p53 Mutation as Plausible Predictor for Endocrine Resistance Therapy in Luminal Breast Cancer [version 1; peer review: 1 approved, 1 approved with reservations]

Freda Halim1, Yohana Azhar2, Suwarman Suwarman3, Bethy Hernowo4

1Department of Surgery, Pelita Harapan University, Tangerang, Indonesia
2Department of Surgery - Oncology, Head and Neck Division, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
3Department of Anesthesiology and Intensive Care, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
4Department of Anatomical Pathology, Universitas Padjajaran, Bandung, West Java, Indonesia

Abstract
Endocrine therapy resistance in Luminal Breast Cancer is a significant issue to be tackled, but currently no specific biomarker could be used to anticipate this event. p53 mutation is widely known as one of Breast Cancer's most prominent genetic alterations. Its mutation could generate various effects in Estrogen Receptor and Progesteron Receptor molecular works, tangled in events leading to the aggravation of endocrine therapy resistance. Hence the possibility of p53 mutation utilization as an endocrine therapy resistance predictive biomarker is plausible. The purpose of this review is to explore the latest knowledge of p53 role in Estrogen Receptor and Progesteron Receptor molecular actions thus aggravating the Endocrine Therapy resistance in Luminal Breast Cancer, from which we could define possibilities and limitations to utilize p53 as the predictive biomarker of endocrine therapy resistance in Luminal Breast Cancer.

Keywords
p53, predictor, endocrine therapy resistance, luminal breast cancer

This article is included in the Oncology gateway.
Introduction
Endocrine Therapy (ET) resistance in Luminal Breast Cancer (BC) is a concerning issue. Approximately 30-40% of Luminal BC are ET resistant, which leads to a higher recurrence rate and worsened prognosis. Although it has been extensively studied, till now there is no single predictive biomarker has been established to predict which patient will develop ET resistance during the 5-years-course of endocrine therapy.1,3 Such predictive biomarker will be advantageous both for clinician and patients, as patients which probably have bigger chance for endocrine therapy resistance could be monitored closely. Perhaps later in the future it could help to effectively change the course of the therapy before recurrence is established (and it becomes too late), as well as to help clinicians to identify which patients will not have ET benefit in the first place.1,2 And as we know, current trend in clinical trials of BC treatment are moving into personalized and tailored therapy for each cases, therefore finding predictive biomarker to predict the ET resistance will be important issue for such therapeutic program development as well.1

Endocrine therapy resistance is complex molecular process which involved many process to develop. Several hypotheses has been developed regarding addressing such process, and finding such predictive biomarker. The resistance could develop at the start of the endocrine therapy (de novo or intrinsic resistance) or develop later in the course of the endocrine therapy. The hypotheses are ranging from the loss of hormonal receptor (HR) caused by ESR1 gene mutation and epigenetic mechanism,5-8 altered expression of co-factors (such as NF-kB, AIB1, SRC-1),9-11 crosstalk between ER and growth factors signaling (such as Her2neu, Insulin-like growth factor-1 receptor (IGF-1R))1,6,8,10,12,13 absent or reduced expression of negative regulator such as p21 and p27,14-16 metabolic resistance caused by polymorphism or loss of CYP2D6 (main enzymes responsible for converting tamoxifen into its active metabolites),2,4,5,10,17,18 NF1 mutation lead to MAPK pathway activation,19-24 APOBEC mutation associated with PI3KCA mutation,25 as well as tumor microenvironment roles such as NF-kB and TNF-α.21,37 The molecular mechanism of Estrogen Receptor (ER) and Progesterone Receptor (PR) actions are studied extensively for their association with ET resistance in Luminal BC. These molecular mechanisms additionally become an essential basis in rationalizing treatments such as Cyclin-CDK (Cyclin-Dependent Kinase) inhibitor and PI3K/Akt/mTOR inhibitor, which have been internationally accepted as current adjuvant treatments for Luminal BC with recurrence after ET resistance. Their actions therefore are basic and fundamental knowledge to find a logical explanation of endocrine therapy resistance, and most of the hypotheses above could be explained by the disruption of the ER and PR mechanism of actions, resulting increased cellular proliferation and decreased apoptosis.4,6,8,18,27,30

p53 mutation is one of the most frequent genetic alterations in BC, found in approximately 28.3%-35% of overall BC patients, with higher incidence in Luminal B BC (30-55%), Her-2neu overexpressive (70%) and TNBC group (80%).31-33 p53 mutation in hormonal positive BC will result in distinct poor prognosis, and especially seen in Luminal B BC with higher frequency and stronger association to poor prognosis compared to Luminal A BC.32,54 The mutation of this profound tumor suppressor gene may occur at the early onset of Luminal BC or progressively at the later course of the disease due to cancer cells’ ability to form more mutations in the advanced stage.20,31,35-37

p53 mutation has been known for more than four decades and its extensive roles span from cell cycle regulation, DNA repair, apoptosis process, cell metabolism, as well as immune response in tumor microenvironment.21,37-41 This versatile tumor suppressor gene has been studied in many cancers including breast cancer, and its protein accumulation as well as its mutation is conclusively found in numerous endocrine resistance breast cancer studies.20,35,36,42,43

This review will explore the current knowledge of ER and PR molecular mechanisms and their impact in initiating ET resistance in Luminal BC. Furthermore, we will discuss the apparent effect of p53 mutation in their molecular mechanisms, consequently aggravating ET resistance.

Estrogen and estrogen receptor
Estrogen is a steroid hormone that acts in several tissues such as skin, liver, bone, and breast. In breast tissue, Estrogen’s potent mitogenic effect will generate breast epithelial proliferation, alveolar growth, fat deposition, and fibrous tissue development during puberty, pregnancy, and lactation phases. These distinctive changes in the breast are affected by Estrogen, which works alongside Progesterone and other growth factors.24

The active form of Estrogen in breast tissue, Estradiol, and its metabolites have been acknowledged as essential factors of early malignant transformation, such as DNA single strand breaks and chromosomal impairment. Furthermore, it may lead to uncontrolled cell proliferation, accompanied by the development of cellular signalling collaborating in the cancerous cells’ progression. All events mentioned above will benefit the growth of cancer cells, and all of them are depended on the molecular mechanism of ER in BC cells.35,46
Estrogen receptor and its classical mechanism of action

Estrogen Receptor has a paramount role in BC cells, as described above. Hence it becomes the main target of the endocrine therapy such as ovarian blockade, SERM (Selective Estrogen Receptor Modulator, i.e., Tamoxifen), and SERD (Selective Estrogen Receptor Degrader, i.e., Fulvestran).10,22

Being a nuclear receptor family member, ER-α and ER-β are the two different types of Estrogen Receptors. In breast tissue, the ER-α has a dominant role. Meanwhile, ER-β is still considered controversial and has an unclear role.47 Another estrogen receptor type is the G-coupled Estrogen Receptor (GPER), which is paramount for estrogen molecular action via the membranous mechanism.48

ER-α coded by ESR-1 gene in chromosome 14, with an identical structure as other nuclear receptors, consists of 4 structural and functional domains. These domains are the amino-terminal domain (A/B domain), DNA binding domain/DBD, hinge region (D domain), and Ligand-Binding Domain/LBD.59

After entering the cytoplasm of the cells, Estrogen will form a dimer form then bind to the C-domain of the ER at its 12th helix. Afterward, this complex (Estrogen dimer and ER) will be transported to the nucleus by D-domain.50

Subsequently after entering the nucleus, DBD with the aid of co-activators will bind to Estrogen’s target genes that contain Estrogen Response Elements (EREs). The known co-activators are steroid receptor co-activator-1/SRC-1, SRC-2, SRC-3 (also known as AIB1/Amplified in Breast-Cancer 1). The binding of ER and EREs will activate the transcription of Estrogen’s target genes.4,51,52 This process is the so-called classic mechanism of ER molecular action, depicted in the animation below along with other mechanisms. This mechanism is the first known ER molecular action and has become the theoretical basis for applying the traditional endocrine therapy in luminal BC such as ovarian blockade, SERM, and SERD.10,24

Other molecular actions of estrogen receptor

The estrogen receptor molecular actions are complicated and involve the intersecting apoptotic along with the survival pathways such as PI3K/Akt/mTOR, MAPK/ERK, resulting in the same similar target genes such as Cyclin-CDK, growth factor, and its activators.10,53 Currently, there are four known molecular mechanisms of ER actions: classical (genomic), non-classical, non-genomic (membranous), and ligand-independent (estrogen-independent). These four mechanisms are pictured in Figure 1.

![Figure 1. ER-α molecular mechanisms of action.](image-url)
In the non-classical mechanism (2nd mechanism in Figure 1), Estrogen could activate genes transcription that don’t contain EREs with help from tethering co-factors such as NF-kB (Nuclear Factor-Kappa Beta), activator protein 1 (AP-1), or specificity protein 1 (SP-1).

In the membranous mechanism (3rd mechanism in animation), Estrogen will not be required to enter the nucleus to do the genomic action since ER receptors conduct all the inciting processes in the cell membrane. In the last mechanism, even Estrogen is not required to induce its target genes transcription (hence the name ligand-independent mechanism).

These mechanisms will induce the exact effect on breast cancers cells: accentuating proliferative pathways and diminishing pro-apoptotic pathways. These non-classic, membranous, and particularly ligand-independent mechanisms result in cancer cells being more resistant to endocrine therapy. It is as if these estrogen receptors’ mechanism of action is being “hijacked” by the cells; the cancer cells are manipulating it to their benefit that is to replicate more and being less sensitive to apoptotic signals.

The final result of these processes are constant activation of the estrogen receptor target genes although there were no more estrogen molecules available (i.e., due to ovarian blockade or inhibition by aromatase inhibitor), and although its receptor being blocked or degraded (i.e., due to inhibition by SERM/SERD).5,10,22,48

Progestosterone and progesterone receptor

Progesterone is a steroid hormone produced by the corpus luteum in the human ovarium, which its primary duty is to prepare the female body for gestation. In breast epithelial cells, its role is indispensable in affecting ducto-alveolar changes in phases such as puberty, luteal phase (pre-menstrual period), pregnancy, and lactation.54

Compared to Estrogen, the role of Progesterone in breast cancer cells, especially endocrine therapy, and its resistance is less distinctive and less studied. The cyclic level of Progesterone and its hundreds of active metabolites available in the female body are the main difficulties in testing this hormone. Furthermore, the target genes of ER and PR are overlapping, thus adding the complexity of this issue.55 But still, one cannot ignore the fact that the combination of Progesterone and Estrogen will add mitogenic effect to BC cells in the animal model, as epidemiological observations had shown.56–58

PR was transcribed by three means. First, its transcription is induced by Estrogen as PGR (gene for encoding the PR) is one of the Estrogen target genes. Estrogen has been proven to be required in maintaining PR levels in breast and endometrium epithelial cells.59 Second, cancer cells could induce PR transcription mediated by Insulin Growth Factor-1 (IGF-1) and MAPK/ERK activity. Even more, at high Progestin concentration, these growth factors will be re-induced and thus will re-activate the ER-α phosphorylation in the ligand-independent mechanism of ER (review above animation), resulting in more PR transcription.

Some of the Progesterone target genes are also known to overlap with Estrogen target genes such as Cyclin-CDK, RANKL (Receptor activator of nuclear factor-kappa-B ligand), and other growth factors. Hence these crosstalk mechanisms between ER and PR are crucial for breast cancer cells carcinogenesis and endocrine therapy resistance.

Like Estrogen, the action of Progesterone in cells is entirely dependent on its receptors, and it consists of both nuclear and membranous receptor types. There are two types of nuclear PR: PR-A and PR-B. Both nuclear receptors exist in breast epithelial cells in variable amounts and activity. Furthermore, it is unclear which nuclear receptor is more dominant in breast epithelial cells.55

Identical to ER, PR has N-terminal domain, Ligand Binding Domain /LB, Progesterone will bind the PR, DNA Binding Domain/DBD in which target genes contain Progesterone Receptor Elements (PREs) will bind.

After entering the cell’s cytoplasm, Progesterone will form a dimer, bind to PR in LBD, subsequently enter the nucleus, and bind to PREs with the aid of a co-factor. This process will activate the transcription of PR target genes. This mechanism is known as the PR action’s classical/direct genomic mechanism.55 Other mechanisms known are the non-classical/direct non-genomic and membranous mechanisms, depicted in Figure 2.16,55

In the indirect genomic mechanism, progesterone could activate genes that do not contain PREs as long there are tethering co-factors. In the membranous mechanism, PI3K/Akt/mTOR pathway and MAPK/ERK are also activated by progesterone. Therefore, it will accentuate the proliferative pathways and diminish the pro-apoptotic signals.16,55
p53 involvement in pathways activated in ER and PR molecular of actions

p53 in cell cycle regulation

The complicated cellular signaling tightly regulates the cell cycle to maintain the regular cell proliferation rate and minimize error in DNA synthesis. In this cell cycle, abnormal cells with DNA error will be ceased in G1-S transition critical point.62

Essentially, this critical G1-S transition point is determined by the interaction of Cyclin-D1 & CDK4/6. In conditions without inhibition, this interaction will release E2F protein from its bond with Retinoblastoma Protein (RB Protein). The E2F protein will further trigger the cell to enter the S phase. Then consequently, abnormal cells with DNA will be duplicated.63

This mechanistic complex is one of the most often disrupted cellular signaling. It is found in endocrine therapy-resistant breast cancer cells, as Cyclin D1 (CCND1) and CDK4 become the target genes of Estrogen and Progesterone. Previously, Cyclin-CDK is still transcribed by the cancer cells, although the Estrogen production has been diminished and their receptors have been blocked.22,51,52 Relevantly, CDK 4/6 inhibitor has been approved in clinical guidelines as an adjunctive for endocrine therapy in Luminal BC, both pre- and post-menopausal patients.13,64

In normal cellular regulation, cells with abnormal DNA will be forced to enter G0 phase by the p21 protein, a protein transcribed and regulated by p53. This p21 protein will inhibit the CyclinD1-CDK4/6 complex, resulting in the cell entering the G0 phase and starting the DNA repairing process. This well-regulated system earned p53 the old nickname: “guardian of the genome”.65,66

p53 involvement in PI3K/Akt/mTOR pathway

PI3K/Akt/mTOR pathway is a series of consecutive intracellular signaling that will activate proliferation and prevent apoptotic events. Genetic accumulation in this pathway and mutation of its inhibitor (PTEN/Phosphatase and TENsin homolog deleted on chromosome 10) are found about 70% from the whole BC population.12,67

PI3K is an intracellular lipid kinase enzyme that will phosphorylate phosphatidylinositol molecule in the cell membrane, subsequently turning phosphatidylinositol-4,5-bisphosphate (PIP2) into phosphatidylinositol-3,4,5-trisphosphate (PIP3).67 Afterward, PIP3 will facilitate interaction between phosphoinositide-dependent kinase 1 (PDK-1) and Akt in the cell cytoplasm, resulting in a phosphorylated Akt. This phosphorylated Akt will activate Forkhead box O transcription factor (FoxO) that inhibits pro-apoptosis genes and also activates mechanistic targets of rapamycin (mTOR) complexes.12
The mTOR complexes are consist of 2 active forms: activated mTORC1 and mTORC2. mTORC1 will activate genes involved in carcinogeneses like protein synthesis, pro-survival genes, and cell growth. mTORC2 will specifically enhance phosphorylation, further causing Akt hyperactivation.12,67

In ER-α molecular actions, PI3K/Akt/mTOR will be activated in the non-classical, membranous, and ligand-independent mechanism.10,48,53,68 A likely, PI3K/Akt/mTOR will also be activated in PR molecular actions.16,55 Additionally, mTOR1 will activate S6K that will help to phosphorylate RE-α, further activating the functional domain of RE-α. Likewise, the Akt activates the NF-kB that functions as a co-factor in the non-classical and membranous mechanism of ER-α molecular actions.21

It is well known that PTEN, a classical tumor suppressor gene, will reverse PIP3 to PIP2; hence the subsequent Akt/mTOR activation will not occur. In the absence of PTEN, PI3K/Akt/mTOR pathway will be hyperactivated.69

The wild-type p53 protein will activate PTEN gene transcription. In cells with mutant p53, PTEN gene mRNA expression will be drastically reduced compared to cells with wild-type p53 status.70 Another seminal finding by Jung, et al. 2018 in cell culture studies show cells with PTEN loss will cause PI3K/Akt/mTOR hyperactivation, causing mTORC1 and mTORC2 enhancement, and both will phosphorylate and activate wild-type p53 protein, which causes p21 transcription. p21 protein will further induce cells to premature senescence condition.71

p53 role in NF-kB pathway

Nuclear Factor-kappa Beta (NFKB) is a transcription factor family consisting of 5 subtypes: p50, p52, p65 (RelA), RelB, and c-Rel. With a vast target gene involved crucially in chronic inflammation and cellular proliferation, NF-kB is studied extensively in many cancers, including endocrine-resistant Luminal BC. In cell culture studies, treatment with NF-kB inhibitor will evoke the endocrine therapy sensitivity and toxicity; therefore, it has not been tested on humans.9

NF-kB target genes considered instrumental in endocrine therapy resistance evolution are Cyclin D1, D2, D3 dan E, anti-apoptotic protein Bcl-2, MDM-2, and PDL-1 (Programmed Death Ligand-1).9,27,72 In ER molecular actions explained above; the NF-KB works as a co-factor in non-classical and membranous mechanisms so that Estrogen’s target genes are still transcribed although Estrogen has been blocked.9,72–76

The p53 and NF-kB have a negative association, for one cannot exist if the others are activated. The function is also contradictory; NF-kB will cause cell proliferation, anti-apoptotic, and enhance chronic inflammation, whereas p53 will regulate the cell cycle and trigger pro-apoptotic events when needed.72,77

The antagonistic mechanisms are various. Some studies noted wild-type p53 protein act as the direct promoter inhibitor of NF-kB target genes, therefore inhibiting the transcription of the NF-kB target genes. Others stated they compete with each other to get transcription co-factor 300. Wild-type p53 protein will also be known to inhibit the IKK enzyme (Inhibitor of Kappa Kinase, an enzyme to activate the active form of NF-kB). Without IKK, NF-kB couldn’t enter the nucleus and induce its target genes transcription.72,77,39

TNF-α, the multi-functional mediator in inflammation and cells apoptosis, is also noted in Luminal BC for its role in enhancing cellular proliferation via NF-kB activation.78,79 The wild-type p53 was also recognized in turning off TNF-α induced NF-kB activation. This action is achieved by binding and blocking the work of Disabled homolog 2-interacting protein (DAB2IP), a protein that will activate TNF-α to trigger NF-kB activation.78

Summary of all p53 works in ER-α and PR molecular actions could be seen in Figures 3 and 4.

Limitation of p53 usage as a predictive biomarker in luminal breast cancer

Although p53 is prominently correlated with poorer clinical features such as high proliferation index and higher grade and stadium, its usage in Luminal BC is still arguably limited.38 One possible cause is that the presence of ER seems to suppress the p53 mutation itself.81 From epidemiological point of view, p53 mutation indeed is more frequently found in HER-2 enriched group and the Triple Negative BC group rather than Luminal BC. However, p53 mutation when found in Luminal BC is not without importance. In fact study by Lee, et al. 2013 from 7739 patients shown us that p53 mutation is correlated with higher proliferative index such as Ki-67 in Luminal A BC, and when combined together they effect long term survival of the patients.82

Since it has been found 40 years ago, p53 protein has been published in thousands studies in numerous cancer either using protein detection or genetic testing. These factors along with versatility of p53 function in cells makes the test for p53 are widely known and readily available in most laboratories, therefore p53 is an ideal predictor to be chosen.38
p53 protein accumulation is easily detected by immunohistochemistry (IHC) as a surrogate marker of its mutation. However, p53 immunohistochemistry testing in BC could present without positive gene mutations tested, further affecting its capability as biomarker in BC. It is an obstacle that also frequently found in other cancers such as ovarian and gastric cancer.

No clear cut-off of p53 positivity in IHC assay also has been noted as the cause and affecting p53 usage as predictive biomarker in BC. Study by Kikuchi, et al. 2013 had tried to address this cut-off issue, found that when we set the cut-off of p53 immunoreactivity into ≥50% then it could be useful to predict clinical behaviour in Luminal Breast Cancer, especially Luminal B type (p<0.0001). This finding is also confirmed by another epidemiological study of 7226 patients by Abubakar, et al. in 2019.

Furthermore, p53 protein accumulation has been a limitation as a predictor due to many p53 protein isoforms formed within the tissue. These isoforms are many, with each was said to have its roles in molecular effect in cancer cells. This limitation has been countered with the suggestion of genetic testing such as PAM50 or Mammaprint that would replace the p53 protein accumulation testing. Although it has been deemed more accurate than IHC assay, the genetic testing is expensive and not readily available in most laboratories, becoming the deterrent factors for choosing this testing in clinical setting.

Future perspective
Endocrine therapy is a very beneficial therapy for Luminal BC patient. Its usage will decrease 15-years mortality rate up to 30-40%, consequently its resistance will pose the patients to dismal prognosis. As mentioned above, an established predictive biomarker will help clinicians to identify which patients will not have ET benefit in the first place, therefore...
their adjuvant therapy should be changed to other modalities to reduce recurrence and increase overall survival rate. In future perspective, predictive biomarker that could anticipate ET is certainly needed towards developing personalized and tailored therapy for Luminal BC patients. Developing and planning studies to identify such biomarker is not easy since the complexities of the endocrine therapy resistance theories mentioned before. Estrogen metabolism in premenopausal and postmenopausal women are also different, hence the endocrine therapy given are different, therefore these group cannot be investigated together. With previous reasons mentioned, meticulously planned study embedded in RCT with carefully chosen patients and prospective analysis probably is best to identify such biomarker, explained very well in seminal study by Beelen, et al.

Additionally, p53 mutation could occurred as early as pre-carcinogenesis period, in early stage of BC and in late/metastatic disease. Consequently it will be compulsory to test p53 mutation along the course of the disease and observe whether it correlate with ET resistance later.

p53 is also known to have particular effects in each type of breast cancer (luminal A/B, with or without HER2 positive status) due to BC heterogeneity. Several studies have been made to address this issue, and concluded that Luminal B breast cancer is the most probable BC group in which p53 mutation could be useful as predictive biomarker to predict ET resistance occurrence. This fact is also supported by epidemiological data that showed p53 mutation was found in higher in Luminal B BC compared than Luminal A BC.

Another interesting development is Neoadjuvant Endocrine Therapy (NET), which currently being studied in clinical trial, reportedly has advantages in downstaging and increasing Breast Conserving Therapy (BCT) success. The NET could reduce hospital stay for Luminal BC patients and outreach the undertreated patients group. When patients could not go to the hospital for various reasons, then endocrine therapy could provide more accessible and comfortable neo-adjuvant treatment than chemotherapy or radiotherapy. Therefore the needs to find such predictive biomarker become more pressing and indispensable, and we have to explore p53 mutation as plausible biomarker.

Figure 4. Plausible p53 wild-type roles in reducing endocrine therapy resistance by prohibiting PR molecular actions.
Conclusion
p53 is an important biomarker to be considered as an ideal candidate to anticipate ET resistance in the future since its role within pathways involved in the ER and PR molecular mechanisms is paramount and cannot be ignored. Its limitation as a predictor could be countered using proper genetic testing rather than protein marker. Well planned studies will be a prerequisite to conclude whether p53 truly useful as predictive biomarker for ET resistance in Luminal BC patients especially Luminal B group, with adequate period of observation.

Data availability
No data are associated with this article.

Authors’ contributions
FH worked the Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Resources, Software, Visualization, Writing – Original Draft Preparation. YA involved in Conceptualization, Data Curation, Formal Analysis, Supervision, Validation, Writing – Review & Editing. SS involved in Project Administration, Resources, Software, Supervision, Writing – Review & Editing. FH wrote the draft of the article, YA and SS helped with final manuscript preparation. BH involved in Conceptualization, Project Administration, Software, Supervision, Validation, Writing – Review & Editing. All figures and animations are original to this manuscript, composed by FH and approved by YA, SS and BH. All authors read and approved the final manuscript.

Acknowledgments
The authors would like to thank Ricarhdo Valentino Hanafi MD from Faculty of Medicine, Pelita Harapan University for his moral support and linguistic help in developing this review.

References
1. Fontes-Sousa M, Amorim M, Salta S, et al.: Predicting resistance to endocrine therapy in breast cancer: It’s time for epigenetic biomarkers (Review). Oncol. Rep. 2019; 41(3): 1431–1438. PubMed Abstract | Publisher Full Text
2. Krauss K, Stickeler E: Endocrine Therapy in Early Breast Cancer. Breast Care. 2020; 15(4): 337–346. PubMed Abstract | Publisher Full Text
3. Beelen K, Zwart W, Linn SC: Can predictive biomarkers in breast cancer guide adjuvant endocrine therapy?. Nat. Rev. Clin. Oncol. 2012; 9(9): 529–541. PubMed Abstract | Publisher Full Text
4. Beelen K, Zwart W, Linn SC: Can predictive biomarkers in breast cancer guide adjuvant endocrine therapy?. Nat. Rev. Clin. Oncol. 2012; 9(9): 529–541. PubMed Abstract | Publisher Full Text
5. Zattari E, Leporati R, Ligorio F, et al.: Hormone Receptor Loss in Breast Cancer: Molecular Mechanisms, Clinical Settings, and Therapeutic Implications. Cells. 2020; 9(644): 1–23.
6. Haque MM, Desai KV: Pathways to Endocrine Therapy Resistance in Breast Cancer. Vol. 10, Frontiers in Endocrinology. Frontiers Media S.A.; 2019.
7. De Santo I, McCartney A, Maloni L, et al.: The emerging role of esr1 mutations in luminal breast cancer as a prognostic and predictive biomarker of response to endocrine therapy. Cancers (Basel). 2019; 11(12): 1–15. Publisher Full Text
8. Fan P, Craig IV: New insights into acquired endocrine resistance of breast cancer. Cancer Drug Resist. 2019; 2(2): 198–209. Publisher Full Text
9. Kongthong P, Roseweir AK, Edwards J: The NF-KB pathway and endocrine therapy resistance in breast cancer. Endocr. Relat. Cancer. 2019; 26(6): R369–R380. PubMed Abstract | Publisher Full Text
10. Belachew EB, Sewasew DT: Molecular Mechanisms of Endocrine Resistance in Estrogen-Positive Breast Cancer. Front Endocrinol (Lausanne). 2021; 12(March): 1–11. Publisher Full Text
11. Gomes I, de Almeida BP, Dámaso S, et al.: Expression of receptor activator of NFkB (RANK) drives stemness and resistance to therapy in ER+HER2- breast cancer. Oncotarget. 2020; 11(19): 1714–1728. PubMed Abstract | Publisher Full Text | Reference Source
12. Araki K, Miyoshi Y: Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer. 2018; 25(4): 392–401. PubMed Abstract | Publisher Full Text
13. Presti D, Quaquarini E: The PI3K/AKT/mTOR and CDK4/6 Pathways in Endocrine Resistant HR+/HER2- Metastatic Breast Cancer: Biological Mechanisms and New Treatments. Cancer Res. 2019; 11(9): 1–20. Publisher Full Text | Reference Source
14. Weiss RH: p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell. 2003; 4(December): 425–429. PubMed Abstract | Publisher Full Text
15. Karimian A, Ahmadi Y, Yousefi B: Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016; 42: 63–71. PubMed Abstract | Publisher Full Text
16. Cesinarini ME, Proietti CJ: Molecular mechanisms underlying progesterone receptor action in breast cancer: Insights into cell proliferation and stem cell regulation. Steroids. 2019; 152(June): 108503. PubMed Abstract | Publisher Full Text
17. Rastelli F, Crispino S: Factors predictive of response to hormone therapy in breast cancer. Tumori. 2008; 94(3): 370–383. Publisher Full Text
18. Al-Saleh S, Sharaf LH, Luqmami YA: Signalling pathways involved in endocrine resistance in breast cancer and associations with epithelial to mesenchymal transition (Review). Int. J. Oncol. 2011; 38(5): 1197–1217. PubMed Abstract | Publisher Full Text
19. Pearson A, Proszek P, Pascual J, et al.: Inactivating NF1 mutations are enriched in advanced breast cancer and contribute to endocrine therapy resistance. Clin. Cancer Res. 2020; 26(3): 608–622. PubMed Abstract | Publisher Full Text
20. Bertucci F, Ng CKY, Patsouris A, et al.: Genomic characterization of metastatic breast cancers. Nature. 2019; 569(7757): 560–564. PubMed Full Text
P53 and the immune response: 40 years of
Predicts Resistance To Endocrine Therapy and Decreased Post-
reclassification based on p53 immunohistochemical
microenvironment in breast cancer and the participation of
estrogens and its receptors into cancer physiopathology. Front.
Immunol. 2019; 10(MAR): 1–16.

Publisher Full Text

Towler H, Ruppert M, Britt K: The Immune Microenvironment of
Breast Cancer Progression. 2019. Reference Source

Cardoso F, Paluch-Shimon S, Senkus E, et al.: 5th ESO-ESMO
international consensus guidelines for advanced breast cancer
(ABC 5). Ann. Oncol. 2020; 31(12): 1623–1649. PubMed Abstract | Publisher Full Text

Duffy MJ, Symntt NC, Crown J: Mutant p53 in breast cancer:
potential as a therapeutic target and biomarker. Breast Cancer
Res. Treat. 2018; 170(2): 213–219. PubMed Abstract | Publisher Full Text

Silwal-Pandit L, Vollan HKM, Chin SF, et al.: TP53 mutation
spectrum in breast cancer is subtype specific and has distinct
prognostic relevance. Clin. Cancer Res. 2014; 20(13): 3569–3580. PubMed Text

Nik-Zainal S, Davies H, Staaf J, et al.: Landscape of somatic
mutations in 560 breast cancer whole genome sequences. 2016;
P34(7065): 47–54.

Abubakar M, Guo C, Koka H, et al.: Clinicopathological and
epidemiological significance of breast cancer subtype
reclassification based on p53 immunohistochemical
expression. npj Breast Cancer. 2019; 5(1): 1–9.

Publisher Full Text

Yamashita H, Toyama T, Nishio M, et al.: PS3 Protein Accumulation
Predicts Resistance To Endocrine Therapy and Decreased Post-
Relapse Survival in Metastatic Breast Cancer. Breast Cancer Res.
2006; 8(4): 1–8. PubMed Abstract | Publisher Full Text

Jia XQ, Hong Q, Cheng Y, et al.: Accumulation of p53 is prognostic
for aromatase inhibitor resistance in early-stage
postmenopausal patients with ER-positive breast cancer. Onc.
Targets. Ther. 2015; 8: 549–555. PubMed Abstract | Publisher Full Text

Gasco M, Shami S, Crook T: The p53 pathway in breast cancer.
Breast Cancer Res. 2002; 4(2): 70–76. PubMed Abstract | Publisher Full Text | Free Full Text

Levine AJ: P53 and the immune response: 40 years of
exploration—a plan for the future. Int. J. Mol. Sci. 2020; 21(2).

Muñoz-Fontela C, Mandinova A, Aaronson SA, et al.: Emerging roles
of p53 and other tumour-suppressor genes in immune
regulation. Nat. Rev. Immunol. 2016; 16(12): 741–750.

Lucero-Bolivar A, Pérez-Mora E, Villegas VE, et al.: Resistance and
overcoming resistance in breast cancer. Breast Cancer Targets
Ther. 2020; Volume 12: 211–229.

Liu Y, Leslie PL, Zhang Y: Life and Death Decision-Making by p53
and Implications for Cancer Immunotherapy. Trends Cancer.
Cell Press. 2021; 7: 226–239. Published Abstract | Publisher Full Text

Yamamoto M, Hosoda M, Nakano K, et al.: PS3 accumulation is
a strong predictor of recurrence in estrogen receptor-positive
breast cancer patients treated with aromatase inhibitors.
Cancer Sci. 2014; 105(1): 81–88. PubMed Abstract | Publisher Full Text

Kingston B, Cutts R, Bye H, et al.: Genomic profile of advanced
breast cancer in circulating tumour DNA. Nat. Commun. 2021;
12(1).

Publisher Full Text

Hynes NE, Watson CJ: Mammary gland growth factors: roles in
normal development and in cancer. Cold Spring Harb. Perspect.
Biol. 2010; 2(8): 1–18.

Russu J, Russo H: I. the Role of Estrogen in the Initiation of Breast
Cancer. J. Steroid Biochem. Mol. Biol. 2007; 102: 89–96.

Publisher Full Text | Reference Source

Vrtačnik P, Ostanek B, Mencej Bedrač S, et al.: The many faces of
estrogen signaling. Biochem. Med. 2014; 24(3): 329–342.

Publisher Abstract | Publisher Full Text

Szostakowska M, Trebšík ska-Stryjewska A, Gryzbovská EA, et al.: Resistance to endocrine therapy in breast cancer: molecular
mechanisms and future goals. Breast Cancer Res. Treat. 2019;
173(3): 483–487. PubMed Abstract | Publisher Full Text

Lewis JS, Jordan VC: Selective estrogen receptor modulators
(SERMs): Mechanisms of anticarcinogenesis and drug
resistance. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 2005; 591(1–2):
247–263. PubMed Abstract | Publisher Full Text

Dalai M, Bystricky K: Cell cycle and anti-estrogen effects
synergize to regulate cell proliferation and target gene
expression. PLoS One. 2010; 5(6): 1–9. PubMed Full Text

Yang W, Schwartz GN, Marotti JD, et al.: Estrogen receptor
alpha drives mTORC1 inhibitor-induced feedback activation
of PIK3/AKT in ER+ breast cancer. Oncotarget. 2018; 9(10):
8810–8822. PubMed Abstract | Publisher Full Text

Miricescu D, Totan A, Stancu-Spinu IL, et al.: PIK3/AKT/mTOR
signaling pathway in breast cancer: From molecular landscape
to clinical aspects. Int. J. Mol. Sci. 2021; 22(1): 1–24.

Publisher Full Text

Trabert B, Sherman ME, Nagarajan Kannan F53: Progesterone and
breast cancer. Endocr. Rev. 2020; 41(2): 320–344. PubMed Abstract | Publisher Full Text

Fendrick JL, Rahaf AM, Haslam SZ: Mammary Gland
Growth and Development from the Postnatal Period to
Postmenopause: Ovarian Steroid Receptor Ontogeny and
Regulation in the Mouse. J. Mammary Gland Biol. Neoplasia. 1998;
3(1): 7–22. PubMed Full Text

Cline JM, Soderqvist G, Von Schoultz E, et al.: Effects of hormone
replacement therapy on the mammary gland of surgically
postmenopausal cynomolgus macaques. Am. J. Obstet. Gynecol.
1996; 174(1): 93–100. PubMed Abstract | Publisher Full Text

Joshi PA, Goodwin PJ, Khokha R: Progesterone exposure and
breast cancer risk: Understanding the biological roots. JAMA
Oncol. 2015; 1(3): 283–286. PubMed Full Text

Obr AE, Edwards DP: The biology of progesterone receptor in the
normal mammary gland and in breast cancer. Mol. Cell.
Endocrinol. 2012; 357(1–2): 4–17. PubMed Abstract | Publisher Full Text

Jordá CH, Ahrendt H, Lange CA: Progesterone induces
progesterone receptor gene (PGR) expression via rapid
activation of protein kinase pathways required for cooperative
estrogen receptor alpha (ER) and progesterone receptor
(PgR) genomic action at ER/PgR target genes. Steroids. 2016;
114(14): 48–58. PubMed Full Text | Reference Source
61. Li X, O’Malley BW: Unfolding the action of progesterone receptors. J. Biol. Chem. 2003; 278(41): 39261–39264. PubMed Abstract | Publisher Full Text

62. Chen J: The cell-cycle arrest and apoptotic progression. Cold Spring Harb. Perspect. Biol. 2016; 1–16.

63. Peurala E, Koivunen P, Haapasaaari KM, et al.: The prognostic significance and value of cyclin D1, CDK4 and p16 in human breast cancer. Breast Cancer Res. 2013; 15(1): R5. PubMed Abstract | Publisher Full Text | Reference Source

64. Cardoso F, Kynäkides S, Ohno S, et al.: Early breast cancer-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. 2019 [cited 2021 May 24]. Reference Source.

65. Wang L, Han H, Dong L, et al.: Estrogen Receptor α loss in cancer: It’s all about diversity. Semin. Cancer Biol. 2019; 59:January: 66–79. Publisher Full Text

66. Kulaberoglu Y, Gundogdu R, Hergovich A: Protein Blimp1. Elsevier Inc.

67. Alzahrani AS: The Role of p53/p21/p16 in DNA-Damage Signaling and DNA Repair. Publisher Full Text

68. Osborne CK, Schiff R: PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol. 2019; 59(April): 125–132. PubMed Abstract | Publisher Full Text

69. Wang X, Belguise K, O’Malley BW, et al.: Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front. Oncol. 2020; 10(April). PubMed Abstract | Publisher Full Text

70. Stambolic V, MacPherson D, Sas D, et al.: TNF Signaling in Breast Cancer Subtypes with Ki-67 and p53 Is More Predictive of Long-Term Survival. 2015; 10: 1–14. Publisher Full Text

71. Jung SH, Hwang HJ, Kang D, et al.: mTOR kinase leads to PTEN-loss- induced cellular senescence by phosphorylating p53. Oncogene. 2019; 38(10): 1639–1650. Publisher Full Text

72. Pal S, Bhattacharjee A, Ali A, et al.: Chronic inflammation and cancer: Potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J Inflamm. (United Kingdom). 2014; 11(1): 25. Publisher Full Text

73. Zhou Y, Eppenberger-Castori S, Eppenberger U, et al.: The NF-κB pathway and endocrine-resistant breast cancer. Endocr. Relat. Cells. 2005; 12(SUPPL. 1): 37–46.

74. Dolcet X, Liobe D, Pallares J, et al.: NF-κB in development and progression of human cancer. Virchows Arch. 2005; 446(5): 475–482. PubMed Abstract | Publisher Full Text

75. Nakashita H, Bhat-Nakashita P, Martin DA, et al.: Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol. 1997; 17(7): 3629–3639. PubMed Abstract | Publisher Full Text | Free Full Text

76. Wang X, Belguise K, O’Neill CF, et al.: RelB NF-κB Represses Estrogen Receptor α Expression via Induction of the Zinc Finger Protein Blimp1. Mol. Cell. Biol. 2000; 20(14): 3832–3844. PubMed Abstract | Publisher Full Text

77. Tommasova D, Mulay SR, Bruns H, et al.: p53-independent roles of MDM2 in NF-κB signaling: Implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia (United States). 2012; 14(12): 1097–1110. PubMed Abstract | Publisher Full Text

78. Roos MG, Garrett W: p53 Mutations and Inflammation-Associated Cancer Are Linked through TNF Signaling. Mol. Cell. 2014; 56(5): 611–612. Publisher Full Text | Reference Source

79. Merzaglia MF, Bruni S, Elizalde PV, et al.: The Relative Contribution of p53 and p21 in Breast Cancer. Anticancer Res. 2015; 35(3): 856–96. PubMed Abstract | Publisher Full Text

80. Klibel M, Piskorz AM, Lee S, et al.: Regulation of PTEN transcription by p53. Mol. Cell. Biol. 2001; 21(2): 1–7. PubMed Abstract | Publisher Full Text

81. Alzahrani AS: The Role of p53/p21/p16 in DNA-Damage Signaling and DNA Repair. Publisher Full Text

82. Lee SK, Bae SY, Lee JH, et al.: Distinguishing Low-Risk Luminal A Breast Cancer Subtypes with Ki-67 and p53 Is More Predictive of Long-Term Survival. 2015; 10: 1–14. Publisher Full Text

83. Köbel M, Piskorz AM, Lee S, et al.: Regulation of PTEN transcription by p53. Mol. Cell. Biol. 2001; 21(2): 317–325. Publisher Full Text

84. Jung SH, Hwang HJ, Kang D, et al.: mTOR kinase leads to PTEN-loss-induced cellular senescence by phosphorylating p53. Oncogene. 2019; 38(10): 1639–1650. Publisher Full Text

85. Pal S, Bhattacharjee A, Ali A, et al.: Chronic inflammation and cancer: Potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J Inflamm. (United Kingdom). 2014; 11(1): 25. Publisher Full Text

86. Bischof K, Knappskog S, Hjelle SM, et al.: Identification of p53 and its isoforms in human breast carcinoma cells. Sci. World J. 2014; 1–10. Publisher Full Text | PubMed Abstract | Publisher Full Text

87. Kikuchi S, Nishimura R, Osako T, et al.: NF-κB in development and answering. Publisher Full Text

88. Avery-kiejda KA, Morten B, Wong-brown MW, et al.: The relative mRNA expression of p53 isoforms in breast cancer is associated with clinical features and outcome. 2014; 13(5): 58–96. PubMed Abstract | Publisher Full Text

89. Alfarsi L, Johnston S, Liu DX, et al.: The relative mRNA expression of p53 isoforms in breast cancer is associated with clinical features and outcome. 2014; 13(5): 58–96. PubMed Abstract | Publisher Full Text

90. Amin AH, Kim HJ, Han W, et al.: Breast Cancer Effect Modification of Hormonal Therapy by p53 Status in Invasive Breast Cancer. 2013; 16(4): 386–394. PubMed Abstract | Publisher Full Text

91. Chuaungowanich T, Pongpruttipan T, Chareonrat P, et al.: Neoadjuvant endocrine therapy in locally advanced estrogen receptor-positive breast cancer: Determining the optimal endocrine agent and treatment duration in postmenopausal women—a literature review and proposed guidelines. Breast Cancer Res. 2020; 22(1): 1–13. Publisher Full Text
Norbert Nass

1 Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
2 Department for Internal Medicine I, Dessau Medical Center, Dessau, Germany

In this review the authors summarize our current knowledge on a possible function of p53 in the occurrence of resistance towards endocrine therapy in breast cancer. The main hypothesis is that p53 might regulate estrogen receptor expression, abundance and signalling. Deregulation or mutation of p53 then causes resistance because the estrogen receptor is a major mediator of endocrine therapy. Therefore p53 should be considered in biomarker studies for anti-endocrine resistance. This is an interesting review as p53 mutations and abundance have not conclusively been investigated as a potential biomarker for anti-endocrine resistance. It is also carefully written and illustrated.

Besides the mechanisms discussed in this manuscript, there is cumulating evidence that the cancer microenvironment as well as non-coding RNAs are also involved in the development of endocrine therapy resistance. I suggest, this should be mentioned here.

The authors also state “Estrogen will form a dimer form, then bind to...”. I am not sure if this is true. In my current view, one estrogen molecule binds to one receptor binding domain. Then the estrogen receptor dissociates from e.g. heat shock proteins and forms dimers. Please clarify!

Later, the authors state “The final result of these processes are constant activation of the estrogen receptor target genes”. I think this not the whole story. Many gene expression studies on e.g. tamoxifen or fulvestrant adapted cell lines show that many apparently estrogen-unrelated genes are also regulated.

I think it would be worthwhile mentioning that PGR and ESR1 are usually co-expressed and only a few cases are described that express PGR, but not ESR1.
Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Cell Biology, Tamoxifen resistance in breast cancer, protein biosynthesis

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 10 Nov 2022
Freda Halim, Pelita Harapan University, Tangerang, Indonesia

"In this review, the authors summarize our current knowledge on a possible function of p53 in the occurrence of resistance towards endocrine therapy in breast cancer. The main hypothesis is that p53 might regulate estrogen receptor expression, abundance, and signaling. Deregulation or mutation of p53 causes resistance because the estrogen receptor is a major mediator of endocrine therapy. Therefore p53 should be considered in biomarker studies for anti-endocrine resistance. This is an interesting review as p53 mutations and abundance have not conclusively been investigated as a potential biomarker for anti-endocrine resistance. It is also carefully written and illustrated."

Dear Reviewer, we are grateful for your gracious review of our article, and we attempt to address several issues raised in the comment.
1. "Besides the mechanisms discussed in this manuscript, there is cumulating evidence that the cancer microenvironment, as well as non-coding RNAs, are also involved in the development of endocrine therapy resistance. I suggest this should be mentioned here."

Answer: We have already added several postulations about the tumor microenvironment's role in ET resistance and non-coding RNAs.

2. "The authors also state that "Estrogen will form a dimer form, then bind to...". I am not sure if this is true. Currently, one estrogen molecule binds to one receptor-binding domain. Then the estrogen receptor dissociates from, e.g., heat shock proteins and forms dimers."
Please clarify!"

Answer: we acknowledge this error and have already edited the paragraph.

3. "Later, the authors state, "The final result of these processes is constant activation of the estrogen receptor target genes.\" I think this is not the whole story. Many gene expression studies on, e.g., tamoxifen or fulvestrant-adapted cell lines show that many apparently estrogen-unrelated genes are also regulated."

Answer: We acknowledged these facts and edited the sentence. We already mentioned that several mechanisms of estrogen-unrelated genes are also regulated in the tamoxifen and fulvestrant-adapted cell lines.

4. "I think it would be worthwhile mentioning that PGR and ESR1 are usually co-expressed, and only a few cases are described that express PGR but not ESR1."

Answer: We agreed to this comment and already mentioned it in our review, with cited literature.

Competing Interests: Authors declared no competing interests regarding this study.
overexpression and 80% in TNBC2. This is also stated as a limitation in the study. The reviewer suggest that the study could also provide additional insight into the recent roles of p53 gene mutation applications as biomarkers in Her-2/neu overexpression and the TNBC group, in which both have higher incidence3.

It is possible for endocrine resistance to develop during the endocrine therapy or at a later time. While it is possible that the p53 gene mutation is suppressed by the presence of ER, this also means that individuals who are more susceptible to endocrine therapy have a greater chance of doing so naturally. In addition, the reviewer emphasize the importance of determining whether endocrine therapies that interact with ER, such as SERM and SERD, would also affect its suppressive effect on p53 mutation4,5.

In conclusion, p53 has the potential to become a biomarker for predicting ET resistance in the future, as its participation in the pathways involving the ER and PR molecular mechanisms is essential and cannot be ignored. The author has elaborated on the limitations of the predictability tool. The reviewer concur that additional research is necessary to determine whether p53 is effective as a prognostic biomarker for ET resistance in Luminal BC patients.

References
1. Gasco M, Shami S, Crook T: The p53 pathway in breast cancer.\textit{Breast Cancer Res}. 2002; \textbf{4} (2): 70-6 \textbf{PubMed Abstract} | \textbf{Publisher Full Text}
2. Shahbandi A, Nguyen HD, Jackson JG: TP53 Mutations and Outcomes in Breast Cancer: Reading beyond the Headlines.\textit{Trends Cancer}. \textbf{6} (2): 98-110 \textbf{PubMed Abstract} | \textbf{Publisher Full Text}
3. Jin MS, Park IA, Kim JY, Chung YR, et al.: New insight on the biological role of p53 protein as a tumor suppressor: re-evaluation of its clinical significance in triple-negative breast cancer.\textit{Tumour Biol}. 2016; \textbf{37} (8): 11017-24 \textbf{PubMed Abstract} | \textbf{Publisher Full Text}
4. Yamashita H, Toyama T, Nishio M, Ando Y, et al.: p53 protein accumulation predicts resistance to endocrine therapy and decreased post-relapse survival in metastatic breast cancer.\textit{Breast Cancer Res}. 2006; \textbf{8} (4): R48 \textbf{PubMed Abstract} | \textbf{Publisher Full Text}
5. Jia XQ, Hong Q, Cheng JY, Li JW, et al.: Accumulation of p53 is prognostic for aromatase inhibitor resistance in early-stage postmenopausal patients with ER-positive breast cancer.\textit{Onco Targets Ther}. 2015; \textbf{8}: 549-55 \textbf{PubMed Abstract} | \textbf{Publisher Full Text}

\textbf{Is the topic of the review discussed comprehensively in the context of the current literature?}
Yes

\textbf{Are all factual statements correct and adequately supported by citations?}
Yes

\textbf{Is the review written in accessible language?}
Yes

\textbf{Are the conclusions drawn appropriate in the context of the current research literature?}
Yes

\textbf{Competing Interests}: No competing interests were disclosed.
Reviewer Expertise: Airway, Cardiovascular, and Mediastinal Pathology, Gastrointestinal, Liver, and Gallbladder Pathology, General Pathology.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 14 Jul 2022
Freda Halim, Pelita Harapan University, Tangerang, Indonesia

Dear reviewer, thank you for your comment regarding our article. Indeed we believe p53 is an important marker to be checked in luminal breast cancer because it plays many seminal roles in endocrine resistance pathways. We are delighted that your comment on our work supports this.

Competing Interests: No conflict of interest is to be disclosed

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com