UNIVERSAL PARTIAL WORDS OVER NON-BINARY ALPHABETS

BENNET GOECKNER*, CORBIN GROOTHUIS‡, CYRUS HETTLE†, BRIAN KELL*, PAMELA KIRKPATRICK†, RACHEL KIRSCH‡, AND RYAN SOLAVA†

Abstract. Chen, Kitaev, Mütze, and Sun recently introduced the notion of universal partial words, a generalization of universal words and de Bruijn sequences. Universal partial words allow for a wild-card character ⋄, which is a placeholder for any letter in the alphabet. We extend results from the original paper and develop additional proof techniques to study these objects. For non-binary alphabets, we show that universal partial words have periodic ⋄ structure and are cyclic, and we give number-theoretic conditions on the existence of universal partial words. In addition, we provide an explicit construction for an infinite family of universal partial words over non-binary alphabets.

1. Introduction

Universal cycles of a wide variety of combinatorial structures have been well studied [5]. The best known examples are the de Bruijn sequences, cyclic sequences over an alphabet A that contain each word of length n as a substring exactly once. For example, (00010111) is a de Bruijn sequence for A = {0, 1} and n = 3.

De Bruijn sequences can also be written as non-cyclic sequences. We denote the set of all words of length n over a finite alphabet A by A^n. A universal word for A^n is a word w such that each word in A^n appears exactly once as a substring of w. For example, 0001011100, 0010111000, and 1011100010 are universal words for {0, 1}^3, obtained by splitting the de Bruijn sequence (00010111) and repeating the first n − 1 = 2 characters at the end so that the same substrings occur when read non-cyclically. Every universal word corresponds to a de Bruijn sequence in this way.

The length of a universal word for A^n is |A|^n + n − 1. It is known that universal words for A^n exist for any n; they can be found through Eulerian and Hamiltonian cycles in the de Bruijn graph [4]. However, as there are |A|^n+n−1 words over A of the correct length, a brute-force search for universal words would quickly become intractable.

Now consider extending the alphabet A to A ∪ {⋄}, where ⋄ ∉ A is a wild-card character that can correspond to any letter of A. Partial words are sequences of characters from A ∪ {⋄}. Partial words are natural objects in coding theory and theoretical computer science. There are also applications in molecular biology and data communication [3]. For example, when representing DNA and RNA as a string for computing purposes, the ⋄ character can take the place of any unknown nucleotide.

2010 Mathematics Subject Classification. Primary 68R15.

Key words and phrases. Combinatorics on words, universal cycles.

*Research supported in part by National Science Foundation grant # 1604733 “Collaborative Research: Rocky Mountain-Great Plains Graduate Research Workshop in Combinatorics”.

†Research supported in part by National Security Agency Grant # H98230-16-1-0018 “The 2016 Rocky Mountain - Great Plains Graduate Research Workshop in Combinatorics”.

‡Research supported in part by a generous grant from the Institute of Mathematics and its Applications.
For any partial word u, we denote by u_i the ith character of u. Given partial words u and v, we say that $u \subset v$ (or u is a factor of v, or v covers u), if u can be found as a consecutive substring of v after possibly replacing some \diamond characters in v with a letter from A. Formally, $u \subset v$ if there exists i such that $u_j = v_{i+j}$ for $1 \leq j \leq |u|$ whenever $v_{i+j} \in A$. For example, $01\diamond1 \subset 1\diamond1\diamond110$, but $01\diamond1 \nsubseteq 1\diamond10110$.

Chen, Kitaev, Mütze, and Sun [4] introduced the notion of universal partial words for A^n, generalizing universal words.

Definition 1.1. A universal partial word for A^n is a partial word w that covers each word in A^n exactly once.

For example, $\diamond\diamond0111$ is a universal partial word for $\{0,1\}^3$. Allowing \diamond’s decreases the number of characters required to cover all words of length n, so universal partial words may be useful in questions related to storing information in compact form. Trivially, \diamond^n is a universal partial word for A^n for any A and n. A universal partial word w is called trivial if all of its characters are diamonds ($w = \diamond^n$) or none are (i.e. w is a universal word for A^n). We are interested in the existence of nontrivial universal partial words.

To begin, we present some preliminaries in Section 2. In Section 3, we generalize the single-diamond study of [4] to single strings of diamonds, and prove the following result:

Theorem 3.4. For $|A| \geq 2$ and $2 \leq k \leq n/2$, there does not exist a universal partial word $w = u\diamond^kv$ where u and v are (possibly empty) words.

Every universal word can be made into a de Bruijn sequence by deleting the last $n-1$ characters, which are the same as the first $n-1$ characters. We call a universal partial word cyclic if its first and last $n-1$ characters are the same and non-overlapping, so that deleting the last $n-1$ characters and then reading cyclically yields the same substrings. In this sense, every universal word is cyclic, but some universal partial words over $\{0,1\}$, such as $\diamond\diamond0111$, are not. We prove in Section 4 that all non-binary universal partial words are cyclic.

Theorem 4.8. If w is a nontrivial, non-binary universal partial word for A^n, then w is cyclic.

The possible diamond structures of non-binary universal partial words are more limited than when considering the binary case, which both restricts the possible lengths of universal partial words and gives rise to number theoretic conditions limiting their existence.

In Section 5, we show that there are no nontrivial universal partial words for $n \leq 3$ over non-binary alphabets. For $n = 4$, there are no universal partial words over alphabets of odd size. However, we show the following:

Theorem 5.2. For any alphabet A of even size, there exists a nontrivial universal partial word for A^4.

In Section 5, we give an explicit construction for words of this type. They are the first known nontrivial, non-binary universal partial words. Finally, in Section 6, we discuss some open questions.

2. Preliminaries

An alphabet A is a set of symbols, which we call letters. A character is a letter or \diamond. Throughout this paper, we will denote the size of the alphabet A by a and assume without loss of generality that the alphabet is $\{0,1,\ldots,a-1\}$.
A word over an alphabet A is a sequence of letters. A partial word is a sequence of characters from $A \cup \{\diamond\}$. Note that a word cannot contain a \diamond; we sometimes use the term total word instead of word for emphasis.

Note that if w is a universal partial word for A^n, then the reverse of w is as well. We will refer to this as the reversal property. Permuting the letters of A in w also yields a universal partial word.

Given a universal partial word w, a window of w is a string of n consecutive characters in w. The frame of a partial word is the word over $\{_\diamond\}$ obtained by replacing all letters from A by the "_" character. For example, the partial word $xyoz$ has frame $___\diamond$. A window frame is the frame of a window. In the above example, if $n = 3$, the second window is yoz, and the second window frame is $_\diamond$. Theorem 4.1 shows that when $a \geq 3$, every window has the same number of diamonds, so for a universal partial word w over a non-binary alphabet, we define the diamondicity of w as the number of diamonds that appear in any window of w. Furthermore, some universal partial words over binary alphabets also have well-defined diamondicity.

We also use the ideas of borders and periods, which are related and fundamental concepts in the study of combinatorics on words [2]. A partial word w has a border x of length k if both the first k characters and the last k characters of w cover x. A period of a word w is a positive integer p such that $w_i = w_j$ whenever $i \equiv j \pmod{p}$. Borders and periods have the following well known relationship.

Theorem 2.1 (Folklore, e.g. Proposition 1 from [1]). A word w has period $p \in |w| - 1$ if and only if it has a border of length $|w| - p$.

3. Consecutive Diamonds over a Binary Alphabet

In [4], Chen et al. explore existence and non-existence of universal partial words containing a single \diamond. They then generalize their techniques to consider all universal partial words containing two \diamond's. In this section, we show non-existence results for a different type of generalization, that of universal partial words containing a single string of diamonds of length less than $n/2$.

We use the following lemma, which restricts the periodicity of any $n - k$ letters following k consecutive diamonds in a universal partial word.

Lemma 3.1. For $a \geq 2$, there does not exist a universal partial word w containing the substring $u \diamond^k v$ where u and v are words, $|v| = n - k$, v has period $p \leq k$, and $|u| = p$.

Proof. Suppose such a w exists and let $v = v_1v_2 \cdots v_{n-k}$, with $v_i \in A$. Since v has period p, by Theorem 2.1, $v_1v_2 \cdots v_{n-k-p} = v_{p+1}v_{p+2} \cdots v_{n-k}$, and so $u^p v_1v_2 \cdots v_{n-k-p}$ covers v. Thus, the word $u0^{k-p}v \in A^n$ is covered by both the window starting with u ($u^k v_1v_2 \cdots v_{n-k-p}$) and the window starting with the first diamond ($\diamond^k v$). Therefore, w is not a universal partial word.

Lemma 3.1 and the following result hold for any alphabet size. We address only the binary case in the following theorem, as a stronger non-binary analogue appears in Section 4 (Proposition 4.9).

Theorem 3.2. If $w = u \diamond^k v$ is a universal partial word where $a = 2$, $k \geq 2$, and u and v are nonempty words, then $|u| \leq n - 1$ and $|v| \leq n - 1$.

Proof. Suppose to the contrary that $|u| \geq n$ or $|v| \geq n$. By the reversal property, without loss of generality, we may assume $|v| \geq n$.

There are 2^k words of length n that begin $v_1v_2\cdots v_{n-k}$, all of which must be covered by w. One of these words is $v_1v_2\cdots v_{n-k}v_{n-k+1}w_{n-k+2}\cdots w_n$.

Since \diamond^kv covers all words of length n ending in $v_1v_2\cdots v_{n-k}$, the word $v_1v_2\cdots v_{n-k}$ is not covered elsewhere in w with k characters preceding it, so the only other places it can begin in w are the first k positions. Thus, the remaining 2^{k-1} words beginning with $v_1v_2\cdots v_{n-k}$ must be covered by windows that begin in the first k positions of w.

For each such position $i \in [k]$, let N_i be the number of words in A^n beginning with $v_1v_2\cdots v_{n-k}$ that are covered by $W_i := w_iw_{i+1}\cdots w_{i+n-1}$, the window beginning at position i of w. Then $\sum_{i=1}^{k} N_i = 2^k - 1$, and for all i, N_i is 0 or a non-negative power of 2. Specifically, if j is the number of \diamond's in the last k characters of W_i, then $N_i = 2^j$ when the first $n-k$ characters of W_i cover $v_1v_2\cdots v_{n-k}$ and $N_i = 0$ otherwise. Since $N_i \leq \sum_{i=1}^{k} N_i = 2^k - 1$, we have $j < k$.

Now, $2^k - 1$ can be uniquely written as a sum of powers of 2 as $\sum_{i=0}^{k-1}2^i$, so we must have that N_1, \ldots, N_k are $2^0, 2^1, \ldots, 2^{k-1}$ in some order. Since $N_{i+1} \neq N_i$ and the number of \diamond's in W_i differs by at most one from the number of \diamond's in W_{i+1}, we have $N_{i+1} = 2N_i$ or $N_{i+1} = \frac{1}{2}N_i$ for all $i \in [k-1]$. Also, since we use each power exactly once, the sequence of N_i's must be monotonic.

Case 1: The N_i's are increasing, so $N_i = 2^i$ for all $i \in [k]$, and

$$w = v_1v_2\cdots v_{n-k}w_{n-k+1}w_{n-k+2}\cdots w_n \diamond^k v.$$

Since $N_i > 0$ for all i, we have

$$v_1v_2\cdots v_{n-k} = v_2\cdots v_{n-k}w_{n-k+1} = \cdots = w_k\cdots w_{n-1},$$

so $v_1 = v_2 = \cdots = v_{n-k} = w_{n-k+1} = w_{n-k+2} = \cdots = w_{n-1}$. In particular, $v_1v_2\cdots v_{n-k}$ has period 1. Then, since $|u| \geq 1$, by Lemma 3.1, w is not a universal partial word.

Case 2: The N_i's are decreasing, so $N_i = 2^{k-i}$ for all i, and $w = v_1v_2\cdots v_{n-k-1} \diamond^kv$ so that there are 2^{k-1} words in A^n starting with $v_1\cdots v_{n-k}$ in $W_1 = v_1v_2\cdots v_{n-k-1} \diamond^k v_1$, 2^{k-2} words in A^n starting with $v_1\cdots v_{n-k}$ in $W_2 = v_2\cdots v_{n-k-1} \diamond^k v_1v_2$, and so on through $2^0 = 1$ word in A^n starting with $v_1\cdots v_{n-k}$ in

$$W_k = \begin{cases} v_k\cdots v_{n-k-1} \diamond^k v_1\cdots v_k & k \leq n-k-1 \\ \diamond^{n-k}v_1\cdots v_k & k \geq n-k \end{cases}.$$

Since $|u| \geq 1$, this case is only possible if $n-k-1 \geq 1$. Since $N_i > 0$ for all i, W_1 and W_2 both cover $v_1\cdots v_{n-k}$ with their first $n-k$ characters, so $v_1 = v_2 = \cdots = v_{n-k-1}$. If $n-k-1 \geq 2$, then W_1 and W_2 both cover the word $v_1v_2\cdots v_{n-k} \diamond^{k-2} v_1v_2$.

Thus, $n-k-1 = 1$, and $w = v_1 \diamond^k v = v_1 \diamond^{n-2} v$. Without loss of generality, assume $v_1 = 0$. Then, $w = 0\diamond^{n-2}0v_3\cdots v_{\ell}$ with $\ell \geq n$. Now, W_1 covers all words beginning and ending with 0. Thus, $v_n = 1$, and every letter $n-1$ positions after a diamond is a 1, so $w = 0\diamond^{n-2}01^{n-1}v_{n+1}\cdots v_\ell$. If v_{n+1} did not exist, then 1^n would not be covered, and w would not be a universal partial word. Next, since w covers 1^n, $v_{n+1} = 1$. Otherwise, 01^{n-1} would be covered twice in w. Thus, $w = 0\diamond^{n-2}01^n v_{n+2}\cdots v_\ell$ (note that v_{n+2} must exist for w to cover $1^n\diamond^0$). Since $W_2 = \diamond^{n-2}01$, the string 01 cannot appear elsewhere in w with k characters preceding it. Thus, $v_{n+2} = v_{n+3} = \cdots = v_\ell = 0$. Since 0^n is covered by W_1, $w = 0\diamond^{n-2}01^n 0^p$ where $p \leq n-1$. Now, if n is even, $(10)^{\frac{n}{2}}$ is not covered by w.
and if n is odd, $(10)^{\frac{n+1}{2}}0$ is not covered by w. Thus, w is not a universal partial word.

Therefore, no such w exists. \square

We will also require the following lemma.

Lemma 3.3. For $a \geq 2$ and $2 \leq k \leq n/2$, there does not exist a universal partial word $w = \diamond^k v$ where v is a word.

Proof. If $|v| \leq n - k - 1$, then $|w| \leq n - 1$, so w covers no words of length n and is not a universal partial word. Therefore we may assume $|v| \geq n - k$.

Let $v' = v_1 \ldots v_{n-k}$. All words ending with v' are covered by $\diamond^k v'$, so v' cannot be covered later in v. Thus the a^k words beginning with v' must be covered by the first $k+1$ windows of w. Since $|v'| \geq |\diamond^k|$, in each of these windows the letter covered by each \diamond is fixed by its corresponding letter in v'. Thus, only one word of length n can be covered by each of the $k+1$ windows, and so w contains at most $k+1$ words beginning with v'. Therefore, w cannot contain all $a^k \geq 2^k > k+1$ of them, and w is not a universal partial word. \square

Together, these results lead to the following theorem.

Theorem 3.4. For $a \geq 2$ and $2 \leq k \leq n/2$, there does not exist a universal partial word $w = u\diamond^k v$ where u and v are (possibly empty) words.

Proof. Proposition 4.9 gives a stronger result for $a \geq 3$, so here we assume $a = 2$. We proceed by contradiction. Assume $w = u\diamond^k v$ is a universal partial word with $2 \leq k \leq n/2$ such that u and v do not contain any \diamond’s. By Theorem 3.2 and Lemma 3.3, we have $1 \leq |u|, |v| \leq n - 1$. There are at most a^k words in A^n covered at each possible starting position in w. Since $|w| = |u| + |v| + k$, the number of words covered by w is at most $(|u| + |v| + k - (n - 1)) a^k$. Since $|u|, |v| \leq n - 1$ and $k \leq n/2$,

$$(|u| + |v| + k - (n - 1)) a^k \leq (n - 1 + k)a^k \leq ((3/2)n - 1) a^{n/2}.$$

For $n \geq 7$, this is less than a^n, so w does not cover every word in A^n and is not a universal partial word.

Now, since $2 \leq k \leq n/2$, we only need to consider the combinations $n = 6$ with $k = 2$ or 3, $n = 5$ with $k = 2$, and $n = 4$ with $k = 2$. For $k = 2$, there are at most a words covered by u and the first \diamond. There are at most $(n - 1)a^2$ words covered using both \diamond’s (starting at each of the last $n - 2$ positions of u and at the first \diamond). Finally, there are at most a words covered by the second diamond and v. Since $|u|, |v| \leq n - 1$, no word can end before or begin after the \diamond’s. Thus, there are at most $2a + (n - 1)a^2$ words covered by w. Now, $2a + (n - 1)a^2 < a + na^2$ since $a^2 > a$ for $a \geq 2$. If $n \geq 5$, w does not cover all of the a^n words in A^n.

For $k = 2$ and $n = 4$, we have $1 \leq |u|, |v| \leq n - 1 = 3$, and w must cover $2^4 = 16$ words of length 4. If $|u| = 1$ or $|v| = 1$, then w covers at most $2^2 + 2^2 + 2 = 10$ words. Thus, $|u|, |v| \geq 2$, and w contains $stoooxy$ for some $s, t, x, y \in A$. Here w covers $stxy$ twice, so w is not a universal partial word and no such w exists.

The remaining case is $n = 6$, $k = 3$. Without loss of generality $|u| = |v| = n - 1$, since shortening u and v decreases the number of words covered. In this case, $w = u_1u_2u_3v_4v_5\diamond\diamond\diamond\diamond\diamond u_1u_2u_3v_4v_5$. Considering each window of w, the number of words covered by w is at most $2 + 2^2 + 2^3 + 2^3 + 2^3 + 2^2 + 2 = 44 < 2^6$, so w does not cover every word in A^n and is not a universal partial word. \square
This result illustrates that even in the binary case, where universal partial words have less rigid structure, the presence of even two consecutive diamonds in a universal partial word would force the appearance of other diamonds.

4. Structural Conditions over Non-Binary Alphabets

In [4], Chen et al. show that cyclic universal partial words have a rigid diamond structure and length. We will show in this section that all non-binary universal partial words have these properties and that these are enough to prove that all non-binary universal partial words are cyclic. This is in contrast to the binary case, where non-cyclic universal partial words are common. For example, $\diamond\diamond0111$ and $\diamond001011\diamond$ are non-cyclic universal partial words for $\{0,1\}^3$.

The following result provides periodic structure for the frame of a universal partial word over a non-binary alphabet.

Theorem 4.1. Let w be a universal partial word for A^n with $a \geq 3$. If $w_i = \diamond$, then $w_{i+n} = \diamond$ for all $j \equiv i \pmod{n}$. In other words, the frame of any such universal partial word has period n.

Proof. We will show that if $w_i = \diamond$, then $w_{i+n} = \diamond$ for any $i \in [|w| - n]$. By the reversal property, this is sufficient to obtain the theorem.

Assume $w_i = \diamond$, and suppose to the contrary that $w_{i+n} \in A$. Without loss of generality, let $w_{i+n} = 0$. Let v be any total word covered by $w_{i+1}w_{i+2}\cdots w_{i+n-1}$. Then, the window of w starting at w_{i+1} covers $v0$, and the window starting at w_i covers v and thus covers all words of length n ending in v. Thus, to avoid repeating words ending in v, v cannot be covered elsewhere in w except by the first window.

Since w is a universal partial word, it must also cover the words $v1$ and $v2$ exactly once. These words must be covered by $w_1\cdots w_n$. For both $v1$ and $v2$ to be covered, $w_n = \diamond$, so $w_1\cdots w_n$ also covers the word $v0$. This instance of the word $v0$ is different from the one that appears starting with w_{i+1}. Therefore the word $v0$ is covered twice in w, contradicting that w is a universal partial word. \Box

Theorem 4.1 makes possible the following definition of diamondicity.

Definition 4.2. For w a universal partial word for A^n, with $a \geq 3$, the diamondicity of w is the number of diamonds in each window. The window frames of w are cyclic shifts of the first window frame.

For binary alphabets, the number of diamonds is not enough to determine the length of a universal partial word. For example, $\diamond00111$ and $\diamond001011\diamond$ both are universal partial words for $\{0,1\}^3$ with two diamonds but have different lengths, 6 and 8. However, universal partial words with diamondicity have length determined by a, n, and d. Corollary 15 from [4] determines the lengths of cyclic universal partial words, but the corollary below requires only the weaker assumption of well-defined diamondicity. We note that diamondicity is also well-defined for some universal partial words over binary alphabets; for example, $01\diamond110\diamond001\diamond$ is a universal partial word for $\{0,1\}^4$ with $d = 1$.

Corollary 4.3. If w is a universal partial word for A^n with diamondicity d, then $|w| = a^{n-d} + n - 1$.

Proof. Each window contains d diamonds, by Theorem 4.1. Therefore, each window covers a^d words. Since w is a universal partial word, it must cover all a^n words exactly once, so
shows that the correct parameter to consider in the non-binary case is not

\[a^n = a^{n-d} \]

windows. The last window contains \(n - 1 \) characters that do not themselves start windows, so \(|w| = a^{n-d} + n - 1\).

Theorem 4.1 shows that the correct parameter to consider in the non-binary case is not the number of diamonds, but rather the density of diamonds (diamondicity), since there are roughly \((d/n) \cdot a^{n-d}\) diamonds in a universal partial word over a non-binary alphabet.

Recall that all universal words are cyclic, but not all universal partial words are. We will use the following lemma to prove that all universal partial words over non-binary alphabets are cyclic in Theorem 4.8.

Lemma 4.4. If \(w \) is a universal partial word for \(A^n \) with \(a \geq 3 \), then the first \(n - 1 \) characters of \(w \) equal the last \(n - 1 \) characters of \(w \). In other words, as a total word over the extended alphabet \(A \cup \{\diamond\} \), \(w \) has a border of length \(n - 1 \).

Proof. Let \(w \) be a universal partial word for \(A^n \) with \(a \geq 3 \). Let \(v \) be a word of length \(n - 1 \) covered by \(w_1 \cdots w_{n-1} \). We show in two cases that the last \(n - 1 \) characters of \(w \) cover \(v \).

First, if \(w_n = \diamond \), all \(a \) words beginning with \(v \) are covered by \(w_1 \cdots w_n \). If \(v \) were covered elsewhere in \(w \), except for the end of \(w \), then that string and the character immediately following it would cover a word beginning with \(v \) also covered by \(w_1 \cdots w_n \). Therefore, for \(w \) to cover the \(a \) words ending with \(v \), the last \(n - 1 \) characters of \(w \) cover \(v \).

On the other hand, if \(w_n \neq \diamond \), exactly one word beginning with \(v \) is covered by \(w_1 \cdots w_n \). The remaining \(a - 1 \) words beginning with \(v \) must be covered by strings of \(w \) that are not immediately followed by \(\diamond \), as this would duplicate \(v_1 v_2 \cdots v_{n-1} w_n \). These words are covered by exactly \(a - 1 \) other strings, \(w_1 \cdots w_{i+n-2} \) (for \(i \in I \) with \(|I| = a - 1\), that cover \(v \) and are followed by a letter in \(A \). By Theorem 4.1, these strings cannot be preceded by \(\diamond \), and thus the \(w_{i-1} w_i \cdots w_{i+n-1} \)'s cover \(a - 1 \) distinct words ending with \(v \). If \(|w| - n + 2 \in I \), then one of these \(a - 1 \) strings is at the end of \(w \); i.e., the last \(n - 1 \) characters of \(w \) cover \(v \). Otherwise, the remaining word ending with \(v \) (out of a total) must be covered by the last \(n \) characters of \(w \) so as not to duplicate a word starting with \(v \), so the last \(n - 1 \) characters of \(w \) cover \(v \).

Thus, the last \(n - 1 \) characters of \(w \) cover all words covered by the first \(n - 1 \) characters, and by the reversal property, the first \(n - 1 \) characters cover all words covered by the last \(n - 1 \) characters. Hence the first \(n - 1 \) characters equal the last \(n - 1 \) characters. \(\square \)

Lemma 4.4 does not guarantee that a universal partial word is cyclic, because the last \(n - 1 \) characters might overlap with the first \(n - 1 \) characters if the word is short enough. We call a partial word pseudocyclic if its first and last \(n - 1 \) characters are the same, whether or not they overlap. Pseudocyclicity is sufficient to show that the frame of \(w \) has period \(n \). Chen et al. proved this for cyclic universal partial words (Lemma 14 in [4]), but their proof techniques extend to the case of pseudocyclicity. We present an alternate proof of this result.

Proposition 4.5. If \(w \) is a pseudocyclic universal partial word, then \(w \) has well-defined diamondicity.

Proof. If \(a \geq 3 \), then \(w \) has well-defined diamondicity by Theorem 4.1. Let \(w \) be a pseudocyclic binary universal partial word with \(w_i = \diamond \) for some \(i \in \lfloor |w| - n \rfloor \). Let \(v \) be a word in \(\{0, 1\}^{n-1} \) covered by \(w_{i+1} \cdots w_{i+n-1} \).

If \(w_{i+n} \neq \diamond \), without loss of generality we assume \(w_{i+n} = 0 \). The word \(v \) must be covered in \(w \), so \(v \) is covered elsewhere in \(w \). If \(v \) is covered at the beginning of \(w \), then \(v \)
is also covered at the end of \(w \) since \(w \) is pseudocyclic, and this instance of \(v \) at the end of \(w \) is not the same as the one covered by \(w_{i+1} \cdots w_{i+n-1} \) because \(|w| \geq i + n \). Therefore there is some other instance of \(v \) with a character preceding it, and either the word \(0v \) or the word \(1v \) is covered twice in \(w \). But \(w \) is a universal partial word, so \(w_{i+n} = \phi \).

We will use a few intermediate results including the following lemma to prove Theorem 4.8, that non-binary universal partial words are cyclic.

Lemma 4.6. For any pseudocyclic universal partial word \(w \), all distinct cyclic shifts of the first window frame of \(w \) appear the same number of times in \(w \).

Proof. Let \(f = f_1 \) be the first window frame of \(w \). Let \(\{f_i\}_{i=1}^{\infty} \) be the repeating series of cyclic shifts of \(f \), so \(f_i \) is the result of shifting \(f_1 \) to the left, cyclically, \(i - 1 \) times. Then the \(i \)th window frame of \(w \) is \(f_i \) for \(i \in [a^n - d] \), since \(a^n - d \) is the number of windows in \(w \). Let \(f' \) be the shortest word such that \(f = (f')^s \) for some \(s \in \mathbb{N} \), and let \(m = |f'| \). Then \(f_i = f_j \) if and only if \(i \equiv j \mod m \). By pseudocyclicity, the first and last \(n - 1 \) characters of \(w \) have the same frame. Thus shifting the last window frame of \(w \), \(f_{a^n - d} \), one more time yields \(f_{a^n - d + 1} = f_1 \), restarting the cycle, so no new cyclic shifts of \(f \) can appear in \(\{f_i\}_{i=1}^{\infty} \). That is, all of the distinct cyclic shifts of \(f \) appear as window frames in \(w \), and there are \(m \) of them, \(f_1, f_2, \ldots, f_m \), by the minimality of \(m \). Furthermore, since the first window frame in \(w \) is \(f_1 \) and the last is \(f_{a^n - d} = f_m \) (note \(m \equiv a^n - d \mod m \) by Theorem 4.11), the cycle \(f_1, f_2, \ldots, f_m \) of all the distinct cyclic shifts of \(f_1 \) is repeated some integer number of times in \(w \). \(\square \)

Next, we will use this lemma to prove a bound on diamondicity. By Corollary 4.3, the higher the diamondicity of a word, the shorter the word. However, as diamondicity increases, it becomes harder to avoid covering words multiple times. In fact, it is possible to bound the potential diamondicitics of a universal partial word in terms of \(n \) as shown in the following proposition.

Proposition 4.7. For every \(k \), if \(n \geq k(k-1)+2 \), then there does not exist a pseudocyclic universal partial word for \(A^n \) with diamondicity \(d \geq n - k \). In particular, if \(w \) is a pseudocyclic universal partial word for \(A^n \), then \(d < n - \sqrt{n - \frac{7}{4}} - \frac{1}{2} \).

Proof. For a given \(k \) and given \(n \geq k(k-1)+2 \), suppose \(w \) is a universal partial word with diamondicity \(n - k \). Consider the first window frame \(f_1 \) of \(w \). Let \(x_1, x_2, \ldots, x_k \in [n] \) be the positions of the \(_ \)'s in \(f_1 \).

There are at most \(k(k-1) \) distinct distances between pairs \(x_r < x_s \), since each pair has distances \(\ell = x_s - x_r \) and \(n - \ell \) between \(x_r \) and \(x_s \) cyclically. Let \(\mathcal{L} \subseteq [n-1] \) be the set of these cyclic distances between \(x \)'s.

We will use the notation \(\{f_i\}_{i=1}^{\infty} \) for the cyclic shifts of the first frame \(f_1 \) of \(w \) as in Lemma 4.6. For \(i \in [n] \), if \(f_i \) has \(_ \) in position \(x_r \) for some \(r \), then there is an \(s \) such that \(x_r + (i - 1) \equiv x_s \mod n \), so \(i - 1 \in \mathcal{L} \).

Since \(n \geq k(k-1) + 2 \), we have \(n - 1 > |\mathcal{L}| \), so there is at least one \(i \), say \(i' \), such that \(i' - 1 \in [n-1] \) and \(i' - 1 \notin \mathcal{L} \). For this \(i' \in [n] \), \(f_{i'} \) shares no \(_ \) positions with \(f_1 \).

Let \(j \in [m] \) and \(j \equiv i' \mod m \). Then \(f_{i'} = f_j \), and \(w \) has at least \(j \) window frames, so by Lemma 4.6 the \(j \)th window frame exists and shares no \(_ \) positions with \(f_1 \). The first and \(j \)th windows both cover some word of length \(n \) since at every position at least one of them has a \(_ \). This contradicts that \(w \) is a universal partial word.
For given \(n \) and \(k \), increasing the diamondicity to \(d > n - k \) can only increase the number of window frames that share no \(\diamond \) positions with \(f \). Thus if \(d \geq n - k \), \(w \) is not a universal partial word.

To show that if \(w \) is a universal partial word for \(A^n \), then \(d < n - \sqrt{n - \frac{7}{4} - \frac{1}{2}} \), let \(k = \sqrt{n - \frac{7}{4} + \frac{1}{2}} \). Solving this equation for \(n \), we obtain \(n = k(k - 1) + 2 \). Applying the first part of the theorem, we have \(d < n - k = n - \sqrt{n - \frac{7}{4} - \frac{1}{2}} \). \(\square \)

For \(n = 4 \), Proposition 4.7 shows every nontrivial non-binary universal partial word has diamondicity \(d = 1 \). In addition, Theorem 19 from [4] also follows as a quick corollary.

This proof method is insufficient for giving a fractional bound on diamondicity, since it is possible to construct window frames for a given density for large enough \(n \) that do not clearly cover any words twice.

While we suspect a stronger diamondicity bound is possible, this one is sufficient to show that all nontrivial universal partial words over non-binary alphabets are cyclic in the classical sense.

Theorem 4.8. If \(w \) is a nontrivial, non-binary universal partial word for \(A^n \), then \(w \) is cyclic.

Proof. By Lemma 4.4, the first and last \(n - 1 \) characters of \(w \) are the same. We need only ensure that \(w \) long enough to prevent these first and last \(n - 1 \) characters from overlapping.

By Proposition 4.7, we have that \(d < n - \sqrt{n - \frac{7}{4} - \frac{1}{2}} \). Therefore

\[
|w| = a^{n-d} + n - 1 > a^{\sqrt{n-\frac{7}{4}+\frac{1}{2}}} + n - 1 > 2n - 2
\]

since \(a \geq 3 \) by hypothesis and \(n \geq 4 \) by Proposition 5.1. Thus the first and last \(n - 1 \) characters of \(w \) do not overlap. \(\square \)

Words over binary alphabets containing a single \(\diamond \) or a single string of consecutive \(\diamond \)'s were studied in [4]. In fact, over non-binary alphabets, such words do not exist. The following is a non-binary analogue and extension of Theorem 3.2.

Proposition 4.9. For \(a \geq 3 \), there does not exist a universal partial word \(w = u\diamond^k v \) where \(u \) and \(v \) are (possibly empty) words and \(1 \leq k \leq n - 1 \).

Proof. For \(a \geq 3 \), let \(w = u\diamond^k v \) where \(u \) and \(v \) are words. By Theorem 4.1, we know that \(|u|, |v| \leq n - k \). By Corollary 4.3, we know that \(|w| = a^{n-k} + n - 1 \). Therefore

\[
a^{n-k} + n - 1 = |u| + |v| + k \leq n - k + n - k + k + k = 2n - k
\]

and so \(a^{n-k} \leq n - k + 1 \). This is a contradiction when \(a \geq 3 \) and \(k \leq n - 1 \). \(\square \)

Note that for \(k = 0 \) and \(k = n \), there are trivial universal partial words of this form. Theorem 5 in [4] also proves the \(k = 1 \) case.

We would like to be able to show the nonexistence of universal partial words based only on the parameters \(a, n, \) and \(d \). We will take advantage of the cyclic nature of the window frames of a partial word. The following lemma applies to any word but will be used in the context of frames.

Lemma 4.10. Cyclically shifting a word \(f \) \(i \) times yields \(f \) if and only if there is a word \(f' \) such that \(f = (f')^s \) for some \(s \in \mathbb{N} \), where \(|f'| = i \).
Let \(\text{gcd}(a^n, n) = p \) for some prime \(p \) and there exists a universal partial word for these values of \(a, n, \) and \(d \), then \(d \in \{ kn/p : k \in [p-1] \} \).

Proof. Assume \(w \) is a universal partial word for \(A^n \) with diamondicity \(d \). Let \(f \) be the first window frame of \(w \), and let \(f' = (f')^s \) for some \(s \in \mathbb{N} \). By Theorem 4.11, \(|f'| = 1 \) or \(p \). Assuming \(w \) is nontrivial, we have \(|f'| = p \). Then, \(n = ps \). Let \(d' \) be the number of diamonds in \(f' \), so \(d = d's = d'n/p \). Note \(d' \in [p-1] \) as \(f' \) must have at least one letter and at least one diamond for \(w \) to be nontrivial. \[\square \]

5. **Construction of a Universal Partial Word**

Given the results of Section 4, it is tempting to believe that universal partial words may not exist for non-binary alphabets. This is in fact the case for small \(n \).
Proposition 5.1. For $a \geq 3$, there does not exist a nontrivial universal partial word w for $n \leq 3$.

Proof. It is clear that there is no nontrivial universal partial word for $n = 1$.

For $n = 2$, assume w is a nontrivial universal partial word. By Theorem 4.1, the diamondicity of w is $d = 1$, and by Corollary 4.3, $|w| = a + 1 \geq 4$. Now, $w = \circ x_2 \circ x_4 \circ \ldots$ or $w = x_1 \circ x_3 \circ x_5 \circ \ldots$. In the former case, the first three characters cover $x_2 x_2$ twice. In the latter case, the second through fourth characters cover $x_3 x_3$ twice. Therefore, w is not a universal partial word.

For $n = 3$, assume w is a nontrivial universal partial word. By Theorem 4.1, w must contain either the window frame \circ or the window frame $\circ \circ$.

In the first case, consider the word 000, which, without loss of generality, is not covered at the beginning or end of w. The partial word w cannot contain the string $\circ 0 \circ$, since that would cover 000 twice, so w must contain the string $\circ x 0 \circ y \circ$ in order to cover 000. But this string covers xy twice. Therefore, w is not a partial word.

In the second case, $|w| = a + 2 \geq 5$ and must contain $\circ \circ \circ \circ, \circ \circ \circ y, \circ \circ \circ y, \circ \circ \circ y$. The first four characters of each of these partial words cover either $x x x$ or $x x y$ twice. Therefore, w is not a universal partial word. \Box

While these small n are not fruitful, for $n = 4$ not only are we able to find nontrivial examples, we can construct a family of universal partial words for any even alphabet size. Note that by Theorem 4.11, there are no nontrivial universal partial words for $n = 4$ when a is odd, for then $\gcd(a, 4) = 1$.

Theorem 5.2. Let a be even.

1. Construct the following sequence of $a^3/4$ letters:

 $0, 1, 0, 1, \ldots, 0, 1, 2, 3, 2, 3, \ldots, 2, 3, \ldots, a - 2, a - 1, a - 2, a - 1, \ldots, a - 2, a - 1$.

 Call this sequence $\langle x_i \rangle$, where $i \in [a^3/4]$.

2. Construct the following sequence of $a^2/2$ letters:

 $0, 1, 0, 1, \ldots, 0, 1, 2, 3, 2, 3, \ldots, 2, 3, \ldots, a - 2, a - 1, a - 2, a - 1, \ldots, a - 2, a - 1$.

 Repeat this sequence $a/2$ times to get a sequence of $a^3/4$ letters, and call the resulting sequence $\langle y_i \rangle$, where $i \in [a^3/4]$.

3. Construct the following sequence of a letters:

 $1, 0, 3, 2, 5, 4, \ldots, a - 1, a - 2$.

 Repeat this sequence $a^2/4$ times to get a sequence of $a^3/4$ letters, and call the resulting sequence $\langle z_i \rangle$, where $i \in [a^3/4]$.

4. For $i \in [a^3/4]$, let w_i be the word $x_i y_i z_i$.

5. Take $u = w_1 \circ w_2 \circ \ldots \circ w_{a^3/4} \circ w_1$.

Then u is a universal partial word for A^4.

Proof. Each w_i has length 3, and there are $a^3/4$ diamonds, so

$$|u| = 3(a^3/4 + 1) + a^3/4 = a^3 + 3.$$

This is the length of a universal partial word with $n = 4$ and diamondicity $d = 1$, so it is sufficient to show that no word is covered twice.
Suppose \(u \) covers \(v_1v_2v_3v_4 \) twice. Let \(v \) and \(v' \) be the two windows of \(u \) which cover \(v_1v_2v_3v_4 \). Either \(v \) and \(v' \) have a diamond in the same position or in a different position.

Case 1: \(v \) and \(v' \) have the same frame.

Let us consider the situation where \(v = x_iy_iz_i \diamond \) and \(v' = x_jy_jz_j \diamond \) with \(i < j \). Suppose \(x_i = x_j = c \). Then we must have that

\[
\frac{\lfloor c/2 \rfloor a^2}{2} < i, j \leq \frac{(\lfloor c/2 \rfloor + 1)a^2}{2}.
\]

Within this range, \(y_i = y_j \) implies that \(j - i < a \), but \(z_i = z_j \) implies that \(j - i \geq a \). This is a contradiction, so \(v \) and \(v' \) do not cover the same word.

Note that any possible placement of the diamond in \(v \) and \(v' \) (e.g. \(v = z_i ^x x_{i+1} y_{i+1} \) and \(v' = z_j ^x x_{j+1} y_{j+1} \)) can be handled in a similar manner as the above situation, since our argument only makes use of the difference between the indices, and these differences remain the same.

Case 2: \(v \) and \(v' \) have diamonds in different positions.

From our construction, for all \(i \in [a^2/4] \), we have \(i \not\equiv x_i \equiv y_i \) (mod 2) and \(i \equiv z_i \) (mod 2).

- If \(v = x_iy_iz_i \diamond \) and \(v' = y_jz_j \diamond x_{j+1} \), then \(x_i = y_j \) and \(y_i = z_j \), so

 \[
 j \not\equiv y_j = x_i \equiv y_i = z_j \equiv j \pmod{2},
 \]

 a contradiction.

- If \(v = x_iy_iz_i \diamond \) and \(v' = z_j \diamond x_{j+1}y_{j+1} \), then \(x_i = z_j \) and \(z_i = x_{j+1} \), so

 \[
 i \equiv z_i = x_{j+1} \equiv z_j = x_i \not\equiv i \pmod{2},
 \]

 a contradiction.

- If \(v = x_iy_iz_i \diamond \) and \(v' = z_j \diamond y_jz_j \), then \(z_i = y_j \) and \(y_i = x_j \), so

 \[
 i \equiv z_i = y_j \equiv x_j = y_i \not\equiv i \pmod{2},
 \]

 a contradiction.

- If \(v = y_iz_i \diamond x_{i+1} \) and \(v' = z_j \diamond x_{j+1}y_{j+1} \), then \(y_i = z_j \) and \(y_{j+1} = x_{i+1} \), so

 \[
 i + 1 \equiv y_i = z_j \equiv y_{j+1} = x_{i+1} \not\equiv i + 1 \pmod{2},
 \]

 a contradiction.

- If \(v = y_iz_i \diamond x_{i+1} \) and \(v' = z_j \diamond y_jz_j \), then \(z_i = x_j \) and \(x_{i+1} = z_j \), so

 \[
 j \not\equiv x_j = z_i \equiv x_{i+1} = z_j \equiv j \pmod{2},
 \]

 a contradiction.

- If \(v = z_i \diamond x_{i+1}y_{i+1} \) and \(v' = z_j \diamond y_jz_j \), then \(x_i = y_j \) and \(y_{i+1} = z_j \), so

 \[
 j \equiv z_j = y_{i+1} \equiv x_{i+1} = y_j \not\equiv j \pmod{2},
 \]

 a contradiction.

Therefore no word \(v_1v_2v_3v_4 \) is covered twice by \(u \), and \(u \) is a universal partial word.

We illustrate this construction by giving an example for \(a = 4 \).

Example 5.3. The string

\[
001\cdot 110 \cdot 003\cdot 112\cdot 021\cdot 130\cdot 023\cdot 132\cdot 201\cdot 310\cdot 023\cdot 312\cdot 203\cdot 312\cdot 221\cdot 330\cdot 223\cdot 332\cdot 001
\]

is a universal partial word for \(\{0,1,2,3\}^4 \).

Here

- \(\langle x_i \rangle = \langle 0,1,0,1,0,1,0,1,2,3,2,3,2,3,2,3,2,3 \rangle \)
• $\langle y_i \rangle = \langle 0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3 \rangle$
• $\langle z_i \rangle = \langle 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2 \rangle$.

For $a = 2$, the construction yields the cyclic binary universal partial word $001\dagger 110\dagger 001$.

6. Open Problems

While we have constructed an infinite family of universal partial words for A^4, increasing n to 5 already makes brute-force searches intractable, even when accounting for diamondicity.

Question 6.1. Does there exist a nontrivial universal partial word over a non-binary alphabet for $n \geq 5$? If so, is it possible to construct a family of such universal partial words?

In addition, there are not yet any known nontrivial universal partial words with diamondicity greater than 1. While such words would be shorter, there are many more initial window frames to check.

Question 6.2. Is there a universal partial word with diamondicity $d > 1$?

In Section 4, we were able to find an upper bound on diamondicity for a given n, but we would like to find a bound that is a constant fraction of n.

Question 6.3. Is there $\varepsilon \in (0, 1)$ such that for all n sufficiently large, every universal partial word for A^n has diamondicity $d \leq \varepsilon n$?

Every non-binary universal partial word is cyclic and has well-defined diamondicity. In contrast, binary universal partial words that are not cyclic and do not have well-defined diamondicity are common. It is known that cyclicity implies pseudocyclicity, which implies well-defined diamondicity, over any alphabet.

Question 6.4. Are well-defined diamondicity, pseudocyclicity, and cyclicity equivalent over a binary alphabet?

Enumerative questions remain largely unstudied.

Question 6.5. For a given n and A, how many universal partial words for A^n exist?

Chen et al. [4] proved the existence of universal partial words over binary alphabets in several cases via Hamiltonian and Eulerian cycles in de Bruijn graphs. The properties of de Bruijn graphs in higher dimension are less studied, so the proof techniques are not readily applicable to larger alphabet sizes. Other questions that have been studied in the context of de Bruijn sequences and other universal cycles may also be asked.

Question 6.6. Given a word v in A^n and a universal partial word w for A^n, how can one efficiently search for v in w?

7. Acknowledgements

We thank Jeremy Martin for his feedback and advice throughout the research process. We thank Nathan Graber for his collaboration during the Graduate Research Workshop in Combinatorics (GRWC 2016). We would also like to thank the organizers of GRWC 2016, as well as the other participants who provided insight on the problem. Lastly we thank our reviewers for their helpful suggestions toward publication.
References

[1] Emily Allen, Francine Blanchet-Sadri, Cameron Byrum, Mihai Cucuringu, and Robert Mercas. Counting bordered partial words by critical positions. The Electronic Journal of Combinatorics, 18(P138):1, 2011.

[2] F. Blanchet-Sadri, M. Cordier, and R. Kirsch. Border correlations, lattices, and the subgraph component polynomial. European Journal of Combinatorics, 68:204 – 222, 2018.

[3] Francine Blanchet-Sadri, Naomi C Brownstein, Andy Kalcic, Justin Palumbo, and Tracy Weyand. Unavoidable sets of partial words. Theory of Computing Systems, 45(2):381–406, 2009.

[4] Herman ZQ Chen, Sergey Kitaev, Torsten Mütze, and Brian Y Sun. On universal partial words. Discrete Mathematics and Theoretical Computer Science, 19 no. 1, May 2017.

[5] Fan Chung, Persi Diaconis, and Ron Graham. Universal cycles for combinatorial structures. Discrete Mathematics, 110(1-3):43–59, 1992.

B. Goeckner, Department of Mathematics, University of Kansas, Lawrence, KS 66045-7594, bennet@ku.edu

C. Groothuis, Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, corbin.groothuis@huskers.unl.edu

C. Hettle, School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, chettle@gatech.edu

B. Kell, Google, 6425 Penn Avenue, Pittsburgh, PA 15206, b kell@alumni.cmu.edu

P. Kirkpatrick, Department of Mathematics, Lehigh University, Bethlehem, PA 18015, prk213@lehigh.edu

R. Kirsch, Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, rkirsch@huskers.unl.edu

R. Solava, Department of Mathematics, Vanderbilt University, Nashville, TN 37240, ryan.w.solava@vanderbilt.edu