VERY TWISTED STABLE MAPS

QILE CHEN, STEFFEN MARCUS, AND HENNING ÚLFARSSON

ABSTRACT. Let X be a smooth projective Deligne-Mumford stack over an algebraically closed field k of characteristic 0. In this paper we construct the moduli stack $\tilde{K}_{g,n}(X,\beta)$ of very twisted stable maps, extending the notion of twisted stable maps from [AV02] to allow for generic stabilizers on the source curves. We also consider the Gromov-Witten theory given by this construction.

CONTENTS

1. Introduction 1
2. Constructing the stacks S_X and G_X 13
3. Very twisted curves and their maps 12
4. Equality of the Gromov-Witten Theories 14
References 17

1. INTRODUCTION

Throughout, we let X be a smooth, projective Deligne-Mumford stack (DM-stack from now on) over an algebraically closed field k of characteristic 0.

The Gromov-Witten theory of orbifolds was first introduced in the symplectic setting in [CR05]. This was followed by an adaptation to the algebraic setting in [AGV02] and [AGV08], where the Gromov-Witten theory of DM-stacks was developed, and heavy use is made of the moduli stack of twisted stable maps into X, denoted $\mathcal{K}_{g,n}(X,\beta)$. This stack was constructed in [AV02] and is the necessary analogue of Kontsevich’s moduli stack of stable maps for smooth projective varieties when replacing the variety with a DM-stack. The main purpose of this note is to provide a further extension of these spaces by allowing generic stabilizers on the source curves of the twisted stable maps.

Following [AGV08], we have a diagram:

$$\begin{array}{c}
\Sigma_i^C \subset C & \xymatrix{ \ar[r]^f & X } \\
\downarrow & \downarrow \\
\mathcal{K}_{g,n}(X,\beta)
\end{array}$$

where $\Sigma_i^C \subset C \xymatrix{ \ar[r]^f & X }$ is the universal n-pointed twisted stable map. This gives rise to evaluation maps $e_i : \mathcal{K}_{g,n}(X,\beta) \longrightarrow \mathcal{I}_\mu(X)$ mapping into the rigidified cyclotomic inertia

Date: October 31, 2008.
stack $\mathcal{I}_\mu(X)$ of X. If $\gamma_1, \ldots, \gamma_n \in A^*(\mathcal{I}_\mu(X))_\mathbb{Q}$ then the Gromov-Witten numbers are defined to be

$$\langle \gamma_1, \ldots, \gamma_n \rangle^X_{g,\beta} = \int_{[\mathcal{K}_{g,n}(X,\beta)]^{\text{vir}}} \prod_i e_i^* \gamma_i$$

where $[\mathcal{K}_{g,n}(X,\beta)]^{\text{vir}}$ is the virtual fundamental class of $\mathcal{K}_{g,n}(X,\beta)$ as in [BP97].

In the case when X is a 3-dimensional Calabi-Yau variety, we also have Donaldson-Thomas theory (originating from [Tho00], [DT98]) which in contrast to Gromov-Witten theory gives invariants by counting sheaves. We get the following diagram:

$$
\begin{array}{ccc}
\mathcal{Y} \subset X \times \text{Hilb}_{X,\beta}(X) & \xrightarrow{\mathcal{Hilb}_{X,\beta}(X)} & \mathcal{Y} \\
\downarrow & & \downarrow \\
\text{Hilb}_{X,\beta}(X) & & \text{Hilb}_{X,\beta}(X)
\end{array}
$$

where the virtual dimension of $\text{Hilb}_{X,\beta}(X)$ is zero as in [BP97]. The conjectural Donaldson-Thomas / Gromov-Witten correspondence of [MNOP06] predicts a correspondence (in the case $n=0$):

$$\left\{ \int_{[\mathcal{K}_{g,0}(X,\beta)]^{\text{vir}}} 1 = GW(g,\beta) \right\} \leftrightarrow \left\{ \int_{[\text{Hilb}_{X,\beta}(X)]^{\text{vir}}} 1 = DT(\chi,\beta) \right\}.$$

This correspondence is manifested in a subtle relationship between generating functions of the invariants. One wishes to discover a similar correspondence when X is a 3-dimensional Calabi-Yau orbifold. The Hilbert scheme of a stack was constructed by Olsson and Starr [OS03], but notice that in general it contains components corresponding to substacks with nontrivial generic stabilizers. In our definition of $\mathcal{K}_{g,n}(X,\beta)$ the twisted curves used as the sources of our maps have stacky structure only at the nodes and marked points. To allow for the above correspondence, one needs to extend the notion of the space of twisted stable maps as defined in [AV02] and [ACV08] so that our twisted curves have generic stabilizers. We approach this problem in three steps:

1. Construct the stack \mathcal{G}_X of étale gerbes in X as a rigidification of the stack \mathcal{S}_X of subgroups of the inertia stack $\mathcal{I}(X)$. We exhibit \mathcal{S}_X as the universal gerbe sitting over \mathcal{G}_X, giving a diagram:

$$
\begin{array}{ccc}
\mathcal{S}_X & \xrightarrow{\phi} & X \\
\downarrow{\phi} & & \downarrow{\alpha} \\
\mathcal{G}_X & & \mathcal{G}_X
\end{array}
$$

This is done in section 2.

2. Define the moduli stack of very twisted stable maps $\tilde{\mathcal{K}}_{g,n}(X,\beta)$ by setting

$$\tilde{\mathcal{K}}_{g,n}(X,\beta) := \bigsqcup_{\beta_G} \mathcal{K}_{g,n}(\mathcal{G}_X,\beta_G)$$

where the disjoint union is taken over all curve classes $\beta_G \in H^*(\mathcal{G}_X)$ such that $\phi_* \alpha^* \beta_G = \beta$. By pulling back, we see that each $\mathcal{K}_{g,n}(\mathcal{G}_X,\beta_G)$ has two different universal objects sitting above it, one giving twisted stable maps into \mathcal{G}_X and the other
giving “very twisted” stable maps into \(X \). Through our disjoint union, we get the two corresponding universal objects sitting above \(\bar{K}_{g,n}(X, \beta) \). This is done in section 3.

(3) Relate the Gromov-Witten theory of \(X \) given by the two different universal objects sitting above \(\bar{K}_{g,n}(X, \beta) = \coprod_{\beta_2} K_{g,n}(G_X, \beta_2) \) and show that they give the same invariants. This is done in section 4.

1.1. Acknowledgements. We would like to thank Jim Bryan and Rahul Pandharipande for suggesting the problem, and Angelo Vistoli for his great help in understanding the constructions of Section 2. We would also like to thank our advisor, Dan Abramovich, for his continuous support and encouragement.

Finally, Ezra Getzler has suggested earlier that very twisted curves should be of independent interest; this note may give further motivation for following this suggestion.

2. Constructing the stacks \(S_X \) and \(G_X \)

In this section we construct DM-stacks \(S_X \) and \(G_X \) and show that \(G_X \) is presented as the rigidification of \(S_X \) along a group scheme. Our construction follows closely the construction of \(I_{\mu}(X) \) and its rigidification, from \[AGV08\].

2.1. The stack of subgroups of the inertia stack. Recall that \(X \) is a smooth, projective DM-stack over an algebraically closed field \(k \) of characteristic 0. We begin by defining the stack \(S_X \) of subgroups of the inertia stack \(I(X) \).

Definition 2.1.1. We define a category \(S_X \), fibered over the category of schemes, as follows:

(a) An object of \(S_X(T) \) consists of a pair \((\xi, \alpha : G \hookrightarrow Aut_T(\xi))\), where \(\xi \in X(T) \), the arrow \(\alpha \) is an injective morphism of group schemes and \(G \) is finite and étale over \(T \).

(b) An arrow sitting over \(T \to T' \) from \((\xi, \alpha) \in S_X(T)\) to \((\xi', \alpha') \in S_X(T')\) is a morphism \(F : \xi \to \xi' \) making the following diagram commutative:

\[
\begin{array}{ccc}
G & \longrightarrow & G' \\
\downarrow^{\alpha} & & \downarrow^{\alpha'} \\
Aut_T(\xi) & \longrightarrow & Aut_{T'}(\xi') \\
\downarrow & & \downarrow \\
T & \longrightarrow & T'
\end{array}
\]

where \(Aut_T(\xi) \to Aut_{T'}(\xi') \) is the morphism induced by \(F \) and the diagram is cartesian.

This definition follows Definition 3.1.1 in \[AGV08\] except we are allowing our subgroup to vary.

There are several things that need mention or proof.

Remark. Notice that there is an obvious morphism (of fibered categories) \(S_X \to X \) which sends \((\xi, \alpha)\) to \(\xi \).

Proposition 2.1.2. \(S_X \) is fibered in groupoids over the category of schemes.

Proof. By Proposition 3.22 in Part 1 of \[FGI05\] \(S_X \) is fibered in groupoids if and only if
• every arrow is cartesian; and
• given ξ' over T' and $f: T \to T'$ there exists an arrow $\phi: \xi \to \xi'$ over f.

The first condition is automatically satisfied since every arrow in S_X is an arrow in X which is fibered in groupoids. For the second we set $\xi = f^*\xi'$ and $G = f^*G'$, so α is automatically defined. We now clearly have an arrow $(\xi, \alpha) \to (\xi', \alpha')$ making the necessary diagram commute. □

Proposition 2.1.3. The category S_X is a DM-stack, and the functor $S_X \to X$ is representable and finite.

Proof. We prove that the functor $S_X \to X$ is representable and finite, which implies that S_X is a DM-stack. The inertia stack $I(X) \to X$ is finite, unramified and representable, since X is assumed to be a separated DM-stack. We can therefore let M be the maximal degree of a fiber of $I(X)$. We begin by showing that the relative Hilbert scheme $\text{Hilb}(I(X)/X)$ is unramified and finite:

- The fiber over a geometric point of X is unramified since a subscheme of a finite étale scheme has only trivial infinitesimal deformations.
- The relevant Hilbert polynomials here are just integers since the schemes in question are all finite. These integers are bounded above by M, so there are only finitely many of them. This together with the fact that each component is proper implies finiteness.

The relative Hilbert scheme is representable by definition. The last part we need is to notice that S_X is an open and a closed subscheme in $\text{Hilb}(I(X)/X)$ since the condition on a finite subset to be a group is an open and closed condition. □

Proposition 2.1.4.

1. When X is smooth, S_X is smooth as well.
2. When X is proper, S_X is proper as well.

Proof. We start with (1). Let x be a geometric point of X and G_x its stabilizer group. We know from [AOV08] that we can view X in a local chart around x as $[U/G_x]$. S_X has a local chart $[U^H/N(H)]$, where $H \subset G_x$ is a subgroup and we quotient out by the normalizer subgroup $N(H)$. To prove that this chart is smooth note that $T_{U^H} = (T_U)^H$ and that $\dim(T_{U^H}) = \dim(T_U)^H$ and T_V^+ is generated by

$$\overline{y}_1, \ldots, \overline{y}_d, \overline{y}_{d+1}, \ldots, \overline{y}_n,$$

where $\overline{y}_1, \ldots, \overline{y}_d$ are the invariant generators. Since H is reductive we have a section of the projection map $m \to m/m^2$ which allows us to lift all the generators to

$$y_1, \ldots, y_d, y_{d+1}, \ldots, y_n,$$

in such a manner that y_1, \ldots, y_d are still the invariant generators and y_{d+1}, \ldots, y_n span a finite dimensional representation. Let J be the ideal generated by y_{d+1}, \ldots, y_n. Then the quotient by that ideal corresponds to an invariant subscheme, which is smooth since formally it is generated by y_1, \ldots, y_d. This proves that the dimension of U^H is at least, and thus equal, to $\dim T_{U^H}$.

(2) follows from the proof of Proposition 2.1.3 since S_X is a closed subscheme of $\text{Hilb}_X(I(X))$, which is proper over X. □
2.2. Alternative description of S_X. It will be useful to provide another, less obvious, description of S_X. We start with a definition.

Definition 2.2.1. An étale gerbe over a scheme S is an DM-stack \mathcal{A} over S such that

1. there exists an étale covering $S_i \to S$ such that each $\mathcal{A}(S_i)$ is not empty.
2. given two objects a and b of $\mathcal{A}(T)$, where T is an S-scheme, there exists a covering $T_i \to T$ such that the pullbacks a_{T_i} and b_{T_i} are isomorphic in $F(T_i)$.

More generally, a stack \mathcal{F} over a stack \mathcal{X} is an étale gerbe if for any morphism $V \to \mathcal{X}$ with V a scheme, the pull-back $\mathcal{F}_V \to V$ along $V \to \mathcal{X}$ is an étale gerbe.

Definition 2.2.2. We define a 2-category S'_X, fibered over the category of schemes, as follows:

(a) An object of $S'_X(T)$ consist of representable morphisms $\phi : A \to X$, where A is an étale gerbe over T, with a section $\tau : T \to A$.

(b) A 1-arrow $(F, \rho) : (A, \phi) \to (A', \phi')$ consists of a morphism $F : A \to A'$ over some $f : T \to T'$ making a cartesian square, and a natural transformation $\rho : \phi \Rightarrow \phi' \circ F$ making the following diagram commutative:

(c) A 2-arrow $(F, \rho) \to (F_1, \rho_1)$ is an natural transformation $\sigma : F \Rightarrow F_1$ giving an equivalence, and compatible with ρ and ρ_1 in the sense that the following diagram is commutative:

Remark. (1) By Lemma 3.21 in [LMB00], the section τ gives a neutral section, hence the gerbe A is isomorphic to $B_T G_\tau$ where $G_\tau = \text{Aut}_T A(\tau, \tau)$ is étale over T. The section τ corresponds to the trivial G_τ-torsor $G_\tau \to T$.

(2) Since T gives a moduli space of A, the arrow $A \to T$ is proper. This implies that the group scheme G_τ is finite over T.

Lemma 2.2.3. The 2-category S'_X is equivalent to a category.

Proof. Lemma 3.3.3 in [AGV08] shows that the isomorphism group of a 1-arrow in S'_X is trivial. Since all 2-arrows are isomorphisms, the result follows. \square
Definition 2.2.4. By abuse of notation, we denote by S'_X the 1-category associated to the above 2-category. Our arrows become 2-isomorphism classes of 1-arrows.

Definition 2.2.5. We define a morphism of fibered categories $S'_X \to S_X$ as follows:

(a) Given an object

$\begin{array}{c}
A \\
\downarrow \\
T
\end{array} \xrightarrow{\phi} \begin{array}{c}
X \\
\downarrow \\
T
\end{array}$

with a section $\tau : T \to A$, we obtain a pair (ξ, α) as follows: ξ is obtained by composing ϕ with τ. Note that τ gives an element $\zeta_{\tau, T} \in A(T)$. Then α is the associated map of automorphisms

$G = Aut_T(\zeta_{\tau, T}) \to Aut_T(\xi)$,

which is injective since ϕ is representable.

(b) Given an arrow ρ as above, we obtain an arrow $F : \phi(\zeta_{\tau, T}) \to \phi'(\zeta'_{\tau', T'})$ by completing the following diagram:

$\begin{array}{c}
\phi(\zeta_{\tau, T}) \\
\downarrow \rho \\
\phi' \circ f_*(\zeta_{\tau, T}) \\
\downarrow \\
\phi'(\zeta'_{\tau', T'}) \\
\downarrow \\
\phi'(\zeta'_{\tau', T})
\end{array} \xrightarrow{F} \begin{array}{c}
\phi'(\zeta_{\tau, T}) \\
\downarrow \\
\phi'(\zeta'_{\tau', T})
\end{array}$

The proof of the following proposition is almost the same as Proposition 3.2.3 in [AGV08]. But for completeness, we rewrite this in our case.

Proposition 2.2.6. The morphism $S'_X \to S_X$ is an equivalence of fibered categories.

Proof. By Proposition 3.36 in Part 1 of [FGI+05], it is enough to show that the induced functor on the fiber $S'_X(T) \to S_X(T)$ is an equivalence for any given scheme T.

(1) The functor is faithful.

Assume we are given two elements in $S'_X(T)$ and a 2-arrow $\rho : \phi \Rightarrow \phi' \circ F$ making the following diagram commutative:

$\begin{array}{c}
A \\
\downarrow \phi \\
X \\
\downarrow \\
A' \\
\downarrow \phi' \\
T \\
\downarrow \\
T'
\end{array}$

We need to show that for any T-scheme U and any $G_{\tau} \times_T U$-torsor $P \to U$, the arrow $\rho(P \to U) : \phi(P \to U) \to \phi' \circ F(P \to U)$ is uniquely determined by $\rho(G_{\tau} \to T) : \phi(G_{\tau} \to T) \to \phi' \circ F(G_{\tau} \to T)$. Note that $G_{\tau} \to T$ is the trivial torsor given by the section τ.
Let \(\{U_i \to U\} \) be an étale covering such that the pull backs \(P_i \to U_i \) are trivial (i.e. \(P_i \simeq (G_\tau \times_T U) \times_U U_i \simeq G_\tau \times U_i \)). Since \(X \) is a DM-stack, the arrow \(\phi(P \to U) \to \phi' \circ F(P \to U) \) is determined by \(\phi(P_i \to U_i) \to \phi' \circ F(P_i \to U_i) \).

Hence, we can assume that \(P \to U \) is trivial. But then the cartesian arrow \(P \to G_\tau \) and the induced diagram

\[
\begin{array}{ccc}
\phi(P \to U) & \to & \phi' \circ F(P \to U) \\
\downarrow & & \downarrow \\
\phi(G_\tau \to T) & \to & \phi' \circ F(G_\tau \to T)
\end{array}
\]

proves what we want.

(2) **The functor is fully faithful.**

Assume we are given an arrow \(\beta : \phi(G_\tau \to T) \to \phi' \circ F(G_\tau \to T) \) in \(X(T) \) which is compatible with the action of \(G_\tau \) and \(G_{\tau'} \). First, consider the trivial torsor \(P \simeq G_\tau \times_T U \to U \), which induces a cartesian arrow \(P \to G_\tau \). By definition of cartesian arrow, there is a unique arrow \(\rho(P \to U) \) that we can insert in the diagram

\[
\begin{array}{ccc}
\phi(P \to U) & \to & \phi' \circ F(P \to U) \\
\downarrow & & \downarrow \\
\phi(G_\tau \to T) & \to & \phi' \circ F(G_\tau \to T)
\end{array}
\]

making it commutative. This arrow \(\rho(P \to U) \) is independent of the chosen trivialization, since \(\beta \) compatible with the group action.

Now, if the \(G_\tau \)-torsor \(P \to U \) is not necessarily trivial, choose a covering \(U_i \to U \) such that the pull-backs \(P_i \to U_i \) are trivial. We have arrows \(\phi(P_i \to U_i) \to \phi' \circ F(P_i \to U_i) \) in \(X(U_i) \), and their pullbacks to \(U_i \times_U U_j \) coincide; hence they glue together to give an arrow \(\rho(P \to U) : \phi(P \to U) \to \phi' \circ F(P \to U) \). It is not hard to see that \(\rho(P \to U) \) does not depend on the choice of covering, and defines a 2-arrow \(\phi \to \phi' \circ F \) whose image in \(S_X(T) \) coincides with \(\beta \).

(3) **The functor is essentially surjective.**

Note that since \(G_\tau \) is étale over \(T \), and \(A \simeq \mathcal{B}_TG_\tau \), then \(T \to A \) gives an atlas of \(A \). Given an object \((\xi, \alpha : G \to Aut_{T,X}(\xi)) \) of \(S_X(T) \), we need to construct \(\phi : \mathcal{B}_TG \to X \), whose image in \(S_X(T) \) is isomorphic to \((\xi, \alpha) \).

Let \(P \to U \) be a \(G \times_T U \)-torsor, where \(U \) is a T-scheme. The morphism \(G \times_T P \to P \times_U P \) given by \((g,p) \to (gp,p) \), is an isomorphism. The pull-back of \(\xi \) to \(P \times_U P \simeq G \times_T P \) via the first and the second projection coincide with the pull-back \(\xi_{G \times T P} \), and the isomorphism is given by the projection \(G \times_T P \to G \). These give descent data for \(\xi_P \) along the étale covering \(P \to U \). The descent data are effective, and define an object \(\eta \) of \(X(U) \), so we assign to every object of \(\mathcal{B}_TG(U) \) an object of \(X(U) \). This extends to a morphism of fibered categories \(\phi : \mathcal{B}_TG \to X \).

Now let \(G \to T \) be the trivial G-torsor over T. We claim that \(\eta := \phi(G \to T) \) of \(X(T) \) is isomorphic to \(\xi \). In fact, the object with descent data defining \(\xi \) is \(\xi_G \), with the descent data given by the identity on \(\xi_{G \times G} \). Those descend to \(\eta \simeq \xi \) in \(X(T) \). Hence the image of \(\phi \) in \(S_X(T) \) is isomorphic to \((\xi, G) \), as we wanted.
2.3. The stack of gerbes in X. In the following we introduce a stack \mathcal{G}_X which is closely related to \mathcal{S}_X and will play an important role in the construction of the moduli stack of very twisted stable maps.

Definition 2.3.1. Define as before a 2-category \mathcal{G}_X with a functor to the category of schemes as follows:

(a) An object over a scheme T is a pair (A, ϕ) where A is an étale gerbe over T and $A \to X$ is a representable morphism.

(b) A 1-arrow $(F, \rho) : (A, \phi) \to (A', \phi')$ consists of a morphism $F : A \to A'$ over some $f : T \to T'$ making a cartesian square, and a natural transformation $\rho : \phi \Rightarrow \phi' \circ F$ making the following diagram commutative:

\[
\begin{array}{ccc}
A & \xrightarrow{F} & A' \\
\downarrow & & \downarrow \\
T & \xrightarrow{f} & T'.
\end{array}
\]

(c) A 2-arrow $(F, \rho) \to (F_1, \rho_1)$ is an natural transformation $\sigma : F \Rightarrow F_1$ giving an equivalence, and compatible with ρ and ρ_1 in the sense that the following diagram is commutative:

\[
\begin{array}{ccc}
\phi & \xrightarrow{\rho} & \phi \\
\downarrow & & \downarrow \\
\phi \circ F & \xrightarrow{\phi(\sigma)} & \phi \circ F_1.
\end{array}
\]

Definition 2.3.2. Exactly as above, the 2-category \mathcal{G}_X is equivalent to a 1-category. By abuse of notation, we denote by \mathcal{G}_X its associated 1-category.

It will follow from our results below on rigidification that \mathcal{G}_X is a DM-stack.

Remark. There is a tautological functor of categories $\mathcal{S}_X \to \mathcal{G}_X$, sending the pair (ϕ, τ) in $\mathcal{S}_X(T)$ to the representable morphism $\phi : A \to X$ in $\mathcal{G}_X(T)$.

2.4. Rigidification. Rigidification of algebraic stacks was first defined and used in [ACV03], [AOV08] and [Rom05]. It was foreseen in [Art74].

In this section, we discuss the rigidification of DM-stacks, and prove a proposition that the morphism $\mathcal{S}_X \to \mathcal{G}_X$ defined in the above remark gives a rigidification of \mathcal{S}_X along an appropriate relative group scheme, which all our constructions rely on.

We begin by restating the theorem in [AOV08] on the existence of the rigidification of an algebraic stack. We stick to the case of DM-stacks since this is all we will need for our purposes. It follows from Theorem 5.1.5 in [ACV03] that the rigidification of a DM-stack is a DM-stack, and the quotient map is étale.

Let S be a scheme, $X \to S$ a DM-stack of finite type over (Sch/S). Suppose $G \subseteq \mathcal{I}(X)$, where $\mathcal{I}(X)$ is the inertia stack of X, and G is a subgroup stack of $\mathcal{I}(X)$ of finite type and étale over X.

Theorem 2.4.1 ([AOV08] Theorem A.1). There exists a finite type DM-stack $X \sslash G$ over S with a morphism $\rho : X \to X \sslash G$ satisfying the following properties:
(1) \(X \) is an étale gerbe over \(X \sslash G \).
(2) For each object \(\xi \) of \(X(T) \), the morphism of group schemes

\[
\rho : \text{Aut}_T(\xi) \to \text{Aut}_T(\rho(\xi))
\]

is surjective with kernel \(G_\xi \).

Furthermore, if \(G \) is finite over \(X \) then \(\rho \) is proper; while since \(G \) is étale, \(\rho \) is also étale. These properties characterize \(X \sslash G \) uniquely up to equivalence.

Remark. From ([AOV08] Theorem A.1) we already know that \(X \sslash G \) is an algebraic stack. To show that it is also a DM-stack, we only need an étale atlas. But since the arrow \(\rho : X \to X \sslash G \) is étale and surjective, the atlas of \(X \sslash G \) is obtained from that of \(X \).

We add to this a proposition about pulling back rigidifications along representable morphisms.

Proposition 2.4.2. Let \(X \) and \(G \) be defined as above, and \(Y \) a DM-stack of finite type over \((\mathcal{S}ch/\mathcal{S})\). Given any representable morphism \(Y \to X \sslash G \), the pullback

\[
\tilde{\rho} : Y \times_{X \sslash G} X \to Y
\]

of \(\rho \) satisfies the properties in the above theorem, hence is a rigidification of \(Y \times_{X \sslash G} X \) along the pull-back \(G_Y := (Y \times_{X \sslash G} X) \times_X G \).

Proof. First, any \(A \to T \) which is a pullback of \(Y \times_{X \sslash G} X \to Y \) along \(T \to Y \) can be viewed as a pullback of \(X \to X \sslash G \) along the composition \(T \to Y \to X \sslash G \). Hence, by Definition 2.2.1, \(\tilde{\rho} : Y \times_{X \sslash G} X \to Y \) is an étale gerbe.

Second, given any \(T \to Y \times_{X \sslash G} X \), where \(T \) is any scheme, consider the following cartesian diagram:

\[
\begin{array}{ccc}
G_T & \to & G_Y \\
\downarrow & & \downarrow \\
T & \to & Y \times_{X \sslash G} X \\
(\zeta, \xi, \mu) & \mapsto & Y \\
\phi & \downarrow & \rho \\
X & \to & X \sslash G
\end{array}
\]

where \(\xi = \psi \circ (\zeta, \xi, \mu) \in X(T) \), \(\zeta = \tilde{\rho} \circ (\zeta, \xi, \mu) \in Y(T) \) and \(\mu : \phi \circ \zeta \simeq \rho \circ \xi \) is an isomorphism in \(X \sslash G(T) \). Note that \(G_T \hookrightarrow \text{Aut}_T(\xi) \) gives the action of \(G_T \) on \(\xi \), and lies in the kernel of \(\rho : \text{Aut}_T(\xi) \to \text{Aut}_T(\rho(\xi)) \). There is an action of \(G_T \) on \((\zeta, \xi, \mu) \), which acts on \(\xi \) and fixes \(\zeta \) and \(\mu \). Hence there is an injection \(G_T \hookrightarrow \text{Aut}_T((\zeta, \xi, \mu)) \). Since \(G_T \) is étale and finite type over \(T \), this implies that \(G_Y \) is a subgroup stack of the inertia stack \(I_{Y \times_{X \sslash G} X} \), and étale and finite type over \(Y \times_{X \sslash G} X \).

Finally, consider the following diagram:

\[
\begin{array}{ccc}
id & \to & G_T \xleftarrow{\zeta} \text{Aut}_T(\xi) \to \text{Aut}_T(\rho(\xi)) \to id \\
\downarrow & & \downarrow \phi & \downarrow \rho \\
G_T \xleftarrow{\zeta} \text{Aut}_T((\zeta, \xi, \mu)) & \to & \text{Aut}_T(\rho(\zeta, \xi, \mu))
\end{array}
\]

Here, \(f \) and \(g \) are injective since the corresponding arrow is representable and the first row is exact. An easy diagram chase shows that the second row is also exact, which implies that \(G_T \) is the kernel of \(\text{Aut}_T((\zeta, \xi, \mu)) \to \text{Aut}_T(\rho(\zeta, \xi, \mu)) \).
Now, by the uniqueness of the theorem above, \(\tilde{\rho} : Y \times_{X, \mathcal{F}} X \rightarrow Y \) is the rigidification along \(G_Y \rightarrow Y \).

Now let’s consider the stack \(\mathcal{S}_X \). For each object \((\xi, G)\) of \(\mathcal{S}_X(T) \) over a scheme \(T \), we associate a subgroup scheme \(G \subset \text{Aut}_T((\xi, G)) \). Note that \(G \) is finite and étale over \(T \). Take \((\xi, G) \rightarrow (\xi', G)\) in \(\mathcal{S}_X \) over \(T \rightarrow T' \). By the definition of \(\mathcal{S}_X \), \(G \) is the pullback of \(G' \) along \(T \rightarrow T' \). By Appendix A of [AOV08], there is a unique étale finite subgroup stack, denoted \(\Gamma_X \subset \mathcal{I}_S \), where \(\mathcal{I}_S \) is the inertia stack of \(\mathcal{S}_X \), such that for any object \((\xi, G)\) of \(\mathcal{S}_X(T) \) the pullback of \(\Gamma_X \) to \(T \) coincides with \(G \).

The following is the main result of this section.

Proposition 2.4.3. There is an equivalence \(\mathcal{S}_X \sslash \Gamma_X \rightarrow \mathcal{G}_X \) of fibered categories, hence we can view \(\mathcal{G}_X \) as a rigidification of \(\mathcal{S}_X \) along \(\Gamma_X \rightarrow \mathcal{S}_X \).

Proof. Given any scheme \(T \) and an arrow \(T \rightarrow \mathcal{S}_X \sslash \Gamma_X \), consider the following cartesian diagram:

\[
\begin{array}{ccc}
\mathcal{A} & \rightarrow & \mathcal{S}_X \\
\downarrow & & \downarrow \\
T & \rightarrow & \mathcal{S}_X \sslash \Gamma_X,
\end{array}
\]

where \(\mathcal{A} \) is the gerbe obtained by pulling back along \(T \rightarrow \mathcal{S}_X \sslash \Gamma_X \). Also, note that the arrows \(\mathcal{A} \rightarrow \mathcal{S}_X \) and \(\mathcal{S}_X \rightarrow X \) are representable, so their composition \(\mathcal{A} \rightarrow \mathcal{S}_X \rightarrow X \) is also representable. Since \(\Gamma_X \) finite étale over \(\mathcal{S}_X \), by the above theorem the arrow \(\mathcal{S}_X \rightarrow \mathcal{S}_X \sslash \Gamma_X \) is étale and proper, hence \(\mathcal{A} \) is an étale proper gerbe over \(T \) with a representable arrow \(\mathcal{A} \rightarrow X \). This construction extends to an arrow \(\mathcal{S}_X \sslash \Gamma_X \rightarrow \mathcal{G}_X \) of fibered categories.

To show that the arrow \(\mathcal{S}_X \sslash \Gamma_X \rightarrow \mathcal{G}_X \) constructed above is an equivalence, we construct its inverse. Given any object in \(\mathcal{G}_X(T) \):

\[
\begin{array}{ccc}
\mathcal{A} & \phi & \rightarrow & X \\
\downarrow & \pi & & \\
T & & &
\end{array}
\]

consider a \(T \)-scheme \(U \), and an arrow \(\zeta : U \rightarrow \mathcal{A} \). Denoting \(\phi(\zeta) \) by \(\xi \) for simplicity, since \(\phi \) is representable we have an injection \(\alpha : \text{Aut}_U(\zeta) \hookrightarrow \text{Aut}_U(X) \). Hence we have a pair \((\xi, \alpha) \) which is an object in \(\mathcal{S}_X(U) \). Note that this construction gives an arrow of stacks \(\psi : \mathcal{A} \rightarrow \mathcal{S}_X \). From this construction, it is easy to see that the composition \(\mathcal{A} \rightarrow \mathcal{S}_X \rightarrow X \) is the representable arrow \(\phi \). By Lemma 1.3 in [Viss99], \(\psi \) is also representable.

Next we will construct an arrow \(T \rightarrow \mathcal{S}_X \sslash \Gamma_X \) and show that \(\mathcal{A} \rightarrow T \) is the pullback of \(\mathcal{S}_X \rightarrow \mathcal{S}_X \sslash \Gamma_X \) along this arrow, proving our result.

According to the definition of a gerbe, we can choose a covering \(\{T_i\} \) of \(T \) such that there exists \(\zeta_i \in \mathcal{A}(T_i) \) non-zero and isomorphisms \(f_{ij} : \zeta_i|_{T_{ij}} \cong \zeta_j|_{T_{ij}} \), where \(T_{ij} \cong T_i \times_T T_j \) and \(f_{ji} = f_{ij}^{-1} \). Note that \(f_{ki} \circ f_{jk} \circ f_{ij} = g_i \in \text{Aut}_{T_i,\mathcal{A}}(\zeta_i)|_{T_{ij}} \). Since \(g_i \) might not be the identity, \(\{f_{ij}\} \) might not satisfy the cocycle condition, becoming an obstruction to glue the \(\zeta_i \). Let us denote \(\rho \circ \psi \circ g_i \) by \(\xi_i \), and \(\rho \circ \psi \circ f_{ij} \) by \(f'_{ij} \). Note that \(f'_{ij} : \xi_i|_{T_{ij}} \cong \xi_j|_{T_{ij}} \) gives an isomorphism. Now we want to glue \(\{\xi_i\} \), and for this we only need to show that \(f'_{ki} \circ f'_{jk} \circ f'_{ij} = \rho \circ \psi \circ g_i = id \).
But we have the following exact sequence:

$$1 \longrightarrow \text{Aut}_{T_i, A}(\zeta_i)|_{T_{ij}} \xrightarrow{\psi} \text{Aut}_{T_i, S_X}(\psi \circ \zeta_i)|_{T_{ij}} \xrightarrow{\rho} \text{Aut}_{T_i, S_X \sslash \Gamma_X}(\xi_i)|_{T_{ij}} \longrightarrow 1$$

which shows that $\rho \circ \psi \circ \xi = id \in \text{Aut}_{T_i, S_X \sslash \Gamma_X}(\xi_i)|_{T_{ij}}$, hence we can glue $\{\xi_i\}$ and get an arrow $\sigma : T \longrightarrow S_X \sslash \Gamma_X$. The difference of two choices of $\{f_{ij}\}$ is an element in $\text{Aut}_{T_i, A}(\zeta_i)|_{T_{ij}}$, and becomes the identity when composed with $\rho \circ \psi$. Hence the arrow $\sigma : T \longrightarrow S_X \sslash \Gamma_X$ is unique.

The last step is to show that the following diagram is cartesian:

$$\begin{array}{ccc}
A & \xrightarrow{\psi} & S_X \\
\pi \downarrow & & \downarrow \rho \\
T & \xrightarrow{\sigma} & S_X \sslash \Gamma_X.
\end{array}$$

This is equivalent to showing that the following is cartesian:

$$\begin{array}{ccc}
A_i & \xrightarrow{\psi} & S_X \\
\pi_i \downarrow & & \downarrow \rho \\
T_i & \xrightarrow{\sigma} & S_X \sslash \Gamma_X,
\end{array}$$

where $A_i \longrightarrow T_i$ is obtained by pulling back $A \longrightarrow T$ along the covering $T_i \longrightarrow T$. We also note that π_i has a section $\zeta'_i : T_i \longrightarrow A_i$, which is obtained from the following diagram:

$$\begin{array}{ccc}
T_i & \xrightarrow{\pi_i} & A \\
\zeta'_i \downarrow & & \downarrow \zeta_i \\
A_i & \xrightarrow{\psi} & S_X \\
\pi_i \downarrow & & \downarrow \rho \\
T_i & \xrightarrow{\sigma} & S_X \sslash \Gamma_X,
\end{array}$$

Now, assume we are given a T_i-scheme U and the diagram

$$\begin{array}{ccc}
U & \xrightarrow{f} & A_i \\
\xi \downarrow & & \downarrow \psi \\
A_i & \xrightarrow{\psi} & S_X \\
\pi_i \downarrow & & \downarrow \rho \\
T_i & \xrightarrow{\sigma} & S_X \sslash \Gamma_X,
\end{array}$$

where $\xi = (\xi_U, G_U) \in S_X(U)$.

We need to show that $h = \zeta'_i \circ f$ is the unique arrow making the diagram commutative. Note that $\pi_i \circ h = \pi_i \circ \zeta'_i \circ f = id_{T_i} \circ f = f$. So we only need to show that $\xi = \psi \circ h$. But by our construction, $\sigma \circ f = \rho \circ \psi \circ \zeta'_i \circ f = \rho \circ \psi \circ h$, so $\rho \circ \psi \circ h = \rho \circ \xi$. Since our construction is by gluing étale locally, we can restrict to a small étale neighborhood, and assume that ρ is an isomorphism, hence $\psi \circ h = \xi$. Since both π_i and ζ'_i are étale and surjective, h is unique by our construction. \qed
Remark. (1) In the proof of this proposition, we actually proved that every pair (\mathcal{A}, ψ) over scheme T, where \mathcal{A} is an étale gerbe over T and $\psi: \mathcal{A} \rightarrow S_X$ is a representable arrow, corresponds to an arrow $T \rightarrow S_X/\Gamma_X$. Also, S_X is the universal gerbe over S_X/Γ_X.

(2) We can identify G_X with S_X/Γ_X. By 2.4.1, G_X is a D-M stack.

3. VERY T W I S T E D CURVES AND THEIR MAPS

Recall from [AGV08] that a twisted stable map over a scheme T is given by a family of twisted curves $\mathcal{C} \rightarrow T$ and n gerbes $\Sigma_i \subset \mathcal{C}$, with a representable morphism $f: \mathcal{C} \rightarrow X$. $K_{g,n}(X, \beta)$, is the moduli stack parameterizing maps of this type with the image of f lying in the curve class $\beta \in H^*(X)$. Our goal is to extend the notion of stable maps into X by allowing the source twisted curve \mathcal{C} to have generic stabilizers. This leads us to the following definitions:

Definition 3.0.4. A very twisted curve over a scheme T is an étale gerbe $\tilde{\mathcal{C}} \rightarrow \mathcal{C}$ over a twisted curve $\Sigma_i \subset \mathcal{C} \rightarrow T$. We define a very twisted stable map to be a diagram of the form:

$$\begin{array}{ccc}
\tilde{\Sigma}_i & \subset & \tilde{\mathcal{C}} \\
\downarrow & & \downarrow \\
\Sigma_i & \subset & \mathcal{C} \\
\downarrow & & \downarrow \\
T & & T
\end{array}$$

where $\tilde{\mathcal{C}} \rightarrow \mathcal{C} \rightarrow T$ is a very twisted curve, the markings $\tilde{\Sigma}_i \subset \tilde{\mathcal{C}}$ are given by taking the preimage of Σ_i, and such that the diagram admits finitely many automorphisms (our stability condition). Stability is equivalent to the corresponding map $\mathcal{C} \rightarrow G_X$ being a twisted stable map, and \tilde{f} factoring through the projection $\tilde{\mathcal{C}} \rightarrow S_X$.

Remark. Notice that in our definitions, we are using a single gerbe structure over the whole curve. We are not considering curves with different generic stabilizers over different components.

Given a curve class $\beta \in H^*(X)$, we want to define the moduli stack $\tilde{K}_{g,n}(X, \beta)$ parametrizing very twisted stable maps with image class β. A map $\mathcal{C} \rightarrow G_X$ from a twisted curve \mathcal{C} to our stack G_X corresponds to a diagram of the form:

$$\begin{array}{ccc}
\tilde{\mathcal{C}} & \rightarrow & X \\
\downarrow & & \downarrow \\
\mathcal{C} & & \mathcal{C}
\end{array}$$

Where $\tilde{\mathcal{C}} \rightarrow \mathcal{C}$ is an étale gerbe. As stated above, étale gerbes over twisted curves are our very twisted curves. Let $\{\beta_j\} \subset H^*(G_X)$ be the collection of curve classes satisfying $\phi_*\alpha^*\beta_j = \beta$.
We are led to consider, for each \(j \), the diagram

\[
\begin{array}{ccc}
\tilde{\Sigma}_i & \subseteq & \tilde{\mathcal{C}}_j \\
\downarrow & & \downarrow \\
\Sigma_i & \subseteq & \mathcal{C}_j \\
\downarrow & & \downarrow \\
\mathcal{K}_{g,n}(\mathcal{G}_X, \beta_j) & & \mathcal{K}_{g,n}(\mathcal{G}_X, \beta_j)
\end{array}
\]

Here \(\mathcal{C}_j \) is the universal twisted curve sitting above \(\mathcal{K}_{g,n}(\mathcal{G}_X, \beta_j) \) and \(\tilde{\mathcal{C}}_j \) is the universal very twisted curve given by pulling back. The compositions:

\[
\begin{array}{ccc}
\tilde{\Sigma}_i & \subseteq & \tilde{\mathcal{C}}_j \\
\downarrow & & \downarrow \\
\Sigma_i & \subseteq & \mathcal{C}_j \\
\downarrow & & \downarrow \\
\mathcal{K}_{g,n}(\mathcal{G}_X, \beta_j) & & \mathcal{K}_{g,n}(\mathcal{G}_X, \beta_j)
\end{array}
\]

give us a parametrization of very twisted stable maps

\[
\tilde{\mathcal{C}} \xrightarrow{\text{(rep)}} \mathcal{X}
\]

whose images lie in \(\beta \) and whose corresponding map \(\mathcal{C} \rightarrow \mathcal{G}_X \) has image lying in \(\beta_j \). We get our desired moduli space by taking a disjoint union over all \(j \):

Definition 3.0.5. With \(X \) as above, let

\[
\tilde{\mathcal{K}}_{g,n}(X, \beta) := \bigsqcup_j \mathcal{K}_{g,n}(\mathcal{G}_X, \beta_j).
\]

This moduli space has all the nice properties we want given for free by the construction of \(\mathcal{K}_{g,n}(X, \beta) \). Sitting above it are two universal objects, one corresponding to very twisted stable maps into \(X \) by taking \(\tilde{\mathcal{C}} \) over each \(\mathcal{K}_{g,n}(\mathcal{G}_X, \beta_j) \), and the other corresponding to twisted stable maps into \(\mathcal{G}_X \) by taking \(\mathcal{C} \). We use the following notation to distinguish them:

\[
\begin{array}{ccc}
\bigsqcup_j \mathcal{C}_j & \xrightarrow{f} & \mathcal{G}_X \\
\downarrow \pi & & \downarrow \pi \\
\bigsqcup_j \mathcal{K}_{g,n}(\mathcal{G}_X, \beta_j) & & \tilde{\mathcal{K}}_{g,n}(X, \beta)
\end{array}
\]

and

\[
\begin{array}{ccc}
\bigsqcup_j \tilde{\mathcal{C}}_j & \xrightarrow{\tilde{f}} & X \\
\downarrow \tilde{\pi} & & \downarrow \tilde{\pi} \\
\bigsqcup_j \mathcal{K}_{g,n}(\mathcal{G}_X, \beta_j) & & \tilde{\mathcal{K}}_{g,n}(X, \beta)
\end{array}
\]
4. Equality of the Gromov-Witten Theories

As discussed in Section 3, we have moduli spaces with two different universal curves, each part of the diagram

\[
\begin{array}{cccccc}
\bigcup_j \tilde{C}_j & \xrightarrow{\delta} & S_X & \xrightarrow{f} & G_X & \xrightarrow{\pi} \\
\downarrow & & \downarrow & & \downarrow & \\
\bigcup_j C_j & \xrightarrow{\pi} & \tilde{K}_{g,n}(X, \beta) & \xrightarrow{\delta} & M_{tw}^{g,n}.
\end{array}
\]

In this section, we show that the construction of the virtual fundamental classes and the evaluation maps give the same answer for \(\bigcup_j K_{g,n}(G_X, \beta_j) \) and \(\tilde{K}_{g,n}(X, \beta) \). The virtual fundamental classes are constructed by looking at the relative obstruction theories \((R\pi_* f^* T_{G_X})^\vee\) and \((R\tilde{\pi}_* \tilde{f}^* T_X)^\vee\) over \(M_{tw}^{g,n} \) as in [Beh97], [BF97] and [AGV08]. We simply need to show that \(R\pi_* f^* T_{G_X} \cong R\tilde{\pi}_* \tilde{f}^* T_X \). Since push-forward is functorial, it will be enough to show that \(f^* T_{G_X} \cong \delta_* \tilde{f}^* T_X \), for each \(j \), in the diagram:

\[
\begin{array}{cccccc}
\tilde{C}_j & \xrightarrow{\delta} & S_X & \xrightarrow{f} & G_X & \xrightarrow{\pi} \\
\downarrow & & \downarrow & & \downarrow & \\
C_j & \xrightarrow{f} & \tilde{G}_X
\end{array}
\]

To do this, we prove an analogue to the tangent bundle lemma (Lemma 3.6.1) of [AGV08]. We follow their proof closely.

Lemma 4.0.6. Let \(S \) be a scheme, and \(f : S \to G_X \) a morphism with its associated diagram

\[
\begin{array}{cccccc}
A & \xrightarrow{\delta} & X & \xrightarrow{f} & G_X & \xrightarrow{\pi} \\
\downarrow & & \downarrow & & \downarrow & \\
S & & S & & S
\end{array}
\]

Then there is a canonical isomorphism \(\delta_*(\tilde{f}^*(T_X)) \cong f^*(T_{G_X}) \).
Proof. We showed above that by rigidification we have the universal gerbe $S_X \rightarrow G_X$. Consider the following diagram of smooth stacks:

$$
\begin{array}{ccc}
S_X & \xrightarrow{F} & X \\
\downarrow \omega & & \\
G_X.
\end{array}
$$

Given $f : S \rightarrow G_X$ as in the statement of the Lemma, we have the diagram

$$
\begin{array}{ccc}
A & \xrightarrow{g} & S_X \\
\downarrow \pi & & \downarrow \omega \\
S & \xrightarrow{f} & G_X.
\end{array}
$$

The morphism ω is flat and, by Lemma 2.3.4 in [AV02], ω_* is exact on coherent sheaves, so for any locally free sheaf F on S_X we have $f^*\omega_*F = \pi_*\gamma^*F$. All that is needed is to check that $\omega_*F^*T_X \cong T_{\tilde{y}_X}$.

By applying ω_* to the natural morphism $T_{S_X} \rightarrow F^*T_X$, we get $\omega_*T_{S_X} \rightarrow \omega_*F^*T_X$. But $\omega : S_X \rightarrow G_X$ is an étale gerbe, so $\omega_*T_{S_X} \cong T_{\tilde{y}_X}$. Through this isomorphism, we get a morphism $T_{G_X} \rightarrow \omega_*F^*T_X$. The claim is that this is an isomorphism. We show this by looking at the geometric points.

The fiber of a geometric point y of G_X through ω can be identified with BH for some subgroup $H \subset G_x$. Here x is a geometric point of X with stabilizer group G_x. This lifts y to S_X, mapping y to x. Let T be the pullback of T_X to our lift of y. There is a natural action of H on T, and the fiber of $\omega_*F^*T_X$ at y is given by the space of invariants T^H. We must show that we get an isomorphism of this fiber with the fiber of T_{G_X} at y.

We can view X in a local chart around x as $[U/G_x]$. Then S_X has a local chart $[U^H/N(H)]$, where we quotient out by the normalizer subgroup $N(H)$. But $T_{U^H} = T_Y^H$ and $S_X \rightarrow G_X$ is an étale gerbe, so we obtain our desired isomorphism $T_{G_X,y} \cong T^H$.\square

Corollary 4.0.7. The virtual fundamental classes $\left[\bigcup_j K_{g,n}(G_X, \beta_j) \right]_{vir}$ and $[\tilde{K}_{g,n}(X, \beta)]_{vir}$ are equal. In particular, for $n = 0$ we have equality of the Gromov-Witten invariants:

$$
\int [\bigcup_j K_{g,n}(G_X, \beta_j)]_{vir} = \int [\tilde{K}_{g,n}(X, \beta)]_{vir}.
$$

Proof. Immediate from the lemma.\square

In general, our Gromov-Witten invariants will be defined by taking $\gamma_i \in A^*(\bar{T}_\mu(G_X))_\mathbb{Q}$, pulling back along the evaluation maps $e_i : \bigcup_j K_{g,n}(G_X, \beta_j) \rightarrow \bar{T}_\mu(G_X)$, and taking a product:

$$
\langle \gamma_1, \ldots, \gamma_n \rangle_{g, \beta_j} = \left(\bigotimes_{i=1}^n e_i^*\gamma_i \right) \cap \left[\bigcup_j K_{g,n}(G_X, \beta_j) \right]_{vir}.
$$
Recall from \cite{AGV08} that \(\overline{\mathcal{I}}_\mu(G_X) \) is given by the disjoint union
\[
\overline{\mathcal{I}}_\mu(G_X) := \bigsqcup_r \overline{\mathcal{I}}_\mu^r(G_X).
\]
Each component \(\overline{\mathcal{I}}_\mu^r(G_X) \) can be reinterpreted as parametrizing diagrams of the form
\[
A \xrightarrow{\phi} X
\]
\[
\downarrow
\]
\[
\Sigma
\]
\[
\downarrow
\]
\[
T
\]
where \(\Sigma \to T \) is a gerbe over a scheme \(T \) banded by \(\mu_r \) and \(\phi \) is a representable morphism. This allows us to extend our evaluation map to a map \(\tilde{e}_i : \tilde{\mathcal{K}}_{g,n}(X, \beta) \to \overline{\mathcal{I}}_\mu(G_X) \). Given a very twisted stable map \(\tilde{f} : \tilde{\mathcal{C}} \to X \) over \(T \), its image \(\tilde{e}_i(\tilde{f}) \in \overline{T}_\mu(G_X)(T) \) is the object associated with the diagram:
\[
\tilde{\Sigma}_i \xrightarrow{\tilde{f}|_{\tilde{\Sigma}_i}} X
\]
\[
\downarrow
\]
\[
\Sigma_i
\]
\[
\downarrow
\]
\[
T.
\]
One can see that this agrees with the image \(e_i(f) \in \overline{T}_\mu(G_X)(T) \) of the twisted stable map \(f : \mathcal{C} \to \overline{T}_\mu(G_X) \) given by the diagram:
\[
\Sigma_i \xrightarrow{f|_{\Sigma_i}} G_X
\]
\[
\downarrow
\]
\[
T.
\]
Our desired equality of Gromov-Witten invariants follows.

Remark. Although the naive GW-theory described above is the natural first approach to take, there is evidence from the DT-side of the conjectural correspondence for orbifolds that some adjustment to the theory is needed. In particular, the moduli spaces for orbifold Calabi-Yau 3-folds in the DT-theory have virtual dimension 0, and the correspondence would hope for the same to be true on the GW-side. An example suggested by Jim Bryan is the following. Let \(E \) be the total space of \(\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1) \) over \(\mathbb{P}^1 \) and consider the quotient \(X = [E/(\mathbb{Z}/2\mathbb{Z})] \) where the action along each fiber is component-wise. \(X \) is an orb-\textit{-}Calabi-Yau 3-fold with the zero-section giving an embedded \(\tilde{\mathbb{P}}^1 = [\mathbb{P}^1/(\mathbb{Z}/2\mathbb{Z})] \). In this case, \(\mathcal{S}_X = X \sqcup \tilde{\mathbb{P}}^1 \) and \(\mathcal{G}_X = X \sqcup \mathbb{P}^1 \). Stable maps into \(\mathcal{G}_X \) (in particular, into \(\mathbb{P}^1 \)) will not have virtual dimension zero. So even in this straightforward case we have a virtual fundamental class \(\tilde{\mathcal{K}}_{g,n}(X, \beta)^{vir} \) with non-zero virtual dimension. A nicer theory might adjust the relative obstruction theory...
used to construct the virtual fundamental class in order to fix the problem with the virtual dimension. This is something we hope to look into.

References

[ACV03] Dan Abramovich, Alessio Corti, and Angelo Vistoli, *Twisted bundles and admissible covers*, Comm. Algebra 31 (2003), no. 8, 3547–3618, Special issue in honor of Steven L. Kleiman. MR MR2007376 (2005b:14049)

[AGV02] Dan Abramovich, Tom Graber, and Angelo Vistoli, *Algebraic orbifold quantum products*, Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 1–24. MR MR1950940 (2004c:14049)

[AGV08] ———, *Gromov-Witten theory of Deligne-Mumford stacks*, American Journal of Mathematics 130 (2008), no. 5, 1337–1398.

[AOV08] Dan Abramovich, Martin Olsson, and Angelo Vistoli, *Tame stacks in positive characteristic*, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057–1091. MR MR2427954

[Art74] M. Artin, *Versal deformations and algebraic stacks*, Invent. Math. 27 (1974), 165–189. MR MR0399094 (53 #2945)

[AV02] Dan Abramovich and Angelo Vistoli, *Compactifying the space of stable maps*, J. Amer. Math. Soc. 15 (2002), no. 1, 27–75 (electronic). MR MR1862797 (2002i:14030)

[Beh97] K. Behrend, *Gromov-Witten invariants in algebraic geometry*, Inventiones Mathematicae 127 (1997), 601–617.

[BF97] K. Behrend and B. Fantechi, *The intrinsic normal cone*, Invent. Math. 128 (1997), no. 1, 45–88. MR MR1437495 (98e:14022)

[CR05] W. Chen and Y. Ruan, *Orbifold Gromov-Witten theory*, Orbifolds in mathematics and physics (Madison, WI, 2001) J.53 (2005), no. 1, 25–85.

[DT98] S. K. Donaldson and R. P. Thomas, *Gauge theory in higher dimensions*, The geometric univer-ses (Oxford, 1996), no. 1, Oxford Univ. Press, Oxford, 1998, pp. 31–47. MR MR1634503 (2000a:57085)

[FGI+05] Barbara Fantechi, Lothar Gött sche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, *Fundamental algebric geometry*, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, 2005, Grothendieck’s FGA explained. MR MR2222646 (2007f:14001)

[LMB00] G. Laumon and L. Moret-Bailly, *Champs algébriques*, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 39, Springer-Verlag, 2000.

[MNOP06] D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, *Gromov-Witten theory and Donaldson-Thomas theory. I*, Compos. Math. 142 (2006), no. 5, 1263–1285. MR MR2264664 (2007i:14061)

[OS03] Martin Olsson and Jason Starr, *Quot functors for Deligne-Mumford stacks*, Comm. Algebra 31 (2003), no. 8, 4069–4096, Special issue in honor of Steven L. Kleiman. MR MR2007396 (2004i:14002)

[Rom05] M. Romagny, *Group actions on stacks and applications*, Michigan Math J. 53 (2005), no. 1, 209–236.

[Tho00] R. P. Thomas, *A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations*, J. Differential Geom. 54 (2000), no. 2, 367–438. MR MR1818182 (2002b:14049)

[Vis89] Angelo Vistoli, *Intersection theory on algebraic stacks and on their moduli spaces*, Invent. Math. 97 (1989), no. 3, 613–670. MR MR1005008 (90k:14004)
