Generic Riemannian submersions from nearly Kaehler manifolds

Rupali Kaushal, Rashmi Sachdeva, Rakesh Kumar* and R. K. Nagaich

Abstract

We study generic Riemannian submersions from nearly Kaehler manifolds onto Riemannian manifolds. We investigate conditions for the integrability of various distributions arising for generic Riemannian submersions and also obtain conditions for leaves to be totally geodesic foliations. We obtain conditions for a generic Riemannian submersion to be a totally geodesic map and also study generic Riemannian submersions with totally umbilical fibers. Finally, we derive conditions for generic Riemannian submersions to be harmonic map.

2010 Mathematics Subject Classification: 53C55, 53C12, 53B20.
Key words and phrases: Nearly Kaehler manifolds; Generic Riemannian submersions; Totally geodesic maps; Harmonic maps.

1 Introduction

Riemannian submersions between Riemannian manifolds equipped with an additional structure of almost complex type were introduced by Watson in [18]. Watson defined an almost Hermitian submersion between almost Hermitian manifolds and showed that, in most of the cases, the base manifold and each fiber have the same kind of structure as the total space. Later, Sahin [14] introduced the notion of anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds, where the vertical distribution is anti-invariant under the action of almost complex structure of the total manifold. As a generalization of anti-invariant submersions and almost Hermitian submersions, Sahin [15] introduced the notion of semi-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds.

As a generalization of semi-invariant submersions, Ali and Fatima [3]

*Corresponding Author
introduced the notion of generic Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. Then, Fatima and Ali [6] studied submersion of generic submanifolds of Kaehler manifolds onto almost Hermitian manifolds. Later, Akyol [11] studied generic submersions from almost Riemannian product manifolds. Recently, Sayar et al. [17] introduced a new kind of Riemannian submersions, where the fibers are generic submanifolds, in the sense of Ronse [13] and called such submersions as generic submersions.

A more general and geometrically interesting class of almost Hermitian manifolds is of nearly Kaehler manifolds, which is one of the sixteen classes of almost Hermitian manifolds and given by Gray and Hervella in their celebrated paper [8]. The geometrical meaning of nearly Kaehler condition is that the geodesics on the manifolds are holomorphically planar curves. Nearly Kaehler manifolds were extensively studied by Gray in [7] and a well known example of a non-Kaehlerian nearly Kaehler manifold is 6–dimensional sphere.

Ali and Fatima [2] studied anti-invariant Riemannian submersions from nearly Kaehler manifolds onto Riemannian manifolds. Recently, Rupali et al. [9] studied semi-invariant Riemannian submersions from nearly Kaehler manifolds onto Riemannian manifolds. In this paper, we study generic Riemannian submersions from nearly Kaehler manifolds onto Riemannian manifolds. We investigate conditions for the integrability of various distributions arising for generic Riemannian submersions and also obtained conditions for leaves to be totally geodesic foliations. We also obtain conditions for generic Riemannian submersion to be a totally geodesic map and to be a harmonic map.

2 Preliminaries

Let \((M, g_M, J)\) be an almost Hermitian manifold with a Riemannian metric \(g_M\) and an almost complex structure \(J\) such that

\[J^2 = -I, \quad g_M(X, Y) = g_M(JX, JY), \]

for any \(X, Y \in \Gamma(TM)\). Let \(\nabla\) be the Levi–Civita connection on \(M\) with respect to \(g_M\). If the almost complex structure \(J\) is parallel with respect to \(\nabla\), that is, \((\nabla_X J)Y = 0\), then \(M\) is called a Kaehler manifold and if the tensor field \(\nabla J\) is skew-symmetric, that is

\[(\nabla_X J)Y + (\nabla_Y J)X = 0, \]

then \(M\) is called a nearly Kaehler manifold.

Let \((M, g_M)\) and \((B, g_B)\) be Riemannian manifolds of dimensions \(m\) and \(n\), respectively, where \(m > n\). Then, a map \(F : (M, g_M) \to (B, g_B)\) is called a Riemannian submersion [10] if it satisfies the following axioms:
A1. F has maximal rank.

A2. The differential map F_* of F preserves the scalar product of vectors normal to the fibers.

Here, the fibers $F^{-1}(y), y \in B$ are $(m-n)$-dimensional submanifolds of M. A vector field on M is called vertical (respectively, horizontal) if it is always tangent (respectively, orthogonal) to the fibers. The vertical distribution of M is denoted by $V_p = (\ker F_p^*), p \in M$, which is always integrable and the orthogonal distribution to V_p is denoted by $H_p = (\ker F_p^*)^\perp$, called the horizontal distribution, hence $TM = V \oplus H$. A vector field X on M is called a basic vector field if X is horizontal and $F-$related to a vector field X_* on B, that is, $F_*X_p = X_{F(p)}$, for any $p \in M$.

Next, we recall the following important lemma from O’Neill [10] for later uses.

Lemma 2.1. Let $F : (M, g_M) \to (B, g_B)$ be a Riemannian submersion between Riemannian manifolds and let ∇ and ∇ be the Levi–Civita connections of M and B, respectively. If X, Y are basic vector fields on M and are $F-$related to X_*, Y_* respectively, then

(i) $g_M(X, Y) = g_B(X_*, Y_*) \circ F$.

(ii) $H[X, Y]$ is the basic vector field and $F-$related to $[X_*, Y_*]$.

(iii) $(\nabla_X Y)^H$ is the basic vector field and $F-$related to $\nabla_{X_*} Y_*$.

(iv) For any vertical vector field V, $[X, V]$ is always vertical.

It is known that the geometry of Riemannian submersions is characterized by O’Neill’s tensors T and A. For any arbitrary vector fields U and V on M, these tensors are defined as

\begin{align*}
T_{UV} & = H\nabla_{\nabla U} V + \nabla \nabla_{\nabla U} H V, \quad A_{UV} = \nabla H U \nabla V + H \nabla H U V,
\end{align*}

where ∇ is the Levi–Civita connection on M with respect to g_M. It is easy to see that the tensor fields T and A are vertical and horizontal, respectively and satisfy

(iii) $T_{UV} = T_{VU}, \quad \forall U, V \in \Gamma(\ker F_*)$,

\begin{align*}
A_X Y & = -A_Y X = \frac{1}{2}\nabla [X, Y], \quad \forall X, Y \in \Gamma(\ker F_*)^\perp.
\end{align*}

It should be noted that the tensor T serves as the second fundamental form of the fibers and hence a Riemannian submersion F has totally geodesic
fibers if and only if T vanishes identically. Moreover, relation in (4), shows that A is necessarily the integrability tensor of the horizontal distribution $(\ker F^\ast)^\perp$ on M. Using the definition of these tensors, we have the following important lemma from [10] immediately.

Lemma 2.2. Let X, Y be horizontal vector fields and U, V be vertical vector fields. Then

(i) $\nabla_U V = \mathcal{T}_U V + \tilde{\nabla}_U V,$

(ii) $\nabla_U X = \mathcal{H}\nabla_U X + \mathcal{T}_U X,$

(iii) $\nabla_X U = A_X U + \mathcal{V}\nabla_X U,$

(iv) $\nabla_X Y = \mathcal{H}\nabla_X Y + A_X Y,$

where $\tilde{\nabla}_U V = \mathcal{V}(\nabla_U V)$. If X is basic then $\mathcal{H}(\nabla_U X) = A_X U$.

Let $F : (M, g_M) \to (B, g_B)$ be a smooth map between the Riemannian manifolds. Then, the differential F^\ast of F can be viewed as a section of the bundle $\text{Hom}(TM, F^\ast(TB))$ of M, where $F^\ast(TB)$ is the pullback bundle with fibres $(F^\ast(TB))_p = T_{F(p)}B$, $p \in M$. $\text{Hom}(TM, F^\ast(TB))$ has connection ∇^F induced from the Levi–Civita connection ∇ of M and a pull back connection. Then, the second fundamental form (∇F^\ast) of F is given by

\begin{align*}
(\nabla F^\ast)(X, Y) &= \nabla^F_X F^\ast(Y) - F^\ast(\nabla_X Y),
\end{align*}

for any $X, Y \in \Gamma(TM)$. It should be noted that the second fundamental form is always symmetric. Further, the smooth map F is said to be harmonic if $\text{trace}(\nabla F^\ast) = 0$. The tension field $\tau(F)$ of F is the section of $\Gamma(F^\ast(TB))$ and given by

\begin{align*}
\tau(F) &= \text{div} F^\ast = \sum_{i=1}^m (\nabla F^\ast)(e_i, e_i),
\end{align*}

where $\{e_1, \ldots, e_m\}$ is the orthonormal frame on M then F is harmonic if and only if $\tau(F) = 0$, for more details, see [1].

3 Generic Riemannian Submersions

Let N be a real submanifold of an almost Hermitian manifold (M, g_M, J) and let $D_p = T_pM \cap JT_pM$, $p \in N$, be the maximal complex subspace of the tangent space T_pM which is contained in T_pN. If the dimension of D_p is
constant along N and it defines a differentiable distribution on N, then N is called a generic submanifold of M, for details, see [5]. Here, the distribution D_p on N is called the holomorphic distribution. A generic submanifold is said to be a purely real submanifold if $D_p = \{0\}$. Denote the orthogonal complementary distribution to D in TN by D^\perp, known as the purely real distribution and satisfies $D_p \perp D'_p$, $D_p \cap JD_p' = \{0\}$. Therefore, for any vector field X tangent to N, we put $JX = tX + fX$, where tX and fX are the tangential and normal components of JX, respectively. Further, for a generic submanifold, we have following important observations:

\begin{equation}
(7) \quad tD = D, \quad fD = \{0\}, \quad tD_p^\perp \subset D'_p^\perp, \quad fD_p^\perp \subset T^\perp N.
\end{equation}

Definition 3.1. [3]. Let $F : (M, g_M, J) \to (B, g_B)$ be a Riemannian submersion from an almost Hermitian manifold onto a Riemannian manifold. Then the Riemannian submersion F is called a generic Riemannian submersion if there is a distribution $D \subset \Gamma(ker F)$ such that

\begin{equation}
(8) \quad (ker F) = D \oplus D^\perp, \quad JD = D,
\end{equation}

where D^\perp is the orthogonal complementary of D in $(ker F)$, and is called a purely real distribution on the fibers of the submersion F.

It is well known that the vertical distribution $(ker F)$ is always integrable. Hence, above definition implies that the integral manifolds (fibers) $\pi^{-1}(q)$, $q \in B$ of $(ker F)$ are generic submanifolds of M.

From the definition of generic Riemannian submersions, it is obvious that for any $U \in \Gamma(ker F)$, we can write

\begin{equation}
(9) \quad JU = \phi U + \omega U,
\end{equation}

where $\phi U \in \Gamma(ker F)$ and $\omega U \in \Gamma(ker F)^\perp$. From (7), it is clear that $\omega D = \{0\}$ and $\omega D^\perp \in \Gamma(ker F)^\perp$. Denote the complementary distribution to ωD^\perp in $(ker F)^\perp$ by μ then we get $(ker F)^\perp = \omega D^\perp \oplus \mu$, and that μ is invariant under J. Thus, for $X \in \Gamma(ker F)^\perp$, we can write

\begin{equation}
(10) \quad JX = BX + CX,
\end{equation}

where $BX \in \Gamma(D^\perp)$ and $CX \in \Gamma(\mu)$.

Example 1. Let (\mathbb{R}^8, J, g_1) be an almost Hermitian manifold endowed with an almost complex structure (J, g_1) and given by $g_1 = dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2 + dx_5^2 + dx_6^2 + dx_7^2 + dx_8^2$, $J(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) = (-x_2, x_1, -x_4, x_3, -x_6, x_5, -x_8, x_7)$. Let (\mathbb{R}^4, g_2) be a Riemannian manifold endowed with metric $g_2 = dy_1^2 + dy_2^2 + dy_3^2 + dy_4^2$ and $F : (\mathbb{R}^8, J, g_1) \to (\mathbb{R}^4, g_2)$ be a map defined
by \(F(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) = (\frac{x_1 + x_3}{\sqrt{2}}, \frac{x_2 + x_4}{\sqrt{2}}, \sin \alpha x_5 + \cos \alpha x_7, \sin \alpha x_6 - \cos \alpha x_8) \). Then, by straightforward calculations

\[
(\ker F_\ast) = \text{span}\left\{ X_1 = \partial x_1 - \partial x_3, X_2 = \partial x_2 - \partial x_4, X_3 = \cos \alpha \partial x_5 - \sin \alpha \partial x_7, X_4 = \cos \alpha \partial x_6 + \sin \alpha \partial x_8 \right\}.
\]

Clearly, \(JX_1 = X_2 \) therefore \(D = \text{span}\{X_1, X_2\} \) and \(D^\perp \) is a slant distribution with slant angle \(2\alpha \) therefore it is a purely real distribution. Moreover

\[
(\ker F_\ast)^\perp = \text{span}\left\{ Z_1 = \partial x_1 + \partial x_3, Z_2 = \partial x_2 + \partial x_4, Z_3 = \sin \alpha \partial x_5 + \cos \alpha \partial x_7, Z_4 = \sin \alpha \partial x_6 - \cos \alpha \partial x_8 \right\}.
\]

Since \(JZ_1 = -Z_2 \) therefore \(\mu = \text{span}\{Z_1, Z_2\} \) and invariant with respect to \(J \). Furthermore, we derive \(F_\ast Z_1 = \sqrt{2} \partial y_1, F_\ast Z_2 = \sqrt{2} \partial y_2, F_\ast Z_3 = \partial y_3 \) and \(F_\ast Z_4 = \partial y_4 \) such that

\[
g_1(Z_1, Z_1) = 2 = g_2(F_\ast Z_1, F_\ast Z_1), \quad g_1(Z_2, Z_2) = 2 = g_2(F_\ast Z_2, F_\ast Z_2),
\]

\[
g_1(Z_3, Z_3) = 1 = g_2(F_\ast Z_3, F_\ast Z_3), \quad g_1(Z_4, Z_4) = 1 = g_2(F_\ast Z_4, F_\ast Z_4).
\]

Hence, \(F \) is a proper generic Riemannian submersion from an almost Hermitian manifold onto a Riemannian manifold.

Example 2. Let \(F : (\mathbb{R}^8, J, g_1) \to (\mathbb{R}^4, g_2) \) be a map defined by

\[
F(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) = \left(\frac{x_2 - x_3}{\sqrt{2}}, x_4, x_5, x_6 \right),
\]

where \((\mathbb{R}^8, J, g_1)\) and \((\mathbb{R}^4, g_2)\) defined as in above example. Then, by straightforward calculations

\[
(\ker F_\ast) = \text{span}\left\{ X_1 = \partial x_1, X_2 = \partial x_2 + \partial x_3, X_3 = \partial x_7, X_4 = \partial x_8 \right\}.
\]

Clearly, \(D = \text{span}\{X_3, X_4\} \) and \(D^\perp \) is a slant distribution with slant angle \(\frac{\pi}{4} \) therefore it is a purely real distribution. Moreover

\[
(\ker F_\ast)^\perp = \text{span}\left\{ Z_1 = \partial x_2 - \partial x_3, Z_2 = \partial x_4, Z_3 = \partial x_5, Z_4 = \partial x_6 \right\}.
\]

where \(\mu = \text{span}\{Z_3, Z_4\} \). Furthermore, we derive \(F_\ast Z_1 = \sqrt{2} \partial y_1, F_\ast Z_2 = \partial y_2, F_\ast Z_3 = \partial y_3 \) and \(F_\ast Z_4 = \partial y_4 \) such that

\[
g_1(Z_1, Z_1) = 2 = g_2(F_\ast Z_1, F_\ast Z_1), \quad g_1(Z_2, Z_2) = 1 = g_2(F_\ast Z_2, F_\ast Z_2),
\]

\[
g_1(Z_3, Z_3) = 1 = g_2(F_\ast Z_3, F_\ast Z_3), \quad g_1(Z_4, Z_4) = 1 = g_2(F_\ast Z_4, F_\ast Z_4).
\]

Hence, \(F \) is a proper generic Riemannian submersion from an almost Hermitian manifold onto a Riemannian manifold.
Example 3. Every semi-invariant submersion \cite{15} is a generic Riemannian submersion with a totally real distribution D^\perp.

Example 4. Every slant submersion \cite{16} is a generic Riemannian submersion with $D = \{0\}$ and slant distribution D^\perp.

Example 5. Every semi-slant submersion \cite{11} is a generic Riemannian submersion with slant distribution D^\perp.

Next, from (7)–(10), we get the following lemma immediately for later use.

Lemma 3.2. Let $F : (M, g_M, J) \to (B, g_B)$ be a generic Riemannian submersion from an almost Hermitian manifold onto a Riemannian manifold. Then

(i) $\phi D = D$, $\phi D^\perp \subset D^\perp$, $B(ker F_\ast)^\perp = D^\perp$.

(ii) $\phi^2 + B \omega = -id$, $C^2 + \omega B = -id$, $\omega \phi + C \omega = 0$, $BC + \phi B = 0$.

For any arbitrary tangent vector fields U and V on M, we set

\[(\nabla_U J)V = P_U V + Q_U V,\]

where $P_U V$ (respectively, $Q_U V$) denotes the horizontal (respectively, vertical) part of $(\nabla_U J)V$. Clearly, if M is a Kaehler manifold then $P = Q = 0$, and if M is a nearly Kaehler manifold then P and Q satisfy

\[(12) \quad P_U V = -P_U U, \quad Q_U V = -Q_U U.\]

Hence, from the Lemma 2.2 and (9), (10), we derive covariant derivative of ϕ, ω, B and C as below:

Theorem 3.3. Let $F : (M, g_M, J) \to (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then

\[(13) \quad (\nabla_U \phi)V = B T_U V - T_U \omega V + Q_U V,\]

\[(14) \quad (\nabla_U \omega)V = C T_U V - T_U \phi V + P_U V,\]

\[
(\nabla_U B)X = \phi T_U X - T_U CX + Q_U X,\]

\[
(\nabla_U C)X = \omega T_U X - T_U BX + P_U X,
\]

where

\[(15) \quad (\nabla_U \phi)V = \tilde{\nabla}_U \phi V - \phi \tilde{\nabla}_U V, \quad (\nabla_U \omega)V = \hat{\nabla} \nabla_U \omega V - \omega \hat{\nabla}_U V,\]

\[
(\nabla_U B)X = \nabla \nabla_U B X - B \nabla \nabla_U X, \quad (\nabla_U C)X = \nabla \nabla_U C X - C \nabla \nabla_U X,
\]

for any $U, V \in \Gamma(ker F_\ast)$ and $X \in \Gamma(ker F_\ast)^\perp$. 7
Lemma 3.4. Let $F : (M, g_M, J) \to (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then

\begin{align}
\begin{alignat}{3}
\text{(16)} & & \begin{cases} BT_U V + \phi V \nabla_U V = V \nabla_U \phi V + T_U \omega V + Q_V U, \\
CT_U V + \omega V \nabla_U V = T_U \phi V + H V \omega V + P_V U,
\end{cases} \\
\text{(17)} & & \begin{cases} BH \nabla_X Y + \phi A_X Y = V \nabla_X B Y + A_X \omega Y + Q_Y X, \\
CH \nabla_X Y + \omega A_X Y = A_X B Y + H \nabla_X CY + P_Y X,
\end{cases} \\
\text{(18)} & & \begin{cases} BA_X V + \phi V \nabla_X V = V \nabla_X \phi V + A_X \omega V + Q_Y U, \\
CA_X V + \omega V \nabla_X V = A_X \phi V + H \nabla_X \omega V + P_Y X,
\end{cases}
\end{align}
\end{align}

for any $X, Y \in \Gamma(\ker F^*)_\perp$ and $U, V \in \Gamma(\ker F_*)$.

Proof. Let $U, V \in \Gamma(\ker F_*)$ then from (1), we have $J \nabla_U V = \nabla_U JV + (\nabla_J V)U$. Using the Lemma 2.2 with (9)–(11), we get

\begin{align}
BT_U V + CT_U V + \phi V \nabla_U V + \omega V \nabla_U V = T_U \phi V + V \nabla_U \phi V \\
+ H (\nabla_U \omega V) + T_U \omega V + P_V U + Q_V U.
\end{align}

On comparing the vertical and horizontal parts of the last expression, we obtain (16). Analogously, for $X, Y \in \Gamma(\ker F_*)^\perp$ and $U \in \Gamma(\ker F_*)$, we derive (17) and (18).

Corollary 3.5. Take $U \in \Gamma(\ker F_*)$, $V \in \Gamma(D)$ and $\xi \in \Gamma(\mu)$ in (16) then it follows that

\[g_M(CT_U V, \xi) = g_M(T_U \phi V, \xi) + g_M(P_V U, \xi). \]

this, further implies that

\[g_M((T_U J)V, \xi) = g_M(P_U V, \xi). \]

Similarly, for $X \in \Gamma(\ker F_*)^\perp$, $Y \in \Gamma(\mu)$ and $U \in \Gamma(D)$, from (17), we derive

\[g_M((A_X J)Y, U) = g_M(Q_X Y, U). \]

For $X \in \Gamma(\ker F_*)^\perp$, $Y, Z \in \Gamma(\omega D^\perp)$, from (17), we obtain

\[g_M((A_X J)Y, Z) = g_M(P_X Y, Z). \]

For $X \in \Gamma(\ker F_*)^\perp$, $Y \in \Gamma(\mu)$ and $V \in \Gamma(D)$, from (18), we get

\[g_M((A_X J)V, Y) = g_M(P_X V, Y). \]
Theorem 3.6. Let $F : (M, g_M, J) \rightarrow (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then the distribution \mathcal{D} defines a totally geodesic foliation in M if and only if

$$V\nabla_U \phi V - Q_U V \in \Gamma(\mathcal{D}), \quad T_U \phi V - P_U V \in \Gamma(\mu),$$

for any $U, V \in \Gamma(\mathcal{D})$.

Proof. Let $U, V \in \Gamma(\mathcal{D})$ then using the Lemma 2.2 with (1) and (11), we derive

$$\nabla_U V = -J(T_U \phi V + V \nabla_U \phi V + P_V U + Q_U U).$$

Take scalar product of last expression with $W \in \Gamma(\mathcal{D}^\perp)$, we get

$$g_M(\nabla_U V, W) = g_M(V \nabla_U \phi V - Q_U V, \phi W) + g_M(T_U \phi V - P_U V, \omega W),$$

hence the proof is complete.

On interchanging the role of U, V and subtracting the resulting expression form (19) and using (12), we obtain the following observation immediately.

Corollary 3.7. Let $F : (M, g_M, J) \rightarrow (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then the distribution \mathcal{D} is integrable if and only if

$$V\nabla_U \phi V - V\nabla_V \phi U - 2Q_U V \in \Gamma(\mathcal{D}), \quad T_U \phi V - T_V \phi U - 2P_U V \in \Gamma(\mu),$$

for any $U, V \in \Gamma(\mathcal{D})$.

Theorem 3.8. Let $F : (M, g_M, J) \rightarrow (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then the distribution \mathcal{D}^\perp defines a totally geodesic foliation in M if and only if

$$V\nabla_U \phi V + T_U \omega V - Q_U V \in \Gamma(\mathcal{D}^\perp),$$

for any $U, V \in \Gamma(\mathcal{D}^\perp)$.

Proof. Let $U, V \in \Gamma(\mathcal{D}^\perp)$ then using the Lemma 2.2 with (1) and (11), we derive

$$\nabla_U V = -J(T_U \phi V + V \nabla_U \phi V + H\nabla_U \omega V + T_U \omega V + P_V U + Q_V U).$$

Take scalar product of last expression with $W \in \Gamma(\mathcal{D})$, we get

$$g_M(\nabla_U V, W) = g_M(V \nabla_U \phi V + T_U \omega V - Q_U V, \phi W),$$

hence the proof is complete.
Corollary 3.9. Let $F: (M, g_M, J) \to (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then the distribution D^\perp is integrable if and only if

$$\nabla_U \phi V - \nabla_V \phi U + \tau_U \omega V - \tau_V \omega U - 2Q_U V \in \Gamma(D^\perp),$$

for any $U, V \in \Gamma(D^\perp)$.

Now, we recall an important theorem for product structures from [12].

Theorem 3.10. Let g be a Riemannian metric tensor on the manifold $M = M \times N$ and assume that the canonical foliations D_M and D_N intersect perpendicularly everywhere. Then g is the metric tensor of:

(i) a double-twisted product $M \times_{(f,g)} N$ if and only if D_M and D_N are totally umbilical foliations,

(ii) a twisted product $M \times f N$ if and only if D_M is a totally geodesic foliation and D_N is a totally umbilical foliation,

(iii) a warped product $M \times f N$ if and only if D_M is a totally geodesic foliation and D_N is a spherical foliation, i.e., it is umbilical and its mean curvature vector field is parallel, and

(iv) a usual product of Riemannian manifolds if and only if D_M and D_N are totally geodesic foliations.

Thus, from the Theorems 3.6 and 3.8 we have the following assertion immediately.

Theorem 3.11. Let $F: (M, g_M, J) \to (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then fibers of F are locally product Riemannian manifolds of the form $M_D \times M_D^\perp$, where M_D and M_D^\perp are integral manifolds of the vertical distribution $(\ker F)^\ast$ if and only if

$$\nabla_U \phi V - Q_U V \in \Gamma(D), \quad \tau_U \phi V - \mathcal{P}_U V \in \Gamma(\mu),$$

and

$$\nabla_W \phi Z + \tau_W \omega Z - Q_W Z \in \Gamma(D^\perp),$$

for any $U, V \in \Gamma(D)$, $W, Z \in \Gamma(D^\perp)$.

Theorem 3.12. Let $F: (M, g_M, J) \to (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then the horizontal distribution $(\ker F)^\ast$ defines a totally geodesic foliation in M if and only if

$$A_X BY + H \nabla_X CY - P_X Y \in \Gamma(\mu), \quad \nabla_X BY + A_X CY - Q_X Y = 0,$$

for any $X, Y \in \Gamma(\ker F)^\perp$.

10
Proof. For any for any $X, Y \in \Gamma(ker F_\ast) \perp$, we have
\[
\nabla_X Y = -J(A_X B_Y + V \nabla_X B_Y + H \nabla_X C_Y + A_X C_Y + P_Y X + Q_Y X).
\]
On taking scalar product of last expression with $U \in \Gamma(ker F_\ast)$, the proof is complete.

It is known that for a Riemannian submersion, the vertical distribution $(ker F_\ast)$ is always integrable and the horizontal distribution $(ker F_\ast)$ is not always integrable. Therefore, from the above Theorem 3.12, we obtain necessary and sufficient conditions for the horizontal distribution to be integrable.

Corollary 3.13. Let $F : (M, g_M, J) \to (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then, the horizontal distribution $(ker F_\ast) \perp$ is integrable if and only if
\[
A_X B_Y - A_Y B_X + H \nabla_X C_Y - H \nabla_Y C_X - 2P_X Y \in \Gamma(\mu),
\]
\[
V \nabla_X B_Y - V \nabla_Y B_X + A_X C_Y - A_Y C_X - 2Q_X Y = 0,
\]
for any $X, Y \in \Gamma(ker F_\ast) \perp$.

Theorem 3.14. Let $F : (M, g_M, J) \to (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then, the vertical distribution $(ker F_\ast)$ defines a totally geodesic foliation in M if and only if
\[
T_U \phi V + H \nabla_U \omega V - P_U V \in \Gamma(\omega D \perp),
\]
\[
V \nabla_U \phi V + T_U \omega V - Q_U V \in \Gamma(D),
\]
for any $U, V \in \Gamma(ker F_\ast)$.

Proof. Let $U, V \in \Gamma(ker F_\ast)$, then using the Lemma 2.2 with (11) and (111), we obtain
\[
\nabla_U V = -J(T_U \phi V + V \nabla_U \phi V + H \nabla_U \omega V + T_U \omega V + P_U V + Q_U V)
\]
\[
= -(B(T_U \phi V + H \nabla_U \omega V + P_U V) + \phi(V \nabla_U \phi V + T_U \omega V + Q_U V))
\]
\[
- \{C(T_U \phi V + H \nabla_U \omega V + P_U V) + \omega(V \nabla_U \phi V + T_U \omega V + Q_U V)\}.
\]
Hence, the vertical distribution $(ker F_\ast)$ defines a totally geodesic foliation in M if and only if
\[
C(T_U \phi V + H \nabla_U \omega V + P_U V) = 0, \quad \omega(V \nabla_U \phi V + T_U \omega V + Q_U V) = 0,
\]
thus, the proof is complete.

11
Thus, from the Theorems 3.6, 3.8, 3.12 and 3.14 we have following observations:

Corollary 3.15. Let \(F : (M, g_M, J) \rightarrow (B, g_B) \) be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then, the total space \(M \) of generic Riemannian submersion \(F \) is a locally product Riemannian manifold of the form \(M_D \times M_{D^\perp} \times M_{(\ker F^*)^\perp} \) if and only if the expressions in (20–22) hold, where \(M_D, M_{D^\perp} \) and \(M_{(\ker F^*)^\perp} \) are integral manifolds of \((\ker F^*) \) and \((\ker F^*)^\perp \), respectively.

Corollary 3.16. Let \(F : (M, g_M, J) \rightarrow (B, g_B) \) be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then, the total space \(M \) of generic Riemannian submersion \(F \) is a locally product Riemannian manifold of the form \(M_{(\ker F^*)} \times M_{(\ker F^*)^\perp} \) if and only if the expressions in (22)–(24) hold, where \(M_{(\ker F^*)} \) and \(M_{(\ker F^*)^\perp} \) are integral manifolds of \((\ker F^*) \) and \((\ker F^*)^\perp \), respectively.

Let \(F : (M, g_M) \rightarrow (B, g_B) \) be a smooth map between Riemannian manifolds. If \(F \) maps every geodesic in the total manifold into a geodesic in the base manifold, in proportion to the arc length then the mapping \(F \) is called a totally geodesic map. In other words, \(F \) is called a totally geodesic map if and only if the second fundamental form of the map \(F \) vanishes identically, that is, \((\nabla F^*) = 0 \).

Theorem 3.17. Let \(F \) be a generic Riemannian submersion from a nearly Kaehler manifold \((M, g, J) \) to a Riemannian manifold \((B, g_B) \). Then, the map \(F \) is a totally geodesic map if and only if

\[
(\mathcal{T}_U \phi V + \mathcal{H} \nabla_U \omega V - \mathcal{P}_U V), (\mathcal{T}_U BX + \mathcal{H} \nabla_U CX - \mathcal{P}_U X) \text{ belong to } \Gamma (\omega D^\perp),
\]

and

\[
(\mathcal{V} \nabla_U \phi V + \mathcal{T}_U \omega V - \mathcal{Q}_U V), (\mathcal{V} \nabla_U BX + \mathcal{T}_U CX - \mathcal{Q}_U X) \text{ belong to } \Gamma (\mathcal{D}),
\]

for any \(U, V \in \Gamma (\ker F^*) \) and \(X, Y \in \Gamma (\ker F^*)^\perp \).

Proof. From the Lemma 2.1 and (10), it is obvious that the second fundamental form \((\nabla F^*) \) of the Riemannian submersion \(F \) satisfies \((\nabla F^*) (X, Y) = 0 \), for any \(X, Y \in \Gamma (\ker F^*)^\perp \). Therefore, the generic Riemannian submersion \(F \) is a totally geodesic map if and only if \((\nabla F^*) (U, V) = 0 \) and \((\nabla F^*) (U, X) = 0 \), for any \(U, V \in \Gamma (\ker F^*) \) and \(X \in \Gamma (\ker F^*)^\perp \). From the Lemma 2.1 (11)
and (25), we can write

\[(\nabla F_\ast)(U, V) = -F_\ast(\nabla U V) = F_\ast(J^2 \nabla U V)\]

\[= F_\ast\{B T_U \phi V + C T_U \phi V + \phi V \nabla U \phi V + \omega V \nabla U \phi V + B H \nabla U \omega V + C H \nabla U \omega V + \phi T_U \omega V + \omega T_U \omega V + B P_U V + C P_U V + \phi Q_U V + \omega Q_U V\}\]

\[= F_\ast\{C T_U \phi V + \omega V \nabla U \phi V + C H \nabla U \omega V + \omega T_U \omega V\} - \omega Q_U V\].

(25)

Hence, \((\nabla F_\ast)(U, V) = 0\) if and only if \(C\{T_U \phi V + H \nabla U \omega V - P_U V\} = 0\) and \(\omega\{\nabla U \phi V + T_U \omega V - Q_U V\} = 0\), that is, if and only if \((T_U \phi V + H \nabla U \omega V - P_U V) \in \Gamma(\omega D^\perp)\) and \((\nabla U \phi V + T_U \omega V - Q_U V) \in \Gamma(D)\).

It is known that the second fundamental form of the map is symmetric then analogous to above derivation, for \(U \in \Gamma(kerF_\ast)\) and \(X \in \Gamma(kerF_\ast)^\perp\), we obtain

\[\nabla F_\ast(U, X) = F_\ast\{C T_U B X + \omega \nabla U B X + C H \nabla U C X + \omega T_U C X - C P_U X - \omega Q_U X\}.\]

Hence, \((\nabla F_\ast)(U, X) = 0\), if and only if, \((T_U B X + H \nabla U C X - P_U X) \in \Gamma(\omega D^\perp)\) and \((\nabla U B X + T_U C X - Q_U X) \in \Gamma(D)\). Thus, the proof is complete. \(\square\)

Corollary 3.18. Using (25) and the symmetry of the second fundamental form of \(F\), it follows that

\[g_B((\nabla F_\ast)(U, V), F_\ast X) = -g_B(F_\ast \nabla U V, F_\ast X) = -g_B(F_\ast H \nabla U V, F_\ast X)\]

\[= -g_M(T_U V, X),\]

and

\[g_B((\nabla F_\ast)(U, X), F_\ast Y) = -g_B(F_\ast \nabla X U, F_\ast Y) = -g_B(F_\ast H \nabla X U, F_\ast Y)\]

\[= -g_M(A_X U, Y) = g_M(A_X Y, U).\]

This implies that \(F\) is a totally geodesic map if and only if \(T_U V = 0\) and \(A_X Y = 0\), for any \(U, V \in \Gamma(kerF_\ast)\) and \(X, Y \in \Gamma(kerF_\ast)^\perp\).

Theorem 3.19. Let \(F : (M, g_M, J) \to (B, g_B)\) be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then \(\phi\) is parallel with respect to \(\nabla\) if and only if \(Q_U V = T_U \omega V - B T_U V\), for any \(U, V \in \Gamma(kerF_\ast)\).

Proof. For \(U, V, W \in \Gamma(kerF_\ast)\) and \(X \in \Gamma(kerF_\ast)^\perp\), it is easy to see that \(g_M(T_U X, V) = -g_M(X, T_U V)\) then from (13), it follows that

\[g_M((\nabla_U \phi) W, V) = g_M(J T_U W, V) + g_M(\omega W, T_U V) + g_M(\omega U W, V).\]
Since \(g_M(QUW, V) = -g_M(W, QU V) \) then last expression becomes
\[
g_M((\nabla_U \phi)W, V) = g_M(W, T_U \omega V) - g_M(W, BT_U V) - g_M(W, QU V),
\]
this completes the proof.

Theorem 3.20. Let \(F : (M, g_M, J) \to (B, g_B) \) be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then \(\omega \) is parallel with respect to \(\nabla \) if and only if \(P_U X = T_U C X - \phi T_U X \), for any \(U \in \Gamma(\ker F^*_s) \) and \(X \in \Gamma(\ker F^*_s)^\perp \).

Proof. Let \(U, V, X \in \Gamma(\ker F^*_s) \) and \(X \in \Gamma(\ker F^*_s)^\perp \) then from (14), we have
\[
g_M((\nabla_U \omega) V, X) = -g_M(T_U C X, \omega U) + g_M(\omega V, T_U X) + g_M(\mathcal{P}_U V, X).
\]
This further implies
\[
g_M((\nabla_U \omega) V, X) = g_M(V, T_U C X) - g_M(V, \phi T_U X) - g_M(V, \mathcal{P}_U X),
\]
this completes the proof.

Analogously, we can derive the following assertions.

Theorem 3.21. Let \(F : (M, g_M, J) \to (B, g_B) \) be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then \(B \) is parallel with respect to \(\nabla \) if and only if \(Q_U V = T_U \phi V - CT_U V \), for any \(U, V \in \Gamma(\ker F^*_s) \).

Theorem 3.22. Let \(F : (M, g_M, J) \to (B, g_B) \) be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then \(C \) is parallel with respect to \(\nabla \) if and only if \(P_U X = T_U B X - \omega T_U X \), for any \(U \in \Gamma(\ker F^*_s) \) and \(X \in \Gamma(\ker F^*_s)^\perp \).

Theorem 3.23. Let \(F : (M, g_M, J) \to (B, g_B) \) be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. If \(\omega \) is parallel with respect to \(\nabla \) then
\[
T_{\omega U} \phi U = -T_U B \omega U - T_U U - 2\mathcal{P}_U \phi U, \tag{28}
\]
for any \(U \in \Gamma(\ker F^*_s) \).

Proof. Let \(\omega \) be parallel with respect to \(\nabla \) then from (14), we have
\[
C T_U V + \mathcal{P}_U V = T_U \phi V,
\]
for any \(U, V \in \Gamma(\ker F^*_s) \). Interchange the role of \(U, V \) and then subtract the resulting equation from the last equation and further on using (3), we obtain
\[
2\mathcal{P}_U V = T_U \phi V - T_V \phi U.
\]
Furthermore, on substituting \(V = \phi U \) and then using the Lemma 3.2 (ii), the assertion follows.
Now, we recall that a Riemannian submersion $F : (M, g_M) \to (B, g_B)$ between Riemannian manifolds is called a Riemannian submersion with totally umbilical fibers if
\[
T_U V = H^* g_M(U, V),
\]
for $U, V \in \Gamma(\ker F^*)$, where H^* is the mean curvature vector of the fibers.

Theorem 3.24. Let F be a generic Riemannian submersion with totally umbilical fibers from a nearly Kaehler manifold (M, g, J) onto a Riemannian manifold (B, g_B). Then $H^* \in \Gamma(\omega D^\perp)$.

Proof. Let $U, V \in \Gamma(D)$ then using the Lemma 2.2 with (1), (9), and (10), it follows that
\[
T_U \phi U + \nabla_U \phi V = B T_U V + C T_U V + \phi V \nabla_U V + \omega V \nabla_U V - \mathcal{P}_V U - Q_U U.
\]
Take scalar product of last expression with $X \in \Gamma(\mu)$ and using (29), we get
\[
g_M(U, \phi V)g_M(H^*, X) = -g_M(U, V)g_M(H^*, C X) + g_M(\mathcal{P}_U V, X).
\]
Interchange the role of U, V and then on adding the resulting expression with (30), it follows that $g_M(U, V)g_M(H^*, C X) = 0$, further, the non-degeneracy of $\Gamma(D)$ and $\Gamma(\mu)$ implies that $H^* \in \Gamma(\omega D^\perp)$.

Theorem 3.25. Let $F : (M, g_M, J) \to (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold with totally umbilical fibers such that $\mathcal{P}_U \phi U = 0$, for any $U \in \Gamma(\ker F^*)$. If ω is parallel with respect to ∇, then F is with totally geodesic fibers.

Proof. For any $U \in \Gamma(D)$, from (11), it follows that
\[
(\nabla_{\phi U} J) U + (\nabla_U J) \phi U = 0.
\]
Further, from the Lemma 2.2 with (9)–(11) and the hypothesis $\mathcal{P}_U \phi U = 0$, we obtain
\[
T_{\phi U} \phi U + \nabla_{\phi U} \phi U - B T_{\phi U} U - C T_{\phi U} U - \phi V \nabla_{\phi U} U - \omega V \nabla_{\phi U} U + Q_U \phi U = 0.
\]
Since ω is parallel with respect to ∇ then for any $U \in \Gamma(D)$, from (15), we have $\omega V \nabla_{\phi U} U = 0$ and using (28) in the last expression, we get
\[
- T_U U + \nabla_{\phi U} \phi U - B T_{\phi U} U - C T_{\phi U} U - \phi V \nabla_{\phi U} U + Q_U \phi U = 0.
\]
On taking scalar product of the last expression with $X \in \Gamma(\omega(D^\perp))$, we get $g_M(T_U U, X) = 0$. Fibers of the submersion F are totally umbilical therefore, we have $g_M(U, U)g_M(H^*, X) = 0$, then non-degeneracy of $(\ker F^*)$ and $\omega(D^\perp)$ gives $H^* = 0$, this completes the proof.

15
Theorem 3.26. Let $F: (M, g_M, J) \to (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then M is a locally twisted product manifold of the form $M((\ker F)^\perp \times f M((\ker F)^\perp)$ if and only if

$$A_X BY + H\nabla_X CY + P_X Y \in \Gamma(\mu), \quad V\nabla_X BY + A_X CY - Q_X Y = 0,$$

for any $U, V \in \Gamma((\ker F)^\perp)$ and $X \in \Gamma((\ker F)^\perp)$.

Proof. Let $U, V \in \Gamma((\ker F)^\perp)$ and $X \in \Gamma((\ker F)^\perp)$ then from (1), we have

$$g_M(\nabla U V, X) = -g_M(C_X U, \nabla U X - (\nabla U)X).$$

Further, from the Lemma 2.2, we get

$$g_M(\nabla U V, X) = -g_M(JV, \nabla U X - (\nabla U)X),$$

this implies that $(\ker F^\perp)$ is totally umbilical if and only if

$$T_U X = -g_M(X, T_U U)U - 2\nabla U X.$$

Thus, the proof follows form the Theorem 3.10 and Theorem 3.12.

It is well known that if a nearly Kaehler manifold M is of constant holomorphic sectional curvature $c(m)$ at every point $m \in M$ then the Riemannian curvature tensor of M is of the form

$$R(X, Y, Z, W) = \frac{c(m)}{4}\left\{g_M(X, W)g_M(Y, Z) - g_M(X, Z)g_M(Y, W) + g_M(X, JW)g_M(Y, JZ) - g_M(X, JZ)g_M(Y, JW) - 2g_M(X, JY)g_M(Z, JW)\right\}$$

$$+ \frac{1}{4}\left\{g_M((\nabla X)W, V) - g_M((\nabla Y)W, V)\right\},$$

(31)

for any vector fields X, Y, Z, W on M.

Now, we recall following result from [7] for later use.
Theorem 3.27. Let M be a nearly Kaehler manifold. Then M has (pointwise) constant type if and only if there exists a smooth function α on M such that
\begin{equation}
\|\langle \nabla_X J \rangle Y \|^2 = \alpha \{ X \|^2 Y \|^2 - g_M(X, Y)^2 - g_M(X, JY)^2 \},
\end{equation}
for any vector fields X, Y on M. Furthermore, M has global constant type if and only if (32) holds with a constant function α. In this case α is called the constant type of M.

Theorem 3.28. Let $F : (M, g_M, J) \to (B, g_B)$ be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold such that M is with constant holomorphic sectional curvature c and with constant type α. If the distribution \mathcal{D} is integrable and the submersion F is with totally umbilical fibers then $c = \alpha$.

Proof. For a nearly Kaehler manifold M, it is known that $(\nabla_U J)(JV) = -J(\nabla_U J)V$, for any vector fields U and V on M. Using this fact for $U \in \Gamma(\mathcal{D})$ and $V \in \Gamma(\mathcal{D}^\perp)$ with (31), we derive
\begin{equation}
\langle R(U, \phi U)V, \omega V \rangle = -\frac{c}{2}g_M(U, U)g_M(V, V) + \frac{1}{2}\|\langle \nabla_U J \rangle V \|^2.
\end{equation}
From [10], it is known that
\begin{equation}
\langle R(U, V)W, X \rangle = g_M((\nabla_V T)_U W, X) - g_M((\nabla_U T)_V W, X),
\end{equation}
for any $U, V, W \in \Gamma(\ker F)$ and $X \in \Gamma(\ker F^\perp)$. Hence, from (34), we have
\begin{equation}
\langle R(U, \phi U)V, \omega V \rangle = g_M(\nabla_{\phi U} T_U V - T_{\nabla_{\phi U} V} - T_U \nabla_{\phi U} V, \omega V) \tag{35}
\end{equation}
\begin{equation}
- g_M(\nabla_U T_{\phi U} V - T_{\nabla_U \phi U} V - T_{\phi U} \nabla_U V, \omega V).
\end{equation}
Since submersion F is with totally umbilical fibers therefore $T_U V = 0$, $T_{\phi U} V = 0$ and using the fact the T is symmetric, (35) becomes
\begin{equation}
\langle R(U, \phi U)V, \omega V \rangle = g_M(T_{[U, \phi U]} V, \omega V) - g_M(\nabla_U V, T_{\phi U} \omega V) + g_M(\nabla_{\phi U} V, T_U \omega V).
\end{equation}
Again using the hypothesis that the submersion F is with totally umbilical fibers therefore $T_{\phi U} \omega V = 0$ and $T_U \omega V = 0$, therefore last expression becomes $g_M(R(U, \phi U)V, \omega V) = g_M([U, \phi U], V)g_M(H^*, \omega V)$, as the distribution \mathcal{D} is integrable, then we obtain
\begin{equation}
g_M(R(U, \phi U)V, \omega V) = 0.
\end{equation}
Hence from (33) and (36), we have $cg_M(U, U)g_M(V, V) = \|\langle \nabla_U J \rangle V \|^2$, thus on using (32), proof is complete. \qed
Theorem 3.29. Let \(F : (M, g_M, J) \rightarrow (B, g_B) \) be a generic Riemannian submersion from a nearly Kaehler manifold onto a Riemannian manifold. Then \(F \) is a harmonic map if and only if
\[
\nabla_{e_i}^*e_i = \nabla_{e_i^*}e_i, \quad (\mathcal{T}_{E_j} \phi E_j + \mathcal{H} \nabla_{E_j} \omega E_j) \in \Gamma(\omega D^\perp),
\]
and
\[
(\nabla \nabla_{E_j} \phi E_j + \mathcal{T}_{E_j} \omega E_j) \in \Gamma(D),
\]
for \(\{e_1, \ldots, e_r, e_1^*, \ldots, e_r^*\} \) and \(\{E_1, \ldots, E_k\} \) orthogonal bases of \(D \) and \(D^\perp \), respectively.

Proof. It is known that the distribution \(D \) is \(\phi \)-invariant therefore take \(\{e_1, \ldots, e_r, e_1^*, \ldots, e_r^*\} \) as an orthogonal basis of \(D \), where \(e_i^* = J e_i = \phi e_i \), for \(i \in \{1, \ldots, r\} \) and let \(\{E_1, \ldots, E_k\} \) be an orthogonal basis of \(D^\perp \). Moreover, the second fundamental form \(\nabla F_* \) of the Riemannian submersion \(F \) satisfies \((\nabla F_*)(X, Y) = 0 \), for any \(X, Y \in \Gamma(\ker F_*)^\perp \). Hence, the tension field \(\tau(F) \) of \(F \) is given by
\[
\tau(F) = \sum_{i=1}^{r} \{(\nabla F_*)(e_i, e_i) + (\nabla F_*)(e_i^*, e_i^*)\} + \sum_{j=1}^{k} (\nabla F_*)(E_j, E_j),
\]
using (25), we further derive
\[
\tau(F) = \sum_{i=1}^{r} \{F_*(\mathcal{C} T_{e_i} e_i^* + \omega \nabla e_i e_i^*) - F_*(\mathcal{C} T_{e_i^*} e_i + \omega \nabla e_i^* e_i)\}
\]
\[
+ \sum_{j=1}^{k} F_*(\mathcal{C} T_{E_j} \phi E_j + \omega \nabla_{E_j} \phi E_j + \mathcal{H} \nabla_{E_j} \omega E_j + \omega T_{E_j} \omega E_j)
\]
\[
= \sum_{i=1}^{r} F_* (\omega \nabla (\nabla e_i e_i^* - \nabla e_i^* e_i)) + \sum_{j=1}^{k} F_* (\mathcal{C} (T_{E_j} \phi E_j + \mathcal{H} \nabla_{E_j} \omega E_j))
\]
\[
+ \sum_{j=1}^{k} F_* (\omega (\nabla_{E_j} \phi E_j + T_{E_j} \omega E_j)). \tag{37}
\]
Thus, the proof is complete. \(\Box \)

References

[1] Akyol, M. A., Generic Riemannian submersions from almost product Riemannian manifolds, GU J. Sci., 30(3) (2017), 89–100.

[2] Ali, S. and Fatima, T., Anti-invariant Riemannian submersions from nearly Kaehler manifolds, Filomat, 27 (2013), 1219–1235.
[3] Ali, S. and Fatima, T., *Generic Riemannian submersions*, Tamkang J. Math., **44**(4) (2013), 395–409.

[4] Baird, P. and Wood, J. C., Harmonic Morphisms Between Riemannian Manifolds (Oxford University Press, London, 2003).

[5] Chen, B.Y., *Differential geometry of real submanifolds in Kaehler manifold*, Monatsh. Math., **91** (1981), 257–274.

[6] Fatima, T. and Ali, S., *Submersions of generic submanifolds of a Kaehler manifold*, Arab J. Math. Sci., **20**(1) (2014), 119–131.

[7] Gray, A., *Nearly Kaehler manifolds*, J. Differential Geom., **6** (1970), 283–309.

[8] Gray, A. and Hervella, M., *The sixteen classes of almost Hermitian manifolds and their linear invariants*, Ann. Mat. Pura Appl., **123** (1980), 35–58.

[9] Kaushal, R., Sachdeva, R., Kumar, R. and Nagaich, R. K., *Semi-invariant Riemannian submersions from nearly Kaehler manifolds*, Int. J. Geom. Methods Mod. Phys., **17**(7) (2020), 1–15.

[10] O’ Neill, B., *The Fundamental equations of submersion*, Michigan Math. J., **13** (1966), 459–469.

[11] Park, K. S. and Prasad, R., *Semi-slant submersions*, Bull. Korean Math. Soc., **50**(3) (2013), 951–962.

[12] Ponge, R. and Reckziegel, H., *Twisted products in pseudo-Riemannian geometry*, Geom. Dedicata., **48** (1993), 15–25.

[13] Ronsse, G. B., *Generic and skew CR-submanifolds of a Kaehler manifold*, Bull. Inst. Math. Acad. S., **18** (1990), 127–141.

[14] Sahin, B., *Anti-invariant Riemannian submersion from almost Hermitian manifolds*, Cent. Eur. J. Math., **8**(3) (2010), 437–447.

[15] Sahin, B., *Semi-invariant submersion from almost Hermitian manifolds*, Canad. Math. Bull., **56** (2011), 173–182.

[16] Sahin, B., *Slant submersions from almost Hermitian manifolds*, Bull. Math. Soc. Sci. Math. Roumanie, **54**(102) (2011), 93–105.

[17] Sayar, C., Tastan, H. M., Ozdemir, F. and Tripathi, M.M., *Generic submersions from Kaehler manifolds*, Bull. Malays. Math. Sci. Soc., **43** (2020), 809–831.

[18] Watson, B., *Almost Hermitian submersions*, J. Differential Geom., **11** (1976), 147–165.
[19] Sawaki, S., Watanabe, Y. and Sato, T., *Notes on a K–space of constant holomorphic sectional curvature*, Kodai Math. Sem. Rep., 26 (1975), 438–445.

Author’s Addresses:
Rupali Kaushal and R. K. Nagaich
Department of Mathematics, Punjabi University, Patiala-147 002, India
Email: rupalimaths@pbi.ac.in; nagaich58rakesh@gmail.com

Rashmi Sachdeva and Rakesh Kumar
Department of Basic and Applied Sciences, Punjabi University, Patiala-147 002, India
Email: rashmi.sachdeva86@gmail.com; dr_rk37c@yahoo.co.in