Close galaxy pairs at $z = 3$: a challenge to UV luminosity abundance matching

Joel C. Berrier1,2 and Jeff Cooke3,4

1Department of Physics, University of Arkansas, 835 West Dickson Street, Fayetteville, AR 72701, USA
2Arkansas Center for Space and Planetary Sciences, 202 Old Museum Building, University of Arkansas, Fayetteville, AR 72701, USA
3California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
4Swinburne University of Technology, PO Box 218, Mail Number H39, Hawthorn, VIC 3122, Australia

Accepted 2012 August 6. Received 2012 July 28; in original form 2011 April 8

ABSTRACT

We use a sample of $z \sim 3$ Lyman-break galaxies (LBGs) to examine close pair clustering statistics in comparison to Λ cold dark matter (LCDM)-based models of structure formation. Samples are selected by matching the LBG number density, n_g, and by matching the observed LBG 3D correlation function of LBGs over the two-halo term region. We show that ultraviolet (UV) luminosity abundance matching cannot reproduce the observed data, but if subhaloes are chosen to reproduce the observed clustering of LBGs we are able to reproduce the observed LBG pair fraction (N_c) defined as the average number of companions per galaxy. This model suggests an overabundance of LBGs by a factor of ~ 5 over those observed, suggesting that only one in five haloes above a fixed mass hosts a galaxy with LBG-like UV luminosity detectable via LBG selection techniques. This overdensity is in agreement with the results of a Millennium 2 analysis and with the discrepancies noted by previous authors using different types of simulations. We find a total observable close pair fraction of 23 ± 0.6 per cent (17.7 ± 0.5 per cent) using a prototypical cylinder radius in our overdense fiducial model and 8.3 ± 0.5 per cent (5.6 ± 0.2 per cent) in an abundance matched model (impurity corrected). For the matched spectroscopic slit analysis, we find $N_{cs}(R) = 4.3 \pm 1.55$ (1.0 ± 0.2) and 5.1 ± 0.2 (1.68 ± 0.02) per cent, the average number of companions observed serendipitously in randomly aligned spectroscopic slits, for fiducial slits (abundance matched), whereas the observed fraction of serendipitous spectroscopic close pairs is 4.7 ± 1.5 per cent using the full LBG sample and 7.1 ± 2.3 per cent for a subsample with higher signal-to-noise ratio. We conduct the same analysis on a sample of dark matter haloes from the Millennium 2 simulation and find similar results. From the results and an analysis of the observed LBG 2D correlation functions, we show that the standard method of halo assignment fails to reproduce the break, or up turn, in the LBG close pair behaviour at small scale ($\lesssim 20 h^{-1} \text{ kpc}$ physical). To reconcile these discrepancies we suggest that a plausible fraction of LBGs in close pairs with lower mass (higher density) than our sample experience interaction-induced enhanced star formation that boosts their luminosity sufficiently to be detected in observational sample but are not included in the abundance matched simulation sample.

Key words: galaxies: evolution – galaxies: formation – galaxies: high-redshift – galaxies: interactions – galaxies: statistics – large-scale structure of Universe.

1 INTRODUCTION

One of the fundamental predictions of a Λ cold dark matter (LCDM) model of the universe is the hierarchical growth of structure. However, direct observations of galaxy mergers, and, by ex- tension, statistics on galaxy mergers are difficult to obtain due to the long time-scales of the galaxy–galaxy merger process. Correlations between galaxy characteristics and their environment suggest that interactions play a role in setting galaxy properties such as star formation rate, colour and morphology (e.g. Toomre & Toomre 1972; Larson & Tinsley 1978; Dressler 1980; Postman & Geller 1984; Barton, Geller & Kenyon 2000; Barton Gillespie, Geller & Kenyon 2003). However, observational studies of mergers and interactions...
can be difficult due to the low luminosities of tidal features and the
difficulties in quantifying galaxy morphologies. At high redshifts,
z ≥ 1, these problems are exacerbated by the decreased apparent
luminosity and resolution of the galaxies being studied.

Since the studies of Holmberg (1937) close pairs of galaxies have
provided an important tool for the evaluation of galaxy merger rates
by providing counts of merger candidates and for theories of galaxy
formation due to the importance of galaxy–galaxy mergers in galaxy
evolution. Close galaxy pair counts, or counts of morphologically
disturbed systems, have not only been used to provide candidates
for galaxy mergers, but have been used in attempts to probe the
galaxy merger rate and its evolution with redshift (Zepf & Koo
1989; Burkey et al. 1994; Carlberg, Pritchet & Infante 1994; Woods,
Fahlman & Richer 1995; Yee & Ellingson 1995; Neuschaefer et al.
1997; Patton et al. 1997, 2002; Carlberg et al. 2000; Le Fèvre et al.
2000; Conselice et al. 2003; Bundy et al. 2004; Lin et al. 2004; Bell
et al. 2006; Masjedi et al. 2006; Lotz et al. 2008).

In Berrier et al. (2006), we present a method to analyse the close
pair fraction of galaxies in a simulation environment, with the close
pair fraction (Nc) defined as the number of galaxies in close pairs in
a volume of space normalized by the total number of galaxies in the
sample. This analysis demonstrates the viability of estimating the
observable close pair fraction in simulations using simple criteria
to assign galaxies to dark matter haloes.

Berrier et al. (2006) argue that the close luminous companion
count per galaxy does not track the distinct dark matter halo merger
rate. Instead, it tracks the luminous galaxy merger rate. While a
direct connection between the two has often been assumed, there
is a mismatch because multiple galaxies may occupy the same
host dark matter halo. The same arguments apply to morphological
identifications of merger remnants, which also do not directly probe
the host dark halo merger rate. This still leaves close galaxy pairs
as a tracer of galaxy evolution and as a proxy of the galaxy merger
rate.

At high redshift, the dense environment and smaller fraction
of galaxy clusters (where the large velocity dispersion prevents
many satellite–satellite mergers, e.g. Berrier et al. 2009) mean that
close pairs of galaxies are likely to indicate actual mergers, though
estimates of the time-scales of these mergers may still be rather large
(see e.g. Kitzbichler & White 2008; Bertone & Conselice 2009). As
a result, observations of this process for galaxies at high redshift are
highly desirable for constraining the high-redshift galaxy–galaxy
merger rate.

The Lyman-break galaxies (LBGs) are star-forming galaxies ef-
ciently identified using colour selection criteria (e.g. Steidel et al.
1996) and comprise a large fraction of all luminous galaxies at
high redshift (e.g. Reddy et al. 2005; Marchesini et al. 2007). To
date, a few thousand LBG spectra and tens of thousands of
photometric candidates have been obtained, making LBGs a useful,
well-studied population for high-redshift galaxy spatial distribution
and close pair analysis. Conroy, Wechsler & Kravtsov (2006) used
subhalo abundance matching (SHAM) techniques such as those
used in Berrier et al. (2006) and here, to calculate angular correla-
tion functions (ACFs) for LBGs at high redshifts, z = 3 and 4. This
work suggests that abundance matching techniques may be used to
sample LBG populations and statistics in simulations. SHAM has
been tested in a variety of situations at both low and high redshift
and has been shown to be a reasonable tool for matching galaxies to
populations of dark matter haloes and generating halo mass–stellar
mass relations (Berrier et al. 2006; Conroy et al. 2006; Vale &
Ostriker 2006; Stewart et al. 2009; Guo et al. 2010; Moster et al.
2010; Simha et al. 2012). Because this technique has been sug-
gested, and indeed used, as a probe of LBG clustering statistics,
it will provide our starting point in this analysis. We also explore
matching dark matter halo and subhalo correlation functions to the
observed clustering of z ∼ 3 LBGs. This technique is similar to the
work of Conroy et al. (2008) on z ∼ 2 star-forming galaxies.

In this paper, we use a numerical N-body simulation with an
analytically generated substructure, adopting the approach of Berrier
et al. (2006), to compare close companion counts directly to the
observed companion count for our sample of z ∼ 3 LBGs from the
survey of Steidel et al. (2003, hereafter S03) and the survey of Cooke
et al. (2005, hereafter C05). Our purpose is to test the simple and
popular (Conroy et al. 2008; Stewart et al. 2009; Simha et al. 2012)
theory that galaxies live in subhaloes and that ultraviolet (UV) lumi-
nosity correlates monotonically with halo mass maximum circular
velocity at the time of accretion.

The structure of this paper is as follows. We outline our methods
in Section 2, discuss our observational sample in Section 2.1, our
simulations in Section 2.2 and the models used for the assignment
galaxies to haloes in Section 2.3. The definitions of the close
companion fraction, the photometric companion fraction and the
sample impurity and number density are covered in Sections 2.4–
2.8, respectively. We present our predictions for the companion
fraction, Nc, in Section 3. We begin with an examination of Nc
from z = 0 to 3 with an emphasis on a comparison between our
simulations and the observational values at z = 3 in Section 3.1.
The angular photometric close companion count is the topic of
Section 3.2. Comparisons with previously existing close companion
counts are made in Section 3.3. We return to the number density
issue in Section 3.4. Finally, we discuss the implications of our
results in Section 3.6. We conclude with a summary in Section 4.

In this work, we assume a flat universe with a standard cosmology
of Ωm = 1 − ΩΛ = 0.3, h = 1.0 and σ8 = 0.9.

2 METHODS

Pair count statistics are generated using the same technique as
Berrier et al. (2006). A ΛCDM N-body simulation is used to iden-
tify the large-scale structure and properties of the host dark matter
halo (details in Section 2.2). The analytic substructure model of
Zentner et al. (2005, hereafter Z05) is used to generate four sets of
satellite galaxies within these host haloes for our analysis. Using
the analytic models with no inherent resolution limits to model sub-
structure allows us to overcome the issue of numerical overmerging
in the dense environments (e.g. Klypin et al. 1999). This method
has been demonstrated to accurately model the two-point clustering
statistics of haloes and subhaloes (Z05) and used to produce viable
close pair statistics (Berrier et al. 2006) from z = 0 to 1.

We use a simple method to assign galaxies to dark matter haloes
in our simulation volume (Section 2.3) and address possible effects
of this assignment in Section 3.6. We conduct mock observations
on the ‘galaxy’ catalogues in an identical manner as those used in
observational studies to calculate the average number of close com-
panions, Nc, or the close pair fraction statistic in our simulation box
(Section 2.4). This can be done to mimic the exact specifications
of observations in the real Universe. The analytic subhalo model
allows us to examine the variance in close companion counts associ-
ated with the realization-to-realization scatter. In this way, we may
examine different sets of substructure populations while retaining
the large-scale structure in our simulation allowing us to test for the
importance of cosmic variance and chance projections.

In this work, we focus on examining the close pair fraction of
potential LBG haloes at z = 3 in a simulation box and make direct
comparisons to sets of observational data. In order to more accurately test the expectations of detecting serendipitous close pairs in conventional multi-object spectroscopic (MOS) surveys, we calculate both a standard N_c, by using a cylindrical geometry and using a mock slit geometry, N_m, that mimics typical spectroscopic observations and those of our survey (Section 2.1). The mock spectroscopic slits are rotated through several possible orientations in the simulation to calculate the possible variations in observed pair fraction caused by the random alignment of the spectroscopic slitlets and the orientation of the galaxy pairs on the sky. Our sample of potential LBGs is identified in the simulation by matching the two-point correlation function of objects with a given minimum infalling velocity to the observed correlation functions. Using lines of sight through the entire length of the simulation box, we are able to approximate the projected close pair count of LBGs over a defined redshift path. Finally, we use multiple randomly aligned copies of the simulation box to explore the full line-of-sight depth of the observed sample as a means to test our simulation results against the full redshift range of the observations.

2.1 Observations

We design certain aspects of the simulation analysis for a direct comparison to the imaging and spectroscopic $z \sim 3$ LBG surveys of C05 and S03. The survey of C05 consists of deep $u'BVRI$ imaging of nine separate fields over ~465 square arcmin using the low-resolution imaging spectrometer (Oke et al. 1995; McCarthy et al. 1998) on the 10-m Keck I telescope and the Carnegie Observatories spectroscopic multislit and imaging camera (Kells et al. 1998) on the 5-m Hale telescope at the Palomar Observatory. Approximately 800 photometric LBG candidates were selected in a conventional manner that uses their $u'BVRI$ colours. The sample contains 211 colour-selected, spectroscopically confirmed $z \sim 3$ LBGs with $m_R \lesssim 25.5$ and a redshift distribution of $\langle z \rangle = 3.02, \sigma_z = 0.3$. The nine fields of the survey minimize the effects of cosmic variance. Detailed information regarding the colour-selection technique and survey specifics can be found in C05. The survey of S03 consists of the publicly available photometric catalogue of ~2500 $z \sim 3$ LBGs and the spatial correlation results using a spectroscopic subsample of ~800 LBGs.

Although the sensitivity limits of 8-m class telescopes enable photometric detection of $z \sim 3$ LBGs to $m_R \lesssim 27$, spectroscopic confirmation is limited to those with $m_R \lesssim 25.5$ using reasonable integration times. The spatial distribution, or clustering, of the spectroscopic sample has been used to infer the average mass of LBGs in the context of ΛCDM cosmology (Adelberger et al. 2005; Cooke et al. 2006b, hereafter C06) and is determined from the $m_R \lesssim 25.5$ subsample. For comparison to our simulation, we only consider LBGs that have $m_R \lesssim 25.5$ in order to compile a sample with (1) accurate photometry (<0.2 mag uncertainties), (2) follow-up spectroscopic confirmation and (3) a measured spatial correlation function.

The C05 survey is a conventional MOS survey originally designed to obtain a large number of $z \sim 3$ LBG spectra to cross-correlate with quasar absorption line systems. Although it is unclear whether the presence of quasars in these fields produces a clustering bias for LBGs near the same redshift range, the background quasars for six of the nine fields surveyed are at a much higher redshifts than the (3.0), $\sigma_z = 0.3$ LBGs probed (see C05), thus eliminating any potential clustering bias. Any clustering bias for the remaining three fields is likely small because the LBG correlation values for the nine fields in our survey agree, within the uncertainties, to the results of Adelberger et al. (2003, 2005) on the 17-field survey of S03. Nevertheless, we generate our simulation sample based on the values of S03 to help alleviate any potential bias. Finally, we note that two of the serendipitous spectroscopic close pairs in our survey are found in the three fields potentially biased by the targeted quasars but exist at much different redshifts as compared to the quasars (δ_z, corresponding to $>200 \ h^{-1} \ Mpc$, comoving) as not to be biased.

Conventional MOS surveys of LBGs target single LBGs, not LBG pairs, and are designed to typically have the same orientation for the multiple slitlets located on each slitmask. As such, the slitlets have orientations that are random with respect to the orientation of LBG pairs on the sky. As a result, the fraction of serendipitous LBG pairs that fall into the MOS slitmasks enables an accurate sampling of the underlying close pair fraction. An illustration of this concept for one of the many slitmasks on a multi-object slitmask is shown in Fig. 1. Although LBGs cluster, the relative low surface density of $z \sim 3$ LBGs results in very few pairs falling serendipitously into the slitlets. Cooke et al. (2010, hereafter C10) identify 10 LBGs in five serendipitous spectroscopic close pairs ($\lesssim20 \ h^{-1} \ kpc$, physical). The serendipitous close pairs provide spectroscopically identified interacting events to compliment photometric close pairs and morphological classifications which have previously been the only means to identify high-redshift interactions. Finally, because the instruments, method and analysis of our survey are virtually identical to most other conventionally acquired surveys, and specifically to that of S03, it is valid to compare the overall results from this work.

Typical $z \sim 3$ LBG spectra have a signal-to-noise ratio (S/N) of only a few, but in practice the strong UV emission, absorption features and continuum profiles provide a means for reliable
identification. Nevertheless, cautious of the inherent low S/N, we assign a confidence qualifier to the spectroscopic identifications. For our pair analysis, we test two samples from the observations: the full sample of 211 LBGs and a sample of 140 LBGs with the highest S/N which we term the highest confidence sample.

The colour-selection technique (e.g. S03; C05) is highly efficient in targeting $z \sim 3$ LBGs and removing background and foreground sources. The observed 2D colour-selected close pair fractions were estimated after a correction for chance alignments by generating random catalogues matched to the density, dimensions and photometric selection functions specific to the C05 and S03 surveyed fields.

2.2 Simulations

The simulation used for the large-scale structure and host haloes was performed using the adaptive refinement tree (ART) N-body code (Kravtsov, Klypin & Khokhlov 1997) for a universe with a standard cosmology of $\Omega_m = 1 - \Omega_{\Lambda} = 0.3$, $h = 0.7$ and $\sigma_8 = 0.9$. The simulation followed the evolution of 5123 particles in a comoving box of $120 h^{-1}$ Mpc on a side, with a particle mass of $m_p \simeq 1.07 \times 10^7 h^{-1} M_\odot$. More details can be found in Allgood et al. (2006) and Wechsler et al. (2006). The root computational grid was comprised of 5123 cells and was adaptively refined according to the evolving local density field to a maximum of eight levels. The peak spatial resolution is $r_{\text{peak}} \simeq 1.8 h^{-1}$ kpc in comoving units.

In this simulation the distinct host haloes are identified using a variation of the bound density maxima algorithm (BDM; Klypin et al. 1999). In this method each halo is associated with a density peak. This peak is identified using the density field smoothed with a 24-particle smoothed particle hydrodynamics kernel (see Kravtsov et al. 2004 for details). The halo virial radii and mass are calculated for the host halo in the simulation box.

The halo virial radius, R_{vir}, is defined as the radius of a sphere whose centre is the density peak, with mean density $\Delta_{\text{vir}}(z)$ times the mean density of the universe. The virial overdensity $\Delta_{\text{vir}}(z)$ comes from the spherical top-hat collapse approximation. In our case, this is computed using the fitting function of Bryan & Norman (1998). The simulation assumes a conventional ΛCDM cosmology which yields $\Delta_{\text{vir}}(z = 0) \simeq 337$ and $\Delta_{\text{vir}}(z) \rightarrow 178$ at $z \gtrsim 1$. The virial mass is used to characterize the masses of distinct host haloes, the haloes whose centres do not lie within the virial radius of a larger system.

Fig. 2 shows the host halo mass at $z = 3$ from the procedure described above. The figure illustrates host halo mass function, complete to virial masses $M \gtrsim 10^{11} h^{-1} M_\odot$. The uncertainties are calculated by a jackknife error technique. They are computed by removing one of the eight octants of the simulation volume and recalculating the mass function. These error bars estimate the uncertainty in host halo counts from cosmic variance.

The substructures originally located in these host haloes are removed and replaced by substructures generated using the algorithm of Z05. This analytic method allows the generation and examination of substructure with effectively unlimited resolution. Each host halo in this simulation catalogue has a randomly generated mass accretion history using the extended Press–Schechter formalism (Bond et al. 1991; Lacey & Cole 1993) with the implementation of Somerville & Kolatt (1999).

Once these mass accretion histories and merger trees are generated, we track the history of the new subhaloes as they evolve. As each subhalo merges into the host it is assigned an initial orbital energy and angular momentum. Then the routine calculates the orbit of the subhalo inside a potential from the host halo between the time of subhalo accretion to the epoch of observation. Tidal mass-loss and dynamical friction are modelled to determine the effects of these interactions on the mass of the subhalo. The halo’s density profile is modelled using the Navarro, Frenk & White (1997) profile with halo concentrations set according to the algorithm of Wechsler et al. (2002). Finally, all subhaloes are tracked until their maximum circular velocities drop below $V_{\text{max}} \equiv 80$ km s$^{-1}$. Haloes which fall below this threshold are removed from the simulation. This step is to avoid excess computing time calculating the small, tightly bound orbits of objects that are not likely to host a luminous galaxy.

We refer the interested reader to section 3 of Z05 for the full details of this model.

This process is repeated four times for each host halo to determine the effects of variation in the subhalo populations with a fixed host halo population. In addition to generating substructure catalogues for each separate ‘realization’ of the model we perform three rotations of each simulation volume. These rotations provide us with different lines of sight through the substructure of the simulation. This provides a total of 12 effective realizations for us to gather close pair statistics.

Z05 demonstrate that this method is successful at reproducing subhalo count statistics, radial distributions and two-point clustering statistics measured in high-resolution N-body simulations in the regimes we use here. This model’s results agree with numerical treatments over three orders of magnitude, or more, in host halo mass as well as a function of redshift. Moreover, this technique has also proved useful in generating close galaxy pair counts that match observations in the local universe to $z \sim 1$ (Berrier et al. 2006).

In addition to our primary simulation sample described above, a subsample of dark matter haloes from the Millennium 2 simulation (see Boylan-Kolchin et al. 2009 for more details) is used to test our methods in a pure N-body simulation.
2.3 Assigning galaxies to haloes and subhaloes

After computing the properties of haloes and subhaloes in a ΛCDM cosmology, the next step is to map galaxies on to these objects. We use the maximum circular velocity that the subhalo had at the time it was accreted into the host halo, \(V_{\text{in}} \), to define the objects in our sample. The choice of \(V_{\text{in}} \) mimics a case where a galaxy is highly resistant to baryonic mass-loss when compared to its dark matter halo. As such, the luminosity of the galaxy is unchanged by the loss of matter due to tidal interactions. This case assumes a model in which the luminosity of a galaxy is set in the field and does not change after merging into the host system. Thus, we assume that there is a monotonic relationship between halo circular velocity, \(V_{\text{max}} \), and galaxy luminosity. This model does not account for any effects which might alter the galaxy’s intrinsic luminosity or which might interfere with observations, such as galaxy–galaxy interactions triggering enhanced star formation or dust obscuration. In effect, this model assumes a perfectly observable universe with a strong halo assumption that galaxy properties are set by the dark matter haloes they reside in. The results of Conroy et al. (2006) suggest that this form of SHAM may be used to examine the clustering statistics of \(z = 2–4 \) LBGs. Recent works have suggested that it is reasonable to assume a halo–UV luminosity relation (essentially a halo–star formation rate relation) at the redshifts we examine (Conroy et al. 2008; Stewart et al. 2009; Simha et al. 2012). We discuss the effects of this method of halo assignment on the results in Section 3.6.

In addition to the \(V_{\text{in}} \) model, a second toy model is tested that uses the \(V_{\text{max}} \) of all haloes at the epoch they are observed. We refer to this model as the \(V_{\text{now}} \) model. This model describes a physical scenario in which the dark matter and luminous baryonic matter are stripped from subhaloes proportionally. This is in stark contrast to the \(V_{\text{in}} \) model where the luminous baryons are resistant to mass-loss. This second model has proved to be inadequate in reproducing close pairs of galaxies and features observed in the two-point correlation function of galaxies locally, but is tested here for the purposes of completeness. Although baryons are likely to be stripped from a halo, it is unlikely that they will be stripped at the same rate as the dark matter. Again, this model does not account for the possibility of enhanced star formation due to galaxy interactions.

Fig. 3 shows the cumulative number density of ‘galaxies’ identified in our simulations, \(n_g \), as a function of their maximum circular velocities. The black solid line shows \(z = 3 \) galaxies using \(V_{\text{in}} \) as an identifier, while the blue dashed line uses \(V_{\text{now}} \) to generate the function. Our catalogues are complete to a \(V_{\text{max}} = 100 \text{ km s}^{-1} \).

In addition to testing a standard SHAM sample and in order to make as direct a comparison as possible with observational data, we match the two-point spatial correlation functions of our model galaxy catalogues to the observed \(z \sim 3 \) LBG two-point spatial correlation function of Adelberger et al. (2003). The correlation functions are shown in Fig. 4. We note that the low-resolution spectra and intrinsic star-forming processes of \(z \sim 3 \) LBGs make it difficult to obtain precise redshifts from the emission and absorption features (Adelberger et al. 2003; Shapley et al. 2003). We consider the effect of LBG redshift uncertainties on the pair fractions in the next section. The spatial correlation functions of Adelberger et al. (2003) used here incorporate LBG angular information and adopt a prescription (see appendix C of that work) that aims to minimize redshifts errors in order to estimate the true 3D correlation function. We fit the region from approximately the inner separation radius computed by that prescription out to higher radii and thus heavily dominated by the two-halo term region.

![Figure 3. The vertical axis shows the cumulative number density of galaxies in our simulation catalogue as a function of velocity using \(V_{\text{in}} \) (solid black line) and \(V_{\text{now}} \) (blue dashed line) at \(z = 3 \) to identify subhaloes as galaxies. The error bars shown were generated by summing in quadrature the jackknife error and the realization-to-realization scatter and represent errors due to cosmic variance in the simulation.](image)

The resulting 3D two-point correlation function from the simulations is averaged over all four catalogues, with errors including realization-to-realization scatter and jackknife errors. Both the fit to the observed ‘real-space’ correlation function and the simulation follow a power law of the form

\[
\xi(r) = (r/r_0)^{-\gamma},
\]

where \(r_0 \) is the spatial correlation length and \(\gamma \) is the power-law slope. The analysis of C06 places the correlation length at \(r_0 = 3.3 \pm 0.6 \) using a fixed \(\gamma = 1.6 \), whereas the results of Adelberger et al. (2003) find a value of \(r_0 = 4.0 \pm 0.6 \) with \(\gamma = 1.57 \pm 0.14 \) for the larger S03 survey data set. When matching the two-point correlation function of the simulation to the data we find that haloes with \(V_{\text{in}} \geq 133 \text{ km s}^{-1} \) best fit the parameters of the observations. These haloes produce values of \(r_0 = 3.93 \pm 0.61 \) and \(\gamma = 1.57 \pm 0.05 \). The \(V_{\text{now}} \) model that best matches the observed correlation function is found to have \(V_{\text{now}} \geq 142 \text{ km s}^{-1} \) with \(r_0 = 3.99 \pm 0.64 \) and \(\gamma = 1.54 \pm 0.05 \).

As discussed above, the spatial distribution, or clustering, has been used to infer the average mass of LBGs in the context of ΛCDM cosmology. Adelberger et al. (2005) and C06 find the mass of the \(m_8 \lesssim 25.5 \) LBG spectroscopic sample to be \(\langle M \rangle \sim 10^{11.6} \pm 0.3 \text{ M}_\odot \). The mean mass of our sample compares well at \(\langle M \rangle = 10^{11.54} \pm 0.1 \text{ M}_\odot \).

2.4 Defining close galaxy pairs

Now that we have selected our candidate LBG haloes, we must determine the best way to ‘observe’ our sample in order to make direct comparisons with observational results. We examine spectroscopically discernible LBG pairs first.

We define a spectroscopic close pair in three ways. Our first criterion includes galaxies with a separation of \(10–30 h^{-1} \text{ kpc} \) on the
Figure 4. The 3D two-point correlation functions. The blue dashed line and square points are the real-space two-point correlation function measured from \(z \approx 3 \) LBG observations of Adelberger et al. (2003). The red dot–dashed line and triangular points are the real-space two-point correlation function measured from \(z \approx 3 \) LBG observations of C06. Both sets of observations are converted from ACFs to three dimensions using the approximation from Adelberger et al. (2003). Here \(\beta \) and \(I_\beta \) are the Beta function and the incomplete Beta function, respectively. The solid black line is the spatial two-point function generated from the four simulations. The uncertainties are generated by a combination of jackknife errors and realization-to-realization scatter. Using haloes with \(V_\text{in} \geq 133 \) km s\(^{-1}\) in our simulations results in the best match to the observations.

The 3D two-point correlation function of the observations is given by

\[
\xi(r) = \begin{cases}
3.93 \pm 0.61 & \text{for cylinders} \\
-1.57 \pm 0.05 & \text{for spectroscopic slits}
\end{cases}
\]

Adelberger et al. (2003)

\[
r_\text{p} = 3.98 \pm 0.29 \\
g = -1.55 \pm 0.15
\]

Cooke et al. (2006)

\[
2\rho_c(\theta)/(r_\text{p} I_\beta) \\
\rho_c = 3.3 \pm 0.6 \\
g = -1.6 \text{ (fixed)}
\]

To summarize, we test three different criteria to select close pairs. Each of these criteria use a maximum outer radius of \(30 \) h\(^{-1}\) kpc and a maximum velocity difference of \(\pm 500 \) km s\(^{-1}\). The remaining parameters for the different criteria are as follows.

(A) Pairs with minimum separations less than \(10 \) h\(^{-1}\) kpc are always excluded (our fiducial sample for the cylinders). This is designated as \(N_c \) for cylinders and \(N_{g,C}(A) \) for spectroscopic slits.

(B) Pairs with minimum separations between 0 and \(10 \) h\(^{-1}\) kpc are included (thus, pairs with separations 0–30 h\(^{-1}\) kpc are considered) if their velocity difference is \(V_\text{diff} \geq 200 \). These results are labelled \(N_c(B) \) for cylinders and \(N_{g,C}(B) \) for spectroscopic slits. This case allows us to test an intermediate case between criteria (A) and (C).

(C) No minimum separation or velocity difference. All pairs with separations \(< 30 \) h\(^{-1}\) kpc and \(-500 < V_\text{diff} < 500 \) km s\(^{-1}\) are identified. This will be our fiducial sample for the spectroscopic slit measurements, \(N_{g,C} \). These are reported as \(N_c(C) \) for cylinders and \(N_c \) for spectroscopic slits.

The differences in the results of these three criteria are small (see Section 3.1).

With these parameters we calculate the close pair fraction of galaxies. This quantity is defined as

\[
N_c \equiv \frac{2n_p}{n_g}.
\]

Here \(n_p \) is the number density of pairs and \(n_g \) is the number density of galaxies in the sample volume. Thus, \(N_c \) reflects the fraction of galaxies that have close companions.

2.5 Spectroscopic companions

We can perform an analysis of the underlying close pair fraction using the serendipitous spectroscopic LBG pairs of C10 and by mimicking the observation approach of these data in the simulation. In order to best determine the probability of observing a serendipitous spectroscopic pair in the simulation, we generate slits in two specific ways. First, we construct mock slits having the actual lengths and widths used in the observations with the objects placed at the observed locations in the slitlets. We place a randomly assigned slit on the candidate LBG haloes in the simulation and then rotate the slit through 360°, in steps of 20, to compute the average \(N_c \) for all pairs ‘observed’. Within the slit geometry we utilize criterion (C) above as our fiducial sample. Measurements made in these randomly assigned slits are designated \(N_{c}(R) \).
Close galaxy pairs at $z = 3$

Our simulation identifies close pairs within a redshift range of $\delta z \sim 0.18$ at $z = 3$. The criteria of S03 and C05 select LBG populations with $\langle z \rangle = 3.0$, $1\sigma = 0.3$. While our simulation samples ~ 25 per cent of the LBGs detectable in $z \sim 3$ surveys, it probes a large enough redshift path to distinguish objects that are, and are not, physically clustered. This is true in part because clustering effects are negligible beyond a radius of $\sim 10 h^{-1}$ Mpc. Thus, we can use our analysis to provide an estimate of N_c and the sample impurity. Our results for this work are found in Section 3.2.

2.7 Diagnosing the effects of interlopers

Our method characterizes the probability of chance projections being identified as a companion galaxy. We define the sample impurity as the fraction of ‘observed’ close pairs in the simulation, using the criteria described above, that do not reside inside a mutual dark matter halo and are not a physically interacting pair. The total sample impurity is given by

$$I = \frac{n_{t}}{n_{c}}.$$

Here n_{t} is the number density of false galaxy pairs in the sample volume and n_{c} is the number density of galaxy pairs observed in the sample.

Fig. 6 identifies the sample impurity as it evolves with the radii of the cylinder used. In this case, we see how impurity is affected by the maximum size of the cylinder. This is of course a simple relationship. As we increase our maximum radius we have a greater chance of identifying a pair of companion galaxies, but also a greater risk of picking up a chance projection of two physically unassociated galaxies. In this figure, the uncertainties are calculated by summing in quadrature an error associated with cosmic variance, calculated by a jackknife error method, and a realization-to-realization scatter.

2.6 Photometric companions

We make another measurement in this work. We examine the apparent angular, or ‘photometric’, close pair fraction, N_p, and its impurity. A photometric close pair is defined as one in which we have no cut on velocity, and also no pairs are allowed within the minimum radius. This is essentially a single line of sight through the box designed to mimic the companion counts observed in the plane of the sky in photometric surveys that utilize simple LBG colour-selection criteria at $z \sim 3$.

Figure 5. The dependence of the close pair fraction on the maximum separation between the central galaxy and its companion. All data are calculated at $z = 3$. The solid black line is the full cylinder sample. The blue dashed line is the close pair fraction for the spectroscopic slit sample. Uncertainties are calculated from a combination of the standard deviations of the four realizations and jackknife errors in the individual simulation boxes.

Secondly, we recompute N_{cs} from our simulations using a prototypical slit length and width to make a generalized ‘observation’. The prototypical slit has a width of 1.37 arcsec, the mean width of the slits used in the observations, for a half-width of $3.7 \ h^{-1}$ kpc. The prototypical slit length is $60.0\ h^{-1}$ kpc, which is 11.13 arcsec at $z = 3$. All lengths are given in proper, physical units. The N_{cs} measured in the spectroscopic slit only incorporates pairs observed in one of the rotations of the slit. Thus, N_{cs} is smaller then the total N_c for any of the criteria discussed above. Because the candidate LBG haloes are centred in the prototypical slits we only need to perform 10 rotations over 180° to determine the random slit count. Again, we use criterion (C) above as our fiducial sample. Modelling the observations in these two ways enables a direct comparison to the C10 analysis and provides results that can be applied in a more general way to any conventionally acquired survey.

We may also characterize the dependence of the sample on the maximum pair separation used. As observed in Fig. 5, increasing the maximum radius used for our close pair counts increases our resulting N_c. Though the increase is comparatively small in the spectroscopic slit, we can see in Fig. 5 that it is significant for the full cylinder sample.

Figure 6. The measured sample impurity using a varying outer radius. The solid black line shows the impurity fraction for the full cylinder sample, while the blue dashed line shows the impurity for the randomly oriented spectroscopic slit sample. Uncertainties are calculated from a combination of the standard deviations of the realizations and jackknife errors in the individual simulation boxes.
the $V_{\text{in}} \geq 200$ sample has a better match to the number density of $\sim 0.004 \pm 0.002 h^3 \, \text{Mpc}^{-3}$ from LBG observations (see below for further details), this sample does not match the observed correlation function and produces a significantly lower value for N_z.

The matched V_{now} sample has a surface density in comoving coordinates of $6.14 h^2 \, \text{Mpc}^{-2}$, 10.2 galaxies arcmin^{-2}, compared to $8.2 h^2 \, \text{Mpc}^{-2}$, 13.6 galaxies arcmin^{-2} for the V_{in} sample. Both of these values exceed ~ 1.7 galaxies arcmin^{-2} from observation. These surface densities are measured from the length of the $120 h^{-1} \, \text{Mpc}$ box at $z = 3$, a redshift range of $\delta z \sim 0.2$ and then corrected for the total redshift pathlength observed in the surveys and the efficiency of LBG detection as a function of redshift from the colour selection (assumed to be 100% per cent efficient near $z = 3$, e.g. no lost galaxies as a result of bright stars, low S/N regions on the chip, colour-detection efficiency, etc., as is the case for the observations).

Previous research has uncovered similar discrepancies between the number density of matched massive haloes and that observed for $z \sim 3$ LBGs using different types of simulations (e.g. Davé et al. 2000; Ouchi et al. 2004; Nagamine et al. 2005; Lacey et al. 2011). Nevertheless, each propose that the excess n_z can be resolved by including other types of high-redshift objects, such as dust obscured and/or low star formation rate galaxies and damped Lyα absorption systems (DLAs). The model of Lacey et al. (2011) suggests that without dust extinction the number of LBGs would be approximately five times the number observed. This model also recreates the properties of the observed sample once dust extinction is included. Thus, we report our results using the full (high-density) sample below and explore the effects of the density mismatch on the results in Section 3.4.

3 RESULTS

Using the methods described in Section 2.3 we calculate (1) the close pair fraction observed serendipitously in the spectroscopic slits, N_{cs}, (2) the $10–30 h^{-1}$ kpc total spectroscopic close pair fraction, N_c, and (3) the $10–30 h^{-1}$ kpc photometric close pair fraction, N_p.

As a reminder, all three sample criteria include pairs with separations $<30 h^{-1}$ kpc and a velocity difference of ± 500 km s$^{-1}$. However, the differences are that criterion (A) excludes all pairs with separations $<10 h^{-1}$ kpc, criterion (B) includes pairs with separations $<10 h^{-1}$ kpc if their velocity difference is >200 km s$^{-1}$ and criterion (C) includes pairs with separations of $<10 h^{-1}$ kpc with no restriction on the velocity difference.

2.8 Galaxy number density problem

For our $z = 3$ comparisons, we adopted a sample of potential LBGs that best describes the data and has $V_{\text{in}} \geq 133 \, \text{km s}^{-1}$, that is, the V_{max} of a subhalo when it is initially accreted into a host or simply the V_{max} of the object if the halo is an independent host halo. In addition to matching the two-point correlation function, these models produce a comoving number density of galaxies, n_g, that may also be compared to the observational sample. The volumetric comoving number densities for the two models are $n_g(V_{\text{in}} \geq 133 \, \text{km s}^{-1}) = 0.019 \pm 0.003 h^3 \, \text{Mpc}^{-3}$ and $n_g(V_{\text{now}} \geq 142 \, \text{km s}^{-1}) = 0.0144 \pm 0.0003 h^3 \, \text{Mpc}^{-3}$.

The comoving number densities for more massive haloes are $n_g(V_{\text{in}} \geq 200 \, \text{km s}^{-1}) = 0.0039 \pm 0.0006 h^3 \, \text{Mpc}^{-3}$ and $n_g(V_{\text{now}} \geq 300 \, \text{km s}^{-1}) = 0.00059 \pm 0.0001 \, 10 h^3 \, \text{Mpc}^{-3}$. While we see that the $V_{\text{in}} \geq 200$ sample has a better match to the number density of $\sim 0.004 \pm 0.002 h^3 \, \text{Mpc}^{-3}$ from LBG observations (see below for further details), this sample does not match the observed correlation function and produces a significantly lower value for N_z.
For the prototypical slit length of 60.0 h⁻¹ kpc, we find an ‘observed’ Ncs(A) = 0.0293 ± 0.0013, Ncs(B) = 0.0375 ± 0.0016 and Ncs(C) = 0.0506 ± 0.0017.

As before, the uncertainties are a combination of jackknife errors from cosmic variance and realization-to-realization scatter. These measurements reflect our uncorrected sample and include galaxies that meet our velocity criteria and are observed as close pairs due to projection effects even though they do not reside in the same parent halo.

Finally, the full observable pair fractions in the cylinder are N(A) = 0.228 ± 0.006, N(B) = 0.246 ± 0.006 and N(C) = 0.275 ± 0.007. As expected, criteria (B) and (C) produce slightly higher values, but they are not significantly different from our fiducial value (A).

We report the results of criterion (A) for the cylinder and criterion (C) for the spectroscopic slits because criterion (A) is designed to match the morphological and close pair fraction analyses in the literature and criterion (C) is best matched to the methodology of the spectroscopic slit analysis of C10.

Close pair fraction predictions for the full uncorrected observable Nc and the spectroscopic slit may be found in Fig. 8. Note that these values are not corrected for line-of-sight projection effects. Here we track objects in the catalogue in the range 0 ≤ z ≤ 3 that have a number density matched to a z = 3 sample with Vmax greater than four different critical values. By holding a constant nc cut we examine the changes in Nc at a fixed population size with redshift. The solid black curve represents the close pair fraction for a galaxy sample with Vm ≥ 133 km s⁻¹ utilizing our standard criterion (A). The green circular point and the magenta dash point (offset to z = 2.9 and 3.1 for clarity) are the observed serendipitous close pairs of the highest confidence and total z = 3 sample, respectively. The solid black triangle denotes the results from our fiducial slit criterion (C) and is consistent with both observational samples.

The blue dashed line and the red dot–dashed line represent more stringent mass cuts with values of Vm ≥ 200 and ≥300 km s⁻¹, respectively, using the standard cylinder. These values are included to make a comparison of Nc with ng, the (comoving) number density of galaxies, as has been done in work by other authors, even though their correlation functions do not closely match the observations. In these cases, we may examine the evolution of higher mass subsamples with a fixed Vmin, with redshift. The solid blue square and the solid red hexagon represent the expected slit model Ncs for these higher mass cuts. As we can see, they are both well below the expected Ncs from the LGBO observations.

The light blue short–long dashed line and the light blue triangle represent the value for our Vnow ≥ 142 sample. This model also underpredicts Nc and does so even when matched to the number density of galaxies, ng, at all redshifts (see Berrier et al. 2006 for more detail). As this model demonstrates the same flaws as our Vmin model and does not reproduce the observed Nc down to low z, it will be excluded from further discussion.

At our fiducial slit radius of 30.0 h⁻¹ kpc the sample impurity is I = 0.1716 ± 0.0111 for the slit and I = 0.2225 ± 0.0099 for the full cylinder count. These values imply that we have (1 − I) Nc or a real Ncs ∼ 0.042 ± 0.0015 (cf. Ncs = 0.0506 ± 0.0017, uncorrected) in the slits and Ncs ∼ 0.177 ± 0.005 (cf. Ncs = 0.228 ± 0.006, uncorrected) for the full cylinder.

The number density dependence of Fig. 8 is illustrated in Fig. 9. We examine the values of Ncs in both the spectroscopic slit (blue dashed curve) and the full cylinder with radius 10 ≤ r ≤ 30 h⁻¹ kpc (black solid curve) as a function of the number density of ‘galaxies’ in the sample, ng. Here, the observational spectroscopic slit results seem too high for the observed LBG number density (ng ∼ 0.004 ± 0.002 h³ Mpc⁻³) and appear to be more consistent with pair fraction at the density of our full Vm ≥ 200 km s⁻¹. The uncertainty of Ncs (cf. Ncs = 0.0506 ± 0.0017, uncorrected) is approximately five times higher. What causes this inconsistency? We discuss this issue in Section 3.4.

3.2 Angular close pair fraction

We also use our simulation to estimate the observed angular, or ‘photometric’, close pair fraction, Np. In this case, we calculate a pair fraction without using a velocity cut and exclude all objects inside the minimum projected radius of 10 h⁻¹ kpc. As discussed above, it is possible to approximate Np at z = 3 in the simulation box. The simulation is 120 h⁻¹ Mpc long in the comoving coordinates, and thus at z = 3 has an approximate redshift range of 0.18 from front to back. Due to clustering effects being less pronounced beyond 10 h⁻¹ Mpc we may use this box for this purpose, despite the redshift range for the survey being δz ∼ 0.6. Thus, while we can easily determine Np, we must be cautious that this is only an approximate value.
close companion count (\(N_c\)) of the full cylinder while the blue dashed line gives \(N_s\) for the randomly oriented spectroscopic slits. The green octagonal point represents the observed serendipitous close pair fraction for the high-confidence sample in the spectroscopic slits, at the observed number density, in the sample of C10. The magenta hash is the pair fraction for the total observed sample.

Fig. 9 provides us with some estimate of the effects of a larger velocity cylinder on the purity of the sample. In the case of our photometric sample we are using an equivalent velocity difference based on the total length of the box in local Hubble flow as well as the peculiar velocities along the line of sight for the galaxies. Similarly we can see from Fig. 6 that the sample’s impurity increases with larger sample radius. In the case of 30 \(h^{-1}\) kpc this is \(~0.20 \pm 0.01\) from the on-the-sky dimension of the cylinder alone.

We examine this solely at \(z = 3\) in a fashion similar to Fig. 9 for our photometric pairs sample. The result is Fig. 10, which presents \(N_p\) as a function of \(n_g\). The solid black line is the observed \(N_p\) and the blue dashed line is the fraction of galaxies that are actually physically associated.

We find a photometric close pair fraction, \(N_p\), of 0.336 \(\pm\) 0.009 before correcting for impurity. After this correction we find \(N_p \approx 0.189\), which agrees with our predicted \(N_c\). The discrepancy between the ‘observed’ and the physically associated fraction, the ‘pure’ portion of the sample without line-of-sight contaminants, is reasonable due to the large effective length of the cylinder used in these measurements. The corrected fraction reflects the ‘real’ close \((-30 h^{-1}\) kpc) companion count and therefore the real fraction of interacting galaxies.

These results are interesting when compared with the results presented in Conselice et al. (2003), Bertone & Conselice (2009) and Bluck et al. (2009) which produce similar statistics for these high-redshift objects. The close pair fractions we find are consistent with the merger fractions estimated in these works for other observed large samples of galaxies using close galaxy pairs as well as estimates based on the concentration–asymmetry–clumpiness method.

Conselice et al. (2003) estimate an apparent merger fractions of bright LBGs at \(z \geq 2.5\) to be between 40–50 per cent. Bluck et al. (2009) identify 82 massive galaxies, \(M_*>10^{11.5}M_\odot\) in a red-shift range of 1.7–3.0. These are further divided into a sample of 44 galaxies within 1.7 < \(z < 2.3\) and 38 galaxies within 2.3 < \(z < 3.0\). Close pair fractions are estimated for the two samples by identifying all imaged galaxies within \(\pm 1.5\) mag of the sample galaxies magnitude that reside within an \(R_{\text{max}} < 30\) kpc (physical, \(h = 0.7\)) and statistically corrected for impurities. Please note that only the original 82 galaxies have redshift information; the rest of the galaxies included in the measurement are photometric pairs. The observed \(N_p\) for 1.7 < \(z < 2.3\) (2.3 < \(z < 3.0\)) are \(N_p = 0.19 \pm 0.07\) (\(N_p = 0.40 \pm 0.10\)). These observed high-redshift values are consistent with our estimates in both the corrected and uncorrected sample. Bertone & Conselice (2009) examine models of galaxy merger rates comparing simulations and observational results. This work also finds a high merger rate at high redshift.

3.3 Comparison to previous results

In order to demonstrate the usefulness of this technique in calculating \(N_c\) across a wide range of redshifts, we make a comparison to several previous existing measurements at low redshift (see Berrier et al. 2006 for further discussion on these samples). The samples used in this comparison are extracted from the Second Southern Sky Redshift Survey (SSRS2), Canadian Network for Observational Cosmology 2 (CNOC2) and Deep Extragalactic Evolutionary Probe 2 (DEEP2) surveys (Patton et al. 2002; Lin et al. 2004). These surveys provide several candidate definitions for a close pair. To match the technique used in the observations we use criterion (A). In order to determine the sample of haloes used in our simulation, both host dark matter haloes and substructure, we match the number density of galaxies from the observations to the number density of haloes in the simulation using the \(V_{\text{in}}\) model as in Berrier et al. (2006).
To extend this method to $z \sim 3$, we examine observed colour-selected LBG pairs with $10-30\, h^{-1}\, \text{kpc}$ separations from our LBG survey and the larger survey of S03 and find an observed photometric pair fraction of $N_p = 0.047 \pm 0.035$. This result is corrected for spatial impurities that are estimated in a manner similar to that for the low-z samples. We estimate the impurity using mock catalogues constructed to the exact field dimensions and number densities of each observed field. We then distribute mock galaxies using redshift distributions and interloper fractions determined by the photometric selection function. The number of close pairs observed in projection is then corrected to align with the fraction that is found to consist of true pairs in three dimensions.

We then calculate the $z = 3$ data in the simulation in the same manner as the low-redshift data and match it to the LBG number density. From our definition of the close pair fraction, a decrease in number density corresponds to a similar decrease in the close pair fraction. If LBGs randomly comprise approximately 1/5 the number of massive haloes as the number densities imply, and thus approximately 1/25 of our sample would be composed of LBG–LBG pairs, we would expect a lower limit of $N_c \sim 0.228 \times (1/5)$ or $\sim 0.0456\, [N_c \sim 0.177 \times (1/5) or \sim 0.0373]$ for the purity corrected sample] for the observed LBG–LBG pair fraction. Our simulated values produced by matching clustering are still larger than this at $N_c = 0.083 \pm 0.005\, (N_c \sim 0.065$ with purity corrections) and are roughly consistent with the estimate and with the observed sample. For comparison, we look at N_p for our photometric pair value after corrections for impurity, as this is the only estimate of the full N_c available. This assumes that all galaxies in the fiducial simulation sample which are within the same host halo will be observed, regardless of the n_p issues discussed in Section 2.8.

The results of this comparison are presented in Fig. 11. Here the solid black line, black points and solid square points represent the

![Figure 11. Comparison of N_C from $z = 0$ to 3 in the simulation with measurements from surveys. The black points, solid squares and solid line represent the N_C calculated from our n_p matched samples from $z = 0$ to 3. The dashed black line represents N_C for our fiducial sample at $z = 3$. The empty blue squares are data points from the DEEP2 Survey taken from fields 1 and 4 (Lin et al. 2004). The hollow red triangles are data from CNOC2 and SSRS2 (Patton et al. 2002). The green circular point at $z = 3$ is the N_p measured from the LBG surveys of C05 and S03.](https://academic.oup.com/mnras/article-abstract/426/2/1647/975990)

3.4 Galaxy number density problem revisited

We have matched the 3D two-point correlation function to produce our fiducial sample of high-redshift galaxies. We find that if LBGs comprise all massive haloes in the matched simulation sample, this produces a number density that is too high by a factor of ~ 4.75 when compared with the observed LBG number density, as has been similarly found by other authors. In addition, this sample produces a value of N_p and N_c in the cylinders that is too high by a similar factor but a value of N_{z_s} in the spectroscopic slits (that are biased to detecting pairs with separations of $\lesssim 20\, h^{-1}\, \text{kpc}$ because of their geometry) that is consistent within the errors of the observations.

In contrast, forcing the sample to match the observed LBG number density yields an N_p and cylinder N_c similar to the observations but an N_{z_s} that is significantly lower than that observed in the slits. Moreover, such a sample ($V_m \gtrsim 200\, \text{km\,s}^{-1}$) results in a poor fit to the observed LBG correlation function and corresponds to haloes too massive to be reconciled with the mass of LBGs from clustering analysis.

LBGs do not comprise all massive galaxies at $z \sim 3$. Other identified populations include sub-mm galaxies, passive and star-forming BzK galaxies, DRGs and other galaxy types with typically lower UV luminosities than those of LBGs. If LBGs represent $\sim 1/4.75$ of the matched massive haloes in our $z \sim 3$ sample, then the agreement in number density produces an N_p and cylinder N_c that are in very good agreement with the observations but an N_{z_s} in the slits that is significantly lower than the observations. In this case, the sample still matches the LBG correlation function (as they are pulled from the same parent population), and thus corresponds to haloes with the same mass as the observations.

Dust-obscured galaxies may make up a fraction of the ‘missing’ massive haloes; however, infrared and sub-mm surveys recover only a small fraction of the number necessary to reconcile the difference. The latter interpretation more accurately reflects the observed LBG population and leaves only the small-scale behaviour (one-halo term regime) measured in accurate 2D correlation functions that utilize deep, wide-field imaging helps provide the solution to the remaining disagreement and offers interesting insight into the nature and detectability of LBGs.

3.5 Small-scale behaviour: the one-halo term

Measurements of the angular (2D) correlation function (ACF) at $z \sim 4$ in the Subaru/XMM–Newton Deep Field over 1 degree$^{-2}$ (Ouchi et al. 2005) and at $z \sim 3$ in the Canada–France–Hawaii Telescope Legacy Survey 4 square degree Deep fields (Cooke et al., in preparation) are able to utilize a large number ($\sim 10^4$–10^5) of LBGs to accurately probe the ACF down to $m_R \sim 27$ from relatively small to large scales ($\sim 0.5–10\, h^{-1}\, \text{Mpc}$, comoving). Both efforts
witness a distinct break in the form of the ACF at small scales from the power-law fit over larger scales that may provide insight into the discrepancy in the observed and expected close pair fractions in the spectroscopic slits.

In order to measure the ACF at \(z = 3 \) in the simulation, we will follow the method used in previous works such as Conroy et al. (2006) and utilize the Limber transformation,

\[
\omega(\theta) = \frac{\int_0^\infty dz N(z) \frac{\partial \xi}{\partial z}(\sqrt{r^2 + z^2})}{\left[\int_0^\infty dz N(z)\right]^2},
\]

where \(r \) is the comoving distance at \(z \) and \(N(z) \) is the normalized redshift distribution of the galaxies in the observed sample.

Fig. 12 presents the ACFs of our simulation samples and the two observational data sets. As demonstrated in Fig. 12, the form of the fiducial (\(V_{\text{in}} > 133 \text{ km s}^{-1} \)) and observational ACFs in the outer regions are consistent. However, the inner regions show a marked discrepancy. Regardless of the number density, the standard technique of halo assignment cannot reproduce the features of the LBG ACF on both large and small scales. In addition, the mismatch cannot be corrected by any scaling of the data via an integral constraint. Our standard abundance matching model is unable to reproduce the observed break from power-law behaviour near 150–200 h^{-1} kpc in comoving coordinates to match both the one-halo and two-halo components of the correlation function to the accuracy of the data without incorporating assumptions of the form of the Limber equation in the inner region.

If we follow a standard SHAM scheme we observe an \(N_c \) in the cylinder and \(N_p \) from our mock photometric sample which are consistent with the observed pair counts; however, we do not produce the correct \(N_c \) for the mock spectroscopic slits (pairs at \(\lesssim 80 h^{-1} \) kpc in comoving coordinates or \(\lesssim 20 h^{-1} \) kpc in physical coordinates). \(N_c \) is smaller than the observed fraction by a factor consistent with the decrease in amplitude of the one-halo term in the correlation function over the same separations.

To further test this result, we analyse the Millennium 2 simulation (Boylan-Kolchin et al. 2009). The Millennium 2 simulation has five times the spatial resolution of the original Millennium simulation, in this case a Plummer equivalent softening of 1 h^{-1} kpc. This resolution is more than adequate for our needs. The sample we select from Millennium 2 is well above the resolution limits of the simulation, and thus provides a further test that our results are not adversely effected by resolution issues. Using this simulation, we find the closest match to the two-point correlation function of the observations to be a cut of \(V_{\text{in}} \geq 123 \text{ km s}^{-1} \). Haloes with this criterion show a good agreement to the data, with a power-law fit of \(r_0 = 3.98 \pm 1.44 \text{ Mpc} h^{-1} \) and \(y = -1.47 \pm 0.27 \). In addition, this sample has a number density \(n_c = 0.017 h^3 \text{ Mpc}^{-3} \), approximately 4.25 times larger than the observed \(n_c \) of LBGs and similar to the overdensity of our primary simulation sample. We have included the Millennium 2 ACFs for the abundance matched sample and for the 3D correlation function matched sample in Fig. 12. Again, the simple abundance matching techniques are not capable of reproducing the shape of the ACF.

This selected sample produces an \(N_c = 0.1521 \pm 0.0006 \) for our fiducial criterion (A) in the cylinder and \(N_c = 0.033 \pm 0.001 \) for our fiducial criterion (C) in the slits. The sample shows an impurity of 0.1433 \pm 0.0176 in the cylinder and 0.1167 \pm 0.0202 for the slit; thus, our corrected values are 0.1303 \pm 0.0059 and 0.0291 \pm 0.0014 for the full cylinder and the spectroscopic slit, respectively. For our line-of-sight mock photometric sample we find \(N_p = 0.2299 \pm 0.0144 \), before corrections for impurity and 0.1370 \pm 0.0154 after.

To match the number density of observed LBGs we would select a sample of haloes with \(V_{\text{in}} \geq 180 \text{ km s}^{-1} \). As with the previous number density matched sample this has a power-law fit of \(r_0 = 5.17 \pm 2.24 \) and \(y = -1.56 \pm 0.30 \). This sample produces a close companion count of only \(N_c = 0.0101 \pm 0.0023 \) in the spectroscopic slit, \(N_c = 0.0089 \pm 0.0022 \) after impurity corrections, \(N_c = 0.0050 \pm 0.0060 \) for the full cylinder, only 0.0442 \pm 0.0061 after being corrected for impurity, and \(N_p = 0.0682 \pm 0.0092 \) photometrically, 0.0471 \pm 0.0075 after correcting for sample impurity.

All results for our primary samples in the Z05 simulations and in Millennium 2 from here and from Sections 3.1 and 3.2 are summarized in Table 1.

3.6 Discussion

We find that matching haloes in our simulation to the observed LBG number density or the LBG 3D correlation function and mass using a simple prescription can generate informative close pair statistics. We find that the low-density simulation samples are able to reproduce the total observed \(N_c \) and \(N_c \) in cylinders, but underpredict the fraction observed serendipitously in spectroscopic slits. In contrast, the higher density 3D correlation function matched sample is able to reproduce the spectroscopic slit fraction, but overpredicts the...
Table 1. \(N_c\) and \(N_p\) for all samples.

Simulation & criteria	\(N_c\)	Corrected \(N_c\)	\(N_{cs}\)	Corrected \(N_{cs}\)	\(n_g\)
Z05 (A)	0.228 ± 0.006	0.177 ± 0.005	0.0293 ± 0.0013	0.0233 ± 0.0011	0.019
Z05 (B)	0.246 ± 0.006	0.193 ± 0.005	0.0375 ± 0.0016	0.0305 ± 0.0014	0.019
Z05 (C)	0.275 ± 0.007	0.218 ± 0.006	0.0506 ± 0.0017	0.0419 ± 0.0015	0.019
Z05 (R) (A)	N/A	N/A	0.0220 ± 0.0234	N/A	0.019
Z05 (R) (B)	N/A	N/A	0.0300 ± 0.0178	N/A	0.019
Z05 (R) (C)	N/A	N/A	0.0430 ± 0.0145	N/A	0.019
Z05 (photometric)	0.336 ± 0.009	0.189 ± 0.003	N/A	N/A	0.019
Millennium 2 (A/C)	0.1523 ± 0.0006	0.1303 ± 0.0059	0.033 ± 0.001	0.0299 ± 0.0014	0.017
Millennium 2 (photometric)	0.299 ± 0.0144	0.1370 ± 0.0154	N/A	N/A	0.017
Observations photometric	0.047 ± 0.035	N/A	N/A	N/A	0.004
Observations spectroscopic	N/A	N/A	0.047 ± 0.015	N/A	0.004

The Z05 models are our standard simulations. Millennium 2 simulation values are reported using criterion (A) in the cylinder and criterion (C) in the slit. The number density of the abundance matched sample used in Figs 8 and 11 are \(n_g = 0.004 h^3 \text{Mpc}^{-3}\).

number of observed galaxy–galaxy pairs. Our numerical/analytical simulation is not resolution limited in this sense, and the discrepancy at small scales occurs above the resolution limit of the Millennium 2 simulation. At these separations, many of the luminous galaxies sharing these haloes are either interactions or imminent interactions. This finding provides an interesting avenue to quantify the spatial behaviour of LBGs and subhalo assignment schemes.

Galaxy interactions can generate a significant enhancement in their luminosities from the close interactions (e.g. Larson & Tinsley 1978; Barton et al. 2000; Ellison et al. 2008; Bridge, Carlberg & Sullivan 2010; Wong et al. 2011). Moreover, it is possible that the luminosity enhancement at high redshift is equivalent to, or higher than, that observed at low redshift as a result of the higher gas fractions in LBGs.

The Ly\(\alpha\) emission versus separation relationship of observed close LBG pairs found in C10 supports this picture. All of the spectroscopic \(\lesssim 20 h^{-1}\) kpc physical close pairs, and thus interacting systems, exhibit Ly\(\alpha\) emission as compared to \(\sim 50\) per cent of the full population. A fraction of the observed Ly\(\alpha\) emission of each interacting galaxy is likely to be a signature of enhanced star formation. This behaviour may extend to the Ly\(\alpha\) emitter (LAE) population as well (see C10).

Lower luminosity LBGs typically have lower masses (Giavalisco & Dickinson 2001; Kashikawa et al. 2006), and the higher density of these haloes yields a higher interaction fraction as compared to our fiducial \((m_b < 25.5)\) sample. The luminosity enhancement from interactions would boost a fraction of lower luminosity LBGs above the magnitude selection cut-off of our sample. This process would create an increase in the number of \(\lesssim 20 h^{-1}\) kpc physical close pairs detected in the observations that are not represented in the simulation analysis.

Our adopted halo assignment (Section 2.3) does not account for enhanced star formation. Moreover, our \(V_{\text{now}}\) sample (Section 2.3) models haloes where baryons are stripped during infall. Such galaxies would have a decrease in luminosity as compared to our \(V_{\text{in}}\) model, and we find that the \(V_{\text{now}}\) model predicts fewer close pairs detected in the slits. This result implies that a model which instead includes an appropriate luminosity enhancement per baryon for infalling haloes over the standard assumptions of abundance matching will predict a higher fraction of close pairs in the slits as is seen in the observations.

Our results and the proposed scenario remain consistent within high-redshift measurements and fractions of close or interacting LBGs by various means when considering the samples studied (e.g. Conselice et al. 2003; Lotz et al. 2006; Bertone & Conselice 2009; Bluck et al. 2009; F"orster Schreiber et al. 2009; Law et al. 2012). In addition, observations of low-redshift LBG analogues (Overzier et al. 2009, 2010; Gon
calves et al. 2010), which are matched to LBGs in essentially every way (stellar mass, gas fraction, star formation rate, metallicity, dust extinction, physical size, gas velocity dispersion, etc.), show from optical imaging that the bulk of these objects are undergoing interactions even though the UV imaging is inconclusive. Simulated to high redshift, these objects are consistent with the properties and observations of \(z \sim 3\) LBGs.

Law et al. (2012) use Hubble Space Telescope imaging in the rest-frame optical to estimate the number of real close pairs in a sample of galaxies observed in the range \(2.5 \leq z \leq 3.6\). Galaxies with spectroscopically determined redshifts and magnitudes between \(H = 22.0\) and \(24.0\) were compared to objects within \(5–16 h^{-1}\) kpc with no more then \(1\) mag difference. These results were statistically corrected for false close pairs and produce a value of \(N_c = 0.17–0.08\) for \(z \sim 3\) LBGs. This close pair fraction is consistent with our results.

In our fiducial model, selected by matching the two-point correlation function, we have not truly required all galaxies to be visible either due to dust extinction or low star formation; thus, we do not have to match the observed number density as we would in SHAM. The work of Reddy et al. (2008) suggests that the rest-frame UV luminosities of galaxies at these redshifts are typically extincted by a factor of \(4–5\) in flux. Our typical halo masses at accretion are \(M \geq 10^{11.5} M_{\odot}\). All but \(\sim 1\) per cent of our haloes have a mass at accretion above the minimum mass of \(M_{\text{min}} \geq 10^{11.3} h^{-1} M_{\odot}\), suggested by halo modelling for \(z \sim 2\) star-forming galaxies in Conroy et al. (2008), where the number density of haloes does not match the observed \(n_g\) for that population.

Our number density matched sample implies that every halo hosts a luminous LBG. In this case, the lower fraction of close pairs at \(\lesssim 20\) kpc separations as compared to the observations goes against interacting galaxy behaviour. Moreover, we know from high-redshift surveys that LBGs comprise a large fraction, but not all, detectable galaxies at high redshift and that haloes indeed host massive galaxies that are not detectable using Lyman-break techniques. Thus, we are forced to consider higher densities samples. In order to generate 4.75 times the observed LBG density of the correlation function matched sample, we need to integrate
down the faint end of the luminosity function below $R = 25.5$ by ~ 1 mag (Sawicki & Thompson 2006; Reddy et al. 2008). Although a fraction of the higher luminosity haloes in this magnitude range are expected to have sufficient star formation enhancement to enter into our magnitude cut, the lack of knowledge of the typical enhancement in the far-UV at $z \sim 3$ makes it unclear if such a fraction is large enough to match that observed in the spectroscopic slits. If a significant fraction of the star-forming galaxies are obscured by dust as suggested by Lacey et al. (2011), a random subsample will have approximately the same correlation function and produce similar close pair fractions. As a result, the enhanced fraction of lower luminosity galaxies may include high star formation rate, dusty galaxies that may experience a larger magnitude increase from the effects of interaction and morphological disruption.

Finally, assuming that LBGs comprise $\gtrsim 50$ per cent of all star-forming galaxies at $z \sim 3$ (Reddy et al. 2005; Marchesini et al. 2007), the results of the correlation function matched sample suggest that after considering dust-obscured galaxies, $\sim 3/5$ of haloes are not observed using any high-redshift detection technique. Driven by (1) the power of the simulation to predict the close pair fraction down to $z = 0$ (Berrier et al. 2006), (2) the evidence that abundance matching may be used with high-redshift LBGs (Conroy et al. 2006), (3) the possible direct correlation between halo mass and UV luminosity at this epoch (Conroy & Wechsler 2009; Simha et al. 2012) and (4) the equivalent overdensity of similarly matched massive haloes in other simulations including simulations using different approaches (e.g. Lacey et al. 2011), the unaccounted $z = 3$ haloes in the correlation function matched sample likely reflect a similar number of real haloes in the Universe. If true, these haloes must either have highly obscured star formation that is not detected by current high-redshift selection techniques (e.g. Lacey et al. 2011), such as IR and sub-mm surveys, or they must be massive galaxies with inherently low star formation rates that are below the detection thresholds of current facilities. It may be the case that galaxy interactions are the cause for the initial starburst or ‘turn-on’ of many of these undetected haloes within our sample. Thus, a combination of all of the above affects resulting from interaction-induced star formation may provide a plausible explanation for the larger fraction of observed (< 20 kpc) serendipitous pairs in spectroscopic slits when assuming that LBGs comprise $\sim 1/5$ of the correlation function and mass matched sample and $\sim 1/5$ the reported close pair fractions. One means to probe such massive haloes independently of their luminosity is via quasar absorption line systems, in particular, the ubiquitous damped Lyα systems (Wolfe, Gawiser & Prochaska 2005), which have been shown to be associated with massive systems that cluster similar to LBGs (Cooke et al. 2006a; C06; Nagamine et al. 2006; Lee et al. 2011). We are engaged in investigation that is testing various components of this scenario on several fronts.

4 CONCLUSIONS

We have matched the 3D two-point correlation function of a sample of $z \sim 3$ LBGs to a sample of haloes from our primary numerical/analytical cosmological simulation. Using this sample we have mocked observations of simulated spectroscopic slits and of photometric observations of these galaxies. We also test our model with data from the Millennium 2 simulation for verification of our results. This work has led us to several interesting results which we summarize in the points below, see also Table 1.

(i) We demonstrate that neither standard SHAM nor a two-point correlation function and mass matching scheme completely reproduce the observational results. Neither model can reproduce galaxy clustering features and n_g at the same time. Explicitly, we find that the standard SHAM does not reproduce the serendipitously observed N_c and the break in the LBG correlation function at very small scales ($\leq 20 h^{-1}$ kpc physical, $\sim 80 h^{-1}$ kpc comoving).

(ii) The number density of our candidate LBG sample is ~ 4.75 times the observed LBG number density. The implication is that only 1/5 haloes above a fixed mass are detectable LBGs. These results are consistent with the results of Nagamine et al. (2004, 2006), Lee et al. (2011), Davé et al. (2000), Lacey et al. (2011) and others which find a similar overdensity using other types of simulations.

(iii) We find an observed close pair fraction $N_c = 0.228 \pm 0.006$, which implies an impurity corrected close pair fraction of $N_c = 0.177 \pm 0.005$ (~ 18 per cent). This result is consistent with the previous results of Conselice et al. (2003), Bertone & Conselice (2009), Bluck et al. (2009), Law et al. (2012), Lotz et al. (2008) and Förster Schreiber et al. (2009) considering the uncertainties specific to those studies and pair fraction/merger rate assumptions.

(iv) Our simulated matched spectroscopic slits produce a close pair fraction of $N_{cs} = 0.0506 \pm 0.0017$ for our fiducial sample, defined to have a maximum velocity separation of ± 500 km s$^{-1}$ and an on-the-sky separation of $\leq 30 h^{-1}$ kpc. This is similar to the observed fraction of serendipitous spectroscopic close pairs of $N_c = 0.047 \pm 0.015$ for the full observed LBG sample and $N_{cs} = 0.071 \pm 0.023$ for the highest S/N sample. After correcting for false close pairs which may be observed we find $N_c = 0.0419 \pm 0.0015$ in the simulation.

(v) If we examine our catalogues using randomly selected slitlets to generate a more generic result, we find that the expected fraction of LBG pairs that fall serendipitously into the slitlets is $N_{cs} = 0.0430 \pm 0.015$ before correcting for sample impurity.

(vi) We find a photometric close pair fraction of $N_p = 0.336 \pm 0.009$ and after correcting for the sample impurity we find $N_p \sim 0.189$. The latter fraction reflects the ‘real’ number of close pairs and therefore the real number of potentially interacting galaxy pairs. As mentioned above, only a portion of the corrected value will be observable LBGs. The difference in n_g is a factor of ~ 4.75 leading to a corrected value of $N_p \sim 3.99$ per cent, which is consistent with our photometric pair fraction $N_p = 0.047 \pm 0.035$ estimated from our survey and the survey of S03.

(vii) The analysis of the sample taken from Millennium 2 produces similar results to our primary simulation. In Millennium 2, we find the correlation function matched sample to be overdense in comparison with the observations by a factor of ~ 4.25. This selected sample produces $N_c = 0.152 \pm 0.0006$ in the cylinder and $N_{cs} = 0.033 \pm 0.001$ in the slits. The sample shows an impurity of $I_c = 0.1433 \pm 0.0176$ in the cylinder and $I_p = 0.1167 \pm 0.0202$ for the slit, producing corrected values of $N_c = 0.1303 \pm 0.0059$ and $N_{cs} = 0.02919 \pm 0.0014$ for the full cylinder and the spectroscopic slit, respectively. For our line-of-sight mock photometric sample we find $N_p = 0.2299 \pm 0.0144$, without corrections for impurity, and $N_p = 0.1370 \pm 0.0154$ after correction.

The excess of close (interacting) pairs $\leq 20 h^{-1}$ kpc (physical) and the inability for the standard abundance matching with monotonic UV-mass halo assignment to describe the steep slope in the observed LBG correlation function at very small scales provides insight into triggered star formation and the detectability of LBGs (and LAEs) at $z \sim 3$. Our results imply that the spectroscopic slit close pair fraction and the break in the correlation function represent the detection of either a fraction of less massive (higher density)
LBGs with luminosities below our magnitude cut ($m_U = 25.5$) as a result of an enhancement in luminosity from interactions, the ‘turn-on’ of massive haloes with previous low star formation as a result of interaction or, likely, a combination of both cases.

We find that LBGs likely represent $\sim 20–25$ per cent of all massive ($V_{\text{in}} > 133 \text{ km s}^{-1}$) haloes at $z \sim 3$ based on the results of the analysis of our simulation, the Millennium 2 simulation, simulation analyses by several other authors and the power of our simulation analysis to predict the close pair fraction from $z = 1$ to 0. The full census of detected star-forming galaxies selected by various criteria suggests that LBGs likely account for $\gtrsim 50$ per cent of the massive haloes at $z \sim 3$. The remaining fraction is likely populated by systems with low star formation rates and/or systems that are not detected using current selection techniques. DLAs are a promising means to explore the remaining fraction of massive haloes because they probe galaxy haloes randomly, independent of luminosity, have a high number density and are found to reside in massive haloes (Schaye 2001; Møller et al. 2002; Fynbo et al. 2003, 2008, 2010, 2011; Möller, Fynbo & Fall 2004; CO06).

The statistics generated from our mock spectroscopic slits with the serendipitously confirmed close pairs from observations provides a potentially powerful tool to estimate the behaviour and nature of LBGs and the enhanced star formation rate from LBG interactions.

ACKNOWLEDGMENTS

The simulation was run on the Columbia machine at NASA Ames (Project PI: Joel Primack). We thank Anatoly Klypin and Brandon Allgood for running the simulation and making it available to us. We would also like to thank Andrew Zentner for providing us with the halo catalogues generated by his analytic model. JCB is currently supported by the University of Arkansas. We would like to thank James Bullock, Elizabeth Barton, Mike Boylan-Kolchin and Kentaro Nagamine for useful discussions. We were supported in part during this work by the Center for Cosmology at the University of California, Irvine. JC gratefully acknowledges generous support by Gary McCue. The Millennium 2 simulation data bases used in this paper and the web application providing online access to them were constructed as part of the activities of the German Astrophysical Virtual Observatory. We wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community.

REFERENCES

Adelberger K. L., Steidel C. C., Shapley A. E., Pettini M., 2003, ApJ, 584, 45
Adelberger K. L., Steidel C. C., Pettini M., Shapley A. E., Reddy N. A., Erb D. K., 2005, ApJ, 619, 697
Allgood B., Flores R. A., Primack J. R., Kravtsov A. V., Faltenbacher A., Bullock J. S., 2006, MNRAS, 367, 1781
Barton E. J., Geller M. J., Kenyon S. J., 2000, ApJ, 530, 660
Barton Gillespie E., Geller M. J., Kenyon S. J., 2003, ApJ, 582, 668
Barton E. J., Geller M. J., Kenyon S. J., 2003, ApJ, 582, 668
Bell E. F., Pcles P., Somerville R. S., Wolf C., Borch A., Meisenheimer K., 2006, ApJ, 652, 270
Berrier J. C., Bullock J. S., Barton E. J., Guenther H. D., Zentner A. R., Wechsler R. H., 2006, ApJ, 652, 56
Berrier J. C., Stewart K. R., Bullock J. S., Purcell C. W., Barton E. J., Wechsler R. H., 2009, ApJ, 690, 1292
Bertone S., Conselice C. J., 2009, MNRAS, 396, 2345

© 2012 The Authors, MNRAS 426, 1647–1662
Monthly Notices of the Royal Astronomical Society © 2012 RAS

Bluck A. F. L., Conselice C. J., Bouwens R. J., Daddi E., Dickinson M., Papovich C., Yan H., 2009, MNRAS, 394, L51
Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, ApJ, 379, 440
Boylan-Kolchin M., Springel V., White S. D. M., Jenkins A., Lemson G., 2009, MNRAS, 398, 1150
Bridge C. R., Carlberg R. G., Sullivan M., 2010, ApJ, 709, 1067
Bryan G. L., Norman M. L., 1998, ApJ, 495, 80
Bundy K., Fukugita M., Ellis R. S., Kodama T., Conselice C. J., 2004, ApJ, 601, L123
Burkey M. J., Keel W. C., Windhorst R. A., Franklin B. E., 1994, ApJ, 429, L13
Carlberg R. G., Pritchet C. J., Infante L., 1994, ApJ, 435, 540
Carlberg R. G. et al., 2000, ApJ, 532, L1
Conroy C., Wechsler R. H., 2009, ApJ, 696, 620
Conroy C., Wechsler R. H., Kravtsov A. V., 2006, ApJ, 647, 201
Conroy C., Shapley A. E., Tinker J. L., Santos M. R., Lemson G., 2008, ApJ, 679, 1192
Conselice C. J., Bershady M. A., Dickinson M., Papovich C., 2003, AJ, 126, 1183
Cooke J., Wolfe A. M., Prochaska J. X., Gawiser E., 2005, ApJ, 621, 596 (CO05)
Cooke J., Wolfe A. M., Gawiser E., Prochaska J. X., 2006a, ApJ, 636, L9
Cooke J., Wolfe A. M., Gawiser E., Prochaska J. X., 2006b, ApJ, 652, 994 (CO06)
Cooke J., Berrier J. C., Barton E. J., Bullock J. S., Wolfe A. M., 2010, MNRAS, 403, 1020 (C10)
Dave R., Gardner J., Hernquist L., Katz N., Weinberg D., 2000, in Mazure A., Le Fèvre O., Le Brun V., eds, ASP Conf. Ser. Vol. 200, The Nature of Lyman Break Galaxies in Cosmological Hydrodynamic Simulations. Astron. Soc. Pac., San Francisco, p. 173
Dressler A., 1980, ApJ, 236, 351
Ellison S. L., Patton D. R., Simard L., McConnachie A. W., 2008, AJ, 135, 1877
Forster Schreiber N. M. et al., 2009, ApJ, 706, 1364
Fynbo J. P. U. et al., 2003, A&A, 406, L63
Fynbo J. P. U., Prochaska J. X., Sommer-Larsen J., Dessauges-Zavadsky M., Møller P., 2008, ApJ, 683, 321
Fynbo J. P. U. et al., 2010, MNRAS, 408, 2128
Fynbo J. P. U. et al., 2011, MNRAS, 413, 2481
Giavalisco M., Dickinson M., 2001, ApJ, 550, 177
Gonçalves T. S. et al., 2010, ApJ, 724, 1373
Guo Q., White S., Li C., Boylan-Kolchin M., 2010, MNRAS, 404, 1111
Holmberg E., 1937, Ann. Obs. Lund, 6, 1
Kashikawa N. et al., 2006, ApJ, 637, 631
Kells W., Dressler A., Sivaramakrishnan A., Carr D., Koch E., Epps H., Hilyard D., Pardeilhan G., 1998, PASP, 110, 1487
Kitzchelher M. G., White S. D. M., 2008, MNRAS, 391, 1489
Klypin A., Gottlöber S., Kravtsov A. V., Khokhlov A. M., 1999, ApJ, 516, 530
Kravtsov A. V., Klypin A. A., Khokhlov A. M., 1997, ApJS, 111, 73
Kravtsov A. V., Berlind A. A., Wechsler R. H., Klypin A. A., Gottlöber S., Allgood B., Primack J. R., 2004, ApJ, 609, 35
Lacey C., Cole S., 1993, MNRAS, 262, 627
Lacey C. G., Baugh C. M., Frenk C. S., Benson A. J., 2011, MNRAS, 412, 1828
Law D. R., Steidel C. C., Shapley A. E., Nagy S. R., Reddy N. A., Erb D. K., 2012, ApJ, 745, 85
Le Fèvre O. et al., 2000, MNRAS, 311, 565
Lee T. S., Nagamine K., Hernquist L., Springel V., 2011, MNRAS, 414, 51
Lin L. et al., 2004, ApJ, 617, L9
Lott J. M., Madau P., Giavalisco M., Primack J., Ferguson H. C., 2006, ApJ, 636, 592
Lott J. M. et al., 2008, ApJ, 672, 177
Marchesini D. et al., 2007, ApJ, 656, 42
Masjedi M. et al., 2006, ApJ, 644, 54
McCarthy J. K. et al., 1998, Proc. SPIE, 3355, 81
