Selected properties of ZrB$_2$ composites obtained by SPS method for parts of electro-erosion shaping machines

Wybrane właściwości kompozytów na bazie ZrB$_2$, otrzymanych metodą SPS i przeznaczonych na części maszyn do kształtowania elektroerozyjnego

ANNAMARIA NAUGHTON-DUSZOVA
ELŻBIETA BĄCZEK
MARcin PODSIADŁO*

DOI: https://doi.org/10.17814/mechanik.2018.2.32

The effect of the addition of silicon carbide and boron carbide powders on the properties of ZrB$_2$, ceramic composites constituting UHTC materials (ultra high temperature ceramics) was investigated. Polycrystalline zirconium boride samples as well as matrix composites of this phase with addition of 2 and 10 wt.% SiC and B$_4$C were obtained by pressure-assisted sintering using SPS/FAST (spark plasma sintering/field assisted sintering technique) in the temperature range of 1800÷2000°C. Samples were characterized by X-ray diffraction, scanning electron microscopy, hardness and fracture toughness. The obtained materials are characterized by a high relative density in the range of 97÷98%. Higher hardness and fracture toughness were observed for the composite obtained in temperature 1900°C.

KEYWORDS: UHTC ceramics materials, fracture toughness, SPS/FAST

Badano wpływ dodatku proszków węglika krzemiu i węglika boru na właściwości kompozytów ceramicznych na bazie ZrB$_2$, stanowiących materiały UHTC (ultra high temperature ceramics). Próbki z polikrystalicznego dwuboru cyrkonu oraz kompozyty na osnowie tej fazy z dodatkiem 2 i 10% wag. SiC oraz B$_4$C otrzymano na drodze spekania wspomaganego ciśnieniowo, z użyciem metody SPS/FAST (spark plasma sintering/field assisted sintering technique) w temperaturze w zakresie 1800÷2000°C. Otrzymane kompozyty scharakteryzowano pod kątem składu fazowego, mikrostruktury, właściwości mechanicznych i odporności na pękanie. Materiały cechują się wysoką gęstością względną – w zakresie 97÷98%. Wykazano wyższą twardość oraz odporność na pęknięcie, w porównaniu do ZrB$_2$ oświetlonych powierzchni, otrzymanych w temperaturze 1900°C.

SŁOWA KLUCZOWE: ceramika UHTC, odporność na pękanie, SPS/FAST

There is a growing interest in ceramics and ceramic composites based on transition metals (Zr, Hf, etc.) mainly diborides but also carbides, often referred to as ultra high temperature ceramics (UHTCs), due to the unique combination of physical, thermal and mechanical properties, such as high refractoriness (melting points above 2500°C), high electrical and thermal conductivity, chemical inertness against molten metals and slags, good thermal shock resistance, low density and high resistance to ablation in oxidizing environments [1–3]. ZrB$_2$-based composites are attractive because of the excellent electrical conductivities of their matrices, which make these materials amenable to electro-discharge machining for the purpose of near-net shaping [4].

The characteristic properties of these materials determine their potential application on: military and thermonuclear reactor, parts of machines and devices, components of thermal protection, edges of attack in airplanes, as well as cutting tools. The high melting point and oxidation resistance allows their use in the space industry, e.g. on jet engine nozzles [5–7]. The manufacturing processes and physico-mechanical properties of ceramics based on ZrB$_2$ have been extensively described in [8–10]. Compaction of ZrB$_2$ powders without additives is difficult due to its low sinterability resulting from a strong covalent ZrB$_2$ bond.

In order to improve the sinterability of ZrB$_2$ and increase the resistance to cracking, whether the bending resistance is introduced by additives that reduce the sintering temperature, which has a positive effect on limiting the grain growth. Pressure sintering technologies for powder materials developed in the last decade, including the SPS/FAST method, HP-HT, expand the possibilities of sintering and research on materials with a high melting point. The heating process in the SPS method is carried out as a result of the current flow through the stamps and the graphite matrix or by the compressed powder grains. During the current flow through the powder, a spark discharge occurs at the powder grain contact points, which removes adsorbed gases and oxides from the surface of
the particles. This facilitates the formation of active contacts between the sintered powder particles and allows the process to be carried out at a lower temperature than for classical methods and in a much shorter time [11]. The obtained materials are characterized by a density close to the theoretical density.

The aim of the present contribution was to investigate the influence of the SiC and B$_4$C addition on the microstructure development, hardness, fracture toughness and fracture characteristics of ZrB$_2$ based ceramics prepared by SPS.

Experimental procedure

This study used commercially available ZrB$_2$ powder (Grade B) with an average particle size of 1.5±3 μm. Likewise, the SiC powder (Grade UF 15) with an average particle size of 0.4±0.6 μm and B$_4$C powder (Grade HS) with an average particle size of 0.6±1.2 μm. Zirconium diboride, silicon carbide and boron carbides were provided by producer H.C. Starck. The morphology of the starting powders are shown in fig. 1.

![Fig. 1. SEM images of the starting powders: a) ZrB$_2$, b) SiC, c) B$_4$C](image1)

Ball milling

Three types of zirconium boride based systems monolithic ZrB$_2$, ZrB$_2$ with 2 and 10 wt.% of SiC and 2 and 10 wt.% of B$_4$C were prepared using Fritsch Pulverisette 6 planetary ball mill equipped with WC-Co grinding vessel and balls. The powders were homogenised with rotation speed of 200 rpm for 2 h in acetone. The ball-to-powder weight ratio was 10:1. After milling the particle shape were examined by SEM. The results are presented in fig. 2.

Spark plasma sintering (SPS)

The ball-milled powders were sintered using the HPD 5 type SPS system. Each powder was placed in a graphite die, 20 mm in diameter, axially pressed under 35 MPa and heated up to sintering temperature with a heating rate of 100°C/min (fig. 3). A graphite sheet with 0.5 mm in thickness was inserted between the raw material powder and the graphite die to prevent punch scuffing and to lighten the sintered sample extraction from the matrix. The graphite die was also wrapped with carbon blankets in order to minimize the heat loss during the sintering process. The samples were sintered in the temperature range from 1800 to 2000°C for 10 min in argon. SPS curves are presented in fig. 4.

![Fig. 2. ZrB$_2$-based ball milled powders with additives: a) SiC, b) B$_4$C](image2)

![Fig. 3. Sintering furnace (a), graphite elements (b), oven chamber (c)](image3)
Investigations methods

Bulk density of specimens was measured by Archimedes’ method using distilled water as the immersing medium according to ASTM C373-88. XRD patterns were obtained using the PANalytical Empyrean diffractometer with the copper radiation (\(\lambda_{Cu} = 1.5406 \) Å). The quantitative phase analysis of the studied material was carried out using Rietveld refinement and High Score PANalytical software. Microstructure of the materials was studied with a scanning electron microscope (JEOL JSM-6460LV). Young’s modulus of the composites was determined by ultrasonic wave transition method measuring the velocity of ultrasonic sound waves passing through the material using an ultrasonic flaw detector (Panametrics Epoch III). The velocities of transversal and longitudinal waves were determined as a ratio of the sample thickness and the relevant transition time. The hardness and the fracture toughness were determined by the Vickers indentation method applying load of 9.81 N (1 K) and 98 N (10 K), by a Future Tech FLC-50VX hardness tester. For each sample five indentations were made and the stress intensity factor \(K_I \) was calculated from the length of cracks which developed during a Vickers indentation test using Nihara’s equation [12]. Fractographic analysis was used for the characterization of toughening mechanisms on the fracture lines after the IF test.

Results

The analysis of the microstructure was made for sintered constituting the ZrB\(_2\) as starting material and with additions: SiC and B\(_4\)C, obtained by SPS method at 1900°C. An example of the microstructure of the surface of one of the materials (ZrB\(_2\) + 10 wt% B\(_4\)C) is shown in fig. 5a whereas the XRD pattern of sintered material are presented in fig 6.

A partial combination of particles is visible in the microstructural image. The material is characterized by high porosity and brittleness. Differences in the shades of gray of ZrB\(_2\) grains result from their different crystallographic orientation. Analysis of the phase composition showed the presence of ZrB\(_2\) and B\(_4\)C phases in the amount of 96 and 4% by mass.

The obtained test results can be analyzed and presented in the aspect of the influence of modifiers and sintering techniques on the change of microstructure and selected physical and mechanical properties of

![Fig. 4. Temperature and punch movement SPS curves recorded during densification of ZrB\(_2\) + 10 wt.% B\(_4\)C](image)

![Fig. 6. XRD pattern of sintered ZrB\(_2\) + 10 wt.% B\(_4\)C obtained by SPS at 1900°C, 35 MPa and 10 min](image)

![Fig. 5a. Microstructure (a) and indentation cracks (b) in the ZrB\(_2\) + 10 wt.% B\(_4\)C obtained by SPS at 1900°C, 35 MPa and 10 min system created during the indentation with load of 98 N](image)

![Fig. 7. Relative density of sintered materials obtained by SPS method in the temperature range of 1800–2000°C](image)

![Fig. 8. Young’s modulus of sintered obtained by SPS method in the temperature range of 1800–2000°C](image)
sintered materials based on ZrB₂. In figs. 8–11 present-
ed are the results of physical and mechanical properties
sintered materials by SPS method in the temperature
range of 1800–2000°C for mixtures containing 2 and 10
% by mass. SiC and B₄C.

The relative density of sintered materials ranged from
97–99%. Young’s modulus in the range of 348–486
GPa. The highest hardness (over 19 GPa HV1) was
characterized by sintered materials at 1900°C. The
fracture toughness value \(K_c\) (HV10) was in the range of
2.9 MPa·m\(^{1/2}\)–6.5 MPa·m\(^{1/2}\) for sintered containing
10 wt.% SiC. Analysis of the obtained data showed that
for the using sintering process parameters the best
properties are characterized by materials obtained at 1900
and 2000°C.

Conclusions

The performed research allowed us to determine the
effect of additions on the properties of sintered materials
based on ZrB₂. The obtained materials are characterized
by good physical and mechanical properties, the value of
which does not differ from those presented in the literature,
produced by other methods [1, 9–10]. The SiC and B₄C
addition sustains the densification of the composites which
results in a high density, approximately 97, 99 and 99%
for ZrB₂, ZrB₂ + 10 wt.% B₄C and ZrB₂ + 10 wt.% SiC,
respectively. The best SPS sintered materials were charac-
terized by Young’s modulus above 450 GPa, hardness
over 19 GPa (for sintered with 10% B₄C addition). The
fracture toughness increased with addition of SiC and B₄C.
The toughening mechanisms in both composites were similar,
mainly in the form of crack deflection. The addition of
the additives improved the sinterability and inhibited
grain growth.

Due to the low sinterability of ZrB₂ powders, resulting
from their strong covalent bonds. Additives were added
to facilitate the sintering process and increase resistance
to cracking and bending. The SPS method used in the
work allowed us to obtain UHTC materials character-
ized by a unique combination of physical, thermal and
mechanical properties, such as high refactoriness, high
electrical and thermal conductivity, chemical inertness
against molten metals and slags, good thermal shock re-
sistance, low density and high resistance to abrasion in
oxidizing environments. Those properties are associated
in the fields of energy (nuclear fission and fusion, energy
harvesting, concentrated solar power), materials process-
ing (high temperature electrodes, high speed machining
tools, molten metal containment), microelectronics (con-
ductors, barrier layers, lattice matched substrates), and
others.

The POWROTY/2016–1/3 project is carried out within
the Powroty / Reintegration programme of the
Foundation for Polish Science co-financed by the
European Union under the European Regional
Development Fund.

REFERENCES

1. Fahrenholtz W.G., Hilmas G.E., Talmy I.G., Zaykoski J.A. “Refra
ctorily diborides of zirconium and hafnium”. J. Am. Ceram. Soc. 90 (2007):
pp. 1347–1364.
2. Ghosh D., Subhashy G. “Recent progress in ZrHfB₂ based ultra-
high temperature ceramics”. Chapter 3.3: Handbook of Advanced
Ceramics, pp. 267–299. http://dx.doi.org/10.1016/B978-0-12-HY-
PERLINK http://dx.doi.org/10.1016/B978-0-12-HY-
PRLINK 2’385469-8.00016-2, 2013.
3. Silvestroni L., Sciti D., Melandri C., Guerciardi S. “Yttrino SA3 fib-
er–ZrB₂ composites. Part II: Mechanical properties. Mater. Design.
65 (2015): pp. 1264–1273.
4. Malik M., Khaliq A.J., Ray K.K., Mitra R. “Electrical and thermophy-
sical properties of ZrB₂ and HfB₂ based composites”. J. Eur. Ceram.
Soc. 32 (2012): pp. 2545–2555.
5. Barbante P.F., Magin T.E. “Fundamentals of hypersonic flight – Pro-
erties of high temperature gases, Critical Technologies for Hypers-
onic Vehicle Development”, 2004.
6. Richards W.L. “Finite-Element Analysis of a Mach-8 Flight Test Artic-
le Using Nonlinear Contact Elements”. Scientific and Technical Informa-
tion Program, 1997.
7. Wuchina E., Opila E., Opeka M., Fahrenholtz W., Talmy I. “UHTCs:
ultra-high temperature ceramics materials for extreme environment applica-
tions”. The Electrochemical Society Interface. (2007): pp. 30–36.
8. Fahrenholtz W.G., Hilmas G.E., Talmy I.G., Zaykoski J.A. “Refra
ctorily diborides of zirconium and hafnium”. J. Am. Ceram. Soc. 95 (2007):
pp. 1347–1364.
9. Neuman E.W., Hilmas G.E. “Mechanical properties of zirconium-di-
boride based UHTCs”, W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee,
Y. Zhou (eds.), Ultra-High Temperature Ceramics: Materials for Ex-
treme Environment Applications. Hoboken, NJ: John Wiley &
Sons, 2014, pp. 167–196.
10. Neuman E.W., Hilmas G.E., Fahrenholtz W.G. “Mechanical behavior
of zirconium diboride-silicon carbide-boron carbide ceramics up to
2200°C”. J. Eur. Ceram. Soc. 35 (2015): pp. 463–476.
11. Hebro M., „Spark Plasma Sintering – nowa technologia konsolidacji
materialow proszkoowych”. Mechanika. Czasopismo Technicznne. Wy-
dawnictwo Politechniki Krakowskiej 6-M. 11 (2012).
12. Nihara K., Morena R., Hasselman D.P., Evaluation of Kic of brittle
solids by the indentation method with low crack-to-indent ratios”, Jo-
nal of Materials Science Letters. 1 (1982): pp. 13–16. DOI:10.1007/
BF00724706.