Laparoscopy/Robotics

Efficacy of Using Three-Tesla Magnetic Resonance Imaging Diagnosis of Capsule Invasion for Decision-Making About Neurovascular Bundle Preservation in Robotic-Assisted Radical Prostatectomy

Kazushi Tanaka, Katsumi Shigemura, Mototsugu Muramaki, Satoru Takahashi, Hideaki Miyake, Masato Fujisawa

Division of Urology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan

INTRODUCTION

Prostate cancer (PC) increasingly presents as early-stage disease clinically owing to increased screening, including prostate-specific antigen (PSA) screening. The standard of care for organ-confined cancers has been retropubic radical prostatectomy, which carries a substantial risk of morbidity, including incontinence and impotence [1]. Robot-assisted radical prostatectomy (RARP) provides improved visualization of the surgical field and improved instrument control compared with open and laparoscopic prostatectomy [2]. However, surgeons performing RARP lack the tactile feedback upon which they have traditionally relied to determine the extent of resection [3].

In this situation, preoperative detection of extracapsular extension (ECE) may be necessary to guide the surgi-
onal strategy in radical prostatectomy, to achieve PC-negative margins, and to spare the neurovascular bundles (NVBs) as much as possible to preserve erectile function and good postoperative continence [4-6].

In most cases, current PC staging is based on clinical assessment, notably, digital rectal examination (DRE), to sense a nodule or an extraprostatic rigid mass during prostate palpation. This clinical approach seems outdated, however, because DRE has low specificity [7]. Prostatic magnetic resonance imaging (MRI) appears to be a promising method for detecting PC and even for evaluating ECE during the pretreatment workup [8-10]. However, data about the specific role of prostatic MRI in PC staging are still lacking [11]. Moreover, racial differences have been reported in PC tumor aggressiveness and invasion characteristics [12]. Specific racial guidelines for decision making about nerve sparing may need to be established.

In this study, we evaluated the utility of 3-T MRI for assessing ECE and indicating the appropriateness of NVB sparing during RARP in a Japanese patient population.

MATERIALS AND METHODS

1. Patients
In this single-institution study, 67 patients with clinical T2 or T3 disease diagnosed by MRI and who did not undergo neoadjuvant hormonal therapy were included between October 2010 and September 2012. All patients had biopsy-proven PC. Preoperative 3-T MRI was performed to determine the feasibility and extent of a nerve-sparing RP. The following data were collected: age at diagnosis, preoperative PSA level, clinical staging, pathological staging, operative PSA level, clinical staging, pathological staging, and Gleason score from biopsy and surgical specimens. The Kobe University Institutional Review Board approved this protocol. Written informed consent was obtained from all participants before inclusion in the study.

2. Three-tesla MRI
MRI was performed by using a 3-T MR scanner (Intera Achieva, Philips Healthcare, Amsterdam, The Netherlands) with a phased-array pelvic coil for signal reception. No endorectal coil was used in this study. All patients underwent sagittal, coronal, and axial oblique turbo spin-echo T2-weighted imaging, and all MRI findings were evaluated by a single radiologist (S.T.). Additionally, patients underwent echo-planar diffusion-weighted imaging (DWI) with calculation of apparent diffusion coefficients and dynamic contrast-enhanced imaging. The criteria for a positive cancer finding were as follows: 1) low-intensity imaging in both T2-weighted imaging and apparent diffusion coefficient or 2) enhancing in the early phase but washed out in dynamic imaging. An antiperistaltic agent, 0.5 mg glucagon, was administered intravenously just before the MRI examinations, and an additional 0.5 mg was administered immediately preceding the acquisition of dynamic contrast-enhanced MR. A minimum of 8 weeks was required between the date of the MRI and the previous biopsy to reduce the influence of postbiopsy change in diagnostic accuracy on the basis of Hricak’s study [5], in which the median interval between MRI and biopsy was 8 weeks. Prostate biopsy was performed transrectally with 12 cores (6 sextant, 2 from the far peripheral zone [PZ], and 4 cores from the transitional zone [TZ]).

Common criteria was used to determine ECE and local staging grade. Low-intensity lesions on T2-weighted MR images within the PZ of the prostate were considered suspicious for tumor [13]. In the TZ, areas with homogeneous low signal intensity, ill-defined margins, or lack of capsule were interpreted as tumor foci. Asymmetric bulging, an irregular margin, or direct extension of the lesion in the periprostatic fat or NVB was graded as capsular penetration (stage T3a). Signs of seminal vesicle invasion included low intensity in one or both seminal vesicles (stage T3b). The radiological findings were compared with the final operative histological reports.

3. RARP procedure
RARP with lymph node resection was performed with a da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) using the standard procedure [14]. Briefly, 4 robotic arms and 2 additional trocars as assistants were used in a 30-degree Trendelenburg position by a transperitoneal approach. Nerve-sparing procedures used an athermal, antegrade interfascial method with minimization of traction. The decision for nerve-sparing was based on MRI findings and preoperative International Index of Erectile Function Questionnaire-25 scores.

4. Histological evaluation
The prostate was serially sectioned from base to apex into different levels (depending on the size of the prostate) for histological analysis and labeled as right or left and anterior or posterior apex, midgland, and base. Seminal vesicles were also analyzed separately. All reports were reviewed to determine the presence of ECE and seminal vesicle invasion and to compare staging at the pathologic examination and MRI in each prostate lobe (2 lobes in one patient).

5. Statistical analyses
Diagnostic accuracy was measured as sensitivity, specificity, positive predictive value, and negative predictive value. Univariate analysis was calculated for ECE and achievement of nerve-sparing. A p-value of 0.05 or less was considered as statistically significant. A Mann-Whitney U test and a chi-square test were used to determine significant differences. Statistical analysis was conducted with XLSTAT (Addinsoft, New York, NY, USA).

RESULTS

1. Extracapsular invasion
The characteristics of all patients are shown in Table 1. All patients underwent 3-T MRI before RALP (Table 1). The
preoperative 3-T MRI results showed that when the samples were divided by prostate side or lobe (right side or left side), 106 of 134 sides were ECE negative and 28 of 134 were ECE positive (Table 2). The representative MRI findings of the positive ECE and negative ECE sides are shown in Fig. 1. Pathologic examination of the surgical specimens in all 67 patients revealed that 50 patients (74.6%) had disease confined to the prostate (pT2) and 17 patients (25.4%) had locally advanced disease (pT3). The pathological stages were pT2a (n=11), pT2b (n=6), pT2c (n=33), pT3a (n=15), and pT3b (n=2) (Table 1).

TABLE 1. Patients’ characteristics

Characteristic	Value
No. of patients	67
Age (y), median (range)	67 (51-74)
PSA (ng/mL), median (range)	6.99 (2.87-27.6)
Clinical stage	
T2a	28
T2b	3
T2c	20
T3a	16
Pathological stage	
T2a	11
T2b	6
T2c	33
T3a	15
T3b	2
Gleason score of biopsy	
6	13
7	30
8	24
Gleason score of prostatectomy	
6	2
7	54
8	11

PSA, prostate-specific antigen.

TABLE 2. Comparison between MRI and pathological findings

Parameter	Pathological stage		
	T3	T2	
Magnetic resonance imaging stage	Positive ECE	12	16
	Negative ECE	8	98
Sensitivity	60.0%		
Specificity	86.0%		
Positive predictive value	42.9%		
Negative predictive value	92.5%		

ECE, extracapsular extension.

2. **Comparison between MRI and pathological data**

In the MRI and pathological findings, the overall sensitivity, specificity, and positive predictive value for predicting ECE according to the findings by every prostate side and the negative predictive value were 60.0% (12 of 20 sides), 86.0% (98 of 114 sides), 42.9% (12 of 28 sides), and 92.5% (98 of 106 sides), respectively (Table 2).

3. **Correlation of MRI with nerve-sparing and pathological data**

On the basis of the 3-T MRI findings, nerve-sparing surgery was performed on 42 of 134 sides (31.3%). Nerve-sparing surgery was achieved in 38.7% of sides with no ECE reported by 3-T MRI. All 41 sides with negative ECE on MRI underwent nerve-sparing surgery with no positive surgical margins (100%). Table 3 shows the nerve-sparing procedure, pathological stage, and positive surgical margin rate in the MRI groups with and without ECE. All values were significantly different (Table 3).

FIG. 1. Representative cases with positive (prostate cancer-positive part is shown by an arrow) (A) and negative (B) extracapsular extension magnetic resonance imaging findings are shown.
surgeons to individually sculpt the extent of surgical resection, resulting in a lower positive surgical margin rate than did patients who were not suspicious for ECE. Additionally, there were no positive surgical margins with nerve-sparing procedures in the group shown to be ECE negative on MRI.

This study have some limitations. First, the number of cases may not have been enough for definitive conclusions. Second, we did not use an endorectal coil. Even though an endorectal coil could have provided better spatial resolution, this approach has several limitations, including increased cost and examination time, a nonuniform signal-to-noise ratio up to twofold, increased cost and examination time, a nonuniform signal-to-noise ratio up to twofold, increase in motion artifacts owing to rectal peristalsis. Third, this was a single-arm study and did not include a comparative group, for instance, a 1.5-T MRI group. These limitations will be overcome in our future studies.

CONCLUSIONS

We found that 3-T MRI showed comparatively acceptable quality images for decision-making about nerve-sparing surgery. Dynamic contrasted-enhanced (DCE) MRI is another complementary functional MR technique that assesses the relative tissue perfusion within the prostate. Detection and characterization are improved by the addition of DCE-MRI to T2-weighted images. For overall PC detection, multiparametric MRI showed better quality than any individual MRI sequence. In this study, we used T2-weighted imaging, DWI, and DCE-MRI for PC staging, which may have contributed to our results showing a statistically significant trend for the surgeon to perform fewer NVB-sparing procedures if the MRI reported ECE than if no ECE was reported. The same trend was also mentioned by Roethke et al as significant (p < 0.01) in their study. An important question is the influence of preoperative MRI on the positive surgical margin rate. In our study, patients with ECE on MRI had a higher positive surgical margin rate than did patients who were not suspicious for ECE. Additionally, there were no positive surgical margins with nerve-sparing procedures in the group shown to be ECE negative on MRI.
results for staging PC and accurately detecting ECE to guide decision-making for nerve-sparing surgery in RARP. Our data offer evidence that 3-T MRI might improve decision-making about nerve-sparing surgery, although a prospective study with a comparison group and larger number of cases is still needed.

CONFLICTS OF INTEREST
The authors have nothing to disclose.

REFERENCES
1. Hugosson J, Stranne J, Carlsson SV. Radical retropubic prostatectomy: a review of outcomes and side-effects. Acta Oncol 2011;50 Suppl 1:92-7.
2. Frota R, Turna B, Barros R, Gill IS. Comparison of radical prostatectomy techniques: open, laparoscopic and robotic assisted. Int Braz J Urol 2008;34:259-66.
3. McClure TD, Margolis DJ, Reiter RE, Sayre JW, Thomas MA, Nagarajan R, et al. Use of MR imaging to determine preservation of the neurovascular bundles at robotic-assisted laparoscopic prostatectomy. Radiology 2012;262:874-83.
4. Brown JA, Rodin DM, Harisinghmani M, Dahl DM. Impact of preoperative endorectal MRI stage classification on neurovascular bundle sparing aggressiveness and the radical prostatectomy positive margin rate. Urol Oncol 2009;27:174-9.
5. Hricak H, Wang L, Wei DC, Coakley FV, Akini O, Reuter VE, et al. The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer 2004;100:2855-63.
6. Labanaris AP, Zugor V, Takriti S, Smiszek R, Engelhard K, Nutzel R, et al. The role of conventional and functional endorectal magnetic resonance imaging in the decision of whether to preserve or resect the neurovascular bundles during radical retropubic prostatectomy. J Urol 2009;182:1509-14.
7. Hsu CY, Joniau S, Oyen R, Roskams T, Van Poppel H. Detection of clinical unilateral T3a prostate cancer by digital rectal examination results. Radiology 2002;224:203-10.
8. Cornud F, Flam T, Chauveinc L, Hamida K, Chretien Y, Vieilledent A, et al. Prostate dynamic contrast-enhanced, pelvic phased array magnetic resonance imaging findings and the odds of upgrading and upstaging at radical prostatectomy in men with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 2013;85:e101-7.
9. Girouin N, Mege-Leechavallier F, Tonina Senes A, Bissey A, Ribilloud M, Marechal JM, et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol 2007;17:1498-509.
10. Villers A, Puech P, Mouton D, Leroy X, Ballereau C, Lemaître L. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with prostatectomy findings. J Urol 2006;176(6 Pt 1):2432-7.
11. Jager GJ, Ruijter ET, van de Kaa CA, de la Rosette JJ, Oosterhof GO, Thornbury JR, et al. Local staging of prostate cancer with endorectal MR imaging: correlation with histopathology. AJR Am J Roentgenol 1996;166:845-52.
12. Xu Z, Bensen JT, Smith GJ, Mohler JL, Taylor JA. GWAS SNP Replication among African American and European American men in the North Carolina-Louisiana American prostate cancer project (PCaP). Prostate 2011;71:881-91.
13. Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al. ESUR prostate MR guidelines 2012. Eur Radiol 2012;22:746-57.
14. Orvieto MA, Patel VR. Evolution of robot-assisted radical prostatectomy. Scand J Surg 2009;98:76-88.
15. Bhatnagar V, Kaplan RM. Treatment options for prostate cancer: evaluating the evidence. Am Fam Physician 2005;71:1915-22.
16. Kundu SD, Roehl KA, Eggenger SE, Antenor JA, Han M, Catalona WJ. Potency, continence and complications in 3,477 consecutive radical retropubic prostatectomies. J Urol 2004;172:6 Pt 1:2227-31.
17. Costello AJ, Brooks M, Cole OJ. Anatomical studies of the neurovascular bundle and cavernous nerves. BJU Int 2004;94:1071-6.
18. Ficarra V, Novara G, Artibani W, Cestari A, Galfano A, Graefen M, et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol 2009;55:1037-63.
19. Lowrance WT, Tarin TV, Shariat SF. Evidence-based comparison of robotic and open radical prostatectomy. ScientificWorldJour 2010:10:2228-37.
20. Bloch BN, Rosisky NM, Baroni RH, Marquis RP, Pedrosa I, Lenkinski RE. 3 Tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils; Initial experience(1). Acad Radiol 2004;11:963-7.
21. Kim CK, Park BK, Han JJ, Kang TW, Lee HM. Diffusion-weighted imaging of the prostate at 3 T for differentiation of malignant and benign tissue in transition and peripheral zones: preliminary results. J Comput Assist Tomogr 2007;31:449-54.
22. Augustin H, Fritz GA, Ehammer T, Auprich M, Pummer K. Accuracy of 3-Tesla magnetic resonance imaging for the staging of prostate cancer in comparison to the Partin tables. Acta Radiol 2009;50:562-9.
23. Hegde JV, Chen MH, Mullkern RV, Fennessy FM, D'Amico AV, Tempany CM. Preoperative 3-Tesla multiparametric endorectal magnetic resonance imaging findings and the odds of upgrading and upstaging at radical prostatectomy in men with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 2013;85:101-7.
24. Chandra RV, Heinze S, Dowling R, Shadbolt C, Costello A, Pedersen J. Endorectal magnetic resonance imaging staging of prostate cancer. ANZ J Surg 2007;77:860-5.
25. Tan CH, Wei W, Johnson V, Kundrav D. Diffusion-weighted MRI in the detection of prostate cancer: meta-analysis. AJR Am J Roentgenol 2012;199:822-9.
26. Mazaheri Y, Shukla-Dave A, Hricak H, Fine SW, Zhang J, Inurrigarrollo G, et al. Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging—correlation with pathologic findings. RadioLOGY 2009;246:480-8.
27. Turkbey B, Mani H, Shah V, Rastinehah AR, Bernardo M, Pohida T, et al. Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 2011;186:1818-24.
28. Roethke MC, Lichy MP, Kniess M, Werner MK, Clausen CD, Stenzl A, et al. Accuracy of preoperative endorectal MRI in predicting extracapsular extension and influence on neurovascular bundle sparing in radical prostatectomy. World J Urol 2012 Jan 17 [Epub]. http://dx.doi.org/10.1007/s00345-012-0826-0.