Early and late neural correlates of mentalizing: ALE meta-analyses in adults, children and adolescents

Lynn V. Fehlbaum, Réka Borbás, Katharina Paul, Simon B. Eickhoff, and Nora M. Raschle

1 Jacobs Center for Productive Youth Development, University of Zurich, Zurich 8050, Switzerland
2 Department of Child and Adolescent Psychiatry, University of Basel, Psychiatric University Hospital, Basel 4002, Switzerland
3 Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
4 Brain & Behaviour (INM-7), Research Centre Jülich, Institute of Neuroscience and Medicine, Jülich 52425, Germany
5 Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich 8057, Switzerland

Correspondence should be addressed to Nora M. Raschle, Jacobs Center for Productive Youth Development, University of Zurich, Andreasstrasse 15, Zürich 8050, Switzerland. E-mail: nora.raschle@jacobscenter.uzh.ch.

Abstract

The ability to understand mental states of others is referred to as mentalizing and enabled by our Theory of Mind. This social skill relies on brain regions comprising the mentalizing network as robustly observed in adults but also in a growing number of developmental studies. We summarized and compared neuroimaging evidence in children/adolescents and adults during mentalizing using coordinate-based activation likelihood estimation meta-analyses to inform about brain regions consistently or differentially engaged across age categories. Adults (N = 5286) recruited medial prefrontal and middle/inferior frontal cortices, precuneus, temporoparietal junction and middle temporal gyri during mentalizing, which were functionally connected to bilateral inferior/superior parietal lobule and thalamus/striatum. Conjunction and contrast analyses revealed that children and adolescents (N = 479) recruit similar but fewer regions within core mentalizing regions. Subgroup analyses revealed an early continuous engagement of middle medial prefrontal cortex, precuneus and right temporoparietal junction in younger children (8–11 years) and adolescents (12–18 years). Adolescents additionally recruited the left temporoparietal junction and middle/inferior temporal cortex. Overall, the observed engagement of the medial prefrontal cortex, precuneus and right temporoparietal junction during mentalizing across all ages reflects an early specialization of some key regions of the social brain.

Key words: mentalizing; functional neuroimaging; development; children; theory of mind; activation likelihood estimation

Introduction

A fundamental premise of our everyday social life is the ability to understand and acknowledge the emotions and intentions of people around us. The constant observation, decoding and understanding of the mental states of ourselves and others is reflected in our mentalizing skills and enabled by our Theory of Mind (Frith and Frith, 2007). Mentalizing skills have shown to be positively associated with healthy social functioning (Slaughter et al., 2015). Atypical mentalizing skills, however, have been described for several neurodevelopmental psychiatric disorders, including autism spectrum disorders, conduct disorder, depression, schizophrenia or borderline traits (Baron-Cohen et al., 1997; Kerr et al., 2003; Sharp, 2008; Zobel et al., 2010; Moran et al., 2011; Sharp et al., 2011; Kronbichler et al., 2017). Amongst these, hypermentalizing (e.g. borderline personality disorder), reduced mentalizing (e.g. psychopathy) or altered mentalizing skills (e.g. conduct disorder) have been reported (Blair et al., 2004; Sharp et al., 2011). Given their daily critical role and importance for clinical diagnostics, mentalizing concepts have been key targets of different therapy settings (Björnvinsson and Hart, 2006; Fonagy and Allison, 2014; Fonagy et al., 2017).

The foundation for mature mentalizing skills is laid early in life (Baillargeon et al., 2010). For example, mothers’ use of mental state language with their 6-month-old infants has been shown to predict children’s later Theory of Mind performance (Meins et al., 2002, 2003). Similarly, false belief tasks during which basic inferences are used to predict other people’s intentions can already be employed in infancy (Knudsen and Liszkowski, 2012). Major conceptual improvements in mentalizing skills are suggested to occur around 3 to 6 years of age (Wellman et al., 2003). However, mentalizing skills continue to mature throughout childhood and adolescence (Blakemore, 2008; Crone and Dahl, 2012; Crone and Steinbeis, 2017). Across age and skill levels, individuals learn to mentalize in a flexible and adaptive manner, allowing the
interpretation of increasingly complex social situations (Korkmaz, 2011).

The neural correlates of mentalizing in adulthood have been studied through various functional magnetic resonance imaging (fMRI) paradigms. Common implementations of mentalizing in fMRI paradigms include the false belief task (Mitchell, 2007; Tamnes et al., 2010), Frith–Happé animations (Moriguchi et al., 2006; Gobbini et al., 2007) or the Reading the Mind in the Eyes Test (Gallagher et al., 2000; Mascaro et al., 2013). Other studies have implemented paradigms more broadly related to mentalizing processes, for example, through the study of self-referential knowledge (e.g. Ochsner et al., 2005; Pfeifer et al., 2007) or by motivation or mental state attributions underlying body movements (Spunt and Lieberman, 2012; Wurm and Schubotz, 2018). Overall, past evidence has identified core regions of the social brain during mentalizing in adults, including medial prefrontal cortex, bilateral temporoparietal junction, precuneus, inferior frontal gyri and the temporal lobes (Kliemann and Adolphs, 2018). More precisely, most studies have revealed consistent increases in brain activation during mentalizing in the medial prefrontal cortex and bilateral temporoparietal junction (summarized by meta-analyses: Van Overwalle, 2009; Mar, 2011; Schurz et al., 2014; van Veluw and Chance, 2014; Molenberghs et al., 2016). Additionally, areas including the posterior superior temporal sulci and gyri, temporal poles, precuneus and inferior frontal gyri (Mar, 2011; Molenberghs et al., 2016), as well as anterior (Molenberghs et al., 2016) and posterior (Mar, 2011) cingulate cortices and middle temporal gyri (van Veluw and Chance, 2014), were identified by some but not all studies. Differences in study reports have been suggested to result from variations in task choice, which may require further cognitive processes (Mar, 2011; van Veluw and Chance, 2014; Molenberghs et al., 2016). Furthermore, in adults, connectivity between mentalizing regions (including temporoparietal junction, precuneus and medial prefrontal cortex) and insula, precentral and postcentral gyri and ventrolateral prefrontal cortex has been reported (Burnett and Blakemore, 2009; Lombardo et al., 2010; Atique et al., 2011; Schwerk et al., 2014). fMRI studies of mentalizing in children are more scarce compared to work conducted in adults. However, in line with technical and practical advances (Raschle et al., 2012; Bednarz and Kana, 2018; Vijayakumar et al., 2018), knowledge on early neural correlates of mentalizing continues to accumulate. Existing developmental studies of mentalizing indicate an early specialization and potential continuous engagement of some core regions associated with mentalizing in children starting around 3 (Richardson et al., 2018; Richardson and Saxe, 2020) to 5 years of age (Gween et al., 2012) for regions including medial prefrontal cortex, temporoparietal junction and precuneus. Similarly, activation increases in regions including temporoparietal junction, precuneus, inferior parietal lobe and superior temporal sulci were detected in children aged 8–13 years (e.g. Kobayashi et al., 2007; Moriguchi et al., 2007; Yokota et al., 2013; Mukerji et al., 2019). To date, only few studies have directly investigated developmental effects for the neural correlates of mentalizing using longitudinal designs (Schulte-Rüther et al., 2012; Overgaard et al., 2015). Such studies have detected stable activation in core regions for mentalizing, including medial prefrontal cortex, temporoparietal cortex, precuneus and superior/middle temporal and fusiform gyri in adolescents aged 12–18 (Schulte-Rüther et al., 2012) and in right superior temporal sulcus and inferior frontal gyrus adolescents aged 12–19 (Overgaard et al., 2015). Overgaard et al. (2015) additionally report nonlinear developmental trajectories for dorsal medial prefrontal cortex and linear decreases for right inferior frontal gyrus across age. Cross-sectional studies have reported mentalizing-related activation increases in the medial prefrontal cortex when comparing children and adolescents of different ages. More specifically, medial and rostral prefrontal cortex activation during mentalizing has been reported for children aged 9–12 (Moriguchi et al., 2007; Pfeifer et al., 2007, 2009; Sommer et al., 2010; Moor et al., 2012) and adolescents up to 14 (Vetter et al., 2014), 16 (Sebastian et al., 2012) or 19 years (Burnett et al., 2009). Neural activation for different age groups during mentalizing are also reported for the temporoparietal junction, but results vary. Some studies report continuous activation in temporoparietal junction [e.g. for children aged 5–9 (Gween et al., 2012) or 10–23 years (Moor et al., 2012)]. Other studies detected increases in children aged 11–14 (Pfeifer et al., 2009), while other reports decrease in temporoparietal junction when comparing children to adults [e.g. 10–12 year olds (Sommer et al., 2010)]. Similarly, age-related activation patterns for the inferior frontal gyri and temporal poles continue to be under investigation [e.g. in 10–19 year olds (Burnett et al., 2009; Moor et al., 2012)]. Overall, activation related to mentalizing in the medial prefrontal cortex, temporoparietal junction and precuneus in school-aged children and older are most commonly observed (Blakemore, 2008, 2012a,b; Saxe et al., 2009; Crone and Dahl, 2012; Gween et al., 2012; Bowman et al., 2019). Continuity and change within the neural regions for mentalizing are an intriguing subject of study (Blakemore et al., 2007b; Sebastian et al., 2012; Bowman et al., 2019) but limited by the number of developmental studies available and by reduced power due to small-sample studies or lack of longitudinal work (Foulkes and Blakemore, 2018; Madhyaastha et al., 2018; Bowman et al., 2019). Meta-analytic approaches allow the compilation of data deriving from various smaller, individual studies and may thereby overcome some of the associated power issues, allowing a more precise estimate of the present knowledge. Although meta-analytic work cannot inform about change across development, it may summarize the involvement of brain regions involved in mentalizing across certain age categories (Bowman et al., 2019). While meta-analyses on mentalizing in adults exist (e.g. Schurz et al., 2014; Molenberghs et al., 2016), emerging studies in children and adolescents now further allow the conduction of coordinate-based meta-analyses in these age categories. Childhood and adolescence is a time of profound changes, and mentalizing abilities gain increasing importance in line with social maturation, the growing importance of peers and development of the own self. Novel evidence paralleling these processes may add to our understanding of biopsychosocial development in health and disease (e.g. Foulkes and Blakemore, 2018).

Here, we aimed to compile and compare existing knowledge on the neural correlates of mentalizing in children, adolescents and adults. Our main aims were to (i) perform a coordinate-based meta-analysis integrating data on neural activation and functional connectivity patterns during mentalizing in adults, (ii) compute a coordinate-based meta-analysis to integrate existing data on neural activation during mentalizing in children/adolescents and (iii) run a conjunction analysis to reveal common brain regions activated by adults and children/adolescents during mentalizing. Additionally, a contrast analysis in children/adolescents vs adults will be computed to detect distinct brain activation during mentalizing. Finally, (iv) follow-up analyses comparing children and adolescents allow for a first indication of neural patterns observed in younger children as compared to adolescents. Based on previous studies, we hypothesized mentalizing in adults to be associated with activation in medial prefrontal cortex, temporoparietal junction, precuneus, inferior frontal gyri and
temporal cortex (Van Overwalle, 2009; Mar, 2011; Schurz et al., 2014; van Veluw and Chance, 2014; Molenaerghs et al., 2016). Moreover, functional connectivity between mentalizing regions (temporoparietal junction/posterior superior frontal sulcus and medial prefrontal cortex) and areas engaged during lower-level processes (Burnett and Blakemore, 2009; Lombardo et al., 2010; Atique et al., 2011; Schuwerk et al., 2014) were expected. For children/adolescents, a similar but still developing activation pattern is hypothesized, reflected by the activation of some, but not all, areas reported in adults (e.g. engagement of medial prefrontal cortex but only emerging activation of the temporoparietal junction/superior temporal cortex (Blakemore, 2008, 2012a,b; Crone and Dahl, 2012)).

Methods
Literature search and study selection
We conducted systematic and standardized meta-analyses corresponding to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the revised Quality of Reporting of Meta-analyses statement (Moher et al., 2009). Our main literature search was conducted through PubMed and included the keywords ‘fMRI Theory of Mind’ with and without the restriction to ‘children’ and/or ‘adolescents’ (search date in adults: 4 December 2018; in children/adolescents: 1 November 2019). Additionally, the reference lists of past meta-analyses and reviews investigating mentalizing were screened to identify any reports previously not detected (for details, see PRISMA flow diagram, Supplementary Information 1). Inclusion criteria for studies entering our meta-analyses were: whole-brain findings, coordinates provided in standard space (i.e. Talairach & Tournoux or Montreal Neurological Institute (MNI) space), contrasts targeting mentalizing and English publications. Studies based on region of interest (ROI) analyses or non-fMRI studies (e.g. electroencephalography and structural neuroimaging) and studies only yielding hyoactivations were excluded. The activation likelihood estimation methodology applied here does not allow the inclusion of null findings and does not account for differences in the thresholding of the studies entering the meta-analyses. A main goal of the present study was the investigation of brain activity related to mentalizing in adults and the comparison of these findings to evidence deriving from studies in children/adolescents. Studies that report brain activity deriving from mixed groups of adolescents and adults (without separate coordinates for adults and children/adolescents) were not included. Data from clinical research studies were only included for the healthy subgroups (i.e. coordinates on healthy control groups or main effects, representing brain activation equal to the clinical and control groups).

This procedure yielded a total of 228 studies of fMRI evidence for mentalizing with a total of 245 contrasts of interest and 5765 subjects. The adult meta-analysis included 206 studies with 2876 activation foci from 223 contrasts in 5286 subjects (Table 1; Supplementary Information 2). The meta-analysis on developmental neuroimaging studies of mentalizing in children/adolescents included 22 studies with 217 activation foci from 22 contrasts in 479 subjects (Table 2; Supplementary Information 3).

Meta-analytic methods
Activation likelihood estimation meta-analyses
Activation likelihood estimation approaches were implemented using the GingerALE software, 3.0.2 (Eickhoff et al., 2009). In short, a 3D image is created from each foci group. The 3D image derives from the mask, individual foci and a Gaussian blur; a full width at half maximum is empirically derived from the subject size of the experiments (Eickhoff et al., 2009). The three-dimensional probabilities of the activation foci are then combined for each voxel, resulting in modeled activation maps. The resulting Activation Likelihood Estimation (ALE) scores are computed by finding the convergence across all modeled activation maps, which are then compared to an empirically defined null distribution (Eickhoff et al., 2012; Turkeltaub et al., 2012). GingerALE 3.0.2 implements a random effects model that computes an above-chance clustering between the experiments (instead of between foci), a subject-size-related variable uncertainty and limitation of the effects of a single experiment. Talairach and Tournoux coordinates were first converted into MNI coordinates using the Lancaster transform.

To explore differences in brain activity during mentalizing in younger children compared to adolescents, we conducted individual age-categories-based follow-up meta-analyses for children (average age below 12) and adolescents (average age above 12) based on the 22 studies identified (Supplementary Information 3). A cut-off of 12 years on average represents both literature discussing the age of 12 as an approximate start of adolescence (Spear, 2000) and allowed roughly enough power of number of experiments entering each subgroup analysis. The meta-analysis for children was based on 65 activation foci from 12 contrasts including 219 subjects; the meta-analysis on adolescents was based on 152 activation foci from 10 contrasts including 260 subjects. All images are displayed using the Mango imaging software 4.1 and the Colin27 brain template (available at http://brainmap.org/ale/). All thresholded ALE images described in this manuscript are available at https://identifiers.org/neurovault.collection:10407.

Meta-analytic connectivity modeling
Meta-analytic connectivity modeling (MACM) was used to explore functional connectivity during mentalizing in adults. MACM derives patterns of neural coactivation with studies in the BrainMap database (Fox and Lancaster, 2002; Robinson et al., 2010, 2012). Analyses were conducted for adults only since the studies included in the BrainMap database (www.brainmap.org) used for
First author, year	N	Task type	First author, year	N	Task type	First author, year	N	Task type	First author, year	N	Task type
Gallagher*, 2000	6	Task type									
Russiell*, 2000	9	Task type									
Voges*, 2000	15	Task type									
Ferri*, 2000	18	Task type									
Frith*, 2000	16	Task type									
Perrett*, 2000	17	Task type									
Perrett*, 2000	18	Task type									
Perrett*, 2000	19	Task type									
Perrett*, 2000	20	Task type									
Perrett*, 2000	21	Task type									
Perrett*, 2000	22	Task type									
Perrett*, 2000	23	Task type									
Perrett*, 2000	24	Task type									
Perrett*, 2000	25	Task type									
Perrett*, 2000	26	Task type									
Perrett*, 2000	27	Task type									
Perrett*, 2000	28	Task type									
Perrett*, 2000	29	Task type									
Perrett*, 2000	30	Task type									
Perrett*, 2000	31	Task type									
Perrett*, 2000	32	Task type									
Perrett*, 2000	33	Task type									
Perrett*, 2000	34	Task type									
Perrett*, 2000	35	Task type									
Perrett*, 2000	36	Task type									
Perrett*, 2000	37	Task type									
Perrett*, 2000	38	Task type									
Perrett*, 2000	39	Task type									
Perrett*, 2000	40	Task type									
Perrett*, 2000	41	Task type									
Perrett*, 2000	42	Task type									
Perrett*, 2000	43	Task type									
Perrett*, 2000	44	Task type									
Perrett*, 2000	45	Task type									
Perrett*, 2000	46	Task type									
Perrett*, 2000	47	Task type									
Perrett*, 2000	48	Task type									
Perrett*, 2000	49	Task type									
Perrett*, 2000	50	Task type									

Note: (continued)
Table 1. (Continued)

First author, year	N	Task type	First author, year	N	Task type	First author, year	N	Task type
Marsh*, 2010	24	Action identification (reading)	Mason*, 2011	10	ToM reading	Rabin*, 2012	18	False belief
Mier*, 2010	16	ToM reading/faces	McAdams*, 2011	17	Frith–Happé	Roser*, 2012	14	False belief
Mier*, 2010	40	ToM reading/faces	Otsuka*, 2011	22	ToM reading	Spotorno*, 2012	20	Irony
Modinos*, 2010	36	ToM cartoon	Polosan*, 2011	14	Computer/human interaction	Spunt*, 2012a	21	Action identification (images)
Murphy*, 2010	10	Evaluation of others’ attributes	Rothmayr*, 2011	12	False belief	Spunt*, 2012b	21	Action identification (images)
Prince*, 2010	9	Reading the Mind in the Eyes	Schnell*, 2011	21	ToM cartoon	Uchiyama*, 2012	20	Sarcasm/metaphors
Rabin*, 2010	18	Images of others’/own events	Shibata*, 2011	15	Indirect speech	van Ackeren*, 2016	25	Indirect speech processing
Vemude*, 2012	25	False belief	Spunt*, 2014	29	Action identification (images)	van Ackeren*, 2016	25	Indirect speech processing
Bodden*, 2013	30	False belief	Van Hoeck*, 2014	19	ToM reading	Bravo*, 2017	14	Auditory ToM
Contrenas*, 2013	36	ToM reading, false belief	Alderson-Day*, 2015	19	False belief	Desmet*, 2017	17	Frith–Happé
Corradi-Dell’Acqua*	46	False belief	Frank*, 2015	34	False belief	Döhnel*, 2017	22	False belief
Dufour*, 2013	27	False belief	Hartwright*, 2015	21	False belief	Eddy*, 2017	25	False belief
Hervé*, 2013	42	ToM reading	Kandyaki*, 2015	20	False belief	Feng*, 2017	23	Indirect replies
Kullman*, 2013	18	Reading the Mind in the Eyes	Kanske*, 2015	25	ToM reading/faces	Lewis*, 2017	17	ToM reading
McAdams*, 2013	18	Frith–Happé	Littlefield*, 2015	23	ToM reading/faces	Massau*, 2017	50	Moral judgment of others’ behavior
Saff*, 2013	26	ToM cartoon	Mohme*, 2015	297	ToM cartoon	Mier*, 2017	44	ToM reading/faces
Schiffer*, 2013	22	Reading the Mind in the Eyes	Ott*, 2015	20	Frith–Happé	Ozdem*, 2017	21	Eye gaze evaluation game
van der Meer*, 2013	19	False belief	Schafke*, 2015	39	ToM reading	Powell*, 2017	12	Predict peer strategy during game
Varga*, 2013	24	Irony	Schurz*, 2015	22	Visual perspective taking	White*, 2017	23	Pain/harm in others
Ampe*, 2014	17	Action identification (images)	Spunt*, 2015	480	False belief	White*, 2017	23	Pain/harm in others
Dodell-Feder*, 2014	18	ToM reading	Wang*, 2015	56	ToM cartoon	Ammons*, 2018	14	Frith–Happé
Dodell-Feder*, 2014	18	False belief	Willert*, 2015	81	ToM cartoon	Bartholomeusz*, 2018	22	ToM cartoon
Dufour*, 2014	17	Humor	Bardi*, 2016	22	False belief	Bitsch*, 2018	20	Prisoner’s dilemma
Hartwright*, 2014	20	False belief	Dungan*, 2016	24	False belief	Blästedt*, 2018	17	Frith–Happé
Lee*, 2014	19	False belief	Eddy*, 2016	50	False belief	Grant*, 2018	50	ToM reading
Mier*, 2014	18	ToM reading/faces	Hemion*, 2016	25	Frith–Happé	Herold*, 2018	12	Irony
Reniers*, 2014	15	ToM faces	Jacoby*, 2016	20	False belief	Lee*, 2018	16	Pain/harm in others
Riekkö*, 2014	23	Frith–Happé	Korkoski*, 2016	23	Frith–Happé	Lin*, 2018	39	ToM reading
Schneider*, 2014	16	False belief	Lavoie*, 2016	19	ToM reading	Niemi*, 2018	16	Moral judgments of others
Schwerck*, 2014	21	False belief	Schmitgen*, 2016	21	ToM cartoon	Nijhof*, 2018	21	False belief
Ohtsubo*, 2018	37	Others apologizing	Tsui*, 2018	25	Pain/harm in others	Lassalle*, 2019	20	Pain/harm in others
Sommer*, 2018	18	False belief	Wurm*, 2018	18	Action identification (images)	Zhu*, 2019	30	Guilt/shame in others
Specht*, 2018	18	ToM cartoon	Zhang*, 2018	58	Ambiguous ToM reading			
Thye*, 2018	18	Reading the Mind in the Eyes	Greven*, 2015	25	Body judgment of others			

* = only first authors are listed; N = number of subjects; ToM = Theory of Mind; Frith–Happé = Frith–Happé animations or adaptations thereof; ToM cartoon = comics or cartoons eliciting mentalizing; ToM reading = sentences or statements eliciting mentalizing; ToM faces = images of faces showing an intention or affective state; ToM movie = movie clips eliciting mentalizing. The full references of this table can be found in Supplementary Information 6.
connectivity modeling are almost exclusively based on adult literature. Consequently, no MACM using children/adolescents was possible. Individual steps for connectivity modeling are described in Supplementary Information 4. In short, three analyses were conducted: (i) connectivity analyses for which all duplicates between the meta-analysis in adults and the BrainMap search findings were omitted (i.e. studies investigating mentalizing in adults that were already included in our own meta-analyses), (ii) all paradigms of the BrainMap database entered the analysis (including Theory of Mind/mentalizing tasks) and (iii) connectivity analyses for each of the nine ROIs individually based on all paradigms in the BrainMap database were repeated to report which specific region was coactivated with any other area in the brain.

Results

Activation likelihood estimation meta-analysis results

The individual ALE meta-analysis for 206 functional neuroimaging studies of mentalizing in adults revealed nine significant clusters of activation, including bilateral temporoparietal junction
extending into the middle temporal gyrus, precuneus and medial and inferior/middle frontal gyri. The individual ALE meta-analysis on 22 studies in children/adolescents resulted in seven significant clusters of activation, including ventromedial and middle medial frontal cortex, bilateral temporoparietal junction, precuneus/posterior cingulate gyrus and middle/superior temporal gyr. The conjunction analysis examining the overlap of activation in studies in adults and children/adolescents resulted in seven clusters of brain activation reflecting mentalizing and included ventromedial and middle medial prefrontal cortex, precuneus, bilateral temporoparietal junction and middle/superior temporal gyri (Figure 1A and Table 3). Finally, the contrast analysis for increased activation during mentalizing for adults compared to children/adolescents, based on a robust test including resampling of the adult studies, resulted in a total of 42 clusters (18 clusters with a volume of >100 voxels) in areas including superior medial frontal cortex, bilateral superior/middle/inferior frontal gyri, posterior temporoparietal junction (including middle temporal gyri and superior parietal lobule), posterior precuneus, thalamus, claustrum/insula and right occipital pole (Figure 1B and Table 4; full list of clusters in Supplementary Information 7, entire output at https://osf.io/fe5vu/). The contrast analysis for increased activation for children/adolescents compared to adults yielded eight clusters (seven clusters with a volume of >100 voxels), including ventromedial and middle medial prefrontal cortex, precuneus, bilateral temporoparietal junction and middle/superior temporal gyri (Figure 1B and Table 4; https://osf.io/fe5vu/). The added conjunction analysis based on the resampling approach yielded seven clusters that were highly similar (i.e. including the same regions) to the initial conjunction analysis (Figure 1B and Table 4; https://osf.io/fe5vu/).

To investigate potential confounds introduced by task variability, we conducted additional analyses using more restrictive criteria of including Theory of Mind tasks only (e.g. false belief tasks, Frith–Happé animations and Theory of Mind cartoon tasks). This led to comparable results (Supplementary Information 5). Notably, the right middle frontal gyrus previously detected in adults and the ventromedial prefrontal cortex reported in children/adolescents, bilateral temporoparietal junction and middle/superior temporal cortex during mentalizing (Frith, 2006) were also visible.

Follow-up analyses: mentalizing in younger children and adolescents

The ALE meta-analysis for children (average age below 12 years) resulted in four significant clusters of activation, including bilateral medial frontal gyr, precuneus and right temporoparietal junction. In adolescents (average age above 12 years), five significant clusters of activation were identified in middle medial prefrontal cortex, bilateral temporoparietal junction/superior temporal gyri, middle and inferior temporal gyri and cingulate gyrus extending into precuneus. The conjunction analysis of both age groups resulted in two clusters of significant common activation across both groups, including middle medial prefrontal cortex and precuneus/posterior cingulate cortex (Figure 1C and Table 5).

Meta-analytic connectivity modeling

By December 2019, the BrainMap database contained 3406 publications with 16901 contrasts and 76016 subjects. The BrainMap search results for each ROI are listed in Table 6. Results include paradigms for, for example, motor tasks/button press, semantic discrimination or face discrimination. The MACM analysis for all ROIs together (identical to the meta-analytic results in adults) revealed functional connectivity with bilateral middle and inferior frontal gyri extending into insula, medial superior frontal gyr, bilateral superior temporal gyri, left inferior parietal lobule extending into supramarginal gyrus, right superior parietal lobule and bilateral thalamus/basal ganglia (caudate, putamen and globus pallidus; results in Figure 2 and Table 7). The connectivity results, including all paradigms in the BrainMap database and for each ROI separately, are reported in Supplementary Information 8 and 9, respectively.

Discussion

This study aimed to integrate and compare functional neuroimaging reports on mentalizing in adults, children and adolescents. Across all age categories (children, adolescents and adults), activation increases during mentalizing were observed in three key regions of the social brain, namely medial prefrontal cortex, precuneus and right temporoparietal junction. Conjunction analyses in adults and children or adolescents indicated overlapping neural activity during mentalizing for both groups in medial prefrontal cortex, precuneus, bilateral temporoparietal junction and middle temporal gyr. Adults furthermore recruited regions including the bilateral inferior, middle and superior frontal gyri, superior parts of the medial frontal cortex, insula and occipital pole during mentalizing as indicated by meta-analytic contrast analyses using a robust resampling approach. When examining statistically significant differences in convergence that are higher in the studies of children and adolescents as compared to a resampled adult group, the resulting areas fully corresponded to regions that are identified through conjunction analyses (i.e. areas recruited in both age groups). Exploration of the functional connectivity network originating from the identified clusters of common activation during mentalizing in adults indicated connectivity with bilateral thalamus, basal ganglia and inferior/superior parietal lobule extending into the supramarginal gyrus. Finally, subgroup analyses comparing younger participants (<12 years) to adolescents (>12 years) revealed that both groups engage the middle medial prefrontal cortex, precuneus and right temporoparietal junction, but adolescents additionally recruit the left temporoparietal junction and middle/inferior temporal cortex during mentalizing.

Across children, adolescents and adults, consistent recruitment of medial prefrontal cortex, precuneus and temporoparietal junction was observed. Medial prefrontal cortex and temporoparietal junction are commonly associated with mentalizing (Van Overwalle, 2009; Mar, 2011; Schurz et al., 2014; van Veluw and Chance, 2014; Molenberghs et al., 2016). The medial prefrontal cortex has been suggested to play a generic role when reasoning about one’s own or others’ mental states (Amodio and Frith, 2006; Moll and de Oliveira-Souza, 2007; Blakemore, 2009; Shamay-Tsoory et al., 2009; Molenberghs et al., 2016). The ventromedial prefrontal cortex is more strongly related to social emotion processing or regulation of emotions (Hiser and Koenigs, 2018). The temporoparietal junction is prominently recruited using false belief or perspective-taking tasks (Decety and Lamm, 2007) and has been suggested to comprise a subregion selective for reasoning about others’ mental states (Saxe and Kanwisher, 2003; Van Overwalle, 2009). Tasks involving the reorientation of attention and representing a sense of agency have likewise shown to
Cluster	Region	H	Vol	x	y	z	Weighted center	BA	ALE extrema
Adults	Superior/middle temporal gyrus	L	27048	−54	−39	6	−52 −58 24	39	0.16314
							−56 −10 −16	21	0.09503
							−56 −48 4	22	0.08342
							−58 −44 4	22	0.08245
							−54 −2 −24	21	0.08228
							−54 2 −28	21	0.08187
							−52 −34 −4	21	0.07534
							−62 −20 −10	21	0.06008
							−48 10 −36	38	0.05558
	Superior/middle temporal gyrus	R	22896	54 32	2		56 −54 26	39	0.14555
							56 −54 18	39	0.13739
							54 −2 −22	21	0.11530
							60 −8 −18	21	0.10536
							50 8 −30	21	0.07466
							46 14 −32	38	0.06757
							52 −34 −2	−	0.06248
							50 −72 8	37	0.05878
	Middle medial/superior frontal gyrus	L/R	20704	−1 54	20		−6 56 32	8	0.12811
							0 46 −18	10	0.07336
							2 54 −12	10	0.06272
							2 44 44	8	0.04970
							4 38 38	8	0.04734
							4 42 34	6	0.04575
	Inferior frontal gyrus	L	11120	−48 24	3		−54 24	8	0.09785
							−48 28 −10	47	0.09691
							−42 10 28	9	0.05533
	Precuneus	L	10680	−55 35			−2 −54 36	31	0.15210
	Inferior/middle frontal gyrus	R	8112	50 26	7		56 28 8	45	0.10600
							52 30 −6	45	0.07474
							48 22 22	46	0.06643
							36 24 −12	47	0.05135
	Medial superior frontal gyrus	L/R	4992	−5 19	56		−4 18 56	6	0.07184
							−4 18 52	6	0.07093
							8 24 54	8	0.05854
	Middle frontal gyrus	L	2344	−43 5	51		−44 6 52	6	0.06286
							44 8 44	6	0.05884
	Middle frontal gyrus	R	1896	44 9	45		44 8 44	6	0.05884
Children/adolescents	Medial/superior frontal gyrus	R	3224	2 56	21		4 56 20	9	0.03730
							10 56 32	8	0.01775
	Superior/middle temporal gyrus	L	2864	−45 −58 23		−46 −58 22 39		0.02365	
							−42 −58 20	22	0.02262
	Precuneus, posterior cingulate gyrus	L	2536	−1 −54 33		0 −54 34 31		0.02384	
							0 −50 24	30	0.01660
	Middle/superior temporal gyrus	R	2008	52 8 −26		54 2 −24 21		0.02020	
							52 12 −24	38	0.01934
							46 14 −32	38	0.01530
	Superior temporal gyrus, supramarginal gyrus, inferior parietal lobule	R	1384	52 −58 21		50 −58 20 22		0.02618	
							58 −52 24	40	0.01311
							54 −46 24	40	0.01189
	Medial frontal gyrus	R	1368	2 55 −9		0 54 −8		0.02087	
							2 50 −18	10	0.01329
	Middle/inferior temporal gyrus	L	1200	−56 −4 −21		−56 −2 −22 21		0.02409	
							−58 −14 −22	21	0.01316
Conjunction: Adults \(\cap\) children/adolescents	Medial/superior frontal gyrus	R	2912	2 56	21		4 56 20	9	0.03730
							10 56 32	8	0.01775
	Superior/middle temporal gyrus	L	2624	−46 −58 23		−46 −58 22 39		0.02365	
							−42 −58 20	22	0.02262
Fig. 1. Overlay of meta-analysis results for (A) adults (red) and children/adolescents (green; almost fully covered since overlapping with the conjunction results) and the conjunction analysis of both groups (blue) during mentalizing. Overlapping brain activity in adults and children/adolescents was identified for medial prefrontal cortex (MPFC), precuneus (PC)/posterior cingulate gyrus (PCC), temporoparietal junction (TPJ) and middle temporal gyrus. (B) Contrast analyses for adults > children/adolescents (red) and children/adolescents > adults (green; almost fully covered since overlapping with the conjunction results) and the conjunction analysis of both groups (blue) during mentalizing. Increased activity for adults compared to children was, for example, detected in middle MPFC, superior and inferior frontal gyri (SFG/IFG) and middle temporal gyri (MTG). (C) Children (below 12 years of age; pink), adolescents (12 years and older; yellow) and the conjunction analysis of both age groups (blue). Common brain activity was detected in MPFC and PC/PCC (all $P < 0.05$, FWE corrected).

Table 3. (Continued)

Cluster	Region	H	Vol	x	y	z	BA	ALE extrema
3	Precuneus, posterior cingulate gyrus	L	2448	-1	-54	34		
4	Middle/superior temporal gyrus	R	1736	52	7	-26		
5	Superior temporal gyrus, supramarginal gyrus, inferior parietal lobule	R	1320	52	-57	21		
6	Middle/inferior temporal gyrus	L	1128	-56	-4	-21		
7	Medial frontal gyrus	R	888	1	54	-10		

H = hemisphere; R = right; L = left; Vol = volume in mm3; x, y, z coordinates are in MNI space; BA = Brodmann area (if applicable).

lead to activation increases in temporoparietal regions (Decety and Lamm, 2007). Finally, the precuneus has been suggested to play a significant role in memory and mental imagery needed to construct different perspectives (Cavanna and Trimble, 2006;
Table 4. Meta-analytic contrast analyses for studies in adults compared to children/adolescents. Clusters with a minimal voxel number of 100 are reported (for a full list, see Supplementary Information 7). For completeness, the conjunction analysis of the resampled adult group and children/adolescents is also provided.

Cluster	Region	H	Vol	x	y	z
Adults > children/adolescents	Medial frontal gyrus, pre-supplementary motor area	L	2132	−2	58	32
	Temporoparietal junction, inferior parietal lobule, angular gyrus, supra-marginal gyrus	L	1925	−58	−54	22
	Inferior parietal lobule, angular gyrus, middle temporal gyrus	R	1162	56	−52	16
	Inferior frontal gyrus	R	919	58	32	4
	Inferior frontal gyrus, frontal orbital cortex	L	825	−48	26	−12
	Middle frontal gyrus	L	658	−42	8	52
	Anterior middle temporal gyrus	R	528	58	−8	−18
	Middle frontal gyrus	L	366	−43	5	51
	Precuneus	R	309	4	−62	30
	Middle frontal gyrus	R	163	40	8	38
	Superior parietal lobule, intraparietal sulcus	L	161	−34	−54	40
	Insula	L	156	−30	24	−6
	Inferior lateral occipital cortex	L	129	50	6	−38
	Superior/middle frontal gyurs	L	116	−10	−18	2
Children/adolescents > adults	Medial superior frontal gyrus	R	353	2	56	20
	Inferior parietal lobule, angular gyrus	L	318	−42	−60	28
	Precuneus, posterior cingulate gyrus	L/R	307	0	−50	28
	Temporal pole, middle temporal gyrus	R	242	54	10	−22
	Medial frontal gyrus, frontal pole	R	168	6	58	−4
	Inferior parietal lobule, angular gyrus	R	130	48	−60	20
	Middle/superior temporal gyrus	L	129	−56	−2	−20

Conjunction: Adults ∩ children/adolescents

Cluster	Region	H/L	Vol	x	y	z
1	Medial/superior frontal gyrus	R/L	372	0	56	26
2	Inferior parietal lobule, angular gyrus	L	312	−50	−58	24
3	Precuneus, posterior cingulate gyrus	L	305	−2	−54	36
4	Middle/superior temporal gyrus	R	222	52	0	−24
5	Middle temporal gyrus	L	125	−56	−4	−20
6	Inferior parietal lobule, angular gyrus	R	120	54	−56	18
7	Medial frontal cortex	R/L	113	0	52	−12

H = Hemisphere; R = right; L = left; Vol = Volume in voxels; x, y, z coordinates are in MNI space.

Fig. 2. Meta-analytic connectivity modeling results for adults. Regions of interest identified in our meta-analysis (mint) and resulting clusters of functional connectivity (red), including inferior parietal lobule (IPL) and thalamus/caudate (THAL/CAU). Coordinates are in MNI space.

Schurz et al., 2013). Overall, brain regions showing activation during mentalizing across development have been broadly linked to the reorientation of attention, memory processes and mental imagery. Such patterns of neural engagement may indicate that the neural basis supporting mentalizing is somewhat stable from a young age on, possibly reflecting an early specialization of parts of the social brain (Bowman et al., 2019). Our findings are supported by behavioral evidence of mentalizing skills starting to develop early in life and continuing until young adulthood (Meins et al., 2002; Blakemore, 2008; Knudsen and Liszkowski, 2012).

Here, bilateral inferior, middle and superior frontal gyri, medial sections of the superior frontal gyri, insula and occipital pole were identified in adults only but not in children and adolescents as indicated by contrast analyses. This is in line with the involvement of inferior and middle frontal gyri in late-developing higher-order cognitive functions, including attentional processes.
Children (below 12 years of age) and adolescents (above 12 years of age) revealed that children up to 12 years of age commonly engage brain areas within the middle medial prefrontal cortex, precuneus and right temporoparietal junction, while adolescents commonly activate a more adult-like set of brain regions, including medial prefrontal cortex, precuneus and right temporoparietal junction. The observed difference may be due to the repeated resampling of adult studies while keeping the 22 studies in children constant. Additionally, differences may result from a differing threshold selection, as studies in children/adolescents tend to be more lenient.

Our follow-up subgroup analyses investigating younger children (<12 years) and adolescents (>12 years) revealed that children up to 12 years of age commonly engage brain areas within the middle medial prefrontal cortex, precuneus and right temporoparietal junction, while adolescents commonly activate a more adult-like set of brain regions, including medial prefrontal cortex, precuneus, bilateral temporoparietal junction and anterior middle/inferior temporal cortices (Van Overwalle, 2009; Mar, 2011; Schurz, et al., 2014; van Veluw and Chance, 2014; Molenberghs et al., 2016). In the present meta-analyses, development of the temporoparietal junction is indicated by unilateral (i.e. right-hemispheric) activation in children but bilateral activation in adolescents. Notably, interpretation is limited by the small number of studies and by the cross-sectional designs used in studies involving children.

Table 5. Meta-analytic findings for children (below 12 years of age), adolescents (above 12 years of age), and the conjunction analysis (∩) of studies in children below and adolescents above 12 years of age

Cluster	Region	H	Vol	x	y	z	P	cluster region	x	y	z
Children (below 12 years of age)	Medial frontal gyrus	L	1946	3	57	19	2	56	20	9	0.02213
Adolescents (12 years and older)	Superior/middle temporal gyrus	L	1992	−4	−57	20	−46	−58	20	22	0.02206
	Superior/middle frontal gyrus	R	712	−3	−55	37	−2	−56	36	7	0.01623
	Medial frontal gyrus	L	600	59	−52	26	60	−52	24	40	0.01214

Conjunction: Children ∩ adolescents	Cluster	Region	H	Vol	x	y	z	P	cluster region	x	y	z
Children (below 12 years of age)	Medial frontal gyrus	L	1496	3	57	19	2	56	20	9	0.02213	
Adolescents (12 years and older)	Superior/middle temporal gyrus	L	1992	−4	−57	20	−46	−58	20	22	0.02206	
	Superior/middle frontal gyrus	R	712	−3	−55	37	−2	−56	36	7	0.01623	
	Medial frontal gyrus	L	600	59	−52	26	60	−52	24	40	0.01214	

Table 6. BrainMap database search results (i.e. number of foci, contrasts and subjects) for each region of interest derived from the meta-analysis in adults

Region	H	x	y	z	Foci	Contrasts	N
Superior/middle temporal gyrus (temporoparietal junction)	L	−54	−39	6	633	51	818
Superior/middle temporal gyrus (temporoparietal junction)	R	54	−32	2	771	38	593
Superior/middle frontal gyrus	L/R	−1	54	20	372	32	466
Inferior frontal gyrus	L	−58	−5	−20	681	41	526
Inferior/middle frontal gyrus	L	−48	24	3	483	42	708
Medial superior frontal gyrus	L/R	50	26	7	563	34	555
Middle frontal gyrus	L	−43	5	51	809	47	683
Middle frontal gyrus	R	44	9	45	684	37	527

H = hemisphere; R = right; L = left; Vol = volume in mm³; BA = Brodmann area; x, y, z coordinates are in MNI space.

(japee et al., 2015), working memory (Leung et al., 2002), response inhibition (Swick et al., 2008; Hampshire et al., 2010), semantic processing (Costafreda et al., 2006) and observation of movements via the mirror neuron system (Kilner et al., 2009). The medial superior frontal cortices are similarly involved in higher cognitive processing, including memory and executive functions (Boisguesheuen et al., 2006; Nachev et al., 2008; Li et al., 2013) or higher-order emotion processes (Seitz et al., 2008; Rochas et al., 2013). The insula and occipital pole have been related to mentalization processes as, for example, trait judgments of familiar others (Laurita et al., 2017), social emotion regulation (Grecucci et al., 2013) or spontaneous mentalizing (Spiers and Maguire, 2006). Our findings may be indicative of specializations within the social brain network across age and are in line with data indicating a late development of higher cognitive functions (Gogtay et al., 2004; Tamnes et al., 2010; Simmonds et al., 2017). Regions with increased activation for children/adolescents compared to adults almost fully overlapped with areas observed in the conjunction analysis, encompassing bilateral temporoparietal junction, medial prefrontal cortex and precuneus. The observed difference may be due to the repeated resampling of adult studies while keeping the 22 studies in children constant. Additionally, differences may result from a differing threshold selection, as studies in children/adolescents tend to be more lenient.

Connectivity between the thalamus/basal ganglia and the cerebral cortex (e.g. dorsolateral prefrontal cortex and anterior cingulate cortex) has been commonly reported in emotion processing and higher-order cognitive processes such as mentalizing (Postuma and Dagher, 2006; Di Martino et al., 2008; Molenberghs et al., 2016). Inclusion of Theory of Mind tasks in the paradigms entering the connectivity analyses led to an additional coactivation cluster in the middle medial prefrontal cortex, which may indicate that this area is specifically activated during mentalizing (Schurz et al., 2014; Molenberghs et al., 2016). For developmental populations, only few studies so far have examined functional connectivity during mentalizing. Burnett and Blakemore (2009) reported increased functional connectivity between the ventromedial prefrontal cortex and left temporoparietal junction/posterior superior temporal sulcus in adolescents compared to adults, possibly reflecting increasing specialization of the network connections during skill development. Similarly, Richardson et al. (2018) detected increased connectivity with age between temporoparietal junction, precuneus and medial prefrontal cortex in children aged 3–12 years during an implicit Theory of Mind task. Others reported no age effects in connectivity during mentalizing but stable connectivity patterns between associated areas (e.g. medial prefrontal cortex and temporoparietal junction and precuneus) and striatum/dorsolateral prefrontal cortex (McCormick et al., 2018) in 8–16 year olds or within mentalizing regions (temporoparietal junction, superior temporal sulcus and
precuneus (Mukerji et al., 2019) in 9–13 year olds. Such differences in findings may arise due to variations in the tasks employed or the characteristics of the group studied.

Limitations and future steps

Using a meta-analytic approach increases statistical power, which is especially useful for developmental neuroscience research, where studies are often characterized by small sample sizes. However, meta-analytic approaches also entail shortcomings, and the present findings depend on the quality and methodological approaches of the publications included. Such variability was partly addressed by conducting a meta-analysis with more restrictive definitions for Theory of Mind tasks, yielding comparable results. While the activity in two regions was no longer significant, these clusters emerged when using more lenient statistics, indicating possible power issues. Moreover, it is to note that the meta-analysis in adults comprised more studies than the meta-analysis in children and adolescents. Overall, the meta-analysis in adults is better powered and, therefore, more likely to have captured a true effect, while the meta-analysis in children and adolescents may have to be interpreted with more caution. The search for studies in children/adolescents was furthermore conducted later than the one for adults, which may have benefitted the number of studies entering the meta-analysis in children/adolescents. However, evidence in adults was large (N = 5286) and an inclusion of a few more studies was considered unlikely to change this. This is supported by the comparability of the present findings in adults and past meta-analytic work (Molenberghs et al., 2016). The interpretation of the meta-analytic output obtained here is, based on its methodology, limited to the location of the neural activation clusters, whereas cluster size or strength of activation of each age group cannot be interpreted (Eickhoff et al., 2009). Furthermore, this method cannot account for differences in the initial thresholding of the studies included, although such variation may influence the coordinates entering the analyses and thus the outcome of the present meta-analyses. Moreover, the contrast and conjunction analyses may show an overlap of regions, which is a consequence of the approach implemented (repeated resampling). While the direct comparison of children and adolescents is of interest, these analyses are based on average ages within groups without consideration of age ranges and, therefore, need to be interpreted with caution. During adolescence, many different variables individually or interactively influence development, which cannot be accounted for here. The present work may only inform about age categories and does not directly inform about continuing development, for which longitudinal studies were required (Blakemore, 2008; Blakemore et al., 2010; Luna et al., 2010). Finally, meta-analyses are subject to publication biases and may propagate these [e.g. due to the inclusion of positive/significant findings while ignoring null results (Klapwijk et al., 2019)].

To advance the field of mentalizing, future longitudinal measurements of brain activity during development are needed. These may allow drawing generalizable conclusions about fine-grained linear and nonlinear maturational trajectories associated with complex cognitive functions, as, for example, reported for the frontal cortex (Ordaz et al., 2013; Qu et al., 2015; Simmonds et al., 2017). Longitudinal designs may further characterize the neural correlates of mentalizing during major transitional steps [e.g. the transition from kindergarten to formal school education (Blair, 2002; Blair and Raver, 2015)]. Open science frameworks and data sharing options (see, e.g. https://osf.io, https://aspredicted.org or https://neurovault.org) may be considered by all researchers to provide options for data replication and compilation (Kliemann and Adolphs, 2018; Klapwijk et al., 2019).

Conclusion

Our meta-analyses shed further light on the neural basis of mentalizing in adults, children, and adolescents. While adults and children/adolescents show similar brain activation patterns during mentalizing in areas such as the middle medial prefrontal cortex, precuneus and temporoparietal junction, the adult brain recruits further brain regions, including medial and lateral prefrontal cortices. This may be due to the development of more complex cognitive processes. Our results indicate that essential neural components for mentalizing are at least partially established in childhood, reflecting a likely early stability and specialization of parts of the social brain network. Future studies using longitudinal designs may further clarify the precise underlying mechanisms of neural continuity and change during mentalizing from childhood to adolescence and adulthood.

Acknowledgements

The authors thank Maria Burska, Johannes Hopf and Anja Stirnimann for their help during literature screening and data preparation.

Funding

This work was supported by a Jacobs Foundation Early Career Research Grant [grant number 2016201713] and an early career research grant by the University of Basel (both to NMR).

Conflict of interest

The authors declared that they had no conflict of interest with respect to their authorship or the publication of this article.

Supplementary data

Supplementary data are available at SCAN online.

References

Amodio, D.M., Frith, C.D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268–71.

Atique, B., Erb, M., Gharabaghi, A., Grodd, W., Anders, S. (2011). Task-specific activity and connectivity within the mentalizing network during emotion and intention mentalizing. NeurImage, 55(4), 1899–911.

Baillargeon, R., Scott, R.M., He, Z. (2010). False-belief understanding in infants. Trends in Cognitive Sciences, 14(3), 110–8.

Baron-Cohen, S., Jolliffe, T., Mortimore, C., Robertson, M. (1997). Another advanced test of theory of mind: evidence from very high functioning adults with autism or Asperger syndrome. Journal of Child Psychology and Psychiatry, 38(7), 813–22.

Bednarz, H.M., Kana, R.K. (2018). Advances, challenges, and promises in pediatric neuroimaging of neurodevelopmental disorders. Neuroscience and Biobehavioral Reviews, 90, 50–69.

Björgvinsson, T., Hart, J. (2006). Cognitive behavioral therapy promotes mentalizing. In: Allen, J.G., Fonagy, P., editors. The Handbook of Mentalization-based Treatment, West Sussex, England: John Wiley & Sons, Ltd. 157–70.
Kerr, N., Dunbar, R.I., Bentall, R.P. (2003). Theory of mind deficits in bipolar affective disorder. *Journal of Affective Disorders*, 73(3), 253–9.

Kilner, J.M., Neal, A., Weiskopf, N., Friston, K.J., Frith, C.D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. *Journal of Neuroscience*, 29(22), 10153–9.

Klapwijk, E., van den Bos, W., Tanmnes, C.K., Mills, K., Raschle, N. (2019). Opportunities for increased reproducibility and replicability of developmental cognitive neuroscience. *Developmental Cognitive Neuroscience*, 47, 100902.

Kliemann, D., Adolphs, R. (2018). The social neuroscience of mentalizing: challenges and recommendations. *Current Opinion in Psychology*, 24, 1–6.

Knudsen, B., Liszkowski, U. (2012). 18-month-olds predict specific action mistakes through attribution of false belief, not ignorance, and intervene accordingly. *Infancy*, 17(6), 672–91.

Kobayashi, C., Glover, G.H., Temple, E. (2007). Cultural and linguistic effects on neural bases of ‘Theory of Mind’ in American and Japanese children. *Brain Research*, 1164, 95–107.

Kobayashi, C., Glover, G.H., Temple, E. (2008). Switching language switches mind: linguistic effects on developmental neural bases of ‘Theory of Mind’. *Social cognitive and affective neuroscience*, 3(1), 62–70.

Koenigs, M., Barbey, A.K., Postle, B.R., Grafman, J. (2009). Superior ability of developmental cognitive neuroscience.

Korkmaz, B. (2011). Theory of mind and neurodevelopmental disorders. *Brain and Cognition*, 72(7), 1623–35.

Kerr, N., Dunbar, R.I., Bentall, R.P. (2003). Theory of mind deficits in bipolar affective disorder. *Journal of Affective Disorders*, 73(3), 253–9.

Kilner, J.M., Neal, A., Weiskopf, N., Friston, K.J., Frith, C.D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. *Journal of Neuroscience*, 29(22), 10153–9.

Klapwijk, E., van den Bos, W., Tanmnes, C.K., Mills, K., Raschle, N. (2019). Opportunities for increased reproducibility and replicability of developmental cognitive neuroscience. *Developmental Cognitive Neuroscience*, 47, 100902.

Kliemann, D., Adolphs, R. (2018). The social neuroscience of mentalizing: challenges and recommendations. *Current Opinion in Psychology*, 24, 1–6.

Knudsen, B., Liszkowski, U. (2012). 18-month-olds predict specific action mistakes through attribution of false belief, not ignorance, and intervene accordingly. *Infancy*, 17(6), 672–91.

Kobayashi, C., Glover, G.H., Temple, E. (2007). Cultural and linguistic effects on neural bases of ‘Theory of Mind’ in American and Japanese children. *Brain Research*, 1164, 95–107.

Kobayashi, C., Glover, G.H., Temple, E. (2008). Switching language switches mind: linguistic effects on developmental neural bases of ‘Theory of Mind’. *Social cognitive and affective neuroscience*, 3(1), 62–70.

Koenigs, M., Barbey, A.K., Postle, B.R., Grafman, J. (2009). Superior ability of developmental cognitive neuroscience.

Korkmaz, B. (2011). Theory of mind and neurodevelopmental disorders of childhood. *Pediatric Research*, 69(5 Pt 2), 101R–108R.

Kronbichler, L., Tschernegg, M., Martin, A.I., Schurz, M., Kronbichler, M. (2017). Abnormal brain activation during theory of mind tasks in schizophrenia: a meta-analysis. *Schizophrenia Bulletin*, 43(6), 1240–50.

Laurita, A.C., Hazan, C., Spreng, R.N. (2017). Dissociable patterns of brain activity for mentalizing about known others: a role for attachment. *Social Cognitive and Affective Neuroscience*, 12(7), 1072–82.

Leung, H.-C., Gore, J.C., Goldman-Rakic, P.S. (2002). Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. *Journal of Cognitive Neuroscience*, 14(4), 659–71.

Li, W., Qin, W., Liu, H., et al. (2013). Subregions of the human superior frontal gyrus and their connections. *Neurolmage*, 78, 46–58.

Lombardo, M.V., Chakrabarti, B., Bullmore, E.T., et al. (2009). The neural correlates of theory of mind during childhood and adolescence. *Social Cognitive and Affective Neuroscience*, 4(7), 975–80.

Molenberghs, P., Cunnington, R., Mattingley, J.B. (2009). Is the mirror neuron system involved in imitation? A short review and meta-analysis. *Neuroscience and Biobehavioral Reviews*, 33(7), 975–80.

Molenberghs, P., Johnson, H., Henry, J.D., Mattingley, J.B. (2016). Understanding the minds of others: a neuroimaging meta-analysis. *Neuroscience and Biobehavioral Reviews*, 65, 276–91.

Moll, J., de Oliveira-Souza, R. (2007). Moral judgments, emotions and the utilitarian brain. *Trends in Cognitive Sciences*, 11(8), 319–21.

Moor, B.G., De Macks, Z.A.O., Guroglu, B., Rombouts, S.A.R.B., van der Molen, M.W., Crone, E.A. (2012). Neurodevelopmental changes of reading the mind in the eyes. *Social Cognitive and Affective Neuroscience*, 7(1), 44–52.

Moran, J.M., Young, L.L., Saxe, R., et al. (2011). Impaired theory of mind for moral judgment in high-functioning autism. *Proceedings of the National Academy of Sciences*, 108(7), 2688–92.

Moriguchi, Y., Ohnishi, T., Lane, R.D., et al. (2006). Impaired self-awareness and theory of mind: an fMRI study of mentalizing in alexithymia. *Neurolmage*, 32(3), 1472–82.

Moriguchi, Y., Ohnishi, T., Mori, T., Matsuda, H., Komaki, G. (2007). Changes of brain activity in the neural substrates for theory of mind during childhood and adolescence. *Psychiatry and Clinical Neurosciences*, 61(4), 355–63.

Mukerji, C.E., Lincol, S.H., Dold-Feder, D., Nelson, C.A., Hooker, C.I. (2019). Neural correlates of theory-of-mind are associated with variation in children's everyday social cognition. *Social Cognitive and Affective Neuroscience*, 14(6), 579–89.

Nachev, P., Kennard, C., Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. *Nature Reviews Neuroscience*, 9(11), 856–69.

Ochsner, K.N., Beer, J.S., Robertson, E.R., et al. (2005). The neural correlates of direct and reflected self-knowledge. *Neurolmage*, 28(4), 797–814.

Orda, S.J., Foran, W., Velanova, K., Luna, B. (2013). Longitudinal growth curves of brain function underlying inhibitory control through adolescence. *Journal of Neuroscience*, 33(46), 18109–24.

Overgaauw, S., van Duijvenvoorde, A.C., Gunther, Moor, B., Crone, E.A. (2015). A longitudinal analysis of neural regions involved in reading the mind in the eyes. *Social Cognitive and Affective Neuroscience*, 10(5), 619–27.

Pfeifer, J.H., Lieberman, M.D., Dapretto, M. (2007). ‘I know you are but what am I?!’: neural bases of self-and social knowledge retrieval in children and adults. *Journal of Cognitive Neuroscience*, 19(8), 1323–37.

Pfeifer, J.H., Masten, C.L., Borofsky, L.A., Dapretto, M., Fuligni, A.J., Lieberman, M.D. (2009). Neural correlates of direct and reflected self-appraisals in adolescents and adults: when social perspective-taking informs self-perception. *Child Development*, 80(4), 1016–38.

Postuma, R.B., Daiger, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. *Cerebral Cortex*, 16(10), 1508–21.
Qu, Y., Galvan, A., Fuligni, A.J., Lieberman, M.D., Telzer, E.H. (2015). Longitudinal changes in prefrontal cortex activation underlie declines in adolescent risk taking. Journal of Neuroscience, 35(32), 11308–14.

Raschle, N., Zuk, J., Ortiz-Martilla, S., et al. (2012). Pediatric neuroimaging in early childhood and infancy: challenges and practical guidelines. Annals of the New York Academy of Sciences, 1252, 43–50.

Richardson, H., Lisandrelli, G., Riobueno-Naylor, A., Saxe, R. (2018). Development of the social brain from age three to twelve years. Nature Communications, 9(1), 1027.

Richardson, H., Saxe, R. (2020). Development of predictive responses in theory of mind brain regions. Developmental Science, 23(1), e12863.

Robinson, J.L., Laird, A.R., Glahn, D.C., Lovallo, W.R., Fox, P.T. (2010). Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Human Brain Mapping, 31(2), 173–84.

Robinson, J.L., Laird, A.R., Glahn, D.C., et al. (2012). The functional connectivity of the human cuneate: an application of meta-analytic connectivity modeling with behavioral filtering. Neuroimage, 60(1), 117–29.

Rochas, V., Gelmini, L., Krolak-Salmon, P., et al. (2013). Disrupting pre-SMA activity impairs facial happiness recognition: an event-related TMS study. Cerebral Cortex, 23(7), 1517–25.

Saxe, R., Kanwisher, N. (2003). People thinking about thinking people: the role of the temporo-parietal junction in ‘Theory of Mind’. Neuroimage, 19(4), 1835–42.

Saxe, R.R., Whitfield-Gabrieli, S., Scholz, J., Pelphrey, K.A. (2009). People thinking about other people in school-aged children. Child Development, 80(4), 1197–209.

Schulte-Ruther, M., Mainz, V., Fink, G.R., Herpertz-Dahlmann, B., Konrad, K. (2012). Theory of mind and the brain in anorexia nervosa: relation to treatment outcome. Journal of the American Academy of Child and Adolescent Psychiatry, 51(8), 832–841 e811.

Schurz, M., Aichhorn, M., Martin, A., Perner, J. (2013). Common brain areas engaged in false belief reasoning and visual perspective taking: a meta-analysis of functional brain imaging studies. Frontiers in Human Neuroscience, 7, 712.

Schurz, M., Radua, J., Aichhorn, M., Richlan, F., Perner, J. (2014). Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 9–34.

Schwartz, T., Döhnel, K., Sodian, B., Keck, I.R., Rupprecht, R., Sommer, M. (2014). Functional activity and effective connectivity of the human amygdala. Social Cognitive and Affective Neuroscience, 9(7), 1022–9.

Vijayakumar, N., Mills, K.L., Alexander-Bloch, A., Tamnes, C.K., Vetter, N.C., Weigelt, S., Duennweg, K., et al. (2012). Ongoing neural development of affective theory of mind in adolescence. Social Cognitive and Affective Neuroscience, 7(5), 656–67.

Wurm, M.F., Schubotz, R.I. (2018). The role of the temporoparietal junction (TPJ) in action observation: agent detection rather than visuospatial transformation. Neuroimage, 165, 48–55.

Yokota, S., Taki, Y., Hashizume, H., et al. (2013). Neural correlates of deception in social contexts in normally developing children. Frontiers in Human Neuroscience, 7, 206.

Zobel, I., Werden, D., Linster, H., et al. (2010). Theory of mind deficits in chronically depressed patients. Depression and Anxiety, 27(9), 821–8.