ON THE PYTKEEV PROPERTY IN SPACES OF CONTINUOUS FUNCTIONS (II)

BOAZ TSABAN AND LYUBOMYR ZDOMSKYY

Abstract. We prove that for each Polish space X, the space $C(X)$ of continuous real-valued functions on X satisfies (a strong version of) the Pytkeev property, if endowed with the compact-open topology. We also consider the Pytkeev property in the case where $C(X)$ is endowed with the topology of pointwise convergence.

1. Introduction

For a topological space X, $C(X)$ is the family of all real-valued continuous functions on X. We consider two standard topologies on $C(X)$, which make it a topological group. Let 0 denote the constant zero function on X.

$C_k(X)$ denotes $C(X)$, endowed with the compact-open topology. For a set $K \subseteq X$ and $n \in \mathbb{N}$, let

$$[K; n] = \left\{ f \in C_k(X) : \forall x \in K \ |f(x)| < \frac{1}{n}\right\}.$$

When K ranges over the compact subsets of X and n ranges over \mathbb{N}, the sets $[K; n]$ form a local base at 0.

$C_p(X)$ denotes $C(X)$, endowed with the topology of pointwise convergence. Here, a local base at 0 is given by the sets $[F; n]$, where $n \in \mathbb{N}$, and F ranges over the finite subsets of X.

$C_k(X)$ is metrizable if, and only if, X is hemicompact (i.e., there is a countable family of compact sets such that each compact subset of X is contained in some member of the family) [9]. In particular, $C_k(\mathbb{N}^\mathbb{N})$ is not metrizable. Restricting attention to first countable spaces X, McCoy [9] observed that for $C_k(X)$ to be metrizable, it suffices that it has the Fréchet-Urysohn property, that is, for each $A \subseteq C_k(X)$ with $0 \in \overline{A}$, there is a sequence of elements of A converging to 0. Despite

2000 Mathematics Subject Classification. 54C35; 03E15.

Key words and phrases. Pytkeev property, strong Pytkeev property, pointwise convergence, compact-open topology, metrizability.

Supported by the Koshland Center for Basic Research.
the fact that $C_k(\mathbb{N}^\mathbb{N})$ does not have the Fréchet-Urysohn property, we show in Section 2 that it has the slightly weaker Pytkeev property.

As for $C_p(X)$, it is metrizable if, and only if, X is countable. Here, the Fréchet-Urysohn property does not imply metrizability, and Sakai asked whether for $C_p(X)$, the Pytkeev property implies the Fréchet-Urysohn property. We establish several weaker assertions (Section 3).

2. The compact-open topology

Let X be a topological space. $C_k(X)$ has the Pytkeev property if for each $A \subseteq C_k(X)$ with $0 \in \overline{A} \setminus A$, there are infinite sets $A_1, A_2, \ldots \subseteq A$ such that each neighborhood of 0 contains some A_n.

The notion of a k-cover is central in the study of local properties of $C_k(X)$ (see 3 and references therein). A cover \mathcal{U} of X is a k-cover of X if $X \not\in \mathcal{U}$, but for each compact $K \subseteq X$, there is $U \in \mathcal{U}$ such that $K \subseteq U$.

Theorem 1. $C_k(\mathbb{N}^\mathbb{N})$ has the Pytkeev property.

Proof. By a theorem of Pavlovic and Pansera, it suffices to prove that for each open k-cover \mathcal{U} of X, there are infinite sets $\mathcal{U}_1, \mathcal{U}_2, \ldots \subseteq \mathcal{U}$ such that $\bigcap \mathcal{U}_n : n \in \mathbb{N}$ is a k-cover of X. We will show that $\mathbb{N}^\mathbb{N}$ has the mentioned covering property.

To this end, we set up some basic notation. For $s \in \mathbb{N}^{<\aleph_0}$, $[s] = \{f \in \mathbb{N}^\mathbb{N} : s \subseteq f\}$, and $|s|$ denotes the length of s. For $S \subseteq \mathbb{N}^{<\aleph_0}$, $[S] = \bigcup_{s \in S} [s]$. For an open $U \subseteq \mathbb{N}^\mathbb{N}$, $U(n) = \{s \in \mathbb{N}^n : [s] \subseteq U\}$. Note that for each n, $[U(n)] \subseteq [U(n+1)]$, and $U = \bigcup_n [U(n)]$.

Lemma 2. Assume that \mathcal{U} is an open k-cover of $\mathbb{N}^\mathbb{N}$. Then:

1. $\mathcal{V} = \{[U(n)] : U \in \mathcal{U}, n \in \mathbb{N}\}$ is a k-cover of $\mathbb{N}^\mathbb{N}$.

2. There is n such that $\{U(n) : U \in \mathcal{U}\}$ is infinite.

3. For each compact $K \subseteq \mathbb{N}^\mathbb{N}$, there is n such that $\{U(n) : U \in \mathcal{U}, K \subseteq [U(n)]\}$ is infinite.

Proof. (1) For each compact $K \subseteq \mathbb{N}^\mathbb{N}$, there is $U \in \mathcal{U}$ such that $K \subseteq U$. As $U = \bigcup_n [U(n)]$ and K is compact, there is n such that $K \subseteq [U(n)] \in \mathcal{V}$.

(2) Assume that for each n, $\{U(n) : U \in \mathcal{U}\}$ is finite. Note that for each $U \in \mathcal{U}$ and each n, $[U(n)] \subseteq U \neq \mathbb{N}^\mathbb{N}$, and therefore $U(n) \neq \mathbb{N}^n$. Proceed by induction on n:

Step 1. As $\mathcal{U}(1) = \{U(1) : U \in \mathcal{U}\}$ is finite and $\mathbb{N} \not\in \mathcal{U}(1)$, there is a finite $F_1 \subseteq \mathbb{N}$ which is not contained in any member of $\mathcal{U}(1)$.

Step n. As $\mathcal{U}(n) = \{U(n) : U \in \mathcal{U}\}$ is finite and $F_{n-1} \times \mathbb{N}$ is not contained in any member of $\mathcal{U}(n)$, there is a finite $F_n \subseteq F_{n-1} \times \mathbb{N}$
which is not contained in any member of \(\mathcal{U}(n) \), and such that \(F_n \upharpoonright (n - 1) = F_{n-1} \).

Take \(K = \bigcap_n [F_n] \) (the set of all infinite branches through the finitely splitting tree \(\bigcup_n F_n \)). As \(K \) is compact, there is \(U \in \mathcal{U} \) such that \(K \subseteq U \). As \(U = \bigcup_n [U(n)] \) and \(K \) is compact, there is \(n \) such that \(K \subseteq [U(n)] \). But then \(F_n \subseteq U(n) \), a contradiction.

(3) By (1), \(\{[U(n)] : U \in \mathcal{U}, n \in \mathbb{N}, K \subseteq [U(n)] \} \) is a \(k \)-cover of \(\mathbb{N}^\mathbb{N} \). By (2), there is \(m \) such that

\[
\mathcal{V} = \{[[U(n)](m)] : U \in \mathcal{U}, n \in \mathbb{N}, K \subseteq [U(n)] \}
\]

is infinite. For all \(U \) and \(n \), \([U(n)](m) \) is equal to \([U(n)] \) when \(n \leq m \), and to \([U(m)] \) when \(m < n \). Thus, \(\mathcal{V} = \bigcup_{n \leq m} \{[U(n)] : U \in \mathcal{U}, K \subseteq [U(n)] \} \), and therefore there is \(n \leq m \) such that \(\{[U(n)] : U \in \mathcal{U}, K \subseteq [U(n)] \} \) is infinite. □

For each \(n \) and \(s \in \mathbb{N}^n \), let \(\leq s = \{t \in \mathbb{N}^n : t \leq s \} \), where \(\leq \) is pointwise. The following lemma gives more than what is needed in our theorem.

Lemma 3. Let \(\mathcal{U} \) be an open \(k \)-cover of \(\mathbb{N}^\mathbb{N} \). There is \(S \subseteq \mathbb{N}^{<\mathbb{N}_0} \) such that for each \(s \in S \), \(\mathcal{U}_s = \{U \in \mathcal{U} : \leq s \subseteq U \} \) is infinite, and \(\{\leq s : s \in S \} \) is a clopen \(k \)-cover of \(\mathbb{N}^\mathbb{N} \) (refining \(\bigcap \mathcal{U}_s : s \in S \)).

Proof. We actually prove the stronger result, that the statement in the lemma holds when

\[
\mathcal{U}_s = \{[U(|s|)] : U \in \mathcal{U}, \leq s \subseteq U \}
\]

for each \(s \in S \).

Let \(S \) be the set of all \(s \in \mathbb{N}^{<\mathbb{N}_0} \) such that \(\mathcal{U}_s \) is infinite. If \(K \subseteq \mathbb{N}^\mathbb{N} \) is compact, take \(f \in \mathbb{N}^\mathbb{N} \) such that the compact set \(K(f) = \{g \in \mathbb{N}^\mathbb{N} : g \leq f \} \) contains \(K \). By Lemma 2 there is \(n \) such that there are infinitely many sets \(U(n), U \in \mathcal{U} \), with \(K(f) \subseteq [U(n)] \), that is, \(\leq f \upharpoonright n \subseteq U \). Thus, \(f \upharpoonright n \in S \). Clearly, \(K \subseteq K(f) \subseteq \leq f \upharpoonright n \). □

This completes the proof of Theorem 1.

Definition 4. For shortness, we say that a topological space \(X \) is **nice** if there is a countable family \(\mathcal{C} \) of open subsets of \(X \), such that for each open \(k \)-cover \(\mathcal{U} \) of \(X \), \(\mathcal{S} = \{V \in \mathcal{C} : (\exists \mathcal{U}_n \subseteq \mathcal{U}) V \subseteq U \} \) is a \(k \)-cover of \(X \).

By Lemma 3, \(\mathbb{N}^\mathbb{N} \) is nice.

Definition 5. A topological space \(Y \) has the **strong Pytkeev property** if for each \(y \in Y \), there is a countable family \(\mathcal{N} \) of subsets of \(Y \), such
that for each neighborhood \(U \) of \(y \) and each \(A \subseteq Y \) with \(y \in \overline{A} \setminus A \), there is \(N \in \mathcal{N} \) such that \(N \subseteq U \) and \(N \cap A \) is infinite.

If \(Y \) is first countable, then it has the strong Pytkeev property. The converse fails, even in the realm of \(C_k(X) \). Indeed, \(C_k(\mathbb{N}^\mathbb{N}) \) is not first countable (since it is a non-metrizable topological group), and we have the following.

Theorem 6. \(C_k(\mathbb{N}^\mathbb{N}) \) has the strong Pytkeev property.

Theorem 6 follows from the following.

Lemma 7. If \(X \) is nice, then \(C_k(X) \) has the strong Pytkeev property.

Proof. Let \(\mathcal{C} \) be as in the definition of niceness for \(X \). It suffices to verify the strong Pytkeev property of \(C_k(X) \) at \(0 \). Set

\[
\mathcal{N} = \{ [V; n] : V \in \mathcal{C}, n \in \mathbb{N} \}.
\]

Assume that \(A \subseteq C_k(X) \) and \(0 \in \overline{A} \setminus A \). There are two cases to consider.

Case 1: For each \(n \), there is \(f_n \in A \cap [X; n] \) (equivalently, there are infinitely many such \(n \)). Given any neighborhood \([K; m] \) of \(0 \), take \(V \in \mathcal{C} \) with \(K \subseteq V \). Then \([V; m] \subseteq [K; m]\), and \([V; m] \cap A \supseteq \{ f_n : n \geq m \} \) is infinite.

Case 2: There is \(N \) such that for each \(n \geq N \), \(A \cap [X; n] = \emptyset \). Fix \(n \geq N \). \(U_n = \{ f^{-1}([-1/n, 1/n]) : f \in A \} \) is a \(k \)-cover of \(X \). Thus,

\[
S_n = \{ V \in \mathcal{C} : (\exists \infty U \in U_n) V \subseteq U \} \subseteq \{ V \in \mathcal{C} : (\exists \infty f \in A) V \subseteq f^{-1}([-1/n, 1/n]) \} = \{ V \in \mathcal{C} : [V; n] \cap A \text{ is infinite} \}
\]

is a \(k \)-cover of \(X \).

Consider any (basic) open neighborhood \([K; n] \) of \(0 \). Take \(V \in S_n \) such that \(K \subseteq V \). Then \([V; n] \in \mathcal{N} \), \([V; n] \subseteq [K; n] \), and \([V; n] \cap A \) is infinite. \(\square \)

A function \(f : X \to Y \) is **compact-covering** if for each compact \(K \subseteq Y \), there is a compact \(C \subseteq X \) such that \(K \subseteq f[C] \). Hereditary local properties of a space \(C_k(X) \) are clearly preserved when transforming \(X \) by a continuous compact-covering functions. (Indeed, if \(f : X \to Y \) is a continuous compact-covering surjection, then \(g \mapsto g \circ f \) is an embedding of \(C_k(Y) \) into \(C_k(X) \).)

Corollary 8. For each Polish space \(X \), \(C_k(X) \) has the strong Pytkeev property.
Proof. X is the image of $\mathbb{N}^\mathbb{N}$ under a continuous compact-covering function. Indeed [7]: There is a closed $C \subseteq \mathbb{N}^\mathbb{N}$ such that X is the image of C under a perfect (thus compact-covering) function. As C is closed, it is a retract of $\mathbb{N}^\mathbb{N}$, and the retraction is clearly compact covering.

3. The topology of pointwise convergence

There is a very rich local-to-global theory, due to Arhangel’skiǐ and his followers, which studies local properties of $C_p(X)$ by translating them into covering properties. An elegant and uniform treatment of covering properties was given by Scheepers [16, 6]. We recall a part of this theory that puts the results of the present section in their proper context.

Let X be a topological space. U is a cover of X if $X = \bigcup U$ but $X \not\in U$. A cover U of X is an ω-cover of X if for each finite subset F of X, there is $U \in U$ such that $F \subseteq U$. U is a γ-cover of X if it is infinite and for each x in X, $x \in U$ for all but finitely many $U \in U$. Let \mathcal{O}, Ω, and Γ denote the collections of all open covers, ω-covers, and γ-covers of X, respectively. Let \mathcal{A} and \mathcal{B} be collections of covers of a space X. Following are selection hypotheses which X may satisfy or not satisfy [16].

\begin{align*}
S_1(\mathcal{A}, \mathcal{B}): \text{For all } U_1, U_2, \ldots \in \mathcal{A}, \text{ there are } U_1 \in U_1, U_2 \in U_2, \ldots, \text{ such that } \{U_1, U_2, \ldots \} \in \mathcal{B}.
S_{fin}(\mathcal{A}, \mathcal{B}): \text{For all } U_1, U_2, \ldots \in \mathcal{A}, \text{ there are finite } F_1 \subseteq U_1, F_2 \subseteq U_2, \ldots, \text{ such that } \bigcup_{n \in \mathbb{N}} F_n \in \mathcal{B}.
U_{fin}(\mathcal{A}, \mathcal{B}): \text{For all } U_1, U_2, \ldots \in \mathcal{A}, \text{ there are finite } F_1 \subseteq U_1, F_2 \subseteq U_2, \ldots, \text{ such that } \{\bigcup F_1, \bigcup F_2, \ldots \} \in \mathcal{B}.
\end{align*}

Some of the properties defined in this manner were studied earlier by Hurewicz ($U_{fin}(\mathcal{O}, \Gamma)$), Menger ($S_{fin}(\mathcal{O}, \mathcal{O})$), Rothberger ($S_1(\mathcal{O}, \mathcal{O})$, traditionally known as the C'' property), Gerlits and Nagy ($S_1(\Omega, \Gamma)$, traditionally known as the γ-property), and others. Each of these properties is either trivial, or equivalent to one in Figure 1 (where an arrow denotes implication) [6].

In the remainder of this paper, all spaces X are assumed to be Tychonoff. A space X satisfies $S_1(\Omega, \Gamma)$ if, and only if, $C_p(X)$ has the Fréchet-Urysohn property [5]. In particular, if X satisfies $S_1(\Omega, \Gamma)$, then $C_p(X)$ has the Pytkeev property.

Problem 9 (Sakai [14]). Assume that $C_p(X)$ has the Pytkeev property. Must X satisfy $S_1(\Omega, \Gamma)$?

For metric spaces X which are countable unions of totally bounded subspaces, Miller proved that consistently, X is countable whenever
\(C_p(X) \) has the Pytkeev property (this is essentially proved in Theorem 18 of [18]). It follows that a positive answer to Sakai’s Problem [9] is consistent in this realm. However, we suspect that the following holds.

Conjecture 10 (CH). There is \(X \subseteq \mathbb{N}^\mathbb{N} \) such that \(C_p(X) \) has the Pytkeev property, but \(X \) does not even satisfy Menger’s property \(S_{fin}(\mathcal{O}, \mathcal{O}) \).

It is therefore natural to consider the conjunction of “\(C_p(X) \) has the Pytkeev property” with properties in the Scheepers Diagram [11].

A combination of results of Kočinac and Scheepers [8] and Sakai [14] gives that if \(C_p(X) \) has the Pytkeev property and \(X \) satisfies \(U_{fin}(\mathcal{O}, \mathcal{O}) \), then all finite powers of \(X \) satisfy \(U_{fin}(\mathcal{O}, \Gamma) \) as well as \(S_1(\mathcal{O}, \mathcal{O}) \). We will prove several results of a similar flavor.

The combinatorial terminology in the remainder of the paper is as follows: For \(f, g \in \mathbb{N}^\mathbb{N} \), \(f \leq^* g \) means \(f(n) \leq g(n) \) for all but finitely many \(n \). \(B \subseteq \mathbb{N}^\mathbb{N} \) is bounded if there is \(g \in \mathbb{N}^\mathbb{N} \) such that for each \(f \in B \), \(f \leq^* g \). \(D \subseteq \mathbb{N}^\mathbb{N} \) is finitely dominating if its closure under pointwise maxima of finite subsets is dominating.

Theorem 11. If \(C_p(X) \) has the Pytkeev property and \(X \) satisfies \(U_{fin}(\mathcal{O}, \Omega) \), then \(X \) satisfies \(U_{fin}(\mathcal{O}, \Gamma) \) as well as \(S_1(\mathcal{O}, \mathcal{O}) \).

Proof. As \(C_p(X) \) has the Pytkeev property, \(X \) is Lindelöf and zero-dimensional [13]. This is needed for the application of the quoted combinatorial theorems below.

We first prove that \(X \) satisfies \(U_{fin}(\mathcal{O}, \Gamma) \). By [12], it suffices to prove the following.

Lemma 12. If \(C_p(X) \) has the Pytkeev property and \(X \) satisfies \(U_{fin}(\mathcal{O}, \Omega) \), then each continuous image \(Y \) of \(X \) in \(\mathbb{N}^\mathbb{N} \) is bounded.

Proof. Let \(Y \) be a continuous image of \(X \) in \(\mathbb{N}^\mathbb{N} \). Since we can transform \(Y \) continuously by \(f(n) \mapsto f(0) + f(1) + \cdots + f(n) + n \), we may assume
that all elements of Y are increasing. If there is an infinite $I \subseteq \mathbb{N}$ such that \(\{ f \upharpoonright I : f \in Y \} \) is bounded, then Y is bounded. We therefore assume that there is N such that for each $n \geq N$, \(\{ f(n) : f \in Y \} \) is infinite.

As Y satisfies $U_{\text{fin}}(\mathcal{O}, \Omega)$, Y is not finitely dominating \[19\], that is, there is $g \in \mathbb{N}^\mathbb{N}$ such that the clopen sets $U_n = \{ f \in Y : f(n) \leq g(n) \}$, $n \geq N$, form an ω-cover of Y. As $C_p(Y)$ has the Pytkeev property, there are infinite $I_1, I_2, \ldots \subseteq \mathbb{N} \setminus \{0, \ldots, N - 1\}$ such that \(\bigcap_{k \in I_n} U_k : n \in \mathbb{N} \) is an ω-cover of Y \[13\]. For each n, \(\{ f \upharpoonright I_n : f \in \bigcap_{k \in I_n} U_k \} \) is bounded, and therefore \(\bigcap_{k \in I_n} U_k \) is bounded. Thus, $Y = \bigcup_n \bigcap_{k \in I_n} U_k$ is bounded.

We now show that X satisfies $S_1(\mathcal{O}, \mathcal{O})$. It suffices to prove that each continuous image Y of X in $\mathbb{N}^\mathbb{N}$ has strong measure zero with respect to the standard metric of $\mathbb{N}^\mathbb{N}$ \[4\]. Indeed, by Lemma 12 such an image Y is bounded, and thus is a countable union of totally bounded subspaces of $\mathbb{N}^\mathbb{N}$. By a theorem of Miller \[18\], if $C_p(Y)$ has the Pytkeev property and Y is a countable union of totally bounded subspaces, then Y has strong measure zero.

\square

D_{fin} is the family of all subsets of $\mathbb{N}^\mathbb{N}$ which are not finitely dominating, and $\text{cov}(D_{\text{fin}}) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq D_{\text{fin}} \text{ and } \bigcup\mathcal{F} = \mathbb{N}^\mathbb{N}\}$. The hypothesis $\text{cov}(D_{\text{fin}}) < \diamond$ holds, e.g., in the Cohen reals model, or if \diamond is singular \[17\].

Theorem 13 (cov(D_{fin}) < \diamond). Assume that for each $Y \subseteq X$, $C_p(Y)$ has the Pytkeev property. Then X satisfies $U_{\text{fin}}(\mathcal{O}, \Omega)$ as well as $S_1(\mathcal{O}, \mathcal{O})$.

Proof. By Theorem 11 it suffices to prove that X satisfies $U_{\text{fin}}(\mathcal{O}, \Omega)$, or equivalently, that no continuous image Y of X in $\mathbb{N}^\mathbb{N}$ is finitely dominating.

Assume that Y is a continuous image of X in $\mathbb{N}^\mathbb{N}$. We may assume that all elements of Y are increasing. Let $\kappa = \text{cov}(D_{\text{fin}}) < \diamond$, and $Y_\alpha \subseteq \mathbb{N}^\mathbb{N}$, $\alpha < \kappa$, be not finitely dominating and such that $\bigcup_{\alpha < \kappa} Y_\alpha = \mathbb{N}^\mathbb{N}$. For each $\alpha < \kappa$, $Y \cap Y_\alpha$ is not finitely dominating, and since it is a continuous image of a subset of X, $C_p(Y \cap Y_\alpha)$ has the Pytkeev property. The proof of Lemma 12 shows the following.

Lemma 14. Assume that $Z \subseteq \mathbb{N}^\mathbb{N}$, all elements of Z are increasing, Z is not finitely dominating, and $C_p(Z)$ has the Pytkeev property. Then Z is bounded.

It follows that $Y \cap Y_\alpha$ is bounded for all $\alpha < \kappa$, and as $\kappa < \diamond$, $Y = \bigcup_{\alpha < \kappa} Y \cap Y_\alpha$ is not finitely dominating.
We now consider the strong Pytkeev property of $C_p(X)$. A space Y has a countable cs*-character \cite{2} if for each $y \in Y$, there is a countable family N of subsets of Y, such that for each sequence in Y converging to y (but not eventually equal to y) and each neighborhood U of y, there is $N \in N$ such that $N \subseteq U$ and N contains infinitely many elements of that sequence. Clearly, the strong Pytkeev property implies countable cs*-character. For topological groups, the conjunction of countable cs*-character and the Fréchet-Urysohn property implies metrizability \cite{2}. As $C_p(X)$ is a topological group, we have the following.

Corollary 15. If $C_p(X)$ has the Fréchet-Urysohn property as well as the strong Pytkeev property, then X is countable. \hfill \Box

As the Pytkeev property follows from the Fréchet-Urysohn property, we have the following.

Corollary 16. The Pytkeev property for $C_p(X)$ does not imply the strong Pytkeev property for $C_p(X)$. \hfill \Box

If, consistently, there is an uncountable X such that $C_p(X)$ has the strong Pytkeev property, then the answer to Sakai’s Problem \cite{9} is negative: By corollary \cite{15} in this case $C_p(X)$ cannot have the Fréchet-Urysohn property.\footnote{Unfortunately, this strategy does not work: Sakai has recently proved that if $C_p(X)$ has the strong Pytkeev property (or even just countable cs*-character), then X is countable \cite{15}. This extends Corollary \cite{15} and can be contrasted with Theorem \cite{15}.}

Acknowledgement. We thank Masami Sakai for his useful comments.

References

\begin{itemize}
 \item \cite{1} A. V. Arhangel’skiı, *Topological Function Spaces*, Kluwer Academic Publishers, 1992.
 \item \cite{2} T. Banakh and L. Zdomskyy, *The topological structure of (homogeneous) spaces and groups with countable cs*-character*, Applied General Topology 5 (2004), 25–48.
 \item \cite{3} A. Caserta, G. DiMaio, Ij. D.R. Kočcinač, E. Meccariello, *Applications of k-covers II*, Topology and its Applications 153 (2006), 3277–3293.
 \item \cite{4} D. H. Fremlin and A. W. Miller, *On some properties of Hurewicz, Menger and Rothberger*, Fundamenta Mathematica 129 (1988), 17–33.
 \item \cite{5} J. Gerlits and Zs. Nagy, *Some properties of $C(X)$, I*, Topology and its Applications 14 (1982), 151–161.
 \item \cite{6} W. Just, A. W. Miller, M. Scheepers, and P. J. Szeptycki, *The combinatorics of open covers II*, Topology and its Applications 73 (1996), 241–266.
 \item \cite{7} A. S. Kechris, *Classical Descriptive Set Theory*, Graduate Texts in Mathematics 156, Springer-Verlag, 1994.
\end{itemize}
[8] Lj. D.R. Kočinac and M. Scheepers, *Combinatorics of open covers (VII): Groupability*, Fundamenta Mathematicae 179 (2003), 131–155.
[9] R. A. McCoy, *Function spaces which are k-spaces*, Topology Proceedings 5 (1980), 139–146.
[10] B. Pansera, V. Pavlović, *Open covers and function spaces*, Matematicki Vesnik 58 (2006), 57–70.
[11] E. G. Pytkeev, *On maximally resolvable spaces*, Proceedings of the Steklov Institute of Mathematics 154 (1984), 225–230.
[12] I. Reclaw, *Every Luzin set is undetermined in the point-open game*, Fundamenta Mathematicae 144 (1994), 43–54.
[13] M. Sakai, *The Pytkeev property and the Reznichenko property in function spaces*, Note di Matematica 22 (2003), 43–52.
[14] M. Sakai, *Special subsets of reals characterizing local properties of function spaces*, in: *Selection Principles and Covering Properties in Topology* (L. D.R. Kočinac, ed.), Quaderni di Matematica 18, Seconda Universita di Napoli, Caserta.
[15] M. Sakai, *Function spaces with a countable cs*-network at a point*, Topology and its Applications 156 (2008), 117–123.
[16] M. Scheepers, *Combinatorics of open covers I: Ramsey theory*, Topology and its Applications 69 (1996), 31–62.
[17] S. Shelah and B. Tsaban, *Critical cardinalities and additivity properties of combinatorial notions of smallness*, Journal of Applied Analysis 9 (2003), 149–162.
[18] P. Simon and B. Tsaban, *On the Pytkeev property in spaces of continuous functions*, Proceedings of the American Mathematical Society 136 (2008), 1125–1135.
[19] B. Tsaban, *A diagonalization property between Hurewicz and Menger*, Real Analysis Exchange 27 (2001/2002), 757–763.

(Boaz Tsaban) Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel; and Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel.
E-mail address: boaz.tsaban@weizmann.ac.il
URL: http://www.cs.biu.ac.il/~tsaban

(Lyubomyr Zdomskyy) Department of Mechanics and Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv 79000, Ukraine; and Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
E-mail address: lzdomsky@rambler.ru