Evidence of differential spreading events of grapevine pinot Gris virus in Italy using datamining as a tool

Jean-Michel Hily · Véronique Komar · Nils Poulicard · Amandine Velt · Lauriane Renault · Pierre Mustin · Emmanuelle Vigne · Anne-Sophie Spilmont · Olivier Lemaire

Abstract Since its identification in 2003, grapevine Pinot gris virus (GPGV, *Trichovirus*) has now been detected in most grape-growing countries. So far, little is known about the epidemiology of this newly emerging virus. In this work, we used datamining as a tool to monitor in-silico the sanitary status of three vineyards in Italy. All data used in the study were recovered from a work that was already published and for which data were publicly available as SRA (Sequence Read Archive, NCBI) files. While incomplete, knowledge gathered from this work was still important, with evidence of differential accumulation of the virus in grapevine according to year, location, and variety-rootstock association. Additional data regarding GPGV genetic diversity were collected. Some advantages and pitfalls of datamining are discussed.

Keywords Grapevine · GPGV · Detection · Datamining

Since its characterization in Italy (Giampetruzzi et al., 2012), grapevine Pinot gris virus (GPGV, *Trichovirus, Betaflexiviridae*) has been detected in most grapevine growing regions around the world. Generally, the virus is detected using serological and/or molecular tools. In this work, we describe datamining as a potential additional method to identify grapevine infected with this virus, better estimating its distribution worldwide. While this specific work cannot be considered as an epidemiological study per se, it still unquestionably offers valuable information on the virus (i.e., its geographic distribution and genetic composition), providing a snapshot of the situation in three different vineyards in Italy at a specific time, giving new insight on GPGV accumulation, introduction and transmission.

This particular work is based on the data provided by a study on the contribution of genotype, the environment and their interaction to the berry transcriptome that was previously published (Dal Santo et al., 2018). Two cultivars, Cabernet Sauvignon and Sangiovese, were planted in three different locations: Montalcino, Bolgheri and Riccione. The former two Italian cities are located in the Tuscany hills and Tuscany coast respectively, while the latter is positioned on the Adriatic coast (Fig. 1). To minimize genetic variation, researchers used the same clonal material for each cultivar, with clones R5 and VCR23 of Cabernet Sauvignon and Sangiovese, respectively. In addition, three different rootstocks were tested in the study: Kober-5BB, 420A and 161.49 C. After uploading the 72 SRA files generated from this work, all samples were analyzed for the presence of GPGV using Workbench 12.0 software (CLC Genomics Workbench, https://doi.org/10.1007/s10658-021-02343-3
Aarhus, Denmark) as previously described (Hily et al., 2018). This was first assessed by mapping reads to a collection of curated GPGV reference sequences. For those displaying reads corresponding to GPGV, de novo assembly steps were performed and further extended by multiple rounds of residual reads mapping as previously described (Nourinejhad Zarghani et al., 2018). Genome sequences being produced were ascertained using very stringent mapping parameters (length of 0.95/similarity of 0.95).

Our datamining study revealed that only samples from Bolgheri and Riccione were positive for GPGV. The virus was hardly detected in a few samples from Montalcino (Table 1); however, no complete sequence could be recovered. These ‘Low Read Count’ samples were probably the result of ‘intra-lane contamination’, as previously described in other studies (Vigne et al., 2018). When using RPKM (Reads per kilo base per million) data as a proxy for virus accumulation in the samples, our analyses revealed differential accumulation of GPGV according to many variables (Fig. 2). Indeed, GPGV seems to accumulate more in Cabernet Sauvignon cultivar grafted onto either 161-49 or Kober-5BB rootstocks, rather than in Sangiovese grafted onto 420A at either location (P ≤ 10^{-4}). In addition, differential accumulation of GPGV was also observed according to location where grapevines were grown (P < 10^{-5}), with GPGV accumulating more in Riccione than in Bolgheri.

When delving into the genetics of the virus, other information was revealed. Overall, 47 complete genome GPGV sequences (or near complete, covering at least all open reading frames) were assembled (Table 1), all submitted to GenBank (BK011089-BK011101, and the other sequences are available upon request). After a phylogenetic analysis (Fig. 1), three major clades of GPGV were found to infect these grapevines, each displaying a high intra-clade nucleic acid identity percentage ≥ 98.10%. Interestingly, GPGV sequences seemed to cluster together very well by location (Fig. 1, colors) however independently from cultivar. Fixation index (F_{ST}) analyses (Fig. 1) confirmed the genetic differentiation of the viral population according to location, showing a statistically significant high F_{ST} value (F_{ST} = 0.608, P ≤ 10^{-5}). Such segregation by location was also highlighted for grapevines grafted

Variety	Rootstock	Location	R_{FU}	P
Cabernet Sauvignon/Sangiovese	161.49 C/Kober 5BB	Bolgheri/Riccione	0.018	0.185
Cabernet Sauvignon/Sangiovese	161.49 C/420A	Bolgheri/Riccione	0.364	<0.000
Cabernet Sauvignon/Sangiovese	Kober 5BB/420A	Bolgheri/Riccione	0.247	<0.000
Sangiovese	161.49 C/420A	Bolgheri/Riccione	0.196	0.008

Fig. 1 Maximum-likelihood tree inferred from sequences (7206 nt) of grapevine Pinot gris virus genome isolated from two cultivars, Cabernet Sauvignon clone R5 (star) and Sangiovese clone VCR23 (circle). Rootstocks are also indicated with 161.49 C (square), Kober 5BB (triangle) and 420A (diamond). Only bootstraps above 0.5 are shown. Colors correspond to the location in Italy where samples were recovered, Bolgheri (blue) and Riccione (red), see map on the upper right corner.
Table 1 All information regarding the datamining analyses performed from the study from Dal Santo et al., 2018

SEA #	hybridization #	Sample ID	Cultivar	Rootstock	Developmental Stage	Location	Vintage	GPGV	RPKM	Mapped read counts	Total read counts	Genome length (nt)
SRR5457593 4		CS_MO_PV_11_A	Cabernet Sauvignon	S04	Pre-veraison	Montalcino	2011			39,659,627		
SRR5457594 5		CS_MO_PV_11_B	Cabernet Sauvignon	S04	Pre-veraison	Montalcino	2011			37,953,191		
SRR5457595 6		CS_MO_PV_11_C	Cabernet Sauvignon	S04	Pre-veraison	Montalcino	2011			45,920,500		
SRR5457596 7		CS_MO_MR_11_A	Cabernet Sauvignon	S04	Mid-ripening	Montalcino	2011			30,131,817		
SRR5457597 8		CS_MO_MR_11_B	Cabernet Sauvignon	S04	Mid-ripening	Montalcino	2011			25,466,144		
SRR5457598 9		CS_MO_MR_11_C	Cabernet Sauvignon	S04	Mid-ripening	Montalcino	2011			29,627,432		
SRR5457599 16		SG_MO_PV_11_A	Sangiovese	420A	Pre-veraison	Montalcino	2011			30,253,594		
SRR5457600 17		SG_MO_PV_11_B	Sangiovese	420A	Pre-veraison	Montalcino	2011			27,619,510		
SRR5457601 18		SG_MO_PV_11_C	Sangiovese	420A	Pre-veraison	Montalcino	2011			24,825,638		
SRR5457602 19		SG_MO_MR_11_A	Sangiovese	420A	Mid-ripening	Montalcino	2011			31,261,949		
SRR5457603 20		SG_MO_MR_11_B	Sangiovese	420A	Mid-ripening	Montalcino	2011			37,850,541		
SRR5457604 21		SG_MO_MR_11_C	Sangiovese	420A	Mid-ripening	Montalcino	2011			33,319,419		
SRR5457605 28		CS_BO_PV_11_A	Cabernet Sauvignon	161–49	Pre-veraison	Polgheri	2011	91,43	19,934	30,211,399	7287, 7287	
SRR5457606 29		CS_BO_PV_11_B	Cabernet Sauvignon	161–49	Pre-veraison	Polgheri	2011	44,32	10,113	31,519,652	7254, 7254	
SRR5457607 30		CS_BO_PV_11_C	Cabernet Sauvignon	161–49	Pre-veraison	Polgheri	2011	100,96	25,001	34,310,824	7247	
SRR5457605 31		CS_BO_MR_11_A	Cabernet Sauvignon	161–49	Mid-ripening	Polgheri	2011	173,45	42,993	34,345,114	7247	
SRR5457609 32		CS_BO_MR_11_B	Cabernet Sauvignon	161–49	Mid-ripening	Polgheri	2011			32,004,939		
SRR5457610 33		CS_BO_MR_11_C	Cabernet Sauvignon	161–49	Mid-ripening	Polgheri	2011			32,253,343		
SEA #	hybridization #	Sample ID	Cultivar	Rootstock	Developmental Stage	Location	Vintage	GPGV	RPKM	Mapped read counts*	Total read counts	Genome length (nt)
------	----------------	-------------	----------------	-----------	---------------------	------------	---------	------	------	---------------------	------------------	------------------
SRR5457611 40	SG_BO_PV_11_A	Sangiovese	420A Pre-veraison	Polgheri	2011	1	10,43	2425	32,216,454	7243		
SRR5457612 41	SG_BO_PV_11_B	Sangiovese	420A Pre-veraison	Polgheri	2011	1	9,64	2092	30,065,198	7240		
SRR5457613 42	SG_BO_PV_11_C	Sangiovese	420A Pre-veraison	Polgheri	2011	1	4,52	922	25,720,284	7213		
SRR5457614 43	SG_BO_MR_11_A	Sangiovese	420A Mid-ripening	Polgheri	2011	1	24,92	6360	35,361,602	7307		
SRR5457615 44	SG_BO_MR_11_B	Sangiovese	420A Mid-ripening	Polgheri	2011	1	68,12	15,589	31,708,932	7290		
SRR5457616 45	SG_BO_MR_11_C	Sangiovese	420A Mid-ripening	Polgheri	2011	1	2258,35	48,544	28,390,737	7254		
SRR5457617 52	CS_RI_PV_11_A	Cabernet Sauvignon	Kober-5BB Pre-veraison	Riccione	2011	1	128,03	28,440	30,778,512	7254		
SRR5457618 53	CS_RI_PV_11_B	Cabernet Sauvignon	Kober-5BB Pre-veraison	Riccione	2011	1	128,00	27,080	29,314,935	7254		
SRR5457619 54	CS_RI_PV_11_C	Cabernet Sauvignon	Kober-5BB Pre-veraison	Riccione	2011	1	111,44	28,416	35,330,755	7254		
SRR5457620 55	CS_RI_MR_11_A	Cabernet Sauvignon	Kober-5BB Mid-ripening	Riccione	2011	1	2258,35	48,544	29,784,834	7254		
SRR5457621 56	CS_RI_MR_11_B	Cabernet Sauvignon	Kober-5BB Mid-ripening	Riccione	2011	1	2225,20	455,935	28,390,737	7254		
SRR5457622 57	CS_RI_MR_11_C	Cabernet Sauvignon	Kober-5BB Mid-ripening	Riccione	2011	1	1565,76	284,493	25,176,180	7254		
SRR5457623 64	SG_RI_PV_11_A	Sangiovese	420A Pre-veraison	Riccione	2011	1	89,48	17,871	27,673,291	7258		
SRR5457624 65	SG_RI_PV_11_B	Sangiovese	420A Pre-veraison	Riccione	2011	1	58,23	11,621	27,651,896	7254		
SRR5457625 66	SG_RI_PV_11_C	Sangiovese	420A Pre-veraison	Riccione	2011	1	135,88	27,403	27,943,588	7254		
SRR5457626 67	SG_RI_MR_11_A	Sangiovese	420A Mid-ripening	Riccione	2011	1	299,59	48,006	22,202,853	7289		
SRR5457627 68	SG_RI_MR_11_B	Sangiovese	420A Mid-ripening	Riccione	2011	1	414,33	89,289	29,890,486	7254		
SRR5457628 69	SG_RI_MR_11_C	Sangiovese	420A Mid-ripening	Riccione	2011	1	300,74	61,377	28,278,938	7254		
SRR5457629 91	SG_BO_PV_12_A	Sangiovese	420A Pre-veraison	Bolgheri	2012	1	3,99	884	30,685,737	7214		
SRR5457630 92	SG_BO_PV_12_B	Sangiovese	420A Pre-veraison	Bolgheri	2012	1	3,29	684	28,765,541	7250		
SRR5457631 93	SG_BO_PV_12_C	Sangiovese	420A Pre-veraison	Bolgheri	2012 ✓	1,87	455	33,797,617	7131			
SRR5457632 94	SG_MO_PV_12_A	Sangiovese	420A Pre-veraison	Montalcino	2012 ✓	0,69	143	28,565,019	4800			
SRR5457633 95	SG_MO_PV_12_B	Sangiovese	420A Pre-veraison	Montalcino	2012 ✓	2,99	675	31,322,839	7201			
SEA #	hybridization #	Sample ID	Cultivar	Rootstock	Developmental Stage	Location	Vintage	GPGV	RPKM	Mapped read counts	Total read counts	Genome length (nt)
-------	----------------	-----------	----------	-----------	---------------------	----------	---------	------	------	-------------------	------------------	------------------
96	96	SRR5457634	Sangiovese	420A	Pre-veraison	Montalcino	2012	✓	1.43	312	30,193,456	6686
97	97	SRR5457635	Sangiovese	420A	Pre-veraison	Riccione	2012	1	46.29	10,705	32,044,752	7257
98	98	SRR5457636	Sangiovese	420A	Pre-veraison	Riccione	2012	1	41.83	7769	25,735,588	7253
99	99	SRR5457637	Sangiovese	420A	Pre-veraison	Riccione	2012	1	38.53	8245	29,653,480	7271
100	100	SRR5457539	Sangiovese	420A	Pre-veraison	Montalcino	2012				28,374,413	
101	101	SRR5457639	Cabernet Sauvignon	420A	Pre-veraison	Montalcino	2012				39,038,471	
102	102	SRR5457640	Cabernet Sauvignon	S04	Pre-veraison	Montalcino	2012				29,599,165	
103	103	SRR5457641	Cabernet Sauvignon	Kober-5BB	Pre-veraison	Riccione	2012	1	55.19	10,488	26,329,353	7253
104	104	SRR5457642	Cabernet Sauvignon	Kober-5BB	Pre-veraison	Riccione	2012	1	50.26	11,045	30,452,556	7253
105	105	SRR5457643	Cabernet Sauvignon	Kober-5BB	Pre-veraison	Riccione	2012	1	63.52	14,937	32,582,117	7253
106	106	SRR5457644	Cabernet Sauvignon	161–49	Pre-veraison	Bolgheri	2012	1	20.46	2295	15,541,092	7277
107	107	SRR5457645	Cabernet Sauvignon	161–49	Pre-veraison	Bolgheri	2012	1	14.68	2996	28,275,962	7223
108	108	SRR5457646	Cabernet Sauvignon	161–49	Pre-veraison	Bolgheri	2012	1	26.84	12,934	66,769,968	7282
109	109	SRR5457647	Sangiovese	420A	Mid-ripening	Bolgheri	2012	✓	0.97	216	30,804,911	6126
110	110	SRR5457648	Sangiovese	420A	Mid-ripening	Bolgheri	2012	1	6.31	1463	32,129,314	7219
111	111	SRR5457649	Sangiovese	420A	Mid-ripening	Bolgheri	2012	✓	2.15	388	25,018,444	6948
112	112	SRR5457650	Sangiovese	420A	Mid-ripening	Montalcino	2012				24,003,382	
113	113	SRR5457651	Sangiovese	420A	Mid-ripening	Montalcino	2012				37,168,759	
114	114	SRR5457652	Sangiovese	420A	Mid-ripening	Montalcino	2012				29,938,586	
115	115	SRR5457653	Sangiovese	420A	Mid-ripening	Riccione	2012	1	28.48	7041	34,255,543	7250
116	116	SRR5457654	Sangiovese	420A	Mid-ripening	Riccione	2012	1	31.09	6790	30,258,155	7250
117	117	SRR5457655	Sangiovese	420A	Mid-ripening	Riccione	2012	1	8.48	1524	28,230,567	7255
Table 1 (continued)

SEA #	hybridization #	Sample ID	Cultivar	Rootstock Stage	Developmental Stage	Location	Vintage	GPGV	RPKM	Mapped read counts*	Total read counts	Genome length (nt)
SRR5457656	118	CS_MO_MR_12_A	Sangiovese	420A	Mid-ripening	Montalcino	2012	✓	1.05	224	29,549,033	6431
SRR5457657	119	CS_MO_MR_12_B	Cabernet Sauvignon	S04	Mid-ripening	Montalcino	2012				22,749,636	
SRR5457658	120	CS_MO_MR_12_C	Cabernet Sauvignon	S04	Mid-ripening	Montalcino	2012				29,723,920	
SRR5457659	121	CS_RI_MR_12_A	Cabernet Sauvignon	Kober-5BB	Mid-ripening	Riccione	2012	1	408.02	82,399	27,982,523	7250
SRR5457660	122	CS_RI_MR_12_B	Cabernet Sauvignon	Kober-5BB	Mid-ripening	Riccione	2012	1	923.80	235,636	35,343,145	7284
SRR5457661	123	CS_RI_MR_12_C	Cabernet Sauvignon	Kober-5BB	Mid-ripening	Riccione	2012	1	1336.91	318,331	32,992,910	7277
SRR5457662	124	CS_BO_MR_12_A	Cabernet Sauvignon	161–49	Mid-ripening	Bolgheri	2012	2	117.96	24,447	28,741,196	7217,7217
SRR5457663	125	CS_130_MR_12_B	Cabernet Sauvignon	161–49	Mid-ripening	Bolgheri	2012	2	74.49	209,41	38,951,034	7217,7217
SRR5457664	126	CS_130_MR_12_C	Cabernet Sauvignon	161–49	Mid-ripening	Bolgheri	2012	2	63.53	15,221	33,195,577	7217,7217

The ‘number’ in the GPGV column correspond to the number of complete genome assembled de novo in each sample. ✓ indicates that reads have mapped onto GPGV genome, as shown in the Mapped read counts columns would indicate, however no complete genome from contiguous sequence could be obtained and RPKM (Read per Kilobase Million) were always below 3 when no genome were assembled. This work was performed using CLC-Workbench using very stringent mapping parameters * (0.95/0.95)
onto rootstock 161.49 C used exclusively in Bolgheri and grapevines onto Kober 5BB exclusively used in Riccione (FST = 0.564, P ≤ 10^-5). Comparison of sequences obtained from the 420A rootstock also displayed statistically significant FST values; however, the values were lower than the ones mentioned above. This is most likely because 420A was used as a rootstock in both locations. Furthermore, the genetic background of the grapevine cultivar, which was also present in both locations, had no statistically significant impact on viral populations (FST = 0.018, P = 0.185).

In addition to the presence/absence of GPGV in the samples, this work highlights two distinct situations at the viral genomic level. Indeed, one vineyard is infected by a single variant, identity percentage ≥ 99%, as previously defined for GPGV (Hily et al., 2020), represented here by samples from the Bolgheri region, while the other vineyard (Riccione) is infected by at least two (or more) variants. These results indirectly, but strongly, suggest probable independent introduction/transmission events of GPGV in two out of the three locations specifically looked at, in this transcriptomic study. These situations are probably the result of transmission events through grafting (Saldarelli et al., 2014) and movement of infected material as previously suggested (Al Rwahni et al., 2016; Fajardo et al., 2017; Wu & Habili, 2017). They may also have occurred horizontally by vectors either in the nursery or in the vineyard, with distinct variants of the virus being detected at each location, regardless of the clonal background of the grapevine. In addition, the detection of these different variants according to location, each displaying probable differences in fitness, may result in differential virus accumulation as observed above. Overall, this in silico work adds to the so-far limited knowledge on the natural transmission of GPGV in vineyards (Bertazzon et al., 2020; Hily et al., in press).

Lately, datamining is becoming a very important and powerful tool to identify new pathogens, as well as new variants of known viruses, such as from the now well-known Coronaviridae family for example (https://virological.org/t/serratus-the-ultra-deep-search-to-discover-novel-coronaviruses/516) (last visited 04/2021). Datamining can be also utilized to increase the number of complete genome sequences for downstream studies on the evolutionary history of specific viruses for example (Hily et al., 2020). In this work, datamining can be considered as an in-silico tool to monitor post facto the sanitary status of any vineyards around the world from which data have already been collected, published and made publicly available. There are a few pitfalls regarding datamining as a tool. Indeed, we do not have always all the details regarding the samples (i.e. metadata about the samples such as the exact origin and location of collection). We do not have the choice of the technology with which data were obtained nor the quality of the sample. However, the
information being generated is still very valuable, it has already been paid for and therefore almost free (other than the time of analysis), it is available to anyone and most of all, it is ever growing.

Funding This work was supported by Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) and by Institut Français de la Vigne et du Vin (IFV) and by the projects ‘VACCIVINE’ and ‘GPGV’ funded through ‘Plan National Dépêrissement du vignoble’ (French Ministry of Agriculture) in 2017 and 2019, respectively. A fellowship from Moët & Chandon, Comité Interprofessionnel du vin de Champagne (CIVC), Bureau Interprofessionnel des Vins de Bourgogne (BIVB) and Comité Interprofessionnel des Vins d’Alsace (CIVA) was awarded to JMH.

Declarations

Ethical approval No human and/or animal participants were involved in the study.

Consent to participate, submission and for publication All authors have been personally and actively involved in the work leading to this manuscript and consent its submission and publication.

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Al Rwahnih, M., Golino, D., & Rowhani, A. (2016). First report of grapevine pinot gris virus infecting grapevine in the United States. *Plant Disease, 100*(5), 1030–1030. https://doi.org/10.1094/pdis-10-15-1235-pdn

Bertazzon, N., Forte, V., & Angelini, E. (2020). Fast transmission of grapevine ‘Pinot gris’ virus (GPGV) in vineyard. *Vitis, 59* (1), 29–34.

Dal Santo, S., Zenoni, S., Sandri, M., De Lorenzois, G., Magris, G., De Paoli, E., et al. (2018). Grapevine field experiments reveal the contribution of genotype, the influence of environment and the effect of their interaction (G×E) on the berry transcriptome. *The Plant Journal, 93*(6), 1143–1159. https://doi.org/10.1111/tjp.13834

Fajardo, T. V. M., Eiras, M., & Nickel, O. (2017). First report of grapevine pinot gris virus infecting grapevine in Brazil. *Australasian Plant Disease Notes, 12*(1), 45. https://doi.org/10.1007/s13314-017-0270-5

Giampetruzzi, A., Roumi, V., Roberto, R., Malossini, U., Yoshikawa, N., La Notte, P., et al. (2012). A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in cv Pinot gris. *Viruses Research, 163*(1), 262–268. https://doi.org/10.1016/j.virusres.2011.10.010

Hily, J.-M., Demanèche, S., Poullicard, N., Tannière, M., Djennane, S., Beuve, M., Vigne, E., Demangeat, G., Komar, V., Gertz, C., Marmonier, A., Hemmer, C., Vignerone, S., Marais, A., Candresse, T., Simonet, P., & Lemaire, O. (2018). Metagenomic-based impact study of transgenic grapevine rootstock on its associated virome and soil bacteriome. *Plant Biotechnology Journal, 16*(1), 208–220. https://doi.org/10.1111/pbi.12761

Hily, J.-M., Poullicard, N., Candresse, T., Vigne, E., Beuve, M., Renault, L., Velt, A., Spilmont, A. S., & Lemaire, O. (2020). Datamining, genetic diversity analyses and phylogeographic reconstructions redefine the worldwide evolutionary history of grapevine Pinot gris virus and grapevine berry necrosis virus. *Phytobiomes Journal, 4*(2), 165–177. https://doi.org/10.1094/PBIOMES-10-19-0061-R

Hily, J.-M., Komar, V., Poullicard, N., Vigne, E., Jacquet, O., Protet, N., Spilmont, A. S., & Lemaire, O. (in press). Biological evidence and molecular modeling of a grapevine Pinot gris virus outbreak in a vineyard. *Phytobiomes Journal*. https://doi.org/10.1094/pbiomes-11-20-0079-r

Nourinejhad Zarghani, S., Hily, J. M., Glasa, M., Marais, A., Wetzal, T., Faure, C., Vigne, E., Velt, A., Lemaire, O., Bounsiqot, J. M., Okic, A., Ruiz-Garcia, A. B., Olmos, A., Lacombe, T., & Candresse, T. (2018). Grapevine virus T diversity as revealed by full-length genome sequences assembled from high-throughput sequence data. *PLoS One, 13*(10), e0206010. https://doi.org/10.1371/journal.pone.0206010

Saldarelli, P., Giampetruzzi, A., Morelli, M., Malossini, U., Pirolo, C., Bianchedi, P., & Gualandi, V. (2014). Genetic variability of grapevine Pinot gris virus and its association with grapevine leaf mottling and deformation. *Phytopathology, 105*(4), 555–563. https://doi.org/10.1094/PHYTO-09-14-0241-R

Vigne, E., Garcia, S., Komar, V., Lemaire, O., & Hily, J.-M. (2018). Comparison of serological and molecular methods with high-throughput sequencing for the detection and quantification of grapevine fanleaf virus in vineyard samples. *Frontiers in Microbiology, 22*(9), 2726. https://doi.org/10.3389/fmicb.2018.02726

Wu, Q., & Habli, N. (2017). The recent importation of grapevine Pinot gris virus into Australia. *Virus Genes, 53*(6), 935–938. https://doi.org/10.1007/s11262-017-1475-6