Ammonia transport in cultured gill epithelium of freshwater rainbow trout: the importance of Rhesus glycoproteins and the presence of an apical Na⁺/NH₄⁺ exchange complex

T. K. N. Tsui¹, C. Y. C. Hung¹, C. M. Nawata¹, J. M. Wilson², P. A. Wright³ and C. M. Wood¹,*

¹Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1. ²Ecofisiologia CIMAR, 4550-123 Porto, Portugal and ³Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

*Author for correspondence (e-mail: woodcm@mcmaster.ca)

Accepted 11 December 2008

Summary

The mechanisms of ammonia excretion at fish gills have been studied for decades but details remain unclear, with continuing debate on the relative importance of non-ionic NH₃ or ionic NH₄⁺ permeation by various mechanisms. The presence of an apical Na⁺/NH₄⁺ exchanger has also been controversial. The present study utilized an in vitro cultured gill epithelium (double seeded insert, DSI) of freshwater rainbow trout as a model to investigate these issues. The relationship between basolateral ammonia concentration and efflux to apical freshwater was curvilinear, indicative of a saturable carrier-mediated component (Kₘ=66 μmoll⁻¹) superimposed on a large diffusive linear component. Pre-exposure to elevated ammonia (2000μmol l⁻¹) and cortisol (1000 ng ml⁻¹) had synergistic effects on the ammonia permeability of DSI, with significantly increased Na⁺ influx and positive correlations between ammonia efflux and Na⁺ uptake. This increase in ammonia permeability was bidirectional. It could not be explained by changes in paracellular permeability as measured by [³H]PEG-4000 flux. The mRNA expressions of Rhbg, Rchcg2, H⁺-ATPase and Na⁺/H⁺ exchanger-2 (NHE-2) were up-regulated in DSI pre-exposed to ammonia and cortisol, CA-2 mRNA was down-regulated, and transepithelial potential became more negative. Bafilomycin (1μmol l⁻¹), phenamil (10μmol l⁻¹) and 5-(N,N-hexamethylene)amiloride (HMA, 10μmol l⁻¹) applied to the apical solution significantly inhibited ammonia efflux, indicating that H⁺-ATPase, Na⁺ channel and NHE-2 pathways on the apical surface were involved in ammonia excretion. Apical amiloride (100μmol l⁻¹) was similarly effective, while basolateral HMA was ineffective. Pre-treatment with apical freshwater low in [Na⁺] caused increases in both Rchcg2 mRNA expression and ammonia efflux without change in paracellular permeability. These data suggest that Rhesus glycoproteins are important for ammonia transport in the freshwater trout gill, and may help to explain in vivo data where plasma ammonia stabilized at 50% below water levels during exposure to high environmental ammonia (~2300μmol l⁻¹). We propose an apical ‘Na⁺/NH₄⁺ exchange complex’ consisting of several membrane transporters, while affirming the importance of non-ionic NH₃ diffusion in ammonia excretion across freshwater fish gills.

Key words: Rhesus glycoproteins, Oncorhynchus mykiss, gills, ammonia transport, sodium uptake, cortisol, H⁺-ATPase, carbonic anhydrase, transepithelial potential.

Introduction

Ammonia (throughout this paper, the term ‘ammonia’ is used to refer to total NH₃ + NH₄⁺, whereas these chemical symbols are used to refer to the two components) is a toxic end-product of protein catabolism which must be rapidly metabolized or excreted by all animals. Smith (Smith, 1929) and Krogh (Krogh, 1938) established that ammonia excretion and active Na⁺ absorption, respectively, take place in gills of animals living in freshwater. Krogh (Krogh, 1939) further suggested that a Na⁺/NH₄⁺ exchange system exists on the apical membrane of the freshwater fish gill. Since then many studies have been carried out attempting to delineate the mechanisms involved in ammonia excretion and Na⁺ uptake. However, these studies often led to conflicting conclusions: some supported the presence of a Na⁺/NH₄⁺ exchange system (Maetz and Garcia-Romeu, 1964; Maetz, 1973; Payan and Matty, 1975; Payan et al., 1975; Kerstetter and Keeler, 1976; Payan, 1978; Pressley et al., 1981; McDonald and Prior, 1988; McDonald and Milligan, 1988), others suggested that diffusive mechanisms predominated (Avella and Bornancin, 1989; Wilson et al., 1994; Wilkie and Wood, 1994; Wilkie et al., 1996), while still others argued that both mechanisms were likely to be present (Wright and Wood, 1985; Heisler, 1990; Salama et al., 1999).

Certain observations supported the presence of a Na⁺/NH₄⁺ exchange system. For example, the amount of ammonia excreted and the amount of Na⁺ taken up have been shown to be equivalent in some circumstances (Wright and Wood, 1985; McDonald and Prior, 1988; McDonald and Milligan, 1988; Salama et al., 1999). Furthermore, stimulation of ammonia excretion by ammonia loading resulted in stimulation of Na⁺ uptake (Maetz and Garcia-Romeu, 1964; Wilson et al., 1994; Salama et al., 1999). In addition, amiloride, an inhibitor of Na⁺ influx, caused a reduction in ammonia excretion (Kerstetter and Keeler, 1976; Payan, 1978; Wright and Wood, 1985; Yesaki and Iwama, 1992).

The controversy, however, continues because of other experimental results that suggested the absence of a Na⁺/NH₄⁺ exchange system. Using an isolated perfused head preparation (IPHP), Avella and Bornancin (Avella and Bornancin, 1989) observed that when ammonia excretion was increased by increasing the ammonia level in the gill perfusate from 0 to 1 mmol l⁻¹, Na⁺ uptake was not affected. They also found that when the pH of the gill perfusate was reduced,
which increased the amount of NH₄⁺ in the perfusate and should have stimulated ammonia excretion if a Na⁺/NH₄⁺ exchanger was present, ammonia excretion was actually decreased (Avella and Bornancin, 1989). Also, at high ambient pH (Wilkie and Wood, 1994) or in strongly buffered water (Wilson et al., 1994), amiloride did not affect ammonia excretion in rainbow trout.

Interpretations of experiments on this topic using live fish or the IPHP are often problematical because of the complexity of the gill architecture and the associated microenvironments. An alternative in vitro approach which avoids many of these problems is the gill epithelium of rainbow trout cultured on permeable filter supports (‘inserts’); this preparation withstands apical freshwater exposure and allows experimental manipulation of the chemical composition (pH, ammonia level, Na⁺ concentration, etc.) of solutions on either side of the epithelium (reviewed by Wood et al., 2002). Kelly and Wood (Kelly and Wood, 2001a) used this approach to investigate gill ammonia excretion; their principal conclusion was that ammonia efflux could not be explained by diffusion alone, and that carrier-mediated transport probably also played an important role. Our goal in the present study was to use the same in vitro approach to further address this issue of diffusive versus carrier-mediated transport, and to identify the latter mechanism(s). Specifically, we employed the double seeded insert (DSI) preparation developed by Fletcher and colleagues (Fletcher et al., 2000), which is a modification of the original preparation of Wood and Pärt (Wood and Pärt, 1997) so as to contain an appropriate amount of mitochondria-rich cells (15%) in addition to pavement cells, thereby better simulating the native epithelium of the trout gill. Cortisol was employed in some experiments because of its demonstrated ability to stimulate active Na⁺ uptake in DSI preparations without altering Na⁺,K⁺-ATPase activity, an effect that may occur through apical channels or transporters (Kelly and Wood, 2001b; Zhou et al., 2003).

In initial experiments where basolateral ammonia concentration was varied, we found evidence of a saturable transport system superimposed on simple diffusion. Our particular focus then became the possible role of Rhesus (Rh) glycoproteins as ammonia carriers. The Rh proteins are now believed to be involved in ammonia transport in diverse organisms (Marini et al., 2000; Liu et al., 2000; Liu et al., 2001; Weirrauch et al., 2004). Our group has recently cloned several Rh proteins from the rainbow trout gill and shown that their mRNA expression responds to ammonia loading (Nawata et al., 2007; Nawata and Wood, 2008) and turns on during embryonic development in parallel with ammonia excretion (Hung et al., 2008). To elucidate the mechanism of ammonia excretion and to further investigate the role of Rh proteins in the rainbow trout gill, we pre-exposed the DSI preparations to cortisol and/or elevated ammonia. We found that mRNA expression of certain Rh proteins, as well as H⁺-ATPase and Na⁺/H⁺ exchanger-2 (NHE-2) were induced, and that the ammonia permeability of the DSI was also increased, while carbonic anhydrase (CA-2) mRNA was down-regulated. With the help of specific inhibitors of the Na⁺ channel (phenamil), Na⁺/H⁺ exchanger [5-(N,N-hexamethylene)amiloride] and H⁺-ATPase (bafilomycin), we illuminated the mechanism of ammonia transport across DSI epithelia. We also performed an in vivo experiment to validate the high level of ammonia exposure used in our in vitro experiments, which revealed an interesting finding of reversed blood-to-water ammonia gradients and high plasma cortisol. Overall, our results affirm the importance of non-ionic NH₃ diffusion, and suggest that an effective ‘Na⁺/NH₄⁺ exchange complex’ indeed exists on the apical surface of the gill epithelium. However, this complex is probably made up of several membrane transporters, instead of a single Na⁺/NH₄⁺ exchanger.

MATERIALS AND METHODS
Preparation of cultured gill epithelia
Rainbow trout (Oncorhynchus mykiss; 90–180 g), obtained from Humber Springs Trout Hatchery, Ontario, Canada, were held in dechlorinated running freshwater (Hamilton tapwater from Lake Ontario with composition: [Na⁺]=0.65, [Cl⁻]=0.70, [Ca²⁺]=0.80, [Mg²⁺]=0.30, [K⁺]=0.05 mmol l⁻¹, pH 7.8–8.0). Temperature was maintained at 12–14°C and a light–dark cycle of 12:12h was maintained. All procedures used were approved by the McMaster University Animal Research Ethics Board and are in accordance with the Guidelines of the Canadian Council on Animal Care.

Gill cell isolation was conducted in a laminar flow hood using sterile techniques. Procedures used for gill cell isolation were adapted from Kelly et al. (Kelly et al., 2000) and Zhou et al. (Zhou et al., 2003). Briefly, trout were killed by MS-222 anaesthesia (Sigma-Aldrich, St Louis, MO, USA) followed by cephalic concussion. Gill cells were obtained from excised gill filaments by two consecutive cycles of 8min tryptic digestion [Gibco Life Technologies, Long Island, NY, USA, 0.05% trypsin in phosphate-buffered saline (PBS) with 2 mmol l⁻¹ glutamine, 5% fetal bovine serum (FBS), 100 IU ml⁻¹ penicillin, 100 μg ml⁻¹ streptomycin] and seeded on the apical side of Falcon cell inserts (Cyclopore polyethylene terephthalate filters, Becton-Dickinson, Franklin Lakes, NJ, USA; pore density 1.6×10⁶ pores cm⁻², pore size 0.45 μm, growth surface 0.9 cm²) at a density of 2.2×10⁶ cells cm⁻². The total volume of culture medium initially was 0.8 ml on the apical side and 1.0 ml on the basolateral side. At 24h after seeding, each insert was rinsed with culture medium to remove mucus and unattached cells. Gill cells freshly prepared from a second fish were seeded onto the cell layer of each insert at a density of 2.2×10⁶ cells cm⁻². After another 24h, mucus and unattached cells were again removed by rinsing with culture medium, and 1.5 ml and 2.0 ml of culture medium were then added to the apical and basolateral side, respectively. The culture medium was replaced every second day. The cells were kept in an incubator at 18°C. Transepithelial resistance (TER) of each DSI was monitored daily (see below).

Series 1: concentration dependence of ammonia flux across DSI preparations
The objective of these tests was to determine whether ammonia flux showed any indication of saturation kinetics, which would indicate that a transporter or channel was involved. When the TER of DSI stabilized (typically after 6–9 days of culture), asymmetrical preparations were created by replacing the apical culture medium with UV-sterilized freshwater. After 3h of freshwater treatment, the apical freshwater was replaced with new freshwater and the basolateral solution was replaced with culture medium containing different concentrations of ammonia. In three separate experiments, ranges of 14–237 μmol l⁻¹, 370–2270 μmol l⁻¹ and 243–17,768 μmol l⁻¹ (measured concentrations) were used. For the lowest ammonia range, PBS with 5% FBS was used instead of L-15 culture medium because L-15 culture medium typically contains 200–300 μmol l⁻¹ ammonia. Ammonia was added as NH₄Cl, and the pH was maintained at 7.4. Samples of apical freshwater were collected at the beginning and the end of the 3h flux period for determination of total ammonia concentration, thereby yielding measurements of ammonia flux.

Series 2: cortisol and high [ammonia] pre-exposure
For DSI that received cortisol treatment, cortisol (hydrocortisone 21-hemisuccinate, Sigma Aldrich) was included in the basolateral
solution at 1000 ng ml\(^{-1}\) from day 2 of culturing. This dose was chosen based on previous experience with DSI preparations (Kelly and Wood, 2001b). When the TER of DSI stabilized at 6–9 days of culture, asymmetrical DSI were created by changing the apical culture medium to UV-sterilized freshwater (composition identical to acclimation freshwater). After 3 h of freshwater treatment, DSI were exposed to conditions described in Table 1 for 20 h (‘pre-exposure’). At the end of the 20 h pre-exposure, all the solutions were removed. The apical side was rinsed with UV-sterilized freshwater and the basolateral side with PBS, in order to remove any residual NH\(_4\)Cl. Freshwater was then placed on the apical surface and culture medium containing 650–750 μmol l\(^{-1}\) total ammonia (see below) and 1000 ng ml\(^{-1}\) cortisol (if appropriate) was placed on the basolateral surface. Ammonia flux was then measured over a 3 h period (see below).

For symmetrical DSI experiments, the apical side was never changed to freshwater and the pre-exposure conditions are described in Table 1. At the end of the 20 h pre-exposure, all the solutions were removed and both the apical and basolateral sides were rinsed with PBS in order to remove any residual NH\(_4\)Cl. Culture medium containing 650–750 μmol l\(^{-1}\) total ammonia (see below) and 1000 ng ml\(^{-1}\) cortisol (if appropriate) was placed on the basolateral surface, and unamed cultured medium was placed on the apical surface. Ammonia flux was then measured over a 3 h period.

Series 3: transporter inhibitor studies

In order to further investigate the mechanism of ammonia transport, 1 μmol l\(^{-1}\) bafilomycin, 10 μmol l\(^{-1}\) phenamil and 10 μmol l\(^{-1}\) HMA were used to specifically inhibit H\(^-\)ATPase, Na\(^+\) channels and Na\(^+\)/H\(^+\) exchangers (NHE), respectively. Amiloride (100 μmol l\(^{-1}\)), a general blocker of both Na\(^+\) channels and Na\(^+\)/H\(^+\) exchangers, was also tested because of its common use in previous in vivo studies. These drugs were dissolved in dimethyl sulphoxide (DMSO; maximum concentration ≤0.05% in the final test solutions) and then added to the apical solution of asymmetrical DSI prior to the standard 3 h ammonia flux test, which was performed exactly as in Series 2. The same concentration of DMSO was used in control experiments. To ammonia flux test, which was performed exactly as in Series 2, the apical solution of asymmetrical DSI prior to the standard 3 h concentration ≤0.05% in the final test solutions) and then added to the basolateral solution. In all of these tests, DSI preparations were first pre-exposed to apical freshwater for 3 h followed by a subsequent 20 h high ammonia treatment (2000 μmol l\(^{-1}\) NH\(_4\)Cl) on both surfaces (apical freshwater, basolateral culture medium) as in Series 2. Furthermore all preparations in this series had 1000 ng ml\(^{-1}\) cortisol in the basolateral solution throughout the experiment. All drugs were from Sigma Aldrich.

Table 1. Pre-exposure conditions for DSI in Series 2

Conditions	Apical solutions	Basolateral solutions
Asymmetrical DSI	FW	CM
Control	FW, Amm	CM, Amm
Amm	FW, Amm	CM, Amm
Cort	FW	CM, Cort
Amm+Cort	FW, Amm	CM, Amm+Cort
Symmetrical DSI	CM	CM
Control	CM	CM
Amm	CM, Amm	CM, Amm
Cort	CM	CM, Cort
Amm+Cort	CM, Amm	CM, Amm+Cort

DSI, double seeded insert; FW, freshwater; CM, culture medium; Amm, 2000 μmol l\(^{-1}\) NH\(_4\)Cl; Cort, 1000 ng ml\(^{-1}\) cortisol.

Series 4: pre-exposure to low [Na\(^+\)] freshwater

Na\(^+\)-free water was utilized to investigate whether a prolonged pre-exposure to a low sodium level in the apical freshwater would alter the ammonia permeability of asymmetrical DSI epithelia. The synthetic Na\(^+\)-free Hamilton tapwater used was prepared according to the formula in Goss and Wood (Goss and Wood, 1990). Asymmetrical DSI preparations were created as described in Series 2. After the 3 h apical freshwater treatment, the apical freshwater was changed to Na\(^+\)-free water. Throughout the subsequent 20 h period, the apical solution was changed every hour in order to keep the apical Na\(^+\) level low. The parallel control asymmetrical DSI received the same treatment, except that the apical solution used was standard freshwater. The measured Na\(^+\) levels in the apical solutions were 660–770 μmol l\(^{-1}\) and 0–84 μmol l\(^{-1}\) for control and Na\(^+\)-free water, respectively, as determined by atomic absorption spectrophotometry (Varian AA220 FS, Mulgrave, Australia). All DSI epithelia in this series had 1000 ng ml\(^{-1}\) cortisol in the basolateral solution throughout the experiment. After the 20 h pre-exposure, ammonia flux was measured for a 3 h period, during which standard freshwater ([Na\(^+\)] = 660–770 μmol l\(^{-1}\)) was present on the apical surface and standard total ammonia concentrations of 650–750 μmol l\(^{-1}\) were present in the basolateral culture medium.

Series 5: evaluation of the effect of pre-exposure to high [ammonia] on active Na\(^+\) uptake

To test whether ammonia pre-exposure would stimulate active Na\(^+\) uptake, symmetrical DSI preparations were pre-exposed to 2000 μmol l\(^{-1}\) NH\(_4\)Cl (both apical and basolateral sides) for 20 h, followed by simultaneous measurement of ammonia efflux and Na\(^+\) influx for 6 h. For the 6 h flux period, the apical solution was changed to freshwater containing 1 μCi of radioactive \(^{22}\)Na (Perkin Elmer, Boston, MA, USA), and the basolateral solution was changed to culture medium containing 650–770 μmol l\(^{-1}\) NH\(_4\)Cl. The parallel control DSI epithelia received the same pre-treatment, but without elevated ammonia. All DSI preparations in this series had 1000 ng ml\(^{-1}\) cortisol in the basolateral solution throughout the experiment.

Na\(^+\) influx (\(J_{\text{Na}^+\text{in}}\), apical to basolateral flux) was calculated according to:

\[
J_{\text{Na}^+\text{in}} = \Delta[\text{Na}^+]_{\text{Bl}} \times \frac{1}{\text{SA}_{\text{Ap}}} \times \frac{\text{Volume}_{\text{Bl}}}{\text{Time} \times \text{Area}},
\]

where \(\Delta[\text{Na}^+]_{\text{Bl}}\) is the change in radioactivity due to \(^{22}\)Na on the basolateral side and \(\text{SA}_{\text{Ap}}\) is the mean specific activity on the apical side.

Na\(^+\) net flux (\(J_{\text{Na}^+\text{net}}\)) was calculated as:

\[
J_{\text{Na}^+\text{net}} = \Delta[\Sigma \text{Na}^+]_{\text{Ap}} \times \frac{\text{Volume}_{\text{Ap}}}{\text{Time} \times \text{Area}},
\]

where \(\Delta[\Sigma \text{Na}^+]_{\text{Ap}}\) is the change in total sodium concentration on the apical side.

Na\(^+\) efflux (\(J_{\text{Na}^+\text{out}}\)) was estimated indirectly:

\[
J_{\text{Na}^+\text{out}} = J_{\text{Na}^+\text{net}} - J_{\text{Na}^+\text{in}}.
\]

The criterion used to detect the presence of active transport was disagreement of the measured flux ratio (\(J_{\text{in}}/J_{\text{out}}\)) with that predicted by the Ussing flux ratio:

\[
\frac{J_{\text{in}}}{J_{\text{out}}} = \frac{A_{\text{Ap}}}{A_{\text{Bl}}} e^{FV/RT},
\]
where A_{Ap} and A_{Bl} are the activities of Na$^+$ on the apical and basolateral solution, z is the valency, V is the measured transepithelial potential (TEP), and F, R and T have their usual thermodynamic meanings. Using a Na$^+$-specific microelectrode, A_{Na}^0 was measured to be 75% of total Na$^+$ concentration in L-15 media. For freshwater, the ion activity was taken as equal to the measured concentrations, in view of the very low concentrations ($<$1 mmol l$^{-1}$). 22Na radioactivity measurements were made by gamma-counting using a Wallac 1480 Wizard 3 gamma counter (Perkin-Elmer, Toronto, ON, Canada).

Series 6: in vivo responses to high environmental ammonia exposure

To address concerns that the 2000 μmol l$^{-1}$ NH$_4$Cl exposure used in the preceding in vitro experiments could be toxic, live trout were monitored for 7 days of exposure to this nominal level of NH$_4$Cl in the standard test and acclimation water, dechlorinated Hamilton tapwater (composition as above). The addition of high NH$_4$Cl lowered water pH from 7.8–8.0 to 7.1–7.4, such that NH$_4^+$ constituted about 99.5% of the total, and NH$_3$ constituted 0.5%, yielding a p_{NH_3} of approximately 220 μtorr (where 1 torr = 133 Pa) in the water [based on constants provided by Cameron and Heisler (Cameron and Heisler, 1983)]. This experiment also provided an opportunity to measure in vivo plasma levels of total ammonia and cortisol during the exposure. Trout were fasted for 3 days before and throughout the exposure. A control group ($N=10$) were fasted for the same length of time in normal tapwater without added ammonia. For high external ammonia exposure, water flow to the 400 l tank was stopped while aeration was maintained, and sufficient NH$_4$Cl was added to the tank to bring the total ammonia to a nominal concentration of 2000 μmol l$^{-1}$. Half of the water was exchanged every day, using fresh pre-dosed water, and water samples were taken before and after the water change to check the water ammonia level. At 20 h ($N=16$) and 7 days ($N=10$), fish were removed individually to a bucket containing 0.5 mg l$^{-1}$ MS-222 in the in vivo exposures, tests revealed no drug or DMSO interferences with this assay. In the in vivo exposures, the enzymatic assay was used for both water and plasma samples, to ensure direct comparability of measurements for blood-to-water gradients.

Cortisol assays

Plasma cortisol levels were measured on 25 μl samples by radioimmunoassay (cortisol 125I RIA kit, DiaSorin, Stillwater, MN, USA) and values are reported in ng ml$^{-1}$.

[^3]H Polyethylene glycol-4000 permeability

In Series 2 and Series 4, the permeability of DSI epithelium to the paracellular permeability marker, [^3]H polyethylene glycol-4000 (PEG-4000; molecular mass 4000 Da; New England Nuclear-Dupont) was measured using methods previously described (Gilmour et al., 1998; Wood et al., 1998). Permeability was determined in the efflux direction (basolateral to apical) after the addition of 1 μCi[^3]H]PEG-4000 to the basolateral culture medium. The appearance of[^3]H]PEG-4000 radioactivity in the apical solution was determined at the end of the 3 h flux period. [^3]H]PEG-4000 permeability (P, in cms^{-1}) was calculated according to:

$$P = \frac{\Delta [PEG^*]_{Ap} \times Volume_{Ap}}{[PEG^*]_{Bl} \times Time \times 3600 \times Area}$$

where $\Delta [PEG^*]_{Ap}$ is the change in radioactivity due to[^3]H]PEG-4000 on the apical side, $[PEG^*]_{Bl}$ is the mean radioactivity on the basolateral side, 3600 converts hours to seconds, and Area defines the area of epithelial growth in the insert (0.9 cm2).[^3]H]PEG-4000 radioactivity measurements were made by adding samples to 10 ml of Ultima Gold AB scintillation cocktail (Perkin-Elmer); samples were counted in a liquid scintillation counter (Tri-Carb 2900TR, Perkin-Elmer). Tests demonstrated that quench was constant.

Transporter mRNA expression measurements

At the end of the 3 h ammonia flux period in Series 2 and Series 4, all the solutions were removed and the apical side was rinsed with freshwater and the basolateral side was rinsed with PBS. A 1.0 ml sample of ice-cold Trizol reagent (Invitrogen, Burlington, ON, Canada) was added to the apical side. Mechanical disruption of gill...
cells was performed by pipetting repeatedly with a 1 ml pipette. RNA was then extracted from the Trizol samples following the protocol provided by Invitrogen, quantified spectrophotometrically and electrophoresed on 1% agarose gels stained with ethidium bromide to verify integrity. First strand cDNA was synthesized from 2 μg total DNase I-treated RNA using an oligo(dT)

standard curves were generated by serial dilution of a random experimental conditions and was used as the reference gene to

AY619986). EF-1α (GenBank EF446605), Rhbg (GenBank EF051113/GenBank AF14002), carbonic anhydrase-2 (cytoplasmic, CA-2; (EF-1α et al. (Nawata et al., 2007) for expression of elongation factor-1α).

Melt-curve analysis confirmed production of a unique product and gel electrophoresis verified the presence of a single product. Gene-specific primers used were the same as in Nawata et al. (2007) for expression of elongation factor-1α (EF-1α; GenBank AF498320), H⁺-ATPase (V-type, B subunit; GenBank AFI4002), carbonic anhydrase-2 (cytoplasmic, CA-2; GenBank AYS14870), Na⁺/K⁺-ATPase α1a (GenBank: AY319391), NHE2 (GenBank EF446605), Rhbg (GenBank EF051113/EF051114), Rhcg1 (GenBank DQ431244) and Rhcg2 (GenBank AY619986). EF-1α showed stable expression during different experimental conditions and was used as the reference gene to calculate relative mRNA expression by the standard curve method. Standard curves were generated by serial dilution of a random mixture of control samples.

Statistical analysis

In Series 1, iterative curve fitting using SigmaPlot 8.0 was employed to describe the concentration dependence of ammonia flux data. The best fit was obtained using a Michaelis–Menten component, with constants for affinity (Km) and maximum transport capacity (Jmax), superimposed on a linear component of constant slope. Manual fitting of linear components and Eadie–Hofstee plots were employed as a check on the SigmaPlot outputs.

All data are presented as means ± s.e.m. (N, number of preparations). Values from each condition were analysed using one-way analysis of variance (ANOVA) followed by Fisher’s least significant difference post-hoc test. Student’s unpaired t-test (two-tailed) was used when appropriate for simple comparisons of two means. Significance was set at α=0.05.

RESULTS

Series 1: concentration dependence of ammonia efflux

In asymmetrical DSI epithelia, relationships between ammonia efflux rate and basolateral [ammonia] were curvilinear, rather than linear over all ranges tested. The data from the two lower range experiments (i.e. basolateral [ammonia]=14–2270 μmol l⁻¹) appeared to constitute a single relationship and were therefore combined (Fig.1A), whereas those from the high range experiment (243–17768 μmol l⁻¹) followed a different relationship (Fig.1B).

Iterative curve fitting (SigmaPlot 8.0) to the data of Fig.1A yielded a relationship with a linear component plus a hyperbolic Michaelis–Menten relationship (R²=0.993, P<0.0001) described by the following equation:

\[J_{\text{Amm}} = \frac{J_{\text{max}}[\text{Amm}]}{K_m + [\text{Amm}]} + C[\text{Amm}],\]

where \(J_{\text{Amm}}\) is ammonia efflux rate (nmol cm⁻² h⁻¹), [Amm] is basolateral total ammonia concentration (μmol l⁻¹), \(J_{\text{max}}\) is maximum ammonia efflux rate (–3.92±0.75 nmol cm⁻² h⁻¹), \(K_m\) is the affinity constant (66±44 μmol l⁻¹) equal to the [Amm] which supports 50% of Jmax, and C is the slope (–0.0066±0.0004 nmol cm⁻² h⁻¹/μmol l⁻¹) of the linear component. The dotted line indicates the linear component which was subtracted to yield the saturable component. The amount of efflux above this line is due to the saturable component. (B) Supra-physiological range of basolateral [ammonia]; data are described by a relationship which combines a Michaelis–Menten saturable component and a linear component (R²=0.993, P<0.0001):

\[J_{\text{Amm}} = \frac{J_{\text{max}}[\text{Amm}]}{K_m + [\text{Amm}]} + C[\text{Amm}],\]

where \(J_{\text{Amm}}\) is ammonia efflux rate (nmol cm⁻² h⁻¹), [Amm] is basolateral total ammonia concentration (μmol l⁻¹), \(J_{\text{max}}\) is maximum ammonia efflux rate (–3.92±0.75 nmol cm⁻² h⁻¹), \(K_m\) is the affinity constant (66±44 μmol l⁻¹) equal to the [Amm] which supports 50% of Jmax, and C is the slope (–0.0066±0.0004 nmol cm⁻² h⁻¹/μmol l⁻¹) of the linear component. The dotted line indicates the linear component which was subtracted to yield the saturable component. The amount of efflux above this line is due to the saturable component. (B) Supra-physiological range of basolateral [ammonia]; data are described by the same equation as for A (R²=0.993, P<0.0002) with the same linear component but with a much lower affinity (Km=4818±1275 μmol l⁻¹) and higher maximum transport capacity (Jmax=–429±47 nmol cm⁻² h⁻¹). The dotted line indicates the same linear component as A in which is subtracted to yield the saturable component. The amount of efflux above this line is subtracted again to yield the saturable component. Data points are means ± s.e.m. (N=4–6).
The effects of NH4Cl plus cortisol were therefore intermediate.

permeability of DSI (both asymmetrical and symmetrical; Fig. 4). (N

for ammonia influx (Fig. 3B).

to cortisol alone (Fig. 3A). Exactly the same pattern was observed

DSI pre-exposed to either NH4Cl or NH4Cl plus cortisol, but not

different. Significant increases were observed in ammonia efflux in

symmetrical DSI in Series 2. (A) Ammonia efflux (negative); (B) ammonia

Fig. 2. The effect of 20 h pre-exposure on the ammonia flux across

asymmetrical DSI in Series 2. (A) Ammonia efflux (negative); (B) ammonia

influx (positive). Amm, 2000 μmol l–1 NH4Cl pre-exposure; Cortisol,

1000 ng ml–1 cortisol pre-exposure; Cort+Am, 1000 ng ml–1 cortisol and

2000 μmol l–1 NH4Cl pre-exposure. Means not sharing the same letter are

significantly different from one another (P<0.05). Data are means ± s.e.m.

(N=4 or 5).

Series 2: cortisol and high [ammonia] pre-exposure

In asymmetrical DSI preparations pre-exposed to 2000 μmol l–1

NH4Cl or 1000 ng ml–1 cortisol or 2000 μmol l–1 NH4Cl plus

1000 ng ml–1 cortisol for 20 h, the ammonia flux from the basolateral

to the apical side as zero reference) under symmetrical conditions prior
to the start of the experimental pre-treatments (Fig. 6A,B). TEPs were

significantly reduced and reversed to negative potentials (generally

−5 to −10 mV) when the apical culture medium was changed to

freshwater in all asymmetrical DSI experiments (Fig. 6A). After 3 h

of apical freshwater treatment, DSI that had received cortisol during
culture exhibited significantly more negative TEPs. Their TEPs

returned to the same level as those of the control DSI after the 20 h

pre-exposure, though a slight difference persisted in the cortisol plus

NH4Cl group after the 3 h ammonia flux experiment (Fig. 6B).

For the symmetrical DSI experiments, TEP was significantly

reduced in DSI pre-exposed to NH4Cl plus cortisol (Fig. 6B). A

significant decrease in TEP was also observed at the end of the 3 h

ammonia flux in preparations that had previously been exposed to

NH4Cl alone (Fig. 6B).

The mRNA expressions for Rhbg, Rhcg2 as well as NHE-2 were

significantly increased by 2.4-, 16.1- and 2.3-fold, respectively, in

asymmetrical DSI epithelia that had been pre-exposed to cortisol

plus NH4Cl and harvested at the end of the 3 h flux period (Fig. 7).
Pre-exposure to either cortisol or NH₄Cl alone did not have these effects. H⁺-ATPase mRNA expression was significantly increased (1.7-fold) in DSI preparations that were exposed either to NH₄Cl alone, or to both NH₄Cl and cortisol. Significant decreases in carbonic anhydrase-2 (CA-2) mRNA expression were observed in DSI epithelia exposed to NH₄Cl alone (by 50%), cortisol alone (by 70%), as well as both NH₄Cl and cortisol (by 75%). There were no significant changes in the mRNA expression of Rhcg1 and Na⁺/K⁺-ATPase α₁ subunit.

Series 3: effects of transporter inhibitors on ammonia flux

As the most clearcut effects on ammonia efflux and mRNA transporter expression were seen with the combined pre-exposure to NH₄Cl and cortisol, this treatment was used to evaluate the effects of inhibitors. Bafilomycin (1 μmol/l), amiloride (100 μmol/l), phenamil (10 μmol/l) and HMA (10 μmol/l), each applied separately to the apical solution, significantly reduced the ammonia efflux across asymmetrical DSI preparations by 35 to 50% (Fig. 8). HMA (10 μmol/l) applied to the basolateral solution, on the other hand, had no effect on the ammonia efflux. These results strongly suggest the involvement of H⁺-ATPase (inhibited by bafilomycin), Na⁺ channel (inhibited by phenamil and amiloride) and NHE (inhibited by HMA and amiloride) on the apical side in ammonia transport. It should be stressed that alteration of the standard curves in the ammonia assay caused by DMSO and drugs has been corrected (see Materials and methods).

Series 4: low apical [Na⁺] pre-exposure

Pre-exposure of cortisol-treated DSI preparations to low apical [Na⁺] for 20 h led to a significant increase in ammonia efflux by 15% (Fig. 9A). There was no change in [¹³C]PEG-4000 permeability (Fig. 9B), indicating that the increase in ammonia efflux was not due to an increase in paracellular permeability. In view of the fact that the change in ammonia efflux was small but significant, the experiment was repeated with another batch of DSI epithelia (data not shown). Although baselines fluxes were somewhat higher, the modest significant increase in ammonia efflux but lack of change in [¹³C]PEG-4000 permeability was highly reproducible.

Series 5: effect of high [ammonia] pre-exposure on active Na⁺ uptake

Pre-exposure of cortisol-treated DSI epithelia to 2000 μmol l⁻¹ NH₄Cl for 20 h resulted in significant increases (50–60%) in both Na⁺ influx (Fig. 11A) and ammonia efflux rates (Fig. 11D). Na⁺ efflux rate did not change (Fig. 11B). The TEP became slightly more negative (Fig. 11C), as previously seen with this same treatment in the experiments of Series 1 (Fig. 6A). Both Na⁺ influx (Fig. 11A) and ammonia efflux (Fig. 11B) were negatively correlated with TEP in Series 5. Also, Na⁺ influx was positively correlated with ammonia efflux with a slope of approximately 4 (i.e. four ammonia effluxed per one sodium taken up; Fig. 11C). Active influx of Na⁺ was observed in both control and ammonia-exposed DSI preparations as the measured flux ratios were significantly greater than the predicted Ussing ratios for both groups (Table 2). It should be noted...
that cortisol was present in all DSI preparations in this series and active Na\(^+\) transport from apical freshwater has previously been reported in cortisol-treated DSI epithelia (Zhou et al., 2003).

Series 6: responses of live trout to high environmental ammonia exposure

The high environmental ammonia exposure proved largely sublethal. Of 29 trout exposed to a nominal level of 2000\(\mu\)molL\(^{-1}\) NH4Cl in Hamilton tapwater (measured level=2515±153\(\mu\)molL\(^{-1}\); Fig. 13), only three died, all in the first few hours, though about half exhibited erratic swimming behaviour during the first day. By day 7, all appeared healthy though inactive relative to the controls. Blood plasma total ammonia concentrations were elevated more than 10-fold above control levels and did not differ significantly between 20 h and 7 days (Table 3). Surprisingly, these plasma concentrations around 1100\(\mu\)molL\(^{-1}\) were only about 50% of the simultaneously measured water levels at the time of sampling (Table 3). Plasma cortisol was elevated 16-fold above control levels to about 160\(\mu\)gml\(^{-1}\) at 20 h, and remained close to this level at 7 days (Table 3).

DISCUSSION

Culture conditions

DSI epithelia were cultured as in all of our previous studies (Fletcher et al., 2000; Kelly et al., 2000; Wood et al., 2002; Kelly and Wood, 2001a; Kelly and Wood, 2001b; Zhou et al., 2003) using L-15 media, supplemented with 2\(\mu\)molL\(^{-1}\) glutamine and 5% FBS. The epithelia grow very well in this phosphate-buffered, nominally HCO\(_3\)-free medium, but it is designed to be used in an air atmosphere which has very low CO\(_2\) relative to blood. The medium naturally stabilizes at a pH of 7.4, whereas in vivo extracellular pH would be 7.7–7.9 at the temperatures used here (e.g. Salama et al., 1999). To maintain the pH in the latter range during the extended culture period would have necessitated the addition of disodium or dipotassium phosphate to the pre-packaged medium, or alternatively adding an organic buffer such as Hepes, or a CO\(_2\)/HCO\(_3\)\(^-\) buffer system. We elected to avoid the addition of either phosphate salt, because it would alter the inorganic ion composition and risk precipitation of calcium, or Hepes, because of its well-documented effects in blocking anion channels (Hanrahan and Tabcharani, 1989), whereas the latter approach was impractical as we lacked a low-level CO\(_2\) incubator. We therefore chose to accept this moderately acidotic condition (pH 7.4, nominally CO\(_2\)-free and HCO\(_3\)-free media) in all our experiments, recognizing that it may alter transport activity. For example, in isolated gill cells, there is evidence that additional pH-regulatory pathways are seen when HCO\(_3\)\(^-\) is present in the media (Wood and Pärt, 2000). Nevertheless, one advantage of this approach is that it would probably have ameliorated any toxicity due to the high ammonia pre-exposure (2000\(\mu\)molL\(^{-1}\) used in some trials. In future studies, it will be desirable to incorporate a CO\(_2\)/HCO\(_3\)\(^-\) buffer system, and in particular to attempt to maintain an outward P\(_{CO2}\) gradient from the basolateral to apical surface, as occurs in vivo.

Concentration dependence of ammonia flux

Concentrations of ammonia in arterial blood plasma of teleosts in vivo are generally less than 500\(\mu\)molL\(^{-1}\), and more normally closer to 100–200\(\mu\)molL\(^{-1}\) in fasted fish (e.g. Table 3) but they may be considerably higher in venous plasma (reviewed by Wood, 1993). In salmonids, plasma levels rise after feeding (300–1000\(\mu\)molL\(^{-1}\)) (Kaushik and Teles, 1985; Wicks and Randall, 2002; Bucking and Wood, 2008), and similarly during sublethal high environmental ammonia (HEA) exposure may reach close to 1000\(\mu\)molL\(^{-1}\) (Wilson et al., 1994; Nawata et al., 2007; Nawata and Wood, 2008). In the present study, the HEA exposure (2300–2600\(\mu\)molL\(^{-1}\)) of Series 6 was right at the upper end of the sublethal range (only 3 of 29 trout succumbed) and plasma ammonia concentrations averaged about 1100\(\mu\)molL\(^{-1}\) (Table 3), with one individual value reaching 1982\(\mu\)molL\(^{-1}\) in a surviving fish. Experimental variation of basolateral [ammonia] over this physiological range (14–2270\(\mu\)molL\(^{-1}\)) in asymmetrical DSI preparations yielded evidence of a saturable curvilinear component superimposed on a simple linear diffusive component for ammonia efflux (Fig. 1A). The calculated \(K_m\) (66\(\mu\)molL\(^{-1}\)) appeared reasonable (i.e. within the normal physiological range for blood plasma), providing the impetus to further investigate the nature of this apparent carrier-mediated component. Interestingly, Heisler (Heisler, 1990) presented evidence in rainbow trout in vivo that flux versus concentration relationships deviated from linearity above arterial plasma total ammonia levels of 200\(\mu\)molL\(^{-1}\), and suggested that this represented a threshold for activation of some sort of carrier-mediated process.

Based on the results in Fig. 1A, we chose to work at a ‘normal’ basolateral total ammonia concentration of about 700\(\mu\)molL\(^{-1}\), a concentration at which the carrier-mediated component is close to saturated, and total flux is about 56% diffusive and 44% carrier mediated (see Fig. 1A). Apical and basolateral concentrations of 2000\(\mu\)molL\(^{-1}\) were employed for HEA pre-exposures, because it was well above saturation for the normal relationship, and was at the upper end of the physiological range of tolerance, as shown by the in vivo HEA exposures of Series 6.
However, there was also evidence of a possible low affinity (\(K_m=4818 \mu \text{mol l}^{-1}\)), high capacity system present at much higher basolateral concentrations (Fig. 1B). Note that this experiment was performed on a different batch of DSI epithelia with much higher fluxes (5- to 8-fold) in the range of concentration overlap with the epithelia of Fig. 1A. The possible low affinity, high capacity system was not pursued experimentally in the present study because these concentrations are not physiologically relevant relative to normal plasma concentrations. However, in retrospect, there may be physiological relevance. In fish, ammonia distributes across cell membranes according to electrical gradients rather than pH gradients such that intracellular levels of total ammonia are up to 30-fold higher than extracellular levels (reviewed by Wood, 1993). A \(K_m\) concentration of 4814 \(\mu \text{mol l}^{-1}\) would be a very reasonable intracellular ammonia level. The apparent carrier-mediated components induced by high ammonia and/or cortisol pre-exposure are clearly bidirectional (Figs 2 and 3), so the transport system discussed below must normally encounter high intracellular ammonia concentrations on the inner sides of both cell membranes.

It is possible that Fig. 1B represents the ‘intracellular-side’ transport behaviour of the system under an artificial, non-steady-state situation where extracellular ammonia concentration is acutely raised to approximate normal intracellular levels.

Rh proteins are important for ammonia transport in DSI

Until recently, ammonia was thought to move across lipoprotein cell membranes mainly by simple diffusion in the form of \(\text{NH}_3\), without the involvement of protein channels or transporters. While this small molecular weight dissolved gas is commonly considered to be lipid soluble, its solubility in lipid is actually quite low (Evans and Cameron, 1986; Wood, 1993), so passive diffusion alone may not be enough to account for the high ammonia permeability of gill epithelia (see Kelly and Wood, 2001a). The discovery of ammonia transporters in yeast (Marini et al., 1994), plants (Ninnemann et al., 1994) and later in humans (Marini et al., 2000) and other animals (Liu et al., 2000; Weihrauch et al., 2004; Nakada et al., 2007b) may provide an explanation for this discrepancy. The present study, together with other recent work on gill ammonia transport in fish...
Rh proteins and Na\(^+\)/NH\(_4\)^+ exchange in trout gill epithelia

Fish (Wood, 1993; Wilkie, 1997), so it seems more likely that fish (Javelle et al., 2007). However, there is considerable evidence that NH\(_4\)^+ movement appears to be less important, at least in freshwater.

Rh proteins function as a NH\(_3\) gas channel or NH\(_4\)^+ ion carrier facilitating ammonia transport. At this moment it is not clear whether these oocytes was up-regulated (Nakada et al., 2007b). It is oocytes, the uptake of the ammonia analogue methylammonia into in the puffer fish,

phenomenon has also been observed in the mangrove killifish (Hung et al., 2007; Hung and colleagues (Hung et al., 2007; Nawata and Wood, 2008) strongly indicates the involvement of protein carriers in ammonia excretion.

Nawata and colleagues (Nawata et al., 2007) have demonstrated that the mRNA expression of various Rh proteins was up-regulated in the gills of rainbow trout when exposed to HEA. A similar phenomenon has also been observed in the mangrove killifish (Hung et al., 2007). These up-regulations suggest the involvement of Rh proteins in ammonia transport. When various Rh proteins identified in the puffer fish, Takifugu rubripes, were expressed in Xenopus oocytes, the uptake of the ammonia analogue methylammonia into these oocytes was up-regulated (Nakada et al., 2007b). It is reasonable to assume that rainbow trout Rh proteins similarly facilitate ammonia transport. At this moment it is not clear whether Rh proteins function as a NH\(_3\) gas channel or NH\(_4\)^+ ion carrier (Javelle et al., 2007). However, there is considerable evidence that NH\(_3\) movement plays a major role in gill ammonia excretion, while NH\(_4\)^+ movement appears to be less important, at least in freshwater fish (Wood, 1993; Wilkie, 1997), so it seems more likely that fish Rh proteins are NH\(_3\) gas channels, similar to the ammonia transporter AmtB in Escherichia coli (Khademi et al., 2004).

However, the permeability of the gill epithelium to ammonia in the various studies mentioned above could not be directly measured. The present study utilized the cultured gill epithelium where ammonia permeability could be easily measured (see Kelly and Wood, 2001a). We found that up-regulation of mRNA expression of Rh proteins was always associated with increases in ammonia permeability in the DSI preparations. Rhcg2 seems to be of particular importance as its mRNA was up-regulated 16-fold when exposed to cortisol and ammonia (Series 2; Fig. 7C). Moreover, when the epithelia were pre-treated with low apical [Na\(^+\)], the only gene that showed up-regulation was Rhcg2 (Fig. 10C) and this response was accompanied by an increase in ammonia permeability (Series 4, Fig. 9A). It should also be highlighted that the mRNAs of Rhcg2 in both the rainbow trout and the mangrove killifish gills were up-regulated more than those of other Rh proteins in response to HEA (Nawata et al., 2007; Hung et al., 2007). From these results, we may infer that Rhcg2 was the limiting factor for carrier-mediated ammonia permeability in the DSI.

A general observation in the present study was that various experimental treatments (e.g. pre-treatment with ammonia and/or cortisol, low [Na\(^+\)] pre-exposure, application of inhibitors) caused changes in ammonia flux which were significant but not massive (generally less than 50% decrease or 100% increase) relative to control values. We interpret this observation to mean that there is a general background level of diffusive permeability to ammonia in the gill epithelia (accounting for about 56% of flux at 700 \(\mu\)mol l\(^{-1}\); Fig. 1A) which is augmented by transport-mediated flux, rather than transport-mediated flux completely dominating. This is in accord with the earlier conclusion of Kelly and Wood (Kelly and Wood, 2001a) who used DSI epithelia which had not been pre-exposed to ammonia, cortisol or low [Na\(^+\)]. These workers concluded that the basic diffusive NH\(_3\) permeability of this preparation was similar to that of many other epithelia, that diffusive NH\(_4\)^+ flux could augment this permeability under certain asymmetrical conditions, but that neither of these was sufficient to explain total ammonia flux, such that transport-mediated flux must also be important under in vivo conditions. Wright and Wood (Wright and Wood, 1985), Heisler (Heisler, 1990), and Salama and colleagues (Salama et al., 1999) reached similar conclusions based on experiments with rainbow trout in vivo. Missing in these earlier studies was any realization of the potential role of Rh glycoproteins in the carrier-mediated component.

A ammonia efflux (negative) on the apical side on (A) ammonia efflux (negative) and (B) [3H]PEG-4000 permeability across asymmetrical DSI in Series 4. Asterisk represents value significantly different from cortisol value (P<0.05). Data are means ± s.e.m. (N=5).

B [3H]PEG-4000 permeability (×10\(^{-7}\) cm s\(^{-1}\)) on the apical side on (A) ammonia efflux (negative) and (B) [3H]PEG-4000 permeability across asymmetrical DSI in Series 4. Asterisk represents value significantly different from cortisol value (P<0.05). Data are means ± s.e.m. (N=5).

Various factors up-regulate ammonia permeability

Although Nawata and colleagues (Nawata et al., 2007), Nawata and Wood (Nawata and Wood, 2008), and Hung and colleagues (Hung et al., 2007) have already shown changes in the mRNA expression of transporters potentially involved in ammonia transport in HEA, it was not clear what the signalling molecule(s) for the changes were. Results from the present study shed light on the signalling mechanism for the regulation of gene expression in the gill. Application of cortisol or ammonia alone up-regulated ammonia permeability (Figs 2 and 3). The up-regulation in ammonia permeability was even greater when DSI preparations were pre-treated with both cortisol and ammonia (Figs 2 and 3). The mRNA expression of Rhbg and Rhcg2 was up-regulated 2.4- and 16-fold, respectively, when DSI epithelia were pre-treated with both ammonia and cortisol (Fig. 7A,C). When pre-treated with either cortisol plus ammonia or ammonia alone, there was an up-regulation
of H⁺-ATPase mRNA (Fig. 7D). All of these observations indicated that cortisol and ammonia could affect membrane transporter expression individually as well as synergistically.

TEPs in the cultured epithelia were in the normal range for trout in vivo and typical of previous reports using DSI preparations (reviewed by Wood et al., 2002). It is notable that cortisol and ammonia pre-treatment induced more negative TEPs in asymmetrical DSI epithelia (Fig. 6A; Fig. 11C), and that both ammonia efflux and active Na⁺ influx were correlated with the extent of negativity in these preparations (Fig. 12A,B). Traditionally, the TEP across the freshwater gill is interpreted as predominantly a diffusion potential reflecting the differential passive permeability of the whole epithelium to Na⁺ exceeding that to Cl⁻ (e.g. Potts, 1984; Wood and Grosell, 2008). However, an alternative or additional explanation is the electrogenic action of an apical membrane proton pump, extruding positive charge. In accord with this concept, mRNA expression for H⁺-ATPase increased (Fig. 7D) and ammonia flux was inhibited by bafilomycin (Fig. 8) in response to this pre-treatment.

Cortisol is well known to be a stress hormone released whenever the fish face abnormal situations (Wendelaar Bonga, 1997) and HEA is certainly a stressful situation. Indeed, plasma cortisol levels in the fish face abnormal situations (Wendelaar Bonga, 1997) and HEA (1500 ng ml⁻¹) exposure of Nawata and Wood (Nawata and Wood, 2008), but against a lower baseline. Notably, three of the surviving fish surpassed 300 ng ml⁻¹. Therefore, during HEA episodes, the gill epithelium will encounter both elevated ammonia and elevated cortisol simultaneously. It is probable that, in vivo, cortisol rarely if ever reaches the 1000 ng ml⁻¹ used in the in vitro experiments of the present study, but it is well established that fish gill cells in culture are much less sensitive to many agents than in vivo (Castaño et al., 2003). Cortisol receptors have been discovered and extensively studied (e.g. Alsop and Vijayan, 2008), and full-length sequences are now available for a number of Rh proteins in trout (Nawata et al., 2007; Nawata and Wood, 2008). Cultured trout gill epithelia are very responsive to cortisol (Kelly and Wood, 2001a; Zhou et al., 2003), as also seen in the present study; however, cortisol receptors in the DSI epithelia have not yet been characterized, and very little is known in general about ammonia receptors/sensors.

It was exciting to find that low apical [Na⁺] pre-treatment led to increases in Rhcg2 mRNA expression as well as in ammonia efflux in DSI (Fig. 9A; Fig. 10C). Presumably, during low apical [Na⁺] treatment, adaptive compensation would occur in the gill epithelium to increase Na⁺ uptake in order to compensate for the increased loss of Na⁺ to the apical water. Increased Rhcg2 expression on the apical surface would allow more ammonia (NH₃ or NH₄⁺) to cross the membrane and emerge on the apical surface. If these ammonia molecules move as NH₃, H⁺ pumped by H⁺-ATPase would then bind to these NH₃ to form NH₄⁺, thereby maintaining an appropriate electrochemical gradient for the H⁺ pump and chemical gradient for the NH₃ transporter. Because there is now increased export of

Fig. 10. The effect of 20 h low [sodium] pre-exposure on the apical side on the mRNA expression in asymmetrical DSI relative to EF-1α of (A) Rhbg, (B) Rhcg1, (C) Rhcg2, (D) H⁺-ATPase and (E) NHE-2 in Series 4. Asterisk represents value significantly different from cortisol value (P<0.05). Data are means ± s.e.m. (N=4 or 5).
positive charge, increased Na⁺ uptake via the Na⁺ channel becomes possible. By this scenario, the Rhcg2 and H⁺-ATPase would act together to function like an ammonium pump, as suggested by Nawata and colleagues (Nawata et al., 2007). A similar phenomenon has been reported in zebrafish larvae, where Rhcg1 was up-regulated when the whole fish was subjected to diluted freshwater (Nakada et al., 2007a). It is interesting that different isoforms of Rhcg were responding to the same stressor in trout (Rhcg2) and in zebrafish (Rhcg1).

An apical Na⁺/NH₄⁺ exchange complex may consist of many transporters

From the discussion above, there is a clear link between ammonia excretion and Na⁺ uptake. Based on the results from mRNA expression analysis of DSI preparations in Series 2 as well as the transport inhibitor studies in Series 3 (Fig. 8) we propose a model of an apical Na⁺/NH₄⁺ exchange complex that is made up of several membrane transporters (Fig. 13). In this model, NH₃ crosses the apical membrane from cell to the water via Rhcg (Rhcg1 or Rhcg2) down a concentration gradient. Upon emergence from the cell, NH₃ binds with H⁺, which is pumped from the cell by H⁺-ATPase, to form NH₄⁺. This ‘ammonium pump’ maintains the transmembrane NH₃ gradient and H⁺ gradients and also provides electrostatic force to drive Na⁺ uptake through the Na⁺ channel. In addition, H⁺ could also exit the cell via an NHE-2 exchanger, and thus allow Na⁺ intake, if thermodynamically feasible.

This model can help reconcile some discrepancies from studies on the Na⁺/NH₄⁺ transporter. While ammonia excretion and Na⁺ uptake are linked, they can also be uncoupled, depending on the experimental approach used. For example, using the IPHP, Avella and Bornancin (Avella and Bornancin, 1989) provided evidence against the presence of a Na⁺/NH₄⁺ exchanger after they found that ammonia excretion was reduced when the pH of the gill perfusate was decreased. However, if ammonia leaves the gill epithelium in the form of NH₃ via Rh proteins, by reducing the perfusate pH, the trans-epithelial NH₃ gradient would be lower, resulting in a reduction of ammonia excretion. Avella and Bornancin (Avella and Bornancin, 1989) also found that when ammonia excretion was increased by increasing the ammonia level in the perfusate from 0 to 1 mmol l⁻¹, there was no noticeable change in Na⁺ uptake. At 0 perfusate ammonia level, H⁺ excretion was probably maintained and thus Na⁺ uptake was maintained. At higher perfusate ammonia levels, the Na⁺ uptake mechanism (Na⁺ channel and NHE-2) would be saturated but the ammonia excretion mechanism (Rh proteins) would not be saturated. In fact, when the external water [Na⁺] was reduced, ammonia excretion was significantly reduced, too, though the magnitude of the effect varied among studies (Avella and Bornancin, 1989; Wilson et al., 1994; Salama et al., 1999). The present study also showed that there is a positive correlation between ammonia excretion and Na⁺ uptake, though not a 1:1 relationship (Fig. 12C).

It is well known that both amiloride (Kerstetter and Keeler, 1976; Payan, 1978; Wright and Wood, 1985; Yesaki and Iwama, 1992) and external buffering separately reduce ammonia excretion in vivo (Wright et al., 1989; Wilson et al., 1994; Salama et al., 1999; Nawata and Wood, 2008). Amiloride, which at this concentration (100 μmol l⁻¹) can inhibit Na⁺-linked H⁺ excretion by blocking both Na⁺ channels and Na⁺ exchangers, was similarly effective in vitro in the present study (Fig. 8). However, Wilson and colleagues (Wilson et al., 1994) found that when the external water was buffered, amiloride did not inhibit ammonia excretion. They interpreted this to mean that amiloride inhibited Na⁺-linked H⁺ excretion rather than direct Na⁺/NH₄⁺ exchange. This explanation actually supports the present model (Fig. 13) because amiloride should not alter NH₃ flux when the water is buffered and the diffusion trapping mechanism thereby removed. While a single Na⁺/NH₄⁺ exchanger (i.e. with tightly coupled 1:1 stoichiometry) most likely does not exist, a system which is effectively an ‘Na⁺/NH₄⁺ exchange complex’ may consist of several different transporters functioning together (Fig. 13). This would include Rh proteins, H⁺-ATPase (sensitive to bafilomycin), NHE-2 (sensitive to HMA), and Na⁺ channels (sensitive to phenamil; Fig. 8).

In the in vivo studies of HEA of Series 6, it was intriguing to find that plasma total ammonia concentration stabilized at a level that was only about 50% of that in the external water (Table 3). Bulk water pH and blood pH were probably similar in this situation, so at first glance this result suggests that when the above-described mechanism was induced by elevated ammonia and cortisol (Table 3), trout were able to actively excrete ammonia against the gradient.
expression. For example, the hardness of water affects \(H^+ \)-ATPase in the wild or during husbandry may affect gill membrane transporter in various experimental scenarios. Different water quality conditions (Kirschner et al., 1973; Wilkie and Wood, 1994; Salama et al., 1999) in ammonia excretion was different from that in \(Na^+ \) uptake and Prior, 1988), while others noted that the magnitude of change a close to 1:1 stoichiometry (Wright and Wood, 1985; McDonald discrepancies amongst studies on this ratio. Some studies reported and TEP, and (C) ammonia efflux and \(Na^+ \) influx in Series 5.

![Correlation graphs](image)

Fig. 12. Correlations between (A) \(Na^+ \) influx and TEP, (B) ammonia efflux and TEP, and (C) ammonia efflux and \(Na^+ \) influx in Series 5.

However, in light of knowledge that water pH in the gill boundary layer may be considerably lower than in the bulk water (Wright et al., 1986; Wright et al., 1989; Randall and Wright, 1987; Randall and Wright, 1989; Wilson et al., 1994), this conclusion must remain tentative.

In the present study, the apparent stoichiometry between ammonia excretion and \(Na^+ \) uptake was 4:1 (Fig.12A). There are many discrepancies amongst studies on this ratio. Some studies reported a close to 1:1 stoichiometry (Wright and Wood, 1985; McDonald and Prior, 1988), while others noted that the magnitude of change in ammonia excretion was different from that in \(Na^+ \) uptake (Kirschner et al., 1973; Wilkie and Wood, 1994; Salama et al., 1999) in various experimental scenarios. Different water quality conditions in the wild or during husbandry may affect gill membrane transporter expression. For example, the hardness of water affects \(H^+ \)-ATPase expression (Craig et al., 2007). Both Nakada and colleagues (Nakada et al., 2007b) and the present study have shown that reduced ionic strength of the water affects Rh protein expression, while Nawata and Wood (Nawata and Wood, 2008) reported that water buffering also alters Rh expression. Nawata and colleagues (Nawata et al., 2007) and the present study have shown that ammonia level affects both Rh proteins and \(H^+ \)-ATPase expressions. Given that several transporters (Rh, \(H^+ \)-ATPase, NHE-2, \(Na^+ \) channel) are involved in the proposed \(Na^+ \)/\(NH_4^+ \) exchange complex, and that this carrier-mediated exchange is superimposed on a substantial component which occurs by simple diffusion (Fig. 1A), we suggest that the apparent stoichiometry may depend on the relative expression level of the different membrane transporters, as well as changes in passive permeability.

The situation at the basolateral surface of the epithelium is less clear at this moment (Fig. 13). If Rhbg, which is assumed to be located basolaterally as in other animals (Verlander et al., 2003), functions as a \(NH_3 \) gas channel, \(H^+ \) must enter the gill cell directly or as \(CO_2 \) which is subsequently hydrated to yield \(HCO_3^- \) and protons. Although Nakhoul and colleagues (Nakhoul et al., 2006) suggested that mouse Rhbg transported \(NH_4^+ \), there is still much debate on what form of ammonia is transported by Rh proteins (Javelle et al., 2007). Also, it is not clear how \(Na^+ \) leaves the gill cell and enters the bloodstream. Although \(Na^+ /K^+ \)-ATPase appears to be an appropriate candidate for \(Na^+ \) transport, other NHE isoforms or \(Na^+ /HCO_3^- \) co-transport cannot be ruled out (Wood and Pärt, 2000; Hirata et al., 2003; Perry et al., 2003; Scott et al., 2005).

Randall and Wright (Randall and Wright, 1987; Randall and Wright, 1989) and Wright et al. (Wright et al., 1989) proposed that ammonia excretion was facilitated by acidification of the gill boundary layer. The acidification was suggested to be partially brought about by hydration of \(CO_2 \) by carbonic anhydrase present

Table 2. Comparison between predicted (Ussing) and measured flux ratio \((\times 10^{-3})\) for \(Na^+ \) in Series 5

	Predicted	Measured
Control	7.65±0.12	45.1±3.4*
Ammonia	7.79±0.13	46.0±4.5*

Asterisks represent values significantly different from predicted value \((P<0.05)\). Data are means ± s.e.m. \((N=4)\). Measured flux ratios higher than predicted indicate active apical-to-basolateral uptake.

![Proposed model](image)

Fig. 13. Proposed model of a ‘\(Na^+ /NH_4^+ \) exchange complex’ in DSI. The roles of various CA isoforms in ammonia excretion require further investigation; therefore they have not been included in the model. Non-ionic \(NH_3 \) diffusion, shown by the lower arrow, also plays an important role in ammonia efflux.
Rh proteins and Na+/NH₄⁺ exchange in trout gill epithelia

Craig, P. M., Wood, C. M. and McClelland, G. B. (2007). Gill membrane remodelling with softer acclimation in zebrafish (Danio rerio). Physiol. Genomics 30, 53-60.

Evans, D. H. and Cameron, J. N. (1988). Gill ammonia transport. J. Exp. Zool. 239, 1-23.

Fletcher, M., Kelly, S. P., Pärt, P., Dierickx, P., Halder, M., Isomaa, B., Jacobsson, A., Bols, N., Braunbeck, T., and Wood, C. M. (2000). Transport properties of cultured branchial epithelia from freshwater rainbow trout: a new approach with mitochondrial cells. J. Exp. Biol. 203, 1523-1530.

Gilmour, K., Pärt, P., Brunet, P., Picard, M., McDonald, D. G. and Wood, C. M. (1998). Permeability and morphology of a cultured epithelium from the rainbow trout during prolonged apical exposure to freshwater. J. Exp. Biol. 251, 531-545.

Gos, G. and Dierickx, P. (1995). Na⁺/NH₄⁺ uptake kinetics, diffusive effluxes and acidic equivalent fluxes across the gills of rainbow trout. J. Exp. Biol. 121, 521-547.

Heisler, N. (1990). Mechanisms of ammonia elimination in fishes. In Animal Nutrition and Transport Processes. 2, Transport, Respiration, and Excretion: Comparative and Environmental Aspects (ed. J. P. Truchot and B. Lahlou), pp. 137-151. Basel: Karger.

Hirata, T., Trygge, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S., Nakazato, T., Shiga, K., Wang, H., Romero, M. F. R. et al. (2003). Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1199-R1212.

Hunziker, W., Dierickx, P., and Wood, C. M. (1999). Expression of carbonic anhydrase mRNA in vivo in the mucus covering the apical side of the gill (Wright et al., 1986). At first glance, the reduction in carbonic anhydrase mRNA in the mucus covering the apical side of the gill (Wright et al., 1986). The alkaline tide and ammonia excretion after exposure to environmental hyperoxia. J. Exp. Biol. 155, 175-192.

Ivanic, I. and Degobbis, D. (1984). An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 18, 1143-1146.

Javelle, A., Lupo, D., Li, X. D., Merrick, M., Chami, M., Ripoche, P., Winkler, F., K. C. (2007). Structural and mechanistic aspects of Amn/Rh proteins. J. Struct. Biol. 158, 472-481.

Kashuk, S. J. and Teles, A. D. (1985). Effect of digestive energy on nitrogen and energy balance in rainbow trout. Aquaculture 50, 89-101.

Kerstetter, T. H. and Keeler, M. (1976). The interaction of Na⁺ and Na⁺ in the isolated trout gill. J. Exp. Biol. 24, 517-527.

Khademi, S., O'Connell, J., 3rd, Remis, J., Robles-Colmenares, Y., Miercke, L. J., de Vries, B., Kellner, W. M., and Wood, C. M. (2000). Procedures for the preparation and culture of 'reconstructed' rainbow trout branchial epithelial. Methods Cell Sci. 22, 153-163.

Krogh, A. (1939). Osmotic Regulation in Aquatic Animals. Cambridge: Cambridge University Press.

Li, Z. Chen, Y., Mo, R., Hui, C., Cheng, J. F., Mohandas, N. and Huang, C. H. (2000). Characterization of human RhCG and mouse Rhcg as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testes. J. Biol. Chem. 275, 25641-25651.

Liu, Z., Peng, J., Mo, R., Hui, R. and Huang, C. H. (2001). Rh type B glycoprotein is a unique member of the Rh superfamily and a putative ammonia transporter in mammals. J. Biol. Chem. 276, 1424-1433.

Maetz, J. (1973). Na⁺/NH₄⁺ exchange and NH₄⁺ movement across the gill of Carassius auratus. J. Exp. Biol. 58, 255-275.

Maetz, J. and Garcia-Romeu, F. (1964). The mechanism of sodium and chloride uptake by the gills of a freshwater fish. Carassius auratus. J. Fish. Biol. 1, 341-344.

Marini, A. M., Ionescu, I., Mihalache, N., and Hersch, J. (2004). Hydrodynamic transport properties of cultured branchial epithelia from freshwater rainbow trout. J. Exp. Biol. 207, 4151-4162.

Muir, J. A. and Cameron, J. N. (1994). Cloning and expression of the MEP1 gene encoding an ammonium transporter of Saccharomyces cerevisiae. EMBO J. 13, 3456-3465.

Nakada, T., Hoshijima, K., Esaki, M., Nagayoshi, S., Kawakami, K. and Hirose, S. (2006). Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its Ionic strength-dependence expression. J. Am. Physiol. Regul. Integr. Comp. Physiol. 293, R1143-R1153.

Nakada, T., Westhoff, C. M., Kato, A. and Hirose, S. (2007). Ammonia secretion from fish gill depends on a set of Rh proteins. FASEB J. 21, 1067-1074.

The water ammonia concentrations measured at the time of blood sampling are also reported. *P<0.05 relative to corresponding control value; †P<0.05 relative to simultaneous water ammonia concentration.

There were no significant differences (P>0.05) between 20h and 7 days values.

in the mucus covering the apical side of the gill (Wright et al., 1986).

At first glance, the reduction in carbonic anhydrase mRNA expression in the DSI after ammonia exposure (Fig. 7E) appears to contradict the previous model. However, it should be noted that exactly the same response was seen in rainbow trout gills in vivo following HEA (Nawata et al., 2007). The CA-2 investigated in both the present study and that of Nawata and colleagues (Nawata et al., 2007) is the intracellular isoform. It is not known whether the extracellular CA-4 was affected by ammonia exposure. We interpret the present results to indicate that, during ammonia exposure, CA-2 was down-regulated leading to less intracellular H⁺ production from CO₂ hydration, so that H⁺ from NH₄⁺ could be preferentially exported by H⁺-ATPase or NHE-2 (Fig. 13). The roles of various carbonic anhydase isoforms in ammonia excretion require further investigation; therefore they have not been included in the current model (Fig. 13).

In conclusion, we report that the mRNA expression of different membrane transporters are regulated by ammonia and cortisol, individually as well as synergistically. We have also proposed an apical ‘Na⁺/NH₄⁺ exchange complex’ consisting of several interacting membrane transporters. This model affirms the importance of non-ionic diffusion of NH₃ in ammonia excretion. It also explains the coupling phenomenon between ammonia excretion and Na⁺ uptake. Given the toxicity of ammonia and the constant loss of Na⁺ in freshwater fish, it is not surprising to find a sophisticated and yet flexible system to deal with ammonia excretion and Na⁺ uptake.

Supported by NSERC (Canada) Discovery Grants and Canada Foundation for Innovation/Ontario Innovation Trust equipment awards to C.M.W. and P.A.W. C.M.W. is supported by the Canada Research Chair Program. We thank Linda Diaco for excellent technical assistance and two anonymous reviewers for constructive comments which led to the measurements of Series 6.

REFERENCES

Alspop, D. and Vijayan, M. M. (2008). Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R711-R719.

Avella, M. and Bornancin, M. (1989). A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J. Exp. Biol. 142, 155-175.

Buckling, C. and Wood, C. M. (2008). The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout. J. Exp. Biol. 211, 2533-2541.

Cameron, J. N. and Heisler, N. (1983). Studies of ammonia in the rainbow trout: physico-chemical properties, acid-base behaviour, and respiratory clearance. J. Exp. Biol. 105, 107-125.

Castaño, A., Bols, N., Braunbeck, T., Dierickx, P., Halder, M., Isomaa, B., Kawahara, K., Lee, L. E. J., Mothersill, C., Pärt, P. et al. (2003). The use of fish cells in ecotoxicology: the report and recommendations of ECVAM Workshop 47.

ATLA 31, 317-351.

Table 3. The influence of exposure to high environmental ammonia (HEAD, nominally 2000µmol l⁻¹, measured: 2515±153 µmol l⁻¹) for up to 7 days on plasma total ammonia and cortisol concentrations in live trout in Series 6

Water [ammonia] (µmol l⁻¹)	Plasma [ammonia] (µmol l⁻¹)	Plasma [cortisol] (ng ml⁻¹)
Control (N=10)	33±5	97±15
20h HEA (N=10)	2319±966	1183±81
7 day HEA (N=10)	2260±860	1079±43

The water ammonia concentrations measured at the time of blood sampling are also reported. *P<0.05 relative to corresponding control value; †P<0.05 relative to simultaneous water ammonia concentration.

There were no significant differences (P>0.05) between 20h and 7 days values.
Nakhour, N. L., Schmidt, E., Abdoulou-Nakhoul, S.-M. and Hamm, L. L. (2006). Electrogenic ammonium transport by renal Rhbg. Transfus. Clin. Biol. 13, 147-153.

Nawata, C. M. and Wood, C. M. (2008). The effects of CO2 and external buffering on ammonia excretion and Rh glycoprotein mRNA expression in rainbow trout. J. Exp. Biol. 211, 3226-3236.

Nawata, C. M., Hung, C. C. Y., Tsui, T. K. N., Wilson, J. M., Wright, P. A. and Wood, C. M. (2007). Ammonia excretion in rainbow trout (Oncorhyncus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiol. Genomics 31, 463-474.

Ninnemann, O., Jauniaux, J. C. and Frommner, W. B. (1994). Identification of a high affinity NH4+ transporter from plants. EMBO J. 13, 3464-3471.

Ortega, V. A., Renner, K. J. and Bernier, N. J. (2005). Appetite-suppressing effects of ammonia exposure in rainbow trout associated with regional and temporal activation of brain monoaminergic and CRF systems. J. Exp. Biol. 208, 1855-1866.

Payan, P. (1978). A study of the Na+NH4+ exchange across the gill of the perfused head of the trout (Salmo gairdneri). J. Comp. Physiol. 124B, 181-188.

Payan, P. and Matty, A. J. (1975). The characteristics of ammonia excretion by a perfused isolated head of trout (Salmo gairdneri): effect of temperature and CO2-free Ringer. J. Comp. Physiol. 96, 167-184.

Payan, P., Matty, A. J. and Maetz, J. (1975). A study of the sodium pump in the perfused head preparation of the trout Salmo gairdneri in freshwater. J. Comp. Physiol. 104, 33-48.

Perry, S. F., Shahsavaraní, A., Georgalis, T., Bayaa, M., Furrysky, M. and Thomas, S. L. Y. (2003). Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation. J. Exp. Zool. 300A, 53-62.

Potts, W. T. W. (1984). Transepithelial potentials in fish gills. In Fish Physiology Vol 10B (ed. W. S. Hoar and D. J. Randall), pp. 105-128. Orlando, FL: Academic Press.

Pressley, T. A., Graves, J. S. and Krall, A. R. (1981). Amiloride sensitive ammonium and sodium ion transport in the blue crab. Am. J. Physiol. 241, R370-R378.

Randall, D. J. and Wright, P. A. (1989). The interaction between carbon dioxide and ammonia excretion and water pH in fish. Can. J. Zool. 67, 2936-2942.

Salama, A., Morgan, I. J. and Wood, C. M. (1999). The linkage between Na+ uptake and ammonia excretion in rainbow trout: kinetic analysis, the effects of (NH4)2SO4 and NH4HCO3 infusion, and the influence of gill boundary layer pH. J. Exp. Biol. 220, 6727-6739.

Scott, G. R., Claborne, J. B., Edwards, S. L., Schulte, P. M. and Wood, C. M. (2005). Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. J. Exp. Biol. 208, 2719-2729.

Smith, H. W. (1929). The excretion of ammonia and urea by the gills of fish. J. Biol. Chem. 81, 727-742.

Vestergaard, J. W., Miller, R. T., Frank, A. E., Royaux, I. E., Kim, Y. H. and Weiner, I. D. (2003). Localization of the ammonium transporter proteins RhBG and RhCG in mouse kidney. Am. J. Physiol. Renal Physiol. 284, F323-F337.

Weihrauch, D., Morris, S. and Towle, D. W. (2004). Ammonia excretion in aquatic and terrestrial crabs. J. Exp. Biol. 207, 4491-4504.

Wendalaar Bonga, S. E. (1997). The stress response in fish. Physiol. Rev. 77, 591-625.

Wicks, B. J. and Randall, D. J. (2002). The effect of feeding and fasting on ammonia toxicity in juvenile rainbow trout, Oncorhyncus mykiss. Aquat. Toxicol. 59, 71-82.

Wilkie, M. P. (1997). Mechanisms of ammonia excretion across fish gills. Comp. Biochem. Physiol. 118A, 39-50.

Wilkie, M. P. and Wood, C. M. (1994). The effects of extreme alkaline water (pH 9.5) on rainbow trout gill function and morphology. J. Fish Biol. 45, 87-98.

Wilkie, M. P., Simmons, H. E. and Wood, C. M. (1996). Physiological adaptations of gill boundary layer acidification: lack of evidence for Na+/NH4+ exchange. J. Exp. Biol. 191, 37-58.

Wood, C. M. (1993). Ammonia and urea metabolism and excretion. In The Physiology of Fishes (ed. D. Evans), pp. 379-425. Boca Raton, FL: CRC Press.

Wood, C. M. and Grosell, M. (2008). A critical analysis of transepithelial potential in intact killifish (Fundulus heteroclitus) subjected to acute and chronic changes in salinity. J. Comp. Physiol. 217, 713-727.

Wood, C. M. and Pärt, P. (1997). Cultured branchial epithelia from freshwater fish gills. J. Exp. Biol. 200, 1047-1059.

Wood, C. M. and Pärt, P. (2000). Intracellular pH regulation and buffer capacity in CO2/HCO3–-buffered media in cultured epithelial cells from rainbow trout gills. J. Comp. Physiol. B 170, 175-184.

Wood, C. M., Gilmour, K. M. and Pärt, P. (1998). Passive and active transport properties of a gill model, the cultured branchial epithelium of the freshwater rainbow trout (Oncorhyncus mykiss). Comp. Biochem. Physiol. 119A, 87-96.

Wood, C. M., Kelly, S. P., Zhou, B., Fletcher, M., O’Donnell, M., Elett, B. and Pär, P. (2002). Cultured gill epithelia as models for the freshwater fish gill. Biochim. Biophys. Acta 1566, 72-83.

Wright, P. A. and Wood, C. M. (1985). An analysis of branchial ammonia excretion in the freshwater rainbow trout: effects of environmental pH change and sodium uptake blockade. J. Exp. Biol. 114, 329-353.

Wright, P. A., Heming, T. and Randall, D. J. (1986). Downstream changes in water flowing over the gills of rainbow trout. J. Exp. Biol. 126, 499-512.

Wright, P. A., Randall, D. J. and Perry, S. F. (1989). Fish gill boundary layer: a site of linkage between carbon dioxide and ammonia excretion. J. Comp. Physiol. 158, 627-635.

Yesaki, T. Y. and Iwama, G. K. (1992). Some effects of water hardness on survival, acid-base regulation, ion regulation and ammonia excretion in rainbow trout in highly alkaline water. Physiol. Zool. 65, 763-787.

Zhou, B. S., Kelly, S. P., Iwanowski, J. P. and Wood, C. M. (2003). Effects of cortisol and prolactin on Na+ and Cl- transport in cultured branchial epithelia from FW rainbow trout. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1305-R1316.