Formality of differential graded algebras and complex
Lagrangian submanifolds
Borislav Mladenov

Abstract

Let \(i : L \hookrightarrow X \) be a compact Kähler Lagrangian in a holomorphic symplectic variety \(X / \mathbb{C} \). We use deformation quantisation to show that the endomorphism differential graded algebra \(\text{RHom}(i_*K_{1/2}^L, i_*K_{1/2}^L) \) is formal. We prove a generalisation to pairs of Lagrangians, along with auxiliary results on the behaviour of formality in families of \(A_\infty \)-modules.

0.1 Introduction.

Let \(i : L \hookrightarrow X \) be a smooth compact Kähler Lagrangian in a holomorphic symplectic (not necessarily proper!) variety over \(\mathbb{C} \). Recall that, for any \(\mathcal{L} \in \text{Pic}(L) \), there exists a local-to-global Ext spectral sequence:

\[
E_2^{p,q} = H^p(L, \Omega^q_L) \Rightarrow \text{Ext}^{p+q}(i_*\mathcal{L}, i_*\mathcal{L}).
\]

Therefore the second page gives de Rham cohomology of \(L \), independent of \(\mathcal{L} \), but the differentials depend on \(\mathcal{L} \). In [23] we show that they vanish if \(\mathcal{L} \) is a rational power of the canonical bundle of \(L \) such as \(\mathcal{O}_L \).

Theorem 0.1.1. Let \(i : L \hookrightarrow X \) be a smooth complex Lagrangian in a compact hyperkähler variety \(X / \mathbb{C} \), and let \(\mathcal{L} \) be any (existing) rational power of the canonical bundle of \(L \). Then the local-to-global Ext spectral sequence

\[
E_2^{p,q} = H^p(L, \Omega^q_L) \Rightarrow \text{Ext}^{p+q}(i_*\mathcal{L}, i_*\mathcal{L})
\]

degenerates (multiplicatively) on the second page.

The proof, operating purely within algebraic geometry, is a Deligne-style argument based on the Lefschetz operator induced by the Kähler form. Here we give a new proof in the special case \(\mathcal{L} = K_{1/2}^L \) using DQ modules. This doesn’t require \(X \) compact Kähler and, in fact, the proof shows we don’t even need \(L \) Kähler - it is enough it be smooth, compact with Hodge-to-de Rham spectral sequence degenerating on \(E_1 \).

Recall that a differential graded algebra \(A \) is formal if \(A \simeq H_A \) as differential graded algebras. By Kadeishvili’s theorem the cohomology of a differential graded algebra is naturally an \(A_\infty \)-algebra. The \(A_\infty \)-structure on \(H \) measures failure of formality for \(A \). Kähler formality of Deligne et al. (see [9]) says that \(\Omega^*(L, \mathbb{C}) \) is a formal differential graded algebra, hence \(H^*(L/\mathbb{C}) \) is formal as an \(A_\infty \)-algebra. In light of \(H^k(L/\mathbb{C}) = \bigoplus_{p,q} H^p(L, \Omega^q_L) = \text{Ext}^k(i_*\mathcal{L}, i_*\mathcal{L}) \), it is natural to ask whether the same goes for \(\text{Ext}(i_*\mathcal{L}, i_*\mathcal{L}) \), i.e. if the differential graded algebra \(\text{RHom}(i_*\mathcal{L}, i_*\mathcal{L}) \) is formal. We confirm this in the case where \(\mathcal{L} \) is a square root of the canonical bundle of \(L \).

Theorem 0.1.2. Let \(X / \mathbb{C} \) be holomorphic symplectic and let \(i : L \hookrightarrow X \) be a smooth compact Kähler Lagrangian submanifold whose canonical bundle admits a square root. Then the differential graded algebra \(\text{RHom}(i_*K_{1/2}^L, i_*K_{1/2}^L) \) is formal, in fact, quasi-isomorphic to the de Rham algebra \(H(L/\mathbb{C}) \).
Consider two smooth Lagrangians \(i : L \hookrightarrow X, j : M \hookrightarrow X \) such that \(L \cap M \) is smooth. For any choice of line bundles \(\mathcal{L} \in \text{Pic}(L) \) and \(\mathcal{M} \in \text{Pic}(M) \), we have a local-to-global Ext spectral sequence

\[
E_2^{p,q} = H^p(L \cap M, \Omega_M^{q-c} \otimes \mathcal{X}) \Rightarrow \text{Ext}^{p+q}(i_*\mathcal{L}, j_*\mathcal{M}),
\]

where \(\mathcal{X} := \det_{L \cap M/M} \mathcal{L} \otimes \mathcal{M} |_{L \cap M} \).

Theorem 0.1.3. Let \(X/C \) be a holomorphic symplectic variety. Suppose that \(i : L \hookrightarrow X, j : M \hookrightarrow X \) are smooth Lagrangians with a compact Kähler intersection \(L \cap M \) of codimension \(c \) in \(L \). Assume that \(K_L^{1/2} \) and \(K_M^{1/2} \) exist and let \(\mathcal{K}_{\text{or}} := \left(\left(\frac{K_L^{1/2}}{K_L \cap M} \otimes \frac{K_M^{1/2}}{K_M \cap M} \right)^{\vee} \right) \otimes K_L \cap M \). Then the Ext local-to-global spectral sequence

\[
E_2^{p,q} = H^p(L \cap M, \Omega_M^{q-c} \otimes \mathcal{X}_{\text{or}}) \Rightarrow \text{Ext}^{p+q}(i_*K_L^{1/2}, j_*K_M^{1/2})
\]
degenerates on the second page. In particular,

\[
\text{Ext}^k(i_*K_L^{1/2}, j_*K_M^{1/2}) = \bigoplus_{p,q} H^p(L \cap M, \Omega_M^{q-c} \otimes \mathcal{X}_{\text{or}}) = H^{k-c}(L \cap M, \mathcal{R}_{\text{or}}),
\]

where \(\mathcal{R}_{\text{or}} \) is the local system corresponding to the 2-torsion line bundle \(\mathcal{K}_{\text{or}} \).

Remark 0.1.4. As above, we remark that the proof shows it is enough to assume the intersection \(L \cap M \) smooth, compact such that its Hodge-to-de Rham spectral sequence for the local system \(\mathcal{R}_{\text{or}} \) degenerates on \(E_1 \). Notice that \(\text{Ext}(i_*K_L^{1/2}, j_*K_M^{1/2}) \) is a graded module over \(\text{Ext}(i_*K_L^{1/2}, i_*K_L^{1/2}) \). A theorem of Deligne (see [11], [27]) asserts that \(\Omega^* (L \cap M, \mathcal{R}_{\text{or}}) \) is a formal dg module over \(\Omega^* (L \cap M, C) \). Let \(\Omega^* \) be the complex of \(\bar{\partial} \)-closed forms with differential \(\bar{\partial} \). The diagram

\[
\begin{array}{ccc}
\Omega^*(L, C) & \xleftarrow{\Omega^*_{\bar{\partial}}(L, C)} & H(L/C) \\
\downarrow & & \downarrow & & \downarrow \\
\Omega^*(L \cap M, C) & \xleftarrow{\Omega^*_{\bar{\partial}}(L \cap M, C)} & H(L \cap M/C)
\end{array}
\]

shows \(\Omega^*(L \cap M, \mathcal{R}_{\text{or}}) \) is also formal over \(\Omega^*(L, C) \). Hence \(H(L \cap M, \mathcal{R}_{\text{or}}) \) is formal as an \(A_\infty \)-module over \(H(L/C) \). We prove the same goes for the Ext modules:

Theorem 0.1.5. Let \(X/C \) be holomorphic symplectic. Suppose that \(i : L \hookrightarrow X, j : M \hookrightarrow X \) are compact Kähler Lagrangians with a smooth intersection. Assume that their canonical bundles admit square roots. Then \(\text{RHom}(i_*K_L^{1/2}, j_*K_M^{1/2}) \) is a formal differential graded module over the (formal) differential graded algebra \(\text{RHom}(i_*K_L^{1/2}, i_*K_L^{1/2}) \). Moreover, we have a quasi-isomorphism of pairs

\[
(\text{RHom}(i_*K_L^{1/2}, i_*K_L^{1/2}), \text{RHom}(i_*K_L^{1/2}, j_*K_M^{1/2})) \simeq (H(L/C), H^{*-c}(L \cap M, \mathcal{R}_{\text{or}})),
\]

where \(c \) is the codimension of \(L \cap M \) in \(L \).

Remark 0.1.6. A few observations regarding Theorem 0.1.5:

1. The proof shows that it is enough to assume \(L \) compact Kähler and \(M \) smooth such that \(L \cap M \) is smooth.

2. A variant for the dg module structure over \(\text{RHom}(j_*K_M^{1/2}, j_*K_M^{1/2}) \) can be formulated, reversing the assumptions on \(L \) and \(M \) in the part 1. of the remark.
0.2 Method of proof.

The proof of Theorem 0.1.2 involves two main ingredients. We first observe that the dg algebra $\text{RHom}(i_*K_{1/2}, i_*K_{1/2})$ can be deformed over $\mathbb{C}[\hbar]$ to the de Rham complex - this involves results of Schapira et al. on deformation quantisation [8], [17], hence the square root of the canonical bundle. The deformation is the de Rham complex $\Omega^*(L, \mathbb{C})$ over the generic point, therefore it is generically formal by Kähler formality of [9]. Applying semicontinuity yields degeneration of the spectral sequence, proving the degeneration for $K_{1/2}$. The formality requires a second ingredient - it is a theorem of Kaledin that generically formal dg algebras are formal (under certain conditions which our family satisfies).

The proofs of Theorem 0.1.3 and Theorem 0.1.5 follow the same lines, however, to prove the formality, we need Proposition 1.8.4 - the analogue to the result of Kaledin for A_∞-modules.

Kaledin in [14] treats formality of dg algebras as triviality of the normal cone deformation. Our approach to formality of A_∞-modules is also motivated by the deformation to the normal cone as we now explain, although we phrase our results without reference to deformation theory, opting to use the language of A_n-algebras and modules instead.

Let A be a graded algebra over R. Consider a minimal A_∞-module M over A. Assume A, M projective over R. Let $\tilde{A} = A[h]$ be the trivial deformation of A over $R[h]$. Consider the graded $R[h]$-module $M[h]$. Then $(m_2^M, m_3^M h, m_4^M h^2, \cdots)$ turns $M[h]$ into an A_∞-module over $A[h]$ since the defining relations (\ast'_m) for A_∞-modules are homogeneous. Letting \tilde{M} be the so defined A_∞-module, observe that the general fibre is M. We write $M(2)$ for the minimal (formal) A_∞-module $(M, (m_2^M, 0, 0, \cdots))$, so the central fibre of \tilde{M} is $\tilde{M}/h = M(2)$. In light of this, the following definition seems natural.

Definition 0.2.1. The A_∞-module \tilde{M} is the deformation of M to the normal cone.

One should think of \tilde{M} as an A_∞-deformation of $M(2)$ to M. Notice that the formality of the A_∞-module \tilde{M} is the same as triviality of \tilde{M} as a deformation, i.e. in either case we are asking for a quasi-isomorphism $\tilde{M} \simeq M(2)[h]$. Reducing modulo $h-1$, we see that this implies that \tilde{M} is formal. The converse is also true. Hence formality of \tilde{M} is equivalent to triviality of the deformation \tilde{M}, so we can use obstruction theory and cohomology, standard deformation theory tools, to find formality criteria for A_∞-modules.

0.3 Context.

Solomon and Verbitsky [28] study the Fukaya category of I-holomorphic graded spin Lagrangians in a hyperkähler variety (X, I, J, K, g), equipped with the symplectic form $\omega = g(J, \cdot)$. Recall that spin is needed to set up Floer theory and is equivalent to choosing square roots of the canonical bundles in the complex case. When $L \cap M$ is smooth, they show that the Floer coboundary operator μ_1 on $\text{CF}(L, M)$ coincides with the de Rham differential, hence $HF(L, M)$ is the de Rham cohomology of $L \cap M$, up to Maslov index shifts and tensoring by A. Moreover, for $\text{CF}(L, L)$, μ_2 is the wedge product of differential forms up to sign, while $\mu_k = 0$ for $k \geq 3$. Thus, in the compact case, they recover a formality result of Ivan Smith: the proof of Kähler formality as in [9] shows that the Floer A_∞-algebra $\text{CF}(L, L)$ is formal. We note that their results might be thought of as mirror to ours.

More generally, Solomon and Verbitsky consider a collection of I-holomorphic graded spin compact Lagrangians L and define a Fukaya A_∞-category \mathcal{A}_L. In light of the formality of $\text{CF}(L, L)$, it’s
natural to ask if \mathcal{A}_L is a formal A_∞-category. It is known to be intrinsically formal in the case of the A_∞-Milnor fibre by [26] and [1] shows formality of \mathcal{A}_L in the case of a transverse nilpotent slice of the adjoint quotient $\mathfrak{sl}_k(C) \to C^{2k-1}$ and a distinguished (finite) collection of Lagrangians defined in [25]. We answer a similar question in the setting of virtual de Rham cohomology - see Proposition 0.3.1 below.

The work of Kapustin [15] gives physics motivation that the Fukaya category of a hyperkähler variety (X, I, J, K) with symplectic form ω_J should be equivalent to the category of DQ modules on the holomorphic symplectic manifold $(X, I, \sigma_I = \omega_J + i\omega_K)$. Following this observation, Solomon and Verbitsky speculate that the category \mathcal{A}_L should be equivalent, in some sense, to the full subcategory \mathcal{D}_L of the category of DQ modules on X whose objects are simple holonomic modules \mathcal{D}_L along $L \in L$.

There is also [3] where Behrend and Fantechi sketch the construction of a differential graded category \mathcal{C} of Lagrangians in a holomorphic symplectic variety X. This construction depends on their constructible virtual de Rham complex $(\mathcal{E} := \mathcal{E}xt(i_*K^{1/2}_L, j_*K^{1/2}_M), d)$. Locally X is the cotangent bundle of M and L is given by the graph of df for some $f \in \Gamma(M, \mathcal{O}_M)$, hence $L \cap M$ is the critical locus $\text{crit} f$. Then the sheaves \mathcal{E} are the cohomology sheaves of $(\Omega_M, df \wedge)$. Since $df \wedge$ anticommutes with the de Rham differential d, we see that d descends to a differential on \mathcal{E}, still denoted d. The main result of [3] is that these locally defined differentials glue. The cohomology of the morphism complexes $\text{Hom}_C(L, M)$ is given by the virtual de Rham cohomology $R\Gamma(\mathcal{E}, d)$ of the intersection $L \cap M$. There is a spectral sequence computing $R\Gamma(\mathcal{E}, d)$:

$$E_1^{p,q} = H^p(X, \mathcal{E}^q) \Rightarrow R^{p+q}\Gamma(\mathcal{E}, d).$$

When $L \cap M$ is compact Kähler, it degenerates by Hodge theory, hence our results prove a corrected version of [3, Conjecture 5.8]:

Proposition 0.3.1. Let X/C be a holomorphic symplectic variety. Suppose that $i : L \hookrightarrow X$ and $j : M \hookrightarrow X$ are smooth Lagrangians such that $K^{1/2}_L$ and $K^{1/2}_M$ exist and $L \cap M$ is smooth compact. Assuming that the spectral sequence (1) degenerates on E_1, e.g. if $L \cap M$ is furthermore Kähler, we have

$$R^k\Gamma(\mathcal{E}, d) = \text{Ext}^k(i_*K^{1/2}_L, j_*K^{1/2}_M).$$

Remark 0.3.2. This conjecture is the analogue of the formality of \mathcal{A}_L in the virtual setting.

0.4 Plan of paper.

In §1 we start by reviewing general results on A_∞-algebras and conclude with the formality theorems of Kaledin [14]. In the next paragraph we define A_∞-modules and recall standard results such as Kadeishvili’s theorem on minimal models. Then we have a paragraph on (bi-graded) Hochschild cohomology of modules over graded algebras. It culminates in some results on base-change for Hochschild cohomology, mirroring statements in [22]. After that, we develop obstruction theory for extending A_n-modules to A_{n+1}-modules as well as A_n-morphisms to A_{n+1}-morphisms between modules - this is motivated by similar ideas in [19] for L_∞-algebras and [21] dealing with A_∞-algebras. The last paragraph contains our results on formality of A_∞-modules.

In the next section, §2, we recall results of [9] on perverse sheaves on d-critical loci - a structure that exists on the intersection of two Lagrangians. Then we have a reminder on deformation quantisation modules, following [8], [18]. In particular, we compare the compatibility of [8] to
the results by Ginzburg et al. in [2]. We conclude by relating perverse sheaves on Lagrangian intersections and simple holonomic DQ modules.

In §3 we start by applying deformation quantisation to prove the degeneration of the local-to-global Ext spectral sequence, for square roots of the canonical bundle, in both cases of single Lagrangian and a pair of cleanly intersecting Lagrangians. We conclude with our main results on formality.

0.5 Conventions.

We work with A_∞-algebras and modules over a (unital) ring R and we shall assume that R is a commutative algebra over a field k of characteristic 0.

0.6 Acknowledgements.

I would like to thank my supervisor Richard Thomas for suggesting the formality problems discussed here, countless helpful discussions, suggestions and corrections. Thanks to François Petit and Pierre Schapira for sharing their expertise in DQ modules and to Jake Solomon for useful comments. This work has been supported by EPSRC [EP/R513052/1], President’s PhD Scholarship, Imperial College London.

1 A_∞-algebras

A good general reference for A_∞-algebras is [21]. We recall A_∞-algebras over a ring R, their bar construction, Kadeishvili’s theorem on minimal models and formality results of Kaledin-Lunts. Then we review definitions and standard results on A_∞-modules. The final paragraphs of the section contain Hochschild cohomology, obstruction theory and our results on formality of A_∞-modules.

1.1 A_∞-algebras.

Definition 1.1.1. Let $n \in \mathbb{N} \cup \{\infty\}$. An A_n-algebra is a graded R-module A equipped with a family of R-linear morphisms

$$m_i : A^\otimes i \to A$$

of degree $2 - i$ for $1 \leq i \leq n$ such that for all $m \leq n$ we have

$$\sum_{j+k+l=m} (-1)^{j+k+l} m_{j+1+l} (id^\otimes j \otimes m_k \otimes id^\otimes l) = 0. \quad (*_m)$$

Remark 1.1.2.

1. If $m_i = 0$ for all $i \neq 2$, then A is a graded algebra.

2. If $m_i = 0$ for all $i \neq 1, 2$, A is a differential graded algebra.
Example 1.1.3. Let A be an A_∞-algebra. Then the first relation is

$$(*)_1 \quad m_1 m_1 = 0,$$

i.e. m_1 is a differential. The second relation is

$$(*)_2 \quad m_1 m_2 = m_2(m_1 \otimes \text{id} + \text{id} \otimes m_1),$$

meaning that m_1 is a derivation for the multiplication m_2. The third equation shows m_2 is associative up to the homotopy m_3:

$$(*)_3 \quad m_2(m_2 \otimes \text{id} - \text{id} \otimes m_2) = m_1 m_3 + m_3(m_1 \otimes \text{id}^\otimes 2 + \text{id} \otimes m_1 \otimes \text{id} + \text{id}^\otimes 2 \otimes m_1).$$

In particular, any minimal A_n-algebra is associative. The cohomology of an A_n-algebra is a graded associative algebra.

Definition 1.1.4. Let $n \in \mathbb{N} \cup \{\infty\}$. Let A, B be A_n-algebras over R. An A_n-morphism $f : A \to B$ between A_n-algebras is a family of R-linear morphisms $f_i : A \otimes i \to B$ of degree $1 - i$ for $1 \leq i \leq n$ such that for all $m \leq n$ we have

$$
\sum_{j+k+l=m} (-1)^{j+k+l} f_{j+1+i}(\text{id} \otimes j \otimes m_k \otimes \text{id}^\otimes l) = \sum_{i_1 + \cdots + i_r = m} (-1)^s m_r(f_{i_1} \otimes \cdots \otimes f_{i_r}),
$$

where we set

$$s = \sum_{2 \leq u \leq r} ((1 - i_u) \sum_{1 \leq v \leq u} i_v).$$

The composition of $f : A \to B$ and $g : B \to C$ is defined by

$$(g \circ f)_n = \sum_r \sum_{i_1 + \cdots + i_r = n} (-1)^s g_r(f_{i_1} \otimes \cdots \otimes f_{i_r}).$$

Example 1.1.5. Let $f : A \to B$ be an A_∞-morphism. Then

$$(**)_1 \quad f_1 m_1 = m_1 f_1,$$

that is, f_1 is a morphism of complexes, i.e. A_1-morphisms are just morphisms of complexes. The second relation is

$$(**)_2 \quad f_1 m_2 = m_2(f_1 \otimes f_1) + m_1 f_2 + f_2(m_1 \otimes \text{id} + \text{id} \otimes m_1),$$

measuring the compatibility of f_1 with the multiplications of A and B.

Remark 1.1.6. We denote the category of A_n-algebras and A_n-morphisms by Alg_n and the category of A_∞-algebras by Alg_∞. The category of differential graded algebras is a non-full subcategory of Alg_∞.

Definition 1.1.7. Let n be a positive integer or ∞.

6
1. A morphism \(f = (f_1, f_2, \cdots, f_n) : A \to B \) of \(A_n \)-algebras is a quasi-isomorphism if \(f_1 \) is a quasi-isomorphism of the underlying complexes.

2. A and B are said to be quasi-isomorphic if there exist \(A_n \)-algebras \(C_1, \cdots, C_m \) and quasi-isomorphisms \(A \leftarrow C_1 \to \cdots \leftarrow C_m \to B \).

Definition 1.1.8. Let \(n \) be a positive integer or \(\infty \).

1. An \(A_n \)-algebra A is called minimal if \(m_1 = 0 \).

2. A minimal model for A is a minimal \(A_n \)-algebra B together with a quasi-isomorphism \(B \to A \).

Theorem 1.1.9. (Kadeishvili [13]) Let A be an \(A_\infty \)-algebra over R such that \(HA \) is a projective R-module. For any choice of a quasi-isomorphism \(f_1 : HA \to A \) of complexes of R-modules, there exists a minimal \(A_\infty \)-structure on \(HA \), with \(m_2^{HA} \) being induced by \(m_2 \), and an \(A_\infty \)-quasi-isomorphism \(f : HA \to A \) lifting \(f_1 \).

Definition 1.1.10. Let A be an \(A_\infty \)-algebra.

1. A is called \(A_n \)-formal if it is \(A_n \)-quasi-isomorphic to the \(A_n \)-algebra \((HA, m_2^{HA})\), where \(m_2^{HA} \) induced by \(m_2 \) and \(m_i^{HA} = 0 \) for \(i \neq 2 \).

2. A is called formal if it is \(A_\infty \)-quasi-isomorphic to the graded associative algebra \(HA \), viewed as an \(A_\infty \)-algebra.

We have the following two important results due to Kaledin and Lunts.

Theorem 1.1.11. (Lunts [22]) Let A be a minimal \(A_\infty \)-algebra over R which is projective as an R-module. Then A is formal iff it is \(A_n \)-formal for all \(n \).

Furthermore, Kaledin, in [14], shows that \(A_n \)-formality is measured by a cohomology class, called the Kaledin class, which gives the next result.

Theorem 1.1.12. (Kaledin-Lunts [14], [22]) Let R be an integral domain with field of fractions \(k(\eta) \). Consider a minimal \(A_\infty \)-algebra A over R which is a finite projective R-module. Assume that the Hochschild cohomology group with compact supports \(\text{HH}_2^c(A(2)) \) is torsion-free. If \(A_\eta = k(\eta) \otimes_R A \) is formal, then A is formal. In particular, \(A_p \) is formal for all \(p \in \text{Spec} R \).

1.2 The bar construction.

Let A be a graded R-module endowed with morphisms \(m_i : A^{\otimes i} \to A \).

For \(i \geq 1 \) we have a bijection \(\text{Hom}(A^{\otimes i}, A) \to \text{Hom}((A[1])^{\otimes i}, A[1]) \)

\[
m_i \mapsto d_i = (-1)^{i-1 + \deg s} s \circ m_i \circ (s^{-1})^{\otimes i},
\]

where \(s : A \to A[1] \) is the canonical degree \(-1\) morphism. Remark that in our case \(m_i \) are of degree \(2 - i \), so the corresponding \(d_i \) have degree 1. The morphisms \(d_i \) define a unique morphism \(T(A[1]) \to A[1] \).
which by the universal property of the reduced tensor coalgebra corresponds to a unique degree 1 coderivation

\[d : T(A[1]) \to T(A[1]). \]

Lemma 1.2.1. The morphisms \(m_i \) define an \(A_\infty \)-algebra structure on \(A \) iff \(d \) is a differential, i.e. \(d^2 = 0 \).

Definition 1.2.2. The bar construction of an \(A_\infty \)-algebra \(A \) is the differential graded coalgebra \(B(A) := (T(A[1]), d) \).

Let \(A, B \) be graded objects. For \(i \geq 1 \) we have a bijection

\[\text{Hom}(A \otimes A \otimes \cdots, B) \to \text{Hom}((A[1]) \otimes A \otimes \cdots, B[1]) \]

\[f_i \mapsto F_i = (-1)^{i-1+\deg f_i} s_B \circ f_i \circ (s_A^{-1}) \otimes . \]

If \(f_i \) are of degree \(1 - i \), the maps \(F_i \) define a degree 0 morphism of coalgebras

\[F : B(A) \to B(B). \]

Lemma 1.2.3. Let \(A, B \) be \(A_\infty \)-algebras and suppose given \(f_i \in \text{Hom}(A \otimes A \otimes \cdots, B) \) of degree \(1 - i \). The morphisms \(f_i \) define an \(A_\infty \) morphism iff \(F \) is compatible with the differentials, i.e. we have a bijection

\[\text{Hom}_{A_\infty}(A, B) \sim \to \text{Hom}(B(A), B(B)). \]

1.3 \(A_\infty \)-modules.

Definition 1.3.1. Let \(n \in \mathbb{N} \cup \{ \infty \} \) and let \(A \) be an \(A_n \)-algebra over \(R \). An \(A_n \)-module over \(A \) is a graded \(R \)-module \(M \) together with a family of morphisms

\[m_i^M : M \otimes A \otimes \cdots \to M \]

of degree \(2 - i \) for all \(1 \leq i \leq n \) such that for all \(1 \leq m \leq n \)

\[\sum_{j+k+l=m, j \geq 1} (-1)^{jk+l} m_i^M(j \otimes \cdots \otimes m_k \otimes \cdots) + \sum_{k+l=m} (-1)^{i} m_i^M(m_k \otimes \cdots) = 0. \quad (**_{m}^\prime) \]

Definition 1.3.2. Let \(n \in \mathbb{N} \cup \{ \infty \} \) and let \(A \) be an \(A_n \)-algebra and suppose \(M, N \) are \(A_n \)-modules over \(A \). A morphism of \(A_n \)-modules is a family of \(R \)-linear morphisms

\[f_i : M \otimes A \otimes \cdots \to N \]

of degree \(1 - i \) for \(1 \leq i \leq n \) such that for all \(1 \leq m \leq n \)

\[\sum_{j+k+l=m, j \geq 1} (-1)^{jk+l} f_{j+1+l}((id \otimes \cdots \otimes m_k \otimes \cdots)) = \sum_{r+s=m, r \geq 1, s \geq 0} m_{s+1}(f_r \otimes \cdots). \quad (**_{m}^\prime) \]

The composition of \(f : L \to M \) and \(g : M \to N \) is defined by

\[(g \circ f)_n = \sum_{k+l=n} g_{l+1}(f_k \otimes \cdots). \]

8
Remark 1.3.3. Let A be an \(A_\infty \)-algebra and M be an \(A_\infty \)-module over A. Then

1. \((M, m^M_1)\) is a complex;

2. If \(f : M \to N \) is a morphism of \(A_\infty \)-modules, \(f_1 \) is a morphism of complexes

\[
f_1 : (M, m^M_1) \to (N, m^N_1).
\]

Example 1.3.4. If A is an \(A_\infty \)-algebra, then the morphisms \(m_i : A \otimes^i \to A \) define an \(A_\infty \)-module structure on A over A.

Remark 1.3.5. If A is a differential graded algebra regarded as \(A_\infty \)-algebra, then any differential graded module over A is canonically \(A_\infty \)-modules and the category of differential graded modules over A is a non-full subcategory of the category of \(A_\infty \)-modules over A.

Definition 1.3.6. Let \(n \) be a positive integer or \(\infty \). Let A be an \(A_n \)-algebra and suppose M and N are \(A_n \)-modules over A.

1. An \(A_n \)-morphism \(f = (f_1, f_2, \cdots, f_n) : M \to N \) is a quasi-isomorphism if \(f_1 \) is a quasi-isomorphism of complexes.

2. M and N are said to be quasi-isomorphic if there exist \(A_n \)-modules \(M_1, \cdots, M_m \) and quasi-isomorphisms \(M \leftarrow M_1 \to \cdots \to M_m \to N \).

Definition 1.3.7. Let \(n \) be a positive integer or \(\infty \). Let A be an \(A_n \)-algebra and consider an \(A_n \)-module M over A.

1. M is called minimal if \(m^M_1 = 0 \).

2. A minimal model for M is a pair \((A', M')\), consisting of a minimal \(A_n \)-algebra \(A' \) and a minimal \(A_n \)-module \(M' \) over it, together with quasi-isomorphisms \(f : A' \to A \) and \(g : M' \to f^*M \), where \(f^*M \) is the restriction of M along \(f \).

Remark 1.3.8. We shall say that \((f, g)\) is a morphism of pairs \((A', M') \to (A, M)\).

Theorem 1.3.9. (Kadeishvili, [13]) Let A be an \(A_\infty \)-algebra and consider an \(A_\infty \)-module M over A. Assume that HA and HM are projective R-modules. Then, for any choice of quasi-isomorphisms

\[
f_1 : HA \to A, g_1 : HM \to M
\]

of complexes of R-modules, inducing the identity in cohomology, there exists a minimal \(A_\infty \)-module structure on HM over the \(A_\infty \)-algebra HA, with \(m^HM_2 \) induced by \(m^M_2 \), such that there exists a quasi-isomorphism of pairs

\[
(f, g) : (HA, HM) \to (A, M),
\]

lifting \((f_1, g_1)\), i.e. a minimal model for M. It is unique up to \(A_\infty \)-isomorphism.

1.4 The bar construction for \(A_\infty \)-modules.

Let A and M be graded R-modules. For \(i \geq 1 \) we have a bijection

\[
\text{Hom}(M \otimes A^{\otimes i-1}, M) \to \text{Hom}(M[1] \otimes (A[1])^{\otimes i-1}, M[1])
\]

\[
m^M_i \mapsto d^M_i = (-1)^{i-1+\deg m^M_i}s \circ m_i \circ (s^{-1})^{\otimes i}.
\]
Let A be an A_∞-algebra and let $(B(A))^+$ be its coaugmented bar construction. Then the d^M_i define a unique comodule coderivation

$$d^M : M[1] \otimes (B(A))^+ \rightarrow M[1] \otimes (B(A))^+.$$

Lemma 1.4.1. The morphisms m^M_i define an A_∞-module structure of M over A iff the coderivation d^M_i is a differential.

Let A, M, N be graded R-modules. For all $i \geq 1$ we have a bijection

$$\text{Hom}(M \otimes A^{\otimes i-1}, N) \rightarrow \text{Hom}(M[1] \otimes (A[1])^{\otimes i-1}, N[1])$$

$$f_i \mapsto F_i = (-1)^{i-1+\deg f_i} s_B \circ f_i \circ (s_A^{-1})^\otimes.$$

and, if A is an A_∞-algebra, the F_i induce a morphism of $(B(A))^+$-comodules

$$F : M \otimes (B(A))^+ \rightarrow N \otimes (B(A))^+.$$

Lemma 1.4.2. Let A be an A_∞-algebra and suppose given graded objects M, N. For all $i \geq 1$ there is a bijection

$$\text{Hom}^{1-i+n}(M \otimes A^{\otimes i-1}, N) \rightarrow \text{Hom}_B(M \otimes (B(A))^+, N \otimes (B(A))^+).$$

Furthermore, if M and N are A_∞-modules, then we get an induced bijection between morphisms $M \rightarrow N$ of A_∞-modules and degree 0 morphisms of differential graded $(B(A))^+$-comodules.

1.5 Differential graded pairs.

Definition 1.5.1. Let A, B be differential graded algebras over R and let M (resp. N) be a differential graded module over A (resp. B).

1. If $f : A \rightarrow B$ is a morphism of differential graded algebras and $g : M \rightarrow f^*N$ is a morphism of differential graded modules, where f^* denotes restriction along f, we say that the pair $(f, g) : (A, M) \rightarrow (B, N)$ is a differential graded morphism of pairs.

2. The pairs (A, M) and (B, N) are differential graded quasi-isomorphic, denoted $(A, M) \simeq (B, N)$, if there exist pairs $(A_1, M_1), \cdots, (A_m, M_m)$ and quasi-isomorphisms of pairs

$$(A, M) \leftarrow (A_1, M_1) \rightarrow \cdots \leftarrow (A_m, M_m) \rightarrow (B, N).$$

3. If A is a formal differential graded algebra, we say that M is differential graded formal if the pairs (A, M) and (HA, HM) are differential graded quasi-isomorphic.

Let A, B be differential graded algebras over R such that HA and HB are projective R-modules, equipped with their minimal A_∞-algebra structures. Given two differential graded modules M and N over A and B, respectively, assume that HM and HN are projective over R, so can be given minimal A_∞-module structures over HA and HB.

Proposition 1.5.2. The pairs (A, M) and (B, N) are differential graded quasi-isomorphic if and only if the pairs (HA, HM) and (HB, HN) are A_∞-quasi-isomorphic.
1.6 Hochschild cohomology.

Let A be a graded algebra. We are going to define Hochschild cohomology for a graded module M over A.

Let $C^{p,q}(A,M) = \text{Hom}^q(M \otimes A^p, M)$. The module structure of M over A is a graded morphism of degree 0, denoted by $m^M_2 : M \otimes A \to M$. We can endow the modules $C^{p,q}(A,M)$ with a differential, called the Hochschild differential:

$$d : C^{p,q}(A,M) \to C^{p+1,q}(A,M) \quad f \mapsto \sum (-1)^lf(id^l \otimes m^A_2 \otimes id^l) - m^M_2(f \otimes id) + (-1)^pf(m^M_2 \otimes id^p).$$

A calculation shows that $d^2 = 0$, so we indeed have a differential, the associated complex is called the Hochschild complex.

Definition 1.6.1. The Hochschild cohomology $\text{HH}^{p,q}(A,M)$ of a graded module M over a graded algebra A is the pth cohomology of the Hochschild complex $(C^{*,q}(A,M), d)$.

Example 1.6.2. Suppose $f : M[e] \to M[e]$ is an $A[e]$-automorphism lifting the identity. Then, writing

$$f \equiv f^0 + f^1 e,$$

we have by assumption $f^0 = id_M$, and A-linearity implies

$$f^1(ma) = f^1(m) a$$

which is to say that f^1 is a (0,0)-cocycle.

Definition 1.6.3. An infinitesimal A_∞-deformation of an A-module M is an A_∞-module structure on $M[e]$ over $A[e]$ extending the A-module structure on M.

Example 1.6.4. The (1,0)-cocycles are precisely the $A[e]$-module structures on $M[e]$, i.e. they correspond to infinitesimal deformations. Indeed, if

$$m : M[e] \otimes A[e] \to M[e]$$

is the multiplication, we decompose it as

$$m = m^0 + m^1 e,$$

where m^0 is the A-module multiplication on M. As m defines a module structure, we get

$$m^1(m,a)a' + m^1(ma,a') = m^1(m,aa'),$$

i.e. m^1 is a (1,0)-cocycle. Notice that there is a canonical $A[e]$-module structure on $M[e]$.

Definition 1.6.5. We call an infinitesimal A_∞-deformation of M trivial if it is quasi-isomorphic to this canonical one.

Example 1.6.6. We note that (1,0)-coboundaries correspond to trivial deformations by a similar calculation, hence infinitesimal deformations of M are classified by $\text{HH}^{1,0}(A,M)$.

More generally, assume we are given an infinitesimal A_∞-deformation of M. Write

$$m = m^0 + m^1 e,$$
where \(m^0 \) is the \(A \)-module structure on \(M \) and \(m^1 = (m^1_2, m^1_3, \ldots) \). Notice the relations \((s'_m) \) are homogeneous in \(\epsilon \), so as \(\epsilon^2 = 0 \) we see that each \(m^1_i \) is a cocycle in the Hochschild complex of \(M \) and, conversely, any collection of cocycles satisfies \((s'_m) \) for all \(m \). Similarly, we see coboundaries correspond to trivial \(A_\infty \)-deformations, hence

\[
\prod_{n \geq 1} \text{HH}^{n,1-n}(A, M)
\]

classifies infinitesimal \(A_\infty \)-deformations.

Remark 1.6.7. Remark that here we assume the deformation parameter is in degree 0 with respect to the internal grading of our objects. If we consider derived deformations, i.e. allow the deformation parameter to have a non-zero degree with respect to the internal grading, then we get different cohomology group, e.g. if it is in degree 1, the cohomology group classifying derived infinitesimal deformations becomes \(\text{HH}^{1,-1}(A, M) \).

Remark 1.6.8. Given two graded modules \(M \) and \(N \) over \(A \), let \(C^{p,q}(A, M, N) = \text{Hom}^q(M \otimes A^p, N) \). It carries a Hochschild differential and we define the Hochschild cohomology of the pair \((M, N) \), denoted \(\text{HH}^{p,q}(A, M, N) \), to be the cohomology of the resulting complex.

Proposition 1.6.9. Let \(A \) be a graded algebra over \(R \) and let \(M \) be a graded module over \(A \). Assume that \(A \) and \(M \) are finite projective over \(R \). Suppose that \(R \to Q \) is a morphism of commutative rings. Write \(A_Q := A \otimes_R Q \) and similarly for \(M_Q \). Then we have

1. \(C^{p,q}(A_Q, M_Q) = C^{p,q}(A, M) \otimes_R Q \).
2. Assuming \(Q \) flat over \(R \), \(\text{HH}^{p,q}(A_Q, M_Q) = \text{HH}^{p,q}(A, M) \otimes_R Q \).

Proposition 1.6.10. Suppose that \(R \) is Noetherian. Consider a graded algebra \(A \) over \(R \) and a graded module \(M \) over \(A \). Assume that \(A, M \) are finite projective and that for all \(p, q \in \mathbb{Z} \) the \(R \)-module \(\text{HH}^{p,q}(A, M) \) is projective. Then, for any morphism of commutative rings \(R \to Q \), we have

\[
\text{HH}^{p,q}(A_Q, M_Q) = \text{HH}^{p,q}(A, M) \otimes_R Q.
\]

1.7 Obstruction theory.

In this paragraph we formulate obstruction theory for \(A_n \)-modules. Our goal is to apply it to a problem where we are extending an \(A_n \)-morphism \(f \) and we only care for keeping \(f_1 \) fixed. In particular, a theory for obstructions where the last component is allowed to vary is good enough for us and that’s what we develop here. There are more general versions where one allows the last \(r \) components to vary for some \(r < n \). Compared to the case where we keep all components fixed, our approach has the advantage that the corresponding obstructions are cohomology classes rather than equations in the space Hochschild cochains.

We show how the Hochschild cohomology defined in the previous section controls the obstructions to extending \(A_n \)-modules to \(A_{n+1} \)-modules by allowing the last multiplication to vary as well as \(A_n \)-morphisms to \(A_{n+1} \)-morphisms, varying the last component. We focus on modules, but analogous versions for algebras can also be formulated.

Proposition 1.7.1. Let \(A \) be a minimal \(A_n \)-algebra. Let \(M \) be a graded \(R \)-module and suppose

\[
m^i_M : M \otimes A^{i-1} \to M, \quad 2 \leq i \leq n + 1,
\]

where \(m^0 \) is the \(A \)-module structure on \(M \) and \(m^1 = (m^1_2, m^1_3, \ldots) \). Notice the relations \((s'_m) \) are homogeneous in \(\epsilon \), so as \(\epsilon^2 = 0 \) we see that each \(m^1_i \) is a cocycle in the Hochschild complex of \(M \) and, conversely, any collection of cocycles satisfies \((s'_m) \) for all \(m \). Similarly, we see coboundaries correspond to trivial \(A_\infty \)-deformations, hence

\[
\prod_{n \geq 1} \text{HH}^{n,1-n}(A, M)
\]

classifies infinitesimal \(A_\infty \)-deformations.

Remark 1.6.7. Remark that here we assume the deformation parameter is in degree 0 with respect to the internal grading of our objects. If we consider derived deformations, i.e. allow the deformation parameter to have a non-zero degree with respect to the internal grading, then we get different cohomology group, e.g. if it is in degree 1, the cohomology group classifying derived infinitesimal deformations becomes \(\text{HH}^{1,-1}(A, M) \).

Remark 1.6.8. Given two graded modules \(M \) and \(N \) over \(A \), let \(C^{p,q}(A, M, N) = \text{Hom}^q(M \otimes A^p, N) \). It carries a Hochschild differential and we define the Hochschild cohomology of the pair \((M, N) \), denoted \(\text{HH}^{p,q}(A, M, N) \), to be the cohomology of the resulting complex.

Proposition 1.6.9. Let \(A \) be a graded algebra over \(R \) and let \(M \) be a graded module over \(A \). Assume that \(A \) and \(M \) are finite projective over \(R \). Suppose that \(R \to Q \) is a morphism of commutative rings. Write \(A_Q := A \otimes_R Q \) and similarly for \(M_Q \). Then we have

1. \(C^{p,q}(A_Q, M_Q) = C^{p,q}(A, M) \otimes_R Q \).
2. Assuming \(Q \) flat over \(R \), \(\text{HH}^{p,q}(A_Q, M_Q) = \text{HH}^{p,q}(A, M) \otimes_R Q \).

Proposition 1.6.10. Suppose that \(R \) is Noetherian. Consider a graded algebra \(A \) over \(R \) and a graded module \(M \) over \(A \). Assume that \(A, M \) are finite projective and that for all \(p, q \in \mathbb{Z} \) the \(R \)-module \(\text{HH}^{p,q}(A, M) \) is projective. Then, for any morphism of commutative rings \(R \to Q \), we have

\[
\text{HH}^{p,q}(A_Q, M_Q) = \text{HH}^{p,q}(A, M) \otimes_R Q.
\]

1.7 Obstruction theory.

In this paragraph we formulate obstruction theory for \(A_n \)-modules. Our goal is to apply it to a problem where we are extending an \(A_n \)-morphism \(f \) and we only care for keeping \(f_1 \) fixed. In particular, a theory for obstructions where the last component is allowed to vary is good enough for us and that’s what we develop here. There are more general versions where one allows the last \(r \) components to vary for some \(r < n \). Compared to the case where we keep all components fixed, our approach has the advantage that the corresponding obstructions are cohomology classes rather than equations in the space Hochschild cochains.

We show how the Hochschild cohomology defined in the previous section controls the obstructions to extending \(A_n \)-modules to \(A_{n+1} \)-modules by allowing the last multiplication to vary as well as \(A_n \)-morphisms to \(A_{n+1} \)-morphisms, varying the last component. We focus on modules, but analogous versions for algebras can also be formulated.

Proposition 1.7.1. Let \(A \) be a minimal \(A_n \)-algebra. Let \(M \) be a graded \(R \)-module and suppose

\[
m^i_M : M \otimes A^{i-1} \to M, \quad 2 \leq i \leq n + 1,
\]
are graded morphisms of degree $2 - i$. Assume that for $1 \leq i \leq n$ the m_i define an A_n-structure on M. Then the subexpression of $(*)_n'$ given by

$$\sum_{j+1+l, k \neq 1,2} (-1)^{jk+l} m_{j+1+l}(\text{id} \otimes m_k \otimes \text{id}^{\otimes l})$$

defines a cocycle in $(\mathcal{C}(A(2), M(2)); d)$ which we denote by $c(m_3^M, \cdots, m_n^M)$ and equation $(*)_n'$ becomes

$$c(m_3^M, \cdots, m_n^M) + d(m_n^M) = 0.$$

1.8 Formality of A_{∞}-modules.

Definition 1.8.1. Let A be an A_{∞}-algebra. Let $n \in \mathbb{N} \cup \{\infty\}$ and assume that A is A_n-formal. We say that an A_{∞}-module M over A is A_n-formal if there exists an A_n-quasi-isomorphism of pairs $(HA, HM) \to (A, M)$, where HA (resp. HM) is the ordinary graded associative algebra (resp. module).

Remark 1.8.2.

1. In other words M is A_n-formal if it admits a minimal A_n-model with vanishing higher multiplications.

2. Notice that our definition of A_n-formality for a module M over A assumes that the A_{∞}-algebra A is A_n-formal.

3. When $n = \infty$, we drop the A_{∞} and simply say that M is formal.

4. By Proposition 1.5.2, under the usual projectivity assumptions, a differential graded module M over a formal differential graded algebra A is differential graded formal iff its minimal model HM is formal as an A_{∞}-module over the (formal) A_{∞}-algebra HA.

Recall that if A is a minimal A_{∞}-algebra, then $A(2)$ stands for the underlying graded associative algebra, so if A is just a graded associative algebra, then $A = A(2)$.

Similarly, let M be a minimal A_{∞}-module over a graded algebra A. Then $M(2)$ denotes the A_{∞}-module on the graded space M with structure morphisms given by

$m_2^{M(2)} = m_2^M$ and $m_i^{M(2)} = 0$ for $i \neq 2$,
i.e. $M(2)$ is the underlying graded associative A-module, considered as an A_∞-module - this is possible precisely because M is minimal and A is just a graded associative algebra, so has no higher multiplications, and the A_∞-relations for $M(2)$ reduce to associativity. In this notation, M is a formal A_∞-module if it is quasi-isomorphic to $M(2)$.

Remark 1.8.3. Let M be a minimal A_∞-module over a graded algebra A. If M is formal, there exists a quasi-isomorphism $f : M \to M(2)$ lifting the identity on the underlying complexes.

Proposition 1.8.4. Let R be an integral domain with field of fractions $k(\eta)$. Let A be a graded R-algebra and let M be a minimal A_∞-module over A such that both A and M are finite projective as R-modules. Assume that $HH^{n,1-n}(A,M(2))$ is torsion-free for all n. If $M_{\eta} = k(\eta) \otimes_R M$ is formal, then M is formal and there exists a quasi-isomorphism $f : M \to M(2)$ lifting the identity on the underlying complexes. In particular, the fibres M_p are formal for all $p \in \text{Spec}(R)$.

Proof. We are going to construct the quasi-isomorphism f inductively. Since M and $M(2)$ have the same underlying A_2-modules, we set $f_1 = \text{id}$, and for any f_2, we have a quasi-isomorphism $(\text{id}, f_2) : M \to M(2)$ of A_2-modules over A. Then $[c(\text{id})] = [m_3]$ is the Massey product which vanishes generically since M_0 is formal. Since $HH^{2,-1}(A,M(2))$ is torsion-free, it follows that $[c(\text{id})]$ vanishes everywhere. Hence, we can choose f_2 such that

$$c(\text{id}) + d(f_2) = 0.$$

There exists an A_∞-module structure $M^{(2)} = (M, m^{(2)})$ on the graded R-module M such that

$$m^{(2)} = m^M_2, m^{(2)}_3 = 0$$

is a quasi-isomorphism of A_∞-modules. Indeed, $M^{(2)}$ can be constructed inductively as follows: we treat the multiplications $m^{(2)}$ of $M^{(2)}$ as variables and require that $(\text{id}, f_2, 0, \cdots)$ defines a quasi-isomorphism of A_∞-modules. The corresponding equations for $m^{(2)}$ can be uniquely solved as they are all of the form

$$\sum_{j+k+l = n, k \geq 2} (-1)^{j+k+l} f_{j+1+l}(\text{id}^\otimes j \otimes m_k \otimes \text{id}^\otimes l) = m^{(2)} + m^{(2)}_{n-1}(f_2 \otimes \text{id}^\otimes n-2),$$

where $j + 1 + l = 1$ or 2. For example, $n = 2$ implies that $m^{(2)} = m_2$ and $n = 3$ is just the equation $c(\text{id}) + d(f_2) = m^{(2)}_3$, i.e. $m^{(2)}_3 = 0$.

Assume by induction that we have constructed f_2, \cdots, f_n and $M^{(2)}, \cdots, M^{(n)}$ with

$$m^{(i)}_2 = m^M_2 \text{ and } m^{(i)}_j = 0 \text{ for all } 3 \leq j \leq i + 1$$

such that, for all $2 \leq i \leq n$, the maps

$$\tilde{f}_i := (\text{id}, 0, \cdots, 0, f_i, 0, \cdots) : M^{(i-1)} \to M^{(i)}$$

are quasi-isomorphisms of A_∞-modules.

In order to construct the pair $(f_{n+1}, M^{(n+1)})$, it suffices to show that there exists f_{n+1} such that

$$(\text{id}, 0, \cdots, 0, f_{n+1}, 0) : M^{(n)} \to M^{(n)}(2)$$
is an A_{n+2}-morphism, i.e. A_{n+2}-formality of $M^{(n)}$. We know that
\[(id, 0, \cdots, 0, f_{n+1}) : M^{(n)} \to M^{(n)}(2)\]
is an A_{n+1}-morphism for any f_{n+1}. The goal is to show f_{n+1} can be chosen so that in fact any f_{n+2} would give an A_{n+2}-morphism $M^{(n)} \to M^{(n)}(2)$.

By Proposition 1.7.2 it suffices that the cohomology class $[c(id, 0, \cdots, 0)]$ vanish. Notice that the function
\[(g_2, \cdots, g_n) \mapsto c(id, g_2, \cdots, g_n)\]
is constant precisely because the corresponding higher multiplications in $M^{(n)}$ vanish, and the same applies for the localised version $M^{(n)}_\eta$. Since M_η, and hence also $M^{(n)}_\eta$, is formal, we see that $[c(id, 0, \cdots, 0)]_\eta = 0$.

Furthermore, $\text{HH}^{n+1, -n}(A, M(2))$ is torsion-free, so we get that $[c(id, 0, \cdots, 0)] = 0$, hence there exists f_{n+1} such that
\[(id, 0, \cdots, 0, f_{n+1}, f_{n+2}) : M^{(n)} \to M^{(n)}(2)\]
is an A_{n+2}-morphism for any choice of f_{n+2}.

Then, as above, the standard construction gives an A_∞-module $M^{(n+1)}$ such that
\[m_{2}^{(n+1)} = m_{2}^{M} \text{ and } m_{j}^{(n+1)} = 0 \text{ for all } 3 \leq j \leq n + 2\]
and the map $\tilde{f}_{n+1} := (id, 0, \cdots, 0, f_{n+1}, 0, \cdots) : M^{(n)} \to M^{(n+1)}$ is a quasi-isomorphism of A_∞-modules.

The infinite composition
\[f := \cdots \circ \tilde{f}_{n} \circ \cdots \circ \tilde{f}_{2} : M \to M(2)\]
defines the required quasi-isomorphism and we note that it is well-defined because composition with \tilde{f}_n leaves the components in weights $i < n$ fixed.

In fact the proof shows also that the following proposition holds.

Proposition 1.8.5. Let A be a graded algebra. An A_∞-module M over A is formal if and only if it is A_n-formal for all $n \in \mathbb{N}$.

Corollary 1.8.6. Suppose that R is Noetherian. Let A be a graded algebra over R and let M be a minimal A_∞-module over A. Suppose that A and M are finite projective R-modules and $\text{HH}^{p,q}(A, M(2))$ is projective for all $p, q \in \mathbb{Z}$. Then the set
\[F(M) = \{ p \in \text{Spec}(R) \mid \text{the } A_\infty\text{-module } M_p \text{ is formal} \}\]
is closed under specialisation.

Proof. Assume $F(M)$ is non-empty. Let $p \in F(M)$ and consider its closure $\bar{p} = \text{Spec}(Q) \subseteq \text{Spec}(R)$. The ring Q is an integral domain and the base-changes $A_Q = A \otimes_R Q$ and $M_Q = M \otimes_R Q$ are finite projective over Q. Furthermore, by Proposition 1.6.10 we have
\[\text{HH}^{n,1-n}(A_Q, M(2)_Q) = \text{HH}^{n,1-n}(A, M(2)) \otimes_R Q,\]
so $\text{HH}^{n,1-n}(A_Q, M(2)_Q)$ is projective over Q, in particular torsion-free. Hence M_Q is formal by Proposition 1.8.4.

15
Proposition 1.8.7. Suppose that R is Noetherian and $I \subset R$ is an ideal such that $\cap_l I^l = 0$. Let A be a graded algebra over R and let M be a minimal A_∞-module over A. Suppose that A and M are finite projective R-modules and that $HH^{p,q}(A, M(2))$ is projective for all $p, q \in \mathbb{Z}$. If M/I^l is a formal A_∞-module over the graded algebra A/I^l for all $l \in \mathbb{N}$, then M is formal.

Proof. Since M is projective over R and minimal, it is A_2-formal. Then, as in the proof of Proposition 1.8.4, to show it is A_3-formal, it is enough to prove that the Massey class $[m_3]$ vanishes in $HH^{2,-1}(A, M(2))$. Using Proposition 1.6.10 we have

$$HH^{p,q}(A/I^l, M(2)/I^l) = HH^{p,q}(A, M(2)) \otimes_R R/I^l$$

for all $p, q \in \mathbb{Z}$. By assumption $[m_3] \otimes 1 = 0$ in $HH^{2,-1}(A/I^l, M(2)/I^l)$ for all $l \geq 1$. There is an exact sequence $0 \to \cap_l I^l \to R \to \prod_l R/I^l$, since $\cap_l I^l = 0$ and $HH^{p,q}(A, M(2))$ is projective over R, we conclude that $[m_3] = 0$. By induction M is A_n-formal for all $n \in \mathbb{N}$, done.

Proposition 1.8.8. Suppose that R is Noetherian with trivial Jacobson radical $\mathfrak{J}(R)$. Let A be a graded associative algebra over R, and let M be a minimal A_∞-module over A. Suppose that A and M are finite projective R-modules and that $HH^{p,q}(A, M(2))$ is projective for all $p, q \in \mathbb{Z}$. If M_m is formal for all closed points $m \in \text{Spec}(R)$, then M is formal. In particular, M_p is formal for all $p \in \text{Spec}(R)$.

Proof. As in the previous proposition, we prove that M is A_n-formal for all $n \in \mathbb{N}$. The proof is exactly the same using the exact sequence $0 \to \mathfrak{J}(R) \to R \to \prod_m R/m$, Proposition 1.6.10 and projectivity of $HH^{p,q}(A, M(2))$.

2 Perverse sheaves and DQ modules

In this section we shall briefly review some results on DQ-modules and perverse sheaves on Lagrangian intersections we need for applications. This is mainly to fix notation, in particular we refer the reader to the original papers for proofs. The material on perverse sheaves on Lagrangian intersections and, more generally, on d-critical loci is due to Joyce et al. and we refer to [5], [12]. A good general reference for DQ-modules, which we also closely follow, is Kashiwara and Schapira [18].

2.1 Perverse sheaves on d-critical loci.

The local setting, we are interested in, is as follows: for a complex manifold X and a function f on X, we consider the intersection $\text{crit} f := X \cap \Gamma_{df}$, where $\Gamma_{df} \subset \Omega_X$ is the Lagrangian, given by the graph of $df \in \Gamma(X, \Omega_X)$. In particular, if X is the cotangent bundle of a complex manifold M, then for any function f on M, we can consider the Lagrangian $L = \Gamma_{df}$, so $\text{crit} f = L \cap M$, i.e. in this case the intersection of the Lagrangians can be written as the critical locus of f. It turns out that this remains true locally in the general case where X is a holomorphic symplectic and L, M are two Lagrangians.

On $\text{crit} f \subset X$, we have a naturally defined perverse sheaf of vanishing cycles $\mathscr{P}_{X,f}$ which is the
image of $C_X[\dim X]$ under the vanishing cycles functor over the critical values of f.

We are going to consider the global versions of the constructions discussed above. Let X/C be a scheme. Suppose we are given an embedding of X into a smooth scheme S with ideal sheaf \mathcal{J}, then we define the complex of derived 1-jets

$$J^1_X := \mathcal{O}_S/\mathcal{J}^2 \to \Omega_{S|X},$$

in degrees -1 and 0. It can be shown that it is independent of the embedding and is naturally quasi-isomorphic to the cone of the de Rham differential $\partial_X \to \mathcal{L}_X$, where $\mathcal{L}_X := \mathcal{J}/\mathcal{J}^2 \to \Omega_{S|X}$ is the truncated cotangent complex. We are interested in the sheaf

$$\mathcal{J}_X = \mathcal{H}^{-1}(J^1_X).$$

Definition 2.1.1. (Joyce [12]) A structure of a d-critical locus on X is a choice of $s \in \Gamma(X, \mathcal{J}_X)$ such that for any $x \in X$ there exists an open U, containing x, and a closed embedding of U into a smooth S together with a function f on S such that $s|_U = f$ in $\Gamma(U, \mathcal{O}_S/\mathcal{J}^2)$ and $U = \text{crit } f \subset S$. The triple (U, S, f) is a chart for the d-critical locus X.

Let (X, s) be a d-critical locus. Then, given a chart (U, S, f), we can consider the canonical bundle $K_S|_{U_{\text{red}}}$ and ask whether we can glue these line bundles for a covering by critical charts. The answer is no, but we can glue their squares $K_S^\otimes 2|_{U_{\text{red}}}$ to get a line bundle on X_{red}. Suppose that X is of the form $\text{crit } f$, then the obstruction is a ± 1-cocycle, hence we can glue the squares to get a line bundle on X_{red}.

Proposition 2.1.2. (Joyce [12]) Let (X, s) be a d-critical locus. There exists a unique line bundle $K_{(X, s)}$ on X_{red} such that for any chart (U, S, f) we have an isomorphism

$$\lambda(U, S, f) : K_{(X, s)}|_{U_{\text{red}}} \cong K_S^\otimes 2|_{U_{\text{red}}}$$

such that for any étale morphism $\varphi : (U, S, f) \to (V, T, g)$ of charts, i.e. $\varphi : S \to T$ is étale, $\varphi|_U : U \to V$ is the canonical inclusion and $f = g \circ \varphi$, we have

$$\lambda(U, S, f) = \det(d\varphi)^\otimes 2|_{U_{\text{red}}} \circ \lambda(V, T, g)|_{U_{\text{red}}}.$$

Example 2.1.3. If X is smooth, then $K_{(X, 0)} = K_X^\otimes 2$. We get an extra K_X factor because, as a derived scheme, the critical locus $\text{crit}(0 : X \to \mathbb{C})$ is the shifted cotangent bundle $\Omega_X[1]$.

Theorem 2.1.4. (Brav et al. [5]) Let (X, s) be a d-critical locus. Assume that its canonical bundle $K_{(X, s)}$ admits a square root, called orientation of (X, s). Then there exists a perverse sheaf $\mathcal{P}_{(X, s)}$ on X such that if (U, S, f) is a chart, then we have a natural isomorphism

$$\mathcal{P}_{(X, s)}|_U \simeq \mathcal{P}_{S, f \otimes \mathcal{F}_{\text{or}}},$$

where \mathcal{F}_{or} is the local system associated to $K_{(X, s)}^{-1/2}|_{U_{\text{red}}} \otimes K_S|_{U_{\text{red}}}$.

Proposition 2.1.5. (Bussi [6]) Let X be a holomorphic symplectic variety. Suppose given two Lagrangians L and M in X. Then then intersection $L \cap M$ admits a structure of a d-critical locus $(L \cap M, s)$ with canonical bundle $K_{(L \cap M, s)} = K_L|_{L \cap M_{\text{red}}} \otimes K_M|_{L \cap M_{\text{red}}}$.

17
Corollary 2.1.6. Consider the d-critical locus \((L \cap M, s)\) and assume that \(K_{L|L \cap M} \otimes K_{M|L \cap M}\) admits a square root. Then there exists a perverse sheaf

\[\mathcal{P}_{L,M} \cong \mathcal{P}_{M,L} \]

on \(L \cap M\) with the properties described in Theorem 2.1.4.

Lemma 2.1.7. Let \(L, M\) be two Lagrangians intersecting cleanly, then there is an isomorphism

\[K_{L \cap M} \otimes K_{L \cap M} \cong K_{L|L \cap M} \otimes K_{M|L \cap M}. \]

Corollary 2.1.8. Let \(L \cap M\) be smooth. Then \((L \cap M, s)\) is oriented and for any choice of \(K_{(L \cap M, s)}^{1/2}\) we have \(\mathcal{P}_{L,M} = \mathfrak{S}_{or}[\dim X]\), where \(\mathfrak{S}_{or}\) is the local system associated to \(K_{(L \cap M, s)}^{1/2} \otimes K_{L \cap M}\).

2.2 DQ-algebras.

We let \(X\) be a complex manifold. Let \(\mathbf{C}[\hbar]\) be the ring of formal power series in \(\hbar\), and \(\mathbf{C}(\hbar)\) its field of fractions, i.e. the field of formal Laurent series. Define a sheaf of \(\mathbf{C}[\hbar]\)-algebras:

\[\mathcal{O}_X[\hbar] = \text{lim} \leftarrow \mathcal{O}_X \otimes \mathbf{C}(\hbar)/\hbar^n. \]

Definition 2.2.1. A star product on \(\mathcal{O}_X[\hbar]\) is a \(\mathbf{C}[\hbar]\)-bilinear associative multiplication \(\star\) such that

\[f \star g = \sum_{i \geq 0} P_i(f, g) \hbar^i, \text{ where } f, g \in \mathcal{O}_X, \]

such that \(P_i\) are holomorphic bidifferential operators with \(P_0(f, g) = fg\) and \(P_i(f, 1) = P_i(1, f) = 0\) for all \(i \geq 1\). The pair \((\mathcal{O}_X[\hbar], \star)\) is called a star algebra.

Definition 2.2.2. A deformation quantisation algebra (DQ-algebra) on a complex manifold \(X\) is a sheaf of \(\mathbf{C}[\hbar]\)-algebras \(A_X\) locally isomorphic to a star algebra as a \(\mathbf{C}[\hbar]\)-algebra.

Example 2.2.3. Let \(A_X\) be a DQ-algebra on \(X\). Let \(\pi : A_X \to A_X/\hbar A_X \cong \mathcal{O}_X\). For any \(f, g \in \mathcal{O}_X\), choose lifts \(\tilde{f}, \tilde{g}\) such that \(\pi(\tilde{f}) = f\) and \(\pi(\tilde{g}) = g\). Then define a bracket

\[\{f, g\} = \pi(h^{-1}(\tilde{f} \tilde{g} - \tilde{g} \tilde{f})). \]

This is independent of the choices made and defines a Poisson structure on \(X\).

Example 2.2.4. Let \(X\) be a complex manifold. The cotangent bundle \(\Omega_X\) supports a filtered sheaf of \(\mathbf{C}\)-algebras \(\mathcal{E}_{\Omega_X}\) of formal microdifferential operators. We start by recalling its definition. Fix \((x_1, \ldots, x_n)\) coordinates on \(X\), and write \((x_1, \ldots, x_n, \xi_1, \ldots, \xi_n)\) for the induced coordinates on \(\Omega_X\). Let \(\mathcal{O}_{\Omega_X}(m)\) be the sheaf of homogeneous functions in the fibre coordinates on \(\Omega_X\) of degree \(m\), i.e.

\[\left(\sum \xi_i \partial/\partial \xi_j - m \right) f(x, \xi) = 0. \]

We define the sheaf of formal microdifferential operators of order \(\leq m\) by

\[\mathcal{E}_{\Omega_X}(m) = \prod_{j \in \mathbb{N}} \mathcal{O}_{\Omega_X}(m - j). \]
In order to get a sheaf globally on Ω_X, we glue these sheaves on overlaps using the transformation rule for total symbols of differential operators. Taking the limit over $m \in \mathbb{Z}$, we get the sheaf of formal microdifferential operators on Ω_X:

$$\hat{\mathcal{E}}_{\Omega_X} = \lim_{\to} \hat{\mathcal{E}}_{\Omega_X}(m).$$

Note that there are products $\hat{\mathcal{E}}_{\Omega_X}(l) \otimes_{\mathbb{C}} \hat{\mathcal{E}}_{\Omega_X}(m) \to \hat{\mathcal{E}}_{\Omega_X}(l + m)$, given by

$$(f \ast g)_l(x, \xi) = \sum_{l = i + j - |\alpha|} \frac{1}{\alpha!} (\partial/\partial \xi_1)^{\alpha_1} \cdots (\partial/\partial \xi_n)^{\alpha_n} f_i(x, \xi) \cdot (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n} g_j(x, \xi).$$

In particular $\hat{\mathcal{E}}_{\Omega_X}$ and $\hat{\mathcal{E}}_{\Omega_X}(0)$ are sheaves of (non-commutative) \mathbb{C}-algebras. Notice that the total symbol of a differential operator is a polynomial in ξ_1, \cdots, ξ_n, so essentially we are just allowing symbols which are general holomorphic functions rather than just polynomials.

Let t be the coordinate on \mathbb{C} and $(t; \tau)$ - the symplectic coordinates on Ω_C. Let $\Omega_{X \times \mathbb{C}, \tau \neq 0}$ be the open subset of $\Omega_{X \times \mathbb{C}}$ where $\tau \neq 0$. We have a map

$$\rho : \Omega_{X \times \mathbb{C}, \tau \neq 0} \to \Omega_X, \quad (x, t; \xi, \tau) \mapsto (x, \tau^{-1} \xi).$$

Define the sub-sheaf of operators independent of t:

$$\hat{\mathcal{E}}_{\Omega_{X \times \mathbb{C}, t}}(0) = \{ P \in \hat{\mathcal{E}}_{\Omega_{X \times \mathbb{C}}}(0) \text{ such that } [P, \partial_t] = 0 \}.$$

Then, letting \hbar act as τ^{-1}, we define the canonical DQ-algebra on Ω_X by

$$\hat{\mathcal{W}}_X(0) = \rho_* \hat{\mathcal{E}}_{\Omega_{X \times \mathbb{C}, t}}(0).$$

The \hbar-localisation of $\hat{\mathcal{W}}_X(0)$ is denoted by $\hat{\mathcal{W}}_X$.

Definition 2.2.5. Let X be a topological space. An \mathbb{R}-algebroid on X is an \mathbb{R}-linear stack \mathcal{A} which is locally non-empty and any two objects in $\mathcal{A}(U)$ are locally isomorphic for any open $U \subset X$.

Example 2.2.6. Fix a topological space X. Let \mathcal{A} be a sheaf of \mathbb{R}-algebras on X. We consider the prestack $U \to \mathcal{A}(U)^+$, where $\mathcal{A}(U)^+$ is the \mathbb{R}-linear category with one object whose endomorphisms are given by $\mathcal{A}(U)$. The associated stack is denoted by \mathcal{A}^+. It’s an \mathbb{R}-algebroid.

Conversely, suppose that \mathcal{A} is an algebroid. If $\mathcal{A}(X)$ is non-empty, choose any $\tau \in \mathcal{A}(X)$. We have an equivalence $\mathcal{A} \simeq \mathcal{H}om(\tau, \tau)^+$ of \mathbb{R}-algebroids.

Given an \mathbb{R}-algebroid \mathcal{A} over X, let $\mathcal{M}_\mathbb{R}$ be the stack of sheaves of \mathbb{R}-modules on X, we define the \mathbb{R}-linear abelian category of modules over \mathcal{A} by

$$\text{Mod}(\mathcal{A}) = \text{Fct}(\mathcal{A}, \mathcal{M}_\mathbb{R}).$$

Definition 2.2.7. A deformation quantisation algebroid (DQ-algebroid) on X is a $\mathbb{C}[\hbar]$-algebroid \mathcal{A} such that, for any open $U \subset X$ and $\tau \in \mathcal{A}(U)$, the $\mathbb{C}[\hbar]$-algebra $\mathcal{H}om(\tau, \tau)$ is a DQ-algebra on U.

19
Remark 2.2.8. If X is a holomorphic symplectic variety, then the holomorphic Darboux theorem implies that locally we have canonical DQ-algebras associated with X, but they won’t generally glue to a global DQ-algebra. In general, one has to twist them by “half forms”, i.e. by the twisted sheaf of half top forms and its dual. It is a theorem of Polesello and Schapira [24] that the corresponding twisted DQ-algebras glue and we obtain a DQ-algebroid still denoted $\mathcal{W}(X, 0)$.

Any other DQ-algebroid \mathcal{A}_X on X will be equivalent to $\mathcal{W}(X, 0) \otimes_{\mathbb{C}[\hbar]} \mathcal{L}$ for some invertible $\mathbb{C}[\hbar]$-algebroid \mathcal{L}. Hence DQ-algebroids are classified by $H^2(X, \mathbb{C}[\hbar]^*)$.

Example 2.2.9. Example 2.2.3 shows that any DQ-algebroid on X induces a Poisson structure.

Remark 2.2.10. If \mathcal{A}_X is a DQ-algebroid, the local notions of being locally free, coherent, flat, etc. make sense for an \mathcal{A}_X-module \mathcal{D}.

Definition 2.2.11. Let \mathcal{B} be a sheaf of commutative \mathbb{C}-algebras.

- An \mathcal{B}-algebroid is a \mathcal{C}-algebroid \mathcal{A} together with a morphism of sheaves of \mathcal{C}-algebras $\mathcal{B} \to \mathcal{A}$.

- An \mathcal{B}-algebroid \mathcal{A} is called invertible if $\mathcal{B}|_U \to \mathcal{A}$ is an isomorphism for every open $U \subset X$.

Let $\iota: \mathcal{C} \to \mathbb{C}[[\hbar]]$ be the canonical inclusion, define a \mathcal{C}-algebroid $\iota^* \mathcal{A}_X$ by taking the stack associated with the prestack \mathcal{B} given by $\mathcal{B}(U) = \mathcal{A}_X(U)$ and $\text{Hom}_{\mathcal{A}_X(U)}(\sigma, \tau) = \text{Hom}_{\mathcal{A}_X(U)}(\sigma, \tau)/h\text{Hom}_{\mathcal{A}_X(U)}(\sigma, \tau)$.

The so defined \mathcal{C}-algebroid is an invertible \mathcal{O}_X-algebroid. There are functors of \mathcal{C}-algebroids

$$\mathcal{A}_X \to \iota^* \mathcal{A}_X \to \mathcal{O}_X$$

and an equivalence of \mathcal{C}-algebroids $\iota^* \mathcal{A}_X \simeq \mathcal{A}_X/\hbar \mathcal{A}_X \simeq \mathcal{O}_X$. In particular, we get a functor preversing boundedness and coherence

$$\iota^*: \mathcal{D}(\mathcal{A}_X) \to \mathcal{D}(\iota^* \mathcal{A}_X) \quad \iota^*: \mathcal{D} \mapsto \mathcal{C} \otimes_{\mathbb{C}[\hbar]} \mathcal{D}.$$

The \hbar-localisation of a DQ-algebroid \mathcal{A}_X is $\mathcal{A}_X^{\text{loc}} = \mathcal{C}((\hbar)) \otimes_{\mathbb{C}[\hbar]} \mathcal{A}_X$. More generally, we have a functor

$$\text{loc}: \mathcal{D}^b(\mathcal{A}_X) \to \mathcal{D}^b(\mathcal{A}_X^{\text{loc}}).$$

Lemma 2.2.12. Let $\mathcal{D} \in \mathcal{D}^b_{\text{coh}}(\mathcal{A}_X)$. Then we have $\text{Supp}(\mathcal{D}) = \text{Supp}(\iota^* \mathcal{D})$. In particular, $\text{Supp}(\mathcal{D})$ is a closed analytic subset of X.

If $\mathcal{E} \in \mathcal{D}^b_{\text{coh}}(\mathcal{A}_X^{\text{loc}})$, then $\text{Supp}(\mathcal{E})$ is a closed analytic subset of X, coisotropic for the Poisson structure defined by \mathcal{A}_X.

Remark 2.2.13. Note that we do not have a global equivalence $\iota^* \mathcal{A}_X \simeq \mathcal{O}_X$ of invertible \mathcal{O}_X-algebroids. This is generally only true locally. In the algebraic case, the vanishing of $H^2(X, \mathcal{O}_X^*)$ in the Zariski topology implies that $\iota^* \mathcal{A}_X \simeq \mathcal{O}_X$ as \mathcal{O}_X-algebroids globally.

The second statement in the lemma is known as Gabber’s theorem and doesn’t hold for coherent \mathcal{A}_X-modules - note that any closed analytic subset of X can be the support of such a module since any coherent \mathcal{O}_X-module is a coherent \mathcal{A}_X-module.
Theorem 2.2.14. (Kashiwara-Schapira [18]) Let X be a complex manifold endowed with a DQ-algebroid \mathcal{A}_X. Let
\[\mathcal{D}, \mathcal{E} \in D^b_{coh}(\mathcal{A}_X) \]
and suppose that $\text{Supp}(\mathcal{D}) \cap \text{Supp}(\mathcal{E})$ is compact. Then $R\mathcal{H}om_{\mathcal{A}_X}(\mathcal{D}, \mathcal{E})$ is a perfect complex of $C[\hbar]$-modules.

Definition 2.2.15. Let X be complex manifold endowed with a DQ-algebroid \mathcal{A}_X, and let Y be a smooth submanifold of X. A coherent \mathcal{A}_X-module \mathcal{D} supported on Y is called simple if \mathcal{D} is concentrated in degree 0 and $H^0(\mathcal{D})$ is an invertible $\mathcal{O}_Y \otimes_{\mathcal{O}_X} \mathcal{D}_X$-module.

Definition 2.2.16. Let X be a holomorphic symplectic variety equipped with a DQ-algebroid \mathcal{A}_X.

1. An $\mathcal{A}_X^{\text{loc}}$-module is called holonomic if it is coherent and its support is a Lagrangian subvariety of X.
2. An \mathcal{A}_X-module is called holonomic if it is coherent, \hbar-torsion free and its \hbar-localisation is holonomic.
3. Let L be a smooth Lagrangian. An $\mathcal{A}_X^{\text{loc}}$-module \mathcal{D} is called simple holonomic if there exists locally an \mathcal{A}_X-module \mathcal{D}^0, simple along L, which generates it, i.e. $(\mathcal{D}^0)^{\text{loc}} \simeq \mathcal{D}$.

Theorem 2.2.17. (Kashiwara-Schapira [17]) Let X be a holomorphic symplectic variety of dimension $2n$, equipped with a DQ-algebroid \mathcal{A}_X. Suppose that \mathcal{D} and \mathcal{E} are two holonomic $\mathcal{A}_X^{\text{loc}}$-modules. Then the complex $R\mathcal{H}om_{\mathcal{A}_X}(\mathcal{D}, \mathcal{E})[n]$ is a perverse sheaf.

Theorem 2.2.18. (D’Agnolo-Schapira [8]) Let X be a holomorphic symplectic variety and let $i : L \hookrightarrow X$ be a smooth Lagrangian. Assume that the canonical bundle K_L of L admits a square root. Then, for any choice of a square root $K_L^{1/2}$, there exists a simple $\mathcal{H}_X(0)$-module \mathcal{D}_L, supported on L, which quantises $K_L^{1/2}$.

Remark 2.2.19. Notation as in the previous theorem, consider the short exact sequence
\[1 \to C^* \to \mathcal{O}_L^{\text{log}} \to \mathcal{O}_L \to 0. \]
It induces a long exact sequence in cohomology, and we are interested in the following part of it:
\[H^1(L, C^*) \to H^1(L, \mathcal{O}_L^{\text{log}}) \to H^1(L, d\mathcal{O}_L) \to H^2(L, C^*). \]

Let $C_{K_L^{1/2}}$ be the C-algebroid associated to the class $\delta(\frac{1}{2}\alpha(C_1(K_L)))$. Then a general version of the above theorem asserts that there exists a simple $\mathcal{H}_X(0) \otimes C_{K_L^{1/2}}$-module along L, i.e. in general we only get a twisted $\mathcal{H}_X(0)$-module.

Notice that $C_{K_L^{1/2}}$ is trivial if there exists a line bundle \mathcal{L} such that $K_L \otimes \mathcal{L}^{\otimes 2}$ admits a flat connection, hence \mathcal{L} can be quantised. In particular, this agrees with the results of [2] since $H_X(0) \simeq H_X(0)^{\text{op}}$ implies that the Atiyah class $At(\mathcal{H}_X(0), L) = 0$.

Theorem 2.2.20. Let X be a holomorphic symplectic variety of dimension $2n$, equipped with the canonical DQ-algebroid $\mathcal{H}_X(0)$. Suppose that L and M are smooth Lagrangians and assume that $K_L^{1/2}$ and $K_M^{1/2}$ exist. Let \mathcal{D}_L^0 and \mathcal{D}_M^0 be two simple holonomic $\mathcal{H}_X(0)$-modules, supported on L and M, respectively, as in Theorem 2.2.18. Then we have an isomorphism of perverse sheaves
\[R\mathcal{H}om_{\mathcal{H}_X}(\mathcal{D}_L, \mathcal{D}_M)[n] \simeq C((\hbar)) \otimes_{\mathcal{D}} \mathcal{D}_{L,M}. \]

21
where \mathcal{D}_L is the \hbar-localisation $C((\hbar)) \otimes_{C[[\hbar]]} \mathcal{D}_L^0$ and similarly for \mathcal{D}_M.

3 Applications

We begin with a few standard results on calculations of local Ext sheaves and their multiplicative structure on locally complete intersections. In the second and third paragraphs we prove degeneration of the spectral sequences for a single Lagrangian and a pair of cleanly intersecting Lagrangians, respectively. We conclude with the formality of the endomorphism dg algebra $\text{RHom}(i_*K^1_L, i_*K^1_M)$ and the dg module $\text{RHom}(i_*K^1_L, j_*K^1_M)$ over it.

3.1 Sheaves on locally complete intersections.

Proposition 3.1.1. Let $i : Z \hookrightarrow X$ be a locally complete intersection. Suppose $c = \text{codim}(Z, X)$, and let \mathcal{F} be a coherent sheaf on Z. Then

$$\mathcal{H}^{-i}(i^*i_*\mathcal{F}) \cong \begin{cases} \mathcal{F} \otimes \wedge^i \mathcal{N}_{Z/X}^\vee, & 0 \leq i \leq c \\ 0, & \text{otherwise.} \end{cases}$$

Proposition 3.1.2. Let $i : Z \hookrightarrow X$ be a locally complete intersection of codimension c. Let \mathcal{F} and \mathcal{G} be coherent sheaves on Z.

1. Assume \mathcal{F} locally free, then we have $\text{Ext}^i(i_*\mathcal{F}, i_*\mathcal{G}) \cong \begin{cases} i_*(\wedge^i \mathcal{N}_{Z/X} \otimes \mathcal{F}^\vee \otimes \mathcal{G}), & 0 \leq i \leq c \\ 0, & \text{otherwise.} \end{cases}$

2. The Yoneda product coincides with the usual cup product. More precisely, let \mathcal{F}, \mathcal{G} be locally free sheaves, \mathcal{H} any coherent sheaf, then the Yoneda multiplication

$$\text{Ext}^i(i_*\mathcal{F}, i_*\mathcal{H}) \otimes \text{Ext}^j(i_*\mathcal{F}, i_*\mathcal{G}) \rightarrow \text{Ext}^{i+j}(i_*\mathcal{F}, i_*\mathcal{H})$$

corresponds under the above isomorphisms to

$$i_*(\wedge^i \mathcal{N}_{Z/X} \otimes \mathcal{F}^\vee \otimes \mathcal{H}) \otimes i_*(\wedge^j \mathcal{N}_{Z/X} \otimes \mathcal{F}^\vee \otimes \mathcal{G}) \rightarrow i_*(\wedge^{i+j} \mathcal{N}_{Z/X} \otimes \mathcal{F}^\vee \otimes \mathcal{H}),$$

given by exterior product and the natural map $\mathcal{F} \otimes \mathcal{G} \rightarrow \mathcal{O}_Z$.

3.2 Degeneration of the spectral sequence.

Let (X, σ) be a holomorphic symplectic variety. Recall that a subvariety L is called Lagrangian if $\sigma|_L = 0$ and $\dim L = \frac{1}{2} \dim X$. If $i : L \hookrightarrow X$ is a smooth Lagrangian we have $\mathcal{T}_X \cong \Omega^1_X$ via the symplectic form, hence $i^*\mathcal{T}_X \cong i^*\Omega^1_X$. There is a commutative diagram:

$$
\begin{array}{cccccc}
0 & \longrightarrow & \mathcal{T}_L & \longrightarrow & i^*\mathcal{T}_X & \longrightarrow & \mathcal{N}_{L/X} & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & \mathcal{N}_{L/X}^\vee & \longrightarrow & i^*\Omega^1_X & \longrightarrow & \Omega^1_L & \longrightarrow & 0
\end{array}
$$
which shows we have isomorphisms \(\Omega^k_{L_{loc}} \cong \wedge^q \mathcal{K}_{L_{loc}/X} \). Hence the second page of the local-to-global Ext spectral sequence, in the Lagrangian case, is \(E^2_{p,q} = H^p(L, \Omega^q_{L_{loc}}) \).

Theorem 3.2.1. Let \(X/C \) be holomorphic symplectic, and consider a compact Kähler Lagrangian \(i : L \hookrightarrow X \) whose canonical bundle admits a square root. Then the local-to-global Ext spectral sequence

\[
E^2_{p,q} = H^p(L, \Omega^q_{L_{loc}}) \Rightarrow \text{Ext}^{p+q}(i_*K^1_{L}/i_*K^1_{L_{loc}})
\]

degenerates on the second page. Hence \(H^k(L/C) = \bigoplus_{p,q} H^p(L, \Omega^q_{L_{loc}}) = \text{Ext}^k(i_*K^1_{L}/i_*K^1_{L_{loc}}) \).

Proof. This proof was envisaged by Thomas, and Petit helped us make the initial sketch rigorous. It will be enough to show that \(\dim C(\text{Ext}^i(i_*K^1_{L}/i_*K^1_{L_{loc}})) \geq \dim C(H^i(L/C)) \).

Let \(\mathcal{A}_X \) be the canonical quantisation \(\mathcal{H}_X(0) \) of \(X \). We fix a square root \(K^1_{L_{loc}} \) of the canonical bundle. There exists a simple \(\mathcal{A}_X \)-module \(\mathcal{D}_L^0 \) on \(L \) quantising \(K^1_{L_{loc}} \). Let \(\mathcal{A}_X^{loc} \) be the localisation \(C((h)) \otimes C[h] \mathcal{A}_X \). Then \(\mathcal{D}_L^0 \) localises to a simple holonomic DQ-module \(\mathcal{D}_L \) over \(\mathcal{A}_X^{loc} \).

Theorem 2.2.20 implies that

\[
\text{RHom}(\mathcal{D}_L, \mathcal{D}_L) \simeq C((h))_{L_{loc}},
\]

so we get \(\text{Ext}^i_{\mathcal{A}_X^{loc}}(\mathcal{D}_L, \mathcal{D}_L) = H^i(L, C((h))) \). Hence the universal coefficients theorem implies that

\[
\dim C((h)) (\text{Ext}^i_{\mathcal{A}_X^{loc}}(\mathcal{D}_L, \mathcal{D}_L)) = \dim C(H^i(L/C)).
\]

Furthermore Theorem 2.2.14, which requires \(L \) compact, states that

\[
\text{RHom}_{\mathcal{A}_X}(\mathcal{D}_L^0, \mathcal{D}_L^0) \in \text{Perf}(\text{Spec}(C[\hbar])).
\]

Then we can apply the semicontinuity theorem on \(C[\hbar] \) to get that

\[
\dim C(H^i(C \otimes C[\hbar]) \text{RHom}_{\mathcal{A}_X}(\mathcal{D}_L^0, \mathcal{D}_L^0)) \geq \dim C((h)) (\text{RHom}_{\mathcal{A}_X}(\mathcal{D}_L^0, \mathcal{D}_L^0))).
\]

It’s enough to observe that there is a quasi-isomorphism

\[
C \otimes C[\hbar] \text{RHom}_{\mathcal{A}_X}(\mathcal{D}_L^0, \mathcal{D}_L^0) \simeq \text{RHom}(i_*K_{L}/i_*K_{L_{loc}})
\]

and the projection formula implies that

\[
C((h)) \otimes C[\hbar] \text{RHom}_{\mathcal{A}_X}(\mathcal{D}_L^0, \mathcal{D}_L^0) \simeq \text{RHom}_{\mathcal{A}_X^{loc}}(\mathcal{D}_L, \mathcal{D}_L).
\]

Thus \(\dim C(\text{Ext}^i(i_*K^1_{L}/i_*K^1_{L_{loc}})) \geq \dim C((h)) (\text{Ext}^i_{\mathcal{A}_X^{loc}}(\mathcal{D}_L, \mathcal{D}_L)) = \dim C(H^i(L/C)). \)

3.3 Degeneration in case of pairs of Lagrangians.

Having dealt with the case of one Lagrangian, we now turn to pairs of Lagrangians. Let \(i : L \hookrightarrow X \) and \(j : M \hookrightarrow X \) be smooth submanifolds. We need a few standard results computing \(\text{Ext} \) sheaves on smooth intersections.
Proposition 3.3.1. Assuming $L \cap M$ smooth, we have
\[
\text{Ext}^p(i_*\mathcal{O}_L, j_*\mathcal{O}_M) \cong \wedge^{p-c}N \otimes \det\mathcal{N}_{L\cap M/M},
\]
where $c = \text{rk}\mathcal{N}_{L\cap M/M}$, $N := \mathcal{F}_L|_{L\cap M}/(\mathcal{F}_L|_{L\cap M} + \mathcal{F}_M|_{L\cap M})$ is the excess normal bundle.

In the Lagrangian case, which we assume from now on, we have an exact sequence:
\[
0 \to \mathcal{F}_{L\cap M} \to \mathcal{F}_L|_{L\cap M} \oplus \mathcal{F}_M|_{L\cap M} \to \Omega_{L\cap M} \to 0,
\]
hence
\[
\text{Ext}^p(i_*\mathcal{O}_L, j_*\mathcal{O}_M) \cong \Omega^{p-c}_{L\cap M} \otimes \det\mathcal{N}_{L\cap M/M}.
\]
The adjunction formula yields an isomorphism
\[
\det\mathcal{N}_{L\cap M/M} \cong K^1_{L\cap M}/K_{L\cap M},
\]
and by Lemma 2.1.7 we obtain
\[
\det\mathcal{N}_{L\cap M/L} \otimes \det\mathcal{N}_{L\cap M/M} \cong \mathcal{O}_{L\cap M}.
\]

Corollary 3.3.2. Assuming there exist square roots $K^{1/2}_L$ and $K^{1/2}_M$, define the orientation bundle
\[
\mathcal{K}_o := \left(\left.K^{1/2}_L\right|_{L\cap M} \otimes \left.K^{1/2}_M\right|_{L\cap M}\right)^\vee \otimes K_{L\cap M}
\]
and set $n = \text{codim}(L, X)$, so $c = n - \text{dim}(L \cap M)$. Then
\[
\text{Ext}^p(i_*K^{1/2}_L, j_*K^{1/2}_M) \cong \Omega^{p-c}_{L\cap M} \otimes \mathcal{K}_o.
\]

Remark 3.3.3. Notice that the line bundle \mathcal{K}_o is torsion, in fact of order 2. Hence the monodromy representation associated to the local system \mathcal{K}_o, arising from \mathcal{K}_o, is unitary - see beginning of next proof for a brief sketch.

Theorem 3.3.4. Let X/\mathbb{C} be a holomorphic symplectic variety. Suppose that $i : L \hookrightarrow X$, $j : M \hookrightarrow X$ are smooth Lagrangians with a compact Kähler intersection $L \cap M$. Assume that $K^{1/2}_L$ and $K^{1/2}_M$ exist. Then the Ext local-to-global spectral sequence
\[
E_2^{p,q} = H^p(L \cap M, \Omega^{q-c}_{L\cap M} \otimes \mathcal{K}_o) \Rightarrow \text{Ext}^{p+q}(i_*K^{1/2}_L, j_*K^{1/2}_M)
\]
degenerates on the second page. In particular,
\[
\text{Ext}^k\left(i_*K^{1/2}_L, j_*K^{1/2}_M\right) = \oplus_{p,q} H^p(L \cap M, \Omega^{q-c}_{L\cap M} \otimes \mathcal{K}_o) = H^{k-c}(\mathcal{K}_o).
\]

Proof. We have that $E_2^{p,q} = H^p(L \cap M, \Omega^{q-c}_{L\cap M} \otimes \mathcal{K}_o)$, where c is the codimension of $L \cap M$ in L and M, and \mathcal{K}_o is defined in Corollary 3.3.2. The line bundle \mathcal{K}_o is 2-torsion, hence admits a flat Chern connection, so the associated representation of $\pi_1(L \cap M, \text{pt})$ is unitary. As a consequence the Hodge-to-de Rham spectral sequence degenerates on E_1, so, analogously to the case of one Lagrangian, it will be enough to show that
\[
\dim_{\mathbb{C}}(\text{Ext}^i\left(i_*K^{1/2}_L, j_*K^{1/2}_M\right)) \geq \dim_{\mathbb{C}}(H^{i-c}(\mathcal{K}_o)).
\]
Let \(\mathcal{A} \) be the canonical quantisation \(\hat{\mathcal{X}}(0) \) of \(X \). We shall fix square roots \(K^{1/2}_L \) and \(K^{1/2}_M \) of the canonical bundles of \(L \) and \(M \). Let \(\mathcal{D}_L^0 \) and \(\mathcal{D}_M^0 \) be the simple \(\mathcal{A} \)-modules on \(L \) and \(M \) quantising \(K^{1/2}_L \) and \(K^{1/2}_M \), respectively. Then we let \(\mathcal{D}_L = C((h)) \otimes_{C[[h]]} \mathcal{D}_L^0 \) and \(\mathcal{D}_M = C((h)) \otimes_{C[[h]]} \mathcal{D}_M^0 \) be the corresponding \(h \)-localisations.

Since the intersection \(L \cap M \) is smooth, Theorem 2.2.20 implies that
\[
R\mathcal{H}om_{\mathcal{A}}(\mathcal{D}_L, \mathcal{D}_M) \simeq C((h))_{L \cap M} \otimes C \mathfrak{r}_{\text{or}}[-c],
\]
so we conclude that \(\text{Ext}^i_{\mathcal{A}}(\mathcal{D}_L, \mathcal{D}_M) = H^{i-c}(L \cap M, C((h)) \otimes C \mathfrak{r}_{\text{or}}) \). Hence the universal coefficients theorem implies that
\[
\dim_{\mathbb{C}((h))}(\text{Ext}^i_{\mathcal{A}}(\mathcal{D}_L, \mathcal{D}_M)) = \dim_{\mathbb{C}}(H^{i-c}(L \cap M, \mathfrak{r}_{\text{or}})).
\]
Moreover Theorem 2.2.14, which requires \(L \cap M \) compact, states that
\[
R\mathcal{H}om_{\mathcal{A}}(\mathcal{D}_L^0, \mathcal{D}_M^0) \in \text{Perf}(\text{Spec}(C[[h]])),
\]
Thus, we can apply the semicontinuity theorem on \(C[[h]] \) to conclude that
\[
\dim_{\mathbb{C}}(H^i(C \otimes_{C[[h]]} R\mathcal{H}om_{\mathcal{A}}(\mathcal{D}_L^0, \mathcal{D}_M^0))) \geq \dim_{\mathbb{C}((h))}(H^i(C((h)) \otimes_{C[[h]]} R\mathcal{H}om_{\mathcal{A}}(\mathcal{D}_L^0, \mathcal{D}_M^0))).
\]
Now observe that there is a quasi-isomorphism
\[
C \otimes_{C[[h]]} R\mathcal{H}om_{\mathcal{A}}(\mathcal{D}_L^0, \mathcal{D}_M^0) \simeq R\mathcal{H}om(i, K^{1/2}_L, j, K^{1/2}_M)
\]
and the projection formula implies that
\[
C((h)) \otimes_{C[[h]]} R\mathcal{H}om_{\mathcal{A}}(\mathcal{D}_L^0, \mathcal{D}_M^0) \simeq R\mathcal{H}om_{\mathcal{A}^{\text{loc}}}(\mathcal{D}_L, \mathcal{D}_M).
\]
Hence \(\dim_{\mathbb{C}}(\text{Ext}^i(i, K^{1/2}_L, j, K^{1/2}_M)) \geq \dim_{\mathbb{C}((h))}(\text{Ext}^i_{\mathcal{A}^{\text{loc}}}(\mathcal{D}_L, \mathcal{D}_M)) = \dim_{\mathbb{C}}(H^{i-c}(L \cap M, \mathfrak{r}_{\text{or}})). \quad \square
\]

3.4 Formality

Lemma 3.4.1. Let \(\iota : C \hookrightarrow C[[h]] \) be the inclusion of the central fibre and let \(C \in \text{Perf}(\text{Spec}(C[[h]])) \). Suppose that for all \(i \in \mathbb{Z} \) we have
\[
\dim_{\mathbb{C}}(H^i(C)) = \dim_{\mathbb{C}((h))}(H^i(C((h)) \otimes_{C[[h]]} C)).
\]
Then the cohomology \(H(C) \) is free (of finite rank) over \(C[[h]] \).

Proof. Consider the exact triangle \(C \xrightarrow{h} C \rightarrow \iota^* C \rightarrow C[1] \). It induces a long exact sequence in cohomology
\[
H^i(C) \xrightarrow{h} H^i(C) \rightarrow H^i(\iota^* C) \rightarrow H^{i+1}(C) \xrightarrow{h} H^{i+1}(C).
\]
Hence there are exact sequences
\[
0 \rightarrow C \otimes_{C[[h]]} H^i(C) \rightarrow H^i(\iota^* C) \rightarrow \text{Tor}_1^{C[[h]]}(C, H^{i+1}(C)) \rightarrow 0.
\]
In particular, we get that \(\dim_{\mathbb{C}} \left(\mathbb{C} \otimes_{\mathbb{C}[\hbar]} H^i(\mathbb{C}) \right) \leq \dim_{\mathbb{C}} \left(H^i(\mathbb{C}) \right) \). Since \(H^i(\mathbb{C}) \) is finitely generated, we may write it as

\[
H^i(\mathbb{C}) = \mathbb{C}[\hbar]^{d_i} \oplus \mathbb{C}[\hbar]/\hbar^{k_1} \oplus \cdots \oplus \mathbb{C}[\hbar]/\hbar^{k_r},
\]

where \(k_1, \ldots, k_r, r_i \in \mathbb{N} \). Notice that

\[
\dim_{\mathbb{C}} \left(\mathbb{C} \otimes_{\mathbb{C}[\hbar]} H^i(\mathbb{C}) \right) = d_i + r_i \text{ and } \dim_{\mathbb{C}[\hbar]} \left(\mathbb{C}(\hbar) \otimes_{\mathbb{C}[\hbar]} H^i(\mathbb{C}) \right) = d_i.
\]

It follows by flatness of \(\mathbb{C}(\hbar) \) that

\[
\dim_{\mathbb{C}[\hbar]} \left(\mathbb{C}(\hbar) \otimes_{\mathbb{C}[\hbar]} H^i(\mathbb{C}) \right) = \dim_{\mathbb{C}[\hbar]} \left(H^i(\mathbb{C}(\hbar)) \otimes_{\mathbb{C}[\hbar]} \mathbb{C}(\hbar) \right).
\]

Hence, \(r_i = 0 \) and \(H^i(\mathbb{C}) \) is free.

Proposition 3.4.2. Let \(X/\mathbb{C} \) be a holomorphic symplectic variety, endowed with its canonical DQ algebroid \(\mathcal{W}_X(0) \). Suppose \(L \) is a smooth Lagrangian in \(X \) and let \(\mathcal{D}_L \) be a holonomic \(\mathcal{W}_X \)-module on \(L \). Then the quasi-isomorphism \(\mathcal{RHom}_{\mathcal{W}_X} \left(\mathcal{D}_L, \mathcal{D}_L \right) \simeq \mathbb{C}(\hbar)L \) is compatible with the multiplicative structures, i.e. it is a quasi-isomorphism of dg algebras.

Proof. The question is local, we may assume \(X = \Omega_L \) and \(L \) is the zero section in \(\Omega_L \). We shall fix coordinates \((z_1, \ldots, z_n)\) on \(L \). Further, since any two holonomic \(\mathcal{W}_X \)-modules are locally isomorphic, we may let \(\mathcal{D}_L = \mathcal{O}_L(\hbar) \). Then the Koszul complex \(K(\mathcal{O}_L(\hbar), \partial_1, \ldots, \partial_n) \), associated with the coregular sequence \(\partial_1, \ldots, \partial_n \) acting (on the left) on \(\mathcal{O}_L(\hbar) \), gives a multiplicative model for \(\mathcal{RHom}_{\mathcal{W}_X} \left(\mathcal{O}_L(\hbar), \mathcal{O}_L(\hbar) \right) \) and the natural quasi-isomorphism \(\mathbb{C}(\hbar)L \to K(\mathcal{O}_L(\hbar), \partial_1, \ldots, \partial_n) \) is multiplicative.

Theorem 3.4.3. Let \(X/\mathbb{C} \) be holomorphic symplectic and let \(i : L \hookrightarrow X \) be a smooth compact Kähler Lagrangian submanifold whose canonical bundle admits a square root. Then the differential graded algebra \(\mathcal{RHom}(i_*K_L^{1/2}, i_*K_L^{1/2}) \) is formal, in fact, quasi-isomorphic to the de Rham algebra \(H(L/\mathbb{C}) \).

Proof. As before, let \(\mathcal{A}_X \) be the canonical quantisation \(\mathcal{W}_X(0) \) of \(X \). We fix a square root \(K_L^{1/2} \) of the canonical bundle. There exists a simple \(\mathcal{A}_X \)-module \(\mathcal{P}_L^0 \) on \(L \) quantising \(K_L^{1/2} \). Let \(\mathcal{A}_X^{\text{loc}} \) be the localisation \(\mathbb{C}(\hbar) \otimes_{\mathbb{C}[\hbar]} \mathcal{A}_X \) and denote \(\mathcal{D}_L = \mathbb{C}(\hbar) \otimes_{\mathbb{C}[\hbar]} \mathcal{P}_L^0 \) the \(h \)-localised simple holonomic DQ-module over \(\mathcal{A}_X^{\text{loc}} \).

Consider the differential graded algebra \(\mathcal{RHom}_{\mathcal{A}_X^{\text{loc}}}(\mathcal{P}_L^0, \mathcal{P}_L^0) \) over \(\mathbb{C}[\hbar] \). By Theorem 2.2.20, we have that

\[
\mathcal{RHom}_{\mathcal{A}_X^{\text{loc}}}(\mathcal{P}_L^0, \mathcal{P}_L^0) \simeq \mathbb{C}(\hbar)L.
\]

Degeneration of the spectral sequence on \(h = 0 \) allows us to apply Lemma 3.4.1, so the cohomology of \(\mathcal{RHom}_{\mathcal{A}_X^{\text{loc}}}(\mathcal{P}_L^0, \mathcal{P}_L^0) \) is free of finite rank over \(\mathbb{C}[\hbar] \). In particular, \(\text{Ext}_{\mathcal{A}_X}(\mathcal{P}_L^0, \mathcal{P}_L^0) \) is a formal deformation of the graded algebra \(\text{Ext}(i_*K_L^{1/2}, i_*K_L^{1/2}) \) to the de Rham algebra \(H(L/\mathbb{C})(\hbar) \). It follows that

\[
\dim_{\mathbb{C}}(HH^{p,q}(H(L/\mathbb{C}))) \leq \dim_{\mathbb{C}}(HH^{p,q}(\text{Ext}(i_*K_L^{1/2}, i_*K_L^{1/2}))).
\]

(2)

Furthermore, collapse of the spectral sequence on \(h = 0 \) also implies that there exists a filtration \(F \) on the graded algebra \(\text{Ext}(i_*K_L^{1/2}, i_*K_L^{1/2}) \) such that

\[
\text{Gr}_F(\text{Ext}(i_*K_L^{1/2}, i_*K_L^{1/2})) \cong H(L/\mathbb{C}),
\]

26
as graded algebras, so the associated (completed) Rees algebra is a formal deformation of the graded algebra $H(L/C)$ to $\text{Ext}(i, K_L^{1/2}, i, K_L^{1/2}) \otimes C((h))$. The Rees deformation gives the opposite of (2), hence

$$\dim C(HH^{p,q}(H(L/C))) = \dim C(\text{Ext}(i, K_L^{1/2}, i, K_L^{1/2}))$$

and by Lemma 3.4.1 the Hochschild cohomology groups $HH^{p,q}(\text{Ext}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0))$ are free over $C[h]$ for all $p, q \in \mathbb{Z}$. As a consequence, the Hochschild cohomology groups with compact supports of Lunts, $HH^i_0(\text{Ext}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0))$, are free over $C[h]$. It follows, by formality of L, that the differential graded algebra $R\text{Hom}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0)$ is formal. Hence, $R\text{Hom}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0)$ is formal by Theorem 1.1.12.

In order to conclude the formality proof, we note that there is a quasi-isomorphism

$$R\text{Hom}(i, K_L^{1/2}, i, K_L^{1/2}) \simeq C \otimes_{C[h]} R\text{Hom}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0).$$

Since the cohomology of $R\text{Hom}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0)$ is free over $C[h]$, it follows that the dg algebra

$$R\text{Hom}(i, K_L^{1/2}, i, K_L^{1/2})$$

is formal.

To prove the last statement of the theorem, note that $\text{Ext}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0)$ is a generically constant deformation which leaves the dimension of $HH^{2,0}$ unchanged. The classical results on deformations of [10] extend to the graded case, thus $\text{Ext}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0)$ must be the trivial deformation - we give a summary of the proof, referring to [10, Section 3] for details (in the non-graded case).

Let $HH := HH(\text{Ext}(i, K_L^{1/2}, i, K_L^{1/2}))$, $HH_h := HH(\text{Ext}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0))$ and $HH_{(h)}$ is the localisation of HH_h at h. The reduction mod h gives a map $HH_h \to HH$ and since HH_h is free over $C[h]$, taking a section of the reduction map, we get $HH_h \cong HH_{(h)}$.

We have an isomorphism of graded algebras

$$\varphi_h : \text{Ext}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0) \otimes C(h) \cong H(L/C) \otimes C((h)).$$

Write m_h and m_{dR} for the multiplications of $\text{Ext}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0)$ and $H(L/C)$, respectively. Then by definition

$$m_h = \varphi_h^{-1} m_{\text{dR}}(\varphi_h, \varphi_h). \tag{3}$$

Differentiating (3) with respect to h gives

$$m'_h = -d_h(\varphi_h^{-1} \varphi'_h), \tag{4}$$

where d_h is the Hochschild differential of the graded algebra $\text{Ext}_{\mathcal{O}_X}(\mathcal{O}_L^0, \mathcal{O}_L^0)$, i.e. $[m'_h] = 0$ in $HH^{2,0}_{(h)}$.

Writing

$$m_h = m + m_r h^r + \cdots, \quad r \geq 1,$$

we see that the left side of (4) is

$$rm_r h^{r-1} + (r + 1)m_{r+1}h^r + \cdots.$$

Hence we deduce that

$$m_r + (r + 1)/r \cdot m_{r+1}h + (r + 2)/r \cdot m_{r+2}h^2 + \cdots.$$
is a \(h \)-torsion class in \(\text{HH}^{2,0}_h \), lifting the class \([m_r] \in \text{HH}^{2,0} \), so it must vanish. Thus \([m_r] = 0 \) too. If \(m_r = \text{id}(\psi^r) \), then we can kill \(m_r \) using \(\text{id} - \psi^r h^r \). By induction we get \(\psi^i \) for all \(i \geq r \), the infinite composition
\[
\psi_h = \left((\text{id} - \psi^r h^r) \circ (\text{id} - \psi^{r+1} h^{r+1}) \circ \cdots \right)
\]
makes sense and we have \(\psi_h^{-1} m_h(\psi_h, \psi_h) = m \), showing the triviality of \(m_h \).

Since \(\text{Ext}(i_*K^{1/2}_{L}, i_*K^{1/2}_{M}) \) and \(\text{Ext}(L/C) \) are finite dimensional over \(C \) and become isomorphic after extending scalars to \(C[[h]] \), they are already isomorphic over \(C \).

Corollary 3.4.4. Let \(X/C \) be holomorphic symplectic, and consider a compact Kähler Lagrangian \(i : L \hookrightarrow X \) such that \(K^{1/2}_L \) exists. Then \(\text{Ext}(i_*K^{1/2}_{L}, i_*K^{1/2}_{M}) \cong \text{Ext}(L/C) \) as graded algebras.

Theorem 3.4.5. Let \(X/C \) be holomorphic symplectic. Suppose that \(i : L \hookrightarrow X, j : M \hookrightarrow X \) are compact Kähler Lagrangians with a smooth intersection. Assume their canonical bundles admit square roots. Then \(\text{RHom}(i_*K^{1/2}_{L}, j_*K^{1/2}_{M}) \) is a formal differential graded module over the (formal) differential graded algebra \(\text{RHom}(i_*K^{1/2}_{L}, i_*K^{1/2}_{M}) \). Moreover, we have a quasi-isomorphism of pairs
\[
(\text{RHom}(i_*K^{1/2}_{L}, i_*K^{1/2}_{M}), \text{RHom}(i_*K^{1/2}_{L}, j_*K^{1/2}_{M})) \cong (\text{H}(L/C), \text{H}^{* - c}(L \cap M, \mathfrak{R}_\text{or})),
\]
where \(c \) is the codimension of \(L \cap M \) in \(L \).

Proof. Let \(\mathcal{A}_X \) be the canonical quantisation \(\mathcal{A}_X(0) \) of \(X \). We shall fix square roots \(K^{1/2}_L \) and \(K^{1/2}_M \) of the canonical bundles of \(L \) and \(M \). Let \(\mathcal{P}_L^0 \) and \(\mathcal{P}_M^0 \) be simple \(\mathcal{A}_X \)-modules over \(L \) and \(M \) quantising \(K^{1/2}_L \) and \(K^{1/2}_M \), respectively. Then we let \(\mathcal{P}_L = C[[h]] \otimes_C \mathcal{P}_L^0 \) and \(\mathcal{P}_M = C[[h]] \otimes_C \mathcal{P}_M^0 \) be the corresponding \(h \)-localisations.

The complex \(\text{RHom}_{\mathcal{A}_X}(\mathcal{P}_L^0, \mathcal{P}_M^0) \) is a dg module over \(\text{RHom}_{\mathcal{A}_X}(\mathcal{P}_L^0, \mathcal{P}_M^0) \). Since the intersection \(L \cap M \) is smooth, Theorem 2.2.20 implies that
\[
\text{RHom}_{\mathcal{A}_X}(\mathcal{P}_L^0, \mathcal{P}_M^0) \cong C[[h]]_{L \cap M} \otimes_C \mathfrak{R}_\text{or}[-c].
\]

It follows by Theorem 3.3.4 and Lemma 3.4.1 that the cohomology of \(\text{RHom}_{\mathcal{A}_X}(\mathcal{P}_L^0, \mathcal{P}_M^0) \) is free over \(C[[h]] \). In particular, we see that \(\text{Ext}_{\mathcal{A}_X}(\mathcal{P}_L^0, \mathcal{P}_M^0) \) is a formal deformation of the graded module \(\text{Ext}(i_*K^{1/2}_{L}, j_*K^{1/2}_{M}) \) to \(\text{H}^{* - c}(L \cap M, \mathfrak{R}_\text{or})(h) \). It follows that
\[
\dim_C(\text{HH}^{p,q}(L/C), \text{H}^{* - c}(L \cap M, \mathfrak{R}_\text{or}))) \leq \dim_C(\text{HH}^{p,q}(L/C), \text{Ext}(i_*K^{1/2}_{L}, j_*K^{1/2}_{M}))).
\]

As in the previous theorem, degeneration of the spectral sequence on \(h = 0 \) gives a filtration \(F \) on \(\text{Ext}(i_*K^{1/2}_{L}, j_*K^{1/2}_{M}) \) such that
\[
\text{Gr}_F(\text{Ext}(i_*K^{1/2}_{L}, j_*K^{1/2}_{M})) \cong \text{H}^{* - c}(L \cap M, \mathfrak{R}_\text{or})
\]
as graded modules over \(H(L/C) \). The Rees deformation argument then implies the opposite the above inequality, so we conclude
\[
\dim_C(\text{HH}^{p,q}(L/C), \text{H}^{* - c}(L \cap M, \mathfrak{R}_\text{or}))) = \dim_C(\text{HH}^{p,q}(L/C), \text{Ext}(i_*K^{1/2}_{L}, j_*K^{1/2}_{M}))).
\]

Thus, by Lemma 3.4.1, the Hochschild cohomology groups
\[
\text{HH}^{p,q}(\text{Ext}_{\mathcal{A}_X}(\mathcal{P}_L^0, \mathcal{P}_M^0), \text{Ext}_{\mathcal{A}_X}(\mathcal{P}_L^0, \mathcal{P}_M^0))
\]

28
are free over $\mathbb{C}[\hbar]$ for all $p, q \in \mathbb{Z}$.

We observed in the beginning of the proof of Theorem 3.3.4 that the local system \mathfrak{R}_{or} corresponds to a unitary representation of the fundamental group of $L \cap M$. Then, as explained on page 2, by a theorem of Deligne (see [11], [27]), we conclude that $\text{RHom}_{\mathfrak{A}_X}(\mathcal{D}_L, \mathcal{D}_M)$ is a formal dg module over the dg algebra $\text{RHom}_{\mathfrak{A}_X}(\mathcal{D}_L, \mathcal{D}_L)$. Hence $\text{RHom}_{\mathfrak{A}_X}(\mathcal{D}_L, \mathcal{D}_L)$ is a formal dg module over the dg algebra $\text{RHom}_{\mathfrak{A}_X}(\mathcal{D}_L, \mathcal{D}_L)$ by Proposition 1.8.4.

Next we note that there is a natural quasi-isomorphism of dg modules

$$\text{RHom}(i_! K_{1/2}^L, j_! K_{1/2}^M) \simeq \mathbb{C} \otimes_{\mathbb{C}[\hbar]} \text{RHom}_{\mathfrak{A}_X}(\mathcal{D}_L^0, \mathcal{D}_M^0),$$

associated with the quasi-isomorphism of dg algebras

$$\text{RHom}(i_! K_{1/2}^L, i_! K_{1/2}^L) \simeq \mathbb{C} \otimes_{\mathbb{C}[\hbar]} \text{RHom}_{\mathfrak{A}_X}(\mathcal{D}_L^0, \mathcal{D}_L^0).$$

It is now enough to recall that the cohomology of $\text{RHom}_{\mathfrak{A}_X}(\mathcal{D}_L^0, \mathcal{D}_M^0)$ is free over $\mathbb{C}[\hbar]$, hence $\text{RHom}(i_! K_{1/2}^L, j_! K_{1/2}^M)$ is formal over $\text{RHom}(i_! K_{1/2}^L, i_! K_{1/2}^L)$.

For the last assertion, we observe that $\text{Ext}_{\mathfrak{A}_X}(\mathcal{D}_L^0, \mathcal{D}_M^0)$ is a generically constant deformation that leaves $H^{1,0}$ constant. Such a deformation must be trivial, the proof being similar to the one for deformations of algebras discussed in the proof of Theorem 3.4.3. Thus, $\text{Ext}(i_! K_{1/2}^L, j_! K_{1/2}^M)$ and $H^{*,*}(L \cap M, \mathfrak{R}_{\text{or}})$ are isomorphic since they are finite dimensional over \mathbb{C} and become isomorphic upon extending scalars to $\mathbb{C}(\hbar)$.

References

[1] Mohammed Abouzaid and Ivan Smith. The symplectic arc algebra is formal. *Duke Math. J.*, 165(6):985–1060, 2016.

[2] Vladimir Baranovsky, Victor Ginzburg, Dmitry Kaledin, and Jeremy Pecharich. Quantization of line bundles on lagrangian subvarieties. *Selecta Math. (N.S.)*, 22(1):1–25, 2016.

[3] Kai Behrend and Barbara Fantechi. Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian intersections. In *Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I*, volume 269 of *Progr. Math.* pages 1–47. Birkhäuser Boston, Inc., Boston, MA, 2009.

[4] A. A. Beilinson, J. Bernstein, and Pierre Deligne. *Analyse et topologie sur les espaces singuliers (I).* Number 100 in Astérisque. Société mathématique de France, 1982.

[5] C. Brav, V. Bussi, D. Dupont, D. Joyce, and B. Szendrői. Symmetries and stabilization for sheaves of vanishing cycles. *J. Singul.*, 11:85–151, 2015. With an appendix by Jörg Schürmann.

[6] Vittoria Bussi. Categorification of lagrangian intersections on complex symplectic manifolds using perverse sheaves of vanishing cycles. 4 2014.

[7] Damien Calaque, Vasily Dolgushev, and Gilles Halbout. Formality theorems for Hochschild chains in the Lie algebroid setting. *J. Reine Angew. Math.*, 612:81–127, 2007.

[8] Andrea D’Agnolo and Pierre Schapira. Quantization of complex Lagrangian submanifolds. *Adv. Math.*, 213(1):358–379, 2007.
[9] Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan. Real homotopy theory of Kähler manifolds. *Inventiones mathematicae*, 29(3):245–274, Oct 1975.

[10] Murray Gerstenhaber. On the deformation of rings and algebras. IV. *Ann. of Math. (2)*, 99:257–276, 1974.

[11] William M. Goldman and John J. Millson. The deformation theory of representations of fundamental groups of compact Kähler manifolds. *Inst. Hautes Études Sci. Publ. Math.*, (67):43–96, 1988.

[12] Dominic Joyce. A classical model for derived critical loci. *J. Differential Geom.*, 101(2):289–367, 2015.

[13] T. V. Kadeišvili. On the theory of homology of fiber spaces. *Uspekhi Mat. Nauk*, 35(3(213)):183–188, 1980. International Topology Conference (Moscow State Univ., Moscow, 1979).

[14] D. Kaledin. Some remarks on formality in families. *Mosc. Math. J.*, 7(4):643–652, 766, 2007.

[15] Anton Kapustin. Topological strings on noncommutative manifolds. *International Journal of Geometric Methods in Modern Physics*, 1:49–81, 2004.

[16] Anton Kapustin and Lev Rozansky. Three-dimensional topological field theory and symplectic algebraic geometry II. *Communications in Number Theory and Physics*, 4:463–549, 2010.

[17] Masaki Kashiwara and Pierre Schapira. Constructibility and duality for simple holonomic modules on complex symplectic manifolds. *American Journal of Mathematics*, 130(1):207–237, 2008.

[18] Masaki Kashiwara and Pierre Schapira. Deformation quantization modules. *Astérisque*, (345):xii+147, 2012.

[19] Maxim Kontsevich. Formality conjecture. In *Deformation theory and symplectic geometry (Ascona, 1996)*, volume 20 of *Math. Phys. Stud.*, pages 139–156. Kluwer Acad. Publ., Dordrecht, 1997.

[20] Maxim Kontsevich. Deformation quantization of Poisson manifolds. *Lett. Math. Phys.*, 66(3):157–216, 2003.

[21] Kenji Lefèvre-Hasegawa. Sur les A_∞-catégories, 2003.

[22] Valery A. Lunts. Formality of DG algebras (after Kaledin). *J. Algebra*, 323(4):878–898, 2010.

[23] Borislav Mladenov. Degeneration of spectral sequences and complex Lagrangian submanifolds. 2019.

[24] Pietro Polesello and Pierre Schapira. Stacks of quantization-deformation modules on complex symplectic manifolds. *International Mathematics Research Notices*, 2004(49):2637–2664, 01 2004.

[25] Paul Seidel and Ivan Smith. A link invariant from the symplectic geometry of nilpotent slices. *Duke Math. J.*, 134(3):453–514, 2006.

[26] Paul Seidel and Richard Thomas. Braid group actions on derived categories of coherent sheaves. *Duke Math. J.*, 108(1):37–108, 2001.
[27] Carlos T. Simpson. Higgs bundles and local systems. *Inst. Hautes Études Sci. Publ. Math.*, (75):5–95, 1992.

[28] Jake P. Solomon and Misha Verbitsky. Locality in the Fukaya category of a hyperkähler manifold. *Compositio Mathematica*, 155(10):1924–1958, 2019.

[29] Michel Van den Bergh. On global deformation quantization in the algebraic case. *J. Algebra*, 315(1):326–395, 2007.

[30] Amnon Yekutieli. Deformation quantization in algebraic geometry. *Adv. Math.*, 198(1):383–432, 2005.

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

bm1514@ic.ac.uk