Dissipative Quantum Systems in ThermoField Dynamics

J.L. Tomazelli† and G.G. Gomes‡
Departamento de Física - Universidade Federal de Santa Catarina

†tomazelli@fsc.ufsc.br, ‡gerson.g.gomes@gmail.com

We investigate a class of microscopic systems in interaction with a macroscopic system in thermal equilibrium, following the construction of Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC). By considering self-adjoint operators as elements of Schwinger’s Measurement Algebra (SMA), we construct statistical mean values of the relevant observables as matrix elements in a suitable operator basis, which correspond to the vacuum states of ThermoField Dynamics (TFD).

1. Schwinger Operators and TFD

In SMA [1] an operator is defined as

\[X = \sum_{a',a''} \langle a' \mid X \mid a'' \rangle M(a',a''), \]

(1)

where \(\langle a' \mid X \mid a'' \rangle \) represents its matrix element in the \(a \) representation:

\[\langle a' \mid X \mid a'' \rangle = \text{Tr} X M(a'',a'). \]

(2)

The product of two general measurement symbols, referring to distinct sets of compatible observables \(A, B, C \) and \(D \), satisfies the following composition rule:

\[M(a',b')M(c',d') = \langle b' \mid c' \rangle M(c',d'), \]

(3)

where the number \(\langle b' \mid c' \rangle \) defines the statistical relation between the corresponding sets.

The expectation value of a given property \(A \) in the \(b' \) basis is

\[\langle A \rangle_{b'} = \sum_{a'} a' p(a',b') = \text{Tr} A M(b') = \langle b' \mid A \mid b' \rangle , \]

(4)

where we introduce the operator

\[A = \sum_{a'} a' M(a') = \sum_{a',a''} a' \delta(a',a'') M(a',a''), \]

(5)

†Work presented in the Workshop on Quantum Nonstationary Systems, held in the International Centre for Condensed Matter Physics at the University of Brasilia, from October 19th-23rd.
in the basis $M(a') \equiv M(a', a')$. This implies that $\langle a' | A | a'' \rangle = a'\delta(a', a'').$

Now we define the statistical mean

$$\langle A \rangle = \sum_{b'} \Pi(b') \langle A \rangle_{b'} = \sum_{a'} \langle a' | \rho A | a' \rangle = Tr(\rho A),$$

(6)

with $\Pi(b') \geq 0$ and $\sum_{b'} \Pi(b') = 1$, where

$$\rho \equiv \sum_{b'} \Pi(b') M(b') = \sum_{b', b''} \Pi(b') \delta(b', b'') M(b', b'').$$

(7)

Hence $\langle b' | \rho | b'' \rangle = \Pi(b') \delta(b', b'')$, with $Tr\rho = \sum_{b'} \Pi(b') = 1$. In thermal equilibrium, by considering the basis $M(n, m)$ associated to the number operator N in which its matrix elements are diagonal,

$$N = \sum_{n,m} \langle n | N | m \rangle \delta_{nm} M(n, m)$$

$$= \sum_{n} \langle n | N | n \rangle M(n),$$

(8)

we have

$$\rho = \sum_{n} \Pi(E_n) M(n),$$

(9)

where

$$\Pi(E_n) = Z^{-1} e^{-\beta E_n},$$

(10)

or

$$\rho = \sum_{n,m} \Pi(E_n) \delta_{nm} M(n, m).$$

(11)

Introducing an auxiliary operator basis where a new fictitious operator \tilde{N}, corresponding to N, is diagonal, we can write $\delta_{nm} M(n, m)$ as

$$\langle \tilde{n} | \tilde{m} \rangle M(n, m) = M(n, \tilde{n}) M(\tilde{m}, n),$$

(12)

so that

$$\rho = \sum_{n,m} \sqrt{\Pi(E_n) \Pi(E_m)} M(n, \tilde{n}) M(\tilde{m}, n)$$

$$= \left[\sum_{n} \sqrt{\Pi(E_n)} M(n, \tilde{n}) \right] \left[\sum_{m} \sqrt{\Pi(E_m)} M(\tilde{m}, m) \right]$$

$$\equiv |0(\beta)) \langle 0(\beta)|.$$

(13)
We may identify the measurement symbols inside the square brackets as composite states of the thermal vacuum of TFD [2]:

\[\left| 0(\beta) \right\rangle \equiv \sum_n \sqrt{\Pi(E_n)} \left| n, \tilde{n} \right\rangle, \tag{14} \]

so that \(\rho \) acquires the status of a projection operator, as well as \(M(n, \tilde{n}) \equiv \left| \tilde{n} \right\rangle \left\langle n \right| \) and \(M(\tilde{m}, m) \equiv \left| \tilde{m} \right\rangle \left\langle m \right| \). Therefore, for a given observable \(F \),

\[
\text{Tr} (\rho F) = \langle 0(\beta) | F | 0(\beta) \rangle = \text{Tr} \left(\sum_{n,m} \sqrt{\Pi(E_n)\Pi(E_m)} | \tilde{m} \rangle \left\langle m | F | n \right\rangle \langle \tilde{n} | \right) \\
= \sum_{n,m} \sqrt{\Pi(E_n)\Pi(E_m)} \langle \tilde{n}|\tilde{m}\rangle \langle m|F|n \rangle \\
= \sum_n \Pi(E_n) \langle n|F|n \rangle. \tag{15} \]

2. Radiation Considered as a Reservoir

Let us consider the problem of a small system \(A \) interacting with a large reservoir \(R \). Following DDC construction [3], let

\[H = H_A + H_R + V, \tag{16} \]

be the Hamiltonian of global system \(A + R \), where \(H_A \) and \(H_R \) are, respectively, the Hamiltonians of \(A \) and \(R \), whilst \(V \) stands for the interaction between them. In the interaction picture, the density operator of the global system obeys the evolution equation,

\[\frac{d}{dt} \rho(t) = \frac{1}{i\hbar} [V(t), \rho(t)], \tag{17} \]

from which we obtain

\[
\rho(t + \Delta t) = \rho(t) + \frac{1}{i\hbar} \int_t^{t+\Delta t} [V(t'), \rho(t)]dt' + \\
+ \left(\frac{1}{i\hbar} \right)^2 \int_t^{t+\Delta t} dt' \int_t^{t'} [V(t'), [V(t''), \rho(t'')]]dt''. \tag{18} \]

By taking the trace with respect to \(R \), we arrive at

\[
\Delta \sigma(t) \equiv \sigma(t + \Delta t) - \sigma(t) = \frac{1}{i\hbar} \int_t^{t+\Delta t} \text{Tr}_R [V(t'), \rho(t)]dt' + \\
+ \left(\frac{1}{i\hbar} \right)^2 \int_t^{t+\Delta t} dt' \int_t^{t'} \text{Tr}_R [V(t'), [V(t''), \rho(t'')]]dt'', \tag{19} \]

3
where
\[\sigma(t) = Tr_R \rho(t). \] (20)
The interaction \(V \) between \(A \) e \(R \) will be taken as a product of an observable \(A \) of \(A \) and an observable \(R \) of \(R \):
\[V = -AR. \] (21)
Since the average value in \(\sigma_R \) of the coupling \(V(t) \) is zero, the leading contribution in (19) stems from the two-time average
\[g(t', t'') = Tr_R[\sigma_R R(t') R(t'')]. \] (22)
If \(V \) is sufficiently small, and \(\Delta t \) sufficiently short compared with the evolution time \(t_R \) of \(\sigma \), \(\rho(t) \) can be written in the form
\[\rho(t) = Tr_R \rho(t) \otimes Tr_A \rho(t), \] (23)
where the contributions of the correlations between \(A \) and \(R \) in the time \(t \) were neglected. The general idea is that the initial correlations between \(A \) and \(R \) at time \(t \) disappear after a collision time \(\tau_c \ll t_R \). Thus, there exist two very different time scales, such that
\[\tau_c \ll \Delta t \ll t_R, \] (24)
bringing us to the ‘coarse-grained’ rate of variation for the system \(A \).

3. Master Equation for a Damped Harmonic Oscillator

3.1. The Physical System

We are interested in the case where the small system \(A \) is a one-dimensional harmonic oscillator of frequency \(\omega_0 \) whose Hamiltonian is
\[H_A = \hbar \omega_0 (b^\dagger b + \frac{1}{2}), \] (25)
where \(b^\dagger \) and \(b \) are the rising and lowering operators of this oscillator. The reservoir \(R \) consists of an infinite number of one-dimensional harmonic oscillators, of frequency \(\omega_i \), with ladder operators \(a_i^\dagger \) and \(a_i \), so that the Hamiltonian \(H_R \) for \(R \) is written as
\[H_R = \sum_i \hbar \omega_i (a_i^\dagger a + \frac{1}{2}). \] (26)
We take a sesquilinear interaction between A and R of the form

$$V = V^\dagger = \sum_i (\eta_i a_i^\dagger + \eta_i^* b_i^\dagger),$$ \hspace{1cm} (27)

where η_i is the coupling constant between A and the i-th oscillator of R.

3.2. The Master Equation

We write the coarse-grained rate of variation,

$$\frac{\Delta \sigma}{\Delta t} = -\frac{1}{\hbar^2} \int_0^{\infty} dt' \int_t^{t+\Delta t} dt'' \text{tr}_R[V(t'), [V(t''), \sigma_A(t) \otimes \sigma_R]],$$ \hspace{1cm} (28)

with V given by (27). Changing to the Schrödinger representation, we obtain the following operator form for the master equation:

$$\frac{d\sigma}{dt} = -\frac{\Gamma}{2} [\sigma, b^\dagger b]_+ - \Gamma' [\sigma, b^\dagger b] - \Gamma' \sigma$$

$$- i(\omega_0 + \Delta) [b^\dagger b, \sigma] + \Gamma b \sigma b^\dagger + \Gamma' (b^\dagger \sigma b + \sigma b^\dagger).$$ \hspace{1cm} (29)

In this equation $[.,.]_+$ represents the anticommutator and we have made the following definitions

$$\Gamma = \frac{2\pi}{\hbar} \sum_i |\eta_i|^2 \delta(h\omega_0 - \omega_i), \quad \Gamma' = \frac{2\pi}{\hbar} \sum_i |\eta_i|^2 \langle n_i \rangle \delta(h\omega_0 - \omega_i),$$ \hspace{1cm} (30)

and

$$\hbar \Delta = V.P. \left(\sum_i \frac{|\eta_i|^2}{\hbar\omega_0 - \hbar\omega_i} \right), \quad \hbar \Delta' = V.P. \left(\sum_i \frac{|\eta_i|^2 \langle n_i \rangle}{\hbar\omega_0 - \hbar\omega_i} \right).$$ \hspace{1cm} (31)

Here $\langle n_i \rangle$ is the average number of excitation quanta of the oscillator i. If this number depends only on the energy of this oscillator, due to delta function in the second equation in (30), we have

$$\Gamma' = \langle n(\omega_0) \rangle \Gamma,$$ \hspace{1cm} (32)

where $\langle n(\omega_0) \rangle$ is the average number of quanta in the reservoir oscillators, having the same frequency ω_0 of oscillator A. If, moreover, R is in thermodynamic equilibrium, $\langle n(\omega_0) \rangle$ is equal to $[\exp \hbar\omega_0/k_B T - 1]^{-1}$.

5
Alternatively, temperature effects can be incorporated from the very beginning, replacing the trace in (28) by the thermal expectation value (15), leading to

\[
\frac{\Delta \sigma}{\Delta t} = -\frac{1}{\hbar^2} \frac{1}{\Delta t} \int_0^\infty d(t' - t'') \int_t^{t+\Delta t} dt'' \langle 0(\beta) | [V(t'), [V(t''), \sigma_A(t)]] | 0(\beta) \rangle,
\]

(33)

and, consequently, to the master equation (29). In this case, the average number \(\langle n_i \rangle \) in (30) and (31) is given by a mean value in the TFD vacuum state, defined in (14),

\[
\langle n_i \rangle = \langle 0(\beta) | a_i^\dagger a_i | 0(\beta) \rangle,
\]

(34)

after working out the thermal Green function

\[
g(\tau) = \text{Tr} \left[R(t) R(t - \tau) | 0(\beta) \rangle \langle 0(\beta) | \right] = \langle 0(\beta) | R(t) R(t - \tau) | 0(\beta) \rangle,
\]

(35)

instead of the two-time average (22), with \(\tau \equiv t' - t'' \).

As a straightforward application of the formalism just presented, equation (33) can be employed to derive the corresponding master equation (29), in order to study a brownian particle interacting with a macroscopic system in the framework of equilibrium TFD [4].

References

[1] J.S. Schwinger, *Quantum Kinematics and Dynamics*, Addison-Wesley (1991).

[2] H. Umezawa and Y. Takahashi, Int. J. Mod. Phys. B **10** (1996) 1755; H. Umezawa, *Advanced Field Theory* AIP Publishing (1993).

[3] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, *Atom-Photon Interactions: Basic Processes and Applications*, Wiley (2004).

[4] J.L. Tomazelli and G.G. Gomes, work in progress.