Research Article

Clinical Evaluation and Exploration of Mechanisms for Modified Xiebai Powder or Modified Xiebai Powder Combined with Western Medicine in the Treatment of Pneumonia

Qingling Zhang,1 Yuqi Zong,2 Lizhen Yang,1 Kunran Wang,1 and Yan Wang2

1Post-Graduate Institute, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
2Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, China

Correspondence should be addressed to Yan Wang; wy180119@sxtcm.edu.cn

Received 17 August 2022; Revised 16 September 2022; Accepted 18 September 2022; Published 11 October 2022

Objective. To systematically evaluate the clinical efficacy of modified Xiebai Powder or modified Xiebai Powder combined with Western medicine in the treatment of pneumonia and explore its potential mechanism of action. Methods. Meta-analysis was used to screen the eligible literature on randomized controlled trials (RCTs) about Xiebai Powder in the treatment of pneumonia, and Review Manager 5.3 software was used for statistical analysis of the data. Based on the results of the meta-analysis, the active ingredients in Xiebai Powder and their therapeutic targets, disease-related targets, and intersection targets were screened using methods of network pharmacology, and their biological processes and key signaling pathways were analyzed using bioinformatics tools. Molecular docking was carried out to verify and predict the mechanisms for Xiebai Powder combined with Western medicine in the treatment of pneumonia. Results. A total of 16 papers were screened out, with a total of 1,465 patients. The results of the meta-analysis showed that modified Xiebai Powder or modified Xiebai Powder combined with Western medicine were superior to conventional Western medicine in terms of clinical efficacy, shortening the disappearance time of symptoms (body temperature, cough, and pulmonary rales) and reducing the level of C-reactive protein, and the incidence of adverse reactions was significantly reduced. A total of 40 active ingredients in Xiebai Powder and 285 therapeutic targets of Xiebai Powder combined with azithromycin after deduplication were screened out from the database. KEGG enrichment analysis showed that Xiebai Powder combined with azithromycin might play a role in the treatment of pneumonia through the IL-17 signaling pathway, tumor necrosis factor signaling pathway, C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and HIF-1 signaling pathway. Conclusions. Modified Xiebai Powder or modified Xiebai Powder combined with azithromycin has better effects in treating pneumonia, and modified Xiebai Powder combined with azithromycin may play a role in treating pneumonia through several pathways such as the IL-17 signaling pathway.

1. Introduction

Pneumonia is an acute inflammation of the lower respiratory tract and lung parenchyma, and the main clinical symptoms are fever, cough, and shortness of breath [1]. It is usually caused by bacterial and viral infections [2], which is common in children, the elderly, and people with poor immune functions. The high incidence and high mortality of pneumonia worldwide pose a great threat to human lives. There are many adverse reactions and drug resistance in the treatment of pneumonia with antibiotics, which are widely used in clinics at present. For example, azithromycin preparation is widely used in clinical and is one of the mainstream antibacterial drugs for community-acquired pneumonia (CAP) in children. Aiming at the minimum applicable age for azithromycin treatment and according to the guidelines for the management of community-acquired pneumonia in children (revised in 2013), the efficacy and safety of azithromycin have not been established for children younger than six months with CAP, so it should be used with caution [3]. Increasing numbers of reports have shown that the TCM treatment of pneumonia
2 Computational and Mathematical Methods in Medicine

2.1.3. Primary Outcomes. Inconsistent experimental designs, and patients with animal experiments, nonrandomized controlled experimentation, reviews, medical records, experience summaries, Duplicate publications, unobtainable literature, and wording errors were included in the original book in the world. It is available in Japan and some other countries and has a wide range of influence [4]. Xiebai Powder contains four kinds of herbs, including Cortex Mori, Cortex Lycii, licorice root, and japonica rice, which have the functions of clearing away lung heat, relieving cough, and relieving asthma [5]. In Xiebai Powder, the amount of Cortex Mori and Cortex Lycii is one liang each, licorice is one qian, and the amount of japonica rice is a zuo [6]. Cortex Mori, Cortex Lycii, and licorice root are three plant-derived traditional Chinese medicines in Xiebai Powder. They are specified and recorded in the Chinese Pharmacopoeia and the Japanese Pharmacopoeia, and their sources, uses, and active ingredients are specified [7]. Modified prescription of Xiebai Powder is more widely used in the modern clinic for the treatment of pneumonia and other pulmonary diseases [8], but the current evidence-based basis is insufficient, and the mechanism of action is not clear. The clinical efficacy of modified Xiebai Powder or modified Xiebai Powder combined with western medicine in treating pneumonia was evaluated in this study by collecting published literature of RCTs. Based on meta-analysis, the potential mechanisms for Xiebai Powder in treating pneumonia was analyzed using network pharmacology to provide a basis for subsequent studies.

2. Materials and Methods

2.1. Meta-Analysis

2.1.1. Inclusion Criteria. For RCTs published in both Chinese and English, adult patients in the study should meet the diagnostic criteria published in the Chinese Journal of Tuberculosis and Respiratory Diseases in 2016 [9], and children should meet the diagnostic criteria published in the Chinese Journal of Pediatrics in 2013 [3].

2.1.2. Exclusion Criteria. Duplicate publications, unobtainable literature, literature with incomplete or erroneous information, reviews, medical records, experience summaries, animal experiments, nonrandomized controlled experiments, inconsistent experimental designs, and patients with other comorbidities (such as heart failure) were excluded.

2.1.3. Primary Outcomes. Clinical efficacy, body temperature recovery time, cough disappearance time, pulmonary rales disappearance time, and C-reactive protein level were used as primary outcomes.

2.1.4. Interventions. Patients in the control group were treated with Western medicine. Patients in the experimental group were treated with modified Xiebai Powder or modified Xiebai Powder combined with Western medicine.

2.1.5. Strategies for Literature Retrieval. The Chinese retrieval platforms used include CNKI, VIP, and Wanfang. The English databases used include PubMed, Cochrane Library, and Science Direct. Relevant Chinese and English literature from the establishment of the databases to January 2022 were obtained. The keywords of English and Chinese retrieval were “Xiebai Powder (泻白散),” “pneumonia (肺炎),” etc.

2.1.6. Data Extraction and Quality Assessment. After obtaining the eligible literature, relevant information such as title, first author, publication time, gender of patients, sample size, name of the disease, classification of disease, treatment measures, and outcomes were extracted. RCTs were reviewed using the Cochrane Handbook for random sequence generation, allocation concealment, blinding (subjects, experimenters, and evaluators), completeness of outcome data, selective reporting, and other biases [10]. The assessment of “low risk,” “high risk,” and “unclear risk” were given according to the specific content of the literature.

2.1.7. Data Statistics and Analysis. Review Manager 5.3 software was used for statistical analysis. Enumeration data were analyzed with an odds ratio (OR), mean difference (MD) for measurement data, and 95% confidence interval (CI) for efficacy analysis and statistics. P ≤ 0.05 indicated a statistically significant difference. The Chi-square test was used to evaluate statistical heterogeneity between studies. P > 0.01 and I² > 50% indicated no heterogeneity, and analysis was performed using a fixed-effects model; otherwise, a random-effects model was used, combined with subgroup analysis or sensitivity analysis to find the source of heterogeneity.

2.2. Network Pharmacological Study on Xiebai Powder Combined with Western Medicine in the Treatment of Pneumonia

2.2.1. Screening of Active Ingredients of Xiebai Powder. According to the published literature [11, 12], and taking “Cortex Mori,” “Cortex Lycii,” and “licorice root” as the keywords, the chemical ingredients of the three herbs were retrieved using the TCMS database (https://old.tcmsp-e.com/tcmsp.php), and the active ingredients of the drugs were screened according to the oral bioavailability (OB) ≥ 30% and the drug-likeness (DL) ≥ 0.18.

2.2.2. Acquisition of Therapeutic Targets of Active Ingredients of Xiebai Powder and Azithromycin and Disease-Related Targets. The active ingredients of Xiebai Powder were obtained from the TCMS database, and the names of protein targets were converted to gene names using the UniProt database. Azithromycin was retrieved in the TTD database, and the canonical SMILES structure was imported into the Swiss Target Prediction database and the SEA database to obtain the therapeutic targets. The Gene Cards database was used to search the keyword “pneumonia” to obtain pneumonia-related targets, and the DisGeNET database and the TTD database were used to complement pneumonia-related targets.
2.2.3. Construction of Protein-Protein Interaction (PPI) Network and Acquisition of Key Targets. The intersection targets of active ingredients of Xiebai Powder combined with azithromycin and pneumonia were identified using the Venny2.1 online tool and imported into the STRING database for PPI analysis. Limiting the species to “Homo sapiens,” a PPI network was constructed. The PPI network data was imported into Cytoscape 3.9.1 software and topologically analyzed using the Analyze Network function. The medians of degree centrality, closeness centrality (CC), and betweenness centrality (BC) were taken as the chi values to screen key targets.

2.2.4. KEGG Pathway Enrichment Analysis. The intersection targets screened in Section 2.2.3 were imported into the DAVID database for KEGG pathway enrichment analysis, and the results were visualized using the bioinformatics data analysis platform.

2.2.5. Molecular Docking. Key targets with top degree values were selected and input into the PDB database. Their 3D structures were downloaded and saved in the PDB format, and water molecules and other ligands were removed using PyMol software. The top eight active ingredients in Xiebai Powder, according to the degree values, and the SDF format files of the active ingredients were downloaded from the PubChem database and imported into OpenBabel to be converted into PDB format. Proteins were hydrogenated using AutoDock. The Grid Box in the Grid module was set, and the vina program was used to semiflexible dock targets (receptors) with chemical ingredients (ligands). The combinations with the lowest binding energy were selected and visualized using PyMol software.

3. Results

3.1. Meta-Analysis

3.1.1. Literature Screening and the Basic Characteristics of Included Literature. A total of 138 related papers were retrieved, and 16 papers on RCTs were included according to the inclusion and exclusion criteria, with a total of 1465 patients, including 744 cases in the experimental group and 721 cases in the control group. The specific process of literature screening is shown in Figure 1. The basic characteristics of the 16 papers are shown in Table 1.

3.1.2. Quality Assessment and Publication Bias Assessment of Included Literature. All RCTs were randomly grouped, of which two [13, 14] were grouped by a random number table and rated as “low risk;” one [15] was grouped according to the order of admission and rated as “high risk;” the remaining 13 RCTs were rated as “high risk.” All RCTs without allocation concealment and blinding were rated as “unclear risk.” All RCTs with precise outcomes were rated as “low risk.” None of the RCTs mentioned selective reporting, and all RCTs were rated as “unclear risk.” All RCTs with unclear other biases were rated as “unclear risk.” The specific information is shown in Figure 2.

3.1.3. Meta-Analysis of Each Primary Outcome

1) Clinical Efficacy. All studies [13–28] reported clinical efficacy. The heterogeneity testing result showed no heterogeneity ($P = 0.89$, $I^2 = 0%$), and a fixed-effects model was used for analysis. The results showed that the clinical efficacy in the experimental group (modified Xiebai Powder or modified Xiebai Powder combined with Western medicine treatment) was better than that in the control group.
Table 1: Essential features of the included literature.

No.	Eligible studies	Sample size (T/C)	Sexuality (M/F)	Intervention measures T	Intervention measures C	Disease	Disease classification	Observed indexes
1	Sun et al. [16]	70 (35/35)	T: 21/14 C: 20/15	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Senile pneumonia	Qi and Yin deficiency type	①②③④⑤⑥⑦⑧
2	Xu et al. [13]	106 (53/53)	T: 31/22 C: 30/23	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Mycoplasmal pneumonia in children	Yin deficiency due to lung heat	①②③④⑤⑥⑦⑧
3	Wei [17]	200 (100/100)	T: 49/51 C: 58/42	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Pediatric pneumonia	Unknown	①②③④⑤⑥⑦⑧
4	Chen et al. [14]	72 (36/36)	T: 22/14 C: 24/12	Xiebai Power modified recipe + conventional rehabilitation therapy	Conventional comprehensive rehabilitation therapy	Severe pneumonia	Lung phlegm heat syndrome	①②③④⑤⑥⑦⑧
5	Wang et al. [18]	64 (32/32)	T: 18/14 C: 17/15	Xiebai Power modified recipe combined with traditional Chinese medicine iontophoresis + conventional Western medicine treatment	Conventional Western medicine treatment	Pediatric pneumonia	Wind-heat and closed lung type	①②③④⑤⑥⑦⑧
6	Liu [19]	50 (25/25)	T: 15/10 C: 14/11	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Community-acquired pneumonia	Unknown	①②③④⑤⑥⑦⑧
7	Guan [20]	72 (36/36)	T: 18/18 C: 20/16	Xiebai Power addition and subtraction formula	Conventional Western medicine treatment	Chronic cough after mycoplasma pneumonia in children	Lung heat yin deficiency type	①②③④⑤⑥⑦⑧
8	Ding and Wang [21]	64 (32/32)	T: 18/14 C: 17/15	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Mycoplasmal pneumonia in children	Phlegm-heat dosed lung type	①②③④⑤⑥⑦⑧
9	Fu [22]	66 (36/30)	T: 21/15 C: 20/10	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Interstitial pneumonia in children	Unknown	①②③④⑤⑥⑦⑧
10	Liang et al. [15]	137 (77/60)	T: 52/25 C: 42/18	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Senile pneumonia	Unknown	①②③④⑤⑥⑦⑧
11	Yang [23]	158 (79/79)	T: 48/31 C: 44/35	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Senile pneumonia	Unknown	①②③④⑤⑥⑦⑧
12	Han [24]	90 (45/45)	T: 25/20 C: 27/18	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Mycoplasmal pneumonia in children	Unknown	①②③④⑤⑥⑦⑧
13	Liu et al. [25]	60 (30/30)	T: 33/27	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Mycoplasmal pneumonia in children	Unknown	①②③④⑤⑥⑦⑧
14	Yu et al. [26]	88 (44/44)	T: 52/36	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Mycoplasmal pneumonia in children	Unknown	①②③④⑤⑥⑦⑧
15	Li and Li [27]	120 (60/60)	T: 64/56	Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Pneumonia	Unknown	①②③④⑤⑥⑦⑧
16	Sun and Chang [28]	48 (24/24)	T: 26/22	Modified Xiebai Power + conventional Western medicine treatment	Conventional Western medicine treatment	Mycoplasmal pneumonia in children	Unknown	①②③④⑤⑥⑦⑧

T: test team; C: control group; M: male; F: female. ① Clinical efficacy. ② Body temperature recovery time. ③ Cough disappearance time. ④ Cough improvement time. ⑤ Time of pulmonary rale disappearance. ⑥ WBC. ⑦ CRP. ⑧ NEUR. ⑨ sTREM-1 and suPAR levels. ⑩ ESR. ⑪ IL-6. ⑫ IL-8. ⑬ TNF.
(2) Body Temperature Recovery Time. A total of five papers [13, 17, 18, 24, 25] reported the body temperature recovery time in patients with pneumonia, and the heterogeneity testing result showed great heterogeneity ($P < 0.00001, I^2 = 97\%$). Subgroup analysis was performed to determine whether the disease was clearly classified. The heterogeneity testing result of the three studies with unknown disease classification was $P < 0.00001$ and $I^2 = 96\%$, and the heterogeneity testing result of the two studies with well-defined disease classification was $P < 0.00001$ and $I^2 = 99\%$, indicating that disease classification was not the source of heterogeneity in this outcome. It is found by sensitivity analysis that the heterogeneity came from three studies [18, 24, 25], which were removed, and the remaining two studies [13, 17] were retested without heterogeneity ($P < 0.75, I^2 = 0\%$) and analyzed by a fixed-effects model. The results showed that the body temperature recovery time in the experimental group (modified Xiebai Powder combined with conventional Western medicine treatment) was shorter than that in the control group (conventional Western medicine treatment) ($MD = -2.06, 95\% CI (-2.31, -1.82), P < 0.00001$; Figure 4). A descriptive analysis was conducted for three excluded studies, in which the effects of modified Xiebai Powder combined with conventional Western medicine treatment on shortening the body temperature recovery time in patients with pneumonia were compared. Meta-analysis results were as follows: $MD = -1.12, 95\% CI (-1.34, -0.90), P < 0.00001$; $MD = -0.47, 95\% CI (-0.61, -0.33), P < 0.00001$; $MD = -0.79, 95\% CI (-0.90, -0.68)$.
By analyzing and comparing the results, it was found that modified Xiebai Powder combined with conventional Western medicine had a better therapeutic effect than conventional Western medicine alone.

(3) Cough Disappearance Time. Five papers [13, 17, 18, 20, 25] reported the cough disappearance time in patients with pneumonia, and the heterogeneity testing result showed great heterogeneity \((P < 0.0001, I^2 = 97\%) \). Subgroup analysis was performed according to whether the disease was clearly classified. The heterogeneity testing result of the two studies with unknown disease classification was \(P < 0.0001 \) and \(I^2 = 82\% \), and the heterogeneity testing result of the three studies with well-defined disease classification was \(P < 0.0001 \) and \(I^2 = 72\% \), indicating that disease classification was not the source of heterogeneity in this outcome. Sensitivity analysis showed that the heterogeneity came from two studies [17, 24], which were removed, and the remaining three studies [13, 18, 25]...

(4) Pulmonary Rales Disappearance Time. A total of five papers [13, 17, 18, 24, 25] reported the pulmonary rales disappearance time in patients with pneumonia, and the heterogeneity testing result showed heterogeneity \((P = 0.001, I^2 = 77\%) \). Subgroup analysis was performed according to whether the disease was clearly classified. The heterogeneity testing result of the three studies with unknown disease classification was \(P < 0.0001 \) and \(I^2 = 82\% \), indicating that disease classification was not the source of heterogeneity in this outcome. Sensitivity analysis showed that the heterogeneity came from two studies [17, 24], which were removed, and the remaining three studies [13, 18, 25]...
were retested with small heterogeneity \((P = 0.15, I^2 = 47\%)\) and analyzed by a fixed-effects model. The results showed that the elimination of pulmonary rales in the experimental group was more effective than that in the control group \((MD = -2.09, 95\% CI (-2.30, -1.88), P < 0.00001; \text{Figure 6})\). A descriptive analysis was conducted for the two excluded studies, in which the effects of modified Xiebai Powder combined with conventional Western medicine treatment on shortening the pulmonary rales disappearance time in patients with pneumonia were compared. Meta-analysis results were as follows: \(MD = -3.57, 95\% CI (-4.72, -2.42), P < 0.00001; MD = -1.70, 95\% CI (-1.93, -1.47), P < 0.00001\). By analyzing and comparing the results, it was found that modified Xiebai Powder combined with conventional Western medicine had a better therapeutic effect than conventional Western medicine.

3.1.4. Adverse Reactions. A total of three papers \([13, 18, 24]\) mentioned the adverse reactions in patients, among which the incidence of adverse reactions was counted in three studies \([13, 24]\), and one study \([18]\) showed no adverse reactions in patients. The heterogeneity testing result exhibited no heterogeneity \((P = 0.84, I^2 = 0\%)\), and a fixed-effects model was used for analysis. The results showed that the incidence of adverse reactions in the experimental group (modified Xiebai Powder combined with conventional Western medicine treatment) was lower than that in the control group (conventional Western medicine treatment) \((OR = 0.33, 95\% CI (0.15, 0.69), P = 0.003; \text{Figure 8})\).

3.1.5. Publication Bias Analysis. Publication bias analysis was performed on clinical effective rates, and funnel plots were drawn to observe symmetry. The number of points on the left side of Figure 9 is 11, and the number of points on the right side is 5. There was a significant difference in the number distribution of points between both sides, indicating a certain publication bias (Figure 9).

3.1.6. Sensitivity Analysis. Sensitivity analysis was performed on the included literature, and descriptive analysis was performed on the results. The pooled effect size of clinical effective rates in the 16 studies was excluded. The results showed no qualitative change in the pooled effect size, and the results of this study were relatively stable.

3.2. Network Pharmacology

3.2.1. Screening of Active Ingredients in Xiebai Powder and Pneumonia-Related Targets. There were 40 active ingredients with 235 therapeutic targets in Xiebai Powder, including ten in Cortex Mori, ten in Cortex Lycii, 16 in licorice root, and four repetitive ingredients. Azithromycin (drug ID: D03HJK, molecular formula: \(C_{38}H_{72}N_{2}O_{12}\)) had 55
target genes. Xiebai Powder combined with azithromycin had 285 therapeutic targets after deduplication. A total of 1359 pneumonia-related targets were retrieved through the Gene Cards database, 1032 through the DisGeNET database, and 17 through the TTD database. After deduplication, 1926 pneumonia-related targets were collected (Table 2).

3.2.2. Construction of the Drug-Active Ingredient-Target Network

The “drug-active ingredient-target” visualized network is shown in Figure 10. According to the degree value, the top active ingredients were β-sitosterol, quercetin, kaempferol, naringenin, acacetin, isorhamnetin, etc., as shown in Table 3.

3.2.3. Construction of PPI Network and Screening of Key Targets

After using the Venny 2.1 online tool to intersect the targets of active ingredients in Xiebai Powder and the pneumonia-related targets, a total of 129 common targets were obtained, as shown in Figure 11. The common targets were input into the STRING database to obtain the PPI network, which was processed by Cytoscape 3.9.1 software.
There were 129 nodes and 2783 edges in the network (Figure 12). After topological analysis, the chi values of degree ≥ 85, CC ≥ 0.744, and BC ≥ 200.368 were selected as the screening conditions, and the targets that met the above three chi values were selected as key targets, mainly including TNF, IL-6, ALB, AKT1, IL-1B, TP53, CASP3, PTGS2, JUN, and STAT3 (Table 4).

Table 3: Top 10 active ingredients of Xiebai Powder for treating pneumonia.

MOL ID	Name	Source	OB (%)	DL	Degree
MOL000098	Quercetin	Morus alba, licorice	46.43	0.28	192
MOL000422	Kaempferol	Morus alba, licorice	41.88	0.24	42
MOL00358	Beta-sitosterol	Morus alba, Cortex Lycii	36.91	0.75	35
MOL01552	OIN	Cortex Lycii	45.97	0.19	26
MOL04524	Naringenin	Licorice	59.29	0.21	24
MOL01689	Acacetin	Cortex Lycii	34.97	0.24	23
MOL01484	Inermine	Licorice	75.18	0.54	17
MOL00354	Isorhamnetin	Licorice	49.60	0.31	15
MOL002565	Medicarpin	Licorice	49.22	0.33	12
MOL012681	Dimethyl (methylene-4,1-phenylene) biscarbamate	Morus alba	50.84	0.26	10

3.2.4. Enrichment Analysis. A total of 169 signaling pathways were obtained through KEGG pathway enrichment analysis (P < 0.05), and the top 20, according to the P value ranking, were plotted (Figure 13). Xiebai Powder combined with azithromycin may play a role in the treatment of pneumonia through the IL-17 signaling pathway, tumor necrosis factor signaling pathway, c-type lectin...
3.2.5. Molecular Docking. The active ingredients and key targets with high degree values were selected, and AutoDock software was used for molecular docking. The results are shown in Table 5. All active ingredients and key targets can spontaneously bind (the binding free energy was less than 0 kJ·mol⁻¹). The docking results were visualized by PyMol software, partially shown in Figure 14.

4. Discussion

During the analysis of this study, a total of 138 papers were read, and only 16 papers in Chinese were eligible for this systematic review and meta-analysis, with a total of 1,465 patients. Clinical efficacy, body temperature recovery time, cough disappearance time, pulmonary rales’ disappearance time, and C-reactive protein level were selected as primary outcomes. Meta-analysis results showed that all the outcomes were statistically significant, indicating that modified Xiebai Powder or modified Xiebai Powder combined with conventional Western medicine treatment had better effects than conventional Western medicine treatment.

Due to the limitation of the overall level and quantity of the literature included in this study, more high-quality literature should be included in the follow-up to further verify the analysis results. The outcomes in the included literature were mainly clinical efficiency and clinical manifestation, and less attention was paid to the changes in vital signs (respiratory rate, heart rate, systolic blood pressure, etc.) [29], procalcitonin [30], and T cell population [30, 31]. It is suggested to add relevant outcomes to related RCTs in the future to improve the accuracy of clinical efficacy evaluation and quality of evidence.

The network pharmacological analysis showed that the main active ingredients in Xiebai Powder in the treatment of pneumonia involved β-sitosterol, quercetin, kaempferol, naringenin, isorhamnetin, and other compounds. Among them, β-sitosterol is a phytosterol, and the others are flavonoids. β-Sitosterol can inhibit proinflammatory cytokines such as TNF-α and IL-6. A number of in vitro and in vivo experiments have shown that quercetin has anti-inflammatory activity and can also inhibit apoptosis and repair damaged lung tissue by inhibiting the growth and metastasis of lung cancer cells [32]. Kaempferol has the effects of anti-inflammation, antioxidation, and inhibiting apoptosis. Both naringenin and isorhamnetin have anti-inflammatory activities and can significantly reduce the levels of proinflammatory cytokines in serum and lung tissue [33]. It can be seen that the above active ingredients play important roles in the treatment of pneumonia.

Results of network pharmacology and molecular docking show that beta-sitosterol can inhibit the proinflammatory cytokines TNF-α and IL-6. Beta-sitosterol is one of the effective components of TCM. Maxing Shigan Decoction comes from the treatise on *Shang Han Lun* and is composed of *Ephedrae herba*, *arnemiaca semen amarum*, *gypsum fibrosum*, and *Glycyrrhizae Radix et Rhizoma*. Among the four TCM, *Ephedrae herba*, *arnemiaca semen amarum*, and *Glycyrrhizae Radix et Rhizoma* all contain β-sitosterol [34–36]. Maxing Shigan decoction combined with azithromycin in the treatment of mycoplasma pneumonia in children is more effective than azithromycin alone [37].

Qianjin Weijing decoction is derived from *Jin Kui Yao Lue*. It is composed of Phragmitis rhizome, *Coixis Semen*, coix...
seed, and Persicae Semen. These four TCMs all contain human β-sitosterol [38–40]. Qianjin Weijing decoction combined with azithromycin in the treatment of Mycoplasma pneumoniae pneumonia in children can effectively alleviate clinical symptoms [41]. From the perspective of traditional Chinese medicine, Xiebai powder, Maxing Shigan Decoction, and Qianjin Weijing decoction have different functions. Xiebai powder is mainly used for asthma and cough, skin steaming, and heat, especially the illness worsens in the morning.

The key targets of Xiebai Powder combined with azithromycin in the treatment of pneumonia were mainly TNF, IL-6, ALB, AKT1, IL-1β, TP53, CASP3, PTGS2, JUN, STAT3, etc. Among them, both TNF and IL-6 are inflammatory factors. A study showed that the levels of TNF-α and IL-6 in patients with pneumonia were significantly increased, indicating that TNF-α and IL-6 genes were involved in the onset of pneumonia [42]. ALB is highly correlated with acute lung injury and is a predictor of disease severity [43]. TP53 is a tumor suppressor gene involved in the regulation of the cell cycle and apoptosis, and its overexpression can promote cancer [44]. IL-1β has been found to be a targeted treatment for COVID-19 [45]. STAT3 protein is involved in the transcription of inflammatory factors after entering the nucleus. The inhibition of the activation of transcription factor AP-1 can reduce the proinflammatory response induced by IL-1β. It is speculated that the expression of the above-mentioned transcription factor proteins is closely related to inhibiting the occurrence of the inflammatory response [46].

Component	TNF	IL6	ALB	AKT1	IL-1β	TP53
Quercetin	-6.0	-7.1	-7.0	-7.8	-7.0	-8.0
Kaempferol	-4.5	-4.5	-4.1	-4.8	-4.4	-5.5
Beta-sitosterol	-7.0	-6.3	-9.4	-4.4	-5.5	
OIN	-5.9	-5.8	-7.6	-6.2	-6.4	
Naringenin	-6.5	-7.1	-9.3	-7.3	-7.6	
Acacetin	-9.2	-8.4	-11.8	-8.5	-9.8	
Inermine	-7.1	-6.5	-8.3	-7.2	-7.8	
Isorhamnetin	-6.9	-6.9	-9.1	-7.0	-7.4	
Figure 14: Continued.
The KEGG analysis showed that Xiebai Powder might play a role in the treatment of pneumonia through the hepatitis B-induced signaling pathway, cancer signaling pathway, toxoplasmosis-induced signaling pathway, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, and pertussis-induced signaling pathway. The KEGG analysis showed that azithromycin might play a role in the treatment of pneumonia through the IL-17 signaling pathway, NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, TNF signaling pathway, and PI3K-Akt signaling pathway.

The KEGG enrichment pathways of Xiebai Powder combined with azithromycin mainly involved the IL-17 signaling pathway, tumor necrosis factor signaling pathway, c-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and HIF-1 signaling pathway. The IL-17 signaling pathway is associated with the occurrence and development of pneumonia-induced sepsis. In addition, the upregulation of upstream and downstream molecules in the IL-17 signaling pathway indicates the activation of the IL-17 signaling pathway, which can promote apoptosis in pneumonia-induced sepsis [47]. Excessive TNF-α in the tumor necrosis factor signaling pathway can not only lead to abnormal pathways but also promote inflammatory factors such as IL-1 and IL-8, stimulate the body's inflammatory responses, or even cause inflammatory chain reactions [48]. The Toll-like receptor signaling pathway transmits signals into cells by recognizing lipopolysaccharide and finally activates inflammatory factors such as TNF to mediate the inflammatory response in diseased tissues [49].

The main KEGG pathways of azithromycin in pediatric pneumonia are the IL-17 signaling pathway, NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, TNF signaling pathway, and PI3K-Akt signaling pathway. NOD-like receptors can mediate inflammatory responses, activate NF-B p65 and p38 MAPK signaling pathways, and lead to the production of inflammatory factors [50]. A NOD-like receptor signaling pathway is the main difference between the action pathway of Xiebai Powder combined with azithromycin and that of azithromycin.

5. Conclusions

In this study, meta-analysis combined with network pharmacology was used to evaluate Xiebai Powder in the treatment of pneumonia systematically and to predict its potential mechanism of action. In terms of clinical efficacy, body temperature recovery time, cough disappearance time, pulmonary rales’ disappearance time, and C-reactive protein reduction, the experimental group was superior to the control group, with a lower incidence of adverse reactions. Also, the mechanism for Xiebai Powder combined with azithromycin in the treatment of pneumonia was analyzed using network pharmacology. Due to the complexity of
chemical ingredients and targets of TCM and their effects on the human body, further studies are needed to provide more evidence. Based on the potential pathways obtained through meta-analysis and network pharmacological studies, the next step will be to obtain key pathways based on cell level or animal experiments to study the mechanisms of Xibai Powder in the treatment of pediatric pneumonia.

Overall, the analysis results are credible. More high-quality papers will be included in the follow-up to verify the analysis results further. Considering dynamic changes in pneumonia studies, in future research, other relevant outcomes such as changes in vital signs (respiratory rate, heart rate, systolic blood pressure, etc.), procalcitonin (PCT), and T cell population will be added to improve the accuracy of clinical efficacy evaluation further and enhance the quality of evidence.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no competing interests.

References

[1] J. H. Reynolds, G. McDonald, H. Alton, and S. B. Gordon, "Pneumonia in the immunocompetent patient," The British journal of radiology, vol. 83, no. 996, pp. 998–1009, 2010.
[2] Z. D. Xiang, Z. Li, B. Zhang et al., "Based on network pharmacology and molecular docking technology, the potential mechanism of action of the classical prescription laxative white powder in the treatment of pneumonia was discussed," World Science and Technology-Modernization of Traditional Chinese Medicine, vol. 23, no. 3, pp. 1812–1820, 2021.
[3] The Subspecialty Group of Respiratory Diseases, The Society of Pediatrics, and Chinese Medical Association, The Editorial Board, Chinese Journal of Pediatrics, "Guidelines for management of community acquired pneumonia in children (the revised edition of 2013)(1)," Zhonghua er ke za zhi= Chinese journal of pediatrics, vol. 51, no. 10, pp. 745–752, 2013.
[4] B. Zhang, L. S. Li, and H. Zhou, "A version textual research on Xiao Er Yao Zheng Zhi Jue," Journal of Traditional Chinese Medical Literature, vol. 35, no. 4, pp. 19–21, 2017.
[5] T. Li, T. Zhang, and D. D. Wang, “Literature analysis and research progress of laxative white powder,” Proprietary Chinese Medicines, vol. 41, no. 8, pp. 1927–1931, 2019.
[6] Y. Qian, Key to Therapeutics of Children’s Diseases Proofread by Zhaolin Lu, Liaoning Science and Technology Publishing House, Shenyang, China, 1997.
[7] W. Wen, L. Li, D. K. Li, D. Z. Zhou, B. Y. Yu, and A. C. Ju, "Discussion on research and development of following original methods of famous classical formulas taking Xiebaisan as an example," Chinese Journal of Experimental Traditional Medical Formulae, vol. 25, no. 23, pp. 196–201, 2019.
[8] Y. L. Li, P. Jiang, M. L. Sun, Z. Q. Tan, Y. Ling, and Z. Y. Yuan, "A review of the ancient and modern literature of the classic famous fang yi bai shan," Journal of Traditional Chinese Medicine, vol. 47, no. 6, pp. 17–22, 2019.
[9] J. M. Zhai and B. Cao, “Guidelines for the diagnosis and treatment of community-acquired pneumonia in adults in China (2016 edition),” Chinese Journal of Tuberculosis and Respiratory Disease, vol. 39, no. 4, pp. 253–279, 2016.
[10] H. Wang, X. Lin, and X. Pu, “NOD-like receptors mediate inflammatory lung injury during plateau hypoxia exposure,” Journal of Physiological Anthropology, vol. 39, no. 1, p. 32, 2020.
[11] Q. Wang, T. He, J. L. Zhou et al., “Meta-analysis of clinical evaluation and potential mechanism of action of renal tonic blood decoction associated with network pharmacology in the treatment of diabetic nephropathy,” Chinese herbal medicine, vol. 52, no. 6, pp. 1692–1705, 2021.
[12] D. C. Xu, Z. C. Sui, Q. Yang, and B. Z. Sun, "Analysis of chemical constituents of Xiebai powder by UPLC-Q-TOF-MS/MS," Chinese Archives of Traditional Chinese Medicinehttp://kns.cnki.net/kcms/detail/21.1546.R.20220304.1555.042.html.
[13] D. C. Xu, J. Liu, X. Li et al., “Study on absorbed components of Xiebai powder in rat blood,” Chinese Pharmacy, vol. 33, no. 1, pp. 38–45, 2022.
[14] X. J. Chen, H. B. Huang, and L. P. Yuan, “The effect of sand ginseng mai dong soup combined with diarrhea white powder combined with Western medicine in the treatment of pediatric Mycoplasma pneumoniae," Modern distance education in Chinese medicine, vol. 14, no. 20, pp. 85-86, 2016.
[15] X. F. Liang, Q. L. Zhang, and Y. Jiao, “Clinical study on the addition and subtraction of laxative heart soup in the treatment of sputum fever lung evidence severe pneumonia,” Journal of Traditional Chinese Medicine, vol. 51, no. 5, pp. 90–92, 2019.
[16] Y. M. Sun, L. Wei, and L. Zheng, "Combination of traditional Chinese medicine and western medicine treated 77 cases of elderly pneumonia," Shandong Journal of Traditional Chinese Medicine, vol. 24, no. 4, pp. 232–233, 2005.
[17] T. Wei, "Observation on the clinical efficacy of Jiawei Shenmai Xiebai Powder in the treatment of senile pneumonia caused by Qi and Yin deficiency," China Health Care Nutrition, vol. 29, no. 25, p. 14, 2019.
[18] Z. M. Wang, Y. M. Liu, and W. L. Liu, “Clinical efficacy of diarrhea and white powder combined with two Chen Tang plus subtractive formulas in the treatment of pediatric pneumonia,” Traditional Chinese Medicine in Inner Mongolia, vol. 39, no. 5, pp. 46–48, 2020.
[19] X. J. Liu, "Clinical observation of the addition and subtraction of diarrhea and white powder combined with the intestines of traditional Chinese medicine in the treatment of ventilatory closed lung pneumonia," Guangming Journal of Chinese Medicine, vol. 35, no. 22, pp. 3585–3587, 2020.
[20] Y. T. Guan, "Efficacy of laxative white powder plus or minus in the treatment of sputum fever-containing pulmonary pneumonia," Jilin Medical Journal, vol. 12, pp. 2565–2565, 2014.
[21] Y. Ding and M. Q. Wang, "36 cases of long-term cough after the treatment of mycoplasma pneumonia in children were clinically observed," Hunan Journal of Traditional Chinese Medicine, vol. 34, no. 12, pp. 55–56, 2018.
[22] B. Fu, "Clinical efficacy of laxative white powder combined with azithromycin in the treatment of sputum heat-closed pulmonary type pediatric Mycoplasma pneumoniae," Journal of Liaoning University of Traditional Chinese Medicine, vol. 18, no. 3, pp. 155–157, 2016.
[23] X. M. Yang, “Laxative white powder combined with Western medicine treated 36 cases of interstitial pneumonia in
children,” *Shaanxi Traditional Chinese Medicine*, vol. 30, no. 7, p. 800, 2009.

[24] L. Han, “Combination of traditional Chinese medicine and Western medicine treated 79 cases of elderly pneumonia,” *Modern distance education in Chinese medicine*, vol. 11, no. 20, p. 46, 2013.

[25] D. J. Liu, B. Zheng, B. H. Cai, W. M. Zhou, and B. X. Yu, “Combination of traditional Chinese medicine and western medicine for the treatment of pediatric Mycoplasma pneumonia and cytokine changes,” *Journal of Southern Medical University*, vol. 30, no. 3, pp. 626-627, 2010.

[26] S. Yu, K. Du, and C. Meng, “Observation of the efficacy of diarrhea and anti-cough dispersion combined with Western medicine in the treatment of pediatric Mycoplasma pneumonia,” *Oriental Medicinal Food*, no. 12, p. 19, 2020.

[27] X. J. Li and Y. Q. Li, “Effect of diarrhea and anti-cough dispersion in the treatment of mycoplasma pneumonia in children,” *Health care guide*, vol. 36, no. 10, p. 275, 2018.

[28] G. C. Sun and J. H. Chang, “Analysis of the initial clinical efficacy of integrated traditional Chinese and Western medicine in the treatment of pneumonia,” *Inner Mongolia Traditional Chinese Medicine*, vol. 33, no. 24, p. 41, 2014.

[29] H. F. Shao, H. R. Liu, and C. X. Zhang, “Efficacy of integrated traditional Chinese and Western medicine in the treatment of Mycoplasma pneumoniae infection in children,” *Hebei Journal of Traditional Chinese Medicine*, vol. 21, no. 2, pp. 13-14, 2006.

[30] C. A. Blum, N. Nigro, B. Winzeler et al., “Corticosteroid treatment for community-acquired pneumonia—the STEP trial: study protocol for a randomized controlled trial,” *Trials*, vol. 15, no. 1, p. 257, 2014.

[31] Y. Fan, W. Liu, R. Wan et al., “Efficacy and safety of yinqiao powder combined with western medicine in the treatment of pneumonia: a systematic review and meta-analysis,” *Complementary Therapies in Clinical Practice*, vol. 42, article 101297, 2021.

[32] W. J. Zhu, X. Zhou, J. Cao, and Y. Shi, “The effectiveness and safety of Tanreqing injection combined with ganciclovir on the treatment of respiratory syncytial virus pneumonia in children: a protocol for systematic review and meta-analysis of randomized controlled trials,” *Medicine (Baltimore)*, vol. 99, no. 38, article e22356, 2020.

[33] B. X. Zhou, J. Li, X. L. Liang et al., “β-sitosterol ameliorates influenza A virus-induced proinflammatory response and acute lung injury in mice by disrupting the cross-talk between RIG-I and IFN/STAT signaling,” *Acta Pharmacologica Sinica*, vol. 41, no. 9, pp. 1178–1196, 2020.

[34] M. S. Hohmann, D. M. Habel, A. L. Coelho, W. A. Verri Jr., and C. M. Hogaboam, “Quercetin enhances ligand-induced apoptosis in senescent idiopathic pulmonary fibrosis fibroblasts and reduces lung fibrosis in vivo,” *American Journal of Respiratory Cell and Molecular Biology*, vol. 60, no. 1, pp. 28–40, 2019.

[35] Q. Y. Ma, B. S. Li, and J. Zhou, “Study on chemical constituents of the ancient ephedra species found in Yanghui, Xinjiang,” *Journal of Anhui Agricultural Sciences*, vol. 40, no. 12, pp. 7089-7090+7096, 2012.

[36] Y. Wang, W. Gu, F. Kui et al., “The mechanism and active compounds of semen armeniacae amarum treating coronavirus disease 2019 based on network pharmacology and molecular docking,” *Nutrition Research*, vol. 65, 2021.

[37] Y. C. Liu, Y. G. Chen, D. Wang et al., “Studies on chemical constituents on roots of Glycyrrhiza uralensis,” *Chinese Journal of Pharmaceutical Analysis*, vol. 31, no. 7, pp. 1251–1255, 2011.

[38] Y. M. Feng, Z. C. Li, and R. F. Xie, “Systematic evaluation of Maxing Shigan Decoction combined with azithromycin in treatment of Mycoplasma pneumoniae pneumonia in children,” *Drug Evaluation Research*, vol. 45, no. 4, pp. 768–779, 2022.

[39] H. X. Gao, A. W. Ding, Y. P. Tang, X. Zhang, and J. A. Duan, “Chemical constituents from the Rhizomas of P. Phragmites communis,” *Chinese Journal of Natural Medicines*, vol. 7, no. 3, pp. 196–198, 2009.

[40] S. X. Gong, “Phenolic compounds in coix seed,” *International Journal of Traditional Chinese Medicine*, vol. 23, no. 4, p. 238, 2001.

[41] J. Yang, Y. Q. Zheng, and J. Liu, “Research progress of wax gourd seeds,” *Journal of Chinese Medicinal Materials*, vol. 37, no. 9, pp. 1696–1698, 2014.

[42] W. G. Lv, Y. Zhang, G. H. Song et al., “Effect of modified Qianjin Weijing decoction combined with azithromycin on Mycoplasma pneumonia in children with phlegm heat obstructing Fei and blood stasis syndrome,” *Chinese Journal of Integrated Traditional and Western Medicine*, vol. 41, no. 10, pp. 1192–1196, 2021.

[43] C. Yang, W. Yang, Z. He et al., “Kaempferol alleviates oxidative stress and apoptosis through mitochondria-dependent pathway during lung ischemia-reperfusion injury,” *Frontiers in Pharmacology*, vol. 12, article 624402, 2021.

[44] Y. Liu, Y. Yang, C. Zhang et al., “Clinical and biochemical indexes from 2019-ncov infected patients linked to viral loads and lung injury,” *Science China Life Sciences*, vol. 63, no. 3, pp. 264–374, 2020.

[45] X. Zhao and J. Zhang, “Quercetin inhibits the growth and metastasis of lung cancer tumor cells,” *Journal of Central South University (Medical Edition)*, vol. 40, no. 6, pp. 592–597, 2015.

[46] R. Li, Y. Li, X. Liang, L. Yang, M. Su, and K. P. Lai, “Network pharmacology and bioinformatics analyses identify intersection genes of nia and COVID-19 as potential therapeutic targets,” *Briefings in Bioinformatics*, vol. 22, no. 2, pp. 1279–1290, 2021.

[47] J. Chen, S. Y. Fang, and Z. M. Wu, “Expression of JAM-A, p53 and Ki67 in breast cancer tissues and their clinical significance,” *Modern Oncology Medicine*, vol. 28, no. 19, pp. 3365–3369, 2020.

[48] L. L. Li, B. Dai, Y. H. Sun, and T. T. Zhang, “The activation of IL-17 signaling pathway promotes pyroptosis in pneumonia-induced sepsis,” *Annals of Translational Medicine*, vol. 8, no. 11, p. 674, 2020.

[49] A. K. Chauhan, J. Kim, Y. Lee, P. K. Balasubramanian, and Y. Kim, “Isorhamnetin has potential for the treatment of Escherichia coli-induced sepsis,” *Molecules*, vol. 24, no. 21, p. 3984, 2019.

[50] M. Zhao, C. Li, F. Shen, M. Wang, N. Jia, and C. Wang, “Naringenin ameliorates LPS-induced acute lung injury through its anti-inflammatory and anti-inflammatory activity and by inhibition of the PI3K/AKT pathway,” *Experimental and Therapeutic Medicine*, vol. 14, no. 3, pp. 2228–2234, 2017.