NEVILLE’S PRIMITIVE ELLIPTIC FUNCTIONS: THE CASE \(g_3 = 0 \)

P.L. ROBINSON

Abstract. The vanishing of the invariant \(g_3 \) attached to a lattice \(\Lambda \) singles out a midpoint lattice and yields a square-root of the associated Weierstrass function \(\wp_\Lambda \).

Neville’s Jacobian Elliptic Functions [1] is a peerless classic in its field. It is therefore with some reticence that we draw attention to a minor oversight in its presentation of the primitive functions as meromorphic square-roots of the shifted Weierstrass function \(\wp \).

The oversight occurs on page 50 of [1]: there it is stated that ‘The zeros of \(\wp_z \) are simple, and the branches of \((\wp_z)^\frac{1}{2} \) can not be separated’. This is not quite correct: if we denote by \(\Lambda \) the period/pole lattice of \(\wp \) then the zeros of \(\wp \) are simple except in case the invariant \(g_3(\Lambda) \) is zero. We note that the statement asserting simplicity of the zeros of \(\wp \) is not made in the prequel [2].

In a little more detail, let \(\Lambda \subset \mathbb{C} \) be any lattice; the associated Weierstrass function \(\wp = \wp_\Lambda \) is then defined by

\[
\wp(z) = z^{-2} + \sum_{0 \neq \lambda \in \Lambda} \{(z - \lambda)^{-2} - \lambda^{-2}\}
\]

and has \(\Lambda \) as both its period lattice and its pole lattice. The zeros of the derivative \(\wp' \) are precisely those \(z \notin \Lambda \) such that \(2z \in \Lambda \) and they make up three congruent lattices. If \(\Lambda = \{2n_1\omega_1 + 2n_2\omega_2 : n_1, n_2 \in \mathbb{Z}\} \) and \(\omega_1 + \omega_2 + \omega_3 = 0 \) then these three midpoint lattices are \(\omega_1 + \Lambda, \omega_2 + \Lambda, \omega_3 + \Lambda; \) the values of \(\wp \) at each point of these lattices are denoted by \(e_1, e_2, e_3 \) respectively. Among their many properties, these distinct midpoint constants satisfy

\[
e_1 + e_2 + e_3 = 0
\]

and

\[
e_1e_2e_3 = g_3/4
\]

where the invariant \(g_3 = g_3(\Lambda) \) is defined by

\[
g_3 = 140 \sum_{0 \neq \lambda \in \Lambda} \lambda^{-6}.
\]

It follows at once that if \(g_3 = 0 \) then precisely one of the midpoint constants vanishes: say \(0 = e_p = \wp(\omega_p); \) as \(\wp'(\omega_p) = 0 \) also, \(\omega_p \) is a double zero of the second-order elliptic function \(\wp \).

As its poles are also double, the Weierstrass function \(\wp \) itself has meromorphic square-roots (by the Weierstrass product theorem, for instance). It also follows that if \(g_3 \neq 0 \) then none of the midpoint constants vanishes, so that \(\wp \) has simple zeros and no meromorphic square-roots.

Neville shifts \(\wp \) by the midpoint constants and considers the three functions \(\wp - e_p \) as \(p \) runs over \(\{1, 2, 3\} \). By design, each of these second-order elliptic functions has double zeros on the corresponding midpoint lattice \(\omega_p + \Lambda \) and so has two meromorphic square-roots; Neville (though with an ingenious change of notation, which we recommend) defines the primitive function \(J_p \) to be the meromorphic square-root of \(\wp - e_p \) that satisfies \(zJ_p(z) \to 1 \) as \(z \to 0 \). Of course, our observation calls for no correction to any of this: it is simply the case that if \(g_3 = 0 \) then one of the midpoint constants is actually zero and need not be subtracted; the corresponding primitive function is then naturally preferred.
To take a particularly straightforward example, let \(\omega_1 = 1 \) and \(\omega_2 = i \) so that \(\omega_3 = -1 - i \) and
\[
\Lambda = \{ 2m + 2ni : m, n \in \mathbb{Z} \}
\]
is the lattice of (even) Gaussian integers; the union \(\frac{1}{2} \Lambda \) of \(\Lambda \) and its three midpoint lattices is the full lattice of Gaussian integers. As multiplication by \(i \) leaves \(\Lambda \) invariant,
\[
\sum_{0 \neq \lambda \in \Lambda} \lambda^{-6} = \sum_{0 \neq \lambda \in \Lambda} (i\lambda)^{-6} = i^{-6} \sum_{0 \neq \lambda \in \Lambda} \lambda^{-6} = - \sum_{0 \neq \lambda \in \Lambda} \lambda^{-6}
\]
whence
\[
g_3(\Lambda) = 0
\]
and a similar calculation reveals that
\[
p(iz) = -p(z).
\]
It follows that \(e_3 = p(\omega_3) = 0 \): indeed, \(p(\omega_2) = p(i) = -p(1) = -p(\omega_1) \) so that \(e_1 + e_2 = 0 \) while \(e_1 + e_2 + e_3 = 0 \) in any case; of course, a direct computation is also possible. For this lattice, the Weierstrass function \(\wp \) has global meromorphic square-roots, namely \(J_3 \) and \(-J_3 \). It may be checked that the identity \(p(iz) = -p(z) \) implies that \(i J_3(iz) = J_3(z) \); it may also be checked that the same symmetry interchanges the other primitive elliptic functions \(J_1 \) and \(J_2 \) in the sense \(J_2(z) = i J_1(iz) \) and \(J_1(z) = i J_2(iz) \).

To summarize the general situation: if the invariant \(g_3(\Lambda) \) vanishes, then one of the midpoint constants vanishes, naturally singling out the corresponding midpoint lattice along with the corresponding primitive elliptic function, which is a meromorphic square-root of the Weierstrass function \(\wp_\Lambda \) itself; if \(g_3(\Lambda) \) does not vanish, then \(\wp_\Lambda \) lacks meromorphic square-roots. To put a part of this another way, the invariant \(g_3(\Lambda) \) is the obstruction to the existence of a global meromorphic square-root of \(\wp_\Lambda \).

Incidentally, an obstruction-theoretic significance also attaches to the invariant
\[
g_2 = g_2(\Lambda) = 60 \sum_{0 \neq \lambda \in \Lambda} \lambda^{-4}
\]
which satisfies
\[
e_2e_3 + e_3e_1 + e_1e_2 = -g_2/4.
\]
Let \(\zeta_4 \) be the fourth-order Eisenstein function defined by
\[
\zeta_4(z) = \sum_{\lambda \in \Lambda} (z - \lambda)^{-4}
\]
so that
\[
\zeta_4 = \frac{1}{6} \wp'' = \wp^2 - \frac{1}{12} g_2.
\]
Evidently, if \(g_2 \) is zero then \(\zeta_4 \) has the functions \(\pm \wp \) as meromorphic square-roots. Assume instead that \(g_2 \) is nonzero and write \(c^2 = \frac{1}{12} g_2 \); if \(\zeta_4 = \wp^2 - c^2 = (\wp - c)(\wp + c) \) is a square then its zeros must be double, so that \(c \) and \(-c \) are midpoint constants; as the three midpoint constants have zero sum, they are \(\pm c \) and 0, whence
\[
-\frac{1}{4} g_2 = e_2e_3 + e_3e_1 + e_1e_2 = c^2 = -\frac{1}{12} g_2
\]
and therefore \(g_2 \) is zero, contrary to assumption. In short, \(\zeta_4 \) admits global meromorphic square-roots precisely when the invariant \(g_2 \) vanishes.

REFERENCES

[1] E.H. Neville, Jacobian Elliptic Functions, Oxford University Press (1944).
[2] E.H. Neville, Elliptic Functions: A Primer, Pergamon Press (1971).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE FL 32611 USA
E-mail address: paulr@ufl.edu