May 11, 2014

HAMILTON-JACOBI THEORY IN k-COSYMPELECTIC FIELD THEORIES

M. DE LEÓN AND S. VILARIÑO

Abstract. In this paper we extend the geometric formalism of the Hamilton-Jacobi theory for time dependent Mechanics to the case of classical field theories in the k-cosymplectic framework.

Contents

1. Introduction
2. The k-cosymplectic formalism
 2.1. Geometric preliminaries: k-vector fields and integral sections.
 2.2. k-cosymplectic manifolds
 2.3. k-cosymplectic Hamiltonian field theory.
3. The Hamilton-Jacobi equation
4. An example
Acknowledgments
References

1. Introduction

The usefulness of Hamilton-Jacobi theory in Classical Mechanics is well-known, giving an alternative procedure to study and, in some cases, to solve the evolution equations [1]. The use of symplectic geometry in the study of Classical Mechanics has permitted to connect the Hamilton-Jacobi theory with the theory of Lagrangian submanifolds and generating functions [3].

At the beginning of the 1900s an analog of Hamilton-Jacobi equation for field theory has been developed [29], but it has not been proved to be as powerful as the theory which is available for mechanics [4, 5, 25, 26, 28, 30].

There are several recent attempts to extend the Hamilton-Jacobi theory for classical field theories in a geometrical setting. For instance in the framework of the so-called multisymplectic formalism [14, 25, 26] (see also [6, 11] for a general description of the multisymplectic setting) or in the k-symplectic formalism in [10] (see [23, 27] for a discussion of the relationship between both formulations, see also [10]). Our method is based in that developed by J.F. Cariñena et al. for Classical Mechanics [7, 8] (see also [13, 15]).

In the context of Classical Field Theories, the Hamiltonian is a function $H = H(x^\alpha, q^i, p^\alpha)$, where (x^α) are coordinates in the space-time, (q^i) represent the field...
coordinates and \((p^a_i)\) are the conjugate momenta. In this context, the Hamilton-Jacobi equation is [29]

\[
\frac{\partial W^\alpha}{\partial x^\alpha} + H\left(x^i, q^i, \frac{\partial W^\alpha}{\partial q^i}\right) = 0
\]

(1.1)

where \(W^1, \ldots, W^k: \mathbb{R}^k \times Q \rightarrow \mathbb{R}\).

The aim of this paper is to extend the Hamilton-Jacobi theory to field theories just in the context of \(k\)-cosymplectic manifolds [19, 20, 21]. The “dynamics” for a given Hamiltonian function \(H\) is interpreted as a family of vector fields (a \(k\)-vector field) on the phase space \(\mathbb{R}^k \times (T^1_k)^* Q\) (or in general on a \(k\)-cosymplectic manifold \((M, \eta^\alpha, \omega^\alpha, V)\)).

The paper is structured as follows. In Sec. 2, we recall the notion of \(k\)-vector field and their integral sections and give a briefly description of the \(k\)-cosymplectic formalism. In Sec. 3 we discuss the Hamilton-Jacobi equation in the \(k\)-cosymplectic context. Finally, an example is discussed in Sec. 4, with the aim to show how the method works.

We shall also adopt the convention that a repeated index implies summation over the range of the index, but, in some cases, to avoid confusions we will explicitly include the summation symbol.

2. The \(k\)-cosymplectic formalism

The \(k\)-cosymplectic formalisms [19, 21] is one of the simplest geometric frameworks for describing first order classical field theories (see [2] for the \(k\)-symplectic case). It is the generalization to field theories of the standard cosymplectic formalism for nonautonomous mechanics and it describes field theories involving the space-time coordinates on the Lagrangian and on the Hamiltonian cases. The foundations of the \(k\)-cosymplectic formalism are the \(k\)-cosymplectic manifolds. In this section we briefly recall this formalism.

2.1. Geometric preliminaries: \(k\)-vector fields and integral sections.

In this section we briefly recall some well-known facts about tangent bundles of \(k\)-velocities (we refer the reader to [17, 18, 22, 23, 24, 27] for more details).

Let \(\tau_M: TM \rightarrow M\) be the tangent bundle of \(M\). Let us denote by \(T^1_k M\) the Whitney sum \(TM \oplus k \cdot TM\) of \(k\) copies of \(TM\), with projection \(\tau: T^1_k M \rightarrow M\), \(\tau(v_1, \ldots, v_k) = p\), where \(v_\alpha \in T_p M\), \(1 \leq \alpha \leq k\). \(T^1_k M\) can be identified with the manifold \(J^1_0(\mathbb{R}^k, M)\) of the \(k\)-velocities of \(M\), that is, 1-jets of maps \(\eta: \mathbb{R}^k \rightarrow M\) with source at 0 \(\in \mathbb{R}^k\), say

\[
\begin{align*}
J^1_0(\mathbb{R}^k, M) & \equiv TM \oplus k \cdot TM \\
J^1_0 \eta & \equiv (v_1, \ldots, v_k)
\end{align*}
\]

where \(x = \eta(0)\), and \(v_\alpha = T\eta(0)(\frac{\partial}{\partial x^\alpha})\). Here \((x^1, \ldots, x^k)\) denote the standard coordinates on \(\mathbb{R}^k\). \(T^1_k M\) is called the tangent bundle of \(k\)-velocities of \(M\) or simply \(k\)-tangent bundle for short, see [23].

Denote by \((x^i, v^i)\) the fibred coordinates in \(TM\) from local coordinates \((x^i)\) on \(M\). Then we have fibred coordinates \((x^i, v^i_\alpha), 1 \leq i \leq m, 1 \leq \alpha \leq k\), on \(T^1_k M\), where \(m = \dim M\).

Definition 2.1. A section \(X: M \rightarrow T^1_k M\) of the projection \(\tau\) will be called a \(k\)-vector field on \(M\).
Since $T^1_k M$ is the Whitney sum $TM \oplus \ldots \oplus TM$ of k copies of TM, we deduce given a k-vector field X is equivalent to giving a family of k vector fields X_1, \ldots, X_k on M by projecting X onto each factor. For this reason we will denote a k-vector field by (X_1, \ldots, X_k).

Definition 2.2. An integral section of the k-vector field $X = (X_1, \ldots, X_k)$, passing through a point $p \in M$, is a map $\psi: U_0 \subset \mathbb{R}^k \rightarrow M$, defined on some neighborhood $U_0 \in \mathbb{R}^k$, such that

$$\psi(0) = p, \; T\psi \left(\frac{\partial}{\partial x^\alpha} \bigg|_x \right) = X_\alpha(\psi(x)), \quad \text{for every} \; x \in U_0, \; 1 \leq \alpha \leq k$$

or, equivalently, ψ satisfies that $X \circ \psi = \psi^{(1)}$, being $\psi^{(1)}$ is the first prolongation of ψ to $T^1_k M$ defined by

$$\psi^{(1)}: \; U_0 \subset \mathbb{R}^k \rightarrow T^1_k M$$

$$x \rightarrow \psi^{(1)}(x) = j^1_0 \psi_x,$$

where $\psi_x(s) = \psi(x + s)$.

A k-vector field $X = (X_1, \ldots, X_k)$ on M is said to be integrable if there is an integral section passing through every point of M.

In local coordinates, we have

$$\psi^{(1)}(x^1, \ldots, x^k) = \left(\psi^i(x^1, \ldots, x^k), \frac{\partial \psi^j}{\partial x^\alpha}(x^1, \ldots, x^k) \right),$$

and then ψ is an integral section of (X_1, \ldots, X_k) if and only if the following equations hold:

$$\frac{\partial \psi^j}{\partial x^\alpha} = X^\alpha_\alpha \circ \psi \quad 1 \leq \alpha \leq k, \; 1 \leq i \leq m,$$

being $X_\alpha = X^\alpha_\alpha \frac{\partial}{\partial x^\alpha}$.

Notice that, in case $k = 1$, Definition 2.2 coincides with the definition of integral curve of a vector field.

2.2. k-cosymplectic manifolds.

Let Q be a differentiable manifold, $\dim Q = n$, and $\pi : T^* Q \rightarrow Q$ its cotangent bundle. Denote by $(T^1_k)^* Q = T^* Q \oplus \ldots \oplus T^* Q$, the Whitney sum of k copies of $T^* Q$. The manifold $(T^1_k)^* Q$ can be identified with the manifold $J^1(Q, \mathbb{R}^k)$ of 1-jets of mappings from Q to \mathbb{R}^k with target at $0 \in \mathbb{R}^k$, the diffeomorphism is given by

$$J^1(Q, \mathbb{R}^k)_0 \equiv (T^* Q \oplus \ldots \oplus T^* Q)$$

$$\equiv (d\sigma^1(q), \ldots, d\sigma^k(q)),$$

where $\sigma^\alpha = \pi^\alpha \circ \sigma : Q \rightarrow \mathbb{R}$ is the α^{th} component of σ, and $\pi^\alpha : \mathbb{R}^k \rightarrow \mathbb{R}$ is the canonical projection onto the α^{th} component, for $\alpha = 1, \ldots, k$. $(T^1_k)^* Q$ is called the cotangent bundle of k-covelocities of the manifold Q.

The manifold $J^1 \pi_Q$ of 1-jets of sections of the trivial bundle $\pi_Q : \mathbb{R}^k \times Q \rightarrow Q$ is diffeomorphic to $\mathbb{R}^k \times (T^1_k)^* Q$, via the diffeomorphism given by

$$J^1 \pi_Q \rightarrow \mathbb{R}^k \times (T^1_k)^* Q$$

$$j^1_\phi \phi = j^1_\phi (\phi_{2k}, Id_Q) \rightarrow (\phi_{2k}(q), \nu^1_\phi, \ldots, \nu^k_\phi),$$

where $\phi_{2k} : Q \stackrel{\phi}{\rightarrow} \mathbb{R}^k \times Q \stackrel{\pi_Q}{\rightarrow} \mathbb{R}^k$, and $\nu^\alpha_\phi = d\phi^\alpha_{2k}(q), \; 1 \leq \alpha \leq k$.
Throughout the paper, we use the following notation for the canonical projections

\[
\mathbb{R}^k \times (T_k^1)^*Q \xrightarrow{\pi_Q^{-1}} \mathbb{R}^k \times Q
\]

where

\[
\pi_Q(x, q) = q, \quad (\pi_Q)_{1,0}(x, \nu_q^1, \ldots, \nu_q^k) = (x, q), \quad (\pi_Q)_1(x, \nu_q^1, \ldots, \nu_q^k) = q,
\]

with \(x \in \mathbb{R}^k, q \in Q \) and \((\nu_q^1, \ldots, \nu_q^k) \in (T^1_q)^*Q \).

If \((q^i)\) are local coordinates on \(U \subseteq Q \), then the induced local coordinates \((q^i, p_i)\), \(1 \leq i \leq n\), on \((\pi_Q)^{-1}(U) = T^*U \subset T^*Q\), are given by

\[
q^i(\nu_q) = q^i(q), \quad p_i(\nu_q) = \nu_q \left(\frac{\partial}{\partial q^i} \bigg|_q \right),
\]

with \(\nu_q \in T^*Q \), and the induced local coordinates \((x^\alpha, q^i, p_i^\alpha)\) on \([(\pi_Q)^{-1}(U) = \mathbb{R}^k \times (T^1_k)^*U\) are given by

\[
x^\alpha(x, \nu_q^1, \ldots, \nu_q^k) = x^\alpha, \quad q^i(x, \nu_q^1, \ldots, \nu_q^k) = q^i(q), \quad p_i^\alpha(x, \nu_q^1, \ldots, \nu_q^k) = \nu_q \left(\frac{\partial}{\partial q^i} \bigg|_q \right),
\]

for \(1 \leq i \leq n\) and \(1 \leq \alpha \leq k\).

On \(\mathbb{R}^k \times (T^1_k)^*Q \), we consider the differential forms

\[
\eta^\alpha = dx^\alpha = (\pi_Q^1)^* dx, \quad \theta^\alpha = (\pi_Q^2)^* \theta, \quad \omega^\alpha = (\pi_Q^2)^* \omega,
\]

where \(\pi_Q^1 : \mathbb{R}^k \times (T^1_k)^*Q \to \mathbb{R} \) and \(\pi_Q^2 : \mathbb{R}^k \times (T^1_k)^*Q \to T^*Q \) are the projections defined by

\[
\pi_Q^1(x, \nu_q^1, \ldots, \nu_q^k) = x^\alpha, \quad \pi_Q^2(x, \nu_q^1, \ldots, \nu_q^k) = \nu_q^\alpha,
\]

\(\omega = -q^i \theta = dq^i \wedge dp_i \) is the canonical symplectic form on \(T^*Q \) and \(\theta = p_i dq^i \) is the Liouville 1-form on \(T^*Q \). Obviously \(\omega^\alpha = -d\theta^\alpha \).

In local coordinates we have

\[
\eta^\alpha = dx^\alpha, \quad \theta^\alpha = p_i^\alpha dq^i, \quad \omega^\alpha = dq^i \wedge dp_i^\alpha. \quad (2.3)
\]

Moreover, let

\[
V = \text{ker } ((\pi_Q)_{1,0}) = \left\{ \frac{\partial}{\partial p_{i_{\alpha}}} \right\}_{i=1,...,n} \quad (2.4)
\]

be the vertical distribution of the bundle \((\pi_Q)_{1,0} : \mathbb{R}^k \times (T^1_k)^*Q \to \mathbb{R}^k \times Q \).

A simple inspection of the expressions in local coordinates, (2.3) and (2.4) show that the forms \(\eta^\alpha \) and \(\omega^\alpha \) are closed, and the following relations hold

(i) \(\eta^1 \wedge \cdots \wedge \eta^k \neq 0, \quad (\eta^\alpha)|_V = 0, \quad (\omega^\alpha)|_V \times V = 0 \),

(ii) \((\cap_{\alpha=1}^k \ker \eta^\alpha) \cap (\cap_{\alpha=1}^k \ker \omega^\alpha) = \{0\}, \quad \text{dim}(\cap_{\alpha=1}^k \ker \omega^\alpha) = k \).

Inspired by the above geometrical model we introduce the following (see [21]),

Definition 2.3. Let \(M \) be a differentiable manifold of dimension \(k(n+1) + n \). A \(k \)-cosymplectic structure on \(M \) is a family \((\eta^\alpha, \omega^\alpha, V; 1 \leq \alpha \leq k)\), where each \(\eta^\alpha \) is a closed 1-form, each \(\omega^\alpha \) is a closed 2-form and \(V \) is an integrable \(nk \)-dimensional distribution on \(M \) satisfying (i) and (ii). \(M \) is said to be a \(k \)-cosymplectic manifold.

The following theorem has been proved in [21]:

...
Theorem 2.4 (Darboux theorem). If M is a k-cosymplectic manifold, then around each point of M there exist local coordinates $(x^\alpha, q^i, p_i^\alpha; 1 \leq \alpha \leq k, 1 \leq i \leq n)$ such that

$$
\eta^\alpha = dx^\alpha, \quad \omega^\alpha = dq^i \wedge dp_i^\alpha, \quad V = \left(\frac{\partial}{\partial p_i^1}, \ldots, \frac{\partial}{\partial p_i^k} \right)_{i=1, \ldots, n}.
$$

These coordinates will be called Darboux coordinates. The canonical model for these geometrical structures is $(\mathbb{R}^k \times (T^1_k)^* Q, \eta^\alpha, \omega^\alpha, V)$.

2.3. k-cosymplectic Hamiltonian field theory. In this section we introduce the k-cosymplectic description of the Hamilton-De Donder-Weyl equations

$$
\frac{\partial \psi^i}{\partial x^x} \bigg|_x = \frac{\partial H}{\partial q^i} \bigg|_{\psi(x)}, \quad \sum_{\alpha=1}^k \frac{\partial \psi^\alpha}{\partial x^\alpha} \bigg|_x = -\frac{\partial H}{\partial p_i^\alpha} \bigg|_{\psi(x)}, \quad (2.5)
$$

where locally $\psi(x) = (x, \psi^i(x), p_i^\alpha(x))$. This approach was firstly introduced by M. de León et al. [21]. We will consider the general case on an arbitrary k-cosymplectic manifold M but everything can be particularize for the case of $M = \mathbb{R}^k \times (T^1_k)^* Q$.

Definition 2.5. Let $(M, \eta^\alpha, \omega^\alpha, V)$ be a k-cosymplectic manifold and $H: M \to \mathbb{R}$ be a Hamiltonian function. The family $(M, \eta^\alpha, \omega^\alpha, H)$ is called k-cosymplectic Hamiltonian system.

Theorem 2.6. Let $(M, \eta^\alpha, \omega^\alpha, H)$ a k-cosymplectic Hamiltonian system and $X = (X_1, \ldots, X_k)$ a k-vector field on M solution to the system of equations

$$
\eta^\alpha(X_\beta) = \delta_\beta^\alpha, \quad 1 \leq \alpha, \beta \leq k
$$

$$
\sum_{\alpha=1}^k \iota_{X_\alpha} \omega^\alpha = dH - \sum_{\alpha=1}^k R_\alpha(H) \eta^\alpha, \quad (2.6)
$$

where R_1, \ldots, R_k are the Reeb vector fields associated with the k-cosymplectic structure on M which are characterized by the conditions

$$
\iota_{R_\alpha} \eta^\beta = \delta_\alpha^\beta, \quad \iota_{R_\alpha} \omega^\beta = 0.
$$

If $\psi: \mathbb{R}^k \to M$, $\psi(x) = (x^\alpha, \psi^i(x), p_i^\alpha(x))$ is an integral section of the k-vector field X, then ψ is a solution of the Hamilton-De Donder-Weyl equations [25].

Proof. Let $X = (X_1, \ldots, X_k)$ be a k-vector on M solution to (2.6). In Darboux coordinates each component X_α of the k-vector field $X = (X_1, \ldots, X_k)$ has the following local expression

$$
X_\alpha = (X_\alpha)_\beta \frac{\partial}{\partial x^\beta} + (X_\alpha)^i \frac{\partial}{\partial q^i} + (X_\alpha)_i^\beta \frac{\partial}{\partial p_i^\beta}.
$$

Now, since

$$
dH = \frac{\partial H}{\partial x^\alpha} dx^\alpha + \frac{\partial H}{\partial q^i} dq^i + \frac{\partial H}{\partial p_i^\alpha} dp_i^\alpha,
$$

and

$$
\eta^\alpha = dx^\alpha, \quad \omega^\alpha = dq^i \wedge dp_i^\alpha, \quad R_\alpha = \frac{\partial}{\partial x^\alpha},
$$

with $1 \leq \alpha \leq k$, we deduce that equation (2.6) is locally equivalent to the following local equations

$$
(X_\alpha)_\beta = \delta_\beta^\alpha, \quad \frac{\partial H}{\partial p_i^\alpha} = (X_\alpha)^i, \quad \frac{\partial H}{\partial q^i} = -\sum_{\alpha=1}^k (X_\alpha)_i^\alpha. \quad (2.7)
$$
Let us suppose now that \(X = (X_1, \ldots, X_k) \) is integrable and
\[
\psi: \mathbb{R}^k \rightarrow M
\]
\[x \mapsto (x^\alpha, \psi^i(x), \psi^\alpha_i(x))\]
is an integral section of \(X \) then (see (2.2))
\[
(X_\alpha)_\beta \circ \psi = \delta_\beta^\alpha, \quad \frac{\partial \psi^i}{\partial x^\alpha} = (X_\alpha)^i \circ \psi, \quad \frac{\partial \psi^\beta_i}{\partial x^\alpha} = (X_\alpha)^\beta_i \circ \psi. \tag{2.8}
\]
Therefore, from (2.7) and (2.8) we obtain that \(\psi(x) = (x, \psi^i(x), \psi^\alpha_i(x)) \) is a solution of the following equations
\[
\frac{\partial H}{\partial q^i}|_{\psi(x)} = -\sum_{\alpha=1}^k \frac{\partial \psi^\alpha}{\partial x^i} |_x, \quad \frac{\partial H}{\partial p^\alpha_i}|_{\psi(x)} = \frac{\partial \psi^\alpha_i}{\partial x^\alpha} |_x,
\]
where 1 \(\leq i \leq n \) and 1 \(\leq \alpha \leq k \), that is, \(\psi \) is a solution to the Hamilton-De Donder-Weyl equations (2.5). \(\square \)

Consequently, the equations (2.6) can be considered as a geometric version of the Hamilton-De Donder-Weyl field equations. From now, we will call these equations (2.6) as \(k \)-cosymplectic Hamiltonian equations.

Definition 2.7. A \(k \)-vector field \(X = (X_1, \ldots, X_k) \) is called a \(k \)-cosymplectic Hamiltonian \(k \)-vector field for a \(k \)-cosymplectic Hamiltonian system \((M, \eta^\alpha, \omega^\alpha, H)\) if \(X \) is a solution of (2.6). We denote by \(\mathcal{X}_k^H(M) \) the set of \(k \)-vector fields which are solution of (2.6).

Remark 2.8. We will discuss here about the existence and uniqueness of solutions of equations (2.6).

First of all, we shall prove the existence of geometric solutions.

Let \((M, \eta^\alpha, \omega^\alpha, V)\) be a \(k \)-cosymplectic manifold; then, we can define the vector bundle morphism
\[
\omega^i: T^1_k M \rightarrow T^* M
\]
\[(X_1, \ldots, X_k) \mapsto \sum_{\alpha=1}^k \iota_{X_\alpha} \omega^\alpha + \eta^\alpha(X_\alpha) \eta^\alpha. \tag{2.9} \]
and, denoting by \(\mathcal{M}_k(C^\infty(M)) \) the space of matrices of order \(k \) whose entries are functions on \(M \), we also have the vector bundle morphism
\[
\eta^i: T^1_k M \rightarrow \mathcal{M}_k(C^\infty(M))
\]
\[(X_1, \ldots, X_k) \mapsto \eta^i(X_1, \ldots, X_k) = (\eta^\alpha(X_\beta)). \tag{2.10} \]

From the local conditions (2.7) we can define in a neighborhood of each point \(x \in M \) a \(k \)-vector field that satisfies (2.6). For example we can put
\[
(X_\alpha)_\beta = \delta_\alpha^\beta, \quad (X_1)^i = \frac{\partial H}{\partial q^i}, \quad (X_\alpha)^i = 0 \text{ for } \alpha \neq 1 \neq \beta, \quad (X_\alpha)^i = \frac{\partial H}{\partial p^\alpha_i}.
\]

Now one can construct a global \(k \)-vector field, which is a solution of (2.6), by using a partition of unity in the manifold \(M \) (see [19, 21] for more details).

It should be noticed that, in general, equations (2.6) do not have a unique solution. In fact, the solutions of (2.6) are given by \((X_1, \ldots, X_k) + (\ker \omega^i \cap \ker \eta^i)\) for a particular solution \((X_1, \ldots, X_k)\).
Let us observe that given a k-vector field $Y = (Y_1, \ldots, Y_k)$ the condition $Y \in \ker \omega^\sharp \cap \ker \eta^\sharp$ is locally equivalent to
\begin{equation}
(Y_\beta)_\alpha = 0, \quad Y^i_\beta = 0, \quad \sum_{\alpha=1}^k (Y^i_\alpha)^\circ = 0. \tag{2.11}
\end{equation}

\begin{remark}
In the case $k = 1$ with $M = \mathbb{R} \times T^*Q$ the equations (2.6) reduces to the equations of the non-autonomous Hamiltonian Mechanics.
\end{remark}

3. The Hamilton-Jacobi Equation

There are several attempts to extend the Hamilton-Jacobi theory for classical field theories. In [16] we have described this theory in the framework of the so-called k-symplectic formalism [2, 9, 17, 18]. In this section we consider the k-cosymplectic framework. Another attempts in the framework of the multisymplectic formalism [6, 11] have been discussed in [14, 25, 26].

Along this section we only consider Hamiltonian systems defined on the phase-space $\mathbb{R}^k \times (T^*_k)^*Q$.

In Classical Field Theory the Hamilton-Jacobi equation is [29]
\begin{equation}
\frac{\partial W^\alpha}{\partial x^\alpha} + H\left(x^\beta, q^i, \frac{\partial W^\alpha}{\partial q^i}\right) = 0 \tag{3.1}
\end{equation}
where $W^1, \ldots, W^k : \mathbb{R} \times Q \to \mathbb{R}$.

The classical statement of time-dependent Hamilton-Jacobi equation for analytical mechanics is the following [1]:

Theorem 3.1. Let $H : \mathbb{R} \times T^*Q \to \mathbb{R}$ be a Hamiltonian and T^*Q the symplectic manifold with the canonical symplectic structure $\omega = -d\theta$. Let X_{H_t} be a Hamiltonian vector field on T^*Q associated to the Hamiltonian $H_t : T^*Q \to \mathbb{R}$, $H_t(\nu_q) = H(t, \nu_q)$, and $W : \mathbb{R} \times Q \to \mathbb{R}$ be a smooth function. The following two conditions are equivalent:

(i) for every curve c in Q satisfying
\[c'(t) = (\pi)_*\left(X_{H_t}(dW_t(c(t)))\right) \]
the curve $t \mapsto W_t(c(t))$ is an integral curve of X_{H_t}, where $W_t : Q \to \mathbb{R}$, $W_t(q) = W(t, q)$.

(ii) W satisfies the Hamilton-Jacobi equation
\[H(x, q^i, \frac{\partial W}{\partial q^i}) + \frac{\partial W}{\partial t} = \text{constant on } T^*Q \]
that is,
\[H_t \circ dW_t + \frac{\partial W}{\partial t} = K(t). \]

In this section we introduce a geometric version of the Hamilton-Jacobi theory based in the k-cosymplectic formalism. In the particular case $k = 1$ we recover the above Theorem 3.1 for the time-dependent classical mechanics.

For each $x = (x^1, \ldots, x^k) \in \mathbb{R}^k$ we consider the following mappings
\begin{align*}
 i_x : \quad & Q \to \mathbb{R}^k \times Q & \text{and} & \quad j_x : \quad (T^*_k)^*Q \to \mathbb{R}^k \times (T^*_k)^*Q \\
 q \mapsto (x, q) & & (\nu^1_q, \ldots, \nu^k_q) \mapsto (x, \nu^1_q, \ldots, \nu^k_q)
\end{align*}
Let $\gamma: \mathbb{R}^k \times Q \to \mathbb{R}^k \times (T^*_k)^*Q$ be a section of $(\pi_Q)_{1,0}$. Let us observe that given a section γ is equivalent to giving a mapping $\tilde{\gamma}: \mathbb{R}^k \times Q \to (T^*_k)^*Q$. If fact, given γ we define $\tilde{\gamma} = \pi_2 \circ \gamma$ where π_2 is the canonical projection $\pi_2: \mathbb{R}^k \times (T^*_k)^*Q \to (T^*_k)^*Q$; conversely, given $\tilde{\gamma}$ we define γ as the composition $\gamma(x, q) = (j_x \circ \tilde{\gamma})(x, q)$. Now, since $(T^*_k)^*Q$ is the Whitney sum of k copies of the cotangent bundle, to give γ is equivalent to give a family $(\tilde{\gamma}^1, \ldots, \tilde{\gamma}^k)$ of 1-forms along the map $\pi_Q: \mathbb{R}^k \times Q \to Q$.

If we consider local coordinates $(x^\alpha, q^i, p^\alpha_i)$ we have the following local expressions:

\[
\begin{align*}
\gamma(x^\alpha, q^i) &= (x^\alpha, q^i, \gamma^\beta(x^\alpha, q^i)), \\
\tilde{\gamma}^\alpha(x, q) &= \tilde{\gamma}^\alpha(x, q) dq^i(q).
\end{align*}
\]

Moreover, along this section we suppose that each $\tilde{\gamma}^\alpha$ satisfies that its exterior differential $d\tilde{\gamma}^\alpha$ vanishes over two π_2-vertical vector fields. In local coordinates, using the local expressions (3.2), this condition implies that

\[
\frac{\partial \gamma^\alpha}{\partial q^i} = \frac{\partial \tilde{\gamma}^\alpha}{\partial q^i}.
\]

Now, let $Z = (Z_1, \ldots, Z_k)$ be a k-vector field on $\mathbb{R}^k \times (T^*_k)^*Q$. Using γ we can construct a k-vector field $Z^\gamma = (Z^\gamma_1, \ldots, Z^\gamma_k)$ on $\mathbb{R}^k \times Q$ such that the following diagram is commutative

\[
\begin{array}{ccc}
\mathbb{R}^k \times (T^*_k)^*Q & \xrightarrow{Z} & T^*_k(\mathbb{R}^k \times (T^*_k)^*Q) \\
\downarrow{\gamma} & & \downarrow{(\pi_Q)_{1,0}} \\
\mathbb{R}^k \times Q & \xrightarrow{Z^\gamma} & T^*_k(\mathbb{R}^k \times Q) \\
\end{array}
\]

that is,

\[
Z^\gamma := T^*_k(\pi_Q)_{1,0} \circ Z \circ \gamma.
\]

Let us recall that for an arbitrary differentiable map $f: M \to N$, the induced map $T^*_k f: T^*_k M \to T^*_k N$ of f is defined by

\[
T^*_k f(v_{1x}, \ldots, v_{kx}) = (f_1(x)(v_{1x}), \ldots, f_k(x)(v_{kx})),
\]

where $v_{1x}, \ldots, v_{kx} \in T_x M$, $x \in M$.

Let us observe that if Z is integrable then Z^γ is also integrable.

In local coordinates, if each Z^α is locally given by

\[
Z^\alpha = (Z^\alpha)(x) \frac{\partial}{\partial x^\alpha} + Z^\alpha_i \frac{\partial}{\partial q^i} + (Z^\alpha)_i \frac{\partial}{\partial p^i}
\]

then Z^γ_α has the following local expression:

\[
Z^\gamma_\alpha = ((Z^\alpha) \circ \gamma(\cdot)) \frac{\partial}{\partial x^\alpha} + (Z^\gamma_\alpha(\cdot)) \frac{\partial}{\partial q^i}.
\]

In particular, if we consider the k-vector field $R = (R^1_\gamma, \ldots, R^k_\gamma)$ given by the Reeb vector fields, we obtain, by a similar procedure, a k-vector field $(R^1_\gamma, \ldots, R^k_\gamma)$ on $\mathbb{R}^k \times Q$. In local coordinates, since $R^\alpha_\gamma = \partial / \partial x^\alpha$ we have

\[
R^\gamma_\alpha = \frac{\partial}{\partial x^\alpha}.
\]
Next, we consider a Hamiltonian function $H: \mathbb{R}^k \times (T^*_k)^*Q \rightarrow \mathbb{R}$, and the corresponding Hamiltonian system on $\mathbb{R}^k \times (T^*_k)^*Q$. Notice that if Z satisfies the Hamilton-De Donder-Weyl equations \((2.4)\), then we have

$$(Z_\alpha)_\beta = \delta_{\alpha\beta}.$$

Theorem 3.2 (Hamilton-Jacobi theorem). Let $Z \in X^*_\mathbb{H} (\mathbb{R}^k \times (T^*_k)^*Q)$ be a k-vector field solution to the k-cosymplectic Hamiltonian equation \((2.7)\) and $\gamma: \mathbb{R}^k \times Q \rightarrow \mathbb{R}^k \times (T^*_k)^*Q$ be a section of $(\pi_Q)_0$ with the property described above. If Z is integrable then the following statements are equivalent:

(i) If a section $\psi: U \subset \mathbb{R}^k \rightarrow \mathbb{R}^k \times Q$ of $\pi_\mathbb{H}: \mathbb{R}^k \times Q \rightarrow \mathbb{R}^k$ is an integral section of Z, then $\gamma \circ \psi$ is a solution of the Hamilton-De Donder-Weyl equations \((2.3)\):

(ii) $(\pi_Q)^*[d(H \circ \gamma \circ i_x)] + \sum \alpha \gamma_\alpha^* d\gamma^\alpha = 0$ for any $x \in \mathbb{R}^k$.

Proof. Let us suppose that a section $\psi: U \subset \mathbb{R}^k \rightarrow \mathbb{R}^k \times Q$ is an integral section of Z. In local coordinates that means that if $\psi(x) = (x^\alpha, \psi^\alpha(x))$, then

$$[Z_\alpha)_\beta (\psi(x)) = \delta_{\alpha\beta}, \quad (Z_\alpha)_\beta (\psi(x)) = \frac{\partial \psi^\alpha}{\partial x^\beta}.$$

Now by hypothesis, $\gamma \circ \psi: U \subset \mathbb{R}^k \rightarrow \mathbb{R}^k \times (T^*_k)^*Q$ is a solution of the Hamilton-De Donder-Weyl equation for H. In local coordinates, if $\psi(x) = (x, \psi^i(x))$, then $\gamma \circ \psi(x) = (x, \psi^i(x), \gamma_\alpha^i(\psi(x)))$ and as it is a solution of the Hamilton-De Donder-Weyl equations for H, we have

$$\frac{\partial \psi^i}{\partial x^\alpha} = \frac{\partial H}{\partial p^\alpha} \gamma_\alpha^i(\psi(x)) \quad \text{and} \quad \sum \alpha \gamma_\alpha^* d\gamma^\alpha.$$

Now, if we compute the differential of the function $H \circ \gamma \circ i_x: Q \rightarrow \mathbb{R}$, we obtain that:

$$(\pi_Q)^*[d(H \circ \gamma \circ i_x)] + \sum \alpha \gamma_\alpha^* d\gamma^\alpha = \left(\frac{\partial H}{\partial q^i} \gamma_\alpha^i \circ i_x + \frac{\partial H}{\partial p^i} \gamma_\alpha^i \circ i_x \right) dq^i \quad \text{for} \quad i = 1, \ldots, k.$$

(3.7)

Therefore from \((3.3), 3.6\) and \((3.7)\) and taking into account that one can write $\psi(x) = (i_x \circ \pi_Q \circ \psi)(x)$, where $\pi_Q: \mathbb{R}^k \times Q \rightarrow Q$ is the canonical projection, we obtain

$$\left(\frac{\partial H}{\partial q^i} \gamma_\alpha^i \circ i_x + \frac{\partial H}{\partial p^i} \gamma_\alpha^i \circ i_x \right) dq^i = 0.$$

As we have mentioned above, since Z is integrable, the k-vector field Z' is also integrable, and then for each point $(x, q) \in \mathbb{R}^k \times Q$ we have an integral section...
\[\psi : U \subset \mathbb{R}^k \to \mathbb{R}^k \times Q \] passing through this point. Therefore, for any \(x \in \mathbb{R}^k \), we get
\[(\pi_Q)^* [d(H \circ \gamma \circ i_x)] + \sum_{\alpha} \iota_{R^\alpha_i} d\gamma^\alpha = 0. \]

Conversely, let us suppose that \((\pi_Q)^* [d(H \circ \gamma \circ i_x)] + \sum_{\alpha} \iota_{R^\alpha_i} d\gamma^\alpha = 0 \) and take \(\psi \) an integral section of \(Z^\gamma \). We now will prove that \(\gamma \circ \psi \) is a solution to the Hamilton-De Donder-Weyl field equations for \(H \).

Since \((\pi_Q)^* [d(H \circ \gamma \circ i_x)] + \sum_{\alpha} \iota_{R^\alpha_i} d\gamma^\alpha = 0 \) from (3.7) we obtain
\[\frac{\partial H}{\partial q^i} \circ \gamma \circ i_x + \left(\frac{\partial H}{\partial p^j} \circ \gamma \circ i_x \right) \left(\frac{\partial \gamma^\alpha}{\partial x^\alpha} \circ i_x \right) = 0. \quad (3.8) \]

From (2.7) and (3.5) we know that
\[Z^\gamma = \frac{\partial}{\partial x^\alpha} + \left(\frac{\partial H}{\partial p^j} \circ \gamma \right) \frac{\partial}{\partial q^j}, \quad (3.9) \]
and then since \(\psi(x, q) = (x, \psi^i(x, q)) \) is an integral section of \(Z^\gamma \) we deduce that
\[\frac{\partial \psi^i}{\partial x^\alpha} = \frac{\partial H}{\partial p^j} \circ \gamma \circ \psi. \quad (3.10) \]

On the other hand, from (3.3), (3.8) and (3.10) we get
\[\sum_{\alpha=1}^k \left(\frac{\partial (\gamma^\alpha \circ \psi)}{\partial x^\alpha} \right) \bigg|_{x} = \sum_{\alpha=1}^k \left(\frac{\partial \gamma^\alpha}{\partial x^\alpha} \bigg|_{\psi(x)} + \frac{\partial \gamma^\alpha}{\partial p^j} \bigg|_{\psi(x)} \frac{\partial \psi^j}{\partial x^\alpha} \right) = 0, \]
\[= \sum_{\alpha=1}^k \left(\frac{\partial \gamma^\alpha}{\partial x^\alpha} \bigg|_{\psi(x)} + \frac{\partial H}{\partial q^j} \bigg|_{\psi(x)} \frac{\partial \psi^j}{\partial x^\alpha} \right) = - \frac{\partial H}{\partial q} \bigg|_{\gamma(\psi(x))} \]
and thus we have proved that \(\gamma \circ \psi \) is a solution to the Hamilton-de Donder-Weyl equations.

Theorem 3.3. Let \(Z \in \mathcal{X}_{\mathfrak{h}}(\mathbb{R}^k \times (T^k_i)^* Q) \) be a \(k \)-vector field solution to the \(k \)-cosymplectic Hamiltonian equation (2.2) and \(\gamma : \mathbb{R}^k \times Q \to \mathbb{R}^k \times (T^k_i)^* Q \) be a section of \((\pi_Q)_{1,0} \) satisfying the same conditions of the above theorem. Then, the following statements are equivalent:

1. \(Z|_{\mathfrak{m} \gamma} - T_{1} \gamma(Z^\gamma) \in \ker \omega^i \cap \ker \eta^i \), being \(\omega^i \) and \(\eta^i \) the vector bundle morphism defined in Remark 2.8.
2. \((\pi_Q)^* [d(H \circ \gamma \circ i_x)] + \sum_{\alpha} \iota_{R^\alpha_i} d\gamma^\alpha = 0. \)

Proof. A direct computation shows that \(Z_{\alpha}|_{\mathfrak{m} \gamma} - T_{1} \gamma(Z^\gamma_{\alpha}) \) has the following local expression
\[\left((Z_{\alpha})^\beta \circ \gamma - \frac{\partial \gamma^\beta}{\partial x^\alpha} \right) \frac{\partial}{\partial p^j} \bigg|_{\gamma(\psi(x))}. \]
Thus from (2.11) we know that \(Z|_{\mathfrak{m} \gamma} - T_{1} \gamma(Z^\gamma) \in \ker \omega^i \cap \ker \eta^i \) if and only if
\[\sum_{\alpha=1}^k \left((Z_{\alpha})^\alpha \circ \gamma - \frac{\partial \gamma^\alpha}{\partial x^\alpha} - (Z^\gamma_{\alpha} \circ \gamma) \frac{\partial \gamma^\alpha}{\partial q^j} \right) = 0. \quad (3.11) \]

Now we are ready to prove the result.
Assume that \((i)\) holds, then from (3.3) and (3.11) we obtain
\[
0 = \sum_{\alpha=1}^{k} \left((Z_{\alpha})_{\gamma} \circ \gamma - \frac{\partial \gamma_{\alpha}}{\partial x^\alpha} = (Z_{\alpha} \circ \gamma) \frac{\partial \gamma_{\alpha}}{\partial q^\alpha}\right)
\]
\[
= - \left(\left(\frac{\partial H}{\partial q^\alpha} \circ \gamma\right) + \sum_{\alpha} \frac{\partial \gamma_{\alpha}}{\partial x^\alpha} + \left(\frac{\partial H}{\partial p^\alpha} \circ \gamma\right) \frac{\partial \gamma_{\alpha}}{\partial q^\alpha}\right)
\]
\[
= - \left(\left(\frac{\partial H}{\partial q^\alpha} \circ \gamma\right) + \sum_{\alpha} \frac{\partial \gamma_{\alpha}}{\partial x^\alpha} + \left(\frac{\partial H}{\partial p^\alpha} \circ \gamma\right) \frac{\partial \gamma_{\alpha}}{\partial q^\alpha}\right) .
\]
Therefore \((\pi_Q)^*[d(H \circ \gamma \circ i_x)] + \iota_{R_2} d\tilde{\gamma}^\alpha = 0\) (see (3.7)).

The converse is proved in a similar way by reversing the arguments. \(\Box\)

Corollary 3.4. Let \(Z \in \mathcal{X}_H^k(\mathbb{R}^k \times (T_k^1)^*Q)\) be a solution of (2.6) and \(\gamma: \mathbb{R}^k \times Q \rightarrow \mathbb{R}^k \times (T_k^1)^*Q\) be a section of \((\pi_Q)_{1,0}\) as in the above theorem. If \(Z\) is integrable then the following statements are equivalent:

\begin{enumerate}
 \item \((Z|_{\text{ker} \omega^k} - T_k^1 \gamma(Z^\gamma)) \in \ker \omega^k \cap \ker \eta^k;\)
 \item \((\pi_Q)^*[d(H \circ \gamma \circ i_x)] + \sum_{\alpha} \iota_{R_2} d\tilde{\gamma}^\alpha = 0;\)
 \item If a section \(\psi: U \subset \mathbb{R}^k \rightarrow \mathbb{R}^k \times Q\) of \(\pi_{R^k}: \mathbb{R}^k \times Q \rightarrow \mathbb{R}^k\) is an integral section of \(Z^\gamma\) then \(\gamma \circ \psi\) is a solution of the Hamilton-De Donder-Weyl equations (2.3).
\end{enumerate}

Let us observe that there exist \(k\) local functions \(W^\alpha\) such that \(\tilde{\gamma}^\alpha = dW^\alpha\) being \(W^\alpha\) the function defined by \(W^\alpha_x(q) = W^\alpha(x, q)\). Thus \(\gamma^\alpha = \frac{\partial W^\alpha}{\partial q^\alpha}\) (see [12]). Therefore, the condition
\[
(\pi_Q)^*[d(H \circ \gamma \circ i_x)] + \sum_{\alpha} \iota_{R_2} d\tilde{\gamma}^\alpha = 0
\]
can be equivalently written as
\[
\frac{\partial}{\partial q^\alpha} \left(\frac{\partial W^\alpha}{\partial x^\alpha} + H(x^\beta, q^\gamma, \frac{\partial W^\alpha}{\partial q^\gamma})\right) = 0.
\]

The above expressions mean that
\[
\frac{\partial W^\alpha}{\partial x^\alpha} + H(x^\beta, q^\gamma, \frac{\partial W^\alpha}{\partial q^\gamma}) = K(x^\beta)
\]
so that if we put \(\tilde{H} = H - K\) we deduce the standard form of the Hamilton-Jacobi equation (since \(H\) and \(\tilde{H}\) give the same Hamilton-De Donder-Weyl equations).
\[
\frac{\partial W^\alpha}{\partial x^\alpha} + \tilde{H}(x^\beta, q^\gamma, \frac{\partial W^\alpha}{\partial q^\gamma}) = 0 .
\]
Therefore the equation
\[
(\pi_Q)^*[d(H \circ \gamma \circ i_x)] + \sum_{\alpha} \iota_{R_2} d\tilde{\gamma}^\alpha = 0
\]
can be considered as a geometric version of the Hamilton-Jacobi equation for \(k\)-cosymplectic field theories.

4. **AN EXAMPLE**

In this section we will apply our method to a particular example in classical field theories.

The equation of a scalar field \(\phi\) (for instance the gravitational field) which acts on the 4-dimensional space-time is (see [11]):
\[
(\Box + m^2)\phi = F'(\phi) ,
\]
where m is the mass of the particle over which the fields acts, F is a scalar function such that $F(\phi) - \frac{1}{2}m^2\phi^2$ is the potential energy of the particle of mass m, and \Box is the Laplace-Beltrami operator given by

$$\Box\phi := \text{div} \, \text{grad} \phi = \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^\alpha} \left(\sqrt{-g} g^{\alpha\beta} \frac{\partial \phi}{\partial x^\beta} \right),$$

($g_{\alpha\beta}$) being a pseudo-Riemannian metric tensor in the 4-dimensional space-time of signature $(-+++)$, and $\sqrt{-g} = \sqrt{-\det g_{\alpha\beta}}$.

We consider the Lagrangian

$$L(x^1, x^2, x^3, x^4, q, v_1, v_2, v_3, v_4) = \sqrt{-g} \left(F(q) - \frac{1}{2}m^2q^2 + \frac{1}{2}g^{\alpha\beta}v_\alpha v_\beta \right),$$

where q denotes the scalar field ϕ and v_α the partial derivative $\partial q/\partial x^\alpha$. Then the equation (4.1) is just the Euler-Lagrange equation associated to L.

Consider the Hamiltonian function $H \in C^\infty(\mathbb{R}^4 \times (T^*_4) \ast \mathbb{R})$ given by

$$H(x^1, x^2, x^3, x^4, p_1, p_2, p_3, p_4) = \frac{1}{2}\sqrt{-g} g^{\alpha\beta}p_\alpha p_\beta - \sqrt{-g} \left(F(q) - \frac{1}{2}m^2q^2 \right),$$

where (x^1, x^2, x^3, x^4) are the coordinates on \mathbb{R}^4, q denotes the scalar field ϕ and $(x^1, x^2, x^3, x^4, p_1, p_2, p_3, p_4)$ the canonical coordinates on $\mathbb{R}^4 \times (T^*_4) \ast \mathbb{R}$. Let us recall that this Hamiltonian function can be obtained from the Lagrangian L just using the Legendre transformation defined in [21, 22].

Then

$$\frac{\partial H}{\partial q} = -\sqrt{-g} \left(F'(q) - m^2q \right), \quad \frac{\partial H}{\partial p} = \frac{1}{\sqrt{-g}} g^{\alpha\beta} p_\alpha, \quad (4.2)$$

The Hamilton-Jacobi equation becomes

$$-\sqrt{-g} \left(F'(q) - m^2q \right) + \frac{1}{\sqrt{-g}} g^{\alpha\beta} \gamma^\beta \frac{\partial \gamma^\alpha}{\partial q} + \frac{\partial \gamma^\alpha}{\partial x^\alpha} = 0, \quad (4.3)$$

Since our main goal is to show how the method developed in Section 3 works, we will consider, for simplicity, the following particular case:

$$F(q) = \frac{1}{2}m^2q^2,$$

being $(g_{\alpha\beta})$ the Minkowski metric on \mathbb{R}^4, i.e. $(g_{\alpha\beta}) = \text{diag}(-1, 1, 1, 1)$.

Let $\gamma: \mathbb{R}^4 \rightarrow \mathbb{R}^4 \times (T^*_4) \ast \mathbb{R}$ be the section of $(\pi_\mathbb{R})_{1,0}$ defined by the family of 4 1-forms along of $\pi_\mathbb{R}: \mathbb{R}^4 \times \mathbb{R} \rightarrow \mathbb{R}$

$$\gamma^\alpha = \frac{1}{2} C_\alpha q^2 dq$$

with $1 \leq \alpha \leq 4$ and where C_α are four constants such that $C_1^2 = C_2^2 + C_3^2 + C_4^2$.

This section γ satisfies the Hamilton-Jacobi equation (4.3) that in this particular case is given by

$$-\frac{1}{2} C_1^2 q^3 + \frac{1}{2} C_2^2 q^3 + \frac{4}{2} C_3^2 q^3 + \frac{1}{2} C_4^2 q^3 = 0,$$

therefore, the condition (ii) of the Theorem 3.2 holds.

The 4-vector field $Z^\gamma = (Z_1^\gamma, Z_2^\gamma, Z_3^\gamma, Z_4^\gamma)$ is locally given by

$$Z_\alpha^\gamma = \frac{\partial}{\partial x^\alpha} \frac{1}{2} C_\alpha q^2 \frac{\partial}{\partial q}, \quad Z_\alpha^\gamma = \frac{\partial}{\partial x^\alpha} \frac{1}{2} C_\alpha q^2 \frac{\partial}{\partial q},$$

with $\alpha = 2, 3, 4$. The map $\psi: \mathbb{R}^4 \rightarrow \mathbb{R}^4 \times \mathbb{R}$ defined by

$$\psi(x^1, x^2, x^3, x^4) = \frac{2}{C_1 x^1 - C_2 x^2 - C_3 x^3 - C_4 x^4 + C}, \quad C \in \mathbb{R},$$
is an integral section of the 4-vector field Z^γ.

By Theorem 3.2 one obtains that the map $\varphi = \gamma \circ \psi$, locally given by
\[
(x^\alpha) \to (x^\alpha, \psi(x^\alpha), \frac{1}{2} C_\alpha(\psi(x^\alpha))^2),
\]
is a solution of the Hamilton-De Donder-Weyl equations associated to H, that is,
\[
0 = \sum_{\alpha=1}^{4} \frac{\partial}{\partial x^\alpha} \left(\frac{1}{2} C_\alpha \psi^2 \right),
\]
\[
-\frac{1}{2} C_1 \psi^2 = \frac{\partial \psi}{\partial x^1},
\]
\[
\frac{1}{2} C_a \psi^2 = \frac{\partial \psi}{\partial x^a}, \quad a = 2, 3, 4.
\]

Let us observe that these equations imply that the scalar field ψ is a solution to the 3-dimensional wave equation.

In this particular example the functions W^α are given by
\[
W^\alpha(x, q) = \frac{1}{6} C_\alpha q^3 + h(x),
\]

where $h \in C^\infty(\mathbb{R}^4)$.

In [26, 31], the authors describe an alternative method that can be compared with the above one.

First, we consider the set of functions $W^\alpha: \mathbb{R}^4 \times \mathbb{R} \to \mathbb{R}, 1 \leq \alpha \leq 4$ defined by
\[
W^\alpha(x, q) = (q - \frac{1}{2} \phi(x)) \sqrt{-g} g^{\alpha \beta} \frac{\partial \phi}{\partial x^\beta},
\]
where ϕ is a solution to the Euler-Lagrange equation (4.1). Using these functions we can consider a section γ of $(\pi \mathbb{R})_{1,0}: \mathbb{R}^4 \times (T^*_1 \mathbb{R})^* \to \mathbb{R}^4 \times \mathbb{R}$ with components
\[
\gamma^\alpha = \frac{\partial W^\alpha}{\partial q} = \sqrt{-g} g^{\alpha \beta} \frac{\partial \phi}{\partial x^\beta}.
\]

By a direct computation we obtain that this section γ is a solution to the Hamilton-Jacobi equation (3.13).

Now from (3.9) and (4.2) we obtain the 4-vector field Z^γ is given by
\[
Z^\gamma_\alpha = \frac{\partial}{\partial x^\alpha} + \frac{\partial \phi}{\partial x^\alpha} \frac{\partial}{\partial q}.
\]

Let us observe that Z^γ is an integrable 4-vector field on $\mathbb{R}^4 \times \mathbb{R}$. Using the Hamilton-Jacobi theorem we obtain that $\sigma = (id_{\mathbb{R}^4}, \phi): \mathbb{R}^4 \to \mathbb{R}^4 \times \mathbb{R}$ is an integral section of the 4-vector field Z^γ defined by (4.4), then $\gamma \circ \sigma$ is a solution of the Hamilton-De Donder Weyl equation associated with the Hamiltonian of the massive scalar field.

If we now consider the particular case $F(q) = \frac{1}{2} m^2 q^2$, we obtain the Klein-Gordon equation; this is just the case discussed in [26].

Acknowledgments

This work has been partially supported by Ministerio de Ciencia e Innovación, Projects MTM2010-21186-C02-01, MTM2011-22585, MTM2011-15725-E; the European project IRSES-project GeoMech-246981; the ICMAT Severo Ochoa project SEV-2011-0087 and Gobierno de Aragón E24/1.
REFERENCES

[1] R.A. Abraham, J.E. Marsden: Foundations of Mechanics (Second Edition), Benjamin-Cummings Publishing Company, New York, 1978.

[2] A. Awane: k-symplectic structures. J. Math. Phys. 33 (1992), 4046–4052.

[3] M. Barbero-Liñan, M. de León, D. Martín de Diego: Lagrangian submanifolds and Hamilton-Jacobi equation. arXiv:1209.0807 [math-ph].

[4] M.C. Bertín, B.M. Pimentel, P.J. Pompeia: Hamilton-Jacobi approach for first order actions and theories with higher order derivatives. Ann. Physics 323 (2008), no. 3, 527–547.

[5] D. Bruno: Constructing a class of solutions for the Hamilton-Jacobi equations in field theory. J. Math. Phys. 48, 112902 (2007), no. 11.

[6] F. Cantrijn, A. Ibort, M. de León: On the geometry of multisymplectic manifolds. J. Austral. Math. Soc. (Series A) 66 (1999), 303–330.

[7] J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M.C. Muñoz-Lecanda, N. Román-Roy: Geometric Hamilton-Jacobi theory. Int. J. Geom. Methods Mod. Phys. 3 (2006), no. 7, 1417–1458.

[8] J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M.C. Muñoz-Lecanda, N. Román-Roy: Geometric Hamilton-Jacobi Theory for Nonholonomic Dynamical Systems. Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 3, 431–454.

[9] C. Günther: The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case. J. Differential Geom. 25 (1987), no. 1, 23–53.

[10] H. Loum-Pergane, A. Belaid: Multisymplectic geometry and k-cosymplectic structure for the field theories and the relativistic mechanics. Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 4, (doi: 10.1142/S0219887813500011)

[11] J. Kijowski, W. M. Tulczyjew: A symplectic framework for field theories. Lecture Notes in Physics, 107. Springer-Verlag, Berlin-New York, 1979.

[12] S. Kobayashi, K. Nomizu: Foundations of differential geometry. Interscience Publishers vol I (1963).

[13] M. de León, D. Iglesias-Ponte, D. Martín de Diego: Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems. J. Phys. A 41 (2008), no. 1, 015205, 14 pp.

[14] M. de León, J.C. Marrero, D. Martín de Diego: A geometric Hamilton-Jacobi theory for classical field theories. In Variations, Geometry and Physics, in honour of Demeter Krupka’s sixty-fifth birthday, O. Krupkova and D. J. Saunders (Editors), Nova Science Publishers Inc., New York 2009, pp. 129–140.

[15] M. de León, J.C. Marrero, D. Martín de Diego: Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic Mechanics. J. Geom. Mech. 2 (2010), no. 2, 159–198.

[16] M. de León, J.C. Marrero, D. Martín de Diego, M. Salgado, S. Vilariño: Hamilton-Jacobi theory in k-symplectic field theories. Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 8, 1491–1507.

[17] M. de León, I. Méndez, M. Salgado: p-almost tangent structures. Rend. Circ. Mat. Palermo Serie II XXXVII (1988), no. 2, 282-294.

[18] M. de León, I. Méndez, M. Salgado: Integrable p-almost tangent structures and tangent bundles of p^1-velocities. Acta Math. Hungar. 58(1-2) (1991), 45-54.

[19] M. de León, E. Merino, M. Salgado: k-cosymplectic manifolds and Lagrangian field theories. J. Math. Phys. 42 (2001), no. 5, 2092–2104.

[20] M. de León, E. Merino, M. Salgado: Stable almost cotangent structures. Bull. Un. Mat. Ital. B (7) 11 (1997), no. 3, 509–529.

[21] M. de León, E. Merino, J.A. Oubiña, P.R. Rodrigues, M. Salgado: Hamiltonian systems on k-cosymplectic manifolds. J. Math. Phys. 39 (1998), no. 2, 876–893.

[22] M. de León, M. McLean, L.K. Norris, A.M. Rey, M. Salgado: Geometric Structures in Field Theory. ArXiv:math-ph/0208036v1 (2002).

[23] A. Morimoto: Liftings of some types of tensor fields and connections to tangent p^r-velocities. Nagoya Math. J. 40 (1970), 13-31.

[24] F. Munteanu, A. M. Rey, M. Salgado: The Günter’s formalism in classical field theory: momentum map and reduction. J. Math. Phys. 45 (2004), no. 5, 1730–1751.

[25] C. Paufler, H. Romer: De Donder-Weyl equations and multisymplectic geometry. In: XXXIII Symposium on Mathematical Physics (Toruń, 2001). Rep. Math. Phys. 49 (2002), no. 2-3, 325–334.

[26] C. Paufler, H. Romer: Geometry of Hamiltonian n-vector fields in multisymplectic field theory. J. Geom. Phys. 44 (2002), no. 1, 52–69.
[27] N. Román-Roy, M.A. Rey, M. Salgado, S. Vilariño: On the k-symplectic, k-cosymplectic and multisymplectic formalisms of classical field theories. J. Geom. Mech. 3 (2011), no. 1, 113–137.

[28] G. Rosen: Hamilton-Jacobi functional theory for the integration of classical field equations. Internat. J Theoret. Phys. 4 (1971), 281–285.

[29] H. Rund: The Hamilton-Jacobi Theory in the Calculus of Variations. Hazell, Watson and Viney Ltd., Aylesbury, Buckinghamshire, U.K. 1966.

[30] L. Vitagliano: The Hamilton-Jacobi formalism for higher order field theories. Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 8, 1413–1436.

[31] Zhi-Qiang Guo, I. Schmidt: Converting Classical Theories to Quantum Theories by Solutions of the Hamilton-Jacobi Equation. 2012. Preprint. arXiv:1204.1361v2 [hep-th].

M. de León: Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
E-mail address: mdeleon@icmat.es

S. Vilariño: Centro Universitario de la Defensa & I.U.M.A., Carretera de Huesca s/n, 50090 Zaragoza, Spain
E-mail address: silviavf@unizar.es