The Decays of $B^+ \rightarrow \bar{D}^0 + D_{sJ}^+(2S)$ and $B^+ \rightarrow \bar{D}^0 + D_{sJ}^+(1D)$

Guo-Li Wang, Jin-Mei Zhang and Zhi-Hui Wang

Department of Physics, Harbin Institute of Technology, Harbin 150001, China

ABSTRACT

We analyzed the decays of $B^+ \rightarrow \bar{D}^0 + D_{sJ}^+(2S)$ and $B^+ \rightarrow \bar{D}^0 + D_{sJ}^+(1D)$ by naive factorization method and model dependent calculation based on the Bethe-Salpeter method, the branching ratios are $Br(\bar{D}^0 D_{sJ}^+(2S)) = (0.72 \pm 0.12)\%$ and $Br(\bar{D}^0 D_{sJ}^+(1D)) = (0.027 \pm 0.007)\%$. The branching ratio of decay $B^+ \rightarrow \bar{D}^0 D_{sJ}^+(2S) \rightarrow \bar{D}^0 D^0 K^+$ consist with the data of Belle Collaboration, so we conclude that the new state $D_{sJ}^+(2700)$ is the first excited state $D_{sJ}^+(2S)$.
BABAR Collaboration reported the observation of a new charmed meson called $D_{sJ}^+(2690)$ with a mass $2688 \pm 4 \pm 3$ MeV and with a broad width $\Gamma = 112 \pm 7 \pm 36$ MeV [1]. Belle Collaboration also reported a charmed state $D_{sJ}^+(2700)$, $M = 2715 \pm 11^{+11}_{-14}$ MeV with width $\Gamma = 115 \pm 20^{+36}_{-32}$ MeV [2], later modified to $M = 2708 \pm 9^{+11}_{-10}$ MeV and $\Gamma = 108 \pm 23^{+36}_{-31}$ MeV [3]. Most authors believe that these two states should be one state, and the most possible candidate is the $2S$ or the $S - D (2^3S_1 - 1^3D_1)$ mixing $c\bar{s} 1^-$ state [4, 5, 6, 7, 8, 9, 10, 11].

Recently, we have analyzed the decays of the $D_{sJ}^+(2S)$ and $D_{sJ}^+(1D)$, we concluded that one can not distinguish them from their decays, because they have the similar decay channels and the corresponding decay widths are comparable [12]. In this paper, we give the calculations of the decays $B^+ \to \bar{D}^0 + D_{sJ}^+(2S)$ and $B^+ \to \bar{D}^0 + D_{sJ}^+(1D)$, we find that we can separate them, and according to the current experimental data of Belle Collaboration, we conclude that the new state $D_{sJ}^+(2700)$ is the first excited state $D_{sJ}^+(2S)$. These channels have also been considered in literatures, for example, Close et al [4, 23] give branching ratios and possible mixing of 2S and 1D; Colangelo et al [7] assume the new state is the 2S state, and extract the decay constant.

The decay amplitude for $B^+ \to \bar{D}^0 + D_{sJ}^+$ can be described in the naive factorization approach:

$$T = \frac{G_F}{\sqrt{2}} V_{cs} V_{cb} a_1 \langle D_{sJ}^+ | J_\mu | 0 \rangle \langle \bar{D}^0 | J_\mu | B^+ \rangle,$$

(1)

where the CKM matrix element $V_{cs} = 0.97334$ and $V_{cb} = 0.0415$ [13], since we focus on the difference between $D_{sJ}^+(2S)$ and $D_{sJ}^+(1D)$, not on the careful study, we have chosen $a_1 = c_1 + \frac{1}{3} c_2 = 1$, where c_1 and c_2 are the Wilson coefficients [14]. We also delete other higher order contributions like the contributions from penguin operators. And

$$\langle D_{sJ}^+ | J_\mu | 0 \rangle = i F_V M D_{sJ}^+ \epsilon_\mu^\lambda,$$

(2)

F_V and ϵ_μ^λ are the decay constant and polarization vector of the meson D_{sJ}^+, respectively.

We have solved the exact instantaneous Bethe-Salpeter equations [15] (or the Salpeter equations [16]) for 1$^-$ states, the general form for the relativistic Salpeter wave function of vector 1$^-$ state can be written as [17, 18]:

$$\varphi_{1^-}(q_\perp) = q_\perp \cdot \epsilon_\perp \left[f_1(q_\perp) + \frac{P}{M} f_2(q_\perp) + \frac{q_\perp}{M} f_3(q_\perp) + \frac{P q_\perp}{M^2} f_4(q_\perp) \right] + M \varphi_{1^-} f_5(q_\perp)$$

$$+ g_\perp \left[f_6(q_\perp) + \frac{P q_\perp}{M} f_7(q_\perp) + \frac{1}{M} \left(P g_\perp q_\perp - P q_\perp \cdot \epsilon_\perp \right) f_8(q_\perp) \right],$$

(3)
where the P, q and ϵ^\perp_λ are the momentum, relative inner momentum and polarization vector of the vector meson, respectively; $f_i(q_\perp)$ is the function of $-q^2$, and we have used the notation $q_\perp^\mu \equiv q^\mu - (P \cdot q/M^2)P^\mu$ (which is $(0, \vec{q})$ in the center of mass system).

The 8 wave functions f_i are not independent, there are only 4 independent wave functions [18], and we have the relations

$$
\begin{align*}
 f_1(q_\perp) &= \frac{q_\perp^2 f_3(q_\perp) + M^2 f_5(q_\perp)}{M(m_1 + m_2)q_\perp^2}(m_1 m_2 - \omega_1 \omega_2 + q_\perp^2), \\
 f_2(q_\perp) &= \frac{-q_\perp^2 f_4(q_\perp) + M^2 f_6(q_\perp)}{M(\omega_1 + \omega_2)q_\perp^2}(m_1 \omega_2 - m_2 \omega_1), \\
 f_3(q_\perp) &= f_5(q_\perp) M(-m_1 m_2 + \omega_1 \omega_2 + q_\perp^2), \\
 f_4(q_\perp) &= f_6(q_\perp) M(m_1 \omega_2 - m_2 \omega_1).
\end{align*}
$$

In our method, the $S-D$ mixing automatically exist in the wave function of 1^- state, because we give the whole wave function Eq. (3) which is $J^P = 1^-$, but some of the wave function are S wave, some are D wave, for example, see Figure 1-3, we show wave functions. One can see that, for $1S$ and $2S$, the wave function f_5 and f_6 are dominate, and they are S wave, but there is little D wave mixing in these two states which come from the terms f_3 and f_4. But for the third state, we labeled as $1D$ state, the terms f_3 and f_4 are dominate, but these two terms are not pure D wave, they will give contribute as a S wave [17]. So we conclude that the $1S$ and $2S$ states are S wave dominate states, mixed with a little D wave (come from the terms f_3 and f_4), while the $1D$ state is a D wave dominate state (f_3 and f_4), mixed with a valuable part of S wave (still come from the terms f_3 and f_4).

For $c\bar{s}$ vector 1^- state, our mass prediction for the first radial excited $2S$ state is 2673 MeV, and for $1D$, our result is 2718 MeV [18], so there are two states around 2700 MeV.

In Ref. [18], we only give the leading order calculation for decay constant, which is $F_V = 4\sqrt{N_c} \int \frac{d\vec{q}}{(2\pi)^3} f_5(q)$, the whole equation should be

$$
F_V = 4\sqrt{N_c} \int \frac{d\vec{q}}{(2\pi)^3} f_5(q) - \frac{q^2 f_3}{3M^2},
$$

and our results of the decay constants for vector $c\bar{s}$ system are:

$$
\begin{align*}
 F_V(1S) &= 353 \pm 21 \text{ MeV}, \\
 F_V(2S) &= 295 \pm 13 \text{ MeV}, \\
 F_V(1D) &= 57.1 \pm 5.1 \text{ MeV}.
\end{align*}
$$

Where the uncertainties are given by varying all the input parameters simultaneously within ±5% of the central values in our model, and we will calculate all the uncertainties this way in this letter. The
Figure 1: wave functions of $D^*_s(1S)$.

Figure 2: wave functions of $D^*_s(2S)$.
center values of S waves are little smaller than the estimates in Ref. [18], where $F_V(1S) = 375 \pm 24$ MeV and $F_V(2S) = 312 \pm 17$ MeV, but the value of D wave decay constant is much smaller than the predict in Ref. [18] where we did not shown it, this is because we should not ignore the contribution from the term of f_3 when consider a D wave state. Our estimate of $F_V(1S) = 353 \pm 23$ MeV is close to the newer result $F_{Ds^*} = 268 \sim 290$ MeV by Choi [19]. Our estimate of $F_V(2S) = 312 \pm 17$ MeV is a little larger than the estimate $F_V(2S) = 243 \pm 41$ MeV in Ref. [7], where they extracted it from the decay $B^+ \to \bar{D}^0 + D_{sJ}^+(2700)$ assuming the new state $D_{sJ}^+(2700)$ is the first radial excited state $D_{sJ}^+(2S)$.

According to the Mandelstam formalism [20], at the leading order, the transition amplitude for $B^+ \to \bar{D}^0$ can be written as [21]:

$$\langle \bar{D}^0|J^\mu|B^+ \rangle = \int \frac{d\vec{q}}{(2\pi)^3} Tr \left[\bar{\varphi}_{D^0}^+(\vec{q}) \left(\frac{m_u}{m_c + m_u} \vec{r} \right) \frac{P}{M} \varphi_{B^+}^+(\vec{q}) \gamma^\mu(1 - \gamma_5) \right],$$

(5)

where \vec{r} is the recoil three dimensional momentum of the final state \bar{D}^0 meson, φ^{++} is called the positive energy wave function, and $\bar{\varphi}_{D^0}^{++} = \gamma_0(\varphi_{D^0}^{++})^+ \gamma_0$.

The wave function forms for pseudoscalar B^+ and \bar{D}^0 are similar, for example, the wave function for B^+ can be written as [22]

$$\varphi_{B^+}^{++}(\vec{q}) = \frac{M_{B^+}}{2} \left(\varphi_1(\vec{q}) + \varphi_2(\vec{q}) \frac{m_u + m_b}{\omega_u + \omega_b} \right)$$
× \left[\frac{\omega_u + \omega_b + \gamma_0 - \vec{q}(m_u - m_b)}{m_u + m_b} + \frac{\vec{q} \gamma_0 (\omega_u + \omega_b)}{(m_u \omega_u + m_b \omega_b)} \right] \gamma_5 , \quad (6)

where \(\omega_u = \sqrt{m_u^2 + \vec{q}^2} \) and \(\omega_b = \sqrt{m_b^2 + \vec{q}^2} \); \(\varphi_1(\vec{q}) \), \(\varphi_2(\vec{q}) \) are the radial part wave functions, and their numerical values can be obtained by solving the full Salpter equation of \(0^- \) state [22].

The decay width is:

\[
\Gamma = \frac{1}{8 \pi} \frac{1}{M_B^2} |T|^2
\]

\[
= \frac{1}{8 \pi} \frac{1 |\vec{p}_{f2}| G_F^2 V_{cs}^2 V_{bc}^2}{M_B^2} F_V^2 M_{f2}^2 X, \quad (7)
\]

where \(\vec{p}_{f2} \) and \(M_{f2} \) are the three dimensional momentum and mass of the final new state \(D_s^{*+} \). \(M_{f2}^2 \) come from the definition of decay constant in Eq.(2), but the square of polarization vector and transition amplitude of Eq.(5) are symbolized as \(X \).

So our result are:

\[
\Gamma(B^+ \to \bar{D}^0 D_s^{*+}(2S)) = F_V^2(2S) \times (3.50 \pm 0.38) \times 10^{-14} \text{ GeV}, \quad (8)
\]

\[
\Gamma(B^+ \to \bar{D}^0 D_s^{*+}(1D)) = F_V^2(1D) \times (3.25 \pm 0.30) \times 10^{-14} \text{ GeV}. \quad (9)
\]

If we ignore the mass difference between \(D_s^{*+}(2S) \) and \(D_s^{*+}(1D) \), and use 2700 MeV as input, the results become

\[
\Gamma(B^+ \to \bar{D}^0 D_s^{*+}(2S)) = F_V^2(2S) \times (3.36 \pm 0.25) \times 10^{-14} \text{ GeV}, \quad (10)
\]

\[
\Gamma(B^+ \to \bar{D}^0 D_s^{*+}(1D)) = F_V^2(1D) \times (3.36 \pm 0.25) \times 10^{-14} \text{ GeV}. \quad (11)
\]

So the difference between this two channel mainly come from the difference of decay constants. Then our predictions of branching ratios are:

\[
Br(B^+ \to \bar{D}^0 D_s^{*+}(2S)) = (0.72 \pm 0.12)\%, \quad (12)
\]

\[
Br(B^+ \to \bar{D}^0 D_s^{*+}(1D)) = (0.027 \pm 0.007)\%. \quad (13)
\]

In Ref. [12], we have calculated the main decay channels of \(D_{sJ}^+(2S) \) and \(D_{sJ}^+(1D) \), and we have the following estimates:

\[
Br(D_{sJ}^+(2S) \to D^0 K^+) = 0.20 \pm 0.03
\]
and

\[Br(D_{sJ}^+(1D) \to D^0 K^+) = 0.32 \pm 0.04, \]

so we obtain:

\[Br(B^+ \to \bar{D}^0 D_{sJ}^{+(2S)}) \times Br(D_{sJ}^{+(2S)} \to D^0 K^+) = (1.4 \pm 0.5) \times 10^{-3} \] \hspace{1cm} (14)

and

\[Br(B^+ \to \bar{D}^0 D_{sJ}^{+(1D)}) \times Br(D_{sJ}^{+(1D)} \to D^0 K^+) = (0.9 \pm 0.3) \times 10^{-4}. \] \hspace{1cm} (15)

Our estimate of \(Br(D_{sJ}^{+(2S)} \to D^0 K^+) \) \(\approx 0.20 \) is larger than than the estimate 0.11 in Ref. [4] and the estimate 0.05 in Ref. [5], if we use their value as input, we will obtain a smaller value of \(Br(B^+ \to \bar{D}^0 D_{sJ}^{+(2S)}) \times Br(D_{sJ}^{+(2S)} \to D^0 K^+) \). But our estimate of \(Br(D_{sJ}^{+(1D)} \to D^0 K^+) \) \(\approx 0.32 \) consist with the value 0.34 in Ref. [5]. One can also see that, the final branching ratios depend strongly on the decay constants, but at this time few papers have calculated the values of decay constants for \(D_{sJ}^{+(2S)} \) and \(D_{sJ}^{+(1D)} \). In Ref. [7], they assumed that the new state \(D_{sJ}^{+(2700)} \) is \(D_{sJ}^{+(2S)} \), and they extracted decay constant of \(D_{sJ}^{+(2S)} \): \(F_{D_{sJ}^{+(2S)}} = 243 \pm 41 \) MeV.

The Belle Collaboration have the data [3, 13]

\[Br(B^+ \to \bar{D}^0 D_{sJ}^{+(2700)}) \times Br(D_{sJ}^{+(2700)} \to D^0 K^+) = (1.13^{+0.26}_{-0.36}) \times 10^{-3}. \]

Because we only calculated the decay widths of six main channels for \(D_{sJ}^{+(2S)} \) (\(D_{sJ}^{+(1D)} \)), and based on the summed width of these six channels, not full width, we give a relative larger branching ratio \(Br(D_{sJ}^{+(2S)} \to D^0 K^+) \) and \(Br(D_{sJ}^{+(1D)} \to D^0 K^+) \), the real branching ratios should be smaller than our estimates, so our estimate of \(B^+ \) decay to \(D_{sJ}^{+(2S)} \) is close to the data, while the estimate of \(B^+ \) decay to \(D_{sJ}^{+(1D)} \) is much smaller than the data, then we can draw a conclusion that the new state \(D_{sJ}^{+(2700)} \) is \(D_{sJ}^{+(2S)} \).

We have another method to estimate the branching ratio, because the mass of \(B^+ \) is much heavier than the mass of \(\bar{D}^0 \), and the mass of \(D_{sJ}^{+(2700)} \) is close to the mass of \(D_{sJ}^{+} \), as a rough estimate, we ignore the mass difference of \(D_{sJ}^{+(2700)} \) and \(D_{sJ}^{+(2112)} \), from Eq.(1) and Eq.(2), then we have

\[\frac{Br(B^+ \to \bar{D}^0 D_{sJ}^{+(2S)})}{Br(B^+ \to \bar{D}^0 D_{sJ}^{+(1S)})} \approx \frac{F_\chi^2(2S)}{F_\chi^2(1S)}, \] \hspace{1cm} (16)

and from Particle Data Group [13], the branching ratio of \(B^+ \to \bar{D}^0 + D_{sJ}^{+(1S)} \):

\[Br(B^+ \to \bar{D}^0 D_{sJ}^{+(1S)}) = (7.8 \pm 1.6) \times 10^{-3}. \]
So we have:

\[
Br(B^+ \rightarrow \bar{D}^0 D_s^{*+}(2S)) \simeq \frac{F^2_0(2S)}{F^2_0(1S)} \times (7.8 \pm 1.6) \times 10^{-3} \simeq (5.4 \pm 1.7) \times 10^{-3},
\]

(17)

\[
Br(B^+ \rightarrow \bar{D}^0 D_s^{*+}(1D)) \simeq \frac{F^2_0(1D)}{F^2_0(1S)} \times (7.8 \pm 1.6) \times 10^{-3} \simeq (2.0 \pm 1.0) \times 10^{-4}.
\]

(18)

This rough estimate results are very close to our calculations (Eq.(12) and Eq.(13)), so we have the same conclusion that \(D_{sJ}^+(2700)\) is \(D_{sJ}^+(2S)\).

In Ref. [12], we estimate the full widths of \(D_{sJ}^+(2S)\) and \(D_{sJ}^+(1D)\) by six main decay channels, the estimated full widths are \(46.4 \pm 6.2\) MeV for \(D_{sJ}^+(2S)\), \(73.0 \pm 10.4\) MeV for \(D_{sJ}^+(1D)\), comparing with experimental data, \(\Gamma = 112 \pm 7 \pm 36\) MeV for \(D_{sJ}^+(2690)\) and \(\Gamma = 108 \pm 23^{+36}_{-31}\) MeV for \(D_{sJ}^+(2700)\), there is still the possible that there are two states around 2700 MeV, one is the \(S\) wave dominate \(D_{sJ}^+(2S)\), the other is \(D\) wave dominate \(D_{sJ}^+(1D)\).

As summary, from the decays \(B^+ \rightarrow \bar{D}^0 + D_{sJ}^+(2S)\) and \(B^+ \rightarrow \bar{D}^0 + D_{sJ}^+(1D)\), we conclude that the new state \(D_{sJ}^+(2700)\) is the first radial excited state \(D_{sJ}^+(2S)\), and there may exist another state around 2700, \(D_{sJ}^+(1D)\), with a mass around 2718 MeV, and a width \(73.0 \pm 10.4\) MeV.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant No. 10875032, and in part by SRF for ROCS, SEM.

References

[1] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 97, (2006) 222001.

[2] Belle Collaboration, K. Abe et al., e-Print: hep-ex/0608031.

[3] Belle Collaboration, J. Brodzicka et al., Phys. Rev. Lett. 100, (2008) 092001.

[4] F. E. Close, C. E. Thomas, Olga Lakhina and Eric S. Swanson, Phys. Lett. B647 (2007) 159.

[5] Bo Zhang, Xiang Liu, Wei-Zhen Deng and Shi-Lin Zhu, Eur. Phys. J. C50, (2007) 617.

[6] J. L. Rosner, J. Phys. G34, (2007) S127.

[7] P. Colangelo, F. De Fazio, S. Nicotri and M. Rizzi, Phys. Rev. D77, (2008) 014012.

[8] Takayuki Matsuki, Toshiki, Kazutaka Sudoh, Eur. Phys. J. A31, (2007) 701.
[9] De-Min Li, Bing Ma, Yun-Hu Liu, Eur. Phys. J. C51, (2007) 359.

[10] Xian-Hui Zhong, Qiang Zhao, Phys. Rev. D78, (2008) 014029.

[11] Xue-Qian Li, Xiang Liu, Zheng-Tao Wei, e-Print: arXiv: 0808.2587.

[12] Guo-Li Wang, Jin-Mei Zhang and Zhi-Hui Wang, submitted.

[13] Particle Data Group, Phys. Lett. B667 (2008) 1.

[14] Matthias Neubert, Berthold Stech, Adv. Ser. Direct. High Energy Phys. 15 (1998) 294.

[15] E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, (1951) 1232.

[16] E. E. Salpeter, Phys. Rev. 87, (1952) 328.

[17] Chao-Hsi Chang, Jiao-Kai Chen, Xue-Qian Li and Guo-Li Wang, Commun. Theor. Phys. 43 (2005) 113.

[18] Guo-Li Wang, Phys. Lett. B633 (2006) 492.

[19] Ho-Meynyg Choi, Phys. Rev. D75 (2007) 073016.

[20] S. Mandelstam, Proc. R. Soc. London 233, 248 (1955).

[21] Chao-Hsi Chang, C. S. Kim, Guo-Li Wang, Phys. Lett. B623 (2005) 218.

[22] C. S. Kim and Guo-Li Wang, Phys. Lett. B584 (2004) 285.

[23] F. E. Close and E. S. Swanson, Phys. Rev. D72 (2005) 094004.