Multi-source dataset for urban computing in a Smart City

Ali Reza Honarvar, Ashkan Sami*

Computer Science and Engineering and Information Technology Department, School of Electrical Engineering and Computer, Shiraz University, Shiraz, Iran

A R T I C L E I N F O

Article history:
Received 27 June 2018
Accepted 28 September 2018
Available online 03 October 2018

Keywords:
Smart City
Internet of Things
Big data
Urban computing

A B S T R A C T

It is vital to capture and analyze, from various sources in smart cities, the data that are beneficial in urban planning and decision making for governments and individuals. Urban policy makers can find a suitable solution for urban development by using the opportunities and capacities of big data, and by combining different heterogeneous data resources in smart cities. This paper presents data related to urban computing with an aim of assessing the knowledge that can be obtained through integration of multiple independent data sources in Smart Cities. The data contains multiple sources in the city of Aarhus, Denmark from August 1, 2014 to September 30, 2014. The sources include land use, waterways, water barriers, buildings, roads, amenities, POI, weather, traffic, pollution, and parking lot data. The published data in this paper is an extended version of the City Pulse project data to which additional data sources collected from online sources have been added.

© 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.bdr.2018.05.006
* Corresponding author.
E-mail addresses: alireza_honarvar@yahoo.co.uk (A.R. Honarvar), sami@shirazu.ac.ir (A. Sami).

http://dx.doi.org/10.1016/j.dib.2018.09.113
2352-3409 © 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications table

Subject area	Urban computing
More specific subject area	Smart City and Internet of Things
Type of data	CSV
How data was acquired	Raw data collected from online sources and City Pulse project
Data format	Raw and classified
Experimental factors	–
Experimental features	Weather, traffic, pollution, parking, land use, waterways, water barriers, buildings, roads, amenities, and POI
Data source location	Aarhus, Denmark
Data accessibility	The data are available within this paper

Value of the data

- This is the first multiple source dataset describing the characteristics of a Smart City from various perspectives to date.
- Researchers can use the data to investigate the effects of spatial features on various events in Smart Cities.
- It can be used to identify novel knowledge for urban planning and decision-making through multiple-source urban data integration.
- This data can provide a significant contribution to the literature on urban computing considering various static and dynamic data sources in Smart Cities.

1. Data

This paper presents data related to urban computing with an aim of assessing the knowledge that can be obtained through integration of multiple independent data sources in Smart Cities. The data covers multiple sources in the city of Aarhus, Denmark. The sources are divided into two categories: static and dynamic. Static data sources present data related to land use, waterways, water barriers, buildings, roads, amenities, and POI. Dynamic data sources present weather, traffic, pollution, and parking lot data during the intended period. The association and structure of some data sources of the data is illustrated in Fig. 1.

The published data in this paper is an extended version of the City Pulse project data [1] to which additional data sources collected from online sources have been added. Meteorological data were acquired from Wunderground’s website.\(^1\) Moreover, the concentration of various pollutants as well as road traffic data were taken from the Smart City Pulse project. In addition, the POI data of the city were extracted using Google Maps.\(^2\) Moreover, the main structure of road networks was obtained from Openstreetmap’s website.\(^3\) The data can be used to identify new knowledge for urban planning and decision-making through multiple-source urban data integration. This data can provide a significant contribution to the literature on urban computing considering various static and dynamic data sources in Smart Cities. Some works that have used parts of the City Pulse EU project published data in previous researches are as follows: Maio et al. [2] considers road traffic, parking, and cultural events datasets to evaluate the implementation and deployment of a fuzzy and temporal extension of formal concept analysis for mining high-level semantics from low-level activities. Rathore et al. [3] analyzes the traffic data of the dataset using the proposed big data architecture for a Smart City.

\(^1\) https://www.wunderground.com.
\(^2\) https://developers.google.com/maps.
\(^3\) https://www.openstreetmap.org.
et al. [4] emulates eight services on the Aarhus datasets to analyze the frequency of conflicts happening across services in a Smart City. Rathore et al. [5] proposed smart and intelligent transportation system based on real-time traffic circumstances using graphs. The system was partially evaluated with the traffic data section of the intended dataset.

2. Experimental design, materials and methods

2.1. Description of study area

The study period was from August 1, 2014 to September 30, 2014, and took place at Aarhus, Denmark. Aarhus covers an area of 91 square kilometers and has a population of approximately 270,000 inhabitants. Some data sources, such as weather, land use, waterways, water barriers, buildings, roads, amenities, and POI were extracted, collected, and preprocessed from online sources. Moreover, the concentration of various pollutants, parking lots, as well as road traffic data, were taken from the City Pulse project using 217 sensors located in the city. Fig. 2 portrays the study area. The green marks on the map represent the main air monitoring stations.
Fig. 2. The study area.

Fig. 3. The grids that cover Aarhus.
2.2. Experimental design

To study and evaluate the system performance most researches related to urban computing applied a map splitting method and partitioned the evaluating data into segments according to fixed size grids or variable size regions. For the aim of this study, we follow such methods and published the data in this way. Therefore, the city is divided into segments according to one square meter grids and major roads. When the city is divided into one square meter grids, there are 620 grids that cover the whole city. Fig. 3 illustrates the grids that cover the city. Eleven regions are provided when the urban area of the city is partitioned using the city road network. Fig. 4 shows that Aarhus was divided into 11 regions, based on its major roads. Typically, in a geographical information system (GIS), road networks are divided into seven categories: residential, unclassified, tertiary, secondary, primary, trunk, and motorway. In this paper, the urban division was accomplished according to the main roads, including trunk, primary, secondary, and motorway routes. The supplementary data of this paper was published according to grid partitioning and regions based on the major roads in order to provide a necessary platform for analyzing of Smart City data using multiple data sources.

References

[1] Muhammad Intizar Ali, Feng Gao, Alessandra Mileo, Citybench: a configurable benchmark to evaluate rsp engines using smart city datasets, in: Proceedings of the International Semantic Web Conference, 2015.
[2] Carmen De Maio, Giuseppe Fenza, Vincenzo Loia, Francesco Orciuoli, Distributed online temporal Fuzzy concept analysis for stream processing in smart cities, J. Parallel Distrib. Comput. (2017).
[3] M. Mazhar Rathore, Awais Ahmad, Anand Paul, Seungmin Rho, Urban planning and building smart cities based on the internet of things using big data analytics, Comput. Netw. (2016) 63–80.
[4] Meiyi Ma, S. Masud Preum, W. Tarneberg, Moshin Ahmed, Matthew Ruiter, John Stankovic, Detection of runtime conflicts among services in smart cities, in: Proceedings of the Smart Computing (SMARTCOMP), 2016 IEEE International Conference, 2016.
[5] M. Mazhar Rathore, Awais Ahmad, Anand Paul, Uthra Kunathur Thikshaja, Exploiting real-time big data to empower smart transportation using big graphs, in: Proceedings of the Symposium (TENSYMP), 2016 IEEE, 2016.