A set of the Viète-like recurrence relations for the unity constant

S. M. Abrarov* and B. M. Quine†

February 3, 2017

Abstract

Using a simple Viète-like formula for π based on the nested radicals $a_k = \sqrt{2 + a_{k-1}}$ and $a_1 = \sqrt{2}$, we derive a set of the recurrence relations for the constant 1. Computational test shows that application of this set of the Viète-like recurrence relations results in a rapid convergence to unity.

Keywords: arctangent function, constant π, constant 1

1 Description and implementation

1.1 Derivation

Several centuries ago the French mathematician François Viète derived a remarkable formula for π

$$\frac{2}{\pi} = \frac{\sqrt{2}}{2} \frac{\sqrt{2 + \sqrt{2}}}{2} \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \cdots \tag{1}$$

Nowadays this well-known equation is commonly regarded as the Viète’s formula for π [1, 2, 3, 4]. The uniqueness of this formula is due to nested

*Dept. Earth and Space Science and Engineering, York University, Toronto, Canada, M3J 1P3.
†Dept. Physics and Astronomy, York University, Toronto, Canada, M3J 1P3.
radicals consisting of square roots of twos only. Defining these nested radicals as

\[a_1 = \sqrt{2}, \]
\[a_2 = \sqrt{2 + \sqrt{2}}, \]
\[a_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}} \]
\[\vdots \]
\[a_k = \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}} \]

the Viète’s formula \([1]\) for \(\pi \) can be rewritten in a compact form as follows

\[\frac{2}{\pi} = \lim_{k \to \infty} K \prod_{k=1}^{K} \frac{a_k}{2}. \]

There is a simple Viète-like formula for \(\pi \) that can be represented in form \([5]\)

\[\frac{\pi}{2k+1} = \arctan \left(\frac{\sqrt{2} - a_{k-1}}{a_k} \right), \quad k \geq 2, \quad (2) \]

From this formula it follows that

\[\frac{\pi}{2^3} + \frac{\pi}{2^4} + \frac{\pi}{2^5} + \cdots = \arctan \left(\frac{\sqrt{2} - a_1}{a_2} \right) + \arctan \left(\frac{\sqrt{2} - a_2}{a_3} \right) + \arctan \left(\frac{\sqrt{2} - a_3}{a_4} \right) + \cdots \quad (3) \]

and because of the decreasing geometric series

\[\frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \cdots = \frac{1}{4} \]

the equation \([3]\) can be expressed in a more simplified form

\[\frac{\pi}{4} = \lim_{K \to \infty} \sum_{k=1}^{K} \arctan \left(\frac{\sqrt{2} - a_k}{a_{k+1}} \right). \quad (4) \]
It is more convenient for our purpose to represent the equation (4) as

\[
\frac{\pi}{4} = \arctan \left(\frac{\sqrt{2} - \sqrt{2}}{\sqrt{2} + \sqrt{2}} \right) + \arctan \left(\frac{\sqrt{2} + \sqrt{2}}{\sqrt{2} + \sqrt{2}} \right) + \arctan \left(\frac{\sqrt{2} - \sqrt{2} + \sqrt{2}}{\sqrt{2} + \sqrt{2} + \sqrt{2}} \right) + \cdots
\]

or

\[
\frac{\pi}{4} = \arctan (b_1) + \arctan (b_2) + \arctan (b_3) \cdots
\]

\[
= \lim_{{K \to \infty}} \sum_{{k=1}}^{K} \arctan (b_k),
\]

where the arguments of the arctangent functions can be found by using the recurrence relations

\[
b_k = \frac{\sqrt{2} - a_k}{a_{k+1}}
\]

and

\[
a_k = \sqrt{2} + a_{k-1}, \quad a_1 = \sqrt{2}.
\]

Since

\[
\arctan (1) = \frac{\pi}{4}
\]

we can also write

\[
\arctan (1) = \lim_{{K \to \infty}} \sum_{{k=1}}^{K} \arctan (b_k). \quad (5)
\]

The right side of the equation (5) consists of the infinite summation terms of the arctangent functions. We may attempt to exclude the infinite sum using the identity

\[
arctan (x) + \arctan (y) = \arctan \left(\frac{x + y}{1 - xy} \right) \quad (6)
\]

repeatedly. Specifically, we employ the following recurrence relations that just reflects the successive application of the identity (6) above

\[
c_k = \frac{c_{k-1} + b_k}{1 - c_{k-1} b_k}, \quad c_1 = b_1.
\]
This enables us to rewrite the equation (5) as

\[
\arctan (1) = \arctan (c_k) + \lim_{L \to \infty} \sum_{\ell=k+1}^{L} \arctan (b_\ell).
\] (7)

According to the Maclaurin expansion series

\[
\arctan (b_\ell) = b_\ell - \frac{b_\ell^3}{3} + \frac{b_\ell^5}{5} - \frac{b_\ell^7}{7} + \cdots = b_\ell + O (b_\ell^3).
\]

Since at \(\ell \to \infty \) the variable \(b_\ell \to 0 \) and, therefore, due to negligible \(O (b_\ell^3) \) we can simply replace it by \(\arctan (b_\ell) \) and then use the equation (2) in order to find a ratio of the limit

\[
\lim_{\ell \to \infty} \frac{b_{\ell+1}}{b_\ell} = \lim_{\ell \to \infty} \frac{\arctan (b_{\ell+1})}{\arctan (b_\ell)} = \lim_{\ell \to \infty} \frac{\pi/2^{\ell+2}}{\pi/2^{\ell+1}} = \frac{1}{2}.
\] (8)

Consider the following infinite sequence

\[
\{ b_1, b_2, b_3, \ldots, b_\ell, \ldots \}.
\] (9)

According to the limit (8) the ratio \(b_{\ell+1}/b_\ell \) tends to \(\frac{1}{2} \) with increasing index \(\ell \). Consequently, it is not difficult to see now that

\[
\frac{b_2}{b_1} < \frac{b_3}{b_2} < \frac{b_4}{b_3} < \cdots < \frac{b_{\ell+1}}{b_\ell} < \cdots < \frac{1}{2}.
\]

In fact, the tendency of the ratio \(b_{\ell+1}/b_\ell \) towards \(1/2 \) with increasing index \(\ell \) is very fast. In particular, when the index \(\ell \) is large enough, say at \(\ell > 10 \), the sequence (9) behaves almost like a decreasing geometric progression where a common ratio is \(1/2 \).

Since the index \(k \) in the equation (7) can be taken arbitrarily large, we can rewrite it in form

\[
\arctan (1) = \lim_{k \to \infty} \left[\arctan (c_k) + \lim_{L \to \infty} \sum_{\ell=k+1}^{L} b_\ell \right].
\] (10)

Taking into account that the ratio \(b_{\ell+1}/b_\ell \) tends to but never exceeds \(1/2 \), we can conclude that the damping rate in the sequence (9) is faster than that of in a decreasing geometric progression

\[
\{ b_1, \frac{b_1}{2}, \frac{b_1}{2^2}, \frac{b_1}{2^3}, \ldots, \frac{b_1}{2^\ell}, \ldots \}
\]
with fixed common ratio \(1/2\). This signifies that
\[
\sum_{\ell=k+1}^{L} b_\ell < \sum_{\ell=k+1}^{L} \frac{b_1}{2^{\ell-1}}, \quad L > k > 0,
\]
and since the limit of the decreasing geometric series
\[
\lim_{L \to \infty} \sum_{\ell=k+1}^{L} \frac{b_1}{2^{\ell-1}} \to 0, \quad k \to \infty,
\]
we prove that
\[
\lim_{L \to \infty} \sum_{\ell=k+1}^{L} b_\ell \to 0, \quad k \to \infty.
\]
As a consequence, the equation (10) can be further simplified as
\[
\arctan(1) = \lim_{k \to \infty} \arctan \left(\frac{c_k}{k} \right) \Leftrightarrow 1 = \lim_{k \to \infty} c_k.
\]
Thus, we can infer that the constant 1 can be approached successively by increment of the index \(k\) in a set of the Viète-like recurrence relations
\[
\begin{align*}
a_1 &= \sqrt{2}, \\
a_k &= \sqrt{2 + a_{k-1}}, \\
b_k &= \frac{\sqrt{2 - a_k}}{a_{k+1}}, \\
c_1 &= b_1, \\
c_k &= \frac{c_{k-1} + b_k}{1 - c_{k-1}b_k},
\end{align*}
\]
such that \(c_{k \to \infty} \to 1\).

1.2 Computation
Consider the first three elements from the sequence (9)
\[
b_1 = \frac{\sqrt{2 - a_1}}{a_2} = \frac{\sqrt{2 - \sqrt{2}}}{\sqrt{2} + \sqrt{2}},
\]
\[b_2 = \frac{\sqrt{2} - a_2}{a_3} = \frac{\sqrt{2} - \sqrt{2 + \sqrt{2}}}{\sqrt{2 + \sqrt{2 + \sqrt{2}}}} \]

and

\[b_3 = \frac{\sqrt{2} - a_3}{a_4} = \frac{\sqrt{2} - \sqrt{2 + \sqrt{2 + \sqrt{2}}} + \sqrt{2} - \sqrt{2 + \sqrt{2 + \sqrt{2}} + \sqrt{2}}}{\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}}. \]

Consequently, the corresponding first three values of the variable \(c_k \) are

\[c_1 = b_1 = \frac{\sqrt{2} - \sqrt{2}}{\sqrt{2} + \sqrt{2}} = 0.41421356237309504880\ldots, \]

\[c_2 = \frac{c_1 + b_2}{1 - c_1 b_2} = \frac{\sqrt{2} - \sqrt{2} + \sqrt{2 - \sqrt{2} + \sqrt{2}}}{\sqrt{2 + \sqrt{2} + \sqrt{2}}} = 0.66817863791929891999\ldots \]

and

\[c_3 = \frac{c_2 + b_3}{1 - c_2 b_3} = \frac{\sqrt{2} - \sqrt{2} + \sqrt{2 - \sqrt{2} + \sqrt{2}}}{\sqrt{2 + \sqrt{2} + \sqrt{2}}} = 0.82067879082866033097\ldots, \]

respectively.

From these examples one can see that the set (11) of the Viète-like recurrence relations gradually builds the continued fractions in the numerator and denominator of the variable \(c_k \) at each successive step in increment of the index \(k \). It is also interesting to note that each value of the variable \(c_k \) is based on nested radicals consisting of square roots of twos only.

Figure 1 shows the dependence of the variables \(a_k, b_k \) and \(c_k \) as a function of the index \(k \) by blue, green and red colors, respectively. We can observe
Fig. 1. Evolution of the variables a_k (blue), b_k (green) and c_k (red).

how the variable c_k tends to 1 while the variables a_k and b_k tend to 2 and 0, respectively.

Table 1 shows the values of variable c_k and error term $\varepsilon_k = 1 - c_k$ with corresponding index k ranging from 4 to 15. As we can see from this table, the variable c_k quite rapidly tends to unity with increasing index k. In particular, the error term ε_k decreases by factor of about 2 at each increment of the index k by one.

Table 1. The variable c_k and error term ε_k at index k ranging from 4 to 15.

k	c_k	ε_k
4	0.90634716901914715794...	0.09365283098085284205...
5	0.95207914670092534858...	0.04792085329907465141...
6	0.9755264993237653232...	0.02424735006762346767...
7	0.98780284145152917070...	0.01219715854847082929...
8	0.99388282491415211156...	0.00611717508584788843...
9	0.99603673501114949604...	0.00306326498885050395...
10	0.99846719455859369106...	0.00153280544140630893...
11	0.99923303559286120490...	0.0007669640713879509...
12	0.99961657831851611515...	0.00038342168148388484...
13	0.9998082707827333526...	0.0001917292172666473...
14	0.99990413079635610519...	0.00009586920364389480...
15	0.99995206424931502866...	0.00004793575068497133...
2 New formula for pi

As the error term ε_k decreases successively by factor of about 2 (see third column in the Table 1), we may expect that $2^k \varepsilon_k$ is convergent and tends to some constant when the index k tends to infinity. The computational test shows that the value $2^k \varepsilon_k$ approaches to $\pi/2$ as the index k increases. Therefore, we assume that

$$\lim_{k \to \infty} 2^k \varepsilon_k = \frac{\pi}{2}$$

or

$$\pi = \lim_{k \to \infty} 2^{k+1} (1 - c_k).$$

Furthermore, relying on numerical results we also suggest a generalization to the power m as given by

$$m \pi = \lim_{k \to \infty} 2^{k+1} (1 - c_k^m). \quad (12)$$

Since the variable c_k is determined within the set (11) of the Viète-like recurrence relations, the new equation (12) can also be regarded as the Viète-like formula for pi.

3 Conclusion

We show a set (11) of the Viète-like recurrence relations for the constant 1 derived by using the Viète-like formula (2) for pi. Sample computations reveal that the variable c_k quite rapidly tends to unity as the index k increases.

Acknowledgments

This work is supported by National Research Council Canada, Thoth Technology Inc. and York University.

References

[1] A. Herschfeld, On infinite radicals, Amer. Math. Monthly, 42(7) (1935) 419-429. http://www.jstor.org/stable/2301294
[2] W.B. Gearhart and H.S. Shultz, The function $\sin(x)/x$, College Math. J., 21 (1990) 90-99. http://www.jstor.org/stable/2686748

[3] A. Levin, A new class of infinite products generalizing Viète’s product formula for π, Ramanujan J. 10 (3) (2005) 305-324. http://dx.doi.org/10.1007/s11139-005-4852-z

[4] R. Kreminski, π to thousands of digits from Vieta’s formula, Math. Magazine, 81 (3) (2008) 201-207. http://www.jstor.org/stable/27643107

[5] S.M. Abrarov and B.M. Quine, A generalized Viète’s-like formula for pi with rapid convergence, arXiv:1610.07713, 2016.