The apple C2H2-type zinc finger transcription factor MdZAT10 positively regulates JA-induced leaf senescence by interacting with MdBT2

Kuo Yang¹, Jian-Ping An¹, Chong-Yang Li², Xue-Na Shen¹, Ya-Jing Liu¹, Da-Ru Wang¹, Xing-Long Ji¹, Yu-Jin Hao¹ and Chun-Xiang You¹

Abstract
Jasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.

Introduction
Plant leaf senescence, the last stage of leaf development, is accompanied by a series of physiological and biochemical changes, including the degradation of intracellular organelles and hydrolysis of macromolecules for the relocation of nutrients and energy into newly developing tissues or storage organs¹. It is important to understand how plants regulate the senescence process to prevent major yield losses in agriculture. The leaf senescence process can be triggered and promoted by unfavorable environmental cues, including extended darkness, drought, and pathogen attack²–⁴, and by endogenous factors such as age, developmental stage, and plant hormones⁵,⁶. Leaf senescence inhibits photosynthetic capacity and thus decreases crop quality and yield⁷,⁸. Therefore, delaying leaf senescence offers potential economic benefits⁷.

Plant hormones are known to affect the timing of leaf senescence. Hormones such as abscisic acid (ABA), jasmonic acid, ethylene (ET), and salicylic acid (SA) accelerate the leaf senescence process, whereas auxin, cytokinins (CKs), and gibberellic acid (GA) delay leaf senescence⁹. JA is a lipid-derived phytohormone that is ubiquitous in the plant kingdom and plays essential roles in the regulation of multiple physiological processes in plants, including root growth, leaf senescence, and the response to wounding and pathogens¹⁰–¹³. In Arabidopsis, the endogenous JA content is higher in senescent leaves than in nonsenescent leaves¹⁴. Consistent with this
increased JA content, several genes involved in the JA biosynthesis pathway, such as \textit{LIPOXGENASE 1/3/4} (LOX1/3/4) and \textit{ALLENE OXIDE CYCLASE 1} (AOC1), are also markedly upregulated during leaf senescence\(^\text{16}\). In response to JA, the \textit{JASMONATE ZIM-DOMAIN} (JAZ) proteins interact with \textit{CORONATINE INSENSITIVE1} (COI1), a component of the SCF\(^\text{COI1}\) complex\(^\text{15,16}\). The JAZ proteins are then degraded by the 26S proteasome, thereby releasing downstream JA-responsive genes such as the bHLH transcription factor MYC2\(^\text{16,17}\). MYC2 positively regulates JA-induced leaf senescence by directly activating the expression of \textit{SENCENCE-ASSOCIATED GENE 29} (SAG29), and MYC2 interacts with the bHLH subgroup IIId TFs bHLH03, 13, 14, and 17, which antagonistically regulate leaf senescence\(^\text{18}\).

A large number of genetic and transcriptome studies have shown that TFs regulate the leaf senescence process\(^\text{10,19}\). Some TFs play critical roles in leaf senescence regulatory networks; these TFs include members of the bHLH, NAC, MYB, WRKY, bZIP, C2H2-type zinc finger, and AP2/EREBP families\(^\text{19,20}\). C2H2-type zincfinger proteins (ZFPs) are a large family of transcriptional regulators in plants\(^\text{21}\). Various C2H2-type zincfinger TFs are known to be involved in plant development and stress responses\(^\text{22,23}\). Most ZFPs contain one to four highly conserved QALGGH motifs\(^\text{24}\). In addition, a few ZFPs contain C-terminal ERF-associated amphiphilic repression (EAR) motifs, which function as transcriptional repressors\(^\text{25,26}\). Several members of the C2H2-type zinc finger TF family were found to be up- or downregulated during natural leaf senescence\(^\text{19}\), indicating that C2H2-type zinc finger TFs may participate in leaf senescence. Arabidopsis zinc-finger protein 2 (AZF2), a C2H2-type zinc finger TF, positively regulates age-triggered leaf senescence\(^\text{27}\).

\textit{ABSCISIC ACID-INSENSITIVE5} (ABI5), a basic leucine zipper (bZIP)-type TF, positively regulates ABA signaling and participates in seed germination, abiotic stress tolerance, and leaf senescence\(^\text{28,29}\). Previous studies have revealed that ABI5 modulates leaf senescence by transcriptional regulation. ABI5 positively regulates dark-induced leaf senescence by directly repressing the expression of \textit{ABA-response protein} (\textit{ABR})\(^\text{30}\) and activating the expression of the chlorophyll degradation genes \textit{NON-YELLOW COLORING1} (\textit{NYC1}) and \textit{STAY-GREEN 1} (\textit{SGRI/NYE1})\(^\text{4}\). The bHLH TFs \textit{PHYTOCHROME-INTERACTING FACTORS} 4/5 (\textit{PIF4/5}) directly activate \textit{ABI5} during dark-induced senescence\(^\text{4}\). In \textit{rice} (\textit{Oryza sativa}), ONAC054 directly activates \textit{OsABI5} in response to leaf senescence\(^\text{31}\). A recent study found that Md\textit{ABI5} is involved in ABA-induced leaf senescence\(^\text{32}\). These findings indicate that ABI5 plays a crucial role in the leaf senescence process.

Previous studies have identified several genes that promote or delay leaf senescence in apple\(^\text{33–35}\). In this study, we identified a C2H2-type zinc finger TF, Md\textit{ZAT10}, and demonstrated that it positively regulates leaf senescence in apple (\textit{Malus domestica}). Further experiments showed that Md\textit{ZAT10} interacts with Md\textit{ABI5} and accelerates the Md\textit{ABI5}-mediated leaf senescence process. Md\textit{ZAT10} was also found to accelerate JA-induced leaf senescence. We found a negative JA regulator, Md\textit{BT2}, which interacts with Md\textit{ZAT10} and modulates its stability, thereby repressing Md\textit{ZAT10}-mediated leaf senescence. In summary, we used protein–protein interactions to delineate the relationships among Md\textit{BT2}, Md\textit{ZAT10}, and Md\textit{ABI5} during leaf senescence.

\section*{Results}

\textbf{Md\textit{ZAT10} positively regulates leaf senescence}

The expression of a large number of C2H2-type TFs is markedly induced during natural senescence\(^\text{19}\). The \textit{Md\textit{ZAT10}} gene, a C2H2-type zinc finger TF in subclass C1-2i, is homologous to \textit{Arabidopsis STZ/ZAT10} (\textit{SALT TOLERANCE ZINC FINGER}). The \textit{Md\textit{ZAT10}} (MDP0000198015) gene was identified by a BLAST search against the apple genome database (Apple Gene Function & Gene Family DataBase version 1.0). To identify proteins homologous to \textit{ZAT10}, a phylogenetic tree containing sequences from 21 different plant species was constructed. All proteins contained two conserved zinc finger domains and an EAR motif, and \textit{Md\textit{ZAT10}} was highly homologous to \textit{Pb\textit{ZAT10}} from \textit{Pyrus bretschneideri} (Supplementary Fig. S1).

We measured the expression level of \textit{Md\textit{ZAT10}} in apple leaves at different developmental stages, including the nonsenescent (NS), early-senescent (ES), and late-senescent (LS) stages. \textit{Md\textit{ZAT10}} expression was higher in ES and LS stages than at the NS stage (Fig. 1a). To confirm the function of \textit{Md\textit{ZAT10}} during leaf senescence, an \textit{Md\textit{ZAT10}} overexpression vector was transformed into \textit{Arabidopsis}, generating three independent \textit{Arabidopsis} lines (\textit{Md\textit{ZAT10}-L1}, L2 and L3) (Supplementary Fig. S2). Detached leaves from transgenic \textit{Arabidopsis} seedlings showed greater leaf yellowing than those from wild-type (Col) seedlings (Fig. 1b). Consistent with their differences in color, the leaves of the transgenic plants showed significant decreases in chlorophyll content and maximum quantum yield of photosystem II (\textit{Fv/Fm}) (Fig. 1c, d). To further confirm these leaf senescence phenotypes, \textit{Md\textit{ZAT10}} overexpression and antisense suppression vectors were transformed into detached apple leaves using a transient expression system (Supplementary Fig. S2). Consistently, apple leaves overexpressing \textit{Md\textit{ZAT10}} exhibited early senescence, whereas apple leaves expressing \textit{Md\textit{ZAT10}} antisense suppression showed delayed senescence (Fig. 1e). Furthermore, apple leaves’ \textit{Md\textit{ZAT10}} overexpression and antisense suppression vectors also showed corresponding
differences in chlorophyll content (Fig. 1f). We found that MdZAT10 overexpression increased the expression of MdNYC1 and MdNYE1 in apple leaves (Fig. 1g, h). These results suggest that MdZAT10 positively regulates leaf senescence.

MdZAT10 interacts with the MdABI5 protein

To further explore the mechanism by which MdZAT10 promotes leaf senescence, a liquid chromatography/mass spectrometry (LC/MS) assay was carried out to screen proteins that interact with MdZAT10 using MdZAT10-GFP as bait. After screening, the MdABI5 protein (GenBank accession number: LOC103430245) was found to interact with MdZAT10, and a yeast two-hybrid (Y2H) assay was performed to confirm this interaction. The full-length cDNA of MdZAT10 was fused to the pGAD424 vector as prey (pGAD-MdZAT10), and the full-length cDNA of MdABI5 was fused to the pGBT9 vector as bait (pGBD-MdABI5). The pGAD-MdZAT10 and pGBD-MdABI5 plasmids were cotransformed into yeast. The results showed an interaction between the MdZAT10 and MdABI5 proteins (Fig. 2a). To identify the regions in MdZAT10 that interact with MdABI5, MdZAT10 was divided into N-terminus (MdZAT10-N) and C-terminus (MdZAT10-C) fragments. These results indicated that the zinc finger domains and EAR motif of MdZAT10 are essential for the interaction between MdZAT10 and MdABI5 (Fig. 2a). MdZAT10 interacted with MdABI5, but not interacted with MdABI1, MdABI2, or MdABI4 (Fig. 2a, b); MdABI5 also specifically interacted with MdZAT10 but not with other MdZATs (Fig. 2c). In addition, we carried out an in vitro pull-down assay and found that MdABI5-His could be pulled down by the MdZAT10-GST fusion protein (Fig. 2d). Finally, in a BiFC assay, a strong yellow fluorescent protein (YFP) fluorescence signal in the nuclei was observed only when MdZAT10-cYFP and MdABI5-nYFP were cotransformed into *Nicotiana benthamiana* leaves (Fig. 2e). These results indicated that MdZAT10 physically interacts with MdABI5.
MdABI5 promotes leaf senescence

Previous studies have reported that MdABI5 regulates ABA-induced leaf senescence. We detected the expression level of MdABI5 in apple leaves at different developmental stages. The MdABI5 expression level was higher at the ES and LS stages than at the NS stage. To elucidate the role of ABI5 during leaf senescence, an MdABI5 overexpression vector was transformed into Arabidopsis, generating three individual transgenic lines (MdABI5-L1, L2, and L3). MdABI5 overexpression clearly promoted leaf yellowing and reduced the chlorophyll content and Fv/Fm after 5 days in the dark. Furthermore, the MdABI5 overexpression and MdABI5 antisense suppression vectors were transiently transformed into detached apple leaves. Apple leaves that overexpressed MdABI5 showed a more severe senescence phenotype and lower chlorophyll content, whereas MdABI5 antisense suppression showed a delayed senescence phenotype and higher chlorophyll content.

MdZAT10 promotes MdABI5-regulated leaf senescence

Given the interaction between MdZAT10 and MdABI5, we suspected that MdZAT10 participates in MdABI5-mediated leaf senescence. An Arabidopsis line

Fig. 2 MdZAT10 physically interacts with MdABI5. **a** A yeast two-hybrid (Y2H) assay showed that MdZAT10 interacts with MdABI5. Full-length MdZAT10 and truncated MdZAT10 sequences were cloned into the pGAD424 vector. Full-length MdABI5 was cloned into the pGBT9 vector. The empty pGAD vector was used as a negative control. **b** A Y2H assay showed that MdABIs (MdABI1, MdABI2, and MdABI4) and MdZAT10 interact. **c** A Y2H assay showed that MdABIs interact with MdZAT proteins (MdAZF1, MdZAT5, MdZAT6, MdZAT10, MdZAT11, MdZAT14, MdZAT16, and MdZAT18). **d** In vitro MdZAT10 and MdABIs pull-down assay. The MdABIs-His protein was incubated with MdZAT10-GST and GST. Proteins pulled down with GST beads were detected using anti-GST and anti-His antibodies. **e** BiFC assay. The MdZAT10-cYFP and MdABIs-nYFP constructs were transiently expressed in Nicotiana benthamiana leaves, and the fluorescence signal was observed by fluorescence microscopy. Nuclei are indicated by DAPI staining. Scale bars, 10 μm.
overexpressing MdZAT10 was crossed with an Arabidopsis line overexpressing MdABI5. The resultant Arabidopsis plants overexpressing MdZAT10/MdABI5 turned yellow much faster and had less chlorophyll content than the plants overexpressing MdABI5 alone (Fig. 3a, b). Consistent with the observed phenotype in Arabidopsis, the overexpression of MdZAT10 increased the MdABI5-mediated leaf senescence in apple leaves (Fig. 3c, d). These results revealed that MdZAT10 accelerates MdABI5-promoted leaf senescence.

Therefore, we hypothesized that MdZAT10 affects the transcriptional activation of MdNYC1 and MdNYE1 by MdABI5. To confirm this hypothesis, gene expression in the calli of transgenic apple plants overexpressing MdABI5 (MdABI5-OX) was detected (Supplementary Fig. S2). We found that MdNYC1 and MdNYE1 expression was dramatically upregulated in MdABI5-OX calli. The MdZAT10 overexpression vector was introduced into MdABI5-overexpressing transgenic calli, and the resultant MdZAT10-OX/MdABI5-OX transgenic calli showed markedly increased MdNYC1 and MdNYE1 expression (Fig. 3e, f). To confirm this result, we performed a transient expression assay in tobacco leaves. The promoter fragments of MdNYC1 and MdNYE1 were fused into the pGreenII 0800-LUC reporter (pMdNYC1-LUC, pMdNYE1-LUC), and MdZAT10 and MdABI5 were fused
into the effector construct pGreenII 62-SK (MdZAT10-SK, MdABI5-SK). We found that MdABI5 activated the promoters of MdNYC1 and MdNYE1 and had a stronger effect when MdZAT10 and MdABI5 were cotransformed (Fig. 3g–i). These results indicated that the interaction between MdZAT10 and MdABI5 enhances the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1.

MdZAT10 activates JA-induced leaf senescence

We also found that MdZAT10 was induced by MeJA (Fig. 4a). To further confirm the function of MdZAT10 in response to JA, we produced transgenic apple calli that expressed β-glucuronidase (GUS) driven by a region 2 kb upstream of the MdZAT10 gene. Histochemical staining showed that MeJA treatment significantly increased GUS activity (Fig. 4b, c). Detached leaves from MdZAT10 transgenic Arabidopsis showed increased leaf yellowing with MeJA treatment (Fig. 4d). The chlorophyll content in these leaves was significantly reduced compared to the leaves of Col plants (Fig. 4e). Consistently, upon MeJA treatment, apple leaves overexpressing MdZAT10 also exhibited early senescence, whereas MdZAT10 antisense suppression showed delayed senescence (Fig. 4f). Furthermore, leaves MdZAT10 overexpression and MdZAT10 antisense suppression showed different chlorophyll
contents (Fig. 4g). These results indicated that MdZAT10 acts as a positive regulator of JA-induced leaf senescence in apple.

MdBT2 physically interacts with the MdZAT10 protein

In addition to its transcriptional regulation, we found that MdZAT10 was regulated at the posttranslational level in response to MeJA treatment. An in vitro protein degradation assay was performed to measure the protein level of MdZAT10 in response to MeJA treatment. The fusion protein MdZAT10-His was incubated with total protein from apple calli with or without MeJA treatment. The MdZAT10-His level dropped rapidly without MeJA treatment, but the drop in the MdZAT10 protein level was markedly abrogated by treatment with MeJA or the 26S proteasome inhibitor MG132 (Supplementary Fig. S4a). Furthermore, the MdZAT10 protein level in MdZAT10-overexpressing transgenic apple calli increased with MeJA treatment (Supplementary Fig. S4b). These results indicated that the presence of MeJA reduced MdZAT10 protein degradation by the 26S proteasome pathway.

In addition to MdABI5, MdBT2 was screened as a potential interaction protein of MdZAT10. MdBT2 plays a key role in the regulation of JA-mediated leaf senescence. We used a Y2H assay to determine whether MdBT2 and MdZAT10 interact. The full-length cDNA of MdBT2 was fused to the pGBT9 vector as bait (pGBD-MdBT2). Only MdZAT10 interact. The full-length cDNA of MdBT2 was used a Y2H assay to determine whether MdBT2 and MdZAT10 interact. The full-length cDNA of MdBT2 was used a Y2H assay to determine whether MdBT2 and MdZAT10 interact. The full-length cDNA of MdBT2 was used a Y2H assay to determine whether MdBT2 and MdZAT10 interact. The full-length cDNA of MdBT2 was used a Y2H assay to determine whether MdBT2 and MdZAT10 interact. The full-length cDNA of MdBT2 was used a Y2H assay to determine whether MdBT2 and MdZAT10 interact. The full-length cDNA of MdBT2 was used a Y2H assay to determine whether MdBT2 and MdZAT10 interact.
and MdBT2-OE-L5) and BT2 antisense (MdBT2-Anti-L13 and MdBT2-Anti-L23) (Supplementary Fig. S2). MdBT2-overexpressing leaves from both Arabidopsis and apple showed a delayed senescence phenotype, whereas MdBT2 antisense plants showed accelerated JA-induced leaf senescence. The chlorophyll content was consistent with the phenotype (Fig. 7a, b and Supplementary Fig. S6). The Arabidopsis line overexpressing MdZAT10 was crossed with the Arabidopsis line overexpressing MdBT2. The resultant Arabidopsis plants overexpressing MdZAT10/MdBT2 showed delayed leaf senescence and enhanced chlorophyll content compared to those of plants overexpressing MdZAT10 (Fig. 7c, d). Consistent with these results, the overexpression of MdBT2 decreased the MdZAT10-promoted leaf senescence phenotype in apple leaves and increased the chlorophyll content (Fig. 7e, f). Taken together, these results indicated that MdBT2 delayed the MdZAT10-promoted leaf senescence.

Discussion

Leaf senescence is a complex process that involves the degradation of cellular components such as chloroplasts. Accompanied by the degradation of massive amounts of chlorophyll, the most visible feature of plant senescence is leaf yellowing. Leaf senescence also affects crop productivity and plant fitness. Many TFs show expression changes during leaf senescence. In this study, we identified a C2H2-type zinc finger TF, MdZAT10, which positively regulates dark- and JA-induced leaf senescence.

STZ/ZAT10 is a member of the C2H2-type zinc finger TF family in subclass C1-2i that is involved in different abiotic stresses such as drought, salinity, cold, and osmotic stresses. In addition, it plays central roles in plant growth and development. Previous studies showed that several C2H2-type zinc finger TFs are induced during senescence in Arabidopsis. AZF2 functions as a positive regulator of age-dependent leaf senescence, and the loss of AZF2 function delayed leaf senescence. Our results showed that MdZAT10 expression is higher in senescent leaves than in young leaves (Fig. 1), and overexpressing MdZAT10 accelerated leaf senescence (Fig. 1). We further explored how MdZAT10 promotes leaf senescence and measured the expression levels of some senescence-related genes. MdZAT10-OX transgenic calli showed significantly enhanced the expression of senescence-related genes MsSAG29 and MsPAO and downregulated the expression of MdWRKY70 and MdAPX2 (Supplementary Fig. S7). Overexpression of SAG29 in Arabidopsis accelerated leaf senescence. MsSAG29 acts as a target gene of MYC2 and is involved in JA-induced leaf senescence. Pheophorbide a oxygenase (PAO) is induced by natural senescence, and the pao1 mutant exhibits a stay-green phenotype. In Arabidopsis, WRKY70 negatively regulates age-dependent leaf senescence. APX2 (ASCORBATE PEROXIDASE2) encodes cytosolic APX2, which plays a key role in removing H$_2$O$_2$. H$_2$O$_2$ is the most commonly used inducer of leaf senescence. Elevated reactive oxygen species (ROS) levels
have been reported to accelerate leaf senescence. It is possible that MdZAT10 promotes leaf senescence by reducing ROS scavenging or regulating the expression of senescence-related genes.

In addition, we found that MdZAT10 promotes JA-induced leaf senescence. MdZAT10 was induced with MeJA treatment, and MdZAT10-OX transgenic calli showed an enhanced expression of MdAOC1 and MdAOS (ALLENE OXIDE SYNTHASE) (Supplementary Fig. S7). AOC1 and AOS are associated with the JA biosynthesis pathway, and their expression is upregulated during leaf senescence. In Arabidopsis, MYC2 binds the promoter of STZ/ZAT10 and regulates its expression. STZ/ZAT10 and AZF2 can bind the LOX3 promoter to regulate the early response to MeJA. These results indicate that STZ/ZAT10 is involved in JA signaling.

In addition to regulating downstream genes, MdZAT10 may regulate leaf senescence by interacting with other proteins. Here, we demonstrated that MdZAT10 interacts with MdABI5 (Fig. 2). ABI5 regulates dark- and ABA-induced leaf senescence. Recent studies have indicated that ABI5 negatively regulates photosynthesis and chloroplast development under dark treatment. RNA-seq data showed that StABI5 negatively regulates the expression level of photosynthesis-related genes. ABI5 positively regulates leaf senescence by directly repressing the expression of ABR and activating the expression of NY1 and NYE. Here, our data showed that MdABI5-overexpressing transgenic plants showed enhanced leaf senescence and that MdABI5 antisense suppression delayed leaf senescence (Supplementary Fig. S3). MdABI5 activated the expression of MdNYC1 and MdNYE1 in MdABI5-OX transgenic apple calli, further confirming the positive regulation of leaf senescence by MdABI5 (Fig. 3). We found that MdZAT10 accelerated MdABI5-mediated leaf senescence and increased the transcriptional activation of MdNYC1 and MdNYE1 by MdABI5 (Fig. 3). It is possible that MdZAT10 promotes leaf senescence by interacting with MdABI5 to affect the transcriptional activity of MdABI5 for target genes.

In addition to MdABI5, MdZAT10 also interacts with MdBT2. MdBT2 delayed JA-induced leaf senescence, and MdBT2 delayed the MdZAT10-promoted leaf senescence.
These results indicated that MdBT2 plays an opposite role in MdZAT10-promoted leaf senescence. Ubiquitination is widely involved in plant biological processes. Several studies have shown the involvement of some E3 ligases in leaf senescence via the 26S proteasome pathway. A recent study revealed that MdBT2 interacts with MdMYC2 and MdJAZ2, thereby regulating JA-induced leaf senescence. BT2 is a component of the CRL3 complex that promotes target protein ubiquitination. Our results showed that MdBT2 promoted the degradation of MdZAT10 and delayed JA-induced leaf senescence. In the presence of JA, the degradation of MdBT2 was promoted, thus releasing MdZAT10 from MdBT2-mediated degradation. Our results provide insight into the molecular mechanisms by which BT2 mediates JA-induced leaf senescence. These results imply that MdBT2 dynamically regulates JA-induced leaf senescence by regulating different target proteins. Although MdZAT10 interacts with MdBT2 and MdABI5, it is unclear whether these two interactions are related. The same region of MdZAT10 interacts with MdBT2 and MdABI5, and both MdBT2 and MdABI5 interact with full-length MdZAT10. It is possible that MdBT2 and MdABI5 competitively interact with MdZAT10 to antagonistically regulate leaf senescence, but this hypothesis requires further verification.

In summary, a working model to summarize the role of MdZAT10 in apple leaf senescence is proposed (Fig. 8). On the one hand, MdZAT10 positively regulates leaf senescence by interacting with MdABI5, enhancing the transcriptional activity of MdNYC1 and MdNYE1. On the other hand, in the absence of JA, MdBT2 interacts with MdZAT10 and ubiquitinates MdZAT10 to degrade MdZAT10, thereby negatively regulating MdZAT10-promoted leaf senescence. In the present of JA, JA accelerates the degradation of MdBT2, releasing MdZAT10, which contributes to JA-induced leaf senescence.
degradation genes MdNYC1 and MdNYE1. On the other hand, in the absence of MeJA, MdBT2 interacts with MdZAT10 and ubiquinates MdZAT10 to degrade MdZAT10, thereby negatively regulating MdZAT10-promoted leaf senescence. In contrast, MdZAT10 is induced by exogenous MeJA, which promotes leaf senescence. MeJA accelerates the degradation of MdBT2, releasing MdZAT10, which contributes to JA-induced leaf senescence. In this study, we have characterized the role of MdZAT10 in the leaf senescence regulatory network through its direct interaction with MdBT2 and MdABI5.

Materials and methods

Plant materials and growth conditions

Tissue cultures of apple (*Malus × domestica* ‘GL-3’) were used in this study. The apple seedlings were subcultured on MS medium supplemented with 0.6 mg L\(^{-1}\) 6-BA, 0.2 mg L\(^{-1}\) GA, and 0.2 mg L\(^{-1}\) NAA under long-day conditions (25 °C, 16/8 h light/dark) and subcultured at 30-day intervals. ‘Orin’ apple calli (*Malus domestica* Borkh.) were also used in this study. The calli were cultured on MS medium supplemented with 1.5 mg L\(^{-1}\) 2,4-D and 0.4 mg L\(^{-1}\) 6-BA at room temperature under dark conditions and subcultured at 15-day intervals. The apple calli were used for genetic transformation. *Arabidopsis thaliana* ecotype Columbia seedlings were grown at 22 °C under long-day conditions (16/8 h light/dark). *Arabidopsis* seedlings were used for genetic transformation and functional identification.

Vector construction and plant transformation

To construct overexpression vectors, the full-length coding sequences of *MdBT2* and *MdABI5* were cloned into the pCXCN-Myc vector, and the full-length coding sequence *MdZAT10* was cloned into the pRl-101 vector (with a GFP tag). To generate antisense suppression vectors (*MdBT2-Anti*, *MdABI5-Anti*, and *MdZAT10-Anti*), fragments of the *MdBT2*, *MdABI5*, and *MdZAT10* sequences were cloned into the pRl-101 vector. *MdBT2-GFP* transgenic apple calli were obtained as described in our previous study. To generate the *proMdZAT10:GUS* construct, the promoter fragment of *MdZAT10* was inserted into the pCAMBIA1300-GUS vector, which was then transformed into apple calli. Transgenic apple seedlings, apple calli, and *Arabidopsis* seedlings were obtained according to previously described methods. The transient transformation apple leaves were obtained according to a previously described method. All the primers used for gene cloning are listed in Supplementary Table 1.

RNA extraction and gene expression analysis

Total RNA was isolated from apple seedlings, apple calli, *Arabidopsis* seedlings, and treated seedlings using the RNAplant Plus kit (TIANGEN) according to the manufacturer’s protocol. First-strand cDNA was synthesized using the PrimeScript™ RT Reagent Kit (TaKaRa) according to the manufacturer’s instructions. qRT-PCR was performed on a StepOnePlus instrument (Applied Biosystems) using UltraSYBR Mixture (Takara). All primers are listed in Supplementary Table 2. Three biological replicates and three technical replicates were performed for each experiment.

MdZAT10-interacting protein screen

A LC/MS assay was performed with the *MdZAT10-GFP* protein to screen out *MdZAT10*-interacting proteins as previously described. The *MdZAT10-GFP* protein was extracted from *MdZAT10*-overexpressing transgenic calli and purified using a Pierce Classic IP Kit (Thermo Fisher). The *MdZAT10-GFP* protein was incubated with total protein extracted from apple seedlings for 6 h. The mixed protein solutions were incubated with protein A/G agarose beads and anti-GFP antibody according to a standard co-immunoprecipitation protocol. Then, the resin was eluted, and the eluted proteins were separated on SDS-PAGE gels. Protein identification was carried out by LC-MS/MS (OE Biotech, Shanghai, China).

Yeast two-hybrid assay

To confirm the interactions between *MdZAT10* and *MdABI5*, and *MdBT2* and *MdZAT10*, the coding sequences of *MdZAT10*, *MdABI5*, and *MdBT2* were cloned into the pGAD424 and pGBT9 vectors to form pGAD-MdZAT10, pGBD-MdABI5, and pGBD-MdBT2. Truncated *MdZAT10* sequences (amino acids 1–207 and 191–270) were cloned into pGAD424. The truncated *MdBT2* sequences were also cloned into pGBT9. We performed a Y2H assay as described previously. The pGBD-MdABI5 and pGBD-MdBT2 plasmids were individually transformed with pGAD-MdZAT10 into yeast strain Y2H Gold (Clontech). Yeast transformants were grown on SD base/-Leu/-Trp medium and then transferred onto SD base/-Leu/-Trp/-His/-Ade medium for interactions.

Pull-down and BiFC assays

The full-length coding sequences of *MdZAT10*, *MdBT2*, and *MdABI5* were cloned into the pET32a and pGEX4T-1 vectors to generate the recombinant constructs *MdZAT10*-pET32a, *MdZAT10*-pGEX 4T-1, *MdABI5*-pET32a, and *MdBT2*-pGEX 4T-1. The constructs were introduced into *Escherichia coli* BL21 (DE3), after which the *MdZAT10*-His, *MdZAT10*-GST, *MdABI5*-His, and *MdBT2*-GST fusion proteins were generated by induction with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The eluted proteins were detected by western blotting with anti-GST and anti-His antibodies (Abmart, Shanghai, China).
The coding sequences of MdZAT10, MdBT2, and MdABI5 were cloned into the 35S::pSPYCE-cYFP and 35S::pSPYNE-nYFP vectors to generate MdZAT10-cYFP, MdBT2-nYFP, and MdABI5-nYFP. The recombinant constructs were transformed into Agrobacterium tumefaciens LBA4404 and then injected into N. benthamiana leaves. YFP fluorescence signals were detected using a confocal laser-scanning microscope (Zeiss).

Analysis of leaf senescence phenotype
To examine the leaf senescence phenotype, detached leaves were placed on 3 mM MES buffer (pH 5.8) in the dark at 22 °C. To examine phytohormone-induced leaf senescence, detached leaves were floated on 3 mM MES buffer (pH 5.8) containing 100 μM MeJA at 22 °C and kept under dim light for the indicated time period.

Quantification of the chlorophyll content and Fv/Fm ratio
To measure the total chlorophyll concentration, total pigments were extracted from plant leaves with 95% (v/v) ethanol for 24 h. The absorbance at 649 and 665 nm was measured using an ultraviolet/visible spectrophotometer (SOPTOP UV2800S, Shanghai, China). To calculate the Fv/Fm ratios, leaves were analyzed with a closed chlorophyll fluorescence imaging system (Photon System Instruments, Brno, Czech Republic) according to the manufacturer’s instructions as previously described31.

Protein degradation and ubiquitination assays
For the in vitro protein degradation assay, total protein was extracted from wild-type and transgenic apple calli using degradation buffer (25 mM Tris-HCl, pH 7.5, 10 mM NaCl, 10 mM MgCl2, 4 mM phenylmethylsulfonyl fluoride, 5 mM DTT, and 10 mM ATP). The protein extracts were incubated with MdZAT10-His at 22 °C and assessed by western blotting with an anti-His antibody (Abmart).

We performed an in vivo ubiquitination assay as described previously46. In brief, MdBT2-GFP transgenic calli was extracted using a Pierce™ Classic IP Kit (Thermo Fisher), and the extracts were incubated with MdZAT10-His protein at 4 °C overnight. The in vivo ubiquitination of MdZAT10 was detected by western blotting with anti-His (Abmart) and anti-Ubi (Sigma-Aldrich) antibodies.

Transient expression assay
To carry out the transient expression assay, the MdNYC1 and MdNYE1 promoter sequences were inserted into the pGreenII 0800-LUC vector. Full-length MdZAT10 and MdABI5 were cloned into the pGreen 62-SK vector. The recombinant plasmids were transformed into N. benthamiana leaves by Agrobacterium-mediated transformation, and LUC/REN activity ratio was detected using a dual-luciferase reporter assay system (Promega)64.

GUS analysis
For GUS staining, transgenic plants were incubated in X-gluc buffer (1 mM X- Gluc, 0.5 mM ferricyanide, 0.5 mM ferrocyanide, 0.1 mM EDTA, and 0.1% Triton X-100) at 37 °C for 12 h. GUS activity was detected using a fluorescence spectrophotometer.

Statistical analyses
Each experiment in this study was repeated at least three times. The data were analyzed by t-test using GraphPad Prism 6.02 software, and asterisks denote significant differences (* P < 0.05, **P < 0.01).

Accession numbers
Sequence data from this article can be found in the Apple Genome (GDR): MdABI5 (LOC103430245), MdAB11 (MDP0000265371), MdAB12 (MD15G1054500), MdAB14 (MD01G1155400), MdBT1 (MDP0000151000), MdBT2 (MDP0000643281), MdBT3.1 (MDP0000296225), MdBT4 (MDP0000215415), MdNYE1, (MDP000032543), MdNYC1 (MDP0000124013), MdAZF1 (MDP000265345), MdZAT5 (MDP0000769354), MdZAT6 (MDP0000319225), MdZAT10 (MDP0000198015), MdZAT11 (MDP0000305944), MdZAT14 (MDP0000204390), MdZAT16 (MDP0000137826), and MdZAT18 (MDP0000768369).

Acknowledgements
This research was supported by the National Natural Science Foundation of China (31772288) and Shandong Natural Science Major Basic Research Foundation (ZR2020ZD43).

Author contributions
J.A. proposed the project. K.Y. performed most of the experiments and wrote the manuscript. X.S., D.W., and C.L. constructed the vectors. Y.L. and X.J. provided the plant materials and assay methodology. Y.H. and C.Y. discussed the manuscript. All the authors have read and approved the manuscript.

Conflict of interest
The authors declare no competing interests.

Supplementary information
The online version contains supplementary material available at https://doi.org/10.1038/s41438-021-00593-0.

Received: 1 February 2021 Revised: 15 April 2021 Accepted: 26 April 2021

Page 12 of 14

References
1. Lim, P. O., Kim, H. J. & Nam, H. G. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).
2. Hofte, T., Konietzki, S. & Diederichsen, E. Keeping control: the role of senescence and development in pathogenesis and defense. Plants (Basel) 4, 449–488 (2015).
3. Rivero, R. M. et al. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl Acad. Sci. USA 104, 19631–19636 (2007).
4. Sekar, Y. et al. Phytotoxicity-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat. Commun. 5, 4686 (2014).
5. Wu, H. R., Kim, H. J., Lim, P. O. & Nam, H. G. Leaf senescence: systems and dynamics aspects. Annu. Rev. Plant Biol. 70, 347–376 (2019).
19. Balazadeh, S., Riaño-Pachón, D. M. & Mueller-Roeber, B. Transcription factors
18. Qi, T. C. et al. Regulation of jasmonate-induced leaf senescence by antagonism
26. Sakamoto, H. et al. Arabidopsis Cys2/His2-type zinc-
16. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate
20. Kim, J. H., Kim, J. H., Lyu, J. I., Woo, H. R. & Lim, P. O. New insights into the
15. Kazan, K. Negative regulation of defence and stress genes by DAr-motif-
34. Wang, N. et al. Functional analysis of apple MhYTP1 and MhYTP2 genes in leaf senescence
19. Wang, X. F. et al. The nitrate-responsive protein MBT2 regulates anthocyanin
27. Li, Z., Peng, J., Wen, X. & Guo, H. Gene network analysis and functional studies
12. Zhuo, M. N., Sakuraba, Y. & Yanagisawa, S. A jasmonate-activated MYC2-Dof2.1-
63. Yang et al.
10. Hu, Y. et al. Jasmonate regulates leaf senescence and tolerance to cold stress:
7. Wu, X. Y., Kuai, B. K., Jia, J. Z. & Jing, H. C. Regulation of leaf senescence and
25. Kazan, K. Negative regulation of defence and stress genes by EAR-motif-
9. Jibran, R., Hunter, D. A. & Dijkwel, P. P. Hormonal regulation of leaf senescence
13. Zhang, L., Zhang, F., Melotto, M., Yao, J. & He, S. Y. Jasmonate signaling and manipulation by pathogens and insects. J. Exp. Bot. 68, 1371–1385 (2017).
14. Zhao, M. N., Sakuraba, Y. & Yanagisawa, S. A jasmonate-activated MYC2-Dof2.1-MYC2 transcriptional loop promotes leaf senescence in Arabidopsis. Plant Cell 32, 242–262 (2020).
15. Du, M. M. et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29, 1983–1996 (2017).
16. He, Y., Fukushige, H., Hildebrand, D. F. & Gan, S. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128, 876–884 (2002).
17. Thines, B. et al. JAZ repressor proteins are targets of the SCF(CO1) complex during jasmonate signaling. Nature 448, 661–665 (2007).
18. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448, 666–671 (2007).
19. Sheard, L. B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).
20. Qi, T. C. et al. Regulation of jasmonate-induced leaf senescence by antagonism between BHLH subgroup Ile and IleIId factors in Arabidopsis. Plant Cell 27, 1634–1649 (2015).
21. Balazadeh, S., Riaño-Pachón, D. M. & Mueller-Roeber, B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol. (Stuttgart) 10, 63–75 (2008).
22. Kim, J., Kim, J. H., Lyu, J. I., Woo, H. R. & Lim, P. O. New insights into the regulation of leaf senescence in Arabidopsis. J. Exp. Bot. 69, 787–799 (2018).
23. Kubo, K. et al. Cys2/Hicz-finger protein family of petunia: evolution and general mechanism of target-sequence recognition. Nucleic Acids Res. 26, 608–615 (1998).
24. Shi, H. T. et al. The cystein2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA Az4 modulates biotic and abiotic stress responses by activating salicylic acid-associated genes and C-REPEAT-BINDING FACTOR genes in Arabidopsis. Plant Physiol. 161, 1367–1379 (2014).
25. Han, G. et al. Arabidopsis ZINC FINGER PROTEIN1 acts downstream of GL2 to repress root hair initiation and elongation by directly suppressing BHLH GL2 genes. Plant Cell 32, 206–225 (2020).
26. Latty, J. H., Lee, B. M. & Wright, P. E. Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 11, 39–46 (2001).
27. Katzen, K. Negative regulation of defence and stress genes by DAr-motif-containing repressors. Trends Plant Sci. 11, 109–112 (2006).
28. Sakamoto, H. et al. Arabidopsis Cys2/Hicz2-type zinc finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136, 2734–2746 (2004).
29. Li, Z., Peng, J., Wen, X. & Guo, H. Gene network analysis and functional studies of jasmonate-responsive genes reveal novel regulators of Arabidopsis leaf senescence. J. Integr. Plant Biol. 54, 526–539 (2012).
30. Hu, Y. R. et al. The transcription factor INDUCER OF CBF EXPRESSION1 interacts with ABSCISIC ACID INSENSITIVE5 and DELLA proteins to fine-tune abscisic acid signaling during seed germination in Arabidopsis. Plant Cell 31, 1520–1538 (2019).
31. Brocard, I. M., Lynch, T. J. & Finkelstein, R. R. Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol. 129, 1533–1543 (2002).
32. Su, M. Y. et al. The LEA protein, ABR, is regulated by ABR5 and involved in dark-induced leaf senescence in Arabidopsis thaliana. Plant Sci. 247, 95–103 (2016).
33. Sakuraba, Y. et al. Multilayered regulation of membrane-bound ONAC054 is essential for abscisic acid-induced leaf senescence in rice. Plant Cell 32, 630–649 (2020).
34. An, J.P. et al. MdAB15 works with its interaction partners to regulate abscisic acid-mediated leaf senescence in apple. Plant J. 105, 1566–1581 (2021).
59. Zhou, J. et al. The dominant negative ARM domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence. *J. Exp. Bot.* **66**, 3353–3366 (2015).

60. Gingerich, D. J. et al. Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. *J. Biol. Chem.* **280**, 18810–18821 (2005).

61. Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. & Chua, N. H. Agrobacterium-mediated transformation of *Arabidopsis thaliana* using the floral dip method. *Nat. Protoc.* **1**, 641–646 (2006).

62. An, J. P. et al. MdbHLH93, an apple activator regulating leaf senescence, is regulated by ABA and MdBt2 in antagonistic ways. *N. Phytol.* **222**, 735–751 (2019).

63. An, J. P. et al. MdWRKY40 promotes wounding-induced anthocyanin biosynthesis in association with MdBt1 and undergoes MdBt2-mediated degradation. *N. Phytol.* **224**, 380–395 (2019).

64. An, J. P. et al. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation. *Plant Cell Environ.* **41**, 2678–2692 (2018).