Designing Environments Conducive to Interpretable Robot Behavior

Anagha Kulkarni, Sarath Sreedharan, Sarah Keren,
Tathagata Chakraborti, David Smith and Subbarao Kambhampati

Abstract—Designing robots capable of generating interpretable behavior is a pre-requisite for achieving effective human-robot collaboration. This means that the robots need to be capable of generating behavior that aligns with human expectations and, when required, provide explanations to the humans in the loop. However, exhibiting such behavior in arbitrary environments could be quite expensive for robots, and in some cases, the robot may not even be able to exhibit the expected behavior. Given structured environments (like warehouses and restaurants), it may be possible to design the environment so as to boost the interpretability of robot’s behavior or to shape the human’s expectations of the robot’s behavior. In this paper, we investigate the opportunities and limitations of environment design as a tool to promote a type of interpretable behavior – known in the literature as explicable behavior. We formulate a novel environment design framework that considers design over multiple tasks and over a time horizon. In addition, we explore the longitudinal aspect of explicable behavior and the trade-off that arises between the cost of design and the cost of generating explicable behavior over a time horizon.

I. INTRODUCTION

As more and more autonomous robots are deployed into environments cohabited by humans, it becomes important that the robots are capable of acting in a manner that is interpretable to the humans in the loop. Inexplicable robot behavior may not only lead to increased cognitive load on the human but also lead to loss of trust in robot’s capabilities and in the worst case, may lead to increased risk of danger around the robot [1]. Roadmap for U.S. Robotics [2] emphasizes – “humans must be able to read and recognize agent activities in order to interpret the agent’s understanding”. In order to be interpretable to the human, the robot should make its behavior consistent with the human’s expectations of it. However, the human’s expectation may deviate from reality as the human may have incorrect mental models about the robot’s beliefs and capabilities. In such cases, the robot should be able to reason over the inconsistencies between its own model and the human’s mental model to either generate explicable behavior that is consistent with human’s expectations of its behavior [3], [4], or, explain its behavior with respect to the inconsistencies in human’s mental model [5], [6].

However, the environment in which the robot is operating may not always be conducive to explicable behavior. This may lead to inhibition of certain explicable behaviors or may lead to prohibitively expensive explicable behaviors for the robot. Fortunately, in highly structured settings, where the robot is expected to solve repetitive tasks (like in warehouses, factories, restaurants, etc.), it might be feasible to design the environment in a way that improves explicability with respect to multiple tasks. This brings us to the problem of environment design which involves designing the environment so as to maximize (or minimize) some objective for the robot (for example, optimal-cost to a goal, desired behavioral property) [7]. While the problem of environment design for planning problems has been investigated under the umbrella of goal and plan recognition design [8], [9], they only form a subset of interpretable behaviors studied in existing literature [10]. To the best of our knowledge, we are the first to explore the notion of environment design to maximize the explicability of robot’s behavior.

However, environment design alone may not be a panacea for explicability. For one, the design could be quite expensive, not only in terms of making the required environment changes but also in terms of limiting the capabilities of the robot. Moreover, in many cases, there may not be a single set of design modifications that will work for all the problems. For instance, designing a robot with wheels for efficient navigation on the floor will not optimize the robot’s motion up a stairwell. This means, to achieve truly effective synergy with autonomous robots in a shared space, we need a greater synthesis of environment design and human-aware behavior generation. This leads us to investigate a novel optimization space, that requires trading off one-time (but potentially expensive) design changes, against repetitive penalties borne by the robot to achieve explicable behavior.

The main contributions of our paper are as follows:

1) We propose a new design framework that:
 a) balances the cost of modifying the initial environment with the cost of inexplicability of robot’s behavior on the human,
 b) optimizes this objective given a set of tasks over a time horizon.

2) Our work is the first to model the longitudinal aspect of explicable behavior which captures the human’s tolerance to inexplicability (captured using discount factor) as a result of repetitive execution of same tasks.
over a time horizon.

3) In solving the objective, we leverage a classical planning compilation [11] to generate the most explicable plan for a task in a given environment configuration and explore its theoretical properties.

4) Through empirical evaluation and demonstration of our approach in a simulated domain, we examine the properties of our optimization criterion and the various trade-offs that result from it.

A. Motivating Example

Consider a restaurant with a robot server (Figure 1a). Let G_1 and G_2 represent the robot’s goals of serving the two booths: it travels between the kitchen and the two booths. The observers consist of human servers and customers at the restaurant. The human servers serve the other two tables in the restaurant. Given the position of the kitchen, the observers may have expectations on the route taken by the robot. However, unbeknownst to the observers, the robot can not traverse between the two tables and therefore takes the route around the tables. Therefore, the path marked in red is the cheapest path for the robot but the observers expect the robot to take the path marked in green in Figure 1a.

In this environment, there is no way for the robot to be explicable. Applying environment design provides us with alternatives. For example, the designer could choose to build two barriers as shown in Figure 1b. With these barriers in place, the humans would expect the robot to follow the path marked in green in Figure 1a.

B. Explicability

Let $P_R = \langle F, \mathcal{A}_R, I_R, G_R, c_R \rangle$ be the robot’s model captured as a planning problem. The need for generating explicable behavior arises because the robot’s planning model is different from the human’s mental model of it. The difference can be in terms of set of actions, initial state or goal of the robot. Thus an explicable planning problem is defined as $P_{Exp} = \langle P_R, P_H, \delta_{P_H} \rangle$, where $P_H = \langle F, \mathcal{A}_H, I_H, G_H, c_H \rangle$ represents the human’s mental model of it, and δ_{P_H} is a distance function used by the human to compute the explicability of a plan. We assume that the human’s mental model is available. This is usually the case when any product is deployed and developers capture a generic user model which can be learned from prior interactions. In this work, we only focus on the reasoning aspects once we have the model, rather than focusing on the acquisition of such a model which can be an input to our approach. Let Π_{P_R} represent the set of expected plans with respect to P_H. Here, Π_{P_R} captures the notion of the humans preference on the plans feasible in her mental model. A valid plan that solves P_R can exist anywhere on the spectrum of inexplicability from high to low.

Definition 1: The inexplicability score, $\mathcal{IE}(\cdot, \cdot, \cdot)$, of the robot’s plan π_B that solves P_R is defined as follows for the human’s mental model P_H and a distance function $\delta_{P_H}(\cdot, \cdot)$:

$$\mathcal{IE}(\pi_B, P_H, \delta_{P_H}) = \min_{\pi_H \in \Pi_{P_H}} \delta_{P_H}(\pi_B, \pi_H)$$

where $\delta_{P_H}(\cdot, \cdot)$ is a distance function that assesses the difference between the two plans.
The robot’s objective is to choose plans with minimal inexplicability score in the human’s mental model. We will use the notation $\Pi^*_E(\mathcal{P}, R, \delta)$ to refer to the set of plans in the robot’s model with the lowest inexplicability score, and $\mathcal{I}(\mathcal{P})$ to represent the lowest inexplicability score associated with the set. Further, let f_E represent the decision function used by the explicable robot, such that, $f_E(\mathcal{P})$ represents the cheapest plan that minimizes the inexplicability score, i.e., $f_E(\mathcal{P}) \in \Pi^*_E(\mathcal{P}, R, \delta)$ and $\exists n' : n' \in \Pi^*_E(\mathcal{P}, R, \delta) \land c_R(n') < c_R(f_E(\mathcal{P}))$.

C. Environment Design

An environment design problem [7] takes as input the initial environment configuration along with a set of modifications and computes a subset of modifications that can be applied to the initial environment to derive a new environment in which a desired objective is optimized.

Let $\mathcal{P}_R^0 = (\mathcal{P}_R^0, \mathcal{A}_R^0, \mathcal{T}_R^0, \mathcal{G}_R^0, \mathcal{C}_R^0)$ denote the initial environment in which the robot is operating, ρ_R be the set of valid configurations of that environment, such that $\mathcal{P}_R^0 \in \rho_R$. Let O be an arbitrary metric that needs to be optimized with environment design, i.e. a planning model with lower value for O is preferred. A design problem (adapted from [7]) is a tuple $(\mathcal{P}_R^0, \Delta, \lambda_R, C, O)$ where, Δ is the set of all modifications, $\lambda_R : \rho_R \times 2^{\Delta} \rightarrow \rho_R$ is the model transition function that specifies the resulting model after applying a subset of modifications to the existing model, $C : \Delta \rightarrow \mathbb{R}$ is the cost function that maps each design choice to its cost. That is, the modifications are independent of each other and their costs are additive. We will overload the notation and also use C as the cost function for a subset of modifications $(C(\xi) = \sum_{\xi \in \xi} C(\xi))$.

The possible modifications may include modifications to the set of states, action preconditions, action effects, action costs, initial state and goal. An optimal solution for a design problem identifies a subset of design modifications, ξ, that minimizes the following objective function consisting of the cost of modifications and the metric O: $\min O(\lambda_R(\mathcal{P}_R^0, \xi)), C(\xi)$.

III. Design for Explicability

In this framework, we not only discuss the problem of environment design with respect to explicability but also in the context of (1) a set of tasks that the robot has to perform in the environment, and (2) over the lifetime of the tasks i.e. the time horizon over which the robot is expected to repeat the execution of the given set of tasks. These considerations add an additional dimension to the environment design problem since the design will have lasting effects on the robot’s behavior. In the following, we will first introduce the design problem for a single explicable planning problem, then extend it to a set of explicable planning problems and lastly extend it over a time horizon.

A. Single Explicable Problem

In the design problem for explicability, the inexplicability score becomes the metric that we want to optimize for. That is we want to find an environment design such that the inexplicability score is reduced in the new environment. This problem can be defined as follows:

Definition 2: The design problem for explicability is a tuple, $\mathcal{D}(\mathcal{P}) = (\mathcal{P}_E \rho, \Delta, \lambda_{\mathcal{P}_E}, C, \mathcal{I}(\mathcal{P}))$, where:

- $\rho_E \rho$ is the initial configuration of the explicable planning problem, where ρ represent the set of valid configurations for \mathcal{P}.
- Δ is the set of design modifications that are available in the given set of valid configurations ρ_E.
- $\lambda_{\mathcal{P}_E}$ is the transition function over the explicable planning problem, which gives the updated explicable planning problem after applying a subset of designs.
- C is the additive cost associated with each design in Δ.
- $\mathcal{I}(\mathcal{P}) : \rho_E \rightarrow \mathbb{R}$ is the minimum possible inexplicability score in configuration, i.e. inexplicability score associated with the most explicable plan.

With respect to our motivating example in Figure [1a], $\mathcal{D}(\mathcal{P})$ is the problem of designing the environment to improve the robot’s explicability given its task of serving every new customer at a booth (say G_1) only once. The optimal solution to $\mathcal{D}(\mathcal{P})$ involves finding a configuration which minimizes the minimum inexplicability score. We also need to take into account an additional optimization metric which is the effect of design modifications on the robot’s plan cost. That is, we need to examine to what extent the decrease in inexplicability is coming at the robot’s expense. For instance, if you confine the robot to a cage so that it cannot move, its behavior becomes completely and trivially explicable, but the cost of achieving its goals goes to infinity.

Definition 3: An optimal solution to $\mathcal{D}(\mathcal{P})$, is a subset of modifications ξ^* that,

$$\min \mathcal{I}(\mathcal{P})$, $C(\xi^*), c_R(f_E(\mathcal{P}_E))$$

where $\mathcal{P}_E = \lambda_{\mathcal{P}_E}(\rho_E, \xi^*)$ is the final modified explicable problem, $\mathcal{I}(\mathcal{P})$ represents the minimum possible inexplicability score for a given configuration, $C(\xi^*)$ denotes the cost of the set of design modifications and $c_R(f_E(\mathcal{P}_E))$ is the cost of cheapest most explicable plan in a configuration.

B. Multiple Explicable Problems

We will now show how $\mathcal{D}(\mathcal{P})$ evolves when there are multiple explicable problems in the environment that the robot needs to solve. When there are multiple explicable tasks there may not exist a single set of design modifications that may benefit all the tasks. In such cases, a solution might involve performing design modifications that benefit some subset of the tasks while allowing the robot to act explicably with respect to the remaining set of tasks. Let there be k explicable planning problems, given by the set $\mathcal{P} = \{\mathcal{P}(0), \mathcal{P}(1), \delta_{\mathcal{P}(0)}(k), \mathcal{P}(k), \mathcal{P}(k), \delta_{\mathcal{P}(k)}(k)\}$, with a categorical probability distribution \mathcal{D} over the problems. We use $\mathcal{P}(i)$ to denote the i^{th} explicable planning problem. These k explicable problems
Changes are associated with a one-time cost (i.e., the cost of explicable behavior in an environment. For instance, design characteristic in comparison to that of execution of one-time task could evolve over time. This may not be a problem if the robot’s behavior aligns perfectly with the human’s expectations. Although, if the robot’s plan for a given task is associated with a non-zero inexplicability score, then the human is likely to be more surprised the very first time they notice the inexplicable behavior than they would be if they noticed the inexplicable behavior the subsequent times. Since, the second time the robot performs the same task, the human may get used to the inexplicability of the robot’s behavior and may expect the robot to perform the same inexplicable behavior. As the human watches the task being performed over and over, the amount of surprise associated with the inexplicable behavior starts decreasing. In fact, there is a probability that the human may ignore the inexplicability of the robot’s behavior after sufficient repetitions of the task. We incorporate this intuition by using discounting.

Fig. 2: Illustration of longitudinal impact on explicability. Prob determines the probability associated with executing each task in P_{Exp}. For each task, the reward is determined by the inexplicability score of that task. The probability of achieving this reward is determined by \(\gamma \times \text{probability of executing that task} \). Additionally, with a probability \((1 - \gamma)\) the human ignores the inexplicability of a task and the associated reward is given by an inexplicability score of 0.

May differ in terms of their initial state and goal conditions. Now the design problem can be defined as:

\[
\mathcal{DP}_{Exp,D} = \{P_{Exp}^0, \Delta, \Lambda_{Exp}, C, \mathcal{IE}_{min,D}\},
\]

where \(P_{Exp}^0 \) is the set of planning tasks in the initial environment configuration, \(\mathcal{IE}_{min,D} \) is a function that computes the minimum possible inexplicability score in a given environment configuration by taking expectation over the minimum inexplicability score for each explicable planning problem, i.e., \(\mathcal{IE}_{min,D}(P_{Exp}) = \mathbb{E}[\mathcal{IE}_{min}(P_{Exp})|P_{Exp} \sim D] \). With respect to our running example, \(\mathcal{DP}_{Exp,D} \) is the problem of designing the environment given the robot’s task of serving every new customer only once at either of the booths \((G_1, G_2) \) with probability given by distribution \(D \).

The solution to \(\mathcal{DP}_{Exp,D} \) has to take into account the distribution over the set of explicable planning problems. Therefore the optimal solution is given by:

\[
\min \left(\mathcal{IE}_{min,D}(P_{Exp}), C(\xi^*) \right), \quad \mathbb{E}[c_R(f_{Exp}(P_{Exp}^*) | P_{Exp}^* \sim D)]
\]

That is, a valid configuration that minimizes the minimum possible inexplicability score which involves expectation over minimum inexplicability score for each explicable planning problem, cost of the design modifications (these modifications are equally applied to each explicable planning problem) and the expectation over the cheapest most explicable plan for each explicable planning problem.

C. Longitudinal Impact on Explicable Problems

The process of applying permanent (or semi-permanent) design modifications to an environment makes more sense if the tasks are going to be performed repeatedly in the presence of a human observer. This has quite a different temporal characteristic in comparison to that of execution of one-time explicable behavior in an environment. For instance, design changes are associated with a one-time cost (i.e. the cost of applying those changes in the environment). On the other hand, if we are relying on the robot to execute explicable plans at the cost of foregoing optimal plans, then it needs to bear this cost multiple times in the presence of a human observer over the time horizon.

We will use a discrete time formulation where the design problem is associated with a time horizon \(T \). At each time step, one of the \(k \) explicable planning problems is chosen. Now the design problem can be defined as:

\[
\mathcal{DP}_{Exp,D,T} = \{P_{Exp}^0, D, \Delta, \Lambda_{Exp}, C, \mathcal{IE}_{min,D,T}\}
\]

In our running example, \(\mathcal{DP}_{Exp,D,T} \) is the problem of designing the environment given the robot’s task of serving the same customer at either of the booths with a distribution \(D \) over a horizon \(T \).

In the past literature, the explicability of a robot’s behavior has been studied with respect to a single interaction with a human over a given task [3], [4]. However, we consider a time horizon, \(T > 1 \), over which the robot’s interaction with the human may be repeated multiple times for the same task. This means the human’s expectations about the task could evolve over time. This may not be a problem if the robot’s behavior aligns perfectly with the human’s expectations. Although, if the robot’s plan for a given task is associated with a non-zero inexplicability score, then the human is likely to be more surprised the very first time they notice the inexplicable behavior than they would be if they noticed the inexplicable behavior the subsequent times. Since, the second time the robot performs the same task, the human may get used to the inexplicability of the robot’s behavior and may expect the robot to perform the same inexplicable behavior. As the human watches the task being performed over and over, the amount of surprise associated with the inexplicable behavior starts decreasing. In fact, there is a probability that the human may ignore the inexplicability of the robot’s behavior after sufficient repetitions of the task.

We incorporate this intuition by using discounting.

Figure 2 illustrates the Markov reward process to represent the dynamics of this system. Let \((1 - \gamma)\) denote the probability that the human will ignore the inexplicability of the robot’s plan, i.e., the reward will have inexplicability score 0. \(\gamma \) times the probability of executing a task represents the probability that the reward will have the minimum inexplicability score associated with that task. Assuming \(\gamma < 1 \), the minimum possible inexplicability score for a set of explicable planning problems is:

\[
f_T(\mathcal{IE}_{min,D}(P_{Exp})) = \mathcal{IE}_{min,D}(P_{Exp}) + \gamma \ast \mathcal{IE}_{min,D}(P_{Exp}) + \ldots + \gamma^{T-1} \ast \mathcal{IE}_{min,D}(P_{Exp})
\]

\[
f_T(\mathcal{IE}_{min,D}(P_{Exp})) = \frac{1 - \gamma^T}{1 - \gamma} \ast \mathcal{IE}_{min,D}(P_{Exp})
\]

Thus the optimal solution to \(\mathcal{DP}_{Exp,D,T} \) is given by:

\[
\min \left(f_T(\mathcal{IE}_{min,D}(P_{Exp})), C(\xi^*) \right), \quad \mathbb{E}[c_R(f_{Exp}(P_{Exp}^*) | P_{Exp}^* \sim D)]
\]
That is, the optimal solution is a valid configuration that minimizes the minimum possible inexplicability over the set of explicable planning problems given the tolerance of a human observer to inexplicable behavior, one-time cost of the design modifications and the expectation over the cheapest possible action. For simplicity, design strategies, significant scale up can be attained. Each modification \[13\]. The performance of the search depends configuration through the application of the given set of ment configurations that are achievable from the the initial modifications. We calculate the term corresponding to the robot’s cost.\[DP\]
c\[P\] is in \[P\]. Also, we assume that the actions in both model, so there are two versions of each action. The action transformation ensures that an action is executable by the model, and that it produces a plan that solves \[P\]. The above proposition states that all plans in \(\Pi^*_IEG_i\) have equal costs in \(P_H(i)\) due to the assumption of unit costs. Therefore, while calculating the value for the objective function of \(DP_{Exp,D,T}\), we can choose an arbitrary plan from \(\prod_{\Pi^*_IEG_i,P_H(i),\delta_{P_H(i)}}\) to calculate the term corresponding to the robot’s cost.

A. Search for Optimal Design

To find the optimal solution for \(DP_{Exp,D,T}\), we will perform a breadth-first search over the space of environment configurations that are achievable from the the initial configuration through the application of the given set of modifications \[13\]. The performance of the search depends on the number of designs available. By choosing appropriate design strategies, significant scale up can be attained. Each search node is a valid environment configuration and the possible actions are the applicable designs. For simplicity, we convert the multi-objective optimization in equation \[2\] into a single objective that is a linear combination. In the new objective each term is associated with a coefficient, say, \(\alpha\), \(\beta\) and \(\kappa\), respectively. The value of each node is decided by the aforementioned objective function. For each node, it is straightforward to calculate the design modification cost. However, in order to calculate the minimum inexplicability score and the robot’s plan cost, we have to generate a plan that minimizes the inexplicability score for each explicable planning problem in that environment configuration. To achieve this, we compile the problem of generating the expli-
cable plan to a classical planning problem. We will discuss this compilation in the following subsection. Essentially, our search has two loops: the outer loop which explores all valid environment configurations, and the inner loop which performs search in a valid environment configuration to find a plan that minimizes the inexplicability score. At the end of the search, the node with best value is chosen, and the corresponding set of design modifications, \(\xi^*\), is output.

B. Compilation for Most Explicable Plan

We show that generating the most explicable plan for a \(P_{Exp} = \langle P_R, P_H, \delta_{P_H}\rangle\) is the same as generating an optimal plan, \(\pi_{mod}\), for a transformed planning problem \(P_{mod}\). To this end, we leverage the compilation used by \[11\] and present a simplified version.

Definition 4: Given an explicable planning problem, \(P_{Exp} = \langle P_R, P_H, \delta_{P_H}\rangle\), the transformed planning problem is \(P_{mod} = \langle F_{mod}, A_{mod}, I_{mod}, G_{mod}, c_{mod}\rangle\), where,

- \(F_{mod} = F_R \cup F_H\)
- For each \(a_{mod} \in A_{mod}\), \(a_{mod} = <pre(a_{mod}), add(a_{mod}), del(a_{mod})>_a\), where,
 \(pre(a_{mod}) = \{f_R | f \in pre(a_R)\} \cup \{f_H | f \in pre(a_H)\}\),
 \(add(a_{mod}) = \{f_R | f \in add(a_R)\} \cup \{f_H | f \in add(a_H)\}\),
 \(del(a_{mod}) = \{f_R | f \in del(a_R)\} \cup \{f_H | f \in del(a_H)\}\),
- \(I_{mod} = \{f_R | f \in I_R\} \cup \{f_H | f \in I_H\}\), and
- \(G_{mod} = \{f_R | f \in G_R\} \cup \{f_H | f \in G_H\}\).
- For each \(a_{mod} \in A_{mod}\), \(c_{mod}(a_{mod}) = c_H(a_H) = 1\)

We label the fluents with different subscripts to denote that we maintain two separate copies of fluents in the transformed planning problem: i.e., for every \(f \in F\), there is robot’s fluent, \(f_R \in F_R\) and the human’s belief about it, \(f_H \in F_H\). We assume there is a one-to-one mapping between the actions in the robot’s model and those in the human’s model, so there are two versions of each action. The action transformation ensures that an action is executable by the robot if and only if its preconditions are satisfied in both the robot’s model and the human’s model, and that it produces effects consistent with both models.

Proposition 2: The \(P_{mod}\) produces a plan that solves \(P_{Exp}\), so that following properties hold:

- **Soundness** A plan \(\pi_{mod}\) that solves \(P_{mod}\) is a valid solution for \(P_{Exp}\).
- **Completeness** For every valid plan that solves \(P_{Exp}\), there is a corresponding valid plan that solves \(P_{mod}\).
- **Optimality** A plan \(\pi_{mod}\) that solves \(P_{mod}\) optimally is the most explicable plan for \(P_{Exp}\).

Proof: The transformed planning problem has the union of the constraints imposed by both \(P_R\) and \(P_H\). Given a plan \(\pi\), such that, \(\Gamma_{P_{mod}}(\exists_{mod}, \pi) = G_{mod}\), by the definition
of the compilation, we also have $\Gamma_{\mathcal{P}_H}(\mathcal{I}_R, \pi) \models \mathcal{G}_R$ and $\Gamma_{\mathcal{P}_H}(\mathcal{I}_R, \pi) \models \mathcal{G}_H$. Hence, a plan π_{mod} that solves \mathcal{P}_{mod} is a valid plan for \mathcal{P}_{Exp}.

From the definition of the inexplicability score for a plan π_R which is a valid solution to \mathcal{P}_{Exp}, we know that $\Gamma_{\mathcal{P}_H}(\mathcal{I}_R, \pi_R) \models \mathcal{G}_H$. Such a plan π_R solves both \mathcal{P}_R and \mathcal{P}_H. Hence, π_R will satisfy, $\Gamma_{\mathcal{P}_{\text{mod}}}(\mathcal{I}_{\mathcal{P}_{\text{mod}}}, \pi_R) \models \mathcal{G}_{\text{mod}}$. Therefore, for every valid plan that solves \mathcal{P}_{Exp}, there exists a corresponding plan that solves \mathcal{P}_{mod}.

Given \mathcal{P}_{Exp}, let π' be the most explicable robot plan (or equivalently plan with lowest inexplicable score) such that, it is not an optimal plan for \mathcal{P}_{mod}. By the definition of explicability, this means π' must be valid plan for both \mathcal{P}_R and \mathcal{P}_H. Further, by the completeness property, we know that π' must be a valid plan for \mathcal{P}_{mod}. This means for a plan π^*_{mod} optimal in \mathcal{P}_{mod}, we have $c_H(\pi^*_{\text{mod}}) < c_H(\pi')$ (since \mathcal{P}_{mod} uses c_H). Hence, $|c_H(\pi^*_{\text{mod}}) - c_H(\pi)| < |c_H(\pi') - c_H(\pi)|$, where c_H is the cost of an optimal plan in \mathcal{P}_H (and we know $c_H \leq c_H(\pi^*_{\text{mod}})$ and $c_H \leq c_H(\pi')$), which means $\mathcal{IE}(\pi^*_{\text{mod}}, \mathcal{P}_H, \delta_{\mathcal{P}_H}) < \mathcal{IE}(\pi', \mathcal{P}_H, \delta_{\mathcal{P}_H})$. This contradicts the original assertion, hence proving that there is a one to one correspondence between optimal plans for \mathcal{P}_{mod} and $\Pi_{\mathcal{IE}(\mathcal{P}_H, \delta_{\mathcal{P}_H})}$.

V. Evaluation

We will now demonstrate for our running example how the explicability value and design cost of the optimal solution evolve when optimizing for a single explicable problem, multiple explicable problems and multiple problems with a design horizon. We will also evaluate the performance of our approach on three IPC (International Planning Competition) domains and then discuss how the interplay between explicability and plan cost occurs.

A. Demonstration

We use the restaurant domain from our running example Figure 1a to demonstrate how the design problem evolves. We constructed a domain where the robot had 3 actions: pick-up and put-down to serve the items on the tray and move to navigate between the kitchen and the booths. In the grid, some cells are blocked due to the tables and the robot cannot pass through these: cell(0, 1) and cell(1, 1). Therefore, the following passages are blocked: cell(0, 0)-cell(0, 1), cell(0, 1)-cell(0, 2), cell(0, 1)-cell(1, 1), cell(1, 0)-cell(1, 1), cell(1, 1)-cell(1, 2), cell(1, 1)-cell(2, 1). We considered 6 designs, each consisting of putting a barrier at one of the 6 passages to indicate the inaccessibility to the human (i.e., the design space has 2^6 possibilities).

For the following parameters: $\alpha = 1$, $\beta = 30$, $\kappa = 0.25$ and $\gamma = 0.9$, we ran our algorithm for three settings:

(a) single explicable problem for $T = 1$,
(b) multiple explicable problems for $T = 1$, and
(c) multiple explicable problems for $T = 10$.

As mentioned before, (a) involved serving a new customer at a booth (say G_1) only once, (b) involved serving a new customer only once at either of the booths with equal probability and (c) involved serving each customer at most 10 times at either of the booths with equal probability. We found that for setting (a) and (b) there was no design chosen. This is because these settings are over a single time step and the cost of installing design modifications in the environment is higher than the amount of inexplicability caused by the robot ($\beta > \alpha$). On the other hand, for setting (c), the algorithm generated the design in Figure 1b which makes the robot’s roundabout path completely explicable to the customers.

B. Domain setup

We used three IPC domains for evaluation: Blocksworld, IPC-Grid and Driverlog. For each domain, we created two versions: the robot’s domain and the human’s domain. We generated 20 design problems for each domain, and each had 3 planning problems with uniform probability distribution. We used Fast Downward with A* search and the lmcut heuristic [14] to solve the compiled planning problems. The variable parameters in our implementation are α, β, κ (coefficients associated with the terms in the objective function), γ (discount factor) and T (time horizon). For all the domains we used actions and design modifications of unit cost.

For Blocksworld, the robot’s domain was the original IPC domain, and the human’s domain assumed that the robot can pick up multiple blocks simultaneously. The set of allowed designs ensured that stacking for every block was preceded by picking the block up from the table. This would reduce the inexplicability for the human as the only block that would be stacked is the one that was picked up from the table before stacking. In practice, this may involve notifying the human about the new rule. For IPC-Grid, the robot’s domain was the original IPC domain and the human’s domain assumed that diagonal movements were possible in the grid. We allowed design modifications that pruned diagonal actions. In actuality, this may involve notifying the human that diagonal actions are not possible at certain locations. For Driverlog, the robot’s domain was the original IPC domain and the human’s domain assumed that packages can be loaded and unloaded from anywhere regardless of the location of the driver. We allowed modifications that required load and unload actions to occur only after a disembark action. This may again involve notifying the human about the new rules concerning load/unload actions.

C. Performance on IPC domains

For this objective, we set the parameters α, β and κ to 1.0, 0.25, 0.25 respectively for all domains i.e., we gave more weight to minimizing inexplicability. We set T to 1 and 10 and γ to 0.9. We allowed the meta-search to run for at most 30 minutes per problem. If it ended within 30 minutes we output the optimal design modification, else we output the design modification which gave the best optimization value (or total cost) among the explored nodes. To show the impact of design modifications, we computed the inexplicability score, plan cost, total cost for most explicable plan in the initial model (i.e., without any design modification). To compare the impact of longitudinality, we compute these parameters for single step horizon and multi-step horizon.
TABLE I: We report the impact of design modifications on inexplicability score, plan cost and total cost. We also report the average and standard deviation values for the three optimization terms in the objective function along with the run time.

Domain	Horizon	Metrics	Design Size	Inexplicability	Plan Cost	Total Cost	Time Taken (secs)					
				w/o Design	w Design	% Difference	w/o Design	w Design	% Difference	w/o Design	w Design	% Difference
Blocksworld	1	Avg 1.25	14.11	2.18	-84.54	8.69	9.52	9.58	16.28	4.87	-70.07	1800
		SD 0.79	16.86	0.92	-	1.39	1.85	-	17.11	1.38	-	-
	10	Avg 1.25	91.90	14.20	-84.54	8.69	9.52	9.57	113.63	38.33	-66.27	-
		SD 0.78	109.80	5.98	-	1.39	1.85	-	112.36	9.59	-	-
IPC-Grid	1	Avg 0.75	3571.84	1455.39	-59.25	24.84	24.84	0	23326.29	1441.79	-93.73	1800
		SD 0.44	129043.62	4428.98	-	3.01	3.01	-	78444.61	4429.19	-	-
	10	Avg 0.75	23264.19	9479.32	-59.25	24.84	24.84	0	23326.29	9541.61	-59.09	-
		SD 0.44	78444.27	28846.93	-	3.01	3.01	-	78444.61	28848.86	-	-
Driverlog	1	Avg 0.8	2.26	1.6	-29.14	8.46	9.17	8.46	4.37	4.09	-6.39	219.42
		SD 0.77	0.54	0.57	-	0.59	0.89	-	0.61	0.54	-	-
	10	Avg 1.2	14.70	8.93	-39.28	8.45	9.71	14.76	35.85	33.50	-6.57	-
		SD 0.69	3.54	2.78	-	0.59	0.97	-	4.30	3.94	-	-

In Table I we report the results for the 3 domains. By comparing the inexplicability score with and without design, we see that the inexplicability always decreases as expected. For Blocksworld and IPC-Grid, the percentage decrease is the same for one-step and multi-step horizon, this is because same set of designs were the best found solutions for both settings (under the time-limit) and the values got multiplied with the value of T. On the other hand, for Driverlog, there were different designs selected, as is evident from the values. By comparing the plan cost with and without design, we can see that for Blocksworld and Driverlog, there is substantial increase in the plan cost. This is because for these two domains, the designs ensured an action could be performed only after execution of another action. In this case, the robot bears additional cost for improving the explicability. On the other hand for IPC-Grid, the action pruning strategy removed actions from the human’s mental model and therefore there is no increase in the plan cost. Similarly, by comparing the total cost with and without design, we can see that there is a significant decrease in the total cost after applying design modifications. This is because the optimization chooses design modifications that minimize the overall cost associated with the initial model.

D. Interplay between inexplicability score and plan cost

To study the interplay between inexplicability score and plan cost, we experimented with a $DP_{Exp,D,T}$ problem in the Driverlog domain. We used discount factor $\gamma = 0.9$ and design cost coefficient $\beta = 0.25$. We tested the impact of different inexplicability score coefficient values (α: 0.5, 0.66, 0.75, 1) on number of design choices in an optimal solution given different time horizons T: 1, 10, 20, 30, 40, 50. At most two design choices were allowed in the solution.

In Figure 3 we report the impact on the size of design modifications. Recall that, the discount factor γ denotes the probability with which the human will not ignore the inexplicability of the behavior. Therefore, when γ is set to 0.9, the optimization prioritizes reduction in inexplicability score. Given that design cost coefficient $\beta = 0.25$ is low, even with single time step horizon $T = 1$, designs are found that improve the explicability of the robot’s behavior as shown in Figure 3. However, the designs in Driverlog domain lead to increase in the cost of the robot plan (due to additional disembark actions). Given a long time horizon ($T = 50$), the cost overhead borne by the robot for being explicable becomes greater than the impact of inexplicability score on the human. Hence no designs are found at $T = 50$ for any of the α values. Although if explicability of robot’s behavior is desired for longer horizons, this can be achieved by setting α to a high value. This shows the inherent interplay between the inexplicability of the behavior and the additional plan cost borne by the robot to reduce inexplicability.

VI. Related Work

This work explores the connection between two parallel threads of current research: one on environment design and the other on explicable behavior. The problem of environment design is connected to that of mechanism design [15],
which has been thoroughly investigated by the game theory community. Environment design [7] involves modifying the environment so as to maximize or minimize some objective for the robot [16]. The problem of design has been leveraged to simplify related problems like goal recognition [8], plan recognition [9] etc. These works have studied the possibility of modifying the environment so as to make the robot’s behavior easily recognizable. These works have also looked at various types of designs, including, action pruning [8], action conditioning [13], sensor refinement [13], sensor placement [17], etc. The problem of environment design has also been studied for stochastic actions [18], [19].

The notion of explicability was introduced in [3], which discussed generating explicable behavior by learning the sequence of actions that are explicable to the humans. [4] explored the notion of explicability given knowledge of the human’s mental model, and used plan distances as a stand in for the human’s distance function. Generation of explicable behavior has also been studied in combination with explanations [20]. Further, [11] explores the use of explanatory actions to convert the explanation generation problem to a sequential decision making problem. A recent work [10], has also explored the connections between explicability and other types of interpretable behavior like legibility [21], [22], predictability [21], [23].

VII. DISCUSSION AND CONCLUSION

In this paper, we bridge the gap between past works on environment design and those on generation of explicable behavior. We present a novel framework of environment design for explicability. The notion of environment design makes sense when there is repeated execution of tasks or when there are multiple tasks in the environment. This allows us to explore a novel trade-off that arises between one-time cost of design and the repeated cost overhead incurred by the robot for generating explicable behavior. In prior works on explicable plan generation, the underlying assumption has been that there is a one-time interaction between a human and a robot, and that the robot’s inexplicable behavior may lead to increased cognitive load on the human or loss of trust in the robot. In this work, we relaxed this assumption and explored the notion of inexplicability given repeated interactions with a single human over a distribution of tasks.

In this work, we assumed that the robot is capable of performing explicable behavior. However, we can also consider the problem of environment design for explicability when the robot is rational but not cooperative (i.e. it will only generate cost-optimal plans in the given environment and not bear the overhead cost of being explicable). In this case, the emphasis is on choosing a set of design modifications which reduce the worst case inexplicability score associated with cost-optimal plans for a task. Similarly, we can also consider the problem of environment design for explicability when the robot is a rational robot but can communicate (i.e. it will only generate cost-optimal plans in the given environment but it will provide an explanation to make its behavior explicable). In this case, we again see similar trade-offs between cost of one-time environment design versus the cost of repeated explanations borne by the robot over a time horizon. This would require modeling the influence of longitudinal interactions on explanations which stems from the fact that the human will update their mental model when they receive an explanation.

REFERENCES

[1] X. Fan, S. Oh, M. McNeese, J. Yen, H. Cuevas, L. Strater, and M. R. Endsley, “The influence of agent reliability on trust in human-agent collaboration,” in ECCE, 2008.
[2] T. Chakraborti, T. Batzinger, K. Bekris, K. Bohringer, J. Bordogna, G. Bradski, O. Brock, J. Burnstein, T. Fuhlbrigge, R. Eastman, et al., “A Roadmap for US Robotics: From Internet to Robotics,” Technical Report, 2009.
[3] Y. Zhang, S. Sreedharan, A. Kulkarni, T. Chakraborti, H. H. Zhuo, and S. Kambhampati, “Plan Explicability and Predictability for Robot Task Planning,” in ICRA, 2017.
[4] A. Kulkarni, T. Chakraborti, Y. Zha, S. G. Vadlamudi, Y. Zhang, and S. Kambhampati, “Explicable Robot Planning as Minimizing Distance from Expected Behavior,” in AAMAS, 2019, extended Abstract.
[5] T. Chakraborti, S. Sreedharan, Y. Zhang, and S. Kambhampati, “Plan Explanations as Model Reconciliation: Moving Beyond Explanation as Soliloquy,” in IJCAI, 2017.
[6] S. Sreedharan, S. Srivastava, and S. Kambhampati, “Hierarchical expertise-level modeling for user specific robot-behavior explanations,” arXiv preprint arXiv:1802.06895, 2018.
[7] H. Zhang, Y. Chen, and D. C. Parkes, “A general approach to environment design with one agent,” in IJCAI, 2009.
[8] S. Keren, A. Gal, and E. Karpas, “Goal Recognition Design,” in ICAPS, 2014.
[9] R. Mirsky, K. Gal, R. Stern, and M. Kulech, “Goal and plan recognition for plan libraries,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, no. 2, p. 14, 2019.
[10] T. Chakraborti, A. Kulkarni, S. Sreedharan, D. Smith, and S. Kambhampati, “Explicability? Legibility? Predictability? Transparency? Privacy? Security?: The Emerging Landscape of Interpretable Agent Behavior,” in ICAPS, 2019.
[11] S. Sreedharan, T. Chakraborti, C. Muise, and S. Kambhampati, “Planning with explanatory actions: A joint approach to plan explicability and explanations in human-aware planning,” in AAAI, 2020.
[12] H. Geffner and B. Bonet, “A Concise Introduction to Models and Methods for Automated Planning,” Synthesis Lectures on Artificial Intelligence and Machine Learning, 2013.
[13] S. Keren, A. Gal, and E. Karpas, “Strong stubborn sets for efficient goal recognition design,” in Twenty-Eighth International Conference on Automated Planning and Scheduling, 2018.
[14] M. Helmert, “The fast downward planning system,” Journal of Artificial Intelligence Research, vol. 26, pp. 191–246, 2006.
[15] Y. Narahari, Game theory and mechanism design. World Scientific, 2014, vol. 4.
[16] S. Keren, L. Pineda, A. Gal, E. Karpas, and S. Zilberstein, “Equi-reward utility maximizing design in stochastic environments,” in IJCAI, 2017.
[17] S. Keren, A. Gal, and E. Karpas, “Privacy Preserving Plans in Partially Observable Environments,” in IJCAI, 2016.
[18] C. Wayllace, P. Hou, W. Yeoh, and T. C. Son, “Goal recognition design with stochastic agent action outcomes,” in IJCAI, 2016.
[19] C. Wayllace, P. Hou, and W. Yeoh, “New metrics and algorithms for stochastic goal recognition design problems,” in IJCAI, 2017.
[20] T. Chakraborti, S. Sreedharan, and S. Kambhampati, “Balancing Explicability and Explanation in Human-Aware Planning,” in IJCAI, 2019.
[21] A. D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and Predictability of Robot Motion,” in HRI, 2013.
[22] A. Kulkarni, S. Srivastava, and S. Kambhampati, “A Unified Framework for Planning in Adversarial and Cooperative Environments,” in AAAI, 2019.
[23] J. F. Fisac, C. Liu, J. B. Hamrick, S. S. Sastry, J. K. Hedrick, T. L. Griffiths, and A. D. Dragan, “Generating Plans that Predict Themselves,” in WAFR, 2018.