Measurement of the Depth of Maximum of Extensive Air Showers above 10^{18} eV

J. Abraham
National Technological University

Gregory Snow
University of Nebraska - Lincoln, gsnow1@unl.edu

Pierre Auger Collaboration

Follow this and additional works at: https://digitalcommons.unl.edu/physicssnow

Part of the Physics Commons

Abraham, J.; Snow, Gregory; and Collaboration, Pierre Auger, "Measurement of the Depth of Maximum of Extensive Air Showers above 10^{18} eV" (2010). Gregory Snow Publications. 67. https://digitalcommons.unl.edu/physicssnow/67

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Gregory Snow Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Measurement of the Depth of Maximum of Extensive Air Showers above 10^{18} eV

J. Abraham,1 P. Abreu,2 M. Aglietta,3 E. J. Ahn,4 D. Allard,5 I. Allekotte,6 J. Allen,7 J. Alvarez-Muñiz,8 M. Ambrosio,9 L. Anchordoqui,10 S. Andringa,11 T. Antić,12 A. Anzalone,13 C. Aramo,9 E. Arganda,13 K. Arisaka,14 F. Arqueros,13 H. Asorey,6 P. Assis,2 J. Aublin,15 M. Ave,16 G. Avila,18 T. Bäcker,19 D. Badagnani,20 M. Balzer,21 K. B. Barber,22 A. F. Barbosa,23 S. C. Barroso,25 B. Baughman,25 P. Bauleo,26 J. J. Beatty,25 B. R. Becker,27 K. H. Becker,28 A. Belletoile,29 J. A. Bellido,22 S. BenZvi,30 C. Berat,29 T. Bergmann,21 X. Bertou,6 P. L. Biermann,32 P. Billoir,15 O. Blanch-Bigas,15 F. Blanco,13 M. Blanco,32 C. Blege,33 H. Blümner,34,16 M. Boháčová,17,35 D. Boncioli,36 C. Bonifazi,15 R. Bonino,3 N. Borodai,26 P. Brogueira,2 W. C. Brown,38 R. Bruijn,39 P. Buchholz,19 A. Bueno,40 R. E. Burton,41 O. Blanch-Bigas,15 M. Go´mez Berisso,6 P. Gonçalves,2 D. Gonzalez,34 J. G. Gonzalez,40,69 D. Go´ra,34,37 A. Gorgi,3 J. Abraham,1 P. Abreu,2 M. Aglietta,3 E. J. Ahn,4 D. Allard,5 I. Allekotte,6 J. Allen,7 J. Alvarez-Muñiz,8 M. Ambrosio,9 L. Anchordoqui,10
We describe the measurement of the depth of maximum, X_{max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10^{18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are...
selected for the analysis. The average shower maximum was found to evolve with energy at a rate of \((106\pm3)\) g/cm²/decade below 10^{18.2\pm0.5} eV, and \((24\pm3)\) g/cm²/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm². The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

\[D_{10} = \frac{d\langle X_{\text{max}}\rangle}{d\ln E} = \alpha \left(1 - \frac{d\langle \ln A \rangle}{d\ln E} \right) \ln(10), \]

and it is sensitive to changes in composition with energy. A complementary composition-dependent observable is the magnitude of the shower-to-shower fluctuations of the depth of maximum, \(\text{rms}(X_{\text{max}})\), which is expected to decrease with the number of primary nucleons \(A\) (though not as fast as \(1/\sqrt{A}\) [8]) and to increase with the interaction length of the primary particle.

At ultrahigh energies, the shower maximum can be observed directly with fluorescence detectors. Previously published \(X_{\text{max}}\) measurements [9,10] focused mainly on \(\langle X_{\text{max}}\rangle\) as a function of energy and had only limited statistics above \(10^{19}\) eV.

Here we present a measurement of both \(\langle X_{\text{max}}\rangle\) and \(\text{rms}(X_{\text{max}})\) using high quality and high statistics data collected with the southern site of the Pierre Auger Observatory [11]. The observatory is located in the province of Mendoza, Argentina and consists of two detectors. The surface detector (SD) array comprises 1600 water-Cherenkov detectors arranged on a triangular grid with 1500 m spacing that cover an area of over 3000 km². The water-Cherenkov detectors are sensitive to the air shower components at ground level. The fluorescence detector (FD) consists of 24 optical telescopes overlooking the array, which can observe the longitudinal shower development by detecting the fluorescence and Cherenkov light produced by charged particles along the shower trajectory in the atmosphere.

\[\langle X_{\text{max}}\rangle = \alpha (\ln E - \langle \ln A \rangle) + \beta, \]

where \(\langle \ln A \rangle\) is the average of the logarithm of the primary masses. The coefficients \(\alpha\) and \(\beta\) depend on the nature of hadronic interactions, most notably on the multiplicity, elasticity and cross section in ultrahigh energy collisions of hadrons with air, see, e.g., [5]. Although Eq. (1) is based on a simplified description of air showers, it gives a good description of air shower simulations with energy-independent parameters \(\alpha\) and \(\beta\) in the energy range considered here, see [6]. Only physics processes not accounted for in currently available interaction models could lead to a significant energy dependence of these parameters.

The change of \(\langle X_{\text{max}}\rangle\) per decade of energy is called elongation rate [7].
An unbiased set of high quality events is selected with the statistical uncertainty of the reconstructed X_{max} being comparable to the size of the fluctuations expected for nuclei as heavy as iron ($ \approx 20 \, \text{g/cm}^2$) and small systematic uncertainties as explained in the following.

The impact of varying atmospheric conditions on the X_{max} measurement is minimized by rejecting time periods with cloud coverage and by requiring reliable measurements of the vertical optical depth of aerosols. Profiles that are distorted by residual cloud contamination are rejected by a loose cut on the quality of the profile fit ($\chi^2/N_{\text{df}} < 2.5$). We take into account events only with energies above 10^{18} eV where the probability for at least one triggered SD station is 100%, irrespective of the mass of the primary particle [18]. The geometrical reconstruction of showers with a large apparent angular speed of the image in the telescope is susceptible to uncertainties in the time synchronization between FD and SD. Therefore, events with a light emission angle towards the FD that is smaller than 20° are rejected. This cut also removes events with a large fraction of Cherenkov light. The energy and shower maximum can be reliably measured only if X_{max} is in the field of view (FOV) of the telescopes (covering 1.5° to 30° in elevation). Events for which only the rising or falling edge of the profile is detected are not used. Moreover, we calculated the expected statistical uncertainty of the reconstruction of X_{max} for each event, based on the shower geometry and atmospheric conditions, and require it to be better than 40 g/cm².

The latter two selection criteria may cause a selection bias due to a systematic undersampling of the tails of the true X_{max} distribution, since showers developing very deep or shallow in the atmosphere might be rejected from the data sample. To avoid such a bias in the measured $\langle X_{\text{max}} \rangle$ and $\text{rms}(X_{\text{max}})$ we apply fiducial volume cuts based on the shower geometry that ensure that the viewable X_{max} range for each shower is large enough to accommodate the full X_{max} distribution [19].

After all cuts, 3754 events are selected for the X_{max} analysis. The X_{max} resolution as a function of energy for these events is estimated using a detailed simulation of the FD and the atmosphere. As shown in the inset of Fig. 1, the resolution is at the 20 g/cm² level above a few EeV. The difference between the reconstructed X_{max} values in events that had a sufficiently high energy to be detected independently by two or more FD stations is used to cross-check these findings. As can be seen in Fig. 1, the simulations reproduce the data well.

Results and discussion.—The measured $\langle X_{\text{max}} \rangle$ and $\text{rms}(X_{\text{max}})$ values are shown in Figs. 2 and 3. We use bins of $\Delta \lg E = 0.1$ below 10 EeV and $\Delta \lg E = 0.2$ above that energy. The last bin starts at $10^{19.8}$ eV, integrating up to the highest energy event ($E = (59 \pm 8)$ EeV). The systematic uncertainty of the FD energy scale is 22% [18]. Uncertainties of the calibration, atmospheric conditions, reconstruction and event selection give rise to a systematic uncertainty of ± 13 g/cm² for $\langle X_{\text{max}} \rangle$ and ± 6 g/cm² for the rms. The results were found to be independent of zenith angle, time periods and FD stations within the experimental uncertainties.

A fit of the measured $\langle X_{\text{max}} \rangle$ values with a constant elongation rate does not describe our data ($\chi^2/N_{\text{df}} = 34.9/11$), but as can be seen in Fig. 2, using two slopes yields a satisfactory fit ($\chi^2/N_{\text{df}} = 9.7/9$) with an elongation rate of (106_{-31}^{+34}) g/cm²/decade below $10^{18.24\pm0.05}$ eV and (24 ± 3) g/cm²/decade above this energy. If the properties of hadronic interactions do not change significantly over less than 2 orders of magnitude in primary energy (< factor 10 in center of mass energy), this change of $\Delta D_{10} = (82_{-21}^{+35})$ g/cm²/decade would imply a change in the energy dependence of the composition around the

![Diagram](image-url)
ankle, supporting the hypothesis of a transition from galactic to extragalactic cosmic rays in this region.

The \(\langle X_{\text{max}} \rangle \) result of this analysis is compared to the HiRes data [10] in Fig. 2. Both data sets agree well within the quoted systematic uncertainties. The \(\chi^2/\text{N} \) of the HiRes data with respect to the broken-line fit described above is 20.5/14. This value reduces to 16.8/14 if a relative energy shift of 15% is applied, such as suggested by a comparison of the Auger and HiRes energy spectra [2].

The shower-to-shower fluctuations, \(\text{rms}(X_{\text{max}}) \), are obtained by subtracting the detector resolution in quadrature from the width of the observed \(X_{\text{max}} \) distributions resulting in a correction of \(\approx 6 \text{ g/cm}^2 \). As can be seen in the right panel of Fig. 3, we observe a decrease in the fluctuations with energy from about 55 to 26 g/cm\(^2\) as the energy increases. Assuming again that the hadronic interaction properties do not change much within the observed energy range, these decreasing fluctuations are an independent signature of an increasing average mass of the primary particles.

For the interpretation of the absolute values of \(\langle X_{\text{max}} \rangle \) and \(\text{rms}(X_{\text{max}}) \) a comparison to air shower simulations is needed. As can be seen in Fig. 3, there are considerable differences between the results of calculations using different hadronic interaction models and air shower simulations [20] using different hadronic interaction models [21].

The successful installation and commissioning of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings, and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Ministério de Ciência e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB300100801 and KJB100100904, MSMT-CR LA08016, LC527, 1M06002, and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de l’Univers (SDU-INSU/CNRS), France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Württemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant No. 1 P03 D 014 30, No. N202 090 31/0623, and No. PAP/218/2006, Poland; Fundação para a Ciência e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejería de Educación de la Comunidad de Castilla La

FIG. 3. \(\langle X_{\text{max}} \rangle \) and \(\text{rms}(X_{\text{max}}) \) compared with air shower simulations [20] using different hadronic interaction models [21].
Mancha, FEDER funds, Ministerio de Ciencia e Innovación, Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; ALFA-EC/HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240, and UNESCO.

*Deceased.

[1] A. M. Hillas, Phys. Lett. 24, 677 (to be published); V. S. Berezinsky and S. I. Grigor’eva, Astron. Astrophys. 199, 1 (1988); D. Allard, E. Parizot, and A. V. Olinto, Astropart. Phys. 27, 61 (2007); R. Aloisio, V. Berezinsky, P. Blasi, and S. Ostapchenko, Phys. Rev. D 77, 025007 (2008).

[2] R. Abbasi et al. (HiRes Collaboration), Phys. Rev. Lett. 100, 101101 (2008); J. Abraham et al. (Pierre Auger Collaboration), Phys. Rev. Lett. 101, 061101 (2008).

[3] D. Allard et al., J. Cosmol. Astropart. Phys. 10 (2008) 033.

[4] W. Heitler, The Quantum Theory of Radiation (Oxford University Press, New York, 1954); J. Matthews, Astropart. Phys. 22, 387 (2005).

[5] T. Wibig, Phys. Rev. D 79, 094008 (2009); R. Ulrich et al., arXiv:0906.0418 [Proc. 31st ICRC (to be published)].

[6] T. Pierog, R. Engel, and D. Heck, Czech. J. Phys. 56, A161 (2006); J. Bluemer, R. Engel, and J. R. Hoerandel, Prog. Part. Nucl. Phys. 63, 293 (2009).

[7] J. Linsley, Proceedings of the 15th ICRC, Vol. 12, p. 89 (Hungarian Academy of Sciences, Budapest, 1977); T. K. Gaisser et al., Proceedings of the 16th ICRC, Vol. 9, p. 275 (Institute for Cosmic Ray Research, Tokyo, 1979); J. Linsley and A. A. Watson, Phys. Rev. Lett. 46, 459 (1981).

[8] J. Engel et al., Phys. Rev. D 46, 5013 (1992).

[9] D. J. Bird et al. (Fly’s Eye Collaboration), Phys. Rev. Lett. 71, 3401 (1993).

[10] R. U. Abbasi et al. (HiRes Collaboration), Astrophys. J. 622, 910 (2005).

[11] J. Abraham et al. (Pierre Auger Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 523, 50 (2004); J. Abraham et al. (Pierre Auger Collaboration), arXiv:0907.4282 [Nucl. Instrum. Meth. (to be published)]; I. Allekotte et al. (Pierre Auger Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 586, 409 (2008).

[12] P. Sommers, Astropart. Phys. 3, 349 (1995); B. R. Dawson et al., Astropart. Phys. 5, 239 (1996).

[13] C. Bonifazi et al. (Pierre Auger Collaboration), Nucl. Phys. B, Proc. Suppl. 190, 20 (2009).

[14] M. Unger et al., Nucl. Instrum. Methods Phys. Res., Sect. A 588, 433 (2008).

[15] M. D. Roberts, J. Phys. G 31, 1291 (2005); D. Gora et al., Astropart. Phys. 24, 484 (2006); F. Nerling et al., Astropart. Phys. 24, 421 (2006); B. R. Dawson, M. Giller, and G. Wieczorek, Proceedings of the 30th ICRC (2007); B. Keilhauer et al., Nucl. Instrum. Methods Phys. Res., Sect. A 597, 99 (2008).

[16] J. Abraham et al. (Pierre Auger Collaboration), arXiv:0906.2358 [Proc. 31st ICRC (to be published)].

[17] T. K. Gaisser and A. M. Hillas, Proceedings of the 15th ICRC, Vol. 8, p. 353 (1977).

[18] J. Abraham et al. (Pierre Auger Collaboration), arXiv:0906.2189 [Proc. XXth Rencontres de Blois (to be published)].

[19] M. Unger (Pierre Auger Coll.), Nucl. Phys. B, Proc. Suppl. 190, 240 (2009); J. A. Bellido (Pierre Auger Coll.), arXiv:0901.3389 [Proc. XXth Rencontres de Blois (to be published)].

[20] T. Bergmann et al., Astropart. Phys. 26, 420 (2007).

[21] N. N. Kalmykov and S. S. Ostapchenko, Phys. At. Nucl. 56, 346 (1993); S. S. Ostapchenko, Nucl. Phys. B, Proc. Suppl. 151, 143 (2006); T. Pierog and K. Werner, Phys. Rev. Lett. 101, 171101 (2008); E. J. Ahn et al., Phys. Rev. D 80, 094003 (2009).