Dependence sandy soil thermal conductivity on grain-size composition

A V Zakharov1,2 and S E Makhover1

1Department of Construction Production and Geotechnics Perm National Research Polytechnic University, Russia, 614990, Perm, Komsomolsky prospekt, 29

2zaharav@mail.ru

Abstract. The development of renewable energy sources technologies is relevant. Sun radiant energy, wind energy, water energy, earth low-potential energy are main renewable energy sources. Energy foundations are used for earth low-potential energy extraction. The research results this paper presented can be used for energy foundations calculations. It is necessary to know soil thermal characteristics to the energy foundations calculations. At the moment, there are many calculation methods for determining soil thermal characteristics, but none of them take into account their grain-size composition. The research purpose is to assess the dependence sandy soil thermal conductivity on grain-size composition. According to the research results, firstly, the influence of the density and moisture content of the soil on its thermal conductivity was confirmed, and secondly, it was established that, at the same moisture content and density, the size of the soil grains matters. Particle size distribution affects the sandy soil thermal conductivity. With an increase in the particle size, sandy soil thermal conductivity increases.

1. Introduction
The work is aimed at investigating the dependence of sandy soils thermal conductivity of various grain-size composition when changing parameters such as moisture, density.

Assessment of the dependence of thermal conductivity on grain-size composition using the example of sandy soils is the goal of the work.

To achieve the goal, the following tasks were solved: analysis of existing methods for assessing the thermal conductivity of soils was carried out, experiment planning done, a series of experiments was carried out, the results were processed by methods of mathematical statistics, the analysis of the results has been carried out [1].

The process of heat transfer in soils, as well as the assessment of their thermal conductivity, is a difficult task due, first of all, to its heterogeneity. The presence of intergranular space in soils filled with air and water sharply complicates the process of heat transfer [2-4].

In existing studies, many calculation methods have been proposed for assessing the thermal conductivity of soils, which allow taking into account the type of soil, its density, and moisture [5-7].

Analysis of the studies carried out in the field of using low-potential thermal energy of the soil, it can be concluded that today the methods for determining the thermal conductivity of inert materials with subsequent practical application in the field of construction have been widely studied, but none of them takes into account grain-size composition.
Thus, carrying out a study in order to determine the dependence of thermal conductivity on the grain-size composition of the soil, taking into account changes in their moisture and density, is relevant.

The work finds its practical application in calculating energy efficient foundations [8-16]. The desired dependence will allow at the early design stages to assess the possibility of using energy foundations without conducting complex geological and laboratory studies of soils, only on the basis of the available physical characteristics of soils in standard geological surveys.

2. Materials and Methods

Experiment planning and experiment planning matrix compiled.

The experimental technique is as follows. Artificially prepared sandy soil samples were used as the object of research.

Input parameters are:

- X_1 - soil density ρ, varied within 1.73-1.89, t/m3;
- X_2 - soil moisture ω, varied within 0.04 – 0.12, e.e.

Output parameter soil thermal conductivity – λ, W/(m*K).

Three series of experiments were carried out to obtain separate dependencies for three fractions of sandy soil 0.5; 0.25; 0.1 mm.

For a linear or incomplete quadratic model, two values of each factor (two factor levels) are sufficient when calculating the coefficients of the regression equation. If we divide the distance between these values of the factor on the coordinate axis in half, then we get the value of the main - zero level. The difference between the upper or lower and zero level - the interval of variation of the factor.

The following form of the regression equation is adopted:

$$\lambda = b_0 + b_1 X_1 + b_2 X_2 + b_{12} X_1 X_2$$

(1)

where: X_0 - free term, $X_0 = 1$; X_1 - soil density; X_2 - soil moisture; b_0, b_1, b_2, b_{12} are the coefficients of the regression equation.

The interval was defined as half the difference between the upper and lower values of the factor. Moreover, the upper level of the factor is (+1), the lower one is (-1).

The coded value of the factor is:

$$x_i = \frac{2(X_i - X_0)}{\Delta i}$$

(2)

where: x_i is the coded value of the factor; X_i is the true value of the factor; X_0 is the true value of the zero level; Δi - factor variation interval.

Table 1 shows the levels of variation of the main factors.

Level	Factors	Soil density, t/m3	Soil moisture, e.e.
	X_1	X_2	
1	1.89	0.12	
-1	1.73	0.04	

The plan of each experiment (for each fraction) is presented in table 2.
Table 2. Experiment planning matrix.

№ experiment	Soil density	Soil moisture	Response values		
	Coded value	True meaning, t/m³	Coded value	True meaning, e.	Soil thermal conductivity, W/(m*K)
x₁	Y₁	x₂	Y₂	λ₁	
1	-1	1.73	-1	0.04	λ₁
2	1	1.89	-1	0.04	λ₂
3	-1	1.73	1	0.12	λ₃
4	1	1.89	1	0.12	λ₄

3. Results & Discussion

According to the method described above, the input parameters and the limits of their variation were determined. The object of research was selected - sand sampled in the Perm region [16]. According to the GOST 25100-2011 classification, the sand is fine.

A natural experiment was carried out on the material and technical basis of the laboratory of the Department of Construction Production and Geotechnics (figure 1).

![Figure 1. Trial experiments.](image)

A series of experiments was carried out according to the following technique. Fractions of fine sand were used as material: 0.5; 0.25 and 0.1 mm. The sand was sifted through sieves to the required fraction, then the sandy soil samples were moistened with water to a moisture value of 0.04-0.12 for each fraction and compacted on a hydraulic press to a given density in the cylinder (figure 2 to 4).
The thermal conductivity of the samples under study was determined by the probe method using the "MIT-1" device (figure 5).

Thermal conductivity was measured in accordance with GOST 30256-94. The study of thermal conductivity was carried out on twelve sand samples. Table 3 shows the experimental data obtained for sand fraction 0.5; 0.25; 0.1 mm with specified moisture and density values.

The results obtained were processed by the methods of mathematical statistics in the MS EXCEL software package.

Regression equation coefficients are determined for each fraction. The model has been tested for adequacy. After processing the results of the numerical experiment, the desired dependence was determined in the form of a regression equation.
Table 3. Experiment results.

№ experiment	Fraction, mm	Soil density, t/m³	Soil moisture, e.e.	Soil thermal conductivity, W/(m*K)
1	0.5	1.73	0.04	2.246
2	0.5	1.89	0.04	2.437
3	0.5	1.73	0.12	2.213
4	0.5	1.89	0.12	2.359
5	0.25	1.73	0.04	1.175
6	0.25	1.89	0.04	1.412
7	0.25	1.73	0.12	1.470
8	0.25	1.89	0.12	1.486
9	0.1	1.73	0.04	1.059
10	0.1	1.89	0.04	1.022
11	0.1	1.73	0.12	1.173
12	0.1	1.89	0.12	1.277

The regression equation for the 0.5 mm fraction is:

\[\lambda = -0.055 + 1.34 \rho + 5.74 \omega - 3.55 \rho \omega \] \hspace{1cm} (3)

The regression equation for the 0.25 mm fraction is:

\[\lambda = -2.72 + 2.17 \rho + 33.42 \omega - 17.19 \rho \omega \] \hspace{1cm} (4)

The regression equation for the 0.1 mm fraction is:

\[\lambda = 2.15 - 0.67 \rho - 17.56 \omega + 10.57 \rho \omega \] \hspace{1cm} (5)

The graph of the dependence of thermal conductivity on moisture and density for a fraction of 0.5 mm is shown in figure 6.
Figure 6. The graph of the thermal conductivity of sand with a fraction of 0.5 mm at various soil moisture.

4. Conclusions
Analysis of the research results led to the following conclusions:

1) Two factors have a significant effect on the thermal conductivity of soils: density and moisture, which confirms the results of previous studies.

2) At the same moisture content and density, the size of the soil grains is of significant importance, the grain-size composition affects the thermal conductivity of the sandy soil. With an increase in the grain size, the thermal conductivity of the sandy soil increases.

References
[1] Makhover S E and Zakharov A V 2019 Planning an experiment to determine the thermal conductivity of sandy soils based on the granulometric composition Modern technologies in construction. Theory and practice 1 72–6
[2] Gorobtsov D N 2011 Scientific and methodological bases of research of thermophysical properties of dispersed soils Doctor’s degree dissertation (Moscow)
[3] Chudnovskiy A F 1962 Thermophysical characteristics of dispersed materials (Moscow: State Publishing House of Physics and Mathematics)
[4] Ametistov E V, Grigorev V A and Emtsev B E 1982 Heat and mass transfer: Thermal engineering experiment (Moscow: Energostroyizdat)
[5] Usowicz B and Usowicz L 2004 Thermal conductivity of soils – comparison of experimental results and estimation methods Eurosoil 2004 Congress (Freiburg) p 10
[6] Peters-Lidard C D, Blackburn E, Liang X and Wood E F 1998 The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures Journal of the Atmospheric Sciences 7 pp 1209–24
[7] Shein Y V 2005 Soil physics course (Moscow: MGU) p 432
[8] Zakharov A V, Ponomarev A B and Maschenko A V 2012 Energy efficient design in civil engineering A manual for high schools (Perm: Perm National Research Polytechnic University) 127
[9] Zakharov A V 2011 Analysis of the interaction of progressive structures of energy foundations with a primer in the geological conditions of the city of Perm Internet Bulletin of the Volgograd University of Architecture and Civil Engineering 19

[10] Zakharov A V 2010 Application of geothermal energy of soil for heating buildings in climatic and engineering-geological conditions of the Perm region Bulletin of Civil Engineers 2(23) 85–89

[11] Brandi H 2006 Energy foundation and other thermo-active ground structures Geotechnique 56 81–122

[12] Vasil'yev G P 2006 Heat and cold supply of buildings and structures using low-potential thermal energy of the surface layers of the earth Doctor’s degree dissertation (Moscow)

[13] Vasil'yev G P and Shilkin N V 2003 Geothermal heat pump systems of heat supply and efficiency of their application in climatic conditions of Russia AVOK 2 52–60

[14] Bobrov I A, Kaloshina S V and Zakharov A V 2011 Application of ground-based thermal energy for heating and air conditioning of buildings PNRPU Bulletin. Construction and architecture 1 10–4

[15] Shi L 1988 Numerical methods in heat transfer problems (Moscow: Mir) p 544

[16] Ponomarev A B and Kaloshina S V 2006 About engineering and geological conditions of construction of Perm Problems of Soil Mechanics and Foundation Construction in Difficult Ground conditions. Proc. of the Int. Scientific and Technical Conf. dedicated to the 50th anniversary of BashNIInstroy vol 2