Influence of Stirring Speed on Mechanical Properties for Cast Nano-Particulate AA7075-Al2O3 Composites

H. J. M. Alalkawi1, Asifa Mahdi Mohammed2, Raad Hameed Majid3*

Abstract

Aluminum metal matrix composites are widely employed for improving the mechanical properties. Various fabrication routes like liquid state, solid state and liquid-solid state are currently available for producing these materials. The objective of the present work is the fabrication of nano particulate composites AA7075-Al2O3 with different amount of nano particles (20-30 nm) reinforced material Al2O3 (2, 4 and 6 wt%) using stir casting technique at three stirring speeds (300, 850 and 1500 rpm). Tensile tests of these composites were carried-out to obtain the mechanical properties (ultimate strength and ductility). Vickers hardness tests were also performed to obtain the hardness number (VHN) of these materials. All tests were performed at room temperature. The microstructures of the best mechanical properties’ composites were examined for the three stirring speeds. It was revealed that the ultimate strength (σu) and Vickers hardness (VHN) for the composite containing 6 wt% Al2O3 fabricated at 850 rpm show the best properties compared to the other composites fabricated at 300 and 1500 rpm and the matrix. The σu and VHN were increased by about (36.6 %) and (24.5 %) respectively. Ductility of the strongest composite (6 wt% Al2O3 at 850 rpm speed), however, was the least when compared to other composites and the matrix. With increasing the amount of Al2O3, σu and VHN, an increasing trend was noticed while the ductility shows a reduction trend. The maximum reduction in ductility occurred for the composite containing 6 wt% Al2O3 obtained at 850 rpm. The ductility of the developed composite was reduced by (23 %). The optical microstructures of unreinforced, as-cast Aluminum alloy AA7075 and 6 wt% Al2O3 composites for all stirring speeds show dendrite microstructure resulting from the casting process, but the composite at the stirring speed of 850 rpm shows a more refined microstructure.

Keywords: stirring speed, cast Aluminum nano particulate composites, mechanical properties.

1) Electro-mechanical Eng. Dep., University of Technology, Baghdad, Iraq
Alalkawi2012@yahoo.com

2) Electro-mechanical Eng. Dep., University of Technology, Baghdad, Iraq
Asafaimahdee@yahoo.com

3*) Electro-mechanical Eng. Dep., University of Technology, Baghdad, Iraq
raadmajid8950@gmail.com

Authors affiliations:

1) Electro-mechanical Eng. Dep., University of Technology, Baghdad, Iraq
Alalkawi2012@yahoo.com

2) Electro-mechanical Eng. Dep., University of Technology, Baghdad, Iraq
Asafaimahdee@yahoo.com

3*) Electro-mechanical Eng. Dep., University of Technology, Baghdad, Iraq
raadmajid8950@gmail.com

Paper History:

Received: 6th Mar. 2019
Revised: 7th April 2019
Accepted: 19th June 2019

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

NJES is an open access Journal with ISSN 2521-9154 and eISSN 2521-9162
A key finding was that the mechanical properties of the amorphous aluminium matrix composites (AMMC) strengthened by choosing suitable processing parameters in stir casting [10]. Stir casting, however, is a simple and flexible low-cost processing method for producing AMMCs. It can be applied in mass production for near net shaped components. In stir casting, better matrix-reinforcement particles bonding happens because of the stirring action of the particles into the molten metal matrix. Previous research studies showed that the homogenous mixing and good wetting could be acquired by choosing suitable processing parameters such as stirring time, stirring speed, preheating temperature of the mold, temperature of molten metal, and uniform feed rate of particles [10, 11].

Very little researches have been carried out on stirring speed and stirring time needed for uniform distribution of particles in the matrix. Hashim et al. [12-14] conducted some researches about stir casting technique. Naher et al. [15] studied the impact of stirring speed on the uniform distribution of particles by simulation. They carried out experimental tests on fluids with similar properties of the liquid and semi-solid aluminum. SiC reinforcement particulate similar to that employed in AMMCs had been employed in the simulation fluid mixtures. Prabu et al. [16] studied the effect of stirring speed and time on the hardness and the distribution of SiC particles in AMMC containing 10 wt% of SiC particles and produced by the stir casting method. The results showed that the uniform hardness values were achieved at 600 rpm stirring speed with 10 minutes of stirring. Above a certain stirring speed, however, the hardness of the composite deteriorated. Microstructure analysis also showed that at lower stirring speed with lower stirring time, the particle clustering was more. Increase in stirring speed from 300 to 850 rpm and stirring time from 4 to 10 minutes resulted in a better distribution of particles.

This paper is primarily aimed to show the impact of stirring speed on the mechanical properties of cast microstructure comparing with casting [10]. Stir casting, however, is a simple and flexible low-cost processing method for producing AMMCs. It can be applied in mass production for near net shaped components. In stir casting, better matrix-reinforcement particles bonding happens because of the stirring action of the particles into the molten metal matrix. Previous research studies showed that the homogenous mixing and good wetting could be acquired by choosing suitable processing parameters such as stirring time, stirring speed, preheating temperature of the mold, temperature of molten metal, and uniform feed rate of particles [10, 11].

Very little researches have been carried out on stirring speed and stirring time needed for uniform distribution of particles in the matrix. Hashim et al. [12-14] conducted some researches about stir casting technique. Naher et al. [15] studied the impact of stirring speed on the uniform distribution of particles by simulation. They carried out experimental tests on fluids with similar properties of the liquid and semi-solid aluminum. SiC reinforcement particulate similar to that employed in AMMCs had been employed in the simulation fluid mixtures. Prabu et al. [16] studied the effect of stirring speed and time on the hardness and the distribution of SiC particles in AMMC containing 10 wt% of SiC particles and produced by the stir casting method. The results showed that the uniform hardness values were achieved at 600 rpm stirring speed with 10 minutes of stirring. Above a certain stirring speed, however, the hardness of the composite deteriorated. Microstructure analysis also showed that at lower stirring speed with lower stirring time, the particle clustering was more. Increase in stirring speed from 300 to 850 rpm and stirring time from 4 to 10 minutes resulted in a better distribution of particles.

This paper is primarily aimed to show the impact of stirring speed on the mechanical properties of cast
AMMC reinforced with various amount of nano-sized ceramic particles (Al\textsubscript{2}O\textsubscript{3}).

2- Experimental Work

(A) Materials

Aluminum oxide (Al\textsubscript{2}O\textsubscript{3}) ceramic particles with particle size of (20-30 nm) were selected as the reinforcement material. It is widely used in the production of metal matrix nano-composites. The Al\textsubscript{2}O\textsubscript{3} nano-particles were added to the base unreinforced Aluminum alloy AA7075. The chemical composition of AA7075 is illustrated in Table 1. Chemical analysis has been implemented atomic fluorescence spectrometer (AFS) device at Tarbiat Modares University in Tehran/ Iran.

Table (1): Chemical analysis of AA7075 (in wt%)

Composition	Al	Zn	Mg	Cu	Mn & Cr
Standard	87.1-91.4	5.1-6.1	2.1-2.9	1.2-2.0	<0.5
Experimental	Balance	5.4	2.62	1.64	0.36

Various amounts of Al\textsubscript{2}O\textsubscript{3} (2, 4 and 6) in wt% were used in this study to fabricate different cast composites.

(B) Production of cast composites

Stir casting was the method of production of the cast AMMC. The procedure of production of the composites included the following steps:

1. Melting the required weight of Aluminum alloy AA7075 in an electric furnace at (800 °C).
2. Preheating the required weight of the Al\textsubscript{2}O\textsubscript{3} nanoparticles to (200 °C) and adding them to the molten aluminum alloy.
3. Mechanically stirring the mixture at specific speed (three speeds of 300, 850 and 1500 rpm were chosen in this investigation) and for a constant stirring time of four minutes.
4. Pouring the molten composite into steel molds which are already preheated to (400 °C).

Table (2) shows the percentage amount of reinforced material added to the alloy (rule of mixture) and the speed of stirring. Table (3) shows the tensile strength, hardness and ductility (% elongation) of the unreinforced, as-cast alloy. The tensile properties are determined from stress-strain curve using computerized WDW-200E tensile test rig. These as-cast alloy properties are actually similar to the as-cast properties of AA7075 alloy reported in the literature [17, 18].

Table (2): Amount, stirring speed and constituents of the composites

Al\textsubscript{2}O\textsubscript{3} Wt%	Stirring speed (rpm)	AA7075 (gm)	Total weight (gm)	Al\textsubscript{2}O\textsubscript{3} (gm)
2	300	980	1000	20
4	=	960	=	40
6	=	940	=	60
2	850	980	=	20
4	=	960	=	40
6	=	940	=	60
2	1500	980	=	20
4	=	960	=	40
6	=	940	=	60

Table (3): Tensile strength, hardness and ductility of the unreinforced, as-cast alloy

6u (MPa)	VHN	Ductility (% elongation)
142	57	15.6

(C) Mechanical properties testing

Tensile strength (6u), hardness (VHN) and ductility (expressed as % total elongation during the tensile test) were obtained for the composites fabricated with three weight percentages (wt %) of Al\textsubscript{2}O\textsubscript{3} (2, 4 and 6) for each speed of stirring.

The tensile testing machine that has been used in this investigation is a computerized (WDW-200E) machine with a capacity of 200 KN as shown in Fig. 1. Stress-Strain diagrams can be obtained from the machine and the required tensile properties can be determined. Round tensile specimens of the shape and dimensions shown in Fig.2 were used in tensile testing. Three tests were conducted for each combination of wt% Al\textsubscript{2}O\textsubscript{3} reinforcement and stirring speed and the main value of each tensile property was recorded. The cross-head speed for all tensile tests was 1 mm/min.

![Figure (1): Photograph of the tensile testing machine](image)
The standard Vickers hardness number (VHN) was measured on polished samples with a load of 20 N and the value reported as a mean of 5 readings taken at different locations. The hardness device used is type (TH714) available in the Department of Production Engineering and Metallurgy/ University of Technology, Baghdad-Iraq.

3- Results and Discussion

(A) Microstructure

Figure (3) shows the optical un-etched microstructures of the as-cast alloy AA7075 and the composites fabricated with 6 wt% Al₂O₃ at different stirring speeds. It can be observed that the microstructure of the as-cast aluminum base alloy AA7075 (without reinforcement) consists of the typical dendrite structure of castings with small dendrite arms. It is also clear that the optical micrographs of 6 wt% Al₂O₃ composites at 300, 850 and 1500 rpm speed resulting from stir casting method show fairly a more refined microstructure. The Al₂O₃ particles had been separated at inter-dendrite regions. According to the microstructure examination, Fig (3), it is concluded that the nano Al₂O₃ particles can be successfully introduced into the base metal and the best fairly uniform distribution of Al₂O₃ is observed at 850 rpm stirring speed.

El-Mahallawi et al. [20] have concluded that the best distribution of nano-particles occurs at 1500 rpm using alumina particles Al₂O₃ added to A356 aluminum alloy. They used stirring speeds of 270, 800, 1500 and 2150 rpm and the composites were produced by semi-solid state technique.

(B) Mechanical Properties

For analyzing the mechanical properties (tensile strength ु, hardness VHN and ductility), twenty
seven experiments with three replications (nine experiments for each speed) were examined at constant strain rate of 1 mm/min. The average of three specimens’ results are tabulated in Table (4).

Table (4) demonstrates all the experimental results of mechanical properties at the three stirring speeds used in this investigation (300, 850 and 1500 rpm).

It is clear from Table (4) that the 6u and VHN for the most of the resulting composites at the three speeds investigated are greater than the unreinforced, as-cast AA7075. The ductility, however, of all composites are lower than that of the as-cast alloy. It was found that both 6u and VHN were improved as the wt% of Al2O3 increased from 2% to 6% for all speeds, while the ductility was reduced. The highest improvement in 6u and VHN and the highest reduction in ductility were observed at 6% Al2O3 and for the 850 rpm stirring speed as shown in Fig. (4).

As shown in this figure, tensile strength and hardness increase and ductility decrease as the weight percentage of Al2O3 reinforcement increases for all stirring speeds used in this investigation. This could be attributed to the presence of Al2O3 reinforcement particles which possess high hardness. The presence of Al2O3 particles imposes more constraint to the localized matrix deformation during a tensile test or hardness test; which act as barriers to the motion of dislocations and resist the deformation of the matrix. The rise in the residual stresses induced due to the mismatch of thermal expansion between the matrix and reinforcement resulted in higher dislocation density and effective load transfer from matrix to better bonded and uniformly distributed reinforcements [16, 21-23]. All these lead to higher tensile strength and hardness of the composite.

The effect of stirring speed on tensile strength, hardness and ductility are shown in Figs. (5), (6) and (7). The effect is similar to the effect of Al2O3 reinforcement, but there is a critical stirring speed where the strength and hardness of the composite are at their maximum and the ductility is at the minimum. This critical stirring speed in this investigation is (850 rpm). Above this speed, both tensile strength and hardness decrease and ductility increases for all the weight percentage of Al2O3 reinforcement used in this investigation, but still better than that of the as-cast aluminum alloy.

Al2O3 content	300 rpm	850 rpm	1500 rpm	850 rpm
Zero% (as-cast)	141	166	182	146
6u (MPa)	146	171	194	138
VHN	59	62	68	59
Ductility (%)	15	13.8	12.2	12

Figure (4): Mechanical properties as a function of Al2O3 content and stirring speed.
Figure (5): Variation of tensile strength (σ_u) with wt\% Al_2O_3 and stirring speed

Figure (6): Variation of hardness (VHN) with stirring speed for the 6 wt\% Al_2O_3 composites

Figure (7): Variation of ductility with wt\% Al_2O_3 and stirring speed
The highest value of σ_t and VHN is in the resulting composite containing 6 wt% of Al$_2$O$_3$ processed at a stirring speed of 850 rpm, showing an improvement of 36.6% and 24.5% respectively, as compared to the as-cast aluminum alloy. Prabu et al [16] reported an improvement in VHN of 38% in a composite containing 10 wt% SiCp and aluminum alloy AA6061 produced by the stir casting method.

All the resulting composites containing Al$_2$O$_3$ nano-particles exhibited lower ductility as compared to the as-cast metal matrix. The lowest ductility is in the composite containing 6 wt% Al$_2$O$_3$ at a stirring speed of 850 rpm, showing a reduction of 23% as compared to the as cast alloy. Bharath et al [24] tested AA6061 before and after addition of 6, 9 and 12 wt% Al$_2$O$_3$ and they explained the increase in strength and hardness and the drop-in ductility in terms of the incorporation of hard Al$_2$O$_3$ particles in AA6061 alloy.

4- Conclusions

Several methods were used in strengthening the mechanical properties of engineering materials such as powder metallurgy, stir casting method, and semisolid method. In this study, composite materials fabricated by stir casting route using AA7075 base metal and 2, 4 and 6 wt% of Al$_2$O$_3$ (20-30 nm particle size) were successfully synthesized for three stirring speeds of 300, 850 and 1500 rpm. The main conclusions obtained are as follow:

1. The optical micrographs of unreinforced, as-cast Aluminum alloy AA7075 and 6 wt% Al$_2$O$_3$ composites for all stirring speeds show dendrite microstructure resulting from the casting process, but the composite at the stirring speed of 850 rpm shows a more refined microstructure.

2. The hardness of composites increases when increasing the amount of Al$_2$O$_3$ for all stirring speeds used. Maximum hardness was observed at 6 wt % Al$_2$O$_3$ with 850 rpm. The hardness increases by 24.5% in case of 6 wt% Al$_2$O$_3$ with 850 rpm compared with the as-cast alloy.

3. The increase in the amount of reinforcement significantly improves the tensile strength and the highest tensile strength was recorded at 850 rpm stirring speed and the improvement percentage was 36.6 % as compared to the matrix alloy.

4. The increase in wt% of Al$_2$O$_3$ decreases the ductility of the composite and the maximum reduction was observed with 6 wt% Al$_2$O$_3$ and at 850 rpm stirring speed showing a reduction of 23 % as compared to the as-cast alloy.

5- References

1. Aniruddha V. Muley, S. Aravindan and I.P. Singh, Mechanical and tribological studies on nano particles reinforced hybrid aluminum based composite, Manufacturing Rev. 2 (2015) 26

2. Ahmed Y. Shash, Amer E. Amer and Moataz El-Saeed, Influence of Al$_2$O$_3$ Nano-dispersions on Mechanical and Wear Resistance Properties of Semisolid Cast A356 Al Alloy, in Mechanical and Materials Engineering of Modern Structure and Component Design, Advanced Structured Materials 70, A. Öchsner and H. Altenbach (eds.), Springer International Publishing Switzerland (2015).

3. R. Surendran, N. Manibharathi and A. Kumaravel, Wear Properties Enhancement of Aluminum Alloy with Addition of Nano Alumina, FME (Faculty of Mechanical Engineering, Belgrade) Transactions 45 (2017) 83-88.

4. N. Rajesh and M. Yohan, Recent Studies in Aluminum Metal Matrix Nano Composites (AMMNCs) – a review, International Journal of Mechanical Engineering and Technology 7 (2016) 618–623.

5. K. N. Antin, & K. Jalava, Mechanical Properties of Cast Aluminium Matrix Composites Reinforced with SiC and Al2O3 Particles, in 20th International Conference on Composite Materials (2015), Denmark.

6. Hussain J. M. Alalkawi, Aseel A. Hamdany and Abbas Ahmed Alasadi, Influence of Nanoreinforced Particles (Al2O3) on Fatigue Life and Strength of Aluminum Based Metal Matrix Composite, Al-Khwarizmi Engineering Journal 13 (2017) 91–98.

7. T. Aditiyia1, D. B. Jabarai, P. V. Senthil and K. R. Vijaya Kumar, Effect of nano alumina particles on mechanical properties of AA2219 nano metal matrix composites, Journal of Chemical and Pharmaceutical Sciences (JCP) 9 (2016) 3338-3340.

8. Dinesh Kumar Koli, Geeta Agnihotri and Rajesh Purohit, Properties and Characterization of Al-Al2O3 Composites Processed by Casting and Powder Metallurgy Routes (Review), International Journal of Latest Trends in Engineering and Technology (IJLTET) 2 (2013) 486-496.

9. P.O Babalola, C.A Bolu, A.O Inegbenebor and K.M Odunfa, Development of Aluminium Matrix Composites: A Review, Online Int. J. Eng. Technology Research 2 (2014) 1-11.

10. Praveen Kittali, J. Satheseh, G. Anil Kumar and T. Madhusudhan, A Review on Effects of Reinforcements on Mechanical and Tribological behavior of Aluminum based Metal matrix composites, International Research Journal of Engineering and Technology (IRJET) 03 (2016) 2412-2416.

11. G. Praveen, K. B. Girisha and H. C. Yogeesha, Synthesis, Characterization and Mechanical Properties of A356.1 Aluminum Alloy Matrix Composite Reinforced With MgO Nano Particles, International Journal of Engineering Science Invention 3 (2014) 53-59.

12. J. Hashim, L. Looney and M.S.J. Hashmi, Metal matrix composites: production by the stir casting method, J. Mater. Process Technol. 92/93 (1999) 1–7.

13. J. Hashim, L. Looney and M.S.J. Hashmi, Particle distribution in cast metal matrix composites, Part I, J. Mater. Process Technol. 123 (2002) 251–257.

14. J. Hashim, L. Looney and M.S.J. Hashmi, Particle distribution in cast metal matrix composites, Part II, J. Mater. Process Technol. 123 (2002) 258–263.

15. S. Naher, D. Brabazon and L. Looney, Simulation of the stir casting Process, J. Mater. Process Technol. 143/144 (2003) 567–571.
16. S. Balasivanandha Prabu, L. Karunamoorthy, S. Kathiresan and B. Mohan, Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite, Journal of Materials Processing Technology 171 (2006) 268–273.
17. V. Mohanavel, S. Suresh Kumar, R.V. Srinivasan, P. Ganeshan and K.T. Anand, Mechanical and Metallurgical characterization of AA7075-fly ash composites produced by liquid state method, J. Chemical and Pharmaceutical Sciences, Special Issue 2 (2017) 217-220.
18. S. Arun Prakash, S.A. Abdul Razzak, F. Ajay Christian and M. Logesh, Mechanical characteristics of AA7075 reinforced with tungsten carbide produced by stir casting, Int. J. Pure and Applied Mathematics 119 (2018) 2015–2029.
19. A. R. I. Kheder, G. S. Marahleh and D. M. K. Al-Jamea, “Strengthening of Aluminum by SiC, Al2O3 and Mgo”, Jordan Journal of Mechanical and Industrial Eng. 5 (2011) 533-541
20. Iman S. El-Mahallawi, Ahmed Y. Shash and Amer E. Amer, Nano-reinforced cast Al-Si alloys with Al2O3, TiO2 and ZrO2 Nanoparticles, Metals 5 (2015) 802-821.
21. S.K. Thakur, K.S. Tun and M. Gupta, Enhancing uniform, nonuniform and total failure strain of aluminium by using SiC at nanolength scale, Journal of Engineering Materials and Technology 132 (2010) 1–6.
22. L. Geng, X. Zhang, G. Wang, Z. Zeng and B. Xu, Effect of aging treatment on mechanical properties of (SiCw+SiCp)/2024 Al hybrid composites, Transactions of Nonferrous Metals Society of China 16 (2006) 387–391.
23. Y.C. Feng, L. Geng, G.H. Fan, A.B. Li and Z.Z. Zeng, The properties and the microstructure of hybrid composites reinforced with WO3 particles and Al18B4O33 whiskers by squeeze casting, Materials and Design 30 (2009) 3632–3635.
24. V. Bharath, N Mader, V Auradi and S.A. Kori, Preparation of 6061 Al-Al2O3 MMCs by stir casting and evaluation of mechanical and wear properties, 3rd international conference on material processing and characterization, Procardia Materials Science 6 (2014) 1658-1667.