Cerebrospinal fluid P-tau$_{181P}$: biomarker for improved differential dementia diagnosis

Hanne Struyfs1, Ellis Niemantsverdriet1, Joery Goossens1, Erik Fransen2, Jean-Jacques Martin3, Peter P. De Deyn1,3,4,5 and Sebastiaan Engelborghs1,4,*

1Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium, 2StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium, 3Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium, 4Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium, 5Department of Neurology and Alzheimer Research Center, University Medical Center Groningen (UMCG), Groningen, Netherlands

The goal of this study is to investigate the value of tau phosphorylated at threonine 181 (P-tau$_{181P}$) in the Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarker panel for differential dementia diagnosis in autopsy confirmed AD and non-AD patients. The study population consisted of 140 autopsy confirmed AD and 77 autopsy confirmed non-AD dementia patients. CSF concentrations of amyloid-β peptide of 42 amino acids (Aβ$_{1-42}$), total tau protein (T-tau), and P-tau$_{181P}$ were determined with single analyte ELISA-kits (INNOTEST®©, Fujirebio, Ghent, Belgium). Diagnostic accuracy was assessed through receiver operating characteristic (ROC) curve analyses to obtain area under the curve (AUC) values and to define optimal cutoff values to discriminate AD from pooled and individual non-AD groups. ROC curve analyses were only performed on biomarkers and ratios that differed significantly between the groups. Pairwise comparison of AUC values was performed by means of DeLong tests. The Aβ$_{1-42}$/P-tau$_{181P}$ ratio (AUC = 0.770) performed significantly better than Aβ$_{1-42}$ (AUC = 0.677, $P = 0.004$), T-tau (AUC = 0.592, $P < 0.001$), and Aβ$_{1-42}$/T-tau (AUC = 0.678, $P = 0.001$), while P-tau$_{181P}$ (AUC = 0.720) performed significantly better than T-tau (AUC = 0.592, $P < 0.001$) to discriminate between AD and the pooled non-AD group. When comparing AD and the individual non-AD diagnoses, Aβ$_{1-42}$/P-tau$_{181P}$ (AUC = 0.894) discriminated AD from frontotemporal dementia significantly better than Aβ$_{1-42}$ (AUC = 0.776, $P = 0.020$) and T-tau (AUC = 0.746, $P = 0.004$), while P-tau$_{181P}$/T-tau (AUC = 0.958) significantly improved the differentiation between AD and Creutzfeldt-Jakob disease as compared to Aβ$_{1-42}$ (AUC = 0.688, $P = 0.004$), T-tau (AUC = 0.874, $P = 0.040$), and Aβ$_{1-42}$/P-tau$_{181P}$ (AUC = 0.760, $P = 0.003$). In conclusion, this study demonstrates P-tau$_{181P}$ is an essential component of the AD CSF biomarker panel, and combined assessment of Aβ$_{1-42}$, T-tau, and P-tau$_{181P}$ renders, to present date, the highest diagnostic power to discriminate between AD and non-AD dementias.

Keywords: Alzheimer's disease, dementia, differential diagnosis, biomarkers, cerebrospinal fluid, neuropathology, tau
Introduction

The clinical diagnosis of Alzheimer’s disease (AD) is mainly based on the exclusion of other diseases (1). Relative to autopsy confirmation, the clinical diagnostic criteria of AD (1) reach on average 81% sensitivity and 70% specificity (2). However, these figures mostly originate from specialized clinical centers and from diagnoses based on follow-up periods of several years. In the earliest stages of the disease and when the diagnostic work-up is performed in non-specialized centers, far lower diagnostic accuracy can be expected. Diagnosis of definite AD can therefore only be made through postmortem pathological examination of the brain.

Analyzing cerebrospinal fluid (CSF) levels of amyloid-β peptide of 42 amino acids (A\textsubscript{\text{β}}\textsubscript{1–42}), total tau protein (T-tau) and tau phosphorylated at threonine 181 (P-tau\textsubscript{181P}) increases diagnostic certainty for AD (3). Based on autopsy confirmation, it was shown that in the majority of patients with a clinically ambiguous diagnosis (when the clinical diagnostic work-up was not able to discriminate between AD and a non-AD dementia), a correct diagnosis would have been established in 82% by using these CSF biomarkers, indicating that CSF biomarkers may have a particular added diagnostic value in patients with ambiguous clinical diagnoses (4).

Compared to controls, decreased A\textsubscript{\text{β}}\textsubscript{1–42} and increased T-tau and/or P-tau\textsubscript{181P} concentrations are found in AD. However, when compared to non-AD dementias, the differences are less obvious as the concentrations in patients with non-AD dementias are generally intermediate compared to those found between controls and AD patients, thus pointing to an overlap between AD and non-AD patients, especially in dementia with Lewy bodies (DLB) and to a lesser extent in frontotemporal dementia (FTD), vascular dementia (VaD), and Creutzfeldt-Jakob’s disease (CJD) (5). This overlap may partly be explained by the presence of mixed pathologies as well as the low sensitivity and specificity of the clinical diagnosis as most biomarker studies rely on clinically diagnosed patients.

The goal of this study is to investigate the value of P-tau\textsubscript{181P} in the AD CSF biomarker panel for differential dementia diagnosis in autopsy confirmed AD and non-AD patients.

Materials and Methods

Study Population

In brief, the study population consisted of 140 and 77 CSF samples from dementia patients with pathologically confirmed diagnoses of AD and non-AD, respectively. All CSF samples were selected from the Biobank, Institute Born-Bunge, Antwerp, Belgium. Samples from 173 dementia patients were collected in the Memory Clinic of the Hospital Network Antwerp (ZNA, Antwerp, Belgium) between January 1992 and May 2008, whereas samples from 44 dementia patients were collected in referring centers between April 1992 and May 2005. The study was approved by the local ethics committee (CME Middelheim) and all subjects gave written informed consent.

Pathological Criteria

All pathological diagnoses were established according to standard neuropathological criteria by the same neuropathologist (Jean-Jacques Martin). Although the neuropathologist was blinded for the CSF biomarker data, he had access to all neuroimaging data and the clinical files of the patients included. For the diagnosis of AD, VaD (n = 18), and DLB (n = 24), the neuropathological criteria of Montine et al. (6) were applied. FTD (n = 17) was neuropathologically diagnosed according to the Cairns criteria (7) and Mackenzie criteria (8, 9). CJD (n = 13) was diagnosed according to the criteria of Markesbery (10). Mixed dementia (MXD) was diagnosed when the patient fulfilled the neuropathological criteria of AD in combination with minor pathology suggestive of cerebrovascular disease (n = 12), DLB (n = 1), or Parkinson’s disease (n = 1). For statistical analyses, the MXD group (n = 14) was pooled with the AD group. The pooled non-AD group furthermore consisted of few patients with progressive nuclear palsy (n = 3), spinocerebellar ataxia (n = 1), and normal pressure hydrocephalus combined with VaD (n = 1). Neuropathology was performed on the right hemisphere of the brain.

CSF Analyses

All subjects underwent a lumbar puncture (LP) in order to collect CSF. LP was performed between the intervertebral space L3/L4 or L4/L5 (11). CSF was sampled according to a standard protocol (12). All samples were stored in polystyrene vials to avoid adsorption of A\textsubscript{\text{β}} to the wall of the vial. The samples were frozen in liquid nitrogen and stored at −80°C until analysis.

CSF concentrations of A\textsubscript{\text{β}}\textsubscript{1–42}, T-tau, and P-tau\textsubscript{181P} were determined with commercially available single analyte ELISA-kits (respectively, INNOTEST® 6-AMYLOID(1–42), INNOTEST® hTAU-Ag, and INNOTEST® PHOSPHO-TAU(181P); Fujirebio, Ghent, Belgium). A complete description of the CSF analysis has been published previously (13).

Statistical Analyses

Statistical analyses were performed using SPSS 20. As most variables were not normally distributed, non-parametric tests were used. To compare gender distribution between the groups, a Chi-square test was performed. Subsequently, Mann–Whitney U tests were performed to compare clinical and biomarker data between the groups. Receiver operating characteristic (ROC) curve analyses were used to obtain area under the curve (AUC) values and to define optimal cutoff values to discriminate AD from the pooled and individual non-AD groups. ROC curve analyses were only performed on biomarkers and ratios that were significantly different (P < 0.05), based on the Mann–Whitney U tests. The cutoff values were determined by calculating the maximal sum of sensitivity and specificity (i.e., maximizing the Youden index). In order to pairwise compare AUC values, DeLong tests were performed using the pROC package (14) in the statistical software package R (R Core Team).

Systematic Review

To be able to compare the results of this study, a systematic review on the diagnostic accuracy of P-tau\textsubscript{181P} for differential dementia diagnosis was performed. A PubMed search (until May 2015) was performed using the following terms: (Cerebrospinal fluid OR CSF) AND diagnos* AND (Alzheimer* OR AD OR dementia) AND (tau OR beta amyloid OR abeta) AND (sensitivity OR specificity). Only publications in the English language were
TABLE 1 | Demographic, clinical, and biomarker data of the study population.

	AD (M/F)	Non-AD	P-value
N (M/F)	140 (71/69)	77 (45/32)	0.275
Age at sampling (years)	76 (71–85)	72 (65–76)	0.001
MMSE (/30)	14 (9–19) (n = 98)	16 (9–21) (n = 51)	0.228
Years between sampling and death	0.0 (0.0–2.5)	0.0 (0.0–2.0)	0.452
P-tau (pg/mL)	361 (264–485)	514 (369–695)	<0.001
Aβ1–42 (pg/mL)	581 (335–872)	379 (242–787)	0.025
T-tau (pg/mL)	73.2 (51.6–100.0)	45.0 (31.9–65.9)	<0.001
Aβ1–42/T-tau	0.682 (0.399–1.100)	1.273 (0.719–2.257)	<0.001
Aβ1–42/P-tau181P	4.982 (3.174–7.802)	10.535 (6.522–16.711)	<0.001
P-tau181P/T-tau	0.138 (0.113–0.171)	0.141 (0.090–0.158)	0.094

All data are median values with 25th and 75th quartiles between brackets, except for N. To compare gender distribution between the groups, a Chi-square test was performed, while Mann–Whitney U tests were used to compare clinical and biomarker data between the groups.

AD, Alzheimer’s disease; non-AD, dementia not due to Alzheimer’s disease; MMSE, mini-mental state examination; Aβ1–42, amyloid-β peptide of 42 amino acids; T-tau, total tau-protein; P-tau181P, tau phosphorylated at threonine 181. Bold values show statistically significant P-values (P < 0.05).

Results

Table 1 shows the demographic, clinical, and biomarker data of the studied population. The AD and non-AD groups were not age-matched. However, based on co-variate analyses, confounding effects of age on differences in biomarker concentrations were excluded. Therefore, no corrections for age were included in the subsequent analyses. Boxplots of the individual biomarkers and ratios are presented in Figure 1.

The diagnostic powers to discriminate between AD and non-AD of the individual biomarkers and ratios that were significantly different are shown in Table 2. Based on the DeLong tests evaluated. Subsequently, relevant publications were searched for in reference lists. Publications were included when: (a) their aim was to improve the diagnostic accuracy of diagnosis of dementia by means of CSF biomarkers, (b) AD patients and pooled non-AD patients or patients with DLB, FTD, VaD and/or CJD were included, (c) P-tau181P together with Aβ1–42 and/or T-tau was measured in CSF, and (d) diagnostic accuracy values were reported (AUC, sensitivity, and/or specificity). Publications comparing only AD to healthy control subjects were not considered.
(Table 3), the AUC of the β_{1-42}/P-tau$_{181P}$ ratio was significantly different from those of β_{1-42}, T-tau, and β_{1-42}/T-tau, while the AUC of P-tau$_{181P}$ differed significantly from the AUC of T-tau.

When comparing AD and the different non-AD diagnoses, the β_{1-42}/P-tau$_{181P}$ ratio was significantly different in every differential diagnosis (Table 4). This also held true for P-tau$_{181P}$, except for AD vs. CJD. On the other hand, P-tau$_{181P}$/T-tau was found to be significantly different when comparing AD to CJD.

The diagnostic powers to discriminate between AD and the different non-AD diagnoses of the individual biomarkers and ratios that differed significantly are shown in Table 5. Based on the DeLong tests (Table 6), the β_{1-42}/P-tau$_{181P}$ ratio performed significantly better than β_{1-42} and T-tau to discriminate AD from FTD, while the AUC of P-tau$_{181P}$/T-tau was significantly better than those of β_{1-42}, T-tau, and β_{1-42}/P-tau$_{181P}$ to differentiate between AD and CJD.

The results of the systematic review are summarized in Table S1 in Supplementary Material. Only results comparing AD to non-AD, FTD, DLB, CJD, and/or VaD were included in this table.

Discussion

The goal of this study was to investigate the value of P-tau$_{181P}$ in the AD biomarker panel for differential dementia diagnosis. First of all, the ratio of β_{1-42}/P-tau$_{181P}$ was shown to have a significantly higher diagnostic power than β_{1-42}, T-tau, and the β_{1-42}/T-tau ratio, while P-tau$_{181P}$ was found to perform significantly better than T-tau to discriminate between AD and non-AD dementia. This clearly signifies the importance of P-tau$_{181P}$ in the biomarker panel for differential dementia diagnosis. Our results are in line with previously reported findings of

Table 2 | Diagnostic power of the significantly different individual biomarkers and ratios to discriminate between AD and non-AD, measured by ROC curve analyses.

AD vs. non-AD	AUC	95% CI	Cutoff	Sens (%)	Spec (%)
β_{1-42}	0.677	0.597–0.757	500.27	79.3	53.2
T-tau	0.592	0.508–0.675	472.35	62.1	63.6
P-tau$_{181P}$	0.720	0.648–0.792	50.35	77.9	61.0
β_{1-42}/T-tau	0.678	0.601–0.755	1.08	75.0	57.1
β_{1-42}/P-tau$_{181P}$	0.770	0.703–0.837	9.11	82.9	59.7

Table 3 | P values of pairwise comparisons of AUC values of the ROC curve analyses to discriminate between AD and non-AD, using DeLong tests.

P-tau$_{181P}$	β_{1-42}/P-tau$_{181P}$	
β_{1-42}	0.450	<0.001
T-tau	<0.001	<0.001
β_{1-42}/T-tau	0.290	0.001
β_{1-42}/P-tau$_{181P}$	0.100	NA

Table 4 | P values of pairwise comparisons of the individual biomarkers and ratios, measured by Mann–Whitney U tests.

AD vs. FTD	AD vs. DLB	AD vs. CJD	AD vs. VaD	
β_{1-42}	<0.001	0.068	0.025	0.078
T-tau	0.001	0.051	<0.001	0.019
P-tau$_{181P}$	<0.001	0.011	0.081	0.001
β_{1-42}/T-tau	<0.001	0.008	0.054	0.010
β_{1-42}/P-tau$_{181P}$	<0.001	0.002	0.002	0.003
P-tau$_{181P}$/T-tau	0.096	0.232	<0.001	0.932

Table 5 | Diagnostic power of the significantly different individual biomarkers and ratios to discriminate between AD and individual non-AD diagnoses, measured by ROC curve analyses.

AD vs. FTD	AUC	95% CI	Cutoff	Sens (%)	Spec (%)
β_{1-42}	0.776	0.652–0.900	385.31	57.1	88.2
T-tau	0.746	0.654–0.838	423.00	67.9	82.4
P-tau$_{181P}$	0.810	0.710–0.910	47.25	81.4	76.5
β_{1-42}/T-tau	0.863	0.794–0.931	0.97	70.1	94.1
β_{1-42}/P-tau$_{181P}$	0.894	0.823–0.965	9.77	86.4	82.4

Table 6 | P values of pairwise comparisons of AUC values of the ROC curve analyses to discriminate between AD and individual non-AD diagnoses, using DeLong tests.

P-tau$_{181P}$	β_{1-42}/P-tau$_{181P}$	β_{1-42}/T-tau	
β_{1-42}	0.700	0.020	NA
T-tau	0.120	0.004	NA
β_{1-42}/T-tau	0.280	0.280	NA

Table 7 | Diagnostic power of the significantly different individual biomarkers and ratios to discriminate between AD and individual non-AD diagnoses, measured by ROC curve analyses.

AD vs. FTD	AUC	95% CI	Cutoff	Sens (%)	Spec (%)
β_{1-42}	0.764	0.652–0.897	382.31	57.1	88.2
T-tau	0.745	0.654–0.838	423.00	67.9	82.4
P-tau$_{181P}$	0.805	0.710–0.910	47.25	81.4	76.5
β_{1-42}/T-tau	0.863	0.794–0.931	0.97	70.1	94.1
β_{1-42}/P-tau$_{181P}$	0.894	0.823–0.965	9.77	86.4	82.4
(combinations with) P-tau\textsubscript{181P} having most power to discriminate between AD and non-AD dementias (12, 15–29).

However, in contrast to former studies performed in clinically diagnosed AD and pooled non-AD dementia patients (15, 21, 22, 26–28), the AUC, sensitivity, and specificity of neither P-tau\textsubscript{181P} nor A\textbeta\textsubscript{1–42}/P-tau\textsubscript{181P} reached the minimal level of 0.80, as established by the Consensus Report of the Working Group on Molecular and Biochemical Markers of AD (30). This is probably not due to the accuracy of the diagnoses used in this study, as autopsy confirmation was used. A possible explanation of the discrepancy in accuracy levels between this study and former studies could be the composition of the non-AD groups. As shown in this study, the accuracy levels of, for example, AD vs. FTD are substantially higher than those of AD vs. DLB. Therefore, if a non-AD group is primarily composed of FTD patients, the AUC levels may be higher than when DLB patients prevail in the non-AD group.

When focusing on the discrimination between AD and FTD, our results showed that the diagnostic power of A\textbeta\textsubscript{1–42}/P-tau\textsubscript{181P} was significantly higher than those of A\textbeta\textsubscript{1–42} and T-tau. These results confirm earlier studies performed in clinically diagnosed AD and FTD patients (16, 17, 24, 25, 29).

With regard to the differentiation between AD and CJD, the diagnostic power of P-tau\textsubscript{181P}/T-tau was significantly higher than those of A\textbeta\textsubscript{1–42}, T-tau, and A\textbeta\textsubscript{1–42}/P-tau\textsubscript{181P}. Our results confirm those of former studies performed in clinically diagnosed AD and CJD patients, and partly performed in autopsy confirmed cases (31–34).

In these latter two comparisons with individual non-AD groups, the AUCs did reach the minimal level of 0.80. This indicates that the pathophysiological variability in the pooled non-AD group lowers the diagnostic accuracy of the CSF biomarkers.

It should be noted that the ratios and other combinations of the AD CSF biomarkers should be used with care. Due to (pre-)analytical issues (35), concentrations differ exceedingly between laboratories. External quality controls and reference material might be able to reduce this variability, which would enable the general use of the same cutoff that was validated in (pre-)analytical issues (35), concentrations differ exceedingly between laboratories. External quality controls and reference material might be able to reduce this variability, which would enable the general use of the same cutoff that was validated in house before they can be used in clinical practice (36, 37).

In order to further increase diagnostic accuracy, other biomarkers should be included in the biomarker panel in the future. Examples of possible fluid biomarkers for features of A\textbeta processing in AD are β-site APP cleaving enzyme-1 (BACE1) activity (38–44), soluble amyloid precursor protein (sAPP) α and β (42, 44–51), and A\textbeta oligomers (52–60). Some fluid biomarkers that are still being investigated seem more specific for non-AD dementias and could also increase diagnostic accuracy when added to the biomarker panel. Examples of possible such non-AD biomarkers are TAR DNA-binding protein 43 (TDP-43) (61–63), TDP-43 phosphorylated at S409 (pTDP-43) (63), and progranulin (64–66) for FTD, α-synuclein (67–71) and neurosin (72) for DLB, metalloproteinases-9 for VaD (73, 74), and total CSF prion protein for CJD (75). For reviews on these biomarkers, see Ref. (76–80). Most of these biomarkers need extensive validation as well as validated ready-to-use analytical methods before they can be used in combination with A\textbeta\textsubscript{1–42}, T-tau, and P-tau\textsubscript{181P} for differential dementia diagnosis in clinical practice.

Another highly promising approach is combining fluid biomarkers and imaging, such as magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging. Several studies have shown that combinations of fluid and imaging biomarkers render higher diagnostic power than these modalities alone (81–85).

In conclusion, this study demonstrates P-tau\textsubscript{181P} is a fundamental component of the AD biomarker panel and the combined assessment of A\textbeta\textsubscript{1–42}, T-tau, and P-tau\textsubscript{181P} renders, to present date, the highest diagnostic power to discriminate between AD and non-AD dementias. New biomarkers more specifically targeted at non-AD dementia pathology should further increase diagnostic power in the future.

Acknowledgments

This work was supported by the University of Antwerp Research Fund; the Alzheimer Research Foundation (SAO-FRA); the central Biobank facility of the Institute Born-Bunge/University Antwerp; the Research Foundation Flanders (FWO); the Agency for Innovation by Science and Technology (IWT); the Belgian Science Policy Office Interuniversity Attraction Poles (IAP) program; the Flemish Government initiated Methusalem excellence grant; the University of Antwerp Research Fund, Belgium. This work is part of the BIOMARKAPD project within the EU Joint Programme for Neurodegenerative Disease Research (JPND). The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115372, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution.

Supplementary Material

The Supplementary Material for this article can be found online at http://journal.frontiersin.org/article/10.3389/fneur.2015.00138

References

1. Mckhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology (1984) 34:939–44. doi:10.1212/WNL.34.7.939

2. Knopman DS, Dekosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the quality standards subcommittee of the american academy of neurology. Neurology (2001) 56:1143–53. doi:10.1212/01.WNL.56.9.1143

3. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol (2010) 6:131–44. doi:10.1038/nrneurol.2010.4
6. Le Bastard N, Martin J, Vanmechelen E, Vanderstichele H, De Deyn PP, Engelborghs S. Added diagnostic value of CSF biomarkers in differential dementia diagnosis. Neurobiol Aging (2010) 31:1867–76. doi:10.1016/j.neurobiolaging.2008.10.017

7. Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, et al. Combined CSF tau, p-tau181 and amyloid-beta 38/40/42 for diagnosing Alzheimer’s disease. J Neurol Neurosurg Psychiatry (2013) 84:240–6. doi:10.1136/jnnp.2012.307183

8. Duits FH, Teunissen CE, Bouwman FH, Visser PJ, Mattsson N, Zetterberg H, et al. The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimers Dement (2014) 10:713–723. doi:10.1016/j.jalz.2013.12.023

9. Satoh K, Shirabe S, Eguchi H, Tsujiyo A, Eguchi K, Satoh A, et al. 14-3-3 protein, total tau and phosphorylated tau in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease: results from the Swedish mortality registry. J Neurol Neurosurg Psychiatry (2013) 94:769–75. doi:10.1136/jnnp.2012.307151

10. Bahl JM, Heegaard NH, Falkenhorst G, Laursen H, Hogenhaven H, Molbak K, et al. The diagnostic efficiency of biomarkers in sporadic Creutzfeldt-Jakob disease compared to Alzheimer’s disease. Neurobiol Aging (2009) 30:1834–41. doi:10.1016/j.neurobiolaging.2008.01.013

11. Skillback T, Rosen C, Axentely F, Mattsson N, Blennow K, Zetterberg H. Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt-Jakob disease: results from the Swedish mortality registry. JAMA Neurology (2014) 71:476–83. doi:10.1001/jamaneurol.2013.6455

12. De Jong D, Jansen RW, Kremer BP, Verbeek MM. Cerebrospinal fluid amyloid-beta (1-42) and tau protein levels in Alzheimer’s disease and Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry (2011) 82:240–6. doi:10.1136/jnnp.2012.307183

13. Le Bastard N, De Deyn PP, Engelborghs S. Importance and impact of preanalytical variables on Alzheimer disease biomarker concentrations in cerebrospinal fluid. Clin Chem (2015) 61:734–43. doi:10.1373/clinchem.2014.236679

14. Lehmann S, Gabelle A, Paquet C. Can we rely only on ratios of cerebrospinal fluid biomarkers for AD biological diagnosis? Alzheimers Dement (2014). doi:10.1016/j.jalz.2014.09.003

15. Schulte C, Delaby C, Paquet C, Gabelle A. Analytical challenges related to the use of biomarker ratios for the biological diagnosis of Alzheimer’s disease. Clin Chem Lab Med (2015). doi:10.1515/cclm-2014-1232

16. Holsinger RM, et al. Biochemical diagnosis of Alzheimer disease by measuring sAbetaPPbeta, Abeta38, and Abeta40 cerebrospinal fluid levels in frontotemporal dementia. Clin Chem Lab Med (2006) 44:1742–80. doi:10.1515/CCLM.2006.258
56. Gao CM, Ewers M, Teipel S, Burger K, Wallin A, Blennow K, et al. Amyloid-beta40 and -42 levels in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Arch Gen Psychiatry (2007) 64:718–26. doi:10.1001/ archpsyc.64.6.718

57. Santos AN, Ewers M, Minthon L, Simms A, Silber RE, Blennow K, et al. Amyloid-beta oligomers in cerebrospinal fluid are elevated in patients with Alzheimer's disease. J Alzheimers Dis (2012) 29:171–6. doi:10.3233/JAD-2012-111361

59. Bruggink KA, Jongbloed AB, Veerhuis R, Claassen JA, Kuijer PH, et al. Amyloid-beta oligomer detection by ELISA in cerebrospinal fluid and brain tissue. Anal Biochem (2013) 433:112–20. doi:10.1016/j.ab.2012.09.014

60. Yang T, Honek B, Töpper W, Sperling RA, Walsh DM, Selkoe DJ. New ELISAs with high specificity for soluble oligomers of amyloid beta-protein detect natural Abeta oligomers in human brain but not CSF: Alzheimers Dement (2013) 9:99–112. doi:10.1017/jad.2012.11.005

61. Steinacker M, Kuhlchau R, Sperfeld AD, Jelic S, Van Aarnim CA, Lenaert S, et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. J Alzheimers Dis (2008) 65:1481–7. doi:10.3233/JAD-2008-651481

62. Feneberg EJ, Steinacker M, Lenaert S, Schneider A, Walther P, Thal DR, et al. Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotroph Lateral Scler Frontotemporal Degener (2014) 15:351–6. doi:10.3109/ 21678421.2014.956066

63. Mulder SD, Van Der Flier WM, Verheijen JH, Mulder C, Scheltens P, Blankenstein MA, et al. BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology. J Alzheimers Dis (2010) 20:253–60. doi:10.3233/JAD-2010-1367

64. Rosen C, Andreason U, Mattsson N, Marcusson L, Minthon L, Andreassen O, et al. Cerebrospinal fluid profiles of amyloid beta-related biomarkers in Alzheimer's disease. Neurourol Urodyn (2012) 31:65–73. doi:10.1002/nau.21207-012-817-4

65. Johansson P, Mattsson N, Hansson O, Wu G, Sankaranarayanan S, Andreason ME, et al. Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch Neurol (2008) 65:1102–7. doi:10.1001/archneur.65.8.1102

66. Philips T, De Muynck L, Thu HN, Weynants B, Vanacker P, Dhondt J, et al. CSF levels of both alpha-synuclein and the alpha-synuclein cleaving enzyme neurosin in patients with synucleinopathy. J Neuropathol Exp Neurol (2015) 74:1161/01.STR.0000127420.10990.76

67. Bruggink KA, Jongbloed AB, Veerhuis R, Claassen JA, Kuijer PH, et al. CSF levels of both alpha-synuclein and the alpha-synuclein cleaving enzyme neurosin in patients with synucleinopathy. J Neuropathol Exp Neurol (2013) 72:267–85. doi:10.1001/jamaneurol.2013.4068

68. Yang T, Honek B, Töpper W, Sperling RA, Walsh DM, Selkoe DJ. New ELISAs with high specificity for soluble oligomers of amyloid beta-protein detect natural Abeta oligomers in human brain but not CSF: Alzheimers Dement (2013) 9:99–112. doi:10.1017/jad.2012.11.005

69. Van Damme P, Van Hoecke A, Lambrechts D, Vanacker P, Bogaert E, Van Bogaert E, et al. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and neuronal survival. J Cell Biol (2008) 181:37–41. doi:10.1083/jcb.200712039

70. Luppenhauer B, El-Agnaf OM, Marcus K, Trenkwaldner C, Schlossmacher MG. Quantification of alpha-synuclein in cerebrospinal fluid as a biomarker candidate: review of the literature and considerations for future studies. Biomark Med (2010) 4:683–99. doi:10.2217/bmm.10.90

71. Shi M, Bradner J, Hancock AM, Chung KA, Quinn JJ, Peskind ER, et al. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol (2011) 69:570–80. doi:10.1002/ana.22311

72. Aerts MB, Esselink RA, AbdO W, Bloem BR, Verbeek MM. CSF alpha-synuclein does not differentiate between parkinsonian disorders. Neurobiol Aging (2012) 33(4):e341–3. doi:10.1016/j.neurobiolaging.2010.12.001

73. Kapaki E, Paraskaves GP, Emmanouilidou E, Vrekellis K. The diagnostic value of CSF alpha-synuclein in the differential diagnosis of dementia with Lewy bodies vs. normal subjects and patients with Alzheimer's disease. PLoS One (2013) 8:e18654. doi:10.1371/journal.pone.0018654

74. Muhlhauser B, El-Agnaf OM, Marcus K, Weimann C, Schlossmacher MG. CSF levels of both alpha-synuclein and the alpha-synuclein cleaving enzyme neurosin in patients with synucleinopathy. J Neuropathol Exp Neurol (2013) 72:267–85. doi:10.1001/jamaneurol.2013.4068

75. Philips T, De Muynck L, Thu HN, Weynants B, Vanacker P, Dhondt J, et al. Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol (2010) 69:1191–200. doi:10.1007/NEN. 00133e1018f9e9a

76. Muhlhauser B, El-Agnaf OM, Marcus K, Trenkwaldner C, Schlossmacher MG. CSF levels of both alpha-synuclein and the alpha-synuclein cleaving enzyme neurosin in patients with synucleinopathy. J Neuropathol Exp Neurol (2010) 69:1191–200. doi:10.1007/NEN. 00133e1018f9e9a

77. Kuijer PH, Lenaert S, Schneider A, Walther P, Thal DR, et al. Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. J Neurotraumatol Scler Frontotemporal Degener (2014) 15:351–6. doi:10.3109/ 21678421.2014.956066

78. Aerts MB, Esselink RA, AbdO W, Bloem BR, Verbeek MM. CSF alpha- synuclein does not differentiate between parkinsonian disorders. Neurobiol Aging (2012) 33(4):e341–3. doi:10.1016/j.neurobiolaging.2010.12.001
77. Rosen C, Hansson O, Blennow K, Zetterberg H. Fluid biomarkers in Alzheimer’s disease – current concepts. *Mol Neurodegener* (2013) 8:20. doi:10.1186/1750-1326-8-20
78. Roh JH, Lee JH. Recent updates on subcortical ischemic vascular dementia. *J Stroke* (2014) 16:18–26. doi:10.5853/jos.2014.16.1.18
79. Schade S, Mollenhauer B. Biomarkers in biological fluids for dementia with Lewy bodies. *Alzheimers Res Ther* (2014) 6:72. doi:10.1186/s13195-014-0072-3
80. Oeckl P, Steinacker P, Feneberg E, Otto M. Cerebrospinal fluid proteomics and protein biomarkers in frontotemporal lobar degeneration: current status and future perspectives. *Biochim Biophys Acta* (2015) 1854:757–68. doi:10.1016/j.bbapap.2014.12.010
81. Schoonenboom NS, Van Der Flier WM, Blankenstein MA, Bouwman FH, Van Kamp GJ, Barkhof F, et al. CSF and MRI markers independently contribute to the diagnosis of Alzheimer’s disease. *Neurobiol Aging* (2008) 29:669–75. doi:10.1016/j.neurobiolaging.2006.11.018
82. Brys M, Glodzik L, Mosconi L, Switalski R, De Santi S, Pirraglia E, et al. Magnetic resonance imaging improves cerebrospinal fluid biomarkers in the early detection of Alzheimer’s disease. *J Alzheimers Dis* (2009) 16:351–62. doi:10.3233/JAD-2009-0968
83. Vos S, Van R I, Burns L, Knol D, Scheltens P, Soininen H, et al. Test sequence of CSF and MRI biomarkers for prediction of AD in subjects with MCI. *Neurobiol Aging* (2012) 33:2272–81. doi:10.1016/j.neurobiolaging.2011.12.017
84. Westman E, Muehlboeck JS, Simmons A. Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. *Neuroimage* (2012) 62:229–38. doi:10.1016/j.neuroimage.2012.04.036
85. Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD, Coleman RE, et al. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. *Radiology* (2013) 266:583–91. doi:10.1148/radiol.12120010

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Struyfs, Niemantsverdriet, Goossens, Fransen, Martin, De Deyn and Engelborghs. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.