Some q-Supercongruences for the truncated q-trinomial coefficients

Chuanan Wei

School of Biomedical Information and Engineering,
Hainan Medical University, Haikou 571199, China
Email address: weichuanan78@163.com

Abstract. In 1987, Andrews and Baxter introduced six kinds of q-trinomial coefficients in exploring the solution of a model in statistical mechanics. In this paper, we give some q-supercongruences for the truncated forms of these polynomials.

Keywords: q-supercongruence; q-trinomial coefficient; the cyclotomic polynomial

AMS Subject Classifications: 33D15; 11A07; 11B65

1 Introduction

Define the trinomial coefficient $\binom{n}{m}$ to be

$$(1 + x + x^2)^n = \sum_{m=-n}^{n} \binom{n}{m} x^{m+n}.$$

It is well known that there are the following two simple formulas (cf. [18, P. 43]):

$$\binom{n}{m} = \sum_{k=0}^{n} \binom{n}{k} \binom{n-k}{m+k},$$

$$\left(\binom{n}{m} \right) = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \binom{2n-2k}{n-m-k}.$$

In 1819, Babbage [3] proved the interesting congruence: for any prime $p \geq 3$,

$$\binom{2p-1}{p-1} \equiv 1 \pmod{p^2}. \quad (1.1)$$

Decades later, Wolstenholme [24] told us that the above formula is true modulo p^3 for any prime $p \geq 5$. In 1952, Ljunggren showed the generalization of Wolstenholme’s result (cf. [5]):

$$\binom{ap}{bp} \equiv \left(\frac{a}{b} \right) \pmod{p^3}. \quad (1.2)$$

The work is supported by the National Natural Science Foundations of China (No. 12071103).
Inspired by the works just mentioned, it is natural to consider supercongruence associated with the trinomial coefficient \(\binom{ap}{bp} \).

Let \([r]\) be the \(q\)-integer \((1 - q^r)/(1 - q)\) and define the \(q\)-binomial coefficient \(\binom{n}{m}_q \) by
\[
\binom{n}{m}_q = \begin{cases}
\frac{(1 - q^n)(1 - q^{n-1}) \cdots (1 - q^{n-m+1})}{(1 - q)(1 - q^2) \cdots (1 - q^m)}, & \text{if } 0 \leq m \leq n; \\
0, & \text{otherwise}.
\end{cases}
\]

All over the paper, let \(\Phi_n(q) \) stand for the \(n\)-th cyclotomic polynomial in \(q\):
\[
\Phi_n(q) = \prod_{1 \leq k \leq n, \gcd(k,n)=1} (q - \zeta_k),
\]
where \(\zeta\) is an \(n\)-th primitive root of unity. It is surprising that Andrews \([1]\) gave a \(q\)-analogue of (1.1):
\[
\begin{align*}
\left[\binom{2p-1}{p-1} \right] &
\equiv \frac{q^{p(p-1)/2}}{(p^2)} \pmod{p^2},
\end{align*}
\]
where \(p \geq 3\) is any prime. In 2019, Straub \([19]\) discovered a \(q\)-analogue of (1.2):
\[
\begin{align*}
\left[\binom{an}{bn} \right] &
\equiv \left[\binom{a}{b} \right]_{q^{n^2}} + (a - b) \binom{a}{b} \frac{1 - n^2}{24} \frac{(1 - q^{n^2})^2}{(\Phi_n(q)^3)},
\end{align*}
\]
where \(a, b\) are nonnegative integers and \(n\) is a positive integer.

In 1987, Andrews and Baxter \([2]\) introduced six kinds of \(q\)-trinomial coefficients in exploring the solution of a model in statistical mechanics. They can be laid out as follows:
\[
\begin{align*}
\left(\binom{n}{m}_q \right) &
= \sum_{k=0}^{n} q^{k(k+m)} \left[\binom{n}{k} \right] \left[\binom{n-k}{m+k} \right],
\end{align*}
\]
\[
\begin{align*}
\tau_0(n, m, q) &
= \sum_{k=0}^{n} (-1)^k q^{nk} \binom{n}{k} \binom{2n-2k}{n-m-k},
\end{align*}
\]
\[
\begin{align*}
T_0(n, m, q) &
= \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2n-2k}{n-m-k},
\end{align*}
\]
\[
\begin{align*}
T_1(n, m, q) &
= \sum_{k=0}^{n} (-q)^k \binom{n}{k} \binom{2n-2k}{n-m-k},
\end{align*}
\]
\[
\begin{align*}
t_0(n, m, q) &
= \sum_{k=0}^{n} (-1)^k q^{k^2} \binom{n}{k} \binom{2n-2k}{n-m-k},
\end{align*}
\]
\[
\begin{align*}
t_1(n, m, q) &
= \sum_{k=0}^{n} (-1)^k q^{k(k-1)} \binom{n}{k} \binom{2n-2k}{n-m-k}.
\end{align*}
\]
Recently, Liu [12] determined \(\binom{an}{bn} q \) and \(\binom{an}{bn} q \) modulo \(\Phi_n(q)^2 \). Chen, Xu and Wang [4] further studied \(\binom{an}{an-n} q \) modulo \(\Phi_n(q)^2 \). There are more \(q \)-analogues of supercongruences in the literature. We refer the reader to [6–11, 13, 14, 16, 17, 21–23, 25].

Motivated by the works just mentioned, we shall establish the following theorem.

Theorem 1.1. Let \(\binom{an}{bn} \) denote the truncated form of the \(q \)-trinomial coefficient \(\binom{an}{bn} \):

\[
\binom{an}{bn} \equiv \sum_{k=0}^{\lfloor n/2 \rfloor} q^{k(k+bn)} \binom{an-k}{bn+k},
\]

where \(a, b, n \) are positive integers subject to \(a > b \) and \(\lfloor x \rfloor \) is the integral part of a real number \(x \). Then, modulo \(\Phi_n(q)^2 \),

\[
\binom{an}{bn} \equiv \binom{an}{bn} \left\{ 1 - (a-b)(1 - \theta_n(q)) \right\},
\]

where

\[
\theta_n(q) \equiv \begin{cases}
(-1)^m(1 + q^m)q^{m(3m-1)/2}, & \text{if } n = 3m; \\
(-1)^m q^{m(3m+1)/2}, & \text{if } n = 3m + 1; \\
(-1)^{m+1} q^{m(3m+2)/2}, & \text{if } n = 3m + 2.
\end{cases}
\]

Choosing \(n = p \) and then letting \(q \to 1 \) in the above theorem, we obtain the supercongruence after using (1.2).

Corollary 1.2. Let \(\binom{ap}{bp} \) represent the truncated form of the trinomial coefficient \(\binom{ap}{bp} \):

\[
\binom{ap}{bp} \equiv \sum_{k=0}^{(p-1)/2} \binom{ap}{k} \binom{ap-k}{bp+k},
\]

where \(a, b \) are positive integers with \(a > b \) and \(p \) is an old prime. Then

\[
\binom{ap}{bp} \equiv \binom{a}{b} \pmod{p^2}.
\]

Very recently, Liu and Qi [15] made sure of \(\tau_0(an, an-n, q) \), \(T_0(an, an-n, q) \), and \(T_1(an, an-n, q) \) modulo \(\Phi_n(q)^2 \). We shall establish the following five theorems.

Theorem 1.3. Let \(\tau_0(an, bn, q) \) stand for the truncated form of the \(q \)-trinomial coefficient \(\tau_0(an, bn, q) \):

\[
\tau_0(an, bn, q) = \sum_{k=an-bn-[n/2]}^{an-bn} (-1)^k q^{an-k} \binom{an}{k} \binom{2an-2k}{an-bn-k},
\]
where a, b, n are positive integers satisfying $a > b$. Then, modulo $\Phi_n(q)^2$,

$$
\tau_0(\alpha, \beta, \gamma) \equiv (-1)^{\alpha - \beta} q^{(\alpha - \beta)(\alpha + \beta + 1)/2} \cdot \frac{\alpha}{\beta} \left\{ 1 - (\alpha - \beta)(2 - \theta_\alpha(q) - \vartheta_\alpha(q)) \right\},
$$

(1.4)

where

$$
\vartheta_\alpha(q) \equiv \begin{cases}
(-1)^m (1 + q^{2m}) q^{(3m-5)/2}, & \text{if } n = 3m; \\
(-1)^m q^{(3m+1)/2}, & \text{if } n = 3m + 1; \\
(-1)^{m+1} q^{(m-1)(3m+2)/2}, & \text{if } n = 3m + 2.
\end{cases}
$$

Theorem 1.4. Let $T_0(\alpha, \beta, \gamma)'$ denote the truncated form of the q-trinomial coefficient $T_0(\alpha, \beta, \gamma)$:

$$
T_0(\alpha, \beta, \gamma)' = \sum_{k=\alpha - \beta - \lceil n/2 \rceil}^{\alpha - \beta} (-1)^k \frac{\alpha}{\beta} \left[\frac{\alpha}{\beta} q^2 \left[\frac{2\alpha - 2k}{\alpha - \beta - k} \right] \right],
$$

where a, b, n are positive integers subject to $a > b$. Then, modulo $\Phi_n(q)^2$,

$$
T_0(\alpha, \beta, \gamma)' \equiv (-1)^{\alpha - \beta} \frac{\alpha}{\beta} q^2 \left\{ 1 - 2(\alpha - \beta)(1 - \theta_\alpha(q)) \right\}.
$$

(1.5)

Theorem 1.5. Let $T_1(\alpha, \beta, \gamma)'$ represent the truncated form of the q-trinomial coefficient $T_1(\alpha, \beta, \gamma)$:

$$
T_1(\alpha, \beta, \gamma)' = \sum_{k=\alpha - \beta - \lceil n/2 \rceil}^{\alpha - \beta} (-1)^k \frac{\alpha}{\beta} \left[\frac{\alpha}{\beta} q^2 \left[\frac{2\alpha - 2k}{\alpha - \beta - k} \right] \right],
$$

where a, b, n are positive integers with $a > b$. Then, modulo $\Phi_n(q)^2$,

$$
T_1(\alpha, \beta, \gamma)' \equiv (-1)^{\alpha - \beta} \frac{\alpha}{\beta} q^2 \left\{ 1 - 2(\alpha - \beta)(1 - \theta_\alpha(q)) \right\}.
$$

(1.6)

Theorem 1.6. Let $t_0(\alpha, \beta, \gamma)'$ stand for the truncated form of the q-trinomial coefficient $t_0(\alpha, \beta, \gamma)$:

$$
t_0(\alpha, \beta, \gamma)' = \sum_{k=\alpha - \beta - \lceil n/2 \rceil}^{\alpha - \beta} (-1)^k q^k \left[\frac{\alpha}{\beta} q^2 \left[\frac{2\alpha - 2k}{\alpha - \beta - k} \right] \right],
$$

where a, b, n are positive integers satisfying $a > b$. Then, modulo $\Phi_n(q)^2$,

$$
t_0(\alpha, \beta, \gamma)' \equiv (-1)^{\alpha - \beta} q^{\alpha - \beta} \left[\frac{\alpha}{\beta} q^2 \left\{ 1 - 2(\alpha - \beta)(1 - \theta_\alpha(q^{-1})) \right\} \right].
$$

(1.7)
Theorem 1.7. Let \(t_1(an, bn, q)' \) denote the truncated form of the \(q \)-trinomial coefficient \(t_1(an, bn, q) \):

\[
t_1(an, bn, q)' = \sum_{k=an-bn-[n/2]}^{an-bn} (-1)^k q^{k(k-1)} \left[\begin{array}{c} an \\ k \end{array} \right] q^{2[an-2k]} \left[\begin{array}{c} 2an-2k \\ an-bn-k \end{array} \right],
\]

where \(a, b, n \) are positive integers subject to \(a > b \). Then, modulo \(\Phi_n(q)^2 \),

\[
t_1(an, bn, q)' \equiv (-1)^{an-bn} q^{(an-bn)(an-bn-1)} \left[\begin{array}{c} an \\ bn \end{array} \right] q^{2\left\{ 1-2(a-b)(1-v_n(q^{-1})) \right\}}. \tag{1.8}
\]

Setting \(n = p \) and then letting \(q \to 1 \) in Theorems 1.3-1.7, we get the supercongruence after utilizing (1.2).

Corollary 1.8. Let \({\left(\begin{array}{c} ap \\ bp \end{array} \right)}^* \) represent the truncated form of the trinomial coefficient \({\left(\begin{array}{c} ap \\ bp \end{array} \right)} \):

\[
{\left(\begin{array}{c} ap \\ bp \end{array} \right)}^* = \sum_{k=ap-bp-(p-1)/2}^{ap-bp} (-1)^k \left(\begin{array}{c} ap \\ k \end{array} \right) \left(\frac{2ap-2k}{ap-bp-k} \right),
\]

where \(a, b \) are positive integers with \(a > b \) and \(p \) is an old prime. Then

\[
{\left(\begin{array}{c} ap \\ bp \end{array} \right)}^* \equiv (-1)^{ap-bp} \left(\begin{array}{c} a \\ b \end{array} \right) \pmod{p^2}.
\]

The rest of the paper is arranged as follows. We shall prove Theorems 1.1 and 1.3 in Sections 2 and 3, respectively. The proof of Theorems 1.4-1.7 will be displayed in Section 4.

2 Proof of Theorem 1.1

In order to prove Theorem 1.1 we require the following two lemmas (cf. [20, Lemma 3.3] and [15, Lemma 2.1]).

Lemma 2.1. Let \(k, n \) be positive integers satisfying \(1 \leq k \leq n-1 \). Then

\[
\left[\frac{2k-1}{k} \right] \equiv (-1)^k q^{k(k-1)/2} \left[\frac{n-k}{k} \right] \pmod{\Phi_n(q)}.
\]

Lemma 2.2. Let \(n \) be a nonnegative integer. Then

\[
(1 - q^n) \sum_{k=0}^{[n/2]} \frac{(-1)^k q^{k(k-1)/2}}{1 - q^{n-k}} \left[\frac{n-k}{k} \right] = \theta_n(q).
\]

Now we start to prove Theorem 1.1.
Proof of Theorem 1.1. It is routine to see that

\[
\left(\begin{array}{c}
\binom{an}{bn}
\end{array} \right)_q' = \left[\begin{array}{c}
an
\end{array} \right] + \sum_{k=1}^{\lfloor n/2 \rfloor} q^{k(k+bn)} \left[\begin{array}{c}
an
\end{array} \right] \left[\begin{array}{c}
an - k
\end{array} \right].
\]

(2.1)

Noticing the relation

\[1 - q^{an} = (1 - q^n)(1 + q^n + \cdots + q^{an-n}) \equiv a(1 - q^n) \pmod{\Phi_n(q)^2}, \]

we can proceed as follows:

\[
\left[\begin{array}{c}
an
\end{array} \right] = \frac{(1 - q^{an})(1 - q^{an-1}) \cdots (1 - q^{an-k+1})}{(1 - q)(1 - q^2) \cdots (1 - q^k)}
\equiv \frac{a(1 - q^n)(1 - q^{-1}) \cdots (1 - q^{-k+1})}{(1 - q^k)(1 - q)(1 - q^2) \cdots (1 - q^{k-1})}
= \frac{a(1 - q^n)(-1)^{k-1}q^{-k(k-1)/2}}{1 - q^k}
\equiv \frac{a(1 - q^n)(-1)^kq^{-k(k+1)/2}}{1 - q^{n-k}} \pmod{\Phi_n(q)^2}.
\]

(2.2)

With the help of Lemma 2.1, there holds

\[
\left[\begin{array}{c}
an - k
\end{array} \right] \left[\begin{array}{c}
bn + k
\end{array} \right] = \left[\begin{array}{c}
an
\end{array} \right] \frac{(1 - q^{an-bn})(1 - q^{an-bn-1}) \cdots (1 - q^{an-bn-2k+1})}{(1 - q^{an})(1 - q^{an-k+1})(1 - q^{bn+1}) \cdots (1 - q^{bn+k})}
\equiv \left[\begin{array}{c}
an
\end{array} \right] \frac{a - b}{a} \frac{(1 - q^{-1})(1 - q^{-2}) \cdots (1 - q^{-2k+1})}{(1 - q^{-1}) \cdots (1 - q^{-k+1})(1 - q) \cdots (1 - q^k)}
= \left[\begin{array}{c}
an
\end{array} \right] \frac{a - b}{a} (-1)^{k}q^{-k(3k-1)/2} \left[\begin{array}{c}
2k - 1
\end{array} \right]
\equiv \left[\begin{array}{c}
an
\end{array} \right] \frac{a - b}{a} \left[\begin{array}{c}
n - k
\end{array} \right] \pmod{\Phi_n(q)}.
\]

(2.3)

The combination of (2.1)–(2.3) gives

\[
\left(\begin{array}{c}
\binom{an}{bn}
\end{array} \right)_q' \equiv \left[\begin{array}{c}
an
\end{array} \right] + \left[\begin{array}{c}
an
\end{array} \right] (a - b)(1 - q^n) \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{(-1)^kq^{-k(k-1)/2}}{1 - q^{n-k}} \left[\begin{array}{c}
n - k
\end{array} \right] \pmod{\Phi_n(q)^2}.
\]

Evaluating the series on the right-hand side by Lemma 2.2, we arrive at (1.3). \qed
3 Proof of Theorem 1.3

For proving Theorem 1.3, we draw support from Lemmas 2.1 and 2.2 and the following lemma (cf. [15, Lemma 2.2]).

Lemma 3.1. Let n be a nonnegative integer. Then

$$
(1 - q^n) \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k q^{-k(k-3)/2}}{1 - q^{n-k}} \left\lfloor \frac{n - k}{k} \right\rfloor = q_n(q).
$$

Now we start to prove Theorem 1.3.

Proof of Theorem 1.3. Replacing k by $an - bn - k$ in $\tau_0(an, bn, q)'$, we have

$$
\tau_0(an, bn, q)' = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{an - bn - k} q^{(an - bn - k)(an + bn + k + 1)/2} \left[\begin{array}{c} an \\ bn \end{array} \right] \left[\begin{array}{c} 2bn + 2k \\ k \end{array} \right].
$$

It is not difficult to verify that

$$
\left[\begin{array}{c} an \\ bn \end{array} \right] = \left[\begin{array}{c} an \\ bn \end{array} \right] \frac{(1 - q^{an - bn})(1 - q^{an - bn - 1}) \cdots (1 - q^{an - bn - k + 1})}{(1 - q^{bn + 1})(1 - q^{bn + 2}) \cdots (1 - q^{bn + k})}

\equiv \left[\begin{array}{c} an \\ bn \end{array} \right] \frac{(a - b)(1 - q^n)(1 - q^{-1}) \cdots (1 - q^{-k + 1})}{(1 - q^k)(1 - q)(1 - q^2) \cdots (1 - q^{k-1})}

= \left[\begin{array}{c} an \\ bn \end{array} \right] \frac{(a - b)(1 - q^n)(-1)^{k-1}q^{-k(k-1)/2}}{1 - q^k}

\equiv \left[\begin{array}{c} an \\ bn \end{array} \right] \frac{(a - b)(1 - q^n)(-1)^{k-1}q^{-k(k+1)/2}}{1 - q^{n-k}} \pmod{\Phi_n(q)^2}. \tag{3.2}
$$

In terms of Lemma 2.1 there is

$$
\left[\begin{array}{c} 2bn + 2k \\ k \end{array} \right] = \frac{(1 - q^{2bn + 2k})(1 - q^{2bn + 2k - 1}) \cdots (1 - q^{2bn + k + 1})}{(1 - q)(1 - q^2) \cdots (1 - q^k)}

\equiv (1 + q^k) \left[\begin{array}{c} 2k - 1 \\ k \end{array} \right]

\equiv (-1)^k q^{k(3k-1)/2}(1 + q^k) \left[\begin{array}{c} n - k \\ k \end{array} \right] \pmod{\Phi_n(q)}. \tag{3.3}
$$
The combination of (3.1)-(3.3) produces
\[
\tau_0(an, bn, q)^{'} \equiv (-1)^{an-bn} q^{(an-bn)(an+bn+1)/2} \left[\begin{array}{c} an \\ bn \end{array} \right] + (-1)^{an-bn} q^{(an-bn)(an+bn+1)/2} \left[\begin{array}{c} an \\ bn \end{array} \right] \\
\times (a-b)(1-q^n) \sum_{k=1}^{[n/2]} \frac{(-1)^k q^{k(k-3)/2}(1+q^k)}{1-q^{n-k}} \left[\begin{array}{c} n-k \\ k \end{array} \right] \pmod{\Phi_n(q)^2}.
\]
Calculating the series on the right-hand side by Lemmas 2.2 and 3.1 we deduce (1.4). □

4 Proof of Theorems 1.4-1.7

Firstly, we shall prove Theorem 1.4.

Proof of Theorem 1.4. Replace k by an − bn − k in \(T_0(an, bn, q)^{'} \) to find
\[
T_0(an, bn, q)^{'} = \sum_{k=0}^{[n/2]} (-1)^{an-bn-k} \left[\begin{array}{c} an \\ bn \end{array} \right] \left[\begin{array}{c} 2bn+2k \\ k \end{array} \right] q^k
\]
\[
= (-1)^{an-bn} \left[\begin{array}{c} an \\ bn \end{array} \right] q^k + \sum_{k=1}^{[n/2]} (-1)^{an-bn-k} \left[\begin{array}{c} an \\ bn \end{array} \right] \left[\begin{array}{c} 2bn+2k \\ k \end{array} \right] q^k \pmod{\Phi_n(q)^2}. (4.1)
\]

Similar to the derivation of (3.2), we obtain
\[
\left[\begin{array}{c} an \\ bn \end{array} \right] q^k = \left[\begin{array}{c} an \\ bn \end{array} \right] \frac{(1-q^{2an-2bn})(1-q^{2an-2bn-2}) \cdots (1-q^{2an-2bn-2k+2})}{(1-q^{2bn+2})(1-q^{2bn+4}) \cdots (1-q^{2bn+2k})}
\]
\[
\equiv \left[\begin{array}{c} an \\ bn \end{array} \right] \frac{2(a-b)(1-q^n)(1-q^{-2}) \cdots (1-q^{-2k+2})}{(1-q^{2k})(1-q^2)(1-q^4) \cdots (1-q^{2k-2})}
\]
\[
= \left[\begin{array}{c} an \\ bn \end{array} \right] \frac{2(a-b)(1-q^n)(-1)^{k-1} q^{-k(1-1)}}{1-q^{2k}} \pmod{\Phi_n(q)^2}. (4.2)
\]

Substituting (3.3) and (4.2) into (4.1), we get
\[
T_0(an, bn, q)^{'} \equiv (-1)^{an-bn} \left[\begin{array}{c} an \\ bn \end{array} \right] q^k + (-1)^{an-bn} \left[\begin{array}{c} an \\ bn \end{array} \right] 2(a-b)(1-q^n)
\]
\[
\times \sum_{k=1}^{[n/2]} \frac{(-1)^k q^{k(k-1)/2}}{1-q^{n-k}} \left[\begin{array}{c} n-k \\ k \end{array} \right] \pmod{\Phi_n(q)^2}.
\]
Evaluating the series on the right-hand side by Lemma 2.2 we catch hold of (1.5). □
Secondly, we shall prove Theorem 1.5.

Proof of Theorem 1.5. Replace k by $an - bn - k$ in $T_1(an, bn, q)'$ to derive

$$T_1(an, bn, q)' = \sum_{k=0}^{\lfloor n/2 \rfloor} (-q)^{an-bn-k} \binom{an}{bn+k}_{q^2} q^{2bn+2k}$$

$$= (-q)^{an-bn} \binom{an}{bn}_{q^2} + \sum_{k=1}^{\lfloor n/2 \rfloor} (-q)^{an-bn-k} \binom{an}{bn+k}_{q^2} q^{2bn+2k}$$

$$\equiv (-q)^{an-bn} \binom{an}{bn}_{q^2} + (q)^{an-bn} \binom{an}{bn}_{q^2} 2(a-b)(1-q^n)$$

$$\times \sum_{k=1}^{\lfloor n/2 \rfloor} (-1)^k q^{k(k-3)/2} \frac{n-k}{q^{n-k}} \binom{n-k}{k} \pmod{\Phi_n(q)^2},$$

where we have employed (3.3) and (4.2). Calculating the series on the right-hand side by Lemma 3.1, we are led to (1.6).

For the aim to prove Theorem 1.6, we need the following lemma.

Lemma 4.1. Let n be a nonnegative integer. Then

$$(1 - q^n) \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k q^{k(3k-1)/2} \binom{n-k}{k} \equiv \theta_n(q^{-1}) \pmod{\Phi_n(q)^2}. \quad (4.3)$$

Proof. Performing the replacement $q \rightarrow q^{-1}$ in Lemma 2.2, there holds

$$(1 - q^n) \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k q^{k(3k-1)/2} \binom{n-k}{k} = \theta_n(q^{-1}).$$

Considering that $q^n \equiv 1 \pmod{\Phi_n(q)}$, it is ordinary to achieve (4.3).

Thirdly, we shall prove Theorem 1.6.

Proof of Theorem 1.6. Replacing k by $an - bn - k$ in $t_0(an, bn, q)'$ and using (3.3) and (4.2), we have

$$t_0(an, bn, q)' = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{an-bn-k} q^{(an-bn-k)^2} \binom{an}{bn+k}_{q^2} q^{2bn+2k}$$

$$= (-1)^{an-bn} q^{(an-bn)^2} \binom{an}{bn}_{q^2}$$

$$+ \sum_{k=1}^{\lfloor n/2 \rfloor} (-1)^{an-bn-k} q^{(an-bn-k)^2} \binom{an}{bn+k}_{q^2} q^{2bn+2k}$$
\[
\equiv (-1)^{an-bn}q^{(an-bn)^2} \left[\begin{array}{c} an \\ bn \end{array} \right] q^2 + (-1)^{an-bn}q^{(an-bn)^2} \left[\begin{array}{c} an \\ bn \end{array} \right] 2(a-b)(1-q^n)
\]
\[
\times \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{(-1)^k q^{k(3k-1)/2}}{1-q^{n-k}} \left[\begin{array}{c} n-k \\ k \end{array} \right] \left(\mod \Phi_n(q)^2 \right).
\]

Via Lemma 4.1 and the last relation, we can deduce (1.7). \qed

For the sake of proving Theorem 1.7, we demand the following lemma.

Lemma 4.2. Let \(n \) be a nonnegative integer. Then
\[
(1-q^n) \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k q^{k(3k+1)/2}}{1-q^{n-k}} \left[\begin{array}{c} n-k \\ k \end{array} \right] \equiv \nu_n(q^{-1}) \pmod{\Phi_n(q)^2}.
\] (4.4)

Proof. Performing the replacement \(q \to q^{-1} \) in Lemma 3.1 there is
\[
(1-q^n) \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k q^{k(3k+1)/2}}{1-q^{n-k}} \left[\begin{array}{c} n-k \\ k \end{array} \right] = \nu_n(q^{-1}).
\]
Observing that \(q^n \equiv 1 \pmod{\Phi_n(q)} \), it is regular to attain (4.4). \qed

Finally, we shall prove Theorem 1.7

Proof of Theorem 1.7. Replacing \(k \) by \(an-bn-k \) in \(t_1(an,bn,q)' \) and utilizing \(3.3 \) and \(4.2 \), we catch hold of
\[
t_1(an,bn,q)' = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{an-bn-k}q^{(an-bn-k)(an-bn-k-1)} \left[\begin{array}{c} an \\ bn+k \end{array} \right] q^2 \left[\begin{array}{c} 2bn+2k \\ k \end{array} \right]
\]
\[
= (-1)^{an-bn}q^{(an-bn)(an-bn-1)} \left[\begin{array}{c} an \\ bn \end{array} \right] q^2
\]
\[
+ \sum_{k=1}^{\lfloor n/2 \rfloor} (-1)^{an-bn-k}q^{(an-bn-k)(an-bn-k-1)} \left[\begin{array}{c} an \\ bn+k \end{array} \right] q^2 \left[\begin{array}{c} 2bn+2k \\ k \end{array} \right]
\]
\[
\equiv (-1)^{an-bn}q^{(an-bn)(an-bn-1)} \left[\begin{array}{c} an \\ bn \end{array} \right] q^2
\]
\[
+ (-1)^{an-bn}q^{(an-bn)(an-bn-1)} \left[\begin{array}{c} an \\ bn \end{array} \right] 2(a-b)(1-q^n)
\]
\[
\times \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{(-q)^k q^{k(3k+1)/2}}{1-q^{n-k}} \left[\begin{array}{c} n-k \\ k \end{array} \right] \left(\mod \Phi_n(q)^2 \right).
\]
Through Lemma 4.2 and the last formula, we are led to (1.8). \qed
References

[1] G.E. Andrews, q-Analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher, Discrete Math. 204 (1999), 15–25.
[2] G.E. Andrews, R.J. Baxter, Lattice gas generalization of the hard hexagon model III: \(q\)-trinomial coefficients, J. Stat. Phys. 47 (1987), 297–330.
[3] C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Philos. J. 1 (1819), 46–49.
[4] Y. Chen, C. Xu, X. Wang, Some new results about \(q\)-trinomial coefficients, preprint, 2022, arXiv:2202.09781.
[5] A. Granville, Arithmetic properties of binomial coefficients I: Binomial coefficients modulo prime powers. CMS Conf. Proc. 20 (1997), 253–275.
[6] V.J.W. Guo, \(q\)-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping, Adv. Appl. Math. 120 (2020), Art. 102078.
[7] V.J.W. Guo, M.J. Schlosser, A family of \(q\)-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial, Israel J. Math. 240 (2020), 821–835.
[8] V.J.W. Guo, M.J. Schlosser, Some \(q\)-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx. 53 (2021), 155–200.
[9] V.J.W. Guo, W. Zudilin, A \(q\)-microscope for supercongruences, Adv. Math. 346 (2019), 329–358.
[10] V.J.W. Guo, W. Zudilin, Dwork-type supercongruences through a creative \(q\)-microscope, J. Combin. Theory, Ser. A 178 (2021), Art. 105362.
[11] L. Li, S.-D. Wang, Proof of a \(q\)-supercongruence conjectured by Guo and Schlosser, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114 (2020), Art. 190.
[12] J.-C. Liu, On the divisibility of \(q\)-trinomial coefficients, Ramanujan J., in press, doi: 10.1007/s11139-022-00558-4.
[13] J.-C. Liu, X.-T. Jiang, On the divisibility of sums of even powers of \(q\)-binomial coefficients, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 116 (2022), Art. 76.
[14] J.-C. Liu, F. Petrov, Congruences on sums of \(q\)-binomial coefficients, Adv. Appl. Math. 116 (2020), Art. 102003.
[15] J.-C. Liu, W-W. Qi, Further results on the divisibility of \(q\)-trinomial coefficients, preprint, 2022, arXiv:2207.06054.
[16] Y. Liu, X. Wang, \(q\)-Analognes of two Ramanujan-type supercongruences, J. Math. Anal. Appl. 502 (2021), Art. 125238.
[17] Y. Liu, X. Wang, Some \(q\)-supercongruences from a quadratic transformation by Rahman, Results Math. 77 (2022), Art. 44.
[18] A.V. Sills, An invitation to the Rogers–Ramanujan identities, CRC Press, 2018.
[19] A. Straub, Supercongruences for polynomial analogs of the Apéry numbers, Proc. Amer. Math. Soc. 147 (2019), 1023–1036.
[20] R. Tauraso, \(q\)-Analogues of some congruences involving Catalan numbers, Adv. Appl. Math. 48 (2009), 603–614.
[21] X. Wang, M. Yue, A \(q\)-analogue of the (A.2) supercongruence of Van Hamme for any prime \(p \equiv 3 \pmod{4}\), Int. J. Number Theory 16 (2020), 1325–1335.
[22] X. Wang, M. Yue, Some q-supercongruences from Watson’s $s\phi_7$ transformation formula, Results Math. 75 (2020), Art. 71.

[23] C. Wei, Some q-supercongruences modulo the fourth power of a cyclotomic polynomial, J. Combin. Theory, Ser. A 182 (2021), Art. 105469.

[24] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35–39.

[25] W. Zudilin, Congruences for q-binomial coefficients, Ann. Combin. 23 (2019), 1123–1135.