Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
RESULTS: Patients responding to “yes” to any question on the CJD form activated the “CJD precautions” policy. The Sterilization/Processing Department (SPD) was notified. A special “prion processing” label is affixed to all instruments used on high risk tissue. No flash sterilization is permitted. Disposal items/instruments are used as a priority for cases. Covers for power equipment are utilized. If device can be cleaned and decontaminated, sterilize in a pre-vac at 270°F for 18 minutes or gravity displacement at 250°F for 60 minutes. If device cannot be cleaned, soak in 1:10 bleach solution for 30 minutes and discard in rigid container.

LESSONS LEARNED: Problems encountered included: physicians were not screening their patients prior to surgery; OR staff requested more information on the other rare infectious disorders besides CJD. OR staff were then educated to interview patients in the pre-admission setting or while in the OR Holding area. The screening tool was redesigned to define obscure medical conditions such as Gertsmann-Straussler-Scheinker Disease and Fatal Familial Insomnia. Using the screening form, five cases in 2005 activated the “CJD precautions” policy. Communication between the physician, the OR, SPD and Infection Control is critical in the screening process of these cases while not compromising patient care and outcomes.

Publication Number 7-62

Unit-Based Staff Hand Hygiene (HH) Monitors To Improve Compliance in a Comprehensive Cancer Center

VR Gonzalez, BS, CIC
C Perego, MPH, CIC
B Hackett, MPH, CIC
L Graviss, MT, CIC
I Raad, MD

Department of Infectious Diseases, Infection Control and Employee Health, M.D. Anderson Cancer Center, Houston, TX, USA

ISSUE: Both the Joint Commission on Accreditation of Healthcare Organization’s (JCAHO) patient safety goal and the Centers for Disease Control and Prevention’s (CDC) guidelines recommend monitoring of hand hygiene adherence and providing feedback to patient care staff. In order to advance patient safety and HH compliance, a three-pronged approach was implemented to enhance HH education, observation and measurement of HH compliance.

PROJECT: Three components were implemented to improve compliance with HH practices:

Education Component (Phase I)
Development and implementation of a mandatory computer-based learning module on hand hygiene for all patient care staff that included HH’s “Top Ten List” based on CDC’s Guideline for Hand Hygiene in Health-Care Settings, 2002
Focused and targeted educational program for fellows, residents and mid-level providers including staff in invasive procedural areas
Special educational HH program in Spanish for spanish-speaking staff
Training of unit-based HH observers (100) using the Train-the-Trainer model
Focus on HH compliance during Patient Safety Week Campaign in March 2005

Evaluation Component (Phase II)
Three HH observational periods for assessment of HH compliance by trained HH monitors and infection control practitioners in all patient care areas
Monthly self-assessment in patient care area units and diagnostic areas
Communication and Feedback of Results Component (Phase III)

Communication to staff, managers and administration regarding HH violations and compliance rates

Prompt follow-up with re-education in patient care areas where HH violations rates were lower than expected.

RESULTS: In Phase I, 100% of patient care staff complied with HH computer-based training. A total of 100 unit-based HH observers were trained using the Train-the-Trainer approach with education on HH basics, use of HH tool and feedback to colleagues and peers.

In Phases II and III, observational periods with assessment of HH compliance were implemented by the trained HH observer of each clinical area. Data from observation periods, demonstrated an incremental improvement in HH practices with an initial baseline of 79% and an average of 91% in subsequent periods.

LESSONS LEARNED: A coordinated systems approach that includes patient care staff, physicians, committees and administration is essential when initiating a process change. Providing education and feedback to staff and physicians will improve compliance. Identification of areas where additional education and feedback on HH is required and will also improve compliance.

Evaluation of a Hospital-Wide Infection Prevention & Control Certification Program: Increasing the Quality Limits for Patient Safety and Staff Satisfaction

M Salaripour, BSc, CIC, MPH(c)
P McKernan, BA, RN, CPHQ, MBA
R Devlin, MHSc, MD, FRCP
Risk Management and Quality Improvement, St. Michael's Hospital, Toronto, ON, Canada

BACKGROUND/OBJECTIVES: To evaluate the effect of Infection Control (IC) certification on confidence and comfort level of the health care workers.

METHODS: The Severe Acute Respiratory Syndrome (SARS) Outbreak highlighted the significance of formal training in IC practical aspects as well as the development and publication of standards. Minor errors in the use of personal protective equipment were identified as sources of contamination of Health Care Workers’ to SARS CoV. Our hospital’s policy mandated that all staff, be certified in IC practices through a competency based educational program. A multi-disciplinary educational module, derived from a SARS specific model used to educate the SARS designated care team; was developed. Essential components included basic IC principles, specimen collection, use of protective clothing, high risk procedures, modified protocols for ventilator management and oxygen/aerosol therapy, transportation and care of equipment and the environment. Competency checklists for each module were developed. Education was customized, depending on the potential risk of exposure. A train the trainer model with direct involvement of the Infection Control Practitioners (ICP) disseminated the program hospital-wide.

● A self-directed learning package including a video demonstration of application and removal of the Personal Protective attire was developed for the physicians.

RESULTS: Evaluation of staff satisfaction indicated an average staff satisfaction of 98.3% with the pace and content of the sessions and also increased staff confidence while caring for patients in isolation. The result of a survey demonstrated a significant association between the level of confidence and comfort in providing patient care and certification among the two groups of staff (certified versus non-certified, p < 0.001).

*There was no nosocomial spread of SARS in our hospital, despite the admission of 5 confirmed cases and 27 patients that met the SARS case definitions.

CONCLUSIONS: The program was highly successful in preventing the spread of SARS within the institution and easing staff’s anxiety.