EXPRESSING MATRICES INTO PRODUCTS OF COMMUTATORS OF INVOLUTIONS, SKEW-INVOLUTIONS, FINITE ORDER AND SKEW FINITE ORDER MATRICES

IVAN GARGATE AND MICHAEL GARGATE

Abstract. Let R be an associative ring with unity 1 and consider that $2, k$ and $2k \in \mathbb{N}$ are invertible in R. For $m \geq 1$ denote by $UT_n(m, R)$ and $UT_\infty(m, R)$, the subgroups of $UT_n(R)$ and $UT_\infty(R)$ respectively, which have zero entries on the first $m - 1$ super diagonals. We show that every element on the groups $UT_n(m, R)$ and $UT_\infty(m, R)$ can be expressed as a product of two commutators of involutions and also, can be expressed as a product of two commutators of skew-involutions and involutions in $UT_\infty(m, R)$. Similarly, denote by $UT_\infty^{(s)}(R)$ the group of upper triangular infinite matrices whose diagonal entries are sth roots of 1. We show that every element of the groups $UT_n(\infty, R)$ and $UT_\infty(m, R)$ can be expressed as a product of $4k - 6$ commutators all depending of powers of elements in $UT_\infty^{(k)}(m, R)$ of order k and, also, can be expressed as a product of $8k - 6$ commutators of skew finite matrices of order $2k$ and matrices of order $2k$ in $UT_\infty^{(2k)}(m, R)$. If R is the complex field or the real number field we prove that, in $SL_n(R)$ and in the subgroup $SL_{\omega}(R)$ of the Vershik-Kerov group over R, each element in these groups can be decomposed into a product of commutators of elements as described above.

1. Introduction

It is a classical question whether the elements of a ring or a group can be expressed as sums or products of elements of some particular set. For example, expressing matrices as a product of involutions was studied by several authors \cite{6,7,11,12}. In case of product of commutators we can see \cite{5,8,9}. Also in \cite{5} the author shows the necessary and sufficient condition for a matrix over a field to be the product of an involution and a skew-involution.

Bier and Waldemar in \cite{1} studied the commutators of elements of the group $UT_\infty(m, R)$ of infinite unitriangular matrices over an associative ring R with unity 1 containing exactly all these matrices, which have zero entries on the first $m - 1$ superdiagonals. They prove that every unitriangular matrix of a specified form is a commutator of two other unitriangular matrices. Considering ω a kth root of unity in R, recently Gargate in \cite{2} prove that every element of the group $UT_\infty(R)$ can be expressed as a product of $4k - 6$ commutators all depending of powers of elements in $UT_\infty^{(k)}(R)$ of order k.

In the section 3 following the same direction, we study the subgroup $UT_n(m, R)$ and $UT_\infty(m, R)$ of $UT_n(R)$ and $UT_\infty(m, R)$ respectively which have zero entries on the first $m - 1$ superdiagonals.

The main result of this paper is stated as follows:

\textit{Key words and phrases.} Upper triangular matrices; finite order; commutators.
Theorem 1.1. Let R be an associative ring with unity 1 and suppose that $2, k$ and $2k$ are invertible in R. Then every matrix in $UT_{\infty}(m, R)$ and $UT_n(m, R)$ can be expressed as a product of at most:

1. Two commutators of involutions in $\pm UT_{\infty}^{(2)}(m, R)$.
2. Two commutators of skew-involutions and involutions both in $\pm UT_{\infty}^{(2)}(m, R)$.
3. $4k - 6$ commutators of matrices of order k in $UT_{\infty}^{(k)}(m, R)$.
4. $8k - 6$ commutators of matrices of skew order $2k$ and matrices of order finite $2k$ in $\pm UT_{\infty}^{(2k)}(m, R)$.

Paras and Salinasan in [5] shows the necessary and sufficient condition for a matrix A over a field to be the product of an involution and a skew-involution.

In the section 4, the authors give a necessary and sufficient condition for every matrix in $SL_n(C)$ to be written as product of commutators of one involution and one skew-involution. Also, we give conditions for what every matrix in $SL_n(C)$ to be written as products of commutators into matrices of order finite and skew-order finite. Here we have the following results:

Theorem 1.2. Let $A \in SL_n(C)$. Then A is product of commutators of one involution and one skew-involution if and only if there is a matrix $B \in SL_n(C)$ such that $A = -B^2$ and B is similar to $-B^{-1}$.

And in the general case:

Theorem 1.3. Let $A \in SL_n(C)$. If there is a matrix $B \in SL_n(C)$ such that $A = B^k$ and B is the product of two matrices of order k then A is product of $2k - 3$ commutators of elements of order k.

Also,

Theorem 1.4. Let $A \in SL_n(C)$. If there is a matrix $B \in SL_n(C)$ such that $A = -B^{2k}$ and B is the product of one skew order $2k$ matrix and one matrix of order $2k$ then A is product of $4k - 3$ commutators of these elements.

Considering the results obtained in Gargate [2], we have the following

Theorem 1.5. All element in $SL_n(C)$ can be written as a product of at most:

1. Two commutators of involutions in $\pm UT_{n}^{(2)}(C)$.
2. Two commutators of skew-involutions and involutions both in $\pm UT_{n}^{(2)}(C)$.
3. $4k - 6$ commutators of matrices of order k in $UT_{n}^{(k)}(C)$.
4. $8k - 6$ commutators of matrices of skew order $2k$ and matrices of order finite $2k$ in $\pm UT_{n}^{(2k)}(C)$.

Also we consider $GL_{V,K}(\infty, C)$ the Vershik-Kerov group and we have the following result:

Theorem 1.6. Assume that $R = C$ is a complex field or the real number field. Then every element of the group $SL_{V,K}(\infty, m, C)$ can be expressed as a product of at most:

1. Two commutators of involutions.
2. Two commutators of skew-involutions and involutions.
3. $4k - 6$ commutators of matrices of order k.

4.) 8k − 6 commutators of matrices of skew order 2k and matrices of order finite 2k.
in $GL_{V,K}(\infty, m, \mathbb{C})$.

2. Preliminaries

Let R be an associative ring with identity 1. Denote by $T_n(R)$ and $T_\infty(R)$ the groups of $n \times n$ and infinite upper triangular matrices over a ring R and denote by $UT_n(R)$ and $UT_\infty(R)$ the subgroups of $T_n(R)$ and $T_\infty(R)$, respectively, whose entries on the main diagonal are equal to unity 1.

For $m \geq 1$ we denote the subgroups $T_n(m, R)$ and $T_\infty(m, R)$ of $T_n(R)$ and $T_\infty(R)$, respectively, containing exactly all those matrices which have zero entries on the first $m − 1$ super diagonals. Analogously we denote by $UT_n(m, R)$ and $UT_\infty(m, R)$ the subgroups of $T_n(m, R)$ and $T_\infty(m, R)$ respectively whose entries on the mth super diagonal are equal to unity 1.

Also, define the subgroups, for any $s \in \mathbb{N}$ and $m \geq 1$:

$±UT_\infty^{(s)}(R) = \{ g \in T_\infty(R), \ g_{ii}^s = ±1 \}$,

$±UT_\infty^{(s)}(m, R) = \{ g \in T_\infty(m, R), \ g_{ii}^s = ±1 \}$

$±D_\infty^{(s)}(R) = \{ g \in UT_\infty^{(s)}(R), \ g_{ij} = 0, \ if \ i \neq j \}$,

$±D_\infty^{(s)}(m, R) = \{ g \in UT_\infty^{(s)}(m, R), \ g_{ij} = 0, \ if \ i \neq j \}$.

Consider $k \geq 3$, a matrix $A \in M_n(R)$ (or in $T_\infty(R)$) is called an involution if $A^2 = I$, a skew-involution if $A^2 = −I$, a finite order k if $A^k = I$ and a skew finite order k if $A^k = −I$, where $I = I_n$ is the identity matrix in $M_n(R)$ (or $I = I_\infty$ in $T_\infty(R)$, respectively).

Denote by E_{ij} the finite or infinite matrix with a unique nonzero entry equal to 1 in the position (i, j), so $A = \sum_{1 \leq i \leq j \leq n} a_{ij} E_{ij}$ ($A = \sum_{i,j \in \mathbb{N}} a_{ij} E_{i,j}$) is the $n \times n$ (infinite $\mathbb{N} \times \mathbb{N}$) matrix with a_{ij} in the position (i, j). Denote by $[\alpha, \beta] = \alpha \beta \alpha^{-1} \beta^{-1}$ the commutator of two elements α and β of a group G.

Denote by $J_m(\infty, R)$ the set of all infinite matrices in $T_\infty(R)$ in which all the entries outside of the mth super diagonal equal 0. Let $A \in UT_\infty(m, R)$ and denote by $J_m(A)$ the matrix of $J_m(\infty, R)$ that has the same entries in the mth super diagonal as A. Denote by Z the center of the ring R, and by $D_\infty(Z)$ the subring of all diagonal infinite matrices with entries in Z.

We say that $A \in UT_\infty(m, R)$ is m-coherent if there is a sequence $\{D_i\}_{i \geq 0}$ of elements of $D_\infty(Z)$ such that

$A = \sum_{i=0}^{\infty} D_i J_m(A)^i$.

If $D_0 = D_1 = I_\infty$ the the sequence is called normalized. If $m = 1$ the matrix is called coherent.

We will denote by $(*, *, *, \cdots)_m$ the mth super diagonal of a matrix $A \in T_\infty(m, R)$, for $m \geq 1$.

3. Expressing Matrix into Products of Commutators

In this section we assume that 2, k or $2k$ are invertible elements in R, this the according to each case we will study. Also we will can assume that $i \in R$.

Remark 3.1. Let $G = M_n(R)$ or $T_\infty(R)$, then

1.) If $\alpha \in G$ is a product of r involution (or skew-involutions and involutions, or elements of order k, or skew-finite order $2k$ and of order $2k$), then for every $\beta \in G$ the conjugate $\beta \alpha \beta^{-1}$ is a product of r involutions (or skew-involutions and involutions, or elements of order k, or skew-finite order $2k$ and of order $2k$, respectively).

2.) If α is a product of r commutators of involutions (or skew-involutions and involutions, or elements of order k, or skew-finite order $2k$) then for every $\beta \in G$ the conjugate $\beta \alpha \beta^{-1}$ is a product of r commutators of involutions (or skew-involutions and involutions, or elements of order k, or skew-finite order $2k$ and of order $2k$, respectively) as well.

The following results we adapted from Hou [9].

Remark 3.2. If $A \in UT_\infty(m, R)$ is m-coherent then, for $r \geq 2$, A^r is m-coherent as well.

Proof. If $D = \text{diag}(a_1, a_2, a_3, \cdots) \in D(\infty, Z)$ define $S(D) = \text{diag}(a_2, a_3, a_4, \cdots) \in D(\infty, Z)$ and in this case we have that

$$\forall J \in J_m(\infty, R), JD = S^m(D)J,$$

then

$$A^2 = \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} D_k J_m(A)^k D_i J_m(A)^i$$

$$= \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} D_k S^{km}(D_i) J^{k+i}$$

$$= \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} D_i S^{im}(D_{k-i}) \right) J(A)^k,$$

so, A^2 is m-coherent. For the case $k \geq 3$ follows similarly from Gargate in [2]. □

Lemma 3.3. Let $J \in J_1(\infty, R)$, then there exists a coherent matrix $A \in UT_\infty(R)$ such that $J(A) = J$ and A is the commutator of one skew-involution and one involution in $\pm UT_\infty(R)$.

Proof. Suppose that

$$J = \sum_{i=1}^{\infty} a_{i,i+1} E_{i,i+1},$$

and consider

$$B = \begin{bmatrix} -i & -\frac{1}{2}ia_{23} & \cdots \\ i & -\frac{1}{2}ia_{45} & \cdots \\ -i & -\frac{1}{2}ia_{45} & \cdots \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & \frac{1}{2}a_{12} & -1 \\ 1 & \frac{1}{2}a_{34} & -1 \end{bmatrix},$$

where i is the imaginary number.
We can observe that $B \in \pm UT_\infty^{(2)}(R)$ is a skew-involution and $C \in \pm UT_\infty^{(2)}(R)$ is an involution. Also, define $A = [B, C] = BCB^{-1}C^{-1} = -(BC)^2$, is not difficult to verify that $J(A) = J$. Now, observe that BC is coherent, because

$$BC = -iI_\infty - \frac{i}{2} \sum_{i=1}^{\infty} a_{i,i+1}E_{i,i+1} - \frac{1}{4} \sum_{i=1}^{\infty} a_{2i,2i+1}a_{2i+1,2i+2}E_{2i,2i+2} = \sum_{k=0}^{2} D_k J(BC)^k$$

where $D_0 = -iI_\infty, D_1 = I_\infty$ and $D_2 = \sum_{i=1}^{\infty} E_{2i,2i}$ and by Remark 3.2 we conclude that A is coherent.

And, for the group $UT_\infty(m, R)$, we have the following Lemma:

Lemma 3.4. Let $J \in J_m(\infty, R)$, then there exists a m-coherent matrix $A \in UT_\infty(m, R)$ such that $J_m(A) = J$ and A is the commutator of

1.) Two involutions in $\pm UT_\infty^{(2)}(m, R)$.
2.) One skew-involution and one involution both in $\pm UT_\infty^{(2)}(m, R)$.
3.) Matrices of order k in $UT_\infty^{(k)}(m, R)$.
4.) One skew finite order $2k$ and one matrix of order finite $2k$ in $\pm UT_\infty^{(2k)}(m, R)$.

Proof.
1.) Consider

$$J = \sum_{i=1}^{\infty} a_{i,m+i}E_{i,m+i}$$

and define $B, C \in \pm UT_\infty(m, R)$ as

$$B = \begin{bmatrix}
1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots \\
0 & 1 & \cdots & 0 & \frac{1}{2}a_{2,2} & 0 & 0 & \cdots \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \frac{1}{2}a_{4,4} & \cdots \\
\vdots & \vdots & & & & & & \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & & & & & & \\
\end{bmatrix}$$

where

$$\text{diag}(B) = (1, 1, 1, \cdots, 1, -1, -1, \cdots, -1, 1, 1, \cdots)_m$$

and $J_m(B)$ the corresponding matrix with entries in the mth super diagonal equal to $(0, \frac{1}{2}a_{2,2}, 0, 0, \frac{1}{2}a_{4,4}, 0, \cdots)_m$ and
It is not difficult to prove that BC and C are involutions, and $J_m(BCB^{-1}C^{-1}) = J$.

In order to prove that BC is m-coherent we can observe two cases:

- If m is an odd number then

 $$BC = I_\infty + \frac{1}{2} \sum_{i=1}^{\infty} a_{i,i+m} E_{i,i+m},$$

 and, in this case we consider $D_0 = D_1 = I_\infty$.

- If m an even number we have

 $$BC = I_\infty + \frac{1}{2} \sum_{i=1}^{\infty} a_{i,i+m} E_{i,i+m} + \frac{1}{4} \sum_{i=1}^{\infty} a_{2i,2i+m} a_{2i+m,2i+2m} E_{2i,2i+2m},$$

 and we consider $D_0 = D_1 = I_\infty$ and $D_2 = \sum_{i=1}^{\infty} E_{2i,2i}$. So we prove that BC is m-coherent.

2.) We can consider the same form of matrix B and C but with some different entries, for instance, in B

$$\text{diag}(B) = \left(-i, -i, \ldots, -i, i, i, \ldots, i, -i, -i, \ldots \right),$$

where i is the imaginary number and the corresponding matrix $J_m(B)$ with entries in the mth super diagonal equals to $(\frac{1}{2}a_{1,m+1}, 0, \frac{1}{2}a_{3,m+3}, 0, \frac{1}{2}a_{5,m+5}, 0, \cdots)_m$. Also

$$\text{diag}(C) = \left(1, 1, \cdots, 1, -1, -1, \cdots, -1, 1, 1, \cdots \right),$$

and the corresponding matrix $J_m(C)$ with entries in the mth super diagonal equals to $(\frac{1}{2}a_{12}, 0, \frac{1}{2}a_{34}, 0, \frac{1}{2}a_{56}, \cdots)_m$.

Observe that B is skew-involution and C is an involution and the proof that BC is m-coherent follows similarly from item (1) above.

3.) For $k > 2$, consider ω an kth root of unity in R. Then we consider the matrix B and C of the item (1) but with diagonal

$$\text{diag}(B) = \left(1, 1, \cdots, 1, \omega, \omega, \cdots, \omega, 1, 1, \cdots \right),$$
and the corresponding $J_m(B)$ with entries in the mth super diagonal equals to $(0, \frac{1}{k}a_{2,m+2}, 0, \frac{1}{k}a_{4,m+4}, 0, \frac{1}{k}a_{6,m+6}, \cdots)_m$, also

$$\text{diag}(C) = \left(1, 1, \cdots, 1, \omega^{-1}, \omega^{-1}, \cdots, \omega^{-1}, 1, 1, \cdots\right)$$

and the entries of $J_m(C)$ in the mth super diagonal equals to

$$\left(\frac{1}{k}a_{1,m+1}, 0, \frac{1}{k}a_{3,m+3}, 0, \frac{1}{k}a_{5,m+5}, \cdots\right)_m.$$

We can observe that $B^k = C^k = I$ and similarly to Lemma 3.5 in Gargate we define $A = (BC)^k$ that is product of $2k - 3$ commutators.

4.) For $k \geq 2$ all solutions of the equation $X^{2k} = 1$ are of the form $(i\omega)^j$ where i is the imaginary number, ω be an kth root of unity such that $i, \omega \in R$ and $j = 0, 1, 2, \cdots, 2k - 1$. In this case, we consider the above matrices B and C but with diagonal entries

$$\text{diag}(B) = \left(-i, -i, \cdots, -i, i\omega, i\omega, \cdots, i\omega, -i, -i, \cdots\right)$$

and the corresponding $J_m(B)$ with entries in the mth super diagonal equals to

$$(0, -\frac{1}{k}i\omega a_{2,m+2}, 0, -\frac{1}{k}i\omega a_{4,m+4}, 0, \frac{1}{k}i\omega a_{6,m+6}, \cdots)_m$$

and the corresponding $J_m(C)$ with entries in the mth super diagonal equals to

$$(\frac{1}{k}a_{1,m+1}, 0, \frac{1}{k}a_{3,m+3}, 0, \frac{1}{k}a_{5,m+5}, \cdots)_m.$$

Here we can observe that $B^{2k} = -I$ and $C^{2k} = I$. From the Lemma 3.6 in Gargate we can observe that, if $B^{2k} = -I$ in the proof of this Lemma, we obtain that $(BC)^{2k} = -F_{2k}(B,C)$ where $F_{2k}(B,C)$ is the product of $4k - 3$ commutators whose entries are powers of B and C. In this case we define $A = -(BC)^k$ and obtain the result.

Lemma 3.5. Let A, B be m-coherent matrices of $UT_\infty(m, R)$ such that $J_m(A) = J_m(B)$. Then A and B are conjugated in the group $UT_\infty(m, R)$.

Proof. Consider $J = J_m(A) = J_m(B)$ and let $(X_n)_{n \geq 0}$ be a sequence of elements of $D_\infty(R)$ such that $X_0 = I_\infty$. Suposse that $X = \sum_{k=0}^{\infty} X_k J^k \in UT_\infty(m, R)$. Now, choose two normalized sequences $(D_k)_{k \geq 0}$ and $(D'_k)_{k \geq 0}$ in $D_\infty(R)$ such that $A = \sum_{k=0}^{\infty} D_k J^k$ and $B = \sum_{k=0}^{\infty} D'_k J^k$, and suppose that $AX = XB$, then

$$AX = \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} D_i S^{im}(X_{k-i})\right) J^k \text{ and } XB = \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} X_i S^{im}(D'_{k-i})\right) J^k.$$

so to have the result it is enough to prove that $\forall k \geq 2$

$$\sum_{i=0}^{k} D_i S^{im}(X_{k-i}) = \sum_{i=0}^{k} X_i S^{im}(D'_{k-i}).$$

Check this condition for $k = 0, 1$. If $k \geq 2$ then we have
Proof. For the case Lemma 3.8. Let

\[X_k + S^m(X_{k-1}) + \sum_{i=2}^{k} D_i S^m(X_{k-i}) = X_k + X_{k-1} S^{(k-1)m}(D'_1) + \sum_{i=0}^{k-2} X_i S^m(D'_{k-i}) \]

but \(D'_1 = I_\infty \), then rewrite the last equality, for all \(k \geq 2 \)

\[S^m(X_k) - X_k = \sum_{i=0}^{k-1} X_i S^m(D'_{k+1-i}) - \sum_{i=2}^{k+1} D_i S^m(X_{k+1-i}), \]

and consider the first \(m \)th super diagonal entries in the each \(X_k \) be zero for all \(k \geq 1 \), then we can define a sequence \((X_k)_{k \geq 0}\) inductively and with this we proof that \(AX = XB \).

From Lemmas 3.3 and 3.5 we obtain the follow result.

Corollary 3.6. Let \(A \in UT_\infty(R) \) whose entries except in the main diagonal and the first super diagonal are all equal to zero. Then \(A \) is a commutator of one skew-involution and one involution.

Proof. We know that \(A \) is coherent. Consider \(J = J_1(A) \) and by Lemma 3.3 there is \(T \in UT_\infty(R) \) coherent such that \(J = J_1(T) \) and \(T = [S, P] \) with \(S \) an skew-involution and \(T \) and involution respectively. Finally, by the Lemma 3.6 we concluded that \(A \) and \(T \) are conjugated.

And, for the subspace \(UT_\infty(m, R) \) we have similar results

Corollary 3.7. Assume that \(R \) is an associative ring with identity 1 and 2 (also \(k \) or 2\(k \)) is an invertible element of \(R \). Then for every \(A \in UT_\infty(m, R) \) (or \(UT_\infty(m, R) \)), whose entries except in the main diagonal and the \(m \)th super diagonal are all to zero, is a commutator of

1.) Two involutions in \(\pm UT_\infty^{(2)}(m, R) \).
2.) One skew-involution and one involution both in \(\pm UT_\infty^{(2)}(m, R) \).
3.) Matrices of order \(k \) in \(UT_\infty^{(k)}(m, R) \).
4.) One skew finite order 2\(k \) and one matrix of order finite 2\(k \) in \(\pm UT_\infty^{(2k)}(m, R) \).

Proof. Similar to the Corollary 3.6 and Corollary 3.7 in [2].

For the group \(UT_\infty(m, R) \) we have the following Lemma.

Lemma 3.8. Let \(R \) be an associative ring with identity 1 and let \(n \in \mathbb{N} \).

1.) If \(A, B \in UT_n(m, R) \) such that \(a_{i,m+i} = b_{i,m+i} = 1 \) for all \(1 \leq i \leq n - 1 \), then \(A \) and \(B \) are conjugated in \(UT_n(m, R) \).
2.) If \(A, B \in UT_\infty(m, R) \) such that \(a_{i,m+i} = b_{i,m+i} = 1 \) for all \(1 \leq i \), then \(A \) and \(B \) are conjugated in \(UT_\infty(m, R) \).

Proof. For the case \(m = 1 \) see the Lemma 2.6 in Hou [4]. Now consider \(m > 1 \).

1.) Consider \(A = (a_{ij}) \in UT_n(m, R) \) and

\[
J = \begin{pmatrix}
1 & 0 & \cdots & 0 & 1 \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
1 & 0 & \cdots & 0 & 1 \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
1 & 0 & \cdots & 0 & 1
\end{pmatrix},
\]

and conclude that \(AX = XB \).
where all blank entries are equal to 0. We need only to prove that A is conjugated to the matrix J, for this we can constructed a matrix $X = (x_{ij}) \in UT_n(R)$ such that $X^{-1}AX = J$ or $AX = XJ$.

Let X be the matrix

$$X = \begin{pmatrix}
1 & x_{12} & \cdots & x_{1,n-m} \\
& \ddots & \ddots & \vdots \\
& & 1 & \cdots & x_{m,n-m} \\
& & & \ddots & \vdots \\
& & & & \ddots & \ddots \\
& & & & & 1 & x_{n-1,n} \\
& & & & & & 1
\end{pmatrix}$$

where X' is a matrix of order $m \times m$ with arbitrary entries and the other entries of the matrix X are related as follows

(a) For the first super diagonal entries of X where $j = i + 1$ we choose

$$x_{ij} = x_{i+m,j+m} + a_{i,j+m}$$

(b) For $j = i + k$ with $k \geq 2$, the following super diagonal entries are obtained from

$$x_{i,j} = x_{i+m,j+m} + a_{i,j+m} + \sum_{s=1}^{k} a_{i,j+m-(k-s)} \cdot x_{i+m+s,j+m}.$$

2. If $A = (a_{ij}) \in UT_\infty(m, R)$ then A is conjugated to the matrix $J \in UT_\infty(m, R)$ as in (1) and here constructed a matrix $X = (x_{ij}) \in UT_\infty(m, R)$ such that $AX = XJ$. The relations of (x_{ij}) in the super diagonal entries are the same as those given in (1) with the difference that the matrix X' disappears.

Thus the Lemma 3.8 is proved. \(\square\)

From Corollary 3.7 and Lemma 3.8 we have

Corollary 3.9. Let R be an associative ring with unity 1 and that 2 (k or 2k respectively) is an invertible element in R. Every matrix in $UT_\infty(m, R)$ whose entries in the diagonal and the mth super diagonal are all equal to the identity 1, is a commutator of

1. Two involutions in $\pm UT_\infty^{(2)}(m, R)$.
2. One skew-involution and one involution both in $\pm UT_\infty^{(2)}(m, R)$.
3. Two matrices of order k in $UT_\infty^{(k)}(m, R)$.
4. One skew finite order $2k$ and one matrix of order finite $2k$ in $\pm UT_\infty^{(2k)}(m, R)$.

Proof. Follows similar from Hou in [9] and Gargate in [2]. \(\square\)

Finally, we proved the Main Theorem:
Proof of Theorem 1.1. Consider $A \in UT_\infty(m, R)$ then we can write
\[A = I_\infty + \sum_{i=1}^\infty \sum_{j=m+i}^\infty a_{i,j} E_{i,j} \]
and consider
\[A_1 = I_\infty + \sum_{i=1}^\infty (a_{i,m+i} - 1) E_{i,m+i} \in UT_\infty(m, R), \]
then, by corollary 3.6, A_1 is a commutator as desired. Observe that $A_2 = A_1^{-1} A \in UT_\infty(m, R)$ is a matrix whose entries in the diagonal and the mth super diagonal are all equal to 1, then by Corollary 3.7, A_2 is also a commutator as desired. So A is product of commutators according to each case.

4. Case $R = \mathbb{C}$ the complex field and the group Vershik-Kerov

In this section, we consider the case $R = \mathbb{C}$ a complex field and the group $SL_n(\mathbb{C})$. We proved the Theorem 1.2:

Proof of Theorem 1.2. (\Rightarrow) If $A = [S, T]$ with S one involution and T one skew-involution then $A = -(ST)^2$. Consider $B = ST$ then $B^2 = -A$ and $-B^{-1} = TS$. Hence $B = ST = S(TS)S^{-1} = S(-B^{-1})S^{-1}$,

then, B is similar to $-B^{-1}$.

(\Leftarrow) By hypothesis, if $B \in SL_n(\mathbb{C})$ is such that $A = -B^2$ and B is similar to $-B^{-1}$ then, by the Theorem 5 in [3], B is product of one involution S and one skew-involution T. Then we have
\[A = -B^2 = -(ST)^2 = -STST = -STS^{-1}(-T^{-1}) = STS^{-1}T^{-1} = [S, T]. \]

An immediate consequence is the following corollary:

Corollary 4.1. Let $A \in SL_n(\mathbb{C})$. Then

1.) A is a product of commutators of involutions if there is a matrix $B \in SL_n(\mathbb{C})$ such that $A = B^2$ and B is product of two involutions.

2.) A is a product of commutators of one skew-involution and one involution if there is a matrix $B \in SL_n(\mathbb{C})$ such that $A = -B^2$ and B is a product of one skew-involutions and one involution.

Proof. Follows immediately from proof of Theorem 1.2

Next, we proved the Theorem 1.3:

Proof of Theorem 1.3. In this case, we can rewrite $A = B^k = (CD)^k$ with $C^k = D^k = I$ and the result follows from Lemma 3.6 in Gargate [2].

And, in the general case we have as a result the Theorem 1.4:

Proof of Theorem 1.4. Follows immediately from Lemma 3.6 in Gargate [2].

Then, in $SL_n(\mathbb{C})$ we proved the Theorem 1.5.
Proof of Theorem 1.3. Consider $A \in SL_n(\mathbb{C})$ not a scalar matrix, then by Theorem 1 in [13], we can find a lower-triangular matrix L and an upper-triangular matrix U such that A is similar to LU, and both L and U are unipotent. By the Theorem 1.1 it follows that each one of the matrices L and U is a product of commutators as desired. For the scalar case $A = \alpha I$ with $\det(A) = 1$ it suffices to consider the case when n is exactly the order of α (see [9]). We using the techniques of [10] for the proof in each case. Observe that, if n is even we have

$$
\alpha I = \begin{bmatrix}
\alpha & 0 & 0 & \cdots & 0 \\
0 & \alpha^{-1} & 0 & \cdots & 0 \\
0 & 0 & \alpha & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha^{n-2} & \alpha^{-1} \\
0 & 0 & \cdots & 0 & \alpha
\end{bmatrix} \begin{bmatrix}
1 \\
\alpha^2 \\
\alpha^{-2} \\
\vdots \\
\alpha^{-n+2} \\
1
\end{bmatrix},
$$

and if n is odd

$$
\alpha I = \begin{bmatrix}
\alpha & 0 & 0 & \cdots & 0 \\
0 & \alpha^{-1} & 0 & \cdots & 0 \\
0 & 0 & \alpha & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha^{n-2} & \alpha^{-1} \\
0 & 0 & \cdots & 0 & \alpha
\end{bmatrix} \begin{bmatrix}
1 \\
\alpha^2 \\
\alpha^{-2} \\
\vdots \\
\alpha^{-n+2} \\
1
\end{bmatrix}.
$$

Thus, if n is even then denote by

$$
S = \text{diag}(\alpha, \alpha^{-1}, \alpha^3, \cdots, \alpha^{n-1}, \alpha^{-n+1}) \quad \text{and} \quad T = \text{diag}(1, \alpha^2, \alpha^{-2}, \cdots, \alpha^{-n+2}, 1),
$$

so $\alpha I = ST$. The objective is analyse, in each case, the decomposition in products of the matrix

$$
\begin{bmatrix}
a & 0 \\
0 & a^{-1}
\end{bmatrix}
$$

with $a \in \mathbb{C}$, $a \notin \{0, 1, -1\}$.

1.) For involutions, it’s enough to find two matrices B and C such that $\alpha I = B^2C^2$ and both are products of involutions. For this case consider

$$
B = \text{diag}(\alpha^{1/2}, \alpha^{-1/2}, \alpha^{3/2}, \cdots, \alpha^{(-n+2)/2}, 1),
$$

and observe that $B^2 = S$. Here

$$
\begin{bmatrix}
a & 0 \\
0 & a^{-1}
\end{bmatrix} = J_1(a) \cdot J_2(a),
$$

with $J_1(a) = \begin{bmatrix}
0 & ay \\
1 & ay
\end{bmatrix}$ and $J_2(a) = \begin{bmatrix}
0 & y \\
1 & y
\end{bmatrix}$, $y \in \mathbb{C} \setminus \{0\}$ and both are involutions. Then it follows that B is product of two involutions, so S is a commutator of these two involutions. Similarly we can proof the same result for T. Observe that for the case n odd number the proof is similar, so we can conclude that αI is a product of two commutators of involutions. For other proof of this case see Hou in [9].
2.) For this case we can see the following decomposition, if n is even
\[\alpha I = \text{diag}(-\alpha, -\alpha^{-1}, -\alpha^3, \cdots, -\alpha^{n-1}, -\alpha^{-n+1}) \times \text{diag}(-1, -\alpha^2, -\alpha^{-2}, \cdots, -\alpha^{-n+2}, -1) \]

and if n is odd
\[\alpha I = -\text{diag}(-\alpha, -\alpha^{-1}, -\alpha^3, \cdots, -\alpha^{n+2}, -1) \times \text{diag}(-1, -\alpha^2, -\alpha^{-2}, \cdots, -\alpha^{-n-1}, -\alpha^{-n+1}). \]

For n even, consider $S = \text{diag}(-\alpha, -\alpha^{-1}, -\alpha^3, \cdots, -\alpha^{n-1}, -\alpha^{-n+2}, -1) = -B^2$ with $B = \text{diag}(ia^{1/2}, ia^{-1/2}, ia^{3/2}, \cdots, ia^{(n+2)/2}, i)$. And, observe that, for all $a \in \mathbb{C}$ $a \neq 0$,
\[
\begin{bmatrix}
a & 0 \\
0 & ia^{-1}
\end{bmatrix} = (iJ_1(a)) \cdot J_2(a)
\]

with $J_1(a)$ and $J_2(a)$ the same matrices in the item (1). Observe that, in this case $iJ_1(a)$ is an skew-involution and $J_2(a)$ is an involution. So, B is the product of one skew-involution and one involution, then by the Corollary we have that S is a commutator of one skew-involution and one involution. Follows similarly for T and so we can conclude that αI is a product of two commutators of skew-involutions and involutions. For the case n odd number follows immediately.

3.) Observe that for $a \in \mathbb{C}$, $a \notin \{0, 1, -1\}$ then
\[
\begin{bmatrix}
a & 0 \\
0 & a^{-1}
\end{bmatrix} = J_1(a) \cdot J_2(a)
\]

with
\[
J_1(a) = \begin{bmatrix}
at/a+1 & a - \left(\frac{at}{a+1}\right)^2 \\
-1/a & t/a+1
\end{bmatrix} \quad \text{and} \quad J_2(a) = \begin{bmatrix}
at/a+1 & a \left(\frac{at}{a+1}\right)^2 - 1 \\
1 & t/a+1
\end{bmatrix},
\]

where $t = \theta + \theta^{-1}$, $\theta^k = 1$, $\theta \neq 1$. Observe that $J_1(a)^k = J_2(a)^k = I$ (see [10]).

Then, if n is even we have
\[
\alpha I = \begin{bmatrix}
\alpha & \alpha^{-1} & \alpha^3 & \cdots & \alpha^{n-1} \\
\alpha^{-n+1} & \alpha^{-n+1} & \alpha^{-n+1} & \cdots & \alpha^{-n+2}
\end{bmatrix} \begin{bmatrix}
1 & \alpha^2 & \alpha^{-2} & \cdots & \alpha^{-(n+2)} \\
\alpha & \alpha^{-1} & \alpha^3 & \cdots & \alpha^{n-1}
\end{bmatrix},
\]

and if n is odd
In the Vershik-Kerov group, any matrix of the form GL_n is a complex field or the real number field. Let S be an infinite unitriangular matrix. By Theorem 1.4 we conclude that S^n is a product of $2k - 3$ commutators of J_1 and J_2. Similarly we can obtain the same results for the others matrices. Therefore, by the decomposition, we conclude that αI_n is a product of $4k - 6$ commutators. The case of n odd number follows immediately.

4.) For n even, consider

$$\alpha I = -\operatorname{diag}(-\alpha, -\alpha^{-1}, -\alpha^3, \ldots, -\alpha^{n-1}, -\alpha^{-n+1}) \times$$

$$\operatorname{diag}(-1, -\alpha^2, -\alpha^{-2}, \ldots, -\alpha^{-n+2}, -1),$$

and $S = \operatorname{diag}(-\alpha, -\alpha^{-1}, -\alpha^3, \ldots, -\alpha^{n-1}, -\alpha^{-n+1}) = -B^{2k}$ with

$$B = \operatorname{diag}(i^{1/k} \alpha^{1/(2k)}, i^{1/k} \alpha^{-1/(2k)}, \ldots, i^{1/k} \alpha^{-1/(2k+1)}),$$

where i is the imaginary number.

Observe that

$$\begin{pmatrix} i^{1/k} a & 0 \\ 0 & i^{1/k} a^{-1} \end{pmatrix} = (i^{1/k} J_1(a)) \cdot J_2(a),$$

and $i^{1/k} J_1(a)$ is a skew order $2k$ matrix. By Theorem 1.4 we conclude that S is a product of $4k - 3$ commutators. By the same observations in the above items we conclude the proof.

Let n a positive integer and consider $GL_n(C)$ the general linear group over C. The Vershik-Kerov group $GL_{VK}(\infty, C)$ is the group consisting of all infinite matrices of the form

$$\begin{pmatrix} M_1 & M_2 \\ 0 & M_3 \end{pmatrix}$$

(1)

where $M_1 \in GL_n(C)$ and $M_3 \in T_{\infty}(C)$. Also, denote by $GL_{VK}(\infty, m, R)$ the subgroup of $GL_{VK}(\infty, C)$ such that $M_3 \in T_{\infty}(m, R)$ and denote by $SL_{VK}(\infty, m, R)$ the subgroup of $GL_{VK}(\infty, m, R)$ such that $M_1 \in SL_n(C)$ and $M_3 \in UT_{\infty}(m, R)$.

We use the following lemma proof in [2].

Lemma 4.2. Assume that C is a complex field or the real number field. Let $A \in GL_n(C)$ of which 1 is no eigenvalue, and let T be an infinite unitriangular matrix. In the Vershik-Kerov group, any matrix of the form

$$\begin{pmatrix} A & B \\ 0 & T \end{pmatrix}$$

(2)
is conjugated to
\[
\begin{pmatrix}
A & 0 \\
0 & T
\end{pmatrix}
\]

Then, in this case we shown the Theorem 1.6

Proof of Theorem 1.6. Consider \(M \in SL_{V,K}(m, \mathbb{C}) \) in the form \(M = \begin{pmatrix} M_1 & M_2 \\ 0 & M_3 \end{pmatrix} \), with \(M_1 \in SL_n(\mathbb{C}) \) and \(M_3 \in UT_\infty(m, \mathbb{C}) \). From the proof of Theorem 1.3 in [9], \(M \) is conjugated to an infinite matrix of the form \(\begin{pmatrix} A & 0 \\ 0 & T \end{pmatrix} \), with \(A \in SL_n(\mathbb{C}) \) for which 1 is no eigenvalue and \(T \in UT_\infty(m, \mathbb{C}) \). By the Theorem 1.1 and the Theorem 1.5, both are products of commutators and we know that the direct sum of \(A \) and \(T \) is also a product of commutators of elements as desired. \(\square \)

References

[1] A. Bier, W. Holubowski, A note on commutators in the group of infinite triangular matrices over a ring, Linear and Multilinear Algebra, 2015.
[2] I. Gargate, M. Gargate, Expressing Finite-Infinite Matrices Into Products of Commutators of Finite Order Elements.
[3] P. A. Fillmore, On similarity and the diagonal of a matrix, Amer. Math. Monthly 76, 167-169 (1969).
[4] R. Slowik. Expressing Infinite Matrices as Sums of Idempotents. Ukrainian Mathematical Journal. Vol 69, No 8. 1145-1152 (2017).
[5] A. Paras, J. Salinasan. The product of an involution and a skew-involution. Linear Algebra and Applications. 584 (2020). 431-437.
[6] W. H. Gustafson, On products of involutions, in: J.H. Ewing, F.W. Gehring (Eds.), Paul Halmos, Celebrating 50 Years of Mathematics, Springer-Verlag, New York, 1991, pp. 237-255.
[7] R. Slowik. Expressing infinite matrices as product of involutions. Linear Algebra Appl. 438 (2013) 399-404.
[8] B. Zheng, Decomposition of matrices into commutators of involutions, Linear Algebra Appl. 347 (2002) 1-7.
[9] Hou, X. (2018). Decomposition of infinite matrices into products of commutators of involutions. Linear Algebra and Its Applications. doi:10.1016/j.laa.2018.11.001
[10] Grunenfelder, Luzius- Kosir, Tomaz - Omladic, Matjaz - Radjavi, H.. (1999). On Groups Generated by Elements of Prime Order. Geometriae Dedicata. 75,(1999). 317-332.CMP 99:14.
[11] W. H. Gustafsson, P.R. Halmos, H. Radjavi, Products of involutions. Collection of articles dedicated to Olga Taussky Todd., Linear Algebra Appl. 13 (1976), 157-162.
[12] D. Z. Djocović, Product of two involutions. Arch. Math. XVIII.
[13] A. R. Sourour, A Factorization Theorem for Matrices. Lin. Multilin. Alg. 19, (1986), 141-147.
