Education of Healthcare Personnel Working with Pediatric Patients During COVID-19 Pandemic within the Framework of Infection Control

COVID-19 Pandemisinde Enfeksiyon Kontrol Çalışmaları Çerçevesinde Çocuk Hastalarla Çalışan Sağlık Personeli Eğitimi

Pembe Derin Oygar1(İD), Ayşe Büyükgümüş2(İD), Zümrüt Şahbudak Bal3(İD), Nazan Dalgıç4(İD), Şefika Elmas Bozdemir5(İD), Adem Karbuz6(İD), Benhur Şirvan Çetin7(İD), Yağış Kara8(İD), Ceren Çetin9(İD), Nevin Hatipoğlu10(İD), Hatice Uygun11(İD), Fatma Deniz Aygün12(İD), Selda Hançerli Törun13(İD), Dicle Şener Okur14(İD), Dilek Yılmaz Çiftdoğan15(İD), Tuğçe Tural Kara16(İD), Aysun Yahşi17(İD), Arife Özer18(İD), Sevliya Öcal Demir19(İD), Gülşen Akkoç20(İD), Cansu Turan21(İD), Enes Sah22(İD), Semra Şen23(İD), Emine Hafize Erdeniz24(İD), Soner Sertan Kara25(İD), Melike Emiroğlu26(İD), Tuğba Erat27(İD), Hacer Aktürk28(İD), Sibel Laçinel Gürlevik29(İD), Murat Sütçü30(İD), Zeynep Gökçe Gayretli Aydin31(İD), Başak Yıldız Atıkan32(İD), Edanur Yeşi33(İD), Gizem Güner34(İD), Emel Çelebi35(İD), Lida Bülbül36(İD), Habip Almış37(İD), Özge Kaba38(İD), Yıldız Ekemen Keles39(İD), Bahadır Yazaçıoğlu40(İD), Şerife Bahtiyar Oğuz41(İD), Hüsnü Fahri Ovalı42(İD), Hazal Helin Dogan43(İD), Solmaz Çelebi44(İD), Deniz Çakır45(İD), Burçgül Karasulu46(İD), Günsüm Alkan47(İD), İrem Yenidoğan48(İD), Doruk Gül49(İD), Burcu Panitan Küçükçilingöl50(İD), Gülhadiye Avcu51(İD), Musa Gürel Kükal52(İD), Melis Bilen53(İD), Belma Yaşar54(İD), Tuğba Üstün55(İD), Ömer Kılıç56(İD), Yılmaz Dağlı57(İD), Cansu Turan58(İD), Nihal Şahin59(İD), Mehmet Kılınç60(İD), Deniz Çakır61(İD), Nurul Cevdet62(İD), Cemal Ceylan63(İD), Aslıhan Şahin64(İD), Surat Arslan65(İD), Murat Aksoy66(İD), Sadiye Kübra Tüzer67(İD), Halil Hatipoğlu68(İD), İlyas Tolga Erkül69(İD), Asuman Onay70(İD), Mehmet Turgut71(İD), Nihan Emre72(İD), Gökhan Akkuş73(İD), Serkan Öztürk74(İD), Ener Çağrı Dinleyici75(İD), Mustafa Hacmustafaoğlu76(İD), Ferda Özknay77(İD), Zafer Kuruğöl78(İD), Ali Bülent Cengiz79(İD), Ayper Somer80(İD), Hasan Tezer81(İD), Ateş Kara82(İD)

©Copyright 2020 by Pediatric Infectious Diseases and Immunization Society.
Available online at www.acukifenfeksiyon.org
Objective: In the early stages of any epidemic caused by new emerging pathogens healthcare personnel is subject to a great risk. Pandemic caused by SARS-CoV-2, proved to be no exception. Many healthcare workers died in the early stages of pandemic due to inadequate precautions and insufficient protection. It is essential to protect and maintain the safety of healthcare personnel for the confinement of pandemic as well as continuity of qualified healthcare services which is already under strain. Educating healthcare personnel on appropriate use of personal protective equipment (PPE) is as essential as procuring them.

Material and Methods: A survey is conducted on 4927 healthcare personnel working solely with pediatric patients from 32 different centers. Education given on PPE usage were questioned and analyzed depending on age, sex, occupation and region.

Results: Among four thousand nine hundred twelve healthcare personnel from 32 different centers 91% (n= 4457) received education on PPE usage. Of those who received education only 36% was given both theoretical and applied education. Although there was no differences among different occupation groups, receiving education depended on regions.

Conclusion: It is essential to educate healthcare personnel appropriately nationwide for the continuity of qualified healthcare services during the pandemic.

Keywords: COVID-19, healthcare personnel, personal protection, education

Introduction

With the first phenomenon of a new type of corona virus (SARS-Cov-2) which emerged in Wuhan Province of China in December 2019 and caused a pandemic in a short time, on March 11, 2020, the effect of the epidemic started to be experienced more clearly. The epidemic caused (1) death of more than 1 million people around world in a short time, affects each person living in the world differently. Since the virus first emerged, healthcare professionals have demonstrated a great example of struggle all over the world. Many of healthcare professionals have died due to their assignment during epidemic (2), and a substantial majority of them feared and live to infect their families. Protecting healthcare professionals in pandemic is important in terms of preventing spread of disease as well as preventing disruption of health services. For this, healthcare personnel should be trained prudcially continuously. Continuing education about infection form, prevention and clinical picture they cause of newly emerging or re-important pathogens is also important. In the light of the
current and updated information, protection-related topics shall be exchanged thoroughly via sustainable training programs and associated practical components to take necessary measures for igniting reorientation.

In the COVID-19 epidemic caused by SARS-CoV-2, guidelines and practices regarding the use of special personal protection and protective equipment for healthcare professionals have been rapidly developed and necessary changes have been made over time (3,4).

In our study, we aimed to evaluate the personal protection education status given to health personnel working in health services for childhood in different regions of our country according to profession, gender, age and regions.

Materials and Methods

In the survey study, attended by a total of 32 central from 20 different provinces in seven regions of Turkey, is conducted on 4927 healthcare professionals providing healthcare services to children. In this study, it was examined whether personnel has been trained to use personal protection and personal protection equipment due to COVID-19. The survey, in which the education was questioned as theoretical, applied or both, was administered by the pediatric infectious diseases specialist working at that center (Annex-1: survey questions).

In the survey, people were asked about their underlying diseases, apart from demographic information such as their job, their years in the profession, age and gender.

Before participating in survey, each participant was required to have worked in environments with a risk of direct or indirect contact with probable or definite COVID-19 pediatric patients.

Written consent was taken from participant who provide inclusion criteria.

The study is confirmed by noninvasive ethics committee of Hacettepe University (Approval number: 2020/11-57) The study is conducted between 20 May and 15 June 2020.

Data collected from all centers were combined in Hacettepe University Faculty of Medicine, Pediatric Infectious Diseases Science. 26th version of IBM SPSS program was used for statistical calculations of survey results. Mean, standard deviation, and median values were used for continuous variables, while Chi-squared, Mann-Whitney U and Kruskal-Wallis Variance Analysis tests were used for non-continuous data.

Results

4927 healthcare professionals from 20 provinces (Ankara, Kayseri, Konya, Istanbul, Bursa, Izmir, Aydin, Manisa, Balikesir, Denizli, Antalya, Mersin, Trabzon, Samsun, Erzurum, Van, Sanliurfa, Gaziantep, Adiyaman, Eskisehir) in seven regions of Turkey were included in the study (Figure 1).

Annex 1. Survey

Question 1. Age:
Question 2. Profession:
a. Professor Doctor ☐
b. Associate Professor ☐
c. Assistant Professor ☐
d. Specialist Doctor ☐
e. Physician Associate ☐
f. Nurse ☐
g. Assistant health workers ☐
Question 3. Years in Profession: ☐
Question 4. Has personal protection training been received?
Yes ☐ No ☐
Question 5. Education taken:
a. Theoretical ☐
b. Applied ☐
c. Theoretical + Applied ☐
Question 6. Underlying Disease:
1. Nonexistence ☐
2. DM ☐
3. HT ☐
4. Immunosuppressive ☐
5. Cancer ☐
6. KBY ☐
7. Asthma ☐
8. Others ☐
Question 7. Region Participated:
1. Central Anatolia ☐
2. Marmara ☐
3. Aegean ☐
4. Eastern Anatolia ☐
5. Southeastern Anatolia ☐
6. Black Sea ☐
7. Mediterranean ☐
The mean age of the participants (n = 4859) for whom age data was obtained was calculated as 34.4 ± 9.07, and the median age was 32 years (19-67 years).

Gender data of 4883 of the participating healthcare professionals were obtained. Of the healthcare professionals included in the study, 3545 (72.6%) were female and 1338 (27.4%) were male. Of those surveyed, 149 (3%) were professors, 189 (3.8%) were associate professors, 149 (3%) were physician lecturers, 654 (13.3%) were specialists, 983 (20%) were assistant doctors, 1702 (34.5%) were nurses and 1079 (21.8%) were assistant health workers (Figure 2). According to professions groups, the average working years were calculated as the longest (28.44 years) for professor doctors and the shortest (3.57 years) for assistant doctors (Table 1).

From the survey result, it was learned that 4472 (91%) of 4912 healthcare professionals received training on personal protection and 437 (9%) did not receive this training.

It was learned that, of those who received training, 54.6% (n= 2498) received theoretical education, 36% (n= 1650) received theoretical and applied education, and 9.4% (n= 432) received only applied education. Eighteen healthcare professionals were not included in the study because data on edu-

Figure 1. Number of healthcare professionals participating by provinces.

Figure 2. Distribution of healthcare professionals by profession groups.
education did not obtain. While it was observed that those who did not receive education were mostly associate professors (14.2%), assistant health workers (13.5%) took the second place. The rate of not having education was observed at least among nurses (5.1%). Statistical discrepancy did not find among professions in terms of education or not (p= 0.17). Gender and years in profession also had no effect on education or not (p= 0.11 ve p= 0.82). Significant difference were determined between regions in terms of education (p< 0.05). Most of the participants were healthy young health professionals, 80% stated that they did not have an underlying disease (Table 2). Significant differences were not determined between underlying diseases and education or not (p= 0.25).

Discussion

Healthy healthcare professionals have important roles in limiting the epidemic, as well as providing services in pandemic. The extent and rate of transmission of the COVID-19 pandemic reached very high levels in our country in a period of six months with the number of people it affected.

As of November 4, 2020, the total number of cases in our country was reported as 384,509 (5). The importance of protecting healthcare professionals and being able to continue their assignment, especially in the early stages of the pandemic, has been once again seen. It is necessary to provide the necessary training and ensure continuity for the correct use of protective equipment.

In the survey we conducted, it was determined that 8.9% of the healthcare professionals did not receive training, and 54.6% received only theoretical training. Apart from providing personal protective equipment, their correct use should also be controlled. Besides healthcare professionals with COVID-19 contact should be monitored and screened continuously and surveillance studies should be carried out for the isolation of infected healthcare personnel (6,7). Care, permission, treatment and psychological support of health personnel in case of illness should not be forgotten. In this respect, in our country, the fact that the COVID guide was published in January 2020 before the first case was detected can be considered as an advantage (8). World Health

Table 1. Training according to profession groups and forms of education taken

Profession	Number n= 4904 (%)	Profession (year)	Untrained n= 437 (%)	Trained n= 4580	Theoretical n= 2498 (%54.6)	Applied n= 432 (%9.4)	Theoretical + Applied n= 1650 (%36)
Professor Doctor	149 (3)	28.44 (15-44)	15 (10.1)	81 (58.7)	8 (5.8)	49 (35.5)	
Associate Professor	188 (3.8)	20.32 (9-40)	13 (7)	110 (60.1)	14 (7.7)	59 (32.2)	
Assistant Professor	149 (3)	10.64 (1-37)	21 (14.2)	82 (58.2)	20 (14.2)	39 (27.7)	
Specialist Doctor	654 (13.3)	13.87 (1-44)	65 (9.9)	342 (56.1)	60 (9.8)	208 (34.1)	
Physician Associate	983 (20)	3.57 (0-32)	92 (9.4)	435 (47.4)	71 (7.7)	411 (44.8)	
Nurse	1702 (34.5)	10.37 (1-42)	86 (5.1)	902 (54.9)	123 (7.5)	618 (37.6)	
Others	1079 (21.9)	10.88 (0-39)	145 (13.5)	546 (57.6)	136 (14.3)	266 (36%)	

Table 2. Presence and distribution of an underlying disease of the participants

Profession	n (%)	Age (mean)	Gender F/M	Nonexistence	HT	DM	Immunosuppressive	Cancer	KBY	Asthma	Other
Professor Doctor	149 (3)	52.7 (42-67)	81/65	92	6	26	0	0	0	10	14
Associate Professor	188 (3.8)	44.17 (36-64)	134/50	140	10	12	2	2	0	7	13
Assistant Professor	149 (3)	36.01 (25-59)	108/41	116	4	8	1	0	0	6	13
Specialist Doctor	654 (13.3)	38.64 (25-67)	395/222	521	20	30	4	3	0	26	45
Physician Associate	983 (20)	28.25 (20-34)	654/280	861	7	4	2	2	0	22	84
Nurse	1702 (34.5)	32.38 (19-62)	1460/211	1377	34	36	11	9	1	68	157
Assistant health workers	1079 (21.9)	37.77 (19-64)	622/42	841	40	34	6	8	0	50	87
Total	40,904	3454/911	3948 (80.1)	118	150	26	24	1	189	303	
Organization has put online training sets (web page) into practice for this purpose. However, these practices were possible in April - May 2020, after the period when the COVID-19 epidemic affected Europe greatly and many healthcare professionals got the disease.

In cases where new infectious diseases emerge, healthcare professionals are at risk more than anyone else, especially until the transmission dynamics of the new disease are identified. The situation was no different in the COVID-19 epidemic. As the number of transmission increases in the community, it becomes difficult to determine whether the transmission of healthcare professionals originates from the community or hospital.

The protection of healthcare workers can be achieved by the full implementation of infection control measures and the correct use of personal protective equipment. The way to achieve these is through continuous training and supervision. In addition, early detection and early isolation of asymptomatic or subclinical cases will reduce transmission to healthcare professionals working in risky areas. In the COVID-19 epidemic, the protection of healthcare workers, who constitute the most risky group, is essential to ensure the continuity of health systems that are already challenging all over the world.

References

1. World Health Organization (WHO). Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports11-18. Accessed: October 2020. [CrossRef]
2. M Zhan, Y Qin, X Xue, S Zhu. Death from Covid-19 of 23 health care workers in China. N Engl J Med 2020;382:2267-8. [CrossRef]
3. World Health Organization (WHO). Use of personal protective equipment (PPE) for coronavirus disease (COVID-19) Available from: http://www.WorldHealthOrganization-2020-apps.who.int. Accessed: 19 March 2020. [CrossRef]
4. Centers for Disease Control and Prevention (CDC). Using Personal Protective Equipment (PPE). Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/using-ppe.html. Accessed: 19 Agust 2020. [CrossRef]
5. T.C. Sağlık Bakanlığı COVID-19 resmi sitesi. Available from: https://www.covid19. saglik.gov.tr. Erişim tarihi: 4 Kasım 2020. [CrossRef]
6. Chang D, Xu H, Rebaza A, Sharma L, Dela Cruz CS. Protecting healthcare workers from subclinical coronavirus infection. Lancet Respir Med 2020;8(3):e13. [CrossRef]
7. Wang XH, Pan ZY , Cheng ZS. Association between 2019-nCoV transmission and N95 respirator use. J Hosp Infect 2020;105(1):104-5. [CrossRef]
8. World Health Organization (WHO). How To Put On And Take Off Personal Protective Equipment (PPE). WHO. Available from: https://www.who.int/csr/resources/publications/putontakeoffPPE/en Accessed: 22 April 2020. [CrossRef]