Abstract

The polypeptide chain initiation factor eIF4E plays an important role in regulating the translation of capped mRNAs in eukaryotic cells and it is widely accepted that the availability of eIF4E to form the eIF4F initiation complex (comprising eIF4E, the large scaffold protein eIF4G and the RNA helicase eIF4A) can be a rate-limiting step in the initiation of protein synthesis [1]. The eIF4E-binding proteins 4E-BP1 and 4E-BP2 can bind eIF4E in competition with eIF4G and thus limit the formation of the eIF4F complex [2].

Initiation factor eIF4E is now considered to be a bone fide oncogene product [3], based on data from transgenic mouse studies [4] and the fact that many cancers have enhanced levels and/or activity of the protein [5]. High levels of eIF4E are able to confer resistance to apoptosis in cells exposed to a variety of death stimuli [6,7], and eIF4E activity is regulated by the anti-apoptotic protein kinase Akt, an enzyme implicated in tumour cell survival and resistance to therapy [8]. Since the 4E-BPs inhibit the function of eIF4E by competing for the binding of eIF4E these small proteins often have opposite effects to those of eIF4E. Thus the 4E-BPs can revert the transformed phenotype in cells over-expressing eIF4E [9]. Moreover, cell cycle progression is blocked by over-expression of 4E-BP1 [10], most likely due to changes in the expression of proteins that regulate passage through the cell cycle. Consistent with this, 4E-BP1 can prevent the progression of cells from the G1 phase into S phase of the cell cycle without affecting the increases in cell mass or protein content characteristic of passage of cells through G1 [11]. Experimental knockdown of 4E-BP1 relieves the inhibition of cell cycle progression induced by cellular stresses such as hypoxia [12]. It is likely that an important mechanism of action of 4E-BP1 as an anti-oncogenic factor involves the induction of apoptosis, providing a counter-balance to the cell survival-promoting effects of eIF4E. Paradoxically, however, cells with decreased 4E-BP1 expression are less able to survive physiological stresses such as exposure to hypoxia or ionizing radiation [13], and it is possible that the inhibition of translation caused by disruption of eIF4F complex formation during hypoxia [14] may have a protective effect. A role for the 4E-BPs as factors that protect cells (and thus favour cell survival) under conditions of physiological stress has been suggested in earlier studies [15]. Relevant to this is the fact that the expression of 4E-BP1 (both phosphorylated and unphosphorylated) is elevated in a variety of tumours showing malignant progression [16].

The ability of the 4E-BPs to bind eIF4E is regulated by their state of phosphorylation, which in turn is controlled by the protein kinase mammalian target of rapamycin (mTOR). The latter exists in two complexes, mTORC1 and mTORC2, and is important in the control of a wide variety of pathways in health and disease [17].
against total p70S6K and phosphorylated p70S6K (Thr389 and Thr421). Antibodies against total Akt and phosphorylated Akt (Ser473) and cell signaling technology (Hitchin, Herts, UK) respectively.

The mTOR inhibitors Ku-0063794 [22] and PP242 [23] and the dual PI3-kinase/mTOR inhibitor PI-103 under conditions of optimal growth or physiological stress (hypertonic conditions or serum deprivation), we now provide evidence that supports this hypothesis. Moreover, although mTORC1 and mTORC2 have many direct and indirect substrates and targets, several of which have the potential to regulate global rates of protein synthesis, our data show that the acute effects of mTOR inhibition on translation require the 4E-BPs. mTORC1 and mTORC2 have many direct and indirect substrates is not sufficient to impair overall protein synthesis, at least in the short term. These findings are relevant to our understanding of the role of the 4E-BPs in regulating the physiological stress (hypertonic conditions or serum deprivation).

Methods

Materials

Tissue culture materials were from Gibco Life Technologies Ltd. (Paisley, U.K.) and GE Healthcare (Little Chalfont, U.K.). The mTOR inhibitors Ku-0063794, rapamycin, PP242 and PI-103 were from Tocris Bioscience (Bristol, U.K.). m7GTP-Sepharose beads were from GE Healthcare. [35S]methionine was purchased from Perkin Elmer (Waltham, MA). Antibodies against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK). Anti-eIF4GI was produced in-house. Horseradish peroxidase antibody against GAPDH was from Merck Millipore (Feltham, UK).

Cell Lines

Mouse embryonic fibroblasts (MEFs) with a double knockout of the 4E-BP1 and 4E-BP2 genes [24] and their corresponding wild-type controls were a gift from Dr Nahum Sonenberg (McGill University, Montreal, Canada). MEFs with a Ser to Ala mutation at position 51 of the eIF2α gene (S51A cells) [25] and their corresponding wild-type controls were a gift from Dr Randall Kaufman (Wayne State University, Ann Arbor, Michigan, USA).

Protein Synthesis

Following the treatments described above overall protein synthesis in intact cells was measured by the incorporation of [35S]methionine (1–2 μCi/ml for 1 h) into trichloroacetic acid-insoluble material as described previously [26]. Total cellular protein content was determined and rates of protein synthesis calculated as counts per min incorporated per μg protein.

Statistical Analysis of Data

The data from the protein synthesis determinations are shown as the means ± S.E.M. Independent experiments were performed at least three times and typical examples are presented. Unpaired t-tests (Prism 3 software, GraphPad) were used to determine statistical significance and p values of <0.05 are considered to demonstrate significant differences.

Results

It is well established that the stress imposed on cells by mildly hypertonic conditions results in a marked inhibition of protein synthesis. However the consequences of inhibition of mTOR activity under such conditions have not previously been examined. Accordingly we investigated the effect of the mTOR inhibitor Ku-0063794 on translation in murine embryonic fibroblasts in the presence of increasing salt concentrations. Figure 1A (left panel) confirms the sensitivity of overall protein synthesis in wild-type...
MEFs to the hypertonic conditions imposed by additional NaCl in the culture medium. The data show that whereas Ku-0063794 had only a small effect under normal salt conditions, which was not statistically significant, in the presence of additional NaCl (0.1 M or greater) the effect of Ku-0063794 was substantially increased (50–60% inhibition – statistically significant, p<0.005). The effects on protein synthesis of the mTOR inhibitor in the presence and absence of hypertonic conditions were also analysed by analysis of the distributions of ribosomes between polysomes and sub-polysomal fractions on sucrose gradients. Whereas there was very little decrease in the % of ribosomes in polysomes in response to 0.1 M NaCl or 1 μM Ku-0063794 individually, there was a noticeably greater effect when the cells were exposed to both treatments together (data not shown).

To determine the requirement for the 4E-BPs for the effects of Ku-0063794 on protein synthesis under normal and hypertonic conditions, similar experiments were performed on 4E-BP1/2 double knockout (DKO) cells. The latter cells are genetically disrupted for both 4E-BP1 and 4E-BP2 and express neither of these proteins [24]. The absence of 4E-BP1 is confirmed by the immunoblot shown in Figure 1B. The data in Figure 1A (right panel) demonstrate that protein synthesis in the DKO cells was just as sensitive as in 4E-BP wild-type cells to inhibition by hypertonic conditions; however, in these cells there was no significant effect of Ku-0063794 under any of the salt conditions tested. The relative responses of the wild-type and DKO cells to Ku-0063794 at different salt concentrations, as determined by [35S]methionine incorporation, are summarized in Figure 1C.

Similar experiments were carried out using MEFs with a serine to alanine mutation at position 51 of the α subunit of initiation factor eIF2 (S51A cells). These cells are unable to undergo phosphorylation at this site in response to a variety of physiological stresses, rendering them deficient in the regulation of polypeptide chain initiation [25]. Protein synthesis in the S51A cells remained sensitive to inhibition by increasing concentrations of NaCl (data not shown), indicating that phosphorylation of eIF2α is not required for the effect of hypertonic conditions on translation. Moreover, hypertonic conditions still significantly enhanced the

Figure 1. Influence of salt concentration on the inhibition of protein synthesis by Ku-0063794 in 4E-BP wild-type cells and cells with a double knockout of 4E-BP1 and 4E-BP2. (A) Wild-type and DKO MEFs were pre-incubated in complete medium in the presence of additional NaCl at the concentrations indicated. After 1 h the cells were further incubated with or without Ku-0063794 (1 μM) for 1 h and total protein synthesis was then measured by the incorporation of [35S]methionine (2 μCi/ml) for 1 h as described in Experimental. The data are the means of triplicate determinations and are expressed as counts per min incorporated per μg of protein ± S.E.M. Significances of differences between incubations with Ku-0063794 were determined by unpaired t tests: * = p<0.005; N.S. = not significant. (B) Extracts from 4E-BP wild-type and DKO cells were analysed for expression of 4E-BP1 by immunoblotting. Blots for GAPDH are also shown as loading controls. (C) Summary of % inhibition of protein synthesis by Ku-0063794 in 4E-BP wild-type (wt) and DKO cells as a function of the additional NaCl concentration. doi:10.1371/journal.pone.0071138.g001
effect of Ku-0063794 on protein synthesis in the S51A cells, unlike the situation with the 4E-BP DKO cells (Table 1). Overall, these data indicate that hypertonic conditions inhibit protein synthesis by a mechanism that requires either inhibition of eIF4E by 4E-BP1/2 or phosphorylation of eIF2α by stress-sensitive kinases, whereas the effect of Ku-0063794 under hypertonic conditions does require the presence of 4E-BP1 and/or 4E-BP2 but is independent of eIF2α phosphorylation.

We have extended these experiments to examine the effects of other mTOR inhibitors on overall protein synthesis in the absence or presence of additional salt. The well characterised mTORC1 inhibitor rapamycin failed to inhibit [35S]methionine incorporation at all under normal conditions but reduced protein synthesis by 29% in 4E-BP wild-type cells under hypertonic conditions (statistically significant, p<0.002) [Fig. 2A]. As noted by others [29,30], rapamycin was less effective than mTOR kinase inhibitors such as Ku-0063794, probably because there are rapamycin-resistant functions of mTORC1 [31]. In confirmation of the previous data, the DKO cells were completely resistant to inhibition of mTOR by either rapamycin or Ku-0063794 under both normal and hypertonic conditions (Fig. 2B). Similar results were obtained with the mTORC1/2 inhibitor PP242. In this case, the effect of the drug in 4E-BP wild-type cells was increased from 30% inhibition under normal conditions to 65% inhibition under hypertonic conditions (statistically significant, p<0.01). Again there was no enhancement of inhibition by hypertonic conditions in the DKO cells (20.9±10.2% and 34.6±2.8% inhibition respectively). However, as we observed with the other mTOR inhibitors, in the wild-type cells the presence of additional 0.1 M NaCl enhanced the inhibition by PI-103 (57.0±4.9%). This enhancement was statistically significant (p<0.01). Again there was no enhancement of inhibition by hypertonic conditions in the DKO cells (20.2±3.0% inhibition). These data indicate that, although PI-103 can partially inhibit protein synthesis in the absence of 4E-BP1 and 2 [presumably as a consequence of the inhibition of PI3-kinase activity], the 4E-BPs are needed for the salt-mediated enhancement of inhibition by PI-103.

Since 4E-BP1, when in a hypophosphorylated state, regulates cap-dependent translation by competing with eIF4E for binding to eIF4E, it was important to determine whether hypertonic conditions influence the state of phosphorylation of this protein. Figure 4 shows that, in the absence of Ku-0063794, 4E-BP1 in wild-type cells remained in a predominantly phosphorylated state under the higher salt conditions, as judged both by its mobility on SDS gels and by reactivity of the protein with an antibody against the Ser64 phosphorylation site. This is consistent with evidence that mTOR remains active under hypertonic conditions and indeed may be activated by osmotic stress [33,34]. Incubation of the cells with Ku-0063794 caused extensive dephosphorylation of 4E-BP1, under both normal and hypertonic conditions. The immunoblots also revealed evidence of cleavage of 4E-BP1 in wild-type cells in the presence of Ku-0063794 but this was not enhanced by the higher salt conditions. Instead a stronger band corresponding to intact hypophosphorylated 4E-BP1 was seen. Consistent with the effect of Ku-0063794 on the state of phosphorylation of 4E-BP1, binding of the latter to eIF4E was strongly stimulated in the presence of the mTOR inhibitor (Fig. 5). Conversely, the association of eIF4G1 with eIF4E in the eIF4F complex was completely eliminated by Ku-0063794, both under normal and hypertonic conditions. Additional NaCl alone had no effect on binding of eIF4G1 to eIF4E (Fig. 5).

As expected, a 4E-BP1 signal was absent from the DKO cell extracts, although a faint band of slightly slower mobility was detected (Fig. 4). Since this protein cross-reacted with antibodies against both total 4E-BP1 and Ser64 phosphorylated 4E-BP1, and was dephosphorylated in the presence of Ku-0063794, it may correspond to 4E-BP3. There was no 4E-BP signal under any conditions when eIF4E and its associated proteins in DKO cells were analysed by immunoblotting (Fig. 5). In spite of this, some decrease in the association of eIF4G1 with eIF4E occurred in these cells in the presence of Ku-0063794, although this was clearly not sufficient to impair overall protein synthesis (Figs. 1 and 2). Taken in combination with the protein synthesis results, these findings suggest that Ku-0063794-mediated dephosphorylation of 4E-BP1 and the consequent inhibition of eIF4F complex formation are not sufficient to inhibit overall translation in the short term. Moreover, the sensitization to Ku-0063794 in hypertonically stressed cells does not involve any greater extent of dephosphorylation of 4E-BP1 or inhibition of

Table 1. Contrasting requirements for 4E-BP expression or eIF2α phosphorylation for inhibition of protein synthesis by Ku-0063794 under normal and hypertonic conditions.

Cell line	Conditions	% inhibition of protein synthesis by Ku-0063794
4E-BP wild-type	Normal	8.3±4.7
4E-BP wild-type	Hypertonic	56.3±2.9 (**p<0.0001**)
DKO	Normal	3.2±3.4
DKO	Hypertonic	3.4±2.4 (not significant)**
S51 wild-type	Normal	23.6±12.1
S51 wild-type	Hypertonic	63.6±6.0 (**p=0.01**)
S51A	Normal	34.0±4.5
S51A	Hypertonic	47.8±4.6 (**p=0.05**)

The indicated cell lines were pre-incubated in complete medium in the absence or presence of additional 0.1 M NaCl. After 1 h the cells were further incubated with or without Ku-0063794 (1 M) for 1 h and total protein synthesis was then measured by the incorporation of [35S]methionine (2 μCi/ml) for 1 h as described in Experimental. The data are the means of 6–9 independent determinations. Asterisks show the significance of the differences between the effects of Ku-0063794 on protein synthesis under normal versus hypertonic conditions.

doi:10.1371/journal.pone.0071138.t001
eIF4GI binding to eIF4E (the latter being completely eliminated by Ku-0063794 alone).

The lack of response of protein synthesis to mTOR inhibitors in the DKO cells indicates that 4E-BP1 and/or 4E-BP2 are necessary for the acute regulation of overall translation by the protein kinase. However, mTOR has many other targets with the potential for the control of protein synthesis and it was of interest to determine whether the regulation of these targets is disrupted in DKO cells. One such substrate is p70S6 kinase, which phosphorylates ribosomal protein S6 as well as several other proteins [35]. Immunoblotting analysis revealed that the phosphorylation of p70S6 kinase, both at Thr421/Ser424 and at Thr389 sites which regulate the activity of the enzyme [36], was strongly inhibited by Ku-0063794 in 4E-BP wild-type and DKO cells, under both control and hypertonic conditions (Figure 4). Thus inhibition of the activity of p70S6 kinase is not sufficient to cause rapid down-regulation of overall protein synthesis. A similar conclusion can be drawn with respect to the mTORC2 substrate Akt (Figure 4).

Thus, although phosphorylation of Akt at Ser473 regulates the ability of this enzyme to control long-term cellular responses such as proliferation and survival [37], these effects can be dissociated from the acute control of overall translation by mTOR in mouse fibroblasts.

We have investigated whether the sensitization of cells to the effects of mTOR inhibitors is specific to hypertonic conditions or whether other cell stresses may have similar effects. Figure 6 shows that serum starvation also sensitizes 4E-BP wild-type cells to inhibition of protein synthesis by Ku-0063794. In the experiment shown, although the wild-type cells had some sensitivity to the mTOR inhibitor under unstressed conditions (28% inhibition), the effect of Ku-0063794 was markedly increased after 24 h of serum deprivation (55% inhibition, significantly different from the value for the cells in the presence of serum, p = 0.0005). Again there was no significant inhibition by Ku-0063794 in the DKO cells, in the absence or presence of serum. These data suggest that at least some stresses other than hypertonicity, including the important one of growth factor deprivation, can also increase the sensitivity of overall protein synthesis to the regulation of the 4E-BPs by mTOR.

Discussion

It has been known for many years that hypertonic conditions reversibly inhibit protein synthesis in mammalian cells [38] and a number of studies have addressed the molecular mechanisms and signalling pathways involved [39–41]. In spite of this work the basis for the inhibition of translation by additional salt remains unclear since neither of the principal mechanisms by which polypeptide chain initiation is regulated appear to be involved.

Figure 2. Comparison of the effects of Ku-0063794 and rapamycin on protein synthesis in 4E-BP wild-type and 4E-BP-deficient cells under normal and hypertonic conditions.

(A) Wild-type cells and (B) DKO cells were pre-incubated in complete medium in the absence or presence of additional 0.1 M NaCl. After 1 h the cells were further incubated with or without Ku-0063794 (1 µM) or rapamycin (100 nM) for 1 h and total protein synthesis was then measured by the incorporation of [35S]methionine (2 µCi/ml) for 1 h as described in Experimental. The data are the means of triplicate determinations and are expressed as counts per min incorporated per µg of protein ± S.E.M. Significances of differences between incubations with and without each mTOR inhibitor were determined by unpaired t tests: * = p < 0.002; ** = p < 0.0001; N.S. = not significant.

Figure 3. Influence of salt concentration on the inhibition of protein synthesis by PI-103.

4E-BP wild-type and DKO cells were incubated in complete medium in the absence or presence of additional 0.1 M NaCl. After 1 h the cells were further incubated with or without PI-103 (5 µM) for 1 h and total protein synthesis was then measured by the incorporation of [35S]methionine (2 µCi/ml) for 1 h as described in Experimental. The data are the means ± S.E.M of 9 independent determinations on 4E-BP wild-type cells and 6 independent determinations on DKO cells and are expressed as the % inhibition of protein synthesis by PI-103 in the absence or presence of the additional NaCl. Significance of difference was determined by unpaired t test: * = p < 0.01.

Figure 4.

Translation during Stress and mTOR Inhibition

PLOS ONE | www.plosone.org 5 August 2013 | Volume 8 | Issue 8 | e71138
High salt treatment does not cause any increase in the phosphorylation of the α subunit of initiation factor eIF2 [39] (and our unpublished data), nor any decrease in the formation of Thr421/Ser424 and Thr389 by SDS gel electrophoresis and immunoblotting. The positions of the differentially phosphorylated and of a cleavage product of 4E-BP1 are indicated. Blots for GAPDH are also shown as loading controls. doi:10.1371/journal.pone.0071138.g004

The experiments reported here concern the control of overall protein synthesis and do not address the issue of likely variations in the translation of individual mRNA species in response to cell stress and/or mTOR inhibition. Earlier studies have shown that hypertonic conditions or the recovery from such conditions have differential effects on the synthesis of different proteins [46]. Likewise, mTOR inhibitors impair the translation of some mRNAs much more than that of others [47], with mRNAs possessing a 5' terminal oligopyrimidine sequence or similar motif being particularly sensitive [30,48]. Recently it has been shown that the translation of mRNAs encoding proteins involved in the invasive and metastatic properties of cancer cells is directly regulated by mTOR [49]. On the other hand, the mRNA encoding the p53 regulator mdm2 is particularly rapamycin-resistant [50]. The protocol of mild hypertonicity and mTOR inhibitor treatment described in this paper now provides a means to assess the relative eIF4E requirements of mRNAs with different 5' UTRs, using either transfection of reporter constructs or a more global approach involving ribosome profiling and micro-array analysis [51].

![Figure 4. Inhibition of phosphorylation of 4E-BP1, p70S6 kinase and Akt by Ku-0063794 under normal and hypertonic conditions.](image)

Condition	Control	Ku-0063794
Total 4E-BP1		
Cleavage product		
Ser 65		
AKT P-Ser473		
AKT total		
P70 S6K P-Thr 421/Ser 424		
P70 S6K P-Thr 389		
Total p70S6 kinase		
GAPDH		

Wild type cells | DKO cells |

Table showing the inhibition effects of Ku-0063794 on various proteins under normal and hypertonic conditions.
Many previous studies have established the key role of the 4E-BPs as regulators of protein synthesis downstream of mTOR, and our demonstration that there is an absolute requirement for 4E-BP1/2 for the response to inhibitors of mTOR is in accord with this. It also shows that the likely presence (and apparent dephosphorylation) of 4E-BP3 is not sufficient to compensate for the lack of 4E-BP1 and 4E-BP2 in sensitizing cells to mTOR inhibition. In addition, our data show that the decreased phosphorylations of p70S6K and Akt that occur when mTORC1/2 activity is inhibited are not sufficient to affect overall protein synthesis, at least in the short term. Thus these proteins (as well as other mTOR substrates [52]) are unlikely to play a role in the acute control of overall translation. However we wish to emphasize that, whatever the relative importance of the various

![Diagram](https://example.com/diagram.png)

Figure 5. Inhibition of eIF4F complex formation by Ku-0063794 under normal and hypertonic conditions. 4E-BP wild-type and DKO MEFs were pre-incubated in complete medium in the absence or presence of additional 0.1 M NaCl. After 1 h the cells were further incubated with or without Ku-0063794 (1 μM) for 1 h and extracts were prepared. Using equal quantities of total protein, the extracts were then subjected to affinity chromatography on m7GTP-Sepharose to isolate eIF4E and its associated proteins, as described in Experimental. The bound proteins were analysed for eIF4E, 4E-BP1 and eIF4GI by SDS gel electrophoresis and immunoblotting.

doi:10.1371/journal.pone.0071138.g005

![Graph](https://example.com/graph.png)

Figure 6. Effect of Ku-0063794 on protein synthesis in 4E-BP wild-type and 4E-BP deficient cells under normal and serum-deprived conditions. Wild-type and DKO cells were incubated for 24 h in complete medium or in medium lacking serum. The cells were incubated with or without Ku-0063794 (1 μM) for 1 h and overall protein synthesis was then measured by the incorporation of [35S]methionine (1 μCi/ml) for 1 h as described in Experimental. The data are the means of triplicate determinations and are expressed as counts per min incorporated per μg of protein ± S.E.M. Significances of differences between incubations ± Ku-0063794 were determined by unpaired t tests: * = p<0.05; N.S. = not significant.

doi:10.1371/journal.pone.0071138.g006
mTOR targets for the control of translation, none of these proteins— including 4E-BP1 and 4E-BP2—is effective under optimal growth conditions, at least in fibroblasts. Only under conditions of stress such as hypertonicity or serum deprivation does a role for the 4E-BPs become relevant. The lack of effect of p70S6K and Akt on overall translation is perhaps surprising since these protein families have several direct or indirect targets with potential roles in the regulation of protein synthesis [53]. Nevertheless a previous report [54] has also demonstrated that inhibition of p70S6K by rapamycin is not sufficient to inhibit cap-dependent translation. In the case of Akt, targets include not only mTOR itself [55] but also many other factors that control cell proliferation and survival (reviewed in [37]). The lack of a major effect of Akt on the protein synthetic machinery is suggested by the relatively small effect of PI-103 on translation under normal salt conditions, in spite of the fact that this compound has profound effects on Akt activity as a consequence of its inhibition of PI3-kinase [56]. However, our results do not rule out an important role for mTOR targets other than the 4E-BPs in the longer term effects of mTOR inhibitors on translation. Indeed, 24 h exposure to Ku-0063794 under normal salt conditions did cause a 30% reduction in protein synthesis in the DKO cells (versus 55% inhibition in 4E-BP wild-type cells) (data not shown). It is also possible that changes in the phosphorylation state of p70S6K and/or Akt and their targets may be important for the rapid regulation of the translation of individual mRNA species, via mechanisms that are independent of the 4E-BPs. In this connection it is of interest that Ku-0063794 did cause a partial impairment of eIF4F complex formation in the DKO cells (Fig. 5).

Recent reports using cell lines in which the levels of 4E-BP1 and 4E-BP2 have been experimentally manipulated show that these proteins play important roles in the regulation of cell proliferation [57], contact inhibition [58] and p53-dependent cell senescence [24]. In contrast, the regulation of cell growth (as opposed to proliferation) by mTOR does not involve the eIF4E binding proteins but does require S6 kinase activity [57]. It is probable that the control of cell proliferation by the 4E-BPs is a reflection of changes in the synthesis of key regulatory proteins whose mRNAs have a high requirement for eIF4E. Nevertheless our present data also indicate a more general role for the 4E-BPs in the control of overall protein synthesis under conditions of stress. These results may be of significance for our understanding of the role of the 4E-BPs in cancer. Physiological stress conditions often prevail in tumours in vivo due to lack of oxygen and nutrient supplies and malignant cells can evolve strategies to overcome such adverse conditions. In view of the importance of the 4E-BPs for the control of proliferation of untransformed cells, as well as the well known role of dysregulation of the eIF4E/4E-BP system in cancer progression [59,60], it would be of interest to determine whether the sensitivity of protein synthesis and cell proliferation to mTOR inhibitors under stress conditions is diminished in transformed cells relative to their normal counterparts and whether this is determined by the relative levels of eIF4E versus the 4E-BPs in these cells. Thus the higher levels or activity of eIF4E often found in tumour cells may not only enhance the synthesis of growth-promoting or anti-apoptotic proteins (translated from relatively “weak” mRNAs) but also desensitize the cells to physiological stresses and the inhibition of mTOR. These considerations may provide guidelines for predicting the extent to which different kinds of tumour cells, particularly those which over-express eIF4E or have deregulated PI3K, Akt or mTOR activity, are likely to respond to the new generation of mTOR inhibitors and eIF4F disrupting agents that are now being developed for use in cancer therapy [44,61–63].

Acknowledgments

We are grateful to Dr Nahum Sonenberg (McGill University) and Dr Randall Kaufman (Wayne State University) for the cell lines.

Author Contributions

Conceived and designed the experiments: MJC AE. Performed the experiments: MJC AE. Analyzed the data: MJC AE SJM. Contributed reagents/materials/analysis tools: MJC AE SJM. Wrote the paper: MJC.

References

1. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets Cell 136, 731–745.
2. Armengol G, Rojo F, Castelvi J, Igea S, Cuarteros C et al. (2007) 4E-binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications Carcinogenesis 28, 7351–7355.
3. De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies Biochim. Biophys. Acta 1694, 138–149.
4. Ruggero D, Montanaro L, Ma L, Xu W, Londei P et al. (2004) The translation factor eIF4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat. Med. 10, 484–496.
5. Graff JR, Konicki BW, Lynch RL, Dunstorf CA, Dowless MS et al. (2009) eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival Cancer Res. 69, 3666–3673.
6. Li S, Takas T, Perlman DM, Peterson MS, Burrichter D, Avdulov S et al. (2003) Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. Journal of Biological Chemistry 278, 3015–3022.
7. Li S, Perlman DM, Peterson MS, Burrichter D, Avdulov S, Polonovski VA et al. (2004) Translation initiation factor 4E blocks endoplasmic reticulum-mediated apoptosis. J. Biol. Chem. 279, 21312–21317.
8. Wendel HG, De Stanchina E, Friedman JS, Malina A, Ray S et al. (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337.
9. Rousseau D, Gingras AC, Pause A, Sonenberg N (1996) The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 15, 2415–2420.
10. Jiang H, Coleman J, Miskimins R, Miskimins WK (2003) Expression of eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival Cancer Res. 63, 1844–1848.
11. Lynch M, Fitzgerald C, Johnston KA, Wang SP, Schmidt EV et al. (2004) Constitutive eIF4E-binding protein slows G1 progression and blocks transformation by c-Myc without inhibiting cell growth. J. Biol. Chem. 279, 3327–3339.
12. Barnhart BC, Lam JC, Houghton PJ, Keith B (2000) Effects of 4E-BP expression on hypoxic cell cycle inhibition and tumor cell proliferation and survival Cancer Biol. Ther. 7, 1441–1449.
13. Dubois A, Maguin MG, Clevers AH, Wever SG, Garnero B et al. (2009) Inhibition of eIF4E sensitizes U251 glioblastoma xenograft tumors to irradiation by decreasing hypoxia tolerance Int. J. Radiat. Oncol. Biol. Phys. 73, 1219–1227.
14. Hernandez-Jimenez M, Ayuso MI, Perez-Morgado MI, Garcia-Recio EM, Akaza A et al. (2012) eIF4F complex disruption causes protein synthesis inhibition during hypoxia in nerve growth factor (NGF)-differentiated PC12 cells Biochim. Biophys. Acta 1823, 430–438.
15. Telemain AA, Chen YW, Cohen SM (2005) 4E-BP functions as a metabolic brake used under stress conditions but not during normal growth Genes Dev. 19, 1844–1848.
16. Nathan CO, Amirghahari N, Abreo F, Rome G, Caldito G et al. (2004) Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway Clin. Cancer Res. 10, 5020–5027.
17. Laplante M, Sabatini DM (2012) mTOR Signaling in Growth Control and Disease Cell 149, 274–293.
18. Holz MK, Blenis J (2005) Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)/phosphorylating kinase. J. Biol. Chem. 280, 26009–26093.
19. Hresko RC, Macieck M (2005) mTOR/RICTOR is the Ser473 kinase for Akt/ protein kinase B in 3T3-L1 adipocytes. J. Biol. Chem. 280, 40406–40416.
20. Login S, Posey E, Brina D, Bouquet A, Loveni F et al. (2011) Sensitivity of Global Translation to mTOR Inhibition in REN Cells Depends on the Equilibrium between eIF4E and 4E-BP1. Plos One 6, e29130.
21. Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by translation during Stress and mTOR Inhibition
22. Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC et al. (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem. J. 421, 29–42.

23. Hoang B, Frost P, Shi YJ, Belanger E, Benavides A et al. (2010) Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor Blood 116, 4560–4568.

24. Petrulakis E, Parysyan A, Dowling RJO, LeBacquer O, Martinou Y et al. (2009) p53-Dependent Translational Control of Senescence and Transformation via 4E-BP1 Cancer Cell 16, 139–146.

25. Scheuner D, Song BB, McEwen E, Liu C, Laybutt DR et al. (2001) Translational control is required for the unfolded protein response and in vivo glucose homoeostasis Mol. Cell. 7, 1165–1176.

26. Jeffrey IW, Bashell M, Tilleray VJ, Morley S, Clemens MJ (2002) Inhibition of protein synthesis in apoptosis: Differential requirements by the tumour necrosis factor α family and a DNA-damaging agent for caspases and the double-stranded RNA-dependent protein kinase Cancer Res. 62, 2272–2280.

27. Elia A, Constantinou C, Clemens MJ (2008) Effects of protein phosphorylation on ubiquitination and stability of the translational inhibitor protein 4E-BPI 3 Oncogene 27, 811–822.

28. Constantinou C, Clemens MJ (2007) Regulation of translation factors eIF4GI and 4E-BP1 during recovery of protein synthesis from inhibition by p53 Cell Death Differ. 14, 576–585.

29. Hao YL, Iadevai V, Proud CG (2011) Differing effects of rapamycin and mTOR kinase inhibitors on protein synthesis Biochem. Soc. Trans. 39, 446–450.

30. Hao YL, Iadevai V, Yao Z, Kelly I, Cosulich S et al. (2012) Stable isotope-labeling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis Biochem. J. 444, 141–151.

31. Thoreen CC, Kang SA, Cheng JY, Liu Q, Zhang J et al. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1 J. Biol. Chem. 284, 8023–8032.

32. Workman P, Clarke PA, Raynaud FI, van Montfort RLM (2010) Drugging the PI3 Kinome: From Chemical Tools to Drugs in the Cancer Clinic Cancer Res. 70, 2146–2157.

33. Orrell MC, Moranchon B, Drees-Elder K, Voille B, Laderoute KR et al. (2012) Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin Nucleic Acids Res. 40, 4368–4380.

34. Kwak D, Choi S, Jeong H, Jang JH, Lee Y et al. (2012) Osmotic Stress Regulates Mammalian Target of Rapamycin (mTOR) Complex 1 via eIF4EBinding Raptor Protein Phosphorylation J. Biol. Chem. 287, 18398–18407.

35. Magnuson B, Elia B, Fingar DC (2012) Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks Biochem. J. 441, 1–24.

36. Lehman JA, Calvo V, Gomez-Cambreron J (2003) Mechanism of ribosomal p70S6 kinase activation by granulocyte macrophage colony-stimulating factor in neutrophils - Cooperation of a MEK-related, THR421/8ER424 kinase and a rapamycin-sensitive, mTOR-related THR389 kinase J. Biol. Chem. 278, 28130–28138.

37. Hers I, Vincent EE, Tavare JM (2011) Akt signalling in health and disease Cell. Signal. 23, 1515–1527.

38. Kruppa J, Clemens MJ (1984) Differential kinetics of changes in the state of phosphorylation of ribosomal protein S6 and in the rate of protein synthesis in MPC 11 cells during toxicity shifts EMBO J. 3, 95–100.

39. Duncan RF, Hershey JWB (1987) Initiation-Factor Protein Modifications and Inhibition of Protein-Synthesis Mol. Cell. Biol. 7, 1293–1295.

40. Morley SJ, Naegle S (2002) Phosphorylation of eukaryotic initiation factor (eIF) 4E is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells J. Biol. Chem. 277, 32055–32059.

41. Naegle S, Morley SJ (2004) Molecular cross-talk between MEK1/2 and mTOR signaling during recovery of 293 cells from hypertonic stress J. Biol. Chem. 279, 46023–46034.

42. Yates JR, Nuss DL (1982) Resistance to Inhibitors of Mammalian-Cell Protein-Synthesis Induced by Pre-Incubation in Hypertonic Growth-Medium J. Biol. Chem. 257, 5030–5034.

43. Graff JR, Konieczk BW, Vincent TL, Lynch RL, Monteith D et al. (2007) Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity J. Clin. Invest 117, 2638–2648.

44. Lee T, Pelletier J (2012) Eukaryotic initiation factor 4E: a vulnerability of tumor cells Future Medicinal Chemistry 4, 19–31.

45. Mechler B (1981) Membrane-Bound Ribosomes of Myeloma Cells.6. Initiation of Immunoglobulin Messenger-Rna Translation Occurs on Free Ribosomes J. Cell Biol. 88, 42–50.

46. Battistini A, Gallizzi P, Curatola AM, Rossi GB (1988) Variation in the Relative Synthesis of Some Proteins in Mammalian-Cells Exposed to Hypertonic Medium Exp. Cell Res. 176, 162–173.

47. Groebe A, Bowman J, Predat-Balade B, Parvas E, Hanah S et al. (2002) Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics J. Biol. Chem. 277, 22175–22184.

48. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS et al. (2012) A unifying model for mTORC1-mediated regulation of mRNA translation Nature 485, 109–113.

49. Huch AC, Liu Y, Edlin MP, Ingolia NT, James MR et al. (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis Nature 485, 55–63.

50. Genolet R, Rahimi G, Gubler-Jaquie P, Cairns J (2011) The translational response of the human mdr2 gene in HEK293T cells exposed to rapamycin: a role for the 5’UTRs Nucleic Acids Res. 39, 989–1003.

51. Genolet R, Aratau T, Maillard L, Jaquie-Gubler P, Cairns J (2008) An approach to analyse the specific impact of rapamycin on mRNA-ribosome association BMC Medical Genomics 1, 33.

52. Hsu PP, Kang SA, Ramese L, Zhang Y, Ottina KA et al. (2011) The mTOR-Regulated Phosphoproteome Reveals a Mechanism of mTORC1-Mediated Inhibition of Growth Factor Signalling Science 332, 1317–1322.

53. Fenton TR, Gout IT (2011) Functions and regulation of the 70 kDa ribosomal protein S6 kinases Int. J. Biochem. Cell Biol. 43, 47–59.

54. Choo AY, Youn SO, Kim SG, Roux PP, Blenis J (2008) Rapamycin differentially inhibits S6Ks and 4E-BPs to mediate cell-type-specific repression of mRNA translation Proc. Nat. Acad. Sci. USA 105, 17144–17149.

55. Sokolosky ML, Stadelman KM, Chappell WH, Abrams SL, Martelli AM et al. (2011) Involvement of Akt-1 and mTOR in Sensitivity of Breast Cancer to Targeted Therapy Oncotarget 2, 530–546.

56. Raynaud H, Eccles S, Clarke PA, Hayes A, Nutley B et al. (2007) Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositol 3-kinases Cancer Res. 67, 3540–3550.

57. Dowling RJO, Topisirovic I, Alain T, Bidinosti M, Fonseca BD et al. (2010) mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the PI3K Pathway Mol. Cell. 39, 63–74.

58. Azar R, Susini C, Bousquet C, Pyronnet S (2010) Control of contact-inhibition by small molecule inhibition of the translation initiation factor eIF4E Proc. Nat. Acad. Sci. USA 107, 26414–26419.

59. She QB, Haliboevic E, Ye Q, Zhen W, Shirasawa S et al. (2010) 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors Cell 140, 39–51.

60. Huch AC, Hall DR, Robert F, Du YH, Min JK et al. (2011) Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F Proc. Nat. Acad. Sci. USA 108, 1046–1051.