A GEOMETRIC VERSION OF THE CIRCLE METHOD

TIM BROWNING AND WILL SAWIN

Abstract. We develop a geometric version of the circle method and use it to compute the compactly supported cohomology of the space of rational curves through a point on a smooth affine hypersurface of sufficiently low degree.

Contents

1. Introduction 1
2. Overview of the argument 6
3. The geometric major arcs 14
4. The geometric minor arcs: geometry 27
5. The geometric minor arcs: arithmetic 33
6. Topological interpretation 39
References 46

1. Introduction

For \(n \geq 2 \), let \(X \subset \mathbb{A}^n \) be a smooth hypersurface defined by a polynomial \(f(x_1, \ldots, x_n) \) of degree \(k \geq 3 \) with coefficients in a field \(K \). Assume that the leading term of \(f \) defines a smooth projective hypersurface \(Z \subset \mathbb{P}^{n-1} \) of degree \(k \). For given \(P = (x_1 : \ldots : x_n) \in Z(K) \), the goal of this paper is to study the space \(\text{Mor}_{d,P}(\mathbb{A}^1, X) \) of \(n \)-tuples of polynomials \(g_1, \ldots, g_n \) of degree \(d \) that satisfy \(f(g_1, \ldots, g_n) = 0 \) and whose leading terms are exactly \((x_1, \ldots, x_n)\).

The space \(\text{Mor}_{d,P}(\mathbb{A}^1, X) \) is cut out by \(dk \) equations in \(dn \) variables and so its expected dimension is \(d(n - k) \). One of the outcomes of our work will be a proof of this fact for \(X \) of sufficiently low degree.

There has been a lot of recent work directed at studying the Kontsevich moduli space \(\overline{\mathcal{M}}_{0,0}(Z, d) \) of degree \(d \) rational curves on degree \(k \) hypersurfaces \(Z \subset \mathbb{P}^{n-1} \). Building on pioneering work of Harris, Roth and Starr [12], Riedl and Yang [19] have proved that \(\overline{\mathcal{M}}_{0,0}(Z, d) \) is an irreducible, local complete intersection scheme of the expected dimension, provided that \(Z \) is general and...
\(n \geq k + 3 \). This can be extended to all smooth hypersurfaces when \(k = 3 \), thanks to work of Coskun and Starr [7]. Finally, for \(n > 2^{k-1}(5k-4) \), Browning and Vishe [5] have adapted the Hardy–Littlewood circle method to handle the space of degree \(d \) rational curves on arbitrary smooth hypersurfaces of degree \(k \) in \(\mathbb{P}^{n-1} \).

In the present investigation we wish to go further and examine the compactly supported cohomology of the space of rational curves on a smooth hypersurface. It turns out that it is technically easier to work with affine space and to fix the point at infinity. This has led us to focus our present efforts on understanding \(\text{Mor}_{d,P}(\mathbb{A}^1, X) \), for \(X \subset \mathbb{A}^n \) a smooth hypersurface over a field \(K \), whose leading term defines a smooth projective hypersurface \(Z \subset \mathbb{P}^{n-1} \), with \(P \in Z(K) \).

Let \(\text{PConf}_m \) be the pure configuration space parametrising ordered \(m \)-tuples of distinct points in \(\mathbb{A}^1 \), and let \(\text{Conf}_m \) be the configuration space parametrising unordered \(m \)-tuples. The space \(\text{PConf}_m \) carries a free action of the symmetric group \(S_m \), the quotient by which is \(\text{Conf}_m \). The cohomology of these spaces has been studied by Arnol’d [1], a topic that has been revisited and connected to number theory over function fields by Chuch, Ellenberg, and Farb [6]. Let \(\text{sgn} \) be the sign representation of \(S_m \). We are now ready to reveal our main result.

Theorem 1.1. Let \(\ell \) be a prime. If \(\text{char}(K) \neq 0 \) assume that \(\text{char}(K) > k \) and \(\ell \) has even order modulo \(\text{char}(K) \). Assume that \(d \geq k-1 \geq 2 \) and \(n > 3 \cdot 2^k(k-1) \). There exists a spectral sequence \(E_{r,s}^{m,s} \), whose first page is

\[
\begin{cases}
(H^s \oplus m)(\text{PConf}_m, \mathbb{Q}_\ell) \otimes H^{n-1}_c(\mathbb{X}_K^*, \mathbb{Q}_\ell) \otimes \text{sgn}^{n-1}S_m & \text{if } 0 \leq m \leq d, \\
0 & \text{otherwise},
\end{cases}
\]

which converges to a complex whose \(i \)th cohomology is isomorphic as a \(\mathbb{Q}_\ell \)-vector space to \(H^{i+2d(n-1)}_{c,P}(\mathbb{A}^1, X)_{\overline{K}}, \mathbb{Q}_\ell) \), provided that

\[
i > 4(d+1) - \frac{dn}{3 \cdot 2^k(k-1)}.
\]

Note that \(\text{sgn}^{n-1} \) is the trivial representation when \(X \) is even dimensional. Our proof of Theorem [1.1] uses “spreading out”, in the sense of Grothendieck [11 § 10.4.11], which transfers us to the analogous problem over the algebraic closure of a finite field. In fact when \(K \) is a finite field we give a precise description of the spectral sequence in Theorem [2.7] replete with information about the Galois action through Tate twists.

The key innovation in this paper is the introduction of a geometric analogue of the circle method, which is inspired by the sorting of exponential sums according to “major arcs” and “minor arcs” that is found in the usual
Hardy–Littlewood circle method. The treatment of the major arcs is entirely geometric, but guided by the kind of calculations that occur in the circle method. The treatment of the minor arcs, on the other hand, reduces to a point counting problem over finite fields. This will be reinterpreted as a point counting problem over the function field $\mathbb{F}_q(T)$, to which existing circle method techniques developed by Lee [17] and Browning–Vishe [4, 5] can be adapted.

Note that PConf_m is an affine variety of dimension m. It follows that $H^i_c(\text{PConf}_m, \mathbb{Q}_\ell)$ vanishes unless $m \leq i \leq 2m$. To confirm that $i \geq m$ is necessary we apply Poincaré duality [2, Exposé XVIII, Thm. 3.2.5]. This implies that $H^i_c(\text{PConf}_m, \mathbb{Q}_\ell)$ is dual to $H^{2m-i}(\text{PConf}_m, \mathbb{Q}_\ell)$, which vanishes if $2m - i > m$ because PConf_m is affine [2, Exposé XIV, Cor. 3.2]. Thus it follows that $H^{i+m}_c(\text{PConf}_m, \mathbb{Q}_\ell)$ vanishes unless $m \leq s + mn \leq 2m$. Hence for the spectral sequence $E^{m,s}_1$ in Theorem [11] we have

$$E^{m,s}_1 \neq 0 \implies m \in [0, d] \text{ and } s \in [-m(n-1), -m(n-2)]. \quad (1.1)$$

But if $E^{m,s}_1$ vanishes for any m, s, then $E^{m,s}_\infty$ also has to vanish. By construction, the ith cohomology of the complex that $E^{m,s}_1$ converges to is an iterated extension of $E^{m,s}_\infty$ for $m + s = i$. Thus it vanishes unless i is in one of those intervals. This observation leads to the following consequence of Theorem [11].

Corollary 1.2. Let ℓ be a prime. If $\text{char}(K) \neq 0$ assume that $\text{char}(K) > k$ and ℓ has even order modulo $\text{char}(K)$. Assume that $d \geq k - 1 \geq 2$ and $n > 3 \cdot 2^k(k-1)$. If $i > 4d + 1 - \frac{dn}{3 \cdot 2^{k-2}(k-1)}$ then

$$H^{i+2d(n-k)}_c(\text{Mor}_{d,P}(\mathbb{A}^1, X)_R, \mathbb{Q}_\ell) = 0$$

unless $i \in [-m(n-2), -m(n-3)]$ for some $m \in [0, d]$.

Note that $4d + 1 - \frac{dn}{3 \cdot 2^{k-2}(k-1)} \leq 0$ if and only if

$$n \geq 3 \cdot 2^k(k-1) \cdot \left(1 + \frac{1}{d}\right). \quad (1.2)$$

If $d \geq k - 1$ we note that (1.2) holds when $n \geq 3 \cdot 2^k k$. Assuming that n is in the range (1.2) and that $d \geq k - 1 \geq 2$, it follows from Corollary [12] that $H^{i+2d(n-k)}_c(\text{Mor}_{d,P}(\mathbb{A}^1, X)_R, \mathbb{Q}_\ell) = 0$ for $i > 0$.

A sequence of spaces Y_d is said to be “homologically stable” if the ith cohomology of Y_d is independent of d for $d \gg i$. The precise meaning of this in our context is not immediately clear since there is no natural map $\text{Mor}_{d,P}(\mathbb{A}^1, X) \to \text{Mor}_{d+1,P}(\mathbb{A}^1, X)$. However, assuming that the differentials in the spectral sequence of Theorem [11] are independent of d for d sufficiently large, it follows that there exist isomorphisms

$$H^{i+2d(n-k)}_c(\text{Mor}_{d,P}(\mathbb{A}^1, X)_R, \mathbb{Q}_\ell) \cong H^{i+2d(n-k)}_c(\text{Mor}_{d+1,P}(\mathbb{A}^1, X)_R, \mathbb{Q}_\ell).$$
for d sufficiently large. Thus a form of homological stability applies to the sequence of spaces $\text{Mor}_{d,P}(A^1, X)$.

There have been two recent success stories where results in analytic number theory have been established by proving homological stability of appropriate moduli spaces. In work of Ellenberg, Venkatesh and Westerland [10], a homological stabilisation theorem is established for the moduli space of branched covers of the complex projective line. For a given odd prime l and a finite abelian l-group A, this is used to prove that (for sufficiently large $q \not\equiv 1 \mod l$) a positive proportion of quadratic extensions of $\mathbb{F}_q(T)$ have the l-part of their class group isomorphic to A. This point of view has been taken even further by Ellenberg, Tran and Westerland [9], where a similar philosophy is used to confirm the upper bound in Malle’s conjecture about the distribution of finite extensions of $\mathbb{F}_q(T)$ with a specified Galois group. Theorem 1.1 and Corollary 1.2 go in the reverse direction, whereby a homological stabilisation theorem is proved using methods which herald from analytic number theory.

We expect that the spectral sequence in Theorem 1.1 degenerates on the first page for sufficiently large $m + s$, leading us to make the following conjecture.

Conjecture 1.3. Assume that $d \geq k - 1 \geq 2$ and $n > 3 \cdot 2^{k}(k - 1)$. The cohomology group $H_c^{i + 2d(n-k)}(\text{Mor}_{d,P}(A^1, X))_{K, Q_l}$ is isomorphic to

\[
\bigoplus_{m \geq 0} H_c^{i + m(n-1)}(\text{PConf}_m, Q_l) \otimes H_c^{n-1}(\overline{X}, Q_l) \otimes \text{sgn}^{n-1} S_m,
\]

for $i > 4(d + 1) - \frac{dn}{3 \cdot 2^{k-2}(k-1)}$.

When the homology of a sequence of spaces stabilises, it is natural to find a single space that they all map to, whose homology is the limit of the homology of the underlying spaces. (When each space maps to the next space in the sequence, one can simply take the limit of the spaces.) In §6 we shall investigate a potential space with this property for the sequence of $\text{Mor}_{d,P}(A^1, X)$ over the complex numbers. We shall demonstrate that the various $\text{Mor}_{d,P}(A^1, X)$ naturally map to the space $\text{Hom}_{d,P}(\mathbb{C}, X)$ that parameterises certain continuous maps from $\mathbb{P}^1(\mathbb{C})$ to the smooth projective closure \overline{X} of X and is homotopic to the double loop space of X. We conjecture a relationship between the compactly supported cohomology of $\text{Mor}_{d,P}(A^1, X)$ and the cohomology of this double loop space. In Theorem 6.7 we will show that Conjecture 1.3 follows from this conjecture.

Although we have not been able to compute the full cohomology of the space of maps $\text{Mor}_{d,P}(A^1, X)$, we can nonetheless use Theorem 1.1 to calculate $(n-2)(n-3)$ cohomology groups, starting from the first non-zero cohomology group, without higher differentials. To see this, we claim that $E_r^{m,s} = E_\infty^{m,s}$ for $m + s > -(n-2)(n-3)$, for the spectral sequence $E_r^{m,s}$ in Theorem 1.1.
This follows if we are able to show that the differentials on the rth page of the spectral sequence vanish for \(r \geq 1 \) and \(m + s > -(n - 2)(n - 3) \). Suppose for a contradiction that some differential \(d^{m,s}_r : E^{m,s}_r \to E^{m+r,s-r+1}_r \) is non-zero. Then certainly \(E^{m,s}_1 \) and \(E^{m+r,s-r+1}_1 \) must be non-zero, which by (1.1) can only occur when the interval \([-m(n-1), -m(n-2)]\) intersects the interval
\[-(m + r)(n - 1) + r - 1, -(m + r)(n - 2) + r - 1].\]
This requires \(m(n-1) \geq (m+r)(n-2) - r + 1 \), or equivalently \(m \geq r(n-3) + 1 \).
This in turn implies that \(m \geq n - 2 \), since \(r \geq 1 \). But (1.1) implies that \(s \in [-m(n-1), -m(n-2)] \) if \(E^{m,s}_1 \) is non-vanishing, whence
\[m + s \leq -nm + 3m = -m(n-3) \leq -(n-2)(n-3),\]
as required.

A straightforward outcome of Theorem 1.1 is the following result, which concerns the most basic geometric properties of \(\text{Mor}_{d,P}(\mathbb{A}^1, X) \). This should be viewed as an analogue of the main theorem of [5] in a different context, with a different, more geometric proof. We expect that a proof of this theorem exists via the methods of [5], and vice versa.

Corollary 1.4. Let \(K \) be a field with \(\text{char}(K) > k \) if \(\text{char}(K) \neq 0 \). Assume that \(d \geq k - 1 \geq 2 \) and that \(n \) satisfies the lower bound in (1.2). Then the space \(\text{Mor}_{d,P}(\mathbb{A}^1, X) \) is irreducible and has the expected dimension \(d(n-k) \).

Proof. For ease of notation let us write \(M = \text{Mor}_{d,P}(\mathbb{A}^1, X) \) in the proof of this result. To begin with, note that each irreducible component of \(M \) has dimension at least \(d(n-k) \), since \(M \) can be defined as the vanishing locus in \((\mathbb{A}^d)^n \) of \(dk \) equations.

We proceed by proving that if \(m \) is the dimension of the largest irreducible component of \(M_{\overline{K}} \), then the cohomology group \(H^i_c(M_{\overline{K}}, \mathbb{Q}_\ell) \) vanishes for \(i > 2m \) and its dimension is equal to the number of \(m \)-dimensional irreducible components of \(M_{\overline{K}} \) if \(i = 2m \). The first estimate follows from the bound for the cohomological dimension of schemes. For the second estimate, let \(U \) be the maximal smooth \(m \)-dimensional subset of the induced reduced subscheme of \(M_{\overline{K}} \) and let \(Z \) be its complement. Then \(U \) is smooth of dimension \(m \) and its number of connected components is equal to the number of irreducible components of \(M_{\overline{K}} \). Moreover, \(\dim Z \leq m - 1 \). Thus \(H^j_c(Z_{\overline{K}}, \mathbb{Q}_\ell) \) vanishes for \(j > 2m - 2 \) and the excision exact sequence [2] Exposé XVII, Eq. (5.1.16.2)] yields
\[H^j_c(Z_{\overline{K}}, \mathbb{Q}_\ell) \to H^j_c(U_{\overline{K}}, \mathbb{Q}_\ell) \to H^j_c(M_{\overline{K}}, \mathbb{Q}_\ell) \to H^j_c(Z_{\overline{K}}, \mathbb{Q}_\ell).\]
This therefore gives an isomorphism \(H^j_c(U_{\overline{K}}, \mathbb{Q}_\ell) \cong H^j_c(M_{\overline{K}}, \mathbb{Q}_\ell) \). By appealing to Poincaré duality [2] Exposé XVIII, Thm. 3.2.5], \(H^j_c(U_{\overline{K}}, \mathbb{Q}_\ell) \) is dual to \(H^{j-2m}(U_{\overline{K}}, \mathbb{Q}_\ell) \), which has dimension equal to the number of connected
components of U, which is therefore equal to the number of top-dimensional irreducible components of M_K.

Thus it will follow that M has dimension $d(n-k)$ and that it has a unique irreducible component, of dimension exactly $d(n-k)$, provided we can show that $H_{c}^{i+2d(n-k)}(M_K, \mathbb{Q}_\ell) = 0$ for $i > 0$ and that it is one-dimensional for $i = 0$.

When $i > 0$ this follows from Corollary 1.2 provided that $d \geq k - 1 \geq 2$ and n satisfies (1.2). Suppose next that $i = 0$ and let $E_{r,m,s}$ be a spectral sequence as in Theorem 1.1. It follows from (1.2) that $n > 3$. Thus (1.1) implies that $E_{1}^{m,s}$ is non-zero for $m + s = 0$ if and only if $m = s = 0$. We claim that $E_{1,0,0}$ is one-dimensional, which will complete the proof since the convergence property of Theorem 1.1 then implies that $H_{c}^{2d(n-k)}(M_K, \mathbb{Q}_\ell)$ is one-dimensional. But P_{Conf}_{0} is simply a point, so $H_{c}^{0}(P_{\text{Conf}}_{0}, \mathbb{Q}_\ell)$ is one-dimensional, while the 0-fold tensor product of $H_{c}^{n-1}(X_K, \mathbb{Q}_\ell)$ is also one-dimensional, as is the sign character. Because S_{0} is the trivial group, taking S_{0}-invariants changes nothing, which thereby establishes the claim.

\[\square\]

Remark 1.5. It is unreasonable to expect an analogue of Corollary 1.4 when $d < k - 1$. Let X be the vanishing locus of the polynomial

$$f = x_1^{k-1}x_2 + x_2^{k} + \cdots + x_n^{k} + 1.$$

Then the leading form defines a smooth hypersurface $Z \subset \mathbb{P}^{n-1}$ of degree k, which contains the point $P = (1 : 0 : \cdots : 0)$. Consider the subscheme $M \subseteq \text{Mor}_{d,P}(\mathbb{A}^1, X)$, consisting of rational curves which lie in the hyperplane $x_2 = 0$. If $Y \subseteq \mathbb{A}^{n-2}$ denotes the smooth hypersurface $x_3^{k} + \cdots + x_n^{k} + 1 = 0$, then $\text{Mor}_{d,(0,\cdots,0)}(\mathbb{A}^1, Y)$ is cut out by $k(d-1)+1$ equations in $d(n-2)$ variables. Hence it has dimension at least $d(n-2) - k(d-1) - 1$. This implies that

$$\dim M \geq d + d(n-2) - k(d-1) - 1 = d(n-k) - d + k - 1.$$

Thus, if $d < k - 1$, then the dimension of M is greater than the expected dimension $d(n-k)$ of $\text{Mor}_{d,P}(\mathbb{A}^1, X)$.

Acknowledgements. During the preparation of this paper the authors were supported by the NSF under Grant No. DMS-1440140, while in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2017 semester. Tim Browning was supported by EPSRC grant EP/P026710/1 and ERC grant 306457, while Will Sawin was supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich Foundation.

2. Overview of the argument

To begin with we proceed under the assumption that $K = \mathbb{F}_q$ is a finite field such that $\text{char}(\mathbb{F}_q) > k$. At the end of the section we will deduce Theorem 1.1 by using a spreading out argument. We take ℓ to be a prime which has
A geometric version of the circle method 7

even order in the multiplicative group modulo the characteristic of \mathbb{F}_q. This is a technical hypothesis that could, of course, be removed if strong enough independence-of-ℓ results for étale cohomology were known. Our argument will rely mainly on foundational results in the theory of étale cohomology from [2]. These comprise:

- proper base change [2, Exposé XIII, Prop. 5.2.8];
- the Leray spectral sequence with compact supports [2, Exposé XVII, Eq. (5.1.8.2)];
- functoriality [2, Exposé XVII, Variant 5.1.14];
- excision [2, Exposé XVII, Eq. (5.1.16.2)];
- the projection formula [2, Exposé XVII, Prop. 5.2.9]; and
- the Künneth formula [2, Exposé XVII, Thm. 5.4.3].

From now on $X \subset \mathbb{A}^n$ is a smooth hypersurface defined by a polynomial $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ of degree $k \geq 3$, whose leading term defines a smooth hypersurface $Z \subset \mathbb{P}^{n-1}$ over \mathbb{F}_q. For $P = (x_1 : \cdots : x_n) \in Z(\mathbb{F}_q)$, our interest lies with the space $\text{Mor}_{d,P}(\mathbb{A}^1, X)$ of n-tuples of polynomials $g_1, \ldots, g_n \in \mathbb{F}_q[T]$ of degree d that satisfy $f(g_1, \ldots, g_n) = 0$ and whose leading terms are exactly (x_1, \ldots, x_n). The polynomials of interest to us take the shape

$$g_j(T) = x_j T^d + \sum_{i=0}^{d-1} a_{i,j} T^i,$$

(2.1)

for $1 \leq j \leq n$ and $(a_{0,j}, \ldots, a_{d-1,j})_{1 \leq j \leq n} \in (\mathbb{F}_q^d)^n$. Let $e : (\mathbb{A}^d)^n \times \mathbb{A}^{kd} \to \mathbb{A}^1$ be the function that takes

$$\left((a_{0,j}, \ldots, a_{d-1,j})_{1 \leq j \leq n}, (b_1, \ldots, b_{kd})\right)$$

to the coefficient of T^{-1} in

$$\left(\sum_{r=1}^{kd} b_r T^{-r}\right) f \left(x_1 T^d + \sum_{i=0}^{d-1} a_{i,1} T^i, \ldots, x_n T^d + \sum_{i=0}^{d-1} a_{i,n} T^i\right).$$

It will be instructive to recall how the function field version of the classical circle method can be used to study $\text{Mor}_{d,P}(\mathbb{A}^1, X)$. Let \mathbb{T} be the ring $\{\sum_{r \geq 1} b_r T^{-r} : b_r \in \mathbb{F}_q\}$ of formal power series in $1/T$, with constant term equal to zero. Let $\varphi : \mathbb{F}_q((1/T)) \to \mathbb{F}_q$ be the function which takes an element of $\mathbb{F}_q((1/T))$ to the coefficient of T^{-1} and let ψ be a non-trivial additive character of \mathbb{F}_q. Then $\psi \circ \varphi$ is a non-trivial (additive) character on the locally compact space $\mathbb{F}_q((1/T))$. By combining properties of the Haar measure on \mathbb{T} with the orthogonality of characters, we have

$$\# \text{Mor}_{d,P}(\mathbb{A}^1, X) = \sum_{g_1, \ldots, g_n} \int_{\mathbb{T}} \psi \circ \varphi(\alpha f(g_1, \ldots, g_n)) d\alpha = \int_{\mathbb{T}} S(\alpha) d\alpha,$$

(2.2)
where the sum is over polynomials g_1, \ldots, g_n of the shape (2.1) and
\[S(\alpha) = \sum_{g_1, \ldots, g_n} \psi \circ \varphi(\alpha f(g_1, \ldots, g_n)). \]
This observation is the igniting spark in the circle method.

When α is close to an element of $\mathbb{F}_q(T)$ with small denominator we expect $S(\alpha)$ to be large. The union of such points form the set of “major arcs” and ought to make the dominant contribution to $\# \text{Mor}_{d,P}(\mathbb{A}^1, X)$. The “minor arcs” constitute everything else, which one would like to show make a negligible contribution to this cardinality. Once achieved, the sort of information about the geometry of $\text{Mor}_{d,P}(\mathbb{A}^1, X)$ embodied in Corollary 1.4 can be deduced from the resulting asymptotic formula by comparing the count to what is predicted by the Lang–Weil estimate [16].

The polynomial
\[
f \left(x_1 T^d + \sum_{i=0}^{d-1} a_{i,1} T^i, \ldots, x_n T^d + \sum_{i=0}^{d-1} a_{i,n} T^i \right)
\]
is a degree k polynomial composed with degree d polynomials and hence has degree at most kd. In fact, it is clearly a polynomial of degree at most $kd - 1$ since $(x_1 : \cdots : x_n) \in Z(\mathbb{F}_q)$. Thus only the piece $\sum_{r=1}^{dk} b_r T^{-r}$ plays a role in the integration over $\alpha \in \mathbb{T}$ in (2.2) and the exponential sum in the circle method can be written
\[
S(\alpha) = \sum_{a_{i,j}} \psi(e(a_{i,j}; b_1, \ldots, b_{kd})).
\]
We require a geometric analogue of this approach.

Let $p_1 : (\mathbb{A}^d)^n \times \mathbb{A}^{kd} \to (\mathbb{A}^d)^n$ and $p_2 : (\mathbb{A}^d)^n \times \mathbb{A}^{kd} \to \mathbb{A}^{kd}$ be the natural projections. Let \mathcal{L}_ψ be the Artin–Schreier sheaf on \mathbb{A}^1 associated to the character ψ on \mathbb{F}_q. We will work with the complex
\[
S_{d,f} = Rp_{2!} e^* \mathcal{L}_\psi
\]
on \mathbb{A}^{kd}. Our geometric version of (2.2) involves writing the desired compactly supported cohomology group as the compactly supported cohomology of \mathbb{A}^{kd} with coefficients in $S_{d,f}$. Just as the classical approach uses a special case of the inversion formula for Fourier series, the following geometric analogue is proved using a special case of the inversion formula for the ℓ-adic Fourier transform.

Lemma 2.1. We have $H^i_c(\text{Mor}_{d,P}(\mathbb{A}^1, X)_{\mathbb{F}_q}, \mathbb{Q}_\ell) = H^{i+2kd}_c(\mathbb{A}^{kd}, S_{d,f}(kd))$ for any $i \in \mathbb{Z}$.

Before turning to the proof of this result, we note that Lemma 2.1 can be used to recover the expression (2.2) by taking trace functions of both sides.
and appealing to the Grothendieck–Lefschetz trace formula to interpret the left hand side in terms of the cardinality of \mathbb{F}_q-points of $\text{Mor}_{d,P}(\mathbb{A}_1, X)$ and the right hand side in terms of exponential sums over \mathbb{F}_q-points of \mathbb{A}^{kd}.

In Definition 2.3 we shall define a certain Zariski closed subset A^{kd}_d of \mathbb{A}^{kd}, which plays the role of the major arcs in our geometric setting. The geometric analogue of the estimation of the integral over the major arcs should be a computation of the cohomology of A^{kd}_d with coefficients in the complex $S_{d,f}$.

Unfortunately, we are only able to compute the cohomology using a spectral sequence and evaluate the first page. We are not able to rule out the existence of higher differentials causing cancellation in the cohomology, a phenomenon which is invisible on the trace function side. Nonetheless, we are still able to prove strong upper bounds on the dimension of the cohomology of A^{kd}_d.

The geometric analogue of the bound on the minor arcs $A^{kd}_d - A^{kd}_d$ will be a cohomology vanishing statement.

Proof of Lemma 2.1. Let c_1, \ldots, c_{kd} be the unique polynomials in the $a_{i,j}$ such that

$$f(x_1 T^d + \sum_{i=0}^{d-1} a_{i,1} T^i, \ldots, x_n T^d + \sum_{i=0}^{d-1} a_{i,n} T^i) = \sum_{r=1}^{kd} c_r T^{r-1}.$$

Then $e(a_{i,j}; b_1, \ldots, b_{kd}) = \sum_{r=1}^{kd} b_r c_r$. Let $\mu : \mathbb{A}^{kd} \times \mathbb{A}^{kd} \to \mathbb{A}^1$ be the map

$$((b_1, \ldots, b_{kd}), (c_1, \ldots, c_{kd})) \mapsto \sum_{r=1}^{kd} b_r c_r.$$

Then $e = \mu \circ (c \times id)$. Furthermore, $\text{Mor}_{d,P}(\mathbb{A}^1, X)_{\mathbb{F}_q}$ is the fiber of c over the point 0, since we can view $(\mathbb{A}^d)^n$ as the space of n-tuples of degree d polynomials (g_1, \ldots, g_n), with $g_j = x_j T^d + \sum_{i=0}^{d-1} a_{i,j} T^i$, whose leading terms are exactly (x_1, \ldots, x_n). Moreover, in that space the condition $f(g_1, \ldots, g_n) = 0$ is precisely the condition that the image of the point under c is zero.

By the Leray spectral sequence with compact supports, we have

$$H^{i+2kd}_c(\mathbb{A}^{kd}, S_{d,f}(kd)) = H^{i+2kd}_c(\mathbb{A}^{kd}, R p_{2!} e^* L_{\psi}(kd)) = H^{i+2kd}_c((\mathbb{A}^d)^n \times \mathbb{A}^{kd}, e^* L_{\psi}(kd)) = H^{i+2kd}_c((\mathbb{A}^d)^n \times \mathbb{A}^{kd}, (c \times id)^* \mu^* L_{\psi}(kd)) = H^{i+2kd}_c(\mathbb{A}^{kd} \times \mathbb{A}^{kd}, R(c \times id)! Q_{\ell} \otimes \mu^* L_{\psi}(kd)).$$

The desired statement follows from this identity and a special case of [15, Lemma 13]. Katz’s proof is a sketch and so we give more detail here for the sake of completeness.
If we let $p'_1 : \mathbb{A}^{kd} \times \mathbb{A}^{kd} \to \mathbb{A}^{kd}$ be the first projection, then by proper base change we have
\[
H^i_{c} \left(\mathbb{A}^{kd} \times \mathbb{A}^{kd}, p'^*_1 Rc_! Q_\ell \otimes \mu^* \mathcal{L}_\psi(kd) \right) = H^i_{c} \left(\mathbb{A}^{kd}, Rc_! Q_\ell \otimes Rp'_1 \mu^* \mathcal{L}_\psi(kd) \right).
\]

Now $R \rho'_1 \mu^* \mathcal{L}_\psi(kd)$ is the ℓ-adic Fourier transform of the constant sheaf, which is a skyscraper sheaf supported at 0 and placed in degree $2kd$. This can be checked explicitly using proper base change, which shows that its stalk at any non-zero point is the compactly supported cohomology of \mathbb{A}^{kd} with coefficients in \mathcal{L}_ψ of a non-constant linear map. This vanishes by the Künneth formula, since the cohomology of \mathbb{A}^1 with coefficients in \mathcal{L}_ψ of a non-constant linear map already vanishes. Hence $R \rho'_1 \mu^* \mathcal{L}_\psi(kd)$ is a skyscraper sheaf supported at 0. Proper base change furthermore implies that the stalk at 0 is the compactly supported cohomology of \mathbb{A}^{kd} with coefficients $Q_\ell(kd)$, which is a copy of Q_ℓ in degree $2kd$.

Thus the tensor product of $R \rho'_1 \mu^* \mathcal{L}_\psi(kd)$ with $Rc_! Q_\ell$ is simply the stalk of $Rc_! Q_\ell$ at 0, placed at 0 and shifted $2kd$ degrees. Hence the compactly supported cohomology in degree $i + 2kd$ is simply the stalk of the fiber $\text{Mor}_{d,P}(\mathbb{A}^1, X)_{\overline{\mathbb{F}_q}}$ of c over 0.

Remark 2.2. The stalk of $S_{d,f}$ at 0 in \mathbb{A}^{kd} is simply the compactly supported cohomology of \mathbb{A}^{nd} with coefficients in the constant sheaf Q_ℓ, which vanishes outside degree $2nd$ and is one-dimensional in degree $2nd$. If the stalks of $S_{d,f}$ vanished everywhere else, then $H^i_{c} \left(\mathbb{A}^{kd}, S_{d,f}(kd) \right)$ would vanish for $i \neq 2d(n - k)$ and would be one-dimensional for $i = 2d(n - k)$. In fact $S_{d,f}$ does not usually vanish everywhere else, but we will see later (under suitable hypotheses) that the contributions of the other points to the cohomology are in lesser degree than $2nd$, so the top degree cohomology group occurs in $2d(n - k)$. This fact is sufficient to verify that $\text{Mor}_{d,P}(\mathbb{A}^1, X)$ is a variety of dimension $d(n - k)$, as in the proof of Corollary 1.4.

It is now time to introduce the “major arcs of level m” for our geometric version of the circle method.

Definition 2.3 (Major arcs). For any integer $m \geq 0$, let A_m^{kd} be the locus in \mathbb{A}^{kd} consisting of points (b_1, \ldots, b_{kd}) where the $(kd - m) \times (m + 1)$ matrix M, whose entries are given by the formula $M_{ij} = b_{i+j-1}$, has rank at most m.

We will view rational functions in T as power series in T^{-1}. We say a power series in T^{-1} is $O(T^N)$ if it only has terms of degree at most N. The following result gives an explicit description of the major arcs of level m.

Lemma 2.4. The set A_m^{kd} satisfies the following properties.
(1) \(A^{kd}_m \) is a Zariski closed subset of \(\mathbb{A}^{kd} \).
(2) \(A^{kd}_{m-1} \subseteq A^{kd}_m \).
(3) \(A^{kd}_m = \mathbb{A}^{kd} \) if \(m \geq kd/2 \).
(4) A tuple \((b_1, \ldots, b_{kd}) \) is in \(A^{kd}_m \) if and only if there exists \(m' \leq m \), a polynomial \(h_1(T) \) of degree \(< m' \), and a monic polynomial \(h_2(T) \) of degree \(m' \) such that
\[
\sum_{r=1}^{kd} b_r T^{-r} = \frac{h_1(T)}{h_2(T)} + O(T^{-kd-1+m'-m}).
\]
(5) Assume that \(m \leq kd/2 \). Then for each \((b_1, \ldots, b_{kd}) \in A^{kd}_m - A^{kd}_{m-1} \), there exists a unique \(m', h_1, h_2 \) satisfying the conditions of part (4). Furthermore, for such \(m', h_1, h_2 \), the polynomials \(h_1, h_2 \) are coprime and, if \(m' < m \), then the coefficient of \(T^{-kd-1+m'-m'} \) in
\[
\sum_{r=1}^{kd} b_r T^{-r} - \frac{h_1(T)}{h_2(T)}
\]
is non-zero.

\textbf{Proof.} We begin by dealing with parts (1)–(3). Part (1) follows from the definition and the fact that the set of matrices of rank \(\leq m \) is Zariski closed. Part (2) will follow from part (4), and part (3) follows on noting that in this case, \(M \) has \(kd - m \leq m \) rows and so its rank is necessarily \(\leq m \).

To deal with part (4) we note that the matrix \(M \) has rank \(\leq m \) if and only if there is an element in its kernel. Suppose that an element \((c_1, \ldots, c_{m+1}) \) is in the kernel of \(M \). Then for all \(j \in \{1, \ldots, kd - m\} \) we have
\[
\sum_{i=1}^{m} c_i b_{i+j-1} = 0.
\]
In other words, the coefficient of \(T^{-j} \) in \(\left(\sum_{r=1}^{kd} b_r T^{-r} \right) \left(\sum_{i=1}^{m+1} c_i T^{i-1} \right) \) vanishes for all \(j \in \{1, \ldots, kd - m\} \). Let
\[
h_2(T) = \sum_{i=1}^{m+1} c_i T^{i-1}.
\]
and let \(h_1(T) \) consist of terms of \(\left(\sum_{r=1}^{kd} b_r T^{-r} \right) h_2(T) \) of non-negative degree. Let \(m' \leq m \) be the degree of \(h_2 \). Then \(\left(\sum_{r=1}^{kd} b_r T^{-r} \right) h_2(T) \) is a product of a Laurent series with all terms in negative degrees with a polynomial of degree \(m' \). Thus it is a Laurent series with all terms in degree \(< m' \). Because of the
aforementioned vanishing, we have

\[
\left(\sum_{r=1}^{kd} b_r \frac{T^{-r}}{h_2(T)} \right) h_2(T) = h_1(T) + O(T^{-(kd-m)-1})
\]

and dividing both sides by \(h_2(T) \) we get the desired identity. The converse can be proved by the same argument in reverse. Given \(h_1, h_2 \), one multiplies the identity by \(h_2(T) \), observes the vanishing of the coefficients of

\[
\left(\sum_{r=1}^{kd} b_r T^{-r} \right) h_2(T)
\]

and concludes that a vector defined by the coefficients of \(h_2(T) \) lies in the kernel of \(M \).

To prove part (5), we note that if \(h_1 \) and \(h_2 \) are not relatively prime, we may remove a common factor from them, decrease \(m \) by the degree of that factor, and then decrease \(m \) by the same amount, to show that the point lies in \(A_{m-1}^{kd} \). Similarly if the coefficient of \(T^{-kd-1+m'} \) in \(\sum_{r=1}^{kd} b_r T^{-r} - \frac{h_3(T)}{h_2(T)} \) is zero, then

\[
\sum_{r=1}^{kd} b_r T^{-r} = h_1(T) h_3(T) - h_2(T) h_4(T) + O(T^{-kd-2+m-m'}). \]

Thus we may decrease \(m \) by one and leave \(m' \) fixed, again showing that the point lies in \(A_{m-1}^{kd} \).

It remains to show that there cannot be two distinct solutions. Let \(h_1/h_2 \) and \(h_3/h_4 \) be two distinct, coprime solutions, with \(\deg(h_2) = m' \) and \(\deg(h_4) = m'' \).

Without loss of generality, \(m' \leq m'' \). Then

\[
\frac{h_1(T)}{h_2(T)} - \frac{h_3(T)}{h_4(T)} = O(T^{-kd-1+m-m'}). \]

Since

\[
\frac{h_1(T)}{h_2(T)} - \frac{h_3(T)}{h_4(T)} = \frac{h_1(T) h_4(T) - h_2(T) h_3(T)}{h_2(T) h_4(T)}
\]

is non-zero, its numerator is non-zero and must have non-negative degree. Moreover, the denominator has degree \(m' + m'' \) and so this power series has leading term in degree at least \(-m' - m''\). It follows that

\[-m' - m'' \leq -kd - 1 + m - m'.\]

This implies that \(kd + 1 \leq m + m'' \leq 2m \), which contradicts the assumption that \(m \leq kd/2 \). \(\square \)

Ultimately, our analogue of the major arcs will be \(A_{d}^{kd} \) and the analogue of the minor arcs will be its complement. We could take any cutoff \(m \) and view \(A_{m}^{kd} \) as the major arcs, but we will see in the next section that \(m = d \) is
the largest value for which the argument goes through. In §3 we shall prove the following result, which is the geometric analogue of the estimation of the major arcs.

Proposition 2.5. Assume that the leading form of f defines a smooth hypersurface and that $\text{char} (\mathbb{F}_q) > k$. The spectral sequence associated to the filtration of the complex of ℓ-adic Galois representations $H_c^s(A^{kd}_d, S_{d,f})$, whose mth step is $H_c^s(A^{kd}_m, S_{d,f})$ for $m \in \{0, \ldots, d\}$, has the following properties.

1. It converges to $H_c^s(A^{kd}_d, S_{d,f})$.
2. Its first page $E^{m,s}_1$ is

 \[
 \left(H^{s+mn-2nd}_c(\text{PConf}_m, \mathbb{Q}_\ell) \otimes H^{n-1}_c(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)^{\otimes m} \otimes \text{sgn}^{n-1} \right)^{S_m} (-m - n(d - m)),
 \]

 whenever $m \in \{0, \ldots, d\}$, with $E^{m,s}_1 = 0$ otherwise.

The proof of this result will be entirely geometric, but it will follow the line of reasoning that features in the treatment of the major arcs in the usual circle method.

The treatment of the geometric minor arcs will be the object of §§4–5. It will lead to the following outcome.

Proposition 2.6. Assume that the leading term of f defines a smooth hypersurface, that $\text{char} (\mathbb{F}_q) = p > k$, and that ℓ has even order mod p. Assume that $d \geq k - 1 \geq 2$ and $n > 3 \cdot 2^k(k - 1)$. Then $H^i_c(A^{kd}_{A^d_d}, S_{d,f}) = 0$ provided that

\[
i > nd \left\{ 2 - \frac{1}{3 \cdot 2^{k-2}(k-1)} \right\} + 4(d + 1).
\]

Our investigation of the geometric major and minor arcs now leads us to draw the following conclusion.

Theorem 2.7. Assume that the leading term of f defines a smooth hypersurface in \mathbb{P}^{m-1}, that $\text{char} (\mathbb{F}_q) = p > k$ and that ℓ has even order mod p. Assume that $d \geq k - 1 \geq 2$ and $n > 3 \cdot 2^k(k - 1)$. Let $E_r^{m,s}$ be the shift by $2dn$ of the Tate twist by kd of the spectral sequence defined in Proposition 2.5. Then the following are true.

1. The first page $E^{m,s}_1$ of $E_r^{m,s}$ is

 \[
 \left(H^{s+mn}_c(\text{PConf}_m, \mathbb{Q}_\ell) \otimes H^{n-1}_c(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)^{\otimes m} \otimes \text{sgn}^{n-1} \right)^{S_m} (kd - m - n(d - m)),
 \]

 whenever $0 \leq m \leq d$, with $E^{m,s}_1 = 0$ otherwise.
2. $E^{m,s}_r$ converges to a complex whose ith cohomology is equal to

 \[
 H^{i+2d(n-k)}_c(\text{Mor}_{d,P}(\mathbb{A}^1, X)_{\mathbb{F}_q}, \mathbb{Q}_\ell),
 \]

 whenever

 \[
i > nd \left\{ 2 - \frac{1}{3 \cdot 2^{k-2}(k-1)} \right\} + 4(d + 1).
\]

as a \mathbb{Q}_ℓ-vector space with an action of Frob_q, whenever

$$i > 4(d + 1) - \frac{dn}{3 \cdot 2^{k-2}(k-1)}. \tag{2.3}$$

Proof. Part (1) follows directly from Proposition 2.5. The latter result also implies that the spectral sequence converges to a complex whose ith cohomology is $H^{i+2nd}_{c}(A^{kd}_{d}, S_{d,f}(kd))$. By excision and Proposition 2.6, if

$$i + 2nd > nd \left\{ 2 - \frac{1}{3 \cdot 2^{k-2}(k-1)} \right\} + 4(d + 1),$$

or equivalently (2.3), then the ith cohomology of the limit complex is isomorphic to $H^{i+2nd}_{c}(\mathbb{A}^{kd}, S_{d,f})$. Finally, Lemma 2.1 implies that this is equal to $H^{i+2d(n-k)}_{c}(\text{Mor}_{d,p}(\mathbb{A}^{1}, X)_{\mathbb{F}_q}, \mathbb{Q}_\ell)$, which thereby completes the proof. □

To complete the proof of Theorem 1.1, we drop the assumption that $K = \mathbb{F}_q$. The coefficients of f form a finitely-generated \mathbb{Z}-subalgebra $R \subseteq K$. Its spectrum Spec R is a scheme, over which we have a family of hypersurfaces X, and a family of schemes $\text{Mor}_{d,p}(\mathbb{A}^{1}, X)$. By proper base change, the cohomology groups of this family of schemes each form a constructible sheaf on Spec R. Thus there is some open subset of Spec R on which each of these sheaves is lisse, and so each cohomology group is constant as a \mathbb{Q}_ℓ-vector space on this subset. Since Spec K is the generic point of Spec R, that point is contained in this open set. In view of the fact that R is finitely-generated over \mathbb{Z}, its points with finite residue fields are dense. We choose some closed point in this subset, calculate its cohomology group by a spectral sequence as in Theorem 2.7, and then observe that the cohomology groups of the original X are isomorphic and hence also given (noncanonically) by this spectral sequence. The only thing left is to check the conditions on the characteristic. If K has a given positive characteristic, then all the residue fields will have the same characteristic and the conditions in Theorem 2.7 are satisfied because we have assumed the same conditions in Theorem 1.1. If K has has characteristic zero, then every open set of Spec R contains points of residue fields of every sufficiently large characteristic, and we can choose one of characteristic p with $p > k$ and where ℓ has even order mod p (e.g. by using quadratic reciprocity to choose p so that ℓ is a quadratic nonresidue mod p).

3. The geometric major arcs

Rather than A^{kd}_{m} we will need to work with a subset of the major arcs which are very close to a rational with denominator having degree precisely m. (The reason for this is that we have chosen our parameters so that the exponential
sum vanishes outside this set, and we will see in Lemma 3.3 that the same is true of $S_{d,f}$.) Thus, let $U^{kd}_m \subset A^{kd}_m$ consist of tuples

$$(b_1, \ldots, b_{kd}) \in A^{kd}_m - A^{kd}_{m-1}$$

such that there exists a polynomial $h_1(T)$ of degree $< m$ and a monic polynomial $h_2(T)$ of degree m for which

$$\sum_{r=1}^{kd} b_r T^{-r} = h_1(T) + O(T^{-kd-1}).$$

The following result is concerned with a description of this set.

Lemma 3.1. Assume that $m \leq kd/2$.

1. U^{kd}_m is a Zariski open subset of A^{kd}_m.
2. The coefficients of the polynomials h_1, h_2 are regular functions on U^{kd}_m, and these give an isomorphism between U^{kd}_m and the space of pairs of coprime polynomials $h_1, h_2 \in \mathbb{F}_q[T]$, such that h_2 is monic and $\deg(h_1) < m = \deg(h_2)$.

Proof. For part (1) we apply the uniqueness statement in Lemma 2.4(5). This implies that a point (b_1, \ldots, b_{kd}) is not in U^{kd}_m if and only if it satisfies the conditions of Lemma 2.4(4) for some $m' < m$. This is so if and only if (b_1, \ldots, b_{kd-1}) is in $A^{kd-1}_{m-1} \subseteq A^{kd-1}$, since $b_{kd} T^{-kd} = O(T^{-kd-1+m'-m'})$ if $m' < m$. But this is a Zariski closed condition by Lemma 2.4(1).

We now turn to the proof of part (2). The existence of a polynomial map from the space of pairs of relatively prime polynomials h_1, h_2, such that h_2 is monic and $\deg(h_1) < m = \deg(h_2)$, to U^{kd}_m follows immediately from the formula for polynomial long division.

The inverse map is not hard to construct. To do so, first observe that

$$h_2(T) \sum_{r=1}^{kd} b_r T^{-r} = h_1(T) + O(T^{m-kd-1}).$$

Thus all coefficients of $h_2(T) \sum_{r=1}^{kd} b_r T^{-r}$, between T^{-1} and T^{-m} vanish. This gives m linear equations in the m coefficients of $h_2(T)$ (not counting the leading one, which is fixed). In turn this allows us to write $h_2(T)$ as a polynomial function on the open set where the determinant of the system of equations is non-vanishing. We need to prove that the determinant of this system is non-zero on U^{kd}_m. Suppose for a contradiction that there is a vector in the kernel that defines a polynomial h'_2 of degree $< m$ such that all coefficients of
$h'_2(T) \sum_{r=1}^{kd} b_r T^{-r}$ between T^{-1} and T^{-m} vanish. Thus there exists a polynomial h'_1 such that

$$h'_2(T) \sum_{r=1}^{kd} b_r T^{-r} = h'_1(T) + O(T^{-m-1}).$$

Multiplying both sides by h_2, we obtain

$$h_2(T) h'_1(T) + O(T^{-1}) = h'_2(T) h_2(T) \sum_{r=1}^{kd} b_r T^{-r}$$

$$= h'_2(T) (h_1(T) + O(T^{m-kd-1}))$$

$$= h'_2(T) h_1(T) + O(T^{2m-kd-2}).$$

It follows that the polynomials $h_2(T) h'_1(T)$ and $h'_2(T) h_1(T)$ are equal up to $O(T^{-1})$, whence equal. Thus

$$\sum_{r=1}^{kd} b_r T^{-r} = \frac{h'_1(T)}{h'_2(T)} + O(T^{-kd-1}),$$

which contradicts the assumption that $(b_1, \ldots, b_{kd}) \not\in A_{m-1}$. Finally, the equation (3.1) allows us to write the coefficients of h_1 as polynomial functions in the coefficients of h_2 and the b_r. Hence, by the previous discussion, as polynomial functions on U_{m}^{kd}. \hfill \square

The following statement on the cohomology of Artin–Schreier sheaves is a variant of well-known facts, and will be convenient for our purposes.

Lemma 3.2. Let X be a variety over a separably closed field of characteristic p, equipped with a map $\varphi : X \to \mathbb{A}^1$. Let $a : X \times \mathbb{A}^1 \to X$ be another map such that

$$\varphi(a(x, \lambda)) = \varphi(x) + u(x) \lambda$$

for an invertible function $u(x)$, and such that a is an action of the group $\mathbb{G}_a \cong \mathbb{A}^1$ on X. (i.e. $a(x, 0) = x$ and $a(a(x, \lambda_1), \lambda_2) = a(x, \lambda_1 + \lambda_2)$.) Then it follows that i^{th} $H^i(X, \varphi^* \mathcal{L}_\varphi) = 0$ for all i.

Proof. First note that

$$\varphi(x) + u(x)(\lambda_1 + \lambda_2) = \varphi(a(x, \lambda_1 + \lambda_2)) = \varphi(a(a(x, \lambda_1), \lambda_2))$$

$$= \varphi(a(x, \lambda_1)) + u(a(x, \lambda_1)) \lambda_2$$

$$= \varphi(x) + u(x) \lambda_1 + u(a(x, \lambda_1)) \lambda_2.$$
Hence \(u(a(x, \lambda_1)) = u(x) \). Next, consider the map \(a' : X \times \mathbb{A}^1 \to X \times \mathbb{A}^1 \),
given by \(a'(x, \lambda) = (a(x, \lambda/u(x)), \lambda) \). Then \(a' \) is invertible because
\[
a \left(a \left(x, \frac{\lambda}{u(x)} \right), -\frac{\lambda}{u(a(x, \lambda/u(x)))} \right) = a \left(x, \frac{\lambda}{u(x)} \right), -\frac{\lambda}{u(x)}
\]
so that an inverse map is given by \((x, \lambda) \mapsto (a(x, -\lambda/u(x)), \lambda) \).

Recall (e.g. from [21, Tag 03RR] and Poincaré duality) that
\[
H^i_c(\mathbb{A}^1, \mathbb{Q}_\ell) = \begin{cases} 0 & \text{if } i \neq 2, \\ \mathbb{Q}_\ell & \text{if } i = 2. \end{cases}
\]

Appealing to the Künneth formula, we deduce that
\[
H^i_c(X, \varphi^* \mathcal{L}_\psi) = H^{i-2}_c(X \times \mathbb{A}^1, \varphi^* \mathcal{L}_\psi \boxtimes \mathbb{Q}_\ell) = H^{i-2}_c(X \times \mathbb{A}^1, a'^*(\varphi^* \mathcal{L}_\psi \boxtimes \mathbb{Q}_\ell)) = H^{i-2}_c(X \times \mathbb{A}^1, \varphi^* \mathcal{L}_\psi \boxtimes \mathcal{L}_\psi) = 0,
\]
where we have used the fact that \(H^i_c(\mathbb{A}^1, \mathcal{L}_\psi) = 0 \) for all \(i \), as follows from the case \(d = 1, n = 1 \) of [3 Lemma 8.5(i)], for example.

Armed with this result we may now investigate the stalk of the complex \(S_{d,f} \) at a typical point on our geometric major arcs. This result will take the place of stationary phase arguments that can be used to bound real oscillatory integrals and \(p \)-adic exponential sums in the classical circle method. We use it at the infinite place in Lemma 3.3 and then at the finite places in Lemma 3.6.

Our conditions on \(f \) are strong enough that in both cases the relevant sums actually vanish, and we will prove a corresponding vanishing statement for cohomology. The vanishing of the exponential sum at finite places corresponds to the fact that the limit \(\lim_{t \to \infty} p^{-(n-1)r} \# X(\mathbb{Z}/p^r \mathbb{Z}) \) simplifies to \(p^{-(n-1)} \# X(\mathbb{F}_p) \) if \(X \) is smooth. Since the place at \(\infty \) of a function field is non-archimedean, our smoothness conditions on \(f \) also allow one to deduce a similar vanishing statement for the relevant exponential sums there.

Lemma 3.3. Assume that \(d \geq m \). Then \(H^i_c(A^m_{kd} - A^{kd}_{m-1}, S_{d,f}) = H^i_c(U^kd_m, S_{d,f}) \).

Proof. By excision, it suffices to prove that the stalk of \(S_{d,f} \) vanishes at any point \((b_1, \ldots, b_{kd}) \in A^m_{kd} - (A^{kd}_{m-1} \cup U^kd_m)\). By proper base change, this stalk is precisely the compactly supported cohomology of \((\mathbb{A}^d)^n\) with coefficients in \(e^*_{(b_1, \ldots, b_{kd})} \mathcal{L}_\psi \), where \(e_{(b_1, \ldots, b_{kd})} \) is \(e \) restricted to the point \((b_1, \ldots, b_{kd})\). We will show this stalk vanishes using Lemma 3.2.

Let \(m', h_1, h_2 \) be as in Proposition 2.1(4). By the definition of \(U^kd_m \), we must have \(m' < m \). Let \(f_0 \) be the leading degree \(k \) part of \(f \). Because \((x_1 : \cdots : x_n)\)
is a smooth point of the hypersurface $f_0 = 0$, we may assume without loss of generality that $\frac{\partial f_0}{\partial x_1}(P) \neq 0$.

Let g_1, \ldots, g_n be a tuple of polynomials of degree d with leading terms exactly (x_1, \ldots, x_n) and let $\lambda \in \mathbb{F}_q$. Consider

$$F(T) = f(g_1(T) + \lambda T^{d-m}h_2(T), g_2(T), \ldots, g_n(T)) - f(g_1(T), \ldots, g_n(T)).$$

To begin with we note that $F(T)$ is divisible by $h_2(T)$, as modulo $h_2(T)$ the two terms cancel. Next, we use Taylor expansion to deduce that

$$F(T) = \lambda \tilde{g}_1(T) \frac{\partial f}{\partial x_1}(g_1(T), \ldots, g_n(T)) + O(T^{2(d+m'-m)+(k-2)d}),$$

where $\tilde{g}_1(T) = T^{d-m}h_2(T)$ has degree exactly $d - m + m'$. Moreover,

$$2(d + m' - m) + (k - 2)d < d - m + m' + (k - 1)d$$

for $m' < m$. It follows that $\text{deg}(F) = d - m + m' + (k - 1)d$, with leading term proportional to λ, since $\frac{\partial f}{\partial x_1}(P) \neq 0$.

Since $\sum_{r=1}^{kd} b_r T^{-r} - \frac{h_1(T)}{h_2(T)}$ is a power series in T of degree $-kd - 1 + m - m'$, the only contributions to the coefficient of T^{-1} in

$$\left(\sum_{r=1}^{kd} b_r T^{-r} - \frac{h_1(T)}{h_2(T)} \right) F(T)$$

come from the leading terms on both sides. Hence the coefficient of T^{-1} is also a non-zero multiple of λ. On the other hand, because $F(T)$ is a multiple of $h_2(T)$, it follows that $\frac{h_1(T)}{h_2(T)} F(T)$ is a polynomial in T, and so its coefficient of T^{-1} vanishes. Hence the coefficient of T^{-1} in

$$\left(\sum_{r=1}^{kd} b_r T^{-r} \right) F(T)$$

is a non-zero multiple of λ.

We may now apply Lemma 3.2. We take X to be $(\mathbb{A}^d)^n$, φ to be $e_{(b_1, \ldots, b_{kd})}$ and $a : (\mathbb{A}^d)^n \times \mathbb{A}^1 \to (\mathbb{A}^d)^n$ to be the map that sends a tuple of polynomials $g_1(T), \ldots, g_n(T)$ of degree d, with leading terms exactly (x_1, \ldots, x_n), and a number λ, to the tuple $g_1(T) + \lambda T^{d-m}h_2(T), g_2(T), \ldots, g_n(T)$. It immediately follows that the compactly supported cohomology of $e^*_{(b_1, \ldots, b_{kd})} \mathcal{L}_\psi$ vanishes. \qed

Recall from Lemma 3.1 that U^{kd}_m is isomorphic to the space of pairs of relatively prime polynomials h_1, h_2, such that h_2 is monic and $\text{deg}(h_1) < m = \text{deg}(h_2)$. We can rewrite the map e on $(\mathbb{A}^d)^n \times U^{kd}_m$ as the map that sends

$$((a_{0,j}, \ldots, a_{d-1,j})_{1 \leq j \leq n}, (h_1, h_2))$$
to the coefficient of T^{-1} in

$$
\frac{h_1(T)}{h_2(T)} f \left(x_1 T^d + \sum_{i=0}^{d-1} a_{i,1} T^i, \ldots, x_n T^d + \sum_{i=0}^{d-1} a_{i,n} T^i \right),
$$

since $f(x_1 T^d + \sum_{i=0}^{d-1} a_{i,1} T^i, \ldots, x_n T^d + \sum_{i=0}^{d-1} a_{i,n} T^i)$ has degree $<kd$ and so it is sufficient to approximate the first term to within $O(T^{-kd-1})$. In particular, note that it only depends on the residue class of the tuple

$$
\left(x_1 T^d + \sum_{i=0}^{d-1} a_{i,1} T^i, \ldots, x_n T^d + \sum_{i=0}^{d-1} a_{i,n} T^i \right)
$$

modulo h_2.

Consider the map $\varrho : (\mathbb{A}^n)^d \times U_{kd}^m \to (\mathbb{A}^n)^m \times U_{kd}^m$ given by taking the residue of $(x_1 T^d + \sum_{i=0}^{d-1} a_{i,1} T^i, \ldots, x_n T^d + \sum_{i=0}^{d-1} a_{i,n} T^i)$ modulo h_2, which is a polynomial map by Euclid’s algorithm for polynomials. (This crucially uses the fact that h_2 is monic.) By the aforementioned residue dependence, we may write $e = e \circ \varrho$, where $e : (\mathbb{A}^n)^m \times U_{kd}^m \to \mathbb{A}^1$ sends

$$
\left((a_{0,j}, \ldots, a_{m-1,j})_{1 \leq j \leq n}, (h_1, h_2) \right)
$$

to the coefficient of T^{-1} in

$$
\frac{h_1(T)}{h_2(T)} f \left(\sum_{i=0}^{m-1} a_{i,1} T^i, \ldots, \sum_{i=0}^{m-1} a_{i,n} T^i \right).
$$

Similarly, we may write $p_2 = p_2' \circ \varrho$, where $p_2' : (\mathbb{A}^n)^m \times U_{kd}^m \to U_{kd}^m$ is the natural projection.

Let $\pi_2 : U_{kd}^m \to \mathbb{A}^m$ denote the projection to the space of degree m monic polynomials, which we view as \mathbb{A}^m, that sends (h_1, h_2) to h_2. We introduce the complex

$$
\overline{S}_{m,f} = R\pi_2! R\rho_2^! L\varphi
$$

on \mathbb{A}^m. The following result is the geometric analogue of breaking the exponential sum into residue classes on the major arcs.

Lemma 3.4. Assume that $m \leq d$. Then

$$
H^i_c(U_{kd}^m, S_{d,f}) = H^{i-2n(d-m)}_c(\mathbb{A}^m, S_{m,f})(-n(d - m)).
$$

Proof. First we will show that

$$
R\varrho_! \mathcal{Q}_L = \mathcal{Q}_L [2n(d - m)](-n(d - m)).
$$

To do this, we claim that there exists an isomorphism

$$
(\mathbb{A}^d)^n \times U_{kd}^m \cong (\mathbb{A}^{d-m})^n \times (\mathbb{A}^m)^n \times U_{kd}^m,
$$
whose composition with \(\varrho \) is the projection onto \((\mathbb{A}^m)^n \times U_m^{kd}\). This isomorphism is defined by the fact that, for a fixed monic polynomial \(h_2 \) of degree \(m \), a polynomial of degree \(d \geq m \) with leading coefficient \(x_i \) can be written uniquely as a polynomial of degree \(< m \) plus \(h_2 \) times a polynomial of degree \(d - m \) with leading coefficient \(x_i \). We view the polynomial of degree \(< m \) as an element of \(\mathbb{A}^m \) and the polynomial of degree \(d - m \) with leading coefficient \(x_i \) as an element of \(\mathbb{A}^{d-m} \). The map to \(\mathbb{A}^m \times \mathbb{A}^{d-m} \) is given by polynomial long division, and hence is a polynomial function of the coefficients, and the inverse map is simply multiplication and addition. The map \(\varrho \) is given by the residue mod \(h_2 \), which is exactly the polynomial of degree \(< m \), as desired.

By proper base change \(R\varrho_!\mathbb{Q}_\ell \) is the pullback from a point of the compactly supported cohomology of \((\mathbb{A}^{d-m})^n = \mathbb{A}^{n(d-m)}\), which is the pullback of a one-dimensional vector space in degree \(2n(d-m) \) with Galois action \(\mathbb{Q}_\ell(-n(d-m)) \), which is just the constant complex \(\mathbb{Q}_\ell[2n(d-m)](-n(d-m)) \). This establishes the claim.

Next, on \(U_m^{kd} \) we calculate that
\[S_{d,f} = R\varpi_2^*\mathcal{L}_\psi = R\varpi_2^*\mathcal{L}_\psi = R\varpi_2^*\mathcal{L}_\psi, \]
by functoriality. Appealing to the projection formula, we deduce that
\[R\varpi_2^*\varrho^*e^*\mathcal{L}_\psi = R\varpi_2^*e^*\mathcal{L}_\psi \otimes R\varrho_!(\mathbb{Q}_\ell) \]
\[= R\varpi_2^*e^*\mathcal{L}_\psi[-2n(d-m)](-n(d-m)). \]
It follows that
\[H^i_c(U_m^{kd}, S_{d,f}) = H^i_c(U_m^{kd}, R\varpi_2^*e^*\mathcal{L}_\psi[-2n(d-m)](-n(d-m))) \]
\[= H^{i-2n(d-m)}_c(U_m^{kd}, R\varpi_2^*e^*\mathcal{L}_\psi(-n(d-m))), \]
by the Leray spectral sequence with compact supports. But then
\[H^i_c(U_m^{kd}, S_{d,f}) = H^{i-2n(d-m)}_c(\mathbb{A}^m, R\varpi_2^*R\varpi_2^*e^*\mathcal{L}_\psi)(-n(d-m)) \]
\[= H^{i-2n(d-m)}_c(\mathbb{A}^m, S_{m,f})(-n(d-m)), \]
as required. \(\square \)

Next, in Lemma 3.5 we will show that the complexes \(S_{m,f} \) enjoy a factorisation property. This is analogous to the multiplicativity property of the corresponding exponential sum in the classical arithmetic setting. In calculating a multiplicative function, we can typically reduce to the case of prime powers, which here would correspond to powers of irreducible polynomials. In fact, in our setting we may reduce to powers of polynomials of degree 1. In Lemma 3.6 we deal with powers of degree greater than 1. Thus it remains to calculate the degree 1 case \(S_{1,f} \). This we accomplish in Lemma 3.8. Building on this, in Lemma 3.9 we are able to calculate \(H^*_c(\mathbb{A}^m, S_{m,f}), \) which allows us
in Corollaries 3.10 and 3.12 to determine the cohomological contribution of $A_m^d - A_{m-1}^d$.

Lemma 3.5. Let $m_1, m_2 \in \mathbb{N}$ and let V be the moduli space of pairs of coprime monic polynomials l_1, l_2 such that $\deg(l_i) = m_i$ for $i = 1, 2$. Let $f_1 : V \to \mathbb{A}^{m_1}$ (resp. $f_2 : V \to \mathbb{A}^{m_2}$, $f_{12} : V \to \mathbb{A}^{m_1+m_2}$) be the maps sending (l_1, l_2) to l_1 (resp. l_2, l_1l_2). Then

$$f_{12}^* \mathcal{S}_{m_1+m_2,f} = f_1^* \mathcal{S}_{m_1,f} \otimes f_2^* \mathcal{S}_{m_2,f}.$$

If $m_1 = m_2$, then we may take this isomorphism to commute with the action of the involution switching l_1 and l_2 on both sides.

In the $m_1 = m_2$ case, the action of the involution on the right hand side follows the standard convention for switching the two sides of a tensor product of complexes (which acts on the ith homology of the first complex tensor the jth homology of the second complex by the obvious action times $(-1)^{ij}$).

Proof of Lemma 3.5. Applying proper base change, we see that the left hand side is the compactly supported pushforward to V from the space of pairs of h_1 a polynomial of degree $< m_1 + m_2$, relatively prime to l_1l_2, and a tuple (g_1, \ldots, g_n) of polynomials of degree $< m_1 + m_2$ of the pullback of \mathcal{L}_ψ along the map defined by the coefficient of T^{-1} in

$$\frac{h_1(T)}{l_1(T)l_2(T)} f(g_1, \ldots, g_n).$$

Applying proper base change and the Künneth formula, the right hand side is the compactly supported pushforward to V from the space of quadruples of $h_{1,1}$ a polynomial of degree $< m_1$, relatively prime to l_1, $h_{1,2}$ a polynomial of degree $< m_2$, relatively prime to l_2, $(g_{1,1}, \ldots, g_{n,1})$ a tuple of polynomials of degree $< m_1$, and $(g_{1,2}, \ldots, g_{n,2})$ a tuple of polynomials of degree $< m_2$ of the pullback of \mathcal{L}_ψ along the map defined by the coefficient of T^{-1} in

$$\frac{h_{1,1}(T)}{l_1(T)} f(g_{1,1}, \ldots, g_{n,1}) + \frac{h_{1,2}(T)}{l_2(T)} f(g_{1,2}, \ldots, g_{n,2}).$$

We will show that these varieties are actually isomorphic in a way preserving their projections to V and preserving the maps on which we are pulling back \mathcal{L}_ψ. This is sufficient to imply the isomorphism of compactly supported pushforwards.

To write a map from the second to the first, let g_i be the unique polynomial of degree $< m_1 + m_2$ that is congruent to $g_{i,1}$ mod l_1 and congruent to $g_{i,2}$ mod l_2. This can be written explicitly as $l_2(g_{i,1}l_1^{-1} \mod l_1) + l_1(g_{i,2}l_2^{-1} \mod l_2)$, where the inverses are understood to be modulo l_1 and l_2, respectively. This is a polynomial function on this moduli space of tuples of polynomials. (Here we use the fact that l_1 and l_2 are relatively prime to make their inverses modulo...
each other polynomial, together with Euclid’s algorithm and the fact that they are monic to make the modulo operation polynomial.) Let $h_1 = h_{1,1}l_2 + h_{1,2}l_1$. Then the following identities hold in the group of formal Laurent series in T^{-1} modulo polynomials in T:

$$\frac{h_{1,1}(T)}{l_1(T)} f(g_{1,1}, \ldots, g_{n,1}) + \frac{h_{1,2}(T)}{l_2(T)} f(g_{1,2}, \ldots, g_{n,2})$$

$$= \frac{h_{1,1}(T)}{l_1(T)} f(g_1, \ldots, g_n) + \frac{h_{1,2}(T)}{l_2(T)} f(g_1, \ldots, g_n)$$

$$= \frac{h_{1,1}(T)l_2(T) + h_{1,2}(T)l_1(T)}{l_1(T)l_2(T)} f(g_1, \ldots, g_n)$$

$$= \frac{h_1(T)}{l_1(T)l_2(T)} f(g_1, \ldots, g_n),$$

and so the coefficients of T^{-1} on both sides are equal as desired. Furthermore, it is easy to check that the inverse to this map is the map that sets $g_{i,1}$ to the remainder of g_i modulo l_1, $g_{i,2}$ the remainder of g_i modulo l_2, $h_{1,1} = h_{1,l_2^{-1}} \mod l_1$ and $h_{1,2} = h_{1,l_1^{-1}} \mod l_2$.

Since this isomorphism between the underlying spaces commutes with the involution switching h_1 and h_2, the symmetry of the final isomorphism follows from the symmetry of definition of the Künneth formula.

We take advantage of the fact that X is smooth to show cancellation in the exponential sums associated to non-squarefree moduli. This is the only place in the proof of Corollary 3.10 where the smoothness of X is used. However, it is needed again in Lemma 3.11 to prove Proposition 2.5.

Lemma 3.6. Let h_2 be a monic polynomial of degree m that is not squarefree. Then the stalk of $\mathcal{S}_{m,f}$ at h_2 vanishes.

Proof. By Lemma 3.5 it suffices to handle the case where $h_2 = (T - x)^m$ is a power of a linear polynomial. By proper base change, the stalk of $\mathcal{S}_{m,f}$ at this point is the cohomology with compact supports of the space of tuples $((a_{0,j}, \ldots, a_{m-1,j})_{1 \leq j \leq n}, h_1)$, where h_1 is a polynomial of degree $< m$ that is coprime to $T - x$, of the cohomology of $\varpi^* \mathcal{L}_\psi$, where we recall that ϖ sends a tuple to the coefficient of T^{-1} in

$$\frac{h_1(T)}{h_2(T)} f\left(\sum_{i=0}^{m-1} a_{i,1}T^i, \ldots, \sum_{i=0}^{m-1} a_{i,n}T^i\right).$$

By a further proper base change, we can consider the map r from this space to \mathbb{A}^n defined by the coordinates $\left(\sum_{i=0}^{m-1} a_{i,1}x^i, \ldots, \sum_{i=0}^{m-1} a_{i,n}x^i\right)$. It is sufficient to show that the stalk of the compactly supported pushforward $R^r\varpi^* \mathcal{L}_\psi$ vanishes everywhere. This stalk is the cohomology with compact supports
of the same variety with coefficients in the same sheaf, but with the tuple \((\sum_{i=0}^{m-1} a_{i,1}x^i, \ldots, \sum_{i=0}^{m-1} a_{i,n}x^i)\) restricted to fixed values.

We split into two cases, according to whether or not

\[
\text{if, on the other hand, } f(\sum_{i=0}^{m-1} a_{i,1}x^i, \ldots, \sum_{i=0}^{m-1} a_{i,n}x^i) \neq 0 \text{ for some } j, \text{ then we consider the automorphism } h_1(T) \mapsto h_1(T) + \lambda(T-x)^{m-1}. \text{ Recalling that } h_2(T) = (T-x)^m, \text{ this automorphism acts on }
\]

\[
\lambda \frac{1}{T-x} f \left(\sum_{i=0}^{m-1} a_{i,1}x^i, \ldots, \sum_{i=0}^{m-1} a_{i,n}x^i \right) = \lambda f \left(\sum_{i=0}^{m-1} a_{i,1}x^i, \ldots, \sum_{i=0}^{m-1} a_{i,n}x^i \right),
\]

plus a power series in \(T\). Hence the coefficient of \(T^{-1}\) is a non-zero multiple of \(\lambda\) and the compactly supported cohomology vanishes by Lemma 3.2. \(\square\)
Let \(H^*_{c, \text{red}}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell) \) be the mapping cone of the trace map from \(H^*_{c}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell) \) to \(\mathbb{Q}_\ell[-2(n - 1)](-n - 1) \), which exists because \(X \) is a variety of dimension \(n - 1 \). In the next two results, we will show that \(H^*_{c, \text{red}}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell) \) is the solution to a sheaf cohomology problem that turns out to be precisely what is needed to calculate \(S_{1,f} \).

Lemma 3.7. Assume that \(X \) is irreducible and that \(\text{char}(\mathbb{F}_q) > k \). Then the compactly supported cohomology of \(\mathbb{G}_m \times \mathbb{A}^n \) with coordinates \(h, a_1, \ldots, a_n \), with coefficients in \(\mathcal{L}_\psi(h f(a_1, \ldots, a_n)) \), is \(H^*_{c, \text{red}}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)[-2](-1) \).

Proof. By excision, there is a long exact triple

\[
H^*_{c}(\mathbb{G}_m \times \mathbb{A}^n, \mathcal{L}_\psi(h f(a_1, \ldots, a_n))) \to H^*_{c}(\mathbb{A}^1 \times \mathbb{A}^n, \mathcal{L}_\psi(h f(a_1, \ldots, a_n))) \\
\to H^*_{c}(\mathbb{A}^n, \mathcal{L}_\psi(0 f(a_1, \ldots, a_n))),
\]

where \(\mathcal{L}_\psi(0 f(a_1, \ldots, a_n)) \) is the constant sheaf obtained by pullback of the sheaf \(\mathcal{L}_\psi(h f(a_1, \ldots, a_n)) \) to the hyperplane \(h = 0 \). The middle complex is \(H^*_{c}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)[-2](-1) \) and the third complex is equal to \(\mathbb{Q}_\ell[-2n](-n) \). It remains to check that this map is a non-zero multiple of the trace map, which we do by bounding the degrees in which \(H^*_{c}(\mathbb{G}_m \times \mathbb{A}^n, \mathcal{L}_\psi(h f(a_1, \ldots, a_n))) \) is non-vanishing.

Assume without loss of generality that \(f \) actually depends on \(a_1 \). We will show that for generic \(a_2, \ldots, a_{n-1}, \) the compactly supported cohomology of \(\mathbb{G}_m \times \mathbb{A}^1 \) with coefficients in \(\mathcal{L}_\psi(h f(a_1, a_2, \ldots, a_n)) \) vanishes in degree greater than 2, and for arbitrary \(a_2, \ldots, a_{n-1} \) it vanishes in degree greater than 4.

The second statement is simply a consequence of the cohomological dimension of \(\mathbb{G}_m \times \mathbb{A}^1 \).

For the first statement, we have some polynomial \(f(a_1, a_2, \ldots, a_n) \) of \(a_1 \), of degree \(< p \), which because \(a_2, \ldots, a_n \) are generic is non-constant. Hence, on taking the cohomology along \(\mathbb{A}^1 \) of the corresponding Artin–Schreier sheaf, we obtain a complex supported in degree 1. Furthermore, we can represent this complex as the Fourier transform of \(f, \mathbb{Q}_\ell \), shifted by 1. Because \(f, \mathbb{Q}_\ell \) is a middle extension sheaf, its Fourier transform does not have a constant sheaf as a quotient by [18, 8.2.5(2)], and hence its compactly supported cohomology is supported in degree 2, as desired.

It follows from these calculations, and by using the cohomological dimension of \(\mathbb{A}^{n-1} \), that \(H^*_{c}(\mathbb{G}_m \times \mathbb{A}^n, \mathcal{L}_\psi(h f(a_1, \ldots, a_n))) \) is supported in degrees \(\leq 2(n - 1) + 2 = 2n \) or \(\leq 2(n - 2) + 4 = 2n \). Hence the map in degree 2n from \(H^*_{c}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)[-2](-1) \) to \(\mathbb{Q}_\ell[-2n](-n) \) is surjective, whence an isomorphism. Thus it must be a non-zero multiple of the trace map.

Lemma 3.8. Assume that \(X \) is irreducible and that \(\text{char}(\mathbb{F}_q) > k \). Then \(S_{1,f} \) on \(\mathbb{A}^1 \) is the constant complex \(H^*_{c, \text{red}}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)[-2](-1) \).
Proof. First we show that $\overline{S}_{1,f}$ is a constant complex. In the degree 1 case, the possible values of h_2 are simply $T - x$ for arbitrary x, and the possible values of h_1 are non-zero constants, and $a_{i,j}$ is simply an n-tuple of numbers d_i. Thus the relevant space has coordinates x, h, a_1, \ldots, a_n, with $h \neq 0$, where $\overline{\psi}$ can be written as the coefficient of T^{-1} in $\frac{h}{T-x}f(a_1, \ldots, a_n)$, and $\pi_2 \circ p_2'$ is simply the map x.

The coefficient of T^{-1} in $\frac{h}{T-x}f(a_1, \ldots, a_n)$ is equal to $hf(a_1, \ldots, a_n)$. Because this map is independent of x, proper base change implies that the complex $\overline{S}_{1,f} = R(\pi_2 \circ p_2')\overline{\psi}$ is constant; viz. it is the pullback from a point to \mathbb{A}^1 of the compactly supported cohomology of $\mathbb{G}_m \times \mathbb{A}^n$ with coordinates h, a_1, \ldots, a_n, with coefficients in $L(X(hf(a_1, \ldots, a_n)))$. Hence, by Lemma 3.7, it is the constant complex $H_c^{* \text{red}}(X_{\overline{\psi}}, \mathbb{Q}_\ell)[-2](−1)$.

We have now completed the calculation of $\overline{S}_{1,f}$, and we are ready to turn around and apply our previous results, using $\overline{S}_{1,f}$ to calculate $\overline{S}_{m,f}$, from there to calculate the cohomology of $\overline{S}_{m,f}$, from there to calculate the cohomology of $S_{d,f}$ on $A_{m}^{kd} - A_{m-1}^{kd}$, and finally from there to calculate the cohomology of $S_{d,f}$ on A_{m}^{kd}.

Lemma 3.9. Assume that X is irreducible and that $\text{char}(\mathbb{F}_q) > k$. Then

$$H_c^{*}(\mathbb{A}^m, \overline{S}_{m,f}) = (H_c^{*}(\text{PConf}_m, \mathbb{Q}_\ell) \otimes H_c^{* \text{red}}(X_{\overline{\psi}}, \mathbb{Q}_\ell)^{\otimes m})^{S_m}[-2m](-m).$$

Proof. Lemma 3.6 yields $H_c^{*}(\mathbb{A}^m, \overline{S}_{m,f}) = H_c^{*}(\text{Conf}_m, \overline{S}_{m,f})$, where Conf_m is the space of squarefree polynomials of degree m. Let

$$r : \text{PConf}_m \rightarrow \text{Conf}_m$$

be the natural covering map that sends (x_1, \ldots, x_m) to $\prod_{i=1}^{m}(T - x_i)$. Then r is a Galois finite étale S_m-cover, so that

$$H_c^{*}(\text{Conf}_m, \overline{S}_{m,f}) = H_c^{*}(\text{PConf}_m, r^* \overline{S}_{m,f})^{S_m}.$$

By iteratively applying Lemma 3.5, we see that $r^* \overline{S}_{m,f} = \bigotimes_{i=1}^{m} pr_i^* \overline{S}_{1,f}$ where $pr_i : \text{PConf}_m \rightarrow \mathbb{A}^1$ is the map sending (x_1, \ldots, x_m) to x_i, with S_m acting on it the usual way. Applying Lemma 3.8 this is the constant complex $H_c^{* \text{red}}(X_{\overline{\psi}}, \mathbb{Q}_\ell)^{\otimes m}[-2m](-m)$, with S_m acting on it in the usual way. Hence by the formula for the cohomology of constant complexes

$$H_c^{*}(\text{Conf}_m, \overline{S}_{m,f}) = H_c^{*}(\text{PConf}_m, r^* \overline{S}_{m,f})^{S_m} = H_c^{*}(\text{PConf}_m, H_c^{* \text{red}}(X_{\overline{\psi}}, \mathbb{Q}_\ell)^{\otimes m}[-2m](-m))^{S_m} = \left(H_c^{*}(\text{PConf}_m, \mathbb{Q}_\ell) \otimes H_c^{* \text{red}}(X_{\overline{\psi}}, \mathbb{Q}_\ell)^{\otimes m}[-2m](-m) \right)^{S_m},$$

as required. □
Corollary 3.10. Assume that X is irreducible and that $\text{char}(\mathbb{F}_q) > k$. Then $H_c^*(A_{m}^{kd} - A_{m-1}^{kd}, S_{d,f})$ is equal to

$$
\left(H_c^*(\text{PConf}_m, \mathbb{Q}_\ell) \otimes H_{c,\text{red}}^*(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)^{\otimes m} \right)^{S_m} [-2m - 2(n(d-m))](-m - n(d-m)).
$$

Proof. It follows from Lemmas 3.3 and 3.4 that

$$
H_c^*(A_{m}^{kd} - A_{m-1}^{kd}, S_{d,f}) = H_c^*(U_{m}^{kd}, S_{d,f})
$$

$$
= H_c^*(\mathbb{A}_m^r, S_{m,f})[-2n(d-m)](-n(d-m)).
$$

The corollary now follows from an application of Lemma 3.9.

Lemma 3.11. Assume that the leading form of f defines a smooth hypersurface and that $\text{char}(\mathbb{F}_q) > k$. Then $H_{c,\text{red}}^*(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)$ is supported in degree $n-1$ and equals $H_{c}^{n-1}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)$ in that degree.

Proof. The fact that $H_{c,i}^*(X_{\mathbb{F}_q}, \mathbb{Q}_\ell) = H_{c,i,\text{red}}^*(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)$ for $i < 2(n-1)$ follows immediately from the definition. The fact that $H_{c,2(n-1),\text{red}}^*(X_{\mathbb{F}_q}, \mathbb{Q}_\ell) = 0$ follows from the definition and the fact that X is irreducible, which means that the trace map is an isomorphism in top degree. It remains to show that $H_{c,i}^*(X_{\mathbb{F}_q}, \mathbb{Q}_\ell) = 0$ for $i < 2(n-1)$ with $i \neq n-1$.

For $i < n-1$ this follows immediately from Poincaré duality and the fact that the cohomological dimension of an $(n-1)$-dimensional affine variety is $n-1$ by [2] Exposé XIV, Cor. 3.2.

For $i > n-1$, we let \overline{X} be the projective closure of X and we let D denote the divisor at ∞. Then \overline{X} and D are both smooth projective hypersurfaces, with $\dim \overline{X} = n-1$ and $\dim D = n-2$. We claim that the restriction map $H^i(\overline{X}_{\mathbb{F}_q}, \mathbb{Q}_\ell) \to H^i(D_{\mathbb{F}_q}, \mathbb{Q}_\ell)$ is an isomorphism in every even degree i satisfying $n-1 < i < 2(n-1)$ and that it is surjective in degree $n-1$. To see this we note that in every degree $i < 2(n-1)$, with $i \neq n-1$, the cohomology group $H^i(\overline{X}_{\mathbb{F}_q}, \mathbb{Q}_\ell)$ is the one-dimensional space generated by the ith power of the hyperplane class, if i is even, or vanishes if i is odd. The same is true for $H^i(D_{\mathbb{F}_q}, \mathbb{Q}_\ell)$ in degrees $< 2(n-1)$ except for $n-2$. Because the pullback of the hyperplane class is the hyperplane class, the pullback map is an isomorphism for $i > n-1$ and surjective for $i = n-1$. We can apply this fact to the excision exact sequence

$$
H_{c}^i(X_{\mathbb{F}_q}, \mathbb{Q}_\ell) \to H_{c}^i(\overline{X}_{\mathbb{F}_q}, \mathbb{Q}_\ell) \to H^i(D_{\mathbb{F}_q}, \mathbb{Q}_\ell),
$$

whence $H_{c}^i(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)$ vanishes in every degree $i \in (n-1, 2(n-1))$.

Corollary 3.12. Assume that the leading form of f defines a smooth hypersurface, that $\text{char}(\mathbb{F}_q) > k$ and that $d \geq m$. Then $H_{c}^i(A_{m}^{kd} - A_{m-1}^{kd}, S_{d,f})$ is...
equal to
\[
\left(H_c^a(P\text{Conf}_m, \mathbb{Q}_\ell) \otimes H_c^{n-1}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)^{\otimes m} \otimes \text{sgn}^{n-1}\right)^{S_m} (-m - n(d - m)),
\]
where \(a = i + m(n - 1) - 2nd\) and \(\text{sgn}\) is the sign representation of \(S_m\).

Proof. Corollary 3.10 implies that \(H_c^*(A^{kd}_m - A^{kd}_{m-1}, S_{d,f})\) is equal to
\[
\left(H_c^*(P\text{Conf}_m, \mathbb{Q}_\ell) \otimes H_c^{*,\text{red}}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)^{\otimes m}\right)^{S_m} [-2m - 2n(d - m)](-m - n(d - m)).
\]
By Lemma 3.11, \(H_c^{*,\text{red}}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)\) is supported in degree \(n - 1\) and equal to \(H_c^{n-1}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)\) in that degree. Thus \(H_c^{*,\text{red}}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)^{\otimes m}\) is supported in degree \(m(n - 1)\) and is equal to \(H_c^{n-1}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)^{\otimes m}\) in that degree. However, if \(n - 1\) is odd then the \(S_m\)-action on this tensor power is not the usual one but is instead the usual one twisted by the sign character (because the symmetry of the tensor product of the odd degree cohomology groups of two complexes is the opposite of the usual symmetry). In this way we deduce that \(H_c^i(A^{kd}_m - A^{kd}_{m-1}, S_{d,f})\) is as claimed, with \(a = i - 2m - 2n(d - m) - m(n - 1) = i + m(n - 1) - 2nd\).

We now have all the ingredients to complete our treatment of the geometric major arcs, as enshrined in Proposition 2.5. It follows from the construction of the filtration spectral sequence that it converges to \(H_c^*(A^{kd}_d, S_{d,f})\) and that its first page \(E_1^{m,s}\) is the \((m + s)\)th cohomology of the \(m\)th associated graded piece of this filtration, which by excision is \(H_c^{m+s}(A^{kd}_m - A^{kd}_{m-1}, S_{d,f})\). Hence Corollary 3.12 implies that it is
\[
\left(H_c^{m+s-2nd}(P\text{Conf}_m, \mathbb{Q}_\ell) \otimes H_c^{n-1}(X_{\mathbb{F}_q}, \mathbb{Q}_\ell)^{\otimes m} \otimes \text{sgn}^{n-1}\right)^{S_m} (-m - n(d - m)),
\]
since \(m + s + m(n - 1) - 2nd = s + mn - 2nd\). This therefore completes the proof of Proposition 2.5.

4. THE GEOMETRIC MINOR ARCS: GEOMETRY

We continue with the convention that \(\ell\) is an arbitrary prime and that \(\mathbb{F}_q\) is a finite field such that \(\text{char}(\mathbb{F}_q) = p > k\). The main aim of this section is to lay down the tools for bounding the “cohomological dimension of a polynomial”, in the following sense.

Definition 4.1. Let \(G\) be a polynomial in \(N\) variables \(x_1, \ldots, x_N\) over \(\mathbb{F}_q\). We denote by \(cd(G)\) the largest \(i\) such that \(H_c^i(\mathbb{A}_N, \mathcal{L}_\psi(G)) \neq 0\).

Here, we have begun to use the alternate notation \(\mathcal{L}_\psi(G)\) for \(G^* \mathcal{L}_\psi\), as it is more convenient for the remaining calculations. Definition 4.1 enjoys the properties laid out in the following pair of results.
Lemma 4.2. Assume that \(\ell \) has even order in the multiplicative group modulo \(p \). Then \(cd(G(x_1, \ldots, x_N)) = cd(-G(x_1, \ldots, x_N)) \).

Proof. Since \(\ell \) has even order, some power \(\ell^r \) of \(\ell \) has order exactly 2 mod \(p \). Hence \(\ell^r \equiv -1 \) modulo \(p \). The sheaf \(\mathcal{L}_\psi \) can be defined over every \(\ell \)-adic coefficient field that includes the \(p \)th roots of unity. Its definition commutes with extension by scalars from one such coefficient field to another. Using the fact that the property \(H^i_c(\mathbb{A}_n^N, \mathcal{L}_\psi(G)) \neq 0 \) commutes with such an extension, we may assume the coefficient field is \(\mathbb{Q}_\ell(\mu_p) \).

There is an automorphism \(\text{Frob}_\ell^* \) of \(\mathbb{Q}_\ell(\mu_p) \), which acts as multiplying by \(\ell^r \) on \(\mu_p \). Thus it acts by sending any character valued in the \(p \)th roots of unity to the dual character. Applying this automorphism to \(\mathcal{L}_\psi(G) \), we obtain \(\mathcal{L}_{\psi^{-1}}(G) = \mathcal{L}_\psi(-G) \). By functoriality of cohomology in the coefficient sheaf, we obtain a \(\mathbb{Q}_\ell(\mu_p) \)-semilinear automorphism

\[
H^i_c(\mathbb{A}_n^N, \mathcal{L}_\psi(G)) \rightarrow H^i_c(\mathbb{A}_n^N, \mathcal{L}_\psi(-G)).
\]

Thus one of these two groups is non-vanishing if and only if the other is. \(\square \)

Lemma 4.3. We have the identities

\[
\begin{align*}
cd(G(x_1, \ldots, x_N)) + cd(-G(x_1, \ldots, x_N)) \\
= cd(G(x_1, \ldots, x_N) - G(x_{N+1}, \ldots, x_{2N})) \\
= cd(G(x_1, \ldots, x_N) - G(x_1 + x_{N+1}, \ldots, x_N + x_{2N})).
\end{align*}
\]

Proof. The first identity follows from the Künneth formula

\[
H^i_c(\mathbb{A}_n^{2N}, \mathcal{L}_\psi(G(x_1, \ldots, x_N) - G(x_{N+1}, \ldots, x_{2N}))) = H^i_c(\mathbb{A}_n^N \times \mathbb{A}_n^N, \mathcal{L}_\psi(G(x_1, \ldots, x_N)) \otimes \mathcal{L}_\psi(-G(x_{N+1}, \ldots, x_{2N}))) = \bigoplus_{j+k=i} H^j_c(\mathbb{A}_n^N, \mathcal{L}_\psi(G)) \otimes H^k_c(\mathbb{A}_n^N, \mathcal{L}_\psi(-G)).
\]

Thus the largest \(i \) where \(H^i_c(\mathbb{A}_n^{2N}, \mathcal{L}_\psi(G(x_1, \ldots, x_N) - G(x_{N+1}, \ldots, x_{2N}))) \) is non-zero is equal to the largest \(j \) where \(H^j_c(\mathbb{A}_n^N, \mathcal{L}_\psi(G)) \neq 0 \) plus the largest \(k \) where \(H^k_c(\mathbb{A}_n^N, \mathcal{L}_\psi(-G)) \neq 0 \).

The second identity follows since \(G(x_1, \ldots, x_N) - G(x_{N+1}, \ldots, x_{2N}) \) and \(G(x_1, \ldots, x_N) - G(x_1 + x_{N+1}, \ldots, x_N + x_{2N}) \) are related by an invertible change of variables. Thus the associated cohomology groups are isomorphic, and are non-vanishing in the same degrees. \(\square \)

Associated to any polynomial \(G \in \mathbb{F}_q[x_1, \ldots, x_N] \) of degree \(k \) is the set \(V(G) \) of \((y^{(1)}, \ldots, y^{(k-1)}) \in (\mathbb{A}_n^N)^{k-1} \) such that

\[
\sum_{\varepsilon_1, \ldots, \varepsilon_{k-1} \in \{0,1\}} (-1)^{\varepsilon_1 + \cdots + \varepsilon_{k-1}} G(x + \varepsilon_1 y^{(1)} + \cdots + \varepsilon_{k-1} y^{(k-1)})
\]

(4.1)
is a constant function of x. We now record a general algebraic geometry argument, which adapts the standard analytic strategy of Weyl differencing to the task of bounding the cohomological dimension of a polynomial.

Proposition 4.4. Assume that ℓ has even order in the multiplicative group modulo p and let $G \in \mathbb{F}_p[x_1, \ldots, x_N]$ have degree $\leq k$. Then

$$cd(G) \leq \frac{dd(G) + N(2^{k-1} - (k - 1))}{2^{k-2}},$$

where $dd(G) = \dim V(G)$.

Proof. The proof of this result is by induction on k. Suppose first that $k = 1$. Then we claim that $dd(G) = 0$ if G is constant and $dd(G) = -\infty$ otherwise. When $k = 1$ there are no variables $y^{(1)}, \ldots, y^{(k-1)}$. Thus the closed set under consideration is a subset of a point, and the alternating sum (4.4) is simply $G(x_1, \ldots, x_n)$. The claim follows, since it is now clear that $V(G)$ is a point if G is constant and $V(G)$ is the empty set otherwise. If G is constant we must check that

$$cd(G) \leq 0 + N(2^{1-1} - (1 - 1)) = 2N.$$

But this follows from the cohomological dimension of an N-dimensional variety being $2N$. Moreover, we have $cd(G) \leq -\infty$ if G is non-constant, since then the compactly supported cohomology of the associated Artin–Schreier sheaf vanishes.

Now assume that the result is already known for polynomials of degree $k - 1$. Let G be a polynomial of degree $k \geq 2$. Then for any $y_0 = (y_1, \ldots, y_N)$, the difference $G(x) - G(x + y_0)$ is a polynomial of degree $k - 1$ in x_1, \ldots, x_N. The variety $V(G)$ in the definition of $dd(G)$ admits a map $V(G) \to \mathbb{A}^N$ along the coordinates y, whose fiber over a point $y_0 \in \mathbb{A}^N$ is the variety in the definition of $dd(G(x) - G(x + y_0))$. Choose a stratification of \mathbb{A}^N whose strata W_j are varieties and such that the fiber dimension of this map is constant on each stratum W_j. (This is possible since the fiber dimension is constructible, by [13], Ex. II.3.22(e), and any constructible function can be made constant on a stratification.)

Viewing $G(x) - G(x + y)$ as a polynomial in $2N$ variables x, y, the cohomological dimension $cd(G(x) - G(x + y))$ is defined to be the maximum i such that $H^i_c(\mathbb{A}^n \times \mathbb{A}^n, \mathcal{L}^\psi(G(x) - G(x + y))) \neq 0$. By iteratively applying excision to the chosen stratification, this is at most the supremum over strata W_j of the maximum i such that $H^i_c(\mathbb{A}^n \times W_j, \mathcal{L}^\psi(G(x) - G(x + y))) \neq 0$. So it suffices to bound this i for all possible strata W_j.

Let W_j be a stratum of dimension r. Let $\pi : \mathbb{A}^n \times W_j \to W_j$ be the projection map. Then by the Leray spectral sequence with compact supports we have

$$H^i_c(\mathbb{A}^n \times W_j, \mathcal{L}^\psi(G(x) - G(x + y))) = H^i_c(W_j, R\pi_* \mathcal{L}^\psi(G(x) - G(x + y))).$$
Since W_j has cohomological dimension at most $2r$, this vanishes in degrees greater than $2r + s$, where s is the highest degree in which the cohomology of the complex $Rπ_! L_ψ^*(G(x) - G(x + y))$ is non-zero. By proper base change and the induction hypothesis, we have

$$s \leq \max_{y_0 \in W_j} \text{cd}(G(x) - G(x + y_0))$$

$$\leq \max_{y_0 \in W_j} \frac{dd(G(x) - G(x + y_0)) + N(2^{k-2} - (k - 2))}{2^{k-3}}.$$

Now $dd(G(x) - G(x + y_0))$ is the fiber dimension of $V(G)$ over y_0, which is constant on W_j. Hence the dimension of the inverse image of W_j in $V(G)$ is equal to this fiber dimension plus r by [I3, Ex. II.3.22(e)]. Because the inverse image of W_j in $V(G)$ certainly has dimension at most $dd(G)$, the fiber dimension is at most $dd(G) - r$. Thus $H^i_c(A^n \times W_j, L_ψ^*(G(x) - G(x + y)))$ vanishes for

$$i > 2r + \frac{dd(G) - r + N(2^{k-2} - (k - 2))}{2^{k-3}}.$$

It follows that

$$\text{cd}(G(x) - G(x + y)) \leq \sup_{0 \leq r \leq N} \left(2r + \frac{dd(G) - r + N(2^{k-2} - (k - 2))}{2^{k-3}}\right)$$

$$= \sup_{0 \leq r \leq N} \frac{dd(G) + (2^{k-2} - 1)r + N(2^{k-2} - (k - 2))}{2^{k-3}}$$

$$= \frac{dd(G) + N(2^{k-1} - (k - 1))}{2^{k-3}}.$$

Applying Lemmas 4.2 and 4.3 we obtain

$$2\text{cd}(G) = \text{cd}(G) + \text{cd}(-G)$$

$$= \text{cd}(G(x) - G(x + y))$$

$$\leq \frac{dd(G) + N(2^{k-1} - (k - 1))}{2^{k-3}}.$$

The proposition follows on dividing both sides by 2.

Assume that $k > 1$ and that the leading (degree k) term of G is

$$G_0(x) = \sum_{i_1, \ldots, i_k = 1}^N a_i x_{i_1} \ldots x_{i_k},$$

for coefficients $a_i \in \mathbb{F}_q$ which are symmetric in the indices. Then, since $\text{char}(\mathbb{F}_q) > k$, one confirms that $V(G)$ is the set of $(y^{(1)}, \ldots, y^{(k-1)}) \in (A^N)^{k-1}$.
A GEOMETRIC VERSION OF THE CIRCLE METHOD

for which

\[\sum_{i_1, \ldots, i_{k-1}=1}^{N} a_{i_1, \ldots, i_{k-1}, i} y_{i_1}^{(1)} \cdots y_{i_{k-1}}^{(k-1)} = 0, \text{ for all } 1 \leq i \leq N. \]

In particular \(V(G) = V(G_0) \) is an algebraic subvariety of \((\mathbb{A}^N)^{k-1} \). Using Lang–Weil we may transform the problem of bounding \(dd(G) \) into a counting problem, as follows.

Lemma 4.5. Let \(G \in \mathbb{F}_q[x_1, \ldots, x_N] \) be a polynomial of degree \(k \). Suppose that there exists a constant \(c_G > 0 \) such that

\[\# V(G)(\mathbb{F}_{q^r}) \leq c_G q^r D, \]

for all positive integers \(r \). Then \(dd(G) \leq D \).

Proof. This follows by applying the Lang–Weil estimates [16], since over any finite field \(\mathbb{F}_q \) where the variety has a geometrically irreducible component of dimension \(dd(G) \), its number of points is at least \(q^{dd(G)} (1 + o(1)) \). If we have \(q_0^{dd(G)} (1 + o(1)) \leq c_G q_0 D \) for all \(q_0 \) then \(dd(G) \leq D \). \(\square \)

We are going to apply these general arguments to control \(\mathcal{H}^j(S_{d,f}) \) (i.e. the \(j \)th cohomology sheaf of the complex \(S_{d,f} \)) for our polynomial \(f \in \mathbb{F}_q[x_1, \ldots, x_n] \) of degree \(k \). For \((b_1, \ldots, b_{kd}) \in \mathbb{A}^{kd} \), we let \(G_{(b_1, \ldots, b_{kd})} \) be the map \(e \) restricted to the point \((b_1, \ldots, b_{kd}) \). Thus \(G_{(b_1, \ldots, b_{kd})} \) is the function that takes

\[(a_0, j_1, \ldots, a_{d-1}, j)_{1 \leq j \leq n}, (b_1, \ldots, b_{kd}) \]

to the coefficient of \(T^{-1} \) in

\[\left(\sum_{r=1}^{kd} b_r T^{-r} \right) f \left(x_1 T^d + \sum_{i=0}^{d-1} a_{i,1} T^i, \ldots, x_n T^d + \sum_{i=0}^{d-1} a_{i,n} T^i \right). \]

Our geometric minor arc bound amounts to bounding \(dd(G_{(b_1, \ldots, b_{kd})}) \) when the point \((b_1, \ldots, b_{kd}) \) belongs to \((\mathbb{A}^{kd} - A_{m}^{kd})(\mathbb{F}_{q^r}) \) for given \(m \). This is summarised in the following result.

Proposition 4.6. Assume that the leading term of \(f \) defines a smooth hypersurface in \(\mathbb{P}^{n-1} \) and that \(\text{char}(\mathbb{F}_q) > k \). Assume that \(d \geq k - 1 \) and let \(m \) be an integer in the range

\[d \leq m \leq \left\lceil \frac{kd}{2} \right\rceil - 1. \tag{4.2} \]

Then for all \(r \geq 1 \) and all \((b_1, \ldots, b_{kd}) \in (\mathbb{A}^{kd} - A_{m}^{kd})(\mathbb{F}_{q^r}) \), we have

\[dd(G_{(b_1, \ldots, b_{kd})}) \leq dn(k - 1) - \frac{mn}{3(k - 1)}. \]
An inspection of the statement of Proposition 5.2 reveals that one can obtain slightly sharper bounds for $\dim(G_{(b_1, ..., b_{kd})})$, depending on the parity of d and the relative size of m compared to $k - 1$. We have chosen to record a potentially weaker upper bound here for ease of exposition.

Using Lemma 4.5 as a base, we will tackle the proof of Proposition 4.6 through the sort of counting arguments that feature in the usual circle method over $\mathbb{F}_q(T)$. We defer the proof to §5 and instead proceed to show how it yields Proposition 2.6.

Proposition 4.7. Assume that the leading term of f defines a smooth hypersurface in \mathbb{P}^{n-1}, that $\text{char}(\mathbb{F}_q) = p > k$, and that ℓ has even order mod p. Let $m \geq d \geq k - 1$. Then $H^i(S_{d,f})$ vanishes outside A_{kd}^m provided that

$$i > n \left\{ 2d - \frac{m}{3 \cdot 2^{k-2}(k-1)} \right\}.$$

Proof. Let $i \in \mathbb{N}$ be in the range recorded in the statement. We first prove that the stalk of $H^i(S_{d,f})$ vanishes at $(b_1, ..., b_{kd}) \in (A_{kd}^m - A_{kd}^m)(\mathbb{F}_q^r)$, for every $r \geq 1$. Now it follows immediately from the definition of $S_{d,f}$, by applying the proper base change theorem, that the stalk of $H^i(S_{d,f})$ at a point $(b_1, ..., b_{kd}) \in A_{kd}^m(\mathbb{F}_q^r)$ is equal to $H^i_c\left((A_{kd}^m)^r, \mathcal{L}_\psi(G_{(b_1, ..., b_{kd})}) \right)$. But, by the definition of $cd(G_{(b_1, ..., b_{kd})})$, this vanishes for $i > cd(G_{(b_1, ..., b_{kd})})$. Combining Propositions 4.4 and 4.6, and taking $N = dn$, we therefore deduce that

$$cd(G_{(b_1, ..., b_{kd})}) \leq \frac{dn(k-1) - \frac{mn}{3(k-1)} + nd(2^{k-1} - (k-1))}{2^{k-2}} = n \left\{ 2d - \frac{m}{3 \cdot 2^{k-2}(k-1)} \right\} < i.$$

Hence the stalk of $H^i(S_{d,f})$ does indeed vanish.

The sheaf $H^i(S_{d,f})$ is a constructible sheaf defined over \mathbb{F}_q. Hence the set where its stalks are non-vanishing is a constructible set defined over \mathbb{F}_q. We have shown that, for all finite fields \mathbb{F}_q^r, the set has no \mathbb{F}_q^r-points outside A_{kd}^m. It follows that the set has no points outside A_{kd}^m at all, and that $H^i(S_{d,f})$ vanishes outside A_{kd}^m, as desired.

We are now ready to deduce the vanishing result for $H^i_c(k_{kd}^d - A_{kd}^d, S_{d,f})$ that is recorded in Proposition 2.6. Assume that the leading term of f defines a smooth hypersurface in \mathbb{P}^{n-1}, that $\text{char}(\mathbb{F}_q) = p > k$, that ℓ has even order mod p and that $n > 3 \cdot 2^k(k-1)$. Appealing to Lemma 2.4, we clearly
have
\[A^{kd}_d - A^{kd}_m = \bigcup_{m=d}^{m_0} (A^{kd}_{m+1} - A^{kd}_m), \]
for \(m_0 = \left\lceil \frac{kd}{2} \right\rceil - 1 \). Applying excision to the increasing chain of closed subsets \(A^{kd}_m \), we see that \(H^j_c(A^{kd}_m - A^{kd}_d, S_{d,f}) \) vanishes, provided that we are able to show that \(H^j_c(A^{kd}_{m+1} - A^{kd}_m, S_{d,f}) \) vanishes for each integer \(m \in [d, m_0] \).

On \(A^{kd}_{m+1} - A^{kd}_m \), the cohomology sheaf of \(S_{d,f} \) vanishes in degrees greater than
\[n \left\{ 2d - \frac{m}{3 \cdot 2^{k-2(k-1)}} \right\}, \]
by Proposition 4.7. By the spectral sequence for the cohomology of a complex, together with the fact that the cohomology of a variety of dimension \(2(m+1) \) with coefficients in any sheaf vanishes in degrees \(> 4(m+1) \), it follows that \(H^i_c(A^{kd}_{m+1} - A^{kd}_m, S_{d,f}) = 0 \) provided that
\[i > n \left\{ 2d - \frac{m}{3 \cdot 2^{k-2(k-1)}} \right\} + 4(m+1). \]

Since \(n > 3 \cdot 2^k(k-1) \), the right hand side is a decreasing function of \(m \). Thus it suffices to check it for \(m = d \), which thereby completes the proof of Proposition 2.6.

5. The geometric minor arcs: arithmetic

This section is devoted to the remaining task of proving Proposition 4.6. Assume that the leading (degree \(k \)) term \(f_0 \) of \(f \) defines a smooth projective hypersurface \(Z \subset \mathbb{P}^{n-1} \). Let \(P = (x_1 : \ldots : x_n) \in Z(\mathbb{F}_q) \) and suppose that
\[f_0(x_1, \ldots, x_n) = \sum_{j_1, \ldots, j_k=1}^{n} c_j x_{j_1} \ldots x_{j_k}, \]
for symmetric coefficients \(c_j \in \mathbb{F}_q \) (i.e. \(c_j = c_{\sigma(j)} \) for any \(\sigma \in S_k \)).

We need to investigate \(G_{(b_1, \ldots, b_d)} \) for \((b_1, \ldots, b_d) \in (A^{kd}_d - A^{kd}_m)(\mathbb{F}_{q^r}) \) for any \(r \in \mathbb{N} \) and any \(m \) in the range (4.2). It will be convenient to redefine \(q^r \) to be \(q \). Writing \(\alpha = \sum_{r=1}^{kd} b_r T^{-r} \), the function \(G_{(b_1, \ldots, b_d)} \) is equal to the coefficient of \(T^{-1} \) in \(\alpha f(g_1, \ldots, g_n) \), where \(g_j(T) = x_j T^d + \sum_{i=0}^{d-1} a_{i,j} T^i \). Let us set \(a = (a_{0,j}, \ldots, a_{d-1,j})_{1 \leq j \leq n} \), a vector that has \(N = dn \) components. It is now clear that
\[G_{(b_1, \ldots, b_d)} = \sum_{j_1, \ldots, j_k=1}^{n} \sum_{i_1, \ldots, i_k=0}^{d} d_{j_1} a_{i_1,j_1} \ldots a_{i_k,j_k} = F(a) \]
say, where $d_{j,1} = c_1 b_{i_1} + \ldots + b_{i_k}$ has symmetric indices and we follow the convention that $a_{d,j} = x_j$ for $1 \leq j \leq n$. It is clear that $F(a)$ is a degree k polynomial in a with leading term

$$F_0(a) = \sum_{j_1, \ldots, j_k = 1}^{d-1} a_{i,j_1} \ldots a_{i_k,j_k}.$$

Hence $dd(G_{b_1, \ldots, b_{kd}}) = \dim V(F_0)$.

Writing $N = dn$, we see that $V(F_0)$ is the set of $(a^{(1)}, \ldots, a^{(k-1)}) \in (\mathbb{A}_q^N)^{k-1}$ for which

$$\sum_{j_1, \ldots, j_k = 1}^{d-1} a_{i,j_1} \ldots a_{i_k,j_k} = 0,$$

for all $0 \leq i \leq d - 1$ and all $1 \leq j \leq n$. Define \mathcal{N} to be the number of $(a^{(1)}, \ldots, a^{(k-1)}) \in (\mathbb{F}_q^N)^{k-1}$ for which this system of equations holds. According to Lemma 4.5, in order to prove Proposition 4.6 it will suffice to show that there is a constant $c = c(d, k, n)$ such that

$$\limsup_{q \to \infty} q^{-D} \mathcal{N} \leq c,$$

(5.1)

with $D = dn(k - 1) - \frac{mn}{k(k-1)}$.

We shall estimate \mathcal{N} by reinterpreting it as a problem about counting $\mathbb{F}_q[T]$-points on an appropriate variety. On $\mathbb{F}_q(T)$ we have a non-archimedean absolute value $| \cdot |$, which is extended to $\mathbb{F}_q((1/T))$ and vectors in the obvious way.

For any $\beta = \sum_{i \in M} b_i t^i \in \mathbb{F}_q((1/T))$ we put $\|\beta\| = |\sum_{i \leq -1} b_i t^i|$.

Associated to f_0 are the multilinear forms

$$\Psi_j(h^{(1)}, \ldots, h^{(k-1)}) = k! \sum_{j_1, \ldots, j_{k-1} = 1}^n c_{j_1, \ldots, j_{k-1}} h_{j_1}^{(1)} \ldots h_{j_{k-1}}^{(k-1)},$$

for $1 \leq j \leq n$. As above we write $\alpha = \sum_{r=1}^{kd} b_r T^{-r}$ for the point in $\mathbb{F}_q((1/T))$ associated to the vector (b_1, \ldots, b_{kd}). The following result forms the backbone of our investigation of \mathcal{N}.

Lemma 5.1. Assume that $\text{char}(\mathbb{F}_q) > k$. Then $\mathcal{N} = N(\alpha)$, where

$$N(\alpha) = \# \left\{ u \in \mathbb{F}_q[T]^{(k-1)n} : \frac{|u^{(1)}|}{\|\alpha\|} \ldots \frac{|u^{(k-1)}|}{\|\alpha\|} < q^d \quad \text{for} \ 1 \leq j \leq n \right\}$$

and $u = (u^{(1)}, \ldots, u^{(k-1)})$.

\[\]
Proof. We write \(u_j^{(i)} = \sum_{i=0}^{d-1} z_i^{(i)} T^i \) for \(1 \leq j \leq n \) and \(1 \leq i \leq k - 1 \). Then \(\alpha \Psi_j(u) \) is equal to

\[
kd \sum_{r=1}^{n} b_r \sum_{j_1, ..., j_{k-1} = 1}^n c_{j_1, ..., j_{k-1}, j} \sum_{i_1, ..., i_{k-1} = 0}^{d-1} z_{i_1, j_1}^{(1)} \cdots z_{i_{k-1}, j_{k-1}}^{(k-1)} T^{i_1 + \cdots + i_{k-1} - r},
\]

for \(1 \leq j \leq n \). The condition \(\| \alpha \Psi_j(u) \| < q^{-d} \) is equivalent to demanding that the coefficient of \(T^{-i-1} \) vanishes for \(0 \leq i \leq d - 1 \). Let \(N = dn \). Since \(\text{char} (\mathbb{F}_q) > k \), we therefore see that \(N(\alpha) \) is equal to the number of \((z^{(1)}, ..., z^{(k-1)}) \in (\mathbb{F}_q^N)^{k-1} \) for which

\[
\sum_{j_1, ..., j_{k-1} = 1}^n \sum_{i_1, ..., i_{k-1} = 0}^{d-1} c_{j_1, ..., j_{k-1}, j} b_{i_1 + \cdots + i_{k-1} + i + 1} z_{i_1, j_1}^{(1)} \cdots z_{i_{k-1}, j_{k-1}}^{(k-1)} = 0,
\]

for \(1 \leq j \leq n \) and \(0 \leq i \leq d - 1 \). The lemma follows on recalling that \(d_i, t = c_{j_1, ..., j_{k-1}, j} b_{i_1 + \cdots + i_{k-1} + i + 1} \).

The quantity \(N(\alpha) \) should be familiar to experienced practitioners of the circle method and we shall adapt arguments found in [5] to estimate it. For \(i \in \{0, 1\} \) and a real number \(\xi \), let \(\lceil \xi \rceil \) denote the largest non-negative integer not exceeding \(\xi \), which is congruent to \(i \) modulo 2. Our goal is to establish the following result.

Proposition 5.2. Assume that \(d \geq k - 1 \) and \(\text{char} (\mathbb{F}_q) > k \geq 3 \). Let \(m \) be an integer in the range \([4, 2] \). Let \((b_1, ..., b_{kd}) \in A^N - A^d_m \) and put \(\alpha = \sum_{r=1}^{kd} b_r T^{-r} \). Then there exists a constant \(c_{d, k, n} > 0 \), independent of \(q \), such that \(N(\alpha) \leq c_{d, k, n} q^{dn(k-1) - C(d, m, k)n} \), where

\[
C(d, m, k) = \max \left\{ \left\lfloor \frac{m}{k-1} \right\rfloor, 1 \right\}.
\]

Taking this on faith for the moment, we observe that

\[
C(d, m, k) \geq \max \left\{ \frac{m}{k-1} - 2, 1 \right\} = \begin{cases}
\frac{m}{k-1} - 2 & \text{if } m \geq 3(k-1), \\
1 & \text{if } m \leq 3(k-1),
\end{cases}
\]

\[
\geq \frac{m}{3(k-1)},
\]

since \(\lceil \xi \rceil \geq \lceil \xi \rceil - 1 > \xi - 2 \) for any \(\xi \in \mathbb{R} \). Applying Lemma 5.1, we deduce that we may take

\[
D \leq dn(k-1) - C(d, m, k)n \leq dn(k-1) - \frac{mn}{3(k-1)}
\]

in \((3.1)\), from which the statement of Proposition 4.6 follows.
We now turn to the proof of Proposition 5.2. The quantity \(N(\alpha) \) is precisely the quantity \(N(\alpha) \) appearing in \[5, Eq. (5.1)]\, but with \(P = T^d \). Guided by arguments in \[5\], we shall present several strategies for bounding \(N(\alpha) \), before finally concluding the proof of Proposition 5.2.

We first consider the effect of applying the function field version of Davenport’s “shrinking lemma”. Let

\[
N_\eta(\alpha) = \# \left\{ \mathbf{u} \in \mathbb{F}_q[T]^{(k-1)n} : |u^{(1)}|, \ldots, |u^{(k-1)}| < |P|^\eta \left\| \alpha \Psi_j(\mathbf{u}) \right\| < |P|^{-k+(k-1)\eta} \text{ for } 1 \leq j \leq n \right\},
\]

for any parameter \(\eta \in [0, 1] \). Since \(P = T^d \), it follows from \[5, Lemma 5.1\] that

\[
N(\alpha) \leq |P|^{n(1-\eta)(k-1)} N_\eta(\alpha),
\]

for any \(\eta \in [0, 1) \) such that

\[
d(\eta + 1) \in \mathbb{Z}. \tag{5.3}
\]

Next, we would like to apply the following Diophantine approximation lemma, in which we write \(T \) for the set of \(\beta \in \mathbb{F}_q((1/T)) \) for which \(|\beta| < 1 \).

Lemma 5.3. Let \(M \in \mathbb{R} \) and let \(\alpha = a/r + \theta \), where \(a/r \in \mathbb{F}_q(T) \) and \(\theta \in T \). Let \(\mathbf{v} \in \mathbb{F}_q((1/T))^n \). Suppose that \(|r\theta| < q^{-M} \) and \(|\mathbf{v}| < q^M \). Assume that \(|\alpha\mathbf{v}| < q^{-Y} \), where \(Y \in \mathbb{R} \) is such that \(q^Y > |r| \). Then \(r \) divides \(\mathbf{v} \). Moreover, if either \(|r| \geq q^M \) or \(|r\alpha - a| \geq q^{-Y} \), then \(\mathbf{v} = \mathbf{0} \).

Proof. This is \[17, Lemma 4.3.5\]. \(\square \)

We suppose that \(\alpha = a/r + \theta \) for \(a/r \in \mathbb{F}_q(T) \) and \(\theta \in T \). We shall apply Lemma 5.3 with \(M = d(k-1)\eta \) and \(Y = dk - d(k-1)\eta \). This leads us to choose \(\eta \) maximally such that \(d\eta(k-1) \leq \Gamma \), where \(\Gamma \) is any integer satisfying

\[
\min \left\{ \left| P_k \right|^{k-1}/q, \frac{1}{q|r\alpha-a|}, \frac{\left| P_k \right|}{q|r|} \right\}, \max \left\{ |r|, |P_k(r\alpha-a)| \right\} \geq q^\Gamma. \tag{5.4}
\]

Making such a choice we next choose \(\eta \) via

\[
d\eta = \begin{cases}
\left\lceil \Gamma/(k-1) \right\rceil_0 & \text{if } d \text{ is even}, \\
\left\lfloor \Gamma/(k-1) \right\rfloor_1 & \text{if } d \text{ is odd}.
\end{cases} \tag{5.5}
\]

One notes that \(\eta \) is satisfied with this choice.

It now follows from (5.2) that

\[
N(\alpha) \leq |P|^{n(1-\eta)(k-1)} \# \left\{ \mathbf{u} \in \mathbb{F}_q[T]^{(k-1)n} : |u^{(1)}|, \ldots, |u^{(k-1)}| < |P|^{\eta} \Psi_j(\mathbf{u}) = 0 \text{ for } 1 \leq j \leq n \right\}.
\]

Since \(Z \) is smooth, the system of equations \(\Psi_j = 0 \) defines an affine variety \(V \) of dimension at most \((k-2)n \). To see this, we note that the intersection of \(V \) with the diagonal \(\Delta = \{ \mathbf{u} \in A^{(k-1)n} : u^{(1)} = \cdots = u^{(k-1)} \} \) is contained in the
singular locus of $f_0 = 0$ and so has affine dimension 0. The claim follows on noting that

$$0 = \dim(V \cap \Delta) \geq \dim V + \dim \Delta - (k - 1)n = \dim V - (k - 2)n.$$

Thus \[4, Lemma 2.8\] implies that there are $\ll |P|^{\eta(k-2)n}$ choices for u, with an implied constant that depends only on k and n. We have therefore shown that

$$N(\alpha) \ll |P|^{n(k-1-\eta)} = q^{dn(k-1)-dn\eta}, \quad (5.6)$$

provided η is chosen as in (5.5).

Supposing again that $\alpha = a/r + \theta$ for $a/r \in \mathbb{F}_q(T)$ and $\theta \in \mathbb{T}$, we shall need an auxiliary argument to handle certain ranges when d is even. We therefore consider the effect of taking η such that $d\eta = 2$. Then condition (5.3) holds and so (5.2) yields

$$N(\alpha) \leq \frac{|P|^{n(k-1)}}{q^{2n(k-1)}} \tilde{N}(\alpha), \quad (5.7)$$

where

$$\tilde{N}(\alpha) = \# \left\{ u \in \mathbb{F}_q[T]^{(k-1)n} : |u^{(1)}|, \ldots, |u^{(k-1)}| \leq q \right\} \left(\|\alpha \Psi_j(u)\| < q^{-dk+2(k-1)} \text{ for } 1 \leq j \leq n \right\}.$$

Note that $|\Psi_j(u)| \leq q^{-k}$ for all j. Using (5.7) we can produce the following bound for $N(\alpha)$ when α admits a suitable rational approximation.

Lemma 5.4. Assume that d is even and that α has a rational approximation a/r such that

$$q \leq |r| \leq q^{d(k-2)(k-1)} \quad \text{and} \quad |r\alpha - a| \leq q^{-k}.$$

Then $N(\alpha) \ll q^{dn(k-1)-n}$, where the implied constant depends only on d, k, n.

Proof. We apply Lemma 5.3 with $M = k - \frac{1}{2}$ and $Y = dk - 2(k-1) + \frac{1}{2}$. Our hypotheses ensure that $|r| < q^Y$ and $|r\theta| < q^{-M}$. Thus

$$\tilde{N}(\alpha) = \# \left\{ u \in \mathbb{F}_q[T]^{(k-1)n} : |u^{(1)}|, \ldots, |u^{(k-1)}| \leq q \right\} \left(\|\alpha \Psi_j(u)\| \equiv 0 \text{ mod } r \quad \text{for } 1 \leq j \leq n \right\}.$$

It also that $|r| \geq q$. The rest of the argument proceeds exactly as in the proof of [4, Lemma 5.4(i)], with the outcome $\tilde{N}(\alpha) \ll q^{2(k-1)n-n}$, for an implied constant that depends at most on d, k and n. Once inserted into (5.7) this yields the statement of the lemma. \qed

We now have everything in place to conclude the proof of Proposition 5.2. Assume that $d \geq k - 1$ and $k \geq 3$. Suppose that we are given a vector $(b_1, \ldots, b_{kd}) \in (A^{kd} - A_m^{kd})(\mathbb{F}_q)$, for an integer m in the range (4.2). Let $\alpha = \sum_{r=1}^{kd} b_r T^{-r}$ be the corresponding point in \mathbb{T}. By the function field version of
Dirichlet’s approximation lemma [17, Lemma 4.5.1], for any \(Q \in \mathbb{N} \) there exist coprime \(a, r \in \mathbb{F}_q[T] \), with \(r \) monic, such that
\[
\deg(a) < \deg(r) \leq Q \quad \text{and} \quad r \alpha = a + O(T^{-Q-1}).
\]

We shall apply this with \(Q = m \). Since \((b_1, \ldots, b_{kd}) \not\in A_{kd}^m\), it follows from Lemma 2.4(4) that \(|r \alpha - a| \geq q^{-dk+m}\). In particular, we have
\[
\max \{|r|, |P(k(r \alpha - a))|\} \geq q^m.
\]

Moreover, we note that \(|P(k-1)/q = q^{dk-d-1} \geq q^m\), since \(m \leq \left\lceil \frac{kd}{2} \right\rceil - 1 \leq \frac{kd-1}{2} \) in [1.2] and \(k \geq 3 \). Similarly,
\[
\frac{1}{q|r \alpha - a|} \geq q^Q = q^m \quad \text{and} \quad \frac{|P(k)|}{q|r|} \geq q^{dk-1-Q} = q^{dk-1-m} \geq q^m.
\]

Thus it follows that (5.4) holds with \(\Gamma = m \).

Appealing to (5.6) this therefore shows that \(N(\alpha) \ll q^{dn(k-1)-C_0(d,m,k)n} \), with
\[
C_0(d, m, k) = \left\lceil \frac{m}{k-1} \right\rceil \text{ mod } 2.
\]

It remains to prove that we also have \(N(\alpha) \ll q^{dn(k-1)-n} \), in order to complete the proof of Proposition 5.2. Note that
\[
C_0(d, m, k) \geq \left\lceil \frac{m}{k-1} \right\rceil - 1 \geq 1
\]
if \(m \geq 2(k-1) \). Hence we may assume that \(m \) is in range \(k-1 \leq m < 2(k-1) \), since \(d \geq k-1 \). For such \(m \), if \(d \) is odd we have
\[
C_0(d, m, k) = \left\lceil \frac{m}{k-1} \right\rceil = 1.
\]

It follows that we may henceforth assume that \(d \) is even and
\[
k-1 \leq m \leq \min \left\{ 2(k-1) - 1, \frac{kd}{2} - 1 \right\}. \quad (5.8)
\]

The case \(\deg(r) \geq 1 \). Assuming that \(\deg(r) \geq 1 \), we shall show that the hypotheses of Lemma 5.4 are met when \(d \) is even and \(m \) lies in the range (5.8). We first note that \(|r \alpha - a| \leq q^{-m-1} \leq q^{-k}\), since \(m \geq k-1 \). Thus we just need to check that \(|r| \leq q^{dk-2(k-1)}\). Since \(Q = m \), it suffices to verify that \(m \leq dk-2(k-1) \) when \(m \) is in the range (5.8). Recalling that \(d \geq k-1 \), it is easy to see that \(2(k-1) - 1 \leq dk-2(k-1) \) when \((d, k) \neq (2, 3) \). Alternatively, when \((d, k) = (2, 3) \) it follows from (5.8) that \(m = 2 \) and \(dk-2(k-1) = 2 \).
The case $\text{deg}(r) = 0$. In this case $r = 1$ and $a = 0$ in the above rational approximation. We continue to assume that $k - 1 \leq m < 2(k - 1)$ and d is even. Let us consider the contribution from α for which $|\alpha| = q^{-A}$ for some integer $A \geq 0$. We may obviously proceed under the assumption that

$$m + 1 \leq A \leq dk - m,$$

Our goal is to show that $N(\alpha) \ll q^{dn(k-1)-n}$ for every A in this range.

We return to the inequality in (5.7) with $\kappa = 1$. Since $|u^{(i)}| \leq q$ in $\tilde{N}(\alpha)$, for $1 \leq i \leq k - 1$, it follows that

$$|\alpha \Psi_j(u)| \leq |\alpha| q^{k-1} = q^{k-1-A}.$$

Note that $A - (k - 1) \geq m - k + 2 \geq 1$. Hence $|\alpha \Psi_j(u)| = |\alpha \Psi_j(u)|$ and

$$\tilde{N}(\alpha) = \# \left\{ u \in \mathbb{F}_q[T]^{(k-1)n} : |u^{(1)}|, \ldots, |u^{(k-1)}| \leq q, |\Psi_j(u)| < q^{A-dk+2(k-1)} \text{ for } 1 \leq j \leq n \right\}.$$

Note that $A - dk + 2(k - 1) \leq 2(k - 1) - m \leq k - 1$, since $m \geq k - 1$. If we write $u^{(i)} = v^{(i)} + T w^{(i)}$ for $v, w \in \mathbb{F}_q^{(k-1)n}$, then $|\Psi_j(u)| < q^{k-1}$ if and only if $\Psi_j(w) = 0$. Applying the Lang–Weil estimate to bound the size of $V(\mathbb{F}_q)$, it therefore follows from (5.7) that

$$N(\alpha) \leq \frac{|P_n(k-1)|}{q^{2n(k-1)}} \cdot q^{n(k-1)} \cdot \#V(\mathbb{F}_q)$$

$$\ll \frac{|P_n(k-1)|}{q^{2n(k-1)}} \cdot q^{n(k-1)} \cdot q^{n(k-2)}$$

$$= q^{dn(k-1)-n},$$

which is satisfactory. This concludes the proof of Proposition 5.2.

6. Topological interpretation

As described in §11 Theorem 11 describes a kind of homological stabilisation phenomenon. In this section we draw comparisons with work of Segal [20] on the moduli space of degree d maps $\mathbb{P}^1 \to \mathbb{P}^n$ over \mathbb{C} that send the point ∞ of \mathbb{P}^1 to a fixed point of \mathbb{P}^n, where as in our setting there is no natural morphism from the space of degree d maps to the space of degree $d + 1$ maps. Because $\mathbb{P}^1(\mathbb{C})$ is simply the sphere S^2, the space of degree d maps naturally embeds into the space of based continuous maps $S^2 \to \mathbb{P}^n(\mathbb{C})$, which is the based double loop space $\Omega^2 \mathbb{P}^n(\mathbb{C})$. Segal showed that this embedding is a homotopy equivalence up to dimension $d(2n - 1)$, and in particular is an isomorphism on the first $d(2n - 1)$ homology groups [20 Prop. 1.2]. A lot of subsequent work has been directed at proving similar results for spaces of maps from \mathbb{P}^1 to other algebraic varieties.
The situation in our case is somewhat different, because we are looking at maps between non-compact varieties and our base points do not lie in the varieties but rather on the boundary. However, we still obtain a natural map to a double loop space, and we conjecture that a similar stabilisation result holds.

Let X be a smooth affine hypersurface over \mathbb{C} with smooth projective closure \overline{X}. Let $d \in \mathbb{N}$ be a natural number and let $P = (x_1 : \ldots : x_n : 0) \in \overline{X} - X$. We let $\text{Hom}_{d,P}(\mathbb{C}, X)$ be the space parameterizing continuous (but not necessarily holomorphic) maps $P^1(\mathbb{C}) \to X$ such that the point ∞ is sent to P, with every other point sent to X, and such that the map, expressed in terms of a local coordinate z near ∞, has the form

$$(x_1 + O(|z|) : \ldots : x_n + O(|z|) : z^d + O(|z|^{d+1})).$$

(6.1)

Then there is a map $\text{Mor}_{d,P}(\mathbb{A}^1, X) \to \text{Hom}_{d,P}(\mathbb{C}, X)$, where we can check the condition on the local coordinate at ∞ by using $z = T^{-1}$. We have been led to formulate the following conjecture.

Conjecture 6.1. Assume that $d \geq k - 1 \geq 2$. If $0 \leq j < \frac{dn}{2k-2(k-1)} - 4(d+1)$ then the pairing

$$H^2_{c}(\mathbb{A}^1, X, \mathbb{Q}) \otimes H^j(\text{Hom}_{d,P}(\mathbb{C}, X), \mathbb{Q}) \to \mathbb{Q},$$

induced by functoriality along $\text{Mor}_{d,P}(\mathbb{A}^1, X) \to \text{Hom}_{d,P}(\mathbb{C}, X)$ and the trace map, is a perfect pairing.

We proceed by making the following observation.

Lemma 6.2. As long as it is nonempty, $\text{Hom}_{d,P}(\mathbb{C}, X)$ is homotopic to the based double loop space $\Sigma^2 X$ of X.

Proof. Fix a point of $\text{Hom}_{d,P}(\mathbb{C}, X)$. We may as well choose the base point to lie in the image of this map. Having done this, we can define a map $\Sigma^2 X \to \text{Hom}_{d,P}(\mathbb{C}, X)$ by gluing the fixed map $\mathbb{P}^1(\mathbb{C}) \to \overline{X}$ to an arbitrary map $S^2 \to X$ at that based point, by using the fact that $\mathbb{P}^1(\mathbb{C})$ is a 2-sphere and fixing a suitable map from a 2-sphere to the wedge sum of two 2-spheres.

To obtain a homotopy inverse, we check that we can canonically deform any map $\mathbb{C}P^1 \to X$ which has the form (6.1) near ∞ to our fixed map in a neighbourhood of ∞. The fact that we have fixed the leading term makes this possible. Near this point, one of the coordinates is locally a unit, and we can divide all the coordinates by it. Because the intersection of \overline{X} with ∞ is smooth, one of the coordinates can be written as a holomorphic function of the other coordinates, and we can drop it. Having done this, we can use the convex combinations to canonically deform any map to our fixed map. Because the leading terms of the last coordinate is fixed, this convex combination will not introduce any new zeroes in a neighbourhood. We can then deform the map.
to agree with our fixed map in larger neighbourhoods of ∞ until it agrees on a whole half-sphere and hence can be expressed as a gluing.

We shall show that for $K = \mathbb{C}$, Conjecture 6.1 implies our earlier Conjecture 1.3 on the degeneration of the spectral sequence in Theorem 1.1 on the first page. Our plan for doing this is to calculate the dimensions of the rational cohomology groups of $\text{Hom}_{d,P}(\mathbb{C}, X)$, which by Conjecture 6.1 allows us to calculate the dimensions of the rational cohomology groups of $\text{Mor}_{d,P}(\mathbb{A}^1, X)$. Next, we calculate the dimensions of the cohomology groups on the first page of our spectral sequence and compare them. We show that, if any non-zero differentials existed, the dimension of $H^2_{d(n-k)-j}(\text{Mor}_{d,P}(\mathbb{A}^1, X), \mathbb{Q})$ would be less than its predicted value under Conjecture 6.1. Thus the conjecture implies that the differentials vanish and the sequence degenerates.

This builds on (unpublished) work of Ellenberg and Venkatesh, who used a loop space model to predict the supertrace of Frobenius on the cohomology group of a similar mapping space, and saw that it agreed with the main term from the circle method. Our situation differs in that we do not consider the Frobenius action on the cohomology groups but do need to understand the dimension of individual cohomology groups and not just the Euler characteristic.

Definition 6.3. Given $N \in \mathbb{N}$, let $e_k(N)$ be the unique sequence of integers such that

$$\prod_{k=1}^{\infty} (1 - T^k)^{-e_k(N)} = 1 + (-1)^{n-1}NT,$$

for a formal variable T.

We claim that

$$e_k(N) = -\frac{1}{k} \sum_{d|k} \mu(d) ((-1)^n N)^{k/d}. \quad (6.2)$$

To check this we take logarithms of both sides of the identity in Definition 6.3. This yields

$$-\sum_{k=1}^{\infty} e_k(N) \sum_{d=1}^{\infty} \frac{T^{kd}}{d} = -\sum_{m=1}^{\infty} ((-1)^n N)^m \frac{T^m}{m}.$$

On extracting the coefficient of T^m, we obtain

$$\frac{((-1)^n N)^m}{m} = -\sum_{d|m} \frac{e_{m/d}(N)}{d} = -\frac{1}{m} \sum_{d|m} (m/d)e_{m/d}(N).$$

The Möbius inversion formula now yields

$$-ke_k(N) = \sum_{d|k} \mu(d) ((-1)^n N)^d,$$
from which the claimed equality \([6.2]\) follows.

The numbers \(e_k(N)\) will feature prominently in our calculations of various dimensions. We begin with the following result.

Lemma 6.4. Let \(m, N \in \mathbb{N}\), let \(i \in \mathbb{Z}\) and let \(V\) be a vector space of dimension \(N\). Then \(\dim(H^{m+i}_c(PConf_m, Q_\ell) \otimes V^{\otimes m} \otimes \text{sgn}^{n-1})_{S_m} = (-1)^{mn+m} \) times the coefficient of \(q^mU^m\) in \(\prod_{k=1}^\infty (1 - qU^k)^{-e_k(N)}\).

Proof. By orthogonality of characters, the dimension of the \(S_m\)-invariants of \(H^{m+i}_c(PConf_m, Q_\ell) \otimes V^{\otimes m} \otimes \text{sgn}^{n-1}\) is the inner product of the characters of \(S_m\) corresponding to \(H^{m+i}_c(PConf_m, Q_\ell) \otimes V^{\otimes m} \otimes \text{sgn}^{n-1}\). Let \(\chi\) be the character of \(S_m\) associated to \(V^{\otimes m} \otimes \text{sgn}^{n-1}\). For a finite field \(\mathbb{F}_q\), we may view \(\chi\) as a function on squarefree polynomials of degree \(m\) over \(\mathbb{F}_q\) by evaluating it on the conjugacy class of Frobenius. This is a conjugacy class in \(S_m\) with one cycle for each irreducible factor of the polynomial, of length equal to the degree of the irreducible factor. It is a special case of [6, Theorem 3.7] that the sum of \(\chi(f)\) over all monic squarefree polynomials \(f\) of degree \(m\) over \(\mathbb{F}_q\) is equal to

\[
\sum_{f} (-1)^i q^{-i} \langle \chi, H^i_c(PConf_m, Q_\ell) \rangle = \sum_i (-1)^{m-i} q^i \langle \chi, H^{m-i}_c(PConf_m, Q_\ell) \rangle \\
= \sum_i (-1)^{m-i} q^i \langle \chi, H^{m+i}_c(PConf_m, Q_\ell) \rangle,
\]

by Poincaré duality.

Next we will compute the sum of this character \(\chi\) over squarefree monic polynomials, showing it is equal as a polynomial in \(q\) to \((-1)^{m-n} m\) times the coefficient of \(U^m\) in \(\prod_{k=1}^\infty (1 - qU^k)^{-e_k(N)}\). Because the coefficients of this polynomial are uniquely determined by its values, we will conclude that the dimensions are as stated.

First we calculate the character \(\chi\) of \(V^{\otimes m} \otimes \text{sgn}^{n-1}\). We can think of \(V\) as admitting a basis \(v_1, \ldots, v_N\), which induces a basis on \(V^{\otimes m}\), on which the conjugacy class \(\sigma\) will act by permutations. The trace is the number of basis vectors that are fixed. A basis vector, corresponding to an \(m\)-tuple of \(v_1, \ldots, v_N\), is fixed if and only if it is constant on each cycle of \(\sigma\). Thus the number of such vectors is \(N\) to the number of cycles of \(\sigma\), which is \(N\) to the number of prime factors of the polynomial. The character of the sign representation is \((-1)^{m}\) times \((-1)\) to the number of cycles of \(\sigma\). Altogether we deduce that the sum of this character is

\[
\sum_{f \in \mathbb{F}_q[x], \text{monic squarefree}} ((-1)^{n-1} N)^{\omega(f)} (-1)^{(n-1)m},
\]
where \(\omega(f) \) is the number of prime factors of \(f \). But this is equal to \((-1)^{(n-1)m}\) times the coefficient of \(q^{-ms} \) in

\[
\sum_{f \in \mathbb{F}_q[x], \text{ monic \ f \ squarefree}} \omega(f) q^{-\deg(f)s} = \prod_{g \in \mathbb{F}_q[x], \text{ monic \ g \ prime}} (1 + \omega(f) q^{-\deg(g)s}) = \prod_{g \in \mathbb{F}_q[x], \text{ monic \ g \ prime}} \prod_{k=1}^{\infty} \left(1 - q^{-k \deg(g)s} - e_k(N)\right),
\]

by Definition 6.3. But we recognise that the right hand side is equal to

\[
\prod_{k=1}^{\infty} \zeta_{\mathbb{F}_q[N]}(ks)^{e_k(N)} = \prod_{k=1}^{\infty} (1 - q^{1-ks})^{-e_k(N)}.
\]

Taking \(U = q^{-s} \), we observe that the character sum is \((-1)^{nm-m}\) times the coefficient of \(U^m \) in \(\prod_{k=1}^{\infty} (1 - qU^k) \), as claimed. \(\square \)

We may simplify the formula in Lemma 6.4 by introducing a sum over \(m \), as follows.

Corollary 6.5. Let \(j, n, d, N \in \mathbb{N} \), such that \(n > 3 \) and \(d(n-3) \geq j \), and let \(V \) be a vector space of dimension \(N \). Then

\[
\sum_{m=0}^{d} \dim(H_{c}^{mn-m-j}(PConf, \mathbb{Q}_\ell) \otimes V^\otimes m \otimes \text{sgn}^{n-1})S_m
\]

is the coefficient of \(q^{-j} \) in \(\prod_{k=1}^{\infty} (1 - (-q)^{1-k(n-2)})^{-e_k(N)} \).

Proof. Lemma 6.4 implies that \(\dim(H_{c}^{mn-m-j}(PConf, \mathbb{Q}_\ell) \otimes V^\otimes m \otimes \text{sgn}^{n-1})S_m \) is \((-1)^{2mn-2m-j} = (-1)^j \) times the coefficient of \(q^{mn-2m-j}U^m \) in the infinite product \(\prod_{k=1}^{\infty} (1 - qU^k)^{-e_k(N)} \). This infinite product has a power series expansion

\[
\prod_{k=1}^{\infty} (1 - qU^k)^{-e_k(N)} = \sum_{m=0}^{\infty} c_m q^{mn-2m-j}U^m,
\]

for appropriate coefficients \(c_m \). Our assumption that \(d(n-3) \geq j \) ensures that only \(m \leq d \) occur in this sum, since there are no monomials where the power of \(q \) is greater than the power of \(U \) appearing. We have therefore shown that

\[
\sum_{m=0}^{d} \dim(H_{c}^{mn-m-j}(PConf, \mathbb{Q}_\ell) \otimes V^\otimes m \otimes \text{sgn}^{n-1})S_m = (-1)^j \sum_{m=0}^{d} c_m.
\]

To calculate this we evaluate \((6.3)\) at \(U = q^{2-n} \). Replacing the variable \(q \) with \(-q\) removes the factor of \((-1)^j\) and so completes the proof. \(\square \)
Our next task is to show that precisely the same power series occurs in the context of the double loop space.

Lemma 6.6. Assume \(n \geq 2 \). Let \(X \) be the smooth vanishing set in \(\mathbb{C}^n \) of a polynomial \(f \) whose leading term defines a smooth hypersurface in projective space. Let \(\Omega^2 X \) be the (based) double loop space of \(X \). Then \(\dim H^j(\Omega^2 X, \mathbb{Q}) \) is the coefficient of \(q^{-j} \) in \(\prod_{k=1}^{\infty} (1 - (-q)^{1-k(n-2)})^{-e_k(N)} \), where \(N \) is the dimension of \(H^{n-1}(X, \mathbb{Q}) \).

Proof. First we will show that the homotopy group \(\pi_{k(n-2)+1}(X) \otimes \mathbb{Q} \) has dimension \((-1)^{k(n-2)-1}e_k(N) \) for all \(k \), and that all other rational homotopy groups of \(X \) vanish. We will then use these homotopy groups to calculate the cohomology of the double loop space. Observe that \(X \) is homotopic to \(\wedge^N S^{n-1} \), which follows from [3, Thm. 2] once we check that the polynomial \(f \) defining \(X \) is “tame”. But this follows since its leading term defines a smooth hypersurface, whence the partial derivatives of its leading terms have no common zero outside the origin. Thus everywhere far from the origin at least one of the partial derivatives is large, which is precisely the criterion of tameness.

The homotopy groups of \(\wedge^N S^{n-1} \) were calculated by Hilton [14, Cor. 4.10], with the outcome that

\[
\pi_i(\wedge^N S^{n-1}) = \sum_w \pi_i(S^{(n-2)w+1}) \frac{1}{w} \sum_{d|w} N^{w/d} \mu(d).
\]

For rational homotopy groups, only \(\pi_m \) is non-vanishing for odd dimensional spheres \(S^m \). In particular, for \(n \) even we get

\[
\pi_{k(n-2)+1}(\wedge^N S^{n-1}) \otimes \mathbb{Q} = \mathbb{Q}^{\frac{1}{k}} \sum_{d|k} N^{k/d} \mu(d),
\]

which has dimension \(-e_k(N) = (-1)^{k(n-2)-1}e_k(N)\) by (6.2). For spheres of even dimension, both \(\pi_m \) and \(\pi_{2m-1} \) have one-dimensional rational homotopy groups. Hence for \(n \) odd we have

\[
\dim \mathbb{Q} \pi_{k(n-2)+1}(\wedge^N S^{n-1}) \otimes \mathbb{Q} = \frac{1}{k} \sum_{d|k} N^{k/d} \mu(d) + \frac{1}{k} \sum_{d|k/2} N^{k/2d} \mu(d).
\]
If k is odd then an inspection of (6.2) reveals that the right hand side is equal to $e_k(N) = (-1)^{k(n-2)}e_k(N)$. If k is even we write the right hand side as

$$1_k \sum_{d|k} N^{k/d} \mu(d) + 1_{k \equiv 2 \text{ mod } 4} \sum_{d|k, 2|d} N^{k/d} \mu(d/2) = 1_k \sum_{d|k} N^{k/d} \mu(d) - 2_k \sum_{d|k, 2|k/d} N^{k/d} \mu(d) = 1_k \sum_{d|k} (-N)^{k/d} \mu(d).$$

which again matches the formula for $(-1)^{k(n-2)}e_k(N)$.

The rational cohomology algebra on $H^\ast(\Omega^2, \mathbb{Q})$ is the free graded commutative algebra on a basis for the rational homotopy of X, shifted by two degrees by [22, p. 311]. Thus $H^\ast(\Omega^2 X, \mathbb{Q})$ is the free graded commutative algebra on $(-1)^{k(n-2)}e_k(N)$ generators in degree $k(n-2) - 1$ for each k.

We wish to calculate the generating function $\sum_j \dim H^j(\Omega^2 X, \mathbb{Q}) q^{-j}$. The generating function of the graded commutative algebra on one generator in degree d is $(1 + q^{-d})$ if d is odd and $(1 - q^{-d})^{-1}$ if d is even. Since free products of algebras correspond to products of generating functions, the generating function of the cohomology algebra of $\Omega^2 X$ is $\prod_{k=1}^\infty (1 - (-q)^{1-k(n-2)})^{-e_k(N)}$. □

We may finally relate Conjecture 6.1 to our conjecture that the spectral sequence in Theorem 1.1 degenerates on the first page for

$$m + s > 4(d + 1) - \frac{dn}{2k-2(k-1)}.$$

If the spectral sequence fails to degenerate, then some non-zero differential exists, and thus the dimension of $E_\infty^{m,s}$ is less than the dimension of $E_1^{m,s}$. To check that the spectral sequence degenerates, it is therefore sufficient to check that

$$\dim H^{i+2d(n-k)}(\text{Mor}_{d,P}(\mathbb{A}^1, X), \mathbb{Q}) = \sum_{m+s=i} \dim E_1^{m,s},$$

since the left hand side is equal to $\dim H^{i+2d(n-k)}(\text{Mor}_{d,P}(\mathbb{A}^1, X), \mathbb{Q}_\ell)$. Under Conjecture 6.1 we conclude from Lemma 6.2 that

$$\sum_{m+s=i} \dim E_1^{m,s} = \dim H^{-i}(\text{Hom}_{d,P}(\mathbb{C}, X), \mathbb{Q}) = H^{-i}(\Omega^2 X, \mathbb{Q}).$$

Let $N = \dim H^{n-1}_c(X, \mathbb{Q}_\ell)$. Then, by Poincaré duality and the universal coefficient theorem, we also have $N = \dim H^{n-1}(X, \mathbb{Q})$. (Note that we are also
implicitly using the comparison of étale and singular cohomology.) We now appeal to the formulae of Corollary 6.5 and Lemma 6.6, with the outcome that
\[
\dim H^j(\Omega^2 X, \mathbb{Q}) = \sum_{m=0}^d \dim(H^{m-n-j}(PConf_m, \mathbb{Q}_\ell) \otimes H^{n-1}(X, \mathbb{Q}_\ell) \otimes \mathbb{Q}^m \otimes \text{sgn}^{n-1}) S_m.
\]
We can take \(j < \frac{dn}{2k-2(k-1)} - 4(d+1) \leq d(n-3) \) to check the condition of Corollary 6.5. We summarise our findings in the following result.

Theorem 6.7. Conjecture 6.1 implies Conjecture 1.3 when \(K = \mathbb{C} \).

References

[1] V. I. Arnol’d, The cohomology ring of the group of dyed braids. (Russian) Mat. Sbornik 5 (1969) 227–231.
[2] M. Artin, A. Grothendieck and J.-L. Verdier, Séminaire de Géométrie Algébrique du Bois Marie (1963–64): Théorie des topos et cohomologie étale des schémas. Lecture Notes in Mathematics, Springer-Verlag, 1972.
[3] S. A. Broughton, On the topology of polynomial hypersurfaces. Singularities, Part 1 (Arcata, Calif., 1981), 167–178, Proc. Sympos. Pure Math. 40, Amer. Math. Soc., Providence, RI, 1983.
[4] T.D. Browning and P. Vishe, Cubic hypersurfaces over \(\mathbb{F}_q(t) \). Geom. Funct. Anal. 25 (2015), 671–732.
[5] T.D. Browning and P. Vishe, Rational curves on smooth hypersurfaces of low degree. Algebra & Number Theory 11 (2017), 1657–1675.
[6] T. Church, J. Ellenberg and B. Farb, Representation stability in cohomology and asymptotics for families of varieties over finite fields. Algebraic topology: applications and new directions, 1–54, Contemp. Math. 620, Amer. Math. Soc., Providence, RI, 2014.
[7] I. Coskun and J. Starr, Rational curves on smooth cubic hypersurfaces. Int. Math. Res. Not. 24 (2009), 4626–4641.
[8] P. Deligne, La conjecture de Weil: I. Pub. Math. I.H.É.S. 43 (1974), 273–307.
[9] J. Ellenberg, T. Tran and C. Westerland, Fox–Neuwirth–Fuchs cells, quantum shuffle algebras, and Malle’s conjecture for function fields. Submitted, 2017.
[10] J. Ellenberg, A. Venkatesh and C. Westerland, Homological stability for Hurwitz spaces and the Cohen–Lenstra conjecture over function fields. Annals of Math. 183 (2016), 729–786.
[11] A. Grothendieck, Éléments de géométrie algébrique: IV_3. Étude locale des schémas et des morphismes de schémas. Pub. Math. I.H.É.S. 28 (1966), 5–255.
[12] J. Harris, M. Roth and J. Starr, Rational curves on hypersurfaces of low degree. J. reine angew. Math. 571 (2004), 73–106.
[13] R. Hartshorne, Algebraic geometry. Springer-Verlag, New York, 1977.
[14] P. J. Hilton, On the homotopy groups of unions of spheres. J. London Math. Soc. 30 (1955), 154–172.
[15] N. Katz, Sums of Betti numbers in arbitrary characteristic. Finite Fields Appl. 7 (2001), 29–44.
[16] S. Lang and A. Weil, Number of points of varieties in finite fields. Amer. J. Math. 76 (1954), 819–827.
[17] S.A. Lee, On the applications of the circle method to function fields, and related topics. Ph.D. thesis, University of Bristol, 2013.
[18] N. Katz, Gauss sums, Kloosterman sums, and monodromy groups. Annals of Math. Studies 116, Princeton University Press, 1988.
[19] E. Riedl and D. Yang, Kontsevich spaces of rational curves on Fano hypersurfaces. J. reine angew. Math., to appear.
[20] G. Segal, The topology of spaces of rational functions. Acta Math. 143 (1979), 3–72.
[21] The Stacks Project, http://stacks.math.columbia.edu, 2017.
[22] D. Sullivan, Infinitesimal computations in topology. Pub. Math. I.H.É.S. 47 (1977), 269–311.

School of Mathematics, University of Bristol, Bristol, BS8 1TW, UK
E-mail address: t.d.browning@bristol.ac.uk

Institute for Theoretical Studies, ETH Zurich, Clausiustrasse 47, CH-8092 Zürich, Switzerland
E-mail address: william.sawin@math.ethz.ch