SOME REPRESENTATIONS OF MOORE-PENROSE INVERSE
FOR THE SUM OF TWO OPERATORS AND THE EXTENSION
OF THE FILL-FISHKIND FORMULA

ABDESSALAM KARA AND SAID GUEDJIBA
University of Batna 2, Faculty of Mathematics and Computer Sciences
Department of Mathematics, Algeria
(Communicated by Nan-Jing Huang)

Abstract. In the setting of arbitrary Hilbert spaces, we give a representation
of M-P inverse of the sum of linear operators \(A + B \) under suitable conditions.
Based on the full-rank decomposition of an operator, we prove that the ex-
tension of the Fill-Fishkind formula for \(A \) and \(B \) with closed ranges, remains
valid, keeping the same conditions of Fill-Fishkind formula for two matrices,
also we obtain an analogous formula under the Fill-Fishkind conditions, be-
yond we derive some representations of M-P inverse of a 2-by-2 block operator
with disjoint ranges.

1. Introduction and preliminaries. In this work, \(H \) and \(K \) are infinite dimen-
sional complex Hilbert spaces with inner products \(\langle \cdot, \cdot \rangle_H, \langle \cdot, \cdot \rangle_K \), \(B(H, K) \) denotes
the set of all linear bounded operators from \(H \) to \(K \). Let \(A, B \in B(H, K) \), the
Moore-Penrose inverse (for short M-P inverse) of a closed range operator
\(A \) is the unique operator \(A^\dagger \in B(K, H) \) satisfying the following four Penrose equations:

\[
\begin{align*}
(i) & \quad AA^\dagger A = A, \\
(ii) & \quad A^\dagger AA^\dagger = A^\dagger, \\
(iii) & \quad (AA^\dagger)^* = AA^\dagger, \\
(iv) & \quad (A^\dagger A)^* = A^\dagger A.
\end{align*}
\]

We denote by \(A^*, R(A), N(A) \), respectively, the adjoint, the range and the null-
space of \(A \), it is well known that \(A^\dagger \) exists for a given \(A \in B(H, K) \) if and only
if \(R(A) \) is closed; in this case \(R(A^\dagger A) = R(A^\dagger) = R(A^*) \), \(R(AA^\dagger) = R(A) \) and
\(N(A^\dagger A) = N(A), N(AA^\dagger) = N(A^\dagger) = N(A^*) \).

In [10]: Fill and Fishkind exhibit a neat relationship between the M-P inverse of
a sum of two square matrices \(A \) and \(B \) and the M-P inverse of the individual terms,
this is the Fill–Fishkind formula:

\[
(A + B)^\dagger = (I - S)A^\dagger(I - T) + SB^\dagger T, \tag{1}
\]

Provided that

\[
R(A) \cap R(B) = \{0\} \text{ and } R(A^*) \cap R(B^*) = \{0\}, \tag{2}
\]

where: \(S = (P_{N(B)}P_{N(A)})^\dagger \) and \(T = (P_{N(A^*)}P_{N(B^*)})^\dagger \).

Recently, in the setting of Hilbert spaces, Arias, Corach and Maestripieri in [[1],
Theorem 5.2] extend the Fill- fishkind formula to \(A \) and \(B \) with closed ranges,
satisfying the assumptions: (2), \(R(A + B) = R(A) + R(B), R(A^* + B^*) = R(A^*) +

\[
\text{2010 Mathematics Subject Classification. Primary: 15A09, Secondary: 47A05.}
\]

Key words and phrases. Moore-Penrose inverse; Closed range operator. Sum of operators,
Disjoint ranges.
Proof. We know that \(R(\lambda^*) \cap R(B^*) = \{0\} \) and \(R(\lambda + B) \) is closed, or these: \(\lambda \) and \(B \) coincide on \(R(\lambda^*) \cap R(B^*) \), \(R(\lambda) \cap R(B) = \{0\} \), and \(R(\lambda + B) = R(\lambda) + R(B) \), \(R(\lambda^* + B^*) = R(\lambda^*) + R(B^*) \). We will use the notion of full rank decomposition of operator to prove that if \(\lambda \) and \(B \) have closed ranges and \((2) \) holds, then we have \(R(\lambda + B) = R(\lambda) + R(B), R(\lambda^* + B^*) = R(\lambda^*) + R(B^*) \) and the subspaces \(R(\lambda + B), R(\lambda) + R(B) \) and \(R(\lambda^* + B^*) \) are closed, also that the extension of the Fill-Fishkind formula for \(\lambda \) and \(B \) with closed ranges is valid keeping the conditions of Fill-Fishkind formula for two matrices, which are \((2) \). On the other hand we get an analogous formula under \((2) \) to Fill-Fishkind formula for \(\lambda \) and \(B \) having closed ranges and derive certain cases where operator ranges are orthogonal.

From the idea that \([8]\) the closed range operator admits matrix form with respect to the orthogonal sum of subspaces of \(H \) and \(K \), we obtain a representation of the \(M \)-\(P \) inverse of the sum of two operators \(\lambda \) and \(B \) satisfying: \(R(\lambda) \perp R(B) \) and \(R(\lambda) + R(B) \) is closed, hence under suitable conditions, we give a general representation of the \(M \)-\(P \) inverse of the sum \(\lambda + B \). Beyond, we consider a 2-by-2 block operator \(M \) as sum of two operators \(M = \begin{bmatrix} 0 & A_1 & A_2 \\ 0 & 0 & A_3 \\ A_4 & 0 \\ \end{bmatrix} \) and then, we give some representations of \(M \)-\(P \) inverse of \(M \) under the condition \(R(M_1^*) \cap R(M_2^*) = \{0\} \).

2. Some lemmas.

Lemma 2.1. Let \(P \in B(K) \) and \(Q \in B(H) \) be projectors, then
1) \(PA = A \Leftrightarrow R(A) \subset R(P) \),
2) \(AQ = A \Leftrightarrow N(Q) \subset N(A) \),
3) If \(P \) is an orthogonal projector and \(PA \) has a closed range, then \((PA) = (PA)^{P} PA \).
4) If \(K = H \), then
 \[P = Q \Leftrightarrow R(P) \subset R(Q) \text{ and } N(P) \subset N(Q) \).

Definition 2.2. We say that \(\lambda \) and \(B \) are disjoint ranges if \(R(\lambda) \cap R(B) = \{0\} \), we denote by \(DR \) the set of all these pairs \((\lambda, B) \); i.e.,
\[DR := \{(\lambda, B) : \lambda, B \in B(H, K) \text{ and } R(\lambda) \cap R(B) = \{0\}\} \].

Lemma 2.3. Let \(\lambda \) has closed range, then the next statements are equivalent
1) \((\lambda, B) \in DR \),
2) \(\bar{R}(\lambda^*) = \bar{R}(\lambda^*) P_{\lambda}(\lambda) \),
3) \(N(B) = N(P_{\lambda}(\lambda) B) \).

Proof. We know that \(\bar{R}(\lambda^*) = \bar{N}(B)^{P} \) and \(\bar{R}(\lambda^*) P_{\lambda}(\lambda) = N(P_{\lambda}(\lambda) B) \), then \(2) \Leftrightarrow 3) \). Using absurd reasoning to proof both implications of the equivalence \(1) \Leftrightarrow 3) \), first, \(\Rightarrow \): Let \(x \in H \) satisfies \(P_{\lambda}(\lambda) Bx = 0 \) and \(Bx \neq 0 \), which implies that \(\lambda^* Bx = Bx \) and \(Bx \neq 0 \), it follows that \(Ax = Bx \neq 0 \); where \(x' = \lambda Bx \), therefore contradiction with the assertion \(1) \). Second, \(\Leftrightarrow \): Let \(y \in R(\lambda) \cap R(B) \neq \{0\} \), there exist \(x_1 \neq 0 \) and \(x_2 \neq 0 \) such that \(Ax_1 = Bx_2 \neq 0 \), form the equation \((i) \) of Penrose, we obtain \(Ax_1 = Bx_2 \neq 0 \), then \(P_{\lambda}(\lambda) Bx = 0 \) and \(Bx \neq 0 \); hence contradiction. \(\square \)
Lemma 2.4. ([6], Theorem 22) If A and B have closed ranges, then the following statements are equivalent
1) \(AB \) has closed range,
2) \(N(A) + R(B) \) is closed.
3) \(N(B^*) + R(A^*) \) is closed.

We assume that \(Z \) of lemma 1, we find that (to see that equality (4) on the right by \(Z \) hence, the multiplication of the equality (4) on the left by \(M \), we suppose that \(P \) is injective if and only if \(N(A^*) \) is closed, which is equivalent, by lemma 2.3 to at each one of these equalities.

\[
\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \in B(H \oplus L, K \oplus F).
\] (3)

Lemma 2.5. We assume that \(A_1 \) and \(A_2 \) are injective, then \(M = \begin{pmatrix} A_1 & A_2 \\ 0 & 0 \end{pmatrix} \) is injective if and only if \(R(A_1) \cap R(A_2) = \{0\} \).

Proof. We suppose that \(R(A_1) \cap R(A_2) \neq \{0\} \). This means that there exist \(x \notin N(A_1) \) and \(x' \notin N(A_2) \) suth that \(A_1 x = A_2(x') \neq 0 \) or \(A_1 x + A_2(-x') = 0 \) Which is equivalent to the existence of \(\left(x; -x' \right) \neq (0; 0) \) with \(M(\cdot, x') = (0; 0) \), that is to say, \(M \) is not injective.

Lemma 2.6. Let \(M = \begin{pmatrix} A_1 & A_2 \\ 0 & 0 \end{pmatrix} \) be a 2-by-2 block row operator suth that \(R(A_1), R(A_2) \) are closed, then
\[
R(M) \text{ is closed } \iff R(P_{N(A_2)}A_1) \text{ is closed } \iff R(P_{N(A_2^*)}A_2) \text{ is closed.}
\]

If \((A_1, A_2) \in DR \), we get
\[
M^\dagger = \begin{pmatrix} (P_{N(A_2^*)}A_1)^\dagger & 0 \\ (P_{N(A_2^*)}A_2)^\dagger & 0 \end{pmatrix} := Z.
\]

Proof. We have \(R(M) = R(A_1) + R(A_2) \oplus \{0\} \), so \(R(M) \) is closed if and only if \(R(A_1) + R(A_2) \) is closed, which is equivalent by the lemma 2.4 to \(P_{N(A_2)}A_1 \) (resp, \(P_{N(A_2^*)}A_2 \)) have closed ranges. Now we will see that \(Z \) satisfies the equations of M-P inverse of \(M \), firstly, applying the item 3 of lemma 2.1 we get that \(Z \) satisfies the equation (iv):

\[
ZM = \begin{pmatrix} (P_{N(A_2^*)}A_1)^\dagger P_{N(A_2^*)}A_1 & 0 \\ 0 & (P_{N(A_2^*)}A_2)^\dagger P_{N(A_2^*)}A_2 \end{pmatrix}.
\] (4)

Remark that \((A_1, A_2) \in DR \) is equivalent, by lemma 2.3 to at each one of these equalities
\[
N((P_{N(A_2^*)}A_1)^\dagger P_{N(A_2^*)}A_1) = N(A_1) \quad \text{and} \quad N((P_{N(A_2^*)}A_2)^\dagger P_{N(A_2^*)}A_2) = N(A_2).
\]

Hence, the multiplication of the equality (4) on the left by \(M \) and using the item 2 of lemma 1, we find that \(Z \) satisfies the equation (i), and the multiplication of the equality (4) on the right by \(Z \) we find that \(Z \) satisfies the equation (ii). It remains to see that \(Z \) satisfies the equation (iii), it results from the equations (i) and (ii) that \(MZ \) which has the matrix form below is a projection
\[
MZ = \begin{pmatrix} A_1(P_{N(A_2^*)}A_1)^\dagger + A_2(P_{N(A_2^*)}A_2)^\dagger & 0 \\ 0 & 0 \end{pmatrix}.
\]
And we have

\[R(MZ) = R(M), \]
\[N(MZ) = N(Z) = N(A_1(P_{N(A_2^*)}A_1)^\dagger + A_2(P_{N(A_3^*)}A_2)^\dagger) \oplus F. \]

We consider the orthogonal projection

\[Q = \begin{bmatrix} P_{R(A_1) + R(A_2), N(A_2^*) \cap N(A_2^*)} & 0 \\ 0 & 0 \end{bmatrix} \in B(K \oplus F, K \oplus F). \]

From where

\[R(Q) = R(M) \text{ and } N(Q) = N(A_1^*) \cap N(A_2^*) \oplus F, \]

We will see that \(MZ = Q \). These inclusions are easy to check

\[N(A_1^*) \cap N(A_2^*) \subset N(A_1^*P_{N(A_2^*)}A_1) \subset N(A_1(P_{N(A_2^*)}A_1)^\dagger). \]

And

\[N(A_1^*) \cap N(A_2^*) \subset N(A_2^*P_{N(A_1^*)}A_2) \subset N(A_2(P_{N(A_1^*)}A_2)^\dagger), \]

Hence

\[N(A_1^*) \cap N(A_2^*) \subset N(A_1(P_{N(A_2^*)}A_1)^\dagger + A_2(P_{N(A_1^*)}A_2)^\dagger). \]

which implies that

\[N(A_1^*) \cap N(A_2^*) \oplus F \subset N(MZ). \]

Consequently, \(N(Q) \subset N(MZ), R(Q) = R(M) \) it follows from the item 4 of lemma 2.1 that \(MZ = Q \).

\[\square \]

Lemma 2.7. In the 2-by-2 block operator \(M = \begin{bmatrix} A_1 & 0 \\ A_3 & A_4 \end{bmatrix} \), we assume that \(A_1 \) is invertible and \(A_4 \) has closed range, then

\[M^\dagger = \begin{bmatrix} G^{-1}A_1^* & G^{-1}D^* \\ -A_2^*A_3G^{-1}A_1^* & A_1^* - A_2^*A_3G^{-1}D^* \end{bmatrix}, \]

where: \(D = P_{N(A_3^*)}A_3 \), \(G = A_1^*A_1 + D^*D \).

Proof. Simple verification. \(\square \)

3. Some properties of full-rank decomposition of operators.

Definition 3.1. If there exist a Hilbert space \(H_A \) and operators \(G_A \in B(H, H_A) \); \(F_A \in B(H, K) \), such that \(G_A \) is right invertible, \(F_A \) is left invertible and

\[A = F_AG_A \quad (5) \]

Then we say that (5) is a full-rank decomposition of \(A \).

The full-rank decomposition plays an important role in the theory of the generalized inverses, in particular for determining the expressions of M-P inverse of an operator; for more see [2], [4]. We recall that in [4], Caradas has proved that an operator \(A \in B(H, K) \) admits a full-rank decomposition if and only if there exists an operator \(X \in B(K, H) \) satisfying the equation \((i)\), means that the operator \(A \in B(H, K) \) admits a full-rank decomposition if and only if \(R(A) \) is closed, Dordević and Stanimirović mentioned in [9]; Theorem 2.1, (d) \(\), if \(F_AG_A \) is a full-rank decomposition of \(A \), then \(G_A^*F_A^\dagger \) is the M-P inverse of \(A \); (i.e., \(A^\dagger = G_A^*F_A^\dagger \)). Using below the concept of full-rank decomposition to collect a set of results:
Lemma 3.2. A has a full-rank decomposition if and only if A^\dagger exists, and if $F_A G_A$ is a full-rank decomposition of A, then
1) $F_A^\dagger F_A$ and $G_A G_A^\dagger$ are invertible.
2) F_A^\dagger is a left inverse of F_A, also G_A^\dagger is a right inverse of G_A.
3) We have $R(A) = R(F_A)$, $N(A) = N(G_A)$. $R(A^*) = R(G_A^*)$ and $N(A^*) = N(F_A^*)$.
4) $A^\dagger A = G_A^\dagger, A$ and $A A^\dagger = F_A F_A^\dagger$.

We use this lemma below in the proof of theorem 5.3, to prove the identity (18).

Lemma 3.3. Let $F_A G_A$, $F_B G_B$ be full-rank decompositions of A and B, respectively, then
a) we have

\[R(P_{(B^*)}^A) = R(P_{(B^*)}^F_A), R(P_{(A^*)}^B) = R(P_{(A^*)}^F_B) \]

And

\[R(P_{(A^*)}^B) = R(P_{(A^*)}^G_B), R(P_{(B^*)}^A) = R(P_{(B^*)}^G_A) \]

b) We suppose that $P_{(B^*)}^A$ has a closed range and $(A, B) \in DR$, then we have

\[\langle P_{(B^*)}^A F_A \rangle = G_A \langle P_{(B^*)}^A \rangle, \langle P_{(A^*)}^F_B \rangle = G_B \langle P_{(A^*)}^B \rangle \]

c) We suppose that $BP_{(A^*)}$ has a closed range and $(A^*, B^*) \in DR$, then we have

\[\langle G_B P_{(A^*)} \rangle = (BP_{(A^*)})^\dagger F_B, \langle G_A P_{(B^*)} \rangle = (AP_{(B^*)})^\dagger F_A \]

Proof. a) The equality $R(P_{(B^*)}^A) = R(P_{(B^*)}^F_A)$ is proved as follows

\[R(P_{(B^*)}^A) = P_{(B^*)}^A R(F_A) = P_{(B^*)}^A R(F_A F_A^\dagger) = P_{(B^*)}^A R(A A^\dagger) = P_{(B^*)}^A R(A) = R(P_{(B^*)}^A) \]

Similarly, we can have the other equality.

b) Let $U = P_{(B^*)} A$ and $V = G_A^\dagger$, we have

\[R((P_{(B^*)}^A)^* P_{(B^*)}^A) U V^* U^\dagger \subset R(A^* P_{(B^*)}^A) \subset R(A^*) = R(G_A^\dagger) \]

So, we deduce that

\[R(U^* V V^* U^\dagger) \subset R(V) \]

Now, note that $R(G_A^\dagger G_A^\dagger (P_{(B^*)}^A)^*) \subset R(G_A^\dagger) = R(A^*)$ and by the item 3 of lemma 3.2 we get $R(G_A^\dagger G_A^\dagger (P_{(B^*)}^A)^*) \subset R(A^*)$ On the other hand since $(A, B) \in DR$, it follows from the item 2 of lemma 2.3 that $R(G_A^\dagger G_A^\dagger (P_{(B^*)}^A)^*) \subset R((P_{(B^*)}^A)^*)$ that is

\[R(V V^* U^*) \subset R(U^*) \]

According to (6) and (7) and [[8], item (4) of Theorem 2.2] then, U and V satisfy the reverse order law $(UV)^\dagger = V^\dagger U^\dagger$, that is $(P_{(B^*)}^A AG_A^\dagger)^\dagger = G_A (P_{(B^*)}^A)^\dagger$ While $P_{(B^*)}^A F_A = P_{(B^*)}^A G_A^\dagger$, so the equality $(P_{(B^*)}^A)^\dagger = G_A (P_{(B^*)}^A)^\dagger$ holds. In the same way we get that $(P_{(A^*)}^B)^\dagger = G_B (P_{(A^*)}^B)^\dagger$. Taking the adjoint on both sides of the equalities of item c) and we use the item b) we obtain

\[(P_{(A^*)}^B)^\dagger = F_B (P_{(A^*)}^B)^\dagger \] and \[(P_{(B^*)}^A)^\dagger = G_A^\dagger (P_{(B^*)}^A)^\dagger. \]

We take again the adjoints on both sides of two last equalities, obtaining the item c).
4. Representations of M-P inverse of the sum of two operators. In this section we assume that the operator A has a closed range, the operator A has the following matrix form with respect to the orthogonal sums $K = R(A) \oplus N(A^*)$ and $H = R(A^*) \oplus N(A)$:

$$A = \begin{bmatrix} A_{11} & 0 \\ 0 & 0 \end{bmatrix} : \begin{pmatrix} R(A^*) \\ N(A) \end{pmatrix} \rightarrow \begin{pmatrix} R(A) \\ N(A^*) \end{pmatrix},$$

(8)

where A_{11} is invertible. Moreover,

$$A^\dagger = \begin{bmatrix} A_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix} : \begin{pmatrix} R(A) \\ N(A^*) \end{pmatrix} \rightarrow \begin{pmatrix} R(A^*) \\ N(A) \end{pmatrix}.$$ \hspace{1cm} (9)

To obtain the identity (10), we will use the matrix forms of A and B with respect to the orthogonal sums above of K and H, to transform the sum $A + B$ into a 2-by-2 block operator block, which is the 11, hence by the lemma 2.7 we get 13 which is equivalent by identification to (10).

Theorem 4.1. If $R(A) \perp R(B)$; then $(A + B)^\dagger$ exists if and only if Ω_A^\dagger exists, and $(A + B)^\dagger$ can be expressed as:

$$(A + B)^\dagger = \Omega_A^\dagger + (I - \Omega_A^\dagger B)J_A^\dagger(\Delta_A^* + A^*),$$

(10)

where: $\Omega_A = BP_{N(A)}$, $\Delta_A = (I - \Omega_A^\dagger J_A^\dagger B)A$, $J_A = A^*A + \Delta_A^*\Delta_A$.

Proof. Under the assumption $R(A) \perp R(B)$, then B has the matrix form:

$$B = \begin{bmatrix} 0 & 0 \\ B_{13} & B_{14} \end{bmatrix} : \begin{pmatrix} R(A^*) \\ N(A) \end{pmatrix} \rightarrow \begin{pmatrix} R(A) \\ N(A^*) \end{pmatrix}.$$ By the addition of A and B we have the matrix form of $A + B$

$$A + B = \begin{bmatrix} A_{11} & 0 \\ B_{13} & B_{14} \end{bmatrix} : \begin{pmatrix} R(A^*) \\ N(A) \end{pmatrix} \rightarrow \begin{pmatrix} R(A) \\ N(A^*) \end{pmatrix}.$$ \hspace{1cm} (11)

Hence,

$$\Omega_A = BP_{N(A)} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} : \begin{pmatrix} R(A^*) \\ N(A) \end{pmatrix} \rightarrow \begin{pmatrix} R(A) \\ N(A^*) \end{pmatrix},$$

$$\Delta_A = (I - \Omega_A^\dagger B)A = \begin{bmatrix} 0 & 0 \\ P_{N(B_{14})}B_{13} & 0 \end{bmatrix}.$$ And $J_A = A^*A + \Delta_A^*\Delta_A = \begin{bmatrix} A_{11}^*A_{11} + (P_{N(B_{14})}B_{13})^*P_{N(B_{14})}B_{13} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix}.$

It is clear that Ω_A^\dagger exists if and only if B_{14}^\dagger exists, on the other hand as A_{11} is invertible, we have

$$A + B = \begin{bmatrix} I & 0 \\ B_{13}A_{11}^{-1} & I \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & B_{14} \end{bmatrix},$$ \hspace{1cm} (12)

it follows from the (12) that $(A + B)^\dagger$ exists if and only if B_{14}^\dagger exists, then it is automatically $(A + B)^\dagger$ exists if and only if Ω_A^\dagger exists. We will find the expression (10), applying the lemma 2.7, we get

$$(A + B)^\dagger = \begin{bmatrix} \Sigma^\dagger A_{11}^* & \Sigma^\dagger(P_{N(B_{14})}B_{13})^* \\ -B_{14}^\dagger B_{13}^\dagger \Sigma^\dagger A_{11}^* & B_{14}^\dagger - B_{14}^\dagger B_{13}^\dagger \Sigma^\dagger(P_{N(B_{14})}B_{13})^* \end{bmatrix}.$$ \hspace{1cm} (13)
We say that

\[\text{Definition 5.1.} \]

follows we need the following definition:

\[
\begin{bmatrix}
0 & 0 \\
B_{14} & R
\end{bmatrix} + \begin{bmatrix}
\Sigma^\dagger A_{11}^* & 0 \\
- B_{14}^* B_{13} \Sigma A_{11}^* & 0
\end{bmatrix} + \begin{bmatrix}
0 & \Sigma^\dagger (P_{N(B_{14}^*)} B_{13})^* \\
0 & - B_{14}^* B_{13} \Sigma^\dagger (P_{N(B_{14}^*)} B_{13})^*
\end{bmatrix}.
\]

By identification

\[
(A + B)^\dagger = \Omega^\dagger_A + (I - \Omega^\dagger_A B) J^\dagger_A A^* + (I - \Omega^\dagger_A B) J^\dagger_A (\Delta^* A + A^*).
\]

\[
\Omega_A = \bar{A} P_{N(\bar{A})} \Delta_A = (I - \Omega^\dagger_A \bar{A}) J^\dagger_A = \bar{A}^* \bar{A} + \Delta^* A\Delta_A.
\]

5. **Representations of M-P inverse of the sum of two operators with disjoint ranges.** We assume in this section that \(A \) and \(B \) have closed ranges, in what follows we need the following definition:

Definition 5.1. We say that \(A \) and \(B \) have the range additivity property if \(R(A + B) = R(A) + R(B) \). We denote by \(R \) the set of all these pairs \((A, B)\), i.e.,

\[
R := \{(A, B) : A, B \in L(H, K) \text{ and } R(A + B) = R(A) + R(B)\}.
\]

Theorem 5.2. We have

1) If \((A, B) \in DR\), then \((A^*, B^*) \in R\), and

\(R(A + B) \) is closed if and only if \(R(A^*) + R(B^*) \) is closed.

2) If \((A^*, B^*) \in DR\), then \((A, B) \in R\), and

\(R(A + B) \) is closed if and only if \(R(A) + R(B) \) is closed.

3) If \((A, B) \in DR\) and \((A^*, B^*) \in DR\), then

\((A, B) \in R\), \((A^*, B^*) \in R\),

In addition \(R(A + B) = R(A) + R(B) = R(A^*) + R(B^*) \) are closed.

Proof. Let \(F_A G_A \) and \(F_B G_B \) be full-rank decomposition of \(A \) and \(B \) with \(H_A = R(A) \) and \(H_B = R(B) \), we consider the operator

\[
M_0 = \begin{bmatrix}
A + B & 0 \\
0 & 0
\end{bmatrix} \in B(H \oplus L \oplus K \oplus F).
\]

We have

\[
M_0 = \begin{bmatrix}
F_A & F_B \\
G_A & G_B
\end{bmatrix} \begin{bmatrix}
G_A & 0 \\
G_B & 0
\end{bmatrix} = A_0 B_0,
\]

where

\[
A_0 = \begin{bmatrix}
0 & 0 \\
0 & B_{14}
\end{bmatrix}
\]

and

\[
B_0 = \begin{bmatrix}
\Sigma^\dagger A_{11} & 0 \\
0 & (P_{N(B_{14}^*)} B_{13})^*
\end{bmatrix}.
\]
Corollary 2. If \(\mathbf{A} \in \mathbb{R} \) is such that the item 3 of lemma 3.2 that \(A_0 \) is injective, is equivalent to \(A_0^* \) is surjective; i.e. \(R(A_0^*) = R(A) \oplus R(B) \), so \(A_0 \) has a closed range, now remark that

\[
R(M_0^*) = R(B_0^* A_0^*) = B_0^* R(A_0^*) = B_0^* R(A_0^* A_0) = B_0^* R(A_0^* A_0) = B_0^* R((A_0^* A_0)^*).
\]

And by the item 3 of lemma 3.2 that

\[
R(B_0^*) = R(G_0^*) + R(G_0^*) \oplus \{0\} = R(A^*) + R(B^*) \oplus \{0\}.
\]

Hence,

\[
R(M_0^*) = R(A^*) + R(B^*) \oplus \{0\}.
\]

As \(R(M_0^*) = R(A^* + B^*) \oplus \{0\} \), so

\[
R(A^* + B^*) \oplus \{0\} = R(A^*) + R(B^*) \oplus \{0\}.
\]

which implies that

\[
R(A^* + B^*) = R(A^*) + R(B^*).
\]

We know that \(R(A^* + B^*) \) is closed means that \(R(A + B) \) is closed, then from the last equality we deduce that \(R(A + B) \) is closed if and only if \(R(A^*) + R(B^*) \) is closed. 2): To prove the item 2, taking the adjoint on both sides of (15) and applying the item 1. 3): we already showed in items 1 and 2 that the equalities below are satisfied

\[
R(A + B) = R(A) + R(B), R(A^* + B^*) = R(A^*) + R(B^*).
\]

Note that \(B_0 \) is surjective because, by the lemma 2.5, \(B_0^* \) is injective, on the other hand we showed that \(A_0 \) is injective, it follows from the of lemma 3.2 that \(A_0 B_0 \) is full-rank decomposition of \(A + B \), which means that \(A + B \) has a closed range, of course it results from the two last equalities that \(R(A) + R(B) \) and \(R(A^*) + R(B^*) \) are closed.

Corollary 1. If \((A^*, B^*) \in DR \) and \(R(A) \perp R(B) \), then we have:

\[
(A + B)^\dagger = (BP_{N(A)})^\dagger + (I - (BP_{N(A)})^\dagger B)A^\dagger.
\]

Proof. From the item 3 of theorem 5.2, \((A + B)^\dagger \) exists and by lemma 2.4 \((BP_{N(A)})^\dagger \) exists, it follows from the lemma 2.3 and lemma 2.1 that \(\Omega_A \Omega_A^\dagger = BB^\dagger \) consequently, \(\Delta_A = (I - \Omega_A \Omega_A^\dagger)B = 0 \), so the substitution of \(\Delta_A \) by the null operator in (10), we obtain (16).

Similarly, we can prove this corollary:

Corollary 2. If \((A, B) \in DR \) and \(R(A^*) \perp R(B^*) \), we have:

\[
(A + B)^\dagger = (P_{N(A^*)}B)^\dagger + (I - (P_{N(A^*)}B)^\dagger B)A^\dagger.
\]

Theorem 5.3. If \((A, B) \in DR \) and \((A^*, B^*) \in DR \), then

\[
(A + B)^\dagger = (BP_{N(A)})^\dagger B(P_{N(A^*)}B)^\dagger + (AP_{N(B)})^\dagger A(P_{N(B^*)}A)^\dagger.
\]
Proof. The subspaces $R(A + B), R(A) + R(B)$ and $R(A^*) + R(B^*)$ are closed by the theorem 5.2, it follows from the lemma 2.3 that the M-P inverses that appear in the identity (18) exist. Let M_0 be as in (15), it results from the lemma 2.5 that \[
abla = \begin{bmatrix}
A & F
B & 0
\end{bmatrix}
\begin{bmatrix}
G_A & G_B
0 & 0
\end{bmatrix}
\] are injective, so \[
\begin{bmatrix}
G_A & 0
G_B & 0
\end{bmatrix}
\] is surjective, then A_0B_0 is a full-rank decomposition of M_0, in this case by the [[9], Theorem 2.1;(d)] we have
\[
M_0 = \begin{bmatrix} G_A & 0 \\
G_B & 0
\end{bmatrix}
\begin{bmatrix} F_A & F_B \\
0 & 0
\end{bmatrix} = B_0^1A_0^1.
\]
Now from the item a) of lemma 3.3 and lemma 2.4 and the theorem 5.2; $(P_{N(B^*)}F_A)^\dagger$, $(P_{N(A^*)}F_B)^\dagger, (G_BP_{N(A)})^\dagger, (G_AP_{N(B)})^\dagger$ Exist, hence from $B_0^1 = (B_0^\dagger)^*$ and using the lemma 2.6 we get M
\[
M_0 = \begin{bmatrix} (G_A P_{N(G)})^\dagger & (G_B P_{N(G)})^\dagger \\
0 & 0
\end{bmatrix}
\begin{bmatrix} (P_{N(F_A)}F_A)^\dagger & 0 \\
(P_{N(F_B)}F_B)^\dagger & 0
\end{bmatrix}
\]
\[
= \begin{bmatrix} (G_A P_{N(B)})^\dagger (P_{N(B^*)}F_A)^\dagger + (G_B P_{N(A)})^\dagger (P_{N(A^*)}F_B)^\dagger \\
0 & 0
\end{bmatrix}.
\]
Using the equality of item b) and c) of lemma 3.3, we get
\[
M_0 = \begin{bmatrix} (A P_{N(B)})^\dagger A (P_{N(B^*)})^\dagger + (B P_{N(A)})^\dagger B (P_{N(A^*)})^\dagger \\
0 & 0
\end{bmatrix}.
\]
Then by identification with M_0^1, we obtain (18). \(\square\)

Corollary 3. In the previous theorem, if $R(A) \perp R(B^*)$ then we obtain the identity (19) and also if $R(A) \perp R(B)$ then we obtain the identity (20)
\[
(A + B)^\dagger = B^1B (P_{N(A^*)})^\dagger + A^1A (P_{N(B^*)})^\dagger
\]
\[
(A + B)^\dagger = (BP_{N(A^*)})^\dagger BB^1 + (AP_{N(B^*)})^\dagger AA^1.
\]

Proof. We have $R(A^*) \perp R(B^*) \iff (AP_{N(B)})^\dagger = A^\dagger$ Also $(BP_{N(A)})^\dagger = B^\dagger$ And we replace $(AP_{N(B)})^\dagger$ and $(BP_{N(A)})^\dagger$ by A^\dagger and B^\dagger in (18) we obtain (19) By the same way we can prove (20). \(\square\)

In section 5 of the article [1], Arias, Corach and Maestripieri. extended the formula of Fill-Fishkind to the infinite Hilbert space case, by adding two other conditions to the property of the additivity of ranges.

From the theorem below, we see that the Fill-Fishkind formula remains valid in infinite dimensional Hilbert spaces under the same conditions of the case of matrices.

Theorem 5.4. If $(A, B) \in DR$ and $(A^*, B^*) \in DR$, then
\[
(A + B)^\dagger = (I - S)A^\dagger(I - T) + SB^\dagger T,
\]
where: $S = (P_{N(B^*)}P_{N(A)})^\dagger$ and $T = (P_{N(A^*)}P_{N(B^*)})^\dagger$.

Proof. From the item 3) of the theorem 5.2, $(A + B)^\dagger$ exists and $R(A^*) + R(B^*)$ is closed (resp., $R(A) + R(B)$ is closed) which implies by the item 3 of lemma 2.4 (resp., by the item 2 of lemma 2.4) that S exists (resp., T exists). As B has a closed range, it results that $P_{N(B^*)} = B^\dagger B$ and $P_{N(A^*)} = BB^\dagger$. It follows from the lemma 2.1 that $BS = B(P_{N(B^*)}P_{N(A)})^\dagger = B(P_{N(B^*)}P_{N(A)})(P_{N(B^*)}P_{N(A)})^\dagger = BS^\dagger S$, \(\square\)
on the other hand, Since \(R(A) \cap R(B) = \{0\} \), so by the item 3 of lemma 2.3 we obtain \(BS = B \), by the same way we get \(TB = B \), also by the lemma 2.1 we obtain \(AS = 0 \) and \(TA = 0 \). Now we will check that \((I - S)A^\dagger(I - T) + SB^\dagger T \) satisfies the equations of M-P inverse of \(A + B \).

The equations (iii):

\[
(A + B)(I - S)A^\dagger(I - T) + SB^\dagger T = (A + B)(A^\dagger - AB^\dagger + BA^\dagger - BA^\dagger T + BA^\dagger T + BB^\dagger T) = (A + B)(A + B)(I + T)(A + B) = (I + T)(A + B).
\]

The equations (iv):

\[
((I - S)A^\dagger(I - T) + SB^\dagger T)(A + B) = (I + T)(A + B) = (I + T)(A + B).
\]

The equations (i):

\[
(A + B)(I - S)A^\dagger(I - T) + SB^\dagger T = (A + B)(I + T)(A + B) = (I + T)(A + B).
\]

The equations (ii):

\[
((I - S)A^\dagger(I - T) + SB^\dagger T)(A + B) = (I + T)(A + B) = (I + T)(A + B).
\]

6. **Some representations of M-P inverse of a 2-by-2 block operator.** In this section we obtain some representations of M-P inverse of a 2-by-2 block operator under condition

\[
\left(\begin{array}{c}
A_1^\dagger \\
A_2^\dagger \\
A_3^\dagger \\
A_4^\dagger
\end{array} \right) \in DR.
\]

Theorem 6.1. Let \(M \) be defined as in (3) with closed range such that \(R(A_1) + R(A_2) \) and \(R(A_3) + R(A_4) \) are closed, if \(\left(\begin{array}{c}
A_1^\dagger \\
A_2^\dagger \\
A_3^\dagger \\
A_4^\dagger
\end{array} \right) \in DR \), then

\[
M^\dagger = \begin{bmatrix}
A_1^\dagger S_1^\dagger - W_1^\dagger Z_1 S_1^\dagger & W_1^\dagger Y_1^\dagger \\
A_2^\dagger S_2^\dagger - W_2^\dagger Z_1 S_2^\dagger & W_2^\dagger Y_1^\dagger
\end{bmatrix},
\]

where: \(S_1 = A_1^\dagger A_1^\dagger + A_2^\dagger A_2^\dagger \), \(Z = A_3^\dagger A_1^\dagger + A_4^\dagger A_2^\dagger \), \(W_1 = A_3^\dagger - ZS_1^\dagger A_1^\dagger \), \(W_2 = A_4^\dagger - ZS_1^\dagger A_2^\dagger \), \(T_1 = W_1W_1^\dagger + W_2W_2^\dagger \).

Proof. We have

\[
M = \begin{bmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{bmatrix} = \begin{bmatrix}
A_1 & A_2 \\
0 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
A_3 & A_4
\end{bmatrix} =: M_1 + M_2.
\]
Clearly that the assumptions of corollary (1) are satisfied for \(M_1 \) and \(M_2 \), we deduce from (16) that
\[
M^\dagger = (M_2 P_{N(M_1)})^\dagger + (I - (M_2 P_{N(M_1)})^\dagger M_2)M_1^\dagger.
\]

Next we know that, \(M_1^\dagger = M_1^\dagger (M_1 M_1^\dagger)^\dagger \), then we get
\[
M_1^\dagger = \begin{bmatrix} A_1^* S_1^\dagger & 0 \\ A_2^* S_1^\dagger & 0 \end{bmatrix},
\]
\[
P_{N(M_1)} = \begin{bmatrix} I - A_1^* S_1^\dagger A_1 & -A_1^* S_1^\dagger A_2 \\ -A_2^* S_1^\dagger A_1 & I - A_2^* S_1^\dagger A_2 \end{bmatrix},
\]
\[
M_2 P_{N(M_1)} = \begin{bmatrix} 0 & 0 \\ A_3 - Z S_1^\dagger A_1 & A_4 - Z S_1^\dagger A_2 \end{bmatrix} := \begin{bmatrix} 0 & 0 \\ W_1 & W_2 \end{bmatrix}.
\]

Applying \((M_2 P_{N(M_1)})^\dagger = (M_2 P_{N(M_1)})^\dagger ((M_2 P_{N(M_1)}) (M_2 P_{N(M_1)})^\ast)^\dagger\), we obtain
\[
(M_2 P_{N(M_1)})^\dagger = \begin{bmatrix} 0 & W_1 \Upsilon_1^\dagger \\ 0 & W_2 \Upsilon_1^\dagger \end{bmatrix}.
\]

On the other hand
\[
(I - (M_2 P_{N(M_1)})^\dagger M_2)M_1^\dagger = \begin{bmatrix} A_1^* S_1^\dagger - W_1 \Upsilon_1^\dagger Z S_1^\dagger & 0 \\ A_2^* S_1^\dagger - W_2 \Upsilon_1^\dagger Z S_1^\dagger & 0 \end{bmatrix}.
\]

Finally \(M^\dagger = (M_2 P_{N(M_1)})^\dagger + (I - (M_2 P_{N(M_1)})^\dagger M_2)M_1^\dagger = \)
\[
\begin{bmatrix} 0 & W_1 \Upsilon_1^\dagger \\ 0 & W_2 \Upsilon_1^\dagger \end{bmatrix} + \begin{bmatrix} A_1^* S_1^\dagger - W_1 \Upsilon_1^\dagger Z S_1^\dagger & 0 \\ A_2^* S_1^\dagger - W_2 \Upsilon_1^\dagger Z S_1^\dagger & 0 \end{bmatrix} =
\]
\[
\begin{bmatrix} A_1^* S_1^\dagger & W_1 \Upsilon_1^\dagger \\ A_2^* S_1^\dagger & W_2 \Upsilon_1^\dagger \end{bmatrix}.
\]

\[\square\]

Corollary 4. Let \(M \) be defined as in (3) with closed range such that \(R(A_1) + R(A_2) \)
and \(R(A_3) + R(A_4) \) are closed, if \(R \left(\begin{bmatrix} A_1^* \\ A_2^* \end{bmatrix} \right) \perp R \left(\begin{bmatrix} A_3^* \\ A_4^* \end{bmatrix} \right) \), then
\[
M^\dagger = \begin{bmatrix} A_1^* S_1^\dagger & A_2^* S_2^\dagger \\ A_2^* S_1^\dagger & A_4^* S_2^\dagger \end{bmatrix},
\]
where \(S_1 = A_1 A_1^* + A_2 A_2^* \), \(S_2 = A_3 A_3^* + A_4 A_4^* \).

Theorem 6.2. Let \(M \) be defined as in (3) with closed range such that \(R(A_1) + R(A_2) \)
and \(R(A_3) + R(A_4) \) are closed, if \(\left(\begin{bmatrix} A_1^* \\ A_2^* \end{bmatrix} \right) \in DR \), then
\[
M^\dagger = \begin{bmatrix} W_3 \Upsilon_1^\dagger S_1^\dagger & W_1 \Upsilon_1^\dagger S_2^\dagger \\ W_4 \Upsilon_1^\dagger S_1^\dagger & W_2 \Upsilon_1^\dagger S_2^\dagger \end{bmatrix},
\]
where: \(S_1 = A_1 A_1^* + A_2 A_2^*, S_2 = A_3 A_3^* + A_4 A_4^* \), \(Z = A_3 A_1^* + A_4 A_2^* \), \(W_3 = A_1 - Z^* S_2^\dagger A_3, W_4 = A_2 - Z^* S_2^\dagger A_4, \) \(\Upsilon_1 = W_1 W_1^* + W_2 W_2^* \), \(\Upsilon_2 = W_3 W_3^* + W_4 W_4^* \).

Proof. We use the identity (19) to obtain the M-P inverse of \(M \). \[\square\]
7. Conclusion. After having transformed the sum of two operators in the setting of Hilbert spaces into a 2-by-2 block operator by applying the orthogonal sum of the spaces, and in other hand by the full-rank decomposition of operators, we conclude some representations of the Moore-Penrose inverse of a sum of two operators, in the closedness conditions for ranges, and show that the extension of the Fill-Fishkind formula remains valid, only by keeping the conditions of the Fill-Fishkind formula for the matrices.

Acknowledgments. The authors would like to thank the reviewers for their helpful comments and suggestions.

REFERENCES

[1] M. L. Arias, G. Corach and A. Maestripieri, Range additivity, shorted operator and the Sherman-Morrison-Woodbury formula, Linear Algebra Appl., 467 (2015), 86–99.
[2] A. Ben-Israel and T. N. E Greville, Generalized Inverses, Theory and Applications, 2nd ed Berlin Springer, New York, 2003.
[3] S. L. Campbell and C. D Meyer, Generalized Inverses of Linear Transformations, Dover Publ., New York, 1979.
[4] S. R. Caradus, Generalized Inverses and Operator Theory, Queen’s paper in pure and applied mathematics, Queen’s University, Kingston, 1978.
[5] R. E. Cline, Representations for the generalized inverse of sum of matrices, SIAM J. Numer. Anal., 2 (1965), 99–114.
[6] F. Deutsch, The angle between subspaces of a Hilbert space, in Approximation Theory, Wavelets and Applications (ed. S. P. Singh), Kluwer Academic Publ., (1995), 107–130.
[7] M. S. Djikić, Extensions of the Fill–Fishkind formula and the infimum–parallel sum relation, Linear and Multilinear Algebra, 64 (2016), 2335–2349.
[8] D. S. Djordjević and N. Ć. Dinčić, Reverse order law for Moore-Penrose inverse, Journal Math. Anal. Appl., 361 (2010), 252–261.
[9] D. S. Dordević and P. S. Stanimirović, General representations of pseudoinverses, Matematicki vesnik, 51 (1999), 69–76.
[10] J. A. Fill and D. E. Fishkind, The Moore–Penrose generalized inverse for sums of matrices, SIAM J. Matrix Anal. Appl., 21 (1999), 629–635.
[11] J. Groß, On oblique projection, rank additivity and the Moore-Penrose inverse of the sum of two matrices, Linear and Multilinear Algebra, 46 (1999), 265–275.
[12] M. R. Hestenes, Relative hermitian matrices, Pacific Journal Math., 11 (1961), 225–245.
[13] S. Izumino, Product of operators with closed range and an extension of the reverse order law, Tôhoku. Math. J., 34 (1982), 43–52.

Received May 2020; 1st revision March 2021; Final revision April 2021.

E-mail address: abdessalam.kara@univ-batna.dz
E-mail address: s.guedjiba@univ-batna2.dz