Role of triaxiality in deformed halo nuclei

“International Symposium on Physics of Unstable Nuclei 2023 (ISPUN23)”
Phu Quoc Island, Vietnam May 8, 2023

K. Uzawa(Kyoto U.)

K. Uzawa, K. Hagino, and K. Yoshida, Phys. Rev. C 104, L011303 (2021).
Introduction: neutron halo

- Spatially extended weakly bound neutron
- Large rms radius and narrow momentum distribution
- With $l \geq 2$, centrifugal barrier suppresses halo formation (s or p-wave only !)

\[
\psi_n(r) \sim \exp \left(-\sqrt{2mS_n/\hbar^2} r \right)
\]

(S_n: neutron binding energy)
Deformation and neutron halo

- Symmetry breaking by nuclear deformation mixes angular momentum j and l
- $\Omega(=j_z)$ is a good quantum number with axial symmetry

$$|\phi_{n,\Omega}\rangle = \sum_{j,l} R_{n,j,l}(r) |(l, 1/2)j, \Omega\rangle$$

$\Rightarrow \Omega^\pi = \frac{1^+}{2}, \frac{1^-}{2}, \frac{3^-}{2}$ orbitals are halo candidates

$$|\Omega^\pi = \frac{1^+}{2}\rangle = \alpha |1d_{5/2,1/2}\rangle + \beta |2s_{1/2,\Omega=1/2}\rangle$$

$$|\Omega^\pi = \frac{3^+}{2}\rangle = \alpha |1d_{5/2,3/2}\rangle + \cdots$$

→ halo
An example of deformed halo

$^{37}_{25}\text{Mg}$ is a good example of deformed halo

At $\beta_2 = 0$, valence orbital corresponds to $f_{7/2}$ and does not become halo

Deformation and Symmetry Breaking extend the region of halo nuclei!

M. Takechi et al., Phys. Rev. C 90, 061305 (2014).
Extension to the triaxial deformation

Previous Researches assumed axial deformation only

\((\gamma = 0^\circ \text{ or } 60^\circ)\)

✓ Does triaxiality play a role in halo nuclei?

- **Spherical:** s or p wave only
- **Axial:** \(\Omega^\pi = \frac{1^\pm}{2}, \frac{3^-}{2}\) only
- **Triaxial:** all orbitals

\(\beta\) prolate \((\gamma = 0^\circ)\)

\(\gamma\) oblate \((\gamma = 60^\circ)\)

\(\gamma\) triaxial
\(\Omega(= j_z) \) is not already good quantum number

\[\Rightarrow \text{s.p. orbital } |\phi_n\rangle \text{ is superposition of } |n, \Omega\rangle \text{ (}n\text{ is principal quantum number)} \]

\[|\phi_n\rangle = \sum_\Omega c_\Omega |n, \Omega\rangle, \quad \Omega \text{ mixing} \]

\(|\phi_n\rangle \) always has \(\Omega^\pi = \frac{1^+}{2}, \frac{1^-}{2}, \text{ or } \frac{3^+}{2} \) component and possibly forms halo

\[|\Omega = \frac{5^+}{2}\rangle \Rightarrow |\phi > = c_1|\Omega = \frac{5^+}{2}\rangle + c_2|\Omega = \frac{3^+}{2}\rangle + c_3|\Omega = \frac{1^+}{2}\rangle \cdots \]

Axial \hspace{1cm} \text{Triaxial} \hspace{1cm} \text{halo}
Case of $N = 43$

Apply 3D Woods-Saxon potential calculation to $N = 43$ orbital

$N = 43$ nuclei are not halo nuclei with axial deformation

$$\begin{align*} \text{prolate} \Rightarrow \Omega^{\pi} = \frac{3^+}{2}, \quad \text{oblate} \Rightarrow \Omega^{\pi} = \frac{7^+}{2} \end{align*}$$

3D mesh, $0 \leq x, y, z \leq 22.05$ fm
P_s : fraction of s-wave component of the N=43 orbital

Fix $\beta = 0.3$ and vary γ and V_0 (potential depth)

Axial ($\gamma = 0^\circ$ or 60°) : $P_s = 0$

Triaxial ($\gamma = 20^\circ, 30^\circ, 40^\circ$) : $P_s \neq 0$

P_s greatly increases with $S_n \to 0$

“s-wave dominance”
P_s : fraction of s-wave component of N=43 orbital

Fix $\beta = 0.3$ and vary γ and V_0 (potential depth)

$\sqrt{\langle r^2 \rangle}$ also drastically increases
(triaxial deformation only)

$N = 43$ nuclei are candidate of triaxial halo

The same is true for $Z=43$.

![Graph showing the relationship between single particle energy and rms radius.](c)
One neutron halo of ^{19}C

✓ ^{18}C is a possibly triaxially deformed nucleus

✓ ^{19}C is a well developed one-halo nucleus ($S_n = 160 \pm 110$ keV)

⇒ Possibility that ^{19}C is triaxially deformed halo (Core and valence neutron is well separated)

Covariant DFT (+Angular Momentum Projection)

AMD(Antisymmetrized Molecular Dynamics)

J. M. Yao et al., Phys. Rev. C 84, 024306 (2011).

Y. Kanada-En’yo, Phys. Rev. C 71, 014310 (2005).
Apply W.S. potential to N=13 orbital of 19C
\(\beta = 0.343, 0^\circ \leq \gamma \leq 60^\circ, V_0 \) is varied

\[
\left(\text{prolate} \Rightarrow \Omega^\pi = \frac{1^+}{2}, \text{oblate} \Rightarrow \Omega^\pi = \frac{3^+}{2} \right)
\]

With \(\gamma = 0^\circ \), rms radius is overestimated
With \(\gamma = 60^\circ \), underestimated

Triaxiality modify halo component
Summary

- Triaxial deformation causes Ω mixing and enlarges the region of halo nuclei
- For 43rd neutron, triaxial deformation is essential for halo formation
- With triaxiality, $\sqrt{\langle r^2 \rangle}$ and S_n of 19C are reproduced consistently

Future Work

- Calculation based on Density Functional Theory
 ⇒ Beijing group’s work: arXiv:2212.05703
- Experimental study of medium-mass neutron-rich nuclei