Clinical Outcomes Used in Clinical Pharmacy Intervention Studies in Secondary Care

Lene Juel Kjeldsen 1,*, Charlotte Olesen 2, Merete Kjaer Hansen 3 and Trine Rune Hogh Nielsen 4

1 The Danish Research Unit for Hospital Pharmacy, Amgros I/S, 2100 Copenhagen, Denmark
2 The Hospital Pharmacy, Central Denmark Region, 8000 Aarhus, Denmark; CHAOLN@auh.rm.dk
3 Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; mekjha@cancer.dk
4 Region Zealand Hospital Pharmacy, 4700 Næstved, Denmark; trn@regionsjaelland.dk
* Correspondence: ljk@amgros.dk; Tel.: +45-8871-3023; Fax: +45-8871-3008

Academic Editor: Jeffrey Atkinson
Received: 10 March 2017; Accepted: 15 May 2017; Published: 20 May 2017

Abstract: The objective was to investigate type, frequency and result of clinical outcomes used in studies to assess the effect of clinical pharmacy interventions in inpatient care. The literature search using Pubmed.gov was performed for the period up to 2013 using the search phrases: “Intervention(s)” and “pharmacist(s)” and “controlled” and “outcome(s)” or “effect(s)”. Primary research studies in English of controlled, clinical pharmacy intervention studies, including outcome evaluation, were selected. Titles, abstracts and full-text papers were assessed individually by two reviewers, and inclusion was determined by consensus. In total, 37 publications were included in the review. The publications presented similar intervention elements but differed in study design. A large variety of outcome measures (135) had been used to evaluate the effect of the interventions; most frequently clinical measures/assessments by physician and health care service use. No apparent pattern was established among primary outcome measures with significant effect in favour of the intervention, but positive effect was most frequently related to studies that included power calculations and sufficient inclusion of patients (73% vs. 25%). This review emphasizes the importance of considering the relevance of outcomes selected to assess clinical pharmacy interventions and the importance of conducting a proper power calculation.

Keywords: outcomes; clinical pharmacy; hospital; effect; review

1. Introduction

Suboptimal choice of outcomes to assess health care interventions may result in lack of implementation of potentially effective interventions, which could have benefitted the care of patients.

Traditionally, new interventions and services in health care have been implemented if they seemed reasonable, but in recent times with scarce resources, documentation of (cost) effect is essential before implementing a new service. Clinical pharmacy services, including medication reviews, are among many other interventions exposed to documentation of the suggested effect, and indeed, systematic reviews have found some effect of clinical pharmacist interventions in inpatient care [1–5]. However, evaluation of clinical pharmacy services is challenging due to the interventions often being complex and non-specific, and the purpose is often to optimise the use of medications, reduce medication-related risks and improve symptom control [6,7]. Consequently, choice of outcome measures is difficult.

However, choice of outcomes is not the only challenge when conducting outcome research; other essential components include quality of the study, study design, type of intervention, the patient population, etc. [8]. The Donabedian framework is frequently used to evaluate clinical pharmacy services. The model consists of three elements; structure, process and outcome. Structure is the context...
in which the intervention is delivered, process describes the actions that make up the intervention, and outcomes refers to the effects of the intervention on health status of patients and populations [9,10]. However, most attention is usually given to outcome measures [8,11,12].

Outcomes can be categorized into “hard” endpoints, such as mortality and hospital admissions, and “soft” endpoints, such as quality of life, drug-related problems and patient satisfaction. It has been argued that it is essential to select outcomes on which the intervention is likely to have an effect, and that hard endpoints may not be optimal outcome measures, because clinical pharmacy interventions are unlikely to result in changes in these measures [7,8]. In addition, it is essential that a sufficient number of patients are included in the studies (sample size), and a proper power calculation has been performed to ensure knowledge of the minimum number of patients required to detect statistical significance [13]. However, previously no review of the literature has been conducted with the main aim to describe clinical outcomes used in clinical pharmacy intervention studies including the related results reported.

The aim was to investigate type, frequency and result of clinical outcomes used in studies to assess the effect of clinical pharmacy interventions in inpatient care.

2. Materials and Methods

2.1. Search Strategy

When conducting our literature search, we sought to identify intervention studies performed by clinical pharmacists, which had been evaluated using clinical outcome measures. A literature search was performed using the search phrases: “Intervention(s)” and “pharmacist(s)” and “controlled” and “outcome(s)” or “effect(s)”.

Publications were included if they:

• described primary research
• were published in English
• described interventions delivered by clinical pharmacists

Publications were excluded if they:

• were not published as a research paper (e.g., reviews, books, congress abstracts, posters, reports, protocols)
• did not include outcome data
• presented data for a secondary study, where the original study had been published previously
• had been conducted in primary care
• included 100 patients or less

The search was performed for the period up to 2013 using PubMed (TRHN).

2.2. Assessment

All titles and publication types from the original search were reviewed independently by TRHN and LJK. Subsequently, abstracts were reviewed by the two authors. Thereafter, full-text articles were reviewed independently by CO and LJK. Finally, CO and LJK extracted data form the studies independently. At every step, disagreements were resolved by consensus. The data extracted were details regarding the study, the intervention, outcomes and power calculation.

For each included study, the variable used for power calculation was categorized as “primary outcome” irrespective of whether it was stated to be the “primary outcome” by the authors. Also, when more than one variable was stated to be “primary outcome” by the authors, only variables supported by power calculations were categorized as “primary outcome”. In contrast, if no power calculation was presented and no primary endpoint was stated, all outcomes were categorized as “secondary outcomes” irrespective of the authors stating otherwise.
Some measures were excluded due to assessing qualitative aspects or being descriptive: Number of drugs, drug-related problems (DRPs), acceptance rates, medication knowledge if not assessed using a validated tool, drug burden index, inhalation technique, medication errors unless linked to an event/clinical assessment, drug attitude, quality of well-being, appropriateness of prescribing of individual drugs, self-reported asthma symptoms.

3. Results

3.1. Study Selection

A total of 672 studies were identified in the PubMed search (Figure 1). After removing 11 papers due to duplicate publication and non-English language, in- and exclusion criteria were applied to 661 unique publication titles and subsequently to 432 unique abstracts (Figure 1). Of these, 241 full-text publications were reviewed, and 204 were excluded due to: Study conducted in primary care ($n = 90$), outcomes not clearly presented ($n = 7$), ≤ 100 pts ($n = 98$), and secondary article ($n = 9$). Finally, 37 unique publications were included in the review [14–50]. Two publications were based on one study, but since different outcome measures were presented in the respective papers, both were included [33,34].

![Image of flow chart](image-url)
3.2. Description of Studies

The included studies had been conducted in 16 countries in Europe, Asia, Australasia, Middle East and North America, and most frequently in the US with ten studies (Table 1). The majority of the studies had been conducted at one hospital \((n = 30) \), but four studies included patients from three hospitals and one from 10 hospitals (Table 1). Number of patients included in the study ranged from 105 to 4290 (Table 1). The type of wards and study populations varied considerably, but the majority included patients were suffering from a chronic disease (Table 1).

A traditional randomized, controlled design was applied for the majority \((n = 26) \) of the studies (Table 2). The interventions provided appeared similar but differed in types of elements. However, more than half of the studies \((n = 20) \) included a combination of patient counselling, medication review and interdisciplinary collaboration (Table 2). Only two studies were finalised with no further follow up at discharge \([38,48]\) (Table 2). All other studies presented interventions which included post-discharge contact with health care professionals or follow-up for effect evaluation—or both—and two studies described interventions with a duration of two years \([20,49]\).

3.3. Description of Outcome

The included studies used a plethora (135) of outcome measures to evaluate their interventions ranging from two \([15,46]\) to 13 \([14]\) (Table 3). The most prevalent measures included laboratory measures, clinical measures/assessments by physician and health care service use, however, a large variety of measures within the categories were used. A mixture of generic and disease specific measures was reported (Table 3). Examples of generic measures include medication adherence assessed by the 4-item Morisky Scale, health-related quality of life assessed by SF-36, and service use assessed by LOS in hospital. Examples of disease specific measures comprise knowledge assessed by Malaysian Osteoporosis Knowledge Tool (MOKT), health-related quality of life assessed by QUALEFFO and service use assessed by Number of CHF hospitalizations within 6 months of enrollment.

Some of the studies had selected a primary outcome measure directly related to medication use and knowledge \([21,32,34,36,41,44,45,47,50]\), while others chose measures which may be consequences of the interventions (e.g., laboratory tests, hospital readmission and mortality \([14,16–18,20,22,23,25–27,29–31,35,38,40–43,49]\)). Adherence, HbA1c values, LDL values, emergency department visits, and hospital readmission were used as primary as well as secondary outcomes.
Table 1. Description of the studies.

Author	Setting and Country	Patient Population	No. of Included Patients	No. of Patients Analysed at Endpoint	Mean Age (Years)	Gender, Male (%)		
Al Mazroui et al. (2009) [14]	General medical wards, endocrinology and medical outpatient clinics, 1 Hospital, UAE	Pts with type 2 diabetes	240 pts: IG: 120 pts CG: 120 pts	234 pts: IG: 117 CG: 117	48.7, n = 120	49.9, n = 120		
Albsoul-Younes et al. (2011) [15]	1 family medicine clinic, 1 hospital, Jordan	Pts with uncontrolled hypertension	266 pts: IG: 136 pts CG: 130 pts	253 pts: IG: 130 pts CG: 123	56.3, n = 130	57.5, n = 123		
Barker et al. (2012) [16]	1 hospital, Australia	Pts with chronic heart failure	120 pts: IG: 64 pts CG: 56 pts	87 pts: IG: 48 pts CG: 39 pts	73.0, n = 64	72.0, n = 56		
Bladh et al. (2011) [17]	2 internal medicine wards, 1 hospital, Sweden	All patients admitted to the wards on week days	400 pts: IG: 199 pts CG: 201 pts	345 pts: IG: 164 pts CG: 181	84 (70), n = 120	84 (70), n = 120		
Chan et al. (2012) [18]	1 diabetics clinic, 1 hospital, Hong Kong	Pts with type 2 diabetes	105 pts: IG: 51 pts CG: 54 pts	105 pts: IG: 51 pts CG: 54 pts	56.2, n = 51	56.2, n = 54		
Chiu et al. (2008) [19]	Outpatients, 1 hospital, Taiwan	Pts with ischemic stroke	160 pts: IG: 80 pts CG: 80 pts	Missing	65.7, n = 80	64.8, n = 80		
Chung et al. (2011) [20]	1 lipid clinic (medical outpatient), 1 hospital, Hong Kong	Pts with chronic dyslipidaemia	300 pts: IG: 150 pts CG: 150 pts	300 pts: IG: 150 pts CG: 150 pts	56.2, n = 150	57.9, n = 150		
Crotty et al. (2004) [21]	3 hospitals, Australia	Elderly pts awaiting transfer from hospital to a long term residential care facility for the first time	110 pts: IG: 56 pts CG: 54 pts	88 pts: IG: 44 pts CG: 44	82.0	83.4	41%	37%
Dedhia et al. (2009) [22]	General medicine wards, 3 hospitals, USA	Pts aged ≥65 years	422 pts: IG: 185 pts CG: 237 pts	422 pts: IG: 185 pts CG: 237 pts	76.7	77.3	72 (39), n = 185	94 (40), n = 237
Gillespie et al. (2009) [23]	2 acute internal medicine wards, 1 hospital, Sweden	Pts admitted to the wards	400 pts: IG: 199 pts CG: 201 pts	368 pts: IG: 182 pts CG: 186 pts	86.4, n = 182	87.1, n = 186	77 (42), n = 182	75 (40) n = 186
Hammad et al. (2011) [24]	6 family medicine outpatient clinics, 1 Hospital, Jordan	Pts with metabolic syndrome	202 pts: IG: 112 pts CG: 90 pts	199 pts: IG: 110 pt CG: 89 pts	56.0, n = 110	57.4, n = 89	44 (40), n = 110	32 (36), n = 89
Hellström et al. (2012) [25]	3 internal medicine wards, 1 hospital, Sweden	All patients hospitalised at the three study wards	4290 pts: IG: 1325 CG: 2965	3974 pts: IG: 1216 CG: 2758	78.3	79.5	46%	45%
Author	Setting and Country	Patient Population	No. of Included Patients	No. of Patients Analysed/at Endpoint	Mean Age (Years)	Gender, Male (%)		
----------------------------	-------------------------------------	---	--------------------------	--------------------------------------	-----------------	------------------		
Jack et al. (2009) [26]	1 hospital, USA (entire hospital)	Pts admitted to the hospital, ≥18 years and English-speaking	749 pts: IG: 373 pts, CG: 376 pts	738 pts: IG: 370 pts, CG: 386 pts	50.1, n = 373	195 (52), n = 373		
Jackson et al. (2004) [27]	1 hospital, Australia (entire hospital)	Pts initiated on warfarin in hospital	128 pts: IG: 60 pts, CG: 68 pts	127 pts: IG: 59 pts, CG: 68 pts	Median: 70, n = 60	Median: 72.5, n = 68		
Jacobs et al. (2012) [28]	An ambulatory general internal medicine setting, 1 Clinic, USA	Pts with type 2 diabetes	396 pts: IG: 195 pts, CG: 201 pts	164 pts: IG: 72 pts, CG: 92 pts	62.7, n = 72	49 (68), n = 72		
Jarab et al. (2012a) [29]	1 outpatient COPD Clinic, 1 Hospital, Jordan	Pts with COPD	133 pts: IG: 66 pts, CG: 67 pts	127 pts: IG: 63 pts, CG: 64 pts	Median: 61, n = 66	Median: 64, n = 67		
Jarab et al. (2012b) [30]	outpatient diabetes clinic, 1 hospital, Jordan	Pts with type 2 diabetes	171 pts: IG: 85 pts, CG: 86 pts	164 pts: IG: 77 pts, CG: 79 pts	63.4, n = 85	68%, n = 85		
Kirwin et al. (2010) [31]	1 hospital-based, primary care practice, 1 hospital, USA	Pts with diabetes (type 1 and 2)	346 pts: IG: 171 pts, CG: 175 pts	301 pts: IG: 150 pts, CG: 151 pts	62.9, n = 150	29% n = 150		
Kripalani et al. (2012) [32]	2 medical centers, 2 hospitals, USA	Pts with acute coronary syndromes or acute decompensated heart failure	862 pts: IG: 430 pts, CG: 432 pts	851 pts: IG: 423 pts, CG: 429 pts	61, n = 423	250 (59), n = 423		
Lai et al. (2013) [33]	1 osteoporosis clinic, 1 hospital, Malaysia	Pts with postmenopausal osteoporosis	198 pts: IG: 100 pts, CG: 98 pts	177 pts: IG: 88 pts, CG: 89 pts	65.1, n = 100	Missing		
Lai et al. (2011) [34]	1 osteoporosis clinic, 1 hospital, Malaysia	Pts with postmenopausal osteoporosis	198 pts: IG: 100 pts, CG: 98 pts	177 pts: IG: 88 pts, CG: 89 pts	65.1, n = 100	Missing		
Lee et al. (2009) [35]	3 Out-Patient Departments, 3 hospitals, Hong Kong	Pts with hyperlipidaemia	119 pts: IG: 59 pts, CG: 60 pts	118 pts: IG: 58 pts, CG: 60 pts	63, n = 58	34 (59), n = 58		
Lim et al. (2004) [36]	1 geriatric outpatient clinic, 1 hospital, Singapore	Elderly outpatients with risk factors of non-compliance	136 pts: IG: 68 pts, CG: 68 pts	126 pts: IG: 64 pts, CG: 62 pts	79.6, n = 64	39%, n = 64		
Majid et al. (2011) [37]	3 healthcare systems, USA	Pts with uncontrolled BP	338 pts: IG: 174 pts, CG: 164 pts	283 pts: IG: 138 pts, CG: 145 pts	65.1, n = 138	67%, n = 138		
Table 1. Cont.

Author	Setting and Country	Patient Population	No. of Included Patients	No. of Patients Analysed/at Endpoint	Mean Age (Years) IG	Mean Age (Years) CG	Gender, Male (%) IG	Gender, Male (%) CG
McCoy et al. (2012) [38]	1 hospital, USA (entire hospital)	Pts with an acute 0.5 mg/dL change in serum creatinine over 48 h and a nephrotoxic or renally cleared medication order	540 pts: IG: 262 pts CG: 278 pts	398 pts IG: 200 pts CG: 196 pts	60.7, n = 200	58.3, n = 196	53%, n = 200	61%, n = 196
Mergenhagen et al. (2012) [39]	2 general medical units, 1 hospital, USA (entire hospital)	Pts admitted for at least 24 h to one of the study units	359 ams: IG: 111 ams (pharmacist) 248 ams (physician)	218 ams: IG: 102 ams (pharmacist) 116 ams (physician)	PharmG: 68, n = 102	PhysG: 68, n = 116	PharmG: 108%, n = 102	PhysG: 98%, N = 116
Morgado (2011) [40]	1 hospital care hypertension/dyslipidemia outpatient clinic, 1 hospital, Portugal	Pts with essential hypertension	197 pts: IG: 98 pts CG: 99 pts	Missing	58.3, n = 99	60.7, n = 98	44 (45), n = 99	35 (35), n = 98
Murray et al. (2007) [41]	1 ambulatory care practice, USA	Pts with heart failure, low-income, ≥50 years	314 pts: IG: 122 pts CG: 192 pts	270 pts: IG: 106 pts CG: 164 pts	61.4, n = 122	62.6, n = 192	39 (32), n = 122	65 (34), n = 192
Sadik et al. (2005) [42]	General medical wards, cardiology and medical outpatient clinics, 1 hospital, UAE	Pts with heart failure	221 pts IG: 109 pts CG: 112 pts	208 pts IG: 104 pts CG: 104 pts	58.6, n = 104	58.7, n = 104	52 (50), n = 104	52 (50), n = 104
Schnupper et al. (2006) [43]	General medicine service, 1 hospital, USA	Pts discharged home	178 pts: IG: 92 pts CG: 84 pts	IG: 79, CG: 73 pts	60.7, n = 92	57.7, n = 84	33%, n = 92	35%, n = 84
Spinewine et al. (2007) [44]	1 acute Geriatric Evaluation and Management (GEM) unit, 1 hospital, Belgium	Pts aged ≥70 years	203 pts	186 pts IG: 96 pts CG: 90 pts	82.4, n = 96	81.9, n = 90	28%, n = 96	33%, n = 90
Stango et al. (2013) [45]	1 medical Center, 1 hospital, Germany	Pts with chronic hypertension, diabetes, and/or dyslipidemia	240 pts IG: 132 pts CG: 108 pts	162 pts IG: 69 pts CG: 73 pts	64.4, n = 129	63.2, n = 108	81 (63), n = 129	90 (83), n = 108
Suppapitiporn et al. (2005) [46]	1 endocrine Clinic, 1 hospital, Thailand	Pts with type 2 diabetes	360 pts: IG: 180 pts IG 1 = 50 pts IG 2 = 50 pts IG 3 = 30 pts IG 4 = 50 pts CG: 180	Missing	61.4, n = 180	59.9, n = 180	59 (33), (n = 180)	64 (36), n = 180
Tsuyuki et al. (2004) [47]	10 hospitals, Canada	Pts with heart failure	276 pts: IG: 140 pts CG: 136 pts	Missing	71, n = 140	72, n = 136	81 (58), n = 140	79 (58), n = 136
Table 1. Cont.

Author	Setting and Country	Patient Population	No. of Included Patients	No. of Patients Analysed at Endpoint	Mean Age (Years) IG	Mean Age (Years) CG	Gender, Male (%) IG	Gender, Male (%) CG
von Gunten et al. (2005) [48]	General medical wards and intensive care units, 3 hospitals, Switzerland	Pts receiving antibiotic treatment	1200 pts: IG 600 pts, CG 600 pts	Missing	Different categories	Different categories	Different categories	Different categories
Wu et al. (2006) [49]	Specialist medical clinics, 1 hospital, Hong Kong	Non-compliant pts with polypharmacy	442 pts: IG 219 pts, CG 223 pts	Missing	71.2, n = 219	70.5, n = 223	108 (49), n = 219	107 (48), n = 223
Zhang et al. (2012) [50]	1 pediatric unit, 1 hospital, China	Pediatric pts with nerve system disease, respiratory system disease or digestive system disease	160 pts: IG 80 pts, CG 80 pts	150 pts: IG 76 pts, CG 74 pts	Age groups	Age groups	43 (54), n = 80	44 (55), n = 80

IG = Intervention group, CG = Control group.
Table 2. Description of study designs and intervention elements used in the included studies.

Author	Intervention Elements	Study Design	Duration of Study (Intervention Period)/Monitoring	Post Intervention Follow-up
Al Mazroui et al. (2009) [14]	X X	RCT	Visits at 4 months, 8 months and 12 months	No further follow-up
Albsoul-Younes et al. (2011) [15]	X X	RCT	Regular monthly visits to the clinic during 6 months	No further follow-up
Barker et al. (2012) [16]	X X X	X RCT	Home visits within 96 h of discharge, at 1 and 6 months	No further follow-up
Bladh et al. (2011) [17]	X X X	X RCT	Intervention delivered at each clinic visit during 9 months after enrolment	6-month follow-up
Chiu et al. (2008) [19]	X X	Stratified RCT	The intervention was delivered monthly during 6 months	No further follow-up
Chung et al. (2011) [20]	X X	Prospective controlled trial	3 clinic visits and monthly telephone follow-ups during 24 months	No further follow-up
Crotty et al. (2004) [21]	X X	RCT	1 interdisciplinary, cross-sectorial meeting at the long term care facility 14–28 days after discharge	8-week follow-up
Dedhia et al. (2009) [22]	X X X	Quasi-experimental pre–post study design	1-week and 30-day follow-up	12-month follow-up
Gillespie et al. (2009) [23]	X X X	RCT	1 follow-up telephone 2 months after discharge	No further follow-up
Hammad et al. (2011) [24]	X X X	RCT	The intervention was delivered monthly during 6 months	No further follow-up
Author	Intervention Elements	Study Design	Duration of Study (Intervention Period)/Monitoring	Post Intervention Follow-up
--------	-----------------------	--------------	--	----------------------------
Hellström et al. (2012) [25]	X X X X X	Prospective, controlled study	1 follow-up phone call by clinical pharmacist 2 to 4 days after discharge	6-month follow-up
Jack et al. (2009) [26]	X X X X X	RCT	1 follow-up phone call by clinical pharmacist 2 to 4 days after discharge	30-day follow-up
Jackson et al. (2004) [27]	X X X X Open-label RCT	4 home visits by clinical pharmacist on alternate days after discharge	90-day follow-up	
Jacobs et al. (2012) [28]	X X X Prospective, randomized, clinical practice study		12-month follow-up	
Jarab et al. (2012a) [29]	X X RCT	8-week telephone follow-up call by clinical pharmacist	6-month follow-up	
Jarab et al. (2012b) [30]	X X X RCT	1 telephone follow-up 1-4 days after discharge	30-day follow-up	
Kirwin et al. (2010) [31]	X X X RCT	Monthly follow-up via telephone calls for the first 6 months, then every 3 months until month 12	No further follow-up	
Kripalani et al. (2012) [32]	X X X X RCT	Monthly follow-up via telephone calls for the first 6 months, then every 3 months until month 12	No further follow-up	
Lai et al. (2013) [33]	X X X RCT			
Lai et al. (2011) [34]	X X X RCT			
Table 2. Cont.

Author	Intervention Elements	Study Design	Duration of Study (Intervention Period)/Monitoring	Post Intervention Follow-up
Lee et al. (2009) [35]	X X X X X	RCT	A telephone follow-up every 4 weeks and a follow-up interview on the date of the following physician visit within 16 weeks.	No further follow-up
Lim et al. (2004) [36]	X X	RCT		2-month follow-up
Magid et al. (2011) [37]	X X X X X	RCT	6-month follow-up	No further follow-up
McCoy et al. (2012) [38]	X X	Randomized clinical trial		No follow-up
Mergenhagen et al. (2012) [39]	X	Quasi-experimental study, Subgroup analysis of a prospective, nonrandom, analytic cohort study with concurrent controls	1-month follow-up	
Morgado (2011) [40]	X X X	RCT	3, 6 and 9-month follow-up	No further follow-up
Murray et al. (2007) [41]	X X	RCT	A pharmacist provided a 9-month multilevel intervention	3-month follow-up
Sadik et al. (2005) [42]	X X X	RCT	Clinic visits at 3, 6, 9 and 12 months	No further follow-up
Schnupper et al. (2006) [43]	X X X	RCT	A follow-up telephone call 3 to 5 days after discharge	30-day follow-up
Spinewine et al. (2007) [44]	X X X	RCT		1 month, 3 months, and 1 year follow-up
Table 2. Cont.

Author	Intervention Elements	Study Design	Duration of Study (Intervention Period)/Monitoring	Post Intervention Follow-up
Stange et al. (2013) [45]	X X X	Prospective, semi-randomized study	6-week follow-up	
Suppapitiporn et al. (2005) [46]	X X	RCT	Follow-up visits at 3 and 6 months	No further follow-up
Tsuyuki et al. (2004) [47]	X X	Mixed design - partly RCT: Stage 1: In-hospital intervention in all patients	Follow-up at 2 weeks, 4 weeks, then monthly for 6 months after discharge	No further follow-up
von Gunten et al. (2005) [48]	X X	Pre-post study. Randomised at hospital level		No follow-up
Wu et al. (2006) [49]	X X	RCT	6-8 telephone calls and a finalizing visit during a 2-year follow-up	No further follow-up
Zhang et al. (2012) [50]	X X X	RCT	Patients were usually interviewed on phone when discharge drugs were half finished	2-week follow-up

* Patient counselling/education covers a large variety of activities including discharge counselling, patient education regarding medication and lifestyle etc. These activities are, however, often vaguely described and are consequently difficult to further categorise. ** Group education of patients.
Table 3. Outcome measures used in the included studies. The numbers in the cells are reference numbers.

Measure	Primary Outcome	Secondary Outcome		
	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention		
	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention		
Medication regimen characteristics				
Unnecessary drug use	44	1		
Duration of antibiotic treatment	48	1		
Composite score (dose, frequency and indication)	36	1		
Unplanned cessation of warfarin	27	1		
Medication regimen intensity	37	1		
Medication complexity	45	1		
Drug specific quality indicators	17	1		
72-h medication-prescribing risk score	39	1		
Medication appropriateness index (MAI)	19, 44	2		
Beers criteria	44	1		
Assessing Care of Vulnerable Elders (ACOVE) underuse	44	1		
Medication discrepancies	43	1		
The number of clinically important medication errors per patient during the first 30 days after hospital discharge	32	1		
Time to provider modification or discontinuation of targeted nephrotoxic or renally cleared medications	38	1		
Medication beliefs	29	1		
Adherence to medication				
Medication adherence/compliance self-reported (no validated tool)	50	14, 36, 40, 42	5	
Medication adherence/compliance self-reported “Medication Adherence Rating Scale” (MARS-D)	45	1		
Medication adherence/compliance self-reported (4-item Morisky Scale)	29, 30	2		
Medication adherence/compliance objectively assessed	41	18	4	
Medication adherence/compliance objectively assessed and objectively assessed	34	43	3	
Persistence	34	1		
Measure	Primary Outcome	Secondary Outcome	Total	
--	-----------------	-------------------	-------	
	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention
Adherence to guidelines				
British National Formulary	14			
Lifestyle advice adherence	14, 42			
Adherence to guidelines				
Adherence to screening for retinopathy, neuropathy, and microalbuminuria	28			
Annual (LDL-C) testing				
Annual urine microalbumin testing	31			
Rates of pneumococcal vaccination	31			
Change in rates of semiannual A1c testing from baseline to 30-day follow-up	31 B			
Frequency of primary care providers’ follow-up within 30 days of discharge	26			
Annual eye exam	31			
Adverse drug events/reactions				
ADE (total)	39	21, 43	3	
Potential adverse drug events				
Potential Acute kidney injury (AKI) ADEs	38 A			
Acute kidney injury (AKI) related ADEs	38 A			
Preventable ADEs	43 B			
ADEs from admission prescribing errors	39			
Clinically important ADEs	32			
Adverse drug reactions				
Residual ADRs at month 2	36		1	
Measure	Primary Outcome	Secondary Outcome	Total	
---------	----------------	-------------------	-------	
	Statistical Difference in Favour of Intervention	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention
Laboratory measures				
HbA1c	14, 30 B	18, 28, 46	19, 31	7
Fasting blood glucose	30, 46	19, 24	4	
Postprandial blood glucose	19		1	
Total cholesterol	14, 20, 30, 35	19	5	
HDL	14, 35	18, 20, 24, 30	6	
LDL	35 B	14, 18, 19, 20, 28, 30	31	8
Triglycerides	14, 19, 20, 24, 30, 35	18	7	
The achievement of a therapeutic INR value on day 8 after discharge	27		1	
% patients achieving the ATP III LCL-C goal at the end of the study	20		1	
Urinary albumin-to-creatinine ratio (ACR)			18	1
Clinical measures/assessment by physicians				
BP	14, 15, 19, 24, 30	18, 31, 42	8	
Systolic BP	40		28	2
Diastolic BP	28, 40		2	
BP control	40			1
Achieving BP goals	15		37	2
Pulse			42	1
Waist circumference			24	1
Body weight			24, 42	2
BMI	14	18, 30	3	
Symptoms			42	1
Bone turnover markers (BTMs)			34 A	1
Table 3. Cont.

Measure	Primary Outcome	Secondary Outcome	Total	
	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention
	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention
Clinical measures/assessment by physicians				
Clinical status according to primary physician	36	1		
2-min walk test	42	1		
Forced vital capacity (FVC) measured by spirometer	42	1		
Bleeding events 3 months after discharge	27			
Falls	21	1		
Framingham prediction scores	14	1		
Change in coronary heart disease (CHD) risk	18	1		
Changes in stroke risk	18	1		
Shift from a status of MS to no MS	24	1		
Worsening mobility	21	1		
Worsening behaviours	21	1		
Increased confusion	21	1		
Worsening pain	21	1		
Resource utilization				
Length of stay (LOS) in hospital	47, 49, 50	48	4	
Cardiovascular-related LOS	47	1		
Physician visits	47	1		
Cardiovascular-related Physician visits	47	1		
Emergency department visits/casual department visits	23	47, 49	3	
Emergency department visits (within 3 days)	22			
Emergency department visits (within 30 days)	22			
Emergency visits up to 12 months after discharge	44	1		
Cardiovascular-related Emergency room visits	47	1		
Time to emergency department revisits after discharge	25	1		
Hospital readmission/hospital admission	23	49	44, 47, 50	6
Table 3. Cont.

Measure	Primary Outcome	Secondary Outcome	Total	
	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention
Resource utilization				
30 day readmission rate	22 B			
Drug-related readmissions	23			
Unplanned readmission	27			
Cardiovascular-related Hospital readmissions				
Readmissions to hospital due to anticoagulant-related complications within 90 days of initial discharge	27			
Number of all cause and CHF hospitalization within 6 months of enrolment	16 A			
Number of CHF hospitalization within 6 months of enrolment	16 A			
Days of all cause and CHF hospitalization within 6 months of enrolment	16 A,C			
Days of non-CHF-hospitalization within 6 months of enrolment	16			
Combination of emergency department visits and hospital readmissions	21			
Emergency department visits and hospitalizations within 30 days of discharge	26			
Preventable medication related emergency department visits or readmissions	43			
Exacerbations requiring emergency department care or hospital admission	41			
The combined rate of post-discharge hospital revisits or death (ED visit, hospitalization or death)	25			
Health care utilization (scheduled and unscheduled office visits, urgent care and ED visits, and hospital admissions)	43			
Costs				
Costs	23, 26, 47			
Measure	Primary Outcome	Secondary Outcome	Total	
---------	-----------------	-------------------	-------	
	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention	Statistical Difference in Favour of Intervention	No Statistical Difference in Favour of Intervention
Resource utilization				
Total direct costs	41	1		
Cost of antibiotic treatment	48	1		
Cost of drugs and hospitalization	50	1		
Cardiovascular-related Cost	47	1		
Cost-effectiveness	18	1		
Cost avoidance	36	1		
Mortality				
Mortality (general)	23, 27, 44	3		
Mortality within 6 months of enrolment	16 A		1	
Time from randomisation to death from any causes	49		1	
Event-free survival	25		1	
Quality of Life/Health related quality of life				
Short form 36 (SF 36)	14, 16, 42	16, 42	5	
Short form 12 (SF 12)		45	1	
EuroQol 5 dimension (EQ-5D)	17 B		1	
Self-rated global health	17	17	2	
Assessment of quality of life (AQoL)	16		1	
Minnesota living with heart failure questionnaire (MLHF)	42		1	
St George Respiratory Questionnaire (SGRQ)	29 B		1	
Chronic Heart Failure Questionnaire	41		1	
Quality of Life Questionnaire of the European Foundation for Osteoporosis (QUALEFFO)	33		1	
Patient knowledge				
Patient medication knowledge	36	14, 18	42	4
COPD knowledge	29		1	
Measure	Primary Outcome	Secondary Outcome	Total	
--	-----------------	-------------------	---------------	
Resource utilization				
Patients’ knowledge of target BP values and of hypertension risks	40		1	
Malaysian Osteoporosis Knowledge Tool (MOKT)	33		1	
Satisfaction and perception				
Satisfaction with information about medications	44, 45		2	
Patient satisfaction with pharmacy services	41		1	
Osteoporosis Patient Satisfaction Questionnaire (OPSQ)	33		1	
Satisfaction with hospitalization and discharge processes	43		1	
Coleman’s Care Transition Measures	22		1	
Patient perception (perception of severity of illness, usefulness of treatment and appropriateness of the number of medications)	36		1	
Other				
Self-perceived health status	22		1	
Identification of index discharge diagnosis	26		1	
Identification of primary care provider name	26		1	
Self-reported preparedness for discharge	26		1	
Self-care activities (Diabetes Self-Care Activities questionnaire)	30		1	
Total	26	16	96	

A: Sample size calculation missing for: 15, 16, 19, 24, 25, 28, 33, 34, 37, 38, 39, 46, 48; B: Sample size not achieved for: 17, 22, 29, 30, 31, 35, 43, 45; C: Difference in favour of control group.
No apparent pattern was established among primary outcome measures with significant effect in favour of the intervention.

More than half \((n = 21)\) of the studies did not present any power calculation \((n = 13)\) or did not include sufficient patients according to their power calculation \((n = 8)\) (Table 3). Of the 26 primary outcome measures showing a statistically significant effect, 73% reported a power calculation and included sufficient patients according to the power calculation. Only 25% of the 16 primary outcome measures with no statistically significant effect reported a power calculation and included a sufficient number of patients (Table 3).

4. Discussion

The literature review included 37 publications worldwide describing quite similar intervention elements but differing in study design. A large variety of outcome measures had been used to evaluate the effect of the interventions; most frequently clinical measures/assessments by physicians and health care service use. No apparent pattern was established among primary outcome measures with significant effect in favour of the intervention, but positive effect was most frequently related to studies that included power calculations and sufficient inclusion of patients.

4.1. Outcome Measures

The large variety of outcomes used in the included studies may be explained by the lack of consensus of optimal outcome measures for this type of intervention [11,12].

4.2. Generic Versus Disease Specific Tools

Since the interventions are usually complex and the patient populations are often heterogeneous, optimal outcome measures to ensure comparison between studies should be generic. Indeed, numerous generic measures were included in the studies (e.g., adherence measures, ADEs, service use and HRQoL). However, diverging methods were used (e.g., for assessment of adherence (self-reported and objective)), a variety of elements were used (e.g., to assess ADEs (potential and preventable)), different time periods were used (e.g., for assessment of emergency department visits (3 days, 30 days, 12 months)) and various tools were used (e.g., for assessment of HRQoL (SF 12, SF 36, self-rated global health)). Even if similar interventions are selected, comparison between the studies would be complicated by differences in type of outcome measure—and design, inclusion criteria, etc.

The large number of disease-specific tools reported as outcome measures may derive from an expectation of these being more relevant for the particular cohort (diversity of patients across studies)—and perhaps an expectation of these measures being more sensitive to change, than generic measures.

Mortality/survival was reported as outcome measures in six studies. The only study providing a power calculation and including sufficient patients showed a positive effect on “Time from randomization to death from any cause” [49]. The continuous variable may be an easier way to evaluate a rare event such as mortality, which usually requires large sample sizes or long follow-up periods to ensure sufficient power [7,8]. However, the aspect of time of follow up is important, since there is a risk of a short follow up resulting in insufficient data (few patients have died) as well as excessive (most patients have died), and this time period is likely to vary according to the characteristics of the included patients. This further complicates the comparison between studies. Hence, survival analysis may be the optimal measure for this outcome. When no effect on an outcome is found in studies with insufficient power, it may be interpreted as “evidence of absence” as in a Cochrane review, while the interpretation should be “absence of evidence” due to lack of power in the included studies [2,51].
4.3. Primary Versus Secondary Outcomes

Primary outcomes are used to determine the effect of the intervention, while secondary outcomes evaluate additional effects of the intervention. However, power calculation is only done on primary outcome measures [13]. The number of outcome measures used in the included studies varied considerably (2–13), which may be explained by different needs to determine additional effects of the individual interventions. Laboratory measures, clinical measures/assessments by physician and health care service use were prevalent measures, which may be explained by these measures often being documented as a part of routine patient assessment, and hence easy to collect. Still, they seem to be relevant outcome measures to assess the effect of the studies.

4.4. Target Groups for Results

Another reason for selecting several outcome measures may be the importance of evaluating the intervention with respect to different stakeholders. The importance of an effect may vary according to the perspective, (e.g., patient, care-givers, health care professionals, decision makers and researchers) may not agree on, which outcome measure is the most important [8].

4.5. Relevant Outcomes

Further discussions about which outcomes may be relevant to quantify the desired effects of clinical pharmacy interventions are needed. It is important to consider whether an effect can indeed be expected on the selected outcomes [8,11,12]. New approaches to standardize outcome measures in clinical trials are emerging, and the results of this review confirm the need for a standard set of core outcome measures [11,12]. If the aim of clinical pharmacist interventions is to improve symptom control, reduce medication-related risks, improve benefits of medication use and prevent development of conditions, it is possible that outcomes such as preventable adverse drug events, measures directly related to medication use and knowledge, and other soft endpoints are likely to be more appropriate than hard endpoints such as mortality and hospital readmission, since they measure aspects which may be affected by the interventions [8]. A variety of these measures have been used as primary outcome measures in the included studies with varying results.

Finally, it should be kept in mind that even more outcomes may have been used to assess clinical pharmacy interventions, however, a publication bias may exist, which may have led to exclusion of some non-significant or negative outcomes.

4.6. Implementation Rate of the Clinical Pharmacy Intervention

Clinical pharmacy interventions usually include provision of professional knowledge to a team of health care professionals or directly to the patient [1,7]. The processes involved when providing knowledge are quite complex, and consequently it is often difficult to measure the pharmacist’s contribution to a multidisciplinary team [8]. Hence, applying process measures as suggested by the Donabedian model is useful to document the tasks actually provided by the clinical pharmacist. Frequently used process measures include type and number of drug-related problems (DRPs) identified, the acceptance rate of suggested recommendations made by the clinical pharmacist to address these DRPs, and implementation rates [1]. However, the acceptance rates and implementation rates of suggested recommendations vary considerably between studies, with usually around 65–70% acceptance rates—but some as low as 40% [1,2]. Whether low acceptance and implementation rates are due to suboptimal recommendations, barriers among physicians to accept and implement recommendations, or poor collaboration in the health care team remains unclear, and no suggestions of a minimum requirement for acceptance or implementation rates exist. This pose another challenge of interpreting outcomes, since studies with a sufficient number of included patients may not have had a proper exposure of the intervention to intervention patients. Consequently, the success of the
clinical pharmacy intervention may be highly dependent on individual participants in the health care team, including the clinical pharmacist herself.

4.7. Limitation

Various methods exist to assess the quality of intervention studies (e.g., criteria developed by the Cochrane Effective Practice and Organisation of Care Review Group [52]). No formal quality assessment of the included studies was performed in the present review due to the exploratory nature of the review, however, ensuring sufficient power in a study is essential to avoid Type II errors, and more than half of the studies either did not include sufficient patients according to their power calculation or the power calculation was missing. This risk of Type II errors complicates the assessment of the potential effect and relevance of the selected outcome variables [13].

Types of statistical analyses used were not systematically collected. Comparison between studies may be further compromised, when different analyses are used i.e., continued variables (linear regression and ANOVA), binary outcomes (logistic regression), time to event (survival analysis), etc., since type of analysis is important for interpretation of the results.

Other aspect regarding the analyses, which was not systematically collected, were handling of dropouts and incomplete data (e.g., “last observation carried forward”, exclusion, imputation, etc.) These may also affect the results and hence the interpretation of results differently.

Further, studies including 100 patients or less were excluded. It is likely that if they had been included, the proportion of studies with no reported power calculation and insufficient power may have been higher.

5. Conclusions

Type, frequency and result of clinical outcomes used to assess the effect of clinical pharmacy interventions in inpatient care varied considerably among the included studies. The most frequently reported outcome measures included clinical measures/assessments by physician and health care service use. No obvious pattern was established among primary outcome measures with significant effect in favour of the intervention, but positive effect was most frequently related to studies with presentation of power calculations and sufficient inclusion of patients. This review emphasizes the importance of considering the relevance of outcomes selected to assess clinical pharmacy interventions. Further discussion and consensus is needed with regard to selection of types of outcomes to ensure comparison of the effects among clinical pharmacy studies. Furthermore, conducting a proper power calculation and including the sufficient number of patients in the study according to the power calculation should be a prerequisite when publishing an outcome evaluation of clinical pharmacy intervention studies.

Author Contributions: All authors have contributed to data evaluation of the study, and all authors have contributed to the manuscript. CO, TRHN and LJK did the study selection and data extraction, and LJK drafted the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Graabaek, T.; Kjeldsen, L.J. Medication reviews by clinical pharmacists at hospitals lead to improved patient outcomes: A systematic review. Basic Clin. Pharmacol. Toxicol. 2013, 112, 359–373. [CrossRef] [PubMed]
2. Christensen, M.; Lundh, A. Medication review in hospitalised patients to reduce morbidity and mortality. Cochrane Database Syst. Rev. 2016, 2, CD008986. [PubMed]
3. Holland, R.; Desborough, J.; Goodyer, L.; Hall, S.; Wright, D.; Loke, Y.K. Does pharmacist-led medication review help to reduce hospital admissions and deaths in older people? A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2008, 65, 303–316. [CrossRef] [PubMed]
4. Kaboli, P.J.; Hoth, A.B.; McClimon, B.J.; Schnipper, J.L. Clinical pharmacists and inpatient medical care: A systematic review. Arch. Intern. Med. 2006, 166, 955–964. [CrossRef] [PubMed]
5. Mekonnen, A.B.; McLachlan, A.J.; Brien, J.A. Effectiveness of pharmacist-led medication reconciliation programmes on clinical outcomes at hospital transitions: A systematic review and meta-analysis. *BMJ Open* 2016, 6, e010003. [CrossRef] [PubMed]

6. Wong, I.C.K.; RESPECT Team. Randomised controlled trials (RCTs) to evaluate complex healthcare interventions—A case study. *Pharm. World Sci.* 2004, 26, 247–252. [CrossRef] [PubMed]

7. Krksa, J.; Rowe, P.H. Outcome measures: A sensitive approach. *Int. J. Pharm. Pract.* 2010, 18, 125–127. [PubMed]

8. Kjeldsen, L.J.; Nielsen, T.R.H.; Olesen, C. The challenges of outcome research. *Int. J. Clin. Pharm.* 2016, 38, 705–708. [CrossRef] [PubMed]

9. Frenk, J. Obituary of avedis donabedian. *Bull. World Health Organ.* 2000, 70, 1475.

10. Donabedian, A. The quality of care: How can it be assessed? *JAMA* 1988, 1211, 1145–1150. [CrossRef]

11. Williamson, P.R.; Altman, D.G.; Blazeby, J.M.; Clarke, M.; Devane, D.; Gargon, E.; Tugwell, P. Developing core outcome sets for clinical trials: Issues to consider. *Trials* 2012, 13, 132. [CrossRef] [PubMed]

12. The COMET Initiative. Available online: http://www.comet-initiative.org/ (accessed on 1 May 2016).

13. Bowling, A. *Research Methods in Health: Investigating Health and Health Services*, 2nd ed.; Open University Press: Buckingham, UK, 2002.

14. Al Mazroui, N.R.; Kamal, M.M.; Ghabash, N.M.; Yacout, T.A.; Kole, P.L.; McElnay, J.C. Influence of pharmaceutical care on health outcomes in patients with Type 2 diabetes melitus. *Br. J. Clin. Pharmacol.* 2009, 67, 547–557. [CrossRef] [PubMed]

15. Albsoul-Younes, A.M.; Hammad, E.A.; Yasein, N.A.; Tahaineh, L.M. Pharmacist-physician collaboration improves blood pressure control. *Satud Med. J.* 2011, 32, 288–292. [PubMed]

16. Barker, A.; Barlis, P.; Berlowitz, D.; Page, K.; Jackson, B.; Lim, W.K. Pharmacist directed home medication reviews in patients with chronic heart failure: A randomised clinical trial. *Int. J. Cardiol.* 2012, 159, 139–143. [CrossRef] [PubMed]

17. Bladh, L.; Ottosson, E.; Karlsson, J.; Klintberg, L.; Wallerstedt, S.M. Effects of a clinical pharmacist service on health-related quality of life and prescribing of drugs: A randomised controlled trial. *BMJ Qual. Saf.* 2011, 20, 738–746. [CrossRef] [PubMed]

18. Chan, C.W.; Siu, S.C.; Wong, C.K.; Lee, V.W. A pharmacist care program: Positive impact on cardiac risk in patients with type 2 diabetes. *J. Cardiovasc. Pharmacol. Ther.* 2012, 17, 57–64. [CrossRef] [PubMed]

19. Chiu, C.C.; Wu, S.S.; Lee, P.Y.; Huang, Y.C.; Tan, T.Y.; Chang, K.C. Control of modifiable risk factors in ischemic stroke outpatients by pharmacist intervention: An equal allocation stratified randomized study. *J. Clin. Pharm. Ther.* 2008, 33, 529–535. [CrossRef] [PubMed]

20. Chung, J.S.; Lee, K.K.; Tomlinson, B.; Lee, V.W. Clinical and economic impact of clinical pharmacy service on hyperlipidemic management in Hong Kong. *J. Cardiovasc. Pharmacol. Ther.* 2011, 16, 43–52. [CrossRef] [PubMed]

21. Croft, M.; Rowett, D.; Spurling, L.; Giles, L.C.; Phillips, P.A. Does the addition of a pharmacist transition coordinator improve evidence-based medication management and health outcomes in older adults moving from the hospital to a long-term care facility? Results of a randomized, controlled trial. *Am. J. Geriatr. Pharmacother.* 2004, 2, 257–264. [CrossRef] [PubMed]

22. Dedhia, P.; Kravet, S.; Bulger, J.; Hinson, T.; Sridharan, A.; Kolodner, K.; Wright, S.; Howell, E. A quality improvement intervention to facilitate the transition of older adults from three hospitals back to their homes. *J. Am. Geriatr. Soc.* 2009, 57, 1540–1546. [CrossRef] [PubMed]

23. Gillespie, U.; Alassaad, A.; Henrohn, D.; Garman, H.; Hammarlund-Udenaes, M.; Toss, H.; Kettis-Lindblad, A.; Melhus, H.; Mörlin, C. A comprehensive pharmacist intervention to reduce morbidity in patients 80 years or older: A randomized controlled trial. *Arch. Intern. Med. 2009*, 169, 894–900. [CrossRef] [PubMed]

24. Hammad, E.A.; Yasein, N.; Tahaineh, L.; Albsoul-Younes, A.M. A randomized controlled trial to assess pharmacist-physician collaborative practice in the management of metabolic syndrome in a university medical clinic in Jordan. *J. Manag. Care Pharm.* 2011, 17, 295–303. [CrossRef] [PubMed]

25. Hellström, L.M.; Höglund, P.; Bondesson, A.; Petersson, G.; Eriksson, T. Clinical implementation of systematic medication reconciliation and review as part of the Lund Integrated Medicines Management model—Impact on all-cause emergency department revisits. *J. Clin. Pharm. Ther.* 2012, 37, 686–692. [CrossRef] [PubMed]
26. Jack, B.W.; Chetty, V.K.; Anthony, D.; Greenwald, J.L.; Sanchez, G.M.; Johnson, A.E.; Forsythe, S.R.; O’Donnell, J.K.; Paasche-Orlow, M.K.; Manasseh, C.; et al. A reengineered hospital discharge program to decrease rehospitalization: A randomized trial. *Ann. Intern. Med.* 2009, 150, 178–187. [CrossRef] [PubMed]

27. Jackson, S.L.; Peterson, G.M.; Vial, J.H.; Jupe, D.M. Improving the outcomes of anticoagulation: An evaluation of home follow-up of warfarin initiation. *J. Intern. Med. 2004, 256, 137–144.* [CrossRef] [PubMed]

28. Jacobs, M.; Sherry, P.S.; Taylor, L.M.; Amato, M.; Tataronis, G.R.; Cushing, G. Pharmacist Assisted Medication Program Enhancing the Regulation of Diabetes (PAMPERED) study. *J. Am. Pharm. Assoc. 2012, 52, 613–621.* [CrossRef] [PubMed]

29. Jarab, A.S.; Alqudah, S.G.; Khdour, M.; Shamssain, M.; Mukattash, T.L. Impact of pharmaceutical care on pharmacy management of patients with type 2 diabetes in an outpatient diabetes clinic in Jordan. *J. Manag. Care Pharm. 2012, 18, 516–526.* [CrossRef] [PubMed]

30. Jarab, A.S.; Alqudah, S.G.; Mukattash, T.L.; Shattat, G.; Al-Qirim, T. Randomized controlled trial of clinical pharmacy management of patients with type 2 diabetes in an outpatient diabetes clinic in Jordan. *J. Manag. Care Pharm. 2012, 18, 516–526.* [CrossRef] [PubMed]

31. Kirwin, J.L.; Cunningham, R.J.; Sequist, T.D. Pharmacist recommendations to improve the quality of diabetes care: A randomized controlled trial. *J. Manag. Care Pharm. 2010, 16, 104–113.* [CrossRef] [PubMed]

32. Kripalani, S.; Roumie, C.L.; Dalal, A.K.; Cawthon, C.; Businger, A.; Eden, S.K.; Shintani, A.; Sponsler, K.C.; Harris, L.J.; Theobald, C.; et al. Effect of a pharmacist intervention on clinically important medication errors after hospital discharge: A randomized trial. *Ann. Intern. Med. 2012, 157, 1–10.* [CrossRef] [PubMed]

33. Lai, P.S.; Chua, S.S.; Chan, S.P. Impact of pharmaceutical care on knowledge, quality of life and satisfaction of postmenopausal women with osteoporosis. *Int. J. Clin. Pharm. 2013, 35, 629–637.* [CrossRef] [PubMed]

34. Lai, P.S.; Chua, S.S.; Chew, Y.Y.; Chan, S.P. Effects of pharmaceutical care on adherence and persistence to bisphosphonates in postmenopausal osteoporotic women. *J. Clin. Pharm. Ther. 2011, 36, 557–567.* [CrossRef] [PubMed]

35. Lee, V.W.; Fan, C.S.; Li, A.W.; Chau, A.C. Clinical impact of a pharmacist-physician co-managed programme on hyperlipidaemia management in Hong Kong. *J. Clin. Pharm. Ther. 2009, 34, 407–414.* [CrossRef] [PubMed]

36. Lim, W.S.; Low, H.N.; Chan, S.P.; Chen, H.N.; Ding, Y.Y.; Tan, T.L. Impact of a pharmacist consult clinic on a hospital-based geriatric outpatient clinic in Singapore. *Ann. Acad. Med. Singap. 2004, 33, 220–227.* [PubMed]

37. Magid, D.J.; Ho, P.M.; Olson, K.L.; Brand, D.W.; Welch, L.K.; Snow, K.E.; Lambert-Kerzner, A.C.; Plomondon, M.E.; Havranek, E.P. A multimodal blood pressure control intervention in 3 healthcare systems. *Am. J. Manag. Care 2011, 17, e96–e103.* [PubMed]

38. McCoy, A.B.; Cox, Z.L.; Neal, E.B.; Waitman, L.R.; Peterson, N.B.; Bhave, G.; Siew, E.D.; DanciuL, L.; Lewis, J.B.; Peterson, J.F. Real-time pharmacy surveillance and clinical decision support to reduce adverse drug events in acute kidney injury: A randomized, controlled trial. *Appl. Clin. Inform. 2012, 3, 221–238.* [CrossRef] [PubMed]

39. Mergenhagen, K.A.; Blum, S.S.; Kugler, A.; Livote, E.E.; Nebeker, J.R.; Ott, M.C.; Signor, D.; Sung, S.; Yeh, J.; Boockvar, K.S. Pharmacist-versus physician-initiated admission medication reconciliation: Impact on adverse drug events. *Am. J. Geriatr. Pharmacother. 2012, 10, 242–250.* [CrossRef] [PubMed]

40. Morgado, M.; Rolo, S.; Castelo-Branco, M. Pharmacist intervention program to enhance hypertension control: A randomised controlled trial. *Int. J. Clin. Pharm. 2011, 33, 132–140.* [CrossRef] [PubMed]

41. Murray, M.D.; Young, J.; Hoke, S.; Tu, W.; Weiner, M.; Morrow, D.; Stroupe, K.T.; Wu, J.; Clark, D.; Smith, F.; et al. Pharmacist intervention to improve medication adherence in heart failure: A randomized trial. *Ann. Intern. Med. 2007, 146, 714–725.* [CrossRef] [PubMed]

42. Sadik, A.; Yousif, M.; McElhany, J.C. Pharmaceutical care of patients with heart failure. *Br. J. Clin. Pharmacol. 2005, 60, 183–193.* [CrossRef] [PubMed]

43. Schnipper, J.L.; Kirwin, J.L.; Cotugno, M.C.; Wahlstrom, S.A.; Brown, B.A.; Tarvin, E.; Kachalia, A.; Horng, M.; Roy, C.L.; McKeen, S.C.; et al. Role of pharmacist counseling in preventing adverse drug events after hospitalization. *Arch. Intern. Med. 2006, 166, 565–571.* [CrossRef] [PubMed]

44. Spinewine, A.; Swine, C.; Dhillon, S.; Lambert, P.; Nachega, J.B.; Wilmotte, L.; Tulkens, P.M. Effect of a collaborative approach on the quality of prescribing for geriatric inpatients: A randomized, controlled trial. *J. Am. Geriatr. Soc. 2007, 55, 658–665.* [CrossRef] [PubMed]

45. Stange, D.; Kriston, L.; von-Wolff, A.; Baehr, M.; Dartsch, D.C. Reducing cardiovascular medication complexity in a German university hospital: Effects of a structured pharmaceutical management intervention on adherence. *J. Manag. Care Pharm. 2013, 19, 396–407.* [CrossRef] [PubMed]
46. Suppapitiporn, S.; Chindavijak, B.; Onsanit, S. Effect of diabetes drug counseling by pharmacist, diabetic disease booklet and special medication containers on glycemic control of type 2 diabetes mellitus: A randomized controlled trial. *J. Med. Assoc. Thail.* 2005, 88 (Suppl. S4), 134–141.

47. Tsuyuki, R.T.; Fradette, M.; Johnson, J.A.; Bungard, T.J.; Eurich, D.T.; Ashton, T.; Gordon, W.; Ikuta, R.; Kornder, J.; Mackay, E.; et al. A multicenter disease management program for hospitalized patients with heart failure. *J. Card. Fail.* 2004, 10, 473–480. [CrossRef] [PubMed]

48. Von Gunten, V.; Troillet, N.; Beney, J.; Boubaker, K.; Lüthi, J.C.; Tauffé, P.; Reymond, J.P. Impact of an interdisciplinary strategy on antibiotic use: A prospective controlled study in three hospitals. *J. Antimicrob. Chemother.* 2005, 55, 362–366. [CrossRef] [PubMed]

49. Wu, J.Y.; Leung, W.Y.; Chang, S.; Lee, B.; Zee, B.; Tong, P.C.; Chan, J.C. Effectiveness of telephone counselling by a pharmacist in reducing mortality in patients receiving polypharmacy: Randomised controlled trial. *BMJ* 2006, 333, 522. [CrossRef] [PubMed]

50. Zhang, C.; Zhang, L.; Huang, L.; Luo, R.; Wen, J. Clinical pharmacists on medical care of pediatric inpatients: A single-center randomized controlled trial. *PLoS ONE* 2012, 7, e30856. [CrossRef] [PubMed]

51. Altman, D.G.; Bland, J.M. Absence of evidence is not evidence of absence. *BMJ* 1995, 311, 485. [CrossRef] [PubMed]

52. Cochrane Effective Practice and Organisation of Care Review Group. EPOC Resources. Data Collection Checklist and Risk of Bias—EPOC Specific. Available online: http://epoc.cochrane.org/epoc-resources (accessed on 30 April 2017).