Conversion of Tomato Saponins to Pregnan Derivatives

Toshihiro Nohara,*a Hideyuki Manabe,a Yukio Fujiwara,b Tsuyoshi Ikeda,a Masateru Ono,c Kotaro Murakami,a DaiSuKe Nakano,d Junei Kinjo,d and Tetsuya Kajimotoe

a Faculty of Pharmaceutical Sciences, Sojo University; 4–22–1 Ikeda, Nishi-ku, Kumamoto 860–0082, Japan;
b Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University; 1–1–1 Honjo, Chuo-ku, Kumamoto 860–8556, Japan; c School of Agriculture, Tokai University; 5435 Minami-Aso, Aso, Kumamoto 869–1404, Japan; d Faculty of Pharmaceutical Sciences, Fukuoka University; 8–19–1 Nanakuma, Jonan-ku, Fukuoka 814–0180, Japan; and e Institute of General Scientific Technology, Ritumeikan University; 1–1–1 Nojihigashi, Kusatsu, Shiga 525–8577, Japan.

Received January 5, 2014; accepted February 25, 2014

Here reports new conversions methods of tomato saponins, esculeoside A (1) and a mixture of esculeosides B-1 (2) and B-2 (3), (the latter two were obtained from tomato cans) into pregnane derivative (5) by an alkali treatment followed by acid treatment. Compound 1 or a mixture of 2 and 3 were each refluxed with 1N KOH to afford a characteristic pyridine steroidal glycoside (4), which was then treated with 2N HCl–MeOH to afford a pregnane derivative, 3β-hydroxy-5α-pregn-16-en-20-one (5). The results of the above two reactions indicated that tomato saponins are chemically closely related to pregnane hormones. We assume that the assimilated tomato saponins via the small intestine are metabolized into pregnane derivatives, demonstrating various bioactivities such as anti-cancer, anti-osteoporosis, and anti-menopausal disorder activities.

Key words tomato saponin; esculeoside A; esculeoside B; alkali treatment; pyridine steroidal derivative; pregnane

In 2003, Nohara and colleagues isolated a tomato saponin, named as esculeoside A (1),1,2 from the mature fruits of tomato, Solanum lycopersicum L., and determined its structure. Tomato saponin is a significant constituent of ripe tomatoes and is present in approximately four-fold higher levels than lycopene. Thus far, the bioactivity of tomato has been attributed solely to lycopene. Therefore, the pharmacological evaluation of 1 is important.

Recently, Fujiwara et al.3) reported that the oral administration of 1 to apolipoprotein E-deficient mice significantly reduced the serum levels of cholesterol glycerides, low-density lipoprotein cholesterol, and the severity of atherosclerotic lesions without any detectable side effects. In addition, we found an interesting chemical conversion: esculeogenin A, the sapogenol of 1, was easily converted to a pregnane derivative, 3β-hydroxy-5α-pregn-16-ene-20-one (5), by refluxing in aqueous pyridine,4,5) as shown in Chart 1, indicating that tomato saponin is closely related to the pregnane hormone from the viewpoint of chemical reaction.

Furthermore, we found a new method for the respective conversions of 1 or a mixture of esculeosides B-1 (2) and B-2 (3)6) to the pregnane derivative as follows: Esculeoside A (1) was refluxed in 1N KOH for 1h. The reaction mixture was separated by silica gel column chromatography using a mixture of CHCl3–MeOH–H2O (8:2:0.2) to afford the major product (4), amorphous powder, [α],D

The authors declare no conflict of interest.

* To whom correspondence should be addressed. e-mail: none@ph.sojo-u.ac.jp © 2014 The Pharmaceutical Society of Japan
−96.2°(pyridine), in 32% yield. The high-resolution negative-ion fast-atom-bombardment mass spectroscopy (HR-FAB-MS) of 4 exhibited the [M−H]\(^−\) peak at \(m/z\) 1044.5009 [Calcd for C\(_{50}\)H\(_{78}\)O\(_{22}\)N: 1044.5016]. The \(^1\)H-NMR (pyridine-\(d_5\)) spectrum showed four methyl groups at \(\delta\) 0.63 (3H, s), 1.16 (3H, s), 1.59 (3H, d, \(J=6.9\) Hz), and 2.11 (3H, s); two aromatic protons at \(\delta\) 7.18 (1H, br s) and 8.18 (1H, br s); and four anomeric protons at \(\delta\) 4.87 (1H, d, \(J=7.5\) Hz), 5.17 (1H, d, \(J=7.5\) Hz), 5.21 (1H, d, \(J=6.9\) Hz), and 5.54 (1H, d, \(J=6.4\) Hz). The \(^13\)C-NMR (pyridine-\(d_5\)) spectrum showed five aromatic carbons at \(\delta\) 123.2, 131.3, 140.8, 150.0, and 151.0; two oxygen-bearing carbons at \(\delta\) 77.2, and 77.4; four methyl carbons at \(\delta\) 12.1, 13.7, 17.6, and 19.4; eight methylene carbons at \(\delta\) 21.0, 28.8, 29.7, 32.1, 34.6, 35.2, 37.0, and 40.3; six methine carbons at \(\delta\) 35.6, 37.0, 44.5, 54.4, 54.6, and 62.8; two quaternary carbons at \(\delta\) 35.6, and 42.8; and a \(\beta\)-lycotetraosyl moiety at \(\delta\) 102.2, 71.9, 74.9, 79.8, 74.5, 60.3 (\(\beta\)-galactopyranosyl C-1–C-6), 104.8, 81.2, 86.5, 70.5, 78.6, 61.5 (inner \(\beta\)-glucopyranosyl C-1–C-6), 105.0, 74.9, 78.5, 70.8, 78.5, 62.2 (terminal \(\beta\)-glucopyranosyl C-1–C-6), 104.7, 75.2, 76.0, 70.3, 67.2 (\(\beta\)-xylopyranosyl C-1–C-5). The heteronuclear multiple-bond correlation (HMBC) showed that the methyl group at \(\delta\) 2.11 correlated to the three aromatic carbons at \(\delta\) 123.2, 131.3, and 140.8, indicating this methyl group as C-27; the aromatic protons at \(\delta\) 7.18 and 8.18 were assigned...
May 2014

485

to H-24 and H-26, respectively. The HR-FAB-MS and HMBC results showed that the E-ring is open, and the hydroxyl groups are present at the C-16 and C-23 positions. Therefore, the structure of 4 was deduced to be a pyridine derivative as shown in Chart 2.

On the other hand, a mixture of esculeoside B-1 (2) and esculeoside B-2 (3) was refluxed in 1N KOH for 1 h. After neutralizing with 1N HCl, the reaction mixture was concentrated under reduced pressure and passed through Diaion HP-20 to afford the crude material, which was purified by using silica gel chromatography using a mixture of CHCl3–MeOH–H2O (8:2:0.2) to afford the major compound, amorphous powder, [α]D −98.5° (pyridine), in 34% yield, as shown in Chart 3. The negative FAB-MS showed the [M−H]− peak at m/z 1044.5012 [Calcd for C50H78O22N]; the 1H-NMR (pyridine-d5) and 13C-NMR (pyridine-d5) spectra were identical to those of compound 4.

Next, compound 4 was refluxed in 2N HCl–MeOH for 1 h, and the resulting reaction mixture was purified by using silica gel column chromatography using a mixture of n-hexane–acetone (5:1) to afford compound 5 (in 27% yield from 4). The HR positive FAB-MS showed the [M+H]+ peak at m/z 317.2484 (Calcd for C21H33O2: 317.2481). The 1H-NMR spectrum (in CDCl3) showed three methyl groups at δ 0.77 (3H, s), 0.81 (3H, s), and 2.18 (3H, s); an oxygen-bearing methane proton at δ 3.53 (1H, m); and an olefinic proton at δ 6.62 (1H, dd, J=1.8, 3.1 Hz). Moreover, the 13C-NMR spectrum showed a total of 21 carbons including three methyl groups at δ 12.2, 15.9, and 28.5; one oxygen-bearing methine carbon at δ 71.3; two olefinic carbons at δ 144.4 and 155.5; and a carbonyl carbon at δ 196.8. Thus, which The product was identified as 3β-hydroxy-5α-pregn-16-en-3β-ol-20-one,7) as shown in Chart 4. The above these reactions are summarized in Chart 5.

Our recent studies on the constituents of Solanum plants

![Chart 4](image1.png)

![Chart 5](image2.png)
have revealed that pregnant glycosides are accompanied with normal spirostanol and furostanol glycosides. Esculetigenin A was easily converted into a pyridine derivative, 3β-hydroxy-5α-pregnen-16-ene-20-one (5) by refluxing in aqueous pyridine. Both I, and a mixture of esculesides B-1 (2) and B-2 (3) were converted to the same pyridine derivative by refluxing in a KOH solution, followed by the reaction with HCl/MEOH. Moreover, a pregner glycoside has been isolated from over-ripe tomato. The above facts strongly indicate that orally administered steroidal glycosides can be metabolized into pyridine derivatives, a type of steroid hormone. In further experiments, urine was collected from human subjects who had consumed tomatoes, and separated by various column chromatographic techniques to afford three androstane derivatives. These androstane analogs are normally excreted; however, because no such analogs were detected in the control samples, their occurrence indicated the production of progesterone by the subjects that had consumed tomatoes. We hypothesize that the orally administered steroidal glycosides such as spirostanol, furostanol and spirostanol glycosides are metabolized, thus introducing a hydroxyl group at C-23. These intermediates may then be metabolized into pyridine derivatives. We conclude that the tomato saponin I is metabolized into various steroid hormones such as pregnane, with anti-osteoporosis, anti-menopausal disorder, and anti-tumor bioactivities in the body.

Experimental

General Procedure

Optical rotations were measured with a JASCO P-1020 (l=0.5) digital polarimeter. FAB-MS were obtained with a glycerol matrix in the positive ion mode using a JEOL JMS-DX300 and a JMS-DX 303 HF spectrometer. The 1H- and 13C-NMR spectra were measured in pyridine-d5 with JEOL-α-500 spectrometer, and chemical shifts are given on a δ (ppm) scale with tetramethylsilane (TMS) as the internal standard. Column chromatographies were carried out on a Diaion HP-20 (Mitsubishi Chemical Industries), and silica gel 60 (230–400 mesh, Merck). TLC was performed on silica gel plates (Kieselgel 60 F254, Merck) and RP C18 silica gel plates (Merck). The spots on TLC were visualized by UV light (254/366 nm) and sprayed with 10% HCl/MeOH. Moreover, a pregner glycoside has been isolated from a mixture of esculesides B-1 (2) and B-2 (3) into Pyridine Derivative (4). A solution of esculetigenin A (1, 432 mg) in 1 N KOH (22 mL) was refluxed for 1h on the oil bath. After neutralization with 1 N HCl, the reaction mixture was concentrated under reduced pressure and passed through Diaion HP-20. It was first washed with water and next eluted with methanol to give the crude material, which was purified by using silica gel chromatography with CHCl3–MeOH–H2O (8:2:0.2) to provide major compound, an amor phous powder (74 mg), [α]22D+98.5°(pyridine), in 34% yield. The negative FAB-MS exhibited m/z 1044.5009 [Calcd for C50H78O22N: 1044.5016]. 1H-NMR (pyridine-d5) δ: 0.63 (3H, s, H3-19), 1.16 (3H, s, 18-H3), 1.59 (3H, d, J=6.9 Hz, 21-H3), 2.11 (3H, s, 27-H3), 4.87 (1H, d, J=7.5 Hz, galactosyl H-1), 5.17 (1H, d, J=7.5 Hz, inner glucosyl H-1), 5.21 1H, d, J=7.4 Hz, xylosyl H-1), 5.54 (1H, d, J=6.9 Hz, terminal glucosyl H-1), 7.18 (1H, brs, H-24), 8.18 (1H, brs, H-26). 13C-NMR (pyridine-d5): aglycone moiety C-1–C-27, δ 37.0, 29.7, 77.2, 34.5, 44.5, 28.8, 32.1, 35.6, 34.9, 35.6, 21.0, 40.2, 42.8, 54.6, 35.2, 77.4, 62.8, 13.7, 12.1, 37.0, 19.4, 150.0, 151.0, 123.2, 131.3, 140.8, 17.6; galactopyranosyl C-1–C-6 at δ 102.2, 71.9, 74.9, 79.8, 75.3, 67.3; inner glucopyranosyl C-1–C-6 at δ 104.8, 81.2, 86.5, 70.5, 78.6, 61.5; terminal galacopyranosyl C-1–C-6 at δ 105.0, 74.9, 78.5, 70.8, 78.5, 62.2; xylopyranosyl C-1–C-5 at δ 104.7, 75.2, 76.0, 70.3, 67.2.

Conversion of a Mixture of Esculesides B-1 (2) and B-2 (3) into Pyridine Derivative (4)

A mixture of esculesides B-1 (2, 255 mg) and esculeside B-2 (3) was refluxed with 1 N KOH for 1h. After neutralization with 1 N HCl, the reaction mixture was concentrated under reduced pressure and passed through Diaion HP-20. It was first washed with water and then eluted with methanol to give the crude material, which was purified by using silica gel chromatography with CHCl3–MeOH–H2O (8:2:0.2) to provide major compound, an amor phous powder (74 mg), [α]22D+98.5°(pyridine), in 34% yield. The negative FAB-MS exhibited m/z 1044.5009 [Calcd for C50H78O22N: 1044.5016]. 1H-NMR (pyridine-d5) δ: 0.63 (3H, s, H3-19), 1.16 (3H, s, 18-H3), 1.59 (3H, d, J=6.9 Hz, 21-H3), 2.11 (3H, s, 27-H3), 4.87 (1H, d, J=7.5 Hz, galactosyl H-1), 5.17 (1H, d, J=7.5 Hz, inner glucosyl H-1), 5.21 1H, d, J=7.4 Hz, xylosyl H-1), 5.54 (1H, d, J=6.9 Hz, terminal glucosyl H-1), 7.18 (1H, brs, H-24), 8.18 (1H, brs, H-26). 13C-NMR (pyridine-d5): aglycone moiety C-1–C-27, δ 37.0, 29.7, 77.2, 34.5, 44.5, 28.8, 32.1, 35.6, 34.9, 35.6, 21.0, 40.2, 42.8, 54.6, 35.2, 77.4, 62.8, 13.7, 12.1, 37.0, 19.4, 150.0, 151.0, 123.2, 131.3, 140.8, 17.6; galactopyranosyl C-1–C-6 at δ 102.2, 71.9, 74.9, 79.8, 75.3, 67.3; inner glucopyranosyl C-1–C-6 at δ 104.8, 81.2, 86.5, 70.5, 78.6, 61.5; terminal galacopyranosyl C-1–C-6 at δ 105.0, 74.9, 78.5, 70.8, 78.5, 62.2; xylopyranosyl C-1–C-5 at δ 104.7, 75.2, 76.0, 70.3, 67.2.

References

1) Fujiwara Y., Yahara S., Ikeda T., Ono M., Nohara T., Chem. Pharm. Bull., 51, 234–235 (2003).
2) Fujiwara Y., Takaki A., Uehara Y., Ikeda T., Okawa M., Yamauchi K., Ono M., Yoshimitsu H., Nohara T., Tetrathreadon, 60, 4915–4920 (2004).
3) Fujiwara Y., Kiyota N., Horii M., Matsushita S., Iijima Y., Aoki K., Shibata D., Takeya M., Ikeda T., Nohara T., Nagai R., Arterioscler. Thromb. Vasc. Biol., 27, 2400–2406 (2007).
4) Matsuhashi S., Yoshizaki M., Fujiwara Y., Ikeda T., Ono M., Okawara T., Nohara T., Tetrathreadon Lett., 46, 3549–3551 (2005).
5) Nohara T., Okamoto K., Matsushita S., Fujiwara Y., Ikeda T., Miyashita H., Ono M., Yoshimitsu H., Kansui H., Kunieda T., Chem. Pharm. Bull., 56, 1015–1017 (2008).
6) Manabe H., Fujiwara Y., Ikeda T., Ono M., Murakami K., Zhou J.-R., Yokomizo K., Nohara T., Chem. Pharm. Bull., 61, 764–767 (2013).
7) Yoshitohara T., Nagaoka T., Ohra J., Sakamura S., Phytochemistry, 27, 3982–3984 (1988).
8) Nohara T., Yabuta H., Suebou M., Hida R., Miyahara K., Kawa-
9) Zhu X., Tsumagari H., Honbu T., Ikeda T., Ono H., Nohara T., *Tetrahedron Lett.*, 42, 8043–8046 (2001).
10) Dong M., Feng X., Wang B., Wu L., Ikejima T., *Tetrahedron*, 57, 501–506 (2001).
11) Tran Q. L., Tezuka Y., Banskota A. H., Tran Q. K., Saiki I., Kadota S., *J. Nat. Prod.*, 64, 1127–1132 (2001).
12) Yokosuka A., Mimaki Y., Sashida Y., *J. Nat. Prod.*, 65, 1293–1298 (2002).
13) Mimaki Y., Watanabe K., Sakagami H., Sashida Y., *J. Nat. Prod.*, 65, 1863–1868 (2002).
14) Yin J., Kouda K., Tezuka Y., Tran Q. L., Miyahara T., Chen Y., Kadota S., *J. Nat. Prod.*, 66, 646–650 (2003).
15) Liu H., Xiong Z., Li F., Qu G., Kobayashi H., Yao X., *Chem. Pharm. Bull.*, 51, 1089–1091 (2003).
16) Ikeda T., Tsumagari H., Okawa M., Nohara T., *Chem. Pharm. Bull.*, 52, 142–145 (2004).
17) Fujiwara Y., Yoshizaki M., Matsushita S., Yahara S., Yae E., Ikeda T., Ono M., Nohara T., *Chem. Pharm. Bull.*, 54, 1312–1314 (2006).
18) Nohara T., Fujiwara Y., Matsushita S., Ikeda T., Ono M., Nohara T., *Chem. Pharm. Bull.*, 51, 1089–1091 (2003).
19) Nohara T., Ono M., Fujiwara Y., Matsushita S., Noguchi E., Yoshimitsu H., Ono M., *J. Nat. Med.*, 61, 1–13 (2006).
20) Nohara T., Ono M., Ikeda T., Fujiwara Y., El-Aasr M., *J. Nat. Prod.*, 73, 1734–1741 (2010).