Absorbed dose assessment of 177Lu-zoledronate and 177Lu-EDTMP for human based on biodistribution data in rats

Hassan Yousefnia, Samaneh Zolghadri, Amir Reza Jalilian

Radiopharmaceutical Research and Development Lab (RRDL), Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran

Received on: 12-07-2014 Review completed on: 01-04-2015 Accepted on: 02-04-2015

ABSTRACT

Over the past few decades, several bone-seeking radiopharmaceuticals including various bisphosphonate ligands and β-emitting radionuclides have been developed for bone pain palliation. Recently, 177Lu was successfully labeled with zoledronic acid (177Lu-ZLD) as a new generation potential bisphosphonate and demonstrated significant accumulation in bone tissue. In this work, the absorbed dose to each organ of human for 177Lu-ZLD and 177Lu-ethylidenediaminetetramethylene phosphonic acid (177Lu-EDTMP; as the only clinically bone pain palliation agent) was investigated based on biodistribution data in rats by medical internal radiation dosimetry (MIRD) method. 177Lu-ZLD and 177Lu-EDTMP were prepared in high radiochemical purity (>99%, instant thin layer chromatography (ITLC)) at the optimized condition. The biodistribution of the complexes demonstrated fast blood clearance and major accumulation in the bone tissue. The highest absorbed dose for both 177Lu-ZLD and 177Lu-EDTMP is observed in trabecular bone surface with 12.173 and 10.019 mSv/MBq, respectively. The results showed that 177Lu-ZLD has better characteristics compared to 177Lu-EDTMP and can be a good candidate for bone pain palliation.

Key words: 177Lu, absorbed dose, biodistribution, EDTMP, zoledronate

Introduction

Metastatic bone cancer is a common and severe complication in advanced diseases. Radionuclide therapy is shown to be useful and cost effective in relieving bone pain in metastatic diseases and may be more effective when combined with chemotherapy and the use of bisphosphonates.

According to the results of three randomized phase III clinical trials enrolling more than 3,000 patients; zoledronic acid (1-hydroxy-2-(imidazol-1-yl-amino)-ethylidene-bisphosphonic acid) [Figure 1] has showed its high potential as a new-generation bisphosphonate that is effective in the treatment of bone metastases secondary to all solid tumor types and bone lesions from multiple myeloma.

Recently, 177Lu was successfully labeled with zoledronic acid and its biodistribution was investigated in wild type rat studies, which demonstrated significant accumulation in bone tissue. However, the absorbed dose to each human organ has not been reported to the best of the authors’ knowledge. In this work, the absorbed dose to each human organ for 177Lu-ZLD and 177Lu-ethylidenediaminetetramethylene phosphonic acid (EDTMP) [Figure 2] was evaluated based on biodistribution studies in rats by medical internal radiation dosimetry (MIRD) method.

Materials and Methods

177Lu was produced by irradiation of natural Lu$_2$O$_3$ target at a thermal neutron flux of approximately 4×10^{13} n cm$^{-2}$ s$^{-1}$ for 5 days at Tehran Research Reactor (TRR). Zoledronic acid and sodium zoledronate were purchased from Sigma-Aldrich Co., UK. Whatman No. 3 paper was obtained from Whatman (UK). Radiochromatography was performed by using a Bioscan AR-2000 radio-TLC scanner instrument (Bioscan, France). Analytical high performance liquid
chromatography (HPLC) to determine the specific activity was performed by a Shimadzu LC-10AT, equipped with two detector systems, flow scintillation analyzer (Packard-150 TR), and ultra violet (UV)-visible (Shimadzu) using Whatman Partisphere C-18 column 250 × 4.6 mm (Whatman Co., NJ, USA). A high purity germanium (HPGe) detector coupled with a Canberra™ (model GC1020-7500SL, Canberra Industries Inc, CT, USA) multichannel analyzer and a dose calibrator ISOMED 1010 (Elimpex-Medizintechnik, Austria) was used for counting distributed activity into rat organs. All other chemical reagents were purchased from Merck (Germany). Calculations were based on the 112 keV peak for 177Lu. All values were expressed as mean ± standard deviation and the percentage of the injected dose per gram (%ID/g) amounts for each rat organ was compared using Student’s t-test. Statistical significance was defined as P < 0.05. Animal studies were carried out in accordance with the United Kingdom Biological Council’s Guidelines on the Use of Living Animals in Scientific Investigations, 2nd edition.[9] The approval of Nuclear Science and Technology Research Institute (NSTRI) Ethical Committee was obtained for conducting this research. The wild-type rats were purchased from Pasteur Institute of Iran, Karaj; all weighing 180–200 g and were acclimatized at proper rodent diet.

Production and quality control of 177LuCl$_3$ solution

Lutetium-177 was produced by the neutron irradiation of 1 mg of natural Lu$_2$O$_3$ (99.999% from Aldrich Co, UK) according to the reported procedures[10] at TRR. The irradiated target was dissolved in 200 µL of 1.0 M HCl to prepare 177LuCl$_3$ and diluted to the appropriate volume with ultrapure water to produce a stock solution of final volume of 5 mL (0.04 mol/L). The mixture was filtered through a 0.22 µm membrane filter (Waters, USA) for sterilization. The radionuclidic purity of the solution was tested for the presence of other radionuclides using an HPGe detector for the detection of various interfering gamma-emitting radionuclides. The radiochemical purity of the 177LuCl$_3$ was checked using two solvent systems for instant thin layer chromatography (ITLC) (A: 10 mmol/L - diethylenetriaminepentacetic acid (DTPA) at pH 5.5 and B: 10% ammonium acetate: methanol (1:1)).

Radiolabeling of ZLD with 177LuCl$_3$

A stock solution of sodium zoledronate (molecular weight (MW) 334) was prepared by dissolution of the complex in double distilled ultrapure water, to produce a solution of 50 mg/mL. Radiolabeling of ZLD with 177LuCl$_3$ was performed based on the previous literature.[11] Briefly, 5 mCi (185 MBq) of the 177LuCl$_3$ solution (0.1 mL) was added to the desired amount of NaZLD solution (1:50 ratios for Lu: ZLD). The radiochemical purity was determined using ITLC(NH$_4$OH (56%):MeOH (100%):H$_2$O (100%) (0.2:2:4; v/v/v) as the mobile phase mixture) and HPLC method. The final solution was passed through a 0.22-µm membrane filter and pH1 was adjusted to 7–8.5 with 0.05 mol/L phosphate buffer (pH 5.5).

Radiolabeling of EDTMP with 177LuCl$_3$

A stock solution of EDTMP was prepared by dissolving in 1 mol/L NaOH and diluted to the appropriate volume with ultrapure water, in order to produce a solution of 50 mg/mL. Radiolabeling of EDTMP with 177LuCl$_3$ was performed based on the previous literature.[12] Briefly, 5 mCi (185 MBq) of the 177LuCl$_3$ solution was added to the desired amount of EDTMP solution (0.3 mL, 1–5 mg/mL). The radiochemical purity was determined using Whatman No. 3 chromatography paper or ITLC-silica gel (SG), eluted with NH$_4$OH (56%):methanol (100%):water (100%) (0.2:2:4; v/v/v) mixture.

Biodistribution of 177Lu-ZLD and 177Lu-EDTMP in wild-type rats

The final complexes (100 µL including 3.7 MBq of radioactivity) were injected intravenously to the rats through their tail veins. The animals were sacrificed at the exact time intervals (2–168 h post injection), and the specific activity of the different organs was calculated as the %ID/g using an HPGe detector.

Dosimetric studies

The absorbed dose of each human organ was calculated by MIRD method based on biodistribution data in...
wild-type rats. The accumulated activity in animals was extrapolated to the accumulated activity in humans by the proposed method of Sparks and Aydogan, (Equation 1).

$$\dot{A}_{\text{human organ}} = \frac{\text{Organ Mass}_{\text{human organ}}}{\text{Body Mass}_{\text{human}}} \times \frac{\dot{A}_{\text{animal organ}}}{\text{Organ Mass}_{\text{animal organ}}/\text{Body Mass}_{\text{animal organ}}}$$

(1)

Where \(\dot{A} \) is the accumulated activity in the source organs and can be calculated by Equation 2.

$$\dot{A} = \int_{t_i}^{\infty} A(t) \, dt$$

(2)

It should be noted that \(A(t) \) is the activity of each organ at time \(t \).

The accumulated source activity for each organ of animals was calculated by plotting the percentage-injected dose versus time for each organ and computing the area under the curves. For this purpose the data points which represent the percentage-injected dose were created. Linear approximation was used between the two experimental time points. The curves were extrapolated to infinity by fitting the tail of each curve to a monoeponential curve with the exponential coefficient equal to physical decay constant of \(^{177}\)Lu. Then the area under the curve was calculated. In order to extrapolate this accumulated activity to human, the mean weights of each organ for standard human were used.\(^{[13]}\)

The radiation absorbed dose was calculated by MIRD formulation:

$$D = N \times DF$$

(3)

Where \(N \) is the number of disintegrations that occur in a source organ, and DF is:

$$DF = k \sum_n E \phi \frac{m}{n}$$

(4)

Where \(n \) is the number of radiations with energy \(E \) emitted per nuclear transition, \(E \) is the energy per radiation (MeV), \(\phi \) is the fraction of energy emitted that is absorbed in the target, \(m \) is the mass of target region (kg), and \(k \) is some proportionality constant \(\text{mGy.kg} \text{MBq.s.MeV}^{-1} \). DF represents the physical decay characteristics of the radionuclide, the range of the emitted radiations, and the organ size and configuration\(^{[14]}\) expressed in \(\text{mGy/MBq.s} \). DF's have been taken from the OLINDA/EXM software.\(^{[15]}\)

Results

Radionuclide production

The radionuclide was prepared in the range of specific activity of 2.6–3 GBq.mg\(^{-1} \) for radiolabeling use. After counting the samples on an HPGe detector for 5 h, two major photons (6.4% of 0.112 MeV and 11% of 0.208 MeV) were observed.

The radiochemical purity of the \(^{177}\)Lu solution was checked in two solvent systems. In 10 mmol/L DTPA aqueous solution (solvent 1), free \(\text{Lu}^{3+} \) cation was complexed to more lipophilic LuDTPA form and migrated to higher \(R_c \). The small radioactive fraction which remained at the origin could be related to the other Lu ionic species, not forming LuDTPA complex, such as \(\text{LuCl}_{3} \), and/or colloids. On the other hand, 10% ammonium acetate:methanol mixture (1:1) (solvent 2) was also used for the determination of radiochemical purity.

Radionlabeling of ZLD and EDTMP with \(^{177}\)LuCl\(_3\)

ITLC studies approved the production of a single radiolabeled compound at the \(R_c \) 0.8, while \(\text{Lu}^{3+} \) retains to the lower \(R_c \) due to the polarity. The HPLC studies also demonstrated the existence of only one radiolabeled species using both UV and scintillation detectors.

Biodistribution of \(^{177}\)Lu-ZLD and \(^{177}\)Lu-EDTMP in wild-type rats

Three rats were sacrificed for each time interval. The tissue uptakes of the complex were calculated as %ID/g [Figures 3 and 4]. It is clearly shown that the major portion of the injected radioactivity of \(^{177}\)Lu-ZLD and \(^{177}\)Lu-EDTMP was transferred from the blood circulation into the bones.

Dosimetric studies

Preliminary dosimetric evaluation of the complexes in human organs was performed by MIRD method based on biodistribution data in rat organs. First, the area under the clearance curves for each organ was calculated. Then, the absorbed dose was calculated according to the S factors in OLINDA software. The estimated absorbed dose in each human organ after injection of \(^{177}\)Lu-ZLD and \(^{177}\)Lu-EDTMP is given in Table 1. Furthermore, trabecular bone surface to other tissue dose ratio as target/nontarget dose ratio for \(^{177}\)Lu-ZLD and \(^{177}\)Lu-EDTMP is given in Table 2.

Discussion

Successful radionuclide pain palliation therapy is based on selective concentration and prolonged retention of the radiopharmaceutical at the skeletal lesions, while bone marrow dose should be kept as low as possible.\(^{[16]}\) For this purpose, \(\beta \)-particles of low energies are recommended.

Among the \(\beta \)-emitter radioisotopes, \(^{177}\)Lu \((t_{1/2} = 6.73 \text{ d}, E_{\beta}(\text{max}) = 497 \text{ keV}, \text{and} E_{\gamma} = 112 \text{ keV (6.4%), 208 keV (11%)})\) has better characteristics. The significant advantage of utilizing \(^{177}\)Lu is its \(\beta \)-particle energies which are adequately low, therefore the bone marrow suppression is minimum.
Figure 3: Percentage of injected dose per gram of 177Lu-EDTMP in wild-type rat tissue after 2, 4, 24, 48, and 168 h post injection.

Figure 4: Percentage of injected dose per gram of 177Lu-ZLD in wild-type rat tissue after 2, 4, 24, 48, and 168 h post injection. 177Lu-ZLD = 177Lu labeled with zoledronic acid.
when it accumulates in skeletal lesions.[17,18] Therefore, different bisphosphonates with 177Lu have been developed and used for the bone pain palliation.

It has been proved that zoledronic acid as an osteoclast-mediated bone resorption inhibitor can be more potent than other bisphosphonates.[10] Zoledronic acid was 850-fold more effective than pamidronate at inhibiting the induction of hypercalcemia in rats, and 40- to 100-fold more potent.[1] Also, it is more than four orders of magnitude more potent than clodronate.[7]

Specific uptake and retention in the target organ and rapid clearance from nontarget organs are significant parameters for the each radiolabelled complex. Low blood accumulation for both 177Lu-ZLD and 177Lu-EDTMP (<1.5\%) demonstrated rapid washout from blood circulation. Besides, accumulation of both compounds in the bone increases with time up to 168 h which shows long-term retention of the complexes in the target organ.

There are two major sources of toxicity from these radiolabeled complexes: Unchelated lutetium and the accumulation of the radiolabeled complexes in the nontarget organs. Lu1+ metal has been found to distribute to the liver, spleen, and kidneys.[19] Thus, it is necessary to keep as little unchelated Lu1+ as possible to avoid uptake by liver and hepatotoxicity. Additionally, bone marrow toxicity is the most important point which should be considered for bone avid radiopharmaceuticals. While the absorbed dose of bone marrow is approximately identical for both 177Lu-ZLD and 177Lu-EDTMP, both of these complexes would have the same toxicity in bone marrow.

The effects of radionuclides in the management of disease are often estimated by the absorbed dose to target

\begin{table}[ht]
\centering
\begin{tabular}{|l|c|c|l|c|c|}
\hline
Tissue & 177Lu-ZLD & 177Lu-EDTMP & Tissue & 177Lu-ZLD & 177Lu-EDTMP \\
\hline
Adrenals & 0.055±0.003 & 0.045±0.006 & Ovaries & 0.031±0.002 & 0.030±0.002 \\
Brain & 0.056±0.002 & 0.047±0.006 & Pancreas & 0.035±0.002 & 0.029±0.001 \\
Breasts & 0.016±0.001 & 0.013±0.001 & Red marrow & 3.997±0.407 & 3.291±0.247 \\
Gallbladder wall & 0.026±0.001 & 0.021±0.001 & Cortical bone surface & 9.524±0.803 & 7.839±0.655 \\
Lower large intestine wall & 0.419±0.006 & 0.217±0.005 & Trabecular bone surface & 12.173±1.018 & 10.019±0.714 \\
Small intestine & 0.028±0.001 & 0.025±0.001 & Cortical bone volume & 2.270±0.209 & 1.870±0.172 \\
Stomach & 0.103±0.005 & 0.018±0.001 & Trabecular bone volume & 5.850±0.627 & 4.816±0.416 \\
Upper large intestine wall & 0.024±0.001 & 0.022±0.002 & Spleen & 0.242±0.016 & 0.085±0.003 \\
Heart content & 0.172±0.007 & 0.040±0.003 & Tests & 0.017±0.001 & 0.017±0.001 \\
Heart wall & 0.430±0.009 & 0.065±0.003 & Thymus & 0.024±0.001 & 0.022±0.001 \\
Kidneys & 0.871±0.009 & 0.028±0.001 & Thyroid & 0.035±0.002 & 0.033±0.001 \\
Liver & 0.305±0.007 & 0.136±0.006 & Urinary bladder wall & 0.018±0.001 & 0.019±0.001 \\
Lungs & 0.391±0.008 & 0.037±0.002 & Uterus & 0.023±0.001 & 0.023±0.001 \\
Muscle & 0.035±0.002 & 0.134±0.007 & Total body & 0.794±0.022 & 0.683±0.008 \\
\hline
\end{tabular}
\caption{The absorbed dose in each human organ after injection of 177Lu-ZLD and 177Lu-EDTMP}
\end{table}

\begin{table}[ht]
\centering
\begin{tabular}{|l|c|c|l|c|c|}
\hline
Tissue & 177Lu-ZLD & 177Lu-EDTMP & Tissue & 177Lu-ZLD & 177Lu-EDTMP \\
\hline
Adrenals & 218.274 & 219.881 & Ovaries & 381.847 & 331.508 \\
Brain & 216.389 & 213.158 & Pancreas & 340.012 & 337.002 \\
Breasts & 750.460 & 742.714 & Red marrow & 3.045 & 3.044 \\
Gallbladder wall & 466.595 & 457.080 & Cortical bone surface & 1.278 & 1.278 \\
Lower large intestine wall & 29.006 & 46.030 & Trabecular bone surface & 1.000 & 1.000 \\
Small intestine & 432.846 & 389.973 & Cortical bone volume & 5.360 & 5.356 \\
Stomach & 117.534 & 536.631 & Trabecular bone volume & 2.080 & 2.080 \\
Upper large intestine wall & 497.356 & 446.285 & Spleen & 50.254 & 116.886 \\
Heart Content & 70.586 & 249.520 & Tests & 685.637 & 560.163 \\
Heart wall & 28.280 & 153.742 & Thymus & 487.396 & 451.379 \\
Kidneys & 13.968 & 355.481 & Thyroid & 338.755 & 302.149 \\
Liver & 39.791 & 73.276 & Urinary bladder wall & 649.830 & 515.253 \\
Lungs & 31.127 & 267.727 & Uterus & 523.113 & 426.971 \\
Muscle & 347.315 & 74.553 & Total body & 15.316 & 14.666 \\
\hline
\end{tabular}
\caption{Trabecular bone surface to other tissue dose ratio for 177Lu-ZLD and 177Lu-EDTMP}
\end{table}
organ relative to normal tissues. A prerequisite for the clinical application of a new radiopharmaceutical is the measurement of organ radiation exposure dose from biodistribution data in animals. Calculation of the radiopharmaceutical’s absorbed dose in human organs from biodistribution in small animals can be useful for determining the injected activity and accelerating the development of radioactive compounds to be used in clinical settings and is a common first step consistent with the recommendations of International Commission on Radiological Protection (ICRP) 62.

Recently, the 177Lu-ZLD complex has suggested as a promising radiolabeled compound for targeted bone pain palliation. In this work, the absorbed dose to each organ of human for 177Lu-ZLD was evaluated based on biodistribution studies in rats by MIRD method. Extrapolation between animal data to human may lead to some over- or underestimation, previous studies have indicated the usefulness of using animal biodistribution as a model for absorbed dose estimations in humans.

The only clinically used Lu-177 bone pain palliation therapeutic agent is 177Lu-EDTMP, which employed in early clinical trials in some centers in the world. Consequently, for preliminary comparison of 177Lu-ZLD as a bone pain palliation agent, the absorbed dose to each human organ for this complex is compared to 177Lu-EDTMP [Table 1]. As expected, the highest absorbed dose for both 177Lu-ZLD and 177Lu-EDTMP is observed in trabecular bone surface with 12.173 and 10.019 mSv/MBq, respectively.

The importance of an ideal therapeutic radiopharmaceutical relays on the ratio of the absorbed dose in target organ to other organs. Therefore, trabecular bone surface to other tissue dose ratio for 177Lu-ZLD and 177Lu-EDTMP was calculated. While, the dose ratio of trabecular bone surface to the most tissue for 177Lu-ZLD is in the same order or better in some cases than for 177Lu-EDTMP, the trabecular bone surface to heart, kidney, liver, lung, and spleen dose ratio is considerably higher for 177Lu-EDTMP compared to 177Lu-ZLD, which puts 177Lu-ZLD in disadvantageous situation compared to 177Lu-EDTMP. In comparison to 177Lu-EDTMP, the most important advantage of 177Lu-ZLD is the dose delivered in the critical organs. Also, muscle uptake is considerably lower for 177Lu-ZLD which can improve the quality of SPECT images, therefore, the treatment can follow with better precision. 177Lu-ZLD complex demonstrated better characteristics compared to 177Lu-EDTMP, and therefore can be a good candidate for bone pain palliation.

Conclusion

In this study, 177Lu-ZLD and 177Lu-EDTMP complexes were prepared in high radiochemical purity (>99%, ITLC) at the optimized condition. Satisfactory stability in presence of human serum and final formulations was obtained for both of the complexes. The biodistribution of the complexes was checked up to 168 h post injection, showing fast blood clearance and major accumulation in the bone tissue. The absorbed dose to each organ of human for 177Lu-ZLD and 177Lu-EDTMP was evaluated based on biodistribution studies in rats by MIRD method. The highest absorbed dose for both 177Lu-ZLD and 177Lu-EDTMP is observed in trabecular bone surface with 12.173 and 10.019 mSv/MBq, respectively. In comparison to 177Lu-EDTMP, the most important advantage of 177Lu-ZLD is the dose delivered in the critical organs. Also, muscle uptake is considerably lower for 177Lu-ZLD which can improve the quality of SPECT images, therefore, the treatment can follow with better precision. 177Lu-ZLD complex demonstrated better characteristics compared to 177Lu-EDTMP, and therefore can be a good candidate for bone pain palliation.

References

1. Pandit-Taskar N, Batraki M, Divgi CR. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med 2004;45:1358-65.
2. Montella L, Addeo R, Palmieri G, Caraglia M, Cennamo G, Vincenzi B, et al. Zoledronic acid in treatment of bone metastases by hepatocellular carcinoma: A case series. Cancer Chemother Pharmacol 2009;65:1137-43.
3. Tomblin M. The role of bone-seeking radionuclides in the palliative treatment of patients with painful osteoblastic skeletal metastases. Cancer Control 2012;19:137-44.
4. Berenson JR. Recommendations for zoledronic acid treatment of patients with bone metastases. Oncologist 2005;10:52-62.
5. Major P, Lortholary A, Hon J, Abdi E, Mills G, Menssen HD, et al. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: A pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 2001;19:558-67.
6. Saad F, Gleason DM, Murray R, Tichkediyajian S, Venner P, Lacombe L, et al. Zoledronic Acid Prostate Cancer Study Group. A randomized, placebocontrolled trial of zoledronic acid in patients with hormone refractory metastatic prostate carcinoma. J Natl Cancer Inst 2002;94:1438-68.
7. Green JR, Muller K, Jaeggi KA. Preclinical pharmacology of CGP 42446, a new potent heterocyclic bisphosphonate compound. J Bone Miner Res 1994;9:745-51.
8. Nikzad M, Jalilian AR, Shirvani-Samani A, GolchoubianH. Production, quality control and pharmacokinetic studies of 177Lu-zoledronate for bone pain palliation therapy. J Radioanal Nucl Chem 2013;298:1273-81.
9. Council B. Guidelines on the use of living animals in scientific investigations. Biological Council 1987.
10. Manual for reactor produced radioisotopes, IAEA-TECDOC-1340. IAEA Vienna; 2003.
11. Bahrami-Samani A, Anvari A, Jalilian AR, Shirvani-Samani A, Yousefnia H, Aghamiri MR, et al. Production, Quality control and Pharmacokinetic Studies of 177Lu-EDTMP for Human Bone Pain Palliation Therapy Trials. Iran J Pharm Res 2012;11:137-44.
12. Sparks RB, Aydogan B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. Proceeding of the sixth International Radiopharmaceutical Dosimetry Symposium; Oak Ridge. TN: Oak Ridge Associated Universities; 1996; p. 705-16.
13. Stabin MG, Siegel JA. Physical models and dose factors for use in
internal dose assessment. Health Phys 2003;85:294-310.
14. Bevelacqua JJ. Internal dosimetry primer. Radiat Prot Manage 2005;22:7-17.
15. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46:1023-7.
16. Hosain F, Spencer RP. Radiopharmaceuticals for palliation of metastatic osseous lesions: Biologic and physical background. Semin Nucl Med 1992;22:11-6.
17. de Ligny CL, Gelsema WJ, Tji TG, Huigen YM, Vink HA. Bone seeking radiopharmaceuticals. Int J Rad Appl Instrum B 1990;17:161-79.
18. Lewington VJ. Targeted radionuclide therapy for bone metastases. Eur J Nucl Med 1993;20:66-74.
19. Yousefnia H, Jalilian AR, Zolghadri S, Bahrami-Samani A, Shirvani-Arani S, Ghannadi-Maragheh M. Preparation and quality control of 177Lu-[tris(1,10-phenanthroline)lutetium(III)] complex for therapy. Nucl Med Rev Cent East Eur 2010;13:49-54.
20. Flynn AA, Pedley RB, Green AJ, Boxer GM, Boden R, Bhatia J, et al. Antibody and radionuclide characteristics and the enhancement of the effectiveness of radioimmunotherapy by selective dose delivery to radiosensitive areas of tumour. Int J Radiat Biol 2002;78:407-15.
21. Kesner AL, Hsueh WA, Caemun J, Padgett H, Phelps ME, Silverman DH. Radiation dose estimates for [18F]F-fluorouracil derived from PET-based and tissue-based methods in rats. Mol Imaging Biol 2008;10:341-8.
22. ICRP Publication 62: Radiological Protection in Biomedical Research. Ann ICRP 1995;22.
23. Yousefnia H, Zolghadri S, Jalilian AR, Tajik M, Ghannadi-Maragheh M. Preliminary dosimetric evaluation of 166Ho-TTHMP for human based on biodistribution data in rats. Appl Radiat Isot 2014;94:260-5.
24. Yuan J, Liu C, Liu X, Wang Y, Kuai D, Zhang G, et al. Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer: A phase II study. Clin Nucl Med 2013;38:88-92.
25. Shinto AS, Shibu D, Kamleshwaran KK, Das T, Chakraborty S, Banerjee S, et al. 177Lu-EDTMP for treatment of bone pain in patients with disseminated skeletal metastases. J Nucl Med Technol 2014;42:55-61.

\textbf{How to cite this article:} Yousefnia H, Zolghadri S, Jalilian AR. Absorbed dose assessment of 177Lu-zoledronate and 177Lu-EDTMP for human based on biodistribution data in rats. J Med Phys 2015;40:102-8.

\textbf{Source of Support:} Nil, \textbf{Conflict of Interest:} None declared.