CONFIABILIDADE INTRA E INTEREXAMINADOR DO PROTOCOLO DE AVALIAÇÃO BIOFOTOGRAMÉTRICA EM PREMATUROS

Intra- and inter-rater reliability of a biophotogrammetric assessment protocol for preterm infants

Juliana Vieira Camposa, Mariana Alves Morena, Ricardo de Bastos Silvaa, Jessica Neves Quirino da Silvaa, Milena Ferreira de Carvalhoa, Rayssa Christina Abreu dos Santosb, Rodrigo Tosta Peresb, Rosana da Silva Santosb, Cidrini Ferreiraa,*

RESUMO

Objetivo: Mensurar a confiabilidade intra e interexaminador de um protocolo de avaliação biofotogramétrica da mobilidade toracoabdominal de prematuros.

Métodos: Estudo de caráter transversal e analítico. Incluíram-se filmagens de 40 prematuros em duas vistas (lateral e superior), realizadas em supino, pelve retrovertida e joelhos em semiflexão. Marcadores de acrílico foram posicionados sobre Micropores em oito pontos anatômicos predeterminados. Foram analisadas 4 variáveis na vista lateral e 11 na vista superior (angulares e lineares) (ImageJ®), divididas em duas etapas: (1- Frames iguais) análises de fotogramas previamente selecionados pela pesquisadora principal por três avaliadores cegos (análise interexaminador 1), com reanálise desses mesmos fotogramas após 15 dias (análise intraexaminador 1); (2- Frames diferentes) cada avaliador selecionou os fotogramas por meio do vídeo original e repetiu o protocolo (análise interexaminador 2), com reanálise após 15 dias (análise intraexaminador 2). Em (2), foi testada a confiabilidade de todo o processo de análise, desde a separação das imagens até a análise das variáveis. A concordância e reproduzibilidade dos dados foram obtidas pelo coeficiente de correlação intraclass (CCI).

Resultados: Houve concordância forte, com ênfase nas variáveis angulares (CCI [0,82 a 0,99]). As variáveis lineares apresentaram variação entre muito boa e excelente na análise 1 (frames iguais: CCI 0,64 a 0,99) e na análise 2 (frames diferentes: CCI entre 0,44 e 0,89).

Conclusões: O presente estudo sugere forte confiabilidade do protocolo proposto para análise da movimentação toracoabdominal de neonatos prematuros.

Palavras-chave: Recém-nascido prematuro; Modalidades de fisioterapia; Fotogrametria.

RESUMO

Objetivo: To measure the intra- and inter-rater reliability of a biophotogrammetric assessment protocol for thoracoabdominal motion in preterm infants.

Methods: This is an analytical cross-sectional study. Footage of 40 preterm infants was made in two views (lateral and anterior). The babies were placed in the supine position, with retroverted pelvis and semiflexed knees. Acrylic markers were positioned on surgical tape in eight predetermined anatomical points. We analyzed 4 variables in lateral view and 11 in anterior view (angular and linear) (ImageJ®), divided into two stages: 1. same frames – three blinded evaluators analyzed frames previously selected by the main researcher (inter-rater analysis 1), reviewing these same frames after 15 days (intra-rater analysis 1); 2. different frames – each evaluator selected the frames from the original video and repeated the protocol (inter-rater analysis 2), with a review after 15 days (intra-rater analysis 2). In stage 2, we tested the reliability of the entire process, from image selection to the analysis of variables. Data agreement and reproducibility were obtained by the intraclass correlation coefficient (ICC).

Results: Agreement was high, particularly in angular variables (ICC 0.82 to 0.99). Linear variables ranged between very good and excellent in analysis 1 (same frames: ICC 0.64 to 0.99) and analysis 2 (different frames: ICC 0.44 to 0.89).

Conclusions: The present study suggests that the proposed protocol for the thoracoabdominal motion analysis of preterm neonates has high reliability.

Keywords: Infant, premature; Physical therapy modalities; Photogrammetry.
INTRODUÇÃO

O avanço técnico-científico dos cuidados pré-natais e do suporte à vida após o nascimento torna possível a sobrevida de crianças nascidas com idades gestacionais cada vez menores.1 Entretanto, doenças e agravos neuropsicomotores e respiratórios podem ocorrer com mais frequência,2,3 tornando imperativo o acompanhamento especializado do crescimento e desenvolvimento dessa população desde o nascimento até a fase adulta.4,5 Complicações oriundas da prematuridade são a principal causa de morte neonatal e a segunda maior causa de morte em crianças até cinco anos de idade, atrás apenas da pneumonia.6

Os prematuros apresentam imaturidade dos mais diversos órgãos e sistemas. Com isso, períodos prolongados de internação, com necessidade potencial de ventilação mecânica, oxigenoterapia e recursos intensivos, são frequentes.7,9

Os instrumentos que avaliam as alterações respiratórias causadas pela prematuridade nas unidades neonatais são escassos, e os poucos que estão disponíveis estão mais ligados a protocolos experimentais e são caros e/ou invasivos. A avaliação da função respiratória na prática assistencial depende, então, na maioria dos casos, da visão subjetiva, particular e pouco normatizada dos avaliadores.10,11

A avaliação da mobilidade torácica e da função pulmonar possibilita o diagnóstico situacional do bebê e a prevenção de possíveis agravos. Técnicas de oclusão única, técnica de oclusão múltipla, cirtometria12 e pletismografia por indução13 são alguns dos métodos que compõem o repertório de técnicas para esses fins. Algumas dessas técnicas são compatíveis com população adulta e pediátrica, como é o caso da cirtometria, porém são disfuncionais quando aplicadas à neonatologia.12,13 A adoção e a adaptação de métodos para suprir tais necessidades da população neonatal são relevantes e necessárias.

A fotogrametria é a ciência de fazer medições por fotografias,14 que inclui avaliações quantitativas de imagens e vídeos. Utiliza marcadores posicionados em pontos anatômicos referenciais para a medida de ângulos e distâncias diversos.15 Por mostrar-se uma ferramenta versátil e de fácil adaptação para diversas áreas da medicina,15 tem adquirido relevância nas mais diversas faixas etárias, especialmente na avaliação da área torácica.14,15

Entretanto, não foram encontradas as medidas de confiabilidade e reprodutibilidade para os protocolos existentes, o que limita a capacidade para uso à beira do leito.14,15 Além disso, as variáveis ainda não respondem a todos os questionamentos que surgem na prática clínica e são de difícil mensuração na prática diária.14,15 Tais considerações justificam a criação de um protocolo inédito com a realização da análise da confiabilidade e reprodutibilidade a fim de embasar a utilização na população de prematuros com mais conhecimento e segurança. Adicionalmente, não foram encontrados relatos de medidas angulares e distâncias de fácil aquisição, o que tem relevância para o uso nas unidades neonatais para o entendimento da dinâmica da respiração.

Diante do exposto, o objetivo do presente estudo foi avaliar a confiabilidade intra e interexaminador de um protocolo inédito de uso da fotogrametria para avaliação da movimentação toracoabdominal de prematuros.

MÉTODO

O presente estudo possui caráter transversal e analítico e foi aprovado pelo Comitê de Ética em Pesquisa da Maternidade-Escola da Universidade Federal do Rio de Janeiro, sob o número de Certificado de Apresentação para Apreciação Ética: 47024515.4.0000.5275.

Foram incluídos vídeos de crianças de ambos os sexos, nascidas com idade gestacional inferior a 37 semanas, que se encontravam em unidades de internação neonatais, com até 90 dias de vida, estáveis clinicamente e cujos responsáveis legais permitiram a participação na pesquisa aderindo ao termo de consentimento livre e esclarecido. Para a definição de prematuridade foi utilizado o referencial da Organização Mundial da Saúde, segundo o qual prematuro extremo é definido como todo indivíduo nascido antes de 28 semanas de idade gestacional, muito prematuro como nascido entre 28 e menos de 32 semanas de idade gestacional e prematuro moderado/limitrofe é definido como nascido no intervalo entre 32 e menos de 37 semanas de idade gestacional.16

Foram excluídos os recém-nascidos e lactentes sedados e/ou curarizados, portadores de refluxo gastroesofágico grave diagnosticado e malformações congênitas. Além disso, foram excluídos os bebês com instabilidade hemodinâmica, em uso de aminas vasoativas, com diagnóstico de hipertensão pulmonar e qualquer outra condição que interfirisse na estabilidade clínica.

O cálculo amostral foi obtido com a seguinte Equação 1:

\[
n = \frac{N. Z^2\cdot \hat{p} \cdot (1 - \hat{p})}{\bar{Z}^2 \cdot p \cdot (1 - p) + \epsilon^2 \cdot (N-1)}
\]

Consideraram-se um erro amostral de 5% e um nível de confiança de 95%. Foi realizado com base no número total de nascimentos da maternidade-escola obtido na última apuração do Sistema de Informações sobre Nascidos Vivos (2013), indicando uma meta amostral aproximada de 40 prematuros, recrutados por conveniência.17

Os dados de perfil dos recém-nascidos (nome, data de nascimento, dia de internação hospitalar, peso de nascimento, peso no dia da coleta e idade gestacional, coletados dos respectivos prontuários) foram verificados, e os sinais vitais e a saturação de pulso de oxigênio foram monitorados durante toda a coleta de dados e registrados no início e ao final da coleta. O estado de alerta foi mensurado pela Escala de Brazelton.18 Seguiram para a próxima etapa os bebês que apresentaram escore até 5 em Brazelton.
Retiraram-se os excessos de travesseiros e rolos, permanecendo somente o essencial para o adequado posicionamento do neonato. Suas roupas foram retiradas, restando apenas a fralda descartável. O neonato/lactente foi posicionado em decúbito dorsal com cabeça centralizada, membros superiores alternando entre livres e contidos, semiflexão de quadril e joelhos e anteverssão pélvica.

Um membro da equipe foi selecionado para permanecer com o neonato/lactente garantindo a permanência nessa posição e atendendo a possíveis demandas dele, como: sucção não nutritiva, toque-pressão e mudanças temporárias de decúbito.

Foram colados sobre sua pele quatro pequenos quadrados da fita Micropore® (proteção da pele do recém-nascido) nos seguintes pontos anatômicos: glabela, acrômio direito, acrômio esquerdo e processo xifoide do esterno. Outros quatro pequenos quadrados da mesma fita foram posicionados nas laterais do tórax: seguindo a linha do marcador xifoide à direita e à esquerda do tórax e os outros dois posicionados na altura das últimas costelas, bilateralmente (distância de 4 cm do marcador central do processo xifoide). Após finalizar a colocação dos quadrados de fita Micropore®, foram colados então os marcadores de acrílico coloridos sobre as fitas protetoras, nos oito pontos citados anteriormente.

Para a aquisição das imagens em vista lateral, a câmera (Nikon®, COOLPIX S6200, Tóquio, Japão) foi acoplada a um tripé (Greika®, WT3716, São Paulo, Brasil) posicionado ao lado direito do leito do paciente, ajustada de modo que a lente da câmera estivesse paralela à linha média do bebê. A distância entre a câmera e o recém-nascido foi de 31 cm de distância quando o bebê estava no berço e 44 cm quando na incubadora.

As filmagens tiveram duração de um minuto, e, após a gravação, o tripé (ainda com a câmera acoplada) foi reposicionado acima do leito para captação de imagens na vista superior, também por um minuto. A câmera permaneceu a uma distância de 70 cm quando o bebê estava no berço e 14 cm de distância superior externa da incubadora, quando o bebê estava em seu interior. Tais distâncias foram predefinidas para que a imagem obtida sempre incluísse os limites externos do leito no qual o recém-nascido se encontrava.

Após aquisição das imagens, o leito era reorganizado, os sinais vitais e a saturação de oxigênio registrados novamente. Os vídeos coletados foram passados para o computador, organizados em pastas e identificados. Por meio do software Kinovea® (Joan Charmant & Contributors, Bordeaux, França), foram realizados fotogramas/frames (fotos do vídeo). Cada frame foi calibrado de pixels para centímetros por um ponto de referência de distância conhecida. Utilizou-se em todas as imagens o marcador circular de acrílico, com diâmetro linear de 1 cm.

Quatro frames foram retirados dos vídeos de cada paciente, dois em vista lateral e dois em vista superior (frames captados nas máximas inspirações e máximas expirações encontradas em cada um dos vídeos), e analisados por três examinadores cegos e independentes (examinador 1, examinador 2 e examinador 3).

As variáveis foram quantificadas pelo software ImageJ® (Research Services Branch, National Institute of Mental Health, Bethesda, Maryland, Estados Unidos) e estão ilustradas na Figura 1.

![Figura 1](https://example.com/figura1.png)

Figura 1 Demonstrações dos ângulos e das distâncias mensurados.
A análise das imagens foi realizada em duas etapas. Na primeira (etapa 1), nomeada de frames iguais, três examinadores cegos analisaram os mesmos fotogramas (fotogramas iguais e escolhidos por um único e diferente pesquisador) — análise interexaminador (momento 1). Eles foram reanalisados 15 dias depois da primeira medida (análise intraexaminador — momento 2).

A etapa 2, nomeada de frames diferentes, foi realizada com o objetivo de verificar as confiabilidades com o uso completo do método, incluindo escolha do fotograma, calibração e análise das variáveis, o que mais se aproxima de futuras execuções por outros pesquisadores que desejem reproduzir o método. Assim, os examinadores cegos receberam os vídeos e realizaram todo o processo desde a separação dos frames. Também foram realizadas as análises inter e intraexaminador respeitando os mesmos 15 dias entre as mesmas.

A Tabela 1 demonstra as variáveis do estudo. Todas as medidas angulares foram expressas em graus (º), e as medidas lineares, em centímetros (cm).

Foram realizados resumo, organização, sumarização e descrição do conjunto de dados. Ao conjunto de dados foi dado um tratamento descritivo, com cálculo de medidas de tendência central (média) e dispersão (desvio padrão). O coeficiente de correlação intraclass (CCI) com intervalos de confiança de 95% foi utilizado para avaliar as confiabilidades intraexaminador e interexaminador, considerando: concordância excelente (CCI>0,80); concordância muito boa (0,80≤CCI≤0,61); concordância boa (0,60≤CCI≤0,41); concordância razoável (0,40≤CCI≤0,21); e concordância pobre (CCI<0,20). Para todos os procedimentos, considerou-se nível de significância de 95% (p<0,05).

RESULTADOS

Foram incluídos 40 recém-nascidos/lactentes prematuros, distribuídos da seguinte forma: 6 prematuros extremos (15%), 21 muito prematuros (53%) e 13 prematuros moderados ou limítrofes (32%). Os bebês apresentaram idade gestacional média de 30±3 semanas e peso ao nascimento de 1385±445 g.

Quanto à classificação peso de nascimento X idade gestacional, observamos 28 (70%) classificados como adequados para idade gestacional e 12 (30%) classificados como pequenos para a idade gestacional.

Quanto ao sexo, a amostra foi composta de 23 recém-nascidos/lactentes do sexo masculino (57%) e 17 do sexo feminino (43%). No momento da coleta, os neonatos possuíam idade de 28±21 dias de vida e pesavam 1901±435 g.

Durante a etapa 1, frames iguais, cada examinador aplicou o protocolo em 160 fotogramas (40 fotogramas na inspiração+40 fotogramas na expiração em cada uma das vistas, totalizando 160 fotografias). A aplicação do protocolo foi realizada novamente

A	Vista lateral	Definição	Representação esquemática
A1(c)	Ângulo entre o marcador lateral costal, o ápice da cabeça e o processo xifoide.	![Imagem]	
A1(x)	Ângulo entre o marcador lateral xifoide, o ápice da cabeça e o processo xifoide.	![Imagem]	
DTL(c)	Distância torácico-lateral entre os marcadores laterais costais.	![Imagem]	
DTL(x)	Distância torácico-lateral entre os marcadores laterais xifoídes.	![Imagem]	

B	Vista superior	Definição	Ilustração
DGae	Distância entre a glabela e o acrômio esquerdo.	![Imagem]	
DGAd	Distância entre a glabela e o acrômio direito.	![Imagem]	
DGX	Distância entre a glabela e o processo xifoide.	![Imagem]	
DTA(x)	Distância anterior entre os marcadores xifoídes.	![Imagem]	
DTA(c)	Distância anterior entre os marcadores costais.	![Imagem]	
DXae	Distância entre o processo xifoide e o acrômio esquerdo.	![Imagem]	
DXAd	Distância entre o processo xifoide e o acrômio direito.	![Imagem]	
A2(c)	Ângulo entre glabela e marcadores costais laterais.	![Imagem]	
A2(x)	Ângulo entre glabela e marcadores xifoídes laterais.	![Imagem]	
A2(a)	Ângulo entre a glabela e os acrômios bilateralmente.	![Imagem]	
A3	Ângulo entre o processo xifoide e os marcadores laterais costais.	![Imagem]	
Com intervalo de 15 dias entre elas, totalizando 2.400 análises realizadas (considerando todas as variáveis do estudo). Na etapa 2, frames diferentes, cada examinador aplicou o protocolo desde a seleção dos fotogramas, com 320 fotogramas analisados (80 na inspiração+80 na expiração em cada uma das duas vistas, totalizando 320 fotogramas) e 4.800 avaliações realizadas por cada avaliador nos dois momentos de avaliação (considerando todas as variáveis do estudo).

Os dados da movimentação toracoabdominal obtidos por meio das análises das imagens das vistas lateral e superior foram organizados nas Tabelas 2 a 4. Os valores das variáveis foram atribuídos respectivamente a cada um dos três examinadores. Os dois momentos de análise foram indicados como momento 1 e momento 2. Houve níveis elevados de CCI no que diz respeito às medidas angulares, tanto nas análises intraexaminador (fotogramas iguais e diferentes — Tabelas 3 e 4), quanto nas análises interexaminador (fotogramas iguais e diferentes — Tabela 2), com valores entre 0,82 e 0,99, classificados como concordância excelente. As variáveis de distância apresentaram classificações entre muito boa e excelente concordância quando em análises intraexaminador e interexaminador de fotogramas iguais (0,64 a 0,99). Quando em análises intra e interexaminador de fotogramas diferentes, as variáveis de diâmetro obtiveram concordância boa e muito boa, com CCI entre 0,44 e 0,89.

DISCUSSÃO

Os resultados apresentados confirmam que o protocolo fotogramétrico proposto possui satisfatória confiabilidade intraexaminador e interexaminador na população de recém-nascidos e lactentes prematuros. Observamos os maiores índices de CCI nas variáveis angulares (CCI>0,81), quando comparadas às variáveis lineares. O protocolo descrito é inédito, já que as variáveis mensuradas não foram propostas por nenhum outro trabalho e podem trazer informações relevantes sobre a movimentação toracoabdominal em diferentes situações clínicas na assistência neonatal.

Outros protocolos para avaliação da respiração de recém-nascidos e crianças usando a biofotogrametria propõem medidas de área torácica e abdominal.15,20-23 O modelo biofotogrametria para análise da mecânica respiratória (BAMER) era inédito, já que as variáveis mensuradas não foram propostas por nenhum outro trabalho e podem trazer informações relevantes sobre a movimentação toracoabdominal em diferentes situações clínicas na assistência neonatal.

Tabela 2

	Frames iguais	Frames diferentes		
	Momento 1	Momento 2		
A1(c)	0,98 (0,96; 0,99)	0,97 (0,95; 0,98)	0,94 (0,88; 0,97)	0,95 (0,92; 0,97)
A1(x)	0,98 (0,98; 0,99)	0,98 (0,97; 0,98)	0,96 (0,95; 0,98)	0,95 (0,93; 0,97)
DTL(c)	0,73 (0,63; 0,81)	0,63 (0,46; 0,75)	0,62 (0,45; 0,74)	0,52 (0,25; 0,70)
DTL(x)	0,73 (0,62; 0,82)	0,63 (0,41; 0,77)	0,63 (0,46; 0,76)	0,56 (0,36; 0,70)
DGae	0,80 (0,56; 0,90)	0,87 (0,80; 0,92)	0,68 (0,58; 0,77)	0,59 (0,47; 0,70)
DGAd	0,84 (0,57; 0,93)	0,90 (0,85; 0,93)	0,70 (0,60; 0,78)	0,80 (0,71; 0,86)
DGX	0,74 (0,44; 0,86)	0,88 (0,83; 0,92)	0,65 (0,54; 0,75)	0,68 (0,54; 0,78)
DTA(x)	0,64 (0,31; 0,80)	0,85 (0,74; 0,91)	0,56 (0,43; 0,68)	0,73 (0,54; 0,83)
DTA(c)	0,70 (0,39; 0,84)	0,88 (0,78; 0,93)	0,59 (0,46; 0,69)	0,75 (0,59; 0,85)
DXAe	0,54 (0,29; 0,71)	0,76 (0,63; 0,84)	0,49 (0,36; 0,61)	0,63 (0,44; 0,76)
DXAd	0,52 (0,28; 0,69)	0,81 (0,70; 0,88)	0,47 (0,34; 0,60)	0,61 (0,46; 0,73)
A2(c)	0,99 (0,98; 0,99)	0,95 (0,93; 0,97)	0,87 (0,82; 0,91)	0,84 (0,78; 0,89)
A2(x)	0,98 (0,96; 0,99)	0,96 (0,95; 0,97)	0,88 (0,83; 0,92)	0,84 (0,78; 0,89)
A2(a)	0,99 (0,98; 0,99)	0,94 (0,91; 0,96)	0,89 (0,84; 0,92)	0,83 (0,76; 0,88)
A3	0,95 (0,93; 0,97)	0,91 (0,88; 0,94)	0,88 (0,83; 0,92)	0,88 (0,83; 0,91)

A1(x): ângulo entre o marcador lateral xifoide, o ápice da cabeça e o processo xifoide; A1(c): ângulo entre o marcador lateral costal, o ápice da cabeça e o processo xifoide; DTL(x): distância entre os limites inferior e superior do tórax, passando pelo marcador lateral xifoide; DTL(c): distância entre os limites inferior e superior toracoabdominal, passando pelo marcador lateral costal. Variáveis angulares de vista superior: A2(a): ângulo entre os acrômios bilateralmente e a glabela; A2(x): ângulo entre os marcadores laterais de projeção do xifoide e a glabela; A2(c): ângulo entre os marcadores laterais costais e a glabela; A3: ângulo entre os marcadores laterais costais e o processo xifoide. Variáveis lineares de vista superior: DGae/DGAd: distância entre a glabela e os acrômios esquerdo e direito, respectivamente; DGX: distância entre a glabela e o processo xifoide; DTA(x): distância entre os marcadores laterais de projeção do xifoide; DTA(c): distância entre os marcadores laterais costais. Momento 2: 15 dias após a análise do momento 1.
Tabela 3: Valores de coeficiente de correlação intraclasse seguidos de seu intervalo de confiança, análise intraexaminador de frames iguais.

Variável	Examinador 1	Examinador 2	Examinador 3
A1(c)	0,99 (0,98; 0,99)	0,99 (0,98; 0,99)	0,99 (0,98; 0,99)
A1(x)	0,99 (0,98; 0,99)	0,99 (0,99; 1)	0,99 (0,98; 0,99)
DTL(c)	0,76 (0,65; 0,84)	0,90 (0,84; 0,93)	0,85 (0,74; 0,88)
DTL(x)	0,77 (0,66; 0,85)	0,92 (0,87; 0,94)	0,82 (0,78; 0,90)
DGAe	0,91 (0,86; 0,94)	0,95 (0,92; 0,97)	0,86 (0,79; 0,91)
DGAd	0,93 (0,89; 0,95)	0,96 (0,94; 0,97)	0,86 (0,79; 0,91)
DGX	0,86 (0,79; 0,91)	0,92 (0,87; 0,95)	0,84 (0,76; 0,89)
DTA(x)	0,80 (0,70; 0,86)	0,87 (0,81; 0,92)	0,82 (0,73; 0,88)
DTA(c)	0,85 (0,77; 0,90)	0,90 (0,85; 0,93)	0,86 (0,79; 0,91)
DXAe	0,70 (0,56; 0,79)	0,85 (0,77; 0,90)	0,68 (0,54; 0,78)
DXAd	0,71 (0,58; 0,80)	0,82 (0,73; 0,88)	0,70 (0,57; 0,80)
A2(c)	0,99 (0,99; 0,99)	0,99 (0,99; 0,99)	0,94 (0,91; 0,96)
A2(x)	0,99 (0,98; 0,99)	0,99 (0,99; 1)	0,95 (0,93; 0,97)
A2(a)	0,99 (0,98; 0,99)	0,99 (0,99; 1)	0,92 (0,88; 0,95)
A3	0,96 (0,94; 0,97)	0,98 (0,97; 0,99)	0,91 (0,86; 0,94)

Legenda: A1(x): ângulo entre o marcador lateral xifoide, o ápice da cabeça e o processo xifoide; A1(c): ângulo entre o marcador lateral costal, o ápice da cabeça e o processo xifoide; DTL(x): distância entre os limites inferior e superior do tórax, passando pelo marcador lateral xifoide; DTL(c): distância entre os limites inferior e superior toracoabdominal, passando pelo marcador lateral costal. Variáveis angulares de vista superior: A2(a): ângulo entre os acrômios bilateralmente e a glabela; A2(x): ângulo entre os marcadores laterais de projeção do xifoide e a glabela; A2(c): ângulo entre os marcadores laterais costais e a glabela; A3: ângulo entre os marcadores laterais costais e o processo xifoide. Variáveis lineares de vista superior. DGAe/DGAd: distância entre a glabela e os acrômios esquerdo e direito, respectivamente; DGX: distância entre a glabela e o processo xifoide; DTA(x): distância entre os marcadores laterais de projeção do xifoide; DTA(c): distância entre os marcadores laterais costais.

Tabela 4: Valores de coeficiente de correlação intraclasse seguidos por seu intervalo de confiança, análises intraexaminador de frames diferentes.

Variável	Examinador 1	Examinador 2	Examinador 3
A1(c)	0,97 (0,95; 0,98)	0,95 (0,93; 0,97)	0,99 (0,98; 0,99)
A1(x)	0,98 (0,96; 0,99)	0,96 (0,94; 0,98)	0,99 (0,99; 1)
DTL(c)	0,61 (0,45; 0,73)	0,79 (0,68; 0,86)	0,80 (0,70; 0,87)
DTL(x)	0,56 (0,39; 0,69)	0,78 (0,68; 0,86)	0,76 (0,65; 0,84)
DGAe	0,67 (0,53; 0,78)	0,56 (0,39; 0,70)	0,78 (0,68; 0,85)
DGAd	0,68 (0,54; 0,78)	0,77 (0,67; 0,85)	0,84 (0,75; 0,89)
DGX	0,64 (0,49; 0,75)	0,70 (0,57; 0,80)	0,78 (0,68; 0,85)
DTA(x)	0,48 (0,29; 0,63)	0,81 (0,72; 0,87)	0,82 (0,74; 0,88)
DTA(c)	0,58 (0,41; 0,71)	0,84 (0,75; 0,89)	0,85 (0,78; 0,90)
DXAe	0,57 (0,41; 0,70)	0,63 (0,47; 0,74)	0,65 (0,51; 0,76)
DXAd	0,54 (0,37; 0,68)	0,55 (0,38; 0,69)	0,67 (0,53; 0,77)
A2(c)	0,88 (0,81; 0,92)	0,83 (0,74; 0,88)	0,92 (0,88; 0,95)
A2(x)	0,89 (0,84; 0,93)	0,80 (0,70; 0,87)	0,93 (0,89; 0,95)
A2(a)	0,87 (0,80; 0,91)	0,84 (0,76; 0,89)	0,86 (0,79; 0,91)
A3	0,88 (0,82; 0,92)	0,85 (0,78; 0,90)	0,91 (0,86; 0,94)

Legenda: A1(x): ângulo entre o marcador lateral xifoide, o ápice da cabeça e o processo xifoide; A1(c): ângulo entre o marcador lateral costal, o ápice da cabeça e o processo xifoide; DTL(x): distância entre os limites inferior e superior do tórax, passando pelo marcador lateral xifoide; DTL(c): distância entre os limites inferior e superior toracoabdominal, passando pelo marcador lateral costal. Variáveis angulares de vista superior: A2(a): ângulo entre os acrômios bilateralmente e a glabela; A2(x): ângulo entre os marcadores laterais de projeção do xifoide e a glabela; A2(c): ângulo entre os marcadores laterais costais e a glabela; A3: ângulo entre os marcadores laterais costais e o processo xifoide. Variáveis lineares de vista superior. DGAe/DGAd: distância entre a glabela e os acrômios esquerdo e direito, respectivamente; DGX: distância entre a glabela e o processo xifoide; DTA(x): distância entre os marcadores laterais de projeção do xifoide; DTA(c): distância entre os marcadores laterais costais.
originou-se do modelo dos quadriláteros irregulares, descrito em diversos estudos anteriores em cinemática respiratória, e propôe o estabelecimento de planos transversos e a delimitação dos compartimentos torácico e abdominal. Dois estudos inseriram dois novos subcompartimentos a cada compartimento original e obtiveram os limites toracoabdominais traçados por retas sobre o contorno das superfícies corporais anterior e posteriormente.

Um trabalho posterior realizou análise biofotogramétrica do tórax, por meio de adaptação do modelo BAMER, em indivíduos adultos com hiperinsuflação dinâmica após exercício com uso de pressão expiratória final positiva. A autora observou resultado comparável aos obtidos por sistemas mais robustos em cinemática respiratória e concluiu que a biofotogrametria agrega dados quantitativos relevantes ao monitoramento respiratório.

Outro estudo subsequente realizou análise biofotogramétrica com modelo BAMER adaptado à posição deitada, vista lateral, em 19 crianças asmáticas com média de idade de 11 anos. Foi realizado o cálculo das contribuições relativas de cada subcompartimento em relação ao seu compartimento de origem e à parede torácica. A movimentação toracoabdominal foi avaliada durante manobras isovolume após inspiroação máxima. Os autores encontraram diferença significativa nos valores de área de compartimentos e subcompartimentos individualmente (p<0,001). As contribuições relativas em relação à parede torácica também foram significativamente diferentes (p<0,001). Por outro lado, as razões entre subcompartimentos e seus compartimentos de origem não apresentaram diferença significativa. O método mostrou-se efetivo na diferenciação da movimentação de cada área e na identificação das regiões mais e menos contributivas ao movimento respiratório do compartimento analisado. Tal modelo de mensuração de área e utilização do AutoCAD vem sendo utilizado já para a ampliação de evidências acerca de diferentes técnicas de fisioterapia. Em 20 neonatos a termo, medidas de área antes e após técnica de aumento de fluxo expiratório foram realizadas, e não foram encontradas diferenças significativas na mobilidade desses bebês. Gomes et al. realizaram um estudo com 40 recém-nascidos a termo, também mensurando a área do compartimento toracoabdominal, comparando a técnica de vibrocompressão e o reequilíbrio toracoabdominal. Não houve diferença significativa, porém os resultados foram antagônicos entre as técnicas aplicadas.

As variáveis mensuradas no presente estudo para medida de movimentação toracoabdominal de recém-nascidos e lactentes não foram utilizadas anteriormente e demonstraram satisfação concordância intraexaminador e interexaminador. São medidas que podem traduzir ciclo a ciclo a dinâmica da respiração dos pacientes. Além disso, conseguem quantificar o resultado de movimentos que na prática clínica são empíricos, tais como as variações de diâmetro e ângulo ao longo do ciclo (se houver variação negativa entre inspiração e expiração, por exemplo, pode-se entender como um possível movimento paradoxal, em que o tórax é sugado e não expande como esperado pela fisiologia). A observação e a avaliação dos movimentos torácicos em neonatologia são essencialmente subjetivos, e a falta de parâmetros objetivos de avaliação dificulta a realização de pesquisas e a criação de rotinas de acompanhamento que incluam os movimentos torácicos. Também cabe mencionar que medidas de confiabilidade na população neonatal, fundamentais para conhecer a reprodutibilidade protocolar, são inéditas e fundamentais antes de considerar a aplicação de protocolos na avaliação clínica.

A relevância do presente estudo está na proposta de variáveis angulares e lineares que possuem como referencial os pontos anatômicos-chave para a identificação de retrações e distorções torácicas. As análises são feitas manualmente, excluindo a possibilidade da não identificação de uma retração torácica inspiratória, por exemplo, que não seria identificada objetivamente no método BAMER.

As consequências imediatas do nascimento prematuro possuem grande impacto motor e respiratório. No entanto, estudos que avaliam as repercussões tardias da prematuridade também evidenciam alterações frequentes motoras, cognitivas, neurossensoriais e respiratórias. Garcia et al. associaram o nascimento prematuro com alterações musculosqueléticas torácicas em adolescentes (10 a 15 anos) e constataram que adolescentes nascidos prematuramente apresentaram alterações musculosqueléticas torácicas estáticas mais evidentes quando comparados à população de adolescentes nascidos a termo. Diante disso, o desenvolvimento de ferramentas de avaliação para uso o mais precoce possível tem imensa relevância na assistência neonatal. Os fatores mostraram-se associados a muito baixo peso e extremo baixo peso ao nascimento, além do tempo prolongado de ventilação mecânica no período de internação em unidade neonatal.

Stick relatou as possíveis relações significativas entre desenvolvimento pulmonar intrauterino, sintomas respiratórios e função pulmonar na vida adulta e menciona a importância do conhecimento das interações entre desenvolvimento de fatores pulmonares, genéticos e ambientais como essencial para o diagnóstico precoce e o desenvolvimento de novas estratégias que reduzam a morbidade de doenças pulmonares crônicas em longo prazo. Com isso, tornam-se relevantes a avaliação constante e o seguimento ambulatorial respiratório após alta hospitalar de todos os indivíduos nascidos prematuramente com o objetivo de minimizar danos imediatos e tardíos.
o cuidado com a posição dos neonatos, as medidas para o posicionamento da câmera e a análise dos dados. Possíveis reproduções sem tais cuidados poderão não traduzir corretamente os resultados.

As limitações para a realização deste trabalho permeiam a rotina do ambiente de terapia intensiva no que diz respeito à observância dos horários de administração da dieta, higiene e medicações, considerando sempre o manuseio mínimo necessário para preservar a qualidade de vida do bebê internado. Para que a rotina do recém-nascido ou lactente fosse o menos impactada possível, por vezes foi necessário adiar as coletas de dados, o que causou um prazo grande para a realização do protocolo. Por outro lado, a possibilidade de avaliar a movimentação torácica de forma não invasiva e com alta confiabilidade permite a triagem de bebês prematuros cada vez mais cedo, sendo possível a prevenção de grande parte das repercussões respiratórias não desejadas imediatas e tardias. Outra importante limitação é o fato de a fotogrametria utilizar imagens em 2D, o que pode levar a erro de paralaxe, principalmente nas medidas de distância em que há ausência da profundidade. Por conta disso, pode-se explicar o fato de a ICC ser menor nas medidas de distância do que nas medidas angulares. De qualquer modo, os valores de ICC estão em níveis muito bons, o que não invalida as medidas e ainda possibilita parâmetros de avaliação da mobilidade torácica que não se tem em neonatologia.

Por meio do exposto, o protocolo proposto apresenta boa confiabilidade e reprodutibilidade e, portanto, pode ser utilizado na população de recém-nascidos prematuros em ambiente de internação neonatal, no que diz respeito à aplicação do protocolo completo desde a escolha dos fotogramas até a análise pura das imagens.

Financiamento
O estudo não recebeu financiamento.

Conflito de interesses
Os autores declararam não haver conflito de interesses.

REFERÊNCIAS

1. Brazil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Ações Programáticas e Estratégicas. Atenção à saúde do recém-nascido: guia para os profissionais de saúde. Brasília (DF): Ministério da Saúde; 2011.
2. Stick S. Pediatric origins of adult lung disease. 1. The contribution of airway development to paediatric and adult lung disease. Thorax. 2000;55:587-94. https://doi.org/10.1136/thorax.55.7.587
3. Garcia KM, Davidson J, Goulart A, Santos AM. Association between preterm birth and thoracic musculoskeletal static alterations in adolescents. Braz J Phys Ther. 2015;19:10-7. https://doi.org/10.1590/bjpt-rbf.2014.0074
4. Davidson J, Santos AM, Garcia KM, Yi LC, João PC, Miayoshi MH, et al. Photogrammetry: an accurate and reliable tool to detect thoracic musculoskeletal abnormalities in preterm infants. Physiotherapy. 2012;98:243-9. https://doi.org/10.1016/j.physio.2011.05.007
5. Davidson J, Garcia KM, Yi LC, Goulart AL, Santos AM. Prevalence and factors associated with thoracic alterations in infants born prematurely. Rev Assoc Med Bras. 2012;58:679-84. https://doi.org/10.1590/S0104-22302012000600012
6. World Health Organization. WHO recommendations on interventions to improve preterm birth outcomes. Geneva: WHO; 2015.
7. Gappa M, Colin AA, Goetz I, Stocks J, ERS/ATS Task Force on Standards for Infant Respiratory Function Testing, European Respiratory Society/American Thoracic Society. Passive respiratory mechanics: the occlusion techniques. Eur Respir J. 2001;17:141-8. https://doi.org/10.1183/09031936.01.17101410
8. Greenough A. Long-term pulmonary outcome in the preterm infant. Neonatology. 2008;93:324-7. https://doi.org/10.1159/000121459
9. Andrade LB. Implicações práticas da fisiologia e biomecânica do recém-nascido, lactente e criança. In: Andrade LB, editor. Fisioterapia respiratória em neonatologia e pediatria. Rio de Janeiro: Medbook; 2011. p.1-16.
10. Barbosa AL, Campos AC, Chaves EM. Non-clinical complications of mechanical ventilation in newborns: nursing care. Acta Paul Enferm. 2006;19:439-41. https://doi.org/10.1590/S1806-371320120000200008
11. Nicolau CM, Falcão MC. Efeitos da fisioterapia respiratória em recém-nascidos: análise crítica da literatura. Rev Paul Pediatria. 2007;25:72-5.
12. Caldeira VD, Starling CC, Britto RR, Martins JA, Sampaio RF, Parreira VF. Reliability and accuracy of cirtometry in healthy adults. J Bras Pneumol. 2007;33:519-26. https://doi.org/10.1590/S1806-37132007000600006
13. Barbosa RC, Carvalho CR, Moryia HT. Pletismografia respiratória por indutância: estudo comparativo entre calibração por manobra de isovolume e calibração qualitativa diagnóstica em voluntários saudáveis avaliados em diferentes posturas. J Bras Pneumol. 2012;38:194-201. https://doi.org/10.1590/S1806-37132012000200008
14. Oliveira HB, Pereira AS, Vale BE, Pinto DN. Image recognition system for evaluating thoracoabdominal movements in newborns. Rev Bras Inov Tecnol Saude. 2016;6:1-10. https://doi.org/10.18816/r-bits.v6i1
15. Ricieri DV, Rosário Filho NA. Impacto de fatores externos sobre a mecânica respiratória avaliada por um modelo fotogramétrico específico: biofotogrametria. J Bras Pneumol. 2008;34:702-6. https://doi.org/10.1590/S1806-37132008000900011

16. World Health Organization. Born too soon. The global action report on preterm birth. Geneva: WHO; 2012.

17. Brazil. Ministério da Saúde [homepage on the Internet]. Portal da Saúde – SUS. Sistema de Informações de Nascidos Vivos - SINASC. Brasília (DF): Ministério da Saúde [cited 2018 Apr 20]. Available from: http://www2.datasus.gov.br/DATASUS/index.php?area=060702

18. Als H, Tronick E, Lester BM, Brazelton TB. The Brazelton Neonatal Behavioral Assessment Scale (NBAS). J Abnorm Child Psychol. 1977;5:215-31. https://doi.org/10.1007/bf00913693

19. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19:231-40. https://doi.org/10.1519/15184.1

20. Ricieri DV, Rosário Filho NA. Efetividade de um modelo fotogramétrico para a análise da mecânica respiratória toracoabdominal na avaliação de manobras de isovolume em crianças. J Bras Pneumol. 2009;35:144-50. https://doi.org/10.1590/S1806-37132009000200007

21. Guerra JI, Nagem DA, Morán CA, Gomes VL, Carvalho JM, Pereira SA. Thoracoabdominal mobility evaluation by photogrammetry in newborns after expiratory flow increase technique. Fisioter Mov. 2017;30:789-95. https://doi.org/10.1590/1980-5918.030.004.a014

22. Gomes DC, Fonseca Filho GG, Araujo AG, Gomes VL, Medeiros Jr NB, Cavalcanti BE, et al. Avaliação biofotogramétrica da mobilidade toracoabdominal de recém-nascidos após fisioterapia respiratória. Fisioter Bras. 2018;19:28-34. http://dx.doi.org/10.33233/fb.v1911.2179

23. Ferrigno G, Carnevali P, Aliverti A, Molteni F, Beulcke G, Pedotti A. Three-dimensional optical analysis of chest wall motion. J Appl Physiol. 1994;77:1224-31. https://doi.org/10.1152/jappl.1994.77.3.1224

24. Spahija JA, Grassino A. Effects of pursed-lips breathing and expiratory resistive loading in healthy subjects. J Appl Physiol. 1996;80:1772-84. https://doi.org/10.1152/jappl.1996.80.5.1772

25. Kenyon CM, Cala SJ, Yan S, Aliverti A, Scano G, Duranti R, et al. Rib cage mechanics during quiet breathing and exercise in humans. J Appl Physiol. 1997;83:1242-55. https://doi.org/10.1152/jappl.1997.83.4.1242

26. Kondo T, Uhlig T, Pemberton P, Sly PD. Laser monitoring of chest wall displacement. Eur Respir J. 1997;10:1865-9. https://doi.org/10.1183/09031936.97.10081865

27. Sanna A, Bertoli F, Misuri G, Gigliotti F, Landeli I, Mancini M, et al. Chest wall kinematics and respiratory muscle action in walking healthy humans. J Appl Physiol. 1999;87:938-46. https://doi.org/10.1152/jappl.1999.87.3.938

28. BMClab Laboratório de Biomecânica e Controle Motor [homepage on the Internet]. SAPO – Software para Avaliação Postural. São Paulo: Incubadora Virtual Fapesp; 2008 [cited 2019 Feb 27]. Available from: https://pesquisa.ufabc.edu.br/bmclab/sapo/