Background: Sigma-1 receptors have been shown to be expressed in many tissues and enriched in the brain[1]. This receptor was first described as a type of opioid receptor[2], but further experiments showed that the sigma-1 receptor has distinct pharmacological properties[3]. It binds to drugs such as (+)-pentazocine[4], cocaine[5], methamphetamine[6] and neurosteroids[7] and is implicated in certain forms of psychoses[8], pain tolerance[9], learning and memory and attention deficit disorders[8]. Myriad properties that are associated with sigma-1 receptors led some to consider the receptors as intracellular amplifiers[10]. Endogenous ligands are unknown at present and common signal transduction pathways remain elusive.

However, electrophysiological experiments have shed some light on a significant role of sigma-1 receptors involving an inhibitory action on the activity of ion channels such as potassium Kv1.4, Kv1.5[11] and chloride VRCC[12] channels. These data provided evidence for a
possible general function of sigma-1 receptors in maintenance of the excitability of cell membranes in response to psychotomimetic drugs. Involvement of sigma-1 receptors in a plethora of known pathways is implied in it’s gene promoter, which contains an AP-1 complex (regulating immediate early gene products) binding sequence[13]. Inhibition of AP-1 expression through suppression of the extracellular receptor kinase (ERK) MAPK pathway activity resulted in significant downregulation of the total level of sigma-1 receptors[14]. On the other hand, activation of sigma-1 receptors resulted in upregulation of the FRA-2 gene[15,16], a member of the AP-1 subfamily.

Sigma-1 receptors have been predicted to be transmembrane proteins[11]. They are localized to sphingosine-enriched lipid rafts on the bundles of the endoplasmic reticulum (ER) and have been shown to target to the plasma membrane (PM) as well. Translocation of sigma-1 receptors from the ER to the PM has been reported[17,18]. In cultured oligodendrocytes sigma-1 receptors are involved in trafficking of galactosylceramide, an important component of myelin[19].

Additionally, cancer cell lines have been shown to be significantly enriched with sigma-1 receptors[20]. Application of sigma-1 receptor drugs as well as silencing of sigma-1 receptors with RNAi inhibited cell adhesion to the plating surface and suggested novel functions of sigma-1 receptors in metastasis[20].

Here we report for the first time that in Chinese hamster ovary (CHO-K1) cells sigma-1 receptors target to focal adhesion contacts (FAC) where they colocalize with Kv1.4 and talin. The appearance of sigma-1 receptors in the FAC increased significantly upon treatment with the sigma-1 receptor ligands (+)-pentazocine, haloperidol and iodoazidococaine[21,22] as well as by stabilization of filamentous actin with phalloidin. We also utilized a novel protocol for photolabeling endogenous sigma-1 receptors in live cells, allowing us to determine a significant intracellular stability of the endogenous receptor pools in CHO-K1 cells.

Results
The specificity of rabbit polyclonal antibody against the purified whole-sequence sigma-1 receptor protein[23] was confirmed by preadsorption with antigen (Fig. 1). The sigma-1 receptor immunocytochemical staining revealed that the receptors were localized to the nuclear envelope (NE), endoplasmic reticulum (ER) and the focal adhesion contacts (FAC). In order to detect sigma-1 receptors in the FAC, it was critical, before fixation, to rinse the cells for a short time (30 sec) with DMEM (no serum present) or DPBS with Ca2+ & Mg2+ present (Fig. 2.). These results support the present literature data[17,18] indicating that the sigma-1 receptors are able to alter their distribution within the cell and further indicates that divalent cations can modify this distribution, especially in the FAC.

To support the observation that the sigma-1 receptors are present in true FAC a double stain for talin (a FAC marker) was used to show a high level of colocalization (Fig. 3. A–C). It has been previously demonstrated [11,24,25], that sigma-1 receptors modulate the activity of Kv1.4 potassium channels. We found that in CHO-K1 cells Kv1.4 is also targeted to FAC under all sample preparation conditions and double staining for Kv1.4 and sigma-1 receptors showed colocalization in the FAC (Fig 3. D–F).

Further, we show that the sigma-1 receptors were found to localize to the tips of F-Actin rods, where the FAC form (Fig 3. G,H).

Intracellular protein-protein interactions of the sigma-1 receptors in a response to stimulation by specific ligands such as (+)-pentazocine, SKF10047 or cocaine has been demonstrated to change[18]. We therefore explored the possibility that various sigma-1 receptor ligands could alter the amount of receptor in FAC. In CHO-K1 cells following various treatment with (+)-pentazocine, iodoazidococaine and phalloidin (which directly stabilizes F-Actin) we observed that there was a significant increase of the level of sigma-1 receptors in the FAC (Fig. 4.). The level of talin in the FAC in a response to the various ligands showed only a slight increase. Following direct actin filament stabilization with phalloidin a doubling of the level of talin in the FAC was observed, while the sigma-1 receptor levels in the FAC increased more than 6 fold (Fig. 4.).

Since the increase in sigma-1 receptors in FAC upon addition of sigma-1 receptor ligands occured in a relatively
short period of time (30 min), we hypothesized that this relocation may be due to recruitment of receptors from intracellular pools. In order to determine the availability of the sigma-1 receptors for translocation, we assessed the stability of the receptors in CHO-K1 cells. These experiments were performed by using a unique intracellular photolabeling approach with the high affinity sigma-1 receptor photoprobe, [125I]-IACoc, which forms a covalent linkage with the receptor residues upon photolysis[21,22]. Fig. 5 shows that in situ specific photolabeling in live cells was successful in identifying the sigma-1 receptor. Application of this "pulse-chase" approach for intact cell labeling therefore provided an opportunity to address the question of intracellular stability of photolabeled sigma-1 receptors thus demonstrating that a considerable stable intracellular pool of sigma-1 receptors occurs in CHO-K1 cells. Potential mechanisms of degradation or turnover of the sigma-1 receptors using inhibitors of proteasomal and lysosomal protein digestion were further investigated. The results demonstrated that the half life of the ligand-bound form of the sigma-1 receptor in CHO-K1 cells is 72 hours and was insensitive to lysosomal (chloroquine) and proteosomal (lactacystine) inhibitors.

Discussion
The data reported in this paper show a profound diversity in sigma-1 receptor distribution in CHO-K1 cells. Sigma-1 receptors have previously been shown to localize to the plasma membrane[11,20,26]. In contrast to other cell types[17,18,20,26] sigma-1 receptors are localized to focal adhesions in CHO-K1 cells in a sigma-1 receptor ligand dependent and F-actin stabilizing manner.

Interestingly, a 30 sec rinsing condition (before fixation) with DPBS with divalent cations present appeared to be a critical factor for retaining the sigma-1 receptors in the FAC. When the cells were rinsed with DMEM (without serum), instead of DPBS, the appearance of the sigma-1 receptors was also preserved in FAC, leading to the conclusion that the presence of divalent cations stabilized the sigma-1 receptors in the FAC, but did not appear to stimulate translocation of the sigma-1 receptors to the FAC.

One established function of sigma-1 receptors is modulation of the activity of Kv1.4 potassium channels, presumably as regulatory inhibitory subunits of these channels[11]. Under the experimental conditions reported in this paper the Kv1.4 potassium channels were confined to FAC. The sigma-1 receptor distributed to FAC, on the other hand, indicating a clear regulation by sigma-1 receptor ligands. Although the state of localization of Kv1.4 potassium channels was not assessed with regard to the sigma-1 receptor ligands in this study, it is reasonable to propose that increased focal adhesion targeting of the sigma-1 receptors is a regulatory mechanism for modulation of Kv1.4 voltage-gated channels in FAC in CHO-K1 cells. Volume-regulated chloride channels (VRCC) have also been reported to be profoundly inhibited by sigma-1 receptor ligands in various tumor cells[12]. Although little has been reported in the literature regarding the presence of ion channels in focal adhesions, a recent report is consistent with the presence of HERG potassium channels in the FACs[27].

![Figure 2](http://www.jmolecularsignaling.com/content/2/1/8)

Figure 2
In CHO-K1 cells during a 30 sec rinsing with buffers with or w/o Ca^{2+} and Mg^{2+} before fixation changed the intracellular distribution of endogenous sigma-1 receptors. A. Cells were rinsed with DPBS w/o Ca^{2+} and Mg^{2+} and DMEM. B. Cells were rinsed with DPBS with different concentrations of Ca^{2+} and Mg^{2+}.
Previous investigations have shown that in NG-108 cells treated with (+)-pentazocine, sigma-1 receptors translocated to the plasma membrane[18]. Our data further demonstrate that in CHO-K1 cells, the sigma-1 receptors target to the FAC via a specific drug response without a concomitant increase in the total focal adhesion contacts, as measured by the marker protein for FAC, talin (Fig. 3). Sigma-1 receptor ligands such as (+)-pentazocine[18], haloperidol and iodoazidococaine[28], may result in conformational changes in the receptor, leading to recruitment of the receptor to FAC via translocation pathways. It is also possible that multiple intracellular or extracellular signal transduction pathways are triggered by sigma-1 receptor ligands that indirectly result in FAC translocation of the sigma-1 receptors.

Interestingly, stabilization of F-Actin by phalloidin led to an increase in the level of talin and sigma-1 receptors together in FAC. Actin morphology remained intact after the sigma-1 receptor ligand treatments, whereas after phalloidin application, strong extended F-actin stress fibers formed (Fig. 3, H) with sigma-1 receptors localized to the tips of the strong fibers. The increase of sigma-1 receptors in FAC induced by the irreversible phalloidin F-actin polymerization indicated that the sigma-1 receptors are stabilized in FAC by F-actin polymerization.

FAC have been shown to interact in signaling pathways with lipid raft proteins, although it's not clear how lipid rafts commute between ER bundles and plasma membrane rafts[29]. Lisanti and coworkers showed that caveolin-1 and caveolin-2 proteins, which are enriched in lipid rafts in a phosphorylated form, localized to FAC, whereas unphosphorylated caveolins localized to the ER[29]. Previously it had been shown by Hayshi and Su that sigma-1 receptors associated with caveolin-2 in ER lipid rafts[30]. The mechanism by which the rate and direction of these processes are integrated with the cytosolic transport machinery remains obscure. There is also no clear evidence for how lipid droplets may be mobilized via actin filaments. In this regard there may well be an intimate relationship between lipid rafts and sigma-1 receptors regarding translocation to the barbed ends of actin filaments. Fluorescence recovery after photobleaching (FRAP) experiments performed in the Su laboratory suggested that the transfected GFP-sigma-1 receptors were

Figure 3
Endogenous Sigma-1 receptors colocalize with other proteins in the FAC. A-C. Colocalization with talin. A-sigma-1; B-talin; C-Overlay. D-F. Colocalization with Kv1.4. potassium channel. D-sigma-1; E-Kv1.4.; F-Overlay. G, H. Colocalization of sigma-1 (green) and F-Actin(red) in mock or phalloidin (50 ng/ml for 30 min) treated cells. Note, that the sigma-1 localized on the the barbed ends of actin filaments.

Figure 4
Dynamics of endogenous Sigma-1 receptor and Talin appearance in the FAC in CHO-K1 cells under various treatment conditions. All the compounds indicated were added to cells in complete 10% FBS supplemented DMEM for 30 min at a concentration of 10 µM except phalloidin (50 nM). Morphometrical quantitation of the amount of the sigma-1 receptor or talin in the FAC was performed with the Axiovision 4.3 software. The total amount of staining (in pixels) for each channel was quantitated for each image and divided by the number of cells (detected by DAPI staining of nuclei). 101–155 cells were measured per each condition.
able to translocate quickly throughout the entire network via the membranes of the ER[26].

The intracellular in situ sigma-1 receptor stability assessed by $^{[125]}$I-IACoc photolabeling (Fig. 5.) is consistent with the possibility that recruitment of the sigma-1 receptors to FAC from intracellular pools occurs. In this regard it is further relevant that IACoc also increased appearance of the sigma-1 receptors in the FAC (Fig. 4.).

Further studies are necessary to establish the role and the level of sigma-1 receptor involvement in lipid rafts and determine the direct sigma-1 receptor/lipid raft trafficking pathway into the FAC and the plasma membrane.

Methods

Immunocytochemistry

Coverslips (Fisher #12-545-82) were precleaned overnight in Aqua Regia, rinsed three times with double distilled H$_2$O and stored in 100% ethanol. On the day of seeding, coverslips were placed into each well of a 24 well cell culture cluster (Costar #3524), dried and coated w 0.01% poly-L-ornithine (Sigma #5666) for 30 min, rinsed three times with double distilled H$_2$O for 10 min each time, aspirated and dried under UV illumination.

CHO-K1 cells were split in the amount of 1,000 cells/coverslip and grown (in a 37°C incubator with 5% CO$_2$) for 72 h in DMEM supplemented with 10% (vol/vol) of cosmic calf serum (HyClone #SH30087-03) and a 1× non-essential aminoacid solution (Sigma #M7145) to reach a well-spread morphology and confluence of 70–80%. Cells were briefly rinsed twice for 30 sec with 1× DPBS.
Images were taken under a Zeiss Axiovert 200 M epifluorescent microscope at 100× oil objective with Axiovision 4.3 Software. Morphometrical quantitation of the lengths of sigma-1 receptor and/or talin in the FAC was performed with the same software. The total amount of staining (in pixels) for each channel was measured for every image and divided by the amount of cells (determined by pixels) for each channel was measured for every image of sigma-1 receptor and/or talin in the FAC was performed with 4.3 Software. Morphometrical quantitation of the lengths.

Photolabeling in situ by \([^{125}\text{I}]\)-Iodoazidococaine in intact CHO-K1 cells

Synthesis of \([^{125}\text{I}]\)-Iodoazidococaine was performed as described previously[21,22]. CHO-K1 cells were grown on two 10 cm Petri Dishes to 80% confluence. Cells were then rinsed three times with PBS, 0.1% Triton X-100 and the secondary fluorophore conjugated goat-anti-rabbit/anti-mouse Fab (Molecular Probes # A11070 was used for Alexa 488 anti-rabbit or A11020 for Alexa594 anti-mouse conjugates). The solution was applied for 1 h (always in the presence of 2.5 µg/ml, 1× PBS, 0.1% Triton X-100). The cells were then rinsed three times with 1× PBS, 0.1% Triton, twice with PBS only, stained with 300 nM DAPI for two min, rinsed three times with PBS one min each time, aspirated and embedded into Mowiol mounting media in the presence of 2% Dabco, 2.5% Propyl Gallate and then fixed to the glass slide using clear nail polish (Electron Microscopy Sciences # 72180).

Cells were then rinsed three times with DPBS, aspirated, and 1 ml of Laemmli buffer 1× was added into each dish and incubated on ice for 20 min. Lysate was passed through a syringe with a 21 G needle (to shear DNA) and collected. 80 µl were loaded into each well for SDS-PAGE analysis.

To assess the stability of the photolabeled sigma-1 receptor, CHO-K1 cells were grown to 80% confluence on one 15 cm Petri Dish and photolabeled as described above. After exposure to light, cells were rinsed three times with DPBS (30 sec each time), briefly detached by addition of 0.05 Trypsine-EDTA, collected by a quick low spin and resuspended. Equal amounts of cells were split into 9 of 5 cm Petri Dishes in DMEM supplemented with 0.5% FBS. An additional aliquot (time zero sample) was collected by a brief centrifugation, the supernatant discarded and 350 µl of 1× Laemmli buffer was added to cells. An inhibitor of proteosomal degradation (Lactacystine 2 µM) and an inhibitor of lysosomal degradation (Chloroquine 100 nM) were added to assess potential degradation pathways. For harvesting, the medium was removed from the dishes and 350 µl of 1× Laemmli buffer was added per dish, incubated for 20 min on ice, passed through a syringe with a 21 G needle and collected for loading onto the SDS gel. 80 µl of sample was loaded per well.

Competing interests

The author(s) declare that they have no competing interests.

Acknowledgements

We would like to acknowledge Dr. Abdul Hajipour for preparation of Iodoazidococaine, Dr. Lianwang Guo for proofreading the manuscript and Catherine Balankin for morphometrical quantitations. This work was supported by National Institute of Health (Grant ROI MH065303) to A.E.R.

References

1. Langa F, Codony X, Tovar V, Lavado A, Gimenez E, Cozar P, et al. Generation and phenotypic analysis of sigma receptor type I (sigma 1) knockout mice. Eur J Neurosci 2003; 18(8):2188-96.
2. Martin WR, Eades CG, Thompson JA, Hupperle RE, Gilbert PE. The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. The Journal of pharmacology and experimental therapeutics 1976, 197(3):517-32.
3. Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, et al.: A proposal for the classification of sigma binding sites. Trends in pharmacological sciences 1992, 13(3):85-6.
4. Su TP: Evidence for sigma opioid receptor: binding of [3H]SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. The journal of pharmacology and experimental therapeutics 1982, 223(2):284-90.
5. Moebius FF, Burrows GG, Hanner M, Schmid E, Sessler J, Grossmann H: Identification of a 27-kDa high affinity phencyclidine-binding polypeptide as the sigma 1 binding site by photoaffinity labeling and ligand-directed antibodies. Mol Pharmacol 1993, 44(5):966-71.
6. Nguyen EC, McCracken KA, Liu Y, Pouw B, Matsumoto RR: Involvement of sigma (sigma) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies. Neuropsychopharmacology 2005, 49(5):638-45.
7. Su TP, London ED, Jaffe JH: Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science (New York, NY) 2005, 240(4849):219-21. 1998 Apr 8.
8. Guiralt X, Codony X, Monroy X: Sigma receptors: biology and therapeutic potential. Psychopharmacology 2004, 174(3):301-19.

9. Cendan CM, Pujalte JM, Portillo-Salido E, Moncotiu L, Bayeens JM: Formalin-induced pain is reduced in sigma(1) receptor knockout mice. European journal of pharmacology 511(1):73-4, 2005 Mar 21;

10. Su TP, Hayashi T: Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Current medicinal chemistry 2003, 10(20):2073-80.

11. Aydar E, Palmer CP, Kiyachko VA, Jackson MB: The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 34(3):399-410. 2002 Apr 25;

12. Renaudet A, L’Hoste S, Guizouarn H, Borgese F, Sorciani O: Cancer cell cycle modulated by a functional coupling between sigma-1 receptors and Cl-channels. J Biol Chem 282(4):2259-67. 2007 Jan 26;

13. Seth P, Leibach FH, Ganapathy V: Cloning and structural analysis of the cDNA and the gene encoding the murine type I sigma receptor. Biochemical and biophysical research communications 241(2):535-40. 1997 Dec 18;

14. Cormaci G, Mori T, Hayashi T, Su TP: Protein kinase A activation dually-regulates, whereas extracellular signal-regulated kinase activation up-regulates sigma-1 receptors in B-104 cells: Implication for neuroplasticity. The Journal of pharmacology and experimental therapeutics 2007, 320(1):202-10.

15. Matsumoto RR, Liu Y, Lerner M, Howard EW, Brackett DJ: Sigma receptors: potential medications development target for anti-cocaine agents. European journal of pharmacology 469(1-3):1-12. 2003 May 23;

16. Liu Y, Chen GD, Lerner MR, Brackett DJ, Matsumoto RR: Cocaine up-regulates Fra-2 and sigma-1 receptor gene and protein expression in brain regions involved in addiction and reward. The Journal of pharmacology and experimental therapeutics 2005, 314(2):770-9.

17. Morn-Surun MP, Collin T, Denavit-Saubie M, Baulieu EE, Monnet FP: Intracellular sigma I receptor modulates phospholipase C and protein kinase C activities in the brainstem. Proceedings of the National Academy of Sciences of the United States of America 96(14):8196-9. 1999 Jul 6;

18. Hayashi T, Su TP: Regulating ankyrin dynamics: Roles of sigma-1 receptors. Proceedings of the National Academy of Sciences of the United States of America 98(2):91-6. 2001 Jan 16;

19. Hayashi T, Su TP: Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America 101(41):18494-9. 2004 Oct 12;

20. Aydar E, Onganer P, Perrett R, Djamgoz MB, Palmer CP: The expression and functional characterization of sigma (sigma) I receptors in breast cancer cell lines. Cancer Lett 242(2):245-57. 2006 Oct 28;

21. Kahoun JR, Ruoho AE: (125)Iodoazidococaine, a photoaffinity label for the haloperidol-sensitive sigma receptor. Proceedings of the National Academy of Sciences of the United States of America 89(4):1393-7. 1992 Feb 15;

22. Chen Y, Haijipour AR, Sievert MK, Arbabian M, Ruoho AE: Characterization of the cocaine binding site on the sigma-1 receptor. Biochemistry 46(11):3532-42. 2007 Mar 20;

23. Ramachandran S, Lu H, Prabhu U, Ruoho AE: Purification and characterization of the guinea pig sigma-1 receptor functionally expressed in Escherichia coli. Protein Expr Purif 2007, 51(2):283-92.

24. Lupardus PJ, Wilkie RA, Aydar E, Palmer CP, Chen Y, Ruoho AE, et al: Membrane-delimited coupling between sigma receptors and K+ channels in rat neurohypophysial terminals requires neither G-protein nor ATP. J Physiol 526(3):527-39. 2000 Aug 1;

25. Wilkie RA, Lupardus PJ, Grady DK, Rubinstein M, Low MJ, Jackson MB: K+ channel modulation in rodent neurohypophysial nerve terminals by sigma receptors and not by dopamine receptors. J Physiol 517(Pt 2):391-406. 1999 Jun 1;

26. Hayashi T, Su TP: Intracellular dynamics of sigma-1 receptors (sigma(1) binding sites) in NG108-15 cells. The Journal of pharmacology and experimental therapeutics 2003, 306(2):726-33.

27. Cherubini A, Hofmann G, Pillozzi S, Guasti L, Crociani O, Cilia E, et al: Human ether-a-go-go-related gene I channels are physiologically linked to betal integrins and modulate adhesion-dependent signaling. Mol Biol Cell 2005, 16(6):2972-83.

28. Wilkie RA, Mehta RP, Lupardus PJ, Chen Y, Ruoho AE, Jackson MB: Sigma receptor photolabeling and sigma receptor-mediated modulation of potassium channels in tumor cells. J Biol Chem 274(26):18387-92. 1999 Jun 25;

29. Lee H, Park DS, Wang XB, Scherer PE, Schwartz PE, Lisanti MP: Src-induced phosphorylation of caveolin-2 on tyrosine 19. Phospho-caveolin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. J Biol Chem 277(37):34556-67. 2002 Sep 13;

30. Aydar E, Su TP: Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. The Journal of pharmacology and experimental therapeutics 2003, 306(2):718-25.