Plasma-derived HIV Nef+ exosomes persist in ACTG384 study participants despite successful virological suppression. Andrea D. Raymond¹, Michelle J. Lang¹, Jane Chu¹, Tamika Campbell-Sims¹, Mahfuz Khan¹, Vincent C. Bond¹, Richard B. Pollard*, David M. Asmuth*, and Michael D. Powell¹. Morehouse School of Medicine¹, *University of California-Davis, and the ACTG 384 team

Short title: HIV Nef+ exosomes impact immune recovery

Keywords: Nef, exosomes, microvesicles, discordant CD count/viral load, CD4 recovery, ACTG384 study
Abstract

Human Immunodeficiency Virus (HIV) accessory protein Negative factor (Nef) is detected in the plasma of HIV+ individuals associated with exosomes. The role of Nef+ exosomes (exNef) in HIV pathogenesis is unknown. We perform a retrospective longitudinal analysis to determine correlative clinical associations of exNef plasma levels in ARV-treated HIV+ patients with or without immune recovery. exNef concentration in a subset of AIDS Clinical Trial Group (ACTG) 384 participants with successful virological suppression and with either high (Δ >100 CD4 cell recovery/High Immunological Responders (High-IR) or low (Δ ≤100 CD4 cell recovery/ Low Immunologic Responders (Low-IR) immunologic recovery was measured and compared for study weeks 48, 96, and 144. CD4 recovery showed a negative correlation with exNef at study week 144 ($r = -0.3573, ^*p=0.0366$). Plasma exNef concentration in high IRs negatively correlated with naïve CD4 count and recovery ($r = -0.3249, ^*p = 0.0348$ (High-IR); $r =0.2981, ^*p= 0.0513$ (Low-IR)). However, recovery of CD4 memory cells positively correlated with exNef ($r = 0.4534, ^*p=0.0358$) in Low-IRs but not in High-IRs. Regimen A (Didanosine, Stavudine, Efavirenz) lowered exNef levels in IRs by 2-fold compared to other regimens. Nef+ exosomes persist in ART-treated HIV+ individuals despite undetectable viral loads, negatively correlates with naïve and memory CD4 T cell restoration and may be associated with reduced immunological recovery. Taken together, these data suggest that exNef may represent a novel mechanism utilized by HIV to promote immune dysregulation.
Introduction

The prognosis for patients infected with HIV has improved significantly with the advent of combination antiretroviral therapy (cART) which can lead to suppression of plasma viremia usually associated with marked improvements in CD4+ T cell counts [1, 2]. However, a subset of patients do not experience a robust immune recovery despite viral suppression. While host factors such as age and baseline CD4+ T-cells with a naïve phenotype have been observed to be negatively associated with the magnitude of CD4+ T-cell count improvement [1, 3-6], virological factors that contribute to these immunologic outcomes are less well defined.

Immune reconstitution can be defined as an increase in the number of peripheral CD4 T-cells to greater than 350-500 cells/dL after 4 years of effective cART [3]. Discordant responses characterized by a lack of immune recovery despite viral suppression occur in 7-39% of participants receiving cART [4-7]. The reasons for this phenomenon are not understood.

The HIV-encoded Negative factor (Nef) has been implicated in pathogenesis based on studies examining HIV-infected long term non-progressors (LTNP) and elite controllers (EC). LTNPs remain asymptomatic for years with stable CD4 counts while ECs control plasma HIV RNA in the absence of ART [12]. Although several hypotheses have been presented to account for the protective factors leading to delayed disease progression, replication defective virions/nef-defective virions have been associated with these populations in some cases [9-11]. Recent reports have shown that the viruses within some LTNPs and ECs are actually replication competent and control of HIV may be due to host and/or viral factors that maintain low levels of viremia [11]. HIV-1 Nef may be integral to the control of viral replication and/or T-cell responses in an HIV-infected individual. Early *in vitro* studies have shown that soluble Nef is cytotoxic to
T-cells and is released from HIV-infected cells in plasma derived microvesicles that can be detected in HIV-infected patients [13-23]. These studies suggest that Nef does not exist as a soluble protein \textit{in vivo} but instead non-virion associated Nef is found in microvesicles or exosome-like microvesicles (exNef) [7, 8].

Several \textit{in vitro} studies have identified pathogenic activities of soluble Nef including its capacity to reduce surface expression of CD4 and MHC class II, to increase HIV infectivity, to stimulate primary macrophages to release pro-inflammatory cytokines and chemokines, and induce apoptosis in CD4 T-cells [13, 18, 24-27]. We have previously shown that expression of \textit{nef} in HEK293 cells is sufficient to produce exNef, and the resultant exosomes can be absorbed by T-cells and macrophage but only induces apoptosis in T-cells [14]. Taken together, these observations suggest that Nef+ microvesicles/exosome could have an impact on CD4 T-cell recovery. We hypothesize that Nef microvesicles/exosomes are released from HIV infected cells despite successful cART-induced viral suppression and contribute to pathogenesis by impeding CD4-T-cell recovery.

Exosomes range in size from 30 -100 nm and are released from hematopoetic (i.e. B-and T-lymphocytes, dendritic cells, monocytes, mast cells, reticulocytes) and non-hematopoetic (i.e. neurons, intestinal epithelial cells, and tumors) cells. Exosomes are detected in physiological fluids such as plasma, urine, malignant effusions, and amniotic fluids. Several functions have been attributed to exosomes/microvesicles including the modulation of cell signaling, cellular homeostasis, intercellular communication, shuttling genetic material, establishment of tissue polarity, regulation of immune responses, and enhancing the site of budding (i.e. HIV and
Given the immunomodulatory functions of exosomes, we sought to explore whether exNef may selectively impair CD4+ T-cells recovery during cART.

For this study, Nef concentration was determined in plasma-derived exosomes isolated from a subset of the ACTG-384 cohort with and without immune recovery post-cART. We show that Nef+ exosomes persist and can be detected in study participants with undetectable viral loads even after 144 weeks of therapy. This suggests that exNef production is independent of plasma viral load. Interestingly, we demonstrate that Low-IRs have significantly higher levels of exNef compared to High-IRs at 144 weeks post-treatment. Recovery of naive CD4 T-cells (CD45RA+, CD62L+) and total CD4 cells negatively correlated with exNef. Overall, we report that Nef+ exosomes are detected in the plasma despite viral suppression and that exNef is negatively associated with changes in naïve and total CD4 count. Taken together these results suggest that exNef may ultimately affect CD4 T-cell recovery and be a biomarker of immune recovery.

Material and Methods

Study Population. A subset of cryopreserved plasma samples (n = 240) taken from participants in ACTG 384 were used in this study [1] (Robbins, GK 2003; Shafer 2003). As previously described ACTG 384 was a factorial multi-center randomized controlled trial conducted in the United States and Italy that compared sequential three-drug regimens for treatment of HIV infection. Nine hundred eighty ART-naive HIV-1+ subjects were randomized and treated with stavudine/didanosine or zidovudine/lamivudine with nelfinavir, efavirenz, or both nelfinavir and efavirenz. If virological failure occurred, then participants were placed on another regimen.
sequentially. In this study, samples from three distinct groups were obtained and assayed. The
groups included 1) Treatment failure (TF) defined as those with a virologic failure with a
detectable viral load (HIV RNA > 50 RNA copies) what at any time point before 144 weeks, 2). Immunologic responders defined as those with high CD4 improvement of > 100 cells/mm3
(achieved at any point post study initiation) and suppressed viremia (< 50 RNA copies) (High IRs) and 3) Immunologic non-responders defined as those with CD4 improvement of < 100 cells/mm3 and suppressed viremia (Low IRs) (Figure 1). To avoid confounding effects of
multiple-treatment regimens, the samples utilized for this sub-cohort were derived from subjects
on their first treatment regimen and those with samples from three- or four time intervals (0, 48,
96, and/or 144 weeks).

Isolation of plasma-derived exosomes. Plasma exosomes were isolated as previously described
[14, 23, 36]. Plasma was pre-cleared by centrifugation at 10,000g for 30 minutes to remove
particulates. Microvesicles were pelleted from pre-cleared plasma via ultra-centrifugation for 1
hour at 300,000 x g and then re-suspended in 250 µl of phosphate buffered saline (PBS). Immune
complexes within the re-suspended exosomes were removed using acid-dissociation prior to Nef
measurement similar to p24 antigen measurements from plasma. Exosomes/high speed pellets
(100 µl) were treated with 100 µl of 0.3N hydrochloric (HCl, Sigma) and allowed to incubate for 1
hour at 37 °C. The acid mixture was neutralized with 100 µl of 0.3N sodium hydroxide (NaCl,
Sigma) prior to assaying for Nef.

Nef Enzyme-linked Immunosorbent Assay (ELISA). Nef concentration in acid-dissociated
microvesicle/exosome preparations was measured using a commercially available anti-Nef
sandwich ELISA kit (Immunodiagnostics, Bedford, MA) according to the manufacturer’s instructions. Briefly, the neutralized microvesicle preparations were diluted 1:1 with sample diluent (Component C) and added to ELISA plates coated with anti-Nef (Component A). Following 1-hour incubation at room temperature the plates were washed three times with wash buffer (Component B), and 100 µl of anti-Nef-HRP labeled antibody solution (component E) was then added to each well. Plates were incubated for 1 hour at room temperature, washed three times with component B, and developed by adding 100 µl of alkaline phosphatase substrate (component F) per well. Plates were developed for approximately 10 minutes after which 100 µl of stop solution (Component G) was added to each well and the absorbance at 450 nm determined using a Spectramax spectrophotometer.

Statistical Analysis. Exosomal Nef concentrations were correlated with various immunologic outcomes (immune recovery, change in cell populations, etc.) in each group using the Spearman rank test. The Kruskal-Wallis test was used to compare continuous outcomes between these three groups. The Mann-Whitney rank-sum test or the Dunn’s multiple comparison tests were used appropriately to compare Nef levels in Treatment failures and immunological responders. Statistical analysis was performed using MYSTAT software version 12 (Systat software, Inc. 2007).

Results

Baseline characteristics of ACTG384 sub-cohort. This sub-cohort consisted primarily of males (88.4%) (Table 1). Plasma HIV RNA levels at baseline were not significantly different between
the three groups (range). Baseline CD4 counts were significantly different between groups (137 cells/mm³ in TF, 60 cells/mm³ in High IRs, 38 cells/mm³ in Low IRs) (as previously described that CD4 count at the initiation of therapy may not play a role in immune recovery [3]. Activated CD4 and CD8 T-cells were not significantly different between the High- and Low-IRs

Characteristics	Complete subcohort	Treatment Failures	>200 ΔCD4 cell count	<200 ΔCD4 cell count
	(n=47)	(n=14)	(n=15)	(n=18)
sex[n, %]				
Male	41 (88.4%)	10 (71%)	13 (87%)	18 (100%)
Female	6 (11.6%)	4 (29%)	2 (13%)	0
Age (Baseline)	37	36	37	39
Viral load (log10)				
Baseline	5.447	4.998	5.563	5.425
96 weeks	1.68	3.32	1.699	1.699
CD4 Count	***	***	***	*
Baseline	116	252	61	87
96 weeks	330	372	409	253.5
Activated CD4/CD38/HLA (%)	***	***	***	***
Baseline	28	21	22	31
96 weeks	7	11	7	6.5
Activated CD8/CD38/HLA (%)	***	*	***	***
Baseline	53	52	57	53
96 weeks	20	29	22.5	18.5
Naive CD4 (cells/mm³)	***	ns	***	***
Baseline	6.4	42.7	9.9	5.3
96 weeks	102.3	58.5	151.8	60.9
Memory CD4	***	ns	***	***
Baseline	24.5	78.9	22.5	33.9
96 weeks	205.1	161.7	271.4	174.9
Table 1. Statistical analysis – Intergroup analysis (Column) compared gender and group association using chi-square; ethnicity and group composition at baseline, using Chi-square analysis, #Trend p-value <0.1; Median age of groups compared using ANOVA – Kruskal-Wallis, ns-not significant; Viral load at baseline between groups at baseline and 96 weeks, Kruskall-Wallis, ns- not significant.; Baseline CD4 count, ns-not significantly different between groups; Post-96 weeks CD4 count significantly different between Low and High Immunological responders (IR); Kruskall-Wallis, Dunnett’s Multiple comparisons, ***p-value<.001; CD4 count different between baseline and 96 weeks for each group Mann-Whitney ***p-value <.0001; Activated CD4 and CD8 T-cell counts are ns-(not significant) between groups at baseline and 96 weeks, Kruskall-Wallis, Dunnett’s Multiple; Naïve CD4 counts is significantly different between high and low IRs at baseline but at 96 weeks differ significantly, Kruskall-Wallis, Dunnett’s Multiple comparisons ***p-value<.001; Intra-group difference in IR memory differ significantly, Mann-Whitney ***p-value <.0001

groups, either at baseline or post 96 weeks of treatment. (Table 1). Other cell subsets B-cells and natural killer (NK) cells were not significantly different between High-IRs and Low-IRs (data not shown). However, naïve and memory CD4 T-cell subsets were significantly different between High-and Low_IRs (Table 1) suggesting that these cell subsets are integral to immune recovery.

CD4 recovery among immunological responders negatively correlates with plasma exNef concentration. ART-induced decrease in viral load (VL) to <50 RNA copies did not necessarily reduce Nef concentration in plasma or result in CD4 recovery for all HIV+ patients within the sub-cohort. We examined study participants receiving anti-retrovirals with successful viral suppression that had CD4 recovery above or below 300 cells/mm³ at study week 144 (Fig 1A). At study week 144, 40% of the sub-cohort exhibited discordant VL and CD4 cell recovery along with increased exNef level. In the absence of detectable viral replication, exNef could be detected in the plasma and the levels correlated with total CD4 recovery (Fig 1B).
Figure 1: ARV-treated HIV+ patients exhibit differential CD4 T-cell recovery, which negatively correlates with exNef level despite successful viral suppression. (A) At study weeks 48 (n=38), 96(n=32), and 144 (n=25) the change in CD4 count (as measured by flow cytometry) was tracked in the participants with VL >50 RNA copies and compared to baseline CD4 count. High = change in CD4 count >100; Low= change in CD count <100 cells. Statistical significance determined by Kruskal-Wallis test statistic, ***P<.001, Dunn’s Multiple comparison’s **P<.01. (B) Plasma-derived exNef concentration negatively correlates with the change in CD4 count. *P<0.05, Spearman r.

Trend in exosomal Nef correlates with immunological response status. cART initiation reduces viral load to undetectable levels over time but the effects of ART on exNef production is unknown. Cross-sectional reports have demonstrated that Nef can be detected in the plasma in the absence and presence of ART [36]. Since exNef may play a role in HIV immunopathogenesis and impact CD4 recovery we examined the longitudinal changes of exNef in High IRs. Interestingly, exNef was detected in the plasma of these patients despite suppression of viral replication (Fig 2A). A retrospective longitudinal analysis shows that at the initiation of therapy, Nef levels were not significantly different between the Low_IRs and High_IRs (Fig 2A, upper panel). However, by study week 144, the Low-IRs had significantly higher levels of plasma exNef than the High IRs (Fig 2A, lower panel). The median baseline plasma Nef level in the sub-cohort at 48 weeks was approximately 2.5 ng per 1 ml plasma and by 144 weeks Nef levels increased to almost 5 ng per 1 ml plasma in the Low IRs. In fact Low-IRs exhibit an increasing trend in exNef levels from study weeks 48 through 144 while in High-IRs exNef level decreased over the study (Fig 2B). This finding suggests that plasma exNef may play a role immunological recovery.

Figure 2: Exosomal Nef is significantly different between low and high immunological responders and trends upward in low immunological responders. (A) exNef concentration as measured by anti-Nef ELISA is increased in Low responders at study weeks 48(Low-n=25, High=5 , 96(Low-n=16; High-n=14), and 144 weeks (Low-
n=10 (High n=16). Statistical significance determined via Mann-Whitney, *p-value < 0.05, Mann-Whitney. (B) High and low immunological responders defined in sub-cohort defined by change in CD4 count from baseline. High – change ≥100 (cells/mm3); Low change <100 cells/mm3) (B) Median Nef concentration in exosomes isolated from plasma of subjects with Treatment Failure (n=10) or Success (with high, and low CD4 recovery; n=30) subjects. Nef quantified by anti-Nef ELISA.

Naïve CD4 count and recovery inversely correlate with exNef. We then investigated whether Nef$^+$ exosome levels correlated with recovery of naïve CD4 cell counts specifically. Immunological recovery (as defined in Methods) 48 weeks post treatment and close to 90% (18 out of 20) by week 96 of treatment (Fig 3A). However, none of the Low-IRs exhibited increases in CD4 T-cell count close to 350 cells/mm3 by 144 weeks (Fig 3A). Although naïve T-cells do recover in both High- or Low-IR the IRs have appreciably less naïve CD4 cells than the IRs 96- and 144 weeks post treatment initiation (Fig 3C). Notably the changes in both CD4 T-cell count and CD4 naïve T-cells negatively correlated with the Nef concentration in plasma-derived microvesicles (Fig 3, B and D) suggesting that *in vivo* microvesicular Nef may be associated with immune recovery/CD4 T-cell rebound.

Figure #3: Naïve CD4 counts inversely correlate with exNef. (A) Naïve counts (as measured by flow cytometry) significantly higher in the High_IR group at study week 48 and (B) study week 96. (C) Nef-level inversely correlates with both Naïve CD T-cell count and the (D) change in Naïve CD4 count post ARV-treatment. Correlation determined by Spearman r, *p-value<.05, #p-value <.1 (trend). Statistical significance determined by One-Way ANOVA Kruskal-Wallis test statistic and Dunn’s Multiple comparison * P-value<0.05, **p-value<.01, and ***p-value<.001.

Memory CD4 T-cells are significantly different in high low and responders. Given the role of memory cells in immunological recovery, we sought to determine whether exNef also impacted CD4 memory cell recovery. Interestingly at weeks 48 and 96 post-therapy High-IRs exhibited
appreciably more CD4 memory cells than the Low_IRs (Fig 4, panel A). The degree of CD4 increase directly correlated with exNef in the Low_IRs (Fig 4, panel B), suggesting that CD4 memory cells could be one of the sources of exNef during anti-viral suppression.

Figure #4: Memory CD4 T-cells are significantly different in high low and responders. (A) CD4 memory cell counts (as determined by flow cytometry) in high-immunological responders are significantly increased compared to low responders at study weeks 48 (Low-n=25; High-n=5); and 96 (High- n=14; Low-n=16). Significance from baseline determined via Kruskal-Wallis, intergroup differences compared via Dunn’s Multiple comparison *p-value<0.05, **p-value<.01, and ***p-value<.001. (B) The change in CD4 memory count from baseline(n=33) to study week 96 (n=30) directly correlates with exNef level in low- immunological responders (n=18). Correlation determined using Spearman r, *p-value<0.05, ns=not significant.

PI-sparing regimen significantly reduced plasma exNef. ACTG 384 was a prospective double-blinded study using a factorial design to compare sequential three-drug regimens. Study arms are depicted in Table 2. Basically, two NRTIs zidovudine and lamuvidine or didanosine and stauvidine followed by either efavirenz or nelfinavir were compared (Fig 5A, upper panel). Previous results from the ACTG-384 cohort demonstrated that the combination of zidovudine, lamivudine, and efavirenz lead to the shortest time to viral suppression suggesting that this combination was the most efficacious combination [2]. However, we are still able to detect exNef in the sub-cohort of ACTG384 participants with successful viral suppression. If exNef negatively affects immunological recovery, then we must identify a treatment regimen that suppresses both viral replication and exNef release. To determine how treatment regimen impacts exNef production we stratified participants by treatment regimen and compared their respective exNef level. By weeks 96 and 144 exNef was reduced 2-fold only in participants (with undetectable viral load) that received regimen A (Didanosine, Stauvidine and Efavirenz) (Fig 5, lower panel).
This suggests that drug regimen may also dictate exNef levels and that PI-sparing regimens reduce both viral load and exNef level.

![Table 2: Study arms of ACTG384. Drug regimen groupings as described by Smeaton et al 2001 followed by the number of participants (in parentheses) within regimen group.](image)

![Figure #5: PI-sparing regimen significantly reduced plasma exNef by study weeks 96 and 144. (Upper panel) Schematic of drug regimens administered to sub-cohort in the first tier of the ACTG384 study. Participants on regimens A (n=5) or C (n=10) received efavirenz with DDI/4TC or ZDV/4TC while those given regimen D(n=7) received ZDV/4TC and Nelfinavir(Lower Panel). Longitudinal comparison of plasma exNef level as measured by anti-Nef ELISA in participants taking regimen A,C, and D. Statistical significance determined via Kruskal-Wallis, and Dunn's multiple comparison *p-value <0.05, **p-value<.01, ***p-value<.001, and ns=not significant.](image)

Discussion

This study shows that exNef is detected in the plasma of cART-treated HIV+ patients with successful viral suppression. Immunological recovery does not occur in 40% of cART-treated HIV+ patients. Understanding the factors involved in poor immunological recovery could lead to the development of novel therapeutics that inhibit viral replication while promoting
immunological recovery. We posit that exNef may represent a novel mechanism utilized by HIV to promote viral replication in resting CD4 T-cells. The impact of exNef on HIV pathogenesis and CD4 T-cell recovery during cART is unknown. Additionally, we demonstrate that exNef level was not only elevated in cART-treated HIV+ patients with low immunological recovery but also negatively correlated with CD4 count recovery in these participants. This clearly suggests a role for exNef in immunological recovery.

Plasma exNef could theoretically determine immune recovery potential. Detection of Nef microvesicles is not unexpected since several studies have shown that in order to lower surface expression of CD4 and MHC class II Nef interact with component of the endocytic and exocytic machinery [13, 22]. Nef has no enzymatic activity and functions primarily as an adaptor within an infected cell. The function of extracellular Nef is unclear. However, several in vitro studies have demonstrated that extracellular soluble Nef is cytotoxic to cells, induces cytokine and chemokine release from macrophage activation, increases viral infectivity and alters innate immune signaling pathways [13, 18, 27, 37-40]. We know from in vitro and ex vivo studies that Nef is released in exosome-like vesicles from nef-transfected and HIV-infected cells and that these vesicles are detected in the plasma of HIV+ patients [14, 23]. Although the biological role of Nef+ exosomes is still unknown we expected exNef to have similar cellular and functional affects ascribed to soluble Nef.

It has recently been reported that released Nef microvesicles/exosomes similar to soluble Nef can trigger activation induced cell death (apoptosis) in peripheral blood leukocytes thus promoting the depletion of CD4+ T-cells [21]. Another report indicated that Nef induces massive
secretion of microvesicle clusters in HIV-infected T-cells and that extracellular Nef is then passed
to uninfected bystander by cell-to-cell contact via an ERK-1/2 dependent mechanism [41]. Other
studies have shown that extracellular Nef vesicles are taken-up/absorbed by T-cells and that
these released Nef microvesicles cause activation-induced cell death in primary peripheral blood
leukocytes [14, 21]. Primary leukocytes exposed to exNef as observed with soluble Nef release
chemokines MIP-1a and MIP-1b (unpublished result).

Here we show that plasma-derived microvesicles/exosomes from participants within the
ACTG384 cohort contain Nef even in the presence of successful HAART therapy and are elevated
in low immunological responders. This suggests that exNef may play a role in preventing
sufficient CD4 T-cell recovery thereby promoting immunodeficiency despite successful HAART
outcomes. Taken together, these studies show that extracellular Nef exosomes function similar to
soluble Nef in that exNef is absorbed by T-cells, induce apoptosis and may play a role in
discordant successful viral suppression and CD4 T-cell recovery.

Most interestingly Nef+ microvesicles/exosomes persist and are detectable over a 144-week
period suggesting that exNef may simply be a product of chronic HIV infection. We observed
that significant reduction of viral load correlated with an increase in exNef level suggesting that
exNef may regulate viral replication and/or cell function. These findings are novel in HIV-
pathobiology but may not be a unique to HIV. Indeed, recent reports demonstrated that EBV-
infected nasopharyngeal cells release inhibitory exosomes containing the EBV-encoded protein
latent membrane protein-1 (LMP-1) [42]. These LMP-1+ exosomes inhibited T-cell activation and
anti-EBV immune responses [42]. So exNef released from HIV-infected cells may have a similar
effect on anti-HIV immune responses.

Aside from the ACTG384, several studies have shown HIV+ patients with successful virological
responses to HAART yet incomplete CD4 recovery have increased mortality [43-45]. Age and
prolonged periods of immunodeficiency prior to successful HAART are risk factors for
incomplete/insufficient CD4 T-cell recovery [46]. We provide evidence in this study that plasma
derived Nef+ microvesicles may be associated with immune recovery. We detected increased in
exNef only in Low_IRs. In these Low-IRs exNef concentration correlated negatively and positively
with the recovery of CD4 Naïve and memory T-cell counts, respectively. This result suggests that
naïve CD4 cells are a potential exNef targets while the CD4 memory cells could be a source of the
Nef+ exosomes.

Treatment regimens not only directly impact viral replication but also appear to affect the
generation of Nef+ exosomes. PI-sparing HAART regimens (e.g. Regimen A: Didanosine,
Stauvidine, and Efavirenz) reduced both viral load and exNef level. This result suggests that
treatment regimen may dictate exNef level and exNef in turn may be developed as a prognostic
indicator of CD4 immune recovery during HAART.

We posit that the increased level of Nef+ exosomes early in High_IRs (by week 48) are
indicative of reduced virus production and suggests that in the absence of productive viral
replication HIV-infected cells release more Nef+ exosomes. If these exosomes affect T-cell
activation or viability, then this may impact immune recovery. By 144 weeks however, exNef is
significantly reduced in High-IRs participants relative to Low-IRs participants. Taken together
our study suggests that extended use of combination therapy lacking a HIV protease inhibitor impairs the release of Nef+ exosomes while NRTI/NNRTIs have no long-term effects on exNef.

Overall, these data also suggest that increased Nef levels maybe a double-edged sword – in terms of viral suppression- high exNef is associated with decreased viral load but in regard to immune recovery- elevated exNef is associated with reduced CD4 T-cell rebound/immune recovery. Recently, regions within Nef important for secretion have been identified. Disruption of the secretion modification region (SMR) within the Nef gene appears to abolish its release in microvesicles/exosomes [61]. Peptide-targeted disruption of the SMR also inhibited Nef release suggesting that SMR peptides could be developed as a therapeutic agent.

Ultimately, we provide evidence of exNef as a novel virological factor contributing to the dissociation of viral load and immunological recovery. Since, drug regimens can alter exNef levels, therapies need to be developed that both successfully lower viral load and Nef+ exosomes levels. Our findings also suggest that clinicians could monitor exNef level along with CD4 T-cell count in patients undergoing ARV-treatment to assess the effectiveness of therapeutic regimens.
Acknowledgements

We would like to acknowledge the assistance of Dr. Gale Newman (Morehouse School of Medicine). We also acknowledge the support of RCMI core facilities at Morehouse School of Medicine (U54MD007602), the Emory Center for AIDS Research (P30AI050409), and the NIH AIDS Reagent program. We are grateful for funding support from grants S06-GM08428, R21 A1060370, and R21 NS105577). Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number UM1AI068634, UM1 AI068636 and UM1 AI106701. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.”
References

1. Smeaton LM, DeGruttola V, Robbins GK, Shafer RW. ACTG (AIDS Clinical Trials Group) 384: a strategy trial comparing consecutive treatments for HIV-1. *Control Clin Trials* 2001; **22**(2):142-159.

2. Robbins GK, De G, V, Shafer RW, Smeaton LM, Snyder SW, Pettinelli C, *et al.* Comparison of sequential three-drug regimens as initial therapy for HIV-1 infection. *N Engl J Med* 2003; **349**(24):2293-2303.

3. Gandhi RT, Spritzler J, Chan E, Asmuth DM, Rodriguez B, Merigan TC, *et al.* Effect of baseline- and treatment-related factors on immunologic recovery after initiation of antiretroviral therapy in HIV-1-positive subjects: results from ACTG 384. *J Acquir Immune Defic Syndr* 2006; **42**(4):426-434.

4. Greub G, Ledergerber B, Battegay M, Grob P, Perrin L, Furrer H, *et al.* Clinical progression, survival, and immune recovery during antiretroviral therapy in patients with HIV-1 and hepatitis C virus coinfection: the Swiss HIV Cohort Study. *Lancet* 2000; **356**(9244):1800-1805.

5. Jevtovic D, Salemovic D, Ranin J, Pesic I, Zerjav S, Djurkovic-Djakovic O. The dissociation between virological and immunological responses to HAART. *Biomed Pharmacother* 2005; **59**(8):446-451.

6. Pakker NG, Kroon ED, Roos MT, Otto SA, Hall D, Wit FW, *et al.* Immune restoration does not invariably occur following long-term HIV-1 suppression during antiretroviral therapy. INCAS Study Group. *AIDS* 1999; **13**(2):203-212.

7. Piketty C, Castiel P, Belec L, Batisse D, Si MA, Gilquin J, *et al.* Discrepant responses to triple combination antiretroviral therapy in advanced HIV disease. *AIDS* 1998; **12**(7):745-750.

8. Skowron G, Spritzler JG, Weidler J, Robbins GK, Johnson VA, Chan ES, *et al.* Replication capacity in relation to immunologic and virologic outcomes in HIV-1-infected treatment-naive subjects. *J Acquir Immune Defic Syndr* 2009; **50**(3):250-258.

9. Alexander L, Weiskopf E, Greenough TC, Gaddis NC, Auerbach MR, Malim MH, *et al.* Unusual polymorphisms in human immunodeficiency virus type 1 associated with nonprogressive infection. *J Virol* 2000; **74**(9):4361-4376.

10. Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Hooker DJ, *et al.* Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. *Science* 1995; **270**(5238):988-991.

11. Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC. Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. *N Engl J Med* 1995; **332**(4):228-232.

12. Cao Y, Qin L, Zhang L, Safrit J, Ho DD. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. *N Engl J Med* 1995; **332**(4):201-208.
13. Aiken C, Konner J, Landau NR, Lenburg ME, Trono D. Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 1994; 76(5):853-864.

14. Campbell TD, Khan M, Huang MB, Bond VC, Powell MD. HIV-1 Nef protein is secreted into vesicles that can fuse with target cells and virions. Ethn Dis 2008; 18(2 Suppl 2):S2-S9.

15. Fackler OT, Baur AS. Live and let die: Nef functions beyond HIV replication. Immunity 2002; 16(4):493-497.

16. Fauci AS. Immunopathogenesis of HIV infection. J Acquir Immune Defic Syndr 1993; 6(6):655-662.

17. Fauci AS. Host factors and the pathogenesis of HIV-induced disease. Nature 1996; 384(6609):529-534.

18. Fujii Y, Otake K, Tashiro M, Adachi A. Soluble Nef antigen of HIV-1 is cytotoxic for human CD4+ T cells. FEBS Lett 1996; 393(1):93-96.

19. Harris M. HIV: a new role for Nef in the spread of HIV. Curr Biol 1999; 9(12):R459-R461.

20. Kirchhoff F, Schindler M, Specht A, Arhel N, Munch J. Role of Nef in primate lentiviral immunopathogenesis. Cell Mol Life Sci 2008; 65(17):2621-2636.

21. Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, et al. HIV Nef is secreted in microvesicles and triggers apoptosis in bystander CD4+ T cells. Traffic 2010; 11(1):110-122.

22. Williams M, Roeth JF, Kasper MR, Fleis RI, Przybycin CG, Collins KL. Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking. J Virol 2002; 76(23):12173-12184.

23. Raymond AD, Campbell-Simms TC, Lang MJ, Khan M, Powell MD. HIV-1 Nef is secreted in CD45+ microvesicles and is found in the plasma of HIV-infected patients. In: 2010. pp. (in press).

24. Briggs SD, Scholtz B, Jacque JM, Swingler S, Stevenson M, Smithgall TE. HIV-1 Nef promotes survival of myeloid cells by a Stat3-dependent pathway. J Biol Chem 2001; 276(27):25605-25611.

25. Fujii Y, Otake K, Tashiro M, Adachi A. In vitro cytoidal effects of human immunodeficiency virus type 1 Nef on unprimed human CD4+ T cells without MHC restriction. J Gen Virol 1996; 77(Pt 12):2943-2951.

26. Le GS, Erdtmann L, Benichou S, Berlioz-Torrent C, Liu L, Benarous R, et al. Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 1998; 8(4):483-495.

27. Olivetta E, Percario Z, Fiorucci G, Mattia G, Schiavoni I, Dennis C, et al. HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation. J Immunol 2003; 170(4):1716-1727.

28. Pelchen-Matthews A, Kramer B, Marsh M. Infectious HIV-1 assembles in late endosomes in primary macrophages. In: 2003. pp. 443-455.
29. Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G. The biogenesis and functions of microvesicles. *Traffic* 2002; 3(5):321-330.

30. Van NG, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, *et al.* Intestinal epithelial cells secrete exosome-like vesicles. *Gastroenterology* 2001; 121(2):337-349.

31. Van NG, Porto-Carreiro I, Simoes S, Raposo G. Microvesicles: a common pathway for a specialized function. *J Biochem* 2006; 140(1):13-21.

32. Wiley RD, Gummuluru S. Immature dendritic cell-derived microvesicles can mediate HIV-1 trans infection. *Proc Natl Acad Sci U S A* 2006; 103(3):738-743.

33. Admyre C, Bohl B, Johansson SM, Focke-Tejkl M, Valenta R, Scheynius A, *et al.* B cell-derived microvesicles can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. *J Allergy Clin Immunol* 2007; 120(6):1418-1424.

34. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, *et al.* Microvesicles with immune modulatory features are present in human breast milk. *J Immunol* 2007; 179(3):1969-1978.

35. Karlsson M, Lundin S, Dahlgren U, Kahu H, Pettersson I, Telemo E. "Tolerosomes" are produced by intestinal epithelial cells. *Eur J Immunol* 2001; 31(10):2892-2900.

36. Raymond AD, Campbell-Sims TC, Khan M, Lang M, Huang MB, Bond VC, *et al.* HIV Type 1 Nef Is Released from Infected Cells in CD45(+) Microvesicles and Is Present in the Plasma of HIV-Infected Individuals. *AIDS Res Hum Retroviruses* 2011; 27(2):167-178.

37. Fujii Y, Otake K, Tashiro M, Adachi A. Human immunodeficiency virus type 1 Nef protein on the cell surface is cytocidal for human CD4+ T cells. *FEBS Lett* 1996; 393(1):105-108.

38. Pathak S, De Souza GA, Salte T, Wiker HG, Asjo B. HIV induces both a down-regulation of IRAK-4 that impairs TLR signalling and an up-regulation of the antibiotic peptide dermcidin in monocytic cells. *Scand J Immunol* 2009; 70(3):264-276.

39. Swingler S, Mann A, Jacque J, Brichacek B, Sasseville VG, Williams K, *et al.* HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. *Nat Med* 1999; 5(9):997-103.

40. Zheng YH, Plemenitas A, Linnemann T, Fackler OT, Peterlin BM. Nef increases infectivity of HIV via lipid rafts. *Curr Biol* 2001; 11(11):875-879.

41. Muratori C, Cavallin LE, Kratzel K, Tinari A, De MA, Fais S, *et al.* Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. *Cell Host Microbe* 2009; 6(3):218-230.

42. Keryer-Bibens C, Pioche-Durieu C, Villemant C, Souquere S, Nishi N, Hirashima M, *et al.* Microvesicles released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9. In: 2006. pp. 1-8.
43. Gutierrez F, Padilla S, Masia M, Iribarren JA, Moreno S, Viciana P, et al. Patients' characteristics and clinical implications of suboptimal CD4 T-cell gains after 1 year of successful antiretroviral therapy. *Curr HIV Res* 2008; 6(2):100-107.

44. Moore RD, Keruly JC. CD4+ cell count 6 years after commencement of highly active antiretroviral therapy in persons with sustained virologic suppression. *Clin Infect Dis* 2007; 44(3):441-446.

45. Piketty C, Weiss L, Thomas F, Mohamed AS, Belec L, Kazatchkine MD. Long-term clinical outcome of human immunodeficiency virus-infected patients with discordant immunologic and virologic responses to a protease inhibitor-containing regimen. *J Infect Dis* 2001; 183(9):1328-1335.

46. Engsig FN, Gerstoft J, Kronborg G, Larsen CS, Pedersen G, Roge B, et al. Long-term mortality in HIV patients virally suppressed for more than three years with incomplete CD4 recovery: a cohort study. *BMC Infect Dis* 2010; 10:318.

47. Ahuja SK, Kulkarni H, Catano G, Agan BK, Camargo JF, He W, et al. CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1-infected individuals. *Nat Med* 2008; 14(4):413-420.

48. Kulkarni H, Marconi VC, Agan BK, McArthur C, Crawford G, Clark RA, et al. Role of CCL3L1-CCR5 genotypes in the epidemic spread of HIV-1 and evaluation of vaccine efficacy. *PLoS One* 2008; 3(11):e3671.

49. Kulkarni H, Agan BK, Marconi VC, O'Connell RJ, Camargo JF, He W, et al. CCL3L1-CCR5 genotype improves the assessment of AIDS Risk in HIV-1-infected individuals. *PLoS One* 2008; 3(9):e3165.

50. Liang JS, Distler O, Cooper DA, Jamil H, Deckelbaum RJ, Ginsberg HN, et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia. *Nat Med* 2001; 7(12):1327-1331.

51. Hui DY. Effects of HIV protease inhibitor therapy on lipid metabolism. *Prog Lipid Res* 2003; 42(2):81-92.

52. Hamel FG, Fawcett J, Tsui BT, Bennett RG, Duckworth WC. Effect of nelfinavir on insulin metabolism, proteasome activity and protein degradation in HepG2 cells. *Diabetes Obes Metab* 2006; 8(6):661-668.

53. De BS, Zakaroff-Girard A, Lafontan M, Galitzky J, Bourlier V. Inhibition of human preadipocyte proteasomal activity by HIV protease inhibitors or specific inhibitor lactacystin leads to a defect in adipogenesis, which involves matrix metalloproteinase-9. *J Pharmacol Exp Ther* 2007; 320(1):291-299.

54. Andre P, Groettrup M, Klenerman P, de GR, Booth BL, Jr., Cerundolo V, et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. *Proc Natl Acad Sci U S A* 1998; 95(22):13120-13124.

55. Pajonk F, Himmelsbach J, Riess K, Sommer A, McBride WH. The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and
radiosensitization in non-HIV-associated human cancer cells. Cancer Res 2002; 62(18):5230-5235.

56. Piccinini M, Rinaudo MT, Chiapello N, Ricotti E, Baldovino S, Mostert M, et al. The human 26S proteasome is a target of antiretroviral agents. AIDS 2002; 16(5):693-700.

57. Piccinini M, Rinaudo MT, Anselmino A, Bucchinna B, Ramondetti C, Dematteis A, et al. The HIV protease inhibitors nelfinavir and saquinavir, but not a variety of HIV reverse transcriptase inhibitors, adversely affect human proteasome function. Antivir Ther 2005; 10(2):215-223.

58. Schmidtke G, Holzhutter HG, Bogyo M, Kairies N, Groll M, de GR, et al. How an inhibitor of the HIV-I protease modulates proteasome activity. J Biol Chem 1999; 274(50):35734-35740.

59. Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001; 8(8):739-758.

60. Mathews JA, Gibb DR, Chen BH, Scherle P, Conrad DH. CD23 Shedase A disintegrin and metalloproteinase 10 (ADAM10) is also required for CD23 sorting into B cell-derived microvesicles. J Biol Chem 2010; 285(48):37531-37541.

61. Ali SA, Huang MB, Campbell PE, Roth WW, Campbell T, Khan M, et al. Genetic characterization of HIV type 1 Nef-induced vesicle secretion. AIDS Res Hum Retroviruses 2010; 26(2):173-192.
Figure
Figure
A. 48 weeks

CD4 Memory (cells/mm³)

Baseline Low High

*** ** *

96 weeks

CD4 Memory Count (cells/mm³)

Baseline Low High

** * *

B. Low_IR

ΔMemory Count (cells/mm³)

Nef(ng)

r = 0.4534, *p-value = 0.0358

High_IR

ΔMemory Count (cells/mm³)

Nef(ng)

r = -0.1926, ns
Treatment Arm:

A

C

D

Figure