ABSTRACT

Background Soft-tissue sarcoma (STS) represents a rare group of mesenchymal neoplasms comprising more than 50 heterogeneous subtypes. Great efforts have been made to increase the understanding of the treatment of advanced STS (unresectable or metastatic disease). We set out to determine whether outcomes for patients with advanced STS have improved over time and to assess the current evidence for systemic therapy.

Methods In a scoping review, we evaluated the contemporary evidence for systemic treatment of advanced STS in adults (>18 years of age). Phase I, II, and III studies of systemic therapy for advanced STS published in the English language were included. After abstract and full-text review of seventy-seven studies, sixty-two trials met the inclusion criteria.

Results The number of clinical trials conducted and published in advanced STS has increased over the last 30 years. Although median overall survival has increased, attempts at improving first-line therapy through dose intensification, doublet chemotherapy, or alternative backbones have not been successful. The optimal therapy beyond anthracyclines remains a challenge, especially given the heterogeneity that grouping multiple STS subtypes within clinical trials creates. However, increasing numbers of agents are being studied, and several studies had shown isolated benefit in progression-free or overall survival.

Summary First-line systemic therapy with an anthracycline remains the standard of care for advanced STS. However, choice of subsequent therapy beyond anthracyclines remains challenging. Novel systemic therapies, use of molecular diagnostics to direct therapy, subtype-specific trials, and learnings from real-world retrospective data are all important for improving outcomes in patients with advanced STS.

Key Words Soft-tissue sarcoma, advanced; systemic therapy; anthracyclines

INTRODUCTION

Soft-tissue sarcoma (STS) refers to a group of uncommon mesenchymal malignancies with more than 50 different subtypes. In Canada, STS represents approximately 1175 new cases per year (0.6% of all cancer diagnoses) in adults. The natural history and response to treatment between and within subtypes is heterogeneous. A large proportion of patients (14.5%–26.5%) present with de novo metastatic disease, and 40%–50% of patients with localized disease will develop metastasis. Thus, patients with advanced STS, defined as those with unresectable or metastatic disease, represent a significant proportion of patients affected by STS.

Most published randomized trials in advanced STS include all subtypes of STS—the 5 most common histologic subtypes being liposarcoma (LPS), leiomyosarcoma (LMS), undifferentiated pleomorphic sarcoma (UPS), fibrosarcoma, and synovial sarcoma. The rarity of sarcoma—and the even further rarity of individual subtypes of STS—has limited the ability to conduct large, histology-specific clinical trials to inform practice. Thus, most of the literature concerning the treatment of specific subtypes has focused on retrospective case series.

Outcomes for patients were very poor before the discovery, in 1973, that doxorubicin is active against STS, and anthracyclines have remained the backbone of standard-care treatment for advanced STS. Since the 1970s, various trials have been conducted in hopes of improving patient outcomes or reducing adverse events through regimen intensification, non-anthracycline regimens, or use of alternative anthracyclines. In the present review, we aimed,
through literature appraisal, to determine whether survival for patients with STS has continued to improve since the 1970s and to identify the optimum contemporary systemic treatment pathway for patients with advanced STS.

METHODS

Search Strategy and Selection of Studies
A scoping review was conducted using a literature search in PubMed with the keywords “soft tissue sarcoma,” “metastatic,” “unresectable,” “systemic therapy,” “immunotherapy,” and “targeted agents” for 1987 to 15 May 2019. Specific searches based on drugs used in the treatment of STS were also performed. In addition, a search of ongoing clinical trials with the keywords “soft tissue sarcoma,” “metastatic/advanced,” and “systemic therapy” was performed at https://ClinicalTrials.gov/. We included studies published in the English language that involved adults (>18 years of age) diagnosed with advanced STS who were enrolled in prospective phase I, II, or III clinical trials and whose primary treatment was systemic therapy. Retrospective studies were excluded from the scoping review. Given well-established and distinctly different treatments, studies were excluded if the predominant histologic subtype was gastrointestinal stromal tumour, Ewing sarcoma, bone sarcoma (osteosarcoma, giant cell tumour of bone, chondrosarcoma), rhabdomyosarcoma, desmoid fibromatosis, and Kaposi sarcoma.

Data Extraction and Analysis
Titles were reviewed for relevance, and duplicates were removed. Abstract and full-text reviews of 152 studies were undertaken by AS, YW, and CS. Disagreements were resolved by consensus. Title, year published, trial type, number of patients, agents used, median progression-free survival (mPFS), median overall survival (mOS), clinical benefit rate (complete response, plus partial response, plus stable disease) and response rate (complete response plus partial response) were extracted from sixty-two studies. Number of studies per year, trial type, line of therapy, and type of systemic therapy were coded. Of thirty-two active clinical trials found at https://ClinicalTrials.gov/, AS reviewed all of them, and four were included in the final review. Descriptive statistics were used to generate figures (Figure 1) in the Excel software application (version 16.16.9: Microsoft Corporation, Redmond WA, U.S.A.).

Treatment Choices
Included studies were grouped by line of therapy (first line vs. beyond first line) to generate a summary of the evidence. When a systemic therapy was compared with doxorubicin, the study was coded based on the non-doxorubicin arm.

RESULTS

Studies Found
One hundred fifty-two trials from 1987–2019 underwent abstract and full text review, with sixty-two trials being included in the scoping review. Most were phase II trials (n = 35), with fewer being phase III trials (n = 15) or phase I trials (n = 4); the remaining trials were of mixed or undefined phase (n = 6), a meta-analysis (n = 1), or an undefined design (n = 1) [Figure 2(A)]. The number of published studies in this field has increased over time [Figure 2(B)], to 4–8 per year during 2012–2017 from 0–3 per year during 1987–2002. The types of systemic therapies studied for advanced STS have been increasing. The most commonly studied therapies included alkylating agents (ifosfamide, temozolomide, trabectedin), tyrosine kinase inhibitors, microtubule inhibitors (taxanes, eribulin), or anthracycline derivatives (epirubicin, liposomal doxorubicin, amrubicin) [Figure 2(C)]. Two studies—both published after 2017—focused on immunotherapy.

Outcomes

First Line
Compared with the mOS of 7.7–12.0 months with first-line doxorubicin reported by the Cochrane review in 2003, the mOS has steadily improved, with the most recently reported...
mos being 20.4 months for doxorubicin in a doxorubicin–olaratumab phase III trial7,8 (Table I). By contrast, the mPFS has, overall, remained stable over time. Compared with doxorubicin, newer anthracyclines developed with the hopes of reducing toxicity have not demonstrated an improved mos10–22. Furthermore, the RRs for comparisons with doxorubicin were all lower in older single-arm studies of gemcitabine (RR: 4%)23, paclitaxel (RR: 12%)24, perifosine (RR: 5%)25, and temsirolimus (RR: 5%)26. The RR for single-agent ifosfamide at a dose of 12 g/m² was 17%; however, that regimen was associated with significant grades 3 and 4 toxicities27.

Table I summarizes modern first-line trials comparing doxorubicin with doublet or novel systemic therapy backbones. Compared with doxorubicin alone, dose escalation or doublet chemotherapy regimens that, in large phase III trials, attempted to intensify treatment have not improved the mos6,11,13. Compared with doxorubicin alone, doublet therapy with doxorubicin–ifosfamide was associated with a modestly increased RR at the cost of a higher rate of febrile neutropenia, but no mos benefit6,28. Furthermore, ifosfamide variations developed in the hope of reducing the side effects from metabolites have produced disappointing results29,30.

The lone trial to demonstrate improved overall survival was the phase II/II trial that compared olaratumab–doxorubicin with doxorubicin alone16. Unfortunately, that result was not replicated in a large phase III study8. With respect to anthracycline-sparing regimens, no difference in mPFS or mos for any subtype of STS was observed in a comparison of first-line gemcitabine–docetaxel with doxorubicin alone; however, quality of life was better for patients treated with doxorubicin alone17.

Beyond First Line

Upon disease progression, trials have attempted to exploit novel doublets or mechanisms of action (Table II), but mos and mPFS results have both remained modest. Only eribulin38,40, gemcitabine–docetaxel32, and gemcitabine–dacarbazine33 have been associated with a mos benefit in doxorubicin–treated patients. Specifically, compared with dacarbazine, eribulin38,40 demonstrated a benefit in mos, but not in mPFS, for patients with LMS or LPS—a result that was likely driven by the dedifferentiated LPS subgroup40. Notably, a number of studies have compared novel agents with a backbone of dacarbazine, which showed activity in STS in a single-arm phase II study41,47.

Interestingly, tyrosine kinase inhibitors seem to be associated with an improvement in mPFS, but not mos. A phase II trial of regorafenib37,39 and a phase III trial of pazopanib34, both using a placebo comparator in non-adipocytic sarcomas, and a phase III trial of trabectedin compared with dacarbazine36 in patients with LMS or LPS, all showed significantly prolonged mPFS (in the order of months), but not mos.

Immunotherapy

To date, two studies of immunotherapy have been conducted in patients with STS48,49,a. The SARC028 study explored the use of pembrolizumab in patients with STS and bone sarcoma after up to 3 prior lines of therapy. The overall RR was 18% (7 of 40 patients), but was likely driven by patients having

FIGURE 2 (A) Types of published study included (n = 62). (B) Trends in publication per year since 1987. (C) Class of systemic therapy used in the study. TKI = tyrosine kinase inhibitor.
Despite an increase in the number of studies and systemic therapies developed, doxorubicin-based chemotherapy remains the backbone of first-line systemic treatment for advanced STS. Although the mOS is similar with first-line gemcitabine–docetaxel and with doxorubicin alone, patients receiving the combination therapy experience reduced quality of life, making gemcitabine–docetaxel a less attractive first-line option. Otherwise, first-line doublet

TABLE I

Reference	Study phase	Pts (n)	Study arms	RR (%)	CBR (%)	mPFS (months)	mOS (months)
Bramwell et al., 2003⁶	Systematic review	2281	Doxorubicin	16–27	NR	NR	7.7–12
Kalofoinos et al., 2004⁹	II	30	Doxorubicin 25 mg/m² days 1–3 and cisplatin 100 mg/m² day 1	16.7	70	6	11.5
Demetri et al., 2012¹⁰	I/II	86	Doxorubicin 75 mg/m² day 1	24	93	6.4	21.6
			Doxorubicin 75 mg/m² and conatumumab 15 mg/kg day 1	20	72	5.6	18.2
Blay et al., 2014¹¹	IIIb	121	Doxorubicin 75 mg/m² day 1	45.9	86.5	8.3	27.3
			Doxorubicin 60 mg/m² day 1 and ifosfamide 6–9 g/m² day 1 (37%)				
			Trabectedin 1.5 mg/m² day 1	37.3	82.4	18.8	38.9
Gelderblom et al., 2014¹²	II	118	Doxorubicin 75 mg/m² day 1	22.2	27.8	NR	NR
			Brostallicin 10 mg/m² day 1	3.9	6.5	NR	NR
Judson et al., 2014¹³	III	228	Doxorubicin 75 mg/m² day 1	14	59.6	4.6	12.8
			Doxorubicin 75 mg/m² day 1 and ifosfamide 10 g/m² over days 1–4	26	76.6	7.4	14.3
Bui-Nguyen et al., 2015¹⁴	IIB	133	Doxorubicin 75 mg/m² day 1	25.6	62.8	5.5	NR
			Trabectedin 1.3 mg/m² day 1 (3 h)	14.8	55.3	2.8	NR
			Trabectedin 1.5 mg/m² day 1 (24 h)	4.7	62.8	3.1	NR
Martin-Broto 2016¹⁵	II	115	Doxorubicin 75 mg/m² day 1	NR	NR	5.5	NR
			Doxorubicin 75 mg/m² day 1 and trabectedin 1.1 mg/m² day 1				
Tap et al., 2016¹⁶	II	148	Doxorubicin 75 mg/m² day 1	11.9	62.7	4.1	26.5⁶
			Doxorubicin 75 mg/m² day 1 and olaratumab 15 mg/kg days 1, 8	18.2	77.3	6.6	14.7⁴¹
Seddon et al., 2017¹⁷	III	256	Doxorubicin 75 mg/m² day 1	19	72	5.4	17.6
			Gemcitabine 675 mg/m² days 1, 8 and docetaxel 75 mg/m² day 1	20	75	5.4	15.5⁹
Tap et al., 2019⁷	Eli Lilly and Company⁸	485	Doxorubicin 75 mg/m² day 1	NA	NA	6.8	20.4
	III		Doxorubicin 75 mg/m² day 1 and olaratumab 15 mg/kg days 1, 8	NA	NA	5.4	19.7

a Included studies did not consistently report PFS, and PFS was not included in the final outcomes for the systematic review.
b Only translocation-related sarcoma, mostly myxoid or round-cell liposarcoma.
c Stopped for futility.
d Statistically significant.
e Reduced quality of life reported in patients receiving docetaxel–gemcitabine.
Pts = patients; RR = response rate; CBR = clinical benefit rate; mPFS = median progression-free survival; mOS = median overall survival; NR = not reported; NA = not available at time of publication.

DISCUSSION

Despite an increase in the number of studies and systemic therapies developed, doxorubicin-based chemotherapy remains the backbone of first-line systemic treatment for advanced STS. Although the mOS is similar with first-line gemcitabine–docetaxel and with doxorubicin alone, patients receiving the combination therapy experience reduced quality of life, making gemcitabine–docetaxel a less attractive first-line option. Otherwise, first-line doublet

the STS subtypes UPS (RR: 40%; 4 of 10) and LPS (RR: 20%; 2 of 10)⁴⁸. To further explore those subtypes, 30 additional patients have been enrolled onto each arm, with results awaited (NCT02301039 at https://ClinicalTrials.gov/). Nivolumab as a single agent demonstrated a modest 5% RR⁴⁹. However, the combination of ipilimumab–nivolumab in patients having received at least 1 prior line of therapy demonstrated a 16% RR (6 of 38 patients: 1 uterine LMS, 1 non-uterine LMS, 1 myxofibrosarcoma, 2 UPS, 1 angiosarcoma)⁴⁹.
TABLE II Selected randomized controlled trials beyond first line treatment

Reference	Study phase	Pts (n)	Study arms	RR (%)	CBR (%)	mPFS (months)	mOS (months)
Comparative trials							
Bramwell et al., 1987	II	171	Cyclophosphamide 1.5 g/m²	7.5	41.7	NR	NR
			Ifosfamide 5 g/m²	17.6	57.3	NR	NR
Maki et al., 2007	II	122	Gemcitabine 1200 mg/m² days 1, 8	8	27	3	11.5*
			Gemcitabine 1200 mg/m² days 1 and docetaxel 100 mg/m² day 1	17	32	6.2	17.9*
García-del-Muro et al., 2011	II	113	Dacarbazine 1800 g/m² every 3 weeks	4	25	2*	8.2*
			Dacarbazine 500 mg/m² day 1 and gemcitabine 1800 g/m² day 1 every 2 weeks	12	49	4.2*	16.8*
Van der Graaf et al., 2012	III	372	Placebo (no crossover)	0	38	1.6*	10.7
			Oral pazopanib 800 mg daily	6	73	4.6*	12.5
Blay et al., 2015	III	355	Cisplatin 75 mg/m² day 1	1	36	1.41	9.33
			Cisplatin 75 mg/m² and gemcitabine 25 mg/m² day 1	4	47	1.54	11.43
Demetri et al., 2016	III	518	Dacarbazine 1000 mg/m² day 1	6.9	19	1.5*	12.4
			Trabectedin 1.5 mg/m² day 1	9.9	34	4.2*	12.9
Mir et al., 2016	II	43	Placebo (could cross over)	0	43	1.7	8.8
			Oral regorafenib 160 mg daily for 21 days; 7 days off	0	57	1.1	4.7
			Placebo (could cross over)	4	58	1.8	9.1
			Oral regorafenib 160 mg daily for 21 days; 7 days off	0	86	3.7	21
			Placebo (could cross over)	0	22	1.0	6.7
			Oral regorafenib 160 mg daily for 21 days; 7 days off	8	85	5.6	13.4
			Placebo (could cross over)	0	34	1.0	9.5
			Oral regorafenib 160 mg daily for 21 days; 7 days off	11	78	2.9	12.1
Schöffski et al., 2016	III	452	Dacarbazine 850–1200 mg/m² day 1	5	48	2.6	11.5*
			Eribulin 1.4 mg/m² days 1, 8	4	46	2.6	13.5*
Berry et al., 2017	II	60	Placebo (could cross over)	NR	NR	1.0*	9.0
			Oral regorafenib 160 mg daily for 21 days; 7 days off	NR	NR	4.0*	13.4
Demetri et al., 2017	III	143	Dacarbazine 850–1200 mg/m² day 1	0	44.4	1.7	8.4*
			Eribulin 1.4 mg/m² days 1, 8	0.4	65.2	2.9	15.6*
Selected single-agent trials							
Buesa et al., 1991	II	44	Dacarbazine 1200 mg/m² day 1 every 3 weeks	18	36.3	NR	NR
Nielsen 2000	II	124	Ifosfamide 12 g/m²	16	48	3.5	12.7
Talbot et al., 2003	II	26	Temozolomide	15.4	26.9	2	13.2
George et al., 2009	II	48	Oral sunitinib 37.5 mg daily	2	14	NR	NR
Maki et al., 2009	II	144	Oral sorafenib 400 mg twice daily	6	68	3.2	14.3*
Luo et al., 2015	II	26	Gemcitabine 1000 mg/m² days 1, 8; vincristine 1.4 mg/m² day 1; and cisplatin 25 mg/m² days 1–3	23	65.3	4.8	15
Subbiah et al., 2018	IB/II	25	Pazopanib 800 mg and oral trametinib 2 mg daily	8	56	2.2	9

*a Statistically significant.
*b Liposarcoma or leiomyosarcoma only
*c Included only non-adipocytic sarcoma, unplanned analysis.
*d Planned subgroup analysis of liposarcoma cohort in Demetri et al., 2016.
*e Mostly driven by the angiosarcoma cohort.

RR = response rate; CBR = clinical benefit rate; mPFS = median progression-free survival; mOS = median overall survival; NR = not reported; LPS = liposarcoma; LMS = leiomyosarcoma; SyS = synovial sarcoma.
chemotherapy has generally been shown to increase the RR, but not the mPFS or mOS (Table 1). The phase II/III results for olaratumab–doxorubicin initially suggested an impressive mOS benefit, resulting in accelerated conditional approval; however, the larger phase III study of that combination compared with doxorubicin alone was negative. The difference in mOS might have been attributable to overperformance in the doxorubicin-alone arm or to the proportions of the heterogeneous STS population captured in each study being different. Which, if any, subtype of STS might respond best to the combination remains an open question.

However, the foregoing results do reinforce the trend seen in Table 1 that the mOS for first-line doxorubicin-only treatment in STS is indeed increasing over time, but that the RR and progression-free survival have generally remained stagnant. Those observations might be attributable to additional evidence and to an increase in the agents available for second-line therapy, coupled with a better understanding of subtype-directed therapy. Furthermore, supportive care in oncology has improved over time, which could account for improved outcomes such as a quality of life.

Although the present review focuses on systemic therapy, patients with advanced STS receive multidisciplinary care from radiation and surgical oncologists. More frequent use of metastasectomy and radiation (specifically, stereotactic ablative radiation therapy) in carefully selected patients with a long disease-free interval or long-interval disease stability might also explain improved outcomes for patients over time.

Single-agent doxorubicin remains the agent of choice in the first-line treatment of most advanced STS; however, in carefully selected patients (such as those with borderline resectable tumours, rapid tumour growth, and a deteriorating performance status or a tumour near critical anatomic structures), doxorubicin–ifosfamide might be considered as first-line treatment because of its higher RR (Figure 3). In patients with cardiac comorbidities, clinicians could consider using liposomal doxorubicin or gemcitabine–docetaxel in the first line to avoid potential worsening of underlying cardiac dysfunction.

After treatment with anthracyclines, subtype becomes an important consideration. Based on our scoping review, we propose an algorithm (Figure 3). Outside the scope of our review, subtype-directed therapy for rare histologies such as alveolar soft-part sarcoma, perivascular epithelioid-cell neoplasms, and angiosarcoma is well summarized in other published review articles. For patients with LMS (and to a greater extent LPS), eribulin is an active therapy that improves mOS. Although activity of gemcitabine–docetaxel was initially reported in a phase II trial that included only patients with LMS, a preplanned subgroup analysis from the GEDDS trial showed no evidence of a differential benefit based on subtype, including uterine compared with non-uterine LMS compared with other histologies. Thus, gemcitabine–docetaxel is an established treatment for patients with multiple subtypes of STS after failure of anthracyclines. The smaller phase II study of dacarbazine–gemcitabine in previously treated patients

![FIGURE 3](link) Proposed treatment algorithm for advanced soft-tissue sarcoma (STS). a Dacarbazine, gemcitabine, pazopanib, trabectedin. NGS = next-generation sequencing; PS = performance status; LMS = leiomyosarcoma; LPS = liposarcoma; MDC = multidisciplinary conference.
with STS showed a significant mos benefit, but the primary outcome of the study was the progression-free survival rate at 3 months. Given that the larger phase III study of gemcitabine–docetaxel represents a higher level of evidence, we favour use of that gemcitabine doublet unless the patient has a contraindication to taxanes. Although randomized data are limited, dacarbazine is often included as a backbone for systemic therapy beyond anthracyclines33,36,38,48 and can be considered an option for patients who are fit enough to receive systemic therapy after doublets and for whom subtype-specific therapy has been exhausted.

Delaying the need to switch therapies is an important outcome, but must be balanced when a switch does not translate into a change in mos. Pazopanib34, regorafenib39, and trabectedin36 are associated only with improved mos, not mos. Although establishing a large trial of heterogeneous STS is challenging, the question of whether those therapies might benefit a specific subgroup remains open.

A large retrospective analysis from the European Organisation for Research and Treatment of Cancer suggested that, in patients with STS, lack of progression is an important predictor of mos55. However, that hypothesis has not held true in large phase III studies that have shown improvement in mPFS, but not mos34,36—perhaps because of difficulty in interpreting imaging for patients with STS. The size of tumours is often non-uniform, which makes interpretation according to the Response Evaluation Criteria in Solid Tumors difficult. Similarly, response might be better reflected by qualitative change in imaging rather than by size alone36. Furthermore, mPFS is critically affected by the design of follow-up imaging, which can influence results57.

Another interesting outcome to consider with pazopanib, regorafenib, and trabectedin might be time to second progression, which might help with the sequencing of available agents and represent a clinically meaningful outcome for patients.

Looking beyond cytotoxic or targeted therapy, novel mechanisms of systemic therapy such as immunotherapy have changed the landscape of treatment for a variety of tumour groups58. Although early results suggest that immunotherapy could be effective in certain STS subtypes such as UPS and LPS48,49, larger cohorts with longer follow-up are required to better understand the true clinical benefit of those agents for patients with STS.

The rarity of STS and its subtypes generally precludes large subtype-specific randomized trials. However, within the STS subtypes, heterogeneity can be seen in terms of grade, chemoresponsiveness, and prognosis. That heterogeneity often cannot be adequately teased out in large STS trials that group multiple STS histologies having potentially dissimilar biology36. Despite histologic heterogeneity, RRs might vary, potentially contributing to the differing results seen in the phase II compared with the phase III trial of olaratumab–doxorubicin8. Inclusion criteria such as disease progression within 3 months of enrolment, grade, subtype, and mandated central pathology review should all be carefully considered in attempting to reduce heterogeneity. Alternatively, subtype-specific trials have been successful in the past8,59 and could provide robust evidence to inform practice and remove the inherent heterogeneity when many STS subtypes are included in a trial.

Currently, clinicians might be more comfortable applying the results of large, randomized STS trials to patients with common STS histologies such as LPS or LMS; for uncommon subtypes, uncertainty remains, highlighting the continued importance of real-world data from retrospective cohorts of patients with rare STS subtypes as the best evidence to direct therapy. Active trials are generally focusing on small molecules in selected sarcoma subtypes56–58. The focus on subtype-directed therapy has led to the emergence of platforms such as NanoString fusion assays (NanoString Technologies, Seattle, WA, U.S.A.), which can help to confirm the STS subtype, potentially helping to tailor systemic treatment60. For example, TRK fusions are present in at least 0.4%61 of the unselected population with sarcoma, but are pathognomonic for infantile fibrosarcoma62. Larotrectinib, a potent pan-TRK inhibitor has been associated with an impressive 75% RR in adults and children with TRK fusions63.

Currently, sequencing tumours in an attempt to identify driver mutations and to personalize care is a growing trend in all tumour types. Sequencing is being done quite frequently in sarcoma as well, although the somatic mutation burden in STS is low relative to that in other tumours64. Next-generation sequencing studies in patients with STS show a 41% actionable mutation rate65. Importantly, to better understand whether tumour-directed therapy will translate to improved mos, a number of basket trials matching known actionable mutations to active systemic therapy are enrolling patients with various tumour types (see NCT03297606 and NCT02534649 at https://ClinicalTrials.gov/).

We performed a broad scoping review with the aim to include all appropriate and relevant studies. It is important, however, to recognize that our methods do not represent a complete systematic review of the literature. For example, some studies might have been missed, because we included only studies published in English. However, efforts were undertaken to ensure inclusion of key studies for the treatment of advanced STS. Our review focused on randomized or prospective data collection; results from retrospective cohorts of STS patients or specific subtypes were not included.

SUMMARY

Although the number of published studies has increased over time, the most important systemic treatment for advanced STS remains anthracycline-based therapy. For patients treated with first-line doxorubicin, survival has steadily increased over time. However, the selection of optimal systemic therapy after anthracycline-containing regimens remains a challenge, with few agents showing survival benefit. Ongoing studies in immunotherapy, novel chemotherapy combinations, molecular diagnostics, and targeted agents aim to further improve outcomes.

CONFLICT OF INTEREST DISCLOSURES

We have read and understood Current Oncology’s policy on disclosing conflicts of interest, and we declare that we have none.

AUTHOR AFFILIATIONS

* BC Cancer–Vancouver Centre, Vancouver, BC.

*BC Cancer–Vancouver Centre, Vancouver, BC.
REFERENCES

1. Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F. WHO Classification of Tumors of Soft Tissue and Bone. 4th ed. Geneva, Switzerland: World Health Organization; 2013.

2. Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian Cancer Statistics 2015. Toronto, ON: Canadian Cancer Society; 2015.

3. Italiano A, Mathoulin-Pelissier S, Cesne AL, et al. Trends in survival for patients with metastatic soft-tissue sarcoma. Cancer 2011;117:1049–54.

4. Brennan MF, Antonescu CR, Maki RG. Management of Soft Tissue Sarcoma. New York, NY: Springer; 2013.

5. Tan C, Etcubanas E, Wollner N, et al. Adriamycin—anti-tumour antibiotic in the treatment of neoplastic diseases. Cancer 1973;32:9–17.

6. Bramwell V, Anderson D, Charette ML on behalf of the Sarcoma Disease Site Group. Doxorubicin-based chemotherapy for the palliative treatment of adult patients with locally advanced or metastatic soft tissue sarcoma. Cochrane Database Syst Rev 2003;CD003293.

7. Tap WD, Wagner AJ, Papai Z, et al. ANNOUNCE: a randomized, placebo (PBO)–controlled, double-blind, phase (Ph) iii trial of doxorubicin (dox) + olaratumab versus dox + PBO in patients (pts) with advanced soft tissue sarcomas (STS) [abstract LBA3]. J Clin Oncol 2019;37:. [Available online at: https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.18_suppl. LBA3]?af=R; cited 13 September 2019.

8. Eli Lilly and Company. Lilly reports results of phase 3 soft tissue sarcoma study of LARTRUVO® [news release]. Indianapolis, IL: Eli Lilly and Company; 2019.

9. Kalofonos HP, Bafaloukos D, Kourilis TG, et al. Adriamycin and cis-platinum as first-line treatment in unresectable locally advanced or metastatic adult soft-tissue sarcomas. Am J Clin Oncol 2004;27:307–11.

10. Demetri GD, Le Cesne A, Chawla SP, et al. First-line treatment of metastatic or locally advanced unresectable soft tissue sarcomas with conatumumab in combination with doxorubicin or doxorubicin alone: a phase ii/ii open-label and double-blind study. Eur J Cancer 2012;48:547–63.

11. Blay JY, Leahy MG, Nguyen BB, et al. Randomised phase iii trial of trabectedin versus doxorubicin-based chemotherapy as first-line therapy in translocation-related sarcomas. Eur J Cancer 2014;50:1137–47.

12. Gelderblom H, Blay J, Seddon B, et al. Brostallicin versus doxorubicin as first-line chemotherapy in patients with advanced or metastatic soft tissue sarcoma (EORTC). An European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group randomised phase ii and pharmacogenetic study. Eur J Cancer 2014;50:388–96.

13. Judson I, Verweij J, Gelderblom H, et al. on behalf of the European Organisation and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol 2014;15:415–23.

14. Bui-Nguyen B, Butrynski JE, Penel N, et al. on behalf of the European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group and the Sarcoma Alliance for Research Through Collaboration. A phase iii multicentre study comparing the efficacy of trabectedin to doxorubicin in patients with advanced or metastatic untreated soft tissue sarcoma: the TRUSTS trial. Eur J Cancer 2015;51:1312–20.

15. Martin-Broto J, Poussa AL, de las Peñas R, et al. Randomized phase ii study of trabectedin and doxorubicin compared with doxorubicin alone as first-line treatment in patients with advanced soft tissue sarcomas: a Spanish Group for Research on Sarcoma study. J Clin Oncol 2016;34:2294–302.

16. Tap WD, Jones RL, Van Tine BA, et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet 2016;388:488–97.

17. Seddon B, Strauss SJ, Whelan J, et al. Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft tissue sarcomas (GEMDOX): a randomised controlled phase 3 trial. Lancet Oncol 2017;18:1397–410.

18. Mouridsen H, Bastholt L, Somers R, et al. Adriamycin versus epirubicin in advanced soft tissue sarcomas. A randomized phase ii/phase iii study of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer Clin Oncol 1987;23:1477–83.

19. Nielsen OS, Dombrowsky P, Mouridsen H, et al. High-dose epirubicin is not an alternative to standard–dose doxorubicin in the treatment of advanced soft tissue sarcomas. A study of the EORTC Soft Tissue and Bone Sarcoma Group. Br J Cancer 1998;78:1634–9.

20. Gupta S, Gouw L, Wright J, et al. Phase ii study of amrubin (SM-5887), a synthetic 9-aminooanthracine, as first line treatment in patients with metastatic or unresectable soft tissue sarcoma: durable response in myxoid liposarcoma with TLS–CHOP translocation. Invest New Drugs 2016;34:243–52.

21. Chawla SP, Papai Z, Mukhametshina G, et al. First-line aldoxorubicin vs doxorubicin in metastatic or locally advanced unresectable soft-tissue sarcoma: a phase 2b randomized clinical trial. JAMA Oncol 2015;1:1272–80.

22. Judson I, Radford JA, Harris M, et al. Randomised phase ii trial of pegylated liposomal doxorubicin (DOXIL/CAELYX) versus doxorubicin in the treatment of advanced or metastatic soft tissue sarcoma: a study by the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 2001;37:870–7.

23. Okuno S, Ryan LM, Edmonson JH, Priebat DA, Blum RH. Phase ii trial of gemcitabine in patients with advanced sarcomas (E1797): a trial of the Eastern Cooperative Oncology Group. Cancer 2003;97:1969–73.

24. Balcerzak SP, Benedetti J, Weiss GR, Natale RB. A phase ii trial of paclitaxel in patients with advanced soft tissue sarcomas. A Southwest Oncology Group study. Cancer 1995;76:2248–52.

25. Bailey HH, Mahoney MR, Ettinger DS, et al. Phase ii study of daily oral perifosine in patients with advanced soft tissue sarcoma. Cancer 2006;107:2462–7.

26. Okuno S, Bailey H, Mahoney MR, et al. A phase 2 study of temsirolimus (CC1779) in patients with soft tissue sarcomas: a study of the Mayo Phase 2 Consortium (P2C). Cancer 2011;117:3468–75.

27. Nielsen OS, Judson I, van Hoesel Q, et al. Effect of high-dose ifosfamide in advanced soft tissue sarcomas. A multicentre phase ii study of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 2000;36:61–7.

28. Frezza AM, Stacchiotti S, Gronchi A. Systematic treatment in advanced soft tissue sarcoma: what is standard, what is new. BMC Med 2017;15:109.

29. Ryan CW, Merimsky O, Agulnik M, et al. PICASSO iii: a phase iii, placebo-controlled study of doxorubicin with or without palifosfamide in patients with metastatic soft tissue sarcoma. J Clin Oncol 2016;34:3988–905.

30. Tap WD, Papai Z, Van Tine BA, et al. Doxorubicin plus palifosfamide versus doxorubicin alone in locally advanced, unresectable or metastatic soft-tissue sarcoma (TH CR-406/SARCO21): an international, multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2017;18:1089–103.

31. Bramwell VH, Mouridsen HT, Santoro A, et al. Cyclophosphamide versus ifosfamide: final report of a randomized phase ii trial in adult soft tissue sarcomas. Eur J Cancer Clin Oncol 1987;23:311–21.
32. Maki RG, Wathen JK, Patel SR, et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft-tissue sarcomas: results of Sarcoma Alliance for Research Through Collaboration study 002 [corrected]. J Clin Oncol 2007;25:2755–63.

33. García-del-Muro X, López-Pousa A, Maurel J, et al. on behalf of the Spanish Group for Research on Sarcomas. Randomized phase II study comparing gemcitabine plus dacarbazine versus dacarbazine alone in patients with previously treated soft tissue sarcoma: a Spanish Group for Research on Sarcomas study. J Clin Oncol 2011;29:2528–33.

34. Van der Graaf WT, Blay JY, Chawla SP, et al. on behalf of the EORTC Soft Tissue and Bone Sarcoma Group and the PALETTE Study Group. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012;379:879–86.

35. Demetri GD, Schöffski P, Grignani G, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 2017;18:1493–501.

36. D’Angelo SP, Mahoney MR, Van Tine BA, et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol 2018;19:416–26.

37. Katz D, Palmerini E, Pollack SM. More than 50 subtypes of soft tissue sarcoma: paving the path for histology-driven treatments. Am Soc Clin Oncol Educ Book 2018;38:925–38.

38. Temel JS, Greer JA, Muzikansky A, et al. Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med 2010;363:733–42.

39. Palma DA, Olson R, Harrow S, et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABRE–COMET): a randomised, phase 2, open-label trial. Lancet 2019;393:2051–8.

40. Chudgar NP, Brennan MF, Munhoz RR, et al. Pulmonary metastasectomy with therapeutic intent for soft-tissue sarcoma. J Thorac Cardiovasc Surg 2017;154:319–30.e1.

41. Hensley ML, Maki R, Venkatraman E, et al. Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: results of a phase II trial. J Clin Oncol 2002;20:2824–31.

42. Grünwald V, Litière S, Young R, et al. Absence of progression, not extent of tumour shrinkage, defines prognosis in soft-tissue sarcoma—an analysis of the EORTC 62012 study of the EORTC STBSG. Eur J Cancer 2016;64:44–51.

43. Choi H. Role of imaging in response assessment and individualised treatment for sarcomas. Clin Oncol (R Coll Radiol) 2017;29:491–8.

44. Wilkerson J, Fojo T. Progression-free survival is simply a surrogate for overall survival. Cancer J 2017;13:2294–302.

45. Demetri GD, Schöffski P, Grignani G, et al. Activity of eribulin in patients with advanced liposarcoma demonstrated in a subgroup analysis from a randomized phase III study of eribulin versus dacarbazine. J Clin Oncol 2017;35:3433–9.

46. Buesa J, Mouridsen H, van Oosterom A, et al. High-dose DTIC in advanced soft-tissue sarcomas in the adult: a phase II study of the EORTC Soft Tissue and Bone Sarcoma Group. Ann Oncol 1991;2:307–9.

47. Talbot SM, Keohan ML, Hesdorffer M, et al. A phase II trial of temozolomide in patients with unresectable or metastatic soft tissue sarcoma. Cancer 2003;98:1942–6.

48. George S, Merriam P, Maki RG, et al. Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. J Clin Oncol 2009;27:3154–60.

49. Gatalica Z, Xu J, Swensen J, Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol 2019;32:147–53.

50. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6–NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184–7.

51. Drilon A, Laetsch TW, Kumar S, et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. J Mol Diagn 2018;20:63–77.

52. Drilon A, Laetsch TW, Kumar S, et al. Targetable alterations in adult patients with soft-tissue sarcomas: insights for personalized therapy. JAMA Oncol 2018;4:1398–404.