Application of TLC and UHPLC–QTOF–MS for the identification of aqueous two-phase extracted UV–fluorescent metabolites from *Solanum retroflexum*

Tebogo Mphatlalala Mokgehle¹ · Ntakadzeni Madala² · Wilson Mugera Gitari³ · Nikita Tawanda Tavengwa¹

Received: 29 June 2021 / Accepted: 10 September 2021 / Published online: 5 October 2021
© The Author(s) 2021

Key words Aqueous two-phase extraction (ATPE) · Metabolites · *Solanum retroflexum* · Thin-layer chromatography (TLC) · Fluorescence

1 Introduction

Solanum species are renowned for their rich diversity of metabolites. Some of the many metabolites include flavonoids and glycoalkaloids which have been reported to exhibit antioxidant and protective roles, respectively [1]. Daji et al. [2] investigated the phytochemical profile of *Solanum retroflexum* leaves using methanolic extracts and found a range of cinnamic acids, polyphenols and alkaloids. Though methanolic extraction has been applied quite extensively [2–6], this approach is accompanied by setbacks such as the use of toxic organic solvent which often requires large volumes for extraction solvents, making it a costly exercise. Hence, there is a dire need for effective, eco-friendly, single-step extraction techniques.

Aqueous two-phase extraction (ATPE) is one such method that offers efficient, eco-friendly quick metabolite extraction. ATPE uses salts that allow for partitioning of a green extraction solvent, usually ethanol, from water, resulting in the extraction solvent being simultaneously enriched in the desired metabolites [7]. ATPE extracted phytocompounds were reported by Mokgehle et al. [8] with a range of cinnamic acids, polyphenols and alkaloids being obtained from *S. retroflexum*. Some of the ATPE extracted alkaloids include solanelagnin, solamargine, solasonine and β-solanine. The same authors also reported ATPE as being essential for the simultaneous extraction of multiple metabolites. Some studies have been directed at the use of thin-layer chromatography (TLC) methods for the isolation of potentially bioactive compounds from *Solanum* species. For instance, Shamsaldin et al. [9] applied TLC for the isolation of flavonoids from *Solanum villosum* Mill., Patel et al. [10] reported on the separation of alkaloids from *Solanum trilobatum* using TLC. In another study, Jadesha et al. [11] examined TLC for the isolation of phenolic compounds from *Solanum torvum*. Therefore, this work attempts to answer the question why a locally grown vegetable, *S. retroflexum*, in the Vhembe district (South Africa) has been a sought-after commodity for the health and well-being of communities in the area. The current work is the first attempt to separate and identify ATPE extracted ultraviolet (UV)–fluorescent metabolites present in *S. retroflexum* based on two independent chromatographic techniques, i.e., as TLC and ultra-high performance liquid chromatography–quadrupole time-of-flight hyphenated to mass spectrometry (UHPLC–QTOF–MS).

2 Experimental

The leaves of *S. retroflexum* were air-dried and ground into a fine powder with a rotating blade blender and stored in covered glass containers. The powdered leaves (2.00 g) were placed in 50 mL polypropylene tubes. To each tube, a saturated salt solution of 25 mL was added. The saturated salt concentrations used were 30% (w/V) of BaCl₂,
MgSO\textsubscript{4}·7H\textsubscript{2}O, Na\textsubscript{2}HPO\textsubscript{4}, MgCl\textsubscript{2}·6H\textsubscript{2}O, AgNO\textsubscript{3}, KBr and KNO\textsubscript{3}. Thereafter, 25 mL of absolute ethanol (99.9%) extract and 25 mL of each salt solution containing the powdered leaves were mixed, resulting in ATPE. The spontaneous formation of ATPE under the conditions stated above was also reported by Mokgehle et al. [8]. Portions of 3 × 20 µL absolute ethanolic (99.9%) top-layer extractant solution were spotted on the TLC plate and developed using a mobile phase of chloroform—ethyl acetate—methanol (45:40:15, V/V). The separated phytocompounds were observed on the TLC plate using a UV lamp (365 nm), scraped (Fig. 1a, b), dissolved in ethanol and analyzed on a

Fig. 1 a Fluorescent spots on TLC plate when chloroform—ethyl acetate—methanol (45:40:15, V/V) was as a developing solvent at 365 nm. b Scraped fluorescent spots from B1 to B6
UHPLC–QTOF–MS. The metabolites were separated on an Acquity HSS T3 C18 column (150 mm × 2.1 mm with particle size of 1.7 µm; Waters Corporation, Milford, MA, USA) at an oven temperature of 40 °C. The UPLC was connected to a Synapt G1 QTOF–MS detector (Waters). An injection volume of 3 µL was used with solvent A: 0.1% formic acid in Milli-Q water and solvent B: acetonitrile with 0.1% formic acid. Chromatographic separation was achieved using a 10 min gradient elution: 2% B over 0.0–1.0 min, 2%–95% B over 1.0–6.0 min, from 6.0 to 7.0 min the conditions were maintained at 95% B, the column was washed with 95–2% B over 7.0–8.0 min, re-equilibration with 2% B over a 2 min isocratic wash. The MS was configured to the range of 100–1000 Da with a scan time of 0.2 s. The MS data were acquired using positive electrospray ionization (ESI) mode. Chemical identification was done using KNapSAck Core System online metabolite database (Version 1.200.03) [12].

3 Results and discussion

Generally, an average of six bands (B1–B6) potentially corresponding to six compounds or more was observed on the TLC plate (Fig. 1a, b) when salts such as MgCl2·6H2O, BaCl2, MgSO4·7H2O, Na2HPO4, KNO3 and KBr were used during ATPE to aid the extraction of metabolites. Additionally, while the majority of the red fluorescent compounds were observed further up the TLC plate, blue fluorescent compounds were also observed at the top of the plate. Nazir et al. [13] also reported on fluorescent compounds in S. lycopersicum separated via TLC.

The UV–fluorescent TLC extracted bands (B1–B6), after dissolution in ethanol, were run on the UPLC–QTOF–MS. A chromatographic base peak at m/z 435 and retention time (tR) of 5.4 min were observed for B2 (Fig. 2 and Table 1) and another at m/z 457 (Fig. 2 and Table 1) with a retention time (tR) of 7.31 min for B1. The base peak at m/z 457 was identified as oleanolic acid (OA) or its isomers such as ursolic acid (UA) or betulinic acid (BA) (Table 1) (pentacyclic triterpenoid) and was also reported to have been extracted from S. tuberosum. Chromatographic appearance at 7.42 min with a base peak at m/z 1034 was observed in B4, furthermore the fragment of m/z 1034, m/z 578 was also observed as a chromatographic peak at the same retention time in B2 (Fig. 2 and Table 1).

The chromatographic base peak at m/z 1034 had fragments at m/z 263, 416, 528, 578 (Table 1). Similarly, the chromatographic base peak at m/z 578 (B2) also produced the same fragments as those of m/z 1034 (B4), suggesting that both have the same structural moiety. In addition, the chromatograms in Fig. 2 show a richness in peaks which indicated that the richness peaks from the various zones on the TLC plate could be due to a common structural backbone present in multiple compounds with similar polarities. Additionally, the richness in peaks may be a result of the presence of isomeric metabolites. From the KNapSAcK metabolite database, the fragment at m/z 578 and the base peak ion at m/z 1034 were identified as tomatidine galactoside (C33H56NO7) and alpha-tomatine tomatidine galactoside (C33H56NO7) (Fig. 3b and Table 1), respectively [21]. Alpha-tomatidine was composed of a tomatidine aglycone unit glycosylated by four monosaccharides which included d-galactose, 2 × d-glucose and d-xylose, whereas tomatidine galactoside contained d-galactose as a saccharide [22]. Therefore, this indicated that the transition from m/z 1034 to m/z 578, which is alpha-tomatine to tomatidine galactoside, occurred with the loss of 3 monosaccharides which consisted of 2 × d-glucose and d-xylose. A chromatographic appearance at 7.42 min with a base peak at m/z 560 that produced daughter ions at m/z 376 and 443 was observed as a blue fluorescent band at B6. From Fig. 1a, the red fluorescent metabolites were dominant in zones B1–B5 while the blue fluorescent compounds were present at B6. Through KNapSAcK, the base peak at m/z 560 was identified as gamma-solanine. The diverse fluorescing behavior of the metabolites, for instance the blue and red fluorescent gamma-solanine and solanocapsine, respectively, on the TLC in Fig. 1a, could be due to the possibility of various structural moieties within the metabolites. Alpha-tomatine and gamma-solanine have been reported in S. lycopersicum (tomato) to be toxic for consumption particularly during the greening stage [21].
Fig. 2 Base peak single-ion UHPLC–QTOF–MS chromatograms of metabolites extracted using ethanol under positive ionization via ATPE from the leaves of Solanum retroflexum
The combined application of TLC and UPLC–QTOF–MS was shown to be useful in the identification of nine UV–fluorescent compounds from *S. retroflexum* for the first time, with the aid of the KNapSAcK metabolite database. Three UV–fluorescent alkaloids, solanocapsine (red fluorescent), alpha-tomatine (red fluorescent) and gamma-solanine (blue fluorescent) were simultaneously extracted via ATPE and subsequently isolated by chromatography-based methods.

Table 1: Major compounds identified by UHPLC in *Solanum retroflexum* leaf aqueous methanol extracts

Band	Compound	Chemical formula	[M + H]$^+$	Diagnostic ions	t_R (min)	λ_{max} (nm)	Plant species previously found in	References
B1	UO/OA/BO	C$_{30}$H$_{46}$O$_3$	457	374, 512	7.31	210	*Scutellaria barbata*	[14]
B2	Quercetin-X (rey-noutrin)	C$_{27}$H$_{46}$N$_2$O	415	142, 224	3.27	293	*S. capsicastrum*, *S. psuedocapsicum*	[15]
B3	Solanocapsine	C$_{27}$H$_{36}$N$_2$O	415	142, 224	3.27	293	*S. capsicastrum*, *S. psuedocapsicum*	[16]
B4	Alpha-tomatine	C$_{30}$H$_{53}$NO$_2$	1034	263, 416, 528, 578	3.83	208	*S. lycopersicum*	[19]
B5	Stigmasterol I	C$_{29}$H$_{48}$O	413	133, 301, 326	7.46	257	*S. chacoense*, *S. tuberosum*	[20]
	Stigmasterol II	C$_{29}$H$_{48}$O	413	133, 301, 369	7.83	257	*S. chacoense*, *S. tuberosum*	[20]
B6	Gamma-solanine	C$_{33}$H$_{53}$NO$_6$	560	376, 443	7.42	325	*S. chacoense*, *S. tuberosum*	[21]

X = 3-O-β-d-xylofuranoside, UO = ursolic acid, OA = oleanolic acid, BO = betulinic acid

Fig. 3: Some of the structures detected from ATPE extracts of *Solanum retroflexum*

- **a**: stigmasterol
- **b**: alpha-tomatine

4 Conclusion

The combined application of TLC and UPLC–QTOF–MS was shown to be useful in the identification of nine UV–fluorescent compounds from *S. retroflexum* for the first time, with the aid of the KNapSAcK metabolite database. Three UV–fluorescent alkaloids, solanocapsine (red fluorescent), alpha-tomatine (red fluorescent) and gamma-solanine (blue fluorescent) were simultaneously extracted via ATPE and subsequently isolated by chromatography-based methods.
The diverse fluorescing behavior of the metabolites, under UV light, was possibly due to the variation in the structural moieties of the metabolites. To date, alpha-tomatidine and gamma-soline have generally been limited to *S. lycopersicum*. However, this study has demonstrated that both glycoalkaloids can also be found in *S. retroflexum*. The use of an environmentally friendly method, ATPE, in conjunction with TLC and UPLC–QTOF–MS has shown to be an efficient method for the simultaneous extraction of UV–fluorescent metabolites from *S. retroflexum* and may prove vital for the well-being of man. Though this study was an untargeted approach with a tentative identification of UV–fluorescent metabolites from *S. retroflexum*, future studies may be directed at the isolation and comprehensive identification of isomers (ursolic acid, betulinic acid and oleanolic acid) by incorporation of derivatization agents.

Acknowledgements The authors are grateful to the National Research Foundation of South Africa (NRF-SA) and the University of Venda for its financial support.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Paudel JR, Davidson C, Song J, Maxim I, Aharoni A, Tai HH (2017) Pathogen and pest responses are altered due to RNAi-mediated knockdown of glycoalkaloid metabolism 4 in *Solanum tuberosum*. Mol Plant Microbe Interact 30:876–885. https://doi.org/10.1094/MPMI-02-17-0033-R

2. Daji G, Steenkamp P, Madala N, Dlamini B (2018) Phytochemical analysis of *Solanum retroflexum* analysed with the aid of ultra-performance liquid chromatography hyphenated to quadrupole-time-of-flight mass spectrometry (UPLC–qTOF–MS). J Food Qual 2018:1–9. https://doi.org/10.1155/2018/3678795

3. Alami MA, Zaidul ISM, Ghasoo K, Sahena F, Hakim MA, Rafii MY, Abir HM, Bostanadin MF, Perumal V, Khatib A (2017) In vitro antioxidant and α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from *Clinacanthus nutans*. BMC Complement Altern Med 17:1–10. https://doi.org/10.1186/s12906-017-1684-5

4. Sobeh M, Youssel FS, Esmat A, Petruk G, El-Khatib AH, Monti DM, Ashour ML, Wink M (2018) High resolution UPLC–MS/MS profiling of polyphenolics in the methanol extract of *Syzygium samarangense* leaves and its hepatoprotective activity in rats with CCl4-induced hepatic damage. Food Chem Toxicol 113:145–153. https://doi.org/10.1016/j.fct.2018.01.031

5. Artanti AN, Pujiasutti UH, Prihapsara F, Rakhmawati R (2020) Synergistic cytotoxicity effect by combination of methanol extract of *Parijoto fruit* (*Medinilla speciosa* Reimw. Ex. Bl.) and cisplatin against Hela cell line. IJCC 11:16–21

6. Zakaria ZA, Kamisan FH, Omar MH, Mahmood ND, Othman F, Hamid SSA, Abdullah MNH (2017) Methanol extract of *Dictamnus linearis* L. leaves impedes acetaminophen-induced liver intoxication partly by enhancing the endogenous antioxidant system. BMC Complement Altern Med 17:1–14. https://doi.org/10.1186/s12906-017-1781-5

7. Iqbal M, Tao Y, Xie S, Zhu Y, Chen D, Wang X, Huang L, Peng D, Sattar A, Shabbir MAB, Hussain HI, Ahmed S, Yuan Z (2016) Aqueous two-phase system (ATPS): An overview and advances in its applications. Bio Proced Online 18:1–18. https://doi.org/10.1186/s12757-016-0048-8

8. Mokghele T, Madala N, Gitari W, Tavengwa N (2021) Deciphering the effects of kosmotrope and chaotrope salts during aqueous two phase extraction (ATPE) of polyphenolic compounds and glycoalkaloids from the leaves of a nutraceutical plant, *Solanum retroflexum*, with the aid of UPLC–QTOF–MS. Appl Biol Chem 64:1–15

9. Shamsaldin H (2018) Study of Chemical composition of Ropas of Kerman (*Solanum villosum* Mill.). (Doctoral dissertation, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran)

10. Patel BR, Kotak N, Pandya P (2018) Pharmacognostical and phytochemical evaluation of root of *Solanum trilobatum* Linn. Pharma Sci Monit 9:235–241

11. Jadesha G, Velappagounder P (2021) Identification of antifungal compounds from solanum tosum var against post harvest anthracnose of banana. J Agric Sci Technol 23:457–471

12. Knapsack core system. http://www.knapsackfamily.com/knapsack_core/top.php. Accessed 20 Mar 2020

13. Nazir S, Akhtar KP, Sarwar N, Saleem MY, Asghar M, Siddique Z, Saleem K, Jamil FF (2012) Time-course analysis of the phenomena in cucumber mosaic virus-resistant, -tolerant and susceptible tomato genotypes. Arch Phytopathol Pflanzenschutz 45:1304–1318. https://doi.org/10.1080/032325408.2012.672364

14. Xu XH, Su Q, Zang ZH (2012) Simultaneous determination of oleanolic acid and ursolic acid by RP-HPLC in the leaves of *Eriocephalia japonica* Lindl. J Pharm Anal 2:238–240. https://doi.org/10.1016/j.jpha.2012.01.006

15. Houël E, Rodrigues AMS, Jahn-Oyar A, Besierré JM, Odonne G, Murray AP, Penenory AB (2015) Solanocapsine derivatives as potential inhibitors of acetylcholinesterase: synthesis, molecular docking and biological studies. Steroids 104:95–110. https://doi.org/10.1016/j.stero ids.2015.09.001

16. Martucci MEP, Vos RCH, Carollo CA, Gobbo-Neto L (2014) Metabolomics as a potential chemotaxonomical tool: application in the genus *Vernonia* Schreb. PLoS ONE 9:1–8. https://doi.org/10.1371/journal.pone.0093149

17. Garcia ME, Borioni JL, Cavallaro V, Pierini AB, Deharo E, Vos R, Kirk HG, Nielsen KL (2016) Next generation sequencing bulk segregant analysis of potato support that differential flux into the cholesterol and stigmasterol metabolite pools is important for sterylol glycoalkaloid content. Potato Res 59:81–97. https://doi.org/10.1007/s11540-015-9314-4
19. Itkin M, Heinig M, Tzfadia O, Bhide AL, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malistky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri AP, Aharoni A (2013) Biosynthesis of antinutritional alkaloids in solanaaceous crops is mediated by clustered genes. Science 341:175–179. https://doi.org/10.1126/science.1240230

20. Kumar A, Fogelman E, Weissberg M, Tanami EE, Veilleux Z, Ginzberg I (2017) Lanosterol synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato. Planta 246:1189–1202. https://doi.org/10.1007/s00425-017-2763-z

21. Glossman-Mintik D (2007) CHIH–DFT determination of the molecular structure and infrared and ultraviolet spectra of \(\gamma \)-solanine. Spectrochim Acta A 66:208–211. https://doi.org/10.1016/j.saa.2006.03.033

22. Zhao DK, Zhao Y, Chen SY, Kennelly EJ (2021) Solanum steroidal glycoalkaloids: structural diversity, biological activities, and biosynthesis. Nat Prod Rep 38:1423–1444. https://doi.org/10.1039/D1NP00001B