Laboratory Based X-ray Absorption Spectroscopy of Iron Phosphate Glasses for Radioactive Waste Immobilisation: A Preliminary Investigation

L M Mottram,1 M C Stennett,1 S K Sun1 and N C Hyatt1*

Department of Materials Science & Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD.

*n.c.hyatt@sheffield.ac.uk

Abstract. We report the application of laboratory based X-ray absorption spectroscopy to the speciation of Fe in iron phosphate glasses prepared by conventional and microwave melting. Analysis of the weak pre-edge features in Fe K-edge XANES data demonstrated glasses produced by microwave melting to have a higher fraction of reduced Fe$^{2+}$ species, since microwave melts do not have sufficient time to equilibrate with the prevailing oxygen partial pressure, compared to counterparts produced by conventional melting. Furthermore, our laboratory XANES data are consistent with the formation of octahedral Fe$^{2+}$ at the expense of tetrahedral Fe$^{3+}$ species, with increasing Fe$^{2+}$ content. These findings are consistent with the previous findings of our 57Fe Mossbauer study, synchrotron XANES data, and current understanding of the structure of iron phosphate glasses, and demonstrate the utility of laboratory based XANES for routine speciation of Fe in these and other materials.

1. Introduction
The baseline treatment option for intermediate level wastes in the UK is encapsulation in an ordinary portland cement matrix, combined with super-compaction, where appropriate. However, there is a growing appreciation that some wastes, such as reactive metals and organic materials, are not compatible with this approach [1-3]. Furthermore, cement encapsulation technology results in a dilution of the radioactive waste feed and a projected increase in the packaged waste volume by typically 30%. In principal, thermal treatment technologies challenge these shortcomings, through at least partial oxidation of metallic and organic waste components, to produce a passively safe product, with retention of radioactive and chemotoxic elements [3-10].

Iron phosphate glasses are one matrix of interest for the vitrification of some challenging radioactive wastes [11-13]. The 40Fe$_2$O$_3$–60P$_2$O$_5$ (mol%) glass composition, has been extensively studied for radioactive waste immobilisation, due to the high incorporation rate of elements which have low solubility in borosilicate melts (e.g. F, Cl, S and Bi), good chemical durability, and reasonable processing temperature and melt viscosity [14-16].

X-ray absorption and 57Fe Mossbauer spectroscopy studies of iron phosphate glasses have demonstrated the Fe$^{2+}$ / \sumFe ratio to be sensitive to melt composition and processing conditions (temperature, time and atmosphere) [16-19]. This redox ratio is determined by the equilibrium: $2 \text{FeO} (\text{melt}) + \frac{1}{2} \text{O}_2 (g) = \text{Fe}_2\text{O}_3 (\text{melt})$, and, in the case of the 40Fe$_2$O$_3$–60P$_2$O$_5$ glass composition, up to 60% of the total Fe may be present as Fe$^{2+}$ [17]. An increased fraction of Fe$^{2+}$ is reported to be both detrimental to glass forming ability and radiation stability [16, 19-22], whereas chemical durability is
reported to be insensitive to the fraction of Fe$^{2+}$ [18]. The Fe$^{2+}$ / Σ Fe ratio also governs the electrical conductivity of Fe$_2$O$_3$-P$_2$O$_5$ glass melts, which is an important consideration for some melter designs, in the context of application to radioactive waste treatment [19].

From the preceding discussion, it will be appreciated that routine determination of Fe$^{2+}$ / Σ Fe ratio in Fe$_2$O$_3$-P$_2$O$_5$ glasses is of importance for formulation and development of such waste forms. 57Fe Mossbauer spectroscopy has been widely exploited for the determination of Fe$^{2+}$ / Σ Fe ratio, according to the distinctive isomer shift and quadrupole splitting of Fe$^{2+}$ and Fe$^{3+}$ species, which are also sensitive to co-ordination number [13, 16-18, 23]. However, the determination of average Fe co-ordination number is complicated by the overlap of 57Fe isomer shift and quadrupole splitting ranges, particularly for amorphous materials [13, 23]. Whilst 57Fe Mossbauer spectroscopy can conveniently be applied in a laboratory environment, data acquisition is dependent on 57Fe concentration, 57Co source activity, and sample characteristics, which translate to data acquisition time of days per sample.

Fe K-edge X-ray absorption spectroscopy has also been applied to determination of Fe$^{2+}$ / Σ Fe ratio in Fe$_2$O$_3$-P$_2$O$_5$ glasses. The weak pre-edge features in the Fe K-edge X-ray Absorption Near Edge Structure (XANES), located ca. 15–20 eV below the edge step, have been shown to be a sensitive probe of Fe speciation [24-29]. These features are associated with 1s – 3d (quadrupole) and/or 1s – 4p (dipole) electronic transitions in the Fe absorber atom and, therefore, are sensitive to both the electronic configuration and symmetry, from which oxidation state and co-ordination number are inferred. Wilke et al. developed a systematic methodology to extract the normalised pre-edge features from Fe K-edge XANES data and determination of the centroid energy position and total integrated intensity, which were effectively correlated with Fe oxidation state and co-ordination number [27, 28]. Conventionally, acquisition of XANES data has required access to a synchrotron radiation beamline, which is highly competitive, time limited, and not immediate. Recently, however, we demonstrated the first proof of concept Fe K-edge XANES speciation studies, using a commercially available laboratory X-ray spectrometer, from analysis of weak pre-edge features [30]. This approach enables routine Fe speciation in materials with data acquisition times of only a few hours. Here, we build on this recent study to demonstrate the potential for Fe redox determination in 40Fe$_2$O$_3$–60P$_2$O$_5$ glasses prepared by conventional and microwave melting. Our preliminary results demonstrate that laboratory based Fe K-edge XANES has sufficient resolution and sensitivity to routinely determine Fe$^{2+}$ / Σ Fe ratio in iron phosphate glasses.

2. Experimental

2.1. Synthesis of iron phosphate glasses
Iron phosphate glasses of 40Fe$_2$O$_3$–60P$_2$O$_5$ (mol%) composition were prepared by conventional and microwave heating, as previously described [23, 31, 32]. Conventional melting used a stoichiometric mixture of Fe$_2$O$_3$ and P$_2$O$_5$ (PO) or NH$_4$H$_2$PO$_4$ (AP), in covered silica crucibles, heated at 1150°C for 5h in air. Microwave melting used a stoichiometric mixture of Fe$_2$O$_3$ and P$_2$O$_5$ or NH$_4$H$_2$PO$_4$, in covered silica crucibles, heated for 12 minutes at 800W power in a domestic microwave oven (DMO). Fe$_2$O$_3$ was selected as the iron source since it is known to strongly couple to the 2.45 GHz frequency of domestic microwaves, resulting in rapid self heating. After approximately 20 seconds of microwave irradiation a dull red glow emanating from the crucible was observed through the silica lid. The intensity of the glow increased until, after approximately 1 minute, an incandescent red glow could be clearly observed. This continued until the DMO was switched off. The peak temperature of melting was estimated to be 1150°C, using a grounded thermocouple. Glasses were quenched in air and confirmed to be amorphous by X-ray diffraction.

2.2. Reference compounds
Fe K-edge XANES data were acquired from four selected reference compounds. NaFeSi$_2$O$_6$ (aegirine) and Fe$_2$SiO$_4$ (fayalite) are characterised by Fe$^{2+}$ and Fe$^{3+}$, respectively, in octahedral FeO$_6$ co-ordination (CN = 6); whereas FePO$_4$ and Fe$_3$Mg$_{2.9}$Al$_{0.1}$Si$_{10}$O$_{26}$(OH)$_2$ (staurolite) are characterised by Fe$^{2+}$ and Fe$^{3+}$, respectively, in tetrahedral FeO$_4$ co-ordination (CN = 4) [33-36]. Polycrystalline FePO$_4$ and Fe$_2$SiO$_4$
were, respectively, synthesised by: solid state reaction of Fe$_2$O$_3$ and NH$_4$H$_2$PO$_4$ at 900 °C in air for 16 h; and solid state reaction of stoichiometric quantities of Fe, Fe$_2$O$_3$ and SiO$_2$ at 750 °C for 48 h in a sealed, evacuated, quartz tube. Mineral specimens of aegirine (Langesund Fjord, Norway), and staurolite (Georgia, USA), were provided from our own collection. All materials were confirmed to be single phase by powder X-ray diffraction. The expected Fe speciation was verified by 57Fe Mossbauer analysis.

2.3. Fe K-edge XANES
Fe K-edge XANES data were acquired on an EasyXAFS XES100 spectrometer, Figure 1, based on the design of Seidler et al., equipped with an air cooled X-ray tube operating at 25 kV and 4 mA, with a Hitachi Vortex Silicon Drift Detector (SDD) [37-40]. The spectrometer was configured with a Ge (620) SBCA to scan the energy range 6970 – 7340 eV, with a step size of 0.25 eV and constant count time of 4s / point in the XANES region (total scan time 30 min per data set). The energy resolution of the SDD is ca. 140 eV, enabling rejection of the harmonic content of the incident beam and background scatter. A He flight-path was used to minimise air scatter and absorption. Transmission data were acquired with (I$_t$(E)) and without the sample (I$_0$(E)), using the same scan parameters. The Ge (620) monochromator was aligned using the clock angle procedure of Mortensen and Seidler, to account for the crystal miscut [41]. Data integration time was typically 4h per spectrum.

Figure 1. a) Schematic representation of Rowland circle geometry for laboratory transmission X-ray Absorption Spectroscopy, as described in the text, showing: broadband low power X-ray source (A); spherically bent crystal analyser (B); sample / detector assembly (C); and helium filled beam path with kapton windows (D); b) Photograph of EasyXAFS XES100 spectrometer arrangement shown in Fig. 1a, with helium filled beam path removed, to show linear translation stages and steering bars used to maintain alignment of X-ray source (A), analyser (B), and sample / detector assembly (C).

Fe K-edge XANES data were also acquired on the KMC-2 beamline at the BESSY-II synchrotron. The KMC-2 beamline is situated on a bending magnet and was configured with a Si (111) channel cut monochromator and mirror for harmonic rejection. Incident and transmitted beam intensities were measured using ionization chambers, filled with mixtures of He and N$_2$, operated in a stable region of their I/V curve. For synchrotron data, a step size of 0.25 eV was used in the XANES region with a count time of 1s / point. Data integration time was typically 0.5h per spectrum.

Samples were prepared from finely ground specimens of glasses or reference compounds dispersed in 70 mg of polyethylene glycol, pressed into 13 mm diameter pellets, to achieve a thickness of one absorption length. Data reduction and analysis was performed using the programs Athena and Hephaestus [42]. Calibration of the energy scale were achieved by reference to a 5 μm Fe foil (Goodfellow Cambridge Ltd.), for which the first peak in the derivative spectrum was set to 7112.00 eV, as defined by Bearden and Burr for the Fe K absorption edge [43]. Data from the reference foil
were acquired periodically for the laboratory and synchrotron experiments, the absolute energy scale for the laboratory XANES data was calibrated as previously described [30, 44].

Extraction and analysis of the pre-edge feature in Fe K-edge XANES data were achieved using Microsoft Excel software, to first fit a spline function to model and subtract the contribution of the edge step. The pre-edge envelope was then deconvoluted by fitting Gaussian components using a linear least squares refinement to optimise the normalised height, full width at half height, and energy position, so as to minimise the difference between the observed and calculated envelope determined from the sum of the fitted Gaussian components. Fitting initially utilised two Gaussian components with the significance of a third component tested by inspection of the improvement in goodness of fit. The total integrated intensity and centroid energy of the pre-edge feature were determined, respectively, from the sum of the integrated intensities and intensity weighted average energy position of the Gaussian components. The same initial parameters were used for all data sets, and several sets of different initial parameters trialled, to ensure that convergence did not arise in a local minimum. This approach is a simplification of that applied by Wilke et al., which employed pseudo-Voigt components [28, 30].

3. Results and discussion

Figure 2 shows a head to head comparison of Fe K-edge XANES data acquired from 40Fe₂O₃–60P₂O₅ (mol%) glasses, where, respectively, C and M are used to denote materials processed by conventional and microwave heating, and PO and AP denote the use of P₂O₅ and NH₄H₂PO₄ reagents. Excellent correspondence is observed between the laboratory (points) and synchrotron (solid line) XANES data, demonstrating that acquisition of good quality Fe K-edge XANES data using the laboratory set up, with reasonable data integration times. Note that the synchrotron data have not been convoluted by Gaussian or Lorentzian broadening for this comparison.

![Figure 2](image-url)

Figure 2. Comparison of normalised transmission mode Fe K-edge XANES spectra from 40Fe₂O₃–60P₂O₅ glasses prepared by microwave (M) or conventional (C) heating of Fe₃O₄ with P₂O₅ (PO) or NH₄H₂PO₄ (AP), acquired using laboratory XAS spectrometer (points) and KMC-2 synchrotron beamline (solid line).
Figure 3 shows the extracted pre-edge features from the laboratory XANES data of the glass samples and the modelled envelope of the Gaussian components. Although the laboratory data show some scatter, as a result of the relatively low signal to noise ratio, the pre-edge features are evidently resolvable and measurable relative to the background. For each material, the pre-edge features of the laboratory and synchrotron XANES data were adequately modelled using three Gaussian components, the fitted parameters are summarised in Table 1. The fitted centroid position and integrated intensity of the pre-edge features are plotted in Figure 4, together with data from the reference compounds analysed in this study and that of Wilke et al. [28]. Note that the data of Wilke et al. (calibrated to $E_0 = 7111.08$ eV), were shifted by +0.92 eV, consistent with our absolute energy scale.

Table 1. Integrated intensity and centroid energy for Gaussian components fitted to pre-edge features of 40Fe$_2$O$_3$–60P$_2$O$_5$ glasses prepared by microwave (M) or conventional (C) heating of Fe$_2$O$_3$ with P$_2$O$_5$ (PO) or NH$_4$H$_2$PO$_4$ (AP). Values in bold type are derived from laboratory data; values in normal type are derived from synchrotron data.

Sample	Gaussian 1	Gaussian 2	Gaussian 3	Centroid	Total integrated intensity				
	Energy (eV)	Intensity (a.u.)	Intensity (a.u.)						
C-AP	7112.8	0.049	7114.5	0.096	7115.5	0.070	7114.4	0.215	
	7112.9	0.046	7114.4	0.103	7115.4	0.068	7114.4	0.217	
C-PO	7112.8	0.047	7114.3	0.095	7115.6	0.072	7114.4	0.213	
	7112.8	0.049	7114.3	0.120	7115.5	0.043	7114.3	0.212	
M-AP	7113.0	0.049	7114.5	0.042	7115.5	0.018	7114.0	0.110	
	7112.4	0.041	7114.4	0.073	7115.5	0.002	7113.7	0.116	
M-PO	7113.0	0.051	7114.5	0.065	7115.5	0.038	7114.2	0.154	
	7112.8	0.045	7114.3	0.094	7115.5	0.021	7114.1	0.160	
As shown in the speciation plot of Figure 4, the data points for the Fe$^{3+}$ reference compounds NaFeSi$_2$O$_6$ (octahedral, FeO$_6$) and FePO$_4$ (tetrahedral, FeO$_4$) are in excellent agreement between the laboratory data (solid blue circles) and synchrotron data (solid red circles), and the data reported by Wilke et al. (solid black circles) [28]. The Fe$^{2+}$ reference compounds Fe$_{1.3}$Mg$_{0.5}$Al$_{0.1}$Si$_{1.3}$(OH)$_2$ (octahedral, FeO$_6$) and Fe$_2$SiO$_4$ (tetrahedral, FeO$_4$) were investigated using only the laboratory set up, but these data (solid blue circles) but are also in reasonable agreement with the data reported by Wilke et al. (solid black circles) [28]. Both the laboratory and synchrotron data points fall within the known field for Fe$^{2+}$ / Fe$^{3+}$ speciation for octahedral (CN = 6) and tetrahedral (CN = 4) co-ordination, defined by the reference compounds reported by Wilke et al. (solid / open black circles). Figure 4 demonstrates that laboratory XANES is effective in distinguishing Fe$^{2+}$ and Fe$^{3+}$ species according to the centroid of the pre-edge features at 7112.9 ± 0.1 eV and 7114.5 ± 0.1 eV respectively. The chemical shift between the centroid energy of Fe$^{2+}$ and Fe$^{3+}$ species determined in this investigation was thus 1.6 ± 0.1 eV for laboratory XANES data, which is in excellent agreement with the value of 1.4 ± 0.1 eV determined by Wilke et al. and our previous feasibility study [28, 30]. Figure 4 demonstrates that laboratory XANES is also effective in differentiating tetrahedral and octahedral Fe$^{2+}$ / Fe$^{3+}$ species, according to the relative total integrated intensity of the pre-edge feature. As noted above, the pre-edge feature is associated with 1s – 3d quadrupole transitions, which are only weakly allowed for a centrosymmetric octahedral environment but have enhanced transition probability in non-centrosymmetric tetrahedral environments, due to admixture of unoccupied 4p orbitals in the final state.

![Figure 4](image-url)

Figure 4. Speciation field diagram, based on total integrated intensity and centroid energy of pre-edge feature of Fe K-edge XANES data. Data points derived from analysis of our laboratory XANES are shown by solid blue circles (reference compounds) or diamonds (glasses); data points derived from synchrotron XANES are shown as solid red circles (reference compounds) or diamonds (glasses); equivalent data points of reference compounds from Wilke et al., are shown as solid black circles (other reference data from Wilke et al., shown as open black circles) [28]. Note data from Wilke et al., are shifted by +0.92 eV consistent with our absolute energy scale as described in the text.
Turning to the analysis of the 40FeO·60P2O5 glass compositions, Figure 4 shows reasonably good agreement between the laboratory and synchrotron data points, demonstrating that laboratory XANES has, in principle, sufficient resolution and sensitivity to probe Fe2+/ΣFe ratio in iron phosphate glasses. The centroid energy of the pre-edge feature of glasses produced by microwave heating (M) is displaced toward lower energy compared to glasses produced by conventional melting (C), implying the presence of a greater concentration of Fe2+ species in the microwave processed materials. This is in agreement with our previous 57Fe Mossbauer investigation [23], which estimated the Fe2+/ΣFe ratio to be 0.43 for glass M-AP, 0.22 for glass M-PO, and 0.10 for glass C-AP and C-PO. The centroid position of the pre-edge feature is known to show a non-linear dependence on Fe2+/ΣFe ratio, when both average oxidation state and co-ordination number vary at the same time [28], which is clearly inferred in this case from Figure 4 (see below). Hence, the Fe2+/ΣFe ratio cannot yet be reliably estimated from our XANES data without further careful calibration using mixtures of reference compounds. Nevertheless, it is evident from Figure 4 that glasses produced by microwave heating are characterised by a higher Fe2+/ΣFe redox ratio compared to the counterparts prepared by conventional melting. The higher Fe2+/ΣFe ratio for the microwave processed glasses, previously demonstrated by 57Fe Mossbauer spectroscopy [23], is a reflection of the rapid processing time, which does not allow the melt to reach equilibrium with the prevailing oxygen partial pressure, compared to the conventionally processed counterparts. It is also evident from Figure 4, that the highest Fe2+/ΣFe ratio is observed for the microwave processed glass using NH4H2PO4 as the phosphate source, also in agreement with our earlier 57Fe Mossbauer investigation [23]. Decomposition of NH4H2PO4 during the rapid microwave heating evolves NH3 gas which maintains a sufficiently reducing environment to assist incorporation of Fe2+ within the melt, potentially also inducing partial reduction of Fe3+. It is notable that the synchrotron determined data points in Figure 4 (red diamonds) are displaced to slightly higher centroid energy, compared to those determined by laboratory analysis (blue diamonds) on the same glass materials. This may suggest a small systematic difference in Fe2+/ΣFe ratio determined by laboratory and synchrotron XANES, however, this should be considered with due caution given the expected non-linear dependence of centroid energy on Fe2+/ΣFe ratio, which must be determined for both data sets.

Figure 4 also reveals a measurable difference of average Fe co-ordination in the microwave and conventionally melted glasses. In the case of conventionally melted glasses, the integrated intensity of the pre-edge feature implies a mixture of tetrahedral and octahedral, and/or pentahedral, Fe2+ species are present. This is in agreement with more recent Fe K-edge synchrotron XANES and 57Fe Mossbauer studies of iron phosphate glasses, which point to a mixture of tetrahedral and octahedral, and or pentahedral, Fe2+ species, when Fe2+/ΣFe < 0.2 [13, 45, 46]. The microwave processed glasses are characterised by pre-edge features of lower integrated intensity, compared to their conventionally processed counterparts. This implies that the higher Fe2+/ΣFe ratio of the microwave processed glasses is associated with an increased proportion of octahedral Fe2+ (which would be expected to prefer octahedral co-ordination on the basis of crystal field stabilisation energy). This observation is consistent with the current understanding of the structure of iron phosphate glasses, in which an increase in Fe2+/ΣFe ratio, results in conversion of network forming tetrahedral Fe3+ to network modifying octahedral Fe2+ polyhedra [13,45,46]. Further work to accurately estimate the Fe2+/ΣFe ratio using mixtures of reference compounds, should also allow the proportion of co-ordination environments to be determined from laboratory XANES data.

4. Conclusions
Analysis of the weak pre-edge features in Fe K-edge XANES data from a laboratory XAS spectrometer demonstrated microwave processed iron phosphate glasses to incorporate a higher fraction of Fe2+ species, compared to counterparts produced by conventional melting, consistent with our previous 57Fe Mossbauer spectroscopy study. Laboratory and synchrotron Fe K-edge XANES data from the same suite of glass materials were found to be in excellent agreement. Accurate determination of Fe2+/ΣFe ratio by laboratory XANES analysis, will require careful calibration against centroid energy of the pre-edge features, due to the known non-linear dependence when both average oxidation state and co-ordination number vary at the same time. Nevertheless, this preliminary study has established that
laboratory XANES data are of sufficient resolution and sensitivity, in principle, to routinely probe Fe$^{2+}$/Σ Fe ratio in iron phosphate glasses and other materials.

5. References

[1] NDA 2016 Nuclear Decommissioning Authority Strategy effective from April 2016
[2] NDA/RWM 2016 Geological Disposal Science and Technology Plan.
[3] NDA 2019 5-year R&D Plan 2019 to 2024
[4] Hyatt N C and James M 2013 Nucl. Eng. Int. 2 10-3
[5] Bingham P A, Hyatt N C and Hand R J 2012 Glass Technol. Part A 53 83.
[6] Bingham P A, Hyatt N C, Hand R J and Forder S D 2013 Glass Technol. Part A 54 1.
[7] Bingham P A, Hyatt N C, Hand R J and Wilding C R 2009 Mat. Res. Soc. Symp. P. 1124 161.
[8] Heath P G, Corkhill C L, Stennett M C, Hand R J, Whales K M and Hyatt N C 2018 J. Nucl. Mater. 508 203.
[9] Hyatt N C, Morgan S, Stennett M C, Scales C R, Deegan D, 2007 Mat. Res. Soc. Symp. P. 985 293
[10] Hyatt N C, Schwarz R R, Bingham P A, Stennett M C, Corkhill C L, Heath P G, Hand R J, James M, Pearson A and Morgan S 2013 J. Nucl. Mater. 444 186.
[11] Brow R K, Kim C W and Reis S T 2020 Int. J. Appl. Glass Sci. 11 4.
[12] Day D E, Wu Z, Ray C S and Hrma P 1998 J. Non-Cryst. Solids 241 1.
[13] Joseph K, Stennett M C, Hyatt N C, Asuvathraman R, Dube C L, Gandy A S, Kutty K V G, Jolley K, Rao P R V and Smith R 2017 J. Nucl. Mater. 494 432.
[14] Kim C W and Day D E 2003 J. Non-Cryst. Solids 331 20.
[15] Mesko M G, Day D E and Bunker B C 2000 Waste Manag. 20 271-8.
[16] Marasinghe G K, Karabulut M, Ray C S, Day D E, Shumsky M G, Yelon W B, Booth C H, Allen P G and Shuh D K 1997 J. Non-Cryst. Solids 222 144.
[17] Karabulut M, Marasinghe G K, Ray C S, Day D E, Waddil G D, Booth C H, Allen P G, Bucher J J, Caulder D L and Shuh D K 2002 J. Non-Cryst. Solids 306 182.
[18] Ray C S, Fang X, Karabulut M, Marasinghe G K and Day D E 1999 J. Non-Cryst. Solids 249 1.
[19] Fang X, Ray C S, Moguš-Milanković A and Day D E 2001 J. Non-Cryst. Solids 283 162.
[20] Griscom D L, Merzbacher C I, Bibler N E, Imagawa H, Uchiyama S, Namiki A, Marasinghe G K, Mesko M and Karabulut M 1998 Nucl. Instr. and Meth. In Phys. Res. B 141 600.
[21] Joseph K, Jolley K and Smith R 2015 J. Non-Cryst. Solids. 411 137.
[22] Jolley K and Smith R 2016 Nucl. Instr. Methods Phys. Res. Sec. B. 374 8.
[23] Forder S D, Bingham P A, McGann O J, Stennett M C and Hyatt N C 2013 Hyperfine Interact. 217 83.
[24] Waychunas G A, Apted M J and Brown G E 1983 Phys. Chem. Miner. 10 1.
[25] Bajit S, Sutton S R and Delaney J S 1994 Geochim. Cosmochim. Acta 58 5209.
[26] Galoisy L, Calas G and Arrio M A 2001 Chem. Geol. 174 307.
[27] Petit P E, Farges F, Wilke M and Solé V A 2001 J. Synchrotron Radiat. 8 952.
[28] Wilke M, Farges F, Petit P E, Brown G E and Martin F 2001 Am. Mineral. 86 714.
[29] Berry A J, O'Neill H S, Jayasuriya K D, Campbell S J and Foran G J 2003 Am. Mineral. 88 967.
[30] Mottram L M, Cafferkey S, Mason A R, Oulton T, Sun S K, Bailey D J, Stennett M C and Hyatt N C 2020 J. Geosci., 65 27.
[31] Stennett M C and Hyatt N C 2009 Mat. Res. Soc. Symp. P. 1124 147.
[32] Mayzan M Z H, Stennett M C, Hyatt N C and Hand R J 2014 J. Nucl. Mater. 454 343.
[33] Arnold H 1986 Z. Kristallogr. Cryst. Mater. 177 139.
[34] Baum E, Treutmann W, Behruzí M, Lottermoser W and Amthauer G 1988 Z. Kristallogr. 183 273.
[35] Smyth J R 1975 Am. Mineral. 60 1092.
[36] Hawthorne F C, Ungaretti L, Oberti R, Cauca F and Callegari A 1993 Can. Mineral. 31 551.
[37] Seidler G T, Mortensen D R, Remesnik A J, Pacold J I, Ball N A, Barry N, Styczinski M and Hoidn O R 2014 Rev. Sci. Instrum. 85 113906.
[38] Seidler G T, Ditter A S, Ball N A and Remesnik A J 2016 J. Phys. Conf. Ser. 712 012015.
[39] Mortensen D R, Seidler G T, Ditter A S and Glatzel P 2016 J. Phys. Conf. Ser. 712 012036.
[40] Jahrman E P, Holden W M, Ditter A S, Mortensen D R, Seidler G T, Fister T T, Kozimor S A, Piper L F J, Rana J, Hyatt N C and Stennett M 2019 Rev. Sci. Instrum. 90 024106.
[41] Mortensen D R and Seidler G T 2017 J. Electron. Spectrosc. Relat. Phenom. 215 8.
[42] Ravel B and Newville M 2005 J. Synchrotron Radiat. 12 537.
[43] Bearden J A and Burr A F 1967 Rev. Mod. Phys. 39 125.
[44] Mottram L M, Dixon Wilkins M C, Blackburn L R, Oulton T, Stennett M C, Sun S K, Corkhill C L and Hyatt N C 2020 MRS Adv. 5 27.
[45] Wang G, Wang Y and Jin B 1994 Proc. SPIE 2287 214.
[46] Karabulut M, Marasinghe G K, Ray C S, Day D E, Waddill G D, Allen P G, Booth C H, Bucher J J, Caulder D L, Shuh D K, Grimsditch M, Sabouni M L 2000 J. Mater. Res. 15 1972.

Acknowledgment

We are grateful for financial support from the Nuclear Decommissioning Authority and EPSRC under grant numbers EP/M026566/1, EP/S01019X/1, EP/N017870/1 and EP/R511754/1. This research utilised the HADES / MIDAS facility at The University of Sheffield established with financial support from EPSRC and BEIS, under grant EP/T011424/1. This research was undertaken, in part, at the KMC-2 beamline at the BESSY-II synchrotron radiation source.