High temperature mediated rocksalt to wurtzite phase transformation in cadmium oxide nano-sheets and their theoretical evidences

Arkaprava Das1*, C. P. Saini1, Deobrat Singh2*, Rajeev Ahuja2, Anumeet Kaur3, Sergei Aliukov4, D. Shukla5 and F. Singh1

1Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi-110067, India
2Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Box 516, 77120, Uppsala, Sweden
3Department of Physics, Guru Nanak Dev University, Amritsar, Punjab-143005, India
4Higher School of Economics and management, South Ural state University, Chelyabinsk, 454080, Russia
5UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017, India

Authors for correspondence: *arkapravadas222@gmail.com
Table 1S: Inter-planner spacing values from XRD pattern

Sample name	Particle diameter (nm)	2θ position	Plane	Inter-planner spacing
CdO500	27	33.1	(101)	2.70 Å
	38.4	(200)		2.34 Å
	55.4	(220)		1.66 Å
CdO700	30	33.1	(101)	2.70 Å
	38.4	(200)		2.34 Å
	55.4	(220)		1.66 Å
CdO900	n.a.	37.1	(101)	2.42 Å
	48.6	(102)		1.87 Å
Figure 1S: Rietveld refinement for CdO500, CdO700, CdO900 thin films are shown at (a), (b), (c) respectively
Table 2S: Rietveld refined parameters for various compositions in the system

(a) Results of the Rietveld refinement for CdO500

Ions	x	y	z	B_{iso} (Å²)
Cd²⁺	0	0	0	1.002
O²⁻	0.5	0.5	0.5	1.075

R-factors: \(R_p = 14.2, R_{wp} = 19.7, R_{exp} = 16.95, \chi^2 = 1.35\)

(b) Results of the Rietveld refinement for CdO700

Ions	x	y	z	B_{iso} (Å²)
Cd²⁺	0	0	0	1.450
O²⁻	0.5	0.5	0.5	0.512

R-factors: \(R_p = 17.6, R_{wp} = 22.8, R_{exp} = 21.18, \chi^2 = 1.16\)

(c) Results of the Rietveld refinement for CdO900

Ions	x	y	z	B_{iso} (Å²)
Cd²⁺ (I)	0.33330	0.66670	0.99960	1.100
Cd²⁺ (II)	0.66670	0.33330	0.49960	1.100
O²⁻ (I)	0.33330	0.66670	0.38530	0.886
O²⁻ (II)	0.66670	0.33330	0.88530	0.886

R-factors: \(R_p = 24.5, R_{wp} = 31.9, R_{exp} = 25.43, \chi^2 = 1.57\)
Table 3S: Fitting parameters for O 1s and Cd 3d XPS spectra

	peak position	peak FWHM	peak area	CdO$_500$ 2nd etching peak position	peak FWHM	peak area	CdO$_500$ 4th etching peak position	peak FWHM	peak area
Cd(OH)$_2$/CdCO$_3$	532.07	1.74	12285	531.7	2.05	5497	531.4	2.1	5540
CdO	528.9	1.12	1930	529.0	0.86	6555	529.1	0.96	9903
CdO$_2$	529.6	0.87	310.9	529.6	1.28	4707	529.7	0.77	1497
Cd(OH)$_2$/CdCO$_3$	532.08	1.76	12105	531.2	2.61	8196	531.1	3.22	12902
CdO	528.9	1.12	1940	529.8	0.91	1498	529.7	0.58	656
CdO$_2$	529.6	0.88	299	529.6	1.06	1498	529.7	0.58	656
Cd(OH)$_2$/CdCO$_3$	531.8	1.45	8509	531.7	1.44	8303	531.8	1.40	8106
CdO	530.1	1.57	16502	530.1	1.56	17301	530.2	1.59	18782
CdO$_2$	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Cd(OH)$_2$/CdCO$_3$	404.2	1.19	14519	404.4	1.0	51130	404.4	1.04	52390
CdO	405.2	1.21	6296	405.3	1.6	39863	405.3	1.6	43184
CdO$_2$	405.9	1.22	19820	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Cd(OH)$_2$/CdCO$_3$	405.9	1.22	19820	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
CdO	404.5	1.19	14519	404.4	1.07	50265	404.4	1.38	46065
CdO$_2$	405.5	1.21	6296	405.3	1.6	43076	405.5	1.37	33030
CdCO$_3$/Cd(OH)$_2$	406.2	1.22	19820	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
CdO	405.5	1.21	6296	405.3	1.6	43076	405.5	1.37	33030
CdO$_2$	405.5	1.22	19820	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Figure 2S: Depth profiling for CdO500, CdO700, CdO900 thin films
Figure 3S: Section analysis of CdO500, CdO700, CdO900 thin films with nanoscope software
Figure 4S: Schematic illustration of nanosheet formation