Correlation of distribution of sulphonated aluminium phthalocyanines with their photodynamic effect in tumour and skin of mice bearing CaD2 mammary carcinoma

Q Peng and J Moan

Departments of Pathology and Biophysics, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.

Summary A chemical extraction assay and fluorescence microscopy incorporating a light-sensitive thermoelectrically cooled charge-coupled device (CCD) camera was used to study the kinetics of uptake, retention and localisation of disulphonated aluminium phthalocyanine (AlPcS2) and tetrasulphonated aluminium phthalocyanine (AlPcS4) at different time intervals after an i.p. injection at a dose of 10 mg kg-1 body weight (b.w.t.) in tumour and surrounding normal skin and muscle of female C3H/F1 mice bearing CaD2 mammary carcinoma. Moreover, the photodynamic effect on the tumour and normal skin using monosulphonated aluminium phthalocyanines (AlPcS, AlPcS2, AlPcS3 and Photofrin) was compared with respect to dye, dye dose and time interval between dye administration and light exposure. The maximal concentrations of AlPcS in the tumour tissue were reached 2–24 h after injection of the dye, while the amount of AlPcS peaked 1–2 h after the dye administration. AlPcS2 was simultaneously localised in the interstitium and in the neoplastic cells of the tumour, whereas AlPcS1 appeared to localise only in the stroma of the tumour. The photodynamic efficacy (light was applied 24 h after dye injection at a dose of 10 mg kg-1 b.w.t of the tumours was found to decrease in the following order: AlPcS2 > AlPcS1, Photofrin > AlPcS4. Furthermore, photodynamic efficacy was strongly dependent upon dye doses and time intervals between dye administration and light exposure: the higher the dose, the higher the photodynamic efficiency. The most efficient photodynamic therapy (PDT) of the tumour was reached (day 20 tumour-free) when light exposure took place 2 h after injection of AlPcS4 (10 mg kg-1). A dual intratumoral localisation pattern of the dye, as found for AlPcS4, seems desirable to obtain a high photodynamic efficiency. The kinetic patterns of uptake, retention and localisation of AlPcS and AlPcS4 are roughly correlated with their photodynamic effect on the tumour and normal skin.

Keywords: photodynamic therapy; sulphonated aluminium phthalocyanines; Photofrin; mouse CaD2 mammary carcinoma; fluorescence microscopy.

Although observations that phthalocyanines had affinity for tumour tissues were documented more than 30 years ago (see references in Rosenthal, 1991), interest in phthalocyanines as second-generation photosensitiser for photodynamic therapy (PDT) of cancer arose in 1985 when Ben-Hur and Rosenthal (1985) reported that some phthalocyanines were efficient photosensitisers in mammalian cells. Phthalocyanines (Pcs) can be regarded as azaporphyrins containing a ring system made up of four isoindoles linked by nitrogen atoms. Several diamagnetic metal ions can be inserted into the central ring of the Pc macrocycle, such as aluminium, gallium, tin and zinc, leading to high triplet yields as well as long triplet lifetimes of some of the metallo-Pcs (M-Pcs). M-Pcs are insoluble in water, but water-soluble M-Pcs can be obtained by sulphonation procedures. At present, most studies on Pcs related to PDT have been conducted with water-soluble sulphonated M-Pcs, in particular sulphonated aluminium phthalocyanines (AlPcSx). M-Pcs have several advantages over haematoporphyrin derivative (HpD) and Photofrin, the dyes currently most used in clinical trials, such as high chemical stability and a well-defined chemical structure (Spikes, 1986; Rosenthal, 1991). Moreover, M-Pcs have an absorption peak around 650–700 nm (Q-band) besides an ultraviolet peak (350 nm). The extinction coefficient of the Q-band used for PDT is about 50 times higher than that of HpD Photofrin, thus probably allowing a more efficient utilisation of photons. Furthermore, the absorption peak of M-Pcs in the Q-band is red-shifted by about 50 nm compared with those of HpD Photofrin. This results in approximately 50% deeper tissue penetration of the activating light (Ben-Hur and Rosenthal, 1986).

Initially, the majority of these studies employed AlPcS in the form of a mixture containing monosulphonated, disulphonated, trisulphonated and tetrasulphonated components (van Lier and Spikes, 1989; van Lier, 1990). Recently, more detailed studies using AlPcS2 with different degrees of sulphonation have been carried out. It has been shown that the degree of sulphonation of AlPcSx could significantly affect the distribution and the PDT effect of the dyes in some tumour and normal tissues of mice (Chan et al., 1990; Peng et al., 1991a, 1993; Boyle et al., 1992; van Leengoed et al., 1993a).

The phenomenon of preferential distribution (uptake and localisation) of a sensitisier in tumours is a basis for selective eradication of neoplasia by PDT. The concentration of a dye within a tumour varies with time after administration. Also, the intratumoral localisation pattern of the dye in the tumour depends upon time course (Peng et al., 1990a; 1991b), which may affect PDT efficacy. Thus, the optimal time interval between sensitisier application and its subsequent activation by light is a crucial factor for success of PDT. However, few data exist as to correlation of uptake and localisation of M-Pcs in tumours with their photodynamic effect, although a large number of reports indicate the potential utility of M-Pcs as sensitisisers for PDT of tumours (Spikes, 1986; van Lier, 1990; Rosenthal, 1991). In the present work, we have studied uptake, elimination, localisation and photodynamic efficacy of AlPcS and AlPcSx in tumours and normal skin of mice bearing CaD2 mammary carcinoma.

Materials and methods

Chemicals

Derivatives of aluminium phthalocyanines with mono-, di- and tetrasulphonate groups (AlPcS, AlPcS2 and AlPcS3) were obtained from Porphyrin Products (Logan, UT, USA). These derivatives were assessed by high-performance liquid chromatography (HPLC) to be > 90% pure (Berg et al., 1991).
The dye called AlPcS; in the present study probably contains two sulphonate groups on adjacent phenyl rings (AlPcS). Stock solutions of AlPcS; and AlPcS were prepared in Dulbecco's phosphate-buffered saline (PBS) (Gibco) while AlPcS; was dissolved initially in a small amount of 40% ethanol in PBS followed by dilution in PBS. All solutions of AlPcS; were sonicated for 5 min (Elma Transsonic, type T400, Germany) before use in order to reduce the degree of aggregation. All chemicals used were of the highest purity commercially available.

Animals and tumour line

Female C3H:F1 mice were obtained from Bomholtgaard, Ry, Denmark. housed eight per cage and kept under specific pathogen-free conditions. The mice were 6 weeks old and weighed 20–22 g when the experiments started. The CaDU mammary carcinoma (German Cancer Center, Heidelberg, Germany) was propagated by serial transplantation into the C3H:F1 mice. Non-necrotic tumour material for inoculation was obtained by sterile dissection of large flank tumours from syngeneic mice. Macroscopically viable tumour tissue was gently minced with a pair of scissors and forced repeatedly through sterile needles of diminishing sizes from 19 gauge to 25 gauge to make a tumour tissue suspension. 0.02 ml of which was then injected into the dorsal side of the right hind foot of each mouse. The rate of successful transplantations was nearly 100% in the present experiments. No spontaneous necrosis was observed in the tumours which grew to reach 5–7 mm transverse diameter on the day of treatment, as measured with a caliper. The tumour volume was calculated using the following formula:

\[V = \frac{4}{3}\pi(D_1 \times D_2 \times D_3) \]

where \(D_1, D_2, \) and \(D_3 \) are three orthogonal diameters of the tumours which were measured daily by the caliper (Evensen and Moan, 1987).

Uptake and elimination of AlPcS; and AlPcS in tumour and surrounding normal tissues

When the tumours had reached the appropriate size (as indicated above), the mice were given an i.p. injection of 10 mg kg\(^{-1}\) b.w. of either AlPcS; or AlPcS. At 0.5, 1, 2, 4, 24, 48, 72, 96 and 120 h (five mice for each time point) after the injection the mice were killed by cervical dislocation. The tumour, normal skin overlaying the tumour and adjacent normal thigh muscle were removed for determination of AlPcS; and AlPcS. The same tissue samples were also taken from control mice receiving no dye. Extraction of AlPcS;/AlPcS from various tissue samples was carried out according to Chua et al. (1988) with slight modification. Briefly, the tissue samples were digested with 0.1 M sodium hydroxide (0.1 g of wet tissue in 5 ml of 0.1 M sodium hydroxide) for 4 h in a 50°C water bath with constant shaking. It was found that such a treatment (i.e. 50°C for 4 h in 0.1 M sodium hydroxide solution) did not alter the fluorescence spectra or the fluorescence intensity of test samples containing AlPcS; or AlPcS. The resulting solutions were centrifuged at 3000 r.p.m. (1600 g) for 10 min, and the supernatant was removed. The fluorescence emission spectra were scanned from 550 to 750 nm using a Perkin-Elmer LS-5 luminescence spectrometer. The absolute amounts of the dyes in tissues were calculated from standard curves made by addition of known amounts of the dye to corresponding tissue extracts from control mice receiving no injection of the dye, and expressed as \(\mu \)g of AlPcS; or AlPcS g\(^{-1}\) wet tissue.

Localisation of AlPcS; and AlPcS in the tumour and surrounding normal tissues

In the uptake study the tumour and surrounding normal skin and muscle tissues at 2, 24, 48, 72 and 120 h after injection of either AlPcS; or AlPcS were excised and immediately bisected. One half of each tissue sample was used for the extraction assay and the other half was used for the localization study. The samples were immediately immersed in liquid nitrogen, then mounted in medium (Tissue Tek II embedding compound; BDH, Poole, UK). Sections were cut with a cryostat to a thickness of 8 \(\mu \)m and mounted on clean glass slides. A series of sections were cut from each tissue block. The fluorescence localisation pattern of AlPcS; or AlPcS in each section was directly observed by fluorescence microscopy. The same frozen sections were subsequently stained with haematoxylin and eosin (H&E). Comparisons were made between the fluorescence images and original micrographs of H&E-stained specimens in order to determine the exact histological localisation of AlPcS; and AlPcS in the tissues. The fluorescence microscopy was carried out using an Axioskop microscope (Zeiss, Germany) with a 100 W mercury lamp. The fluorescence images were recorded by a highly light-sensitive thermoelectrically cooled charge-coupled device (CCD) camera (resolution 385 \(\times \) 578) (Astromed CCD 3200, Cambridge, UK) and hardcopied on a video printer (Sony multiscan video printer UP-930). The filter combination used for detection of AlPcS;/AlPcS fluorescence consisted of a 365 nm excitation filter, a 395 nm beam splitter and a \(> \) 600 nm emission filter.

PDT efficiency of the tumour with AlPcS; AlPcS, AlPcS; or Photofrin

Mice with tumours of the appropriate size were divided into four groups for each drug: group 1, neither a dye nor light,
only i.p. administration of 0.1 ml of PBS; group 2, light only on the tumour; group 3, mice given an i.p. 10 mg kg\(^{-1}\) injection of AlPcS\(_2\), AlPcS\(_4\) or AlPcS\(_6\) without light exposure; group 4, mice given an i.p. injection of one of the AlPcS\(_2\) derivatives at different doses (1, 5 and 10 mg kg\(^{-1}\)). At 2, 24 and 72 h after injection, the tumours were irradiated (various numbers of mice per drug and time point as indicated in the figures). In a separate group mice (ten mice) bearing the same tumour model were given an i.p. injection of 10 mg kg\(^{-1}\) b.w. Photofrin. After 24 h (a standard time for animal and clinical studies with the dye) the tumours were exposed to light. Responses of the treated tumours were evaluated as tumour regression/regrowth time. The size of the tumours was measured every day, and when the treated tumours reached a volume five times that of the volume on the day just before light irradiation the mice were sacrificed. The data based on the measurements of tumour volumes from each group were pooled to represent mean tumour growth curves.

The laser light irradiation of the tumours was performed as previously described (Evensen and Moan, 1987). Unanaesthetised mice were fixed in Lucite jigs specially designed for irradiation. The tumour area was exposed to red light from a dicyanomethylene-2-methyl-6-(4-dimethylamino-phenyl)pyraan (DCM) dye laser pumped by a 5 W argon ion laser (Spectra Physics, 164). The tuning range was 610–690 nm. The dye laser was tuned at 675 nm for all derivatives of AlPcS\(_2\) and at 632 nm for Photofrin, the tuning being controlled by means of a monochromator. The laser beam was defocused by means of a microscopic ocular. The light was delivered at a fluence rate of 150 mW cm\(^{-2}\) for 15 min exposures in all cases. The fluence rate of the light on the tumour area was regularly controlled by a calibrated integrating sphere with a photodiode coupled to a digital multimeter (Keithley Instruments, Germany) before and immediately after light illumination.

PDT effect on normal skin of mice with AlPcS\(_2\), AlPcS\(_4\), AlPcS\(_6\) or Photofrin

The normal foot response of C\(_3\)H\(_{3}\)F\(_{1}\) mice bearing no tumour (3–5 mice per group) to PDT was evaluated. These normal mice were treated with PDT using the derivatives of AlPcS\(_2\), Photofrin or in the exactly same manner as those bearing tumours. Different doses of the drugs (1, 5 and 10 mg kg\(^{-1}\) for derivatives of AlPcS\(_2\), and 10 mg kg\(^{-1}\) for Photofrin) and time intervals between drug administration and light exposure (2, 24, 48 and 72 h for AlPcS\(_2\) and 24 h for Photofrin) were employed. The light was used at the same doses as those for PDT of tumours. The PDT-induced response of right hind feet of mice was compared with that of the unexposed left hind feet of the same mice as follows:

1. The average thickness (PDT-induced oedema) of the treated foot (\(T_t\)) and of the untreated foot (\(T_u\)) (Evensen and Moan, 1987) was measured every second day for 24 days; the response was calculated as \(\frac{T_t}{T_u} - 1\).

2. The foot response was graded every second day according to the following arbitrary scale, in which each score was also divided into five subscores (0.2 for each) based on the reaction degree: 0, no difference from normal; 0.2–1, slight swelling and mild erythema; 1.2–2, severe swelling (or with exudation), erythema or slight necrosis; 2.2–3, necrosis and crust.

Results

Uptake and retention of AlPcS\(_2\) and AlPcS\(_4\) in tumour and normal tissues

The kinetics of uptake and retention of AlPcS\(_2\) and AlPcS\(_4\) by the CaD2 tumours and surrounding normal skin and muscle tissues is shown in Figure 1. The maximal concentrations of AlPcS\(_2\) in the tumours were reached 2–24 h after injection of the dye. After that, the concentrations gradually decreased with time. The amounts of AlPcS\(_2\) in the tumours peaked at 1–2 h after the dye administration, after which the concentrations declined at a faster rate than that of AlPcS\(_4\). Both of the dyes had a similar kinetic pattern of uptake and elimination in the surrounding normal skin and muscle (Figure 1). The absolute levels of AlPcS\(_2\) and AlPcS\(_4\) were much lower in the muscle than in the tumour and skin (Figure 1). The concentration ratios of tumour–skin and tumour–muscle at different time intervals after injection of AlPcS\(_2\) or AlPcS\(_4\) are presented in Table 1. The concentrations of AlPcS\(_2\) in the tumour were 0.7–2.2 times as high as those in the skin and 2.5–13 times as high as those in the muscle during the period studied. In the case of AlPcS\(_4\), the dye was taken up 0.9–1.7 times more in the tumour than in the skin and 2–12 times more in the tumour than in the muscle.

Localisation of AlPcS\(_2\) and AlPcS\(_4\) in the tumour and surrounding normal tissues

Strong fluorescence of AlPcS\(_2\) was seen in the connective tissue and vascular structure of dermis surrounding the CaD2 tumour and also, to some extent, in the neoplastic cells of the tumour tissue as early as 2 h after injection of the dye (Figure 2a). The fluorescence of the intracellularly localised dye in the tumour tissue was strong 24–72 h after the injection (Figure 2b), while almost no fluorescence could be detected 120 h after the injection. Fluorescence of the dye was hardly seen in the epidermis and muscle in the tissue intervals studied. In the case of AlPcS\(_4\), there was a strong fluorescence of the dye in the connective tissue and vessels of the dermis around the tumour 2 h post injection (Figure 2c). At 24–72 h after injection much less fluorescence of the dye was found in the dermis surrounding the tumour. Some fluorescence appeared to localise mainly in the stromal components of the tumours (Figure 2d). No fluorescence of the dye was found in the epidermis and muscle.

PDT efficiency of tumours with AlPcS\(_2\), AlPcS\(_4\), AlPcS\(_6\) or Photofrin

The growth of the tumours exposed to light 24 h after an i.p. administration of AlPcS\(_2\), AlPcS\(_4\), AlPcS\(_6\) or Photofrin at a

Time (h)	Tumour–skin AlPcS\(_2\)	Tumour–muscle	Tumour–skin AlPcS\(_4\)	Tumour–muscle
0.5	1.7	4.8	0.9	2.2
1	1.4	4.2	1	2
2	1.2	2.5	1.1	2.5
4	1.2	3.4	1.2	2.9
24	2.2	13	1.3	12
48	2.2	13	1.3	12
72	1.9	12	1.4	12
96	1.4	10	1.3	10
120	0.7	8	1.2	12
A dose of 10 mg kg$^{-1}$ is shown in Figure 3. The control tumours (neither dye nor light) grew exponentially with a doubling time of about 1.6 days. Laser light given to tumours of mice receiving no injection of the dye had a slight but insignificant effect on the tumour growth. Tumours of mice treated with AlPcS$_2$-PDT grew a little more slowly than did the control tumours. However, tumours of mice given AlPcS$_2$ or AlPcS$_4$ followed by light exposure showed a significant growth delay. Among the dyes studied, AlPcS$_2$ was the most efficient photosensitiser, being significantly more efficient than AlPcS$_4$ and Photofrin. The PDT efficiencies in the tumour model were found to decrease in the following order: AlPcS$_2$ > AlPcS$_4$ > Photofrin > AlPcS$_1$ (Figure 3). It should be noted that tumours treated with Photofrin-PDT approached the same growth rate as that of control tumours (6–10 days after PDT), in agreement with our earlier work (Evensen and Moan, 1987), while the tumours treated with AlPcS$_2$- or AlPcS$_4$-mediated PDT had a reduced growth rate during the whole period of observation. PDT was more efficient when light irradiation was applied at 2 h than at 24 or 72 h post dye injection in both cases of AlPcS$_2$ and AlPcS$_4$ (Figure 4). The tumours treated with AlPcS$_2$, followed 2 h later, by light exposure did not resume growth during the 20 days examined. Moreover, as can be

Figure 2 Fluorescence photomicrographs of CaD2 tumours sampled 2 h (a and c) and 24 h (b and d) after an i.p. injection of AlPcS$_2$ (a and b) or AlPcS$_4$ (c and d) at a dose of 10 mg kg$^{-1}$. (a) Strong fluorescence of the dye mainly in the stroma of the tumour. (b) Fluorescence in the neoplastic cells of the tumour. (c) Fluorescence of the dye in the area of subcutaneous connective tissue surrounding the tumour. (d) Fluorescence distribution in the space between individual tumour cells.
exposure
AlPcS2-
did not
after treatment, decrease in response measuring respectively post patterns A1PcS4-PDT the bottom of the dye. The dose of dye was determined by laser irradiation (675 nm, 150 mW cm⁻² for 15 min) (see details in the text). The numbers of mice are shown at the bottom of the columns. ‘Cure’ means no regrowth of the treated tumours for the 20 days observed. The error limits were less than 15% of the mean values.

seen in Figure 5, the efficacy of AlPcS₄-PDT and AlPcS₂-PDT is strongly dependent upon the applied dose of the dye. The higher the dose used, the higher the PDT efficacy achieved.

PDT effect on normal skin

As shown in Figures 6 and 7, the normal skin phototoxicity of the dyes at various doses and time intervals between dye administration and light irradiation was compared by measuring the average thickness of feet as well as by grading the foot reaction. Both evaluating methods showed similar patterns of the normal foot response to PDT within 24 days post treatment. Photofrin was the most damaging drug to the feet. All dyes studied reached maximum average scores of 2.0–2.2, except AlPcS₂, which had a much lower foot response score of 0.8 after PDT at a dose of 10 mg kg⁻¹ and a 24 h time interval between dye administration and light exposure. Photofrin-mediated PDT showed no significant decrease in foot photosensitivity until 12 days after PDT and did not completely recover until about 20 days following treatment, whereas the foot response induced by AlPcS₄-, AlPcS₂- or AlPcS₃-based PDT was eliminated by 10 days after treatment (Figure 6a). Moreover, when the light exposure was applied 2 h after the injection, both AlPcS₄ and AlPcS₂ (10 mg kg⁻¹) achieved a maximal score of 2.0 the first day after treatment, and still gave scores of 0.6 and 1.0 respectively even 10 days post-PDT, and did not completely recover until day 20 and day 16 following treatment (Figure 6b and d). However, when the light irradiation was performed at later times (24–72 h) after injection, the foot reaction to PDT disappeared more quickly after treatment (Figure 6b and d). In addition, when the doses of the two dyes were reduced from 10 mg kg⁻¹ to 1 mg kg⁻¹ and the light irradiation was still given 2 h after dye administration, the foot responses completely disappeared by 10 days after treatment, although a score of 2.0 was reached the first day post-PDT in both cases (Figure 6c and e). These results are in good agreement with those obtained from the thickness measurements of treated and untreated feet (Figure 7).

PDT under various conditions (dye, dye dose and time interval between dye administration and light exposure) damaged the epidermis. However, in most cases, the epidermis was not completely destroyed. Degeneration and necrosis of some superficial cells occurred in the epidermis and there was formation of vesicles in the epidermis and at the junction of the epidermis and the dermis (Figure 8b). Damage to sebaceous glands was not pronounced. Interestingly, there was no irreversible injury to the dermis, although vascular reaction in the dermis was evident, such as oedema, congestion and infiltration of white blood cells. The healing of the damaged epidermis seemed to occur promptly via epithelial regeneration (Figure 8c), and the PDT-mediated vascular reaction in the dermis almost disappeared within 20 days post treatment. These histological findings are consistent with the data obtained by the other two evaluating methods.

Discussion

PDT of cancer is based on the preferential uptake, retention (defined as the inverse of the rate of disappearance of a dye from a tissue) and localisation of photosensitisers in neoplastic tissue. Thus, the elaboration of rational protocols for PDT of cancer must eventually take into consideration the following factors: (1) the kinetics of uptake and disappearance of a photosensitiser in normal and tumour tissues and (2) the localisation patterns of the photosensitiser in such tissues at given times. In particular, an optimal time interval between drug administration and light irradiation should be chosen so as to reach a maximal PDT therapeutic effect on the tumour as well as optimal selectivity. The reaction of singlet oxygen with target biomolecules is regarded as the principal initiating pathway leading to photodynamic damage (Weishaupt et al., 1976; Moan et al., 1987), although free radicals are also thought to be involved in some cases (Ferraudi et al., 1988; Kimel et al., 1989). Since singlet oxygen diffuses intracellularly only about 20 nm in its lifetime (Moan, 1990; Moan and Berg, 1991), the cellular structures close to high sensitisier concentration and high oxygen concentration will be preferentially damaged by the activating light. Consequently, the pattern of intracellular/intratumoral...
localisation of a photosensitiser may be closely related to the mechanism of its photodynamic action. Thus, the PDT efficiency of cancer could be enhanced by the use of photosensitisers with high and preferential uptake and selective localisation at particularly PDT-sensitive sites of neoplastic tissues.

The mechanisms involved in the preferential uptake of dyes by tumours are not fully understood. It should be noted that the accumulation of a drug in a tumour is actually the result of two competing processes: uptake and disappearance. Many sensitisers have been shown to be rapidly taken up by various tissues, but to have different rates of clearance. Therefore, a high retention (i.e. slow rate of disappearance) is an important factor for preferential biodistribution of dyes. The present study shows that the uptake and retention of sulphonated aluminium phthalocyanines by the CaD2 tumour tissue were affected by the degree of sulphonation of AlPcS₄. The relatively less polar AlPcS₂ reached the highest concentrations in the tumour tissue at 2–24 h with a slow rate of disappearance after an i.p. injection. By contrast, the amount of the more polar AlPcS₄ peaked at 1 h with a fast rate of clearance from the tumour after the injection (Figure 1). These data are in good agreement with our previous findings in human LOX tumour tissue transplanted in nude mice (Peng et al., 1991a, 1993). Similar results were also found by others in mammary carcinoma of WAG/Rij rats by the use of a transparent observation chamber system (van Leengoed et al., 1990, 1993b).

The preferential tumour distribution of photosensitisers is related to their chemical properties (Kessel et al., 1987; Kongshaug, 1992, Kessel and Woodburn, 1993). The relative binding of porphyrins to low-density lipoprotein (LDL) increases with decreasing polarity of the dyes (Kessel et al., 1987; Kongshaug et al., 1989, 1990a,b). There are, however,

Figure 6 Normal mouse skin was treated with PDT (as indicated) in the same manner as that for PDT of the tumours. Skin phototoxicity was evaluated by grading the foot response according to arbitrary scores as described in the text.
Distribution and PDT effects of phthalocyanines
Q Peng and J Moan

Figure 7 Normal mouse skin was treated (as indicated) in the same manner as that for PDT of tumours. The photoinduced skin oedema was evaluated by measuring the thickness of treated and untreated feet of mice as described in the text.

some exceptions to this rule. For example, mesotetraphenylporphine with two sulphonate groups on adjacent phenyl rings (TPPS₃) was more bound to LDL than the less polar TPPS₁ (Kessel et al., 1987; Kongshaug et al., 1989). This was attributed to the asymmetry of the charges on the dye (Kessel et al., 1987; Kongshaug et al., 1989). Such a charge asymmetry may be a factor which leads to high affinities for lipid–water interfaces and hence may favour not only binding to LDL, but also uptake by cells (Bommer et al., 1985; Berg et al., 1990). Such dyes have also a slow rate of clearance from tissues in vivo (Kessel et al., 1987; Brasseur et al., 1988). AlPcS₄ used in the present study, was supposed to have the two sulphonate groups in adjacent positions, and was found to bind substantially to the lipoproteins [mainly high-density lipoprotein (HDL) and LDL] in human plasma (Kongshaug, 1992). It has been reported that several neoplastic cell lines express larger amounts of LDL receptors than the corresponding normal cells (Lombardi et al., 1989; Vitols et al., 1990). These types of tumours may therefore be involved in the mechanism of high uptake of some LDL-binding dyes (Gal et al., 1981; Hynds et al., 1984; Norata et al., 1984).

Light exposure of a tumour is usually carried out 24–72 h after systemic administration of HpD or Photofrin in most animal and clinical trials, since in this time interval the concentrations of the dyes are maximal in most malignant tissues. This study has shown that, although AlPcS₄ was cleared from tumour and surrounding normal tissues faster than was AlPcS₂, the absolute amounts of AlPcS₄ at the peak values were not lower than those of AlPcS₂ (Figure 1). For a given dye a maximal PDT effectiveness is expected when light is applied at the time when the dye has its maximum concentration in the tumour. This is supported by the findings of the present study. The highest PDT efficiencies in the CaD2 tumours were obtained when the light treatment was carried out 2 h after AlPcS₂ or AlPcS₄ injection (Figure 4), the time when the two dyes reached their maximal concentrations in the tumours (Figure 1). This is consistent with data which showed that AlPcS₂-mediated PDT reached a maximal effect on RIF-1 murine tumours when light exposure was applied 1 h after the dye administration (Bremner et al., 1992). Also, the present study has shown that the efficacy of AlPcS₂–PDT and AlPcS₄–PDT of the tumours is strongly dependent upon the applied dose of the dye. The higher the drug dose used, the higher the PDT effect achieved (Figure 5). Further, AlPcS₂ and AlPcS₄ had a higher PDT-induced tumour-destroying efficiency than had Photofrin at the same doses of the drug and light exposure (Figure 3). Similarly, a recent
TPPS₄-based PDT efficacy of C3H Tif mouse mammary carcinoma is rather low (Evensen and Moan, 1987). Further, as shown in Figure 4, AlPcS₄-mediated PDT cured the CaD2 tumour (day 20 tumour-free), while the tumours resumed growth after AlPcS₁-based PDT. Although the light irradiation was performed when similar concentrations of the two dyes were reached in the tumour tissue (Figure 1). It is also true that AlPcS₁-based PDT had different effects on the tumours when the light was applied at 2 and 24 h after the injection, although similar amounts of the dye were found in the tumours during the time interval of 2–24 h after the injection (Figure 1). Therefore, the effect of PDT on a tumour system is not only related to the level of the dye in the tumour. Factors such as dye distribution and intratumoral localisation patterns of the dye may explain this.

A solid tumour contains, in addition to neoplastic cells, vascular and interstitial compartments. No blood-borne molecule can reach cancer cells without passing through these compartments (Jain, 1987, 1989). Our present findings indicate that the relatively less polar AlPcS₄ is initially localised mainly in the vascular collagensous interstitium of the CaD2 tumour and also, to some extent, in the tumour cells. Intracellular localisation of the dye was more pronounced at longer times after the administration. Thus, the intratumoral localisation pattern of the dye is time dependent. The more polar AlPcS₁, which binds substantially to non-lipoproteins in plasma (Kongshaug, 1992), was found largely in the stromal tissue of the tumours. These results agree with data obtained in the LOX tumour model (Peng et al., 1991b) and in the dimethylhydrazine-induced colon cancer models of rats (Chatlani et al., 1992). Presumably, AlPcS₄-based PDT resulted in destruction of the vascular supply as well as the neoplastic cells of the tumours when light exposure was applied 2 h after injection of the dye, whereas AlPcS₁-mediated PDT destroyed mainly the stroma of the tumours. Since AlPcS₄ had a higher photodynamic efficiency for tumour destruction, it seems that direct damage to tumour cells is important to obtain a strong and lasting effect. Thus, for a given dye the optimal time intervals between dye administration and light irradiation might be when substantial amounts of the dye are present in both the vascular and neoplastic cellular compartments of tumours.

PDT of cancer aims at destroying malignant tissue while sparing surrounding normal tissues. However, the uptake of photosensitiser by tumour tissue is usually not as selective as one would desire, and actually all of the currently used porphyrin dyes are present in most non-malignant tissues in significant amounts for a long time after systemic administration (Gomer and Dougherty, 1979; Bugelski et al., 1981; Peng et al., 1987, 1991a; Bellnier et al., 1989; Perry et al., 1991). This holds for animals and man. Exposure of normal skin to solar and artificial light can result in skin photosensitivity (Meyer-Betz, 1913; Zalar et al., 1977). At present severe skin photosensitivity is the major side-effect of PDT with HpD Photofrin (Razum et al., 1987; Dougherty et al., 1990). This restrains the clinical application of HpD Photofrin-based PDT. Thus, there is a need for new photosensitisers which have more favourable photochemical and or pharmacological properties than HpD Photofrin. In particular, the new photosensitisers should exhibit rapid clearance from skin and other normal tissues. The use of such dyes would eliminate or at least reduce the extent of skin photosensitisation.

Most of the photosensitisers studied so far have a similar skin phototoxicity to that of Photofrin, probably because of a similar distribution of the dyes in the skin (Peng et al., 1990b). The present investigation shows that PDT-induced skin reaction, such as degeneration and necrosis of some cells in the epidermis, and oedema, congestion and even infiltration of inflammatory cells in the dermis, occurred only 1 h after light treatment with all the dyes examined. These findings are in agreement with data obtained using the other two methods, which demonstrated that the peak foot response was reached on the first day after PDT in most cases. Since the epidermis and dermis were not completely des-
troyed, the skin recovered within 20 days after PDT. Moreover, Photofrin-induced skin reactions were more severe than those with any derivatives of AlPcS studied. Similar results have also been obtained by others (Triatou et al., 1989). The extent of the foot reaction is thus related to the dye used. Furthermore, as shown in Figures 6 and 7, factors such as the dye dose and the time interval between dye administration and light irradiation also affect skin phototoxicity. In order to achieve a minimal photosensitivity of normal skin and other tissues, it is important to use suitable dyes and dose levels on the basis of favourable distribution properties in tumour and normal tissues. Light irradiation should be applied at a time when the tumour normal tissue dye concentration ratio has its maximum value and or when the intratumoural localisation pattern is optimal with respect to efficient PDT. In this way, the PDT effect on the tumour may be optimised, while the extent of photosensitivity to normal tissues will be minimised. However, for a maximal tumour:normal tissue concentration ratio, the amount of the dye in the tumour could be too low to achieve effective PDT. In this case, either the dose of the dye given must be increased or of PDT must be applied at a time-times when conditions are not optimal with respect to skin and/or normal tissue photosensitivity. The advantage of eradicating tumours is, as a rule, much larger than the drawback of skin photosensitisation and/or of some damage to normal tissues.

Acknowledgement

This work was supported by the Norwegian Cancer Society.

References

BELLNIER DA, HO YK, PANDEY RK, MISSEY JR AND DOUGHERTY TJ. (1982). Distribution and elimination of Photofrin II in mice. Photochem. Photobiol. 35, 221-228.

BEN-HUR E AND ROSENTHAL I. (1985). The phthalocyanines: a new class of mammalian cell photosensitisers with a potential for cancer phototherapy. Int. J. Radiat. Biol., 47, 145-147.

BEN-HUR E AND ROSENTHAL I. (1986). Action spectrum (600-700 nm) for chloroauminum phthalocyanine-induced phototoxicity in Chinese hamster cells. Lasers Life Sci., 1, 79-86.

BERG K, BOMMER JC AND MOAN J. (1989). Evaluation of sulphonated aluminium phthalocyanines for use in photothermotherapy. Cell uptake studies. Cancer Lett., 44, 7-15.

BERG K, BOMMER JC, WINKELMAN JW AND MOAN J. (1990). Cellular uptake and relative efficiency in cell inactivation by photosensitised meso-tetraphenylporphyrins. Photochem. Photobiol., 52, 775-781.

BOMMER JC, SYEJDA AJ, PETRYKA ZI, BURNHAM BF AND SPICKS JD. (1985). The relationship between the structure of a tetrapyrrrole and the selective fluorescence in tumours. In Photodynamic Therapy of Tumours and Other Diseases. Jori G and Perria C (eds) pp. 204-206. Libreria Progetto Editori: Padua, Italy.

BOYLE RW, PAQUETTE B AND VAN LIER JE. (1992). Biological activities of phthalocyanines. XIV. Effect of hydrophobic phthalimidomethyl groups on the in vitro phototoxicity and mechanism of photodynamic action of substituted aluminium phthalocyanines. Br. J. Cancer, 65, 813-817.

BRASSEUR N, ALI H, LANGLOIS R AND VAN LIER JE. (1988). Biological activities of phthalocyanines. IX. Photosensitization of V-79 Chinese hamster cells and EMT-6 mouse mammary tumour by selectively sulphonated zinc phthalocyanines. Photochem. Photobiol., 47, 705-711.

BREMNER JC, ADAMS GE, PEARSON JK, SANSON JM, STRATFORD DJ, BEDWELL J, BROWN SG, MACROBERT AJ AND PHILIPS D. (1992). Increasing the effect of photodynamic therapy on the RIF-1 murine sarcoma, using the bioreductive drugs RSU1609 and RB6145. Br. J. Cancer, 66, 1070-1076.

BUGELSKI P, PORTER C AND DOUGHERTY T. (1981). Autoradiographic distribution hematoporphyrin derivative in normal and tumour tissue of the mouse. Cancer Res., 41, 4606-4612.

CANTI G, FRANCO P, MARIELI O, CUBEDDU R, TARONI P AND RAMPONI R. (1990). Comparative study of the therapeutic effect of photosensitised hematoporphyrin derivative and aluminium disulphonated phthalocyanine on tumour bearing mice. Cancer Lett., 53, 123-127.

CHAN WS, MARSHALL JF, LAM GYF AND HART IR. (1988). Tissue uptake, distribution and potency of the photoactive dye chloroauminum sulphonated phthalocyanine in mice bearing transplantable tumours. Photochem. Photobiol., 47, 559-564.

CHAN WS, MARSHALL JF, SVENSEN R, BEDWELL J AND HART IR. (1990). Effect of sulphonation on the cell and tissue distribution of the photosensitizer aluminium phthalocyanine. Cancer Res., 50, 4533-4538.

CHAN WS, WEST CML, MOORE JY AND HART IR. (1991). Photocytotoxic efficacy of sulphonated species of aluminium phthalocyanine against cell monolayers, multicellular spheroids and in vivo tumours. Br. J. Cancer, 64, 827-832.

CHATLANI PT, BEDWELL J, MACROBERT AJ AND BOWN SG. (1992). Distribution and photodynamic effects of di- and tetrasulphonated aluminium phthalocyanines (AlPs) and AlPs in normal and neoplastic rat colon. In Photodynamic Therapy and Biomedical Lasers. Spinelli P, Dal Fante M and Marchesini R. (eds) pp. 539-544. Elsevier Science: Amsterdam.

DIGHERTY TJ, COOPER MT AND MANG TS. (1990). Cutaneous phototoxic occurrences in patients receiving Photofrin. Lasers Surg. Med., 10, 485-488.

EVENSEN JF. (1985). Distribution of tetravaporphorine sulphonate in mice bearing Lewis lung carcinoma. In Photodynamic Therapy of Tumours and Other Diseases. Jori G and Perria C (eds) pp. 215-218. Libreria Progetto Editori: Padua, Italy.

EVENSEN JF AND MOAN J. (1987). A test of different photosensitisers for photodynamic treatment of cancer in a murine tumour model. Photochem. Photobiol., 46, 859-865.

EVENSEN JF, MOAN J AND WINKELMAN JW. (1987). Toxic and phototoxic effects of tetravaphorinesulphonate and hematoporphyrin derivative in vivo. Int. J. Radiat. Biol., 51, 477-491.

FERRANDI G, ARGEL'ELLO GA, ALI H AND VAN LIER JE. (1988). Types I and II sensitized photo oxidation of amino acid by phthalocyanines: a flash photochemical study. Photochem. Photobiol., 47, 657-660.

GAL D, MCDONALD PC, PORTER JC AND SIMPSON ER. (1981). Cholesterol metabolism in cancer cells in monolayer culture. III. Low density lipoprotein metabolism. Int. J. Cancer, 29, 315-319.

GOMER CJ AND DOUGHERTY TJ. (1979). Determination of [H]- and [14C] hematoporphyrin derivative distribution in malignant and normal tissue. Cancer Res., 39, 146-151.

HYNDS SA, WELSH J, STEWART JM, JACK A, SONKOP M, MCCARDELE CS, CALMAN K, PACKARD CJ AND SHEPARD J. (1984). Low-density lipoprotein metabolism in mice with soft tissue tumors. Biochem. Biophys. Acta, 795, 589-595.

JAIN RK. (1987). Transport of molecules across tumor vasculature. Cancer Metastasis Rev., 6, 559-594.

JAIN RK. (1989). Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl Cancer Inst., 81, 770-776.

KESSEL D, THOMPSON P, SAATIO K AND NANTWID KD. (1987). Tumor localization and photosensitization by sulphonated derivatives of tetravaphorin. Photochem. Photobiol., 45, 787-790.

KESSEL D AND WOODBURN K. (1993). Biodistribution of photosensitising agents. Int. J. Biochem., 25, 1377-1383.

KIMEL S, TROMBERG BJ, ROBERTS WG AND BERNS MW. (1989). Singlet oxygen generation of porphyrins, chlorins, and phthalocyanines. Photochem. Photobiol., 50, 175-183.

KONGSHAUG M. (1992). Review article: the use of the dye given in this case, either the dose of the dye given must be increased or of PDT must be applied at a time-times when conditions are not optimal with respect to skin and/or normal tissue photosensitivity. The advantage of eradicating tumours is, as a rule, much larger than the drawback of skin photosensitisation and/or of some damage to normal tissues.

KONGSHAUG M, MOAN J AND BROWN SR. (1989). The distribution of porphyrins with different tumor localizing ability among human plasma proteins. Br. J. Cancer, 59, 184-188.
KONGSHAUG M. MOAN J AND BROWN SB. (1989). The distribution of porphyrins with different tumor localizing ability among human plasma studied by ultracentrifugation. In Photodynamic Therapy of Neoplastic Diseases. Vol. II. Kessel D (ed.) pp. 43–62. CRC Press: Boca Raton, Fl.

KONGSHAUG M. RIMINGTON C AND EVENSEN JF. (1990a). Binding of PDT photosensitizers to human plasma studied by ultracentrifugation. In Photodynamic Therapy of Neoplastic Diseases. Vol. II. Kessel D (ed.) pp. 43–62. CRC Press: Boca Raton, Fl.

KONGSHAUG M. RIMINGTON C. EVENSEN JF, PENG Q AND MOAN J. (1990b). Hematoporphyrin diethers. V. Plasma protein binding and photosensitizing efficiency. Int. J. Biochem.. 22, 1127–1132.

LOMBARDI P, NORATA G, MAGGI FM, CANTI G, FRANCO P NCOLIN A AND CATAPANO AL. (1989). Assimilation of LDL by experimental tumors in mice. Biochim. Biophys. Acta. 1003, 301–306.

MEYER-BETZ F. (1913). Investigation on the biological (photodynamic) action of hematoporphyrin and other derivatives of blood and bile. Deutsche Arch. Klin. Med.. 112, 476–503.

MOAN J. (1990). On the diffusion length of singlet oxygen in cells and tissues. J. Photochem. Photobiol.. B.Biol. 6, 343–344.

MOAN J AND BERG K. (1991). The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol.. 53, 549–553.

MOAN J, PENG Q, EVENSEN JF. BERG K, WESTERN AND RIMINGTON C. (1987). Photosensitizing efficiencies, tumor and cellular uptake of different photosensitizing drugs relevant for photodynamic therapy of cancer. Photochem. Photobiol.. 46, 713–721.

NORATA G, CANTI G, RICCI L, NCOLIN A, TREZZI E AND CATAPANO AL. (1984). In vivo assimilation of low density lipoproteins by a fibrosarcoma tumor line in mice. Cancer Lett.. 25, 203–208.

PENG Q, EVENSEN JF. RIMINGTON C AND MOAN J. (1987). A comparison of different photosensitizing dyes with respect to uptake by CT3-tumors and tissues of cancer. Cancer Lett.. 36, 1–10.

PENG Q, MOAN J, NESLAND JM AND RIMINGTON C. (1990a). Aluminum phthalocyanines with asymmetrical lower sulfonation and with symmetrical higher sulfonation: a comparison of localizing and photosensitizing mechanism in human tumor LOX xenografts. Int. J. Cancer.. 46, 719–726.

PENG Q, NESLAND JM, MOAN J, EVENSEN JF, KONGSHAUG M AND RIMINGTON C. (1990b). Localization of fluorescence Photofrin II and aluminium phthalocyanine tetrarsulfonate in transplanted human malignant tumor LOX and normal tissues of nude mice using highly light-sensitive video intensification microscopy. Int. J. Cancer.. 45, 972–979.

PENG Q, MOAN J, KONGSHAUG M, EVENSEN J, ANHOLT H AND RIMINGTON C. (1991a). Sensitizer for photodynamic therapy of cancer: a comparison of the tissue distribution of Photofrin II and aluminium phthalocyanine tetrarsulfonate in nude mice bearing a human malignant tumor. Int. J. Cancer.. 48, 258–264.

PENG Q, MOAN J, FARRANTS G, DANIENRSEN HE AND RIMINGTON C. (1991b). Localization of potent photosensitizers in human tumor LOX by means of laser scanning microscopy. Cancer Lett.. 58, 17–27.

PENG Q, MOAN J, CHENG LS, NESLAND JM AND RIMINGTON C. (1993). Potential photosensitizer for photochemotherapy of cancer: uptake and localization of disulfonated aluminium phthalocyanine (AlPcS) in mice bearing a human malignant tumor. Lasers Life Sci.. 5, 175–184.

PERRY RR. SMITH PD, EVANS S AND PASS HJ. (1991). Intravenous vs intraperitoneal sensitizer: Implications for intraperitoneal photodynamic therapy. Photochem. Photobiol.. 53, 335–340.

RAZUM N, BALCHUM OJ, PROFIO AE AND CARSTENS F. (1987). Skin photosensitivity: duration and intensity following intravenous HpD and DHE. Photochem. Photobiol.. 46, 925–928.

ROSENTHAL I. (1991). Phthalocyanines as photodynamic sensitizers. Photochem. Photobiol.. 53, 859–870.

SPIKES JD. (1986). Phthalocyanines as photosensitizers in biological systems and for photodynamic therapy of tumors. Photochem. Photobiol.. 43, 691–700.

TRALAU CI, YOUNG AR, WALKER NP, VERNON DL, MACROBERT AJ, BROWN SB AND BOWN SG. (1989). Mouse skin photosensitivity with dihaemtoporphyrin ether (DHE) and aluminium sulphonated phthalocyanine (AISPE): A comparative study. Photochem. Photobiol.. 49, 305–312.

VAN LEENGOED E, VERSTEEG J Van DER VEE N AND VAN DEN BERG-BLOK A. MARIJNISSEN H AND STAR W. (1990). Tissue-localizing properties of some photosensitizers studies by in vivo fluorescence imaging. J. Photochem. Photobiol.. B.Biol. 6, 111–119.

VAN LEENGOED HLM, VANDER VANDER J Van Der Veen N AND STAR W. (1993a). In vivo photodynamic effects of phthalocyanines in a skin-fold observation chamber model: role of central metal ion and degree of sulfonation. Photochem. Photobiol.. 58, 575–580.

VAN LEENGOED HLM, VANDER VANDER J Van Der Veen N AND STAR W. (1993b). In vivo fluorescence kinetics of phthalocyanines in a skin-fold observation chamber model: role of central metal ion and degree of sulfonation. Photochem. Photobiol.. 58, 233–237.

VAN LIER JE. (1990). Phthalocyanines as sensitizers for PDT of cancer. In Photodynamic Therapy of Neoplastic Disease. Vol. I. Kessel D (ed.) pp. 279–290. CRC Press: Boca Raton, Fl.

VAN LIER JE AND SPIKES JD. (1989). The chemistry, photophysics and photosensitizing properties of phthalocyanines. In Photosensitizing Compounds: their Chemistry, Biology and Clinical Use, Bock G and Harnett S (eds) pp. 17–32. Ciba Foundation Sympos. 146, John Wiley: Chichester.

VITOLS S, SODERBERG-REID K, MASQUELIER M, BIOSTROM B AND PETERSON C. (1990). Low-density lipoprotein for delivery of a water-insoluble alkylating agent to malignant cells. In vitro and in vivo studies of a drug–lipoprotein complex. Br. J. Cancer.. 62, 724–729.

WEISHAUP K, GOMER CJ AND DOUGHERTY TJ. (1976). Identification of singlet oxygen as cytotoxic agent in photoinactivation of murine tumor. Cancer Res.. 36, 2326–2329.

WINKELMAN J. (1962). The distribution of tetraphenylphosphine-sulfonate in the tumor-bearing rat. Cancer Res.. 22, 589–596.

ZALAR GL, POH-FITZPATRICK M, KROHN DL, JACOBS R AND HARBER LC. (1977). Induction of drug photosensitisation in man after parenteral exposure to hematoporphyrin. Arch. Dermatol.. 113, 1392–1397.