The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration

Marco E. Bianchi1,2* and Rosanna Mezzapelle1,2*

1 Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy, 2 Vita-Salute San Raffaele University, Milan, Italy

The CXCR4 receptor upon binding its ligands triggers multiple signaling pathways that orchestrate cell migration, hematopoiesis and cell homing, and retention in the bone marrow. However, CXCR4 also directly controls cell proliferation of non-hematopoietic cells. This review focuses on recent reports pointing to its pivotal role in tissue regeneration and stem cell activation, and discusses the connection to the known role of CXCR4 in promoting tumor growth. The mechanisms may be similar in all cases, since regeneration often recapitulates developmental processes, and cancer often exploits developmental pathways. Moreover, cell migration and cell proliferation appear to be downstream of the same signaling pathways. A deeper understanding of the complex signaling originating from CXCR4 is needed to exploit the opportunities to repair damaged organs safely and effectively.

Keywords: chemokine, cancer, tissue regeneration, CXCL12, HMGB1, CXCR4

INTRODUCTION

The binding of chemokines to G protein-coupled receptors (GPCRs) typically directs cell movement and traffic in and out of specific tissues in developing embryos and adult animals. They are also involved in tumor metastasis and invasion, and in the extension of neurites and axons of neurons (a part of a cell moves, while the cell body stays put). How chemokines and their receptors recruit hematopoietic cells to injured sites and tumors has been intensely investigated, whereas their involvement in the control of cell proliferation is less explored (1). Among chemokine receptors, CXCR4 is the most widely expressed, and is involved in numerous physiological and pathological conditions. CXCR4 is expressed by most cells, including hematopoietic and endothelial cells (ECs), neurons and stem cells (embryonic and adult). Increased levels of CXCR4 are present in cancer cells compared to the normal cells (2, 3). The focus of this mini-review is the emerging role of CXCR4 and its ligands in tissue repair and regeneration, and its relation to cancer cell proliferation. The role of CXCR4 in differentiation, retention, mobilization, migration, and polarization of hematopoietic cells is covered by other excellent reviews (4, 5).

CXCR4 AND ITS LIGANDS

CXCR4 is a 352 amino acid rhodopsin-like GPCR, comprising an extracellular N-terminal domain, 7 transmembrane (TM) helices, 3 extra-cellular loops (ECL), 3 intra-cellular loops (ICL) and...
an intracellular C-terminal domain (6). CXCR4 can exist in the
plasma membrane as a monomer, dimer, higher-order oligomer
or nanoclusters (7), although the partitioning and relevance of
these different multimerization states has not been addressed
in vivo. Several crystal structures of CXCR4 bound to agonists
and small molecules are in accordance with the ability of CXCR4
to form homodimers via interactions of the TM5 and TM6 helices
(6). TM6 is also implicated in nanoclustering (7). CXCR4 can also
form heterodimers with ACKR3 (a related GPCR also known as
CXCR7), which have distinctive signaling properties (8).

The canonical ligand of CXCR4 is CXCL12, also known
as stromal cell-derived factor 1 (SDF-1) (9, 10). A single
gene, CXCL12, codes for six protein isoforms in human
(three in mouse), all deriving from alternative splicing of the
fourth and final exon. The various forms are differentially
expressed and have different affinities to glycosaminoglycans
present on the cell surface and in the extracellular matrix
(11). CXCL12α, an 89 amino acid protein, is the shorter
and most expressed isoform (12, 13). Notably, CXCL12α can
exist in monomeric and dimeric forms. CXCL12 only binds
to chemokine receptors CXCR4 and ACKR3, itself a CXCR4
interactor; such a restricted receptor selectivity is unusual
among chemokines.

The structure of the CXCR4/CXCL12 complex has not yet
been determined; a model integrating homology modeling,
experimentally derived restraints, and charge swap mutagenesis
(14) highlights several contacts between the N-terminal tail of
CXCR4 and CXCL12, and the interaction of the N-terminus of
CXCL12 with the cavity delimited by the TM helices.

High mobility group box 1 protein (HMGB1) is the archetypal
damage-associated molecular pattern (DAMP) molecule; DAMPs
are released from dead or severely stressed cells to alert their
microenvironment and the innate immune system. HMGB1 can
form a heterocomplex with CXCL12 (HMGB1-CXCL12) that also
binds to CXCR4; of note, the conformational rearrangements
of CXCR4 differ when triggered by CXCL12 alone or by
HMGB1-CXCL12, and the complex is over one order of
magnitude more potent than CXCL12 alone in inducing cell
migration (15). Only the reduced form of HMGB1, where the pair
of cysteines in the HMG-box domain A do not form a disulfide
bond, binds CXCL12 and interacts with CXCR4 (16). However,
a designer form of HMGB1 called 3S-HMGB1, where serines
replace all three cysteines in the HMG-box domain A do not form a disulfide
bond, binds CXCL12 and interacts with CXCR4 (16). Moreover,
a Designer form of HMGB1 called 3S-HMGB1, where serines
replace all three cysteines, binds to CXCR4 directly and is as
effective as HMGB1-CXCL12 in promoting cell migration and
muscle regeneration (17).

CXCR4 also binds macrophage migration inhibitory factor
(MIF), a cytokine involved in the regulation of innate immunity
(18). MIF binds to the N-terminal tail of CXCR4 and to the
extracellular side of TM helices, but not inside the TM pocket
(18, 19). MIF also binds to other receptors, including CXCR2,
CD74/CD44, and ACKR3 (20), which complicates the dissection
of its activities.

Extracellular ubiquitin (eUb), also considered a DAMP, is a
CXCL12 antagonist (21). Molecular modeling and mutagenesis
suggest that it binds to CXCR4 inside the cavity delimited by
TM5 (22), but makes contact to CXCR4 residues that are not
contributing to CXCL12 binding (23).

Beta-defensin-3 (HBD3) also competes with CXCL12 for
CXCR4 binding, and promotes internalization of CXCR4 without
inducing calcium flux, ERK phosphorylation, or chemotaxis (24).

Although the above list of actors is long, and multimeric
coreceptors and multiple interactions increase complexity,
genetics originated the widespread idea of CXCR4 and
CXCL12 as a biunivocal couple: deletion in mice of either
the Cxcr4 or Cxcl12 genes causes fatal lethality, defective
B-cell lymphopoiesis, impaired bone-marrow myelopoiesis,
and abnormal development of the cardiac septum and of the
cerebellum (25, 26).

CXCR4 AND CXCL12 IN TISSUE REGENERATION

Mice lacking CXCL12 or CXCR4 were first generated in the
1990s; since both die *in utero*, their ability to regenerate injured
tissues was not investigated until later. Depletion of either
CXCR4 or CXCL12 with small interfering RNAs injected in
injured muscle impairs its regeneration, as does local injection
of the CXCR4 antagonist AMD3100 (27), consistent with the
expression of both CXCR4 and CXCL12 in skeletal muscle (28),
and with impaired myogenesis and depletion of satellite cells in
CXCR4 deficient mice (29). Satellite cells are the direct targets
of CXCL12 (27).

More recently, CXCR4 and CXCL12 have been shown to
control the regeneration of multiple organs and tissues, including
lung, heart, liver, and the nervous system.

Surgical removal of one lung or part of it (pneumonecтомy,
PNX) is compensated by alveolar regrowth/regeneration in
the remaining lung. After PNX, activated platelets trigger lung
regeneration by binding to pulmonary capillary endothelial
cells (PCECs) and supplying CXCL12 to activate CXCR4 and
ACKR3 on their surface (30). PCECs activate AKT, proliferate
and express the membrane metalloproteinase MMP14, which
releases ligands that promote the proliferation of progenitor
type II alveolar epithelial cells, and eventually alveolar regrowth.
Endothelial cells are direct targets of CXCL12 via CXCR4, since
genetic silencing of Cxcr4 and Ackr3 in PCECs impairs lung
regeneration.

The mammalian heart cannot regenerate in adults, but it can
in neonate mice (31). In myocardial infarction (MI), coronary
arteries get obstructed, and must regenerate to support continued
heart function. A unique CXCR4/CXCL12-dependent process
termed “artery reassembly” allows the formation of an alternative
(collateral) artery network to bypass obstructed or severed
coronary arteries (32). In the mouse, within a few days after
ligation of the left coronary artery on day 2 after birth, individual
arterial endothelial cells (ECs) migrate out of the existing arteries,
proliferate and then coalesce with capillaries, forming collateral
arteries that connect branches of the right and left coronary
arteries. A similar process reconnects severed arteries after the
resection of the apex of the neonatal heart. Artery reassembly
does not occur in adult hearts, but injection of a single dose of
CXCL12 in the infarcted area promotes collateral formation and
functional recovery of the heart. Notably, deletion of Cxcl12
capillary ECs or Cxcr4 in arterial ECs impairs artery reassembly; CXCL12 is not basally expressed in ECs, but hypoxia induces its expression. Thus, during reassembly different ECs are both source and target of CXCL12, via CXCR4.

Adult zebrafish hearts do regenerate, and coronary revascularization initiates within hours of injury. After cryoinjury, new coronary regenerate both superficially around the injured area and intra-ventricularly toward the cardiac lumen, and act as a scaffold for proliferating cardiomyocytes (33). Epicardial cells express Cxcl12b after injury, as a consequence of hypoxia and HIF-1α activation. ECs in both superficial and intra-ventricular coronaries have a common origin and both express CXCR4, but inhibiting CXCR4 pharmacologically or deleting Cxcr4 in the whole heart limits superficial, and not intra-ventricular, regeneration.

The liver is capable of continuous turnover and regeneration, which is overridden by fibrosis, cirrhosis and hepatic failure only after chronic or overwhelming injury. CXCL12 is constitutively expressed in healthy liver, and its expression increases following acute or chronic injury. Liver sinusoidal endothelial cells (LSEC) and hepatic stellate cells (HSC) are important sources of CXCL12 in liver disease. HSC and mesenchymal stem cells mainly respond via CXCR4, while LSEC express both CXCR4 and ACKR3. CXCL12 can activate HSC and recruit bone marrow mesenchymal cells, which promote liver fibrosis; in LSEC, CXCL12 signals via the physical association of CXCR4 and ACKR3 to activate eventually the transcription factor Id1, which orchestrates pro-regenerative responses, such as production of Wnt2 and hepatocyte growth factor (HGF) (34). Liver regeneration is abrogated by genetic silencing of either ACKR3 or CXCR4 in LSEC, or by chronic injuries that lead to excessive CXCR4 and reduced ACKR3 expression. In vitro, CXCL12 induces dose-dependent proliferation of human liver-derived stellate LX-2 cells, mediated by PI3K/Akt and Erk1/2 pathways (35).

The peripheral nervous system has retained throughout evolution the capability to regenerate. Recently, CXCL12 was found to promote the structural and functional recovery of the neuromuscular junction after degeneration of the motor axon terminal (36). CXCL12 is synthetized and released by peri-synaptic Schwann cells, and acts on CXCR4 re-expressed upon injury on the tip of the motor axon. CXCL12 also supports the functional and anatomical recovery of the sciatic nerve after crush injury; of special note, the small molecule NUCC-390, a CXCR4 agonist (37), also promotes nerve regeneration (38).

The central nervous system, in contrast, has a limited ability to regenerate, mostly dependent on neural progenitor cells (NPCs). Astrocytes are the main source of CXCL12 in the brain (39); CXCR4 is expressed on NPCs and CXCL12 appears to stimulate directly their in vitro proliferation and differentiation into neurons (40–42), via PI3K-Erk1/2 (43) and/or AKT/FOXO3α (44) activation. However, Li et al. (45) found no CXCL12-induced proliferation of NPC cells from E12 mouse embryos. CXCR4 activation by CXCL12 promotes the differentiation of human embryonic stem cells into neural stem cells (46) and then helps to maintain their stemness (47).

Overall, these studies implicate CXCR4 and CXCL12 in the regeneration of multiple organs, via CXCL12 release from various sources and CXCR4 activation on endothelial and progenitor cells, which then go on to proliferate; so far, a role of CXCR4 activation on parenchymal cells is not convincingly proven nor excluded. Hematopoietic and mesenchymal cells also contribute to tissue regeneration, but in this case the role played by the CXCL12/CXCR4 system appears limited to directing their chemotaxis to the damaged site.

THE HMGB1-CXCL12 COMPLEX

The existence of the HMGB1-CXCL12 complex was first inferred from the ability of HMGB1 to promote the migration of endothelial, hematopoietic and mesenchymal cells (15) via CXCR4; the complex was then biochemically characterized (48). The complex was also found to promote the regeneration of skeletal muscle, since the reduced HMGB1 expression in Hmgb1+/− mice delays muscle regeneration (49), whereas the injection of exogenous reduced HMGB1 accelerates muscle, bone and liver repair in mouse (17, 50). Several cell-specific responses are involved, including the proliferation of satellite cells, skeletal stem cells and hepatocytes. The requirement for HMGB1, as opposed to CXCL12 alone, is supported by several observations: injection of CXCL12 alone promotes abnormal bone regeneration, with a larger fracture callus without a concomitant increase in bone mineral density and mechanical strength (50); local injection of glycyrhrizin, a HMGB1 inhibitor (51), delays bone fracture healing; injection of 3s-HMGB1, a mutant form of HMGB1 that can bind to CXCR4 in the absence of CXCL12, mimics the biological effects of HMGB1-CXCL12, including the promotion of in vitro myogenesis (17).

Remarkably, systemic injection of fully reduced HMGB1 (frHMGB1) or 3s-HMGB1 predisposes muscle and bone to regeneration/repair even if injected 2 weeks before injury (50), by inducing the transitioning of resting stem cells to a dynamic state of the cell cycle, intermediate between G0 and G1, termed “GAlert” (52). In contrast to deeply quiescent G0 stem cells, GAlert stem cells are more metabolically active, contain higher levels of ATP and mitochondrial DNA, are larger and poised to enter the cell cycle when exposed to activating signals. Activation mTORC1 is both necessary and sufficient for the transitioning to the GAlert state (53), and rapamycin, an mTORC inhibitor, interferes with HMGB1-induced transitioning to GAlert (54). Multiple stem cell types (SSCs, satellite cells and hematopoietic stem cells) in mice subject to bone fracturing or muscle damage transition to the GAlert state, and this requires HMGB1-CXCL12, since stem cells in HMGB1-deficient mice do not transition to the GAlert state after injury unless exogenous HMGB1 is provided.

Thus, HMGB1-CXCL12 has similar activities to those reported for CXCL12 in muscle regeneration, but is absolutely required in GAlert transitioning of stem cells. In this context, two questions arise: is HMGB1-CXCL12 (as opposed to CXCL12 alone) responsible for the regeneration of most or all tissues? Does HMGB1-CXCL12 also promote the proliferation of ECs? Indeed, HMGB1 has been shown to promote the proliferation of
ECs of different origin, although the involvement of CXCR4 as the cognate receptor was not investigated (55).

CXCR4/CXCL12 IN CANCER GROWTH

Tumor is an illegitimate tissue that grows out of control because of an altered expression and behavior of pro-proliferative and pro-survival signals. Precisely because tumor tissue is out of balance with the surrounding legitimate tissues, it is also in a state of distress, similar to an injured tissue, and recruits inflammatory cells that support it. Famously, it has been said that a tumor is wound that never heals (56).

Chemokines and their receptors not only drive the trafficking of leukocytes inside the tumor mass but also contribute to most aspects of tumor cell biology (1). High expression of CXCR4 is observed in hematological malignancies (57–59) and in many types of solid tumors, including melanomas and kidney, lung, brain, prostate, breast, pancreas and ovarian tumors (2, 3), where it correlates with poor prognosis (59). Interestingly, the normal tissue adjacent to the CXCR4 overexpressing tumor shows normal or no CXCR4 expression (41), which suggests a differential response of cancer cells to microenvironmental conditions. Expression of CXCR4 and CXCL12 in cancer cells is also controlled by specific microRNAs: CXCL12 by miR-1 (60), miR-9 (61, 62), miR-126 (63), miR-146a (64), and miR-150 (65), whereas miR-200a can increase CXCR4 expression (66).

The expression of CXCR4/CXCL12 in tumors is partially dependent on the hypoxic tumor microenvironment, in a HIF-1α dependent manner (42). As a consequence of CXCL12 release, tumor-associated CXCR4-expressing ECs proliferate (67). CXCR4 is also expressed on putative cancer stem cells populations in various tumors, including renal (68), prostate (69) and non-small lung cancer (70), and affects their clonogenicity and spherogenicity, with adverse effects on prognosis. These CXCL12/CXCR4 effects are similar to the promotion of endothelial and stem cell proliferation in injured tissue.

Moreover, many reports indicate that binding of CXCL12 to CXCR4 on tumor cells of various types enhances their proliferation, both in vitro and in vivo, either via MAPK or PI3K/Akt pathways (54, 71, 72).

Table 1 lists a sample of reports on the role of CXCR4/CXCL12 in tumor cell proliferation (mostly tumor cell lines) (53, 69, 72–80). Targeting of CXCR4 with antibodies or specific inhibitors, most commonly AMD3100, has been intensely investigated; however, AMD3100/Plerixafor/Mozobil has been approved for bone marrow transplantation, but not as anti-cancer treatment.

CXCR4 SIGNALING

The preceding sections have highlighted that CXCR4 activation can drive both cell migration and cell proliferation, at least in vascular, progenitor and tumor cells. We will now review current information on the signaling involved.

Ligand binding to CXCR4 induces conformational changes that lead to the activation of multiple signaling pathways (Figure 1), originating proximally from the dissociation of heterotrimeric G proteins and from the phosphorylation of the C-terminal cytoplasmic tail of CXCR4. CXCR4 is mainly bound to heterotrimeric G1 proteins, although other G protein classes may transduce CXCR4 binding as well (81). Upon ligand binding, the G1 heterotrimer detaches from the CXCR4 intracellular loops and dissociates into GTP-bound αi and βγ subunits (82, 83). The βγ subunits directly bind and activate phosphatidylinositol-3-OH kinases (PI3K) β or γ, which produce phosphatidylinositol triphosphate (PIP3), and phospholipase C β (PLC-β), which produces inositol-(1,4,5)-trisphosphate (IP3) and diacylglycerol (DAG). The Goi subunit induces calcium release from intracellular stores and indirectly activates the PI3K-AKT and MEK1/2-Erk1/2 axes (84). Via the production of PIP3, PI3Ks activate the serine-threonine kinase AKT, which can then can phosphorylate many target proteins, most notably glycogen synthase kinase 3 (GSK3), tuberous sclerosis 2 (TSC2), caspase 9 and PRAS40 (AKT1S1), which explains its wide spectrum of downstream effects in promoting cell proliferation, differentiation, apoptosis, angiogenesis, and metabolism (85).

CXCR4 ligand binding induces JAK/STAT activation in a Go-independent manner (86). GPCR kinases (GRKs) phosphorylate multiple serines/threonines in the cytoplasmic tail of CXCR4. Phosphorylated CXCR4 recruits β-arrestin-1 and -2, which promote CXCR4 internalization (87). Thereafter, CXCR4 can be recycled back to the plasma membrane or sorted to the lysosomes for degradation (88). Of note, the recruitment of β-arrestins to CXCR4 also activates Erk signaling (89).

The binding of CXCL12 to CXCR4-ACKR3 heterodimers activates G protein-independent signaling cascades originating from β-arrestins that potentiate cell migration (8).

Overall, the activation of PI3Ks and Akt supports the proliferation and survival of both normal and cancer cells. mTORC activation underpins the anabolic metabolism that is required for cell growth; indeed, mTORC activation is also necessary for the transitioning of stem cells to the GAlert state.

Notably, the CXCR4-activated pathways that direct cell movement and migration are exactly the same that are involved in cell proliferation, and both processes can be inhibited by the same small molecules. For example, rapamycin is an mTORC inhibitor that blocks cell proliferation, but it inhibits cell migration as well (90, 91). The same is true for PI3K inhibitors (92).

Although the various pathways originating from CXCR4 are known, there is ample scope for cell specificity. The human genome encodes 18 different Go proteins, 5 Gβ proteins and 12 Gγ proteins, and multiple PI3Ks and PLCs, with ample variation of expression in different cell types. Moreover, signaling is enhanced or dampened by dozens of modulators, including scaffold proteins that facilitate the physical interactions of kinases and other enzymes that introduce post-translational modifications. We are unaware of studies that delineate the CXCR4-initiated signaling pathways in cell proliferation down to the specific isoforms and post-translational modifications of the signal transducers involved. Cancer is not the most amenable biological system, since
TABLE 1 | CXCR4/CXCL12 axis is involved in cancer cell proliferation.

Tumor type	Cancer cell lines	Pathway involved	References
Glioblastoma	Glioblastoma cell lines GB1690, 5GB, HTB-16	–	Sehgal et al. (72)
	Glioblastoma cell lines U87-MG, D5T8-16MG	ERK; AKT	Barbero et al. (70)
Non-small cell lung cancer (NSCLC)	NSCLC cell lines L3, L4, A549	ERK	Wald et al. (73)
Malignant mesothelioma (MM)	MM cell lines H28, 211H, H2052, ms-1, H290, H513	AKT/mTOR	Li et al. (74)
Breast cancer	Breast cancer cell line MCF-7	–	Hall et al. (75)
Ovarian cancer	Ovarian cancer cell lines BO-1, SKOV3	–	Hall et al. (75),
			Guo et al. (76)
Non-small cell lung cancer (NSCLC)	NSCLC cell lines L3, L4, A549	ERK	Wald et al. (73)
Malignant mesothelioma (MM)	MM cell lines H28, 211H, H2052, ms-1, H290, H513	AKT/mTOR	Li et al. (74)
Breast cancer	Breast cancer cell line MCF-7	–	Hall et al. (75)
Ovarian cancer	Ovarian cancer cell lines BO-1, SKOV3	–	Hall et al. (75),
			Guo et al. (76)
Colorectal cancer (CRC)	CRC cell lines HT-29, CaCo21, Colo320	PI3K/AKT	Ma et al. (77)
Pancreatic cancer	Pancreatic cancer cell lines AsPC-1, SW1990, BxPC-3	–	Gao et al. (78)
Esophageal squamous cell carcinoma (ESCC)	ESCC cell line EC9706 (in vitro and ESCC mouse xenograft model)	G0/G1 cell cycle arrest and apoptosis induction	Wang et al. (79)
Extrathelial hilar	Hilar-OCA cell line QBC939	–	Tan et al. (80)
cholangiocarcinoma (hilar-CCA)			
Prostate cancer	Prostate cancer cell lines DU145 and PC3	PI3K/AKT	Dubrovskaja et al. (67)

Many primary tumors overexpress CXCR4 and CXCL12 compared to their normal cells. The activation of CXCR4/CXCL12 in tumor cells leads to cell proliferation. –, not known.

FIGURE 1 | Schematic representation of the signaling pathways activated by CXCR4. Ligand binding to CXCR4 activates G protein subunits and the downstream Ca^{2+} mobilization from intracellular stores and PI3K/Akt, PLC, and ERK1/2 pathways. This results in gene transcription, cell migration, proliferation and survival. CXCR4 oligomerization can also activate the G-protein independent JAK/STAT pathway. β-arrestins are recruited following GRK phosphorylation of CXR4 and mediate its internalization. ACKR3 is another receptor for CXCL12 that can induce β-arrestin-mediated signaling both by itself or as a heterodimer with CXCR4.

Cancer cells have accumulated a number of genetic and epigenetic alterations, often including those of PI3Ks. Cell-specific conditional mutants could be used to investigate CXCR4-controlled proliferation following injury, and this would provide a list of parts in specific cells; even so, we would still miss mechanistic details such as the interaction with modifiers, possible feed-forward and feedback loops and time-dependent signal adaptations like those involving Rac (93) or oscillatory behaviors like those described for NF-κB and p53 (94, 95).

CONCLUSION

We have discussed several reports showing that CXCR4 can control cell proliferation in addition to directing cell retention
and movement, both in physiological processes, such as development and tissue regeneration, and in pathological ones, such as cancer growth. The mechanisms and pathways involved may be broadly similar in all cases, since regeneration often recapitulates developmental processes, and cancer often exploits developmental pathways.

Signal transduction pathways downstream CXCR4 eventually control both cell movement and cell proliferation, which are both dependent on PI3K-Akt and mTORC signaling; the details, however, may vary from cell to cell and in different settings.

So far, the interest has focused on cancer and on drugs that block CXCR4-initiated signaling; we suggest that small molecules that activate CXCR4 signaling or can dissect the effects on cell signaling and function; we suggest that small molecules that activate CXCR4 signaling or can dissect the effects on cell migration and proliferation may be as useful.

AUTHOR CONTRIBUTIONS
Both authors contributed equally to the writing of the review.

ACKNOWLEDGMENTS
We thank Mariagrazia Uguccioni (IRB, Bellinzona), Emilio Hirsch (Università di Torino), Giovanna Musco and Emilie Venéreau (IRCCS San Raffaele Scientific Institute Milan) for discussions and suggestions. This work was supported by grants AIRC IG-18623 and Ministry of Health RF-2016-02363024 to MB; RM is supported by a fellowship from Fondazioneuzzi Unicum.

REFERENCES
1. Morein D, Erlichman N, Baruch AB. Beyond cell motility: the expanding roles of chemokines and their receptors in malignancy. Front Immunol. (2020) 11:952. doi: 10.3389/fimmu.2020.00952
2. Zlotnik A. Chemokines and cancer. Int J Cancer. (2006) 119:2026–9. doi: 10.1002/ijc.22024
3. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. (2001) 410:50–6. doi: 10.1038/35065016
4. Pagw J, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and interconnections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front Immunol. (2015) 6:429. doi: 10.3389/fimmu.2015.00429
5. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. (2016) 35:816–26. doi: 10.1038/onc.2015.139
6. Wu B, Chien EYT, Mol CD, Fanelli G, Liu W, Katriech V, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. (2010) 330:1066–71. doi: 10.1126/science.1194396
7. Martínez-Muñoz L, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. (2001) 410:50–6. doi: 10.1038/35065016
8. Décallet FM, Kazmi MA, Lin Y, Ray-Sahah S, Sakmar TP, Sachdev P. CXCR7/CXCR4 heterodimer constitutively recruits β-arrestin to enhance cell migration. J Biol Chem. (2011) 286:32188–97. doi: 10.1074/jbc.M111.277038
9. Bleu CC, Fulbrightt RC, Casavonas JM, Iutti A, Springer TA. A highly efficacious lymphocyte chemotactrant, stromal cell-derived factor 1 (SDF-1). J Exp Med. (1996) 184:1101–9. doi: 10.1084/jem.184.3.1101
10. Oberlin E, Amara A, Bacherelle F, Bessia C, Virelizier JL, Arenzana-Seisedos F, et al. The CXC chemokine, stromal cell derived factor 1 (SDF-1), is the ligand for LESTR/fusin and prevents infection by lymphocyte-tropic HIV-1 syncytium-inducing strains. Nature. (1996) 382:833–5. doi: 10.1038/382833a0
11. Righetti A, Giulietti M, Sabanovic B, Occhipinti G, Principato G, Piva F. CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Cell Signal. (2020) 13:eaay5024. doi: 10.1016/j.cellsig.2020.02.034
12. Yu L, Cecil J, Peng SB, Schrementi J, Kovacevic S, Paul D, et al. Identification of an Arg-Leu-arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4. Sci Rep. (2018) 8:1–17. doi: 10.1038/s41598-018-23544-5
13. Tripathi A, Saini V, Marchese A, Majettschak M. CXC chemokine receptor 4 is a cell surface receptor for extracellular ubiquitin. J Biol Chem. (2010) 285:15566–76. doi: 10.1074/jbc.M110.103408
14. Tripathi A, Saini V, Marchese A, Volkman BF, Tang WJ, Majorak M. Modulation of the CXC chemokine receptor 4 agonist activity of ubiquitin through C-terminal protein modification. Biochemistry. (2013) 52:4184–92. doi: 10.1021/bi400234f
15. Schiraldi M, Raucchi A, Muñoz LM, Liveti E, Cenola B, Venereau E, et al. HMGBl-promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med. (2012) 209:551–63. doi: 10.1084/jem.20111739
16. Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De Marchis F, et al. Mutually exclusive redox forms of HMGBl-promote cell recruitment or proinflammatory cytokine release. J Exp Med. (2012) 209:1519–28. doi: 10.1084/jem.20121819
17. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the syncytium-inducing strains. J Exp Med. (1996) 184:1101–9. doi: 10.1084/jem.184.3.1101
18. Rajasekan D, Gröning S, Cattaneo A, De Marchis F, et al. The CXC chemokine, stromal cell derived factor 1 (SDF-1), is the ligand for LESTR/fusin and prevents infection by lymphocyte-tropic HIV-1 syncytium-inducing strains. Nature. (1996) 382:833–5. doi: 10.1038/382833a0
19. Meyer E, Cattaneo A, Littman DR. Function of the CXCR4 chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. (1998) 393:995–9. doi: 10.1038/31269
20. Jankauskas SS, Wang DWL, Bucala R, Djulaij S, Boor P. Evolving complexity of MIF signaling. Cell Signal. (2019) 57:76–88. doi: 10.1016/j.cellsig.2019.01.006
21. Saini V, Marchese A, Majettschak M. CXC chemokine receptor 4 is a cell surface receptor for extracellular ubiquitin. J Biol Chem. (2010) 285:15566–76. doi: 10.1074/jbc.M110.103408
22. Tripathi A, Saini V, Marchese A, Volkman BF, Tang WJ, Majettschak M. Modulation of the CXC chemokine receptor 4 agonist activity of ubiquitin through C-terminal protein modification. Biochemistry. (2013) 52:4184–92. doi: 10.1021/bi400234f
23. Scofield SLC, Daniels CR, Dalal S, Millard JA, Singh M, Singh K. Extracellular ubiquitin modulates cardiac fibroblast phenotype and function via its interaction with CXCR4. Life Sci. (2018) 211:8–16. doi: 10.1016/j.lfs.2018.09.012
24. Feng Z, Dubyak GR, Lederman MM, Weinberg A. Cutting edge: human β-defensin 3-A novel antagonist of the HIV-1 coreceptor CXCR4. J Immunol. (2006) 177:782–6. doi: 10.4049/jimmunol.177.2.782
25. Zou YR, Knottmann AH, Kuroda M, Taniuchy I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. (1998) 393:995–9. doi: 10.1038/31269
26. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBFF/SDF-1. Nature. (1996) 116:635–8. doi: 10.1038/382635a0
27. Bobadilla M, Sainz N, Abizanda G, Orbe J, Rodriguez JA, Parame JA, et al. The CXCR4/SDF1 axis improves muscle regeneration through MMP-10 activity. Stem Cells Dev. (2014) 23:1417–27. doi: 10.1089/scd.2013.0491
28. Rajczak M, Majka M, Kucia M, Drukla J, Pietrzkowski Z, Peiper S, et al. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoetic stem/progenitor
cells in muscles. *Stem Cells.* (2003) 21:363–71. doi: 10.1017/S1054856303029283

29. Vasyutina E, Stebler J, Brand-Saberi B, Schulz S, Raz E, Birchmeier C. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. *Genes Dev.* (2005) 19:2187–98. doi: 10.1101/gad.34 6805

30. Rafii S, Cao Z, Lis R, Siempos II, Chavez D, Shido K, et al. Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. *Nat Cell Biol.* (2015) 17:123–36. doi: 10.1038/ncb3096

31. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. *Science.* (2011) 331:1078–80. doi: 10.1126/science.1200708

32. Das S, Goldstone AB, Wang H, Farrar J, D’Amato G, Paulsen MJ, et al. A unique collateral artery development program promotes neonatal heart regeneration. *Cell.* (2019) 176:1128–42.e18. doi: 10.1016/j.cell.2018.12.023

33. Marín-Juez R, El-Sammak H, Helker CSM, Kamezaki A, Mullapuli ST, Bibli D. CXCL12/CXCR4 axis: Role in non-small cell lung cancer tumor proliferation. *J Thorac Cardiovasc Surg.* (2011) 141:1503–12. doi: 10.1016/j.jtcvs.2010. 11.056

34. Shinjyo N, Ståhlberg A, Dragunow M, Pekny M, Pekna M. Complement- and chemokine receptors on skeletal muscle progenitor cells. *Nat Cell Biol.* (2003) 5:396–403. doi: 10.1038/ncb788

35. Hong F, Tuyama A, Lee TF, Loke J, Agarwal R, Cheng X, et al. Hepatic stellate cells express functional CXCR4: Role in stromal cell-derived factor-1 mediated stellate cell activation. *Hepatology.* (2009) 49:2055–67. doi: 10.1002/hep.22890

36. Vasyutina E, Stebler J, Brand-Saberi B, Schulz S, Raz E, Birchmeier C. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. *Stem Cells.* (2006) 24:2263–71. doi: 10.1602/stemdev2006.01

37. Mohle R, Schittenhelm M, Failenschmid C, Bautz F, Kratz-Albers K, Serve H, et al. CXCR4 antagonist AMD3100, two ways to control CXCR4 expression and characterization of novel small-molecule CXCR4 receptor agonists and antagonists. *Sci Rep.* (2016) 6:1–9. doi: 10.1038/srep30155

38. Chen Y, Wei Y, Liu J, Zhang H. Chemotactic responses of neural stem cells to SDF-1. *Brain Res.* (2017) 1657:223–31. doi: 10.1016/j.brainsci.2016.06.011

39. Gong X, He X, Qi L, Zuo H, Xie Z. Stromal cell derived factor-1 acutely correlates with preferential expression of the chemokine receptor CXCR4 in adult SVZ lineage cell proliferation and differentiation. *Stem Cells* (2011) 29:5017–27. doi: 10.1002/stem.2011.24

40. Shinjyo N, Ståhlberg A, Dragunow M, Pekny M, Pekna M. Complement- and chemokine receptors on skeletal muscle progenitor cells. *Nat Cell Biol.* (2003) 5:396–403. doi: 10.1038/ncb788

41. Mitola S, Belleri M, Urbinati C, Coltrini D, Sparatore B, Pedrazzi M, et al. Functional response of leukemia blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myeloid leukaemia. *Br J Haematol.* (2000) 110:562–72. doi: 10.1046/j.1365-2141.2000.01217.x

42. Chatterjee S, Azad BB, Nimmagadda S. The intricate role of CXCR4 in cancer. *Adv Cancer Res.* (2014) 124:31–82. doi: 10.1016/j.jemim.2012.10.017

43. Munro S, Bari V, Mislinski K, De Marchis F, Spitaleri A, Dallacosta M, et al. MikR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1α. *J Clin Endocrinol Metab.* (2011) 96:1388–98. doi: 10.1210/jc.2011-0345

44. Wu M, Huang C, Gan K, Huang C, Chen Q, Ouyang J, et al. LBRCA, a putative tumor suppressor gene, requires a functional leucine-rich repeat cassette domain to inhibit proliferation of glioma cells in vitro by modulating the extracellular signal-regulated kinase/protein kinase B/nuclear factor-kB pathway. *Mol Biol Cell.* (2006) 17:3534–42.

45. Lu J, Luo H, Liu X, Peng Y, Wang L, Xu X, et al. MicroRNA-146a and AMD3100, two ways to control CXCR4 expression and characterization of novel small-molecule CXCR4 receptor agonists and antagonists. *Sci Rep.* (2016) 6:2395–402. doi: 10.1002/acn3.50926

46. Lu J, Luo H, Liu X, Peng Y, Wang L, Xu X, et al. MicroRNA-146a and AMD3100, two ways to control CXCR4 expression and characterization of novel small-molecule CXCR4 receptor agonists and antagonists. *Sci Rep.* (2016) 6:2395–402. doi: 10.1002/acn3.50926

47. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. *N Engl J Med.* (1986) 315:1650–9. doi: 10.1056/NEJM198612253150206

48. Ho SY, Ling TY, Lin HY, Liou JTJ, Liu FC, Chen IC, et al. SDF-1/CXCR4 signaling maintains stemness signature in mouse neural stem/progenitor cells. *Stem Cells Int.* (2017) 2017:2493752. doi: 10.1155/2017/24 93752

49. De Leo F, Quilici G, Tirone M, De Marchis F, Mannella V, Zucchelli C, et al. Potential targets of the HMGB1/CXCL12 heterocorex and blocks immune cell recruitment. *EMBO Rep.* (2019) 20:e47788. doi: 10.15252/embr. 201947788

50. Mollica L, De Marchis F, Spitaleri A, Dallacosta C, Pennacchini D, Zamai M, et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. *Chen Biol.* (2007) 14:431–41. doi: 10.1016/j.chembio.2007. 03.007

51. Rodgers JT, King KY, Brent JO, Cromie MJ, Charville GW, Maguire KK, et al. MTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. *Nature.* (2014) 510:393–6. doi: 10.1038/nature13255

52. Wald O, Izhar U, Amir G, Kirshberg S, Shlomi Z, Zamir G, et al. Interaction between neoplastic cells and cancer-associated fibroblasts through the CXCL12/CXCR4 axis: Role in non-small cell lung cancer tumor proliferation. *J Thorac Cardiovasc Surg.* (2011) 141:1503–12. doi: 10.1016/j.jtcvs.2010.11.056

53. Zanetti G, Negro S, Megighian A, Mattarei A, Lista F, Fillo S, et al. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. *Stem Cells.* (2006) 24:2263–71. doi: 10.1002/stemdev2006.01
of acute myocardial infarction. Circ Cardiovasc Genet. (2015) 8:11–20. doi: 10.1161/CIRCGENETICS.114.000598

66. Toritsuka M, Kimoto S, Muraki K, Landek-Salgado MA, Yoshida A, Yamamoto N, et al. Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model. Proc Natl Acad Sci USA. (2013) 110:17552–7. doi:10.1073/pnas.1312661110

67. Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M, et al. CXCL12 and vascular endothelial growth factor synergistically induce neangiogenesis in human ovarian cancers. Cancer Res. (2005) 65:465–72.

68. Gassenmaier M, Chen D, Buchner A, Henkel L, Schieman M, Mack B, et al. CXCL12 chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis. Stem Cells. (2013) 31:1467–76. doi:10.1002/stem.1407

69. Dubrovska A, Elliott J, Salamone RJ, Telegeev GD, Stakhovsky AE, Schepotin K, et al. Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. J Biol Chem. (2008) 283:13516–24. doi:10.1074/jbc.M803499200

70. Sehgal A, Keener C, Boynton AL, Warrick J, Murphy GP. CXCR-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. J Surg Oncol. (1998) 69:99–104. doi: 10.1002/(SICI)1096-9098(199810)69:2.0.CO;2-m

71. Li T, Li H, Wang G, Lee HK, Liang Y, et al. Expression of Cxcr4, Cxcl12 and Cxcr7 in malignant pleural mesothelioma. J Pathol. (2011) 223:519–30. doi:10.1002/path.2829

72. Hall JM, Korach KS. Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol. (2003) 17:792–803. doi:10.1210/me.2002-0438

73. Gao Z, Gao BL, Zhang XJ, Liu GC, Xu F, Fan QY, et al. Cxcl12-Cxcr4 axis promotes proliferation, migration, invasion, and metastasis of ovarian cancer. Oncol Res. (2015) 22:247–58. doi:10.3727/096504115X14343704124430

74. Ma J, Sun X, Wang Y, Chen B, Qian L, Wang Y. Fibroblast-derived Cxcl12 regulates PTEN expression and is associated with the proliferation and invasion of colon cancer cells via PI3k/Akt signaling. Cell Commun Signal. (2019) 17:1–12. doi:10.1186/s12964-019-0432-5

75. Gao Z, Wang X, Wu K, Zhao Y, Hu G. Pancreatic stellate cells increase CXCL12 and CXCR7 in malignant pleural mesothelioma. J Pathol. (2015) 236:263–71. doi:10.1002/path.4583

76. Gao Z, Wang X, Wu K, Zhao Y, Hu G. Pancreatic stellate cells increase CXCL12 and CXCR7 in malignant pleural mesothelioma. J Pathol. (2015) 236:263–71. doi:10.1002/path.4583

77. Ma J, Sun X, Wang Y, Chen B, Qian L, Wang Y. Fibroblast-derived Cxcl12 regulates PTEN expression and is associated with the proliferation and invasion of colon cancer cells via PI3k/Akt signaling. Cell Commun Signal. (2019) 17:1–12. doi:10.1186/s12964-019-0432-5

78. Rubin JB. Chemokine signaling in cancer: One hump or two? Annu Rev Immunol. (2001) 19:397–421. doi: 10.1146/annurev.immunol.19.1.397

79. New DC, Wu K, Kwok AWS, Wong YH. G protein-coupled receptor-induced Akt activity in cellular proliferation and apoptosis. FEBS J. (2007) 274:6023–36. doi:10.1111/j.1744-4809.2007.01061.x

80. Mo W, Chen J, Patel A, Zhang L, Chau V, Li Y, et al. CXCR4/CXCL12 mediate autocrine cell cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell. (2013) 152:1077–90. doi:10.1016/j.cell.2013.01.053

81. Vila-Coro AJ, Rodríguez-Frade JM, De Ana AM, Moreno-Ortiz MC, Martínez AC, Meládo M. The chemokine SDF-1α triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. (1999) 13:1699–710. doi: 10.1096/fasebj.13.13.1699

82. Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL, et al. Stromal cell-derived factor-1/CXCR4 axis. Mol Syst Biol. (2011) 7:512. doi:10.1038/msb.2011.29

83. Marchese A, Chen C, Kim YM, Benovic JL. The ins and outs of G protein-coupled receptor trafficking. Trends Biochem Sci. (2003) 28:369–76. doi: 10.1016/S0968-0004(03)00134-8

84. Fernandis AZ, Prasad A, Band H, Klösel R, Ganju RK. Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene. (2004) 23:157–67. doi:10.1038/sj.onc.1206910

85. Campa CC, Germina G, Cirilloo E, Coppieri F, Sapienza A, Franco I, et al. Rac signal adaptation controls neutrophil mobilization from the bone marrow. Sci Signal. (2016) 9ra124. doi:10.1126/scisignal.aaa5882