An expanded mammal mitogenome dataset from Southeast Asia

Mohd Salleh, Faezah Binti; Ramos Madrigal, Jazmin; Peñaloza, Fernando; Liu, Shanlin; Sinding, Mikkel Holger Strander; Patel, Riddhi P.; Martins, Renata; Lenz, Dorina; Fickel, Jörns; Roos, Christian; Shamsir, Mohd Shahir; Azman, Mohammad Shahfiz; Lim, Burton K.; Rossiter, Stephen J.; Wilting, Andreas; Gilbert, Tom

Published in:
GigaScience

DOI:
10.1093/gigascience/gix053

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Mohd Salleh, F. B., Ramos Madrigal, J., Peñaloza, F., Liu, S., Sinding, M. H. S., Patel, R. P., ... Gilbert, T. (2017). An expanded mammal mitogenome dataset from Southeast Asia. DOI: 10.1093/gigascience/gix053
DATA NOTE

An expanded mammal mitogenome dataset from Southeast Asia

Faezah Mohd Salleh1,2,∗, Jazmín Ramos-Madrigal1, Fernando Peñaloza3,4, Shanlin Liu1,5, Mikkel-Holger S. Sinding1,6, Riddhi P. Patel3,7, Renata Martins3, Dorina Lenz3, Jörns Fickel3,8, Christian Roos9, Mohd Shahir Shamsir2, Mohammad Shahfiz Azman10, Burton K. Lim11, Stephen J. Rossiter12, Andreas Wilting3 and M. Thomas P. Gilbert1,13,∗

1Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark, 2Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia, 3Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke Strasse 17, 10315 Berlin, Germany, 4Undergraduate Program on Genomic Sciences, Universidad Nacional Autonoma de Mexico, 62210 Cuernavaca, Mexico, 5BGI-Shenzhen, Shenzhen, GuangDong, China, 6Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318, Oslo, Norway, 7Freie Universität Berlin, Kaiserswerther Str. 16-18, 14195 Berlin, Germany, 8University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str 24-25, 14476 Potsdam, Germany, 9Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany, 10Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia, 11Department of Natural History, Royal Ontario Museum, Toronto, Canada, 12School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom and 13NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway

∗Correspondence address: Faezah Mohd Salleh, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark. Tel: +6 075557555; E-mail: faezah@fbb.utm.my. M. Thomas P. Gilbert, Tel: +45 23712519; E-mail: tgilbert@snm.ku.dk

Abstract

Southeast (SE) Asia is 1 of the most biodiverse regions in the world, and it holds approximately 20% of all mammal species. Despite this, the majority of SE Asia’s genetic diversity is still poorly characterized. The growing interest in using environmental DNA to assess and monitor SE Asian species, in particular threatened mammals—has created the urgent need to expand the available reference database of mitochondrial barcode and complete mitogenome sequences. We have partially addressed this need by generating 72 new mitogenome sequences reconstructed from DNA isolated from a range of historical and modern tissue samples. Approximately 55 gigabases of raw sequence were generated. From this data, we assembled 72 complete mitogenome sequences, with an average depth of coverage of ×102.9 and ×55.2 for modern
samples and historical samples, respectively. This dataset represents 52 species, of which 30 species had no previous mitogenome data available. The mitogenomes were geotagged to their sampling location, where known, to display a detailed geographical distribution of the species. Our new database of 52 taxa will strongly enhance the utility of environmental DNA approaches for monitoring mammals in SE Asia as it greatly increases the likelihoods that identification of metabarcoding sequencing reads can be assigned to reference sequences. This magnifies the confidence in species detections and thus allows more robust surveys and monitoring programmes of SE Asia’s threatened mammal biodiversity. The extensive collections of historical samples from SE Asia in western and SE Asian museums should serve as additional valuable material to further enrich this reference database.

Keywords: invertebrate-derived (iDNA); metabarcoding; GenBank; taxonomic assignment

Data Description

Context

Southeast (SE) Asia is 1 of the most biodiverse regions in the world, hosting ~20% of mammal species, but it is experiencing rapid deforestation for agriculture and development. To assess the ecological consequences of land use change, there is growing interest in using environmental DNA to monitor mammal populations, particularly threatened taxa that often underpin conservation policies [1–4]. Yet current efforts are hampered by the lack of a reference database of mitochondrial barcodes and complete mitogenome sequences. Currently there are 922 mammalian mitogenomes available in Genbank. Unfortunately, most are not tagged by location/origin. Data mining through manual screening of each mitogenomes resulted in 174 terrestrial mammal species that are typical to SE Asia. In this work, 30 novel species are added, contributing to ~17% expansion of the current SE Asia mammal mitogenome database.

DNA extraction

Genomic DNA was extracted from different sample types of 72 small mammals, comprising 52 species, listed in Table 1 and Table 2. DNA from modern tissue and blood samples was isolated using the Qiagen DNeasy extraction kit (Qiagen, Hilden, Germany, [QIAGEN, RRID:SCR_008539]) or Invitrek DNA extraction kit (Invitrek GmbH, Berlin, Germany), as per standard protocols following the manufacturer’s guidelines. Historical samples obtained from the Zoological Museum, Natural History Museum of Denmark, and University of Copenhagen (ZM, KU) were treated differently according to type of tissue (Additional file 1a), while at the German Primate Center, DNA extraction from museum specimens followed Liedigk et al. (2015) [5] using the Gen-IAL First All Tissue Kit (Gen-IAL, Troisdorf, Germany). Complete details of sample information are provided in Additional file 2.

Data Validation and Quality Control

Mitogenome sequencing, assembly, and annotation

Mitogenomes were generated using several approaches. In Copenhagen, author F.M.S. constructed Illumina shotgun libraries with insert sizes ranging between 50 and 400 bp. To construct libraries, DNA was sheared to the target size range using Bioruptor® XL (Diagenode, USA [Diagenode, RRID:SCR_014807]) and converted into an Illumina-compatible sequencing library using the NEBNext E6070 Kit (New England Biolabs, UK). The libraries were polymerase chain reaction (PCR) amplified with index primers and purified using Qiaquick columns (Qiagen, Hilden, Germany) according to the manufacturer’s instruction (Additional file 1b). Multiple libraries were combined together into 3 pools, normalized to 10 nM, and sequenced across 3 lanes of Illumina HiSeq 2500 using SR100 bp chemistry. In Berlin and Goettingen, mitogenomes were generated by authors P.R.P. and C.R. using overlapping PCR products using long-range PCR (Additional file 1c) followed by library construction and MiSeq sequencing, or Sanger sequencing as described in Patel, Förster, and Kitchener (2016) [6] and Liedigk et al. (2015), Roos et al. (2011), and Liedigk et al. (2014) [5, 7, 8], respectively. Author R.M.’s mitogenomes were done using methods outlined in Fortes and Puijmans (2015) [9]. Further details about laboratory methods are described in Additional file 1.

Raw reads for F.M.S. samples were assembled independently by authors F.M.S. and F.P. using 2 different approaches, then compared for consistency. Author F.M.S. trimmed the reads for sequencing adapters, low-quality stretches, and leading/tailing Ns using AdapterRemoval 1.2 (AdapterRemoval, RRID:SCR_011834) [10]. The mitochondrial genome was reconstructed with MITObim v. 1.8 [11] using the reference mitogenome of the closest species available in Genbank as the seed reference (Additional file 2). In order to obtain the mapping statistics of the samples, we ran PALEOMIX v. 1.2.6 [12] with default parameters where reads shorter than 25 bp after trimming were discarded. The trimmed reads were aligned against the newly assembled mitogenome generated by MITObim using Burrows–Wheeler Aligner [13]. Alignments showing low-quality scores and PCR duplicates were further removed using the MarkDuplicates program from Picard tools, and reads were locally realigned around small insertions and deletions (indels) to improve overall genome quality using the IndelRealigner tool from the Genome Analysis Toolkit (GATK, RRID:SCR_001876) [14]. In contrast, author F.P. inputted the trimmed reads into mitoMaker [15], which performs a de novo and reference-based assembly using SOAPdenovoTrans v. 1.03 [SOAPdenovo-Trans, RRID:SCR_013268] [16] and MITObim v. 1.7 [11]. Post-assembly, the F.M.S. and F.P. mitogenomes were manually compared for consistency by F.M.S. to generate the final consensus sequences. These assemblies were automatically annotated using rRNAscan-SE v. 1.4 (rRNAscan-SE, RRID:SCR_010883) [17] and Basic Local Alignment Search Tool v. 2.2.29 (NCBI BLAST, RRID:SCR_004870) [18] using the mitochondrial genomes found in the National Center for Biotechnology Information Reference Sequence Database (RefSeq, RRID:SCR_003496) [19] as references.

For the mitogenome constructed by author R.M., Illumina sequence reads were de-multiplexed according to the respective indexes with the Illumina software bcl2fastq v. 2.17 (Illumina, San Diego, CA, USA), and adapters were clipped from the sequence reads with the software cutadapt v. 1.3 [20]. Quality trimming was done through a sliding window approach (10 bp; Q20), and all reads shorter than 20 bp were removed from the
No.	GenBank ID	Common name	Genus	Species	Assembly size	Locality	Source	Sample date of collection	Data by
1	KY117537	Hog deer	Axis	porcinus	16402	CPH Zoo	ZM, KU	21/8/1912	F.M.S./F.P.
2	KY117538	Pallas's squirrel	Callosciurus	erythraeus	16656	Bangkok, Thailand	ZM, KU	25/5/1969	F.M.S./F.P.
3	KX265095	Bay cat	Catopuma	badia	16960	Sabah, Malaysia	National Museum Scotland	20/04/2000	P.R.P.
4	KX224524	Asiatic golden cat	Catopuma	temminckii	16960	Thailand	American Museum of National History, New York.	10/10/1927	P.R.P.
5	KY117545	Sumatran rhino	Dicerorhinus	sumatrensis	16466	Sumatra, Indonesia	Naturalis, Leiden, The Netherlands	1880	R.M.
6	KY117546	Least pygmy squirrel	Exilisciurus	exilis	16637	Indonesia	ROM	16/06/1993	F.M.S./F.P.
7	KY117548	Hose's mongoose	Herpestes	javanicus	16340	Java, Indonesia	ZM, KU	12/3/1947	F.M.S./F.P.
8	KY117550	Three-striped ground Squirrel	Lariscus	indsignis	16399	Malay Peninsula	ZM, KU	Unknown	F.M.S./F.P.
9	KY117592	Black crested macaque	Macaca	nigra	16558	Captive	Gettorf Zoo, Germany	18/07/2000	C.R.
10	KY117593	Northern pig-tailed macaque	Macaca	leonina	16554	Captive	Ludwig-Maximilians-University Munich, Germany	6/3/1995	C.R.
11	KY117594	Southern pig-tailed macaque	Macaca	nemestrina	16531	Peninsular Malaysia	Unknown	C.R.	
12	KT288227	Marbled cat	Pardofelis	marmorata	17218	Sumatra, Indonesia	National Archaeological Museum of the Netherlands, Edinburgh, UK	30/08/1930	P.R.P.
13	KY117602	Sumatra surili	Presbytis	melalophos	16558	Captive	Howletts Wild Animal Park, UK	23/7/1999	C.R.
14	KR135743	Flat-headed cat	Prionailurus	planiceps	17704	Sabah, Malaysia	Sabah Wildlife Department	25/04/2000	P.R.P.
15	KY117580	Malayan field rat	Rattus	tiomanicus	16415	SPF Bidor, Perak, Malaysia	FRIM	12/2/2011	F.M.S./F.P.
16	KY117579	Malayan field rat	Rattus	tiomanicus	16312	Malaysia	ROM	01/06/1993	F.M.S./F.P.
17	KY117581	Malayan field rat	Rattus	tiomanicus	16305	Hutan Simpan Chikus, Tapah Perak, Malaysia	FRIM	13/1/2011	F.M.S./F.P.
18	KY117582	Black giant squirrel	Ratufa	bicolor	16600	SM, Nara, Malaysia	SM, KU	3/12/1932	F.M.S./F.P.
19	KY117574	Javan rhino	Rhinoceros	sondaicus	16417	Java, Indonesia	Copenhagen Natural History Museum	Unknown	R.M.
20	KY117575	Javan rusa	Rusa	timorensis	16437	Toeloe Angoeng, West Java, Indonesia	Naturalis, Leiden, The Netherlands	Unknown	R.M.
21	KY117576	Indian sambar deer	Rusa	unicolor	16437	Mentawai, Indonesia	Naturalis, Leiden, The Netherlands	Unknown	R.M.
22	KY117599	Western purple-faced langur	Semnopithecus	vetulus	16545	Captive	Belfast Zoo, UK	9/11/1998	C.R.
23	KY117589	Malayan tapir	Tapirus	indicus	16794	Captive	North Sumatra, Indonesia	11/1/2015	F.M.S./F.P.
24	KY117598	Silvered langur	Trachypithecus	cristatus	16551	Copenhagen Zoo Bavarian State Collection	Munich, Germany	1911	C.R.

FRIM: Forest Research Institute, Malaysia; ROM: Royal Ontario Museum; ZM, KU: Zoological Museum, University of Copenhagen.
Table 2: List of mitogenomes assembled in this work that have no previous complete mitogenome reference available in GenBank

No.	GenBank ID	Common name	Genus	Species	Assembly size	Locality	Source	Sample date of collection	Data by
1	KY117536	Asian small-clawed otter	Aonyx	cinereus	16153	Captive	Copenhagen Zoo	08/08/11	F.M.S./F.P.
2	KY117535	Asian small-clawed otter	Aonyx	cinereus	16153	Sarawak, Malaysia	British Museum of Natural History, London Tierpark, Berlin	25/8/2010	F.M.S./F.P.
3	KY117560	Binturong Plantain squirrel	Arctictis	binturong	17067	Unknown Hutan Bidor, Perak, Malaysia	FRIM	29/11/2010	F.M.S./F.P.
4	KY117541	Plantain squirrel	Callosciurus	notatus	16599	East Kalimantan, Indonesia	ROM	03/06/1993	F.M.S./F.P.
5	KY117542	Prevost's squirrel	Callosciurus	prevostii	16674	East Kalimantan, Indonesia	ROM	15/06/1993	F.M.S./F.P.
6	KY117543	Variable squirrel	Callosciurus	finlaysonii	15747	Koh Chang, Thailand	ZM, KU	14/1/1900	F.M.S./F.P.
7	KY117539	Variable squirrel	Callosciurus	finlaysonii	16489	Central Thailand	FRIM	02/12/1928	F.M.S./F.P.
8	KY117544	Sunda otter civet	Cynogale	bennetti	15784	Borneo	British Museum of Natural History, London Tierpark, Berlin	25/8/2010	F.M.S./F.P.
9	KY117549	Greater mouse deer	Tragulus	napu	15778	Bang Nara, Thailand	FRIM	11/10/1931	F.M.S./F.P.
10	KY117552	Long-tailed giant rat	Leopaldamys	sabanus	15973	G. Telapak Buruk, Negeri Sembilan, Malaysia	FRIM	24/2/2010	F.M.S./F.P.
11	KY117553	Long-tailed giant rat	Leopaldamys	sabanus	15972	Teluk Segadas, P. Pangkor, Perak, Malaysia	FRIM	19/3/2010	F.M.S./F.P.
12	KY117554	Long-tailed giant rat	Leopaldamys	sabanus	15974	Hutan Simpan Temengor, Gerik Perak, Malaysia	FRIM	23/1/2014	F.M.S./F.P.
13	KY117555	Long-tailed giant rat	Leopaldamys	sabanus	15972	Hutan Simpan Lenggor, Kluang, Johor, Malaysia	FRIM	19/2/2014	F.M.S./F.P.
14	KY117551	Long-tailed giant rat	Leopaldamys	sabanus	15974	ROM	FRIM	28/05/1993	F.M.S./F.P.
15	KY117556	Hairy-nosed otter	Lutra	sumatrana	16580	Bang Nara, Thailand	ZM, KU	01/01/1939	F.M.S./F.P.
16	KY117557	Smooth-coated otter	Lutrogale	perspicillata	16042	Teluk Segadas, P. Pangkor, Perak, Malaysia	British Museum of Natural History, London Tierpark, Berlin	25/8/2010	F.M.S./F.P.
17	KY117558	Smooth-coated otter	Lutrogale	perspicillata	16041	Bang Nara, Thailand	FRIM	24/1/1933	F.M.S./F.P.
18	KY117591	Moor macaque	Macaca	maura	15636	Captive	Hannover Zoo, Germany	20/8/1998	C.R.
19	KY117564	Rajah/brown spiny rat	Maxomys	rajah	16200	Indonesia	ROM	06/06/1993	F.M.S./F.P.
20	KY117562	Rajah/brown spiny rat	Maxomys	rajah	16296	Teluk Segadas, P. Pangkor, Perak, Malaysia	FRIM	19/3/2010	F.M.S./F.P.
21	KY117563	Rajah/brown spiny rat	Maxomys	rajah	16296	Pasir Bogak, P.Pangkor, Perak, Malaysia	FRIM	18/3/2010	F.M.S./F.P.
22	KY117567	Red spiny rat	Maxomys	surfer	16286	50 ha, Pasoh, Negeri Sembilan, Malaysia	FRIM	12/6/2008	F.M.S./F.P.
23	KY117566	Red spiny rat	Maxomys	surfer	16290	Indonesia	ROM	21/05/1993	F.M.S./F.P.
24	KY117565	Red spiny rat	Maxomys	surfer	16286	Indonesia	ROM	17/05/2013	F.M.S./F.P.
25	KY117570	Whitehead’s spiny rat	Maxomys	whiteheadi	16316	Hutan Simpan Bikam, Perak, Malaysia	FRIM	12/2/2011	F.M.S./F.P.
26	KY117571	Whitehead’s spiny rat	Maxomys	whiteheadi	16316	Keruing Trail, FRIM, Kepong, Selangor, Malaysia	FRIM	13/3/2013	F.M.S./F.P.
Table 2: Continued

No.	GenBank ID	Common name	Genus	Species	Assembly size	Locality	Source	Sample date of collection	Data by
28	KY117568	Whitehead's spiny rat	Maxomys	whiteheadi	16287	Hutan Simpan Bikam, Perak, Malaysia	FRIM	12/2/2011	F.M.S./F.P.
29	KY117569	Whitehead's spiny rat	Maxomys	whiteheadi	16429	Bukit Tapah, Perak, Malaysia	FRIM	23/3/2011	F.M.S./F.P.
30	KY052142	Indian muntjac	Muntiacus	muntjak	16354	West Java, Indonesia	Vienna NHM	1858	R.M.
31	KY117559	Bornean yellow muntjac	Muntiacus	atherodes	16354	Koemai, West Borneo	Bonn NHM	1938	R.M.
32	KY117573	Dark-tailed tree rat	Niviventer	cremoriventer	16322	Track 5 (G.Inas), Kedah, Malaysia	FRIM	5/11/2009	F.M.S./F.P.
33	KY117572	Dark-tailed tree rat	Niviventer	cremoriventer	16234	Malaysia	ROM	17/05/2013	F.M.S./F.P.
34	KY117600	Grizzled leaf monkey	Presbytis	comata comata	16551	Captive	Howletts Wild Animal Park, UK	23/12/1999	C.R.
35	KY117601	Mitred leaf monkey	Presbytis	mitrata	16555	Captive	Howletts Wild Animal Park, UK	12/11/1998	C.R.
36	KX857784	Leopard cat	Prionailurus	bengalensis	16989	Thailand			
37	KY117578	Annandale's sundiac rat	Rattus	annandalei	16297	Hutan Simpan Bikam, Perak, Malaysia	FRIM	12/2/2011	F.M.S./F.P.
38	KY117577	Annandale's sundiac rat	Rattus	annandalei	16301	Hutan Simpan Bikam, Perak, Malaysia	FRIM	11/2/2011	F.M.S./F.P.
39	KY117583	Mountain giant sunda rat	Sundamys	infraluteus	16297	Malaysia	ROM	18/05/2013	F.M.S./F.P.
40	KY117585	Müller's giant sundia rat	Sundamys	meulleri	16326	Track 1 (G.Inas), Kedah, Malaysia	FRIM	5/11/2009	F.M.S./F.P.
41	KY117584	Müller's giant sundia rat	Sundamys	meulleri	16304	Kedah, Malaysia	ROM	01/06/2013	F.M.S./F.P.
42	KY117586	Brooke's squirrel	Sundasciurus	broeki	16417	East Kalimantan, Indonesia	ROM	13/06/1993	F.M.S./F.P.
43	KY117587	Low's squirrel	Sundasciurus	louii	16307	East Kalimantan, Indonesia	ROM	06/06/1993	F.M.S./F.P.
44	KY117588	Low's squirrel	Sundasciurus	sp	16458	East Kalimantan, Indonesia	ROM	21/06/1993	F.M.S./F.P.
45	KY117595	Phayre's langur	Trachypithecus	phayrei	16548	South West Myanmar	Natural History Museum Berlin, Germany	Unknown	C.R.
46	KY117596	East Javan ebony langur	Trachypithecus	auratus	16552	Captive	Bristol Zoo, UK	26/10/2010	C.R.
47	KY117597	West Javan ebony langur	Trachypithecus	mauritius	16554	West Java, Indonesia	Naturalis Leiden, Netherlands	Unknown	C.R.
48	KY117590	Long-tailed porcupine	Trichys	fasciculata	16328	Borneo	ZM, KU	5/10/1894	F.M.S./F.P.

Analyses. Mitogenome references from target or closely related species were used for mapping of the sequencing reads. Aligned reads were de-duplicated using MarkDuplicates from Picard-tools v. 1.106 (Picard, RRID:SCR_006525) [21]. VariantCalling was carried out using Samtools v. 1.1 (SAMTOOLS, RRID:SCR_002105) [13] and Bcftools v. 1.2 (SAMtools/BCFtools, RRID:SCR_005227) [22]. For each sample, GATK [14] variant calling output files were further filtered to have a minimum read coverage ≥ ×3, and variants were only called when the corresponding base was represented by ≥50%; otherwise this position was "N"-masked.

Numbers of raw reads generated for each sample and mapping statistics for all 72 mitogenome assemblies are shown in Additional file 2. Sanger sequenced mitogenomes were checked with 4Peaks 1.8 (4Peaks, RRID:SCR_000015) [23], assembled with SeaView 4.5.4 [24], and annotated with DOGMA [25]. All mitogenomes were checked manually by eye to identify possible errors caused by insertion and deletions in Tablet [26]. The final mitochondrial genomes have been uploaded to GenBank (accession numbers are provided in Tables 1 and 2). The details of all new mitogenomes assembled in this work are given in Tables 1 and 2. Mitogenomes (60 samples) with known localities were geotagged and mapped to display their geographical distribution (Fig. 1).

Phylogenetic analysis

All the sequenced mitogenomes were aligned using MAFFT v. 7.158b (MAFFT, RRID:SCR_011811) [27] using the E-INS-i option.
Figure 1: Geographical distribution of mitogenomes assembled in this work (60 mitogenomes with known locality).

(Additional file 3). Randomized Axelerated Maximum Likelihood (RAxML) v. 8.0.26 (RAxML, RRID:SCR_006086) [28] was used to perform the phylogenetic analysis with a GTR+GAMMA model of nucleotide substitution. To obtain node support, we used 100 bootstrap pseudo-replicates (Fig. 2). The newick file is provided as Additional file 4.

Re-use Potential

We anticipate that the now-expanded mitogenome reference dataset for SE Asian mammals will provide benefits for a number of research areas. First, it should enhance the power of environmental DNA and other metabarcoding/barcoding approaches that relate to the identification of SE Asian mammals by conferring the ability to identify more species to the species level. This in turn has practical applications for those monitoring SE Asia’s threatened mammalian biodiversity, combatting trade in mammal species and so on. Second, the data will also have relevance to phylogenetic and population studies based on mtDNA data, which will be of use as we investigate the evolutionary history of this biodiversity hotspot.

Availability of supporting data

Raw shotgun data are deposited in the SRA under bioproject number PRJNA361218 and are available in the GigaScience repository, GigaDB [29]. Details of the method to support this work can be found in protocols.io [30].

Additional files

1. Additional file 1: DNA extraction of historical samples, library construction, and primer information
Figure 2: Phylogenetic tree of mitogenomes assembled in this work.

2. Additional file 2: Sample information sheet of mitogenomes assembled in this work
3. Additional file 3: Alignment of mitogenomes assembled in this work
4. Additional file 4: Newick file for phylogenetic tree

Abbreviations

BLAST: Basic Local Alignment Search Tool; bp: base pair; GATK: Genome Analysis Toolkit; MAFFT: Multiple Alignment using Fast Fourier Transform; NCBI RefSeq: National Center for Biotechnology Information Reference Sequence Database; PCR: polymerase chain reaction; RAxML: Randomized Axelerated Maximum Likelihood; SE: southeast.

Competing interests

The authors declare that they have no competing interests.

Funding

This project was funded by the Malaysian Government (F.M.S.), Lundbeck Foundation grant R52–5062 (M.T.P.G.), Leibniz-Association grant SAW-2013-IZW-2 (J.F.), the German Federal Ministry of Education and Research grant BMBF FKZ: 01LN1301A (A.W.), and the German Primate Center (C.R.).

Author contributions

F.M.S., A.W., J.F., and M.T.P.G. conceived the project. F.M.S., M.H.S.S., M.S.S., M.S.A., R.M., P.R.P., C.R., B.K.L., and S.J.R. collected the samples and extracted the genomic DNA. F.M.S., R.M., P.R.P., and C.R. constructed the libraries and did sequencing. F.M.S., J.R.M., F.P., S.L., P.R.P., R.M., D.L., and C.R. assembled the mitogenomes and performed mitogenome analysis. F.M.S., S.L., P.R.P., and M.T.P.G. wrote the article. All authors discussed the project and data. All authors read and approved the final manuscript.
Acknowledgements

We thank the Danish National High-throughput Sequencing Centre for assistance in generating Illumina data. We also thank the staff of the zoos in Hannover, Copenhagen, Gettorf, Belfast, Bristol, and Howletts Wild Animal Park; the staff of the Ludwig-Maximilians-University Munich, the Bavarian State Collection Munich, the National Museums Scotland, Edinburgh, the Natural History Museum Berlin, and Naturalis Leiden; and the Zoological Museum, Natural History Museum of Denmark, University of Copenhagen for providing samples for this work. B.K.L. gratefully acknowledges the Indonesian and Malaysian government authorities for issuing scientific permits.

References

1. Bohmann K, Evans A, Gilbert MTP et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 2014;29:358–67.
2. Lee P, Gan HM, Clements GR et al. Field calibration of blowfly-derived DNA against traditional methods for assessing mammal diversity in tropical forests 1. Genome 2016;59:1008–22.
3. Schnell IB, Sollmann R, Calvignac-Spencer S et al. iDNA from terrestrial haematophagous leeches as a wildlife surveying and monitoring tool–prospects, pitfalls and avenues to be developed. Front Zool 2015;12:24.
4. Schnell IB, Thomsen PF, Wilkinson N et al. Screening mammal biodiversity using DNA from leeches. Curr Biol 2012;22:R262–3.
5. Liedigk R, Kolleck J, BöKer KO et al. Mitogenomic phylogeny of the common long-tailed macaque (Macaca fascicularis fascicularis). BMC Genomics 2015;16:222.
6. Patel RP, Förster DW, Kitchener AC. Two species of Southeast Asian cats in the genus Catopuma with diverging histories: an island endemic forest specialist and a widespread habitat generalist. Open Science 2016;3:160350.
7. Roos C, Zinner D, Kubatko L et al. Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evol Biol 2011;11:77.
8. Liedigk R, Roos C, Brameier M et al. Mitogenomics of the Old World monkey tribe Papionini. BMC Evol Biol 2014;14:176.
9. Fortes GG, Pajimans JLA. Analysis of whole mitogenomes from ancient samples. Methods Mol Biol 2015;1347:179–95.
10. Lindgreen S. AdapterRemoval: easy cleaning of next generation sequencing reads. BMC Res Notes 2012;5:337.
11. Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads–a baiting and iterative mapping approach. Nucleic Acids Res 2013;41(13):e129.
12. Schubert M, Ermini L, Sarkissian CD et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat Protoc 2014;9:1056–82.
13. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.
14. Mckenna A, Hanna M, Banks E et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297–303.
15. mitoMaker. https://sourceforge.net/projects/mitomaker/. Accessed 26 May 2017.
16. Xie Y, Wu G, Tang J et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014;30:1660–6.
17. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955–64.
18. Camacho C, Coulouris G, Avagyan V et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421.
19. RefSeq: NCBI Reference Sequence Database. https://www.ncbi.nlm.nih.gov/refseq/. Accessed 26 May 2017.
20. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBNet J 2011;17:10–12.
21. picard. https://github.com/broadinstitute/picard. Accessed 20 July 2017.
22. bcftools. https://github.com/samtools/bcftools. Accessed 26 May 2017.
23. Nucleobytes: software for science. http://nucleobytes.com. Accessed 26 May 2017.
24. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221–4.
25. Wyman SK, Jansen RK, Boore JL. Automatic annotation of organelar genomes with DOGMA. Bioinformatics 2004;20:3252–5.
26. Milne I, Stephen G, Bayer M et al. Using Tableau for visual exploration of second-generation sequencing data. Brief Bioinform 2013;14(2):193–202.
27. Kato K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–80.
28. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.
29. Salleh FM, Ramos-Madrigal J, Penaloza F et al. Supporting data for “An expanded mammal mitogenome dataset from Southeast Asia.” GigaScience Database 2017. http://dx.doi.org/10.5524/100313.
30. Salleh FM, Ramos-Madrigal J, Penaloza F et al. An expanded mammal mitogenome dataset from Southeast Asia. protocols.io 2017. http://dx.doi.org/10.17504/protocols.io.im6cc9e.