Review article

Traditional Persian Medicine and management of metabolic dysfunction in polycystic ovary syndrome

Ayda Hosseinkhani a, b, Nasrin Asadi c, Mehdi Pasalar a, Mohammad M. Zarshenas b, d, e

a Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
b Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
c Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
d Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

A R T I C L E I N F O

Article history:
Received 16 January 2017
Received in revised form 19 April 2017
Accepted 19 April 2017
Available online 6 May 2017

Keywords:
Traditional Persian Medicine
Polycystic ovary syndrome
Metabolic dysfunction
Medicinal plant
Pharmacopoeia
Persia

A B S T R A C T

Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age. Its cause is unknown and it remains the most enigmatic of reproductive disorders. The extant written documents of Traditional Persian Medicine (TPM) – with holistic approaches towards human health – contain remedies used for centuries. Before further experimental research on any of these treatments, it is appropriate to study current related scientific evidence on their possible pharmacological actions. This work aims to study PCOS and its treatments in TPM. To collect data from medieval medicinal texts, six of the most famous manuscripts of Persian medicine were studied. Medicinal treatments for a problem similar to PCOS were searched for in these books. The plants were listed and their authentications were confirmed in accordance with botanical books. PubMed and ScienceDirect databases were searched for related mechanisms of action or pharmacological activities of the medicinal plants reported. From numerous articles, the current work tried to cite the latest publications with regard to each reported plant and PCOS-related mechanisms of action. We studied herbal treatments recommended by ancient Persians to treat a condition called Habs-e-tams, which had the same symptoms of PCOS. It could be concluded that ancient physicians not only wanted to treat the irregular menstrual cycle—which is the most obvious symptom of PCOS—but also their treatment options were aimed at ameliorating the related underlying metabolic dysfunctions. The recommended herbs, which have the most scientific proof for their related actions, can be studied further in experimental analyses.

© 2018 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
of the traditional systems of medicine still practised today is Traditional Persian Medicine. This system of medicine was replaced in Iran by Western medicine in the late 19th century. Although physicians were not allowed to apply the treatments of this system of medicine, valuable information was preserved in the books of scholars. Iranian people still seek help for their health-related problems from local herbal shops, which have kept the practice of TPM alive. In the past few years, Iranian universities have changed their policies towards TPM. Today, specialists are studying this system of medicine from different aspects. Recently, traditional Persian therapies have been evaluated by modern methods.1 Iranian pharmaceutical companies are interested in formulations based on TPM remedies. In this work, we aim to study the polycystic ovary syndrome and its treatments in TPM. The recommended herbs, which have had the most scientific proof for their related pharmacological actions in the treatment of PCOS, have been preferred for the experimental research.

1.1. Modern description of PCOS and its treatments

This syndrome presents itself in menstrual irregularity, androgen excess and polycystic ovaries. It is the most common endocrine disorder in such women.6 It is associated with insulin-resistance, hyperinsulinism7 and diabetes.8 Women with this syndrome often suffer from dyslipidemia and obesity as well.9,10 Today, the treatment of PCOS includes restoring normal menstruation cycle and ovulation, reducing hirsutism and acne, and also reducing cardiovascular risk for the patients.6 Oral contraceptives and metformin are commonly prescribed forms of medication for these patients. Lifestyle modification is recommended to overweight/obese patients with PCOS.11 One of the main characteristics of the PCOS is obesity. It affects fertility in women suffering from PCOS through different mechanisms. Excess androgen levels, insulin resistance and increased luteinizing hormone (LH) play the main role.12 Research has suggested that weight loss in these women can restore ovulatory cycles, which allows spontaneous pregnancy.13

1.2. Description of PCOS in Traditional Persian Medicine

Traditional Persian Medicine deploys a holistic approach. It is a protracted method of practice from ancient Persia. Though terminology that is the same as PCOS cannot be found in TPM textbooks, that does not mean that evidence is absent. Regarding signs and symptoms of PCOS in current literature, there is a reasonable description of this issue in Persian resources. Symptoms of PCOS have been indicated and described under the topic of ‘uterus and ovary-related disorders, such as ‘female infertility’, ‘uterine inflammation’, and ‘amenorrhea’.14 Signs and symptoms of the latest disorder in TPM textbooks, titled Ehtebas-e-Tams (lack of menstruation), come very close to PCOS.15 The main sign that can be attributed to PCOS is prolonged intervals of menstrual bleeding (more than two months). According to TPM books, it could occur as a result of two groups of factors: intrinsic and extrinsic. Intrinsic factors are related to the genitourinary (GU) system itself and other factors focus on the entire human body and interconnected body systems. In the first category, there are: severe cold temperament of GU system, hyper-dense humor (caused by cold temperament), and plethora of phlegmatic humor. There are also general classifications of extrinsic factors. These are cold and dry dystemperament, cold dystemperament with excess of phlegm, or black bile and overt obesity.1 Some of the aforementioned terms—such as over-weight—have been approved in recent literature as causes of PCOS. The TPM therapeutic approach for these ailments emphasizes the removal of the cause instead of the symptom. As regards the abovementioned pathologic categorization, a TPM practitioner should follow the curative plan in a holistic manner. Obeying a specific diet regimen and lifestyle modifications are the first essential steps for a patient’s cure. If nutritional and lifestyle instructions are not appropriately responded to, the treatment strategy would be converted to medicinal options.16 Most of the medicinal choices are herbal medicine, which have been defined in detail in ancient Persian pharmacopoeias. Some of these medications are single herbs and some are combined preparations. The present work considers these herbs. Their respective efficacies have been reviewed in multiple in vitro or in vivo surveys.

2. Current methods

To collect data from medieval medicinal texts, six main manuscripts of Persian medicine were studied. These texts are currently known as the main university reference books for research into TPM in departments of traditional medicine and pharmacy in Iranian universities. Since the end of the 19th century, when TPM was replaced in Iran by Western medicine, no written document on the practice of this system has been available. The definition and causes of Ehtebas-e-Tams was studied in Exir-e-Azam (Azam Khan, 19th century) and Moalejat (Aghili, 18th century). Medicinal treatments for this problem were searched in Kitab al-hawi fi al-tibb (Rhazes, 9th–10th centuries), Canon of Medicine (Avicenna, 10th–11th centuries), Tuhfat al-muminin (Daylami Tunakabuni, 17th century), and Makhtzan al-adviyah (Aghili, 18th century).26 The plants used in the treatment of Ehtebas-e-Tams, according to Persian manuscripts, are listed in Table 1. Authentications of the plants were also confirmed by botanical books such as Dictionary of Medicinal Plants, Matching the Old Medicinal Plant Names with Scientific Terminology, Indian Medicinal Plants, and Dictionary of Iranian Plant Names.22–25 PubMed and ScienceDirect databases were searched for related mechanisms of action or pharmacological activities of the medicinal plants that were reported. The scientific name of each herb was searched along with these keywords: ‘anti-hyperglycemic’, ‘anti-dyslipidemia’, ‘anti-obesity’ and ‘ovulation-inducing’. From numerous articles, the current work tried to cite the latest publications with regard to each reported plant and PCOS-related mechanisms of action.

3. Current results

Forty herbs—either as single or as a component of a compound medication to treat Ehtebas-e-Tams—were found in TPM books. The majority of these herbs exhibited anti-hyperglycemic (90%) and anti-dyslipidemic (77.5%) effects. Some of these herbs showed significant anti-obesity properties (37.5%). The effect of some of these were studied on ovulation induction and 27.5% had shown positive effects. Table 1 represented herbal remedies for Ehtebas-e-Tams from Reports of Traditional Persian Medicine. In this table, related pharmacological activities and citations of the current proof are also reported.26–35

4. Conclusions and further suggestions

Polycystic ovary syndrome is the most common endocrine disorder in women of reproductive age. While the cause is unknown, this disorder remains the most enigmatic reproductive disorder. Therefore, there is no known cure for this problem.100 Most common treatments for PCOS are oral contraceptives to suppress the secretion of gonadotropin and decrease free androgen blood levels.101 This can lead to regular menstruation cycles. It is remarkable that the use of oral contraceptives may have unfavorable effects on hyperglycemia and insulin resistance. Metformin is also one of the medications for the treatment of PCOS. Today, the
Scientific name	Related Pharmacological activities/method, model or assay
Adiantum capillus-veneris L.	+ (Aqueous, Methanol extract)/Streptozotocin-induced diabetic rats²³
Allium cepa L.	+ (Seed ethanol extract) Improvement in FBS and HOMA-IR levels/Diabetic-prone rat¹⁷
Allium sativum L.	+ (Ethanol extract), Serum glucose level reduction and Increasing serum insulin level/Streptozotocin-induced diabetic rat²²
Anethum graveolens L.	+ (Leaf hydroalcoholic extract), Regulation of diabetes mellitus/corticosteroid-induced type II in rats¹⁴
Apium graveolens L.	–
Artemisia absinthium L.	+ Improvement in glucose tolerance by increasing in tyrosyl phosphorylation of insulin receptor/Shikonin treated mice⁴⁵
Asparagus officinalis L.	+ (Methanol extract), improving in insulin secretion and β-cell function/Streptozotocin-induced diabetic rats¹⁷
Cappari spinosa L.	+ (Aqueous extract), decrease in blood glucose level/Streptozotocin-induced diabetic rats⁴¹
Carum carvi L.	+ (Aqueous extracts), decrease in cholesterol and LDL/Hyperlipidemic mice³⁸
Cicer arietinum L.	+ Improvement in lipoprotein lipase/Shikonin treated mice⁵⁰
Cinnamonum verum J. Presl	+ (Aqueous extract), reduction in fasting blood glucose level (no hypoglycemic activity)/Diabetic rats⁴¹
Citrus × aurantium L.	+ (Isoled neohesperidin), increase in oral glucose tolerance and insulin sensitivity, decrease in insulin resistance/KK-A¹ diabetic mice⁴⁷
Citrus medica L.	–
Commiphora myrrha (Hook. ex Stocks) Engl.	+ (Ethanol extract), preventive effects against alteration in hexokinase, phosphofructokinase, pyruvate kinase, and glucose-6-phosphatase/Streptozotocin-induced diabetic rats⁵⁰
Commiphora mulu (Hook. ex Stocks) Engl.	+ (Aqueous extract), decrease in blood glucose level/Diabetic rats⁵¹

(continued on next page)
Scientific name	Related Pharmacological activities/method, model or assay			
Scientific name	**Related Pharmacological activities/method, model or assay**			
Ficus carica L.	+ (Aqueous extract), Insulin-like peripheral effect/Diabetic rat³⁴	+ (Aqueous ethanol extract), increasing the HDL, decreasing the LDL and cholesterol/High-fat diet induced hyperlipidemic rats²⁴	—	—
Foeniculum vulgare Mill.	+ (Essential oil), Correcting the hyperglycemia and activity of serum glutathione peroxidase/ Diabetic rat³⁸	+ Ameliorates serum glucose, AST, ALT, GGT, LDH, protein, albumin, liver total lipids/ Hyperlipidemic rat⁹⁶	—	+ (Fennel extract), Increases the serum level of estrogen, progesterone, and prolactin/ female mice⁵⁷
Glycyrrhiza glabra L.	—	+ (Root powder), reduction in total lipids, cholesterol, TG, LDL and VLDL, increases in HDL/ Hypercholesterolemic rat⁵⁸	—	—
Helianthus annuus L.	+ (Ethanol extract), decreased blood glucose level, restored lipid profile/ streptozotocin induced diabetic rat⁶⁰	—	—	—
Hypericum perforatum L.	+ (Ethyl acetate extract), reduction in plasma glucose level and fasting blood sugar/ Streptozotocin-induced diabetic rat⁸⁵	+ (Ethyl acetate extract), Reduction in total cholesterol and TG/Streptozotocin-induced diabetic rats²³	+ Lowering the total cholesterol and LDL, Inhibiting weight gain, Normalizing the dyslipidemia and improving insulin sensitivity/ High-fat-diet induced obese rats⁶²	—
Lepidium sativum L.	+ (Seed powder), Decreasing in fasting blood sugar, HbA1C, total cholesterol, TG, lipoprotein fractions, Increase in HDL/Alloxan induced diabetic rats⁶³	+ Reduction in total cholesterol and ALT (6 g/kg diet)/Rats fed with high cholesterol diet⁶⁴	—	—
Linum usitatissimum L.	+ (Ethanol extract), Reduction in serum glucose level in acute and subacute study/Alloxan induced diabetic rat⁶⁷	+ Reduction in total cholesterol and increasing in HDL/ Sprague Dawley rats⁹⁰	—	—
Lupinus albus L.	+ (Aqueous suspension), Restore the elevated levels of glucose, urea, creatinine and bilirubin/Alloxan-induced diabetic rats⁶⁰	+ (Isolated proteins, whole seed), Reduction in total cholesterol and related parameters/Hamsters⁹⁹	—	—
Matricaria chamomilla L.	+ (Ethanol extract), Reducing postprandial hyperglycemia/ Streptozotocin-induced diabetic rat⁹⁹	—	—	+ (Ethanol extract), Decreasing the signs of PCOS in ovarian tissue, helping LH secretion/ Polycystic ovary-induced rats⁷¹
Melissa officinalis L.	+ (Essential oil), Reducing blood glucose and TAG concentrations, improving glucose tolerance and serum insulin levels/Mice¹²	+ (Ethanol extract), Reducing serum total cholesterol, lipid, ALT, AST and ALP levels, and LPO level in liver tissue/ Hyperlipidemic rats¹²	+ (In a combination), Decreasing the adipose tissue mass and body weight/ High-fat diet mice¹⁴	—
Nigella sativa L.	+ (Oil), Reducing blood glucose and hepatic gluconeogenesis/ Streptozotocin-induced diabetic hamsters⁵⁵	+ (Dietary black seed), Lowering the total cholesterol, LDL and MDA, TG/Rabbits with hypercholesterolemic diet⁷⁵	—	+ (Hydroalcoholic extract), reduction in the serum level of LH, FSH and estrogen/Female rats⁷¹
Origanum majorana L.	+ (Extraction, aqueous suspension), Comparable to Gilbenclamide/Streptozotocin-diabetic mice⁷⁷	—	—	+ (Infusion, tea), Reduction in DHEA-S, insulin sensitivity improvement/Hormonal profile, PCO (Clinical trial)⁷⁸
Petroselinum crispum (Mill.) Fuss	+ Reduction in blood glucose and serum alkaline phosphatase activity/ Streptozotocin-induced diabetic rats⁷⁹	+ (Aqueous extract), attenuating the hyperlipidemia/Diabetic rats⁸⁰	—	+ (Hydroalcoholic extract), ketohexokinase inhibitory activity, blocking the fructose-induced ATP depletion/ Animal⁸¹
Phaseolus vulgaris L.	+ (Aqueous extract), Decline in blood glucose, serum TG, fatty acids, phospholipids, total cholesterol, LDL, and VLDL/ Streptozotocin-induced diabetic rats⁴²	+ (Aqueous extract), Decline in lipids and fatty acids, palmitic, stearic, oleic acids, increase in linolenic and arachidonic acids/ Streptozotocin-induced diabetic rat⁴¹	—	+ (Dry bean), Weight loss and improve in plasma lipid profile/ Diet-induced obesity mice model (74)
Pimpinella anisum L.	+ (Methanol extract, mostly ethyl acetate fraction), α-glucosidase and α-amylase inhibition/in vitro⁶⁵	—	—	—
This disorder. Traditional systems of medicine often contain ameliorated in these patients as well. But the pathogenesis of PCOS is highly remarked upon by Persian scholars. Effects on ovulation symptoms denoted in current medicine, this condition is also associated with obesity as one of the extrinsic causes of PCOS, hyperglycemia, dyslipidemia and obesity is known. The metabolic consequences need to be understood and there is no single effective treatment for this disorder. Traditional systems of medicine often contain information on treatments which have been used for centuries. These can be sources of new drug discoveries. One of the difficulties in this area is that the paradigm of medicine was different and so the terminology used in ancient manuscripts is different from what we understand today. Ancient practitioners often had a holistic approach towards the human body as regards health and sickness. But if the medicines used by ancient healers were effective, it should be explicable by a rational mechanism of action as well. The majority of drugs used by ancient Iranians to treat this problem showed to have proven effects on lowering blood glucose and lipids (Table 1). Also, many of these herbs had shown anti-obesity effects. But the main point of this data was that one-third of those remedies showed positive effects on ovulation induction through different underlying mechanisms. It is accepted that one of the main problems in patients with PCOS is infertility, which is related to the lack of ovulation. The same as the points and symptoms denoted in current medicine, this condition is also highly remarked upon by Persian scholars. Effects on ovulation induction, however, were studied mainly in animal models and there is a gap in human-related trials (Table 1). According to the table, only Origanum majorana and Urtica dioica had clinical trials on ovulation induction. In this respect, it may be important to evaluate the aforementioned activity on other reported plants. On the other hands, of those medicinal plants, only Allium cepa, Foeniculum vulgare, Prunus domestica, Ruta graveolens, Thymus vulgaris, Trachyspermum ammi, Zataria multiflora Boiss. have clinical trials

Scientific name	Related Pharmacological activities/method, model or assay	Anti-hyperglycemic	Anti-dyslipidemic	Anti-obesity	Ovulation-inducing
Piper longum L.	-	+ (Piperine derivative), Decline in TG, increase in HDL levels, and upregulation of HMG-CoA reductase level/High-fat diet-fed rats	-	-	-
Prangos ferulacea (L.) lindel.	+ (Hydroalcoholic extract), Glucose and lipid profile reduction/Alloxan-induced diabetic rat	-	-	-	-
Prunus domestica L.	-	-	-	+ (carbohydrate-free peach and plum), Potentiality to modify the fecal microbial ecology in obese model/Obese Zucker rats	-
Ruta graveolens L.	+ (Infusion), Amelioration of hyperglycemia, hyperlipidemia, insulin and C-peptide concentrations/streptozotocin-nicotinamide-induced diabetic rat	+ (Hydroalcoholic extract), Decrease in cholesterol, LDL, VLDL and TG/Diabetic rats	-	-	-
Thymus vulgaris L.	+ (Aqueous extract), Decrease in FBS, LDL, VLDL, TG and cholesterol/Alloxan-induced diabetic rats	+ (Aqueous extract), Decrease in FBS, LDL, VLDL, TG and cholesterol/Alloxan-induced diabetic rats	-	-	-
Trachyspermum ammi (L.) Sprague	-	+ (Seed powder), Reduction in lipids, cholesterol, LDL, TG and HMG-CoA reductase, Increase in HDL/Hyperlipidemia-induced rabbits	-	-	-
Trigonella foenum-graecum L.	+ (Soluble dietary fiber fraction), Lowering the serum fructosamine/Type II model of diabetic rats	+ (Seed powder), Reduction in total cholesterol, LDL, and the atherogenic index, Increase in HDL/Hyperlipidemia-induced rabbits	-	-	-
Urtica dioica L.	+ (Aqueous extract), Strong glucose lowering effect (Pretreatment)/Alloxan-induced diabetic rats	+ (Aqueous extract), Decrease in the body weight, TG, Cholesterol, and LDL/Type II diabetic model rats	-	-	-
Zataria multiflora Boiss.	+ (Extract), insulin, adiponectin, glucose and TG levels improved, PPARγ protein level increased/High fructose diet for rats	+ (Extract), insulin, adiponectin, glucose and TG levels improved, PPARγ protein level increased/High fructose diet for rats	-	-	-
Asparagus officinalis and Trigonella foenum-graecum possessed all the related pharmacological activities. These remedies might show effective results in related clinical trials on patients with PCOS or ovary-related amenorrhea.

Going through the medieval and traditional treatments for Habs-e-Tams, as recommended by ancient Persians, one can conclude that they not only wanted to treat the irregular menstrual cycle—which is the most obvious symptom of PCOS—but their treatment options were also aimed to ameliorate the related underlying metabolic dysfunctions. In future work, traditional herbal combinations could be studied and the theoretical role of each ingredient of the formulation could be clarified. Furthermore, the effectiveness of these treatments could be investigated in clinical trials after confirmation of their safety.

Conflict of interest
The authors have no conflict of interest.

References
1. Kim HU, Ryu JY, Lee JD, Lee SY. A systems approach to traditional oriental medicine. Nutr Biotech. 2015;33:264–268.
2. Costantini S, Colonna G, Castello G. A holistic approach to study the effects of natural antioxidants on inflammation and liver cancer. Cancer Treat Res. 2014;159:311–323.
3. Leonti M. Traditional medicines and globalization: current and future perspectives in ethnomedicine. Front Pharmacol. 2013;4:92.
4. Arentz S, Abbott JA, Smith CA, Bensoussan A. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo-amenorrhea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings. BMC Complement Altern Med. 2014;14:511.
5. Gorji A. Pharmacological treatment of headache using Traditional Persian Medicine. Tehran: Hamdard University of Medical Sciences; 2009.
6. Shirazi A. Khahzabin A, Afsharzadeh F, Darvishzadeh F, Heshmat R. The effects of Asparagus officinalis on female reproductive system of rats. DARU J Pharm Sci. 2006;14:131–135.
7. Mansi K, Abushoffa AM, Disi A, Aburjai T. Hypolipidemic effects of seed of celery (Apium graveolens) in rats. Pharmacog Mag. 2009;5:301.
8. Vasanthkumar R, Jeevitha M. Evaluation of antioxidant activity of Apium graveolens stems in rats. Int J Chem Pharm Res. 2014;5:159–163.
9. Arentz S, Abbott JA, Smith CA, Bensoussan A. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo-amenorrhea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings. BMC Complement Altern Med. 2014;14:511.
10. Gorji A. Pharmacological treatment of headache using Traditional Persian Medicine. Tehran: Hamdard University of Medical Sciences; 2009.
11. Rezaee A, Amin Zadeh F, Behbod M. The effects of garlic on the ovulation rate and oestrogen hormone levels in adult rats. Iran J Endocrinol Investig. 2012;97:391–399.
12. Ziaee M, Mansourian M, Varzaneh F, Salarianzadeh F, Zakeri Z. Hypolipidemic and anti-inflammatory effects of ethanolic extract of garlic on experimental polycystic ovary syndrome (PCOS) in rats. J Ethnopharmacol. 2014;152:268–277.
13. Hafizur RM, Kabir N, Chishiti S. Asparagus officinalis extract controls blood glucose by improving insulin secretion and β-cell function in streptozotocin-induced type 2 diabetic rats. Br J Nutr. 2012;108:1586–1595.
14. Zhu X, Zhang W, Zhan J, Wang J, Qu W. Hypolipidaemic and hepato-protective effects of ethanolic and aqueous extracts from Asparagus officinalis L. by-products in mice fed a high-fat diet. J Sci Food Agric. 2010;90:1129–1135.
15. Jash TS, Jahromi HK, Ranjbar AG, Jahromi ZK, Kheramee ZK. Effects of aqueous extract from Asparagus officinalis L. roots on hypothalamic-pituitary-gonadal axis hormone levels and the number of ovarian follicles in adult rats. Int J Reprod Biomed. 2016;14:75–82.
16. Eddouks M, Lembardi A, Michel JB. Caraway and caper: potential anti-hyperglycaemic plants in diabetic rats. J Ethnopharmacol. 2004;94:143–148.
17. Eddouks M, Lembardi A, Michel JB. Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol. 2005;98:345–350.
18. Lembardi A, Hajji L, Michel JB. Eddouks M. Cholesterol and triglycerides lowering activities of caraway fruits in normal and streptozotocin diabetic rats. J Ethnopharmacol. 2006;108:321–326.
19. Kazemipoor M, Radaeef M, Roshan A, Vemani M, Haerian BS, Mosaddegh MH, Cordell GA. Antidiabetic effect of caraway extract on overweight and obese women: a randomized, triple-blind, placebo-controlled clinical trial. Evid Based Complement Altern Med. 2013;2013:528582.
20. Yang Y, Zhou L, Gu Y, Zhang Y. Chinchona bark: a review of its medicinal uses and further studies into the reverse visceral adiposity, dyslipidaemia and insulin resistance in rats induced by a chronic high-fat diet. Br J Nutr. 2010;97:78–826.
21. El-Desoky GE, Abou-Soud MA, Al-Naimi KS. Antidiabetic and hypolipidemic effects of Ceylon cinnamon (Cinnamomum verum) in alloxan-diabetic rats. J Med Plant Res. 2012;6:1685–1691.
22. Huseini HF, Darvishzadeh F, Heshmat R, Jafariazar Z, Raza M, Larjani B. The effects of ethanolic extract on experimental polycystic ovary syndrome (PCOS) induced by streptozotocin in normal and streptozotocin-induced diabetic rats. J Ethnopharmacol. 2014;152:268–277.
23. Hufnagel LD, Schneid F, Apel R, et al. The effects of cinnamaldehyde on weight loss and carbohydrate and lipid metabolism in rats. J Ethnopharmacol. 2014;2013:928582.
24. Patil SJ, Patil SB. Estrogenic activity of petroleum ether extract of seeds of Citrus medicus on immature albino rats. Int J Green Pharm. 2008;2:91–94.
25. Ramesh B, Karuna R, Reddy SS, Sudhakara G, Saralakumari D. Ethanolic extract of Cinnamomum zeylanicum gum resin attenuates streptozotocin-induced alterations in carbohydrate and lipid metabolism in rats. EXCLI J. 2013;12:556.
26. Gelati E, Mahmoud A, El-Balawy EE, Kawkaw AA. Effect of Cinnamomum myrrha extract on some physiological parameters and histological changes in diabetic albino rats. Egypt J Hosp Med. 2005;1:148–162.
27. Safa RB, Niaz MA, Ghosh S. Hypolipidemic and antioxidant effects of Cinnamomum zeylanicum gum resin. European Food Res Technol. 1994;2:659–664.
53. Perez C, Dominguez E, Canal J, Campillo J, Torres M. Hypoglycaemic activity of an aqueous extract from Ficus carica (fig tree) leaves in streptozotocin diabetic rats. Food Chem Toxicol. 2012;50:181–186.

54. Belguith-Hadriche O, Ammar S, del Mar Contreras M, et al. Antihyperlipidemic and antioxidant activities of edible Tunisian Ficus carica L. Fruits in high-fat diet-induced hyperlipidemic rats. Plant Foods Hum Nutr. 2011;66:183–189.

55. El-Sayed N, El-Sayed N, El-Sayed G, et al. Anti-diabetic activities of Fenicularium vulgare mill. Essential oil in streptozotocin-induced diabetic rats. Muced J Med Sci. 2011;4:139–146.

56. Helal EG, Eid FA, Walshe AM, Ahmed E. Effect of fenugreek (Foeniculum vulgare) on hyperlipidemic rats. Egy J Hematol. 2011;43:212–226.

57. Sadeghpour N, Khaki A, Najafpour A, Dolatkhah H, Montaseri A. Study of Foeniculum vulgare (Fennel) seed extract effects on serum level of estrogen, progesterone and prolactin in a mouse. A general policy. Crescent J Med Sci. 2013;2:59–63.

58. Visavadiya NP, Narasimhacharya AV. Hypocholesterolaemic and antioxidant effects of Glycyrhiza glabra (Linn) in rats. Mol Nutr Food Res. 2006;50:1080–1086.

59. Malik ZA, Sharma PL. An ethanolic extract from icoricry (glycyrhiza glabra) exhibits anti-obesity effects by decreasing dietary fat absorption in a high fat diet-induced obesity rat model. Int J Pharm Sci Res. 2011;2:3010.

60. Saini S, Sharma S. Antidiabetic effect of Helianthus annuus L, seeds ethanolic extract in streptozotocin/citrate induced type 2 diabetes mellitus. Int J Pharm Sci. 2013;5:382–387.

61. Arokiyaraj S, Balamurugan R, Augustan P. Antihyperglycemic effect of Hypericum perforatum ethyl acetate extract on streptozotocin-induced diabetic rats. Asian J Trop Biomed. 2011;1:386–392.

62. Hussain GM, Chatterjee SS, Singh PN, Kumar V. Hypolipidemic and antiobesity-like activity of standardised extract of Hypericum perforatum L in rats. J Pharm Bioallied Sci. 2014;6:475–481.

63. Chauhan K, Sharma S, Agarwal N, Chauhan S, Chauhan B. A study on potential hypoglycemic and hypolipidemic effects of Lepidium sativum (Cress) in hyperlipidemic alloxan induced diabetic rats. Int J PharmTech Res. 2012;2:522–535.

64. Althoosh T. Influence of dietary supplementation of Cardus marianus (Carmen) L on liver histopathology and serum biochemistry in rats fed high cholesterol diet. J Adv Vet Animal Res. 2014;1:216–223.

65. Ghule AE, Jadhav SS, Bodhankar SL. Effect of ethanolic extract of seeds of Nigella sativa L in alloxan induced diabetic rats. Avicenn J PharmTech. 2012;2:179.

66. Farideh ZZ, Bagher M, Ashraf A, Akram A, Kazem M. Effects of chamomile an aqueous extract from Matricaria chamomilla L in streptozotocin induced diabetic rats. Pak Vet J. 2012;32:211–215.

67. Mansour HA, Newairy A-SA, Yousef MI, Shewesta SA. Biochemical study on the effects of some Egyptian herbs in alloxan-induced diabetic rats. Toxicology. 2002;170:221–228.

68. Fontanari GG, Batistuti JP, Cruz RJD, Saldiva PHN, Ar A. Antihyperglycemic and hypolipidemic effect of Trigonella foenum graecum and Phaseolus vulgaris L. Fruits in high-fat diet-fed rats. Proceed Natl Acad Sci. 2010;107:5334–5339.

69. Pimpinella anisum L. in vitro and in streptozotocin-induced diabetic rats. Evid Based Complement Altern Med. 2012;2012.

70. Haj-Husein I, Tukan S, Alkazaleh F. The effect of marjoram (Origanum majorana) tea on the hormonal profile of women with polycystic ovary syndrome: a randomised controlled pilot study. J Hum Nutr Diet. 2016;29:105–111.

72. Chung MJ, Cho S-Y, Bhuiyan MJH, Kim KH, Lee S-J. Anti-diabetic effects of Ficus carica, Foeniculum vulgare, Pimpinella anisum and Linum usitatissimum in high-fat diet-induced rats. J Med Food. 2002;5:97–103.

73. Bolkent S, Yanardag R, Karabulut-Bulan O, Yesilyaprak B. Protective role of Hypericum perforatum GB-N from Piper longum in high-fat diet-fed rats. Pharm Biol. 2012;50:110–114.

74. Lee J, Chae K, Ha J, et al. Effects of Cafoon (Cynara scolymus L.) on blood lipid profile in alloxan induced diabetic rats. Br J Nutr. 2012;108:S66–S72.

75. Soliman HA, Eltablawy NA, Hamed MS. The ameliorative effect of Petroselinum crispum (parsley) on some diabetes complications. J Med Plants Res. 2015;9:12–20.

76. Venkateswaran S, Pari L, Saravanan G. Effect of Phaseolus vulgaris on circulatory antioxidants and lipids in rats with streptozotocin-induced diabetes. J Med Food. 2002;5:97–103.

77. Pervez Gutierrrez RM. Inhibition of advanced glycation end-product formation by Phaseolus vulgaris L., in vitro and in streptozotocin-induced diabetic rats. Evid Based Complement Altern Med. 2012;2012.

78. Zhou Y, Wang S, Peng L, et al. Protective effect of Hypericum perforatum L. on weight gain and obesity in a high-fat diet-induced rat obesity model. J Ethnopharmacol. 2014;155:710–716.