Trivalent inorganic arsenic [As(III)] is a known human carcinogen, with liver, skin and lung as target sites (Abernetthy et al. 1999). In solution at physiologic pH, As(III) is primarily in the form of the undissociated acid arsenic trioxide [As(OH)3] and not the oxonium arsenite (Ramirez-Solis et al. 2004). The anhydrous form of arsenite trioxide (As2O3) is also used clinically as a chemotherapeutic agent for the treatment of acute promyelocytic leukemia (Soignet et al. 1998). In tissues of some mammalian species, As(III) is methylated, forming trivalent and pentavalent products such as methylarsonous acid (MAs(III)), methylarsonic acid (MAs(V)), dimethylarsonic acid (DMAs(V)), and trimethylarsine oxide [TMAs(V)O] and trimethylarsine [TMAs(III)] (Cullen et al. 1984; Waters et al. 2004a). The liver is considered a major site of arsenic methylation, although other tissues also have the capacity to methylate arsenic (Vahter 2002). In humans, DMAs(III) and DMAs(V) appear to be the end products of this pathway (Thomas et al. 2001). MAs(III) and DMAs(III) are significantly more cytotoxic than As(III), perhaps because they are more potent inhibitors of critical enzymes (Thomas et al. 2001) or more efficient modulators of signal transduction pathways that regulate cellular metabolism and survival (Drobona et al. 2003; Walton et al. 2004). Thus, although the overall role of biomethylation in modulation of As(III) toxicity remains unclear, it is possible that MAs(III) and DMAs(III) significantly contribute to adverse effects associated with acute or chronic exposure to As(III).

A mammalian As(III) methyltransferase, Cyt19 or AS3MT, has been identified in rat liver (Lin et al. 2002; Walton et al. 2003). This enzyme catalyzes the sequential transfer of methyl groups from S-adenosylmethionine to trivalent arsenicals and the reduction of pentavalent methylated intermediates in the metabolic pathway for As(III) (Waters et al. 2004a, 2004b). The methylated arsenicals are released from liver into the bloodstream and end up in urine, skin, hair, and other tissues. For investigators to understand the mechanisms of arsenic toxicity and carcinogenesis as well as the ability of arsenic to serve as a chemotherapeutic agent, it is important to determine how methylated arsenicals are transported out of the liver and how they enter target tissues.

In this study, we show that aquaporin 9 (AQP9) conducts MAs(III). AQP9 is a member of the aquaglyceroporin family of channels that facilitates bidirectional movement of small neutral solutes such as glycerol and urea (Agr and Kozono 2003). Notably, the tissues with the highest expression of AQP9 include the liver (Abedin et al. 2002), an organ that plays a key role in the metabolism of arsenic. AQP9 is essential for the glycerol transport in the bile ducts and ductules of the liver. We previously identified the Escherichia coli aquaglyceroporin GlpF as a channel for As(III) and trivalent inorganic antimony [Sb(III)] (Meng et al. 2004; Sanders et al. 1997). In E. coli, uptake of metalloids produces toxicity. In contrast, in Sinorhizobium meliloti, downhill efflux of internally generated As(III) by another aquaglyceroporin, AqpS, confers resistance (Yang et al. 2005). Thus, aquaglyceroporins catalyze bidirectional movement of trivalent arsenicals. In Saccharomyces cerevisiae, the aquaglyceroporin Fps1p mediates uptake of As(OH)3+, producing sensitivity. We have shown that rat AQP9, which has broadest solute permeability (Borgnia et al. 1999) among mammalian aquaglyceroporins, facilitates As(OH)3+ transport when expressed in frog oocytes or S. cerevisiae (Liu et al. 2002). Thus, movement of arsenite appears to be a ubiquitous property of aquaglyceroporin channels from prokaryotes to eukaryotes.

In solution at neutral pH, the most likely form of MAs(III) is methanearsonous acid [CH3As(OH)2], so it was reasonable to consider the possibility that MAs(III) uses the same translocation pathway as As(OH)3. Here, we show that rat AQP9 conducts MAs(III). In contrast, yeast Fps1p did not exhibit significant MAs(III) conductivity, demonstrating that aquaglyceroporins have a wide variation in selectivity for arsenicals. We examined the roles of two specific residues in AQP9 in MAs(III) transport by site-directed mutagenesis. From the crystal structures of GlpF (Fu et al. 2000) and AQP1 (Sui et al. 2001), it has been proposed that the positive charge of GlpF residue Arg-195 and AQP1 residue Arg-206 serve as the filter that prevents movement of protons or other positive ions (Jensen et al. 2003; Tajkhorshid et al. 2002). In this study, we showed that substitution of AQP9 residue Arg-219 eliminates MAs(III) uptake, consistent with a requirement for an arginine residue for...
conduction of CH$_3$As(OH)$_2$. The hydrophobic residue Phe-56 in AQP1 has been proposed to orientate the water molecule to form a hydrogen bond with Arg-195 (de Groot and Grubmuller 2001). The effect of substitution of the corresponding residue in AQP9, Phe-64, was investigated, and the results indicate that a hydrophobic residue is not required at that position. We propose that AQP9 is central to arsenic metabolism in liver, and aquaglyceroporins may play similar roles in other tissues. As(III) enters the hepatocyte down its concentration gradient through AQP9. Inside the cell, As(III) is methylated and reduced to MAs(III). Internaly generated MAs(III) then flows out of the hepatocyte and into the bloodstream down its concentration gradient via AQP9.

Materials and Methods

Strains and plasmids. E. coli and S. cerevisiae strains and plasmids used in this study are described in Table 1. Two E. coli strains were used. The chromosomal arsRBC operon, which confers low-level resistance to arsenite, had been previously described (Sanders et al. 1997). Similarly, two S. cerevisiae strains were used. In yeast strain MG102, the YCF1 and ACR3 genes encoding arsenite resistance transporters were disrupted, rendering the cells sensitive to arsenite (Ghosh et al. 1999). Strain HD9 was derived from MG102 by disruption of the FPS1 gene (Liu et al. 2002), which makes the yeast cells resistant to arsenite because it is not taken up.

Chemicals and media. Methylarsine oxide was provided by W. R. Cullen (University of British Columbia, Vancouver, Canada) and used as a precursor of MAs(III). Methylarsine oxide is hydrolyzed to MAs(III) in aqueous solution (Petrick 2001). Sodium arsenite was purchased from Sigma Chemical Co. (St. Louis, MO). S. cerevisiae strains were grown at 30°C in minimal synthetic dextrose (SD) medium (Adams et al. 1998) with 2% galactose and supplemented with the required auxotropic requirements. E. coli cells were grown in Luria-Bertani (LB) medium (Sambrook et al. 1989) at 37°C.

DNA manipulations and site-directed mutagenesis. Plasmid pAQP9 carrying the rat AQP9 gene (Liu et al. 2002) was purified using Qiagen miniprep spin column and used for site-directed mutagenesis (Stratagene, La Jolla, CA). Each mutation was verified by DNA sequencing of the entire gene. The mutants were transformed into yeast using a Geno easy-_transform kit (Geno Technologies, St. Louis, MO). Oligonucleotides used were as follows: R219E forward, GGA ACT GAT TGC TTC AGC TGG GTT C; R219E reverse, GAA CCC AGC TGA AGC CCT CAG TCC C; R219H forward, GGA ACT GAT GTC ATG AGC TGG GTT C; R219H reverse, GAA CCC AGC TCA TGA CCT CAG TCC C. Construction of the R219A, R219K, F64A, F64W, and F64T mutants have been previously described (Liu et al. 2004). Expression of each mutant AQP9 protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting, as described previously (Liu et al. 2004).

Metal ion resistance assays. For E. coli, strains were grown overnight at 37°C in liquid LB medium with shaking, diluted into LB with the indicated concentrations of metalloid, and allowed to grow with shaking for an additional 8 hr. For S. cerevisiae, strains were grown overnight at 30°C in liquid SD medium with 2% galactose and the appropriate supplements. The cultures were diluted into fresh SD medium to an optical density of 600 nm (OD$_{600nm}$) of 0.2 in the presence of varying concentrations of the metalloid salts and incubated for an additional 20 hr, after which growth was estimated from OD$_{600nm}$.

Transport assays. In vivo metalloid uptake assays were performed as previously described (Liu et al. 2002). Briefly, either E. coli or yeast cells were grown to exponential phase, harvested, washed with transport buffer consisting of 75 mM HEPES, 0.15 M KCl, 1 mM MgCl$_2$, pH 7.3, and suspended to a density of 2 × 105 cells/mL in the same buffer containing 0.1 M glucose, all at room temperature. The assay was initiated by addition of either 10 µM...
MAS(III) or 10 µM As(III), final concentration. Portions (0.1 mL) were withdrawn at intervals and filtered through nitrocellulose filters (0.5-µm pore size; Whatman Inc., Florham Park, NJ). The filters were washed with 5 mL of transport buffer 3 times and dried. The membrane was treated in 70% nitric acid at 70°C until dissolved, and HPLC-quality water added to bring each sample to 7 mL. The amount of arsenic was determined by inductively coupled plasma mass spectrometry (ICP-MS) (PerkinElmer, Norwalk, CT).

Results

MAS(III) uptake in E. coli. We have previously shown that the aquaglyceroporin GlpF facilitates uptake of As(OH)₃ in E. coli and that deletion of GlpF results in loss of uptake (Meng et al. 2004). Here we examined the ability of GlpF to transport MAS(III). As(III) and MAS(III) sensitivity and uptake were compared in two E. coli strains. One was AW3110 (ΔarsRBC), in which the chromosomal arsRBC operon, which confers resistance to both arsenate and arsenite, was deleted. Thus, this strain is hypersensitive to As(III). The second strain was OSBR1 (ΔarsRBCΔglpF), which was derived from AW3110 by disruption of the gene for GlpF. Because this lacks the uptake system for As(III), it is resistant to the metalloid. Both strains were sensitive to MAS(III) (Figure 1A) and transported MAS(III) similarly (Figure 1B). These data suggest that most MAS(III) is taken up by a system or systems other than GlpF, which accounts for the sensitivity of E. coli to this methylated species. GlpF participation in MAS(III) transport, if any, is negligible. In contrast, AW3110 takes up As(III), whereas OSBR1 does not (Figure 1C). Because of the high rate of uptake of MAS(III), it is not possible to conclude whether GlpF conducts MAS(III).

MAS(III) uptake in S. cerevisiae by Fps1p and mammalian AQP9. The ability of the yeast aquaglyceroporin Fps1p to conduct MAS(III) was examined. In these assays, S. cerevisiae strains MG102 (acr3Δ ycf1Δ) and HD9 (acr3Δ ycf1Δ fps1Δ) were used. MG102 is hypersensitive to As(III) because both ACR3, which encodes a plasma membrane As(III) extrusion carrier, and YCF1, which encodes a homologue of the ATP binding cassette ATPase multidrug resistance–associated protein (ABC ATPase MRP) (Cole et al. 1994) and sequesters arsenite triglutathione [As(GS)₃] in the vacuole, were deleted (Ghosh et al. 1999). Like its parent, HD9 is acr3Δ ycf1Δ but has become resistant to As(III) because it is also fps1Δ and so does not take up As(III) (Liu et al. 2002). MG102 and HD9 exhibited similar resistance to MAS(III), as did HD9 expressing FSP1 from a plasmid (Figure 2A). However, when rat AQP9 was expressed from a plasmid in HD9, yeast cells became sensitive to MAS(III).

The resistance phenotype could be related to the ability of the cells to take up MAS(III). Cells of MG102, HD9, or HD9 pFPS1 took up little MAS(III), but expression of rat AQP9 from a plasmid resulted in a high rate of uptake of MAS(III) in HD9 (Figure 2B). Because MG102 takes up considerably more As(III) than does HD9 (Liu et al. 2002), these results indicate that Fps1p facilitates uptake of As(III) but not MAS(III). In contrast, mammalian AQP9 takes up both inorganic and monomethylated trivalent arsenic. Strikingly, AQP9 conducted MAS(III) nearly 3 times faster than it does As(III) (Figure 3). These results indicate that AQP9 is more selective for the monomethylated form than for the inorganic form of trivalent arsenic, whereas Fps1p is highly specific for the inorganic form. The ability of AQP9 to conduct MAS(III) at a higher rate than As(III) is in good agreement with the results of recent studies that show considerably greater uptake and retention of MAS(III) than As(III) in cultured mammalian cells (Dopp et al. 2004; Drobna et al. 2005). Human AQP9 is 75% identical to and exhibits 86% overall similarity with the rat channel, and both transport MAS(III) with similar rates (Liu et al. 2004), so it is reasonable to expect that the human channel also conducts MAS(III).

However, the human enzyme does not express well in yeast (Liu et al. 2004), so its ability to conduct MAS(III) was not tested here.

Structure–function relationships in AQP9 transport of MAS(III). We addressed the question of selectivity in aquaglyceroporins by mutagenesis of residues predicted to be involved in this process, including Arg-219, Trp-48, and Phe-200 of AQP9. To examine the requirement for a positive charge for MAS(III) uptake, Arg-219 was changed to alanine, lysine, glutamate, and histidine. Similar amounts of wild-type and mutant AQP9s were detected in the yeast membranes by immunoblotting (data not shown). HD9, which lacks the FSP1 gene, is resistant to MAS(III) (Figure 4A), because it...
cannot take up the methylated metalloid (Figure 4B). Expression of wild-type mouse AQP9 renders cells of HD9 sensitive to MAs(III) (Figure 4A) because the cells take up MAs(III) (Figure 4B). Cells expressing any of the mutants remained resistant to MAs(III) (Figure 4A) and were unable to take up the organic arsenical (Figure 4B). Although loss of function in mutants could result from protein misfolding, these results are consistent with an arginine residue being required at position 219 for uptake of MAs(III) and suggest that MAs(III) shares the same channel pathway as As(III) and glycerol.

We have previously shown that F64A, F64T, and F64W AQP9s are expressed in yeast and conduct As(III) and glycerol as well as wild-type AQP9 (Liu et al. 2004). Each mutant was transformed into yeast strain HD9, and both MAs(III) sensitivity and uptake was compared with HD9 transformed with wild-type AQP9. Again, with only vector plasmid pYES3, HD9 was resistant to MAs(III) and did not accumulate the metalloid, whereas wild-type AQP9 facilitated MAs(III) uptake and hence rendered the cells sensitive (Figure 5). Yeast cells expressing each of the Phe-64 mutants was as sensitive to MAs(III) as cells expressing wild-type AQP9 (Figure 5A). Cells expressing each mutant accumulated MAs(III), although at a somewhat lower rate than wild type (Figure 5B). Although a hydrophobic channel lining had been proposed to be required for AQP function, these results demonstrate that a hydrophobic residue at position 64 is not required for MAs(III) transport.

Discussion

Aqua-glyceroporin has been shown to facilitate uptake of As(III), including E. coli GlpF (Sanders et al. 1997). S. cerevisiae Fps1p (Liu et al. 2002; Wysocki et al. 2001), mouse AQP7 (Liu et al. 2002), and AQP9 from rat (Liu et al. 2002) and humans (Liu et al. 2004). Once inside human cells, As(III) is methylated to a variety of species, of which the monomethylated form represents a significant fraction of total arsenic found in most tissues (Hughes et al. 2003; Kenyon et al. 2005). The primary site of methylation is liver, but other organs such as kidney or testes may also methylate As(III) (Healy et al. 1998). The final fate of the methylated species is excretion, both in urine and in feces. How these compounds find their way from liver to other tissues such as blood, kidney, or ecum is not certain, and the routes of excretion of methylated arsenical from hepatocytes and uptake into other cell types are unknown. In solution at physiologic pH, inorganic trivalent arsenic is As(OH)3 (Ramirez-Solis et al. 2004). We would predict that, in solution, the monomethylated species would be CH3As(OH)2, molecularly similar to but less polar than As(OH)3. Because As(OH)3 is a substrate of aquaglyceroporins, we considered the possibility that those channels would also conduct CH3As(OH)2. The answer was unexpected: the aquaglyceroporin exhibits selectivity in their ability to facilitate transport of trivalent arsenicals. AQP9 transports both As(OH)3 and CH3As(OH)2 but is more selective for the latter. In contrast, neither GlpF nor Fps1p exhibited any ability to facilitate CH3As(OH)2 transport and yet are able to transport As(III) as well as they do glycerol. It is interesting to note that E. coli possesses an endogenous uptake system for MAs(III), whereas yeast does not.

What governs the selectivity of the aquaglyceroporin for different trivalent arsenicals? In particular, what allows AQP9 to conduct MAs(III) when at least two other aquaglyceroporins cannot? The structures of GlpF and the strict water channel AQP1 have been determined at atomic resolution. The spacing at the narrowest region of the pore (the aromatic/arginine ring) is significantly wider in GlpF (3.4 Å [Nollert et al. 2001]) compared with AQP1 (2.8 Å in AQP1 [Sui et al. 2001]), which accounts for the broader selectivity of the aquaglyceroporin. As(OH)3 is a symmetrical molecular with an O—O distance of approximately 3 Å, just small enough to fit through the GlpF channel. CH3As(OH)2 is asymmetric compared with As(OH)3, and the As—C bond is longer than the As—O bond, which may account for the selectivity of GlpF. Although its channel diameter is not known, AQP9 transports a much wider range of substrates than does GlpF, suggesting that larger molecules may be able to traverse its channel.

Little is known about the relationship of individual residues to the function of AQP9. In members of the AQP superfamily, there is often a conserved arginine after the second asparagine–proline–alaine motif (Borgnia et al. 1999). From analysis of the crystal structures of AQP1 and GlpF, it has been proposed that the positive charge of this arginine residue forms an electrostatic triangle with two negatively charged residues to provide a filter that prevents charged molecules from entering the channel. We have previously shown that a positive

Figure 5. AQP9 Phe-64 need not be hydrophobic for MAs(III) uptake. (A) Complementation of MAs(III) sensitivity by Phe-64 mutants. MAs(III) was added in solid SD medium at 58 µM. (B) MAs(III) uptake in Phe-64 mutants. MAs(III) transport was assayed in strain HD9 expressing Phe-64 mutants at 10 µM MAs(III). Each point represents the mean of three independent assays calculated using SigmaPlot 9.0. Error bars indicate standard deviation.

Figure 6. Proposed pathways of trivalent arsenic transport in liver. Abbreviations: GSH, glutathione; SAM, S-adenosylmethionine. Trivalent arsenic in the form of As(OH)3 flows down a concentration gradient from blood into hepatocytes through AQP9, which is the major aquaglyceroporin in liver (Carbrey et al. 2003). In the cytosol of the hepatocyte, As(III) can be either glutathionylated or methylated to MAs(III), which is reduced to MAs(III). As(GS)3 is pumped into bile by the MRP2 (Liu et al. 2001), and perhaps by other members of the ABC superfamily of ATPases. Alternatively, As(III) can be methylated and reduced to CH3As(OH)2, which then flows down its concentration gradient via AQP9 into blood.
charge is required on the corresponding residue in AQP9 (Arg-219) for both As(III) and glycerol uptake (Liu et al. 2004). Our results suggest that an arginine residue is preferred at position 219. In the structure of GlpF, the aromatic rings of Trp-48 and Phe-200 are perpendicular to each other and form a hydrophobic corner that has been proposed to orientate the water molecule to form a hydrogen bond with Arg-195. Because mutagenesis of the corresponding hydrophobic residue in AQP9, Phe-64, was not deleterious, a hydrophobic residue at this position is not required.

AQP9 is highly expressed in liver (Abedin et al. 2002), where it plays an essential role in glycerol and urea transport (Carbery et al. 2003). Because liver is also a key site for the metabolism of arsenic, we propose a model in which AQP9 catalyzes a key step in uptake of As(III) and efflux of MAs(III) (Figure 6). As(III) is taken up from the bloodstream by hepatocytes via AQP9. Inside the hepatocyte, which AQP9 catalyzes a key step in uptake of As(III), where it plays an essential role in arsenic metabolism. The presence of AQP9 in the liver is suggested by the finding that AQP9 expression in rat liver is increased upon exposure to inorganic arsenic. AQP9 is highly expressed in liver (Abedin et al. 2002), where it plays an essential role in the uptake of As(III) and efflux of MAs(III) (Figure 6).

Arsenic methylation and the enzymes involved.

MAs(III) transport by AQP9

and multidrug resistance transport proteins is associated with acquired tolerance to inorganic arsenic. Mol Pharmacol 60(2):302–309. Liu Z, Carbery JM, Agre P, Rosen BP. 2004. Arsenic trioxide uptake by human and rat glycerolipid transfer. Biochem Biophys Res Commun 316(4):178–185. Liu Z, Carbery JM, Mukhopadhyay R, Agre P, Rosen BP. 2002. Arsenite transport by mammalian glycerolipid transfer. Appl Environ Microbiol 68:1733–1740.

References

Abedin MJ, Cresser MS, Meharg AA, Feldman J, Cotter-Howell J. 2003. Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 36(2):130–136.

Agre P, Kozono D. 2003. Aquaporin water channels: molecular mechanisms for human diseases. FEMS Lett 559(1):72–78.

Borgnia M, Nielsen S, Engel A, Agre P. 1999. Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458.

Carbery JM, Gordlieck-Feldman DA, Kozono D, Priehorst J, Nielsen S, Agre P. 2003. Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci USA 100(19):9245–9250.

Carlin A, Shi W, Dey S, Rosen BP. 1995. The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177(4):981–986.

Cole SP, Sparks KE, Fraser K, Lowe DW, Wilson GM, et al. 1994. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 54(22):5920–5921.

Cullen WR, McBride BC, Pickett AW, Reinking J. 1984. The wood preservative chromated copper arsenate is a substrate for trimethylarsine biosynthesis. Appl Environ Microbiol 47(4):443–444.

de Groot B, Grumbuller H. 2001. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294(5543):2533–2537.

Dopp E, Hartmann LM, Flores AM, von Recklinghausen U, Pieper R, Shokubi B, et al. 2004. Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO) cells. Toxicol Appl Pharmacol 201(2):156–165.

Droba Z, Jaspers I, Thomas DJ, Styblo M. 2003. Differential activation of AP-1 in human bladder epithelial cells by inorganic and methylated arsenicals. FASEB J 17(17):67–69.

Droba Z, Waters SB, Devesa V, Harmon AW, Thomas DJ, Styblo M. 2005. Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state) methyltransferase. Toxicol Appl Pharmacol 207(2):147–159.

Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P, Krucinski J, et al. 2000. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290(5491):481–486.

Ghosh M, Shen J, Rosen BP. 1998. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95(8):5001–5006.

Healy SM, Cesare-Ayala EA, Ayala-Fierra F, Apostoli H. 1998. Enzymatic methylation of arsenic compounds. V. Arsenite methyltransferase activity in tissues of mice. Toxicol Appl Pharmacol 148(2):277–280.

Hughes MF, Kenyon EM, Edwards BC, Mitchell CT, Razo LM, Thomas DJ. 2003. Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate. Toxicol Appl Pharmacol 191(2):202–210.

Jensen MO, Tajkhorshid E, Schulten K. 2003. Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys J 85(5):2084–2099.

Kala SV, Neely MW, Kala G, Pochon CI, Atwood DW, Rice JS, et al. 2004. Structure of GlpF, the glycerol facilitator and the aquaporin family. J Synchrotron Radiat 11(1):1078–1083.

Lee JK, Khademi S, Harries W, Savage D, Miercke L, Stroud RM. 2004. Arsenite uptake by GlpF and the aquaporin family. J Synchrotron Radiat 11(1):86–88.

Lin S, Shi D, Nix FB, Styblo M, Beck MA, Herbin-Davis KM, et al. 2002. A novel 3-deoxynojirimycin: methionine:arsenic(III) methyltransferase from rat liver cytosol. J Biol Chem 277(11):10975–10980.

Liu J, Chen H, Miller DS, Saavedra JE, Keffer LK, Johnson DR, et al. 2001. Overexpression of glutathione S-transferase II