Rotating superfluids and spinning charged operators in conformal field theory

Gabriel Cuomo,1 Anton de la Fuente,1 Alexander Monin,2 David Pirtskhalava,1,3 and Riccardo Rattazzi1

1Theoretical Particle Physics Laboratory, Institute of Physics, EPFL, Lausanne, Switzerland
2Laboratory of Particle Physics and Cosmology, Institute of Physics, EPFL, Lausanne, Switzerland
3Theoretical Physics Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK

(Dated: November 8, 2017)

We calculate the scaling dimensions of operators with large global charge and spin in 2+1 dimensional conformal field theories. By the state-operator correspondence, these operators correspond to superfluids with vortices and can be systematically studied using effective field theory. As the spin increases from zero to the unitarity bound, the superfluid state corresponding to the lowest dimension operator passes through three distinct regimes: (1) a single phonon, (2) two vortices, and (3) multiple vortices. We also calculate correlation functions with two such operators and the Noether current.

Perhaps a way to phrase the main difference between high energy physics and condensed matter physics is that high energy physics mostly occurs in the vacuum while condensed matter physics occurs at finite density. In a conformal field theory (CFT), this particular difference disappears: The state-operator correspondence maps finite density states to local operators and therefore maps finite density correlators to vacuum correlators.

Recently, this idea was applied using superfluids [1–9]. Superfluids are finite density states and correspond to operators with large global charge. Furthermore, superfluids are described by an effective field theory (EFT), allowing the computation of correlators in a systematic perturbative expansion [10]. This EFT was used to study the CFT operator spectrum at large global charge [1–9].

In an independent line of research, much work was devoted to using the conformal bootstrap [11, 12] to study the CFT operator spectrum at large spin [13–23]. This motivated us to ask the following question: Can large spin operators also be studied using EFT techniques? An obvious approach to this question is to start with the large charge operators studied by [1–9] and then proceed by adding increasing amounts of spin to them. This translates to adding angular momentum to the corresponding superfluid.

Experimentally, when angular momentum is added to a superfluid in the laboratory, vortices develop [24]. However, the superfluid EFT used by [1–9] does not incorporate vortices; all angular momentum is carried by phonons alone. This suggests that the EFT would incorrectly describe high angular momentum states. Conveniently, a superfluid EFT that incorporates vortices was recently constructed [25]. We will use this EFT to study operators that have large spin as well as large charge.

Results. We found that we can study large charge operators with arbitrary spin, provided that the spin is parametrically below the unitarity bound. This range of spins is disjoint from the range in which the large spin bootstrap work [13–23] is valid—that work only applies to operators parametrically close to the unitarity bound. Therefore, our results complement the bootstrap results.

We calculated the dimension \(\Delta \) of the lowest dimension operator with charge \(Q \gg 1 \) and spin \(J \). As \(J \) varies from 0 to \(\Delta \), the corresponding superfluid state passes through three qualitatively distinct regimes. We will simply state the results now and derive them later. The results are displayed at leading order in both large \(Q \) and large \(J \). At this order, there is only a single free parameter \(\alpha \) for the entire range of \(J \).

For \(0 \leq J \lesssim \sqrt{Q} \), the lowest energy state has no vortices and consists of a single phonon of angular momentum \(J \). The corresponding operator dimension \(\Delta \) is [1, 3]

\[
\Delta = \alpha Q^{3/2} + \frac{J}{\sqrt{Q}} \tag{1}
\]

For \(\sqrt{Q} \lesssim J \lesssim Q \), the lowest energy state consists of a vortex-antivortex pair whose separation increases with \(J \). The corresponding operator dimension \(\Delta \) is

\[
\Delta = \alpha Q^{3/2} + \frac{\sqrt{Q}}{3\alpha} \ln \frac{J}{\sqrt{Q}} \tag{2}
\]

For \(Q < J \lesssim Q^{3/2} \), the lowest energy state consists of multiple vortex-antivortex pairs distributed so that the superfluid has the same velocity profile as that of a rotating rigid body [26]. The corresponding operator dimension \(\Delta \) is

\[
\Delta = \alpha Q^{3/2} + \frac{1}{2\alpha} Q^{1/2} \tag{3}
\]

As \(J \to Q^{3/2} \sim \Delta \), the EFT breaks down and, as mentioned, we are unable to reach the spin of the operators studied in [13–23] by bootstrap methods.

Our results apply to any CFT that satisfies three conditions: first, its large charge sector can be described as a superfluid; second, this superfluid admits vortices; third, the only low energy degrees of freedom are the Goldstone modes of the superfluid. These are the simplest and most natural conditions we can imagine. Because of this, we believe—but cannot prove—that our results apply to a wide range of CFTs with a \(U(1) \) global symmetry. For example, we expect that they apply to the critical \(O(2) \) model [27] and can be tested in principle.
General Strategy. We will now explain in more detail how the above results were derived. Our general strategy consists of combining two powerful tools: effective field theory (EFT) and the state-operator correspondence. We begin by considering a $d+1$ dimensional CFT on a cylinder $\mathbb{R} \times S^d$. Next, we assume that a given EFT on this cylinder is a valid description of our CFT. Finally, we apply the state-operator correspondence directly to the states of this EFT. Throughout the paper, unless otherwise stated, we shall work at leading order in the derivative and field expansion within EFT [1, 3].

Note that this strategy differs from that in [3], which takes the “top-down” approach of projecting onto a desired state using the Euclidean path integral. Instead, we are taking the “bottom-up” approach of simply assuming an EFT and then quantizing its Hamiltonian while always remaining in Lorentzian spacetime.

As a reminder, in a CFT, there is a one-to-one correspondence between the eigenstates of the Hamiltonian H on S^d and the set of scaling operators at any given point. This is called the state-operator correspondence (see [11, 12] for reviews). The energy E of a state is related to the scaling dimension Δ of the corresponding operator by $E = \Delta/R$, where R is the radius of the sphere S^d. All other conserved quantum numbers of the state (such as global charge and spin) are identical to those of the corresponding operator.

Dual gauge field. We now specialize the construction of [25] to the cylinder $S^2 \times \mathbb{R}$. It uses a dynamical gauge field a_μ instead of the more familiar Goldstone field π. We begin with the conformal superfluid effective Lagrangian [1, 3, 10] written in terms of π:

$$L = c(\partial \chi)^3,$$

where $\chi \equiv \mu t + \pi$, c is an unknown constant, and μ can be interpreted as the chemical potential. We use the notation, $w \equiv (g^{\mu \nu} w_\mu w_\nu)^{1/2}$, where $g_{\mu \nu}$ is the spacetime metric and w_μ is an arbitrary spacetime vector. We then dualize χ by formally treating $v_\mu \equiv \partial_\mu \chi$ as an independent variable and introducing a Lagrange multiplier a_μ to set the curl of v_μ to zero:

$$L = c v^3 - \frac{1}{2\pi} a_\mu \epsilon^{\mu \nu \lambda} \sqrt{g} \partial_\nu v_\lambda.$$

Note that in our notation, it is the combination $\epsilon^{\mu \nu \lambda} \sqrt{g}$ that gives the antisymmetric Levi-Civita tensor. Integrating out v_μ gives

$$L = -\kappa f^{3/2},$$

where $f \equiv \sqrt{f_{\mu \nu} f^{\mu \nu}}$ and $f_{\mu \nu} \equiv \partial_\mu a_\nu - \partial_\nu a_\mu$. We dropped a boundary term that came from integrating (5) by parts because it is metric independent and thus does not affect the energy momentum tensor. The coefficient κ in (6) is related to the coefficient c in (4) as $\kappa = \frac{1}{2\pi v^3 / (3\pi)^{3/2} \sqrt{\pi}}$.

The relation between χ and a_μ is given by the expression for the $U(1)$ current j^μ:

$$j^\mu = 3c(\partial \chi) \partial^\mu \chi = \frac{1}{4\pi} \epsilon^{\mu \nu \lambda} \sqrt{g} f_{\nu \lambda}.$$

In the vacuum, the charge density is $\langle j^0 \rangle = \frac{Q}{\pi R^2}$, where Q is the net charge of the superfluid state and R is the radius of the sphere. This translates to a homogeneous magnetic field

$$\langle j_{\theta \phi} \rangle = B \sin \theta \equiv \frac{Q}{2R^2} \sin \theta$$

and results in a net magnetic flux of $2\pi Q$ through the sphere. Parametrically, the cutoff Λ of our EFT is

$$\Lambda \sim \sqrt{B} \sim \frac{\sqrt{Q}}{R}.$$

Particle-vortex duality. Vortices in the superfluid description correspond to heavy charged particles in the gauge theory description (see [28] for a pedagogical introduction). They are treated in a first-quantized form as $0+1$ dimensional worldlines embedded in the $2+1$ dimensional spacetime. We will use the terms “vortex” and “charged particle” interchangeably.

To write the effective action for a conformal superfluid with vortices [25], we parametrize the spacetime trajectory of the pth vortex by $X_p^\mu(\tau)$, where τ is an auxiliary time parameter. We further impose Weyl and τ-reparametrization invariance, with the former reducing to conformal invariance in the relevant case of a static metric. The action can be organized as a derivative expansion with the lowest order terms given by

$$S = -\kappa \int d^3 x \sqrt{g} f^{3/2} - \sum_p q_p \int a_\mu dX_p^\mu - \sum_p \int d\tau \gamma_p \sqrt{f} g_{\mu \nu} \nabla_\mu X_p^\nu X_p^\mu + \cdots.$$

The first term is the kinetic term (6) for the gauge field. The second term is the leading coupling between a particle of charge q_p and the gauge field [29]. The last term can be viewed as the action for a relativistic point particle [29] with mass $\gamma_p \sqrt{f}$. The dots in (10) represent terms with at least two derivatives on either A_μ or X_p^μ, and the coefficient γ_p should in general be promoted [25] to a function of $j_\mu X^\mu / (\nabla X)$, where j_μ is the $U(1)$ current (7). However, as we will now explain, the leading order description of our system is fully determined by the first line of (10). We note that we are restricting ourselves to parity-invariant CFTs. Otherwise, we could have added a one-derivative Chern-Simons term, $A \wedge dA$, to the action (10).

Lowest Landau Level. Each X_p^μ describes the motion of a 2D particle in a magnetic field and consists of two pairs of canonically conjugate variables. These can be
further decomposed into one pair that describes the motion of the guiding center and another pair that describes cyclotron motion. Without interparticle interactions, excitations of the first pair are gapless while excitations of the second pair have a gap \(\omega = B/m \), where \(m \) is the particle mass. The gapped excitations are the Landau levels \([30]\), and the gaplessness of the guiding center variables is the usual degeneracy of Landau levels.

In our system \((10)\), \(\omega \sim \sqrt{B} \), which coincides with the EFT cutoff \((9)\). Thus, within the domain of validity of our EFT, the dynamics of \(X^\mu \) reduces to that of just the guiding center—the Landau levels are effectively integrated out \([31–33]\). One well-known fact \([34, 35]\) is that the guiding center can be described by dropping the mass term (the second line) from the Lagrangian \((10)\). Physically, this is because in the massless limit, the Landau level gap \(\omega \to \infty \). Formally, this is because the first line in \((10)\) is linear in the particle velocity. This constrains the two physical coordinates to be canonically conjugate to each other, halving the dimension of phase space.

In view of the above, the terms in the second line of \((10)\) are genuine higher derivative corrections. On the one hand, they bring in new states with energy \(\sim \sqrt{B} \). On the other, at sufficiently low energy, they can be consistently treated as small perturbations of the leading single derivative term. This is fully analogous to supplementing the 1D Lagrangian \(q^2/\Lambda^2 \) with the 4-derivative term \(4\Lambda^2 \): states arise with energy \(\sim \Lambda \), but at low-energy, the 4-derivative term can be treated as a perturbation using standard EFT methods. We leave a systematic study of higher order corrections for future work, though we will briefly mention some effects below.

In what follows, we will therefore derive leading order results by simply dropping the second line in \((10)\) and assume

\[
S = -\kappa \int d^3x \sqrt{g} f^{3/2} - \sum_p q_p \int a_0 dX^\mu_p. \tag{11}
\]

The electrostatic potential coupling will generate nontrivial dynamics and a gap for the guiding centers. As long as particle separations are larger than the cut-off length \(1/\sqrt{B} \), this is within the regime of validity of the EFT.

Classical Analysis. We will now compute the classical energy and angular momentum of a state with a given configuration of vortices. By the state-operator correspondence, this gives us the dimension and spin of the corresponding operator. We will work to leading order in large \(Q \) and in large vortex separations. At this order, the equations of motion from \((11)\) are

\[
\frac{1}{\epsilon^2} \nabla_\mu f^{\mu\nu} = \mathcal{J}^\nu \tag{12}
\]

\[
E^i = (\dot{X}_p)_j f^{ji}, \tag{13}
\]

where \(E^i \equiv f^{i0} \) is the electric field and \(\mathcal{J}^\nu \) is the current due to the point charges. The coupling \(\epsilon^2 \) is defined as

\[
\frac{1}{\epsilon^2} \equiv \frac{3\kappa}{21/4} \frac{1}{\sqrt{B}}. \tag{14}
\]

Eqs. \((12)\) are Maxwell’s equations and \((13)\) imposes that the particles move on trajectories with vanishing Lorentz force. In other words, as expected, the particles exhibit pure drift velocity motion. This is consistent with cyclotron degrees of freedom being integrated out. Thus, the particle velocities are \(|\dot{X}_p| \sim |\mathcal{E}|/B \sim 1/\sqrt{Q} \) and can be neglected. Our problem has thus reduced to the 2D electrostatics of point charges on a sphere in a constant magnetic field.

The stress energy tensor \(T_{\mu\nu} = \frac{2}{\sqrt{g}} \delta S/\delta g^{\mu\nu} \) is

\[
T_{\mu\nu} = \frac{\kappa}{\sqrt{f}} \left(-3f_{\mu\alpha} f^\alpha_{\nu} + g_{\mu\nu} f^2\right). \tag{15}
\]

Using this, we calculate the dimension \(\Delta \) of the corresponding operator:

\[
\Delta = \frac{Q^{3/2}}{2\sqrt{7\pi c}} + \frac{R^3}{2\epsilon^2} \int d\theta d\phi \sin \theta \mathcal{E}^2. \tag{16}
\]

Physically, the first term is the energy stored in the background magnetic field while the second term is the energy stored in the electric field created by the particles.

In Coulomb gauge, \(E_i = \partial_i a_0 \) where \(a_0 \) is the electric potential due to a collection of point charges on a 2-sphere:

\[
a_0(\vec{r}) = -\frac{\epsilon^2}{4\pi} \sum_p q_p \ln(|\vec{r} - \vec{R}_p|^2). \tag{17}
\]

We used embedding coordinates of the 2-sphere in \(\mathbb{R}^3 \), where \(\vec{r} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \) is a unit 3-vector and analogously for \(\vec{R}_p \). The total electric field energy is a sum of pairwise contributions for each charge:

\[
\frac{R \epsilon^2}{8\pi} \left[\sum_{p \neq r} q_p q_r \ln(|\vec{R}_p - \vec{R}_r|^2) - \sum_p q_p^2 \ln 0^2 \right]. \tag{18}
\]

The last term is the familiar divergent self-energy of a point charge. It will be cut off at angular lengths \(\sim 1/\sqrt{Q} \) \((9)\). More formally, the divergence will be cancelled by the bare mass term we dropped in \((11)\), and the logarithm will come from renormalization group running \([25]\).

Thus, the dimension \(\Delta \) \((16)\) is

\[
\Delta = \alpha Q^{3/2} - \frac{\sqrt{Q}}{12\alpha} \sum_{p \neq r} q_p q_r \ln \left(\frac{|\vec{R}_p - \vec{R}_r|^2}{Q}\right), \tag{19}
\]

where \(\alpha \equiv 1/\sqrt{27\pi c} \), and we used \(\sum_p q_p = 0 \) to combine the logarithms in \((18)\).

The angular momentum \(\vec{J} \) can also be calculated from the stress tensor \((15)\) and is

\[
\vec{J} = -\sum_p q_p \frac{Q}{2} \vec{R}_p. \tag{20}
\]
Derivation of results. The results stated at the beginning of this paper can now be derived. First, note that the self-energy of a particle of charge q is proportional to q^2—this is the second term in (18). Because of this, particles with $|q| > 1$ are energetically unfavored.

- Eq. (1) is derived using the phonon dispersion relation, $\omega = [\frac{1}{2}p(\ell + 1)]^{1/2}$ [1, 3], where ℓ is angular momentum and ω is energy. Since ω/ℓ decreases with ℓ, energy is lowest at fixed J with a single phonon of $\ell = J$.
- Eq. (2) is derived by evaluating Δ (19) and J (20) on a configuration with a single vortex-antivortex pair.
- Eq. (3) is derived by approximating the vortex distribution as a continuous distribution and then minimizing Δ (19) for fixed J (20) using variational techniques. This gives a vortex distribution ρ of

$$\rho = \frac{3}{2\pi R^2} \frac{J}{Q} \cos \theta,$$

and results in the superfluid having the same velocity profile as that of a rigid body [26].
- As $J \to Q^{3/2}$, the electric field \hat{E} approaches the magnetic field B and the drift velocities become relativistic. This causes the EFT to break down because the higher order terms neglected in (11) become un-suppressed. The guiding centers becomes energetic as the cyclotron degree of freedom and anything else at the EFT cutoff (9).

Quantization. Since the vortex positions are continuous, some questions may occur: How many distinct states are there? How does the quantization of angular momentum arise? These questions are answered when we quantize our system of charged particles in a magnetic field. Solving for a_0 using (17) and ignoring fluctuations of a_i, our effective Lagrangian (11) becomes

$$L = \sum_p q_p \hat{A} \cdot \hat{R}_p + \frac{e^2}{8\pi} \sum_{p,r} q_p q_r \ln(\hat{R}_p - \hat{R}_r)^2,$$

where \hat{A} is the potential for a magnetic monopole [36, 37]. We use the gauge in which $A_\phi = \frac{1}{2}Q(1 - \cos \theta)$ and $A_\theta = 0$. This system is known as the “fuzzy sphere” [38, 39].

Due to the somewhat complicated form of \hat{A}, it is useful to switch to spinor coordinates [40, 41]:

$$\psi \equiv \left(\frac{\cos \frac{\theta}{2}, e^\theta}{\sin \frac{\theta}{2}} \right),$$

where we suppressed the vortex index. In these coordinates, $\hat{R} = \hat{\psi} \hat{\sigma} \psi$ and $\hat{A} \cdot \hat{R} = -iQ \psi^\dagger \hat{\sigma} \psi$. This identifies the canonical momentum corresponding to ψ_p as $-iQ q_p \psi^\dagger_p$. The canonical commutation relations imply that the angular momentum (20) commutes with the Hamiltonian and satisfies $[\hat{J}_i, \hat{J}_j] = i\epsilon_{ijk} \hat{J}_k$ [38, 39]. We use curly \hat{J} to denote the angular momentum operator.

For illustration, consider the case of two vortices of unit charge. The Hamiltonian corresponding to (22) is then

$$H = \text{const} + \frac{e^2}{4\pi} \ln \hat{J}^2,$$

where “const” involves terms that are independent of the vortex coordinates, and we used (20) to express H in terms of \hat{J}. The spectrum is thus entirely determined by the spectrum of \hat{J}^2. As is well-known, $\hat{J}^2 = J(J + 1)$, where J is an integer and for each value of J, there are $2J + 1$ degenerate states.

Restoring the constants in (24), the dimension of the corresponding operator is

$$\Delta = \alpha Q^{3/2} + \sqrt{Q} \ln \frac{J(J + 1)}{Q}.$$

We can trust this equation for $Q^{-\theta} \lesssim J \lesssim Q$. The lower value is determined by requiring that the vortices be separated by distances larger than the cutoff $\sim 1/\sqrt{B}$. The upper value occurs when the two particles are at opposite poles.

Correlators. The EFT we presented can also be used to compute correlation functions [3]. Let us consider correlators involving the $U(1)$ current j_μ. From (7) and Gauss’s law, we see that the line integral $\oint_C j_\mu dx^\mu$ about a closed curve C at fixed time is simply $\frac{1}{2\pi}$ times the total charge q_{enc} enclosed by C:

$$\langle \text{vortex} \int_C j_\mu dx^\mu | \text{vortex} \rangle = \frac{e^2 q_{\text{enc}}}{2\pi},$$

where $|\text{vortex}\rangle$ is a generic vortex state. By the state-operator correspondence, this amounts to a nontrivial prediction about three-point functions. We will now consider two simple examples.

As a first example, we consider a vortex-antivortex pair located at the north and south poles. Then (26) becomes

$$\langle \text{vortex} | j_\phi(\theta, \phi) | \text{vortex} \rangle = \frac{e^2}{2\pi R},$$

where now $|\text{vortex}\rangle$ is a state with $J = J_2 = Q$ and j_ϕ is the azimuthal component of j_μ. In general, the expectation value of a spin-1 operator j_ϕ in a state $|J, J_2 \rangle$ with $J = J_2 = Q$ is [42]

$$\langle Q, Q | j_\phi(\theta, \phi) | Q, Q \rangle = R^2 \sum_{m=0}^Q a_m \cos 2m \theta,$$

where a_m are arbitrary (theory-dependent) constants subject to the constraint $\sum_m a_m = 0$. By equating (27) to (28), we obtain the following predictions for a_m at leading order:

$$a_m = \begin{cases} \sqrt{Q}, & \text{if } m = 0; \\ 0, & \text{if } 1 \leq m \ll \sqrt{Q}. \end{cases}$$

We can only make predictions for $m \ll \sqrt{Q}$ because the EFT breaks at distances of order of the inverse cutoff (9) from the vortices. The constraint $\sum_m a_m = 0$ is thus irrelevant for our discussion.
As a second example, we consider the states described by (3). Using (21), we find

\[\langle \text{vortex} | j_\phi(\theta, \phi) | \text{vortex} \rangle = \frac{3e^2}{8\pi R} \frac{J}{Q} \sin^2 \theta. \] \hspace{1cm} (30)

This expression is valid as long the continuous approxima-
tion for the density (21) can be used. In other words, it is
valid on distance scales larger than the vortex separation
\(\sim 1/\sqrt{R} \sim \sqrt{Q}/J \). Rewriting (28) in the Fourier basis:

\[\langle Q, Q | j_\phi(\theta, \phi) | Q, Q \rangle = R^2 \sum_{m=0}^{J} b_m \cos 2m\theta, \] \hspace{1cm} (31)

we obtain the following predictions for \(b_m \) at leading order:

\[b_m = \begin{cases} \frac{(-1)^m}{8\pi e} \frac{J}{\sqrt{Q}}, & \text{if } m = 0, 1; \\ 0, & \text{if } 2 \leq m \ll \sqrt{J/Q}. \end{cases} \] \hspace{1cm} (32)

Large \(N \). So far, we assumed that the numerical coeffi-
cients in our effective Lagrangian are \(O(1) \), corresponding to
an underlying strongly coupled CFT. The case of a
weakly coupled or large \(N \) theory is quickly illustrated.
However, the conclusions depend on whether the weak
coupling appears in the \(\chi \) description (4) or in the \(a_\mu \)
description (6). We will refer to the \(\chi \) description as
“electric” and to the \(a_\mu \) one as “magnetic”, with couplings
\(g_{\text{e}}^2 = 1/N_c \) and \(g_{\text{m}}^2 = 1/N_m \), respectively.

Consider first a weakly coupled magnetic theory (for ex-
ample, the large \(N_m \) setup discussed in [43-50]). Since
\(1/\alpha \sim g_{\text{m}}^2 \) is small, the “bare” vortex mass
\(\sim \gamma \sqrt{Q} \) is no longer subdominant to the electric
dfield energy in (16). Therefore, the contribution \(\frac{1}{4\pi} n \gamma \sqrt{Q} \) should be added
to (2) and (3), where \(n = 2 \) for \(J \lesssim Q \), and \(n = 3J/Q \) for
\(J \gg Q \). For simplicity, we assumed the same bare mass
for all vortices. This gives the dominant spin dependent
contribution to \(\Delta \) for \(J \lesssim Q/g_{\text{m}}^2 \).

Consider now a weakly coupled electric theory. The essen-
tial difference in this case is that the cutoff is nat-
urally identified with \(\mu \sim g_{\text{e}} \sqrt{Q} \) [2] instead of with (9).
Therefore, a single phonon is restricted to \(J \lesssim g_{\text{e}} \sqrt{Q} \)
and a vortex-antivortex pair to \(J \gtrsim Q \mu^{-1} \gtrsim \sqrt{Q}/g_{\text{e}} \).
States with \(J \) in the gap between the two consist of mul-
tiple phonons, approaching a \(1/g_{\text{e}}^2 \) number of them as
\(J \to \sqrt{Q}/g_{\text{e}} \). At this point, the lowest energy state shifts
from multiple phonons to the vortex-antivortex pair. This
consistently reflects the fact that vortices are now heavy
solitons and consist of also roughly a \(1/g_{\text{e}}^2 \) number of
elementary quanta. Since \(\alpha \sim g_{\text{e}} \), the logarithmic term
in (2) is indeed the expected result, \(\mu/g_{\text{e}}^2 \ln \mu d \), for a semi-
classical solution with a vortex-antivortex pair split by a
distance \(d = J/Q \). While possible a priori, we are not
aware of any system in which the weakly coupled electric
picture applies.

Higher order corrections. On general grounds, we ex-
pect corrections to come from higher derivative terms
controlled by the cutoff length scale \(l \equiv \Lambda^{-1} \) (9). Two
classes of effects are expected. The first class is controlled
by the volume of the sphere and scales as \(l^2/R^2 \sim 1/Q \).
The second class is controlled by the separation \(d \) among
vortices and scales as \(l^2/d^2 \), where the double power of \(d \)
is dictated by rotational invariance. Using the relation
\(J \sim Bd \) (20), we have \(l^2/d^2 \sim Q/J^2 \).

In analyzing the possible terms in the Lagrangian, one
indeed finds such corrections. The first class, already
discussed in [1, 3], arises from higher derivative corrections
paired by conformal invariance with terms suppressed by
\(\mathcal{R}/f \), where \(\mathcal{R} \) is the Riemann tensor. The second class
arises from the mass term in (10). There we find relative
corrections to the vortex action proportional to \(\mathcal{E}^2/B^2 \)
and \(\mathcal{X} \wedge \mathcal{E}/B \). These both scale as \(l^2/d^2 \sim Q/J^2 \) on our
solutions, becoming large at the lower edge \(J \sim \sqrt{Q} \) of
the double vortex states.

Notice that for \(\sqrt{Q} < J < Q \), the second class of
corrections is larger than the \(\mathcal{O}(1/J) \) quantum correction
distinguishing (25) from the leading classical result (2). Nonetheless, the quantum correction, even if
numerically subleading, is functionally distinguished and
thus calculable. We leave a systematic study of higher
order corrections for future work.

Discussion. To summarize, we calculated the scaling
dimensions of operators with global charge \(Q \gg 1 \) and
spin \(J \lesssim Q^{3/2} \) by combining the state-operator correspond-
ence with the EFT of vortices in superfluids. We also
calculated correlation functions with two such operators
and the Noether current. Other correlators as well as
higher order corrections can be systematically computed.

Our results apply to any CFT whose large charge sector
is described by the EFT we presented. To be clear, we
have not proved that there actually exists any such CFT.
However, what are the possibilities? Given a state with
finite charge density, the \(U(1) \) symmetry may or may
not be spontaneously broken. If it is broken, then the
state is a superfluid and our results generically apply. If
it is not broken, then the state is not a superfluid (e.g.,
a Fermi liquid) and our results do not apply. Because
superfluids are such a natural possibility, we believe that
there exists a large class of CFTs to which our results
apply. Recently, Ref. [51] framed this question within the
conformal bootstrap.

Of course, it would be nice to explicitly identify such
CFTs. One way forward is to consider CFTs that allow a
perturbative expansion in some parameter and explicitly
check if our results apply. For example, in \(U(1) \) gauge
theories, operators charged under the current (7) have
been studied in a \(1/N \) expansion [43-50], where \(N \) is the
number of charged fields. The same operators were also
studied in the \(\epsilon \)-expansion [52]. In both cases, results
were only given for small \(Q \), but the methods also apply
at large \(Q \). Related to large \(N \), large charge states have
also been studied via the AdS/CFT correspondence under
the name of “holographic superconductors” [53–60].

Perhaps AdS/CFT can also teach us how to study operators with $J \sim \Delta$ using EFT techniques, as this was the original motivation for the large spin bootstrap work [13–23]. The idea was that these operators should be described as widely separated—and therefore weakly interacting—objects in AdS space [13]. This weak interaction suggests an EFT description, and such an EFT would then apply to all CFTs.

We acknowledge useful discussions with Joao Penedones. The work of A.D., G.F.C., D.P. and R.R. is partially supported by the ERC-AdG-2015 grant 694896 and the Swiss National Science Foundation under contract 200020-169696 and through the National Center of Competence in Research SwissMAP. The work of A.M. was supported by the ERC-AdG-2015 grant 694896 and the Swiss National Science Foundation (Ambizione). D.P. is supported by European Union’s Horizon 2020 Research Council grant 724659 MassiveCosmo ERC-2016-COG.

[1] S. Hellerman, D. Orlando, S. Reffert, and M. Watanabe, JHEP 12, 071 (2015), arXiv:1505.01537 [hep-th].
[2] L. Alvarez-Gaume, O. Loukas, D. Orlando, and S. Reffert, JHEP 04, 059 (2017), arXiv:1610.04495 [hep-th].
[3] A. Monin, D. Pirtakhalava, R. Rattazzi, and F. K. Seibold, JHEP 06, 011 (2017), arXiv:1611.02912 [hep-th].
[4] O. Loukas, (2016), arXiv:1612.08985 [hep-th].
[5] S. Hellerman, N. Kobayashi, S. Maeda, and M. Watanabe, (2017), arXiv:1705.05825 [hep-th].
[6] S. Hellerman, S. Maeda, and M. Watanabe, (2017), arXiv:1706.05743 [hep-th].
[7] D. Banerjee, S. Chandrasekharan, and D. Orlando, (2017), arXiv:1707.00711 [hep-lat].
[8] O. Loukas, D. Orlando, and S. Reffert, (2017), arXiv:1707.00710 [hep-th].
[9] S. Hellerman and S. Maeda, (2017), arXiv:1710.07336 [hep-th].
[10] D. T. Son, (2002), arXiv:hep-ph/0204199 [hep-ph].
[11] S. Rychkov, EPFL Lectures on Conformal Field Theory in $D \gg 3$ Dimensions, SpringerBriefs in Physics (2016) arXiv:1601.05000 [hep-th].
[12] Simmons-Duffin, D., “The Conformal Bootstrap,” in TASI 2015: New Frontiers in Fields and Strings (World Scientific, 2016) Chap. 1, pp. 1–74, arXiv:1602.07982 [hep-th].
[13] A. L. Fitzpatrick, J. Kaplan, D. Poland, and D. Simmons-Duffin, JHEP 12, 004 (2013), arXiv:1212.3616 [hep-th].
[14] Z. Komargodski and A. Zhiboedov, JHEP 11, 140 (2013), arXiv:1212.4103 [hep-th].
[15] A. Kaviraj, K. Sen, and A. Sinha, JHEP 11, 083 (2015), arXiv:1502.01437 [hep-th].
[16] L. F. Alday, A. Bissi, and T. Lukowski, JHEP 11, 101 (2015), arXiv:1502.07707 [hep-th].
[17] A. Kaviraj, K. Sen, and A. Sinha, JHEP 07, 026 (2015), arXiv:1504.00772 [hep-th].
[18] L. F. Alday and A. Zhiboedov, JHEP 06, 091 (2016), arXiv:1506.04659 [hep-th].
[19] L. F. Alday and A. Zhiboedov, JHEP 04, 157 (2017), arXiv:1510.08991 [hep-th].
[20] D. Li, D. Meltzer, and D. Poland, JHEP 02, 143 (2016), arXiv:1511.08025 [hep-th].
[21] D. Simmons-Duffin, JHEP 03, 086 (2017), arXiv:1612.08471 [hep-th].
[22] S. Caron-Huot, JHEP 09, 078 (2017), arXiv:1703.00278 [hep-th].
[23] J. Qiao and S. Rychkov, (2017), arXiv:1709.00008 [hep-th].
[24] R. Donnelly, Quantized Vortices in Helium II, Cambridge Studies in Low Temperature Physics No. 3 (Cambridge University Press, 1991).
[25] B. Horn, A. Nicolis, and R. Penco, JHEP 10, 153 (2015), arXiv:1507.05635 [hep-th].
[26] R. Feynman, Statistical Mechanics: A Set Of Lectures, Advanced Books Classics (Avalon Publishing, 1998).
[27] K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972).
[28] A. Zee, Quantum Field Theory in a Nutshell: Second Edition, In a Nutshell (Princeton University Press, 2010).
[29] L. Landau and E. Lifshitz, The Classical Theory of Fields, 4th ed., Course of Theoretical Physics (Butterworth-Heinemann, 1975).
[30] L. Landau and E. Lifshitz, Quantum Mechanics, 3rd ed., Course of Theoretical Physics (Butterworth-Heinemann, 1977).
[31] N. Sivan and S. Levit, Phys. Rev. B 46, 2319 (1992).
[32] A. Entelis and S. Levit, Phys. Rev. Lett. 69, 3001 (1992).
[33] T. Tochishita, M. Mizui, and H. Kuratsuji, Physics Letters A 212, 304 (1996).
[34] G. V. Dunne, R. Jackiw, and C. A. Trugenberger, Phys. Rev. D 41, 661 (1990).
[35] G. Dunne and R. Jackiw, Nuclear Physics B - Proceedings Supplements 33, 114 (1993).
[36] T. T. Wu and C. N. Yang, Nuclear Physics B 107, 365 (1976).
[37] S. Coleman, “The magnetic monopole fifty years later,” in The Unity of the Fundamental Interactions, edited by A. Zichichi (Springer US, Boston, MA, 1983) pp. 21–117.
[38] M. Hatsuda, S. Iso, and H. Umetsu, Nuclear Physics B 671, 217 (2003), arXiv:hep-th/0306251 [hep-th].
[39] K. Hasebe, SIGMA 6, 071 (2010), arXiv:1009.1192 [hep-th].
[40] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
[41] M. Greiter, Phys. Rev. B 83, 115129 (2011), arXiv:1101.3943 [cond-mat].
[42] M. S. Costa, J. Penedones, D. Poland, and S. Rychkov, JHEP 11, 071 (2011), arXiv:1107.3554 [hep-th].
[43] G. Murthy and S. Sachdev, Nucl. Phys. B 344, 557 (1990).
[44] V. Borokhov, A. Kapustin, and X.-k. Wu, JHEP 11, 049 (2002), arXiv:hep-th/0206054 [hep-th].
[45] M. A. Metlitski, M. Hermele, T. Senthil, and M. P. A. Fisher, Phys. Rev. B 78, 214418 (2008), arXiv:0809.2816 [cond-mat.str-el].
[46] S. S. Pufu and S. Sachdev, JHEP 09, 127 (2013), arXiv:1303.3006 [hep-th].
[47] S. S. Pufu, Phys. Rev. D89, 065016 (2014), arXiv:1303.6125 [hep-th].
[48] E. Dyer, M. Mezei, and S. S. Pufu, (2013), arXiv:1309.1160 [hep-th].
[49] E. Dyer, M. Mezei, S. S. Pufu, and S. Sachdev, JHEP 06, 037 (2015), [Erratum: JHEP03,111(2016)], arXiv:1504.00368 [hep-th].
[50] S. M. Chester, L. V. Iliesiu, M. Mezei, and S. S. Pufu, (2017), arXiv:1710.00654 [hep-th].
[51] D. Jafferis, B. Mukhametzhanov, and A. Zhiboedov,
(2017), arXiv:1710.11161 [hep-th].
[52] S. M. Chester, M. Mezei, S. S. Pufú, and I. Yaakov, JHEP 12, 015 (2016), arXiv:1511.07108 [hep-th].
[53] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008), arXiv:0803.3295 [hep-th].
[54] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, JHEP 12, 015 (2008), arXiv:0810.1563 [hep-th].
[55] S. A. Hartnoll, Classical and Quantum Gravity 26, 224002 (2009), arXiv:0903.3246 [hep-th].
[56] C. P. Herzog, Journal of Physics A: Mathematical and Theoretical 42, 343001 (2009), arXiv:0904.1975 [hep-th].
[57] G. T. Horowitz and M. M. Roberts, JHEP 11, 015 (2009), arXiv:0908.3677 [hep-th].
[58] G. T. Horowitz, “Introduction to holographic superconductors,” in From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence: The AdS/CFT Correspondence, edited by E. Papantonopoulos (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011) pp. 313–347, arXiv:1002.1722 [hep-th].
[59] S. A. Hartnoll, (2011), arXiv:1106.4324 [hep-th].
[60] Ó. J. C. Dias, G. T. Horowitz, N. Iqbal, and J. E. Santos, Journal of High Energy Physics 2014, 96 (2014), arXiv:1311.3673 [hep-th].