MYKOLA NESTERENKO

COMPLEX ANALYTICAL MODELS FOR EVALUATING THE EFFICIENCY OF TRANSPORT NETWORKS IP / MPLS

In this paper conducted evaluating of the effectiveness of networking IP / MPLS, used as a base when deploying modern transport networks. The main requirements that apply to the technology backbone components are: high capacity, a slight delay value message and its scalability. The introduction of modern network technologies such as MPLS requires a sufficiently large logistical cost for its deployment and a prior assessment of the magnitude of the effect, depending on the area of its application. IP-networks only usage does not allow: to provide a flexible, rational distribution of information flows; performance of standardized values of service quality parameters for multimedia traffic; implement a fast and adaptive change of information transmission routes in the event of overloads in the network. In order to substantiate the choice of the proposed technology, the task of creating adequate models that allow quantifying the value of the gain over time in the processing of messages, depending on the size of the network and taking into account the peculiarities of the work of active network equipment with MPLS-switching and IP-routing. To evaluate the quality of message service in packet networks, the simulation model, boolean algebra and bit models were used. As a result, an analysis of the order and speed of packet service on the IP/MPLS networks was performed based on the simulation model of the corporate network segment. Also integrated analytical models were developed which take into account the peculiarities of network protocols and the operation of the active network equipment. The resulting integrated analytical models can be used to evaluate the effectiveness of IP/MPLS technologies depending on the dimension and network topology.

Keywords: MPLS, routing protocols, signaling protocol, emulation of network active elements, forwarding table, bit models.

Микола Миколайович Нестеренко, кандидат технічних наук, доцент, доцент кафедри комп’ютерних інформаційних технологій, Військовий інститут телекомунікацій та інформатизації, Київ, Україна.
E-mail: nesterenko_nik@ukr.net.

Николай Николаевич Нестеренко, кандидат технических наук, доцент, доцент кафедры компьютерных информационных технологий, Военный институт телекоммуникаций и информатизации, Киев, Украина.

Mykola Nesterenko, candidate of technical sciences, assistant professor, assistant professor at the computer information technology academic department, Military institute of telecommunications and informatization, Kyiv, Ukraine.

UDC 623.61:621.391

YEVHEN RYZHOV,
LEV SAKOVYCH

MINIMIZATION MEASUREMENT REQUIREMENTS FOR MAINTENANCE AND REPAIR SPECIAL COMMUNICATION MEANS

In the article describes the approach of determining the minimum required value of probability of a correct assessment of the measurement results for conventional algorithm arbitrary shape. Notice that the sequence and order of measurement parameters during metrological or maintenance service

© Y. Ryzhov, L. Sakovych, 2017
of special communication means depends on the results of previous inspections and represented as a conventional algorithms. Conventional algorithms is used distinguished by type (binary, homogeneous, group) and forms (perfect, minimal, arbitrary, maximum). The flowchart algorithm for calculating the minimum required value of correct assessment probability of checking result while assessing technical state of the object on the conventional algorithm perfect shape is developed. The analytical value for assessing mathematical expectation of deviation from the true value of technical state is determined in the metrological or maintenance of special communication mean, that differ from the known high accuracy. The example of the application of the obtained results in the conventional algorithm determining the technical state of control subsystem operation of high power transmitter is shown. The obtained results in the article should be used in methodologies of justification metrological characteristics of measuring instruments during the metrological examination at stages the design and development of new special communication means, as well as for metrology and maintenance service.

Keywords: special communication means, metrological service, maintenance, metrological characteristics, measuring instruments.

Introduction. The technical object can be in different states during functioning, evaluated by quantitative parameters: serviceable and faulty conditions, functional and inoperable, critical and the limit states [1]. Evaluation of technical state of special communication means (SCM) is carried out using measuring instruments (MI) while checking their performance, metrological service (MS) and maintenance.

The sequence and procedures of measurement parameters during MS, maintenance SCM is depends on the results of previous inspections and represented as conventional algorithms (CA). In dismissing the values of the measured parameters from the norm searches for defects using regular MI of the program which implement CA of diagnosis. The cost of MI depends on their metrological characteristics. For example, changing the accuracy class (Ac) universal voltmeters from 0,02 to 0,002 increases their value in 7,5 times [2], [3].

In justifying the required value of Ac using probabilistic indicators of MI – the probability of correctly determining the technical condition SCM (P), mathematical expectation of average (ρ) and maximum (ρ_m) variations in its finding, the probability of a correct assessment of the value measurement parameter (p), which used during the MS, maintenance MI varies from 0,645 to 0,9997 [2], [3].

Analysis of recent research and publications. The choice of MI deals with a large number of works, for example [2] - [6]. However, they don’t take into account the specifics of operation and MS of SCM, which turn leads to the impossibility of determining the true performance of SCM and increasing the cost of MS of SCM.

The purpose of the article is to determine the minimum required value p for the assessment of given accuracy the technical state of SCM during their MS and maintenance while defects searching by CA different types and forms.

The main material. Conventional algorithms, that are used distinguished by type (binary, homogeneous, group) and forms (perfect $F=1$, minimal $F=2$, arbitrary $F=3$, maximum $F=4$). Type of CA determined by the number of possible results of fulfillment check – the choice of module (m) and the number of measured parameters at the same time (μ). Group algorithms used in case of using multi-MI: for example, two- or four- channel oscilloscopes. When $m = 2$ (normal or normal) CA is called binary, when $m > 2$ (below normal, normal, more than norm or absence of signal less than normal, normal, more than norm, etc.) - homogeneous. Homogeneous CA easily are realized at $m = 3$ when the nominal value of the parameter allocated to the sector on the scale MI. As higher the value m, as lower the average number of checks K on the CA to determine the elements that failure in SCM, from a set of possible states L, including serviceable condition [4].

The most researched binary algorithms of perfect shape [4], is quite simple and easy to use. In known methodologies of justification value Ac MI [2], [3] to calculate the mathematical expectation of
average \((\rho)\) and maximum \((\rho_M)\) deviations in determining technical state of SCM assuming one mistake executor in assessing value of the parameter being checked for CA any form of functional dependences given in the tabl. 1, which overestimate the required value \(p\) and as a consequence, the cost selected MI.

Table 1 – Quantitative evaluation of deviation of determining the technical state of the object on the conventional algorithm perfect shape \((F=1)\)

Type of algorithm	Average value deviation, \(\rho\)	Maximum value deviation, \(\rho_M\)	\(K\)	\(L\)	\(P\)
Binary \(m=2\)	\(0,5(L+K-1)(1-p)p^{K-1}\)	\((L-1)(1-p)p^{K-1}\)	\(\log_2 L\)	\(2^K\)	\(P^K\)
Homogeneous \(2 \leq m = \text{const}\)	\(\frac{m-1}{m} \left(\frac{K+L-1}{m-1} \right)(1-p)p^{K-1}\)	\(\left(\frac{K+L-1}{m-1} \right)(1-p)p^{K-1}\)	\(\log_m L\)	\(m^K\)	\(P^K\)
Group \(m=\mu+1\)	\(\frac{\mu}{\mu+1} \left(\frac{K+L-1}{\mu} \right)(1-p)p^{\mu K-1}\)	\(\left(\frac{K+L-1}{\mu} \right)(1-p)p^{\mu K-1}\)	\(\log_{\mu+1} L\)	\((\mu+1)^K\)	\(P^{\mu K}\)

Define the domain of existing solutions for calculating the minimum value \(p\) in the evaluation technical state of object by CA perfect form observance of the requirements of opportunity to realize current maintenance SCM by aggregation method, even when an erroneous diagnosis in setting faulty element is in the unit that was replaced (block or modules) [2] - [6]:

1. \(\rho \leq 0,5\);
 \[
m \geq 2: (1-p)p^{K-1} \leq \frac{m-1}{K(m-1)+L-1};
 \]
 \[
m = \mu + 1: (1-p)p^{\mu K-1} \leq \frac{\mu}{K\mu + L-1}.
 \]

2. \(\rho_M \leq 1,0\);
 \[
m \geq 2: (1-p)p^{K-1} \leq \frac{m-1}{L-1};
 \]
 \[
m = \mu + 1: (1-p)p^{\mu K-1} \leq \frac{\mu}{L-1}.
 \]

So, if the condition \(\rho \leq 0,5\) is performed, than condition \(\rho_M \leq 1\) can not check, because it realized with greater value \(p\), than in the first case.

3. Performance evaluation of technical state of object by the permissible time \(T_{perm}\). Estimated time of determining the technical state [4]

 \[
 T = \frac{Kt + t_{trs}}{P} = \frac{Kt + t_{trs}}{p^K},
 \]

where \(t\) – the average runtime checks,

\(t_y\) – the average time of troubleshooting:

 \[
 T \leq T_{perm}: p \geq \left(\frac{Kt + t_{trs}}{T_{perm}} \right)^{\frac{1}{K}}.
 \]

While summarizing obtained results was developed flowchart algorithms of calculating the minimum required value \(p\) in assessing the technical state of the object by CA perfect form (see fig. 1), where \(\Delta p\) – step change in value \(p\).
Figure 1 – The flowchart algorithms of calculating minimum required value of probability of a correct assessment of the result of the checks for \(F=1 \)

Conducted combinatorial analysis of direct calculation values \(\rho \) for CA arbitrary shape \((F=3)\) allowed to obtain analytical expressions:

\[
\rho(m = 2) = 1 - \frac{p}{2} \sum_{i=K_{\text{min}}}^{K_{\text{max}}} \frac{I_i(2^i + i - 1)p^i}{2^i};
\]

\[
\rho(m \geq 2) = \frac{0.5(1 - p)}{p(m-1)} \sum_{i=K_{\text{min}}}^{K_{\text{max}}} \frac{I_i(m^i + i(m - 1) - 1)p^i}{m^i};
\]
\[\rho(m = \mu + 1) = \frac{1 - p}{2p} \sum_{i=K_{\min}}^{K_{\max}} l_i \left[(\mu + 1)^i + i\mu - 1 \right] p^\mu. \]

From this we obtain the calculation expressions for the estimate \(\rho \) for CA minimal shape (\(F = 2 \)), when \(K_{\max} - K_{\min} = 1 \) and \(K_{\min} \leq K \leq K_{\max} : \)
\[\rho(m = 2) = \frac{(1 - p)p^{K-1}}{2} \left[\left(1 + \frac{K_{\min}}{2} \right) \left(1 + \frac{K_{\max}}{2} \right) (L-1)p \right], \]
where \(l \) – number of states of the object after following \(K_{\min} \) inspections.

For homogeneous CA similarly obtain:
\[\rho(\mu \geq 1) = \left\{ (1 - p)p^{K-1} \left[(\mu + 1)^K + K \mu - 1 \right] + \right. \]
\[\left. + (L-1)(\mu + 1)^K + K \mu - 1 \right\} / 2\mu(\mu + 1)^K. \]

From known expression [2] after the substitution \(l_i = m - 1 \) we obtain calculation formulas for assessing value \(\rho \) for the CA maximum shape (\(F = 4 \)):
\[\rho(m = 2) = \frac{1 - p}{2p} \left[(1 - p^{L-1})p + \sum_{i=1}^{L-1} (\mu - 1) p^i \right]. \]

At \(p \to 1 \): \(\rho(m = 2) \approx \frac{1 - p}{2p} \left[1 - p^{L-1} + \frac{2^{L-1} - L}{2^{L-1}} \right]. \)

\[\rho(m \geq 2) = \frac{1 - p}{2p} \left[p(1 + p^{L-1/m-1}) + \sum_{i=1}^{L-1/m} \frac{1}{m^i} \frac{m-1}{1} p^i \right]; \]

\[\rho(\mu \geq 1) = \frac{1 - p}{2p} \left[p(1 + p^{L-1/m}) + \sum_{i=1}^{L-1/m} \frac{1}{m^i} \frac{1}{\mu-1} p^i \right]. \]

Consider the order of application of the obtained results of on a particular example – CA determines the technical state control subsystem functioning of high power radio transmitter (see fig. 2) [2]. At \(p = 0.995 \) by known expressions obtained \(\rho = 0.188 \) and \(\rho_M = 0.271 \). According to expression (1) the mathematical expectation deviation assessing the state of object at presence no more than one error in determining value of the parameter is:
\[\rho = 0.5(1 - p)p(2.5 + 1.9p^2 + 1.25p^3 + 5.39p^4 + 5.23p^5 + 2.05p^6) \]

Initial data fig. 2: \(F = 3; \ L = 25; \ K_{\min} = 2; \ K = 5.44; \ K_{\max} = 8; \ l_2 = 2; \ l_4 = 1; \ l_5 = 10; \ l_6 = 5; \ l_7 = 5; \ l_8 = 2. \)

Figure 2 – The conditional algorithm for determining the technical state control subsystem functioning of radio transmitter

Figure 3 – Dependence \(\rho(p) \) for conditional algorithm fig. 2

110
From the obtained dependence $\rho(p)$, shown in fig. 3, it follows that fulfill the condition $\rho \leq 0.5$, is enough to use MI with the values $p \geq 0.953$. Furthermore, at $p \geq 0.995$ the real value $\rho = 0.07$, that on 68% less obtained by known calculation formulas, that overstate the requirement and costs of used MI at the MS and maintenance SCM.

Checking condition

$$T \leq T_{perm} \text{ at } t = 3.5 \text{ min}, \ t_{trs} = 5 \text{ min}, \ T_{perm} = 30 \text{ min}$$

confirms the correct choice as a MI the voltmeter V7-38 with $p = 0.999$, in this case:

$$T = \frac{5.44 \cdot 3.5 + 5}{0.999^{5.44}} = 25 \text{ min} < T_{perm} = 30 \text{ min}.$$

The use of embedded voltmeter ($p = 0.96$) provides the necessary time of assessing of technical condition:

$$T = \frac{5.44 \cdot 3.5 + 5}{0.96^{5.44}} = 30 \text{ min} = T_{perm}.$$

Conclusions. 1. New calculated expressions that was obtained for quantitative assessment the mathematical expectation of deviation is defined at MS or maintenance technical state of SCM its true value, which differ from the known increased accuracy of results.

2. The obtained results should be used in methodics of justification metrological characteristics of MI during the metrological examination at the design and development stages of new SCM, as well as for MS and maintenance of existing SCM.

3. Reliability of the results confirmed by using the approved mathematical apparatus, justified problem setting and consolidation the results to known in some cases: reverse replacement $\mu = m + 1, \ |K| = |K| = K, \ l_i = L, \ m = 2$ when changing the shape of the CA from F4 to F1 will lead to receiving initial expressions [2], the adequacy of which is confirmed by direct calculation.

A further task of the research is to develop methodic justification of metrological characteristics based on the obtained mathematical dependence of MI for conducting MS or maintenance SCM.

REFERENCE

[1]. State Standard of Ukraine 2860-94 “Reliability engineering. Terms and Definitions”. Introduced from 1996.01.01, 90 p., 1996.

[2]. M.Y. Yakovlev and Y.V. Ryzhov “Approach to selection of military measurement means for metrological maintenance of military communication means”, Military-technical collection of the Army Academy, № 1(10), pp. 119–127, 2014.

[3]. L. Sakovych, V. Ryzhakov and V. Pavlov “Choice of measuring instruments for maintenance and current repair of information security systems equipment”, Law, normative and metrological systems of protection of information security in Ukraine, № 7, pp. 77–85, 2003.

[4]. S.P. Ksyonz, Diagnostics and maintainability of radio-electronic means. – M.: Radio and communication, 248 p., 1989.

[5]. M. Asprou. “The effect of instrument transformer accuracy class on the WLS state estimator accuracy” M. Asprou, E. Kyriakides, M. Albu, in Proc. IEEE Power and Energy Society General Meeting (PES), 25 November 2013, – pp. 1–5. doi: 10.1109/PESMG.2013.6672666.

[6]. H. Czichos. “Handbook of Technical Diagnostics: Fundamentals and Application to Structures and Systems”. Springer, 566 p., 2013. doi: 10.1007/978-3-642-25850-3; http://www.springer.com/gb/book/9783642258497.

The article was received 01.03.2017
СПИСОК ВИКОРИСТАННОЇ ЛІТЕРАТУРИ

[1]. ДСТУ 2860-94 Надійність техніки. Терміни та визначення. Чинний від 1996.01.01. – К.: Державний стандарт України, 90 с., 1996.

[2]. М.Ю. Яковлев та Є.В. Рижов “Підхід до вибору засобів вимірювальної техніки військового призначення для метрологічного обслуговування військової техніки зв’язку”, Військово-технічних збірник Академії сухопутних військ, № 1(10), с. 119–127, 2014.

[3]. Л. Сакович, В. Рьжаков та В. Павлов “Вибір средств измерений для технического обслуживания и текущего ремонта оборудования систем защиты информации”, Правове, нормативне та метрологічне забезпечення систем захисту інформації в Україні, Вип. №7, с. 77–85, 2003.

[4]. С.П. Ксёнз, Диагностика и ремонтопригодность радиоэлектронных средств. – М.: Радио и связь, 248 с., 1989.

[5]. M. Asprou. “The effect of instrument transformer accuracy class on the WLS state estimator accuracy” M. Asprou, E. Kyriakides, M. Albu, in Proc. IEEE Power and Energy Society General Meeting (PES), 25 November 2013, – pp. 1–5. doi: 10.1109/PESMG.2013.6672666.

[6]. Н. Czichos. “Handbook of Technical Diagnostics: Fundamentals and Application to Structures and Systems”. Springer, 566 p., 2013. doi: 10.1007/978-3-642-25850-3; http://www.springer.com/gb/book/9783642258497.

ЄВГЕН РИЖОВ,
ЛЕВ САКОВИЧ

МИНІМІЗАЦІЯ ВИМОГ ДО ЗАСОБІВ ВИМІРЮВАНЬ ДЛЯ ОБСЛУГОВУВАННЯ ТА РЕМОНТУ ТЕХНІКИ СПЕЦІАЛЬНОГО ЗВ’ЯЗУ

У статті розроблено підхід щодо визначення мінімально необхідного значення імовірності правильній оцінки результату виконання вимірювань за умовним алгоритмом довільної форми. Контроль параметрів техніки зв’язку та вибір потрібних засобів вимірювальної техніки відбувається під час метрологічного обслуговування, коли встановлюється її технічний стан. Встановлено, що послідовність і порядок проведення вимірювань параметрів при метрологічному або технічному обслуговуванні засобів спеціального зв’язку залежить від результатів виконання попередніх перевірок і представляється у вигляді умовних алгоритмів. Умовні алгоритми, що застосовуються, розрізняють за видами (бінарні, однорідні, групові) і формами (досконала, мінімальна, довільна, максимальна). Новизною розробленого підходу є використання методів технічної діагностики при метрологічному обслуговуванні техніки зв’язку. Зв’язок метрології та технічної діагностики полягає в тому, що ймовірність правильності оцінки результату виконання вимірювань впливає на значення середнього часу визначення технічного стану техніки зв’язку. Розроблена блок-схема алгоритму обчислення мінімально необхідного значення імовірності правильній оцінки результату виконання перевірки при оцінці технічного стану об’єкта за умовним алгоритмом досконалої форми. Отримані аналітичні співвідношення для оцінки математичного сподівання відхилення від істинного значення технічного стану визначеного при метрологічному або технічному обслуговуванні засобів спеціального зв’язку, які відрізняються від відомих підвищеною точністю. Наведено приклад застосування отриманих результатів за умовним алгоритмом визначення технічного стану підсистем управління функціонуванням радіопередавача великої потужності. Отримані результати доцільно використовувати для обґрунтування завдання метрологічних характеристик засобів вимірювальної техніки під час проведення метрологічної експертизи на етапах проектування, розроблення новітніх засобів спеціального зв’язку, а також їх метрологічного і технічного обслуговування.

Ключові слова: засоби спеціального зв’язку, метрологічне обслуговування, технічне обслуговування, метрологічні характеристики, засоби вимірювальної техніки.
ЕВГЕНИЙ РЫЖОВ,
ЛЕВ САКОВИЧ

МИНИМИЗАЦИЯ ТРЕБОВАНИЙ К СРЕДСТВАМ ИЗМЕРЕНИЙ ДЛЯ ОБСЛУЖИВАНИЯ И РЕМОНТА ТЕХНИКИ СПЕЦИАЛЬНОЙ СВЯЗИ

В статье разработан подход к определению минимально необходимого значения вероятности правильной оценки результата выполнения измерений по условному алгоритму произвольной формы. Контроль параметров техники связи и выбор нужных средств измерительной техники происходит во время метрологического обслуживания, когда устанавливается ее техническое состояние. Установлено, что последовательность и порядок проведения измерений параметров при метрологическом или техническом обслуживании по состоянию средств специальной связи зависит от результатов выполнения предыдущих проверок и представляется в виде условных алгоритмов. Условные алгоритмы, которые применяются, различают по видам (бинарные, однородные, групповые) и формам (совершенная, минимальная, произвольная, максимальная). Новизной разработанного подхода является использование методов технической диагностики при метрологическом обслуживании техники связи. Связь метрологии и технической диагностики заключается в том, что вероятность правильной оценки результата выполнения измерений влияет на значение среднего времени определения технического состояния техники связи. Разработана блок-схема алгоритма вычисления минимально необходимого значения вероятности правильной оценки результата выполнения проверки при оценке технического состояния объекта по условному алгоритму совершенной формы. Получены аналитические соотношения для оценки математического ожидания отклонения от истинного значения технического состояния определенного при метрологическом или техническом обслуживании средств специальной связи, которые отличаются от известных повышенной точностью. Приведен пример применения полученных результатов на условном алгоритме совершенной формы. Полученные в статье результаты целесообразно использовать в методиках обоснования задания метрологических характеристик средств измерительной техники во время проведения метрологической экспертизы на этапах проектирования, разработки новых средств специальной связи, а также для их метрологического и технического обслуживания.

Ключевые слова: средства специальной связи, метрологическое обслуживание, техническое обслуживание, метрологические характеристики, средства измерительной техники.

Yevhen Ryzhov, candidate of technical sciences, senior researcher of research center of the land forces, National army academy named after Hetman Sahaidachny, Lviv, Ukraine.
E-mail: zheka1203@ukr.net.

Lev Sakovych, candidate of technical sciences, professor at the theoretically bases of operation of special means information-telecommunications systems academic department, Institute of special communication and information protection of National technical university of Ukraine “Igor Sikorsky Kyiv polytechnic institute”, Kiev, Ukraine.
E-mail: lev@sakovich.com.ua.

Євген Вікторович Рижов, кандидат технічних наук, старший науковий співробітник Наукового центру Сухопутних військ, Національна академія сухопутних військ імені гетьмана Петра Сагайдачного, Львів, Україна.

Лев Миколайович Сакович, кандидат технічних наук, доцент, професор кафедри теоретичних основ експлуатації засобів спеціальних інформаційно-телекомунікаційних систем, Інститут спеціального зв’язку та захисту інформації Національного технічного університету України “Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна.
Евгений Викторович Рыжов, кандидат технических наук, старший научный сотрудник Научного центра Сухопутных войск, Национальная академия сухопутных войск имени гетмана Петра Сагайдачного, Львов, Украина.

Лев Николаевич Сакович, кандидат технических наук, доцент, профессор кафедры теоретических основ эксплуатации средств специальных информационно-телекоммуникационных систем, Институт специальной связи и защиты информации Национального технического университета Украины “Киевский политехнический институт имени Игоря Сикорского”, Киев, Украина.

УДК 621.396::519.873

ВЛАДИСЛАВ ГОЛЬ, СЕРГІЙ ГНАТЮК, ВАДИМ РОМАНЕНКО, ІГОР ГИРЕНКО

ПЕРСПЕКТИВНИ НАПРАЯМИ НАУКОВИХ ДОСЛІДЖЕНЬ У ГАЛУЗІ ТЕХНІЧНОЇ ЕКСПЛУАТАЦІЇ СИСТЕМ І ЗАСОБІВ СПЕЦІАЛЬНОГО ЗВ’ЯЗКУ

Проведений всебічний аналіз стану та тенденцій розвитку різноманітних систем спеціального зв’язку. Зокрема проаналізовані зміст Стратегії національної безпеки України поміж “актуальних загроз національній безпеці” в частині вразливості державних інформаційних ресурсів до кібератак, виділені загрози критичній інфраструктурі. Встановлено закономірності використання засобів спеціального зв’язку, а також протиріччя їх сумісного застосування.

Визначено актуальні напрями наукових досліджень для усунення встановлених антагонізмів з метою підвищення ефективності використання під час технічної експлуатації систем і засобів спеціального зв’язку за приоритетностями. Крім того виявлено відсутність загального підходу щодо визначення комплексної оцінки якості функціонування систем спеціального зв’язку як в цілому, так і окремих засобів спеціального зв’язку, а також комплексного порівняння їх з відомими аналогами іноземного виробництва; відсутність моделей та методик у якому вигляді за допомогою яких можна відповідно відлікувати ізольовані технічні та економічні показники систем, об’єктів та процесів у державній системі урядового зв’язку із заданою точністю, провести вимірювання абсолютнох значень параметрів і порівняти їх з відповідними показниками інших об’єктів з виявленням відносних показників. Приведено визначення метрологічного забезпечення та показана її важливість для бойової готовності військової техніки зв’язку та засобів спеціального зв’язку, а також комплексного порівняння їх з відомими аналогами іноземного виробництва; відсутність моделей та методик у якому вигляді за допомогою яких можна відповідно відлікувати ізольовані технічні та економічні показники систем, об’єктів та процесів у державній системі урядового зв’язку із заданою точністю, провести вимірювання абсолютнох значень параметрів і порівняти їх з відповідними показниками інших об’єктів з виявленням відносних показників. Приведено визначення метрологічного забезпечення та показана її важливість для бойової готовності військової техніки зв’язку та засобів спеціального зв’язку, а також сформульовані проблемні питання щодо сучасного метрологічного забезпечення їх перспективних розрахів. Також в статті визначено недостатність досліджень в теорії аналізу надійності систем з розкриттям структурою та розробок модульних апаратних технічного забезпечення і засобів вимірювальної техніки для обслуговування і ремонту програмно-керованих засобів зв’язку. Обґрунтовані специалізація і кількість робочих місць польових ремонтних органів. Це досягається на основі вирішення переліку специалізованих завдань.

Ключові слова: засіб спеціального зв’язку, система спеціального зв’язку, ефективність систем спеціального зв’язку, діагностичне забезпечення, метрологічне забезпечення.

Постановка проблеми. Аналіз сучасних вимог до систем і засобів спеціального зв’язку дозволяє встановити тенденції їх подальшого розвитку: повний перехід від аналогових до цифрових систем і засобів зв’язку, впровадження програмно-керованих засобів зв’язку, масове використання волоконно-оптичних ліній зв’язку, подальше удосконалення діагностичного і метрологічного забезпечення.

© В. Голь, С. Гнатюк, В. Романенко, І. Гиренко, 2017