Responses of soil microbial activity to cadmium pollution and elevated CO₂

Yi Ping Chen1, Qiang Liu1,2, Yong Jun Liu3, Feng An Jia1 & Xin Hua He4

1SKLGG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China, 2University of Chinese Academy of Sciences, Beijing 100049, China, 3College of Environmental Science, Xi’an University of Architecture and Technology, Xi’an 710062, China, 4Elizabeth Macarthur Agricultural Institute, Department of Primary Industries, Menangle, NSW 2568, Australia.

To address the combined effects of cadmium (Cd) and elevated CO₂ on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd₀), 1.5 (Cd₁.₅), 3.0 (Cd₃.₀) and 6.0 (Cd₆.₀) mg Cd kg⁻¹ soil, and two levels of CO₂, i.e., 360 (aCO₂) and 480 (eCO₂) ppm. Compared to Cd₀, Cd₁.₅ increased fungal abundance but decreased bacterial abundance under both CO₂ levels, whilst Cd₃.₀ and Cd₆.₀ decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO₂. Soil respiration decreased with Cd concentrations and was greater under eCO₂ than under aCO₂. Soil total C and N were greater under higher Cd. These results suggest eCO₂ could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO₂.

Atmospheric carbon dioxide (CO₂) concentration has increased from 280 to 380 ppm since the industrial revolution and is projected to reach 420 to 936 ppm at the end of 21st century depending on scenarios1. The rapid increase of CO₂ has drawn much attention because it closely relates to global climate change. Most of the attention has focused on the responses of aboveground and belowground processes as elevated CO₂ (eCO₂) impacts numerous biogeochemical processes in both natural and agricultural ecosystems1,2. Soil organic carbon (SOC) pool is three times greater than C stored in the atmosphere or vegetation biomass3. It is therefore imperative to understand how eCO₂ impacts soil C dynamics and the associated underlying mechanisms. Studies have demonstrated that eCO₂ could affect soil microbial communities, C and nitrogen (N) cycling processes4–5. However, how eCO₂ could affect C and N dynamics is of much uncertainty as the responses of soil microbial communities to eCO₂ could be positive, negative or neutral6–10.

Soil microorganisms play vital roles in soil C and N transformations and nutrient cycles and thus affect soil biological, chemical, and physical properties. For instance, the activity of soil microorganisms and microbial community composition determine not only soil C sequestrations and emissions, and the decomposition and accumulation of soil organic matter11,12, but also N₂-fixation, nitrification and denitrification, and the accumulation of plant available NH₄⁺ and NO₃⁻13. However, limited information is available to the effect of eCO₂ on soil bacterial and fungal abundance, community structure, and in turn C and N dynamics.

Furthermore, global climate change like elevated CO₂ is happening along with other environmental issues, including heavy metal pollution, which has become a seriously global problem due to anthropogenic activities, such as mining, smelting, and sewage sludge disposal14. Unlike some organic contaminants, heavy metals are often accumulated in living organisms and not biodegradable in the environment. Many heavy metals, including cadmium (Cd), are toxic to soil microbes, which affect soil biogeochemical processes, such as soil organic matter (SOM) decomposition, through altering microbial biomass and activity14,15. Under climate change, the effects of Cd on soil microbial activity may become more complex as potential interactions between climate factors and excessive Cd in soil. However, the interactive consequence of CO₂ and Cd on soil microbial community has seldom been investigated.

In this study, loessial soils were treated with four levels of Cd, i.e., 0 (Cd₀), 1.5 (Cd₁.₅), 3.0 (Cd₃.₀) and 6.0 (Cd₆.₀) mg Cd kg⁻¹ soil, and two levels of CO₂, i.e., 360 (aCO₂) and 480 (eCO₂) ppm. Soil bacterial and fungal abundance, community structure, CO₂ emission, C and N were measured to determine how soil Cd pollution and elevated CO₂ separately or in combination could impact soil microbial community and C and N accumulation.
Results

Microbial community. The abundance of soil fungi was affected not only by Cd but also by CO2 concentrations (Fig. 1). Fungal abundance generally linearly increased with incubation time over the eight weeks of Cd exposure under all treatments. Fungal abundance was much greater under eCO2 than under aCO2, regardless of Cd levels. Compared to the non-Cd control, fungal abundance was significantly increased under Cd1.5, but decreased under Cd3.0 and Cd6.0, regardless of CO2 levels.

Soil bacterial abundance was gradually decreased with increase of Cd concentrations. Its abundance was lower under aCO2 than under eCO2 at the same Cd concentration. Bacterial abundance was decreased after 2 to 4 weeks and was lowest at 4 week over the eight weeks of Cd exposure under both aCO2 and eCO2 (Fig. 2). But soil bacterial abundance began to increase after 4 weeks and was highest at 8 weeks of incubation.

The triplicate running of DGGE profiles was highly reproducible so only one DGGE profile was displayed (Fig. 3). After 4 weeks of incubation, 10 bands under eCO2 while 8 bands under aCO2 were observed, irrespective of Cd concentrations (left panel in Fig. 3). Among these bands, 4 distinctive bands were generated (the left-towards red arrows in the left panel) and 2 bands were disappeared (the right-towards red arrows in the left panel) under eCO2 than under aCO2. Furthermore, after 8 weeks of incubation, 8 bands under eCO2 while 6 bands under aCO2 were observed, irrespective of Cd concentrations (right panel in Fig. 3). Among these bands, 3 distinctive bands were generated (the left-towards red arrows in the right panel) and 1 band was disappeared (the right-towards red arrows in the right panel) under eCO2 than under aCO2. In addition, there were visual differences in DGGE band width between two incubation durations (4 and 8 weeks), while there seemed no distinctively visual differences between Cd and other Cd concentrations (no measurements were done to determine the width). Therefore, the DGGE profiles, e.g., the soil microbial community structure, were altered under eCO2 and cadmium pollution over the 8 weeks of soil incubation.

Soil C and N dynamics. The CO2 emission showed a decrease trend with the increase of Cd concentrations under either eCO2 or aCO2 (Fig. 4). The cumulative soil CO2 effluxes were generally significantly greater under eCO2 than under aCO2 over the 8 weeks incubation, regardless of Cd treatment levels. Concentrations of soil C and N were greater in soils treated with higher concentrations of Cd at both CO2 levels. Significantly higher concentrations of soil C and N were observed under aCO2 than under eCO2, regardless of Cd treatments (Fig. 5a and 5b).

Discussion

Due to excessive emission of industrial waste, wastewater irrigation and serious abuse of chemical fertilizers and pesticides, numerous...
Figure 2 | Effects of cadmium and CO$_2$ on soil bacterial abundance after 2 weeks (A), 4 weeks (B), 6 weeks (C) and 8 weeks (D) under 0 (Cd$_0$), 1.5 (Cd$_{1.5}$), 3.0 (Cd$_{3.0}$) and 6.0 (Cd$_{6.0}$) mg Cd kg$^{-1}$ soil and ambient CO$_2$ (360 ppm, aCO$_2$) or elevated CO$_2$ (480 ppm, eCO$_2$). Data (means \pm SE, $n = 3$) followed by different letters between Cd treatments for the same CO$_2$ treatment (a, b, c, d) or between aCO$_2$ and eCO$_2$ for the same Cd treatment (x, y) are significantly different at $P < 0.05$ according to Mann-Whitney multiple comparisons.

Figure 3 | Effects of cadmium and CO$_2$ on soil bacterial community structure (DGGE profiles of PCR products from 16S rDNA extractions) after 4 weeks and 8 weeks under 0 (Cd$_0$), 1.5 (Cd$_{1.5}$), 3.0 (Cd$_{3.0}$) and 6.0 (Cd$_{6.0}$) mg Cd kg$^{-1}$ soil and ambient CO$_2$ (360 ppm, aCO$_2$) or elevated CO$_2$ (480 ppm, eCO$_2$). Red arrow showed differences in DGGE bands between aCO$_2$ and eCO$_2$ treatments.
Heavy metals have been released into the environment. One fifth of total cultivated land in China was polluted by heavy metals, such as arsenic (As), cadmium (Cd), chromium (Cr) and lead (Pb). Heavy metal pollution has been a threat to the earth system. Previous studies have showed that either short-term or long-term exposure to heavy metals could result in changes of soil microbial communities, or decrease in diversity and activities. Moreover, fungi are more tolerant to heavy metals than bacteria. Our results in loessial soil were consistent with those previous studies. Bacteria were more sensitive to Cd stress than fungi because the low (1.5 mg Cd kg$^{-1}$ soil) treatment restrained the bacteria reproduction but improved fungal reproduction. With the increase of Cd concentrations, the fungal and bacterial abundance were gradually decreased under normal CO$_2$ treatment. The alteration of DGGE profiles might provide direct evidence that the microbial communities might have been influenced by elevated CO$_2$, but not by cadmium pollution at the tested Cd concentrations.

Elevated CO$_2$ have various impacts on biogeochemical processes in terrestrial ecosystems. There were some different viewpoints on the effect of elevated CO$_2$ on soil microbial abundance. For instance, in free-air CO$_2$ enrichment experiment no significant changes were observed in the relative abundance or composition of fungi. On the contrary, the fungal biomass in a chaparral ecosystem was significantly increased under 550 ppm elevated CO$_2$, and the relative abundance of fungi in a scrub-oak ecosystem was greater under elevated CO$_2$ than under ambient CO$_2$. Elevated CO$_2$ could stimulate microbial growth, especially bacteria, and lead to substantial changes in the activity and structure of soil microbial communities. Recently, analyses of 16S rRNA genes showed that soil microbial community structures were significantly changed by elevated CO$_2$. Our experiments also demonstrated the bacterial and fungal abundance were increased by eCO$_2$ regardless of Cd levels. Compared with the same Cd concentration, elevated CO$_2$ significantly altered the bacterial and fungal abundance, the bacterial DNA brand, and decreased the concentrations of soil C and N, resulting in changes in soil microbial community and soil biogeochemical cycling. These results support that elevated CO$_2$ could result in a loss of soil carbon.

Elevated CO$_2$ and Cd exhibited opposite effects on soil microbial communities. Cd pollution restrained microorganism’s growth and high concentration of Cd could decrease microbial biomass and activities. As a result, less SOM could be utilized and thus less CO$_2$ was released from soil, which in turn had more C and N retained in the soil. Moreover, with an increase of Cd concentration, the negative effect was more obvious. However, soil microbial relative abundances

![Figure 4](https://www.nature.com/scientificreports/4287.png) **Figure 4** | Effects of cadmium and CO$_2$ on soil cumulative carbon emission after 2 weeks (A), 4 weeks (B), 6 weeks (C) and 8 weeks (D) under 0 (Cd$_0$), 1.5 (Cd$_{1.5}$), 3.0 (Cd$_{3.0}$) and 6.0 (Cd$_{6.0}$) mg Cd kg$^{-1}$ soil and ambient CO$_2$ (360 ppm, aCO$_2$) or elevated CO$_2$ (480 ppm, eCO$_2$). Data (means ± SE, n = 3) followed by different letters between Cd treatments for the same CO$_2$ treatment (a, b, c, d) or between aCO$_2$ and eCO$_2$ for the same Cd treatment (x, y) are significantly different at $P < 0.05$ according to Mann-Whitney multiple comparisons.
and activities of soil carbon-degrading enzymes in soils exposed to an elevated CO₂ might have been increased, leading to an enhanced degradation of soil organic matter than soils exposed to ambient CO₂, which in turn consumed more C and N in soil. Therefore, a combined effect of Cd and eCO₂ could display antagonisms on terrestrial C pool by altering soil microbial community.

In conclusion, higher Cd exposure to soil could lead to a decrease of both bacterial and fungal abundance, and hence an increasing soil C and N concentrations. Meanwhile, elevated CO₂ could alter microbial communities and lead to an increase of soil C emission, resulting in a decrease in soil C and N concentrations. These results suggest that eCO₂ could stimulate, while Cd pollution could restrain, microbial reproduction and C decomposition with the restraint effect alleviated by eCO₂. Nevertheless, more research is warranted on the combined effects of Cd pollution and elevated CO₂ on the dynamics of soil C.

Figure 5 | Effects of 8-weeks cadmium and CO₂ treatments on soil carbon (A) and nitrogen (B) concentrations under 0 (Cd₀), 1.5 (Cd₁.₅), 3.0 (Cd₃.₀) and 6.0 (Cd₆.₀) mg Cd kg⁻¹ soil and ambient CO₂ (360 ppm, aCO₂) or elevated CO₂ (480 ppm, eCO₂). Data (means ± SE, n = 3) followed by different letters between Cd treatments for the same CO₂ treatment (a, b, c, d) or between aCO₂ and eCO₂ for the same Cd treatment (x, y) are significantly different at P < 0.05 according to Mann-Whitney multiple comparisons.

Methods

Soil characteristics. Loessial soils at 0–10 cm depth were collected from a field after maize harvest in a suburban of Xi’an, Shaanxi, China (34° 44′ N, 109° 49′ E). According to Pang et al.22, the soil pH was 8.3, moisture was 7.8%, soil SOC was 8.9 g C kg⁻¹ and CaCO₃ was 30.11 g kg⁻¹.

Experiment design. The experiment consisted of four Cd and two CO₂ treatments in a completely randomized arrangement. The four Cd treatments were 0 (Cd₀), 1.5 (Cd₁.₅), 3.0 (Cd₃.₀) or 6.0 mg Cd kg⁻¹ soil (Cd₆.₀) and the two CO₂ treatments were ambient (360 ppm, aCO₂) or elevated (480 ppm, eCO₂). Each treatment had three replicates, for a total of 24 replicates. The soil was put in 24 growth pots. Each pot (15 cm diameter and 10 cm height) contained 1.0 kg soil. The CO₂ concentrations were monitored and controlled by a meter (output flux: 25 L min⁻¹; 15 MPa pressure; Shanghai Yichuan Meter Co., Shanghai, China). Cd was applied as CdCl₂.2H₂O (99%, Tianjin Fuchen Chemical Co., Tianjin, China), which was firstly dissolved in distilled water and then thoroughly mixed with soil. The Cd-containing soils were continuously incubated under 25 ± 1°C and 70% of relative humidity over 8 weeks in a plant growth chamber.

Soil microbial community structure. The number of bacteria and fungi was counted using the plate counting technique24. Briefly, approximately 10 g soils from each pot were put into a 300 ml Erlenmeyer flask containing 90 ml sterilized potassium phosphate buffer (0.35 g KH₂PO₄, 0.65 g K₂HPO₄ and 0.10 g MgSO₄ in 1.0 liter water), centrifuged at 250 rpm for 15 min and the soil extraction solution was then diluted into 100-fold. Control plates minus soil suspensions were used to check potential contamination. The total number of bacteria was cultured with an agar medium (including 5 g beef, 10 g peptone, 5 g NaCl, 20 g agar and 0.1 g cycloheximide per 1,000 ml distilled water) for 48 h at 37°C. The total number of fungi was cultured with an agar medium (including 10 g glucose, 5 g peptone, 1 g KH₂PO₄, 0.5 g MgSO₄.7H₂O, 20 g agar and 0.1 g chloramphenicol per 1,000 ml distilled water) for 72 h at 25°C. The colony concentrations were expressed as colony-forming units per gram soil (CFU/g)24.

DNA extraction and PCR-DGGE analysis. Analyses of bacterial community structure were performed with incubated soils at week 4 and week 8, respectively. Using a Fast DNA Spin Kit (Bio 101, USA), the extraction of soil bacterial DNA was tripled (1.0 g soil each) from each treatment according to the manufacturer’s bead-beating procedure. The yield and quality of extracted DNA was validated by the 1.0% agarose gel electrophoresis with ethidium bromide staining. The bacterial 16S rDNA genes were amplified with the primer EUB341F (5'-AGC AG-3') with a GC clamp (CGC CCG CCC GCC CCC GCC CCC CCC CCC CCC CCC CCC C) at the 5' end and the premier EU500R (5'-CTT ACC GGA GGC AGC AG-3') using a GC clamp (CCG CCG CCG CGC CCG CCC CCG CCC CCC CCC G) at the 3' end. The PCR amplification was carried out with an ICycler Thermal Cycler (Bio-Rad, USA). A final 50 μl reaction mixture contained 1–10 ng DNA extracts as template, 5 μl of 10 × PCR buffer (minus Mg²⁺), 15 pmol of each primer, 200 μmol deoxyribonucleoside triphosphate, and 3 μl MgCl₂ (25 mmol). A touchdown temperature profile was applied as the annealing temperature decreased from 65°C to 55°C after 20 cycles with a 0.5°C decline from 0.5°C to 5°C after further 10 cycles. An aliquot of 5 μl PCR products was then run by 1.0% agarose gel electrophoresis with ethidium bromide staining prior to the denaturing gradient gel electrophoresis (DGGE), which was conducted with a Bio-Rad Dcode Universal Mutation Detection System (Bio-Rad, USA). The generated PCR product was loaded on 0.8% run thick polyacrylamide (10% acrylamide/bisacrylamide, w/v) gel kept at 55°C and run for 18 h. The gels were stained with 1 μg ml⁻¹ ethidium bromide for 20 min, rinsed with distilled water thoroughly, and then photographed.

Measurements of soil total carbon and nitrogen. Soils from all 8-week incubation pots were air-dried to a constant weight and sieved through 1.0 mm mesh. Total carbon and nitrogen were determined according to the dichromate oxidation26 and the H₂SO₄ titrate method26, respectively.

Soil CO₂ efflux measurements. After incubation for 2, 4, 6 and 8 weeks, the pot was placed into a PVC (polivynil chloride) collar (14.5 cm height and 20.3 cm inside diameter) and the bottom was completely sealed. Soil CO₂ efflux rates (μ mol CO₂ pot⁻¹ min⁻¹) between 12:00 pm and 15:00 pm were quantified by a LI-8100 soil CO₂ flux system (LI-COR INC., Lincoln, NE, USA), which was equipped with a portable chamber (Model 8100-103) being placed into the PVC collar. The CO₂ efflux rate was then automatically calculated from exponential regression of increasing CO₂ concentrations over 3-min duration. Each measurement for a pot was repeated 3 times and 3 repetition experiments were performed in one day.

Data analysis. Data (means ± SE) were subjected to one-way analysis of variance (ANOVA) and significant differences between treatments were compared using the Mann-Whitney multiple comparison at P < 0.05. Statistical analyses were performed using the SPSS16.0 (SPSS Inc., Chicago, IL, USA).
1. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).
2. Oelkers, E. H. & Cole, D. R. Carbon dioxide sequestration: a solution to the global problem. Elements 4, 305–310 (2008).
3. Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87, 53–63 (2006).
4. Carney, M. C., Hungate, B. A., Drake, B. G. & MEGONIGAL, J. P. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc. Natl. Acad. Sci. USA 104, 4990–4995 (2007).
5. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).
6. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).
7. Josfil, M. et al. How elevated CO2 modifies total and metabolically active bacterial communities in the rhizosphere of two perennial grasses grown under field conditions. FEMS Microbiol. Ecol. 55, 339–350 (2006).
8. Gruter, D., Schmid, B. & Brandl, H. Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. BMC Microbiol. 6, 68–75 (2006).
9. Lesaulnier, C. et al. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ. Microbiol. 10, 926–941 (2008).
10. Austin, E. E., Castro, H. F., Sides, K. E., Schadt, C. W. & Classen, A. T. Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation. Soil Biol. Biochem. 41, 514–520 (2009).
11. Duenas, C., Fernandez, M. C., Carretero, J., Liger, E. & Perez, M. Emissions of CO2 from some soils. Chemosphere 30, 1873–1889 (1995).
12. Edwards, C. et al. Microbiological processes in the terrestrial carbon cycle: methane cycling in peat. Atmos. Environ. 32, 3247–3255 (1998).
13. Gruter, D., Schmid, B. & Brandl, H. Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. BMC Microbiol. 6, 68–75 (2006).
14. Shen, G. Q. Microbiological processes in the terrestrial carbon cycle: methane cycling in peat. Atmos. Environ. 32, 3247–3255 (1998).
15. Rosswall, T. Microbiological regulation of the biogeochemical nitrogen cycle. Plant and Soil 67, 15–34 (1982).
16. Pang, J. L., Qiu, H. Y., Huang, C. C., Cha, X. C. & Zhang, X. Comparison of micromorphological features of two agricultural cultivated soils in Guanzhong areas, Shaanxi province, China. Agr. Sci. China. 6, 1089–1098 (2007).
17. Adair, E. C., Reich, P. B., Hobbie, S. E. & Knops, M. H. Interactive effects of time, CO2, N, and diversity on total belowground carbon allocation and ecosystem carbon storage in a grassland community. Ecosystems 12, 1037–1052 (2009).
18. He, Z. et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol. Lett. 13, 564–575 (2010).
19. Liu, Q., Liu, Y. J., Jia, F. A. & He, X. H. Responses of soil microbial activity to cadmium pollution and elevated CO2. Sci. Rep. 4, 4287; DOI:10.1038/srep04287 (2014).
20. Lipson, D. A., Wilson, R. F. & Oechel, W. C. Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem. Appl. Environ. Microbiol. 71, 8573–8580 (2005).
21. Adair, E. C., Reich, P. B., Hobbie, S. E. & Knops, M. H. Interactive effects of time, CO2, N, and diversity on total belowground carbon allocation and ecosystem carbon storage in a grassland community. Ecosystems 12, 1037–1052 (2009).
22. Zhang, J. Z. Microbial Taxology (in Chinese). (Fudan University Press, Shanghai, China, 1990).