Using meta-analysis to derive a respiration model for Atlantic Salmon (Salmo salar) to assess bioenergetics requirements of juveniles in two Canadian rivers

Journal:	Canadian Journal of Fisheries and Aquatic Sciences
Manuscript ID	cjfas-2018-0436.R1
Manuscript Type:	Article
Date Submitted by the Author:	26-Feb-2019
Complete List of Authors:	Macnaughton, Camille; Fisheries and Oceans Canada Central and Arctic Region, Deslauriers, David; Fisheries and Oceans Canada, Freshwater Institute Ipsen, Erinn; Fisheries and Oceans Canada Central and Arctic Region Corey, Emily; Canadian Rivers Institute, Biology Department, University of New Brunswick Enders, Eva; Fisheries and Oceans Canada Central and Arctic Region
Keyword:	RESPIRATION < General, meta-analysis, standard metabolic rate, Atlantic salmon, bioenergetics
Is the invited manuscript for consideration in a Special Issue?:	Not applicable (regular submission)
Using meta-analysis to derive a respiration model for Atlantic Salmon (*Salmo salar*) to assess bioenergetics requirements of juveniles in two Canadian rivers

Camille J. Macnaughton¹, David Deslauriers¹, Erinn L. Ipsen¹, Emily Corey², and Eva C. Enders¹

1. Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, R3T 2N6, Canada
2. Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, E3B 5A3, Canada

Corresponding author: camille.macnaughton@gmail.com

Lay summary

Standard metabolic rates (SMR) for Atlantic Salmon have been estimated for specific life stages and/or temperatures, but the absence of a comprehensive metabolic rate model for the species limits its transferability to different fish masses and river temperature conditions. In the face of increasing river temperatures resulting from climate change, we propose a comprehensive respiration model derived from SMR meta-data that may serve to predict the metabolic rates and energetic requirements for juvenile Atlantic Salmon inhabiting rivers of varying water temperatures. Results may inform conservation efforts for the species throughout its current range and predict the energetic requirements for juvenile life stages.

Keywords: respiration, water temperature, Atlantic Salmon, standard metabolic rate, conservation physiology, meta-analysis, Miramichi, bioenergetics
Abstract

Standard metabolic rates (SMR) for Atlantic Salmon have been calculated independently for different life stages and populations, but the absence of a comprehensive SMR model limits its application for modelling the energy use or life stage-specific growth. Atlantic Salmon respiration data were compiled from a meta-analysis of 26 publications and exponential or optimal relationships were fitted to the meta-data to estimate respiration equation parameters and generate confidence intervals dependent on temperature and body mass. While model parameters were significant for both models, mass corrected standard metabolic rates (g O₂·d⁻¹) increased as a function of water temperature (°C) and decreased beyond ~16 °C, following an optimal relationship (AIC_{optimal} = -9185.5 vs. AIC_{exponential} = -8948.95; ΔAIC = 236.55). Juvenile Atlantic Salmon growth (cohorts 1 and 2) from bioenergetics simulations did not vary between Little Southwest Miramichi and Northwest Miramichi rivers, however, variation between simulations using the different respiration models (i.e., exponential vs. optimal) led to differences in the way fish allocate energy throughout the year. Results from this analysis will inform conservation efforts for the species throughout its current range and predict the energetic requirements at juvenile life stages.

Introduction

A bioenergetics model is an energy balance equation in which the energy consumed by a fish is balanced by metabolism, waste losses, and growth (Kitchell et al. 1974; Deslauriers et al. 2017). Using species-specific estimates of consumption or growth, respiration, egestion, and excretion, the energy equation obtained for given environmental conditions may provide an alternative approach to the traditional methods of modelling abiotic habitat suitability (i.e., field
and laboratory studies; Trudel et al. 2004; Enders and Scruton 2006). Consequently, a measure of habitat quality may be derived from the energy gained or growth by individuals occupying specific habitats (Fausch 1984; Boisclair and Rasmussen 1996).

The metabolic rate of fishes is commonly measured in terms of oxygen consumption using intermittent-flow respirometry. The standard metabolic rate (SMR) is the minimal maintenance or resting metabolic rate (respiration) of unfed animals, below which physiological function is impaired (Beamish 1964; Cutts et al. 2002; Chabot et al. 2016). SMR is known to represent the greatest component of the energy budget of fishes (Niklitschek and Secor 2009), varies widely between species (Trudel et al. 2004), and is strongly affected by several biotic and abiotic factors, primarily body mass and water temperature (Kitchell et al. 1974; Millidine et al. 2009; Niklitschek and Secor 2009; Pörtner 2010). For instance, temperature is known to affect the physiology and behaviour of fishes, in addition to acting as a characteristic of fish habitats by driving species-specific niche occupancy (Magnuson et al. 1979). The role of temperature driving the growth and metabolic rates of salmonid fishes has been widely studied (Breau et al. 2011; Imholt et al. 2011; Beauregard et al. 2013; Oigny-Hebert et al. 2015), which is why species-specific SMR models include mass and temperature-dependent functions. Several temperature-dependent SMR models accounting for the allometric relationship between metabolic rate and body mass have been suggested, however, differences in the temperature function in model equations have resulted in SMR-temperature curves following exponential (e^{cT}) (Brett and Glass 1973; Pörtner 2010; Chabot et al. 2016), logistic/sigmoid (Beamish 1964; Thornton and Lessem 1978; Claireaux and Lagardère 1999; Paakkonen et al. 2003; Niklitschek and Secor 2009) or optimal relationships (Kitchell et al. 1974; Deslauriers et al. 2017). Since SMR is defined for temperatures where physiological function is unimpaired, SMR-temperature
relationships often focus on temperatures that reach but do not exceed optimal temperatures for respiration (RTO) for which fish are considered healthy.

Atlantic Salmon (Salmo salar) is a significant species for commercial, recreational, and Aboriginal fisheries in Canada, thus, the protection and management of rearing, spawning, and migration Atlantic Salmon habitat is thought to be one of the key factors for conservation (Armstrong et al. 2003). SMR for Atlantic Salmon have been estimated independently for different life stages and populations, but the absence of a comprehensive SMR model for the species, combining data from a wide range of body masses and environmental conditions, limits its application in management. Extrapolating SMR models to different size-classes, habitats or from closely related species has become common-place. This practice has, however, been shown to inappropriately depict true metabolic requirements (Trudel et al. 2004; Enders and Scruton 2006). Moreover, the assumptions underlying the different approaches for modelling SMR and skew for modelled- vs. empirically-derived data may further complicate and limit the scope of such extrapolations (Enders and Scruton 2006).

Water temperature is among the most important environmental variables determining the distribution, emergence time, and growth of salmonids in freshwater habitats (Elliott and Elliott 2010). As air temperatures are expected to increase by 2 – 6 °C within the next 100 years in the Maritime Provinces of eastern Canada, increases in corresponding water temperatures will have an impact on river habitats (Swansburg et al. 2002; Caissie 2013; Brodeur et al. 2015). Consequently, we expect that temperature-dependent SMR will also increase and ultimately reduce fish growth and/or increase mortality. The preferred temperature for Atlantic Salmon is between 14 – 18 °C and lethal temperature occurs from 28 – 33 °C (Elliott 1991; Elliott and Elliott 2010; Breau et al 2011), which means that a SMR optimum (i.e., optimal temperature for
physiological functioning) should occur around preferred temperatures (Fry 1947). We may also expect to see growth differences for select life stages, as specific energetic requirements associated with juvenile growth and/or smoltification may be affected by water temperatures. Atlantic Salmon in the Little Southwest Miramichi River (LSWM) are known to emerge from gravel during the first weeks of June and remain in their nursery stream between two to five years, eating drifting invertebrates, namely chironomid larvae (Keeley and Grant 1997; Breau et al. 2007b; Chaput et al. 2016). Smoltification generally occurs around mid-May to mid-June (Chaput et al. 2016), but variations in the timing of these events largely depend on the water temperatures in a given year (Randall and Paim 1982; Johnston 1997). A shift in spring and summer water temperatures resulting from climate change (i.e., rising water temperatures) in the Maritime provinces may alter the timing of Atlantic Salmon emergence and shorten the effective growing season (Randall and Paim 1982). Alternatively, an earlier spring freshet due to increasing air temperatures may contribute to early emergence of alevins and extend the length of the growth period in the first year (Elliott and Elliott 2010). As important life-history decisions are based on water temperature, differences in temperatures among rivers will likely affect juvenile Atlantic Salmon growth and consumption rates, with possible ramifications for subsequent life stages (e.g., smoltification).

This paper proposes a comprehensive SMR model (hereafter referred to as ‘Atlantic Salmon respiration model’) that may serve to predict SMR and energetic requirements for juvenile life stages of Atlantic Salmon in rivers of varying water temperatures. Our specific objectives were threefold: 1) contrast mass- and temperature-dependent Atlantic Salmon respiration models based on exponential and optimal temperature functions, measured from oxygen consumption rates or SMR collected on individuals across a large range of body masses,
life stages, and at varying water temperatures using a meta-analysis approach; 2) compare the
Atlantic Salmon respiration models with four published respiration models; and 3) simulate how
different water temperatures in two Canadian rivers may influence Atlantic Salmon growth and
inform the energetic requirements for two cohorts (0 – 1+ and 1+ – 2+) in these systems,
according to both respiration models. Results from this study may better inform management and
species recovery strategies by understanding how temperature-dependent respiration varies for
key life stages and populations of Atlantic salmon.

Material and methods

Data retrieval

A literature review was conducted to collect standard metabolic rate data for Atlantic
Salmon using the online publication search engine, Web of Science, and keywords search:
Atlantic Salmon, Bioenergetics, Metabolism, Oxygen Consumption, Respiration, Metabolic
Rate, Exercise, Swimming, and Activity. To be included in the meta-analysis, the publication
had to meet the following criteria: 1) publication in a peer-reviewed scientific journal or a special
publication that underwent a peer-reviewed vetting process; 2) methodology focused on
quantifying the standard metabolic rate of Atlantic Salmon, rather than routine or active
metabolic rates; and 3) comprehensive reporting of means or individual standard metabolic rate
in a results table or figure along with appropriate variables such as, fish mass and water
temperature tested (Table 1). While some studies performed respirometry trials under saline
environments (4 – 35 ppt), none of these studies looked at the effects of salinity on respiration
rates (i.e., salinity was not used as a treatment). Therefore, salinity was left out of models, with
the assumption that the main metabolic rate drivers were body mass and water temperature once
fish had been properly acclimated to their respective salinity concentrations. It is important to
note that only control treatments were selected in cases where SMR were measured under non-
normal conditions (e.g., water pollution, genetically-modified organisms). Standard metabolic
rates for Atlantic Salmon found in figures were quantified using digitizer software (PlotDigitizer,
http://plotdigitizer.sourceforge.net).

Atlantic Salmon respiration models

The Atlantic Salmon respiration models are based on mass- and temperature-dependent
respiration equations following:

\[R = R_A \cdot W^{R_B} \cdot F(T) \cdot Act \]

where \(R \) is the specific rate of respiration in g \(O_2 \cdot g^{-1} \cdot d^{-1} \) and is dependent on the fish
body mass \(W \) in g, water temperature \(T \) in °C, and activity \(Act \). \(R_A \) and \(R_B \) are the intercept
and slope coefficients, respectively, of the allometric mass function of oxygen consumed by a 1
g fish at 0 °C. We considered respiration at the resting or inactive state, therefore, the activity
multiplier was set to 1 (Boisclair and Legget 1989; Boisclair and Sirois 1993). The SMR values
sourced from literature along with associated body mass and temperature provided the input data
for the Atlantic Salmon respiration model (equation 1).

Two different temperature functions were used to account for differences in SMR
models: an exponential (equation 2; Stewart et al. 1983) and an optimal relationship (equation 3;
Kitchell et al. 1977). The temperature dependent function \(F(T) \) for the exponential model is
derived from Stewart et al. (1983):

\[F(T) = e^{(RQ \cdot T)} \]
where RQ approximates the rate at which the function increases over relatively low water temperatures. The temperature dependent function $F(T)$ for the optimal model is derived from Kitchell et al. (1977):

\[
F(T) = V^X \cdot e^{X \cdot (1 - V)}
\]

where

\[
V = (RTM - T)(RTM - RTO)
\]

\[
X = \frac{Z^2 \cdot \left(1 + \left(1 + \frac{40}{Y}\right)^{0.5}\right)^2}{400}
\]

\[
Z = \ln(RQ) \cdot (RTM - RTO)
\]

\[
Y = \ln(RQ) \cdot (RTM - RTO + 2)
\]

where RTO (°C) is the optimum temperature for respiration (where respiration is highest) and RTM (°C) is the maximum or lethal water temperature set to 30 °C (an average lethal temperature for laboratory and wild conditions (Elliott 1991; Breau et al. 2011)).

Both nonlinear regression models were fitted to the respiration meta-data collected from the literature using the “nls2” package in R (Grothendieck 2013; R core Team 2017). The ranges used for starting parameter values were derived from models published for other fish species (Deslauriers et al. 2017); specifically, RA ranged between 0.00535 – 0.01605, RB ranged between -0.09 – -0.27, RQ ranged between 0.02 – 2.25 or 0.9 – 2.7 for the exponential and optimal models, respectively, while RTO ranged between 10 – 30 for the optimal respiration model. In each case, the regression model determines the nonlinear least-squares parameter.
estimates by generating a random set of starting values within the specified range and then
performs a least-squares optimization (Grothendieck 2013). Respiration models were evaluated
by comparing Akaike information criterion (AIC) and ∆AIC.

To visually compare Atlantic Salmon respiration models, mass corrected standard
metabolic rates (SMR_{corr} in g $O_2 \cdot d^{-1}$, for 1 g of fish) were plotted as a function of water
temperature (°C). To represent both respiration models together with meta-data, we multiplied
SMR with body mass (W) and used 0.1272 as a power value that represents the average RB
(slope coefficient) from both models:

$\text{(4) } SMR_{corr} = SMR \cdot W^{0.1272}$

Atlantic Salmon respiration model evaluation using published SMR models

To evaluate the performance of the Atlantic Salmon respiration models explained in the
previous section (i.e., exponential vs. optimal relationships), we compared our predicted
respiration estimates with those of four previously published models, each model accounting for
differences in mass and temperature to predict respiration rates (Table 2). These models were
selected because they provided independent data separate from those used to construct the
Atlantic Salmon respiration model. To evaluate the performance of the Atlantic Salmon
respiration models with the four published models, we generated 1000 random values for body
mass and temperature within the range specified by each model and calculated respiration
outputs for each one of these mass and temperature combinations. These models collectively
represent respiration rates for Atlantic Salmon ranging from 60 to 3500 g and for experiments
conducted from 5 to 19 °C (Table 2). Published model predictions were compared against the
Atlantic Salmon respiration models using a Bonferroni-adjusted 97.5% intercept and slope joint
confidence intervals. In instances where the intercept or the slope between the observations and predictions were not equal to 0 or 1, respectively, the null hypothesis was rejected. Probability density plots were generated to visualize the performance of both respiration models against the independent dataset.

Atlantic Salmon bioenergetics simulations for Little Southwest (LSWM) and Northwest Miramichi (NWM) rivers

A bioenergetics approach was used to test how different river temperatures may impact the growth and consumption rates of Atlantic Salmon fry and parr life stages using daily water temperature records from two Atlantic Salmon rivers in the Miramichi River basin, New Brunswick (Figure 1). Specifically, we used mean daily river temperatures between June and October 2003 – 2015, for the LSWM and NWM rivers in New Brunswick, Canada to generate representative river temperature profiles that are unique to each river. Average daily temperature records from 18 gauging stations on the LSWM and a single station on the NWM were sourced from the RivTemp network (www.rivtemp.ca) for all years. Watershed area from hydrometric information for LSWM station (01BP001) and NSW station (01BQ001) were 1340 and 948 km², respectively (www.wateroffice.ec.gc.ca).

Mass values were quantified for fry (0+) and parr (1+, 2+) Atlantic Salmon collected in two locations of the LSWM (distance between sampling locations = 13.26 km) in summer and early fall in 2011 and 2012 (fish sampling sites (▲), Figure 1; Corey unpublished data). Using these growth data along with the temperature profiles for both rivers, two types of simulations were performed. First, we estimated total consumption for Atlantic Salmon ages 0+ and 1+ in 2011 – 2012 (first cohort) and ages 1+ and 2+ in 2011 – 2012 (second cohort) inhabiting LSWM.
Since empirical growth data was unavailable for NWM, we used the total consumption values estimated for fish in the LSWM to estimate growth of fish in the NWM. Likewise, we used the growth rates observed in the LSWM to simulate food consumption under NWM temperature conditions in the second simulation. Each simulation was run twice using the exponential and optimal respiration models, respectively.

Based on the empirical growth values provided for Atlantic Salmon in the LSWM (G), the Atlantic Salmon respiration model developed from the meta-analysis (SMR; converted to an energy unit using a oxy-calorific coefficient of $13,560 \text{ J} \cdot \text{g}^{-1} \text{ O}_2$ (Stewart et al. 1983)), the temperature profiles for LSWM and NWM rivers, and excretion (Ex), egestion (Eg), and specific dynamic action (SDA) costs borrowed from a model developed for juvenile Rainbow Trout ($Oncorhynchus mykiss$) (Tyler and Bolduc 2008), consumption estimates could then be calculated according to the equation:

$$C = G + SMR + Ex + Eg + SDA$$

Certain bioenergetics assumptions were made to further improve simulation outputs, including: 1) prey energy density and diet proportions remained constant through time, 2) due to the absence of an ontogenetic trend as seen in Jonsson and Jonsson (2003), the energy density for juvenile age classes was kept constant (4500 J·g⁻¹), 3) we used a generic consumption model developed for larvae and juvenile Coregonus albula (consumption parameters: $CA = 0.076917$, $CB = -0.61966$, $CQ = 0.08007$; Karjalainen et al. 1997) to balance the bioenergetics model. This model was selected because of the similarity in life stage and phylogeny, and because it does not allow for an optimal incidence to occur at a given temperature (i.e., exponential consumption model).
Diet proportions for Atlantic Salmon were set at 0.55 for Chironomid larvae, 0.185 for Diptera, 0.07 for Ephemeroptera, 0.066 for Trichoptera, and 0.048 for Coleoptera (Keeley and Grant 1997). These proportions were kept the same for both cohorts. In addition, energy density for the same prey orders was established, where energy density for Chironomids was set at 2580 J·g⁻¹, Diptera was 2922 J·g⁻¹, Ephemeroptera was 3368 J·g⁻¹, Trichoptera was 1704 J·g⁻¹, and Coleoptera was 7616 J·g⁻¹ (James et al. 2012; David et al. 2016). Bioenergetics simulations for LSWM and NWM rivers were done using Fish Bioenergetics 4.0 (Deslauriers et al. 2017).

Results

Atlantic Salmon respiration models

The search for Atlantic Salmon metabolic rates resulted in a total of 26 publications that satisfied our selection criteria (Table 1). A total of 938 individual standard metabolic rate values with estimates derived from a respirometry approach (i.e., measuring oxygen consumption of a fish) were extracted from the literature. The data compiled from literature included: standard metabolic rate (converted to g O₂·g⁻¹·d⁻¹), body mass (g), life stages (i.e., fry, parr, smolt or adult), salinity (ppt), and water temperature (°C) (Table 1). The dataset includes salmon covering a size range from 0.1 – 1979 g (Table 1). However, the vast majority of data were for fish measuring between 1 – 100 g (94%) and very few between 100 – 1000 g (1.2%). Studies generally focused on the 6 – 15 °C temperature range, with very few data points under 5 °C (n = 18) or above 16 °C (n= 54). Most of the fish used in the repirometry trials were of hatchery origin while only a handful of the data points came from salmon originating from the wild (five publications; Table 1). Because of the low representation of wild individuals, provenance (wild or hatchery-raised) was left out of the model.
As expected, body mass and water temperature both significantly influenced respiration rates. For the exponential respiration model, the intercept ($RA; 0.003 \pm S.E. 0.0002$), slope ($RB; -0.11 \pm S.E. 0.011$), and rate at which the function increases over relatively low water temperatures ($RQ; 0.05 \pm S.E. 0.0048$) were all determined to be significant ($p < 0.001$).

Likewise, all coefficients ($RA = 0.008 \pm S.E. 0.0002$, $RB = -0.14 \pm S.E. 0.0086$, $RQ = 5.18 \pm S.E. 0.3281$, and $RTO = 15.59 \pm S.E. 0.1816$) were determined to be significant ($p < 0.001$) for the optimal respiration model. While model parameters were significant for both models, standard metabolic rates (g O$_2 \cdot d^{-1}$) from our meta-analysis increased as a function of water temperature (°C) and decreased beyond ~16 °C regardless of body mass, reflecting more closely the behaviour of the optimal respiration model (Figure 2). Based on model criteria, the optimal respiration model performed significantly better ($AIC_{\text{optimal}} = -9185.5$ vs. $AIC_{\text{exponential}} = -8948.95$; $\Delta AIC = 236.55$). Moreover, residuals between the exponential Atlantic Salmon respiration model and meta-data were greater at lower (<10°C) and higher (>15°C) temperatures compared to the optimal respiration model (Figure 2).

Atlantic Salmon respiration model evaluation using published respirometry models

The Atlantic Salmon respiration models that followed respectively the exponential and optimal relationships with temperature were not significantly different from the four independent published models. We failed to reject the joint null hypothesis by 54.8% and 91.8% of the total number of iterations (n = 1000) for the exponential model and the optimal model, respectively, whereby the intercept and slope of the model observations differed significantly from 0 and 1 against the model predictions (Figures S1 and S2). However, probability density plots illustrated that Berg et al. (1993)’s model was found to differ by > 40% with the exponential respiration model, while Fivelstad and Smith (1991)’s model differed by ~50% with the optimal respiration model.
model (Figure 3). Interestingly, the Fivelstad and Smith (1991)’s model varied the least from Atlantic Salmon exponential respiration model (Figure 3 B), whereas the Forsberg (1994) and Grottum and Sigholt (1998) models varied the least from the Atlantic Salmon optimal respiration model (Figure 3 A).

Atlantic Salmon bioenergetics simulations for LSWM and NWM rivers

The LSWM River had higher mean daily temperatures (18.2 °C) than the NWM River (14.5 °C) and greater differences in mean daily temperatures between rivers from mid-July to mid-August were observed (differences ranged from 0.07 – 5.32 °C, across all years).

Specifically, LSWM River water temperatures ranged, on average, from 14.3 – 22.4 °C vs. 10.7 – 18.6 °C for the NWM River (Table 3). Bioenergetics growth simulations using LSWM river summer temperature profiles and empirically-derived growth rates revealed different growth trends between exponential and optimal respiration models (Figure 4). Simulations using the optimal respiration model showed a negative net energy budget at temperatures ranging between 11– 16 °C, while this negative net energy budget only occurred during the winter months for the exponential respiration model simulation. The loss of mass during the overwintering months using the exponential model can be explained by the model’s propensity of overestimating the energetic costs of metabolism at low temperatures (Figure 2). Conversely, the energetic costs of metabolism were low for the optimal respiration model simulation, enabling fish to gain mass during overwintering months. Fish grew 12% smaller in the NWM for the optimal model simulation, but grew 12% larger in the same river for the exponential model simulation (Table 3). Higher consumption estimates for both cohorts were generally observed for the exponential model simulation over the optimal model simulation. In the absence of empirical growth data for
the NWM, growth and consumption rate simulations for Atlantic Salmon remained the best available information for this river.

Discussion

Meta-analyses remain a powerful research-synthesis tool, combining different studies or data to assess the magnitude of the outcome across primary studies and summarize results across studies (Gurevitch et al. 2018). By sourcing metabolic rate data from 26 publications rather than synthesizing SMR model outcomes, the resulting Atlantic Salmon respiration models integrate the causes of variation among studies (e.g., water temperature and body mass), while quantifying the relationship between metabolic rates and each of the causes listed above. In other words, the pool of data used to derive models was increased, culminating in a comprehensive Atlantic Salmon respiration model that synthesizes the relationships over a greater range of mass and water temperatures and enabling a comparison of the SMR-temperature function for different published models. Meta-analyses may also help inform on where data gaps are, so that they may be accounted for or measured in future studies. The vast majority of meta-data in this study were for fish measuring between 1 – 100 g and the 6 – 15 °C temperature range, which effectively reduced the confidence in model predictions beyond these temperature and size ranges.

Previous studies place the optimum temperature for growth (maximum aerobic scope) for Atlantic Salmon in the range of 16 – 20 °C, where maximum conversion efficiency for growth energy is 42 – 58% (Elliott and Elliott 2010). While different temperature functions in the SMR-temperature curves have been proposed (Beamish 1964; Brett and Glass 1973; Kitchell et al. 1974; Claireaux and Lagardère 1999; Paakkonen et al. 2003; Niklitschek and Secor 2009; Pörtner 2010; Chabot et al. 2016; Deslauriers et al. 2017), studies have not yet fully compared
the strength of SMR-models or temperature functions. Atlantic Salmon respiration meta-data significantly increased with body mass and water temperature, following an optimal relationship where mass corrected SMR reached an optimum around ~16 °C and dropped substantially to the lethal temperature set point at 30 °C. Substantial variations for both respiration models from meta-data were observed for lower (<7 °C) and higher temperatures (>15 °C) on account of the distribution of meta-data (i.e., fewer meta-data) for certain temperatures. Greater percent differences between predictions generated by the exponential Atlantic Salmon respiration model and the four independent models were also observed for lower and higher temperatures, despite predictions for both models agreeing with published models across the same temperature range ~5 – 16 °C. These findings collectively indicated that the optimal Atlantic Salmon respiration model outperformed the exponential model, improving our confidence in this model’s ability to predict SMR across temperatures. The occurrence of a thermal optimum for the SMR relationship suggests that there may be complex homeostatic mechanisms involving the nervous and endocrine systems (e.g., failure of oxygen supply to tissues) that shape the response of metabolic rate to increasing temperatures (Schulte et al. 2015). Here, we focused on metabolic rates from the perspective of oxygen consumption and the importance of energy supply, which potentially underestimated the contribution of pathways involved in energy demand. A better understanding of the effects of temperature on both energy supply and energy demand for Atlantic Salmon will, therefore, improve our understanding of how this species responds to climate change (i.e., shape of the thermal performance curve; Schulte et al. 2015).

Water temperature is regarded as a driver affecting the physiology and behaviour of fishes, but the influence of temperature trends on juvenile Atlantic Salmon and early life-history decisions that follow are lesser known. The mechanisms controlling the onset of the parr to smolt
transition in the late spring points to a complex interaction between energy status, growth rate, size, and genetics, which also includes seasonal cues such as changes in photoperiod (day length) and temperature via its role controlling growth and developmental rates of juveniles (Stefansson et al. 2008; Fjelldal et al. 2011). Temperature tolerance in salmonids is size-specific, with evidence suggesting that adult salmon are less tolerant of high temperatures than juveniles (Fowler et al. 2009). Adult salmon in LSWM, like in other rivers, have been shown to seek out cool water refugia first over juveniles during periods of high temperatures (>30 °C) and are generally the first to die, suggesting that adults might be negatively impacted by temperature at a lower temperature on account of body size (Breau et al. 2007a; Frechette et al. 2018). For the optimal Atlantic Salmon respiration model, SMR varied as a function of body mass, with smaller individuals reaching peak respiration values per unit of body mass faster than larger individuals. As such, juvenile Atlantic Salmon (fry, parr) are likely susceptible to experiencing the detrimental effects of high water temperatures on account of compensating for increased metabolic costs due to higher energetic demands.

The Miramichi River watershed is considered a northern cold water system, but lethally high water temperatures to salmonids (>27 °C) have been reached on several occasions in the various tributaries of the system (Lund et al. 2002; Breau et al. 2007a; Caissie et al. 2012; Corey et al. 2017). While 0+ and 1+ parr have been shown to remain active at temperatures of 21 – 23 °C, which is above the temperature optimum (Breau et al. 2007b), cool water sources (<20 °C) from tributaries or groundwater seeps have played critical roles as thermal refugia for juvenile and adult Atlantic Salmon in summer months (Breau et al. 2007a). Fortunately, the Miramichi River watershed is essentially unrestricted, with a relatively low gradient and few physical barriers to up- and downstream movement, enabling juveniles to distribute themselves
throughout the watershed (Caissie and El-Jabi 1995). Furthermore, 2+ Atlantic Salmon parr inhabiting the Miramichi River were observed moving to cool water sources during high water temperatures, but younger smaller fish (young-of-the-year (YOY) or 0+ and 1+ parr) did not, exhibiting more tolerant behavioural response to high temperatures than larger older fish (Breau et al. 2011). Indeed, Magnuson et al. (1979) suggested that thermal preference displayed by salmonids with age and development reflected their genetic adaptation to predictable annual thermal conditions in their environment. Simulated Atlantic Salmon growth (cohorts 1 and 2), however, did not vary between LSWM and NWM rivers, suggesting that temperature differences (<5.3 °C) alone were insufficient to drive significant growth changes between rivers. While large and consistent simulated growth differences between rivers and cohorts were not observed, it is important to note that growth differences may exist between populations, but we were unable to evaluate them in part due to the absence of empirical growth data from the NWM. Differences between simulations (exponential vs. optimal models) led to variations in the shape of growth simulations over time for juvenile Atlantic Salmon, especially throughout overwintering periods, where simulations substantially diverged from one another. As a result, higher consumption estimates for both cohorts were observed for the exponential model simulation over the optimal model simulation. It is understood that other factors such as the physical conditioning of fish can lead to individual variation in respiration rates, and that growth rates, diet composition, and prey energy densities can influence bioenergetics outcomes. Combining this information with the use of the optimal respiration model in the context of bioenergetics modeling can produce more suitable predictions because even small differences at the individual level (e.g., ~12 % difference in growth rates) can lead to more pronounced effects at the population level.
Both LSWM and NWM rivers are major tributaries of the Miramichi River, supporting an economically important recreational Atlantic Salmon fishery (Miramichi River Environmental Assessment Committee 2007). A weakness of the study relates to the absence of comparable data to simulate bioenergetics requirements for NWM fish. However, bioenergetics models have often been converted to powerful simulation tools in fisheries science, generally for predicting consumption by predators or for projecting fish growth as a function of temperature and prey availability (Ney 1993). The optimal respiration model and the bioenergetics application (Bioenergetics 4.0) presented here should prove useful in future bioenergetics applications towards the conservation of Atlantic Salmon throughout its current range, as the quantity of food supply (i.e., total consumption) to support the growth and survival of juvenile Atlantic Salmon population may be estimated, providing information on the carrying capacity of a system (i.e., biomass per area).

Acknowledgments

We thank C. Pennell for digitizing data for the Canadian Data Report of Fisheries and Aquatic Sciences No. 1176. We also thank C. Boyer (www.rivtemp.ca) and D. Caissie for providing water temperature data for the New Brunswick rivers. Programming advice in R was provided by C. Charles. This research was funded in part by the Natural Resources Canada’s (NRCan) Panel for Energy Research and Development (PERD) to D. Scruton, a Visiting Fellowship in Canadian Government Laboratories from the Natural Sciences and Engineering Research Council of Canada (NSERC) to E. C. Enders (2007) and C. Macnaughton (2016).
Table 1.

Summary of the Atlantic Salmon respiration meta-data conducted using Web of Science and listed by origin of fish and life stage. The number of standard metabolic rate estimates (SMR) and a description of body mass, water temperature, and salinity are also listed.

Origin	Life stage	Number of SMR estimates	Average ± SD body mass (g)	Average ± SD temperature (°C)	Salinity range (ppt)	Publication
Growth enhanced transgenic (1)	parr (1)	1	8.42	12.50	4	Stevens et al. (1998)
Hatchery (21)	fry (4)	126	3.03 ± 1.28	9.45 ± 1.66	0	Dabrowski (1986); Metcalfe et al. (1995); O’Connor et al. (2000); Cutts et al. (2002)
	parr (11)	437	23.78 ± 16.25	10.66 ± 2.69	0-33	Peterson and Anderson (1969); Higgins (1985); Maxime et al. (1989); Seddiki et al. (1996); Stevens et al. (1998); Herbert et al. (2001); Wright et al. (2001); Maxime (2002); Finstad et al. (2004); Kieffer and Wakefield (2009); Barnes et al. (2011)
	smolt (5)	221	67.28 ± 125.91	11.62 ± 1.65	0	Whitey and Saunders (1973); Higgins (1985); Maxime et al. (1989); Maxime (2002); Deitch et al. (2006)
	adult (5)	5	1039.68 ± 570.76	9.3 ± 3.11	33-35	Maxime et al. (1990); Lucas et al. (1993); Lucas (1994); Penney et al. (2014)
Wild (5)	fry (1)	39	0.44 ± 0.13	13.20	0	McCarthy (2000)
	parr (4)	80	9.25 ± 5.29	17.19 ± 3.96	0	Baraduc and Fontaine (1955); Seppänen et al. (2009); Beauregard et al. (2013); Oligny-Hébert et al. (2015)
	smolt (3)	35	22.17 ± 31.73	13.15 ± 1.38	0-35	Baraduc and Fontaine (1955); McCarthy (2000); Seppänen et al. (2009)

Note: The numbers in parentheses indicate the number of publications sourced for the meta-analysis. Some of the publications contributed respiration estimates for more than one life-stage, which means that the numbers in parentheses in the life-stage column do not necessarily add up to those in the origin column.
Table 2. Comparison of published standard metabolic rate models, range of body size \((W)\) and temperatures \((T)\), and correlation coefficients for four published respiration models (strength of each model’s relationship with water temperature). \(U\) refers to swim speed, which for standard metabolic rates is set to 1 due to \(\text{Activity} = 1\) as per equation: \(R = RA \cdot W^{RB} \cdot e^{(RQ \cdot T) \cdot \text{Act}}\)

Source	Respiration model	Respiration unit	Sample size	\(R^2\)	Mass range \((W)\)	Temperature Range \((T)\)	Intercept C.I.	Slope C.I.
Forsberg (1994)	\(1.92M^{0.277}T^{0.63}10^{0.01 \cdot U}\)	mg \(\text{O}_2\) \cdot kg\(^{-1}\) \cdot \text{min}^{-1}	110	0.7	60–3500	5–16	0.0021–0.0026	0.59–0.69
Berg et al. (1993)	\(62.5(M/1000)^{0.3}1.06^T\)	mg \(\text{O}_2\) \cdot kg\(^{-1}\) \cdot \text{h}^{-1}	—	—	200–3300	6–16	0.0002–0.0026	0.39–0.65
Fivelstad & Smith (1991)	\(10^{-0.261} \log_{10}(M/1000)+1.378^\log_{10}(T)+0.841\)	mg \(\text{O}_2\) \cdot kg\(^{-1}\) \cdot \text{min}^{-1}	62	0.74	200–850	5–9	0.0001–0.0008	3.01–3.65
Grottum & Sigholt (1998)	\(61.6(M/1000)^{-0.33}1.03^T1.79^U\)	mg \(\text{O}_2\) \cdot kg\(^{-1}\) \cdot \text{h}^{-1}	157	—	1100–2000	5–15	0.0013–0.0014	0.20–0.26
Table 3. Simulation results for growth (final body mass in g) and total consumption (g) for two cohorts (1: 0+ – 1+; 2: 1+ – 2+) at the end of their second growing season, using exponential or optimal respiration, for Atlantic Salmon residing in the Little Southwest Miramichi (LSWM) and Northwest Miramichi (NWM) rivers. Growth rates for LSWM were used to estimate food consumption, for which the values were used to simulate growth for fish residing in the NWM. Observed growth rates from the LSWM were used to estimate total food consumption in both the LSWM and NWM rivers.

River	Water temperature (°C)	Growth (g)	Consumption (g)								
	Tmin	Tmax	Mean	cohort 1: 0+ – 1+		cohort 2: 1+ – 2+					
				exponential	optimal	exponential	optimal				
Little Southwest Miramichi (LSWM)	14.26	22.4	18.24	7.71	7.71	15.31	15.31	75.769	62.644	152.688	119.569
Northwest Miramichi (NWM)	10.74	18.56	14.47	8.714	7.05	17.14	13.05	67.85	68.29	137.89	130.79
References

Baraduc, M.M., and Fontaine, M. 1955. Étude comparée du métabolisme respiratoire du jeune saumon sédentaire (parr) et migrateur (smolt). C. R. Society de Biologie. Paris 149: 1327–1329.

Barnes, R., King, H., and Carter, C.G. 2011. Hypoxia tolerance and oxygen regulation in Atlantic salmon, *Salmo salar* from a Tasmanian population. Aquaculture 318: 397–401.

Beamish, F.W.H. 1964. Respiration of fishes with special emphasis on standard oxygen consumption II. Influence of weight and temperature on respiration of several species. Can. J. Zool. 42: 177–188.

Beauregard, D., Enders, E.C., and Boisclair, D. 2013. Consequences of circadian fluctuations in water temperature on the standard metabolic rate of Atlantic salmon parr (*Salmo salar*). Can. J. Fish. Aquat. Sci. 70(7): 1072–1081. doi:10.1139/cjfas-2012-0342.

Boisclair, D., and Legget, W.C. 1989. The importance of activity in bioenergetics models applied to actively foraging fishes. Can. J. Fish. Aquat. Sci. 46: 1859–1867.

Boisclair, D., and Sirois, P. 1993. Testing assumptions of fish bioenergetics models by direct estimation of growth, consumption, and activity rates. Trans. Am. Fish. Soc. 122(5): 784–796. doi:10.1577/1548-8659(1993)122<0784:taofbm>2.3.co;2.

Boisclair, D., and Rasmussen, J. 1996. Empirical analysis of the influence of environmental variables associated with lake eutrophication on perch growth, consumption, and activity rates. Ann. Zool. Fennici 33: 507–515.
Breau, C. 2012. Temperature threshold to define management strategies for Atlantic salmon
(Salmo salar) fisheries under environmentally stressful conditions. Can. Sci. Advis. Secret.
Rep. 2012/019: 17 pp.

Breau C., R.A. Cunjak and G. Bremset. 2007a. Age-specific aggregation of wild juvenile
Atlantic salmon, Salmo salar, at cool water sources during high temperature events. J.
Fish. Biol. 71: 1-13.

Breau, C., Weir, L.K., and Grant, J.W.A. 2007b. Individual variability in activity patterns of
juvenile Atlantic salmon (Salmo salar) in Catamaran Brook, New Brunswick. Can. J. Fish.
Aquat. Sci. 64(3): 486–494. doi:10.1139/f07-026.

Breau, C., Cunjak, R.A., and Peake, S.J. 2011. Behaviour during elevated water temperatures:
Can physiology explain movement of juvenile Atlantic salmon to cool water? J. Anim.
Ecol. 80(4): 844–853. doi:10.1111/j.1365-2656.2011.01828.x.

Brett, J.R., and Glass, N.R. 1973. Metabolic rates and critical swimming speeds of Sockeye
salmon (Oncorhynchus nerka) in relation to size and temperature. J. Fish. Res. Board Can.
30(3): 379–387.

Brodeur, N.N., Hébert, C., Caissie, D., and Breau, C. 2015. Predicting stream temperatures under
a climate change scenario: Impacts on critical temperatures for Atlantic salmon (Salmo
salar). Can. Tech. Rep. Fish. Aquat. Sci. 3118: ix + 44 pp.

Caissie, D. 2013. Impact of climate change on water temperatures for selected rivers in New
Brunswick and potential implications on Atlantic salmon. In Aspects of climate change in
the Northwest Atlantic of Canada. Edited by J.W. Loder and G. Han and P.S. Galbraith and
J. Chassé and A. van der Baaren, Moncton, 183–190 pp.
Caissie, D., and El-Jabi, N. 1995. Hydrology of the Miramichi River drainage basin. In Water, Science, and the Public: The Miramichi Ecosystem. Edited by E.M.P. Chadwick. Can. Spec. Publ. Fish. Aquat. Sci. 83–93 pp.

Caissie, D., Breau, C., Hayward, J., and Cameron, P. 2012. Water temperature characteristics within the Miramichi and Restigouche rivers. Can. Sci. Advis. Sec. Res. Doc. 2012/165: vi + 31 pp.

Chabot, D., Steffensen, J.F., and Farrell, A.P. 2016. The determination of standard metabolic rate in fishes. J. Fish. Biol. 88(1): 81–121. doi:10.1111/jfb.12845.

Chaput, G., Douglas, S.G., and Hayward, J. 2016. Biological characteristics and population dynamics of Atlantic salmon (Salmo salar) from the Miramichi River, New Brunswick, Canada. Can. Sci. Advis. Sec. Res. Doc. 2016/029: v + 53 pp.

Claireaux, G., and Lagardère, J.-P. 1999. Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. J. Sea Res. 42: 157–168.

Miramichi River Environmental Assessment Committee. 2007. Miramichi Watershed State of the Environment Report.

Corey, E. unpublished data. Growth rate of Atlantic salmon inhabiting the Little Southwest Miramichi River (2011-2012). University of New Brunswick.

Corey, E., Linnansaari, T., Cunjak, R.A., and Currie, S. 2017. Physiological effects of environmentally relevant, multi-day thermal stress on wild juvenile Atlantic salmon (Salmo salar). Conserv. Physiol. 5: cox014. doi:10.1093/conphys/cox014.
Cutts, C.J., Metcalfe, N.B., and Taylor, A.C. 2002. Juvenile Atlantic salmon (Salmo salar) with relatively high standard metabolic rates have small metabolic scopes. Func. Ecol. 16(1): 73–78. doi:10.1046/j.0269-8463.2001.00603.x.

Dabrowski, K.R. 1986. A new type of metabolism chamber for the determination of active and postprandial metabolism of fish, and consideration of results for coregonid and salmon juveniles. J. Fish Biol. 28(1): 105–118. doi:10.1111/j.1095-8649.1986.tb05147.x.

David, A.T., Simenstad, J.R., Cordell, J.D., C.S., T., Gray, A., and Berge, H.B. 2016. Wetland loss, juvenile salmon foraging performance, and density dependence in Pacific Northwest estuaries. Estuaries Coasts 39: 767–780.

Deitch, E.J., Fletcher, G.L., Petersen, L.H., Costa, I.A.S.F., Shears, M.A., Driedzic, W.R., and Gamperl, A.K. 2006. Cardiorespiratory modifications, and limitations, in post-smolt growth hormone transgenic Atlantic salmon (Salmo salar). J. exp. Biol. 209(7): 1310–1325. doi:10.1242/jeb.02105.

Deslauriers, D., Chipps, S.R., Breck, J.E., Rice, J.A., and Madenjian, C.P. 2017. Fish Bioenergetics 4.0: An R-based modeling application. Fisheries 42(11): 586–596. doi:10.1080/03632415.2017.1377558.

Elliott, J.M., and Elliott, J.A. 2010. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. J. Fish. Biol. 77(8): 1793–1817. doi:10.1111/j.1095-8649.2010.02762.x.

Elliott, J.M. 1991. Tolerance and resistance to thermal stress in juvenile Atlantic salmon, Salmo salar. Freshwater Biol. 25: 61-70.
Enders, E.C., and Scruton, D.A. 2006. Potential application of bioenergetics models to habitat modeling and importance of appropriate metabolic rate estimates with special consideration for Atlantic salmon. Can. Tech. Rep. Fish. Aquat. Sci. 2641: v + 40 pp.

Fausch, K.D. 1984. Profitable stream positions for salmonids: relating specific growth rate to net energy gain. Can. J. Zool. 62: 441–451.

Finstad, A.G., Ugedal, O., Forseth, T., and Næsje, T.F. 2004. Energy-related juvenile winter mortality in a northern population of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 61(12): 2358–2368.

Fjelldal, P.G., Hansen, T., and Huang, T.-s. 2011. Continuous light and elevated temperature can trigger maturation both during and immediately after smoltification in male Atlantic salmon (Salmo salar). Aquaculture 321(1–2): 93–100. doi:10.1016/j.aquaculture.2011.08.017.

Fowler, S.L., Hamilton, D., and Currie, S. 2009. A comparison of the heat shock response in juvenile and adult rainbow trout (Oncorhynchus mykiss) - Implications for increased thermal sensitivity with age. Can. J. Fish. Aquat. Sci. 66(1): 91–100. doi:10.1139/f08-192.

Frechette, D.M., Dugdale, S.J., Dodson, J.J. and Bergeron, N.E. 2018. Understanding summertime thermal refuge use by adult Atlantic salmon using remote sensing, river temperature monitoring, and acoustic telemetry. Can. J. Fish. Aquat. Sci. 75:1999-2010. doi: 10.1139/cjfas-2017-0422.

Fry, F.E.J. 1947. Effects of the environment on animal activity. University Toronto Studies Biol. Ser. 55: 1–62.
Grothendieck, G. 2013. nls2: Non-linear regression with brute force. R package version 0.2.

Gurevitch, J., Koricheva, J., Nakagawa, S., and Stewart, G. 2018. Meta-analysis and the science of research synthesis. Nature 555: 175–182. doi:10.1038/nature25753.

Herbert, N.A., Armstrong, J.D., and Björnsson, B.T. 2001. Evidence that growth hormone-induced elevation in routine metabolism of juvenile Atlantic salmon is a result of increased spontaneous activity. J. Fish Biol. 59(3): 754–757. doi:10.1111/j.1095-8649.2001.tb02379.x.

Higgins, P.J. 1985. Metabolic differences between Atlantic salmon (Salmo salar) parr and smolts. Aquaculture 45(1–4): 33–53. doi:10.1016/0044-8486(85)90256-x.

Imholt, C., Malcolm, I.A., Bacon, P.J., Gibbins, C.N., Soulsby, C., Miles, M., and Fryer, R.J. 2011. Does diurnal temperature variability affect growth in juvenile Atlantic salmon Salmo salar? J. Fish Biol. 78(2): 436–448. doi:10.1111/j.1095-8649.2010.02838.x.

James, D.A., Csargo, I.J., Eschen, A.V., Thul, M.D., Baker, J.M., Hayer, C.-A., Howell, J., Krause, J., Letvin, A., and Chipps, S.R. 2012. A generalized model for estimating the energy density of invertebrates. Freshw. Sci. 31: 69–77.

Johnston, T.A. 1997. Downstream movements of young-of-the-year fishes in Catamaran Brook and the Little Southwest Miramichi River, New Brunswick. J. Fish Biol. 51: 1047–1062.

Jonsson, N., and Jonsson, B. 2003. Energy allocation among developmental stages, age groups, and types of Atlantic salmon (Salmo salar) spawners. Can. J. Fish. Aquat. Sci. 60(5): 506–516. doi:10.1139/f03-042.
Karjalainen, J., Turunen, T., Helminen, H., Sarvala, J., and Huuskonen, H. 1997. Food selection and consumption of 0+ smelt (*Osmerus eperlanus* (L.)) and vendace (*Coregonus albula* (L.)) in pelagial zone of Finnish lakes. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.

Keeley, E.R., and Grant, J.W.A. 1997. Allometry of diet selectivity in juvenile Atlantic salmon (*Salmo salar*). Can. J. Fish. Aquat. Sci. **54**: 1894–1902.

Kieffer, J.D., and Wakefield, A.M. 2009. Oxygen consumption, ammonia excretion and protein use in response to thermal changes in juvenile Atlantic salmon *Salmo salar*. J. Fish Biol. **74**(3): 591–603. doi:10.1111/j.1095-8649.2008.02146.x.

Kitchell, J.F., Stewart, D.J., and Weininger, D. 1977. Applications of a bioenergetics model to yellow perch (*Perca flavescens*) and walleye (*Stizostedion vitreum vitreum*). J. Fish. Res. Board Can. **34**(10): 1922–1935.

Kitchell, J.F., Koonce, J.F., Magnuson, J.J., O’Neill, R.V., Shugart, H.H., and Booth, R.S. 1974. Model of fish biomass dynamics. Trans. Am. Fish. Soc. **103**(4): 786–798. doi:10.1577/1548-8659(1974)103<786:mofbd>2.0.co;2.

Lucas, M.C. 1994. Heart rate as an indicator of metabolic rate and activity in adult Atlantic salmon, *Salmo salar*. J. Fish Biol. **44**(5): 889–903. doi:10.1111/j.1095-8649.1994.tb01262.x.

Lucas, M.C., Johnstone, A.D.F., and Tang, J. 1993. An annular respirometer for measuring aerobic metabolic rates of large, schooling fishes. J. exp. Biol. **175**: 325–331.
Lund, S.G., Caissie, D., Cunjak, R.A., Vijayan, M.M., and Tufts, B.L. 2002. The effects of environmental heat stress on heat-shock mRNA and protein expression in Miramichi Atlantic salmon (Salmo salar) parr. Can. J. Fish. Aquat. Sci. 59: 1553–1562.

Magnuson, J.J., Crowder, L.B., and Medvick, P.A. 1979. Temperature as an ecological resource. Am. Zool. 19: 331–343.

Maxime, V. 2002. Effects of transfer to sea water on standard and routine metabolic rates in smolting Atlantic salmon at different stages of seawater adaptability. J. Fish Biol. 61(6): 1423–1432. doi:10.1111/j.1095-8649.2002.tb02487.x.

Maxime, V., Boeuf, G., Pennec, J.P., and Peyraud, C. 1989. Comparative study of the energetic metabolism of Atlantic salmon (Salmo salar) parr and smolts. Aquaculture 82(1–4): 163–171. doi:10.1016/0044-8486(89)90405-5.

Maxime, V., Peyraud-Waitzenegger, M., Claireux, G., and Peyraud, C. 1990. Effects of rapid transfer from sea water to fresh water on respiratory variables, blood acid–base status and O2 affinity of haemoglobin in Atlantic salmon (Salmo salar L.). J. Comp. Physiol. 160 B: 31–39.

McCarthy, I.D. 2000. Temporal repeatability of relative standard metabolic rate in juvenile Atlantic salmon and its relation to life history variation. J. Fish Biol. 57(1): 224–238. doi:10.1111/j.1095-8649.2000.tb00788.x.

Metcalf, N.B., Taylor, A.C., and Thorpe, J.E. 1995. Metabolic rate, social status and life-history strategies in Atlantic salmon. Anim. Behav. 49(2): 431–436. doi:10.1006/anbe.1995.0056.
Millidine, K.J., Armstrong, J.D., and Metcalfe, N.B. 2009. Juvenile salmon with high standard
metabolic rates have higher energy costs but can process meals faster. Proc. Roy. Soc. B
Biol. Sci. 276(1664): 2103–2108. doi:10.1098/rspb.2009.0080.

Miramichi River Environmental Assessment Committee (MREAC) http://mreac.org/

Niklitschek, E.J., and Secor, D.H. 2009. Dissolved oxygen, temperature and salinity effects on
the ecophysiology and survival of juvenile Atlantic sturgeon in estuarine waters: I.
Laboratory results. J. Exp. Mar. Bio. Ecol. 381: S150–S160.
doi:10.1016/j.jembe.2009.07.018.

O’Connor, K.I., Taylor, A.C., and Metcalfe, N.B. 2000. The stability of standard metabolic rate
during a period of food deprivation in juvenile Atlantic salmon. J. Fish Biol. 57(1): 41–51.
doi:10.1111/j.1095-8649.2000.tb00774.x.

Olnigny-Hébert, H., Senay, C., Enders, E.C., and Boisclair, D. 2015. Effects of diel temperature
fluctuation on the standard metabolic rate of juvenile Atlantic salmon (Salmo salar):
influence of acclimation temperature and provenience. Can. J. Fish. Aquat. Sci. 72(9):
1306–1315. doi:10.1139/cjfas-2014-0345.

Paakkonen, J.-P.J., Tikkanen, O., and Karjalainen, J. 2003. Development and validation of a
bioenergetics model for juvenile and adult burbot. J. Fish Biol. 63: 956–969.
doi:10.1046/j.1095-8649.2003.00203.x,availableonlineathttp://www.blackwell-
synergy.com.

Penney, C.M., Nash, G.W., and Gamperl, A.K. 2014. Cardiorespiratory responses of seawater-
acclimated adult Arctic char (Salvelinus alpinus) and Atlantic salmon (Salmo salar) to an
acute temperature increase. Can. J. Fish. Aquat. Sci. 71(7): 1096–1105. doi:10.1139/cjfas-2013-0569.

Peterson, R.H., and Anderson, J.M. 1969. Influence of temperature change on spontaneous locomotor activity and oxygen consumption of Atlantic salmon, *Salmo salar*, acclimated to two temperatures. J. Fish. Res. Board Can. 26: 93–109.

Pörtner, H.O. 2010. Oxygen- and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. exp. Biol. 213(6): 881–893. doi:10.1242/jeb.037523.

Randall, R.G., and Paim, U. 1982. Growth, biomass, and production of juvenile Atlantic salmon (*Salmo salar* L.) in two Miramichi River, New Brunswick, tributary streams. Can. J. Zool. 60: 1647–1659.

Schulte, P.M. 2015. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. Journal of Experimental Biology 218: 1856-1866. doi:10.1242/jeb.118851.

Seddiki, H., Boeuf, G., Maxime, V., and Peyraud, C. 1996. Effects of growth hormone treatment on oxygen consumption and sea water adaptability in Atlantic salmon parr and pre-smolts. Aquaculture 148(1): 49–62. doi:10.1016/S0044-8486(96)01407-x.

Seppanen, E., Piironen, J., and Huuskonen, H. 2009. Standard metabolic rate, growth rate and smolting of the juveniles in three Atlantic salmon stocks. Bor. Environ. Res. 14(3): 369–381.
Stefansson, S., Bjornsson, B.T., Ebbesson, L.O.E., and McCormick, S.D. 2008. Smoltification. In Fish Larval Physiology. Edited by R. Finn and B. Kapoor. CRC Press. 742 pp.

Stevens, E.D., Sutterlin, A., and Cook, T. 1998. Respiratory metabolism and swimming performance in growth hormone transgenic Atlantic salmon. Can. J. Fish. Aquat. Sci. 55(9): 2028–2035.

Stewart, D.J., Weininger, D., Rottiers, D.V., and Edsall, T.A. 1983. An energetics model for Lake Trout, Salvelinus namaycush: Application to the Lake Michigan population. Can. J. Fish. Aquat. Sci. 40: 681–698.

Swansburg, E., Chaput, G., Moore, D., Caissie, D., and El-Jabi, N. 2002. Size variability of juvenile Atlantic salmon: links to environmental conditions. J. Fish Biol. 61(3): 661–683. doi:10.1111/j.1095-8649.2002.tb00903.x.

R Core Team 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria.

Thornton, K.W., and Lessem, A.S. 1978. A temperature algorithm for modifying biological rate. Trans. Am. Fish. Soc. 107: 284–287.

Trudel, M., Geist, D.R., and Welch, D.W. 2004. Modeling the oxygen consumption rates in Pacific Salmon and Steelhead: An assessment of current models and practices. Trans. Am. Fish. Soc. 133(2): 326–348. doi:10.1577/02-116.

Tyler, J.A., and Bolduc, M.B. 2008. Individual variation in bioenergetics rates of young-of-year rainbow trout. Trans. Am. Fish. Soc. 137: 314–323.
Whitey, K.L., and Saunders, R.L. 1973. Effect of a reciprocal photoperiod regime on standard rate of oxygen consumption of postsmolt Atlantic salmon (*Salmo salar*). J. Fish. Res. Board Can. **30**: 1898–1900.

Wright, P.J., Fallon-Cousins, P., and Armstrong, J.D. 2001. The relationship between otolith accretion and resting metabolic rate in juvenile Atlantic salmon during a change in temperature. J. Fish Biol. **59**(3): 657–666. doi:10.1111/j.1095-8649.2001.tb023
Figure 1. Map of the 19 Little Southwest Miramichi (LSWM) River and Northwest Miramichi (NWM) River temperature gauging stations (●) and two fish sampling sites (▲) in the LSWM (orange) and NWM (blue) sub-drainage basins, located in the Miramichi watershed (grey area), New Brunswick, Canada. Several temperature loggers on the LSWM overlap due to the scale of the map. Regional watershed and sub-drainage basin shapefiles provided by the Miramichi River Environmental Assessment Committee (MREAC).

254x190mm (300 x 300 DPI)
Figure 2. Mass corrected standard metabolic rate (g O₂·d⁻¹) from meta-data as a function of water temperature (°C). The mass corrected metabolic rates are for a 1g fish at a given temperature. The blue line and grey area correspond to the fitted loess smoothing function ± 1 S.E.M. to the meta-data (points), while the solid and dashed black lines correspond to respiration models following the exponential and optimal relationships, respectively.
Figure 3. Probability density plots illustrating the percent differences between predicted respiration values from the A) optimal and B) exponential models and respiration values generated from four published and independent respiration models: in pink, Berg et al. (1993); green, Fivelstad and Smith (1991); blue, Forsberg (1994); purple, Grottum and Sigholt (1998).

215x279mm (300 x 300 DPI)
Figure 4. Atlantic Salmon observed (boxplots) and simulated growth in the Little Southwest Miramichi using either the exponential (solid line) or optimal (dashed line) respiration models for A) ages 0+ – 1+ (first cohort), and B) ages 1+ – 2+ (second cohort). Average daily temperature profile for the LSWM is shown in grey.