Single-cell RNA profiling of *Plasmodium vivax*-infected hepatocytes reveals parasite- and host-specific transcriptomic signatures and therapeutic targets

Anthony A Ruberto a, Steven P Maher a, Amélie Vantaux b, Chester J Joyner a,c, Caitlin Bourke d,e, Balu Balan d,f, Aaron Jex d,e,f, Ivo Mueller d,e, Benoit Witkowski b, Dennis E Kyle a

a Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States

b Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia

c Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA

d Population Health & Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia

e Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia

f Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia

Running Head: single-cell RNA-seq of *P. vivax*-infected hepatocytes

Address correspondence to dennis.kyle@uga.edu
ABSTRACT

The resilience of Plasmodium vivax, the most widely distributed malaria-causing parasite in humans, is attributed to its ability to produce dormant liver forms known as hypnozoites, which can activate weeks, months, or even years after an initial mosquito bite. The factors underlying hypnozoite formation and activation are poorly understood, as is the parasite’s influence on the host hepatocyte. Here, we shed light on transcriptome-wide signatures of both the parasite and the infected host cell by sequencing over 1,000 P. vivax-infected hepatocytes at single-cell resolution. We distinguish between replicating schizonts and hypnozoites at the transcriptional level, identifying key differences in transcripts encoding for RNA-binding proteins associated with cell fate. In infected hepatocytes, we show that genes associated with energy metabolism and antioxidant stress response were upregulated, and those involved in the host immune response downregulated, suggesting both schizonts and hypnozoites alter the host intracellular environment. The transcriptional markers in schizonts, hypnozoites, and infected hepatocytes revealed here pinpoint potential factors underlying dormancy and can inform therapeutic targets against P. vivax liver-stage infection.

INTRODUCTION

Malaria is a significant global health burden, with an estimated 421 million cases and 627,000 deaths per year (World Health Organization, 2021). At least five Plasmodium species are known to infect humans, with P. vivax responsible for the majority of cases outside Africa (World Health Organization, 2021). All Plasmodium parasites that infect humans have an obligatory developmental stage in the liver where the parasite undergoes asexual reproduction known as schizogony within a hepatocyte before releasing thousands of merozoites into the blood. In P. vivax, a proportion of parasites known as hypnozoites forgo immediate division in hepatocytes, and persist in the liver for weeks, months, or years before activating to initiate schizogony resulting in a relapse blood infection (Adams and Mueller, 2017; Krotoski et al., 1982). Hypnozoites are thought to cause up to 90% of cases in certain geographical regions (Adekunle et al., 2015; Commons et al., 2020; Robinson et al., 2015), and mathematical models predict that eliminating P. vivax malaria will be difficult without interventions that target hypnozoite reservoirs (White et al., 2018).

The factors influencing the biogenesis, persistence, and activation of hypnozoites are poorly understood. Studies have found that hypnozoites in temperate versus tropical regions have long and short latencies, respectively, suggesting a correlation between geographical region and relapse patterns (Battle et al., 2014; Huldén et al., 2008; Krotoski et al., 1986; White, 2011). These findings suggest the developmental trajectory is genetically encoded, and support the hypothesis that it is somehow pre-programmed in the sporozoite (Lysenko et al., 1977; Ungureanu et al., 1976); but other contributing
factors from the host could play a role in determining whether the sporozoite becomes a schizont or hypnozoite (Schäfer et al., 2021).

Our understanding of *P. vivax* liver stage biology at the cellular and molecular level is in its nascency for two overarching reasons. First, protocols to cryopreserve and continuously maintain erythrocytic stage parasites *in vitro* are lacking, necessitating the collection of gametocyte-infected blood from human volunteers in *P. vivax* malaria-endemic regions to generate the sporozoites required to initiate an infection. New laboratory models have recently been developed which can partially alleviate the need to obtain gametocytes from human-infected blood (Mikolajczak et al., 2015; Schäfer et al., 2020), yet these sources are expensive and each have distinct logistical hurdles. In addition to the sporozoite limitation, upon initiating a *P. vivax*-infected hepatocyte culture, the high ratio of noninfected versus infected hepatocytes has historically made it difficult to isolate and study these forms in sufficient numbers. Robust *in vitro* pre-erythrocytic platforms capable of long-term culture of sufficient numbers of *P. vivax* liver stages have only recently been developed (Maher et al., 2021; Roth, Maher et al., 2018). For these reasons, much of our knowledge of hypnozoite biology at the molecular level remains limited to studies using *P. cynomolgi*—a parasite capable of causing relapsing infections in non-human primates for which molecular tools are available (Chua et al., 2019; Cubi et al., 2017; Voorberg-van der Wel et al., 2017, 2020). However, it is unknown whether mechanisms regulating hypnozoite formation and dormancy are consistent across the different relapsing malaria parasites.

Transcriptome-wide profiling of *P. vivax* liver stages has previously been performed using a bulk RNA sequencing strategy (Gural et al., 2018). While informative, the data provide insights only into average transcript levels derived from either mixed (schizont and hypnozoite) or hypnozoite-only populations, masking any transcriptional variation that might exist between individual parasites. Second, the parasite’s potential impact on the hepatocyte is not considered, barring analysis of host-pathogen interactions. Nevertheless, these shortcomings highlight a need to better understand differences between individual parasites, as well as how the parasite alters the hepatocyte. Advancements in these areas could help elucidate parasite- and host-factors important for the parasite’s liver stage development.

Single-cell RNA-sequencing (scRNA-seq) methods offer new ways of studying cell-to-cell variation (Aldridge and Teichmann, 2020), and have already allowed for novel insights into host-pathogen interactions in various disease contexts (Penaranda and Hung, 2019). In *Plasmodium* spp., scRNA-seq analyses have so far revealed that individual parasite forms exist on a spectrum of transcriptomic states (Bogale et al., 2021; Howick et al., 2019; Poran et al., 2017; Real et al., 2021; Reid et al., 2018; Ruberto et al., 2021a), and applying them to study the biology of *P. vivax* is a burgeoning area of research (Mancio-Silva et al., 2022; Ruberto et al., 2021b; Sâ et al., 2020). Droplet-based techniques, such as 10x Genomics’ gene expression platform (Zheng et al., 2017), allow for the
sequencing of several thousands of cells, increasing the chances of observing rare cell populations (e.g. hepatocytes infected with *P. vivax*). We therefore presumed that applying scRNA-seq to *P. vivax* liver forms derived using an *in vitro* platform would prove a fruitful avenue of inquiry into the parasite’s biology at the transcription level.

Using scRNA-seq, we characterize transcriptomic signatures of parasite and host in an *in vitro* *P. vivax* liver stage model. We find differences in gene expression between replicating schizonts and hypnozoites, and reveal variation, previously unobservable by bulk sequencing approaches, between individual hypnozoites. In infected hepatocytes, we find that genes associated with energy metabolism and antioxidant stress response are upregulated, and those involved in the host immune response downregulated. Various host genes associated with these processes are found to be exclusively upregulated during hypnozoite infection. Our study elucidates the transcriptional signatures among infected hepatocytes and presents potential mechanisms *P. vivax* can use to either exploit its host for rapid proliferation or to quietly persist, remaining undetected by the host immune system.

RESULTS

Strategy used to study *P. vivax* liver stage biology

Primary human hepatocytes were cultured and infected with *P. vivax* sporozoites on a 384-well plate platform (Maher et al., 2021; Roth, Maher et al., 2018). Figure 1A outlines the workflow for the experiment. Following infection with sporozoites, cultures were assessed at two endpoints: one containing both schizonts and hypnozoites at day 5 post-infection, and the other containing solely hypnozoites at day 9 post-infection. Schizonts were eliminated from day 9 post-infection cultures by adding the phosphatidylinositol 4-kinase (PI4K) inhibitor MMV390048 (1 µM) to the culture media on days 5, 6 and 7 post-infection (Gural et al., 2018; Paquet et al., 2017). For each collection time point, we simultaneously initiated two sets of hepatocyte cultures: one infected with sporozoites for quantification of immunofluorescent-labeled parasites by high-content imaging (HCI), and one infected with sporozoites for transcriptional profiling using a high-throughput, droplet-based scRNA-seq workflow (Zheng et al., 2017). As controls, a third set of naïve cultures were left uninfected and processed for scRNA-seq alongside cultures at days 5 and day 9 post-infection. At each collection point, a target of approximately 10,000 individual hepatocytes were partitioned into droplets prior to the generation of RNA libraries. Droplets contained primers with unique nucleotide sequences (cellular barcodes) that were incorporated into the transcript sequence during the reverse transcription step, allowing for the identification of each transcript’s cellular origin. After sequencing the single-cell libraries, we mapped the resulting reads onto a customized reference transcriptome containing human (Ensembl, v103) and *P. vivax* PVP01 (PlasmoDB, v51) information. The *P. vivax* PVP01 transcript
information included the nucleotides encoding for the gene-flanking untranslated regions (UTRs) (Siegel, Chappell et al., 2020), which is important because of the poly-dT capture strategy of the technology used in our workflow. This information partially alleviates the challenges associated with transcription quantification (Ruberto et al., 2021b; Sà et al., 2020). Post mapping, we used the transcript information (i.e. human or parasite encoding) with their designated cellular barcodes to assess the number of transcripts in each cell, and to determine which hepatocytes were infected.

As expected, we detected hepatocytes infected with either form of the parasite at 5 days post-infection, and only hypnozoites at 9 days post-infection following exposure to MMV390048 (Figure 1B and Figure 1—figure supplement 1). Visual assessment of infected cultures fixed and stained with an antibody against Uregulated In Infectious Sporozoites 4 (PvUIS4), which localizes to the parasite’s parasitophorous vacuole membrane, confirmed that the parasites we subjected to scRNA-seq had properly invaded hepatocytes and initiated development into hypnozoites and schizonts. Furthermore, hypnozoites displayed typical morphology relative to those found in humanized mice (Mikolajczak et al., 2015) and in vitro (Roth, Maher et al., 2018). Figure 1C displays the distribution of individual parasite growth areas, number of parasites detected, and parasitemia levels at each endpoint. Across replicates, the parasitemia ranged from 5.50-6.93% at 5 days post-infection and 1.76-2.77% at 9 days post-infection. Together, the high infection rates coupled with the high-throughput capacity of 10x Genomics’ single-cell isolation and sequencing workflow allowed for sufficient material to be generated for successful profiling of both parasite and host transcriptomes.

P. vivax schizonts and hypnozoites are distinguishable at single-cell resolution

We first analyzed the reads mapping to *P. vivax* transcripts to identify schizonts and hypnozoites, as well as to assess the extent to which these forms differed at single-cell resolution. In total, we characterized 1,438 parasite transcriptomes across two independent experimental replicates (Figure 2—figure supplement 1A). The number of parasite transcriptomes profiled corroborated the parasitemia levels quantified using high-content imaging. This correlative evidence suggests that our cell and gene filtering cutoffs effectively eliminated problematic cells (i.e. poorly captured, dying, or dead) (Figure 2—figure supplement 1B and Figure 2—source data 1). Low dimensional representation of the data revealed two populations of parasites in samples profiled at 5 days post-infection (Figure 2A, left). In contrast, and as expected, samples profiled at 9 days post-infection contained one population (Figure 2A, right). Given that the population of cells profiled at day 9 post-infection, from which schizonts were chemically removed, overlapped with one of the two cell populations profiled at 5 days post-infection, we deduced that the non-overlapping population of cells encoded for schizonts. Consistent with our reasoning, an unsupervised clustering algorithm (Traag et al., 2019) unbiasedly assigned the cells to one of the two clusters (Figure 2B and Figure 2—figure supplement 1C). As expected, the number of
transcripts detected, the unique molecular identifier (UMI) counts (a readout for absolute transcript abundances (Kivioja et al., 2011)), and the transcript levels of the early liver stage development marker liver stage-specific protein, LISP2 (PVP01_0304700) (Gupta et al., 2019), all displayed greater quantities in the schizont cluster (C2) relative to the hypnozoite cluster (C1) (Figure 2C).

Previous scRNA-seq studies in Plasmodium spp. has shown gene expression varies with life-cycle stage, with non-replicating forms displaying less expression per cell compared to replicating forms (Howick et al., 2019). The median number of genes detected in schizonts (2323) was greater than the values observed in other single-cell assessments of replicating stages of the parasite’s life cycle (Figure 2—figure supplement 2) (Mancio-Silva et al., 2022; Sà et al., 2020). Furthermore, the median number of UMIs per schizont (6905) was also greater in the current dataset versus other reports. The median number of genes detected per hypnozoite (519) and median number of UMIs per hypnozoite (672) were consistent with other single-cell reports assessing non-replicating, uninnucleate stages (Bogale et al., 2021; Real et al., 2021; Ruberto et al., 2021a), including recent single-cell assessments of P. vivax sporozoites (Ruberto et al., 2021b) and hypnozoites (Mancio-Silva et al., 2022) (Figure 2—figure supplement 2). The intact parasitophorous vacuole membrane of hypnozoites in cultures assessed on days 5 and 9 (Figure 1B and Figure 1—figure supplement 1), the association between infection rates observed by IFA and the number of transcriptomes assessed, and the per cell metrics typical of Plasmodium spp. life stages with low RNA content cells together provided us with strong assurance that the transcriptomes obtained represented viable hypnozoites. These findings show that the transcriptomes of P. vivax schizonts and hypnozoites can be distinguished using our experimental workflow.

Hypnozoites exhibit distinct transcriptional signatures compared to schizonts

We next performed differential gene expression analysis to identify transcriptome-wide differences distinguishing schizonts and hypnozoites. Using stringent inclusion cutoffs (Bonferroni adjusted p value < 0.01 & absolute (average log₂ fold change [FC]) > 0.5), we found significant differences in the expression of ~18% (836/4722) of genes detected (Figure 3—figure supplement 1A; Figure 3—source data 1A). Relative to hypnozoites, we found an increase in the expression levels of 368 genes in schizonts. As expected, we observed a significant increase of LISP2 gene expression in schizonts (average log₂ FC: 2.32) compared to hypnozoites. Shortly after invading the hepatocyte, non-relapsing Plasmodium spp. liver forms undergo immediate replication. Studies in rodent malaria models have shown that these forms are metabolically active and that various genes involved in energy metabolism are upregulated (Caldelari et al., 2019; Tarun et al., 2008; Toro-Moreno et al., 2020). Consistent with these prior observations, we found an increased transcription associated with glycolysis (PVP01_0816000, PVP01_1229700, PVP01_1244000) and the TCA cycle (PVP01_0106100, PVP01_1332400) in schizonts (Figure 3—figure supplement 1B; Figure 3—source data 1A).
broadly, we found increased transcription of various metabolic processes, as well as motility, DNA-, RNA-, and protein-processing (Figure 3—figure supplement 1C; Figure 3—source data 1A). Genes encoding for various proteasome subunits displayed greater transcription in schizonts (Figure 3—figure supplement 2A; Figure 3—source data 1A). To further show the importance of this protein complex, we tested a known proteosome inhibitor, carfilzomib (Kortuem and Stewart, 2013), in our standard 12-day *P. vivax* small molecule screening assay (Maher et al., 2021), and found it effectively killed schizonts (IC$_{50}$ 288nM) and hypnozoites (IC$_{50}$ 511nM) with some selectivity over host hepatocytes (IC$_{50}$ 3.32 µM) (Figure 3—figure supplement 2C and D).

The detection of genes associated with energy metabolism in hypnozoites, albeit at lower levels relative to schizonts, suggested that these forms are also metabolically active (Figure 3—figure supplement 1B). Relative to schizonts, we found an increase in expression of 468 genes in hypnozoites (Figure 3—source data 1A). As represented in Figure 3A, genes with greater expression in hypnozoites encoded for a diverse set of ontologies—including proteases, membrane proteins, transcription factors, and DNA-/RNA-regulating proteins. Genes encoding for proteases vivapain-1, vivapain-2 (PVP01_1248900, PVP01_0916200), and plasmepsin IV (PVP01_1340900) displayed the greatest differential expression in these forms compared to schizonts (Figure 3A and B; Figure 3—source data 1A). While limited research has reported the functionality of these gene products in *P. vivax* (Byoung-Kuk et al., 2004), work in other *Plasmodium* spp. has revealed that they localize to the food vacuole and play an important role in hemoglobin catabolism during the blood stages of the parasite’s life cycle (Dame et al., 2003; Drew et al., 2008).

We also identified genes with greater expression associated with RNA regulatory mechanisms in hypnozoites. Notably, we found greater expression of CCR4 (PVP01_1429000), a gene encoding for a protein with mRNA deadenylase activity and playing a role in mRNA turnover (Tucker et al., 2001) (Figure 3—source data 1A). In *Plasmodium* spp., it has been described as important in regulating the expression of genes associated with invasion and egress in blood stages (Balu et al., 2011). RNA-binding proteins (RBPs) also govern gene expression at the post-transcriptional level by transiently storing transcripts until later processing (Hentze et al., 2018). Pumilio domain (PUF) proteins are a major family of RBPs that regulate cellular fating through translational repression in eukaryotes. We found greater expression of the gene encoding for PUF1 (PVP01_1015200) in hypnozoites relative to schizonts (Figure 3A and B; Figure 3—source data 1A). Furthermore, we found greater expression of 7-Helix-1 protein (PVP01_1008400) (Figure 3A and B; Figure 3—source data 1A)—a stress granule component that interacts with the RNA-binding protein PUF2 and serves to be crucial for protein synthesis in *P. falciparum* (Miao et al., 2010). Numerous studies have shown that *Plasmodium* spp. use various post-transcriptional regulatory mechanisms to coordinate stage transitions and development (Baumgarten et al., 2019; Bunnik et al., 2016; Foth et al., 2011; le Roch et al., 2004; Tarun et al., 2008;...
Vembar et al., 2016). Our data corroborate these findings and suggest that similar strategies may be used in \textit{P. vivax} to regulate liver stage development. Moreover, these data suggest that RBP-mediated cellular fasting and translational repression may be involved in regulating hypnozoite quiescence.

Given the potential role in RBP-mediated cellular fasting and translational repression governing hypnozoite quiescence, we performed further analyses focused on RBP-mediated regulation. To this end, we scanned the \textit{P. vivax} genome searching for genes encoding for cellular fasting RBPs based on ortholog groups (OGs) of known human cellular fasting RBPs (348 RBPs; 227 OGs), identifying 89 OGs (99 RBPs) in \textit{P. vivax}. We detected 48 genes encoding for cellular fasting RBPs with greater expression in schizonts (Figure 3C, left; Figure 3—source data 1B). Notably, we identified eukaryotic translational initiation factors (PVP01_1238100, PVP01_0531200, PVP01_1431600, PVP01_0807600, PVP01_1005600, PVP01_0519700, PVP01_1329200, PVP01_0825000, PVP01_1303500), and splicing factors (PVP01_0716000, PVP01_0521000, PVP01_0804100, PVP01_1111800, PVP01_0607600, PVP01_1012200) suggesting active translational events. Gene Ontology (GO) term analysis revealed that these transcripts were associated with translation initiation (GO:0005852; GO:0033290; GO:0016282) (adjusted p value < 0.05, Figure 3C, right; Figure 3—source data 1C).

In hypnozoites, we detected 51 genes encoding for cellular fasting RBPs with increased expression relative to schizonts (Figure 3C, left; Figure 3—source data 1B). These genes encode for prominent P body markers, namely DOZI/DDX6 (PVP01_0819400), CCR4-NOT complex proteins (PVP01_1429000, PVP01_1014400, PVP01_1331700, PVP01_1453400, PVP01_0929400), mRNA-decapping enzyme subunit 1 (PVP01_0617200), mRNA-decapping enzyme subunit 2 (PVP01_1409900), UPF1 (PVP01_0805200), UPF2 (PVP01_0724300), UPF3 (PVP01_1226700), PUF2 (PVP01_0526500), PABP (PVP01_1442500), Fibrillarin (PVP01_1341600) and trailer hitch homolog (PVP01_1269800) (Figure 3—source data 1B). Genes encoding for cellular fasting RBPs in hypnozoite also represented GO terms corresponding to active biological condensate formations, such as the CCR4-NOT complex (GO:0030014; GO:0030015) and the P body (GO:0000932) (adjusted p value < 0.05, Figure 3C, right; Figure 3—source data 1C). Together, these findings suggest that P body-mediated cell fasting could be important in regulating hypnozoite persistence.

Transcriptomic heterogeneity exists amongst individual \textit{P. vivax} hypnozoites

Having described the transcriptomic signatures distinguishing schizonts and hypnozoites, we next sought to assess the extent to which gene expression varied amongst hypnozoites. We thus parsed the data into only hypnozoite transcriptomes. In total, 1,147 transcriptomes were assessed (Figure 4A, left). Low dimensional representation of the data revealed slight variation between samples collected at days 5 and 9 post-infection (Figure 4A, right). After regrouping the data using the same unsupervised
clustering algorithm described previously, we identified three clusters (Figure 4B, right). The proportion of hypnozoites in each cluster varied across the day of collection: specifically, the proportion of hypnozoites in cluster 3 (C3) was greater in hypnozoites collected at day 9 compared to day 5 post-infection (Figure 4B, left; Figure 4—figure supplement 1A). Albeit lower compared to schizonts, we also observed a trend for slightly greater gene expression of LISP2 in C3 relative to the other two clusters (Figure 4C).

We next identified markers that define the hypnozoites in each cluster using the FindAllMarkers function in Seurat (Stuart et al., 2019). We defined a marker as a gene displaying greater than 0.5 FC (average log₂) compared to the other clusters. In total, we detected 477 markers (Bonferroni adjusted p value < 0.05) (Figure 4—figure supplement 1B; Figure 4—source data 1A). Notable markers in C1 included genes associated with drug resistance (PVP01_1447300, PVP01_1259100, and PVP01_1010900), energy metabolism (PVP01_1435000 and PVP01_1122800), protein modification (PVP01_1248900 and PVP01_0916200), and RNA-binding proteins (PVP01_0939900 and PVP01_0819400); in C2, genes associated with translation (PVP01_1255500 and PVP01_0822500); and in C3, genes associated with translation (PVP01_0213700 and PVP01_0203400), fatty acid metabolism (PVP01_1143000 and PVP01_1022800), protein processing (PVP01_1308000 and PVP01_0927700) and ion transport (PVP01_1407500) (Figure 4D; Figure 4—source data 1A).

We next explored the data in the context of cellular fating to elucidate potential patterns in RBPs signatures. Among the hypnozoite markers found within our sub-clustering analysis, we identified 80 cellular fating RBPs (Figure 4E, top; Figure 4—source data 1B). Approximately 4% (3/80) of the differentially expressed genes in C3 encoded for genes associated with cellular fating. In this cluster, the increased gene expression of eukaryotic translation initiation factor 4E (PVP01_0203400) further suggests active translation events may be occurring. C2 contained 20% (16/80) of the cellular fating RBPs differentially expressed. In this cluster, we found RBPs which are important determinants of cell proliferation from a state of quiescence such as eukaryotic translation initiation factor 5A (PVP01_1303500), polypyrimidine tract binding protein (PVP01_1142400), GTP-binding nuclear protein RAN/TC4 (PVP01_0918300), and transformer-2 protein homolog beta (PVP01_0802200). C1 contained the majority of the differentially expressed genes encoding for RBPs (~76%, 61/80). Within this cluster, we identified prominent P body markers with cellular fating ability, such as DOZI/DDX6 (PVP01_0819400), CCR4-NOT complex proteins (PVP01_1429000, PVP01_1014400, PVP01_131700, PVP01_1453400), UPF1 (PVP01_0805200), UPF2 (PVP01_0724300), PABP (PVP01_1442500), Fibrillarin (PVP01_1341600) and trailer hitch homolog (PVP01_1269800). GO analysis revealed enrichment of cellular compartments associated to biological condensate formations, namely CCR4-NOT complex (GO:0030014), P granule (GO:0043186), and germplasm (GO:0060293) (Figure 4E, bottom; Figure 4—source data 1C).
These findings, combined with the shift of hypnozoite proportions and increasing level of LISP2 from C1 to C3, allowed us to infer the phenotype of hypnozoites in these clusters. As these observations likely represent populations of hypnozoites in persisting and activating states, we defined clusters C1, C2, and C3 to represent persisting, early activating, and late activating hypnozoites, respectively. Together, these findings further our understanding of P. vivax hypnozoites through characterization of gene usage and putative regulatory mechanisms in activating and persister forms. Furthermore, they highlight a potential role of P body-mediated cellular fating governing persister hypnozoites.

Strategy used to assess hepatocytes infected with P. vivax parasites

After deciphering the identities of P. vivax transcriptomes representing schizonts and hypnozoites, we next sought to characterize the transcriptional signatures of hepatocytes infected with either of these forms. To this end, we integrated the data across all the conditions (Figure 5—supplement 1A and B) and examined whether distinct sub-populations of infected hepatocytes existed. As highlighted by the low dimensional visualization of the data, we did not find a prominent pattern of infection (Figure 5). Moreover, we detected parasites in hepatocytes with different metabolic states (MacParland et al., 2018), as represented by their transcriptional signatures associated with different hepatocyte zonation programs (Figure 5—supplement 1C and D).

Identification of transcriptional signatures in P. vivax-infected hepatocytes

To identify host transcriptional signatures specific to infection status, we performed differential gene expression analysis, comparing infected to non-infected hepatocytes. Among the hepatocytes infected with schizonts, 106 genes displayed greater expression and 16 displayed decreased expression (Figure 6—source data 1A); while in hepatocytes infected with hypnozoites, 365 genes displayed greater expression and 41 genes displayed decreased expression (Figure 6—source data 1B) (Bonferroni adjusted p value < 0.05). As depicted in the volcano plots in Figure 6A, the magnitude of change in expression in the infected versus non-infected cells (average log2 fold change) was greater in hepatocytes containing schizonts compared to those containing hypnozoites.

To gain greater insights into the biological processes and pathways that characterize a schizont- or hypnozoite-infected hepatocyte, we performed enrichment analysis (Raudvere et al., 2019)—scoring 18,594 gene sets against the genes differentially expressed in each of our transcriptional comparisons. When considering both the schizont- and hypnozoite-infected hepatocyte populations, we detected a total of 254 enriched gene sets (Bonferroni adjusted p value < 0.05) (Figure 6B; Figure 6—source data 1C). Approximately 18% (45/254) of these gene sets overlapped in hepatocytes infected with either schizonts or hypnozoites (Figure 6—source data 1D). These data indicate that while some overlap...
exists in the gene networks the parasite alters during infection, the majority of processes and pathways altered are specific to schizont versus hypnozoite infected hepatocytes.

Using these gene sets, we then constructed network enrichment maps (Merico et al., 2010) to provide a global overview of the prominent biological themes associated with each infection condition (Figure 6C and D). We detected upregulation of genes associated with pathways related to energy metabolism (oxidative phosphorylation, mitochondrial function, and lipid catabolism) in schizont- and hypnozoite-infected hepatocytes. Analysis of the most differentially expressed genes associated with these pathways included MT-ND2, CHCHD10, and AKR1B10 (Figure 6—source data 1A and B). Corroborating our transcriptomic data, we found an increase in protein levels of AKR1B10 in infected versus non-infected hepatocytes by IFA (Figure 6E; Figure 6—figure supplement 1). AKR1B10 has been implicated in cell survival through its regulation of lipid metabolism and elimination of carbonyls (Martin and Maser, 2009; Qu et al., 2021; Wang et al., 2009) and has primarily been described as a biomarker of cancer (Diez-Dacal et al., 2011; Fukumoto et al., 2005; Jin et al., 2006). More recently, it has been shown that its expression is positively correlated with non-alcoholic fatty liver disease (Govaere et al., 2020). In schizonts, the upregulation of genes linked to fatty acid metabolism is consistent with observations in hepatocytes harboring developing forms from non-relapsing Plasmodium spp. (Albuquerque et al., 2009; Itoe et al., 2014). We now reveal that infection with hypnozoites also elicits enrichment of genes associated with fatty acid metabolism (Figure 6D), suggesting that these forms may be scavenging host resources to fuel their persistence.

Previous work assessing Plasmodium liver stage biology has revealed that the host is able to detect the parasite (Liehl and Mota, 2012) and that type I interferon plays an integral role in this response (Liehl et al., 2013; Miller et al., 2014). The decrease in expression of genes associated with interferon signaling (REAC:R-HSA-913531, GO:0034340, GO:0034341, GO:0071357, GO:0060337) in hepatocytes infected with either schizonts or hypnozoites suggest that P. vivax manipulates the hepatocytes to evade detection (Figure 6C and D; Figure 6—source data 1C and D). Furthermore, we found that relative to naïve hepatocytes, uninfected hepatocytes in cultures exposed to P. vivax displayed significant downregulation of pathways associated with immune effectors (GO: 0030449, GO:0002697, REAC: R-HSA-166658, R-HSA-168249) (Figure 6—source data 1E and F).

In hepatocytes infected with schizonts, we found a decrease in expression of NFKB-regulated genes (SOD2, TMEM45A, CCL20, and TPM1) (Figure 6—source data 1A), consistent with findings that Plasmodium spp. release signals to block proinflammatory response (Singh et al., 2007). These findings, in addition to the decrease in the expression of HLA-B—a molecule involved in antigen presentation to T cells that can trigger their activation when “self” peptides are not presented—and the neutrophil chemoattractant CXCL8 suggest that replicating parasites alter hepatocyte signaling pathways...
to minimize recruitment of innate immune cells and avoid detection by T cells. Similar to hepatocytes infected with schizonts, we found genes associated with interferon signaling downregulated in hepatocytes infected with hypnozoites, namely: *UBB, UBC, HSP90AB1, IFITM3, IFITM2,* and *HLA-A* (Figure 6—source data 1B). Furthermore, transcripts associated with the downregulation of class I major histocompatibility complex (*CD81* and *B2M*) were also decreased in these hepatocytes (Figure 6—source data 1B). Together, these findings suggest that *P. vivax* infection of hepatocytes may suppress the secretion of various chemokines and proinflammatory cytokines to thwart the recruitment of inflammatory cells to the site of infection while simultaneously downregulating MHC-I to reduce the chances they will be detected if these cells are successfully recruited.

Enrichment analysis linking the changes in gene expression in infected hepatocytes with transcriptional factors revealed distinct sets of putative transcriptional regulators. In total, we detected 35 transcriptional factors with potential roles in governing the gene expression changes in infected hepatocytes (adjusted p value < 0.05, Figure 7; Figure 7—source data 1). In infected hepatocytes, we found enrichment of transcripts governed by NRF2 (Figure 7; Figure 7—source data 1). The regulation of gene expression through NRF2 in infected hepatocytes may serve to minimize reactive oxygen species in the cell (Hayes and Dinkova-Kostova, 2014). Thus, in addition to the decreased expression of genes associated with inflammatory response (Figure 6—source data 1C), NRF2-mediated regulation of antioxidant responsive genes may protect hepatocytes from *Plasmodium*-induced stress and thus serve as a complementary means of minimizing the host inflammatory response.

DISCUSSION

The infection of the liver by *P. vivax* constitutes an obligatory step in its life-cycle. *In vivo* studies have shown that within hepatocytes, *P. vivax* can exist in one of two phenotypically-distinct forms: schizonts or hypnozoites (Cogswell, 1992; Mikolajczak et al., 2015). They have also been observed *ex vivo* by infection of hepatocyte monolayers (Gural et al., 2018; Hollingdale et al., 1985; Roth, Maher et al., 2018; Sattabongkot et al., 2006). A key problem hindering the study of *P. vivax* liver stage biology is the difficulty involved in obtaining a sufficient number of infected hepatocytes to make meaningful comparisons between them. We show that by coupling our *in vitro* liver stage model (Maher et al., 2021; Roth, Maher et al., 2018) with a high-throughput single-cell capture technology (Klein et al., 2015; Macosko et al., 2015; Zheng et al., 2017) that transcriptome-wide characterization of *P. vivax*-infected hepatocytes is feasible. The findings provide much needed insight into the molecular signatures of *P. vivax* hypnozoites and the host cells they infect.

Our work corroborates the growing number of *Plasmodium* spp. scRNA-seq data sets, revealing highly variable gene expression patterns across, and within, the various stages of the parasite’s life cycle.
Smaller and non-replicating parasites stages (i.e. rings, sporozoites) tend to have fewer genes detected using single-cell approaches. Here, the number of genes detected, as well as the UMIs, per hypnozoite is in line with other single-cell reports assessing the transcriptomic signatures of non-replicating stages of the parasite’s life cycle (Bogale et al., 2021; Howick et al., 2019; Real et al., 2021; Ruberto et al., 2021b), including hypnozoites (Mancio-Silva et al., 2022). Our transcriptome-wide assessment supports the notion that hypnozoites are metabolically active (Adams and Mueller, 2017), demonstrated by the transcription of genes associated with various biological functions including glycolysis and fatty acid metabolism. Furthermore, the expression of genes associated with oxidative stress protection, protein export, mitochondrial respiration, and epigenetic mechanisms such as histone methylation and acetylation, are detectable in hypnozoites, suggesting these parasites are both viable and actively transcribing genes to survive.

We also found that hypnozoites exist in various transcriptomic states. We speculate that these differences might represent a spectrum of phenotypes, from persisting to activating. Interestingly, no loss in gene diversity or expression was found in hypnozoites associated with cluster C1 (persisters) in our hypnozoite-directed analysis, suggesting this subpopulation encodes for viable, distinct forms. In the persister hypnozoite cluster, the differential expression of genes encoding for cellular fating RBPs supports the hypothesis that these forms may use post-transcriptional mechanisms to control gene usage (Mueller et al., 2019). The biological significance of the enrichment of genes associated with translational repression, found exclusively in a subpopulation of hypnozoites (C1), suggests this mechanism may govern quiescence, and warrants further investigation.

Discerning between non-replicating, uninucleate forms and dead parasites poses a challenge. The absence of a validated hypnozoite viability marker further complicates assessments. These limitations notwithstanding, the data reported here seem to suggest that the transcriptomes assessed represent viable parasites. Similar to a recent study using a non-relapsing rodent malaria model (Afriat et al., 2021), we inferred parasite viability based on visual assessment of fixed cell cultures using an immunofluorescence assay (IFA). For each scRNA-seq library processed, we dedicated cultures from the same infection to provide a visual snapshot of the parasite viability at each end point. While Afriat and colleagues (2021) define abortive forms as displaying “vacuole breakdown,” upon inspection of our cultures, we did not find indications of abortive or dead parasites. Moreover, the parasites morphologically identified as hypnozoites were highly similar in morphology to those described in humanized mice (Mikolajczak et al., 2015) and in vitro (Roth, Maher et al., 2018). More specifically, they displayed positive PvUIS4 staining for an intact parasitophorous vacuole membrane and a distinctive prominence. These forms have been shown to activate in vivo (Mikolajczak et al., 2015) as well as in vitro (Maher et al., 2020). Additionally, they have been shown to be susceptible to treatment with primaquine in combination with chloroquine and ionophores, implying they were alive to begin
with (Maher et al., 2021). At the molecular level, we did not find consistencies between our data and the transcriptomic signatures of “abortive” *P.berghei* liver forms reported by Afriat and colleagues (2021). For example, orthologous expression of genes encoding for HSP90, HSP70, and HOP—three markers defining abortive parasites in their dataset—displayed greater expression in the schizont cluster relative to hypnozoites. These observations further support the hypothesis that hypnozoite transcriptomes assessed in this study were derived from viable parasites.

We highlight distinct transcriptomic signatures of infected versus non-infected hepatocytes, and show that signaling pathways associated with energy metabolism, antioxidant stress, and immune response are altered in infected hepatocytes. The extent to which individual hepatocytes respond to *P. vivax* schizonts and hypnozoites has previously been unknown. A bulk RNA sequencing approach has been used to identify pathways altered in hepatocytes in response to *Plasmodium* infection (LaMonte et al., 2019); however, it is limited insofar as it averages gene expression from millions of cells, obscuring any parasite-specific effects on an infected cell. Targeted approaches have revealed *P. vivax* liver forms recruit host factors to facilitate growth (LaMonte et al., 2019; Posfai et al., 2020), but how certain infected hepatocyte populations contribute to disease transmission, and how hepatocyte subpopulations support development, are intriguing topics for future studies (Vijayan et al., 2021). Our data identify potential host factors essential for *P. vivax*’s successful liver stage development. Whether certain hepatocyte phenotypes influence the development, especially activation of hypnozoites into schizonts, requires further investigation.

Several observations suggest protein degradation may be important for the parasite’s liver stages. Targeting mechanisms related to this process may therefore be an effective means of killing these forms. For instance, the ability of hepatocytes to uptake and break down hemoglobin (Bissell et al., 1972) supports that this protein substrate could be an essential amino acid source for the parasite. Our data suggest that several mechanisms may allow *P. vivax* to utilize the amino acids derived from this protein; or more broadly, any protein substrate. In hypnozoites, the increased expression of genes encoding for proteases, such as vivapains, supports the idea that these parasites digest cytosolic proteins. The role of these proteins as hemoglobinases have been defined extensively in *P. falciparum* blood stages (Drew et al., 2008; Rosenthal, 2011; Salas et al., 1995). A similar role has been described for *P. vivax* (Byoung-Kuk et al., 2004), but there is limited information about their significance in the liver stages. Interestingly, a recent report using a complementary single-cell capture technology (Hughes et al., 2020) also found that these genes display greater expression in hypnozoites relative to schizonts (Mancio-Silva et al., 2022). Vivapains are highly homologous to cathepsin protease L (TgCpl) in the related apicomplexan *Toxoplasma gondii*. In these parasites, TgCpl is localized to its plant-like vacuolar compartment—a lysosome-like organelle containing a variety of proteases (Parussini et al., 2010)—and one of its functions is to aid in the digestion of host-derived proteins (Dou et al., 2014). Genetic or
Persistence of hypnozoites is contingent on the longevity of the hepatocyte in which it resides. The increased expression of genes associated with antioxidant stress (Scarpulla, 2002) is consistent with the hypothesis that hypnozoite infection induces changes in the hepatocyte to promote cell survival, in which NRF2 could be playing a regulatory role (Bindschedler et al., 2022). One host gene upregulated in infected hepatocytes validated by IFA, AKR1B10, is regulated by NRF2, which activates protective pathways in response to oxidative stress (Tebay et al., 2015). We also detected genes displaying greater expression in infected hepatocytes regulated by NFYB, a transcription factor important for cell proliferation, mitochondrial integrity, and cellular longevity (Tharyan et al., 2020). At day 5 post-infection, the increased expression of mitochondria-related genes in hepatocytes infected with schizonts may be required to meet the parasite’s energy demands during replication, but the enrichment of mitochondria-related genes in cells infected with hypnozoites could also aid in ensuring longevity of the hepatocyte. In addition to these positive regulators of cell survival, we found a decreased expression of genes associated with cell death such as UBB, UBC, and HSP90AB1, potentially regulated by CEBPD, a transcription factor with a role in cell death (Tsai et al., 2017; Wang et al., 2019).

Persistence of hypnozoites also requires evading host detection. Our analyses indicate the parasite alters the host hepatocyte to evade detection by immune cells. First, there is a decrease in expression of genes encoding for chemoattractants (CCL20, CXCL8, IL32) in infected hepatocytes, and an increase in expression of PTGR1, a negative regulator of the chemotactic factor leukotriene B4 (Yokomizo et al., 1993). These changes would result in decreased secretion of chemokines that recruit innate immune cells to the liver, thereby reducing recruitment of adaptive immune cells like CD8 T-cells that kill infected hepatocytes (Chakravarty et al., 2007). Interestingly, there was also a decrease in expression of MHC-I molecules (HLA-A and -B). The presentation of parasite peptides to be detected by surveying CD8 T-cells would therefore be reduced (Neefjes et al., 2011), creating an additional layer of protection should innate immune cells be recruited, for example upon lysis of the hepatocyte by schizonts. We propose that *P. vivax* infected hepatocytes are re-programmed to prevent recruitment of innate immune cells on the one hand, and to reduce the likelihood of their detection by the adaptive immune system on the other, all to enable progress through schizogony and for hypnozoites to persist undetected. Understanding the mechanisms leading up to this warrant further investigation, as their reversal may lead to improved clearance of hypnozoites, thus reducing relapses. Indeed, a vaccine would need to decrease relapses to have an impact on *P. vivax* transmission and disease (White et al., 2017), but the decrease of MHC-I expression in infected hepatocytes may mean that standard focuses to generate CD8 and CD4 polyfunctional T-cells in the liver may not effectively eliminate *P. vivax*. Recent chemical disruption of TgCpl negatively impacts the viability of bradyzoites, a persisting form of this parasite (di Cristina et al., 2017). Given these orthologous proteins’ roles in *P. falciparum* and *T. gondii*, we speculate that the expression of vivapains may support the persistence of *P. vivax* hypnozoites.
attempts to test anti-relapse vaccine candidates with *P. cynomolgi* did not prevent relapses despite higher inducing IFNγ producing cells, a common metric used as a correlate of protection (Kim et al., 2020), indicating that alternative strategies may be needed.

Our transcriptome-wide characterization of schizonts, hypnozoites, and infected hepatocytes highlights transcripts altered during infection, and provides a framework for examining the role of infection dynamics of *P. vivax* liver stages. By examining two early liver stage time points at single-cell resolution, our study lays out a proof of principle and a technical advance demonstrating the importance of *in vitro* models to shed light on the molecular basis of *P. vivax* liver stage development and infection.

To conclude, the overall aim of our research was to elucidate the molecular signatures of *P. vivax* liver infection, a better understanding of which will aid in facilitating the development of new therapeutics to ultimately reduce transmission. We anticipate that interventions could involve parasite- and/or host-directed small molecule therapies, both of which our group is actively pursuing. The comprehensive mapping of the transcriptional landscape of both the host and *P. vivax* described here provides an important framework for further investigation.

MATERIALS AND METHODS

Ethics statement

All research procedures were reviewed and approved by the Cambodian National Ethics Committee for Health Research (approval numbers: #113NECHR, #104NECHR and #089NECHR).

Blood samples, mosquitos, and infections

The complete protocol used for mosquito rearing and infection has been published (Maher et al., 2021). In brief, blood samples from symptomatic patients infected with *P. vivax* were collected at local health facilities in Mondulkiri province in Cambodia from March 2020 to October 2021. Following a *P. vivax* gametocyte-containing blood meal, *An. dirus* mosquitos were maintained at ambient temperature on a 12:12 light: dark cycle and fed 10% sucrose + 0.5% PABA solution. *An. dirus* found positive for *P. vivax* oocysts at six-days post-feeding were transported to the Institut Pasteur Cambodia Insectary Facility in Phnom Penh, Cambodia where they were maintained under the same conditions described above.
Sporozoite isolation and primary human hepatocyte infections

The complete protocol used for seeding primary human hepatocytes, harvesting sporozoites, and infecting cultures has been published (Maher et al., 2021). In brief, *P. vivax* sporozoites were isolated from the salivary glands of female *An. dirus* mosquitoes 18 days after an infectious blood-meal. Primary human hepatocytes (Lot BGW, BioIVT) were seeded 2 days before infection with 30,000 sporozoites (replicate 1), or 15,200 sporozoites (replicate 2) per well. Media was replaced with fresh CP media (BioIVT) containing antibiotics (penicillin, streptomycin, and gentamycin) the day after infection and every 2-3 days thereafter. Hepatocytes were treated with 1 µM MMV390048 on days 5, 6, and 7 post-infection to kill replicating schizonts, resulting in cultures with solely hypnozoites at 9 days post-infection. At days 5 and 9 post-infection, cultures were processed for single-cell partitioning (described in the following section) or immunofluorescence assay (IFA). For the latter, hepatocytes were fixed with 4% paraformaldehyde in 1X PBS. Fixed cultures were then stained overnight at 4°C with recombinant mouse anti-*P. vivax* UIS4 antibody (Schäfer et al., 2018) diluted 1:25,000 in a stain buffer (0.03% Triton X-100) and 1% (w/v) BSA in 1X PBS. The following day, cultures were washed three times with 1X PBS and then stained overnight at 4°C with rabbit anti-mouse AlexaFluor™488-conjugated antibody (Thermo Fisher) diluted 1:1,000 in stain buffer. Cultures were washed three times with 1X PBS and counterstained with 1 mg/mL Hoechst 33342 (Thermo Fisher) to detect parasite and host DNA. High content imaging was performed on a Lionheart imaging system (Biotek). Quantification of the number of nuclei and parasite liver forms was performed using Gen5 high content analysis software (Biotek). Confocal images were obtained using an ImageXpress Imaging System (Molecular Devices).

Single-cell partitioning, library preparation, and sequencing

Hepatocyte cultures infected with *P. vivax* were processed prior to- and post- MMV390048 treatment (5- and 9-days post-infection, respectively). Two replicate experiments, defined as an independent plating of hepatocytes infected with sporozoites from a unique field isolate, were performed several months apart. Additionally, and as a negative control, one replicate of hepatocyte cultures never exposed to *P. vivax* (naïve) were processed similarly to those that were infected. At each endpoint for each replicate, approximately 640,000 primary human hepatocytes (16 wells of a 384-well plate each having approximately 10,000 cells) were treated with trypsin (Corning 25-053-CI) to facilitate their detachment from the plate. Once detached, trypsin was inactivated with 1:1 complete media and the cell suspension was collected into a 5mL protein-low bind centrifuge tube (Eppendorf). To remove residual trypsin, hepatocytes were washed via three sequential rounds of pelleting (50 x g, 3 min, 4°C) and resuspending in 1X PBS containing 0.1% BSA. Cells were then passed through a 35µm strainer (Falcon 352235) to minimize or remove hepatocyte clusters. Prior to partitioning cells on the Chromium controller (10x Genomics), hepatocytes were counted and the cell concentration was assessed using a hemocytometer.
Approximately 10,000 hepatocytes were loaded on a Chromium Chip B (10x Genomics) as per manufacturer’s recommendations. Chips containing hepatocyte suspensions, Gel Beads in Emulsion (GEMs), and reverse transcription reagents were loaded into the Chromium controller (10x Genomics) for single-cell partitioning and cell barcoding. Barcoded cDNA libraries were generated according to the Chromium Single Cell 3’ gene expression protocol (version 3). In total, 6 cDNA libraries were generated (two replicates at 5 days post-infection, two replicates at 9 days post-infection, one uninfected control for day 5 cultures, and one uninfected control for day 9 cultures). Libraries were loaded on individual flow cell lanes and sequenced at a depth of 400 million reads using a HiSeq X Ten platform (Illumina) at Macrogen (Seoul, Korea).

Computational analysis of single-cell RNA sequencing data

Quality control checks on the raw sequencing data were performed using FASTQC (Andrews, 2010). In a manner similar to other host-pathogen single-cell studies (Ren et al., 2021; Szabo et al., 2021), a multi-species transcriptome index containing the transcriptomes for *P. vivax* P01 (PlasmoDB.org, version 51) and *H. sapiens* GRCh8 (Ensembl, version 103) was created using the ‘ref’ function in kb-python (0.26.3)— a python package that wraps the kallisto | bustools single-cell RNA-seq workflow (Bray et al., 2016; Melsted et al., 2021). The *P. vivax* P01 transcriptome file used for the generation of the multi-species index contained gene regions encoding for UTRs (Siegel, Chappell et al., 2020). Next, using the same package, reads were pseudoaligned and counted using the ‘count’ function with parameters suitable for sequencing data generated from version 3 of 10x Genomics’ 3’ gene expression technology: `kb count -i human_Pv_index.idx -g t2g.txt -x 10xv3 -t8 -o /path/to/read/10xV3sequencesread1.fastq.gz path/to/10xV3sequencesread2.fastq.gz`. After performing kb count on the sequencing outputs from the 6 single-cell libraries, the resulting unfiltered cell-gene count matrices were read into R (v 4.1.1) for further host and parasite-specific processing described in the following sections.

Filtering and normalization of scRNA-seq count matrices

To distinguish between droplets containing cells and those only with ambient RNA, we used DropUtils’ emptyDrops function (Lun et al., 2019) with the lower total UMI count threshold (at or below which all barcodes are assumed to correspond to empty droplets) set to 1,000. The droplets with cells (FDR < 0.001), more specifically, those containing barcoded transcripts derived from either human, parasite, or a combination of the two—were kept for downstream processing.

Assessment of *P. vivax* liver stage transcriptomes
For the analyses of *P. vivax*, we filtered out the transcripts derived from human, leaving only transcripts derived from the parasite to be assessed. All samples were processed independently. For each sample, cells with less than 60 genes detected were removed. Next, we filtered out genes with low counts, retaining genes with 10 or greater UMIs across all cells. Post cell and gene filtering, the data were normalized using Seurat (Stuart et al., 2019) ‘LogNormalize’ function with the default parameters selected.

Data integration and clustering

The data were integrated using Seurat’s SCTransform function (Hafemeister and Satija, 2019) with the following parameters indicated: variable.features.n = NULL, variable.features.rv.th = 1.3. Clustering was performed using the Seurat functions FindNeighbours (dims = 1:20) followed by FindClusters (resolution = 0.1, algorithm = 4 for all data or resolution = 0.3, algorithm = 4 for hypnozoite filtered data).

Differential gene expression analysis

To detect differentially expressed genes, the Seurat function FinalAllMarkers and FindMarkers were used. For differential gene expression testing using the FindMarkers function, we used the following parameters: logfc.threshold = 0.0, ident.1 = '1', ident.2 = '2', test.use = "wilcox", min.pct = 0, only.pos = F, assay = "RNA". For differential gene expression testing using the FindAllMarkers function, we used the following parameters: test.use = "wilcox", only.pos = T, assay = "RNA", log2FC = 0.0. For the schizont versus hypnozoite comparisons, genes with a Bonferroni adjusted p value < 0.01 & absolute average log2 FC > 0.5 were used RBP and GO analyses. For the hypnozoite versus hypnozoite comparisons, genes with a Bonferroni adjusted p value of < 0.05 and absolute average log2 FC > 0.5 were used for RBP and GO analysis.

RBP analyses

RBPs with cell fating potential reported in humans (Decker and Parker, n.d.; Gerstberger et al., 2014; Guallar and Wang, 2014; Voronina et al., 2011; Youn et al., 2019) were manually curated. The orthologues of these cell fating RBPs in *P. vivax* were obtained using OrthoMCL (Release-6.8) (Chen et al., 2006). Within the differentially expressed genes, genes encoding for cell fating RBPs were filtered for further assessment.

GO enrichment analyses
GO enrichment analysis was performed on the PlasmoDB (v55) website with the following input parameters selected: P value cutoff = 0.05; Limit to GO Slim terms = No; Evidence: Computed, curated. Enrichment from GO cellular compartment (CC), biological processes (BP), and molecular function (MF) were all assessed. Gene with an Bonferroni adjusted p value < 0.05 were considered significantly enriched.

Assessment of human hepatocyte transcriptomes

For the analyses of hepatocytes, we removed all transcripts derived from \textit{P. vivax}, leaving only the transcripts derived from hepatocytes. We retained transcripts detected in at least 30 cells. Next, cells with less than 1,500 UMIs were removed from further analyses. Post-cell and gene filtering, the data from each replicate were normalized using Seurat’s ‘LogNormalize’ function with the default parameters.

Data integration and low dimensional reduction

Filtered, normalized data matrices were integrated in a manner described in in the Seurat (version 4) vignette, \textit{Introduction to scRNA-seq integration}, available on the Sajita Lab’s website (https://satijalab.org/seurat/articles/integration_introduction.html). Briefly, integration features were identified in each replicate using the ‘SelectIntegrationFeatures’ function with the nFeatures parameter set to 3000. Next, we used ‘PrepSCTIntegration’ to prepare object list containing the 3000 features for integration. We then used ‘FindIntegrationAnchors’ to identify a set of anchors between datasets with the following parameters specified: normalization.method = “SCT”, anchor.features = “features”, reference = naïve hepatocytes day 5). Last, using these anchors, the six datasets were integrated using the ‘IntegrateData’ function with the following parameters specified: normalization.method = “SCT”. After integrating the data, we perform dimensionlty reduction using the ‘RunPCA’ function, followed by ‘RunTSNE’ with 1:30 dimensions selected.

Gene Ontology and Reactome enrichment analyses

Enriched biological processes and pathways were determined using gProfiler (Raudvere et al., 2019) with the following options selected: ordered query, statistical domain scope—only annotated genes, significance threshold—g:SCS threshold, user threshold—0.05, Gene Ontology—GO biological processes, No electronic GO annotations, biological pathways—Reactome. Transcripts that displayed significant changes in expression in infected hepatocytes versus non-infected hepatocytes were used as input. EnrichmentMap (v 1.1.0) (Merico et al., 2010) for CytoScape (v 3.8.2) (Shannon et al., 2003) was used to create the enrichment networks. Significantly enriched GO biological processes and Reactome pathways (adjusted p value < 0.05) were used as input. Pathways were clustered and annotated using
the AutoAnnotate function (Kucera et al., 2016). Node size corresponds to the number of transcripts in the corresponding set, and edge widths correspond to the number of transcripts shared between sets.

Transcription factor enrichment analysis

We downloaded curated sets of known transcription factors from the website (http://amp.pharm.mssm.edu/Enrichr) (Kuleshov et al., 2016). Transcription factor—target gene sets were obtained by ChIP-X experiments from the ChEA (Lachmann et al., 2010) and ENCODE (Feingold and Pachter, 2004) projects. TF-target relationships using Chip-seq data from ENCODE and CHEA were used to identify overrepresented pathways and TFs. Differentially expressed genes (Bonferroni adjusted p value < 0.05) in each condition versus non-infected cells were used as inputs. Gene sets with an q value < 0.05 were considered significantly enriched.

Carfilzomib dose-response assessment

A carfilzomib dose-response against *P. vivax* liver forms was obtained from three independent experiments, in which a different *P. vivax* clinical isolate was allowed to infect BGW human hepatocytes. The 12-day assay was used (Maher et al., 2021). All independent experiments resulted in sufficient hypnozoite formation within each well for dose-response calculations. Liver stage parasite growth metrics and compound dilutions were loaded into CDD Vault (Collaborative Drug Discovery) and growth data normalized such that zero (negative) inhibition was set as the average of DMSO wells and 100% (positive) inhibition was set to the effective doses of a nigericin control. Normalized values were then combined in Graphpad Prism to fit a dose-response curve and calculated IC\text{50} values from all replicates.

Quantification of AKR1B10 protein expression

To analyze AKR1B10 expression and localization, *P. vivax*-infected primary human hepatocytes were fixed 12 days post-infection. Five independent hepatocyte infections were used. Infected wells were then permeabilized for 20 minutes with 0.2% TritonX-100, washed thrice with 1X PBS, and blocked in 3% BSA for one hour. Primary antibodies rabbit anti-HsAKR1B10 (PA5-30773, Thermo Fisher) and mouse anti-\text{PvUIS4} were sequentially added, diluted 1:100 and 1:500, respectively. Antibodies were incubated overnight at 4\textdegree C and washed 3 times with 1X PBS before addition of 1:400 Alexa- Fluor 568 donkey anti-rabbit for HsAKR1B10 or 1:400 AlexaFluor 488 goat anti-mouse for \text{PvUIS4}. Secondary antibodies were incubated overnight at 4\textdegree C. Cells were washed thrice with 1X PBS before adding 0.5 mg/mL DAPI for 10 minutes. Cells were washed 3 final times with 1X PBS before image collection.
with an ImageXpress inverted confocal microscope (Molecular Devices). Image analysis was completed using MetaXpress analysis software (Molecular Devices).

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dennis Kyle (email: dennis.kyle@uga.edu).

Data availability

All raw sequencing data have been deposited in the European Nucleotide Archive at European Molecular Biology Laboratory European Bioinformatics Institute (www.ebi.ac.uk/ena/) under accession number PRJEB52293. Scripts containing the code used to process the single-cell RNA seq data are available on GitHub at: https://github.com/AnthonyRuberto/Pv_LS_singleCell. Archived scripts (Shell and R) and output files as at time of publication will be made available on Zenodo.

Acknowledgements

We thank the patients of Mondulkiri Province, Cambodia, for participating in this study. We thank the Institut Pasteur du Cambodge’s field site manager (Saorin Kim) for logistical assistance, insectary staff (Makara Pring, Koeun Kaing, Nora Sambath) for the *An. dirus* mosquito colony maintenance, and laboratory staff (Eakpor Piv, Chansophea Chhin, Sreyvouch Phen, Chansovandan Chhun, Sivcheng Phal, Baura Tat) for assistance with the mosquito dissections and the *in vitro* assays.

High-content imaging data was produced in part by the Biomedical Microscopy Core at the University of Georgia, supported by the Georgia Research Alliance. A.R.J., B.B. and I.M. acknowledge support from the Victorian State Government Operational Infrastructure Support and Australian Government National Health and Medical Research Council Independent Research Institute Infrastructure Support Scheme. This work was also supported by the Agence Nationale de la Recherche (ANR-17-CE13-0025 to A.A.R and I.M.); an Australian National Health and Medical Research Council Leadership Fellowship (APP1194330 to A.R.J.); the Bill & Melinda Gates Foundation (OPP1023601 to D.E.K.); and Medicines for Malaria Venture (RD/2017/0042 to B.W. and A.V., RD/16/1082 and RD/15/0022 to S.P.M. and D.E.K.).

A.A.R., S.P.M., A.V., I.M., B.W. and D.E.K conceived and designed the study; A.A.R, S.P.M. and A.V. performed the experiments; A.A.R., C.B., B.B. and C.J. curated the data; A.A.R., S.P.M., C.B., B.B., A.R.J. and C.J. performed the formal analyses; S.P.M., A.V. and I.M., B.W. and D.E.K.
coordinated the research activities; S.P.M., A.V., I.M., B.W. and D.E.K. provided resources; S.P.M. and D.E.K. acquired funding for the work; A.A.R wrote the initial draft of the manuscript; all authors reviewed and made contributions to the final version of the manuscript.

REFERENCES

Adams JH, Mueller I. 2017. The Biology of Plasmodium vivax. Cold Spring Harb Perspect Med 7: a025585. doi:10.1101/cshperspect.a025585

Adekunle AI, Pinkevych M, McGready R, Luxemburger C, White LJ, Nosten F, Cromer D, Davenport MP. 2015. Modeling the Dynamics of Plasmodium vivax Infection and Hypnozoite Reactivation In Vivo. PLOS Neglected Tropical Diseases 9: e0003595. doi:10.1371/JOURNAL.PNTD.0003595

Afriat A, Zuzarte-Luís V, Halpern KB, Buchauer L, Marques S, Lahree A, Amit I, Mota MM, Itzkovitz S. 2021. A spatiotemporally resolved single cell atlas of the Plasmodium liver stage. bioRxiv 2021.12.03.471111. doi:10.1101/2021.12.03.471111

Albuquerque SS, Carret C, Grosso AR, Tarun AS, Peng X, Kappe SHI, Prudência M, Mota MM. 2009. Host cell transcriptional profiling during malaria liver stage infection reveals a coordinated and sequential set of biological events. BMC Genomics 10: 1–13. doi:10.1186/1471-2164-10-270/FIGURES/6

Aldridge S, Teichmann SA. 2020. Single cell transcriptomics comes of age. Nature Communications 2020 11: 1:1–4. doi:10.1038/s41467-020-18158-5

Balu B, Maher SP, Pance A, Chauhan C, Naumov A v., Andrews RM, Ellis PD, Khan SM, Lin J wen, Janse CJ, Rayner JC, Adams JH. 2011. CCR4-Associated Factor 1 Coordinates the Expression of Plasmodium falciparum Egress and Invasion Proteins. Eukaryotic Cell 10: 1257. doi:10.1128/EC.05099-11

Battle KE, Karhunen MS, Bhatt S, Gething PW, Howes RE, Golding N, van Boeckel TP, Messina JP, Shanks GD, Smith DL, Baird JK, Hay SI. 2014. Geographical variation in Plasmodium vivax relapse. Malaria Journal 13: 1–16. doi:10.1186/1475-2875-13-144/TABLES/5

Baumgarten S, Bryant JM, Sinha A, Reyster T, Preiser PR, Dedon PC, Scherf A. 2019. Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development. Nat Microbiol 4: 2246. doi:10.1038/S41564-019-0521-7
Bindschedler A, Schmuckli-Maurer J, Wacker R, Kramer N, Rehmann R, Caldelari R, Heussler VT. 2022. Plasmodium berghei-Mediated NRF2 Activation in Infected Hepatocytes Enhances Parasite Survival. *Cellular Microbiology* **2022**:1–17. doi:10.1155/2022/7647976

Bissell DM, Hammaker L, Schmid R. 1972. Hemoglobin and Erythrocyte Catabolism in Rat Liver: The Separate Roles of Parenchymal and Sinusoidal Cells. *Blood* **40**:812–822. doi:10.1182/BLOOD.V40.6.812.812

Bogale HN, Pascini T v., Kanatani S, Sá JM, Wellemens TE, Sinnis P, Vega-Rodriguez J, Serre D. 2021. Transcriptional heterogeneity and tightly regulated changes in gene expression during *Plasmodium berghei* sporozoite development. *Proceedings of the National Academy of Sciences* **118**:e2023438118. doi:10.1073/pnas.2023438118

Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. *Nat Biotechnol* **34**:525–527. doi:10.1038/NBT.3519

Bunnik EM, Batugedara G, Saraf A, Prudhomme J, Florens L, le Roch KG. 2016. The mRNA-bound proteome of the human malaria parasite *Plasmodium falciparum*. *Genome Biol* **17**. doi:10.1186/S13059-016-1014-0

Byoung-Kuk NA, Shenai BR, Sijwali PS, Choe Y, Pandey KC, Singh A, Craik CS, Rosenthal PJ. 2004. Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite *Plasmodium vivax*. *Biochemical Journal* **378**:529. doi:10.1042/BJ20031487

Caldelari R, Dogga S, Schmid MW, Franke-Fayard B, Janse CJ, Soldati-Favre D, Heussler V. 2019. Transcriptome analysis of *Plasmodium berghei* during exo-erythrocytic development. *Malaria Journal* **18**:330. doi:10.1186/s12936-019-2968-7

Chakravarty S, Cockburn IA, Kuk S, Overstreet MG, Sacci JB, Zavala F. 2007. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. *Nature Medicine* **2007 13**:9 **13**:1035–1041. doi:10.1038/nm1628

Chen F, Mackey AJ, Stoeckert CJ, Roos DS. 2006. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. *Nucleic Acids Res* **34**. doi:10.1093/NAR/GKJ123

Chua ACY, Jie J, Ong Y, Malleret B, Suwansaruk R, Kosaisavee V, Zeeman A-M, Cooper CA, Tan KSW, Zhang R, Tan BH, Abas SN, Yip A, Elliot A, Joyner CJ, Cho JS, Breyer K, Baran S, Lange...
A, Maher SP, Nosten F, Bodenreider C, Yeung BKS, Mazier D, Galinski MR, Dereuddre-Bosquet N, le Grand R, Kocken CHM, Rénia L, Kyle DE, Diagana TT, Snounou G, Russell B, Bifani P. 2019. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat Commun 10:1–13. doi:10.1038/s41467-019-11332-4

Cogswell FB. 1992. The hypnozoite and relapse in primate malaria. Clin Microbiol Rev 5:26–35. doi:10.1128/CMR.5.1.26

Commons RJ, Simpson JA, Watson J, White NJ, Price RN. 2020. Estimating the Proportion of Plasmodium vivax Recurrences Caused by Relapse: A Systematic Review and Meta-Analysis. Am J Trop Med Hyg 103:1094–1099. doi:10.4269/AJTMH.2018-6

Cubi R, Vembar SS, Biton A, Franetich J-F, Bordessoules M, Sossau D, Zanghi G, Bosson-Vanga H, Benard M, Moreno A, Dereuddre-Bosquet N, le Grand R, Scherf A, Mazier D. 2017. Laser capture microdissection enables transcriptomic analysis of dividing and quiescent liver stages of Plasmodium relapsing species. Cellular Microbiology 19:e12735. doi:10.1111/cmi.12735

Dame JB, Yowell CA, Omara-Opyene L, Carlton JM, Cooper RA, Li T. 2003. Plasmepsin 4, the food vacuole aspartic proteinase found in all Plasmodium spp. infecting man. Mol Biochem Parasitol 130:1–12. doi:10.1016/S0166-6851(03)00137-3

Decker CJ, Parker R. n.d. P-Bodies and Stress Granules: Possible Roles in the Control of Translation and mRNA Degradation. doi:10.1101/cshperspect.a012286

di Cristina M, Dou Z, Lunghi M, Kannan G, Huynh M-H, McGovern OL, Schultz TL, Schultz AJ, Miller AJ, Hayes BM, van der Linden W, Emiliani C, Bogyo M, Bestiero S, Coppens I, Carruthers VB. 2017. Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection. doi:10.1038/nmicrobiol.2017.96

Diez-Dacal B, Gayarre J, Gharbi S, Timms JF, Coderch C, Gago F, Pérez-Sala D. 2011. Identification of aldo-keto reductase AKR1B10 as a selective target for modification and inhibition by prostaglandin A(1): implications for antitumoral activity. Cancer Res 71:4161–4171. doi:10.1158/0008-5472.CAN-10-3816

Dou C, Megovern ZL, Cristina D di, Carruthers MB. 2014. Toxoplasma gondii ingests and digests host cytosolic proteins. mBio 5:1188–1202. doi:10.1128/mBio.01188
Drew ME, Banerjee R, Uffman EW, Gilbertson S, Rosenthal PJ, Goldberg DE. 2008. Plasmodium Food Vacuole Plasmepsins Are Activated by Falcipains. The Journal of Biological Chemistry 283:12870. doi:10.1074/JBC.M708949200

Feingold E, Pachter L. 2004. The ENCODE (ENCyclopedia of DNA Elements) Project. Science (1979) 306:636–640. doi:10.1126/SCIENCE.1105136/SUPPL_FILE/FEINGOLD.SOM.DC2.PDF

Foth BJ, Zhang N, Chaal BK, Sze SK, Preiser PR, Bozdech Z. 2011. Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum. Molecular and Cellular Proteomics 10. doi:10.1074/mcp.M110.006411

Fukumoto SI, Yamauchi N, Moriguchi H, Hippo Y, Watanabe A, Shibahara J, Taniguchi H, Ishikawa S, Ito H, Yamamoto S, Iwanari H, Hironaka M, Ishikawa Y, Niki T, Sohara Y, Kodama T, Nishimura M, Fukayama M, Dosaka-Akita H, Aburatani H. 2005. Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers’ non-small cell lung carcinomas. Clin Cancer Res 11:1776–1785. doi:10.1158/1078-0432.CCR-04-1238

Gerstberger S, Hafner M, Tuschi T. 2014. A census of human RNA-binding proteins. Nature Reviews Genetics 2014 15:12 15:829–845. doi:10.1038/nrg3813

Govaere O, Cockell S, Tiniakos D, Queen R, Younes R, Vacca M, Alexander L, Ravaioli F, Palmer J, Petta S, Bourrier J, Rosso C, Johnson K, Wonders K, Day CP, Ekstedt M, Orešić M, Darlay R, Cordell HJ, Marra F, Vidal-Puig A, Bedossa P, Schattenberg JM, Clément K, Allison M, Bugianesi E, Ratziu V, Daly AK, Anstee QM. 2020. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med 12. doi:10.1126/SCITRANSLMED.ABA4448

Guallar D, Wang J. 2014. RNA-binding proteins in pluripotency, differentiation, and reprogramming. Frontiers in Biology 9:389–409. doi:10.1007/s11515-014-1326-y

Gupta DK, Dembele L, Voorberg-Van Der Wel A, Roma G, Yip A, Chuenchob V, Kangwanrangsan N, Ishino T, Vaughan AM, Kappe SH, Flannery EL, Sattabongko J, Mikolajczak S, Bifani P, Kocken CHM, Diagana TT. 2019. The plasmodium liver-specific protein 2 (LISP2) is an early marker of liver stage development. Elife 8. doi:10.7554/ELIFE.43362
Culture, Drug Sensitivity, and Transcriptome of Plasmodium Vivax Hypnozoites. *Cell Host Microbe* **23**:395-406.e4. doi:10.1016/j.chom.2018.01.002

Hafemeister C, Satija R. 2019. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. *Genome Biology* **20**:1–15. doi:10.1186/S13059-019-1874-1/FIGURES/6

Hayes JD, Dinkova-Kostova AT. 2014. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. *Trends in Biochemical Sciences* **39**:199–218. doi:10.1016/J.TIBS.2014.02.002

Hentze MW, Castello A, Schwarzl T, Preiss T. 2018. A brave new world of RNA-binding proteins. *Nature Reviews Molecular Cell Biology* **2018 19**:5 **19**:327–341. doi:10.1038/nrm.2017.130

Hollingdale MR, Collins WE, Campbell C, Schwartz AL. 1985. In vitro culture of two populations (dividing and nondividing) of exoerythrocytic parasites of Plasmodium vivax. *Am J Trop Med Hyg* **34**:216–222. doi:10.4269/AJTMH.1985.34.216

Howick VM, Russell AJC, Andrews T, Heaton H, Reid AJ, Natarajan K, Butungi H, Metcalf T, Verzier LH, Rayner JC, Berriman M, Herren JK, Billker O, Hemberg M, Talman AM, Lawniczak MKN. 2019. The Malaria Cell Atlas: Single parasite transcriptomes across the complete Plasmodium life cycle. *Science* **365**:eaaw2619. doi:10.1126/science.aaw2619

Hughes TK, Wadsworth MH, Gierahn TM, Do T, Weiss D, Andrade PR, Ma F, de Andrade Silva BJ, Shao S, Tsoi LC, Ordovas-Montanes J, Gudjonsson JE, Modlin RL, Love JC, Shalek AK. 2020. Second-Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human Inflammatory Skin Pathologies. *Immunity* **53**:878-894.e7. doi:10.1016/J.IMMUNI.2020.09.015

Huldén Lena, Huldén Larry, Heliövaara K. 2008. Natural relapses in vivax malaria induced by Anopheles mosquitoes. *Malaria Journal* **7**:1–11. doi:10.1186/1475-2875-7-64/FIGURES/10

Itoe MA, Sampaio JL, Cabal GG, Real E, Zuzarte-Luís V, March S, Bhatia SN, Frischknecht F, Thiele C, Shevchenko A, Mota MM. 2014. Host Cell Phosphatidylcholine Is a Key Mediator of Malaria Parasite Survival during Liver Stage Infection. *Cell Host & Microbe* **16**:778. doi:10.1016/J.CHOM.2014.11.006
Jin J, Krishack P, Cao D. 2006. Role of aldo-keto reductases in development of prostate and breast cancer. *Front Biosci* 11:2767–2773. doi:10.2741/2006

Kim YC, Dema B, Rodriguez-Garcia R, López-Camacho C, Leoratti FMS, Lall A, Remarque EJ, Kocken CHM, Reyes-Sandoval A. 2020. Evaluation of Chimpanzee Adenovirus and MVA Expressing TRAP and CSP from Plasmodium cynomolgi to Prevent Malaria Relapse in Nonhuman Primates. *Vaccines (Basel)* 8:1–14. doi:10.3390/VACCINES8030363

Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J. 2011. Counting absolute numbers of molecules using unique molecular identifiers. *Nature Methods* 9:72–74. doi:10.1038/nmeth.1778

Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. *Cell* 161:1187–1201. doi:10.1016/j.cell.2015.04.044

Kortuem KM, Stewart AK. 2013. Carfilzomib. *Blood* 121:893–897. doi:10.1182/BLOOD-2012-10-459883

Krotoski WA, Collins WE, Bray RS, Garnham PC, Cogswell FB, Gwadz RW, Killick-Kendrick R, Wolf R, Sinden R, Koontz LC, Stanfill PS. 1982. Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. *Am J Trop Med Hyg* 31:1291–1293. doi:10.4269/AJTMH.1982.31.1291

Krotoski WA, Garnham PCC, Cogswell FB, Collins WE, Bray RS, Gwasz RW, Killick-Kendrick R, Wolf RH, Sinden R, Hollingdale M. 1986. Observations on early and late post-sporozoite tissue stages in primate malaria. IV. Pre-erythrocytic schizonts and/or hypnozoites of Chesson and North Korean strains of Plasmodium vivax in the chimpanzee. *American Journal of Tropical Medicine and Hygiene* 35:263–274. doi:10.4269/AJTMH.1986.35.263

Kucera M, Isserlin R, Arkhangorodsky A, Bader GD. 2016. AutoAnnotate: A Cytoscape app for summarizing networks with semantic annotations. *F1000Res* 5. doi:10.12688/F1000RESEARCH.9090.1

Kuleshov M v., Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A. 2016.
Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. *Nucleic Acids Res* 2016 update. *Nucleic Acids Res* 44:W90–W97. doi:10.1093/NAR/GKW377

Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma’ayan A. 2010. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. *Bioinformatics* 26:2438–2444. doi:10.1093/BIOINFORMATICS/BTQ466

LaMonte GM, Orjuela-Sanchez P, Calla J, Wang LT, Li S, Swann J, Cowell AN, Zou BY, Abdel-Haleem Mohamed AM, Villa Galarce ZH, Moreno M, Tong Rios C, Vinetz JM, Lewis N, Winzeler EA. 2019. Dual RNA-seq identifies human mucosal immunity protein Mucin-13 as a hallmark of Plasmodium exoerythrocytic infection. *Nature Communications* 10:488. doi:10.1038/s41467-019-08349-0

Le Roch KG, Johnson JR, Flores L, Zhou Y, Santrosyan A, Grainger M, Yan SF, Williamson KC, Holder AA, Carucci DJ, Yates JR, Winzeler EA. 2004. Global analysis of transcript and protein levels across the *Plasmodium falciparum* life cycle. *Genome Research* 14:2308–2318. doi:10.1101/GR.2523904

Liehl P, Mota MM. 2012. Innate recognition of malarial parasites by mammalian hosts. *International Journal for Parasitology* 42:557–566. doi:10.1016/J.IJIPARA.2012.04.006

Liehl P, Zuzarte-Luís V, Chan J, Zillinger T, Baptista F, Carapau D, Konert M, Hanson KK, Carret C, Lassnig C, Müller M, Kalinke U, Saeed M, Chora AF, Golenbock DT, Strobl B, Prudêncio M, Coelho LP, Kappe SH, Superti-Furga G, Pichlmair A, Vigário AM, Rice CM, Fitzgerald KA, Barchet W, Mota MM. 2013. Host-cell sensors for *Plasmodium* activate innate immunity against liver-stage infection. *Nature Medicine* 2013 20:1 20:47–53. doi:10.1038/nm.3424

Lun ATL, Riesenfeld S, Andrews T, Dao TP, Gomes T, Marioni JC. 2019. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. *Genome Biology* 20:63. doi:10.1186/s13059-019-1662-y

Lysenko Ja. A, Beljaev AE, Rybalka VM. 1977. Population studies of *Plasmodium vivax*: 1. The theory of polymorphism of sporozoites and epidemiological phenomena of tertian malaria. *Bull World Health Organ* 55:541.

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosch I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. 2015.
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.
Cell **161:**1202–1214. doi:10.1016/J.CELL.2015.05.002

MacParland SA, Liu JC, Ma X-Z, Innes BT, Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri J, Linares I, Gupta R, Cheng ML, Liu LY, Camat D, Chung SW, Seliga RK, Shao Z, Lee E, Ogawa S, Ogawa M, Wilson MD, Fish JE, Selzner M, Ghanekar A, Grant D, Greig P, Sapiochin G, Selzner N, Winegarden N, Adeyi O, Keller G, Bader GD, McGilvray ID. 2018. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. *Nature Communications* 9:4383. doi:10.1038/s41467-018-06318-7

Maher S, Vantaux A, Cooper C, Chasen N, Cheng W, Joyner C, Manetsch R, Witkowski B, Kyle D. 2021. A Phenotypic Screen for the Liver Stages of Plasmodium vivax. *BIO-PROTOCOL* 11. doi:10.21769/BIOPROTOC.4253

Maher SP, Conway AJ, Roth A, Adapa SR, Cualing P, Andolina C, Hsiao J, Turgeon J, Chaumeau V, Johnson M, Palmiotti C, Singh N, Barnes SJ, Patel R, van Grod V, Carter R, Sun H-CS, Sattabongkot J, Campo B, Nosten F, Saadi WM, Adams JH, Jiang RHY, Kyle DE. 2020. An adaptable soft-mold embossing process for fabricating optically-accessible, microfeature-based culture systems and application toward liver stage antimalarial compound testing. *Lab on a Chip*. doi:10.1039/C9LC00921C

Maher SP, Vantaux A, Chaumeau V, Chua ACY, Cooper CA, Andolina C, Péneau J, Rouillier M, Rizopoulos Z, Phal S, Piv E, Vong C, Phen S, Chhin C, Tat B, Ouk S, Doeurb K, Kim S, Suriyakan S, Kittiphanakun P, Awuku NA, Conway AJ, Jiang RHY, Russel B, Bifani P, Campo B, Nosten F, Witkowski B, Kyle DE. 2021. Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro. *Sci Rep* 11. doi:10.1038/S41598-021-99152-9

Mancio-Silva L, Gural N, Real E, Wadsworth MH, Butty VL, March S, Nerurkar N, Hughes TK, Roobsoong W, Fleming HE, Whittaker CA, Levine SS, Sattabongkot J, Shalek AK, Bhatia SN. 2022. A single-cell liver atlas of Plasmodium vivax infection. *Cell Host & Microbe*. doi:10.1016/J.CHOM.2022.03.034

Martin HJ, Maser E. 2009. Role of human aldo–keto-reductase AKR1B10 in the protection against toxic aldehydes. *Chemico-Biological Interactions* 178:145–150. doi:10.1016/J.CBI.2008.10.021
Melsted P, Booeshaghi AS, Liu L, Gao F, Lu L, Min KH (Joseph), da Veiga Beltrame E, Hjörleifsson KE, Gehring J, Pachter L. 2021. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. *Nature Biotechnology* 2021 39: 39:813–818. doi:10.1038/s41587-021-00870-2

Merico D, Isserlin R, Stueker O, Emili A, Bader GD. 2010. Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation. *PLOS ONE* 5:e13984. doi:10.1371/JOURNAL.PONE.0013984

Miao J, Li J, Fan Q, Li Xiaolian, Li Xinyi, Cui L. 2010. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. *Journal of Cell Science* 123:1039. doi:10.1242/JCS.059824

Mikolajczak SA, Vaughan AM, Kangwanrangsan N, Roobsoong W, Fishbaugher M, Yimmamnuaychok N, Rezakhani N, Lakshmanan V, Singh N, Kaushansky A, Camargo N, Baldwin M, Lindner SE, Adams JH, Sattabongkot J, Kappe SHI. 2015. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. *Cell Host Microbe* 17:526–535. doi:10.1016/J.CHOM.2015.02.011

Miller JL, Sack BK, Baldwin M, Vaughan AM, Kappe SHI. 2014. Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages. *Cell Reports* 7:436–447. doi:10.1016/J.CELREPORT.2014.03.018

Mueller I, Jex AR, Kappe SHI, Mikolajczak SA, Sattabongkot J, Patrapuvich R, Lindner S, Flannery EL, Koepfli C, Ansell B, Lerch A, Emery-Corbin SJ, Charnaud S, Smith J, Merrienne N, Swearingen KE, Moritz RL, Petter M, Duffy MF, Chuenchob V. 2019. Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and mechanisms for liver-stage differentiation in relapsing malaria. *International Journal for Parasitology* 49:501–513. doi:10.1016/J.IJIPARA.2019.02.007

Neefjes J, Jongsma MLM, Paul P, Bakke O. 2011. Towards a systems understanding of MHC class I and MHC class II antigen presentation. *Nature Reviews Immunology* 2011 11:12 11:823–836. doi:10.1038/nri3084

Paquet T, le Manach C, Cabrera DG, Younis Y, Henrich PP, Abraham TS, Lee MCS, Basak R, Ghidelli-Disse S, Lafuente-Monasterio MJ, Bantscheff M, Ruecker A, Blagborough AM, Zakutansky SE, Zeeman AM, White KL, Shackleford DM, Mannila J, Morizzi J, Scheurer C, Angulo-Barturen I, Santosmartinez M, Ferrer S, Sanz LM, Gamo FJ, Reader J, Botha M, Dechering KJ, Sauerwein
RW, Tungtaeng A, Vanachayangkul P, Lim CS, Burrows J, Witty MJ, Marsh KC, Bodenreider C, Rochford R, Solapure SM, Jiménez-Díaz MB, Wittlin S, Charman SA, Donini C, Campo B, Birkholtz LM, Khanson K, Drewes G, Koenen CM, Delves MJ, Leroy D, Fidock DA, Waterson D, Street LJ, Chibale K. 2017. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. *Science Translational Medicine* **9**. doi:10.1126/SCITRANSLMED.AAD9735/SUPPL_FILE/AAD9735_TABLES_S26_AND_S27.

ZIP

Parussini F, Coppens I, Shah PP, Diamond SL, Carruthers VB. 2010. Cathepsin L Occupies a Vacuolar Compartment and is a Protein Maturase within the Endo/Exocytic System of Toxoplasma gondii. *Mol Microbiol* **76**:1340. doi:10.1111/J.1365-2958.2010.07181.X

Penaranda C, Hung DT. 2019. Single-Cell RNA Sequencing to Understand Host–Pathogen Interactions. *ACS Infectious Diseases* **5**:336–344. doi:10.1021/ACSINFECDIS.8B00369

Poran A, Nötzel C, Aly O, Mencia-Trinchant N, Harris CT, Guzman ML, Hassane DC, Elemento O, Kafsack BFC. 2017. Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites. *Nature* **551**:95–99. doi:10.1038/nature24280

Posfai D, Maher SP, Roesch C, Vantaux A, Sylvester K, Pénéau J, Popovic J, Kyle DE, Witkowski B, Derbyshire ER. 2020. Plasmodium vivax Liver and Blood Stages Recruit the Druggable Host Membrane Channel Aquaporin-3. *Cell Chemical Biology*. doi:10.1016/j.chembiol.2020.03.009

Qu J, Li J, Zhang Y, He R, Liu X, Gong K, Duan L, Luo W, Hu Z, Wang G, Xia C, Luo D. 2021. AKR1B10 promotes breast cancer cell proliferation and migration via the PI3K/AKT/NF-κB signaling pathway. *Cell & Bioscience* **11**:163. doi:10.1186/S13578-021-00677-3

Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. 2019. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic Acids Research* **47**:W191–W198. doi:10.1093/NAR/GKZ369

Real E, Howick VM, Dahalan FA, Witmer K, Cudini J, Andradi-Brown C, Blight J, Davidson MS, Dogga SK, Reid AJ, Baum J, Lawniczak MKN. 2021. A single-cell atlas of Plasmodium falciparum transmission through the mosquito. *Nature Communications* **2021 12**:1 12:1–13. doi:10.1038/s41467-021-23434-z
Reid AJ, Talman AM, Bennett HM, Gomes AR, Sanders MJ, Illingworth CJR, Billker O, Berriman M, Lawniczak MKN. 2018. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. *Elife* 7:1–29. doi:10.7554/eLife.33105

Ren X, Wen W, Fan X, Hou W, Su Bin, Cai P, Li J, Liu Y, Tang F, Zhang F, Yang Y, He Jiangping, Ma W, He Jingjing, Wang P, Cao Q, Chen F, Chen Y, Cheng X, Deng G, Deng X, Ding W, Feng Y, Gan R, Guo C, Guo W, He S, Jiang C, Liang J, Li Y min, Lin J, Ling Y, Liu H, Liu J, Liu N, Liu SQ, Luo M, Ma Q, Song Q, Sun W, Wang GX, Wang F, Wang Y, Wen X, Wu Q, Xu G, Xie X, Xiong X, Xing X, Xu H, Yin C, Yu D, Yu K, Yuan J, Zhang B, Zhang P, Zhang T, Zhao J, Zhao Peidong, Zhou J, Zhou W, Zhong S, Zhong X, Zhang S, Zhu L, Zhu P, Zou B, Zou J, Zuo Z, Bai F, Huang X, Zhou P, Jiang Q, Huang Z, Wei JX, Wei L, Bian XW, Liu X, Cheng T, Li X, Zhao Pingsen, Wang FS, Wang H, Su Bing, Zhang Zheng, Qu K, Wang X, Chen J, Jin R, Zhang Zemin. 2021. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. *Cell* 184:1895-1913.e19. doi:10.1016/J.CELL.2021.01.053

Robinson LJ, Wampfler R, Betuela I, Karl S, White MT, Li Wai Suen CSN, Hofmann NE, Kinboro B, Waltmann A, Brewster J, Lorry L, Tarongka N, Samol L, Silkey M, Bassat Q, Siba PM, Schofield L, Felger I, Mueller I. 2015. Strategies for understanding and reducing the *Plasmodium vivax* and *Plasmodium ovale* hypnozoite reservoir in Papua New Guinean children: a randomised placebo-controlled trial and mathematical model. *PLoS Med* 12. doi:10.1371/JOURNAL.PMED.1001891

Rosenthal PJ. 2011. Falcipains and Other Cysteine Proteases of Malaria Parasites. *Advances in Experimental Medicine and Biology* 712:30–48. doi:10.1007/978-1-4419-8414-2_3

Roth A, Maher SP, Conway AJ, Ubalee R, Chaumeau V, Andolina C, Kaba SA, Vantaux A, Bakowski MA, Thomson-Luque R, Adapa SR, Singh N, Barnes SJ, Cooper CA, Rouillier M, McNamara CW, Mikolajczak SA, Sather N, Witkowski B, Campo B, Kappe SHI, Lanar DE, Nosten F, Davidson S, Jiang RHY, Kyle DE, Adams JH. 2018. A comprehensive model for assessment of liver stage therapies targeting *Plasmodium vivax* and *Plasmodium falciparum*. *Nature Communications* 9:1837. doi:10.1038/s41467-018-04221-9

Ruberto AA, Bourke C, Merienne N, Obadia T, Amino R, Mueller I. 2021a. Single-cell RNA sequencing reveals developmental heterogeneity among *Plasmodium berghei* sporozoites. *Scientific Reports* 11:4127. doi:10.1038/s41598-021-82914-w
Ruberto AA, Bourke C, Vantaux A, Maher SP, Jex A, Witkowski B, Snounou G, Mueller I. 2021b. Single-cell RNA sequencing of Plasmodium vivax sporozoites reveals stage- and species-specific transcriptomic signatures. bioRxiv 2021.11.24.469176. doi:10.1101/2021.11.24.469176

Sà JM, Cannon M v., Caleon RL, Wellems TE, Serre D. 2020. Single-cell transcription analysis of Plasmodium vivax blood-stage parasites identifies stage- and species-specific profiles of expression. PLOS Biology 18:e3000711. doi:10.1371/journal.pbio.3000711

Salas F, Fichmann J, Lee GK, Scott MD, Rosenthal PJ. 1995. Functional expression of falcipain, a Plasmodium falciparum cysteine proteinase, supports its role as a malarial hemoglobinase. Infection and Immunity 63:2120. doi:10.1128/iai.63.6.2120-2125.1995

Sattabongkot J, Yimamnuaychoke N, Leelaudomlipi S, Rasameesoraj M, Jenwithisuk R, Coleman RE, Udomsangpetch R, Cui L, Brewer TG. 2006. Establishment of a human hepatocyte line that supports in vitro development of the exo-erythrocytic stages of the malaria parasites Plasmodium falciparum and P. vivax. Am J Trop Med Hyg 74:708–715.

Scarpulla RC. 2002. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286:81–89. doi:10.1016/S0378-1119(01)00809-5

Schäfer C, Dambrauskas N, Steel RW, Carbonetti S, Chuenchob V, Flannery EL, Vigdorovich V, Oliver BG, Roobsoong W, Maher SP, Kyle D, Sattabongkot J, Kappe SHI, Mikolajczak SA, Sather DN. 2018. A recombinant antibody against Plasmodium vivax UIS4 for distinguishing replicating from dormant liver stages. Malaria Journal 17:370. doi:10.1186/S12936-018-2519-7

Schäfer C, Roobsoong W, Sattabongkot J, Mikolajczak SA, Kappe SHI. 2020. A Humanized Mouse Model for Plasmodium vivax to Test Interventions that Block Liver Stage to Blood Stage Transition and Blood Stage Infection. iScience 23:101381. doi:10.1016/j.isci.2020.101381

Schäfer C, Zanghi G, Vaughan AM, Kappe SHI. 2021. Plasmodium vivax Latent Liver Stage Infection and Relapse: Biological Insights and New Experimental Tools. doi:10.1146/annurev-micro-032421

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303
Siegel S v., Chappell L, Hostetler JB, Amaratunga C, Suon S, Böhme U, Berriman M, Fairhurst RM,
Rayner JC. 2020. Analysis of Plasmodium vivax schizont transcriptomes from field isolates reveals heterogeneity of expression of genes involved in host-parasite interactions. Scientific Reports 10:16667. doi:10.1038/s41598-020-73562-7

Singh AP, Buscaglia CA, Wang Q, Levay A, Nussenzweig DR, Walker JR, Winzeler EA, Fujii H,
Fontoura BMA, Nussenzweig V. 2007. Plasmodium Circumsporozoite Protein Promotes the Development of the Liver Stages of the Parasite. Cell 131:492–504. doi:10.1016/J.CELL.2007.09.013

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R. 2019. Comprehensive Integration of Single-Cell Data. Cell 177:1888-1902.e21. doi:10.1016/j.cell.2019.05.031

Szabo PA, Dogra P, Gray JI, Wells SB, Connors TJ, Weisberg SP, Krupska I, Matsumoto R, Poon MML, Idzikowski E, Morris SE, Pasin C, Yates AJ, Ku A, Chait M, Davis-Porada J, Guo X v., Zhou J, Steinele M, Mackay S, Saqi A, Baldwin MR, Sims PA, Farber DL. 2021. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 54:797-814.e6. doi:10.1016/J.IMMUNI.2021.03.005

Tarun AS, Peng X, Dumpit RF, Ogata Y, Silva-Rivera H, Camargo N, Daly TM, Bergman LW, Kappe SHI. 2008. A combined transcriptome and proteome survey of malaria parasite liver stages. Proceedings of the National Academy of Sciences 105:305–310. doi:10.1073/PNAS.0710780104

Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. 2015. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 88:108. doi:10.1016/J.FREERADBIOMED.2015.06.021

Tharyan RG, Annibal A, Schiffer I, Laboy R, Atanassov I, Weber AL, Gerisch B, Antebi A. 2020. NFYB-1 regulates mitochondrial function and longevity via lysosomal prosaposin. Nature Metabolism 2:387–396. doi:10.1038/s42255-020-0200-2

Toro-Moreno M, Sylvester K, Srivastava T, Posfai D, Derbyshire ER. 2020. RNA-Seq Analysis Illuminates the Early Stages of Plasmodium Liver Infection. doi:10.1128/mBio.03234-19
Traag VA, Waltman L, van Eck NJ. 2019. From Louvain to Leiden: guaranteeing well-connected communities. Scientific Reports 9:1–12. doi:10.1038/s41598-019-41695-z

Tsai HH, Lai HY, Chen YC, Li CF, Huang HS, Liu HS, Tsai YS, Wang JM. 2017. Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway. Oncotarget 8:13832. doi:10.18632/ONCOTARGET.14640

Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R. 2001. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104:377–386. doi:10.1016/S0092-8674(01)00225-2

Ungureanu E, Killick-Kendrick R, Garnham PCC, Branzei P, Romanescu C, Shute PG. 1976. Prepatent periods of a tropical strain of Plasmodium vivax after inoculations of tenfold dilutions of sporozoites. Trans R Soc Trop Med Hyg 70:482–483. doi:10.1016/0035-9203(76)90133-4

Vembar SS, Droll D, Scherf A. 2016. Translational regulation in blood stages of the malaria parasite Plasmodium spp.: systems-wide studies pave the way. Wiley Interdisciplinary Reviews RNA 7:772. doi:10.1002/WRNA.1365

Vijayan K, Wei L, Glennon EKK, Mattocks C, Bourgeois N, Staker B, Kaushansky A. 2021. Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. Chemical Reviews 121:10452–10468. doi:10.1021/acs.chemrev.1c00062

Voorberg-van der Wel A, Roma G, Gupta DK, Schuierer S, Nigisch F, Carbone W, Zeeman AM, Lee BH, Hofman SO, Faber BW, Knehr J, Pasini E, Kinzel B, Bifani P, Bonamy GMC, Bouwmeester T, Kocken CHM, Diagana TT. 2017. A comparative transcriptomic analysis of replicating and dormant liver stages of the relapsing malaria parasite Plasmodium cynomolgi. Elife 6. doi:10.7554/eLife.29605.001

Voorberg-van der Wel AM, Zeeman AM, Nieuwenhuis IG, van der Werff NM, Klooster EJ, Klop O, Vermaat LC, Kumar Gupta D, Dembele L, Diagana TT, Kocken CHM. 2020. A dual fluorescent Plasmodium cynomolgi reporter line reveals in vitro malaria hypnozoite reactivation. Communications Biology 3. doi:10.1038/s42003-019-0737-3

Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I. 2011. RNA Granules in Germ Cells. Cold Spring Harbor Perspectives in Biology 3. doi:10.1101/CSHPERSPECT.A002774
Wang C, Yan R, Luo D, Watabe K, Liao D-F, Cao D. 2009. Aldo-keto Reductase Family 1 Member B10 Promotes Cell Survival by Regulating Lipid Synthesis and Eliminating Carbonyls. *The Journal of Biological Chemistry* **284**:26742–26748. doi:10.1074/jbc.M109.022897

Wang SM, Lin HY, Chen YL, Hsu TI, Chuang JY, Kao TJ, Ko CY. 2019. CCAAT/enhancer-binding protein delta regulates the stemness of glioma stem-like cells through activating PDGFA expression upon inflammatory stimulation. *Journal of Neuroinflammation* **16**:1–12. doi:10.1186/s12974-019-1535-z/FIGURES/6

White M, Amino R, Mueller I. 2017. Theoretical Implications of a Pre-Erythrocytic Plasmodium vivax Vaccine for Preventing Relapses. *Trends in Parasitology* **33**:260. doi:10.1016/J.TPT.2016.12.011

White MT, Walker P, Karl S, Hetzel MW, Freeman T, Waltmann A, Laman M, Robinson LJ, Ghani A, Mueller I. 2018. Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax. *Nature Communications* **2018 9**:1 9:1–10. doi:10.1038/s41467-018-05860-8

White NJ. 2011. Determinants of relapse periodicity in Plasmodium vivax malaria. *Malaria Journal* **10**:297. doi:10.1186/1475-2875-10-297

World Health Organization. 2021. World malaria report 2021. *World malaria report 2021*. https://www.who.int/publications/i/item/9789240040496

Yokomizo T, Izumi T, Takahashi T, Kasamal T, Kobayashis Y, Satos F, Taketanill Y, Shimizu T. 1993. Enzymatic Inactivation the Porcine Kidney O f Leukotriene B4 by a Novel Enzyme Found in PURIFICATION AND PROPERTIES OF LEUKOTRIENE B4 HYDROXYDEHYDROGENASE*. *THE JOURNAL OF BIOLOGICAL CHEMISTRY* **268**:18128–18135. doi:10.1016/S0021-9258(17)46820-7

Youn JY, Dyakov BJA, Zhang J, Knight JDR, Vernon RM, Forman-Kay JD, Gingras AC. 2019. Properties of Stress Granule and P-Body Proteomes. *Molecular Cell* **76**:286–294. doi:10.1016/J.MOLCEL.2019.09.014/ATTACHMENT/C072E42B-EF83-4FF8-8FDE-52AB4D2E092F/MMC4.DOCX

Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD,
Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. 2017. Massively parallel digital transcriptional profiling of single cells. *Nature Communications* **8**:14049. doi:10.1038/ncomms14049
FIGURE LEGENDS

Figure 1. Design and validation of detection of P. vivax liver stages using high-content imaging and scRNA-seq. (A) Schematic illustrating the sample preparation and data generation pipeline used to assess P. vivax liver stage infection rates and gene expression. (B) Representative high content images of primary hepatocytes infected with P. vivax on day 5 (left) and day 9 (right) post-infection (p.i). Images were captured from one well from a 384-well plate with a 4x objective. Inset: one field of view (white dashed box) from the same well captured with a 20x objective. Cells were stained with DAPI (blue) and PvUIS4 (green). White bar represents 1mm, inset bars represent 10µm. Images are representative of replicate 1. (C) Histogram displaying the distribution of parasite growth areas fixed at day 5 or day 9 post-infection (left) and net quantity of parasites and hepatocyte nuclei (right). Net infection rate is indicated for each endpoint. Growth and infection metrics are shown for both replicates.

Figure 1—figure supplement 1

Assessment of P. vivax liver stages using high-content imaging. Representative high content images of primary hepatocytes infected with P. vivax on day 5 (left) and day 9 (right) post-infection. Images were obtained from one well from a 384-well plate with a 4x objective. Inset: one field of view (orange box) from the same well captured with a 20x objective. Cells were stained with DAPI (blue) and PvUIS4 (green). White arrow: liver form assigned as a hypnozoite, yellow arrow: liver form assigned as a schizont. White bar represents 1mm, grey bar represents 200µm. Images are representative of the second biological replicate used in the study.

Figure 2. Low dimensional representation of P. vivax schizont and hypnozoite transcriptomes. (A) t-SNE plots of integrated P. vivax liver stage scRNA-seq data faceted by parasites isolated on day 5 (left) and day 9 (right) post-infection. (B) t-SNE plot of P. vivax liver stage data colored by parasites encoding for putative hypnozoites (C1) and schizonts (C2). (C) t-SNE plots of P. vivax liver stage scRNA-seq data colored by number of transcripts detected (left), UMI counts (middle), and the expression of the schizont marker, LISP2 (PVP01_0304700) (right). Scales: absolute count (left, middle), normalized expression (right).

Figure 2—figure supplement 1

Metrics associated with P. vivax liver stage scRNA-seq data analyses. (A) Number of P. vivax liver stage transcriptomes assessed post-cell and gene filtering. (B) Scatter plots displaying the number of genes detected versus total number of UMIs for each parasite transcriptome assessed. Red dashed vertical line (60) represents the cut-off used to filter viable from problematic (dead/dying/poorly captured) cells. (C) Number of P. vivax liver stage parasites assigned to cluster 1 (hypnozoites) and cluster 2 (schizonts). SZ: schizont; HZ: hypnozoite; dpi: day post-infection.
Comparison of per cell metrics with other *P. vivax* scRNA-seq data. Violin plots showing the distribution of genes detected in the current dataset, and other single-cell gene expression assessments of *P. vivax* liver stages (Mancio-Silva et al., 2022), sporozoites (Ruberto et al., 2021b), and blood-stage parasites (Sà et al., 2020). Replicates in sporozoite and blood-stage datasets represent unique 10x Genomics’ scRNA-seq library preparations. Blood-stage scRNA-seq metrics were obtained after realignment of sequencing data to an updated *P. vivax* transcriptome including UTRs as performed previously (Ruberto et al., 2021b). N = number of single-cell transcriptomes assessed for each sample. Light blue dashed horizontal line: median number genes detected or UMIs in schizonts obtained in the current dataset; teal dashed horizontal line: median number genes detected or UMIs in hypnozoites obtained in the current dataset. Day denotes day post-infection.

Summary statistics and cell and gene filtering metrics for each single-cell RNA library.

P. vivax hypnozoites have distinct transcriptomic signatures. (A) Dot plots showing transcripts that distinguish all hypnozoites from schizonts. The size of the dot corresponds to the percentage of cells that transcript was detected per condition, colored by average expression. Differentially expressed transcripts were identified using Seurat’s FindMarker function (Wilcoxon rank-sum test, Bonferroni adjusted p values < 0.01). (B) tSNE plots of liver stages colored by transcripts displaying greater levels in hypnozoites. Colored boxes in A and B indicate the family or canonical biological process that the transcript is associated with. Scale: normalized expression; pct. exp: percent of cells expressing transcript. (C) Number of transcripts in schizonts and hypnozoites identified as cellular fating RBPs (left) and GO term enrichment of this subset (right). Adj P: Bonferroni adjusted p value.

P. vivax schizonts and hypnozoites have distinct transcriptomic signatures. (A) Scatterplot showing average log2 fold change versus the difference in the proportion of cells the transcript is detected in clusters encoding for hypnozoites and schizonts. Negative values: greater detection in hypnozoites; positive values: greater detection in schizonts. (B) Violin plots displaying the expression of genes encoding for TCA- and glycolysis-related proteins. (C) Dot plots showing transcripts with decreased expression in hypnozoites relative to schizonts. The size of the dot corresponds to the percentage of cells expressing the gene, colored by average expression. Differentially expressed transcripts were identified using Seurat’s FindMarkers function. Wilcoxon rank-sum test, Bonferroni adjusted p values < 0.01. Scale: normalized expression; pct. exp: percent of cells expressing the gene. ldh: L-lactate.
dehydrogenase; gapdh: glyceraldehyde 3-phosphate dehydrogenase; atp-synthC: ATP synthase subunit C; gdh1: NADP-specific glutamate dehydrogenase 1.

Figure 3—figure supplement 2
Carfilzomib inhibits *P. vivax* schizonts and hypnozoites. (A) Violin plots displaying the distribution of expression of select genes encoding for proteasome subunits in schizonts and hypnozoites. (B) Table of proteasome-associated transcripts differentially expressed between schizonts and hypnozoites. Positive average log2FC: higher expression in schizonts. (C) Structure of carfilzomib. (D) Dose-response curve of carfilzomib-induced inhibition of *P. vivax* schizont growth area (yellow, IC50 288nM), hypnozoite quantity per well (blue, IC50 511nM), and hepatocyte nuclei quantity (orange, IC50 3.32 µM). Data shown are pooled from three independent experiments, each containing duplicate wells at each concentration. Bars represent ± SEM.

Figure 3—source data 1
Data associated with schizonts versus hypnozoites analyses. (A) Differentially expressed genes defining schizonts and hypnozoites. Positive Average log 2 FC: Upregulated in hypnozoites relative to schizonts. Rows highlighted in yellow denote inclusion cutoffs for genes considered differentially expressed (Bonferroni adjusted p value < 0.01 & absolute (average log2 fold change [FC]) > 0.5). (B) Differentially expressed genes identified as encoding for cellular fating RNA-binding proteins. (C) GO Term enrichment of Hypnozoite or Schizont transcripts identified as cellular fating RBPs. Rows highlighted in light green are terms with Bonferroni adjusted p value < 0.05. Input parameters: P value cutoff = 0.05; Limit to GO Slim terms = No; Evidence: Computed, curated; PlasmoDB v55.

Figure 4. Transcriptomic signatures of activating and persister hypnozoites. (A) Number of hypnozoites assessed (left) and UMAP of cells identified as hypnozoites colored by day of collection. (B) Proportion of cells in clusters on days 5 and 9 post-infection (left) and UMAP of hypnozoites colored by cluster. (C) Violin plot showing the expression of LISP2 in each cluster. (D) Dot plot showing markers that distinguish hypnozoites in each cluster. The size of the dot corresponds the percentage of cells in the expressing the gene of interest, colored by scaled normalized expression of the transcript in each cluster. Marker transcripts were identified using Seurat’s AllFindMarkers function. Wilcoxon rank-sum test, average log2FC > 1, Bonferroni adjusted p value < 0.01. (E) Number transcripts in each cluster encoding for cellular fating RBPs sorted by their average log2FC relative to the other clusters (top) and GO Term enrichment of genes in each cluster (bottom). Adj P: Bonferroni adjusted p value.

Figure 4—supplement 1
Assessment of hypnozoite transcriptomes. (A) UMAP of hypnozoites colored by cluster and faceted by day post-infection. (B) Violin plot showing the average log2FC of differentially expressed genes in
each cluster. Markers were identified using Seurat’s AllFindMarkers function. Genes with a Bonferroni adjusted p value < 0.05 (Wilcoxon rank-sum) and average log₂FC > 0.5 were deemed markers. Red dashed line: average log₂FC = 0.5.

Figure 4—source data 1

Data associated with analyses of hypnozoite-to-hypnozoite heterogeneity. (A) Markers defining each hypnozoite cluster. Marker defined as: Average log 2 FC > 0.5, Adjusted p value < 0.05. Rows colored green are transcripts that meet marker criteria. (B) Differentially expressed genes identified as encoding for cellular fating RNA-binding proteins in hypnozoite clusters. (C) GO Term enrichment of hypnozoite transcripts identified as cellular fating RBPs. Rows highlighted in light green are terms with Bonferroni adjusted p value < 0.05. P value cutoff = 0.05; Limit to GO Slim terms = No; Evidence: Computed, curated; PlasmoDB v55.

Figure 5. Analysis of host-pathogen transcriptional signatures in P. vivax- infected and non-infected hepatocytes. t-SNE plots of hepatocytes faceted by infection status. Grey, noninfected (naive and exposed) hepatocytes; light blue, hepatocytes infected with schizonts; teal, hepatocytes infected with hypnozoites.

Figure 5—supplement 1

Analysis of host-pathogen transcriptional signatures in P. vivax- infected and non-infected hepatocytes. (A) Number of hepatocytes assessed. Colored by infection status and faceted by sample (left); proportion of infected, exposed, or naive hepatocytes assessed on day 5 or day 9 post-infection. (B) t-SNE plot of hepatocytes colored by day. (C) t-SNE plots of hepatocytes colored by percent expression of zonation markers in human hepatocytes. Markers obtained from Macparland et al. (2019). (D) t-SNE plots of hepatocytes colored by hypnozoite infection status. Grey, uninfected (naive and exposed) hepatocytes; red, hepatocytes infected with C1 hypnozoites; blue, hepatocytes infected with C2; teal, hepatocytes infected with C3 hypnozoites. (E) Unique and overlapping gene sets in hepatocytes infected with schizonts or hypnozoites. Positive enrichment derived from genes displaying greater expression versus non-infected hepatocytes; negative enrichment derived from transcripts displaying decreased expression versus noninfected hepatocytes.

Figure 6. Analysis of host transcriptional signatures in P. vivax infected hepatocytes. (A) Volcano plots showing changes in gene expression in infected hepatocytes versus non infected (Wilcoxon rank sum, Bonferroni adjusted p value < 0.05). Positive fold change (FC) values represent genes with greater expression, and negative FC values represent genes with decreased expression. Dashed horizontal red lines: Bonferroni adjusted p value = 0.05; dashed vertical red lines: log₂FC = 0.5. (B) Summary of differential gene expression data shown in the volcano plots and of the enrichment analyses. Hep:
hepatocyte. (C) Enrichment map of cellular processes and pathways associated with hepatocyte infection with *P. vivax* schizonts. (D) Enrichment map of cellular processes and pathways associated with hepatocyte infection with *P. vivax* hypnozoites. For the maps depicted in panels C and D, node size is proportional to the number of genes identified in each gene set (minimum 3 genes/gene set); each node represents a distinct biological process or pathway derived from gene with decreased expression (red) or increased expression (blue) versus non-infected cells; and edges (blue lines) represent the number of genes overlapping between two processes or pathways. (E) Representative confocal image of *P. vivax* parasites on day 12 post-infection of hepatocytes (left). Cells were stained with DAPI (blue), *PvUIS4* (green), and *HsAKR1B10* (red). White bar represents 100µm. Violin plot displaying the distribution of AKR1B10 signal in hepatocyte cultures infected with *P. vivax* (right). SZ: hepatocyte containing schizont; HZ: hepatocyte containing hypnozoite; EX: hepatocyte not infected but exposed to *P. vivax*. ****: p <= 0.0001.

Figure 6—figure supplement 1

Human AKR1B10 is upregulated in hepatocytes infected with *P. vivax*. (A) Violin plots displaying the distribution of *AKR1B10* transcript levels in infected (schizonts and hypnozoites) and non-infected (exposed and naïve) hepatocytes. Black dot: mean expression (log2). Adj p: Bonferroni adjusted p value versus non-infected (naïve and exposed) hepatocytes. (B) Representative confocal image from a second biological replicate of *P. vivax* parasites on day 12 post-infection of hepatocytes. Cells were stained with DAPI (blue), *PvUIS4* (green), and *HsAKR1B10* (red). White bar represents 100µm.

(D) Associated with Figure 6E (right), violins plots displaying the distribution of AKR1B10 signal across all biological replicates. IFA: immunofluorescence assay; SZ: hepatocyte containing schizont; HZ: hepatocyte containing hypnozoite; EX: hepatocyte not infected but exposed to *P. vivax*. ****: p <= 0.0001; *: p <= 0.05; n.s: not significant, p > 0.05.

Figure 6—source data 1

Data associated with host-specific transcriptional signatures in response to *P. vivax* infection. (A) Differentially expressed genes in hepatocytes containing schizonts versus non-infected cells. Positive average log2FC: greater expression in infected hepatocytes. (B) Differentially expressed genes in hepatocytes containing hypnozoites versus non-infected cells. Positive average log2FC: greater expression in infected hepatocytes. (C) Enrichment of GO biological processes and Reactome metabolic pathways. (D) Unique and overlapping enriched gene sets in hepatocytes infected with schizonts or hypnozoites. (E) Differentially expressed genes in non-infected hepatocytes exposed to *P. vivax* (exposed) versus non-infected hepatocytes never exposed to *P. vivax* (naïve). Positive average log2FC: greater expression in non-infected hepatocytes exposed to *P. vivax* (exposed). Seurat FindMarkers parameters used to generate gene list: logfc.threshold = 0.25, min.pct = 0.25, only.pos = F, max.cells.per.ident = 20731, assay = "RNA". (F) Enrichment of GO biological processes and
REACTOME metabolic pathways that are downregulated in non-infected hepatocytes exposed to *P. vivax* (exposed) versus non-infected hepatocytes never exposed to *P. vivax* (naïve). Genes in Figure 6—source data 1E highlighted in green were used as input to generate enrichment lists.

Figure 7. Transcription factor enrichment in hepatocytes infected with schizonts or hypnozoites.

Dot plot of transcription factors enriched in Hepatocyte*hypnozoite* (left) or Hepatocyte*schizont* sets (right). Positive (+) enrichment derived from genes displaying greater expression versus non-infected hepatocytes; negative (-) enrichment derived from genes displaying decreased expression versus noninfected hepatocytes.

Figure 7—source data 1

Transcription factor enrichment analysis. Rows highlighted in green are sets that are significantly enriched, adjusted p value < 0.05.
A

Figure 1

Day 0 5 9 →

- **Exposed & Infected**
 - P. vivax sporozoites
 - Naive
 - MMV390048 (days 5, 6, 7)

Hepatocyte status:
- Non-infected
- Infected

- Naive
- Exposed
- Schizont
- Hypnozoite

B

Day 5 post-infection

- Hypnozoite
- Schizont

Day 9 post-infection

- Hypnozoite

C

Replicate 1

- Day 5 p.i. 6.93%
- Day 9 p.i. 2.77%

Replicate 2

- Day 5 p.i. 5.50%
- Day 9 p.i. 1.76%
Figure 2

A

C2: Schizonts

C1: Hypnozoites

B

C

transcripts detected

UMI counts

PVP01_0304700::liver specific protein 2
Figure 3

A

B

C

Cluster	GO Term	Adj. P
Hypnozoites	CCR4-NOT complex	2.20e-9
	Nucleus	1.22e-2
	P body	2.28e-2
	Regulation of gene expression	1.97e-6
Schizonts	Eukaryotic translation initiation factor 3 complex	5.22e-6
	RNP complex	2.35e-5
	Translation preinitiation complex	1.46e-4
	Translation	7.83e-7
Figure 4

A. Bar graph showing the number of cells over time post-infection.

B. Heatmap displaying the proportion of cells over time post-infection.

C. Violin plot showing the average expression of genes.

D. List of genes associated with DE cell fate RBPs.

E. GO Term analysis for clusters C1, C2, and C3.

Cluster GO Term Adj P
C1 CCR4-NOT complex 1.15e-04
Germ plasm 2.62e-03
P granule 2.62e-03
C2 Regulation of RNA splicing 5.05e-05
Ribonucleoprotein complex 3.54e-04
Translation 4.83e-02
C3 Translational initiation 5.36e-02
RNA binding 3.01e-03
Nucleic acid binding 6.71e-03
Figure 5

Hepatocyte + parasite

Hepatocyte + schizont

Hepatocyte + hypnozoite
Hepatocyteschizont vs non-infected hepatocytes

Decreased expression \rightarrow Increased expression

Hepatocytehypnozoite vs non-infected hepatocytes

Decreased expression \rightarrow Increased expression

Differential Expression vs non-infected hepatocytes

\begin{tabular}{c|c|c|c}
 & Hepschizont & & Hephypnozoite \\
 & Increase: 106 & & Increase: 365 \\
 & Decrease: 16 & & Decrease: 41 \\
\end{tabular}

of biological processes & pathways enriched

46

77

100

Hepatocyteschizont vs non-infected hepatocytes

- positive regulation migration
- cell population proliferation
- second messenger mediated signaling
- interferon signaling response
- scavenging class receptors

Hepatocytehypnozoite vs non-infected hepatocytes

- mitochondrial proton transport
- cellular stress response
- amino acid metabolism
- endoplasmic protein localization
- alcohol metabolic processes
- isoprenoid metabolism
- vitamins cofactors metabolism
- regulation blood coagulation
- sulfur compound biosynthesis

Hepatocyte status

- Merge
- Hs
- AKR1B10
- PvUIS4
- DAPI

Figure 6

DAPI PvuUIS4 HsAKR1B10 Merge

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure6.png}
\caption{Differential Expression vs non-infected hepatocytes.}
\end{figure}
