Current Challenges of Physical Treatments to Control Quality and Postharvest Diseases of Fresh Fruits and Vegetables

F Charles
UMR Qualisud, University of Avignon, France.

Email: florence.charles@univ-avignon.fr

Abstract. Physical treatments have gained interest in recent years to improve quality and safety of fresh fruits and vegetables, due to the emergence of non-chemical techniques. Indeed, the use of fungicides is becoming restricted because of the concerns of the consumers for human health and for the release of fungicides in the environment. Physical treatment appears to promote sustainable technology. This review attempts to highlight the use of the light treatments in postharvest, with visible and UV-C. These treatments already showed interesting perspectives of applications due to, their direct impact onto pathogens, and the induction of resistance onto the host. The mode of action is not well known, but some new tools such as ohmic methods will help to highlight physiological and biochemical pathways on which the phenomena are based. Despite a wide range of positive impact of light treatments in several research works, their commercial use remains limited in relation to their potential market.

1. Introduction

Fruits and vegetables remain alive after harvest and are susceptible to many postharvest defects inducing losses. These losses are caused by sensorial and nutritional quality defects and by many postharvest diseases related to fungal pathogens. Postharvest losses are significant and might represent up to 40% for some harvested commodities. One of the leading strategies consists in developing processing techniques for reducing losses, while insuring food safety, in the context of constantly growing population [1]. Different postharvest strategies are commercially used to reduce the respiratory rate, the ripening, the senescence, and the decay while preserving quality. A current strategy consists in using synthetic fungicides which are relatively inexpensive, easy to apply and inducing curative and preventive action. However, the use of chemicals is becoming more and more restricted because of their toxicity for human health, and the global concern for the release of fungicides in the environment. Thus, the development of alternative non-chemical techniques are gaining interest in many research programs worldwide.

Physical treatments are emerging to increase shelf-life of fresh fruits and vegetables. The most well-known physical treatment is the modification of the atmosphere. In controlled atmosphere (CA) and modified atmosphere (MA), the O₂ level is decreased and the CO₂ level is increased to reduce the vegetable metabolism. CA and MA can also reduce physiological disorders such as the superficial scald in apples and postharvest decay. However, CA and MA are not always sufficient to reduce browning or others postharvest changes. Heat treatments are also largely used. Traditionally, it could be applied in the form of hot water dip, vapor, or hot air. More recently, the interest in radio frequency or microwave energy treatments to heat fruits have raised. The mode of action of all heat treatments involve effects on both plant pathogen and host. Heat treatment usually causes a direct inhibition of spore germination and
of fungi mycelial growth. Heat treatment also induces different defense lines in host such as the
reinforcement of plant cell walls and the occlusion of stomata, micro-cracks which are the main entry
points for wound pathogens, accumulation of stress and defense proteins (heat shock proteins,
pathogenesis-related proteins), and antioxidant enzymes. Others promising technologies consist in using
light treatment such as ultraviolet-C and visible light.

The objective of this paper is to review the current state of knowledge on the effects and the use
of UV-C and visible light. This paper will also present some previous investigations on this topic and
the main issues to be addressed in the coming years to favor the use of these technologies.

2. UV-C treatments

2.1. Definition

The UV portion of the electromagnetic spectrum include long-wave UV-A radiation (320 – 400 nm),
medium-wave UV-B radiation (280- 320 nm), and short-wave UV-C radiation (200 – 280 nm).
Following the Plank relation, the shorter the wavelength is, the higher is the photonic energy provided.
Thus, UV-C is usually more effective for destroying microorganisms at a lower doses than that of UV-
B and UV-A. In the mid 1980’s, the development of an innovative UV-C light application technology
for controlling postharvest decay has emerged[2] A low UV-C light dose (7.3 kJ.m⁻²) has been effective
to control black mold (Aspergillus niger), blue mold (Penicillum expansium) and bacteria soft rot
(Erwinia spp.) in onions. Collaborative research on the technique increased and the first international
conference entitled “The use of UV-C as a Postharvest Treatment : Status and Prospectives” was
organised by a European COST working group (Action 924) in Antalya (Turkey) on November 9th to
11th, 2005 for its promotion.

2.2 Mode of action

The mode of action of UV-C treatment involves effects on both plant pathogen and host. Absorption of
UV-C radiation by conjugated carbon to carbon double bonds in proteins and nucleic acids may result
in DNA structural changes which are incriminated in the well-documented antimicrobial effects of UV
light onto microorganisms. In the last decades, UV-C have been used as a germicidal treatment to delay
fungal growth, bacterial and virus development (Table1). UV-C was effective in reducing the rate of
fruit infection and the size of lesions by B. cinerea in grapes and bell pepper [3,4]. UV-C can reduce the
incidence of various fungi such as Rhizopus and, Monilia, but also decreases their total viable counts
[5–7]. Moreover, UC is effective in reducing Listeria monocytogenes or Salmonella enterica bacteria
which are the main pathogens found in fruits and vegetables [8].

Species and cultivar	Tested UV-C dose and optimum (kJ.m⁻²)	Targeted pathogrn	Authors
Tomatoes	3.6	Rhizopus	Steven et al. 2004
Tables grapes	0.125 to 4 (0.1)	Botrytis cinerea	Nigro et al. 1998
Mangoes	5 to 10	Natural decay	Gonzalez et al. 2001
Strawberry	0.25 to 4 (0.5 and 1)	B. cinerea and natural decay	Nigro et al. 2000
Peaches	7.5	Monilia	Stevens et al. 1998
Fresh-cut apples	1 to 24 (1 and 2)	Total viable counts	Manzoceco et al. 20011
Lettuces	1.18;2.37 and 7.11	Natural microflora	Allende et al. 2006
Baby spinach	2.4 – 24	Listeria monocytogenes and Salmonella enterica	Escalona et al.2010
Bell pepper	2.2 to 4.4	Botrytis cinerea	Mercier et al. 2001
Lettuce	0.85	Botrytis cinerea and Sclerotinia	Ouhibi et al. 2014
In addition to the direct activity against pathogens, UV-C can also interact with plants cells. Some responses have been observed on mitochondria, chloroplasts, and membranes. Damaging effects of UV-C on plants components emphasize the main importance of the step involving dose selection and application [9].

UV-C can also modulate defense in plants [10,11]. Induced resistance by the application of low or sub-lethal doses of UV-C could be the result of the phenomenon termed “hormesis”. Hormesis is defined as the stimulation of a beneficial effect by low doses of a potentially harmful agent [12]. UV-C may stimulate the secondary metabolism which is known to play a beneficial role on health and plant defense (Table 2). UV-C stimulates all phyto-alexins, phenolic compounds [13–15], and antioxidant capacity [16,17]. UV-C could modulate at proteomic level. First data seemed to suggest that the proteins affected by UV-C, could regulate biological processes which contribute to changes in fruits and crops, leading to postharvest deterioration of commodities [18]. Finally, UV-C stimulates the expression and enzymatic activity of a set of genes that are related to plant defense against pathogens such as glucanase, chitinase, and PAL[19–21].

Table 2. Some hormetic responses of UV-C.

Species and cultivar	Optimum UV-C dose (kJ.m⁻²)	Included defense	Authors
Tomatoes	3,7	Accumulation of the phytolalexin-rishitin	Charles et al, 2008
Tomatoes	3,7	Increase the expression of pathogenesis-related proteins (PR-proteins) (glucanase, chitinase)	Charles et al, 2009
Grafes	6	Increase in Resveratrol	Freitas et al., 2015
Grafes	-	Increase in Stillbene	Guerrero et al., 2010
Mangos	0 - 4,9	Improve the total antioxidant capacity (ORAC,DPPH)	Gonzalez et al., 2007
Mangos	6	Increase PAL, chitinase, Glucanase, POD et phenols	Spekong et al., 2012
Mangos	0,001; 0,003 and 0,007	Proteome changes	George et al., 2015
Strawberry	4,1	Increase defense responses (genes, enzymes) and delays fruit softening	Pombo et al., 2011, 2009
Strawberry	0,43; 2,15 and 4,30	Increase phenols, antioxidant capacity and enzymes	Erkan et al., 2008
Blueberry	1 to 4	Increase in anthocyanin, total phenolics, antioxidant capacity	Perkins-Veazie et al., 2008

Additional research is needed to better understand the UV-C mechanisms and favor their application at commercial scale. The systemic effect need to be clarified. It seems also important to elucidate whether UV-C can induce any response on a non-visible part of a commodity. We have to demonstrate whether a treated resource could be adversely affected. We also have to investigate the impact UV-C treatment may have from an agronomical point of view. The application of pre-harvest UV-C treatment is almost unexploited to control postharvest diseases, and effective relationships between pre and post-harvest.

3. Visible light treatments

Visible light exposure represents a novel approach, environmental-friendly, that can be used to preserve the overall quality of fresh-commodities. It is well known that in plants, darkness induces the expression of genes implicated in chlorophyll, proteins, chloroplast degradation, and an increase of the reactive species to oxygen [22]. However, in many cases, light is not controlled during post-harvest storage and products are commercially stored under darkness, which induces accelerated senescence. Light exposure can delay tissue browning of fresh-cut romaine lettuces [23], fresh-cut celery [24] and the yellowing of
broccoli [25]. Light has also a positive effect on nutritional quality. Continuous light (around 35 μmol.m$^{-2}$.s$^{-1}$) seems to maintain soluble sugars and ascorbic acid in freshly-cut romaine lettuce [26]. Leaves of spinach being stored under visible light are exhibiting higher rates of ascorbic and folic acids among the endogenous pool of vitamins, than those stored under dark conditions [27]. Some recent investigations showed that the daily light or brief pulses exposure, could delay postharvest decay. Light pulses of 30 μmol.m$^{-2}$.s$^{-1}$ can be used to extend postharvest life of spinach leaves [28]. Exposure to 2 h of light with 30–37 μmol.m$^{-2}$.s$^{-1}$ seems sufficient to delay postharvest senescence of basil leaves, and suppress chlorophyll and protein losses [29]. In Lamb’s lettuces, intermittent low intensity light cycles partially increases photosynthesis. The metabolism of the green tissues remains effective to provide carbon moieties for the synthesis of bioactive molecules involved in delaying senescence [30].

Thus, light exposure during post-harvest significantly decreases the cut-edge browning of fresh-cut lettuces, which is one of the main attributes for consumer acceptability [31]. However, the way to apply light can modify the product physiology, attractiveness, and rate of dehydration. This study underlined the potential of using intermittent moderate level of light (50 μmol.m$^{-2}$.s$^{-1}$) as a short post-harvest treatment to maintain the quality of fresh-cut products. Moreover, a memory effect has been highlighted since the positive effect of light can be maintained, even when commodities are stored later under darkness. Although there is a strong need to make further research on this topic, the present study brings various perspectives of investigation according to the modality of the application of light.

4. Conclusion
Treatments such as UV-C and visible light might positively impact product quality and seem attractive. However, their commercial uses have been rather limited so far, in relation their potential market. The complexity of the mode of action which involves direct effect onto pathogens and indirect effect onto the host, need to be further investigated and clarified. The new ohmic tools could help to highlight underlying physiological and biochemical pathways.

5. References
[1] FAO 2011 Global Food Losses and Food Waste. Extent, Causes and Prevention. Food and Agricultural Organization of the United Nations, Rome.
[2] Stevens C, Khan V A, Tang A Y and Lu J Y 1990 The Effect of Ultraviolet Radiation on Mold Rots and Nutrients of Stored Sweet Potatoes J. Food Prot.53 223–6
[3] Mercier J, Baka M, Reddy B, Corcuff R and Arul J 2001 Shortwave Ultraviolet Irradiation for Control of Decay Caused by Botrytis cinerea in Bell Pepper: Induced Resistance and Germicidal Effects J. Am. Soc. Hortic. Sci.126 128–33
[4] Nigro F, Ippolito A and Lima G 1998 Use of UV-C light to reduce Botrytis storage rot of table grapes Postharvest Biol. Technol.13 171–81
[5] Manzocco L, Da Pieve S, Bertolini A, Bartolomeoli I, Maifreni M, Vianello A and Nicoli M C 2011 Surface decontamination of fresh-cut apple by UV-C light exposure: Effects on structure, colour and sensory properties Postharvest Biol. Technol.61 165–71
[6] Stevens C, Liu J, Khan V A, Lu J Y, Kabwe M K, Wilson C L, Igwagbe E C K, Chalutz E and Droby S 2004 The effects of low-dose ultraviolet light-C treatment on polygalacturonase activity, delay ripening and Rhizopus soft rot development of tomatoes Crop Prot.23 551–4
[7] Stevens C, Khan V A, Lu J Y, Wilson C L, Pusey P L, Kabwe M K, Igwagbe E C K, Chalutz E and Droby S 1998 The germicidal and hormetic effects of UV-C light on reducing brown rot disease and yeast microflora of peaches Crop Prot.17 75–84
[8] Escalona V H, Aguayo E, Martínez-Hernández G B and Artés F 2010 UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach Postharvest Biol. Technol.56 223–31
[9] Urban L, Charles F, de Miranda M R A and Aarrouf J 2016 Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest Plant Physiol. Biochem. 105 1–11
[10] Shama G and Alderson P 2005 UV hormesis in fruits: a concept ripe for commercialisation Trends Food Sci. Technol. 16 128–36
[11] Terry L A and Joyce D C 2004 Elicitors of induced disease resistance in postharvest horticultural crops: a brief review Postharvest Biol. Technol. 32 1–13
[12] Luckey T D 1980 Hormesis with Ionising Radiation
[13] Charles M T, Benhamou N and Arul J 2008 Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit: III. Ultrastructural modifications and their impact on fungal colonization Postharvest Biol. Technol. 47 27–40
[14] Freitas P M, López-Gálvez F, Tudela J A, Gil M I and Allende A 2015 Postharvest treatment of table grapes with ultraviolet-C and chitosan coating preserves quality and increases stilbene content Postharvest Biol. Technol. 105 51–7
[15] Guerrero R F, Cantos-Villar E, Fernández-Marín M I, Puertas B and Serrano-Albarrán M J 2015 Optimising UV-C preharvest light for stilbene synthesis stimulation in table grape: Applications Innov. Food Sci. Emerg. Technol. 29 222–9
[16] Erkan M, Wang S Y and Wang C Y 2008 Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit Postharvest Biol. Technol. 48 163–71
[17] González-Aguilar G, Villegas-Ochoa M., Martínez-Tellez M A, Gardea A. and Ayala-Zavala J F 2007 Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. J. Food Sci. 72 S197-202
[18] George D S, Razali Z, Santhirasegaram V and Somasundram C 2016 Effect of postharvest ultraviolet-C treatment on the proteome changes in fresh cut mango (Mangifera indica L. cv. Chokanan) J. Sci. Food Agric. 96 2851–60
[19] Charles M T, Tano K, Asselin A and Arul J 2009 Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. V. Constitutive defence enzymes and inducible pathogenesis-related proteins Postharvest Biol. Technol. 51 414–24
[20] Pombo M A, Rosli H G, Martínez G A and Civello P M 2011 UV-C treatment affects the expression and activity of defense genes in strawberry fruit (Fragariaxananassa, Duch.) Postharvest Biol. Technol. 59 94–102
[21] Srepong K, Jitareerat P, Uthairatanakij A, Srilaong V, Wongs-Aree C and Tsuyumu S 2013 INDUCTION OF DEFENSE MECHANISMS ON HARVESTED MANGOES BY UV-C IRRADIATION Acta Horticulturae (International Society for Horticultural Science (ISHS), Leuven, Belgium) pp 89–95
[22] Wada S and Ishida H 2009 Chloroplasts autophagy during senescence of individually darkened leaves Plant Signal. Behav. 4 565–7
[23] Zhan L, Li Y, Hu J, Pang L and Fan H 2012 Browning inhibition and quality preservation of fresh-cut romaine lettuce exposed to high intensity light Innov. Food Sci. Emerg. Technol. 14 70–6
[24] Zhan L, Hu J, Lim L-T, Pang L, Li Y and Shao J 2013 Light exposure inhibiting tissue browning and improving antioxidant capacity of fresh-cut celery (Apium graveolens var. dulce) Food Chem. 141 2473–8
[25] Büchert A M, Gómez Lobato M E, Villarreal N M, Civello P M and Martínez G A 2011 Effect of visible light treatments on postharvest senescence of broccoli (Brassica oleracea L.) J. Sci. Food Agric. 91 355–61
[26] Zhan L, Hu J, Ai Z, Pang L, Li Y and Zhu M 2013 Light exposure during storage preserving soluble sugar and l-ascorbic acid content of minimally processed romaine lettuce (Lactuca sativa L.var. longifolia) Food Chem. 136 273–8
[27] Lester G E, Makus D J and Hodges D M 2010 Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: effects of cultivar, leaf size, and storage duration J. Agric. Food Chem. 58 2980–7

[28] Gergoff Grozeff G E, Chaves A R and Bartoli C G 2013 Low irradiance pulses improve postharvest quality of spinach leaves (Spinacia oleracea L. cv Bison) Postharvest Biol. Technol. 77 35–42

[29] Costa L, Millan Montano Y, Carrión C, Rolny N and Guiamet J J 2013 Application of low intensity light pulses to delay postharvest senescence of Ocimum basilicum leaves Postharvest Biol. Technol. 86 181–91

[30] Braidot E, Petrussa E, Peresson C, Patui S, Bertolini A, Tubaro F, Wählby U, Coan M, Vianello A and Zancani M 2014 Low-intensity light cycles improve the quality of lamb’s lettuce (Valerianella olitoria [L.] Pollich) during storage at low temperature Postharvest Biol. Technol. 90 15–23

[31] Charles F, Nilprapruck P, Roux D and Sallanon H 2018 Visible light as a new tool to maintain fresh-cut lettuce post-harvest quality Postharvest Biol. Technol. 135 51–6