Kinematic Analysis of the Basketball Free Throw in Preparation Phase of Elite Athletes

Diellza Shaqiri Kelmendi¹, Florian Miftari¹,*, Murat Tekin²

¹Faculty of Physical Education and Sport, University of Prishtina “Hasan Prishtina”, Kosovo
²Faculty of Sport Science, University of Karamanoğlu Mehmetbey, Turkey

Received August 23, 2021; Revised September 24, 2021; Accepted October 28, 2021

Abstract The purpose of this study was to analyze the kinematic parameters of the body for the preparation phase of the free throw to improve the efficiency and sport performances. The study includes a total twenty elite basketball players from the Kosovo Super League teams: K.B. Prishtina, K.B. Kerasani and K.B. Lipljan. Basketball shooting measurements were conducted during the training of the 2018 year. Filming of the basketball shooting techniques is done with three Canon HD cameras, set at 90-degree angles, which can reproduce sixty pictures per second. 12 variables of kinematic parameters of body were selected for analysis. Only one successful shot from each player was taken for analysis. Analysis is done with Kinematic Analysis System (APAS), outputting the required results and values of the kinematic indicators. The data collected were processed by statistical analysis software “IBM SPSS 20”, and statistical parameters were determined using the methods: arithmetic mean, standard deviation, minimum score, maximum score, Skewness and Kurtosis. The confirmation of the mutual influence of the variables was done by the Pearson's coefficients correlation method. The findings of this study show that in the preparation phase for a free throw shot in basketball, variables such as knee angle, wrist angle, thigh angle, and elbow angle have shown to be the kinematic parameters that have the greatest impact on finalizing a successful free throw in basketball. The scientific contribution of this research also provides new insights into the optimal model of basketball player performance during free-throw.

Keywords Basketball, Free Throw, Kinematic Parameters of Body, Kinematic Analysis System, Performances, Pearson’s Correlation

1. Introduction

Basketball is the second most popular international sport in the world [1-3], claimed that basketball involves more than 450 million licensed basketball players registered from 200 different countries. Free throws in the sport of basketball, for the most part of the match, is the most important component in determining the outcome and winning the match [4-6]. Free throw shooting is a combination of co-ordination, accuracy and sub-maximal velocity [7,8]. Since it requires sub maximal velocity, there are endless arrangements of segmental combinations needed to achieve a successful free throw shot [9,10].

The researches [11-14] explained that talented players are not born capable but can be developed with proper training, and by using the scientific approach. Basketball has changed in recent decades, and this is mainly due to scientific innovations in the application of biomechanical principles, improving optimal performance, especially in shooting [15,16]. The refinement of shooting techniques in basketball sport relies on detailed biomechanical analysis. The biomechanics, due to its investigation area linked to mechanic, has subdivisions of study the kinematic and kinetic shooting [17,18]. The kinematic describes a movement realized by body segments which correspond to the coordination degree demonstrated by an individual realizing natural movements of different sports [19]. In basketball studies biomechanical research has focused on various aspects including basic shooting techniques [20,21]. The description, definition, and explanation of the
biomechanical characteristics of the motorics is of particular importance. Throwing accuracy is the application of precise kinematic characteristics, degree of force and rhythmic quality, regardless of the distance and position of the hoop [22,23]. Evaluation of key kinematic indicators in quality basketball players gives accurate information on technical level and technical improvement possibilities. For accurate basketball shooting, a proper shooting pattern plays a very important role, according to the authors [24].

Recent studies have confirmed the interrelationship between the correctness, efficiency and effectiveness of throwing movement and that they are dependent on hand-eye coordination, motor control, muscle contraction capacity, cerebral cortex plasticity, body segment position and technical level of execution[25,26]. The increased efficiency of free throws involves precision, concentration and correct biomechanics. The biomechanics of free throws in basketball depends on the correlation between the angles of the body segments involved in the movement and the speed of execution [27-29].

Numerous studies have shown that the failure of free throws is conditioned by an insufficient correction of this skill in the learning stage and by the weak attention paid to the corrective feedback [30,31]. The kinematic analysis of free throws in basketball through the filming and sensors allows the identification of the efficiency aspects and of the execution limits in order to optimize the technical training program, and implicitly of the sports performances. The analysis of the free throw movement in the basket will allow the identification of the angular and trajectory changes of the movement, which are important aspects regarding the correctness and the technical efficiency of this finishing skill in basketball. The aim of this research was the kinematic analysis of the free-throw in basketball, which is very often used in the game of basketball, to improve the technical efficiency and sport performances; and to adapt and individualize the training programs.

2. Material and Methods

2.1. Participants

This research includes a total of twenty professional Kosovo Super League basketball players (players from basketball clubs: K.B. Prishtina, K.B. Kerasani, and K.B. Lipjani). The arithmetic mean and the standard deviation of the anthropometric parameters in the experimental sample were: weight 84.90 ± 7.86 kg, height 192.10 ± 6.62 cm. Inclusion criteria: active athlete at the level of performance level, age between 18-25 years, male sex, good health, without recent injuries, participation in the all sports training program. All participants were informed about the details of the study and all of them were voluntary.

2.2. Experimental Setup

2.2.1. Preparation

Filming of the shootings for measurements were conducted during the 2018 training season. For the kinematic analysis, the free throwing technique is selected, which includes this stage of analysis: starting from preparing for the ball release, until the final touch of the ball release.

2.2.2. Completion

We analyze 2 anthropometric parameters of body: body mass (BM), body height (BH). For this study 13 variables were selected for body kinematics analysis: knee angle (right side) at beginning phase (KABP), knee angle (right side) on completion phase (KACP), thigh angle (right side) at beginning phase (THABP), thigh angle (right side) on completion phase (THACP), wrist angle (right side) at beginning phase (WABP), wrist angle (right side) on completion phase (WACP), elbow ankle (right side) at beginning phase (EABP), elbow ankle (right side) on completion phase (EACP), arm angle (right side) at beginning phase (AABP), arm angle (right side) on completion phase (AACP), ball release time (BRT), center of gravity in the initial phase of the shot preparation (CGIPSHP) and center of gravity in the final phase of the shot preparation (CGFPSHP) (Figure 1).

2.3. Methods of Data Collection and Processing

The filming of the basketball shooting performance techniques is done with three Canon cameras, set at optimal angles, which can reproduce 60 frames per second. Kinematic analysis of the shootings in basketball has been carried out by many researchers using the same cameras as in this study, namely 60 Hz video cameras [10,32,33]. At first, the calibration frame was filmed at the place where the techniques were performed. The dimensions of the frame were 200cm x 200cm x 200cm. The camera's alignment has been positioned so that all points of reference of the athlete’s body are under the camera lens and visible. Analysis is done according to the performance of the Kinematic Analysis System (APAS), outputting the required results and values of the kinematic indicators (Figure 1).
2.4. Statistical Processing Methods

The data collected were processed by statistical analysis software “IBM SPSS 20”, and statistical parameters were determined using the methods: arithmetic mean, standard deviation, minimum score, maximum score, Skewness, and Kurtosis, t - Student test, 95% Confidence Interval of the Difference. Kolmogorov-Smirnov Z was used to testing distribution normality, whereby samples standardized, after which they are analyzed compared to a standard normal distribution. For this study was considered as level of probability \(p \leq 0.05 \). The confirmation of the mutual influence of the variables was done by the Pearson’s coefficients correlation method.

3. Results

Table 1 presents the results of the basic statistical parameters of the 15 anthropometric and kinematic indicators of the basketball player’s body for the free-throw preparation phase. Parallel to this, the explanation of the parameter results in the completion phase is as follows. The results of the arithmetic averages and the standard deviation of the knee angle (right side) at the completion phase showed the following values: 152.50 ± 7.84°. Results of arithmetic averages and standard deviation in this study for the thigh angle variable (left side) have shown these values 167.00 ± 4.21°. Results of arithmetic averages and standard deviation of the variable wrist angle (right side) at the beginning phase showed this value 155.30 ± 13.26°. The results of the arithmetic averages and standard deviation of the variable arm angle (right side) at the beginning phase, have shown this value 52.30 ± 13.60°. The variable elbow angle (right side) at the completion phase, have shown this value 138.90 ± 11.78° and the time between lifting and releasing the ball, have shown this value (0.45 ± 0.10 sec). The arithmetic averages and the standard deviation of the variable distance between the center of gravity at the initial and final phase showed these values by 99.30 ± 9.15 cm and 123.15 ± 6.84 cm.

The results of Table 2 indicated that all kinematic indicators were normally distributed; all asymptotic significance of kinematic indicators were \(p > 0.05 \). The level of probability of t-Student test highlighted statistical significant of all anthropometric and and kinematic indicators of the body of elite basketball players in the free-throw preparation phase, related to \(p < 0.05 \).
Table 1. Results of basic statistical parameters of the kinematic indicators of the body of elite basketball players in the free-throw preparation phase

Kinematic Indicators	Minimum	Maximum	Mean	Std. Dev.	Skewness	Kurtosis
BM (kg)	74.00	100.00	84.90	7.86	0.43	-1.11
BH (cm)	178.00	203.00	192.10	6.62	-0.22	-0.49
KABP (°)	99.00	149.00	122.45	14.70	0.58	-0.92
KACP	137.00	165.00	152.50	7.84	-0.81	0.03
THABP	112.00	162.00	135.85	15.99	0.25	-1.13
THACP	152.00	179.00	169.60	6.40	-1.10	1.84
WABP	127.00	175.00	155.30	13.26	-0.59	-0.19
WACP	128.00	176.00	152.75	13.33	0.19	-0.07
EABP	54.00	119.00	85.55	18.72	0.43	-0.42
EACP	118.00	155.00	138.90	11.78	-0.32	-1.01
AABP	27.00	80.00	52.30	13.60	0.24	-0.11
AACP	109.00	145.00	128.90	8.56	-0.42	0.66
BRT	0.21	0.63	0.45	0.10	-0.48	0.79
CGIPSHP	82.00	118.00	99.30	9.15	0.43	0.08
CGFPSHP	111.00	134.00	123.15	6.84	-0.39	-0.57

Table 2. Descriptive statistics of the kinematic indicators of the body of elite basketball players in the free-throw preparation phase

Kinematic Indicators	t	p	95% IC Lower	95% IC Upper	Kolmogorov-Smirnov Z	Asymp. p
BM (kg)	48.306	.000	81.221	88.578	1.091	.185
BH (cm)	129.840	.000	189.003	195.196	.544	.928
KABP (°)	37.247	.000	152.566	156.167	.785	.569
KACP	87.021	.000	128.366	134.334	.638	.810
THABP	37.993	.000	166.603	172.596	.609	.852
THACP	118.469	.000	149.094	161.505	.641	.806
WABP	52.381	.000	146.978	158.521	.556	.917
WACP	55.391	.000	76.787	94.313	.885	.413
EABP	20.434	.000	133.837	144.412	.567	.905
EACP	17.203	.000	45.936	58.663	.737	.649
AABP	67.353	.000	124.894	132.905	.748	.630
AACP	20.956	.000	95.015	103.584	.789	.563
BRT	48.511	.000	119.949	126.350	.507	.960

t – Student test; p – level of probability; 95% IC - 95% Confidence Interval of the Difference; Asymp. p - Asymptotic significance

Table 3 presented the results of the Pearson coefficients correlation of the kinematic indicators of the body of basketball players in the free-throw preparation phase. The variables which showed high correlations with statistical significance at the level (p = 0.01) were: body mass and body height with correlation coefficients of (0.70); body height, and center of gravity in the final stage with correlation coefficients of (0.64); knee angle (right side) at beginning phase and knee angle (right side) at completion phase with correlation coefficients of (0.55); knee angle (right side) at beginning phase and thigh angle (right side) at beginning phase with correlation coefficients of (0.79); knee angle (right side) at beginning phase and thigh angle (right side) at completion phase with correlation coefficients of (0.63); knee angle (right side) at beginning phase and center of gravity in the initial phase of preparation for throwing with correlation coefficients of (0.63); thigh angle (right side) at beginning phase and center of gravity at start-up stage with correlation coefficients of (0.59); elbow angle (right side) at completion phase and arm angle (right side) at completion phase with correlation coefficients of (0.67); the center of gravity at the initial stage and the center of gravity at the final stage with correlation coefficients of (0.83).
Table 3. Results of the Pearson coefficients correlation of body kinematic indicators of elite basketball players in the free-throw preparation phase

Indicators	BM	BH	KABP	KACP	THABP	THACP	WABP	WACP	EABP	EACP	AABP	AACP	BRT	CGIPSHP	CGFPSHP
BM	-	0.70**	0.26	0.49*	0.16	0.16	0.44*	0.11	-0.13	0.28	0.15	0.06	0.27	0.39	0.48*
BH	0.70**	-	0.09	0.25	-0.10	0.03	0.34	0.13	-0.20	0.51*	0.25	0.29	0.53*	0.40	0.64***
KABP	0.26	0.09	-	0.55**	0.38	-0.22	-0.03	0.00	0.02	-0.04	-0.16	0.12	0.63**	0.26	
KACP	0.49*	0.25	0.55**	-	0.33	0.72**	0.01	-0.10	0.11	0.15	0.10	0.12	0.03	0.29	0.38
THABP	0.16	-0.10	0.79**	0.33	-	0.45*	-0.08	0.24	0.03	-0.04	-0.17	-0.30	-0.12	0.59**	0.20
THACP	0.16	0.03	0.38	0.72**	0.45*	-	-0.12	0.09	0.19	0.22	-0.19	0.00	-0.04	0.16	0.19
WABP	0.44*	0.34	-0.22	0.01	-0.08	-0.12	-	-0.22	-0.11	0.08	0.27	0.11	-0.08	-0.03	0.11
WACP	0.11	0.13	-0.03	-0.10	0.24	-0.22	-	0.13	0.36	-0.29	0.16	0.09	0.02	0.05	
EABP	-0.13	-0.20	0.00	0.11	0.03	-0.11	0.13	-	0.08	0.26	0.29	0.30	0.06	0.05	
EACP	0.28	0.51*	0.02	0.15	-0.04	0.22	0.08	0.36	0.08	-0.07	0.67**	0.32	0.09	0.25	
AABP	0.15	0.25	-0.04	0.10	-0.17	-0.19	0.27	-0.29	0.26	-0.07	-	0.22	0.39	0.50*	
AACP	0.06	0.29	-0.16	0.12	-0.30	0.00	0.11	0.16	0.29	0.67**	-0.03	-	0.13	-0.21	-0.02
BRT	0.27	0.53*	0.12	0.03	-0.12	-0.04	-0.08	0.09	0.30	0.32	0.22	0.13	-	0.39	0.54**
CGIPSHP	0.39	0.40	0.63**	0.29	0.59**	0.16	-0.03	0.02	0.06	0.09	0.39	-0.21	0.39	-	0.83**
CGFPSHP	0.48*	0.64**	0.26	0.38	0.20	0.19	0.11	0.05	0.05	0.25	0.50**	-0.02	0.54*	0.83**	-

**p<0.01
4. Discussion

Basketball shots show that they are a major component of any attack [35,36]. The aim of the study was to perform an analysis of 13 kinematic parameters of free throws in basketball, using video-recording and the Kinematic Analysis System (APAS), to improve technical efficiency and sports performance; and to adapt and individualize training programs. The results of our study contribute to the extension of the knowledge highlighted by the previous studies regarding the identification of the relevant corporal kinematic aspects of the free throws regarding the execution technique in the preparation phase. Numerous studies that have focused on evaluating aspects of motor control in performing technical completion skills have established that it is influenced by human visual and functional performance, and this research confirms the aspects and results of our study [37,38].

The variables such as knee angle (right side) at the beginning phase, is one of the most influential and most important kinematic body parameters in the preparation and finalization of the successful basketball shot. Also our results of the thigh angle variable (left side) correspond with the results of the author [40]. Another study [41], concluded that pre-firing force must come directly from the extension of the legs, moving through the thighs, shoulders, arms, and hands, causing a dominant effect or an open kinetic chain for making accurate throws. About the variable wrist angle (right side) at the beginning phase showed the findings of previous studies [42,44]. Author Saenz et al. [45], showed that the right wrist remains one of the most effective variables in the success of finalizing a successful shot in the basketball. Button et al. [46], showed that to improve the accuracy of basketball throws, arm, forearm, and hand movements are very important for a successful basketball shot, information supplemented by the results of our study on the variable arm angle (right side) at the beginning phases the are in accordance with previous studies [47,48]. All preparation for shooting and finalizing it from different distances is done by coordinating mostly the upper extremities, while the curvature of the elbow is also of great importance. The time between lifting and releasing the ball and the variable distance between the center of gravity at the initial and final phase, completed the results of a few studies [49,53].

The findings of this study of Pearson’s coefficients correlation of the kinematic indices of the body on free-throw realization. Variables: body mass, body height, center of gravity in the initial and final stages, knee, thigh, elbow angles and wrist angle (right side) at completion phase, are the variables with the highest correlations and the greatest effect on achieving successful throwing in the basketball. The findings of these results correspond with the results of authors some researches [40,54,55], when analyzing the kinematics of free throws in basketball, accurate and inaccurate ones, and concluded that successful free throw performance is related to the knee angle and hand speed with a high positive correlation (p<0.01; r = 0.75). Since the right knee angle is the variable that has the greatest effect on the success of free-throw preparation phase in basketball.

Future research directions will be able to focus on: full kinematic analysis of free throws including the preparation phase and the completion phase; complex analysis of visual and tactical acuity in carrying out free throws; analysis of corrective feedback through the use of specialized software analysis and interpretation of movement and bodily kinematic aspects. The strengths of the study consist in the multitude of analyzed kinematic parameters of the free throw in the preparation phase which was less studied compared to the completion phase; the relatively large number of elite athletes involved in the study; combining the use of filming with motion kinematic analysis software. Limitations of the study: non-inclusion in the study of a female sample; lack of analysis of visual control and corrective feedback of movement; limited duration of study.

5. Conclusions

Without decreasing the importance of any element of the game of basketball, we can say that shooting is the most important and crucial element in this beautiful game. The technical elements are very effective when a player knows how to select and perform a certain and precise movement in game development. Proper application of the kinematic parameters of the body, when shooting from different distances has the effect of successfully finalizing the shots in the basket.

In the preparation phase for free throw shooting, the findings of this study on the variables: knee angles, wrist angle, thigh angle and elbow angle have shown that it is precisely these kinematic parameters that influence greater in finalizing a successful basketball throw. The combination of body kinematic parameters turns out to be essential in finalizing successful free-throw shots. The results of this research enrich the scientific knowledge of kinematic analysis in basketball game and the technical training of free throw.

Acknowledgements

K. B. Prishtina, K. B. Kerasani and K. B. Lipljan. Thank you, basketball clubs. Author Contributions: Conceptualization. F.M, D.S.K, and M.T; methodology. F.M, D.S.K, and M.T; software. F.M, D.S.K, and M.T; validation. F.M, D.S.K, and M.T; formal analysis. F.M, D.S.K, and M.T; investigation. F.M, D.S.K, and M.T; resources. F.M, D.S.K, and M.T; data curation. F.M, D.S.K, and M.T; writing—original draft preparation. F.M, D.S.K,
and M.T; writing—review and editing. F.M, D.S.K, and M.T; visualization. F.M, D.S.K, and M.T; All authors have read and agreed to the published version of the manuscript. Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki. and approved by the National center for sports medicine-NCSM, Prishtina, Kosovo. Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES

[1] Koba, T.H.; Nagel, M.S.; Watanabe, N.M.; Yan, G.; Southall, R.M.; Kidd, V.K. “An exploration of professional us-based basketball players competing in Turkey”, Journal of Global Sport Management, 4, 1-22. 2020 DOI: 10.1080 / 24704067. 2020. 1775019.

[2] Huang, F.; Hong, F. “Globalization and the governance of Chinese sports: the case of professional basketball”, The International Journal of the History of Sport, 32(8), 1030-1043. 2015.

[3] Grundy, P.; Nelson, M.; Dyreson, M. “The emergence of basketball as an American national pastime: From a popular participant sport to a spectacle of nationhood”, The international journal of the history of sport, 31(1-2), 134-155, 2014.

[4] Carvalho, H.M.; Goncalves, C.E.; Collins, D.; Paes, R.R. Growth, “functional capacities and motivation for achievement and competitiveness in youth basketball: an interdisciplinary approach”, Journal Sports Sci., 36 (7), 742-748, 2018, doi: 10.1080/02640414.2017.1340654. PMID: 28604286.

[5] Phatak, A.; Mujumdar, U.; Rein, R. Wunderlich, F.; Garnica, M.; Memmert, D. Better “with each throw—a study on calibration and warm-up decrement of real-time consecutive basketball free throws in elite NBA athletes”, Ger J Exercise Sport Res., 50, 273-279, 2020. https://doi.org/10.1007/s12662-020-00646-x.

[6] Sadeghi, H.; Shariyat zadeh, J.; Muhammad. Kakhki. “Joint angular kinematics of elite male basketball players in the implementation of successful and unsuccessful jump shot”. Journal of Physical Education. Sport Science Research. 5(16), 187-172. 2007.

[7] Lima, A.B.; Nascimento, J.V.; Leonardi, T.J.; Soares, A.L.; Paes, R.R.; Gonçalves, C.E.; Carvalho, H.M. “Deliberate practice, functional performance and psychological characteristics in young basketball players: a Bayesian multilevel analysis”, Int J Environ Res Public Health, 8, 17(11), 4078, 2020. DOI: 10.3390/ijerph17114078. PMID: 32521647; PMCID: PMC7312187.

[8] Arede, J.; Esteves, P.; Ferreira, A.P.; Sampaio, J.; Leite, N. “Jump higher, run faster: effects of diversified sport participation on talent identification and selection in youth basketball”, J Sports Sci. 37(19), 2220-2227. 2019, DOI: 10.1080/02640414.2019.1626114. PMID: 31164046.

[9] Bühren, C.; Kadriu, V. “The fairness of long and short ABBA-sequences: A basketball free-throw fieldexperimen”, Journal of Behavioral and Experimental Economics, 89, 101562, 2020. https://doi.org/10.1016/j.soce c.2020.101562.

[10] Okubo, H.; Hubbard, M. “Kinematics of arm joint motions in basketball shooting”, Procedia Engineering, 112, 443-448. 2015. DOI: 10.1016/j. proeng.2015.07.222.

[11] Baker, J.; Wilson, S.; Johnston, K.; Dehghansai, N.; Koenigsberg, A.; de Vegt, S.; Wattie, N. “Talent research in sport 1990-2018: a scoping review”, Front Psychol. 25, 2020, 607710. DOI: 10.3389 / fpysyg. 2020.607710. PMID: 33324305; PMCID: PMC7723867.

[12] Till, K.; Baker J. “Challenges and [possible] solutions to optimizing talent identification and development in sport”, Front Psychol., 11, 664. 2020. DOI: 10.3389/fpsyg.2020.00664. PMID: 32351427; PMCID: PMC7174680.

[13] Wierike Te, S.C.; Elferink-Gemser, M.T.; Tromp, E.J.; Vaeyens, R.; Visscher, C. “Role of maturity timing in selection procedures and in the specialization of playing positions in youth basketball”, J Sports Sci. 33(4), 337-345. 2015. DOI: 10.1080/02640414.2014.942684. PMID: 25083799.

[14] Jerad, H.; Moxley, T.; Towne, J. “Predicting success in the National Basketball” Association: Stability & potential, Psychology of Sport and Exercise, 16, 128-136, 2015. Https: // DOI. Org / 10.1016 / j. psychsport.2014.07.003.

[15] Mullineaux, D.R.; Uhl, T.L. Coordination-variability and kinematics of misses versus swishes of basketball free throws. J Sports Sci., 28(9), 1017-24. 2010 DOI: 10.1080/02640414.2010.487872. PMID: 20552519.,

[16] Uygar, M.; Goktepe, A.; Ak, E.; Karabörk, H.; Korkusuz, F. “The effect of fatigue on the kinematics of free throw shooting in basketball”, Journal of Human Kinetics, 24, 51-56. 2010, DOI:https://doi.org/10.2478/v10078-010-0019 -0.

[17] Dowling B.; Laughlin, W.A.; Gurchiek, R.D.; Owen, C.P.; Luera, M.J.; Hansen, B.R.; Fleisig. G.S. “Kinematic and kinetic comparison between American and Japanese collegiate pitchers”, Journal of Science and Medicine in Sport, 23(12), 1202-1207, 2020, https: // DOI. Org / 10.1016 / j.j.sams. 2020.04.013.

[18] Lizzi, V.A.; Cross, A.G.; Guo, E.W.; Makhni, E.C. “Using wearable technology to evaluate the kinetics and kinematics of the overhead throwing motion in baseball players”, Arthroscopy Techniques., 9(9), e1429-e1431. 2020. PMID: 32005219.

[19] Mullineaux, D.R.; Uhl, T.L. Coordination-variability and kinematics of misses versus swishes of basketball free throws. J Sports Sci., 28(9), 1017-24. 2010 DOI: 10.1080/02640414.2010.487872. PMID: 20552519.,

[20] Bühren, C.; Kadriu, V. “The fairness of long and short ABBA-sequences: A basketball free-throw fieldexperimen”, Journal of Behavioral and Experimental Economics, 89, 101562, 2020. https://doi.org/10.1016/j. socec.2020.101562.
[21] Dello Iacono, A.; Ayalon, M.; Wang, W. “The influence of single-leg landing direction on lower limbs biomechanics”, J Sports Med Phys Fitness., 59(2), 195-203. 2019. DOI: 10.23736/S0022-4707.18.08358-5. PMID: 29619806.

[22] Maglott, J.C.; Xu J.; Shull, P.B. “Differences in arm motion timing characteristics for basketball free throw and jump shooting via a body-worn sensorized sleeve”, IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, 31-34. 2017, DOI: 10.1109/BSN.2017.7936000.

[23] Walters, M.; Hudson, J., Bird. M. “Kinematics adjustments in basketball shooting at three distances”, In M. Nosek. et al. (Eds). Proceedings of the VIIIth International Symposium of the Society of Biomechanics in Sports. Prague. Czechoslovakia. Conspor Corporation. 219-233. 1990

[24] Schmidt, A. “Movement pattern recognition in basketball free-throw shooting”, Human Movement Science, 31, 360-382. 2012. https://doi.org /10.1016/j.humov.2011.01.003.

[25] Brouwer, N.P.; Yeung, T.; Bobbert, M.F.; Besier, T.F. “3D trunk orientation measured using inertial measurement units during anatomical and dynamic sports motions”, Scand J Med Sci Sport. 2020, /, 1–13. https://doi.org/10.1111/sms.13851.

[26] Wong, D.W.C.; Lam, W.K.; Chen, T.L.W.; Tan, Q.; Wang, Y.; Zhang, M. “Effects of upper-limb, lower-limb, and full-body compression garments on full body kinematics and free-throw accuracy in basketball players”, Appl. Sci. 2020, 10, 3504. https://doi. Org /10.3390/app1013504.

[27] Hagen, D.A.; Valero-Cuevas, F.J. “Similar movements are associated with drastically different muscle contraction velocities”, J Biomech., 59, 90-100. 2017. DOI:10.1016/j.jbiomech.

[28] Verhoeven, F.M.; Newell, K.M. “Coordination and control of posture and ball release in basketball free-throw shooting”, Hum. Mov. Sci. 49, 216–224. 2016. doi: 10.1016/j.humov.2016.07.007.

[29] Okazaki, V.H.; Rodacki, A.L.; Satern, M.N. A “review on the basketball jump shot”. Sports Biomech. 2015, 14, 190–205. DOI: 10.1080/14763141.2015.1052541.

[30] Coves, Á.; Caballero, C.; Moreno, F.J. “Relationship between kinematic variability and performance in basketball free-throw”, International Journal of Performance Analysis in Sport, 20, 931-941. 2020. DOI:10.1080/24748668.2020.1 820172.

[31] Ammar, A.; Chtourou, H.; Abdelkarim, O.; Parish, A.; Hoekelmann, A. “Free throw shot in basketball: kinematic analysis of scored and missed shots during the learning process”, Sport Sci Health. 12, 27–33. 2016, https:// doi. Org /10.1007/s11332-015-0250-0.

[32] Miller, S.; Bartlett, R.M. “The relationship between basketball shooting kinematics”, distance and playing position. Journal of Sports Science. 11, 243-253. 1996. DOI: 10.1080 /0264049608727708.

[33] Tang, W.T.; Shung, H.M. “Relationship between isokinetic strength and shooting accuracy at different shooting ranges in Taiwanese elite high school basketball players”, Isokinetics and Exercise Science. 13, 169-174. 2005. DOI: 10.3233/IES-2005-0200

[34] Satti, S. The perfect basketball shot”. Physics Department. College of Wooster. Wooster. Ohio 44691; Monograph. 2004, 112.

[35] Vukasevic, V.; Mitrovic, M.; Masanovic, B. A “Comparative study of motor ability between elite basketball players from different regions”, Sport Mont, 18(1), 3-7. 2020. DOI: 10.26773 /smj. 200201.

[36] Taborda, C.H.; Dorst. L.M.; Leite. T.R. “Kinematic analysis of the jump throw in basketball”, ISBS-Conference Proceedings Archive. 1(1), 641-644. 2007.

[37] Miftari, F., Selimi, M., Badau, D., & Kelmendi, D. (2021). “Analysis of differences in the development of explosive power and agility in basketball players, handball players and volleyball players”, Human. Sport, Medicine, 21 (2), 144-154.https://doi.org/10.14529/hsm210218

[38] Bidzan-Bluma, I.; Lipowska, M. “Physical activity and cognitive functioning of children: a systematic review”, Int. J. Environ. Res. Public Health. 15(4), 800. 2018, DOI: 10.3390 /ijerph15040800. PMID: 29671803.

[39] Rand, M.K. “Effects of auditory feedback on movements with two-segment sequence and eye-hand coordination”, Exp. Brain Res. 236, 3131–3148. 2018. https://doi. Org /10.1016/j.expers.2018.03.018.

[40] Alexander, M.J.; Way. D. “Mechanics of the basketball free throw”, Winnipeg: University of Manitoba. 116-118. 2002.

[41] Blazevich. A. “Sports biomechanics the basics. optimizing human performance”, London: A&C Black Publishers Ltd. 79-81. 2010.

[42] Vukasevic, V.; Mitrovic, M.; Masanovic, B. A “Comparative study of motor ability between elite basketball players from different regions”, Sport Mont, 18(1), 3-7. 2020. DOI: 10.26773 /smj. 200201.

[43] Saenz, P.; Ibanez, S. El Tiro: “Classification. evaluation and training at each age)”, Clinic, 3, 29-34. 1995.

[44] Button, C.; MacLeod, M.; Sanders, R.; Coleman, S. “Examining movement variability in the basketball free-throw action at different skill levels”, Res Q Exerc Sport. 74(3), 257-69. 2003. DOI: 02701367.2003.10609090. PMID: 14510290.

[45] Malone, L.A.; Gervais, P.L.; Steadward, R.D. “Shooting mechanics related to player classification and free throw success in wheelchair basketball”, J Rehabil Res Dev., 39(6),
[48] Mirmoezzi, M.; Sadegh, H.; Rahimi, A.; Arab, M. “Comparison of kinematic characteristics of body shots of Basketball Adult Players”, International Journal of Sport Sciences. 2(6), 15-19. 2015.

[49] Sevrez, V.; Bourdin, C. “On the Role of Proprioception in Making Free Throws in Basketball”, Res Q Exerc Sport. 86(3), 274-80. 2015. DOI: 10.1080 / 02701367.2015.1012578. PMID: 25775217.

[50] Manolache, G. “The Stretching programme-key factor for prevent injuries of “U” 16 soccer players”, Ann. Univ. Dunarea Jos Galati Fascicle XV Phys. Educ. Sport Manag. 1, 28–31. 2018.

[51] Iconomescu, T.M.; Talaghir, L.G.; Mereuţă, C.; Manolache, G.M. “Application of differentiation in the treatment of lesson of physical education in secondary level meant to build motor skills and abilities for specific game and sports”, Ann. Univ. Dunarea Jos Galati Fascicle XV Phys. Educ. Sport Manag. 1, 48–52. 2011.

[52] Raicea, V.; Kovacs, J.; Moraru, L.; Suciu, H. “Coronary sinus lactate as marker of myocardial ischemia in cardiac surgery: correlation with morbidity and mortality after cardiac surgery”, Rev. Romania Med. Lab. 23, 189–197, 2015. DOI: 10.1515 / rrlm-2015-0019.

[53] Rojas, F. M.; Cepero, M.; Onw. A.; Gutierrez, M. “Kinematic adjustments in the basketball jump shot against an opponent”, Ergonomics. 43(10), 1651–1660. 2000. DOI: 10.1080 / 001401300750004069.

[54] Mana, O.; Satoko, H.; Motoko, F.; Hiroki, N. “Relationship between basketball free-throw accuracy and other performance variables among collegiate female players”, Journal Phys Fitness Sports Med. 8(3), 127-136. 2019. DOI: 10.7600/jpfsm.8.127.

[55] D’Elia, F.; D’Andrea D.; Esposito, G.; Altavilla, G.; Raiola, G.; “Increase the performance level of young basketball players through the use of high intensity interval training”, International Journal of Human Movement and Sports Sciences 9(3): 445-450, 2021 http://www.hrpub.org DOI: 10.13189/saj.2021.090308