Fatal Embolic ST-Elevation Myocardial Infarction Secondary to Healed-Phase Mitral Valve Infective Endocarditis

Hidesato Fujito, MD, Yuki Saito, MD, Haruna Nishimaki, MD, Yusuke Hori, MD, Yasunari Ebuchi, MD, Hiroyuki Hao, MD and Yasuo Okumura, MD

Summary

Embolic myocardial infarction (MI) caused by infective endocarditis (IE) is rare, but it is increasingly recognized as a notable complication. Coronary embolisms are typically observed in patients with aortic valve endocarditis and is a known severe complication with a high mortality rate that may occur during the acute phase of infection. Herein, we report a case of a fatal embolic ST-elevation MI caused by mitral valve IE vegetation during the healed phase, which was proven on postmortem examination.

Key words: Infection, Valvular heart disease, Ischemic heart disease

Embolic myocardial infarction (MI) caused by infective endocarditis (IE) is rare, but it is increasingly recognized as a notable complication. Coronary embolisms are typically observed in patients with aortic valve endocarditis and is a known severe complication with a high mortality rate that may occur during the acute phase of infection. Herein, we report a case of a fatal embolic ST-elevation MI caused by mitral valve IE vegetation during the healed phase, which was proven on postmortem examination.

Case Report

A 79-year-old Japanese woman, who had DDD pacemaker for complete atrioventricular block implanted a year ago, was admitted to our hospital with a history of fever and headache. On admission, her body temperature was 40.3°C, and her C-reactive protein (CRP) level was 6.69 mg/dL. Transthoracic echocardiography (TTE) revealed a left ventricular ejection fraction (LVEF) of 76% and immobile mitral annulus calcification, as well as an independently oscillating mobile vegetation on the anterior mitral valve leaflet, which was 15 mm in size (Figure 1). Three consecutive blood cultures identified Streptococcus agalactiae. Accordingly, she was diagnosed with IE according to the modified Duke criteria. Three days after taking piperacillin-tazobactam under microbiology, her temperature dropped to 36°C, and her CRP level rapidly declined. Brain magnetic resonance imaging showed a small silent cerebral infarction associated with septic embolism. We proposed the need for considering surgical intervention; however, the preoperative risk scores indicated a high mortality rate (STS score, 28.9%; EuroSCORE II, 25%), and the patient and her family did not agree to go through with it. She was treated with antibiotic therapy for 4 weeks based on IE management guidelines. Follow-up TTE showed a decrease in the size of vegetation (8 mm) with less mobility (Figure 2). Repeat blood cultures were also negative. IE did not relapse after 4 weeks of antibiotic therapy.

Almost 3 months later, while waiting on transfer to another hospital for further rehabilitation, she suddenly deteriorated and became hemodynamically unstable. An electrocardiogram showed ST elevation in the V1-V3 and aVR leads, with reciprocal ST depression in the V4-V6, II, III, and aVF leads (Figure 3). Laboratory tests showed the following: an elevation in troponin I at 2.52 ng/mL (normal, < 0.1 ng/mL) and creatine kinase 640 U/L (normal, 41-153 U/L), white blood cell count 6600 per μL (normal, 3300-8600 per μL), and CRP 0.56 mg/dL (normal, < 0.2 mg/dL). TTE revealed an LVEF of 50% secondary to hypokinesis of the anterior segment. She was diagnosed with a STEMI and acute heart failure. Respiratory and cardiac failure rapidly deteriorated; however, her family declined invasive therapy involving primary coronary percutaneous intervention. She died on the 85th hospitalization day.

From the Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan, Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan and Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.

Address for correspondence: Yuki Saito, MD, Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Ohyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan. E-mail: saito.yuki@nihon-u.ac.jp

Received for publication August 1, 2020. Revised and accepted October 19, 2020.
Released in advance online on J-STAGE March 17, 2021.
doi: 10.1536/ihj.20-548
All rights reserved by the International Heart Journal Association.
March 2021 433

FATAL EMBOLIC STEMI CAUSED BY HEALED IE

Figure 1. A, B: Four-chamber view of TTE showing highly mobile vegetation attached to the anterior mitral valve leaflet. Mitral annulus calcification involved both anterior and posterior segments. The vegetation size was 15 mm (arrow). C: Enlarged four-chamber view with vegetation attached to the anterior mitral valve leaflet (arrow). LA, left atrium; LV, left ventricle.

Figure 2. A, B: At 2 months after admission, follow-up TTE showed a decreased size of vegetation, measuring 8 mm, with less mobility (arrow). LA, left atrium; LV, left ventricle.

Hospital day, 1 day after the onset of acute MI (AMI).

Postmortem examination revealed subendocardial necrosis in the anterior left ventricular wall (Figure 4A). A vegetation was attached to the anterior mitral valve leaflet near the calcified annular segment, and its size was smaller than that seen on the last TTE (Figure 4B). The vegetation was mostly composed of granulation tissues and calcification without the presence of predominantly neutrophil inflammatory cells (Figure 4C). An embolus was found in the left coronary artery, which was identified as a component of the vegetation attached to the anterior mitral valves (Figure 4D). No evidence was found in the coronary arteries of plaque morphologies potentially responsible for an AMI, including plaque rupture, calcified nodule, or plaque erosion. There was no morphological abnormality of the aortic valve. No patent foramen ovale, atrial septal defect, or ventricular septal defect in the heart was found.

Discussion

We identified three key clinical features in this case: first, even healed-phase mitral valve IE could cause an AMI; second, the mechanism of STEMI caused by emboli originating from a vegetation was clearly revealed by pathology findings; and third, a STEMI secondary to IE is a high mortality complication, even when occurring during the healed phase.
This case showed that even healed-phase mitral valve IE could cause an embolic AMI. Clinically apparent AMI associated with IE is a rare complication,\(^1,2\) with an incidence rate of around 2% in patients with a definite IE diagnosis.\(^2,4\) There are varying mechanisms, including coronary compression caused by an abscess or a periaortic pseudoaneurysm; however, the most common cause is a coronary embolism.\(^2,4\) Embolic MI is typically observed in patients with aortic valve endocarditis, with a reported prevalence of approximately 80% of patients with AMI complicated with IE.\(^2,4\) This high prevalence is likely owing to the close location of the aortic vegetation to the coronary ostia.\(^2,3,5\) In addition, most episodes of AMI occur during the acute phase of the infection.\(^2,4,11\) One large prospective observational cohort study found that AMI associated with IE occurred at a mean 17 ± 8 days after the initiation of antibiotic treatments.\(^2\) In the 2015 ESC guidelines for the management of IE, following the initiation of antibiotic therapy, the risk of a new embolism is known to rapidly decrease after 2 weeks.\(^5,12,13\) In the presented case, despite occurring during the healed phase of IE, the pathology findings revealed that the AMI was caused by emboli originating from vegetation and not from unstable plaque. Although the present case had some risks of embolism, such as advanced age and a previous history of an embolic event, our patient received adequate and sufficient antibiotic therapy, and the IE considered to be under control as per her vital signs, laboratory data, blood cultures, TTE, and pathology findings. This case highlights that even IE with a stabilized clinical course can subsequently cause AMI at 3 months after effective antibiotic therapy is discontinued.

As mentioned, in this case, the mechanism of STEMI caused by emboli originating from a vegetation was apparent in the pathology findings. Most previously reported cases of coronary embolism were accidentally detected during necropsy of patients with IE because the infarction sizes were small and these patients showed no clinical manifestation of the embolism.\(^4,14\) In clinical practice, IE complicated by AMI is diagnosed based on electrocardiographic abnormalities or elevated enzymatic markers.\(^2,4\) Several case reports indirectly demonstrated the underlying mechanisms by a combination of the above findings and angiographic examinations such as coronary angiography or cardiac computed tomography.\(^2,3,6\) However, there have been few reports in which the clinically diagnosed AMI with mitral IE was clearly proven to be caused by coronary embolism with pathology findings. Thus, this case is novel because the embolic STEMI caused by mitral valve IE was revealed by postmortem examination.

The present case suggests that a STEMI secondary to IE is a high mortality complication, even if occurring dur-
I n t H e a r tJ
March 2021 435

FATAL EMBOLIC STEMI CAUSED BY HEALED IE

Figure 4. A: Subendocardial necrosis was found in the anterior left ventricular wall. B: A vegetation attached to the anterior mitral valve leaflet (arrow). C: Histopathological appearance showed that the vegetation was mostly composed of granulation tissues and calcification without the presence of predominantly neutrophil inflammatory cells, objective 400 x . Hematoxylin and eosin. D: The fragment of vegetation was found in the left coronary artery. Its size was 4.02 mm², objective 20 x . Hematoxylin and eosin.

Concerning treatment strategy for IE itself, surgical intervention is known to reduce mortality and avoid embolic events. However, the decision to operate to prevent embolism is always difficult because IE is often associated with severe complications and a high mortality. A previous large prospective study showed that about one-quarter of patients with an indication for surgery did not undergo the operation because of sepsis or poor prognosis regardless of treatment. On the other hand, this study also revealed that patients who have a high operative risk with surgical indications who did not undergo surgery had a worse prognosis than those who did. The present case was a patient with a high operative risk; however, considering the above study, surgical intervention might have improved her prognosis. Another recent report also showed similar results using CONUT score, an index of immune function and nutritional status. Thus, we should consider the need for surgery even in patients with a high surgical risk such as the present case.

Meanwhile, as for the management of embolic AMI caused by IE, clear guidelines have not been established to date owing to the scarcity of published data. We reported a case of fatal embolic STEMI secondary to healed-phase mitral valve IE that was proven by postmortem examination. Even if the inflammation caused by the IE becomes stabilized with effective antibiotic treatments, patients with IE should be carefully followed up and the need for surgical intervention should be considered because healed-phase mitral valve IE could cause fatal embolic STEMI.

Disclosure

Conflicts of interest: None.

References

1. Herzog CA, Henry TD, Zimmer SD, *et al.* Bacterial endocarditis presenting as acute myocardial infarction: A cautionary note for the era of reperfusion. Am J Med 1991; 90: 392-7.
2. Roux V, Salaun E, Tribouilloy C, *et al.* Coronary events complicating infective endocarditis. Heart 2017; 103: 1906-10.
3. Calero-Núñez S, Ferrer BV, Corbi-Pascual M, *et al.* Myocardial...
436 FUJITO, ET AL

March 2021

infarction associated with infective endocarditis: a case series. Euro Heart J-Case Rep 2018; 2: 1-7.
4. Manzano MC, Vilacosta I, San Román JA, et al. Acute coronary syndrome in infective endocarditis. Rev Esp Cardiol 2007; 60: 24-31.
5. Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC Guidelines for the management of infective endocarditis. Eur Heart J 2015; 36: 3075-128.
6. Rischin AP, Carrillo P, Layland J. Multi-embolic ST-elevation myocardial infarction secondary to aortic valve endocarditis. Heart Lung Circ 2015; 24: e1-3.
7. Li JS, Sexton DJ, Mick N, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis 2000; 30: 633-8.
8. Shahian DM, Jacobs JP, Badhwar V, et al. The Society of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk Models: Part 1 Background, design considerations, and model development. Ann Thorac Surg The Society of Thoracic Surgeons 2018; 105: 1411-8.
9. O’Brien SM, Feng L, He X, et al. The Society of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk Models: Part 2 Statistical Methods and Results. Ann Thorac Surg 2018; 105: 1419-28.
10. Nashef SA, Roques F, Sharples LD, et al. EuroSCORE II. Eur J Cardio Thorac Surg 2012; 41: 734-44.
11. Nazir S, Elgin E, Loynd R, Zaman M, Donato A. ST-elevation myocardial infarction associated with infective endocarditis. Am J Cardiol 2019; 123: 1239-43.
12. Dickerman SA, Abrutyn E, Barsic B, et al. The relationship between the initiation of antimicrobial therapy and the incidence of stroke in infective endocarditis: an analysis from the ICE Prospective Cohort Study (ICE-PCS). Am Heart J 2007; 154: 1086-94.
13. Vilacosta I, Graupner C, San Román JA, et al. Risk of embolization after institution of antibiotic therapy for infective endocarditis. J Am Coll Cardiol 2002; 39: 1489-95.
14. Buchbinder NA, Roberts WC. Left-sided valvular active infective endocarditis. A study of forty-five necropsy patients. Am J Med 1972; 53: 20-35.
15. Ortega-Carnicer J, Ruiz-Lorenzo F, Benedicto A. Thrombolytic therapy for acute myocardial infarction in unsuspected infective endocarditis. Int J Cardiol 2005; 103: 108-10.
16. Chu VH, Park LP, Athan E, et al. Association between surgical indications, operative risk, and clinical outcome in infective endocarditis: a prospective study from the International Collaboration on Endocarditis. Circulation 2015; 131: 131-40.
17. Saito Y, Aizawa Y, Iida K, et al. Clinical significance of the controlling nutritional status (CONUT) score in patients with infective endocarditis. Int Heart J 2020; 61: 531-8.
18. Khan F, Khakoo R, Failinger C. Managing embolic myocardial infarction in infective endocarditis: current options. J Infectol 2005; 51: e101-5.