THE NON-PARABOLICITY OF INFINITE VOLUME ENDS

M. P. CAVALCANTE, H. MIRANDOLA, AND F. VITÓRIO

(Communicated by Lei Ni)

Abstract. Let M^m, with $m \geq 3$, be an m-dimensional complete non-compact manifold isometrically immersed in a Hadamard manifold \bar{M}. Assume that the mean curvature vector has finite L^p-norm, for some $2 \leq p \leq m$. We prove that each end of M must either have finite volume or be non-parabolic.

1. Introduction

Let (M^m, \langle , \rangle) be a complete non-compact Riemannian manifold without boundary. We recall that M is parabolic if it does not admit a non-constant positive superharmonic function. Otherwise, it is said to be non-parabolic. There exist equivalent definitions for parabolic manifolds (see for instance Theorem 5.1 of [8]). Let $E \subset M$ be an end of M, that is, an unbounded connected component of $M - \overline{\Omega}$, for some compact subset $\Omega \subset M$. The property of parabolicity can be localized on each end of M. Namely, we say that an end E is parabolic (see Definition 2.4 of [10]) if it does not admit a harmonic function $f : E \to \mathbb{R}$ satisfying:

1. $f|_{\partial E} = 1$;
2. $\liminf_{y \to \infty} f(y) < 1$.

Otherwise, we say that E is a non-parabolic end of M. It is well known that M is non-parabolic if and only if it admits a non-parabolic end. Furthermore, ends with finite volume are parabolic (see for instance Section 14.4 of [8]). In this direction we recall the following result due to Li and Wang:

Theorem A (Corollary 4 of [12] and Corollary 2.9 of [10]). Let E be an end of a complete manifold. Suppose that, for some constants $\nu \geq 1$ and $C > 0$, E satisfies a Sobolev-type inequality of the form

$$\left(\int_E |u|^{2\nu} \right)^{\frac{1}{\nu}} \leq C \int_E |\nabla u|^2,$$

for all compactly supported Sobolev function $u \in W^{1,2}_c(E)$. Then E must either have finite volume or be non-parabolic. Moreover, in the case $\nu > 1$, E must be non-parabolic.

Note that if a complete manifold M that satisfies a Sobolev inequality as in Theorem A with $\nu = 1$ (that is just the Dirichlet Poincaré inequality), then the first eigenvalue $\lambda_1(M)$ of the Laplace-Beltrami operator is positive; hence M must
be non-parabolic (see Proposition 10.1 of [8]). Example 1.1 below exhibits a complete manifold that contains a finite volume end and that also satisfies a Sobolev inequality as in Theorem A with $\nu = 1$.

Cao, Shen and Zhu [2] showed that if M^m, with $m \geq 3$, is a complete manifold, then each end of M is non-parabolic provided that M can be realized as a minimal submanifold in a Euclidean space \mathbb{R}^n. The same conclusion also was obtained by Fu and Xu [7] provided that there exists an isometric immersion of M in a Hadamard manifold \bar{M} with finite total mean curvature, that is, the mean curvature vector field H of the immersion satisfies $\|H\|_{L^\infty(M)} < \infty$. In both cases, they observed that M admits a Sobolev-type inequality as in Theorem A with $\nu > 1$.

Our main result states the following:

Theorem 1.1. Let $x : M^m \rightarrow \bar{M}$, with $m \geq 3$, be an isometric immersion of a complete non-compact manifold M in a Hadamard manifold \bar{M}. Let E be an end of M such that the mean curvature vector satisfies $\|H\|_{L^p(E)} < \infty$, for some $2 \leq p \leq m$. Then E must either have finite volume or be non-parabolic.

Example 1.3 below exhibits an example of a complete non-compact hypersurface M^m in \mathbb{R}^{m+1}, with $m \geq 3$, of finite volume and mean curvature vector with finite L^p-norm, for all $2 \leq p < m - 1$. This example shows that Theorem 1.1 is not a consequence of Theorem A (except when $p = m$). Note also that the catenoids in \mathbb{R}^3 are parabolic minimal surfaces whose ends have infinite area, which shows that the hypothesis $m \geq 3$ is essential.

In the present paper we also give a unified proof of the following fact:

Theorem B. Let $x : M \rightarrow \bar{M}$ be an isometric immersion of a complete non-compact manifold M in a manifold \bar{M} with bounded geometry (i.e., M has sectional curvature bounded from above and injectivity radius bounded from below by a positive constant). Let E be an end of M and assume that the mean curvature vector of x satisfies $\|H\|_{L^p(E)} < \infty$, for some $m \leq p \leq \infty$. Then E must have infinite volume.

The fact above was proved by Frensel [4] and by do Carmo, Wang and Xia [3] for the case where the mean curvature vector field is bounded in norm (the case $p = \infty$), by Fu and Xu [7] for the case where the total mean curvature is finite (the case $p = m$) and by Cheung and Leung [1] for the case where the mean curvature vector has finite L^p-norm for some $p > m$. Since the cylinders of the form $M^m = S^{m-1} \times \mathbb{R}$, where S^{m-1} is the unit Euclidean $(m - 1)$-dimensional sphere, are examples of complete parabolic hypersurfaces in \mathbb{R}^{m+1} we conclude that boundedness of the mean curvature vector does not imply that M admits a Sobolev-type inequality. Furthermore, for all $m \geq 3$, we exhibit an example of a parabolic complete non-compact hypersurface M^m in \mathbb{R}^{m+1} such that the mean curvature vector has finite L^p-norm, for all $p > 2(m - 1)$. These examples show that Theorem B is not a consequence of Theorem A.

Two questions arise in this paper: is there an example of a complete non-compact submanifold M^m, with $m \geq 3$, in a Euclidean space satisfying one of the conditions below?

1. M has finite volume and $\|H\|_{L^p(M)} < \infty$, for some $m - 1 \leq p < m$;
2. M is parabolic and $\|H\|_{L^p(M)} < \infty$, for some $m < p \leq 2(m - 1)$.
2. Proof of Theorem 1.1

Choose \(r_0 > 0 \) so that the geodesic ball \(B_{r_0} \subset M \) of radius \(r_0 \) and center at some point \(\xi_0 \in M \) satisfies \(\partial E \subset B_{r_0} \). For each \(r > r_0 \), consider \(E_r = E \cap B_r \) and let \(f_r : \overline{E}_r \rightarrow \mathbb{R} \) be a solution of the Dirichlet Problem:

\[
\begin{cases}
 \Delta_M f_r = 0 & \text{in } E_r, \\
 f_r = 1 & \text{in } \partial E, \\
 f_r = 0 & \text{on } E \cap \partial B_r.
\end{cases}
\]

It follows from the maximum principle that \(0 < f_r \leq f_s < 1 \) in \(E_r \), for all \(s \geq r \). Hence, by standard gradient estimates it follows that \(\{f_r\} \) is an equicontinuous family which converges uniformly on compact subsets, when \(r \) goes to infinity, to a function \(f : E \rightarrow \mathbb{R} \) satisfying

\[
\begin{cases}
 \Delta_M f = 0 & \text{in } E, \\
 0 \leq f \leq 1 & \text{in } E, \\
 f = 1 & \text{on } \partial E.
\end{cases}
\]

If \(f \not\equiv 1 \), then it follows from the maximum principle that \(\liminf_{x \to E(\infty)} f(x) < 1 \), which shows that \(E \) is non-parabolic. Furthermore, it is well known that an end of finite volume is parabolic (see section 14.4 of [8]). Hence, to prove Theorem 1.1 it is sufficient to show the following:

Claim 2.1. Either \(f \not\equiv 1 \) or \(\text{vol}(E) \) is finite.

Suppose, by contradiction, that \(f \equiv 1 \) and \(\text{vol}(E) \) is infinite. This implies that, given any \(L > 1 \), there exists \(r_1 > r_0 \) such that \(\text{vol}(E_{r_1} - E_{r_0}) > 2L \). Since \(f_r \rightarrow 1 \) uniformly on compact subsets, there exists \(r_2 > r_1 \) such that \(f_r^{2m-2} > \frac{1}{2} \) everywhere in \(E_{r_1} \), for all \(r > r_2 \). Thus, defining \(h(r) = \int_{E_r - E_{r_0}} f_r^{2m-2} \), with \(r > r_0 \), we obtain

\[
(2.1) \quad h(r) \geq \int_{E_r - E_{r_0}} f_r^{2m-2} > L,
\]

for all \(r > r_2 \). In particular, we have that \(\lim_{r \to \infty} h(r) = \infty \).

Now, for each \(r > r_0 \), let \(\varphi = \varphi_r \in C_0^\infty(E) \) be a cut-off function satisfying:

1. \(0 \leq \varphi \leq 1 \) everywhere in \(E \);
2. \(\varphi \equiv 1 \) in \(E_r - E_{r_0} \).

By the Hoffmann-Spruck Inequality [9] we have

\[
S^{-1} \left(\int_{E_r} (\varphi f_r)^{\frac{2m}{m-2}} \right)^{\frac{m-2}{m}} \leq \int_{E_r} |\nabla (\varphi f_r)|^2 + \int_{E_r} (\varphi f_r)^2 |H|^2,
\]

where \(S \) is a positive constant.

Note that

\[
|\nabla (\varphi f_r)|^2 = f_r^2 |\nabla \varphi|^2 + \varphi^2 |\nabla f_r|^2 + \frac{1}{2} \langle \nabla \varphi^2, \nabla f_r^2 \rangle
\]

and

\[
\varphi^2 |\nabla f_r|^2 = \text{div}_M ((f_r \varphi^2) \nabla f_r) - \frac{1}{2} \langle \nabla \varphi^2, \nabla f_r^2 \rangle,
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
since \(f_r \) is harmonic. Using that \(f_r \varphi \) vanishes on \(\partial E_r \) we obtain

\[
S^{-1} \left(\int_{E_r} (\varphi f_r)^{\frac{2m}{m-2}} \right)^{\frac{m-2}{m}} \leq \int_{E_r} f_r^2 |\nabla \varphi|^2 + \int_{E_r} \text{div}_M((f_r \varphi^2) \nabla f_r) + \int_{E_r} (\varphi f_r)^2 |H|^2
\]

and

\[
= \int_{E_r} f_r^2 |\nabla \varphi|^2 + \int_{E_r} (\varphi f_r)^2 |H|^2.
\]

Thus, since \(0 \leq \varphi \leq 1 \) in \(E \) and \(\varphi \equiv 1 \) in \(E_r - E_{r_0} \), we obtain

\[
S^{-1} h(r)^{\frac{m-2}{m}} \leq S^{-1} \left(\int_{E_r} (\varphi f_r)^{\frac{2m}{m-2}} \right)^{\frac{m-2}{m}} \leq \int_{E_{r_0}} f_r^2 |\nabla \varphi|^2 + \int_M |H|^2.
\]

First, assume that \(\|H\|_{L^p(E)} \) is finite. Then, since \(0 \leq f_r \leq 1 \), we have

\[
S^{-1} h(r)^{\frac{m-2}{m}} \leq \int_{E_{r_0}} |\nabla \varphi|^2 + \int_M |H|^2.
\]

Thus, \(\lim_{r \to \infty} h(r) < \infty \), which is a contradiction. Now, assume that \(\|H\|_{L^p(E)} \) is finite, for some \(2 < p \leq m \). Note that \(\frac{m}{m-2} \leq \frac{p}{p-2} \). Since \(0 \leq f_r \leq 1 \) and \(h(r) > 1 \), for all \(r > r_2 \), we have:

1. \(f_r^{\frac{2p}{p-2}} \leq f_r^{\frac{2m}{m-2}} \);
2. \(h(r)^{\frac{m-2}{m}} \leq h(r)^{\frac{m-2}{m}} \), for all \(r > r_2 \).

Thus, using the Hölder Inequality, we have

\[
\int_{E_r - E_{r_0}} f_r^2 |H|^2 \leq \|H\|_{L^p(E_r - E_{r_0})}^2 \left(\int_{E_r - E_{r_0}} f_r^{\frac{2p}{p-2}} \right)^{\frac{p-2}{p}} \leq \|H\|_{L^p(E - E_{r_0})}^2 h(r)^{\frac{m-2}{m}};
\]

for all \(r > r_2 \).

Choose \(r_0 > 0 \) large enough so that \(\|H\|^2_{L^p(E - E_{r_0})} < \frac{1}{2S} \). Using (2.2) and (2.3) we obtain the following:

\[
S^{-1} h(r)^{\frac{m-2}{m}} \leq \int_{E_{r_0}} |\nabla \varphi|^2 + \int_{E_{r_0}} |H|^2 + \frac{S^{-1}}{2} h(r)^{\frac{m-2}{m}}.
\]

This shows that \(\lim_{r \to \infty} h(r) < \infty \), which is a contradiction. Therefore, Claim 2.1 and Theorem 1.1 are proved.

3. Proof of Theorem B

Since \(\bar{M} \) has bounded geometry, the sectional curvature \(\bar{K} \) and the injectivity radius \(\bar{i}(M) \) of \(M \) satisfy:

\[
\bar{K} < b^2 \text{ and } \bar{i}(\bar{M}) > r_0,
\]

for some positive constants \(b \) and \(r_0 \). Let \(E \) be an end of \(M \) and assume that \(\|H\|_{L^p(E)} \) is finite, for some \(m \leq p \leq \infty \). Fix \(0 < R_0 < \min\{r_0, \frac{\pi}{2b} \} \), take \(\xi_0 \in M \) and consider \(B_R = B_R(\xi_0) \), for all \(R > 0 \). Choose \(R_1 > R_0 \), sufficiently large, so that \(\partial E \subset B_{R_1} \) and the distance \(d_M(\partial E, x) > R_0 \), for all \(x \) in \(E - B_{R_1} \). Let \(q \in \bar{E} = E - B_{2R_1} \) and \(0 < R < R_0 \). Since \(B_R(q) \subset E - B_{R_1}(\xi_0) \) we obtain, by
the isoperimetric inequality for submanifolds (Theorem 2.2 of [9]) and the Hölder Inequality, the following:

\[S \operatorname{vol}(B_R(q))^{\frac{m-1}{m}} \leq \operatorname{vol}(\partial B_R(q)) + \|H\|_{L^p(E - B_{R_1}(\xi_0))} \operatorname{vol}(B_R(q))^{\frac{p-1}{p}} \]

where \(S > 0 \) is a constant that depends only on \(m \).

Assume, by contradiction, that \(\operatorname{vol}(E) \) is finite. Take \(R_1 > 0 \) sufficiently large so that

\[\operatorname{vol}(E - B_{R_1}) < 1 \quad \text{and} \quad \|H\|_{L^p(E - B_{R_1})} < \frac{S}{2} \]

Since \(p \geq m \) we have that \(\frac{p-1}{p} \geq \frac{m-1}{m} \). By \([9,3]\) and using that \(B_R(q) \subset E - B_{R_1} \), we have that \(\operatorname{vol}(B_R(q))^{\frac{p-1}{p}} \leq \operatorname{vol}(B_R(q))^{\frac{m-1}{m}} \). Thus, using \((3.2)\) and \((3.3)\), we obtain

\[\frac{S}{2} \operatorname{vol}(B_R(q))^{\frac{m-1}{m}} \leq \operatorname{vol}(\partial B_R(q)) \]

By the coarea formula, we have that \(\operatorname{vol}(\partial B_R(q)) = \frac{d}{dR} \operatorname{vol}(B_R(q)) \). Using \((3.4)\), we obtain \(\frac{d}{dR} \operatorname{vol}(B_R(q)) \frac{m}{p} \geq \frac{S}{2m} \). This implies that

\[\operatorname{vol}(B_R(q)) \geq \frac{S}{2m} R^m, \]

for all \(q \in E_1 \) and \(0 < R < R_0 \).

Since \(M \) is complete and \(E \subset M \) is connected and non-compact, there exists a sequence \(p_2, p_3, \ldots \) in \(E \) such that

\[p_k \in E \cap (B_{2kR_1} - B_{(2k-1)R_1}) \]

Note that \(B_{R_0/2}(p_k) \subset E - B_{R_1} \) and \(B_{R_0/2}(p_k) \cap B_{R_0/2}(p_{k'}) = \emptyset \), for all \(k \neq k' \). Since

\[\operatorname{vol}(E) \geq \operatorname{vol}(E - B_{R_1}) \geq \sum_{k=2}^{\infty} \operatorname{vol}(B_{R_0/2}(p_k)), \]

it follows from \((3.3)\) that \(\operatorname{vol}(E) \) is infinite. Theorem B is proved.

4. Examples

Example 4.1. Consider the warped product manifold \(M^m = \mathbb{R} \times_{\kappa^t} P \), where \(P \) is any complete \((m - 1)\)-dimensional manifold with finite volume. The metric of \(M \) is complete and the end \(E = (-\infty, 0) \times P \subset M \) has finite volume given by

\[\operatorname{vol}(E) = \int_{-\infty}^{0} \int_P e^{m-1} dt dP = \frac{\operatorname{vol}(P)}{m - 1}. \]

Fix \(k \in \mathbb{R} \) and let \(h_\kappa : M \to \mathbb{R} \) be the function defined by \(h_\kappa(t, x) = \kappa t \). The gradient vector field of \(h_\kappa \) satisfies

\[\nabla h_\kappa = \kappa \frac{\partial}{\partial t}, \]

where \(\frac{\partial}{\partial t}(t, x) = \frac{d}{ds} \bigg|_{s=t} (s, x) \in T_{(t, x)} M \). It is simple to show that \(\nabla_Z \frac{\partial}{\partial t} = Z - \langle Z, \frac{\partial}{\partial t} \rangle \frac{\partial}{\partial t} \). This implies that the Laplacian of \(h_\kappa \) satisfies

\[\Delta h_\kappa = \kappa \operatorname{div}(\frac{\partial}{\partial t}) = \kappa (m - 1). \]
Fix $\eta \in C^\infty_0(M)$. Using (4.1) and (4.2) we obtain
\[
\kappa(m - 1)\int_M \eta^2 = \int_M \eta^2 \Delta h_\kappa = \int_M (\text{div}(\eta^2 \nabla h_\kappa) - 2\eta \langle \nabla \eta, \nabla h_\kappa \rangle)
\]
\[
= -2\int_M \langle \nabla \eta, \eta \nabla h_\kappa \rangle \geq -\int_M \left| \nabla \eta \right|^2 - \eta^2 |\nabla h_\kappa|
\]
\[
= -\int_M \left| \nabla \eta \right|^2 - \kappa^2 |\eta|^2.
\]
Thus, it holds that $\int_M |\nabla \eta|^2 + \kappa(\kappa + (m - 1))\eta^2 \geq 0$, for all $k \in \mathbb{R}$. In particular, if we take $\kappa = -\frac{m-1}{2}$ we obtain
\[
\int_M |\nabla \eta|^2 - \frac{(m - 1)^2}{4} \eta^2 \geq 0.
\]
Hence M satisfies a Sobolev inequality as in Theorem A with $\nu = 1$.

Example 4.2. Let $f : (-\infty, \infty) \to (0, \infty)$ be a positive smooth function satisfying that $f(t) = f(-t)$ and $f(t) = t^{\frac{1}{m-1}}$, for all $t \geq 1$. Consider the immersion $x : S^{m-1} \times \mathbb{R} \to \mathbb{R}^{m+1} = \mathbb{R}^m \times \mathbb{R}$ given by $x(v, t) = (f(t)v, t)$. Consider M the product $S^{m-1} \times \mathbb{R}$ endowed with the metric induced by x. The metric of M is given by
\[
(4.3) \quad \langle \cdot, \cdot \rangle_{(v, t)} = (1 + f'(t)^2)dt^2 + f(t)^2 \langle \cdot, \cdot \rangle_v,
\]
where $\langle \cdot, \cdot \rangle_v$ denotes the metric of S^{m-1}. Note that M is a complete manifold with two ends.

We claim that M is parabolic. To do this, it is sufficient to prove that the following ends of M:
\[
E_+ = (1, \infty) \times S^{m-1} \quad \text{and} \quad E_- = (-\infty, -1) \times S^{m-1}
\]
are parabolic (see Proposition 14.1 of [8]). In fact, we define:
\[
V_+(s) = \text{vol}_M \left(\{ q \in E_+ \mid d(q, \partial E_+) \leq s \} \right)
\]
and
\[
V_-(s) = \text{vol}_M \left(\{ q \in E_- \mid d(q, \partial E_-) \leq s \} \right).
\]
Using (4.3) and that $f(t) = t^{\frac{1}{m-1}}$, for all $|t| \geq 1$, we obtain that
\[V_+(s) = V_-(s) \leq Ds^2,
\]
for some constant $D > 0$ and for all $s \geq 1$. In particular,
\[
\int_{-\infty}^{\infty} \frac{s}{V_+(s)} ds = \int_{-\infty}^{\infty} \frac{s}{V_-(s)} ds = \infty.
\]
This implies that M is parabolic (see section 14.4 of [8]).

We claim that the mean curvature vector H of the isometric immersion x has finite L^p-norm, for all $p > m$. In fact, a simple computation shows that
\[
(4.4) \quad mH(x(v, t)) = \frac{(m - 1)}{f(t)^{1 + f'(t)^2}} - \frac{f''(t)}{(1 + f'(t)^2)^{\frac{3}{2}}}.
\]
Using that $f(t) = t^{\frac{1}{m-1}}$, for all $|t| \geq 1$, we obtain that $|H(x(v, t))| \leq Ct^{-\frac{1}{m-1}}$, for some $C > 0$ and for all $x(v, t) \in E_+ \cup E_-$. Thus, we obtain
\[
\int_M |H|^p dM \leq D \int_{-\infty}^{\infty} t^{1 - \frac{p}{m-1}} dt.
\]
for some $D > 0$. This implies that $\|H\|_{L^p(M)}$ is finite when $p > 2(m-1)$.

Example 4.3. Let $x : S^{m-1} \times \mathbb{R} \to \mathbb{R}^{m+1}$ be the immersion given by $x(v, t) = (e^{-t^2}v, t)$ and consider $M = S^{m-1} \times \mathbb{R}$ endowed with the metric induced by x. The metric of M is complete and the volume of M is given by

$$\text{vol}(M) = \omega_{m-1} \int_{-\infty}^{\infty} (1 + 4t^2 e^{-2t^2})^{\frac{1}{2}} e^{-(m-1)t^2} dt,$$

where ω_{m-1} is the volume of S^{m-1}. This implies that $\text{vol}(M)$ is finite, since the integral $\int_{-\infty}^{\infty} e^{-(m-1)t^2} dt$ is finite and the function $t \in \mathbb{R} \mapsto 1 + 4t^2 e^{-2t^2}$ is bounded. In particular, M is parabolic since it has finite volume (see Theorem 7.3 of [8]).

The mean curvature vector H of the isometric immersion x is given by

$$H(x(v, t)) = h(t) = \frac{2e^{-t^2}(1 - 2t^2)}{m(4t^2 e^{-2t^2} + 1)^{\frac{3}{2}}} + \frac{(m - 1)e^2}{m(4t^2 e^{-2t^2} + 1)^{\frac{1}{2}}}.$$

Using that $\lim_{t \to \infty} e^{-t^2}(1 - 2t^2) = \lim_{t \to \infty} 4t^2 e^{-2t^2} = 0$ we obtain that

$$\lim_{t \to \pm \infty} h(t) e^{-t^2} = \frac{m - 1}{m}.$$

Thus the integral

$$\int_M |H|^p = \omega_{n-1} \int_{-\infty}^{\infty} \left(|h(t)|^p(1 + 4t^2 e^{-2t^2})^{\frac{p}{2}} e^{-(m-1)t^2} \right) dt$$

converges if $0 \leq p < m - 1$ and diverges if $p \geq m - 1$.

Acknowledgements

The authors would like to thank Detang Zhou for helpful comments during the preparation of this article. The third-named author thanks Universidade Federal do Rio de Janeiro for their hospitality during the preparation of this article.

References

[1] Leung-Fu Cheung and Pui-Fai Leung, *The mean curvature and volume growth of complete noncompact submanifolds*, Differential Geom. Appl. 8 (1998), no. 3, 251–256, DOI 10.1016/S0926-2245(98)00010-2. MR1629356 (99k:53111)

[2] Huai-Dong Cao, Ying Shen, and Shunhui Zhu, *The structure of stable minimal hypersurfaces in \mathbb{R}^{n+1}*, Math. Res. Lett. 4 (1997), no. 5, 637–644. MR1484695 (99a:53037)

[3] Manfredo P. do Carmo, Qiaoling Wang, and Changyu Xia, *Complete submanifolds with bounded mean curvature in a Hadamard manifold*, J. Geom. Phys. 60 (2010), no. 1, 142–154. DOI 10.1016/j.geomphys.2009.09.001. MR2578025 (2011c:53063)

[4] Katia Rosenvald Frensel, *Stable complete surfaces with constant mean curvature*, Bol. Soc. Brasil. Mat. (N.S.) 27 (1996), no. 2, 129–144, DOI 10.1007/BF01259356. MR1418929 (98c:53068)

[5] Doris Fischer-Colbrie and Richard Schoen, *The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature*, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211, DOI 10.1002/cpa.3160330206. MR562550 (81i:53044)

[6] Hui-Ping Fu and Zhen-Qi Li, *L^2 harmonic 1-forms on complete submanifolds in Euclidean space*, Kodai Math. J. 32 (2009), no. 3, 432–441, DOI 10.2996/kmj/1257948888. MR2582010 (2011c:53067)
[7] Hai-Ping Fu and Hong-Wei Xu, *Total curvature and L^2 harmonic 1-forms on complete submanifolds in space forms*, Geom. Dedicata **144** (2010), 129–140, DOI 10.1007/s10711-009-9392-z. MR2580422 (2011b:53140)

[8] Alexander Grigor’yan, *Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds*, Bull. Amer. Math. Soc. (N.S.) **36** (1999), no. 2, 135–249, DOI 10.1090/S0273-0979-99-00776-4. MR1659871 (99k:58195)

[9] David Hoffman and Joel Spruck, *Sobolev and isoperimetric inequalities for Riemannian submanifolds*, Comm. Pure Appl. Math. **27** (1974), 715–727. MR0365424 (51 #1676)

[10] Peter Li, *Harmonic functions on complete Riemannian manifolds*, Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, Int. Press, Somerville, MA, 2008, pp. 195–227. MR2483365 (2009m:53093)

[11] Peter Li and Luen-Fai Tam, *Harmonic functions and the structure of complete manifolds*, J. Differential Geom. **35** (1992), no. 2, 359–383. MR1158340 (93b:53033)

[12] Peter Li and Jiaping Wang, *Minimal hypersurfaces with finite index*, Math. Res. Lett. **9** (2002), no. 1, 95–103. MR1892316 (2003b:53066)

Instituto de Matemática, Universidade Federal de Alagoas, Maceió, AL, CEP 57072-970, Brazil.

E-mail address: marcos.petrucio@pq.cnpq.br

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21945-970, Brasil.

E-mail address: mirandola@im.ufrj.br

Instituto de Matemática, Universidade Federal de Alagoas, Maceió, AL, CEP 57072-970, Brazil.

E-mail address: feliciano.vitorio@pq.cnpq.br