Green algae *Chlamydomonas reinhardtii* possess endogenous sialylated N-glycans

Taran Mamedov, Vidadi Yusibov

Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA

Article history:
Received 23 September 2011
Accepted 24 October 2011

Keywords:
Chlamydomonas reinhardtii
Mass spectrometry analysis
N-Glycan structure
Sialic acid

1. Introduction

Glycosylation is one of the most common and important post-translational modifications of proteins, and the biological activity of many therapeutic glycoproteins may depend on their glycosylation status. Currently, the N-linked glycosylation status is well established for yeast, insects, mammals and plants. However, little is known about the N-linked glycan structure in green algae. All available studies have shown that proteins of green microalgae contain predominantly high-mannose glycans; however, in some species hybrid and complex types of N-linked glycans are also reported [1,2]. For example, a structure analysis of N-linked glycans of the diatom microalgae *Phaeodactylum tricornutum* showed that while its proteins mostly carry the high-mannose-type N-linked glycans ranging from Man-5 to Man-9, minor glycans Man-3 and Man-4 carrying a 1,3-linked fucose are also present [1]. Furthermore, the 66-kDa glycoprotein from the cell wall of red microalgae of the *Porphyridium* sp. contains a novel glycan structure with 6-O-MeMan and xylose monosaccharides that differed from the glycan structures found in other algae organisms so far [2].

Chlamydomonas reinhardtii is a well-studied representative of eukaryotic microalgae that has been used as a model organism for a number of physiological, biochemical and genetic studies for more than a decade [3,4]. The recently released version 4 of *Chlamydomonas* genome revealed that *Chlamydomonas* and humans share 706 protein families [5]. Eukaryotic microalgae have been also used for the recombinant protein expression platform include the low biomass cost, safety, the ease of genetic manipulation to introduce genes of interest into the nuclear, chloroplastic or mitochondrial genome, the possession of eukaryotic post-translational modification machinery, rapid growth and scalability, as well as the ability to grow phototrophically or heterotrophically utilizing acetate as a carbon source. Despite the listed advantages, there is a number of questions that need to be addressed, including glycosylation, before green algae can be utilized for commercial manufacturing.

To this point, in this study, by using both mass spectrometry (MS) and biochemical analyses, we have demonstrated that the green algae *Chlamydomonas reinhardtii* possess glycoproteins with mammalian-type sialylated N-linked oligosaccharides.

2. Materials and methods

2.1. Preparation of cell protein extract

Ch. reinhardtii CC-125 cells were grown photoautotrophically under ambient air at 25 °C and collected by centrifugation at 3000g for 10 min. The cells were washed with phosphate buffered saline...
2.2. Sialic acid-specific lectin blotting analysis

Lectin blotting for detection of sialic acid was performed according to a method described previously [8] with some modifications. Briefly, proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and transferred to a polyvinylidene fluoride (PVDF) membrane. The membrane was washed three times with Tris-buffered saline (TBS) (50 mM Tris–HCl, pH 7.5, 150 mM NaCl) and blocked with Carbo-free blocking buffer (Cat. No. SP-5040, Vector Laboratories, Burlingame, CA) for 1 h. After blocking, the membrane was incubated in the lectin incubation buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1 mM CaCl₂, 1 mM MgCl₂, 1 mM MnCl₂) containing 10 µg/ml of biotinylated SNA-1 (Sambucus nigra, Cat. No. BA-6802-1, EY Laboratories, San Mateo, CA) and 50 µg/ml MAA (Manotica amurensis, Cat. No. BA-7801-5, EY Laboratories) for 2 h. After three washes with TBS, the membrane was incubated with avidin plus biotinylated horseradish peroxidase (HRP) using ABC kit (Cat. No. PK-4000, Vector Laboratories) for 30 min and washed three times with TBS. Lectin binding to sialic acid-containing proteins was visualized using SuperSignal West Pico Chemiluminescent Substrate (Pierce, Rockford, IL). For the lactose inhibition experiment, lectins were pre-incubated in 100 mM lactose solution, and the blocking buffer, lectin incubation buffer and wash buffer contained 100 mM lactose, as described previously [8].

2.3. Galactose-specific lectin blotting analysis

Lectin blotting specific for galactose was performed using Ricinus communis agglutinin RCA₁₂₀ (Cat. No. B-1085, Vector Laboratories) according to the manufacturer’s protocol. Briefly, proteins were separated by SDS–PAGE and transferred to a PVDF membrane. The membrane was washed three times with PBS (10 mM sodium phosphate, 150 mM NaCl, pH 7.4) and blocked using Carbo-free blocking buffer (Cat. No. SP-5040, Vector Laboratories) for 30 min. After blocking, the membrane was incubated in PBS containing the biotinylated lectin at 20 µg/ml, washed three times with PBS-T (PBS containing 0.05% Tween-20), and incubated with avidin plus biotinylated HRP using VECTASTAIN-ABC (Cat. No. PK-4000, Vector Laboratories) for 30 min. Avidin plus biotinylated HRP was prepared in PBS-T according to the manufacturer’s instructions. The lectin binding to galactose-containing proteins was visualized using SuperSignal West Pico Chemiluminescent Substrate (Pierce, IL).

2.4. Construction of binary construct for trans-Golgi targeting of human β₁,4-galactosyltransferase

The binary vector pBI121 [9] was used for the expression of modified β₁,4-GaFT in Nicotiana benthamiana. Briefly, the N-terminal CMP-sialic acid transporter (CST) domain of human GaFT was replaced with the CST from the rat x₂,6-sialyltransferase (ST, GenBank accession number M187609) as described previously [10]. ST-GaFT was optimized for the expression in N. benthamiana (for codon optimization, mRNA stability, etc.) and synthesized by GENEART AG (Regensburg, Germany) with flanking Pact (5′-terminus) and Xhol (3′-terminus, after stop codon) sites. pBI121-ST-GaFT was then introduced into Agrobacterium tumefaciens strain GV3101. The resulting bacterial strain was grown in the BBL medium (10 g/L soy hydrolysate, 5 g/L yeast extract, 5 g/L NaCl, 50 mg/L kanamycin) overnight at 28 °C. The bacteria were introduced by manual infiltration into 6-week-old N. benthamiana plants grown in soil. Five, six and seven days after infiltration, leaf tissue was harvested and homogenized using a bullet blender (Zymo research). Extracts were clarified by centrifugation (13,000g for 30 min) and used for Western blot analysis.

2.5. Analysis of N-linked oligosaccharides by HPLC-FLD

Cleavage of N-linked carbohydrates from glycoprotein samples was performed using N-Glycosidase A (PNGase A, Roche). Once released, glycans were extracted and dried by centrifugal concentration. The recovered oligosaccharides were labeled with 2-amino-nobenzamide (2-AB) in the presence of sodium cyanoborohydride under acidic conditions. Subsequent to the derivatization step, excess dye and other reagents remaining in the samples were removed by means of Glycoclean® sample filtration cartridges. The following high-performance liquid chromatography using fluorescence detection (HPLC-FLD) procedure was then applied. Mobile Phase A was 65% acetonitrile/35% water, and Mobile Phase B was 250 mM ammonium formate, pH 4.4. Chromatography mode was normal phase, and detection was performed using fluorescence at 330 nm (Ex) and 420 nm (Em). Chromatographic peaks were integrated, and based on peak retention times were compared to those from fetuin. Results were expressed as % area of each glycoform of the total peak area. Peak samples resulted from the HPLC-FLD separation were collected and dried by centrifugal concentration. Each peak sample was re-suspended in 12 µl of 0.1% formic acid in water. A 2-µl injection volume of each peak was loaded on a mass spectrometer. MS mobile phase A was water with 0.1% formic acid and MS mobile phase B was 90% acetonitrile in water with 0.1% formic acid. Chromatography was on a graphitized carbon chip (Reverse Phase). The obtained molecular masses were compared with the data in the Consortium for Functional Glycomics structural databases to identify matches to known oligosaccharide structures. In addition, oligosaccharide fragmentation spectra were manually verified to match the assigned structures. Oligosaccharides are represented by singly or doubly charged (M+2H)⁺ ions in electrospray ionization mass spectrometry (ESI-MS). Mass increase was 120 Da for the 2-AB derivative compared to the monoisotopic mass of the oligosaccharide.

3. Results

3.1. N-Linked oligosaccharide analysis

To release glycans, total proteins of C. reinhardtii were treated with PNGase A (N-Glycosidase A). PNGase A is known to cleave N-linked glycans, including molecules carrying a fucose linked by an α₁,3 bond to Asn-GlcNAc [11]. The released oligosaccharides were then analyzed as described in Section 2. In brief, N-linked glycans released from total soluble and total membrane fractions of C. reinhardtii were separated by HPLC, shown in Fig. 1A and B as traces of chromatographic signals from 2-AB-labeled glycans in the test samples. The peak fractions were collected and analyzed using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Mass spectrometry analysis by MS and fragmentation of the detected oligosaccharide masses by the collision-induced dissociation (CID) method allowed for the identification of specific oligosaccharide structures.
determination of the oligosaccharide species containing two sialic acids Neu5Gc (N-glycolylneuraminic acid) and Neu5Ac (N-acetylneuraminic acid). MS spectrum of ion at mass/charge \((m/z)\) 2036.8 corresponding to Neu5Ac is shown in Fig. 1C. The additional glycan structures identified in \(C.\) reinhardtii extracts are summarized in Tables 1 and 2. Predominant oligosaccharide structures present in the samples were asialo, biantennary, with core fucosylation, and with or without galactosylation. High-mannose species corresponding to MAN5, MAN6 and MAN8 were also detected. Xylose-containing oligosaccharides in these fractions were not detected.

3.2. Galactose-specific lectin blotting analysis of \(C.\) reinhardtii proteins

The analysis of MS spectra confirmed the presence of galactose associated with sialic acid in N-linked glycans of \(C.\) reinhardtii. Because of the difficulty in distinguishing between mannose and Gal in complex glycan structures by means of MS, we further analyzed \(C.\) reinhardtii proteins using affinity blotting with the RCA\(_{120}\) lectin from \(R.\) communis that binds to the Gal\(\beta1–4\)GlcNAc sequence and, to a small extent, to other terminal \(\beta\)-linked Gal residues [12]. The results of the lectin blotting analysis showed that RCA\(_{120}\) binds to a number of \(C.\) reinhardtii proteins, and the binding pattern is similar to that observed in extracts from \(N.\) benthamiana expressing human \(\beta1,4\)-galactosyltransferase (Fig. 2), suggesting the presence of N-linked glycans containing 1,4-Gal residues. In contrast, in extracts from control \(N.\) benthamiana plants which did not express human \(\beta1,4\)-galactosyltransferase, RCA\(_{120}\) reacted only with high-molecular-weight proteins (Fig. 2, lane PC). These results are consistent with previously published data and suggest that the proteins that bound RCA\(_{120}\) might contain arabinogalactan [12].

3.3. Sialic acid-specific lectin blotting analysis of \(C.\) reinhardtii proteins

For sialic acid-specific lectin blotting, we probed \(C.\) reinhardtii glycoproteins with a mixture of biotinylated lectins from \(S.\) nigra.
Table 1
Identified structures of glycans released from *C. reinhardtii* total soluble glycoproteins. Ion trap mass spectroscopy oligosaccharide nomenclature: acetylhexosamines (square ■); hexoses (circle ● or ○); fucose (triangle ▲); NeuAc (diamond ◆); NeuGc (diamond ◄).

Peak No.	Mass (Da)	Adduct	Identified Glycans	Glycan Structures
1	1301.4	[M+H]	4,2,1,0,0	![Image](https://example.com/image1.png)
2	1302.4	[M+2H]+	4,2,1,0,0	![Image](https://example.com/image2.png)
3	1382, 1567.6	[M+2H]+, [M+2H]+	2,5,1,0,0, 3,4,0,1,0	![Image](https://example.com/image3.png)
4	1358, 1478.8	[M+2H]+, [M+2H]+	5,2,0,0,0, 4,4,0,0	![Image](https://example.com/image4.png)
5	1235, 1396.8	[M+2H]+, [M+2H]+	2,5,0,0,0, MAN5, 2,6,0,0, MAN6	![Image](https://example.com/image5.png)
6	1601.2	[M+H]	6,6,0,0,0	![Image](https://example.com/image6.png)
7	1567.4	[M+H]	3,4,0,1,0	![Image](https://example.com/image7.png)
8	1542, 1812.5	[M+2H]+, [M+2H]+	2,6,1,0,0, 5,3,2,0,0	![Image](https://example.com/image8.png)
9	1829	[M+2H]+	5,4,1,0,0	![Image](https://example.com/image9.png)
10	1681.7	[M+H]	5,4,0,0,0	![Image](https://example.com/image10.png)
11	1932.5	[M+H]	4,4,1,0,1	![Image](https://example.com/image11.png)
12	1828, 2005.0	[M+H]+, [M+2H]+	5,4,1,0,0, 3,4,1,2,0	![Image](https://example.com/image12.png)
13	1901.9	[M+H]	5,5,1,0,0	![Image](https://example.com/image13.png)
Table 2
Identified structures of glycans released from *C. reinhardtii* total membrane glycoproteins. Ion trap mass spectroscopy oligosaccharide nomenclature: acetylhexosamines (square □); hexoses (circle ◦ or ○); fucose (triangle ▼); NeuAc (diamond ◆); NeuGc (diamond ◆).
and Maackia amurensis (MAA). These lectins bind to terminal SA-α2,6-Gal and SA-α2,3-Gal structures, respectively [13,14]. The specificity of lectin binding to sialylated glycoproteins of C. reinhardtii was confirmed by protein treatment with sialidase (SNA-I) and inhibition of lectin binding by 100 mM lactose (data not shown). Sialidase-treated proteins showed a significantly weaker binding to lectins compared to non-treated proteins from C. reinhardtii as well as fibrinogen (Fig. 3), indicating the removal of α2-3,6-linked sialic acids from C. reinhardtii glycoproteins. Taken together, these results along with the results of the MS analysis confirm the presence of sialic acid residues in C. reinhardtii glycoproteins.

4. Discussion

Sialic acids are ubiquitous in animals of the deuterostome lineage, from starfish to human. On the other hand, it has been commonly accepted that in plants, protists, archaea, eubacteria and fungi sialic acids are absent [15–17]. However, some pathogenic organisms including certain bacteria, protozoa and fungi have been shown to have sialic acids [18–20]. It has been demonstrated that some strains of pathogenic bacteria synthesize sialic acids de novo to generate sialylated glycolipids on the cell surface [21]. The primary role of sialic acids is believed to protect these pathogenic bacteria from recognition by host immune system; however, they are also important for protein targeting, cell–cell interaction, and cell–substrate recognition and adhesion [22].

It has been reported that sialylation affects biological activity of many therapeutically important proteins [23]. In studies of the recombinant human erythropoietin (hEPO) protein, it has been demonstrated that asialylated hEPO has a very low erythropoietic activity in vivo compared to sialylated hEPO [24,25]. In addition, galactosylation may be critical for the pharmacokinetic activity of some therapeutic antibodies [12]. Although N-linked glycosylation and N-linked glycan structures have been well studied in mammals and other high eukaryotes, very little attention has been paid to studying of N-linked glycosylation in green algae. In a recent...
study, an analysis of N-linked glycan structure from the diatom microalgae *P. tricornutum* has been performed. Results of this analysis have demonstrated that proteins of these algae carry mostly high-mannose-type N-linked glycans ranging from Man-5 to Man-9. In addition, minor glycans Man-3, Man-4 carrying a 1,3-linked fucose have been identified. However, the presence of 1,4-linked galactose and sialic acid in *P. tricornutum* proteins has not been confirmed using both immunodetection with glycan-specific probes and 4,4-dimethyl-2,2-bipyridine coupling [1].

In this study, we have demonstrated the presence of sialylated glycoproteins in unicellular green algae *C. reinhardtii*. In previous studies, the sialyltransferase activity has been detected on the external surface of gametes of *Chlamydomonas moewusii* and suggested to be associated with mating [26]. Here, we performed an in silico analysis of the genomes of *C. reinhardtii* and *Ostreococcus lucimarinus* in search for genes that may encode homologs of mammalian N-glycans, with 1,4-Gal associated with a sialylated complex glycan structure and a plant-like core 1,3 fucosylation — hence, a novel N-linked glycan structure. Unlike plant N-linked glycan structures, the presence of any xylose-containing oligosaccharides in *C. reinhardtii* has not been confirmed. Thus, since green algae are capable of performing important post-translational modifications such as N-glycosylation with terminal sialylation, they are attractive for biotechnological applications for expression of biologically active therapeutic glycoproteins. Further investigations are in progress to fully elucidate the N-linked glycosylation status of *C. reinhardtii*.

Acknowledgements

The authors are grateful to Drs. Vadim Mett, Stephen J. Streeter and Mark Jones for useful discussion and Dr. Natasha Kushnir for editorial assistance. This study was supported by Fraunhofer USA Center for Molecular Biotechnology.

References

[1] Baet, B., Burel, C., Saint-Jean, B., Louvet, R., Menu-Bouaouiche, L., Kiefer-Meyer, M.C., Mathieu-Rivet, E., Lefebvre, T., Castel, H., Carlier, A., Cadorét, J.P., Lerouge, P. and Bardor, M. (2011) N-Glycans of *Phaeodactylum tricornutum* diatom and functional characterization of its N-acetylglucosaminyltransferase I enzyme. J. Biol. Chem. 286, 6152–6164.

[2] Levy-Ontman, O., Arad, S.M., Harvey, D.J., Parsons, T.B., Fairbanks, A. and Tekoah, Y. (2011) Unique N-glycan moieties of the 66-kDa cell wall glycoprotein from the red microalga *Porphyridium* sp. J. Biol. Chem. 286, 21340–21352.

[3] Vilchez, C., Garbayo, I., Markvicheva, E., Galvan, F. and Leon, R. (2001) Studies on the suitability of alginate-entrapped *Chlamydomonas reinhardtii* cells for sustaining nitrate consumption processes. Bioresour. Technol. 78, 55–61.

[4] Ghirardi, M.L., Posewitz, M.C., Maness, P.C., Dubini, A., Yu, J. and Seibert, M. (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu. Rev. Plant Biol. 58, 71–91.

[5] Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, A., et al. (2007) *The Chlamydomonas genome* reveals the evolution of key animal and plant functions. Science 318, 245–250.

[6] Franka, S.E. and Mayfield, S.P. (2004) Prospects for molecular farming in the green alga *Chlamydomonas*.Curr. Opin. Plant Biol. 7, 159–165.

[7] Rasala, B.A., Muto, M., Lee, P.A., Jager, M., Cardoso, R.M., Behinke, C.A., Kirk, P., Hokanson, C.A., Creis, R., Mendez, M. and Mayfield, S.P. (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of *Chlamydomonas reinhardtii*. Plant Biotechnol. J. 8, 719–733.

[8] Shah, M.M., Fuyama, K., Flynn, C.R. and Joshi, L. (2003) Sialylated endogenous glycoconjugates in plant cells. Nat. Biotechnol. 21, 1470–1471.

[9] Chen, P., Wang, C., Soong, S. and To, K. (2003) Complete sequence of the binary vector pBII12 and its application in cloning T-DNA insertion from transgenic plants. Mol. Breed. 11, 287–293.

[10] Strasser, R., Bondil, J.S., Schobener, J., Svoboda, B., Liebminger, E., Altmann, F., Steinkellner, H. and Mach, L. (2007) Enzymatic properties and subcellular localization of Arabidopsis beta-N-acetylhexosaminidases. Plant Physiol. 145, 15–16 (Erratum in: Plant Physiol. 147, 931).

[11] Plummer Jr, T.H., Elder, J.H., Alexander, S., Phelan, A.W. and Tantoreno, A.L. (1984) Demonstration of peptide-N-glycosidase F activity in endo-beta-N-acetylglucosaminidase F preparations. J. Biol. Chem. 259, 10570–10704.

[12] Bakker, H., Bardor, M., Molthoff, J.W., Comord, V., Elbers, I., Stevens, L.H., Jordi, W., Lommen, A., Faye, L., Lerouge, P. and Bosch, D. (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Natl. Acad. Sci. USA 98, 2899–2904.

[13] Shihoya, N., Goldstein, I.J., Broekaert, W.F., Nisima-Lubaki, M., Peeters, B. and Peumans, W.J. (1987) The elderberry (*Sambucus nigra*) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J. Biol. Chem. 262, 1596–1601.

[14] Wang, W. and Cummings, R. (1988) The immunoisolated leukoagglutinin from the seeds of *Mucor* annosus reacts with high affinity to complex-type A*-linked oligosaccharides containing terminal sialic acid-linked alpha-2,3-linked sialic acid. J. Biol. Chem. 263, 4576–4585.

[15] Warren, L. (1994) Bound Carbohydrate in Nature, Cambridge University Press, New York, N.Y. p. 113.
[16] Seveno, M., Bardor, M., Paccalet, T., Gomord, V., Lerouge, P. and Faye, L. (2004) Glycoprotein sialylation in plants? Nat. Biotechnol. 22, 1351–1352.
[17] Zeleny, R., Kolarich, D., Strasser, R. and Altmann, F. (2006) Sialic acid concentrations in plants are in the range of inadvertent contamination. Planta 224, 222–227.
[18] Kelm, S. and Schauer, R. (1997) Sialic acids in molecular and cellular interactions. Int. Rev. Cytol. 175, 137–240.
[19] Parodi, A.J. (1993) N-Glycosylation in trypanosomatid protozoa. Glycobiology 3, 193–199.
[20] Alviano, C.S., Travassos, L.R. and Schauer, R. (1999) Sialic acids in fungi: a minireview. Glycoconj. J. 16, 545–554.
[21] Vimr, E.R. and Troy, F.A. (1985) Regulation of sialic acid metabolism in Escherichia coli: role of N-acetylneuraminate pyruvate-lyase. J. Bacteriol. 164, 854–860.
[22] Schauer, R. (2000) Achievements and challenges of sialic acid research. Glycoconj. J. 17, 485–499.
[23] Matsumoto, S., Ikura, K., Ueda, M. and Sasaki, R. (1995) Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol. Biol. 27, 1163–1172.
[24] Fukuda, M.N., Sasaki, H., Lopez, L. and Fukuda, M. (1989) Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73, 84–89.
[25] Spivak, J.L. (1989) The in vivo metabolism of recombinant human erythropoietin. Contrib. Nephrol. 76, 67–75.
[26] Colombino, L.F., Bosmann, H.B. and McLean, R.J. (1978) Cell surface localization of the sialyltransferase ectoenzyme system during the Chlamydomonas mating reaction. Exp. Cell Res. 112, 25–30.
[27] Murray, B.W., Takayama, S., Schultz, J. and Wong, C.H. (1996) Mechanism and specificity of human alpha-1,3-fucosyltransferase V. Biochemistry 35, 11183–11195.
[28] Tretter, V., Altmann, F. and Marz, L. (1991) Peptide-N4-(N-acetylbeta-glucosaminyl) asparagine amidase F cannot release glycans with fucose attached α1-3 to the asparagine-linked N-acetylglucosamine residue. Eur. J. Biochem. 199, 647–652.