02 & 7.982e-03 & -9.999e-01 & -2.898e-02 & 6.999e-01 & -1.000e-01 \\ -1.978e-02 & 9.734e-02 & 1.000e+03 & 2.090e+01 & 9.987e-01 & 1.000e+02 \end{pmatrix}$$

as

$$S \approx \begin{pmatrix} -8.000e-10 & 7.000e-10 & 9.993e-06 & 8.000e-10 & 9.999e-06 & 1.000e+00 \\ 1.999e-02 & 9.997e-01 & 1.100e+01 & 1.000e+00 & 9.854e-10 & -1.002e-04 \\ -1.000e-05 & 1.000e-05 & -1.000e-05 & 1.000e-05 & -1.000e-00 & 1.000e-05 \\ 9.999e-04 & -9.000e-07 & 1.000e+00 & 1.000e-07 & -8.998e-10 & -1.000e-05 \\ -1.978e-04 & 9.892e-03 & -1.000e+03 & -1.099e-04 & 8.991e-07 & 1.000e-02 \end{pmatrix}$$
The corresponding \(R \) is well-conditioned

\[
R \approx \begin{pmatrix} 1.0000e+02 & 8.0000e+00 & 1.0000e+00 & -7.8600e-05 & 8.0000e+00 & 1.0201e-05 \\ 1.0000e+01 & 1.0110e+05 & -9.8000e-06 & 1.0000e-05 & -1.0000e+00 \\ -1.0000e+00 & 9.9988e-01 & 9.9999e-05 & 9.9999e-05 & 9.9999e-05 \\ 9.9999e+01 & -1.0000e+00 & 1.0000e-03 & -1.0000e-01 \\ 1.0000e+00 & -1.0000e+00 & 1.0000e+00 & 1.0000e+00 \\ -1.0000e+00 & 1.0000e-01 & -1.0000e+01 & 1.0000e+00 \\
\end{pmatrix}
\]

The optimal scaling by Theorem 4.3 is obtained by a matrix \(\tilde{D}_c \), where

\[
\tilde{D}_c \approx \begin{pmatrix} 2.0001e+01 & -1.0001e+03 & 4.9997e-02 \\ 1.0003e+03 & 1.3067e-04 & 9.9973e-04 \\ 9.9956e-01 & 1.7558e-08 & 1.0000e+00 \\
\end{pmatrix}
\]

After the optimal scaling we get

\[
S \tilde{D}_c^{-1} \approx \begin{pmatrix} -3.9997e-11 & -7.8606e-07 & 9.9966e-09 & 7.9891e-07 & 1.0000e-05 & 9.9999e-01 \\ 1.0000e+00 & -1.0003e-02 & -2.0895e-05 & 6.4034e-07 & 8.8417e-07 & 9.8099e-03 \\ 9.9999e-04 & 1.0000e-05 & 9.9978e-01 & 9.8550e-10 & -1.0029e-04 \\ -4.9999e-07 & -9.8007e-03 & -9.9973e-09 & 1.0001e-02 & -1.0000e+00 & 1.0017e-05 \\ 4.9999e-05 & 9.9995e-01 & 9.9973e-04 & -3.0639e-05 & -8.9984e-10 & -1.0009e-05 \\ -9.9926e-06 & -1.0779e-07 & -9.9999e-01 & 2.0753e-02 & 8.9917e-07 & 1.0002e-02 \\
\end{pmatrix}
\]

In this case

\[
\kappa_2(S) = 1.0327e+06, \quad \kappa_2(S \tilde{D}_c^{-1}) = 1.0623, \quad \delta = 1.000049, \quad \mu = 1.000024,
\]

and the row-norms are equal to 1.000049 while \(\alpha_C = 3.4815 \). Note that in this case we have a very precise estimation of the maximal condition number over all block diagonal scalings of the form \(S \Gamma \).

If the matrix \(S \) is scaled by the factor \(\tilde{D}_c^{-1} \) from Example 6.1 instead of \(\tilde{D}_c^{-1} \), then \(\kappa_2(S \tilde{D}_c^{-1}) \approx 3.8465e+10 \). In the case of \(\tilde{D}_c^{-1} \) from Example 6.2 the condition number is even higher, \(\kappa_2(S \tilde{D}_c^{-1}) \approx 2.0251e+14 \).

On the other hand, if \(\tilde{D}_c \) is used to scale \(R \) from Example 6.4 we get \(\kappa_2(\tilde{D}_c R) \approx 5.4894e+20 \). For \(R \) from Example 6.2 the result is very similar, \(\kappa_2(\tilde{D}_c R) \approx 2.29358e+17 \).

Example 6.4. Now suppose that \(S \) is computed by the SR decomposition of \(G \),

\[
G \approx \begin{pmatrix} 1.0871e+02 & 1.4643e+01 & -5.4969e-01 & -1.1806e-02 & 9.2375e+00 & -6.5123e-01 \\ -5.2820e+01 & -8.8383e+00 & 5.8813e-01 & 1.3947e+00 & -2.8501e+00 & 4.1022e+01 \\ -1.3220e+01 & 1.5488e+00 & -5.1659e-02 & -9.0267e-01 & -1.8328e+00 & -2.9221e-01 \\ -5.9464e+01 & 1.1893e+00 & -5.9404e-04 & 4.0911e-05 & -4.2155e+00 & -5.9519e-01 \\ 3.7614e+01 & 3.0691e+00 & -3.9718e-01 & -8.4084e-03 & 3.7575e+00 & 4.9976e+04 \\ 6.1056e+01 & 4.3350e+00 & -1.7096e+00 & 1.2893e-01 & 6.0988e+00 & -5.7672e-02 \\
\end{pmatrix}
\]

as

\[
S \approx \begin{pmatrix} 1.0871 & 0.5946 & 0.5606 & 0.0000 & -0.5411 & -1.08e-19 \\ -0.5282 & -0.4608 & -0.5934 & 1.3825 & -1.3738 & 1.0868 \\ -0.1832 & 0.3004 & 0.0498 & -0.9011 & 0.3677 & -0.1288 \\ -0.5946 & 0.5946 & 0.0000 & -0.5411 & 0.0000 \\ 0.3761 & 1.02e-20 & 0.4009 & -6.78e-21 & -0.7482 & -0.4133 \\ 0.6106 & -0.0550 & 1.7157 & 0.1649 & -1.2150 & -0.6106 \\
\end{pmatrix}
\]
The corresponding R is equal to one from Example 6.3.

The optimal scaling of rows of S is obtained by a block diagonal matrix D_c,

$$D_c \approx \begin{pmatrix}
0.8634 & 1.1876 \\
1.1582 & 1.0913 & -0.1685 \\
1.0913 & -0.1685 & 0.9164 \\
0.9164 & 1.2107 & 0.2583 \\
1.2107 & 0.2583 & 0.8260
\end{pmatrix}. $$

The scaled matrix

$$S D_c^{-1} \approx \begin{pmatrix}
1.2590 & -0.7775 & 0.5137 & 0.0944 & -0.4470 & 0.1398 \\
-0.6117 & 0.2294 & -0.5438 & 1.4087 & -1.1347 & 1.6706 \\
-0.2122 & 0.4769 & 0.0457 & -0.9750 & 0.3037 & -0.2509 \\
-0.6887 & 1.2196 & 0.0000 & 0.0000 & -0.4470 & 0.1398 \\
0.4356 & -0.4467 & 0.3674 & 0.0675 & -0.6180 & -0.3072 \\
0.7071 & -0.7725 & 1.5722 & 0.4689 & -1.0036 & -0.4254
\end{pmatrix}. $$

has a somewhat higher condition number than the original S. Indeed, we have

$$\kappa_2(S) = 18.0149, \quad \kappa_2(S D_c^{-1}) = 21.9625, \quad \delta = 1.7800, \quad \mu = 1.2168, $$

with the row-norms equal to 1.7800, and $\alpha_C = 10.1756$.

7. Concluding remarks

The results of this paper may help to refine the relative perturbation results for the eigendecomposition of skew-symmetric matrices computed by the algorithm derived by Pietzsch in his PhD thesis [11].

References

[1] P. Benner, R. Byers, H. Fassbender, V. Mehrmann, D. Watkins, Cholesky-like factorizations of skew-symmetric matrices, Electr. Trans. on Numer. Anal. 11 (2000) 85–93.
[2] J. R. Bunch, A note on the stable decomposition of skew-symmetric matrices, Math. Comp. 38 (158) (1982) 475–479.
[3] A. Bunse-Gerstner, Matrix factorizations for symplectic QR-like methods, Linear Algebra Appl. 83 (1986) 49–77.
[4] X.-W. Chang, On the sensitivity of the SR decomposition, Linear Algebra Appl. 282 (1–3) (1998) 297–310.
[5] J. W. Demmel, B. Kågström, Computing stable eigendecompositions of matrix pencils, Linear Algebra Appl. 88–89 (1987) 139–186.
[6] L. Elsner, On some algebraic problems in connection with general eigenvalue algorithms, Linear Algebra Appl. 26 (1979) 123–138.
[7] H. Fältbender, M. Razložník, On the conditioning of factors in the SR decomposition, Linear Algebra Appl. 505 (2016) 224–244.
[8] G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, 1996.
[9] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002.
[10] V. Mehrmann, Der SR–Algorithmus zur Berechnung der Eigenwerte einer Matrix, diploma Thesis (in German) (1979).
[11] E. Pietzsch, Genaue Eigenwertberechnung nichtsingulärer schief symmetrischer Matrizen, Ph.D. thesis, FernUniversität – Gesamthochschule, Hagen (1993).
[12] S. Singer, S. Singer, Rounding-error and perturbation bounds for the symplectic QR factorization, Linear Algebra Appl. 358 (1–3) (2003) 255–279.
[13] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math. 14 (1) (1969) 14–23.
[14] D. S. Watkins, L. Elsner, Convergence of algorithms of decomposition type for the eigenvalue problem, Linear Algebra Appl. 143 (1991) 19–47.