Modulation of *Mycobacterium bovis*-Specific Responses of Bovine Peripheral Blood Mononuclear Cells by 1,25-Dihydroxyvitamin D₃

W. R. WATERS,¹*, B. J. NONNECKE,² T. E. RAHNER,¹ M. V. PALMER,¹ D. L. WHIPPLE,¹ AND R. L. HORST²

*Bacterial Diseases of Livestock Research Unit¹ and Periparturient Diseases of Livestock Research Unit,² National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa 50010-0070

Received 8 May 2001/Returned for modification 17 July 2001/Accepted 7 August 2001

Before the discovery of effective antimycobacterial drugs, vitamin D therapy in the form of cod liver oil and exposure to sunlight (e.g., heliotherapy) were used to treat human tuberculosis (18). Vitamin D is derived from two sources: dietary intake and by the conversion of 7-dehydrocholesterol to cholecalciferol (i.e., pre-vitamin D) in the skin by a reaction catalyzed by UV light. At body temperature cholecalciferol spontaneously converts to vitamin D₃. Vitamin D binding protein aids in the transport of vitamin D₃ from the skin to the liver, where it is converted to 25-hydroxyvitamin D₃ [25(OH)D₃], the predominant circulating form of vitamin D. In response to hypocalcemic states, 25(OH)D₃ is hydroxylated to form 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], the major mediator of the biological activity of vitamin D. In humans, circulating concentrations of 25(OH)D₃ range from 55 to 75 nM, and circulating concentrations of 1,25(OH)₂D₃ range from 0.062 to 0.082 nM (55). Vitamin D metabolites play a key role in short-term calcium homeostasis in humans and other animals. Experimental evidence suggests that vitamin D metabolites also modulate specific aspects of immune function (52).

Impaired formation of vitamin D₃ in the skin often results in measurable reductions in 25(OH)D₃ concentrations in plasma. For instance, concentrations of 25(OH)D₃ in plasma are lower in Asians living in Great Britain (48) and Zairians living in Belgium (35) compared to control individuals with less pigmented skin, presumably due to diminished synthesis. Tuberculosis, likewise, is common among individuals with heavily pigmented skin that relocate from equatorial regions to higher latitudes, in part due to deficiencies in vitamin D synthesis within the skin (65). In addition, patients with untreated tuberculosis often have lower concentrations of 25(OH)D₃ in plasma than do healthy subjects, and tuberculosis tends to occur during the winter when exposure to sunlight is reduced and production of cholecalciferol within the skin is diminished (16). Evidence for a clear correlation between vitamin D deficiency and susceptibility to tuberculosis, however, remains controversial. In vitro studies, however, provide more compelling evidence linking vitamin D status to susceptibility to tuberculosis.

Addition of 1,25(OH)₂D₃ to monocyte-macrophage cultures infected with *Mycobacterium tuberculosis* suppresses bacterial growth and viability (17, 53, 54). The mechanism of this suppression is mediated, at least partially, by nitric oxide (NO) (53). Induction of inducible NO synthase of macrophages and subsequent generation of reactive nitrogen intermediates (RNI) toxic to mycobacteria is a potent mechanism of killing (14, 15, 21, 22, 34). Cytokines (e.g., tumor necrosis factor alpha and gamma interferon [IFN-γ]) from antigen-specific T cells and/or from macrophages stimulated directly with mycobacterial antigens is responsible for RNI-mediated antimycobacterial defense (24, 60). Production of RNI is crucial for controlling acute as well as latent infections in the mouse model of virulent *M. tuberculosis* infection (14, 15, 25, 34). The role of RNI in mycobacterial killing within human macrophages is less clear. Alveolar macrophages of tuberculosis patients express high levels of inducible NO synthase, suggesting a role for RNI in disease pathogenesis and/or host defense (42). Nevertheless, recent evidence suggests that human but not mouse macro-
phages utilize NO-independent mechanisms (e.g., via Toll-like receptors) for intracellular killing of the tubercle bacilli (60). This species-specific difference in mycobacterial killing may reflect coevolutionary pressures between *M. tuberculosis* and its natural host, humans.

Primary infection of mice with *M. tuberculosis* results in the generation of highly reactive IFN-γ-producing, CD4+ cells that provide long-lived immunologic memory (5). This T-cell subset, however, is not sufficient for clearance of the primary infection, as antibiotic therapy is necessary for resolution of the initial infection. Upon reexposure to the pathogen, the recall response of the IFN-γ-producing CD4+ cells is greatly accelerated and infection is controlled without the use of antibiotics. Immediate production of IFN-γ by CD4+ cells upon exposure to the bacilli, therefore, appears essential for immune-mediated protection in the secondary response (13). AIDS patients with depressed CD4+ cell counts are remarkably susceptible to tuberculosis, further demonstrating the essential role of CD4+ cells in the host response to infection (7). CD8+ and γδ T cells are also involved in the antituberculous immune response in mice, humans, and cattle (28, 29, 30, 32, 50, 57). Mice depleted of CD8+ cells by treatment with monoclonal antibodies to murine CD8 as well as mice genetically deficient in CD8+ cells are more susceptible to *M. tuberculosis* infection than are mice with intact CD8+ cell populations (23, 36). Mycobacterium-specific CD8+ and γδ T-cell clones have been established from infected individuals, demonstrating a potential role for these subsets in the host response to *M. tuberculosis* (20, 38). γδ T cells also respond to various mycobacterial antigens and accumulate at infection sites (6, 9, 27, 59). Production of IFN-γ by CD4+, CD8+, and/or γδ T-cell receptor positive (TCR+) cells leads to activation of macrophages and enhanced killing of intracellular mycobacteria (11, 12, 28, 32, 41). Mycobacterium-specific cytotoxic T cells (both CD4+ and CD8+) may also be important in the clearance of *M. bovis* (39, 44, 47). Together, these studies demonstrate the complexity and redundancy of the host response during tuberculosis as well as potential sites for immune modulation with compounds such as 1,25(OH)2D3.

Tuberculosis in humans results from infection with any one of the tubercle bacilli included within the *M. tuberculosis* complex (e.g., *M. tuberculosis*, *M. bovis*, *M. africanum*, and *M. microti*). *M. bovis*, unlike *M. tuberculosis*, has a wide host range and is the species most often isolated from tuberculous cattle. The wide host range of *M. bovis* has made its eradication difficult due to the presence of wildlife reservoir hosts. An outbreak of *M. bovis* in 1994 in white-tailed deer in Michigan has seriously threatened *M. bovis* eradication efforts in the United States, renewing research interests of this zoonotic agent and economically important pathogen of domestic livestock. In addition to the animal health issues of *M. bovis* infections of cattle, this infection also represents a potentially useful animal model for *M. tuberculosis* infection of humans. In the present study, the capacity of 1,25(OH)2D3 to modulate recall proliferative, NO, and IFN-γ responses of peripheral blood mononuclear cells (PBMC) from cattle experimentally infected with *M. bovis* was investigated.

MATERIALS AND METHODS

Animals, bacterial culture, and challenge procedures. Eight Hereford-cross cattle (four males and four females) approximately 6 months old were obtained from herds with no history of tuberculosis and were housed at the National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, Iowa, according to institutional and national animal care. At the initiation of the study, all animals were tested and confirmed negative for *M. bovis* exposure using both the comparative cervical test (CCT) (61) for delayed-type hypersensitivity and the Bovigam assay (CSL Limited, Parkville, Victoria, Australia) for detection of IFN-γ production in response to *M. bovis* antigen stimulation. Cattle received water ad libitum and a balanced ration consisting of pelleted alfalfa and grain during the study. Infected cattle were housed in temperature- and humidity-controlled rooms (one to two animals/room) within a biosafety level 3 confinement facility with negative airflow exiting the building through high-efficiency particulate air (HEPA) filters. Directional airflow assured that air from animal pens was pulled towards a central corridor and passed through HEPA filters before exiting the building. Airflow velocity was 10.4 air changes/minute. Noninfected control cattle were housed similarly in a separate building. Personnel in contact with *M. bovis*-infected animals wore full-face, HEPA-filtered respirators.

The strain of *M. bovis* used for the challenge inoculum (strain 1315) was isolated from a white-tailed deer in Michigan in 1994 (56). The challenge inoculum consisted of ~105 CFU of mid-log-phase *M. bovis* cultures grown in Middlebrook’s 7H9 medium supplemented with 10% oleic acid-albumin-dextrose complex (OADC; Difco, Detroit, Mich.) plus 0.05% Tween 80 (Sigma Chemical Co., St. Louis, Mo.) as previously described (8). To harvest tubercle bacilli from the culture medium, cells were pelleted by centrifugation at 750 × g, washed twice with 1 ml of phosphate-buffered saline solution (0.01 M, pH 7.2) (PBS), and diluted to the appropriate cell density in 2 ml of PBS. Enumeration of bacilli was by serial dilution plate counting on Middlebrook’s 7H11 selective medium (Becton Dickson, Cockeysville, Md.). For intratracheal inoculation, cattle (n = 2) were restrained and anesthetized with 500 mg of ketamine (Fort Dodge Animal Health, Fort Dodge, Iowa) and 30 mg of xylazine (Bayer Corp., Shawnee Mission, Kan.) given intravenously. Effects of xylazine were reversed by intravenous administration of yohimbine (0.2 mg/kg). Laboratory, Shenandoah, Iowa). The challenge inoculum was instilled directly into the tracheal crypts of anesthetized cattle as previously described for inoculation of white-tailed deer (45). For aerosol inoculation, cattle (n = 3) were restrained and lightly sedated with 5 to 10 mg of xylazine (Bayer Corp.), and the challenge inoculum was delivered by nebulization into a mask covering the animal’s nostrils and mouth. The nebulization apparatus consisted of a compressed air tank, jet nebulizer, holding reservoir, and mask (Trudell Medical International, London, Ontario, Canada). Compressed air (25 lb/in2) was used to jet nebulize the challenge inoculum (2-ml volume of ~106 CFU of *M. bovis* in PBS) directly into the holding reservoir. Upon inspiration, the nebulized inoculum was inhaled through a one-way valve into the mask and directly into the nostrils. A rubber gasket sealed the mask securely to the muzzle, preventing leakage of inoculum around the mask. Expired air exited through one-way valves on the sides of the mask. The nebulization process was continued until all of the inoculum, a 1-ml PBS wash of the inoculum tube, and an additional 2 ml of PBS were delivered (~12 min). Strict biosafety level 3 protocols were followed to protect personnel from exposure to *M. bovis*. At the conclusion of the experiment, cattle were euthanized by intravenous administration of sodium pentobarbitol (Sleepaway; Fort Dodge Laboratories). Lesions typical of *M. bovis* infection were detected in *M. bovis*-inoculated animals, and infection was confirmed by isolation of *M. bovis* from tissues of *M. bovis*-inoculated cattle. Pathological and bacteriologic findings will be presented elsewhere (M. V. Palmer, W. R. Waters, and D. L. Whipple, submitted for publication).

Lymphocyte blastogenesis. Mononuclear cells were isolated from buffy coat fractions of peripheral blood collected in 2% acid citrate dextrose (10). Wells of 96-well round-bottom microtiter plates (Falcon, Becton Dickinson; Lincoln Park, N.J.) were preloaded with 1,25(OH)2D3 solubilized in 100% ethanol or with ethanol alone [i.e., no 1,25(OH)2D3] in a 10-μl volume. Ethanol was then allowed to evaporate, leaving the 1,25(OH)2D3 at the desired concentration (i.e., 0.1, or 10 nM). Wells were then seeded with 1 × 105 mononuclear cells in a total volume of 200 μl per well. Medium was RPMI 1640 supplemented with 25 mM HEPES buffer, penicillin (100 U/ml), streptomycin (0.1 mg/ml), 50 μM 2-mercaptoethanol (Sigma), and 10% (vol/vol) fetal bovine serum (FBS). Wells contained medium plus 5 μl of *M. bovis* purified protein derivative (PPD) (5 μg/ml; CSL Limited), rESAT-6 (1 μg/ml; kindly provided by F. C. Minion, Iowa State University), *M. bovis* strain 1315 culture filtrate (CF) (5 μg/ml), pokeweed mitogen (PWM) (2 μg/ml), or medium alone (no stimulation). The CF was from 2-week *M. bovis* strain 1315 cultures (bacteria were pelleted, and supernatant was harvested and filtered [0.22-μm pore size] twice). Leukocyte cultures were incubated for 5 days at 37°C in 5% CO2 in air. After 5 days, 0.5 μCi of [methyl-14C]thymidine (specific activity, 6.7 Ci/mmol)-1; Amersham Life Science, Arlington,
TABLE 1. Addition of 1,25(OH)2D3 to PBMC cultures and decrease in lymphocyte blastogenesis as measured by [methyl-3H]thymidine uptakea

Animal no.	[methyl-3H]thymidine uptake (cpm) in cultures with:
	NS CF PPD rESAT-6 PWM
236	0 8,719 41,094 32,108 20,733 97,870
	1 3,225 30,176 26,917 4,672 77,538
244	0 7,627 65,617 67,140 56,447 112,487
	1 2,935 51,334 25,085 23,735 78,826
	10 1,434 34,107 28,907 7,646 80,902

a PBMC were cultured with no stimulation (NS) or with M. bovis strain 1315 CF (5 µg/ml), M. bovis PPD (5 µg/ml), rESAT-6 (1 µg/ml), or PWM (2 µg/ml) for 5 days; pulsed with 0.5 µCi of [methyl-3H]thymidine for 20 h; and harvested onto fiber filters; and incorporated radioactivity was measured. Results are means of triplicates. The experiment was done twice, with similar results obtained in both experiments.

b Both animals 236 and 244 were infected with 107 CFU of M. bovis strain 1315 by intratonsillar inoculation (52 days postinoculation).

TABLE 2. Effects of 1,25(OH)2D3 on lymphocyte subset proliferation in response to stimulation with M. bovis PPD

Cattle group and 1,25(OH)2D3 concn (nM)	CD4+	WC1+
	Total	
Noninfected (n = 3)		
0	502 ± 263	0 ± 0
1	199 ± 83	62 ± 45
10	224 ± 127	33 ± 26
M. bovis infected (n = 5)		
0	4,844 ± 500	3,281 ± 671
1	4,536 ± 696	2,928 ± 247
10	4,325 ± 625	2,682 ± 346

a Data represent the number of cells that had proliferated in response to stimulation with M. bovis PPD (5 µg/ml) minus the response to no stimulation and are presented as means ± SEM per 10,000 PBMC.

b WC1 is a scavenger receptor present on >95% of peripheral blood γδ TCR+ cells of cattle (26, 33).

Nitric oxide assay. Nitric oxide is the stable oxidation product of NO, and the amount of nitrite within culture supernatants is indicative of the amount of NO produced by cells in culture. Nitrite was measured using the Griess reaction (49) performed in 96-well microtiter plates (Immunolon 2; Dynatech Laboratories, Inc., Chantilly, Va.). Culture conditions were as described for the lymphocyte blastogenesis assay. Culture supernatant (100 µl) was mixed with 100 µl of Griess reagent (0.5% sulfanilamide; Sigma) in 2.5% phosphoric acid (Mallinckrodt Chemicals, Inc., Paris, Ky.) and 0.05% N-(1-naphthyl) ethylenediamine dihydrochloride (Sigma). The mixture was incubated at 21°C for 10 min. Absorbances of test and standard samples at 550 nm were measured using an automated ELISA plate reader (Molecular Devices, Menlo Park, Calif.). All dilutions were made using culture medium (RPMI 1640 medium with 2 mM-L-glutamine and 10% FCS). Standards and controls, and test samples were converted to nanograms per milliliter of nitrite by comparison with absorbances of sodium nitrite (Fisher Chemicals, Fair Lawn, N.J.) standards within a linear curve fit. N6-Monomethyl-L-arginine (L-NMMA) (Calbiochem, La Jolla, Calif.), a competitive inhibitor of the enzyme NO synthase (NOS), (1.15 mM; equivalent to the amount of L-arginine in the culture medium) was added to parallel cultures to verify that the nitrite produced was due to the activity of NOS.

Statistical analysis. Data were assessed for normality prior to statistical analysis. Arithmetic or log10-transformed data were analyzed as a split plot with time and concentration as the main plot, and incubation period (in hours) as the repeated measure.

IFN-γ ELISA. Wells of 96-well round-bottom microtiter plates were preloaded with 1,25(OH)2D3 as described for the blastogenesis procedure. Isolated mononuclear cells were then added to wells (2 × 105/well, six replicates) with PPDs (5 µg/ml), rESAT-6 (1 µg/ml), CF (5 µg/ml), PWM (1 µg/ml), or medium alone. Plates with cells were then incubated at 37°C in a 5% CO2 humidified chamber. Supernatants were harvested after 24, 48, and 72 h of culture and analyzed for IFN-γ using a commercial enzyme-linked immunosorbent assay (ELISA)-based kit (Bovigam; CSL Limited).

WATERS ET AL. CLIN. DIAGN. LAB. IMMUNOL.
RESULTS

Effects of 1,25(OH)₂D₃ on lymphocyte proliferation. Addition of 1 or 10 nM 1,25(OH)₂D₃ decreased DNA synthesis in PBMC isolated from M. bovis-infected animals. Responses to unstimulated cultures (background proliferation) and cultures stimulated with M. bovis antigens (PPD, rESAT-6, and CF) and PWM are shown in Table 1. Analysis of PBMC proliferation using a flow cytometry-based assay (e.g., the PKH67 assay) demonstrated that addition of 1,25(OH)₂D₃ decreased proliferation of PBMC from M. bovis-infected animals in response to M. bovis PPD (Table 2) (e.g., the mean proliferative responses of total cells from M. bovis infected animals). Flow cytometry-based proliferation assays are more informative than the blastogenesis assay because they allow simultaneous characterization of proliferative responses of individual lymphocyte subsets and evaluation of proliferation throughout the culture period (not just the terminal 20-h period, as with radiometric techniques) (2). As previously reported (64), cells responding to PPD from M. bovis-infected cattle were predominantly CD4⁺ and WC1⁺ (i.e., γδ TCR⁺) cells. Responses of CD8⁺ cells from M. bovis-infected cattle to PPD were negligible (data not shown). While proliferative responses were detected for both CD4⁺ and WC1⁺ T-cell subsets, addition of 1,25(OH)₂D₃ decreased CD4⁺ cell proliferation but not WC1⁺ cell proliferation in samples from infected animals (Table 2). Addition of 1,25(OH)₂D₃ to PPD-stimulated cultures also diminished the number of CD4⁺ cells that had proliferated through multiple generations. Addition of 1,25(OH)₂D₃ decreased the percentage of cells in generations of PPD-stimulated cultures that had gone through the most divisions [e.g., 32, 22, and 11% for 0, 1, and 10 nM 1,25(OH)₂D₃, respectively, for a representative M. bovis-infected animal] (Fig. 1). The generation that had proceeded through the next greatest number of divisions was also decreased in 1,25(OH)₂D₃-treated cultures compared to nontreated, control cultures [e.g., 46, 32, and 32% for 0, 1, and 10 nM 1,25(OH)₂D₃, respectively] (Fig. 1). Although this finding was most apparent for the CD4⁺ cell subpopulation, WC1⁺ cells within 1,25(OH)₂D₃-treated cultures also had a decreased percentage of cells within elder generations compared to control cultures (data not shown). The number of WC1⁺ cells that had proliferated, however, was not lower in the presence of 1,25(OH)₂D₃ (Table 2).

Effects of 1,25(OH)₂D₃ on lymphocyte apoptosis. A significant sequela to lymphocyte proliferation and activation is apoptosis (1). To determine the effect of 1,25(OH)₂D₃ on apoptosis of lymphocytes during an in vitro recall response, PBMC from M. bovis-infected cattle were incubated with medium alone (e.g., nonstimulated) or incubated with PPD for 6 days and analyzed for annexin V staining. Although not statistically significant (P > 0.05), there was a trend for a lower percentage of annexin V-positive cells and a concurrent lower percentage of cells located in the “apoptotic gate” and a higher percentage of cells located in the “live gate” in PPD-stimulated cultures supplemented with 1,25(OH)₂D₃ compared to nonsupplemented PPD-stimulated cultures (Table 3). This trend was not detected for nonstimulated PBMC. The apoptotic and live gates were based upon forward and side light scatter properties as well as 7-amino-actinomycin and annexin V staining properties (data not shown). Inhibition of apoptosis by 1,25(OH)₂D₃ was similar for each T-cell subset (CD4⁺, CD8⁺, and WC1⁺ cells) tested.

Antigen-specific IFN-γ and NO responses of M. bovis-infected cattle. Prior to evaluating the effects of 1,25(OH)₂D₃ on M. bovis-specific IFN-γ and NO responses, the capacity of PBMC from infected cattle to produce IFN-γ and NO in response to stimulation with M. bovis antigens was determined. IFN-γ secretion by PBMC from M. bovis-infected cattle stimulated with either M. bovis CF, PPD, or rESAT-6 exceeded (P < 0.05) IFN-γ secretion by nonstimulated, autologous PBMC (Fig. 2a). In addition, the IFN-γ response of PBMC...
from *M. bovis*-infected cattle that were stimulated with CF or PPD was greater (*P < 0.01*) than the response of PBMC from noninfected cattle stimulated with CF or PPD, respectively. Greater (*P < 0.05*) concentrations of nitrite were also detected in supernatants from CF- or PPD-stimulated samples from *M. bovis*-infected cattle compared to concentrations of nitrite in supernatants from CF- or PPD-stimulated samples from noninfected cattle or nonstimulated samples from *M. bovis*-infected cattle (Fig. 2b). Nitrite levels in rESAT-6-stimulated samples from infected cattle were greater (*P < 0.01*) than levels in nonstimulated samples from infected cattle. IFN-γ and NO responses of PBMC from control, noninfected cattle to *M. bovis* antigens (PPD, CF, or rESAT-6) were not greater (*P > 0.05*) than responses to medium alone (no stimulation). IFN-γ and NO responses of PWM-stimulated PBMC were always greater (*P < 0.05*) than corresponding responses of nonstimulated PBMC regardless of infection status.

Effect of 1,25(OH)2D3 on *M. bovis*-specific IFN-γ and NO responses. Nonstimulated and stimulated (i.e., *M. bovis* antigens and PWM) PBMC from *M. bovis*-infected and noninfected cattle were cultured with 0, 1, or 10 nM 1,25(OH)2D3. Addition of 1,25(OH)2D3 enhanced (*P < 0.01*) nitrite production by PWM-stimulated PBMC from *M. bovis*-infected cattle (Fig. 3). Addition of 1,25(OH)2D3 also enhanced (*P < 0.05*) CF-, rESAT-6-, and PPD-specific production of nitrite by PBMC from infected cattle. As determined previously (3, 4), 1,25(OH)2D3 inhibits IFN-γ production by antigen (ovalbumin)-stimulated PBMC from ovalbumin-sensitized cattle. A similar trend was also detected for *M. bovis*-specific responses by PBMC from *M. bovis*-infected cattle, with 1,25(OH)2D3 inhibiting (*P < 0.05*) IFN-γ production in response to both CF and PPD (Fig. 4). While 1,25(OH)2D3 enhanced nitrite production in response to rESAT-6 (Fig. 3), significant modulation by 1,25(OH)2D3 of IFN-γ responses to rESAT-6 stimulation of PBMC from infected cattle was not detected (Fig. 4).

To evaluate relationships between IFN-γ and NO production in response to *M. bovis* infection, Pearson’s product-moment correlations were determined for responses to *M. bovis* antigens. The overall correlations, regardless of 1,25(OH)2D3 concentration and time, were positive (for CF, *r* = 0.452, *P < 0.1*; for rESAT-6, *r* = 0.507, *P < 0.001; for PPD, *r* = 0.505, *P < 0.001), with increases in IFN-γ associated with concurrent increases in NO. A strong positive correlation between IFN-γ and NO production was also detected for PWM-stimulated cells (*r* = 0.664, *P < 0.001). Addition of 1,25(OH)2D3 to cultures diminished this correlation, although statistically significant differences were not detected (data not shown).

DISCUSSION

Recent evidence suggests that 1,25(OH)2D3-induced NO limits replication of *M. tuberculosis* within human macrophages (53). Activation of alveolar macrophages by IFN-γ results in an increased rate of conversion of 25(OH)D3 to 1,25(OH)2D3, the most active, naturally occurring form of the vitamin (54). 1,25(OH)2D3 induces NOS2 expression and the production of NO by human macrophages, necessary for mycobacterial kill-
ing (16, 53). In the present study, it was determined that 1,25(OH)2D3 increased NO production and decreased IFN-γ production by antigen (i.e., PPD, CF, and rESAT-6)-stimulated PBMC from M. bovis-infected cattle. The biologically active form of vitamin D, 1,25(OH)2D3, has been shown to inhibit IFN-γ production by in vitro-activated PBMC from several different species, including cattle (3, 4, 19, 37). Although speculative, it is plausible that inhibition of IFN-γ production by 1,25(OH)2D3 functions as a negative feedback mechanism to inhibit tissue damage once the antimycobacterial response (i.e., that mediated by NO) is elicited. Another possibility is that the increased NO produced by macrophages as a result of 1,25(OH)2D3 addition to the cultures inhibits IFN-γ production by T cells. Production of NO by splenic macrophages from M. tuberculosis-infected mice inhibits CD4+ T-cell mycobacterium-specific proliferative responses; IFN-γ responses, however, are not affected (40). In the present study, addition of a competitive inhibitor of NOS (L-NMMA) abolished NO production yet did not affect IFN-γ responses. The production of IFN-γ in response to antigen stimulation and the suppression elicited by 1,25(OH)2D3 were similar in L-NMMA-treated cultures compared to the cultures that did not receive L-NMMA (data not shown). Thus, the inhibitory effects of 1,25(OH)2D3 on M. bovis-specific IFN-γ production is most likely a direct effect of 1,25(OH)2D3 and not a secondary response to increased NO production.

Mitogen-induced CD4+ T-cell proliferation is inhibited by 1,25(OH)2D3 in mice, humans, and cattle (31, 43). Likewise, we determined that M. bovis-specific CD4+ cells were the primary target of inhibition by 1,25(OH)2D3. Antigen selection, however, may have biased the observed suppressive effect. Both CD4+ and γδ TCR+ cells but not CD8+ cells proliferate in response to M. bovis PPD (64). Although both subsets responded in the present study, 1,25(OH)2D3 inhibited only CD4+ cell proliferation. These findings are in agreement with a previous study in which 1,25(OH)2D3 inhibited mitogen-induced proliferation of CD4+ cells yet had no affect on γδ TCR+ cell proliferation (43). Since PPD is composed of a
mixture of soluble antigens, these antigens are likely processed and presented in association with major histocompatibility complex class II for CD4+ cells or directly without processing for TCR cells. Major histocompatibility complex class II restricted CD4+ cells are the predominant cell type responding to PPD-stimulated PBMC from M. bovis-infected white-tailed deer (63). Unlike those of white-tailed deer, TCR cells of M. bovis-infected cattle do respond to soluble M. bovis antigens (51, 58, 64). One interpretation of the specific effects of 1,25(OH)2D3 on CD4+ cells is that the proliferative response of TCR cells is dependent upon cytokine production by other cells (e.g., bystander proliferation in response to interleukin 2 [IL-2] produced by antigen-specific CD4+ cells). 1,25(OH)2D3 inhibits IL-2 production by human T cells (37) and IL-2 receptor expression by activated bovine PBMC (43). Rhodes et al. (50, 51), however, have clearly demonstrated that γδ TCR+ cells (isolated and enriched by magnetic bead sorting) from M. bovis-infected cattle proliferate in response to soluble M. bovis antigens, including M. bovis PPD and rESAT-6. Thus, it appears that 1,25(OH)2D3 affects CD4+ cells specifically in regards to inhibition of proliferation in response to PPD.

1,25(OH)2D3 also induces apoptosis of mitogen-stimulated human T cells by inhibiting IL-2 production (46). In contrast, results from the present study suggest that 1,25(OH)2D3 inhibits apoptosis of antigen-stimulated cells. This discrepancy may reflect the role of the stimulus (mitogen versus antigen) used to determine the effects of vitamin D on apoptosis. Species differences (cattle versus humans) may also influence the outcome of the response. Additional studies are needed to confirm the inhibition of apoptosis of bovine T cells stimulated with mycobacterial antigens by 1,25(OH)2D3 and to determine the underlying mechanisms. Inhibition of apoptosis of M. bovis-specific T cells by 1,25(OH)2D3 at the site of M. bovis infection would likely be beneficial to the host antitubercular response.

It has been postulated that 1,25(OH)2D3 enhances mycobacterial killing via an NO-dependent mechanism. It is also postulated that production of 1,25(OH)2D3 at the site of infection dampens cell-mediated responses to mycobacterial an-

FIG. 4. Addition of 1,25(OH)2D3 decreases M. bovis-specific production of IFN-γ by PBMC from M. bovis-infected cattle (n = 5). Mononuclear cells were cultured with either M. bovis strain 1315 CF (5 μg/ml) (a), rESAT-6 (1 μg/ml) (b), M. bovis PPD (5 μg/ml) (c), or PWM (2 μg/ml) (d). To each of these treatments either no vitamin D, 1 nM 1,25(OH)2D3, or 10 nM 1,25(OH)2D3 was added as described in Materials and Methods. Supernatants were harvested after 24, 48, or 72 h for detection of IFN-γ by ELISA (Bovigam assay; CSL Limited). Symbols: *, P < 0.1; **, P < 0.05 (differs from unsupplemented [no vitamin D] cultures at specific times). Error bars, SEM.
tigens through antiproliferative and IFN-γ-inhibitory actions. Our findings that 1,25(OH)₂D₃ enhances M. bovis-specific NO production, inhibits M. bovis-specific IFN-γ production, and inhibits M. bovis-specific CD4⁺ cell proliferation are consistent with these hypotheses. Further studies are planned to further evaluate the relevance of these findings.

ACKNOWLEDGMENTS
We thank Rebecca Lyon, Jody Mentele, Lori Dethloff, Nancy Eisch, and Darrel Hoy for excellent technical support. We also thank Katherine Lies and Terry Krausman for excellent animal care.

REFERENCES

1. Ahmed, R., and D. Gray. 1996. Immunological memory and protective immunity: understanding their relation. Science 272:54–60.

2. Allsup, C. E. M., S. J. Nicholls, and J. Langhorne. 1998. A flow cytometric method to assess antigen-specific proliferative responses of different subpopulations of fresh and cryopreserved human peripheral blood mononuclear cells. J. Immunol. Methods 214:175–186.

3. Ametaj, B. N., B. J. Nonnecke, R. L. Horst, and D. C. Beitz. 1993. Inhibition of nitric oxide synthase in porcine alveolar macrophages from patients with tuberculous bronchopneumonia. Infect. Immun. 61:2524–2528.

4. Bolin, C. A., D. L. Whipple, K. V. Khanna, P. K. Peteron, and T. W. Molitor. 1997. Infection of swine with Mycobacterium bovis as a model of human tuberculosis. J. Infect. Dis. 176:1559–1566.

5. Boom, W. H., M. A. Mincek, and J. J. Ellner. 1996. Effects of dexamethasone on bovine Mycobacterium tuberculosis growth inhibition by gamma interferon-activated bone marrow macrophages. Vet. Immunol. Immunopathol. 47:269–275.

6. Burton, J. L., and M. E. Kehrli. 1990. Long-term survival of Mycobacterium tuberculosis in mice. J. Immunol. 154:3359–3377.

7. Augustin, A., A. T. Kahn, and G. K. Sim. 1989. Resident pulmonary lymphocytes express the y8/T-cell receptor. Nature 340:239–241.

8. Barnes, P. F., A. B. Bloch, P. T. Davidson, and D. E. Snider. 1991. Tuberculosis in patients with human immunodeficiency virus infection. N. Engl. J. Med. 324:1902–1907.

9. Boom, W. H., K. A. Chervenak, M. A. Mincek, and J. J. Ellner. 1991. Interferon-gamma-treated murine macrophages inhibit Lyt-2–inhibitory actions. J. Immunol. 146:1303–1309.

10. Burin, M. V., D. L. Whipple, and S. C. Olsen. 1997. Identification of nitric oxide synthase as a protective focus against tuberculosis. Proc. Natl. Acad. Sci. USA 94:5243–5248.

11. M’Bayumba-Kabaghu, J. R., R. Fagard, P. Lijnen, R. Bouillon, W. Lissens, and A. Amery. 1987. Calcium, vitamin D-endocrine system, and parathyroid hormone in black and white males. Calcif. Tissue Int. 41:70–74.

12. Muller, I., S. P. Cobbold, H. Waldmann, and S. H. E. Kaufmann. 1987. Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of Lyt4+ and Lyt2+ T cells. Infect. Immun. 55:2037–2041.

13. Muller, K., K. Rimmel, M. B. Hansen, and K. Bendzten. 1992. 125-Dihydroxyvitamin D3-mediated suppression of T lymphocyte functions and failure of T cell-activating cytokines to restore proliferation. Immunol. Lett. 34:37–44.

14. Munk, M. E., J. A. Gatrill, and S. H. E. Kaufmann. 1990. Target cell lysis and IL-2 secretion by y8 T lymphocytes after activation with bacteria. J. Immunol. 145:2434–2439.

15. Nutis, T., Y. E. Cor nellis, and H. T. Ottenhof. 1993. Mycobacteria induce CD4⁺ T cells that are cytotoxic and display Th1-like cytokine-secretion profile: heterogeneity in cytotoxic activity and cytokine secretion levels. Eur. J. Immunol. 23:2189–2195.

16. Nabeishima, S., M. Nomoto, G. Matsuzaki, K. Kii shihara, H. Taniguchi, S. Yoshida, and K. Nomoto. 1994. T-cell responsiveness induced by activated macrophages through nitric oxide production in mice infected with Mycobacterium tuberculosis. Infect. Immun. 62:3221–3226.

17. Ng, K. H., F. E. Aldwell, D. N. Vetlloyd, J. D. Watson, and B. M. Buddle. 1997. Antigen-induced interferon-γ and interleukin-2 responses of cattle inoculated with Mycobacterium bovis. Vet. Immunopathol. 57:59–68.

18. Nicholson, S., M. Bonecini-Almeida, J. R. Silva, C. Nathan, Q. W. Xie, R. Mumford, J. R. Weidner, J. Calaycay, J. Geng, N. Boechat, C. Linhares, W. Rom, and J. L. Ho. 1996. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J. Exp. Med. 183:2293–2302.

19. Kaufmann, S. H. E. 1993. Cytokine secretion by CD4 T lymphocytes acquired in response to Mycobacterium tuberculosis infection. J. Immunol. 151:518–525.

20. Palmer, M. V., D. L. Whipple, and S. C. Olsen. 1992. Development of a model of natural infection with Mycobacterium bovis in white-tailed deer. J. Wildl. Dis. 35:450–457.

21. Pintado, C. O., J. Carra cedo, M. Rodriguez, R. Perez-Calderon, and R. Ramirez. 1996. 1a,25-Dihydroxyvitamin D3 (calcitriol) induces apoptosis in stimulated T cells through an IL-2-dependent mechanism. Cytokine 8:342–345.

22. Pithee, A. D., M. Rahelu, D. S. Kumararatne, P. Drysdale, J. S. Gaston, P. B. Iles, J. A. Innes, and C. J. Ellis. 1992. Generation of cytolytic T cells in MODULATION OF M. BOVIS RESPONSES OF PBMC BY 1,25(OH)₂D₃.

23. Flynn, J. L., M. M. Goldstein, K. J. Triebold, B. Koller, and B. R. Bloom. 2017. Major histocompatibility complex class I-restricted T cells are required for resistance to disseminated Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA 98:12013–12017.

24. Flynn, J. L., M. M. Goldstein, J. Chan, K. J. Triebold, K. Pfeffer, C. J. Lowenstein, R. Schreiber, T. W. Mak, and B. R. Bloom. 1995. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunol. 2:561–572.

25. Flynn, J. L., C. A. Scanga, K. E. Tanaka, and J. Chan. 1998. Effects of aminoguanidine on latent murine tuberculosis. J. Immunol. 160:1796–1803.

26. Flynn, J. L., R. C. R. MacKay, and B. R. Bloom. 1990. Promotion of y8 T cells in the ruminant immune system. Immunol. Today 12:30–34.

27. Janis, E. M., S. H. E. Kaufmann, R. H. Schwartz, and D. M. Pardoll. 1989. Activation of y8 T cells in the primary immune response to Mycobacterium tuberculosis. Science 244:711–716.

28. Kaufmann, S. H. E. 1995. Immunity to intracellular microbial pathogens. Immunol. Today 16:338–342.

29. Kaufmann, S. H. E. 1997. The roles of conventional and unconventional cells in anti-mycobacterial immunity. Infect. Immun. 75:3359–3372.
individuals infected by *Mycobacterium tuberculosis* and vaccinated with BCG. Thorax 47:695–701.

48. Preece, M. A., W. B. McIntosh, S. Tomlinson, J. A. Ford, M. G. Dunnigan, and J. L. O’Riordan. 1973. Vitamin-D deficiency among Asian immigrants to Britain. Lancet i:907–910.

49. Rajaraman, V., B. J. Nonnecke, S. T. Franklin, D. C. Hammell, and R. L. Horst. 1998. Effect of vitamins A and E on nitric oxide production by blood mononuclear leukocytes from neonatal calves fed milk replacer. J. Dairy Sci. 81:3278–3285.

50. Rhodes, S. G., B. M. Buddle, R. G. Hewinson, and H. M. Vordermeier. 2000. Bovine tuberculosis: immune responses in the peripheral blood and at the site of active disease. Immunology 99:195–202.

51. Rigby, W. F. C. 1988. The immunobiology of vitamin D. Immunol. Today 9:53–58.

52. Rockett, K. A., R. Brooks, I. Udalova, V. Vidal, A. V. S. Hill, and D. Kwiatkowski. 1998. 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of *Mycobacterium tuberculosis* in a human macrophage-like cell line. Infect. Immun. 66:5314–5321.

53. Rook, G. A., J. Steele, L. Fraher, S. Barker, R. Karmalli, J. O’Riordan, and J. Stanford. 1986. Vitamin D3, gamma interferon, and control of proliferation of *Mycobacterium tuberculosis* by human monocytes. Immunology 57:159–360.

54. Salle, B. L., E. E. Delvin, A. Lapillonne, N. J. Bishop, and F. H. Glicier. 2000. Perinatal metabolism of vitamin D. Am. J. Clin. Nutr. 71:1317S–1324S.

55. Schmidt, S. M., S. D. Fitzgerald, T. M. Cooley, C. S. Brunning-Fann, L. Sullivan, D. Berry, T. Carlson, R. B. Minnis, J. B. Payeur, and J. Sikarskie. 1997. Bovine tuberculosis in free-ranging white-tailed deer from Michigan. J. Wildl. Dis. 33:749–758.

56. Smith, R. A., J. M. Keeger, A. J. Alvarez, J. C. Goin, W. C. Davis, D. L. Whipple, and D. M. Estes. 1999. Role of CD8+ and WC-1+ γδ T cells in resistance to *Mycobacterium bovis* infection in the SCID-bo mouse. J. Leukoc. Biol. 65:28–34.

57. Smyth, A. J., M. D. Welsh, R. M. Girvin, and J. M. Pollock. 2001. In vitro responsiveness of γδ T cells from *Mycobacterium bovis*-infected cattle to mycobacterial antigens: predominant involvement of WC1+ cells. Infect. Immun. 69:89–96.

58. Tanaka, Y., C. T. Morita, Y. Tanaka, E. Nieves, B. B. Brenner, and B. R. Bloom. 1995. Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 378:155–158.

59. Thoma-Ussynski, S., S. Stenger, O. Takeuchi, M. T. Ochoa, M. Engele, P. A. Sieling, P. F. Barnes, M. Rollinghoff, P. L. Bolcskei, M. Wagner, S. Akira, M. V. Norgard, J. T. Belisle, P. J. Godowski, B. R. Bloom, and R. L. Modlin. 2001. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291:1544–1547.

60. United States Department of Agriculture. 1999. Bovine tuberculosis eradication uniform methods and rules. APHIS 91-45-011. U.S. Government Printing Office, Washington D.C.

61. Waters, W. R., J. R. Stabel, R. E. Sacco, J. A. Harp, B. A. Pesch, and M. J. Wannemuehler. 1999. Antigen-specific B-cell unresponsiveness induced by chronic *Mycobacterium avium* subsp. paratuberculosis infection of cattle. Infect. Immun. 67:1593–1598.

62. Waters, W. R., M. V. Palmer, B. A. Pesch, S. C. Olsen, M. J. Wannemuehler, and D. L. Whipple. 2000. MHC class II-restricted, CD4+ T cell proliferative responses of peripheral blood mononuclear cells from *Mycobacterium bovis*-infected white-tailed deer. Vet. Immunol. Immunopathol. 76:215–229.

63. Waters, W. R., M. V. Palmer, B. A. Pesch, S. C. Olsen, M. J. Wannemuehler, and D. L. Whipple. 2000. Lymphocyte subset proliferative responses of *Mycobacterium bovis*-infected cattle to purified protein derivative. Vet. Immunol. Immunopathol. 77:257–273.

64. Wilkinson, R. J., M. Llewelyn, Z. Toossi, M. T. Ochoa, M. V. Norgard, J. T. Belisle, P. J. Godowski, B. R. Bloom, and R. L. Modlin. 2001. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291:1544–1547.