Intestinal colonisation patterns in breastfed and formula-fed infants during the first 12 weeks of life reveal sequential microbiota signatures

Timmerman, Harro M.; Rutten, Nicole B. M. M.; Boekhorst, Jos; Saulnier, Delphine M.; Kortman, Guus A. M.; Contractor, Nikhat; Kullen, Martin; Floris, Esther; Harmsen, Hermie J. M.; Vlieger, Arine M.

Published in:
Scientific Reports

DOI:
10.1038/s41598-017-08268-4

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Timmerman, H. M., Rutten, N. B. M. M., Boekhorst, J., Saulnier, D. M., Kortman, G. A. M., Contractor, N., Kullen, M., Floris, E., Harmsen, H. J. M., Vlieger, A. M., Kleerebezem, M., & Rijkers, G. T. (2017). Intestinal colonisation patterns in breastfed and formula-fed infants during the first 12 weeks of life reveal sequential microbiota signatures. Scientific Reports, 7, [8327]. https://doi.org/10.1038/s41598-017-08268-4

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Intestinal colonisation patterns in breastfed and formula-fed infants during the first 12 weeks of life reveal sequential microbiota signatures

Harro M. Timmerman1, Nicole B. M. M. Rutten2, Jos Boekhorst3, Delphine M. Saulnier1,7, Guus A. M. Kortman2, Nikhat Contractor3,8, Martin Kullen3,9, Esther Floris1, Hermie J. M. Harmsen5, Arine M. Vlieger2, Michiel Kleerebezem1,6 & Ger T. Rijkers2,4

The establishment of the infant gut microbiota is a highly dynamic process dependent on extrinsic and intrinsic factors. We characterized the faecal microbiota of 4 breastfed infants and 4 formula-fed infants at 17 consecutive time points during the first 12 weeks of life. Microbiota composition was analysed by a combination of 16S rRNA gene sequencing and quantitative PCR (qPCR). In this dataset, individuality was a major driver of microbiota composition (P = 0.002) and was more pronounced in breastfed infants. A developmental signature could be distinguished, characterized by sequential colonisation of i) intrauterine/vaginal birth associated taxa, ii) skin derived taxa and other typical early colonisers such as *Streptococcus* and *Enterobacteriaceae*, iii) domination of *Bifidobacteriaceae*, and iv) the appearance of adultlike taxa, particularly species associated with *Blautia*, *Eggerthella*, and the potential pathobiont *Clostridium difficile*. Low abundance of potential pathogens was detected by 16S profiling and confirmed by qPCR. Incidence and dominance of skin and breast milk associated microbes were increased in the gut microbiome of breastfed infants compared to formula-fed infants. The approaches in this study indicate that microbiota development of breastfed and formula-fed infants proceeds according to similar developmental stages with microbiota signatures that include stage-specific species.

The neonatal intestine is considered to become colonised with the first microbes immediately after birth1,2, although recent studies have shown that in utero the environment may not be completely sterile3,4. Directly after birth, the infant intestine is colonised by a succession of a variety of microorganisms. The development of the intestinal microbiota is highly dynamic due to initial low stability, limited bacterial richness and low diversity of the ecosystem that is establishing5,6,7. This process differs considerably between individual infants, and depends upon multiple extrinsic factors including mode of delivery, type of nutrition, use of antimicrobials, and gestational age7,8,9. With regard to development of organ systems of the infant, the colonising microorganisms do not only play a key role in driving post-natal maturation of the infant gut but also in development of the mucosal immune system11–16. As such, deviating microbial colonisation patterns or distortion of the microbial ecology early in life, which may be caused by nutritional changes, pathogen challenges, or antibiotic treatment, may elicit...

1NIZO Food Research BV, Ede, The Netherlands. 2Departments of Pediatrics and Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands. 3Research and Development, Nestlé Nutrition, King of Prussia, PA, USA. 4Science Department, University College Roosevelt, Middelburg, The Netherlands. 5University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. 6Wageningen University, Host-Microbe Interactomics Group, Wageningen, The Netherlands. 7Present address: ORGANOBALANCE GmbH, Berlin, Germany. 8Present address: Metagenics Inc, Aliso Viejo, CA, USA. 9Present address: DuPont Nutrition & Health, Wilmington, DE, USA. Harro M. Timmerman, Nicole B. M. M. Rutten, Jos Boekhorst, Michiel Kleerebezem and Ger T. Rijkers contributed equally to this work. Correspondence and requests for materials should be addressed to G.A.M.K. (email: guus.kortman@nizo.com)
aberrant immune development processes that potentially cause long-lasting effects on the host organism, including susceptibility for a variety of developmental disorders and diseases.\(^{17-19}\)

In recent years, amplicon based sequencing of the 16S rRNA gene has enabled the analysis of hundreds of samples from different origins at high phylogenetic resolution and much greater depth than previously possible. Additionally, shotgun metagenomics can provide an unprecedented functional view of the microbiota in the context of health and disease. A recent study by,\(^{20}\) applying shotgun metagenomics, revealed that cessation of breastfeeding was one of the key factors driving maturation of the gut microbiome into an adultlike composition and functionally encoded capacity.

In this study, the development of the infant intestine microbiota was determined in the first 12 weeks of life, employing a high sampling frequency to enable in depth phylogenetic reconstruction of the de novo–colonisation of the newborn when fed a milk–based diet only. Although only a relatively small cohort of 4 breastfed and 4 formula-fed infants was included, the frequent sampling and the use of different molecular technologies (i.e. 16S profiling, qPCR targeting specific pathogens and supplementary FISH targeting specific phylogenetic groups) enabled the assessment of individuality as well as the impact of time and diet on the early-life microbiota colonisation pattern, including the evaluation of specific pathogens and their interactions with typical commensal taxa in the first 12 weeks of life.

Results

Subjects. Five breastfed (BF) and five formula-fed (FF) infants were initially enrolled. All infants were of Caucasian origin and were born vaginally during the winter season. After sample collection was completed, two infants (one breastfed and one formula-fed infant) were excluded from prior analysis because of too many missing samples and/or collection of insufficient faecal material. The relevant clinical characteristics of the eight infants included in the analysis are given in Supplementary Table 1. Baseline characteristics at time of recruitment were not significantly different between the two groups. All children in the formula-fed group were given the same brand (Nutrilon) of formula, containing a blend of the prebiotics GOS and FOS (scGOS/leFOS (9:1); 0.6 g/100 ml). BF4 and BF3 received complementary formula (same brand) from 10 and 11 weeks onwards, respectively.

General bacterial population dynamics during the first weeks of life. In total 1,390,768 bacterial 16S rDNA sequences, with on average 11,307 (±6,355; SD) reads of 399 nt (±85; SD) per sample, were analysed. Irrespective of the type of feeding from birth onwards, infants generally developed a gut microbiota characterised by sequential colonisation of intrauterine/vaginal birth associated first colonisers, followed by skin derived taxa and subsequent rapid domination of *Bifidobacteriaceae* around 3 weeks of age. After 3 weeks, facultative anaerobes such as the genera *Staphylococcus*, *Streptococcus* and members of the phylum Proteobacteria generally declined, as visualised in Supplementary Figure S1. In order to characterize the development of microbiota composition during early life, multiple multivariate statistical analyses were employed to separately identify the impact of individual, time and diet on the overall community development. PCA based on the relative abundance of species revealed that the aforementioned variables accounted for 59.5% of the variation in microbiota composition. Microbiota signatures clustered predominantly by individuality and were less dependent on feeding type or sampling time, although these latter variables did contribute to microbiota composition clustering (Fig. 1).

Importantly, the centroids of the sampling time points during the first 21 days were clearly distinct from each other as well as from the later sampling points that also clustered more closely together (Fig. 1). The latter finding implies that the most dynamic developmental changes in gut microbiota composition take place during the first 3 weeks of life. After 3 weeks, facultative anaerobes such as *Bifidobacteria*, *Streptococcus* spp. and *Staphylococcus* spp. and members of the phylum Proteobacteria generally declined, as visualised in Supplementary Figure S1. In order to characterize the development of microbiota composition during early life, multiple multivariate statistical analyses were employed to separately identify the impact of individual, time and diet on the overall community development. PCA based on the relative abundance of species revealed that the aforementioned variables accounted for 59.5% of the variation in microbiota composition. Microbiota signatures clustered predominantly by individuality and were less dependent on feeding type or sampling time, although these latter variables did contribute to microbiota composition clustering (Fig. 1).

To identify microbiota signatures that represent significant developmental progression of the microbiota composition over time, both the effects of individuality and feeding type were removed (partial RDA) and enabled the recognition of time-resolved, early life microbiota developmental trajectories with high significance (Fig. 4A; explained variation 10.4%, \(P = 0.002\)). Within these trajectories, microbiota compositional transitions can be recognized on basis of discriminatory taxa, being intrauterine/vaginal birth associated first colonisers, such as *Lactobacillus crispatus*, *Corynebacterium pseudodgentalium*, *Sphingomonadaceae* spp., *Enterococcaceae* spp., *Pelomonas* spp. and *Ochrobactrum* spp. (day 1 to 3)\(^{21-24}\). These first colonizers were followed by the cumulative colonisation of typical early life taxa such as members of the *Enterobacteriaceae* family, *Streptococcus* spp. and skin derived taxa such as *Staphylococcus* spp. during the day 3 to day 21, which decreased at later stages and was followed by an increasing domination of *Bifidobacterium* spp. (day 1 to 35) for the remainder of the sampling period and the appearance of low-abundant adult-like taxa (e.g. the genera *Eggerthella* and *Blautia*) at around three months of age. Separate analyses of breast- and formula-fed infants (Fig. 4, panels B and C, respectively) revealed that the effect of time was visible in both groups. The time-resolved developmental progression pattern was more homogeneous in the formula-fed infants (explained variation is 18.4%, \(P = 0.002\)), which support our
finding that microbiome development of the breastfed infants is more individually determined (explained variation is 7.0%, P = 0.02, see also Fig. 4B,C).

Classification of the 16S sequences down to the species level revealed the presence of the potential gastrointestinal tract pathogens *C. perfringens* and *C. difficile*, but also the upper oro-gastrointestinal and respiratory tract
Figure 3. Individuality in breastfed infants versus formula-fed infants. (A) Principal Coordinates Analysis (PCoA): unweighted UniFrac interindividual distances of breast- and formula-fed infants are plotted based on similarities/dissimilarities among samples. (B) Interindividual distances from day 1 till 12 weeks of age. Unweighted UniFrac interindividual distances are plotted over time for breastfed (BF) infants and formula-fed (FF) infants. Curves represent the median.

Bacterial population development and the influence of feeding. Although the time-resolved developmental signature is comparable between breastfed and formula-fed infants, several diet-associated discriminating signature taxa are characteristic for the subsequent microbiota transitions observed. *Streptococcus* and *Enterococcus* species were discriminatory signature taxa associated with formula feeding in the first month and second-to-third month of life, respectively. Notably, the enrichment of *Enterococcus* phylotypes was significantly associated with the presence of the potential pathogen *C. difficile* (Supplementary Figure S3). In addition, Random Forest analyses revealed that among the top 20 microbial classifiers predictive for breastfeeding, 5 skin-associated genera (*Staphylococcus*, *Actinomyces*, *Propionibacterium*, *Corynebacterium* and *Gemella*, ranked by importance) were present (Supplementary Figure S4). The prevalence and dominance of typical skin colonisers that were selected on basis of previously identified skin-associated taxa⁵⁶, was particularly more pronounced
and more persistent during the different microbiota developmental stages in breastfed infants (Supplementary Figure S5). Next to these skin-associated microbial groups, Random Forest analysis also identified the relative abundance of several *Bifidobacterium* species as a classifier for the discrimination of the infants' microbiota in relation to the feeding regime. In particular, a phylotype most similar to *Bifidobacterium dentium* was identified as being present in higher relative abundance in formula-fed infants compared to those that were breastfed (Supplementary Figure S6). Taken together, these data show that diet-associated gut microbial signatures were present, but that a similar effect of time on gut microbial development was present in both dietary groups.

Figure 4. (A,B,C) Triplot of partial RDA based on the relative abundance of detected species in individuals over time (day 1 until 12 weeks of age). Constrained explanatory variables are indicated by triangles: day 1 (D1) until day 84 (D84). Impact of time on microbiota composition was assessed in (A) all breastfed and formula-fed infants, after removing the effects of individual and type of feeding, (B) Breastfed infants only, after removing the effects of individual, and (C) Formula-fed infants only, after removing the effects of individual. The arrows indicate the 30 species which had the highest amount of variability in their values explained by the canonical axes. Upper right shows the p-value of Monte Carlo Permutation testing. Taxa that could not be assigned on the species level were included as genera, families, orders, classes or phyla unspecified.
of DNA. and targeted pathogens. The detection threshold for all qPCRs performed was considered to be 100 target copies was calculated as a fraction of the calculated copy numbers for total bacterial counts (16S universal primers) detected by qPCR in the faeces of breastfed and formula-fed infants from day 1 till 12 weeks. Relative abundance Relative abundance of potential pathogens of the oro-gastrointestinal and respiratory tract as Figure 5.}
communities included facultative anaerobic bacteria such as Enterobacteriaceae members and Staphylococcus spp., confirming previously reported dynamics of the infant microbiota. These bacteria have been proposed to pave the way for strict anaerobes through consumption of the available oxygen. In addition, our study highlighted the presence of typical skin associated microorganisms in the faecal microbiome during the first two weeks of life. Our analyses detected a third developmental phase characterized by progressive domination of the microbiota by Bifidobacteriaceae, a finding on which existing literature is conflicting. Several studies have reported that Bifidobacteriaceae almost always dominate the intestinal community of breastfed neonates in early life, but paucity of Bifidobacterial species by culture-independent investigations has also been described, likely due to technical biases. In our study-population, the last phase of intestinal colonisation included the appearance of typical adult-like strict anaerobes like Blautia and Eggerthella after 8 weeks and onwards, which could represent the starting point for the development towards an adult-like composition, of which the stabilization has been proposed to occur around 3 years of age.

Remarkably, in the present study population the sequential signatures of intestinal colonisation were detected in both breastfed and formula-fed infants, suggesting that diet was not the primary successional mechanism involved in gut microbiota maturation, but that other factors such as physiochemical and immunological development of the newborn were likely to be more critical determinants in this study. Although the developmental signature between both diet groups was quite congruent, there were differences between the signature taxa of the different developmental stages. For example, the taxa typically associated with human skin, like Propionibacterium, Staphylococcus, Gemella and Corynebacterium were found to be more dominant and persistent members of the microbiota in breastfed infants, which might be a reflection of the more frequent and intense contact of breastfed infants with the mother’s skin.

In the present study, formula-fed infants harboured higher levels of a specific bifidobacterial taxon that is phylogenetically closely related to B. dentium compared to breastfed infants. Recently, shotgun metagenomics that allows annotation down to the species level, showed that B. adolescentis appeared to be enriched in formula-fed infants. These findings can likely be explained by the differential carbon source availability in the two feeding regimes. Particularly, the relatively large fraction of the HMOs that is built on basis of Lacto-N-biose cannot be utilized by B. dentium and B. adolescentis, but is readily utilized by various other Bifidobacterium species, including the HMO-specialist B. longum. Other late signature taxa for formula-fed infants were Enterococcus as detected by 16S profiling and C. difficile as identified by qPCR. Although C. difficile was also detected in one breastfed infant from 11 weeks onward, this occurred after the introduction of complementary formula feeding. Higher prevalence and relative abundance of C. difficile in formula-fed infants have been reported before. Possibly breast milk contains a factor (e.g. maternal antibodies or antimicrobial HMOs) that prevents C. difficile colonisation, or supports a microbiota development pattern that exerts higher endogenous colonisation resistance against C. difficile. Interestingly, a recent study in a single infant of 6 months old showed opposite results when the infant switched from mother milk to cow milk (not formula). This study differs from previous studies and our study in that the infant was a few months older and on solid foods already. Intriguingly, we found that the appearance of detectable levels of C. difficile was significantly associated with enrichment of four Enterococcus phylotypes. Enterococcus spp. have previously also been positively associated with C. difficile in the gut microbiota of patients treated for malignancy, a finding that is supported by infection studies in mice. C. difficile colonisation that we and others observed appears to depend on diet-microbiota interactions. This may eventually provide novel leads towards prevention or suppression of this opportunistic pathogen in the human intestinal tract, if warranted. We however note that the significance and effects of asymptomatic C. difficile colonisation on the gut microbiome, infections and allergic disease in neonates and later in life remain to be determined.

Although the number of infants in this study was small and limits the statistical power of comparisons, the large number of faecal samples collected per infant (17 samples per infant, during the first 12 weeks of life) allowed detailed analysis of the progression of bacterial colonisation of the intestinal tract per individual. Importantly, time-resolved microbial signatures were congruently detected in the pool of 8 infants and appeared in both feeding regimes. Nevertheless, differences depending on the feeding regime were detected. To provide leads for further optimization of infant formula, the importance of these differences and their impact on the interplay of the microbiota with the developing mucosal immune and metabolic functions remains to be determined and require larger study cohorts. Further knowledge of the relationship of the ‘normal’ colonisation patterns in healthy infants with the development of appropriate mucosal immune function, compared to aberrant colonisation in e.g. antibiotic treated infants, is paramount and to fuel intervention strategies aimed at reducing the risk of immune system associated diseases in later stages of life.

Material and Methods

Subjects and study design. For this 12 weeks longitudinal study, two times five infants were recruited that were exclusively breastfed or formula-fed from birth onward, with the exception that 2 breastfed infants were complementary fed with formula from week 10 or 11 onward. All infants were born after more than 39 weeks of gestation, were apparently healthy, and were all vaginally delivered at the hospital (Nieuwegein, The Netherlands). Each infant stayed in the hospital for a maximum of 24 hours after delivery. Signed informed consent was obtained from each infant’s parents. The St. Antonius Hospital local Ethics Committee approved the study and methods were carried out in accordance with the relevant guidelines and regulations.

Formula-fed infants were allowed to receive the parents’ choice of formula, and the brand was recorded. All parents decided on the same brand (Nutrilon) of formula, containing a blend of the prebiotics GOS and FOS (scGOS:kFOS (9:1); 0.6g/100 ml). All children were vaccinated according to the National Vaccination Schedule and the specific dates were documented during the study. Parents were instructed to keep a journal recording key events in the categories of illness, medication, and dietary change.
Faecal sample collection. Infant faecal samples were collected by the parents at specific time points during the first 12 weeks of life; every other day during the first two weeks of life, and after that, every week until the infant was three months old (17 samples in total).

Parents were provided with collection devices and diapers (Pampers, Procter & Gamble) for the complete study period. Latter approach was used to ensure minimal variation in faeces absorption by the diaper and unambiguous collection of faecal samples. After immediate collection, parents stored the faecal samples in their home freezers (at $-20^\circ C$), and the samples were subsequently transferred and stored in the hospital freezers until the end of the collection period of the study. Finally, all samples were transported on dry ice to NIZO Food Research BV (Ede, the Netherlands) and stored at $-20^\circ C$ until further processing. Each transportation step of the faecal samples was carried out in frozen state, strictly preventing intermediate thawing of the samples. Batches of 48 samples were thawed overnight on ice at $4^\circ C$ after which aliquots were prepared and frozen at $-80^\circ C$ until DNA extraction. Aliquots for FISH were processed immediately, as described in the supplementary material and methods.

FISH. The FISH method is described in the supplementary material and methods.

16S rRNA gene sequencing analysis. DNA extraction. DNA isolation from faeces was performed as previously. Briefly, after bead-beating, DNA was purified by maximal 3 consecutive phenol-chloroform extractions (until a lucid solution was obtained), followed by isopropanol precipitation of the DNA. The resulting pellets were washed with 70% (v/v) ethanol, and dissolved in 100 μl TE buffer by overnight incubation at 4 °C. DNA samples were stored at $-20^\circ C$ until further processing.

Library preparation for 16S rRNA pyrosequencing. For the preparation of the amplicon pool for pyrosequencing, the following universal primers were applied for amplification of the V3-V6 region of the 16S rRNA gene: (i) forward primer, 5′-CCATCTCATATCCCTGCTGTCTCGACTAGNNNNNNACCTCTACGGGAGGCAGCAG-3′ (the italicised sequence is the 454 Life Sciences primer A, and the bold sequence is the broadly conserved bacterial primer 338F; NNNNNN designates the sample-specific six-base barcode used to tag each PCR product in combination with (ii) reverse primer 5′-CCTACGGGAGGCAGCAGAGGTACCTACGGGCCAGGC-3′ (the italicised sequence is the 454 Life Sciences primer B, and the bold sequence is the broadly conserved bacterial primer 1061R). PCR amplification mixture contained: 1 μL faecal DNA, 1 μL barcoded forward primer (10 μM), 15 μL master mix [1 μL KOD Hot Start DNA Polymerase (1 U/μL; Novagen, Madison, WI, USA), 5 μL KOD-buffer (10 ×), 3 μL MgSO4 (25 mM), 5 μL dNTP mix (2 mM each), 1 μL (10 μM) of reverse primer] and 33 μL sterile water (total volume 50 μL). PCR conditions were: 95 °C for 2 minutes followed by 35 cycles of 95 °C for 20 s, 55 °C for 10 s, and 70 °C for 15 s. The approximately 750 bp PCR amplicon was subsequently purified using the MSB Spin PCRapace kit (Invitrogen) and the concentration was checked with a Nanodrop 1000 spectrophotometer (Thermo Scientific). A composite sample for pyrosequencing was prepared by pooling 200 ng of the purified PCR products obtained for each sample. The approximately 750 bp mixed amplicon in the pooled sample was purified from gel (1% agarose) with the MinElute Gel Extraction kit (Qiagen, Venlo, The Netherlands). The concentration of the gel-extracted pooled-amplicon was determined and 50 μl (14.5 ng/μl purified PCR product) was submitted for pyrosequencing of the V3-V4 region of the 16S rRNA gene on the 454 Life Sciences GS-FLX platform using Titanium sequencing chemistry (GATC Biotech, Konstanz, Germany).

16S rRNA gene sequence bioinformatic analysis. Pyrosequencing data were analyzed with a workflow based on the Quantitative Insights Into Microbial Ecology (QIIME) v1.2, using settings as recommended in the QIIME 1.2 tutorial, with the following exceptions: reads were filtered for chimeric sequences using Chimera Slayer, and OTU clustering was performed with settings as recommended in the QIIME newsletter of December 17th 2010 (http://qiime.wordpress.com/2010/12/17/new-default-parameters-for-uclust-otu-pickers/) using an identity threshold of 97%. Diversity metrics were calculated as implemented in QIIME 1.2. To determine the amount of diversity shared between two communities (beta diversity) the UniFrac metric was employed. UniFrac distances are based on the fraction of branch length shared between two communities within a phylogenetic tree constructed from the 16S rRNA gene sequences. With unweighted UniFrac, only the presence or absence of lineages is considered (community membership), whereas weighted UniFrac, also relative abundances of lineages within communities are considered (community structure). Additional data handling was performed using in-house developed Python and Perl scripts.

qPCR. Real-time detection was performed on DNA samples targeting the following set of pathogens that were detected by 16S profiling: Clostridium difficile, Clostridium perfringens, Haemophilus parainfluenzae, Klebsiella pneumoniae and Streptococcus pneumoniae. The target organisms, their respective genetic loci targeted by qPCR and the primer (and probe) sequences used are listed in Supplementary Table 2. Specific PCR conditions employed were adjusted per target locus and was based on the PCR protocols provided in the respective literature references from which the primer (and probe) sequences were obtained (Supplementary Table 2). Amplification and detection were performed using the ABIPRISM 7300-PCR sequence detection system (Applied Biosystems, Foster City, CA), detecting the fluorescent products in the last step of each amplification cycle. After amplification, melting curve analysis was employed to establish PCR-product specificity in case of SYBR Green based detection. Positive and negative controls (other bacterial species) were included in each qPCR run. Gene copy numbers per gram of faeces were extrapolated for each sample, using positive-control template DNA and standard curves generated in triplicate and linear C_q-value regression in serial 10-fold template dilutions.
Statistical analysis. Clinical characteristics of the infants and potential differences between groups were assessed by Mann-Whitney-U test. All analyses were performed using SPSS version 20.0 (SPSS Inc., Chicago, IL, USA). Principal Coordinate Analyses (PCoA; unsupervised), Principal Component Analysis (PCA; unsupervised) and redundancy analysis (RDA; supervised) was performed using CANOCO for Windows 5.0 (Microcomputer Power, USA) according to the manufacturer's instructions where the UNIFRAC distances (PCoA) and the relative abundance of the 168 identified species through 16S sequencing and the 7 phylogenetic groups targeted by FISH were used as responsive variables (PCA and RDA). RDA is the canonical form of PCA analyses and is a multivariate linear regression model where several response parameters are related to the same set of environmental (explanatory) variables. Partial RDA was employed to analyze the effect of time and individual after covariance attributable to diet (always) and individual and time, respectively, was first fitted by regression and then partialled out (removed) from the ordination as described in the Canoco 5 manual. Variation explained by the explanatory variables corresponds to the classical coefficient of determination (R^2), but was adjusted for degrees of freedom (for explanatory variables) and the number of cases. Statistical significance was assessed by the Monte Carlo permutation procedure (MCP) with 499 random permutations under the full model. Machine learning algorithms (Random Forest) were used to predict to what extent each taxon can predict type of feeding received.

References

1. Vaishampayan, P. A. et al. Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. *Genome Biol Evol* 2, 53–66, doi:10.1093/gbe/evq057 (2010).
2. Castany-Munoz, E., Martin, M. J. & Vazquez, E. Building a Beneficial Microbiome from Birth. *Adv Nutr* 7, 323–330, doi:10.945/ an.115.010694 (2016).
3. Nuriel-Ohayon, M., Neuman, H. & Koren, O. Microbial Changes during Pregnancy, Birth, and Infancy. *Front Microbiol* 7, 1031, doi:10.3389/fmicb.2016.01031 (2016).
4. Aagaard, K., et al. The placenta harbors a unique microbiome. *Science translational medicine* 6, 237ra265, doi:10.1126/ scitranslmed.3008599 (2014).
5. Adlerberth, I. Factors influencing the establishment of the intestinal microbiota in infancy. *Nestle Nutr Workshop Ser Pediatr Program* 62, 13–29; discussion 29–33, doi:10.1159/000146245 (2008).
6. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. *Proc Natl Acad Sci USA* 108(Suppl 1), 4578–4585, doi:10.1073/pnas.1000881107 (2011).
7. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. *Proc Natl Acad Sci USA* 107, 11971–11975, doi:10.1073/pnas.1002601107 (2010).
8. Palmer, C., Bk, E. M., DiGiallo, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. *PLoS Biol* 5, e177, doi:10.1371/journal.pbio.0050177 (2007).
9. Fenders, J. et al. Factors influencing the composition of the intestinal microbiota in early infancy. *Pediatrics* 118, 511–521, doi:10.1542/peds.2005-2824 (2006).
10. Matamoros, S., Gras-Leguen, C., Le Vacon, F., Potel, G. & de La Cochetiere, M. F. Development of intestinal microbiota in infants and its impact on trends in microbiology. *21, 167–173*, doi:10.1021/j3000120 (2013).
11. Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. *Science* 292, 1115–1118 (2001).
12. Hooper, L. V., Midvdvt, T. & Gordon, J. I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. *Annu Rev Nutr* 22, 283–307, doi:10.1146/annurev.nutr.22.011602.092259 (2002).
13. Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. *Nat Rev Immunol* 4, 478–485, doi:10.1038/nri1373 (2004).
14. Sjogren, Y. M. et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. *Clin Exp Allergy* 39, 1842–1851, doi:10.1111/j.1365-2223.2009.03326.x (2009).
15. Gronlund, M. M., Arvilommi, H., Kero, P., Lehtonen, O. P. & Isolauri, E. Importance of intestinal colonisation in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0-6 months. *Anna Rev Nutr* 22, 283–307, doi:10.1146/annurev.nutr.22.011602.092259 (2002).
16. Backhed, F. et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. *Cell Host Microbe* 17, 690–703, doi:10.1016/j.chom.2015.04.004 (2015).
17. Brugman, S., Perdijk, O., van Neerven, R. J. & Savelkoul, H. F. Mucosal Immune Development in Early Life: Setting the Stage. *Archiv Immunol Ther Exp (Microcomputer Power, USA) according to the manufacturer's instructions* 6, 237ra265, doi:10.1126/ scitranslmed.3008599 (2014).
18. Dogra, S., et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. *MBio* 6, doi:10.1128/mBio.02419-14 (2015).
19. Verstraelen, H. et al. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene. *PeerJ* 4, e1602, doi:10.7717/peerj.1602 (2016).
20. Moreno, I. et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. *Am J Obstet Gynecol*, doi:10.1016/j.ajog.2016.09.075 (2016).
21. Zeeuwen, P. et al. Microbiome Dynamics of Human Epidermis Following Skin Barrier Disruption. *Journal of Investigative Dermatology* 132, S111–S112 (2012).
22. Azad, M. B. et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. *BJOG* 123, 983–993, doi:10.1111/1471-0528.13601 (2016).
23. Dogra, S. et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. *MBio* 6, doi:10.1128/mBio.02419-14 (2015).
24. Arrieta, M. C. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. *Science translational medicine* 7, 307ra152, doi:10.1126/scitranslmed.aab2271 (2015).
25. Azad, M. B., Bridgman, S. L., Becker, A. B. & Kozysky, A. L. Infant antibiotic exposure and the development of childhood overweight and central adiposity. *Int J Obes (Lond)* 38, 1290–1298, doi:10.1038/ijo.2014.119 (2014).
26. Risnes, K. R., Belanger, K., Murk, W. & Bracken, M. B. Antibiotic exposure by 6 months and asthma and allergy at 6 years: Findings in a cohort of 1,401 US children. *Am J Epidemiol* 173, 310–318, doi:10.1093/aje/kqw400 (2011).
27. Trasande, L. et al. Infant antibiotic exposures and early-life body mass. *Int J Obes (Lond)* 37, 16–23, doi:10.1038/ijo.2012.132 (2013).
32. Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22, 1147–1162, doi:10.1093/glycob/cw074 (2012).
33. Wang, M. et al. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J Pediatr Gastroenterol Nutr 60, 825–833, doi:10.1097/MPG.0000000000000752 (2015).
34. Lewis, Z. T. et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3, 13, doi:10.1186/2041-0102-13-13 (2015).
35. Panzaraj, P. S. et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA pediatrics, doi:10.1001/jamapediatrics.2017.0378 (2017).
36. Favier, C. F., de Vos, W. M. & Akkermans, A. D. Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe 9, 219–229, doi:10.1016/j.anaerobe.2003.07.001 (2003).
37. Jost, T., Lacroix, C., Braegger, C. P. & Chassard, C. New insights in gut microbiota establishment in healthy breast fed neonates. PLoS one 7, e44595, doi:10.1371/journal.pone.0044595 (2012).
38. Scholten, P. A., Oozeer, R., Martin, R., Amor, K. B. & Knol, J. The early settlers: intestinal microbiology in early life. Annu Rev Food Sci Technol 3, 425–447, doi:10.1146/annurev-food-022811-101120 (2012).
39. Favier, C. F., Vaughan, E. E., De Vos, W. M. & Akkermans, A. D. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68, 219–226 (2002).
40. Turroni, F. et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS one 7, e36957, doi:10.1371/journal.pone.0036957 (2012).
41. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227, doi:10.1038/nature11053 (2012).
42. Jimenez, E. et al. Staphylococcus epidermidis: a differential trait of the fecal microbiota of breast-fed infants. BMC microbiology 8, 143, doi:10.1186/1471-2180-14-143 (2008).
43. Xiao, J. Z. et al. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol 76, 54–59, doi:10.1128/AEM.01683-09 (2010).
44. Schell, M. A. et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99, 14422–14427, doi:10.1073/pnas.212527992 (2002).
45. Penders, J. et al. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett 243, 141–147, doi:10.1016/j.femsl.2004.11.052 (2005).
46. Bode, L. The functional biology of human milk oligosaccharides. Early human development 91, 619–622, doi:10.1016/j.earthdev.2015.09.001 (2015).
47. Davis, M. Y., Zhang, H., Brannan, L. E., Carman, R. J. & Boone, J. H. Rapid change of fecal microbiome and disappearance of Clostridium difficile in colonized infant after transition from breast milk to cow milk. Microbiome 4, 53, doi:10.1186/s40168-016-0198-6 (2016).
48. Buffe, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208, doi:10.1038/nature13828 (2015).
49. Bridgman, S. L. et al. High fecal IgA is associated with reduced Clostridium difficile colonization in infants. Microbes Infect 18, 543–549, doi:10.1016/j.micinf.2016.05.001 (2016).
50. Lees, E. A., Miyajima, F., Pir Mohamed, M. & Carroll, E. D. The role of Clostridium difficile in the paediatric and neonatal gut - a narrative review. Eur J Clin Microbiol Infect Dis 35, 1047–1057, doi:10.1007/s10095-016-2639-3 (2016).
51. Zoetendal, E. G. et al. Isolation of DNA from bacterial samples of the human gastrointestinal tract. Nat Protoc 1, 870–873, doi:10.1038/nprot.2006.142 (2006).
52. Bron, P. A., Meijer, M., Bongers, R. S., de Vos, W. M. & Kleerebezem, M. Dynamics of competitive population abundance of Lactobacillus plantarum ivi gene mutants in faecal samples after passage through the gastrointestinal tract of mice. J Appl Microbiol 103, 1424–1434, doi:10.1111/j.1365-2672.2007.03376.x (2007).
53. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335–336, doi:10.1038/nmeth.f.303 (2010).
54. Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21, 494–504, doi:10.1101/gr.112730.110 (2011).
55. Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4, 17–27, doi:10.1038/ismej.2009.97 (2010).
56. ter Brak, C. & Smalauer, P. Canoco reference manual and user’s guide: software for ordination (version 5.0). (Microcomputer Power, 2012).

Acknowledgements
The authors would like to thank the parents and infants enrolled for this study. We also want to thank Ingrid van Alen, Erwin Raangs, Saskia van Schalkwijk and Iris I. van Swam for excellent technical assistance.

Author Contributions
H.M.T., N.B.M.M.R., A.M.V., J.B., D.M.S., M.K.2. and G.T.R. designed the study. N.B.M.M.R., D.M.S., E.F., H.J.M.H. and A.M.V. executed the study and performed measurements. H.M.T., J.B., D.M.S. and G.A.M.K. performed data analysis. Interpretation of the data was done by H.M.T., N.B.M.M.R., J.B., D.M.S., G.A.M.K. H.J.M.H., A.M.V., M.K.2. and G.T.R. wrote and/or revised the manuscript. All authors, including M.K.1. and N.C., reviewed and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-08268-4.

Competing Interests: Authors declare conflicts of interest. This work was funded, in part, by Wyeth Nutrition. Nikhath Contractor and Martin Kullen were employed by Wyeth Nutrition during conduction of the study.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017.