SEIBERG-WITTEN INVARIANTS OF 4-MANIFOLDS WITH FREE CIRCLE ACTIONS

SCOTT BALDRIDGE

1. Introduction

The main result of this paper describes a formula for the Seiberg-Witten invariant of a 4-manifold X which admits a nontrivial free S^1-action. A free circle action on X is classified by its orbit space, a 3-manifold M, and its Euler class $\chi \in H^2(M; \mathbb{Z})$. If $\chi = 0$, then $X = M \times S^1$, and it is well-known that the Seiberg-Witten invariants of X are equal to the 3-dimensional Seiberg-Witten invariants of M.

Our result expresses the Seiberg-Witten invariants of X in terms of the Seiberg-Witten invariants of M and the Euler class χ:

Theorem 1. Let X be a smooth 4-manifold with $b_+ \geq 2$ and a free circle action. Let M^3 be the smooth orbit space and suppose that the Euler class $\chi \in H^2(M; \mathbb{Z})$ of the free circle action is not torsion. Let ξ be a spinc structure over X. If ξ is not pulled up via $\pi : X \to M$, then $SW_X(\xi) = 0$. Otherwise, let $\xi^* \equiv \xi \pmod{\chi}$ be a spinc structure on M such that $\xi \equiv \pi^*(\xi^*) \pmod{\chi}$, then

$$SW_X^4(\xi) \equiv \sum_{\xi' \equiv \xi^* \pmod{\chi}} SW_M^3(\xi').$$

The difference of two spinc structures gives rise to a well-defined element $\xi' - \xi \in H^2(X; \mathbb{Z})$. For more information, see section (4.1). Because χ is nontorsion, the equivalence relation in the above theorem is well-defined. The pullback of a spinc structure is discussed in section (4.2).

As an application of this theorem we shall produce a nonsymplectic 4-manifold with a free circle action whose orbit space fibers over S^1. This example runs counter to intuition since there is a well-known conjecture of Taubes that $M^3 \times S^1$ admits a symplectic structure if and only if M^3 fibers over the S^1. Furthermore, there is evidence [FGM] which suggests that many such 4-manifolds are, in fact, symplectic. As another application of our formula, we construct a 3-manifold which...
is not the orbit space of any symplectic 4-manifold with a free circle action. A corollary of the main theorem is a formula for the Seiberg-Witten invariant of the total space of a circle bundle over a surface. This formula can be thought of as the 3 dimensional analog of the 4 dimensional formula.

2. Classifying free circle actions

Let X be an oriented connected 4-manifold carrying a smooth free S^1-action. Its orbit space M is a 3-manifold whose orientation is determined, so that, followed by the natural orientation on the orbits, the orientation of X is obtained. Choose a smooth connected loop l representing the the Poincaré dual $PD(\chi) \in H_1(M; \mathbb{Z})$. Remove a tubular neighborhood $N \cong D^2 \times l$ of l from M, and set $X_0 = (M \setminus N) \times S^1$. View X_0 as an S^1-manifold whose action is given by rotation in the last factor. Let m be the meridian of l, and let t be an orbit in X_0. We then have:

Lemma 2. The manifold X is diffeomorphic (by a bundle isomorphism) to the manifold

$$X(l) = X_0 \cup \varphi \cdot D^2 \times T^2$$

where $\varphi : T^3 \to \partial X_0$ is an equivariant diffeomorphism which evaluates $\varphi_*([\partial(D^2 \times pt)]) = [m + t]$ in homology.

When gluing $D^2 \times T^2$ into the boundary of a manifold, the resulting closed manifold is determined up to diffeomorphism by the image in homology of $[\partial(D^2 \times pt)]$. (For example, see [MMS].)

Proof. The manifold X is a principal S^1-bundle. Since χ evaluates on any 2-cycle in $M \setminus N$ by intersecting that 2-cycle against l, it follows that the restriction of the Euler class χ restricts trivially to $M \setminus N$. Therefore, the S^1-bundle is trivial over $M \setminus N$, and $\pi^{-1}(M \setminus N)$ is diffeomorphic to X_0. Similarly, $\pi^{-1}(N)$ is diffeomorphic to $D^2 \times S^1 \times S^1$. Let m', l', and t' be the circles which correspond to the factors in $D^2 \times S^1 \times S^1$ respectively.

Construct a manifold $X(l)$ as above using a bundle isomorphism $\varphi : \partial(D^2 \times S^1) \times S^1 \to X_0$. Bundle isomorphisms covering the identity are classified up to vertical equivariant isotopy by homotopy classes of maps in $[\partial(D^2 \times S^1), S^1] = \mathbb{Z} \oplus \mathbb{Z}$. Explicitly, an equivariant map φ inducing $1_{\partial(D^2 \times S^1)}$ is classified by integers (r,s) where $\varphi_*[m'] = [m] + r[t]$ and $\varphi_*[l'] = [l] + s[t']$. A bundle automorphism Φ of $(D^2 \times S^1) \times S^1$ can be constructed such that $\Phi_*[m'] = [m']$ and $\Phi_*[l'] = [l'] + s[t']$ for any $s \in \mathbb{Z}$. These bundle automorphisms are just the equivariant maps
classified by $[D^2 \times S^1, S^1] = H^1(D^2 \times S^1; \mathbb{Z})$. Therefore the resulting bundle $X(l)$ depends only on the integer r and the homology class $[l]$. In particular, the obstruction to extending the constant section

$$M \setminus N \to X_0 = (M \setminus N) \times S^1$$

over $D^2 \times S^1$ lies in $H^2(D^2 \times S^1, \partial(D^2 \times S^1); \mathbb{Z})$ and is given by r. The Euler class of $X(l)$ is then $PD(r[l]) = r\chi$. Taking $r = 1$ produces the desired bundle.

From now on we shall work with $X(l)$ and refer to it as X. Furthermore, it is clear from the construction above that the map φ can be chosen so that in homology,

$$\varphi_* = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

with respect to the basis $\{[m], [l], [t]\}$.

3. Gluing along T^3

Since we have $X = X_0 \cup_\varphi (D^2 \times T^2)$ we may apply the gluing theorem of Morgan, Mrowka, and Szabó [MMS]. Recall that $\varphi_*([m']) = [m + t]$.

Theorem 3 (Morgan, Mrowka, and Szabó). *If the spinc structure ξ over X restricts nontrivially to $D^2 \times T^2$, then $SW_X(\xi) = 0$. For each spinc structure $\xi_0 \to X_0$ that restricts trivially to ∂X_0, let $V_X(\xi_0)$ denote the set of isomorphism classes of spinc structures over X whose restriction to X_0 is equal to ξ_0. Then we have*

$$\sum_{\xi \in V_X(\xi_0)} SW_X(\xi) = \sum_{\xi \in V_{M \times S^1}(\xi_0)} SW_{M \times S^1}(\xi) + \sum_{\xi \in V_{X_0/1}(\xi_0)} SW_{X_0/1}(\xi),$$

where the manifold $X_{0/1} = X_0 \cup_{\varphi_{0,1}} D^2 \times T^2$ is defined by the map $\varphi_{0,1}$ which maps $[m'] \mapsto [t]$ in homology.

In our situation, this formula simplifies significantly. Let i denote the inclusion of ∂X_0 into X_0. A study of the long exact sequences in homology shows that the left hand side consists of a single term when $i_*[m + t]$ is indivisible. Since $i_*[t]$ is independent of $i_*[m]$ and $i_*[t]$ is a primitive class in $H_1(X_0; \mathbb{Z})$, $i_*[m + t]$ is such a class. Therefore, the formula enables the calculation of the SW invariants of X in terms of the SW invariants of $M \times S^1$ and a manifold $X_{0/1}$.

The manifold $X_{0/1}$ admits a semi-free S^1-action whose fixed point set is a torus. Its orbit space is $M \setminus N$, and $\partial(M \setminus N) = \partial N$ is the
image of the fixed point set. The condition \(b_+(X) \geq 2 \) of the main theorem implies that \(b_+(X_{0/1}) > 1 \) and that

\[
\text{rank } H_1(M \setminus N, \partial(M \setminus N); \mathbb{Z}) > 1.
\]

The two statements are proved as follows. The Gysin sequence

\[
\xymatrix{ H^2(M; \mathbb{Z}) \ar[r]^-{\pi^*} & H^2(X; \mathbb{Z}) \ar[r]^-{\cdot \chi} & H^1(M; \mathbb{Z}) \ar[r]^-{\partial X} & H^3(M; \mathbb{Z}) }
\]

implies

\[
H^2(X; \mathbb{Z}) \cong \left(H^2(M; \mathbb{Z})/ \langle \chi \rangle \right) \\
\quad \oplus \ker \left(\bigcup_{\chi} : H^1(M; \mathbb{Z}) \to H^3(M; \mathbb{Z}) \right).
\]

Each component of the direct sum above has rank \(b_1(M) - 1 \). The bilinear form of \(X \) is the direct sum of hyperbolic pairs which implies that \(b_+(X) = b_1(M) - 1 \). Since \([l]\) is not a torsion element, removing \(N \) from \(M \) implies the rank of \(H_1(M \setminus N, \partial(M \setminus N); \mathbb{Z}) \) is also \(b_1(M) - 1 \). The second statement now follows because \(b_1(M) - 1 = b_+(X) > 1 \). The first statement requires the following Mayer-Vietoris sequence

\[
H_3(T^3; \mathbb{Z}) \to H_2(X_0; \mathbb{Z}) \oplus H_2(D^2 \times T^2; \mathbb{Z}) \to H_2(X_{0/1}; \mathbb{Z}) \to H_1(T^3; \mathbb{Z}).
\]

The rank of \(H_2(X_0; \mathbb{Z}) \) is \(2b_1(M) - 1 \) and the rank of the image of the first map is 2. Therefore \(b_2(X_{0/1}) = 2b_1(M) - 2 \). Since the bilinear form of \(X_{0/1} \) is also a direct sum of hyperbolic pairs, \(b_+(X_{0/1}) > 1 \).

Proposition 4. Let \(X \) be a smooth closed oriented 4-manifold with a smooth semi-free circle action and \(b_+(X) > 1 \). Let \(X^* = X/S^1 \) be its orbit space. Suppose that \(X^* \) has a nonempty boundary and rank \(H_1(X^*, \partial X^*; \mathbb{Z}) > 1 \). Then \(SW_X \equiv 0 \).

Proof. Let \(F \) denote the fixed point set of \(X \) and \(F^* \) its image in \(X^* \). Then \(\partial X^* \subset F^* \). The restriction of the circle action to \(X \setminus F \) defines a principal \(S^1 \)-bundle whose Euler class lies in \(H^2(X^* \setminus F^*; \mathbb{Z}) \). Let \(\chi' \in H_1(X^*, F^*; \mathbb{Z}) \) denote its Poincaré dual. Consider the exact sequence

\[
0 \to H_1(X^*, \partial X^*; \mathbb{Z}) \xrightarrow{i_*} H_1(X^*, F^*; \mathbb{Z}) \to \\
\quad \to H_0(F^*, \partial X^*; \mathbb{Z}) \to H_0(X^*, \partial X^*; \mathbb{Z}).
\]

Since the rank of \(H_1(X^*, \partial X^*; \mathbb{Z}) \) is greater than 1, there is a class in \(i_*(H_1(X^*, \partial X^*; \mathbb{Z})) \) which is primitive and not a multiple of \(\chi' \). This class may be represented by a path \(\alpha \) in \(X^* \) which starts and ends on \(\partial X \) but is otherwise disjoint from \(F^* \).
The preimage \(S = \pi^{-1}(\alpha) \) is a 2-sphere of self-intersection 0 in \(X \). The Gysin sequence gives:

\[
H_3(X^*, F^*, \mathbb{Z}) \to H_1(X^*, F^*, \mathbb{Z}) \xrightarrow{i_*} H_2(X, F, \mathbb{Z}) \to H_2(X^*, F^*, \mathbb{Z})
\]

where \(\rho_*(i_*[\alpha]) = [S] \). The image of \(H_3(X^*, F^*, \mathbb{Z}) \) in \(H_1(X^*, F^*, \mathbb{Z}) \) is generated by \(\chi' \). Since \(i_*[\alpha] \) is primitive and not a multiple of \(\chi' \), the class \([S] \in \text{Im} \rho \subset H_2(X, F, \mathbb{Z})\) is not torsion; hence \([S] \) is nontorsion as an element of \(H_2(X; \mathbb{Z}) \).

It now follows from [FS1] that \(\text{SW}_X \equiv 0 \). \(\square \)

This type of vanishing theorem is quite common for 4-manifolds with circle actions. For instance, it follows from [F] that Seiberg-Witten invariants vanish for simply connected 4-manifolds which have \(b_+ > 1 \) and a smooth circle action.

Proposition 4 implies that the formula (4) simplifies to

\[
(7) \quad \text{SW}_X(\xi) = \sum_{\xi' \in V_{M \times S^1}(\xi|_{X_0})} \text{SW}_{M \times S^1}(\xi').
\]

4. Understanding the \(\text{spin}^c \) structures

In this section we shall prove that all basic classes of \(X \) come from \(\text{spin}^c \) structures that are pulled up from \(M \) (in a suitable sense). We shall also identify the \(\text{spin}^c \) structures in the set \(V_{M \times S^1}(\xi|_{X_0}) \) coming from the gluing theorem.

4.1. \(\text{Spin}^c \) structures. First recall some basic facts about \(\text{spin}^c \) structures. The set of \(\text{spin}^c \) structures lifting the frame bundle of a 4-manifold \(X \) is a principal homogeneous space over \(H^2(X; \mathbb{Z}) \): given two \(\text{spin}^c \) structures \(\xi_1, \xi_2 \) their difference \(\delta(\xi_1, \xi_2) \) is a well-defined element of \(H^2(X; \mathbb{Z}) \). For details, see [FM] or [R].

Likewise, if \(\xi \) is a \(\text{spin}^c \) structure and \(e \in H^2(X; \mathbb{Z}) \) is a 2-dimensional cohomology class, there is a new \(\text{spin}^c \) structure \(\xi + e \). Let \(W_\xi \) be spinor bundle associated with \(\xi \), then the new spinor bundle is \(W_\xi \otimes L_e \) where \(L_e \) is the unique line bundle with first Chern class \(e \).

For all \(\text{spin}^c \) structures, a line bundle \(L_\xi \) can be associated to \(\xi \) called the determinant line bundle. Let \((\xi, L_\xi) \) be a pair consisting a \(\text{spin}^c \) structure \(\xi \) whose determinant line bundle is \(L_\xi \). Given two \(\text{spin}^c \) structures \((\xi_1, L_1), (\xi_2, L_2) \), the difference of their determinant line bundles is \(c_1(L_1) - c_1(L_2) = 2e \) for some element \(e \in H^2(X; \mathbb{Z}) \). If \(H^2(X; \mathbb{Z}) \) has no 2-torsion, then \(e \) is well-defined and \(c_1(L_\xi) \) determines the \(\text{spin}^c \) structure for \((\xi, L_\xi) \). When \(H^2(X; \mathbb{Z}) \) has 2-torsion, one has a choice of two or more possible square roots of \(2e \) and it seems that \(e \) is not well-defined. However, the difference element \(\delta(\xi_1, \xi_2) \) satisfies
\[c_1(L_1) - c_1(L_2) = 2\delta(\xi_1, \xi_2) \]

and so there is a unique element in \(H^2(X; \mathbb{Z}) \) which determines the difference of two spin\(^c\) structures even in the presence of 2-torsion. So while \(c_1(L_\xi) \) does not determine \(\xi \) in this case, the difference between two spin\(^c\) structures is still well-defined.

4.2. Pullbacks of spin\(^c\) structures.

The spin\(^c\) structures on a 3-manifold \(M \) are defined by a pair \(\xi = (W, \rho) \) consisting of a rank 2 complex bundle \(W \) with a hermitian metric (the spinor bundle) and an action \(\rho \) of 1-forms on spinors,

\[\rho : T^* M \to \text{End}(W), \]

which satisfies the following property

\[\rho(v)\rho(w) + \rho(w)\rho(v) = -2 < v, w > \text{Id}_W. \]

For a 4-manifold the definition is similar, but consists of a rank 4 complex bundle with an action on the cotangent space that satisfies the same property. There is a natural way to define the pullback of a spin\(^c\) structure. Let \(\eta \) denote the connection 1-form of the circle bundle \(\pi : X \to M \), and let \(g_M \) be a metric on \(M \), then we can endow \(X \) with the metric \(g_X = \eta \otimes \eta + \pi^*(g_M) \). Using this metric, there is an orthogonal splitting

\[T^* X \cong \mathbb{R}\eta \oplus \pi^*(T^*M). \]

If \(\xi = (W, \rho) \) is a spin\(^c\) structure over \(M \), define the pullback of \(\xi \) to be \(\pi^*(\xi) = (\pi^*(W) \oplus \pi^*(W), \sigma) \) where the action

\[\sigma : T^* X \to \text{End}(\pi^*(W) \oplus \pi^*(W)) \]

is given by

\[\sigma(b\eta + \pi^*(a)) = \begin{pmatrix} 0 & \pi^*(\rho(a)) + b\text{Id}_{\pi^*(W)} \\ \pi^*(\rho(a)) - b\text{Id}_{\pi^*(W)} & 0 \end{pmatrix}. \]

One can easily check that this defines a spin\(^c\) structure on \(X \). Note that the first Chern class of \(\pi^*(\xi) \) is just \(\pi^*(c_1(L_\xi)) \). The other pulled back spin\(^c\) structures are now obtained by the addition of classes \(\pi^*(e) \) for \(e \in H^2(M; \mathbb{Z}) \).

There are spin\(^c\) structures on \(X \) which do not arise from spin\(^c\) structures that are pulled up from \(M \). In the next section we show that the Seiberg-Witten invariants vanish for these spin\(^c\) structures.

4.3. Spin\(^c\) structures which are not pullbacks.

Fix a spin\(^c\) structure \(\xi_0 = (W_0, \rho) \) on \(M \) and consider its pullback \(\xi = \pi^*(\xi_0) \) over \(X \). Looking at the Gysin sequence \((\mathbb{F}) \), if a class \(e \in H^2(X; \mathbb{Z}) \) is not in the image of \(\pi^* \), then \(\xi + e \) is not a spin\(^c\) structure which is pulled back from \(M \).
Lemma 5. If \((\xi, L_\xi)\) is a spin\(^c\) structure on \(X\) which is not pulled back from \(M\), then \(SW_X(\xi) = 0\).

Proof. We claim that there exists an embedded torus which pairs non-trivially with \(c_1(L_\xi)\). Then by the adjunction inequality [KM] the spin\(^c\) structure \(\xi\) has Seiberg-Witten invariant equal to zero. Let

\[
H = \ker(\cdot \cup \chi : H^1(M; \mathbb{Z}) \to H^3(M; \mathbb{Z}))
\]

in equation (3), and consider for a moment the projection of \(c_1(L_\xi)|_H \in H^2(M; \mathbb{Z})\) maps to a class \(\beta \in H^1(M; \mathbb{Z})\), \(\beta \cup \chi = 0\). Thus the Poincaré dual of \(\beta\) can be represented by a surface \(b\), and there is a 1-cycle \(\lambda\) in \(M \setminus N\) rel \(\partial\) such that \([\lambda] \cdot [b] \neq 0\). Since \(\partial N\) is connected, \([\lambda]\) is actually represented by a loop \(\lambda\) in \(M \setminus N\). The preimage \(\pi^{-1}(\lambda) = \lambda \times S^1\) in \(X\) is a torus, and \(c_1(L_\xi)|_H \cdot [\pi^{-1}(\lambda)] = [b] \cdot [\lambda] \neq 0\).

On the other hand, if \(A \in \pi^*H^2(M; \mathbb{Z})\) then it Poincaré dual is represented by a loop \(\alpha\) in \(M\) which may be chosen disjoint from \(\lambda\). Thus \(A \cdot [\pi^{-1}(\lambda)] = 0\). This means that \(c_1(L_\xi) \cdot [\pi^{-1}(\lambda)] \neq 0\), as required. \(\square\)

4.4. Identifying the set \(V_{M \times S^1}(\xi|_{X_0})\). According to the previous lemma, the only nontrivial Seiberg-Witten spin\(^c\) structures are those pulled up from \(M\). Thus far we have seen that for such a spin\(^c\) structure \(\xi = \pi^*(\xi^*)\) with \(\xi_0 = \xi|_{X_0}\), we have

\[
SW_X(\xi) = \sum_{\xi' \in V_{M \times S^1}(\xi_0)} SW_{M \times S^1}(\xi').
\]

Let \(\tilde{\pi} : M \times S^1 \to M\) be the projection. We identify the set \(V_{M \times S^1}(\xi_0)\) of isomorphism classes of spin\(^c\) structures over \(M \times S^1\) which restrict on \(X_0\) to \(\xi_0\).

Lemma 6. \(V_{M \times S^1}(\xi_0) = \{ \tilde{\pi}^* (\xi^* + n \cdot \chi) \mid n \in \mathbb{Z} \}\).
Proof. The diagram

\[
\begin{array}{c}
\xymatrix{ & X \ar[r]^{\text{inc}} & X_0 \ar[r]^{\text{inc}} & M \times S^1 \\
 & M \backslash N \ar[lu]^\pi \ar[ru]_{\tilde{\pi}} & \\
M \ar[ru]^\pi & & M \times S^1 \ar[l]_{\text{inc}} \ar[lu]_{\tilde{\pi}} \\
M \ar[ru]^\pi & \ & \ \\
& M & & \ \\
& M \ar[ru]^\pi & & M \times S^1 \ar[l]_{\text{inc}} \ar[lu]_{\tilde{\pi}} \\
& M \ar[ru]^\pi & & M \times S^1 \ar[l]_{\text{inc}} \ar[lu]_{\tilde{\pi}} \\
& M \ar[ru]^\pi & & M \times S^1 \ar[l]_{\text{inc}} \ar[lu]_{\tilde{\pi}} \\
& M & & M \\
\end{array}
\]

induces spinc structures on \(X, X_0\), and \(M \times S^1\) which satisfy

\[
\text{inc}^*(\pi^*(\xi^*)) = \xi_0 = \text{inc}^*(\tilde{\pi}^*(\xi^*)).
\]

Recall that \(\xi\) is the only spinc structure induced on \(X\) by \(\xi_0\) since \(i_*[m + t]\) is indivisible. Since \(\tilde{\pi}^*(\xi^*) \in V_{M \times S^1}(\xi_0)\), the set of spinc structures on \(M \times S^1\) is \(\{\tilde{\pi}^*(\xi^*) + e \in H^2(M \times S^1; \mathbb{Z}\}\). Now \(\tilde{\pi}^*(\xi^*) + e\) lies in \(V_{M \times S^1}(\xi_0)\) if and only if \(\text{inc}^*(\pi^*(\xi^*) + e) = \xi_0\), i.e. if and only if \(\text{inc}^*(e) = 0\). Therefore,

\[
(8) \quad V_{M \times S^1}(\xi_0) = \{\tilde{\pi}^*(\xi^*) + e \mid \text{inc}^*(e) = 0\}.
\]

The kernel of \(\text{inc}^*\) is equal to the image of \(j^*\) in the diagram below.

\[
\begin{array}{c}
\xymatrix{ H^2(M \times S^1, (M \backslash N) \times S^1; \mathbb{Z}) \ar[r] \ar[d]^{PD} & H^2(M \times S^1; \mathbb{Z}) \ar[r]^{\text{inc}^*} \ar[d]^{PD} & H^2(X_0; \mathbb{Z}) \ar[d]^{PD} \\
H_2(D^2 \times T^2; \mathbb{Z}) \ar[r] & H_2(M \times S^1; \mathbb{Z}) \ar[r] & H_2(X_0, \partial X_0; \mathbb{Z}) \\
n[T^2] \ar[r]_{j_*} & n[l \times t] \ar[r] & 0 \\
} \end{array}
\]

However \(j_*[\text{pt} \times T^2] = [l \times t]\), and since \(\tilde{\pi}^*(\chi) = PD^{-1}[l \times t]\), the lemma follows. \(\square\)

4.5. Relationship between \(SW^3\) and \(SW^4\). The following is a well-known fact about the relationship between the 3-dimensional Seiberg-Witten invariants and the 4-dimensional invariants.

Proposition 7 (cf. Donaldson [D]). After making a suitable choice of orientations for \(M\) and \(M \times S^1\), the following equality holds

\[
SW^3_M(\xi) = SW^4_{M \times S^1}(\tilde{\pi}^*(\xi))
\]

for a spinc structure \(\xi\) over \(M\).
A natural choice of orientations for $M \times S^1$ and M is induced by the orientation of the circle action on X. This completes the proof of Theorem 1.

5. APPLICATIONS AND EXAMPLES

5.1. An application. An immediate corollary to the main theorem is the calculation of the 3 dimensional Seiberg-Witten invariants for the total space of a circle bundle over a surface. The following corollary can also be derived from [MOY] using different techniques.

Corollary 8. Let $\pi : Y \rightarrow \Sigma_g$ be a smooth 3-manifold which is the total space of a circle bundle over a surface of genus $g > 0$. Let $c_1(Y) = n\lambda \in H^2(\Sigma_g; \mathbb{Z})$ where λ is the generator. The only invariants which are not zero on Y come from spinc structures which are pulled back $\pi : Y \rightarrow \Sigma_g$. Hence,

$$SW_Y(\pi^*(s\lambda)) = \sum_{t \equiv s \mod n} SW_{\Sigma_g \times S^1}(\tilde{\pi}^*(t\lambda))$$

where $\tilde{\pi} : \Sigma_g \times S^1 \rightarrow \Sigma_g$.

Proof. Let $\pi : Y \rightarrow \Sigma_g$ be the total space of a circle bundle over Σ with Euler class $n\lambda$. Then the manifold $Y \times S^1$ can be thought of as a smooth 4-manifold with a free circle action which orbit space is $\Sigma_g \times S^1$. The Euler class of the action is $\tilde{\pi}^*(n\lambda)$. Applying the main theorem gives

$$SW^4_Y((\pi, id)^*(\tilde{\pi}^*(s\lambda))) = \sum_{\tilde{\pi}^*(t\lambda) \equiv \tilde{\pi}^*(s\lambda) \mod \tilde{\pi}^*(n\lambda)} SW^3_{\Sigma_g \times S^1}(\xi')$$

the right hand side of the equation. Applying Proposition 7 shows that $SW^4 = SW^3$ in this case. \qed

Combining the Seiberg-Witten polynomial for the product of a surface with a circle,

$$SW_{\Sigma_g \times S^1}(t) = (t^1 - t^{-1})^{2g-2},$$

with the previous results gives a formula for the Seiberg-Witten polynomial in terms of the Euler class and the genus of the surface.

Corollary 9. Let $\pi : Y \rightarrow \Sigma_g$ be the total space of a circle bundle over a genus g surface. Assume $c_1(Y) = n\lambda$ where $\lambda \in H^2(\Sigma_g; \mathbb{Z})$ is the generator and n is an even number $n = 2l \neq 0$, then the Seiberg-Witten polynomial of Y is

$$SW_Y(t) = sign(n) \sum_{i=0}^{\lfloor l \rfloor - 1} \sum_{k=-2g+2}^{k=2g-2} (-1)^{(g-1)+i+k|l|} \left(\frac{2g-2}{(g-1) + i + k|l|} \right)^{2i}.$$
where \(t = \exp(\pi^*(\lambda)) \) and defining the binomial coefficient \(\binom{p}{q} = 0 \) for \(q < 0 \) and \(q > p \). For the formula where \(n \) is odd, replace \(l \) by \(n \) and \(t^{2i} \) by \(t^i \).

If one uses [MT] to calculate the Milnor torsion for a circle bundle \(Y \) over a surface, one finds that the invariant is identically 0. This is because all spin\(^c\) structures on \(Y \) with nontrivial invariants have torsion first Chern class. Turaev introduced another type of torsion in [Tu1, Tu2] and a combinatorially defined function on the set of spin\(^c\) structures \(T: \mathcal{S}(Y) \to \mathbb{Z} \) derived from this torsion, and showed that this function was the Seiberg-Witten polynomial up to sign. Hence, principal \(S^1 \)-bundles over surfaces provide simple examples which illustrate the difference between Milnor torsion and Turaev torsion.

5.2. A construction and a calculation. The following construction is similar to but simpler than the main construction in [FS2]. Let \(Y_K \) denote the manifold resulting from 0-surgery on a knot \(K \) in \(S^3 \). Let \(m \) be a meridian of the knot in \(Y_K \). Let \(m_1, m_2, m_3 \) be loops that correspond to the \(S^1 \) factors of \(T^3 \). Construct a new manifold

\[
M_K = T^3 \#_{m_1=m} Y_K = [T^3 \setminus (m_1 \times D^2)] \cup [Y_K \setminus (m \times D^2)]
\]

by removing tubular neighborhoods of \(m \) and \(m_1 \) and fiber summing the two manifolds along the boundary such that \(m = m_1 \) and such that \(\partial D^2 \) is sent to \(\partial D^2 \).

This is a familiar construction. If one forms a link \(L \) from the Borromean link by taking the composite of the first component with the knot \(K \) (see Figure 1), then \(M_K \) is the result of surgery on \(L \) with each surgery coefficient equal to 0. If \(K \) is a fibered knot, then the resulting manifold \(T^3 \#_{m_1=m} Y_K \) is a fibered 3-manifold.

Consider the formal variables \(t_\beta = \exp(PD(\beta)) \) for each \(\beta \in H_1(M; \mathbb{Z}) \) which satisfy the relation \(t_{\alpha+\beta} = t_\alpha t_\beta \). The Seiberg-Witten polynomial \(\mathcal{SW} \) of \(X \) is a Laurent polynomial with variables \(t_\beta \) and coefficients equal to the Seiberg-Witten invariant of the spin\(^c\) structure defined by \(t_\beta \).
Figure 2. $M_{K_1K_2}$ before surgery

Theorem 10 (Meng and Taubes [MT]). In the situation above

\[SW^3_{M_K} = \Delta_K(t_{m_1}^2) \]

where Δ_K is the symmetrized Alexander polynomial of K.

For example, the manifold M_K in Figure 1, where K is the trefoil knot, has Seiberg-Witten polynomial

\[SW^3_{M_K}(t_{m_1}) = -t_{m_1}^{-2} + 1 - t_{m_1}^2. \]

5.3. **Example 1.** We first produce an example of a nonsymplectic 4-manifold which admits a free circle action whose orbit space is a 3-manifold which is fibered over the circle. Our construction generalizes easily to produce a large class of such manifolds with this property. Let K_1 and K_2 be any fibered knots. Form the fiber sum of the complements of K_1 and K_2 with neighborhoods of the first and second meridians of T^3, i.e.,

\[M_{K_1K_2} = (S^3 \setminus K_1)\#_{m=m_1} T^3 \#_{m=m_2} (S^3 \setminus K_2) \]

where m is the meridian of the corresponding knot. Since both K_1 and K_2 are fibered, the manifold $M_{K_1K_2}$ is a fibered 3-manifold. By Meng-Taubes theorem, the Seiberg-Witten polynomial of this manifold is

\[SW^3_{M_{K_1K_2}}(t_{m_1}, t_{m_2}) = \Delta_{K_1}(t_{m_1}^2) \Delta_{K_2}(t_{m_2}^2). \]

Let $X_{K_1K_2}(l)$ be the 4-manifold with free circle action that has $M_{K_1K_2}$ for its orbit space and $PD[l]$ for the Euler class of the circle action. Taking both K_1 and K_2 to be the figure eight knot (see Figure 2), we get a manifold with Seiberg-Witten polynomial:

\[SW^3_{M_{K_1K_2}} = t_{m_1}^{-2} t_{m_2}^{-2} - 3t_{m_2}^{-2} + t_{m_1}^2 t_{m_2}^{-2} - 3t_{m_1}^{-2} + 9 \]

\[- 3t_{m_1}^2 + t_{m_1}^{-2} t_{m_2}^{-2} - 3t_{m_2}^2 + t_{m_1}^2 t_{m_2}^2. \]
The Seiberg-Witten polynomial of the manifold $X_{K_1,K_2}(4m_1)$ can be calculated from Theorem 1.

$$SW_{X_{K_1,K_2}(4m_1)} = 2t_{m_1}^{-2} - 3t_{m_2}^{-2} + 9 - 6t_{m_1}^2 + 2t_{m_1+m_2}^2 - 3t_{m_2}^2,$$

where $t_\beta = \exp(\pi^*(PD(\beta)))$ is the pullback of the spinc structure on M_{K_1,K_2}.

A theorem of Taubes [T] implies that the first Chern class c_1 of a symplectic 4-manifold must have Seiberg-Witten invariant ± 1. We thus see that the manifold $X_{K_1,K_2}(4m_1)$ admits no symplectic structure with either orientation. This is not the only free S^1-manifold over M_{K_1,K_2}.

5.4. Example 2. Next we produce an example of a 3-manifold which is not the orbit space of any symplectic 4-manifold with a free circle action. Let $K_1 = K_2$ be the nonfibered knot 5_2 (see [3]). The Seiberg-Witten polynomial of M_{K_1,K_2} is

$$SW_{M_{K_1,K_2}}^3 = 4t_{m_1}^{-2}t_{m_2}^{-2} - 6t_{m_2}^{-2} + 4t_{m_1}^2 t_{m_2}^{-2} - 6t_{m_1}^{-2} + 9 - 6t_{m_1}^2 + 4t_{m_1}^2 t_{m_2}^2 - 6t_{m_2}^2 + 4t_{m_1}^2 t_{m_2}^2.$$

One then needs to calculate as in Example 1. There are only finitely many free S^1 manifolds $X_{K_1,K_2}(l)$ which need to be checked because for all $l = am_1 + bm_2$ with $|a|, |b| > 2$ the Seiberg-Witten polynomial SW^4 is equal to the 3-dimensional polynomial (only the meaning of the variables will change). A calculation shows that the remaining free S^1-manifolds all have spinc structures with Seiberg-Witten invariant greater than one in absolute value. Therefore these manifolds are not symplectic. Therefore M_{K_1,K_2} is not the orbit space of any symplectic 4-manifold with a free circle action.

5.5. Remarks. The above two examples show:

1. There exist nonsymplectic free S^1-manifolds with fibered orbit space.
2. There exists a 3-manifold which is not the orbit space of any symplectic 4-manifold with a free S^1-action.

We conclude with two questions.

Question 1. If X is a free S^1-manifold which is symplectic, must its orbit space $M = X/S^1$ be fibered?

Taubes has conjectured this in case $X = M \times S^1$. Theorem 1 could be used to search for manifolds with free S^1-actions that had nonfibered orbit spaces and which do not have Seiberg-Witten obstructions to having symplectic structures. One would still need to prove that those
manifolds where symplectic. While a counter example may be obtainable, a proof to the affirmative is already at least as difficult as a proof of Taubes’ conjecture.

Question 2. Let M be a 3-manifold with the property that every free S^1-manifold whose orbit space is M is symplectic. Is M fibered?

The 3-torus is an example of manifold with this property \[\text{[FGG]}\].

References

[D] S. Donaldson, *The Seiberg-Witten equations and 4-manifold topology*, Bull. A.M.S. **33** (1996), 45–70.

[FGG] M. Fernández and M. J. Gotay and A. Gray, *Compact Parallelizable four dimensional symplectic and complex manifolds*, Proc. A.M.S. **103** (1988), 1209–1212.

[FGM] M. Fernández and A. Gray and J. Morgan, *Compact symplectic manifolds with free circle actions, and Massey products*, Michigan Math. J. **38** (1991), 271–283.

[F] R. Fintushel, *Circle actions on simply connected 4-manifolds*, Trans. A.M.S. **230** (1977), 147–171.

[FS1] R. Fintushel and R. Stern, *Immersed spheres in 4-manifolds and the immersed Thom conjecture*, Turkish J. Math. **19** (1995), 145–157.

[FS2] R. Fintushel and R. Stern, *Knots, links, and 4-manifolds*, Invent. Math., **134** (1998), 363–400.

[FM] R. Friedman and J. Morgan, *Algebraic surfaces and Seiberg-Witten invariants*, J. Algebraic Geom., **6** (1997), 445–479.

[KM] P. Kronheimer and T. Mrowka, *The genus of embedded surfaces in the projective plane*, Math. Research Letters **1** (1994), 797–808.

[R] H. Lawson and M. Michelsohn, ‘Spin Geometry’, Princeton Mathematics Series, No.38, Princeton University Press, Princeton, NJ, 1989.

[MT] G. Meng and C. Taubes, \[\text{SW} = \text{Milnor Torsion}\], Math. Research Letters **3** (1996), 661–674.

[MMS] J. Morgan, T. Mrowka and Z. Szabo, *Product formulas along T^3 for Seiberg-Witten invariants*, Math. Research Letters **4** (1997), 915–929.

[MOY] T. Mrowka, P. Ozsváth, and B. Yu, *Seiberg-Witten monopoles on Seifert fibered spaces*, Comm. Anal. Geom. **bf 5** (1997), 685 – 791.

[R] D. Rolfsen, ‘Knots and Links’, Publish or Perish, Inc., Houston, TX, 1989.

[Tu1] V. Turaev, *Torsion invariants of spinc structures on 3-manifolds*, Math. Research Letters **4** (1997), 679–695.

[Tu2] V. Turaev, *A combinatorial formulation for the Seiberg-Witten invariant of 3-manifolds*, Math. Research Letters **5** (1998), 583–598.

[T] C. Taubes, *The Seiberg-Witten invariants and symplectic forms*, Math. Res. Letters **1** (1994), 809–822.

[W] E. Witten, *Monopoles and four-manifolds*, Math. Res. Letters **1** (1994), 769–796.

Department of Mathematics, Michigan State University
East Lansing, Michigan 48824
E-mail address: baldrid1@pilot.msu.edu