Humulus lupulus L., also known as hops, is a vine whose flowers are a major component in brewing. It delivers flavor, bitterness, and aroma to beer and also aids in foam stabilization. Furthermore, it plays an important role in beer conservation due to its antimicrobial and antioxidant properties, which have recently been studied for food preservation. Hops can also be found in the production of cosmetics and is considered healthy food. There are more than 250 cataloged varieties of hops, and among the main attributes that differ from each other are alpha-acids, beta-acids, and essential oils. Those components give the beer a unique combination of characteristics, and may even influence its category. There are many ways to identify the hop variety from its acids and essential oils using methods such as chromatography, mass spectrometry, capillary electrophoresis, and nuclear magnetic resonance. However, these methods demand expensive and complex equipment, inaccessible or unavailable to most beer producers. In this work, we present a database that includes 1592 images of hop leaves, from 12 popular hop varieties in southeastern Brazil. From these images, it is possible to explore methods of pattern recognition and machine learning to classify hop varieties.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Subject	Agricultural Sciences
Specific subject area	Plant variety classification
Type of data	Figure, text annotation
How data were acquired	Cellphone camera sensor
	Instruments: Motorola Moto G7, Samsung Galaxy A11 and Apple iPhone 11
Data format	JPG, XML (Pascal VOC XML Annotation Format for label and bounding box)
Parameters for data	The only constraint imposed on data collection was to include at least one entire hop leaf.
collection	
Description of data	Images were taken in a natural environment, with varying climate, light, focus, occlusion, resolution, distance, and angle. Samples contain adult and young leaves. There was no removal of outliers or low-quality images. No pre-processing was adopted either.
collection	
Data source location	Institution: Atlântica Hops
	City/Town/Region: Juquiá, São Paulo / Litoral Sul Paulista
	Country: Brazil
	Institution: Hops Brasil
	City/Town/Region: Cedral, São Paulo / São José do Rio Preto
	Country: Brazil
	Institution: Brazuca Lúpulos
	City/Town/Region: Petrópolis, Rio de Janeiro / Serrana
	Country: Brazil
Data accessibility	https://doi.org/10.6084/m9.figshare.14933178

Value of the Data

- Classify the hop variety is of paramount importance for brewers [1,2] and also other applications (cosmetic, medicinal) [3–5]. Current methods are expensive and complex [6–9]. Computer vision may be a viable path.
- The data can provide ground reference for testing and validating machine learning methods to support image classification of hop varieties. Brewers could apply these methods and try to improve the production process by better-controlling hop variety.
- This dataset is the first hop variety dataset publicly available.

1. Data Description

The UFOP Hop Varieties Dataset (UFOP-HVD) consists of 1592 images of hop leaves captured in 3 plant nurseries in Brazil. The leaf images were acquired by different people and different mobile devices (camera sensors) in order to increase the representativeness of the database. Images were taken in a natural environment, with varying climate, light, focus, occlusion, resolution, distance, and angle. Samples contain adult and young leaves. There was no removal of outliers or low-quality images. No pre-processing was adopted either. There are more than 250 cataloged varieties [10] of this plant and, among the main attributes that differ from each other, are the alpha-acids, beta-acids, and [11] essential oils. The present dataset focuses on 12 varieties popular in southeastern Brazil. Fig. 1 contains examples of each of the 12 varieties used in this dataset. Table 1 contains the number of images of each class as well as the image resolutions according to the devices (Motorola Moto G7, Samsung Galaxy A11, and Apple iPhone 11).

Each image may contain one or more leaves of a hop of the same variety. All leaves were marked with bounding boxes as shown in the examples in Fig. 2 and labeled by field specialists. The leaf with the largest area was labeled as main (bounding box red), while the others as extra leaves (in yellow). The bounding box annotations are provided with the dataset in the Pascal VOC XML format [12].
Table 1
Hop variety distribution per image resolution.

Hop Variety	1040 × 520	1032 × 581	3391 × 2345	4096 × 2304	3683 × 3024	3024 × 4032	4032 × 3024	3072 × 4096	4096 × 3072
Cascade	51	9	0	0	1	3	46	0	0
Centennial	0	0	0	0	0	0	0	83	42
Cluster	30	0	0	23	0	0	50	0	0
Comet	55	10	0	0	0	3	47	12	44
Hallertau Mittelfruh	0	0	0	0	0	0	0	67	74
Nugget	0	8	0	58	0	2	48	0	0
Saaz	0	7	1	0	0	1	48	39	76
Sorachi Ace	0	8	0	0	0	0	50	76	59
Tahoma	0	8	0	0	0	3	47	31	30
Triple Pearl	60	8	0	0	0	1	49	0	0
Triumph	0	9	0	42	0	5	45	0	0
Zeus	0	8	0	0	0	8	42	63	2
Total	**196**	**75**	**1**	**123**	**1**	**26**	**472**	**371**	**327**
Fig. 1. Examples of the 12 Hops varieties contained in this data set: (a) Cascade; (b) Nugget; (c) Cluster; (d) Triple Pearl; (e) Hallertau Mittelfruh; (f) Centennia; (g) Saaz; (h) Sorachi Ace; (i) Tahoma; (j) Comet; (k) Triumph; (l) Zeus.

Fig. 2. Labeling methodology: leaf with the largest area was labeled as main (red bounding box), while the others as extra leaves (yellow).
See below an example of an XML file available with the dataset:

```
<annotation>
  <folder>cascade</folder>
  <filename>cascade_l1_13.jpg</filename>
  <path>../validation/cascade/cascade_l1_13.jpg</path>
  <source>
    <database>UFOP-HVD</database>
  </source>
  <size>
    <width>520</width>
    <height>1040</height>
    <depth>3</depth>
  </size>
  <segmented>0</segmented>
  <object>
    <name>cascade</name>
    <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
    <bndbox>
      <xmin>225</xmin>
      <ymin>2</ymin>
      <xmax>475</xmax>
      <ymax>235</ymax>
    </bndbox>
  </object>
  <object>
    <name>cascade</name>
    <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
    <bndbox>
      <xmin>1</xmin>
      <ymin>2</ymin>
      <xmax>238</xmax>
      <ymax>257</ymax>
    </bndbox>
  </object>
  <object>
    <name>cascade</name>
    <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
    <bndbox>
      <xmin>102</xmin>
      <ymin>325</ymin>
      <xmax>391</xmax>
      <ymax>622</ymax>
    </bndbox>
  </object>
  <object>
    <name>cascade</name>
    <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
    <bndbox>
      <xmin>291</xmin>
      <ymin>580</ymin>
      <xmax>428</xmax>
      <ymax>702</ymax>
    </bndbox>
  </object>
  <object>
    <name>cascade</name>
    <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
    <bndbox>
      <xmin>318</xmin>
      <ymin>717</ymin>
      <xmax>472</xmax>
      <ymax>890</ymax>
    </bndbox>
  </object>
</annotation>
```
We emphasize that each XML refers to an acquired image and that it can contain more than one leaf and consequently more than one bounding box annotation. The XML presented corresponds to the left image of Fig. 2.

From the original dataset, a new one was generated containing all the leaves cut by the bounding boxes. This other set of data is called Cropped Dataset. The number of leaves per class in this database and the average of extracted leaves per image are displayed in Table 2.

Hop Variety	Number average extracted leaf / image	Number total leaf / variety
Cascade	3.76	414
Centennial	1.62	202
Cluster	4.36	449
Comet	1.88	321
Hallertau Mittelfrueh	1.65	232
Nugget	3.81	442
Saaz	2.05	353
Sorachi Ace	2.02	390
Tahoma	2.30	274
Triple Pearl	3.53	417
Triumph	3.77	381
Zeus	2.31	284
Total	**2.61**	**4159**

2. Experimental Design, Materials and Methods

The database is divided into three sets of data (70% for training, 15% for validation and 15% for test) in order to standardize the evaluation of machine learning methods. The division can be seen in Tables 3 and 4.

Hop Variety	# Train	# Validation	# Test	Total
Cascade	78	16	16	110
Centennial	89	18	18	125
Cluster	73	15	15	103
Comet	121	25	25	171
Hallertau Mittelfrueh	99	21	21	141
Nugget	82	17	17	116
Saaz	122	25	25	172
Sorachi Ace	137	28	28	193
Tahoma	85	17	17	119
Triple Pearl	84	17	17	118
Triumph	71	15	15	101
Zeus	87	18	18	123
Total	1128	232	232	1592

Since the database is unbalanced in terms of images per class, results must be reported using recall, precision and F1-score per class.
Table 4
Number of leaves of each class for each of the partitions (train, validation, test), in Cropped Dataset.

Hop Variety	# Train	# Validation	# Test	Total
Cascade	318	39	57	414
Centennial	158	23	21	202
Cluster	316	58	75	449
Comet	212	52	57	321
Hallertau Mittelfruhe	165	30	37	232
Nugget	301	74	67	442
Saaz	265	40	48	353
Sorachi Ace	286	43	61	390
Tahoma	203	32	39	274
Triple Pearl	299	56	62	417
Triumph	260	56	65	381
Zeus	196	48	40	284
Total	**2979**	**551**	**629**	**4159**

Ethics Statement

Not applicable.

CRediT Author Statement

Pedro Castro: Conceptualization, Data curation, Writing–original draft; **Eduardo Luz**: Conceptualization, Experimental Design, Writing-Reviewing and editing; **Gladston Moreira**: Conceptualization, Writing-Reviewing and editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Data Availability

UFOP Hop Varieties Dataset (UFOP-HVD) (Original data) (figshare).

Acknowledgments

The authors would like to thank Atlântica Hops, Hops Brasil and Brazuca Lúpulos for providing the images, Lúpulo Zona da Mata for technical contribution and UFOP for their financial support.

References

[1] G. Astray, P. Gullón, B. Gullón, P.E. Munekata, J.M. Lorenzo, Humulus lupulus l. as a natural source of functional biomolecules, Appl. Sci. 10 (2020) 5074.
[2] C. Almaguer, C. Schönberger, M. Gastl, E.K. Arendt, T. Becker, Humulus lupulus—a story that begs to be told. a review, J. Inst. Brew. 120 (2014) 289–314.

[3] T. Nuutinen, Medicinal properties of terpenes found in cannabis sativa and humulus lupulus, Eur. J. Med. Chem. 157 (2018) 198–228.

[4] L. Chadwick, G. Pauli, N. Farnsworth, The pharmacognosy of humulus lupulus L.(hops) with an emphasis on estrogenic properties, Phytomedicine 13 (2006) 119–131.

[5] P. Zanoli, M. Zavatti, Pharmacognostic and pharmacological profile of humulus lupulus L, J. ethnopharmacol. 116 (2008) 383–396.

[6] M. Kovačević, M. Kač, Determination and verification of hop varieties by analysis of essential oils, Food Chem. 77 (2002) 489–494.

[7] R.A. Shellie, S.D. Poynter, J. Li, J.L. Gathercole, S.P. Whittlock, A. Koutoulis, Varietal characterization of hop (humulus lupulus L.) by gc–ms analysis of hop cone extracts, J. Sep. Sci. 32 (2009) 3720–3725.

[8] M.A. Farag, E.A. Mahrous, T. Lübken, A. Porzel, L. Wessjohann, Classification of commercial cultivars of humulus lupulus L.(hop) by chemometric pixel analysis of two dimensional nuclear magnetic resonance spectra, Metabolomics 10 (2014) 21–32.

[9] L.M. Duarte, L.H.C. Adriano, M.A.L. de Oliveira, Capillary electrophoresis in association with chemometrics approach for bitterness hop (humulus lupulus L.) classification, Electrophoresis 39 (2018) 1399–1409.

[10] J. Healey, The Hops List: 265 Beer Hop Varieties From Around the World, Julian Healey, 2016.

[11] B. Steenackers, L. De Cooman, D. De Vos, Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: a review, Food Chem. 172 (2015) 742–756.

[12] M. Everingham, J. Winn, The pascal visual object classes challenge 2012 (voc2012) development kit, Pattern Analysis, Statistical Modelling and Computational Learning, Tech. Rep 8 (2011) 5.