Chiral magnetoresistance in Pt/Co/Pt zigzag wires

Yuxiang Yin,1 Dong-Soo Han,1 June-Sea Kim,1 Reinoud Lavrijsen,1 Kyung-Jin Lee,2,3 Seo-Won Lee,2 Kyoung-Whan Kim,4 Hyun-Woo Lee,5 Henk J. M. Swagten,1 and Bert Koopmans1

1Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
2Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
3KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
4Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
5PCTP and Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea

The Rashba effect leads to a chiral precession of the spins of moving electrons while the Dzyaloshinskii-Moriya interaction (DMI) generates preference towards a chiral profile of local spins. We predict that the exchange interaction between these two spin systems results in a ‘chiral’ magnetoresistance depending on the chirality of the local spin texture. We observe this magnetoresistance by measuring the domain wall (DW) resistance in a uniquely designed Pt/Co/Pt zigzag wire, and by changing the chirality of the DW with applying an in-plane magnetic field. A chirality-dependent DW resistance is found, and a quantitative analysis shows a good agreement with a theory based on the Rashba model. Moreover, the DW resistance measurement allows us to independently determine the strength of the Rashba effect and the DMI simultaneously, and the result implies a possible correlation between the Rashba effect, the DMI, and the symmetric Heisenberg exchange.

In a magnetic system with inversion symmetry breaking combined with spin-orbit coupling (SOC), a variety of chirality-related phenomena occur. For instance, due to the Rashba effect [1], the spins of the conduction electrons flowing at an interface are subject to an effective in-plane magnetic field due to the relativistic SOC, resulting in spin precession around the field during its transport. In this case, the direction of the magnetic field depends on the electron flow direction. In contrast, the precession of the conduction spins, as can be seen from comparing Figs. 1(a) and 1(b), is independent of the flow direction and shares the same rotational sense (denoted by a chirality of electrons, C_e) [2]. Apart from the chiral behavior of the conduction spins, the chiral nature of localized spins has recently been discovered in ferromagnetic materials with inversion asymmetry and SOC. This gives rise to the Dzyaloshinskii-Moriya interaction (DMI) [3, 4] leading to a chiral spin texture of the localized spins (C_m), manifested as Neél type magnetic domain walls (DWs) [5] and magnetic skyrmions [6], which are crucial to the future design of spintronic devices.

Although these two effects originate in different spin systems, one can speculate about their interplay through exchange interaction between the conduction and localized spins [7,8]. This results in a magnetoresistance (MR) which arises when the conduction electron spins propagate with a fixed chirality due to Rashba-type SOC and interact with the chiral DMI-induced magnetic texture. As shown in Figs. 1(c) and 1(d), this should lead to lower (higher) resistance when C_e is identical (opposite) to C_m. This MR can be termed as ‘chiral MR’, since the magnitude of the MR varies for spin textures with different chiralities. However, a direct experimental evidence of this chiral MR is not found so far. Therefore, the measurement of chiral MR could not only enrich the spectrum of chirality-related physical phenomena but also shed light on the debated roles of the DMI and Rashba effect for fast current-driven DW motion [10] and other SOC-related phenomena [11,12].

Besides, this type of magnetoresistance provides further insights in engineering magnetic thin film systems with specifically desired chiral entities for future applications in nanoelectronics.
FIG. 2. Theoretical prediction of R_{DLZ}/R_{min}, where R_{min} is the resistance at H_{min}, as a function of in-plane field H_x. The white arrows indicate the DW angle. Inset: The total DW resistance for two DWs with opposite chiralities.

In this work, a chiral MR is observed by measuring the magnetic DW resistance, which probes the interaction between an electric current and a magnetic DW. The magnetic DW is a twisted spin structure whose chirality can be altered by an external field [13], making it a perfect playground for measuring the chiral MR. We report results on a controllable, specifically designed DW system where chiral DWs are created by modifying the perpendicular magnetic anisotropy of a zigzag wire using a focused ion beam, and applying an in-plane field for switching between the DW chiralities. It is found that the DW resistance varies with the chirality of DWs, and the observed behavior can be described by a theoretical model based on the Rashba Hamiltonian, lending strong support to our interpretation of a chirality-dependent interaction between the conduction and localized spins.

We first analytically derive the chiral MR explained in Fig. 1. For better legibility, we exaggerate the effect of Rashba SOC but mostly ignore the effect of exchange interaction between the conduction electrons and local magnetization. However, in real systems, the exchange interaction is much higher than the Rashba interaction. Thus we adopt this regime and start from the Rashba Hamiltonian $(\hbar^2 k_R/2m_e)\sigma \cdot (k \times \hat{z})$ added to a strong exchange interaction $J \sigma \cdot m$. Here k_R characterizes the preferred spin precession rate, \hbar the plack constant, m_e the electron mass, k the electron momentum, \hat{z} the interface normal, and σ the spin Pauli matrix, J the exchange energy, and m the direction of magnetization. The Rashba model captures core effects of the strong SOC combined with inversion symmetry breaking at the interface [14]. Recently, it was predicted [8] that linear effects of the chirality can be obtained from non-chiral theories simply by replacing $\partial_x m$, where x is the current flow direction, with the so-called chiral derivative $\partial_x \mathbf{m} = \partial_x \mathbf{m} + k_R (\hat{z} \times \hat{x}) \times \mathbf{m}$. Here, we apply the chiral derivative to the DW resistance derived by Levy and Zhang [15], $R_{DLZ} = \rho_{DW} \int (\partial_x \mathbf{m})^2 \text{d}x$, where ρ_{DW} is the DW resistivity. By assuming a DW with Walker profile [10] and after some algebra (see Supplementary Material), we obtain $R_{DLZ} = 2\rho_{DW} \lambda^{-1} \pm k_R \pi \sin \phi$, where λ is the DW width, ϕ the DW in-plane angle, and \mp refers to up-down and down-up DW’s, respectively. The DW is a Bloch wall when $\phi = 0$ and a Néel wall when $\phi = \pm \pi/2$. The second term in R_{DLZ} is the chiral DW resistance, which changes its sign when the DW chirality changes.

Apart from the contribution from the inhomogeneity of the magnetic texture, the resistance also depends on the local magnetization direction itself due to anisotropic magnetoresistance (AMR) [11]. Based on AMR, the resistance is lower (higher) where the magnetization is perpendicular (parallel) to the current flowing direction. The theory of AMR implies that the MR is proportional to $\sin^2 \phi$. After adding the AMR contribution to R_{DLZ}, the total DW resistance can be written as

$$R_{DW \pm} = \Delta R_{AMR} \sin^2 \phi + 2\rho_{DW} \lambda^{-1} \pm R_{chiral} \sin \phi. \quad (1)$$

where ΔR_{AMR} is a proportionality constant of AMR and $R_{chiral} = 2\rho_{DW} k_R \pi$ is the chiral DW resistance.

Experimentally, ϕ can be tuned by applying an in-plane field H_x which is perpendicular to the DW. To determine the relation between ϕ and H_x, we start from the energy functional $E = J(A(\partial_x m)^2 + \mu_0 H_S m_S^2 + D \hat{y} \cdot (m \times \partial_x m) - \mu_0 H_s m_S m_x) dx$ [17], where A is the exchange stiffness, H_s the perpendicular anisotropy, H_d the demagnetizing field, D the DMI parameter, and m_S the saturation magnetization. Applying the Walker ansatz reduces the energy functional to a function of ϕ only. The energy minimizing condition $\partial E/\partial \phi = 0$ gives

$$\sin \phi = \frac{\pi \pm D + \mu_0 H_s m_S \lambda}{2 \mu_0 H_d m_S \lambda}, \quad (2)$$

Here, we ignore the dependence of λ on H_z, which is too weak to affect the analysis (see Supplementary Material). By substituting Eq. (2) into Eq. (1), we plot in Fig. 2 the resulting R_{DW}/R_{min} as a function of H_x/H_{min}, where R_{min} and H_{min} are the values where the DW resistance is minimal. Three observations can be made: (i) There is an increase of the resistance when H_x increases. This is expected since the field pulls the DW into a Néel state, thereby increasing the AMR. (ii) For a finite DMI, the DW is in between Bloch and Néel type for $H_x = 0$, i.e., $0 < \phi < \pi/2$ [18, 19]. This tilt angle depends on the magnitude of the DMI, allowing us to determine the DMI energy density $D = \mu_0 H_{DMI} m_S \lambda$, where H_{DMI} is the effective DMI field, by measuring the field shift H_{min} (see Supplementary Material). (iii) The most striking feature from this theory is a difference in R_{DW} (indicated by $2R_{\text{chiral}}$ in Fig. 2) at high applied in-plane fields.
Thus, the total chiral resistance has an opposite chirality when applying a high in-plane field. Therefore, the chiral resistance, as we will show later on, because the DW pair is not suitable for measuring the chiral resistance, as it will experimentally show later on, because the DW pair has an opposite chirality when applying a high in-plane field. Thus, the total chiral resistance \(R_{DW+} + R_{DW-} \) is averaged out, as shown in the inset of Fig. 2. In order to overcome this difficulty, we develop an alternative, zigzag strip [Fig. 3(b)]. The zigzag together with anisotropy modifications allows for two DWs with the same chirality where \(C_m \) is controllable by the in-plane field.

Figure 3(c) and 3(d) show Kerr microscope images of the sample structure used for the chiral DW resistance measurements. A perpendicular magnetized stack Pt(4 nm)/Co(0.5 nm)/Pt(2 nm) is employed to provide a sizable DMI [22]. Here, the red dashed area indicates the \(\text{Ga}^+ \) irradiation region with a dose of \(0.5 \times 10^{13} \text{cm}^{-2} \) at 30 keV. Four 1 \(\mu \text{m} \) wide zigzag wires are patterned using electron-beam lithography and a lift-off, in the form of a Wheatstone bridge to improve the signal-to-noise ratio. We apply an AC current with a constant strength \(I_{\text{RMS}} = 0.25 \text{mA} \) at a frequency of \(f = 501 \text{Hz} \), and measure the differential output signal \(V_{\text{diff}} = V_A - V_B \) with a lock-in amplifier [See Fig. 3(e) for \(V_A \) and \(V_B \)], which can be used to calculate the change of the resistance in the wire due to the DWs.

Figure 3(c) shows the resistance change \(\Delta R \) in the wire for DWs whose number is controllable. In the measurement, the magnetization is first saturated by applying \(\mu_0 H_z = -10 \text{mT} \), then a positive magnetic field is swept from 0 mT to 10 mT. A stepwise increase of \(\Delta R \) is observed, corresponding to the appearance of DWs. The coercive fields of the irradiated domains show small statistical variations so that not all DWs appear simultaneously. The number of DWs nucleated can easily be determined by Kerr microscopy (see Supplementary Material). The solid red and blue lines indicate ranges where the number of DWs is constant, and successive increases (decreases) of DWs is indicated by red (blue). In Fig. 3(f), \(\Delta R \) is plotted as function of the number of DWs present, showing a linear dependence as expected. From the linear fit, we extract a resistance change of \(0.38 \pm 0.02 \mu\text{Ohm} \) per DW, which is comparable to our previous report [20].

The procedure to measure the chiral DW resistance is as follows: (i) The field \(H_x \) at which we want to measure \(R_{DW} \) is set, (ii) we saturate the sample at \(\mu_0 H_z = -10 \text{mT} \), (iii) a field of \(\mu_0 H_z = +1 \text{mT} \) is applied and \(V_{\text{diff}} \) is measured using a lock-in amplifier, (iv) we carefully increase \(\mu_0 H_z \) to nucleate a few domains, (v) \(\mu_0 H_z \) is then reduced back to \(\mu_0 H_z = +1 \text{mT} \) and \(V_{\text{diff}}' \) is measured, and the voltage difference \(\Delta V = V_{\text{diff}}' - V_{\text{diff}} \) is recorded. Steps (iii)-(v) are then repeated to systematically track the resistance change as a function of number of DW's giving an accurate measure of \(R_{DW} \) at a given \(H_x \). This procedure is then repeated for every \(H_x \). In order to quantitatively compare the measured \(R_{DW} \) as a function of \(H_x \) with the theoretical model we should consider the DW resistance in the magnetic Co layer, which can be obtained from \(\Delta R \) by using a Fuchs-Sondheimer model [21] to exclude current shunting through the Pt layers.

The measured \(R_{DW} \) of the Pt/Co/Pt zigzag and straight wires as a function of in-plane field are shown in Figs. 4(a) and 4(b), respectively. The blue and red squares represent the magnetic switching with different polarities (up-down and down-up). For the zigzag wire, we observe that \(R_{DW} \) rises as \(H_x \) increases, owing to an increase of AMR when a Bloch wall transforms into a Néel wall. In addition, we clearly observe a field shift, which originates mainly from the DMI [18, 19, 22] and partially from the chiral MR (see Supplementary Material). As expected from the chirality of the DW spin structures, the field shift has an opposite sign for DWs of opposite polarity. Another prominent observation in
The AMR parameter is similar to the value Δ errors are presented in Supplementary Material). The increase of DW resistance at small field is indeed due to (see Supplementary Material), demonstrating that the $86 \, \text{m}\Omega$ obtained from a micromagnetic simulation $[24, 25]$ by taking the average of the up-down and down-up data: two data sets separately, we extract the free parameters agreement with the experimental data. Since we fit these in Fig. 4(a) as blue and red lines, which is in a good (in our previous works $[18, 23]$: We assume standard material parameters for Co as used in our previous works $[18, 23]$: $A = 16 \times 10^{-12} \, \text{J/m}$, $M_S = 1070 \, \text{kA/m}$, effective anisotropy $K_{\text{eff}} = 0.28 \, \text{MJ/m}^3$, and $\lambda = \sqrt{A/K_{\text{eff}}} = 8 \, \text{nm}$. The fits are plotted in Fig. 4(a) as blue and red lines, which is in a good agreement with the behavior illustrated in the inset of Fig. 2. Consequently, we can conclude that the aforemeasured resistance difference results from the chirality of DWs.

Next, we estimate the strength of the Rashba effect and DMI by fitting to our theoretical model $[\text{Eq. (1)}]$. We assume standard material parameters for Co as used in our previous works $[18, 23]$: $A = 16 \times 10^{-12} \, \text{J/m}$, $M_S = 1070 \, \text{kA/m}$, effective anisotropy $K_{\text{eff}} = 0.28 \, \text{MJ/m}^3$, and $\lambda = \sqrt{A/K_{\text{eff}}} = 8 \, \text{nm}$. The fits are plotted in Fig. 4(a) as blue and red lines, which is in a good agreement with the behavior illustrated in the inset of Fig. 2. Consequently, we can conclude that the aforemeasured resistance difference results from the chirality of DWs.

Using the values obtained from our fitting, we find $A = D/2k_R = 17 \times 10^{-12} \, \text{J/m}$, which is of the same order of magnitude as the exchange stiffness of bulk Co $[23]$. Systematic errors of D and k_R could arise from the uncertainty in K_{eff} and λ due to the Ga irradiation, which we do not separately address in the current work. However, since D and k_R both scales with λ, the errors do not affect the verification of Eq. (3). This agreement found from the Rashba model and using our experimentally extracted parameters implies that the DMI in our sample may originate from the Rashba-induced twisted Ruderman-Kittel-Kasuya-Yosida interaction $[8, 9, 28, 29]$ rather than the original explanation by Moriya $[4]$ based on a superexchange model. Quantitatively, the Rashba strength is proportional to the ratio of symmetric and antisymmetric exchange. It implies that the DMI may be tuned by controlling the strength of the Rashba effect (e.g., by applying an electric field $[30, 31]$) or the strength of the symmetric exchange. In passing, we note that a one-to-one correspondence between the DMI and symmetric exchange was demonstrated very recently using an optical spin-wave spectroscopy $[32]$. Although we used the Rashba model to analyze the chiral DW resistance in view of chiral precession of conduction electron spins, another possible explanation might be found in considering the bulk spin Hall effect (SHE) of Pt. As far as symmetry constraints are concerned, it is not impossible for the SHE to generate the chiral DW resistance, though such theory is not developed yet. Specifically, considering that the SHE is of bulk origin, we do not understand how the chiral DW resistance due to the SHE could match with the DMI, which, in our system, is of interfacial origin. In contrast, the good match between R_{chiral}/R_{LZ} and $(\pi\lambda/2)(D/A)$ reported value $D = 0.1 \, \text{mJ/m}^2$ as measured in a similar Pt/Co/Pt stack $[11]$. For the Rashba coefficient, a first-principles calculation predicts $k_R = 14.9 \times 10^9 \, \text{m}^{-1}$ for a Pt/Co interface. This value is not representative for our experimental system since a Pt/Co/Pt stack is used where two opposing Pt/Co and Co/Pt interfaces need to be taken into account leading to much smaller effective Rashba coefficient $[8, 26, 27]$. Indeed, we extract a k_R which only amounts up to 9.6 \% of the quoted theoretical value.

Since we can independently measure the strength of the Rashba effect and DMI, sharing common origins (SOC and structural inversion asymmetry) in the same system, we can explore their correlation possibly shedding light on their entangled role in SOC-related phenomena $[11, 12]$. For example, it is shown that the Rashba model implies the interfacial DMI energy density D is proportional to a Rashba coefficient in a form of $[8]$

$$D = 2k_R A. \quad (3)$$

As shown in Fig. 4(a), the magnitude of the DW resistance depends on the chirality of Néel walls, which can be varied by reversing the in-plane field or changing the polarity of the Néel walls. As can be seen, a substantial difference in resistance at saturation is observed in the zigzag wire, as expected from our theoretical prediction. Such difference in resistance for opposite chirality of Néel walls is strongly supported by the results from the straight wire, where all chirality-induced effects should be canceled out due to the opposite chirality of two DWs under an in-plane field. Indeed, in contrast to the results from the zigzag wire, no significant difference between the up-down and down-up data sets are seen in Fig. 4(b). This is additionally confirmed by performing a fit to the data as further explained in Supplementary Material, showing a good agreement with the behavior illustrated in the inset of Fig. 2. Consequently, we can conclude that the aforemeasured resistance difference results from the chirality of DWs.

At saturation, a substantial difference in resistance is observed in the zigzag wire, as expected from our theoretical prediction. This is additionally confirmed by performing a fit to the data as further explained in Supplementary Material, showing a good agreement with the behavior illustrated in the inset of Fig. 2. Consequently, we can conclude that the aforemeasured resistance difference results from the chirality of DWs.

As shown in Fig. 4(a), the magnitude of the DW resistance depends on the chirality of Néel walls, which can be varied by reversing the in-plane field or changing the polarity of the Néel walls. As can be seen, a substantial difference in resistance at saturation is observed in the zigzag wire, as expected from our theoretical prediction. Such difference in resistance for opposite chirality of Néel walls is strongly supported by the results from the straight wire, where all chirality-induced effects should be canceled out due to the opposite chirality of two DWs under an in-plane field. Indeed, in contrast to the results from the zigzag wire, no significant difference between the up-down and down-up data sets are seen in Fig. 4(b). This is additionally confirmed by performing a fit to the data as further explained in Supplementary Material, showing a good agreement with the behavior illustrated in the inset of Fig. 2. Consequently, we can conclude that the aforemeasured resistance difference results from the chirality of DWs.

The measured DW resistance of a single DW as a function of in-plane field on (a) a zigzag wire and (b) a straight wire. The blue and red squares represent the magnetic switching with different polarities (up-down and down-up, respectively). The blue and red solid lines are fits to the data based on the theoretical model. Error bars are single standard deviations.
in our experiment suggests that the chiral DW resistance
and the DMI share the common origin.

In summary, we measured the DW resistance on a
magnetic zigzag wire and found that it was chirality de-
pendent. This measurement allows us to unambiguously
determine the magnitude of the Rashba effect and DMI
as independent parameters. A quantitative agreement
was found between experiment and theory, supporting
the idea that the Rashba effect could be coupled to
DMI via the symmetric exchange interaction. Besides its
fundamental importance, the chiral DW resistance opens
up possibilities of designing energy-efficient magnetic
DW devices, for example, if we combine it with recently
proposed electric-field control of DW chirality [33].

SUPPLEMENTARY MATERIAL

See Supplementary Material for 1. Derivation of
chiral DW resistance. 2. DW width variation. 3.
Quantification of the DMI by the field shift. 4. The real-
time DW resistance measurement. 5. Determination of
the anisotropic magnetoresistance. 6. Straight Pt/Co/Pt
wire: fitting the experimental data. 7. DW resistance
measurement of other samples. 8. DW resistance
measurement of Pt/Co/AlOx.

ACKNOWLEDGEMENT

The authors acknowledge P. Haney, C.-Y. You,
M. D. Stiles, and J. McClelland for critical reading of
the manuscript. This work is part of the research
programme of the Foundation for Fundamental Research
on Matter (FOM), which is part of the Netherlands
Organisation for Scientific Research (NWO). K.W.K.
acknowledges support under the Cooperative Research
Agreement between the University of Maryland and
the National Institute of Standards and Technology,
Center for Nanoscale Science and Technology, Grant No.
70NANB10H193, through the University of Maryland.
K.W.K also acknowledges support by Basic Science
Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Education (2016R1A6A3A03008831). H.W.L was
supported by the National Research Foundation of
Korea (NRF) (Grants No. 2011-0030046 and No.
2013R1A2A2A05006237). K.J.L was supported by
the NRF (Grants No. 2011-0027905 and No. NRF-
2015M3D1A1070465).

* E-mail: y.yin@tue.nl
[26] F. Freimuth, S. Blügel, and Y. Mokrousov, Phys. Rev. B 90, 174423 (2014).

[27] R. Lavrijsen, P. P. J. Haazen, E. Murè, J. H. Franken, J. T. Kohlhepp, H. J. M. Swagten, and B. Koopmans, Appl. Phys. Lett. 100, 262408 (2012).

[28] A. Fert and P. M. Levy, Phys. Rev. Lett. 44, 1538 (1980).

[29] H. Imamura, P. Bruno, and Y. Utsumi, Phys. Rev. B 69, 121303 (2004).

[30] T. Liu and G. Vignale, Phys. Rev. Lett. 106, 247203 (2011).

[31] S. E. Barnes, J. Ieda, and S. Maekawa, Sci. Rep. 4, 4105 (2014).

[32] H. T. Nembach, J. M. Shaw, M. Weiler, E. Jué, and T. J. Silva, Nat. Phys. 11, 825 (2015).

[33] H.-B. Chen, Y.-H. Liu, and Y.-Q. Li, J. Appl. Phys. 115, 133913 (2014).