Elastic anomalies at successive phase transitions in NdRu$_2$Al$_{10}$

T Suzuki1,2,3, I Ishii1, Y Suetomi1, H Muneshige1, T K Fujita1, S Tanimoto4 and T Nishioka4

1Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
2Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
3Cryogenics and Instrumental Analysis Division, N-BARD, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
4Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan

E-mail: tsuzuki@hiroshima-u.ac.jp

Abstract. We carried out ultrasonic measurements on NdRu$_2$Al$_{10}$ single crystals in order to clarify what kind of phase transition occurs in this compound. The elastic moduli were measured as a function of temperature from 0.5 K to 150 K using the phase comparison-type pulse echo method. As the temperature is decreased from 150 K, longitudinal elastic modulus C_{11} and transverse elastic modulus C_{44} show a monotonic enhancement. With further decreasing temperature, both elastic moduli show abrupt hardening at 2.4 K and then show two-step softening at 1.3 K and 1.0 K. We found obvious hysteresis around both transitions at 1.3 K and 1.0 K in the temperature sweep, whereas no hysteresis was observed around the transition at 2.4 K within our experimental accuracy. The abrupt hardening at 2.4 K is very similar to that found in CeRu$_2$Al$_{10}$ and CeOs$_2$Al$_{10}$, suggesting that the transition at 2.4 K originates from the same mechanism of the transitions in CeRu$_2$Al$_{10}$ and CeOs$_2$Al$_{10}$. This is the first report that NdRu$_2$Al$_{10}$ undergoes the successive phase transitions.

1. Introduction

The cage compounds with the composition formula RT_2Al$_{10}$ (R: rare earth; T = Fe, Ru and Os), which have the YbFe$_2$Al$_{10}$-type orthorhombic structure, have attracted much attention because CeRu$_2$Al$_{10}$ and CeOs$_2$Al$_{10}$ undergo a novel phase transition at T_0 = 27.3 K and 28.7 K, respectively [1-3]. There have been many proposals about a mechanism of ordering. Nishioka et al. suggested a charge-density-wave (CDW)-like transition at T_0 in CeRu$_2$Al$_{10}$ [2]. Meanwhile, Tanida et al. proposed a magnetic-type phase transition in which the singlet spin pair between spins on neighboring Ce ions is formed below T_0 from the measurements on the thermal and transport properties of La-diluted Ce$_{1-x}$La$_x$Ru$_2$Al$_{10}$ [4]. Recently, an antiferromagnetic structure along the c-axis below T_0 is reported in inelastic neutron scattering and muon spin relaxation experiments [5].

We already measured temperature dependences of elastic moduli of CeRu$_2$Al$_{10}$ and reported that abrupt hardening occurs at T_0 in all elastic moduli without hysteresis, suggesting that the transition is of the second order and there is a $Q\varepsilon^2$-type coupling term in an effective Hamiltonian where Q and ε represent an order parameter and an elastic strain, respectively [6]. This elastic behaviour is almost identical with that of the typical CDW-transition-compounds TaS$_3$ and NbSe$_3$[7,8]. Therefore we...
pointed out that the plausible origin for the transition at T_0 in CeRu$_2$Al$_{10}$ is the CDW ordering [6].

From the optical conductivity measurements, Kimura et al. proposed that the phase transition in the same CeRu$_2$Al$_{10}$ originates from the CDW formation which induces antiferromagnetic ordering [9], supporting our conclusion for CeRu$_2$Al$_{10}$.

Very recently, successive phase transitions were found in NdOs$_2$Al$_{10}$ [10]. In order to investigate what kind of phase transition occurs in NdRu$_2$Al$_{10}$, we synthesized single crystals of NdRu$_2$Al$_{10}$ and measured elastic moduli using an ultrasonic technique. This is the first report on the successive phase transitions in NdRu$_2$Al$_{10}$.

2. Experimental

Single crystals of NdRu$_2$Al$_{10}$ were grown by the Al self-flux method. The lattice constants of NdRu$_2$Al$_{10}$ are referred from ref. 11, such as $a = 9.115$ Å, $b = 10.261$ Å and $c = 9.152$ Å. The elastic moduli C_{11} and C_{44} were measured as a function of temperature from 0.5 to 150 K by the phase comparison-type pulse echo method using a 3He cryostat with a superconducting magnet. The modulus C_{11} is the longitudinal mode propagating along the a-axis, and C_{44} is the transverse mode propagating along the b-axis with the polarization direction along the c-axis. The elastic modulus C was calculated using $C = \rho v^2$ with a room-temperature mass density $\rho = 4.782$ g/cm3, where v is the sound velocity in a sample.

3. Results and discussion

Figure 1 shows temperature dependence of the longitudinal elastic modulus C_{11} in NdRu$_2$Al$_{10}$, which was measured with the ultrasonic frequency of 99 MHz. The inset shows C_{11} in an expanded scale below 3.5 K. The modulus C_{11} is the linear response to the ε_{xx} strain. The modulus C_{11} increases monotonically with decreasing temperature at high temperatures. With further decreasing temperature, abrupt hardening occurs at $T_1 = 2.4$ K and then two-step softening appears around $T_2 = 1.3$ K and $T_3 = 1.0$ K, respectively.

![NdRu$_2$Al$_{10}$](image)

Figure 1. Temperature dependence of C_{11}

When we repeated the temperature sweep around three transitions, we found hysteresis around T_2 and T_3 in contrast to no hysteresis around T_1 in the temperature sweep. Here we report, for the first
time, that NdRu$_2$Al$_{10}$ undergoes three phase transitions: the second order transition at T_1 and the first order transitions at T_2 and T_3, respectively.

Figure 2 shows temperature dependence of the transverse elastic modulus C_{44} in NdRu$_2$Al$_{10}$, which was measured with the ultrasonic frequency of 102 MHz. The modulus C_{44} is the linear response to the ϵ_{yz} strain. This transverse elastic modulus shows almost the same temperature dependence of C_{11}, such as the monotonic increase at high temperatures, the abrupt hardening at T_1 and the two-step softening around T_2 and T_3. However, the hysteresis around T_2 and T_3 is more obvious than that in the C_{11} mode. This may be related to the symmetry of ordering structure corresponding to the symmetry of the ϵ_{yz} strain.

![Figure 2. Temperature dependence of C_{44}](image)

At the second order transition at T_1, both of longitudinal and transverse moduli abruptly enhance without hysteresis, suggesting that there is a $Q\epsilon^2$-type coupling term in the effective Hamiltonian [12]. This elastic behaviour is almost identical with that in CeRu$_2$Al$_{10}$ [6]. Therefore, we estimate that this transition also originates from the CDW transition accompanied by antiferromagnetic ordering which was found in CeRu$_2$Al$_{10}$. The isomorphic compounds RT$_2$Al$_{10}$ may have similar instability commonly.

As for the first order transitions at T_2 and T_3, the origin is unclear at present. However, in our preliminary elastic measurements under magnetic fields, we found that both transition temperatures of T_2 and T_3 decrease with increasing the magnetic field. This may suggest that both transitions originate from an antiferromagnetic ordering. In order to clarify the origin of phase transitions, we need to perform experiments on magnetic properties of NdRu$_2$Al$_{10}$.

4. Conclusion
We carried out ultrasonic experiments on NdRu$_2$Al$_{10}$ single crystals to measure temperature dependence of longitudinal and transverse elastic moduli in the temperature range between 0.5 and 150 K. We found for the first time that NdRu$_2$Al$_{10}$ undergoes the second order transition at $T_1 = 2.4$ K and the first order transitions at $T_2 = 1.3$ K and $T_3 = 1.0$ K, respectively. We estimate that a CDW transition accompanied by antiferromagnetic ordering occurs at T_1.

5. References

[1] Strydom A M 2009 Physica B 404 2981
[2] Nishioka T, Kawamura Y, Takesaka T, Kobayashi R, Kato H, Matsumura M, Kodama K, Matsubayashi K and Uwatoko Y 2009 J. Phys. Soc. Jpn. 78 123705
[3] Muro Y, Kajino J, Umeo K, Nishimoto K, Tamura R and Takabatake T 2010 Phys. Rev. B 81 214401
[4] Tanida H, Tanaka D, Sera M, Moriyoshi C, Kuroiwa Y, Takesaka T, Nishioka T, Kato H and Matsumura M 2010 J. Phys Soc. Jpn. 79 043708
[5] Khalyavin D D, Hillier A D, Adroja D T, Strydom A M, Manuel P, Chapon L C, Peratheepan P, Knight K, Deen P, Ritter C, Muro Y and Takabatake T 2010 Phys. Rev. B 82 100405(R)
[6] Ishii I, Suetomi Y, Fujita T K, Takesaka T, Nishioka T and Suzuki T 2010 J. Phys. Soc. Jpn. 79 053602
[7] Xiang X -D and Brill J W 1989 Phys. Rev. Lett. 63 1853
[8] Xiang X -D and Brill J W 1989 Phys. Rev. B 39 1290
[9] Kimura S, Iizuka T, Miyazaki H, Hajiri T, Matsunami M, Mori T, Irizawa A, Muro Y, Kajino J and Takabatake T 2011 Phys. Rev. B 84 165125
[10] Muro Y and Takabatake T 2011 Private communication
[11] Thiede V M T, Ebel T and Jeitschko W 1998 J. Mater. Chem. 8 125
[12] Rehwald W 1973 Adv. Phys. 22 721

Acknowledgments
This work was supported by a Grant-in-Aid (No. 20340093) and a Grant-in-Aid for Scientific Research on Innovative Areas "Heavy Electrons" (No. 20102005) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.