ClaR—a novel key regulator of cellobiose and lactose metabolism in *Lactococcus lactis* IL1403

Tamara Aleksandrzak-Piekarczyk · Lidia Stasiak-Różańska · Jarosław Cieśla · Jacek Bardowski

Received: 5 June 2014 / Revised: 11 August 2014 / Accepted: 31 August 2014 / Published online: 20 September 2014

© Springer-Verlag Berlin Heidelberg 2014. This article is published with open access at Springerlink.com

Abstract In a number of previous studies, our group has discovered an alternative pathway for lactose utilization in *Lactococcus lactis* that, in addition to a sugar-hydrolyzing enzyme with both P-β-glucosidase and P-β-galactosidase activity (BglS), engages chromosomally encoded components of cellobiose-specific PTS (PTSCel-Lac), including PtcA, PtcB, and CelB. In this report, we show that this system undergoes regulation via ClaR, a novel activator protein from the RpiR family of transcriptional regulators. Although RpiR proteins are widely distributed among lactic acid bacteria, their roles have yet to be confirmed by functional assays. Here, we show that ClaR activity depends on intracellular cellobiose-6-phosphate availability, while other sugars such as glucose or galactose have no influence on it. We also show that ClaR is crucial for activation of the *bglS* and *celB* expression in the presence of cellobiose, with some limited effects on *ptcA* and *ptcB* activation. Among 190 of carbon sources tested, the deletion of *claR* reduces *L. lactis* growth only in lactose- and/or cellobiose-containing media, suggesting a narrow specificity of this regulator within the context of sugar metabolism.

Keywords Lactose assimilation · Cellobiose assimilation · Phosphotransferase system (PTS) · Genes regulation · *Lactococcus lactis*

Introduction

Lactic acid bacteria (LAB), including *Lactococcus lactis*, are the focus of intensive research within the field of carbohydrate catabolism and its regulation, important during industrial fermentation processes (Mayo et al. 2010). The most prevalent pathway for carbohydrate uptake in LAB is the phosphoenolpyruvate-phosphotransferase system (PEP-PTS), which links sugar transport with phosphorylation of incoming sugars. Phosphoenolpyruvate serves as the first phosphoryl donor to Enzyme I, which utilizes a complex phosphoryltransfer cascade to phosphorylate sugars entering bacteria via the transmembrane protein—EIIC (Lorca et al. 2010). Among a wide array of carbohydrates that can be internalized via PTS, in LAB these systems are best known for efficient transport of milk (lactose) and plant (β-glucosides) sugars, which are highly important for industrial fermentation processes involving LAB species.

Due to the economic importance of lactose fermentation, the metabolism of this sugar is studied extensively in *L. lactis*. These studies mostly focus on two pathways: (i) plasmid-localized lactose-specific PTS (PTS_{Lac}) and (ii) the chromosomally encoded lactose permease-β-galactosidase system (Aleksandrzak-Piekarczyk 2013). The latter system transports lactose in an unphosphorylated form that enables its subsequent cleavage by β-galactosidase. Recently, we reported on the discovery of a third, alternative lactose uptake system that we found to be operative in *L. lactis* IL1403 (Aleksandrzak-Piekarczyk et al. 2011). This novel lactose utilization pathway engages chromosomally encoded components of a cellobiose-specific PTS (PTS_{Cel-Lac}). The proteins of PTS_{Cel-Lac} are encoded in two distinct regions that encompass *ptcA*, *ptcB* (one region), and *celB* (second region), which code for EIIC, EIIB, and EIIC, respectively (Aleksandrzak-Piekarczyk et al. 2011). The latter region also contains the *bglS* gene, which encodes a P-sugar-hydrolyzing enzyme with both
P-β-glucosidase and P-β-galactosidase activity. This BglS enzyme has been shown to promote the cleavage of cellobiose and lactose internalized via PTSCel-Lac in \textit{L. lactis} IL1403 (Aleksandrzak-Piekarczyk et al. 2005). Therefore, PtcAB, CelB, and BglS form a complete system specific for cellobiose and lactose uptake and hydrolysis in \textit{L. lactis} IL1403. We surmise that the existence of PTSCel-Lac is not limited to \textit{L. lactis} IL1403 and may occur commonly among other lactococcal strains (Aleksandrzak-Piekarczyk et al. 2011). This was confirmed by the later study of Solopova et al. (2012) in \textit{L. lactis} MG1363. In this bacterium, the alternative lactose metabolism pathway, despite being differently induced (by lactose or cellobiose), relies on the same PTSCel-Lac components used by \textit{L. lactis} IL1403.

The efficiency of transport and subsequent metabolism of incoming sugars is tightly controlled by several regulatory proteins, which form the regulatory network necessary for sensing environmental conditions and setting catabolic capacities of the cell. Guédon et al. (2002) distinguish two groups of regulators—general and secondary regulators. The main example of such a general regulator is catabolite control protein A (CcpA) (Hueck and Hillen 1995). CcpA is a well-conserved protein operating in many low-GC Gram-positive bacteria and, together with its corepressor Ser-P-HPr, it binds to 14-nucleotide cis-acting DNA target sites known as catabolite responsive elements (cre), promoting carbon catabolite activation (CCA) or repression (CCR) (Weickert and Chambliss 1990). In \textit{L. lactis} strains, CcpA has been shown to repress different genes associated with uptake of β-glucosides, fructose, galactose, or lactose, while activating the glycolytic \textit{las} operon (Aleksandrzak-Piekarczyk et al. 2005, 2011; Barrière et al. 2005; Luesink et al. 1998; Monedero et al. 2001).

In addition to global regulators, carbon catabolism might also be controlled by specific and local secondary regulators belonging to different protein families such as LacI, LysR, AraC, GntR, DeoR, RpiR, or BglG, which are widely distributed among LAB. Regulators from some of these families have been shown to control genes encoding utilization of α-galactosides, β-glucosides, fructose, lactose, maltose, sorbose, sucrose, and xylose in lactococci (Bardowski et al. 1999; Boucher et al. 2003; Mayo et al. 2010).

The YebF protein (now designated cellobiose-lactose regulatory protein—ClAR) from \textit{L. lactis} IL1403, belongs to the RpiR family of regulators. In bacterial genomes, there are many genes that encode potential regulators belonging to the RpiR family (http://www.genome.jp/kegg/ssdb/). However, none of these genes have thus far been shown to play a role in carbohydrate catabolism among LAB. We previously suggested the probable involvement of ClAR in the activation of bglS, celB, ptcA, and ptcB genes, which encode components of the novel and the only pathway for lactose utilization in \textit{L. lactis} IL1403 (Aleksandrzak-Piekarczyk et al. 2005, 2011). It has been demonstrated that the expression of these genes is tightly regulated by the general catabolite repression system, whereas \textit{bglS} and \textit{celB} also require the presence of cellobiose to be fully induced (Aleksandrzak-Piekarczyk et al. 2011).

In this report, we show that in \textit{L. lactis} IL1403, genes encoding the PTSCel-Lac components in the presence of cellobiose are regulated via a novel activator ClAR. Moreover, global phenotypic analysis via phenotype microarray suggests that ClAR is a specific regulator indispensable for cellobiose and lactose metabolism.

Materials and methods

Bacterial strains, media, and plasmids Bacterial strains and plasmids used in this study are listed in Table 1. \textit{Escherichia coli} cells were grown in Luria-Bertani (LB) medium (Wood 1983) at 37 °C, while \textit{L. lactis} was cultivated in M17 glucose medium (G-M17) (Terzaghi and Sandine 1975) or in chemically defined medium (CDM) (Sissler et al. 1999) supplemented with 1 % glucose (G-CDM), 1 % cellobiose (C-CDM), 1 % lactose (L-CDM), 1 % galactose (Gal-CDM), 1 % arbutin (A-CDM), 1 % galactose with 1 % cellobiose (GalC-CDM), or 1 % lactose together with an inducing (0.01 %) concentration of cellobiose (LC-CDM). When required, ampicillin (Amp; 100 μg ml\(^{-1}\) for \textit{E. coli}) or erythromycin (Em; 100 μg ml\(^{-1}\) for \textit{E. coli} and 5 μg ml\(^{-1}\) for \textit{L. lactis}) were added to the medium. Solidified media contained 1.5 % agar and, when necessary, IPTG (isopropyl β-D-thiogalactopyranoside; 1 mM for \textit{E. coli}) and X-gal (5-bromo-4-chloro-3-indoly-β-D-galactopyranoside; 50 μg ml\(^{-1}\) for \textit{E. coli}).

Construction of the \textit{claR} deletion mutants and complementing plasmid The mutant was created by double crossover between pGhost9 harboring DNA fragments overlapping the \textit{claR} gene and the chromosomal region containing these DNA fragments. The overlapping DNA fragments were amplified using the appropriate forward and reverse primer pairs (Table 1). The \textit{claR} upstream region was amplified with the primers \textit{claRPstI/claR}Rpr (Table 1) using ExTaq polymerase and was cloned as a \textit{PstI/EcoRI} fragment into the corresponding sites in pGhost9. The \textit{claR} downstream region was amplified using the primers \textit{claR}ERrv/\textit{claR}SalI (Table 1) and was cloned as an \textit{EcoRI/SalI} fragment into the vector carrying the upstream fragment, resulting in the pGhost9\textit{ΔclaR} plasmid. The deletion plasmid was introduced into \textit{L. lactis} IL1403 and IL1403\textit{ΔcpA}. Homologous recombination was enforced by 10\(^{-3}\) dilution in fresh G-M17-Em medium of the overnight culture of the lactococcal strains harboring pGhost9\textit{ΔclaR}. Diluted cultures were incubated for 2.5 h in G-M17 at non-permissive temperature (38 °C). Integrons
containing pGhost9ΔclaR in the chromosome were selected at 38 °C on G-M17 agar plates containing erythromycin. Excision from the chromosome and removing of the integration vector from L. lactis were performed by growth of...
plasmid was transferred into L. lactis IL1403ΔclaR, was confirmed by colony PCR, determination of the strain sensitivity to Em, and sequencing of the DNA region containing the deleted claR gene.

In order to complement the claR deletion, the claR gene with its putative promoter region was amplified using claRSmaf and claRPstR primers (Table 1), cloned into pGEM-T, and transferred into E. coli TG1. The resultant plasmid DNA was isolated, digested with PstI and SmaI, ligated to pIL253, digested with the same restriction enzymes, and transferred into L. lactis IL1403ΔclaR giving rise to the IL1403ΔclaRplIL253claR strain.

Cloning and activity measurement of the putative intrinsic terminator following the yebE gene A DNA sequence resembling a rho-independent terminator downstream of yebE was amplified using yebEterf and yebEterr primers (Table 1). Further cloning procedures into pGBT58 bearing the xylE gene that encodes catechol 2,3-dioxygenase (Table1) and measurements of its expression determined by enzymatic assay were performed as described previously (Aleksandrzak-Piekarczyk et al. 2011). Its activity was determined in three independent experiments. As a reference point, measurements of catechol 2,3-dioxygenase activity were also performed in the wild-type pGBT58 vector, which contains no terminator located between the xylE gene and its promoter.

Cloning of putative claR promoter region upstream of the luxAB genes Construct consisting of pGEM-T, pJIM2374, and a non-coding region (amplified with yebEterf and yebEterr), containing a putative promoter of claR controlling the luxAB genes, was prepared as described previously (Aleksandrzak-Piekarczyk et al. 2011). Since pGEM-T is non-replicative in Gram-positive bacteria and pJIM2374 does not contain the rep gene, the recombinant pJIM2374claRp plasmid was transferred into L. lactis LL302, which encodes the RepA protein in its chromosome. The existence of a functional promoter in the cloned region was confirmed from luciferase activity measurements performed in C-CDM.

Relative quantification of the gene expression by real-time quantitative PCR For real-time quantitative PCR (RT-qPCR), total RNA was isolated with the use of TRI Reagent (Sigma) according to the instructions of the manufacturer, from 25 ml of the IL1403 wild-type strain and its mutants (IL1403ΔccpA and IL1403ΔclaR) cultures harvested in mid-exponential phase (OD600 = 0.6). Cells were grown in G-CDM, C-CDM, Gal-CDM, A-CDM, or GalC-CDM. RNA was extracted from at least three independent cultures.

First-strand cDNA was synthesized from DNase I (Sigma)-treated 2 μg RNA samples. The synthesis of cDNA was performed by the use of the High-Capacity cDNA Reverse Transcription kit (Applied Biosystems) according to manufacturer’s instructions.

Real-time quantitative PCR assays were carried out on the 7,500 Real Time PCR System (Applied Biosystems). Each reaction was carried out in reaction mixture containing the following: 1× concentrated commercial buffer supplied with polymerase (Metabion), 0.625 U Taq polymerase (Metabion), 4 mM MgCl2, 30,000× diluted SYBR Green (Sigma), 5 % DMSO, 0.5 ng/μl acetylated BSA (Sigma), 0.8 % glycerol (ROTH), 400 μM dNTP mixture (Metabion), forward and reverse specific primers (400 μM each), cDNA template, and water up to 25 μl of final volume. Reactions were performed with an initial denaturation step (95 °C for 3 min) followed by 45 cycles of denaturation (95 °C for 15 s) and primer annealing-extension (60 °C for 1 min). Fluorescence was read during the annealing-extension step of each cycle. After cycling, melting-point temperature analysis was performed in the range of 60 to 95 °C with temperature increments of 0.33 °C. In each experiment, background range was adjusted automatically and the threshold for Ct evaluation was adjusted manually. For each cDNA sample, six reactions were carried out using three template amounts, each in duplicate. For each gene studied, the amounts of cDNA were chosen individually (if possible the same for all genes) to obtain Ct values in range between 14 and 34 cycles. Quality of results was evaluated based on expected Ct differences among three cDNA amounts as well as product melting curves. Rare outlying results were omitted in calculations. The results were normalized by the use of L. lactis, the reference tuft and purM genes, which code for elongation factor TU and phosphoribosylaminomimidazole synthetase, respectively. Specific primers for each gene (Table 1) were designed using Primer Express software (Applied Biosystems). Before use, the primers were verified for equal efficiency of PCR reaction. The resulting data were processed using files exported from the qPCR cycler program and imported into Excel sheets to facilitate calculation of expression ratios between target and reference genes. These ratios were calculated by ΔCt method using geometric mean of reference genes Cts in each experiment separately.

Phenotypic testing of carbon source utilization The study of phenotypic changes in mutant cells compared to parental strains was carried out through growth tests and analysis of fermentation patterns.

Growth tests were performed on a Microbiology Reader Analyser, Bioscreen C (Labsystems) in 0.2 ml of CDM supplemented with the required sugars. Changes in the OD600 of the bacterial cultures were recorded every 30 min of growth up to 100 h.

The fermentation patterns of 49 sugars were determined using the API 50CH test as specified by the manufacturer.
(BioMérieux) and recorded after 12, 24, and 36 h of incubation under aerobic or anaerobic conditions at 30 °C.

Further metabolic profiles were measured globally by the Phenotype MicroArrays system (Biolog, USA) according to manufacturer’s instructions. *L. lactis* strains were streaked on plates containing G-M17 agar. Colonies were scraped from the plates and titrated into IF-0a inoculating fluid (Biolog) with growth supplements and Biolog redox tetrazolium dye until the solution reached desired transmittance, according to standard protocols recommended by Biolog for *Streptococcus* species. One hundred microliters of aliquots was added to each well of carbon source plates (PM1 and PM2). The plates were incubated at 30 °C in an aerobic OmniLog incubator plate reader, and the metabolic activity was measured kinetically by determining the colorimetric reduction of a tetrazolium dye. Phenotype MicroArrays use Biolog’s redox assays, engaging cell respiration or fermentation as a universal reporter and provide precise quantitation of phenotypes. If the phenotype is strongly “positive” in a well, the cells are metabolically active, reducing a tetrazolium dye and forming a strong color. If their metabolic activity is slowed or stopped, less color or no color is formed. Data were collected approximately every 10 min over a 72-h period. This was a sufficient time for color development in the positive control wells, while the negative control wells remained colorless. Data were analyzed with the Biolog Kinetic and Parametric software. The PM1 and PM2 Biolog assays assess the ability of a bacterium to utilize any of 190 carbon compounds used in the assay as the sole carbon source.

Results

Structural characterization of DNA region encompassing the *claR* gene

Figure 1 depicts the chromosomal region of the *claR* gene (formerly *yebF*) from *L. lactis* IL1403. ClaR reveals high-sequence similarity with transcriptional regulators of the RpiR family: it is a two-domain protein, with a 67-residue N-terminal DNA binding helix-turn-helix (HTH) motif and a 123-residue C-terminal sugar isomerase (SIS) domain (Fig. 1a; http://pfam.sanger.ac.uk/).

Located upstream of *claR* is the *yebE* gene, which encodes a hypothetical protein. Within the intergenic region between these two genes, a potential rho-independent terminator with the free energy value (dG) of −15 kcal/mol was localized (Fig. 1b, c). In order to verify its functionality, the terminator was cloned into the pGBT58 vector between a promoter and the *xyIE* gene encoding a catechol 2,3-dioxygenase. In an *E. coli* strain harboring this construct levels of catechol 2,3-dioxygenase activity obtained reached 0.50±0.04 U, lower than the observed control value (pGBT58 without *yebE* terminator) of 1.25±0.16 U. Thus, the presence of the *yebE* terminator caused a 60 % reduction in catechol oxygenase activity when compared to the strain harboring the wild-type pGBT58 vector.

According to an in silico analysis, the *claR* gene is preceded by at least two putative promoters (Fig. 1b, c) suggesting multiple potential transcription start sites. None of the identified potential −10 and −35 promoter regions upstream of *claR* had a full agreement with promoter consensus sequences, defined as TATAAT and TTGACA, respectively (Browning and Busby 2004). One of these potential promoters was localized upstream of the *yebE* rho-independent terminator (Fig. 1b, c). In order to verify whether in the DNA region upstream of *claR* a functional promoter(s) may exist, a DNA fragment encompassing the abovementioned putative promoters was inserted in front of the *luxAB* reporter genes in the promoter probe pJIM2374 vector and introduced into *L. lactis* LL302. Considerable luciferase activity was detected when the *claR* upstream region was tested indicating functionality of at least one promoter embedded there.

Phenotypes of *claR* deletion mutants

In our previous study, the lactose-fermenting *ccpA* mutant was randomly mutagenized using pGhost9::ISSI. By the use of this procedure, on X-Gal supplemented plates, we have isolated several β-galactosidase-negative phenotype mutants in the *ccpA* mutant background. Among them, the inactivation of *claR* (*yebF*) in the *ccpA* mutant led to the loss of its lactose fermentation ability (Aleksandrzk-Piekarczyk et al. 2005). Thus, in this study, deletion of *claR* was performed both in the IL1403 wild-type strain and IL1403ΔccpA resulting in IL1403ΔclaR and IL1403ΔccpAΔclaR mutants, respectively. Subsequently, IL1403ΔclaR and IL1403ΔccpAΔclaR growth was tested in CDM supplemented with various sugars and compared with their respective parental strains. In C-CDM, the IL1403ΔclaR mutant initially showed no growth ability, and a minor increase in optical density of cells was observed after prolonged incubation (Fig. 2a). Deletion of *ccpA* in the IL1403ΔclaR strain led to partial growth restoration of the obtained IL1403ΔccpAΔclaR strain in C-CDM (Fig. 2a). Both IL1403ΔclaR and IL1403ΔccpAΔclaR displayed no growth in l-CDM in comparison to their parental IL1403 and IL1403ΔccpA strains (Fig. 2b). The supplementation of this medium with an inducing concentration of cellobiose (LC-CDM) did not restore mutants’ growth (Fig. 2c). Deletion of the *claR* gene in the IL1403 and IL1403ΔccpA strains had no effect on mutants’ growth in arbutin-, esculin-, galactose-, glucose-, or salicin-supplemented medium (data not shown).

After a 24 h incubation period, the API 50CH test confirmed the complete inability of IL1403ΔclaR to ferment lactose and cellobiose. While the inability to assimilate lactose by both IL1403ΔclaR and IL1403ΔccpAΔclaR mutants lasted for 36 h, efficient utilization of cellobiose was observed in IL1403ΔclaR after the initial 24 h (Fig. 2d).
by API 50CH, no differences were found between the IL1403ΔccpAΔclaR and its parental IL1403ΔccpA within the context of cellobiose fermentation (Fig. 2d).

Global measurements of metabolic activity using the Phenotypic MicroArray approach indicated that deletion of claR led to complete abolishment of lactose utilization in IL1403ΔclaR. In contrast, when cellobiose was available as a sole carbon source, this caused only a slight decrease of IL1403ΔclaR metabolic activity compared to wild type (data not shown).

No further pronounced differential phenotypes could be identified between strains tested on all other 47 sugars available on API 50CH or the 188 carbon sources available on Biolog PM1 and PM2 arrays.

Transformation of pIL253claR into IL1403ΔclaR, which led to the complete abolishment of lactose utilization in IL1403ΔclaR. In contrast, when cellobiose was available as a sole carbon source, this caused only a slight decrease of IL1403ΔclaR metabolic activity compared to wild type (data not shown).

No further pronounced differential phenotypes could be identified between strains tested on all other 47 sugars available on API 50CH or the 188 carbon sources available on Biolog PM1 and PM2 arrays.

Transformation of pIL253claR into IL1403ΔclaR, which led to the creation of the IL1403ΔclaRpIL253claR strain, fully complemented the effects of claR deletion, restoring the mutant’s growth in cellobiose- and/or lactose-containing medium (data not shown).

ClaR is expressed constitutively at low level and independently from CcpA-mediated regulation Apart from direct regulation of gene expression mediated by CcpA binding to cre sequences (Kowalczyk et al. 2007), indirect control has been observed previously (Ludwig et al. 2002). Although the claR upstream DNA region lacks a sequence resembling the cre box, its expression could be still regulated by CcpA in an indirect manner. To test whether this phenomenon also occurs in the case of regulation of claR and whether its expression is influenced by the presence of different sugars, levels of claR expression were estimated by real-time quantitative RT-PCR in response to arbutin, cellobiose, galactose, and glucose in IL1403 and IL1403ΔccpA. In both of these strains and in presence of all sugars tested, the claR gene was constitutively expressed at a low level reaching an approximate mean relative gene expression level value of 0.05 (data not shown). This suggests that claR expression is neither induced nor repressed by any of the sugars tested and does not undergo CcpA-dependent regulation.

Expression of celB, bglS, and ptcBA genes is positively regulated by ClaR in the presence of cellobiose Previously, we showed that genes encoding PTS_CelLac components (celB and ptcBA) and bglS are negatively regulated by CcpA in L. lactis (Aleksandrzak-Piekarczyk et al. 2011). In order to estimate the influence of ClaR on the expression of bglS, celB, and ptcBA in response to the presence of different carbon sources, RNAs were extracted from independent bacterial cultures of IL1403 and IL1403ΔclaR grown in C-CDM, G-CDM, Gal-CDM, or Gal-C-CDM. Galactose in Gal-C-CDM

Fig. 1 The organization of ClaR domains (a), the claR chromosomal region (b), and nucleotide sequence of the yebE-claR intergenic region (c). The ClaR domains (a) and the genes of the claR chromosomal region (b) are drawn to scale. Stem-loop structures denote rho-independent terminators. Gray-shaded sequences (c) highlight the potential −10/−35 promoter regions upstream of claR. The putative ribosome binding site (RBS) is underlined, and the start and stop codons of claR and yebE, respectively, are shown as black shading. Stars following yebE indicate a rho-independent terminator, the functionality of which was measured in this work.
was used to support the growth of IL1403ΔclaR, since this mutant is unable to utilize cellobiose as a carbon source. Lactose was not included in the array of sugars due to L. lactis IL1403 poor growth parameters (growth rate, lag phase, and optical density of the final culture) in comparison with other sugars used (such as cellobiose, galactose, or glucose).

The striking difference between the levels of bglS and celB expression in IL1403 wild-type and IL1403ΔclaR was evident when the strains were grown in GalC-CDM. In this case, levels of celB and bglS expression in the presence of ClaR (in IL1403) were significantly higher than the values obtained in the absence of ClaR (in IL1403ΔclaR) reaching ClaR activation ratio (calculated as a quotient of relative gene expression in IL1403 and IL1403ΔclaR) of 8 and 36, respectively (Table 2). In the case of ptcBA, ClaR activation ratios were close to 3, suggesting minor ClaR-dependent regulation (Table 2).

The lowest transcript levels were detected in IL1403 wild-type and IL1403ΔclaR cells growing under repressive conditions (G-CDM) due to probable downregulation of bglS, celB, and ptcBA expression by CcpA. Levels of bglS and celB expression were only slightly varied, whereas the ptcBA transcription was increased in both strains in medium supplemented with galactose (Table 2). Comparable expression levels between IL1403 wild-type and IL1403ΔclaR strains in the presence of galactose or glucose (ClaR activation ratio ∼1; Table 2) imply that these sugars do not elicit ClaR-dependent activation of bglS, celB, and ptcBA.

Substantially higher transcription levels of all genes tested were detected when the wild-type strain was grown in a medium supplemented with cellobiose (C-CDM) as a sole carbon source. The addition of galactose (GalC-CDM) caused a 2–4-fold transcription decrease of bglS, celB, and ptcAB when compared to C-CDM. This may suggest that the presence of galactose leads to the repression of transcription in a similar manner to glucose.

Furthermore, to determine the influence of cellobiose on celB, bglS, ptcB, and ptcA transcription in the presence (in IL1403) or absence (in IL1403ΔclaR) of ClaR cellobiose, activation ratios were calculated as a quotient of relative gene expression in the wild-type strain IL1403 or IL1403ΔclaR
grown in GalC-CDM and in Gal-CDM. These ratios obtained in IL1403 varied from 25 (bglS) and 7 (celB) to as low as 3–4-fold (ptcBA) implying that cellobiose has different levels of influence on the activation of associated genes (Table 2). These cellobiose activation ratios were similar to ClaR activation values calculated for GalC-CDM suggesting that this cellobiose-dependent regulation may be due to ClaR action. This was confirmed by the observation that the cellobiose activation ratios obtained in the absence of ClaR were generally around a factor of 1, indicating a lack of genetic expression regulation in IL1403ΔclaR even in the presence of cellobiose (Table 2).

Discussion

The claR gene product from *L. lactis* IL1403 belongs to the RpiR family of potential regulators, of which members are abundantly represented in many other related or distantly related bacteria from different genera (http://www.kegg.jp/kegg/ssdb/). The strongest ClaR orthologs are found only in other *Lactococcus* species (e.g., *L. lactis* subspecies cremoris MG1363 and SK11, and *L. lactis* subspecies lactis KF147).

There are eight paralogs (encoded by yidA, yecA, yljC, yfeA, yugA, gntR, and yleF) from the RpiR family, with ClaR being the prototypical example, encoded in the *L. lactis* IL1403 genome (Bolotin et al. 2001; Guédon et al. 2002). Thus far, no function has been assigned to any of the RpiR family genes in *L. lactis*. However, the conservation of ClaR orthologs found in many different bacterial species suggests an important role in host organisms. Indeed, few members of the RpiR family have been shown to function as positive or negative transcriptional regulators of genes involved in the metabolism of different carbon sources. For example, in *Bacillus subtilis*, maltose metabolism is positively regulated by GlvR (Yamamoto et al. 2001). Until now, GlvR was the only representative from the family of RpiR regulators characterized within a group of Gram-positive bacteria. All other functionally characterized examples originate from Gram-negative bacteria, where RpiR family regulators appear to downregulate gene expression. These RpiR-like repressors have been shown to regulate the metabolism of ribose and N-acetylmuramic acid in *E. coli*, glucose in *Pseudomonas putida*, and inositol in *Caulobacter crescentus, Salmonella enterica*, and *Sinorhizobium melliloti* (Boutte et al. 2008; Daddaoua et al. 2009; Jaeger and Mayer 2008; Kohler et al. 2011; Kröger and Fuchs 2009; Sørensen and Hove-Jensen 1996). Members of the RpiR family contain a HTH motif at their N-terminus and a SIS domain on their C-terminal end. The SIS domain is a phospho-sugar-binding domain found in many proteins that regulate the expression of genes involved in synthesis of phospho-sugars (Bateman 1999; Teplyakov et al. 1998).

Table 2

Gene	Relative gene expression level	Cellulose activation ratio^a in IL1403	Cellulose activation ratio^a in IL1403_ΔclaR	Cellobiose activation ratio^b in IL1403	Cellobiose activation ratio^b in IL1403_ΔclaR
bglS	0.069±0.019	0.070±0.018	0.004±0.002	0.002±0.002	0.006±0.002
celB	0.066±0.016	0.067±0.013	0.002±0.002	0.001±0.001	0.002±0.001
ptcA	1.532±0.165	0.952±0.220	0.002±0.004	0.000±0.004	0.003±0.001
ptcB	7.536±1.99	8.391±1.927	0.177±0.05	0.204±0.05	0.246±0.08
claR	0.046±0.008	-	-	-	-

^a ClaR activation ratio was calculated as a quotient of relative gene expression in IL1403 and IL1403_ΔclaR grown in GalC-CDM and in Gal-CDM.

^b Cellobiose activation ratio was calculated as a quotient of relative gene expression in the wild-type strain IL1403 or IL1403_ΔclaR grown in GalC-CDM and in Gal-CDM.
It is tempting to speculate that this type of regulation is operative in *L. lactis* IL1403; theoretically, phosphorylated upon entry into the IL1403 cell via CelB cellbiose or lactose bind to the SIS domain of ClaR. Such association may result in a stimulation of the ClaR regulator and allows its binding to the respective DNA regions, resulting in ClaR-dependent regulation of gene expression. We postulate that through this mechanism the expression of *bglS*, *celB*, and *ptcBA* could be activated in the presence of cellbiose or lactose. Evidence confirming this assumption includes strong observed decreases in *bglS*, *celB*, and, to a lesser extent, *ptcBA* mRNA levels in response to ClaR absence upon the growth of a *claR* mutant in cellbiose-containing medium (Table 2). This effect is not observable when galactose or glucose is present as a sole carbon source, indicating that these sugars have no activating role toward ClaR.

Additionally, the hypothesis that ClaR plays a role in lactose and cellbiose metabolism is strongly confirmed by the growth deficiencies of *claR* mutants in cellbiose- and/or lactose-supplemented media (Fig. 2a–c). Deletion of *ccpA* led to the partial growth restoration of the IL1403Δ*ccpA*Δ*claR* mutant in cellbiose-supplemented media, but not in lactose-supplemented media (Fig. 2a–c). Thus, it seems reasonable to conclude that both mutants are barely or not able to utilize these sugars due to a lack of observed *bglS* and *celB* transcriptional activation by ClaR. Indeed, in the absence of ClaR, transcription of *bglS* and *celB* decreases 36- and 8-fold, respectively (Table 2). This may result in a severe decrease in BglS and CelB, which are indispensable for *L. lactis* IL1403 growth on cellbiose and lactose as shown previously (Aleksandrzak-Piekarczyk et al. 2005, 2011).

When assayed globally (by Phenotype MicroArrays and API 50CH), no additional pronounced differences in utilization of tens of different carbon sources were detected between the *claR* mutants and their parental strains. This implies a narrow but significant specificity of ClaR. The contradictory phenomenon that IL1403Δ*claR* is barely able to grow on cellbiose (Fig. 2a) while efficiently respiring on this sugar (when tested by phenotype MicroArrays) could be explained by the fate of cellbiose metabolism in IL1403. Previously, we showed that the EIIIC CelB permease is the only protein dedicated to cellbiose and lactose uptake in *L. lactis* IL1403 (Aleksandrzak-Piekarczyk et al. 2011), while BglS is the only glycosidase crucial for lactose hydrolysis (Aleksandrzak-Piekarczyk et al. 2005). Although cellbiose is also a substrate for BglS, it was postulated that one or more additional enzyme(s) capable of hydrolysis of this sugar may exist in IL1403 and may be subject to CcpA-mediated negative regulation (Aleksandrzak-Piekarczyk et al. 2005). Moreover, results of the current study clearly indicate that the transcription of *bglS* tightly depends on its activation by ClaR, whereas transcription of *celB* is to a lesser extent dependent on the activation by ClaR (Table 2). Thus, we may assume that in IL1403Δ*claR*, small amounts of CelB are still present and may transport traces of lactose or cellbiose. Internalized by IL1403Δ*claR*, lactose does not serve as an energy source due to a lack of BglS resulting from the absence of ClaR. On the other hand, in IL1403Δ*claR*, small amounts of cellbiose-derived metabolites, which are formed after cellbiose uptake via CelB and activity of different than BglS hydrolases, are insufficient for effective mutant cell division, resulting in the limited mutant’s growth.

The results determined during this study by RT-qPCR indicate that *claR* is weakly expressed under all conditions tested (in presence of different sugars [Table 2] and in presence or absence of the CcpA protein [data not shown]), in which it reaches the relative gene expression levels only slightly above zero. This is in agreement with the fact that many transcriptional regulators exist endogenously in low amounts, and, in the case of ClaR, it may be due to several reasons. First, both of the putative promoters found upstream of the *claR* gene show incomplete correlation with the consensus sites for both −10 and −35 sequences, and thus may drive a low level transcription. Second, one these putative promoters yield transcript that starts upstream of the rho-independent terminator sequence (Fig. 1b, c) that may prematurely terminate *claR* transcription. We proved that it is a moderately strong terminator, as it arrested the transcription of *claR* with about 60 % efficiency. Thus, it might be assumed that the generation of full-length transcript covering the *claR* gene is likely achieved by a low amount of read-through transcription. However, we cannot exclude the possibility that the efficiency of read-through termination could be strengthened by the influence of unknown antitermination factors.

Despite the narrow specificity of ClaR within the context of sugar metabolism, it seems that this regulator has an invaluable role in lactococcal cells. We demonstrated that its activity is crucial for the assimilation of two sugars that are commonly found in ecosystems inhabited by *L. lactis* strains—plant material (cellbiose) and milk (lactose). Having such a regulator allows for a settlement of more diverse environments, and thus gives *L. lactis* an advantage over other microorganisms. The unprecedented role of the ClaR protein is made even more significant by the fact that the metabolism of lactose and β-glucosides is of great economic importance for biotechnological processes involving *L. lactis*, in regard to the production of both fermented milk and plant products. Obtaining detailed knowledge related to sugar metabolism and the regulation of associated gene expression in *L. lactis* may contribute to the improvement of mechanisms controlling significant cellular processes in these bacteria. In the case of industrial microorganisms such as *L. lactis*, modification of defined regulatory networks may drastically affect the properties of the bacteria and have implications on bioprocesses. Finally, we can assume that through our research, we can introduce changes in the metabolic potential of *Lactococcus*
strains, which by themselves are not able to assimilate lactose. We can initiate this process through the inactivation of cep4 or activation of other genes by addition of cellobiose. In contrast to plasmid-located lac-operons, genes encoding PTS Cel-Lac components are located on the chromosome, which ensures their stability, a potentially important feature for industrial applications.

Acknowledgments Phenotype MicroArray analysis (Biol) and RT-qPCR amplification were performed at IBB PAS at Phenotypic MicroArrays and Analyses of Genetic Modifications Labs, respectively. This work was partly financed by the National Science Center (NCN) (grant UMO-2011/01/B/NZ2/05377).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Aleksandrzak-Piekarczyk T (2013) Lactose and β-glucosides metabolism and its regulation in Lactococcus lactis: a review. In: Kong JM (ed) Lactic acid bacteria—R & D for food, health and livestock purposes. InTechOpen, doi: 10.5772/50889

Aleksandrzak-Piekarczyk T, Polak J, Zejterska B, Renaut P, Bardowski J (2011) Genotypic characterization of the CcpA-dependent, cellobiose-specific PTS system comprising CelB, PtcB and PtcA that transports lactose in Lactococcus lactis IL403. Int J Food Microbiol 145:186–194. doi: 10.1016/j.ijfoodmicro.2010.12.011

Bardowski J, Ehrlich SD, Chopin A (1994) BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in beta-glucoside utilization in Lactococcus lactis. J Bacteriol 176: 5681–5685

Barrière C, Veiga-da-Cunha M, Pons N, Guédon E, van Hijum SAFT, Barrière C, Veiga-da-Cunha M, Pons N, Guédon E, Jamet E, Renault P (2002) Gene regulation in Lactococcus. J Bacteriol 184:2681–2685. doi: 10.1128/JB.184.9.2681-2685.2002

Bateman A (1999) The SIS domain: a phosphogluconaric-binding domain. Trends Biochem Sci 24:94–95. doi: 10.1016/S0968-0004(99)01357-2

Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, et al. (2001) The mobile genetic elements of uroplasmid A: the gap between predicted and characterized regulators. Antonie Van Leeuwenhoek 82:93–112. doi: 10.1007/978-94-017-1124-6_6

Boutte CC, Srinivasan BS, Flannick JA (2008) Genetic and computational identification of a conserved bacterial metabolic module. PLoS Genet 4:e1000310. doi: 10.1371/journal.pgen.1000310

Browning DF, Busby SJW (2004) The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65. doi: 10.1038/nrmicro787

Chopin A, Chopin M-C, Moillo-Batt A, Langella P (1984) Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid 11:260–263. doi: 10.1016/0147-619X(84)90033-7

Daddaoua A, Krell T, Ramos J-L (2009) Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and Entner-Doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J Biol Chem 284:21360–21368. doi: 10.1074/jbc.M109.014555

Delorme C, Ehrlich SD, Renault P (1999) Regulation of expression of the Lactococcus lactis histidine operon. J Bacteriol 181:2026–2037

Guédon E, Jamet E, Renault P (2002) Gene regulation in Lactococcus lactis: the gap between predicted and characterized regulators. Antonie Van Leeuwenhoek 82:93–112. doi: 10.1007/978-94-017-2829-8_6

Hueck CJ, Hillen W (1995) Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria? Mol Microbiol 15:395–401. doi: 10.1111/j.1365-2958.1995.tb02252.x

Jaeger T, Mayer C (2008) The transcriptional factors MurR and catabolite activator protein regulate N-acetylmuramic acid catabolism in Escherichia coli. J Bacteriol 190:6598–6608. doi: 10.1128/JB.00642-08

Jagura-Burdzy G, Khanim F, Smith CA, Thomas CM (1992) Crosstalk between plasmid vegetative replication and conjugative transfer: repression of the trfA operon by trbA of broad host range plasmid RK2. Nucleic Acids Res 20:3939–3944. doi: 10.1093/nar/20.15.3939

Kohler PRA, Choong E-L, Rossbach S (2011) The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti. J Bacteriol 193:5515–5516. doi: 10.1128/JB.00371-11

Kowaleczky M, Borcz B, Plochocka D, Bardowski J (2007) In vitro DNA binding of purified CcpA protein from Lactococcus lactis IL403. Acta Biochim Pol 54:71–78

Kröger C, Fuchs TM (2009) Characterization of the myo-inositol utilization island of Salmonella enterica serovar Typhimurium. J Bacteriol 191:545–554. doi: 10.1128/JB.01253-08

Leenhouts K, Bolhuis A, Venema G, Kok J (1998) Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl Microbiol Biotechnol 49:417–423

Lorca G, Reddy L, Nguyen A, Sun EI,Tseng J, Yen M-R, Saier MH (2010) Lactic acid bacteria: novel applications. Wiley-Blackwell, Oxford, UK, pp 73–87. doi: 10.1002/9780813820866.ch1

Ludwig H, Rebhan N, Blencke H-M, Merzbacher M, Stillek J (2002) Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45:543–553. doi: 10.1046/j.1365-2958.2002.03034.x

Luesink EJ, Van Herpen REMA, Grossiord BP, Kuipers OP, De Vos WM (1998) Transcriptional activation of the glycolytic lac operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol 30: 789–798. doi: 10.1111/j.1365-2958.1998.01111.x

Maguin E, Prévost H, Ehrlich SD, Gruss A (1996) Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol 178:931–935

Mayo B, Aleksandrzak-Piekarczyk T, Fernández M, Kowaleczky M, Álvarez-Martín P, Bardowski J (2010) Updates in the metabolism of lactic acid bacteria. In: Mozzi F, Raya RR, Vignolo GM (eds) Biotechnology of lactic acid bacteria: comparative genomic analyses of transport systems. In: Mozzi F, Raya RR, Vignolo GM (eds) Biotechnology of lactic acid bacteria: novel applications. Wiley-Blackwell, Oxford, UK, pp 3–97. doi: 10.1002/9780813820866.ch1

Sissler M, Delorme C, Bond J, Ehrlich SD, Renault P, Franklyn C (1999) An aminoacyl-tRNA synthetase paralog with a catalytic role in
histidine biosynthesis. Proc Natl Acad Sci 96:8985–8990. doi:10.1073/pnas.96.16.8985

Solopova A, Bachmann H, Teusink B, Kok J, Neves AR, Kuipers OP (2012) A specific mutation in the promoter region of the silent cel cluster accounts for the appearance of lactose-utilizing Lactococcus lactis MG1363. Appl Environ Microbiol 78:5612–5621. doi:10.1128/AEM.00455-12

Sørensen KI, Hove-Jensen B (1996) Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression. J Bacteriol 178:1003–1011

Teplyakov A, Obmolova G, Badet-Denisot M-A, Badet B, Polikarpov I (1998) Involvement of the C terminus in intramolecular nitrogen channeling in glucosamine 6-phosphate synthase: evidence from a 1.6 Å crystal structure of the isomerase domain. Structure 6:1047–1055. doi:10.1016/S0969-2126(98)00105-1

Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813

Weickert MJ, Chambliss GH (1990) Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci 87:6238–6242. doi:10.1073/pnas.87.16.6238

Wood EJ (1983) Molecular cloning. A laboratory manual by T Maniatis, E F Fritsch and J Sambrook. Cold Spring Harbor Laboratory, New York. Biochem Educ 11:82–82. doi:10.1016/0307-4412(83)90068-7

Yamamoto H, Serizawa M, Thompson J, Sekiguchi J (2001) Regulation of the glv operon in Bacillus subtilis: YfIA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. J Bacteriol 183:5110–5121. doi:10.1128/JB.183.17.5110-5121.2001