Fabrication of Metal/Carbon Nanotube Composites by Electrochemical Deposition

Definition

Metal/carbon nanotube (CNT) composites are promising functional materials due to the various superior properties of CNTs in addition to the characteristics of metals. Electrochemical deposition can be classified into three types: (1) composite plating by electrodeposition or electroless deposition, (2) metal coating on CNT by electroless deposition, and (3) electrodeposition using CNT templates, such as CNT sheets and CNT yarns.

1. Introduction

Carbon nanotubes (CNTs) have excellent mechanical characteristics such as high tensile strength and high elastic modulus, and also possess high thermal and electrical conductivity. Therefore, research into the practical applications of carbon nanotubes has been expanding into wide field, and composite materials of such nano-sized filler materials, such as polymer/CNT composites, have been studied expecting their innovative functions. Metal/CNT composites also have been investigated to enhance properties of metals and/or to give new innovative functions to metals. However, in general, the wettability of molten metals against CNTs is poor, resulting in difficulties of controlling the interface between the filler and matrix. In addition, since CNTs are nanosized fibrous materials and easily form aggregates, it is very difficult to form a metal/CNT composite with well-distributed CNTs in the metal matrix.

Electrochemical deposition is roughly classified into electrodeposition and electroless deposition, and the fabrication processes of metal/CNT composites by the electrochemical deposition can be categorized into three types: (1) composite plating by electrodeposition or electroless deposition, (2) CNT coating by electroless deposition, and (3) electrodeposition using CNT templates (Figure 1). “Composite plating” is one of the electrochemical deposition techniques. CNTs are incorporated in deposited metal matrix during plating. In the case of "metal coating on CNTs by electroless deposition", the prepared metal-coated CNTs are mainly used as filler of composites, such as resin composites. In the case of “electrodeposition on CNT templates”, CNT yarns or CNT sheets are used as CNT templates. The electrochemical deposition is a nano-scale or atomic scale process to fabricate metal materials and hence is effective to form atomic scale boundary between metals and CNTs. Moreover, this method is a wet process and consequently is likely advantageous to form metal/CNT composites with well-distributed CNTs in the metal matrix, especially in the case of the composite plating.

![Figure 1](image_url). Classification of fabrication process for metal/CNT composites by electrochemical deposition.

2. Fabrication of Metal/CNT Composites Using Composite Plating by Electrodeposition or Electroless Deposition

2.1. Composite Plating

Rough schematics of composite plating by electrodeposition and electroless deposition are displayed in
In the case of electrodeposition, inert particles are dispersed homogeneously in a plating bath. When a voltage is applied, metal is electrodeposited on a cathode and the particles adsorb on the surface of the deposited metal. Then, the particles are embedded in depositing metal, resulting in a metal composite (Figure 2). In the case of CNT composite plating by electrodeposition, inert particles are dispersed homogeneously in a plating bath containing a reducing agent. When a substrate is soaked in the bath, metal is reductively deposited on the substrate accepting electrons from the reducing agent and, at the same time, the particles adsorb on the surface of the deposited metal. The particles are then embedded in depositing metal, resulting in a metal composite (Figure 3). In general, the substrate is pre-treated and catalyst particles, such as Pd particles, are fixed on the surface of the substrate before soaking into the plating bath. As far as was searched, the first article of the composite plating is on Cu/graphite composites by electrodeposition and was reported in 1928 [3]. Regarding the mechanism of the composite plating, several models have been proposed [4][5][6][7][8].

2.2. Preparation of Plating Bath for Metal/CNT Composite Plating

To fabricate metal/CNT composites with uniform distribution of CNTs, the preparation of plating baths with homogeneous dispersion of CNTs is important. In general, plating baths are aqueous solutions, while CNTs are hydrophobic. Therefore, hydrophilization of CNTs have been examined by the addition of surfactants or the direct introduction of hydrophilic groups on the surfaces of CNTs (Figure 4). The addition of surfactants in plating baths is a common method. Various kinds of surfactants such as sodium dodecylbenzene sulfonate and sodium deoxycholate, have been examined for the homogeneous dispersion of CNTs in a pure water. However, effective surfactants for the dispersion in a pure water are not always effective in plating baths which contain great amounts of ions. Moreover, even if the surfactant is effective for the dispersion of CNTs in a plating bath, CNTs are not always co-deposited by electrochemical deposition. Therefore, the selection of appropriate surfactants is essential. Since the surfactants are likely incorporated in deposited metal matrix during electrochemical deposition, the concentration of surfactants should be examined. On the contrary, the direct introduction of hydrophilic groups, such as -COOH, onto the surfaces of CNTs has been examined using a chemical treatment [27], a plasma treatment [28], a heat treatment [29], and so on. These methods destroy the sp² carbon bonding of the surfaces of CNTs. Therefore, the conditions of the treatments should be examined.
On the contrary, CNTs are nanosized fibrous material and consequently tend to aggregate. In particular, SWCNTs have the thinnest (ca. 1-4 nm in diameter) among the various types of CNTs and can thus easily form aggregates referred to as bundles (Figure 5).

2.3. Unique Feature of Composite Plating Using CNTs as Inert Particles

Since a single CNT, especially multi-walled CNT (MWCNT) has a fibrous shape with large aspect ratio in addition to a high electrical conductivity in the axis direction. Therefore, composite plating using CNTs as inert particles often shows a unique feature unlike other composite plating using insulation particles such as Al₂O₃ particles. The schematic of the unique feature is showed in Figure 6 [30]. When a part of a MWCNT is incorporated in the deposited metal matrix during electrodeposition, the metal can be electrodeposited not only on the deposited metal but also on the protruding edge (a defect site) of the MWCNT. If the defect sites exist on the sidewall of the MWCNT, the metal can also be electrodeposited on the defect sites.
Using this unique phenomena, powder Cu/MWCNT composites could be obtained \[31\]. Figure 7a displays the surface morphology of Cu/MWCNT composites just after the electrodeposition. Many Cu/MWCNT composites particles are seen. These particles are fixed loosely on the cathode substrate and can be separated easily by ultrasonification. Figure 7b displays the morphology of the Cu/MWCNT composite powder after the separation from the substrate by ultrasonification. A large number of MWCNTs stick out from the Cu particles, resulting in a sea urchin shape. The size of the Cu spheres is 2–15 μm.

Figure 7. SEM images of (a) Cu/MWCNT composite immediately after electrodeposition and (b) Cu/MWCNT composite powder separated by ultrasonification. (Figure 8 is adapted from reference \[31\]).

2.4. Fabrication of Metal/CNT Composites Using Composite Plating by Electrodeposition

Fabrication conditions in these articles are listed in Table 1.

Table 1. Fabrication conditions of metal/CNT composites using composite plating by electrodeposition.

Metal	CNT	Treatment of CNT	Base Plating Bath	Surfactant	Remarks	Year	Ref.
Ni	MWCNT	Chemical treatment	Dull Watts bath	Sodium lauryl sulfate	Corrosion behavior	2020	\[32\]
Ni	MWCNT	Chemical treatment	Dull Watts bath	Sodium lauryl sulfate	Corrosion protection	2020	\[33\]
Metal	CNT	Treatment of CNT	Base Plating Bath	Surfactant	Remarks	Year	Ref.
-------	------	-----------------------------------	-----------------------	---	--------------------------------------	-------	------
Ni	MWCNT	Wrapped by polydopamine	Dull Watts bath	Non	Wear and corrosion resistance	2019	[34]
Ni	MWCNT	Non	Ionic liquid (choline chloride/carbamide)	Non	Non-aqueous solvent	2017	[35]
Ni	MWCNT	Non	Sulfamate bath	Cationic surfactant, compound name is unknown	Improvement in tool life	2014	[36]
Ni	MWCNT	Ball milling	Bright Watts bath	Sodium lauryl sulfate and Hydroxypropylcellulose	Corrosion behavior	2011	[37]
Ni	MWCNT	Chemical treatment	Choline chloride/urea	Non	Non-aqueous solvent	2010	[38]
Ni	MWCNT	Non	Bright Watts bath	Sodium lauryl sulfate, Cetyltrimethylammonium bromide	Solid lubrication	2008	[39]
Ni	MWCNT	Ball milling	Watts type bath	Cetyltrimethylammonium bromide	Effects of surfactants	2008	[40]
Ni	MWCNT	Chemical treatment	Dull Watts bath	Non	Effects of current density	2008	[41]
Ni	MWCNT	Ball milling	Bright Watts bath	Sodium lauryl sulfate and Hydroxypropylcellulose	Mechanical properties	2008	[42]
Ni	MWCNT	Non	Bright Sulfamate bath	Polyacrylic acid	Low internal stress	2007	[43]
Ni	MWCNT	Non	Dull Watts bath	Polyacrylic acid	Pulse-reverse parameter	2007	[44]
Ni	MWCNT	Non	Bright Watts bath	Polyacrylic acid	Thermal conductivity	2006	[45]
Ni	MWCNT	Non	Dull Watts bath	Poly(diallyldimethylammonium chloride)	Pulse-reverse electrodeposition	2005	[46]
Ni	MWCNT	Chemical treatment	Dull Watts bath	Cetyltrimethylammonium bromide	Corrosion behavior	2005	[47]
Ni	MWCNT	Non	Dull Watts bath	Polyacrylic acid	Ni deposition on incorporated CNT	2004	[48]
Ni	MWCNT	Ball milling	Dull Watts bath	Non	CNT content	2002	[49]
Ni	MWCNT	Ball milling	Dull Watts bath	Non	Tribological property	2001	[50]
Ni-Co	MWCNT	Chemical treatment	Dull Watts bath + Co salt	Non	Corrosion behavior	2019	[51]
Ni-P	MWCNT	Non	Dull Watts bath + citric acid + P compound	Polyacrylic acid	Tribological properties	2010	[52]
Ni-Co	MWCNT	Non	Dull Watts bath + Co salt	Compound name is unknown	Mechanical and tribological properties	2006	[53]

Ref. indicates references to supporting materials or further reading.
Metal	CNT	Treatment of CNT	Base Plating Bath	Surfactant	Remarks	Year	Ref.
Ni-P	MWCNT	Non	Ni salts + citric acid + P compounds	Compound name is unknown	Corrosion properties	2004	[55]
Cu	MWCNT	Chemical treatment	Citric bath	Non	Corrosion behavior	2021	[56]
Cu	MWCNT	Chemical treatment	Sulfate bath	Non	Pulse reverse, electrical conductivity	2020	[57]
Cu	MWCNT	Chemical treatment?	Sulfate bath	Non-ionic surfactants, Compound name is unknown	Mechanical properties, Microlaminated structure	2020	[58]
Cu	SWCNT	Non	Sulfate bath	Stearyltrimethylammonium chloride	Mechanical properties	2020	[59]
Cu	SWCNT	Non	Sulfate bath	Non	Microstructure	2019	[60]
Cu	MWCNT	Non	Sulfate bath	Sodium lauryl sulfate	Jet electrodeposition, Tribological properties	2019	[61]
Cu	MWCNT	Non	Sulfate bath	Polyacrylic acid	Current collector for LIB anode	2019	[62]
Cu	MWCNT	Chemical treatment	Sulfate bath	Stearyltrimethylammonium bromide	Electrical conductivity, Corrosion resistance	2018	[63]
Cu	MWCNT	Non	Sulfate bath	Non-ionic surfactants, Compound name is unknown	Mechanical properties, Laminated structure	2018	[64]
Cu	MWCNT	Chemical treatment	Sulfate bath	Non	Cu/CNT powder + powder metallurgy	2018	[65]
Cu	MWCNT	Chemical treatment	Sulfate bath	Non	Cu/CNT powder + powder metallurgy	2018	[66]
Cu	MWCNT	Chemical treatment	Sulfate bath	Non	Cu/CNT powder + powder metallurgy	2017	[67]
Cu	MWCNT	Chemical treatment	Commercially available	Nano diamond	Periodic pulse reverse electrodeposition	2016	[68]
Cu	MWCNT	Non	Sulfate bath	Polyacrylic acid	Current collector for LIB anode	2016	[69]
Cu	MWCNT	Non	Sulfate bath	Polyacrylic acid	Co-deposition mechanism of CNT	2013	[70]
Cu	MWCNT	Non	Sulfate bath	Non	Electrochemical reduction behavior	2011	[71]
Cu	MWCNT	Non	Sulfate bath	Polyacrylic acid	Pulse-reverse	2011	[72]
Metal	CNT	Treatment of CNT	Base Plating Bath	Surfactant	Remarks	Year	Ref.
-------	-----------	------------------	-------------------	-----------------------------	--	-------	------
Cu	MWCNT	Non	Sulfate bath	Polyacrylic acid	Surface morphology, Hardness, Internal stress	2010	[73]
Cu	MWCNT	Non	Sulfate bath	Polyacrylic acid	Patterned field emitter	2008	[74]
Cu	SWCNT	Non	Sulfate bath	Commercial products	Mechanical properties	2008	[75]
Cu	SWCNT	Chemical treatment	Sulfate bath	Cetyltrimethylammonium chloride	Mechanical properties	2008	[76]
Cu	Cup-stacked CNT	Non	Sulfate bath	Polyacrylic acid	Various CNTs	2005	[77]
Cu	MWCNT	Non	Sulfate bath	Polyacrylic acid	Microstructure	2004	[78]
Cu	MWCNT	Non	Sulfate bath	Polyacrylic acid	Cu/MWCNT composite powder	2003	[79]
Zn	MWCNT	Chemical treatment	Sulfate bath	Cetyltrimethylammonium bromide	Corrosion resistance	2021	[80]
Zn	MWCNT	Non	Zincate bath	Unknown	Pulse electrodeposition, Corrosion resistance	2020	[81]
Zn	MWCNT	Chemical treatment	Sulfate bath	Cetyltrimethylammonium bromide	Corrosion resistance	2007	[82]
Zn-Ni	MWCNT	Non	Chloride bath	Non	Pulse reverse, Tribological and Corrosion properties	2016	[83]
Cr	MWCNT	Non	Trivalent Cr bath	Sodium lauryl sulfate	Tribological properties, Corrosion resistance	2020	[84]
Cr	MWCNT	Non	Trivalent Cr bath	Sodium lauryl sulfate	Tribological properties	2018	[85]
Cr	MWCNT	Non	Trivalent Cr bath	Non	Mechanical properties	2009	[86]
Co	MWCNT	Non	Choline chloride/urea	Non	Non-aqueous solvent	2017	[87]
Co	MWCNT	Non	Sulfate bath	Polyacrylic acid	Field emission properties	2013	[88]
Co	MWCNT	Non	Sulfate bath	Polyacrylic acid	Tribological properties	2013	[89]
Co	MWCNT	Acid-treatment	Sulfate bath + citrate	Sodium lauryl sulfate	Tribological properties, Corrosion properties	2013	[90]
Co-W	MWCNT	Non	Co salt + Tungstate + Citrate	Polyacrylic acid	Tribological properties, Corrosion properties	2015	[91]
Table 2. Fabrication conditions of metal/CNT composites by electroless deposition.

Metal	CNT	Treatment of CNT	Base Plating Bath	Surfactant	Remarks	Year	Ref.
Co-W	MWCNT	Non	Co salt + Tungstate + Citrate	Polyacrylic acid	Tribological properties	2013	[91]
Au	MWCNT	Non	Sulfite bath	Stearyltrimethylammonium chloride	Electrical conductivity, Tribological properties	2009	[92]
Ag	MWCNT	Non	Choline chloride + glycerol	Poly (N-vinyl pyrrolidone)	Pulse reverse electrodeposition	2021	[93]
Ag	MWCNT	Non	Iodide bath	Non	Electrical contact resistance against H₂S gas	2021	[94]
Ag	MWCNT	Non	Iodide bath	Non	Hardness, Electrical and Tribological properties	2020	[95]
Ag	MWCNT	Non	Cyanide bath	Unknown	Electrical contact resistance against H₂S gas	2010	[96]
Al	MWCNT	Acid treatment	Diethylene glycol dimethyl ether	Non	Hardness	2020	[97]
Al	MWCNT	Non	1-ethyl-3-methylimidazolium chloride	Non	Hardness	2006	[98]
Sn	MWCNT	Non	Choline chloride + ethylene glycol	Non	Nucleation study	2019	[99]
Pb-Sn	MWCNT	Acid treatment	Fluoroborate bath	Polyacrylic acid	Corrosion resistance	2010	[100]

2.5. Fabrication of Metal/CNT Composites Using Composite Plating by Electroless Deposition

Regarding the number of published articles on metal/CNT composite plating using electroless deposition, those on the Ni-P alloy/CNT is large. In the case of electroless deposition of Ni, phosphorous compounds such as sodium hypophosphite (NaH₂PO₂) are usually used as the reducing agent and the P derived from the NaH₂PO₂ is co-deposited with Ni, resulting in Ni-P alloy deposit. Most of the purpose of the fabrication of Ni-P alloy/CNT composites is the improvement of tribological properties. Fabrication conditions in these articles are listed in Table 2.
3. Metal-Coated CNTs by Electroless Deposition

3.1. Fabrication Process

A fabrication process of metal-coated CNTs by an autocatalytic electroless deposition is schematically showed in Figure 13. Even in the case of electroless deposition, homogeneous dispersion of CNTs in the plating bath is important. The introduction of functional groups on the surface of CNTs likely effective to increase deposition sites, resulting in CNTs coated by metal films and not metal particles.

3.2. Metal-Coated CNTs

Fabrication conditions in these articles are listed in Table 3.

Table 3. Fabrication conditions of metal-coated CNTs by electroless deposition.

Metal	CNT	Pre-Treatment of CNT	Reducing Agent	Surfactant	Remarks	Year	Ref.
Ni-P	MWCNT	Chemical treatment Ball milling	NaH₂PO₂	Sodium lauryl sulfate	Mechanical attrition, Tribological properties	2012	[104]
Ni-P	MWCNT	HNO₃	Commercial product	Commercial product	Substrate: Mg powder	2011	[105]
Ni-P	MWCNT	Non	NaH₂PO₂	Stearyltrimethylammonium chloride	Substrate: ABS resin, Tribological properties	2011	[106]
Ni-P	MWCNT	Non	NaH₂PO₂	Stearyltrimethylammonium chloride	Various P content, Tribological properties	2010	[107]
Ni-P	MWCNT	Chemical treatment	NaH₂PO₂	Unknown	Effects on solder joint	2009	[108]
Ni-P	MWCNT	Chemical treatment	NaH₂PO₂	Cetyltrimethylammonium bromide	Tribological properties	2009	[109]
Ni-P	MWCNT	Chemical treatment	NaH₂PO₂	unknown	Tribological properties	2006	[110]
Ni-P	MWCNT	Ball milling	NaH₂PO₂	Compound name is unknown	Hardness, Corrosion resistance	2005	[111]
Ni-P	SWCNT	Heat treatment	NaH₂PO₂	Compound name is unknown	Tribological properties	2004	[112]
Ni-P	MWCNT	Ball milling	NaH₂PO₂	Cetyltrimethylammonium bromide	Tribological properties	2003	[113]
Ni-P	MWCNT	Ball milling	NaH₂PO₂	Cetyltrimethylammonium bromide	Tribological properties	2003	[114]
Ni-P	MWCNT	Ball milling	NaH₂PO₂	Cetyltrimethylammonium bromide	Tribological properties	2002	[115]
Cu	SWCNT	Non	CHOCOOH	Sodium lauryl sulfate Hydroxypropylcellulose	Mechanical disintegration,	2016	[116]
Cu	MWCNT	Non	CHOCOOH	Sodium lauryl sulfate Hydroxypropylcellulose	Various CNTs, Tribological properties	2014	[117]
Co-P	MWCNT	Non	NaH₂PO₂	Non	Magnetic properties	2016	[118]

3. Metal-Coated CNTs by Electroless Deposition

3.1. Fabrication Process

A fabrication process of metal-coated CNTs by an autocatalytic electroless deposition is schematically showed in Figure 13. Even in the case of electroless deposition, homogeneous dispersion of CNTs in the plating bath is important. The introduction of functional groups on the surface of CNTs likely effective to increase deposition sites, resulting in CNTs coated by metal films and not metal particles.

3.2. Metal-Coated CNTs

Fabrication conditions in these articles are listed in Table 3.

Table 3. Fabrication conditions of metal-coated CNTs by electroless deposition.

Metal	CNT	Pre-Treatment of CNT	Reducing Agent	Surfactant	Remarks	Year	Ref.
Ni-P	MWCNT	Sn²⁺ sensitization + Pd²⁺ activation	NaH₂PO₂	Non	Microstructure, Co-coated CNTs	2020	[119]

3. Metal-Coated CNTs by Electroless Deposition

3.1. Fabrication Process

A fabrication process of metal-coated CNTs by an autocatalytic electroless deposition is schematically showed in Figure 13. Even in the case of electroless deposition, homogeneous dispersion of CNTs in the plating bath is important. The introduction of functional groups on the surface of CNTs likely effective to increase deposition sites, resulting in CNTs coated by metal films and not metal particles.

3.2. Metal-Coated CNTs

Fabrication conditions in these articles are listed in Table 3.

Table 3. Fabrication conditions of metal-coated CNTs by electroless deposition.

Metal	CNT	Pre-Treatment of CNT	Reducing Agent	Surfactant	Remarks	Year	Ref.
Ni-P	MWCNT	Sn²⁺ sensitization + Pd²⁺ activation	NaH₂PO₂	Non	Microstructure, Co-coated CNTs	2020	[119]

3. Metal-Coated CNTs by Electroless Deposition

3.1. Fabrication Process

A fabrication process of metal-coated CNTs by an autocatalytic electroless deposition is schematically showed in Figure 13. Even in the case of electroless deposition, homogeneous dispersion of CNTs in the plating bath is important. The introduction of functional groups on the surface of CNTs likely effective to increase deposition sites, resulting in CNTs coated by metal films and not metal particles.

3.2. Metal-Coated CNTs

Fabrication conditions in these articles are listed in Table 3.
4. Metal/CNT Composites by Electrodeposition Using CNT Templates (Sheet, Yarn)

CNT templates, such as CNT sheets \[139\][140][141][142] and CNT yarns or fibers \[143\][144][145][146], have been developed and their various practical applications have been researched. Although a single CNT has a high electrical conductivity, electrical conductivities of those templates are far less than metals such as Cu, due to

Metal	CNT	Pre-Treatment of CNT	Reducing Agent	Surfactant	Remarks	Year	Ref.
Ni-P	MWCNT	Introduction of -COOH on CNT + Pd²⁺	NaH₂PO₂	Non	EMI properties, Cotton fabric substrate	2020	1320
Ni-P	MWCNT	Sn²⁺sensitization + Pd²⁺activation	NaH₂PO₂	Non	Arc discharge synthesized CNTs	2015	1321
Ni-P	MWCNT	Sn²⁺/Pd²⁺ commercial product	NaH₂PO₂	Non	Fe-50Co composites, magnetic properties	2014	1323
Au/Ni-P	MWCNT	Sn²⁺sensitization + Pd²⁺activation	NaH₂PO₂, KB₄	Non	Improved wettability with molten Al	2012	1323
Fe-B/Ni-P	MWCNT	Sn²⁺sensitization + Pd²⁺activation	NaH₂PO₂, KB₄	Polyaclryic acid (Pre-treatment)	Microwave absorbing properties	2011	1324
Ni-P	SWCNT	Sn²⁺sensitization + Pd²⁺activation	NaH₂PO₂	Non	Microstructure of Ni-layer	2011	1325
Ni-B	MWCNT	Sn²⁺sensitization + Pd²⁺activation	(CH₃)₂NH·BH₃	Polyaclryic acid (Pre-treatment)	Graphitized MWCNTs Heat treatment	2011	1326
Ni	MWCNT	Sn²⁺sensitization + Pd²⁺activation	N₂H₄	Polyaclryic acid (Pre-treatment)	Graphitized MWCNTs Magnetic properties	2010	1327
Ni-P	MWCNT	K₂Cr₂O₇+H₂SO₄ Sn²⁺sensitization + Pd²⁺activation	NaH₂PO₂	Non	Microwave absorbing properties, Ni-N alloy	2008	1328
Ni-P	MWCNT	HNO₂ Sn²⁺sensitization + Pd²⁺activation	NaH₂PO₂	Diallyl-dimethylammonium chloride	Graphitized MWCNTs	2005	1329
Ni-P	MWCNT	Sn²⁺sensitization + Pd²⁺activation	NaH₂PO₂	Polyaclryic acid (Pre-treatment)	Graphitized MWCNTs	2004	1330
Ni-P	MWCNT	Sn²⁺sensitization + Pd²⁺activation	NaH₂PO₂	Non	Continuous Ni-layer	2002	1331
Ni-P	MWCNT	Mixed Pd²⁺/Sn²⁺	NaH₂PO₂	Non	Pd-coated CNTs	1999	1332
Ni-P	MWCNT	Sn²⁺sensitization + Pd²⁺activation	NaH₂PO₂	Non	Magnetic property	1997	1333
Al	MWCNT	Sn²⁺/Pd²⁺ commercial product	LiAlH₄	Non	Non-aqueous bath: AlCl₃-urea	2020	1334
Ag	MWCNT	H₂SO₄ + HNO₃ Sn²⁺sensitization + Pd²⁺activation	HCHO	Non	Interfacial adhesion of composites	2004	1335
Cu	MWCNT	Sulphoric acid + HNO₃ Sn²⁺sensitization + Cu²⁺activation	HCHO	Non	Electrical and mechanical properties	2009	1336
Cu	MWCNT	HNO₃ Sn²⁺sensitization + Pd²⁺activation HNO₃	CHOClO₂	Diallyl-dimethylammonium chloride	Graphitized MWCNTs	2004	1337
Co-P	MWCNT	K₂Cr₂O₇+H₂SO₄ Sn²⁺sensitization + Pd²⁺activation	NaH₂PO₂	Non	Heat-treatment	2000	1338
the contact resistance between each CNT of which they consist. Therefore, metallization of the CNT templates is a promising process to give them enough electrical conductivity. On the contrary, CNTs have strong anisotropy in electrical and thermal properties. Therefore, the orientation of CNTs which make up the templates is also important in order to achieve the expected properties of metal/CNT composites. Fabrication conditions in these articles are listed in Table 4.

Table 4. Fabrication conditions of Metal/CNT Composites by Electrodeposition using CNT Template.

CNT Template	Feature of CNT Template	Metal	Plating Bath	Remarks	Year	Ref.
MWCNT film	Super-aligned	Cu, Ni	Acid sulfonic bath + glucose Dull Watts Bath	Improved mechanical and electrical properties	2019	[148]
MWCNT film	Super-aligned	Ni	Dull Watts Bath	Improved mechanical properties	2019	[149]
SWCNT paper (Bucky paper)	Orientation: in-plane direction	Cu	Acid sulfonic bath + polyethylene glycol + Cl⁻ + bis(3-sulfopropyl) disulfide + Janus green B	One-step electrodeposition by a combination of additives	2017	[150]
MWCNT paper	Super-aligned	Cu	Acid sulfonic bath + glucose + polyethylene glycol + Cl⁻ Alkaline bath (EDTA, Citrate)	Electrical conductivity	2017	[151]
MWCNT film	Super-aligned	Cu	Acid sulfonic bath + glucose	Improved mechanical properties	2016	[152]
MWCNT film	Super-aligned	Cu	Acid sulfonic bath + glucose	Improved mechanical properties	2015	[153]
SWCNT yarn	Straight	Cu	Acid sulfonic bath	Graphen growth on the surface of electrodeposited Cu	2021	[154]
MWCNT yarn	Twisted	Cu	Acid sulfonic bath + polyethylene glycol + Cl⁻ + bis(3-sulfopropyl) disulfide + Janus green B	One-step electrodeposition by a combination of additives	2020	[155]
CNT yarn	Straight	Cu	Acid sulfonic bath	Superior current carrying capacity	2018	[156]
MWCNT yarn	Twisted	Cu	(CH₃COO)₂ + CH₃CN Acid sulfonic bath	Effect of CNT yarn density	2018	[157]
MWCNT yarn	Twisted	Cu	Cu (CH₃COO)₂ + CH₃CN Acid sulfonic bath	Two-step electrodeposition Uniform composite wire	2017	[158]
MWCNT yarn	Twisted	Cu	(CH₃COO)₂ + CH₃CN Acid sulfonic bath	Two-step electrodeposition Electrical properties, Solderability,	2017	[159]
MWCNT yarn	Straight	Cu	Acid sulfonic bath	Electrodeposition of Cu interior of CNT yarn	2016	[160]
MWCNT yarn	Twisted	Ag, Pt	KNO₃+AgNO₃ H₂SO₄ + H₂Pt₆Cl₆	Improved tensile strength and electrical conductivity	2013	[161]
MWCNT yarn	Twisted	Cu	Acid sulfonic bath + octyl phenyl poly (ethylene glycol) ether	Continuous process: fiber spinning, anodization, electrodeposition	2011	[162]
MWCNT yarn	Twisted	Au, Pd, Pt, Cu, Ag, Ni	Metal salt solution	Self-fueled electrodeposition Improved electrical conductivity	2010	[163]

5. Conclusions
The fabrication process can be classified into three types: (1) composite plating by electrodeposition and electroless deposition, (2) metal coating on CNTs by electroless deposition, and (3) electrodeposition using CNT templates. In the composite plating, homogeneous dispersion of CNTs in plating baths is essential and, consequently, various processes, such as the addition of dispersants and introduction of hydrophilic groups on CNTs, have been studied. Numerous articles on Ni/CNT or Ni-P alloy/CNT composites by composite plating have been published and their excellent tribological properties and improved corrosion resistances have been reported. Many papers on Cu/CNT composites have also been published and their properties, such as electrical conductivity, have been investigated. The further elucidation of the mechanism of CNT composite plating process is expected. In the metal coating on CNTs by electroless deposition, the pre-treatments, such as sensitization and activation, are important. Oxidation of CNTs is useful for coating CNTs perfectly. A lot of articles on Ni-P alloy-coated CNTs have been published. In the electrodeposition using CNT templates, many papers on Cu/CNT composites using CNT sheets and CNT yarns have been published and their electrical properties have been reported. The preparation process to deposit Cu not only on the surfaces but also on the interior of CNT templates is likely the key technical point.

The practical applications of these technologies are expected in future work.

References

1. Oberlin, A.; Endo, M.; Koyama, T. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 1976, 32, 335–349.
2. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
3. Fink, C.G.; Prince, J.D. The codeposition of copper and graphite. Trans. Am. Electrochem. Soc. 1928, 54, 315–321.
4. Guglielmi, N. Kinetics of the Deposition of Inert Particles from Electrolytic Baths. J. Electrochem. Soc. 1972, 119, 1009–1012.
5. Buelens, C.; Celis, J.P.; Roos, J.R. Electrochemical aspect of the codeposition of gold and copper with inert particles. J. Appl. Electrochem. 1983, 13, 541–548.
6. Celis, J.P.; Roos, J.R.; Buelens, C. A mathematical model for the electrolytic codeposition of particles with a metallic matrix. J. Electrochem. Soc. 1987, 134, 1402–1408.
7. Fransaer, J.; Celis, J.P.; Roos, J.R. Analysis of the electrolytic codeposition of non-brownian particles with metals. J. Electrochem. Soc. 1992, 139, 413–425.
8. Hwang, B.J.; Hawang, C.S. Mechanism of codeposition of silicon carbide with electrolytic cobalt. J. Electrochem. Soc. 1993, 140, 979–984.
9. Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Paulin, P. Macrosopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, 1331-1334.
10. O’Connell, M.J.; Bachilo, S.M.; Huffman, C.B.; Moore, V.C.; Strano, M.S.; Haroz, E.H.; Rialon, K.L.; Boul, P.J.; Noon, W.H.; Kittrell, C.; et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.
11. Richard, C.; Balavoine, F.; Schultz, P.; Ebbesen, T.W.; Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 2003, 300, 775–778.
12. Islam, M.F.; Rojas, E.; Bergey, D.M.; Johnson, A.T.; Yodh, A.G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 2003, 3, 269-273.
13. Moore, V.C.; Strano, M.S.; Haroz, E.H.; Hauge, R.H.; Smally, R.E. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 2003, 3, 1379-1382.
14. Jiang, L.; Gao, L.; Sun, J. Production of aqueous colloidal dispersions of carbon nanotubes. J. Colloid Interface Sci. 2003, 260, 89-94.
15. Yurekli, K.; Mitchell, C.A.; Krishnamoorti, R. Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 9902–9903.
16. Hertel, T.; Hagen, A.; Talalaev, V.; Arnold, K.; Henrich, F.; Kappe, M.; Rosenthal, S.; McBride, J.; Ulbricht, H.; Flahaut, E. Spectroscopy of single-And double-wall carbon nanotubes environments. Nano Lett. 2005, 5, 511–514.
17. Steinmetz, J.; Glurup, M.; Pailet, M.; Bernier, P.; Holzinger, M. Production of pure nanotube fibers using a modified wet-spinning method. Carbon 2005, 43, 2397–2429.
18. Tan, Y.; Resasco, D.E. Dispersion of single-walled carbon nanotubes of narrow diameter distribution. J. Phys. Chem. B 2005, 109, 14454–14460.
19. Grossiord, N.; van der Schoot, P.; Meuldijk, J.; Koning, C.E. Determination of the surface coverage of exfoliated carbon nanotubes by surfactant molecules in aqueous solution. Langmuir 2007, 23, 3646–3653.
20. Sun, Z.; Nicolosi, V.; Rickard, D.; Bergin, S.D.; Aherne, D.; Coleman, J.N. Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: Dispersion quality and its correlation with zeta potential. J. Phys. Chem. C 2008, 112, 10692–10699.
21. Blanch, A.J.; Lenehan, C.E.; Quinton, J.S. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 2010, 114, 9805–9811.

22. Duan, W.H.; Wang, Q.; Collins, F. Dispersion of carbon nanotubes with SDS surfactants: A study from a binding energy perspective. Chem. Sci. 2011, 2, 1407–1413.

23. Barisci, J.N.; Tahhan, M.; Wallace, G.G.; Badaire, S.; Vaugien, T.; Maugay, M.; Poulin, P. Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv. Func. Mat. 2004, 14, 133–138.

24. Takahashi, T.; Luculescu, C.R.; Uchida, K.; Ishii, T.; Yajima, H. Dispersion behavior and spectroscopic properties of single-walled carbon nanotubes in chitosan acidic aqueous solutions. Chem. Lett. 2005, 34, 1516–1517.

25. Yan, Y.; Cui, J.; Potschke, P.; Voit, B. Dispersion of pristine single-walled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites. Carbon 2010, 48, 2603–2612.

26. Suarez, B.; Simonet, B.M.; Cardenas, S.; Valcarcel, M. Separation of carbon nanotubes in aqueous medium by capillary electrophoresis. J. Chromagr. A 2006, 1128, 282–289.

27. Esumi, K.; Ishigami, M.; Nakajima, A.; Sawada, K.; Honda, H. Chemical treatment of carbon nanotubes. Carbon 1995, 33, 279–281.

28. Chen, Q.; Dai, L.; Gao, M.; Huang, S.; Mau, A. Plasma activation of carbon nanotubes for chemical modification. J. Phys. Chem. B 2001, 105, 618–622.

29. Jiang, L.; Gao, L. Modified carbon nanotubes: An effective way to selective attachment of gold nanoparticles. Carbon 2003, 41, 2923–2929.

30. Arai, S.; Endo, M.; Norio, K. Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 2004, 42, 641–644.

31. Arai, S.; Endo, M. Carbon nanofiber-copper composite powder prepared by electrodeposition. Electrochim. Commun. 2003, 5, 797–799.

32. Jyotheender, K.S.; Gupta, A.; Srivastava, C. Grain boundary engineering in Ni-carbon nanotube composite coatings and its effect on the corrosion behavior of the coatings. Materialia 2020, 9, 100617.

33. Prasannakumar, R.S.; Chukwueke, V.I.; Bhakayaraj, K.; Mohan, S.; Barik, R.C. Electrochemical and hydrodynamic flow characterization of nickel/multiwalled carbon nanotubes composite coating. Surf. Coat. Technol. 2008, 202, 3246–3250.

34. Guo, C.; Zuo, Y.; Zhao, X.; Zhao, J.; Xiong, J. The effects of electrodeposition current density on properties of Ni-CNTs composite coatings. Surf. Coat. Technol. 2008, 202, 3385–3390.

35. Yang, Y.J. Morphological and compositional engineering of Ni/carbon nanotube composite film via a novel cyclic voltammetric route. Bull. Mater. Sci. 2012, 35, 513–517.

36. Kim, S.K.; Oh, T.S. Electrodeposition behavior and characteristics of Ni-carbon nanotube composite coatings. Trans. Nonferrous Met. Soc. China 2011, 21, s68–s72.

37. Martis, P.M.; Dilimon, V.S.; Delhalle, J.; Mekhalif, Z. Electro-generated nickel/carbon nanotube composites in ionic liquid. Electrochim. Acta 2010, 55, 5407–5410.

38. Arai, S.; Fujimori, A.; Murai, M.; Endo, M. Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite coatings. Surf. Coat. Technol. 2008, 202, 3246–3250.
matrix composite coatings. J. Mater. Sci. Lett. 2001, 20, 2057–2060.
52. Arora, S.; Kumari, N.; Srivastava, C. Microstructure and corrosion behavior of NiCo-carbon nanotube composite coatings. J. Alloy. Comp. 2019, 801, 449–459.
53. Suzuki, Y.; Arii, S.; Endo, M. Electrodeposition of Ni-P alloy-multiwalled carbon nanotube composite films. J. Electrochem. Soc. 2010, 157, D50–D53.
54. Shi, L.; Sun, C.F.; Gao, P.; Zhou, F.; Liu, W.M. Electrodeposition and characterization of Ni-Co carbon nanotubes composite coatings. Surf. Coat. Technol. 2006, 200, 4870–4875.
55. Shi, Y.L.; Yang, Z.; Xu, H.; Li, M.K.; Li, H.L. Preparation of electroplated Ni-P-ultrafine diamond, Ni-P-carbon nanotubes composite coatings and their corrosion properties. J. Mater. Sci. 2004, 39, 5809–5815.
56. Aliyu, A.; Srivastava, C. Corrosion between growth texture, crystallite size, lattice strain and corrosion behavior of copper-carbon nanotube composite coatings. Surf. Coat. Technol. 2021, 405, 126596.
57. Li, D.; Xue, J.; Zuo, T.; Gao, Z.; Xiao, L.; Han, L.; Li, S.; Yang, Y. Copper-functionalized-carbon nanotubes composite films with ultrahigh electrical conductivity prepared by pulse reverse electrodeposition. J. Mater. Sci. Mater. Electron. 2020, 31, 14184–14191.
58. Wang, M.; Yang, X.; Tao, J.; Bu, Y.; Liu, Y.; Pu, Z.; Yi, J. Achieving high ductility in layered carbon nanotube/copper composite prepared by composite electrodeposition. Diam. Relat. Mater. 2020, 108, 107992.
59. Shimizu, M.; Ogasawara, T.; Ohnuki, T.; Ariai, S. Multi-layered copper foil reinforced by co-deposition of single-walled carbon nanotube based on electroplating technique. Mater. Lett. 2020, 261, 126993.
60. Raja, P.M.; Esquenazi, G.L.; Gowenlock, C.E.; Jones, D.R.; Li, J.; Brinson, B.; Barron, A.R. Electrodeposition of Cu-SWCNT composites. C 2019, 5, 38.
61. Ning, D.; Zhang, A.; Wu, H. Enhanced wear performance of Cu-carbon nanotubes composite coatings prepared by jet electrodeposition. Materials 2019, 12, 392.
62. Shimizu, M.; Ohnuki, T.; Ogasawara, T.; Banno, T.; Ariai, S. Electrodeposited Cu/MWCNT composite film: A potential current collector of silicon-based negative-electrodes for Li-ion batteries. RSC Adv. 2019, 9, 21939–21945.
63. Fu, S.; Chen, X.; Liu, P.; Liu, W.; Liu, P.; Zhang, K.; Chen, H. Electrodeposition and properties of composites consisting of carbon nanotubes and copper. J. Mater. Eng. Perform. 2018, 27, 5511–5517.
64. Chen, X.; Tao, J.; Yi, J.; Li, C.; Bao, R.; Liu, Y.; You, X.; Tan, S. Balancing the strength and ductility of carbon nanotubes reinforced copper matrix composites with microlaminated structure and interdiffusion. Mater. Sci. Eng. A 2018, 712, 790–793.
65. Wang, Z.; Cai, X.; Yang, C.; Zhou, L. An electrodeposition approach to obtaining carbon nanotubes embedded copper powders for the synthesis of copper matrix composites. J. Alloy. Comp. 2018, 735, 1357–1362.
66. Wang, Z.; Cai, X.; Yang, C.; Zhou, L. Improving strength and high electrical conductivity of multi-walled carbon nanotubes/copper composites fabricated by electrodeposition and powder metallurgy. J. Alloy. Comp. 2018, 735, 905–913.
67. Zheng, L.; Sun, J.; Chen, Q. Carbon nanotubes reinforced copper composite with uniform CNT distribution and high yield of fabrication. Micro Nano Lett. 2017, 12, 722–725.
68. Feng, Y.; McGuire, G.E.; Shenderova, O.A.; Ke, H.; Burkett, S.L. Fabrication of copper/carbon nanotube composite thin films by periodic pulse reverse electroplating using nanodiamond as a dispersing agent. Thin Solid Film. 2016, 615, 116–121.
69. Ariai, S.; Fukuoka, R. A carbon nanotube-reinforced noble tin anode structure for lithium-ion batteries. J. Appl. Electrochem. 2016, 46, 331–338.
70. Ariai, S.; Kato, A. Mechanism for codeposition of multiwalled carbon nanotubes with copper from acid copper sulfate bath. J. Electrochem. Soc. 2013, 160, D380–D385.
71. Qin, X.X.; Liu, J.J.; Wang, F.; Ji, J. Effect of multi-walled carbon nanotubes as second phase on the copper electrochemical reduction behavior for fabricating their nanostructured composite films. J. Electroanal. Chem. 2011, 651, 233–236.
72. Ariai, S.; Suwa, Y.; Endo, M. Cu/multiwalled carbon nanotube composite films fabricated by pulse-reverse electrodeposition. J. Electrochem. Soc. 2011, 158, D49–D53.
73. Ariai, S.; Saito, T.; Endo, M. Cu-MWCNT composite films fabricated by electrodeposition. J. Electrochem. Soc. 2010, 157, D147–D153.
74. Ariai, S.; Saito, T.; Endo, M. Metal-fixed multiwalled carbon nanotube patterned emitters using photolithography and electrodeposition technique. Electrochem. Solid-State Lett. 2008, 11, D72–D74.
75. Chai, G.; Sun, Y.; Jenny Sun, J.; Chen, Q. Mechanical properties of carbon nanotube-copper nanocomposites. J. Micromech. Microeng. 2008, 18, 035013.
76. Yang, Y.L.; Yang, Y.D.; Ren, Y.; He, C.S.; Deng, J.N.; Nan, J.; Chen, J.G.; Zuo, L. Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field. Mater. Lett. 2008, 62, 47–50.
77. Ariai, S.; Endo, M. Various carbon nanofiber-copper composite films prepared by electrodeposition. Electrochem. Commun. 2005, 7, 19–22.
78. Ariai, S.; Endo, M. Carbon nanofiber-copper composites fabricated by electrodeposition. Electrochem. Solid-State Lett. 2004, 7, C25–C26.
79. Jyotheender, K.S.; Srivastava, C. Correlating the five-parameter grain boundary character distribution and corrosion behavior of zinc-carbon nanotube composite coatings. Metall. Mater. Trans. A 2021, 52A, 364–377.
80. Tseluikin, V.N.; Strilets, A.A.; Yakovlev, A.V. Electrochemical deposition of zinc-based composite coatings modified with carbon nanotubes form alkaline electrolyte. Prot. Met. Phys. Chem. Surf. 2020, 56, 1186–1189.
81. Praveen, B.M.; Venkatesha, T.V.; Naik, Y.A.; Prashantha, K. Corrosion studies of carbon nanotube-Zn composite coating.
82. Tseluikin, V.N.; Koreshkov, A.A. Electrodeposition of zinc-nickel-carbon nanotubes composite coatings in a reversing mode. Prot. Met. Phys. Chem. Surf. 2016, 52, 1040–1042.
83. Tripathi, P.; Katiyar, P.K.; Ramkumar, J.; Balani, K. Synergistic role of carbon nanotube and yttria stabilized zirconia reinforcement on wear and corrosion resistance of Cr-based nano-composite coatings. Surf. Coat. Technol. 2020, 385, 125381.
84. Shukla, P.; Awasthi, S.; Ramkumar, J.; Balani, K. Protective trivalent Cr-based electrochemical coatings for gun barrels. J. Alloy. Comp. 2018, 769, 1039–1048.
85. Liu, B.; Zhen, Z.; Lin, Y. Mechanical properties of hard Cr-MWNT composite coatings. Surf. Coat. Technol. 2009, 203, 3610–3613.
86. Pereira, N.M.; Brincoveanu, O.; Pantazi, A.G.; Pereira, C.M.; Araujo, J.P.; Silva, A.F.; Enachescu, M.; Anicai, L. Electrodeposition of Co and Co composites with carbon nanotubes using choline chloride-based ion liquids. Surf. Coat. Technol. 2017, 324, 451–462.
87. Arai, S.; Miyagawa, K. Field emission properties of cobalt/multiwalled carbon nanotube composite films fabricated by electrodeposition. Appl. Surf. Sci. 2013, 280, 957–961.
88. Arai, S.; Miyagawa, K. Frictional and wear properties of cobalt/multiwalled carbon nanotube composite films formed by electrodeposition. Surf. Coat. Technol. 2013, 235, 204–211.
89. Su, F.; Liu, C.; Guo, J.; Huang, P. Characterization of nanocrystalline Co and Co/MWCNT coatings produced by different electrodeposition techniques. Surf. Coat. Technol. 2013, 217, 94–104.
90. Anand, E.E.; Natarajan, S. Effect of carbon nanotubes on corrosion and tribological properties of pulse-electrodeposited Co-W composite coatings. J. Mater. Eng. Perform. 2015, 24, 128–135.
91. Arai, S.; Miyagawa, K. Fabrication of Co-W alloy/multiwalled carbon nanotube composite films by electrodeposition for improved frictional properties. ECS J. Solid State Sci. Technol. 2013, 2, M39–M43.
92. Fujishige, M.; Wongwiriyapan, W.; Wang, F.; Park, K.C.; Takeuchi, K.; Arai, S.; Endo, M. Gold-carbon nanotube composite plating film deposited using non-cyanide bath. Jpn. J. Appl. Phys. 2009, 48, 070217.
93. Brandao, A.T.S.C.; Rosoiu, S.; Costa, R.; Lazar, O.A.; Silva, A.F.; Anicai, L.; Pereira, C.M.; Enachescu, M. Characterization and electrochemical studies of MWCNTs decorated with Ag nanoparticles through pulse reversed current electrodeposition using a deep eutectic solvent for energy storage applications. J. Mater. Res. Technol. 2021, 15, 342–359.
94. Arai, S.; Kikuhara, T.; Shimizu, M.; Horita, M. Superior electrical contact characteristics of Ag/CNT composite films formed in a cyanide-free plating bath and tested against corrosion by H2S gas. Mater. Lett. 2021, 303, 130504.
95. Arai, S.; Kikuhara, T.; Shimizu, M.; Horita, M. Electrodeposition of Ag/CNT composite films from iodide plating baths. J. Electrochem. Soc. 2020, 167, 122515.
96. Fujishige, M.; Sekino, M.; Fujisawa, K.; Morimoto, S.; Takeuchi, K.; Arai, S.; Kawai, A. Electric contact characteristic under low load of silver-carbon nanotube composite plating film corroded using H2S gas. Appl. Phys. Express. 2010, 3, 065801.
97. Zhang, Z.; Kitada, A.; Chen, T.; Fukami, K.; Shimizu, M.; Arai, S.; Yao, Z.; Murase, K. Dispersion of multiwalled carbon nanotubes into a diglyme solution, electrodeposition of aluminum-based composite, and improvement of hardness. J. Alloy. Comp. 2020, 816, 152585.
98. Yatsushiro, T.; Koura, N.; Nakano, S.; Ui, K.; Takeuchi, K. Electrodeposition of aluminum-carbon nanotube composite from room-temperature molten salt electrolyte. Electrochemistry 2006, 74, 233–236.
99. Brandao, A.T.S.C.; Anicai, L.; Lazar, O.A.; Rosoiu, S.; Pantazi, A.; Costa, R.; Enachescu, M.; Pereira, C.M.; Silva, A.F. Electrodeposition of Sn and Sn composites with carbon materials using choline chloride-based ionic liquids. Coatings 2019, 9, 798.
100. Hu, Z.; Jie, X.; Lu, G. Corrosion resistance of Pb-Sn composite coatings reinforced by carbon nanotubes. J. Coat. Technol. Res. 2010, 7, 809–814.
101. Lopes de Oliveira, M.C.; Correa, O.V.; Pereira da Silva, R.M.; Batista de Lima, N.; Dias de Oliveira, J.T.; Antonio de Oliveira, L.; Antunes, R.A. Structural characterization, global and local electrochemical activity of electroless Ni-P-multiwalled carbon nanotube composite coatings on pipeline steel. Metals 2021, 11, 982.
102. Meng, Z.Q.; Li, X.B.; Xiong, Y.J.; Zhan, J. Preparation and tribological performances of Ni-P-multiwalled carbon nanotube composite coatings. T. Nonferr. Met. Soc. 2010, 7, 809–814.
103. Aliashahi, M.; Monivaghefi, S.M.; Saatchi, A.; Hosseini, S.M. The effect of carbon nanotube on the corrosion and tribological behavior of electroless Ni-P-CNT composite coating. Appl. Surf. Sci. 2012, 258, 2439–2446.
104. Zhao, G.; Ren, C.; He, Y. Ni-P-multiwalled carbon nanotubes composite coatings prepared by mechanical attrition (MA)-assisted electroless plating. Surf. Coat. Technol. 2012, 206, 2774–2779.
105. Firoozbakht, M.; Monivaghefi, S.M.; Niroumand, B. Electroless composite coating of Ni-P-carbon nanotubes on magnesium powder. J. Alloy. Comp. 2011, 5095, S496–S502.
106. Arai, S.; Sato, T.; Endo, M. Fabrication of various electroless Ni-P alloy/multiwalled carbon nanotube composite films and their frictional properties. J. Electrochem. Soc. 2010, 157, D570–D576.
107. Park, C.L.; Fujishige, M.; Takeuchi, K.; Arai, S.; Morimoto, S.; Endo, M. Inter-collisional cutting of multi-walled carbon nanotubes by high-speed agitation. J. Phys. Chem. Sol. 2008, 69, 2481–2486.
108. Gu, X.; Chan, Y.C.; Yang, D.; Wu, B.Y. The shearing behavior and microstructure of Sn-4Ag-0.5Cu solder joints on a Ni-P-carbon nanotubes composite coating. J. Alloy. Comp. 2009, 468, 553–557.
109. Li, Z.H.; Wang, X.Q.; Wang, M.; Wang, F.F.; Ge, H.L. Preparation and tribological properties of the carbon nanotube-Ni-P composite coating. Tribol. Int. 2008, 39, 953–957.

110. Chen, X.H.; Chen, C.S.; Xiao, H.N.; Liu, H.B.; Zhou, L.P.; Li, S.L.; Zhang, G. Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits. Tribol. Int. 2006, 39, 22–28.

111. Yang, Z.; Xu, H.; Shi, Y.L.; Li, M.K.; Huang, Y.; Li, H.L. The fabrication and corrosion behavior of electroless Ni-P-carbon nanotube composite coatings. Mater. Res. Bull. 2005, 40, 1001–1009.

112. Yang, Z.; Xu, H.; Li, M.K.; Shi, Y.L.; Huang, Y.; Li, H.L. Preparation and properties of Ni/P/single-walled carbon nanotubes composite coatings by means of electroless plating. Thin Solid Films 2004, 466, 86–91.

113. Chen, W.X.; Tu, J.P.; Wang, L.Y.; Gan, H.Y.; Xu, Z.D.; Zhang, X.B. Tribological application of carbon nanotubes in a metal-based composite coatings and composites. Carbon 2003, 41, 215–222.

114. Chen, W.X.; Tu, J.P.; Xu, Z.D.; Chen, W.L.; Zhang, X.B.; Cheng, D.H. Tribological properties of Ni-P-multi-walled carbon nanotubes electroless composite coating. Mater. Lett. 2003, 57, 1256–1260.

115. Chen, W.X.; Tu, J.P.; Gan, H.Y.; Xu, Z.D.; Wang, Q.G.; Lee, J.Y.; Liu, Z.L.; Zhang, X.B. Electroless preparation and tribological properties of Ni-P-carbon nanotube composite coatings under lubricated condition. Surf. Coat. Technol. 2002, 160, 68–73.

116. Araì, S.; Osaki, T.; Hirota, M.; Uejima, M. Fabrication of copper/single-walled carbon nanotube composite film with homogeneously dispersed nanotubes by electroless deposition. Mater. Today Commun. 2016, 7, 101–107.

117. Araì, S.; Kanazawa, T. Electroless deposition of Cu/multiwalled carbon nanotube composite films with improved frictional properties. ECS J. Solid State Sci. Technol. 2014, 3, P201–P206.

118. Goel, V.; Anderson, P.; Hall, J.; Robinson, F.; Bohm, S. Electroless Co-P-carbon nanotube composite coating to enhance magnetic properties of grain-oriented electrical steel. J. Magn. Magn. Mater. 2016, 407, 42–45.

119. Ergul, E.; Kurt, H.J.; Oduncuolu, M.; Yilmaz, N.F. Electroless nickel-phosphorous and cobalt-phosphorous coatings on multi-walled carbon nanotubes. Mater. Res. Express 2020, 7, 115604.

120. Qi, Q.; Wang, Y.; Ding, X.; Wang, W.; Xu, R.; Yu, D. High-electromagnetic-shielding cotton fabric prepared using multiwalled carbon nanotubes/nickel-phosphorous electroless plating. Appl. Organometal. Chem. 2020, 34, e5434.

121. Jagannatham, M.; Sankaran, S.; Haridoss, P. Electroless nickel plating of arcl discharged synthesized carbon nanotubes for metal matrix composites. Appl. Surf. Sci. 2015, 324, 475–481.

122. Mani, M.K.; Viola, G.; Reece, M.J.; Hall, J.P.; Evans, S.L. Improvement of interfacial bonding in carbon nanotube reinforced Fe-50Co composites by Ni-P coating: Effect on magnetic and mechanical properties. Mater. Sci. Eng. B 2014, 188, 94–101.

123. Araì, S.; Suzuki, Y.; Nakagawa, J.; Yamamoto, T.; Endo, M. Fabrication of metal coated carbon nanotubes by electroless deposition for improved wettability with molten aluminum. Surf. Coat. Technol. 2012, 212, 207–213.

124. Park, K.Y.; Han, J.H.; Lee, S.B.; Yi, J.W. Microwave absorbing hybrid composites containing Ni-Fe coated carbon nanofibers prepared by electroless plating. Compos. Part A 2011, 42, 573–578.

125. Li, W.; Jin, H.; Hao, Y.; Chen, T.; Dai, J.; Wang, Q. The microstructure of Ni layer on single-walled carbon nanotubes prepared by an electroless coating process. J. Nanomater. 2010, 2011, 348958.

126. Araì, S.; Imoto, Y.; Suzuki, Y.; Endo, M. Fabrication of Ni-B alloy coated vapor-grown carbon nanofibers by electroless deposition. Carbon 2011, 49, 1484–1490.

127. Araì, S.; Kobayashi, M.; Yamamoto, T.; Endo, M. Pure-nickel-coated multiwalled carbon nanotubes prepared by electroless deposition. Electrochem. Solis State Lett. 2010, 13, D94–D96.

128. Zhao, D.L.; Li, X.; Shen, Z.M. Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes. Comp. Sci. Technol. 2008, 68, 2902–2908.

129. Wang, F.; Araì, S.; Endo, M. The preparation of multi-walled carbon nanotubes with a Ni-P coating by an electroless deposition process. Carbon 2005, 43, 1716–1721.

130. Araì, S.; Endo, M.; Hashizume, S.; Shimojima, Y. Nickel-coated carbon nanofibers prepared by electroless deposition. Electrochem. Commun. 2004, 6, 1029–1031.

131. Kong, F.Z.; Zhang, X.B.; Xiong, W.Q.; Liu, F.; Huang, W.Z.; Sun, Y.L.; Tu, J.P.; Chen, X.W. Continuous Ni-layer on multiwall carbon nanotubes by an electroless plating method. Surf. Coat. Technol. 2002, 155, 33–36.

132. Ang, L.M.; Andy Hor, T.S.; Xu, G.Q.; Tung, C.H.; Zhao, S.; Wang, J.L.S. Electroless plating of metals onto carbon nanotubes activated by a single-step activation method. Chem. Mater. 1999, 11, 2115–2118.

133. Li, Q.; Fan, S.; Han, W.; Sun, C.; Liang, W. Coating of carbon nanotube with nickel by electroless plating method. Jpn. J. Appl. Phys. 1997, 36, L501–L503.

134. Mohammed, E.; Amal, M.K.E. Development of an AlCl3-urea liquid for the electroless deposition of aluminium on carbon nanotubes. ACS Omega 2020, 5, 5756–5761.

135. Feng, Y.; Yuan, H. Electroless plating of carbon nanotubes with silver. J. Mater. Sci. 2004, 39, 3241–3243.

136. Daouash, W.M.; Lim, B.K.; Mo, C.B.; Nam, D.H.; Hong, S.H. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process. Mater. Sci. Eng. A 2009, 513, 247–253.

137. Wang, F.; Araì, S.; Endo, M. Metallization of multi-walled carbon nanotubes with copper by an electroless deposition process. Electrochem. Commun. 2004, 6, 1042–1044.

138. Chen, X.; Xia, J.; Peng, J.; Li, W.; Xie, S. Carbon-nanotube metal-matrix composites prepared by electroless plating. Compos. Sci. Technol. 2000, 60, 301–306.

139. Rinzler, A.G.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C.B.; Rodriguez-Macias, F.J.; Boul, P.J.; Lu, A.H.; Heymann, D.; Colbert, D.T.; et al. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys. A
Keywords
metal/carbon nanotube composite;electrochemical deposition;electrodeposition;electroless deposition;composite plating;carbon nanotube sheet;carbon nanotube yarn

Retrieved from https://encyclopedia.pub/17391