Impact of intestinal helminthes infections on stunting, wasting, normal biochemical and hematological values on school children in Gondar town, Ethiopia.

CURRENT STATUS: POSTED

Wossenseged Lemma
University of Gondar
Corresponding Author
ORCiD: 0000-0003-4075-2920

Daniel Tarekegn
University of Gondar

Meseret Birhanie
University of Gondar

DOI:
10.21203/rs.2.10124/v1

SUBJECT AREAS
Infectious Diseases

KEYWORDS
School children; Malnutrition; Intestinal Helminth infections; Nutritional status ; Gondar town
Abstract

Abstract Background: Ethiopia, the second populous nation in Africa, has been grouped under low income countries. Stunting, underweight and wasting in school children in Ethiopia are very common. The aim of this research was to evaluate the nutritional status compared to WHO standards and impact of intestinal helminthes on normal growth, normal hematological and biochemical values in the school children in Azezo Elementary School in Gondar Town. Methods: Demographic data and information about possible risk factors were obtained using standard pre-tested questioners for all study subjects. WHO AnthroPlus software version 1.04 (WHO, Geneva, Switzerland) were used to classify school children as normal, stunted, wasted and obese after height and body weight measurements were obtained. The Kato Katz technique was performed to screen students for intestinalhelmentinfections and calculate eggs per gram stool (epg). Haematological and biochemical normal values were obtained from hematology fully-automated cell counter (Mindray BC-3200) and Mindray BS-200E chemistry analyzer. Results: A total of 384 school children with age ranged from 7 to 15 years old were recruited in this study. Of the total school children analysed for body mass index and height for age Z scores (BAZ and HAZ scores), 103 (26.8%) were wasted (Z scores < -2SD) and 47 (12.2%) stunted (< -2SD). Gender showed no statistically significantly differences (p>0.05) for BAZ and HAZ. The prevalence of overall stunting in 7-10 age group was 0.7% (1/146) compared to 19.5% (46/236) in 11-15 age group (p=0.000). Intestinal helminthes infections were statistically significantly associated (p = 0.000) with hypo-gycocemia, hypo-proteinaemia and anemia compared with non-infected school children. The likelihood of anemia in intestinal helminth infected school children, when it was compared with uninfected was 148 times higher for both Ascarislumbeiricoides-Schistosomamansoni co-infection, 38 times for Hook worm, 20 times for Schistosomamansoni and 3 times for Ascarislumbeiricoidesmono-
infection. Conclusion: Malnutrition and intestinal helminthes infections are serious problem in normal growth of the school children. Poverty associated malnutrition is the most important risk factor for stunting. Key Words: School children; Malnutrition; Intestinal Helminth infections; Nutritional status ; Gondar town

Background

According to food and agriculture (FAO) estimates, around 1.02 billion people are undernourished worldwide [1]. In spite of some progress in achievements of the nutrition related Millennium Development Goals like reducing maternal mortality, problems associated with children malnutrition and hunger have not been showing significant improvement [2, 3]. In 2016, approximately 5.6 million children under age five died in the world with the highest proportion in Africa [4]. According to world food program report in 2012 [5], of 66 million primary school-age children attended classes hungry in developing world, 23 million or 34.8% were found in Africa. Globally, an estimated 165 million (26%) stunted, 101 million (16%) underweight and 52 million (11%) wasted children of under-five years of age were reported in 2011 [3]. According to the 2015 Millennium development goal (MDG) report, more than 30% of the global under nutrition for under 5 years children was found in Sub-Saharan Africa (SSA) [3, 6]. In Africa, 58 million stunted, 13.9 million wasted, 10.3 million overweight and 220 million calorie deficient under five children were also been reported [3]. The severity of children mortality, delayed mental development, poor school performance, reduced intellectual capacity and reduced immunity for diseases are related with severity of stunting and wasting [7]. The percentage of stunting and wasting reflect the cumulative effects of malnutrition and parasites infections [7. 8]. Helminth parasites infections are the major factors in causing malnutrition [9, 10].

Globally in 2010, 819 million Ascaris, 438.9 million Hook worm and 464.6 million
Trichuristrichiura infections were reported in Asia (70%), in Sub-Saharan Africa (16%) and other part of the world (22%) including the 1.01 billion infection prevalence in school age children in Asia (70%), Sub-Saharan Africa (16%) and Latin Ameriaca and Caribbean (13%) [11]. Declined food intake and/or an increase in nutrient wastage through blood loss, vomiting or diarrhea related to helminthes infections mostly affects the nutritional status of an individual or aggravate protein energy malnutrition, anemia and other nutrient deficiencies [12]. Chronic schistosomiasis contributes to anemia and under-nutrition, which, in turn, can lead to growth stunting, poor school performance, poor work productivity, and continued poverty while blood loss due to Hook worm infection can cause iron deficiency anemia and hypo-proteinaemia[13]. Ascariasis cause malnutrition in addition to pathology associated the worm migration in the body. Chronic dysentery associated with Trichriasis is also a major problem in health of school children [14]. Heavy *S. mansoni* infected children in Brazil(above 400 eggs/g of stool) showed 2.74 fold higher risk of stunting compared to uninfected children [15].

Ethiopia, second populous nation in Africa, has been classified as low income countries with 20% of poverty in both urban and rural areas [16]. The prevalence of wasting in Ethiopia was 12% in under 5 years children in 2011 and stunting reduced from 64% in 1990 to 47% in 2008 [1, 16, 17]. Of the total 4, 921 under five children analyzed in 2014 to determine their nutritional status, the percentages of stunted, underweight and wasted were 40.4%, 25.2% and 8.7% respectively [18]. Low socio-economic status or low accessibility of food (poverty) in Ethiopia could be the main cause of malnutrition [19, 20]. Factors that increase the risk of intestinal parasitic infections such as swimming, bar foot walking (lack of shoes), bad hand washing habits and low Education status of parents were also reports to be associated with malnutrition [19, 21, 22]. In Ethiopia, intestinal
parasitic infections in under 5 years children were reported to cause malnutrition, anemia, and growth retardation [23, 24]. Researches describing the role of helminth infections and their intensity on nutritional status, anemia and normal hematological and biochemical values of primary school children are rare. The aims of this research was to evaluate the nutritional status of school children in Azezo primary school in Gondar town and compared it to WHO standards in addition to analyzing the impact of intestinal helminthes (infections and intensities) on normal growth, normal hematological and biochemical values in the school children.

Methods

Study areas

Gondar town is located in Northwest Ethiopia, at an latitude and longitude range of 12°36′N 37°28′E to / 12.600°N 37.467°E / 12.600; 37.467 with an elevation of around 2133 meters above sea level and have a total population of 207,044 (98,120 men and 108,924 women) [25]. The ranges of mean maximum and minimum temperature in 2015 were 22.7 - 29.7 and 17.6 - 22 °C respectively with the annual rainfall of 1151 mm. The highest rainfall was registered in July (328 mm) and August (307 mm) compared to the driest January (4 mm) and February (6 mm) months [26]. The Azezo-Teda sub-city or Zone administration is located south of the central part of Gondar. The Gondar town is expanding mostly in these Azezo-Teda areas. The rivers that cross the Gondar town including Azezo-Teda sub-cities are Angereb, Kaha, Shenta and Demaza rivers. A total of 2 high schools, 7 elementary schools, the main bus station, 2 health clinics, Dashen Brewery, Gondar International Airport, Gondar University Agricultural Campus and other many new constructions are located in this Azezo – Teda sub-city administration zone. The Gondar Town Administration Health Bureau regularly conducts deworming in school
Due to expansion of Gondar Town, rural areas surrounding Gondar are included in Gondar town administration. Rural areas are still in rural conditions and infra-structures such as pipe water, road and electricity has not yet furnished like the central parts of Gondar town. Most rural community obtain clean ground water which can be used for drinking and other activities. Most of the rural community surrounding Gondar are farmer. Lack of enough land for agriculture, the rural communities also get involved in other activities such as thread, work as labourer in Gondar town and so on to get additional income.

Study design

Across sectional study design were conducted by systematic random sampling technique to select 384 study participant at Azezo school age children during February to May 2018. Standard Questioners were used to obtain data about food shortage in the family and other possible risk factors which could be the source of stunting, wasting or intestinal parasitic infections. Using anthropometric measures, school children were grouped as stunted, wasted, obese and Normal. Kato-Ketz technique was used to determine intestinal helminth infections while automated hematological and Bio-chemical machines were used to measure haematological and biochemical values. Appropriate statistics were used to see if intestinal helminth infections and food shortage in families and other factors were associated with stunting and wasting.

Demographic data and Risk factor analysis

A pre-tested structured questionnaire was used to collect demographic data and the possible risk factors which could expose the school children for stunting, wasted and intestinal helminth infections. Parents and guardians were interviewed to get information
for demographic data and possible risk factors. Data about age, sex, grade level, residences, accessibility of food, swimming and/or washing in rivers in the study areas, possession of shoes and proper wearing habits and hand washing habits were collected from the study participants. Family without known income or no or low (<1500 birr/month) salary and very low annual harvest, no television, serious problem in getting enough food and clothing was grouped as family with low accessible food. The other families with no problem of food accessibility as family with accessible food. Mother who could at least ready and write were grouped as literate and those who could not read and write were grouped as Illiterate. Those families who lived in the part of Gondar town were grouped as Urban residence and those who live in the surrounding rural areas were grouped as rural residence.

Anthropometric Measurements

Body weight and height for each school children were measured. Digital balance was used to weigh students with the school uniform without shoes while heights were measured with vertical length measurement with 0.1 cm scales. Measurements were taken twice to use the average for each student. Height-for-age Z-score (for stunting) and body mass-index-for-age Z-score (for wasting and thinness) were calculated using the WHO AnthroPlus software version 1.04 (WHO, Geneva, Switzerland) (available http://www.who.int/ //en/)[27]. Weight for age (WAZ) has not been used as it is not recommended for age group above 10 years. Most of the school children were above 10 years. The data collected from the software were used to classify school children as stunted and wasted (thin). Stunting is defined as insufficient height for age or when height-for-age Z score (HAZ) is less than -2 SD (standard deviation) from the WHO child growth standards median Z - scores. Similarly, underweight is defined as insufficient weight for
age or when weight for age Z - scores (WAZ) is less than - 2 SD from standard median scores. On the other hand, wasting or sever thinness is defined as insufficient mass for height (low body mass index (BMI) for age) or when body mass index for age Z - score is less than – 2 SD [28, 29].

Stool Sample Collection and determination of egg per gram

Stool specimens were collected from the school children using clean dry and leak proof containers. The Kato Katz technique was performed on the same date to determine infection and intensity of infections [30, 31]. Kato-Katz slides thick stool smears prepared from 40.7 milligram stool filtrate were examined microscopically within 30 to 60 minutes after preparation to count helminthes eggs and multiply by 24 .6 to get egg per gram stool (epg).

Blood Sample Collection and Hematological and Biochemical analysis

Hematological analysis

About 3 ml venous blood was collected from the study participant in a tube containing EDTA (dipotasium ethylene diamine tetra acetic acid) and temporarily stored in refrigerator before processed in University of Gondar referral Hospital Hematological laboratory by using haematology fully-automated cell counter (Mindray BC-3200). All samples were analysed within 6 hours. Total white blood cells (WBC), red blood cells (RBC), hemoglobin concentration (Hgb), packed cell volume (PCV), hematocrit value; mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), lymphocytes and neutrophils were calculated using an automated blood cell counter. The haematological values were classified as normal, below normal and above normal according to standard normal range values[32].
Interpretation of Anemia in School Children

After hemoglobin reading from hematological machine was obtained the values were interpreted according to WHO recommendation [33]: as normal (≥11.5 g/dl), mild anaemic (11 – 11.4 g/dl), moderate anaemia (8-10.9 g/dl) and severe anaemia (<8 g/dl).

Biochemical analysis

After two millilitre venous blood samples was collected using sterile syringe from the arms of the school children, blood was placed in separator test tube, before serum was separated from the whole blood by centrifuging at 3,000 revolutions per minute for 5 minutes. Then, the separated serum was analysed for glucose and total protein by using Mindray BS-200E chemistry analyser.

Ethical Consideration

The study was conducted after University of Gondar ethical review committee approved the research. Written consent was obtained from study participant’s parent/guardian after permission was obtained from Teda - Azezo district administration and school administration. Laboratory results were kept confidential and children who were infected with intestinal helminth infection and with abnormal hematological, biochemical test were linked to the Gondar District health centre for free treatment.

Statistical Analysis

After data were collected from individual school child separately using data sheet, All important information from data sheet were transferred to statistical package for social sciences (SPSS) version 20 for statistical analysis. After height for age Z-scores (HAZ) and Body mass index Z-scores (BAZ) calculated by WHO Anthroplus software calculated and school children were classified as stunted(< -2 SD), normal (-2 SD< Z<2 SD) and over
height using (>2SD) using HAZ and wasting (sever thin) (< -2SD), thin (-2 SD<Z<-1SD), normal (-1SD<Z<1 SD) and obese (>1SD). The nutritional status of each student compared with their hematological, biochemical values and helmenth infection, infection intensity and mono or co-infection using different logistic regression analysis to see the impact of intestinal helminth’s infections on stunting and wasting in addition to different form of malnutrition. Value < 0.05 was considered as significant different for 95% confidence interval.

Results

Stunting was statistically significantly associated with poor family status (without enough available food) compared to other factors (table 1). Intestinal helminth infections were highly prevalent in rural (57.1%) compared to urban residence (30.1%) in statistically significant different (p=0.000) manner. But, stunning or wasting were not associated with urban or rural residence (p>0.05). Swimming or washing in the rivers was more common for rural residences (p=0.04), but it was not associated with intestinal helminth infections or stunting. Almost all the community has shoes wearing and hand washing habits. Stunting, wasting and anaemia were not associated with these behaviour (p>0.05)(Table 1).

Table 1 .Risk factor analysis table. Bionomial regression analysis was used to relate low accessibility of food, residence, education status of parents, shoes wearing habit, hand washing habits, Intestinal helminth infections and swimming or washing in the rivers as possible risk factors associated with stunting and wasting

Table 2.Regression analysis between nutritional status and haematological and biochemical values. The table indicates binomial regression analysis toshow relationship among growth status of school children and haematological and biochemical values.
The overall prevalence of helminthes infections in the school children was 45.8% (178/384) with the leading *Ascaris* infection (20.6% or 79/384). The second and third leading infections were *Schistosomamansoni* and Hook worm infections with prevalence of 17.4% (67/384) and 13.3% (51/384) respectively. The prevalent of the remaining *Tricuristrichura*, *Hymenolopis nana* and *Taenia* spp were 3.4%, 1% and 0.3% respectively. Of the total 178 school children found infected, 37(9.6%) were with double infections (16 *Ascaris* – *Schistosoma*, 12 *Ascaris* – Hookworm, 4 *Schistosoma* – Hookworm and 5 *Ascaris* and others) and 2.8%(5/178) triple infections (4 *Ascaris* - *Schistosoma* – others and 1 *Ascaris* - Hook worm - *Tricuristrichura*).

Ascarislumbericoides, *Schistosomamansoni* and Hook worm mono-infection or *Ascarislubericoides* - *Schistosomamansoni* and *Ascarislumbericoidides* - Hook worm co-infections were statistically significantly associated (P≤0.001) with protein malnutrition (hypoproteinemia) and Anaemia (Table 3) compared to non-infected school children. The overall infection was also statistically significantly associated with hypoglycemia, hypoproteinaemia and anemia (p=0.000).

Table 3. Table indicating multiple regression regression analysis to show relationship of different intestinal helminth infections with age groups, stunted and normal, hypoproteinemic and hypo-glycemic school children.

Of total 384 school children, 209 were none infected compared to 56 light infections, 47 moderate infections and 75 heavy infections. Of total 47 stunted school children, the percentage with light, moderate, heavy and none infections were 34%, 4.3% 12.8% and 48.9% respectively. Of 337 school children who were not stunted, the percentage with
light, moderate, heavy and none infections were 11.9%, 13.4%, 20.5% and 54.3% respectively. Intestinal helminth infections, intensity, mono or co-infection between stunted and normal school children were not statistically significantly different (P>0.05) (Table 4). Kruskal Wallis and Mann – Whitney analysis of variance indicated intestinal helminth infections were not statistically significantly different (p>0.05) for different Gender (Table 4).

Table 4 Comparison of variance in helminth infections, intensity and mono and co-infection in school children. Mann -Whitney Test (ANOVA test) was used to lack statistically significantly difference between male and female with prevalence of helminth infections, intensity of infection, mono or co-infections in addition to prevalence of anaemia and stunting.

Discussion

The prevalence of intestinal helminthes infections in this study (45.8%) has showed helminthes as one of the important parasites in school age children in Gondar as already reported in Gondar University Community Primary School (34.2%) [21] and Azezo Primary School (72.9%) [22]. These previous investigations were conducted before the Gondar City Administration Health office started regular deworming program in all primary schools. The difference in prevalence of intestinal parasites between the two previous studies could be related with relatively better standard of life of the University community and other people living in Central Gondar compared with semi-rural conditions in the peripheral Azezo areas where most students were coming from the surrounding rural villages. The prevalence of Schistosomamansoni and
Ascaris lumbricoides decreased from 43.5% and 28.8% in 2008 [22] to 17.4% and 20.6% in 2018 by this study respectively in the same Azezo primary school. Lack of elimination of intestinal helminth infections in school children, after regular annual deworming practices, had indicated the magnitude of problems associated with helminthes re-infections in school children. This is an indication for inability of deworming program alone to control soil transmitted helminthiasis. Targeted hygiene education, sanitation measures and clean water supply could be among measures to be done in integration with deworming program to control helminth infections in school children as already reported[37]. Poor hand washing habits, unhygienic conditions, swimming habits, waking bar foot and education status of parents were reported for high incidence of intestinal infections which worsen the situation of malnutrition in children [19, 21, 22]. In this study, higher incidence (p-0.00) for intestinal helminth infections was observed for rural residence. Rural and urban conditions, with no difference in poverty level, did not show difference in stunting or wasting in school children (p>0.05)(Table 1). But, stunting was associated with low accessibility of food in poor families compared with families without shortage of food availability (p=0.000). Malnutrition due to low accessibility of food could be the main source stunting in the study area. In Ethiopia low accessibility of food due to low income of parents were reported to be statistically significant associated with stunting, wasting and underweight in school children [19, 20 33, 34]. The prevalence stunting and thinness including wasting in school children in different part of Ethiopia were ranged from 11 to 41 % for stunting and from 8.7- 34 % for thinness or underweight [19 24, 33-36].

In Ethiopia, intestinal parasitic infections in children reported to be associated with malnutrition, anaemia, and growth retardation [23]. Intestinal parasitic infections could result in malnutrition as they decline appetite for food, increase nutrient wastage through
blood loss, vomiting and diarrhea and result in protein and energy deficiencies, anaemia and other nutrient deficiencies

Except 1 school children (0.3%), there was no problem of overweight. Only 34.9% of the school children were within WHO normal range based on BAZ scores. Majority (65%) were in state of thinness or underweight (thin, wasted or sever wasted). Thinness (underweight) or stunting were not statistically significantly associated (p>0.05) with Age, sex, age groups, Haematological and biochemical values. All these results could show malnutrition was very common in all children and might be related with the low socio-economic background of the community in Azezo areas. But, 97.9% of stunting was found in 10 - 15 years age group (P=0.000). A statistically significantly differently different (p=0.000) high stunting prevalence (56.4 %) in 10-15 age group compared to lower (33.6%) in 5-10 age group was reported in school children in Macha district in Northwest Ethiopia [24]. A total of 50.1% stunting in 12-14 age group School children compared to 36.9% in 6-11 age group (p=0.000) was also reported in Arbaminch town (Southern Ethiopia)[38]. Frequent stunting in children above 10 years compared to those under 10 was reported in Angola due to prolonged problem of food shortage during previous war time [39]. From the fact that anemia prevalence, glucose or protein malnutrition were not different between the age groups (p>0.05)(almost the same probability) in addition to lack of difference in incidence of intestinal helminth infections between stunted and normal school children (P=0.49) at present study (Table 2), most probably, stunting was the result of prolonged malnutrition related to poverty and parasitic infection during childhood. Stunting may not be restricted to areas with war and prolonged shortage of food as indicated by Olivera et al. [39]. School feeding is highly recommended in countries like Ethiopia where the nation is classified as low income county with majority of rural and
urban people living in poverty.

Ascarislumbricoides, *Schistosomamansoni* and Hook worm mono-infection or
Ascarislumbricoides – Schistosomamansoni, Ascarislumbricoides– Hook worm co-infections and overall infections were statistically significantly associated (P ≤ 0.001) with protein malnutrition (hypo-proteinemia) and anaemia (Table 3). This type of association between severe malnutrition and infections reported to be common in children [40]. Intestinal helminthes infections could aggravate the situation of malnutrition. Prevalence of stunting and anaemia were reported higher in male than in female [41]. But, gender did not show any difference (p>0.05) for prevalence of stunting or anaemia in school children studied (Table 3). Intensity of infection and species of intestinal helminth infections were affected the prevalence of anaemia in statistically significant ways (p=0.000) compared with none infected school children (Table 4). The likelihood of anemia in school children, when it was compared with uninfected, increased 148 times for both *Ascarislumbricoides– Schistosomamansoni* co-infection, 38 times for Hook worm, 20 times for *Schistosomamansoni* and 3 times for *Ascarislumbricoides* mono-infection (Table 4). But in Kenya *S. mansoni* mono-infection was reported to associate with anaemia and the likelihood of anemia in Schistosoma infection was 3.68 times compared with non-infected children [41]. Probably, Swimming habits of school children in the rivers in the study areas, unhygienic and bare foot walking habits mentioned as risk factor for high incidence of Intestinal infections in the school children (Mengistu et al 2010) [22] might have contributed for such very high incidence of anemia in Azezo school children.

Ascarislumbricoides, *Schistosomamansoni* and Hook worm infections were statistically significantly associated with lower MCH values (P≤0.001). Similarly, *Schistosomamansoni* and Hook worm infections were associated with below normal MCHC level (p=.000). Below
normal concentration of MCH and MCHC were statistically significantly associated with anaemia (Table 2). Similar study in Thailand has indicated statistically significantly lower (P<0.000) MCH, and MCHC levels in helminthes infected group compared to the helminth-free group [42].

Conclusions

Helminthes infection is associated anaemia and hypo-proteinaemia, lower MCH and MCHC levels. The likelihood of anemia is very high in mono-and co-infected compared to uninfected school children. Stunting is the product of prolonged malnutrition and repeated reinfection of intestinal helminth infections in school children. Intestinal helminthes most probably aggravate the malnutrition in school children with low accessibility of food supply due to week economic background. Regular monitoring of nutritional status of school children and screening intestinal Helminthes, integrated control which involve school feeding, deworming, clean water supply and public health awareness are required.

Abbreviations

BAZ – Body mass index for age Z-score
EPG – Egg per gram
HAZ – Height for age Z-score
SD – Standard Deviation
WBC - white blood cells
RBC - red blood cells
Hgb- hemoglobin concentration
PCV - packed cell volume
MCV-mean corpuscular volume
MCH-mean corpuscular hemoglobin
MCHC-mean corpuscular hemoglobin concentration

Declarations

Ethics approval and consent to participate

Ethical clearance was obtained from Gondar University after proposal was reviewed by ethical review board of the University.

Consent for publication

The author consents to Editorial Board of the journal BMC to publish the paper. The author(s) accept responsibility for publishing this material in his own name, if any.

Availability of data and materials

The data analysed is available in the corresponding author and could be available on reasonable request.

Competing interests

The authors declare that he has no competing interests.

Funding

University of Gondar office of research and community service and University has funded this research.

Authors' contributions

MB, DT and LW designed the research and participated in the research. DT collected the samples and processed them. MB and WL supervised the processes. DT and WL analuzed the data. WL prepared this manuscript.

Acknowledgements

University of Gondar is acknowledged for funding the research and Gondar university research Ethics review board and Gondar City Health Bureau for providing ethical clearance. Our thanks also goes to Azezo district health clinic for provision of free health service and drug treatment for parasite positive school children.
Authors' contributions

DT, MB and WL developed the proposal and designed the study. DT collected the samples and MB and WL supervised the processes. WL prepared this manuscript.

References

1. Food and Agriculture Organization, 2009. The State of Food Insecurity in the World Economic crises - impacts and lessons learned. Rome, Food and Agriculture of the United Nations, 2009. http://www.fao.org/publications/sofi/en/.

2. Bain LE, Awah PK, Geraldine N, Kindong NP, Siga Y, Bernard N, et al. Malnutrition in Sub-Saharan Africa: burden, causes and prospects Pan African Medical Journal. 2013; 15:120. doi:10.11604/pamj.2013.15.120.2535 online at: http://www.panafrican-med-journal.com/content/article/15/120/full/

3. UNICEF, WHO and World Bank Group, 2015. UNICEF, World Health Organization, & the World Bank. (2012, September 20). Key facts and figures. UNICEF/WHO/World Bank Group Joint Child Malnutrition Estimates. http://www.who.int/nutgrowthdb/

4. Health Organization (2016) Global Health Observatory (GHO) data. Retrieved from http://www.who.int/gho/child_health/mortality/mortality_under_five/en/.

5. World Food Programme (2012) Two minutes to learn about: School Meals. Retrieved from https://documents.wfp.org/stellent/groups/public/documents/communications/wfp220221.pdf?_ga=2.263020492.1314642926.1528665631-1013504369.1528665631.

6. United Nations , 2015. The Millennium Development Goals Report. UN, 2015. IFPRI: Washington DC.

7. Stewart, C.P.; Lannotti, L.; Dewey, K.G.; Michaelsen, K.F.; Onyango, A.W. Contextualizing complementary feeding in a broader framework for stunting prevention. Matern. Child Nutr. 2013, 9, 27-45.
8. , T., Africa’s Food and Nutrition Security Situation Where Are We and How Did We Get Here?, in 2020 Discussion Series. 2004, IFPRI: Washington DC.

9. World Health Organization (2018) Nutrition. Retrieved from http://www.who.int/nutrition/double-burden-malnutrition/infographics/en/.

10. Stephenson LS. Helminth parasites, a major factor in malnutrition. World Health Forum. 1994; 15(2):169-72

11. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil helminth infections in 2010. Parasit Vectors. 2014; 7:37. Epub 2014/01/23. https://doi.org/10.1186/1756-3305-7-37 PMID: 24447578; PubMed Central PMCID: PMCPMC3905661

12. Stephenson, L.S.; Holland, C. Reference. In: Impact of Helminth Infections on Human Nutrition; Aylor and Francis Ltd.: New York, NY, USA, 1987.

13. King CH. Parasites and poverty: the case of schistosomiasis. Acta Tropica. 2010;113(2):95-104.

14. Taren DL, Nesheim MC, Crompton DW, Holland CV, Barbeau I, Rivera G, et al. Contributions of Ascariasis to poor nutritional status in children from Chiriqui Province, Republic of Panama. Parasitology. 1987; 95:603–13.

15. Assis AMO, Prado MS, Barreto ML, Reis MG, Conceic¸a˜o Pinheiro1 SM, Parraga IM, et al. Schistosomamansoni infection and inadequate dietary intake Childhood stunting in Northeast Brazil: the role of Schistosomamansoni infection and inadequate dietary intake Eur J Clin Nutr. 2004; 58: 1022–1029.

16. World Health Organization and UNICEF, 2009. Child growth standards and the identification of severe acute malnutrition in infants and children. A Joint Statement by the World Health Organization and the United Nations. Fund 2009

17. Sanchez-Montero M, SalseUbachN , 2010. Undernutrition: what works? A review of
policy and practise, S. M, Editor. 2010, ACF International Network and Tripode: Madrid.

18. Akombi1 BJ, Kingsley EA, Merom D, Renzaho AM, Hall JJ. Child malnutrition in sub-Saharan Africa: A meta-analysis of demographic and health surveys (2006-2016). PLoS ONE. 2017; 12(5): e0177338. https://doi.org/10.1371/journal.pone.0177338

19. TamiratHailegebriel. Undernutrition, intestinal parasitic infection and associated risk factors among selected primary school children in Bahir Dar, Ethiopia. BMC Inf Dis. 2018;18:394 https://doi.org/10.1186/s12879-018-3306-3

20. Mekonnen H, Tadesse T, Kisi T. Malnutrition and its Correlates among Rural Primary School Children of Fogera District, Northwest Ethiopia J Nutr Disorders Ther S12: 002. doi:10.4172/2161-0509.S12-002

21. Gelaw A, Anagaw B, Nigussie B, Silesh B, 3, Yirga A, Alem M, et al. Prevalence of intestinal parasitic infections and risk factors among schoolchildren at the University of Gondar Community School, Northwest Ethiopia: a cross-sectional study BMC Public Health 2013, 13:304 http://www.biomedcentral.com/1471-2458/13/304

22. Endris M, LemmaW, BelyhunY, Moges B, Gelaw A, Anagaw B, et al. Prevalence of intestinal parasites and associated risk factors among students of Atsefasil general elementary school Azezo, northwest Ethiopia. Ethiopia. J. Health Biomed Science Vol.3, No.1

23. Yirga G, Degarege A, Erko B. Prevalence of intestinal parasitic infections among children under five years of age with emphasis on Schistosomamansoni in WonjiShoa Sugar Estate, Ethiopia. PLoS One. 2014; 9(10):e109793. https://doi.org/10.1371/journal.pone.0109793 PMID: 25296337; PubMed Central PMCID: PMCPMC4190315.

24. Mazengia AL, Biks, GA. Predictors of Stunting among School-Age Children in Northwestern Ethiopia. J NutriMetab2018.https://doi.org/10.1155/2018/7521751
25. Ethiopian Statistical authority. ESA, 2007.

26. Ethiopian Meteorological Authority. EMA, 2015

27. WHO AnthroPlus for personal computers Manual: Software for assessing growth of the world’s children and adolescents. http://www.who.int/growthref/tools/en/] Geneva, Switzerland: WHO; 2009. webcite.

28. Victora, CG (1991) The association between wasting and stunting: An international perspective’, The Journal of Nutrition122(5), 1105–1110.

29. De Onis M, Onyango AW, Borghi E, Garza C, Yang H (2006) Comparison of the World Health Organization (WHO) child growth standards and the National Centre for Health Statistics/WHO international growth reference: implications for child health programmes’. Pub Health Nutri. 2006; 9(7), 942–947. http://dx.doi.org/10.1017/PHN20062005.

30. Katz N, Pellegrino JS. Simple device for quantitative determinations of S. mansoni eggs in faeces examined by the thick smear technique. Rev Inst Med. Trop. 1972; 14, 397–400.

31. WHO (1994) Bench Aids for the diagnosis of intestinal parasites. World Health Organization, Geneva 1994.

32. Soldin, SJ, Brugnara C, Wong, EC.Pediatric reference ranges (4th ed.). Washington, DC: AACC Press.2005

33. Wolde M, Berhan Y, Chala W. Determinants of underweight, stunting and wasting among school children BMC Public Health;2005;15:8 DOI 10.1186/s12889-014-1337-2

34. Mekonnen Z, MekaS, Zeynudin A, Suleman, S. Schistosomamansoni infection and undernutrition among school age children in Fincha’a sugar estate, rural part of West Ethiopia. BMC Research Notes 2014, 7:763 http://www.biomedcentral.com/1756-0500/7/763

35. Birmeka M, Urga K, Petros, B () Intestinal Parasitic Infection and Nutritional Status of
Elementary School children Aged 7 - 14 in Enemorena-Ener District, Gurage Zone, Ethiopia
EC Nutrition. 2017; 9.3: 129-141.

36. Kabeta A, Assefa S, Hailu D, Berhanu G. (). Intestinal parasitic infections and nutritional status of pre-school children in HawassaZuria District, South Ethiopia. Afr J MicrobiolResearch. 2017;11(31):1243-1251, 21 August, 2017 DOI: 10.5897/AJMR2017.8597

37. Jia T-W, Melville S, Utzinger J, King CH, Zhou X-N. Soil-transmitted helminth reinfection after drug treatment: a systematic review and meta-analysis. PLoSNegl Trop Dis. 2012;6(5):e1621.

38. TarikulEZ, Abebe GA, Melketsedik ZA, Gutema, BT. Prevalence and factors associated with stunting and thinness among school-age children in Arba Minch Health and Demographic Surveillance Site, Southern Ethiopia PLoS ONE 2018;13(11): e0206659. https://doi.org/10.1371/journal.pone.0206659

39. Oliveira D, Filip F, Atouguia J, Fortes F, Guerra A, Centeno-Lima S. Infection by Intestinal Parasites, Stunting Anemia in School-Aged Children from Southern Angola. PLoS ONE; 2015: 10 (9): e0137327. doi:10.1371/journal. bpone.0137327

40. Krawinkel MB. Interaction of Nutrition and Infections globally. Ann NutrMetab2012; 61 (suppl 1):39–45 DOI: 10.1159/000345162

41. Butler SE, Muok EM, Montgomery SP, Odhiambo K, Mwinzi PM, Secor WE, et al. Mechanism of Anemia in Schistosoma mansoni-Infected School Children in Western Kenya. The American journal of tropical medicine and hygiene.2012;87(5):862-7.

42. Watthanakulpanich D, Maipanich W, Pubampen S, Sa-nguankiat S, PooudouanS, Chantaranipapong Y. Impact of Hookworm deworming on anemia and nutritional status among children in Thailand. Southeast Asian J Trop Med Public Health 2011; 42:782-792.

Tables

Table 1
	Low accessibility of food	Residence Urban=153(39.8%)	Rural= 231(60.2%)	Education Illiterate: 196(51%)	Literate: 188(49%)	Shoes wearing habits:	Yes No	No.								
	yes	no	Sig.	OR	yes	no	Sig.	OR	yes	no	Sig.	OR	yes	No.		
Wasted: Yes Norm	15.7%	18.4%	.5	.8	18.3%	16.5%	.5	1.2	17.3%	17%	.8	1.1	17.5%	17%	No: (7)	
	(27)	(39)			(28)	(38)			(34)	(32)			(65)			
	84.3%	81.6%			81.7%	83.5%			82.7%	83%			82.5%	83%	(92)	
	(145)	(173)			(125)	(193)			(162)	(156)			(306)			
Stunted: Yes Norm	21.5%	5%	.00	5.4	14.4%	10.8%	.2	1.6	11.2%	13.3	.7	.8	12.5%	15%		
	(37)	(10)			(22)	(25)			(22)	(25)			(45)			
	78.5%	95%			85.6%	89.2%			89.5%	86.7	.7	.8	87.5%	15%	(11)	
	(135)	(201)			(131)	(206)			(174)	(163)			(326)			
Anaemic: Yes Norm	34.3%	23.6%	.1	1.6	23.5%	38.5%	.7	1.1	37.8%	27.1	.9	1	32.9%	23%	(122)	
	(59)	(50)			(36)	(89)			(74)	(51)			(171)			
	65.7%	76.5%			61.3%	64.7%			62.2%	72.9	.9	1	67.1%	76%	(1)	
	(113)	(125)			(117)	(142)			(122)	(137)			(249)			
IHI: Yes Norm	45.3%	39.2%	.2	7.7	30.1%	57.1%	.00	.3	55.1%	37.2	.09	1.6	46.1%	53%	(171)	
	(78)	(83)			(46)	(132)			(108)	(70)			(200)			
	54.7%	43.4%			42.9%	42.9%			44.9%	62.8	.9	1.0	53.9%	46%	(204)	
	(94)	(92)			(99)	(99)			(88)	(85)			(200)			
Abs poverty: Yes No	-	-	-	-	46.4%	43.7%	.7	1.1	44.4%	45.2	.9	1.0	44.7%	46%	(166)	
	-	-			(71)	(101)			(87)	(85)			(166)			
	53.6%	56.3%			52.3%	47.7%			53.6%	54.8	.09	1.6	55.3%	53%	(204)	
	(82)	(82)			(129)	(129)			(108)	(103)			(204)			
Residence: Urban Rural	41.3%	38.9%	.6	1.1	-	-	-	-	26%	54.3	.00	.3	40.7%	18%	(151)	
	(71)	(82)			-	-			(51)	(102)			(151)			
	58.7%	61.1%			-	-			74%	45.7	.7	1.0	59.3%	18%	(1)	
	(101)	(129)			-	-			(145)	(86)			(220)			
Education: Illiterate Literate	.9	1.04	26%	(51)	62.8%	51%	.00	.4	-	-	-	-	51.6%	38%	(191)	
	(87)	(108)			(151)	(145)			-	-	-	-	(191)			
	49.4%	48.8%			37.2%	37.2%			-	-	-	-	48.4%	41%	(180)	
	(85)	(103)			(86)	(86)			-	-	-	-	(180)			
Shoes wearing habits: Yes No	.8	.9	98.7%	95.2%	.1	4.7	51.5%	95.7%	.2	2.3	(1)	(1)	97.6%	36%	(360)	
	(204)	(220)			(151)	(220)			(191)	(180)			(360)			
	3.5%	1.3%	4.8%	(11)	-	-	-	-	(5)	4.3%	(8)	3%	0%	(11)	(1)	
Hand washing habits: Yes No	.4%	.4%	1.4%	(3)	3%	(4)	-	-	-	-	-	-	-	-	(11)	(1)
Swimming in the river: Yes No	.1	.3	97.4%	97%	.4	1.8	98%	96.3%	.3	1.9	.1%	(1)	15.4%	23%	(56)	
	(164)	(198)			(149)	(124)			(192)	(181)			(56)			
	10.5%	20%	.017	.451	88.8%	79.8%	.050	1.85	84.6%	20.2%	.8%	5.6%	15.4%	23%	(56)	
	(18)	(41)			(171)	(150)			(314)	(38)			(56)			
Table 2																
Variables(number)	Age group: 7-10 years(n=151)	11-15 years(n=233)	Helminthes infection: Yes(n=178)	No(n=206)	Stunted: Yes:47	No:337	Wasted: yes(66)	No (318)								
---	---	---	---	---	---	---	---	---	---							
% (N)	% (N)	% (N)	% (N)	% (N)	% (N)	% (N)	% (N)	% (N)								
Hypo-glycemic	yes(N=49)	19(38.8)	30(61.2)	41(83.7)	137(50.9)	43(12.4)	9(18.4)	.846	1.1							
Hypo-proteinemic	(N=125)	54(43.2)	71(56.8)	93(74.4)	162(43.3)	46(13.3)	60(17.6)	.991	1.0							
Below Normal	RBC (N=18)	5(27.8)	13(72.2)	16(88.9)	2(11.1)	45(12.3)	62(16.9)	.455	.6							
Below Normal	WBC (N=32)	14(43.8)	18(56.3)	11(34.4)	1(3.1)	1(3.1)	6(188)	.433	.7							
Below Normal	MCH (N=75)	26(34.7)	49(65.3)	50(66.7)	128(41.4)	36(11.7)	58(18.7)	.019	2.9							
Below Normal	MCHC (N=143)	58(40.6)	285(53.4)	75(52.4)	102(42.5)	29(12.1)	39(16.3)	.253	.7							
Above Normal	Lymph (N=124)	46(37.1)	18(62.9)	69(55.6)	109(41.5)	32(12.3)	51(19.6)	.775	1.0							
Below Normal	Neut. (N=181)	69(38.7)	112(61.3)	87(48.1)	10(41.5)	21(11.6)	26(12.3)	.392	1.2							
Helminth infec.:	(N=178)	54(30.3)	124(69.7)	-	-	24(13.5)	36(20.2)	.389	1.2							
(N=47)		1(2.1)	46(97.9)	24(51.6)	158(45.7)	7(14.9)	59(17.5)	.492	.7							
Wasted:	(N=66)	122(36.5)	142(63.5)	36(54.4)	40(44.7)	1(3.1)	12(18.8)	.590	.8							
Anemic yes:	(N=125)	47(37.6)	78(62.4)	108(86.4)	11(8.8)	36(13.9)	40(15.4)	.349	1.2							

P-value

OR
Table 3

	Anaemia			Hypoproteinaemia							
	A	Sig.	Odd	95% CI for OR	%	Sig.					
			Ratio (OR)								
Ascaris	An(n=10) Nor(n=115)	23.8	33.6	.009	3.1	1.3-7.3	47.6%	.000	4.6	2.3-9.4	M=15 F=27
Schistosoma	An(n=27) Nor(n=98)	67.5	28.5	.000	20.6	9.1-46.3	65%	.000	9.5	4.5-19.9	M=19 F=21
Hook worm	An(n=27) Nor(n=98)	79.4%	28.4%	.000	38.2	14.7-99.3	35.3%	.012	2.8	1.3-6.1	M=16 F=18
Asca– Schisto	An(n=15) Nor(n=110)	93.8%	29.9%	.000	148.4	18.6-1186	93.8%	.000	76.3	9.8-597.3	M=7 F=9
Asca-Hook W	-	-	-	-	Hypo(n=7) Norm(n=118)	58.3%	31.7%	.001	7.1	2.1-23.8	M=6 F=6

Table 4
	Chi-Square	df
1. Male vs Female		
Helminth infection(178) and none infection(206)	2.041	1
Light(56), moderate (47), heavy(75) and none(206) infection	1.209	1
Mono-infection(133), Co-infection(45) and none infection(206)	2.588	1
Ascaris, Schistosoma, Hook worm, Trichuris, Ascaris – Schistosoma, Ascaris-Hookworm , and so on	1.556	1
2. Anemic (N=127) vs normal		
Helminth infection and none infection	62.846	1
3. Anemic (N=127) vs normal		
Light, moderate and Heavy infection	50.444	1
Mono-infection, Co-infection and none infection	40.223	1
Ascaris, Schistosoma, Hook worm, Trichuris, Ascaris – Schistosoma, Ascaris-Hookworm , and so on	28.457	1
4. Stunted (N=47) vs Normal		
Helminth infection and none infection	.476	1
Light(34%), moderate(4.3%), Heavy(12.8%) and none(48.9%) infection	2.915	1
Mono-infection, Co-infection and none infection	1.939	1
Ascaris, Schistosoma, Hook worm, Trichuris, Ascaris – Schistosoma, Ascaris-Hookworm , and so on	1.139	1