Sand fly synthetic sex-aggregation pheromone co-located with insecticide reduces the incidence of infection in the canine reservoir of visceral leishmaniasis: A stratified cluster randomised trial

Orin Courtenay, Erin Dilger, Leo A. Calvo-Bado, Lidija Kravar-Garde, Vicky Carter, Graziella B. Alves, Raquel Goncalves, Muhammad M. Makhdoomi, Mikel A. González, Caris M. Nunes, Daniel P. Bray, Reginaldo P. Brazil, James G. C. Hamilton

1 Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, United Kingdom, 2 School of Life Sciences, Institute of Science & Technology in Medicine, Keele University, Keele, Staffordshire, United Kingdom, 3 Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, Lancashire, United Kingdom, 4 Facultad de Medicina Veterinaria, Universidade Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil, 5 Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil

* These authors contributed equally to this work.

Citation: Courtenay O, Dilger E, Calvo-Bado LA, Kravar-Garde L, Carter V, Bell MJ, et al. (2019) Sand fly synthetic sex-aggregation pheromone co-located with insecticide reduces the incidence of infection in the canine reservoir of visceral leishmaniasis: A stratified cluster randomised trial. PLoS Negl Trop Dis 13(10): e0007767. https://doi.org/10.1371/journal.pntd.0007767

Editor: Ricardo Toshio Fujiwara, Universidade Federal de Minas Gerais, BRAZIL

Received: June 13, 2019
Accepted: September 9, 2019
Published: October 25, 2019

Abstract

Objective

To evaluate the efficacy of a synthetic sex-aggregation pheromone of the sand fly vector Lu. longipalpis, co-located with residual insecticide, to reduce the infection incidence of Leishmania infantum in the canine reservoir.

Methods

A stratified cluster randomised trial was designed to detect a 50% reduction in canine incident infection after 24 months in 42 recruited clusters, randomly assigned to one of three intervention arms (14 cluster each): synthetic pheromone + insecticide, insecticide-impregnated dog collars, or placebo control. Infection incidence was measured by seroconversion to anti-Leishmania serum antibody, Leishmania parasite detection and canine tissue
parasite loads. Changes in relative *Lu. longipalpis* abundance within households were measured by setting three CDC light traps per household.

Results

A total 1,454 seronegative dogs were followed-up for a median 15.2 (95% C.I.s: 14.6, 16.2) months per cluster. The pheromone + insecticide intervention provided 13% (95% C.I. 0%, 44.0%) protection against anti-*Leishmania* antibody seroconversion, 52% (95% C.I. 6.2%, 74.9%) against parasite infection, reduced tissue parasite loads by 53% (95% C.I. 5.4%, 76.7%), and reduced household female sand fly abundance by 49% (95% C.I. 8.2%, 71.3%). Variation in the efficacy against seroconversion varied between trial strata. Equivalent protection attributed to the impregnated-collars were 36% (95% C.I. 14.4%, 51.8%), 23% (95% C.I. 0%, 57.5%), 48% (95% C.I. 0%, 73.4%) and 43% (95% C.I. 0%, 67.9%), respectively. Comparison of the two interventions showed no statistically consistent differences in their efficacies; however, the errors were broad for all outcomes. Reductions in sand fly numbers were predominant where insecticide was located (chicken and dog sleeping sites), with no evidence of insecticide-induced repellence onto humans or dogs.

Conclusion

The synthetic pheromone co-located with insecticide provides protection particularly against canine *L. infantum* parasite transmission and sand fly vector abundance. The effect estimates are not dissimilar to those of the insecticide-impregnated collars, which are documented to reduce canine infection incidence, human infection and clinical VL disease incidence, in different global regions. The trialled novel lure-and-kill approach is a low-cost potential vector control tool against ZVL in the Americas.

Author summary

The predominant sand fly vector of the intracellular parasite *Leishmania infantum*, that causes human and canine visceral leishmaniasis in the Americas, is *Lutzomyia longipalpis*. Dogs are the proven reservoir. Vector control tools to reduce transmission suited to this predominantly exophilic vector are lacking. Insecticide-impregnated dog collars protect dogs against infectious bites from sand fly vectors, and result in reductions of new infections in both dogs and humans. However, collars are costly for endemic communities, and alternative approaches are needed. Recently the bulk synthesised sex-aggregation pheromone of male *Lu. longipalpis* was shown to attract large numbers of conspecific females to lethal pyrethroid insecticides, indicating the potential for use in a vector control application. This study, conducted in Brazil, evaluated the efficacy of this novel lure-and-kill approach to reduce seroconversion and infection incidence with *L. infantum* in the canine reservoir, in addition to measuring its impact on household abundance of *Lu. longipalpis*. Deployed in 14 stratified clusters, the outcomes were compared to those attributed to insecticide impregnated collars fitted to dogs in another 14 clusters; each intervention was compared to 14 clusters that received placebo treatments. The beneficial effects of the lure-and-kill method were most noticeable on confirmed infection incidence and clinical parasite loads, and in reducing sand fly abundance. The overall effect of the two interventions were not statistically dissimilar, though the confidence intervals were broad. We
conclude that the novel low-cost lure-and-kill approach should be added to the vector control toolbox against visceral leishmaniasis in the Americas.

Introduction

Sustainable control of arthropod vectors to reduce infectious disease transmission represents a major challenge confronting public health programmes[1]. Standard approaches such as indoor residual spraying of insecticides (IRS) or insecticide treated nets (ITNs), are most effective against insecticide-susceptible vector populations that are endophilic and/or bite when hosts at risk are under ITNs e.g. as against *Anopheles gambiae*[2]. Suboptimal insecticide-based vector control occurs when contact rates with insecticide treated surfaces by susceptible vectors is less frequent[3], as expected following IRS/ITN campaigns against exophilic vectors. One potential solution is to lure biting vectors to strategically placed insecticide using attractant semiochemicals (kairomones and pheromones). Specific insect pheromones mediate conspecific mating (sex), aggregation, oviposition or invitation behaviour[4]. In the agricultural sector, integrated pest management programs deploy pest pheromones to monitor and reduce pest populations and disrupt pest mating aggregations, with the aim to limit crop yield loss, environmental damage, and insecticide use[4–6]. In contrast, whilst some pheromones produced by vectors of public or veterinary health importance have been identified e.g.[7], they appear to be absent or not characterised in many of the most important human and animal disease vectors. Indeed, to our knowledge, there are no published studies that have tested the efficacy of a vector pheromone to reduce infection or disease incidence.

One important vector species that produces a large amount of sex-aggregation pheromone is *Lutzomyia longipalpis* (Diptera: Psychodidae). This is the principal vector of *Leishmania infantum* (Kinetoplastida: Trypanosomatidae) in the Americas, a protist parasite that causes human and canine zoonotic visceral leishmaniasis (ZVL)[8]. Domestic dogs are the proven reservoir host[9], though non-reservoir (“dead-end”) hosts, such as chickens and other domestic livestock, are significant blood sources, and assumed to help maintain sand fly populations[10].

The majority of incident human ZVL cases occur in Brazil[8], where the national ZVL control program includes human ZVL case detection and treatment, and reactive IRS of houses and animal sheds within 200m of a newly detected human case[11, 12]. To reduce the canine reservoir population, the program recommends test-and-slaughter or chemotherapeutic treatment of *Leishmania* infected dogs, canine vaccination and/or application of topical insecticides[11]. Despite this extensive arsenal of control tools, there is no apparent decline in human case incidence[13–15]. On the contrary, ZVL has expanded into new geographical regions and into urban settings[15–17]. Thus, sustainable alternative or complimentary methods to combat transmission are needed.

The recent bulk synthesis of the male *Lu. longipalpis* sex-aggregation pheromone[18] provides such an opportunity[19]. Male *Lu. longipalpis* release the pheromone from abdominal glands, which attracts conspecific males and appetitive females. The resulting leks are formed on or near animal hosts, where the sand flies copulate and the females blood-feed, which results in *L. infantum* transmission[20–23]. In field experiments, the synthetic pheromone attracts significantly more *Lu. longipalpis* to experimental chicken sheds than to those without the synthetic pheromone[24]. And when co-located with pyrethroid insecticide applied to experimental sheds, it attracts and kills significantly more *Lu. longipalpis* compared to untreated control sheds[25]. In a long-lasting controlled release formulation, the pheromone...
is attractive for up to 3 months[19]. To date, field trials to evaluate the efficacy of this novel lure-and-kill approach to reduce Leishmania transmission have not been conducted.

Here we report the results of a stratified cluster randomised trial, conducted in Brazil, to test the efficacy of the synthetic pheromone co-located with a pyrethroid insecticide, to reduce (i) the incidence of Leishmania exposure and infection in the canine reservoir; (ii) the abundance of Lu. longipalpis around households; and (iii) to compare these outcomes in relation to contemporary deployment of deltamethrin-impregnated Scalibor collars fitted to dogs.

Methods
Study location
The study was conducted between July 2012 and May 2016 in semi-urban/rural towns and in suburban districts of Aracatuba city (21204011S; 50458883W), located in the administrative region of Aracatuba, N.W. Sao Paulo state, Brazil. ZVL expanded within this region over the last two decades, where it is now considered endemic[16, 26–29]. The human case incidence was 6.3 per 100,000 with a case fatality rate of 9% recorded in 2011 just prior to the study[27]. This represents the highest human VL incidence within Sao Paulo state which recorded 2,332 autochthonous cases between 1999 and 2013[28, 30]. Canine seroprevalences in the study region ranged from 12–45% (Superintendência de Controle de Endemias [SUCEN], unpublished data).

Study design
The trial was designed as a stratified cluster randomised trial (CRT) where the towns (municipalities), and Aracatuba subdistricts, were designated as independent clusters. Clusters, households and dogs were recruited in a three–step procedure (Fig 1).

Recruitment
Clusters. Forty towns within the Aracatuba administrative region and 12 subdistricts of Aracatuba city, were listed for potential trial inclusion. Cluster inclusion criteria included (i) evidence of recent transmission: at least one confirmed human or/and canine infection within the 4 years prior to the intervention study, by inspection of human case records[30], and canine testing records in 2006–2008 (SUCEN, unpublished data). (ii) That the location was within feasible driving time (1.5 hours) of the trial operations centre in Aracatuba; and (iii) that each cluster was geographically distinct, separated by ≥1 km to minimise any inter-cluster contamination by dispersing Lu. longipalpis sand fly vectors. Mark-release-recapture studies show ≥97% of Lu. longipalpis recaptures are within 300m of the release location[21, 31, 32].

Thirty-three municipalities and 9 districts of Aracatuba (42 clusters in total) met these inclusion criteria (Fig 1), being located within an area of approximately 11,250km².

Houses and dogs. Local health authorities provided lists of households within clusters for potential recruitment based on criteria that (i) the household maintained at least one chicken (dead-end host) and at least one seronegative dog (defined below) at the time of recruitment; and (ii) the householder(s) and their animals were normally resident. Following consultation with local health authorities, and written permission provided by the municipality health officer, informed written consent was obtained from dog owners to test their dog(s) for anti-Leishmania antibodies (described below).

The study experienced substantial loss-to-follow-up (LTF) of dogs and houses primarily due to dogs being lost through mortality or unknown causes and/or households no longer
Cluster randomised trial against leishmaniasis

40 towns + 12 Aracatuba subdistricts listed with evidence of human and/or canine transmission between 2008-2012

7 towns + 3 subdistricts excluded as they did not meet the inclusion criteria: no reported canine or human cases

33 towns and 9 Aracatuba subdistricts met the inclusion criteria and assigned as clusters

42 clusters stratified into 3 strata based on pre-intervention canine seroprevalence: >50% (Strata 1 n=18), <50% (Strata 2 n=15), ATA (Strata 3 n=9). Clusters within strata were then randomized to three interventions

14 pheromone + insecticide clusters:
6 (Strata 1), 5 (Strata 2), 3 (Strata 3)

14 collar clusters:
6 (Strata 1), 5 (Strata 2), 3 (Strata 3)

14 control clusters:
6 (Strata 1), 5 (Strata 2), 3 (Strata 3)

Household and canine recruitment

Pre-intervention: canine seroprevalence of 0.416
1,702 tested dogs in 570 houses

Recruited: 994 uninfected dogs in 452 houses. 480 dogs in 279 houses with follow-up sample.

Pre-intervention: canine seroprevalence of 0.381
1,641 tested dogs in 533 houses

Recruited: 1016 uninfected dogs in 413 houses. 519 dogs in 269 houses with follow-up sample.

Pre-intervention: canine seroprevalence of 0.390
1,575 tested dogs in 513 houses

Recruited: 961 uninfected dogs in 385 houses. 455 dogs in 241 houses with follow-up sample.
maintaining chickens or eligible dogs. Thus, to fulfil the statistical power requirements, new dogs and houses were recruited between November 2012 and October 2014 (see S1 Table).

Cluster stratification

Clusters were then stratified, each assigned to one of three strata based on the initial pre-intervention canine seroprevalence within the cluster, of >50% (strata 1: “high” n = 18 clusters), <50% (strata 2: “low” n = 15 clusters), or Aracatuba location (strata 3: “mixed high and low” n = 9 clusters) (Fig 1). Aracatuba clusters were placed in a separate strata as being the regional capital it was considered to have better resources to manage ZVL, knowledge, attitudes and practises (KAP) characteristics, and demographics that could affect transmission dynamics in ways different to in the towns[33].

Randomisation and treatment allocation

Clusters received one of three treatments, namely (i) synthetic pheromone lure co-located with pyrethroid insecticide; (ii) pyrethroid-impregnated collar fitted to dogs, or (iii) placebo control. These are described below. Within the three defined strata, clusters were ranked in descending order of pre-intervention seroprevalence, and then randomly assigned to one of the three interventions by random number generator in STATA software. All subsequent within-stratum triplet clusters were similarly assigned alternately to intervention groups, resulting in 14 clusters in each treatment arm (Fig 1).

The interventions

Synthetic pheromone lures and insecticide arm. The synthetic pheromone formulation (±-9-methylgermacrene-B [CAS RN: 183158-38-5]) was a copy of the (S)-9-methylgermacrene-B pheromone produced by male *Lu. longipalpis* from the study region[34]. 10mg of the pheromone was sealed in an 8 cm × 3 cm polythene sachet prototype dispenser designed for slow release (Russell-IPM Ltd. UK), and equivalent to natural pheromone release by 80,000 male *Lu. longipalpis* over a 3 month period[19]. Each household received a lure placed within 1m of the main chicken roosting site. Co-located with the pheromone, micro-encapsulated lambda-cyhalothrin (LC-ME) (f:Demand 2.5cs, Syngenta, Brazil) was applied at 20mg a.i. m⁻² to surfaces close to chicken roosting sites using a GUARANY 441–10 compression sprayer (Guarany Industrie Comercio Ltda, Itu, São Paulo, Brazil). Sprayed sites included (i) all available surfaces in and on chicken coops (32.6% of sites), (ii) from ground level up to 3m of the roosting tree, paying special attention to roosting branches (52.5%), or (iii) 3m² (1.5m x 2m) wall surfaces next to ground perches (7.7%), or similar unusual sites (7.2%). Pheromone lures and insecticide were replaced on 9 occasions at an average interval of 91 (S.D. 20.0) days (S2 Table).

Insecticide-impregnated collar arm. Scalibor collars (Intervet, MSD Saúde Animal, São Paulo, Brazil) impregnated with 40mg g⁻¹ deltamethrin, consisted of a 65cm white polyvinyl chloride strip weighing 25g. Following the manufacturer’s instructions, collars were fitted to dogs ≥3 months old, and expected to reach full activity about 7 days after fitting. All seronegative dogs per house were fitted with a Scalibor collar at baseline. At subsequent recruitment and collaring rounds, all dogs in recruited households were fitted with a collar in order to reduce transmission from positive, potentially infectious, dogs. The veterinary team fitted and replaced any lost collars, promoted their correct use to dog owners, and recorded any adverse
reactions and reasons for collar losses. Scalibor collars have an activity period of 5–6 months against sand flies according to the product label, though longer durations of >10 months are experimentally demonstrated[35–37]. Collars were routinely replaced on 5 occasions at an average interval of 182 (S.D. 12.1) days (S2 Table).

Control arm. All dogs in control clusters received a placebo collar at recruitment, houses received an identical lure dispenser containing no pheromone, and chicken roosting sites were sprayed with water. For logistic reasons, spraying was limited to two rounds, at baseline and 368 days later (S2 Table). New eligible dogs were fitted with a placebo collar as described; losses of placebo collars or lures were replaced at subsequent dog recruitment rounds (S1 Table).

Blood sampling and sampling regime
Peripheral blood was collected from dogs by veterinarians by venepuncture onto two replicate Whatman 3MM Chromatography papers (GE Healthcare, 3030–614), which were then dried at ambient temperature, labelled, placed in individual zip plastic bags containing silica gel (Geejay Chemicals), and stored at 4°C until processing. Sera eluted from the filter papers were tested for anti-*Leishmania* antibodies by ELISA. Up to 5mls of blood was also collected into EDTA tubes to harvest leukocytes for molecular detection of *L. infantum* parasites by quantitative PCR (qPCR). The laboratory procedures are described in the Supplementary Information file S1 Text.

At baseline, veterinarians scored dogs for eight (non-specific) signs of canine leishmaniasis: alopecia, dermatitis, hyperkeratitis, skin lesions, conjunctivitis, onychogryphosis (excessive nail growth), lunettes, uveitis, and lymphadenopathy (enlarged popliteal lymph nodes). Each sign was scored on a semi-quantitative scale from 0 (absent) to 3 (severe), or 0 to 2 (for onychogryphosis and hyperkeratitis). Scores were then summed to give an overall clinical severity score.

Canine blood samples were collected at baseline to identify potential recruits. Recruited dogs were then sampled and tested again at their final follow-up.

Trial outcome measures
The primary outcome measure was cluster-level cumulative seroconversion incidence in naïve dogs in each intervention arm compared to in the control arm. The secondary canine outcome measures were *L. infantum* parasitological infection incidence, and changes in blood parasite loads (*L. infantum* genome equivalents per ml blood buffy coat), confirmed by specific qPCR. The third outcome measure was relative changes in cluster-level household counts of *Lu. longipalpis* measured by setting CDC miniature light traps as described below.

Canine clinical condition is not considered a reliable marker of infection incidence following others[38]; signs of canine leishmaniasis are non-specific, thus positive diagnosis requires extensive differential diagnosis, and statistical power was insufficient in this study to rely on changes in advanced canine VL disease.

Sand fly catches
After the final canine follow-up sample in October 2015, the trial interventions as described above were continued for an additional 7 months until the end of May 2016 to facilitate entomological follow-up. Sand fly sampling was conducted in 42 clusters in 6 approximate quarterly trapping rounds from January 2015 to May 2016 (January/February; April; July/August; October/November in 2015; and January/February; and April/May in 2016). Data from 2 clusters were incomplete and thus excluded from the analyses. The final dataset was
generated from 209, 188 and 193 (n = 590) trapping nights in 129, 121 and 113 (n = 363) houses, in 14, 13, and 13 control, pheromone + insecticide and collar intervention clusters, respectively.

Miniature CDC light traps with the light bulb removed were positioned in three locations per household: inside the house preferably in the main bedroom; at the dog sleeping site or kennel entrance; and at the principal chicken roosting site. Each trap was thus associated with the respective host: humans, dogs and chickens. Captured sand flies were sexed and counted under a stereomicroscope. Specific identification was not performed as the vast majority (>98%) of peridomestic sand flies captured in the study region during past and contemporary entomological studies, were confirmed to be *Lu. longipalpis* by dissection of spermathecae[39, 40].

Data collection

Veterinary staff collected details of the dog’s history, and information on any newly acquired dogs, host numbers, and losses of dogs, collars and pheromone lures, by verbal questionnaire to household heads by house-to-house visitation and/or by active telephone contact at least every 3 months.

Sample size calculations

The sample size was calculated for the primary outcome measure (canine seroconversion incidence) for a two-treatment randomised control trial[41, 42], whereby cluster-level outcomes in collar and in pheromone treated clusters were each compared to the outcomes in the control clusters.

The trial was statistically powered to detect a 50% reduction in *L. infantum* seroconversion incidence in naïve dogs after 24 months follow-up with a baseline canine instantaneous annual incidence of 0.6, estimated from canine testing between 2006–2008 in the region (SUCEN, unpublished data) (see Table 1). Calculations were based on a surveyed harmonic mean of 24 dogs per cluster (assuming 1 negative dog recruit per household), with equal numbers of

Sample period	Population sample	Force of Infection (FOI)	Sero-prevalence (pos/n dogs)
		λ incidence/year (SD), N	ρ recovery/year (SD)
		dogs	
2012–2014	Control arm	1.14 (0.163), 1,558	1.48 (0.264)
	Pheromone arm	1.47 (0.225), 1,693	1.82 (0.335)
	Collar arm	1.14 (0.159), 1,631	1.52 (0.265)
	Trial arms combined	1.26 (0.151), 4,882	1.64 (0.235)
2006–2008	19 regional towns	0.61 (0.094), 2,304	0.63 (0.121)
2006–2008	20 regional towns		0.451 (4592/10,186)

1 FOI estimates were calculated from fitting age-seroprevalence data to an incidence (λ)-recovery (ρ) model.
2 Crude seroprevalences estimated including dogs without age records.
3 estimates calculated from dogs pre-recruitment resident in the 14 towns (= trial clusters) per intervention arm to which they were subsequently randomly allocated; serological infection detected using the ELISA described in this study.
4 FOI estimates calculated from canine samples accompanied by dog age data; serological infection detected using an ELISA kit (EIE-CVL, Bio Manguinhos/Fiocruz-RG, Brazil)
5 estimates for the same regional population as in (4) but including also test data without dog age records.

https://doi.org/10.1371/journal.pntd.0007767.t001
clusters per arm, and coefficient of variation between clusters $\kappa_{m} = 0.40$. The latter value was more conservative than $\kappa_{m} = 0.34$ estimated from the variation in cluster-level canine sero-prevalences (1,701 dogs tested in 42 clusters) at initial trial recruitment. Under these design conditions, 12 clusters per arm were required per intervention arm to achieve a statistical power of 90% with 95% confidence to reject the null hypothesis.

To buffer effects of potential loss-to-follow-up (LTF) of clusters and dogs, the number of clusters enrolled was increased to 14 clusters per arm. By the end of the trial no LTF of clusters occurred, though substantial LTF of dogs and houses occurred (see Results). Recalculations at the end of the study, revealed a harmonic mean of 35 dogs followed-up for an average 16.4 months per cluster, with a starting instantaneous incidence of 1.26year^{-1} measured from age-prevalence data in all recruited dogs prior to being under intervention (Table 1). From these data, the trial design provided 90% statistical power to detect an equivalent 44% reduction in infection incidence between trial arms.

Statistical analysis

Analysis of the intervention effect on seroconversion and parasite detection incidence were computed using mixed effects binomial complimentary log–log models expressed as incident risk ratios (IRR). Random intercepts for trial clusters were fitted (trial cluster being the higher level of structuring in the data[43]), and \log_{10} normalised days under intervention set as the model offset. Similarly, negative binomial mixed effects models were used to test the intervention effects on $\log_{10} + 1$ transformed *Leishmania* parasite loads (ml$^{-1}$), and on sand fly numbers.

Complimentary log–log model fits were achieved by Gauss–Hermite numerical adaptive quadrature of the random-effects estimators (quadchk routine in STATA), validated using 16 integration points in model run comparisons to confirm quadrature fitting accuracy; model runs showed $\leq 0.01\%$ variation in resulting estimates, and were thus considered to be reliable [44].

To measure the effects on canine infection outcomes, models comprised variables describing the trial structure, and variables included *a priori* on the basis that they could affect the trial balance. These were strata (3-levels), baseline canine exposure (baseline anti-*Leishmania* antibody titre), proportion of time (days) under intervention in the bimodally high (December-May) (*cf.* low June -November) sand fly season[45], and household mean numbers of dogs and chickens as surrogates of host odour intensity that may invoke a density-dependent or competing attractant[20, 31, 46].

For analyses of sand fly data, *a priori* covariates included strata, sand fly trapping period (6 levels) reflecting sand fly seasonality, and host abundance at the time of trapping i.e. numbers of people, dogs and chickens associated with each of the 3 trapping locations per household. The model incorporated a cluster term for trial clusters.

The outcomes from these models were considered “unadjusted” effect estimates. Unadjusted estimates were then adjusted on detection of significant model improvement by individual inclusion of additional demographic variables in the model, namely, predominant chicken roosting site category (described above); month and sand fly season (as above) of dog recruitment; dog age at recruitment (median: 24mo.; IQR: 8-48mo.); dog sex; property type (house or small holding) clinical condition score of dog at recruitment (median: 3.1; IQR: 2–4). Each variable was evaluated for significance by log–likelihood ratio test (LRT) of nested models.

In a secondary analysis, the outcome × strata (3-level) interaction term was tested against the full model to evaluate differential intervention effects between trial strata. In the case that
the interaction term was significant with \(\geq 90\% \) probability, individual strata-level effect estimates were further investigated.

The equality of variances in cluster-level dog follow-up time (days) was tested using the Levene’s robust test statistic adapted by Brown & Forsythe\[47\] to provide robust estimators of central tendency (median [W50] and 10\% trimmed mean [W10]).

Data were analysed in STATA v.15 (StataCorp LP, College Station, TX).

Force of infection estimation

The instantaneous incidence (force of infection, FOI) was calculated for dogs serologically tested prior to trial recruitment, by fitting the age-prevalence data to a standard age-incidence-recovery model\[48, 49\].

To evaluate changes in infection rates from 6–8 years earlier, the FOI was similarly calculated using historical data with age records for 2,304 dogs resident in 19 towns in the same region, sampled in 2006–2008 (SUCEN, unpublished data). Positives were identified on detection of “\(L. \) major-like” promastigote soluble antigens\[50\] by an ELISA-based kit (EIE-leishmaniose-visceral-canina-Bio-Manguinhos [EIE-LVC], Bio-Manguinhos/Fiocruz- RJ, Brazil). Seroprevalence in the same historical populations was estimated by inclusion of an additional 7,882 dog results that did not have age records (n = 10,186 dogs in total) (see Table 1).

Data management and masking

Diagnostic results and household questionnaire data were entered into data-checking entry forms designed in ACCESS 2007 relational database by a trained technician, and databases then checked for inconsistencies. Unblinding for final analysis was conducted independently after all dogs had been tested by laboratory staff who were blinded to the cluster treatments and to cluster and household identities through a bar-coding system; all tested sample tubes were bar-coded and results subsequently matched to dog ID bar-codes in the database.

Ethical considerations

The trial protocols for dogs were approved by the Committee for Ethical Use of Animals (CEUA [FOA-00124-2013]), UNESP, Brazil, and the Animal Welfare and Ethical Approval Body (AWERB, [48723]), University of Warwick, UK. Household questionnaire designs were approval by the Biomedical and Scientific Research Ethics Committee (BSREC, [REGO-2015-1388]), University of Warwick, UK. Informed written consent was obtained from dog owners to sample and fit collars to their dogs, and from the town and district health authorities to conduct the study within their administrative jurisdiction.

Results

Pre-enrolment canine infection estimates

A total 4,918 dogs were serologically tested prior to trial recruitment, of which 2,971 dogs (60\%) were seropositive (Table 2). Seroprevalence and FOI estimates were similar between dogs in the three trial arms to which they were subsequently allocated (Table 1; Fig 2). No statistical differences were detected in these infection measures between the trial arms, accounting for the trial structure, date of recruitment, dog age and trial cluster (mecloglog mixed effects model: \(z < 0.89, P > 0.38 \)). Notably these pre-intervention infection rates were higher than equivalent estimates calculated from canine serosurvey records in the same region conducted a number of years previously (Table 1; Fig 2).
Dog recruitment and follow-up

The initial enrolment included 630 seronegative dogs under intervention by July-November 2012 (S1 Table). New dogs and houses were recruited between November 2012 and October 2014 (S1 Table). This resulted in a total 2,971 seronegative dogs recruited and placed under the trial interventions, of which, 1,454 (48.9%) dogs, resident in 789 houses across the 42 trial clusters, remained in the study for follow-up testing (Table 2). A median 1 (95% C.I.: 1, 2)

Table 2. Summary of the total dogs sampled, recruited and with follow-up sample, according to the trial intervention arm to which the dogs were subsequently allocated.

Intervention arm	Dogs initially sampled for potential recruitment	Seronegative dogs recruited (proportion of sampled)	Negative dogs with follow-up sample (proportion of recruits)
Control	1,575	961 (0.610)	455 (0.473)
Pheromone	1,702	994 (0.584)	480 (0.483)
Collar	1,641	1,016 (0.619)	519 (0.411)
Total	4,918	2,971 (0.604)	1,454 (0.489)

https://doi.org/10.1371/journal.pntd.0007767.t002

Dog recruitment and follow-up

The initial enrolment included 630 seronegative dogs under intervention by July-November 2012 (S1 Table). New dogs and houses were recruited between November 2012 and October 2014 (S1 Table). This resulted in a total 2,971 seronegative dogs recruited and placed under the trial interventions, of which, 1,454 (48.9%) dogs, resident in 789 houses across the 42 trial clusters, remained in the study for follow-up testing (Table 2). A median 1 (95% C.I.: 1, 2)
seronegative dogs was enrolled per house which did not differ between treatment arms (Poisson: \(z < 0.34, P > 0.16 \)).

The follow-up cluster population was observed for a per capita median 17.1 (95% C.I.s: 15.2, 17.7, \(n = 455 \) dogs), 14.7 (95% C.I.s: 14.0, 16.7, \(n = 480 \)) and 15.2 (95% C.I.s: 13.2, 15.5, \(n = 519 \)) months under control, pheromone and collar interventions, respectively (S3 Table). Similar fractions of the follow-up times (0.507, 0.454 and 0.416) fell within the seasonally high period of sand fly abundance (December to May) (LRT: \(\chi^2(2) = 1.08, P = 0.58 \)). The variance in cluster-level dog follow-up days were not dissimilar between intervention arms (Levene’s \(W_{10}[df: 2.39] = 1.78, P = 0.838; W_{50}[df: 2.39] = 1.60, P = 0.853 \)). The epidemiological data for the three intervention arms (Tables 1 and 2; Fig 2), indicated that the randomization process achieved good trial balance.

Intervention outcomes

Seroconversion incidence

Of the seronegative recruits, 225 (49.5%), 217 (45.2%), and 182 (35.1%) in control, pheromone and collar arms respectively, seroconverted by the end of the study. The annual cluster seroconversion incidence varied between the three trial strata within intervention arms (Fig 3; S3 Table).

Accounting for the variables describing the trial structure and follow-up intervals, the unadjusted seroconversion incident risk ratio (IRR) was 0.88 (95% C.I. 0.66, 1.16) in the pheromone arm, and IRR = 0.65 (95% C.I. 0.48, 0.87) in the collar arm, each compared to the control arm (model fit: Wald \(\chi^2(8) = 31.4, P < 0.0001 \) (Table 3).

Potential adjustment to these estimates was assessed by inclusion of additional demographic variables in the model. Only one significant covariate was identified: the location of the chicken principal roosting site i.e. where the synthetic pheromone + insecticide were colocated (LRT: \(\chi^2(3) = 9.57, P = 0.023 \)). This led to slight modifications of the effect estimates,
indicating protection against seroconversion attributed to the pheromone and collar interventions of 13% (95% C.I. 0%, 34.0%), and 36% (95% C.I. 14.4%, 51.8%), respectively (Table 3).

Insecticide treatment of the two most common roosting site categories, low trees (53%), and chicken shelters (33%), were not dissimilar in intervention effect; the significant modification was associated with the third roosting site category, most commonly hollows in the ground, but which represented only 7% of all roost sites. In the latter case insecticide was sprayed on the nearest wall.

Neither intervention resulted in significant changes in the mean log_{10} anti-Leishmania antibody units in seroconverted dogs (z < 1.45, P > 0.10).

In a secondary analysis, potential differences in the intervention effects on seroconversion incidence between trial strata were examined. This provided evidence of strata-level variation (strata × treatment interactions, LRT test: χ²(4) = 8.34, P = 0.078), observed only in the pheromone arm, suggesting a negative impact in Aracatuba city (stratum 3, n = 3 clusters) (IRR = 1.66 [95% C.I.s: 0.971, 2.849], P = 0.064) (pheromone arm × stratum 3 interaction: z = 2.36, P = 0.018). In contrast, the pheromone effects in strata 1 and 2 (n = 11 town clusters) suggested a protective effect of 27% (95% C.I.s: 0.02%, 46.8%) (IRR = 0.73 [0.532, 0.998], P = 0.048).

Parasitology. Buffy coat samples from 775 recruited dogs at follow-up were tested for the presence of Leishmania kDNA in peripheral blood by qPCR (Table 4). Parasites were detected in 117 (15.1%) of dogs overall; including 20.8% (64/308) of dogs that seroconverted, and 11.4% (53/467) of dogs that did not, by follow-up sample. The latter category of dogs was neither differentially associated with the date or season of recruitment, or their log_{10} follow-up time (fully adjusted model: z > 0.049, P > 0.23), to suggest a predominance of prepatent dogs in the recruited sample.

The percent reduction in the crude number of parasite positive dogs attributed to pheromone and collar interventions at follow-up were 43.3% and 26.1%, respectively (Table 4). Accounting for the trial structure, follow-up periods and covariates in analyses as described above, the levels of protection against confirmed Leishmania infection incidence were 51.5%
Leishmania parasite loads. The geometric mean *Leishmania* parasite loads per ml⁻¹ in the 117 qPCR positive dogs were highly variable and over-dispersed (Table 4). Relative to control clusters, the pheromone intervention reduced parasite loads by an average 53.1% (95% C.I. 5.4%, 76.7%), and the collar arm by an average 47.6% (95% C.I. 0%, 73.4%) (Table 4). The intervention effects did not significantly vary between strata (test of treatment × strata interaction term: LRT: $\chi^2(4) = 4.10, P = 0.393$), nor were effect modifications significant by inclusion of additional demographic variables (LRT: $\chi^2(1–3) < 2.68, P > 0.444$).

For the 308 dogs that seroconverted with parasite counts, the log₁₀ parasite loads were not correlated with corresponding log₁₀ IgG antibody units (Spearman’s $r = 0.074, P = 0.20$); similar non-significant patterns were observed across treatment arms. The annual incidence of confirmed parasitological infection and seroconversion post intervention were also not correlated (Fig 4).

Sand fly abundance

Complete sand fly trapping records were available for 590 trap nights in 363 houses in 40 trial clusters (S4 Table). The number of trap nights (trapping effort) were similar between intervention arms ($t < 1.33, P > 0.19$) and between trial strata ($t < 1.57, P > 0.124$). Relatively few *Lu.*
longipalpis were captured per house, and only 46% of houses were positive for sand fly capture; which was similar under each intervention (S4 Table).

The pheromone intervention significantly reduced the numbers of female and male sand flies captured at households relative to controls, whereas the collar intervention tended to reduce only the number of females (Table 5). No consistent differences in sand fly captures were observed between the trial strata (test of intervention arm \(\times \) strata interaction term: \(z <1.15, P > 0.248 \)). Inclusion of additional demographic variables did not significantly modify these effect estimates.

Changes in the distribution of vectors at households

Changes in sand fly numbers in CDC traps placed at human, dog and chicken sleeping sites were further examined. In placebo clusters, the majority of Lu. longipalpis were captured at chicken sleeping sites, with fewer but similar numbers associated with dog sleeping sites, and humans (i.e. inside houses) (Table 6).

In the pheromone arm, reductions of 66% (95% C.I. 36%, 81.7%) and 69% (95% C.I. 43.6%, 82.6%) were observed in female and male sand flies captured at the chicken roosting site, being the site of pheromone + insecticide co-location (Table 7). In the collar arm, there was a mean 52% (95% C.I. 0%, 87.9%) reduction in female sand flies at dog trapping sites attributed to collars, although this narrowly failed to reach statistical significance (Table 7). These reductions were not mirrored by significant changes in sand fly numbers at the corresponding alternative trap locations (Table 7).

Males made up the majority of captures which was not unexpected (Table 6). The number of female sand flies was positively associated with the number of male flies in the same trap location (Table 5).

Table 5. Intervention effects\(^1\) on household numbers of male and female Lu. longipalpis sand flies captured across 3 CDC lights traps per house.

Treatment arm	Females IRR (95% C.I.s)	Males IRR (95% C.I.s)
Pheromone	0.51 (0.287, 0.918) P = 0.03	0.44 (0.200, 0.974) P = 0.04
Collar	0.57 (0.321, 1.007) P = 0.05	0.94 (0.460, 1.918) P = 0.86

\(^1\)estimated from negative binomial mixed effects models including a priori predictors.

https://doi.org/10.1371/journal.pntd.0007767.t005

Sand flies	Arm	No. on people (proportion of treatment total)	No. on dogs (proportion of treatment total)	No. on chickens (proportion of treatment total)	Total sand flies
Females	Control	34 (0.23)	43 (0.29)	72 (0.48)	149
	Pheromone	20 (0.26)	28 (0.37)	28 (0.37)	76
	Collar	19 (0.22)	17 (0.20)	49 (0.58)	85
Males	Control	45 (0.16)	52 (0.18)	188 (0.66)	285
	Pheromone	31 (0.25)	46 (0.37)	46 (0.37)	123
	Collar	47 (0.15)	37 (0.12)	228 (0.73)	312
All	Control	79 (0.18)	95 (0.22)	260 (0.60)	434
	Pheromone	51 (0.26)	74 (0.37)	74 (0.37)	199
	Collar	66 (0.17)	54 (0.14)	277 (0.70)	397

\(^1\)In each household, CDC light traps (excluding the bulb) was set inside the house (humans), and outside the house above the sleeping dog, and at the main chicken roosting site.

https://doi.org/10.1371/journal.pntd.0007767.t006
(z = 7.24, P<0.0001), but not with the prevailing mean numbers of household chickens or dogs (z<0.49, P>0.26). This relationship was not dissimilar across intervention arms (test of intervention arm × male fly number interaction term: z<0.197, P>0.53).

Comparison of the synthetic pheromone versus collar intervention effects

Direct statistical comparisons of the pheromone versus collar intervention outcomes (i.e. not compared to the control arm), did not provide evidence of substantial differences between the two interventions. Only in analysis of seroconversion incidence did collars provide an apparent 25.3% (95% C.I.s: 1.2%, 43.4%) additional protection over the pheromone intervention (IRR = 0.747 [95% C.I. 0.566, 0.988], P = 0.041). And the pheromone intervention resulted in a 49% (95% C.I. 11%, 66.4%) greater reduction in male *Lu. longipalpis* at households compared to in the collar arm (IRR = 0.51 [95% C.I. 0.336, 0.790], P = 0.002). Otherwise, no other statistical differences were detected.

Discussion

The synthetic pheromone intervention reduced the incidence of confirmatory parasitological infection by 52%, and the geometric mean peripheral blood parasite loads by 53%. The same intervention also reduced the household numbers of female *Lu. longipalpis* by 49%. These promising outcomes were not mirrored in changes in seroconversion incidence across all trial strata. In the 11 semi-urban town clusters (strata 1 & 2) under this intervention, seroconversion was reduced by an average 27%, whereas on testing the three clusters in Aracatuba city (stratum 3), seroconversion incidence was increased rather than decreased. The latter result on further inspection was specifically attributed to a single Aracatuba treated cluster, in which the annual seroconversion incidence was 0.0274, which was 2.2× the average (0.0126/year) for the three Aracatuba control clusters. The equivalent rates in the other two pheromone-treated clusters (0.0142 and 0.0139/year) were similar to that of controls (S3 Table). Compliance to the synthetic pheromone intervention may have been lower in stratum 3, but we did not detect significant differences (P>0.05) in the per lure loss rates between the three strata (range: 0.074–0.107, $\chi^2_{(2)} = 2.91$), or per collar loss rates (0.156–0.168, $\chi^2_{(2)} = 1.16$), LTF of recruited dogs (0.527–0.569, $\chi^2_{(2)} = 2.9$), or the dog recruitment : LTF ratios (0.08–1.28, $\chi^2_{(2)} = 3.33$). All existing and lost lures were replaced at 3 monthly intervals. There was no further evidence of significant variation in intervention effects between strata in either the pheromone or collar arm. By design, all nine clusters recruited within the regional capital Aracatuba, were assigned to a separate stratum based on the perceived enhanced ZVL control activities and conditions in the city[33].

Capture site	Humans (IRR 95% C. I.s)	Dogs (IRR 95% C. I.s)	Chickens (IRR 95% C. I.s)
Female sand flies	Pheromone 0.72 (0.285,1.814) P = 0.49	0.71 (0.385,1.304) P = 0.27	0.34 (0.183, 0.640) P = 0.001
Collar 0.55 (0.268, 1.115) P = 0.10	0.48 (0.221, 1.052) P = 0.07	0.58 (0.296, 1.152) P = 0.12	
Male sand flies	Pheromone 1.12 (0.451, 2.758) P = 0.81	0.80 (0.329, 1.950) P = 0.62	0.31 (0.174, 0.564) P = 0.001
Collar 0.93 (0.446, 1.957) P = 0.86	0.76 (0.347, 1.641) P = 0.48	1.15 (0.564, 2.447) P = 0.71	

Table 7. Intervention effects on *Lu. longipalpis* abundance at host-associated CDC trap sites.

https://doi.org/10.1371/journal.pntd.0007767.t007
Collars

In contrast, the deltamethrin-impregnated collar intervention reduced canine seroconversion incidence by 36% (95% C.I. 14.4%, 51.8%). The attributable reductions in tissue parasite loads of 48% (95% C.I. 0%, 73.4%), and in household female sand flies of 43% (95% C.I. 0%, 67.9%), were indicative, though failed to reach statistical significance \(P<0.062\).

These results were somewhat surprising as the collective studies of Scalibor collars in Brazil [51–55], Europe [56–59], North Africa [60], and central Asia [61] to date, demonstrate their unquestionable impact on \textit{L. infantum} transmission, providing a median 56% (IQR: 48.9%–85.9%; range: 46.9%-100%) protection against canine seroconversion incidence. Moreover, community-wide collar interventions provided 43%-50% protection against human seroconversion and clinical ZVL incidence [61, 62], in addition to reductions in \textit{Lu. longipalpis} household abundance [63], and in \textit{Lu. longipalpis} infection rates with \textit{L. infantum} [51]. Thus, in the current study, the collar intervention arm acted as a positive control for the previously untested synthetic pheromone lure-and-kill method.

The overall protection provided by the collar arm appeared somewhat inferior to that of the pheromone arm in this trial, when each was compared to the control arm. However, a consistent difference in their performance was not detected by direct statistical comparison of the two interventions effect outcome estimates.

Household sand fly distributions

In control households, the majority of sand flies were captured at chicken roosting sites compared to dog sleeping sites and inside houses. The pheromone intervention diminished female and male sand flies at chicken roosting sites by 49% and 56% respectively. The collar intervention reduced female, but not male, \textit{Lu. longipalpis} numbers at dog sleeping locations by 43%. There was no evidence that sand flies were diverted from the treated trap sites to the two alternative untreated host trap sites within households. These results are consistent with the insecticidal effects of the associated interventions, and the success of the purposeful co-location of insecticide at chicken roosting sites. Possible imprecision in the effect estimates arises if the synthetic pheromone recruited additional numbers of sand flies that circumvented traps e.g. through insecticide-induced knockdown or excito-repellency. In this case, it is likely that effect estimates reported here are an underestimate of the true intervention effect. Further experiments are needed to quantify these mechanisms.

Implications for ZVL control

ZVL control guidelines in Brazil recommend IRS of houses, but also of animal shelters [11], where the majority of \textit{Lu. longipalpis} are typically captured [21, 22, 64]. Field studies in north Brazil show sand fly numbers in animals shelters to decrease more or less immediately after insecticide application, but, in parallel, with colonisation of nearby unsprayed sites e.g. household dining huts [65]. Evidenced by additional data [20], the authors of those studies proposed that this shift in vector distribution is a partial consequence of insecticide-induced mortality of male flies causing a decline in pheromone release and recruitment to treated sites. This might increase the relative attractiveness of untreated colonised sites. Based on this rationale therefore, the co-location of synthetic pheromone should maintain sand fly recruitment to insecticide-treated sites. Results supporting this hypothesis demonstrate that the synthetic pheromone can “restore” female and male recruitment to recently sprayed sheds [25]. Indeed, the synthetic pheromone lure tested in this study attracts approximately 24 times more \textit{Lu. longipalpis} to chicken sheds compared to sheds without synthetic pheromone [19]. This novel
lure-and-kill approach offers a potential improvement to the standard IRS practise against ZVL.

A single 10mg lure synthetic pheromone lure is active for 10–12 weeks[19], and attracts *Lu. longipalpis* over distances of 30m in a single night, sufficient to cover the typical urban and more rural household vicinity. The attraction of female *Lu. longipalpis* to synthetic pheromone is dose-dependent[23], in line with density-dependent associations between female and male *Lu. longipalpis* numbers observed in natural leks / CDC light trap catches (this study; [66, 67]). Chickens are a dead-end (sink) host for *Leishmania*[10], and often the most abundant domestic host in endemic regions[33], hence an obvious location to place the pheromone and insecticide. However, the need for synergistic effects between the synthetic pheromone and host odour to attract *Lu. longipalpis*[68] no longer appears critical as confirmed by on-going field studies, thus opening the door for its wider deployment at households without animal hosts. Community-wide experiments are now needed to optimise pheromone doses in different demographic settings. *Lu. longipalpis* is a complex of at least four reproductively isolated sibling species, the males of which each produce a different pheromone type[69–71]. The sibling species that produces the (S)-9-methylgermacrene-B chemotype is widely distributed in Brazil, and has a geographical range that extends from Argentina to Central America[34, 40, 72–74].

With respect to transmission dynamics, of particular relevance is the observed reductions in tissue *L. infantum* parasite loads. This is expected to diminish the canine population’s infectiousness to *Lu. longipalpis*. Canine skin, blood, and bone marrow *L. infantum* loads correlate with the dogs’ ability to transmit *L. infantum* to *Lu. longipalpis*[38, 75–78]. Dogs with the highest parasite loads are responsible for the majority of transmission events[38, 76], though not exclusively so[79]. Related to this is the proposal that variation in *Leishmania* metacyclic inoculum from sand fly bites contribute to an individual host’s infection pathology, and subsequent onward transmission potential[80, 81]. Our data indicated that Scalibor collars effectively lowered the over-dispersion in canine population antibody responses to *Lu. longipalpis* salivary antigens delivered by sand fly bites, which is indicative of the level of biting exposure. In simple terms, this predicts that a lower fraction of dogs would receive high density *L. infantum* challenge under the trialled intervention.

The FOI estimates suggest an increase in canine transmission from 2006–2008 to the trial period (Table 1), which is supported by independent reports of the rise and spread of canine infection, and *Lu. longipalpis* abundance, across São Paulo state[13, 16]. Together with current upward trends in human ZVL burdens in Brazil[13–15], the need for sustainable vector control is clear. The MoH policy of culling seropositive dogs continues to be unpopular amongst dog owners[82], and in the Brazilian setting, dog collars, along with the registered canine vaccine Leish-Tec, and anti-*Leishmania* chemotherapy treatment options, may be too costly and/or perceived insufficiently effective, to achieve community-level compliance[83, 84]. Scalibor collar labels indicate 5–6 months effective duration, though collar losses from dogs are variably high (range: 0.6–8.2% per month)[52, 54–57, 59, 61, 62], necessitating replacement, particularly in regions of year-round transmission. In this trial, collar losses were 7.5% (95% C.I.: 6.5, 8.6) per month, compared to pheromone lure loss of 2.7% (95% C.I.: 0.26, 5.2) per month. On bulk synthesis, the potential unit cost of a pheromone lure is likely to be substantially lower than the cost of collars, vaccines or canine chemotherapeutic treatment.

Conclusions

Manipulation of vector behaviour is an often overlooked but important component of effective vector control. The collective results of this study indicate a potential role of the lure-and-kill approach to combat *L. infantum* transmission in Brazil. The protective effects were not
dissimilar to those of the insecticide-impregnated collars, although the confidence intervals around all effect estimates were broad. Notwithstanding, it is reasonable to consider that robustly designed deployment of the lure-and-kill strategy could result in public and veterinary health benefits similar to those globally reported for the Scalibor collars. In order to maximise the synthetic pheromone efficacy, complimentary studies are underway to inform best practice for community-level deployment.

Supporting information

S1 Text. Laboratory methods.
(DOCX)

S1 Table. Numbers of dogs recruited to each intervention arm per period of the study.
(DOCX)

S2 Table. Intervention dates and intervals for the three intervention arms.
(DOCX)

S3 Table. Number of conversions to seropositive and parasite positive per cluster across strata and intervention arms in recruited dogs. Crude annual incidence shown for both measures.
(DOCX)

S4 Table. Summary of sand fly trapping effort and capture success in the intervention arms.
(DOCX)

Acknowledgments

We especially thank the veterinary and entomological technicians for their unflagging efforts to complete the fieldwork, and A. Picado for helpful discussions. We are indebted to B. Krishnakumari for synthesis of the pheromone, to Russell IPM for preparing the slow release dispensers, to Ann Underhill for laboratory validation of the lure activity, and to S. Gokool for field assistance. V. Yardley supplied the initial Leishmania cultures, S. Mason enabled electronic cross-talk between laboratory and desktop hardware, and V. Camargo-Neves helped obtain SUCEN historical canine data records. We also thank four external experts invited by the Wellcome Trust to review the trial design and statistical procedures. Finally, we acknowledge the public health workers and study communities for their compliance and participation.

Author Contributions

Conceptualization: Orin Courtenay, James G. C. Hamilton.

Data curation: Orin Courtenay, Erin Dilger, Leo A. Calvo-Bado, Lidija Kravar-Garde, Vicky Carter, Melissa J. Bell, Graziella B. Alves, Raquel Goncalves, Muhammad M. Makhdoomi, Mikel A. González, Daniel P. Bray, James G. C. Hamilton.

Formal analysis: Orin Courtenay, Erin Dilger.

Funding acquisition: Orin Courtenay, James G. C. Hamilton.

Investigation: Erin Dilger, Leo A. Calvo-Bado, Lidija Kravar-Garde, Vicky Carter, Melissa J. Bell, Graziella B. Alves, Raquel Goncalves, Muhammad M. Makhdoomi, Mikel A. González, Daniel P. Bray.
Methodology: Orin Courtenay, Erin Dilger, Leo A. Calvo-Bado, Daniel P. Bray, James G. C. Hamilton.

Project administration: Orin Courtenay, Erin Dilger, Melissa J. Bell, Caris M. Nunes, Daniel P. Bray, Reginaldo P. Brazil, James G. C. Hamilton.

Resources: Orin Courtenay, Erin Dilger.

Software: Orin Courtenay, Erin Dilger.

Supervision: Orin Courtenay, Caris M. Nunes, Daniel P. Bray, Reginaldo P. Brazil, James G. C. Hamilton.

Visualization: Orin Courtenay.

Writing – original draft: Orin Courtenay, Erin Dilger, James G. C. Hamilton.

Writing – review & editing: Orin Courtenay, Erin Dilger, Leo A. Calvo-Bado, Lidija Kravar-Garde, Vicky Carter, Melissa J. Bell, Graziella B. Alves, Raquel Gonçalves, Muhammad M. Makhdoomi, Mikel A. González, Caris M. Nunes, Daniel P. Bray, Reginaldo P. Brazil, James G. C. Hamilton.

References

1. WHO. Global vector control response 2017–2030. Geneva: 2017 Contract No.: CC BY-NC-SA 3.0 IGO.

2. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015; 526(7572):207–+. https://doi.org/10.1038/nature15535 WOS:000362399000037. PMID: 26375008

3. Thomsen EK, Koimbu G, Pulford J, Jamea-Maisa S, Ura Y, Keven JB, et al. Mosquito Behavior Change After Distribution of Bednets Results in Decreased Protection Against Malaria Exposure. Journal of Infectious Diseases. 2017; 215(5):790–7. https://doi.org/10.1093/infdis/jiw615 WOS:000398636500020. PMID: 28007921

4. Shani A. Chemical communication agents (pheromones) in integrated pest management. Drug Development Research. 2000; 50(3–4):400–5. https://doi.org/10.1002/aid-ddr22.3.0.co;2-v WOS:000089628000022.

5. Cook SM, Khan ZR, Pickett JA. The use of push-pull strategies in integrated pest management. Annual Review of Entomology. 2007; 52:375–400. https://doi.org/10.1146/annurev.ento.52.110405.091407 WOS:000243653800019. PMID: 16968206

6. Mansour R, Belzunces LP, Suma P, Zappala L, Mazzeo G, Grissa-Lebdi K, et al. Vine and citrus mealybug pest control based on synthetic chemicals. A review. Agronomy for Sustainable Development. 2018; 38(4). https://doi.org/10.1007/s13593-018-0519-1 WOS:000438242300001.

7. Logan JG, Birkett MA. Semiochemicals for biting fly control: their identification and exploitation. Pest Management Science. 2007; 63(7):647–57. https://doi.org/10.1002/ps.1408 WOS:000247958400006. PMID: 17549674

8. Alvar J, Velez ID, Berrueta C, Desjeux P, Cano J, et al. Leishmaniasis Worldwide and Global Estimates of Its Incidence. Plos One. 2012; 7(5). https://doi.org/10.1371/journal.pone.0035671 WOS:000305338500009. PMID: 22693548

9. Quinnell RJ, Courtenay O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology. 2009; 136(14):1915–34. https://doi.org/10.1017/S0031182009991156 WOS:000273515200006. PMID: 19835643

10. Alexander B, de Carvalho RL, McCallum H, Pereira MH. Role of the domestic chicken (Gallus gallus) in the epidemiology of urban visceral leishmaniasis in Brazil. Emerging Infectious Diseases. 2002; 8(12):1480–5. https://doi.org/10.3201/eid0812.011048 WOS:000179834300019. PMID: 12498667

11. Ministério da Saúde B. Manual de vigilância e controle da leishmaniose visceral In: Epidemiológica SdVeSDv, editor. 1 ed. Brasília: Ministério da Saúde.; 2014. p. 120.

12. Camargo-Neves VLF, Glasser C.M., Cruz L.L., de Almeida R.G. Manual de Vigilância e Controle da Leishmaniose Visceral Americana de Estado de São Paulo. Sao Paulo: 2006.

13. Bezerra JMT, de Araujo VEM, Barbosa DS, Martins-Melo FR, Werneck GL, Carneiro M. Burden of leishmaniasis in Brazil and federated units, 1990–2016: Findings from Global Burden of Disease Study
15. PAHO/WHO. Leishmaniasis: Epidemiological Report in the Americas 2018; 6:[7 p.]. Available from: http://iris.paho.org/xmlui/handle/123456789/34856.

16. Seva AD, Mao L, Galvis-Ovallos F, Lima JMT, Valle D. Risk analysis and prediction of visceral leishmaniasis dispersion in Sao Paulo State, Brazil. Plos Neglected Tropical Diseases. 2017; 11(2). https://doi.org/10.1371/journal.pntd.0005353 WOS:000395741700028. PMID: 28166251

17. Harhay MO, Olliaro PL, Costa DL, Costa CHN. Urban parasitology: visceral leishmaniasis in Brazil. Trends in Parasitology. 2011; 27(9):403–9. https://doi.org/10.1016/j.pt.2011.04.001 WOS:000295207500007. PMID: 21596622

18. Krishnakumari B, Sarita Raj K., Hamilton J.G.C., editor Synthesis of 9-methylgermacrene from germacrone, an active analogue of (S)-9-methylgermacrene-B, sex pheromone of Phlebotomine sandfly, Lutzomyia longipalpis, from Lapinha Brazil. IUPAC International conference on Biodiversity and Natural Products: Chemistry and Medical Applications; 2004 26–31 January 2004; New Delhi (India).

19. Bray DP, Carter V, Alves GB, Brazil RP, Bandi KK, Hamilton JGC. Synthetic Sex Pheromone in a Long-Lasting Lure Attracts the Visceral Leishmaniasis Vector, Lutzomyia longipalpis, for up to 12 Weeks in Brazil. Plos Neglected Tropical Diseases. 2014; 8(3). https://doi.org/10.1371/journal.pntd.0002723 WOS:000337348800009. PMID: 24651528

20. Kelly DW, Dye C. Pheromones, kairomones and the aggregation dynamics of the sandfly Lutzomyia longipalpis. Animal Behaviour. 1997; 53:721–31. https://doi.org/10.1006/anbe.1996.0309 WOS: A1997W4V4500005.

21. Morrison AC, Ferro C, Pardo R, Torres M, Wilson ML, Tesh RB. Nocturnal activity patterns of Lutzomyia longipalpis (Diptera, Psychodidae) at an endemic focus of visceral leishmaniasis in Colombia. Journal of Medical Entomology. 1995; 32(5):605–17. https://doi.org/10.1093/jmedent/32.5.605 WOS: A1995RT608000007. PMID: 7473615

22. Quinnett RJ, Dye C. An experimental study of the peridomestic distribution of Lutzomyia longipalpis (Diptera, Psychodidae). Bulletin of Entomological Research. 1994; 84(3):379–82. WOS: A1994QA19700012.

23. Bell MJ, Sedda L, Gonzalez MA, de Souza CF, Dilger E, Brazil RP, et al. Attraction of Lutzomyia longipalpis to synthetic sex-aggregation pheromone: Effect of release rate and proximity of adjacent pheromone sources. Plos Neglected Tropical Diseases. 2018; 12(12). https://doi.org/10.1371/journal.pntd.0007007 WOS:000455103100037. PMID: 30566503

24. Bray DP, Bandi KK, Brazil RP, Oliveira AG, Hamilton JGC. Synthetic Sex Pheromone Attracts the Leishmaniasis Vector Lutzomyia longipalpis (Diptera: Psychodidae) to Traps in the Field. Journal of Medical Entomology. 2009; 46(3):428–34. https://doi.org/10.1603/033.046.0309 WOS:000265803800003. PMID: 19496409

25. Bray DP, Alves GB, Dorval ME, Brazil RP, Hamilton JGC. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis to experimental chicken sheds treated with insecticide. Parasites & Vectors. 2010; 3. https://doi.org/10.1186/1756-3305-3-16 WOS:000276434700001. PMID: 2022954

26. Camargo-Neves VLF. American Visceral Leishmaniasis in the state of Sao Paulo: current situation. Boletim Epidemiologico Paulista. 2007; 4(48):12–4.

27. Cardim MFM, Rodas LAC, Dibo MR, Guirado MM, Oliveira AM, Chiaravalloti-Neto F. Introduction and expansion of human American visceral leishmaniasis in the state of Sao Paulo, Brazil, 1999–2011. Revista De Saude Publica. 2013; 47(4):691–700. https://doi.org/10.1590/S0080-713X2013000400454 WOS:000328694400006. PMID: 24346660

28. Rangel O, Hiramolot R.M., Henriques L.D.F., Taniguchi H.H., Ciaraivolot R.M.d.C., Tolezanlo J.E., França A.C.C., Yamashiro J., Oliveira S.S.d. Epidemiological classification of cities according to the Program of Surveillance and Control of American Visceral Leishmaniasis in the State of Sao Paulo, updated in 2013. Boletim Epidemiologico Paulista. 2013; 10(111):3–14.

29. Ciaraivolot RMC, Oliveira S.S., Hiramolot R.M., Henriques L.F., Taniguchi H.H., Junior A.V., Spinola R., Rangell O., Tolezanlo J.E. Classificação Epidemiológica dos Municipios Segundo o Programa de Vigilância e Controle da Leishmaniose Visceral no Estado de Sao Paulo, dezembro de 2014. Boletim Epidemiologico Paulista. 2015; 12(143):9–22.

30. Ministério de Saúde. Sistema de informacao de agravos de notificacao (SINAN). [Internet]. 2019 [cited 25/01/19]. Available from: http://portal.saude.sp.gov.br/cve-centro-de-vigilancia-epidemiologica-prof.-

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007767 October 25, 2019
alexandre-vranjac/areas-de-vigilancia/doencas-de-transmissao-por-vetores-e-zoonoses/agravos/
leishmaniose-visceral/dados-estatisticos.

31. Dye C, Davies CR, Lainson R. Communication among Phlebotomine sandflies—a field study of domesticated Lutzomyia longipalpis populations in Amazonian Brazil Animal Behaviour. 1991; 42:183–92. https://doi.org/10.1016/s0003-3472(05)80549-4 WOS:A1991GE61300002.

32. Galvis-Ovalos F, Casanova C, Bergamaschi DP, Galati EAB. A field study of the survival and dispersal pattern of Lutzomyia longipalpis in an endemic area of visceral leishmaniasis in Brazil. Plos Neglected Tropical Diseases. 2018; 12(4). https://doi.org/10.1371/journal.pntd.0006333 WOS:000433487700016. PMID: 29608563.

33. Sidhu S. Evaluation of social and economic factors affecting implementation of novel vector control in Brazil. University of Warwick; 2010.

34. Casanova C, Colla-Jacques FE, Hamilton JGC, Brazil RP, Shaw JJ. Distribution of Lutzomyia longipalpis Chemotype Populations in Sao Paulo State, Brazil. Plos Neglected Tropical Diseases. 2015; 9(3). https://doi.org/10.1371/journal.pntd.0003620 WOS:000352199400079. PMID: 25781320.

35. Paulin S, Frenais R, Thomas E, Baldwin PM. Laboratory assessment of the anti-feeding effect for up to 12 months of a slow release deltamethrin collar (Scalibor (R)) against the sand fly Phlebotomus perniciosus in dogs. Parasites & Vectors. 2018; 11. https://doi.org/10.1186/s13071-018-3094-z WOS:000445964000002. PMID: 30261911.

36. David JR, Stamm LM, Bezerra HS, Souza RN, Killick-Kendrick R, Lima JWO. Deltamethrin-impregnated dog collars have a potent anti-feeding and insecticidal effect on Lutzomyia longipalpis and Lutzomyia migonei. Memorias Do Instituto Oswaldo Cruz. 2001; 96(6):839–47. WOS:000170361700018. https://doi.org/10.1590/s0074-02762001000600018 PMID: 11562713.

37. Killick-Kendrick R, Killick-Kendrick M., Focheux C., Dereure J., Puech M-P., Cadiergues M.C. Protection of dogs from bites of phlebotomine sandflies by deltamethrin collars for control of canine leishmaniasis. Medical and Veterinary Entomology. 1997;(11):105–11.

38. Borja LS, de Sousa OMF, Solca MD, Bastos LA, Bordoni M, Magalhaes JT, et al. Parasite load in the blood and skin of dogs naturally infected by Leishmania infantum is correlated with their capacity to infect sand fly vectors. Veterinary Parasitology. 2016; 229:110–7. https://doi.org/10.1016/j.vetpar.2016.10.004 WOS:000388549200019. PMID: 27809965.

39. Da Silva VG. Aspectos entomológicos e infecção natural dos flebotomíneos por Leishmania (Leishmania) infantum chagasi em municípios do estado de São Paulo com autoctonia de transmissão de leishmaniose visceral humana e/ou canina [Mestre em Ciências]2016.

40. Holcman MM, Sampaio SMP, Rangel O, Casanova C. Spatial and seasonal distribution of Lutzomyia longipalpis in Dracena, a city in the western region of the State of Sao Paulo, Brazil, that is endemic with visceral leishmaniasis. Revista Da Sociedade Brasileira De Medicina Tropical. 2013; 46(6):704–12. https://doi.org/10.1590/0037-8682-0188-2013 WOS:000330539200007. PMID: 24474011.

41. Hayes RJ, Moulton L.H. Cluster randomized trials. Interdisciplinary Statistic Series. Florida: Chapman & Hall/CRC; 2009.

42. Hayes RJ, Bennett S. Simple sample size calculation for cluster-randomized trials. International Journal of Epidemiology. 1999; 28(2):319–26. https://doi.org/10.1093/ije/28.2.319 WOS:000079942800022. PMID: 10342698.

43. Bottomley C, Kirby MJ, Lindsay SW, Alexander N. Can the buck always be passed to the highest level of clustering? Bmc Medical Research Methodology. 2016; 16. https://doi.org/10.1186/s12874-016-0127-1 WOS:000371566400001. PMID: 26956373.

44. Naylor JC, Smith AFM. Applications of a method for the efficient computation of posterior distributions. Journal of the Royal Statistical Society Series C-Applied Statistics. 1982; 31(3):214–25. WOS: A1982QC874000003.

45. Camargo-Neves V. Aspectos epidemiológicos e avaliação das medidas de controle da Leishmaniose Visceral Americana no Estado de São Paulo, Brasil.: Universidade do São Paulo—USP; 2004.

46. Dilger E. The effects of host-vector relationships and density dependence on the epidemiology of visceral leishmaniasis.: University of Warwick; 2013.

47. Brown MB, Forsythe AB. Robust test for equality of variances. Journal of the American Statistical Association. 1974; 69(346):364–7. https://doi.org/10.2307/2285659 WOS:A1974T799200012.

48. Courtenay O, Macdonald DW, Lainson R, Shaw JJ, Dye C. Epidemiology of canine leishmaniasis- a comparative serological study of dogs and foxes in Amazon Brazil. Parasitology. 1994; 109:273–9. WOS:A1994PK02000002. https://doi.org/10.1017/s003118200078306 PMID: 7970884.

49. Antoniou M, Messoritakis I, Christodoulou V, Ascoksiliak I, Kanavakis N, Sutton AJ, et al. Increasing Incidence of Zoonotic Visceral Leishmaniasis on Crete, Greece. Emerging Infectious Diseases. 2009; 15(6):932–4. https://doi.org/10.3201/eid1506.071666 WOS:000266539100014. PMID: 19523295.
50. Lira RA, Cavalcanti MP, Nakazawa M, Ferreira AGP, Silva ED, Abath FGC, et al. Canine visceral leishmaniasis: A comparative analysis of the EIE-leishmaniose-visceral-canina-Bio-Manguinhos and the IFL-leishmaniose-visceral-canina-Bio-Manguinhos kits. Veterinary Parasitology. 2006; 137(1–2):11–6. https://doi.org/10.1016/j.vetpar.2005.12.020 WOS:000236657200002. PMID: 16446034

51. Kazimoto TA, Amora SSA, Figueiredo FB, Magalhaes JME, Freitas YBN, Sousa MLR, et al. Impact of 4% Deltamethrin-Impregnated Dog Collars on the Prevalence and Incidence of Canine Visceral Leishmaniasis. Vector-Borne and Zoonotic Diseases. 2018; 18(7):356–63. https://doi.org/10.1089/vbz.2017.2166 WOS:000430622200001. PMID: 29683994

52. Reithinger R, Coleman PG, Alexander B, Vieira EP, Assis G, Davies CR. Are insecticide-impregnated dog collars a feasible alternative to dog culling as a strategy for controlling canine visceral leishmaniasis in Brazil? International Journal for Parasitology. 2004; 34(1):55–62. https://doi.org/10.1016/j.ijpara.2003.09.006 WOS:000188377300007. PMID: 14711590

53. Lopes EG, Seva AP, Ferreira F, Nunes CM, Keid LB, Hiramoto RM, et al. Vaccine effectiveness and use of collar impregnated with insecticide for reducing incidence of Leishmania infection in dogs in an endemic region for visceral leishmaniasis, in Brazil. Epidemiology and Infection. 2018; 146(3):401–6. https://doi.org/10.1017/S0950268817003053 WOS:000424741000019. PMID: 29345601

54. Camargo-Neves V, Rodas LAC, Pauliquevis C Jr. Avaliação da efetividade da utilização de coleiras impregnadas com deltametrina a 4% para o controle da leishmaniose visceral americana no Estado de São Paulo: resultados preliminares. São Paulo: Boletim Epidemiológico Paulista. 2004; (12):1–11.

55. Oliveira-Lima JW, Nonato de Souza, R., Teixeira, M. J., Pompeu, M., Killick-Kendrick, R., & David, J. R., editor Preliminary results of a field trial to evaluate deltamethrin-impregnated collars for the control of canine leishmaniasis in northeast Brazil. Canine Leishmaniasis: Moving towards a solution Proceedings of the Second International Canine Leishmaniasis Forum; 2002; Seville, Spain: Intervet International bv.

56. Maroli M, Mizzoni V, Siragusa C, D’Orazi A, Gradoni L. Evidence for an impact of the mass use of deltamethrin-impregnated dog collars in southern Italy. Medical and Veterinary Entomology. 2001; 15(4):358–63. https://doi.org/10.1046/j.0269-283x.2001.00321.x WOS:000172903600002. PMID: 11776454

57. Foglia Manzillo V, Oliva G, Pagano A, Manna L, Maroli M, Gradoni L. Deltamethrin-impregnated collars for the control of canine leishmaniasis: evaluation of the protective effect and influence on the clinical outcome of Leishmania infection in kennelled stray dogs. Vet Parasitol. 2006; 142(1–2):142–5. https://doi.org/10.1016/j.vetpar.2006.06.029 PMID: 16884581.

58. Manzillo VF, Oliva G, Pagano A, Manna L, Maroli M, Gradoni L. Deltamethrin-impregnated collars for the control of canine leishmaniasis: Evaluation of the protective effect and influence on the clinical outcome of Leishmania infection in kennelled stray dogs. Veterinary Parasitology. 2006; 142(1–2):142–5. https://doi.org/10.1016/j.vetpar.2006.06.029 WOS:000222323000017. PMID: 16884581

59. Ferroglio E, Poggi M, Trisciuoglio A. Evaluation of 65% permethrin spot-on and deltamethrin-impregnated collars for canine Leishmania infantum infection prevention. Zoonoses Public Health. 2008; 55(3):145–8. https://doi.org/10.1111/j.1863-2378.2007.01092.x PMID: 18331517.

60. Aoun K, Chouifi E., Boufaden I., Mahmoud R., Bouratbine A., Bedoui K. Efficacy of Deltamethrin-impregnated collars Scalibor in the prevention of canine leishmaniasis in the area of Tunis. Arch Inst Pasteur Tunis. 2008; 85(1–4):63–8. PMID: 19469417

61. Gavgani ASM, Hodjati MH, Mohite H, Davies CR. Effect of insecticide-impregnated dog collars on incidence of zoonotic visceral leishmaniasis in Iranian children: a matched-cluster randomised trial. Lancet. 2002; 360(9330):374–9. https://doi.org/10.1016/s0140-6736(02)09609-5 WOS:000177255600011. PMID: 12241778

62. Courtenay O, Bazmani A., Parvizi P., Ready P.D., Cameron M.M. Insecticide–impregnated dog collars reduce infantile clinical visceral leishmaniasis under operational conditions in NW Iran: a community–wide cluster randomised trial. PLoS Neglected Tropical Diseases. 2019.

63. Silva RA, de Andrade AJ, Quint BB, Raffoul GES, Werneck GL, Rangel EF, et al. Effectiveness of dog collars impregnated with 4% deltamethrin in controlling visceral leishmaniasis in Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) populations. Memorias Do Instituto Oswaldo Cruz. 2018; 113(5). https://doi.org/10.1590/0074-02760170377 WOS:000428693000002. PMID: 29590235

64. Quinnett RJ, Dye C. Correlates of the peridomestic abundance of Lutzomyia longipalpis (Diptera, Psychodidae) in Amazon Brazil. Medical and Veterinary Entomology. 1994; 8(3):219–24. https://doi.org/10.1111/j.1365-2915.1994.tb00502.x WOS:A1994NV98200003. PMID: 7949312

65. Kelly DW, Mustafa Z, Dye C. Differential application of lambda-cyhalothrin to control the sandfly Lutzomyia longipalpis. Medical and Veterinary Entomology. 1997; 11(1):13–24. https://doi.org/10.1111/j.1365-2915.1997.tb00285.x WOS:A1997WK47000004. PMID: 9061673
66. Kelly DW, Mustafa Z, Dye C. Density-dependent feeding success in a field population of the sandfly, Lutzomyia longipalpis. Journal of Animal Ecology. 1996; 65(4):517–27. https://doi.org/10.2307/5786 WOS:A1996UZ02700011.

67. Jones TM, Quinnell RJ. Testing predictions for the evolution of lekking in the sandfly, Lutzomyia longipalpis. Animal Behaviour. 2002; 63:605–12. https://doi.org/10.1006/anbe.2001.1946 WOS:000175391400022.

68. Bray DP, Hamilton JGC. Host odor synergizes attraction of virgin female Lutzomyia longipalpis (Diptera: Psychodidae). Journal of Medical Entomology. 2007; 44(5):779–87. https://doi.org/10.1603/0022-2585(2007)44[779:hosaoj2.0.co;2 WOS:000249179000008. PMID: 17915508

69. Hamilton JGC, Hooper AM, Ibbotson HC, Kurosawa S, Mori K, Muto SE, et al. 9-Methylgermacrene-B is confirmed as the sex pheromone of the sandfly Lutzomyia longipalpis from Lapinha, Brazil, and the absolute stereochemistry defined as S. Chemical Communications. 1999;23:2335–6. https://doi.org/10.1039/a907910f WOS:000083844900004.

70. Hamilton JGC, Brazil RP, Maingon R. A fourth chemotype of Lutzomyia longipalpis (Diptera: Psychodidae) from Jaibas, Minas Gerais State, Brazil. Journal of Medical Entomology. 2004; 41(6):1021–6. https://doi.org/10.1603/0022-2585-41.6.1021 WOS:000225274700004. PMID: 15605640

71. Palframan MJ, Bandi KK, Hamilton JGC, Pattonen G. Sobralene, a new sex-aggregation pheromone and likely shunt metabolite of the taxadiene synthase cascade, produced by a member of the sand fly Lutzomyia longipalpis species complex. Tetrahedron Letters. 2018; 59(20):1921–3. https://doi.org/10.1016/j.tetlet.2018.03.088 WOS:000433014900008. PMID: 29780183

72. Hamilton JGC, Maingon RDC, Alexander B, Ward RD, Brazil RP. Analysis of the sex pheromone extract of individual male Lutzomyia longipalpis sandflies from six regions in Brazil. Medical and Veterinary Entomology. 2005; 19(4):480–8. https://doi.org/10.1111/j.1365-2915.2005.00594.x WOS:000233807900017. PMID: 16336313

73. Salomon OD, Araki AS, Hamilton JGC, Acardi SA, Peixoto AA. Sex pheromone and period gene characterization of Lutzomyia longipalpis sensu lato (Diptera: Psychodidae) from Posadas, Argentina. Memorias Do Instituto Oswaldo Cruz. 2010; 105(7):928–30. https://doi.org/10.1590/s0074-02762010000700016 WOS:000284778900016. PMID: 21120366

74. Hamilton JGC, Ward RD, Dougherty MJ, Maignon R, Ponce C, Ponce E, et al. Comparison of the sex-pheromone components of Lutzomyia longipalpis (Diptera: Psychodidae) from areas of visceral and atypical cutaneous leishmaniasis in Honduras and Costa Rica. Annals of Tropical Medicine and Parasitology. 1996; 90(5):533–41. https://doi.org/10.1080/00034983.1996.11813079 WOS: A1996V6K1600010. PMID: 8915130

75. Courtenay O, Quinnell RJ, Garcez LM, Shaw JJ, Dye C. Infectiousness in a cohort of Brazilian dogs: Why culling fails to control visceral leishmaniasis in areas of high transmission. Journal of Infectious Diseases. 2002; 186(9):1314–20. https://doi.org/10.1086/344312 WOS:000178577500014. PMID: 12402201

76. Courtenay O, Carson C, Calvo-Bado L, Garcez LM, Quinnell RJ. Heterogeneities in Leishmania infantum Infection: Using Skin Parasite Burdens to Identify Highly Infectious Dogs. Plos Neglected Tropical Diseases. 2014; 8(1). https://doi.org/10.1371/journal.pntd.0002583 WOS:000337977300007. PMID: 24416460

77. Vercosa BLA, Lemos CM, Mendonca IL, Silva S, de Carvalho SM, Goto H, et al. Transmission potential, skin inflammatory response, and parasitism of symptomatic and asymptomatic dogs with visceral leishmaniasis. Bmc Veterinary Research. 2008; 4. https://doi.org/10.1186/1746-6148-4-45 WOS:000026231000001. PMID: 18990238

78. de Amorim IFG, da Silva SM, Figueiredo MM, Moura EP, de Castro RS, Lima TKD, et al. Toll Receptors Type-2 and CR3 Expression of Canine Monocytes and Its Correlation with Immunohistochemistry and Xenodiagnosis in Visceral Leishmaniasis, Plos One. 2011; 6(11). https://doi.org/10.1371/journal.pone.0027679 WOS:000298168100015. PMID: 22140456

79. Laurenti MD, Rossi CN, da Matta VLR, Tomokane TY, Corbett CEP, Secundino NFC, et al. Asymptomatic dogs are highly competent to transmit Leishmania (Leishmania) infantum chagasi to the natural vector. Veterinary Parasitology. 2013; 196(3–4):296–300. https://doi.org/10.1016/j.vetpar.2013.03.017 WOS:000328864500008. PMID: 23962649

80. Giraud E, Martin O., Yakob L., Rogers M. Quantifying Leishmania Metacyclic Promastigotes from Individual Sandfly Bites Reveals the Efficiency of Vector Transmission. Communications Biology. 2019;In Press.

81. Doehl JSP, Bright Z, Dey S, Davies H, Magson J, Brown N, et al. Skin parasite landscape determines host infectiousness in visceral leishmaniasis. Nature Communications. 2017; 8. https://doi.org/10.1038/s41467-017-00103-8 WOS:000404778900001. PMID: 28680146
82. Costa DN, Codec o CT, Silva MA, Werneck GL. Culling dogs in scenarios of imperfect control: realistic impact on the prevalence of canine visceral leishmaniasis. PLoS Negl Trop Dis. 2013; 7(8):e2355. https://doi.org/10.1371/journal.pntd.0002355 PMID: 23951375; PubMed Central PMCID: PMC3738479.

83. Travi BL, Cordeiro-da-Silva A, Dantas-Torres F, Miro G. Canine visceral leishmaniasis: Diagnosis and management of the reservoir living among us. Plos Neglected Tropical Diseases. 2018; 12(1). https://doi.org/10.1371/journal.pntd.0006082 WOS:000424022700011. PMID: 29324838

84. Dantas-Torres F, Otranto D. Best Practices for Preventing Vector-Borne Diseases in Dogs and Humans. Trends in Parasitology. 2016; 32(1):43–55. https://doi.org/10.1016/j.pt.2015.09.004 WOS:000368206900009. PMID: 26507152