On Factors Affecting the Usage and Adoption of a Nation-wide TV Streaming Service

Dmytro Karamshuk*, Nishanth Sastry*, Andrew Secker† and Jigna Chandaria†
*Department of Informatics, King’s College London, UK. Email: firstname.lastname@kcl.ac.uk
†BBC R&D, London, UK. Email: firstname.lastname@rd.bbc.co.uk

Abstract—Using nine months of access logs comprising 1.9 Billion sessions to BBC iPlayer, we survey the UK ISP ecosystem to understand the factors affecting adoption and usage of a high bandwidth TV streaming application across different providers. We find evidence that connection speeds are important and that external events can have a huge impact for live TV usage. Then, through a temporal analysis of the access logs, we demonstrate that data usage caps imposed by mobile ISPs significantly affect usage patterns, and look for solutions. We show that product bundle discounts with a related fixed-line ISP, a strategy already employed by some mobile providers, can better support user needs and capture a bigger share of accesses. We observe that users regularly split their sessions between mobile and fixed-line connections, suggesting a straightforward strategy for offloading by speculatively pre-fetching content from a fixed-line ISP before access on mobile devices.

I. INTRODUCTION

As Internet usage matures and “broadband” access becomes near ubiquitous, the variety of access network choices available to users has increased. Beyond the traditional DSL and cable-based broadband providers, users can now also obtain data connectivity from mobile or cellular network operators. With the roll-out of 4G/LTE technologies, we are now at an inflection point where achievable data rates from cellular connectivity can, in theory, exceed the rates of a majority of existing fixed-line broadband connections.

However, this choice in Internet access also means that consumers face a complex array of choices with different providers offering different data access rates, amounts of data allowed, pricing structures as well as auxiliary benefits such as discounts for product bundles (e.g., so-called “triple” or “double” play for cable TV access, or mobile providers who may offer discounted home broadband packages).

This paper seeks to obtain a preliminary understanding of how differences in Internet access options affect consumer choice and usage behaviours for high bandwidth applications such as on-demand streaming. In particular, given the increasing importance of mobile access, we wish to understand the relative roles and importance of broadband and cellular network access for users across the nation.

We study these questions from a first-mile viewpoint with an unusually broad view of the UK Internet that makes it suitable to obtain an understanding of the nationwide ISP ecosystem: BBC iPlayer is a highly popular “catch-up” TV application that allows over-the-top streaming access to TV and radio content recently broadcast by the BBC. In 2012, Ofcom, UK’s communications regulator, estimated that over 44% of UK households had accessed iPlayer [19], and Sandvine estimated it to be the most popular streaming application on UK’s networks, after YouTube [22]; access numbers have increased significantly since 2012 [2].

We obtain access logs to BBC iPlayer for a nine month-long period from May 2013-Jan 2014. Our trace covers 1.9 billion sessions of 32M monthly users (corresponding to 50% of UK’s population) from 20M monthly IP addresses. Uniquely, because the iPlayer is funded by TV Licensing Fees paid by UK residents, accesses to TV content, which comprise over 75% of sessions, is restricted to the UK. Thus, these session numbers are driven primarily by UK consumers, which makes it convenient to study the UK market. In particular, all the major UK providers, both fixed-line broadband and cellular operators, are well represented.

We first study support for the basic needs of TV streaming: the need for high bandwidth, the need for supporting traffic spikes, and the need to support differences in usage patterns of mobile devices and traditional computing equipment (laptops, Desktop PCs) as compared with Traditional TV (§IV). Then, we exploit the long duration of our trace to ask how the ISP market evolves over time, and uncover the temporal characteristics of mobile vs. broadband access (§V). Finally, in §VI, we study how users’ sessions are split across different providers and show how this is affected by product pricing and bundling strategies that provide discounts for combinations of fixed and mobile ISPs. We suggest ways to exploit consumers’ usage patterns across mobile and fixed ISPs to shift traffic from mobile to fixed ISPs using speculative pre-fetching.

Our major findings may be summarised as follows:

1) We demonstrate that iPlayer usage in a geographic region is correlated with average broadband speeds in that region, underscoring the need for high-speed broadband infrastructure.
2) We find that mobile devices have a disproportionate share of live accesses, and external events such as Wimbledon can have a significant impact.
3) Distinct diurnal patterns of access are seen for different kinds of providers: Fixed-line broadband peaks during evening hours whereas cellular network access peaks during commute times, for mobile providers with limited data plans. Mobile providers with unlimited plans observe a superposition of both patterns, with peaks during commutes and evening hours.
4) We characterise the load shares of users’ iPlayer sessions across different providers and find, as expected that fixed-line broadband captures the highest fraction of users’ session loads. We also show that offering unlimited data plans captures significantly higher fraction of users’ iPlayer sessions for mobile providers. However, we also find that an alternate strategy of offering price discounts and product bundles with...
approach. In [14] Liu et. al have looked at a similar dataset service ecosystem. Not many have followed the first mile which allows us to get a good picture of a nation’s Internet BBC iPlayer is extremely popular within the United Kingdom, recently broadcast by the BBC. However, as explained in §I, over-the-top streaming of TV and radio content that has been one application in our traffic mix – BBC iPlayer provides through the perspective of a server or content provider. This Sandvine in their biannual Internet Performance Report [22], is to directly recruit end hosts to run measurements. A second set of studies has focused on the middle, examining data obtained from ISPs, whether in the core (e.g., [29]), or in access networks close to consumers (e.g., [10], [17], [16]), to obtain an aggregate picture of Internet traffic. The more central ISP-based viewpoint of such studies has provided valuable information about end user behaviours, especially the changing mix of applications on the Internet, the relative proportions and popularities of different types of traffic such as P2P and HTTP, etc. However, because of the difficulty of obtaining ISP data, previous academic efforts using this approach have mostly relied on data from one or two ISPs. While these efforts are now replicated at a global scale by commercial vendors such as Sandvine in their biannual Internet Performance Report [22], coverage is still selective, based on the 250 or so fixed and mobile operators who are customers of Sandvine.

We adopt a first-mile approach – observing end hosts through the perspective of a server or content provider. This viewpoint is complementary to the above efforts: We only have one application in our traffic mix – BBC iPlayer provides over-the-top streaming of TV and radio content that has been recently broadcast by the BBC. However, as explained in §I, BBC iPlayer is extremely popular within the United Kingdom, which allows us to get a good picture of a nation’s Internet service ecosystem. Not many have followed the first mile approach. In [14] Liu et. al have looked at a similar dataset from a large video content provider in China. However, we consider a significantly longer time span of accesses (9 months in comparison to 2 weeks), which captures long-term patterns in the behavior of the national consumer (§V-A).

Characterisation and measurement of application- and IP Network-level performance of 3G/4G has been more recent. [30] characterise the infrastructure of the four major cellular carriers in the US using a location search app. The authors identify potential placement strategies for mobile content and find that too few gateways in cellular providers mean that content delivery is difficult for them. [8] studies TCP performance on LTE and identifies potential bottlenecks, whereas [31] analyses diurnal patterns of users in 3G data networks. With respect to this stream of work, we focus on a single application—streaming, which allows us to identify distinct usage patterns across different types of networks.

One of the contributions of this work is a study covering what we believe to be a large fraction of the IP space of a country. [6] conduct a thorough census of the Internet. In contrast to our approach, this doesn’t capture application-layer and has only IP-level details. Similarly, Akamai regularly reports on the current state of the Internet, comparing the relative market shares of different devices, and average broadband rates obtained, and recent reports [1] have included basic information about mobile connectivity. However, it is unclear whether they can identify users across different networks; this is critical, for example, to analyse the impact of a mobile connection on fixed-line broadband and vice versa (Figure 7).

II. RELATED WORK

As the Internet and the Web have grown in importance, there have been numerous attempts in the past decade to study end-system behaviours and Internet Service Provider characteristics. Perhaps the most straightforward approach, followed by a number of studies [13], [23], [5], [12], [25], [21], is to directly recruit end hosts to run measurements. Although this last-mile viewpoint has shed light on significant access network bottlenecks as well as a wide array of end-user and access network properties, the logistics of obtaining multiple vantage points at the edge remains a challenge; thus the scale of these efforts has been limited, ranging from a few tens [13], hundreds [23] or thousands of hosts [5], [25], to slightly less than one hundred thousand hosts [12], [21] for the largest studies to date.

A second set of studies has focused on the middle, examining data obtained from ISPs, whether in the core (e.g., [29]), or in access networks close to consumers (e.g., [10], [17], [16]), to obtain an aggregate picture of Internet traffic. The more central ISP-based viewpoint of such studies has provided valuable information about end user behaviours, especially the changing mix of applications on the Internet, the relative proportions and popularities of different types of traffic such as P2P and HTTP, etc. However, because of the difficulty of obtaining ISP data, previous academic efforts using this approach have mostly relied on data from one or two ISPs. While these efforts are now replicated at a global scale by commercial vendors such as Sandvine in their biannual Internet Performance Report [22], coverage is still selective, based on the 250 or so fixed and mobile operators who are customers of Sandvine.

We adopt a first-mile approach – observing end hosts through the perspective of a server or content provider. This viewpoint is complementary to the above efforts: We only have one application in our traffic mix – BBC iPlayer provides over-the-top streaming of TV and radio content that has been recently broadcast by the BBC. However, as explained in §I, BBC iPlayer is extremely popular within the United Kingdom, which allows us to get a good picture of a nation’s Internet service ecosystem. Not many have followed the first mile approach. In [14] Liu et. al have looked at a similar dataset from a large video content provider in China. However, we consider a significantly longer time span of accesses (9 months in comparison to 2 weeks), which captures long-term patterns in the behavior of the national consumer (§V-A).

Characterisation and measurement of application- and IP Network-level performance of 3G/4G has been more recent. [30] characterise the infrastructure of the four major cellular carriers in the US using a location search app. The authors identify potential placement strategies for mobile content and find that too few gateways in cellular providers mean that content delivery is difficult for them. [8] studies TCP performance on LTE and identifies potential bottlenecks, whereas [31] analyses diurnal patterns of users in 3G data networks. With respect to this stream of work, we focus on a single application—streaming, which allows us to identify distinct usage patterns across different types of networks.

One of the contributions of this work is a study covering what we believe to be a large fraction of the IP space of a country. [6] conduct a thorough census of the Internet. In contrast to our approach, this doesn’t capture application-layer and has only IP-level details. Similarly, Akamai regularly reports on the current state of the Internet, comparing the relative market shares of different devices, and average broadband rates obtained, and recent reports [1] have included basic information about mobile connectivity. However, it is unclear whether they can identify users across different networks; this is critical, for example, to analyse the impact of a mobile connection on fixed-line broadband and vice versa (Figure 7).

III. Datasets

A. Introduction to BBC iPlayer

The BBC has a number of local and national TV and radio channels, which broadcast content over the air in the UK. The BBC iPlayer is an Internet streaming service that makes this broadcast content available for streaming on the iPlayer website. Content is typically made available for a fixed period of days after the broadcast, depending on content licensing terms and other policies. Thus, the iPlayer provides an alternate “over-the-top” access mechanism for content broadcast over the air. iPlayer additionally provides live streaming access to content currently being broadcast, but accessing a live video stream requires a TV license to be paid for annually. After broadcast, most content is made available for “catch up” viewing, and may be accessed even without a TV license by viewers within UK. Currently, on-demand access constitutes the vast majority (≈90%) of TV sessions.

B. Dataset description

In this paper we consider a nine month snapshot of access logs to BBC iPlayer in May, 2013 – January, 2014. The access logs have been collected by aggregating over "heartbeat" generated regularly (each 10-30 seconds) or on a user action (e.g., video window resize or pause) between iPlayer client software and a statistics server. All data have been anonymised before analysis. Each record in the dataset contains information about a user’s session in the following format:

<network-id, isp, geographic region, user-id, content-id, content genre, session start time, duration, device type>.

The anonymized network-id identifies each unique IP address seen in our trace separately. The ISP and geo region
corresponding to this network-id/IP address are resolved before anonymization using the RIPE\(^1\) and MaxMind\(^2\) databases, respectively. Multiple ASes belonging to the same ISP or cellular network have been manually identified and merged together for the providers we consider. This also takes into account various recent mergers and acquisitions that are not yet reflected in RIPE. Overall, for ISP-related analysis we consider the five largest fixed-line and the five largest mobile ISPs which together account for \(\approx 70\%\) of users’ sessions. One limitation is that geo-location information for cellular networks is known to be highly inaccurate [27]. Therefore, we only consider the five biggest fixed-line ISPs when using geo-location information.

The anonymized user-id is based on long-term cookies (with a four year expiration date), that uniquely identifies each user agent separately. A single user might have more than one user-id if they use more than one device, or even if they use more than one browser to access iPlayer. Users might also get multiple IDs if their cookies expire. However, in this paper we refer to users as identified by the user-ids.

The other fields contain various information about the session, such as the session start time, its duration\(^3\), the content being watched and the device type. The type of device is extracted by matching user-agent HTTP headers of a user’s request over 18 different string patterns (i.e., which together account for over 90% of iPlayer sessions) corresponding to the most popular devices (e.g., iphone, android gadget, macintosh computer, playstation) in one of the three groups: mobile gadgets (smartphones and tablets), PC-like devices (desktop computers and laptops), and Internet-enabled TVs (game consoles and TV set-top boxes). The content-id field indicates a unique id of a TV or radio show for on-demand sessions (e.g., "Sherlock Holmes, Series 1, Episode 2") or channel name for live accesses (e.g., BBC One, BBC Four). Additionally, the content genre field indicates one (or few) out of 11 iPlayer categories (e.g., drama, comedy, children) to which a content item belongs. Table I gives an indication of the size of the data.

Number of Users	All	January
Number of IP addresses	55 M	20 M
Number of Sessions	1.951 M	265 M

TABLE I: The dataset of accesses to BBC iPlayer in May, 2013 - January, 2014

To start with, we consider spatial distribution of user activity across the UK\(^4\). We divide iPlayer sessions based on the region of access, and measure a region’s activity level as the average number of sessions of iPlayer users from that region\(^5\):

\[
\text{regional}_{-}\text{activity} = \frac{\#\text{sessions}_{-}\text{from}_\text{region}}{\#\text{users}_{-}\text{from}_\text{region}}
\]

We represent this using a logarithmic scale, and discretise this into five activity levels, from “low” to “high” in order to plot regional activity levels on a map (Figure 1). Note that by normalising over the total number of users from a region, this metric accounts for differences in population across regions.

The map shows clear differences across geographic regions: there are very few regions with extremely heavy (olive green) or extremely low (pink) usage. However, the second

\(1\)http://www.ripe.net/data-tools/db

\(2\)http://dev.maxmind.com/geoip/legacy/geolite/

\(3\)The session duration accounts for number of seconds of the content item watched by user, buffering and pauses are not included.

\(4\)Note that we only consider users of the fixed-line ISPs for this analysis as the ip-to-location mapping for mobile operators is known to be inaccurate [27].

\(5\)\#users_{-}\text{from}_\text{region} accounts for all users who have at least one access from that region.
highest point in our usage scale (cyan), is concentrated heavily in the south, in areas around London, whereas the second lowest (purple) levels of access are mainly found in the heavily rural regions of Wales, Scottish highlands and Northern England.

Digging deeper, in Figure 2, we next correlate these differences in usage with regional fixed-line broadband speed statistics, collected by the national regulator Ofcom [20]. It is clear from the figure that the average regional activity of iPlayer users is highly correlated (Pearson’s correlation coefficient of 0.68) with the average Broadband connection bandwidth in the region. This suggests that infrastructural support for high-speed broadband is an important factor that may determine user usage levels for bandwidth-intensive applications such as BBC iPlayer.

Although the UK government is cognisant of the regional differences in connection speeds through previous studies such as the one from Ofcom [20], and has already initiated funding schemes for improving rural broadband access [4] as part of the National Broadband Strategy, we believe this result is important as it provides a quantification of how broadband connection speeds translate to differences at the application level. Having said that, it should be pointed out that Figure 1 only shows a correlation, and lack of high-speed broadband alone may not fully explain the lower levels of iPlayer usage. Other factors, such as differences in demographics across regions, may also play a role in determining the propensity to use Internet TV streaming applications.

B. Differences in usage by device type

We next divide accesses by the type of device used to access iPlayer. We distinguish between PC-like devices (Desktop computers, laptops, etc.), Mobiles (Smartphones and tablets), and Internet-enabled TVs that can be used to access iPlayer. In this subsection, we do not distinguish between accesses from mobile ISPs and fixed-line broadband. In particular, with mobile devices, we consider accesses from both mobile and fixed broadband.

First off, we compare the cumulative distribution of usage levels across these types of devices in Figure 3a, again using the number of sessions per user as a metric for activity level. We find that users accessing iPlayer through a mobile device are more active than users from more static devices, with more sessions per user.

Second, focusing on live events in Figure 3b, we find that fixed devices (Desktop computers, laptops, Internet-enabled TVs, etc.) generally tend to have just over a half higher share of traffic than mobile devices. Considering that mobile devices comprise only ≈ 20% of accesses, this suggests that mobile devices are being used much more intensively for live usage than other fixed devices. Interestingly, during times of highly popular sports events, such as Wimbledon in June-July, we find that the load from mobile devices for live content can exceed that from all fixed devices combined.

Finally, we measure the completion ratio of sessions from users of different device types. We define completion ratio of a session as follows: Consider a user who is watching a TV programme or content item whose duration is d_p. If the duration of the session is d_u, then we define the completion ratio c of the session as

$$c = \frac{d_u}{d_p}$$ \hspace{1cm} (1)

In Figure 3c, we consider the cumulative distribution of completion ratio from different device types, and find that mobile users are more impatient, completing much lesser fractions of the shows they watch.

The above differences between mobile and fixed devices could be due to a multitude of reasons: the user demographics of those who access the Internet on their mobile devices could be different and correlate well with heavier usage of Internet in general, and TV streaming in particular. Both the higher number of sessions-per-user as well as the higher usage of live streaming could also simply be a result of the easier access to mobile devices, as their owners can typically be expected to have the device close to them. Another likely possibility is that users of mobile versions of iPlayer are technologically more savvy early adopters who are by definition heavy users. Finally, usage characteristics such as the lower completion ratio could be a result of so-called “lean forward” style of content consumption (i.e., using more random access through rewind or fast forwarding, skipping uninteresting bits) with mobile devices [3], which is more active than the “lean back” style of watching traditional TV.
Fig. 4: Time-series of user activity across 9 months for (a) fixed-line broadband ISPs and (b) mobile providers. Each line plots the weekly number of accesses for an ISP (normalised by total number of accesses for that ISP). This indicates a relatively stable market for broadband ISPs. Mobile providers with unlimited data plans appear to gain higher shares of user accesses over time than providers with data usage caps.

Regardless of the reasons, these distinct patterns of user behaviour for accesses from mobile devices that imply higher per-device system loads. Although, in absolute numbers, mobile accesses are still in the minority, comprising ≈20% of all accesses, as mobile devices proliferate and accesses increase over time, the system can expect increased load due to mobile-specific access patterns. We next examine the implications of such differences across fixed-line and mobile providers.

V. ISP-LEVEL VIEW OF BBC iPLAYER USAGE

Having considered a population level view, we next divide accesses by different types of networks: fixed line broadband and mobile networks. We focus on five representative fixed-broadband and mobile (cellular) network operators. These are labeled as F1–F5 (fixed-broadband) and M1–M5 (mobile), respectively. First, we analyze the weekly share of sessions from different providers over the entire nine months of the trace to understand the dynamics of the ISP market, and find that while the fixed-line ISP market shares remain stable, the relatively young mobile broadband market can change, with gains for mobile ISPs with unlimited data plans. Then we examine diurnal patterns of access and find distinct signatures for fixed and mobile ISPs with data usage caps. Interestingly, we find that mobile ISPs with unlimited data plans see a diurnal usage pattern that is a superposition of both kinds of ISPs. Finally, we examine how such data caps and mobile vs. fixed connectivity affects the choice of users’ session shares across the multiple ISPs from whom they may have access.

A. Temporal dynamics of mobile operators

First, we consider the number of weekly sessions across the 9 months of our trace, from May 2013 to Jan 2014. Accesses from each of the broadband ISPs and cellular networks by session shares are shown as separate time series in Figure 4. In the case of broadband ISPs (Figure 4a), apart from seasonal variations (e.g., increased access during December holidays when users might have more time at home) which affect all the operators considered, we see that the share of user accesses does not change significantly. In contrast, for mobile ISPs (Figure 4b) we observe two major disruptions: the load of M1 and M5 grows steadily from May 2013 and October 2013, correspondingly. Digging deeper into the cause for this, we observe that only M1, M5 offer unlimited data plans whereas M2, M3 and M4 either did not have unlimited plans or removed any such plans they had during the period we consider.
B. Differences in diurnal access patterns

In Figure 5, we examine diurnal patterns in accesses during January 2014. To obtain this, each day in the trace was first divided into ten minute epochs, and the number of requests during each epoch was calculated. The figure shows the average number of requests obtained by each ISP, normalised by the total number of requests for that ISP.

Unsurprisingly, for the fixed-line ISPs (Figure 5a), accesses peak during evening hours, when users are expected to be at home and presumably, relatively free to watch TV content. An orthogonal pattern is observed for mobile ISPs with limited-data caps: these providers experience heavy loads during morning and evening commute times, and a smaller peak during lunch time. Interestingly, for the unlimited-data mobile networks, the daily access pattern emerges as a superposition of fixed-line and “purely” mobile access, featuring all the different peak hours observed in the two previous cases.

C. Load share per ISP

The previous sections suggest that mobile providers who allow unlimited data usage can drive different, more inclusive traffic patterns incorporating both mobile and at-home usage. This section explores the implications of this observation, and asks how ISP differentiation factors such as data allowances or usage caps affect the per-user session share of different providers.

We first define a simple metric to measure relative suitability of a given ISP for a given user. We define the load share of a service provider (mobile or fixed-line) for a given user as the fraction of the user’s accesses to iPlayer which are from the given service provider. A user who has N iPlayer sessions, of which n_p are from provider p obtains a load share of

$$L_p = \frac{n_p}{N}$$

from that provider.

Given a user who may have multiple means of obtaining Internet access (e.g., fixed-line broadband at home and work, and/or 3G or other cellular data connectivity through a smartphone or data dongle), this metric is intended to be a gross measure that captures the effect of various different factors (such as price, data limits bandwidth, ubiquitous connectivity, etc.) that may affect the choice of which ISP to access iPlayer from. We do not distinguish the factors, but merely measure the effect of these factors on user choice, in terms of the differential load share across different providers.

We measure the average user load share of different providers in Figure 6, to understand how ISP differentiation factors affect consumer choice. We condition the load share obtained (y-axis) on the minimum activity level of users in terms of number of sessions (x-axis), since highly active users may also be sophisticated online citizens with multiple forms of Internet connectivity and therefore decreased load share. Validating this assumption, Figure 6 shows that average load share to any single provider decreases amongst customers as activity increases. As may be expected, it is seen that customers of the fixed-line broadband ISPs have the largest fraction of sessions from a sole internet access point. In contrast, mobile ISPs with data caps have the least load shares. It appears that the limited-data caps force customers to look elsewhere for cheaper or more suitable Internet access options to satisfy their demands of the high bandwidth data. Mobile users with unlimited data plans in general spend a higher share of accesses with their mobile operator than do users with limited plans, suggesting that unlimited plans can be a good incentive for iPlayer users to use a single ISP.

VI. Alleviating the limitations of data-caps with cross-ISP interactions

The previous section suggested that data caps can have a huge impact on the relative suitability of an ISP for a user who wishes to use an application like iPlayer. However, data caps are a hard economic necessity for many mobile providers (and users as well, since unlimited plans may have different pricing structure). In this section, we explore how the needs of mobile users can be supported effectively in the face of data caps.

To address this issue, we observe that when the mobile ISP cannot fully satisfy a user’s needs, her load share will be less than 1, which immediately implies that the user roams across different ISPs. We propose to consider how such cross-ISP interactions of users can be used to support user needs, and suggest two strategies. One is based on product bundling discounts, already being practised by some mobile providers in the UK. The second, based on exploiting the regularity of user accesses, predictively pre-fetches content through a fixed-line broadband connection before it is used on a mobile network, and thereby removes such access from being subject to data caps. Note that both strategies are complementary to each other and may be used independently or in conjunction.

A. Product bundling

This strategy is based on the insight that it is easier or less expensive to provide high bandwidth access through fixed-line broadband than it is to do so using a cellular architecture. Therefore, one solution to the limitations imposed by a mobile provider’s data cap is to provide the user with fixed-line broadband connectivity at home. Whilst the consumer can separately
buy mobile data connectivity from one provider and fixed-line broadband from another provider, some broadband and mobile ISPs provide product bundles to make the combination of the two ISPs more attractive to consumers. Similarly, some cellular operators operate their own fixed-line broadband, and some broadband providers may also be Mobile Virtual Network Operators. In this section, we measure the effectiveness of this strategy in capturing a greater share of user loads.

Consider two providers i and j with shares ρ_i and ρ_j respectively of all user accesses. A randomly chosen user has accesses from provider i with probability ρ_i, provider j with probability ρ_j and from both providers with a probability $\rho_{i,j} = \rho_i \rho_j$ (assuming that a user’s choice between operator i and operator j is independent). If in our trace we observe a fraction $\rho_{i,j}$ of users with accesses from both i and j, then we define an inter-service provider attractiveness coefficient $\gamma_{i,j}$ for i and j as:

$$\gamma_{i,j} = \log \left[\frac{\rho_{i,j}}{\rho_i \rho_j} \right] = \log \left[\frac{\rho_{i,j}}{\rho_i \rho_j} \right]$$

We say that providers i and j attract each other if $\gamma_{i,j} > 0$ (i.e., more users are in both providers than can be expected by chance). i and j can be considered to “repel” each other otherwise (i.e., fewer users are in both providers than can be expected by chance). We next compute the Inter-Service Provider attractiveness for each pair (named $V1$–$V30$) of providers we consider (M1–M5 and F1–F57).

Considering the attractiveness between mobile and fixed providers reveals an interesting insight (Figure 7): Mobile providers with unlimited data plans (blue bars) appear to repel other fixed-line ISPs, whereas operators in bundles $V1$–$V4$

7Note that one of the fixed-line ISPs has been separated out into two ISPs reflecting the situation prior to a recent merger. This creates 30 virtual combinations rather than the expected 25, but allows us to better see the attractiveness, as only one of the two ISPs which merged had offered product bundling to its customers.

Fig. 7: Inter-ISP attractiveness coefficients, measuring whether the number of common users between a fixed and mobile provider is greater than chance (attractiveness > 0), or not (attractiveness < 0). Each bar represents a combination of a fixed line provider with a mobile provider with unlimited data plans (blue) or limited data caps (red). The bundles with positive attractiveness coefficients ($V1$–$V4$) correspond to an existing product bundle when home broadband is offered with discounts and special deals for mobile customers that make it attractive for customers to choose both providers together.

Fig. 8: Regularity of arrivals (a): Distribution of time intervals between consecutive sessions of each user: users tend to revisit iPlayer after time intervals proportional to 24 hours. Distribution of completion ratios split across ISPs (b): users of mobile ISPs have lower completion ratios than users of fixed-line internet.

appear to have more users in common than can be expected by chance. Digging deeper into the cause of the latter we found that each of these links corresponds to an existing product bundle on the market when a home broadband provider offers discounts and special deals for the corresponding mobile operator that make it attractive for customers to choose both providers as a product bundle. We believe these examples provide some confirmatory evidence of the efficacy of “product bundling” as a pricing strategy to attract and retain customers across fixed and mobile operators. An important implication of well-defined pairing of a mobile operator with a fixed-line broadband operator is that some of the mobile access can be offloaded by pre-fetching using the fixed-line connection, as discussed below.

B. Speculative prefetching

The second strategy we consider is one that can be implemented directly by a content provider, without ISP assistance. The basic idea is to offload the mobile traffic to a fixed-line broadband operator by using speculative pre-fetching strategies such as the ones extensively explored in previous literature [18], [24], [15], [9], [7], [28], [11]. Alternately, a pair of fixed-line and mobile providers can collaborate with each other to aggressively pre-fetch content expected to be accessed by the user over a mobile network, and push it to a device-local cache controlled by the mobile network operator (e.g., pushed to reserved storage on the phone). In this subsection, we explore the feasibility of such an approach.

First, we study how people access content across mobile
and broadband operators. To this end, we first measure how often users return back to iPlayer. Figure 8a shows that users are more likely to return back to iPlayer after time intervals proportional to 24 hours. This periodicity could be exploited to speculatively pre-fetch content whilst on a fixed connection, before the next access on a mobile connection happens.

We also measure the fractions of content which users watch from mobile and fixed-line ISPs and notice that mobile users have lower completion ratios (as defined in Equation (1)) with respect to fixed-line users (Figure 8b). Consistent with the patterns observed with return times (Figure 8a) and access times (Figure 5), this arises as mobile users watch episodes partially during morning or evening commutes, the hours of their highest activity.

Interestingly, Figure 8b also shows that completion ratio increases significantly if we join together sessions from the same user to the same content item. We consider on-demand sessions which are started from a fixed networks and finished when on the move, or vise versa. On a random sample of 1M users, we observed that approximately 52% of such joint sessions are started on the fixed network. Thus, when the user is still on the fixed-line ISP, content can be aggressively pre-fetched beyond the current watch point, and cached on the mobile device. When the user accesses the rest of the show from a mobile network, it can replayed from cache, thereby preventing the session from counting against the user’s data caps on the mobile network. Of the remaining 48% of sessions, which are all started on the mobile network, 23% are for new episodes of shows whose previous episodes have also been watched by the user. For example, a user who has previously watched “Dr. Who, Episode j”, either on fixed or mobile connection, might watch some episode, “Dr. Who, Episode j + k” (k > 0), while on the move. By exploiting previous watch history, new episodes of “Dr. Who” may be speculatively pre-fetched onto the mobile device, thereby offloading a future access from a mobile connection. Clearly, such speculative strategies also have to consider how to manage the limited amount of storage which might be available on the mobile device. A full study of this issue and an implementable solution is beyond the scope of this study. However the extensive prior work on speculative pre-fetching [18], [24] has considered similar issues.

C. Limitations to mobile-fixed interactions

Finally, we analyze what people watch across different kinds of ISPs. We split iPlayer accesses by the ISPs they come from and rank content items according to their number of accesses in each network. Then, we compute Spearman’s correlation coefficients between the content popularity rankings for each pair of networks. Figure 9a shows a correlation matrix for every pair of operators. Notice that the correlation is high for the ISPs within the mobile and fixed-line groups and is significantly lower for pairs of ISPs from different groups. Additionally, we note from Figure 9b that children and learning content which accounts for a giant (≈25%) fraction of fixed-line accesses drops dramatically for mobile users: evidently, adult users dominate for mobile broadband access.

We envisage that such discrepancies in content popularity across different networks is a limitation for mobile-fixed network co-operation which should be accounted for in the design of prefetching mechanisms. On the other hand, it opens a door for co-operation between mobile operators (or between fixed-line ISPs) with similar content access patterns. This can potentially reduce maintenance and infrastructure upgrade costs by installing content caches commonly shared across all co-operating ISPs. We note that these ideas are in line with a general trend in the UK’s mobile market where two rival operators have recently announced a deal to share 4G infrastructure [26].

VI. DISCUSSION AND CONCLUSION

We offer, to the best of our knowledge, the first population-level picture of a nation’s Internet usage, that covers an estimated 50% of UK’s online population, comparing and contrasting the relative markets for fixed-line and mobile (cellular) broadband access, from the perspective of one application – online streaming.

Our study found evidence that connection speeds of different regions of the UK correlate with the regional activity levels, the average number of sessions per user, underscoring the importance of speed. We also found that mobile devices can have disproportionately large share of live accesses, especially during popular sports events such as Wimbledon. Mobile devices also complete smaller fractions of a programme in a single session.

8 This result is distinct from Figure 3c, which studies completion across different device types across any kind of network. Here we study completion ratio of any device, across fixed and mobile ISPs.
We then surveyed 5 representative mobile and fixed broadband ISPs. The more mature broadband ISP market remained relatively stable over the nine months of our trace, but the mobile market proved to be dynamic: we observed an increase in session shares for mobile providers who offer unlimited data plans. We observed distinct differences in the diurnal access patterns across different kinds of providers: sessions from fixed-line broadband ISPs peak during evening hours, when users are expected to be at home; mobile providers with data caps contribute sessions during commute times; and mobile providers with unlimited data plans show a superposition of both patterns, with peaks during commute-time and during evening times.

To measure to what extent different providers capture the market of each user, we defined a simple measure called load share that captures the per-user session share that goes to a given provider, and showed that fixed-line ISPs are able to capture a greater share of user sessions in comparison with mobile providers. Similarly, mobile providers with unlimited data obtain a greater load share than mobile providers with limited data. However, some of the providers with limited data are able to capture a greater share of their users’ sessions by introducing discounts and tie-ups with preferred fixed-line broadband providers, creating an “inter-ISP attractiveness” that helps capture a greater share of user accesses. Finally, we studied how the roaming of users across multiple ISPs can be used to advantage by speculatively pre-fetching content over fixed-line connections and offloading it from mobile access.

Our study was enabled by the large coverage that iPlayer has of the UK population online. This is by no means a unique phenomenon – indeed, the “winner take all” nature of modern Web applications mean that other Internet giants, such as Google, Facebook or Akamai may have similar views of the online population, perhaps also on a global scale. Exploiting this for other Internet-scale measurements may be an interesting avenue for future research.

REFERENCES

[1] AKAMAI. State of the internet, Q4 2013.
[2] BBC. Bbc iplayer performance pack march 2014. http://goo.gl/t3stgR.
[3] CUI, Y., CHIPHASE, J., AND JUNG, Y. Personal tv: A qualitative study of mobile tv users. In Interactive TV: A shared experience. Springer, 2007, pp. 195–204.
[4] DEPARTMENT FOR CULTURE MEDIA, & SPORT, PARLIAMENTARY UNDER SECRETARY OF STATE FOR CULTURE, COMMUNICATIONS AND CREATIVE INDUSTRIES, AND THE Rt. Hon. Sajid Javid MP. Stimulating private sector investment to achieve a transformation in broadband in the uk by 2015. Available from https://www.gov.uk/government/policies/transf
[5] DISCHINGER, M., HAEBERLE, A., GUMMADI, K. P., AND SAROUH, S. Characterizing residential broadband networks. In Proceedings of the IMC (2007), pp. 43–56.
[6] HEIDEMANN, J., PRADKIN, Y., GOVINDAN, R., PAPADOPOULOS, C., BARTLETT, G., AND BANNISTER, J. Census and survey of the visible internet. In Proceedings of the 8th ACM SIGCOMM IMC (2008), ACM, pp. 169–182.
[7] HOQUE, M. A., SIEKINEN, M., AND NURMINEN, J. K. Using crowdsourced viewing statistics to save energy in wireless video streaming. In Proceedings of the 19th MobiCom (2013), ACM, pp. 377–388.
[8] HUANG, J., QIAN, F., GUO, Y., ZHOU, Y., XU, Q., MAO, Z. M., SEN, S., AND SPATSCHECK, O. An in-depth study of ife: Effect of network protocol and application behavior on performance. In Proceedings of the ACM SIGCOMM 2013 (2013), ACM, pp. 363–374.
[9] KAMARAJU, P., LUNGARO, P., AND SEGALL, Z. A novel paradigm for context-aware content pre-fetching in mobile networks. In WCNC, 2013 IEEE (2013), IEEE, pp. 4534–4539.
[10] KARAGIANNI, T., PAPAGIANI, K., AND FALOUTSOS, M. Blinc: multilevel traffic classification in the dark. In ACM SIGCOMM Computer Communication Review (2005), vol. 35, ACM, pp. 229–240.
[11] KAUF, F., AND HAUSHEER, D. Optimizing energy consumption and qoe on mobile devices. In ICNP (2013), pp. 1–3.
[12] KREIBICH, C., WEAVER, N., NECHAEV, B., AND PAXSON, V. Net-alyx: illuminating the edge network. In Proceedings of the 10th ACM SIGCOMM IMC (2010), ACM, pp. 246–259.
[13] LAXHMINARAYAN, K., AND PADMANABHAN, V. N. Some find-

ings on the network performance of broadband hosts. In Proceedings of the 3rd ACM SIGCOMM IMC (2003), ACM, pp. 45–50.
[14] LI, Z., LIN, J., AKODJENOU, M.-I., XIE, G., KAAFAR, M. A., JIN, Y., AND PENG, G. Watching videos from everywhere: a study of the ppvt mobile vod system. In Proceedings of the 2012 ACM IMC (2012), ACM, pp. 185–198.
[15] LU, Z., AND DE VECIANA, G. Optimizing stored video delivery for mobile networks: The value of knowing the future. In INFOCOM, 2013 Proceedings IEEE (2013), IEEE, pp. 2706–2714.
[16] MAIER, G., FELDMANN, A., PAXSON, V., AND ALLMAN, M. On dominant characteristics of residential broadband internet traffic. In Proceedings of the 9th ACM SIGCOMM IMC (2009), ACM, pp. 90–102.
[17] MOORE, A. W., AND PAPAGIANI, K. Toward the accurate identification of network applications. In Passive and Active Network Measurement. Springer, 2005, pp. 41–54.
[18] NENCIONI, G., SASTRY, N., CHANDARIA, J., AND CROWCROFT, J. Understanding and decreasing the network footprint of catch-up tv. In Proceedings of the WW1 (2013), pp. 965–976.
[19] OFCOM. Communications market report july, 2012. Available from http://goo.gl/cSQGvL.
[20] OFCOM. Uk fixed broadband map 2013. Available from http://maps.ofcom.org.uk/broadband/, 2013.
[21] SÁNCHEZ, M. A., OTTO, J. S., BISCHOF, Z. S., CHOFNES, D. R., BUSTAMANTE, F. E., KRISHNAMURTHY, B., AND WILLINGER, W. DaSu: Pushing experiments to the internet’s edge. In USENIX NSDI (2013), vol. 2013, pp. 487–499.
[22] SANDVINE. Global internet phenomena report, 2h 2012, May 2012.
[23] SIMPSON JR, C. R., AND RILEY, G. F. Neti@ home: A distributed approach to collecting end-to-end network performance measurements. In Passive and Active Network Measurement. Springer, 2004, pp. 168–174.
[24] SIRIS, V. A., AND KALYVAS, D. Enhancing mobile data offloading with mobility prediction and prefetching. ACM SIGMOBILE Mobile Computing and Communications Review, 17, 1 (2013), 22–29.
[25] SUNDARESAN, S., DE DONATO, W., FEAMSTER, N., TEIXEIRA, R., CRAWFORD, S., AND PESCAPE, A. Broadband internet performance: a view from the gateway. In ACM SIGCOMM Computer Communication Review (2011), vol. 41, ACM, pp. 134–145.
[26] THEINQUERIER.NET. Rival operators ee and three strike a deal to share 4g infrastructure. Available from http://goo.gl/13AgIs, 2014.
[27] TRIUKOSE, S., ARDON, S., MAHANTI, A., AND SETH, A. Geocolocating ip addresses in cellular data networks. In Passive and Active Measurement (2012), Springer, pp. 158–167.
[28] WANG, X., KWON, T. T., CHOI, Y., WANG, H., AND LIU, J. Cloud-assisted adaptive video streaming and social-aware video prefetching for mobile users. Wireless Communications, IEEE 20, 3 (2013).
[29] XU, K., ZHANG, Z.-L., AND BHATTACHARYYA, S. Profiling internet backbone traffic: behavior models and applications. In ACM SIGCOMM Computer Communication Review (2005), vol. 35, ACM, pp. 169–180.
[30] XU, Q., HUANG, J., WANG, Z., QIAN, F., GEBERER, A., AND MAO, Z. M. Cellular data network infrastructure characterization and implication on mobile content placement. In Proceedings of the ACM SIGMETRICS (2011), ACM, pp. 317–328.
[31] ZHU, Z., CAO, G., KERALAPURA, R., AND Nucci, A. Characterizing data services in a 3g network: Usage, mobility and access issues. In Proceedings of the IEEE ICC 2011 (2011), IEEE, pp. 1–6.