A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in $p p$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton–proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson’s mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.

© 2023 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
Contents

1 Introduction 3
2 Phenomenology 3
3 ATLAS detector and data samples 5
4 Simulation of signal and background processes 6
5 Object reconstruction and identification 7
6 Event classification and selection 9
7 Background estimation 11
 7.1 Electron charge-flip background 11
 7.2 Non-prompt background 12
 7.3 Photon conversion background 13
 7.4 Validation of background estimates 14
8 Systematic uncertainties 16
 8.1 Experimental uncertainties 16
 8.2 Theoretical uncertainties 16
 8.3 Data-driven background estimation uncertainties 17
9 Results 18
 9.1 Statistical analysis 18
 9.2 Data and background comparisons 18
 9.3 Limits on the production of heavy Higgs bosons 22
10 Summary 26
1 Introduction

The discovery of the Higgs boson was a major success for the Standard Model (SM) and an important breakthrough in understanding electroweak symmetry breaking [1, 2]. It also opened new ways to search for physics beyond the Standard Model (BSM physics). Despite its success the SM is not without problems that may require extensions and new concepts. One natural extension common to many BSM physics models is an extended Higgs sector, which leads to the introduction of additional Higgs bosons. In such models, the lightest Higgs boson (h) often has properties similar to those of the observed SM Higgs boson. Additional Higgs bosons have been introduced to explain a very wide range of BSM phenomena, from the observed baryon asymmetry in the universe, and how to solve the strong CP problem with the help of axions, to the generation of non-zero neutrino masses [3–7]. Some models have incorporated recent potential deviations from the SM seen in muon $g − 2$ and W mass measurements [8].

Several searches for additional heavy Higgs bosons (H) have already been carried out with the ATLAS and CMS detectors at the Large Hadron Collider (LHC) [9–15]. These searches mainly relied on the gluon–gluon fusion (ggF) and vector-boson fusion (VBF) production mechanisms, which are the dominant production modes for the SM Higgs boson at the LHC. In ggF production, the gluons couple to the Higgs boson mainly via a top-quark loop, so the non-observation of an additional Higgs boson in this channel could point to a reduced fermionic coupling.

This analysis concentrates on the production of a heavy Higgs boson in association with a vector boson (VH, where $V = W, Z$) and $H \rightarrow VV$ decays. By utilising a general effective Lagrangian that includes dimension-six operators in an effective field theory (EFT), it can be shown that, relative to VBF production, the VH production mode benefits from having smaller SM backgrounds, and the production cross-section may be enhanced by higher-order contributions, especially at high Higgs boson mass and vector-boson momenta [16–18]. The observed Higgs boson h, is assumed to have the production and decay modes as in the SM, with production through $H \rightarrow Zh$ negligible.

Rather than focusing on any specific model, a generic search is performed for the same-sign dilepton signature (SS2L), targeting the $W^±H \rightarrow W^±W^±W^± \rightarrow ℓ^±ℓ^±νℓ^±νj j$ decay channel. The corresponding Feynman diagram is shown in Figure 1. In this article, the term ‘lepton’, unless stated otherwise, refers to either an electron or a muon. Electrons and muons from $τ$-lepton decays are also considered. The hadronically decaying W boson is reconstructed either as two small-radius jets or as a single large-radius jet for higher-momentum W bosons. The presence of neutrinos prevents the full reconstruction of the heavy Higgs boson’s mass and is the main drawback of the $W^±W^±W^±$ channel with leptonic decays of the W bosons. It is ameliorated with the help of the reconstruction methods described in Section 6. Compared with other bosonic VH decay channels, the chosen channel has the highest signal sensitivity thanks to low SM backgrounds and a sizeable branching fraction for $H \rightarrow WW$ decay [18, 19]. SM processes produce same-sign lepton pairs at the LHC at a rate that is orders of magnitude below that of opposite-sign lepton-pair production in the SM.

2 Phenomenology

In theories with multiple Higgs fields, the fields in the multi-Higgs potential interact and the mass eigenstates are formed from a mixture of the fields. In the simple case of a lightest (h) and next-to-lightest (H) neutral Higgs doublet, the couplings of the Higgs boson to the SM gauge bosons are scaled relative
to SM gauge couplings because of the mixing. In addition to the leading-order dimension-four (dim-4) operators, dimension-six (dim-6) effective operators as described in Refs. [16–18] are also considered. After electroweak symmetry breaking, the effective Lagrangian terms can be written as

\begin{align*}
L_{hWW}^{(4)} &= \rho_h g m_W h W^\mu W_\mu, \\
L_{hZZ}^{(4)} &= \rho_h g m_W \frac{g m_W}{2 c_W^2} h Z^\mu Z_\mu, \\
L_{HWW}^{(4)} &= \rho_H g m_W H W^\mu W_\mu, \\
L_{HZZ}^{(4)} &= \rho_H g m_W \frac{g m_W}{2 c_W^2} H Z^\mu Z_\mu, \\
L_{HWW}^{(6)} &= \rho_H g m_W \frac{f_W}{2 \Lambda^2} \left(W^\nu, W^{-\nu} \partial^\nu H + \text{h.c.} \right) - \rho_H g m_W \frac{f_W}{\Lambda^2} W^\mu W^{-\mu} H, \\
L_{HZZ}^{(6)} &= \rho_H g m_W \frac{c_W^2 f_W + s_W^2 f_B}{2 c_W^2 \Lambda^2} Z^\mu Z_\mu \partial^\nu H - \rho_H g m_W \frac{c_W^4 f_W + s_W^4 f_B}{2 c_W^2 \Lambda^2} Z^\mu Z_\mu Z^\nu H,
\end{align*}

where \(h, H, W \) and \(Z \) are the fields of the light and heavy Higgs bosons and the \(W \) and \(Z \) bosons, respectively; \(m_W \) is the \(W \) boson mass; \(g \) is the SM coupling constant of the weak interaction; \(f_W, f_{WW}, f_B, \) and \(f_{BB} \) are anomalous couplings to \(W \) and \(B \) fields; \(\rho_h \) and \(\rho_H \) are scaling factors; \(s_W = \sin \theta_W \) and \(c_W = \cos \theta_W \), where \(\theta_W \) is the weak mixing angle; and \(\Lambda \) is the scale below which the effective Lagrangian holds. For a light Higgs boson similar to the one in the SM, \(\rho_h \) is close to 1. The simplest two-Higgs-doublet model (2HDM) [20] has \(\rho_h = \cos(\beta - \alpha) \) and \(\rho_H = \sin(\beta - \alpha) \), where \(\alpha \) is the mixing angle between the CP-even Higgs bosons, and \(\beta \) is the rotation angle, with \(\tan \beta \) defined as the ratio of vacuum expectation values of the two Higgs doublets. In this analysis, the scaling factor \(\rho_H \) is set to 0.05 and the scale \(\Lambda \) is set to 5 TeV, which is much larger than the mass of the heavy Higgs boson in this search. The choice of \(\rho_H \) is motivated by the observation that \(\rho_H \sim 1 \). To further simplify the parameter space, the small terms of \(O(s_W^2) \) and \(O(s_W^4) \) are neglected, and the anomalous coupling coefficients \(f_B \) and \(f_{BB} \) are set to zero, following Ref.
3 ATLAS detector and data samples

The ATLAS detector [21] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadron calorimeters, and a muon spectrometer incorporating three large superconducting air-core toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle tracking in the range $|\eta| < 2.5$. The high-granularity silicon pixel detector covers the vertex region and typically provides four measurements per track, the first hit normally being in the insertable-B-layer (IBL) installed before Run 2 [22, 23]. It is followed by the silicon microstrip tracker (SCT), which usually provides eight measurements per track. These silicon detectors are complemented by the transition radiation tracker (TRT), which enables radially extended track reconstruction up to $|\eta| = 2.0$. The TRT also provides electron identification information based on the fraction of hits (typically 30 in total) above a higher energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. Within the region $|\eta| < 3.2$, electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering $|\eta| < 1.8$ to correct for energy loss in material upstream of the calorimeters. Hadron calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three barrel structures within $|\eta| < 1.7$, and two copper/LAr hadron endcap calorimeters. The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimised for electromagnetic and hadron energy measurements, respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets. The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three layers of precision chambers, each consisting of layers of monitored drift tubes, covers the region $|\eta| < 2.7$, complemented by cathode-strip chambers in the forward region, where the background is highest. The muon trigger system covers the range $|\eta| < 2.4$ with resistive-plate chambers in the barrel, and thin-gap chambers in the endcap regions.

Interesting events are selected by the first-level trigger system implemented in custom hardware, followed by selections made by algorithms implemented in software in the high-level trigger [24]. The first-level trigger accepts events from the 40 MHz bunch-crossings at a rate below 100 kHz, which the high-level trigger further reduces in order to record events to disk at about 1 kHz.

[16] The operator multiplied by the f_W anomalous coupling is proportional to derivatives of the Higgs field and hence production is enhanced with increasing Higgs boson momentum. Results for the heavy Higgs boson’s production cross-section are provided as a function of the heavy Higgs boson’s mass and the two BSM HVV coupling strengths $\rho_H f_W/\Lambda^2$ and $\rho_H f_{WW}/\Lambda^2$.
The data used in this analysis were collected using single-lepton triggers during the 2015–2018 proton–proton (pp) collision running periods at a centre-of-mass energy of 13 TeV. Events are selected for analysis only if they are of good quality and if all the relevant detector components are known to have been in good operating condition, which corresponds to a total integrated luminosity of 139 fb$^{-1}$ [25, 26]. The recorded events contain an average of 34 inelastic pp collisions per bunch-crossing.

An extensive software suite [27] is used in data simulation, in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

4 Simulation of signal and background processes

Monte Carlo (MC) simulated event samples are used to model heavy Higgs boson signals and to estimate the SM background with two same-sign leptons and/or at least three prompt leptons. Data-driven methods are used to estimate charge-flip, non-prompt and photon-conversion backgrounds, as discussed in Section 7.

The heavy Higgs boson signal process $pp \rightarrow VH \rightarrow VVV$ was modelled at leading order (LO) in QCD by the MadGraph5_aMC@NLO 2.7.3 generator [28]. The full decays of V bosons were simulated in MadSpin [29]. Parton showers and hadronisation were handled by Pythia 8.244 [30] using the A14 set of tuned parameters [31] and the NNPDF2.3lo [32] parton distribution function (PDF). Events were filtered such that at least one same-sign lepton pair was produced. Each lepton was required to have transverse momentum larger than 18 GeV, and be within $|\eta| < 2.7$. The samples were produced with m_H from 300 GeV to 1.5 TeV, f_W from -2480 to 2510 and f_{WW} from -15000 to 15000. The event samples are normalised to calculations at next-to-leading order (NLO) using a Higgs characterisation model [33]. The NLO K-factor increases the expected event yields by a factor of 1.3, independently of the heavy Higgs boson’s mass and BSM HVV coupling strengths.

Samples of diboson final states (VV) were simulated with the Sherpa 2.2.2 [34] generator, including off-shell effects and Higgs boson contributions, where appropriate. Fully leptonic final states were generated using matrix elements at NLO accuracy in QCD for up to one additional parton and at LO accuracy for up to three additional parton emissions. Samples for the loop-induced processes $gg \rightarrow VV$ were generated using LO-accurate matrix elements for up to one additional parton emission for both the fully leptonic and semileptonic final states. The matrix element calculations were matched and merged with the Sherpa parton shower based on Catani–Seymour dipole factorisation [35, 36] using the MEPS@NLO prescription [37–40]. The virtual QCD corrections are provided by the OpenLoops library [41–43]. The NNPDF3.0nnlo set of PDFs was used [44], along with the dedicated set of tuned parton-shower parameters developed by the Sherpa authors.

The production of triboson (VVV) events was simulated with the Sherpa 2.2.2 generator using factorised gauge-boson decays. Matrix elements, accurate to NLO for the inclusive process and to LO for up to two additional parton emissions, were matched and merged with the Sherpa parton shower based on Catani–Seymour dipole factorisation using the MEPS@NLO prescription. The virtual QCD corrections for matrix elements at NLO accuracy are provided by the OpenLoops library. Samples were generated using the NNPDF3.0nnlo PDF set, along with the dedicated set of tuned parton-shower parameters developed by the Sherpa authors. Contributions with an off-shell W boson through $Wh \rightarrow WW^*$ were generated using Powheg Box v2 [45–48] interfaced to Pythia 8.235 to model the parton shower with the NNPDF2.3lo PDF and the AZNLO set of tuned parameters [49].
The production of $t\bar{t}h$ events was modelled using the Powheg Box v2 generator at NLO with the NNPDF3.0nlo PDF set. The events were interfaced to Pythia 8.230 with parameters set according to the A14 tune and using the NNPDF2.3lo set of PDFs. The decays of bottom and charm hadrons were performed by EvtGen 1.6.0 [50]. The production of $t\bar{t}V$, tWZ and tZq events was modelled using the MadGraph5_aMC@NLO 2.3.3 [28] generator at NLO with the NNPDF3.0nlo PDF. The events were interfaced to Pythia 8.210, which used the A14 tune and the NNPDF2.3lo set of PDFs. The decays of bottom and charm hadrons were simulated using the EvtGen 1.2.0 program.

Events from $t\bar{t}$, $V+$jets and $V\gamma$ processes contribute to the $\ell^+\ell^-$ signal region when a lepton charge is mismeasured, or leptons are produced from non-prompt decays or photon conversions. These backgrounds are estimated with data-driven methods, as detailed in Section 7, with MC simulation used for validation and to estimate systematic uncertainties. These MC simulations are briefly introduced in the following paragraphs.

The production of $t\bar{t}$ events was modelled by the Powheg Box v2 generator at NLO with the NNPDF3.0nlo PDF set and the h_{damp} parameter\(^2\) set to 1.5 times the top-quark mass, m_{top} [51]. The events were interfaced to Pythia 8.230 to model the parton showers, hadronisation, and underlying event, with parameters set according to the A14 tune and using the NNPDF2.3lo set of PDFs. The decays of bottom and charm hadrons were performed by EvtGen 1.6.0 [50].

The production of $V+$jets events was simulated with the Sherpa 2.2.1 generator using NLO matrix elements for up to two partons, and LO matrix elements for up to four partons calculated with the Comix and OpenLoops libraries. They were matched with the Sherpa parton shower using the MEPS@NLO prescription and the set of tuned parameters developed by the Sherpa authors. The NNPDF3.0nnlo set of PDFs was used and the samples are normalised to a next-to-next-to-leading-order (NNLO) prediction [52].

The production of $V\gamma$ final states was simulated with the Sherpa 2.2.2 generator. Matrix elements at NLO accuracy in QCD for up to one additional parton and LO accuracy for up to three additional parton emissions were matched and merged with the Sherpa parton shower as described for the diboson processes.

The generated events were passed through a simulation of the ATLAS detector and its response [53] based on Geant4 [54], and reconstructed using the same software framework as for data [27]. The effect of multiple interactions in the same and neighbouring bunch-crossings (pile-up) was modelled by overlaying each simulated hard-scattering event with inelastic pp events generated with Pythia 8.186 [55] using the NNPDF2.3lo set of PDFs and the A3 set of tuned parameters [56].

5 Object reconstruction and identification

Proton–proton interaction vertices are reconstructed from charged-particle tracks with transverse momenta $p_T > 500$ MeV [57, 58]. The vertex with the highest sum of squared transverse momenta of associated tracks is selected as the primary vertex of the hard interaction.

Electrons are reconstructed from topological clusters of energy deposits in the electromagnetic calorimeter which are matched to a track in the inner detector [59]. Electrons are required to have $p_T > 20$ GeV and to be reconstructed within $|\eta| < 2.47$, excluding electrons in the transition region between the barrel and endcap calorimeters ($1.37 < |\eta| < 1.52$). The electron identification is based on a multivariate

\(^2\) The h_{damp} parameter is a resummation damping factor and one of the parameters that controls the matching of Powheg matrix elements to the parton shower and thus effectively regulates the high-p_T radiation against which the $t\bar{t}$ system recoils.
likelihood-based discriminant that uses the shower shapes in the electromagnetic calorimeter and the associated ID track properties. Electrons are required to satisfy the \textit{Tight} identification criterion for better rejection of non-prompt electrons \cite{59}. Muon candidates are identified by matching ID tracks to full tracks or track segments reconstructed in the muon spectrometer or by using only information from the muon spectrometer outside of the ID acceptance \cite{60}. Muons are required to have $p_T > 20$ GeV, to be reconstructed within $|\eta| < 2.5$, and to satisfy the \textit{Medium} cut-based identification criterion as defined in Ref. \cite{61}. To have an origin compatible with the primary vertex, electrons (muons) must satisfy $|d_0/\sigma_{d_0}| < 5$ (3) and $|z_0 \sin(\theta)| < 0.5$ mm. Here d_0 is the transverse impact parameter, σ_{d_0} is its uncertainty, z_0 is the distance along the z-axis from the primary vertex to the point where d_0 is measured, and θ is the polar angle of the track. In order to reject leptons likely to have originated from non-prompt hadronic decays, leptons are required to satisfy a criterion based on ID and calorimeter isolation variables and the output of a boosted-decision tree (BDT) in a prompt-lepton-veto tagger algorithm \cite{62}. Electrons must also pass a \textit{charge misidentification suppression BDT} which rejects electrons likely to have a wrongly measured electric charge \cite{59}. Furthermore, in order to reduce the number of electrons likely to have originated from photon conversion, additional requirements are applied to the electron candidate (referred to as ‘photon-conversion electron suppression requirements’) \cite{59, 63}. It must not be associated with a reconstructed photon-conversion vertex in the detector material nor have a reconstructed displaced vertex with radius $r > 20$ mm whose reconstruction uses the track associated with the electron. Finally the electron candidate’s track and the closest track in ΔR at the primary vertex or a conversion vertex must not have an invariant mass below 100 MeV.

The anti-k_t algorithm \cite{64, 65} with a radius parameter of 0.4 is used to reconstruct small-radius (small-R) jets up to $|\eta| = 4.9$. It uses particle-flow objects, which combine tracking and calorimetric information, as input \cite{66}. Energy- and η-dependent correction factors derived from MC simulations are applied in order to correct jets back to the particle level \cite{67}. Jets are required to have $p_T > 20$ GeV and $|\eta| < 2.5$. To suppress jets from pile-up, a jet vertex tagger \cite{68} applied to jets with $p_T < 120$ GeV and $|\eta| < 2.5$ uses information about tracks associated with the primary vertex and pile-up vertices. Jets containing b-flavoured hadrons are identified in the region $|\eta| < 2.5$ with a b-tagging algorithm based on a recurrent neural network \cite{69}. It makes use of the impact parameters of tracks associated with the jet, the position of reconstructed secondary vertices and their compatibility with the decay chains of such hadrons. At the chosen working point, the b-tagging algorithm provides light-flavour (u,d,s-quark and gluon) and c-jet rejection factors of 33 and 3, respectively, for an average 85% b-jet tagging efficiency, as estimated from simulated $t\bar{t}$ events \cite{69}.

Hadronically decaying τ-leptons are reconstructed \cite{70, 71} as jets by applying the anti-k_t algorithm with a radius parameter of 0.4 to noise-suppressed energy clusters. They are required to have exactly one or three tracks in the ID within a cone of size $\Delta R = 0.2$ around the jet axis, to have $p_T > 20$ GeV and $|\eta| < 2.5$, and to be outside the transition region between the barrel and endcap calorimeters ($1.37 < |\eta| < 1.52$). To prevent jets from being reconstructed and misidentified as τ-leptons, a multivariate approach using boosted decision trees, based on information from the calorimeters and tracking detectors, is employed. The ‘medium’ quality criteria described in Ref. \cite{71} are applied. Hadronically decaying τ-leptons are only used in the analysis in the overlap-removal procedure described at the end of this section.

Large-radius (large-R) jets are reconstructed from noise-suppressed topological clusters (topoclusters) of calorimeter energy depositions \cite{72}, using the anti-k_t algorithm with a radius parameter of 1.0, with the topoclusters calibrated at the local hadronic scale \cite{72}. Large-R jets are groomed using trimming \cite{73, 74} to improve the jet mass resolution and its stability with respect to pile-up by discarding the softer components of jets that originate from initial-state radiation, pile-up interactions, or the underlying event.
Large-R jets are required to have $p_T > 200$ GeV and $|\eta| < 2.0$. Only large-R jets with a jet mass m_J between 50 GeV and 200 GeV are considered in the analysis.

The missing transverse momentum (E_T^{miss}) is defined as the negative vector sum of the transverse momenta of electrons, muons, hadronically decaying τ-leptons and small-R jets in the event, plus a ‘soft-term’ built from additional tracks associated with the primary vertex [75, 76]. The magnitude of E_T^{miss} is denoted by E_T^{miss}.

An overlap-removal procedure is applied to the selected leptons and jets. Any hadronically decaying τ-lepton reconstructed closer than $\Delta R = 0.2$ to an electron or muon is removed. Electrons that fall within $\Delta R = 0.2$ of a selected muon are also discarded. For electrons and nearby small-R jets, the jet is removed if the separation between the electron and jet satisfies $\Delta R < 0.2$; the electron is removed if the separation satisfies $0.2 < \Delta R < 0.4$. For muons and nearby small-R jets, the jet is removed if the separation between the muon and jet satisfies $\Delta R < 0.2$ and the jet has less than three tracks or the energy and momentum differences between the muon and the jet are small; otherwise the muon is removed if the separation satisfies $\Delta R < 0.4$. Small-R jets that are reconstructed within a cone of size $\Delta R = 0.2$ around the axis of a hadronically decaying τ-lepton are removed. To prevent double-counting of energy from an electron inside the large-R jet, the large-R jet is removed if the separation between the electron and the large-R jet satisfies $\Delta R < 1.0$.

6 Event classification and selection

The experimental signature of the $\ell^+\nu\ell^+\nu qq$ signal process requires the presence of two same-sign leptons, E_T^{miss}, and depending on the reconstruction of the qq final state, two small-R jets or one large-R jet with an invariant mass close to 80 GeV. The selection requirements used to define the signal regions are optimised to maximise the sensitivity to the $\ell^+\nu\ell^+\nu qq$ signal process while reducing contributions from SM background processes.

Events are required to satisfy a logical OR of single-electron [77] and single-muon [78] triggers with p_T thresholds ranging from 20 GeV to 26 GeV and increasing from 2015 to 2018. All events must contain at least one lepton with $p_T > 27$ GeV that triggered the event, which ensures that the trigger efficiency reached its plateau. Events are required to have exactly two nominal leptons meeting the object criteria described in Section 5 and they must have the same electric charge. The invariant mass of the dilepton system is required to be larger than 100 GeV to reduce the contributions coming from the $Z +$ jets process. To reduce the SM background contributions from processes that have more than two leptons, a ‘veto lepton’ definition is introduced. Compared with the nominal lepton selection criteria, the veto electron (muon) p_T threshold is lowered to 7 (4.5) GeV, and the isolation, charge misidentification suppression BDT, and photon-conversion electron suppression requirements are removed. For veto electrons, the Loose likelihood-based identification definition is used [59]. For veto muons, the Loose cut-based identification definition is used [60]. Events with additional veto leptons are removed.

For the hadronically decaying W boson, the energy deposits of the two resulting jets are either well separated or can largely overlap in the detector, depending on the momentum of the parent boson. Thus the $W \rightarrow qq$ decay can either be reconstructed from two resolved small-R jets ($W \rightarrow jj$) for low-momentum bosons or identified as one merged large-R jet ($W \rightarrow J$) for higher momentum, boosted bosons. An event is assigned to the boosted category if it contains at least one large-R jet satisfying the object criteria described in
Section 5; otherwise the event is assigned to the resolved category. In turn, two signal regions are defined: the boosted signal region (boosted SR) and the resolved signal region (resolved SR).

In the boosted SR, the large-R jet with the highest p_T is selected as the candidate for the hadronically decaying W boson and must satisfy $p_T > 200$ GeV. A boson tagger is subsequently applied to distinguish between jets from hadronically decaying W bosons (which decay to two partons), and jets originating from a single quark or gluon [79]. In this analysis, the boson tagger is configured to have 80% identification efficiency for the hadronically decaying W boson. An $E_T^{\text{miss}} > 80$ GeV selection is applied in this region.

In the resolved SR, at least two small-R jets with $p_T > 20$ GeV and $|\eta| < 2.5$ are required. The invariant mass of the dijet system, formed by the two small-R jets with the largest p_T, is required to be consistent with the W boson mass: 50 GeV $< m_{jj} < 110$ GeV. In both the boosted and resolved SRs, the events are required to have no b-tagged small-R jet present to reduce the background from top-quark production. An $E_T^{\text{miss}} > 60$ GeV selection is applied in this region.

One of the dominant sources of SM background in the SRs is the $WZ +$ jets process. Control regions enriched in this process (WZ CRs) are defined for both the boosted and resolved categories, and are used in the global likelihood fit as detailed in Section 9, in order to constrain the normalisation of this background. The WZ CRs require events with three leptons, of which two form a same-flavour opposite-sign (SFOS) pair. Similarly to the SRs, the WZ CRs veto any events with b-jets to reduce backgrounds coming from top-quark processes and they veto events containing a fourth veto lepton to reduce background coming from the ZZ process. Requirements of $E_T^{\text{miss}} > 40$ GeV and trilepton invariant mass $m_{\ell\ell\ell} > 100$ GeV are applied in order to further reduce background coming from Drell–Yan and ZZ processes. In the WZ CRs, more than 90% of the events are expected to be from $WZ +$ jets production.

The same-sign $WW +$ jets process is another important SM background in the SRs. A control region enriched with this background is defined (ssWW CR) in the resolved category by requiring a dijet invariant mass $m_{jj} > 200$ GeV, and is also used in the global likelihood fit as detailed in Section 9 to constrain the normalisation of this background. The m_{jj} requirement enhances the fraction of same-sign $WW +$ jets events from electroweak VBF production, as the two forward jets tend to have a large invariant mass [80].

In order to reduce the statistical uncertainties, the E_T^{miss} requirement is loosened to $E_T^{\text{miss}} > 40$ GeV. In the ssWW CR, about 40% of the events are expected to originate from same-sign $WW +$ jets production.

The event selection criteria for the signal and control regions are summarised in Table 1. The average product of acceptance times efficiency for signal events in the combined SR is roughly 0.2%–0.5%, with little variation over the probed mass range for a heavy Higgs boson.

It is not possible to reconstruct the heavy Higgs boson’s mass because of the two undetected neutrinos in the final states. The ‘effective mass’ m_{eff} is found to be a powerful discriminant between the signal and most SM backgrounds since a high mass scale is expected for the signal, and it is thus used as the main observable to extract the signal in the statistical analysis described in Section 9. The effective mass is defined to be the scalar sum of the E_T^{miss} and the transverse momenta of the leptons and either the leading large-R jet or the leading two small-R jets for the boosted category and resolved category, respectively:

\[
\text{boosted category } m_{\text{eff}} = \sum_i p_T^i(\text{lepton}) + p_T(\text{leading J}) + E_T^{\text{miss}},
\]

\[
\text{resolved category } m_{\text{eff}} = \sum_i p_T^i(\text{lepton}) + p_T(\text{leading j}) + p_T(\text{sub-leading j}) + E_T^{\text{miss}}.
\]
Table 1: Overview of the event selection criteria for the signal and control regions.

Selections	Boosted SR	Resolved SR	t\(t\)\(\ell\)\(\ell\)	Boosted WZ CR	Resolved WZ CR											
Trigger	Single lepton															
Leptons	two same-sign leptons with \(p_T > 27, 20\) GeV	three leptons with \(p_T > 27, 20\) GeV at least one SFOS lepton pair														
\(m_{\ell\ell}\)	> 100 GeV															
\(m_{\ell\ell\ell}\)					> 100 GeV											
b-jets	zero b-tagged small-\(R\) jets															
\(E_T^{miss}\)	at least one large-\(R\) jet with \(p_T > 200\) GeV,	zero large-\(R\) jets with \(p_T > 200\) GeV,	at least one large-\(R\) jet with \(p_T > 200\) GeV,	zero large-\(R\) jets with \(p_T > 200\) GeV,	at least two small-\(R\) jets with \(p_T > 20\) GeV and	at least two small-\(R\) jets with \(p_T > 20\) GeV and										
	50 GeV \(< m_{jj} \< 200\) GeV and 80% W-tagger WP	\(p_T > 200\) GeV, \(\eta	\< 2.0\)	\(p_T > 200\) GeV, \(\eta	\< 2.0\)	\(p_T > 200\) GeV, \(\eta	\< 2.0\)	\(p_T > 20\) GeV and \(\eta	\< 2.5\)	\(p_T > 20\) GeV and \(\eta	\< 2.5\)
Small-\(R\) jets	-	at least two small-\(R\) jets with \(p_T > 20\) GeV and \(\eta	\< 2.5\)	-	at least two small-\(R\) jets with \(p_T > 20\) GeV and \(\eta	\< 2.5\)	-							
\(m_{jj}\)	-	50 GeV \(< m_{jj} \< 110\) GeV	200 GeV	-	-											

7 Background estimation

The SM processes that mimic the \(\ell^{+}\ell^{-}\nu\nu q\bar{q}\) signal signature can be mainly grouped into four categories:

- Processes that produce at least three prompt leptons or two prompt leptons with the same electric charge. The main contributions come from WZ + jets (referred to as ‘WZ background’), same-sign WW + jets (referred to as ‘ssWW background’), WWW (referred to as ‘WWW background’), with other small contributions from \(ttV, tZq, tth\), WWZ, WZZ, ZZZ (referred to as ‘Other background’). These backgrounds are estimated with MC simulations, except for the backgrounds from WZ and ssWW production, for which the normalisations are corrected using data in dedicated CRs as defined in Section 6.

- Processes that produce two or three prompt charged leptons, but the charge of one lepton is misidentified (referred to as ‘charge-flip background’). A data-driven method is used to estimate this background and details are provided in Section 7.1.

- Processes that have one or two non-prompt leptons originating either from misidentified jets or from semileptonic decays of heavy-flavour hadrons (referred to as ‘non-prompt background’). A data-driven method is used to estimate this background and details are provided in Section 7.2.

- The W\(\gamma\) + jets or Z\(\gamma\) + jets processes where the photon converts to an electron–positron pair (referred to as ‘photon conversion background’). A data-driven method is used to estimate this background and details are provided in Section 7.3.

7.1 Electron charge-flip background

The charge-flip background originates from processes that produce oppositely charged prompt leptons, where one lepton’s charge is misidentified and results in final states reconstructed as having two same-sign
leptons. The charge-flip background is only significant for electrons and is mainly due to interactions of the electron with material in the ID. The dominant contributions for this background come from $t\bar{t}$, $W^+W^−+\text{jets}$, and $Z+\text{jets}$ processes, and are strongly suppressed by the charge misidentification suppression BDT and the kinematic requirements on E_T^{miss} and $m_{\ell\ell}$.

The electron charge misidentification rate is measured in a data sample enriched in $Z \to e^+e^-$ events (referred to as the Zee CR) selected by requiring two nominal electrons with an invariant mass between 75 GeV and 105 GeV. Non-Zee backgrounds are estimated from the total number of events in two sideband regions, defined by $60 \text{ GeV} < m_{ee} < 75 \text{ GeV}$ and $105 \text{ GeV} < m_{ee} < 120 \text{ GeV}$. The non-$Zee$ backgrounds are then subtracted from the Z mass region. The sample contains mostly opposite-charge di-electron events, with a small fraction of same-sign di-electron events. The fraction of same-sign di-electron events is used to extract the charge misidentification rate as a function of the electron p_T and $|\eta|$ using a likelihood fit method described in Ref. [59], taking into account that either electron in the same-sign pair could be the misidentified one. This rate is found to range between 0.01% and 4%, where higher values are obtained at large rapidities because of the larger amount of material traversed by the electrons, and at high p_T because of the larger probability of an incorrect determination of the track curvature. The charge-flip background is estimated in a given region by applying the misidentification rates to data events satisfying all selection criteria except that the two electrons must be oppositely charged.

The statistical uncertainty of this estimate varies between 1% and 10%. Additional systematic uncertainties are considered by comparing the estimated nominal rate with the rate derived by: i) varying the sidebands by 4 GeV, ii) using the $Z+\text{jets}$ MC simulation directly, and iii) using MC simulation for background subtraction in the Zee CR. The impact of systematic uncertainties on the charge-flip background yield is approximately 10%, and is dominated by the uncertainty from using the $Z+\text{jets}$ MC simulation directly.

7.2 Non-prompt background

The estimation of the non-prompt background assumes that these contributions can be extrapolated from a fake-lepton CR, enriched in non-prompt leptons, with a so-called fake-factor. Events that pass the kinematic requirements of the signal regions but contain one nominal lepton and one ‘jet-like’ lepton are selected in the fake-lepton CR. Jet-like electrons have to satisfy the likelihood-based Medium identification [59], while the isolation requirement is removed. Jet-like muons have the impact parameter requirement loosened to $|d_0/\sigma_{d_0}| < 10$, and the isolation requirement removed. Jet-like leptons are also required to fail at least one of the nominal lepton selections to ensure that the definitions of nominal and jet-like leptons are mutually exclusive. Simulation shows that the dominant contribution to this background stems from real muons or electrons from heavy-flavour hadrons that undergo semileptonic decays, and is heavily suppressed by the isolation and zero b-tagged small-R jet requirements, as well as the kinematic requirements on $m_{\ell\ell}$.

Events in the fake-lepton CR are scaled by fake-factors to predict the non-prompt-lepton background in the SR. The fake-factors are calculated in control regions with selections designed to enhance the contribution from backgrounds with non-prompt leptons. The control region selections require two same-sign leptons and exactly one b-tagged small-R jet. One of the same-sign leptons must fulfill either the nominal criteria or those of a jet-like lepton, while the other lepton must satisfy the nominal lepton criteria. The fake-factor is defined as the ratio of the number of events in the control region with all selected leptons fulfilling the nominal lepton criteria, to the number of events in the same region with one of the selected leptons satisfying the requirements of a jet-like lepton. The fake-factors are calculated separately for electrons and muons as a function of the lepton p_T and $|\eta|$. The SM processes with prompt leptons and the charge-flip
contributions are subtracted in the CR. For the electron and muon fake-factor measurements, the lepton with the second-highest p_T is assumed to be the non-prompt one. This assumption is true for more than 90% of events, based on generator-level information in the MC event record, and the potential bias can be covered by the systematic uncertainties as discussed below. The fake-factor dependency on the electron $|\eta|$ is found to be negligible. The electron fake-factors are then measured in three different electron p_T bins separated by boundaries at 30 GeV and 40 GeV. The statistical uncertainty is found to be approximately 20% in each bin. A strong $|\eta|$ dependency is found for the muon fake-factors, and their values are estimated in three $|\eta|$ bins: $0 < |\eta| < 0.5$, $0.5 < |\eta| < 1.5$ and $|\eta| > 1.5$. The statistical uncertainty is approximately 20% in the first two bins, and approximately 30% in the last bin. The fake-factor dependency on the muon p_T was also checked and found to be negligible.

Apart from the statistical uncertainty, a set of systematic uncertainties is also considered for the estimation of the fake-factors as follows: i) estimating the fake-factors in the inclusive p_T and $|\eta|$ region; ii) varying the normalisation of the SM processes with prompt leptons and electron charge-flip background when doing the subtraction; iii) varying the b-tagging algorithm working points used for the $t\bar{t}$-enriched CR definition; iv) estimating the fake-factors with MC simulation directly in both the SRs and $t\bar{t}$-enriched regions, and treating the difference as a systematic uncertainty to take into account any potential fake-factor difference between SRs and $t\bar{t}$-enriched regions. The overall systematic uncertainty amounts to approximately 13% (10%) for the electron (muon) fake-factors, with the dominant contribution coming from fake-factor estimation in the inclusive p_T and $|\eta|$ region.

7.3 Photon conversion background

The photon conversion background can contribute in the SRs if the photon is misreconstructed as an electron. This background originates primarily from the $W\gamma$ process and is evaluated using a data-driven method similar to the non-prompt-lepton background estimation by introducing ‘photon-like’ electrons. A photon-like electron is an object reconstructed like a nominal electron except that the track has no hit in the innermost layer of the pixel detector and the photon-conversion electron suppression requirements are not applied. In order to determine the photon fake-factors, a $Z\gamma$-enriched region is selected by requiring two nominal muons, no b-tagged small-R jets, and one nominal or photon-like electron. The trilepton invariant mass must satisfy $80 \text{ GeV} < m_{\mu\mu e} < 100 \text{ GeV}$. The photon fake-factor is defined as the ratio of the number of events in the $Z\gamma$-enriched region with the selected electron required to fulfil nominal electron criteria, to the number of events in the same region with the selected electron satisfying photon-like electron requirements. The SM processes with prompt leptons are subtracted in the $Z\gamma$-enriched region.

The photon fake-factors are measured in two electron p_T bins separated by a boundary at 25 GeV. The statistical uncertainty is found to be approximately 10% in each bin. The fake-factor dependency on the electron $|\eta|$ was also checked and found to be negligible. A photon-conversion electron CR is then filled with events passing the signal region kinematic requirements, but containing one nominal lepton and one photon-like electron. Events in this CR are scaled by the photon fake-factor to predict the photon conversion background in the SR.

In a similar way to the non-prompt background, the photon conversion background fake-factor derived from the inclusive p_T region is considered as one of the systematic uncertainties, together with the uncertainties from background subtraction. In addition, possible differences between $W\gamma$ and $Z\gamma$ photon fake-factors are checked with MC simulation and found to be negligible. The overall systematic uncertainty is found to be approximately 8%.
7.4 Validation of background estimates

Two validation regions (VR) are used to test the general background predictions in the boosted and resolved categories. They are defined to be close to the signal regions, with the large-R jet W-tagging requirement inverted in the boosted category and the m_{jj} requirement inverted in the resolved category. Events with $m_{jj} > 200$ GeV in the resolved category are removed in order to avoid overlap with the ssWW CR. Kinematic distributions are checked and good agreement between the data and the prediction is observed in the boosted and resolved VRs, as shown in Figure 2. Data-driven methods detailed in this section are used to estimate the charge-flip, non-prompt and photon-conversion backgrounds in the VRs. Predictions from simulation are scaled to the integrated luminosity of the data using the theoretical cross-section of each sample. The WZ and ssWW backgrounds are also scaled by normalisation factors from the global likelihood fit as detailed in Section 9. Only the statistical uncertainty is shown in Figure 2.
Figure 2: Comparison between data and SM predictions for the large-R jet p_T (top left) and the sub-leading lepton p_T (top right) in the boosted VR, and for the leading small-R jet p_T (bottom left) and E_T^{miss} (bottom right) in the resolved VR. Predictions from simulation are scaled to the integrated luminosity of the data using the theoretical cross-section of each sample. WZ and $ssWW$ backgrounds are also scaled by the normalisation factors from the global likelihood fit. The background predictions are shown as filled histograms. The size of the statistical uncertainty for the sum of the backgrounds is indicated by the hatched band. The lower panel displays the ratio of data to the total prediction. The blue triangles indicate bins where the ratio is non-zero and outside the vertical range of the plot.
8 Systematic uncertainties

The sources of systematic uncertainty can be broadly divided into three groups: those of experimental nature and related to the detector and reconstruction performance, those of theoretical origin and associated with modelling of the simulated background and signal processes, and those related to the data-driven background estimation. The effect of the systematic uncertainties are described together with the results in Section 9 and Table 3, respectively.

8.1 Experimental uncertainties

Experimental uncertainties arise from the measurement of the luminosity, the modelling of pile-up in the simulation, the trigger selection, the reconstruction and identification of electrons, muons and jets, and the E_{T}^{miss} calculation.

The uncertainty in the combined 2015–2018 integrated luminosity is 1.7%. It is derived following a methodology described in Ref. [25], and using the LUCID-detector for the baseline luminosity measurements [81]. An uncertainty associated with the modelling of pile-up in the simulation is included to cover the difference between the predicted and measured inelastic pp collision cross-sections [82].

Uncertainties in the reconstruction, identification, isolation and trigger efficiencies of electrons [59] and muons [60] are considered, along with the uncertainty in their energy scale and resolution. These are found to have only a small impact on the result. The lepton and jet identification efficiencies are well modelled in the simulation, and remaining differences are corrected to values measured in data. The uncertainties in the energy scale and resolution of the jets and leptons are propagated to the calculation of E_{T}^{miss}, which also has additional uncertainties from the modelling of the underlying event and momentum scale, momentum resolution and reconstruction efficiency of the tracks used to compute the soft-term [75, 76].

The uncertainties in the small-R jet energy scale and resolution have contributions from in situ calibration studies, from the dependency on pile-up activity and on the flavour composition of the jets [67, 83].

Uncertainties in the efficiencies for tagging b-jets and for mis-tagging light-flavour jets are determined from $t\bar{t}$ and jet control samples, respectively [69, 84, 85]. For large-R jets, the uncertainties in the energy and mass scales rely on a comparison of the ratio of calorimeter-based to track-based measurements in dijet data and simulation, as described in Ref. [86]. The efficiency of the W boson tagging is estimated using data control samples, following the technique described in Ref. [87]. The efficiency for large-R jet selection from W boson decays is estimated using $t\bar{t}$ control samples for $p_T < 600$ GeV. The measurement is extrapolated to the higher p_T region with additional uncertainties estimated from simulations [79]. The efficiency for background large-R jets from gluons or light quarks is estimated using dijet and $\gamma +$jets samples.

8.2 Theoretical uncertainties

Theoretical uncertainties affect the normalisations and shapes of m_{eff} distributions of signal and background processes. They arise from sources such as our choices of event generators, PDFs, parton shower models, and underlying-event tunes. The effects of scale and PDF uncertainties are estimated by varying the renormalisation/factorisation scales and PDF sets, respectively. The parton shower uncertainty is evaluated at generator level by comparisons of different parton showers or corresponding scales.
The normalisations of the WZ background, separated into the resolved and boosted categories, as well as the ssWW background normalisation, are free to float in the global likelihood fit, as detailed in Section 9. The theoretical uncertainties of these two backgrounds are not applied to the corresponding CRs, since only normalisation information is used for these CRs in the global fit. Apart from their impact on the shape of the m_{eff} distribution, theoretical uncertainties in the WZ and ssWW backgrounds also impact the SR normalisations, and can be treated as uncertainties in extrapolating from high-purity CRs to the SRs.

The combined effect of the scale and PDF uncertainties, as well as the parton shower uncertainties of the WZ background, is calculated by adding in quadrature the differences between the nominal Sherpa 2.2.2 sample and its associated systematic variations, including variations of i) the renormalisation scale by factors of 0.5 and 2, ii) the factorisation scale by factors of 0.5 and 2, iii) the CKKW merging scale from 30 GeV to 15 GeV, and iv) the parton-shower/resummation scale by factors of 0.5 and 2. The total theoretical uncertainty in the WZ background yield in the boosted SR (resolved SR) is found to be 29% (20%), and is dominated by the scale uncertainty.

The same approach as used for the WZ background is also used to estimate the effect of scale and PDF uncertainties for the ssWW background. The effect of the parton shower uncertainty on the ssWW background is estimated by comparing the nominal MC sample with a sample generated with MadGraph5_aMC@NLO + Herwig 7. The total theoretical uncertainty in the ssWW background yield is 31% in the boosted SR and 25% in the resolved SR.

The estimation of the theoretical uncertainties in the on-shell WWW background, and of the effect of PDF and scale uncertainties on the off-shell $WW(Wh \rightarrow WW^*)$ background, uses the same approach as for the WZ backgrounds. The effect of the parton shower uncertainty on the off-shell WWW background is estimated by comparing the nominal sample generated by Powheg Box + Pythia 8 with a sample generated by Powheg Box + Herwig 7. The total theoretical uncertainty in the WWW background yield is 16% in the boosted SR and 8% in the resolved SR.

The theoretical uncertainties of the WZ, ssWW and WWW backgrounds are decorrelated between the resolved and boosted regions in the global likelihood fit to allow for possible differences between the two regions. Given the small contributions from the processes included in the ‘Other’ background category, only overall normalisation uncertainties are assigned. The uncertainties vary from 10% to 20% based on the latest measurements of these processes [88–91].

For the signal samples, the effects of scale and PDF uncertainties are estimated by varying the renormalisation/factorisation scales, as well as the PDF set and parameter values used for the nominal MC samples. Parton shower uncertainties are estimated by comparing the nominal samples (MadGraph5_AMC@NLO + Pythia 8) with alternative samples using a different parton-shower generator (MadGraph5_AMC@NLO + Herwig 7). The total theoretical uncertainty in the yields from different signal samples varies between 10% and 40% in the SRs.

8.3 Data-driven background estimation uncertainties

Uncertainties in data-driven background evaluations come mainly from statistical and systematic uncertainties in the charge misidentification rate, lepton fake-factor, and photon-like electron fake-factor. More details can be found in Section 7.
9 Results

9.1 Statistical analysis

The statistical analysis is based on the HistFitter framework [92]. A binned likelihood function is constructed as the product of Poisson probability terms over the bins of the input distributions involving the numbers of data events and the expected signal and background yields, taking into account the effects of the floating background normalisations and the systematic uncertainties. A profile-likelihood-ratio test statistic is used to determine whether the background-only hypothesis is compatible with the observed data. The signal-plus-background hypothesis for the production of a heavy Higgs boson is tested, parameterised with the signal-strength parameter, μ, defined as the ratio of the extracted cross-section to the injected hypothesised signal cross-section. Maximum-likelihood fits to the observed binned distributions of the m_{eff} discriminants in the two SRs and to the numbers of observed events in CRs are performed simultaneously. The m_{eff} distributions are divided into 3 (5) bins for the boosted (resolved) SRs. The bins are of variable size to optimise the fit performance, while keeping the statistical uncertainty of the background contributions in each bin no larger than 10%. The normalisations of the WZ background, separated into boosted and resolved regions, as well as the normalisations of the $ssWW$ background, are free parameters in these fits and are constrained by the data in both the high-purity CRs and the SRs. The effect of systematic uncertainties in the signal and background predictions is described by nuisance parameters, which are constrained by Gaussian or log-normal probability density functions. For each nuisance parameter, the constraint is added as a penalty term to the likelihood, which decreases as soon as the nuisance parameter is shifted away from its nominal value. The statistical uncertainties of background predictions from simulation are included through one nuisance parameter per bin, using the Beeston–Barlow technique [93].

9.2 Data and background comparisons

To test the compatibility of the data and the background expectations, the data are first fit to the background-only hypothesis. Good agreement between the data and the post-fit background contributions is found for the m_{eff} distributions in the SRs and event yields in CRs. The post-fit normalisation factors of the unconstrained WZ background in the boosted and resolved regions are 0.93 ± 0.07 and 0.83 ± 0.03, respectively. For the $ssWW$ background, the extracted normalisation factor is 1.54 ± 0.18. The errors represent the combined statistical and systematic uncertainties, but do not include theoretical uncertainties related to normalisation in the respective CRs. The extracted normalisation factors are consistent with the results from dedicated $WZ + \text{jets}$ [94] and $ssWW + \text{jets}$ [80] measurements. Table 2 shows the post-fit background event yields from different sources in all SRs and CRs, compared with the numbers of events in data. The post-fit m_{eff} distributions in the SRs are shown in Figure 3, where good agreement between the data and the post-fit background contributions is observed. Figure 4 shows a few selected post-fit kinematic distributions in the SRs. No significant discrepancies are observed.

Good overall normalisation agreement between data and post-fit background contributions in CRs is seen in Table 2, and a few selected post-fit kinematic distributions in the CRs are shown in Figure 5.

Table 3 summarises the systematic uncertainties in the background expectation for each SR. The individual sources of systematic uncertainty detailed in Section 8 are combined into categories. In the resolved SR, the largest uncertainty comes from the data-driven background estimation, followed by theoretical uncertainties in background modelling, the uncertainty due to the limited size of the simulated samples, and
Table 2: Background predictions and data yields for each signal region and control region. The background predictions are obtained through a background-only simultaneous fit. All systematic uncertainties are included. The individual uncertainties can be correlated, and do not necessarily add in quadrature to equal the total background uncertainty. An entry of ‘–’ indicates that a specific background component is negligible in a certain region, or that no simulated events are left after the analysis selections.

Yields	Boosted SR	Resolved SR	Boosted WZ CR	Resolved WZ CR	ssWW CR
Observed events	24	191	236	2094	567
Fitted bkg events	26.8 ± 2.7	189.0 ± 7.8	235 ± 15	2095 ± 46	566 ± 24
WWW	5.8 ± 1.0	30.4 ± 2.9	1.30 ± 0.31	11.2 ± 2.1	28.5 ± 5.5
ssWW	7.5 ± 2.3	16.5 ± 1.9	–	–	254 ± 27
WZ	6.71 ± 0.76	68.7 ± 5.0	221 ± 15	1956 ± 50	150.6 ± 5.7
Non-prompt	3.20 ± 0.36	39.6 ± 6.3	–	–	48.6 ± 8.8
Charge-flip	0.43 ± 0.03	8.61 ± 0.57	–	–	22.8 ± 1.3
Photon conversion	0.73 ± 0.07	17.2 ± 1.7	–	–	46.7 ± 4.7
Other	2.50 ± 0.45	9.0 ± 1.5	12.3 ± 1.6	130 ± 20	14.3 ± 2.0

Figure 3: Comparison between data and SM predictions for the m_{eff} distributions in the boosted SR (left) and the resolved SR (right). The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The last bin includes overflow entries. The size of the combined statistical and systematic uncertainty for the sum of the fitted backgrounds is indicated by the hatched band. The ratio of the data to the sum of the fitted backgrounds is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.
Figure 4: Comparison between data and SM predictions for the large-R jet p_T (top left) and $E_{	ext{miss}}$ (top right) in the boosted SR, and for the leading lepton p_T (bottom left) and the sub-leading small-R jet p_T (bottom right) in the resolved SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The size of the combined statistical and systematic uncertainty for the sum of the fitted backgrounds is indicated by the hatched band. The ratio of the data to the sum of the fitted backgrounds is shown in the lower panel. The blue triangles indicate bins where the ratio is non-zero and outside the vertical range of the plot.
Figure 5: Comparison between data and SM predictions for E_{miss} (top left) in the boosted WZ CR, for the invariant mass of the three-lepton system (top right) in the resolved WZ CR, and for the leading small-R jet p_T (bottom) in the ssWW CR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The size of the combined statistical and systematic uncertainty for the sum of the fitted backgrounds is indicated by the hatched band. The ratio of the data to the sum of the fitted backgrounds is shown in the lower panel.
Table 3: Breakdown of the dominant systematic uncertainties in background estimates in both the boosted and resolved signal regions. The background predictions are obtained through a background-only simultaneous fit. The individual uncertainties can be correlated, and do not necessarily add in quadrature to equal the total background uncertainty. The percentages show the size of the uncertainty relative to the total expected background. An entry of ‘–’ indicates that a specific uncertainty component is not relevant in a certain region.

Uncertainty of channel	Boosted SR	Resolved SR
Total systematic uncertainties	10.0%	4.1%
Data driven non-prompt	1.3%	3.3%
Theoretical uncertainties	8.9%	2.6%
MC statistical uncertainties	3.0%	1.9%
Floating normalisations	3.5%	1.2%
Data driven photon conversion	0.2%	0.9%
E_T^miss	0.2%	0.7%
b-tagging	0.8%	0.5%
Data driven charge-flip	0.1%	0.3%
Electron	0.5%	0.2%
Muon	0.6%	0.2%
Pile-up reweighting	0.2%	0.2%
Large-R jet	1.1%	0.2%
W-tagger	3.7%	–
Small-R jet	–	1.1%

the small-R jet uncertainty. In the boosted SR, the systematic uncertainties associated with the theoretical modelling of the background and with the W-tagger play a dominant role, followed by sizeable effects from the limited size of the simulated samples and the large-R jet uncertainty.

9.3 Limits on the production of heavy Higgs bosons

Constraints on the production of heavy Higgs bosons are derived by repeating the fit to the signal-plus-background hypothesis. Upper limits on the production cross-sections of heavy Higgs bosons are calculated with a modified frequentist method [95], known as CL$_S$, using the \tilde{q}_H test statistic in the asymptotic approximation [96].

Figure 6 shows the expected and observed exclusion contours at the 95% confidence level (CL) for signals from heavy Higgs bosons with masses of 300 GeV, 600 GeV and 900 GeV as a function of the coupling strengths $\rho_H f_W / \Lambda^2$ and $\rho_H f_{WW} / \Lambda^2$. The scaling factor ρ_H is set to 0.05 and the scale Λ is set to 5 TeV as mentioned in Section 2. The hypotheses are tested for each mass value in each of the 16 radial directions of the (f_W, f_{WW}) space. The local p_0-value for the observation to be compatible with the background-only hypothesis reaches its smallest value at 300 GeV with $(\rho_H f_W / \Lambda^2, \rho_H f_{WW} / \Lambda^2) = (0, 4.9 \text{ TeV}^{-2})$, corresponding to 1.3 standard deviation. For a heavy Higgs boson with a mass of 300 GeV, $|\rho_H f_W / \Lambda^2| > 2.7 \text{ TeV}^{-2}$ and $|\rho_H f_{WW} / \Lambda^2| > 10 \text{ TeV}^{-2}$ can be excluded at 95% CL. Couplings of $|\rho_H f_W / \Lambda^2| > 2.5 \text{ TeV}^{-2}$ and $|\rho_H f_{WW} / \Lambda^2| > 12 \text{ TeV}^{-2}$ can be excluded for the production of a heavy
Higgs boson with a mass of 600 GeV. Similarly, for a heavy Higgs boson with a mass of 900 GeV, \(|\rho_H f_W / \Lambda^2| > 2.9 \text{ TeV}^{-2}\) and \(|\rho_H f_W W / \Lambda^2| > 15 \text{ TeV}^{-2}\) can be excluded.

The overall excess, at the level of approximately 1\(\sigma\), observed for a 300 GeV heavy Higgs boson is mostly due to the small excess observed in data in the rightmost bin of the resolved SR’s \(m_{\text{eff}}\) distribution, as shown in Figure 3. This is because the resolved SR dominates the sensitivity to lower-mass heavy Higgs bosons.

From the ellipse of expected limits in Figure 6, two sets of couplings \((\rho_H f_W / \Lambda^2, \rho_H f_{WW} / \Lambda^2)\) with values \((0, 12.4 \text{ TeV}^{-2})\) and \((2.7 \text{ TeV}^{-2}, 0)\) are chosen as benchmark examples with which to explore the dependence of the results on the heavy Higgs boson’s mass. Coupling combinations on this ellipse are expected to have similar phenomenology. Although the two points chosen on the ellipse are somewhat arbitrary, they are representative. Figure 7 shows the expected and observed 95% CL upper limits on the heavy Higgs boson’s production cross-section as a function of its mass for those two sets of anomalous couplings. The mass hypotheses are tested at 60 GeV steps between 300 and 900 GeV, and three additional mass points at 1000 GeV, 1200 GeV and 1500 GeV. For both sets of couplings, the local \(p_0\)-value is smallest at 300 GeV, corresponding to 1.3 and 0.9 standard deviations, respectively. For the coupling choice \((\rho_H f_W / \Lambda^2, \rho_H f_{WW} / \Lambda^2) = (0, 12.4 \text{ TeV}^{-2})\), a heavy Higgs boson with mass up to 700 GeV can be excluded, while for the choice \((2.7 \text{ TeV}^{-2}, 0)\), the range of excluded masses extends to 900 GeV.
Figure 6: Observed (black solid curve) and expected (black dashed curve) 95% CL upper limits on the production of a heavy Higgs boson as a function of $\rho_f W/\Lambda^2$ and $\rho_f WW/\Lambda^2$ for a mass of 300 GeV (top left), 600 GeV (top right) and 900 GeV (bottom). The green (inner) and yellow (outer) bands represent the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties of the expected limits.
Figure 7: Observed (black solid curve) and expected (black dashed curve) 95% CL upper limits on the production cross-section times decay branching fraction of a heavy Higgs boson as a function of its mass with $(\rho_H f_W / \Lambda^2, \rho_H f_{WW} / \Lambda^2)$ fixed to (0, 12.4 TeV$^{-2}$) (left) and (2.7 TeV$^{-2}$, 0) (right). The green (inner) and yellow (outer) bands represent the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties of the expected limits. The unevenness in the expected limits reflects the variations in the estimated systematic uncertainties. Theoretical predictions (red solid curve) as a function of the heavy Higgs boson’s mass are overlaid.
10 Summary

This paper presents a search for heavy Higgs bosons produced in association with a \(W \) boson and decaying into a pair of \(W \) bosons. The search uses proton–proton collisions at centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb\(^{-1}\). The data were recorded by the ATLAS experiment between 2015 and 2018 at the LHC. The search is performed in the final states with two leptons of the same electric charge, missing transverse momentum and jets. The \(W \rightarrow q\bar{q} \) decay is reconstructed from two resolved small-\(R \) jets or one boosted large-\(R \) jet, and two corresponding signal regions are defined. The data are found to be in good agreement with the estimated backgrounds.

Upper limits on the production of heavy Higgs bosons are derived as a function of the heavy Higgs boson’s mass and coupling strengths to vector bosons. For heavy Higgs bosons with masses ranging from 300 GeV to 900 GeV, the 95% CL upper limits on the coupling strengths \(|\rho_H f_W / \Lambda^2| \) and \(|\rho_H f_{WW} / \Lambda^2| \) are in the range 2.5–2.9 TeV\(^{-2}\) and 10–15 TeV\(^{-2}\), respectively. The most stringent exclusion ranges for the coupling strengths, \(|\rho_H f_W / \Lambda^2| > 2.5 \text{ TeV}^{-2} \) and \(|\rho_H f_{WW} / \Lambda^2| > 10 \text{ TeV}^{-2} \), are set for the production of heavy Higgs bosons with a mass of 600 GeV or 300 GeV, respectively. The scaling factor \(\rho_H \) is set to 0.05 and \(\Lambda \) is set to 5 TeV in the analysis. Heavy Higgs bosons are excluded at 95% CL for masses up to 700 GeV or 900 GeV with anomalous couplings to vector bosons \((\rho_H f_W / \Lambda^2, \rho_H f_{WW} / \Lambda^2) \) fixed at \((0, 12.4 \text{ TeV}^{-2}) \) or \((2.7 \text{ TeV}^{-2}, 0) \), respectively.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; RCG and Hong Kong SAR, China; ISF and Benoziyo Center, Israeli; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARES and MIZS, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TENMAK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; PRIMUS 21/SCI/017 and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3
(France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [97].
References

[1] ATLAS Collaboration, *Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC*, Phys. Lett. B 716 (2012) 1, arXiv: 1207.7214 [hep-ex].

[2] CMS Collaboration, *Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC*, Phys. Lett. B 716 (2012) 30, arXiv: 1207.7235 [hep-ex].

[3] G. C. Branco et al., *Theory and phenomenology of two-Higgs-doublet models*, Phys. Rept. 516 (2012) 1, arXiv: 1106.0034 [hep-ph].

[4] G. Bhattacharyya and D. Das, *Scalar sector of two-Higgs-doublet models: A minireview*, Pramana 87 (2016) 40, arXiv: 1507.06424 [hep-ph].

[5] R. Aggleton, D. Barducci, N.-E. Bomark, S. Moretti and C. Shepherd-Themistocleous, *Review of LHC experimental results on low mass bosons in multi Higgs models*, JHEP 02 (2017) 035, arXiv: 1609.06989 [hep-ph].

[6] H. Davoudiasl, I. M. Lewis and M. Sullivan, ‘Good things to do with extra Higgs doublets’, 2022 Snowmass Summer Study, 2022, arXiv: 2203.01396 [hep-ph].

[7] L. Wang, J. M. Yang and Y. Zhang, *Two-Higgs-doublet models in light of current experiments: a brief review*, Commun. Theor. Phys. 74 (2022) 097202, arXiv: 2203.07244 [hep-ph].

[8] J. Kim, S. Lee, P. Sanyal and J. Song, *CDF W-boson mass and muon g-2 in a type-X two-Higgs-doublet model with a Higgs-phobic light pseudoscalar*, Phys. Rev. D 106 (2022) 035002, arXiv: 2205.01701 [hep-ph].

[9] ATLAS Collaboration, *Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton–proton collisions at \(\sqrt{s} = 13 \) TeV*, JHEP 06 (2021) 146, arXiv: 2101.11961 [hep-ex].

[10] ATLAS Collaboration, *Search for heavy resonances decaying into a pair of Z bosons in the \(\ell^+\ell^-\ell'^+\ell'^-\) and \(\ell^+\ell^-\nu\bar{\nu} \) final states using 139 fb\(^{-1}\) of proton–proton collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector*, Eur. Phys. J. C 81 (2020) 332, arXiv: 2009.14791 [hep-ex].

[11] ATLAS Collaboration, *Search for heavy diboson resonances in semileptonic final states in pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector*, Eur. Phys. J. C 80 (2020) 1165, arXiv: 2004.14636 [hep-ex].

[12] ATLAS Collaboration, *Search for doubly charged scalar bosons decaying into same-sign W boson pairs with the ATLAS detector*, Eur. Phys. J. C 79 (2019) 58, arXiv: 1808.01899 [hep-ex].

[13] ATLAS Collaboration, *Search for heavy resonances decaying into WW in the e\(\nu\mu\bar{\nu}\) final state in pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector*, Eur. Phys. J. C 78 (2018) 24, arXiv: 1710.01123 [hep-ex].

[14] CMS Collaboration, *Search for a heavy Higgs boson decaying to a pair of W bosons in proton–proton collisions at \(\sqrt{s} = 13 \) TeV*, JHEP 03 (2020) 034, arXiv: 1912.01594 [hep-ex].

[15] CMS Collaboration, *Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at \(\sqrt{s} = 13 \) TeV*, Eur. Phys. J. C 79 (2019) 564, arXiv: 1903.00941 [hep-ex].

[16] Y.-P. Kuang, H.-Y. Ren and L.-H. Xia, *Model-independent Probe of anomalous heavy neutral Higgs bosons at the LHC*, Phys. Rev. D 90 (2014) 115002, arXiv: 1404.6367 [hep-ph].

[17] Y.-P. Kuang, H.-Y. Ren and L.-H. Xia, *Further investigation of the model-independent probe of heavy neutral Higgs bosons at LHC Run 2*, Chin. Phys. C 40 (2016) 023101, arXiv: 1506.08007 [hep-ph].
[18] X. Chen et al., Search for a generic heavy Higgs at the LHC, Phys. Lett. B 804 (2020) 135358, arXiv: 1905.05421 [hep-ph].

[19] LHC Higgs Cross Section Working Group, S. Heinemeyer, C. Mariotti, G. Passarino and R. Tanaka (Eds.), Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, CERN-2013-004 (2013), arXiv: 1307.1347 [hep-ph].

[20] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, The Higgs Hunter’s Guide, vol. 80, 2000.

[21] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.

[22] ATLAS Collaboration, ATLAS Insertable B-Layer: Technical Design Report, ATLAS-TDR-19; CERN-LHCC-2010-013, 2010, url: https://cds.cern.ch/record/1291633. Addendum: ATLAS-TDR-19-ADD-1; CERN-LHCC-2012-009, 2012, url: https://cds.cern.ch/record/1451888.

[23] B. Abbott et al., Production and integration of the ATLAS Insertable B-Layer, JINST 13 (2018) T05008, arXiv: 1803.00844 [physics.ins-det].

[24] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77 (2017) 317, arXiv: 1611.09661 [hep-ex].

[25] ATLAS Collaboration, Luminosity determination in pp collisions at √s = 13 TeV using the ATLAS detector at the LHC, ATLAS-CONF-2019-021, 2019, url: https://cds.cern.ch/record/2677054.

[26] ATLAS Collaboration, ATLAS data quality operations and performance for 2015–2018 data-taking, JINST 15 (2020) P04003, arXiv: 1911.04632 [physics.ins-det].

[27] ATLAS Collaboration, The ATLAS Collaboration Software and Firmware, ATL-SOFT-PUB-2021-001, 2021, url: https://cds.cern.ch/record/2767187.

[28] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, arXiv: 1405.0301 [hep-ph].

[29] P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015, arXiv: 1212.3460 [hep-ph].

[30] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159, arXiv: 1410.3021 [hep-ph].

[31] ATLAS Collaboration, ATLAS Pythia8 tunes to 7 TeV data, ATL-PHYS-PUB-2014-021, 2014, url: https://cds.cern.ch/record/1966419.

[32] NNPDF Collaboration, R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244, arXiv: 1207.1303 [hep-ph].

[33] F. Maltoni, K. Mawatari and M. Zaro, Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects, Eur. Phys. J. C 74 (2014) 2710, arXiv: 1311.1829 [hep-ph].

[34] E. Bothmann et al., Event generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034, arXiv: 1905.09127 [hep-ph].

[35] T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP 12 (2008) 039, arXiv: 0808.3674 [hep-ph].
30
[56] ATLAS Collaboration, The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model, ATL-PHYS-PUB-2016-017, 2016, url: https://cds.cern.ch/record/2206965.

[57] ATLAS Collaboration, Vertex Reconstruction Performance of the ATLAS Detector at $\sqrt{s} = 13$ TeV, ATL-PHYS-PUB-2015-026, 2015, url: https://cds.cern.ch/record/2037717.

[58] ATLAS Collaboration, Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC, Eur. Phys. J. C 77 (2017) 332, arXiv: 1611.10235 [hep-ex].

[59] ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data, JINST 14 (2019) P12006, arXiv: 1908.00005 [hep-ex].

[60] ATLAS Collaboration, Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 81 (2021) 578, arXiv: 2012.00578 [hep-ex].

[61] ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton–proton collision data at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 76 (2016) 292, arXiv: 1603.05598 [hep-ex].

[62] ATLAS Collaboration, Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector, Phys. Rev. D 97 (2018) 072003, arXiv: 1712.08891 [hep-ex].

[63] ATLAS Collaboration, Evidence for $t\bar{t}t\bar{t}$ production in the multilepton final state in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 1085, arXiv: 2007.14858 [hep-ex].

[64] M. Cacciari, G. P. Salam and G. Soyez, The anti-k_t jet clustering algorithm, JHEP 04 (2008) 063, arXiv: 0802.1189 [hep-ph].

[65] M. Cacciari, G. P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896, arXiv: 1111.6097 [hep-ph].

[66] ATLAS Collaboration, Jet reconstruction and performance using particle flow with the ATLAS Detector, Eur. Phys. J. C 77 (2017) 466, arXiv: 1703.10485 [hep-ex].

[67] ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 072002, arXiv: 1703.09665 [hep-ex].

[68] ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 581, arXiv: 1510.03823 [hep-ex].

[69] ATLAS Collaboration, ATLAS b-jet identification performance and efficiency measurement with $t\bar{t}$ events in pp collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 79 (2019) 970, arXiv: 1907.05120 [hep-ex].

[70] ATLAS Collaboration, Reconstruction of hadronic decay products of tau leptons with the ATLAS experiment, Eur. Phys. J. C 76 (2016) 295, arXiv: 1512.05955 [hep-ex].

[71] ATLAS Collaboration, Measurement of the tau lepton reconstruction and identification performance in the ATLAS experiment using pp collisions at $\sqrt{s} = 13$ TeV, ATLAS-CONF-2017-029, 2017, url: https://cds.cern.ch/record/2261772.

[72] ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J. C 77 (2017) 490, arXiv: 1603.02934 [hep-ex].
D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084, arXiv: 0912.1342 [hep-ph].

ATLAS Collaboration, Performance of jet substructure techniques for large-R jets in proton–proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector, JHEP 09 (2013) 076, arXiv: 1306.4945 [hep-ex].

ATLAS Collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 78 (2018) 903, arXiv: 1802.08168 [hep-ex].

ATLAS Collaboration, E_T^{miss} performance in the ATLAS detector using 2015–2016 LHC pp collisions, ATLAS-CONF-2018-023, 2018, url: https://cds.cern.ch/record/2625233.

ATLAS Collaboration, Performance of electron and photon triggers in ATLAS during LHC Run 2, Eur. Phys. J. C 80 (2020) 47, arXiv: 1909.00761 [hep-ex].

ATLAS Collaboration, Performance of the ATLAS muon triggers in Run 2, JINST 15 (2020) P09015, arXiv: 2004.13447 [hep-ex].

ATLAS Collaboration, Jet energy resolution in proton–proton collisions at $\sqrt{s} = 7$ TeV recorded in 2010 with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2306, arXiv: 1210.6210 [hep-ex].

ATLAS Collaboration, Measurement of the c-jet mistagging efficiency in $t\bar{t}$ events using pp collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS detector, Eur. Phys. J. C 82 (2022) 95, arXiv: 2109.10627 [hep-ex].

ATLAS Collaboration, Calibration of light-flavour b-jet mistagging rates using ATLAS proton–proton collision data at $\sqrt{s} = 13$ TeV, ATLAS-CONF-2018-006, 2018, url: https://cds.cern.ch/record/2314418.

ATLAS Collaboration, In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector, Eur. Phys. J. C 79 (2019) 135, arXiv: 1807.09477 [hep-ex].

ATLAS Collaboration, A W/Z-boson tagger using Track-CaloCluster jets with ATLAS, ATLAS-PHYS-PUB-2020-008, 2020, url: https://cds.cern.ch/record/2718218.

ATLAS Collaboration, Observation of the associated production of a top quark and a Z boson in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP 07 (2020) 124, arXiv: 2002.07546 [hep-ex].

ATLAS Collaboration, Measurement of the $t\bar{t}Z$ and $t\bar{t}W$ cross sections in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 072009, arXiv: 1901.03584 [hep-ex].
[90] D. de Florian et al., *Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector*, (2016), arXiv: 1610.07922 [hep-ph].

[91] ATLAS Collaboration, *Evidence for the production of three massive vector bosons with the ATLAS detector*, Phys. Lett. B 798 (2019) 134913, arXiv: 1903.10415 [hep-ex].

[92] M. Baak, G. J. Besjes, D. Côté, A. Koutsman, J. Lorenz and D. Short, *HistFitter software framework for statistical data analysis*, Eur. Phys. J. C 75 (2015) 153, arXiv: 1410.1280 [hep-ex].

[93] R. J. Barlow and C. Beeston, *Fitting using finite Monte Carlo samples*, Comput. Phys. Commun. 77 (1993) 219.

[94] ATLAS Collaboration, *Measurement of $W^\pm Z$ production cross sections and gauge boson polarisation in pp collisions at $\sqrt{s} = 13\text{ TeV}$ with the ATLAS detector*, Eur. Phys. J. C 79 (2019) 535, arXiv: 1902.05759 [hep-ex].

[95] A. L. Read, *Presentation of search results: the CL$_S$ technique*, J. Phys. G 28 (2002) 2693.

[96] G. Cowan, K. Cranmer, E. Gross and O. Vitells, *Asymptotic formulae for likelihood-based tests of new physics*, Eur. Phys. J. C 71 (2011) 1554, arXiv: 1007.1727 [physics.data-an], Erratum: Eur. Phys. J. C 73 (2013) 2501.

[97] ATLAS Collaboration, *ATLAS Computing Acknowledgements*, ATL-SOFT-PUB-2021-003, 2021, url: https://cds.cern.ch/record/2776662.
E.S. Haaland 124, A. Haas 116, M. Habetank 48, C. Haber 17a, H.K. Hadavand 28, A. Hadef 99, S. Hadzie 109, M. Haleem 165, J. Haley 120, J.J. Hall 138, G.D. Hallewell 101, L. Halser 19, K. Hamano 164, H. Hamdaoui 15e, M. Hamer 24, G.N. Hamilton 15j, J. Han 12b, K. Han 62a, L. Han 14c, L. Han 62a, S. Han 17a, Y.F. Han 154, K. Hanagaki 82, M. Hance 135, D.A. Hangal 41,ac, H. Hanif 141, M.D. Hank 39, R. Hankache 100, J.B. Hansen 42, J.D. Hansen 142, P.H. Hansen 172, K. Haraz 156, D. Harada 36, T. Harenberg 170, S. Harkusha 137, Y.T. Harris 125, N.M. Harrison 118, P.F. Harrison 166, N.M. Hartman 142, N.M. Hartman 108, Y. Hasegawa 139, A. Hasib 52, S. Haug 49, R. Hauser 100, M. Havranek 131, C.M. Hawkes 20, R.J. Hawkins 144, R. Hayashida 109, D. Hayden 106, C. Hayes 105, R.L. Hayes 163, C.P. Hays 125, J.M. Hays 93, H.S. Hayward 91, F. He 162, Y. He 153, Y. He 12b, M.P. Heath 52, V. Hedberg 97, A.L. Hegelund 124, N.D. Hehir 93, C. Heidegger 84, K.K. Heidegger 54, W.D. Heidorn 40, J. Heilmann 3, S. Heim 148, T. Heim 173, J.G. Heinlein 127, J.J. Heirich 109ae, J. Hejbali 130, L. Helary 148, A. Held 109b, S. Hellesund 124, C.M. Helling 163, S. Hellman 47a,47b, C. Helsens 56, R.C.W. Henderson 90, L. Henkelmann 132, A.M. Henriques Correia 16b, H. Herde 142, Y. Hernández Jiménez 144, M.G. Herrmann 108, T. Herrmann 50, G. Herten 54, R. Hertenberger 108, L. Hervas 36, N.P. Hessey 155a, H. Hibi 83, E. Higón-Rodriguez 162, S.J. Hillier 60, J. Hinchliffe 73a, F. Hinterkeuser 24, M. Hirose 123, S. Hirose 156, D. Hirschbueler 170, T.G. Hitchings 100, B. Hiti 372, J. Hobbs 144, R. Hobinco 27e, N. Hod 168, M.C. Hodgkinson 138, B.H. Hodkinson 132, A. Hoecker 156, J. Hofer 148, D. Hohn 54b, T. Holm 24, M. Holzbock 109, L.B.A.H. Hommels 152, B.P. Honan 100, J. Hong 62c, T.M. Hong 128, Y. Hong 155c, J.C. Honig 54, A. Hönle 109, B.H. Hooberman 161, W.H. Hopkins 6, Y. Horii 110, S. Hou 147, A.S. Howard 112, J. Howarth 159, J. Hoya 69, M. Hrabovsky 121, A. Hrynevich 37, T. Hryn’ova 41, P.J. Hsu 65, S.-C. Hsu 137, Q. Hu 61,ac, Y.F. Hu 14a,14ad, D.P. Huang 95, S. Huang 64b, X. Huang 14c, Y. Huang 62a, Y. Huang 14a, Z. Huang 100, Z. Hubeack 131, M. Huebner 124, F. Huegging 124, T.B. Huffman 125, M. Huhtinen 34b, S.K. Huiberts 16, R. Hulsken 103, N. Huseynov 12a, J. Huston 106, J. Huth 66, R. Hyneman 142, S. Hyrych 28a, G. Iacobucci 60, G. Iakovidis 89, I. Ibragimov 140, L. Iconomidou-Fayard 66, P. Iengo 71a,71b, R. Iguchi 152, T. Izawa 56, Y. Ikegami 182, A. Ilg 19, N. Ilic 154, H. Imam 159a, T. Ingebretsen Carlson 147a,47b, G. Introvizi 172a,72b, M. Iodice 76a, V. Ippolito 74a,74b, M. Ishino 152, W. Islam 169, C. Issever 148, S. Istini 12a,al, H. Ito 167, J.M. Iturbide Ponce 64a, R. Iuppa 77a,77b, A. Ivina 168, J.M. Izen 85, V. Izzo 71a, P. Jacka 130,131, P. Jackson 6, R.M. Jacobs 48, B.P. Jaeger 141, C.S. Jagfield 108, G. Jäkel 70, K. Jakobs 144, T. Jakoubek 168, J. Jamieson 59, K.W. Janas 154a, G. Jarlskog 87, A.E. Jaspan 91, M. Javalukova 102, F. Jeanneau 134, L. Jeanly 122, J. Jejelava 148aa, P. Jennis 258, C. Jessiman 134, S. Jézéquel 61, J. Jia 144, X. Jia 61, X. Jia 14a,14d, Z. Jia 14c, Y. Jiang 62a, S. Jiggins 52, J. Jimenez Pena 109, S. Jin 14a, A. Jinaru 27b, O. Jinnouchi 153, P. Johansson 138, K.A. Johns 7, D.M. Jones 152, E. Jones 166, P. Jones 132, R.W.L. Jones 90, T.J. Jones 91, R. Joshi 118, J. Jovicicvic 15, X. Ju 17a, J.J. Jungeburth 36, A. Juste Rozas 134, S. Kabana 136, A. Kazmierska 135, M. Kado 147a,47b, H. Kagan 118, M. Kagan 142, A. Kahn 41, A. Kahn 127, C. Kahra 99, T. Kaji 167, E. Kajomovitz 149, N. Kakati 168, C.W. Kalderon 29, A. Kalenschikov 154, S. Kanayama 153, N.J. Kang 135, Y. Kano 110, D. Kar 133a, K. Karuva 125, M.J. Kareem 155b, E. Karentzos 54, I. Karkianis 151, S.N. Karpov 38, Z.M. Karpova 38, V. Kartvelishvili 90, A.N. Karyukhin 37, E. Kasimi 151, C. Kato 142, J. Katz 106, Y. Kaur 134, K. Kawade 139, K. Kawagoe 88, T. Kawamoto 134, G. Kawamura 55, E.F. Kay 164, F. Kaya 157, S. Kazakov 137, V.F. Kazanin 37, Y. Ke 144, J.M. Keaveney 153a, R. Keeler 164, G.V. Kehris 61, J.S. Keller 134, A.S. Kelly 95, D. Kelsey 145, J.J. Kempster 70, K.E. Kennedy 81, O. Kepka 130, B.P. Kerridge 166, S. Kersten 170, B.P. Kërševan 92, S. Keshri 76, L. Keszeghova 28a, S. Ketabchi Haghhighat 154, M. Khandoga 126,
L. Pontecorvo, S. Popa, G.A. Popescu, D.M. Portillo Quintero, S. Pospisil, P. Postolache, K. Potamianos, I.N. Potratz, C.J. Potter, H. Potti, T. Poulsen, J. Poveda, M.E. Pozo Astigarraga, A. Prades Ibanez, M.M. Prapa, J. Pretel, D. Price, M. Primavera, M.A. Principe Martin, M.L. Proffitt, N. Proklova, K. Prokofiev, G. Proto, S. Protopopescu, J. Proudfoot, M. Przybycien, J.E. Puddefoot, D. Pudzha, P. Puzo, D. Pyatiybyantseva, J. Qian, D. Qichen, Y. Qin, T. Qiu, A. Quadt, M. Quietsh-Maitland, G. Rabanal Bolanos, D. Rabanoharan, F. Ragusa, J.L. Rainbolt, J.A. Raine, S. Rajagopalan, E. Ramakoti, K. Ran, V. Raskina, D.F. Rassloff, S. Rave, B. Ravina, I. Ravanich, M. Raymond, A.L. Read, N.P. Readioff, D.M. Rebuzzi, G. Redlinger, K. Reeves, J.A. Reidelsturz, D. Reikher, A. Reiss, A. Rej, C. Rembs, A. Renardi, M. Renda, M.B. Rendel, A.G. Rennie, S. Resconi, M. Ressegotti, E.D. Ressegue, S. Rettie, B. Reynolds, E. Reynolds, M. Rezaei Estabragh, O.L. Rezanova, P. Reznicek, E. Ricci, R. Richter, S. Richter, E. Richter-Was, M. Ridel, P. Rieck, P. Riedler, M. Rijssenbeek, A. Rimoldi, M. Rimoldi, L. Rinaldi, T.T. Rinn, M.P. Rinnagel, G. Ripellino, I. Riu, P. Rivadeneira, J.C. Rivera Vergara, E. Rizzi, C. Rizzi, B.A. Roberts, B.R. Roberts, S.H. Robertson, M. Robin, D. Robinson, C.M. Robles Gajardo, M. Robles Manzano, A. Robson, A. Rocchi, E. Roda, S. Rodriguez Bosca, Y. Rodriguez Garcia, A. Rodriguez Rodriguez, A.M. Rodriguez Vera, S. Roe, J.T. Roemer, A.R. Roepe-Gier, J. Roggel, J. Rohne, A. Rojas, B. Roland, C.P.A. Roland, J. Roloff, A. Romanion, E. Romano, M. Romano, A.C. Romero Hernandez, N. Rompotis, L. Roos, S. Rosati, B.J. Rossier, E. Rossi, E. Rossi, L.P. Rossi, L. Rossini, R. Rosten, M. Rotaru, B. Rottler, D. Rousseau, D. Rousoo, G. Roveri, S. Rovetta, M. Rovetta, A. Rozanov, Y. Rozen, X. Ruan, A. Rubio Jimenez, A.J. Ruby, V.H. Ruelas Rivera, A. Ruggeri, F. Rühr, A. Ruiz-Martinez, A. Rummel, Z. Rutikova, N.A. Rusakovitch, H.L. Russell, J.P. Rutherford, K. Rybacki, M. Rybar, E.B. Rye, A. Ryzhov, J.A. Sabater Iglesias, P. Sabatini, L. Sabetta, H.F-W. Sadrozinski, F. Safai Tehrani, B. Safarzadeh Samani, M. Safdari, S. Saha, M. Sahinoy, M. Sainperti, S. Saito, T. Saito, D. Salamani, G. Salamanna, A. Salnikov, J. Salt, A. Salvador Salas, D. Salvatore, A. Salzburger, D. Sammel, D. Sampsonidis, D. Sampsonidou, J. Sanchez, A. Sanchez Pineda, V. Sanchez Sebastian, H. Sandaker, J.O. Sander, J. Sandesara, M. Sandhoff, C. Sandoval, D.P.C. Sankey, A. Sansoni, L. Santi, S. Santoni, H. Santos, S.N. Santpur, A. Santra, K.A. Saoucha, J.G. Saravia, S. Sardain, O. Sasaki, K. Sato, C. Sauer, F. Fauerbacher, E. Sauvan, P. Savard, R. Sawada, C. Sawyer, L. Sawyer, I. Sayag Galvan, E. Sbarra, A. Sbrizzi, T. Scanlon, J. Schaarhschmidt, P. Schacht, D. Schaefer, A. Schäfer, A.C. Schaffer, D. Schmied, R.D. Schamberger, E. Schanen, C. Scharf, V.A. Schegelsky, D. Scheirich, F. Schenck, M. Schernau, C. Scheunen, C. Schiavi, M. Schillaci, E.J. Schioppa, M. Schioppa, B. Schlag, K.E. Schleicher, S. Schlenker, K. Schmieden, C. Schmitt, S. Schmitt, L. Schoeffel, A. Schoening, P.G. Scholer, E. Schopp, M. Schott, J. Schovancova, S. Schramm, F. Schroeder, H-C. Schultz-Coulon, M. Schumacher, B.A. Schumm, Ph. Schune,
A. Schwartzman, T.A. Schwarz, Ph. Schwemling, R. Schwienhorst, A. Scandra, G. Sciolla, F. Scuti, C.D. Sebastiani, K. Sedlaczek, P. Seema, S.C. Seidel, A. Seiden, B.D. Seidlitz, T. Seiss, C. Seitz, J.M. Seixas, G. Sekhmiaidez, S.J. Sekula, L. Selem, N. Semprini-Cresi, S. Sen, D. Sengupta, V. Senthilkumar, L. Serin, L. Serkin, M. Sessa, H. Severini, S. Sevova, F. Sforza, A. Sfyrla, E. Shabalina, R. Shaheen, J.D. Shahinian, N.W. Shaiikh, D. Shaked Renous, L.Y. Shan, M. Shapiro, A. Sharma, A.S. Sharma, P. Sharma, S. Sharma, P.B. Shatalov, K. Shaw, S.M. Shaw, Q. Shen, P. Sherwood, L. Shi, C.O. Shimmin, Y. Shimogama, J.D. Shinner, I.P.J. Shipway, S. Shirabe, M. Shiyakova, J. Shlomi, M.J. Shochet, J. Shoji, D.R. Shope, S. Shrestha, E.M. Shrif, M.J. Shroff, P. Sicho, A.M. Sickles, E. Sideras Haddad, A. Sidoti, F. Siegert, D. Sijacki, R. Sikora, F. Sili, J.M. Silva, M.V. Silva Oliveira, S.B. Silverstein, A. Simonelli, E.L. Simpson, N.D. Simpson, S. Simsek, S. Sindhu, P. Sinervo, V. Sinetckii, S. Singh, S. Singh, S. Sinha, A. Sinha, M. Sioli, I. Sirai, S.Yu. Sivoklokov, J. Sjölind, A. Skaf, E. Skorda, P. Skubic, M. Slawinska, V. Smakhtin, B.H. Smart, J. Smieszko, S.Yu. Smirnov, Y. Smirnov, L.N. Smirnova, O. Smirnova, A.C. Smith, E.A. Smith, H.A. Smith, J.L. Smith, R. Smith, A. Smizanska, K. Smolek, A. Smykiewicz, A.A. Snesarev, H.L. Snoch, S. Snyder, R. Sobic, A. Soffer, C.A. Solans Sanchez, E.Yu. Soldatov, U. Soldevila, A.A. Solodkov, S. Solomon, A. Soloshenko, K. Solovieva, O.V. Solovyov, V. Solovyev, P. Sommer, A. Sonay, W.Y. Song, A. Sopczak, A.L. Sopio, F. Sopkova, V. Sothilingam, S. Sottocornola, R. Soualah, Z. Soumam, D. South, S. Spagnolo, M. Spalla, F. Spánó, D. Sperlich, M. Spiz, M. Spina, S. Spinali, D.P. Spiteri, M. Spousta, E.J. Staats, A. Stabile, R. Stamen, M. Stamenkovic, A. Stampekis, M. Standke, E. Stanecka, M.V. Stange, B. Stanislaus, M.M. Stanitzki, M. Stankaityte, B. Stapf, E.A. Starchenko, G.H. Stark, J. Stark, D.M. Starko, P. Staroba, P. Starovoitov, S. Stärz, R. Staszewski, G. Stavropoulos, J. Steenoot, P. Steinberg, A.L. Steinhebel, B. Stelzer, H.J. Stelzer, O. Stelzer-Chulton, H. Stenzel, T.J. Stevenson, G.A. Stewart, M.C. Stockton, G. Stoicica, M. Stolarski, S. Stonjek, A. Straessner, J. Strandberg, S. Strandberg, M. Strauss, T. Strebl, M.P. Strizhenec, R. Strömer, L.M. Strom, R.L. Strom, R. Stroynowski, A. Strubig, M. Stucky, D.A. Stuchi, B. Stugu, J. Stupak, N.A. Styles, D. Su, S. Su, W. Su, Y. Su, K. Sugizaki, M. Sultanaliyeva, M.J. Sullivan, D.M.S. Sultan, S. Sulman, T. Sumida, S. Sun, S. Sun, O. Sunneborn, Gudnadottir, M.R. Sutton, M. Svatos, M. Swiatlowski, T. Swirski, I. Sykora, M. Sykora, T. Sykora, D. Ta, K. Tackmann, R. Taffard, R. Tafirout, J.S. Tafoya Vargas, R.H.M. Taibah, R. Takashima, K. Takeda, E.P. Takeva, Y. Takubo, M. Talby, A.A. Talyshhev, K.C. Tam, N.M. Tamir, A. Tanaka, J. Tanaka, R. Tanaka, M. Tanasini, J. Tang, Z. Tao, S. Tapia Araya, S. Tapprogge, A. Tarek Abouelladl Mohamed, S. Tarem, K. Tariq, G. Tarna, G.F. Tartarelli, P. Tas, M. Tasevsky, E. Tassi, A.C. Tate, G. Tateno, Y. Tayalati, G.N. Taylor, W. Taylor, H. Teagle, A.S. Tee, R. Teixeira De Lima, P. Teixeira-Dias, J.J. Teoh, K. Terashi, J. Terron, S. Terzo, M. Testa, R.J. Teuscher, A. Thaler,
O. Theiner 56, N. Themistokleous 52, T. Theveneau-Pelzer 15, O. Thielmann 170, D.W. Thomas 94, J.P. Thomas 120, E.A. Thompson 48, P.D. Thompson 20, E. Thomson 127, E.J. Thorpe 93, Y. Tian 55, V. Tikhomirov 37a, Yu.A. Tikhonov 37, S. Timoshenko 37, E.X.L. Ting 41, P. Tipton 171, S. Tisserant 101, S.H. Tlout 33b, A. Tournour 40, K. Todome 23b,23a, S. Todorova-Nova 132, S. Todt 40, M. Togawa 82, J. Tojo 88, S. Tokár 28a, K. Tokushuku 82, R. Tombs 32, M. Tomoto 82,110, L. Tompkins 142-q, K.W. Topolnicki 44b, P. Tormambe 102, E. Torrence 122, H. Torres 50, E. Torró Pastor 162, M. Toscani 30, A. Toscoiri 193, D.R. Tovey 138, A. Tracej 16, I.S. Trandafir 27b, T. Trefzger 165, A. Tricoli 129, I.M. Trigger 155a, S. Trincaz-Duvoid 142d, D.A. Trischuk 26, B. Trocmé 60, A. Troyfymov 66, C. Troncon 70a, L. Truong 33c, M. Trzebinski 85, A. Trzukep 85, F. Tsai 144, M. Tsai 105, A. Tsiamis 151, P.V. Tsiareshka 37, S. Tsigaridas 155a, A. Tsirigotis 151,u, V. Tsiskaridze 144, E.G. Tskhadadze 148a, M. Tsopoulou 151, Y. Tsujikawa 86, I.I. Tsukerman 37, V. Tsulaia 17a, S. Tsuno 182, O. Tsyr 149, D. Tsybychev 144, Y. Tu 64b, A. Tudorache 27b, V. Tudorache 27b, A.N. Tuna 136, S. Turchikhin 38, I. Turk Cakir 5a, R. Turra 70b, T. Turtuvshin 48, P.M. Tuts 41, S. Tzamarias 151, P. Tzanis 10, E. Tzovara 69, K. Uchida 152, F. Ukegawa 156, P.A. Ulloa Poblete 136c, G. Unal 36, M. Unal 111, A. Undrus 229, G. Unel 159j, J. Urban 28b, P. Urruqijo 104, G. Usai 96, R. Ushioda 153, M. Usman 107, Z. Uysal 21b, V. Vacek 131, B. Vachon 103, K.O.H. Vahl 124, T. Vafeiadis 36, C. Valderanis 108, E. Valdes Santurio 47a,47b, M. Valente 155a, S. Valentinetti 23b,23a, A. Valero 162, A. Vallier 101ab, J.A. Valls Ferrer 162, T.R. Van Allen 137, P. Van Gemmen 124,36, S. Van Stroud 95, I. Van Vulpen 113, M. Vanadia 75a,75b, W. Vandelli 56, M. Vandenbroucke 134, E.R. Vandewall 120, D. Vannicola 150, L. Vannoli 157b,57a, R. Varri 74a, E.W. Varnes 7c, C. Varni 17a, T. Varol 147, D. Varouchas 146, L. Varriale 162, K.E. Varrell 146, M.E. Vaseilis 27b, L. Vasilin 40, G.A. Vásquez 164, F. Vazeille 40, T. Vazquez Schroeder 136, J. Veatch 31, V. Vecchio 100, M.J. Veen 102, I. Veliscek 125, L.M. Veloce 154, F. Veloso 129a,129c, S. Veneziano 74a, A. Ventura 69a,69b, A. Verbysytki 109, M. Verducci 73a,73b, C. Vergis 24, M. Verissimo De Araujo 81b, W. Verkerke 113, J.C. Vermeulen 113, C. Vernieri 142, P.J. Verschuuren 94, M. Vessella 102, M.C. Vetterli 141ag, A. Vgenopoulos 151, N. Viaux Maira 136f, T. Vickey 138, O.E. Vickey Boeri 138, G.H.A. Viehhauser 125, L. Vigan 63b, M. Villa 23b,23a, M. Villaplanas Perez 142, E.M. Villhaufer 52, E. Vilucchi 53, M.G. Vineter 34, G.S. Virdee 20, A. Vishwakarma 52, C. Vittori 23b,23a, I. Vivarelli 145, V. Vladimirov 166, E. Voevodina 109, F. Vogel 108, P. Vokac 131, J. Von Ahnen 48, E. Von Toerne 124, B. Vormwald 36, V. Vorobev 132, K. Vorobev 37, M. Vos 162, J.H. Vossebeld 61, M. Vozak 113, L. Vozdecky 93, N. Vranjes 15, M. Vranjes Milosavljevic 15, M. Vreeswijk 113, R. Vuillermet 36, O. Vujinovic 99, I. Vukotic 39, S. Wada 156, C. Wagner 102, W. Wagner 170, S. Wahdan 170, H. Wahlberg 89, R. Wakasa 156, M. Wakida 110, V.M. Walbrecht 109, J. Wald 133, R. Walker 108, W. Walkowiak 140, A.M. Wang 61, A.Z. Wang 169, C. Wang 62a, C. Wang 62c, H. Wang 17a, J. Wang 64a, P. Wang 44, R.-J. Wang 99, R. Wang 46, R. Wang 56, S.M. Wang 147, S. Wang 52b, T. Wang 62a, W.T. Wang 79, W.X. Wang 62, X. Wang 14c, X. Wang 62a, X. Wang 161, X. Wang 62g, Y. Wang 14c, Z. Wang 105, Z. Wang 62d,51,62c, Z. Wang 105, A. Warburton 103, R.J. Ward 20, N. Warrack 59, A.T. Watson 70, M.F. Watson 120, G. Watts 137, B.M. Waugh 195, A.F. Webb 111, C. Weber 129, M.S. Weber 19, S.M. Weber 63a, C. Wei 62a, Y. Wei 125, A.R. Weidberg 125, J. Weingarten 49, M. Weirich 99, C. Weiser 54, C.J. Wells 48, T. Wenaus 29, B. Wendland 49, T. Wengler 46, N.S. Wenke 109, N. Wermes 24, M. Wessels 63a, K. Whalen 122, A.M. Wharton 90, A.S. White 61, A. White 6, M.J. White 61, D. Whiteson 159, L. Wickremasinghe 123, W. Wiedenmann 169, C. Wiel 50, M. Wiemers 133, N. Wiesectomy 99, C. Wiglesworth 42, L.A.M. Wiik-Fuchs 54, D.J. Wilbern 119, H.G. Wilkens 136, D.M. Williams 41, H.H. Williams 127, S. Williams 32, S. Willocq 102, P.J. Windischhofer 125, F. Winklmeier 122, B.T. Winter 54,
M. Wittgen, M. Wobisch, R. Wölker, J. Wollrath, M.W. Wolter, H. Wolters, V.W.S. Wong, A.F. Wongel, S.D. Worm, B.K. Wosiek, K.W. Wozniak, K. Wraight, J. Wu, M. Wu, S.L. Wu, X. Wu, Y. Wu, Z. Wu, J. Wuerzinger, T.R. Wyatt, B.M. Wynne, S. Xella, L. Xia, M. Xia, J. Xiang, X. Xiao, M. Xie, X. Xie, J. Xiong, D. Xu, H. Xu, H. Xu, L. Xu, R. Xu, T. Xu, W. Xu, Y. Xu, Z. Xu, Z. Xu, B. Yabsley, S. Yacoob, N. Yamaguchi, Y. Yamaguchi, H. Yamauchi, T. Yamazaki, T. Yamazaki, J. Yan, S. Yan, Z. Yan, H.J. Yang, H.T. Yang, S. Yang, T. Yang, X. Yang, Y. Yang, Z. Yang, W-M. Yao, Y.C. Yap, H. Ye, J. Ye, S. Ye, X. Ye, Y. Yeh, I. Yeletskikh, M.R. Yexley, P. Yin, K. Yorita, C.J.S. Young, C. Young, M. Yuan, R. Yuan, L. Yue, X. Yue, M. Zaaazoua, B. Zabinski, E. Zaid, T. Zakareishvili, N. Zakarchuk, S. Zambito, J.A. Zamora Saa, D. Zanzi, O. Zaplatilek, S.V. Zeiñner, C. Zeitnitz, J.C. Zeng, D.T. Zenger Jr, O. Zenin, T. Ženiš, S. Zenz, S. Zerradi, D. Zerwas, B. Zhang, D.F. Zhang, G. Zhang, J. Zhang, J. Zhang, K. Zhang, L. Zhang, P. Zhang, R. Zhang, S. Zhang, T. Zhang, X. Zhang, Z. Zhang, Z. Zhang, H. Zhao, P. Zhao, T. Zhao, Y. Zhao, Z. Zhao, A. Zhemchugov, X. Zheng, Z. Zheng, D. Zhong, B. Zhou, C. Zhou, H. Zhou, H. Zhou, Y. Zhou, C.G. Zhu, C. Zhu, H.L. Zhu, H. Zhu, H. Zhu, Y. Zhu, Y. Zhu, X. Zhuang, K. Zhukov, V. Zhulanao, N.I. Zimine, J. Zinsser, M. Ziolkowski, L. Živković, A. Zoccoli, K. Zoch, T.G. Zorbas, O. Zormpa, W. Zou, L. Zwalinski.
19 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
20 School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
21 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Department of Physics, Istanbul University, Istanbul; (d) Istinye University, Sariyer, Istanbul; Turkey.
22 (a) Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá; (b) Departamento de Física, Universidad Nacional de Colombia, Bogotá; Colombia.
23 (a) Dipartimento di Fisica e Astronomia A. Righi, Università di Bologna, Bologna; (b) INFN Sezione di Bologna; Italy.
24 Physical Institute, University of Bonn, Bonn; Germany.
25 Department of Physics, Boston University, Boston MA; United States of America.
26 Department of Physics, Brandeis University, Waltham MA; United States of America.
27 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (e) University Politecnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara; (g) Faculty of Physics, University of Bucharest, Bucharest; Romania.
28 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
29 Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y CONICET, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires; Argentina.
31 California State University, CA; United States of America.
32 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
33 (a) Department of Physics, University of Cape Town, Cape Town; (b) Thembalab, Western Cape; (c) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; (d) National Institute of Physics, University of the Philippines Diliman (Philippines); (e) University of South Africa, Department of Physics, Pretoria; (f) University of Zululand, KwaDlangezwa; (g) School of Physics, University of the Witwatersrand, Johannesburg; South Africa.
34 Department of Physics, Carleton University, Ottawa ON; Canada.
35 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Faculté des Sciences, Université Ibn-Tofail, Kénitra; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat; (f) Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir; Morocco.
36 CERN, Geneva; Switzerland.
37 Affiliated with an institute covered by a cooperation agreement with CERN.
38 Affiliated with an international laboratory covered by a cooperation agreement with CERN.
39 Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.
40 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.
41 Nevis Laboratory, Columbia University, Irvington NY; United States of America.
42 Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.
43 (a) Dipartimento di Fisica, Università della Calabria, Rende; (b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.
44 Physics Department, Southern Methodist University, Dallas TX; United States of America.
Physics Department, University of Texas at Dallas, Richardson TX; United States of America.

National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.

Department of Physics, Stockholm University; Oskar Klein Centre, Stockholm; Sweden.

Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.

Fakultät Physik, Technische Universität Dortmund, Dortmund; Germany.

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.

Department of Physics, Duke University, Durham NC; United States of America.

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.

INFN e Laboratori Nazionali di Frascati, Frascati; Italy.

Department of Physics, Stockholm University; Oskar Klein Centre, Stockholm; Sweden.

Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.

Fakultät Physik, Technische Universität Dortmund, Dortmund; Germany.

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.

Department of Physics, Duke University, Durham NC; United States of America.

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.

INFN e Laboratori Nazionali di Frascati, Frascati; Italy.

Department of Physics, Stockholm University; Oskar Klein Centre, Stockholm; Sweden.

Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.

Fakultät Physik, Technische Universität Dortmund, Dortmund; Germany.

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.

Department of Physics, Duke University, Durham NC; United States of America.

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.

INFN e Laboratori Nazionali di Frascati, Frascati; Italy.

Department of Physics, Stockholm University; Oskar Klein Centre, Stockholm; Sweden.

Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.

Fakultät Physik, Technische Universität Dortmund, Dortmund; Germany.

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.

Department of Physics, Duke University, Durham NC; United States of America.

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.

INFN e Laboratori Nazionali di Frascati, Frascati; Italy.
Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; Instituto de Física, Universidade de São Paulo, São Paulo; Rio de Janeiro State University, Rio de Janeiro; Brazil.

KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.

Graduate School of Science, Kobe University, Kobe; Japan.

AGH University of Krakow, Faculty of Physics and Applied Computer Science, Krakow; Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.

Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.

Faculty of Science, Kyoto University, Kyoto; Japan.

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.

Physics Department, Lancaster University, Lancaster; United Kingdom.

Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.

School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.

Department of Physics, Royal Holloway University of London, Egham; United Kingdom.

Department of Physics and Astronomy, University College London, London; United Kingdom.

Louisiana Tech University, Ruston LA; United States of America.

Fysiska institutionen, Lunds universitet, Lund; Sweden.

Departamento de Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.

Institut für Physik, Universität Mainz, Mainz; Germany.

School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

Department of Physics, University of Massachusetts, Amherst MA; United States of America.

Department of Physics, McGill University, Montreal QC; Canada.

School of Physics, University of Melbourne, Victoria; Australia.

Department of Physics, University of Michigan, Ann Arbor MI; United States of America.

Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.

Group of Particle Physics, University of Montreal, Montreal QC; Canada.

Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.

Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen; Netherlands.

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands.

Department of Physics, Northern Illinois University, DeKalb IL; United States of America.

New York University Abu Dhabi, Abu Dhabi; University of Sharjah, Sharjah; United Arab Emirates.

Department of Physics, New York University, New York NY; United States of America.

Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.

48
118 Ohio State University, Columbus OH; United States of America.
119 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.
120 Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
121 Palacký University, Joint Laboratory of Optics, Olomouc; Czech Republic.
122 Institute for Fundamental Science, University of Oregon, Eugene, OR; United States of America.
123 Graduate School of Science, Osaka University, Osaka; Japan.
124 Department of Physics, University of Oslo, Oslo; Norway.
125 Department of Physics, Oxford University, Oxford; United Kingdom.
126 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris; France.
127 Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.
128 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.
129 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; (b) Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Departamento de Física, Universidade de Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain); (g) Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.
130 Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.
131 Czech Technical University in Prague, Prague; Czech Republic.
132 Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.
133 Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.
134 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.
135 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.
136 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Millennium Institute for Subatomic physics at high energy frontier (SAPHIR), Santiago; (c) Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, y Departamento de Física, Universidad de La Serena; (d) Universidad Andres Bello, Department of Physics, Santiago; (e) Instituto de Alta Investigación, Universidad de Tarapacá, Arica; (f) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.
137 Department of Physics, University of Washington, Seattle WA; United States of America.
138 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
139 Department of Physics, Shinshu University, Nagano; Japan.
140 Department Physik, Universität Siegen, Siegen; Germany.
141 Department of Physics, Simon Fraser University, Burnaby BC; Canada.
142 SLAC National Accelerator Laboratory, Stanford CA; United States of America.
143 Department of Physics, Royal Institute of Technology, Stockholm; Sweden.
144 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.
145 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.
146 School of Physics, University of Sydney, Sydney; Australia.
147 Institute of Physics, Academia Sinica, Taipei; Taiwan.
148 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi; (c) University of Georgia, Tbilisi; Georgia.
149 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.
International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.
Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.
Department of Physics, University of Toronto, Toronto ON; Canada.
\((a)\) TRIUMF, Vancouver BC; \((b)\) Department of Physics and Astronomy, York University, Toronto ON; Canada.
Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.
Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
United Arab Emirates University, Al Ain; United Arab Emirates.
Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.
Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.
Department of Physics, University of Illinois, Urbana IL; United States of America.
Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.
Department of Physics, University of British Columbia, Vancouver BC; Canada.
Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.
Department of Physics, University of Warwick, Coventry; United Kingdom.
Waseda University, Tokyo; Japan.
Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; Israel.
Department of Physics, University of Wisconsin, Madison WI; United States of America.
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.
Department of Physics, Yale University, New Haven CT; United States of America.
\(^a\) Also Affiliated with an institute covered by a cooperation agreement with CERN.
\(^b\) Also at An-Najah National University, Nablus; Palestine.
\(^c\) Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.
\(^d\) Also at Bruno Kessler Foundation, Trento; Italy.
\(^e\) Also at Center for High Energy Physics, Peking University; China.
\(^f\) Also at Centro Studi e Ricerche Enrico Fermi; Italy.
\(^g\) Also at CERN, Geneva; Switzerland.
\(^h\) Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
\(^i\) Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain.
\(^j\) Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
\(^k\) Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.
\(^l\) Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.
\(^m\) Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.
\(^n\) Also at Department of Physics, California State University, East Bay; United States of America.
\(^o\) Also at Department of Physics, California State University, Sacramento; United States of America.
\(^p\) Also at Department of Physics, King’s College London, London; United Kingdom.
