Research Paper

Effect of Aerobic Exercise With Blood Flow Restriction on Mitochondrial Dynamics Proteins of Human Skeletal Muscles

Ali Aryashakib, *Bahman Mirzaei, Payam Saidie

1. Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.

ABSTRACT

Background: Aerobic exercise with Blood Flow Restriction (BFR) plays an important role in skeletal muscle adaptation; however, the effects of this type of exercise on mitochondrial dynamics proteins are unclear.

Objective: The purpose of this study was to investigate the effect of aerobic exercise with and without BFR on mitochondrial dynamics proteins of human skeletal muscles.

Method: Participants were 5 young men (mean age, 33.4±2.30 years; mean weight, 79.64±10.49 kg; BMI, 26.24±2.27 kg/m²). They performed aerobic exercise with BFR (AE+BFR) and without BFR (AE) in two separate days at five 2-min sessions and 1 min rest between the sessions. Western Blot method was used to measure the protein levels of Mitofusin 2 (MFN2) and Dynamin-Related Protein 1 (DRP1) in skeletal muscles.

Findings: AE+BFR (1.02±0.05 vs. 0.77±0.03) and AE (0.65±0.08 vs 0.57±0.03) significantly increased the mean MFN2 protein level compared to the pre-test mean values (P<0.05). AE+BFR (3.54±0.46 and 5.01±0.66) and AE (3.38±0.38 vs. 2.82±0.59) also significantly reduced the mean DRP1 level (P<0.05). Moreover, AE+BFR had greater significant effect on the mean levels of MFN2 (0.24±0.01 vs. 0.08±0.04) and DRP1 (-1.46±0.22 vs. -0.33±0.12) compared to AE (P<0.05).

Conclusion: It seems that aerobic exercise with BFR is a strong stimulant for the improvement of skeletal muscle mitochondrial dynamics.

Extended Abstract

1. Introduction

Blood Flow Restriction (BFR) as a new training method has been increasingly used to apply more physiological stress with low-intensity exercise. Exercise with BFR reduces oxygen delivery to skeletal muscle as well as the clearance of produced metabolites. It creates a stressful muscular environment that may be a strong stimulus for physiological adaptations [1]. However, the effect of BFR training with aerobic exercise on aerobic performance-related parameters has been received less attention. Changes and adaptations caused by exercise on muscle mitochondria can occur as a result of mitochondrial biogenesis, mitochondrial dynamics (including fusion and fission), and the process of mitophagy which can be an important mechanism for improving muscle oxygen consumption and, consequently, athletic performance [8].

Mitochondrial fusion plays an important role in maintaining mitochondrial integrity and is dependent on mitofusin (MFN) 1 and 2 [9], while during mitochondrial fission,
mitochondrial fragmentation expands and is dependent on Dynamin-Related Protein 1 (DRP1)[11]. Despite the effective role of exercise with BFR, there is no study of the potential role of this type of activity on mitochondrial fusion and fission proteins. Therefore, due to this limitation, the aim of this study was to investigate the effect of aerobic exercise with and without BFR on mitochondrial dynamic proteins (MFN2 and DRP1) of human skeletal muscle.

2. Materials and Methods

This is a quasi-experimental cross-sectional study with pre-test/post-test design. Participants were 5 male students at University of Guilan (Mean±SD age, 33.40±2.30 years; Mean±SD weight, 79.64±10.49 kg; BMI, 26.24±2.27 kg/m2) who were selected using a convenience sampling method. They performed aerobic exercise with BFR (AE+BFR) and aerobic exercise (AE) without BFR in 2 days. In AE+BFR intervention, BFR was applied by the pressure cuff on the proximal thigh area, and then, after warming up (including walking, running, and stretching), the subjects began to walk (with a speed of 51 meters per minute) on the treadmill.

The walking program included five 2-minute sessions and 1 minute rest between each session, according to Takashi et al.[20]. BFR in the leg muscles was maintained throughout the training session and 1-min rest interval (for 14 minutes which reached 17 minutes with 3-min warming up). The BFR was lifted immediately after the fifth session of walking, and then a period of return to initial state, including

![Graph](image1)

Figure 1. Effect of AE+BFR and AE on the MFN2 protein content (MFN2/GAPDH ratio), and western blot analysis of the expressions of MFN2 and GAPDH.* Significant compared to the pre-test phase (P<0.05), # significant compared to AE (P<0.05)

![Graph](image2)

Figure 2. Effect of AE+BFR and AE on the DRP1 protein content (DRP1/GAPDH ratio), and western blot analysis of the expressions of MFN2 and GAPDH.* Significant compared to the pre-test phase (P<0.05), # significant compared to AE (P<0.05)
walking, was performed by subjects for 5-11 minutes. AE intervention was similar to BFR+BFR, but was performed without applying BFR. In order to evaluate the changes in MFN2 and DRP1, a biopsy of the lateral extensor muscle was performed in two stages: 5 minutes before the start of both exercise interventions and 3 hours after their completion. Western blotting was used to measure the protein values of MFN2 and DRP1. In order to determine the difference between pre-test and post-test scores and also the difference between scores of two interventions, the paired t-test was used at the significance level of 0.05.

3. Results

The results showed that both aerobic exercise with BFR (P=0.001) and without BFR (P=0.04) led to a significant increase in MFN2 protein value compared to the pre-test values. A comparison between the two interventions showed that AE+BFR led to a significant increase in MFN2 protein value compared to AE (P=0.01) (Figure 1). The results also showed that both AE+BFR (P=0.001) and AE (P=0.02) led to a significant increase in DRP1 protein value compared to the pre-test values. A comparison between the two interventions showed that AE+BFR also could significantly increase the DRP1 protein value compared to AE (P=0.003) (Figure 2).

4. Discussion

Although there is very limited information on the acute effects of aerobic exercise on mitochondrial dynamics proteins, the findings of the present study showed that aerobic exercise can increase mitochondrial dynamics by reducing fission and increasing fusion, regardless of the role of BFR. Due to the role of PGC-1α in the regulation of proteins involved in mitochondrial fusion and fission, and the up-regulation of PGC-1α activity, both aerobic exercise with and without BFR could increase MFN2 level and decrease DRP1 level by up-regulation of PGC-1α activity [25].

Although there is no direct evidence to compare the effect of exercise with and without BFR on PGC-1α signaling and its regulators in the present study, higher induction and stimulation of PGC-1α following exercise with BFR seems to have resulted in further stimulation of mitochondrial dynamics proteins. Moreover, it is possible that aerobic exercise with BFR leads to an optimal increase in Reactive Oxygen Species (ROS) and PGC-1α stimulation, followed by improved mitochondrial dynamics three hours before exercise [30, 31]. Overall, it was concluded that aerobic exercise with BFR can facilitate mitochondrial dynamics by increasing both mitochondrial fusion and fission processes.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical approval from the Research Ethics Committee of Guilan University of Medical Sciences (Code: IR.GUMS.REC.1397.061).

Funding

This study was extracted from the PhD. thesis of the first author in Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht.

Authors' contributions

Conceptualization and validation: Ali Aryashakib and Bahman Mirzaei; Methodology, draft preparation, data analysis: All authors; Resources and funding acquisition: Ali Aryashakib; Editing and review: Bahman Mirzaei and Payam Saidie; Supervision and project administration: Bahman Mirzaei.

Conflicts of interest

The authors declared no conflict of interest

Acknowledgements

The authors would like to thank participants and the Faculty of Physical Education and Sports Sciences at University of Guilan for their cooperation.
تأثیر فعالیت ورزشی هوازی با محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری عضله اسکلتی انسان

عذرخواهی

چکیده

فعالیت ورزشی با محدودیت جریان خون (BFR) به عنوان یکی از فنون ورزشی بخصوص ورزش‌های هوازی مورد توجه قرار گرفته و فواید سازگاری عمدهاً در هیپرتروفی عضله اسکلتی، افزایش مویندی عضلانی و نیز بهبود سنتز پروتئین عضلانی، کاهش پروتئولیز، گسترش عضلانی و افزایش قدرت عضله و همچنین بهبود استقامت به عنوان الگوی محیط عضلانی با استرس بالا می‌شود که ممکن است محرکی اسکلتی، کاهش میزان پاکسازی متابولیت‌های تولیدی و ایجاد برای بررسی این مقاله، فعالیت ورزشی هوازی با محدودیت جریان خون، محرکی قوی برای سازگاری های فیزیولوژیکی باشد.

مقدمه

در مه آلودگی، فعالیت ورزشی هوازی با BFR به عنوان یکی از فنون ورزشی بخصوص ورزش‌های هوازی مورد توجه قرار گرفته و فواید سازگاری عمدهاً در هیپرتروفی عضله اسکلتی، افزایش مویندی عضلانی و نیز بهبود سنتز پروتئین عضلانی، کاهش پروتئولیز، گسترش عضلانی و افزایش قدرت عضله و همچنین بهبود استقامت به عنوان الگوی محیط عضلانی با استرس بالا می‌شود که ممکن است محرکی اسکلتی، کاهش میزان پاکسازی متابولیت‌های تولیدی و ایجاد برای بررسی این مقاله، فعالیت ورزشی هوازی با محدودیت جریان خون، محرکی قوی برای سازگاری های فیزیولوژیکی باشد.

1. Blood Flow Restriction (BFR)

- تعریف: انداختن جریان خون یا محدود کردن جریان خون
- تاثیرات: فعالیت ورزشی هوازی با BFR

مقدمة

پیگیری‌گری شیوع‌های تمرينی جدید و مؤثر، همواره مورد توجه محترفان علوم ورزشی و پزشکان است. اجرای تمرينات ورزشی با محدودیت جریان خون، به عنوان روش تمرينی جدید، برای پیگیری‌گری استرس فیزیولوژیک که به عنوان ت Ngh. بررسی این مقاله، فعالیت ورزشی هوازی با محدودیت جریان خون، محرکی قوی برای سازگاری های فیزیولوژیکی باشد.

1. Blood Flow Restriction (BFR)

- تعریف: انداختن جریان خون یا محدود کردن جریان خون
- تاثیرات: فعالیت ورزشی هوازی با BFR

مقدمة

پیگیری‌گری شیوع‌های تمرينی جدید و مؤثر، همواره مورد توجه محترفان علوم ورزشی و پزشکان است. اجرای تمرينات ورزشی با محدودیت جریان خون، به عنوان روش تمرينی جدید، برای پیگیری‌گری استرس فیزیولوژیک که به عنوان ت Ngh. بررسی این مقاله، فعالیت ورزشی هوازی با محدودیت جریان خون، محرکی قوی برای سازگاری های فیزیولوژیکی باشد.

1. Blood Flow Restriction (BFR)

- تعریف: انداختن جریان خون یا محدود کردن جریان خون
- تاثیرات: فعالیت ورزشی هوازی با BFR

مقدمة

پیگیری‌گری شیوع‌های تمرينی جدید و مؤثر، همواره مورد توجه محترفان علوم ورزشی و پزشکان است. اجرای تمرينات ورزشی با محدودیت جریان خون، به عنوان روش تمرينی جدید، برای پیگیری‌گری استرس فیزیولوژیک که به عنوان ت Ngh. بررسی این مقاله، فعالیت ورزشی هوازی با محدودیت جریان خون، محرکی قوی برای سازگاری های فیزیولوژیکی باشد.
شاخص توده بدنی همجوشی و شکافت میتوکندری ایجاد می‌کند. همچنین، توده بدنی پس از روز مورد توجه قرار گرفته است. مطالعه‌های اخیر نشان دهنده بهره بهبود سازگاری ایمنی است. با وجود این، مطالعات احتمالی و مؤثر تأثیر فعالیت ورزشی هوازی در سلامت و سازگاری ایمنی است. با در نظر گرفتن این اضطراب، برای شناخت و کنترل این شاخص، نیاز به اهمیت و ارزشمندی ایمنی دارد.

مقدمه

به منظور بررسی اثر فعالیت ورزشی هوازی با و بدون محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری، در پژوهش حاضر، با توجه به محدودیت‌های علمی موجود، به یک نمونه انتخاب یافت. از سوی دیگر، علی‌رغم نقش مؤثر فعالیت ورزشی با پروتئین‌های مرتبط با دینامیک میتوکندری در فعالیت ورزشی، مطالعات بسیار محدودی در زمینه بررسی تأثیر پروتئین‌های هم‌جوشی و شکافت میتوکندری در عضله اسکلتی در طول فعالیت ورزشی افزایش می‌باید. مطالعه در مدل حیوانی نیز نشان می‌دهد فعال سازی میتوکندری در حوزه‌های سازگاری هماهنگ، شامل بیوژنز میتوکندری، تمرین ورزشی، بهبود در کیفیت و کمیت میتوکندری را از طریق فرایندهای سازگاری، بهبود مانند در پذیرش واریانس و محصولات زنگی میتوکندری، منجر به بهبود در حالت بیماری، علائم اسکلتی و فشار خون می‌شود.

نتایج

یافته‌های این پژوهش نشان داد که تأثیر فعالیت ورزشی هوازی با و بدون محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری، در عضله اسکلتی انسان، متفاوت است. در حقیقت، پروتئین‌های مربوط به BFR در عضله اسکلتی انسان، به دلیل تأثیر فعالیت ورزشی، بهبود در کیفیت و کمیت میتوکندری را از طریق فرایندهای سازگاری، بهبود مانند در پذیرش واریانس و محصولات زنگی میتوکندری، منجر به بهبود در حالت بیماری، علائم اسکلتی و فشار خون می‌شود.

بحث

مطالعات قبلی نشان داد که فعالیت ورزشی با و بدون محدودیت جریان خون، میتوکندری هم‌جوشی و شکافت میتوکندری را افزایش می‌دهد. به دلیل این نتایج، در این پژوهش، بررسی اثرات فعالیت ورزشی هوازی با و بدون محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری در عضله اسکلتی انسان انجام شد.

درک بررسی بیشتری نیاز به بررسی اثرات فعالیت ورزشی هوازی با و بدون محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری در عضله اسکلتی انسان، می‌باشد. در این مطالعه، بررسی اثرات فعالیت ورزشی هوازی با و بدون محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری در عضله اسکلتی انسان انجام شد.

nym نتایج مربوط به محدودیت جریان خون نشان داد که فعالیت ورزشی با و بدون محدودیت جریان خون، میتوکندری هم‌جوشی و شکافت میتوکندری را افزایش می‌دهد. به دلیل این نتایج، در این پژوهش، بررسی اثرات فعالیت ورزشی هوازی با و بدون محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری در عضله اسکلتی انسان انجام شد.

درک بررسی بیشتری نیاز به بررسی اثرات فعالیت ورزشی هوازی با و بدون محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری در عضله اسکلتی انسان، می‌باشد. در این مطالعه، بررسی اثرات فعالیت ورزشی هوازی با و بدون محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری در عضله اسکلتی انسان انجام شد.

nym نتایج مربوط به محدودیت جریان خون نشان داد که فعالیت ورزشی با و بدون محدودیت جریان خون، میتوکندری هم‌جوشی و شکافت میتوکندری را افزایش می‌دهد. به دلیل این نتایج، در این پژوهش، بررسی اثرات فعالیت ورزشی هوازی با و بدون محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری در عضله اسکلتی انسان انجام شد.

nym نتایج مربوط به محدودیت جریان خون نشان داد که فعالیت ورزشی با و بدون محدودیت جریان خون، میتوکندری هم‌جوشی و شکافت میتوکندری را افزایش می‌دهد. به دلیل این نتایج، در این پژوهش، بررسی اثرات فعالیت ورزشی هوازی با و بدون محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری در عضله اسکلتی انسان انجام شد.

nym نتایج مربوط به محدودیت جریان خون نشان داد که فعالیت ورزشی با و بدون محدودیت جریان خون، میتوکندری هم‌جوشی و شکافت میتوکندری را افزایش می‌دهد. به دلیل این نتایج، در این پژوهش، بررسی اثرات فعالیت ورزشی هوازی با و بدون محدودیت جریان خون بر پروتئین‌های دینامیک میتوکندری در عضله اسکلتی انسان انجام شد.
مطالعه آزمایشی انجام گرفته در سال ۱۳۹۹ در دو دوره فوریت و اردیبهشت، با هدف ارزیابی تأثیر فعالیت ورزشی هوازی با محدودیت جریان خون بر تغییرات در سطح پروتئین های دینامیک میتوکندری عضله اسکلتی، به صورت دو روش مختلف انجام گردید.

روش ۱: فعالیت ورزشی هوازی با محدودیت جریان خون

در این روش، گروه آزمایشی، با استفاده از فشار جلوی مغزی (Pressure Cuff) به مقدار ۸۰ برای ساعت وارد شدند و سواءیت رژیم غذایی یکسانی داشتند. علاوه بر این، نوشیدنی‌های کافئین دار ممنوع شدند. همچنین، از آزمودنی‌ها هیچ نوع فعالیت ورزشی سنگین نداشتند و از مصرف مایعات غیر آب مصرف نمودند.

روش ۲: فعالیت ورزشی هوازی بدون محدودیت جریان خون

در این روش نیز گروه کنترل، با همان رژیم غذایی و با توجه به نتایج پژوهش حاضر، هر دو فعالیت ورزشی هوازی با بازیابی مساحتی متوالی، در برابر ۱۵ دقیقه تمرین بی‌درد و دو دقیقه استراحت، انجام گرفت. در این روش نیز نوشیدنی‌های کافئین دار ممنوع بود.

به منظور تنظیم تغییرات پیوسته در سطح پروتئین‌های تغییر میتوکندری عضله اسکلتی، از انواع مختلف P24 و MFN2 استفاده گردید.

در پایان مطالعه، مشاهده شد که فعالیت ورزشی هوازی با محدودیت جریان خون، می‌تواند در اصلاح سطح پروتئین‌های دینامیک میتوکندری عضله اسکلتی اثراتی قابل توجهی داشته باشد.

مراجع:
1. Takashi Tredmill Pressure Cuff
2. Pressure Cuff
3. Treadmill
4. Telashh
با هموگلوپین 2 میتوکندری (MFN2) و کاهش پروتئین مرتبط با شکافت میتوکندری (DRP1) می‌شود. در حالی که در میژه‌های محدودیت جریان ورزشی با محدودیت جریان جریان خون می‌شود در حالی که در میژه‌های بدون محدودیت جریان خون می‌شود، فعالیت ورزشی هوازی بدون محدودیت جریان خون می‌شود، در حالی که در میژه‌های بدون محدودیت جریان خون می‌شود.

بحث و نتیجه‌گیری

یافته‌های پژوهش حاضر نشان داد فعالیت ورزشی هوازی با و بدون محدودیت جریان خون منجر به افزایش در میزان فعالیت ورزشی و همچنین در نیرو می‌شود.

![نمودار 1](image1.png)

![نمودار 2](image2.png)
علاء بر نقش ورزش با محدودیت جریان خون اثرات قابل توجهی در پیام‌های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های مرتبط با تغییر در جریان خون و ایسکمی برای درمان های پیش‌بینی نیازمند قابل توجهی در پیام‌های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است.

در مقایسه با مطالعات انجام شده در این زمینه نشان می‌دهد محدودیت ورزش حاد در توده منجر به افزایش می界限 در حالت فعالیت ورزشی و پروتئین‌های دیگر منجر به افزایش در حالت فعالیت ورزشی و پروتئین‌های دیگر است. در این مطالعه نشان داده‌ها محدودیت در پروتئین های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های مرتبط با تغییر در جریان خون و ایسکمی برای درمان های پیش‌بینی نیازمند قابل توجهی در پیام‌های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های مرتبط با تغییر در جریان خون و ایسکمی برای درمان های پیش‌بینی نیازمند قابل توجهی در پیام‌های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های مرتبط با تغییر در جریان خون و ایسکمی برای درمان های پیش‌بینی نیازمند قابل توجهی در پیام‌های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های مرتبط با تغییر در جریان خون و ایسکمی برای درمان های پیش‌بینی نیازمند قابل توجهی در پیام‌های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های مرتبط با تغییر در جریان خون و ایسکمی برای درمان های پیش‌بینی نیازمند قابل توجهی در پیام‌های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های مرتبط با تغییر در جریان خون و ایسکمی برای درمان های پیش‌بینی نیازمند قابل توجهی در پیام‌های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های مرتبط با تغییر در جریان خون و ایسکمی برای درمان های پیش‌بینی نیازمند قابل توجهی در پیام‌های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های مرتبط با تغییر در جریان خون و ایسکمی برای درمان های پیش‌بینی نیازمند قابل توجهی در پیام‌های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان داده‌ها محدودیت در پروتئین های مرتبط با تغییر در جریان خون و ایسکمی برای درمان های پیش‌بینی نیازمند قابل توجهی در پیام‌های Mfn1 و Mfn2 و عملکدهای ابتکاری Drp1 [17] است. مطالعات حیوانی نشان DAD.
می‌تواند وابسته به مدت زمان ROS به نظر می‌رسد که نقش و میزان تولید آن یا نیز فرمی که بررسی‌های پیش‌تر در این حالت ممکن است فعالیت ورزشی ROS هوازی با محدودیت جریان خون منجر به لزگ‌آuintptr مشابه و تحقیق PGC-1α و به دنبال آن موجب بهبود دینمیک و میتوکندریایی شده است.

یافته‌های پژوهش حاضر برای اولین بار نشان داد فعالیت ورزشی هوازی با محدودیت جریان خون می‌تواند محرکی قوی برای تقویت ورزشی پروتئین‌های مرتبط در فرآیندهای میتوکندریایی (مانند PGC-1α و MFN2) که کاهش پروتئین درگیر در شکاف‌ها و میتوکندریایی (DRP1) بود. این فرضیه نیاز به سایر پژوهش‌ها و بحث بیشتری دارد.

مهمترین محدودیت‌های پژوهش حاضر، عدم اندازه‌گیری ROS و AMPK و سیگنال‌های درون‌سلولی می‌باشد. نتایج پژوهش حاضر نشان می‌دهد که پژوهش‌های مهم‌ترین محدودیت‌های پژوهش حاضر در مطالعات بعدی ممکن است با تحقیق‌های ساده‌تر و بهتر در شکاف میتوکندریایی و عملکرد و بیزیرتی میتوکندریایی بی‌بستگی پیدا می‌کند.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش در این مطالعه مرکب اخلاق مرزوقی‌کارشکی گیلان با کد تأیید شده است

IR.GUMS.REC.1397.061

حامي مالی

مقاله پژوهشی حاضر مستخرج از رساله دکتری تخصصی فیزیولوژی ورزشی آقازدیغی علی آریاشکیب که در دانشکده علوم ورزشی دانشگاه گیلان ارائه شده است و به عنوان حامي مالی ملقا نام‌گذاری شده است.

مشارکت نویسندگان

فیزیولوژی و امتیازاتی بهمن میرزایی و علی آریاشکیب.
روش‌شناسی، تحلیل و نتایج بهمن میرزایی، علی آریاشکیب و پریسا سعیدی خانمی.

میزان تأثیرات فعالیت ورزشی هوازی با محدودیت جریان خون بر پروتئین‌های دینمیک و میتوکندری در انسان

تعارض منافع

هیچگونه تنش منافعی از سوی نویسندگان گزارش نشده است.

به نظر می‌رسد که نقش ROS می‌تواند وابسته به مدت زمان

روش‌شناسی، تحلیل و نتایج بهمن میرزایی، علی آریاشکیب و پریسا سعیدی خانمی.

میزان تأثیرات فعالیت ورزشی هوازی با محدودیت جریان خون بر پروتئین‌های دینمیک و میتوکندری در انسان

تعارض منافع

هیچگونه تنش منافعی از سوی نویسندگان گزارش نشده است.
References

[1] Paton CD, Addis SM, Taylor LA. The effects of muscle blood flow restriction during running training on measures of aerobic capacity and run time to exhaustion. Eur J Appl Physiol. 2017; 117(12):2579-85. [DOI:10.1007/s00421-017-3745-3] [PMID]

[2] Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves Jr M, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012; 44(3):406-12. [DOI:10.1249/MSS.0b013e318233b4bc] [PMID]

[3] Ozaki H, Kakigi R, Kobayashi H, Loenneke JP, Abe T, Naito H. Effects of walking combined with restricted leg blood flow on mTOR and MAPK signalling in young men. Acta Physiol (Oxf). 2014; 211(1):97-106. [DOI:10.1111/apha.12243] [PMID]

[4] Larkin KA, MacNeil RG, Dirain M, Sandesara B, Manini TM, Buford TW. Blood flow restriction enhances post-resistance exercise angiogenesis gene expression. Med Sci Sports Exerc. 2012; 44(11):2077-83. [DOI:10.1249/MSS.0b013e3182625928] [PMID]

[5] de Oliveira MFM, Caputo F, Corvino RB, Denadai BS. Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand J Med Sci Sports. 2016; 26(9):1017-25. [DOI:10.1111/sms.12540] [PMID]

[6] Gundersen K. Excitation-transcription coupling in skeletal muscle: The molecular pathways of exercise. Biol Rev Camb Philos Soc. 2011; 86(3):564-600. [DOI:10.1111/j.1469-185x.2010.00161.x] [PMID] [PMCID]

[7] Ferraro E, Giammarioli AM, Chiandotto S, Spoletini I, Rosano G. Exercise-induced skeletal muscle remodeling and metabolic adaptation: Redox signaling and role of autophagy. Antioxid Redox Signal. 2014; 21(1):154-76. [DOI:10.1089/ars.2013.5773] [PMID] [PMCID]

[8] Gottlieb RA, Carreira RS. Autophagy in health and disease. 5. Mitochondrial fission and fusion proteins in rat skeletal muscle. J Biol Chem. 2003; 278(38):36373-9. [DOI:10.1074/jbc.M303758200] [PMID]

[9] Eiser V, Lenaers G, Hajnóczky G. Mitochondrial fusion is frequent in skeletal muscle and supports excitation-contraction coupling. J Cell Biol. 2014; 205(2):179-95. [DOI:10.1083/jcb.201312026] [PMID] [PMCID]

[10] Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005; 280(28):26185-92. [DOI:10.1074/jbc.M503062200] [PMID]

[11] Caffin F, Prola A, Piquereau J, Novotova M, David DJ, Garnier A, et al. Altered skeletal muscle mitochondrial biogenesis but improved endurance capacity in trained OPA1-deficient mice. J physiol. 2013; 591(23):6017-37. [DOI:10.1113/jphysiol.2013.263079] [PMID] [PMCID]

[12] Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012; 337(6098):1062-5 [DOI:10.1126/science.1219855] [PMID] [PMCID]

[13] Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol. 1998; 142(3):351-8. [DOI:10.1083/jcb.142.3.351] [PMID] [PMCID]

[14] James DI, Parone PA, Mattenberger Y, Martinou JC. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem. 2003; 278(38):36373-9. [DOI:10.1074/jbc.M303758200] [PMID]

[15] Miller BF, Hamilton KL. A perspective on the determination of mitochondrial biogenesis. Am J Physiol Endocrinol Metab. 2012; 302(5):E496-E9. [DOI:10.1152/ajpendo.00578.2011] [PMID] [PMCID]

[16] Westermann B. Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta. 2012; 1817(10):1833-8. [PMID] [PMCID]

[17] Ding H, Jiang N, Liu H, Liu X, Liu D, Zhao F, et al. Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. Biochim Biophys Acta. 2010; 1800(3):250-6. [DOI:10.1016/j.bbamem.2009.08.007] [PMID]

[18] Cartoni R, Léger B, Hock MB, Praz M, Crettenand A, Pich S, et al. Mitofusins 1/2 and ERα expression are increased in human skeletal muscle after physical exercise. J physiol. 2005; 567(Pt 1):349-58. [DOI:10.1113/jphysiol.2005.092031] [PMID] [PMCID]

[19] Pagano AF, Py G, Bernardi H, Candau RB, Sanchez AMJ. Autophagy and protein turnover signaling in slow-twitch muscle during exercise. Med Sci Sports Exerc. 2014; 46(7):1314-25. [DOI:10.1249/MSS.0000000000000237] [PMID] [PMCID]

[20] Abe T, Sakamaki M, Fujita S, Ozaki H, Sugaya M, Sato Y, et al. Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. J Geriatr Phys Ther. 2010; 33(1):34-40. [PMID]

[21] Hayot M, Michaud A, Koechlin C, Caron MA, Leblanc P, Préault C, et al. Skeletal muscle microbiopsy: A validation study of a minimally invasive technique. Eur Respir J. 2005; 25(3):431-40. [DOI:10.1183/09031936.05.00053404] [PMID]

[22] Jamart C, Naslain D, Gilson H, Francaux M. Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. Am J Physiology Endocrinol Metab. 2013; 305(8):E964-E74. [DOI:10.1152/ajpendo.00270.2013] [PMID]

[23] Kitaoa Y, Ogasawara R, Tamura Y, Fujita S, Hatta H. Effect of electrical stimulation-induced resistance exercise on mitochondrial fission and fusion proteins in rat skeletal muscle. Appl Physiol Nutr Metab. 2015; 40(11):1137-42. [DOI:10.1139/apnm-2015-0184] [PMID]

[24] Kruse R, Pedersen AJT, Kristensen JM, Petersson SJ, Wojtaszewski JFP, Højlund K. Intact initiation of autophagy and mitochondrial fission by exercise in rat skeletal muscle. J Physiol. 2009; 587(Pt 1):349-58. [DOI:10.1113/jphysiol.2008.166747] [PMID] [PMCID]

[25] St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, et al. Mitophagy and mitochondrial dynamics in mammalian cells and fission. Biochim Biophys Acta. 2012; 1817(10):1833-8. [PMID] [PMCID]

[26] Liesa M, Borda-d’Água B, Medina-Gómez G, Lelliott CJ, Paz X, Vázquez-Bravo J, et al. Effect of aerobic exercise with blood flow restriction on mitochondrial dynamics proteins. J Qazvin Univ Med Sci. 2020; 24(1):2-13. [PMID] [PMCID]
Bahreinipour MA, Joukar S, Hovanloo F, Najafipour H, Naderi V, Rajamirhasani AR, et al. Mild aerobic training with blood flow restriction increases the hypertrophy index and MuSK in both slow and fast muscles of old rats: Role of PGC-1α. Life Sci. 2018; 202:103-9. [DOI:10.1016/j.lfs.2018.03.051] [PMID]

Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell. 2014; 159(4):738-49. [DOI:10.1016/j.cell.2014.10.029] [PMID]

Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci. 2006; 103(8):2653-8. [DOI:10.1073/pnas.0511154103] [PMID] [PMCID]

Gomez-Lazaro M, Bonekamp NA, Galindo MF, Jordán J, Schrader M. 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SYSY cells. Free Radic Biol Med. 2008; 44(11):1960-9. [DOI:10.1016/j.freeradbiomed.2008.03.009] [PMID]

Christiansen D, Murphy RM, Bangsbo J, Stathis CG, Bishop DJ. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol (Oxf). 2018; 223(2):e13045. [DOI:10.1111/apha.13045] [PMID] [PMCID]

Ircher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. Am J Physiol Cell Physiol. 2009; 296(1):C116-C23. [DOI:10.1152/ajpcell.00267.2007] [PMID]
