Phragmén–Lindelöf principles for generalized analytic functions on unbounded domains

Isabelle Chalendar
Université de Lyon; CNRS; Université Lyon 1; INSA de Lyon; Ecole Centrale de Lyon
CNRS, UMR 5208, Institut Camille Jordan
43 bld. du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
E-mail: chalendar@math.univ-lyon1.fr

Jonathan R. Partington
School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.
E-mail: J.R.Partington@leeds.ac.uk

March 19, 2015

Abstract

We prove versions of the Phragmén–Lindelöf strong maximum principle for generalized analytic functions defined on unbounded domains. A version of Hadamard’s three-lines theorem is also derived.

Keywords: Phragmén–Lindelöf principle, generalized analytic function, pseudoanalytic function, three-lines theorem
MSC: 30G20, 30C80

1 Introduction

Versions of the maximum principle for complex-valued functions defined on a domain in \mathbb{C} have been of interest since the development of the classical maximum modulus theorem and Phragmén–Lindelöf principle for holomorphic functions (see, e.g. [10] Chap. V). It is important to distinguish between two types of result here. First, there is the weak maximum principle
asserting that under certain circumstances a nonconstant function \(f : \Omega \to \mathbb{C} \) cannot attain a local maximum in its domain \(\Omega \): thus if \(\Omega \) is bounded and \(f \) is continuous on \(\overline{\Omega} \) we have
\[
\sup_{z \in \Omega} |f(z)| = \sup_{z \in \partial \Omega} |f(z)|.
\]

Second – and this will be our main concern in this paper – there is the strong maximum principle or Phragmén–Lindelöf principle. This generally applies to unbounded domains, and generally a supplementary hypothesis on \(f \) is required for the conclusion (1) to hold. For example, if \(f : \Omega \to \mathbb{C} \) is analytic, where \(\Omega = \mathbb{C}_+ \), the right-hand half-plane \(\{ z \in \mathbb{C} : \text{Re} z > 0 \} \), then if \(f \) is known to be bounded we may conclude that (1) holds, whereas the example \(f(z) = \exp(z) \) shows that it does not hold in general.

We shall use the following standard notation:
\[
\partial f = \frac{\partial f}{\partial z} = \frac{1}{2}(f_x - i f_y) \quad \text{and} \quad \overline{\partial f} = \frac{\partial f}{\partial \overline{z}} = \frac{1}{2}(f_x + i f_y).
\]

For quasi-conformal mappings \(f \), that is, those satisfying the Beltrami equation \(\overline{\partial f} = \nu \partial f \) with \(|\nu| \leq \kappa < 1 \), the weak maximum principle holds (see, for example [4]). This fact was used in [1, Prop. 4.3.1] to deduce a weak maximum principle for functions solving the conjugate Beltrami equation
\[
\overline{\partial f} = \nu \overline{\partial f}.
\]
(2)

Their argument is based on the fact that if \(f \) is a solution to (2), then it also satisfies a classical Beltrami equation \(\overline{\partial f} = \nu f \partial f \), where \(\nu f(z) = \nu(z) \overline{\partial f(z)/\partial f(z)} \), and hence \(f = G \circ h \) where \(G \) is holomorphic and \(h \) is a quasi-conformal mapping (cf. [12 Thm. 11.1.2]).

Carl [3] considered functions \(w \) satisfying equations of the form
\[
\overline{\partial w}(z) + A(z)w(z) + B(z)\overline{w(z)} = 0
\]
(3)
and deduced a weak maximum principle for such functions, analogous to (1), under certain hypotheses on the functions \(A \) and \(B \). We shall take this as our starting point.

For general background on generalized analytic functions (pseudo-analytic functions) we refer to the books [2, 9, 11]. The following definitions are taken from the recent paper [11].
Definition 1.1. Let $1 \leq p < \infty$. For $\nu \in W^{1,\infty}(\mathbb{D})$ (i.e., a Lipschitz function with bounded partial derivatives), the class H^p_{ν} consists of all measurable functions $f : \mathbb{D} \to \mathbb{C}$ satisfying the conjugate Beltrami equation (2) in a distributional sense, such that the norm

$$
\|f\|_{H^p_{\nu}} = \left(\text{ess sup}_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p \, dt \right)^{1/p}
$$

is finite. Clearly for $\nu = 0$ we obtain the classical Hardy space $H^p(\mathbb{D})$. If instead ν is defined on an arbitrary subdomain $\Omega \subset \mathbb{C}$, we may define the class $H^\infty_{\nu}(\Omega)$ as the space of all bounded measurable functions satisfying (2), equipped with the supremum norm.

We may analogously define spaces $G^p_\alpha(\mathbb{D})$, where $\alpha \in L^\infty(\mathbb{D})$, and in general $G^\infty_\alpha(\Omega)$, where now, for a function w we replace (2) by

$$
\overline{\partial}w = \alpha w.
$$

(4)

Once again, the case $\alpha = 0$ is classical.

When ν is real (the most commonly-encountered situation), there is a link between the two notions: suppose that $\|\nu\|_{L^\infty(\Omega)}$ with $\|\nu\|_{\infty} \leq \kappa < 1$, and set $\sigma = \frac{1 - \nu}{1 + \nu}$ and $\alpha = \frac{\sigma}{2\sigma}$, so that $\sigma \in W^{1,\infty}_R(\Omega)$. Then $f \in L^p(\mathbb{D})$ satisfies (2) if and only if $w := \frac{f - \nu \overline{f}}{\sqrt{1 - \nu^2}}$ satisfies (4).

We shall mainly be considering the class G^∞_α, for which it is possible to prove a strong maximum principle and a generalization of the Hadamard three-lines theorem under mild hypotheses on α, which are satisfied in standard examples. The referee has suggested that there may be a link between these assumptions and the strict ellipticity of σ, although we have not been able to show this.

2 Functions defined on unbounded domains

The following result is an immediate consequence of [3, Thm. 1], taking $A = 0$ and $B(z) = -\alpha(z)$ in (3) in order to obtain (4).
Proposition 2.1. Suppose that Ω is a bounded domain in \mathbb{C} and that w is a continuous function on $\overline{\Omega}$ such that (4) holds in Ω, where α satisfies $2|\alpha|^2 \geq |\partial \alpha|$. Then $|w(z)| \leq \sup_{\zeta \in \partial \Omega} |w(\zeta)|$ for all $z \in \Omega$.

Proof. Taking $k = 2$ in [3, Thm. 1], we require that the matrix $M = (m_{ij})_{i,j=1}^2$ be negative semi-definite, where, with $a = -2|\alpha|^2$ and $b = -\partial \alpha$, we have

$$M = \begin{pmatrix} a + \text{Re} b & \text{Im} b \\ \text{Im} b & -b - \text{Re} a \end{pmatrix}.$$

On calculating m_{11}, m_{22} (which must be non-positive) and $\text{det} M$ (which must be non-negative) we obtain the sufficient conditions $-2|\alpha|^2 \pm \text{Re} \partial \alpha \leq 0$ and $2|\alpha|^2 \geq |\partial \alpha|$: clearly the second condition implies the first.

Example 2.1. In the example $\sigma = 1/x$, occurring in the study of the tokamak reactor [5, 6], we have $\alpha(x) = -\frac{1}{4x}$ and $\partial \alpha = \frac{1}{8x^2}$; thus the inequality $2|\alpha|^2 \geq |\partial \alpha|$ is always an equality.

Note that by rescaling z we may transform the equation (4) to one with $\alpha = -\frac{1}{\lambda} x$ for any $\lambda > 0$ (with the domain also changing); then the inequality requires that $2/\lambda^2 \geq 1/2\lambda$, so that if we take $0 < \lambda < 4$ the inequality is strict.

Now for $\varepsilon > 0$ we write $h_\varepsilon(z) = 1/(1 + \varepsilon z)$, and note that whenever $\Omega \subset \mathbb{C}_+$ is a domain, we have that the functions h_ε satisfy

(i) For all $\varepsilon > 0$, $h_\varepsilon \in \text{Hol}(\Omega) \cap C(\overline{\Omega})$.

(ii) For all $\varepsilon > 0$, $\lim_{|z| \to \infty, z \in \Omega} h_\varepsilon(z) = 0$.

(iii) For all $z \in \Omega$, $\lim_{\varepsilon \to 0} |h_\varepsilon(z)| = 1$.

(iv) For all $\varepsilon > 0$, for all $z \in \partial \Omega$, $|h_\varepsilon(z)| \leq 1$.

Suppose that $\overline{\partial} w = \alpha \overline{w}$ and that h is holomorphic; then $\overline{\partial}(hw) = \beta \overline{hw}$, where $\beta = \alpha h/\overline{h}$. Moreover,

$$\partial \beta = \partial(\alpha h)/\overline{h} = (\partial \alpha)(h/\overline{h}) + \alpha(\partial h)/\overline{h}.$$

That is, with $h = h_\varepsilon$, we have $|\beta| = |\alpha|$ and $|\partial \beta| \leq |\partial \alpha| + |\alpha||\partial h_\varepsilon|/|h_\varepsilon|$.

Theorem 2.1. Suppose that $\Omega \subset \mathbb{C}_+$ (not necessarily bounded) and that w is a continuous bounded function on $\overline{\Omega}$ such that (4) holds in Ω where α is a C^1 function satisfying $2|\alpha|^2 \geq |\partial \alpha| + |\alpha||\partial h_\varepsilon|/|h_\varepsilon|$ for all $\varepsilon > 0$. Then $|w(z)| \leq \sup_{\zeta \in \partial \Omega} |w(\zeta)|$ for all $z \in \Omega$.
Proof. Fix $\varepsilon > 0$ and $M = \sup_{z \in \partial \Omega} |w(z)|$. Suppose that $M > 0$. Then by property (ii) there is an $\eta > 0$ such that for all $z \in \Omega$ with $|z| \geq \eta$ we have $|w(z)h_\varepsilon(z)| \leq M$.

Now, by property (i) and Proposition 2.1 we have

$$\sup_{z \in \Omega} |w(z)| = \sup_{z \in \partial \Omega} |w(z)h_\varepsilon(z)|,$$

at least if $2|\alpha|^2 \geq |\partial \alpha| + |\alpha|/|\partial h_\varepsilon|/|h_\varepsilon|$.

Now $\partial (\Omega \cap D(0, \eta)) \subset (\partial \Omega \cap \overline{D(0, \eta)}) \cup (\partial D(0, \eta) \cap \overline{\Omega})$.

By hypothesis, $|w(z)| \leq M$ if $z \in \partial \Omega$, and by property (i), $|h_\varepsilon(z)| \leq 1$ for $z \in \partial \Omega$. So $\sup_{z \in \partial (\Omega \cap D(0, \eta))} |w(z)h_\varepsilon(z)| \leq M$.

By the definition of η we also have $|w(z)h_\varepsilon(z)| \leq M$ if $|z| \geq \eta$ with $z \in \overline{\Omega}$, and in particular for $z \in \overline{\Omega} \cap \partial D(0, \eta)$.

We conclude that $\sup_{z \in \Omega \cap D(0, \eta)} |w(z)h_\varepsilon(z)| \leq M$. However, $|w(z)h_\varepsilon(z)| \leq M$ whenever $z \in \overline{\Omega}$ with $|z| \geq \eta$, and hence $\sup_{z \in \Omega} |w(z)h_\varepsilon(z)| \leq M$. Now, letting ε tend to 0, and using property (iii), we have the result in the case $M > 0$.

If $M = 0$, then by the above we have that $\sup_{z \in \partial \Omega} |w(z)| \leq \gamma$ for all $\gamma > 0$, and the same holds for $z \in \Omega$ by the above. Letting $\gamma \to 0$ we conclude that w is identically 0 on Ω.

Example 2.2. Consider the case $\alpha = -\frac{1}{\lambda x}$ and $\partial \alpha = \frac{1}{2\lambda x^2}$. For the hypotheses of the theorem to be valid we require

$$\frac{2}{\lambda x^2} \geq \frac{1}{2\lambda x^2} + \frac{1}{\lambda x} \frac{x}{|1 + \varepsilon z|}.$$

If $\lambda = 1$ (and by rescaling the domain we can assume this) then this always holds, since $|1 + \lambda z| \geq \lambda x$.

In the following theorem, it will be helpful to note that we shall be considering composite mappings as follows:

$$\Lambda \stackrel{h}{\to} \Omega \stackrel{w}{\to} C \quad \text{and} \quad \Lambda \stackrel{h}{\to} \Omega \stackrel{\alpha}{\to} C.$$
Theorem 2.2. Suppose that $\Omega \subset \mathbb{C}$ is simply-connected and that the disc $D(a,r)$ is contained in $\mathbb{C} \setminus \overline{\Omega}$. Let $h : \mathbb{C} \to \mathbb{C}$ be defined by $h(z) = rz + a$, and let Λ be a component of $h^{-1}(\Omega)$. Set $g_\varepsilon(z) = 1/(1 + \varepsilon g(z))$, where $g(z) = \log \left(\frac{z - a}{r} \right)$ is a single-valued inverse to h defined on Ω. Suppose that w is a continuous bounded function on Ω such that (4) holds in Ω with α a C^1 function satisfying
\[
2|\alpha|^2 \geq |\partial \alpha| + |\alpha||\partial g_\varepsilon|/|g_\varepsilon| \tag{5}
\]
for all $\varepsilon > 0$. Then $|w(z)| \leq \sup_{\zeta \in \partial \Omega} |w(\zeta)|$ for all $z \in \Omega$.

Proof. First we identify the equation satisfied by $v = w \circ h$, where h is holomorphic. Namely,
\[
\bar{\partial} v = \bar{\partial}(w \circ h) = \bar{\partial}(\overline{w \circ h}) = (\overline{\partial w \circ h})(\overline{\partial h}) = (\overline{\partial w \circ h})(\overline{\partial h}) = (\alpha \circ h)(\overline{\partial h}) = (\alpha \circ h)(\overline{\partial h}) = \beta \pi,
\]
where $\beta = (\alpha \circ h)(\overline{\partial h})$. Note that $\partial \beta = (\partial \alpha \circ h)|\partial h|^2$, since $\partial(\overline{\partial h}) = 0$.

The condition
\[
2|\beta|^2 \geq |\partial \beta| + |\beta||\partial h_\varepsilon|/|h_\varepsilon| \tag{6}
\]
at a point of Λ can be rewritten

\[
2|\alpha \circ h|^2|\partial h|^2 \geq |\partial \alpha \circ h||\partial h|^2 + |\alpha \circ h||\partial h||\partial h_\varepsilon|/|h_\varepsilon|.
\]

Now $g_\varepsilon = h_\varepsilon \circ g$; thus $\partial h_\varepsilon = (\partial g_\varepsilon \circ h)(\partial h)$.

That is, (6) is equivalent to

\[
2|\alpha \circ h|^2|\partial h|^2 \geq |\partial \alpha \circ h||\partial h|^2 + |\alpha \circ h||\partial h|^2|\partial g_\varepsilon \circ h|/|g_\varepsilon \circ h|,
\]
or
\[
2|\alpha \circ h|^2 \geq |\partial \alpha \circ h| + |\alpha \circ h||\partial g_\varepsilon \circ h|/|g_\varepsilon \circ h|.
\]

The set Λ is open, and thus $\partial \Lambda \cap \Lambda = \emptyset$ and also $h(\partial \Lambda) \cap \Omega = \emptyset$. Moreover, since $h(\partial \Lambda) \subset h(\overline{\Lambda}) \subset \overline{h(\Lambda)}$, we get $h(\partial \Lambda) \subset \overline{\Omega} \setminus \Omega = \partial \Omega$.

Since w is bounded on Ω, the function $v = w \circ h$ is bounded on Λ, and using the calculations above and Theorem 2.1 with condition (6), we see that
\[
\sup_{z \in \Lambda} |v(z)| = \sup_{z \in \partial \Lambda} |v(z)|.
\]
Since \(h(\Lambda) = \Omega \), \(\sup_{z \in \Lambda} |v(z)| = \sup_{z \in \Omega} |w(z)| \). Moreover, since \(h(\partial \Lambda) \subset \partial \Omega \), we have also
\[
\sup_{z \in \partial \Lambda} |v(z)| \leq \sup_{z \in \partial \Omega} |w(z)|.
\]
It follows that \(\sup_{z \in \Omega} |w(z)| \leq \sup_{z \in \partial \Omega} |w(z)| \) and we obtain equality.

We now provide a generalization of the three-lines theorem of Hadamard (see, for example [8, Thm. 9.4.8] for the classical formulation with \(\alpha = 0 \)).

Theorem 2.3. Suppose that \(a \) and \(b \) are real numbers with \(0 < a < b \), and let \(\Omega = \{ z \in \mathbb{C} : a < \Re z < b \} \). Suppose that \(w \) is a continuous bounded function on \(\Omega \) such that (4) holds in \(\Omega \) where \(\alpha \) is a \(C^1 \) function satisfying
\[
2|\alpha|^2 \geq |\partial \alpha| + |\alpha||\log(M(a)/M(b))|/b - a + |\alpha||\partial \alpha|/h_{\varepsilon}\]
for each \(\varepsilon > 0 \). Then the function \(M \) defined on \([a, b]\) by
\[
M(x) = \sup_{y \in \mathbb{R}} |w(x + iy)|
\]
satisfies, for all \(x \in (a, b) \),
\[
M(x)^{b-a} \leq M(a)^{b-a} M(b)^{b-a}.
\]
That is, \(\log M \) is convex on \((a, b)\).

Proof. Consider the function \(g \) defined on \(\Omega \) by
\[
h(z) = M(a)^{(z-b)/(b-a)} M(b)^{(a-z)/(b-a)},
\]
where quantities of the form \(M^\omega \) are defined for \(M > 0 \) and \(\omega \in \mathbb{C} \) as \(\exp(\omega \log M) \), taking the principal value of the logarithm.

Now \(v := hw \) satisfies \(|v(z)| \leq 1 \) for \(z \in \partial \Omega \), since \(|h(a + iy)| = 1/M(a) \) and \(|h(b + iy)| = 1/M(b) \).

Given that \(\overline{\partial w} = \alpha \overline{w} \) and that \(h \) is holomorphic, then, as we have seen,
\[
\overline{\alpha} \overline{w} = \beta \overline{w}, \quad \text{where} \quad \beta = \alpha \overline{h}/h.
\]
Moreover, \(\partial \beta = \partial(\alpha h)/h = (\partial \alpha)(h/\overline{h}) + \alpha(\partial h)/h \).

Now \(\log h = \frac{z-b}{b-a} \log M(a) + \frac{a-z}{b-a} \log M(b) \), and so
\[
\left| \frac{\partial h}{h} \right| = \left| \frac{\log M(a)/M(b)}{b-a} \right|.
\]
Thus the condition (7) on α implies that β satisfies $2|\beta|^2 \geq |\partial \beta| + |\beta||\partial h_\varepsilon|/|h_\varepsilon|$. Hence we can apply Theorem 2.1 to v, and the result follow.

\[\square \]

Remark 2.1. As in Example 2.2, rescaling z is helpful here, since if z is reparametrized as λz, then $\partial \alpha$ is divided by λ and $b-a$ is also divided by λ: thus the inequality (7) becomes easier to satisfy.

3 Weights depending on one variable

We look at two cases here, for functions defined on a subdomain of \mathbb{C}_+, namely weights $\alpha = \alpha(x)$ and radial weights $\alpha = \alpha(r)$. We revisit Theorem 2.1.

Since we now have $\partial \alpha = \alpha'/2$, we obtain the following corollary.

Corollary 3.1. Suppose that $\Omega \subset \mathbb{C}_+$ (not necessarily bounded) and that w is a continuous bounded function on $\overline{\Omega}$ such that (4) holds in Ω where $\alpha = \alpha(x)$ is a C^1 function satisfying $2|\alpha|^2 \geq |\alpha'|/2 + |\alpha||\partial h_\varepsilon|/|h_\varepsilon|$ for all $\varepsilon > 0$. Then $|w(z)| \leq \sup_{\zeta \in \partial \Omega} |w(\zeta)|$ for all $z \in \Omega$.

Likewise, in polar coordinates (r, θ) we have

$$ \partial = \frac{1}{2} \left(e^{-i\theta} \partial_r - \frac{i e^{-i\theta}}{r} \partial_\theta \right), $$

giving the following result.

Corollary 3.2. Suppose that $\Omega \subset \mathbb{C}_+$ (not necessarily bounded) and that w is a continuous bounded function on $\overline{\Omega}$ such that (4) holds in Ω where $\alpha = \alpha(r)$ is a C^1 function satisfying $2|\alpha|^2 \geq |\alpha'|/2 + |\alpha||\partial h_\varepsilon|/|h_\varepsilon|$ for all $\varepsilon > 0$. Then $|w(z)| \leq \sup_{\zeta \in \partial \Omega} |w(\zeta)|$ for all $z \in \Omega$.

Suppose now that $\alpha(x) = ax^\mu$. The condition we require is then

$$ 2|a|^2 x^{2\mu} \geq |a\mu|x^{\mu-1}/2 + |a|x^\mu \frac{\varepsilon}{|1 + \varepsilon z|}, $$

which is only possible for $\mu = -1$. However, it is easy to write down polynomials in x that do not vanish at 0 but which satisfy the conditions of Corollary 3.2.
Acknowledgments.
The authors are grateful to Joseph Burrier for his assistance. They also thank the referee for some useful comments.

References

[1] L. Baratchart, J. Leblond, S. Rigat and E. Russ, Hardy spaces of the conjugate Beltrami equation. *J. Funct. Anal.* 259 (2010), no. 2, 384–427.

[2] L. Bers, *Theory of pseudo-analytic functions*. Institute for Mathematics and Mechanics, New York University, New York, 1953.

[3] S. Carl, A maximum principle for a class of generalized analytic functions. *Complex Variables Theory Appl.* 10 (1988), no. 2–3, 153–159.

[4] S.-S. Chen, On a class of quasiconformal functions in Banach spaces. *Proc. Amer. Math. Soc.* 37 (1973), 545–548.

[5] Y. Fischer and J. Leblond, Solutions to conjugate Beltrami equations and approximation in generalized Hardy spaces. *Adv. Pure Appl. Math.* 2 (2011), no. 1, 47–63.

[6] Y. Fischer, J. Leblond, J.R. Partington and E. Sincich, Bounded extremal problems in Hardy spaces for the conjugate Beltrami equation in simply-connected domains. *Appl. Comput. Harmon. Anal.* 31 (2011), no. 2, 264–285.

[7] T. Iwaniec and G. Martin, *Geometric function theory and non-linear analysis*. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2001.

[8] S.G. Krantz, *Geometric function theory. Explorations in complex analysis*. Cornerstones. Birkhäuser Boston, Inc., Boston, MA, 2006.

[9] V.V. Kravchenko, *Applied pseudoanalytic function theory*. With a foreword by Wolfgang Sproessig. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2009.

[10] E.C. Titchmarsh, *The theory of functions*. Oxford University Press, London, 2nd edition, 1939.
[11] I.N. Vekua, *Generalized analytic functions*. Pergamon Press, London–Paris–Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1962.