Supersymmetry at the Tevatron

Tilman Plehn

Max Planck Institute for Physics
Munich

- SUSY Les Houches accord
- Prospino2: NLO cross section normalization
- Smadgraph: jet radiation, distributions
- Model of the year: Split Susy
- Amateur’s view of SUSY-B physics
Bright side

- original motivation — Higgs mass stable
- R parity — stable proton yields dark matter
- unification — 3 running couplings meet
- radiative symmetry breaking — 2 Higgs doublets
- local supersymmetry – including gravity?
- rich collider phenomenology

Dark side

- unknown SUSY breaking
 - masses, scalar couplings, phases...
 - hierarchical spectrum
 - [Split SUSY]
- flavor physics and SUSY breaking
 - CKM and lepton flavor?
- 2 Higgs doublet model
 - \(\mu \) parameter and SUSY breaking?

\[\text{as many analyses as possible} \quad \text{[never believe us theorists when we claim we know better]} \]
Problem: Supersymmetric parameter conventions

- link between specialized codes [remember: comparison CompHEP–Pythia–ISAJET]
- implementation of benchmark points [e.g. SPS1a]
 - soft breaking parameters [e.g. $\pm A_t$]
 - scale dependence of couplings, masses [e.g. $m(q = \text{TeV}, v, m_t)$?]
 - definitions of mass matrixes, mixing angles [e.g. $\tilde{t}_{L,R}$ up or down?]

SUSY Les Houches Accord [P. Skands et al.]

- spectrum generators: SoftSusy, Spheno, FeynHiggs,...
- multi-purpose Monte Carlos: Pythia, Herwig, Sherpa
- matrix element generators: Whizard, Smadgraph
- NLO cross sections: Prospino2
- NLO decay rates: Sdecay
- MSSM parameter extraction: Fitutto, Sfitter
- dark matter calculators: Micromegas
⇒ fixed parameter convention and read-write format
Beyond Pythia/Herwig [unnamed friend: ‘We only do shapes’]

– MCFM: parton level NLO integrator [Standard Model; Campbell & K. Ellis]
– MC@NLO: matching of NLO and Monte Carlo [Standard Model; Frixione & Webber]
– Prospino2: NLO total cross sections for SUSY [normalization of Pythia/Herwig/Sherpa]
– Smadgraph/Smadevent: SUSY matrix element generator [hard jet radiation, many legs]

Hadron colliders and theory errors

– renormalization scale from α_s, y_b, t
– factorization scale from pdfs
 [scale dependence minimum error]
– perturbative series $N_c\alpha_s/\pi \sim 10\%$
 [fixed order naive error]
– finite terms
 [LO-NLO-NNLO: Drell-Yan, Higgs]

⇒ NLO neither for the fun nor for larger cross sections
NLO cross sections for Tevatron (and LHC)

- compute total cross sections for heavy particles \[\text{[TeV scale input through SLHA]}\]
- all two-particle SUSY production channels included \[\text{[q\bar{q} being tested]}\]
- extended version beyond Prospino2: pp → SS*...
- public Website and continuously maintained Fortran program

[W. Beenakker, R. Höpker, M. Krämer, M. Spira, P. Zerwas]

Getting started on Prospino2.0

1. download prospino.tar.gz from Prospino2 page:
 http://pheno.physics.wisc.edu/~plehn
2. edit path and compiler in Makefile \[\text{[any F90 compiler I ever found will do]}\]
3. make, run executable
4. find results in file prospino.dat ⇒ normalize cross sections

i1	i2	scafac	m1	m2	angle	LO[pb]	rel-error	NLO[pb]	rel-error	K	
nn 1 1	0.00	0.00	1.00	96.27	96.27	0.00	0.908E-02	0.165E-03	0.118E-01	0.265E-02	1.3020
nn 1 2	0.00	0.00	1.00	96.27	179.38	0.00	0.101E-02	0.179E-03	0.136E-02	0.181E-02	1.3477
nn 1 3	0.00	0.00	1.00	96.27	-364.09	0.00	0.204E-02	0.154E-03	0.260E-02	0.144E-03	1.2763
nn 1 4	0.00	0.00	1.00	96.27	382.63	0.00	0.443E-03	0.164E-03	0.565E-03	0.301E-03	1.2747
program main
use xx_kinds ! defines integer and real variables
use xx_prospino_subroutine ! links the actual prospino code

integer :: nlo,icoll,ipart1,ipart2
character(len=2) :: final_state

!-------------------------------------nlo= 1 ! specify LO only[0] or complete NLO (slower)[1]
!-------------------------------------!-------------------------------------icoll= 1 ! specify the collider : tevatron[0] , lhc[1]
!-------------------------------------!-------------------------------------

! final_state = ng neutralino/chargino + gluino
! ns neutralino/chargino + squark
! nn neutralino/chargino pair combinations
! ll slepton pair combinations
! sb squark-antisquark
! ss squark-squark
! tb stop-antistop
! gg gluino pair
! sg squark + gluino
! lq leptoquark pairs (using stop1 mass)
!-------------------------------------final_state = 'ng'

! final_state = ng,ns,nn
! ipart1 = 1,2,3,4 neutralinos
!-------------------------------------ipart1 = 1
ipart2 = 1

!-------------------------------------call PROSPINO_OPEN_CLOSE(0) ! open all input/output files
call PROSPINO(nlo,icoll,final_state,ipart1,ipart2) ! actual prospino call
call PROSPINO_OPEN_CLOSE(1) ! close all input/output files

end program main
\[\sigma_{\text{tot}}[\text{pb}]: \text{pp} \rightarrow \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{t}_1\tilde{t}_1, \tilde{\chi}_2^0\tilde{\chi}_1^+, \tilde{\nu}\tilde{\nu}, \tilde{\chi}_1^0\tilde{\tilde{g}}, \tilde{\chi}_1^+\tilde{\tilde{q}} \]

\[\sqrt{S} = 2 \text{ TeV} \]

\[\sigma_{\text{tot}}[\text{pb}]: \text{pp} \rightarrow \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{t}_1\tilde{t}_1, \tilde{\chi}_2^0\tilde{\chi}_1^+, \tilde{\nu}\tilde{\nu}, \tilde{\chi}_1^0\tilde{\tilde{g}}, \tilde{\chi}_1^+\tilde{\tilde{q}} \]
Smadgraph: we are done! [Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

- Majoranas and fermion number violation in Madgraph [Denner, Eck, Hahn, Küblbeck]
- complete set of Feynman rules [300+ processes compared with Whizard and Sherpa]
- beta version upon request, Smadevent in test phase [TeV scale spectrum through SLHA]
- first physics project: SUSY pairs in weak boson fusion
- second physics project: heavy particles plus jets
- Tevatron search channels?

Smadevent for LHC: squarks and gluinos plus jets [TP, Rainwater, Skands]

- cascade studies sensitive to hard jet radiation?
- compute \(\tilde{g}\tilde{g}+2j \) and \(\tilde{u}_L\tilde{g}+2j \) [SPS1a, \(p_{T,j} > 100\text{GeV} \)]

\(\sigma [\text{pb}] \)	\(t\bar{t}_{600} \)	\(\tilde{g}\tilde{g} \)	\(\tilde{u}_L \tilde{g} \)
\(\sigma_0 \)	1.30	4.83	5.65
\(\sigma_1 \)	0.73	2.89	2.74
\(\sigma_2 \)	0.26	1.09	0.85

\(\Rightarrow \) where from: gluon radiation vs. initial states?
\(\Rightarrow \) modelling: comparison with Phythia6.2/6.3
Smadgraph: we are done! [Hagiwara, Kanzaki, TP, Rainwater, Stelzer]

- Majoranas and fermion number violation in Madgraph [Denner, Eck, Hahn, Küblbeck]
- complete set of Feynman rules [300+ processes compared with Whizard and Sherpa]
- beta version upon request, Smadevent in test phase [TeV scale spectrum through SLHA]
- first physics project: SUSY pairs in weak boson fusion
- second physics project: heavy particles plus jets
- Tevatron search channels?

Smadevent for LHC: squarks and gluinos plus jets [TP, Rainwater, Skands]

- cascade studies sensitive to hard jet radiation?
- compute $\tilde{g}\tilde{g}+2j$ and $\tilde{u}_L\tilde{g}+2j$ [SPS1a, $p_T,j > 100\text{GeV}$]

$\sigma [\text{pb}]$	$t\bar{t}_{600}$	$\tilde{g}\tilde{g}$	$\tilde{u}_L\tilde{g}$
σ_{0j}	1.30	4.83	5.65
σ_{1j}	0.73	2.89	2.74
σ_{2j}	0.26	1.09	0.85

⇒ where from: gluon radiation vs. initial states?
⇒ modelling: comparison with Phythia6.2/6.3
Jet radiation: Smadgraph–Pythia6.2–Pythia6.3 [no result yet, under study]

- LHC: problem with combinatorics in SUSY searches
- Tevatron: QCD problem in top physics [until SUSY is discovered, of course]

⇒ collinear approximation describing hard jets after tuning?
 [1j:0j above 50 GeV — 7% Pythia6.2; 14% Pythia6.3; 14% Madevent, 2j:1j similar]

⇒ factorization: Z+jets, t\bar{t}+jets and SUSY+jets the same?

⇒ reasonable extrapolation Tevatron → LHC?

⇒ general question: how to predict shapes best? [in principle: Pythia resumming beyond NLO]
Split Supersymmetry

- forget about fine tuning [Higgs will never be as bad as cosmological constant]
- remember all the good things SUSY did for you [dark matter, unification]

⇒ make scalars heavy [limited by cosmology]
⇒ protect gaugino and higgsino masses at TeV scale [Drees: might not be possible]

News for phenomenology

- no cascade decays

⇒ hadronizing gluinos $[\tau \sim \tilde{m}^{-4} \sim 6.5\;s\;\text{for}\;\tilde{m} = 10^9\;\text{GeV}]$
⇒ heavy R hadrons [e.g. Kraan]
⇒ gluonium [e.g. Cheung & Keung]
- renormalization group running without scalars

⇒ corrections to protected couplings [ino Yukawas 20%]

Collider prospects

[no matter what you or I think about model]
- LHC: stable gluino to $\sim 2\;\text{TeV}$ [time of flight and charge the key]
- direct neutralino/chargino production without lepton-lepton edge?
Tevatron channel: $B_s \rightarrow \mu \mu$
- s-channel exchanges dominant: H, Z, γ
 suppressed in Standard Model \[BR_{SM} \sim (2.4 \pm 0.5) \times 10^{-9}\]
- more Higgs bosons in 2HDM
 $\tan \beta$ enhancement of s channel Higgses \[BR_{2HDM} \propto \tan^6 \beta/m_A^2\]
 additional Higgs loop
- charginos in MSSM
 $\tan \beta$ enhancement for Higgsinos
 gluino loop for non-minimal flavor physics...

Bottom Yukawa in the MSSM [Nierste, ...]
- gluino-sbottom loops universal: $y_b \rightarrow y_b/(1 + \Delta_b)$
- large, leading in $\tan \beta$ & resummable $\Delta_b \sim \alpha_s \tan \beta m_\tilde{g} \mu/\max^2(m_{\tilde{b}, \tilde{g}})$
 \Rightarrow decoupling in MSSM, but not in MSSM$+\mu$
 [similar terms for chargino/neutralino exchange]
- easy to implement in MC, numerically great for $\tan \beta > 10$
 \Rightarrow good for SUSY signals, but pain in analyses
Supersymmetry at hadron colliders

- direct searches for SUSY: mass peaks
- indirect searches for BSM: B physics et al.
- continuous theory/phenomenology progress for many years
- new SUSY tools: SLHA, Prospino2, Smadgraph, Sdecay, Sfitter, Fittino,...

Future

- phenomenologists want to work with you, not steal results
- we can maybe help to understand some things better
- (reasonable) requests are good for the development of tools
- we are lacking man power, but who I am telling this to...
SUPERSYMMETRIC PARAMETERS

SUSY parameters from observables [Les Houches Accord: Skands,...]

- parameters: weak-scale MSSM Lagrangean
- measurements: masses or edges
 - branching fractions [MSMlib, Sdecay]
 - cross sections [Prospino2, MSMlib],...
- errors: general correlation, statistics & systematics & theory
- problem in grid: huge phase space, local minimum?
- problem in fit: domain walls, starting values, global minimum?

Sfitter [Lafaye, TP, D. Zerwas, also Fittino]

- (1) grid for closed subset
- (2) fit of remaining parameters
- (3) complete fit

⇒ LHC better than expected
⇒ LHC+ILC without assumptions
⇒ P. Zerwas’ talk: SUSY breaking

	LHC	ILC	LHC+ILC	SPS1a
tanβ	10.22±9.1	10.26±0.3	10.06±0.2	10
M₁	102.45±5.3	102.32±0.1	102.23±0.1	102.2
M₃	578.67±15	fix 500	588.05±11	589.4
M~ₗ	fix 500	197.68±1.2	199.25±1.1	197.8
M~ₗ L	129.03±6.9	135.66±0.3	133.35±0.6	135.5
M~ₗ R	198.7±5.1	198.7±0.5	198.7±0.5	198.7
M~ₗ L	498.3±110	497.6±4.4	521.9±39	501.3
A_r	fix 0	-202.4±89.5	352.1±171	-253.5
A_t	-507.8±91	-501.95±2.7	-505.24±3.3	-504.9
A_b	-784.7±35603	fix 0	-977±12467	-799.4
Structure of Prospino2 code

- driver file: `prospino_main.f90`

- user subdirectories:
 - Pro2_doc: getting started, documentation, reference output
 - Pro2_interface: interface for SUSY spectrum and pdfs
 [default: SLHA, Cteq6]

- global parameters: `Xvital.f90` [e.g. m_W, m_t, G_F]

- advanced user: `Xprospino_subroutine.f90`
 collider energy
 input-output file initialization

- professional user: `Xinitialize.f90`
 SUSY spectrum initialization
 numerical cutoff parameters
 number of points and iteration for integration

- directories not to be touched:
 - Pro2_integrals: routines for angular integrals and loop integrals
 - Pro2_matrix: matrix elements squared
 - Pro2_sq-gl: old Prospino for squark and gluino production
 - Pro2_subroutines: all subroutines