Neutrino-Induced Coherent Pion Production

L. Alvarez-Ruso1, L. Geng1, S. Hirenzaki2, M. J. Vicente Vacas1

1. Universidad de Valencia
2. Nara Women’s University
\textbf{Introduction}

- \(\nu\)-induced \textbf{coherent} \(\pi\) production reactions:
 - \textbf{Charged Current} \(\nu_l A \rightarrow l^- \pi^+ A\)
 - \textbf{Neutral Current} \(\nu_l A \rightarrow \nu_l \pi^0 A\)

- Important for oscillation experiments: systematic uncertainties
 - Example: \(\nu_l A \rightarrow \nu_l \pi^0 X\) ← background for \(\nu_e\) appearance

- Also interesting for hadronic and nuclear physics:
 - N, N-R axial form factors
 - Nuclear correlations
 - \(\pi\) in the nuclear medium

- Measured at \textbf{high energies} \(E_\nu > 2\) GeV (FNAL, GGM, SKAT, BEBC, ...)

L. Alvarez-Ruso, Universidad de Valencia & IFIC
Introduction

- G. Zeller, hep-ex/0312061 (NUINT 02)
- Data scaled to ^{12}C assuming $A^{1/3}$ dependence
- $\sigma(\text{CC})=2 \cdot \sigma(\text{NC})$

Measured at high energies $E_\nu > 2$ GeV (FNAL, GGM, SKAT, BEBC, ...)

CC Coherent Pion Production Cross Section

- $\nu^- + A \rightarrow \mu^- + \pi^0 + A$

$\sigma(10^{-40} \text{cm}^2)^{12}\text{C}$ NUCLEUS

$\sigma (E_\nu (\text{GeV}))$

$\sigma (\text{cm}^2)/12$ C

NUANCE

NEUGEN

 FNAL (CC), Wilocz, Phys. Rev. D47, 2661 (1993)
 FNAL (CC), Alderholz, Phys. Rev. Lett. 63, 2349 (1989)
 Aachen (NC), Faissper, Phys. Lett. 125B, 230 (1983)
 GGM (NC), Isosol, Phys. Rev. Lett. 52, 1096 (1984)
 SKAT (CC), Grabosch, Z. Phys. C31, 203 (1986)
 SKAT (NC), Grabosch, Z. Phys. C31, 203 (1986)
 BEBC (CC), Marage, Z. Phys. C43, 523 (1989)
 CHARM (CC), Berge, J. Phys. Lett. 157B, 469 (1985)
 CHARM II (CC), Vilain, Phys. Lett. 313B, 267 (1993)
Introduction

- Measured at high energies $E_\nu > 2$ GeV (FNAL, GGM, SKAT, BEBC, ...)
- These data are well described by models based on PCAC
 Rhein & Sehgal, NPB 223 (83)
- However, at low energies ...

- Data scaled to 12C assuming $A^{1/3}$ dependence
- $\sigma(\text{CC}) = 2 \sigma(\text{NC})$

G. Zeller, hep-ex/0312061 (NUINT 02)
Introduction

- K2K ($<E_\nu>=1.3$ GeV) finds a significant deficit of μ^- at forward angles
- Upper bound for CC Coh. π^+ production below theoretical expectations
- MiniBooNE ($<E_\nu>=0.75$ GeV) NC π^0 data set is under analysis

- **Our goal**: theoretical study of CC and NC Coherent π production at intermediate energies ($E_\nu \sim 1$ GeV) improving the calculations of: Kelkar et al, PRC 55 (97), Singh et al, PRL 96 (06)
 - Complete relativistic elementary amplitude
 - Hadronic degrees of freedom: π, N, $\Delta(1232)$
 - Renormalization of the Δ properties in the nuclear medium
 - Realistic treatment of π distortion
The model

- Elementary mechanisms ([Hernandez, Nieves & Valverde, hep-ph/071149](http://example.com)):

![Diagram of elementary mechanisms](attachment:image.png)

- Other contributions

![Diagram of other contributions](attachment:image.png)

cancel for isospin symmetric nuclei
The model

Elementary mechanisms (Hernandez, Nieves & Valverde, hep-ph/071149):

\[W, Z \quad \pi \quad W, Z \quad \pi \quad W, Z \quad \pi \quad W, Z \quad \pi \]

\[N \quad N \quad N \quad N \quad N \quad \Delta \quad N \quad \Delta \quad N \]
The model

Elementary mechanisms (Hernandez, Nieves & Valverde, hep-ph/071149):

large cancellation
The model

Elementary mechanisms (Hernandez, Nieves & Valverde, hep-ph/071149):

- Large cancellation
- Small
The model

- Elementary mechanisms (Hernandez, Nieves & Valverde, hep-ph/071149):

- Large cancellation

- Dominant

- Small
The amplitude for $\text{CC } \pi^+$ production: $\mathcal{M}_C = \frac{G}{\sqrt{2}} \cos \theta_C l_\mu J^\mu$

$J^\mu \leftarrow \text{Nuclear current} \leftrightarrow \text{sum over all nucleons}$

For the dominant direct Δ mechanism:

$J^{\mu}_{IA} = -\frac{\sqrt{3}}{2} i \int d\vec{r} e^{i(\vec{q} - \vec{p}_\pi) \cdot \vec{r}} \left[\rho_p(r) + \frac{\rho_n(r)}{3} \right] \frac{f^*}{m_\pi} D_\Delta p_\pi^\alpha \text{ Tr} \left\{ \bar{u} \Lambda_\alpha \beta \mathcal{A}^\beta \mu u \right\}$

$D_\Delta \leftarrow \text{propagator} \quad \Lambda_\alpha \beta \leftarrow \text{spin 3/2 projection operator}$

$\mathcal{A}^\beta \mu = \left(\frac{C^V_3}{M} (g^{\beta \mu} q - q^\beta \gamma^\mu) + \frac{C^V_4}{M^2} (g^{\beta \mu} q \cdot p' - q^\beta p'^\mu) + \frac{C^V_5}{M^2} (g^{\beta \mu} q \cdot p - q^\beta p^\mu) + g^{\beta \mu} C^V_6 \right) \gamma_5$

$+ \frac{C^A_3}{M} (g^{\beta \mu} q - q^\beta \gamma^\mu) + \frac{C^A_4}{M^2} (g^{\beta \mu} q \cdot p' - q^\beta p'^\mu) + C^A_5 g^{\beta \mu} + \frac{C^A_6}{M^2} q^\beta q^\mu$

Form factors:

$C^V_{3,4,5} \leftarrow \text{e N scattering} \quad C^V_6 = 0 \leftarrow \text{CVC}$

$C^A_6 = C^A_5 \frac{M^2}{m_\pi^2 - q^2} \quad C^A_5(0) = \frac{g_{\Delta N \pi} f_{\pi}}{\sqrt{6} M} \approx 1.2 \leftarrow \text{PCAC}$

$C^A_4 = -\frac{1}{4} C^A_5 \quad C^A_3 = 0 \leftarrow \text{Adler model}$
Formalism

Delta in the medium:

\[
D_{\Delta} \Rightarrow \tilde{D}_{\Delta}(r) = \frac{1}{(W + M_{\Delta})(W - M_{\Delta} - \text{Re}\Sigma_{\Delta}(\rho) + i\tilde{\Gamma}_{\Delta}/2 - i\text{Im}\Sigma_{\Delta}(\rho))}
\]

\[\tilde{\Gamma}_{\Delta} \leftarrow \text{Free width } \Delta \rightarrow N \pi \text{ modified by Pauli blocking}\]

\[\text{Re}\Sigma_{\Delta}(\rho) \approx 40 \text{MeV} \frac{\rho}{\rho_0}\]

\[\text{Im}\Sigma_{\Delta}(\rho) \leftarrow \text{many-body processes: }\]

- \(\Delta N \rightarrow N N\)
- \(\Delta N \rightarrow N N \pi\)
- \(\Delta N N \rightarrow N N N\)
Pion distortion:

\[e^{-i \vec{p}_\pi \cdot \vec{r}} \to \phi_{\text{out}}^*(\vec{p}_\pi, \vec{r}) \quad \vec{p}_\pi e^{-i \vec{p}_\pi \cdot \vec{r}} \to i \nabla \phi_{\text{out}}^*(\vec{p}_\pi, \vec{r}) \]

\[\phi_{\text{out}}^*(\vec{p}_\pi, \vec{r}) \leftarrow \text{solution of the Klein-Gordon equation} \]

\[\left(-\nabla^2 - \frac{\vec{p}_\pi^2}{2} + 2\omega_{\pi} \hat{V}_{\text{opt}} \right) \phi_{\text{out}} = 0 \]

\[\hat{V}_{\text{opt}}(r) \leftarrow \text{optical potential in the } \Delta\text{-hole model:} \]

\[Nieves, Oset & Garcia Recio NPA 554 (93) \]

\[2\omega_{\pi} \hat{V}_{\text{opt}}(r^*) = 4\pi \frac{M^2}{s} \left[\nabla \cdot \frac{\mathcal{P}(r)}{1 + 4\pi g' \mathcal{P}(r)} \nabla - \frac{1}{2} \frac{\omega}{M} \Delta \frac{\mathcal{P}(r)}{1 + 4\pi g' \mathcal{P}(r)} \right] \]

\[g' = 0.63 \leftarrow \text{Landau-Migdal parameter} \]

\[\mathcal{P} = -\frac{1}{6\pi} \left(\frac{f^*}{m_\pi} \right)^2 \left\{ \frac{\rho_p + \rho_n/3}{\sqrt{s} - M_\Delta - \text{Re}\Sigma_\Delta + i \Gamma_\Delta / 2 - i \text{Im}\Sigma_\Delta} + \frac{\rho_n + \rho_p/3}{-\sqrt{s} - M_\Delta + 2M - \text{Re}\Sigma_\Delta} \right\} \]

Direct \quad \text{Crossed} \\
\Delta\text{-hole excitations}
Results

Medium effects reduce considerably the cross section

Pion distortion shifts down the peak

Eikonal fails for $p_\pi < 400$ MeV
Results

- Dependence on the effective number of participants $P = Z + N/3$

\[
\sigma \sim \frac{1}{P^2}
\]

- Strong pion absorption forces de reaction to be peripheral
- Effect of the nuclear form factor on heavier nuclei
Results

- **CC Coherent π production at K2K:**
 - No evidence for coherent π production:
 \[
 < \sigma_{coh} >_{p_\mu > 450 \text{ MeV} / c} < 7.7 \times 10^{-40} \text{ cm}^2
 \]
 - Our result:
 \[
 < \sigma_{coh} >_{p_\mu > 450 \text{ MeV} / c} = 11 \times 10^{-40} \text{ cm}^2
 \]
- **Reasons for the discrepancy:**
 - Axial N-Δ not sufficiently constrained (more data needed)
 - More complete theoretical description of the elementary amplitude (heavier resonances) required
 - Optical potential at lower and higher energies can be improved
 - Difficulties in the experimental separation of coherent and incoherent processes:
The coherent cross section might be considerably smaller than the Impulse Approximation prediction but still bigger than the K2K upper limit.
Results

NC Coherent Pion Production: \(\nu_l A \rightarrow \nu_l \pi^0 A \)

\[
\sigma_{NC} \neq \frac{\sigma_{CC}}{2}
\]

Phase Space: \(m_\mu \neq 0 \)

Interference terms: \(q^2 \neq 0 \) contributions
Results

- **Average over the MiniBooNE flux:**

 \[< \sigma_{coh} > = 8.2 \times 10^{-40} \text{ cm}^2 \]

- **Preliminary experimental result (J. Raaf, Thesis):**

 \[< \sigma_{coh} > = (7.7 \pm 1.6(stat) \pm 3.6(syst)) \times 10^{-40} \text{ cm}^2 \]
Results

NC Coherent Pion Production:

\[\sigma(\nu) \neq \sigma(\bar{\nu}) \quad \text{for } q^2 \neq 0 \text{ contributions} \]

The difference is larger for lighter nuclei.
Conclusions

- Theoretical study of CC & NC coherent pion production:
 - Complete relativistic elementary amplitude in terms of π, N, $\Delta(1232)$
 - Nuclear form factor in the Impulse Approximation
 - Renormalization of the Δ properties in the nuclear medium
 - π distortion \leftrightarrow KG equation with a realistic optical potential
- Nuclear effects significantly reduce the coherent cross section
- The experimental separation between coherent and incoherent processes is model dependent and should be handled with care
- Good agreement with preliminary NC MiniBooNE results