Characterization of the complete mitochondrial genome of *Brentisentis yangtzensis* Yu & Wu, 1989 (Acanthocephala, Illiosentidae)

Rui Song¹², Dong Zhang³, Jin-Wei Gao¹, Xiao-Fei Cheng¹, Min Xie¹, Hong Li¹, Yuan-An Wu¹²

¹ Hunan Fisheries Science Institute, Changsha 410153, China ² Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China ³ Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

Corresponding author: Rui Song (ryain1983@163.com)

Academic editor: David Gibson Received 24 March 2019 Accepted 31 May 2019 Published 8 July 2019

http://zoobank.org/0BE71F7A-B3C7-44EA-8211-6D94C2F920ED

Citation: Song R, Zhang D, Gao J-W, Cheng X-F, Xie M, Li H, Wu Y-A (2019) Characterization of the complete mitochondrial genome of *Brentisentis yangtzensis* Yu & Wu, 1989 (Acanthocephala, Illiosentidae). ZooKeys 861: 1–14. https://doi.org/10.3897/zookeys.861.34809

Abstract

The mitogenome of *Brentisentis yangtzensis* is 13,864 bp in length and has the circular structure typical of metazoans. It contains 36 genes: 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and 12 protein-encoding genes (PCGs). All genes are transcribed from the same strand. Thirteen overlapping regions were found in the mitochondrial genome. The overall A+T content of *B. yangtzensis* is 68.3% versus 31.7% of G+C content (A = 27.8%, T = 40.5%, C = 9.0%, G = 22.7%). *B. yangtzensis* (Illiosentidae) and *Leptorhynchoides thecatus* (Rhadinorhynchidae) form a sister clade, showing the relatively close relationship between the Illiosentidae and the Rhadinorhynchidae. The mitochondrial gene arrangements of acanthocephalan species are relatively conserved, with only a few translocations of tRNAs (trnS1, trnS2, trnV, and trnK) detected. An identical gene order was found both in a sister clade (*Centrorhynchus aluconis* and *Plagiorhynchus transversus*) and across different classes (*B. yangtzensis* (Palaeacanthocephala), *Acanthosentis cheni* (Eoacanthocephala) and *Macracanthorhynchus hirudinaceus* (Archiacanthocephala), *Onciocola luehei* and *L. thecatus* (Palaeacanthocephala)). More studies and more sequences of acanthocephalan species are needed to gain a clear understanding of the phylogenetic relationships.

Keywords

Echinorhynchida, gene order, molecular phylogeny

Copyright Rui Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Members of the Acanthocephala are obligate endoparasites which utilize arthropods as intermediate hosts and vertebrates as definitive hosts. This phylum contains approximately 1300 documented species, and is classified into three classes (Archiacanthocephala, Palaeacanthocephala and Eoacanthocephala). The Palaeacanthocephala has the highest species richness with 65% of the total acanthocephalan species, and comprises three orders: Echinorhynchida, 472 species; Polymorphida, 372 species; and Heteramorphida, one species (Amin 1987, 2013). The classifications proposed by Golvan (1960) and Amin (1987) have been challenged by recent phylogenetic studies, which indicated that the genus *Leptorhynchoides* (Rhadinorhynchidae Kostylew, 1924) is more closely related to the genera of the Illiosentidae Golvan, 1960 rather than those of the Rhadinorhynchidae in morphological (Monks 2001) and the molecular phylogenies (García-Varela and Nadler 2005; García-Varela and González-Oliver 2008). Intriguingly, *Illiosentis* Van Cleave & Lincicome, 1939 was first placed in the Rhadinorhynchidae (Van Cleave and Lincicome 1939), but Golvan (1960) decided that a new family was required to accommodate the genus, and so erected the Illiosentidae.

This debate continues, and molecular markers carrying stronger phylogenetic signals are needed to resolve the phylogenetic relationships with a higher resolution. The mitogenome is a good candidate, being approximately ten times larger than commonly used single-gene molecular markers (ITS, 18S, and 28S) (Zhang et al. 2018), and considered to provide the best interrelationship estimate for the Cestoda (Waeschenbach et al. 2012). Mitochondrial genome sequences are becoming prevalent and are increasingly used in population genetics (Yin et al. 2015), phylogenetics (Gazi et al. 2012, 2015, 2016; Weber et al. 2013; Li et al. 2017; Pan and Nie 2013) and the diagnostics (Huyse et al. 2008; Jia et al. 2010) of metazoans. However, many groups of parasitic organisms are unrepresented, and the resolving power of mitochondrial genomics is still limited by the small number of acanthocephalan mitogenomes (only 13 species available), with many taxonomic categories, e.g. the Illiosentidae, poorly represented or unrepresented.

The complete mitogenome of an illiosentid species has not previously been published. In order to fill this knowledge gap, we have sequenced and annotated the complete mitogenome of *Brentisentis yangtzensis* Yu & Wu, 1989 (Palaeacanthocephala, Illiosentidae), a parasite from the intestines of many freshwater fish species in the middle reaches of the Yangtze River (Yi and Wu 1989). Previous studies on this parasite have focused on its morphology and population ecology (Fang 1999, Fang and Dai 2000; Fang et al. 2004); molecular data have not previously been reported.

Materials and methods

Specimen collection and DNA extraction

The acanthocephalans were collected on 24 September 2018 from the intestine of 36 bullhead catfish *Tachysurus fulvidraco* (Richardson, 1846) from east Dongting Lake in
Yueyang (29°22’N, 113°06’E), Hunan Province, China. *Brentisentis yangtzensis* was identified by morphology (e.g., Yu 1989) using a stereomicroscope and a light microscope. The parasites were preserved in 100% ethanol and stored at 4 °C. The total genomic DNA was extracted from an entire acanthocephalan using a TIANamp Micro DNA Kit (Tiangen Biotech, Beijing, China) according to manufacturer’s recommended protocol, and stored at -20 °C. Eleven acanthocephalans were collected in total.

PCR and DNA sequencing

Partial sequences of rrnL, cytb, nad1, and rrnS genes were amplified via a polymerase chain reaction (PCR) using four primer pairs. Based on these fragments, we designed specific primers for subsequent PCR amplification (Suppl. material 1). PCR reactions were conducted in a 50 ml reaction mixture, containing 18.5 ml double-distilled water (dd H$_2$O), 25 ml 2×PCR buffer (Mg$^{2+}$, dNTP plus, Takara, China), 1.5 ml of each primer, 1 ml rTaq polymerase (250U, Takara, China) and 2.5 ml DNA template. Amplification was performed under the following conditions: initial denaturation at 98 °C for 2 min, followed by 40 cycles at 98 °C for 10 s, 48–60 °C for 15 s, 68 °C for 1 min/kb, and a final extension at 68 °C for 10 min. PCR products were sequenced bidirectionally at Sangon Biotech (Shanghai) Co., Ltd. (China) using the primer walking strategy.

Sequence annotation analyses

The mitogenome of *B. yangtzensis* were assembled manually in a stepwise manner with the help of the DNASTar v7.1 program (Burland 2000), after quality-proofing of the obtained fragment. The mitogenome was annotated mainly following the procedures described previously (Zou et al. 2017; Zhang et al. 2017a; Li et al. 2017). In detail, protein-coding genes (PCGs) were inferred with the help of BLAST and ORF Finder tools (both available from the National Center for Biotechnology Information (NCBI)), employing the invertebrate mitochondrial code (Codon Table 5), and checking the nucleotide alignments against the reference genomes in acanthocephalan *Leptorhynchoides thecatus* (Linton, 1891) Kostylew, 1924 (NC_006892). A majority of the tRNAs were identified using the results of ARWEN (Laslett and Canback 2008) and MITOS web server (Bernt et al. 2013), the rest were found by alignment with other acanthocephalans (Suppl. material 2). Two ribosomal RNA genes (rrnL and rrnS) were found by alignment with other published acanthocephalan mitogenomes, and their ends were assumed to extend to the boundaries of their flanking genes. Codon usage and relative synonymous codon usage (RSCU) for 12 protein-encoding genes (PCGs) of the *B. yangtzensis* and *L. thecatus* (NC_006892) were computed and sorted using PhyloSuite (Zhang et al. 2018), and finally the RSCU figure drawn using ggplot2 plugin (Wickham 2016). The circular map of *B. yangtzensis* mitogenome was drawn with the mitochondrial visualization tool MTVIZ (http://pacosy.informatik.uni-leipzig.de/mtviz/).
Phylogenetic analyses

Phylogenetic analyses were carried out on the newly sequenced mitogenome of *B. yangtzensis* and the 12 acanthocephalan mitogenomes available in GenBank (Suppl. Table S2). Two species of the Bdelloidea, *Rotaria rotatoria* (Pallas, 1766) (NC013568.1) and *Philoidea citrina* Ehrenberg, 1832 (FR856884.1), were used as outgroups. Fasta files with the amino acid sequences for all 12 PCGs were extracted from the GenBank files using PhyloSuite. All the genes were aligned in batches with MAFFT (Katoh et al. 2002) integrated in PhyloSuite, using normal-alignment mode. PhyloSuite was then used to concatenate these alignments into a single alignment and generate phylip and nexus format files for the phylogenetic analyses, conducted using maximum likelihood (ML) and Bayesian inference (BI) methods. The selection of the best-fit partition strategy and models was carried out using PartitionFinder2 (Lanfear et al. 2017). ML analysis was performed using IQ-TREE (Nguyen et al. 2015) with 50,000 Ultrafast bootstraps (Minh et al. 2013). BI analysis was performed in MrBayes 3.2.6 (Ronquist et al. 2012) with the default settings, and 3×10^6 metropolis-coupled Markov Chain Monte Carlo generations.

Results and discussion

Genome organization and base composition

The circular duplex molecule mitogenome of *B. yangtzensis* is 13,864bp in size (GenBank accession number MK651258) and contains all 36 of the typical metazoan genes: 22 tRNA genes, 2 rRNA genes and 12 protein-encoding genes (PCGs) (lacking atp8) (Fig. 1). All genes are transcribed from the same strand, and 13 overlapping regions were found in the genome (Table 1). The lack of the gene atp8 is common in acanthocephalans (Gazi et al. 2016; Song et al. 2016) with one exception; in *L. thecatus* two putative atp8 genes have been suggested (Steinauer et al. 2005).

Protein-coding genes and codon usage

The total length of the concatenated 12 protein-coding genes is 10,355 bp, with the average A+T content of 68.0%, ranging from 65.9% (nad3) to 69.5% (atp6 and nad4) (Suppl. material 3). ATG (for 6 PCGs) is the most commonly used start codon, whereas nad6, nad4, cox1 and cox2 used GTG, nad1 and nad3 used TTG and ATA, respectively. The most frequent terminal codons are TAG (for 7 PCGs), followed by T (4 PCGs) (Table 1).

Codon usage, relative synonymous codon usage (RSCU) and codon family proportion (corresponding to the amino acids usage) of *B. yangtzensis* and *L. thecatus* (NC_006892) is presented (Suppl. material 4). Leucine (16.28%), valine (11.92%)
and serine (10.94%) are the most frequent amino acids in the PCGs of *B. yangtzensis*, whereas glutamine (0.81%), arginine (1.36%) and histidine (1.44%) are relatively scarce. A higher T content (42.2%) in 12 PCGs corresponds to a relatively high frequency of T-rich codons: TTA for leucine (9.9%), TTT for phenylalanine (7.2%), ATT for isoleucine (6.1%) and GTT for valine (5.0%).

Transfer and ribosomal RNA genes

All 22 commonly found tRNAs are present in the mitogenome of *B. yangtzensis*, ranging from 50 bp (trnS2) to 70 bp (trnT) in size, with a concatenated length of 1,247 bps (Table 1). The genes rrnL and rrnS are 912 bp and 574 bp in size, with 71.8% and 69.8% A+T content, respectively (Suppl. Material 3). The location of rrnL is between trnY and trnL1, and rrnS is located between trnM and trnF; this is the same arrangement reported for other acanthocephalans (Fig. 2), except for *Hebesoma violentum* (Van Cleave, 1928) Salgado-Maldonado, 1978 in which rrnS is located between trnS1 and trnF (Pan and Nie 2014).
Table 1. Annotated mitochondrial genome of *Brentisentis yangtzensis*.

Gene	Position	Size	Intergenic nucleotides	Codon	Anti-codon
	From	To		Start	Stop
cox1	1	1531	1531	GTG	T
trnG	1532	1585	54	–	–
trnQ	1565	1630	66	–	–
trnY	1626	1678	53	–	–
trnL	1679	2590	912	–	–
trnL1	2591	2644	54	–	–
nad6	2645	3080	436	GTG	T
trnD	3081	3135	55	–	–
atp6	3240	3797	558	ATG	TAG
nad3	3794	4147	354	TCA	–
trnF	4138	4197	60	–	–
trnV	4635	4694	60	–	–
trnK	4695	4755	61	–	–
trnE	4747	4800	54	–	–
trnT	4803	4872	70	–	–
trnS2	4851	4900	50	–	–
nad4L	4901	5149	249	ATG	TAA
nad4	5159	6413	1255	9	GTG
trnH	6414	6466	53	–	–
nad5	6467	8110	1644	–	ATG
trnL2	8106	8159	54	–	–
trnP	8160	8211	52	–	–
cyt b	8215	9346	1132	–	–
nad1	9345	10242	898	–	–
trnI	10243	10301	59	–	–
trnM	10595	10651	57	293	–
rnrS	10652	11225	574	–	–
trnF	11226	11281	56	–	–
cox2	11281	11931	651	–	GAA
trnC	11931	11983	53	–	–
cox3	12005	12736	732	21	ATG
trnA	12736	12791	56	–	–
trnR	12793	12854	62	–	–
trnN	12846	12900	55	–	–
trnS1	12894	12946	53	–	–
nad2	12949	13863	915	–	–

Phylogeny

BI and ML yielded phylograms with identical topology and strong statistical support for all nodes (BP ≥ 75, BPP ≥ 0.96) (except the branch of *Centrorhynchus aluconis* (Müller, 1780) Lühe 1911 and *Southwellina hispida* (Van Cleave, 1925) Witenberg, 1932 52/0.96). Since both phylograms have an identical topology, only the latter was shown (Fig. 2). The resulting combined phylogenetic tree depicted almost the same results found in previous mitogenomic studies (Gazi et al. 2016), except for the position of *B. yangtzensis* (Palaea-
Figure 2. Phylogenetic tree of acanthocephalans inferred from maximum likelihood analysis with concatenated nucleotide sequence of all 36 genes (12 PCGs, 2 rRNAs, and 22 tRNAs). Bootstrap (BS)/Bayesian posterior probability (BPP) support values are shown above the nodes, only BS < 100 and BPP < 1 are displayed.
canthocephala, Illiosentidae), as this was included for the first time in the present study. Within the Acanthocephala, tree topology indicates the existence of two major clades: class Archiacanthocephala (monophyletic and the most basal clade) and the other two classes (Eoacanthocephala + Palaecanchocephala), resulting in the three monophyletic clades corresponding to the three classes (Archiacanthocephala, Eoacanthocephala, and Palaecanchocephala) in the most widely accepted classification of the Acanthocephala.

The Echinorhynchida is paraphyletic, with three species separated into two clades: Echinorhynchus truttae Schrank, 1788 (Echinorhynchidae) formed a sister clade with species of the Polymorphida and B. yangtzensis (Illiosentidae) formed a sister clade with L. thecatus (Rhadinorhynchidae). The result shows the relatively close relationship between the Illiosentidae and the Rhadinorhynchidae; however, as each family of the Echinorhynchida was represented by a single species in our study, this topology should be interpreted with some caution. Previous studies have shown the close relationship between Leptorhynchoides (Rhadinorhynchidae) and a genus of the Illiosentidae (Monks 2001; García-Varela and Nadler 2005; García-Varela and González-Oliver 2008). Two species of the Gyracanthocephala Van Cleave, 1936, one (Pallisentis celatus (Van Cleave, 1928) Baylis, 1933) formed a sister clade with Polyacanthorhynchus cabaleri Diaz-Ungria et Rodrigo, 1960 (Polyacanthorhynchida Amin, 1987), and another (Acanthosentis cheni Amin, 2005) nested with species of the Neoecinorhynchida. This result suggests paraphyly of the Gyracanthocephala and corresponds with previous phylogenetic analyses (Song et al. 2016). As the lack of the mitochondrial genome information on acanthocephalan species, more studies and sequences of acanthocephalan (Illiosentidae and Rhadinorhynchidae) species are needed to gain a clear understanding of the phylogenetic relationships of these acanthocephalans.

Gene order

The mitochondrial gene arrangements of acanthocephalan species are relatively conserved (Fig. 2). Besides the incomplete mitochondrial genome of E. truttae, the gene arrangement of 12 protein coding genes and two rRNA genes are highly conserved, with only a few translocations of tRNAs (trnS1, trnS2, trnV, and trnK) detected. In mitochondrial genomes, conserved gene arrangement is considered to be a typical characteristic (Boore 2000; Li et al. 2012), but the arrangement of tRNAs shows more variability, and there are examples of extensive gene rearrangement (Hyman et al. 2011; Zhang et al. 2017b; Wang et al. 2017). Transfer RNA genes are more often translocated than other genes, probably because of their small size (Kilpert and Podsadlofski 2006).

In many cases, the gene order of the mitochondrial genome can form useful information in inferring phylogenetic relationships of metazoans (Littlewood et al. 2006; Luo et al. 2008; Wang et al. 2017; Zhang et al. 2018); however, for the taxa in our study, a phylogeny inferred from gene order is incompatible with that based on amino acid sequence (Fig. 2). The translocations of four tRNAs (trnS2, trnV, trnk, trnS1) were detected between B. yangtzensis and L. thecatus (Echinorhynchida), which formed
Characterization of the complete mitochondrial genome of *Brentisentis yangtzensis*

a monophyletic clade in the phylogenetic tree. However, only 1–4 translocations of tRNAs were detected among all of the acanthocephalan species. And these four tRNA (trnS2, trnV, trnk, trnS1) translocations were also detected within the Archiacanthocephala clade. Moreover, identical gene order was found both in a sister clade (*C. aluconis* and *Plagiorhynchus transversus* (Rudolphi, 1819) Travassos, 1926) and across different classes (*B. yangtzensis* (Palaeacanthocephala), *A. cheni* (Eoacanthocephala), and *Macracanthorhynchus hirudinaceus* (Pallas, 1781) Travassos, 1917 (Archiacanthocephala); and *Oncicola luehei* (Travassos, 1917) Schmidt, 1972 (Archiacanthocephala) and *L. thecatus* (Palaeacanthocephala)).

Acknowledgements

This work was funded by the Earmarked Fund for China Agriculture Research System (CARS-45-47) and the Major Science and Technology Special Project in Hunan (2017NK1030).

References

Amin OM (1987) Key to the families and subfamilies of Acanthocephala, with the erection of a new class (Polyacanthocephala) and a new order (Polyacanthorhynchida). Journal of Parasitology 73(6): 1216–1219. https://doi.org/10.2307/3282307

Amin OM (2013) Classification of the Acanthocephala. Folia Parasitologica 60(4): 273–305. https://doi.org/10.14411/fp.2013.031

Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF (2013). MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69(2): 313–319. https://doi.org/10.1016/j.ympev.2012.08.023

Boore JL (2000) The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In: Sankoff D, Nadeau JH (Eds) Comparative Genomics: Kluwer Academic Publishers, Dordrecht, 133–147. https://doi.org/10.1007/978-94-011-4309-7_13

Boore JL, Fuerstenberg SI (2008) Beyond linear sequence comparisons: the use of genome-level characters for phylogenetic reconstruction. Philosophical Transactions of the Royal Society B- Biological Sciences 363(1496): 1445–1451. https://doi.org/10.1098/rstb.2007.2234

Burland TG (2000) DNASTAR’s lasergene sequence analysis software. Methods in Molecular Biology 132: 71–91. https://doi.org/10.1385/1-59259-192-2:71

Dougherty EC (1951) Evolution of zooparasitic groups in the phylum Nemaria, with special reference to host-distribution. The Journal of Parasitology 37(4): 353–378. https://doi.org/10.2307/3273571

Fang JP (1999) Studies on the population ecology of *Brentisentis yangtzensis*. Chinese Journal of Ecology 18(6): 16–19.
Fang JP, Dai BS (2000) Studies on the site distributions of acanthocephalan worms in the intestine of Pseudobagrus fulvidraco. Chinese Journal of Zoology 35(5): 9–12.

Fang JP, Zhan HY, Lei GL (2004) An ecological study on acanthocephalans parasitic in the intestine of Pseudobagrus eupogon in Huangzhou section of the Yangtze River. Acta Hydrobiologica Sinica 28(3): 279–283.

García-Varela M, Nadler SA (2005) Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences. Journal of Parasitology 91(6): 1401–1409. https://doi.org/10.1645/GE-523R.1

García-Varela M, González-Oliver A (2008) The systematic position of Leptorhynchoides (Kostylew, 1924) and Pseudoleptorhynchoides (Salgado-Maldonado, 1976), inferred from nuclear and mitochondrial DNA gene sequences. Journal of Parasitology 94(4): 959–962. https://doi.org/10.1645/GE-1420.1

Gazi M, Kim J, Park JK (2015) The complete mitochondrial genome sequence of Southwellina hispida supports monophyly of Palaeacanthocephala (Acanthocephala: Polymorphida). Parasitology International 64(4): 64–68. https://doi.org/10.1016/j.parint.2015.01.009

Gazi M, Kim J, García-Varela M, Park C, Littlewood DTJ, Park JK (2016) Mitogenomic phylogeny of Acanthocephala reveals novel class relationships. Zoologica Scripta 45(4): 437–454. https://doi.org/10.1111/zsc.12160

Gazi M, Sultana T, Min GS, Park YC, García-Varela M, Nadler SA, Park JK (2012) The complete mitochondrial genome sequence of Oncicola luehei (Acanthocephala: Archiacanthocephala) and its phylogenetic position within Syndermata. Parasitology International 61(2): 307–316. https://doi.org/10.1016/j.parint.2011.12.001

Ginestet C (2011) ggplot2: elegant graphics for data analysis. Journal of The Royal Statistical Society Series A- Statistics in Society 174: 245–245. https://doi.org/10.1111/j.1467-985X.2010.00676_9.x

Golvan YJ (1960) The phylum of Acanthocephala. Third note. The class of Palaeacanthocephala (Meyer 1931). Annales de Parasitologie Humaine et Comparée 35: 138–165. https://doi.org/10.1051/parasite/1960351138

Huyse T, Buchmann K, Littlewood DT (2008) The mitochondrial genome of Gyrodactylus derjavinoides (Platyhelminthes: Monogenea) – a mitogenomic approach for Gyrodactylus species and strain identification. Gene 417(1–2): 27–34. https://doi.org/10.1016/j.gene.2008.03.008

Hyman BC, Lewis SC, Tang S, Wu Z (2011) Rampant gene rearrangement and haplotype hypervariation among nematode mitochondrial genomes. Genetica 139(5): 611–615. https://doi.org/10.1007/s10709-010-9531-3

Jia WZ, Yan HB, Guo AJ, Zhu XQ, Wang YC, Shi WG, Chen HT, Zhan F, Zhang SH, Fu BQ, Littlewood DTL, Cai XP (2010) Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis: additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics 11: 447. https://doi.org/10.1186/1471-2164-11-447

Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066. https://doi.org/10.1093/nar/gkf436
Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biology 6:29. https://doi.org/10.1186/1471-2148-6-29

Kilpert F, Podsiadlowski L (2006) The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. BMC Genomics 7: 241. https://doi.org/10.1186/1471-2164-7-241

Laslett D, Canback B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24(2): 172–175. https://doi.org/10.1093/bioinformatics/btm573

Le TH, Blair D, McManus DP (2002) Mitochondrial genomes of parasitic flatworms. Trends in Parasitology 18(5): 206–213. https://doi.org/10.1016/S1471-4922(02)02252-3

Li H, Liu H, Shi AM, Sty P, Zhou XG, Cai WZ (2012) The complete mitochondrial genome and novel gene arrangement of the unique-headed bug Stenopirates sp. (Hemiptera: Enicocephalidae). Plos ONE 7: e29419. https://doi.org/10.1371/journal.pone.0029419

Littlewood DTJ, Lockyer AE, Webster BL, Johnston DA, Le TH (2006) The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Molecular Phylogenetics and Evolution 39(2): 452–467. https://doi.org/10.1016/j.ympev.2005.12.012

Li WX, Zhang D, Boyce K, Xi BW, Zou H, Wu SG, Li M, Wang GT (2017) The complete mitochondrial DNA of three monozoic tapeworms in the Caryophyllidea: a mitogenomic perspective on the phylogeny of eucestodes. Parasites & Vectors 10(1): 314. https://doi.org/10.1186/s13071-017-2245-y

Luo HW, Shi J, Arndt W, Tang JJ, Friedman R (2008) Gene order phylogeny of the genus Prochlorococcus. Plos One 3(12): e3837. https://doi.org/10.1371/journal.pone.003837

Monks S (2001) Phylogeny of the Acanthocephala based on morphological characters. Systematic Parasitology 48(2): 81–115. https://doi.org/10.1023/A:1006400207434

Pan TS, Nie P (2013) The complete mitochondrial genome of Pallisentis celatus (Acanthocephala) with phylogenetic analysis of acanthocephalans and rotifers. Folia Parasitologica 60(3): 181–191. https://doi.org/10.14411/fp.2013.021

Pan TS, Nie P (2014) The cloning of the mitochondrial genome of Hebesoma violentum (Acanthocephala) and the phylogenetic analysis of acanthocephalans. Acta Hydrobiologica Sinica 38(2): 351–361.

Park JK, Sultana T, Lee SH, Kang, S, Kim HK, Min GS, Eom KS, Nadler SA (2011) Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences. BMC Genomics 12(1): 392. https://doi.org/10.1186/1471-2164-12-392

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12(4): 335–337. https://doi.org/10.1007/s13127-011-0056-0
Song R, Zhang D, Deng S M, Ding DM, Liao FC, Liu LS (2016) The complete mitochondrial genome of *Acanthosentis cheni* (Acanthocephala: Quadrigyridae). Mitochondrial DNA Part B 1(1): 797–798. https://doi.org/10.1080/23802359.2016.1197076

Steinauer ML, Nickol BB, Broughton R, Ortí G (2005) First sequenced mitochondrial genome from the phylum Acanthocephala (*Leptorhynchoides thecatus*) and its phylogenetic position within Metazoa. Journal of Molecular Evolution 60(6): 706–715. https://doi.org/10.1007/s00239-004-0159-8

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28(10): 2731–2739. https://doi.org/10.1093/molbev/msr121

Van Cleave HJ, Lincicome DR (1939) On a new genus and species of Rhadinorhynchidae (Acanthocephala). Parasitology 31(4): 413–416. https://doi.org/10.1017/S0031182000012919

Waeschenbach A, Webster BL, Littlewood DTJ (2012) Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. Molecular Phylogenetics and Evolution 63(3): 834–847. https://doi.org/10.1016/j.ympev.2012.02.020

Wang JG, Zhang D, Jakovlić I, Wang WM (2017) Sequencing of the complete mitochondrial genomes of eight freshwater snail species exposes pervasive paraphyly within the Vivipariidae family (Caenogastropoda). Plos One 12(7): e0181699. https://doi.org/10.1371/journal.pone.0181699

Weber M, Wey-Fabrizius AR, Podsiadlowski L, Witek A, Schill RO, Sugár L, Herlyn H, Hankeln T (2013) Phylogenetic analyses of endoparasitic Acanthocephala based on mitochondrial genomes suggest secondary loss of sensory organs. Molecular Phylogenetics and Evolution 66(1): 182–189. https://doi.org/10.1017/S0022149X17000578

Yi Y, Wu H (1989) Studies on the fauna of Acanthocephala of fishes from middle reaches of the Changjiang (Yangtze) River. Acta Hydrobiologica Sinica 13(1): 38–50.

Zhang D, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Wang GT, Li WX (2017a) Sequencing, characterization and phylogenomics of the complete mitochondrial genome of *Dactylogyrus lamellatus* (Monogenea: Dactylogyridae). Journal of Helminthology 92(4): 455–466. https://doi.org/10.1017/S0022149X17000578

Zhang D, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Wang GT, Li WX (2017b) Sequencing of the complete mitochondrial genome of a fish-parasitic flatworm *Paratetraonchoides inermis* (Platyhelminthes: Monogenea): tRNA gene arrangement reshuffling and implications for phylogeny. Parasites & Vectors 10: 462. https://doi.org/10.1186/s13071-017-2404-1

Zhang D, Li WX, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Wang GT (2018) Mitochondrial genomes of two diplectanids (Platyhelminthes: Monogenea) expose paraphyly
of the order Dactylogyridea and extensive tRNA gene rearrangements. Parasites & Vectors 11: 601. https://doi.org/10.1186/s13071-018-3144-6

Zhang YJ, Sun J, Rouse GW, Wiklund H, Pleijel F, Watanabe HK, Chen C, Qian PY, Qiu JW (2018) Phylogeny, evolution and mitochondrial gene order rearrangement in scale worms (Aphroditiformia, Annelida). Molecular Phylogenetics and Evolution 125: 220–231. https://doi.org/10.1016/j.ympev.2018.04.002

Zou H, Jakovlić I, Chen R, Zhang D, Zhang J, Li WX, Wáng GT (2017) The complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class. BMC Genomics 18(1): 840. https://doi.org/10.1186/s12864-017-4237-x

Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31(13): 3406–3415. https://doi.org/10.1093/nar/gkg595

Supplementary material 1

Table S1. Primers used to amplify and sequence the mitochondrial genomes of Brentisentis yangtzensis
Authors: Rui Song, Dong Zhang, Jin-Wei Gao, Xiao-Fei Cheng, Min Xie, Hong Li, Yuan-An Wu
Data type: molecular data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.861.34809.suppl1

Supplementary material 2

Table S2. The list of species of the Acanthocephala and the outgroups used for comparative mitogenomic and phylogenetic analyses
Authors: Rui Song, Dong Zhang, Jin-Wei Gao, Xiao-Fei Cheng, Min Xie, Hong Li, Yuan-An Wu
Data type: species data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.861.34809.suppl2
Supplementary material 3

Table S3, Nucleotide composition and skewness of different elements of the studied mitochondrial genome

Authors: Rui Song, Dong Zhang, Jin-Wei Gao, Xiao-Fei Cheng, Min Xie, Hong Li, Yuan-An Wu
Data type: molecular data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.861.34809.suppl3

Supplementary material 4

Figure S1. Relative Synonymous Codon Usage (RSCU) of Brentisentis yangtzensis

Authors: Rui Song, Dong Zhang, Jin-Wei Gao, Xiao-Fei Cheng, Min Xie, Hong Li, Yuan-An Wu
Data type: molecular data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.861.34809.suppl4