A comparison on the nutritional quality of proteins from *Moringa oleifera* leaves and seeds

Martin Alain Mune Mune1*, Emilienne Carine Nyobe2, Christian Bakwo Bassogog2 and Samuel René Minka2

Abstract: The aim of this study was to evaluate the nutritional quality of protein from *Moringa oleifera* seeds and leaves. The defatted flours were rich in protein (33.53 and 18.63% for seeds and leaves, respectively) and carbohydrates. Amino acid analysis revealed the presence of all essential amino acids in both leaf and seed flour, with high content of leucine and valine and low content of methionine and cysteine. The total essential amino acids content of leaf flour (42.76 g/16 g N) was higher than that of seed flour (35.07 g/16 g N). Limiting amino acids were lysine and sulfur amino acids. The available lysine content of leaf flour (3.78 g/16 g N) was significantly higher than that of seed flour (1.30 g/16 g N). In vitro digestibility studies revealed that leaf proteins were more easily digested by pepsin than seed proteins. Moreover, after a pepsin-pancreatin hydrolysis, digestibility of seed flour (61.12%) was significantly higher than that of leaf flour (57.22%). In addition, the leaf flour showed higher chemical score (72.40%), protein efficiency ratio (3.47–3.71) and protein digestibility corrected amino acid score (41.42%) and available lysine (3.78 g/16 g N) than the seed flour. Therefore, *M. oleifera* seeds and leaves have good potential as nutritional supplements or ingredients in food.

Subjects: Food Chemistry; Food Science & Technology; Nutrition

Keywords: *Moringa oleifera*; seeds; leaves; proteins quality

ABOUT THE AUTHOR

Martin Alain Mune Mune is Senior Lecturer at the University of Maroua, Cameroon, since 2010. He got a PhD in Biochemistry in 2009 at the University of Yaoundé I, and Post Doc in India and Germany. He is presently working on protein and peptide Biochemistry, functional properties and bioactivities, with the major aim of designing new functional products. This study is a contribution on the potential utilization of underutilized plant proteins as food ingredients.

PUBLIC INTEREST STATEMENT

Protein and calorie malnutrition is one of the most widespread problems in developing countries, with disastrous consequences occurring in children in the forms of two serious diseases namely marasmus and kwashiorkor. Since animal proteins are expensive for people in developing countries, there is a constant search for unconventional legumes as new protein sources. In this connection, *Moringa oleifera* a promising underutilized legume used in the preparation of traditional dishes merited the attention. This study showed that *M. oleifera* seeds and leaves are rich in protein, with higher total essential amino acids content than the FAO/WHO reference pattern. These proteins exhibited high digestibility and good nutritional properties. Therefore, *M. oleifera* seeds and leaves exhibited good potential as nutritional supplements or ingredients in food.

© 2016 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
1. Introduction

Protein and calorie malnutrition is one of the most widespread problems in developing countries. The most disastrous consequences occur in children where protein energy malnutrition manifests itself in forms of two serious diseases: marasmus and kwashiorkor. Plant proteins are therefore important in the diet of children because animal proteins are unavailable due to high price. Although conventional legumes have been playing a key role as a food and feedstuff in most of these countries, their production is not enough to meet the requirements of the increasing population and animal feed industries (Siddhuraju & Becker, 2003). Therefore, there is a constant search for unconventional legumes as new protein sources. In this connection, *Moringa oleifera* a promising underutilized legume used in the preparation of traditional dishes merited the attention.

Several legumes have been studied and proposed as protein alternatives for human consumption, particularly in developing countries. Generally, legumes are rich in proteins (18–43%) and good sources of slow release carbohydrates (Table 1). They are also good sources of minerals and vitamins. Several reports claim that inclusion of legumes in the daily diet has many beneficial physiological effects in controlling and preventing various metabolic diseases such as diabetes mellitus, coronary heart disease and colon cancer. Legumes also contain antinutritional factors. However, legumes are normally consumed after processing, which not only improves palatability of foods but also increases the bioavailability of nutrients, by inactivating trypsin and growth inhibitors and haemagglutinins (Tharanathan & Mahadevamma, 2003). Extensive research has been conducted on the traditional legumes, e.g. peas, beans and lentils (Pastor-Cavada, Juan, Pastor, Alaiz, & Vioque, 2011; Rebello, Greenway, & Finley, 2014). However, relatively little work has been directed at the seeds of tree legumes. Tree legumes grow extensively in tropical and subtropical regions of the world. Their ability to (a) grow in poor soils because of their nitrogen fixing capability and to (b) withstand long periods of drought makes them ideal low input, high-yielding trees (Marangoni, Alli, & Kermasha, 1988).

M. oleifera Lamarck (fam. Moringaceae), is a perennial foliaged tree, widely cultivated due to its high adaptability to climatic conditions and dry soils (Okuda, Boes, Nishijima, & Okada, 2001). It is considered as one of the most useful plant in the world because almost all its parts can be used as food, in traditional medicines and for industrial purposes (Fahey, 2005; Khalafalla & Abdellatef, 2010). In addition, seed and leaf flour have been used in the formulation of infant food to increase protein content (Anwar, Latif, Ashraf, & Gilani, 2007). Although *M. oleifera* leaves and seeds represent important source of protein, nutritional quality depends on the essential amino acids content and bioavailability. In fact, it has been shown that vegetable proteins are less susceptible to *in vivo* digestion than animal proteins because of their low sulfur amino acids content, compact structure,

Legume type	Energy (kcal)	Carbohydrate (g)	Protein (g)	Fat (g)	Fiber† (g)
Pinto beans	245	44.84	15.41	1.11	15.40
Great Northern beans	209	37.33	14.74	0.80	12.40
Navy beans	255	47.41	14.98	1.13	19.10
Black beans	227	40.78	15.24	0.93	15.00
Black-eyed peas (cowpeas)	198	35.50	13.22	0.91	11.10
Kidney beans	225	40.36	15.35	0.88	11.30
Chickpeas (garbanzo beans)	269	44.97	14.53	4.25	12.50
Split peas	231	41.36	16.35	0.76	16.30
Lentils	230	39.86	17.86	0.75	15.60
Lupin	198	16.40	25.85	4.85	4.60
Soy bean	298	17.08	28.62	15.43	10.30

†Does not include all of the resistant starch fraction.
presence of non-protein components (dietary fiber, tannins, phytic acid) and antiphysiological pro-
teins (protease inhibitors, lectins) (Neves, Silva, & Lourenço, 2004). Literature review showed that
studies on M. oleifera are focused on the isolation of bioactive compounds especially with antioxi-
dant and hypotensive activities. However, there is little information on the protein quality of M. oleif-
era. Hence, the present study was carried out to compare protein quality of M. oleifera leaves and
seeds as well as in vitro protein digestibility (IVPD).

2. Materials and methods

2.1. Materials
M. oleifera seeds and leaves were purchased from Mokolo market (Yaoundé, Cameroon). Dried seeds
and leaves were hand-picked and stored in polyethylene bags in the refrigerator (~4°C) until used.

2.2. Methods

2.2.1. Preparation of M. oleifera seed and leaf flour
M. oleifera seeds were dehulled manually, then seeds and leaves were ground into flour and passed
through a 150 μm mesh sieve. The flours were extracted twice with the hexane/ethanol (1:1, v/v)
 solvent system in a 1/3 (w/v) ratio as described by Lu et al. (2009).

2.2.2. Proximate composition
Moisture, protein, ash, total lipids, crude protein (N × 6.25) contents were determined according to
AOAC (1990). Carbohydrate content was determined by difference.

2.2.3. Amino acids
Amino acids were determined using a BECKMAN 6300 amino acid analyzer according to the method
of Spackman, Stein, and Moore (1958). Hydrolysis of samples was performed in the presence of 6 M
HCl, trifluoroacetic acid (TFA, 2:1, v/v) and 5% thioglycolic acid, for 24 h at 100°C. Prior to amino acid
analysis, proteins were extracted from seed flour as described by Mune Mune et al. (2010), and from
leaf flour as described by Ghaly and Alkoaik (2010).

2.2.4. In vitro protein digestibility
IVPD was determined using pepsin-pancreatin enzymatic system as described by Genovese and
Lajolo (1998). The nitrogen content of the TCA-soluble matter was determined by the Kjeldahl method
(AOAC, 1990). Protein digestibility was expressed as the percentage of the soluble TCA 10% nitrogen,
with respect to the total nitrogen content of the undigested sample.

2.2.5. Available lysine
Available lysine (g/16 g N) was determined by dye binding procedure using 1-phenylazo-2-naphtol-
6-sulfonic acid (Orange 12), as described by Hurrell, Lerman, and Carpenter (1979). A sample aliquot
containing 15 mg of “Arg + His + Lys” was mixed with 4 mL of half saturated sodium Acetate and
40 mL of Orange 12 reagent were added directly for “Arg + His + Lys” determination; or after propi-
onylation of lysine with propionic anhydride for “Arg + His” determination. Difference in absorbance
between the two at 475 nm after 2 h reaction in the dark at ambient temperature was used for
calculating reactive lysine. Absorbance measurements were performed using a Spectronic Model
601 spectrophotometer (Milton Roy Company, Rochester, NY, 14625, USA).

2.2.6. Determination of nutritional parameters
Nutritional parameters were determined on the basis of the amino acid profiles:

Amino acid score (chemical score) was calculated as: % sample essential amino acids contents/%
recommended essential amino acids. The chemical scoring of amino acids was calculated using the
FAO/WHO (1991) reference pattern.
Protein Efficiency Ratio (PER) was estimated according to the regression equations developed by Alsmeyer, Cunningham, and Happich (1974), as given below:

\[
\text{PER}_1 = -0.684 + 0.456 \text{(LEU)} - 0.047 \text{(PRO)}
\]

\[
\text{PER}_2 = -0.468 + 0.454 \text{(LEU)} - 0.105 \text{(TYR)}
\]

Protein digestibility corrected amino acid score (PDCAAS) (FAO/WHO 1991) was calculated as: PDCAAS = Lowest uncorrected amino acid score × IVPD

2.2.7. Statistical analysis

Results are expressed as mean value ± standard deviation of three different determinations, except for amino acid contents. The data were analysed by the Student–Newman–Keuls test. The computer software used in this study was SPSS (version 20.0, 2011, SPSS Inc., USA).

3. Results and discussion

3.1. Proximate composition

The proximate composition of *M. oleifera* leaf and seed flour is presented in Table 2. Protein was the major macromolecule in seed and leaf flour (33.53 and 18.63%, respectively) after carbohydrates (49.15 and 52.39%, respectively). Higher protein content values were reported by Bridgemohan, Bridgemohan and Mohamed (2014) and Estelamar, Maria, Valdir, Maraíza and Lucas (2014) for *M. oleifera* seeds and leaves, respectively. In addition, leaf flour reported higher ash content (11%) than seed flour (3.16%). Protein content was significantly (*p* < 0.05) higher in *M. oleifera* seeds compared to leaves. Seed flour was found to have higher protein content than those of several legumes such as cowpea (22%), Bambara bean (24.78%), Chickpea (23.7%), Horse gram (22.5%) (Mune Mune & Sogi, 2015; Srerera, Sashikala, Pratape, & Singh, 2012).

3.2. Amino acid composition

The amino acid composition of *M. oleifera* seed and leaf flour is presented in Table 3. Regarding essential amino acids content, both seed and leaf flour were found to be rich in leucine (7.17 and 9.70%, respectively) and valine (7.08 and 6.65%, respectively), and total aromatic amino acids (6.68 and 6.78%, respectively). Leaf flour showed higher isoleucine, leucine, lysine and threonine contents than seed flour. It was also observed that seed flour was poor in lysine (1.64%), and seed and leaf flour reported low total sulfur amino acids content (2.11 and 1.81%, respectively). The major non-essential amino acids were observed to be glutamic acid (21.64 and 11.35%) and glycine (12.95 and 10.57%), respectively for seed and leaf flour. The quality of proteins as source of amino acids can usually be adequately assessed by comparison with the FAO/WHO (1991) recommended pattern of essential amino acids. Compared to the seed flour, *M. oleifera* leaf flour reported higher total essential amino acids content, and both seed and leaf flour had higher total essential amino acids than the FAO/WHO (1991) reference pattern. Moreover, histidine, isoleucine, leucine, threonine and valine contents met the FAO/WHO (1991) requirements for infants, while lysine and total sulfur amino acids were below the recommended level.

Table 2. Proximate composition (g/100 g) of *M. oleifera* seed and leaf flour

Nutrients	Seed flour	Leaf flour
Moisture	7.06 ± 0.12b1	14.79 ± 0.25c2
Protein	33.53 ± 0.38d1	18.63 ± 0.33d2
Ash	3.16 ± 0.00e1	10.99 ± 0.43e2
Lipids	7.10 ± 0.09f1	2.77 ± 0.14f3
Total carbohydrates	49.15 ± 0.19h1	52.39 ± 0.18i2

Notes: Means in the same column with different letters (a–e) are significantly (*p* < 0.05) different. Means in the same line with different numbers (1–2) are significantly (*p* < 0.05) different.
acids were in non-adequate levels. These results showed that *M. oleifera* seed and leaf flour could be used to complement cereal proteins, which contain high amount of total sulfur amino acids and legume proteins which have low total aromatic amino acids content (Mune Mune, Minka, Mbome, & Etoa, 2011). The leucine/isoleucine ratio in *M. oleifera* seed flour (2.03) was in ideal range suggested by FAO/WHO (1991). Deosthale, Mohan, and Rao (1970) showed that excess leucine in foods interfered with the utilization of isoleucine and lysine.

3.3. In vitro protein digestibility

IVPD of *M. oleifera* seed and leaf flour is presented in Table 4. It was observed that *M. oleifera* leaf flour is more susceptible to pepsin digestion than the seed flour, and pancreatin digestion greatly affected seed flour compared to leaf flour. IVPD of *M. oleifera* seed flour (24.34%) was significantly (*p < 0.05*) lower than that of the leaf flour (41.11%) after the action of pepsin. However, due to the

Table 3. Amino acid composition of *M. oleifera* seed and leaf flour (g/16 g N)

	Seeds	Leaves	FAO/WHO (1991)
Histidine	2.66	1.98	1.9
Isoleucine	3.54	5.03	2.8
Leucine	7.17	9.70	6.6
Lysine	1.64	5.53	5.8
Threonine	4.09	5.28	3.4
Tryptophan	ND	ND	1.1
Valine	7.08	6.65	3.5
Methionine	1.44	1.40	
Cysteine	0.67	0.41	
Total sulfur amino acids	**2.11**	**1.81**	**2.3**
Tyrosine	1.71	2.20	
Phenylalanine	4.97	4.58	
Total aromatic amino acids	6.68	6.78	6.3
Total essential amino acids	**35.07**	**42.76**	**33.9**
Aspartic acid + asparagine	7.99	9.76	
Serine	3.30	5.75	
Glutamic acid + glutamine	21.64	11.35	
Proline	6.13	5.70	
Glycine	12.95	10.57	
Alanine	7.07	9.79	
Arginine	5.83	4.31	
Total non-essential amino acids	**64.93**	**57.23**	
Leucine/isoleucine ratio	2.03	1.93	**2.36**
First limiting amino acid	**Lysine**	Cys + Met	
Second limiting amino acid	Cys + Met	**Lysine**	

Note: ND: non determined.

Table 4. IVPD of *M. oleifera* seed and leaf flour

Material	Pepsin digestibility (%)	Pancreatin digestibility (%)
Seed flour	24.34 ± 1.69^{a1}	61.12 ± 5.56^{b2}
Leaf flour	41.11 ± 3.33^{a2}	57.22 ± 3.81^{a1}

Notes: Means in the same column with different letters (a–b) are significantly (*p < 0.05*) different. Means in the same line with different numbers (1–2) are significantly (*p < 0.05*) different.
action of pancreatin following that of pepsin, digestibility of seed flour was significantly ($p < 0.05$) higher (61.12%) than that of leaf flour (57.22%). Estelamar et al. (2014) reported lower value for in vitro digestibility of *M. oleifera* leaf flour. IVPD of *M. oleifera* seed and leaf flour were in the same range than that of cowpea flour (60%), and lower than that of Bambara bean flour (74.53%) (Mune Mune et al., 2011; Mune Mune, Minka, & Mbome, 2013).

M. oleifera seed and leaf proteins probably had different structure in addition to amino acid composition. Moreover, pepsin and pancreatin are endopeptidases with different specificity. Pepsin hydrolyzed preferentially peptide bond where the amino group of aromatic amino acid is committed. Also, pancreatin hydrolyzed peptide bond where the carboxylic group of aromatic amino acids is committed (chymotrypsin), peptide bond where the carboxylic group of basic amino acids is committed (trypsin), and peptide bond where the amino group of aromatic amino acid is committed (chymosin) (Khantaphant & Benjakul, 2010).

3.4. Nutritional parameters and available lysine

The nature and quantity of amino acids contained in a dietary protein, determined the efficiency by which an organism could use the protein. Nutritional parameters and available lysine of *M. oleifera* seed and leaf flour is presented in Table 5. The chemical score and protein digestibility corrected amino acid score (PDCAAS) of seed flour (28.27 and 17.28%, respectively) were lower than those of leaf flour (72.40 and 41.42%, respectively). Based on the chemical score, the first and second limiting amino acids of the seed flour were lysine and total sulfur amino acids, respectively, while those of leaf flour were total sulfur amino acids and lysine, respectively. PER of *M. oleifera* leaf flour (3.47–3.71) was in the same range than that reported for tobacco leaves (3.68) in vivo by Kung et al. (1980).

Available lysine was significantly ($p < 0.05$) higher in leaf flour (3.78 g/16 g N) compared to seed flour (1.30 g/16 g N). A portion of total lysine in *M. oleifera* seed and leaf flour is probably engaged in chemical reactions. These values were lower than those obtained by the amino acid analysis (5.53 g/16 g N for leaf flour and 1.64 g/16 g N for seed flour). Nevertheless, Waller and Feather (1983) showed that a fraction of non-available lysine could be recovered in vivo after acid hydrolysis.

4. Conclusion

Results obtained in this study showed that *M. oleifera* leaves and seeds might be used as sources of low-cost protein in nutritional applications, for the benefit of low-income population in developing countries. Seed flour had higher protein content than those of several legumes. *M. oleifera* leaf and seed flour had higher total essential amino acids content than the FAO/WHO (1991) reference pattern, with lysine and total sulfur amino acids being limiting. *M. oleifera* seed flour showed higher protein digestibility than leaf flour. Moreover, leaf flour showed higher chemical score, PER and protein digestibility corrected amino acid score, and available lysine than seed flour.
Funding

The authors received no direct funding for this research.

Competing Interests

The authors declare no competing interest.

Author details

Martin Alain Mune Mune 1
E-mail: alainmune@yahoo.fr, martinmune@yahoo.fr
Emilienne Carine Nyobe 2
E-mail: carine_nyobe@yahoo.fr
Christian Bakwo Bassogog 2
E-mail: christian_bakwo@yahoo.fr
Samuel René Minka 2
E-mail: minka_samuel@yahoo.fr

1 Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon.
2 Department of Biochemistry, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.

Citation information

Cite this article as: A comparison on the nutritional quality of proteins from Moringa oleifera leaves and seeds, Martin Alain Mune Mune, Emilienne Carine Nyobe, Christian Bakwo Bassogog & Samuel René Minka, Cogent Food & Agriculture (2016), 2: 1213618.

References

AOAC. (1990). Official methods of analysis (15th ed.). Arlington, TX: Author.
Alsmeyer, R. H., Cunningham, A. E., & Happich, M. L. (1974). Equations predict PER from amino acid analysis. Food Technology, 28, 34–40.
Anwar, F., Latif, S., Ashraf, M., & Gilani, A. H. (2007). Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy Research, 21, 17–25. http://dx.doi.org/10.1002/(ISSN)1099-1573
Bridgemohan, P., Bridgemohan, R., & Mohamed, M. (2014). Chemical composition of a high protein animal supplement from Moringa oleifera. African Journal of Food Science and Technology, 5, 125–128.
Deosthale, Y. G., Mohan, V. S., & Rao, K. V. (1970). Varietal differences in protein, lysine, and leucine content of grain sorghum. Journal of Agricultural and Food Chemistry, 18, 644–646. http://dx.doi.org/10.1021/jf010028e
Estelamir, M., Maria, R., Valdr, A., Maraida, A., & Lucas, A. (2014). Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. Leaves. Food Chemistry, 147, 51–54.
Fohey, J. (2005). Moringa oleifera: A review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees for Life Journal, 1(S), 1–15.
FAOQOMS. (1993). Protein quality evaluation. Rome: Food and Agricultural Organization of the United Nations.
Ghaly, A. E., & Alkoalik, F. N. (2010). Extraction of protein from common plant leaves for use as human food. American Journal of Applied Sciences, 7, 331–342. http://dx.doi.org/10.3844/ajass.2010.331.342
Genovese, M., & Lapolo, F. (1998). Influence of naturally acid-soluble proteins from beans (Phaseolus vulgaris L.) on in vitro digestibility determination. Food Chemistry, 62, 315–323. http://dx.doi.org/10.1016/S0308-8146(97)00224-0
Hurrell, R. F., Lerman, P., & Carpenter, K. J. (1979). Reactive lysine in foodstuffs as measured by a rapid dye-binding procedure. Journal of Food Science, 44, 1221–1227, 1231.
Khalafalla, M., & Abdelatif, E. (2010). Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. African Journal of Biotechnology, 9, 8467–8471.
Khanhaphant, S., & Benjakul, S. (2010). Purification and characterization of trypsin from the pyloric caeca of brown stripe red snapper (Lutjanus vittatus). Food Chemistry, 120, 658–664. http://dx.doi.org/10.1016/j.foodchem.2009.09.098
Krug, S., Sauder, J., Tao, T., Vaughn, D., Wormack, M., Staples, R., & Beecher, G. (1980). Tobacco as a potential food source and smoke material: Nutritional evaluation of tobacco leaf protein. Journal of Food Science, 45, 320–322. http://dx.doi.org/10.1111/j.1151.2016.09455.x issue-2
Lu, Q., Zhang, Y., Wang, Y., Wang, D., Lee, R.-p., Gao, K., & Byrns, R. (2007). California Hass avocado: Profiling of carotenoids, tocopherols, fatty acids and fat content during maturation and from different growing areas. Journal of Agricultural and Food Chemistry, 57, 10408–10413. http://dx.doi.org/10.1021/jf011839h
Marangoni, A., Alli, I., & Kernsah, S. (1988). Composition and properties of seeds of the tree legume Tamarindus indica. Journal of Food Science, 53, 1452–1455. http://dx.doi.org/10.1111/j.1151.1988.53.issue-5
Mune Mune, M. A., Mboime, L. I., & Minka, S. R. (2010). Optimization of protein concentrate preparation from Bambara bean using response surface methodology. Journal of Food Process Engineering, 33, 198–412.
Mune Mune, M. A., Minka, S. R., & Mboime, L. I. (2013). Chemical composition and nutritional evaluation of a cowpea protein concentrate. Global Advanced Research Journal of Food Science and Technology, 2, 35–43.
Mune Mune, M. A., Minka, S. R., Mboime, L. I., & Etoa, F. X. (2011). Nutritional potential of Bambara bean protein concentrate. Pakistan Journal of Nutrition, 10, 112–119.
Mune Mune, M. A., & Sogi, D. S. (2013). Functional properties of protein concentrates of Cowpea and Bambara Bean involving different drying techniques. Journal of Food Processing and Preservation, 39, 2304–2313.
Neves, V. A., Silva, M. A., & Lourenço, E. J. (2004). Caracterização e hidrólise in vitro da globulina principal de grão-de-bico (Cicer arietinum L.), var. IAC Marrocos. Ciência e Tecnologia de Alimentos, 24, 139–145. http://dx.doi.org/10.1590/S0101-2061200400002000025
Okudo, T., Boes, A. U., Nishijima, W., & Okada, M. (2001). Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution. Water Research, 35, 405–410. http://dx.doi.org/10.1016/S0043-1354(00)00290-6
Pastor-Covada, E., Juan, R., Pastor, J. E., Alaz, M., & Vioque, J. (2011). Nutritional characteristics of seed proteins in 28 vicia species (Fabaceae) from Southern Spain. Journal of Food Science, 76, C111B–C112A. http://dx.doi.org/10.1111/j.1152-0836.2011.76.issue-8
Rebello, C. J., Greenway, F. L., & Finley, J. W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obesity Reviews, 15, 392–407. http://dx.doi.org/10.1111/obr.12144
Siddhuraju, P., & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents of three different agro-climatic origins of drumstick tree (Moringa oleifera Lam.). Journal of Agricultural and Food Chemistry, 51, 2144–2155. http://dx.doi.org/10.1021/jf020444+
Spackman, D. M., Stein, W. H., & Moore, S. (1958). Automatic recording apparatus for use in the chromatography of aminoacids. Analytical Chemistry, 30, 1190–1206. http://dx.doi.org/10.1021/ac60139a006

Sreerama, Y. N., Sashikala, V. B., Pratape, V. M., & Singh, V. (2012). Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chemistry, 131, 462–468. http://dx.doi.org/10.1016/j.foodchem.2011.09.008

Tharanathan, R. N., & Mahadevamma, S. (2003). Grain legumes—A boon to human nutrition. Trends in Food Science and Technology, 14, 507–518. http://dx.doi.org/10.1016/j.tifs.2003.07.002

Waller, G., & Feather, M. (1983). The maillard reactions in foods and nutrition. Washington, DC: American Chemical Society. http://dx.doi.org/10.1021/symposium