Checking trustworthiness of probabilistic computations in a typed natural deduction system

F. A. D’Asaroa,b, F. A. Gencoa and G. Primieroa
aLUCI Lab, Department of Philosophy, University of Milan, Italy;
bDepartment of Human Sciences, University of Verona, Verona, Italy

Abstract

In this paper we present the probabilistic typed natural deduction calculus TPTND, designed to reason about and derive trustworthiness properties of probabilistic computational processes, like those underlying current AI applications. Derivability in TPTND is interpreted as the process of extracting \(n \) samples of possibly complex outputs with a certain frequency from a given categorical distribution. We formalize trust for such outputs as a form of hypothesis testing on the distance between such frequency and the intended probability. The main advantage of the calculus is to render such notion of trustworthiness checkable. We present a computational semantics for the terms over which we reason and then the semantics of TPTND, where logical operators as well as a Trust operator are defined through introduction and elimination rules. We illustrate structural and metatheoretical properties, with particular focus on the ability to establish under which term evaluations and logical rules applications the notion of trustworthiness can be preserved.

1 Introduction

The extensive use of AI techniques in decision-making systems is significantly increasing the need for verification of the safety and reliability properties of probabilistic computations. The possibility of formal verification of such properties would grant the ability to consider such systems trustworthy. Nowadays, several approaches to verification of AI systems are emerging, see [Wing, 2021; Urban and Miné, 2021] for overviews. Notably, approaches are focusing on model-checking techniques for safety, liveness and fairness properties, see, e.g., [Albarghouthi et al., 2017; Seshia et al., 2018], program analysis and synthesis, see, e.g., [Dreossi et al., 2019] or proof-checkers see, e.g., [Harrison, 2003; Cook, 2018] for their increasing use also at the industrial level. In the technical literature, though, little is available on the formalization of a notion of trustworthiness itself in this context. Current logical approaches to computational trust in general are overviewed in Section 2.
In this paper, we introduce a derivation system dubbed Trustworthy Probabilistic Typed Natural Deduction (TPTND for short). The aim of this system is to formalize the task of inferential reasoning about probabilistic computational processes, in particular about their trustworthiness. We consider samples of such processes with corresponding frequencies and reason about their distance from corresponding theoretical probabilities. We start by defining an operational semantics to consider a probability space in which such computations can be thought to be evaluated. This operational semantics defines events whose results have a certain probability of occurring, and generalizes to samples of such events with frequencies of observed outputs. We then transform such terms under operations for update, conjunction, disjunction and dependency of outputs. A full probabilistic λ-calculus for formalising experiments consisting of several executions of a program and for evaluating trust is introduced in Genco and Primiero, 2023. This λ-calculus does not feature, however, any other primitive operation on probabilistic events.

In the language of TPTND, reasoning about such probabilistic computations is given in the form of logical rules for deriving theoretical probabilities, expected probabilities and frequencies. Accordingly, judgements of our language are sequents of the form $\Gamma \vdash \phi$ where Γ is a context, that is, a set of assumptions on random variables, and ϕ is a typed formula in one of the following forms:

- $x : \alpha_a$, declaring that the random variable x has been assigned value α with theoretical probability a;
- $t_n : \alpha_a$, declaring that a is the expected probability of obtaining the value α in a sample of n trials on the process t;
- $t_n : \alpha_f$, declaring that f is the frequency with which the value α has been obtained during a series of n trials on the process t.

Both an element of a context and a derived expression may express a statement about a random variable. The derivability relation \vdash expresses dependency between probabilities. For example, the judgement

$$x : \alpha \vdash y : \beta_{0.1}$$

means that the random variable y has probability 0.1 of producing output β, provided x has output α. Under a context interpreted as representing a probability distribution, a derived formula expresses a sample extracted from such distribution. The type of the derived formula is then decorated with an expected probability and the term with a sample size. For example, the judgement

$$\Gamma \vdash \text{toss}_{100} : \text{Heads}_{0.35}$$

may be interpreted as the statement saying that, under distribution Γ, after tossing a coin 100 times, one expects output Heads 35% of the times. Γ specifies the value assigned to the output of each random variable of interest in the
context of an experiment consisting of coin tossing trials. The possible outputs are thus Heads and Tails. Finally, we can also express any concrete experiment consisting of a series of trials by displaying the frequency of a particular output during the experiment. For instance,

\[\Gamma \vdash \text{toss}_{100} : \text{Heads}_{30/100} \]

which says that over 100 tosses of our coin, the output Heads was obtained 30 times.

The calculus defines also rules for Bayesian update and trust evaluation, where judgements occurring in the rule may include both probabilities and frequencies. In our example above, the theoretical probability of the coin assumed to be fair may be updated after a trial of \(n \) experiments, empirically run by throwing the coin. And under the assumption that the coin is fair (or biased), one may want to judge the trustworthiness of the process at hand, e.g., we may ask whether the toss process follows a fair distribution over the outcomes Heads and Tails. For example, assuming that \(\Gamma \) expresses the distribution corresponding to a fair coin \(c \) as the possible output declarations of one random variable \(\Gamma = \{ x_c : \text{Heads}_{0.5}, x_c : \text{Tails}_{0.5} \} \), the process toss should be considered trustworthy if, by increasing the number \(n \) of trials on it, the probability of output Heads gets arbitrarily closer to \(0.5 \) in the limit, and in particular when the displayed frequency of Heads falls within a given confidence interval determined by an acceptable error rate. Note that the judgement above can also be formulated when the distribution denoted by \(\Gamma \) is unknown, i.e., when one does not know whether the tossed coin is fair or biased, and the frequency value of the output Heads is just empirically observed. Generalizing from this toy example, any probabilistic computation can be checked for trustworthiness in this sense. Therefore, our system can be employed to verify how much we should trust, for instance, a classifier to produce the correct output.

Meta-theoretical properties are formulated considering the computational transformations of empirical tests and their frequencies according to logical operations. In particular, we show which syntactic transformations of terms as they are denoted by inferences of the system

1. do not permit to infer unintended outputs for the processes; and
2. allow to infer whether the observed computation is trustworthy, and under which inferential steps such trustworthiness can be preserved.

We consider this system a useful step towards the formal design and possible automation of reasoning about probabilistic computations like those in use in Machine Learning techniques, as well as for the development of proof-checking protocols on such computational systems. In the following, we show the internal workings of TPTND by the use of simple examples, like dice rolling and coin tossing. However, we also hint at concrete applications using a more realistic example inspired by gender-bias verification.

\footnote{We talk of an experiment simply in order to refer to a series of trials on a particular process. A trial on a process, in turn, is just an execution of the process.}
The rest of this paper is structured as follows. In Section 2 we overview the literature on proof-theoretic formal verification of probabilistic systems and computational trust. In Section 3 we introduce a computational semantics defining how atomic processes of interest behave from an operational perspective and their closure under logical operations. In Section 4 we introduce our system TPTND, first through its syntax (Section 4.1), then through its inferential rules to reason: first about theoretical probabilities (Section 4.4); then about processes or computations executed under given probability distributions (Section 4.5). We further show how to model Bayesian Updating of random variables in TPTND (Section 4.6) and finally we introduce the inferential engine to reason about trust on the computational processes of interest (Section 4.7) and to derive structural properties on the relevant probability distributions (Section 4.8). In Section 5 we prove the main meta-theoretical results about TPTND, aiming at showing that given a semantics of well-behaving terms in a probabilistic space, the derivability relation of our system guarantees that outputs obtained with sufficient level of trustworthiness are preserved, and accordingly side-effects are avoided. We conclude in Section 6 indicating further steps of this research.

2 Related Work

The present work offers an example of a formal verification method for trustworthy probabilistic computations as implemented for example by machine-learning systems. This area of research, focusing on the modeling of probabilistic systems and reasoning over satisfiability of properties of relevance is yet in its infancy, see [Wing, 2021]. Moreover, it mainly refers to the development of computational, temporal and hybrid logics as formal methods to prove trustworthy properties of interest, see, e.g., [Alur et al., 1996, Kwiatkowska et al., 2002, Termine et al., 2021b]; or with linear temporal logic properties defined over Markov decision processes, e.g., with reinforcement learning methods [Gao et al., 2019] or with imprecise probabilities [Termine et al., 2021a].

In this context, the logic introduced in this paper offers a novel combination of methods and approaches. First of all, it refers to the design of inferential systems of the family of natural deduction systems, sequent calculi and typed λ-calculi, extended with probabilities. These systems and the associated formal proof-verification methods have so far been only little explored in their ability to check trustworthiness of probabilistic computational systems. Secondly, we consider trustworthiness as a property which can itself be expressed and formalized explicitly in the calculus, and therefore openly checked for satisfiability or derivability. Hence, our language TPTND combines these two areas by presenting a probabilistic derivation system with types in which trust is explicitly formulated as a functional operator on typed terms and in which meta-theoretical results are interpreted accordingly. In particular, we present safety intended as the ability to prove whether the system under consideration produces nothing beyond what it is intended and designed to do, within certain margins of cer-
tainty due to its probabilistic nature. Accordingly, two main areas of research are surveyed in the following.

The extension of inferential systems based on λ-calculi or type systems with probabilities has been recently explored in the literature. The interest is mainly motivated by the need to develop semantics for probabilistic processes and programs, and to perform inferences on them. There are examples of stochastic untyped λ-calculi which focus on denotational or operational semantics with random variables, see respectively [Bacci et al., 2018, Borgström et al., 2016] and the uniform formulation for both offered in [de Amorim et al., 2021]. In this first sense, the meaning of a probabilistic program consists in enriching the language of programs with the ability to model sampling from distributions, thereby rendering program evaluation a probabilistic process. In this way, the work in [Borgström et al., 2016] introduces a measure space on terms and defines step-indexed approximations. A sampling-based semantics of a term is then defined as a function from a trace of random samples to a value. Differently, our work while also using expressions denoting values from samples, associates the probabilistic approximation with the value in terms of types, while indexing terms with the sample size. In this sense, obviously, the expressive power of our typed language is closer to [Dahlqvist and Kozen, 2020], which is designed specifically to model Bayesian learning; nonetheless, their semantic explanation of expressions in the language is significantly different, as expressions in our system denote samplings which generate outputs with a certain frequency, assuming a certain theoretical probability distribution. Hence, the aim of TPTND and its inferential structure are in fact closer to works introducing some form of probability in calculi with types or natural deduction systems, in particular see [Di Pierro, 2020, Boričić, 2016, 2017, 2019, Ghilezan et al., 2018]. [Di Pierro, 2020] introduces a λ-calculus augmented with special “probabilistic choice” constructs, i.e., terms of the form $M \; \tau_1 M_1, \ldots, \tau_n M_n$, meaning that term M has probability p_1, \ldots, p_n of reducing to one of the terms M_1, \ldots, M_n respectively. Unlike TPTND, [Di Pierro, 2020] deals with judgements that do not have a context and uses a subtyping relation for the term reduction. [Boričić, 2017] introduces “probabilistic sequents” of the form $\Gamma \vdash^n \Delta$, which are interpreted as stating that the probability of $\Gamma \vdash \Delta$ is greater than, or equal to, a function of the natural number n, that is, $1 - ne^\epsilon$ for a fixed threshold ϵ. A similar formalism is introduced in [Boričić, 2019] which, closer to the natural deduction in [Boričić, 2016], formalises probabilistic reasoning through sequents of the form $\Gamma \vdash^k \Delta$, which are interpreted as empirical statements of the form “the probability of $\Gamma \vdash \Delta$ lies in the interval $[a, b]$”. Differently from this work, TPTND does not express explicitly probabilistic intervals, but only sharp probability values, while at the same time expressing such probability on output types, rather than on the derivability relation. Finally, [Ghilezan et al., 2018] introduces the logic PΛ_{\neg} where it is possible to mix “basic” and “probabilistic” formulas, the former being similar to standard Boolean formulas, and the latter being formed starting from the concept of a “probabilistic operator” $P_{s, \sigma} M : \sigma$ stating that the probability of $M : \sigma$ is equal to or greater than s. The semantics for PΛ_{\neg}, is Kripke-like and its axiomatisation is infinitary.
Most significantly for type-theoretical models of probabilistic reasoning, Adams and Jacobs, 2015 introduces a quantitative logic with fuzzy predicates and conditioning of states. The computation rules of the system can be used for calculating conditional probabilities in two well-known examples of Bayesian reasoning in (graphical) models. In the same family, Warrell, 2016 offers a Probabilistic Dependent Type System (PDTS) via a functional language based on a subsystem of intuitionistic type theory including dependent sums and products, expanded to include stochastic functions. It provides a sampling-based semantics for the language based on non-deterministic β-reduction. A probabilistic logic from PDTS introduced as a direct result of the Curry-Howard isomorphism is derived, and shown to provide a universal representation for finite discrete distributions.

TPTND offers an integrated way to deal with probability intervals (similarly to Ghilezan et al., 2018) and probabilistic choices (similarly to Di Pierro, 2020). However, unlike these languages, TPTND was mainly designed to reason about and derive trustworthiness properties of computational processes. In fact, differently from all these other systems, TPTND has an explicit syntax both to deal with the number of experiments, and to prove trust in a process whenever the empirically verified probability is close enough to the theoretical one.

The formulation of the syntax of TPTND for the evaluation of trustworthiness of probabilistic computational processes recalls an entirely different literature, namely that of logical systems in which trust is explicitly formulated as an operator in the language. There are several logical frameworks providing an interpretation of one of the many aspects of computational trust, from manipulation to verification to assessment Demolombe, 2004, Singh, 2011, Drawel et al., 2017, Aldini, 2018, Aldini and Tagliaferri, 2019, Drawel et al., 2020. Modal logics, and in particular knowledge and belief logics, have been extensively investigated for trust, see, e.g., Liau, 2003, Herzig et al., 2010, Liu and Lorini, 2017. As mentioned above, much less investigated are proof systems in which trust is formulated explicitly as an operator or a functional expression. An exception is the family of logics (un)SecureND whose most complete formulation, including also a relational semantics, is offered in Primiero, 2020. The proof-theoretic fragment of the logic has been applied to a number of areas, ranging from software management Boender et al., 2015, Primiero and Boender, 2017, 2018 to modelling a trust and reputation protocol for VANET Primiero et al., 2017; and the evaluation of the trustworthiness of online sources Ceolin and Primiero, 2019, Ceolin et al., 2021. This proof-theoretical language, in its deterministic version also includes a Coq implementation (https://github.com/gprimiero/SecureNDC) for proof-checking. The system TPTND presented in this paper can be seen as the probabilistic extension of the fragment of (un)SecureND including only the closure of trust under negation which corresponds to distrust in the latter system. The present version of TPTND significantly extends and improves on the version previously formulated in D’Asaro and Primiero, 2021.
3 Computational Semantics

We provide now a set of rules to define our domain of computational terms and their operational semantics. The presented calculus is meant as a proof-system for the deduction of judgements expressing the probability of obtaining certain outputs (types) from possibly opaque, probabilistic programs (terms). Therefore, all there is to specify about the nature and behaviour of the elements of the domain of discourse is their computational behaviour. These elements are, in particular, distinct computational processes yielding outputs of mutually exclusive types. Hence, the event of a process t yielding an output α—formally, $t : \alpha$—is always supposed to be stochastically independent from the event of another process u yielding another output β and from the event of another process u yielding the same output α. Hence, providing a semantics in terms of generic events and their probabilities would not be very interesting and is certainly not required to fully understand the workings of the proof-system at hand. The calculus is, indeed, not supposed to be a means to compute the probability of generic events or processes. We focus then on the reduction rules determining the computational behaviour of our processes, which are presented in Figures 1 and 2, and discuss their meaning.

While the syntax of terms will be explicitly specified in Definition 4.1 along with the rest of the syntax of the calculus TPTND, for the present section, as per usual practice, we just define a well-formed typed term as any element of a list \mathcal{L} occurring inside an expression of the form $\mathcal{L} \rightarrow \mathcal{L}'$ that can be obtained by applying one or more of the rules in Figures 1 and 2. In other words, an evaluation rule acts on a list of typed terms (which, in the case of event $\rightarrow t$, might be empty) and produces a non-empty list of typed terms. Typed terms, therefore, can be of two forms:

- $t : \alpha$, denoting that the process t produced an output of type α; and
- $t_n : \alpha_f$, denoting that f is the frequency with which we obtained outputs of type α during an experiment consisting of n executions of t—in other words, this denotes that the process t produced $f \cdot n$ times an output of type α over a total of n executions.

For each atomic process t that we wish to study, we should associate a list $\alpha^1, \ldots, \alpha^m$ of atomic types to it and we should define an event $\rightarrow t$ rule. Such a rule will define the probabilistic computational behaviour of t. Evaluating a list of typed terms will correspond, then, to collecting the results of experiments (see Figure 1) and of logical operations (see Figure 2) executed on (possibly several copies of) the probabilistic computational processes that we have introduced by the event $\rightarrow t$ rules.

We discuss now the specific meaning of each evaluation rule. We begin with the rules for evaluating atomic terms and then we consider the rules implementing logical operations on typed terms indicating the frequency of outputs of a certain type during experiments on probabilistic terms.

As already mentioned, the event $\rightarrow t$ rule defines the behaviour of the atomic term t. Technically, the rule enables us to add to our possibly empty list \mathcal{L}
\[
\mathcal{L} \rightarrow_{a_i} \mathcal{L}, t : \alpha^t \text{ event}^t
\]
where each \(a_i\) is a number in the unit interval \([0, 1]\), \(t\) is an atomic term, \(\alpha^1, \ldots, \alpha^m\) are the atomic types associated to \(t\), \(1 \leq i \leq m\), \((\sum_{i=1}^{m} a_i) = 1\)

\[
\mathcal{L}, t : \alpha^1, \ldots, t : \alpha^n \rightarrow_1 \mathcal{L}, t_n : \alpha_f \text{ sampling}^\rightarrow
\]
where \(f = \frac{|\{i | a_i = \alpha\}|}{n}\)

\[
\mathcal{L}, t_n : \alpha_f, t_m : \alpha_g \rightarrow_1 \mathcal{L}, t_{n+m} : \alpha_{f,(n/(n+m))}+g(m/(n+m)) \text{ update}^\rightarrow
\]

Figure 1: Evaluation Rules for Atomic Terms

a typed term indicating the outcome of one execution of \(t\). Since \(t\) denotes a probabilistic process, the rule will add to the list a typed term of the form \(t : \alpha^t\) which specifies that \(t\) produced an output of type \(\alpha^t \in \{\alpha^1, \ldots, \alpha^m\}\). The choice of a specific type \(\alpha^t\) is non-deterministic, and the probability of selecting the type \(\alpha^t\) is \(a_i\), for each \(i \in \{1, \ldots, m\}\). The conditions on this evaluation rule guarantee that the sum of the probabilities of all possible types of outputs of a term \(t\) is always 1.

The sampling rule enables us to collect the results of \(n\) executions of an atomic term \(t\) into one typed term \(t_n : \alpha_f\) indicating the frequency of the outputs of a type \(\alpha\). In particular, the term \(t_n : \alpha_f\) indicates the number of times an output of type \(\alpha\) has been produced over the total number of outputs produced during the \(n\) executions of \(t\), i.e., \(f \cdot n\) will be the number of times \(t\) produced an output of type \(\alpha\) during the experiment consisting of \(n\) executions of \(t\).

The update rule combines, by a Bayesian update function, two typed terms \(t_n : \alpha_f\) and \(t_m : \alpha_g\) indicating the frequency with which an output of type \(\alpha\) has been produced by \(t\) during, respectively, an experiment consisting of \(n\) executions of \(t\) and an experiment consisting of \(m\) executions of \(t\), and produces a typed term \(t_{n+m} : \alpha_{f,(n/(n+m))}+g(m/(n+m))\) indicating the frequency with which an output of type \(\alpha\) has been produced by \(t\) during an experiment consisting of \(n + m\) executions of \(t\).

We explain now the meaning of the logical operation rules, presented in Figure 2.

The rule \(\Gamma^+\) enables us to combine two typed terms specifying the frequency of the outputs of type \(\alpha\) during an experiment consisting of \(n\) executions of the process \(t\) and of the outputs of type \(\beta\) during an experiment consisting of \(n\) executions of \(t\), in order to indicate the frequency of outputs of type either \(\alpha\) or \(\beta\) (namely of outputs of type \(\alpha + \beta\)) during an experiment consisting of \(n\) executions of \(t\).

The rules \(E^-\) can be applied to a typed term indicating the frequency of
\[
\begin{align*}
&\frac{\mathcal{L}, t_n : \alpha_f, t_n : \beta_g}{\mathcal{L}, t_n : (\alpha + \beta)_{f+g}} \Gamma^+ \\
&\frac{t_n : \beta_g}{\mathcal{L}, t_n : (\alpha + \beta)_f} \rightarrow_1 \mathcal{L}, t_n : \alpha_{f-g} \quad \text{E}^{\alpha+L} \\
&\frac{t_n : \alpha_g}{\mathcal{L}, t_n : (\alpha + \beta)_f} \rightarrow_1 \mathcal{L}, t_n : \beta_{f-g} \quad \text{E}^{\alpha+R} \\
&\frac{\mathcal{L}, t_n : \alpha_f, u_n : \beta_g}{\mathcal{L}, \langle t, u \rangle_n : (\alpha \times \beta)_{f-g}} \Gamma^\times \\
&\frac{t_n : \beta_g}{\mathcal{L}, t_n : (\alpha \times \beta)_f} \rightarrow_1 \mathcal{L}, \text{fst}(t)_n : \alpha_{f/g} \quad \text{E}^{\alpha\times L} \\
&\frac{t_n : \alpha_g}{\mathcal{L}, t_n : (\alpha \times \beta)_f} \rightarrow_1 \mathcal{L}, \text{snd}(t)_n : \beta_{f/g} \quad \text{E}^{\alpha\times R} \\
&\frac{x_u : \alpha_a}{\mathcal{L}, t_n : \beta_f} \rightarrow_1 \mathcal{L}, [x_u]t_n : (\alpha \rightarrow \beta)_{a|f} \quad \Gamma^\rightarrow \\
&\frac{x_u : \alpha_a}{\mathcal{L}, [x_u]t_n : (\alpha \rightarrow \beta)_{a|f}, u_n : \alpha_g} \rightarrow_1 \mathcal{L}, t_n : [u_n : \alpha] : \beta_{f/g} \quad \text{E}^{\rightarrow \rightarrow}
\end{align*}
\]

where \(\alpha \) and \(\beta \) are metavariables for generic (possibly non-atomic) types, we assume, for \(\text{E}^{\alpha+L}, \text{E}^{\alpha+R}, \text{E}^{\alpha\times L}, \text{E}^{\alpha\times R} \), that \(\alpha \neq \beta \), and \(x_u \) is a designated variable that we associate to the term \(u \).

Figure 2: Logical Term Evaluation Rules
outputs of type $\alpha + \beta$, with respect to an experiment consisting of n executions of t, in order to extract the information about the frequencies of the outputs of type α and of the outputs of type β. If we wish to extract the information about the frequencies of the outputs of type α we use $E^{-\times}_L$ and we need the information on the outputs of type β indicated in the premise of the rule. In order to extract the information about the frequencies of the outputs of type β we use $E^{-\times}_R$ and we need the information on the outputs of type α indicated in the premise of the rule.

The rule $I^{-\times}$ enables us to combine two typed terms specifying the frequency of the outputs of type α during an experiment consisting of n executions of the process t and of the outputs of type β during an experiment consisting of n executions of the process u, in order to indicate the frequency of outputs of type $\alpha \times \beta$ (namely of pairs of outputs in which the first element is of type α and the second of type β) during an experiment consisting of n executions of the pair of processes $\langle t, u \rangle$.

The rules $E^{-\times}$ can be applied to a typed term indicating the frequency of outputs of type $\alpha \times \beta$ (and thus of pairs of outputs in which the first element is of type α and the second of type β), with respect to an experiment consisting of n executions of t, in order to extract the information about the frequencies of the outputs of type α and of the outputs of type β occurring as first and second element, respectively, of the considered output pairs. If we wish to extract the information about the frequencies of the first elements of the pairs (those of type α) we use $E^{-\times}_L$ and we need the information on the second elements of the considered pairs of outputs, expressed by the premise of the rule. In order to extract the information about the frequencies of the second elements of the pairs (those of type β) we use $E^{-\times}_R$ and we need the information on the first elements of the considered pairs of outputs, expressed by the premise of the rule.

The rule I^{-} enables us to make explicit a dependency between the frequency of the outputs of type β of a process t and the probability of obtaining an output of type α from a process u. The rule yields a term $[x]t$ indicating the dependency of the process t on the value variable x indicating the theoretical probability of obtaining α. The type of the term $[x]t$ is $\alpha \rightarrow \beta$ in order to indicate the existence of a dependency also at the level of types.

The rule E^{-} enables us to combine a typed term $[x_u]t_n : (\alpha \rightarrow \beta)_{[a]}f$ with a typed term $u_n : \alpha_g$. Since the first term $[x_u]t_n : (\alpha \rightarrow \beta)_{[a]}f$ indicates that the frequency f of the outputs of type β produced by a process t depends on the probability a of obtaining an output of type α from a process u and since the second term $u_n : \alpha_g$ indicates that an experiment of n executions of the process u yielded outputs of type α with a frequency of g, the resulting term $t_n[u_n : \alpha] : \beta_{g \cdot f}$, obtained by applying the first term to the second, indicates that the frequency of outputs of type β obtained during an experiment consisting of n executions of t is $f \cdot g$ since the frequency of this type of output depends on the, now known, frequency g of the outputs of type α produced by u.
4 TPTND

4.1 Syntax

The syntax of TPTND is generated by the following grammar in Backus-Naur form:

Definition 4.1 (Syntax).

\[
\begin{align*}
X & ::= x | x_1 \rceil \langle x, X \rangle | \text{snd}(X) | [X]X | X.X | X.T \\
T & ::= t | \langle T, T \rangle | \text{fst}(T) | \text{snd}(T) | [X]T | T.T | \text{Trust}(T) | U\text{Trust}(T) \\
o & ::= \alpha \mid 0_+ \mid (0 \times o)_r \mid (0 + o)_r \mid (0 \rightarrow 0)_l r \\
C & ::= \{\} | C.X : C | C.X : C_r | C.X : C_{[r, r']} \\
S & ::= C :: \text{distribution} | o :: \text{output} | r :: R
\end{align*}
\]

We denote *random variables* by \(X\). The metavariable \(x\) denotes a particular random variable, e.g., \(x, x', y, z\). Indexed random variables \(x_1\) are tied to specific terms, meaning that they describe uncertainty about the output of the denoted process \(t\). We may combine independent random variables into pairs of the form \(\langle x, X \rangle\) which intuitively corresponds to their joint distribution. Pairs have associated projection functions \(\text{fst}(X)\) and \(\text{snd}(X)\) to extract the first and second variable. We use the constructions \([X]X'\) and \(X.X'\) (with \(X'\) a metavariable for a possibly distinct variable) to express the dependency relation between random variables, i.e., the probability assigned to the random variable \(X\), given the probability assigned to \(X_1\) and the corresponding evaluation. The construction \(X.T\) expresses the update of the probability assigned to random variable \(X\) when using the information on the frequency of the output of a process \(T\).

Terms \(T\) are executed computational processes or computational experiments. The metavariable \(t\) denotes any constant term, e.g., \(t, t', u, w, \ldots\). Terms with different names are regarded as *distinct* processes. When *one and the same* term for a process occurs in distinct branches of a derivation (possibly with different numerical subscripts), these must be intended as distinct runs or executions of the same process. Sometimes we use superscripts \(t^1, \ldots, t^n\) to distinguish the first to the \(n^{th}\) distinct executions of a process \(t\). We may compose processes into pairs \(\langle T, T \rangle\) associated with projection functions \(\text{fst}(T)\) and \(\text{snd}(T)\). The construct \([X]T\) expresses the expected probability assigned to the output of process \(T\) given the theoretical probability assigned to \(X\); while the construct \(T.T\) expresses the update of the expected probability assigned to the output of a process \(T\) with the expected probability of the output of another process of the form \(T\), where the latter is taken to substitute the dependency of \(T\) from some random variable \(X\). We include among terms the function-like expressions for trust: \(\text{Trust}(T)\) expresses that the frequency of process \(T\) is considered trustworthy with respect to the theoretical probability of its output, and the trust operator is defined by an appropriate pair of introduction and elimination rules below. The function \(U\text{Trust}(T)\) expresses negated trustworthiness for the frequency shown by the output of process \(T\) with respect to its intended theoretical probability.
Types α are output values of random variables and computational processes, with a probability $r \in [0, 1]$ attached. Similarly as in the case of terms and random variables, α and β are used as metavariables for generic types (thus possibly non atomic). Output $\alpha \times \beta$ expresses the independent occurrence of outputs α and β. Output $\alpha + \beta$ expresses the disjunction of outputs α and β. The construction $(\alpha \rightarrow \beta)[r]_1$ is interpreted as the probability r of output β for a given random variable or process, provided the probability of output α is r'. We use α^+ to denote any output different than α (possibly including no output).

We will use subscripts a, b, c, \ldots to denote instance values of probability r when referring to the output of a random variable X. Hence, in a formula of the form $x : \alpha_a$, the subscript a denotes the probability associated with the event of random variable x taking value α. The formula $t_n : \alpha_a$ expresses the expected probability a that process t will output a value of type α. In the expression $t_n : \alpha_f$, the subscript denotes the empirical probability or frequency associated with output α extracted from n executions of the process denoted by t. By convention, we use $t : \alpha$ without subscript either in the term or in the type to denote a single execution of the process t with deterministic output α (i.e., $r = 1$).

Contexts \mathcal{C} are sets of conditions, or assumptions on the theoretical probabilities of random variables required for the assertions made on the right of \vdash to hold. Contexts are composed by lists of expressions of the form $x : \alpha_a$, with or without probability a attached. They presuppose type declarations $\alpha :: output$ for the occurring outputs, saying that α is a valid output. We assume that, even when the actual distribution of probabilities on the random variables of interest of a given system is unknown, a certain assumption on their values can be made, and in particular the assumption that the distribution is unknown can be stated.

Type declarations \mathcal{S} include statements of the form: $\mathcal{C} :: distribution$, expressing that a given (possibly non empty) list of declarations of the form $x : \alpha_a$ is a probability distribution; $\alpha :: output$ expressing that α is a valid output value (e.g., a Boolean, or a Natural, or a List, etc.); $r :: \mathbb{R}$ expressing that r is a real number. These declarations are generally considered as implicit presuppositions of contexts.

4.2 Judgements

We now summarize the forms of judgements admissible in TPTND. A judgement of the form

$$x : \alpha \vdash y : \beta_b$$

says that the probability of random variable y to have value β is b, provided random variable x has value α. From the probabilistic point of view, this may be intuitively interpreted as $P(Y = \beta \mid X = \alpha) = b$. In the particular case of an empty context, we may simply interpret

$$\vdash y : \beta_b$$
as \(P(Y = \beta) = b \).

A judgement of the form

\[
x : \alpha_a \vdash y : \beta_b
\]

says that the probability of random variable \(y \) to take value \(\beta \) is \(b \) if \(x \) takes value \(\alpha \) with probability \(a \). In other words, the probability \(P(Y = \beta) \) is a function, say \(g \), of \(P(X = \alpha) \), and \(g(a) = b \).

A judgement of the form

\[
\vdash t : \alpha
\]

says that an event or process \(t \) has taken place with output value \(\alpha \).

A judgement of the form

\[
x_t : \alpha_a \vdash t : \beta
\]

serves the purpose of reasoning about data while making assumptions on its probability distribution; it may be intuitively thought as saying that a process \(t \) produces output \(\beta \) assuming a variable \(x \) has probability \(a \) of producing output \(\alpha \). This form of judgement is then generalized and formulated as expected probabilities under some distribution:

\[
x_t : \alpha_a \vdash t_n : \beta_b
\]

says that a process \(t \) produces output \(\beta \) with expected probability \(b \) over \(n \) executions assuming a variable \(x \) has probability \(a \) of producing output \(\alpha \).

Next, we can formulate this judgement under more assumptions on probability values for conditions to be satisfied on the left:

\[
x_t : \alpha_a, \ldots, z_t : \nu_n \vdash t_n : \beta_b
\]

says that provided variables \(x, \ldots, z \) with probabilities \(a, \ldots, n \) to produce outputs \(\alpha, \ldots \nu \) respectively obtain, the associated process \(t \) produces output \(\beta \) with expected probability \(b \).

The relative frequency of \(\beta \) in \(n \) executions of \(t \) is denoted by

\[
x_t : \alpha_a, \ldots, z_t : \nu_n \vdash t_n : \beta_f
\]

Note that as these are judgements based on assumptions, the evaluation of the frequency with which \(\beta \) is shown (or its expected probability to occur) requires the evaluation of the conditions: given a judgement of the form \(x_t : \alpha_a \vdash t : \beta \), the assertion that \(t \) produces \(\beta \) requires the judgement \(\vdash x : \alpha \) to hold; the same is true for multiple assumptions. In the case of a judgement \(x_t : \alpha_a \vdash t_n : \beta_b \), the verification of the condition can only be formulated over the same amount of executions as \(t \), in which case the judgement \(\vdash u_n : \alpha_b \) is required.

Finally, a judgement of the form
\[x_t : \alpha_{[0,1]}, \ldots, z_t : \nu_{[0,1]} \vdash t_n : \beta_f \]
says that \(n \) executions of process \(t \) display output \(\beta \) with a frequency \(f \) under an unknown distribution of values to random variables. Note that while no inference is possible from a judgement which is indexed by a range \([0,1]\) within the regular deductive rules of our system, we admit judgements of this form as a premise in the rule to infer trust or distrust in \(t_n : \beta_f \) (see Section 4.7), as well as in the premise to apply contraction, where all the values in the interval may be applied to an output value and a function is executed to extract one of them (see Section 4.8).

4.3 Distribution Construction Rules

Contexts as a list of assumptions on probability distributions are inductively constructed, see Figure 3. They are generated by judgements of the form \(\vdash x : \alpha_a \), expressing assignments of probabilities to output variables. An empty set \(\{\} \) represents the base case (rule “base”) to define distributions. Random variables assigning theoretical probability values to outputs can be added to a distribution as long as they respect the standard additivity requirement on probabilities (“extend”). Here \(\alpha \) is intended as a metavariable for both atomic and compound output types; the cases for the rule “extend” include joint distribution and extension by dependent variables, as justified below in the construction rules for random variables. The variant for deterministic outputs “extend_det” has \(x : \alpha \notin \Gamma \) in the second premise and it does not require the additivity condition. To denote an unknown distribution (“unknown”) we use the (transfinite) construction assigning to all values of interest the interval of all possible probability values, provided the additivity condition of “extend” is preserved. Note that, while the fragment of the calculus already introduced may not apply such unknown distribution to infer values on the outputs, as we will see in Section 4.7 the Trust fragment (see Figure 9) admits the use of an unknown distribution in the second premise of the introduction rules (IT/IUT) and in the conclusion of the corresponding eliminations (ET/EUT). When an unknown distribution is used, the frequency values assigned to the outputs on the right-hand side of our judgement must be understood as observed values under an unknown distribution.

Example 4.2.

\[\Gamma = \{ x_d : 1_{1/6}, \ldots, x_d : 6_{1/6} \} \]

is the theoretical probability distribution associated with the outputs of a fair die \(d \).

Example 4.3.

\[\Gamma = \{ x_d : Heads_{1/2}, x_d : Tails_{1/2}, y_{d'} : Heads_{1/3}, y_{d'} : Tails_{2/3} \} \]

is the joint theoretical distribution of two independent random variables \(x_d \) and \(y_{d'} \) associated with a fair coin \(d \) and biased coin \(d' \) respectively.
4.4 Reasoning about random variables

The inferential engine of TPTND for random variables is expressed by the rules in Figure 4.

The axiom-like rule “identity 1” expresses the probabilistic fact that $P(X = \alpha | X = \alpha) = 1$. The rule “identity 2” generalizes the former by expressing that the probability of a random variable x to have output α is a, provided variable x has theoretical probability a to output α.

The rule “K” encodes the probabilistic complement rule: if the probability of output α for the random variable x is a, the probability of x not producing output α is $1 - a$.

The joint distribution of two independent random variables can be constructed with conjunction \times. We use the notation “$\Gamma \perp \Delta$” with the intended meaning that contexts Γ and Δ are independent, meaning that for any $x : \alpha_a \in \Gamma$, $y : \beta_b \in \Delta$ distinct, is never the case that $\Delta \vdash x : \alpha_a$ and $\Gamma \vdash y : \beta_b$. Note that distinct variables can be made dependent through the use of \rightarrow and that the same variable can occur in independent contexts. The rule generalizes the independence condition to entire distributions and since it assumes their independence, the joint distribution multiplies their probabilities. The elimination uses fst and snd to derive the probability of the other term by dividing probabilities.

Disjunction $+$ merges mutually exclusive outputs for a given variable by adding their probabilities. Elimination of disjunction amounts to subtracting them instead.

The connective \rightarrow is used as a syntactical rewriting of dependent variables. The implication introduction constructs a variable of type $\alpha \rightarrow \beta$ where the probability b of y being β is explicitly made dependent on x being α. In the elimination, we assign a specific probability a to x being α and construct the application term $x.(y : \alpha)$ which is assigned output β with probability $a \cdot b$.

Example 4.4 (Dependent variables). We want to model a distribution with two
\[
\frac{\Gamma, x : \alpha \vdash x : \alpha_1}{\text{identity}_1}
\]

\[
\frac{\Gamma, x : \alpha_a \vdash x : \alpha_a}{\text{identity}_2}
\]

\[
\frac{\Gamma \vdash x : \alpha_a}{\Gamma \vdash x : \alpha_a}
\]

\[
\Gamma \vdash x : \alpha_a \quad \Delta \vdash y : \beta_b \quad \Gamma \vdash \Delta
\]

\[
\frac{\Gamma, \Delta \vdash \langle x, y \rangle : (\alpha \times \beta)_{a,b}}{\Gamma \vdash \Delta \text{I} \times}
\]

\[
\frac{\Gamma \vdash x : (\alpha \times \beta)_c \quad \Gamma \vdash \text{fst}(x) : \alpha_a}{\Gamma \vdash \Delta \text{E}_\times L}
\]

\[
\frac{\Gamma \vdash \text{snd}(x) : \beta_c}{\Gamma \vdash \Delta \text{E}_{R}}
\]

\[
\frac{\Gamma \vdash x : \alpha_a \quad \Gamma \vdash x : \beta_b}{\Gamma \vdash x : (\alpha + \beta)_{a+b}} \text{I+}
\]

\[
\frac{\Gamma \vdash x : (\alpha + \beta)_a \quad \Gamma \vdash x : \alpha_{a'}}{\Gamma \vdash x : \beta_{a-a'}} \text{E}_{+R}
\]

\[
\frac{\Gamma \vdash x : (\alpha + \beta)_b \quad \Gamma \vdash x : \beta_{b'}}{\Gamma \vdash x : \alpha_{b-b'}} \text{E}_{+L}
\]

\[
\frac{\Gamma, x : \alpha \vdash y : \beta_b}{\Gamma \vdash [x]y : (\alpha \rightarrow \beta)_b} \text{I} \rightarrow
\]

\[
\frac{\Gamma \vdash [x]y : (\alpha \rightarrow \beta)_b \quad \Gamma \vdash x : \alpha_a}{\Gamma \vdash y.(x : \alpha) : \beta_{a\cdot b}} \text{E} \rightarrow
\]

where we assume, for $E_{+L}, E_{+R}, E_{\times L}, E_{\times R}$, that $\alpha \neq \beta$

Figure 4: Rules for Random Variables
\begin{align*}
&\Gamma, x_t : \alpha \vdash t : \alpha \quad \text{experiment} \\
&\frac{\Gamma \vdash t : \alpha \quad \Delta \vdash u : \beta}{\Gamma, \Delta \vdash \langle t, u \rangle : (\alpha \times \beta)} \quad \text{I×} \\
&\frac{\Gamma \vdash t : (\alpha \times \beta)}{\Gamma \vdash \text{fst}(t) : \alpha} \quad \text{E×}_L \quad \frac{\Gamma \vdash t : (\alpha \times \beta)}{\Gamma \vdash \text{snd}(t) : \beta} \quad \text{E×}_R \\
&\Gamma \vdash t : (\alpha + \beta) \quad \frac{\Gamma, x_t : \alpha, x_t : \beta \vdash t : \alpha}{\Gamma \vdash t : (\alpha + \beta)} \quad \text{I+} \\
&\frac{\Gamma \vdash t : (\alpha + \beta) \quad \Gamma \vdash t : (\alpha\downarrow)}{\Gamma \vdash t : \beta} \quad \text{E+}_R \\
&\frac{\Gamma \vdash t : (\alpha + \beta) \quad \Gamma \vdash t : (\beta\downarrow)}{\Gamma \vdash t : \alpha} \quad \text{E+}_L \\
&\frac{\Gamma, x : \alpha \vdash t : \beta}{\Gamma \vdash [x]t : (\alpha \rightarrow \beta)_a} \quad \frac{\Gamma \vdash [x]t : (\alpha \rightarrow \beta)_a \vdash u : \alpha}{\Gamma \vdash t, [u : \alpha] : \beta} \\
\end{align*}

where we assume, for \(E+_{L}, E+_{R} \), that \(\alpha \neq \beta \) and \(x_t \) is a designated variable that we associate to the term \(t \).

Figure 5: Single-experiment rules.

random variables \(x \) and \(y \) corresponding to two coins, where \(x \) is fair. Variable \(y \) always returns \textit{Heads} when \(x \) returns \textit{Tails}, and vice-versa:

\begin{align*}
&x : \text{Heads} \vdash y : \text{Tails}_1 \\
&\vdash [x]y : \text{Heads} \rightarrow \text{Tails}_1 \quad \text{I→} \\
&x : \text{Tails} \vdash y : \text{Heads}_1 \\
&\vdash [x]y : \text{Tails} \rightarrow \text{Heads}_1 \quad \text{I→} \\
\end{align*}

We show that \(y \) is also fair by eliminating implication:

\begin{align*}
&\vdash [x]y : \text{Heads} \rightarrow \text{Tails}_1 \\
&\Gamma \vdash x : \text{Heads}_{0.5} \quad \frac{\Gamma \vdash x : \text{Heads}_{0.5} \vdash y, (x : \text{Heads}) : \text{Tails}_{0.5-0.5}}{\text{E→}} \\
\end{align*}

4.5 \hspace{1em} \textbf{Reasoning about events, samples and expected probabilities}

The inferential engine for single executions of computational processes performed under a given probability distribution is illustrated in Figure 5.
The rule “experiment” is the declaration of the deterministic output α (without subscript) of one experiment or execution of process t (without subscript) under a random variable which assigns theoretical probability a to output α (and hence derives α with that probability). Experiments can then be combined for dependent and independent results, in the same way done above for random variables. Inferences on processes which assume some probability value for a random variable are possible under the construction of the \to connective; the introduction states that if process t outputs value β (with $r = 1$) provided the condition that x is assigned value α is satisfied with probability a, then one constructs term $[x]t$ which assigns the probability $a \cdot 1$ to the output $(\alpha \to \beta)$; the elimination says that on condition that a process u with value α obtains $(r = 1)$, process t using information u outputs value β ($r = 1$), thereby eliminating the probabilistic condition.

Rules from Figure 5 allow to perform complex experiments. We now want to generalize to multiple executions of an experiment in Figure 6. This means to evaluate two things: first, the expected value of the probability of an output given n executions of an experiment; second, the frequency of a given output in n executions of an experiment. As expected probabilities are computed according to their theoretical counterparts, we also define logical operations on them.

The axiom-like rule “expectation” says that given the theoretical probability a that the random variable associated with process t will output value α, the expected probability of having α over n executions of t is \tilde{a}. Provided the maximally expected probability of having α over n executions is exactly a, we use \tilde{a} as a notational device to distinguish theoretical and expected probabilities.

In the rule “sampling” we denote a frequency value f of output α from n actual executions of process t, each with its own deterministic output, where f is the number of cases in which α has occurred as output over the total number of cases n. As a general case, the distribution under which t is executed can be taken to be unknown. An experiment can be repeated several times for a given process t, and the rule “update” tells how to calculate relative frequencies on the various number of executions, each provided by an instance of “sampling”. Note that in the examples below to aid readability we will sometimes formulate the rule “sampling” without appropriate premises (i.e., the corresponding several instances of the rule “experiment”), but will always assume those are properly executed. Moreover, “update” is obviously a shorthand for an extended “sampling”, but it is notationally useful when its premises occur at distinct stages of a derivation tree.

Example 4.5. Consider a die of which we know nothing, and in particular it is unknown whether it is fair or not. We denote this state of affairs with the distribution $\Gamma = \{x : 1_{[0,1]}, \ldots, x : 6_{[0,1]}\}$, as produced by the type-definition “unknown”. We execute two sets of four experiments to evaluate the frequency of output 1.

\[
\begin{align*}
\Gamma \vdash d^1 : 1 & \quad \Gamma \vdash d^2 : 1 & \quad \Gamma \vdash d^3 : 5 & \quad \Gamma \vdash d^4 : 6 & \quad \text{sampling}
\end{align*}
\]
\[
\begin{align*}
x_t : \alpha_a \vdash t_n : \alpha_a & \quad \text{expectation} \\
\Gamma \vdash t^1 : \alpha^1 & \quad \ldots \quad \Gamma \vdash t^n : \alpha^n \quad \text{sampling}
\end{align*}
\]
where \(f = \frac{1}{n} \sum_{i} \alpha_i \)

\[
\begin{align*}
\Gamma \vdash t_n : \alpha_f & \quad \Gamma \vdash t_m : \alpha_f \quad \text{update} \\
\Gamma \vdash t_{n+m} : \alpha_{f-(n/(n+m)) +f'-(m/(n+m))} \\
\Gamma \vdash t_n : \alpha_{\hat{a}} & \quad \Gamma \vdash t_n : \beta_{\hat{b}} \quad \text{I+} \\
\Gamma \vdash t_n : (\alpha + \beta)_{\tilde{a}+\tilde{b}} & \quad \text{E+L} \\
\Gamma \vdash t_n : (\alpha + \beta)_{\tilde{a}} & \quad \Gamma \vdash t_n : \beta_{\tilde{b}} \quad \text{E+R} \\
\Gamma \vdash t_n : \alpha_{\hat{a}} & \quad \Delta \vdash u_n : \beta_{\tilde{b}} & \quad \Gamma \parallel \Delta \quad \text{I×} \\
\Gamma, \Delta \vdash \langle t, u \rangle_n : (\alpha \times \beta)_{\overline{a \tilde{b}}} & \quad \text{E×L} \\
\Gamma \vdash \text{snd}(t)_n : \beta_{c/\overline{a}} & \quad \text{E×R} \\
\Gamma \vdash [x]t_n : (\alpha \rightarrow \beta)_{[a] \tilde{b}} & \quad \text{I→} \\
\Gamma \vdash [x]t_n : (\alpha \rightarrow \beta)_{\overline{a \tilde{b}}} & \quad y_n : \alpha_a \vdash u_n : \alpha_{\hat{a}} & \quad \text{E→} \\
\end{align*}
\]

where we assume, for \(\text{E+L}, \text{E+R} \), that \(\alpha \neq \beta \) and \(x_t \) is a designated variable that we associate to the term \(t \).
\[\Gamma \vdash d^1 : 3 \quad \Gamma \vdash d^2 : 1 \quad \Gamma \vdash d^3 : 5 \quad \Gamma \vdash d^4 : 6 \] sampling

\[\mathcal{D}_1 \quad \mathcal{D}_2 \] update

\(\{x : 1_{[0,1]}, \ldots, x : 6_{[0,1]}\} \vdash d_8 : 1_{3/8} \)

Rule I+ introduces disjunction: intuitively, if under a distribution \(\Gamma \) a sample of process \(t \) produces output \(\alpha \) with an expected probability \(\tilde{a} \), and output \(\beta \) with expected probability \(\tilde{b} \), then the expected probability of output \(\alpha \) or output \(\beta \) by a run of process \(t \) is \(\tilde{a} + \tilde{b} \). Note that this rule can also be seen as an abbreviation of an instance of "sampling" from \(n \) premises each of which is the result of introducing \(+ \) on a single experiment whose output is either \(\alpha \) or \(\beta \):

Example 4.6. The rule I+ followed by a sampling for a process with different outputs (including outputs possibly different from \(\alpha \) or \(\beta \)):

\[\Gamma, x_t : \alpha_a \vdash t^1 : \alpha^1 \quad \Gamma, x_t : \beta_b \vdash t^1 : \beta^1 \quad \Gamma, x_t : \alpha_a \vdash t^n : \alpha^n \quad \Gamma, x_t : \beta_b \vdash t^n : \beta^n \]

\[\Gamma, x_t : \alpha_a, x_t : \beta_b \vdash (\alpha + \beta)^1, \ldots, \Gamma, x_t : \alpha_a, x_t : \beta_b \vdash (\alpha + \beta)^n \] sampling

Conversely by \(E_{+R} \) (respectively \(E_{+L} \)): if under a distribution \(\Gamma \) a process \(t \) produces output \(\alpha \) or output \(\beta \) with expected probability \(\tilde{c} \), and the former (respectively, the latter) output has probability \(\tilde{a} \) (respectively, \(\tilde{b} \)), then it produces the latter (respectively, the former) output with probability \(\tilde{c} \) (respectively \(\tilde{c} - \tilde{b} \)). Note that also this rule can be seen as an abbreviation for an instance of “sampling” from \(n \) premises each of which is the result of introducing \(+ \) on a single experiment whose output is either \(\alpha \) or \(\beta \), followed by an instance of “sampling” of either output:

Example 4.7. Consider an application of the rule \(E_{+} \) used to derive the expected probability of one among different possible outputs of a given process:

\[\Gamma, x_t : \alpha_a, x_t : \beta_b \vdash t_n : (\alpha + \beta)_{\alpha + \beta} \] \(E_{+} \)

followed by a sampling:

\[\Gamma, x_t : \alpha_a \vdash t^1 : \alpha^1 \quad \ldots \quad \Gamma, x_t : \alpha_a \vdash t^n : \alpha^n \]

\[\Gamma, x_t : \alpha_a, x_t : \beta_b \vdash t_n : \alpha_{\alpha + \beta} \]
Example 4.8. Consider a fair die d whose distribution of outputs is encoded in Γ:

\[
\begin{align*}
\Gamma \vdash d_6 &: 1_{1/6}^\mathcal{D}_1 \\
\Gamma \vdash d_6 &: 3_{1/3}^\mathcal{D}_2 \\
\Gamma \vdash d_6 &: (1 + 3)_{1/3}^I+
\end{align*}
\]

now followed by a sampling whose observed outputs are the series 1, 3, 5, 1, 2, 6 in a sample of 6 throws. In this sample the frequency of 1 or 3 outputted by d is given in our syntax as follows

\[
\begin{align*}
\Gamma \vdash d^1 &: (1 + \ldots + 6)^1 \\
\ldots \\
\Gamma \vdash d^6 &: (1 + \ldots + 6)^6
\end{align*}
\]

sampling

Note that in both examples above, we have two conclusions with the same output, one which expresses the expected probability, one which expresses actual frequency over a number of executed trials. In the following it will be our aim to define operators to measure their distance.

The typing rule $I\times$ says that if two distinct processes (and thus independent: recall that we denote by different terms distinct processes, hence the distinct distributions Γ, Δ) t and u produce expected probabilities \tilde{a} and \tilde{b} for outputs α and β and samples of size n under distributions Γ and Δ respectively; the expected probability of jointly getting output α and β from the pair $\langle t,u \rangle$ under the joint distributions Γ, Δ, is given by $\tilde{a} \cdot \tilde{b}$. By $E\times$, given a process which provides two distinct output types with associated probability \tilde{c}, and knowing the expected probability \tilde{a} of the first composing process in the given sample, we infer the probability of the second process to produce the second output as \tilde{c}/\tilde{a}; the dual rule has snd in the second premise and fst in the conclusion.

Example 4.9. Let d and g be two dice associated with distributions Δ and Γ respectively. We use distinct names for the distribution of distinct processes, although they might turn out to be identical, e.g., in the case of two fair dice. Assuming independence on Δ, Γ, output expectation on a sample of 18 throws of dice d and g is as follows:

\[
\begin{align*}
\Delta \vdash d_{18} &: 1_{2/3}^\mathcal{D}_1 \\
\Gamma \vdash g_{18} &: 2_{1/6}^\mathcal{D}_2 \\
\Delta, \Gamma \vdash \langle d, g \rangle_{18} &: (1 \times 2)_{1/3}^I\times
\end{align*}
\]

An observation on a sampling of 18 throws of dice d might shows the series:

4, 1, 2, 1, 1, 6, 1, 3, 1, 1, 3, 1, 1, 1, 1, 5

and of 18 throws of dice g the series:

1, 3, 5, 2, 3, 1, 3, 4, 5, 2, 6, 4, 1, 3, 1, 3, 4, 2

21
The joint sampling, constructed by pairing the nth result of the first dice with the nth result of the second dice, is the following:

$$(4, 1), (1, 3), (2, 5), (1, 2), (1, 3), (1, 1), (6, 3), (1, 4), (3, 5),$$
$$
(1, 2), (1, 6), (1, 4), (3, 1), (1, 3), (1, 1), (1, 3), (1, 4), (5, 2)
$$

The experiment was a success. Indeed, among the 18 pairs, exactly two are of the form $(1, 2)$. Hence, as predicted, the frequency of $(1, 2)$ in this list is $2/18 = 1/9$. This outcome of the experiment on the pair of dice $\langle d, g \rangle$ can be formalized as follows:

$$\Delta, \Gamma \vdash \langle d, g \rangle^1 : (4 \times 1)^1 \ldots \Delta, \Gamma \vdash \langle d, g \rangle^{18} : (5 \times 2)^{18}$$
$$\Delta, \Gamma \vdash \langle d, g \rangle_{18} : (1 \times 2)^{2/18}$$

Example 4.10. Given two fair dice d, g whose distributions are encoded in respectively Δ, Γ. Again assuming independence, we could have

$$\Gamma \times \Delta = \{ \langle x_d, x_g \rangle : 1 \times 1_{1/36}, \langle x_d, x_g \rangle : 1 \times 2_{1/36}, \ldots, \langle x_d, x_g \rangle : 6 \times 6_{1/36} \}$$

While $\langle d, g \rangle^{24} : (n \times m)\bar{n}\cdot\bar{m}$ expresses the expected probability $\bar{n} \cdot \bar{m}$ of any pair $(n \times m)$ over 24 launches, for any specific such sequence of launches like the following: $(5, 5), (2, 1), (3, 6), (3, 1), (1, 4), (5, 3), (5, 4), (3, 6), (6, 3), (5, 2), (2, 3), (3, 3), (2, 3), (4, 1), (4, 5), (1, 2), (6, 1), (6, 6), (6, 6), (6, 6), (6, 6), (6, 5), (4, 4), (2, 6)$, the frequency of any specific output results from an application of the sampling rule, such as:

$$\Delta, \Gamma \vdash \langle d, g \rangle^1 : (5 \times 5)^1 \ldots \Delta, \Gamma \vdash \langle d, g \rangle^{24} : (2 \times 6)^{24}$$

The rule $I\rightarrow$ says that, if assuming a variable has value α with probability a, we can execute a process t which, executed n times, shows output β with expected probability b, then we can construct the term $[x]t_n$, which taken in input a process of output value β with expected probability b depending on a. Note that in $[a]b$, the sub-expression $[a]$ is only a notation to keep track of the theoretical probability assigned to the output in the antecedent. The corresponding elimination $E\rightarrow$ allows to verify the expected probability of β: it considers a term $[x]t_n$ of type $(\alpha \rightarrow \beta)$ which has expected probability \bar{b} depending on the probability α of value α, and providing in place of x a process u with expected probability \bar{a} formulated under a fresh random variable $y : a$, it returns the process t which will display output β with an expected probability $\bar{a} \cdot \bar{b}$. The frequency of β in a sample of n experiments should therefore approximate this value.

Example 4.11. Consider a coin c, which we assume to be fair, i.e., whose assumed probability distribution on its outputs has the form
We might devise a system which if the fair coin \(c_1 \) returns Head, it will make another coin \(c_2 \) return Tail with a frequency of 45% of the times over 1000 throws:

\[
\Gamma, x_{c_1} : H_{0.5}, x_{c_2} : T_{0.5} \quad \frac{\Gamma, x_{c_1} : H_{0.5} \vdash c_{21000} : T_{0.45}}{\Gamma \vdash [x]c_{21000} : (H \rightarrow T)_{(0.5)0.45}} \text{ I→}
\]

To verify the system is actually working in this way, we shall throw \(c_1 \) a 1000 times, and if it returns heads a number of times considered sufficiently close to 50% in proportion to the number of throws (i.e., if \(c_1 \) can be actually considered fair) we state that \(c_2 \) using the output of \(c_1 \) will return Tail circa 45% of the times over its own 1000 throws whenever \(c_1 \) returns heads, namely around 50% of the times over its own 1000 throws:

\[
\text{\vdash [x]c_{21000} : (H \rightarrow T)_{(0.5)0.45} \quad x_{c_1} : H_{0.5} \vdash c_{11000} : H_{0.5} \quad x_{c_1} : H_{0.5} \vdash c_{21000} : [c_{11000} : H] : T_{0.225}} \quad \text{E→}
\]

This final judgment says that we expect tails from the second coin and heads in the first coin with a frequency of 22.5% over 1000 times.

4.6 Bayesian Updating

Random variables and experiments can be linked by the formulation of a form of \(\rightarrow \) connective by which random variables are updated using the information generated by trials. The rules in Figure 7 express such process of updating prior probabilities in the light of new information provided by experiments. It corresponds to the use of the \(\rightarrow \) connective introduced from a judgement of the form \(\text{x : } \alpha_1, \ldots, x : \alpha_n \vdash y : \beta \), and eliminated with an additional premise of the form \(\text{\vdash t_n : } \alpha_f \). The formula for \(b \) implements the Bayesian Updating in the specific case of a finite prior and a binomial likelihood function, which is the case we can express within our calculus. In particular, the prior probability associated with the point \(i \) under consideration is \(b_i \), and its likelihood is \(\binom{n}{a_i} a_i^{a_i} (1 - a_i)^{a - a_i} \). The denominator marginalizes as usual over all points in the prior. Note that the binomial coefficient gets simplified out as it appears both in the numerator and denominator of the expression for \(b \).

In the introduction, assuming that the probability \(b \) of variable \(y \) being assigned output \(\beta \) resulted from a sampling of \(n \) experiment within a model in which probabilities associated to random variables \(x, \ldots, x_n \) to have values \(\alpha, \ldots, \alpha^n \) is respectively \(a, \ldots, a^n \), we introduce a list of implications which take all the exclusive hypotheses assigning a given probability \(a_i \) to variables \(x_i \) having value \(\alpha_i \) and assigning a given variable \(y \) probability \(b \) to have value \(\beta \); in the elimination: given such a implication with a list of exclusive hypotheses, and the result of a sampling on an experiment outputting \(a \) with frequency \(f \), we update the prior probability \(b_i \) of \(\beta \) to \(b \).
\[
x : \alpha_{a_1} \vdash y : \beta_{b_1}, \ldots, x : \alpha_{a_m} \vdash y : \beta_{b_m} \quad \sum_{i=1}^{m} b_i = 1
\]

\[
\{ \vdash [x]y : (\alpha \rightarrow \beta)_{[a_i]b_i} \mid 1 \leq i \leq m \}
\]

\[
\Gamma, x : \alpha_{a_i} \vdash t_n : \alpha_f \quad \text{E-P}
\]

where

\[
b = \frac{\left(\frac{n}{n \cdot f} \prod_{i=1}^{m} a_i^{f \cdot n} (1 - a_i)^{n-f \cdot n} b_i \right)}{\sum_{j=1}^{m} a_j^{f \cdot n} (1 - a_j)^{n-f \cdot n} b_j}
\]

Figure 7: Rules to Update Prior Probabilities

Example 4.12. In this example, we show how we can model the process of updating a discrete prior in a Bayesian fashion. Let us assume we have five coins of three types. Coins of type A are fair, whereas coins of types B and C are biased, with a probability of 0.8 and 0.9 of landing heads respectively. We have 2 coins of type A, 1 coin of type B and 2 coins of type C. We blindly draw one of these five coins and toss it three times. Three coin tosses give that the coin lands heads 2 times. Our prior knowledge can be modelled with the three following sequents:

\[
x : \text{Heads}_{0.5} \vdash y : \text{Draw}_{2/5}
\]

\[
x : \text{Heads}_{0.8} \vdash y : \text{Draw}_{1/5}
\]

\[
x : \text{Heads}_{0.9} \vdash y : \text{Draw}_{2/5}
\]

that we denote by \(\mathcal{P} \). They encode the discrete prior in Figure 8. We focus on the first of these three sequents, corresponding to the hypothesis that the coin we have drawn is of type A. We now consider data \(\mathcal{D} = \{ \text{Heads, Heads, Tails} \} \), which we represent with the sequent

\[
x : \text{Heads}_{0.5} \vdash c_3 : \text{Heads}_{2/3}
\]

and calculate the posterior probability of hypothesis \(x : \text{Heads}_{0.5} \vdash y : \text{Draw}_{2/5} \) as follows:

\[
\mathcal{P} \\
\vdash x : \text{Heads}_{0.5} \vdash c_3 : \text{Heads}_{2/3}
\]

\[
x : \text{Heads}_{0.5} \vdash p(c_3 : \text{Heads}_{2/3}) : \text{Draw}_p
\]

24
Figure 8: A graphical representation of the discrete prior in Example 4.12. The \(x \) axis represents the probability of the coin landing \(\text{Heads} \); the \(y \) axis represents the corresponding prior probability.

where

\[
a = \frac{0.5^2 \cdot (1 - 0.5) \cdot (2/5) + 0.8^2 \cdot (1 - 0.8) \cdot (1/5) + 0.9^2 \cdot (1 - 0.9) \cdot (2/5)}{0.5^2 \cdot (1 - 0.5) \cdot (2/5) + 0.8^2 \cdot (1 - 0.8) \cdot (1/5) + 0.9^2 \cdot (1 - 0.9) \cdot (2/5)} \approx 0.46
\]

Therefore, the hypothesis that \(x : \text{Heads}_{0.5} \) has increased its probability from 2/5 to 0.46.

Note that once the prior has been updated in the conclusion of the previous tree, it is still possible to introduce again the implication

\[
\vdash [x](y.c_3 : \text{Heads}_{2/3}) : (\text{Heads} \rightarrow \text{Draw}_{[0.5]_a})
\]

and update it again with some new data.

4.7 Trust Fragment

TPTND is designed to verify trustworthiness of probabilistic computations through the rules in Figure 9.

The intuition behind this evaluation is as follows. An experiment \(\Delta \vdash u_n : \alpha_f \) where \(\Delta \) is possibly unknown – that is, \(\Delta \) is of the form \(\{x : \alpha_{[0,1]}, \ldots, x : \omega_{[0,1]}\} \) as obtained by the “unknown” rule in Figure 3 – should be evaluated according to some metric against its intended or expected model, in turn expressed as a transparent distribution \(\Gamma \). If the difference between the frequency \(f \) of output \(\alpha \) in \(n \) experiments \(u \) and its theoretical probability \(a \) in the relevant intended and transparently formulated distribution \(\Gamma \) remains below a critical
threshold, parametric with respect to the number of samples, then the process u outputting α with frequency f can be considered trustworthy (rule IT). The parametric threshold $\epsilon(n)$ is domain-specific and it may depend on the application. Then one can start reasoning on processes considered trustworthy: if $u_n : \alpha_f$ is trustworthy under distribution Γ, then there must exist an interval of probability values $[a - \epsilon(n), a + \epsilon(n)]$ for output $\alpha \in \Gamma$ within which $u_n : \alpha_f$ can be correctly sampled from Γ (rule ET). Note that Contraction from Section 4.8 can be applied to select the most appropriate value within such range.

Dual rules for negative trust can be devised. Rule IUT for the introduction of negative trust (or Untrust) expresses the failure on the condition for trust: if the value set for the difference between the frequency f of the output α in the experiment and the theoretical probability a in the relevant intended and transparently formulated distribution Γ is surpassed, the process can be labeled untrustworthy. The rule EUT serves the purpose of eliminating the negative trust function, i.e., it allows to start reasoning on processes considered untrustworthy: if $u_n : \alpha_f$ is considered untrustworthy under distribution Γ, then there exists a family of probability values in the interval $[0, 1]$ excluding the interval $[a - \epsilon(n), a + \epsilon(n)]$ for output $\alpha \in \Gamma$ within which $u_n : \alpha_f$ can be correctly sampled from Γ. Hence, the rule identifies the range of theoretical values which make f a fair frequency, and again Contraction from Section 4.8 can be applied to select the most appropriate value within such range.

Note, in particular, that the first and second premise of each rule allow for distinct distributions. While it is required that the first context expresses a distribution in which it is included the theoretical probability for a program of output α, this means that it is possible to evaluate for trustworthiness against it a program u of the same type even if the latter is executed under a distinct, and possibly opaque or even unknown distribution Δ. The easy case is obviously where $\Gamma \equiv \Delta$, but otherwise Δ might be inaccessible (i.e. formally unknown) while Γ represents the intended or assumed model of u.

Trust evaluation, as mentioned, is parametric in the number of executions,
and this renders it a potentially dynamic process. For instance, one may take
\(\epsilon(n) \) to correspond to the 95\% confidence interval under the Normal approxi-
mation to the Binomial Distribution. Then it is possible to derive the trustwor-
thinness of some untrustworthy process (and vice versa) with some (very small)
probability. The probability of this happening can be made arbitrarily small by
extending the sample associated with the process.

Example 4.13. Let \(u \) be a die which we have been provided with and we know
nothing about, its distribution being denoted as \(\Delta \); and let \(\Gamma \) be the distribution
defined in Example 4.2, representing a fair die. In this example, we focus on output 5. Let’s assume that experimenting under the unknown context \(\Delta \) gives
us the following result:

\[
\cdots \vdash \cdots \vdash \Delta \vdash u_{10} : 5_{1/2} \quad \text{sampling}
\]

Our aim is to decide whether the system \(u \) can be assumed to represent a
sample under a fair distribution over outputs \(\{1, 2, \ldots, 6\} \), i.e., whether \(u \) can
be therefore considered safe to use during a betting game. To this aim, we
use the Introduction of Negative Trust, where we use the (exact) Binomial 95\%
confidence interval to set our threshold:

\[
\Gamma, x : 5_{1/6} :: \text{distribution} \quad \Delta \vdash u_{10} : 5_{1/2} \quad 1/6 \notin [0.19, 0.81]
\]

that is, we do not trust process \(u \) to be extracted from a distribution which
sufficiently approximates \(\Gamma \).

Obviously, things may change as new evidence is collected. Let suppose we
are provided with some more experimental evidence about process \(u \), we then
can use rule “update”:

\[
\Delta \vdash u_{20} : 5_{3/20} \quad \Delta \vdash u_{30} : 5_{4/15} \quad \Gamma \vdash x : 5_{1/6} \quad 1/6 \in [0.12, 0.46]
\]

i.e., based on a total of 30 runs of process \(u \), now we trust it to be extracted
from the transparent and fair distribution \(\Gamma \).

Example 4.14. Suppose we are given a commercial, closed-source software
to automatically shortlist CVs according to a set of criteria. To this aim, we
consider the output of the classification algorithm to fall into one of the follow-
ing four categories: (1) male, shortlisted, (2) male, not shortlisted, (3) female,
shortlisted, (4) female, not shortlisted. To verify that the underlying algorithm
does not have an inherent gender bias, we test whether we trust the frequency
of any output of interest over these four classes to reflect the actual gender dis-
tribution in the current Italian population, as encoded in a distribution \(\Gamma \). A
proof that this is indeed the case would produce a certificate in the form of a
natural deduction proof, that would go as follows:
\(\{ \} ::: \text{distribution} \)
\[
\begin{array}{l}
\{ x \!: \text{female}_{0.52} \} :: \text{distribution} \quad \text{extend} \quad \{ \} \vdash c_{10} :: \text{female}_{0.3} \\
\quad \text{0.52} \in [0.6667, 0.6525] \\
\quad \text{IT} \\
\{ x \!: \text{female}_{0.52} \} \vdash \text{Trust}(c_{10} :: \text{female}_{0.3})
\end{array}
\]

where we assumed a 95% confidence interval. Note that a shortlist selection which would provide strictly less than 2/10 or more than 9/10 of female candidates would be considered untrustworthy according to this model. Note that if we sampled 30 CVs instead, shortlisting 7 female CVs, we would derive untrustworthiness:

\(\{ \} :: \text{distribution} \)
\[
\begin{array}{l}
\{ x \!: \text{female}_{0.52} \} :: \text{distribution} \quad \text{extend} \quad \{ \} \vdash c_{30} :: \text{female}_{7/30} \\
\quad 0.52 \notin [0.1, 0.42] \\
\quad \text{IUT} \\
\quad \{ x \!: \text{female}_{0.52} \} \vdash \text{UTrust}(c_{30} :: \text{female}_{7/30})
\end{array}
\]

We would in fact consider untrustworthy any number of shortlisted CVs by female candidates strictly smaller than 10 or bigger than 21. Assume now a different population of interest:

\(\{ \} :: \text{distribution} \)
\[
\begin{array}{l}
\{ x \!: \text{female}_{0.7} \} :: \text{distribution} \quad \text{extend} \quad \{ \} \vdash c_{10} :: \text{female}_{3/10} \\
\quad \text{0.7} \notin [0.6667, 0.6525] \\
\quad \text{IUT} \\
\quad \{ x \!: \text{female}_{0.7} \} \vdash \text{UTrust}(c_{10} :: \text{female}_{3/10})
\end{array}
\]

4.8 Structural Rules

Structural rules in a proof-theoretic setting are used to determine valid operations on contexts. Under our interpretation, such rules are needed to establish coherent manipulation of assumptions on probability distributions under which either other random variables are assigned a value, or processes (programs, experiments) are sampled. In particular, our structural rules are essential to two aims:

1. define the admissible extensions of value assignments to random variables through the “extend” type definition;
2. define the extraction of plausible values of relevant random variables from experiments performed under multiple hypotheses and, more generally, under unknown distributions.

We provide constrained versions of the standard rules holding for our system in Figure 10.

The Weakening rule expresses the following principle: given the probability of a random variable \(z \) to have value \(\beta \) is \(b \), provided the value assigned to some variable \(x \) is \(\alpha \); if the latter assignment is independent of a distribution \(\Delta \), then the starting conditional probability can be extended by additional assumptions.
\[\Gamma, x : \alpha \vdash z : \beta_b \quad \Delta \vdash y : \gamma_g \quad \Gamma \parallel \Delta \]
\[\Gamma, x : \alpha \vdash z : \beta_b \]
\[\Gamma, x_t : \alpha_{a_1}, \ldots, x_t : \alpha_{a_n} \vdash t_n : \beta_f \]
\[\Gamma, x_t : \alpha_{fun(a_1, \ldots, a_n)} \vdash t_n : \beta_f \]

Weakening

\[\Gamma, x_t : \alpha\vdash t_n : \beta_f \]

Contraction

\[\Gamma, x_t : \alpha\vdash t_n : \beta_f \]

Figure 10: Structural Rules

\(\Delta \) and the probability \(b \) is left unaltered. In other words: a given probability distribution can be extended at will without inferring new probabilities, as long as no new dependencies are introduced. To show this case, and illustrate how Weakening by a confounding variable modifies the inferred output, we illustrate a number of examples.

Example 4.15 (Confounding). Consider the following graph:

```
     A
    /\  
   /   
  B   C
```

This graphical model means that \(P(A, B, C) = P(B \mid A)P(C \mid A)P(A) \), i.e., \(A \) is a confounding variable as \(B \) and \(C \) depend on \(A \) but do not directly influence each other. In this example, \(A, B \) and \(C \) are probabilistic routines with outputs 0 and 1. \(A \) is a “master” process in that it can decide to force “slave” processes \(B \) and \(C \) to output specific values. \(A \) has a 50% chance of generating output 1 and 50% chance of producing output 0; if \(A \) outputs 0, it forces \(B \) and \(C \) to output 0; if \(A \) outputs 1, \(B \) and \(C \) both have 50% probability of producing 1 and 50% probability of producing 0. In this case, \(A \) acts as a confounder, in the sense that one may observe a dependency between \(B \) and \(C \) that, however, is not due to an explicit communication between the two processes.

In TPTND this false dependency is discarded, as the dependency from \(A \) is clearly stated, while \(B, C \) are shown to be coordinated processes by logical conjunction under the same assumption. The entire graph is expressed analytically by the following tree (where the shared context trivially satisfies our definition of \(\parallel \)):

\[
\begin{align*}
\{x_A : 0, x_A : 1\} &:: distribution \\
{x_A : 0} &\vdash \left<y_B, z_C\right>: (0 \times 0)_1 \quad x_A : 0 \vdash z_C : 0_1 \quad \times-1 \\
{x_A : 0} &\vdash [x_A][y_B, z_C] : (0 \rightarrow (0 \times 0))_1 \quad \rightarrow-1 \\
\{x_A : 0, x_A : 1\} &:: distribution \\
{x_A : 1} &\vdash \left<y_B, z_C\right>: (1 \times 1)_{0.25} \quad x_A : 1 \vdash z_C : 1_{0.5} \\
{x_A : 1} &\vdash [x_A][y_B, z_C] : (1 \rightarrow (1 \times 1))_{0.25} \quad \rightarrow-1
\end{align*}
\]
Example 4.16 (Chain). Consider the following different graph:

![Graph](https://example.com/graph.png)

This graphical model means that \(P(A, B, C) = P(C \mid B)P(B \mid A)P(A) \), i.e., \(A \) is a variable depending on \(B \), whose effect in turn depends on \(C \). In this example, \(A, B \) and \(C \) are probabilistic routines with outputs 0 and 1. \(A \) is a “master” process in that it can decide to force “slave” process \(B \) and this in turn process \(C \) to output specific values. \(A \) has a 50% chance of generating output 1 and 50% chance of producing output 0; if \(A \) outputs 0, it forces \(B \) to output 0; under the 50% probability that \(B \) outputs 0, \(C \) has 50% probability of producing 1 and 50% probability of producing 0.

Note that an evaluation of the probability of the variable \(z_C \) having value 1 depends ultimately on the value which will be assigned to variable \(a \) in the \(\rightarrow -E \) by the additional premise \(\vdash x_A : 0 \). Note moreover how the condition of \(C \) is expressed by a probability \(P(B \mid A) \) and this corresponds in the tree above to the fact that the context of \(z_C \) is of the form \(y_B, [x_A : 0] : 0 \) with probability \(a \).

The previous example is illustrative of a variable \(y_B \) which is not independent of \(x_A \), hence the latter could not be used to weaken the context of \(z_C \). On the other hand, the following example introduces the situation of a variable \(y_C \) dependent on \(x_A \), and for which one could also state the dependency from a distinct variable \(x_B \):

Example 4.17 (Collider). Consider now the following example:
In this example, the output of variable C is a collider of A and B. Again, A, B and C are probabilistic routines with outputs 0 and 1. A is a “master” process in that it can decide to force “slave” process C: A has a 50% chance of generating output 1 and 50% chance of producing output 0:

$$x_A: 0_{0.5} \models x_A: 0_{0.5} \quad x_A: 1_{0.5} \models x_A: 1_{0.5}$$

$$\{x_A: 0_{0.5}, x_A: 1_{0.5}\} \models x_A: (0 + 1)_{0.5 + 0.5}$$

if A outputs 0, it forces C to output 0, while if A outputs 1, C will have only 50% chance to output 1:

$$\{x_A: 0_{0.5}\} \models y_C: 0 \quad y_C: x_A: 0_{0.5} \models y_C: 0 \quad y_C: x_A: 0_{0.5} \models y_C: 1$$

$$\models y_C: x_A: 0_{0.5} \models y_C: 1$$

$$\{x_A: 1_{0.5}\} \models y_C: 1$$

$$\models y_C: x_A: 1_{0.5} \models y_C: 0_{1.05}$$

Note that here the total probability of C outputting $(0 + 1)$ is 1, but this is expressed under different conditions, namely of process A outputting either 0 or 1. While we cannot derive this, by inspection of the two derivation trees, we can select the probability of $\models y_C: x_A: 0_{0.5}$ in the leftmost branch of the first tree and the probability of $\models y_C: x_A: 1_{0.25}$ and compute the overall probability of C having output 0 when A has value $(0 + 1)$ is $(0.5 + 0.25) = 0.75$. Similarly, the probabilities of $\models y_C: x_A: 0_{1}$ and $\models y_C: x_A: 1_{1.25}$ gives us the overall probability of output 1 from C as $(0 + 0.25) = 0.25$. Note, however, that this computation is not derivable.

Now consider that B is also a “master” process in that it can decide to force “slave” process C: B has a 50% chance of generating output 1 and 50% chance of producing output 0:

$$x_B: 0_{0.5} \models x_B: 0_{0.5} \quad x_B: 1_{0.5} \models x_B: 1_{0.5}$$

$$\{x_B: 0_{0.5}, x_B: 1_{0.5}\} \models x_B: (0 + 1)_{0.5 + 0.5}$$

if B outputs 1, it forces C to output 0, while if B outputs 0, C will have only 50% chance to output 1:

$$\{x_B: 0_{0.5}\} \models y_C: 0$$

$$\models y_C: x_B: 0_{0.5} \models y_C: 0 \quad y_C: x_B: 0_{0.5} \models y_C: 1$$

$$\models y_C: x_B: 0_{0.5} \models y_C: 1$$

$$\{x_B: 1_{0.5}\} \models y_C: 1$$

$$\models y_C: x_B: 1_{0.5} \models y_C: 0$$
Note that here the total probability of C outputting $(0 + 1)$ is again 1, but this is expressed under different conditions, namely of process B outputting either 0 or 1. By inspection of the two derivation trees, we can select the probability of $\vdash y_C : [x_B : 1] : 0.5$ in the leftmost branch of the first tree and the probability of $\vdash y_C : [x_B : 0] : 0.25$ and compute the overall probability of output 0 as $(0.5 + 0.25) = 0.75$. Similarly, the probabilities of $\vdash y_C : [x_B : 1] : 1.0$ and $\vdash y_C : [x_B : 0] : 1.025$ gives us the overall probability of output 1 from C dependent from B is $(0 + 0.25) = 0.25$. Note, however, that this computation is not derivable.

In a similar vein, to compute the overall probability that $y_C = 0$ given $x_A = 1$ and $x_B = 1$, we can inspect the rightmost branch of the second of the previous two trees and the leftmost branch of the first of the two trees above: $(0.25 + 0.5) - 0.25 \cdot 0.5 = 0.625$. Or the overall probability that $y_C = 0$ given $x_A = 0$ and $x_B = 0$, inspecting the rightmost branch of the second of the previous two trees and the most branch of the first of the two trees above: $(0.5 + 0.25) - 0.25 \cdot 0.5 = 0.625$. Again, this computation is available by inspection of the derivation trees, but not directly derivable.

On the other hand, if we formulate y_C under the condition $x_A : (0 + 1)$ (respectively $x_B : (0 + 1)$), we can express the direct dependency of C having output $(0 + 1)$ deriving it from the two disjunct:

\[
\begin{align*}
\{x_A : 0.5, x_A : 1.0\} & \vdash x_A : (0 + 1)_1 & \{x_A : (0 + 1)_1\} & \vdash y_C : 0.75 & \{x_A : (0 + 1)_1\} & \vdash y_C : 1.025 \\
\{x_A : (0 + 1)_1\} & \vdash y_C : (0 + 1)_1 & \{x_A : 0.5, x_A : 1.0\} & \vdash x_A : (0 + 1)_1 & \{x_B : (0 + 1)_1\} & \vdash y_C : 0.75 & \{x_B : (0 + 1)_1\} & \vdash y_C : 1.025 \\
\{x_B : 0.5, x_B : 1.0\} & \vdash x_B : (0 + 1)_1 & \{x_B : (0 + 1)_1\} & \vdash y_C : 0.75 & \{x_B : (0 + 1)_1\} & \vdash y_C : 1.025 \\
\{x_B : (0 + 1)_1\} & \vdash y_C : (0 + 1)_1
\end{align*}
\]

The Contraction rule expresses a form of plausibility test on hypotheses. Consider a probability distribution Γ which includes more than one distinct hypothesis on the theoretical probability a of some process with output value α, on which the evaluation of an experiment t with output β with frequency f depends. The general case will be that Γ is unknown, so that for any output variable $\alpha \in \Gamma$, the entire set of possible probability values $[0, 1]$ is assigned. A contraction on such distribution is a function $\text{fun}[0, 1]$ which extracts one value $x_t : \alpha_0$. The function fun can be chosen at will; a sensible example is the Maximum Likelihood function $ML(a, a')$ which returns the value making the frequency f the most plausible as follows:
\[\Gamma, x_t : \alpha_n, x_t : \alpha_{a'} \vdash t_n : \alpha_f \]
\[\Gamma, x_t : \alpha_{ML(a,a')} \vdash t_n : \alpha_f \]

where \(ML(a,a') = \arg\max_{x \in \{a,a'\}} (x^T (1 - x)^{-\frac{T}{2}}) \).

Example 4.18 (Contraction). Let \(\Delta \) be the unknown distribution associated to a die \(d \) with possible outputs \(\{1, \ldots, 6\} \), i.e.:

\[
\begin{align*}
1 &:: output, \ldots, 6 &:: output \\
\Delta &:: distribution
\end{align*}
\]

Technically, \(\Delta \) could be re-written as the distribution which associates to each output \(1, \ldots, 6 \) the value \(r_0, \ldots, s_0 \). Consider now 10 throws of the die with sequence of outputs 1, 6, 6, 2, 6, 3, 4, 6, 1, 1. Then,

\[
\Delta \vdash d_{10} : 6_{4/10} \quad \text{sampling}
\]

Applying contractions multiple times can be abbreviated as follows:

\[
\Delta \vdash d_{10} : 6_{4/10} \\
\Delta \setminus \{x: 6_a | a \notin [0, 0.4) \cup (0.4, 1]\} \vdash d_{10} : 6_{4/10} \quad \text{Contraction}
\]

where the context in the conclusion denotes the set obtained by the unknown distribution in the premise, removing from it the declaration which assigns any probability different than 0.4 to \(x \) having output 6, i.e., \(\Delta \setminus \{x: 6_a | a \notin [0, 0.4) \cup (0.4, 1]\} = \{x: 1_{[0,1]}, x: 2_{[0,1]}, x: 3_{[0,1]}, x: 4_{[0,1]}, x: 5_{[0,1]}, x: 6_{0.4}\} \).

Example 4.19. Consider the distribution \(\Gamma \) representing a fair coin, i.e., with 50% probability of landing Heads when tossed. Assume \(\Delta \) expresses a coin which we know nothing about, i.e. \(\Delta \) is unknown, which when tossed 10 times lands Heads only once. Under the confidence range expressed by \([0.0025, 0.4450]\), the coin is untrustworthy.

\[
\Gamma, x : H_{0.5} :: distribution \\
\Delta \vdash c_{10} : H_{1/10} \\
0.5 \notin [0.0025, 0.4450] \quad \text{I} \rightarrow \text{T}
\]

We can now decide to assume the coin \(c \) to be biased with a probability of only 0.3 of landing Heads when tossed: this can be done by applying an appropriate instance of contraction. Under this new assumption, the result of 10 tosses of the coin landing Heads only once is trustworthy.

\[
\{x_c : H_{[0.1]}, \ldots, x_c : H_{[0.1]}\} \vdash c_{10} : H_{1/10} \\
x_c : H_{0.3} \vdash c_{10} : H_{1/10} \\
0.3 \in [0.0025, 0.4450] \quad \text{IT}
\]

33
Finally, the Cut rule is admissible as a detour of I→ and E→ rules when both the major and the minor premises result from sampling:

\[
\Delta, x : \alpha_a \vdash \beta_i \quad \Delta \vdash [x]f_n : (\alpha \to \beta)_{[a]}b \\
\Gamma \vdash u_n : \alpha \bar{a} \\
\Gamma, \Delta \vdash t_n, [u : \alpha] : \beta_{\alpha \bar{a} b}
\]

5 Meta-theory

Our meta-theoretical analysis aims at showing properties of computational terms with respect to expected behavior, as well as considering inference trees of TPTND to establish how logical rules behave with respect to inferring trustworthiness. Hence, a judgement \(\Gamma \vdash t_n : \alpha_f \) is considered in the light of the computational transformations formalized by the relation \(\vdash_p \) for an expression of the form \(t_n : \alpha_f \).

Our first step is to reduce expected probabilities when they depend on deterministic outputs. Deterministic substitution has the following meaning: consider a process \(t \) which has output \(\beta \) with expected probability \(\tilde{\beta} \), under the assumption of a variable having value of type \(\alpha \) with probability \(\alpha \); whenever output \(\alpha \) is deterministically obtained by a process \(u \), process \(t \) has output \(\beta \) with probability \(\tilde{\beta} \) under the condition that \(u \) is executed and \(\alpha \) is obtained.

Theorem 5.1 (Deterministic Substitution). If \(x : \alpha_a \vdash t : \beta_{\tilde{b}} \) and \(xu : \alpha_a \vdash u : \alpha \), then \(\vdash t.[u : \alpha] : \beta_{\tilde{b}u} \).

Proof. By structural induction on the antecedent of the first premise. To show the reduction to output \(\beta_{\tilde{b}} \), for each case of \(x : \alpha_a \) in the induction we first build the dependent term \([x]t : (\alpha \to \beta)_{[a]b} \), then consider the deterministic output \(u : \alpha \) in the second derivation and use it to infer the application \(t.[u : \alpha] : \beta_{[a]u \tilde{b}} \):

- For \(\alpha \) atomic, the case is immediate;
- For \(\alpha \equiv \gamma \times \delta \), there are terms \(\langle v, z \rangle \) obtained from independent distributions such that the following tree is a reduction to the base case (below we substitute theoretical probabilities \(d, g \) with value 1 for deterministic outputs):

\[
\frac{
x : \gamma, y : \delta \vdash t : \beta_{\tilde{b}} \quad xu : \gamma, y : \delta \vdash \langle v, z \rangle : (\gamma \times \delta) \quad xv : \gamma, y : \delta \vdash [x]t : (\gamma \to \beta)_{[a]b} \quad x : \gamma, y : \delta \vdash \text{fst}((v, z)) : \gamma \quad y : \delta \vdash \text{fst}((v, z)) : \gamma \vdash [a]t : (\gamma \to \beta)_{[a]b} \times y : \delta \vdash \text{snd}((v, z)) : \delta \\
}{\vdash t.[\text{fst}((v, z)) : \gamma] \text{fst}((v, z)) : \gamma \vdash \beta_{\tilde{b}} \quad x : \gamma, y : \delta \vdash \langle v, z \rangle : (\gamma \times \delta)}
\]

- For \(\alpha \equiv (\gamma + \delta) \) is a metavariable for the distribution of possible exclusive outputs of a given term \(u \). Then either \(u : \gamma_1 \) or \(u : \delta_1 \) (and respectively the other term has probability = 0); then use an additional assumption of type \(\theta \perp \) to select either one through \(E^+ \), and the base case applies.
For $\alpha \equiv \gamma \rightarrow \gamma$ (as an instance of the rule update with unary executions and deterministic outputs), there are terms $u \equiv [y]v$ and v such that the following tree is a reduction to the base case:

$$
\begin{array}{c}
\gamma : \gamma \rightarrow \gamma \vdash t : \beta_k \\
\vdash [y]t : ((\gamma \rightarrow \gamma) \rightarrow \beta)_k \\
\vdash t([x]v : \gamma \rightarrow \gamma) : \beta_k \\
x_v : \gamma \vdash t(v : (v : \gamma)) : \beta_k \\
x_v : \gamma \vdash t : \beta_k \\
x_v : \gamma \vdash t : \beta_k
\end{array}
$$

We consider the computational semantics of samplings to prove properties about frequencies and expected probabilities for such terms. Recall that a computational term t is said to probabilistically reduce to a term t_1 if t can be transformed into t_1 according to one of the rewriting rules from Figures 1, 2.

First, we show that for atomic terms obtained by applications of reduction rules in Figure 1, the value of the frequency of any given output approximates, in the limit, its expected probability.

Theorem 5.2. For any atomic term t such that $\Gamma, x : \alpha_a \vdash t_n : \alpha_a$, and sequence of reductions

$$
L_1, t_{n_0} : \alpha_f_0 \rightarrow \cdots \rightarrow L_m, t_{n_m} : \alpha_f_m \rightarrow \cdots
$$

with $n_0 < \cdots < n_m < \cdots$ that only contains event, sampling and update rule applications, let us define ν as the function such that $\nu(t) = f$. We have then that

$$
\lim_{m \to \infty} |a - \nu(m)| = 0
$$

with probability 1.

Proof. Let us define a random variable X with possible values 0 and 1 and expected value $E(X) = a$. A sequence of random variables X_1, \ldots, X_n then encodes the count of how many times an output of type α is obtained during an experiment consisting of n executions of the term t. The expected value $E(X) = a$ indeed exactly corresponds to the probability that an application of the event $\rightarrow t$ rule produces a typed term of the form $t : \alpha$ indicating that t yielded an output of type α. This is due to the fact that, since $x_1 : \alpha_a$ is in our context and our context is meant to formalize the behaviour of the process t, the event $\rightarrow t$ rule produces a typed term $t : \alpha$ with probability a.

Notice that a sequence X_1, \ldots, X_n such that $\frac{X_1 + \cdots + X_n}{n} = E(X) = a$ encodes a count of the number of outcomes of type α during an experiment consisting of n executions of t such that exactly a of the total outcomes was of type α.

In case all random variables X_1, \ldots, X_n have the same expected value $E(X)$, the strong law of large numbers states that

$$
\lim_{n \to \infty} \left(\frac{X_1 + \cdots + X_n}{n} \right) = E(X)
$$
with probability 1. This, hence, holds for any sequence X_1, \ldots, X_n of occurrences of the random variable X defined above.

Since

- each sequence X_1, \ldots, X_n such that $\frac{X_1 + \cdots + X_n}{n} = E(X) = a$ corresponds to an experiment consisting of n execution of t such that exactly a of the total outcomes was of type α,
- the closer $\frac{X_1 + \cdots + X_n}{n}$ gets to $E(X) = a$, the closer the frequency of outcomes of type α produced by the event $\text{rules applications}$ gets to the expected probability a,
- the value f_m of typed atomic terms of the form $t_m : \alpha f_m$ produced by term evaluation rules directly and exclusively depends on the frequency with which a term $t : \alpha$ is obtained by the event $\text{rules applications}$;

the strong law of large numbers implies that, with probability 1, for m approaching infinity, any reduction

$$L_1, t_{n_0} : \alpha f_0 \rightarrow \cdots \rightarrow L_m, t_{n_m} : \alpha f_m$$

with $n_0 < \cdots < n_m$ is such that f_m is closer and closer to a. Therefore, by definition of ν, we have

$$\lim_{m \to \infty} |a - \nu_t(m)| = 0$$

with probability 1.

Before closing this result under logical operations, let us introduce some standard notation.

Definition 5.3. By \Rightarrow^*, as per standard practice, we denote the reflexive and transitive closure of the \Rightarrow relation.

We can now close Theorem 5.2 under those logical operations which are related to the reduction rules in Figure 2.

Theorem 5.4. For any term t such that $\Gamma \vdash t_{n_0} : \alpha f_0$ and $\Gamma \vdash t_{n_0} : \alpha \tilde{a}$ and sequence of reductions

$$L_1, t_{n_0} : \alpha f_0 \rightarrow^* \cdots \rightarrow^* L_m, t_{n_m} : \alpha f_m \rightarrow^* \cdots$$

with $n_0 < \cdots < n_m < \cdots$, let us define ν as the function such that $\nu_t(m) = f_m$ (where, if f_m contains sub-expressions $[\alpha]$ related to \rightarrow types, we ignore them). We have then that

$$\lim_{m \to \infty} |a - \nu_t(m)| = 0$$

with probability 1.
Proof. Since the subscript of t increases at the displayed steps of the reduction sequence

$$L_1, t_{n_0} : \alpha_f \rightarrow \ast \cdots \rightarrow \ast L_m, t_{n_m} : \alpha_f \rightarrow \ast \ldots$$

we have that the atomic terms occurring in $t_{n_0}, \ldots, t_{n_m}, \ldots$ occur with increasing subscripts themselves when they occur as typed terms during our reduction. Notice that the increase in the subscript of t cannot be exclusively due to $\Gamma^- \times$ rule applications since the type of t is always the same at the displayed reduction steps (even though it might change at the non-displayed steps, during which, potentially, logical operation rules of elimination and introduction are applied). Since the atomic terms occurring in $t_{n_0}, \ldots, t_{n_m}, \ldots$ have increasing subscripts themselves when they occur as typed terms in our reduction, Theorem 5.2 guarantees that the frequencies expressed by these atomic terms when typed tends, for the subscripts of the terms increasing to infinity, to have difference 0 with respect to the expected probability of the types of these atomic terms. By induction on the structure of the type of α, we show that if the frequency expressed by the atomic terms occurring in $t_{m_0}, \ldots, t_{m_n}, \ldots$ when they occur as typed terms tend to have difference 0 with respect to the expected probability of their types, then the frequencies $f_{0}, \ldots, f_{m_n} \ldots$ expressed by the typed terms $t_{m_0} : \alpha_f, \ldots, t_{m_n} : \alpha_f \ldots$ tends to have difference 0 with respect to the expected probability a of t yielding α as output.

Let us reason by induction on the type α.

If α is atomic, then $t_m : \alpha_f$ is atomic, and our hypothesis on the atomic terms occurring in $t_{n_0}, \ldots, t_{n_m}, \ldots$ directly gives us what we need to prove.

Suppose then that for any typed term occurrence obtained by less than r term evaluation rule applications corresponding to logical operations the statement holds, we prove that it holds also for any typed term occurrence obtained by r term evaluation rule applications corresponding to logical operations.

We reason on the rth term evaluation rule applied to obtain the considered term.

- If the term has been obtained by $\Gamma^- \times$, then $t_m : (\beta^0 + \beta^1)_{f}$ and, by inductive hypothesis, the statement holds for both occurrences $t_m : \beta^0_{g_0}$ and $t_m : \beta^1_{b_1}$ from which $t_m : (\beta^0 + \beta^1)_{f}$ has been produced by $\Gamma^- \times$, with respect to the expected probabilities b_0 and b_1 such that $\Gamma \vdash t_m : \beta^0_{b_0}$ and $\Gamma \vdash t_m : \beta^1_{b_1}$. Since $\Gamma \vdash t_m : (\beta^0 + \beta^1)_{b_0 \uplus b_1}$ and $t_m : (\beta^0 + \beta^1)_{f}$ for $f = g_0 + g_1$, we have that the statement holds also for $t_m : (\beta^0 + \beta^1)_{f}$.

- If the term has been obtained by $\Gamma^- \times$, then there must be two subterms t^0, t^1 of $t_m : (\beta_0 \times \beta_1)_{f}$ such that $t^0_p : \beta^0_{g_0}, t^1_q : \beta^1_{g_1}$ and $t_m : \alpha_f = \langle t_0, t_1 \rangle_p : (\beta_0 \times \beta_1)_{g_0 \uplus g_1}$. By inductive hypothesis, the statement holds for both occurrences $t^0_p : \beta^0_{g_0}$ and $t^1_q : \beta^1_{g_1}$ with respect to the expected probabilities b_0 and b_1 such that $\Gamma \vdash x_{t_0} : \beta^0_{b_0}$ and $\Gamma \vdash x_{t_1} : \beta^1_{b_1}$. Since $\Gamma \vdash \langle t_0, t_1 \rangle_p : (\beta_0 \times \beta_1)_{g_0 \uplus g_1}$, we have that the statement holds also for $t_m : \alpha_f$.

37
• If the term has been obtained by $\Gamma \vdash \alpha$, then the term is $t_m : (\beta \rightarrow \beta) f$ and there must be a subterm t^i of it such that $t^i_m : \beta^i_{g_1}$ and $t_m : \alpha_f = [x_u]t^i : (\beta \rightarrow \beta)_{[b_0]^{g_1} g_i}$. By inductive hypothesis, the statement holds for the occurrence $t^i_m : \beta^i_{g_1}$ with respect to the expected probability b_1 such that $\Gamma \vdash t^i_m : \beta^i_{g_1}$. Since $\Gamma \vdash t^i_m : (\beta \rightarrow \beta)_{[b_0]^{g_1} g_i}$ and $t_m : \alpha_f = [x_u]t^i : (\beta \rightarrow \beta)_{[b_0]^{g_1} g_i}$, we have that the statement holds also for $t_m : \alpha_f$. Notice that the sub-expression $[b_0]$ is ignored for the purpose of computing the difference between $[b_0]g_1$ and $[b_0]b_1$.

• If the term has been obtained by $E^\rightarrow + L$, then the term is $t_m : \alpha_{f_1 - f_2}$. By inductive hypothesis, the statement holds for the term $t_m : \alpha_{f_1}$, from which $t_m : \alpha_{f_2}$ has been obtained by $E^\rightarrow + L$, with respect to the expected probability b_1 such that $\Gamma \vdash t_m : (\alpha + \beta)_{b_1}$ and the statement holds for the term $t_m : \beta_{f_2}$ (the premise of the $E^\rightarrow + L$ application used to obtain the term, which can be obtained with two less term evaluation rule applications than $t_m : \alpha_{f_1 - f_2}$) with respect to the expected probability b_2 such that $\Gamma \vdash t_m : \beta_{b_2}$. Since $\Gamma \vdash x_t : \alpha_{b_1 - b_2}$, we have that the statement holds also for $t_m : \alpha_{f_1 - f_2}$.

• The case of $E^\rightarrow + R$ is analogous.

• If the term has been obtained by $E^\rightarrow \times L$, then the term is $\text{fst}(t)_m : \alpha_{f_1} / f_2$. By inductive hypothesis, the statement holds for the term $t_m : \alpha_{f_1}$, from which $\text{fst}(t)_m$ has been obtained by $E^\rightarrow \times L$, with respect to the expected probability b_1 such that $\Gamma \vdash \text{fst}(t), u_m : (\alpha \times \beta)_{b_1}$ and the statement holds for the term $u_m : \beta_{f_2}$ (the premise of the $E^\rightarrow \times L$ application used to obtain the term, which can be obtained with two less term evaluation rule applications than $\text{fst}(t)_m : \alpha_{f_1 - f_2}$) with respect to the expected probability b_2 such that $\Gamma \vdash u_m : \beta_{b_2}$. Since $\Gamma \vdash \text{fst}(t)_m : \alpha_{b_1 - b_2}$, we have that the statement holds also for $\text{fst}(t)_m : \alpha_{f_1 - f_2}$.

• The case of $E^\rightarrow \times R$ is analogous.

• If the term has been obtained by $E^\rightarrow \rightarrow$, then the term is $t_m, [u_m : \beta] : \alpha_{f_2 - f_1}$. By inductive hypothesis, the statement holds for the terms from which $t_m, [u_m : \beta]$ has been obtained by $E^\rightarrow \rightarrow$, that is, $u_m : \beta_{f_2}$ with respect to the expected probability b_2 such that $\Gamma \vdash x_u : \beta_{b_2}$ and the term $[x_u]t_m, [\beta \rightarrow \alpha]_{[b_2]_{f_1}}$ with respect to $\Gamma \vdash [x_u]t_m, [\beta \rightarrow \alpha]_{[b_2]_{f_1}}$. Since $\Gamma \vdash t_m, [x_u : \beta] : \alpha_{b_2 - b_1}$, we have that the statement holds also for $t_m, [u_m : \beta] : \alpha_{f_2 - f_1}$.

Now we show after which reductions the distance of the frequency from the theoretical probability of the term does not increase:

Theorem 5.5 (Output Preservation). Consider any number ε and term evaluation reduction $L, t_1, \ldots, t_r \rightarrow L, u'$ resulting from an application of $\Gamma \rightarrow$, $E^\rightarrow +$, $E^\rightarrow \times$ or $E^\rightarrow \rightarrow$. If, for any $i \in \{1, \ldots, r + 1\}$, the following hold:

38
• t^{i+1}, if any, is the premise of the rule applied,
• $t^{i'} = t^{i}_{m} : \beta^{i}$,
• the judgements $\Gamma \vdash t^{i}_{m} : \alpha^{i}_{a}$, and $\Gamma \vdash t^{i}_{m} : \alpha^{i}_{f}$, are derivable, and
• $|f^{i} - a^{i}| < \varepsilon$,
then the following hold as well:
• $u' = u_{m} : \beta_{g}$,
• $\Gamma \vdash u_{m} : \beta_{b}$ and
• $|g - b| < \varepsilon$.

Proof. We reason by case on the term evaluation rule applied to obtain $u' = u_{m} : \beta_{g}$ and show that the statement holds.

• Suppose that $u' = u_{m} : \beta_{g}$ has been obtained by E^{\rightarrow}. Then $t^{i'} = t_{n} : (\beta + \alpha^{2})_{g + f^{2}}$ where $\alpha^{i}_{f} = (\beta + \alpha^{2})_{g + f^{2}}$. By the hypotheses on the terms to which we have applied the rule and on the premises of the rule applied, we have $(g + f^{2}) - (b + a^{2}) < \varepsilon$ since $b + a^{2} = a^{1}$, and $|f^{2} - a^{2}| < \varepsilon$. But then it follows that $|g - b| < \varepsilon$, as desired.

The symmetric case is analogous.

• Suppose that $u' = u_{m} : \beta_{g} = \langle t^{1}, t^{2} \rangle_{m} : (\alpha^{1} \times \alpha^{2})_{f^{1} \cdot f^{2}}$ has been obtained by $\Gamma^{\rightarrow} \times$. Then, by the hypotheses on the terms to which we have applied the rule, we have $|f^{1} - a^{1}| < \varepsilon$ and $|f^{2} - a^{2}| < \varepsilon$, which imply that $|f^{1} \cdot f^{2} - (a^{1} \cdot a^{2})| < \varepsilon$. Since $f^{1} \cdot f^{2} = g$ and $a^{1} \cdot a^{2} = b$, we have that $|g - b| < \varepsilon$, as desired.

• Suppose that $u' = u_{m} : \beta_{g} = [y_{i}]t_{n}^{i} : (\gamma \rightarrow \alpha^{1})_{[c]_{f^{1}}}$, for some term s, type γ and number c, has been obtained by $\Gamma^{\rightarrow} \rightarrow$. Then, by the hypotheses on the term to which we have applied the rule, we have $|f^{1} - a^{1}| < \varepsilon$. Since $f^{1} = g$ and $a^{1} = b$, we have that $|g - b| < \varepsilon$, as desired. Notice that the sub-expression $[c]$ is ignored for the purpose of computing the difference between $[c]f^{1} \times [c]a^{1}$.

• Suppose that $u' = u_{m} : \beta_{g} = s_{n1} : [z_{f^{2} = c} \circ \gamma f^{2} : \alpha^{2}][s_{f^{2} = c} : \gamma f^{2} : \alpha^{2}]_{c}$ has been obtained by $E^{\rightarrow} \rightarrow$. Then, we have that $t_{n}^{i} : \alpha^{i}_{f} = [y_{i}z]s_{n}^{1} : (\alpha^{2} \rightarrow \gamma)[a^{2}c]_{c}$, where γ is a type and c is a frequency. Hence, by the hypotheses on the terms to which we have applied the rule, we have that $|f^{2} - a^{2}| < \varepsilon$ and that $|c - a^{1}| < \varepsilon$. The latter inequality derives indeed from the fact that $f^{1} = [a^{2}c]$ and that, as usual, we ignore the sub-expressions between square brackets in the compute of the difference between frequencies and theoretical probabilities. By putting everything together, we obtain that $|(f^{2} \cdot c) - (a^{2} \cdot a^{1})| \leq \max(|f^{2} - a^{2}|, |c - a^{1}|) < \varepsilon$. Now, by the local hypotheses on the form of $u_{m} : \beta_{g}$, we have that $g = f^{2} \cdot c$. On the other
hand, since b is the theoretical probability associated to the frequency g in $u_m : \beta_g$ and since $u_m : \beta_g$ is obtained by applying $t_{n_1}^1 : \alpha_f^1$ to $t_{n_2}^2 : \alpha_f^2$, which have, respectively, associated theoretical probability a^1 and a^2, then $b = a^2 \cdot a^1$. But then, by $g = f^2 \cdot c$ and $b = a^2 \cdot a^1$, we can conclude that $|g - b| = |(f^2 \cdot c) - (a^2 \cdot a^1)|$, which, concatenated with the inequality above yields $|g - b| < \varepsilon$, as desired.

\[\square\]

Theorem 5.6 (Subject reduction). If $\mathcal{L} \rightarrow \mathcal{L}'$ by an application of a term evaluation rule r with premises belonging to Π and, for any $t_n : \alpha_f \in \mathcal{L} \cup \Pi$, it holds that $\Gamma \vdash t_n : \alpha_f$; then, for any $u_m : \beta_g \in \mathcal{L}'$, it holds that $\Gamma \vdash u_m : \beta_g$.

Proof. Now, any term evaluation rule application that does not concern any introduction or elimination of occurrences of \times, \rightarrow or \rightarrow can be easily simulated by one application of the sampling rule in Figure 6. Let us then consider the case in which a term evaluation rule corresponding to a logical operation is applied. Let us denote by R^+ the rule applied. Notice first that any term evaluation rule corresponding to a logical operation is completely analogous to one rule for the introduction or elimination of \times or \rightarrow in Figure 5. Hence, let us denote by R^+ the rule in Figure 5 corresponding to R^+.

Clearly, it is impossible to directly simulate the term evaluation step obtained by R^+ by an application of R^+ since this rule, being it a single experiment deduction rule, cannot be applied to judgements of the form $\Gamma \vdash t_n : \alpha_f$ where f is a frequency. Nevertheless, notice that any derivation δ with conclusion $\Gamma \vdash t_n : \alpha_f$ must consist of upper parts only containing applications of single experiment deduction rules in Figure 5 and then a lower part only containing sampling and update rules (Figure 5). Indeed, the rules for sampling and update are necessary for deriving a conclusion of the form $\Gamma \vdash t_n : \alpha_f$, but it is impossible to apply single experiment rules to the conclusions of applications of the rules for sampling and update. Let us denote by $\delta_1, \ldots, \delta_n$ all largest subderivations of δ that do not contain any sampling or update rule applications and notice that the conclusion of δ will contain the same types and terms as the conclusions of $\delta_1, \ldots, \delta_n$, since sampling and update rules never change any type or the structure of any term.

Now, in order to derive $u_m : \beta_g \Gamma \vdash$, for any $u_m : \beta_g \in \mathcal{L}'$, it is enough to apply R^+ to the conclusions of some of the sub-derivations $\delta_1, \ldots, \delta_n$ of the derivation δ of $\Gamma \vdash t_n : \alpha_f$ to obtain a derivation of $\Gamma \vdash u_m : \beta_g$. Afterwards, we can apply the sampling rule to suitably chosen premises in order to derive $\Gamma \vdash u_m : \beta_g$ with the desired frequency g.

\[\square\]

Corollary 5.7. For any term evaluation reduction $\mathcal{L}, t^1', \ldots, t'^r \rightarrow \mathcal{L}, u'$ resulting from a application of $\Gamma^+ \rightarrow$, $\Gamma^+\times$, $\Gamma^+\times$ or $\Gamma^+\times \rightarrow$; if, for any $i \in$
{1, ..., r, r + 1} where \(t^{r+1} \) is the eventual premise of the rule applied, \(t'' = t''_{n_i} : \beta_f^{j_i} \), if \(\Gamma \vdash \text{Trust}(t''_{n_i} : \alpha_i^{j_i}) \) is derivable, then \(\Gamma \vdash \text{Trust}(u_m : \beta_g) \) where \(u' = u_m : \beta_g \).

Proof. Suppose that \(\mathcal{L}, t^1, \ldots , t'' \rightarrow \mathcal{L}, u' \), where all terms involved comply with the hypotheses of our statement, and that \(\Gamma \vdash \text{Trust}(t''_{n_i} : \alpha_i^{j_i}) \) is derivable. Then, by the definition of the IT rule in Figure 9 we know that there is a number \(\epsilon(n') \) such that \(\Gamma \vdash x_i : \alpha_i^{j_i} \), for \(\Gamma \vdash t''_{n_i} : \alpha_i^{j_i} \), with \(a^i \) sufficiently close to \(a_i \), and \(\Gamma \vdash t''_{n_i} : \alpha_i^{j_i} \) and, finally, \(|a - f| \leq \epsilon(n') \). But then, by Theorem 5.5 we have that, for \(u' = u_m : \beta_g \), both \(\Gamma \vdash u_m : \beta_g \) and \(|g - b| < \epsilon(m) \) hold since \(m = n' \) holds for the rules that we are considering. Moreover, by Theorem 5.6 we have that \(\Gamma \vdash u_m : \beta_g \). Hence, by the definition of the IT rule in Figure 9 we can conclude that \(\Gamma \vdash \text{Trust}(u_m : \beta_g) \) where \(u' = u_m : \beta_g \).

Finally: if a long-enough sequence of reductions occur, then a process will eventually be identified as trustworthy; else, the process remains untrustworthy. We make this explicit by the following final result:

Theorem 5.8 (Progress). If \(\Gamma, x : \beta_n \vdash t_n : \beta_f \) and \(\epsilon = \epsilon(n) > 0 \), then either it exists \(t_{n+m} : \beta_f \), such that \(t_n : \beta_f \rightarrow^* t_{n+m} : \beta_f \), for \(m \geq 0 \), and \(\Gamma \vdash \text{Trust}(t_{n+m} : \beta_f') \), or \(t_n : \beta_f \) is untrustworthy.

Proof. If \(\Gamma \vdash t_n : \beta_f \) and \(|a - b| \leq \epsilon = \epsilon(n) > 0 \) (where \(\epsilon(n) \) is the parametric threshold introduced in Section 4.7), then Theorems 5.3 and 5.6 along with the definition of the IT rule in Figure 9 guarantee that there exists \(m \geq 0 \) such that \(t_n : \beta_f \rightarrow^* t_{n+m} : \beta_f' \) and \(\Gamma \vdash \text{Trust}(t_{n+m} : \beta_f') \).

If, otherwise, \(\Gamma \vdash t_n : \beta_f \) and \(|a - b| > \epsilon = \epsilon(n) > 0 \), then Theorems 5.4 and 5.6 along with the definition of the IUT rule in Figure 9 guarantee that there exists \(m \geq 0 \) such that \(t_n : \beta_f \rightarrow^* t_{n+m} : \beta_f' \) and \(\Gamma \vdash \text{UTrust}(t_{n+m} : \beta_f') \), which means that the term \(u \) in untrustworthy.

\(\Box \)

6 Conclusion and future work

We introduced TPTND, a typed natural deduction system whose judgements express the derivability of probabilistic values for random variables, terms for processes decorated by a sample size and types for output values. The intended interpretation of such judgements is to assert the validity of the probabilistic output expected for a given process under a probability distribution.

The main use of such a calculus is the evaluation of trustworthy probabilistic computations: trustworthiness is here intended as a property induced by an acceptable distance between output frequency and its theoretical probability, parametric with respect to the sample size under observation. Such notion of trustworthiness can be used to evaluate opaque distributions against intended or desirable models, e.g., in the context of Machine Learning systems. Conditions
for trustworthiness are made explicit in TPTND by a safety result, defining the required structure of a TPTND derivation by rules which determine trust in the probability of a given output.

Several extensions of this work are planned, or have already been made. First, the language of TPTND can be extended with properties of the probability distributions in order to introduce bias, and the corresponding metric on trustworthiness can be adapted accordingly as in Primiero and D’Asaro, 2022. Moreover, imprecise probabilities can be added to model uncertainty further in the model under observation. Also, a subtyping relation can be formulated to identify classification partitions. Second, the computational semantics for the typed terms of TPTND proposed in Genco and Primiero, 2023 can represent the basis for the development of a Coq verification protocol for probabilistic trustworthy computations, extending the existing protocol for trust presented in Primiero and Boender, 2018 with one of the available Coq libraries for probabilistic reasoning, e.g., https://github.com/jtassarotti/polaris. A variation of TPTND can be devised for modelling processes with finite resources for experiments: in this format, safety can rely on a normal form for terms which is reached after a fixed number of possible experiments. Finally, relational and state transition semantics for this system are also being investigated.

Acknowledgments

All authors thankfully acknowledge the support of the Italian Ministry of University and Research through the projects PRIN2017 n. 20173YP4N3 and PRIN2020 n. 2020SSKZ7R (BRIO - Bias, Risk and Opacity in AI). Fabio Aurelio D’Asaro acknowledges the funding and support of PON “Ricerca e Innovazione” 2014-2020 (PON R&I FSE-REACT EU), Azione IV.6 “Contratti di ricerca su tematiche Green” in the context of the project titled “Il miglioramento dell’algoritmico fairness in ambito assicurativo: Un’analisi concettuale a partire da uno studio di caso”. Francesco Genco and Giuseppe Primiero further acknowledge the support of the Italian Ministry of University and Research through the Project “Departments of Excellence 2023-2027” awarded to the Department of Philosophy “Piero Martinetti”.

References

Robin Adams and Bart Jacobs. A type theory for probabilistic and bayesian reasoning. In Tarmo Uustalu, editor, 21st International Conference on Types for Proofs and Programs,TYPES 2015, May 18-21, 2015, Tallinn, Estonia, volume 69 of LIPIcs, pages 1:1–1:34. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi: 10.4230/LIPIcs.TYPES.2015.1. URL https://doi.org/10.4230/LIPIcs.TYPES.2015.1

Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori. Fairsquare: Probabilistic verification of program fairness. Proc. ACM
Alessandro Aldini. Design and verification of trusted collective adaptive systems. *ACM Trans. Model. Comput. Simul.*, 28(2):9:1–9:27, 2018. doi: 10.1145/3155337. URL https://doi.org/10.1145/3155337.

Alessandro Aldini and Mirko Tagliaferri. Logics to reason formally about trust computation and manipulation. In Andrea Saracino and Paolo Mori, editors, *Emerging Technologies for Authorization and Authentication - Second International Workshop, ETAA 2019, Luxembourg City, Luxembourg, September 27, 2019, Proceedings*, volume 11967 of *Lecture Notes in Computer Science*, pages 1–15. Springer, 2019. ISBN 978-3-030-39748-7. doi: 10.1007/978-3-030-39749-4_1. URL https://doi.org/10.1007/978-3-030-39749-4_1.

Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic verification of embedded systems. *IEEE Trans. Softw. Eng.*, 22(3):181–201, mar 1996. ISSN 0098-5589. doi: 10.1109/32.489079. URL https://doi.org/10.1109/32.489079.

Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana S. Scott. Boolean-valued semantics for the stochastic λ-calculus. In Anuj Dawar and Erich Grädel, editors, *Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018*, pages 669–678. ACM, 2018. doi: 10.1145/3209108.3209175. URL https://doi.org/10.1145/3209108.3209175.

Jaap Boender, Giuseppe Primiero, and Franco Raimondi. Minimizing transitive trust threats in software management systems. In Ali A. Ghorbani, Vicenç Torra, Hüseyin Hisil, Ali Miri, Ahmet Koltuksuz, Jie Zhang, Murat Sensoy, Joaquín García-Alfaro, and Ibrahim Zincir, editors, *13th Annual Conference on Privacy, Security and Trust, PST 2015, İzmir, Turkey, July 21-23, 2015*, pages 191–198. IEEE Computer Society, 2015. ISBN 978-1-4673-7828-4. doi: 10.1109/PST.2015.7232973. URL https://doi.org/10.1109/PST.2015.7232973.

Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. A lambda-calculus foundation for universal probabilistic programming. In Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, *Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016*, pages 33–46. ACM, 2016. ISBN 978-1-4503-4219-3. doi: 10.1145/2951913.2951942. URL https://doi.org/10.1145/2951913.2951942.

Marija Boričić. Inference rules for probability logic. *Publications de l’Institut Mathématique*, 100(114):77–86, 2016.
Marija Boričić. Suppes-style sequent calculus for probability logic. *Journal of Logic and Computation*, 27(4):1157–1168, 2017.

Marija Boričić. Sequent calculus for classical logic probabilized. *Archive for Mathematical Logic*, 58(1-2):119–136, 2019.

Davide Ceolin and Giuseppe Primiero. A granular approach to source trustworthiness for negative trust assessment. In Weizhi Meng, Piotr Cofta, Christian Damsgaard Jensen, and Tyrone Grandison, editors, *Trust Management XIII - 13th IFIP WG 11.11 International Conference, IFIPTM 2019, Copenhagen, Denmark, July 17-19, 2019, Proceedings*, volume 563 of *IFIP Advances in Information and Communication Technology*, pages 108–121. Springer, 2019. ISBN 978-3-030-33715-5. doi: 10.1007/978-3-030-33716-2_9. URL https://doi.org/10.1007/978-3-030-33716-2_9.

Davide Ceolin, Francesca Doneda, and Giuseppe Primiero. Computable trustworthiness ranking of medical experts in Italy during the SARS-CoV-19 pandemic. In Ombretta Gaggi, Pietro Manzoni, and Claudio E. Palazzi, editors, *GoodIT '21: Conference on Information Technology for Social Good, Roma, Italy, September 9-11, 2021*, pages 271–276. ACM, 2021. doi: 10.1145/3462203.3475907. URL https://doi.org/10.1145/3462203.3475907.

Byron Cook. Formal reasoning about the security of Amazon web services. In Hana Chockler and Georg Weissenbacher, editors, *Computer Aided Verification*, pages 38–47, Cham, 2018. Springer International Publishing. ISBN 978-3-319-96145-3.

Fredrik Dahlqvist and Dexter Kozen. Semantics of higher-order probabilistic programs with conditioning. *Proc. ACM Program. Lang.*, 4(POPL):57:1–57:29, 2020. doi: 10.1145/3371125. URL https://doi.org/10.1145/3371125.

Fabio Aurelio D’Asaro and Giuseppe Primiero. Probabilistic typed natural deduction for trustworthy computations. In Dongxia Wang, Rino Falcone, and Jie Zhang, editors, *Proceedings of the 22nd International Workshop on Trust in Agent Societies (TRUST 2021) Co-located with the 20th International Conferences on Autonomous Agents and Multiagent Systems (AAMAS 2021), London, UK, May 3-7, 2021*, volume 3022 of *CEUR Workshop Proceedings*. CEUR-WS.org, 2021. URL http://ceur-ws.org/Vol-3022/paper3.pdf.

Pedro H. Azevedo de Amorim, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Michael Roberts. Universal semantics for the stochastic λ-calculus. In *36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021*, pages 1–12. IEEE, 2021. ISBN 978-1-6654-4895-6. doi: 10.1109/LICS52264.2021.9470747. URL https://doi.org/10.1109/LICS52264.2021.9470747.

Robert Demolombe. Reasoning about trust: A formal logical framework. In Christian Damsgaard Jensen, Stefan Poslad, and Theodosis...
Dimitrakos, editors, *Trust Management, Second International Conference, iTrust 2004, Oxford, UK, March 29 - April 1, 2004, Proceedings*, volume 2995 of *Lecture Notes in Computer Science*, pages 291–303. Springer, 2004. ISBN 3-540-21312-0. doi: 10.1007/978-3-540-24747-0_22. URL https://doi.org/10.1007/978-3-540-24747-0_22

Alessandra Di Pierro. A type theory for probabilistic–calculus. In *From Lambda Calculus to Cybersecurity Through Program Analysis: Essays Dedicated to Chris Hankin on the Occasion of His Retirement*, pages 86–102. Springer, 2020.

Nagat Drawel, Jamal Bentahar, and Elhadi M. Shakshuki. Reasoning about trust and time in a system of agents. In Elhadi M. Shakshuki, editor, *The 8th International Conference on Ambient Systems, Networks and Technologies (ANT 2017) / The 7th International Conference on Sustainable Energy Information Technology (SEIT 2017)*, 16-19 May 2017, Madeira, Portugal, volume 109 of *Procedia Computer Science*, pages 632–639. Elsevier, 2017. doi: 10.1016/j.procs.2017.05.369. URL https://doi.org/10.1016/j.procs.2017.05.369

Nagat Drawel, Hongyang Qu, Jamal Bentahar, and Elhadi M. Shakshuki. Specification and automatic verification of trust-based multi-agent systems. *Future Gener. Comput. Syst.*, 107:1047–1060, 2020. doi: 10.1016/j.future.2018.01.040. URL https://doi.org/10.1016/j.future.2018.01.040

Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. Verifai: A toolkit for the design and analysis of artificial intelligence-based systems, 2019.

Qitong Gao, Davood Hajinezhad, Yan Zhang, Yiannis Kantaros, and Michael M. Zavlanos. Reduced variance deep reinforcement learning with temporal logic specifications. In *Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems*, ICCPS ’19, pages 237–248, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362856. doi: 10.1145/3302509.3311053. URL https://doi.org/10.1145/3302509.3311053

Francesco A. Genco and Giuseppe Primiero. A typed lambda-calculus for establishing trust in probabilistic programs. *CoRR*, abs/2302.00958, 2023. doi: 10.48550/arXiv.2302.00958. URL https://doi.org/10.48550/arXiv.2302.00958

Silvia Ghilezan, Jelena Ivetić, Simona Kašterović, Zoran Ognjanović, and Nenad Savić. Probabilistic reasoning about simply typed lambda terms. In *International Symposium on Logical Foundations of Computer Science*, pages 170–189. Springer, 2018.

J. Harrison. Formal verification at intel. In *18th Annual IEEE Symposium of Logic in Computer Science, 2003*, pages 45–54, 2003. doi: 10.1109/LICS.2003.1210044.
Andreas Herzig, Emiliano Lorini, Jomi Fred Hübner, and Laurent Veroult. A logic of trust and reputation. *Log. J. IGPL*, 18(1):214–244, 2010. doi: 10.1093/jigpal/jzp077. URL https://doi.org/10.1093/jigpal/jzp077.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilistic symbolic model checker. In *Proceedings of the 12th International Conference on Computer Performance Evaluation, Modelling Techniques and Tools*, TOOLS ’02, pages 200–204, Berlin, Heidelberg, 2002. Springer-Verlag. ISBN 3540435395.

Churn-Jung Liau. Belief, information acquisition, and trust in multi-agent systems—a modal logic formulation. *Artif. Intell.*, 149(1):31–60, 2003. doi: 10.1016/S0004-3702(03)00063-8. URL https://doi.org/10.1016/S0004-3702(03)00063-8.

Fenrong Liu and Emiliano Lorini. Reasoning about belief, evidence and trust in a multi-agent setting. In Bo An, Ana L. C. Bazzan, João Leite, Serena Villata, and Leendert W. N. van der Torre, editors, *PRIMA 2017: Principles and Practice of Multi-Agent Systems - 20th International Conference, Nice, France, October 30 - November 3, 2017, Proceedings*, volume 10621 of *Lecture Notes in Computer Science*, pages 71–89. Springer, 2017. ISBN 978-3-319-69130-5. doi: 10.1007/978-3-319-69131-2_5. URL https://doi.org/10.1007/978-3-319-69131-2_5.

Giuseppe Primiero. A logic of negative trust. *J. Appl. Non Class. Logics*, 30(3):193–222, 2020. doi: 10.1080/11663081.2020.1789404. URL https://doi.org/10.1080/11663081.2020.1789404.

Giuseppe Primiero and Jaap Boender. Managing software uninstall with negative trust. In Jan-Philipp Steghöfer and Babak Esfandiari, editors, *Trust Management XI - 11th IFIP WG 11.11 International Conference, IFIPTM 2017, Gothenburg, Sweden, June 12-16, 2017, Proceedings*, volume 505 of *IFIP Advances in Information and Communication Technology*, pages 79–93. Springer, 2017. ISBN 978-3-319-59170-4. doi: 10.1007/978-3-319-59171-1_7. URL https://doi.org/10.1007/978-3-319-59171-1_7.

Giuseppe Primiero and Jaap Boender. Negative trust for conflict resolution in software management. *Web Intell.*, 16(4):251–271, 2018. doi: 10.3233/WEB-180393. URL https://doi.org/10.3233/WEB-180393.

Giuseppe Primiero and Fabio Aurelio D’Asaro. Proof-checking bias in labeling methods. In Guido Boella, Fabio Aurelio D’Asaro, Abeer Dyoub, and Giuseppe Primiero, editors, *Proceedings of 1st Workshop on Bias, Ethical AI, Explainability and the Role of Logic and Logic Programming (BEWARE 2022) co-located with the 21th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2022)*, Udine, Italy, December 2, 2022, volume 3319 of *CEUR Workshop Proceedings*, pages 9–19. CEUR-WS.org, 2022. URL https://ceur-ws.org/Vol-3319/paper1.pdf.
Giuseppe Primiero, Franco Raimondi, Taolue Chen, and Rajagopal Nagarajan. A proof-theoretic trust and reputation model for VANET. In 2017 IEEE European Symposium on Security and Privacy Workshops, EuroS&P Workshops 2017, Paris, France, April 26-28, 2017, pages 146–152. IEEE, 2017. ISBN 978-1-5386-2244-5. doi: 10.1109/EuroSPW.2017.64. URL https://doi.org/10.1109/EuroSPW.2017.64

Sanjit A. Seshia, Ankush Desai, Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Sumukh Shivakumar, Marcell Vazquez-Chanalatte, and Xiangyu Yue. Formal specification for deep neural networks. In Shuvendu K. Lahiri and Chao Wang, editors, Automated Technology for Verification and Analysis, pages 20–34, Cham, 2018. Springer International Publishing.

Munindar P. Singh. Trust as dependence: a logical approach. In Liz Sonenberg, Peter Stone, Kagan Tumer, and Pinar Yolum, editors, 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, May 2-6, 2011, Volume 1-3, pages 863–870. IFAAMAS, 2011. ISBN 978-0-9826571-5-7. URL http://portal.acm.org/citation.cfm?id=2031741&CFID=54178199&CFTOKEN=61392764

Alberto Termine, Alessandro Antonucci, Giuseppe Primiero, and Alessandro Facchini. Logic and model checking by imprecise probabilistic interpreted systems. In Ariel Rosenfeld and Nimrod Talmon, editors, Multi-Agent Systems - 18th European Conference, EUMAS 2021, Virtual Event, June 28-29, 2021, Revised Selected Papers, volume 12802 of Lecture Notes in Computer Science, pages 211–227. Springer, 2021a. ISBN 978-3-030-82253-8. doi: 10.1007/978-3-030-82254-5_13. URL https://doi.org/10.1007/978-3-030-82254-5_13

Alberto Termine, Giuseppe Primiero, and Fabio Aurelio D’Asaro. Modelling accuracy and trustworthiness of explaining agents. In Sujata Ghosh and Thomas Icard, editors, Logic, Rationality, and Interaction - 8th International Workshop, LORI 2021, Xi’an, China, October 16-18, 2021, Proceedings, volume 13039 of Lecture Notes in Computer Science, pages 232–245. Springer, 2021b. ISBN 978-3-030-88708-0. doi: 10.1007/978-3-030-88708-7_19. URL https://doi.org/10.1007/978-3-030-88708-7_19

Caterina Urban and Antoine Minè. A review of formal methods applied to machine learning, 2021.

Jonathan H. Warrell. A probabilistic dependent type system based on non-deterministic beta reduction. CoRR, abs/1602.06420, 2016. URL http://arxiv.org/abs/1602.06420

Jeannette M. Wing. Trustworthy ai. Commun. ACM, 64(10):64–71, sep 2021. ISSN 0001-0782. doi: 10.1145/3448248. URL https://doi.org/10.1145/3448248
