Flow goes forward and cells step backward: endothelial migration

Heon-Woo Lee¹, Jae Hun Shin² and Michael Simons¹,³

© The Author(s) 2022

Systemic and pulmonary circulations constitute a complex organ that serves multiple important biological functions. Consequently, any pathological processing affecting the vasculature can have profound systemic ramifications. Endothelial and smooth muscle are the two principal cell types composing blood vessels. Critically, endothelial proliferation and migration are central to the formation and expansion of the vasculature both during embryonic development and in adult tissues. Endothelial populations are quite heterogeneous and are both vasculature type- and organ-specific. There are profound molecular, functional, and phenotypic differences between arterial, venular and capillary endothelial cells and endothelial cells in different organs. Given this endothelial cell population diversity, it has been challenging to determine the origin of endothelial cells responsible for the angiogenic expansion of the vasculature. Recent technical advances, such as precise cell fate mapping, time-lapse imaging, genome editing, and single-cell RNA sequencing, have shed new light on the role of venous endothelial cells in angiogenesis under both normal and pathological conditions. Emerging data indicate that venous endothelial cells are unique in their ability to serve as the primary source of endothelial cellular mass during both developmental and pathological angiogenesis. Here, we review recent studies that have improved our understanding of angiogenesis and suggest an updated model of this process.

INTRODUCTION

The term angiogenesis refers to the process of expansion of a preexisting vascular network. It requires the precise control and coordination of the proliferation, migration, and differentiation of endothelial cells (ECs)¹. Endothelial cells can be categorized into several subtypes depending on the type of blood vessels they are found in and on their anatomic location. The three principal types of blood endothelial cells are arterial, venous, and capillary cells, and lymphatic endothelial cells form a distinctly different endothelial subpopulation²-⁴. In addition to these well-defined endothelial populations, there is also a population of endothelial tip cells. These cells are characterized by both their specific location at the front of the forming vascular network and the expression of specific genetic programs. Unlike arterial, venous, and capillary endothelial populations, the tip cell population is transient, and any endothelial cells at the vascular edge may assume tip cell features⁵-⁷.

Because these different endothelial subtypes are exposed to distinct local microenvironments, including factors such as oxygen level, nutrients, and mechanical forces, from the flow of blood, it is not surprising that each endothelial subtype has a distinct gene expression pattern. Other factors, such as functional specialization (e.g., filtration vs. barrier function) or anatomic location (e.g., liver vs. brain), also have a distinct genetic imprint. Given this endothelial diversity, the source of endothelial cells responsible for angiogenic vasculature expansion remains poorly defined.

A recent study⁸ reported that venous endothelial cells are the primary source of endothelial cells responsible for angiogenic expansion both during embryonic development and in disease settings. Remarkably, venous endothelial cells are the only type of endothelial subtype capable of responding to hypoxia-induced angiogenic signaling by proliferating and migrating against the blood flow to form the new vascular bed. Abnormalities in this process account for pathological abnormalities, such as arteriovenous malformation (AVM) or excessive angiogenesis, that are seen in diabetic retinopathy.

Several recent observations also suggest that the role of venous endothelial cells is conserved throughout different settings and species. Given that venous endothelial cells are the primary cellular source of angiogenesis, a better understanding of their biological features will help to facilitate the development of pro- and antiangiogenic therapies. In this review, we will provide a summary of recent advances in this field that focus on endothelial migration and the primary angiogenic role played by the venous endothelium.

TRADITIONAL ANGIOGENESIS MODEL

Starting with the work of J Folkman, the concept of angiogenesis as a response to hypoxia has taken hold in this field⁹-¹³. Thus, the hypoxic environment in a growing tumor or in the developing retina is seen as a source of the principle angiogenesis driver
vascular endothelial growth factor A (VEGF-A). It is produced locally due to increased expression of hypoxia-inducible factor 1 alpha (HIF1α), which is a transcription factor regulating VEGF-A expression. This increased VEGF-A production stimulates the growth of new vasculature that, once formed, increases oxygen supply, relieves local ischemia, and arrests further vessel growth (Fig. 1). One important feature of this model is the central role played by a VEGF concentration gradient between the area of maximal VEGF production in the ischemic zone at one end and the "responding" capillary bed at the other (Fig. 1). These capillary endothelial cells respond by sprouting and migrating toward the gradient. The leading cells in the sprout acquire tip cell identity, and the supporting cells acquire a "stalk cell" phenotype. These extending vascular tip/stalk structures eventually form a new capillary bed, thereby restoring blood flow to the formerly ischemic zone (Fig. 1).

In this model, tip cells, a specialized but transient form of endothelial cells characterized by the expression of high levels of VEGF receptor 2 (VEGFR2) and the absence of a lumen, play a central role in the angiogenic response. VEGF binding to VEGFR2 on tip cells results in the activation of a number of tip endothelial cell-specific genes. These include growth factors (PDGFβ16, ANG217, and APLN18), angiogenic receptors (PDGFRβ17, VEGFR119, VEGFR320, UNC5B19, and CXCR418), and others (DLL421,22 and ESM118). This distinct gene expression profile enables tip endothelial cells to sense angiogenic cues and the VEGF gradient and guide newly formed angiogenic sprouts toward the hypoxic area. While tip endothelial cells guide the growing sprout, endothelial cells located just behind the tip cell position, known as stalk cells, form the body of the angiogenic sprout containing the blood vessel lumen. Similar to tip cells, stalk cells are also a transient endothelial cell subtype. In contrast to tip cells, stalk cells have fewer filopodia and reduced levels of VEGFR2. They support the extension of angiogenic sprouts, forming the lumen of the new vessel and maintaining a connection with the preexisting capillary bed. Importantly, fate-mapping studies confirmed the contribution of tip cells to angiogenesis, demonstrating that a high proportion of the newly formed arterial endothelium is of tip cell origin.28,29

To prevent a runaway train of angiogenesis, the process of tip vs. stalk cell specification and angiogenic sprouting is regulated by the activation of Notch signaling at endothelial cell–cell contact sites. An endothelial cell exposed to VEGF upregulates its expression of the Notch ligand Delta-like 4 (DLL4), thereby acquiring a tip cell fate. This newly minted tip cell interacts with NOTCH receptors on adjacent endothelial cells, resulting in NOTCH cleavage and the release of the intracellular Notch intracellular domain (NICD). NICD translocates into the nucleus, binds to RBPJ, and then activates NOTCH target genes. This converts endothelial cells with activated Notch signaling into stalk cells, limiting the number of newly formed sprouts. This promotes vascular quiescence, stabilizes EC-EC junctions, and suppresses proliferation. Overall, endothelial NOTCH activation prevents excessive angiogenesis by reducing the overall number of tip endothelial cells. In the absence of this mechanism, such as in DLL4+/− mice, an excessive number of new vessels are formed, resulting in defective tissue perfusion.

One shortcoming of the traditional tip/stalk specification-centered concept of angiogenesis discussed above (Fig. 1) is that it is fairly static and does not take into account ongoing endothelial cell proliferation and migration. Since any angiogenic expansion requires an adequate supply of endothelial cells to support growth of the new vasculature, the preexisting endothelium must proliferate and migrate toward the site of angiogenesis. This new wave of endothelial cells provides a source of tip and stalk cells that guide the growth of new vascular structure.
vasculature. With this in mind, one key unresolved gap in our understanding of angiogenesis is the source of endothelial cells that is driving it.

An important step in any angiogenic response is the initiation of endothelial migration. This requires the degradation of the existing extracellular matrix and the basement membrane surrounding quiescent endothelial cells, thereby allowing them to move. While there are a number of enzymes capable of digesting different extracellular matrix components, matrix metalloproteinases (MMPs) are particularly important. Endothelial activation in response to VEGF and the influx and activation of proinflammatory cells, such as circulating and tissue-residing macrophages and T cells, leads to the local production of MMPs. This enables the initiation of endothelium migration in response to the appropriate signals. Because endothelial cells in the capillary bed are embedded in thinner basement membranes than those in arteries and veins, it has been hypothesized that capillary endothelial cells are the source of endothelial expansion. However, this idea has been challenged by recent findings that venous endothelial cells are the primary source of endothelial cells for angiogenic expansion during developmental and pathological angiogenesis.

REGULATION OF THE ANGIOGENIC RESPONSE BY FLOW

In addition to sensing VEGF gradients and responding to other circulating or locally present growth factors, endothelial cells are also exposed to dynamic forces generated by the flow of blood. The ability to sense and respond to these forces is a key feature of the endothelium and governs much of its behavior. Laminar flow induces the endothelial cell synthesis of nitric oxide (NO), the extent of which is positively correlated with the flow intensity. Thus, NO induces the dilation of blood vessels, thereby lowering vascular resistance and facilitating tissue perfusion. In addition, flow-mediated shear stress regulates the expression of arterial and venous marker genes, including DLL4, EphrinB2, KLF4, and E-selectin, and vasodilation factors (COX2 and PGII), among others. Endothelial cells under laminar flow are polarized and undergo extensive rearrangements of intracellular organelles. One such key cytoskeletal rearrangement is the polarization of the Golgi apparatus.

This is important in the context of cell migration. The orientation of the Golgi complex is coupled to the direction of cell migration and can be used as an indicator of where the cell in question is going. This has been described in a number of cell types, including fibroblasts, natural killer (NK) cells, epithelial cells, and cancer cells. For example, a study of Golgi complex polarization in fibroblasts during “wound”-induced migration in vitro showed that cells located far from the wound exhibited random Golgi orientation. However, the Golgi in cells near the wound’s edge were polarized toward the wound, indicating the direction of their migration.

Likewise, endothelial cells under laminar flow display an aligned microfilament network and an upstream polarization of the Golgi apparatus (GA).

Fig. 2 Endothelial migration under blood flow. Flow-induced shear stress provides a directional cue for endothelial migration that occurs against the flow of blood. Endothelial cells under laminar flow display aligned microfilament networks and upstream polarization of the Golgi apparatus (GA).
Flow-independent sprouting angiogenesis originates from venous endothelial cells. Among the three different endothelial subtypes, arterial, capillary and venous, only venous endothelial cells respond to angiogenic factors released from the hypoxic area. Initial sprouts from preexisting veins do not have a lumen for blood circulation, and the process of lumenization follows vascular stalk formation.
Similar observations apply to the role of the venous endothelium during the formation of the retinal vasculature (Fig. 6). After birth, vasculature in the retinal superficial layer starts angiogenic expansion from the optic disk to the retinal periphery. Around postnatal day 8 (P8), the superficial vasculature reaches the periphery of the retina. There, it changes the direction of expansion and initiates vertical sprouting that “dives” into deep and intermediate layers (Fig. 6). RPE cells under the outer nuclear layer are exposed to hypoxia due to the lack of oxygen and generate a chemotactic gradient to attract endothelial cells from the superficial layer. Notably, initial neoangiogenic vessels in the deep layer at P10 are predominantly found beneath veins, implying that the venous endothelium once again plays a major role in the angiogenic expansion. Indeed, analysis of venous endothelium-derived ECs using venous EC tracing in mice showed that ~80% of endothelial cells in the deep layer were derived from venous endothelium. Given that vertical sprouting is initiated by a chemotaxis gradient rather than flow-directed migration, the distinct features of venous endothelial cells responding to chemotaxis might be shared between OIR-induced pathological angiogenesis and developmental processes.

VENOUS ENDOTHELIAL CELLS AND PATHOLOGICAL ANGIOGENESIS

In addition to serving a useful physiological role by restoring tissue perfusion, angiogenesis also plays a key role in the progression of various diseases, including cancer and various retinopathies. However, the source of neo-angiogenic endothelial cells in pathological lesions is poorly understood due to technical limitations. Recent studies have shown that the venous endothelium is the key source of neo-angiogenic endothelial cells during pathological angiogenesis.

Vascular malformations

Arteriovenous malformations (AVMs) are one of the most widely used models to investigate mechanistic details of endothelial dysfunction in angiogenesis because the mouse AVM model provides a highly detailed view of the AVM structure in the superficial layer of the retinal vasculature. Arteriovenous malformations are a common vascular disorder characterized by an abnormal connection between an artery and a vein (AV shunt). They are caused by loss-of-function mutations of genes in the TGFβ/BMP signaling pathway, including ALK1, ENG, and SMAD4. The key feature of AVM development is a misdirected endothelial alignment. In particular, the loss of endoglin (ENG), a coreceptor of TGFβ/BMP signaling, alters endothelial shapes under blood flow and vessels with ENG loss developed AV shunts in both zebrafish and mice. Activin receptor-like kinase 1 (Alk1)-deficient endothelial cells also display polarization defects under flow and, vessels with ENG loss developed AV shunts in both zebrafish and mice. SMAD4, a downstream transcription factor of the TGFβ/BMP signaling pathway, is yet another gene involved in the control of endothelial alignment. While normal endothelial cells are polarized and aligned along the axis of the flow, SMAD4-deficient endothelial cells exhibit a lack of alignment and reduced polarization. This observation has also been confirmed in the retinal vasculature in vivo settings. Misdirected endothelial alignment and polarization result in AVM development in endothelium-specific SMAD4 KO mice. While the venous endothelial Golgi complex is polarized toward the retinal periphery in normal mice, those in
SMAD4iECKO mice polarized toward arteries displaying venous endothelial cells. Thus, in SMAD4iECKO mice, the polarization is abnormally directed (Fig. 7)8.

Growing evidence indicates that venous endothelial cells also play a crucial role in the development of AVMs. For instance, endothelial cells in AV shunt lesions are known to have a venous identity. Venous endothelium marker (EphrinB2)75 and venous-capillary marker (Endomucin)80 but not arterial markers (Jag1 and Aplnr) are highly expressed in AV shunt lesions of ENGiECKO mice. AVMs in SMAD4iECKO and ALK1iECKO mice also show upregulated expression of venous endothelial markers, including EphrinB2 and Nrp274,76,77. Interestingly, deletion of ENG with venous/capillary endothelium-specific Cre (Apj-CreERT2) and pan endothelium-specific Cre (Cdh5-CreERT2) led to a similar incidence and frequency of AVMs, indicating that arterial ENG does not protect AVM development. Likewise, deletion of ALK1 with venous/capillary endothelium-specific Cre (Mfsd2a-CreERT2) leads to AVM development but not tip- (Esm1-CreERT2) or arterial EC (Bmx-CreERT2)-specific deletion56. These in vivo findings imply that endothelial cells in capillaries and/or veins are the main drivers of the development of AVMs.

Fig. 7 **Venous endothelial cells and arteriovenous malformations (AVMs).** In a normal vasculature, venous endothelial cells migrate against blood flow toward the angiogenic front for vascular outgrowth. In AVMs, the migration of venous endothelial cells is disturbed, and the speed of migration is accelerated compared to normal venous endothelial cells. Hyperproliferation of misdirected venous endothelial cells results in abnormal connections between arteries and veins.

Fig. 8 **Venous endothelial cells and wound healing.** Zebrafish regenerate amputated caudal fins. During the regeneration process, reactivation of endothelial migration is essential to support angiogenic activity. After amputation (1), chemotaxis from the wounded area attracts ECs (2). Among the three different EC subtypes, only venous ECs respond to angiogenic factors from the wounded area and initiate migration into the wound (3). During the migration of venous ECs, they differentiate into tip ECs (3). Then, venous EC-derived tip ECs change the direction of migration, migrate toward the artery and differentiate into arterial ECs (4).
reporter lines may explain the discrepancy in the ENG-deficient setting.

Oxygen-induced retinopathy

The oxygen-induced retinopathy (OIR) model has been widely used in cardiovascular research. While it closely resembles retinopathy of prematurity, its vascular pathologies also showed relevance to other ischemic diseases, including proliferative diabetic retinopathy and retinal vein occlusion. Exposing neonatal pups to hyperoxic (75% oxygen) conditions for several days leads to the formation of a vaso-oblitration (VO) zone, and returning them to the room air triggers neovascularization to alleviate the VO zone (Fig. 5). As discussed above, venous endothelial cells are the exclusive source of ECs in this neovascularization process (Fig. 5). Vascular tufts are a typical feature of the OIR. During the neoangiogenic repair process in the OIR model, a retinal vasculature forms neovascular tufts at the border between the VO zone and the vascularized area, specifically around veins and venules (Fig. 5). The tuft formation process is known as pathological angiogenesis and has made the OIR model a key tool for the study of vascular pathology in ischemic retinopathies. Interestingly, genetic tracing of venous endothelium has revealed that those cells are the primary endothelial source for the formation of vascular tufts in the OIR model.

Wound healing

Angiogenesis plays an important role in wound healing. Newly formed blood vessels invade the wound and facilitate its resorption and closure. Zebrafish have been extensively utilized as an in vivo model of angiogenesis during wound healing for over a decade because of their ability to regenerate caudal fins after amputation. Major players involved in the angiogenic process (i.e., growth factors and their receptors) are conserved between species and function similarly. The availability of various genetically modified zebrafish lines expressing fluorescent proteins in each endothelial subtype (venous, arterial, and pan endothelium)77 made this model more attractive for the intravital imaging of postinjury angiogenesis. Amputation of the caudal fin activates endothelial cells in preexisting vascular beds to invade the wound area and establish a new vascular network. Time-lapse image analysis of zebrafish fin regeneration using genetic lineage tracing strategies has identified venous endothelial cells as the primary endothelial subtypes invading the wounded area. During the regeneration process, venous endothelial cells migrate toward the wounded area. There, they differentiate into tip cells and eventually differentiate into arterial endothelial cells (Fig. 8). Given that the venous endothelium is the primary endothelial source in angiogenesis in mice, these regeneration models imply that the role of venous endothelial cells during angiogenic expansion is also conserved in different species. They are still largely unexplored. Recent advances in scRNA-sequencing technology have enabled large-scale sequencing and analysis of various endothelial cell populations in cancer. Interestingly, studies of the tumor endothelium have revealed that the numbers of activated postcapillary venous endothelial cells were increased in the lung tissues of cancer patients compared to healthy controls. A venous marker (NR2F2, a.k.a. COUP-TFII) is also highly expressed in the tumor endothelium, implying the importance of the venous endothelium in tumor angiogenesis.

FUTURE PERSPECTIVE AND CONCLUSION

Despite three decades of development, the success of pro- and anti-angiogenic therapies has been rather modest. The best results achieved in retinal diseases were from the use of anti-VEGF therapies that resulted in the significant preservation and improvement of vision. Clearly, alternative strategies are needed to overcome the current limitations. To date, most efforts to control the process of angiogenic vascular growth have mainly focused on VEGF-A and its receptors, while other factors regulating this process have largely been ignored. Recently, a growing body of evidence has started indicating the importance of venous endothelial cells in developmental and pathological angiogenesis in a number of pathological settings. Venous endothelial cells are distinct from other endothelial subtypes in that they possess high mitotic activity, are able to migrate against blood flow, and can assume the molecular and functional identity of other endothelial subtypes. Despite much progress in understanding the role of the venous endothelium in various developmental and pathological settings, elucidation of the molecular mechanisms that confer these features on the venous endothelium has only just begun. One important feature of this endothelial subtype is that quiescent venous endothelium, unlike other endothelial subtypes, can be reprogrammed to activate their ability to migrate in response to angiogenic and mechanical stimuli. This implies the presence of specific molecular control mechanisms that regulate the reactivation process and migratory activity in the venous endothelium. A better understanding of these mechanisms and why they are unique to the venous endothelium may enable us to develop better therapeutic strategies for angiogenesis-related diseases.

REFERENCES

1. Hasan, S. S. & Siekmann, A. F. The same but different: signaling pathways in control of endothelial cell migration. *Curr. Opin. Cell Biol.* 36, 86–92 (2015).
2. Ross, J. M. et al. The expanding cell diversity of the brain vasculature. *Front. Physiol.* 11, 600767 (2020).
3. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. *Nature* 554, 475–480 (2018).
4. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. *Cell* 180, 764–779 (2020).
5. Aird, W. C. Endothelial cell heterogeneity. *Cold Spring Harb. Perspect. Med.* 2, a006429 (2012).
6. Pasut, A., Becker, L. M., Cuypers, A. & Carmeliet, P. Endothelial cell plasticity at the single-cell level. *Angiogenesis* 24, 311–326 (2021).
7. Qiu, J. Y. & Hirschi, K. K. Endothelial cell development and its application to regenerative medicine. *Circ. Res.* 125, 489–501 (2019).
8. Lee, H. W. et al. Role of venous endothelial cells in developmental and pathological angiogenesis. *Circulation* 144, 1308–1322 (2021).
9. Folkman, J. Tumor angiogenesis: therapeutic implications. *N. Engl. J. Med.* 285, 1182–1186 (1971).
10. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. *Nat. Med.* 1, 27–31 (1995).
11. Dvorak, H. F., Brown, L. F., Detmar, M. & Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. *Am. J. Pathol.* 146, 1029–1039 (1995).
12. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. *Nat. Rev. Cancer* 2, 795–803 (2002).
13. Ferrara, N. Role of vascular endothelial growth factor in regulation of physiologic angiogenesis. *Am. J. Physiol. Cell Physiol.* 280, C1358–C1366 (2001).
14. Benedito, R. & Hellstrom, M. Notch as a hub for signaling in angiogenesis. *Exp. Cell Res.* 319, 1281–1288 (2013).
15. Muhleider, S., Fernandez-Chacon, M., Garcia-Gonzalez, I. & Benedito, R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. *Cell. Mol. Life Sci.* 78, 1329–1354 (2021).
16. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. *J. Cell Biol.* 161, 1163–1177 (2003).
17. Park, D. Y. et al. Plastic roles of pericytes in the blood-retinal barrier. *Nat. Commun.* 8, 15296 (2017).
18. Strasser, G. A., Kaminker, J. S. & Tessier-Lavigne, M. Microarray analysis of retinal endothelial tip cells identifies CCR4 as a mediator of tip cell morphology and branching. *Blood* 115, 5102–5110 (2010).
19. Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. *Proc. Natl. Acad. Sci. USA* 104, 3225–3230 (2007).
Ishibazawa, A., Nagaoka, T., Yokota, H., Ono, S. & Yoshida, A. Low shear stress up-
Kalluri, R. Basement membranes: structure, assembly and role in tumour
Masumura, T., Yamamoto, K., Shimizu, N., Obi, S. & Ando, J. Shear stress
Liakouli, V. et al. The role of extracellular matrix components in angiogenesis
Noris, M. et al. Nitric oxide synthesis by cultured endothelial cells is modulated
Pitulescu, M. E. et al. Dll4 and Notch signalling couples sprouting angiogenesis
Blanco, R. & Gerhardt, H. VEGF and notch in tip and stalk cell selection.
Hikita, T. et al. PAR-3 controls endothelial planar polarity and vascular in
Takahashi, M. et al. Characterization of a novel giant scaffolding protein, CG-
Claxton, S. & Fruttiger, M. Periodic delta-like 4 expression in developing retinal
Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip
dellstrom, M., Pphg, L. K. & Gerhardt, H. VEGF and Notch signaling: the yin
Folkman, J. & D’Amore, P. A. Blood vessel formation: what is its molecular basis?
Liakouli, V. et al. The role of extracellular matrix components in angiogenesis and
Masumura, T., Yamamoto, K., Shimizu, N., Obi, S. & Ando, J. Shear stress
Blanco, R. & Gerhardt, H. VEGF and notch in tip and stalk cell selection.
Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip
dellstrom, M., Pphg, L. K. & Gerhardt, H. VEGF and Notch signaling: the yin
Folkman, J. & D’Amore, P. A. Blood vessel formation: what is its molecular basis?
Claxton, S. & Fruttiger, M. Periodic delta-like 4 expression in developing retinal
Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip
dellstrom, M., Pphg, L. K. & Gerhardt, H. VEGF and Notch signaling: the yin
Folkman, J. & D’Amore, P. A. Blood vessel formation: what is its molecular basis?
Claxton, S. & Fruttiger, M. Periodic delta-like 4 expression in developing retinal
Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip
82. Jin, Y. et al. Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling. Nat. Cell Biol. 19, 639–652 (2017).

83. Grossniklaus, H. E., Kang, S. J. & Berglin, L. Animal models of choroidal and retinal neovascularization. Prog. Retin. Eye Res. 29, 500–519 (2010).

84. Kim, Y. et al. Oxygen-induced retinopathy and choroidopathy: in vivo longitudinal observation of vascular changes using OCTA. Invest. Ophthalmol. Vis. Sci. 59, 3932–3942 (2018).

85. Hardy, P. et al. New insights into the retinal circulation: in vivo tracing of retinal angiogenesis. Invest. Ophthalmol. Vis. Sci. 59, 3917–3928 (2018).

86. Vahatupa, M., Jarvinen, T. A. H. & Uusitalo-Jarvinen, H. Exploration of oxygen-mediated inflammatory lipid mediators in ischemic retinopathy. Prostaglandins Leukot. Essent. Fat. Acids 72, 301–325 (2005).

87. Davies, M. H., Stempel, A. J., Hubert, K. E. & Powers, M. R. Altered vascular expression of EphrinB2 and EphB4 in a model of oxygen-induced retinopathy. Front. Pharmacol. 11, 873 (2020).

88. Scott, A. & Fruttiger, M. Oxygen-induced retinopathy: a model for vascular pathology in the retina. Eye 24, 416–421 (2010).

90. Bodnar, R. J. Chemokine regulation of angiogenesis during wound healing. Adv. Wound Care 1, 17–22 (2012).

91. Azevedo, A. S., Grotek, B., Jacinto, A., Weidinger, G. & Saude, L. The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations. PLoS ONE 6, e22820 (2011).

92. Farwell, S. L. N., Stempel, A. J., Hubert, K. E. & Powers, M. R. Altered vascular expression of EphrinB2 and EphB4 in a model of oxygen-induced retinopathy. Front. Pharmacol. 11, 873 (2020).

93. Vanhollebeke, B. et al. Tip cell-specific transcriptional network driving blood and endothelial development. Dev. Biol. 185, 1573–1582 (2011).

94. Corti, P. et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138, 1234–1240 (2008).

95. Liu, F., Walsley, M., Rodaway, A. & Patient, R. Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr. Biol. 18, 1234–1240 (2008).

96. Huang, C. C., Lawson, N. D., Weinstein, B. M. & Johnson, S. L. reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins. Dev. Biol. 264, 263–274 (2003).