Identification of Potential Key Long Non-Coding RNAs and Target Genes Associated with Pneumonia Using Long Non-Coding RNA Sequencing (lncRNA-Seq): A Preliminary Study

Sai Huang*, Cong Feng*, Li Chen*, Zhi Huang*, Xuan Zhou, Bei Li, Li-li Wang, Wei Chen, Fa-qin Lv#, Tan-shi Li#

ABDEF 1,2
AB 2
EF 2
CD 3
B 2
D 2
E 2
F 2
ABFG 2

Corresponding Authors: Tan-shi Li, e-mail: lts301@sohu.com, Fa-qin Lv, e-mail: lvjin8912@163.com, Wei Chen, e-mail: chenwei12@medmail.com

Source of support: This work was supported by grants from Welfare Industry Research Program of Ministry of Health (No. 201302017, 201502019), the National Natural Science Fund (No. 81272060, 81371561), the Hai Nan Natural Science Fund (20158315), the youth training program of the PLA (No. 13QNP171), Beijing Scientific and Technologic Supernova Supportive Project (Z15111000030000/X2XH20158100), PLA General Hospital Science and Technology Innovation Nursery Fund Project (16KMM56), and PLA Logistic Major Science and Technology Project (14CX22005, AWS15J004, BWS14J041)

Background: This study aimed to identify the potential key long non-coding RNAs (lncRNAs) and target genes associated with pneumonia using lncRNA sequencing (lncRNA-seq).

Material/Methods: A total of 9 peripheral blood samples from patients with mild pneumonia (n=3) and severe pneumonia (n=3), as well as volunteers without pneumonia (n=3), were received for lncRNA-seq. Based on the sequencing data, differentially expressed lncRNAs (DE-lncRNAs) were identified by the limma package. After the functional enrichment analysis, target genes of DE-lncRNAs were predicted, and the regulatory network was constructed.

Results: In total, 99 DE-lncRNAs (14 upregulated and 85 downregulated ones) were identified in the mild pneumonia group and 85 (72 upregulated and 13 downregulated ones) in the severe pneumonia group, compared with the control group. Among these DE-lncRNAs, 9 lncRNAs were upregulated in both the mild and severe pneumonia groups. A set of 868 genes were predicted to be targeted by these 9 DE-lncRNAs. In the network, RP11-248E9.5 and RP11-456D7.1 targeted the majority of genes. RP11-248E9.5 regulated several genes together with CTD-2300H10.2, such as QRFP and EPS8. Both upregulated RP11-456D7.1 and RP11-96C23.9 regulated several genes, such as PDK2. RP11-456D7.1 also positively regulated CCL21.

Conclusions: These novel lncRNAs and their target genes may be closely associated with the progression of pneumonia.

MeSH Keywords: Gene Regulatory Networks • Genes, vif • Pneumonia, Aspiration • RNA, Long Noncoding

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/900783
Background

Pneumonia is defined as inflammation and consolidation of lung tissue due to an infectious agent [1]. It is the leading global cause of death, especially in children and elderly people [2,3]. The typical symptoms of pneumonia are fever, chills, pleuritic chest pain, and cough productive of purulent sputum [4]. A common type of pneumonia, community-acquired pneumonia (CAP), is responsible for high rates of morbidity and mortality worldwide, with an annual incidence of 1.5 to 1.7 per 1000 individuals among adults in Europe [5]. Severe pneumonia is defined as admission to the intensive care unit (ICU), and it results in an extremely high rate of mortality [6]. Therefore, it is very urgent to find more biomarkers associated with pneumonia, thus contributing to the clinical therapy of this disease.

Currently, several molecular mechanisms underlying pneumonia have been found. For instance, the genotype -174 GG of interleukin-6 (IL-6) is associated with lower severity and mortality in patients with pneumococcal CAP [7]. Four risk single-nucleotide polymorphisms (SNPs) located in chromosomes 1 and 17 have been found to be significantly correlated with the susceptibility to development of severe pneumonia in A/H1N1 infection [8]. Previous reports have indicated that severe pneumonia is associated with methicillin-resistant *Staphylococcus aureus* carrying Panton-Valentine leukocidin genes and the staphylococcal cassette chromosome mec (SCCmec) type IV [9,10]. The activity of metalloproteinase-9 (MMAP-9) in peripheral blood circulation in patients with CAP caused by *Mycoplasma pneumoniæ* is increased in the acute phase of illness compared to the control group [11]. Furthermore, a recent study has reported that high expression of IL-10 and interferon-induced protein (IP)-10 in human immunodeficiency virus (HIV)-infected infants is associated with more severe hypoxic pneumonia [12]. However, currently, no study has reported the association of long non-coding RNAs (lncRNAs) with pneumonia.

LncRNAs have been previously found to be widely transcribed in the genome. Multiple evidence links dysregulations and mutations of lncRNAs to diverse human diseases [13], such as lung diseases (e.g., lung cancer [14,15] and pulmonary fibrosis [16]). Therefore, we suggest a hypothesis that lncRNAs are also correlated with the progression of pneumonia. Thus, in this study, we used a new sequencing technique, lncRNA sequencing (lncRNA-seq), to analyze the lncRNA expression profiling in peripheral blood from patients with mild and severe pneumonia and to identify the potential critical lncRNAs that are associated with the progression of pneumonia. These findings may provide some new information for understanding the molecular functions of lncRNAs in pneumonia and extend the knowledge of the molecular mechanisms underlying pneumonia.

Material and Methods

Clinical samples

This study was approved by the Medical Ethics Committee of the Chinese People’s Liberation Army General Hospital, Beijing, China. A total of 18 patients with pneumonia who received therapy in our hospital from June 2013 to December 2013 were included in this study, including 9 patients with mild pneumonia (MP group) and 9 patients with severe pneumonia (SP group). Another 9 volunteers without pneumonia were enrolled as normal controls (C group) in this study. Here, patients with severe pneumonia must meet at least one of the following criteria: (1) altered mental status; (2) respiratory rate ≥30/min; (3) diastolic blood pressure <60 mm Hg, PaO$_2$/FiO$_2$ <300, and mechanical ventilation; (4) systolic blood pressure <90 mm Hg; (5) septic shock; (6) bilateral or multilobar pneumonia by chest radiograph, or lesion enlargement within 48 h after admission ≥50%; (7) oliguria: urine volume <20 mL/h or <80 mL/4 h, or acute renal failure requiring dialysis treatment [17].

Peripheral blood was sampled from each patient and volunteer. Informed consent was signed before sampling.

RNA extraction

First, plasma was separated from each of the 9 sequencing samples. Total RNA was extracted and purified from the plasma samples using miRNeasy Serum/Plasma Kit (Qiagen, Germany). Subsequently, ribosome RNA (rRNA) was removed from the total RNA using Epicentre Ribo-Zero™ RNA Removal Kit (Epicentre, Madison, Wisconsin, USA), and the remaining RNA was collected and purified. To obtain sufficient quantities of high-quality RNA for sequencing, three RNA samples of equal quantity were randomly pooled into one sample for sequencing. Thus, three samples were generated for each group: WLL1–3 for the SP group, WLL4–6 for the MP group, and WLL7–9 for the C group. The 9 RNA samples were interrupted into short fragments by fragmentation buffer (Agilent Technologies, California, USA). Afterwards, the RNA fragments were reverse transcribed into cDNAs. The concentration of cDNAs in the library was quantified into 1 ng/µL with a Qubit 2.0 fluorometer, and then cDNAs were detected using the Agilent Bioanalyzer 2100 (Agilent Technologies, California, USA). According to the data size and effective cDNA concentration, libraries were pooled. Clusters of the cDNA libraries were generated on an Illumina cBot. Finally, the cDNA libraries were sequenced on an Illumina HiSeq™ 4000 with the model of 2×150 bp. The raw sequencing data have been uploaded to the public database NCBI (the National Center for Biotechnology Information) under the BioProject Accession PRNA324335.
Data filtering

Raw reads were cleaned by removing the empty reads, adapter sequences, reads with Q-value <10 in the both terminals, reads containing fewer than 80% of bases with Q-value >20, reads with length <50 nt, and reads with unknown sequences ‘N’. In addition, the reads of rRNA were removed. The above quality control was conducted using FASTX-Toolkit (available at http://hannonlab.cshl.edu/fastx_toolkit/).

Statistics and alignment of reads

Both Q20 and length of raw and clean reads were summarized to ensure the validity and reliability of the sequencing data. Furthermore, clean reads were aligned to the human genome (hg19) using TopHat 2.1.1 (available at http://ccb.jhu.edu/software/tophat/index.shtml). Sequence mapping was performed by alignment of clean reads to the human genome (hg19) using TopHat 2.1.1 (available at http://ccb.jhu.edu/software/tophat/index.shtml). The clean reads were aligned to the human genome using TopHat 2.1.1 (available at http://ccb.jhu.edu/software/tophat/index.shtml).

Differential expression analysis of lncRNAs

Based on the annotation information of genes and lncRNAs in the GENCODE database (available at http://www.gencodegenes.org/), FPKM (fragments per kilobase of exon per million fragments mapped) of mRNAs and lncRNAs, as well as the read number of lncRNAs mapped, was calculated using the StringTie tool (available at http://ccb.jhu.edu/software/stringtie/).

Differentially expressed lncRNAs (DE-lncRNAs) in the comparison groups of SP versus C, MP versus C, and SP versus MP were identified using the limma package (available at http://www.bioconductor.org/packages/release/bioc/html/limma.html). Only the lncRNAs with the criteria of \(|\log_{2} FC| >1\) and \(p < 0.05\) were identified as DE-lncRNAs.

Prediction of DE-lncRNA target genes

The Pearson correlation coefficient (PCC) was calculated to evaluate the coexpression relationships between DE-lncRNAs and mRNAs. The coexpression pairs with PCC >0.8 and \(p < 0.05\) were selected for the construction of the regulatory network, which was visualized using Cytoscape 3.3.0 (available at http://www.cytoscape.org/).

Functional analysis of DE-lncRNA target genes

GO (Gene Ontology) functional and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses were performed for the target genes of DE-lncRNAs using clusterProfiler 3.0.1 in R (available at http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html). GO enrichment analysis contains three categories, including molecular function (MF), biological process (BP), and cellular component (CC). Only the GO and pathway terms with a \(p < 0.05\) were considered significant.

Results

Data summary of quality control and sequence alignment

In total, 346 G of raw data were generated from the 9 samples. Q20 of reads in both terminals of all samples was at least 99.97% and 96.38%, respectively. The clean rate (clean reads/raw reads) of the both terminals was more than 95% and 75% (Table 1). The results indicated a high quality of the sequencing data.

Furthermore, map rate of reads in most samples was about 70%; read coverage in most samples was more than 80%; and depth of sequencing was more than 3.4, 4–5.5 for most samples (Table 2).

Identification of DE-lncRNAs

Among the 9 samples, there were 34,764 mRNAs and 5496 lncRNAs with FPKM >0 in at least one sample. Based on the criteria of differential expression analysis, 99 DE-lncRNAs (14 upregulated and 85 downregulated ones) were identified in the MP group and 85 (72 upregulated and 13 downregulated ones) in the SP group, compared with the C group. Nine lncRNAs were upregulated in both the MP and SP groups, compared with the C group. Furthermore, there were 159 upregulated and 8 downregulated lncRNAs in the SP group, compared with the MP group. These DE-lncRNAs were able to distinguish the two group samples (Figure 1A–1C).

Target genes of the DE-lncRNAs

To further reveal the potential regulatory relationships between DE-lncRNAs and downstream genes, target genes of the 175 DE-lncRNAs in the MP and SP groups were predicted with the PCC method. In total, 4908 genes were targeted by those DE-lncRNAs. The regulatory network consisted of 175 DE-lncRNAs, 4908 genes, and 17,385 regulatory relationships (Supplementary Figure 1).

Enrichment analyses of the target genes

To further investigate the potential biological functions of the identified DE-lncRNAs, GO and KEGG pathway enrichment analyses were carried out for the targets of these DE-lncRNAs. For the target genes of DE-lncRNAs in the MP group, the targets of the upregulated lncRNAs were mainly associated with GO functions, such as response to stimulus and regulation of cellular process; meanwhile, the targets of the downregulated lncRNAs...
Table 1. Summary of the sequencing data after quality control.

Sample	Raw reads	Raw base	Q20	Clean reads	Clean base	Clean rate
WLL1	52831743	7928532000	99.99%	50735720	760966306	0.960326446
WLL1	58572433	7928532000	97.10%	44421351	666212116	0.758400304
WLL2	103035876	15455381400	99.98%	50735720	760966306	0.960326446
WLL2	103035876	15455381400	97.50%	44421351	666212116	0.758400304
WLL3	47936143	7190421450	99.97%	45842678	687583167	0.956328047
WLL3	47936143	7190421450	97.10%	45842678	687583167	0.956328047
WLL4	55117713	8267656950	99.98%	52810671	792093105	0.958143365
WLL4	55117713	8267656950	97.50%	52810671	792093105	0.958143365
WLL5	42414859	636228850	99.97%	40625314	609330357	0.957808536
WLL5	42414859	636228850	96.49%	40625314	609330357	0.957808536
WLL6	58572433	8785864950	99.99%	56266066	843936516	0.960623678
WLL6	58572433	8785864950	97.30%	56266066	843936516	0.960623678
WLL7	42047930	6307189500	99.99%	40469826	607008095	0.962468925
WLL7	42047930	6307189500	97.23%	40469826	607008095	0.962468925

WLL1–3 represent the samples in the severe pneumonia; WLL4–6 represent the samples in the mild pneumonia; WLL7–9 represent the control samples. Clean rate = Clean reads/raw reads.

Table 2. Data summary of the sequence alignment.

Sample	Mapped-reads	Unique-mapped reads	Left mapped reads	Right mapped reads	Map rate	Unique map rate	Coverage	Depth
WLL1	66658130	65814534	37288693	29369437	0.700506324	0.691641024	0.8124469	4.656258953
WLL2	106477220	105906423	61493861	50675720	0.570337791	0.567280357	0.8897298	7.498857573
WLL3	60484089	59601427	34143118	26340971	0.711187619	0.700809051	0.7974211	4.401589422
WLL4	62030490	61253756	35429803	26600867	0.678350320	0.667059873	0.8028072	5.141637117
WLL5	55225190	54350513	30940910	24284280	0.732627356	0.721023733	0.7059120	4.090939095
WLL6	62740507	66192609	37900851	29399656	0.71700156	0.704546451	0.8028797	5.359257339
WLL7	62030490	61253756	35429803	26600867	0.678350320	0.667059873	0.8028072	5.141637117
WLL8	58572433	8785864950	97.30%	48447586	0.82173923	0.82173923	0.82173923	0.82173923
WLL9	42047930	6307189500	99.99%	40469826	0.96469826	0.96469826	0.96469826	0.96469826

WLL1–3 represent the samples in the severe pneumonia; WLL4–6 represent the samples in the mild pneumonia; WLL7–9 represent the control samples.
were significantly correlated with multiple biological functions, such as protein binding and catalytic activity (Table 3).

Additionally, the target genes of both upregulated and downregulated lncRNAs in the SP group were significantly related to GO functions, such as protein binding and catalytic activity. The targets of the downregulated lncRNAs were also implicated in the pathways of ribosome and apoptosis (Table 4).

Analysis of the common 9 upregulated lncRNAs in the mild and severe pneumonia groups

The 9 lncRNAs that were upregulated in both the MP and SP groups were analyzed in detail. A total of 868 genes were predicted to be targeted by these 9 DE-lncRNAs (Figure 2). Among them, RP11-248E9.5 targeted the most genes, such as QRFP and EPS8; these two genes were also targeted by CTD-2300H10.2. RP11-248E9.5 also targeted a set of genes encoding zinc finger proteins (ZFPs), such as ZNF717, ZNF460, ZNF687, and ZNF37CP. Furthermore, RP11-456D7.1 regulated a series of genes, such as PDK2, which were also targeted by RP11-96C23.9. RP11-456D7.1 also regulated genes like CCL21.

In addition, according to the GO and pathway enrichment analyses, the target genes of RP11-248E9.5 (e.g., GPR75 and QRFP) were significantly enriched in the GO functions like G-protein coupled receptor signaling pathway; the target genes of RP11-456D7.1 were mainly enriched in the molecular function. Furthermore, the target genes of CTD-2300H10.2 (e.g., RC3H1, IHH, and IL4) were significantly enriched in the GO functions like negative regulation of alpha-beta T cell differentiation (Table 5).

Discussion

In the present study, 99 DE-lncRNAs (14 upregulated and 85 downregulated ones) were identified in the MP group and 85 (72 upregulated and 13 downregulated ones) in the SP group,
compared with the C group. Among these DE-lncRNAs, 9 lncRNAs were upregulated in both the MP and SP groups, compared with the C group. According to the coexpression analysis between DE-lncRNAs and mRNAs, 868 genes were predicted to be targeted by the 9 lncRNAs. RP11-248E9.5 and RP11-456D7.1 targeted the majority of genes.

In the regulatory network, RP11-248E9.5 regulated several genes together with CTD-2300H10.2, such as QRFP and EPS8. QRFP encodes pyroglutamylated RFamide peptide, which is proteolytically processed to generate multiple protein products [18]. In this study, QRFP was predicted to be relevant to the G-protein coupled receptor signaling pathway. A previous study has found that G-protein coupled receptor kinase-5 (GRK5) deficiency improves pulmonary infection and inflammation in *Escherichia coli*-induced pneumonia [19]. Furthermore, G-protein coupled receptors have been suggested to be associated with inflammation [20–22]. Although there is no evidence to show the role of

Table 3. The enriched Gene Ontology and pathway terms of differentially expressed lncRNAs in the mild pneumonia compared with the controls.

Category of lncRNAs	Category of functional terms	ID	Term	Gene count	FDR
Upregulated	GO-BP	GO:0008150	Biological_process	469	3.46E-22
	GO-BP	GO:0009987	Cellular_process	434	8.85E-12
	GO-BP	GO:0050896	Response to stimulus	261	0.0004501
	GO-BP	GO:0050794	Regulation of cellular process	303	0.003139471
	GO-BP	GO:0044699	Single-organism process	378	0.004578225
	GO-CC	GO:0005575	Cellular_component	510	2.68E-09
	GO-MF	GO:0003674	Molecular_function	481	1.52E-22
	GO-MF	GO:0005488	Binding	399	0.002334936
	GO-MF	GO:0060089	Molecular transducer activity	74	0.016441823
	GO-BP	GO:0008150	Biological_process	1852	2.03E-100
	GO-BP	GO:0009987	Cellular_process	1685	8.04E-41
	GO-BP	GO:0044699	Single-organism process	1517	2.59E-23
	GO-BP	GO:0044763	Single-organism cellular process	1386	2.07E-18
	GO-CC	GO:0008152	Metabolic process	1337	4.89E-18
	GO-CC	GO:0005575	Cellular_component	1965	2.83E-43
	GO-CC	GO:0005623	Cell	1758	1.73E-08
	GO-CC	GO:0044464	Cell part	1753	2.42E-08
	GO-CC	GO:0005622	Intracellular	1546	9.50E-07
	GO-CC	GO:0044424	Intracellular part	1504	1.05E-05
	GO-MF	GO:0003674	Molecular_function	1849	1.12E-96
	GO-MF	GO:0005488	Binding	1554	3.18E-22
	GO-MF	GO:0005515	Protein binding	1174	6.27E-10
	GO-MF	GO:0003824	Catalytic activity	675	6.37E-10
	GO-MF	GO:0016740	Transferase activity	292	9.63E-07
Downregulated	GO-CC	GO:0044424	Intracellular	1504	1.05E-05
	GO-MF	GO:0003674	Molecular_function	1849	1.12E-96
	GO-MF	GO:0005488	Binding	1554	3.18E-22
	GO-MF	GO:0005515	Protein binding	1174	6.27E-10
	GO-MF	GO:0003824	Catalytic activity	675	6.37E-10
	GO-MF	GO:0016740	Transferase activity	292	9.63E-07
	GO-CC	GO:0044424	Intracellular	1504	1.05E-05
	GO-MF	GO:0003674	Molecular_function	1849	1.12E-96
	GO-MF	GO:0005488	Binding	1554	3.18E-22
	GO-MF	GO:0005515	Protein binding	1174	6.27E-10
	GO-MF	GO:0003824	Catalytic activity	675	6.37E-10
	GO-MF	GO:0016740	Transferase activity	292	9.63E-07
	KEGG	hsa03010	Ribosyme	32	0.009558616

LncRNA – long non-coding RNA; GO – Gene Ontology; MF – molecular function; CC – cellular component; BP – biological process; FDR – false discovery rate.
QRFP in pneumonia, we speculate that QRFP may participate in the progression of pneumonia via the G-protein coupled receptor signaling pathway. **EPS8** encodes epidermal growth factor receptor (EGFR) pathway substrate 8 and functions as part of the EGFR pathway [23]. In mycoplasmal pneumonia, the EGFR pathway takes part in the IL-8 production by bronchial epithelial cells stimulated with Mp-Ag [24]. Therefore, **EPS8** may be involved in the progression of pneumonia via the EGFR pathway.

Table 4. The enriched Gene Ontology and pathway terms of differentially expressed lncRNAs in the severe pneumonia compared with the controls

Category of lncRNAs	Category of functional terms	ID	Term	Gene count	FDR
GO-BP	GO: 0008150	Biological_process	1688	8.86E-91	
GO-BP	GO: 0009987	Cellular process	1543	4.84E-40	
GO-BP	GO: 0044699	Single-organism process	1376	3.97E-19	
GO-BP	GO: 008152	Metabolic process	1218	5.83E-16	
GO-BP	GO: 0071704	Organic substance metabolic process	1101	2.21E-14	
GO-GO: 0005575	Cellular component	1818	1.08E-39		
GO-GO: 0005623	Cell	1621	6.64E-09		
GO-GO: 0044464	Cell part	1628	6.82E-09		
GO-GO: 0044424	Intracellular part	1401	1.78E-06		
GO-GO: 0005622	Intracellular	1432	1.78E-06		
GO-GO: 0003674	Molecular_function	1698	3.69E-88		
GO-GO: 0005488	Binding	1421	1.71E-18		
GO-GO: 0003824	Catalytic activity	621	5.29E-09		
GO-GO: 0005515	Protein binding	1062	9.78E-07		
GO-MF	GO: 0016740	Transferase activity	258	0.000259127	
GO-BP	GO: 0008150	Biological_process	588	1.18E-28	
GO-BP	GO: 0009987	Cellular process	538	2.41E-12	
GO-BP	GO: 0044699	Single-organism process	495	7.99E-10	
GO-BP	GO: 0044763	Single-organism cellular process	456	2.16E-08	
GO-BP	GO: 0044237	Cellular metabolic process	393	5.52E-08	
GO-GO: 0005575	Cellular_component	622	9.48E-12		
GO-GO: 0005622	Intracellular	1201	1.20E-09		
GO-GO: 0005624	Intracellular part	512	2.29E-08		
GO-GO: 0005623	Cell	578	2.29E-08		
GO-GO: 0005737	Cytoplasm	431	2.29E-08		
GO-GO: 0003674	Molecular_function	587	4.87E-28		
GO-GO: 0005488	Binding	501	3.95E-08		
GO-GO: 0003735	Structural constituent of ribosome	22	1.40E-06		
GO-GO: 0005515	Protein binding	391	1.01E-05		
GO-GO: 0003824	Catalytic activity	232	1.05E-05		
KEGG	hsa03010	Ribosome	21		
KEGG	hsa04210	Apoptosis	16	0.031885823	

LncRNA – long non-coding RNA; GO – Gene Ontology; MF – molecular function; CC – cellular component; BP – biological process; FDR – false discovery rate.
Figure 2. The regulatory network of the 9 long non-coding RNAs (lncRNAs) that are differentially expressed in both mild and severe pneumonia. Dark red nodes represent the lncRNAs, and purple nodes represent the target genes. Lines represent the regulatory relationships between lncRNAs and target genes.
Table 5. The enriched Gene Ontology and pathway terms of lncRNAs that are differentially expressed in the both mild and severe pneumonia.

LncRNA	Category	ID	Term	FDR	Gene count	Target genes
AJ006995.3	BP	GO: 1901137	Carbohydrate derivative biosynthetic process	0.004964	5	NM6E, SEC23A, ADSL, POFUT1, ST6GALNAC5
		GO: 0006486	Protein glycosylation	0.016382	3	SEC23A, POFUT1, ST6GALNAC5
		GO: 0043413	Macromolecule glycosylation	0.016382	3	SEC23A, POFUT1, ST6GALNAC5
		GO: 0070085	Glycosylation	0.016382	3	SEC23A, POFUT1, ST6GALNAC5
		GO: 1901135	Carbohydrate metabolic process	0.019142	6	NM6E, SEC23A, ADSL, POFUT1, ARHGEF28, ST6GALNAC5
CTD-2210P24.6	MF	GO: 1901363	Heterocyclic compound binding	0.017896	16	FOXP4, POU2F3, MAGI3, DDX25, HOXA13, NLRP9, MTA3, KIAA1586, BMPR1B, SRPK1, UBE2G2, UB1P, METTL16, CGGBP1, USP6, POLR1C
		GO: 0097159	Organic cyclic compound binding	0.017896	16	FOXP4, POU2F3, MAGI3, DDX25, HOXA13, NLRP9, MTA3, KIAA1586, BMPR1B, SRPK1, UBE2G2, UB1P, METTL16, CGGBP1, USP6, POLR1C
		GO: 0005488	Binding	0.017896	24	FOXP4, ADRA1B, NLGN4Y, POU2F3, MAGI3, DDX25, HOXA13, NLRP9, KRT8, RUFY2, MTA3, KIAA1586, BMPR1B, SRPK1, UBE2G2, UB1P, METTL16, FRAS1, CGGBP1, LGR5, EED, USP6, INT54, POLR1C
		GO: 0003700	Sequence-specific DNA binding transcription factor activity	0.019057	6	FOXP4, POU2F3, HOXA13, MTA3, UB1P, CGGBP1
		GO: 001071	Nucleic acid binding transcription factor activity	0.019057	6	FOXP4, POU2F3, HOXA13, MTA3, UB1P, CGGBP1
CTD-2300H10.2	BP	GO: 0046639	Negative regulation of alpha-beta T cell differentiation	7.61E-05	3	RC3H1, IHH, IL4
		GO: 0046636	Negative regulation of alpha-beta T cell activation	0.000187	3	RC3H1, IHH, IL4
		GO: 0045581	Negative regulation of T cell differentiation	0.000269	3	RC3H1, IHH, IL4
		GO: 0045620	Negative regulation of lymphocyte differentiation	0.000617	3	RC3H1, IHH, IL4
		GO: 0046637	Regulation of alpha-beta T cell differentiation	0.00103	3	RC3H1, IHH, IL4
		GO: 0032587	Ruffle membrane	0.015463	3	EPS8, PLA2G4F, PDE9A
		GO: 0031256	Leading edge membrane	0.033811	3	EPS8, PLA2G4F, PDE9A
		GO: 0001726	Ruffle	0.039361	3	EPS8, PLA2G4F, PDE9A
		GO: 0052689	Carboxylic ester hydrolase activity	0.000439	4	ACOT2, ESD, ACOT9, PLA2G4F
		GO: 0016790	Thiolester hydrolase activity	0.001389	3	ACOT2, ESD, ACOT9
		GO: 0016788	Hydrolase activity, acting on ester bonds	0.027305	5	ACOT2, ESD, ACOT9, PLA2G4F

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
LncRNA	Category	ID	Term	FDR	Gene count	Target genes
RP11-96C23.9	MF	GO: 0016773	Phosphotransferase activity, alcohol group as acceptor	0.020183	3	SRPK3, NMRK2, PDK2, CNTLN, RELN, PIP5K1B
		GO: 0016301	Kinase activity	0.020183	6	SRPK3, NMRK2, PDK2, CNTLN, RELN, PIP5K1B
		GO: 0016772	Transferase activity, transferring phosphorus-containing groups	0.028775	6	SRPK3, NMRK2, PDK2, CNTLN, RELN, PIP5K1B
		GO: 0016740	Transferase activity	0.028775	9	MBOAT2, PPL2, SRPK3, NMRK2, PDK2, CNTLN, RELN, VCPKMT, PIP5K1B
RP11-248E9.5	BP	GO: 0008150	Biological process	0.002259	101	ZNF717, ARL4C, ZNF460, GPR75, UGT2A1, CHEK1, ER12, CPE, DHRS13, ZNF418, TCC9B, IL23R, ADRA2B, SNRPNP48, ADSL, DPH2, TIGIT, CERS3, EPS8, FANCF, OR4D11, LHFPL5, MVD16, CDY1B, PRPF40B, LRIG1, STEAP2, MSTM, OR2V1, ANG, CLEC9A, TMPRESS12, KCNRG, GPR22, FRYL, SCA1, GPX5, VN1R2, OR2AG2, TRIM1L, IFNA14, ACTBL2, QRP, OR6B2, OR4K17, OR13C6P, OR51A4, VN1R17P, CEP83, TCEB3B, SCARA3, LARP7, ASB1, PLCB4, SPIN2A, PCDH18, PPP2R3A, CHST12, TNFRSF19, FAM46A, KIF16B, EXOC1, PCDH97, PRDM11, TAS2R38, RIMKLB, ZNF687, BAK1, HRH4, BCL2, RYR2, BLOC155, ARHGEF2B, SH3GL3, SMYD3, RFX7, SNAPC3, SOX3, TFAM, THY1, KRTAP4-8, ZNF140, CEP97, OR4A16, OR12D3, FCRL4, C19orf12, HPS3, DUSP11, SORBS2, PPBP2, RCTA, NRP2, TGF2LX, ANGPT1, HTR3B, MMP20, RIN1, PCDH9, TECPR2, JOSD1
		GO: 0007186	G-protein coupled receptor signaling pathway	0.002613	20	GPR75, CPE, ADRA2B, OR4D11, OR2V1, GPR22, VN1R2, OR2AG2, QRF, OR6B2, OR4K17, OR13C6P, OR51A4, VN1R17P, TAS2R38, HRH4, RYR2, OR4A16, OR12D3, HTR3B
		GO: 0009593	Detection of chemical stimulus	0.017347	11	UGT2A1, OR4D11, OR2V1, OR2AG2, OR6B2, OR4K17, OR51A4, TAS2R38, RYR2, OR4A16, OR12D3
		GO: 0007606	Sensory perception of chemical stimulus	0.017347	11	UGT2A1, OR4D11, OR2V1, OR2AG2, OR6B2, OR4K17, OR13C6P, OR51A4, TAS2R38, OR4A16, OR12D3
		GO: 0007608	Sensory perception of smell	0.021759	10	UGT2A1, OR4D11, OR2V1, OR2AG2, OR6B2, OR4K17, OR13C6P, OR51A4, OR4A16, OR12D3
LncRNA	Category	ID	Term	FDR	Gene count	Target genes
-----------------	----------	-----------	-----------------------------	-------------	------------	---
RP11-248E9.5	MF	GO: 0003674	molecular_function	2.96E-05	99	ZNF717, ARL4C, ZNF460, GPR75, UGT2A1, CHEK1, CHGB, ER12, C1orf131, SLX41P, CPE, DHRS13, ZNF418, TTC9B, IL23R, ADRA2B, SNRPN48, ADSL, TIGIT, CERS3, EPS8, FANC, OR4D11, MYO16, CDY1B, STEAP2, MSTN, OR2V1, ANG, CLEC9A, TMPRRSS12, KCNRRG, GPR22, SCAI, GPX5, VN1R2, OR2AG2, TRIML1, IFNA14, ACTBL2, QRF, OR6B2, OR4K17, OR13C6P, OR51A4, VN1R17P, CEP83, TCEB3B, SCARA3, LARP7, ASB1, PLCB4, SPIN2A, PCDH18, PPP2R3A, CHST12, TNFRSF19, FAM46A, KIF16B, EKOC1, PCDHA7, PRDM11, TAS2R38, RIMKLB, ZNF687, BAK1, HRH4, BCL2, RYR2, BLOC15S, ANKEF1, ARHGEF28, CEP170P1, SH3GL3, SMDY3, RFX7, SNAPC3, SOX3, TFAM, THY1, ZNF140, GPR97, OR4A16, OR12D3, FCLR4, EFCAB7, DUSP11, SORBS2, PPP1BP2, RTCA, NR0P2, TGF2LX, ANGPTL1, HTR3B, MMP20, RIN1, PCDHA9, TECPR2, IOSD1
GO: 0004930			G-protein coupled receptor activity	0.000121	17	GPR75, ADRA2B, OR4D11, OR2V1, GPR22, VN1R2, OR2AG2, OR6B2, OR4K17, OR13C6P, OR51A4, VN1R17P, TAS2R38, HRH4, OR4A16, OR12D3, HTR3B
GO: 0004888			transmembrane signaling receptor activity	0.000206	20	GPR75, IL23R, ADRA2B, OR4D11, OR2V1, GPR22, VN1R2, OR2AG2, OR6B2, OR4K17, OR13C6P, OR51A4, VN1R17P, TNFRSF19, TAS2R38, HRH4, OR4A16, OR12D3, NRP2, HTR3B
GO: 0038023			signaling receptor activity	0.000484	20	GPR75, IL23R, ADRA2B, OR4D11, OR2V1, GPR22, VN1R2, OR2AG2, OR6B2, OR4K17, OR13C6P, OR51A4, VN1R17P, TNFRSF19, TAS2R38, HRH4, OR4A16, OR12D3, NRP2, HTR3B
GO: 0004872			receptor activity	0.001039	21	GPR75, IL23R, ADRA2B, OR4D11, OR2V1, GPR22, VN1R2, OR2AG2, OR6B2, OR4K17, OR13C6P, OR51A4, VN1R17P, SCARA3, TNFRSF19, TAS2R38, HRH4, OR4A16, OR12D3, NRP2, HTR3B
KEGG hsa04740			Olfactory transduction	0.00179994	7	OR12D3, OR2AG2, OR4A16, OR4D11, OR4K17, OR51A4, OR6B2

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
In addition to QRFp and EPS8, RP11-248E9.5 also targeted a series of ZFP coding genes, such as ZNF717, ZNF460, ZNF687, and ZNF37CP. ZNF37CP was also targeted by CTD-2300H10.2. Multiple studies have reported the associations of ZFPs with immunity [25–27], which is involved in pneumonia. In addition, in the network, CTD-2300H10.2 also targeted IL4, which is highly expressed in idiopathic interstitial pneumonias [28]. Currently, the associations of RP11-248E9.5 and CTD-2300H10.2 with pneumonia have not been previously reported, indicating they may be new potential molecules in pneumonia.

Furthermore, in the regulatory network, both upregulated RP11-456D7.1 and RP11-96C23.9 regulated several genes, such as PDK2, which encodes a member of the pyruvate dehydrogenase kinase family and is able to downregulate the activity of the mitochondrial pyruvate dehydrogenase complex. Inhibition of a homologue of PDK2, PDK4, can prevent multiorgan failure in severe influenza accompanied with pneumonia [29]. Moreover, pyruvate dehydrogenase E1 \(\beta \) subunit can act as fibronectin-binding protein in Mycoplasma pneumoniae, helping \(M. \) pneumoniae to locate in the host cells [30]. These evidences indicate that PDK2 may be related to the occurrence and development of pneumonia. In this study, RP11-456D7.1 also positively regulated CCL21, a high-affinity functional ligand for chemokine receptor 7 (CCR7) that is expressed on T and B lymphocytes and plays a key role in the inflammatory response [31,32]. CCL21 was detected at a significantly higher concentration in the bronchoalveolar lavage fluid of patients with eosinophilic pneumonia than in that of controls [33,34], which is similar to the results of this study. Taken together, although the roles of RP11-456D7.1 and RP11-96C23.9 have not been previously proved in pneumonia, we speculate that they may participate in the progression of pneumonia, likely via regulating their downstream genes PDK2 or CCL21.

In addition, according to the results of the enrichment analysis, functions of DE-lncRNAs in the SP group were similar to those in the MP group. However, 167 lncRNAs were identified to be differentially expressed between the SP and MP groups, indicating that lncRNA expression profiling between mild and severe pneumonia is different. In our future study, we will continue to focus on these DE-lncRNAs.

Despite the aforementioned results, this study has several limitations. In this study, the number of samples analyzed was small. Furthermore, the predicted results need to be validated by experimental data.

Conclusions

Based on the lncRNA-seq and bioinformatics analysis method, compared with the control, a set of DE-lncRNAs in patients with mild and severe pneumonia was identified. Nine lncRNAs were differentially expressed in both mild and severe pneumonia, such as RP11-248E9.5, CTD-2300H10.2, RP11-456D7.1, and RP11-96C23.9. All of them were predicted to target a set of downstream genes. At present, these lncRNAs have not been demonstrated to be associated with pneumonia by other studies; thus, they are novel lncRNAs that might be related to pneumonia. These results provided new information for further experimental studies.

Potential conflicts of interest

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to subject of this article.

Table:

LncRNA	Category	ID	Term	FDR	Gene count	Target genes
RP11-456D7.1	MF	GO: 0003674	molecular_function	0.007716221	61	TANK, USP17L12, DSCR4, SCLM2, SCGN, KHDRBS3, ZBTB6, OSBP57, C1QTNF3, RBP7, LCN4, GID3, OR2734, OR274, COX5B, CCEB1, UPP2, EPHA2, TXLNA, FOXL1, IQSEC2, TNFRSF13B, KIF4A, ATXN10, TRAF3IP1, GMFB, ANXA4, ZACN, LDHC, ATP2B3, OCR1, TAS2R8, PDK2, ACP5, PPP1R3D, PRIM2, PRKAA1, POLR3B, WWC3, PCDHGA7, TMX4, AAR52, NTN4, OPN1LW, RGS13, CCL21, PGA3, ZCCHC18, NMNAT1, SMARCD1, TACR1, CA6, ORS1B2, COLQ, PPFIA4, ENOU, BUB3, ZMYM3, GPR52, FEZ2, IKBKE

LncRNA – long non-coding RNA; GO – Gene Ontology; MF – molecular function; CC – cellular component; BP – biological process; FDR – false discovery rate.
Supplementary Figure 1

The regulatory network of the differentially expressed long non-coding RNAs (DE-lncRNAs) and target genes. Light green nodes represent the downregulated lncRNAs in mild pneumonia; light red nodes represent the upregulated lncRNAs in mild pneumonia; green nodes represent the downregulated lncRNAs in severe pneumonia; red nodes represent the upregulated lncRNAs in severe pneumonia; dark red nodes represent the upregulated lncRNAs in both mild and severe pneumonia; purple nodes represent the target genes. Lines represent the regulatory relationships between lncRNAs and target genes.

References:

1. Shahcheraghi F, Moezi H, Feizabadi MM: Distribution of TEM and SHV beta-lactamase genes among Klebsiella pneumoniae strains isolated from patients in Tehran. Med Sci Monit, 2007; 13(11): BR247–50
2. Thomas CP, Ryan M, Chapman JD et al: Incidence and cost of pneumonia in Medicare beneficiaries. Chest, 2012; 142: 973–81
3. Walker CL, Rudan I, Liu L et al: Global burden of childhood pneumonia and diarrhoea. Lancet, 2013; 381: 1405–16
4. Lutfiyya MN, Henley E, Chang LF, Reyburn SW: Diagnosis and treatment of community-acquired pneumonia. Am Fam Physician, 2006; 73: 442–50
5. Cillóniz C, Torres A, Niederman M et al: Community-acquired pneumonia related to intracellular pathogens. Intensive Care Med, 2016; 42(9): 1374–86
6. Tagami T, Matsui H, Horiguchi H et al: Low-dose corticosteroid use and mortality in severe community-acquired pneumonia patients. Eur Respir J, 2015; 45: 463–72
7. Martin-Loeches I, Solé-Violán J, De Castro FR et al: Variants at the promoter of the interleukin-6 gene are associated with severity and outcome of pneumococcal community-acquired pneumonia. Intensive Care Med, 2012; 38: 256–62
8. Zuniga J, Buendia-Roldan I, Zhao Y et al: Genetic variants associated with severe pneumonia in A/H1N1 influenza infection. Eur Respir J, 2012; 39: 604–10
9. Gillet Y, Vanhems P, Lina G et al: Factors predicting mortality in necrotizing community-acquired pneumonia caused by Staphylococcus aureus containing Panton-Valentine leukocidin. Clin Infect Dis, 2007; 45: 315–21
10. Kilic A, Li H, Stratton CW, Tang Y-W: Antimicrobial susceptibility patterns and staphylococcal cassette chromosome mec types of, as well as Panton-Valentine leukocidin occurrence among, methicillin-resistant Staphylococcus aureus isolates from children and adults in middle Tennessee. J Clin Microbiol, 2006; 44: 4436–40
11. Puljiz I, Markotić A, Cvetko KL et al: Mycoplasma pneumoniae in adult community-acquired pneumonia increases matrix metalloproteinase-9 serum level and induces its gene expression in peripheral blood mononuclear cells. Med Sci Monit, 2012; 18: 500–5
12. Green R, Terclanche A, Becker P et al: Cytokine profile and clinical correlates in HIV-exposed infants with severe (hypoxic) pneumonia. S Afr Resp J, 2016; 22: 3–6
13. Wapinski O, Chang HY: Long noncoding RNAs and human disease. Trends Cell Biol, 2011; 21: 354–61
14. Liu X-H, Liu Z-L, Sun M et al: The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer, 2013; 13: 464
15. Chen J, Hu L, Pan Q et al: Detection and analysis of Wnt pathway related lncRNAs expression profile in lung adenocarcinoma. Pathol Oncol Res, 2016; 22: 609–15
16. Song X, Cao G, Jing L et al: Analysing the relationship between lncRNA and protein-coding gene and the role of IncRNA as ceRNA in pulmonary fibrosis. J Cell Mol Med, 2014; 18: 991–1003
17. Association RdbotCm: Diagnosis and treatment guideline of community-acquired pneumonia. Chin J Tuberc Respir Dis, 2006; 29: 651–55
18. Fukusumi S, Fujii R, Hinuma S: Recent advances in mammalian RFamide peptides: the discovery and functional analyses of PrRP, RFRPs and QRFP. Peptides, 2006; 27: 1073–86

19. Packiriswamy N, Steuny M, Parameswaran N: Critical involvement of GPCR kinase-5 in E. coli induced pneumonia (INC7P. 427). J Immunol, 2014; 192: 186.128

20. Ohta A, Slikovsky M: Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature, 2001; 414: 916–20

21. Zabel BA, Agace WW, Campbell JJ et al: Human G protein-coupled receptor GPR-9/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J Exp Med, 1999; 190: 1241–56

22. Dusaban SS, Purcell NH, Rockenstein E et al: Phospholipase Cε links G protein-coupled receptor activation to inflammatory astrocytic responses. Proc Natl Acad Sci USA, 2013; 2013; 110: 3609–14

23. Chen C, Liang Z, Huang W et al: Eps8 regulates cellular proliferation and migration of breast cancer. Int J Oncol, 2015; 46: 205–14

24. Arae K, Hirata M, Kurata S et al: Mycoplasma pneumoniae induces interleukin-8 production via the epidermal growth factor receptor pathway. Microbiol Immunol, 2011; 55: 748–50

25. Sun G, Liu X, Mercado P et al: The zinc finger protein CKoxa directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat Immunol, 2005; 6: 373–81

26. Cousins RJ, Lanningham-Foster L: Regulation of cysteine-rich intestinal protein, a zinc finger protein, by mediators of the immune response. J Infect Dis, 2000; 182: 581–84

27. Evans PC, Hulb Q, Hamon M et al: Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J, 2004; 378: 727–34

28. Jakubzick C, Chol E, Kunkel S et al: Augmented pulmonary IL-4 and IL-13 receptor subunit expression in idiopathic interstitial pneumonia. J Clin Pathol, 2004; 57: 477–86

29. Yamane K, Indalao IL, Chida J et al: Disopropylamine dichloroacetate, a novel pyruvate dehydrogenase kinase 4 inhibitor, as a potential therapeutic agent for metabolic disorders and multiorgan failure in severe influenza. PLoS One, 2014; 9: e98032

30. Kannan T, Blaylock MW, Dallo SF: Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol Microbiol, 2004; 44: 1041–51

31. Smigiel KS, Richards E, Srivastava S et al: CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J Exp Med, 2014; 211: 121–36

32. Hellmann J, Sansbury BE, Holden CR et al: CCR7 maintains nonresolving lymph node and adipose inflammation in obesity. Diabetes, 2016; 65: 2268–81

33. Nureki S, Miyazaki E, Ishii T et al: Elevated concentrations of CCR7 ligands in patients with eosinophilic pneumonia. Allergy, 2013; 68: 1387–95

34. Nureki S, Ishii T, Ando M et al: Elevated concentrations Of Cc chemokine receptor 7 ligands in patients with eosinophilic pneumonia. Am J Respir Crit Care Med, 2012; 185: A4156