Flat affine subvarieties in Oeljeklaus-Toma manifolds

Liviu Ornea\(^1\), Misha Verbitsky\(^2\) and Victor Vuletescu\(^1\)

Abstract:
The Oeljeklaus-Toma (OT-) manifolds are compact, complex, non-Kähler manifolds constructed by Oeljeklaus and Toma, and generalizing the Inoue surfaces. Their construction uses the number-theoretic data: a number field \(K\) and a torsion-free subgroup \(U\) in the group of units of the ring of integers of \(K\), with rank of \(U\) equal to the number of real embeddings of \(K\). OT-manifolds are equipped with a torsion-free flat affine connection preserving the complex structure (this structure is known as “flat affine structure”). We prove that any complex subvariety of smallest possible positive dimension in an OT-manifold is also flat affine. This is used to show that if all elements in \(U \setminus \{1\}\) are primitive in \(K\), then \(X\) contains no proper analytic subvarieties.

Contents

1 Introduction 1
2 OT-manifolds 3
3 Examples of submanifolds in OT-manifolds 5
4 Holomorphic maps from and to tori 6
5 The proof of the main result 7

1 Introduction

The OT (Oeljeklaus-Toma) manifolds were discovered by K. Oeljeklaus and M. Toma in 2005 (OT). These manifolds are complex solvmanifolds generalizing the Inoue surfaces of class \(S^0\) (I).

\(^1\)Partially supported by a grant of Ministry of Research and Innovation, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2016-0065, within PNCDI III.
\(^2\)Partially supported by the Russian Academic Excellence Project ’5-100’.

Keywords: Oeljeklaus-Toma manifolds, number field, metabelian group, solvmanifold, affine manifold, primitive element, analytic subspace.

2010 Mathematics Subject Classification: 32J18.
The construction of Oeljeklaus and Toma is based on number-theoretic date. However, the geometry of OT-manifolds is best understood using the Lie group theory.

Let G be a Lie group equipped with a right-invariant integrable complex structure. Recall that a **group manifold** is the quotient G/Γ of G by the right action of a discrete, cocompact subgroup $\Gamma \subset G$. A **complex solvmanifold** is a group manifold with a solvable group G. The notion of a solvmanifold is due to G. D. Mostow, who proved a structure theorem for (real) solvmanifolds in his first paper [Mo]. The corresponding notion of a **complex solvmanifold** is probably due to K. Hasegawa [H] who also classified 2-dimensional complex solvmanifolds.

In the case of Oeljeklaus-Toma manifolds, the solvable Lie group is obtained as follows. Recall that a **metabelian** group is a semidirect product of two abelian groups. Consider two abelian Lie groups $A_\mathbb{R}$ and $H_\mathbb{R}$ associated with a number field K. We define $A_\mathbb{R} := \mathcal{O}_K \otimes \mathbb{Z}_\mathbb{R}$ and $H_\mathbb{R} := U \otimes \mathbb{Z}_\mathbb{R}$, where U is a free abelian subgroup in the group \mathcal{O}_K^* of units in the integers ring \mathcal{O}_K of K. There is a natural action of U on \mathcal{O}_K, allowing one to define the semidirect product $G := A_\mathbb{R} \rtimes H_\mathbb{R}$. The corresponding cocompact discrete group is $\Gamma := \mathcal{O}_K^+ \ltimes U$, where \mathcal{O}_K^+ is the additive group of \mathcal{O}_K. The OT-manifold is G/Γ, with the right-invariant complex structure defined explicitly in Section 5.

OT-manifolds provide a counterexample to Vaisman’s conjecture [Va] which was open for 25 years. They are non-Kähler flat affine complex manifolds$^{\dag}$ of algebraic dimension 0 ([OT]). Since their discovery in 2005, OT-manifolds were the subject of much research of complex geometric and number theoretic nature ([BO], [OV], [MT], [Ve1], [PV], [Bra]).

It is known that OT-manifolds have no complex curves, [Ve1], and for $t = 1$ they have no complex subvarieties (see [OV], where the proof makes explicit use of the LCK structure). Moreover, all surfaces contained in OT-manifolds are blow-ups of Inoue surfaces S^0, [Ve2]. However, in general, there is no characterization of the possible subvarieties of OT manifolds. The aim of this paper is to give a sufficient condition for an OT-manifold to not have submanifolds. In Section 5 we prove:

Theorem 1.1. Let $X = X(K, U)$ be an OT-manifold. Assume that any element $u \in U \setminus \{1\}$ is a primitive element for the number field K. Then X contains no proper complex analytic subvarieties.

We also prove the following theorem. Recall that a **flat affine manifold** is

$^{\dag}$A complex manifold is called **flat affine** if it is equipped with a flat torsion-free connection preserving the complex structure.
a manifold equipped with a torsion-free flat connection. By construction, OT-manifolds come equipped with a flat affine structure. A submanifold of $Z \subset M$ of a flat affine manifold is called flat affine if locally around any smooth point $z \in Z$, the sub-bundle $TZ \subset TM |_z$ is preserved by the flat affine connection. Notice that all flat affine manifolds are equipped with local coordinates such that the transition functions are affine, and in these coordinates Z is an affine subspace.

Theorem 1.2. Let M be an OT-manifold, and $Z \subset M$ an irreducible complex subvariety of smallest possible positive dimension. Then Z is a smooth flat affine submanifold of M.

Proof: See Remark 5.2.

The paper is organized as follows. Section 2 will describe the construction and main properties of OT-manifolds, Section 3 provides examples of OT submanifolds, in Section 4 we prove that all holomorphic maps from tori to OT manifolds are constant, while in Section 5 we give the proof of Theorem 1.1.

2 OT-manifolds

We briefly describe the construction of Oeljeklaus-Toma manifolds, following [OT].

Let K be a number field which has $2t$ complex embeddings denoted $\tau_i, \bar{\tau}_i$ and s real ones denoted σ_j, $s > 0$, $t > 0$ (for what needed in this paper about number theory, see e.g. [MI]).

Denote $\mathcal{O}_K^{*,+} := \mathcal{O}_K^* \cap \bigcap_i \sigma_i^{-1}(\mathbb{R}^*)$. Clearly, $\mathcal{O}_K^{*,+}$ is a finite index subgroup of the group of units of \mathcal{O}_K.

Let $\mathbb{H} = \{y \in \mathbb{C}; \text{Im } y > 0\}$ be the upper half-plane. For any $\zeta \in \mathcal{O}_K$ define the automorphism T_ζ of $\mathbb{H}^s \times \mathbb{C}^t$ by

$$T_\zeta(x_1, \ldots, x_t, y_1, \ldots, y_s) = \left(x_1 + \tau_1(\zeta), \ldots, x_t + \tau_t(\zeta), y_1 + \sigma_1(\zeta), \ldots, y_s + \sigma_s(\zeta)\right).$$

Similarly, for any totally positive unit ξ, let R_ξ be the automorphism of $\mathbb{C}^t \times \mathbb{H}^s$ defined by

$$R_\xi(x_1, \ldots, x_t, y_1, \ldots, y_s) = \left(\tau_1(\xi)x_1, \ldots, \tau_t(\xi)x_t, \sigma_1(\xi)y_1, \ldots, \sigma_t(\xi)y_s\right).$$

Note that the totally positivity of ξ is needed for R_ξ to act on $\mathbb{H}^s \times \mathbb{C}^t$.

1 An element of a number field is called “totally positive” if it is mapped to a positive number under all real embeddings.
For any subgroup $U \subset \mathcal{O}_K^{*+}$, the above maps define a free action of the semidirect product $U \ltimes \mathcal{O}_K$ on $\mathbb{H}^0 \times \mathbb{C}^t$.

It is proven in [OT] that one can always find admissible subgroups U such that the above action is discrete and cocompact. Note that if U is an admissible subgroup then necessarily one has

$$\text{rank}_\mathbb{Z}(U) + \text{rank}_\mathbb{Z}(\mathcal{O}_K) = 2(s + t),$$

and hence $\text{rank}_\mathbb{Z}(U) = s$. This explains why the condition $t > 0$ is needed: otherwise we would have $\text{rank} \mathcal{O}_K^* = s - 1$, strictly less than s, and thus admissible subgroups could not exist.

Definition 2.1. ([OT]) For an admissible subgroup U, the quotient $X(K, U) := (\mathbb{H}^0 \times \mathbb{C}^t)/(U \ltimes \mathcal{O}_K)$ is called an Oeljeklaus-Toma manifold (OT-manifold for short).

Remark 2.2. It was observed in [MT] that in the previous construction one may take instead of the ring of integers $\mathcal{O}(K)$ any (additive) subgroup $H \subset (K, +)$ which equals $\mathcal{O}(K)$ up to finite index, i.e. either $H \subset \mathcal{O}(K)$ or $\mathcal{O}(K) \subset H$ with finite index. We let $X(K, H, U)$ the resulting manifold. Note that the OT-manifolds in [Definition 2.1] correspond to the case $H = \mathcal{O}_K$. Clearly, any such $X(K, H, U)$ is isogeneous to $X(K, U)$, that is, $X(K, H, U)$ is a finite cover of a finite quotient of $X(K, U)$.

Remark 2.3. For $s = t = 1$, one recovers a version of the classical construction used by Inoue to define the Inoue surfaces of class S^0 ([I]). In [I], no number theory was employed. However, the matrix $M \in \text{SL}(3, \mathbb{Z})$ used in [I, SS2] to construct the Inoue surface of class S^0 gives a cubic number field, generated by its root, and this field can be used to recover M in a usual way. If one applies the Oeljeklaus-Toma construction to this cubic field, one would obtain the Inoue surface associated with M.

Remark 2.4. All OT-manifolds ($s > 0$) are non-Kähler, but for $t = 1$ they admit locally conformally Kähler (LCK) metrics (see [DO] for this notion).

Definition 2.5. ([OT]) An OT-manifold is called of simple type, if $U \not\subset \mathcal{Z}$ and it does not satisfy any of the following equivalent conditions:

1. The action of U on \mathcal{O}_K admits a proper, non-trivial, invariant submodule of lower rank.

2Equivalence follows from [OT] Lemma 1.4.
2. There exists some proper, intermediate field extension \(Q \subset K' \subset K \), with \(U \subset O_{K'}^* \).

Remark 2.6. a) A simple type OT-manifold has no proper OT submanifolds with the same group of units \(U \). Also, note the difference towards the notion of simplicity in [CDV].

b) If \(K \) is a number field, then, by Dirichlet’s theorem, under the logarithmic embedding its group of units identifies (up to its subgroup of roots of unity) with a full lattice in a real vector space. Denote this space by \(V_K \). Similarly, if \(K' \subset K \) is some subfield of \(K \), then the group of units of \(K' \) identifies with a lattice in a proper vector subspace \(V_{K'} \subset V_K \). As \(K \) has finitely many subfields, and as the admissible group of units \(U \) of an OT-manifold can be chosen generically in the group of units of \(K \), we see that the OT-manifolds of simple type are generic.

3 **Examples of submanifolds in OT-manifolds**

A simple example of an OT-manifold embedded in a larger OT-manifold which is not of simple type in the sense of Oeljeklaus-Toma is constructed in [OT, Remark 1.7].

We now provide an example of an OT submanifold embedded in an OT-manifold which is of simple type in the sense of Oeljeklaus-Toma.

Example 3.1: Take \(L = \mathbb{Q}[X]/(X^3 - 2) \); then \(L \) has one real embedding \(\tau_1 \) and \(2 \) complex ones \(\tau_2, \tau_3 = \overline{\tau_2} \). Note that \(U_L = O_L^* \) is a free group of rank one, and denote \(u_1 \) be a generator for \(U_L \). Then \(U_L \) is an admissible group, and let \(S = \text{X}(L, U_L) \) is the corresponding OT-manifold (an Inoue surface \(S^0 \)).

Now take \(K = \mathbb{Q}[X]/(X^6 - 2) \). The field \(K \) is an extension of degree \(2 \) of \(L \) which has two real embeddings \(\sigma_1, \sigma_2 \) (which both extend the embedding \(\tau_1 \) of \(L \)) and four complex embeddings: \(\sigma_3, \sigma_4 \) (which extend \(\tau_2 \)) and \(\sigma_5 = \overline{\sigma_3}, \sigma_6 = \overline{\sigma_4} \) (which extend \(\tau_3 = \overline{\tau}_2 \)). Consider the unit \(u_2 \in O_K^* \) such that \(\sigma_1(u_2) = (\sqrt{2} - 1)^2 \). Then \(\sigma_2(u_2) = (\sqrt{2} + 1)^2 \), and hence the subgroup \(U_K \subset O_K^* \) generated by \(u_1 \) and \(u_2 \) is admissible, since the projection on the first two factors of their logarithmic embedding is

\[
\begin{pmatrix}
\log(u_1) & \log(u_1) \\
2\log(\sqrt{2} - 1) & 2\log(\sqrt{2} + 1)
\end{pmatrix}
\]

which is of maximal rank.
Let $X = X(K, U_K)$ be the corresponding OT-manifold, $X = \mathbb{H}^2 \times \mathbb{C}^2 / (U_K \ltimes \mathcal{O}_K)$. Define the map $i : S \to X$ by

$$i([w, z]) = [w, w, z, z],$$

where we denoted by $[x]$ the equivalence class of x. Clearly, i is well-defined.

Claim 3.2. The map i is injective. Indeed, if $i([w, z]) = i([w', z'])$ then there exists $u \in U_K, a \in \mathcal{O}_K$ such that

$$w = \sigma_1(u)w' + \sigma_1(a),$$
$$w = \sigma_2(u)w' + \sigma_2(a).$$

This implies

$$(\sigma_1(u) - \sigma_2(u))w' = \sigma_2(a) - \sigma_1(a).$$

If $\sigma_1(u) \neq \sigma_2(u)$, then $w' \in \mathbb{R}$, which is not possible, and hence $\sigma_1(u) = \sigma_2(u)$. This yields $u \in L$, thus $u \in U_L$. Moreover, $\sigma_1(a) = \sigma_2(a)$, and hence also $a \in \mathcal{O}_L$. But then $[w, z] = [w', z']$.

Remark 3.3. The above constructed X is of simple type. Indeed, the unit u_2 is a primitive element for K, hence there is no proper subfield $K' \subset K$ containing u_2.

4 Holomorphic maps from and to tori

In the proof of the main result we shall need the following result interesting in itself:

Proposition 4.1. Let X be an OT-manifold and T a complex torus. Then any holomorphic map $f : T \to X$ must be constant.

Proof: Let $T = \mathbb{C}^d / \Lambda$, and $X = \mathbb{H}^s \times \mathbb{C}^t / (U \ltimes A)$. Note that $\pi_1(T) = \Lambda$, and $\pi_1(X) = U \ltimes A$. Let I be the image of the natural morphism $f_* : \pi_1(T) \to \pi_1(X)$. With the above identifications, we let:

$$f_*(\lambda) = \gamma_\lambda = (u_\lambda, a_\lambda), \quad \lambda \in \Lambda.$$

Let now $\tilde{f} : \tilde{T} \to \tilde{X}$ be a lift of f at the universal covers. We then have:

$$\tilde{f}(t + \lambda) = \gamma_\lambda(\tilde{f}(t)), \forall t \in \tilde{T}. \quad (4.1)$$
Let \(f_1 = \text{pr}_1 \circ \tilde{f} \), where \(\text{pr}_1 : \mathbb{H}^d \times \mathbb{C}^t \to \mathbb{H} \) is the projection onto the first factor. Then \(f_1 \) is a map from \(\mathbb{C}^d \) into \(\mathbb{H} \), and hence by Liouville’s theorem it must be constant. It follows that the first component of the map \(\tilde{f} \) is a constant, say \(w_1 \). Then (4.1) implies

\[
w_1 = \sigma_1(u_\lambda) w_1 + \sigma_1(a_\lambda).
\]

Now if \(\sigma_1(u_\lambda) \neq 1 \) for some \(\lambda \in \Lambda \), then \(w_1 \) would be real, which is impossible. It follows that \(u_\lambda = 1 \) for all \(\lambda \in \Lambda \) and thus \(I \) is actually a subgroup of \(A \).

But then we have \(w_1 = w_1 + \sigma_1(a_\lambda) \), and hence \(\sigma_1(a) = 0 \) for all \(\lambda \in \Lambda \). This implies \(I = \{0\} \), and thus \(\tilde{f} \) factors through a map from \(T \) to the universal cover \(\tilde{X} \) of \(X \), which is constant as \(T \) is compact.

Remark 4.2. It is easy to see that conversely, every holomorphic map from an OT-manifold to a torus must be constant. This is because the Albanese torus of an OT-manifold is trivial, since there are no non-zero closed holomorphic 1-forms on an OT-manifold ([OT, Proposition 2.5]).

5 The proof of the main result

Theorem 5.1. Let \(X = X(K, U) \) be an OT-manifold. Assume that any element \(u \in U \setminus \{1\} \) is a primitive element for \(K \). Then \(X \) contains no proper analytic subspaces.

Proof. We argue by contradiction. Let \(Z \subset X \) be an analytic connected proper subspace of minimum positive dimension. By a result of S.M. Verbitskaya, an OT-manifold cannot contain curves, and hence \(\dim(Z) \geq 2 \) (note that the proof in [Ve1] can be easily extended to cover the singular case, too). Moreover, as \(Z \) is of minimum positive dimension, we deduce that \(Z \) contains no Weil divisors, and it has at most finitely many isolated singularities.

Let \(Z_{\text{reg}} = Z \setminus \text{Sing}(Z) \) be the regular part of \(Z \). Then the Remmert-Stein’s theorem (see e.g. [FG, Theorem 6.9, p. 150]) implies that \(Z \setminus \text{reg} \) has no divisors.

For any \(i = 1, \ldots, \dim(X) \) let \(L_i \) be the flat line bundle on \(X \) associated with the representation \(\rho_i : \pi_1(X) \to \mathbb{C}^* \), \(\rho_i(u, a) = \sigma_i(u) \) (here we identified \(\pi_1(X) \) with \(U \ltimes \mathcal{O}_X \)). Then \(L_i \) is locally generated by \(\frac{\partial}{\partial z_i} \) and the tangent bundle \(T_X \) is naturally identified with the direct sum

\[
T_X = \bigoplus_{i=1}^n L_i.
\]

We want to understand the restriction of \(T_X \) to \(Z \). It will be enough to look at
the regular part Z_{reg} on which we have the exact sequence:

$$0 \longrightarrow T_{Z_{\text{reg}}} \overset{i}{\longrightarrow} \bigoplus_{i=1}^{n} L_{i|_{Z_{\text{reg}}}} \overset{\mathcal{N}_{Z_{\text{reg}}|X}}{\longrightarrow} 0 \quad (5.1)$$

Let $I \subset \{1, \ldots, \dim(X)\}$ and let

$$\text{pr}_{\mathcal{I}} \colon \bigoplus_{i=1}^{\dim(X)} L_{i} \longrightarrow \bigoplus_{i \in \mathcal{I}} L_{i}$$

be the canonical projection.

We claim that there exists $J \subset \{1, \ldots, \dim(X)\}$ with $\#J = \dim(Z_{\text{reg}})$ such that $i_{J} = \text{pr}_{\mathcal{J}} \circ i$ is an isomorphism, and hence $T_{Z_{\text{reg}}} \cong \bigoplus_{i \in \mathcal{J}} L_{i}$.

Indeed, there must be a subset $J \subset \{1, \ldots, \dim(X)\}$ with $\#J = \dim(Z_{\text{reg}})$ such that the map i_{J} is injective, otherwise i in (5.1) would not be injective. As Z_{reg} has no divisors, the degeneracy locus of i_{J} is empty, and hence i_{J} is an isomorphism, as claimed.

Thus we can see the map i as a matrix

$$A = (a_{ij}), \ i = 1, \ldots, \dim(Z_{\text{reg}}), \ j = 1, \ldots, \dim(X)$$

with each $a_{ij} \in \text{Hom}(L_{i|_{Z_{\text{reg}}}}, L_{j|_{Z_{\text{reg}}}})$.

Let $\pi : \tilde{X} \longrightarrow X$ be the universal cover of X. As Z_{reg} has no divisors, any morphism of line bundles of Z_{reg} is either zero or multiplication by a non-zero constant. As a consequence, the entries of the matrix A are all constant, and hence the image of the bundle morphism

$$T_{\pi^{-1}(Z_{\text{reg}})} \longrightarrow T_{\tilde{X}|_{\pi^{-1}(Z_{\text{reg}})}}$$

is the vector subspace generated by the vectors $\{f_{i}\}, \ i \in J$, given by

$$f_{i} = \sum_{j=1}^{\dim(X)} a_{ij} \frac{\partial}{\partial z_{j}}.$$

In particular, the preimage $\pi^{-1}(Z_{\text{reg}})$ of Z_{reg} on the universal cover $\tilde{X} = \mathbb{H}^{s} \times \mathbb{C}^{t}$ of X is locally an open subset of an affine subspace \mathcal{A} of \mathbb{C}^{s+t} where the direction of \mathcal{A} is spanned by

$$f_{i} = \sum_{j=1}^{\dim(X)} a_{ij} e_{j}$$

where $\{e_{j}\}, \ j = 1, \ldots, \dim(X)$ is the canonical basis in \mathbb{C}^{s+t}.

– 8 –
It follows that any connected component \(\tilde{Z}_{\text{reg}} \subset \pi^{-1}(Z_{\text{reg}}) \) is contained as an open subset of an affine subspace \(\mathcal{A}_{\tilde{Z}_{\text{reg}}} \) of the same dimension, hence any connected component of \(\tilde{Z} \subset \pi^{-1}(Z) \) is also contained into such an affine subspace. We derive that \(\pi^{-1}(Z) \) is in fact smooth, and hence \(Z \) is smooth, too.

Moreover, since \(\tilde{Z} \) is closed in \(\mathbb{H}^s \times \mathbb{C}^t \), the following equality holds:

\[
\tilde{Z} = \mathcal{A}_{\tilde{Z}} \cap (\mathbb{H}^s \times \mathbb{C}^t).
\]

Remark 5.2. Notice that this observation also proves Theorem 1.2.

Now fix a connected component \(\tilde{Z} \subset \pi^{-1}(Z) \). Then

\[
Z = \tilde{Z} / \text{Stab}(\tilde{Z})
\]

where

\[
\text{Stab}(\tilde{Z}) = \{ \gamma \in \pi_1(X) | \gamma(\tilde{Z}) = \tilde{Z} \}.
\]

Analysing the structure of the group \(\text{Stab}(\tilde{Z}) \) will eventually lead to a contradiction. In the first place, observe that \(\text{Stab}(\tilde{Z}) \) cannot consist of translations only, since otherwise \(Z \) would be a torus\(^1\), contradicting with Proposition 4.1.

Fix then \(\gamma \in \text{Stab}(\tilde{Z}) \) which is not a translation and let \(R_u \) be the linear map induced by \(\gamma \). The direction \(\tilde{Z} \) of the affine subspace \(\tilde{Z} \) is then left invariant by \(R_u \). Since \(R_u \) is diagonal, either \(\tilde{Z} \) has a basis among \(\{e_1, \ldots, e_n\} \) or (at least) two of the eigenvalues of \(R_u \) are equal. The second case is excluded by the assumption on \(M \), so there exists a subset \(I \subset \{1, \ldots, n\} \) such that \(\tilde{Z} = \mathcal{A}_{\{e_i\}} \). It follows that for any \(j \in I' := \{1, \ldots, n\} \setminus I \) there exists constants \(c_j \in \mathbb{C} \) such that \(\tilde{Z} \) is given by the equations \(z_j = c_j, \forall j \in I' \).

Let now \(\gamma \in \text{Stab}(\tilde{Z}) \) be arbitrary. Note that \(\gamma \) cannot be a translation by some \((\sigma_1(a), \ldots, \sigma_n(a)) \), since then for any \(j \in I' \) we would have \(c_j = c_j + \sigma_j(a) \), yielding \(\sigma_j(a) = 0 \), and hence \(a = 0 \). This implies that any nontrivial \(\gamma \in \text{Stab}(\tilde{Z}) \) is of the form

\[
\gamma(z_1, \ldots, z_n) = (\sigma_1(u)z_1 + \sigma_1(a), \ldots, \sigma_n(u)z_n + \sigma_n(a)),
\]

for some \(u \in U, u \neq 1 \) and for some \(a \in A_M \).

But since \(\gamma \in \text{Stab}(\tilde{Z}) \) we see that for any \(j \in J \) we have

\[
c_j = \sigma_j(u)c_j + \sigma_j(a),
\]

\(^1\) A bit more details are needed here..
and thus

\[c_j = \frac{\sigma_j(a)}{1 - \sigma_j(u)}, \quad \text{for all } j \in J. \]

The point \(P_0 \in \mathbb{C}^s \times \mathbb{C}^t \),

\[P_0 = \left(\frac{\sigma_1(a)}{1 - \sigma_1(u)}, \ldots, \frac{\sigma_n(a)}{1 - \sigma_n(u)} \right), \]

is thus fixed by all \(\gamma \in \text{Stab}(\tilde{Z}) \). But then, after changing the coordinates in \(\tilde{Z} \) via

\[z_i \mapsto z_i - \frac{\sigma_i(a)}{1 - \sigma_i(u)}, \quad i = 1, \ldots, n, \]

we see that \(\text{Stab}(\tilde{Z}) \) acts on \(\tilde{Z} \) by linear diagonal transformations. This means that \(\tilde{Z} \) has a compact quotient under the action of a group of diagonal transformations. But this is easily seen to be impossible since on one hand, if a free abelian group \(G \) of linear diagonal transformations acts discretely then its rank is 1 (look at the orbit through \(G \) of any point), while since \(\tilde{Z} \) is a contractible manifold of real dimension at least 2, the rank of any free abelian group acting cocompactly on it must equal its real dimension (cf [CE], Application 3, pp 357 and [Bro] Example 5, pp 185).

This contradiction completes the proof of Theorem 5.1.\(\blacksquare \)

Remark 5.3. The condition that “any element \(u \in U, u \neq 1 \) is a primitive element for \(K \)” is satisfied by a wide class of choices for \(K \) and \(U \). For instance, if \(K \) is a number field of prime degree over \(\mathbb{Q} \) then any choice of the admissible group of units will satisfy this condition.

Remark 5.4. Although the Example 3.1 may suggest that the condition that any \(u \in U, u \neq 1 \) is a primitive element may be equivalent to the fact that the OT-manifold has no proper subvarieties, this is not entirely correct. There are cases when this condition is not satisfied, but the OT-manifold still has no proper complex subvarieties. For instance, if \(K \) is a number field with a single complex place \((t = 1) \), the OT-manifold \(X \) has no proper complex subvarieties by [OV]. But for such a number field \(K \) we see that the rank of the group of units of \(K \) is \(s + 1 - 1 = s \) so if the number field \(K \) contains a proper subfield \(\mathbb{Q} \subset L \subset K \) then for any choice of the admissible group of units \(U \) there are elements in \(U \) which belong to \(L \), hence not all elements in \(U \) are primitive elements for \(K \).

Acknowledgment: We thank Ştefan Papadima for the references [CE] and [Bro] and Cezar Joiţa for the references concerning the theorem of Remmert.
Stein. L.O. and M.V. thank Higher School of Economics, Moscow, and University of Bucharest for facilitating mutual visits while working at this paper.

References

[BO] L. Battisti, K. Oeljeklaus, Holomorphic Line Bundles Over Domains in Cousin Groups and the Algebraic Dimension of Oeljeklaus-Toma Manifolds, Proc. Edinburgh Math. Soc. 58 (215), 273–285. (Cited on page 2)

[Bra] Braunling, O. Oeljeklaus-Toma manifolds and arithmetic invariants, Math. Z. 286 (2017), no. 1-2, 291-323. (Cited on page 2)

[Bro] K.S. Brown, Cohomology of groups, GTM 87, Springer 1982. (Cited on page 10)

[CDV] F. Campana, J.-P. Demailly, M. Verbitsky, Compact Kähler 3-manifolds without nontrivial subvarieties, Algebr. Geom. 1 (2014), no. 2, 131–139. (Cited on page 2).

[CE] H. Cartan, S. Eilenberg, Homological algebra, Princeton Univ. Press, 1956. (Cited on page 10)

[DO] S. Dragomir, L. Ornea, Locally conformally Kähler manifolds, Progress in Math. 55, Birkhäuser, 1998. (Cited on page 4)

[FG] K. Fritzsche, H. Grauert, From Holomorphic Functions to Complex Manifolds, GTM 213, Springer, 2002. (Cited on page 7)

[H] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), no. 1, 65–71. (Cited on page 4)

[I] M. Inoue, On surfaces of class V I I 0, Invent. Math., 24 (1974), 269–310. (Cited on pages 1 and 3)

[MI] J. Milne, Algebraic Number Theory, http://jmilne.org/math/CourseNotes/ant.html (Cited on page 3)

[MT] R. Moosa, M. Toma, A note on subvarieties of powers of OT-manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome 58(106) No. 3, (2015), 311–316. (Cited on pages 2 and 11)

[Mo] G.D. Mostow, Factor spaces of solvable groups. Ann. of Math. (2) 60, (1954). 1-27. (Cited on page 2)

[OT] K. Oeljeklaus, M. Toma, Non-Kähler compact complex manifolds associated to number fields, Ann. Inst. Fourier 55 (2005), 1291–1300. (Cited on pages 4, 5, 7, 8 and 10)

[OV] L. Ornea, M. Verbitsky, Oeljeklaus–Toma manifolds admitting no complex subvarieties, Math. Res. Lett. 18 (2011), no. 4, 747–754. (Cited on pages 2 and 10)

[PV] M. Parton, V. Vuletescu, Examples of non-trivial rank in locally conformal Kähler geometry, Math. Z. 270 (2012), no. 1-2, 179-187. (Cited on page 2)
[Va] I. Vaisman, *On locally and globally conformal Kähler manifolds*, Trans. Amer. Math. Soc. **262** (1980), 533–542. (Cited on page 2.)

[Ve1] S. M. Verbitskaya, *Curves on the Oeljeklaus-Toma manifolds*, Funct. Anal. Appl. **48**, 223–226. (Cited on pages 2 and 7.)

[Ve2] S. M. Verbitsky, *Surfaces on Oeljeklaus-Toma Manifolds*, arXiv:1306.2456. (Cited on page 2.)

Liviu Ornea

University of Bucharest, Faculty of Mathematics,
14 Academiei str., 70109 Bucharest, Romania, and:
Institute of Mathematics "Simion Stoilow" of the Romanian Academy,
21, Calea Grivitei Str. 010702-Bucharest, Romania
lornea@fmi.unibuc.ro, Liviu.Ornea@imar.ro

Misha Verbitsky

Instituto Nacional de Matemática Pura e Aplicada (IMPA)
Estrada Dona Castorina, 110
Jardim Botânico, CEP 22460-320
Rio de Janeiro, RJ - Brasil
also:
Laboratory of Algebraic Geometry,
National Research University Higher School of Economics,
Department of Mathematics, 6 Usacheva street, Moscow, Russia.

Victor Vuletescu

University of Bucharest, Faculty of Mathematics,
14 Academiei str., 70109 Bucharest, Romania.
vuli@fmi.unibuc.ro