Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

SARS-CoV-2 and ACE2: The biology and clinical data settling the ARB and ACEI controversy

Mina K. Chung, Sadashiva Karnik, Joshua Sae, Cornelia Bergmann, John Barnard, Michael M. Lederman, John Tilton, Feixiong Cheng, Clifford V. Harding, James B. Young, Neil Mehta, Scott J. Cameron, Keith R. McCrae, Alvin H. Schmaier, Jonathan D. Smith, Ankur Kalra, Surafel K. Gebreselassie, George Thomas, Edward S. Hawkins, Lars G. Svensson

Heart, Vascular and Thoracic Institute, United States
Lerner Research Institute, Cleveland Clinic, United States
Cleveland Clinic Lerner College of Medicine, United States
Case Western Reserve University, United States
University Hospitals Cleveland Medical Center, Cleveland, OH, United States

ARTICLE INFO

Article History:
Received 15 May 2020
Revised 20 June 2020
Accepted 7 July 2020
Available online 6 August 2020

Keywords:
COVID-19
ACE
ACE inhibitors
ARBs
SARS-CoV-2
Kallikrein-kinin system
Renin-angiotensin system

ABSTRACT

Background: SARS-CoV-2 enters cells by binding of its Spike protein to angiotensin-converting enzyme 2 (ACE2). Angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) have been reported to increase ACE2 expression in animal models, and worse outcomes are reported in patients with co-morbidities commonly treated with these agents, leading to controversy during the COVID-19 pandemic over whether these drugs might be helpful or harmful.

Methods: Animal, in vitro and clinical data relevant to the biology of the renin-angiotensin system (RAS), its interaction with the kallikrein-kinin system (KKS) and SARS-CoV-2, and clinical studies were reviewed.

Findings and Interpretation: SARS-CoV-2 hijacks ACE2 to invade and damage cells, downregulating ACE2, reducing its protective effects and exacerbating injurious Ang II effects. However, retrospective observational studies do not show higher risk of infection with ACEI or ARB use. Nevertheless, study of the RAS and KKS in the setting of coronaviral infection may yield therapeutic targets.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

In the unprecedented crisis of the COVID-19 pandemic, we must define the epidemiology, predictors of complications and mortality, and potential modifiable risk factors that might prevent or decrease the severity of the disease. Recently there has been controversy over whether use of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) might be harmful in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with cardiovascular disease, hypertension, or diabetes mellitus under treatment with these agents. In contrast, it has been suggested that ARBs could be protective in the setting of SARS-CoV-2 infection.

SARS-CoV-2, the coronavirus causing COVID-19, enters host cells via binding of the virus spike protein to angiotensin-converting enzyme 2 (ACE2). ACEIs or ARBs have been reported to increase expression of ACE2 in animal models [1]. This has led to speculation that use of ACEIs or ARBs might contribute to a higher risk of contracting the infection and worse outcomes of COVID-19 in patients with cardiovascular diseases, hypertension and diabetes [2], as these drugs are commonly used in these conditions. Moreover, these comorbid conditions are increased with age, which is itself also associated with worse outcomes. As we await evidence from and plan clinical studies, it is essential to understand the biology of the renin-angiotensin system (RAS) and its modulation by the SARS-CoV-2 virus.

2. Brief primer on ACE, ACE2 and the renin-angiotensin system (Fig. 1)

Angiotensin converting enzyme (ACE) catalyzes the removal of two residues from the decapeptide angiotensin I (Ang I) to form the...
octapeptide angiotensin II (Ang II). Secreted proteases, including mast cell chymase (human heart chymase), play a minor role in forming Ang II, but are more active when patients are on long-term ACEI therapy. Ang II binding to the type 1 angiotensin II receptor (AT1R) activates pro-inflammatory, pro-oxidant, pro-thrombotic, anti-fibrotic, and pro-fibrotic signaling pathways. ACEIs inhibit conversion of Ang I to Ang II, thereby reducing Ang II production, while ARBs block the downstream effects of Ang II by blocking its receptor, AT1R. The functions of ACE are balanced by its homologue ACE2, which catalyzes the removal of one residue from Ang II to form Ang 1–9 and one residue from Ang I to form Ang 1–9. In doing so ACE2 reduces Ang II and its effects, while enabling the Ang 1–9 pathways to exert protective effects via receptors Mas1 and AT2R, respectively. Downregulation of ACE2 is associated with an increase in Ang II and activation of the Ang II / AT1R pathway. Uregulation of ACE2 degrades Ang I, limiting the substrate for ACE, degrades Ang II, limiting its adverse effects, and generates Ang 1–9, leading to protective effects. ACE2 is shed from the cell surface by the action of ADAM 17, which is dispensable, but which releases a soluble active form of ACE2 and reduces membrane-bound ACE2. ACE 1- angiotensin converting enzyme. ACE - angiotensin converting enzyme. ACE1 - angiotensin converting enzyme 1. ACE 2 - angiotensin converting enzyme 2. AT1 R - angiotensin 1 receptor. AT2 R - angiotensin 2 receptor. Mas1 R - mitochondrial assembly receptor. ACEI - angiotensin converting enzyme inhibitor. ARB - angiotensin 1 receptor blocker.

3. ACE, ACE2, and Bradykinin (Fig. 2)

ACE and ACE2 also have intimate roles with the plasma kallikrein-kinin system (KKS), a hormonal pathway that modulates the intrinsic blood coagulation system, endothelial cell growth and angiogenesis, the complement pathway and RAS. The KKS consists of plasma and tissue kallikreins, plasma high (HK) and low (LK) molecular weight kinogens, their derivative kinin peptides, including bradykinin (BK) and des-Arg⁹-BK, and two G protein-coupled bradykinin receptors (B2R and B1R) [10]. Plasma prekallikrein (PK) is activated by blood coagulation factor XII or an endothelial cell serine protease, prolylcarboxypeptidase, to preferentially cleave high molecular HK to liberate BK; the residual cleaved kininogen (cHK) is stable in plasma and may be used as a biomarker of KKS activation [11]. BK binds to its receptor B2R, which is constitutively expressed in the intravascular compartment, and des-Arg⁹-BK binds to the B1R, which arises in inflammatory states. Separately, tissue kallikreins have preference to cleave high molecular HK to liberate BK; the residual cleaved kininogen (cHK) is stable in plasma and may be used as a biomarker of KKS activation [11]. BK binds to its receptor B2R, which is constitutively expressed in the intravascular compartment, and des-Arg⁹-BK binds to the B1R, which arises in inflammatory states. Separately, tissue kallikreins have preference to cleave HK, releasing Lys-BK, which when acted on by several carboxypeptidases, generates des-Arg⁹-Lys-BK, which also activates B1R receptor.

The vasodilatory effects of BK are predominantly mediated through B2R, which is abundant in vascular endothelium and constitutively expressed in most tissues. B2R activation causes a cascade involving nitric oxide synthase (NOS), leading to synthesis of nitric oxide (NO) and cGMP [12]. BK and its active metabolite des-Arg⁹-bradykinin also agonise B1R, which is minimally expressed in healthy tissue, but induced by tissue injury and inflammatory stimuli, playing a role in chronic pain and inflammation [13,14]. Activation of both the B1 and B2 receptors mediate massive vascular permeability and inflammation, causing marked increases in the levels of inflammatory cytokines, such as IL-1, IL-2, IL-6, IL-8, and TNF-alpha that have been
implicated in the cytokine storm observed with SARS-CoV-2 ARDS [15,16]. The crosstalk between the RAS and the KKS is profound [17]. Plasma kallikrein converts prorenin to renin. ACE is the major intra-vascular peptidase of BK, producing des-Arg9-BK and several inactive intermediates, including BK1-5. ACE2 inactivates des-Arg9-BK by cleaving its C-terminal residue, but has no effect on BK [18]. BK receptors are also known to heterodimerize with angiotensin receptors AT1R, AT2R, and Mas that may augment or diminish their activity [19–21]. Benefits of ACE inhibition can also be attributed to an intracellular signaling cascade that prevents B2R desensitisation. ACEIs inhibit BK and des-Arg9-BK degradation, potentiating their effects [22]. Prolylcarboxypeptidase, an enzyme that also produces Ang I–7 from Ang II is a PK activator. Finally, in relation to inflammation risk mediated in part through regulation of vessel wall tissue factor, the B2R, AT2R, and Mas work in concert to counterbalance the prothrombotic influence of the AT1R [23,24].

5. Lessons from SARS-CoV

SARS-CoV was the coronavirus causing the SARS outbreak in 2003. The highly glycosylated viral spike proteins form club-shaped projections extending from the surface of the virions, giving the defining appearance of the “corona” around all CoVs, including SARS-CoV and SARS-CoV-2, the causative agent of COVID-19. The spike protein is a key determinant for virus attachment and entry into target cells. Animal studies confirm ACE2 as the important receptor for the SARS-CoV spike protein. In Ace2 knockout mice, only a very small amount of virus could be recovered from lung tissue, supporting the importance of ACE2 as the SARS-CoV receptor [34]. Infection of wild type mice with SARS-CoV reduces ACE2 expression [34]. SARS spike protein bound to ACE2 induces shedding of ACE2 with downregulation of ACE2 (Fig. 3) [35]. Intraperitoneal injection of a SARS-CoV Spike-Fc fusion protein into mice with acute acid-induced lung injury worsens acute lung failure that is attenuated by the AT1 receptor blocker losartan [34]. Combining the infection and lung injury studies, the data suggest that both cell surface and released ACE2 catalytic activity producing Ang I–7 is protective against lung injury. As SARS-CoV binding to ACE2 is associated with shedding and downregulation of ACE2 that may worsen injury, loss of Ang I–7 protective effects and increased Ang II and des-Arg9-BK as a result of diminished ACE2 activity may also lead to deleterious effects. Injury in these models was attenuated with AT1 receptor blockade. ACE2 expression is lower in rat lung tissues with age [36], kidney tissues in type 2 diabetes suggesting that the beneficial effects of ACE2 in this system are mediated through modulation of ACE effects. Over-expression of ACE2 or administration of recombinant catalytically active ACE2 in lung injury models has been associated with partial attenuation of injury indices [26,27]. Animal ARDS models also report increased ACE, high Ang II, decreased ACE2 levels [25] and Ang II/AT1R pathway mediated apoptosis and activation of NF-κB and JAK2/STAT pathways that may be ameliorated by the ARB losartan or ACE2 captopril [28]. In ARDS models studying the ACE2/Ang1–7/MasR axis, decrease in lung injury with supplemental Ang1–7 and rhACE2 have also been reported [29]. Ang1–7/MasR reduces apoptosis and cytokine secretion by inhibiting phosphorylation of JNK-NF-κB. Treatment with Compound 21 (C21), an AT2R agonist, also reduced fibrosis, inflammatory cytokines, macrophage infiltration, TNF-alpha and IL-6 in pulmonary hypertension or lung injury models [29]. These studies suggest a protective effect of ACE2 in the lung, as well as an adverse effect of Ang II. While it appears here that accumulation of excessive Ang II is deleterious, Ang II and AT2R also have vital and life-preserving roles, for example in maintaining adequate blood pressure and water-electrolyte balance. AT1R knock-out is lethal, and ACEIs and ARBs are beneficial as they restore more normal RAS homeostasis.

Involvement of the KKS, particularly B1R activity, in pulmonary injury and ARDS has been under study for decades. Components of the system have been found to be activated irrespective of etiology of lung injury [16,30]. Bronchoalveolar lavage (BAL) fluid in patients with ARDS have been found to have increased levels of activated factor XII (FXII), prekallikrein (PK) and high molecular weight kininogen (HK) along with plasminogen and complement proteins [31]. HK activity but not antigen has been found to be significantly reduced in patients with both sepsis and trauma-induced ARDS [30]. In vitro studies indicate that BK stimulates IL-1, IL-2, IL-6 and IL-8 production by lung parenchyma [16]. BK is also known to stimulate Type II pneumocytes to release neutrophil and monocyte chemotactic molecules [32]. A decrease in ACE2 in lung injury would reduce metabolism of des-Arg9-BK, potentially increasing its effect via the B1R to increase vascular permeability and fluid extravasation. B1R antagonism attenuates lipopolysaccharide-induced neutrophil influx in murine models of acute lung injury [33].

4. ACE2 in lung injury models

Animal models of acute lung injury, sepsis or inflammation (including acid aspiration, lipopolysaccharide challenge, cecal ligation and perforation sepsis) cause increased lung vascular permeability reminiscent of SARS-induced acute respiratory distress syndrome (ARDS). In these models lung ACE2 is decreased and ACE-dependent Ang II production is increased, implicating loss of ACE2 protective effects. Indeed, chemically induced lung injury leads to severe pathology in Ace2 knockout mice, which is rescued by treatment with the ARB losartan [25]. Dual genetic knockdown of Ace2 and Ace also attenuates lung injury and is associated with decreased Ang II,
with renal disease [37] and post-mortem brain tissue in Alzheimer's disease [38].

6. The SARS-CoV-2 spike protein and ACE2

Given the novel emergence of SARS-CoV-2, studies on cellular and animal models are just emerging. Similar to SARS-CoV, the receptor for SARS-CoV-2 is ACE2. The early availability of sequence information of virus isolates facilitated structural studies confirming the binding of SARS-CoV-2 spike protein to ACE2. The SARS-CoV-2 spike protein has significant structural homology to the spike protein of SARS-CoV. Both spike proteins bind to ACE2, but SARS-CoV-2 spike protein has been reported to bind with tighter affinity than SARS-CoV [39], so the lessons from SARS-CoV are expected to apply to SARS-CoV-2, perhaps to an even higher degree. The contribution of the enhanced binding to ACE2 to the infectivity of SARS-CoV-2 is not well understood, and binding affinity may reflect genetic variation in ACE2, but the distribution of ACE2 in lung alveolar cells, mouth, intestines, heart, endothelium, kidneys, testes, and brain may explain effects on lung injury, gastrointestinal symptoms, cardiac damage, acute kidney injury, and reports of late potentially neurally mediated cardiorespiratory depression (Fig. 4). Like SARS-CoV, SARS-CoV-2 spike protein requires priming by the serine protease TMPRSS2 for optimal cell entry [40]. Lung and intestines show ACE2 and TMPRSS2 expression and are primary sites of viral entry. The heart shows high levels of ACE2, but low levels of TMPRSS2 expression, which calls into question the mechanism of injury and myocarditis observed in severe cases of COVID-19. However, a polybasic furin cleavage site has been recently identified in the SARS-CoV-2 spike protein [41]: furin-like proteases that may contribute to SARS-CoV-2 spike protein processing are more ubiquitously expressed and may explain an expanded cell and tissue tropism of SARS-CoV-2 compared to SARS-CoV, which lacks this site [41–43].

We now know that SARS-CoV-2 cell entry involves two spike protein subunits, which mediate distinct functions. The S1 subunit mediates ACE2 attachment through the receptor binding domain, whereas the S2 subunit, containing the fusion peptide and transmembrane domains, drives fusion of viral and host cell membranes. In addition to attachment, viral entry is determined by spike protein cleavage at two proteolytic cleavage sites, termed S1/S2 and S2’ subunits. Unlike SARS-CoV, the S1/S2 site of the SARS-CoV-2 spike protein is processed by the cellular protease furin [44]. Subsequently, processing of the S2’ site by the cellular serine protease TMPRSS2 (transmembrane protein serine protease 2) occurs, and both furin and TMPRSS2 are required for entry into human lung cells [45]. Spike protein priming by TMPRSS2 was also shown to be essential for spread of SARS-CoV-2 in infected mouse models [46–48]. Although SARS-CoV-2 fusion is thought to occur in the endosomes of target cells, the requirement of cathepsins B and L for optimal membrane fusion efficiency in vivo remains unclear. Chloroquine increases the pH of lysosomes and is thought to inhibit the activity of proteases that promote membrane fusion and viral release into the cell. Ang 1 – angiotensin I. Ang II – angiotensin II. Ang 1–7 – angiotensin 1–7. ACE – angiotensin converting enzyme. ACE 2 – angiotensin converting enzyme 2. AT1 R – angiotensin 1 receptor. Mas1 R – mitochondrial assembly receptor. ACEI – angiotensin converting enzyme inhibitor. ARB – angiotensin 1 receptor blocker. TMPRSS2 – transmembrane protein serine protease 2.

Fig. 3. SARS-CoV-2 interaction with ACE 2 and TMPRSS 2. The spike protein around SARS-CoV-2 binds to its receptor, ACE2, driving fusion of viral and host cell membranes. Viral entry is also dependent on spike protein priming at its S1/S2 cleavage site (e.g. by furin) and then at its S2’ site by TMPRSS2, a process inhibited by camostat mesilate and serine protease / furin inhibition. Although SARS-CoV-2 fusion is thought to occur in the endosomes of target cells, the requirement of cathepsins B and L for optimal membrane fusion efficiency in vivo remains unclear. Chloroquine increases the pH of lysosomes and is thought to inhibit the activity of proteases that promote membrane fusion and viral release into the cell.

7. ACE2, platelets and thrombosis

Thrombotic disorders, including MI and stroke, are common features in patients with SARS-CoV-2 infection [49]. SARS-CoV-2 virus has been found in endothelium and leads to vessel apoptosis, a risk factor for thrombosis [50]. The coagulopathy associated with COVID-19 is like disseminated intravascular coagulation (DIC) with elevated d-dimer, but high fibrinogens and, in the majority of the patients in the USA, lacking strict criteria for DIC. The cross-talk between the KKS and coagulation system via the activation of Factor XII by kallikrein may contribute to the pro-coagulant state. Kallikrein has also been shown to stimulate activation of the complement system through C3 activation, which likely contributes to the associated coagulopathy [51]. In experimental models of thrombosis, ACE2 expression was detected in thrombus extract raising the possibility that ACE2 may play a role in the regulation of both thrombotic and hemostatic functions of circulating platelets [52]. Activation of the ACE2/ Ang1–7/Mas pathway and/or reduction of Ang II by use of an ACE2 activator (XNT) demonstrated antithrombotic activity in an animal...
SARS-CoV-2 replicates in lung tissue, and the lung is a major site for extra-medullary thrombopoiesis. Single-stranded RNA (SSRNA) viruses, including influenza, were recently demonstrated to augment platelet activation and platelet-to-leukocyte recruitment through the platelet toll-like receptor 7 (TLR7). Since SARS-CoV-2, like influenza, is also an SSRNA virus, the possibility exists that SARS-CoV-2 may promote dysregulated platelet activity directly through surface receptor-mediated pathways or indirectly by secreting platelet-derived molecules that regulate the coagulation cascade. Lastly, angiotensin receptors are expressed on the surface of platelets, and medications inhibiting the RAS attenuate platelet activation.

8. ACEIs and ARBs

Helpful or harmful? Though ARBs and ACEIs may be associated with an increase in ACE2 expression, which theoretically may enhance viral infection, their inhibition of the RAS with increased ACE2 expression, reduced Ang II or Ang II effects, and increased Ang1-7 and Ang 1–9 may have protective effects. ARBs may increase Ang II by competing with AT1R, but this may create more available substrate for ACE2 and formation of Ang1-7 with its downstream protective effects. Binding of substrates to ACE2 may induce conformational changes in ACE2; it is unknown whether these interactions would enable or reduce SARS-CoV-2 spike protein binding.

Specific effects of ACEIs and ARBs on this process are not known. Genetic factors, including genetic variability in ACE2 polymorphisms, may also determine functional roles of ACE2 for ACEIs and ARBs, as well as in its interaction with the CoV-2 spike protein, and will be important to dissect in the future. ACEI could reduce metabolism of BK, leading to B1R- and B2R-mediated inflammatory, vasodilatory, vascular permeability and fluid extravasation effects.

9. Clinical studies

Initial clinical data showing conflicting outcomes in COVID-19 associated with ARB or ACEI use were confounded by lack of adjustment for co-morbidities (Table). In a study of 187 COVID-19 patients from Wuhan, China, ACEI or ARB use was higher in patients with myocardial injury and elevated troponin T (TnT) levels (21.1%) compared to patients with normal TnT (5.9%), p = 0.002. In 42 patients with COVID-19 on antihypertensive therapy, severe disease was observed in 23.5% on and 48% not on an ACEI or ARB, but this was not significant due to the small sample size. A pre-publication report of 78 COVID-19 + patients with hypertension reported ARB use (n = 10) was associated with lower occurrence of severe disease (OR 0.343, 95% CI 0.128–0.916, p = 0.025). In a study of 362 hospitalized COVID-19 patients with hypertension, ACEI and/or ARB use (n = 115) was not significantly different between patients with severe vs. non-severe illness or in non-survivors vs survivors.

In a report of 399 acute inpatients from the UK Acute Hospital Trust, 53 died or were transferred to a critical care unit within 21 days.
Study	Population	N	Design	Outcome	P value	
Guo, et al. [58]	COVID-19+ (Wuhan, China)	187	Retrospective; unadjusted	TrnT on ACEI/ARB	Normal 8/135 (5%9%) Elevated 11/52 (21%13%) Mortality ACEI/ARB + 7/19 (36%8%) - 43/168 (25%6%)	0.002
Meng, et al. [59]	COVID-19+ on antihypertensive therapy (Shenzhen, China)	42	Retrospective; unadjusted	Severe disease ACEI/ARB	+ 4/17 (23%5%) - 12/25 (48%)	NS
Liu, et al. [74]	COVID-19+ hypertension on antihypertensive therapy (Shenzhen, China)	78	Retrospective, unadjusted	ACEI use 9/1% ARB use 24/9%	ACEI/ARB use 32/9% Non-survivors 12/8% Survivors 12/14%	0.139
Li, et al. [60]	COVID-19+ hypertension Hospitalized (Wuhan, China)	362	Retrospective, unadjusted	Severe disease (Whole cohort NS) age~ 65 (N = 46) ARB OR 0.343 95% CI 0.128–0.936	ACEI 0.471 0.139–2.342	0.378
Bean, et al. [61]	UK Acute Hospital Trust acute inpatients (London, UK)	399	Retrospective; adjusted	No differences in ACEI/ARB use outcomes in patients with HTN and comorbidities	0.85	
Rentsch, et al. [62]	Veterans Administration Birth Cohort; veterans (USA)	3789 tested	Retrospective cohort study; adjusted	Death or transfer to critical care unit for organ support within 21 days of symptom onset (n = 127)	ACEI/ARB adjusted OR 0.63 95% CI 0.47–0.87	-0.001
Zhang, et al. [75]	COVID-19+ hypertension (Hubei, China)	1128 HTN 188 ACEI/ARB (31 ACEI, 157 ARB)	Retrospective, adjusted and propensity score	Propensity score matched (1:2) ACEI/ARB (n = 174) vs non-ACEI/ARB (n = 522)	All-cause mortality Adjusted OR, 95% CI cases vs. matched controls	0.035
Mehta, et al. [63]	Patients undergoing testing for COVID-19 (Ohio, Florida)	18,472 tested	Retrospective cohort study; overlap propensity score weighted mean or proportion	SARS-CoV-2 test positivity:	ACEI 0.89 0.72–1.10 ARB 1.09 0.81–1.15	0.010
Mancia, et al. [64]	Patients tested for SARS-CoV-2 vs Regional Health Service controls (Italy)	6272 SARS-CoV-2+ 30,759 controls Age ≥40 yrs	Population-based case-control, conditional logistic regression multivariate analysis	Adjusted OR, 95% CI cases vs. matched controls	Covid-19+ Mild to moderate disease 0.96 (0.93–1.07) Critical or fatal disease 0.83 (0.63–1.10)	0.91 (0.69–1.21)

(continued on next page)
Table (Continued)

Outcome	Design	N	Population	Study	Propensity score matched analysis	Propensity score adjusted analysis
All Matched patients Drug Subgroup	Propensity score matched cohorts showed a lower risk of all-cause mortality (HR 0.99, 95% CI 0.87–1.13) and septic shock in patients on an ACEI or ARB.					
	In a study of 1218 patients with hypertension, 193 were on an ACEI or ARB; in adjusted analyses there were no differences in days of symptom onset. A lower rate of this endpoint occurred in patients on an ACEI or ARB (OR 0.63, CI 0.47–0.84, p < 0.01), adjusting for age, gender, hypertension, diabetes mellitus, chronic kidney disease, ischaemic heart disease and heart failure [61]. In a preprint from the Veterans Administration Birth Cohort, 585 patients tested positive for COVID-19 among 3789 tested, and 40% were on an ACEI or ARB; in adjusted analyses there were no differences in COVID-19 test positivity, hospitalisation, or intensive care in patients receiving or not receiving an ACEI or ARB [62].					
	Recently 6 studies using adjusted and/or propensity-score adjusted or matched analyses have been published (Table). Three tested associations of ACEI and/or ARB use on COVID-19 test positivity and found no significant differences. Disease severity and hospital outcomes were assessed in 4 studies. In a study of 1128 patients with hypertension, 188 were on an ACEI or ARB; propensity score matched cohorts showed a lower risk of all-cause mortality (HR 0.99, 95% CI 0.87–1.13) and septic shock in patients on an ACEI or ARB. In a study of 18,472 patients tested, 1735 were positive; ACEI and/or ARB use was associated with a higher rate of hospital admission with ACEI and ACEI or ARB use was associated with a higher risk of admission to the ICU, but with no significant difference in need for mechanical ventilation [63]. In a study of 6272 COVID-19 positive patients, ACEI or ARB use was not associated with degree of disease [64]. Another study of 12,594 tested patients, including 5894 who tested positive, ACEI, ARB, or either were not associated with test positivity or severe COVID-19 disease [65]. In a study of 2877 hospitalized patients with COVID-19, 850 had haemorrhage of which 183 were treated with renin-angiotensin-aldosterone system inhibitors (RAASI) and 527 were not; RAASI use was not associated with severity of disease or mortality [66]. Lastly, in a study of 4480 patients with COVID-19 in Danish national administrative registries, prior ACEI or ARB use was not associated with death or severe COVID-19; in a nested case-control study of patients with hypertension, ACEI/ARB use was not significantly associated with COVID-19 diagnosis [67]. Together, it is now consistent clinical evidence that ACEI or ARB use does not appear to predispose to SARS-CoV-2 infection, which was the main concern raised due to postulated effects of ACEIs or ARBs in raising ACE2 expression. Recent studies have shown no association of ACEI or ARB use with SARS-CoV-2 test positivity. Studies do not indicate harm from ACEI or ARB use in terms of severity of disease but with some conflicting results regarding the benefit vs. risk of ACEIs. However, the overall balance appears to be in favor of no significant harm from ACEI or ARB use in COVID-19, though larger studies are needed to assess the relative effects of ACEIs versus ARBs, whether continuation or withdrawal of these agents impact outcomes, or if ACEI/ARB use may actually be beneficial in alleviating lung or other organ injury in patients with COVID-19.					
	10. Recommendations regarding ACEIs and ARBs					
	Given the current reassuring data showing no significant association of ACEI or ARB use with test positivity, lack of consistent or convincing evidence as to the risk or benefit of an ACEI or ARB, as well as the potential harm that may occur with withdrawing of ACEIs or ARBs in patients with cardiovascular and other diseases [68], findings support the European Society of Cardiology, American Heart Association, American College of Cardiology, and the Heart Failure Society of America recommendations that patients on these therapies should be continued as clinically indicated. The recent data show consistent lack of an association with SARS-CoV-2 positivity. However, there remains a need to further assess impact of ACEIs and ARBs on severity of disease, potentially through larger or randomized studies.					
11. Implications for novel and repurposable therapeutics

The spike protein is a target for drug discovery and vaccine development. Blocking the spike protein–ACE2 interaction sites may be targetable with antibodies or small molecules, and use of soluble ACE2 may competitively bind to the spike protein [69]. Strategies to increase ACE2 shedding from cells may be protective against viral infection [70]. Furin inhibitors or other serine protease inhibitors may inhibit SARS-CoV-2 replication via the S1/S2 cleavage site [45]. TMPRSS2 is dispensable for homeostatic function and blocked by the serine protease inhibitor camostat mesilate, a drug approved in Japan for unrelated conditions [40]. Our recent systems biology study suggested several repurposable drugs for potential treatment of COVID-19, including melatonin and ARBs (i.e., irbesartan) [71]. Melatonin regulates expression of several cellular targets of human CoV, including ACE2, Ang II and AT1R [72]. Hydroxychloroquine and chloroquine have been commonly tried for treatment of COVID-19. Besides inhibiting viral-endosome fusion and release of viral particles to the cell by reducing endosomal acidification, chloroquine impairs terminal glycosylation of ACE2, which may have effects on binding affinity between ACE2 and Co-V spike protein [73]. However, efficacy remains to be established, and randomized trials are ongoing. Therapeutic application of Ang1–7 and Ang1–9 is limited because of the short half-life of these peptides and unavailability of FDA-approved drugs that can substitute for the potential benefits attributed to these peptides. Interventions directed at blocking BK and the pathways leading to its formation may also be of benefit. Hereditary angioedema, a rare genetic disorder causing predisposition to attacks of angioedema, is treated with medications to suppress activity in the KKS. These medications largely consist of direct kallikrein inhibitors, BK2R antagonists, and replacement with C1 inhibitor. BK’s role in COVID-19 is under investigation, and use of these suppressive medications is being explored. Until such time when there is a highly effective antiviral or a vaccine, these adjunctive approaches need to be developed.

12. Summary

In clinical practice the protective effects of ARBs and ACEIs are thought to be associated with an increase in ACE2 expression and their inhibition of the overactive renin-angiotensin system through reduction of Ang II effects. Coronavirus infection hijacks ACE2 expression to invade cells and spread infection-associated damage, downregulating ACE2 expression, reducing its protective effects and exacerbating the injurious Ang II effects. Retrospective observational studies do not show associations with higher risk of infection for persons receiving ACEIs or ARBs. However, controlled clinical trials would be needed to determine the risks or benefits of these agents in treating COVID-19. Studies in SARS-CoV-2 models and clinical retrospective and prospective studies in patients might further clarify these important questions. Such studies may also identify plausible therapeutic agents for targets within the RAS and KKS in the setting of coronaviral infection.

13. Outstanding Questions

Important questions remaining for future research include whether drugs targeting components of the RAS or the KKS might be helpful in the treatment of patients with COVID-19. Prospective controlled clinical trials are needed. Basic research on mechanisms to determine if ACE2 expression affects viral infectivity in vitro and expression of components of the RAS and KKS in infected tissues are needed to help clarify the role of cell-bound or shed ACE2 in COVID-19 pathophysiology. Investigations into specific cell types vulnerable to SARS-CoV-2 infection may help focus targeting of therapies.

Search Strategy and Selection Criteria. Data for this Review were identified by searches of PubMed with search terms including combinations of ACE inhibitors, ARBs, COVID-19, SARS-CoV-2, renin-angiotensin system, kallikrein-kinin system.

Authors’ contributions

Mina K. Chung, MD - writing, revisions, literature search, figures, responsibility for the manuscript
Sadashiva Karnik, PhD - RAS expertise, critical writing and revisions, figures
Joshua Saef, MD - KKS expertise, critical writing and revisions, figure
Cornelia Bergmann, PhD - coronavirus expertise, critical writing and revisions
John Barnard, PhD - Gtex query/data, figure
Michael M. Lederman, MD - virology, infectious disease expertise, critical writing and revisions
John Tilton, MD - virology expertise, critical writing and revisions Feixiong Cheng, PhD - expert in COVID-19 drug repurposing, writing/revisions
Clifford, V. Harding, III, MD, PhD - cell biology and immunology expertise, critical revisions
James B. Young, MD - ACEI/ARB, heart failure/cardiology expertise, critical comments/revisions
Neil Mehta, MD - ACEI/ARB expertise, contributed data/studies on ACE/ARBs
Scott J. Cameron MD, PhD - expertise in platelets and thrombosis in COVID-19, critical writing, revisions
Keith R. McCrae, MD - expertise in thrombosis, critical revisions
Alvin H. Schmaier, MD - expertise in thrombosis, KKS, critical revisions
Jonathan D. Smith, PhD - revisions, insights in ACE2 shedding
Ankur Kalra, MD - ACEI/ARB expertise in COVID-19, review and suggestions for manuscript
Surafel K. Gebreselassie, MD - RAS revisions/suggestions for manuscript
George Thomas, MD - RAS revisions/suggestions for manuscript
Edward S. Hawkins, MD - RAS revisions/suggestions for manuscript
Lars G. Svensson, MD, PhD - critical comments, revisions

Acknowledgements

This work was supported by National Institutes of Health (NIH) grants R01 HL113134 (MKC, JB, JS); R01 NS110700, R01 NS091183 (CCB); R01 AI140847 (JCT); U01 HL143402 (KRM); K08 HL128856 (SJ); R01 HL132351 and HL142091 (SK); the NIH National Center for Research Resources for Case Western Reserve University and Cleveland Clinic Clinical and Translational Science Award UL1-RR024989; and the Cleveland Clinic Center of Excellence for Cardiovascular Translational Functional Genomics, funded by the Cleveland Clinic Heart, Vascular and Thoracic Institute and Lerner Research Institute philanthropy funds. The funders had no role in paper design, data collection, data analysis, interpretation, or writing of the paper. The authors gratefully acknowledge the graphics support provided by Mary Ann Citraro and secretarial support provided by Anastasia Harris.

References

[1] Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005;111 (20):2605–10.
[2] Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382(18):1708–20.
[3] Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res 2016;118(8):1313–26.

[4] Karmik SS, Singh KD, Tirupala K, Unal H. Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system. IUPHAR Review 22(1):577–35.

[5] Kuba K, Imao Y, Ohta-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidease in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transamination. PLoS Pathog 2010;6(11):1-12.

[6] Gallagher PE, Ferrari CM, Tallant EA. MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. Am J Physiol Cell Physiol 2008;295(5):C1169–74.

[7] Vargas JC, Ashford NA, Niesen S, Ferrari CM. ACE2: angiotensin Il (angiotensin-1-) balance in cardiac and renal injury. Curr Hypertens Rep 2014;16(3):420.

[8] Jia HP, Look DC, Tan C, Shi L, Hickey M, Gakhar I, et al. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am J Physiol Lung Cell Mol Physiol 2011;301(3):L84–91.

[9] Epelman S, Tang WH, Chen SY, Vante L, Francis CS, SS. Sen. Detection of soluble angiotensin-converting enzyme 2 in heart failure: insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. J Am Coll Cardiol 2008;52(9):750–7.

[10] Marceau F, Regoli D. Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 2004;3(10):845–52.

[11] Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016;14(8):1799–911.

[12] Padri Canzana M, Riquelme JA, Garcia L, Jelil JE, Chiong M, Santos RA, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol 2020;17(12):116–29.

[13] McGuire WW, Spragg RG, Cohen AB, Cochrane CG. Studies on the pathogenesis of acute lung injury. Crit Care Med 2015;43(11):2520–7.

[14] Menke JG, Borkowski JA, Bierilo KK, MacNeil T, Derrick AW, Schneck KA, et al. The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol 2003;285(1):R1-8.

[15] Blas Jr C, Rouleau JL, Brown NP, Lepage Y, Spence D, Munoz C, et al. Serum metabolism of bradykinin and des-Arg9-bradykinin in patients with angiotensin-converting enzyme inhibitor-associated angioedema. Immunopharmacology 1999;49(3-4):263–302.

[16] Farg C, Stavrou EA, Schmaier AH. Angiotensin II type 2 receptor-bradykinin B2 receptor functional heterodimerization. Hypertension 2006;48(2):316–22.

[17] Abdalla S, Lother H, Quitterer U. AT1-receptor heterodimers show enhanced G-protein activity. J Biol Chem 1994;269(17):7724–8.

[18] Roche JA, Roche K. A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. FASEB J 2020;34(6):7265–9.

[19] Paege LW, Werner H, Viswedeh G, Wartner U. Release of cytokines from isolated lung strips by bradykinin. Inflamm Res 1995;44(7):306–11.

[20] Schmaier AH. The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol 2003;285(1):R1–8.

[21] Tusman P, Christiansen SC. Hereditary Angioedema. N Engl J Med. 2020;382(12):1136–48.

[22] Vargas JC, Ashford NA, Niesen S, Ferrari CM. ACE2: angiotensin Il (angiotensin-1-) balance in cardiac and renal injury. Curr Hypertens Rep 2014;16(3):420.

[23] Blas Jr C, Rouleau JL, Brown NP, Lepage Y, Spence D, Munoz C, et al. Serum metabolism of bradykinin and des-Arg9-bradykinin in patients with angiotensin-converting enzyme inhibitor-associated angioedema. Immunopharmacology 1999;49(3-4):263–302.

[24] Farg C, Stavrou EA, Schmaier AA, Grobe N, Wartner U. Release of cytokines from isolated lung strips by bradykinin. Inflamm Res 1995;44(7):306–11.

[25] Schmaier AH. The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol 2003;285(1):R1-8.

[26] Tusman P, Christiansen SC. Hereditary Angioedema. N Engl J Med. 2020;382(12):1136–48.

[27] Vargas JC, Ashford NA, Niesen S, Ferrari CM. ACE2: angiotensin Il (angiotensin-1-) balance in cardiac and renal injury. Curr Hypertens Rep 2014;16(3):420.

[28] Blas Jr C, Rouleau JL, Brown NP, Lepage Y, Spence D, Munoz C, et al. Serum metabolism of bradykinin and des-Arg9-bradykinin in patients with angiotensin-converting enzyme inhibitor-associated angioedema. Immunopharmacology 1999;49(3-4):263–302.

[29] Farg C, Stavrou EA, Schmaier AA, Grobe N, Morris M, Chen A, et al. Angiotensin 1-7 and Mas decrease thrombosis in Bdkrb2/- mice by increasing NO and prostacyclin to reduce platelet spreading and glycoprotein VI activation. Blood 2013;121(15):3023–32.

[30] Stavrou EX, Fang C, Merkulova A, Alhalabi O, Grobe N, Antoniak S, et al. Reduced thrombosis in Ki67-/- mice is mediated by increased Mas receptor, prostacyclin, Sirt1, and KLF4 and decreased tissue factor. Blood 2015;125(4):710–9.

[31] Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436(7047):112–6.

[32] Ye R, Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp Mol Pathol 2020;113:104350.

[33] Li Y, Zheng Z, Cao Y, Liu Y, Ping F, Jiang M, et al. Angiotensin-converting enzyme 2 prevents lipopolysaccharide-induced rat acute lung injury via suppressing the ERK2/1 and NF-kappab signaling pathways. Sci Rep 2016;6:27911.

[34] Liu Y, Chen J, Weitl T, Pan L, et al. Lossartan, a selective antagonist of AT1 receptor, attenuates sepsis-induced lung injury via modulation of JAK2/STAT3 and apoptosis in rat. Pulm Pharmacol Ther 2017;45:69-79.

[35] Wang D, Chai XQ, Magnussen CG, Zsolyki GK, Shu SH, Wei X, et al. Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during severe ingestion. Pulm Pharmacol Ther 2019;58:101833.

[36] Carvalho AC, DeMarinis S, Scott CF, Silver LD, Schmaier AA, Colman RW. Activation of the contact activation system of plasma proteolysis in the adult respiratory distress syndrome. J Lab Clin Med 1988;112(2):270–7.

[37] McGuire WW, Spragg RG, Cohen AB, Cochrane CG. Studies on the pathogenesis of the adult respiratory distress syndrome. J Clin Invest 1982;69(3):543–53.

[38] Koyama S, Sato E, Nomura H, Kubo K, Murasa M, Yamashita T, et al. Bradykinin stimulates type II alveolar cells to release neutrophil and monocyte chemotactic activity and inflammatory cytokines. Am J Pathol 1999;153(6):1885–93.

[39] Wang JH. Blocking of Kinin B1 receptor: a promising way for the treatment of acute lung injury. Crit Care Med 2015;43(11):2520–2.
acute hospital trust. European Journal of Heart failure 2020. doi: 10.1002/ ejhf.1924.

[62] Rentsch C.T., Kidwai-Khan F., Tate J.P., Park L.S., King J.T., Skanderson M., et al. Covid-19 testing, hospital admission, and intensive care among 2,026,227 United States Veterans Aged 54–75 Years. medRxiv. 2020.

[63] Mehta N, Kalra A, Nowacki AS, Anjewierden S, Han Z, Bhat P, et al. Association of use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020 e201855.

[64] Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin-angiotensin-aldosterone system blockers and the risk of Covid-19. N Engl J Med 2020;382(25):2431–40.

[65] Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB, et al. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19. N Engl J Med 2020;382(25):2441–8.

[66] Gao C, Cai Y, Zhang K, Zhou L, Zhang Y, Zhang X, et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. Eur Heart J 2020;41(22):2058–66.

[67] Fosbøl EL, Butt JH, Østergaard I, Andersson C, Selmer C, Kragholm K, et al. Association of Angiotensin-Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use With COVID-19 Diagnosis and Mortality. JAMA 2020. doi: 10.1001/jama.2020.11301.

[68] Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med 2020;382(17):1653–9.

[69] Zhang H, Penninger JM, Li Y, Zhong N, Slutskiy AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutics. Intensive Care Med 2020;46(4):586–90.

[70] Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020;17(6):613–20.

[71] Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov 2020;6:14.

[72] Hosseinizadeh A, Javad-Moosavi SA, Reiter RJ, Hemati K, Ghaznavi H, Mehrzadi S. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci 2018;201:17–29.

[73] Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30(3):269–71.

[74] Liu Y., Huang F., Xu J., Yang P., Qin Y., Cao M., et al. Anti-hypertensive Angiotensin II receptor blockers associated to mitigation of disease severity in elderly COVID-19 patients. medRxiv. 2020

[75] Zhang F, Zou L, Cai J, Lei F, Qin J, Xie J, et al. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res 2020;126(12):1671–81.