Phase transitions in the Hubbard model for the bismuth nickelate

Shoya Kojima, Joji Nasu, and Akihisa Koga

Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

(Dated: June 5, 2021)

We study low temperature properties of the Hubbard model for the bismuth nickelate, where degenerate orbitals in the nickel ions and a single orbital in the bismuth ions are taken into account, combining dynamical mean-field theory with the continuous-time quantum Monte Carlo method. We discuss the effect of the attractive interactions in the nickel ions and a single orbital in the bismuth ions. Here, using dynamical mean-field theory [8–10], we discuss how local electron correlations in both ions affect low temperature properties. We then reveal the stability of the charge density wave (CDW) and antiferromagnetically (AFM) ordered states against thermal fluctuations. Furthermore, we find the ferromagnetically (FM) ordered state and the antiferromagnetic (AFO) ordered state. Examining low energy properties in the density of states, we discuss the metal-insulator crossover in the system.

The paper is organized as follows. In Sec. II we introduce the model for the compound BiNiO$_3$ and summarize our theoretical approach. In Sec. III we discuss how the attractive interaction effectively realizes the valence skip in the bismuth ions. In Sec. IV we obtain the phase diagrams to discuss the role of the degenerate orbitals at low temperatures. A summary is given in the last section.

I. INTRODUCTION

Transition-metal oxides provide the typical playground for strongly correlated electron systems. Interesting examples are the manganite La$_{1-x}$Sr$_x$MnO$_3$ [1] and the ruthenate Sr$_2$RuO$_4$ [2], where remarkable phenomena have been observed such as the colossal magnetoresistance and triplet superconductivity. These stimulate extensive theoretical and experimental investigations [3, 4]. Common physics in the perovskite-type oxides is that the orbital degrees of freedom in the transition-metal ions (Mn, Ru) play a crucial role for realizing interesting low temperature properties. On the other hand, the lanthanum or strontium ions simply control electron number and play little role for interesting phenomena.

Recently, the bismuth nickelate BiNiO$_3$ has attracted current interest since the successful observation of the colosal negative thermal expansion [5]. In the compound, the phenomenon occurs together with the valence transition in the nickel and bismuth ions. In fact, it has been reported that, as increasing temperature and/or pressure, the electronic configuration Bi$^{5+}$Ni$_{2/3}^{3+}$O$_5^-$ is suddenly changed to that Bi$^{5+}$Ni$_{3/3}^{3+}$O$_5^-$. One of the important points in the compound is the orbital degeneracy in the nickel ions. This may induce interesting low temperature states such as the orbital ordered and ferromagnetically ordered states, which have not been observed up to now. Another is that the bismuth forms the compound with 3+ and 5+ valence states, so called, a “valence-skipping” ion. This behavior should be explained by considering fairly large attractive interactions between 6s electrons [6] although one naively expects that they are little correlated, comparing with 3d electrons in the nickel ions. Therefore, it is necessary to treat electron correlations in both ions correctly to understand low temperature properties in the compound.

Naka et al. have studied the single-band Hubbard model to discuss low temperature properties in the compound by means of the Hartree-Fock approximations [7]. The existence of the valence transition has been clarified, by considering the effective attractive interactions in the bismuth ions. However, the orbital degeneracy in the nickel ions has not been treated, and thereby low temperature properties in the compound still remain unclear. In particular, the orbital degrees of freedom and the Hund coupling should play a crucial role to understand the valence and magnetic transitions in the system. Therefore, it is necessary to treat the valence-skipping in the bismuth ions as well as the orbital degeneracy in the nickel ions on equal footing.

To clarify the above issues, we study the Hubbard model composed of two distinct sites with degenerate orbitals for nickel ions and a single orbital for bismuth ions. Here, using dynamical mean-field theory [8–10], we discuss how local electron correlations in both ions affect low temperature properties. We demonstrate how the charge density wave (CDW) and antiferromagnetically (AFM) ordered states against thermal fluctuations. Furthermore, we find the ferromagnetically (FM) ordered state and the antiferromagnetic (AFO) ordered state. Examining low energy properties in the density of states, we discuss the metal-insulator crossover in the system.

II. MODEL AND METHOD

We study the effect of strong electron correlations in the compound BiNiO$_3$. The model should be described by the
following Hubbard Hamiltonian,

\[H = H_{\text{Bi}} + H_{\text{Ni}} + H_{\text{Bi-Ni}}, \tag{1} \]

\[H_{\text{Bi}} = -t_{\text{Bi}} \sum_{i,j,\sigma} (b_{i\sigma}^\dagger b_{j\sigma} + \text{H.c.}) + U_{\text{Bi}} \sum_{i} \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right), \tag{2} \]

\[H_{\text{Ni}} = -t_{\text{Ni}} \sum_{i,j,\sigma} (a_{i\sigma}^\dagger a_{j\sigma} + \text{H.c.}) + \Delta \sum_{i,\alpha} n_{i\alpha\uparrow} n_{i\alpha\downarrow} + \Delta' \sum_{i,\alpha} \left(n_{i\alpha\uparrow} - \frac{1}{2} \right) \left(n_{i\alpha\downarrow} - \frac{1}{2} \right), \tag{3} \]

\[H_{\text{Bi-Ni}} = -t' \sum_{i,j,\sigma} (a_{i\sigma}^\dagger b_{j\sigma} + \text{H.c.}), \tag{4} \]

where \(b_{i\sigma}^\dagger \) (\(b_{i\sigma} \)) is a creation (annihilation) operator of an electron with spin \(\sigma \) at the Bi sites and \(a_{i\sigma}^\dagger \) (\(a_{i\sigma} \)) is a creation (annihilation) operator of an electron with spin \(\sigma \) at the Ni sites of the \(\mathcal{M} \) th unit cell, \(a_{i\sigma}^\dagger = b_{i\sigma}^\dagger b_{j\sigma} \), and \(n_{i\alpha\sigma}^\text{Ni} = a_{i\alpha\sigma}^\dagger a_{i\alpha\sigma} \). \(M \) is the hopping integral between \(M \) = Bi, Ni ions and \(t' \) is between Ni and Bi ions (see Fig. 1). \(U_{\text{Bi}} < 0 \) is the onsite interaction in the Bi ions, and \(U_{\text{Ni}}, U_{\text{Ni}}, J \) are the intraorbital interaction, interorbital interaction, and Hund coupling in the Ni ions. In our paper, we neglect the spin flip and pair hopping terms, for simplicity. \(\Delta \) is the energy difference between an \(e_g \) level in Ni ions and an \(s \) level in Bi ions, which should be tuned experimentally by the applied pressure. The effective model may be regarded to have the spatially alternating interactions \(\mathcal{M} \) since electron correlations are taken into account in both nickel and bismuth ions.

The compound BiNiO₃ exhibits the CDW and AFM ordered states below the critical temperatures \(T_{\text{CDW}} \) and \(T_{\text{AFM}} \), where charges in Bi ions and spins in Ni ions are ordered, respectively \(\mathcal{M} \). Therefore, the lattices for Ni and Bi ions are assumed to be divided into two sublattices, which is schematically shown in Fig. 1. Each \(M \) ion in a sublattice \(A \) has nearest neighbor \(M \) ions in a sublattice \(B \). On the other hand, each \(M \) ion is surrounded by \(M \) ions in both sublattices. Therefore, the hopping \(t' \) between different ions should yield a sort of frustration, which may suppress charge and magnetic fluctuations.

To discuss the stability of the ordered states, we make use of DMFT \(\mathcal{M} \). In DMFT, the original lattice model is mapped to an effective impurity model, where local electron correlations are accurately taken into account. The lattice Green’s function is obtained via a self-consistency condition imposed on the impurity problem. This treatment is exact in infinite dimensions, and the DMFT method has successfully explained interesting physics such as Mott transitions \(\mathcal{M} \) and magnetic transitions \(\mathcal{M} \). When the realistic condition is concerned, \(t_M \) is more dominant than \(t' \), which allows us to use the self-consistent equations for DMFT \(\mathcal{M} \) as

\[(G_M)^{-1} = i\omega_n + \mu_M - \left(D_M / 2 \right)^2 G_M - \left(D' / 2 \right)^2 \sum_{\gamma} G_{M\gamma}, \tag{5} \]

where \(\omega_n = (2n + 1)\pi T \) is the Matsubara frequency, \(T \) is the temperature, \(\mu_M = \mu - \Delta, \mu_{\text{Bi}} = \mu, \) and \(\mu \) is the chemical potential. \(G_{M\gamma} \) is the noninteracting (full) Green’s function for the \(M \) ion in the \(\gamma \)th \(\mathcal{M} \)th sublattice. For convenience, we neglect spin and orbital indexes in Eq. (5), and consider the Bethe lattice with coordination \(z \rightarrow \infty \) as a lattice structure, where the hoppings are rescaled as \(D_M = 2 \sqrt{z} t_M \) and \(D' = 2 \sqrt{z} t' \). In the framework of DMFT, we solve effective impurity models for Bi and Ni sites. To discuss finite temperature properties in the system, we employ the strong-coupling version of the continuous-time quantum Monte Carlo method \(\mathcal{M} \), which is efficient to study the Hubbard model in both weak and strong coupling regimes.

There are some possible ordered states at low temperatures. In the bismuth sites, the attractive interaction \(U_{\text{Bi}} < 0 \) should induce the CDW state. As for the nickel sites, the repulsive interactions \((U_{\text{Ni}}, U_{\text{Ni}}, J) \) should stabilize the ferromagnetically (FM) or AFM ordered state. Furthermore, the ferroorbital (FO) or antiferroorbital (AFO) ordered state is also realizable, depending on the local electron fillings. To characterize the above states, we here define the order parameters as,

\[n_{\text{CDW}}^{\text{Bi}} = \frac{1}{2} (\delta_{1} \delta_{1} - \delta_{2} \delta_{2}), \tag{6} \]

\[n_{\text{FM(AFO)}}^{\text{Ni}} = \frac{1}{4} (S_{A}^{2} \pm S_{B}^{2}), \tag{7} \]

\[n_{\text{FO(AFO)}}^{\text{Ni}} = \frac{1}{2} (T_{A}^{2} \pm T_{B}^{2}), \tag{8} \]

where \(n_{\text{CDW}}^{\text{Bi}} = \sum_{\gamma} n_{\gamma,\gamma}^{\text{Bi}} / 2 \) is a local filling at the Bi sites, \(S_{A}^{2} = \sum_{\alpha} (n_{1\alpha\gamma} - n_{\alpha\gamma}^{\text{Ni}})^{2} \), and \(T_{A}^{2} = \sum_{\alpha} (n_{1\alpha\gamma} - n_{\alpha\gamma}^{\text{Ni}})^{2} / 2 \) are the \(- \) component of the spin and pseudospin at Ni sites in the \(\gamma \)th
sublattice. Here, we focus on the above diagonal orders to discuss their stabilities. We also calculate the quantity as,
\[\hat{A}_M = -\frac{1}{\pi T} G_M \left(\frac{1}{2T} \right). \]

This quantity is reduced to the density of states for M ions at the Fermi level in the limit \(T \to 0 \) [25], which should allow us to discuss how the metallic state (\(\hat{A} = 0 \)) competes with the insulating state (\(\hat{A} = 0 \)) at finite temperatures. In the paper, we use the hopping \(D = D_{\text{Ni}} = D_{\text{Bi}} \) as the unit of energy and fix the parameters as \(U_{\text{Ni}} = U'_{\text{Ni}} + 2J, \)
\(U_{\text{Bi}}/J = 0.1, \) and \(D'/D = 0.28. \) The total electron density is fixed as \(\sum_\sigma (n_{\gamma \gamma}^{\text{Bi}} + \sum_\sigma n_{\gamma \gamma}^{\text{Ni}}) = 2 \) for each sublattice \(\gamma. \) The model Hamiltonian Eq. (1) is equivalent under the particle-hole transformations except for the sign of the parameter \(\Delta. \) Therefore, our discussions are restricted to the case with \(\Delta \geq 0 \) without loss of generality.

III. EFFECT OF ATTRACTIVE INTERACTIONS

We discuss the effect of the attractive interaction \(U_{\text{Bi}}. \) It is known that the bismuth ions behave as “valence skippers” in the compound [25]. To discuss how such a condition is realized by the attractive interaction, we examine empty, singly, and doubly occupied states in the Bi site at certain parameters. Figure 2(a) shows their probabilities as a function of the attractive interaction \(U_{\text{Bi}}. \) In the case, the local band filling for Bi sites are always half filled (not shown). When \(U_{\text{Bi}} = 0, \) all possible states are equally realized with \(e = s_r = d = 1/4. \) The introduction of the attractive interaction favors empty and doubly occupied states, while decreases the probability for singly occupied states. It is found that the singly occupied state is little realized \((s_r < 0.04) \) when \(U_{\text{Bi}}/D < -2.5. \) We show the temperature dependence in the system with \(U_{\text{Bi}}/D = -3 \) in the inset of Fig. 2(a). At high temperatures \((T > |U_{\text{Bi}}|), \) the local band filling is away from half filling and the single occupied states are realized with \(s_r \sim 0.2. \) Therefore, we can not discuss the valence skipping phenomenon in the case. On the other hand, when \(T/D < 0.1 (< |U_{\text{Bi}}/D|), \) the single occupancy is negligible and little depends on the temperature. Furthermore, the single occupancy little depends on the energy difference \(\Delta \) although the local band filling for the Bi sites, and the probabilities for the empty and doubly occupied states are gradually changed, as shown in Fig. 2(b). Therefore, the Bi site can be regarded as the valence skipping one when we fix the attractive interaction as \(U_{\text{Bi}}/D = -3 \) and focus on low temperature properties \((T/D < 0.1). \) The attractive interaction \(U_{\text{Bi}}/D = -1 \) used in the previous paper [27] should not be enough to capture the valence skipping phenomenon in the Bi sites.

In the following, we fix the attractive interaction \(U_{\text{Bi}}/D = -3. \) Then, we discuss low temperature properties in the weak and strong coupling cases with \(U_{\text{Ni}}/D = 1 \) and \(U_{\text{Ni}}/D = 10 \) where the experimental condition for the critical temperatures \((T_c^{\text{AFM}} < T_c^{\text{CDW}}) \) is satisfied.

IV. LOW TEMPERATURE PROPERTIES

First, we would like to discuss low temperature properties in the weak coupling case with \(U_{\text{Ni}}/D = 1. \) By performing DMFT calculations at a temperature \(T/D = 0.02, \) we obtain the results, as shown in Fig. 3. When \(\Delta = 0, \) both Ni and Bi ions are half filled \((n_{\text{Ni}} = n_{\text{Bi}} = 0.5). \) We find that the CDW and AFM ordered states appear with large order parameters \(m_{\text{CDW}}^{\text{Bi}} = 0.46 \) and \(m_{\text{AFM}}^{\text{Ni}} = 0.45. \) Figures 3(b) and 3(c) show
the square of the order parameters, for discussions of the critical phenomena. The magnetic moments in two orbitals of the Ni sites are parallel due to the existence of the Hund coupling. Introducing Δ, the number of electrons in Ni (Bi) sites gradually decreases (increases), and both order parameters decrease. At $\Delta = \Delta_{c1}$, the AFM order parameter vanishes and the second-order phase transition occurs to a genuine CDW state. We note that the hopping t' simply suppresses magnetic and charge fluctuations, and does not induce the cooperating phenomena between the Ni and Bi ions. Therefore, the AFM and CDW states independently appear in the model although a singularity appears in some curves of physical quantities. Further increase in Δ decreases the CDW order parameter, and finally m^Bi_{CDW} vanishes at $\Delta = \Delta_{c2}$. By examining critical behavior of the order parameters, $m \sim |\Delta - \Delta_c|^\beta$ with the exponent $\beta = 1/2$, we obtain the critical values as $\Delta_{c1}/D \sim 0.25$ and $\Delta_{c2}/D \sim 1.0$, as shown in Figs. [3]b and [3]c. In the large Δ region, the paramagnetic (PM) state is realized, where the Bi sites are almost fully occupied and the Ni sites are quarter-filled, as shown in Fig. [3]a.

By performing similar calculations, we obtain the phase diagram as shown in Fig. 4. We find that the CDW state is widely stabilized in the phase diagram, where the empty and doubly occupied states are alternately realized in the Bi sites. On the other hand, the AFM ordered state is realized in the Ni ions at lower T and smaller Δ region, as shown in Fig. 4. In the weak coupling case, the phase diagram is essentially the same as that obtained in the previous paper [7].

Let us move to the strong coupling case with $U_{\text{Ni}}/D = 10$, which may be relevant to the compound BiNiO$_3$. Figure 4 shows the filling and order parameters at the low temperature $T/D = 0.02$. When $\Delta/D \leq 5$, both Bi and Ni sites are half-filled, and the CDW and AFM states are stabilized, as discussed above. Around $\Delta/D \sim 5$, the local electron number is changed and the staggered spin moment decreases rapidly. This makes the AFM state unstable and the phase transition occurs in the Ni sites although the CDW state remains in the Bi sites. At the temperature, this non-magnetic state is realized in a tiny region, which may be invisible in Fig. 5. Further increase in Δ induces the uniform spin moment in the Ni sites m^Ni_{FM}, and the FM state is instead realized. In the state, the number of electrons in the Ni site is intermediate and no orbital moment appears. This is consistent with the fact that the ferromagnetic metallic ground state is stabilized between quarter and half fillings in the degenerate Hubbard model [21]. When $n_{\text{Bi}} \rightarrow 1$ and $n_{\text{Ni}} \rightarrow 1/4$, we find that the CDW and FM order parameters vanish at $\Delta/D = 6.2$ and $\Delta/D = 6.3$, respectively. When $\Delta/D \sim 6.4$, the staggered orbital moment is induced rapidly and the AFO state is realized. As the AFO state does not appear in the weak coupling case, we conclude that the state is stabilized due to the strong Coulomb interaction in the model with degenerate orbitals. The larger value of Δ tends to fix the electron number as $n_{\text{Bi}} = 1$ and $n_{\text{Ni}} = 1/4$, and hence the order parameter becomes constant.

The phase diagram is shown in Fig. 5. In the small Δ region, there appear the CDW and AFM states. In the case, the critical temperatures are little changed since the local band filling in each ion is fixed to be commensurate due to strong electron correlations in Ni ions. When $\Delta \sim 5.5(\Delta > 6.5)$, the FM (AFO) ordered states appears at low temperatures. It is expected that in the large Δ case, the decrease of the temperature enhances ferromagnetic correlations, which induces the FM-AFO state with $m^\text{Ni}_{\text{FM}} \neq 0$ and $m^\text{Ni}_{\text{AFO}} \neq 0$ [21]. In the present study, we examine the Hubbard model with single-orbital sites and degenerate-orbital sites, taking into account the valence skip and strong electron correlations. The obtained phase diagram is consistent with the experiments [5], although the FM and AFO ordered states have not been observed.
![Phase Diagram](image)

FIG. 6. Phase diagram in the strong coupling case with \(U_{\text{Ni}}/D = 10\). Circles, triangles, squares, and diamonds represent the phase transition points, where the CDW, AFM, FM, and AFO order parameter vanishes, respectively. Crosses represent the metal-insulator crossover points (see text).

![Dependence](image)

FIG. 7. \(\Delta\) dependences of (a) the density of states at the Fermi level \(\Delta_Ni\) and (b) the local filling \(n_{\text{Ni}}\) at Ni sites in the weak coupling case with \(U_{\text{Ni}}/D = 1\). (c), (d) Corresponding data for the strong coupling case with \(U_{\text{Ni}}/D = 10\).

Finally, we discuss metallic state properties in the system. When \(T/D = 0.05\), the second-order phase transition occurs between the CDW and PM states at \(\Delta/D = 0.73\) (5.7) in the weak (strong) coupling case. Here, we focus on metallic properties at the Ni sites in the system close to the phase boundary for the CDW state. The density of states at the Fermi level \(\Delta_{\text{Ni}}\) and the local band filling \(n_{\text{Ni}}\) are shown in Fig. 7. In the weak coupling case, \(\Delta_{\text{Ni}}\) is almost constant although the local band filling \(n_{\text{Ni}}\) is gradually changed. Therefore, the metallic state is always stable in the case. On the other hand, in the strong coupling case, different behavior appears. When \(\Delta/D \leq 4\), the local electron number at the Ni sites is fixed as half filling. As the Coulomb interaction at the nickel sites is fairly large, we can say that the Mott insulator is realized with \(\Delta_{\text{Ni}} \sim 0\).

When \(4.5 \leq \Delta/D \leq 6.5\), the intermediate filling is realized and metallic behavior appears with finite \(\Delta_{\text{Ni}}\). Increasing \(\Delta\), the local band filling approaches quarter in the nickel sites. Then, Mott insulating behavior appears again with \(\Delta_{\text{Ni}} \sim 0\), as shown in Fig. 2(c). Since we could not find any singularities in the curves, the crossover occurs between the metallic state and two Mott insulating states. This crossover is not directly related to the phase transition in the Bi sites. In fact, at higher temperatures \((T/D = 0.01)\), the CDW state is not realized, but crossover behavior still remains, as shown in Fig. 7. We find that the metal-insulator crossover little depends on the temperature, contrast to the phase boundary for the CDW state. As decreasing temperatures, the crossover approaches the phase boundary for the FM state since the AFM and AFO states are realized only at the commensurate fillings and the FM state is realized in between, as discussed above.

Unfortunately, the valence transition in the compound BiNiO\(_3\) between the electronic configurations Bi\(^{3+}\)\(\text{Ni}\(^{2+}\)\text{O}_3^-\) and Bi\(^{3+}\)\(\text{Ni}\(^{3+}\)\text{O}_3^-\) is of first order and the metal-insulator transition simultaneously occurs [5][26]. This discrepancy may originate from the fact that the valence transition in the compound is accompanied by the structure phase transition associated with a volume shrinkage or a strong mixing between the Ni 3d and ligand orbitals, which is often expected for perovskite nickelates [27]. Therefore, the first-order phase transitions must be explained when one considers the valence dependent hopping integrals, ligand orbitals, electron-phonon coupling, etc, which is now under consideration.

V. SUMMARY

We have studied the Hubbard model for the compound BiNiO\(_3\), where single (degenerate) orbital in the Bi (Ni) ions is taken into account. Combining dynamical mean-field theory with the continuous-time quantum Monte Carlo method, we have discussed the finite temperature properties in the system. It has been clarified how the valence skip phenomenon in the bismuth sites is described by the attractive interactions. By performing the DMFT calculations systematically, we have obtained the phase diagrams, where the ferromagnetically ordered and orbital ordered states appears in addition to the charge density wave and antiferromagnetically ordered states observed experimentally. We have also discussed the crossover between metallic and insulating states.

ACKNOWLEDGMENTS

We would like to thank M. Naka for valuable discussions. Parts of the numerical calculations are performed in the supercomputing systems in ISSP, the University of Tokyo. This work was partly supported by the Grant-in-Aid for Scientific Research from JSPS, KAKENHI Grant Number 25800193, 16H01066 (A.K.), and 16K17747 (J.N.). The simulations have been performed using some of the ALPS libraries [28].
[1] Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and N. Furukawa, J. Phys. Soc. Jpn. 63, 3931 (1994).
[2] Y. Maeno, H. Hashimoto, K. Toshida, S. Nishizaki, T. Fujita, J.G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994).
[3] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998); Y. Tokura and N. Nagaosa, Science 288, 462 (2000).
[4] T.M. Rice and M. Sigrist, J. Phys.: Condens. Matter 7, L643 (1995).
[5] M. Azuma, W. Chen, H. Seki, M. Czapski, S. Olga, K. Oka, M. Mizumaki, T. Watanuki, N. Ishimatsu, N. Kawamura, S. Ishiwata, M. G. Tucker, Y. Shimakawa, and J. P. Attfield, Nat. Comm. 2, 347 (2011).
[6] C. M. Varma, Phys. Rev. Lett. 61, 2713 (1988).
[7] M. Naka, H. Seo, and Y. Motome, Phys. Rev. Lett. 116, 056402 (2016).
[8] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
[9] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
[10] T. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 (1995).
[11] T. Saitou, A. Koga, and A. Yamamoto, J Supercond Nov Magn 26, 1771 (2013); A. Koga, T. Saitou, and A. Yamamoto, J. Phys. Soc. Jpn. 82, 024401 (2013).
[12] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).
[13] Th. Pruschke, D.L. Cox, and M. Jarrell, Phys. Rev. B 47, 3553 (1993).
[14] O. Sakai and Y. Kuramoto, Solid State Commun. 89, 307 (1994).
[15] R. Bulla, Phys. Rev. Lett. 83, 136 (1999).
[16] A. Georges, G. Kotliar, and W. Krauth, Z. Phys. B: Condens. Matter 92, 313 (1993).
[17] Y. Ono, R. Bulla, and A.C. Hewson, Eur. Phys. J. B 19, 375 (2001); Y. Ohashi and Y. Ono, J. Phys. Soc. Jpn. 70, 2989 (2001).
[18] A. Koga, Y. Imai, and N. Kawakami, Phys. Rev. B 66, 165107 (2002); A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, Phys. Rev. Lett. 92, 216402 (2004).
[19] R. Chitra and G. Kotliar, Phys. Rev. Lett. 83, 2386 (1999).
[20] R. Zitzler, N.-H. Tong, T. Pruschke, and R. Bulla, Phys. Rev. Lett. 93, 016406 (2004).
[21] T. Momoi and K. Kubo, Phys. Rev. B 58, R567 (1998).
[22] H. Yanatori and A. Koga, J. Phys. Soc. Jpn. 85, 014002 (2015); [arXiv:1603.02647]
[23] P. Werner, A. Comanac, L. déMedici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).
[24] E. Gull, A. J. Millis, A. N. Rubtsov, A. I. Lichtenstein, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).
[25] E. G. C. P. van Loon, A. I. Lichtenstein, M. I. Katsnelson, O. Parcollet, and H. Hafermann, Phys. Rev. B 90, 235135 (2014).
[26] S. Ishiwata, M. Azuma, and M. Takano, Solid State Ionics 172, 569 (2004).
[27] S. Ishiwata, M. Hanawa, Y. Moritomo, Y. Ohishi, K. Kato, M. Takata, E. Nishibori, M. Sakata, I. Terasaki, and M. Takano, Phys. Rev. B 72, 045104 (2005).
[28] B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Huhn, R. Igarashi, S. V. Isaev, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawłowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner, and S. Wessel, J. Stat. Mech. P05001 (2011).