Data in Brief

This article provides data regarding the performance of zinc sulphate as a coagulant for treating rubber industry wastewater. The effect of four factors on removal efficiency of nine parameters is investigated, namely: pH, mixing speed, dosage of coagulant (zinc sulphate) and retention time. Response surface methodology was used to investigate the effect of selected variables. The data obtained from face centered composite design (FCCD) were analyzed by using analysis of variance (ANOVA) and regression model to find the optimum operating conditions for the selected factors.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject area	Environmental engineering
More specific	Industrial wastewater treatment
Type of data	Table and figure
How data was acquired	Laboratory experiments and site sampling
Parameters for data collection	Wastewater sample collection, laboratory analysis, coagulant materials, coagulation using jar test
Description of data collection	Different dosages of zinc sulphate, pH, time and mixing speed, the physiochemical parameters are chemical oxygen demand (COD), total suspended solid (TSS), ammoniacal nitrogen (NH3-N), color and heavy metals (Pb, Fe, Zn, Cu, K)
Data Source location	University of Kuala Lumpur, Malaysian Institute of Chemical and Bio Engineering Technology (UniKL-MICET), Melaka, Malaysia. Gloves manufacturing company (Tan Sin Lian Industries Sdn. Bhd), Lot 179-184, Alor Gajah Industrial Estate (Phase III), Jalan Industri 7, Alor Gajah, 78000 Melaka, Malaysia. 2°21′43.5″N 102°12′17.6″E
Data accessibility	Within this article
Related research article	Tawfiq J. H. Banch, Marlia M. Hanafiah, Abbas F. M. Alkarkhi, Salem S. A. Amr, Nurul U. M. Nizam, (2020). Evaluation of Different Treatment Processes for Landfill Leachate Using Low-Cost Agro-Industrial Materials. Processes, 8, 111; 1-12, [1]. https://doi.org/10.3390/pr8010111

Value of the Data

- The data produced an efficient method for rubber wastewater treatment using zinc sulphate as a coagulant.
- The data has benefits for rubber industries to manage their wastewater effluents. Also the data provides significant knowledge and applications to the university postgraduate students and research centres.
- The data provides model that can be used for treatment of several types of industrial wastewater treatment.

1. Data Description

The raw data for thirty experiments using face centered composite design (FCCD), [2] covering all possible combinations of the selected variables (Dosage of zinc sulphate (A), pH (B), retention time (C) and mixing speed (D)) regarding measuring physiochemical parameters such as chemical oxygen demand (COD), total suspended solid (TSS), ammoniacal nitrogen (NH3-N), color and heavy metals (Pb, Fe, Zn, Cu, K) for rubber wastewater are presented in Table 1. The results of the experiments were analyzed using analysis of variance (ANOVA) [3]. The independent variables (factors) and corresponding levels used for optimization of rubber wastewater treatment is summarized in Table 2. The three-dimensional response surface curves and their effect on TSS, COD, Color, Ammonia heavy metals are presented in Figs. 1 and 2. Interaction curves showing the behavior of two factors on the effect of TSS, COD, Color, Ammonia and heavy metals are presented in Figs. 3 and 4. The significance of the influential variables is presented in Table 3 and 4 (analysis of variance (ANOVA)). Mathematical models that show the effect of significant variables on selected parameters are presented in Table 5 and 6 respectively. The equations of coded factors for TSS, COD, Color, ammonia and heavy metals removal were presented in Tables 5 and 6, respectively.
Table 1
The results of CCD including input variables and nine responses using zinc sulphate for treating rubber wastewater.

A = Dosage of zinc sulfate	B = pH time	C = Retention speed	D = Mixing speed	TSS	COD	Color	Ammonia Fe	K	Pb	Cu	Zn
11	7	60	175	0.001 264	98	55	1.206 1.034	0.2401	0.013	7.001	
7	9	90	250	0.002 143	27	27.8	−0.052 1.099	−0.046	0.001	0.624	
11	7	60	250	0.001 228	43	15.8	1.324 1.261	0.2907	0.013	7.394	
7	9	90	100	0.006 369	69	112	0.013 0.9788	0.032	0.001	1.079	
15	5	90	100	0.005 169	68	50.4	0.01 0.9632	0.069	0.001	2.755	
15	9	90	100	0.006 186	46	30.24	0.011 0.9359	0.05	0.002	1.331	
11	7	30	175	0 252	92	9.52	0.013 0.9012	0.012	−0.005	2.494	
7	5	30	250	0.015 155	37	105.84	0.011 1.171	0.063	0.002	2.469	
15	9	30	250	0.002 155	64	25.2	0.012 1.036	0.015	−0.002	1.089	
11	9	60	175	0.005 228	30	25.2	1.378 1.135	0.2239	0.001	0.2597	
15	5	30	100	0.001 634	142	3.36	−0.034 0.9831	0.034	0.004	2.551	
11	7	60	175	0 255	90	60.3	1.212 1.027	0.2342	0.013	7.012	
15	7	60	175	0.007 204	34	130.5	1.542 1.037	0.288	0.011	7.868	
7	9	30	100	0.003 490	14	5.6	0.027 1.024	0.017	0.003	1.1	
11	7	60	175	0.001 249	95	57.1	1.222 1.019	0.24	0.012	6.987	
7	9	30	250	0 199	24	75.6	0.009 1.098	0.036	−0.001	2.163	
7	7	60	175	0.002 206	31	35.28	1.271 1.126	0.1383	0.012	6.86	
7	5	90	250	0.001 213	8	90.72	−0.054 1.092	0.039	0.004	2.369	
15	9	90	250	0.002 201	26	443.52	−0.057 1.239	−0.005	0.004	0.741	
11	7	60	175	0.001 263	88	50.7	1.221 1.043	0.2319	0.013	7.213	
7	5	30	100	0.001 632	354	19.04	−0.04 0.9499	−0.004	0.007	2.378	
11	5	60	175	0.001 224	50	25.2	1.396 1.195	0.2028	0.012	6.767	
15	5	30	250	0.001 180	186	55.44	0.009 1.07	0.07	−0.002	2.69	
15	5	90	250	0.001 252	54	30.24	−0.051 1.043	−0.022	0.003	2.57	
15	9	30	100	0.018 542	10	39.2	−0.04 1.008	−0.001	0.004	2.164	
11	7	90	175	0 229	70	12.32	0.008 0.7462	0.027	−0.005	2.539	
11	7	60	175	0.002 236	57	19.6	−0.019 0.8421	0.014	0.003	2.375	
7	5	90	100	0.007 182	52	40.32	0.002 0.9582	0.033	0.002	2.46	
11	7	60	175	0.001 256	96	61.7	1.211 1.101	0.2329	0.013	6.721	
11	7	60	175	0.002 263	97	54.5	1.209 1.023	0.2331	0.013	6.81	

Table 2
Independent variables (factors) and corresponding levels used for optimization.

Variables	Symbol	Low level	Center	High level
Coded	−1	0	1	
Zinc Sulfate dosage	A	7 ml	11 ml	15 ml
pH	B	5	7	9
Reaction time	C	30	60	90
Mixing speed (rpm)	D	100	175	250

2. Experimental Design, Materials and Methods

2.1. Sampling

20 l sample of rubber wastewater was collected from Tan Sin Lian Industries Sdn. Bhd, one of the gloves manufacturing companies that located in Kawasan Perindustrian Melekek, Alor Gajah, Malaysia. This company is a global glove manufacturing that operates for the past ten years. The sample was collected directly from production factory during the period between April and June 2019. Then, the sample was stored in the sealed plastics bottles and preserved at a temperature less than 4 °C before being used and analyzed. Then the sample was characterized following standard methods for water and wastewater analysis [4].
Table 3

Analysis of variance for TSS, COE, Color and ammonia removal

	Sum of Mean F	Source Squares DF	Square Value	Prob > F
TSS	Source Squares DF	Square Value	Prob > F	
Model 2.769E-004	14	1.978E-005	3.35	0.0133
A 1.985E-005	1	1.985E-005	3.36	0.0868
B 3.254E-005	1	3.254E-005	5.50	0.0331
C 4.356E-007	1	4.356E-007	0.074	0.7897
D 8.756E-005	1	8.756E-005	14.81	0.0016
A2 2.176E-005	1	2.176E-005	3.68	0.0742
B2 6.211E-006	1	6.211E-006	1.05	0.3216
C2 7.951E-006	1	7.951E-006	1.25	0.2643
D2 9.382E-007	1	9.382E-007	0.16	0.6959
AB 2.093E-005	1	2.093E-005	3.54	0.0794
AC 2.328E-005	1	2.328E-005	3.94	0.0658
AD 6.631E-006	1	6.631E-006	1.12	0.3063
BC 1.702E-005	1	1.702E-005	2.88	0.1104
BD 1.743E-005	1	1.743E-005	2.95	0.1065
CD 3.062E-008	1	3.062E-008	5.181E-003	0.9436
Residual 8.866E-005	15	5.911E-006		
Total 3.656E-004	29			

COD	Source Squares DF	Square Value	Prob > F	
Model 4.122E+005	10	41224.29	8.63	< 0.0001
A 242.00	1	242.00	0.051	0.8243
B 910.22	1	910.22	0.19	0.6673
C 93168.06	1	93168.06	19.51	0.0003
D 1.632E+005	1	1.632E+005	34.18	< 0.0001
AB 1806.25	1	1806.25	0.38	0.5458
AC 1122.25	1	1122.25	0.24	0.6334
AD 3025.00	1	3025.00	0.63	0.4359
BC 5550.25	1	5550.25	1.16	0.2945
BD 324.00	1	324.00	0.068	0.7973
CD 1.429E+005	1	1.429E+005	29.92	< 0.0001
Residual 90734.05	19	4775.48		
Total 5.030E+005	29			

Color	Source Squares DF	Square Value	Prob > F	
Model 86161.10	10	86161.11	3.94	0.0050
A 10.89	1	10.89	4.979E-003	0.9445
B 22826.72	1	22826.72	10.44	0.0044
C 14056.06	1	14056.06	6.43	0.0202
D 6536.06	1	6536.06	2.99	0.1001
AB 10.56	1	10.56	4.830E-003	0.9453
AC 264.06	1	264.06	0.12	0.7320
AD 13053.06	1	13053.06	5.97	0.0245
BC 21978.06	1	21978.06	10.05	0.0050
BD 6930.56	1	6930.56	3.17	0.0910
CD 495.06	1	495.06	0.23	0.6396
Residual 41548.77	19	2186.78		
Total 1.277E+005	29			

NH3-N	Source Squares DF	Square Value	Prob > F	
Model 42867.16	4	10716.79	1.92	0.1383
A 4864.27	1	4864.27	0.87	0.3595
B 7352.80	1	7352.80	1.32	0.2619
C 13820.09	1	13820.09	2.48	0.1282
D 16830.01	1	16830.01	3.02	0.0948
Residual 1.395E+005	25	5581.53		
Total 1.824E+005	29			
Table 4
Analysis of variance for heavy metals removal.

Source	Sum of Mean F	Source Squares	DF	Square Value	Prob	> F
Fe⁺²	Model 11.08	14 0.79	13.73 < 0.0001			
	A 2.568E-003	1 2.568E-003	0.045 0.8356			
	B 1.502E-004	1 1.502E-004	2.607E-003 0.9600			
	C 1.043E-003	1 1.043E-003	0.018 0.8948			
	D 0.083	1 0.083	1.44 0.2492			
	A2 2.568E-003	1 2.568E-003	0.045 0.8356			
	B2 1.502E-004	1 1.502E-004	2.607E-003 0.9600			
	C2 1.043E-003	1 1.043E-003	0.018 0.8948			
	D2 0.083	1 0.083	1.44 0.2492			
	AB 4.622E-004	1 4.622E-004	8.022E-003 0.9298			
	AC 2.560E-004	1 2.560E-004	4.443E-003 0.9477			
	AD 1.822E-004	1 1.822E-004	3.163E-003 0.9559			
	BC 1.822E-004	1 1.822E-004	3.163E-003 0.9559			
	BD 3.610E-004	1 3.610E-004	6.265E-003 0.9380			
	CD 8.930E-003	1 8.930E-003	0.15 0.6994			
	Residual 0.86	15 0.058	Total 11.94 29			
Pb	Model 0.26	14 0.019	3.33 0.0136			
	A 1.834E-003	1 1.834E-003	0.33 0.5759			
	B 9.145E-004	1 9.145E-004	0.16 0.6921			
	C 1.920E-003	1 1.920E-003	0.34 0.5672			
	D 0.12	1 0.12	21.28 0.0 0.03			
	A2 7.063E-003	1 7.063E-003	0.33 0.5759			
	B2 9.145E-004	1 9.145E-004	0.16 0.6921			
	C2 1.920E-003	1 1.920E-003	0.34 0.5672			
	D2 0.12	1 0.12	21.28 0.0 0.03			
	AB 1.071E-003	1 1.071E-003	0.19 0.6684			
	AC 6.722E-004	1 6.722E-004	0.18 0.6787			
	AD 2.609E-003	1 2.609E-003	0.47 0.5057			
	BC 8.556E-007	1 8.556E-007	1.525E-004 0.9903			
	BD 3.218E-003	1 3.218E-003	0.57 0.4606			
	CD 3.218E-003	1 3.218E-003	0.57 0.4606			
	Residual 0.084	15 0.058	Total 0.35 29			

(continued on next page)
Table 4 (continued)

Cu	Sum of Mean F Source Squares DF Square Value Prob > F
A 2.067E-006 1 2.067E-006 0.24 0.6332	
B 6.820E-006 1 6.820E-006 0.78 0.3902	
C 5.000E-007 1 5.000E-007 0.057 0.8139	
D 1.275E-006 1 1.275E-006 0.15 0.7074	
A2 2.026E-005 1 2.026E-005 2.33 0.1480	
B2 1.525E-005 1 1.525E-005 1.75 0.2055	
C2 4.802E-004 1 4.802E-004 0.5513 < 0.0001	
D2 6.702E-007 1 6.702E-007 0.077 0.7853	
AB 1.056E-005 1 1.056E-005 1.21 0.2881	
AC 5.062E-006 1 5.062E-006 0.58 0.4576	
AD 6.250E-008 1 6.250E-008 7.176E-003 0.9336	
BC 1.563E-006 1 1.563E-006 0.18 0.6779	
BD 6.250E-008 1 6.250E-008 7.176E-003 0.9336	
CD 4.556E-005 1 4.556E-005 5.23 0.0371	
Residual 1.306E-004 15 8.710E-006	
Total 1.015E-003 29	

Zn	Sum of Mean F Source Squares DF Square Value Prob > F
1.50 14 0.11 4.84 0.0022	
A 6.384E-003 1 6.384E-003 0.29 0.5993	
B 4.560E-003 1 4.560E-003 0.21 0.6566	
C 0.053 1 0.053 2.40 0.1425	
D 0.15 1 0.15 6.65 0.0210	
A2 0.053 1 0.053 2.39 0.1433	
B2 0.017 1 0.017 0.75 0.4010	
C2 0.30 1 0.30 13.67 0.0021	
D2 0.029 1 0.029 1.29 0.2734	
AB 2.265E-004 1 2.265E-004 0.010 0.9208	
AC 1.321E-003 1 1.321E-003 0.060 0.8104	
AD 1.201E-003 1 1.201E-003 0.054 0.8191	
BC 0.058 1 0.058 2.60 0.1278	
BD 0.081 1 0.081 3.64 0.0759	
CD 0.071 1 0.071 3.21 0.0934	
Residual 0.33 15 0.022	
Total 1.83 29	

Table 5
Equations of coded factors for TSS, COD, Color and ammonia removal.

\[\text{TSS} = 1.501E-003 + 1.050E-003 A + 1.344E-003 B + 1.556E-004 C - 2.206E-003 D + 2.898E-003 A2 + 1.548E-003 B2 - 1.752E-003 C2 - 6.018E-004 D2 + 1.144E-003 AB - 1.206E-003 AC - 6.437E-004 AD - 1.031E-003 BC - 1.044E-003 BD - 4.375E-005 CD (3) \]

\[\text{COD} = + 268.63 - 3.67 A - 7.11 B - 71.94 C - 95.22 D - 10.63 AB - 8.38 AC + 13.75 A D + 18.62 BC - 4.50 BD + 94.50 CD (4) \]

\[\text{Color} = + 71.73 + 0.78 A - 35.61 B - 27.94 C - 19.06 D + 0.81 AB + 4.06 AC + 28.36 AD + 37.06 B C + 20.81 BD + 5.56 CD (5) \]

\[\text{Ammonia} = + 58.91 + 16.44 A + 20.21 B + 27.71 C + 30.58 D (6) \]

2.2. Coagulation process by using ZnSO₄

2.2.1. Preparation of reagent

In this section rubber wastewater was coagulated using Zinc sulphate (ZnSO₄). A set of ZnSO₄ dosages were added to rubber wastewater samples gradually to determine the optimum conditions. The performance of the best dosage was selected based on COD, Color and NH₃–N removal efficiencies. Orbital Shaker (Luckham R100/TW Rotatable Shaker 340 mm X 245 mm) with at 200 rpm was used for samples shaking [5]. All experiments were performed at room tempera-
ture (28 °C) using 100 mL of rubber wastewater samples placed in conical flasks with a 250 mL capacity. pH of the samples was controlled by using 3 M of sulphuric acid solution and sodium hydroxide solution, respectively [6]. All experiments were performed at laboratory of Malaysian Institute of chemical & Bioengineering Technology, University of Kuala Lumpur, Melaka, Malaysia.

2.3. Experimental design

Four factors, namely ZnSO₄ dosage (A), pH (B), reaction time (C) and mixing ratio (D) are thought to be influential factors on nine responses TSS, COD, color, ammonia, Fe, K, Pb, Cu, and Zn, removal efficiency from rubber wastewater samples was tested and evaluated. Face centered composite design (FCCD) in response surface methodology (RSM) was used to investigate the effect of the four factors on the selected responses and find the optimum operating conditions for the four factors. The levels of selected factors were chosen based on literature and preliminary experiments, the actual and coded levels are given in Table 2.

The relationship between the selected factors (A, B, C, D) and each of the responses is usually described in response surface methodology (RSM) by a second-order polynomial as given in

![Fig. 1. Response surface curves for the effect of two factor interaction on a)TSS, B) COD, C) Color and D) Ammonia.](image)
Fig. 2. Response surface curves for the effect of two factor on a) Fe, B) K, C) Pb, D) Cu and E) Zn.

Eq. (1).

\[Y = \beta_0 + \sum_{i=1}^{4} \beta_i X_i + \sum_{i}^{4} \beta_{ii} X_i^2 + \sum_{i<j} \beta_{ij} X_{ij} \]
Fig. 3. Interaction curves showing the behavior of two factors on the effect of a) TSS, b) COD, c) Color and d) Ammonia.

Table 6
Equations of coded factors for heavy metals removal.

Metal	Equation
Fe	$y = +1.19 +0.012 A +2.889E-003 B -7.611E-003 C +0.068 D +0.24 A2 +0.22 B2 1.16 C2 -0.51 D2 -5.375E-003 AB +4.000E-003 AC +3.375E-003 A D -3.375E-003 BC -4.750E-003 x B x D -0.024 x C x D (7)
K	$y = +1.04 -0.010 A +7.128E-003 B -0.010 C +0.081 x D +0.052 A2 +0.14 B2 -0.21 C2 +0.022 D2 +8.181E-003 A B +0.012 AC -3.206E-003 AD +0.013 BC +2.313E-004 BD +0.014 CD (8)
Pb	$y = +0.22 +8.039E-003 A -0.012 B -6.111E-003 C +8.428E-003 D +0.014 A2 +0.014 B2 -0.18 C2 -0.047 D2 -2.813E-003 AB -1.063E-003 AC -9.562E-003 AD -2.312E-003 BC -0.010 BD -0.025 CD (9)
Cu	$y = +0.011 -3.389E-004 A -6.156E-004 B +1.667E-004 C -2.661E-004 D +2.796E-003 A2 +2.426E-003 B2 -0.014 C2 +5.086E-004 D2 +8.125E-004 AB +5.625E-004 AC -6.250E-005 AD +3.125E-004 BC -6.250E-005 BD +1.688E-003 CD (10)
Zn	$y = +0.64 +0.019 A -0.016 B +0.054 C +0.090 D +0.14 A2 -0.080 B2-0.34 C2 -0.11 x D2 +3.763E-003 AB +9.088E-003 AC -8.662E-003 AD +0.060 BC +0.071 BD +0.067 CD (11)
where Y represents the dependent variable (TSS, COD, $color$, $ammonia$, Fe, K, Pb, Cu, Zn), β_0, β_i and β_{ij} are linear coefficient, quadratic coefficient and interaction coefficients respectively, need to be estimated, and X_i represents the independent variables (A, B, C, D).

All possible combination of selected factors (A, B, C, and D) to run FCCD is represented by thirty experiments distributed as follows: sixteen experiments for the factorial design, eight experiments are for axial (star) points and six experiments at the center of the design [2]. To avoid
or minimize the effect of unexpected variability in the responses, the experiments were run in random order.

2.4. Analytical methods

COD, color and NH$_3$–N, were immediately tested before and after each experiment using UV-VIS spectrophotometer (HACH DR 2800). Leachate sample was shacked well analyzed. NH$_3$–N concentration was measured by the Phenol Method No. (4500) using a UV-VIS spectrophotometer at 640 nm with a light path of 1 cm or greater. pH was measured using a portable digital pH/Mv meter (Inolab pH 720, WTW 82362 Weilheim, Germany). COD concentration was determined by the open reflux method No. (5220). Heavy metals were tested by Atomic Absorption Spectroscopy (UNICAM 929 AA spectrometer). The test values are presented as the average of the three measurements, and the difference between the measurements of each value was less than 3%. The removal efficiencies of COD and NH$_3$–N were obtained using the following Eq. (2):

$$\text{Removal(\%)} = \left[\frac{(C_i - C_f)}{C_i} \right] \times 100$$

where C_i and C_f refer to the initial and final TSS, COD, Color and NH$_3$–N concentrations, respectively.

CRediT Author Statement

Abbas F.M. Alkarkhi: Writing, original draft preparation, Conceptualization, supervision; Salem S. Abu Amr: Writing, Data curation, Conceptualization, Methodology; Wasin A.A. Alqaraghuli: Writing, data curation, modeling; Yahya Özdemir: software, reviewing, editing; Muazafar Zulkifli: Writing, visualization, methodology; M.N. Mahmud: reviewing, editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

Acknowledgements

The authors gratefully acknowledge the research facilities provided by Universiti Kuala Lumpur, Kuala Lumpur, Malaysia.

References

[1] T.J.H. Banch, M.M. Hanafiah, A.F.M. Alkarkhi, S.S.Abu Amr, N.U.M. Nizam, Evaluation of different treatment processes for landfill leachate using low-cost agro-industrial materials, Processes 8 (111) (2020) 1–12.
[2] A.F.M. Alkarkhi, W.A.A. Alqaraghuli, Y. Yusup, S.S. Abu Amr, M.N. Mahmud, Nugroho Dewayantoa, Data on the absorbance of glucose during the acid hydrolysis of the sugarcane bagasse, Data in Brief 24 (2018) 103894.
[3] S.S. Abu Amr, A.F.M. Alkarkhi, Y. Yusup, M.J.K. Bashir, Comparison and evaluation of different leachate treatment processes for chemical oxygen demand and color removals – statistical assessment, EnvironmentAsia 12 (1) (2019) 154–161.
[4] Standard Methods for the Examination of Water and Wastewater APHA, American Public Health Association (APHA), 21th ed., Washington, DC (2005).
[5] Yasin M.S. N.M.F.M., H.P.S. Hossain, M. Abdul Khalil, A. Zulkifli, A.J. Al-Gheati, A.N.A. Asis, Yahaya Treatment of palm oil refinery effluent using tannin as a polymeric coagulant: isotherm, kinetics, and thermodynamics analyses, Polymers 12 (10) (2020) 2353, doi:10.3390/polym12102353.
[6] S.W. Onn, M.J.K. Bashir, Sumathi Sethupathi, S.S. Abu Amr, Tan Tai Nguyen, Colour and COD removal from mature landfill leachate using electro-persulphate oxidation process, Mater. Today 31 (1) (2020) 69–74.