Rezumat

Introducere: Odată cu apariția tehnicilor minim invazive, fundoplicatura laparoscopică Nissen și fundoplicatura parțială Toupet au avut mare succes în managementul BRGE. În ultimii 10 ani, o serie de tehnici noi, foarte atractive pentru tratamentul BRGE au intrat pe piață. Aceste tehnici includ gastroplicatura transorală, alte tipuri de plicaturi endoscopice și implantarea unui dispozitiv magnetic la nivel sfincterian (magnetic sphincter augmentation (MSA)). Aceste noi tehnologii sunt promovate excesiv de companiile respective, pe baza faptului că ar produce mai puține efecte secundare. Scopul acestui articol este de a prezenta ratele de succes ale noilor tehnici aplicate în tratamentul BRGE.

Metode: Acest articol analizează literatura de specialitate pe tema fundoplicaturii laparoscopecă Nissen și fundoplicaturii parțiale Toupet avut mare succes în managementul BRGE. În ultimii 10 ani, o serie de tehnici noi, foarte atractive pentru tratamentul BRGE au intrat pe piață. Aceste tehnici includ gastroplicatura transorală, alte tipuri de plicaturi endoscopice și implantarea unui dispozitiv magnetic la nivel sfincterian [magnetic sphincter augmentation (MSA)]. Aceste noi tehnologii sunt promovate excesiv de companiile respective, pe baza faptului că ar produce mai puține efecte secundare. Scopul acestui articol este de a prezenta ratele de succes ale noilor tehnici aplicate în tratamentul BRGE.

Rezultate: În total, 4030 de rezumate au fost analizate în funcție de cuvintele cheie selectate. După criteriile de excludere, au fost selectate și analizate 19 publicații. În ceea ce privește grupul 1 și FL (2565 pacienți), morbiditatea a variat între 2,0-4,8 % din cazuri. Perioada de urmărire a fost cuprinsă între 36 și 222 luni, iar majoritatea acestor pacienți au fost urmăriți > 5 ani. În grupul 2,
Results in Antireflux Surgery, an Analysis of Case-Controlled Cohorts versus Multicenter Studies and Meta-Analyses

Introduction

Therapeutic management of Gastroesophageal Reflux Disease (GERD) is a matter of discussion between several subspecialties, mainly gastroenterologists and surgeons (1-4). Since 1956, the principle of fundoplication by mechanical enforcement of the weakened antireflux barrier has been used with varying success (5,6). A major problem around this therapeutic principle emerged very early regarding postoperative dysphagia, care pot atinge un nivel de calitate peste rezultatele registrelor și meta-analizelor.

Key words: GERD, antireflux surgery, laparoscopic fundoplication, laparoscopic Nissen fundoplication, laparoscopic Toupet fundoplication, endoscopic antireflux procedures, magnetic Sphincter augmentation, Linx

Abstract

Introduction: With the advent of minimally invasive techniques, laparoscopic Nissen fundoplication and Toupet partial fundoplication have been very successful in the management of GERD. In the past 10 years, a number of very attractive new technologies have entered the market around therapeutic GERD-management such as Transoral Incisionless Gastroplasty, other endoscopic plication techniques, and the implantation of the magnetic sphincter augmentation (MSA). These new technologies are excessively promoted by the respective companies, propagating their techniques as causing fewer side effects. The purpose of this paper is an overview on the success-rates of these differently used techniques and technologies and, in addition, different study-designs.

Methods: A literature review was performed searching for publications on laparoscopic fundoplication (LF), Transoral Incisionless Fundoplication (TIF), and laparoscopic MSA. The reported classified were separated according to their design into (group 1) large case-controlled series or comparative studies (n > 100 cases) from high-volume centers and into (group 2) trials between different technologies of antireflux procedures, multicenter-studies, and meta-analyses of GERD-trials. Results: In total, 4030 abstract were screened according to the selected key words. Following the section criteria, 19 publications were selected and analyzed. Regarding group 1 and LF (selected studies 2565 patients), the morbidity ranged from 2.0-4.8 % of cases. With a follow-up time of 36-222 months most of these patients were followed > 5 years. In group 2, more than 150 studies and several multicenter-registries were summarized in these 9 selected publications. The overall follow-up periods were substantially shorter with a range of 7-48 months.

Conclusions: It can be concluded that special efforts in patient management in high volume centers and a vast experience may substantially contribute to excellent results for several antireflux techniques, which may reach a level of quality above results of registries and meta-analyses.

Key words: GERD, antireflux surgery, laparoscopic fundoplication, laparoscopic Nissen fundoplication, laparoscopic Toupet fundoplication, endoscopic antireflux procedures, magnetic Sphincter augmentation, Linx
side-effects such as early satiety, vomiting, increased flatulence, and diarrhea (7). The latter problems led to a first wave of criticism of the fundoplication technique especially in the gastroenterologic arena, because they usually had to treat patients with fundoplication failures and severe restrictions in quality of life.

Technical modifications of the fundoplication technique helped somewhat. One alternative was the step towards partial fundoplications with potentially fewer severe side-effects (6,7). Another technical alternative was the modification of the Nissen-wrap by shortening the fundoplication and creating a floppy version, using a large 54-60 French bougie for cardia calibration, which was very helpful, however, rarely followed by surgeons (8,9).

With the advent of minimally invasive techniques, laparoscopic Nissen fundoplication and Toupet partial fundoplication have been very successful in the management of GERD, since the early reconvalescence and limited postoperative pain and complications led to a “boom” for these operations (10-14). However, the broad application of laparoscopic surgery also in rather inexperienced surgical centers led to the fact that every general surgeon applied this technique in many patients. In a second wave of problems, patient selection, indications for surgical treatment of GERD and necessary adherence to technical necessities were not followed as necessary, resulting again in unfavorable results for laparoscopic fundoplication (15).

This paved the way for the introduction of alternative technologies associated with flexible endoscopic techniques such as endoscopic suturing and implants (16,17). However, the insufficient durability and technical shortcomings of the latter techniques limited their success (16-19).

In the past 10 years, a number of very attractive new technologies have entered the market around therapeutic GERD-management such as Transoral Incisionless Gastroplication, other endoscopic plication techniques and the implantation of the magnetic sphincter augmentation (MSA) by the LINX™-device (20-24). These new technologies are excessively promoted by the respective companies, propagating their techniques as causing fewer side effects while being promoted as highly successful in GERD-therapy (24-26). These marketing efforts usually used the devastating results of some publications about fundoplication in widely criticizing the principle of laparoscopic fundoplication as such (27-30).

Despite this development, laparoscopic fundoplication (LF) is still the most frequently used procedure for the interventional treatment of GERD especially in esophageal centers around the world (31-33). In addition, there is a large variety of reported success-rates among the GERD literature from meta-analyses and multicenter studies, comparative studies between new-technology-studies and traditional laparoscopic fundoplication as well as large case-controlled studies from experienced high-volume esophageal centers (3,31-36).

The purpose of this manuscript is an overview on the success-rates of these differently applied techniques and technologies in interventional endoscopic and laparoscopic therapy for GERD. It was important to verify and demonstrate the differences in the results of various study designs and the discussion and interpretation of these results.

Methods

A literature review was performed searching for publications on laparoscopic fundoplication, endoscopic antireflux procedures (EAP) mainly Transoral Incisionless Fundoplication (TIF), and laparoscopic MSA to select the main procedures on the current market. The reported studies were categorized according to their design into (group 1) large case-controlled series or comparative studies (n > 100 cases) from high-volume centers (reports from >500 documented patients available in literature) and into (group 2) trials between different technologies of antireflux procedures, multicenter-studies, and meta-analyses of therapeutic GERD-trials.

For the retrieval of the published literature, the following terms were entered in the
pubmed database: laparoscopic fundoplication; transoral incisionless fundoplication; magnetic sphincter augmentation, endoscopic antireflux procedures.

The published studies were retrieved from “pubmed.gov” from the past 6 years and were afterwards selected by the authors in order to gain the most recent evidence on the subject. In a subsequent conference, occurring discrepancies in selection were discussed and a unanimous decision was established for the final selection to enter the analysis.

The selected manuscripts were analyzed according to the following parameters: first author and year of publication, the number of patients treated (n), the morbidity of the procedure in %, the mean length of follow-up time in months, if available, also the percentage of followed patients compared to the initial treated cohort, the percentage of good to excellent results of the treated patients, more in detail the percentage of patients in follow-up with persistent dysphagia, the percentage of patients with reflux recurrence if available either based on pH-monitoring data, presence of esophagitis and/or presence of postoperative heartburn and regurgitation as well as the rate of necessary redo-surgery among the published cohort over the follow-up time.

The results were summarized in tables and a conference call on the interpretation of these results was arranged among the authors and documented.

Results

In total, 4030 abstract were screened according to the selected key words. Following the section criteria, 19 publications were selected and analyzed (33,37-54). Table 1 demonstrates the results of group 1 with studies from large case-controlled series from high-volume centers focusing on their preferred technique. Regarding laparoscopic fundoplication the

Author; year	Operative technique	n	Morbidity (Mortality) (%)	Follow-up (months)	persisting dysphagia rate (%)	recurrent reflux (%)	good results (%)	Necessary redo surgery (%)	
Singhal 2018 (33)	Fundoplication	545	2.0 (mortality 0.2)	36 (73%)	4.0	12.0	88	4.3	
Park 2018 (37)	* Hill repair	242	*	222 (38%)	16	30	76-85	16 dilation	
Hakanson 2019 (38)	Fundoplication	456	227 Nissen: 4.4	36	* Nis>Tou	Low Nis = Tou	No	1.7	
Hopkins 2020 (39)	Fundoplication	191	*	120	Nissen 6.9	22 at 10y	Nissen 84	1.7	
Fuchs 2021 (40)	Fundoplication	1131	4 (mortality 0.09%)	67.2 (79%)	4.0	13.0	88.0	4.4 redo surgery	
Buckley III. 2016 (41)	MSA	200	2.5	8.8	1	6	94	9.5 dilatations	
Ayazi 2020 (42)	Magnetic sphincter augmentation MSA	553	2.3	10.3	23.3	path DeMeester score: 17.6-34.3%	86.7	17.9 dilatations	
Ferrari 2020 (43)	MSA	335	*	Adverse events 11.8% over 108 months	108	4.8	21	89	2.4 dilatations
*								9.2 revisional surgery	
Hunter 2015 (44)	Transoral Incisionless Gastroplication TIF	129	Adverse events: 3.4	6	1.1	11 at 6 months	32.3 at 18 months	68	*
Bell 2021 (45)	Transoral Incisionless Gastroplication TIF	151	2.66	67 (86%)	*	30	64	22	(>50% QL-reduction)

* Rates not presented
selected studies concerned 2565 patients with GERD, operated by the laparoscopic fundoplication using different techniques of wrapping from partial anterior, partial posterior to complete Nissen-fundoplication.

The morbidity of the procedures ranged from 2.0-4.8% of cases. With a follow-up time of 36-222 months, most of these patients were followed > 5 years. The persisting dysphagia rate varied between 4 and 16% with an estimated median of 4.0%. Reflux recurrence occurred after this rather long follow-up time in 12.0-39%, with variations between the different wrap techniques, indicating for the Nissen-version a recurrence rate of 12.0-22%, while for partial wraps 13.0-39%. Overall good results were documented in 76-88% with a necessity of revision surgery in 1.7-12.5% of cases. The estimated median for the rate of redo-surgery was 4.4%.

The series of 1088 patients with Magnetic Sphincter Augmentation (MSA) showed (Table 1) a morbidity range of 2.3-11.6% and a follow-up period of 8.6-108 months. The persisting dysphagia rate was shown to be 1.23.3% (estimated median: 4.8%) with a recurrent reflux rate of 8.34%. Good results were reported between 86-94%. Postoperative dilations were performed in 2.4-17.9% and revisional surgery, often device removal, was necessary in 1.9-2%.

A smaller series of 280 patients were documented in Table 1 after Transoral incisionless fundoplication (TIF). Adverse events range between 2.66-5.4%, while the follow-up period ranged between 6-97 months. The persistent dysphagia rate was reported only in one series with 1.1%. Reflux recurrence was quite frequent with 30-32% during the follow-up time. Overall good results were limited to 64-68% with a necessity for further endoscopic or surgical therapy in 22%.

The results of group 2, the analysis of comparative studies between several techniques of therapeutic antireflux procedures, multicenter-studies and meta-analyses of therapeutic GERD-trials, are shown in Table 2. In total, more than 150 studies and several

Author; year	Operative technique	n	Morbidity (Mortality) (%)	Follow-up Months (participation)	persisting dysphagia rate (%)	recurrent reflux (%)	good results (%)	Necessary Redo surgery (%)
Kim 2021 (46)	Fundoplications	310	10.5	12	10.5	21.4	81	
McKinley 2021 (47)	Surgical: 17.8	*	*	27.9	21-61	58-79	5.0 dilation	6.8 redo surgery
Skubleny 2017 (48)	LINX: 415: 1.2	688	3.9	7-12	33.9	18.6	71.6	
Asti 2018 (49)	MSA in 13 centers	100	5	*	5	13	87	5 dilations
Jin 2016 (52)	Fundoplication:168: 3.0	36	3.8	4.8	4.8	19.5	76.5	1.9
Hsiao 2017 (53)	TIF 18 studies	963	2.4 (Mortality 0.12%)	6	*	34	45-86	2.2 re-interventions
Testoni 2021 (54)	TIF (TIF and MUSE)	640	1.7	-48	34-45	70.6	10 (0-37)	

• Rates not presented
multicenter registries were summarized in these 9 selected publications. The overall follow-up periods in these studies were substantially shorter with a range of 7-48 months with an estimated median of 16 months, compared to > 5 years in group 1.

Regarding multicenter studies and meta-analyses around laparoscopic fundoplication we focused on 2 recent publications with more than 100 studies and a national registry with 310 patients. The morbidity concerning laparoscopic fundoplication was 10.5-17.8%, and thus clearly higher than the estimated median in group 1 (4%). Persisting dysphagia, a major draw-back of fundoplication, was reported in these studies within group 2 with a range of 10.5-27.9%. Furthermore, also the reflux recurrence was documented as high as 21.4-61% with an overall good result in 59-81%. Necessity of dilations and redo-surgery were in a similar range as in group 1.

A substantial number of studies in group 2 focused on the laparoscopic implantation of the MSA in 2630 patients. Morbidity was reported in 0-3.8% of cases. Persisting dysphagia was documented in a range of 3.8-33.9%, and recurrent reflux was documented in a range of 13-24.2%. Overall success rate for good results showed a range of 71.6-87%. Necessity for revisional surgery was limited between 1.4-3.4%.

The experience with TIF in trials on 2046 patients with GERD is also demonstrated in Table 2. Morbidity is at a rate of 1.7-3%, and it is noteworthy that there is mortality (0.12%) reported in one study for this endoscopic procedure. Post-therapeutic dysphagia seems to be low, since it was only rarely reported. Recurrent reflux seems to be a substantial problem with a range of 28-82%. The latter limits the overall success rate, which is reported to be between 45-86%. The re-intervention rate can be at 0-37%.

In summary, the results show a certain difference between study results from large case-controlled patient series from high-volume centers and results from multicenter studies and meta-analyses. Major differences between group 1 and group 2 exist for laparoscopic fundoplication in reported morbidity and dysphagia rate. For MSA, these differences can be found in dysphagia and overall success rate. The results for TIF are quite similar in both groups.

Discussion

For a correct comparison between different medical methods, a control group is necessary to make sure that the results are valid. Following evidence-based research, randomized controlled trials must be performed to establish results, which can lead to conclusions that can be transferred into clinical practice (55-60). Many randomized trials, and, furthermore, many meta-analyses of randomized trials have been performed to help in optimizing the interventional and surgical treatment for GERD (61-64). The drawback of these randomized trials is the necessary organizational and timely effort to perform these in a correct way. Ideally, to be tested all procedures should be performed under the same comparable conditions. This may be quite difficult, especially, if the surgical participants may have a different level of experience in one or the other procedure, involved in the comparative study. There are examples for this dilemma in literature.

Another problem is the increasing flood of meta-analyses. There are examples in literature in which a new method is introduced and published evidence is rather scarce, however, early attempts of meta-analyses already provide conclusions that may be misleading (65-68).

The weakness of this present analysis is the selection of publications for the demonstration of results, which may indicate a certain comparison, which is not acceptable under evidence-based rules. This study does not attempt to replace any conclusions about GERD-treatment from meta-analyses. However, the authors want to emphasize the value of well-studied and well-documented cohort results indicating the potential of high-end-specialization for one or the other endo-
scopic or surgical method in order to reach quality results beyond the usual study level. It is important to know what can be possible in contrast to results from multicenter or randomized studies (31,32,61,69). It must be also emphasized that such results are generated in a special condition or with special prerequisites and cannot be generalized.

For example, in the somewhat older literature one can find randomized trials in which the dysphagia rate, and subsequently the rate of revisional surgery after a Nissen fundoplication was as high as 15%, much higher than the rate after a Toupet posterior partial fundoplication (13,64,70). As a consequence, it is not surprising that in a subsequent meta-analysis, the results of a Nissen are much worse than a Toupet fundo-plication (64). On the other hand, many large case-controlled studies show a revisional surgery rate for a fundoplication of < 5% (32,33,69). How should the critical reader interpret these two findings?

This manuscript is not focusing on the discussion between partial and total fundoplication, but focuses more on the potential level of good and excellent results, which can obviously be reached by both techniques, if the involved surgeons focus on one or the other technique of fundoplication (11,31-33,40,60, 61,69,71,72). In severe esophageal motility disorders, a partial fundoplication is advisable and can provide good results if selected and performed well (31,32,33).

Based on the level of the available evidence, the results of randomized trials have more value and are more valid, since these data are generated with a control group. But what if the surgeons involved did have much more experience with a Toupet techniques, compared to their experience with the Nissen technique, the comparison even in a randomized fashion is a problem.

The presentation of the different data from groups 1 and 2 in the tables should be considered as a confrontation of these partially controversial data, not a direct comparison. For the authors it is not only interesting, but also important to provide data from a certain method, which can be reached with a high level of expertise and high volume of the team (33,37-43).

The results indicate that it seems to be important to focus with all possible components on a certain method and gain experience of many hundreds of cases, driving the idea of specialization further, to reach an optimized level of quality in the outcome of patients.

The results show that different modifications of fundoplication can be performed with a limited level of morbidity (around 4%), followed even in long follow-up by a limited level of persisting dysphagia and a success rate regarding Reflux-prevention above 85%. Magnetic sphincter augmentation can reach a similar success with lower initial morbidity, however, in most analyzed studies the severity of GERD was lower in the MSA-series compared to the fundoplication-series (41-43,48-51). This must be kept in mind when interpreting these data.

Neither in the large cohort-series nor in the meta-analyses TIF could reach similar results as the other two presented therapeutic techniques (33,37-54). This is not surprising since treatment of GERD necessarily combined with the anatomic correction of an associated hiatal hernia requires surgical anatomical dissection and changes, which is quite limited from inside the stomach.

Conclusion

It can be concluded that special efforts in patient management in high volume centers and a vast experience may substantially contribute to excellent results for several antireflux techniques, which may reach a level of quality above results of registries, and meta-analyses. Surgeons and teams should be encouraged to strive for such a level of quality.

Conflict of Interest

All authors declare that they have no conflicts of interests.
Ethics of Approval

Ethical approval was not needed for this study.

References

1. Vakil N, van Zanten SV, Kahrilas PJ, Dent J, Jones R, and the global consensus Group. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol. 2006;101(10):1900–20; quiz 1943.

2. Boekkosters GEE. Review: the pathophysiology of gastro-esophageal reflux disease; Aliment Pharmacol Ther. 2007;26(2):149–60.

3. Fuchs KH, Babic B, Breithaupt W, Dallamagne B, Fingerhut A, Furnee E, et al. EAES recommendations for the management of Gastroesophageal Reflux Disease. Surg Endosc. 2014;28(6):1753-73.

4. Goyal VP, Karthikeyan PJ, Savarino E, Zerbib F, Mion F, Smout AJPM, et al. Modern diagnosis of GERD: the Lyon Consensus. Gut. 2018;67(7):1351-1362.

5. Nissen R. A simple operation for control of reflux esophagitis. Schweiz Med Wochenschr. 1955;65(Suppl 20):500-2. German

6. Allison PR. Reflux esophagitis, sliding hernia and the anatomy of repair. Surg Gynecol Obstet. 1951;92(4):419-31.

7. Skinner DB, Belsey RH. Surgical management of esophageal reflux and hiatus hernia. Long-term results with 1,030 patients. J Thorac Cardiovasc Surg. 1953;55(3):133-54.

8. Donahue PE, Samelson S, Nyhus LM, Bombeck CT. The floppy Nissen fundoplication. Effective long-term control of pathologic reflux. Arch Surg. 1985;120(6):653-8.

9. DeMeester TR, Bonavina L, Abercrombie M, Nissen fundoplication for esophageal reflux disease. Evaluation of primary repair in 100 consecutive patients. Ann Surg. 1986;204(1):9-20.

10. Dallamagne B, Weerts JM, Jehaes C, Markewicz S, Lombard R. Laparoscopic Nissen fundoplication: preliminary report. Surg Laparosc Endosc. 1991;1(3):138-43.

11. Watson DJ, Jamieson GS, Pike GK, Davies N, Richardon M, Devitt PG. Prospective randomized double-blind trial between laparoscopic Nissen fundoplication and anterior partial fundoplication. Br J Surg. 1999;86(1):123-30.

12. Laws HL, Clements RH, Swiwiol CM: A randomized, prospective comparison of the Nissen fundoplication versus the Toupet fundoplication for gastroesophageal reflux disease. Ann Surg 1997; 225(6):647-53.

13. Fibbe C, Layer P, Keller J, Strate U, Emmermann A, Zornig C. Esophageal reflux disease: follow-up of a randomized controlled trial. JAMA. 2001;285(18):2331-8.

14. Dallemagne B, Weerts JM, Jehaes C, Markewicz S, Dewandre JM, Monami B, et al. Clinical results of laparoscopic fundoplication ten years after surgery. Surg Endosc. 2006;20(1):159-65.

15. Madan A, Minoch A. Despite high satisfaction, majority of gastroesophageal reflux disease patients continue to use PPI after antireflux surgery. Aliment Pharmacol Ther. 2006;23(5):601-5.

16. Bonatti H, Bammer T, Achem SR, Lukens F, DeVault KR, Klaus A, et al. Use of acid suppressive medications after laparoscopic antireflux surgery: prevalence and clinical indications. Dig Dis Sci. 2007;52(1):267-72.

17. Hvid-Jensen F, Pedersen L, Munk EM, Drewes AM, Funch-Jensen P. Long-term complications to reflux disease in community practice. A 17-year cohort study of 4706 patients. Scand J Gastroenterol. 2010;46(10):1179-86.

18. Dallamagne B, Weertz J, Markiewicz S, Dewandre JM, Wahlen C, Monami B, et al. Clinical results of laparoscopic fundoplication ten years after surgery. Surg Endosc. 2006;20(1):159-65.

19. Zanimoto G, Portale G, Costamini M, Rizzotto C, Guirroli E, Ceolin M, Salvador R, Rampado S, Prandi O, Ruol A, Ancona E. Long-term results (6-10 years) of laparoscopic fundoplication. J Gastrointest Surg. 2007;11(9):1138-45.

20. Singhal V, Kirkpatrick DR, Masuda T, Gerhard J, Mittal SK. Primary and Redo Antireflux Surgery: Outcomes and Lessons Learned. J Gastrointest Surg. 2018;22(2):177-186.

21. Spechler SJ, Hunter JS, Jones K, Lee R, Smith BR, Mashimo H, et al. Randomized Trial of Medical versus Surgical Treatment for Refractory Reflux Heartburn. N Engl J Med. 2019;381(16):1513-1523.

22. Ganz RA, Peters JH, Horang S. Esophageal sphincter device for gastroesophageal reflux disease. N Engl J Med. 2013;368(21):2039-40.

23. Castile BB, Van Sante N, Graves JE, Gawlicka AK, Rajan A. Two-year results of a feasibility study on antireflux transoral incisionless fundoplication using Esophyx. Surg Endosc. 2009;23(5):957-64.

24. Bell RC, Mavrulis PG, Barnes WE, Dargis D, Carter BJ, Hoddinott KM, et al. A prospective multicenter registry of patients with chronic gastroesophageal reflux disease receiving transoral incisionless fundoplication. J Am Coll Surg. 2012;215(6):794-809.

25. Reynolds JL, Zehetner J, Wu P, Shah S, Bilduzikewicz N, Liptam JC. Laparoscopic Magnetic Sphincter Augmentation versus Laparoscopic Nissen Fundoplication: A Matched-Pair Analysis of 100 Patients. J Am Coll Surg. 2015;221(1):123-8.

26. Dunn CP, Zhao J, Wang JC, Patel TA, Putnam LR, Eka A, et al. Magnetic sphincter augmentation with hiatal hernia repair: long term outcomes. Surg Endos. 2021;35(10):5607-5612.

27. Spechler SJ, Lee E, Ahnen D, Goyal RK, Hirano I, Ramirez F, et al. Long-term outcome of medical and surgical therapies for gastroesophageal reflux disease: follow-up of a randomized controlled trial. JAMA. 2001;285(18):2331-8.

28. Slater BJ, Dirks RC, McKinley SK, Ansari MT, Kohn GP, Thosani N, et al. Randomized Clinical, and Manometric Study. Gastroenterology. 2001;120(6):663-8.

29. Bonatti H, Bammer T, Achem SR, Lukens F, DeVault KR, Klaus A, et al. Use of acid suppressive medications after laparoscopic antireflux surgery: prevalence and clinical indications. Dig Dis Sci. 2007;52(1):267-72.

30. Hvid-Jensen F, Pedersen L, Munk EM, Drewes AM, Funch-Jensen P. Long-term complications to reflux disease in community practice. A 17-year cohort study of 4706 patients. Scand J Gastroenterol. 2010;46(10):1179-86.

31. Dallamagne B, Weertz J, Markiewicz S, Dewandre JM, Wahlen C, Monami B, et al. Clinical results of laparoscopic fundoplication ten years after surgery. Surg Endosc. 2006;20(1):159-65.

32. Zanimoto G, Portale G, Costamini M, Rizzotto C, Guirroli E, Ceolin M, Salvador R, Rampado S, Prandi O, Ruol A, Ancona E. Long-term results (6-10 years) of laparoscopic fundoplication. J Gastrointest Surg. 2007;11(9):1138-45.

33. Singhal V, Kirkpatrick DR, Masuda T, Gerhard J, Mittal SK. Primary and Redo Antireflux Surgery: Outcomes and Lessons Learned. J Gastrointest Surg. 2018;22(2):177-186.

34. Spechler SJ, Hunter JS, Jones K, Lee R, Smith BR, Mashimo H, et al. Randomized Trial of Medical versus Surgical Treatment for Refractory Heartburn. N Engl J Med. 2019;381(16):1513-1523.

35. Rettura F, Bronziello F, Campigotto M, Lambiase C, Pancetti A, Berli G, et al. Refractory Gastroesophageal Reflux Disease: A Management Update. Front Med (Lausanne). 2021;8:765061.

36. Slater BJ, Dirks RC, McKinley SK, Ansari MT, Kohn GP, Thosani N, et al. SAGES guidelines for the surgical treatment of gastroesophageal reflux disease (GERD). Surg Endosc. 2021;35(4):4903-4917.

37. Park Y, Aye RW, Watkins JR, Farivar AS, Louie BE. Laparoscopic Hill repair: 25-year follow-up. Surg Endosc. 2018;32(10):4111-4115.

38. Hikaroon MS, Lundell L, Bylund T, Thorell A. Comparison of Laparoscopic 270° Posterior Partial Fundoplication vs Total Fundoplication for the Treatment of Gastroesophageal Reflux Disease: A Randomized Clinical Trial. JAMA Surg. 2019;154(6):479-486.

39. Hopkins RJ, Irvine T, Jamieson GS, Devitt PG, Watson DL. Long-term follow-up of two randomized trials comparing laparoscopic Nissen 360° with anterior 90° partial fundoplication. Br J Surg. 2020;107(1):56-63.

40. Fuchs KH, Breithaupt W, Varga G, Babic B, Schulz T, Meining A. Primary laparoscopic fundoplication in selected patients with gastroesophageal reflux disease. Dis Esophagus. 2002;15(1):doa032.

41. Buckley FP, Bell RCW, Freeman K, Doggett S, Heidrick R. Favorable results from a prospective evaluation of 200 patients with large hiatal hernias undergoing LINX magnetic sphincter augmentation. Surg Endos. 2018;32(4):1762-1768.
Clinical Outcomes and Predictors of Favorable Result after Laparoscopic Magnetic Sphincter Augmentation: Single-Institution Experience with More than 500 Patients. J Am Coll Surg. 2020;230(5):733-743.

43. Ferrari D, Asti E, Lazzari V, Siboni S, Bernardi D, Bonavina L. Six to 12-year outcomes of magnetic sphincter augmentation for gastroesophageal reflux disease. Sci Rep. 2020;10(1):13753.

44. Hunter JG, Kahrijas PJ, Bell RC, Wilson EB, Trad KS, Dolan JP, et al. Efficacy of transoral fundoplication vs omeprazole for treatment of regurgitation in a randomized controlled trial. Gastroenterology. 2015;148(2):324-333.e5.

45. Bell RCW, Freeman K, Heidrick R, Ayazi S. Transoral incisionless fundoplication demonstrates durability at up to 9 years. Therap Adv Gastroenterol. 2021;14:1756284211004827.

46. Kim MS, Oh Y, Lee JH, Park JM, Kim JJ, Song KY, et al. Trends in laparoscopic anti-reflux surgery: A Korean nationwide study. Surg Endosc. 2021;35(8):4095-4123.

47. McKinley SK, Dirkis RC, Walsh D, Hollands C, Arthur LE, Rodriguez N, et al. Surgical treatment of GERD: systematic review and meta-analysis. Surg Endosc. 2021;35(8):4095-4123.

48. Skubleny D, Switzer NJ, Dang J, Gill RS, Shi X, de Gara C, et al. LINX® magnetic esophageal sphincter augmentation versus Nissen fundoplication for gastroesophageal reflux disease: a systematic review and meta-analysis. Surg Endosc. 2017;31(8):3078-3084.

49. Asti E, Aiolfi A, Lazzari V, Sirioni A, Porta M, Bonavina L. Magnetic sphincter augmentation for gastroesophageal reflux disease: review of clinical studies. Updates Surg. 2018;70(3):323-330.

50. Aiolfi A, Asti E, Bernardi D, Bonilla G, Rausa E, Siboni S, Bonavina L. Early results of magnetic sphincter augmentation versus fundoplication for gastroesophageal reflux disease: Systematic review and meta-analysis. Int J Surg. 2018;52:82-88.

51. Bonavina L, Horbach T, Schoppmann SF, DeMarchi J. Three-year clinical experience with magnetic sphincter augmentation and laparoscopic fundoplication. Surg Endosc. 2021;35(7):3449-3458.

52. Jain D, Singhal S. Transoral Incisionless Fundoplication for Gastroesophageal Reflux Disease: Where Do We Stand? Clin Endosc. 2016;49(2):147-56.

53. Hsiung C, Chen S, Zhao H, Zeng X, Lian J, Tseng Y, et al. Efficacy of transoral incisionless fundoplication (TIF) for the treatment of GERD; a systematic review with meta-analysis. Surg Endosc. 2017;31(3):1032-1044.

54. Testoni S, Hassan C, Mazziolini G, Antonelli G, Fanti L, Passaretti S, et al. Long-term outcomes of transoral incisionless fundoplication for gastroesophageal reflux disease: systematic-review and meta-analysis. Endosc Int Open. 2021;9(2):E239-E246.

55. Watson DI, Jamieson GG, Udeman R, Game PA, Devitt PG. Laparoscopic total versus anterior 180 degree fundoplication – Five year follow-up of a prospective randomised trial. Dis Esoph. 2004;17(suppl 1):A 81.8.

56. Baigrie RJ, Cullis SNR, Ndhutu AJ, Carion AM. Randomized double-blind trial of laparoscopic Nissen fundoplication versus anterior partial fundoplication. Br J Surg. 2005;92(7):819-23.

57. Ludemann R, Watson DI, Jamieson GG, Game PA, Devitt PG. Five-year follow up of a randomized clinical trial of laparoscopic total versus anterior 180 degrees fundoplication. Br J Surg 2005;92(2):240-3.

58. Spence GM, Watson DI, Jamieson GG, Lally DJ, Devitt PG. Single center prospective randomized trial of laparoscopic Nissen versus anterior 90 degrees fundoplication. J Gastrointest Surg. 2006;10(5):698-705.

59. Engström C, Lonroth H, Mardani, Lundell L. An anterior or posterior approach to partial fundoplication? Long-term results of a randomized trial. World J Surg. 2007;31(6):1221-5; discussion 1226-7.

60. Calacri M, Gentileschi P, Papi C, Carara A, Manere R, Gaspari AL, et al. Evidenced based appraisal of antireflux fundoplication. Ann Surg. 2004;239(3):325-37.

61. Davis CS, Baldea A, Johns JR, Joehl RJ, Fischella PM. The Evolution and Long-Term Results of Laparoscopic Antireflux Surgery for the Treatment of Gastroesophageal Reflux Disease. JSLS. 2010;14(3):332-341.

62. Fein M, Seyfried F. Is there a role for anything other than a Nissen’s operation ? J Gastrointest Surg. 2010;14(suppl):s567-74.

63. Broeders JAJL, Mauritz FA, Ahmed Ali U, Draaisma WA, Ruurda JP, Gooszen HG, et al. Systematic review and metaanalysis of laparoscopic Nissen versus Toupet fundoplication for gastro-esophageal reflux disease. Br J Surg. 2010;97(9):1318-30.

64. Inoue H, Minami H, Kobayashi Y, Sato Y, Kaga M, Suzuki M, et al. Peroral endoscopic myotomy (POEM) for esophageal achalasia. Endoscopy. 2010;42(4):265-71.

65. Swarstrom LL, Kurian A, Dunst CM, Sharata A, Bhayani N, Rieder E. Long-term outcomes of an endoscopic myotomy for achalasia: the POEM procedure. Ann Surg. 2012;256(4):659-67.

66. Zhang Y, Wang H, Chen X, Liu L, Wang H, Liu B, et al. Peroral endoscopic myotomy versus laparoscopic Heller myotomy for achalasia: a meta-analysis of nonrandomized comparative studies. Medicine (Baltimore). 2016;95(6):e2736.

67. de Heer J, Desai M, Bockoostens G, Zaninotto G, Fuchs KH, Sharma P, et al. Pneumatic balloon dilatation versus laparoscopic Heller myotomy for achalasia: a failed attempt at meta-analysis. Surg Endosc. 2021;35(2):602-611.

68. Zaninotto G, Molena A, Aronca E. A prospective multicenter study on laparoscopic treatment of gastroesophageal reflux disease in Italy: type of surgery, conversions, complications, and early results. Study Group for the Laparoscopic Treatment of Gastroesophageal Reflux Disease of the Italian Society of Endoscopic Surgery (SICE). Surg Endosc. 2000;14(3):282-8.

69. Strate U, Emmermann A, Fibbe, Layer, P, Zornig C. Laparoscopic fundoplication: Nissen versus Toupet two-year outcome of prospective randomized study of 200 patients regarding preoperative esophageal motility. Surg Endosc. 2008;22(1):21-30.

70. Nicolau AE, Lobontiu A, Constantinoiu S. New minimally invasive endoscopic procedures for the treatment of achalasia. J Gastrointest Surg. 2008;12(3):347-54.

71. Toth L, Farkas K, Kekesi EM, Zsak I, Omatea AI, Radu S, et al. Experience with plication techniques for achalasia: a failed attempt at meta-analysis. Surg Endosc. 2006;20(12):1606-11.

72. Nikolovic M, Schwanners K, Semmiler G, Asari R, Semmiler L, Steindl A, et al. Persistent dysphagia is a rare problem after laparoscopic Nissen fundoplication. Surg Endosc. 2019;33(4):1196-1205.