Equation of State for SU(3) Gauge Theory via the Energy-Momentum Tensor under Gradient Flow

Masakiyo Kitazawa,¹ 2 Takumi Iritani, 3 Masayuki Asakawa, 1 Tetsuo Hatsuda, 3 4 and Hiroshi Suzuki 5

¹Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
²J-PARC Branch, KEK Theory Center, Institute of Particle and Nuclear Studies, KEK, 203-1, Shirakata, Tokai, Ibaraki, 319-1106, Japan
³Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198, Japan
⁴Kavli IPMU (WPI), The University of Tokyo, Chiba 203-0047, Japan
⁵Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

(Dated: February 15, 2017)

The energy density and the pressure of SU(3) gauge theory at finite temperature are studied by direct lattice measurements of the renormalized energy-momentum tensor obtained by the gradient flow. Numerical analyses are carried out with \(\beta = 6.287 - 7.500 \) corresponding to the lattice spacing \(a = 0.013 - 0.061 \) fm. The spatial (temporal) sizes are chosen to be \(N_s = 64, 96, 128 \) \((N_t = 12, 16, 20, 22, 24)\) with the aspect ratio \(5.33 \leq N_s/N_t \leq 8 \). Double extrapolation, \(a \rightarrow 0 \) (the continuum limit), is taken using the numerical data. Above the critical temperature, the thermodynamic quantities are obtained with a few percent precision including statistical and systematic errors. The results are in good agreement with previous high-precision data obtained by using the integral method.

PACS numbers: 05.70.Ce; 11.10.Wx; 11.15.Ha

I. INTRODUCTION

Thermodynamic observables in QCD such as the energy density \(\varepsilon \) and the pressure \(p \) as functions of temperature \(T \) and baryon chemical potential \(\mu_B \) provide fundamental information for studying the physics of relativistic heavy-ion collisions and compact stars. Because of their importance, high precision lattice simulations of \(\varepsilon \) and \(p \) in SU(3) gauge theory \([1, 5]\) and in full QCD \([6, 7]\) on the lattice at finite \(T \) have been carried out extensively for the past few decades. In most of these studies the integral method \([1] \) is adopted, where \(\varepsilon \) and \(p \) are obtained by integrating so-called the interaction measure \(\Delta \equiv \varepsilon - 3p \) calculated on the lattice.

Recently, a new method to calculate thermodynamic quantities has been proposed \([3, 9]\) on the basis of the gradient flow \([10, 13]\). In this method, one makes use of the renormalized energy-momentum tensor (EMT) operator \(T_{\mu
u} \) constructed from the “flowed field” at nonzero flow-time \(t \) \([8]\). Once EMT is defined, \(\varepsilon \) and \(p \) can be calculated by simply taking thermal averages at any given temperature,

\[
\varepsilon = -\langle T_{44} \rangle, \quad p = \frac{1}{3} \sum_{i=1}^{3} \langle T_{ii} \rangle. \tag{1}
\]

This method has been tested for the thermodynamics of SU(3) gauge theory in Ref. [9] for the first time with \(\beta = 6/g_0^2 = 5.89 - 6.56 \) corresponding to the lattice spacing \(a = 0.041 - 0.116 \) fm and the spatial (temporal) size \(N_s = 32 \) \((N_t = 6, 8, 10)\). It was found that the \(\varepsilon \) and \(p \) obtained by the gradient flow with small statistics can be comparable to those obtained by the integral method with high statistics. An extension of this method to full QCD has been also formulated \([15]\) and numerical results were reported recently \([16, 17]\).

In the present paper, we report an improved analysis of the thermodynamics of SU(3) gauge theory with the gradient flow. Numerical analyses are carried out with \(\beta = 6.287 - 7.500 \) corresponding to the lattice spacing \(a = 0.013 - 0.061 \) fm. The spatial (temporal) sizes are chosen to be \(N_s = 64, 96, 128 \) \((N_t = 12, 16, 20, 22, 24)\) with the aspect ratio \(5.33 \leq N_s/N_t \leq 8 \). The double extrapolation, \(a \rightarrow 0 \) (the continuum limit) followed by \(t \rightarrow 0 \) (the zero flow-time limit), is taken using the data on these fine lattices. We note that such a double limit could not be taken in Ref. [9] due to the coarse lattice.

The lattice spacing \(a \) required for these analyses has been determined on the basis of the gradient flow (see Ref. [15] and Appendix A.1).

After taking the double limit, the final results of \(\varepsilon \) and \(p \) above the critical temperature \(T_c \) reach a few percent precision with both statistical and systematic errors. The latter errors are associated with the \(a \rightarrow 0 \) and \(t \rightarrow 0 \) extrapolations as well as the scale setting and lambda parameter. Our high precision results based on the gradient flow are found to be in good agreement with the previous high precision results with the integral method.

This paper is organized as follows. In the next section we introduce the gradient flow and the EMT operator used in our study. After describing the setup of numerical simulations in Sec. III, the numerical results
are presented in Sec. IV. The last section is devoted to a short summary. In Appendix A, the analyses of the lattice spacing and the lambda parameter are described in detail.

II. BASIC FORMULATION

A. Yang–Mills gradient flow

Let us first recapitulate the essential features of the Yang–Mills gradient flow [10] and its application to define the renormalized EMT [8].

The gradient flow of the Yang–Mills field is generated by the differential equation with a flow time \(t \), which has a dimension of inverse mass squared,

\[
\frac{dA_\mu(t,x)}{dt} = -g_s^2 \frac{\delta S_{\text{YM}}(t)}{\delta A_\mu(t,x)} = D_\mu G_{\nu\mu}(t,x), \tag{2}
\]

Here the Yang–Mills action \(S_{\text{YM}}(t) \) and the field strength \(G_{\mu\nu}(t,x) \) are composed of the flowed field \(A_\mu(t,x) \), which is a function of \(t \) and the 4-dimensional Euclidean coordinate \(x \). Color indices are suppressed for simplicity. The initial condition at \(t = 0 \) is taken to be \(A_\mu(0,x) = A_0(x) \) with \(A_0(x) \) being the ordinary gauge field in 4-dimensional Euclidean spacetime.

With Eq. (2), the gauge field flows along the steepest descent direction of \(S_{\text{YM}}(t) \) as \(t \) increases. At the tree level, Eq. (2) is rewritten as

\[
\frac{dA_\mu}{dt} = \partial_\nu D_\nu A_\mu + (\text{gauge dependent terms}), \tag{3}
\]

which is a diffusion-type equation. Therefore, the gradient flow for \(t > 0 \) acts as a cooling of the gauge field with the smearing radius \(\sqrt{8t} \) in the 4-dimensional Euclidean spacetime. In Ref. [19], it is proved in pure gauge theory that all composite operators composed of \(A_\mu(t,x) \) take finite values for \(t > 0 \). Also, the idea of the gradient flow can be generalized to gauge theory with fermions [20].

B. EMT from gradient-flow

In the present study, we use the EMT defined by the short flow-time expansion [8]. Let us consider a composite local operator \(O(t,x) \) defined from the field \(A_\mu(t,x) \) at positive flow time \(t > 0 \). The short flow-time expansion [19] asserts that in the small \(t \) limit this operator can be written as a superposition of local operators of the original gauge theory at \(t = 0 \) as

\[
O(t,x) \xrightarrow{t \to 0} \sum_i c_i(t) O^R_i(x), \tag{4}
\]

where \(O^R_i(x) \) in the right-hand side are renormalized operators of the original gauge theory at \(t = 0 \) with the subscript \(i \) denoting a set of operators, while \(c_i(t) \) are associated c-number coefficients calculable in perturbation theory for small \(t \).

In order to define the EMT using Eq. (4), we consider the short flow-time expansion of dimension-four gauge-invariant operators [8]. In pure gauge theory, there are two such operators:

\[
U_{\mu\nu}(t,x) = G^{\alpha}_{\mu\nu}(t,x)G^{\alpha}_{\rho\sigma}(t,x) - \frac{1}{4} \delta_{\mu\nu} G^{\alpha}_{\rho\sigma}(t,x) G^{\alpha}_{\rho\sigma}(t,x), \tag{5}
\]

\[
E(t,x) = \frac{1}{4} G^{\alpha}_{\mu\nu}(t,x) G^{\alpha}_{\nu\mu}(t,x). \tag{6}
\]

Since they are gauge invariant, only gauge invariant operators appear in the right-hand side of Eq. (4). Such an operator with dimension-zero is an identity operator, while operators with dimension-four are EMTs \(T_{\mu\nu}(x) \). Up to this order, the short flow-time expansion of Eqs. (5) and (6) thus gives

\[
U_{\mu\nu}(t,x) = \alpha_U(t) \left[T_{\mu\nu}(x) - \frac{1}{4} \delta_{\mu\nu} T_{\rho\sigma}(x) \right] + O(t), \tag{7}
\]

\[
E(t,x) = \langle E(t,x) \rangle_0 + \alpha_E(t) T_{\rho\sigma}(x) + O(t). \tag{8}
\]

We normalize EMT so that the vacuum expectation values vanish, \(\langle T_{\mu\nu}(x) \rangle_0 = 0 \). This determines the coefficient of the unit operator in the right-hand side of Eq. (7) to be \(\langle E(t,x) \rangle_0 \). The unit operator does not appear in Eq. (7) since \(U_{\mu\nu}(t,x) \) is traceless. Contributions from the operators of dimension six or higher are proportional to \(t \) or higher from the dimensional reason, and thus they are suppressed for small \(t \).

Combining relations Eqs. (7) and (8), we have

\[
T_{\mu\nu}(x) = \lim_{t \to 0} T_{\mu\nu}(t,x), \tag{9}
\]

with

\[
T_{\mu\nu}(t,x) = \frac{1}{\alpha_U(t)} U_{\mu\nu}(t,x) + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} \left[E(t,x) - \langle E(t,x) \rangle_0 \right]. \tag{10}
\]

The coefficients \(\alpha_U(t) \) and \(\alpha_E(t) \) are calculated perturbatively in the \(\overline{\text{MS}} \) scheme in Ref. [8],

\[
\alpha_U(t) = \tilde{g}(1/\sqrt{8t})^2 \left[1 + 2b_0 \tilde{s}_1 \tilde{g}(1/\sqrt{8t})^2 + O(\tilde{g}^4) \right], \tag{11}
\]

\[
\alpha_E(t) = \frac{1}{2b_0} \left[1 + 2b_0 \tilde{s}_2 \tilde{g}(1/\sqrt{8t})^2 + O(\tilde{g}^4) \right], \tag{12}
\]

where \(\tilde{g}(q) \) denotes the running gauge coupling in the \(\overline{\text{MS}} \) scheme with \(q = 1/\sqrt{8t} \) and

\[
\tilde{s}_1 = \frac{7}{22} + \frac{1}{2} \tilde{g}_E - \ln 2 \simeq -0.08635752993, \tag{13}
\]

\[
\tilde{s}_2 = \frac{21}{44} - \frac{b_1}{2b_0} = \frac{27}{484} \simeq 0.05578512397, \tag{14}
\]

1 This useful combination was first given in Ref. [21].
with \(b_0 = \frac{1}{14\pi^2} N_c \), \(b_1 = \frac{1}{14\pi^2} \frac{3\pi^2}{N_c^2} \) with \(N_c = 3 \).

We note here that (i) the right-hand side of Eq. (4) is independent of the regularization because of its UV finiteness, so that one can take, e.g., the lattice regularization scheme, and (ii) the small \(t \) expansion of \(U_{ij}(t,x) \) and \(E(t,x) \) implies

\[
T_{\mu\nu}(t,x) = T_{\mu\nu}(x) + \mathcal{O}(t). \tag{15}
\]

C. Energy density and pressure on the lattice

The thermodynamic quantities are obtained from the expectation values of diagonal elements of the EMT as in Eq. (1). A combination of \(\varepsilon \) and \(p \) called the interaction measure \(\Delta \) is related to the trace of the EMT (the trace anomaly):

\[
\Delta = \varepsilon - 3p = -\langle T_{\mu\mu}(x) \rangle. \tag{16}
\]

Also, the entropy density \(s \) at zero chemical potential is given by \(\varepsilon \) and \(p \) as

\[
sT = \varepsilon + p = -\langle T_{44}(x) \rangle + \frac{1}{3} \sum_{i=1}^{3} \langle T_{ii}(x) \rangle. \tag{17}
\]

In the practical numerical analysis, we calculate Eq. (10) on a flowed gauge field with \(t > 0 \). With finite \(\alpha \), the lattice gauge field has to be smeared by the gradient flow sufficiently to suppress the lattice discretization effect. Since the smearing length of the gradient flow is given by \(\sqrt{8t} \), this condition requires \(\sqrt{8t} \lesssim a \). On the other hand, the value of \(\sqrt{8t} \) has to be small enough compared with half the temporal extent of the lattice, \(1/(2T) \), so that the smearing by the gradient flow does not feel the periodic boundary condition. From these requirements, the measurement has to be performed in the range

\[
a \lesssim \sqrt{8t} \lesssim \frac{1}{2T}. \tag{18}
\]

When Eq. (10) shows approximate linear dependence as shown in Eq. (15) in a range of \(t \) given by Eq. (18), one can take the small \(t \) limit and obtain Eq. (9). The linear dependence Eq. (15) can also be violated for large \(t \) when the perturbative results of the coefficients in Eqs. (11) and (12) are no longer applicable. This happens when \(\sqrt{8t} \) approaches the lambda parameter \(\Lambda_{\text{MS}} \).

For the measurement of \(\Delta \), we have to calculate \(\langle E(t,x) \rangle_0 \) to carry out vacuum subtraction. This means that the numerical analysis for vacuum configuration is needed in addition to \(T > 0 \) simulation. On the other hand, the analysis of \(sT \), which depends only on the traceless part, does not require the vacuum subtraction and hence can be performed solely with a nonzero \(T \) simulation. This is an advantage of our method compared with the integral method.

III. Simulation Setup

We have performed numerical simulations of SU(3) gauge theory on four-dimensional Euclidean lattices. We considered the Wilson plaquette gauge action under the periodic boundary condition with several different values of \(\beta = 6/g_0^2 \) with \(g_0 \) being the bare coupling constant. Gauge configurations are generated by the pseudo heat bath algorithm with the over-relaxation, mixed in the ratio of 1 : 5. We call one pseudo heat bath update plus five over-relaxation sweeps as a “Sweep”. Each measurement is separated by 200 Sweeps. Statistical errors are then estimated by the jackknife method. The binsize \(N_{\text{bin}} \) of the jackknife analysis is determined so that the total number

\(T/T_c \)	\(\beta \)	\(N_s \)	\(N_t \)	confs. vacuum
0.93	6.287	64	12	2125 *
1.02	6.349	64	12	2000 *
1.12	6.418	64	12	1875 *
1.20	6.491	96	16	1680 *
1.21	6.559	96	16	1580 *
1.22	6.800	128	20	2000 *
1.23	6.800	128	20	1875 *
1.24	6.800	128	20	1750 *
1.25	7.117	128	24	1800 *
1.26	7.317	128	24	1700 *
1.27	7.495	128	24	1600 *
1.28	7.519	128	24	1500 *

* symbol in the far right column shows the set of configurations that the corresponding vacuum simulation (\(N_s = N_t \)) is available.
of jackknife bins is 50 unless otherwise stated. We have checked that the N_{bin} dependence of the statistical error is not observed with this bin size.

We use the Wilson gauge action for $S_{\text{SYM}}(t)$ in the flow equation Eq. (2). The gradient flow in the t-direction is numerically solved by the third order Runge–Kutta (RK) method [10]. The RK time-step is taken to be 0.01 for small t and is increased gradually as t increases. Accumulation errors due to the RK method is found to be more than two orders of magnitude smaller than the statistical errors in all the analyses discussed below.

For the operator $U_{\mu
u}(t, x)$ in Eq. (5) necessary to analyze s/T^4, we use $G_{\mu
u}(t, x)$ written in terms of the clover leaf representation. For $E(t, x)$ in Eq. (6) necessary to analyze Δ/T^4, we use the mixed representation [22, 23],

$$E(t, x)_{\text{imp}} = \frac{3}{4} E(t, x)_{\text{clover}} + \frac{1}{4} E(t, x)_{\text{plaq}}, \quad (19)$$

where $E(t, x)_{\text{clover}}$ is constructed from the clover leaf representation of $G_{\mu
u}(t, x)$ in Eq. (6), while $E(t, x)_{\text{plaq}}$ is defined as [10]

$$E(t, x)_{\text{plaq}} = \frac{1}{18} P(t, x), \quad (20)$$

with the plaquette $P(t, x) = 1/(6N_c) \sum_{\mu, \nu} \text{Re Tr} [U_{\mu}(t, x)U_{\nu}(t, x + \hat{\mu})U_{\nu}^{\dagger}(t, x + \hat{\nu})U_{\mu}^{\dagger}(t, x)]$. If the Wilson gauge action is employed for both the gauge action and $S_{\text{SYM}}(t)$ in Eq. (2), the $O(a^2)$ discretization errors in $E(t, x)_{\text{imp}}$ are cancelled out in the tree level [22].

To specify temperature of a lattice as well as to perform the continuum extrapolation, we need to relate β to the lattice spacing a. For this purpose, we have previously performed measurements of a in the range $6.3 \leq \beta \leq 7.5$ using the gradient flow [13]. As summarized in Appendix A, we derived a relation between the dimensionless reference scale w_0/a and β as

$$\frac{w_0}{a} = \exp \left(\frac{4\pi^2}{33} \beta - 9.1268 + \frac{41.806}{\beta} - \frac{158.26}{\beta^2} \right), \quad (21)$$

which is applicable in the range $6.3 \leq \beta \leq 7.4$. The statistical error of Eq. (21) associated with the fitting parameters is less than 0.4%. Topological freezing of the data may also introduce extra 1% error to this result (see Appendix A for more details). To determine T of a lattice in the unit of T_c, we use the critical coupling after the infinite volume extrapolation $\beta_c = 6.33552(47)$ at $N_\tau = 12$ [24] and Eq. (21), which give

$$w_0T_c = 0.25244(17). \quad (22)$$

In the definition of the EMT operator Eq. (10), we need the running coupling $\bar{g}(q)$ in the $\overline{\text{MS}}$ scheme which appears in the coefficients $\alpha_U(t)$ and $\alpha_F(t)$ given by Eqs. (11) and (12). To obtain $\bar{g}(q)$ at $q = 1/\sqrt{8T}$, we need a functional form of $\bar{g}(q)$ and the relation between the lattice spacing and $\Lambda_{\overline{\text{MS}}}$. We use the iterative formula for four-loop running coupling [25] and

$$w_0\Lambda_{\overline{\text{MS}}} = 0.2154(5)(11). \quad (23)$$

See Appendix A2 as well as Ref. [18] for more details. Note that topological freezing would introduce extra 1% error to this result, too.

The simulation parameters are summarized in Tables I and II. We perform the numerical simulations for eight different temperatures in the range $0.93 \leq T/T_c \leq 2.69$ on the lattice of volume $N^3 \times N_\tau$ as summarized in Table I. For each T/T_c, we perform numerical simulations for three different values of N_τ. The value of β, lattice volume $N^3 \times N_\tau$ and the number of configurations are shown in the table. The aspect ratios N_s/N_τ of all lattices are within the range $5.33 \leq N_s/N_\tau \leq 8$. The values of N_τ for two coarse lattices are fixed to $N_\tau = 12$ and 16. The finest lattice has the value of N_τ in the range $N_\tau = 20–24$; because the corresponding vacuum simulation on 1284 lattice requires a large numerical cost, we make use of a single vacuum simulation for several values of T by changing N_τ.

Since the lattice spacing determined by Eq. (21) has 1% error, the value of T/T_c on each lattice is expected to have a similar-size uncertainty. Also, there is a possible finite volume effect, although it is expected to be small due to our large aspect ratio, $5.33 \leq N_s/N_\tau$. These small uncertainties are not considered in the final results of Δ/T^3 and s/T^3 to be shown at the end of this paper.

For the measurement of Δ/T^3, we need the vacuum simulation for vacuum subtraction. We carry out the simulations on $N_\tau = N_s$ lattices corresponding to the temperatures in the range $0.93 \leq T/T_c \leq 1.68$. The simulation parameters are shown in Table I The configuration sets whose vacuum subtraction is available are shown by * symbol in the far right column in Table I.

To obtain the expectation values of the EMT with Eqs. (9) and (10), the double extrapolation $(t, a) \rightarrow (0, 0)$ has to be taken. To proceed this analysis, we first take the continuum limit, $a \rightarrow 0$, with fixed t in physical unit. Since the leading lattice discretization effect on
the thermodynamic quantities with the Wilson plaquette gauge action is of order a^2 \cite{1}. we take the following parametrization to take the continuum limit:

$$
\langle T_{\mu\nu}(t,x) \rangle_{\text{lat}} = \langle T_{\mu\nu}(t,x) \rangle_{\text{cont}} + \frac{b_{\mu\nu}(t)}{N_t^2}.
$$

Here, $\langle T_{\mu\nu}(t,x) \rangle_{\text{lat}}$ is the expectation value obtained on the lattice with N_t. One has to determine $b_{\mu\nu}(t)$ for each t independently. Then, we take $t \to 0$ extrapolation by fitting the continuum extrapolated result

$$
\langle T_{\mu\nu}(t,x) \rangle_{\text{cont}} = \langle T_{\mu\nu}(x) \rangle + C_{\mu\nu} t,
$$

according to Eq. (15). $C_{\mu\nu}$ has in principle logarithmic t dependence, but we treat it as a constant in our extrapolation.

\section*{IV. NUMERICAL RESULTS}

\subsection*{A. \langle T_{\mu\nu}(t,x) \rangle_{\text{lat}} and its t and a dependences}

We first focus on the result for $T = 1.68 T_c$ to see the t and a dependences of the numerical results. Shown in Fig. 1 are the t dependence of $\Delta/T^4 = (\varepsilon - 3p)/T^4$ (left) and entropy density $s/T^3 = (\varepsilon + p)/T^3$ (right) as functions of tT^2 at fixed temperature, $T/T_c = 1.68$, for three different values of the lattice spacing, $\beta = 6.719$, 6.941 and 7.117 ($a = 0.033$, 0.025 and 0.020 fm). For Δ/T^4, the improved operator in Eq. (19) is adopted. Let us discuss the three region of t separately: (i) For $0 < \sqrt{\chi} \lesssim a$, the lattice discretization effect becomes prominent as discussed in Sec. II C. One finds, particularly in the right panel, that this region becomes narrower as a decreases. (ii) For the smallest a in this figure (red points), Δ/T^4 has a plateau and s/T^3 has a linear behavior in the range $0.005 \lesssim tT^2 \lesssim 0.015$ in accordance with Eq. (15). (iii) The deviation from the linear behavior is seen for $tT^2 \gtrsim 0.015$, which is attributed to the over-smearing as discussed in Sec. II C. These consideration indicates that there exists a window of t from which the values of Δ/T^4 and s/T^3 can be extracted.

\subsection*{B. Double extrapolation}

Let us now describe the procedure for the double extrapolation $(t,a) \to (0,0)$. As discussed in Sec. II, we first take the continuum limit with t fixed. This extrapolation is taken by fitting the results with three different values of N_t with Eq. (24). To obtain the values of $\langle T_{\mu\nu}(t,x) \rangle_{\text{lat}}$ for different N_t, we apply the cubic spline interpolation to the data for each N_t.

In Figs. 2 and 3, we show the N_t dependences of Δ/T^4 and s/T^3 at $tT^2 = 0.005$, 0.01, 0.015 and 0.02 together with the result of continuum extrapolation with Eq. (24). In Fig. 3, three results obtained by the different choices for the operator $E(t,x)$ in Δ/T^4 and s/T^3 are shown. The value of χ^2/dof is within the range $0.005 \leq tT^2 \leq 0.02$. The error of the continuum extrapolation is estimated by the jackknife analysis. For values of tT^2 smaller than 0.005, the fitting becomes worse particularly for s/T^3. Therefore, in the following, we will use the results only for $0.005 \leq tT^2 \leq 0.02$. Figure 3 also shows that the continuum extrapolated results with different discretizations for $E(t,x)$ agree with each other.

In Fig. 4, we show the t dependences of Δ/T^4 and s/T^3 after the continuum extrapolation by the black line with the error band together with the data for finite lattice spacings, $N_t = 12, 16$ and 20. We make linear t extrapolation by using the continuum extrapolated data for $0.005 \leq tT^2 \leq 0.02$ according to Eq. (25). We employ
three fitting ranges,

Range-1: $0.01 \leq tT^2 \leq 0.015$,

Range-2: $0.005 \leq tT^2 \leq 0.015$,

Range-3: $0.01 \leq tT^2 \leq 0.02$.

In Fig. 3 the black solid bar at $t = 0$ with a squared symbol denotes the result of the extrapolation with Range-1, while the open circle and triangle symbols denote the results with Range-2 and Range-3, respectively. χ^2/dof in these fittings is smaller than unity. Then, we use the result of Range-1 as a central value, while those of Range-2 and Range-3 are used to estimate the systematic error.
FIG. 4. N_c dependence of s/T^3 at $t^2T = 0.005$, 0.01, 0.015 and 0.02 together with the result of continuum extrapolation using Eq. (24).

FIG. 5. Results of continuum extrapolation (black band) for Δ/T^4 (left) and s/T^3 (right) as functions of tT^2. The extrapolation to $t = 0$ using the data in Range-1 is shown by the dashed line, and the extrapolated value with the error is given by the filled square at $t = 0$. The extrapolated values with Range-2 and Range-3 are also shown around the origin.

Associated with the fit range[^1] in our previous exploratory study of Δ/T^4 and s/T^3 in Ref. [9], the continuum limit has been taken, while the flow time was fixed certainly of $a\Lambda_{\text{MS}}$ discussed in Sec. III we show the continuum extrapolated results under $\pm 1\%$ change of $a\Lambda_{\text{MS}}$ to be $t^2T = 0.02$. There was no resolution to detect the slope $C_{\mu\nu}$ owing to limited statistics and coarse lattice.

[^1]: In our previous exploratory study of Δ/T^4 and s/T^3 in Ref. [9], the continuum limit has been taken, while the flow time was fixed.
in Fig. 6. As the figure shows, the systematic error for \(\Delta/T^4 \) \(s/T^3 \) is negligible (comparable) to the other statistical and systematic errors.

\[
\begin{array}{ccc}
T/T_c & \Delta/T^4 & s/T^3 \\
0.93 & 0.066(32)(^{+3}_{-2})(0) & 0.082(33)(^{+3}_{-4})(0) \\
1.02 & 1.945(57)(^{+3}_{-2})(0) & 2.104(63)(^{+14}_{-2})(8) \\
1.12 & 2.560(33)(^{+12}_{-12})(0) & 3.603(46)(^{+13}_{-6})(13) \\
1.40 & 1.777(24)(^{+24}_{-18})(0) & 4.706(35)(^{+49}_{-35})(17) \\
1.68 & 1.201(19)(^{+10}_{-10})(0) & 5.285(35)(^{+44}_{-44})(18) \\
2.10 & — & 5.617(34)(^{+60}_{-0})(18) \\
2.31 & — & 5.657(55)(^{+82}_{-15})(18) \\
2.69 & — & 5.914(32)(^{+70}_{-0})(18) \\
\end{array}
\]

TABLE III. Summary of the equation of state with statistical and systematic errors. The first error is the statistical one, while the second error shows the systematic error associated with the choice of the fit range. The last error comes from 1% uncertainties of \(\Lambda_{\pi T} \) from possible topological freezing. \(\Delta/T^4 \) at \(T/T_c = 2.10, 2.31 \) and 2.69 are not available due to the lack of corresponding vacuum configurations.

FIG. 7. Similar plots with the left panel of Fig. 5 for different values of \(T/T_c \).

FIG. 8. Similar plots with the right panel of Fig. 5 for different values of \(T/T_c \).

C. Temperature dependence

The analysis in the previous subsection for \(T/T_c = 1.68 \) is repeated for all \(T/T_c \) listed in Table I. We show the results of these analyses with different values of \(T/T_c \) in Fig. 7 for \(\Delta/T^4 \) and in Fig. 8 for \(s/T^3 \). The values of \(\chi^2/\text{dof} \) are within a reasonable range \(\chi^2/\text{dof} \leq 2 \) for all fits with an exception for \(s/T^3 \) at \(T/T_c = 1.40 \). As these figures show, the double extrapolation works rather stably for all \(T/T_c \).

The numerical results after double extrapolation are summarized in Table III. The table shows that \(\Delta/T^4 \) and \(s/T^3 \) are determined within 3% precision including all systematic errors except for those at \(T/T_c = 0.93 \). Note that we do not have \(\Delta/T^4 \) for the highest three temperatures owing to the lack of vacuum simulations needed to make vacuum subtraction (see Table I).

Finally, we depict the \(T/T_c \) dependences of our \(\Delta/T^4 \) and \(s/T^3 \) in Fig. 9 together with the previous data obtained by the integral method in Refs. [1, 4]. By taking into the estimated errors of the previous results, three
results are consistent with each other.\footnote{We note that s/T^3 recently studied in the shifted boundary method\cite{5,26} also seems to agree.}

\section{Summary}

We performed measurements of thermodynamic quantities of the SU(3) Yang–Mills theory from the direct analysis of the expectation value of energy-momentum tensor (EMT), Eq. (9), constructed by the Yang–Mills gradient flow with a flow time t. The numerical simulations with the Wilson plaquette gauge action have been performed at finite temperature with the lattice spacing $a = 0.013$–0.061 fm and the aspect ratio, $5.33 \lesssim N_s/N_\tau \lesssim 8$.

Using the lattice data, the double extrapolation ($t \to 0$ after $a \to 0$) has been performed to obtain the interaction measure $\Delta(T)$ and the entropy density $s(T)$ with a few percent precision including statistical and systematic errors. The results agree quite well with the previous high-precision data using the integral method.

The present approach with EMT provides a new tool not only to calculate QCD equation of state accurately but also to study correlation functions and transport coefficients of the quark-gluon plasma with firm theoretical basis. The first step along these directions will be reported in the forthcoming paper\cite{27}.

\section*{Acknowledgments}

The authors thank E. Itou for discussions in the early stage of this study. Numerical simulation for this study was carried out on IBM System Blue Gene Solution at KEK under its Large-Scale Simulation Program (Nos. 13/14-20, 14/15-08, 15/16-15). This work is supported in part by JSPS KAKENHI Grant Numbers 24340054, 25287046, 25287066, 25800148, 26400272, 16H03982 and by RIKEN iTHES Project.

\appendix

\section{Appendix A: Lattice spacing and Λ parameter}

In this appendix, we summarize our analysis of the lattice spacing and Λ. The numerical data used are those given in Ref.\cite{15}. Possible error originating from the topological freezing is also mentioned.

\subsection{Reference scale and lattice spacing}

Numerical simulations of the SU(3) Yang–Mills theory with the Wilson plaquette action were performed on $N_s^3 = 64^4$–1284 lattices under the periodic boundary condition. The values of $\beta = 6/g_0^2$, N_s and the number of configurations N_{conf} are summarized in the three left columns in Table\text{IV}.

We adopt the reference scale w_0 defined by\cite{28}

\begin{equation}
 t \frac{d}{dt} T^2 (E(t)) \bigg|_{t=w_0^2} = 0.3, \quad (A1)
\end{equation}

with the operator $E(t)$ constructed by the clover-type representation of the flowed field $G_{a\mu\nu}$ at time t. We use the Wilson gauge action S_{YM} for the flow equation in Eq. (2), and each measurement is separated by 1000 Sweeps. The values of w_0/a with statistical errors are summarized in the fourth column of Table\text{IV}.

The lattice spacings in physical unit estimated by $w_0 = 0.1670(10)$ fm\cite{29} are also given in the table together with the physical lattice volume $L = N_s a$. Extra error
TABLE IV. Simulation parameters for scale setting, $\beta = 6.6/g_0^2$; the lattice size N_x, and the number of configurations N_{conf}, as well as the numerical results of w_0/a. The lattice spacing a and the physical length N_xa in physical unit determined from $w_0 = 0.1670(10) \text{ fm}$ are also shown.

β	N_x	N_{conf}	w_0/a	a [fm]	N_xa [fm]
6.3	64	30	2.877(5)	0.084(8)	3.72(22)
6.4	64	100	3.317(4)	0.050(3)	3.22(19)
6.5	64	49	3.797(8)	0.044(3)	2.81(17)
6.6	64	100	4.356(9)	0.038(2)	2.45(15)
6.7	64	30	4.980(23)	0.034(2)	2.15(13)
6.8	64	100	5.652(17)	0.030(2)	1.89(11)
7.0	96	60	7.297(18)	0.023(1)	2.20(13)
7.2	96	53	9.348(66)	0.018(1)	1.71(10)
7.4	128	40	12.084(61)	0.014(1)	1.77(11)

The difference from other fitting Ansätze (such as polynomial functions as shown in Appendix A in Ref. [18]) is found to be less than 1%. The 0.4% error in Eq. (A2) originates from the statistical errors of w_0/a except for the topological freezing.

For the analysis of w_0/a in Table IV, we have used 30–100 configurations separated by 1000 Sweeps. In order to estimate the effect of the topological freezing on these simulations, we have performed an independent measurement at $\beta = 6.88$ on $N_x^4 = 64^4$ lattice by accumulating $N_{\text{conf}} = 1290$ configurations with each measurement separated by 2000 Sweeps. This lattice setup corresponds to the physical size, $64 \times 0.027 \text{ fm} \approx 1.7 \text{ fm}$, which is comparable to the smallest lattice volume in Table IV. Since observables depend more on the topological sector for smaller spatial volume [33], this analysis would serve as the most severe test for the topological freezing of the data sets in Table IV.

The topological charge is defined by $Q \equiv -\frac{1}{2\pi^2} \epsilon_{\mu\nu\rho\sigma} \int d^4x \text{ tr} [G_{\mu\nu}(x)G_{\rho\sigma}(x)]$. We take the value of Q at $t = t_0$ defined by $t^2 \langle E(t) \rangle |_{t = t_0} = 0.3$. From this measurement of Q, we find that the autocorrelation length is about 100 × 2000 Sweeps which is 2–6 times larger than the maximum number of Sweeps used to obtain w_0/a in Table IV. Therefore, there is indeed a danger of the topological freezing. Shown in Fig. 10(a) is a histogram of Q^2 obtained in the simulation. The resultant fluctuation of Q reads, $\langle Q^2 \rangle = 12.2 \pm 3.2$. Corresponding topological susceptibility is estimated as $\chi^4 \equiv \langle Q^4 \rangle / V = (7.3 \pm 1.9) \times 10^{-7}$, with the error by the jackknife analysis with binsize 100. By using Eq. (A2) and the reference values $w_0 = 0.1670(10) \text{ fm}$ and $r_0 = 0.49 \text{ fm}$, we find $\chi_{t0}^4 = 0.084(22)$ which is in 1.5σ level of agreement with the accurate determination, $\chi_{t0}^4 = 0.0544(18)$ [34].

In Fig. 10(b), we plot w_0/a at fixed topology, $\langle w_0/a \rangle_Q$, normalized by the expectation value $\langle w_0/a \rangle$ without fixing Q. The red band corresponds to the error of $\langle w_0/a \rangle$ with total configurations. By combining the typical value expected from the topological susceptibility ($\langle Q^2 \rangle < 3/\sqrt{\langle Q^2 \rangle} < 4$) and the results of Fig. 11, we estimate the effect of the topological freezing is about 1% level.

2. Determination of $\Lambda_{\overline{MS}}$

For the value of $w_0\Lambda_{\overline{MS}}$, we adopt a procedure similar to the one in Ref. [35] for the determination of $\Lambda_{\overline{MS}}$. The dimensionless parameter $a\Lambda_{\overline{MS}}$ can be obtained by matching the tadpole improved lattice perturbation theory. The boosted coupling constant g_\square is defined by

$$
g_\square^2 = g_0^2(a)/w_0^4,
$$

where $w_0^4 = P = \langle \text{Tr} U_{\square} \rangle / 3$.

As for the choice of the renormalization scale and the running coupling constant, we take the following two methods:

- Method I

$$
a\Lambda_{\overline{MS}} = a\mu_0 \Lambda_{\overline{MS}}(g_\square(a, \mu_0))
$$

5 See Refs. [50][52] for simulation strategies which are supposed to avoid the topological freezing.
This scheme corresponds to choosing a scale at
\[a\mu = \exp \left(\frac{t^\Box}{2b_0} \right) \frac{F^\Box(g_S(a))}{F^{\text{MS}}(g_S(a))} \]
(A9)
in Method I.

At the 3-loop order, \(F^S (S = \Box, \overline{\text{MS}}) \) is expressed as
\[\frac{A^S}{M} \equiv F^S(g_S(M)) = \exp \left(-\frac{1}{2b_0g_S^2} \right) \left(b_0g_S^2 \right)^{-\frac{b_1}{b_0}} \times \left(1 + \frac{b_1 + \sqrt{b_1^2 - 4b_0b_2^2}}{2b_0} g_S^2 \right)^{-\frac{p_A}{g_S^2}} \times \left(1 + \frac{b_1 + \sqrt{b_1^2 + 4b_0b_2^2}}{2b_0} g_S^2 \right)^{-\frac{p_B}{g_S^2}}, \]
(A10)
where
\[p_A^S = -\frac{b_1}{4b_0^2} - \frac{b_1^2 - 2b_0b_2^2}{4b_0^3\sqrt{b_1^2 - 4b_0b_2^2}}, \]
\[p_B^S = -\frac{b_1}{4b_0^2} + \frac{b_1^2 - 2b_0b_2^2}{4b_0^3\sqrt{b_1^2 - 4b_0b_2^2}}. \]
(A12)

In the \([1, 1]\) Padé approximation, it leads to
\[F^S_{[1, 1]}(g_S(M)) = \exp \left(-\frac{1}{2b_0g_S^2} \right) \left[1 + \frac{b_0g_S^2}{b_0 - \frac{b_1}{b_0} g_S^2} \right]^{-\frac{b_1}{b_0} g_S^2}. \]
(A13)

In SU(3) Yang–Mills theory, the coefficients are given by
\[b_0 = \frac{11}{(4\pi)^2}, \quad b_1 = \frac{102}{(4\pi)^4}, \quad b_2^{\overline{\text{MS}}} = \frac{1}{(4\pi)^6} \frac{2857}{2}, \]
\[b_2 = b_2^{\overline{\text{MS}}} + b_1 t_1 - b_0 t_2, \]
(A14)
with
\[t_1 = 0.1348680, \quad t_2 = 0.0217565. \]
(A15)

The expectation values of the plaquette, \(w_0 \) and \(w_0\Lambda^{\overline{\text{MS}}} \), with three schemes are summarized in Table \(\text{V} \).

Following Ref. \[33\], we adopt Method II with Padé improvement to estimate the central value of \(w_0\Lambda^{\overline{\text{MS}}} \). The values in the continuum limit are obtained by a linear fit as a function of \(a^2/w_0^2 \) without using the coarse results at \(\beta = 6.3 \) and 6.4 (see Fig. \[12\]). We used the results of the other methods to estimate the systematic error. From this analysis we find
\[w_0\Lambda^{\overline{\text{MS}}} = 0.2154(5)(11). \]
(A16)

Note that the topological freezing discussed in Appendix \(\ref{sec:topo_freezing} \) would introduce another 1% error to this number.
β	N_s	plaquette	w_0/a	$w_0\Lambda_{\text{MS}}$		
			Method I	Method II	Method II Padé	
6.3	64	0.622 420 85(30)	2.877(5)	0.2017(3)	0.2021(3)	0.2004(3)
6.4	64	0.630 632 88(13)	3.317(4)	0.2046(2)	0.2050(2)	0.2033(2)
6.5	64	0.638 361 33(35)	3.797(8)	0.2063(5)	0.2067(5)	0.2051(4)
6.6	64	0.645 669 58(12)	4.356(9)	0.2087(4)	0.2091(4)	0.2075(4)
6.7	64	0.652 608 39(39)	4.980(23)	0.2063(5)	0.2067(5)	0.2051(4)
6.8	64	0.659 215 11(11)	5.652(17)	0.2091(4)	0.2095(4)	0.2075(4)
7.0	96	0.671 556 729(89)	7.297(18)	0.2133(5)	0.2136(5)	0.2123(5)
7.2	96	0.682 891 86(22)	9.348(66)	0.2142(15)	0.2144(15)	0.2132(15)
7.4	128	0.693 365 795(68)	12.084(61)	0.2173(11)	0.2176(11)	0.2164(11)
∞	1	∞	0.2163(5)	0.2165(5)	0.2154(5)	0.2154(5)

TABLE V. Simulation parameters β and N_s. The plaquette value, w_0/a and $w_0\Lambda_{\text{MS}}$ using Method I, II and II with Padé approximation. The last row corresponds to the values at the continuum limit obtained from linear extrapolation without using two coarse lattice data at $\beta = 6.3$ and 6.4 (the italic numbers).

FIG. 12. Values of $w_0\Lambda_{\text{MS}}$ by the Method II with Padé improvement as a function of lattice spacing a^2. The continuum limit is shown at $a^2/w^2_0 = 0$. The finest lattice data at $\beta = 7.4$ deviates from fitting line. We note that the continuum extrapolation is consistent within the statistical error without using the result at $\beta = 7.5$.

[1] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier and B. Petersson, Nucl. Phys. B 469, 419 (1996), [hep-lat/9602007].
[2] M. Okamoto et al. [CP-PACS Collaboration], Phys. Rev. D 60, 094510 (1999), [hep-lat/9905005]; Y. Namekawa et al. [CP-PACS Collaboration], Phys. Rev. D 64, 074507 (2001).
[3] T. Umeda, S. Ejiri, S. Aoki, T. Hatsuda, K. Kanaya, Y. Maezawa and H. Ohno, Phys. Rev. D 79, 051501 (2009), [arXiv:0809.2842 [hep-lat]].
[4] S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz and K. K. Szabo, JHEP 1207, 056 (2012), [arXiv:1204.6184 [hep-lat]].
[5] L. Giusti and M. Pepe, PoS LATTICE 2015, 211 (2016), [arXiv:1511.03710 [hep-lat]].
[6] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg and K. K. Szabo, Phys. Lett. B 730, 99 (2014), [arXiv:1309.5258 [hep-lat]].
[7] A. Bazavov et al. [HotQCD Collaboration], Phys. Rev. D 90, 094503 (2014), [arXiv:1407.6387 [hep-lat]].
[8] H. Suzuki, PTEP 2013, no. 8, 083B03 (2013), Erratum: PTEP 2015, no. 7, 079201 (2015), [arXiv:1304.0533 [hep-lat]].
[9] M. Asakawa et al. [FlowQCD Collaboration], Phys. Rev. D 90, no. 1, 011501 (2014), Erratum: Phys. Rev. D 92, no. 5, 059902 (2015), [arXiv:1312.7492 [hep-lat]].
[10] M. Lüscher, JHEP 1008, 071 (2010), [arXiv:1006.4518 [hep-lat]].
[11] R. Narayanan and H. Neuberger, JHEP 0603, 064 (2006) [hep-th/0601210].

[12] Reviewed in, M. Lüscher, PoS LATTICE 2013, 016 (2014) [arXiv:1308.5598 [hep-lat]].

[13] S. Borsanyi, S. Dürr, Z. Fodor, S. D. Katz, S. Krieg, T. Kurth, S. Mages and A. Schafer et al., [arXiv:1205.0781 [hep-lat]].

[14] Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. H. Wong, JHEP 1211, 007 (2012) doi:10.1007/JHEP11(2012)007 [arXiv:1208.1051 [hep-lat]].

[15] H. Makino and H. Suzuki, PTEP 2014, no. 6, 063B02 (2014) [Erratum: PTEP 2015, no. 7, 079202 (2015)] [arXiv:1403.4772 [hep-lat]].

[16] E. Itou, H. Suzuki, Y. Taniguchi and T. Umeda, PoS LATTICE 2015, 303 (2016) [arXiv:1511.03009 [hep-lat]].

[17] Y. Taniguchi, S. Ejiri, R. Iwami, K. Kanaya, M. Kitazawa, H. Suzuki, T. Umeda and N. Wakabayashi, arXiv:1609.01417 [hep-lat].

[18] M. Asakawa, T. Hatsuda, T. Iritani, E. Itou, M. Kitazawa and H. Suzuki, [arXiv:1503.05516 [hep-lat]].

[19] M. Lüscher and F. Weisz, JHEP 1102, 051 (2011) [arXiv:1101.0963 [hep-th]].

[20] M. Lüscher, JHEP 1304, 123 (2013) [arXiv:1302.5246 [hep-lat]].

[21] L. Del Debbio, A. Patella and A. Rago, JHEP 1311, 212 (2013) [arXiv:1306.1173 [hep-th]].

[22] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi and C. H. Wong, JHEP 1409, 018 (2014) [arXiv:1406.0827 [hep-lat]].

[23] N. Kamata and S. Sasaki, arXiv:1609.07115 [hep-lat].

[24] M. Shigugane, S. Ejiri, R. Iwami, K. Kanaya and M. Kitazawa, Phys. Rev. D 94, no. 1, 014506 (2016) [arXiv:1605.02997 [hep-lat]].

[25] K. A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38, 090001 (2014) and 2015 update.

[26] L. Giusti and H. B. Meyer, JHEP 1301, 140 (2013) [arXiv:1211.6669 [hep-lat]].

[27] M. Kitazawa et al. [FlowQCD Collaboration], in preparation.

[28] S. Borsanyi, S. Dürr, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, T. Kurth and L. Lellouch et al., JHEP 1209, 010 (2012) [arXiv:1203.4469 [hep-lat]].

[29] R. Sommer, PoS LATTICE 2013, 015 (2014) [arXiv:1401.3270 [hep-lat]].

[30] M. Lüscher and S. Schaefer, JHEP 1107 (2011) 036 [arXiv:1105.4749 [hep-lat]].

[31] G. McGlynn and R. D. Mawhinney, Phys. Rev. D 90 (2014) no.7, 074502 [arXiv:1406.4551 [hep-lat]].

[32] M. G. Endres, R. C. Brower, W. Detmold, K. Orginos and A. V. Pochinsky, Phys. Rev. D 92 (2015) no.11, 114516 [arXiv:1510.04675 [hep-lat]].

[33] S. Aoki, H. Fukaya, S. Hashimoto and T. Onogi, Phys. Rev. D 76, 054508 (2007) doi:10.1103/PhysRevD.76.054508.

[34] M. Cé, C. Consonni, G. P. Engel and L. Giusti, Phys. Rev. D 92 (2015) no.7, 074502 [arXiv:1506.06052 [hep-lat]].

[35] M. Göckeler, R. Horsley, A. C. Irving, D. Pleiter, P. E. L. Rakow, G. Schierholz and H. Stüben, Phys. Rev. D 73, 014513 (2006) [hep-ph/0502212].