NMR and NQR studies of URu$_2$Si$_2$ and isostructural nonmagnetic references

Naoya Emi1, Ryosuke Hamabata1, Takehide Koyama1, Koichi Ueda1, Takeshi Mito1, Yoh Kohori2, Yuji Matsumoto3, Yoshinori Haga4, Etsuji Yamamoto4 and Zachary Fisk1,5

1Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
2Graduate School of Science, Chiba University, Chiba 263-8522, Japan
3Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
4Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
5Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

E-mail: mito@sci.u-hyogo.ac.jp

Abstract. The non-f compound ThRu$_2$Si$_2$ has been studied as an isostructural nonmagnetic reference for URu$_2$Si$_2$ using nuclear magnetic resonance (NMR) measurement. The temperature dependences of Knight shifts measured by 29Si-NMR and 99Ru-NMR are independent of temperature. The results are consistent with data previously reported on the susceptibility. 101Ru-NQR frequency $^{101}v_Q$ was also estimated from the 99Ru-NMR measurement. $^{101}v_Q$ of ThRu$_2$Si$_2$ is close to that of URu$_2$Si$_2$, especially at high temperatures, suggesting that U ions in URu$_2$Si$_2$ are in a nearly tetravalent state.

1. Introduction
The uranium heavy fermion URu$_2$Si$_2$ undergoes a mysterious phase transition, so-called “Hidden order (HO)”, at $T_{HO} = 17.5$ K and an unconventional superconducting transition at $T_c = 1.4$ K [1, 2, 3]. Although intensive studies have been made on this compound, the mechanisms of these intriguing phenomena are still unclear.

To obtain detailed information on electronic states controlling physical properties in URu$_2$Si$_2$, it is very useful to compare this compound with nonmagnetic references experimentally. In our previous paper [4], we reported the results of nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on two isostructural non-f compounds ThRu$_2$Si$_2$ and LaRu$_2$Si$_2$, and the comparison of the obtained results with already known data on URu$_2$Si$_2$ [5, 6] allowed us to extract new information on U valence and spin-fluctuation character of URu$_2$Si$_2$ [4]. However, it seems that the reference compounds, especially ThRu$_2$Si$_2$, have not been fully experimentally investigated so far. Therefore we show the first Knight shift data, to our knowledge, on ThRu$_2$Si$_2$ in this paper.

2. Experimental details
High quality single crystals of ThRu$_2$Si$_2$ were grown in a tetra-arc furnace under high-purity Ar gas atmosphere by the Czochralski method. The details of the sample preparation are described
elsewhere [7]. The single crystalline sample was used for the measurement of 99Ru-NMR. We also used a collection of many small single crystals for 101Ru-NQR and 29Si-NMR measurements. All the NMR and NQR experiments were carried out by a spin-echo technique with a phase-coherent pulsed spectrometer.

3. Results and Discussion

![Figure 1](image.png)

Figure 1. Temperature dependences of $^{29}K_{\|}$ and $^{29}K_{\perp}$ of ThRu$_2$Si$_2$ measured by 29Si-NMR at a field of 6.0 T. The broken lines are guides to the eye.

Figure 1 shows the temperature dependences of the Knight shifts measured by 29Si-NMR in ThRu$_2$Si$_2$. $^{29}K_{\|}$ and $^{29}K_{\perp}$ indicate Knight shift components for magnetic fields parallel and perpendicular to the crystal c axis, respectively. The Knight shift is generally in a linear relationship with the susceptibility χ. Therefore the facts that these Knight shifts, especially $^{29}K_{\|}$, show much smaller value than those for URu$_2$Si$_2$ and that they are almost independent of temperature are in good agreement with the temperature dependence of χ [8]. The anisotropic part of the shift, $^{29}K_{\text{aniso}} = \left(^{29}K_{\|} - ^{29}K_{\perp} \right) / 3$, is $\sim 1 \times 10^{-2} \%$, which is almost consistent with our previous report [4]. The data in Fig. 1 are somewhat scattered, which is owing to slightly ambiguous line shapes. Since our sample was not a fine powder, the observed line shape could slightly deviate from an ideal powder pattern.

Next we show the results of NMR measurements at the Ru site. Our single crystal has a cone shape (see the upper panel of Fig. 2). The sample was mounted in a coil and aligned by eye so that the c axis is nearly perpendicular to field B_0. Since nuclear spin $I = 5/2$ for 99Ru, we observed a central line corresponding to the $1/2 \leftrightarrow 1/2$ transition and nuclear quadrupole-split lines. In Fig. 2, the right panel shows the central line and the left panel shows the first satellite line corresponding to the $1/2 \leftrightarrow 3/2$ transition. To extract information on the Knight shift from the data, we used the following nuclear spin Hamiltonian;

$$\mathcal{H} = \gamma h B_0 \cdot \left(\mathbf{I} + \mathbf{K} \right) \cdot \mathbf{I} + \mathcal{H}_Q,$$

(1)

where γ is the gyromagnetic ratio, \mathbf{K} is the Knight shift tensor, and \mathcal{H}_Q is the Hamiltonian describing nuclear quadrupole interaction. The crystal structure of ThRu$_2$Si$_2$ possesses a fourfold symmetry around the c axis, and \mathcal{H}_Q is given by

$$\mathcal{H}_Q = (h\nu_Q/6) \left(3I_z^2 - I^2 \right),$$

(2)
where $z \parallel c$. Since NQR frequency $^{99}\nu_Q$ at 4.2 K is estimated to be 1.046 MHz from the observation of $^{101}\text{Ru-NQR}$ signal in zero field [4, 9], we can fit the spectra at 4.2 K to Eq. (1) with two fit parameters: an angle θ between the c axis and B_0 and the Knight shift $K(\theta)$ along B_0. The fit gives $\theta = 85 \pm 0.5$ degrees. Since θ should be fixed throughout the measurement, the spectra from 20 to 83 K can be fit with two fit parameters $K(\theta, T)$ and $^{99}\nu_Q(T)$. The results are shown in Fig. 3(a). The value of $^{99}K_\perp$ in Fig. 3(a) was obtained by correcting $^{99}K_\parallel$ using $^{99}K_{\text{aniso}} = -0.05\%$ and a relation of $K(\theta) = K_\parallel \cos^2 \theta + K_\perp \sin^2 \theta$. Here, $^{99}K_{\text{aniso}}$ was estimated by fitting a powder pattern spectrum measured at 4.2 K (not shown), and we neglected the temperature dependence of $^{99}K_\parallel$ above 20 K.

The Knight shifts for both Si and Ru sites are anisotropic, $^{29}\left(K_\perp/K_\parallel\right) \sim 0.61$ and $^{99}\left(K_\perp/K_\parallel\right) \sim 1.3$, respectively, however their anisotropy are not as large as in χ ($\chi_\perp = 8.5 \times 10^{-5}$ and $\chi_\parallel < 10^{-11}$ emu/mol [8]). Generally, χ in nonmagnetic metals is a sum of diamagnetic, Van Vleck, and Pauli paramagnetic (p.p.) susceptibilities. Note that spin lattice relaxation rate $1/T_1$ at the Si site shows an isotropic Korringa relation [4], i.e. $^{29}\left(1/T_1 T\right)_\parallel = ^{29}\left(1/T_1 T\right)_\perp$, indicating predominant isotropic coupling between Si nuclei and conduction electrons. This also suggests that considerable isotropic part of ^{29}K arises from the p.p.-susceptibility. Therefore one naively expects the existence of non-negligible diamagnetic component as well as the isotropic p.p.-susceptibility to reproduce the extremely small \parallel [8].

The analysis of the data in Fig. 2 also gives the estimation of $^{101}\nu_Q$ at the Ru site. We plot in Fig. 3(b) the temperature dependence of $^{101}\nu_Q$ for ThRu$_2$Si$_2$ together with that of URu$_2$Si$_2$ [10]. The weak temperature dependence for ThRu$_2$Si$_2$ is in contrast to the data on URu$_2$Si$_2$. The anomalous temperature dependence for URu$_2$Si$_2$ is ascribed to temperature-induced changes in electronic configuration which is accompanied by a change in the U valence. Note that $^{101}\nu_Q$’s

Figure 2. Upper panel: Single crystalline sample of ThRu$_2$Si$_2$ used for the present experiments. Lower left and right panels show the first satellite line and the central line of $^{99}\text{Ru-NMR}$, respectively. The spectra were measured by applying magnetic fields of ~ 13.5 T nearly perpendicular to the c axis.
of the two compounds are close to each other, especially at high temperatures. Generally ν_Q is influenced by changes in local charge distribution around the nucleus. For lanthanide based compounds, there are several examples showing that ν_Q at ligand sites significantly varies reflecting the valence change of lanthanide ions (for example see Ref. [4]). Therefore, the result may suggest that the valence of U ions at high temperature is close to Th valence, namely 4+. Interestingly, $^{101}\nu_Q$ at the Ru site in LaRu$_2$Si$_2$, in which La ions are supposed to be trivalent, is roughly twice larger than those for URu$_2$Si$_2$ and ThRu$_2$Si$_2$ [4]. A theoretical calculation attempting the reproduction of these ν_Q’s will be crucial for microscopic understanding of electronic states in these compounds.

4. Summary
We have carried out 29Si- and 99Ru-NMR measurements on the non-f compound ThRu$_2$Si$_2$ as a nonmagnetic reference for URu$_2$Si$_2$. The results are the first detailed NMR data on ThRu$_2$Si$_2$ to our knowledge. Both Knight shifts measured by 29Si- and 99Ru-NMR are independent of temperature, in good agreement with the temperature dependence of χ. The temperature dependence of ν_Q at the Ru site is much weaker than the data on URu$_2$Si$_2$, suggesting electronic configuration in URu$_2$Si$_2$, including 5f electrons, considerably changes with temperature. From the close values of ν_Q in ThRu$_2$Si$_2$ and URu$_2$Si$_2$, it is likely that the U ions in URu$_2$Si$_2$ are in a nearly tetravalent state rather than in a trivalent state especially at high temperatures.

References
[1] Palstra T T M, Menovsky A A, van den Berg J, Dirkmaat A J, Kes P H, Nieuwenhuys G J and Mydosh J A 1985 Phys. Rev. Lett. 55 2727
[2] Schlabitz W, Baumann J, Pollit B, Rauchschwalbe U, Mayer H M, Ahlheim U and Bredl C D 1986 Z. Phys. B 62 171
[3] Maple M B, Chan J W, Dalichaouch Y, Kohara T, Rossel C, Torikachvili M S, McElfresh M W and Thompson J D 1986 Phys. Rev. Lett. 56 185
[4] Emi N, Hamabata R, Nakayama D, Miki T, Koyama T, Ueda K, Mito T, Kohori Y, Matsumoto Y, Haga Y, Yamamoto E, Fisk Z and Tsujii N 2015 J. Phys. Soc. Jpn. 84 063702
[5] Kohori Y, Matsuda K and Kohara T 1996 J. Phys. Soc. Jpn. 65 1083
[6] Matsuda K, Kohori Y and Kohara T 1996 J. Phys. Soc. Jpn. 65 679
[7] Matsumoto Y, Haga Y, Tateiwa N, Aoki H, Kimura N, Matsuda T D, Yamamoto E, Fisk Z and Yamagami H 2014 JPS Conf. Proc. 3 011096
[8] Amitsuka H and Sakakibara T 1993 J. Phys. Soc. Jpn. 63 736
[9] From the observation of 101Ru-NQR signal at 4.2 K, $^{101}\nu_Q$ is estimated to be 6.05 MHz at 4.2 K. Then $^{99}\nu_Q$ is estimated to be 1.046 MHz using a relation of $^{101}\nu_Q/^{99}\nu_Q=457/79$ [11], where Q is nuclear quadrupole moment.

[10] Mito T, Hattori M, Motoyama G, Sakai Y, Koyama T, Ueda K, Kohara T, Yokoyama M and Amitsuka H 2013 J. Phys. Soc. Jpn. 82 123704

[11] Pyykkö P 2008 Mol. Phys. 106 1965