Complete Decompositions of Coxeter groups orbit products of A_2, C_2, G_2 and H_2 and some limits for them

Agnieszka Tereszkiewicz

Institute of Mathematics, University of Bialystok, Akademicka 2, PL-15-267, Bialystok, Poland

Centre De Recherches Mathématiques, Université de Montréal, C. P. 6128, succ. Centre-ville, Montréal, H3C 3J7, Québec, Canada

mail: a.tereszkiewicz@uwb.edu.pl

Abstract

Orbits of the Weyl reflection groups attached to the simple Lie groups A_2, C_2, G_2 and Coxeter group H_2 are considered. For each of the groups products of any two orbits are decomposed into the union of the orbits. Results are presented in a single formula for each of the groups. Orbits are considered as functions of two variables and limits for such functions are mentioned.

Mathematics Subject Classification 2010: 51F15, 20F55, 20H15

Keywords: Coxeter groups, product of orbits, limits

1. INTRODUCTION

Finite reflections groups, called the Coxeter groups, split into two classes: crystallographic (Weyl groups of semisimple Lie algebras) and non-crystallographic groups [1, 2]. There are groups generated by n reflections which act in real n dimensional euclidian space \mathbb{R}^n. All the distinct points that can be obtained by the action of G on a selected single point (the ‘seed’ point) of \mathbb{R}^n form the Coxeter group orbit. Every lattice point belongs to precisely one G-orbit. Group orbits played very important role, specially in weight systems of finite dimensional irreducible representations of simple Lie algebras (crystallographic case). Each weight system is a union of several Weyl group orbits. To determine these elements for a given representation of a given simple Lie algebra, it is a computational problem for which an efficient algorithm is known [3, 4]. Unlike the weight systems grow without limits with increasing representations and the G-orbits are finite in size for a given Lie algebra. Indeed, the largest number of distinct points (‘weights’) an orbit can have, is the order of the Weyl group of the Lie algebra.

The points that form a given orbit are relatively easy to calculate, starting from any one of them, by repeated application of the reflections generating the Coxeter group G. One almost always chooses as the seed point for such a calculation the unique (‘dominant’) point of the orbit. This point is easily identified because it is the only one in every orbit that has non-negative coordinates in ω-basis. A G-orbit of Coxeter group of rank n can be viewed as an n-dimensional polytope [5] with
orbit points as its vertices (0-dimensional faces). Faces of dimensions up to \((n - 1)\) are also readily described [6].

Tensor products of irreducible representations of the Lie algebras are in one-to-one correspondence with the tensor product of the weight systems. Hence the decomposition of product into irreducible components leads naturally to the problem of decomposition of tensor products of Coxeter group orbits.

Decomposition of products of weight systems into irreducible ones is a familiar problem in representation theory. It is frequently calculated in terms of the products of weight systems. Complexity of the decomposition problem rapidly increases with increasing representation that are being multiplied. The only known way how to provide the decomposition of all products of representations for an algebra of rank greater than 1, is by means of the appropriate generating function [7]. Unfortunately such generating function is known only for \(A_2\). Due to frequent use in particle, nuclear and atomic physics, many special cases of product decompositions are found in the physics literature [8, 9].

Computing separately decomposition of products of Coxeter group orbits allows one to simplify the task of decomposing of the products of the weights systems.

There are two computational task involved when one decomposes the product of weight system:
(i) Computing the multiplicity of the Coxeter group orbits in any representation involved.
(ii) Decomposing products of the individual \(G\)-orbits. This is the problem solved in this paper.

The situation is quite different when one considers separately the second problem, namely decomposition of products of \(G\)-orbits into the union of individual orbits. Since the number of points in any orbit cannot exceed the order of the corresponding Coxeter group and it is easily determined in all cases, the decomposition problem for orbits is a finite one, no matter how large the dominant weights may be. Therefore at least, in principle, all the decompositions for a fixed group can be explicitly solved. For the first problem an independent algorithmic solution is known [3, 4, 10].

In the paper the second problem, decomposition of products of two orbits, is solved explicitly for the three crystallographic groups \(A_2\), \(C_2\), \(G_2\) and non-crystallographic group \(H_2\). The solution is presented separately for each group and the sketch prove for \(A_2\) is given. Demonstrations of formulae for the others groups one could try to find analogously to the presented one. For the case \(A_2\) formula for the decomposition of product of two orbits was presented firstly in [11].

There are other problems where the \(G\)-orbits are essential. Description of reflexion generated polytopes which in a simple version (all vertices belong to one \(G\)-orbit) is found in [6], symmetries of Clebsch-Gordan coefficients for groups of rank \(\geq 2\) can be formulated in terms of the \(G\)-orbits [12]. The \(G\)-orbits have been used in description of viruses [13].

Most predictable exploitation of Weyl group orbits one can used in extensive computations with representations of semisimple Lie algebras/groups such as decomposition of tensor products, see one of the largest examples in [14], in branching rules computation, i.e. restriction to representation of subgroups, [15, 16] or for the others [17]. Another exploitation for Coxeter group is in Fourier expansions of digital data on multidimensional lattices. Particularly when a series of similar size orbits will be needed.
Problem of decomposition of product of two orbits applies for finding product of two orbit functions as a sum of orbit functions of the same type, corresponding to the same Coxeter group, see \[15\]. Moreover formulas for decomposition of two orbits work also in the case when the dominant points are points which coordinates are nonnegative real numbers. Orthogonality for nonnegative integers is known, see for example \[19\]. It means that one could investigate orthogonality of functions for which dominant points are nonnegative real numbers.

The orbit \(O(\lambda)\) of the group \(G\) can be considered also as a continues function of two variables. Then limits for them and for their product could be calculated. In the paper this problem is briefly described and some limits are presented.

2. Preliminaries

The Coxeter groups \(A_2\), \(C_2\), \(G_2\) and \(H_2\) are groups of order 6, 8, 12 and 10, respectively, generated by reflection in two mirrors intersecting under the angle \(\pi /3\), \(\pi /4\), \(\pi /6\) and \(\pi /5\) at the origin of the real Euclidean space \(\mathbb{R}^2\). In physics these are the dihedral groups of order 6, 8, 12, 10, respectively.

In order to treat all these cases in uniform way, it is advantageous to work in \(\mathbb{R}^2\) with a pair of dual bases. The \(\alpha\)-basis (simple root basis) is defined by the scalar products

\[
A_2: \quad \langle \alpha_1 | \alpha_1 \rangle = \langle \alpha_2 | \alpha_2 \rangle = 2, \quad \langle \alpha_1 | \alpha_2 \rangle = -1, \\
C_2: \quad \langle \alpha_1 | \alpha_1 \rangle = 1, \quad \langle \alpha_2 | \alpha_2 \rangle = 2, \quad \langle \alpha_1 | \alpha_2 \rangle = -1, \\
G_2: \quad \langle \alpha_1 | \alpha_1 \rangle = 2, \quad \langle \alpha_2 | \alpha_2 \rangle = \frac{2}{3}, \quad \langle \alpha_1 | \alpha_2 \rangle = -1, \\
H_2: \quad \langle \alpha_1 | \alpha_1 \rangle = \langle \alpha_2 | \alpha_2 \rangle = 2, \quad \langle \alpha_1 | \alpha_2 \rangle = -\tau, \quad \text{where } \tau = \frac{1}{2}(1 + \sqrt{5}).
\]

The \(\omega\)-basis is defined as dual to \(\alpha\)-basis,

\[
\langle \omega_k | \alpha_j \rangle = \frac{\langle \alpha_i | \alpha_j \rangle}{2} \delta_{jk}. \quad (1)
\]

Explicitly,

\[
A_2: \quad \omega_1 = \frac{2}{3} \alpha_1 + \frac{1}{3} \alpha_2, \quad \omega_2 = \frac{1}{3} \alpha_1 + \frac{2}{3} \alpha_2, \quad \alpha_1 = 2\omega_1 - \omega_2, \quad \alpha_2 = -\omega_1 + 2\omega_2, \\
C_2: \quad \omega_1 = \alpha_1 + \frac{1}{3} \alpha_2, \quad \omega_2 = \alpha_1 + \alpha_2, \quad \alpha_1 = 2\omega_1 - \omega_2, \quad \alpha_2 = -2\omega_1 + 2\omega_2, \\
G_2: \quad \omega_1 = 2\alpha_1 + 3\alpha_2, \quad \omega_2 = \alpha_1 + 2\alpha_2, \quad \alpha_1 = 2\omega_1 - 3\omega_2, \quad \alpha_2 = -\omega_1 + 2\omega_2
\]

and

\[
H_2: \quad \omega_1 = \frac{1}{5}((4 + 2\tau)\alpha_1 + (1 + 3\tau)\alpha_2), \quad \alpha_1 = 2\omega_1 - \tau\omega_2, \\
\omega_2 = \frac{1}{5}((1 + 3\tau)\alpha_1 + (4 + 2\tau)\alpha_2), \quad \alpha_2 = -\tau\omega_1 + 2\omega_2.
\]

In all cases the reflections \(r_1\) and \(r_2\) generate \(G\) are defined as follows

\[
r_k \lambda = \lambda - \frac{2\langle \lambda | \alpha_k \rangle}{\langle \alpha_k | \alpha_k \rangle} \alpha_k, \quad k = 1, 2, \quad \lambda \in \mathbb{R}^2. \quad (2)
\]

In particular,

\[
r_k 0 = 0, \quad r_k \omega_j = \omega_j - \delta_{jk} \alpha_k, \quad r_k \alpha_k = -\alpha_k.
\]

An orbit of \(G\) is the set of distinct points generated from a seed point \(\lambda \in \mathbb{R}^2\) by repeated action of reflections \((2) \). Such an orbit contains at most as many
points as is the order of G. Each orbit contains precisely one point with non-negative coordinates in ω-basis. The orbit $O(\lambda)$ is specified by this point, called the dominant point.

The orbits could be distinguished according to the position of their points, in particular of the dominant point. It is either point of the weight lattice P or not in \mathbb{R}^2 (in crystallographic case).

The set of all dominants weights of P is in non-negative sector P^+, where

$$P^+ = \mathbb{Z}_{\geq 0}\omega_1 + \mathbb{Z}_{\geq 0}\omega_2 \subset P = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{R}^2.$$

If G stands for the non-crystallographic group H_2, the role of Z is played by $\mathbb{Z}[\tau]$, quadratic extension of integer numbers by τ, see [20, 21].

The size $|O(\lambda)|$ of an orbit $O(\lambda)$ is the number of distinct points it contains i.e.:

$$|O(\lambda)| = \begin{cases} |G| & \text{for } \lambda = (a,b) \\ \frac{1}{2}|G| & \text{for } \lambda = (a,0) \text{ or } \lambda = (0,b) \\ 1 & \text{for } \lambda = (0,0) \end{cases},$$

where $a, b > 0$.

The product of two orbit functions of G is the set of points obtained by adding to every point of one orbit every point of the other orbit. Therefore the orbit sizes multiply,

$$|O(\lambda) \otimes O(\lambda')| = |O(\lambda)| \cdot |O(\lambda')|. $$

The products decompose into the sum of several orbits

$$O(\lambda) \otimes O(\lambda') = O(\lambda') \otimes O(\lambda) = O(\lambda + \lambda') \cup \cdots \cup mO(\lambda + \lambda'), \quad m \in \mathbb{N}. \quad (3)$$

Here λ' stands for the lowest weight of the orbit $O(\lambda)$. If the sum $\lambda + \lambda'$ is not a dominant weight, it should be reflected into the dominant weight of its orbit.

Except for the rank one of the group G, there has been no general formula for finding the terms in the decomposition (3). Such formulas are found in next paragraphs for the orbits of the four groups of rank 2.

Limits of orbits and product of orbits is another interesting subject which is briefly described below.

Let one consider orbit $O(\lambda)$ of the group G as a continues function of two variables, in general from \mathbb{R}^2 to \mathbb{R}^2, where $\lambda = (x,y) = x\omega_1 + y\omega_2$. Taking into account that each orbit is characterized by dominant point it is enough to calculate limits only for points which coordinates are nonnegative real numbers. Limits for this function one could write in the form

$$\begin{align*}
\lim_{x \to a} O(x,y) &= \frac{l_1}{|O(a,y)|} O(a,y), \\
\lim_{y \to b} O(x,y) &= \frac{l_2}{|O(x,b)|} O(x,b), \\
\lim_{(x,y) \to (a,b)} O(x,y) &= \frac{6}{|O(a,b)|} O(a,b),
\end{align*} \quad (4)$$

where $a, b \geq 0$ and

$$l_1 = \begin{cases} 6 & \text{for } y \neq 0 \\ 3 & \text{for } y = 0 \end{cases}, \quad l_2 = \begin{cases} 6 & \text{for } x \neq 0 \\ 3 & \text{for } x = 0 \end{cases},$$
By analogy using (3) and (4) one can calculate limits for product of two orbits
\[
\lim_{x \to a} O(\lambda) \otimes O(\lambda') = \lim_{x \to a} O(\lambda + \lambda') \cup \cdots \cup \lim_{x \to a} mO(\lambda + \lambda'),
\]
\[
\lim_{y \to b} O(\lambda) \otimes O(\lambda') = \lim_{y \to b} O(\lambda + \lambda') \cup \cdots \cup \lim_{y \to b} mO(\lambda + \lambda'),
\]
(5)
\[
\lim_{(x,y) \to (a,b)} O(\lambda) \otimes O(\lambda') = \lim_{(x,y) \to (a,b)} O(\lambda + \lambda') \cup \cdots \cup \lim_{(x,y) \to (a,b)} mO(\lambda + \lambda'),
\]
where multiplicity of orbits are also functions of \(x\) and \(y\). When \(a\) or \(b\) are equal 0 then the limits are right side limits.

Some examples of limits are presented in appropriate paragraphs.

3. Decompositions of products of orbits of \(A_2\)

There is a useful general symmetry property of all orbits \(O(\lambda)\) of \(A_2\), where \(\lambda = (a,b) = a\omega_1 + b\omega_2\):
\[
O(a,b) = -O(b,a), \quad a, b \in \mathbb{R}. \quad (6)
\]

In most cases we are interested in \(a, b \in \mathbb{Z}\), however (6) is valid for any real \(a\) and \(b\). For every point \(\lambda \in O(a,b)\) there is the point \(-\lambda \in O(b,a)\). The property is a consequence of the outer automorphism of \(A_2\).

Another useful general hierarchy of orbits \(O(a,b)\) of \(A_2\) with integers \(a\) and \(b\), is their splitting into three mutually exclusive congruence classes according to the value of their congruence number \(K(a,b)\)
\[
K(a,b) \equiv 2a + b \pmod{3}, \quad a, b \in \mathbb{Z}.
\]
All points of an orbit are in the same congruence class. It is the consequence of the fact that difference between two points of the same orbit is an integer linear combination of simple roots. All simple roots belong to the same congruence class, namely 0. During the multiplication of orbits, their congruence numbers add up. All orbits in the decomposition belong to that congruence class, see [18] [22].

There are four types of orbits \(O(a,b)\) for this group, see for example [18]:
\[
O(0,0) = \{(0,0)\},
O(a,0) = \{(a,0), (0,a), (0,-a)\}, \quad O(0,b) = \{(0,b), (b,-b), (-b,0)\},
O(a,b) = \{(a,b), (-a, a+b), (a+b, -b), (-a+b, a), (b, -a-b), (-b,-a)\}.
\]
For \(\lambda = (a_1, a_2) = a_1\omega_1 + a_2\omega_2\) and \(\lambda' = (b_1, b_2) = b_1\omega_1 + b_2\omega_2\) using duality of bases, see (1), one can get following relations:
\[
\langle \lambda | \alpha_j \rangle = a_j, \quad \langle \lambda' | \alpha_j \rangle = b_j, \quad \text{for } j = 1,2 \text{ and } a_1, a_2, b_1, b_2 \in \mathbb{R}_{\geq 0}
\]
(7)
which are used in the proposition below.

Proposition 1.

Decomposition of the product (3) of two orbits of \(A_2\) with dominant weights \(\lambda = (a_1, a_2)\) and \(\lambda' = (b_1, b_2)\) for \(a_1, a_2, b_1, b_2 \in \mathbb{R}_{\geq 0}\) is given by the following formula
\[
O(\lambda) \otimes O(\lambda') = k_1 O(\lambda + \lambda')
\]
(8)
Example 1. Orbits and decomposition of product (9)

Namely, the congruence class, which is the sum of congruence classes of factors of

\[\bigcup_{k_1} O\left(\langle \lambda - \lambda' | \alpha_1 \rangle, \langle \lambda + \lambda' | \frac{1}{2}\alpha_1 + \alpha_2 \rangle - \frac{1}{2}\langle \lambda - \lambda' | \alpha_1 \rangle \right) \]
\[\bigcup_{k_2} O\left(\langle \lambda + \lambda' | \alpha_1 + \frac{1}{2}\alpha_2 \rangle - \frac{1}{2}\langle \lambda - \lambda' | \alpha_2 \rangle \right) \]
\[\bigcup_{k_3} O\left(\langle \lambda' | \alpha_1 + \frac{1}{2}\alpha_2 \rangle + \frac{1}{2}\langle \lambda | \alpha_2 - \alpha_1 \rangle - \frac{1}{2}\langle \lambda - \lambda' | \alpha_2 \rangle + \langle \lambda | \alpha_1 \rangle \right) \]
\[\bigcup_{k_4} O\left(\langle \lambda' | \alpha_1 + \frac{1}{2}\alpha_2 \rangle + \frac{1}{2}\langle \lambda | \alpha_2 - \alpha_1 \rangle - \frac{1}{2}\langle \lambda - \lambda' | \alpha_2 \rangle + \langle \lambda | \alpha_1 \rangle \right) \]
\[\bigcup_{k_5} O\left(\langle \lambda' | \alpha_1 + \frac{1}{2}\alpha_2 \rangle + \frac{1}{2}\langle \lambda | \alpha_2 - \alpha_1 \rangle - \frac{1}{2}\langle \lambda - \lambda' | \alpha_2 \rangle + \langle \lambda | \alpha_1 \rangle \right) \]
\[\bigcup_{k_6} O\left(\langle \lambda - \lambda' | \alpha_1 + \alpha_2 \rangle - \min\{\langle \lambda | \alpha_1 - \langle \lambda' | \alpha_2 \rangle, \langle \lambda' | \alpha_1 - \langle \lambda | \alpha_2 \rangle, 0\} \right) \]

where the multiplicities \(k_1, \ldots, k_6\) are given in terms of orbits sizes by:

\[k_1 = \frac{1}{6} \frac{|O(\lambda)||O(\lambda')|}{|O(\lambda) + \lambda' + \alpha_2 + \alpha_2|}, \]
\[k_2 = \frac{1}{6} \frac{|O(\lambda)||O(\lambda')|}{|O(\lambda) - \lambda' + \alpha_1 + \alpha_2|}, \]
\[k_3 = \frac{1}{6} \frac{|O(\lambda)||O(\lambda')|}{|O(\lambda) + \lambda' - \alpha_1 - \alpha_2|}, \]
\[k_4 = \frac{1}{6} |O(\lambda)||O(\lambda')| \]
\[k_5 = \frac{1}{6} |O(\lambda)||O(\lambda')| \]
\[k_6 = \frac{1}{6} |O(\lambda)||O(\lambda')| \]

Sketch of the prove is given in the Appendix A.

Note that the congruences class of each term in the decomposition (8) coincide. Namely, the congruence class, which is the sum of congruence classes of factors of \(O(\alpha_1, \alpha_2) \otimes O(b_1, b_2)\). Let's illustrate this fact in an example.

Example 1. Using (8) one has:

\[O(1, 2) \otimes O(3, 1) = O(4, 3) \cup O(2, 4) \]
\[\cup O(3, 2) \cup O(5, 1) \cup 2O(0, 2) \cup 2O(1, 0). \]

(9)

Then it is easy to check that

\[K(1, 2) + K(3, 1) = 2 \pmod{3}, \]
\[K(4, 3) = K(2, 4) = K(3, 2) = K(5, 1) = K(0, 2) = K(1, 0) = 2 \pmod{3}. \]

Orbits and decomposition of product (9) are presented in figure 7.
Figure 1. (a) The six points of the orbit $O(1, 2)$ and of $O(3, 1)$ of A_2 are presented. The straight lines are the reflection mirrors containing ω_1 and ω_2. The dominant points are indicated in the positive sector. Dashed lines are the directions of the weight lattice axes of A_2.

(b) The six orbits of the decomposition of the product $O(1, 2) \otimes O(3, 1)$ of A_2. Four of them are hexagons and two are triangles taken twice what is denoted by double dots. The straight lines are the reflection mirrors containing ω_1 and ω_2. The dominant points are indicated in the positive sector. Dashed lines are the directions of the weight lattice axes of A_2.

Using (5) one can get

$$\lim_{y \to 0^+} O(1, 2) \otimes O(3, y) = 2O(4, 2) \cup 2O(2, 3) \cup 4O(0, 1) = O(1, 2) \otimes 2O(3, 0).$$

In figure 2 graphical interpretation of this example is shown. Others possible limits could be calculated and drawn in the same way.

4. Decompositions of products of orbits of C_2

For the group C_2 is also a general symmetry property of all orbits of this group:

$$\lambda \in O(a, b) \iff -\lambda \in O(a, b), \quad a, b \in \mathbb{R}.$$ \hspace{1cm} (10)

In most cases we are interested in $a, b \in \mathbb{Z}$, however (10) is valid for any real a and b.

A useful general hierarchy of orbits $O(a, b)$ of C_2 with integer a and b, is their splitting into two mutually exclusive congruence classes according to the value of their congruence number $K(a, b)$

$$K(a, b) = a \pmod{2}, \quad a, b \in \mathbb{Z}.$$ \hspace{1cm} (11)

All points of an orbit are in the same congruence class. It is the consequence of the fact that difference between two points of the same orbit is an integer linear
Figure 2. (a) Orbits $O(1,2)$ and $\lim_{y \to 0^+} O(3,y)$.
(b) Decomposition of product of $\lim_{y \to 0^+} O(1,2) \otimes O(3,y)$.

There are also four kinds of orbits for this group, one can find it, for example in [18, 22]:

$O(0,0) = \{(0,0)\}$,
$O(a,0) = \{\pm(a,0), \pm(-a,a)\}$,
$O(0,b) = \{\pm(0,b), \pm(2b,-b)\}$,
$O(a,b) = \{\pm(a,b), \pm(-a,a+b), \pm(a+2b,-b), \pm(a+2b,-a-b)\}$.

Let $\lambda = (a_1,a_2) = a_1 \omega_1 + a_2 \omega_2$ and $\lambda' = (b_1,b_2) = b_1 \omega_1 + b_2 \omega_2$. Using duality of bases one can get following relations:

$$
\langle \lambda | \alpha_1 \rangle = \frac{1}{2} a_1, \quad \langle \lambda' | \alpha_1 \rangle = \frac{1}{2} b_1, \\
\langle \lambda | \alpha_2 \rangle = a_2, \quad \langle \lambda' | \alpha_2 \rangle = b_2, \quad \text{for } a_1, a_2, b_1, b_2 \in \mathbb{R}^\geq_0 \quad (11)
$$

which are useful in the proposition below.

Proposition 2.

Decomposition of the product [3] of two orbits of C_2 with dominant weights $\lambda = (a_1,a_2)$ and $\lambda' = (b_1,b_2)$ for $a_1, a_2, b_1, b_2 \in \mathbb{R}^\geq_0$ is given by the following
The formula (12) can be verified in the same way as (8).

Analogously sum of congruence classes of the product factors is equal the congruence class of each term in the decomposition (12), which is easy to verify by straightforward calculation of congruence classes. Let illustrate this fact in an example.
Example 2. Using (11) and proposition 2 for \(\lambda = (1, 2) \) and \(\lambda' = (3, 1) \) one gets
\[
O(1, 2) \otimes O(3, 1) = O(4, 3) \cup O(6, 1) \cup O(4, 2) \cup O(2, 4) \cup O(2, 2) \cup O(2, 1) \cup 2O(0, 2) \cup 2O(0, 1)
\]
and
\[
K(1, 2) + K(3, 1) = 0 \pmod{2} = K(4, 3) = K(6, 1) = K(4, 2) = K(2, 4) = K(2, 2) = K(2, 1) = K(0, 2) = K(0, 1).
\]

Orbits and decomposition of product (13) are presented in figure 3. More advanced examples one could find in appendix B.

\[\text{Figure 3. (a) The eight points of the orbit } O(1, 2) \text{ and of } O(3, 1) \text{ of } C_2. \text{ The straight lines are the reflection mirrors containing } \omega_1 \text{ and } \omega_2. \text{ The dominant points are indicated in the positive sector. Dashed lines are the directions of the weight lattice axes of } C_2. \]

\[\text{(b) The eight orbits of the decomposition of the product } O(1, 2) \otimes O(3, 1) \text{ of } C_2. \text{ Six of them are octagons and two are squares taken twice what is denoted by double dots. The straight lines are the reflection mirrors containing } \omega_1 \text{ and } \omega_2. \text{ The dominant points are indicated in the positive sector. Dashed lines are the directions of the weight lattice axes of } C_2.\]

Using (5) one can get
\[
\lim_{x \to 2} O(1, 2) \otimes O(x, 1) = O(3, 3) \cup O(5, 1) \cup O(3, 2) \cup O(1, 4) \cup O(3, 1) \cup 2O(3, 0) \cup O(1, 1) \cup 2O(1, 0) = O(1, 2) \otimes O(2, 1).
\]

5. Decompositions of products of orbits of \(G_2 \)

There is also a general symmetry property of all orbits of \(G_2 \):
\[
\lambda \in O(a, b) \iff -\lambda \in O(a, b), \quad a, b \in \mathbb{R}.
\]
In most cases we are interested in $G = \{\lambda\}$ and b. All weights are in the same congruence class.

For this group one has also three kinds of nontrivial orbits and one trivial, see for example [18, 22]:

$O(0,0) = \{(0,0)\}$,

$O(a,0) = \{\pm(a,0), \pm(-a,3a), \pm(2a,-3a)\}$,

$O(0,b) = \{\pm(0,b), \pm(b,-b), \pm(-b,2b)\}$,

$O(a,b) = \{\pm(a,b), \pm(-a,3a+b), \pm(a+b,-b), \pm(2a+b,-3a-b), \pm(-a-b,3a+2b), \pm(-2a-b,3a+2b)\}.$

As before product of two orbits of G_2 is written in terms of $\lambda = (a_1,a_2) = a_1\omega_1 + a_2\omega_2$ and $\lambda' = (b_1,b_2) = b_1\omega_1 + b_2\omega_2$ and simple roots, i.e.:

$\langle \lambda | a_1 \rangle = a_1, \quad \langle \lambda' | a_1 \rangle = b_1, \quad \langle \lambda | a_2 \rangle = \frac{1}{3}a_2, \quad \langle \lambda' | a_2 \rangle = \frac{1}{3}b_2, \quad$ for $a_1, a_2, b_1, b_2 \in \mathbb{R}^{>0}$.

Proposition 3.

Decomposition of the product of two orbits of G_2 with dominant weights $\lambda = (a_1,a_2)$ and $\lambda' = (b_1,b_2)$ for $a_1, a_2, b_1, b_2 \in \mathbb{R}^{>0}$ is given by the following formula

$O(\lambda) \otimes O(\lambda') = k_1 O(\lambda + \lambda')$

$\cup k_2 O([\langle \lambda - \lambda' | a_1 \rangle, \frac{3}{2}(\langle \lambda + \lambda' | a_1 + 2a_2 \rangle - |\langle \lambda - \lambda' | a_1 \rangle|)])$

$\cup k_3 O([\langle \lambda + \lambda' | a_1 + \frac{3}{2}a_2 \rangle - \frac{3}{2}|\langle \lambda - \lambda' | a_2 \rangle|, 3|\langle \lambda - \lambda' | a_2 \rangle|])$

$\cup k_4 O(\min \{\langle \lambda | 2a_1 + 3a_2 \rangle + \langle \lambda' | a_1 \rangle, |\langle \lambda - \lambda' | a_1 \rangle - 3\langle \lambda' | a_2 \rangle|\}, 3 \min \{\langle \lambda | a_1 + 2a_2 \rangle + \langle \lambda' | a_2 \rangle, |\langle \lambda | a_1 + a_2 \rangle - \langle \lambda' | a_2 \rangle|\})$

$\cup k_5 O(\min \{\langle \lambda | a_1 \rangle + \langle \lambda' | 2a_1 + 3a_2 \rangle, |\langle \lambda - \lambda' | a_1 \rangle + 3\langle \lambda' | a_2 \rangle|\}, 3 \min \{\langle \lambda | a_1 + 2a_2 \rangle + \langle \lambda' | a_2 \rangle, |\langle \lambda | a_1 + a_2 \rangle - \langle \lambda' | a_2 \rangle|\})$

$\cup k_6 O(\min \{\langle \lambda | 2a_1 + 3a_2 \rangle - \langle \lambda' | a_1 \rangle, |\langle \lambda | a_1 \rangle - \langle \lambda' | 2a_1 + 3a_2 \rangle|\}, 3 \min \{\langle \lambda | a_1 + 2a_2 \rangle + \langle \lambda' | a_2 \rangle, |\langle \lambda | a_1 + a_2 \rangle - \langle \lambda' | a_2 \rangle|\})$

$\cup k_7 O(\min \{\langle \lambda - \lambda' | a_1 \rangle, |\langle \lambda - \lambda' | a_1 + 3a_2 \rangle, |\langle \lambda - \lambda' | 2a_1 + 3a_2 \rangle|\}, 3 \min \{\langle \lambda - \lambda' | a_1 \rangle, |\langle \lambda - \lambda' | a_1 + 3a_2 \rangle, |\langle \lambda - \lambda' | 2a_1 + 3a_2 \rangle|\})$

$\cup k_8 O(\min \{\langle \lambda + \lambda' | a_1 \rangle, |\langle \lambda - \lambda' | a_1 + 3a_2 \rangle, |\langle \lambda - \lambda' | 2a_1 + 3a_2 \rangle|\}, 3 \min \{\langle \lambda + \lambda' | a_1 \rangle, |\langle \lambda - \lambda' | a_1 + 3a_2 \rangle, |\langle \lambda - \lambda' | 2a_1 + 3a_2 \rangle|\})$

$\cup k_9 O(\min \{\langle \lambda - \lambda' | a_1 \rangle + 3\langle \lambda | a_2 \rangle, |\langle \lambda - \lambda' | 2a_1 + 3a_2 \rangle, \langle \lambda - \lambda' | a_1 \rangle - 3\langle \lambda' | a_2 \rangle\}, 3 \min \{\langle \lambda - \lambda' | a_1 \rangle + 3\langle \lambda | a_2 \rangle, |\langle \lambda - \lambda' | 2a_1 + 3a_2 \rangle, \langle \lambda - \lambda' | a_1 \rangle - 3\langle \lambda' | a_2 \rangle\})$

$\cup k_{10} O(\min \{\langle \lambda + \lambda' | a_1 \rangle + 3\langle \lambda' | a_2 \rangle, |\langle \lambda | 2a_1 + 3a_2 \rangle - \langle \lambda' | a_1 \rangle\}, 3 \min \{\langle \lambda + \lambda' | a_1 \rangle + 3\langle \lambda' | a_2 \rangle, \langle \lambda | 2a_1 + 3a_2 \rangle - \langle \lambda' | a_1 \rangle\})$

$\cup k_{11} O(\min \{\langle \lambda - \lambda' | a_1 \rangle + 3\langle \lambda | a_2 \rangle, |\langle \lambda - \lambda' | 2a_1 + 3a_2 \rangle, \langle \lambda - \lambda' | a_1 \rangle - 3\langle \lambda' | a_2 \rangle\}, 3 \min \{\langle \lambda - \lambda' | a_1 \rangle + 3\langle \lambda | a_2 \rangle, |\langle \lambda - \lambda' | 2a_1 + 3a_2 \rangle, \langle \lambda - \lambda' | a_1 \rangle - 3\langle \lambda' | a_2 \rangle\})$
\[\cup k_{11} O(\min(\langle \lambda | \alpha_1 + 3\alpha_2 \rangle + \langle \lambda' | \alpha_1 \rangle, \langle \lambda - \lambda' | 2\alpha_1 + 3\alpha_2 \rangle + \langle \lambda' | \alpha_1 \rangle, \langle \lambda | \alpha_1 \rangle + \langle \lambda' | \alpha_1 + \alpha_2 \rangle, 3\min(\langle \lambda | \alpha_2 \rangle + \langle \lambda' | \alpha_1 + \alpha_2 \rangle, \langle \lambda - \lambda' | \alpha_1 + 3\alpha_2 \rangle)\}) \]

where the multiplicities \(k_1, \ldots, k_{12}\) are given in terms of orbits sizes by:

\[
k_1 = \frac{1}{12} \begin{vmatrix} |O(\lambda)||O(\lambda')| \end{vmatrix}
\]

\[
k_2 = \frac{1}{12} O((\langle \lambda - \lambda' | \alpha_1 \rangle + 2(\langle \lambda + \lambda' | \alpha_1 + 2\alpha_2 \rangle - \langle \lambda - \lambda' | \alpha_1 \rangle))
\]

\[
k_3 = \frac{1}{12} O((\langle \lambda - \lambda' | \alpha_1 \rangle + 2(\langle \lambda - \lambda' | \alpha_1 + 2\alpha_2 \rangle, 3\langle \lambda - \lambda' | \alpha_2 \rangle))
\]

\[
k_4 = \frac{1}{12} O((\langle \lambda - \lambda' | \alpha_1 \rangle + 2(\langle \lambda + \lambda' | \alpha_1 + 2\alpha_2 \rangle, 3\langle \lambda - \lambda' | \alpha_2 \rangle, 3\langle \lambda - \lambda' | \alpha_1 + 2\alpha_2 \rangle)
\]

As earlier the prove of [15] could be done by writing down the existing list of all special cases following from it. Then each case of the list is easily verify.
Example 3.
\[O(1, 2) \otimes O(3, 1) = O(4, 3) \cup O(5, 1) \cup O(3, 4) \cup O(2, 6) \cup O(1, 6) \cup O(1, 5) \]
\[\cup O(1, 3) \cup 2O(0, 8) \cup 2O(0, 6) \cup 2O(0, 4) \cup 2O(0, 3) \cup O(1, 1). \]

(16)

Orbits and decomposition of product are presented in figure 4. More advanced examples one could find in appendix C. Using one can get

\[\lim_{x \to \frac{1}{2}} O(1, 2) \otimes O(x, 1) \]
\[= O(\frac{3}{2}, 3) \cup O(\frac{5}{2}, 1) \cup O(\frac{3}{2}, 4) \cup O(\frac{1}{2}, \frac{3}{2}) \cup O(\frac{1}{2}, \frac{3}{2}) \cup O(1, \frac{1}{2}) \cup 2O(1, \frac{1}{2}) \]
\[\cup O(\frac{5}{2}, \frac{1}{2}) \cup O(1, \frac{1}{2}) \cup O(\frac{1}{2}, \frac{3}{2}) \cup O(\frac{1}{2}, 1) \]
\[= O(1, 2) \otimes O(\frac{1}{2}, 1). \]

6. Decompositions of products of orbits of \(H_2 \)

Last group considered in the paper is non-crystallographic group \(H_2 \). Some basic information about that group are presented in Appendix D.

A useful general symmetry property of all orbits of \(H_2 \):
\[\lambda \in O(a, b) \iff -\lambda \in O(b, a), \quad a, b \in \mathbb{R}. \]

(17)
In most cases we are interested in \(a, b \in \mathbb{Z}[\tau]\), however \([17]\) is valid for any real \(a\) and \(b\).

For this group one has also three kinds of nontrivial orbits. One can find it for example in \([5]\):

\[
\begin{align*}
O(0,0) &= \{(0,0)\}, \\
O(a,0) &= \{(a,0), (-a,a\tau), (a\tau,-a\tau), (-a\tau,a),(0,-a)\}, \\
O(0,b) &= \{(0,b), (b\tau,-b), (-b\tau,b\tau), (b,-b\tau), (-b,0)\}, \\
O(a,b) &= \{(a,b), (-a,b+a\tau), (a\tau+b\tau,-b-a\tau), \\
&\quad (-a\tau-b\tau,a+b\tau), (b,-a-b\tau), (a+b\tau,-a\tau-b\tau), (-b-a\tau,a), (-b,-a)\}.
\end{align*}
\]

As before product of two orbits of \(H_2\) is written in terms of \(\lambda = (a_1,a_2) = a_1\omega_1 + a_2\omega_2\) and \(\lambda' = (b_1,b_2) = b_1\omega_1 + b_2\omega_2\) and simple roots, i.e.:

\[
\langle \lambda \mid \alpha_j \rangle = a_j, \quad \langle \lambda' \mid \alpha_j \rangle = b_j, \quad \text{for } j = 1, 2 \text{ and } a_1,a_2,b_1,b_2 \in \mathbb{R}^\geq 0.
\]

Proposition 4.

Decomposition of the product \([5]\) of two orbits of \(H_2\) with dominant weights \(\lambda = (a_1,a_2)\) and \(\lambda' = (b_1,b_2)\) for \(a_1,a_2,b_1,b_2 \in \mathbb{R}^\geq 0\) is given by the following formula

\[
O(\lambda) \otimes O(\lambda') = k_1 O(\lambda + \lambda') \\
\cup k_2 O(\langle \lambda - \lambda' \mid a_1 \rangle), \langle \lambda + \lambda' \mid \frac{3}{2} a_1 + a_2 \rangle - \frac{3}{2} \langle \lambda - \lambda' \mid a_1 \rangle) \\
\cup k_3 O(\min(\langle \lambda \mid a_1 \rangle + \tau \langle \lambda' \mid a_1 + a_2 \rangle, \langle \lambda - \lambda' \mid a_1 \rangle + \tau \langle \lambda \mid a_2 \rangle), \\
\quad \min(\langle \lambda' \mid a_2 \rangle + \tau \langle \lambda \mid a_1 + a_2 \rangle, \langle \lambda - \lambda' \mid a_2 \rangle - \tau \langle \lambda' \mid a_1 \rangle)) \\
\cup k_4 O(\min(\langle \lambda \mid a_1 \rangle - \tau \langle \lambda' \mid a_1 + a_2 \rangle, |\langle \lambda - \lambda' \mid a_2 \rangle - \tau \langle \lambda' \mid a_1 \rangle|), \\
\quad \min(\langle \lambda \mid a_2 \rangle + \langle \lambda' \mid a_1 + \tau a_2 \rangle, \langle \lambda' \mid a_2 \rangle + \langle \lambda \mid a_1 + \tau a_2 \rangle, \\
\quad |\langle \lambda - \lambda' \mid a_1 + a_2 \rangle|) \\
\cup k_5 O(\min(\langle \lambda \mid a_1 + \tau a_2 \rangle - \langle \lambda' \mid a_1 \rangle, \langle \lambda \mid a_1 \rangle + \langle \lambda' \mid a_2 \rangle), \\
\quad |\langle \lambda - a_1 + \tau a_2 \rangle - \tau \langle \lambda' \mid a_1 \rangle + \tau \langle \lambda \mid a_2 \rangle|) \\
\cup k_6 O(\langle \lambda + \lambda' \mid a_1 + \frac{3}{2} a_2 \rangle - \frac{3}{2} \langle \lambda - \lambda' \mid a_2 \rangle), |\langle \lambda - \lambda' \mid a_2 \rangle| \\
\cup k_7 O(\min(\langle \lambda - \lambda' \mid \alpha_1 \rangle + \tau \langle \lambda' \mid a_2 \rangle, \langle \lambda \mid a_1 \rangle + \tau \langle \lambda \mid a_1 + a_2 \rangle), \\
\quad |\langle \lambda - \lambda' \mid \alpha_1 \rangle + \tau \langle \lambda \mid a_1 + a_2 \rangle, \langle \lambda - \lambda' \mid a_2 \rangle + \tau \langle \lambda \mid a_1 \rangle|) \\
\cup k_8 O(\min(\langle \lambda \mid \alpha_1 \tau \mid a_2 \rangle + \langle \lambda' \mid \alpha_1 \rangle, \langle \lambda \mid \alpha_1 \rangle + \langle \lambda' \mid \alpha_1 \tau \rangle + \alpha_2), \\
\quad |\langle \lambda - \lambda' \mid \alpha_1 + \tau a_2 \rangle|), |\langle \lambda - \lambda' \mid a_2 \rangle - \tau \langle \lambda \mid a_1 + a_2 \rangle|, \\
\quad |\langle \lambda \mid a_2 \rangle - \tau \langle \lambda' \mid a_1 + a_2 \rangle|) \\
\cup k_9 O(\min(\langle \lambda \mid \alpha_1 \rangle + \tau \langle \lambda \mid a_2 \rangle, \langle \lambda \mid \alpha_2 \rangle + \langle \lambda' \mid \alpha_1 \rangle, \\
\quad |\langle \lambda - \lambda' \mid \alpha_1 + \tau a_2 \rangle - \tau \langle \lambda \mid a_1 + a_2 \rangle|), \\
\quad |\langle \lambda \mid \alpha_1 + \tau a_2 \rangle - \langle \lambda' \mid a_2 \rangle, |\langle \lambda \mid a_2 \rangle + \langle \lambda' \mid \alpha_1 \rangle|)
\end{align*}
\]
\[\|\langle \lambda | \tau\alpha_1 + \alpha_2 \rangle - \tau\langle \lambda' | \alpha_1 + \alpha_2 \rangle \| \]

\[\cup k_{10} O(A,B), \]

where the multiplicities \(k_1, \ldots, k_{10} \) are given in terms of orbit sizes by:

\[A = \left| \tau \max\{\langle \lambda | \alpha_2 \rangle - \langle \lambda' | \alpha_1 \rangle, \langle \lambda' | \alpha_2 \rangle - \langle \lambda | \alpha_1 \rangle\} \cdot \left(1 - \sign(\max\{\langle \lambda | \alpha_2 \rangle - \langle \lambda' | \alpha_1 \rangle, \langle \lambda' | \alpha_2 \rangle - \langle \lambda | \alpha_1 \rangle\})\right)\right| + \min\{\langle \lambda | \alpha_2 \rangle - \langle \lambda' | \alpha_1 \rangle, \langle \lambda' | \alpha_2 \rangle - \langle \lambda | \alpha_1 \rangle, \tau(\lambda - \lambda' | \alpha_1 + \alpha_2)\}\]

\[B = \left| \langle \lambda | \tau\alpha_1 + (1 + \tau)\alpha_2 \rangle - \langle \lambda' | (1 + \tau)\alpha_1 + \tau\alpha_2 \rangle \right| \cdot \left(1 - \sign(\min\{\langle \lambda | \alpha_2 \rangle - \langle \lambda' | \alpha_1 + \alpha_2 \rangle, \langle \lambda' | \alpha_2 \rangle - \langle \lambda | \alpha_1 + \alpha_2 \rangle\})\right) \]

\[+ \left| \langle \lambda | \tau\alpha_1 + (1 + \tau)\alpha_2 \rangle - \langle \lambda' | (1 + \tau)\alpha_1 + \tau\alpha_2 \rangle \right| \cdot \left(1 - \sign(\min\{\langle \lambda | \alpha_2 \rangle - \langle \lambda' | \alpha_1 + \alpha_2 \rangle, \langle \lambda' | \alpha_2 \rangle - \langle \lambda | \alpha_1 + \alpha_2 \rangle\})\right) \]

\[+ \left| \langle \lambda | \tau\alpha_1 + (1 + \tau)\alpha_2 \rangle - \langle \lambda' | (1 + \tau)\alpha_1 + \tau\alpha_2 \rangle \right| \cdot \left(1 - \sign(\min\{\langle \lambda | \alpha_2 \rangle - \langle \lambda' | \alpha_1 + \alpha_2 \rangle, \langle \lambda' | \alpha_2 \rangle - \langle \lambda | \alpha_1 + \alpha_2 \rangle\})\right) \]

\[+ \left| \langle \lambda | \tau\alpha_1 + (1 + \tau)\alpha_2 \rangle - \langle \lambda' | (1 + \tau)\alpha_1 + \tau\alpha_2 \rangle \right| \cdot \left(1 - \sign(\min\{\langle \lambda | \alpha_2 \rangle - \langle \lambda' | \alpha_1 + \alpha_2 \rangle, \langle \lambda' | \alpha_2 \rangle - \langle \lambda | \alpha_1 + \alpha_2 \rangle\})\right) \]

\[+ \left| \langle \lambda | \tau\alpha_1 + (1 + \tau)\alpha_2 \rangle - \langle \lambda' | (1 + \tau)\alpha_1 + \tau\alpha_2 \rangle \right| \cdot \left(1 - \sign(\min\{\langle \lambda | \alpha_2 \rangle - \langle \lambda' | \alpha_1 + \alpha_2 \rangle, \langle \lambda' | \alpha_2 \rangle - \langle \lambda | \alpha_1 + \alpha_2 \rangle\})\right) \]

\[+ \left| \langle \lambda | \tau\alpha_1 + (1 + \tau)\alpha_2 \rangle - \langle \lambda' | (1 + \tau)\alpha_1 + \tau\alpha_2 \rangle \right| \cdot \left(1 - \sign(\min\{\langle \lambda | \alpha_2 \rangle - \langle \lambda' | \alpha_1 + \alpha_2 \rangle, \langle \lambda' | \alpha_2 \rangle - \langle \lambda | \alpha_1 + \alpha_2 \rangle\})\right) \]

and

\[k_1 = \frac{1}{10} \frac{|O(\lambda)||O(\lambda')|}{|O(\lambda + \lambda')|} \]

\[k_2 = \frac{1}{10} \frac{|O(\lambda)||O(\lambda')|}{|O(\langle \lambda - \lambda' | \alpha_1 \rangle, \langle \lambda + \lambda' | \alpha_1 + \alpha_2 \rangle - \frac{1}{2}(\langle \lambda - \lambda' | \alpha_1 \rangle)|} \]

\[k_3 = \frac{1}{10} |O(\lambda)||O(\lambda')| \left/ |O(\min\{\langle \lambda | \alpha_1 \rangle + \tau\langle \lambda' | \alpha_1 + \alpha_2 \rangle, \langle \lambda - \lambda' | \alpha_1 \rangle + \tau\langle \lambda | \alpha_2 \rangle\})|\right. \]

\[\cdot \min\{\langle \lambda | \alpha_2 \rangle + \tau\langle \lambda | \alpha_1 + \alpha_2 \rangle, \langle \lambda - \lambda' | \alpha_2 \rangle - \tau\langle \lambda' | \alpha_1 \rangle\} \]
k_9 = \frac{1}{10} |O(\lambda)||O(\lambda')|/\left|O(\min \{\langle \lambda | \alpha_1 \rangle + \langle \lambda' | \tau \alpha_1 + \alpha_2 \rangle, \langle \lambda | \alpha_2 \rangle + \langle \lambda' | \alpha_1 \rangle\}, |\langle \lambda' | \alpha_2 \rangle - \tau \langle \lambda | \alpha_1 + \alpha_2 \rangle\}|\right| \cdot \left|\langle \lambda | \alpha_2 \rangle + \langle \lambda' | \alpha_1 \rangle, |\langle \lambda | \tau \alpha_2 \rangle - \tau \langle \lambda' | \alpha_1 + \alpha_2 \rangle\}|\right|

k_{10} = \frac{1}{10} \frac{|O(\lambda)||O(\lambda')|}{|\langle \alpha, \beta \rangle|}.

The prove of (18) is could be again done by writing of existing list of all special cases following from it. Then each case of the list is easily verified.

Example 4.

O(1, 2) \otimes O(3, 1) = O(4, 3) \cup O(2, 3 + \tau) \cup O(2 - \tau, 3\tau - 1) \cup O(\tau - 1, 1)
\cup O(2 + \tau, 1 + \tau) \cup O(4 + \tau, 1) \cup O(2\tau - 3, 3\tau - 2) \cup O(2\tau - 2, 3\tau - 1)
\cup O(3\tau - 3, 2\tau - 1) \cup 2O(1, 0).

Orbits and decomposition of product (19) are presented in figure 5. More advanced examples one could find in appendix D. Using (5) one can get

$\lim_{y \to \tau} O(1, y) \otimes O(3, 1)$
$= O(4, 1 + \tau) \cup O(1, 2\tau) \cup O(2, 1 + 2\tau) \cup O(2 - \tau, 1 + \tau) \cup O(\tau - 1, 1 + 2\tau)
\cup O(2 + \tau, 2\tau - 1) \cup O(4 + \tau, \tau - 1) \cup O(2\tau - 2, 1 + \tau)
\cup O(2\tau - 3, \tau) \cup 2O(3 - \tau, 0)
= O(1, \tau) \otimes O(3, 1).$
Remarks

The orbits of Weyl groups of simple algebra are part of the weight system of irreducible representations. Working with the representations it can be advantageous to work with simple objects, namely the Weyl group orbits rather than the weight systems. The group H_2 is in the physics the dihedral group of order 10 and plays an important role in modeling two dimensional quasicrystals, see [23, 24, 25].

Orbits of the group are indispensable in defining families of orthogonal functions and polynomials [18, 26, 27]. The discretization of the orbit functions is interesting problem known for the Weyl groups [28] but is not known for H_2 functions and polynomials, which are rather promising for exploration in digital data processing.

The orthogonality of orbit functions of group H_2 has not been found yet and it is challenging problem to be solved.

Similar problems for H_3 and H_4 groups could be solved by the same way.

The orbits could be viewed as polytops. The decomposition of their product can be seen as an onion-like structure form by concentric orbits. Such types of structure are very interesting for example to describe carbon and carbon nanotubes, see [5, 13].

The formulas (8),(12),(15)(18) work also in the case when the orbits are points not belonging to the weight latices. Their coordinates of their dominants weights are nonnegative real numbers. The congruence classes are lost in this case. Illustration of these is in examples of G_2 and H_2, and limits were calculated for such values. This fact suggest that orthogonality of orbit functions for nonnegative real numbers should work too. This is good starting point to another paper.

Calculation of any product of two orbits of considered groups is specially effective when one uses computer programs as Mathematica, Maple or others. For such calculations it is enough to use elementary functions. One could also found, by analogy, formulae for other groups not described in the paper.

Acknowledgements.

The author expresses her gratitude to Centre de Recherches Mathématiques, Université de Montréal for the hospitality extended to her during her postdoctoral fellowship and to MITACS and ODDA Technologies for partial support of this work.

The author is also grateful to J.Patera for helpful comments and advice.

Appendix A.

In this section sketch of proof of proposition 1 is presented. Firstly when one rewrite (8) in terms of (7) then gets

\[
O(a_1, a_2) \otimes O(b_1, b_2) = \begin{cases}
 k_1 \ O(a_1 + b_1, a_2 + b_2) & a_1, a_2, b_1, b_2 \in \mathbb{R}_{>0} \\
 \cup k_2 \ O(|a_1 - b_1|, a_2 + b_2 + \min\{a_1, b_1\}) \\
 \cup k_3 \ O(a_1 + b_1 + \min\{a_2, b_2\}, |a_2 - b_2|) \\
 \cup k_4 \ O(|b_1 + \min\{a_2, b_2 - a_1\}|, |a_2 + \min\{b_1, a_1 - b_2\}|) \\
 \cup k_5 \ O(|a_1 + \min\{b_2, a_2 - b_1\}|, |b_2 + \min\{a_1, b_1 - a_2\}|) \\
 \cup k_6 \ O(||a_1 + a_2 - b_1 - b_2| - |\min\{a_1 - b_2, b_1 - a_2, 0\}||, \\
 \quad |a_1 + a_2 - b_1 - b_2| - |\min\{-a_1 + b_2, -b_1 + a_2, 0\}||)
\end{cases}
\]
where

\[k_1 = \frac{1}{6} \left[O(a_1, a_2) \right] | O(b_1, b_2) \]
\[k_2 = \frac{1}{6} \left[O(a_1, a_2) \right] | O(b_1, b_2) \]
\[k_3 = \frac{1}{6} \left[O(a_1, a_2) \right] | O(b_1, b_2) \]
\[k_4 = \frac{1}{6} \left[O(\{a_1, a_2\} \cup \{a_2, b_1\}) \right] | O(b_1, b_2) \]
\[k_5 = \frac{1}{6} \left[O(\{a_1, a_2\} \cup \{a_2, b_1\}) \right] | O(b_1, b_2) \]
\[k_6 = \frac{1}{6} \left[O(\{a_1, a_2\} \cup \{a_2, b_1\}) \right] | O(b_1, b_2) \]

It is obvious that using (7) one gets from (8) equation (20).

Proof 1. Now to check (20), it is enough to consider all special cases for \(a_1, a_2, b_1, b_2 \in \mathbb{R}^0 \).

- **First, let consider** \(a_1 = a_2 = b_1 = b_2 = 0 \), then
 \[
 O(0, 0) \otimes O(0, 0) = \frac{1}{6} O(0, 0) \cup \frac{1}{6} O(0, 0) \cup \frac{1}{6} O(0, 0) \cup \frac{1}{6} O(0, 0) \cup \frac{1}{6} O(0, 0) = O(0, 0).
 \]
 Similarly, when \(a_1, a_2 \neq 0 \) and \(b_1 = b_2 = 0 \), then
 \[
 O(a_1, a_2) \otimes O(0, 0) = \frac{1}{6} O(a_1, a_2) \cup \frac{1}{6} O(a_1, a_2) \cup \frac{1}{6} O(a_1, a_2) \cup \frac{1}{6} O(a_1, a_2) \cup \frac{1}{6} O(a_1, a_2) = O(a_1, a_2).
 \]

- **Next special case which one gets from (8) or equivalently from (20)** for \(0 \neq a_1 \neq b_1 \neq 0 \) and \(a_2 = b_2 = 0 \) following product
 \[
 O(a_1, 0) \otimes O(b_1, 0) = \frac{1}{6} O(a_1 + b_1, 0) \cup \frac{1}{6} O(\{a_1 - b_1\}, \{a_1, b_1\}) \]
 \[
 \cup \frac{1}{6} O(\{a_1 + b_1\}, \{a_1 - b_1\}, \{a_1, b_1\}) \cup \frac{1}{6} O(\{a_1 - b_1\}, \{a_1, b_1\}) = O(a_1, 0) \otimes O(b_1, 0) = \frac{1}{6} O(a_1 + b_1, 0) \cup \frac{1}{6} O(\{a_1 - b_1\}, \{a_1, b_1\}) \]
 \[
 \cup \frac{1}{6} O(\{a_1 + b_1\}, \{a_1 - b_1\}, \{a_1, b_1\}) \cup \frac{1}{6} O(\{a_1 - b_1\}, \{a_1, b_1\}) = O(a_1, 0) \otimes O(b_1, 0).
 \]

- **When** \(0 \neq a_1 \neq b_1 \neq 0 \) and \(a_2 = b_2 = 0 \), then
 \[
 O(a_1, 0) \otimes O(b_1, 0) = \frac{1}{6} O(2a_1, 0) \cup \frac{1}{6} O(0, a_1) \cup \frac{1}{6} O(2a_1, 0) \cup \frac{1}{6} O(0, a_1) \]
 \[
 \cup \frac{1}{6} O(0, a_1) \cup \frac{1}{6} O(0, a_1) = O(2a_1, 0) \cup O(0, a_1).
 \]

- **By analogy to above one can check that** for \(a_1, b_2 \neq 0 \) and \(a_2 = b_1 = 0 \) the formula (8) takes the form
 \[
 O(a_1, 0) \otimes O(0, b_2) = \begin{cases}
 O(a_1, b_2) \cup O(a_1 - b_2, 0) & \text{for } a_1 > b_2 \\
 O(0, -a_1 + b_2) \cup O(a_1, b_2) & \text{for } a_1 < b_2 \\
 O(a_1, a_1) \cup 3O(0, 0) & \text{for } a_1 = b_2
 \end{cases}
 \]

- **The case** \(O(0, a_2) \otimes O(0, b_2) \) is obtained by interchanging the first and second coordinates in each of orbits (when one wants to check other propositions, one has to use symmetries for appropriate groups or check such case separately).
• When one considers $a_1, a_2, b_1 \neq 0$ all different from each other and $b_2 = 0$, then the product $O(a_1, a_2) \otimes O(b_1, 0)$ could be simplified to the form

$$O(a_1, a_2) \otimes O(b_1, 0) = O(a_1 + b_1, a_2) \cup O(|a_1 + \min\{0, a_2 - b_1\}|, \min\{a_1, -a_2 + b_1\}) \cup O(|a_1 - b_1|, a_2 + \min\{a_1, b_1\})$$

Now all special cases should be considered separately, i.e.:

○ for $a_2 > b_1, a_1 > b_1$ one gets

$$O(a_1, a_2) \otimes O(b_1, 0) = O(a_1 + b_1, a_2) \cup O(a_1 - b_1, a_2 + b_1) \cup O(a_1, a_2 - b_1)$$

○ for $a_2 > b_1, a_1 < b_1$ one gets

$$O(a_1, a_2) \otimes O(b_1, 0) = O(a_1 + b_1, a_2) \cup O(-a_1 + b_1, a_1 + a_2) \cup O(a_1, a_2 - b_1)$$

○ for $a_2 < b_1, a_1 > b_1$ one gets

$$O(a_1, a_2) \otimes O(b_1, 0) = O(a_1 + b_1, a_2) \cup O(a_1 - b_1, a_2 + b_1) \cup O(a_1 + a_2 - b_1, -a_2 + b_1)$$

○ for $a_2 < b_1, a_1 < b_1$ and $a_1 + a_2 > b_1$ one gets

$$O(a_1, a_2) \otimes O(b_1, 0) = O(a_1 + b_1, a_2) \cup O(-a_1 + b_1, a_1 + a_2) \cup O(a_1 + a_2 - b_1, -a_2 + b_1)$$

○ for $a_2 < b_1, a_1 < b_1$ and $a_1 + a_2 < b_1$ one gets

$$O(a_1, a_2) \otimes O(b_1, 0) = O(a_1 + b_1, a_2) \cup O(-a_1 + b_1, a_1 + a_2) \cup O(-a_1 - a_2 + b_1, a_1)$$

• In the case $a_1 = b_1 \neq 0$ and $b_2 = 0$ one gets

$$O(a_1, a_2) \otimes O(a_1, 0) = O(2a_1, a_2) \cup O(\min\{a_1, a_2\}, |a_1 - a_2|)$$

$$= \begin{cases} O(2a_1, a_2) \cup 2O(0, a_1 + a_2) \cup O(a_1, -a_1 + a_2) & \text{for } a_1 < a_2 \\ O(2a_1, a_2) \cup 2O(0, a_1 + a_2) \cup O(a_2, a_1 - a_2) & \text{for } a_1 > a_2 \end{cases}$$

• For other special case $a_1 = a_2 = b_1 \neq 0$ and $b_2 = 0$ one gets another subcases:

$$O(a_1, a_1) \otimes O(a_1, 0) = O(2a_1, a_1) \cup 2O(0, 2a_1) \cup O(a_1, 0)$$

• Because of the biggest amount of subcases the most difficult to verify is the generic case, when $a_1, a_2, b_1, b_2 \neq 0$. Below some of them are presented:

○ for $-a_1 + b_2 > a_2 - b_1, a_1 < b_1$ and $a_2 > b_2, a_1 + a_2 > b_1, a_1 > b_2$

$$O(a_1, a_2) \otimes O(b_1, b_2) = O(a_1 + b_1, a_2 + b_2) \cup O(a_1 + a_2 - b_1, -a_2 + b_1 + b_2) \cup O(-a_1 + b_1, a_1 + a_2 + b_2) \cup O(-a_1 + b_1 + b_2, a_1 + a_2 - b_2) \cup O(a_1 + b_1 + b_2, a_2 - b_2) \cup O(-a_1 - a_2 + b_1 + b_2, a_1 - b_2)$$
\(O(a_1, a_2) \otimes O(b_1, b_2) \)

\[
= O(a_1 + b_1, a_2 + b_2) \cup O(a_1 + a_2 - b_1, -a_2 + b_1 + b_2) \\
\cup O(-a_1 + b_1, a_1 + a_2 + b_2) \cup O(-a_1 + b_1 + b_2, a_1 + a_2 - b_2) \\
\cup O(|a_2 - b_1|, -a_1 - a_2 + b_1 + b_2 + \min\{0, a_2 - b_1\}) \\
\cup O(a_1 + b_1 + b_2, a_2 - b_2)
\]

\(O(a_1, a_2) \otimes O(b_1, b_2) = O(a_1 + b_1, a_2 + b_2) \cup O(-a_1 + b_1, a_1 + a_2 + b_2) \\
\cup O(-a_1 - a_2 + b_1, a_1 + b_2) \cup O(-a_1 + b_1 + b_2, a_1 + a_2 - b_2) \\
\cup O(a_1 + b_1 + b_2, a_2 - b_2) \\
\cup O(|a_1 + a_2 - b_1 - b_2 + \min\{0, a_1 - b_2\}|, |a_1 - b_1|) ;
\]

\(O(a_1, a_2) \otimes O(b_1, b_2) = O(a_1 + b_1, a_2 + b_2) \cup O(-a_1 + b_1, a_1 + a_2 + b_2) \\
\cup O(a_1 + b_1 + b_2, a_2 - b_2) \\
\cup O(|a_1 + a_2 - b_1 - b_2 + \min\{0, a_1 - b_2\}|, |a_1 + a_2 - b_1 - b_2 + \min\{0, a_2 - b_1\}|) ;
\]

\(O(a_1, a_2) \otimes O(b_1, b_2) = O(a_1 + b_1, a_2 + b_2) \cup O(a_1 - b_1, a_2 + b_1 + b_2) \\
\cup O(a_1 + a_2 - b_1, -a_2 + b_1 + b_2) \cup O(a_1 + a_2 + b_1, -a_2 + b_2) \\
\cup O(b_1 + \min\{a_2, a_1 + b_2\}, |a_1 + a_2 - b_2|) \\
\cup O(|a_1 + a_2 - b_1 - b_2 + \min\{0, a_1 - b_2\}|, |a_1 + a_2 - b_1 - b_2 + \min\{0, a_2 - b_1\}|) ;
\]

\(O(a_1, a_2) \otimes O(b_1, b_2) = O(a_1 + b_1, a_2 + b_2) \\
\cup O(|a_1 - b_1|, a_2 + b_2 + \min\{a_1, b_1\}) \\
\cup O(a_1 + b_1 + \min\{a_2, b_2\}, |a_2 - b_2|) \\
\cup O(|- a_1 + b_1 + b_2, a_2 + \min\{b_1, a_1 - b_2\}|) \\
\cup O(a_1 + \min\{a_2 - b_1, b_2\}, | -a_2 + b_1 + b_2|) \\
\cup O(|- a_1 + b_2|, |- a_1 - a_2 + b_1 + b_2 + \min\{0, -a_1 + b_2\}|).
\]

- In the end one could present some special cases

\(O(a_1, a_1) \otimes O(a_1, a_1) = \\
O(2a_1, 2a_1) \cup 2O(0, 3a_1) \cup 2O(a_1, a_1) \cup 2O(3a_1, 0) \cup 6O(0, 0) ;
\)

\(O(a_1, a_2) \otimes O(a_2, a_1) = O(a_1 + a_2, a_1 + a_2) \\
\cup O(a_1, a_1) \cup O(a_2, a_2) \cup O(|a_1 - a_2|, a_1 + a_2 + \min\{a_1, a_2\})
\)
One can check the rest of degenerated cases which are not describe to check formulae to the end. Each of them are easily verify directly. Hence the prove is completed.

Appendix B.

Below are presented some special cases for $a, b > 0$ and $a \neq b$:

\[
O(a, a) \otimes O(a, a) = O(2a, 2a) \cup 2O(2a, a) \cup 2O(0, a) \cup 2O(0, 3a) \\
\cup 2O(2a, 0) \cup 2O(4a, 0) \cup 8O(0, 0) ;
\]

\[
O(a, b) \otimes O(a, b) = O(2a, 2b) \cup 2O(0, a) \cup 2O(0, a + 2b) \cup 2O(2b, a) \\
\cup 2O(2a + 2b, 0) \cup 2O(2b, 0) \cup 8O(0, 0) ;
\]

\[
O(a, 0) \otimes O(b, 0) = O(a + b, 0) \cup O(|a - b|, 0) \cup O(|a - b|, \min\{a, b\}) ;
\]

\[
O(a, b) \otimes O(b, a) = O(a + b, a + b) \cup O(a + b, a) \cup O(a + b, b) \\
\cup O(|a - b|, \min\{a, b\}) \cup O(|a - b|, a + b + \min\{a, b\}) \\
\cup O(a + b + \min\{a, b\}, |a - b|) \cup O(a + b + 2 \min\{a, b\}, |a - b|) \\
\cup 2O(|a - b|, 0) \cup 2O(a + b, 0) .
\]

Appendix C.

Then using formula $[15]$ one could present special cases:

\[
O(a, a) \otimes O(a, a) = O(2a, 2a) \cup 2O(a, 3a) \cup 2O(a, a) \cup 2O(0, 5a) \\
\cup 2O(0, 4a) \cup 2O(3a, 0) \cup 2O(2a, 0) \cup 2O(0, a) \cup 2O(a, 0) \cup 12O(0, 0) ;
\]

\[
O(a, 0) \otimes O(a, 0) = O(2a, 0) \cup 2O(0, a) \cup 2O(0, 3a) \cup 6O(0, 0) ;
\]

\[
O(a, b) \otimes O(a, b) = O(2a, 2b) \cup 2O(0, b) \cup 2O(0, 3a + b) \cup 2O(0, 3a + 2b) \\
\cup 2O(0, a) \cup 2O(a, b) \cup 2O(0, 3a) \cup 2O(0, a + b, 0) \\
\cup 2O(2a + b, 0) \cup 12O(0, 0) ;
\]

\[
O(a, b) \otimes O(b, a) = O(a + b, a + b) \cup O(a, a + 2b) \cup O(b, 2a + b) \\
\cup O(|a - b|, a + b + \min\{3a, 3b\}) \cup O(\min\{a, 2b\}, |a - 2b|) \\
\cup O(a + b + \min\{a, b\}, |a - b|) \cup O(\min\{a, b\}, |a - b|) \\
\cup O(\min\{2a, b\}, |b - 2a|) \cup 2O(0, 2a + 2b) \cup 2O(0, |a - b|) .
\]

Appendix D.

Non-crystallographic group H_2 differ from crystallographic ones which are described in many papers. Below some facts concerning H_2, collected from $[1, 5, 20, 21, 23, 24]$ are presented.

In the complex plane root system for H_2 could be a set of 10th roots of unity

\[
\left\{\pm \zeta^j \mid \zeta = e^{\frac{2\pi i}{5}} \right\} \subset \mathbb{C}.
\]

In this paper the simple roots were chosen as $\alpha_1 = \sqrt{2}\zeta$, $\alpha_2 = \sqrt{2}\zeta^2$, then the highest root is $\xi = \tau \alpha_1 + \tau \alpha_2$ (see figure $[6]$ and

\[
\Delta = \{\pm \alpha_1, \pm \alpha_2, \pm (\alpha_1 + \tau \alpha_2), \pm (\tau \alpha_1 + \alpha_2)\} .
\]
where $\tau = \frac{1}{2}(1 + \sqrt{5}) = 2 \cos \frac{\pi}{5}$, $\tau' = \frac{1}{2}(1 - \sqrt{5}) = -2 \cos \frac{2\pi}{5}$. There are solutions of the equation on golden ratio $x^2 - x - 1 = 0$. It is easy to check that $\tau \cdot \tau' = -1$, $\tau + \tau' = 1$.

The Cartan matrix of H_2 and inverse Cartan matrix are:

$$C = \begin{pmatrix} 2 (\alpha_i | \alpha_j) \\ \langle \alpha_j | \alpha_j \rangle \end{pmatrix} = \begin{pmatrix} 2 & -\tau \\ -\tau & 2 \end{pmatrix}, \quad C^{-1} = \frac{1}{5} \begin{pmatrix} 4 + 2\tau & 1 + 3\tau \\ 1 + 3\tau & 4 + 2\tau \end{pmatrix}.$$

The relation between the dual basis is given in terms of Cartan matrix, see [2] and it is presented in figure [7].

After presentation of basic facts for the group H_2 one could calculate some special cases of product of two orbits for $a, b > 0$ and $a \neq b$:

$$O(a, a) \otimes O(a, a) = O(2a, 2a) \cup 2O(a\tau, a\tau) \cup 2O(-a + a\tau, -a + a\tau) \cup 2O(0, -a + 2a\tau) \cup 2O(-a + 2a\tau, 0) \cup 2O(2a + a\tau, 0) \cup 2O(0, 2a + a\tau) \cup 10O(0, 0);$$
\(O(a, 0) \otimes O(0, a) = O(a, a) \cup O(-a + a \tau, -a + a \tau) \cup 5O(0, 0) \);

\(O(a, b) \otimes O(a, b) = O(2a, 2b) \cup 2O(b \tau, a \tau) \cup 2O(-a + a \tau, -b + b \tau) \)
\(\cup 2O(0, 2b + a \tau) \cup 2O(2a + b \tau, 0) \)
\(\cup 2O(0, -b + \tau(a + b)) \cup 2O(-a + \tau(a + b), 0) \)
\(\cup 2O(\max\{0, a - b\}(1 + \tau), \max\{0, b - a\}(1 + \tau)) \);

\(O(a, b) \otimes O(b, a) = O(a + b, a + b) \cup O(b, a + a \tau, b - a + a \tau) \cup O(a + b + b \tau, a + b + b \tau) \)
\(\cup O(|a - b|, a + b + \min\{a, b\} \tau) \cup O(a + b + \min\{a, b\} \tau, |a - b|) \)
\(\cup O((1 - \tau)(\min\{a, b\} - \max\{a, b\}), \min\{|a - b \tau - a \tau|, |b - a \tau - b \tau|\}) \)
\(\cup O(\min\{|a - b \tau - a \tau|, |b - a \tau - b \tau|\}, (1 - \tau)(\min\{a, b\} - \max\{a, b\})) \)
\(\cup O(-b + b \tau, -b + b \tau) \cup O(-a + a \tau, -a + a \tau) \cup 10O(0, 0) . \)

Orbits products for \(H_2 \) are the most interesting. Because of properties of \(\tau \) it could be rewrite in very different form, for example
\(O(a, 0) \otimes O(a, 0) = O(2a, 0) \cup 2O(0, a \tau) \cup 2O(\frac{2a}{\tau}, 0) \)
\(= O(2a, 0) \cup 2O(0, a \tau) \cup 2O(-a + a \tau, 0) \)

and also one can calculate orbit products for multiplication of \(\tau \) or \(-\tau' = -1 + \tau = \frac{1}{\tau} \)
\(O(\tau, 0) \otimes O(\tau, 0) = O(2\tau, 0) \cup 2O(0, 1 + \tau) \cup 2O(1, 0) ; \)
\(O(\tau, 0) \otimes O(1/\tau, 0) = O(\tau, 0) \otimes O(\tau - 1, 0) \)
\(= O(1, 1) \cup O(2\tau - 1, 0) \cup O(\tau - 1, \tau - 1) \)
\(= O(1, 1) \cup O(\frac{2\tau}{\tau + 1}, 0) \cup O(\frac{1}{\tau}, \frac{1}{\tau}) ; \)
\(O(\frac{1}{\tau}, 0) \otimes O(\frac{1}{\tau}, 0) = O(-1 + \tau, 0) \otimes O(-1 + \tau, 0) = O(-\tau', 0) \otimes O(-\tau', 0) \)
\(= O(\frac{2}{\tau}, 0) \cup 2O(\frac{1}{1+\tau}, 0) \cup 2O(0, 1) \)
\(= O(-2 + 2\tau, 0) \cup 2O(2 - \tau, 0) \cup 2O(0, 1) \)
\(= O(-2\tau', 0) \cup 2O(1 + \tau', 0) \cup 2O(0, 1) . \)

This group has the largest potential among all described groups in this paper and it is a very good staring point to another paper.

References

[1] Humphreys J.E., Reflection groups and Coxeter groups, Cambridge University Press, 1990.
[2] Kane R., Reflection Groups and Invariant Theory, New York: Springer, 2001
[3] Moody R.V., Patera J., Fast recursion formula for weight multiplicities, Bull. Amer. Math. Soc., 7 (1982) 237-242
[4] Brenner M.R., Moody R.V., Patera J., Tables of dominant weight multiplicities for representations of simple Lie algebras, Marcel Dekker, New York 1985
[5] Håková L., Larouche M., Patera J., The rings of \(n \)-dimensional polytopes, J. Phys. A: Math. Theor., 41 (2008) 495202; [arXiv:0901.4686](http://arxiv.org/abs/0901.4686)
[6] Champagne B., Kijiri M., Patera J., Sharp R.T., Description of reflection generated polytopes using decorated Coxeter diagrams, Can. J. Phys., 73 (1995) 566-584.
[7] Patera J., Sharp R.T., Generating functions for characters of group representations and their applications, Lecture Notes in Physics, 94, 1979, pp 175-183
[8] Slansky R., Group theory for unified model building, Phys. Rep., 79 (1981) 1128
[9] Ramond P., Group Theory: A Physicist’s Survey, Cambridge University Press (2010)
[10] Bremner M.R., Fast computation of weight multiplicities, Journal of Symbolic Computation, 2 (1986), no. 4, 357-363.
[11] Tereszkiewicz A., Decomposition of Weyl group orbit products of \(W(A_2) \), Geometric Methods in Physics, XXXI Workshop, Białowieża, Poland, June 24-30, 2012, Birkhäuser Verlag, Basel, 2013, pp. 163-168.
[12] Moody R.V., Patera J., General charge conjugation operators in simple Lie groups, J. Math. Phys., 25 (1984) 2838-2847
[13] Twarock R., New group structures for Carbon onions and Carbon nanotubes via affine extensions of non-crystallographic Coxeter groups, Phys. Lett. A, 300 (2002) 437-444
[14] Grimm S., Patera J., Decomposition of tensor products of the fundamental representations of \(E_8 \), in Advances in Mathematical Sciences – CRM’s 25 Years, ed. L. Vinet, CRM Proc. Lecture Notes, 11, Amer. Math. Soc., Providence, RI, (1997) 329–355pp.
[15] Larouche M., Nesterenko M., Patera J., Branching rules for orbits of the Weyl group of the Lie algebra \(A_n \), J. Phys. A: Math. Theor., 42 (2009) 485203 (14pp); arXiv:0909.2337
[16] Larouche M., Patera J., Branching rules for Weyl group orbits of simple Lie algebras \(B_n \), \(C_n \) and \(D_n \), J. Phys. A: Math. Theor., 44 (2011) 37pp.
[17] Lemire F.W., Patera J., Szajewska M., Dominant weight multiplicities in hybrid characters of \(B_n, C_n, F_4, G_2 \), (2012) arXiv:1205.0904v1 [math-ph]
[18] Klimyk A., Patera J., Orbit functions, (SIGMA) Symmetry, Integrability and Geometry: Methods and Applications, 2 (2006) 006, 60pp.
[19] Moody R.V., Patera J., Orthogonality within the Families of \(C- \), \(S- \), and \(E- \) Functions of Any Compact Semisimple Lie Group, SIGMA, 2 (2006), 076, 14pp.
[20] Patera J., Non-crystallographic root systems and quasicrystals, in The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 489, Kluwer Acad. Publ., Dordrecht, 1997, 443-465
[21] Chen L., Moody R.V., Patera J., Non-crystallographic root systems, in Quasicrystals and Discrete Geometry (Toronto, ON, 1995), Fields Inst. Monogr., 10, Amer. Math. Soc., Providence, RI, 1998, 135-178
[22] Lemire F.W., Patera J., Congruence classes of finite representations of simple Lie superalgebras, J. Math. Phys., 23 (1982) 1409-144
[23] Twarock R., An affine extension of non-crystallographic Coxeter groups with applications in the theory of quasicrystals and integrable systems, Czech J. Phys., 51 (2001), 400-408
[24] Patera J., Twarock R., Affine extension of noncrystallographic Coxeter groups and quasicrystals, J.Phys.A: Math.Gen., 35 (2002) 1551-1574
[25] Grundland M., Patera J., Masáková Z., Dodgson N., Image Sampling with Quasicrystals, Symmetry, Integrability and Geometry: Methods and Applications, 5 (2009), 075, 23 pages
[26] Klimyk A.U., Patera J., Antisymmetric orbit functions, SIGMA, 3 (2007), 023, [arXiv:0702040v1].
[27] Klimyk A.U., Patera J., E-orbit functions, SIGMA, 4 (2008), 002, [arXiv:0801.0822]
[28] Moody R.V., Patera J., Computation of character decompositions of class functions on compact semisimple Lie groups, Math. Comp., 48 (1987), no. 178, 799-827