DIVERGENT TORUS ORBITS IN HOMOGENEOUS SPACES OF Q-RANK TWO

PRALAY CHATTERJEE AND DAVE WITTE MORRIS

Abstract. Let G be a semisimple algebraic \mathbb{Q}-group, let Γ be an arithmetic subgroup of G, and let T be an \mathbb{R}-split torus in G. We prove that if there is a divergent $T_{\mathbb{R}}$-orbit in $\Gamma \backslash G_{\mathbb{R}}$, and \mathbb{Q}-rank $G \leq 2$, then $\dim T \leq \mathbb{Q}$-rank G. This provides a partial answer to a question of G. Tomanov and B. Weiss.

1. Introduction

Let G be a semisimple algebraic \mathbb{Q}-group, let Γ be an arithmetic subgroup of G, and let T be an \mathbb{R}-split torus in G. The $T_{\mathbb{R}}$-orbit of a point Γx_0 in $X = \Gamma \backslash G_{\mathbb{R}}$ is divergent if the natural orbit map $T_{\mathbb{R}} \to X: t \mapsto \Gamma x_0 t$ is proper. G. Tomanov and B. Weiss [TW, p. 389] asked whether it is possible for there to be a divergent $T_{\mathbb{R}}$-orbit when $\dim T > \mathbb{Q}$-rank G. B. Weiss [W1, Conj. 4.11A] conjectured that the answer is negative.

1.1. Conjecture. Let

- G be a semisimple algebraic group that is defined over \mathbb{Q},
- Γ be a subgroup of $G_{\mathbb{R}}$ that is commensurable with $G_{\mathbb{Z}}$,
- T be a connected Lie subgroup of an \mathbb{R}-split torus in $G_{\mathbb{R}}$, and
- $x_0 \in G_{\mathbb{R}}$.

If the T-orbit of Γx_0 is divergent in $\Gamma \backslash G_{\mathbb{R}}$, then $\dim T \leq \mathbb{Q}$-rank G.

The conjecture easily reduces to the case where G is connected and \mathbb{Q}-simple. Furthermore, the desired conclusion is obvious if \mathbb{Q}-rank $G = 0$ (because this implies that $\Gamma \backslash G_{\mathbb{R}}$ is compact), and it is easy to prove if \mathbb{Q}-rank $G = 1$ (see [2]). Our main result is that the conjecture is also true in the first interesting case:

1.2. Theorem. Suppose G, Γ, T, and x_0 are as specified in Conj. 1.1 and assume \mathbb{Q}-rank $G \leq 2$. If the T-orbit of Γx_0 is divergent in $\Gamma \backslash G_{\mathbb{R}}$, then $\dim T \leq \mathbb{Q}$-rank G.

For higher \mathbb{Q}-ranks, we prove only the upper bound $\dim T < 2(\mathbb{Q}$-rank $G)$ (see [6]). A result of G. Tomanov and B. Weiss [W] Thm. 1.4] asserts that if \mathbb{Q}-rank $G < \mathbb{R}$-rank G, then $\dim T < \mathbb{R}$-rank G. After seeing a preliminary version of our work, B. Weiss [W2] has recently proved the conjecture in all cases.

Geometric reformulation. We remark that, by using the well-known fact that flats in a symmetric space of noncompact type are orbits of \mathbb{R}-split tori in its isometry group [H, Prop. 6.1, p. 209], the conjecture and our theorem can also be stated in the following geometric terms.

Suppose \bar{X} is a symmetric space, with no Euclidean (local) factors. Recall that a flat in \bar{X} is a connected, totally geodesic, flat submanifold of \bar{X}. Up to isometry,
$\tilde{X} = G/K$, where K is a compact subgroup of a connected, semisimple Lie group G with finite center. Then \mathbb{R}-rank G has the following geometric interpretation:

1.3. Fact. \mathbb{R}-rank G is the largest natural number r, such that \tilde{X} contains a topologically closed, simply connected, r-dimensional flat.

Now let $X = \Gamma\backslash\tilde{X}$ be a locally symmetric space modeled on X, and assume that X has finite volume. Then \mathbb{Q}-rank Γ is a certain algebraically defined invariant of Γ. It can be characterized by the following geometric property:

1.4. Proposition. \mathbb{Q}-rank Γ is the smallest natural number r, for which there exists collection of finitely many r-dimensional flats in X, such that all of X is within a bounded distance of the union of these flats.

It is clear from this that the \mathbb{Q}-rank does not change if X is replaced by a finite cover, and that it satisfies \mathbb{Q}-rank $\Gamma \leq \mathbb{R}$-rank G. Furthermore, the algebraic definition easily implies that if \mathbb{Q}-rank $\Gamma = r$, then some finite cover of X contains a topologically closed, simply connected flat of dimension r. If Conj. 1.1 is true, then there are no such flats of larger dimension. In other words, \mathbb{Q}-rank should have the following geometric interpretation, analogous to (1.3):

1.5. Conjecture. \mathbb{Q}-rank Γ is the largest natural number r, such that some finite cover of X contains a topologically closed, simply connected, r-dimensional flat F, for which the composition $F \hookrightarrow \tilde{X} \rightarrow X$ is a proper map.

More precisely, Conj. 1.1 is equivalent to the assertion that \mathbb{Q}-rank Γ is the largest natural number r, such that \tilde{X} contains a topologically closed, simply connected, r-dimensional flat F, for which the composition $F \hookrightarrow \tilde{X} \rightarrow X$ is a proper map.

1.6. Acknowledgments. The authors would like to thank Kevin Whyte for helpful discussions related to Prop. 2.2. D. W. M. was partially supported by a grant from the National Science Foundation (DMS–0100438).

2. Example: A proof for \mathbb{Q}-rank 1

To illustrate the ideas in our proof of Thm. 1.2, we sketch a simple proof that applies when \mathbb{Q}-rank $G = 1$. (A similar proof appears in [W1 Prop. 4.12].)

Proof. Suppose G, Γ, T, and x_0 are as specified in Conj. 1.1. For convenience, let $\pi: G_R \rightarrow \Gamma\backslash G_R$ be the natural covering map. Assume that \mathbb{Q}-rank $G = 1$, that $\dim T = 2$, and that the T-orbit of $\pi(x_0)$ is divergent in $\Gamma\backslash G$. This will lead to a contradiction.

Let $E_1 = \Gamma\backslash G_R$. Because \mathbb{Q}-rank $G = 1$, reduction theory (the theory of Siegel sets) implies that there exist

- a compact subset E_0 of $\Gamma\backslash G_R$, and
- a \mathbb{Q}-representation $\rho: G \rightarrow \text{GL}_n$ (for some n),

such that, for each connected component \mathcal{E} of $G_R \setminus \pi^{-1}(E_0)$, there is a nonzero vector $v \in \mathbb{Q}^n$, such that

\begin{equation}
(2.1) \quad \text{if } \Gamma g_n \rightarrow \infty \text{ in } \Gamma\backslash G_R, \text{ and } \{g_n\} \subset \mathcal{E}, \text{ then } \rho(g_n)v \rightarrow 0.
\end{equation}

(In geometric terms, this is the fact that, because $E_1 \setminus E_0$ consists of disjoint "cusps," $G_R \setminus \pi^{-1}(E_0)$ consists of disjoint "horoballs.")

Given $\epsilon > 0$, let T_R be a large circle (1-sphere) in T, centered at the identity element. Because the T-orbit of $\pi(x_0)$ is divergent, we may assume $\pi(x_0 T_R)$ is
disjoint from E_0. Then, because $T_R \approx S^1$ is connected, the set $x_0 T_R$ must be contained in a single component of $G_{\mathbb{R}} \setminus \pi^{-1}(E_0)$. Thus, there is a vector $v \in \mathbb{Q}^n$, such that $\|\rho(t)v\| < \epsilon \|v\|$ for all $t \in T_R$.

Fix some $t \in T_R$. Then t^{-1} also belongs to T_R, so $\|\rho(t)v\|$ and $\|\rho(t^{-1})v\|$ are both much smaller than $\|v\|$. This is impossible (see 3.2).

The above proof does not apply directly when \mathbb{Q}-rank $G = 2$, because, in this case, there are arbitrarily large compact subsets C of $\Gamma \backslash G_{\mathbb{R}}$, such that $G_{\mathbb{R}} \setminus \pi^{-1}(C)$ is connected. Instead of only E_0 and E_1, we consider a more refined stratification $E_0 \subset E_1 \subset E_2$ of $\Gamma \backslash G$. (It is provided by the structure of Siegel sets in \mathbb{Q}-rank two. The set E_0 is compact, and, for $i \geq 1$, each component E of $\pi^{-1}(E_1 \setminus E_{i-1})$ has a corresponding representation ρ and vector v, such that 2.1 holds. Thus, it suffices to find a component of either $\pi^{-1}(E_1 \setminus E_0)$ or $\pi^{-1}(E_2 \setminus E_1)$ that contains two antipodal points of T_R. Actually, we replace E_1 with a slightly larger set that is open, so that we may apply the following property of S^2:

2.2. Proposition (see 3.1). Suppose $n \geq 2$, and that $\{V_1, V_2\}$ is an open cover of the n-sphere S^n that consists of only 2 sets. Then there is a connected component C of some V_i, such that C contains two antipodal points of S^n.

2.3. Remark. In 3.1, we do not use the notation $E_0 \subset E_1 \subset E_2$. The role of E_0 is played by $\pi(QS_3^S)$, the role of an open set containing E_1 is played by $\pi(QS_\beta)$, and the role of $E_2 \setminus E_1$ is played by $\pi(QS_\delta)$.

3. Preliminaries

The classical Borsuk-Ulam Theorem implies that if $f : S^n \to \mathbb{R}^k$ is a continuous map, and $n \geq k$, then there exist two antipodal points x and y of S^n, such that $f(x) = f(y)$. We use this to prove the following stronger version of Prop. 2.2.

3.1. Proposition. Suppose \mathcal{V} is an open cover of S^n, with $n \geq 2$, such that no point of S^n is contained in more than 2 of the sets in \mathcal{V}. Then some $V \in \mathcal{V}$ contains two antipodal points of S^n.

Proof. Because S^n is compact, we may assume \mathcal{V} is finite. Let $\{\phi_V\}_{V \in \mathcal{V}}$ be a partition of unity subordinate to \mathcal{V}. This naturally defines a continuous function Φ from S^n to the simplex

$$\Delta_\mathcal{V} = \left\{(x_V)_{V \in \mathcal{V}} \mid \sum_{V \in \mathcal{V}} x_V = 1\right\} \subset [0,1]^\mathcal{V}.$$

Namely, $\Phi(x) = (\phi_V(x))_{V \in \mathcal{V}}$. Our hypothesis on \mathcal{V} implies that no more than 2 components of $\Phi(x)$ are nonzero, so the image of Φ is contained in the 1-skeleton $\Delta^{(1)}_\mathcal{V}$ of $\Delta_\mathcal{V}$. Because S^n is simply connected, Φ lifts to a map from S^n to the universal cover $\tilde{\Delta}^{(1)}_\mathcal{V}$ of $\Delta^{(1)}_\mathcal{V}$. The universal cover is a tree, which can be embedded in \mathbb{R}^2, so the Borsuk-Ulam Theorem implies that there exist two antipodal points x and y of S^n, such that $\tilde{\Phi}(x) = \tilde{\Phi}(y)$. Thus, there exists $V \in \mathcal{V}$, such that $\phi_V(x) = \phi_V(y) \neq 0$. So $x, y \in V$.

For completeness, we also provide a proof of the following simple observation.

3.2. Lemma. Let T be any abelian group of diagonalizable $n \times n$ real matrices. There is a constant $\epsilon > 0$, such that if
• \(v \) is any vector in \(\mathbb{R}^n \), and
• \(t \) is any element of \(T \),

then either \(\|tv\| \geq \epsilon\|v\| \) or \(\|t^{-1}v\| \geq \epsilon\|v\| \).

Proof. The elements of \(T \) can be simultaneously diagonalized. Thus, after a change of basis (which affects norms by only a bounded factor), we may assume that each standard basis vector \(e_i \) is an eigenvector for every element of \(T \).

Let \(\epsilon = 1/n \), write \(v = (v_1, \ldots, v_n) \), and let \(t_i \) be the eigenvalue of \(t \) corresponding to the eigenvector \(e_i \). Some component \(v_j \) of \(v \) must be at least \(\|v\|/n \) in absolute value. We may assume \(|t_j| \geq 1 \), by replacing \(t \) with \(t - 1 \) if necessary. Then

\[
\|tv\| = \|(t_1 v_1, \ldots, t_n v_n)\| \geq |t_j v_j| \geq 1 \cdot \frac{\|v\|}{n} = \epsilon\|v\|,
\]
as desired. \(\square \)

4. Properties of Siegel sets

We present some basic results from reduction theory that follow easily from the fundamental work of A. Borel and Harish-Chandra [BH] (see also [B, §13–§15]). Most of what we need is essentially contained in [L, §2], but we are working in \(G, \) rather than in \(\tilde{X} = G/K \). We begin by setting up the standard notation.

4.1. Notation (cf. [L, §1]). Let
• \(G \) be a connected, almost simple \(\mathbb{Q} \)-group, with \(\mathbb{Q} \)-rank \(G = 2 \),
• \(G \) be the identity component of \(G_{\mathbb{R}} \),
• \(\Gamma \) be a finite-index subgroup of \(G_{\mathbb{Z}} \cap G \),
• \(P \) be a minimal parabolic \(\mathbb{Q} \)-subgroup of \(G \),
• \(A \) be a maximal \(\mathbb{Q} \)-split torus of \(G \),
• \(A \) be the identity component of \(A_{\mathbb{R}} \), and
• \(K \) be a maximal compact subgroup of \(G \).

We may assume \(A \subset P \). Then we have a Langlands decomposition \(P = U M A \), where \(U \) is unipotent and \(M \) is reductive. We remark that \(U \) and \(A \) are connected, but \(M \) is not connected (because \(P \) is not connected).

4.2. Notation (cf. [L, §1]). The choice of \(P \) determines an ordering of the \(\mathbb{Q} \)-roots of \(G \). Because \(\mathbb{Q} \)-rank of \(G = 2 \), there are precisely two simple \(\mathbb{Q} \)-roots \(\alpha \) and \(\beta \) (so the base \(\Delta \) is \(\{ \alpha, \beta \} \)). Then \(\alpha \) and \(\beta \) are homomorphisms from \(A \) to \(\mathbb{R}^+ \).

Any element \(g \) of \(G \) can be written in the form \(g = pak \), with \(p \in UM, a \in A \), and \(k \in K \). The element \(a \) is uniquely determined by \(g \), so we may use this decomposition to extend \(\alpha \) and \(\beta \) to continuous functions \(\tilde{\alpha} \) and \(\tilde{\beta} \) defined on all of \(G \):

\[
\tilde{\alpha}(g) = \alpha(a) \text{ if } g \in UMaK \text{ and } a \in A,
\tilde{\beta}(g) = \beta(a) \text{ if } g \in UMaK \text{ and } a \in A.
\]

4.3. Notation (cf. [L, §2]).
• Fix a subset \(Q \) of \(G_{\mathbb{Q}} \cap G \), such that

\(Q \) is a set of representatives of \(\Gamma \backslash (G_{\mathbb{Q}} \cap G)/(P_{\mathbb{Q}} \cap P) \).

Note that \(Q \) is finite.
• For \(\tau > 0 \), let \(A_{\tau} = \{ a \in A \mid \alpha(a) > \tau \text{ and } \beta(a) > \tau \} \).
Proof. It suffices to prove (1), for then (2) is immediate from the definition of S_γ (and $D_{\alpha,\beta}^\circ$). Thus, let us suppose that $pS_\alpha \cap \gamma qS_\beta$ is not precompact. This will lead to a contradiction.

4.4. Lemma. For all $\gamma \in \Gamma$ and $p,q \in Q$, we have:

(1) $pS_\alpha \cap \gamma qS_\beta$ is precompact, and
(2) $pS_\alpha \cap \gamma qS_\beta \subset S_\alpha^+.$

Proof. It suffices to prove (1). for then (2) is immediate from the definition of S_α^+ (and $D_{\alpha,\beta}^\circ$). Thus, let us suppose that $pS_\alpha \cap \gamma qS_\beta$ is not precompact. This will lead to a contradiction.
Because $\tilde{\alpha}$ is bounded on S_α, but $S_\alpha \cap p^{-1}\gamma qS_\beta$ is not precompact, we know that $\tilde{\beta}$ is unbounded on $S_\alpha \cap p^{-1}\gamma qS_\beta$ (and, hence, on $S \cap p^{-1}\gamma qS$). Therefore, [L Prop. 2.3] implies that

$$p^{-1}\gamma q \in P_\alpha.$$

Similarly (replacing γ with γ^{-1} and interchanging p with q and α with β), because $\gamma^{-1}pS_\alpha \cap qS_\beta = \gamma^{-1}(pS_\alpha \cap qS_\beta)$ is not precompact, we see that

$$q^{-1}\gamma^{-1}p \in P_\beta.$$

Noting that $q^{-1}\gamma^{-1}p = (p^{-1}\gamma q)^{-1}$, we conclude that $p^{-1}\gamma q \in P_\alpha \cap P_\beta = P_\emptyset$, so [L Lem. 2.4(i)] tells us that $p = q$ and $p^{-1}\gamma q \in UM$. Therefore

$$\tilde{\alpha}(S_\alpha \cap p^{-1}\gamma qS_\beta) \subset \tilde{\alpha}(S_\alpha)$$

and

$$\tilde{\beta}(S_\alpha \cap p^{-1}\gamma qS_\beta) \subset \tilde{\beta}(p^{-1}\gamma qS_\beta) \subset \tilde{\beta}(UMS_\beta) = \tilde{\beta}(S_\beta)$$

are precompact. So $S_\alpha \cap p^{-1}\gamma qS_\beta$ is precompact, which contradicts our assumption that $pS_\alpha \cap qS_\beta$ is not precompact. \qed

4.5. Lemma. If $\gamma \in \Gamma$ and $p, q \in Q$, such that $pS_\alpha \cap qS_\alpha \not\subset S_\Delta$, then $p = q$ and $p^{-1}\gamma q \in (UM)_Q$.

Proof. It suffices to show that both $\tilde{\alpha}$ and $\tilde{\beta}$ are unbounded on $S \cap p^{-1}\gamma qS$, for then the desired conclusion is obtained from [L Prop. 2.3 and Lem. 2.4(i)]. Thus, let us suppose (without loss of generality) that $\tilde{\alpha}$ is bounded on $S \cap p^{-1}\gamma qS$.

This will lead to a contradiction.

Case 1. Assume $\tilde{\beta}$ is also bounded on $S \cap p^{-1}\gamma qS$. Then $pS \cap qS = p(S \cap p^{-1}\gamma qS)$ is precompact, so, by definition, $pS \cap qS \subset S_\Delta^+$. Therefore

$$pS_\alpha \cap qS_\alpha \subset pS \cap qS \subset S_\Delta^+.$$

This contradicts the hypothesis of the lemma.

Case 2. Assume $\tilde{\beta}$ is not bounded on $S \cap p^{-1}\gamma qS$. From [L Lem. 2.5], we see that $pS \cap qS \subset pS_\alpha$. Therefore

$$pS_\alpha \cap qS_\alpha \subset pS_\alpha \cap pS_\alpha = \emptyset \subset S_\Delta^+.$$

This contradicts the hypothesis of the lemma. \qed

4.6. Corollary. If x and y are two points in the same connected component of $\Gamma Q S_\alpha \cap S_\Delta^+$, then there exist $\gamma_0, \gamma \in \Gamma$ and $q \in Q$, such that $x \in \gamma_0 qS_\alpha$, $y \in \gamma qS_\alpha$, and $q^{-1}\gamma q \in (UM)_Q$.

4.7. Lemma.

1. If $\gamma \in \Gamma$ and $p, q \in Q$, such that $pS_\alpha \cap qS_\alpha \not\subset S_\Delta^+$, then $p^{-1}\gamma q \in (P_\alpha)_Q$.

2. For each $p, q \in Q$, there exists $h_{p,q} \in (P_\alpha)_Q$, such that $p^{-1}\Gamma q \cap (P_\alpha)_Q \subset h_{p,q}(U_\alpha M_\alpha)_Q$.

Proof. 1. Because \(pS_\alpha \cap \gamma qS_\alpha \not\subset S^+_{\Delta} \), we know, from the definition of \(S^+_{\Delta} \) (and \(D^p,q \)) that \(pS_\alpha \cap \gamma qS_\alpha \) is not precompact. Since \(\tilde{\alpha} \) is bounded on \(S_\alpha \), we conclude that \(\tilde{\beta} \) is not bounded on \(S_\alpha \cap p^{-1}qS_\alpha \) (and, hence, on \(S \cap p^{-1}qS \)). Then 1 Prop. 2.3 asserts that \(p^{-1}q \in (P_0)\), for \(\Theta = \{\alpha\} \) or \(\emptyset \). Because \(P_0 \subset P_\alpha \), we conclude that \(p^{-1}q \in (P_\alpha)\).

2. From 1 Lem. 2.4(ii), we see that the coset \((p^{-1}q)(U_0 M_\alpha)\) does not depend on the choice of \(\gamma \), if we require \(\gamma \) to be an element of \(\Gamma \), such that \(p^{-1}q \in (P_\alpha)\).

4.8. Corollary. If \(x \) and \(y \) are two points in the same connected component of \(\Gamma Q S_\alpha \setminus \Gamma S^+_{\Delta} \), then there exist \(\gamma_0, \gamma \in \Gamma \) and \(p, q \in Q \), such that \(x \in \gamma_0 p S_\alpha \), \(y \in \gamma_0 q S_\alpha \), and \(p^{-1}q \in h_{p,q}(U_0 M_\alpha)\).

5. Proof of the Main Theorem

Let \(G, \Gamma, T \) and \(x_0 \) be as described in the hypotheses of Thm. 1.2 and assume \(\dim T \geq 3 \). (This will lead to a contradiction.) Let \(T_R \) be a large sphere (centered at the origin) in \(T \). Because \(S^+_{\Delta} \) is compact and the \(T \)-orbit of \(\Gamma x_0 \) is divergent in \(\Gamma \setminus G \), we may assume that

\[
(x_0 T_R) \cap (\Gamma S^+_{\Delta}) = \emptyset.
\]

Let \(V_1 = \{ t \in T_R \mid x_0 t \in \Gamma Q S_\alpha \} \) and

\[
V_2 = \{ t \in T_R \mid x_0 t \in \Gamma Q S_\alpha \cup \Gamma Q S_\beta \}.
\]

From Prop. 4.2, we know there exists \(t \in T_R \), and a connected component \(C \) of either \(V_1 \) or \(V_2 \), such that \(t \) and \(t^{-1} \) both belong to \(C \).

Case 1. Assume \(C \) is a component of \(V_1 \). From Cor. 4.6, we see that there exist \(\gamma_0, \gamma \in \Gamma \) and \(q \in Q \), such that \(x_0 t \in \gamma_0 q S_\alpha \), \(x_0 t^{-1} \in \gamma_0 q S_{\Delta} \), and \(q^{-1} \gamma q \in (U M)_{\emptyset} \).

Because \(\Gamma x_0 t \) and \(\Gamma x_0 t^{-1} \) are near infinity in \(\Gamma \setminus G \), we must have

1. either \(\tilde{\alpha}(q^{-1} \gamma_0^{-1} x_0 t) \gg 1 \) or \(\tilde{\beta}(q^{-1} \gamma_0^{-1} x_0 t^{-1}) \gg 1 \), and

2. either \(\tilde{\alpha}(q^{-1} \gamma_0^{-1} x_0 t^{-1}) \gg 1 \) or \(\tilde{\beta}(q^{-1} \gamma_0^{-1} x_0 t) \gg 1 \).

Since \(q^{-1} \gamma q \in (U M)_{\emptyset} \) is sent to the identity element by both \(\tilde{\alpha} \) and \(\tilde{\beta} \), we have 2 either \(\tilde{\alpha}(q^{-1} \gamma_0^{-1} x_0 t^{-1}) \gg 1 \) or \(\tilde{\beta}(q^{-1} \gamma_0^{-1} x_0 t) \gg 1 \).

Let

- \(V = \wedge^d g \), where \(d = \dim U \),
- \(\rho: G \to \text{GL}(V) \) be the natural adjoint representation of \(G \) on \(V \),
- \(v_u \) be a nonzero element of \(V_Z \) in the one-dimensional subspace \(\wedge^d u \), and
- \(v'_u = \rho(x_0^{-1} \gamma_0) v_u \).

It is important to note that \(||v'_u|| \) is bounded away from 0, independent of the choice of \(q \) and \(\gamma_0 \). (There are only finitely many choices of \(q \), so \(q \) is not really an issue. The key point is that \(\rho(q)v_u \) is a \(Q \)-element of \(V \), so its \(G_Z \)-orbit is bounded away from 0.)

On the other hand, for any \(g \in P_0 \), we have \(\rho(g^{-1}) v_u = \tilde{\alpha}(g)^{\ell_1} \tilde{\beta}(g)^{\ell_2} v_u \), for some positive integers \(\ell_1 \) and \(\ell_2 \) (because the sum of the positive \(Q \)-roots of \(G \) is \(\ell_1 \alpha + \ell_2 \beta \)). Therefore, from 1 and 2, we see that

\[
\rho(t^{-1}) v'_u = \rho((q^{-1} \gamma_0^{-1} x_0 t^{-1})) v_u \approx 0,
\]
and
\[\rho(t) v'_u = \rho((q^{-1} \gamma_0^{-1} x_0 t^{-1})^{-1}) v_u \approx 0. \]

This contradicts Lem. \[4.2 \]

Case 2. Assume \(C \) is a component of \(V_2 \). From Lem. \[1.4 \], we see that \(x_0 C \) is contained in either \(\Gamma Q S_\alpha \) or \(\Gamma Q S_\beta \). Assume, without loss of generality, that \(x_0 C \subset \Gamma QS_\alpha \). From Cor. \[4.8 \] we see that there exist \(\gamma_0, \gamma \in \Gamma \) and \(p, q \in Q \), such that
\[x_0 t \in \gamma_0 \rho S_\alpha, \quad x_0 t^{-1} \in \gamma_0 \gamma q S_\alpha, \quad \text{and} \quad p^{-1} \gamma q \in h_{p,q}(U_\alpha M_\alpha) Q. \]

Let \(u_\alpha \) be the Lie algebra of \(U_\alpha \), and let \(\rho_\alpha : G \to GL(V_\alpha) \) be the natural adjoint representation of \(G \) on \(V_\alpha = \bigwedge^{d_\alpha} g \), where \(d_\alpha = \dim u_\alpha \).

We can obtain a contradiction by arguing as in Case 1, with the representation \(\rho_\alpha \) in the place of \(\rho \). To see this, note that:

- For \(a \in \ker \alpha \), we have \(\rho_\alpha(a^{-1}) v_{u_\alpha} = \beta(a)^{-\ell} v_{u_\alpha} \), for some positive integer \(\ell \). Since \(\rho_\alpha(UM) \subset \rho_\alpha(U_\alpha M_\alpha) \) fixes \(v_{u_\alpha} \), and \(\rho_\alpha(K) \) is compact, this implies that
 \[\| \rho_\alpha(g^{-1}) v_{u_\alpha} \| \geq \beta(g)^{-\ell} \|
u_{u_\alpha}\| \quad \text{for} \quad g \in S_\alpha. \]

- Because \(\Gamma x_0 t \) and \(\Gamma x_0 t^{-1} \) are near infinity in \(\Gamma \setminus G \), and \(\bar{\alpha} \) is bounded on \(S_\alpha \), we must have
 \[\beta(p^{-1} \gamma_0^{-1} x_0 t) \gg 1 \quad \text{and} \quad \beta(q^{-1} \gamma^{-1} \gamma_0^{-1} x_0 t^{-1}) \gg 1. \]

Therefore, letting \(v'_{u_\alpha} = \rho_\alpha(x_0^{-1} \gamma_{0p}) v_{u_\alpha} \), we have
 \[\| \rho_\alpha(t^{-1}) v'_{u_\alpha} \| \approx 0. \]

Because \(h_{p,q} \in P_\alpha \) normalizes \(U_\alpha \), we have \(\rho_\alpha(h_{p,q} v_{u_\alpha}) = c_{p,q} v_{u_\alpha} \), for some scalar \(c_{p,q} \). Therefore, since \((p^{-1} \gamma q) h_{p,q}^{-1} \in (U_\alpha M_\alpha) Q \) fixes \(v_{u_\alpha} \), and \(\{c_{p,q}\} \), being finite, is bounded away from 0, we have
 \[\rho_\alpha(t) v'_{u_\alpha} = \rho_\alpha(t x_0^{-1} \gamma_{0p}) v_{u_\alpha} = \rho_\alpha(t x_0^{-1} \gamma_{0p} p^{-1} \gamma q) v_{u_\alpha} = c_{p,q}^{-1} \rho_\alpha(t x_0^{-1} \gamma_{0p} q) v_{u_\alpha} \approx 0. \]

This completes the proof of Thm. \[1.2 \]

6. Results for Higher \(\mathbb{Q} \)-rank

The proof of Thm. \[1.2 \] generalizes to establish the following result:

6.1. Theorem. Suppose \(G, \Gamma, T, \) and \(x_0 \) are as specified in Conj. \[1.1 \] and assume \(\mathbb{Q} \)-rank \(G \geq 1 \). If the \(T \)-orbit of \(\Gamma x_0 \) is divergent in \(\Gamma \backslash \mathbb{G}_\mathbb{R} \), then \(\dim T \leq 2(\mathbb{Q}\text{-rank } G) - 1 \).

Sketch of proof. As in \[1.4 \] §1 and §2, let \(\Delta \) be the set of simple \(\mathbb{Q} \)-roots, construct a fundamental set \(QS \), define the finite set \(\mathcal{D} \), and choose \(r > 0 \), such that, for \(q \in \mathcal{D} \) and \(\alpha \in \Delta \), we have
\[\text{if } \tilde{\alpha} \text{ is bounded on } S \cap qS, \text{ then } \tilde{\alpha}(S \cap qS) < r. \]

Fix any \(r^* > r \). For each subset \(\Theta \) of \(\Delta \), let
\[S_\Theta = \{ x \in S \mid \tilde{\alpha}(x) < r^*, \ \forall \alpha \in \Theta \} \quad \text{and} \quad S^-_\Theta = \{ x \in S \mid \tilde{\alpha}(x) \leq r, \ \forall \alpha \in \Theta \}. \]
and choose \(h_{p,q}^\Theta \) such that \(p^{-1}\Gamma q \cap (P_\Theta)_Q \subset h_{p,q}^\Theta(U_\Theta M_\Theta)_Q \) for \(p, q \in Q \). Set \(d = \mathbb{Q}\)-rank \(G \), and, for \(i = 0, \ldots, d \), let

\[
E_i \equiv \bigcup_{\Theta \subset \Delta} S^\Theta \quad \text{and} \quad E_i^\sim \equiv \bigcup_{\Theta \subset \Delta} S^\Theta_{\sim},
\]

Then \(\{ E_1, E_2 \setminus E_1, \ldots, E_d \setminus E_{d-1} \} \) is an open cover of \(\Gamma \backslash G \).

For \(p, q \in Q \) and \(\Theta_1, \Theta_2 \subset \Delta \), let

\[
D^{p,q}_{\Theta_1, \Theta_2} = \{ \gamma \in \Gamma \mid pS^\Theta_1 \cap \gamma qS^\Theta_2 \text{ is precompact and nonempty} \}.
\]

Define

\[
S^\Delta = \bigcup_{p, q \in Q, \Theta_1, \Theta_2 \subset \Delta, \gamma \in D^{p,q}_{\Theta_1, \Theta_2}} (pS^\Theta_1 \cap \gamma qS^\Theta_2).
\]

Suppose \(\dim T \geq 2d \). Then we may choose a large \((2d - 1)\)-sphere \(T_R \) in \(T \). Prop. 6.2 below implies that there exists \(t \in T_R \) and a component \(C \) of some \(E_i \setminus E_{i-1} \), such that \(x_0t \) and \(x_0t^{-1} \) belong to \(C \). If \(T_R \) is chosen large enough that \(x_0T_R \) is disjoint from \(\Gamma S^\Delta \), then there exist \(\Theta \subset \Delta \) (with \(\#\Theta = i \), \(\gamma_0, \gamma \in \Gamma \), and \(p, q \in Q \), such that \(x_0t \in \gamma_0 pS^\Theta_1 \), \(x_0t^{-1} \in \gamma_0 qS^\Theta_2 \), and \(\gamma^{-1}q \in h_{p,q}^\Theta(U_\Theta M_\Theta)_Q \). We obtain a contradiction as in Case 3 of 15 using \(u_\Theta \) in the place of \(u \).

The following result is obtained from the proof of Prop. 5.1 by using the fact that any simplicial complex of dimension \(d - 1 \) can be embedded in \(\mathbb{R}^{2d-1} \).

6.2. Proposition. Suppose \(n \geq 2d - 1 \), and that \(\{ V_1, V_2, \ldots, V_d \} \) is an open cover of the \(n \)-sphere \(S^n \) that consists of only \(d \) sets. Then there is a connected component \(C \) of some \(V_i \), such that \(C \) contains two antipodal points of \(S^n \).

6.3. Remark. For \(k \geq 1 \), it is known [3, 4] that there exist a simplicial complex \(\Sigma^k \) of dimension \(k \) and a continuous map \(f : S^{2k-1} \to \Sigma^k \), such that no two antipodal points of \(S^{2k-1} \) map to the same point of \(\Sigma^k \). This implies that the constant \(2d - 1 \) in Prop. 6.2 cannot be improved to \(2d - 3 \).

6.4. Remark. If \(\mathbb{Q}\)-rank \(G = 2 \), then the conclusion of Thm. 1.2 is stronger than that of Thm. 6.1. The improved bound in 1.2 results from the fact that if \(d = 2 \), then the universal cover of any \((d - 1)\)-dimensional simplicial complex embeds in \(\mathbb{R}^2 = \mathbb{R}^{2d-2} \). (See the proof of Prop. 5.1) When \(d > 2 \), there are examples of (simply connected) \((d - 1)\)-dimensional simplicial complexes that embed only in \(\mathbb{R}^{2d-1} \), not \(\mathbb{R}^{2d-2} \).

References

[B] A. Borel: *Introduction aux groupes arithmétiques*, Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969.

[BH] A. Borel and Harish-Chandra: Arithmetic subgroups of algebraic groups. *Ann. of Math.* (2) 75 (1962) 485–535.

[H] S. Helgason: *Differential Geometry and Symmetric Spaces*, Academic Press, New York, 1962.

[IJ] M. Izdorek and J. Jaworowski: Antipodal coincidence for maps of spheres into complexes, *Proc. Amer. Math. Soc.* 123 (1995) 1947–1950.
[L] E. Leuzinger: An exhaustion of locally symmetric spaces by compact submanifolds with corners. *Invent. Math.* 121 (1995) 389–410.

[S] E. V. Ščepin: On a problem of L. A. Tumarkin, *Soviet Math. Dokl.* 15 (1974) 1024–1026.

[TW] G. Tomanov and B. Weiss: Closed orbits for actions of maximal tori on homogeneous spaces, *Duke Math. J.* 119 (2003) 367–392.

[W1] B. Weiss: Divergent trajectories on noncompact parameter spaces, *Geom. Funct. Anal.* 14 (2004) 94–149.

[W2] B. Weiss: Divergent trajectories and Q-rank (preprint).

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078

Mathematics Department, Rice University, Houston, TX 77005

E-mail address: pralay@math.rice.edu

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078

Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada

E-mail address: Dave.Morris@uleth.ca

URL: http://people.uleth.ca/~dave.morris/