Data article

F2-layer height of the peak electron density \((hmF2)\) dataset employed in Inferring Vertical Plasma Drift – Data of Best fit

B.O. Adebesin *, J.O. Adeniyi

Space Weather Group, Department of Physical Sciences, Landmark University, PMB 1001 Omu-Aran, Kwara State, Nigeria

Abstract

In this data article, analysis of the height of the peak electron density \((hmF2)\) data, used to compute the vertical plasma drift \((Vz)\) velocities during year 2010, was reported. The station of focus is Ilorin, a station in the African equatorial region. The \(hmF2\) data used for the \(Vz\) computation was obtained from the Global Ionospheric Radio Observatory (GIRO) network of ionosondes, using the Digital Portable Sounder erected at the Equatorial Ionospheric Observatory of the University of Ilorin, Nigeria. \(Vz\) velocities were determined from the time rate of change of \(hmF2\). Four categories of \(hmF2\) data intervals for determining the drift were analysed and compared for reliable computation of \(Vz\). These are the measured 15-minute, the calculated 30-minute, the calculated 60-minute, and the directly selected 1-hour interval datasets. The calculated 60-minute interval data was found more reliable than others, satisfying the three significant events that characterized vertical drift observations. These are the evening time pre-reversal enhancement, the daytime pre-noon upward drift, and the nighttime downward reversal periods. The observations from this data will help Space weather scientists and researchers in identifying the best fit of \(hmF2\) data in the computation of drift velocity. The original work which has been published in Adebesin et al. (2013) [1] had made use of this calculated 60-minute interval \(hmF2\) data,
but the process/procedures of its selection as the best fit of data interval was not explained in that work.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Aeronomy and Space Weather environment
More specific subject area	Ionospheric Equatorial Electrodynamics
Type of data	Tables and figures
How data was acquired	Secondary Data
Data format	Raw, filtered, processed, and analyzed
Experimental factors	Data obtained from Global Ionospheric Radio Observatory (GIRO) network of ionosondes
Experimental features	Computational Analysis, and presented on monthly hourly averages
Data source location	Data obtained from Global Ionospheric Radio Observatory (GIRO) network of ionosondes. Data is for Ilorin (Geographic latitude 8.50° N, longitude 4.68°E), Nigeria, West Africa.
Data accessibility	The processed monthly hourly averaged data are available within this paper.

Value of the data

- The hmF2 data shown here will be useful for computing the vertical plasma drift velocity, especially in the African equatorial sector where direct vertical drift measurement technique is not available.
- The data can be used to study the Ionospheric electrodynamics in the African sector, and add to the global understanding of Space Weather environment.
- The data will be useful for Space Weather researchers and Telecommunication/radio propagation experts, in ionospheric irregularities nowcasting, forecasting, and possible mitigation purposes.

1. Data

1.1. Source of data

The ionospheric hmF2 data for this article were obtained from the Global Ionospheric Radio Observatory (GIRO) network of ionosondes, using the digital ionogram database (DIDBase), obtained from http://ulcar.uml.edu/DIDBase/. The data was for the Digital Portable Sounder (DPS-4.2 version) erected at the Equatorial Ionospheric Observatory of the University of Ilorin, Ilorin (Geographic lat. 8.50°N, long. 4.68°E), Nigeria. The raw data is an ionogram (e.g. Fig. 1) automatically scaled and processed. The output of the process is in the Standard Archiving Output (SAO) format of 15-minute interval. The raw SAO data format was then processed by the use of the Calculated Average Representative Profile (CARP) program developed by [2] – the process known as ionogram inversion. Fig. 2 highlights the processes involved in calculating the average monthly profiles for the hmF2 observation from the CARP program at every 15-minute interval.
1.2. hmF2 data treatment

After the hmF2 data was obtained at every 15 min interval, there is the question of whether the 15 min interval hmF2 data will be good enough to infer the values for the vertical plasma drift velocities – in terms of aligning with the pattern and allowed/permitted drift velocity magnitude. Generally, Vz is usually categorized in three segments. These are (i) the evening time pre-reversal enhancement - PRE, often around 18:00–20:00 LT, (ii) the daytime pre-noon period (usually around 10:00–11:00 LT) at which time the drift is upward, and (iii) the nighttime reversal period, during when the drift has reversed downward ([3]). Subsequently, four different types of window interval of hmF2 were tested, and the best of it was selected for the computation of Vz. The four types are (i) the measured 15-minute interval hmF2 (hmF215), (ii) the calculated 30-minute interval hmF2 (hmF230), (iii) the calculated 60-minute interval hmF2 (hmF260), and (iv) the direct 1-hour interval hmF2 (hmF21HR).
Table 1
Procedure for data derivation for the hmF2₁₅, hmF2₃₀, hmF2₆₀, and hmF2₁₉HR.

HOUR (LT)	15 min interval hmF₂ (km) (hmF₂₁₅)	30 min interval hmF₂ (km) (hmF₂₃₀)	60 min interval hmF₂ (km) (hmF₂₆₀)	Direct 1 h interval hmF₂ (km) (hmF₂₁₉HR)
0:00	P₁	Q₁	R₁	S₁
0:15	P₂			
0:30	P₃	Q₂		
0:45	P₄			
1:00	P₅	Q₃	R₂	S₂
1:15	P₆			
1:30	P₇	Q₄		
1:45	P₈			
2:00	P₉	Q₅	R₃	S₃
2:15	P₁₀			
2:30	P₁₁			
2:45	P₁₂			
3:00	P₁₃	Q₇	R₄	S₄
3:15	P₁₄			
3:30	P₁₅	Q₈		
3:45	P₁₆			
4:00	P₁₇	Q₉	R₅	S₅
...

Q₂ = Mean (P₂:P₄); Q₃ = Mean (P₄:P₆); Q₄ = Mean (P₆:P₈); etc.
R₂ = Mean (P₃:P₇); R₃ = Mean (P₇:P₁₁); R₄ = Mean (P₁₁:P₁₅); etc.
S₁ = P₁; S₂ = P₅; S₃ = P₉; etc.

Fig. 3. Plot of Vz inferred from hmF2 for March 2010 over Ilorin F2 ionosphere for (a) 15-min hmF2 interval (b) 30-min hmF2 interval (c) 60-min hmF2, and (d) 1-h hmF2 direct picking interval. (Both the 30-min and 60-min Intervals were generated from the series of 15-min Interval data as shown in Table 1).
obtained directly at every one hour interval. Table 1 highlights the procedure involved in analyzing the four classes of \(hmF2\) datasets. The footnote of the table describes the mathematical expressions for each class of dataset. While \(hmF2_{15}\) is the original time interval, both \(hmF2_{30}\) and \(hmF2_{60}\) were generated. Further, the \(hmF2_{1HR}\) was picked directly at every hour interval of \(hmF2_{15}\). (i.e. \(S1 = P1\) at 0:00 LT, while \(S2 = P5\) at 1:00 LT). LT is the local time, and it is measured in hour.

Table 2

Month	\(hmF2\)	Mean (km)	Variance (km)	Standard deviation (km)	Relative standard deviation	Standard error (km)	Relative standard error
March	\(hmF2_{60}\)	311	1920	43.81	0.1410	8.94	0.0288*
	\(hmF2_{30}\)	313	2087	45.68	0.1459	9.33	0.0298
	\(hmF2_{1HR}\)	316	2208	46.99	0.1483	9.59	0.0303
April	\(hmF2_{60}\)	302	1439	37.93	0.1257	7.74	0.0257*
	\(hmF2_{30}\)	303	1461	38.23	0.1260	7.80	0.0258
	\(hmF2_{1HR}\)	309	1643	40.53	0.1310	8.27	0.0267
May	\(hmF2_{60}\)	287	701	26.48	0.0923	5.40	0.0188*
	\(hmF2_{30}\)	288	717	26.78	0.0929	5.56	0.0190
	\(hmF2_{1HR}\)	294	710	26.64	0.0924	5.44	0.0189
June	\(hmF2_{60}\)	285	594	24.37	0.0854	4.97	0.0174*
	\(hmF2_{30}\)	286	642	25.34	0.0885	5.17	0.0181
	\(hmF2_{1HR}\)	290	730	27.01	0.0933	5.51	0.0190
July	\(hmF2_{60}\)	292	822	28.67	0.0976	5.85	0.0199*
	\(hmF2_{30}\)	293	875	29.58	0.1008	6.04	0.0206
	\(hmF2_{1HR}\)	294	890	29.83	0.1020	6.09	0.0208
August	\(hmF2_{60}\)	305	1538	39.22	0.1286	8.01	0.0262
	\(hmF2_{30}\)	306	1494	38.66	0.1264	7.89	0.0258
	\(hmF2_{1HR}\)	299	1264	35.56	0.1190	7.26	0.0243*
September	\(hmF2_{60}\)	305	2248	47.42	0.1555	9.68	0.0317
	\(hmF2_{30}\)	306	2218	47.10	0.1535	9.61	0.0313
	\(hmF2_{1HR}\)	307	2098	45.80	0.1487	9.35	0.0304*
October	\(hmF2_{60}\)	316	2308	48.05	0.1520	9.80	0.0310*
	\(hmF2_{30}\)	318	2292	48.26	0.1520	9.85	0.0311
	\(hmF2_{1HR}\)	314	2303	47.99	0.1528	9.80	0.0311
November	\(hmF2_{60}\)	320	2336	48.34	0.1510	9.87	0.0308*
	\(hmF2_{30}\)	322	2463	49.63	0.1541	10.13	0.0314
	\(hmF2_{1HR}\)	319	2635	51.33	0.1606	10.48	0.0328
December	\(hmF2_{60}\)	324	1774	42.12	0.1299	8.60	0.0265*
	\(hmF2_{30}\)	326	1862	43.15	0.1323	8.81	0.0270
	\(hmF2_{1HR}\)	326	2146	46.33	0.1422	9.46	0.0290

* most reliable dataset interval for each month

Fig. 4. Monthly average Standard deviation (Stdev) for \(hmF2_{30}\), \(hmF2_{60}\) and \(hmF2_{1HR}\) for the year 2010.
A sample plot of V_z was then employed for each type of hmF2 interval data using its time rate of change. This is revealed in Fig. 3. Obviously, drift velocity inferred from $hmF2_{15}$ data do not meet with the three features that characterizes V_z pattern. It also overestimated the evening time PRE magnitude to a higher percentage, well above the permitted magnitude. We are then left with $hmF2_{30}$, $hmF2_{60}$, and $hmF2_{1HR}$ to pick from, as the best interval data in the computation of drift velocity.

Both the $hmF2_{30}$ are $hmF2_{60}$ had the advantage that all the data were used during the computation process (Table 1). The remaining three datasets were thereafter subjected to statistical analysis. Highlighted in Table 2 are the hmF2 monthly mean statistical data for the three remaining data-set intervals. Data are not available for the months of January and February, as the Digital Portable Sounder was erected at the Ilorin Observatory in March 2010. Reading from the relative standard deviation and the relative standard error values for the $hmF2_{30}$, $hmF2_{60}$, and $hmF2_{1HR}$, $hmF2_{60}$ was observed to be more reliable in the computation of V_z (owning to its lowest relative standard error values in most of the months). The standard deviation plot, in Fig. 4, for the $hmF2_{30}$, $hmF2_{60}$, and $hmF2_{1HR}$ also showed that the 60-minute interval data is better than the other two; though the standard deviation plots revealed similar pattern. This conditions now led us to the use of the $hmF2_{60}$ as our hmF2 data in the computation of the drift velocity. The data is presented in Table 3, which is the hourly monthly average; and the data of best fit for V_z.

The various statistical instruments used in Table 2 are defined in Eqs. (1)–(6) as follows:

$$\text{Mean, } \bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

where the summation X_i is the sum of the hmF2 values at $hmF2_{30}$, $hmF2_{60}$, and $hmF2_{1HR}$ respectively.
for different months, and \(n \) is the number of points (hours) considered.

\[
\text{Variance, } \sigma^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n}
\]

(2)

\[
\text{Standard Deviation, } \sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n}}
\]

(3)

\[
\text{Relative Standard Deviation, } \sigma_R = \frac{\sigma}{\bar{X}}
\]

(4)

\[
\text{Standard Error, } \sigma_x = \frac{\sigma}{\sqrt{n}}
\]

(5)

\[
\text{Relative Standard Error, } \sigma_T = \frac{\sigma_x}{\bar{X}}
\]

(6)

2. Materials and methods

From the monthly hourly mean values of \(hmF2 \) values presented in Table 3, vertical \(E \times B \) plasma drift velocities were determined by measuring the time rate of change of \(F2 \) real heights using the mathematical expressions in Eq. (7)

\[
V_z = \frac{d(hmF2)}{dt}
\]

(7)

The months were then classified into different seasons viz: March equinox (February, March, April), June solstice (May, June, July), September equinox (August, September, October) and December solstice (November, December, January) (e.g. [4]) for further drift analysis.

Acknowledgements

The Authors would like to appreciate the entire Staff of the Department of Physics, University of Ilorin, Nigeria, for the use of the data obtained from their Equatorial Ionospheric Observatory, where the Digital Portable Sounder was erected. Many thanks to Bodo Reinisch of the Lowell Digisonde International, LLC, 175 Cabot Street, Suite 200 Lowell, MA 01854, USA, for archiving the data in a form that is usable, and for his technical support. The data is archived, at the Global Ionospheric Radio Observatory (GIRO) network website at http://ulcar.uml.edu/DIDBase/. Appreciation also goes to the US Air Force Academy, Colorado 80840, USA, for the provision of the equipment. The publication charges for this article is fully supported by the Management of Landmark University under the Research Grant number LUCERD-2018–0004.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.04.141.
References

[1] B.O. Adebesin, J.O. Adeniyi, I.A. Adimula, B.W. Reinisch, Equatorial vertical plasma drift velocities and electron densities inferred from ground-based ionosonde measurements during low solar activity, J. Atmos. Sol. Terr. Phys. 97 (2013) 58–64. http://dx.doi.org/10.1016/j.jastp.2013.02.010.

[2] X. Huang, B.W. Reinisch, Vertical electron density profiles from the Digisonde ionograms: the average representative profile, Ann. De. Geophys. XXXIX (4) (1996) 751–756.

[3] J.O. Adeniyi, B.O. Adebesin, I.A. Adimula, O.A. Oladipo, A.O. Olawepo, S.O. Ikubanni, B.W. Reinisch, Comparison between African Equatorial Station Ground-based inferred vertical E x B drift, Jicamarca direct measured drift, and IRI model, Adv. Space Res. 54 (7) (2014) 1629–1641. http://dx.doi.org/10.1016/j.asr.2014.06.014.

[4] B.O. Adebesin, A.B. Rabiu, J.O. Adeniyi, C. Amory-Mazaudier, Nighttime morphology of vertical plasma drifts at Ouagadougou during different seasons and phases of sunspot cycles 20-22, J. Geophys. Res. – Space Phys. 120 (11) (2015), http://dx.doi.org/10.1002/2015JA021737.