Redacting COVID-19 Cases and Deaths by Applying Blockchain in Vaccination Rollout Management

Jorge Medina, Student Member, IEEE, Roberto Cessa-Rojas, Senior Member, IEEE, and Vatcharapan Umpaichitra

Abstract—Goal: Because a fast vaccination rollout against coronavirus disease 2019 (COVID-19) is critical to restore daily life and avoid virus mutations, it is tempting to have a relaxed vaccination-administration management system. However, a rigorous management system can support the enforcement of preventive measures, and in turn, reduce incidence and deaths. Here, we model a trustable and reliable management system based on blockchain for vaccine distribution by extending the Susceptible-Exposed-Infected-Recovery (SEIR) model. The model includes prevention measures such as mask-wearing, social distancing, vaccination rate, and vaccination efficiency. It also considers negative social behavior, such as violations of social distance and attempts of using illegitimate vaccination proofs. By evaluating the model, we show that the proposed system can reduce up to 2.5 million cases and half a million deaths in the most demanding scenarios.

Index Terms—Blockchain, COVID-19, SARS-CoV-2, SEIR model, vaccination model, vaccination passport.

Impact Statement—The use of blockchain technology on the system managing vaccination distribution enables a reliable exercise of infection prevention measures and a reduction of COVID-19 incidence and the number of deaths during and after vaccination rollout.

I. INTRODUCTION

With the ongoing coronavirus disease 2019 (COVID-19) pandemic, the world has been waiting for vaccines against the disease to counter its negative health and economic impacts that have affected everyone. COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is highly contagious and has been fatal for millions of people [1]–[5]. COVID-19 is transmitted through droplets of nasal secretion and saliva that are expelled when a person coughs, heavily breaths, talks, or even normally breathes. Detection of saliva is difficult as multiple of its components may need to be detected. Therefore, face-covering is considered a pivotal prevention measure as it provides a high degree of protection to both the wearer and the surrounding people. However, it is not 100% protective. Therefore, there is hope that vaccinations will mitigate or even stop the spreading of this disease [6].

Recently, the rollout of COVID-19 vaccines, while exercising social distancing and wearing face masks, is giving hope to the global population of restoring normal life. As more of the world population is now getting vaccinated, the management of the rollout and verification of vaccination records require not only accurate bookkeeping but also ubiquitous and secure access while maintaining user privacy. Accurate and accessible vaccination records are critical to provide an effective vaccination rollout and to support the execution of preventive measures, such as social distancing [2], [7].

COVID-19 vaccines from different manufacturers are being administered to the world population [8]–[10] aiming to vaccinate people rapidly and thus to leverage restoring normalcy, minimize health and economic damage, and reduce virus mutation opportunity [11]. The speedy distribution has to be carefully managed to avoid suboptimal benefits. However, the desirable synchronization and coordination of electronic vaccination records may be difficult to achieve in such a large vaccine distribution as it requires compatibility and administrative agreements among vaccination sites and upper administrators. Furthermore, the lack of secure processes to record vaccination events may make it difficult to enforce prevention measures at the rollout time and in the future. Vaccine verification could help to quickly restore daily social activities and traveling, as it may allow us to identify the susceptible and the potential source of infection. This verification requires reliable vaccination records that are secure, private, and accessible.

Blockchain has been proposed as a technology that can satisfy the security and reliability of vaccination records [12]–[16]. Beyond the technological advantages, a management system leveraged by blockchain may encourage people to get vaccinated and ultimately reduce the number of COVID-19 cases and deaths. In such approach, electronic immunization records are tied to verifiable blockchain transactions. Despite many recent proposals of blockchain-based vaccination certification
of a population into different compartments. The susceptible compartment is the group of individuals without immunity to the infection. The exposed compartment is the group of individuals who have been in close contact with infected individuals, and the recovered compartment is the group of the individuals who have recovered from the disease and developed immunity.

The prevention measures that reduce the number of COVID-19 cases considered in the extended SEIR models are mask wearing and social distancing. Vaccination against COVID-19 is a measure considered in the model to reduce cases and to convert a susceptible individual into an immune individual. This conversion depends on the vaccine efficacy, the vaccination rate, and the time for individuals to develop immunity. The willingness of individuals to get vaccinated also affects the immunity rate. Particularly, the models consider symptomatic and asymptomatic COVID-19 infections. The models also consider individuals’ behaviors that affect the efficacy of these measures, such as neglecting social distancing and falsely claiming wellness and vaccination.

Both SEIR-V and SEIR-VB models are described by (1) to (7), which determine the daily number of individuals in the respective compartments. The daily rate of change in the number of susceptible individuals, given by (1), is the sum of unvaccinated individuals that get exposed to both symptomatic and asymptomatic infected individuals, based on the contagious rate (β); the susceptible individuals that get vaccinated based on both the vaccination rate (v_v), and the likelihood of vaccine willingness (v_w); and the vaccinated individuals that remain susceptible based on the vaccine efficacy (v_e). The contagious rate β is defined as the ratio between the basic reproduction number (R_0), which is defined by the average number of secondary cases that an infected individual infects, and the infection period [28].

Table I describes the variables used in the models. S_k and I_k represent the susceptible and infected individuals in the SEIR-V ($k=w$) and SEIR-VB ($k=b$) models, respectively (8). The daily number of exposed individuals, given in (2), accounts for the newly exposed individuals; the exposed and unvaccinated individuals who may start to develop symptoms after the incubation period ($1/\delta$ days); and the fraction of the total exposed individuals that are vaccinated and recover as determined by the vaccine efficacy. The daily number of infected individuals includes symptomatic and asymptomatic cases, and both having a similar viral load [29]. A case fatality rate (α) is defined as the ratio of the number of deaths to the total number of cases.

The daily number of infected symptomatic individuals in (3) accounts for the exposed and unvaccinated individuals who get COVID-19 symptoms with a probability of symptomatic infection p_{ex}; the cases that recover after the infection period of $1/\gamma$ days; the asymptomatic individuals that develop COVID-19 symptoms with probability p_{ap} after $1/\lambda$ days; and the critical cases that unfortunately become deaths after the critical infection period of $1/\rho$ days. The daily number of asymptomatic individuals in (4) accounts for the portion of exposed and unvaccinated individuals who become asymptomatic; the cases that develop infection; and the cases that remain asymptomatic and develop immunity with or without vaccination after $1/v_i$ days or $1/\mu$ days, respectively.
The daily number of recovered individuals, determined by (5), is the accumulated number of the recovered cases and the vaccinated individuals per day. A portion of the vaccinated individuals develop immunity. The daily number of recovered individuals, determined by (5), is the accumulated number of the recovered cases and the vaccinated individuals that develop immunity. The daily number of immune individuals is a function of both the recently vaccinated individuals and asymptomatic cases, and the rest as susceptible. These models were developed during 2020 and 2021.

III. RESULTS

The numerical evaluations of SEIR-V and SEIR-VB show the difference in the number of cases and deaths for a period of 120 days using parameters as reported in the literature (Table I also shows the default values). Both SEIR-V and SEIR-VB are applied to a population of 330 million individuals (e.g., USA population), as an example. As initial conditions, the population considers 2% infected cases [31], which includes symptomatic and asymptomatic cases, and the rest as susceptible. These models were developed during 2020 and 2021.
The evaluation considers the following parameters: A reproduction number of 2.5 [32]; a case fatality rate of 2/100 [33]; an average infection, incubation, and critical infection periods of 9, 5, and 19 days, respectively [34]–[37]; a probability of infection awareness of 2/100 [38]; a vaccine efficacy of 95% [39], [40]; the start of the vaccination rollout on day 1; a daily vaccination rate of 5/1000 [41]; a vaccine willingness of 80% [42], [43]; and an immunity period of 14 days after vaccination [44], [45].

The models assume that individuals with a vaccination proof socialize without restrictions, while those without a proof may socialize with a 10% restriction. Immunity may be claimed arbitrarily by any individual. Infected individuals may conceal the infection with 3/10 probability [46], and neglect prevention rules. The probability of asymptomatic infection is set to 6/10, from which 3/10 may become symptomatic after 14 days [47]–[49]. Both the daily and total reduced number of cases and deaths are analyzed considering different percentages of the population that wear masks. The mask-wearing efficacy is set to 80% [50], [51]. Table I shows the default parameters used in the evaluation of the SEIR-V and SEIR-VB models.

A. Reduced Cases and Deaths by Blockchain

Fig. 2 shows the reduced number of cases and deaths by using the blockchain management system. Fig. 2(a) shows the reduced prevalence of COVID-19 cases through enforcing prevention measures, such as managing access to places that require a reduced social distancing by verification of vaccination certificates. Fig. 2(b) shows the reduced total number of deaths. The figures show that during the first 20 days of the vaccination rollout, the blockchain management system would decrease the number of cases by more than 2.5 million with 50% of the population wearing masks and about 500,000 cases with 90% of the population wearing masks. Fig. 2(b) shows that the blockchain system can reduce the number of deaths by about 46,000 with 50% of the population wearing masks and about 4,200 deaths with 90% of the population wearing masks.

B. Impact by People Behavior and Vaccine Features

We classify the variables into two groups: prevention measures that decrease the incidence, such as vaccination efficacy, vaccination rate, and social distancing, and negative social behavior that increases the incidence, such as infected individuals who are aware or unaware of their infections and unvaccinated individuals claiming being vaccinated, all ignoring social distancing.

Fig. 2(c) shows that the number of deaths decreases as individuals become aware of their infection and quarantine themselves. These results show that the adoption of blockchain could reduce more than 30,000 deaths for 70% of infection awareness with 50% of the population wearing masks. The difference in the number of deaths increases as the percentage of the wearing-mask population decreases because blockchain enables the detection of high-risk individuals as more individuals are exposed. The blockchain system may reduce about 3,000 deaths with 90% of the population wearing masks and 100% of infection awareness.

C. Impact of Individual’s Behavior

Fig. 2(d) shows that the blockchain system may reduce about 27,000 deaths with 10% of the infected individuals concealing their infection and 50% of the population wearing masks. On the other hand, this system may decrease about 3,000 deaths with 90% of the population wearing masks. The blockchain system also shows benefits against false vaccination claims. Fig. 2(e) shows that the blockchain system may reduce about 70,000 deaths for a 90% false vaccination claim rate with 50% of the population wearing masks and about 6,700 deaths with 90% of the population wearing masks. Its smallest impact is a reduction of about 2,700 deaths for a 10% rate of false vaccination claims with 90% of the population wearing masks.

The blockchain management system also reduces the number of cases and deaths when individuals neglect social distancing. It reduces about 60,000 deaths when each individual practices unsafe social distancing with 50% of the population wearing masks.
Fig. 2. Reduced (a) prevalence; (b) cumulative reduced number of deaths; and total reduced number of deaths using a blockchain-based
immunization system for a period of 120 days, as a function of (c) probability of infection awareness; (d) probability of concealing infection;
(e) probability of unsafe socializing; (f) vaccine efficacy; and (g) daily vaccination rates. Prevalence and number of deaths are more effectively
reduced as conditions worsens. It is in such cases that blockchain is more impactful.

D. Impact of Vaccine Features

Fig. 2(g) shows that a 100% effective vaccine alone would
be insufficient to avoid as many deaths as the combination of
vaccination, mask wearing, and social distancing would. The
blockchain system combined with a 100% effective vaccine
would reduce more than 40,000 deaths with 50% of the pop-
ulation wearing masks and about 4,000 deaths with 90% of
the population wearing masks. A lower efficacy vaccine may
increase the number of deaths and that may increase the role
importance of the blockchain system.

Fig. 2(h) shows that at a daily vaccination rate of 1% of
the population, the blockchain system would reduce 3,700 and
35,000 deaths with 90 and 50% of the population wearing masks,
respectively. Table II shows that the blockchain system can
reduce the number of cases as the contagion level increases. For
example, the proposed system may reduce 15 and 47 million
cases under no social distancing but with 50% of the population
wearing masks and a low vaccination rate of 0.1%, for virus
reproduction numbers of 2.5 and 3.5, respectively. Also, the

masks, as shown in Fig. 2(f). The smallest impact can be seen
by a reduction of about 5,000 deaths with 90% of the population
wearing masks.
TABLE II
CASES AND DEATHS FOR DIFFERENT VIRUS REPRODUCTION NUMBERS, PROBABILITY OF UNSAFE SOCIALIZING, AND VACCINATION RATES. CASES AND DEATHS CAN BE DECREASED BY USING BOTH BLOCKCHAIN AND PREVENTION MEASURES DESPITE LARGE REPRODUCTION NUMBERS

Basic Reproduction Number (R_0)	Probability of unsafe Socializing (p_{us})	(Reduced number of cases, Reduced number of deaths) in thousands	Daily Vaccination Rate (v_f) (%)	Percentage of the Population Wearing Masks (p_{w}) (%)		
	Low (0.10)	Medium (50)	High (90)	Low (0.10)	Medium (50)	High (90)
2.5	0.10	(4,549.04, 1,392.31)	(258.99, 3,904.62)	(1,236.25, 238.22)		
	0.50	(28,327.80, 3,851.26)	(924.70, 19,614.47)	(2,388.74, 478.83)		
	1.00	(204,776.90, 15,566.14)	(963.47, 149,234.40)	(11,295.44, 863.80)		
3.0	0.10	(6,245.50, 1,745.62)	(313.37, 2,352.33)	(1,565.76, 287.97)		
	0.50	(52,525.99, 5,330.80)	(641.18, 34,066.27)	(4,443.70, 586.27)		
	1.00	(243,863.00, 27,648.09)	(1,221.79, 199,461.10)	(18,734.58, 1,087.45)		
3.5	0.10	(8,431.48, 2,131.15)	(368.64, 6,877.79)	(1,899.43, 338.44)		
	0.50	(89,492.53, 7,247.59)	(769.17, 56,559.08)	(5,807.97, 698.05)		
	1.00	(255,965.10, 47,324.80)	(1,508.76, 225,759.70)	(30,368.07, 1,332.48)		

blockchain system could reduce 1.3 and 1.9 million cases for a high vaccination rate of 0.5%, with 50% of the population wearing masks, and individuals socializing with 90% restrictions with reproduction numbers of 2.5 and 3.5, respectively. With the vaccination rollout, the number of individuals wearing masks may decrease but that could increase the number of cases and deaths. Table II shows that with a low daily vaccination rate of 0.1%, with 50% of the population wearing masks and no individuals keeping social distance, the system could reduce more than 80,000 deaths for a (virus) reproduction number of 2.5 and more than 230,000 deaths for a reproduction number of 3.5. On the other hand, at a daily vaccination rate of 0.5%, 90% of the population wearing masks, and individuals socializing with 90% restrictions, the system could still reduce 1,300 and 1,850 deaths for reproduction numbers of 2.5 and 3.5, respectively. Even though these numbers of deaths are small in comparison with the initial population, decreasing incidence and mortality is deemed significant.

IV. DISCUSSION

Modeling and forecasting the incidence of infectious diseases such a COVID-19 is challenging because of the dynamics of the many involved parameters [52]. The parameters used in our evaluations are time invariant. However, as more people become vaccinated, mask wearing rates may decrease and evaluations of such scenario would be needed.

Using blockchain to track vaccinated individuals would support the enforcing of prevention measures. These evaluations consider a uniform enforcement of preventive rules across the whole population in the SEIR-VB model, but non-uniformity may be more realistic in a country and that may need to be considered. Enforcing the prevention measures in the world has been challenging. Therefore, the use of blockchain may face some resistance and a flexible approach may need to be developed. Also, the current rollout may target fast vaccination of the population to provide a fast health and economic relief. Such a case may include variable vaccination rates that may need to be analyzed in similar performance terms as done in this paper.

V. CONCLUSION

Blockchain provides a means to reliably record vaccinations and issues time-dependent certificates that can be used to enforce vaccination verification in a pandemic. We modeled and evaluated a vaccine distribution management system that reliably verifies whether an individual is vaccinated so that such individual can be allowed to participate in social activities of normal daily life, including reduced social distancing, traveling, or group gatherings.

The performance of the proposed blockchain system was evaluated by the reduced number of cases and deaths between the blockchain management system and a conventional system that uses no blockchain. The results indicate that the adoption of blockchain as an immunization control system could reduce the number of cases and deaths, as an important effect of performing preventive measures.

REFERENCES
[1] T. P. Velavan and C. G. Meyer, “The COVID-19 epidemic,” Trop. Med. Int. Health, vol. 25, no. 3, p. 278, 2020.
[2] D. Wu, T. Wu, Q. Liu, and Z. Yang, “The SARS-CoV-2 outbreak: What we know,” Int. J. Infect. Dis., vol. 94, pp. 44–48, 2020.
"Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea," JAMA Intern Med., vol. 180, no. 11, pp. 1447–1452, 2020.

S. Medina and R. Rojas-Cessa, “Model code of extended SEIR Models with vaccination rollout and blockchain,” 2021. [Online]. Available: https://doi.org/10.1109/OJEMB.2020.2999214

S. Mateidis et al. “Risk of COVID-19 epidemic resurgence with the introduction of vaccination passes,” medRxiv. The Preprint Server for Health Sciences, 2021.

J. Vaccines, “A randomized, double-blind, placebo-controlled phase 3 study to assess the efficacy and safety of Ad26.COV2.S for the prevention of SARS-CoV-2-mediated COVID-19 in adults aged 18 years and older,” 2020.

T. K. Burki, “The Italian vaccine for COVID-19,” Lancet Respir. Med., vol. 8, no. 11, pp. e85–e86, 2020.

M. D. Knoll and C. van Kerkhove, “Oxford-AstraZeneca COVID-19 vaccine efficacy,” Lancet, vol. 397, no. 10269, pp. 72–74, 2021.

V. Priessmann et al. “An action plan for pan-European defence against new SARS-CoV-2 variants,” Lancet, vol. 397, no. 10273, pp. 469–470, 2021.

B. Yong, J. Shen, X. Liu, F. Li, H. Chen, and Q. Zhou, “An intelligent blockchain system for safe vaccine supply and supervision,” J. Med. Virol., vol. 92, no. 11, pp. 2543–2550, 2020.

M. Cevik, M. Tate, O. Lloyd, A. E. Marzolo, J. Schäfers, and A. Ho, “SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis,” Lancet Microbe, 2020.

K. A. Walsh et al. “The duration of infectiousness of individuals infected with SARS-CoV-2,” J. Infection, 2020.

S. A. Lauer et al., “The incubation period of COVID-19 disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application,” Ann. Intern. Med., vol. 172, no. 9, pp. 577–582, 2020.

F. Zhou et al. “Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study,” Lancet, vol. 395, no. 10229, pp. 1054–1062, 2020.

J. Hellewell et al. “Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts,” Lancet Glob. Health, vol. 8, no. 4, pp. e488–e496, 2020.

E. Mahase, “Covid-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows,” Brit. Med. J. (Online), vol. 371, 2020.

F. P. Polack et al. “Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine,” New England J. Med., vol. 383, no. 27, pp. 2603–2615, 2020.

“Coronavirus (covid-19) vaccinations,” Our World in Data, Apr. 6, 2021. [Online]. Available: https://ourworldindata.org/covid-vaccinations

P. G. Szilagyi et al., “National trends in the US public’s likelihood of getting a COVID-19 vaccine-April 1 to Dec. 8, 2020,” JAMA, vol. 325, no. 4, pp. 396–398, 2021.

P. L. Reiter, M. L. Pennell, and M. L. Katz, “Acceptability of a COVID-19 vaccine among adults in the United States: How many people would get vaccinated?” Vaccine, vol. 38, no. 42, pp. 6500–6507, 2020.

L. R. Baden et al. “Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine,” New England J. Med., vol. 384, no. 5, pp. 403–416, 2021.

A. T. EUA and S. Agniihotham, “Emergency use authorization (EUA) for an unapproved product review memorandum identifying information.”

T. R. Levine, R. K. Kim, and L. M. Hamel, “People lie for a reason: Three experiments documenting the principle of veracity,” Commun. Res. Rep., vol. 27, no. 4, pp. 271–285, 2010.

M. A. Johannson et al., “SARS-CoV-2 transmission from people without COVID-19 symptoms,” JAMA Netw. Open, vol. 4, no. 1, pp. e2035057–e2035057, 2021.

E. M. White et al., “Asymptomatic and presymptomatic severe acute respiratory syndrome coronavirus 2 infection rates in a multisite sample of skilled nursing facilities,” JAMA Intern. Med., vol. 180, no. 12, pp. 1709–1711, 2020.

D. P. Oran and E. J. Topol, “Prevalence of asymptomatic SARS-CoV-2 infection: A narrative review,” Ann. Intern. Med., vol. 173, no. 5, pp. 362–367, 2020.

J. Howard et al. “An evidence review of face masks against COVID-19,” Proc. Nat. Acad. Sci., vol. 118, no. 4, 2021.

Y. Wang et al. “Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: A cohort study in Beijing, China,” BMJ Glob. Health, vol. 5, no. 5, 2020, Art. no. e002794.

A. L. Bertozzi, E. Franco, G. Mohler, M. B. Short, and D. Sledge, “The challenges of modeling and forecasting the spread of COVID-19,” Proc. Nat. Acad. Sci., vol. 117, no. 29, pp. 16 732–16 738, 2020.