Pd-Catalyzed Dynamic Kinetic Asymmetric Cross-Coupling of Heterobiaryl Bromides with N-Tosylhydrazones

Shivashankar Kattela, Carlos Roque D. Correia, Abel Ros,* Valentín Hornillos,* Javier Iglesias-Sigüenza, Rosario Fernández,* and José M. Lassaletta*

ABSTRACT: A dynamic kinetic asymmetric Pd-catalyzed cross-coupling reaction of heterobiaryl bromides with ketone N-tosylhydrazones for the synthesis of heterobiaryl styrenes is described. The combination of Pd(dba)₂ as a precatalyst with a TADDOL-derived phosphoramidite ligand provides the corresponding coupling products in good yields and high enantioselectivities under mild conditions. Racemization-free N-oxidation and N-alkylation of the products allowed us to obtain appealing functionalized axially chiral heterobiaryl derivatives.

Axially chiral biaryl atropisomers are fundamentally important in nature due to their presence in a large number of natural products and bioactive substances. Moreover, they are also key structural frameworks in material sciences, supramolecular chemistry, and organic synthesis. Remarkably, an axially chiral (hetero)biaryl constitutes the central core of many privileged chiral ligands, catalysts, and auxiliaries that are routinely employed in asymmetric synthesis. Consequently, a great deal of effort has already been devoted to the efficient preparation of these chiral structures, including the asymmetric coupling of two aryl groups by oxidative dimerization or cross-coupling, asymmetric [2+2+2] cycloadditions, asymmetric ring opening of bridged biaryl lactones, stereoselective functionalization of prochiral biaryl, in particular by C–H functionalization, (dynamic) kinetic resolutions, and a growing number of organocatalytic approaches.

Our group reported in 2013 an alternative methodology for the synthesis of heterobiaryl (e.g., 2-arylpyridines or analogues) consisting of Pd-catalyzed dynamic kinetic asymmetric (DYKAT) coupling between aryl boroxines and racemic heterobiaryl triflates. The resolution strategy is based on the formation of cationic oxidative addition diastereomeric intermediates (Scheme 1A) in which the configurational stability of the stereogenic axis is compromised by the widening of angles φ₁ and φ₂. This method was later extended to perform dynamic kinetic C–P, C–N, and other C–C cross-couplings from diverse heterobiaryl electrophiles. On the contrary, catalytic processes initiated by formation of metal carbenoids followed by migratory insertion have rarely been applied to the synthesis of axially chiral compounds. Inspired by the work of Barluenga and Valdés, the group of Gu reported on the use of 1-tetralone tosyl hydrazones as carbene precursors in the Pd-catalyzed coupling with substituted 1-naphthyl bromides, affording axially chiral vinyl arenes with large enantiomeric excesses (Scheme 1B).

More recently, a related Cu-catalyzed coupling of diazo compounds with isoquinoline or phthalazine N-oxides has been reported to obtain axially chiral QUINOX analogues, although in racemic form (Scheme 1C). On the basis of the findings described above, we envisioned that the use of carbene precursors (e.g., hydrazones) as coupling partners in the DYKAT-based strategy should enable the synthesis of bifunctional heterobiaryl olefins via a palladium/carbene insertion, migration, and β-hydride elimination process (Scheme 1D). As a starting hypothesis, it was assumed that the low rotational barrier in carbenoid intermediate I increases significantly after the migratory insertion event as a result of the geometrical restrictions in the resulting intermediate II, a larger six-membered cycle with long N–Pd and Pd–C bonds. The initial studies were carried out using the coupling between racemic bromide 1A and acetophenone tosylhydrazone 2a as the model reaction, with NaO(Bu) as the base, anhydrous toluene as the solvent at 60 °C, 10 mol % Pd(OAc)₂ and 12 mol % ligand as the catalyst system (Table 1). Different ligands that proved to be successful in our previous DYKAT processes were screened (see the Supporting Information for complete ligand screening). Bidentate P,P and P,N ligands such as BINAP L₁, QUINAP L₂, Josiphos-type L₃, and N,N-pyridine-oxazoline ligand L₄ were not effective.

Received: April 18, 2022
Published: May 23, 2022
and the desired product 3Aa was obtained in a nearly racemic form (entries 1–4). These results can be explained by considering that bidentate ligands result in the formation of coordinatively saturated oxidative addition intermediates that, consequently, are not capable of forming key intermediate I. As expected, monodentate ligands such as TADDOL-based L5–L10 and BINOL-derived L11–L13 phosphoramidites showed in general better performance (entries 5–13). In particular, TADDOL derivative L8, containing a pyrrolidine moiety on the phosphoramidite, proved to be a promising ligand affording the desired (R)-3Aa product in good conversion (83%) and a moderate enantioselectivity (67%) (entry 8). After an additional screening of a Pd source, solvents, and a base (entries 14–21), we found that the use of Pd(dbac)2 in combination with LiOBF4 as the base and anhydrous 1,4-dioxane as the solvent (entry 18) allowed the formation of (R)-3Aa with 85% conversion and 95% ee. Increasing the reaction temperature (65–70 °C) allowed full conversion to be reached, although at the expense of the enantioselectivity (entries 19 and 20). Finally, using a slightly larger excess of 2a (1.5 equiv), the reaction also reaches full conversion while maintaining an excellent 95% ee (entry 21). Moreover, the amount of ligand could also be reduced to 10 mol % without erosion of the enantioselectivity or the catalytic activity (entry 22).

The coupling reaction of bromide 1A could also be extended to other aromatic tosyldrazones (Scheme 2). The reaction tolerates hydrazones 2b–d containing electron-donating (OMe and Me) or slightly electron-withdrawing (Cl) groups in the para position, affording products 3Ab–d in excellent yields and enantioselectivities of ≤96% ee. Additionally, the reaction also tolerates substrates containing different groups (F, OMe, and Me) in the ortho (2e), meta (2g), and ortho, meta (2f) positions, affording the desired products (R)-3Ae–g in excellent yields and excellent enantioselectivities (89–93% ee). A 1.5 mmol scale reaction (0.5 g) of rac-1A and 2a was performed, affording (R)-3Aa in a similar 82% yield and 95% ee.

Next, we examined the scope of other heterobiaryl bromides 1B–D. Their reactivity followed a similar pattern. Different naphthyl picoline 1B, isoquinoline 1C, and quinazoline 1D derivatives could be coupled with the model acetophenone (F, OMe, and Me) in the ortho (2e), meta (2g), and ortho, meta (2f) positions, affording the desired products (R)-3Ae–g in excellent yields and excellent enantioselectivities (89–93% ee).

Table 1. Screening of Ligands and Reaction Conditions

[Pd]	L	base solvent	C (%)	ee (%)		
1	Pd(OAc)2	L1	NaOBF4	toluene	95	0
2	Pd(OAc)2	L2	NaOBF4	toluene	22	3
3	Pd(OAc)2	L3	NaOBF4	toluene	9	5
4	Pd(OAc)2	L4	NaOBF4	toluene	32	0
5	Pd(OAc)2	L5	NaOBF4	toluene	90	57
6	Pd(OAc)2	L6	NaOBF4	toluene	72	21
7	Pd(OAc)2	L7	NaOBF4	toluene	82	57
8	Pd(OAc)2	L8	NaOBF4	toluene	83	67
9	Pd(OAc)2	L9	NaOBF4	toluene	82	51
10	Pd(OAc)2	L10	NaOBF4	toluene	58	51
11	Pd(OAc)2	L11	NaOBF4	toluene	20	7
12	Pd(OAc)2	L12	NaOBF4	toluene	24	9
13	Pd(OAc)2	L13	NaOBF4	toluene	36	5
14	Pd(TFA)2	L8	NaOBF4	toluene	85	67
15	Pd(dbac)2	L8	NaOBF4	toluene	48	70
16	Pd(dbac)2	L8	NaOBF4	toluene	76	70
17	Pd(dbac)2	L8	NaOBF4	toluene	82	92
18	Pd(dbac)2	L8	NaOBF4	dioxane	85	95
19	Pd(dbac)2	L8	NaOBF4	dioxane	>99	89
20	Pd(dbac)2	L8	NaOBF4	dioxane	>99	91
21	Pd(dbac)2	L8	NaOBF4	dioxane	>99	95
22	Pd(dbac)2	L8	NaOBF4	dioxane	>99	95

Reaction conditions: 0.1 mmol of 1A in an anhydrous solvent (1.2 mL), 2a (0.12 mmol, 1.2 equiv), and 3 equiv of base. Conversions were determined by 1H NMR spectroscopy. The ee values were determined by HPLC on chiral stationary phases. Reaction carried out at 70 °C. Reaction carried out at 65 °C. With 0.15 mmol (1.5 equiv) of 2a. Reaction performed with 10 mol % ligand.
tosylhydrazone 2a and with derivatives 2c–h containing substituents in the ortho, meta, or para positions to afford the desired products (R)-3B–D in excellent yields and enantioselectivities of >90% in most cases. The absolute configuration of product (R)-3Ac could be unambiguously assigned by X-ray diffraction analysis. The absolute configuration of other products (R)-3A–D was assigned by analogy assuming a uniform reaction pathway.

The nitrogen atom of the isoquinoline unit maintains its reactivity and can be used in quaternization reactions such as N-oxide formation with m-CPBA (→4Aa) and N-alkylation with BnBr (→5Aa) to yield interesting functionalized products for applications in asymmetric catalysis (Scheme 3).

In summary, we have developed a highly efficient methodology for the synthesis of axially chiral heterobiaryl styrenes based on a dynamic kinetic asymmetric coupling between readily available racemic heterobiaryl bromides and tosyl hydrazones. A broad scope, functional group tolerance, and excellent enantiomeric excesses were obtained using a chiral Pd(dba)2/TADDOL-derived phosphoramidite catalytic system.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.2c01355.

Experimental details, spectroscopic and analytical data for new compounds, and HPLC traces (PDF)

Accession Codes

CCDC 2165277 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION

Corresponding Authors
Rosario Fernández — Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 41012 Sevilla, Spain; orcid.org/0000-0002-1755-1525; Email: ffernan@us.es
José M. Lassaletta — Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 41092 Sevilla, Spain; orcid.org/0000-0003-1772-2723; Email: jmlassa@iiq.csic.es

Authors
Shivashankar Kattela — Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 41092 Sevilla, Spain
Carlos Roque D. Correia — Chemistry Institute, University of Campinas, CEP 13083-970 Campinas, São Paulo, Brazil
Abel Ros — Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 41092 Sevilla, Spain
Valentin Hornillos — Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 41092 Sevilla, Spain; Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 41012 Sevilla, Spain; orcid.org/0000-0002-3455-5675
Javier Iglesias-Sigüenza — Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 41012 Sevilla, Spain; orcid.org/0000-0001-8846-2303

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.2c01355

Author Contributions
A.R. and V.H. contributed equally to this work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors thank the Spanish Ministerio de Ciencia e Innovación (Grants PID2019-106358GB-C21 and PID2019-106358GB-C22 and Contract RYC-2013-12585 for A.R. and Contract RYC-2017-22294 for V.H.), ERDF, and Junta de Andalucía (Grants P18-FR-3531, P18-FR-644, US-1262867, and US-1260906). S.K. thanks the Fundación de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant 2017/10931-2).

REFERENCES

(1) (a) Kozłowski, M. C.; Morgan, B. J.; Linton, E. C. Total synthesis of chiral bialyl natural products by asymmetric bialyl coupling. Chem. Soc. Rev. 2009, 38, 3193–3207. (b) Bringmann, G.; Guder, T.; Guder, T. A. M.; Breuning, M. Atroposelective total synthesis of axially chiral bialyl natural products. Chem. Rev. 2011, 111, 563–639.
(2) (a) Dotsevi, G.; Sogah, Y.; Cram, D. J. Total Chromatographic Optical Resolution of α-Amino Acid and Ester Salts through Chiral Recognition by a Host Covalently Bound to Polystyrene Resin. J. Am. Chem. Soc. 1976, 98, 3038–3041. (b) Takaishi, K.; Yasui, M.; Ema, T. Binaphthyl-Bipyridyl Cyclic Dyads as a Chiroptical Switch. J. Am. Chem. Soc. 2018, 140, 5334–5338. (c) Li, Q.; Green, L.; Venkataraman, N.; Shiyanovskaya, I.; Khan, A.; Urbas, A.; Doane, J. W. Reversible photoswitchable axially chiral dopants with high helical twisting power. J. Am. Chem. Soc. 2007, 129, 12908–12909.
(3) (a) Tang, W.; Zhang, X. New chiral Phosphorus ligands for enantioselective hydrogenation. Chem. Rev. 2003, 103, 3029–3070. (b) Canac, Y.; Chauvin, R. Atropochiral CX- and C-C-CHelating Carbon Ligands. Eur. J. Inorg. Chem. 2010, 2325–2335. (c) Lassaletta, J. M., Ed. Aropisomorphism and Axial Chirality; Word Scientific: Singapore, 2019.
(4) (a) Zhang, D.; Wang, Q. Palladium catalyzed asymmetric Suzuki-Miyaura coupling reactions to axially chiral bialyl compounds: Chiral ligands and recent advances. Coord. Chem. Rev. 2015, 286, 1–16. (b) Loxq. P.; Manoury, E.; Poli, R.; Deydier, E.; Labande, A. Synthesis of axially chiral bialyl compounds by asymmetric catalytic reactions with transition metals. Coord. Chem. Rev. 2016, 308, 131–190. (c) Ma, G.; Sibi, M. P. Catalytic Kinetic Resolution of Biaryl Compounds. Chem. - Eur. J. 2015, 21, 11644–11657. (d) Wencel-Delord, J.; Panossian, A.; Leroux, F. R.; Colobert, F. Recent advances and new concepts for the synthesis of axially stereenriched biaryls. Chem. Soc. Rev. 2015, 44, 3418–3430. (e) Zilate, B.; Castrogiovanni, A.; Spar, C. Catalyst-Controlled Stereoselective Synthesis of Atropoisomers. ACS Catal. 2018, 8, 2981–2988. (f) Yang, Y.-B.; Tan, B. Construction of axially chiral compounds via asymmetric organocatalysis. Acc. Chem. Res. 2018, 51, 534–547. (g) Cheng, J. K.; Xiang, S.-H.; Li, S.; Ye, L.; Tan, B. Recent Advances in Catalytic Asymmetric Construction of Atropoisomers. Chem. Rev. 2021, 121, 4805–4902. (h) Carmona, J. A.; Rodríguez-Franco, C.; Fernández, R.; Hornillos, V.; Lassaletta, J. M. Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies. Chem. Soc. Rev. 2021, 50, 2968–2983.
(5) Rodríguez-Salamanca, P.; Fernández, R.; Hornillos, V.; Lassaletta, J. M. Asymmetric Synthesis of Axially Chiral C—N Atropoisomers. Chem. - Eur. J. 2022, DOI: 10.1002/chem.202104442.
(5) (a) Egami, H.; Katsuki, T. Iron-Catalyzed Asymmetric Aerobic Oxidation: Oxidative Coupling of 2-Naphthols. J. Am. Chem. Soc. 2009, 131, 6082–6083. (b) Shen, X.; Jones, G. O.; Watson, D. A.; Bhayana, B.; Buchwald, S. L. Enantioselective Synthesis of Axial Chiral Biaryls by the Pd- Catalyzed Suzuki-Miyaura Reaction: Substrate Scope and Quantum Mechanical Investigations. J. Am. Chem. Soc. 2010, 132, 11278–11287. (c) Xu, G.; Fu, W.; Liu, G.; Senanayake, C. H.; Tang, W. Efficient Syntheses of Karupenasamines A, B and Michellamine B by Asymmetric Suzuki-Miyaura Coupling Reactions. J. Am. Chem. Soc. 2014, 136, 570–573. (d) Feng, J.; Li, B.; He, Y.; Gu, Z. Enantioselective Synthesis of Atropoisomeric Vinyl Aren Compounds by Palladium Catalysis: A Carbene Strategy. Angew. Chem., Int. Ed. 2016, 55, 2186–2190. (e) Shen, D.; Xu, Y.; Shi, S.-L. A Bulky Chiral N-Heterocyclic Carbene Palladium Catalyst Enables Highly Enantioselective Suzuki-Miyaura Cross-Coupling Reactions for the Synthesis of Biaryl Atropoisomers. J. Am. Chem. Soc. 2019, 141, 14938–14945.
(6) (a) Gutnov, A.; Heller, B.; Fischer, C.; Drexler, H. J.; Spannenberg, A.; Sundermann, B.; Sundermann, C. Cobalt (I)-Catalyzed Asymmetric 2+2+2 Cyclocodidation of Alkynes and Nitriles: Synthesis of Enantioenergetically Enriched Atropoisomers of 2- Arylpyridines. Angew. Chem., Int. Ed. 2004, 43, 3795–3797. (b) Tanaka, K.; Nishida, G.; Wada, A.; Noguchi, K. Enantioselective Synthesis of Axially Chiral Phthalides through Cationic [Rh(II)-H] Catalyzed Cross Alkyne Cyclotrimerization. Angew. Chem., Int. Ed. 2004, 43, 6510–6512. (c) Xue, F.; Hayashi, T. Asymmetric Synthesis of Axially Chiral 2-Aminobisallyls by Rhodium- Catalyzed Benzannulation of 1-Arylalkynes with 2-(Cyano)methyl phenylboronates. Angew. Chem., Int. Ed. 2018, 57, 10368–10372.
(7) (a) Yu, C.; Huang, H.; Li, X.; Zhang, Y.; Wang, W. Dynamic kinetic resolution of bialyl lactones via a chiral bifunctional amine thiourea-catalyzed highly atropo-enantioselective transesterification. J. Am. Chem. Soc. 2016, 138, 6956–6959. (b) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Atroposelective Synthesis of Axially Chiral Bialyl Compounds. Angew. Chem., Int. Ed. 2005, 44, 5384–5427. (c) Bringmann, G.; Guder, T.;
Gulder, T. A.; Breuning, M. Atroposelective Total Synthesis of Axially Chiral Biaryl Natural Products. *Chem. Rev.* 2011, 111, 563–639.

(8) (a) Liao, G.; Zhou, T.; Yao, Q.-J.; Shi, B.-F. Recent advances in the synthesis of axially chiral biaryls via transition metal-catalysed asymmetric C–H functionalization. *Chem. Commun.* 2019, 55, 8514–8521. (b) Romero-Arenas, A.; Hornillos, V.; Iglesias-Siguenza, J.; Fernández, R.; López-Serrano, J.; Ros, A.; Lasaletta, J. M. Ir-Catalyzed Atroposelective Desymmetrization of Heterobicycles: Hydroarylation of Vinyl Ethers and Bicycloalkenes. *J. Am. Chem. Soc.* 2020, 142 (5), 2628–2639.

(9) (a) Hornillos, V.; Carmona, J. A.; Ros, A.; Iglesias-Siguenza, J.; López-Serrano, J.; Fernández, R.; Lasaletta, J. M. Dynamic Kinetic Resolution of Heterobiaryl Ketones by Zinc-Catalyzed Asymmetric Hydrolylation. *Angew. Chem., Int. Ed.* 2018, 57, 3777–3781. (b) Zhao, K.; Duan, L.; Xu, S.; Jiang, J.; Fu, Y.; Gu, Z. Enhanced reactivity by torsional strain of cyclic diaryliodonium in Cu-catalyzed acyl migratory insertion sequence. *Angew. Chem., Int. Ed.* 2018, 57, 3716–3720. (c) Xia, Y.; Qiu, D.; Wang, J. Transition-metal-catalyzed cross-couplings of vinyl chromium(0) carbene complexes through carbene migratory insertion/ Tsuji-Trost reaction. *Angew. Chem., Int. Ed.* 2017, 56, 13140–13144. (m) Gao, Y.; Wu, G.; Zhou, Q.; Wang, J. Palladium-catalyzed oxidative cross-coupling of ynamides and benzylic bromides by carbene migratory insertion. *Angew. Chem., Int. Ed.* 2018, 57, 2716–2720.

(10) Renzi, P. Organocatalytic synthesis of axially chiral atropisomers. *Org. Biomol. Chem.* 2017, 15, 4506–4516.

(11) Ros, A.; Estepa, B.; Ramírez-López, P.; Álvarez, E.; Fernández, R.; Lasaletta, J. M. Dynamic kinetic cross-coupling strategy for the asymmetric synthesis of axially chiral P,N-heterobiaryl alkynes. *J. Am. Chem. Soc.* 2013, 135, 15730–15733.

(12) (a) Ramírez-López, P.; Ros, A.; Estepa, B.; Fernández, R.; Fiser, B.; Gómez-Bengoa, E.; Lasaletta, J. M. A dynamic kinetic C–P cross-coupling for the asymmetric synthesis of axially chiral P,N ligands. *ACS Catal.* 2016, 6, 3955–3964. See also: (b) Bhat, V.; Wang, S.; Stoltz, B. M.; Virgil, S. C. Asymmetric synthesis of QUINAP via dynamic kinetic resolution. *J. Am. Chem. Soc.* 2013, 135, 16829–16832.

(13) Ramírez-López, P.; Ros, A.; Romero-Arenas, A.; Iglesias-Siguenza, J.; Fernández, R.; Lasaletta, J. M. Synthesis of IAN-type N,N-ligands via dynamic kinetic asymmetric Buchwald–Hartwig amination. *J. Am. Chem. Soc.* 2016, 138, 12053–12056.

(14) (a) Hornillos, V.; Ros, A.; Ramírez-López, P.; Iglesias-Siguenza, J.; Fernández, R.; Lasaletta, J. M. Synthesis of axially chiral heterobiaryl alkynes via dynamic kinetic asymmetric alkylation. *Chem. Commun.* 2016, 52, 14121–14124. (b) Carmona, J. A.; Hornillos, V.; Ramírez-López, P.; Ros, A.; Iglesias-Siguenza, J.; Gómez-Bengoa, E.; Fernández, R.; Lasaletta, J. M. Dynamic kinetic asymmetric Heck reaction for the simultaneous generation of central and axial chirality. *J. Am. Chem. Soc.* 2018, 140, 11067–11075.

(15) Reviews: (a) Barluenga, J.; Valdés, C. Tosylhydrazones: new uses for classic reagents in palladium-catalyzed cross-coupling and metal-free reactions. *Angew. Chem., Int. Ed.* 2011, 50, 7486–7500. (b) Xia, Y.; Zhang, Y.; Wang, J. Catalytic cascade reactions involving metal carbene migratory insertion. *ACS Catal.* 2013, 3, 2586–2598. (c) Xia, Y.; Wang, J. N-Tosylhydrazones: versatile synthons in the construction of cyclic compounds. *Chem. Soc. Rev.* 2017, 46, 2306–2362. (d) Xia, Y.; Qiu, D.; Wang, J. Transition-metal-catalyzed cross-couplings through carbene migratory insertion. *Chem. Rev.* 2017, 117, 13810–13889. For selected examples, see: (e) Greenman, K. L.; Carter, D. S.; Van Vranken, D. L. Palladium catalyzed insertion reactions of trimethylsilyldiazomethane. *Tetrahedron* 2001, 57, 5219–5225. (f) Kudrika, R.; Devine, S. K.; Adams, C. S.; Van Vranken, D. L. Palladium-catalyzed insertion of α-diazoesters into vinyl halides to generate α,β-unsaturated y-amino esters. *Angew. Chem., Int. Ed.* 2009, 48, 3677–3680. (g) Barluenga, J.; Moriel, P.; Valdés, C.; Aznar, F. N-tosylhydrazones as reagents for cross-coupling reactions: a route to polysubstituted olefins. *Angew. Chem., Int. Ed.* 2007, 46, 5587–5590. (h) Barluenga, J.; Escribano, M.; Aznar, F.; Valdés, C. Arylation of α-chiral ketones by palladium-catalyzed cross-coupling reactions of tosylation hydrazones with aryl halides. *Angew. Chem., Int. Ed.* 2010, 49, 6856–6859. (i) Peng, C.; Wang, Y.; Wang, J. Palladium-catalyzed cross coupling of α-diazocarbonyl compounds with arylboronic acids. *J. Am. Chem. Soc.* 2008, 130, 1566–1567. (j) Zhang, Z.; Liu, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. Palladium-catalyzed carbonylation/acryl migratory insertion sequence. *Angew. Chem., Int. Ed.* 2010, 49, 1139–1142.