Significance of Feeding Practices for Small Ruminants: A Review

A. A. Khaskheli¹, M. I. Khaskhelii, A.J. Khaskheli², A.A. Khaskheli³

ABSTRACT

Current study was carried in order to understand the significance of feeding practices for small ruminants. In this regards a detailed review of already conducted researches was performance, whereby obtained facts were found to be much interesting and valuable. It was indicated that the profitable small ruminants farming depends upon feeding practices because the feed cost about 70% in farming. Small ruminants are often offered grazing on summer and winter fodders for maintenance and production requirements. However, commercial production demands a change in feeding practice with a trend for more efficient utilization of scarce feed resources. It was further stated that goats spent more time on eating than sheep, while ruminating time remain higher in sheep than goats. Drinking time appears different among these species. Goats spent more time on playing and resting than sheep. Moreover, in extensive, semi-intensive and intensive feeding systems, dry matter intake was noticed higher in sheep than goats. Crude protein intake was reported significantly higher in sheep than goats fed intensively. NDF and ADF intake was higher in goats than sheep. Average daily weight gain was higher in sheep than goats on the extensive system followed by the semi-intensive system. Feed efficiency was similar in both species, while the cost of gain per kg was more economical in goats compared sheep. In conclusion both species performed better on extensive feeding system than the other systems. It might be because of natural grazing behavior.

Key words: Feeding, Goat, Performance, Production, Sheep.

Small ruminants are very important for the livelihood of peoples inhabiting in the regions, where buffalo and cattle production is not suitable. In rural population small ruminants have significant contribution, including meat, milk, hair, wool and skins. These animals are slaughtered regularly for social and religious occasions and act as constant source of income for households (Daskiran et al. 2010). The socio-economic importance of small ruminants has extensively been recognized. There are several factors though potentially contribute such breed ignorance, inappropriate management system and poor feeding practice. Small ruminants are still traditionally reared in most of countries and that hinders animal productivity and considerably impairs the income of small ruminants’ farmers (Devendra, 2001).

In addition to that feeding behavior can also influence the efficiency and cost of rearing the animals. Feeding rate, feeding duration, feed intake, feeding frequency and activity level (Stephen, 2008) varies with the species and contribute to animals’ performance production. Feed intake and growth rate are partially different due to genetic variation and may be included in selection criteria. There are many factors influencing maintenance and growth. Among those feeding variability may have a large role in animals’ life (Cammack et al., 2005). The production quality of small ruminants can be manipulated through feeding practice (Arsenos et al. 2002). The young animals on high concentrate diets perform better and put higher daily weight gain, dressing percentage and carcass quality compared to forage feeding. The concentrates feeding reduces slaughter age, increases carcass quality and meat yield. The performance of lambs and kids can be improved by appropriate mixture of fodders and concentrates (Johnson et al. 2005).

¹Department of Animal Nutrition, Sindh Agriculture University, Tando Jam, Pakistan.
²Department of Plant Protection, Sindh Agriculture University, Tando Jam, Pakistan.
³Department of Biotechnology, Sindh Agriculture University, Tando Jam, Pakistan.
⁴Department of Poultry Husbandry, Sindh Agriculture University, Tando Jam, Pakistan.

Corresponding Author: A.A. Khaskheli, Department of Animal Nutrition, Sindh Agriculture University, Tando Jam, Pakistan. Email: khaskhelias@gmail.com

How to cite this article: Khaskheli, A.A., Khaskheli, M.I., Khaskheli, A.J. and Khaskheli, A.A. (2020). Significance of Feeding Practices for Small Ruminants: A Review. Agricultural Reviews. 41(3): 285-290.

Submitted: 20-04-2020 Accepted: 10-08-2020 Published: 12-09-2020

From above given facts it seems clear that feeding practice possess significant role in the life of small ruminants. Keeping in view these realities, current study was planned in order investigate different practices for small ruminants worldwide and their possible impacts on the animals’ life including behavior, performance and production.

Present review was conducted in order to evaluate the significance of feeding practices for small ruminants worldwide. Study included six main objectives and detailed literatures were reviewed in that regards. Under first objective the influence of feeding practices on behavior of small ruminants was reviewed, in the second objective influence of feeding practices on diet intake of small ruminants was studied, under third objective influence of feeding practices on performance of small ruminants was...
focused, under fourth objective influence of feeding practices on nutrients digestibility of small ruminants was examined, under fifth objective influence of feeding practices on feed efficiency of small ruminants was assessed, however under sixth objective the main focus was on the influence of feeding practices on economics. Results regarding each objective are given in their subsequent sections.

Influence of feeding practices on behavior of small ruminants

Many studies have been conducted on the influence feeding practices on the behavior of small ruminants. In a study, Domingue et al. (1991) determined the eating and ruminating time in goats and sheep. They offered chaffed Lucerne hay (Medicago sativa) to both species and reported higher eating time and lower ruminating time in goats than in sheep in a period of twenty four hours the reason might be species difference as goats are browser while sheep are grazer. Mahmud et al. (2005) conducted research on (7) seven male Awassi sheep and (7) seven male Shami goats and fed with a diet having 2503 Kcal ME and155 g crude protein per kilogram. The recorded activities were eating, ruminating, drinking, resting, standing and playing. They claimed goats showed less drinking and standing but higher playing and resting behavior than sheep. Similar findings were reported by Haddad and Obeidat, (2007) who conducted a research trial on feeding behavior and performance of sheep and goats fed a concentrate finishing diet having crude protein 16% and ME 2.85 Mcal per kg dry matter. The eating and ruminating times were found to be significantly in kids than those in lambs.

Ramli et al. (2005) reported that goats exhibited eating behavior between 70-80% during the day. However, goats ate 5-6 hours per day and ate more meals per day than sheep. They also found that goats ate more meals than sheep both during the day and at night. Goats spent more total time eating and eat longer during the day than sheep. Goats and sheep spend the same amount of time eating during the night. The goats ate more slowly than sheep due to selective grazing behavior Solanki, (1994) conducted a trial in semi-arid region of India on gazing and feeding behavior of goats. He found that goats selectively grazed in a diurnal pattern with two main peaks, consumed more grasses before noon and more shrubs and bushes in the evening. Although no difference was seen in eating rate but bite size was larger when consuming thorny bushes compared to grasses.

Influence of feeding practices on diet intake of small ruminants

The diet intake can be greatly affected by feeding practice. In this regards many studies have carried out. In a study Salem et al. (2005) claimed that voluntary intake of sheep and goats are different on different foliage species, while feeding Schinus, Chorissia speciosa, Chorissia and Eucalyptus mole. Cassia fistula intake was better in sheep than goats on body weight basis, while significantly better intake was found in goats than sheep with Eucalyptus camaldulensis, Schinus molle and Chorissia speciosa. Trived et al. (2005) fed four species of tree fodders fibrous in nature i.e. Ficus roxburghii, Bauhinia purpurea and Artocarpus lakoocha to female goats. Higher dry matter intake was found on Artocarpus lakoocha 432 g/d while on Bauhinia pinnata, 428 g/d. Haddad and Obeidat, (2007) who conducted a research showed less drinking and standing but higher playing and resting behavior in female goats. They concluded that the voluntary intake of sheep and goat varied according to feed offered because sheep and goats have different feeding behavior, preference and eating mood. In another study Aregheore, (1996) reported dry matter intake of goats on groundnut shell 0.63kg, maize cob 0.58kg and cassava peel 0.83kg while in sheep 0.79, 0.70, 0.83 kg DM/kg respectively. Whereas same intake was observed on Acacia cynophula based diet in both species ie 8.49 and 8.4g DM/Kg. Moujahid et al. (2005) found no difference in dry matter intake between sheep and goats when fed a diet of concentrate and barley hay. In intake in both species varied due to eating method and diet preference. Gregoirea et al. (1996) studied the effect of different protein supplements in Angora female kids under four commercial farms on the growth, feed conversion, mohair production, fiber characteristics and blood parameters. Sixty four weaned angora kids from 12-50 week of age were selected and fed diets based on hay and a concentrate mixture of corn and barely. These diets were supplemented with either soybeeen, soybeeen and protected methinone, hering meal and corn gluten meal. They observed similar intake on offered diets while goats consumed 6.1 kg more hay on feed contains herring meal than those fed the soyben-Mepron (soyben with feed additive composed methinone) diets.

Influence of feeding practices on performance of small ruminants

Significant effect of feeding practice on the overall performance of small ruminant occurs and that has been confirmed by many researchers. In a study, Turner et al. (2005) studied the effect of high forage diets of lespedeza or alfalfa hay on the performance and blood parameters of goats. They fed 18 bucks of 6 months lespeda or alfalfa hay ad libitum and reported that average daily gain was better on alfalfa in young goats when fed lespedeza cuneata (103 vs 56 g/d). Wildeus et al. (2007) fed a forage diet of alfalfa hay (Medicago sativa) ad libitum to St. Croix, Katahdin and Barbados Blackbelly breeds. They found that daily gain was not different between Katahdin and St. Croix (131g/day vs 117g/day) but both breeds were significantly different (P<0.05) than Barbados black belly 87 g/day.

Salim et al. (2002) also reported better performance and higher daily weight gain in sheep and goats, while evaluating the effect of concentrate supplementation on intake and growth performance of sheep and goats under grazing conditions. The animals were grazed in the field 7 hours daily and supplemented with wheat bran, rice polish and soybeean meal. They concluded that supplemented feeding of sheep and goats results in better live weight gain than un-supplemented feeding. Similarly, Kabir et al. (2002)
reported that the supplement feeding has positive effect on growth and reproductive performance of sheep and goats, while studying the effect of concentrate mixture of (wheat bran, rice polish and soyabean meal). 350 g/d on weight gain and reproductive performance of goats and sheep under grazing conditions. Patel et al. (2004) conducted research on twenty four farms with weaned lambs, 12 each of Marwari and Patanwadi breeds. The animals were randomly divided into two dietary treatments i.e. T1-conventional composed maize 38.00, ground nut cake 25.00, rice polish 24.00, jaggery solution 10.00 (solution prepared from sugar like molasses), Mineral mixture 03.00 per cent respectively and T2-nonconventional composed of Mango seed kernel 25.00, prosopis juliflora 24.00, Babul pods chuni 15.00, cassia tora seeds 06.00, Corn steep liquor 15.00, Urea 01.00, Jaggery solution 10.00 and mineral mixture 03.00 per cent respectively and basal diet was fed ad libitum individually for 180 days under feedlot system. The results of the study showed that lambs grew at the rate of 63.38 ± 3.25 and 48.80 ± 2.50 g/d to attain body weight of 21.35 ± 1.26 and 18.51 ± 0.85 kg body weight at 11 months of age under conventional and non- conventional treatment groups, respectively. Ismail and Tahir (2006) reported that supplementation of sorghum stover by up to 45% of khat leftover improves the weight gain of goats, while Hassain et al. (2003) studied the effects of three feeding regimes on growth performance and reproductive performance of sheep and goats. They affirmed that the weight gain increased in both sheep and goats as the energy levels increased in the diet of sheep and goats. Karim et al. (2007) conducted research on the Kheri breed with 6 month old finished lambs under extensive management and grazing with ad libitum concentrate supplementation or intensive feeding. The better growth rate was observed in supplement group followed by extensive and intensive arrangement groups.

Meanwhile, Safaria et al. (2009) studied the effects of concentrate supplementation on carcass and meat quality of feedlot finished small East African goats. In this study they used 23 animals of approximately 14.5 months age and 20.1 kg body weight were and fed ad libitum different or less than this i.e (100%, 66%, 33% and 0%). They concluded that on 100% treatment group goats had 31g daily body weight gain which was higher by 14g/day than the other treatment groups. In another study, Aregheore, (2004) reported that daily weight gain of goats significantly increased when fed a mixture of sweet potato with different ratios of batiki grass 0:100, 50:50, 75:25 and 100:0 to the goats of 8-9 month of age with 12.3±0.18 kg body weight. They concluded that the weight gain of goats improved by the type of forage and inclusion level of the supplement. The greater weight gain was observed on mixed diets.

Influence of feeding practices on nutrients digestibility of small ruminants

The growth performance of small ruminants is a dependent variable, influenced by independent variables like digestibility of nutrient and the environment, while nutrients digestibility depends on two factors, one is animal related like species such as sheep and goats, breed and the other related to feed, quality and composition of feed. Significant reports relevant to the present study are reviewed as below. Further, Abu Zanat, (2005) studied the Atriplex hainzus and Atriplex nummularia effect on intake and digestibility of sheep by replacing the alfalfa hay in the diet of Awassi sheep. They observed that the treatments had significant effect on digestibility. The inclusion level of Atriplex nummularia up to 50% of the diet had no significant effect on the digestibility, whereas the inclusion of Atriplex halinizus above 25% reduced the dry matter organic matter digestibility. He concluded that Atriplex nummularia is better than A. halimus. The inclusion level of A. nummulari is better to replace 50% alfalfa without any negative effect on over all dry matter digestibility. Wildes et al. (2007) fed a forage diet of Medicago sativa to Barbaros Blackbelly Katahdin and St. Croix breeds. They investigated intake, weight gain, digestibility and nitrogen use. They found that digestibility dry matter crude protein NDF and ADF in Blackbelly 58.3, 67.7, 41.8, 38.5, Katahdin 63.0, 72.3, 49.4, 44.0 and in St. Croix breeds 59.3, 69.4, 43.6, 36.5 respectively. Results of demonstrated that the digestibility of DM, CP, NDF, ADF was higher for Katahdin compared to Blackbelly with St. Croix breeds. Ahmed and Ahmed (1983) studied the intake and digestibility of cattle and sheep on berseem and sorghum forage. Both species were fed ad libitum and supplemented cattle with molasses while sheep were supplemented with dura grain. The digestibility was the same in cattle on sorghum and berseem while in case of sheep the better digestibility was found on berseem than sorghum. The digestibility of sorghum was improved by supplementation with dura grain and molasses in cattle and sheep, whereas supplementation had no significant effect on the digestibility of berseem in both species. Sarwatt, (1990) conducted a trial on growing sheep to study the effect of supplementation on intake, weight gain and digestibility. They selected 12 animals were randomly divided in treatment groups i.e only hay A, hay plus 150 gram marajea B, hay plus 300 gram merajea.C and hay plus ad libitummerajea D. They observed that supplementation significantly (P< 0.01) increased dry matter digestibility in animals on treatment D and crude protein digestibility was also better by three times in the unsupplemented group on treatment D and organic matter digestibility was increased with the increase of supplement in diets, significantly (P<0.01) higher in group D than other treatment groups.

Chobtang et al. (2009) evaluated the growth performance of Thai indigenous male goats fed different levels of crude protein in total mixed rations. They found that increasing levels of crude protein content in total mix ration not only improved crude protein intake but also enhanced crude protein digestibility. Fattine and Zanetti, (2010) investigated the effect of feeding maize stover alone or with multinutrient block on the growth of 24 Mozambican Landim goats aging 8 months with 11 kg (±0.61) average body weight, during the dry season. At the end of growth...
Significance of Feeding Practices for Small Ruminants: A Review

trial, a 5 day digestibility trial was conducted. They reported higher digestibility (%) of dry matter (61.1 versus 46.6), crude protein (69.5 vs -5.60), neutral detergent fibre (55.5 vs 45.1) and acid detergent fibre (53.3 vs 43.3). However the contradictory and unimpressive results from various reviewed reports might be in part due to the reasons other than inter-species differences in digestive physiology. It is evident that wide difference in experimental conditions were represented by these several reports, like age, weight, breed of the experimental animals, number of animals per treatment, feed sources and chemical composition.

Influence of feeding practices on feed efficiency of small ruminants

Efficient feed is important for commercial rearing of small ruminants. Mahgoub et al. (2000) conducted trial on forty male Omani lambs to study the properties of feeding diets containing different levels of ME on weight gain and carcass composition. Ten lambs were slaughtered for initial information of carcass composition, while other three groups were fed diets with varying concentration of ME being high, medium and low density. They reported increase of ME concentration in the diet improved conversion efficiency in lambs. Later on few other workers like Sheridan et al. (2003) reported that individual feeding of two pellet diets with varying energy levels ad libitum for either 28 or 56 days to the Boer goat and South African mutton Merino lambs after weaning improved weight gain in mutton Merino sheep significantly being higher than Boer kids. The inter-treatment difference was not significant in the case of the Boer kids. While, in the case of Merino mutton lambs the inter treatment difference was significant between high and low energy diets. Patel et al. (2004) carried out a trial on twenty four farms born weaned lambs, 12 each of Marwari and Patanwadi breed. The lambs were fed two dietary treatments viz. T1-conventional and T2-non-conventional individually for 180 days under a feed lot system. They reported that feed conversion efficiency in terms of dry matter, digestible crude protein and total digestible nutrient per kg gain was significantly influenced by dietary treatment in Patanwadi breed.

Meanwhile, Dzakuma et al. (2004) selected two goat-populations of the Spanish and Tennesse stiff-legged breeds from weaning to six months and feeding the same ration with different levels i.e. 100%, 85% and 70% containing same CP180g/kg and ME 65%. The feed efficiency for Spanish and Tennesse Stiff-legged breed from weaning to six month of age was 0.122 vs 0.167 grams and from nine to thirteen month was 0.088 vs 0.104 were significantly different from each other. The results of study revealed that the Tennesse Stiff-legged breed is more efficient than Spanish goats breed. Urge et al. (2004) conducted research on four breeds of goats Spanish, Boer, Alpine and Angora and reported that feed efficiency was greater in Angora and Boer goats than Alpine and Spanish goats in the first week to the twelfth week while lower efficiency was observed in Spanish goats than in Angora goats during weeks 13-14. Haddad, (2005) studied the effect of different forage and concentration ratios on the performance of Baladi kids. The kids were given four treatments containing (1)60:40, (2)45:55, (3)30:70 and (4)15:85 forage to concentrate ratio and reported average daily gain for kids fed the15:85forage concentrate ratio was better than kids fed the 60:40 high forage diet. While on 45:55 and 30:70 diets kids had intermediate daily weight gain. They reported that increasing concentrate in diets decreasing forage parts results in average daily weight gain and improve the feed efficiency. Haddad and Obeidat, (2007) reported that lambs performed better than kids on high concentrate diets. The lambs ate more and grew faster than kids. Kids were more efficient feed converters than lambs while kids had significantly lower feed to gain ratio. Aregheore, (2007) fed different levels foliage of fluted pumpkin i.e. O, 25, 50, 75 and100% to Angola Nubian goats. They reported feed efficiency 0.11, 0.18, 0.29, 0.37 and 0.24 grams while feed conversion ratio 9.1, 5.7, 3.5, 2.7 and 4.1 respectively. Later on Jabbar and Anjum, (2008) fed Lohi lambs with different concentrate and fodder ratios (forage to concentrate) 75:25, 50:50 and 25:75 and reported that feed conversion ratio averaged 16.41, 11.30 and 11.53, respectively. They concluded that feed conversion ratio was significantly different among treatment groups. Wildeus et al. (2007) studied performance of three sheep breeds. The animals were fed chopped alfalfa hay and allowed a 14 day adaptation period. The initial body weight was unusual between breeds. They concluded that feed to gain ratio between breeds were 8.7, 9.1, 10.5 in St. Croix, Katahdin and Barbados Black belly respectively the difference were non-significant. The sheep breeds, St. Croix and Barbados Black Belly sheep have lower average daily gain and gain: feed ratio than wool sheep breeds, while the St. Croix group seemed to be better than Barbados Black belly lambs. They also observed that hair x wool crosses better than purebred hair sheep and expressed similar average daily weight gain and G:F ratio to wool breeds. Karim et al. (2007) studied Carcass characteristics of Kheri lambs kept under various feeding management systems. The lambs were divided in to three treatment groups i.e. (A extensive range grazing only), (B grazing with ad libitum concentrate supplement), (C, intensive feeding). They observed that feed conversion efficiency was higher in lambs maintained under grazing with supplementation than intensive and extensive range management.

Influence of feeding practices on economics

The feeding economics varies according to the cost of ingredients and is also influenced by the intake of animals and the efficiency of feed to be converted in per unit body mass and the ability of animal to convert dry matter intake to per unit weight gain. The feeding economics of sheep and goats in literatures is variable, regarding to feeding economics of small ruminants. Important results of researchers relevant to the present study are reported here. Patel et al. (2004) carried out a trial on weaned lambs from four farms, 12 each of Marwari and Patanwadi breed and were fed two dietary treatments viz. T1-conventional and
T2nonconventional individually for 180 days under feed lot system. They concluded that the cost of production in terms of per kg gain and per kg dressed weight was economical in nonconventional treatment group due to the use of cheaper non-conventional ingredients. While in a similar study Trived et al. (2005) fed two creep mixtures to the lambs and found that the performance of lamb was similar on conventional and non-conventional creep mixture in term of per kg gain and per kg dressed weight. They concluded that conventional and non-conventional creep mixtures are useful for improvement of growth rate in pre weaning lambs and recommended that the latter could be safely and economically used for lamb rearing. Legesse et al. (2005) compared the intensive, semi-intensive and extensive feeding systems in Somali goats. They divided the goats into three treatment groups i.e. first group was reared intensively, second group was fed semi-intensively and third were kept extensively. They found that goat reared on semi-intensive performed better than other treatment groups. They concluded that the semi-intensive system of feeding is more cost effective than intensive and extensive systems.

Since than a few other workers like Haddad and Obeidat, (2007) conducted an experiment on Awassi lambs and Baladi kids to evaluate the performance of sheep and goats on concentrate finishing diets. They reported that the cost of production in terms of per kg gain was lower in kids than lambs under confined feeding systems. Jabbar and Anjum, (2008) conducted a trial on fattening performance of Lohi lambs to study the effect of different forage to concentrate ratios. They fed the animals with different levels of forage to concentrate of 75:25, 50:50 and 25:75 A, B and C, respectively for a period of 66 days. They observed that cost of production/ kg gain was Rs. 74, 61 and 55 for groups A, B and C respectively. They concluded that the forage to concentrate ratio 25:75 is cost effective for mutton production. A few other workers like Belewu and Olajide, (2010) in an experiment selected West African dwarf goats to study the effect of different dietary treatments on intake, weight gain and digestibility of goats. They divide goats into three treatment groups, A, B, C. The treatment A consisted only hay B, 50:50 soyabean meal and muscuna seed meal and C diet was 100% muscuna, seed meal. The feed cost of treatment groups. A= 147.59, B= 81.04 and C= 30.12. They concluded that C diet was economical than other treatment groups. It is concluded that the cost of production per kilogram live weight gain in small ruminants can be enhanced by using cheaper ingredients of concentrate. The use of concentrate as a supplement source in grazing animals is a more cost effective production system than the animal grazed on forage or fed under intensive conditions without concentrate supplementation.

CONCLUSION AND SUGGESTIONS
The feeding behavior, diet intake, nutrients digestibility, feed efficiency and other performance parameters vary in goats and sheep with the type of feeding practice. Overall the main influences in this regards are feed source, feeding pattern, feed quality, nutrients composition of feed and environmental factors. This review study suggests that there is a need of research projects carried out on local breeds of sheep and goat within their regional climatic conditions and locally available natural feeds. Further, the performance of those breeds needs to be evaluated with their native feed resources.

REFERENCES
Abu Zanat, M.M.W. (2005). Voluntary intake and digestibility of saltbush by sheep. Asian-Australasian Journal of Animal Science. 18: 214-220.
Ahmed, F.A. and Ahmed, A.I. (1983). Intake and digestibility of berseem (Medicago) sativa and sorghum abu70 (Sorghum vulgar forages by Sudan zebu cattle and desert sheep. Tropical Health Production. 15: 7-12.
Areghoere E.M. (2007). Voluntary intake, nutrient digestibility and nutritive value of foliage of fluted pumpkin (Taffaria occidentalis) - haylage mixtures by goats. Livestock Research for Rural Development. 19: 1232-1238.
Areghoere, E.M. (1996). Voluntary intake and nutrient digestibility of crop residues based ration by goats and sheep. Small Ruminant Research. 22: 7-12.
Areghoere, E.M. (2004). Nutritive value of sweet potato [Ipomea batatas (L.) Lam] forage as goat feed: voluntary intake, growth and digestibility of mixed rations of sweet potato and batiki grass (Ischaemum aristatum var. indicum). Small Ruminant Research. 51: 235-241.
Arnesos, G., Banos, G., Fortomaris, P., Katsaounis, N., Tsaras, C.L. and Zygojanniis, D. (2002). Eating quality of lamb meat: effects of breed, sex, degree of maturity and nutritional management. Meat Science. 60: 379-387.
Belewu, M.A and Olajide, J.O. (2010). Lesser known seed a renewable pathway for sustainable animal production. Africa Journal of Sustainable Development. 12: 1520-1529.
Cammack, K.M., Leymaster, K.A., Jenkins, T.G and Nielsen, M.K. (2005). Estimates of genetic parameters for feed intake, feeding behavior, and daily gain in composite ram lambs. Journal of Animal Science. 83: 777-785.
Chobtang, J., Intiharak, K. and Isuwan, A. (2009). Effects of dietary crude protein levels on nutrient digestibility and growth performance of Thai indigenous male goats. Songklanakarin Journal of Science and Technology. 31: 591-596.
Daskiran, I., Bingol, M., Karaca, S., Yilmaz, A., Celin, A.O. and Kor, A. (2010). The effect of feeding system on fattening performance, slaughter and carcass characteristics of Norduz male kids. Tropical Animal Health and Production. 42: 1459-63.
Devandera. (2001). Small ruminants imperatives for productivity Enhancement improved Livelihoods and Rural growth. Asian-Australasian Journal of Animal Science. 14: 1483-1496.
Domingue, B.M.F., Dellow, D.W. and Barry, T.N. (1991). The efficiency of chewing during eating and ruminating in goats and sheep. British Journal of Nutrition. 65: 355-363.
Dzakuma, J.M., Risch, E., Smith, C.O, Blackburn, H.D. (2004). Level of feed intake on performance of two goat genotypes. South African Journal of Animal Science. 34: 212-220.
Fattine, O.L.J. and Zanetti, A.M. (2010). Effect of multi nutrient block on feed digestibility and performance of goats fed maize Stover during the dry season in south of Mozambique. Research for Rural Development. 22: 432-442.

Gregoirea, R.J., Fahmyb, M.H., Bouchera, J.M., Tremblayc, A. and Mercieria, J. (1996). Effect of four protein supplements on growth, feed conversion, mohair production, fibre characteristics and blood parameters of Angora goats. Small Ruminant Research. 19: 121-130.

Haddad, S.G. (2005). Effect of dietary forage: concentrate ratio on growth performance and carcass characteristics of growing Baladi kids. Small Ruminant Research. 57: 43-49.

Haddad, S.G. and Obeidat, B.S. (2007). Production efficiency and feeding behavior of Awassi lambs and Baladi kids fed on a high concentrate diet. Small Ruminant Research. 69: 23-27.

Hossain, M.E., Shahjalal, M., Khan, M.J. and Bhuiyan, A.A. (2003). Effect of dietary energy supplementation on feed Intake, growth and reproductive performance of sheep under grazing condition. Pakistan Journal of Nutrition. 2: 148-152.

Ismail, M. and Berhan, T. (2006). Acceptability and growth of goats fed with khat (Catha edulis) leftover as a sole diet and supplement. Tropical Science. 46: 185-188.

Jabbar, M.A. and Anjum, M.I. (2008). Effect of diets with different forage to concentrate ratio for fattening of lohi lambs. Pakistan Veterinary Journal. 28: 150-152.

Johnson, P.L., Purchas, R.W., McEwan, J.C. and Blair, H.T. (2005). Carcass composition and meat quality differences between pasture-reared ewe and ram lambs. Meat Science. 71: 383-391.

Kabir, F., Shahjalal, M., Miah, G., Uddin, M.J. and Rahman, M.Z. (2002). Effect of concentrate supplementation to grazing on growth and reproductive performance in female goats and sheep. Journal of Biological Science. 2: 333-335.

Karim, S.A., Kuldeep, P., Suresh, K. and Singh, V.K. (2007). Carcass traits of Kheri lambs maintained on different system of feeding management. Meat Science. 76: 395-401.

Kumar, M., Baudh K., Saingier M., Saingier P.A., Singh J.S. and Singh R.P. (2012). Increase in growth, productivity and nutritional status of rice (Oryza sativa L. cv. Basmati) and enrichment in soil fertility applied with an organic matrix entrapped urea. Journal of Crop Science and Biotechnology. 15(2): 137-144.

Legesse, G., Abebe, G. and Ergano, K. (2005). The economics of goats managed under Different feeding systems. Livestock Research for Rural Development. 17: 120-122.

Mahgoub, O., Lu, C.D. and Early, R.J. (2000). Effects of dietary energy density on feed intake, body weight gain and carcass chemical composition of Omani growing lambs. Small Ruminant Research. 37: 35-42.

Mahmut, K., Ahmet, S., Osman, B., Sabri, G., Serafettin, K., Ayan, S. and Metin, D. (2005). Feeding behaviour of Awassi sheep and Shami (Damascus) goats. Turkish Journal of Veterinary and Animal Science. 29: 435-439.

Moujahed, N., Salem, H.B. and Kayouli, C. (2005). Effects of frequency of polyethylene glycol and protein supplementa-tion on intake and digestion of Acacia cyanophylla Lindl. Foliage fed to sheep and goats. Small Ruminant Research. 56: 65-73.

Patel, K.M., Patel, K.S., Wadawani, K.N., Parnerker, S., Pandaya, P.R. and Patel, A.M. (2004). Comparative growth perfor-mance of weaner lambs on non-conventional based ration under intensive production system. International Journal of Agriculture and Biology. 8: 860-664.

Ramli, M.N., Higashi, M., Imura, Y., Takayama, K. and Nakanishi, Y. (2005). Growth, feed efficiency, behaviour, carcass characteristics and meat quality of goats fed fermented Bagasse feed. Asian-Australasian Journal of Animal Science. 18: 1594-1599.

Safaria, J., Mushia, D.E., Mtenga, L.A, Kifarod, G.C. and Eika, L.O. (2009). Effects of concentrate supplementation on carcass and meat quality attributes of feedlot finished Small East African goats. Livestock Science. 125: 266-274.

Salem, A.Z.M., Salem, Z.M.Z., El-Adawy, M.M. and Robinson, P.H. (2005). Nutritive evaluation of some browse tree foliages during the dry season: Secondary compounds, feed intake and in vivo digestibility in sheep and goats. Animal Feed Science and Technology. 127: 251-276.

Salim, H.M., Shahjalal, M., Tareque, A.M.M. and Kabir, F. (2002). Effects of concentrate supplementation on growth and reproductive performance of female sheep and goats under grazing condition. Pakistan Journal Nutrition. 1: 191-193.

Sarwatt, S. V. (1990). Feed intake, growth rate and digestibility coefficients of growing sheep fed hay Supplemented with Crotalaria ochroleuca. Journal of Animal Feed Science and Technology. 28: 51-59.

Sheridan, R., Ferreira, A. V. and Hoffman, L. C. (2003). Production efficiency of South African Mutton Merino lambs and Boer goat kids receiving either a low or a high energy feedlot diet. Small Ruminant. 50: 75-82.

Solanki, G.S. (1994). Feeding habits and grazing behavior of goats in a semi-arid region of India. Small Ruminant Research. 14: 39-43.

Stephen, J.C. (2008). Feeding behaviors and performance measure mentsin Bucks, Rams and Bulls Thesis Master of Science. The Davis College of Agriculture, Forestry and Consumer Sciencesat West Virginia University.

Trived, M. M., Parnerkar, S. and Patel, A. M. (2005). Effect of Feeding Non-conventional Creep Mixtures on Growth Performance of Pre-weaned Lambs. International Journal of Agriculture and Biology. 2: 175-179.

Turner, K. E., Wildeusb, S. and Collins, J. R. (2005). Intake perfor-mance and blood parameters in young goats offered high forage diets of islepseza or alfalfa hay. Small Ruminant Research. 59: 15-23.

Urge, M., Merkel, R.C., Sahu, T., Animit, G. and Goetsch, A.L. (2004). Growth performance by Alpine, Angora, Boer and Spanish wether goats consuming 50 or 75% concentrate diets. Small Ruminant Research. 55: 149-158.

Wildeus, S., Turner, K. E. and Collins, J. R. (2007). Growth, intake, diet digestibility and nitrogen use in three hair sheep breeds fed alfalfa hay. Small Ruminant Research. 69: 221-227.