Impress Yourself

The new Eppendorf Cell Culture Consumables

The all new line of Eppendorf Cell Culture Consumables will truly delight your cells. The outstanding design, reliability and purity is based on more than 50 years of experience. Products created by experts, developed for perfectionists. Impress yourself!

> Unsurpassed quality, clarity, purity and sterility, providing reliable cell culture conditions
> Significantly improved design for more safety and consistency
> Maximum safety and confidence during storage and transportation

ccc.eppendorf.com • 800-645-3050
 Concise Review: Human Embryonic Stem Cells—What Have We Done? What Are We Doing? Where Are We Going?

DUSKO ILCa,b CAROLINE OGILVIEc

Key Words. Human embryonic stem cells • Induced pluripotent stem cells • Clinical trials • Pluripotent stem cells

\textbf{ABSTRACT}

Human pluripotent stem cells possess remarkable proliferative and developmental capacity and thus have great potential for advancement of cellular therapy, disease modeling, and drug discovery. Twelve years have passed since the first reported isolation of human embryonic stem cell lines (hESC), followed in October 2010 by the first treatment of a patient with hESC-based cellular therapy at the Shepherd Center in Atlanta. Despite seemingly insurmountable challenges and obstacles in the early days, hESC clinical potential reached application in an extraordinarily short time. Eight currently ongoing clinical trials are yielding encouraging results, and these are likely to lead to new trials for other diseases. However, with the discovery of induced pluripotent stem cells (iPSC), disease-specific hESC lines derived from patients undergoing pre-implantation genetic diagnosis for single gene disorders fell short of expectations. Lack of ethical controversy made human iPSC (hiPSC) with specific genotypes/phenotypes more appealing than hESC for drug discovery and toxicology-related studies, and in time, lines from HLA-homozygous hiPSC banks are likely to take over from hESC in clinical applications. Currently, hESC are indispensable; the results of hESC-based clinical trials will set a gold standard for future iPSC-based cellular therapy.

\textbf{SIGNIFICANCE STATEMENT}

hESC-based therapies have now become a reality. However, the development of HLA-homozygous iPSC banks, such as the one in Japan provide an ethically neutral alternative to hESC for therapeutic as well as research applications. International guidelines on screening and application of these iPSC lines will likely lead to complete redundancy of hESC lines at some point in the future.

\textbf{INTRODUCTION}

Optimism that human embryonic stem cells (hESC) would provide a virtually unlimited source of selected cell types for future cell therapy, as well as drug screening and development, has resulted in a considerable progress in stem cell biology over nearly two decades since the first hESC were derived [1]. However, the controversy over the use of hESC in research and translational medicine has not diminished over time. There is a constant clash between the obligation to protect life and the obligation to help and save those who are suffering. The very strong opinions on the moral standing of human embryos have led to the prohibition of work with hESC in some countries or, where allowed, this work is tightly regulated.

\textbf{CIRCUMVENTING ETHICAL CONTROVERSY—hESC LINES FROM SINGLE BLASTOMERES}

Ethical controversy determined the direction of early work; this focused on how to establish hESC lines without destruction of the embryo. A team from Advanced Cell Technology, a Massachusetts-based company, succeeded in deriving hESC lines from single blastomeres of cleavage stage embryos [2]. In this proof-of-principle study the embryos did not survive. To minimize the number of embryos used, the embryos were disaggregated and all blastomeres were biopsied from cleavage stage embryos, and the remaining embryo was left to develop to blastocyst stage. This strategy mimicked pre-implantation genetic diagnosis (PGD), a routine assisted reproduction procedure for selection of
healthy embryos for transfer and elimination of the embryos carrying disease-linked mutations. In spite of addressing the major ethical concerns, the technique did not become widespread. In the same year that the detailed protocol was published [4], two groups generated the first human induced pluripotent stem cell (hiPSC) [5, 6], and all the excitement around hESC started to fade—hESC were seen almost as an historical anomaly.

Instead of being celebrated as a major achievement, the technique of hESC-derivation from single blastomeres without embryo destruction became a center of controversy per se. Following nearly 50,000 public comments on the published draft Guidelines for research involving hESCs, the NIH modified the definition of hESCs [7]. hESC “are cells that are derived from the inner cell mass of blastocyst stage human embryos, are capable of dividing without differentiating for a prolonged period in culture, and are known to develop into cells and tissues of the three primary germ layers.” Under these guidelines, five hESC lines derived from single blastomeres by the Advanced Cell Technology team (MA09, NED1-4) [2, 3] and ten lines derived at the University of California San Francisco (UCSF81-10) [8] were ineligible for review because they were derived from a preblastocyst stage embryo and therefore, according to the definition, are not considered to be hESC lines [9]. Applications were submitted to the NIH hESC Registry in 2009 and 6 years later the decision is still pending. Paradoxically, there were no questions raised when clinical trials for macular degeneration of retina using MA09-derived retinal pigment epithelial (RPE) cells were labeled as hESC-based cellular therapy [10]. hESC generated without embryo destruction changed views on hESC patentability in the EU. Following the Directive 98/44/EC on the Legal Protection of Biotechnological Inventions [11] the European Patent Office (EPO) has refrained from granting patents for hESC on moral grounds. In 2006, the EPO’s Technical Board of Appeal decided that Chung et al. [3] provided the first disclosure of a method of establishing hESC lines without destroying a human embryo on 7 February 2008. Since then, only the hESC-related applications filed before that date were excluded from patentability [12].

hESC Lines Carrying Disease-Specific Mutations

hESC derived from embryos carrying monogenic inherited diseases or chromosomal aberrations were seen as tools for elucidating the etiology and pathophysiology of disorders. On that premise more than 100 hESC lines have been derived. Most of them were listed on either NIH hESC Registry or Human Pluripotent Stem Cell Registry. The spectrum of diseases was limited by the availability of PGD treatments and the frequency of the specific mutations in a given population (Table 1). The most frequently derived were hESC lines carrying specific mutations linked to Huntington disease (21 lines derived in 8 centers), Fragile X syndrome (12 lines derived in 3 centers), cystic fibrosis (12 lines derived in 6 centers), myotonic dystrophy (11 lines derived in 6 centers), and Charcot–Marie–Tooth disease (11 lines derived in 5 centers). In spite of efforts to make such lines available to the scientific community, actual interest did not match the initial enthusiasm. A relatively modest number of publications in peer-reviewed journals have described their use as research tools; in fact, the number of reviews elaborating on opportunities of using hESC lines carrying specific disease-linked mutations was several times higher than the number of actual research papers. Ethical issues, the regulatory landscape, and the limited spectrum of diseases were all drawbacks of hESC lines that hiPSC did not have and not surprisingly, disease-specific hiPSC lines took over.

Clinical Grade hESC Lines

Clinical grade hESC lines are lines which have been derived under current Good Manufacturing Practice (cGMP) conditions. The first clinical-grade hESC lines were the result of international efforts. Cryopreserved embryos were donated at Sydney IVF Ltd., derivation was performed at a cGMP facility in Brisbane, Australia, and the project was sponsored by the company ES Cell International, which was at that time based in Singapore [13]. The research versions of these lines were available for minimal reimbursement through the A*STAR Singapore Stem Cell Consortium (SSCC). Despite multimillion investments in these first clinical grade hESC lines, they did not gain the popularity of the H1 and H9 hESC lines derived by Thomson et al. [1], and the cells were never used in clinical trials. Since May 2010, the lines are owned by the California-based company BioTime. The company further characterized the lines at the molecular level and made the data, including copy number variation and genome sequencing, publicly available [14].

In the U.K., more than 30 clinical grade hESC lines have been derived in five centers across the country as a result of systematic investment from the Medical Research Council. The results of molecular karyotyping of 25 UK-derived clinical-grade hESC lines by whole-genome single nucleotide polymorphism array analysis was recently published [15]. Fifteen unique copy number variants greater than 100 kb and three copy-neutral regions of loss of heterozygosity greater than 1 Mb were detected in these 25 lines; none of these was associated with adaptation to cell culture. The presence of the culture artefact microduplication of chromosome 20q11.21 was, however, found at higher passages of four clinical grade hESC lines. The methodology and the results of testing cell lines for human viral pathogens has been made available for only 2 of these 25 lines, KCL033 and KCL034 [16].

Whether further investments into characterization of large numbers of hESC lines might pay off, only time will tell, especially with the expanding HLA-homzygous iPSC bank in Japan for clinical purposes [17]. The bank will contain multiple clinical grade iPSC lines homozygous for three HLA loci: HLA-A, -B, and -DR. Since autologous iPSC-based cell therapy would be financially prohibitive, the aim is to derive the lines from donors homzygous for HLA haplotypes that are found in the Japanese population at a high frequency. The cells derived from such hiPSC lines will carry a reduced risk of rejection when transplanted into recipients that are heterozygous for these haplotypes. Since Japan has a relatively homogenous ethnic population, the required size of the Japanese HLA-homzygous iPSC bank seems to be relatively small—about 50 homozygous lines will match >90% of the Japanese population [18, 19]. In the ethnically more diverse U.K., among 405 theoretical homozygous HLA combinations, a tissue bank...
Disease	Line	Human pluripotent stem cell registry	NIH Institution	Institution			
Adrenoleuko-dystrophy	SI-201	RGle105-A	Reproductive Genetics Institute	USA			
	UM112-1 PGD	NIIhESC-14-0285	University of Michigan	USA			
Alpha thalassemia	UM112-2 PGD	NIIhESC-15-0307	Australia	USA			
Alport syndrome	GENEA073	NIIhESC-12-0193	Tel Aviv Sourasky Medical Center	USA			
Amyotrophic lateral sclerosis; frontotemporal dementia	Lis14_Alport_3	NIIhESC-15-0340	Tel Aviv Sourasky Medical Center	Israel			
Androgen insensitivity	Lis07_AIS_1	NIIhESC-15-0334	University of Michigan	USA			
Aniridia (PAX6)	Lis08_AIS_2	NIIhESC-15-0335	University of Michigan	USA			
	UM29-2 PGD	NIIhESC-12-0164	USA				
	UM29-3 PGD	NIIhESC-12-0165	Israel				
Becker muscular dystrophy	SI-170	RGle077-A	Reproductive Genetics Institute	USA			
	SI-158	RGle066-A	USA				
	SI-164	RGle072-A	Istanbul Memorial Hospital	Turkey			
	OZ-8	IMHe011-A	King's College London	U.K.			
	KCL035	NIIhESC-13-0227	Genea	Australia			
	GENEAO58	NIIhESC-12-0199	Australia				
	GENEAO59	NIIhESC-12-0175	King's College London	U.K.			
Kosovo muscular dystrophy BRCA1	VUB20_CMT1A	VUBe014-A	Vrije Universiteit Brussel	Belgium			
Charcot-Marie-tooth disease type 1	STR-I-315-CMT1a	INSRMMe015-A	INSERM	France			
Cystic fibrosis	HUES PGD 11	NIIhESC-11-0094	Harvard University	USA			
	HUES PGD 12	NIIhESC-11-0095	INSERM	France			
	UM111-PGD	NIIhESC-12-0153	University of Michigan	USA			
	UM59-2 PGD	NIIhESC-14-0275	USA				
	UM59-4 PGD	NIIhESC-16-0357	INSERM	France			
	UM89-3 PGD	NIIhESC-12-0174	Reproductive Genetics Institute	USA			
	GENEAO64	NIIhESC-12-0187	Vrije Universiteit Brussel	Belgium			
	GENEAO62	NIIhESC-12-0188	Hadasah University Hospital	Israel			
	GENEAO63	NIIhESC-13-0219	Genea	Australia			
Dystrophin dystrophy	STR-I-203-CFTR	INSRMMe008-A	INSeRM	France			
	STR-I-251-CFTR	INSRMMe009-A	Reproductive Genetics Institute	USA			
	Si-257	RGle156-A	Reproductive Genetics Institute	USA			
Dystrophin dystrophy	VUB04_CF	VUBe004-A	Vrije Universiteit Brussel	Belgium			
	VUB22_CF	VUBe015-A	Hadasah University Hospital	Israel			
	HAD 2	HADe002-A	Genea	Australia			
Dystrophin dystrophy	GENEAO41	NIIhESC-12-0167	Reproductive Genetics Institute	USA			
	GENEAO40	NIIhESC-12-0171	Harvard University	USA			
Dystrophin dystrophy	SI-180	RGle086-A	Tel Aviv Sourasky Medical Center	USA			
	HUES PGD 3	NIIhESC-11-0091	USA				
	Lis48_DMD_6_N	NIIhESC-15-0311	Israel				
	Lis23_DMD_5	NIIhESC-15-0328	Tel Aviv Sourasky Medical Center	USA			
	Lis10_DMD_1	NIIhESC-15-0337	Tel Aviv Sourasky Medical Center	USA			
	Lis11_DMD_2	NIIhESC-15-0338	Tel Aviv Sourasky Medical Center	USA			
	Lis20_DMD_3	NIIhESC-15-0345	Tel Aviv Sourasky Medical Center	USA			
	Lis22_DMD_3	NIIhESC-15-0347	Tel Aviv Sourasky Medical Center	USA			
Emery-Dreifuss muscular dystrophy	Si-245	RGle144-A	Reproductive Genetics Institute	USA			
Fabry disease	STR-I-171-GLA	INSRMMe004-A	INSERM	France			
Facioscapulohumeral muscular dystrophy	VUB09_FSHD	VUBe009-A	Vrije Universiteit Brussel	Belgium			
	GENEAO24	NIIhESC-12-0170	Genea	Australia			
	GENEAO49	NIIhESC-12-0183	Genea	Australia			
Disease	Line	Human pluripotent stem cell registry	NIH	Institution			
---------	------	-------------------------------------	-----	-------------			
Factor VIII deficiency	GENE050	NIHhESC-12-0184	NIHhESC-14-0244	Hadassah University Hospital			
	GENE096			Israel			
	HAD 3	HADe003-A					
Familial adenomatous polyposis	STR-I-305-APC	INSRMe014-A		INSERM France			
	STR-I-355-APC	INSRMe017-A					
	STR-I-359-APC	INSRMe018-A					
	Lis34_FAP_3	NIHhESC-15-0324		Tel Aviv Sourasky Medical Center			
	Lis34_FAP_2	NIHhESC-15-0325		Israel			
	Lis25_FAP_1	NIHhESC-15-0349					
Fanconi’s anemia	ST-128	RGie040-A		Reproductive Genetics Institute USA			
Fragile X syndrome	WCMC-37	NIHhESC-13-0211		Well Cornell Medical College USA			
	UM139-2 PGD	NIHhESC-14-0292	NIHhESC-15-0309	University of Michigan USA			
	Lis S1_FXS9_N	NIHhESC-15-0319	NIHhESC-15-0320	Tel Aviv Sourasky Medical Center			
	Lis39_FXS8_N	NIHhESC-15-0326	NIHhESC-15-0327	Israel			
	Lis38_FXS7_N	NIHhESC-15-0330	NIHhESC-15-0331	France			
	Lis37_FXS10_N	NIHhESC-15-0348	NIHhESC-15-0349				
	Lis29_FXS7	NIHhESC-15-0350					
	Lis01_HFX1						
	Lis02_FXS2						
	Lis03_FXS4						
	Lis24_FXS5						
	Lis26_FXS6						
Hemophilia B	UM9-1PGD	NIHhESC-12-0154		University of Michigan Spain			
Hereditary multiple exostoses	ES-11EM	ESe026-A		Spanish Stem Cell Bank Spain			
Huntington’s disease	GENE097	NIHhESC-14-0248	NIHhESC-14-0249	Genea Australia			
	GENE098						
	SI-186	RGie091-A		Reproductive Genetics Institute USA			
	SI-187	RGie092-A					
	SI-194	RGie098-A					
	VUB05 HD	VUBe005-A		Vrije Universiteit Brussel Belgium			
	VUB28 HD MFS	VUBe018-A					
	STR-I-155-HD	INSRMe003-A					
	KCL005	KCl004-A					
	KCL012	KCl009-A	NIHhESC-13-0213	King’s College London U.K.			
	KCL013	KCl010-A	NIHhESC-13-0214				
	KCL027	NIHhESC-13-0223	NIHhESC-13-0241				
	KCL036	NIHhESC-13-0224					
	KCL028	NIHhESC-13-0225					
	HUES PGD 16	NIHhESC-12-0150	NIHhESC-12-0151	Harvard University USA			
	UM17-1 PGD	NIHhESC-12-0160	NIHhESC-12-0166	USA			
	GENE017	NIHhESC-12-0169	NIHhESC-12-0170	Genea Australia			
	GENE018	NIHhESC-12-0180					
	GENE046	HhESC-14-0245					
	GENE089	HhESC-14-0246					
	GENE091	HhESC-14-0247					
	GENE089						
	HS799	NIHhESC-13-0207	NIHhESC-15-0308	Tel Aviv Sourasky Medical Center Sweden			
Hydrocephaly	Lis50_Hydrocephaly_3_N	NIHhESC-12-0150	NIHhESC-12-0151	Tel Aviv Sourasky Medical Center Israel			
	Lis49_Hydrocephaly_2_N	NIHhESC-12-0160	NIHhESC-12-0166				
	Lis49_Hydrocephaly_1_N	NIHhESC-12-0169	NIHhESC-12-0170				
	UM15-4 PGD	NIHhESC-15-0310	NIHhESC-15-0323				
	UMK38-2 PGD	NIHhESC-12-0155		University of Michigan USA			
Hypertrophic cardiomyopathy (MYBPC3)	GENE077	NIHhESC-12-0261		Genea Australia			
	GENE071	NIHhESC-12-0191					
	GENE065	NIHhESC-12-0200					
Disease	Line	Human pluripotent stem cell registry	NIH Institution	Institution			
--------------------------------------	------------------------	--------------------------------------	---	----------------------			
Ichthyosis	Lis 46Ichthyosis_2_N	NIHhESC-15-0313	Tel Aviv	Israel			
Ichthyosis	Lis 45Ichthyosis_1_N	NIHhESC-15-0314	Sournasky Medical Center	Israel			
Juvenile retinoschisis	GENEAO72	NIHhESC-12-0192	Geneva	Australia			
Klinefelter's syndrome	Royan H4	NIHhESC-15-0314	Royan Institute	Iran			
Klinefelter's syndrome	KCL008	NIHhESC-15-0314	King's College London	U.K.			
Klinefelter's syndrome	FC018	NIHhESC-15-0314	Cellartis	Sweden			
Klinefelter's syndrome	BG01V	NIHhESC-15-0314	Vicyte (Novocell)	USA			
Klinefelter's syndrome	WA16	NIHhESC-15-0317	University of Wisconsin	USA			
Leuko-encephalopathy	Lis 41_LTBL_N	NIHhESC-15-0317	Tel Aviv Sourasky Medical Center	Israel			
Loey-Dietz syndrome 2	GENEAO83	NIHhESC-14-0256	Geneva	Australia			
Marfan syndrome	SI-154	NIHhESC-14-0257	Reproductive Genetics Institute	USA			
Merosin deficiency 1A	STR-I-301-MFS	INSERM013-A	INSERM	France			
Merosin deficiency 1A	MFSS	NIHhESC-10-0052	Vrije Universiteit Brussel Stanford University	USA			
Merosin deficiency 1A	UMBR-1-PGD	NIHhESC-14-0276	University of Michigan	USA			
Merosin deficiency 1A	GENEAO81	NIHhESC-16-0359	INSERM	France			
Merosin deficiency 1A	STR-I-209-MEN2a	INSERM006-A	University of Michigan	USA			
Merosin deficiency 1A	STR-I-211-MEN2a	NIHhESC-13-0208	Vrije Universiteit Brussel	Belgium			
Merosin deficiency 1A	UMS5-1-PGD	NIHhESC-14-0252	Hadassah University Hospital	Israel			
Neurofibromatosis	SI-148	NIHhESC-14-0254	Reproductive Genetics Institute	USA			
Neurofibromatosis	SI-153	NIHhESC-12-018	Kings College London	U.K.			
Neurofibromatosis	KCL018	NIHhESC-12-019	Geneva	Australia			
Neurofibromatosis	GENEAO66	NIHhESC-12-010	NIHhESC-15-0339	Tel Aviv Sourasky Medical Center	Israel		
Neurofibromatosis	GENEAO67	NIHhESC-12-019	Geneva	Australia			
Neurofibromatosis	Lis12_DOM_1	NIHhESC-12-018	Reproductive Genetics Institute	USA			
Nemaline myopathy 2	GENEAO78	NIHhESC-12-019	NIHhESC-15-0344	Geneva			
Nemaline myopathy 2	GENEAO79	NIHhESC-12-018	NIHhESC-14-0252	USA			
Nemaline myopathy 2	GENEAO80	NIHhESC-12-019	NIHhESC-14-0253	USA			
Neurofibromatosis	SI-137	NIHhESC-12-019	NIHhESC-15-0343	USA			
Neurofibromatosis	SI-138	NIHhESC-12-019	NIHhESC-15-0346	Israel			
Neurofibromatosis	SI-140	NIHhESC-12-019	NIHhESC-15-0346	Israeli			
Neurofibromatosis	SI-235	NIHhESC-12-019	NIHhESC-15-0346	Israeli			
Neurofibromatosis	KCL024	NIHhESC-12-020	NIHhESC-15-0316	USA			
Neurofibromatosis	KCL025	NIHhESC-15-0316	NIHhESC-15-0315	USA			
Neurofibromatosis	Lis 47_NF1_2_N	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	Tel Aviv Sourasky Medical Center	Israel	
Nonsyndromic deafness	Lis 42_NF1_1_N	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	Tel Aviv Sourasky Medical Center	Israel	
Nonsyndromic deafness	Lis43_Connexin_3_N	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	URLav Sourasky Medical Center	Israel
Noonan syndrome	Lis17_Connexin_1	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	Tel Aviv Sourasky Medical Center	Israel
Noonan syndrome	Lis18_Connexin_2	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	Tel Aviv Sourasky Medical Center	Israel
Noonan syndrome	Lis21_Noonan_1	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	Tel Aviv Sourasky Medical Center	Israel
Osteogenesis imperfecta	VUB23_OI	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	Tel Aviv Sourasky Medical Center	Israel
Osteogenesis imperfecta	SA002	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	Tel Aviv Sourasky Medical Center	Israel
Osteogenesis imperfecta	Miz-hES13	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	Tel Aviv Sourasky Medical Center	Israel
Osteogenesis imperfecta	FY-hES-S	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	Tel Aviv Sourasky Medical Center	Israel
Patau syndrome (trisomy 13)	VUB23_OI	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	Tel Aviv Sourasky Medical Center	Israel
Patau syndrome (trisomy 13)	SA002	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	NIHhESC-15-0316	Tel Aviv Sourasky Medical Center	Israel

www.StemCells.com © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press
from 150 selected homozygous HLA-typed volunteers could match 93% of the population [20]. However, among 10,000 HLA typed organ donors used in the study as a representative of the UK population, only 2% were identified as non-White ethnicity, whereas according to the 2011 census 12.8% of the population was non-White, which indicates the particular challenges in identifying suitable donors for the members of these communities [21]. hESC lines, such as H1, MA09, and 16 on which are based most clinical trials today, were not clinical grade lines from the start. They were derived as research grade lines and, only later were adapted to cGMP conditions. Moreover, they were derived and propagated in the presence of mouse feeder cells and/or bovine serum. Xeno-free technology was developed later [22–28] and in 2011, a team from King’s College London derived the first eight animal product-free clinical grade lines [26–28]. The lines are karyotyped at the molecular level [15]; they are also listed on the NIH hESC Registry and, therefore, eligible for use in NIH-supported research. The most recent advance is the use of a cell culture matrix containing a mixture of human recombinant laminin (LN)—521 and E-cadherin [29] to derive hESC lines from the inner cell mass of blastocysts and from single blastomere cells from cleavage stage embryos without a need to destroy the embryo. The LN-521/E-cadherin matrix allows clonal derivation, survival and long-term self-renewal of hESC under chemically defined animal product-free conditions without addition of ROCK inhibitors.

All hESC lines do not have equal developmental potential and that cannot be explained by epigenetic memory as with hiPSC lines. Some of the hESC lines have propensity toward mesodermal lineages, whereas other toward endoderm [30]. Thus, a screening of the multiple hESC lines for their differentiation propensity has become a standard approach in selection of lines for particular clinical trials. The yield of differentiated cells basically depends on propensity of the source and the efficacy of differentiation protocol. However, regardless of differentiation efficacy, unlimited supplies of hESC or hiPSC would finally give more desired cell types than any other source, and therefore make the most of invested capital.

CLINICAL TRIALS

Spinal Cord Injury

In spite of all the obstacles, which include a 21,000-page Investigational New Drug (IND) application with the FDA, the first patient was treated with an hESC-based cellular therapy product, oligodendrocyte progenitor cells 1 (OPC1), in a clinical trial at the Shepherd Center in Atlanta in October 2010.
only 12 years after hESC were isolated for the first time [1].

The clinical trial for spinal cord injury, sponsored by Geron, a California-based company, treated only five patients. The treatment did not cause serious adverse events, although motor or sensory neurological changes were not observed. The lack of obvious improvement in physical condition clashed with the high expectations of the public and the company’s stock dropped nearly 60% in the nine months, from January to September 2011. In order to stay in business, lack of investment and support forced the company to end the trial prematurely and to close their stem cell program [31].

All Geron’s assets were transferred to another Bay Area company, BioTime and its subsidiary Asterias Biotherapeutics, in 2013. Supported with a strategic partnership award from the California Institute for Regenerative Medicine and equity funding, Asterias reinitiated the clinical trial, and the first patient was treated in Atlanta in June 2015. The study is conducted at a total of up to eight centers in the United States. The AST-OPC1 cells will be tested with three sequential escalating doses, the highest being \(2 \times 10^6\) cells, in 13 patients with subacute, C-5 to C-7, neurologically complete cervical spinal cord injury. In February 2014, Asterias received Orphan Drug Designation from the U.S. Food and Drug Administration (FDA) for AST-OPC1, for the treatment of acute spinal cord injury. Orphan Drug Designation is granted to products that treat diseases affecting fewer than 200,000 people in the U.S., and it may provide the sponsor certain benefits and incentives, including a period of marketing exclusivity of 7 years from the first marketing application, if regulatory approval is received for the designated indication [32].

Macular Degeneration of the Retina

Macular degeneration of the retina is likely to be the first disease that could be, to some extent, successfully treated with hESC-based therapy. Easy accessibility with minimally invasive procedures, the subretinal space being immunoprivileged, and the fact that the stem cell transplant can be monitored regularly with noninvasive methods for structural engraftment (spectral-domain optical coherence tomography) and functional outcome (autofluorescence and visual acuity), make the eye an ideal target choice for initial hESC/iPSC-based cellular therapies. Indeed, there are currently nine clinical trials with hESC and one with iPSC-derived RPE cells [10, 31, 33–35]. The initial results and follow-up with a median time of 22 months are promising; however, we do not know how long the effects will last. Over time the hESC-derived RPE cells might succumb to the pathologically altered environment of a diseased eye and ameliorate the condition only temporarily. Nevertheless, using ocular indications as a target was an ingenious idea and it revived the field after Geron was forced to end the trial for spinal cord injury.

Diabetes

Clinical trials with hESC/iPSC-based therapy in type 1 diabetes have been anticipated for a long time. California company ViaCyte (formerly known as Novocell) has spent a number of years developing their glucose-responsive insulin producing PEC-01 cells as well as Encaptra, an encapsulating drug delivery system made from porous cell-impermeable membrane. They are currently tested together as VC-01, islet replacement product candidate. VC-01 is the first stem cell-based treatment for type 1 diabetes to enter clinical testing and the first patient was treated in October 2014 at the University of California San Diego [31, 36, 37].

Heart Repair

A clinical study of a fibrin patch embedded with hESC-derived cardiac-committed CD15+ ISL-1+ progenitors transplanted into epicardium of the infarcted area and covered with an autologous pericardial flap commenced in autumn 2014 in France [31, 38]. Following the treatment, the first patient suffering from severe heart failure New York Heart Association (NYHA) functional Class III improved to NYHA Class I and remained stable NYHA Class I 6-months after the intervention [38]. This is the first hESC-based clinical trial that originated outside of the US and that is not driven by a for-profit company.

hESC-Derived Cancer Vaccine

In 2011, Geron reported the development and modification of hESC-derived dendritic cells with mRNA as a potential strategy for the induction of T-cell-mediated immunity [39, 40]. With discontinuation of the stem cell program, the assets related to antigen-presenting dendritic cells GRN-VAC1 and GRN-VAC2 were transferred to Asterias. GRN-VAC2, renamed AST-VAC2, are mature hESC-derived dendritic cells that express a modified form of telomerase, which permits enhanced stimulation of immune response. In September 2014, Asterias teamed up with the UK charity Cancer Research UK and its development and commercialization arm Cancer Research Technology to bring AST-VAC2 into clinical trials in patients with non-small cell lung cancer and in January 2016 has completed the transfer of its manufacturing processes to Cancer Research UK who will produce AST-VAC2 under cGMP conditions at their Biotherapeutics Development Unit.

THE FUTURE—WHERE WE ARE GOING WITH hESC?

With the development of hiPSC, free of ethical issues [5, 6], hESC started to lose their unique appeal. Within a few years, from being an indispensable research tool, hESC dropped to the level of “gold standard” demonstrating that iPSC are equally useful for addressing certain research questions [e.g., [41–44]]. Only time will show whether they will remain as a “gold standard” or they will slowly become obsolete. Most of the issues that are relevant for hESC-based therapy also apply to iPSC [45]. Therefore, it is logical that the standards set in hESC-based clinical trials should be applicable to hiPSC-based clinical trials (e.g., clinical trials in macular degeneration of retina). Since the key difference between hESC and hiPSC is the potentially modified genomic and epigenetic state of hiPSC, additional standards such as DNA methylation analysis and medium-resolution array-comparaive genomic hybridization should be applied in hiPSC-based trials.

Nonuniform epigenome transformation during reprogramming is not the only issue that may affect the quality of hiPSC [46]. hiPSC are derived from adult somatic cells, which accumulate mutations over the lifespan of the donor [47].
Specific genetic and epigenetic footprints influence the molecular and functional properties of each hiPSC clone and might lead to misinterpretation of the results in, for example, drug screening studies. This is particularly important in studies with disease-specific iPSC lines. With newly discovered relatively precise genome editing techniques such as clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 [48, 49], it is possible to repair mutations in disease-specific hiPSC lines and in such a way generate much better controls than native non-manipulated hESC. On the other hand, using CRISPR/Cas9, disease-specific mutations can be introduced in normal healthy hESC lines, avoiding a baggage of accumulated lifetime mutations, which are typical for disease-specific hiPSC, as well as preserving the native DNA methylation footprint of hESC, which is almost never completely matched in hiPSC.

ACKNOWLEDGMENT

We thank science illustrator Nikola Kolundzic for schematic drawings.

REFERENCES

1. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–1147.
2. Klimanskaya I, Chung Y, Becker S et al. Human embryonic stem cell lines derived from single blastomeres. Nature 2006;444:481–485.
3. Chung Y, Klimanskaya I, Becker S et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2008;2:113–117.
4. Klimanskaya I, Chung Y, Becker S et al. Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2007;2:1963–1972.
5. Takahashi K, Tanabe K, Ohkuhi M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861–872.
6. Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917–1920.
7. Available at http://stemcells.nih.gov/policy/pages/2009guidelines.aspx. Accessed March 13, 2016.
8. Zdravkovic T, Nazor KL, Laroche N et al. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification. Development 2015;142:4010–4025.
9. Available at http://grants.nih.gov/stem_cells/registry/pending.htm. Accessed March 13, 2016.
10. Schwartz SD, Regillo CD, Lam BL et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 2015;385:509–516.
11. Directive 98/44/EC of the European parliament and of the council of 6 July 1998 on the legal protection of biotechnological inventions. Official J 1998:L213:1–21. http://eur-lex.europa.eu/eli/dir/1998/44/oj.
12. Kim YT, Shepherd M, Zvesper T. Patentability of human embryonic stem cells. Available at http://www.marks-clerk.com/Home/Knowledge-News/Articles/Human-embryonic-stem-cells-at-the-EPO.aspx#Vu08Bdesc_dQ. Accessed March 19, 2016.
13. Crook JM, Peura TT, Kravets L et al. The generation of six clinical-grade human embryonic stem cell lines. Cell StemCell 2007;1:490–494.
14. Funk WD, Labat I, Sampathkumar J et al. Evaluating the genomic and sequence integrity of human ES cell lines: Comparison to normal genomes. Stem Cell Res (Amst) 2012;8:154–164.
15. Canham MA, Van Deusen A, Brison DR et al. The molecular karyotype of 25 clinical-grade human embryonic stem cell lines. Sci Rep 2015;5:17258.
16. Devito L, Petrova A, Miere C et al. Cost-effective master cell bank validation of multiple clinical-grade human pluripotent stem cell lines from a single donor. Stem Cells Transl Med 2014;3:1116–1124.
17. Saito MK, Matsunaga A, Takasu N et al. Donor recruitment and eligibility criteria for HLA-homozygous iPSC bank in Japan. In: Ilic D, ed. Stem Cell Banking. New York: Springer, 2014:67–70.
18. Nakajima F, Tokunaga K. Human embryonic, induced pluripotent and germline iPSC: Ethnic group, local authorities in the population and migration/population estimates/bulletins/keystatisticsandquickstatisticsforlocalauthoritiesintheunitedkingdom/2013-10-11. Accessed: May 09, 2016.
19. Elenstrom C, Strehi R, Moya K et al. Derivation of a xeno-free human embryonic stem cell line. Stem Cells 2006;24:2170–2176.
20. Rajala K, Lindroos B, Hussein SM et al. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS One 2010;5:e10246.
21. Galán A, Simón C. Human embryonic stem cells derived in xeno-free conditions. Methods Mol Biol 2012;873:13–32.
22. Tannenbaum SE, Turetsky TT, Singer O et al. Derivation of xeno-free and GMP-grade human embryonic stem cells—Platforms for future clinical applications. PLoS One 2012;7:e35325.
23. Ilic D, Stephenson E, Wood V et al. Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 2012;14:122–128.
24. Stephenson E, Jacquet L, Miere C et al. Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 2012;7:1366–1381.
25. Jacquet L, Stephenson E, Collins R et al. Strategy for the creation of clinical grade hESC line banks that HLA-match a target population. EMBO Mol Med 2013;5:10–17.
26. Rodin S, Antonsson L, Niaudet C et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun 2014;5:3195.
27. Osafune K, Caron L, Borowiak M et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 2008;26:313–315.
28. Ilic D, Devito L, Miere C et al. Human embryonic and induced pluripotent stem cells in clinical trials. Br Med Bull 2015;116:19–27.
29. Available at http://www.fda.gov/ForIndustry/DevelopingProductsforRareDiseasesConditions/HowtoapplyforOrphanProductDesignation/default.htm. Accessed March 31, 2016.
30. Schwartz SD, Hubschman JP, Heiwell G et al. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet 2012;379:713–720.
31. Song WK, Park KM, Kim HJ et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: Preliminary results in Asian patients. Stem Cell Reports 2015;4:861–872.
32. Kimbre LA, Lanza R. Current status of pluripotent stem cells: Moving the first therapies to the clinic. Nat Rev Drug Discov 2015;14:681–692.
33. Schulz TC. Concise review: Manufacturing of pancreatic endoderm cells for clinical trials in type 1 Diabetes. Stem Cells Transl Med 2015;4:927–931.
34. Agulnick AD, Ambruzs DM, Moorman MA et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in Vivo. Stem Cells Transl Med 2015;4:1214–1222.

© 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
38 Menasché P, Vanneau V, Hagège A et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: First clinical case report. Eur Heart J 2015;36:2011–2017.
39 Tseng SY, Nishimoto KP, Silk KM et al. Generation of immunogenic dendritic cells from human embryonic stem cells without serum and feeder cells. Regen Med 2009;4:513–526.
40 Nishimoto KP, Tseng SY, Lebkowski JS et al. Modification of human embryonic stem cell-derived dendritic cells with mRNA for efficient antigen presentation and enhanced potency. Regen Med 2011;6:303–318.
41 Petrova A, Celli A, Jacquet L et al. 3D in vitro model of a functional epidermal permeability barrier from human embryonic stem cells and induced pluripotent stem cells. Stem Cell Rep 2014;2:675–689.
42 Sundberg M, Bogetofte H, Lawson T et al. Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 2013;31:1548–1562.
43 Mica Y, Lee G, Chambers SM et al. Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep 2013;3:1140–1152.
44 Otsuji TG, Kurose Y, Suemori H et al. Dynamic link between histone H3 acetylation and an increase in the functional characteristics of human ESC/iPSC-derived cardiomyocytes. PLoS One 2012;7:e45010.
45 Ilic D, Stephenson E. Promises and challenges of the first clinical-grade induced pluripotent stem cell bank. Regen Med 2013;8:101–102.
46 Ohi Y, Qin H, Hong C et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human IPS cells. Nat Cell Biol 2011;13:541–549.
47 Young MA, Larson DE, Sun CW et al. Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 2012;10:570–582.
48 Jinek M, Jiang F, Taylor DW et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014;343:1247997.
49 Cong L, Ran FA, Cox D et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819–823.