Quantifying sponge host and microbial symbiont contribution to dissolved organic matter uptake through cell separation

Hudspith, M.; van der Sprong, J.; Rix, L.; Vig, D.; Schoorl, J.; de Goeij, J.M.

DOI
10.3354/meps13789

Publication date
2021

Document Version
Final published version

Published in
Marine Ecology Progress Series

License
CC BY

Link to publication

Citation for published version (APA):
Hudspith, M., van der Sprong, J., Rix, L., Vig, D., Schoorl, J., & de Goeij, J. M. (2021). Quantifying sponge host and microbial symbiont contribution to dissolved organic matter uptake through cell separation. Marine Ecology Progress Series, 670, 1-13. https://doi.org/10.3354/meps13789

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
FEATURE ARTICLE

Quantifying sponge host and microbial symbiont contribution to dissolved organic matter uptake through cell separation

Meggie Hudspith1,*, Joëlle van der Sprong1, Laura Rix2, Dóra Víg1, Jorien Schoorl1, Jasper M. de Goeij1,3

1Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, Netherlands
2Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia
3CARMABI Foundation, Piscaderabaai z/n, PO Box 2090, Willemstad, Curaçao

ABSTRACT: Sponge–microbe symbioses underpin the ecological success of sponges in many aquatic benthic ecosystems worldwide. These symbioses are often described as mutually beneficial, but identifying positive symbiotic interactions and quantifying the contribution of partners to physiological processes is challenging. For example, our understanding of the relative contribution of sponge cells and their microbial symbionts to the uptake and exchange of dissolved organic matter (DOM) — a major component of sponge diet — is limited. Here, we combined host–symbiont cell separation with pulse-chase isotopic labelling in order to trace the uptake of 13C- and 15N-enriched DOM into sponge cells and microbial symbionts of the encrusting Caribbean sponges Haliclonavansoesti and Scopalina ruetzleri, which are low microbial abundance (LMA) species. Sponge cells were responsible for >99% of DOM assimilation during the pulse-chase experiment for both sponge species, while the contribution of symbiotic microbes to total DOM uptake was negligible (<1%). Nitrogen derived from DOM was translocated from sponge cells to microbial cells over time, indicating processing of host nitrogenous wastes by microbial endosymbionts. Thus, host cells drive DOM uptake in these species, while microbial symbionts may aid in the recycling of host-waste products. Our findings highlight the ability of sponges to derive nutrition by internalizing dissolved compounds from their environment and retaining nutrients via host–microbe interactions.

KEY WORDS: Nutrient translocation · Animal–microbe symbiosis · Sponge holobiont · Stable isotope tracer · Cell separation

1. INTRODUCTION

Symbioses are widespread in nature and are defined in the broadest sense as intimate and enduring associations between different organisms, which lie on a continuum spanning mutualistic to parasitic
interactions (Paracer & Ahmadjian 2000). Mutualistic symbioses are those where both partners receive benefits in a reciprocal manner, and they underpin the ecological success of numerous foundational species and ecosystem engineers (Smith & Read 2010, van der Heide et al. 2012). Well-known examples include the symbiosis between phototrophic unicellular algae and reef-building corals (Muscatine & Porter 1977) and the association between tube worms and their chemosynthetic symbionts in deep-sea hydrothermal vent communities (Cavanaugh et al. 1981). Such mutualisms are pivotal in that they shape community structure and function and affect the ecology and evolutionary trajectory of the partnership at the individual level (Hay et al. 2004). Identifying and quantifying the costs and benefits of symbiotic interactions is necessary to fully evaluate the influence of symbiont on host ecology (Weisz et al. 2010). This can prove challenging, however, because such interactions are not always easily identifiable or measurable (Leung & Poulin 2008).

Sponges are ecologically important components of aquatic ecosystems globally and form stable and species-specific symbiotic relationships with complex assemblages of microorganisms (Erwin et al. 2012, Schmitt et al. 2012, Webster et al. 2013, Reveillaud et al. 2014, Thomas et al. 2016). While sponge–microbe interactions span the mutualism–parasitism spectrum, many of the long-term associations between sponges and their symbionts are thought to be mutualistic, or at least commensal (Taylor et al. 2007, Freeman & Thacker 2011, Thacker & Freeman 2012). In many cases, these mutualisms are (although likely multifaceted) underpinned by nutrient exchange (Thomas et al. 2016). For example, sponge symbionts can contribute to host nutrition via the translocation of photo- or chemo-synthetically fixed carbon (C) and nitrogen (N) (Wilkinson et al. 1999, Weisz et al. 2010, Fiore et al. 2013, Freeman et al. 2013, Rubin-Blum et al. 2019) or potentially via the provision of vitamins and amino acids (Fan et al. 2012, Song et al. 2021). In turn, microbial symbionts can utilize host-derived N-rich compounds in the sponge mesohyl (Achlatis et al. 2019, Hudspith et al. 2021), suggesting scavenging of host nitrogenous waste products. These symbioses exemplify the most obvious benefit of mutualism for the host: niche expansion through the acquisition of metabolic pathways restricted to the microbial symbiont (Leung & Poulin 2008).

Less well-defined are reciprocal benefits of sponge–microbe interactions where both partners can directly metabolize the nutrient in question. Dissolved organic matter (DOM) is the largest reservoir of organic C in the ocean (Benner et al. 1992) and a major component of sponge diet, constituting 56–99% of the daily C intake for many shallow-water (reviewed by de Goeij et al. 2017, Morganti et al. 2017, Hoer et al. 2018, Wooster et al. 2019) and deep-sea species (Leys et al. 2018, Bart et al. 2021). Heterotrophic prokaryotes are the primary consumers of marine DOM (Azam et al. 1983, Ducklow & Carlson 1992), and thus sponge symbionts have long been implicated in DOM cycling in sponges. However, radio- and stable-isotope tracer and cell kinetic studies have shown that both sponge cells and microbial symbionts are involved in dissolved organic compound processing (Shore 1971, Wilkinson & Garrone 1980, de Goeij et al. 2009, Rix et al. 2017, Bart et al. 2020). Recent nanoscale secondary ion mass spectrometry (Nano-SIMS) confirmed and visualized that both sponge cells (predominantly choanocytes: sponge filter cells) and microbial symbionts assimilate dissolved organic C and N (DOC and DON) (Achlatis et al. 2019, Rix et al. 2020, Hudspith et al. 2021). Quantifying the relative contribution of sponge cells and microbial symbionts to DOM assimilation remains challenging, and to date has only been achieved in 2 Mediterranean species with massive growth forms (Rix et al. 2020). Sponge symbionts accounted for 65% of DOC uptake in the high microbial abundance (HMA) sponge Aplysina aerophoba, but less than 5% of DOC uptake in the low microbial abundance (LMA) sponge Dysidea avara. Host versus symbiont contribution to heterotrophy was suggested to be driven by their relative biomass in the holobiont rather than single-cell differences in assimilation rates. Whether this applies to sponges with different growth forms (e.g. encrusting, massive) and across different ecosystems, such as tropical coral reefs and deep-sea sponge grounds, is not known. For example, shallow-water and deep-sea encrusting sponges seem to deviate from massive sponges in their ability to process DOM (de Goeij et al. 2017, Bart et al. 2021), although both groups can contribute significantly to local nutrient cycling (de Goeij et al. 2013, Kahn et al. 2015, McMuray et al. 2016).

Here, we investigate the relative contribution of sponge cells and microbial symbionts to DOM assimilation and the subsequent translocation of nutrients by combining stable isotope probing (SIP) with the separation of host cell and symbiont fractions. The dissociation and separation of sponge cells from their symbionts has proved a useful tool to trace nutrient uptake and transfer between autotrophic symbionts and host cells (Freeman & Thacker 2011, Fiore et al. 2013, Freeman et al. 2013) and to quantify their rela-
Hudspith et al.: Partitioning DOM uptake in sponge holobionts

tive contribution to heterotrophy (Rix et al. 2020). Therefore, we optimized the cell separation protocol for 2 common encrusting Caribbean LMA sponges, *Haliclona vansoesti* and *Scopalina ruetzleri*, and coupled this process with a pulse-chase experiment to trace the uptake and fate of 13C- and 15N-labelled DOM into sponge cells and microbial symbionts of these sponges. The objectives were to (1) quantify the relative contribution of sponge cells and microbial symbionts to DOM uptake and (2) investigate the transfer of DOM-derived C and N between sponge cells and symbionts over time.

2. MATERIALS AND METHODS

2.1. Sponge collection

This study was conducted at the Caribbean Research and Management of Biodiversity (CARMABI) Research Station on the island of Curacao during June and July 2018. Individuals of the encrusting sponges (Porifera, Demospongiae) *Haliclona vansoesti* (0.5–3 cm thick, conulose) and *Scopalina ruetzleri* (0.5–2 cm thick, conulose) (Fig. 1) were collected from the house reef in front of CARMABI and at the fringing reefs at station ‘Buoy 1′ (12°07′28.65″ N, 68°58′23.23″ W), located on the leeward side of Curacao. These species were chosen as they are common inhabitants of Curacao reefs (Weerdt et al. 1999, Kornder et al. 2021). Sponge individuals were collected from 25−30 m (*H. vansoesti*) and 5−15 m (*S. ruetzleri*) water depth by SCUBA, using a hammer and chisel. Individuals were cleared of epibionts and shaped (including the limestone substrate) to a surface area of approximately 29 ± 2 (mean ± SD, throughout the text) and 16 ± 2 cm2 for *H. vansoesti* and *S. ruetzleri*, respectively (n = 9 species$^{-1}$). Differences in surface area were due to different tissue densities, as cell separation protocols were optimized using similar cellular biomass between species. Sponges were placed in a coral reef cavity, hanging in wire cages to protect them from sedimentation and predation, at 14 m water depth for between 7 and 10 d to recover from collection. Individuals were transferred to the aquaria facilities of CARMABI 24–48 h prior to incubation to acclimate and were maintained in 100 l flow-through aquaria supplied by reef water pumped in from a depth of 10 m at 3 l min$^{-1}$. Only healthy specimens with open oscula (visually checked) were used in the experiment.

2.2. Transmission electron microscopy

To visualize sponge cells and microbial symbionts of *H. vansoesti* and *S. ruetzleri* (Fig. 1B,D), tissue samples were taken from additional *in situ* sponge individuals (n = 3 species$^{-1}$). Sponges were brought to the surface in plastic bags, and tissue samples were taken immediately using a sterile scalpel blade and then transferred to vials containing 2.5% (v/v) glutaraldehyde + 1% (w/v) paraformaldehyde in PHEM buffer (1.5 × PHEM [60 mM PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM MgSO$_4$·7H$_2$O] and 9% [w/v] sucrose, pH 7.4). Samples were fixed for 12 h at 4°C, triple-rinsed in PHEM buffer, and secondarily fixed in 1% (w/v) osmium tetroxide in Milli-Q water. Samples were dehydrated in a graded series of ethanol (30, 50, 70, 90, 100%) and infiltrated with EPON araldite using 2:1, 1:1, and 1:2 ethanol/resin mixtures. Samples were infiltrated with 100% resin transferred to the aquaria facilities of CARMABI 24–48 h prior to incubation to acclimate and were maintained in 100 l flow-through aquaria supplied by reef water pumped in from a depth of 10 m at 3 l min$^{-1}$. Only healthy specimens with open oscula (visually checked) were used in the experiment.

Fig. 1. The encrusting Caribbean sponges (A,B) *Haliclona vansoesti* and (C,D) *Scopalina ruetzleri*. Shown are (A,C) *in situ* photographs and (B,D) transmission electron microscopy images detailing the size and location of sponge cells and microbial symbionts. Sponge cells include choanocytes, which form choanocyte chambers, and cells of the mesohyl matrix. Microbial symbionts (insets) are located extracellularly in the mesohyl. c: choanocyte; cc: choanocyte chamber; m: mesohyl; mc: mesohyl cell. Arrows depict microbial symbionts
for 3 h, transferred to embedding capsules with fresh resin, and polymerized at 60°C for 24 h. Ultrathin (100 nm) sections were cut using a Reichert Ultracut S microtome and transferred to transmission electron microscope (TEM) grids. Sections were stained with uranyl acetate and lead citrate and imaged with a FEI Tecnai T12 TEM at the Electron Microscopy Centre Amsterdam (EMCA).

2.3. Pulse-chase experiment with isotopically labelled DOM

A pulse-chase experiment was conducted to test for translocation of DOM-derived C and N between sponge cells and symbionts and to quantify the contribution of these cell fractions to DOM assimilation. Isotopically labelled (13C and 15N) DOM was extracted from batch cultures of the cosmopolitan diatom Phaeodactylum tricornutum grown on F/2 medium supplemented with 100% NaH13CO3 and 50% Na15NO3 (Cambridge Isotope Laboratories; 99% 13C, 98% 15N), as per Hudspith et al. (2021). Briefly, diatoms were grown, collected via filtration on a 0.2 μm cellulose nitrate filter (Sartorius), and lysed to extract DOM. The resulting solution (representing DOM) was passed successively through a 0.7 μm GF/F filter (Whatman) and 0.2 μm polycarbonate filter (Whatman). The filtrate was freeze-dried and a subsample taken for C/N content and isotopic composition analysis (see Section 2.5) in order to calculate the amount of DOM to be added to pulse-chase incubations.

Individual sponges were incubated with isotopically labelled DOM during a 3 h pulse period and then transferred to flow-through aquaria with non-labelled fresh seawater for a further 21 h. Pulse-incubations were conducted in individual 2 l airtight incubation chambers (see de Goeij et al. 2013) filled with GF/F filtered (Whatman; 47 mm, 0.7 μm pore size) seawater. The lids of the chambers were gently homogenized using a pestle and mortar for 2 min. The resulting cell suspensions were equipped with a magnetic stirring device, ensuring constant water flow during incubation. Isotopically labelled DOM was injected into each chamber using a sterile syringe, and the chambers were closed ensuring no headspace. DOM was added to give a final concentration of 84 μM DOC, which is within the range of background DOC concentrations in Curaçao (de Goeij & van Duyl 2007). Dissolved oxygen (DO) concentrations were measured continuously during the incubations by an optical probe (OXY-4 mini, PreSens) inserted through an airtight port in the chamber lid and served as a proxy for respiration. DO concentrations decreased linearly over time, demonstrating active pumping of sponge individuals, and did not fall below 11% of starting concentrations, ensuring sufficient oxygenation of the incubation medium. Incubations were conducted in the dark to prevent photosynthesis by photoautotrophs, and chambers were placed in a flow-through aquarium to maintain ambient reef temperature. At the end of the pulse period, sponges were rinsed in label-free natural seawater and transferred to a flow-through aquarium for the chase period. Individuals were sampled at $t = 0$ h (T_0) and at the end of the pulse ($t = 3$ h; T_3) and chase periods ($t = 24$ h; T_{24}); T_0 sponges were not incubated and provided background enrichment values. Three replicates were used per species, per time-point. Sampled sponges were rinsed in label-free natural seawater and Milli-Q water, imaged for surface area analysis using the software program ImageJ (http://rsb.info.nih.gov/ij/), and tissue samples were collected using a sterile scalpel blade. A sub-sample of sponge tissue, referred to as ‘bulk’ tissue, was transferred to pre-weighed sterile cryovials and stored at −20°C for later stable isotope analysis. The remaining tissue was diced and transferred to a sterile 50 ml Falcon tube filled with ice-cold calcium- and magnesium-free artificial seawater + EDTA (CMFASW-E; Freeman & Thacker 2011) and stored at 4°C for 1 h prior to cell separation processing.

2.4. Separation of sponge and microbial cells

Sponge cell and microbial fractions were separated by centrifugation using methods adapted from Wehr et al. (2007), Freeman & Thacker (2011), and Rix et al. (2020) (Fig. 2), and centrifugation speeds optimized for H. vansoestii and S. rutzleri using a Hettich EBA 21 counter-top centrifuge (Andreas Hettich). After 1 h incubation with CMFASW-E, samples were gently homogenized using a pestle and mortar for 2 min. The resulting cell suspensions were filtered successively through 100, 70, and 40 μm cell strainers (Corning Inc.) to remove undissociated cells and spicules, transferred to sterile 50 ml Falcon tubes, and resuspended in 35 ml fresh ice-cold CMFASW-E. Samples were vortexed for 10 min at 4°C and then centrifuged for 4 min at 1250 x g. Approximately 35 ml of the resulting supernatant containing the microbial cells were transferred to a sterile 50 ml Falcon tube using a pipette and stored at 4°C; the remaining 5 ml of supernatant was discarded. The resulting sponge pellet was resuspended
in 15 ml of fresh ice-cold CMFASW-E, vortexed for 5 min at 4°C, and centrifuged for 4 min at either 375 × g (H. vansoestii) or 350 × g (S. ruetzleri). The supernatant was discarded and 15 ml of fresh ice-cold CMFASW-E added to the sponge pellet, which was vortexed for 5 min at 4°C and re-centrifuged using the same speeds. This washing step was repeated another 3 times. After the final washing step, the sponge pellet was resuspended in 1 ml of CMFASW, briefly vortexed, and transferred to a sterile 1.5 ml Eppendorf tube. Samples were centrifuged for 6 min at 4000 × g for both sponge species using a Sorvall Biofuge Pico microcentrifuge (Thermo Electron Corporation). The supernatant was removed using a pipette and the sponge pellets stored at −20°C for later stable isotope analysis.

The initial supernatant containing the microbial fraction was centrifuged at 1250 × g for 5 min for both sponge species. The resulting supernatant was transferred to a clean 50 ml Falcon tube, vortexed, and re-centrifuged at the same speed. This step was repeated a further 2 times to pellet the remaining sponge cells from the supernatant. The final microbial supernatant was pelleted by centrifugation (60 min at 3824 × g, maximum speed), and the pellet resuspended in 1 ml CMFASW, briefly vortexed, and transferred to a sterile 1.5 ml Eppendorf tube. These samples were centrifuged for 6 min at 10 177 × g in the microcentrifuge. The supernatant was removed and the microbial pellets stored at −20°C for later stable isotope analysis.

The purity of the sponge and microbial fractions was determined using epifluorescence microscopy. Prior to the final microcentrifugation steps, subsamples of the sponge and microbial fractions were transferred to sterile 15 ml Falcon tubes pre-filled with artificial seawater and formaldehyde (2% [v/v] final concentration). Samples were fixed for a maximum of 24 h and then filtered onto 0.2 μm polycarbonate filters (Whatman, 25 mm) supported with 0.45 μm cellulose nitrate filters (Sartorius, 25 mm). Filters were stained with SYBR gold (Invitrogen), mounted, and microbes and sponge cells enumerated for each fraction using a fluorescence microscope (Leica Microsystems) at 1250 and 500 × magnification, respectively. For each sample, 10 fields were counted at each magnification, and the counts were recalculated to give the total number of cells per fraction. Sponge cell fractions were characterized by nuclei of approximately 2–3 μm diameter, while microbial fractions contained small cells <1 μm diameter. The purity of sponge cell fractions was 82 ± 6% for H. vansoestii and 86 ± 5% for S. ruetzleri. Microbial fractions contained 99 ± 1 and 97 ± 2% microbes for H. vansoestii and S. ruetzleri, respectively. Additionally, the molar C:N ratio of separated sponge cell and microbial fractions for each species were compared using a 1-way permutational analysis of variance (PERMANOVA; see Section 2.6) and found to be significantly different (see Table 1), indicating good separation of the fractions. Samples of the filtered homogenate (pre-centrifugation) were also taken to quantify the total number of sponge cells and microbes in the sponge tissue. These counts were used to calculate the relative contribution of sponge cells and microbes to total DOM uptake.

2.5. Quantification of 13C- and 15N-enriched DOM uptake into bulk sponge tissue, host cells, and microbial symbionts

To determine the stable-isotopic enrichment of bulk sponge tissue and separated sponge and microbial cell fractions after a pulse of 13C- and 15N-labelled DOM, C and N content and isotopic ratios were measured using a Vario Isotope Tube Elemen-

2.6. Data analysis

Statistical analysis was performed in Primer V7 (Clarke & Gorley 2015) using the add-on PERMANOVA+ (Anderson et al. 2008). To test the effect of treatment time-point (0, 3, 24 h) on stable isotope enrichment of bulk tissue, sponge cells, and microbial cells, 1-way PERMANOVA analyses were performed for δ\(^{13}\)C and δ\(^{15}\)N independently, per species. Monte Carlo pairwise comparisons were made to determine which levels of treatment time-point were significant. For each species, 1-way PERMANOVAs were conducted to test for differences in the molar C:N ratio of enriched sponge cell and microbial fractions. Resemblance matrices were constructed using Euclidean distances and tests performed using Type III sum of squares and unrestricted permutation of raw data (999 permutations). Significance was determined at the \(\alpha = 0.05\) level. See Table 1 for full statistical output.

3. RESULTS

3.1. Incorporation of DOM into bulk sponge tissue, host cells, and symbiotic microbes

The sponges Haliclona vansoesti and Scopalina ruetzleri displayed significant enrichment of DOM-derived \(^{13}\)C and \(^{15}\)N into their bulk tissue, host cells, and symbiotic microbes during the 3 h pulse (PERMANOVA pairwise tests \(T_0\) vs. \(T_3\), all \(p_{(MC)} < 0.05\); Table 1, Fig. 3A,B). This stable isotopic enrichment of bulk sponge tissue after the pulse period translated to DOM incorporation rates of \(1.11 \pm 0.04 \, \text{μmol C DOM mmol }^{-1} \text{h}^{-1}\) and \(1.15 \pm 0.06 \, \text{μmol N DOM mmol }^{-1} \text{h}^{-1}\) for \(H.\) vansoesti, and \(0.73 \pm 0.07 \, \text{μmol C DOM mmol }^{-1} \text{h}^{-1}\) and \(0.65 \pm 0.04 \, \text{μmol N DOM mmol N sponge }^{-1} \text{h}^{-1}\) for \(S.\) ruetzleri. DOM assimilation rates by sponge cells and symbiotic microbes of \(S.\) ruetzleri were similar, but incorporation rates by sponge cells of \(H.\) vansoesti were approximately 1.5- to 2-fold higher than for symbiotic microbes (Table 2).

During the 21 h chase period, the bulk tissue, sponge cells, and symbiotic microbes of both species remained enriched in \(^{13}\)C and \(^{15}\)N (Fig. 3). However, the average isotopic enrichment of both bulk sponge tissue and separated sponge cells decreased relative to the end of the 3 h pulse, although these trends were not significant (PERMANOVA pairwise tests \(T_3\) vs. \(T_{24}\), all \(p_{(MC)} > 0.05\); Table 1, Fig. 3A,B). This was coupled with an increase in the average isotopic enrichment of microbial symbionts (Fig. 3C):
Table 1. Results of individual 1-way PERMANOVAs testing for differences in dissolved organic matter derived 13C and 15N enrichment into bulk sponge tissue, sponge cells, and microbes, between time-points (0, 3, 24 h) for the sponges Haliclona vansoesti and Scopalina ruetzleri. Pairwise (PW) comparisons using Monte Carlo tests show significant differences between each time-point. p_{perm}: permutational p-value, p_{MC}: Monte Carlo permutational p-value. Values in **bold** are statistically significant ($p < 0.05$).

Sample	PERMANOVA main test	PW tests	Carbon	Nitrogen				
	df	SS	MS	p_{perm}	t	p_{MC}	t	p_{MC}
H. vansoesti								
Bulk tissue	N	2,6	28845	14423	23.249	**0.003**		31.40 <0.001
						0.0233		4.361 0.013
						2.273		0.084
Sponge cells	N	2,6	94065	47032	23.249	**0.007**		31.40 <0.001
						0.0096		4.041 0.013
						1.867		2.248 0.088
Microbes	N	2,6	66858	33292	22.505	**0.007**		5.815 0.004
						0.5179		2.357 0.083
C:N ratio		1,10	47.12	47.11	48.816	**0.002**		
S. ruetzleri								
Bulk tissue	N	2,6	99796	48988	21.64	**0.016**		3.641 0.017
						0.0397		3.949 0.017
						1.279		0.269
Sponge cells	N	2,6	11167	55834	6.8729	**0.032**		3.743 0.02
						0.279		3.473 0.02
						2.182		0.694
Microbes	N	2,6	44848	22424	19.816	**0.002**		5.206 0.006
						0.2154		2.972 0.04
C:N ratio		1,10	12.79	12.79	15.014	**0.003**		

Fig. 3. Isotopic enrichment of (A) bulk sponge tissue, (B) sponge cells, and (C) symbiotic microbes of the sponges Haliclona vansoesti and Scopalina ruetzleri after a 3 h pulse of isotopically labelled (13C and 15N) dissolved organic matter. Dashed grey lines: the end of the 3 h pulse and beginning of the 21 h chase. Enrichment presented as mean ± SD relative to non-labelled controls (Δδ13C and Δδ15N). Significant differences (*$p < 0.05$) between the end of the pulse (3 h) and chase (24 h) period are indicated. Note the different y-axis scales between graphs.
3.1. Impact of isotopically labelled DOM on sponge host cells and microbial symbionts

The isotopic enrichment of carbon and nitrogen in sponge tissue, host cells, and microbial symbionts of the sponge species *Haliclona vansoesti* (*Hv*) and *Scopalina ruetzleri* (*Sr*) during the 3 h pulse of isotopically labelled dissolved organic matter (DOM) is presented in Table 2. The isotopic enrichment increased from 141 ± 21 to 163 ± 49‰ for *Hv* and from 87 ± 29 to 145 ± 62‰ for *Sr*. The increases in 15N-enrichment were larger, with values increasing from 377 ± 72 to 664 ± 198‰ for *Hv* and from 230 ± 34 to 546 ± 181‰ for *Sr*. The overall trend of loss of stable isotope tracer in the bulk and sponge cell fractions coupled with a gain in the symbiont fraction during the label-free chase period indicates translocation of DOM-derived C and N from host cells to microbial symbionts. However, this trend was only significant for the increase in average 15N-enrichment of symbiotic microbes of *Sr* (PERMANOVA pairwise test T_3 vs. T_{24}, $t = 2.97$, $p(MC) = 0.04$).

Table 2. Incorporation rates of carbon and nitrogen into bulk tissue, host cells, and microbial symbionts of 3 individuals of the sponge species *Haliclona vansoesti* (*Hv*) and *Scopalina ruetzleri* (*Sr*) during the 3 h pulse of isotopically labelled dissolved organic matter (DOM). Rates are expressed as μmol C$_{DOM}$ mmol C$_{fraction}$⁻¹ h⁻¹ and μmol N$_{DOM}$ mmol N$_{fraction}$⁻¹ h⁻¹, where fraction represents bulk sponge tissue, sponge cells, or microbial symbionts.

Fraction	Bulk tissue	Carbon	Sponge cells	Microbes	Bulk tissue	Nitrogen	Sponge cells	Microbes
Hv 1	1.13	2.30	1.32	1.21	2.44	1.22		
Hv 2	1.13	1.52	0.98	1.14	1.68	0.85		
Hv 3	1.07	1.99	1.11	1.09	2.14	0.94		
Sr 1	0.81	1.43	0.95	0.70	1.03	0.71		
Sr 2	0.68	0.76	0.63	0.62	0.57	0.55		
Sr 3	0.72	0.57	0.51	0.63	0.42	0.56		

3.2. Contribution of host cells and symbionts to DOM uptake

Despite similar DOM-derived C and N incorporation rates by sponge cells and microbial symbionts of both species, sponge cells accounted for the majority (>99%) of DOM assimilation during the pulse-chase experiment when differences in cellular biomass and abundance between fractions were considered (Fig. 4). Host cells dominate the cellular biomass of these LMA species, whilst their sparse microbial communities comprise small cells ≤0.5 μm diameter (Fig. 1B,D). Symbiotic microbes of *Hv* assimilated 0.17% of the total DOC and 0.12% of the total DON during the 3 h pulse. Similarly, symbiotic microbes of *Sr* assimilated 0.29 and 0.32% of the total DOC and DON during the pulse, respectively. In conjunction with the isotopic enrichment results (Fig. 3B,C), the decrease in 13C- and 15N-enrichment of sponge cells and increase in symbiotic microbes resulted in a small increase in the relative contribution of microbial assimilation to total DOM and DON assimilation during the 21 h chase (Fig. 4). Microbial enrichment as a percentage of total enrichment increased from 0.17 to 0.52% for DOC and 0.12 to 0.69% for DON in *Hv*, and from 0.29 to 0.31% for DOC and 0.32 to 0.52% for DON in *Sr*, between 3 and 24 h (Fig. 4).

4. DISCUSSION

Sponges have been traditionally viewed as ‘particle feeders’, with phagocytosis as the primary mechanism of food uptake (van Tricht 1919, van Weel 1949, Hahn-Keser & Stockem 1997, Steinmetz 2019). Over the past few decades, the paradigm of sponge feeding ecology has shifted to also include sponges as ‘solute feeders’, as it has become clear that DOM...
is a major component of the diet of many sponges (e.g. Reiswig 1981, Yahel et al. 2003, de Goeij et al. 2017, Wooster et al. 2019). Studies investigating the relative contribution of sponge host and microbiome to DOM uptake and the subsequent exchange of nutrients, however, are limited (Achlatis et al. 2019, Rix et al. 2020, Hudspith et al. 2021). Here, we found that although both host and symbiont cells assimilated DOM, N-rich compounds derived from DOM were translocated from sponge cells to symbiotic microbes of the encrusting sponges *Haliclona vansoesti* and *Scopalina ruetzleri* over time, indicating utilization of nitrogenous wastes of the host by the microbiome. Host cells were primarily responsible for DOM uptake in these species, while microbial symbionts played a quantitatively minor role in this process, demonstrating the ability of sponge cells to internalize fluids and effectively exploit the largest source of organic C in the ocean: DOM. Despite not contributing significantly to heterotrophic nutrient acquisition in the LMA sponges tested here, microbial symbionts can nevertheless fulfill functionally important roles within the holobiont (Weisz et al. 2010, Fan et al. 2012, Song et al. 2021), which may explain in part the long-term stability and specificity of sponge–microbe symbioses.

4.1. Translocation of DOM-derived N from host cells to microbial symbionts

Both host cells and microbial symbionts incorporated DOM during the 3 h pulse, with microbial enrichment possibly resulting from direct or host-mediated uptake. During the chase period, N derived from DOM was translocated from host cells to the microbiome of both species, as 15N-enrichment of symbiotic microbes increased during the label-free chase, while host-cell enrichment decreased. The trend of increasing microbial 15N-enrichment over time was statistically significant for *S. ruetzleri* but not for *H. vansoesi*, which may be due to low statistical power (only 3 replicates per species, per time point), or inter-specific differences in the exchange of N-rich compounds between host cells and symbionts. The incorporation of these metabolites by the microbial community indicates recycling of nitrogenous wastes. Numerous molecular studies have highlighted the potential of the sponge microbiome to assimilate ammonium (Thomas et al. 2010, Feng et al. 2018), urea (Su et al. 2013), nitrate/nitrite (via assimilatory nitrate reduction; Weigel & Erwin 2017), and creatine/creatinine (Moitinho-Silva et al. 2017a), and microbial communities of sponges have recently been shown to incorporate N derived from host DOM-feeding (Achlatis et al. 2019, Hudspith et al. 2021). Together, these findings show that microbial symbionts benefit from their association with the host in a commensal manner, but do not exclude reciprocal benefits for the host. Aside from eliminating metabolites that are potentially toxic to the host (e.g. ammonia), the utilization of metabolic waste by microbial symbionts aids in the retention of nutrients that would otherwise be expelled from the sponge. This process would be advantageous for sponges, particularly in the oligotrophic environments in which they typically thrive. The metabolic waste that fertilizes microbial communities can be further recycled back to the host via phagocytosis of symbionts by host cells (Leys et al. 2018), microbial degradation and subsequent resorption, or extracellular release, thereby conferring mutual benefits to both partners. By including an extended chase period (e.g. >48 h), further work could confirm these translocation dynamics, which may take longer to manifest than our experimental timeframe allowed.

4.2. Host cells drive DOM uptake in *H. vansoesti* and *S. ruetzleri*

Sponge cells are principally responsible for DOM uptake in the LMA species *H. vansoesti* and *S. ruetzleri*, accounting for >99% of total DOC and DON incorporation. These findings are similar to those of Rix et al. (2020), who found sponge cells of the Mediterranean LMA sponge *Dysidea avara* were responsible for 99.6% of DOC uptake and 98.6% of DON uptake when fed algal-derived DOM. The similarities in host cell contribution to DOM uptake between a massive sponge and our encrusting species strengthens the hypothesis of host-driven uptake in LMA sponges. Further studies are needed to determine if this strategy is conserved across species with different growth forms from different habitats and for HMA species, where microbes can constitute up to 40% of sponge biomass (Hentschel et al. 2003). To date, the only HMA species examined showed a much larger contribution by symbiotic microbes, which reflects differing host–symbiont strategies for DOM uptake (Rix et al. 2020). Choanocytes are the main digestive cell type in sponges and are primarily responsible for DOM uptake (Achlatis et al. 2019, Hudspith et al. 2021). While the cellular mechanism of DOM incorporation by choanocytes is not known, small molecules, such as amino acids or sugar monomers, can
traverse eukaryotic membranes via transporter proteins, and genes coding for membrane transporters (e.g. amino acids, vitamins) have been identified in sponges (Fiore et al. 2015, Sagabe et al. 2019). Larger molecules are internalized via endocytosis, which is broadly divided into phagocytosis and pinocytosis, depending on particle size. Fluids and dissolved compounds are absorbed via pinocytosis (‘cell drinking’), which encompasses macropinocytosis and clathrin- and caveolae-dependent/independent pathways (Conner & Schmid 2003). Evidence for macropinocytic activity has been found in freshwater (Hahn-Keser & Stockem 1997, Musser et al. preprint doi:10.1101/758276) and marine sponges (Laundon et al. 2019). In corals, macropinocytosis is a major endocytic pathway and occurs across many cell types, facilitating solute absorption from the environment (Ganot et al. 2020). Further studies characterizing the cellular mechanism of DOM uptake by sponge cells and the degree of reliance of symbiont DOM assimilation on transport by choanocytes will help define the interdependency of DOM-fuelled sponge–symbiont interactions. Symbiotic microbes reside within the sponge mesohyl—the gelatinous matrix bound by the external pinacoderm and internal choanosome—and thus dissolved compounds theoretically have to pass through either of these cell layers before they can be utilized by microbes. Investigating host control over symbiont access to DOM will be especially pertinent in HMA sponges, where symbionts can contribute significantly (>65%) to DOM assimilation (Rix et al. 2020).

The low contribution (<1%) of the microbiome of *H. vansoestii* and *S. ruetzleri* to DOM assimilation, driven by their low relative biomass, suggests that microbial symbionts do not facilitate ecological niche expansion with respect to DOM cycling in these LMA species. However, microbial symbionts bring other, unique metabolic capabilities to their sponge host. Both *H. vansoestii* and *S. ruetzleri* harbor cyanobacteria (Easson & Thacker 2014, Rua et al. 2015), and although we observed few cyanobacteria in the homogenate of these sponges during the cell separation process, they can nevertheless provide supplemental host nutrition via the translocation of photosynthetically fixed C (Wilkinson 1979). *Proteobacteria* is an abundant bacterial group in these species (Gamma- and Alpha-proteobacteria for *H. vansoestii* and *S. ruetzleri*, respectively) (Easson & Thacker 2014, Rua et al. 2015) and is amongst the most dominant phylum in sponge microbiomes, particularly in LMA species (Giles et al. 2013, Moitinho-Silva et al. 2017b). They have been linked to a variety of functions, including nutrient transport, C metabolism (Moitinho-Silva et al. 2014), sulphur metabolism (Karimi et al. 2018), and inorganic phosphate assimilation (Gauthier et al. 2016). Aside from nutrition exchange, sponge symbionts can also benefit their host via photoprotection (Regoli et al. 2000), chemical defense (see Selvin et al. 2010), and utilization of potentially toxic metabolites.

4.3. Evaluating sponge heterotroph–heterotroph symbioses using host–symbiont cell separation

Here, we utilized sponge–microbe cell separation to successfully partition nutrient uptake and detect low levels of nutrient exchange within sponge heterotroph–heterotroph symbioses. Previous studies have attempted to infer host–symbiont partitioning of DOM using phospholipid fatty acid (PLFA) SIP (Rix et al. 2017, Bart et al. 2020, Campana et al. 2021). However, this approach only considers the fraction of DOM incorporated into PLFAs, and only a relatively small number of PLFAs can be identified as bacterial- or sponge-specific biomarkers. Furthermore, short incubation times were hypothesized to be insufficient for the synthesis of very long-chained sponge-specific PLFAs, which limits interpretation of the data (Bart et al. 2020, Campana et al. 2021). Cell-separation enables a fully quantitative evaluation of host–symbiont uptake and translocation, as it includes DOM assimilation into total cellular biomass. This method requires optimization per species to obtain good separation of the host and symbiont fractions, which can be challenging and may not be practical for all species. We trialed a range of encrusting species, including HMA sponges, but found many were not suitable for the method (e.g. *Halisarca caerulea, Chondrilla caribensis, Plakortis angularispiculatus, Hyrtios proteus*). Due to their smaller sizes and the ease with which they can be shaped into fully functional individuals, encrusting species are ideal candidates for SIP experiments compared with massive species. Factors such as tissue density and composition, symbiont community (e.g. the presence of large cyanobacteria or eukaryotic symbionts such as dinoflagellates), and cell aggregation (e.g. both host–host and host–microbe), affect whether tissue can be dissociated easily and cell fractions separated and purified. Species with dense, collagenous tissue and those containing symbionts and host cells with similar or overlapping sizes pose particular challenges and would require additional optimization steps. Nevertheless, this technique has been
successfully used in a range of sponge species to infer trophic relationships between sponges and symbionts using natural stable-isotopic signatures of separated fractions (Freeman & Thacker 2011, Shih et al. 2020), and to follow the transfer of symbiont-derived inorganic C and N to host cells (Fiore et al. 2013, Freeman et al. 2013).

The molar C:N ratios of our sponge cell and microbial fractions were significantly different, indicating good separation of the fractions (Fiore et al. 2013, Shih et al. 2020), but a degree of cross-contamination does occur. However, similar values for host/symbiont contributions to DOM uptake were found in *D. avara* and *Aplysina aerophoba* using cell-separation and NanoSIMS (Rix et al. 2020), confirming the validity of the cell-separation technique. Our translocation results also corroborate recent studies which found DOM-derived nutrient exchange from host to microbiome using NanoSIMS (Achlatis et al. 2019, Hudspith et al. 2021), proving that host-symbiont cell separation can be a useful and sensitive tool to complement low-throughput and costly single-cell techniques.

4.4. Future directions

The relative contribution of symbiotic microbes to DOM assimilation increased over time in both *H. vansoestii* and *S. ruetzleri* (Fig. 4), which resulted from the translocation of metabolites from sponge cells to symbionts, but may also include higher retention of incorporated DOM by microbial symbionts relative to sponge cells. In order to fully quantify translocation and characterize the flow of C and N in sponge symbioses, however, a combinatorial approach is needed. Long-term isotopic labelling experiments coupled with sophisticated isotope-mixing models (Tanaka et al. 2018) can quantify nutrient cycling in holobionts, and require key aspects of sponge C and N metabolism, including proliferation rates of symbiotic microbes and release rates of C and N by the holobiont (e.g. using InEx methods; Yahel et al. 2005), to be elucidated. When combined with manipulative experiments, these models can quantify the effect of environmental stressors on nutrient acquisition and allocation within symbioses (Tremblay et al. 2013). Future studies should investigate the partitioning and exchange of nutrients in HMA and LMA sponges, and how these symbioses shift along the mutualism–parasitism continuum in response to environmental change.

Acknowledgements. We thank Sara Campana and the staff at the CARMABI Research Foundation for their assistance during field work; Martijn Bart for his assistance in culturing and extracting labelled DOM; Nicole van der Wel, Edwin Schol and the staff at the EMCA for help with sample processing and TEM. This study was funded by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Starting Grant agreement number 715513 to J.M.d.G.).

LITERATURE CITED

- Achlatis M, Pernice M, Green K, de Goeij JM and others (2019) Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter. Proc R Soc B 286:20192153
- Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. Primer-E, Plymouth
- Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263
- Bart MC, de Kluiver A, Hoetjes S, Ahsalah S and others (2020) Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci Rep 10:17515
- Bart MC, Mueller B, Rombouts T, van de Ven C and others (2021) Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol Oceanogr 66:925–938
- Benner R, Pakulski JD, McCarthy M, Hedges JI, Hatcher PG (1992) Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255:1561–1564
- Campana S, Hudspith M, Lankes D, de Kluivery A and others (2021) Processing of naturally sourced macroalgal- and coral-dissolved organic matter (DOM) by high and low microbial abundance encrusting sponges. Front Mar Sci 8:452
- Cavanaugh CM, Gardiner SD, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm *Riftia pachyptila* Jones: possible chemoautotrophic symbionts. Science 213:340–342
- Clarke KR, Gorley RN (2015) PRIMER v7: user manual/tutorial. Primer-E, Plymouth
- Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44
- de Goeij JM, van Duyl FC (2007) Coral cavities are sinks of dissolved organic carbon (DOC). Limnol Oceanogr 52:2608–2617
- de Goeij JM, Moodley L, Houtekamer M, Carballendra NM, van Duyl FC (2008) Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge *Halisarca caerulea*: evidence for DOM-feeding. Limnol Oceanogr 53:1376–1386
- de Goeij JM, de Kluiver A, van Duyl FC, Vacelet J and others (2009) Cell kinetics of the marine sponge *Halisarca caerulea* reveal rapid cell turnover and shedding. J Exp Biol 212:3892–3899
- de Goeij JM, van Oevelen D, Vermeij MJA, Oninga R, Middelburg JJ, de Goeij AFPM, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110
- de Goeij JM, Lesser MP, Pawlik JR (2017) Nutrient fluxes and ecological functions of coral reef sponges in a
changing ocean. In: Carballo JL, Bell JJ (eds) Climate change, ocean acidification and sponges. Springer, Cham, p 373–410

Ducklow HW, Carlson CA (1992) Oceanic bacterial production. In: Marshall KC (ed) Advances in microbial ecology, Vol 12. Springer, Boston, MA, p 113–181

Easson CG, Thacker RW (2014) Phylogenetic signal in the community structure of host-specific microorganisms of tropical marine sponges. Front Microbiol 5:532

Erwin PM, Pita L, López-Legentil S, Turon X (2012) Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance. Appl Environ Microbiol 78:7358–7368

Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, Thomas T (2012) Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbions. Proc Natl Acad Sci USA 109: E1878–E1887

Feng G, Sun W, Zhang F, Orlić S, Li Z (2018) Functional transcriptomes indicate phylogenetically diverse active ammonia-scavenging microbiota in sympatric sponges. Mar Biotechnol (NY) 20:131–143

Fiore CL, Baker DM, Lesser MP (2013) Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: A source or sink of dissolved inorganic nitrogen? PLOS ONE 8:e72961

Fiore CL, Labrie M, Jarett JK, Lesser MP (2015) Transcriptional activity of the giant barrel sponge, Xestospongia muta holobiont: molecular evidence for metabolic interchange. Front Microbiol 6:364

Freeman CJ, Thacker RW (2011) Complex interactions between marine sponges and their symbiotic microbial communities. Limnol Oceanogr 56:1577−1586

Freeman CJ, Thacker RW, Baker DM, Fogel ML (2013) Quality or quantity: Is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance? ISME J 7:1116–1125

Ganot P, Tambutte E, Caminetti-Segonds N, Troulec G, Allemand D, Tambutte S (2020) Ubiquitous macropinocytosis in anthozoans. eLife 9:e50022

Gauthier MEA, Watson JR, Degnan SM (2016) Draft genomes shed light on the dual bacterial symbiosis that dominates the microbiome of the coral reef sponge Amphimedon queenslandica. Front Mar Sci 3:196

Giles EC, Kamke J, Moitinho-Silva L, Taylor MW, Hentschel U, Ravasi T, Schmitt S (2013) Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol Ecol 83:232–241

Hahn-Keser B, Stockem W (1997) Detection of distinct endocytotic and phagocytotic activities in epithelial cells (pinacocytes) of freshwater sponges (Porifera, Spongillidae). Zoomorphology 117:121–134

Hay ME, Parker JD, Burkepile DE, Caudill CC, Wilson AE, Hallinan ZP, Chequer AD (2004) Mutualisms and aquatic community structure: the enemy of my enemy is my friend. Annu Rev Ecol Evol Syst 35:175–197

Hentschel U, Fieseler L, Wehr M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. In: Müller WEG (eds) Bacteriosponge (Porifera: Demospongiae) in Barbados. Mar Ecol 2:273–293

Hoer DR, Gibson PJ, Tommerdahl JP, Lindquist NL, Martens CS (2018) Consumption of dissolved organic carbon by Caribbean reef sponges. Limnol Oceanogr 63:337−351

Hudsipth M, Rix L, Aclatis M, Bouguere J and others (2021) Subcellular view of host−microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan−microbe symbiosis. Microbiome 9:44

Kahn AS, Yahel G, Chu JW, Tunnicliffe V, Leys SP (2015) Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol Oceanogr 60:78–88

Karimi E, Slaby BM, Soares AR, Blom J, Hentschel U, Costa R (2018) Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiol Ecol 94:6iy074

Kornder NA, Cappelletto J, Mueller B, Zalm MJL and others (2021) Implications of 2D versus 3D surveys to measure the abundance and composition of benthic coral reef communities. Coral Reefs, doi.org/10.1007/s00338-021-02118-6

Laundon D, Larson BT, McDonald K, King N, Burkhhardt P (2019) The architecture of cell differentiation in choanoflagellates and sponge choanocytes. PLOS Biol 17:e0002226

Leung TLF, Poulin R (2008) Parasitism, commensalism, and mutualism: exploring the many shades of symbioses. Vie Milieu 58:107–115

Leys SP, Kahn AS, Fang JKH, Kutti T, Bannister RJ (2018) Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deep-water boreal sponge Geodia barretti. Limnol Oceanogr 63:187−202

McMurray SE, Johnson ZI, Hunt DE, Pawlik JR, Finelli CM (2016) Selective feeding by the giant barrel sponge enhances foraging efficiency. Limnol Oceanogr 61:1271–1286

Moitinho-Silva L, Seridi L, Ryu T, Voolstra CR, Ravasi T, Hentschel U (2014) Revealing microbial functional activities in the Red Sea sponge Styliissa carteri by metatranscriptomics. Environ Microbiol 16:3683–3698

Moitinho-Silva L, Diez-Vives C, Balani G, Esteves AI, Jahn MT, Thomas T (2017a) Integrated metabolism in sponge–microbe symbiosis revealed by genome-centered metatranscriptomics. ISME J 11:1651–1666

Moitinho-Silva L, Steinitz G, Nielsen S, Hardoim CCP and others (2017b) Predicting the HMA−LMA status in marine sponges by machine learning. Front Microbiol 8:7522

Morgan T, Coma R, Yahel G, Ribes M (2017) Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol Oceanogr 62:1963–1983

Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

Paracer S, Ahmadjian V (2000) Symbioses: an introduction to biological associations. Oxford University Press, New York, NY

Regoli F, Cerrano C, Chierici E, Bombadre S, Bavestrello G (2000) Susceptibility to oxidative stress of the Mediterranean demosponge Petrosia flabelliformis: role of endosymbionts and solar irradiance. Mar Biol 137:453–461

Reiswig HM (1981) Partial carbon and energy budgets of the deep-water boreal sponge Amphimedon queenslandica. Mar Ecol 6:1963–1983

Rix L, de Goeij JM, van Oevelen D, Struck U, Al-Horani F, Wild C, Naumann MS (2017) Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct Ecol 31:778–789
Rix L, Ribes M, Coma R, Jahn MT and others (2020) Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J 14:2554–2567

Rua CPJ, Gregoracci GB, Santos EO, Soares AC, Francini-Filho RB, Thompson F (2015) Potential metabolic strategies of widely distributed holobionts in the oceanic archipelago of St Peter and St Paul (Brazil). FEMS Microbiol Ecol 91:e0043

Rubin-Blum M, Antony CP, Sayavedra L, Martínez-Pérez C and others (2019) Fueled by methane: deep-sea sponges from seafloor seeps gain their nutrition from methane-oxidizing symbionts. ISME J 13:1209–1225

Schmitt S, Tsai P, Bell J, Fromont J and others (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576

Selvin J, Ninawe AS, Seghal Kiran G, Lipton AP (2010) Sponge-microbial interactions: ecological implications and bioprospecting avenues. Crit Rev Microbiol 36:82–90

Shih JL, Selph KE, Wall CB, Wallsgrove NJ, Lesser MP, Popp BN (2020) Trophic ecology of the tropical Pacific sponge Mycale grandidis inferred from amino acid compound-specific isotopic analyses. Microb Ecol 79:495–510

Shore RE (1971) Growth and renewal studies of the choanoocyte population in Hymeniacidon sinapium (Porifera: Demospongiae) using colcemid and 3-H thymidine. J Exp Zool 177:359–363

Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press, London

Sogabe S, Hatleberg WL, Kokot KM, Say TE and others (2019) Pluripotency and the origin of animal multicellularity. Nature 570:519–522

Song H, Hewitt OH, Degnan SM (2021) Arginine biosynthesis by a bacterial symbiont enables nitric oxide production and facilitates larval settlement in the marine-sponge host. Curr Biol 31:433–437

Steinmetz PRH (2019) A non-bilaterian perspective on the development and evolution of animal digestive systems. Cell Tissue Res 377:321–339

Su J, Jin L, Jiang Q, Sun W, Zhang F, Li Z (2013) Phylogenetically diverse ureC genes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospongia testudinaria. PLOS ONE 8:e64848

Tanaka Y, Suzuki A, Sakai K (2018) The stoichiometry of coral–dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system. ISME J 12:860–868

Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

Thacker RW, Freeman CJ (2012) Sponge-microbe symbioses: recent advances and new directions. Adv Mar Biol 62:57–111

Thomas T, Rusch D, DeMaere MZ, Yung PY and others (2010) Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J 4:1557–1567

Thomas T, Moitinho-Silva L, Lurgi M, Björk JR and others (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:11870

Tremblay P, Fine M, Mauger JF, Grover R, Ferrier-Pages C (2013) Photosynthesis translocation increases in response to low seawater pH in a coral–dinoflagellate symbiosis. Biogesosciences 10:3997–4007

van der Heide T, Govers LL, De Fouw J, Olf J and others (2012) A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336:1432–1434

van Trijth H (1919) Contribution to the physiology of the fresh-water sponge (Spongillidae). Tijdschr Diergeneesk 17:1–220

van Weel PB (1949) On the physiology of the tropical fresh water sponge, Spongilla proliferaes Annand; ingestion, digestion and excretion. Physiol Comp Oooc Int J Comp Physiol Ecol 1:110–126

Webster NS, Luter HM, Soo RM, Botté ES, Simister RL, Abdo D, Whalan S (2013) Same, same but different: symbiotic bacterial associations in GBR sponges. Front Microbiol 3:444

Weerdt WH, Kluijver MJ, Gomez R (1999) Haliclona (Hali- choclona) vansoesti n. sp., a new chalinid sponge species (Porifera, Demospongiae, Haplosclerida) from the Caribbean. Beaufortia 49:47–54

Wehrli M, Steinert M, Hentschel U (2007) Bacterial uptake by the marine sponge Aplysina aerophoba. Microb Ecol 53:355–365

Weigiel BL, Erwin PM (2017) Effects of reciprocal transplantation on the microbiome and putative nitrogen cycling functions of the intertidal sponge, Hymeniacidon heliophila. Sci Rep 7:43247

Weisz JB, Massaro AJ, Ramsby BD, Hill MS (2010) Zoan-thellarian symbioses: shape host sponge trophic status through translocation of carbon. Biol Bull (Woods Hole) 219:189–197

Wilkinson CR (1979) Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Lévi C, Boury-Esnault N (eds) Biologie des Spongiaires. Colloques Internationaux du CNRS, No. 291. Editions du Centre national de la recherche scientifique, Paris, p 373–380

Wilkinson CR, Garrone R (1980) Nutrition of marine sponges. Involvement of symbiotic bacteria in the uptake of dissolved carbon. In: Smith DC, Tiffon Y (eds) Nutrition in the lower Metazoa. Pergamon Press, Oxford, p 157–161

Wilkinson CR, Summons RE, Evans E (1999) Nitrogen fixation in symbiotic marine sponges: ecological significance and difficulties in detection. Mem Queenl Mus 44:667–673

Wooster MK, McMurray SE, Pawlik JR, Morán XAG, Berumen ML (2019) Feeding and respiration by giant barrel sponges across a gradient of food abundance in the Red Sea. Limnol Oceanogr 64:1790–1801

Yahel G, Sharp JH, Marie D, Häse C, Genin A (2003) In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnol Oceanogr 48:141–149

Yahel G, Marie D, Genin A (2005) InEx—a direct in situ method to measure filtration rates, nutrition, and metabolism of active suspension feeders. Limnol Oceanogr Methods 3:46–58

Editorial responsibility: James McClintock,
Birmingham, Alabama, USA
Reviewed by: C. Easson and 2 anonymous referees