High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

J F Collingwood, A Mikhaylova, M R Davidson, C Batich, W J Streit, T Eskin, J Terry, R Barrea, R S Underhill and J Dobson

1 Institute for Science & Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB United Kingdom
2 Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA 32611
3 Department of Materials Science & Engineering, University of Florida, Gainesville, Florida USA 32611
4 Department of Neuroscience, University of Florida, Gainesville, Florida USA 32611
5 Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610
6 Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, Illinois USA 60616
7 Biophysics Collaborative Access Team, APS/435B/Sector 18, Argonne National Laboratory, 9700 S. Cass Avenue Argonne, Illinois USA 60439
8 DRDC Atlantic, PO Box 99000 Stn. Forces, Halifax, NS B3K 5X5 Canada

Email: joanna.collingwood@physics.org

Abstract. Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterise anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution ~ 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington’s mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer’s and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

1. Introduction
The links between neurodegeneration and metal accumulation in the brain are increasingly accepted, but the underlying mechanisms involved are poorly understood. Brain iron accumulation is a feature
of most neurodegenerative diseases, including Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) [1, 2, 3, 4]. The majority of neurodegenerative diseases lack effective treatment or cure, and in cases involving dementia, such as Alzheimer’s disease, diagnosis is usually only confirmed at autopsy. The incidence of iron elevation in regions of neurodegeneration is well documented, but little is known about the chemical state of the additional iron, or the role that it plays [5, 6]. Other metals, including aluminium, copper and zinc, are increasingly associated with aspects of neurodegeneration [7, 8], and the potential for treatment with metal chelation is being explored [9].

Metal ions can influence the generation of reactive chemical species, including superoxide and hydroxyl radicals, contributing to the generation of excess free radicals and hence to neuronal atrophy [10]. The form in which metals accumulate in brain tissue is critical in determining whether they can play a significant role in neurodegeneration. For example, iron is normally stored as Fe(III) which is far less reactive, and therefore less toxic, than Fe(II). Factors such as the specific iron compounds present, the valence state, and the precise location with respect to cellular and tissue structures, are all important in determining if such iron accumulations play a significant role in disease progression.

It is known that a variety of iron biominerals are present in brain tissue. These include ferrithydroxide-like compounds in the primary iron storage protein, ferritin, haemosiderin deposits, and in some instances magnetite [11, 12, 13]. In particular, recent studies have suggested a positive correlation between magnetite concentrations and Alzheimer’s disease in bulk tissue samples [14], and the presence of a magnetite-like compound in pathological ferritin extracted from Alzheimer’s disease cases [15]. From the evidence available, it appears that anomalous iron compounds such as magnetite are present in the human brain as nanoscale deposits, at concentrations of ng – µg/g of tissue. Given that their distribution is as yet unknown, locating such iron oxide accumulations in-situ is impractical by conventional microscopy techniques, as in addition to being difficult and time-consuming, these techniques provide very limited information about the nature of the iron biominerals present [16].

Detailed in-situ studies are necessary if the roles of metal accumulation in disease pathology are to be understood. We have developed an approach using synchrotron radiation to detect, locate and identify iron compounds and other metals of interest in autopsy brain tissue at sub-cellular resolution. Fluorescence mapping provides a fast and sensitive means of detecting anomalous metal concentrations in a tissue section, and a high-intensity focused beam is used to locate the concentrations to within a few microns. These metal concentrations are then characterised using a combination of X-ray Absorption Near Edge Spectroscopy (XANES) and X-ray Analysis of Fine Structure (XAFS), where they are fitted with combinations of measured and calculated standards respectively. The technique has been demonstrated for iron in various tissues, and in this paper we review recent progress.

2. Experiment

Development of appropriate tissue sample preparation procedures has been a critical part of the technique development. At all stages of tissue preparation it is essential to avoid procedures that may disrupt the nature of the metal compounds present. For example, conventional formalin tissue fixation affects the chemical state of iron compounds present, including leading to a significant reduction in magnetite concentrations [17], and tissue sectioning is typically performed with stainless steel blades that contribute to metal contamination in the sections. In these studies, all instruments and containers were acid-cleaned in HCL, and all solutions were placed on strong magnets and filtered in order to minimise metal contamination of samples. All blades used for tissue sectioning were either diamond, quartz, or Teflon-coated. Avian tissue samples were prepared as described elsewhere [18]. For HD mice, complete coronal serial sections were cut from mid-brain tissue at 100 to 150 µm thick. Sections were flat-embedded for XAS in standard and modified TAAB epoxy resin. Each flat-embedded slide contained sections placed in three segments between sheets of Aclar and Kapton. For the human AD and control tissue samples, 50µm-thick tissue sections were cut from the superior frontal gyrus and processed for XAS in the same way as for the HD mice.
High-resolution fluorescence mapping of metals, XANES and XAFS were performed on the MR-CAT and Bio-CAT beamlines at the Advance Photon Source Synchrotron, Argonne National Laboratory, IL. Each tissue section was screened for iron content by comparing the x-ray fluorescence intensity above and below the K-edge for iron at 7112 eV. Maps of the tissue sections were obtained by rastering the samples on an x-y stage capable of 100 nm positioning resolution, and fluorescence from metals of interest was detected using a 13-channel detector on MR-CAT, and a single-channel silicon detector on Bio-CAT. The initial fluorescence maps were collected at a comparatively low resolution (~ 100 µm), and from these the areas exhibiting anomalous high intensity were scanned at higher resolution to locate anomalies to within a few microns. The microfocused beam was achieved using Kirkpatrick-Baez (KB) mirrors [18] to give a well-defined beam and to preserve signal intensity. A CCD detector was used to collect real-time diffraction data from regions of interest. A schematic of the key aspects of the experimental configuration is shown in Figure 1.

XANES and XAFS data were collected using the microfocused beam centred at sites of anomalously high fluorescence intensity. For the iron biominerals, XANES spectra were compared with previously obtained spectra from biological and synthetic standards for ferritin, magnetite, and haemoglobin [18], and following background subtraction and energy correction, linear combination fits were performed using IFFEFIT routines after Newville et al. [19, 20]. Where the data are of sufficiently high quality, the reduced spectrum can also be fitted with calculated XAFS standards [19].

Tissue samples studied include avian (pigeon) tissue, transgenic Huntington’s mouse brain (R6/2), and human brain tissue samples from Alzheimer’s and non-demented (control) cases. All samples used in this work were obtained and studied in conjunction with the appropriate ethical permissions and procedures. All experimental procedures were carried out in accordance with the National Institutes of Health Guide for Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee at University of Florida.

3. Results and Discussion
Initial studies have demonstrated that iron compounds can be mapped and characterised in tissue sections using a microfocussed beam configuration with <5 micron in-plane resolution. Avian tissue was used to develop the technique [18]. Subsequent studies have included wild-type and transgenic Huntington’s mouse brain, and control and Alzheimer’s diseased human brain tissue. The work has

![Figure 1. Schematic of the sample-scanning configuration, viewed along the vertical (y) axis.](image-url)
resulted in the production of the first large-scale, high-resolution maps of both HD (R6/2) and human AD tissue samples in which iron compounds are characterised at sub-cellular resolution.

The metal fluorescence mapping technique is sensitive enough to resolve 50 µm thick tissue sections against background from trace levels throughout the tissue, to resolve structural anatomical details, and to detect anomalous metal concentrations ≤ 5 µm diameter when scanning at low resolution with 100-200 µm pixels (Figure 2). This approach enables a comparatively rapid (<24 hr) microanalysis of the distribution of high iron concentrations in a tissue area ~ 1 cm².

Figure 2. Iron fluorescence intensity mapped for an AD tissue section. The microfocus process is illustrated for area C, where it is evident that the main anomaly responsible for a high-intensity spot in the low resolution map is associated with a single 5 x 5µm pixel in the high resolution map. This demonstrates the sensitivity of the technique. a) The main image, mapped at 100µm resolution on MR-CAT. b) Area C mapped at 20µm resolution. c) Pixel map (at 5 µm resolution) of the region below the peak in b.)
In particular, we have developed fixation techniques that have been shown to maintain the chemical state of the iron compounds of interest, and demonstrated the ability to distinguish between the physiological core of the ferritin iron storage protein, iron oxide minerals such as magnetite, and metallic particles [18, 20].

The majority of the XAS spectra can be successfully fitted with linear combination fits of XANES standards, and evidence for both physiological ferritin and magnetite has been identified [18, 20]. Fits to XAFS data with calculated standards have also been performed, although the form of the ferritin cores provides a particular challenge due to its complexity [15], and merits further research in its own right. XAFS from biological samples is often hard to interpret, with challenging signal-to-noise due to the complex nature of the sample material. However, microfocusing at a beamline optimised for XAFS enables spectra of sufficiently high quality to be obtained from iron biominerals in tissue sections [18, 20].

In the coronal tissue sections, regional variations in iron density allow anatomical structures to be observed, and subsequent histological examinations of the samples are being used to explore correlation between anomalous metal concentrations and disease pathology. Iron biomineral concentrations are being mapped to structures such as the senile plaques and neurofibrillary tangles prevalent in Alzheimer’s disease. Huntington’s disease is characterised by reactive gliosis and formation of neuronal intra-nuclear inclusions [21], and light microscopy and transmission electron microscopy studies of these samples and related sections are being performed at the University of Florida. To support the subsequent correlation of images, a lithography grid deposition protocol is under development for sample slides. Anomalies in tissue sections can then be located using numbered grids visible in X-ray transmission maps and optical microscopy.

We are extending the technique to other elements of interest such as Zn, Mn, and Cu, and are developing software for real-time analysis that will increase efficiency by reducing the volume of data required for each sample. Microfocus diffraction data obtained with the CCD detector should provide direct structural information to support the XAS data, and the principle has been demonstrated with the observation of diffuse rings consistent with ferrihydrite lattice spacing at the site of an anomaly rich in ferritin.

4. Conclusions

Brain iron overload is associated with specific regions in each disease, and there is evidence that magnetite forms, in part, as a product of disrupted iron metabolism [14]. Quintana and co-workers [15] have demonstrated that a significant proportion of pathological ferritin cores contain a magnetite-like structure, and this may be due to a reduced ability to ‘detoxify’ iron by converting it from Fe(II) to Fe(III) in the storage process. It is at present unclear whether magnetite and related anomalous iron oxides play an active role in the disease process, but in principle the associated strong local field gradients, and the presence of Fe(II) in the oxide structure, may contribute to the free radical cascades associated with oxidative stress and neurodegeneration. Whilst building on our understanding of the disease process, locating magnetite inclusions in-situ may also provide the basis for future early detection and diagnosis [16, 22].

In conclusion, high-resolution iron mapping using microfocused x-ray beams has the potential for direct application to investigations of the location and structural form of metal compounds associated with human neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases.

5. References

[1] Ke Y and Qian Z 2003 Iron misregulation in the brain: a primary cause of neurodegenerative disorders The Lancet Neurol. 2 246

[2] Honda K, Casadesus G, Petersen R, Perry G and Smith M A 2004 Oxidative stress and redox-active iron in Alzheimer’s disease Ann. N.Y. Acad. Sci. 1012 179
[3] Sayre L M, Perry G, Harris P L R, Liu Y H, Schubert K H and Smith M A 2000 In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: A central role for bound transition metals J. Neurochem. 74 270

[4] Bartzokis G, Tishler T A, Shin I, Lu P H and Cummings J L 2004 Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases Ann. N.Y. Acad. Sci. 1012 224

[5] Dobson J 2001 Nanoscale biogenic iron oxides and neurodegenerative disease FEBS Letters 496 1

[6] Dobson, J and Batich C (2004) A Potential Iron-Based Mechanism for Enhanced Deposition of Amyloid Plaques Due to Cognitive Stimulation in Alzheimer's Disease J. Neuropath. & Exper. Neurol. 63 674-675.

[7] Bush A 2003 Copper, zinc, and the metallobiology of Alzheimer disease Alz. Dis. Assoc. Disord. 17 147

[8] House E, Collingwood J F, Khan A, Korchazkina O, Berthon G and Exley C 2004 Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Aß42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease J. Alz. Disease 6 291

[9] D.R. Richardson, Novel chelators for central nervous system disorders that involve alterations in the metabolism of iron and other metal ions. Ann. N.Y. Acad. Sci. 1012 (2004), 326-341.

[10] Smith M A, Harris P L R, Sayre L M and Perry G 1997 Iron accumulation in Alzheimer disease is a source of redox-generated free radicals Proc. Natl. Acad. Sci. USA 94 9866

[11] Quintana C, Lancin M, Marhic C, Pérez M, Avila J and Carrascosa J L 2000 Preliminary high resolution TEM and electron energy loss spectroscopy studies of ferritin cores extracted from brain in patients with neurodegenerative PSP and Alzheimer diseases Cell. & Molec. Biol. 46 807

[12] Kirchsvink J, Kobayashi-Kirschvink A and Woodford B 1992 Magnetite biomineralization in the human brain Proc. Natl. Acad. Sci. USA 89 7683

[13] Schultheiss-Grassi P P, Wessiken R, Dobson J, 1999 TEM observation of biogenic magnetite extracted from the human hippocampus Biochim. Biophys. Acta 1426 212

[14] Hautot D, Pankhurst Q, Khan N and Dobson J 2003 Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer’s disease brain tissue Proc. R. Soc. Lond. B (Suppl.) 270 S62

[15] Quintana C, Cowley J M and Marhic C 2004 Electron nanodiffraction and high-resolution electron microscopy studies of the structure and composition of physiological and pathological ferritin J Struct Biol. 147 166

[16] Dobson J 2004 Magnetic iron compounds in neurological disorders Ann. NY Acad. Sci. 2004 1012 183-192

[17] Dobson J P and Grassi P 1996 Magnetic Properties of Human Hippocampal Tissue - Evaluation of Artefact and Contamination Sources Brain Res. Bull. 39 255

[18] Mikhaylova A, Davidson M R, Channel J E T, Guyodo Y, Batich C and Dobson J 2005 Detection, Identification and Mapping of Iron Anomalies in Brain Tissue Using X-Ray Absorption Spectroscopy Journal of the Royal Society, Interface In Press

[19] Newville M, Livins P, Yacoby Y, Stern E A and Rehr J J 1993 Near-edge X-ray-absorption fine structure of Pb: A comparison of theory and experiment Phys. Rev. B 47 14126

[20] Collingwood J F, Mikhaylova A, Davidson M R, Batich C, Streit W J, Terry J and Dobson J 2005 In situ Characterization and Mapping of Iron Compounds in Alzheimer’s Disease Tissue J. Alz. Disease In press

[21] Davies S W, Turmaine M, Cozens B A, Raza A S, Mahal A, Mangiarini L and Bates G P 1999 From neuronal inclusions to neurodegeneration: neuropathological investigation of a transgenic mouse model of Huntington's disease Philos Trans R Soc Lond B Biol Sci. 29 981
[22] Pardoe H, Chua-anusorn W, St. Pierre T G and Dobson J 2003 Detection limits for ferrimagnetic particle concentrations using magnetic resonance imaging-based proton transverse relaxation rate measurements Phys. in Biol. and Med. 48 89

Acknowledgements
JFC is supported by an Alzheimer’s Society Research Fellowship, and by the Dunhill Medical Trust. JD is supported by a Wolfson Foundation/Royal Society Research Merit Award. We are grateful to the McKnight Brain Institute for a seed project, NIH grant R01 AG02030-01 A1, Dr. Jill Verlander Reed at the EM Core Facility at UF, and to Dr. T. Irving at BIO-CAT for technical support. Work performed at MRCAT is supported, in part, by funding from the Department of Energy under grant number DEFG0200ER45811.