The 5th International Conference on Molecular Neurodegeneration: Overlapping Pathologies and Common Mechanisms

Stockholm, Sweden. 11-13 June 2018

Published: 7 August 2019

INVITED TALKS

O1 THE BIOLOGY OF PROTEOSTASIS IN AGING AND DISEASE
Richard I. Morimoto
Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Protein quality control mechanisms regulated by the proteostasis network (PN), the heat shock response (HSR) and the unfolded protein responses of the endoplasmic reticulum and mitochondria are essential for all aspects of proteome quality control, cellular health and lifespan. Failure of these systems, for example during aging, stress or upon expression of mutant or damaged proteins leads to increased risk for neurodegeneration, metabolic diseases, cancer, and muscle wasting diseases. A question is whether it is possible to detect the cellular events of proteostasis failure, and to develop therapeutic strategies to arrest, reverse, or slow this decline. To understand how aging contributes to the challenge of protein conformation, we have combined a combination of approaches from physical biochemistry and supersaturation to discern the contribution of at-risk metastability together with genetic, cellular, molecular, genomic and systems approaches using C. elegans for an organismal view of proteostasis. Towards this, we have identified an event that occurs early in adulthood, at the transition of reproductive maturity, in which germ line stem cells prevent induction of the HSR in other somatic tissues. This germ line signal results in reduced expression of the jumonji demethylase in somatic tissues leading to elevated H3K27me3 repressive marks at the promoter regions for HS genes and other stress responsive components of the PN. The inability of HSF1 to bind in vivo results in a dramatic decline in the HSR and initiates proteostasis collapse that further amplifies misfolding of metastable proteins, resulting in the loss of cellular stress resistance, and a decline in cellular health and lifespan. To address whether these genetically regulated events of organismal proteostasis in aging can be reversed, we have taken genetic approaches to discovery modifier genes to reset proteostasis. For example, failure in the PN can be reversed by systemic overexpression of the jumonji demethylase, inhibition of germ line signaling, or induction of mild mitochondrial stress with the result that the HSR and other cell stress responses are not inhibited and persist throughout most of adult life. These results suggest that there is a number of cell autonomous and cell non-autonomous pathways that can be re-engaged to restore organismal proteostasis and to promote cellular healthspan.

O2 THE COMPLEXITIES OF ALZHEIMER DISEASE HETEROGENEITY
Bradley T Hyman and Simon DuJardin
Alzheimer Disease Research Center, Massachusetts General Hospital, Boston MA USA
Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Correspondence: Bradley T Hyman

Background
Rate of progression of patients with Alzheimer's disease varies enormously. The inability to predict which patients will proceed with fast or slow rates of progression impact predictions, and compromise clinical care. Importantly, this heterogeneity also impacts clinical study design because studies to detect a difference in rate of progression must overcome this “noise” – needing thousands of patients followed for ~2 years to detect signal. We reasoned that the rate of tau propagation might be an important cofactor of rate of progression, since worsening symptoms are associated with more widespread tau accumulations.

Materials and Methods:
We used a FRET based tau bioassay to determine Tau seeding ability form 32 brains of patients who had had AD with various rates of progression ante-mortem.

Results
Cases varied by ~2 fold or more in tau seeding properties; the rank order of the extent of tau seeding measured correlated with the rank order of rates of progression of the patients, as assessed by analysis of their premorbid assessments in a research protocol.

Discussion
Tau seeding bioactivity seems to be a factor that contributes to rate of progression in AD. The biophysical basis of the differences among cases in tau seeding ability is unknown.

Conclusions
If tau seeding from CSF corresponds also to rate of progression, it could represent an in vivo biomarker that might be useful clinically and in the context of clinical trials.

O3 PROTEOPATHIC SEEDS IN NEURODEGENERATIVE DISEASES
Mathias Jucker
Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, and German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

The commonality of many neurodegenerative disorders is the predictable temporal occurrence and progression of specific aggregated proteins in the brain. The hallmark proteopathy is Alzheimer's disease in which aggregated amyloid-β peptide (Aβ) is deposited in the brain
parenchyma (amyloid plaques), and aggregated Tau protein forms neuronal inclusions (neurofibrillary tangles). Multiple evidence suggests that Aβ and Tau aggregates can spread within and among brain regions and act as corruptive templates (seeds) that induce a chain-reaction of misfolding and aggregation of cognate proteins. The same appears true for α-synuclein aggregates in α-synucleinopathies. The insight that the prion paradigm also applies to Alzheimer’s disease and other age-related neurodegenerative diseases suggests new directions in search of biomarkers and novel therapeutic strategies.

O4 COMMON MECHANISMS IN BRAIN AMYLOIDOSIS
Annemieke JM Rozemuller1,2, Wim van Hecke3, Baayla Boon1, Jeroen JM Hoozemans1
1Department of Pathology VU Medical Centre, Amsterdam, the Netherlands; 2Department of Pathology University Medical Centre, Utrecht, the Netherlands
Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Correspondence: Annemieke JM Rozemuller

Background
In the brain several forms of amyloidosis are known that originate from neuronal proteins: Amyloid Beta (Aβ) is found in senile plaques in aging and Alzheimer’s disease and in cerebral amyloid angiopathy. Prion amyloid is found in plaques and CAA in Familial British Dementia (BR12 gene), and a partly similar molecule, ADAN has been described in a Familial Dementia 4. The role of neu roinflammation in these neurodegenerative disorders is unknown. We have investigated the presence of complement, microglia, tau and ubiquitin in relation to the Amyloid beta plaques, Abeta CAA, prion plaques and prion CAA and studied the literature.

Methods
We studied 20 AD brains (several subtypes), 5 cases with CAA type1 including dystrophic amyloid beta deposits, 7 prion amyloidosis including 3 vCJD and 1 case with prion-CAA. Frozen tissue and or paraffin tissue was used for immunohistochemical studies, using antibodies against complement factors C3d and C4d, microglia markers (IBA1, CD68, HLA-DR/DQ) and neurodegeneration (TAU (mab AT8), ubiquitin).

Results
Both Amyloid beta deposits and large, cortical prion amyloid deposits show complement- and microglia activation. Prion plaques in GSS can mimic Abeta plaques. Complement activation is seen in both Abeta- and in prion-CAA. Tau is present in AD as dystrophic neurites, threads and tangles in AD but this can also be found in young cases of GSS with large prion amyloid plaques. Dystrophic neurites are seen around dyshoric vessels that show microglia and complement activation. Literature shows the same for Abeta and Adan4.

Discussion
Fibrillary amyloid deposits of different neuronal molecules show complement activation, microglia activation which lead in a later stage to neurodegeneration.

Conclusions
Common mechanism are found in different neurodegenerative disorders with brain amyloidosis.

References
1. Rozemuller et al. A4 protein in Alzheimer’s disease: primary and secondary cellular events in extracellular amyloid deposition. JNEN 1989, 48:647-663.
2. Richard et al. Characteristics of Dyshoric Capillary Cerebral Amyloid Angiopathy. JNEN 2010,49:1158-67.
3. Jansen C et al. Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in prnp. Acta Neuropathologica 2010,119:189-197.
4. Ravez et al. Sporadic and familial CAA Brain Pathol. 2002 Jul;12(3):343-57.

OS A NETWORK-BASED PIPELINE FOR TARGET DISCOVERY AND VALIDATION: FROM THE AGING HUMAN CORTEX TO PRIORITIZED PROTEINS IN AMP-AD
Sara Mostafavi1,2,3, Chris Gaiteri2, Lei Yu4, Charles C. White5, Shinya Tasaki3, Tracy L. Young-Pearse5,4, David A. Bennett6, Philip L. De Jager5,6
1University of British Columbia, Vancouver, British Columbia, Canada; 2Canadian Institute for Advanced Research, Toronto, Canada; 3Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA; 4Departments of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA; 5Broad Institute, Cambridge, Massachusetts, USA; 6Center for Translational & Computational Immunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Correspondence: Philip L. De Jager

Background
Through the National Institute of Aging’s Accelerating Medicines Partnership for Alzheimer’s disease (AMP-AD) program, we have established an analytic and experimental pipeline to identify and validate new targets for therapeutic development in AD.

Methods
We used RNase data derived from the dorsolateral prefrontal cortex of participants in two prospective studies of aging to derive our network map. We used shRNA-mediated knockdown in primary human astrocytes and iPSC-derived neurons in functional validation studies, using amyloid beta1-42 in the supernatant as the outcome measure. We also used SRM proteomics to measure the level of specific proteins in these brains.

Results
Our first-generation network map of the aging human cortex leveraged transcriptomic and epigenetic data from more than 500 human subjects and identified several modules of co-expressed genes that relate to amyloid deposition, tau tangles, and/or cognitive decline. In one application, a subset of genes within module 109, were prioritized for in vitro functional and brain proteomic validation. These efforts have uncovered the role of PLXNB1 as a mediator of module 109’s effect on amyloid deposition while IGF8P5 and other proteins capture a distinct effect of module 109 on cognitive decline not explained by AD pathologies. In a second example, we use our network map to dissect the immune component of the network and identify a role for a module 5, a transcriptional program related to microglial activation, in worsening cognitive decline through an acceleration of Tau deposition.

Discussion
Our network therefore has identified new target proteins affecting known biology such as amyloid and unknown biologies that contribute to aging-related cognitive decline.

Conclusions
A network approach to the aging brain has yielded concrete lead proteins and transcriptional programs (modules) that now deserve further investigation as candidate therapeutic targets.

References
1. De Jager et al. A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research bioRxiv 251967
Mostafavi et al. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease. (2018) Nat Neurol (in press)

2. Patrick et al. A cortical immune network map identifies a subset of human microglia involved in Tau pathology bioRxiv 234351

O6 MINING DATA FROM THE ACCELERATING MEDICINES PARTNERSHIP-ALZHEIMER’S DISEASE (AMP-AD) PROJECT TO IDENTIFY NEW THERAPEUTIC TARGETS

Todd E. Golde1, Cara L. Croft1, Hunter Futch1, Brenda Moore1, Benoît Giasson1, Kevin Strang1, Pedro Cruz1, Yona Levites1, Jada Lewis1, David R. Borchelt2, Paramita Chakrabarty1, Marshall Goodwin1, Yong Ran1, Christian Lessard1, Thomas Ladd1, Daniel H. Ryu1, Emily J. Köller1, Mariët Allen1, Minerva Carassquillo3, Dennis Dickson2, Michael DeFtere4, Wenlang Lin5, Cory Funk6, Hongdong Li7, Duc Duong7, Eric B. Dammer8, Nicholas T. Seyfried9, James J. Lah2, Allan I. Levey2, Nathan Price1, Nilufar Ertekin-Taner7

1McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, University of Florida, Gainesville, FL, USA; 2Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; 3Institute for Systems Biology, Seattle, WA 98109, USA; 4Center for Bioinformatics, School of Information Science and Engineering, Central South University, Changsha, P.R. China; 5Department of Biochemistry, Emory University, Atlanta, GA, USA; 6Department of Neurology, Emory University, Atlanta, GA, USA

Molecular Neurodegeneration 2019, 14(Suppl 1): 1

Correspondence: Todd E. Golde

Background

Amyloid and tau pathology are key, and likely essential components, of a complex neurodegenerative cascade that leads to symptomatic Alzheimer’s disease (AD). However, there is a need to better understand the sequence of molecular events leading to symptomatic AD. Multi-omics data and new preclinical tools can help provide a better systems level understanding of the molecular changes driving AD and help identify novel therapeutic targets.

Methods

The Accelerating Medicines Partnership-Alzheimer’s Disease (AMP-AD) program has generated and continues to generate large amounts of publically available multi-omic data from both human samples and preclinical models (https://synapse.org/#/Synapse:syn2580853/wiki/409840). Vignettes about how our group is using this data and newly developed preclinical tools to nominate new targets for the treatment of AD will be presented.

Results

A very large number of perturbed networks are present in AD1,2. Whether these system level changes are consequences of disease or play an upstream pathophysiological role has, typically, not been determined. Our comparative analyses of control, pathologic aging, AD and progressive supranuclear palsy and preclinical model data provides a framework to explore therapeutic targets that play a role in the transition to different disease stages of AD. Such data has enabled us to nominate new targets and we have developed new tools to validate those targets. The data can also be used to support the further evaluation of new targets arising from other lines of research.

Discussion

These studies can potentially help to identify precise therapeutic targets, provide biologic insight into the mechanism of action of the proposed targets, and inform on the direction of change needed for therapeutic benefit.

Conclusions

The multi-omics data generated by the AMP-AD initiative and new tools for preclinical target validation can be used to both nominate and rapidly evaluate new targets arising form the AMP-AD initiative.
Results & Conclusion

The ability of mAb158 to inhibit protofibril-induced neurotoxicity was approximately 100-500 kDa. We used Aβ protofibrils as antigen and induced neuron derived from patients skin fibroblast and animal models were used for validation.

Results & Conclusion

Based on TRIo study in Korean ALS population, numerous novel variants were found. After prioritization of 19 de novo variants, following genes including FUS, CLEC4C, ATPA1A3, RabGer26 was selected for functional study using patient's fibroblast derived induced neuron and animal models. In this session, we will present candidates of de novo mutations found in young age onset sporadic ALS patients and their functional study data will be presented. These approach will be a reliable method to validate the pathophysiologcal roles of de novo mutations in ALS and which will be crucial step toward the precision medicine.

Alzheimer’s disease (AD) is the most common form of dementia affecting the elderly and is characterized by global cognitive decline. AD is strongly influenced by both genetic factors and lifestyle. While certain rare gene mutations, e.g. in the APP, PSEN1 and PSEN2 genes guarantee onset of AD before 60 years old, most cases of AD (>95%) involve genetic susceptibility factors, e.g. APOE, and lifestyle, e.g. diet, exercise, sleep, intellectual and social engagement, stress levels, and brain trauma. Most recently we have found that low-grade infections, e.g. bacterial, fungal, viral, in the brain may also play a role by rapidly nucleating beta-amyloid deposition as an antimicrobial protection response of the brain’s innate immune system. Genetic susceptibility factors have been elucidated over the past decade using genome-wide association studies (GWAS) and more recently by follow up with whole genome sequencing (WGS) and whole exome sequencing (WES). We have carried out GWAS using approximately 50 million single nucleotide variants (SNV) from WGS and WES (whole genome sequencing association studies; WGSAS). As AD-linked/associated functional SNVs are identified in these studies, they are being tested in our 3D human stem cell-derived neural-glial culture models of AD, in which we have shown beta-amyloid directly drives tangle formation and neuroinflammation. Many of the more recently identified AD genes are involved in innate immunity, e.g. CD33, which was first reported in our family-based GWAS in 2008 (along with ADAM10 and ATXN1). To study CD33 and other innate immune-related AD genes, we have incorporated microglia into our 3D neural cultures while also utilizing classic transgenic mouse models. Aspects of all these studies will be covered.

Reference

1. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB: Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 1997, 272: 22364-72.
2. Nilbert C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelsson K, Fontén C, Stenh C, Luthman J, Teplow DB, Younkin, SG, Nilslund J, Lannfelt L. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nature Neuroscience 2001, 4: 887-893.
disorders characterized by the presence of Synucleinopathies represent a distinct group of neurodegenerative

targeted clinical trials.

The genetic heterogeneity of the synucleinopathies mirrors the clinical presentation and can be exploited to define specific genetic subtypes that may in the long term determine the participants of future targeted clinical trials.

The next wave of genes we await will likely be identified through the large-scale population based sequencing projects, coupled with functional validation, that are already underway.

References

1. Chang D, Nalls MA, Hallgrimsdottir I, et al: A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet 2017; 49: 1511-1516.

2. Guerreiro R, Ross OA, Kun-Rodrigues C, et al: Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 2018; 17: 64-74.

3. Sailer A, Scholz SW, Nalls MA, et al: A genome-wide association study in multiple system atrophy. Neurology 2016; 87: 1591-1598.

4. Jansen IE, Ye H, Heetvelt S, et al: Discovery and functional prioritization of Parkinson’s disease candidate genes from large-scale whole exome sequencing. Genome Biol 2017; 18: 22.

3. Englund H, Sehlin D, Johansson A-S, Nilsson LGN, Gellerfors P, Paulie S, Lannfelt L, Eklholm Pettersson F. Sensitive ELISA detection of amyloid-β protofibrils in biological samples. J Neurochem 2007; 103: 334-345.

4. Tucker S, Møller C, Tegerstedt K, Lord A, Laudon H, Spädahl J, Soderberg L, Spens E, Sehlin C, Waara ER, Satlin A, Gellerfors P, Osswald G, Lannfelt L. The murine version of BAN2401 (mAb158) selectively reduces amyloid-beta protofibrils in brain and cerebrospinal fluid of tg-ArcSwmice. J Alzheimers Dis 2015; 43: 575-588.

5. Magnusson K, Sehlin D, Syvänen S, Svedberg MM, Phillipson Q, Söderberg L, Tegerstedt K, Holmquist M, Gellerfors P, Tolmachev V, Antoni G, Lannfelt L, Hall H, Nilsson LN. Specific uptake of an amyloid-beta protofibril-binding antibody-tracer in AbetaPP transgenic mouse brain. J. Alzheimers Dis 2013, 37: 29-40.

6. Logovinsky V, Satlin A, Lai R, Swanson C, Kaplow J, Osswald G, Basun H, Lannfelt L. Safety and tolerability of BAN2401-a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimers Res Ther 2016; 8: 14.

O11 GENETICS OF THE SYNUCLEINOPATHIES

Owen A. Ross

Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Background

Synucleinopathies represent a distinct group of neurodegenerative disorders characterized by the presence of α-synuclein immunopositive aggregates. Clinically they present as the parkinsonian disorders; Parkinson’s disease with or without dementia, dementia with Lewy bodies and multiple system atrophy with symptomatic heterogeneity observed across the spectrum. Genetic studies of Parkinson’s disease have played a critical role in elucidating the underlying disease etiology and for generating disease in vitro/in vivo models.

Methods

Genome-wide association studies, whole-genome and exome sequencing, family- and population-based studies, functional validation and induced-pluripotent stem cells.

Results

Genome-wide association studies in Parkinson’s disease have now identified 41 loci as containing susceptibility-altering variants and with the genes identified through familial studies they nominate key cellular pathways including autophagy, mitophagy and lysosomal function. Genome-wide association studies have identified significant disease loci for dementia with Lewy bodies with an interesting functional overlap with the genes identified through familial studies they nominate key cellular pathways including autophagy, mitophagy and lysosomal function. Genome-wide association studies have identified significant disease loci for dementia with Lewy bodies with an interesting functional overlap with both Parkinson’s disease and Alzheimer’s disease with the key loci being SNCA, GBA and APOE2. No significant hits for multiple system atrophy were identified in the recent genome-wide association study but some candidates were observed just below the threshold that are overlapping with Parkinson’s disease including the MAPT locus3.

Discussion

The genetic heterogeneity of the synucleinopathies mirrors the clinical presentation and can be exploited to define specific genetic subtypes that may in the long term determine the participants of future targeted clinical trials.

Conclusion

The next wave of genes we await will likely be identified through the large-scale population based sequencing projects, coupled with functional validation, that are already underway.

O12 MODULATION OF AMYLOID DEPOSITION AND NEUROINFLAMMATION BY THE MICROBIOME

Hemraj Dodiya1, Shabana Shaik1, Myles Minter1, Martin Zhang1, Eugene Chang2, Rudolph Tanzi3, Sangram Sisodia3

1Department of Neurobiology, 2Medicine, University of Chicago, Chicago IL USA; 3Department of Neurology, Harvard Medical School, Charlestown, MA USA

Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Correspondence: Sangram Sisodia

Objectives

Animal models of Alzheimer’s disease (AD) recapitulate the severe amyloidosis and neuroinflammation that is evident in the human disease. It is now well established that inflammation associated with amyloid deposition reflects the activation of astrocytes and microglia in response to injury, but the role of peripheral tissues and more importantly, the microbiota in regulating innate immunity that in turn leads to CNS dysfunction has not, to date been defined. We have tested the hypothesis that the composition of the intestinal microbiome plays a key role in modulating neuro-inflammation that will ultimately influence amyloid deposition in two established mouse models of β-amyloidosis.

Methods

We orally administered a combination of antibiotics to induce rapid and sustained alterations in gut microbial populations. The antibiotic cocktail was administered either postnatally or throughout the lifetime of the animal prior to cull and we employed IHC, biochemical and molecular assays to evaluate amyloid deposition and neuroinflammation in the mouse models.

Results

Our studies indicate that alterations in the microbiome parallel changes in plasma cytokines and chemokines, reductions in amyloid deposition and modulation of morphological and transcriptional landscapes of microglia.

Conclusions

Our studies reveal an unexpected, but significant alteration in amyloid deposition and microglial phenotypes in the brains of transgenic mice upon treatment with orally administered antibiotics.

Acknowledgments

This work was supported by Cure Alzheimer’s Fund (CAF) the Edward H. Levi Fund and the Adler Foundation. SSS is a paid Consultant of Eisai Research Labs Inc. and AZTherapies Inc.

O13 EFFECTS OF APOE IN TAU-MEDIATED NEURODEGENERATION

Yang Shi and David M. Holtzman

Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University, St. Louis, MO, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Correspondence: David M. Holtzman

Background

APOE genotype is the strongest genetic risk factor for Alzheimer’s disease (AD). There is strong evidence that a large part of the effect of ApoE on AD pathogenesis is via its ability to influence the onset and accumulation of aggregated forms of Abeta in the brain parenchyma through its regulation of Abeta aggregation and clearance. There is emerging evidence that ApoE may also mediate some of its...
effects in AD and other tauopathies via influencing both tau as well as the brain’s innate immune response.

Methods
We crossed P301S Tau transgenic (Tg) mice, a mouse model of tauopathy, to human ApoE knockin mice and to ApoE knockout mice and then assessed the effects of ApoE on tau, tau-mediated neurodegeneration, and the innate immune response.

Results
We found that ApoE strongly enhances neurodegeneration in P301S mice with ApoE4 having the greatest effects. Very little to no neurodegeneration was seen in the absence of ApoE. The enhanced neurodegeneration seen with ApoE was accompanied by a strong neurodegenerative type glial response and similar responses could be observed in cell culture. In preliminary experiments, we have crossed P301S Tau Tg mice with mice transgenic that overexpress the low density lipoprotein receptor (LDLR) in the brain. So far, we have noted that at 9 months of age, P301S Tau Tg mice have significant tauopathy and brain atrophy. In P301S Tau/LDLR Tg mice, ApoE levels are markedly lowered and there is significantly less brain atrophy.

Discussion
Understanding the mechanism as to how ApoE contributes to tau-mediated neurodegeneration may provide avenues to development of new therapeutic approaches.

Conclusions
ApoE contributes to neurodegeneration in a mouse model of primary tauopathy. This effect appears to be mediated in part via ApoE’s effect on the innate immune response.

Funding
NIH NS090934, AG047644, and the JPB Foundation

References
1. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, Tsai RM, Spina S, Grinberg LT, Rojas JC, Gallardo G, Wang K, Roh J, Robinson G, Finn MB, Jiang H, Sullivan PM, Baufeld C, Wood MW, Supphelen C, McCue L, Xiong C, Del-Aguila JL, Morris JC, Chuchaga C. Alzheimer’s Disease Neuroimaging Initiative, Fagan AM, Miller BL, Boxer AL, Seeley WW, Butovsky O, Barres BA, Paul SM, Holtzman DM. ApoE markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017 Sep 28;549(7673):523-527.

O14 RTN3 mediates formation of dystrophic neurites in Alzheimer’s brains
Riqiang Yan, Md. Golam Sharoar
Department of Neurosciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Correspondence: Riqiang Yan
Alzheimer’s disease (AD) is the most common age-dependent neurodegenerative disease, and presence of dystrophic neurites is one of the typical features in AD brains. The presence of dystrophic neurites is correlated with impaired synaptic functions. It remains to understand what drives the formation of dystrophic neurites and their molecular nature. We discovered that tubular endoplasmic reticulum (ER) protein reticulon-3 (RTN3) was abundantly accumulated in the dystrophic neurites in brains of AD patients and mainly in the form of clustered tubular ER. Transgenic mice overexpressing RTN3 develop similar tubular ER-enriched dystrophic neurites. However, dystrophic neurites in AD brains are also shown to enrich multivesicle bodies. The relationship between different populations of dystrophic neurites are intriguing. In our recent studies, we aimed to understand how RIDNs are developed in AD mouse brains (5xFAD and APP/PS1ΔE9 mice) and how they are related to or differed from dystrophic neurites that are enriched with other proteins by analyzing 2D and 3D electron microscopic images. We showed that RTN3 appears to mediate the early formation of dystrophic neurites and deposition of amyloid peptides could induce growth of dystrophic neurites by impairing autophagy, ubiquitin proteasome system and normal ER distribution in the axons.

Correspondence: Sangmee A. Jo

Background
Cerebrovascular inflammation and blood-brain barrier dysfunction (BBB) contribute to pathogenesis of vascular-based neurodegenerative brain disorders such as Alzheimer’s disease. A typical outcome of BBB dysfunction is leukocyte transmigration from the vessel to the brain, which could be a key event promoting brain inflammation and neuronal injury. Here, we investigated the molecular and cellular mechanism of how vascular inflammation results in leukocyte transmigration and in particular, influences on AD pathogenesis. For this purpose, we examined the effect of tumor necrosis factor alpha (TNF-α) on expression of ICAM1, a vascular adhesion protein involved in leukocyte adhesion to the vessels and the epigenetic regulatory mechanism involved in TNF-induced ICAM1 induction in human microvascular endothelial cells (HBMVECs). In addition, we investigated the role of ICAM1 in expression of neprilysin, an amyloid-degrading enzyme.

Methods
HBMVECs were cultured, treated with TNF-α (10 ng/ml), and analyzed for Western blotting, RT-PCR, ChiPl, neutrophil adhesion assay, leukocyte transmigration assay, and immunofluorescence staining. For in vivo study C57BL/6 mice were injected with TNF-α (9 μg/kg) with or without drugs and the brain was analyzed for neutrophil infiltration. In addition, APP Swedish/PS1-E9 deletion mice were used for examining the ICAM1 expression pattern.

Results
TNF-α dramatically increased ICAM1 mRNA and protein levels in HBMVECs and mouse brain microvessels. Experiments including ChiPl revealed that TNF-α reduced methylation of histone H3 at lysines 9 (H3K9), a well-known residue involved in gene suppression, and KDM4B, a histone demethylase targeting H3K9me2 was involved in TNF-α-induced ICAM1 upregulation and neutrophil transmigration. Interestingly, knock-down of ICAM1 significantly increased the neprilysin protein level with a concomitant reduction of the amyloid level. ICAM1 expression in AD mouse brain increased at the very earlier stage pathogenesis (3–4 month old age) with reduction of the neprilysin protein.

Conclusions
Collectively, we demonstrated that modification of H3K9me2 by G9a and KDM4B regulate the expression of vascular adhesion proteins and that inhibition of adhesion proteins or KDM4B reduces inflammation-induced leukocyte extravasation and amyloid pathology. Thus, blocking ICAM1 or KDM4B could offer a novel therapeutic opportunity treating brain diseases.

Acknowledgements
This work was supported by the research grant of the National Research Foundation of Korea (2017R1A2B4002861).

References
1. YY Choi, SS Yoon, SE Kim, Sangmee Ahn Jo: KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels. Scientific Reports, 2017, DOI: 10.1038/srep45005
O16 NOVEL STRATEGIES FOR FACILITATION OF AMYLOID CLEARANCE IN THE BRAIN
Taisuke Tomita
Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, JAPAN
Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Background
Amyloid-β peptide (Aβ) and tau are major components of senile plaques and neurofibrillary tangles, respectively, deposited in the brains of Alzheimer disease (AD) patients. Several lines of evidence suggest that accumulation of Aβ by increased production or decreased clearance induces the aggregated tau pathology, which spreads through neuronal circuits and finally leads to neurodegeneration in the AD brain. Thus, these amyloidogenic proteins play a critical role in the pathogenesis of AD. To date, antibodies against these amyloidogenic proteins have been tested in clinical trials, and some antibodies accelerate the clearance of amyloid proteins. However, because of limited brain penetration efficacy of the antibodies, the development of novel approaches to facilitate the amyloid clearance has been required.

Methods and Results
We recently identified novel photooxygenation catalysts that specifically bind to the cross-β-sheet structure of target proteins, such as Aβ (Ni et al., Chem 2018). Photooxygenation reaction under near-infrared (NIR) light irradiation attenuated the aggregation and deposition of amyloidogenic proteins in vitro as well as in vivo.

Discussion
Since amyloid aggregates commonly preserve the cross-β-sheet structure, the NIR photoactivatable catalysts should be effective to degrade several amyloidogenic proteins (e.g., tau, α-synuclein, TDP-43, amylin). Thus, our strategy would provide a novel therapeutic strategy against both systemic and organ-specific amyloidosis. Moreover, as photoactivatable approach enables us to diminish amyloids in spatiotemporal manner, these catalysts can be utilized in the analysis of amyloid pathology spreading in situ.

Conclusion
Artificial photooxygenation catalyst would be a potential therapeutic strategy against amyloid diseases.

Reference
1. Ni J, Taniguchi A, Kuninobu Y, Ozawa S, Hori Y, Kuninobu Y, Saito T, Saito TC, Tomita T, Sohma Y, Kanai M: Near-infrared photoactivatable oxygenation catalysts of amyloid protein. Chem in press.

O17 CELLULAR AND MOLECULAR MECHANISMS OF PARKINSON’S DISEASE
Jaee-Hyun Park, Marion Delenclos, Pamela J. McLean
Department of Neuroscience Research, Mayo Clinic, Jacksonville, FL, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Correspondence: Pamela J. McLean

Background
Despite its predominant localization in the cytosol, alpha-synuclein (αsyn) is found localized to mitochondria in post-mortem PD brains (1). Within the mitochondria, αsyn accumulation impairs complex I and IV function, decreases mitochondria membrane potential, increases levels of mitochondrial ROS, and increases mitochondrial-dependent apoptosis associated with cytochrome c release from the mitochondria (2,3). Maintaining mitochondrial health is essential to prevent neuronal cell death in the brain. Sirtuin 3 (SIRT3) is a NAD+-dependent protein deacetylase exclusively localized to the mitochondria where it regulates mitochondrial processes such as protein deacetylation (4). SIRT3 is expressed at high levels in the brain and other nervous system tissues (5,6), and can act as a pro-survival factor, playing an essential role in protecting neurons under conditions of excitotoxicity (7) and rescuing neuronal loss in models of neurodegeneration (8).

Methods
A stable cell line expressing αsyn oligomers, a rat AAV model of PD, and patient fibroblasts from PD patients and healthy controls were assessed for changes in markers of mitochondrial biogenesis, SIRT3 protein levels, and SIRT3 activity using established assays.

Results
Overexpression of αsyn oligomers in the mitochondria of cultured cells and rat nigral neurons resulted in decreased mitochondrial SIRT3 protein levels, decreased SIRT3 activity, and decreased mitochondrial biogenesis that could be rescued with AMPK activator AICAR. Patient fibroblasts harboring a triplication of SNCA gene locus had significantly reduced SIRT3 activity and decreased mitochondrial biogenesis compared to healthy controls.

Discussion
These data support a hypothesis whereby accumulation of mitochondrial αsyn results in increased mitochondrial ROS via an AMPK/PGC1α/SIRT3-mediated pathway.

Conclusion
Upregulation of SIRT3 and/or increased SIRT3 activity are potential targets for novel PD therapeutics.

O18 MECHANISM OF CELL-TO-CELL PROPAGATION OF ALPHA-SYNUCLEIN
Seung-Jae Lee
Deaprtment of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Synucleinopathies are neurological disorders, characterized by neuronal and glial deposition of α-synuclein aggregates. These disorders include Parkinson’s disease (PD), dementia with Lewy bodies, and multiple system atrophy. Cell-to-cell propagation of these aggregates are thought to be the underlying mechanism of aggregate spreading in patients’ brain and perhaps of clinical progression. Interfering with the aggregate transmission can thus be a potential strategy for halting the disease progression. However, the mechanism by which α-synuclein aggregates spread remains undefined. Here, I present the
results showing the identification of receptors that mediate the propagation process. My lab identified toll-like receptor 2 (TLR2), an innate immune receptor, as the receptor for neuron-released α-synuclein oligomers in microglia. I will show evidence that TLR2 plays an important role in cell-to-cell propagation of α-synuclein aggregates, regulating both secretion and uptake of the aggregates. Furthermore, administration of a neutralizing antibody for TLR2 interferes with the intercellular propagation of α-synuclein and thus, alleviates synucleinopathy lesions and neuroinflammation. I propose the anti-TLR2 treatment as a therapeutic strategy for Parkinson’s disease and related synucleinopathies.

O19 LRRK2 IN AUTOPHAGY AND PARKINSON’S DISEASE
Jie Shen
Department of Neurology, Brigham and Women’s Hospital, Program in Neuroscience, Harvard Medical School, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):
INVITED

Background
LRRK2 mutations are the most common genetic cause of Parkinson’s disease. Previous analysis of LRRK2-deficient mice identified no detectable phenotype in the brain but remarkable PD-like changes in the aged kidney, including striking α-synuclein accumulation and aggregation, impairment of the autophagy-lysosomal pathway and increases in apoptosis.

Methods
We generated LRRK-deficient mice, in which LRRK2 and its functional homologue LRRK1 are inactivated, as LRRK1, which is relatively abundant in the brain, may compensate for the loss of LRRK2 in LRRK2-/− brains.

Results/Conclusions/Discussion
LRRK1/2 double knockout (LRRK DKO) mice exhibit earlier mortality at ~16 months of age with marked reduction of body weight but largely normal brain weight. Interestingly, LRRK DKO mice, but not LRRK1 or LRRK2 single KO mice, develop age-dependent DA neurodegeneration, as shown by age-dependent reduction of DA neurons in the SNpc at 14-15 months but not at younger ages. The cerebral cortex and cerebellum, however, are unaffected, though noradrenergic neurons in the locus coeruleus and medium spiny neurons of the striatum are also reduced in LRRK DKO mice at 15 months. The selective, age-dependent neurodegeneration is accompanied with increases in apoptotic cell death, increased levels of α-synuclein, and impaired autophagy-lysosomal pathway. Quantitative electron microscopy (EM) analysis further revealed dramatic increases of autophagic vacuoles in the SNpc of LRRK DKO mice at 10 months, before the onset of DA neuron loss and increases of apoptosis. These results demonstrate that LRRK is required for age-dependent survival of DA neurons, and plays an essential role in the regulation of the autophagy-lysosomal pathway in the aging brain.

References
1. Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ, Shen J. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci USA 2010, 107:9879-84.
2. Tong Y, Giaime E, Yamaguchi H, Ichimura T, Liu Y, Si H, Cai H, Bonventre JV, Shen J. Loss of leucine-rich repeat kinase 2 causes age-dependent biophysical alterations of the autophagy pathway. Mol Neurodegener 2012, 7:2.
3. Tong Y, Shen J. Genetic analysis of Parkinson’s disease-linked leucine-rich repeat kinase 2. Biochem Soc Trans 2012, 40:1042-6.
4. Giaime E, Tong Y, Wagner LK, Yuan Y, Huang G, Shen J. Age-dependent dopaminergic neurodegeneration and impairment of the autophagy-lysosomal pathway in LRRK2-deficient mice. Neuron 2017, 96(4):796-807.

O20 C9Orf72 AND ALS
Leonard Petrucelli
Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):
INVITED

The major genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is a C9orf72 G4C2 repeat expansion. Proposed mechanisms by which the expansion causes c9FTD/ALS include toxicity from repeat-containing RNA and from dipeptide repeat (DPR) proteins translated from these transcripts. To investigate the contribution of poly(GR) DPRs to c9FTD/ALS pathogenesis in a mammalian in vivo model, we generated mice that expressed GFP-(GR)100 in the brain. GFP-(GR)100 mice developed age-dependent neurodegeneration, brain atrophy, as well as motor and memory deficits through the accumulation of diffuse, cytoplasmic poly(GR). Poly(GR) colocalized with ribosomal subunits and the translation initiation factor eIF3n in GFP-(GR)100 mice and, of importance, in c9FTD/ALS patients and in a C9orf72 repeat AAV mouse model. Combined with the differential expression of ribosome-associated genes in GFP-(GR)100 mice, these findings demonstrate poly(GR)-mediated ribosomal distress. Indeed, poly(GR) inhibited canonical and non-canonical protein translation in HEK293T cells, and also induced the formation of stress granules and delayed their disassembly. These data suggest that poly(GR) contributes to c9FTD/ALS by impairing protein translation and stress granule dynamics consequently causing chronic cellular stress and preventing cells from mounting an effective stress response.

O21 UNRAVELING THE ROLE OF INNATE IMMUNE PATHWAYS IN NEURODEGENERATION
Bruce T. Lamb1, Adrian OBLak1, Shane Bemiller1, Taylor Jay1, Lynn Bekris2, James Leverenz2, Gary Landreth1
1Indiana University School of Medicine; 2The Cleveland Clinic; 3Case Western Reserve University
Molecular Neurodegeneration 2019, 14(Suppl 1):
INVITED

Correspondence: Bruce T. Lamb
Background
Increasing evidence suggests that neuroinflammation is an important contributor to Alzheimer’s disease (AD) pathogenesis, as underscored by the identification of immune-related genetic risk factors for AD, including coding variants in the gene TREM2 (triggering receptor expressed on myeloid cells 2) amongst others. Understanding TREM2 function promises to provide important insights into how neuroinflammation contributes to AD pathology. Notably, recent studies suggest that development of the various AD pathologies (amyloid and tau) occurs across several decades.

Hypothesis
The central hypothesis of these studies is that TREM2 and other innate immune pathways play both pathology-dependent and stage-dependent roles in Alzheimer’s disease that will be critical to understand in order to ultimately target these pathways therapeutically.

Methods
These studies utilize mouse models of AD and models that contain genetic alterations in innate immune pathway genes as well as analysis of human AD samples.

Results/Conclusions
Notably, we provide evidence that TREM2 plays different roles at different stages of disease progression in a transgenic mouse model of AD that develop robust amyloid pathology. Further, TREM2 deficiency seems to play a different role in the modulation of tau pathology. Finally, human studies also support that TREM2 may play a unique role at different stages of disease progression. Taken together, these results suggest that TREM2 and other innate immune pathway genes are promising targets for the treatment of AD.
pathways implicated in AD, may play distinct functional roles that are both stage- and pathology-dependent. We will also provide an update on the Model Organism Development and Evaluation for Late-onset AD (MODEL-AD) Consortium, which focuses on developing, characterizing and distributing more accurate animal models of AD, that includes a strong focus on innate immune pathways.

O22 DAMPENING THE MICROGLIAL RESPONSE TO AMYLOID PLAQUES IS NEUROPROTECTIVE IN AGED AD-LIKE MICE
Qiaoqiao Shi and Cynthia A. Lemere
Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.
Molecular Neurodegeneration 2019, 14(Suppl 1)INVITED

Correspondence: Cynthia A. Lemere

Background
Complement has been shown to be involved in microglia-mediated synaptic pruning during brain development [1] and in the response to amyloid-β (Aβ) oligomers in early pre-plaque stages of Alzheimer’s disease (AD) [2] as well as aging [3]. We investigated the role of complement C3, a central molecule in the pathway, in Aβ deposition and synapse loss at later, plaque-rich stages of AD [4].

Methods
APPSwe/PS1dE9 Tg mice were crossed with complement C3 knockout (C3 KO) mice and aged to 16 months. Male APP/PS1;C3 KO mice, wildtype (WT), APP/PS1 and C3 KO mice were compared for cognitive flexibility (Water T Maze, WTM) and anxiety (Elevated Plus Maze, EPM). Aβ plaque load, gliosis, hippocampal synaptic changes and neuron number were evaluated. We also generated an inducible C3 KO mouse model (C3f/f;UBC-Cre-ERT2) (C3iKO) in which tamoxifen treatment leads to global knockdown of C3.

Results
C3-deficient APP/PS1 mice had significantly better cognitive flexibility and were less anxious (EPM) than APP/PS1 mice, despite having more Aβ plaque deposition. While the number of hippocampal glia did not change, microglia appeared to be less activated in the C3-deficient APP/PS1 mice and fewer glia moved into the plaque center. Several pro-inflammatory cytokines were reduced in the APP/PS1;C3 KO mice. Hippocampal synapses and neuron numbers were rescued by C3-deficiency in APP/PS1 mice. In agreement, male C3iKO mice treated with tamoxifen at 9 months resulted in reduced C3 protein levels in plasma, an increase in synaptic puncta, and significantly higher LTP in hippocampal slices at 12 months of age. Discussion: Our new C3iKO model will allow us to determine whether C3 lowering is protective in early stage neurodegenerative diseases and other health conditions.

Conclusions
Complement C3 and/or downstream complement activation fragments appear to play a key role neuronal health and function in the aging brain and AD.

References
1. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barnes BA. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164-78. 2. Hong S, Beja-Glasser VF, Nfoniyom BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):712-6. 3. Shigemori M, Matsumoto M, Arai S, Rebeck GW, Rogalski E, Barres BA, Lemere CA. Complement C3-Deficient Mice Fail to Display Age-Related Hippocampal Decline. J Neurosci. 2015;35(38):13029-42. 4. Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, Stevens B, Lemere CA. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med. 2017;9(392).

O23 PROFILE OF CNP520, A BACE-1 INHIBITOR FOR PREVENTION STUDIES IN ALZHEIMER’S DISEASE
Ulf Neumann1, Derya Shimshek1, Mike Ufer1, Marie-Laure Rouzade-Dominguez2, Carine Kolly1, Gunilla Huledal1, Nicole Pesous1, Ana Graf2, Cristina Lopez-Lopez2
1Novartis Institute for Biomedical Research, Basel, Switzerland; 2Novartis Global Drug Development, Basel, Switzerland
Molecular Neurodegeneration 2019, 14(Suppl 1)INVITED

Correspondence: Ulf Neumann

Background
Stopping amyloid-β (Aβ) deposition by BACE-1 inhibition appears to be a promising strategy to treat Alzheimer’s disease (AD), but treatment in established dementia stages was unsuccessful. We hypothesize that BACE-1 inhibitor treatment needs to start in early stage Aβ deposition and before the onset of significant neurodegeneration. Prevention treatment puts high hurdles on the safety and tolerability, to be addressed already in the drug design and selection process.

Methods
CNP520 was designed and profiled in vitro, using animal pharmacological, pharmacokinetic and metabolism studies and underwent toxicological profiling with oral studies up to 39 weeks duration Clinical Phase I and Phase IIa studies in healthy elderly volunteers established its safety, tolerability, and active dose range.

Results
CNP520 is a potent and selective BACE-1 inhibitor in vitro. Due to its high brain penetration and plasma protein binding, free compound levels in the periphery are low. Significant Aβ reduction was observed in animals. Results of toxicity studies have not raised major safety concerns. No effects on myelin, muscle spindles, retina, pigmented organs were observed. Humans Phase I studies showed a dose- and time-dependent reduction of CSF Aβ, and a pharmacokinetic profile suitable for once-daily dosing. A 3-months study showed that CNP520 is safe and tolerated in a dosing range that result in 90% reduction of CSF Aβ.

Discussion
The profile of CNP520 supports its use in prevention studies of AD. Generation Study 1 and 2 have been initiated, which aim to test CNP520 at 15 or 50 mg in a population of enhanced risk to develop AD, patients are being included based on their age, APOE4 genotype and Aβ positivity.

Conclusions
Properties of CNP520 make it suited for the use in prevention trials of AD, the ongoing clinical studies will allow to test the concept of prevention treatment in AD.

O24 UPDATE ON BIOMARKERS FOR ALZHEIMER’S DISEASE
Henrik Zetterberg
University of Gothenburg, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1)INVITED

Neurodegenerative diseases are (to a varying degree) characterized by accumulation of misfolded proteins, microglial and astrocytic activation, as well as synaptic and neuronal degeneration. The presentation will review the growing list of fluid biomarkers that reflect such degenerative pathologies across dementia disorders and, whenever possible, in relation to attempted therapeutic intervention. Successful
and less successful attempts to transform cerebrospinal fluid biomarkers to simple blood tests will also be detailed, along with a discussion on novel promising biomarker candidates.

O25 INTERACTIVE PATHOLOGICAL PROCESSES AND THEIR TIME COURSE IN ALZHEIMER’S DISEASE AS REVEALED BY PET IMAGING

Agneta Nordberg
Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden

Molecular Neurodegeneration 2019, 14(Suppl 1):30

B Background
Several neurodegenerative diseases are characterized by proteinopathies. Alzheimer’s disease (AD) is the most common dementia disease and despite intensive research there is still no cure. The disease processes are most probably initiated decades before clinical symptoms occur which underlines the importance of understanding the time courses of various pathophysiological processes in the brain, to develop early diagnostic markers and allowing secondary prevention and disease modifying therapy.

Positron emission tomography (PET) provides important knowledge of in vivo pathology at different stages of brain diseases in comparison to post-mortem pathology observations at final stage of the disease. PET provides new tools and avenues for understanding of in vivo pathology and open up new windows for early detection and diagnosis of AD and other proteinopathies.

Methods
By performing PET studies using different PET tracers in a multi-tracer paradigm we can measure pathological and functional changes including amyloid plaques, tau deposition, inflammatory changes such as astrocytosis and cerebral glucose metabolism in brain in the same patient. This allow a further understanding of the time course and relationship between the different brain processes and their relationship also with cognition, biomarkers in cerebrospinal fluid (CSF) as well as structural changes measured by magnetic resonance imaging (MRI).

Results and Discussion
Amyloid starts to accumulate very early already at presymptomatic stages of AD and reaches almost a plateau at early symptomatic stages. Emerging evidences underline the importance of neuroinflammation in AD and its active role in AD pathology which strongly motivates more deeply understand the involvement and time course of early inflammatory processes and their possible causal role in AD progression to unravel the relationship and coupling between astrogliosis and different proteinopathies in relation to synaptic functions and cognition. The prominent initially high and declining astrocytosis in AD during disease progression, contrasting with the increasing amyloid plaque deposition as measured by PET, suggesting that astrocyte activation might be participating in the initiation of AD pathology prior tau deposition and cerebral glucose metabolism. There is presently a rapid development of different PET tracers for visualizing tau pathology in brain. Tau PET demonstrates regional deposition of tau that follows the progression of AD but there is a heterogeneous propagation of tau pathology in brain seen in different patients with clinical symptoms. Although a positive correlation can be observed between Tau PET and cognition it seem that the regional glucose metabolism better reflecting the cognitive decline in AD being a mediator of taupathology on cognition.

O26 PROPAGATION AND MATURATION OF ALZHEIMER’S DISEASE-RELATED PATHOLOGY

Dietmar R. Thal1, 2, 3, Ajeet Rijal Upadhaya3, Janina Genth3, Moritz Hecht3, Lara Krämer3, Sathish Kumar4, Markus Otto1, Christine von Arnim5, Jochen Walter4
1Laboratory for Neuropathology – Department of Neuroscience, KU-Leuven, Leuven, Belgium; 2Department of Pathology, UZ Leuven, Leuven, Belgium; 3Laboratory for Neuropathology – Institute of Pathology, University of Ulm, Ulm, Germany; 4Department of Neurology, University of Bonn, Bonn, Germany; 5Department of Neurology, University of Ulm, Ulm, Germany

Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

B Background
Although a positive correlation can be observed between Tau deposition and fibril formation, the exact influence of fibrillar tau on the progression of Aβ pathology is still under debate. To address this issue, we aimed at improving our understanding of the causal relationship between Aβ and τ pathology in relation to synaptic function and cognition.

Methods
By performing PET studies using different PET tracers in a multi-tracer paradigm we can measure pathological and functional changes including amyloid plaques, tau deposition, inflammatory changes such as astrocytosis and cerebral glucose metabolism in brain in the same patient. This allow a further understanding of the time course and relationship between the different brain processes and their relationship also with cognition, biomarkers in cerebrospinal fluid (CSF) as well as structural changes measured by magnetic resonance imaging (MRI).

Results
The extracellular deposition of the amyloid β-protein (Aβ) in AD plaques and the intracellular accumulation of abnormal phosphorylated τ-protein in neurofibrillary tangles represent the pathological hallmark lesions of Alzheimer’s disease (AD). Vascular aggregates of Aβ are hallmark lesions of cerebral amyloid angiopathy (CAA) and associated with AD.

Methods
We studied 284 autopsy cases with and without clinical symptoms of AD. The degree of dementia (clinical dementia rating (CDR) score) was assessed. The anatomical expansion of Aβ and τ lesions, including CAA was analyzed based on anti-Aβ and anti-abnormal τ protein stained sections. In a subset of 74 cases we immunostained for AβN3pE and AβpS8. The presence of infarct lesions and cardiovascualr risk factors was also assessed.

Results
The anatomical spreading of Aβ plaque pathology was accompanied by a stepwise accumulation of modified and non-modified forms of Aβ (B-Aβ plaque stages). The same sequence of Aβ aggregate maturation events was observed in CAA affected vessels (B-CAA stages). In addition to Aβ and τ related factors influencing cognitive function, we found an association of the CDR score with hippocampal microinfarcts. The hippocampal microinfarcts were, thereby, associated with capillary CAA. The balance between parenchymal (B-Aβ plaque stage) and vascular Aβ maturation (B-CAA stage) was influenced by arterial hypertension.

Conclusions
AD is not only related to the anatomical spreading of its hallmark lesions and CAA but also with changes in the composition of the Aβ aggregates, i.e. Aβ aggregate maturation. The predominant maturation of Aβ aggregates in CAA is, thereby, presumably linked with arterial hypertension. Capillary CAA is associated with the development of hippocampal microinfarcts that may have impact on the cognitive status of AD patients presumably pointing to a vascular component of AD.

Support
Alzheimer Forschung Initiative (AFI) #10810; FWO-Odysseus program.
O27 MAPPING A PHENOTYPE TO APOE4 IN HUMANS
Henrietta M Nielsen
Department of Neurochemistry/Biochemistry and Biophysics, Stockholm University, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):1
Individuals carrying the APOE4 allele are at increased risk of developing Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), however laboratory tools are lacking to identify those APOE4-carriers that will indeed develop disease. Carriers of the APOE4 variant tend to exhibit low plasma apolipoprotein E (apoE) levels and previous studies have shown that low plasma levels of apoE were linked to higher risk of AD and all dementia. Furthermore, we have demonstrated that an increased relative ratio between the apoE4 and apoE3 isoforms in plasma of healthy APOE ε3/ε4 carriers was linked to gray matter volume reductions and glucose hypometabolism in several brain areas normally affected in AD. The CSF levels of apoE in APOE4-carriers we found to be unaltered. Given the peripheral phenotype of low plasma apoE levels and that the liver is the main production site of apoE in the periphery we are focusing on detailing an APOE4 peripheral phenotype. By use of data from liver biopsy RNA seq analyses, primary human hepatocytes and a large 42k antigen array screening for autoreactivities in the blood we are aiming to find phenotypical traits that can help to identify those APOE4 carriers that will develop disease and those that will not Early identification of individuals that will develop sporadic AD/DLB based on their APOE4 status is crucial for disease prevention studies.

O28 PATHOGENIC AND THERAPEUTIC PATHWAYS IN A MOUSE MODEL OF RETINAL ISCHEMIA/REPERFUSION INJURY
Abbot F. Clark, Byung-Jin Kim, Sean Silverman, Iok-Hou Pang
North Texas Eye Research Institute, U. North Texas Health Science Center, Ft. Worth, TX USA
Molecular Neurodegeneration 2019, 14(Suppl 1):1
Correspondence: Abbot F. Clark
Background Retinal ischemia plays important roles in diabetic retinopathy, retinal vein/artery occlusion, and glaucoma. Glaucoma is a leading neurodegenerative disease affecting more than 70 million individuals worldwide. Ischemia/reperfusion (I/R) injury to the inner retina causes both morphological and functional damage to inner retinal neurons, including retinal ganglion cells (RGCs).
Methods Retinal I/R was induced in C57BL/6J mice by unilateral elevation of intraocular pressure to 120 mmHg for 60 minutes, followed by reperfusion. Retinal damage was measured and quantified in vivo by SD-optical coherence tomography and electroretinography (ERG). Retinal morphology and protein expression were examined by H&E staining and immunofluorescence, respectively. Retinal reactive oxygen species (ROS) were detected in vivo using a new imaging technique using the chemiluminescent probe L-012. Systemic administration of SP600125 or apocynin evaluated the pathogenic roles of JNK activation and ROS in retinal damage, while C1q deficient mice examined the role of the complement system.
Results Oxidative damage, JNK activation, and activation of the complement system play key roles in the pathogenesis of retinal I/R injury. Thera peutic inhibition of each of these pathways partially or totally protected the inner retina by preventing loss of neurons in the inner retina, including RGCs. These therapies also functionally protected the retina as determined by maintenance of ERG b-wave amplitudes and pattern ERG amplitudes.
Discussion Inhibition of JNK activation by systemic administration of SP600125 or inhibition of ROS production by systemic administration of apocynin totally protected the retina from I/R injury indicating that these are the major pathogenic pathways causing retinal I/R injury.
Conclusion The retina is an extension of the CNS that is easily accessible for analysis. A better understanding of the molecular pathogenesis of retinal I/R injury has identified promising new therapeutic opportunities to prevent or inhibit I/R damage to the retina and possibly other CNS neurons.

O29 BLOOD-BRAIN-BARRIER: STRUCTURE, FUNCTION AND PATHOLOGY
Berislav Zlokovic
University of Southern California, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):1
Abstract not available

O30 THE PATHOPHYSIOLOGY OF DOMINATELY INHERITED ALZHEIMER’S DISEASE AND BIOMARKER FINDINGS IN DIAN-TU PREVENTION TRIALS
Randall J. Bateman, Tammie Benzinger, Guoqiao Wang, Alison Goate, Martin Farlow, Steve Salloway, Susan Mills, Anna Santacruz, Chengjie Xiong, Clifford Jack, Robert Koepppe, Eric McDade, David B. Clifford for the DIAN-TU APT (http://DIAN.wustl.edu)
Molecular Neurodegeneration 2019, 14(Suppl 1):1
Correspondence: Randall J. Bateman
Background Autosomal Dominant Alzheimer’s Disease is a rare form of AD caused by mutations in APP, PSEN1, or PSEN2. The discovery of these mutations led to a molecular biology revolution for AD, enabling models to be developed and drugs targeting the earliest changes in AD. The Dominantly Inherited Alzheimer Network (DIAN) was established across leading AD centers to collaborate to better understand the clinical, cognitive and biomarker changes which occur in AD and to enable intervention trials. DIAN findings indicate that AD process begins at least 15 to 20 years before symptom onset, providing a window of opportunity for secondary prevention efforts.
Methods The Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) launched an AD prevention trial in 2012 in a genetically defined population of dominantly inherited AD mutation carriers who are destined to get the disease with near 100% penetrance. Recruitment was completed in 2015 into two parallel drug arms in the DIAN-TU adaptive prevention trial (DIAN-TU APT) platform. Baseline demographic, imaging biomarkers including MRI, PIB PET, AV45 PET, AV1451 PET were analyzed according to protocol. Measures were compared to prior findings in the DIAN observational study.
Results The DIAN-TU APT has excellent completion rates of an extensive battery of biomarkers. A broad sample of baseline data collected to the highest standards available enable characterization of patients prior to and in the early phase of cognitive decline due to autosomal dominant AD with a multifaceted analysis including cognitive function as well as brain structure and brain imaging parameters relevant to AD. This data is available to qualified researchers to probe additional aspects of this condition. Findings of amyloid and tau PET as well as baseline characteristics will be reviewed.
Conclusions Clinical prevention trials in the rare population of ADAD are feasible with extensive collections of biomarkers. Availability of comprehensive biomarker evaluations during trials enables quantification of the impact of interventions and establishment of surrogate and other biomarkers to accelerate development of highly effective interventions for AD.
https://dian.wustl.edu/our-research/clinical-trial/study-sites/
O31 APOE4-BASED THERAPY FOR ALZHEIMER’S DISEASE
Chengzhong Wang, Ramsey Najm, Yadong Huang
Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program and Departments of Neurology and Pathology, University of California, San Francisco, CA 94143, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Correspondence: Yadong Huang

Background
Efforts to develop drugs for Alzheimer’s disease (AD) have shown promise in animal studies, only to fail in human trials, suggesting a pressing need to study AD in human model systems.

Methods
Using human neurons derived from induced pluripotent stem cells carrying the major genetic risk factor apolipoprotein E4 (apoE4) and gene-edited isogenic lines to study AD pathogenesis and screen for small-molecule compounds targeting apoE4’s detrimental effects.

Results
We demonstrate that apoE4 neurons have higher levels of tau phosphorylation unrelated to their increased Aβ production and displayed GABAergic neuron degeneration. ApoE4 increased Aβ production in human, but not in mouse, neurons. Converting apoE4 to apoE3 by gene editing rescued these phenotypes, indicating the specific effects of apoE4. Neurons lacking apoE behaved like those expressing apoE4, introducing apoE4 expression recapitulated the pathological phenotypes, suggesting a gain of toxic effects from apoE4. Domain interaction has been suggested to be a molecular basis for apoE4’s detrimental effects in AD pathogenesis, and consequently has been pursued as a drug target to identify small molecule structure correctors capable of converting apoE4 to apoE3 both structurally and functionally. Treating apoE4 neurons with a small-molecule structure corrector ameliorated AD-related detrimental effects, providing a proof of concept that correcting the pathogenic conformation of apoE4 is a viable therapeutic approach for apoE4-related AD.

Conclusions
Our data indicate that apoE4 induces AD-related pathological phenotypes, due to a gain of toxic effects, specifically in human neurons, which can be dramatically ameliorated by treatment with a small-molecule apoE4 structure corrector. These findings warrant further development of apoE4 structure correctors and, ultimately, testing in clinical trials.

O32 ANTI-ABETA IMMUNOTHERAPY
Roger Nitsch
University of Zurich, Switzerland
Molecular Neurodegeneration 2019, 14(Suppl 1):INVITED

Abstract not available

SHORT TALKS
S1 MOLECULAR CHARACTERIZATION OF GENDER DIFFERENCES IN AD PATHOGENESIS
Dongming Cai1,2, Jiqing Cao1, Lei Guo3, Li Zhu1,2, Minghui Wang3, Dongming Cai1,2, Jiqing Cao1, Lei Guo3, Li Zhu1,2, Minghui Wang3, Dongming Cai1,2, Jiqing Cao1, Lei Guo3, Li Zhu1,2, Minghui Wang3, Dongming Cai1,2, Jiqing Cao1, Lei Guo3, Li Zhu1,2, Minghui Wang3, Dongming Cai1,2, Jiqing Cao1, Lei Guo3, Li Zhu1,2, Minghui Wang3, Dongming Cai1,2, Jiqing Cao1, Lei Guo3, Li Zhu1,2, Minghui Wang3
1Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 2Research & Development, James J Peters VA Medical Center, Bronx, NY, USA; 3Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Correspondence: Dongming Cai

Background
The burden of Alzheimer's disease (AD) at the patient level falls disproportionately on females, as many studies find that age-matched females have a higher proportion of AD cases [1-4]. Surprisingly, few if any studies have focused on the genetic and gene expression mechanisms that mediate the apparent gender differences in AD presentation.

Methods
To address this gap, we gathered currently available gene expression study of 1400+ postmortem human brain samples, and performed an extensive quality control and covariate correction of the assembled data to ensure that gender status is annotated correctly and that covariates such as age do not confound our analyses. We then utilized this cleaned and aggregated data set to construct gender-specific multiscale networks of AD [5].

Results
We systematically searched for genes and pathways that differentiate AD progression between females and males, as well as ApoE4 carriers and non-carriers. We then generalized the analysis to the network level [5-7], which allows us to detect higher-order trends and identify target genes that drive major differences in AD progression between females and males. After integrating large-scale molecular data and known gene regulatory relationships, we prioritized 24 genes for further characterization. We then validated the differences in expression levels of selected key drivers using additional postmortem human brain samples to confirm the biological relevance of the findings.

Conclusions
We will next investigate functional roles of validated key targets in AD pathogenesis using gene manipulation methods in male and female AD mouse models.

References
1. Rossman, B. L. et al. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology (2007) 29, 125-132.
2. Hebert, L. E., Scherr, P. A., McCann, J. J., Beckett, L. A. & Evans, D. A. Is the risk of developing Alzheimer’s disease greater for women than for men? American journal of epidemiology (2001) 153, 132-136.
3. Miech, R. A. et al. Incidence of AD may decline in the early 90s for men, later for women: The Cache County study. Neurology (2002) 58, 209-218.

S2 EVIDENCE FOR OLIGOGENIC INHERITANCE IN PARKINSON DISEASE DUE TO HETEROZYGOUS MUTATIONS IN MULTIPLE AUTOSOMAL RECESSIVE GENES ASSOCIATED WITH PARKINSON DISEASE AND RELATED DISORDERS
Stefanie Smolders1,2, David Crosiers1,2,3, Patrick Cras2,3, Christine Van Broeckhoven1,2, on behalf of the BELNeu Consortium
1VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium; 2Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; 3Department of Neurology, Antwerp University Hospital, Edegem, Belgium
Molecular Neurodegeneration 2019, 14(Suppl 1):SHORT

Correspondence: Stefanie Smolders

Background
To date, 4 genes are known to cause autosomal recessive Parkinson Disease (PD): PARK2, PINK1, DJ-1 and VPS13C. Notably, a high prevalence of rare single heterozygous mutations in autosomal recessive PD genes and the presence of compound mutations in two different autosomal recessive PD genes are frequently reported in PD patients. These observations implicate a role for several genetic factors in disease etiology.

Methods
37 PD patients with a single rare heterozygous mutation in an autosomal recessive PD gene were subjected to whole exome
sequencing (WES) to identify additional rare variants explaining the observed phenotype. Heterozygous variants in autosomal recessive genes associated with PD, atypical parkinsonian syndromes and related movement/neurodegenerative brain disorders were prioritized based on quality, frequency in public databases and impact (splice site and non-synonymous variants with Combined Annotation Dependent Depletion (CADD) score >20 [1]).

Results

WES data analysis revealed the presence of oligogenic inheritance through known pathogenic and rare novel heterozygous mutations in multiple associated genes. We identified 2 PD patients with compound missense variants in PARK2/PINK1 and 2 PD patients with compound missense variants in PARK2/VP153C. Additionally, we found one carrier of PARK2 p.Q34Rfs*4, VPS13C p.I3726V/p.R2482H and the pathogenic GBA variant p.L434P, one carrier of PARK2 p.P437L and SLC17A2 p.Y306*, and one carrier of compound frameshift mutations in PARK2/POLR3B.

Discussion

Oligogenic inheritance of autosomal recessive PD genes could be explained by their essential roles in common mitochondrial control and oxidative stress pathways. The identification of pathogenic mutations in GBA and SLC17A2 highlights the importance of lysosomal mechanisms in PD pathogenesis and confirms overlapping pathomechanisms between PD and lysosomal storage disorders. Moreover, compound frameshift mutations in PARK2/POLR3B could imply a common pathway in leukodystrophy and PD pathogenesis.

Conclusions

Our results underpin the potential oligogenic complexity of Mendelian genes in PD etiology.

Reference

1. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J: A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014, 46:310-315

S4 GWAS-BASED MOUSE MODELS EXHIBIT DISTINCT TRANSCRIPTOMIC SIGNATURES OF LATE-ONSET ALZHEIMER’S DISEASE

Ravi S. Pandey1, Leah Graham1, Asli Uyar1, Kristen D. Onos1, Christoph Preuss1, Hamid M. Williams1, Cai John1, Kelly J. Keezer1, Casey J. Acklin1, Michael Sasner1, Benjamin Logsdon1, Gareth R. Howell1, Gregory W. Carter1

1The Jackson Laboratory, Bar Harbor, ME, USA; 2Sage Bionevtorks, Seattle, WA, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):SHORT

Correspondence: Gregory W. Carter

Background: Genome-wide molecular assays such as RNA-seq are enabling detailed characterization of Alzheimer’s disease (AD) pathology in clinical cohorts. In parallel, advances in human genetics and rapid genetic engineering technology are facilitating creation of the next generation of animal models. We compared transcriptomes from human studies and mouse models to identify the subpathologies captured by each mouse model.

Methods

RNA-seq was performed on a panel of transgenic and knockout mouse models of Alzheimer’s disease in a range of genetic backgrounds, created in the Model Organism Development and Evaluation for Late-onset AD (MODEL-AD) consortium. These include alleles of APOE, TREM2, APP, and other AD-associated genes. Unsupervised data clustering was performed with weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes.

Results

Gene modules were associated with distinct mouse models. Neuroinflammation, neurometabolism, synaptic signaling, and protein maintenance were among the enriched functions of these modules, matching existing gene modules similarly derived in the Accelerating Medicines Partnership for AD (AMP-AD) consortium.

Discussion

Distinct mouse models recapitulate specific endophenotypic pathologies observed in AD populations. This provides evidence that specific genetic perturbations lead to alterations in key biological pathways and processes. We highlight how models based on early and late onset AD risk genes differentially reflect early- and late-onset AD human data.

Conclusions: Our results specify which mouse models are appropriate for studying pathway-level alterations in AD patients, guiding research efforts and preclinical testing in optimal models. Furthermore, the controlled genetic perturbations allow for causal hypotheses of which pathways are altered by specific genetic variants and, in turn, suggest how they drive late-onset AD.

S5 PLASTICITY OF THE ENTORHINAL-HIPPOCAMPAL CIRCUIT AS A VULNERABILITY IN ALZHEIMER’S DISEASE

Stacy D. Grunke1, Anand K. Singh1, Rong Zhao1, Konstantinos Soutsou1, Kyung-Won Park1, Joanna L. Jankowsky1, 2, 3, 4, 5

Departments of Neuroscience; 2Neurology; 3Neurosurgery; 4Molecular and Cellular Biology; 5Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030

Molecular Neurodegeneration 2019, 14(Suppl 1):SHORT

Correspondence: Joanna L. Jankowsky

Background

Layer 2 neurons in the entorhinal cortex are among the first cells to degenerate in Alzheimer’s disease, but the basis for their vulnerability is completely unknown. These cells form the main cortical input to the hippocampal tri-synaptic loop responsible for lifelong memory consolidation. This function requires an unusual degree of ongoing plasticity that may bestow susceptibility unique to this circuit.

Methods

We used a chemogenetic system to perturb circuit homeostasis in three neural populations affected by neurodegenerative disease (entorhinal layer 2, nigral dopaminergic neurons, and cerebellar Purkinje cells). In each population, a subset of neurons was electrically inactivated by systemic administration of a synthetic ligand gating a transgenically-expressed ion channel. At varying times after neural silencing, animals were harvested to evaluate structural changes evoked by acute imbalance of circuit function.

Results

Using this model, we unexpectedly found that entorhinal neurons appear to be highly sensitive to inactivity. Unlike neural populations affected in other neurodegenerative diseases, entorhinal neurons underwent cell death following even acute bouts of experimentally-induced electrical arrest. In the days and weeks immediately following chemogenetic silencing, entorhinal axons retracted from the dentate gyrus, activated caspase appeared in the soma, neighboring microglia became reactive, and 30-50% of the silenced neurons ultimately disappeared.

Discussion

This patterned degeneration in the adult cortex is reminiscent of activity-dependent process used by the developing brain to sculpt emerging circuits. While it was long believed that the critical period for wholesale structural remodeling closed during early postnatal life, we propose that the entorhinal cortex is among a handful of areas which maintain the potential for substantial modification throughout adulthood.

Conclusions

Based on our findings, we hypothesize the ongoing plasticity required to support learning and memory throughout life also renders
neurons in the entorhinal-hippocampal circuit vulnerable to activity dependent competition for survival in the adult.

S6 THE INVOLVEMENT OF IRON IN THE PATHOGENESIS OF ALZHEIMER’S DISEASE

Peng Lei1, Scott Ayton1, Qing-zhang Tuo1, Ashley Bush2
1State Key Laboratory of Biotherapy, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Sichuan 610041, China; 2Florey Institute of Neuroscience & Mental Health, the University of Melbourne, Parkville 3052, Australia

Molecular Neurodegeneration 2019, 14(Suppl 1):SHORT

Correspondence: Peng Lei

Background: No disease-modifying drug currently exists for neurodegenerative disorders such as Alzheimer’s (AD) and Parkinson’s diseases (PD). While iron has been implicated in neurodegeneration for many years, the extent to which iron elevation contributes to pathogenesis, and the origin of its elevation, had remained unknown.

Methods: A range of cell culture and animal experiments were conducted under appropriate regulations. The use of human brain tissues and data were approved by various ethics committee.

Results: We demonstrated that the AD-implicated amyloid precursor protein (APP) binds to the iron exporting protein, ferroportin, tethering it to the membrane for efficient iron efflux [1]. We also showed that the AD-implicated tau protein maintains neuronal iron homeostasis by facilitating APP trafficking to the cell surface [2,3], and the ferrooxidase ceruloplasmin, recruited from astrocytes, is involved in neuronal iron release[4]. We also quantified the contribution of iron on progression of AD, and revealed that the iron burden of the brain has a similar magnitude impact on longitudinal (7 years) outcomes of AD (cognition, brain atrophy) compared to more established factors in the disease (e.g. CSF tau and Aβ)[5, 6]. By using ischemia-related cognitive impairment model, we found that unilateral, transient middle cerebral artery occlusion (MCAO) suppressed hemispheric tau and increased iron levels in young (3 month old) mice and rats, and such cognitive impairment were protected by iron-targeted interventions: ceruloplasmin (Cp), amyloid precursor protein ectodomain (APPec), as well as ferroptosis inhibitors[7].

Conclusions: Pre-clinical and clinical studies demonstrate the potential of iron to contribute to disease progression and iron presents as an unexplored prognostic, and tractable therapeutic target of neurological disorders.

References
1. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wilke K, Leong SL, Perez KA, Johanssen TJ, Greenough MA, et al: Iron-export ceruloplasmin activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 2010, 142:857-867.
2. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, Wong BK, Adlard PA, Cherny R, Lam LQ, et al: Tau deficiency induces parkinsonism with dementia by impairing APPmediated iron export. Nat Med 2012, 18:291-295.
3. Lei P, Ayton S, Appukuttan AT, Moon S, Duce JA, Voltakis I, Cherny R, Wood SJ, Greenough M, Berger G, et al: Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol Psychiatry 2017, 22:396-406.
4. Ayton S, Lei P, Duce JA, Wong BA, Sedjhaetra A, Adlard PA, Bush AI, Finkelstein DI: Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Annals of neurology 2013, 73:554-559.
5. Ayton S, Faw NG, Bush AI: Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun 2015, 6:6676.
6. Ayton S, Fadollahi A, Bourgeat P, Raniga P, Ng A, Lim YY, Diouf I, Farquharson S, Fripp J, Ames D, et al: Cerebral quantitative susceptibility mapping predicts amyloid-beta-related cognitive decline. Brain 2017, 140:2112-2119.
7. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Luanyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 2017, 22:1520-1530.

S7 DYSREGULATION OF PROTEIN PRENYLATION AND RAS SIGNALING IN ALZHEIMER’S DISEASE

Angela Jeong1, David A. Bennett2, Mark Distefano2, Ling Li3
1Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA; 2Rush Alzheimer’s Disease Center, Rush University, Chicago, IL, USA; 3Department of Chemistry, University of Minnesota, Minneapolis, MN, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):SHORT

Correspondence: Ling Li

Background: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and its pathogenesis is not fully understood. Emerging evidence indicates that protein prenylation, a posttranslational lipid modification process catalyzed by farnesyl and geranylgeranyl transferases, may play an important role in AD [1-3]. Many proteins, including the Ras superfamily of small GTPases, undergo prenylation [4]. These small GTPases serve as molecular switches in signal transduction pathways, regulating diverse cellular processes and functions [5]. Modulation of protein prenylation influences multiple aspects of neuropathology of AD [1-3]. Recently, we have demonstrated that downregulation of protein prenylation reduces neuropathology in a transgenic mouse model of AD, although only farnesyltransferase haplodeficiency rescues cognitive function [6]. The present study aimed to determine the dynamic changes of prenylated proteins and related signaling molecules in human brains and to evaluate whether these changes are associated with cognition and AD neuropathology.

Methods: Postmortem frozen tissue from the dorsolateral prefrontal cortex was obtained from participants in the Religious Orders Study, which included human subjects with a spectrum of cognition from normal, mild cognitive impairment (MCI), to AD dementia. The brain tissue samples were subjected to subcellular fractionation and immunoblotting analysis.

Results: We found that the level of membrane-associated H-Ras, an exclusively farnesylated protein, was significantly increased in the brains from individuals with MCI and AD compared with individuals with normal cognition. Further, the level of farnesylated H-Ras correlated with tangle pathology and the activation of ERK, a major downstream effector of H-Ras. Consistent with the elevation of membrane-associated H-Ras, the level of farnesyltransferase was increased in AD brains.

Conclusions: These findings suggest that upregulation of protein farnesylation is an early event with primary importance in the pathogenic cascade of AD and activation of downstream signaling pathways contributes to the development of cognitive impairment and neuropathology in AD.

References
1. Cole SL, Vassar R: Isoprenoids and Alzheimer’s disease: a complex relationship. Neurobiol Dis 2006, 22:209-222.
2. Hooff GP, Wood WG, Muller WE, Eckert GP: Isoprenoids, small GTPases and Alzheimer’s disease. Biochim Biophys Acta 2010, 1801:896-905.
3. Li L, Zhang W, Cheng S, Cao D, Parent M: Isoprenoids and related pharmacological interventions: potential application in Alzheimer’s disease. Mol Neurobiol 2012, 46:64-77.
4. Wang M, Casey PJ: Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol 2016, 17:110-122.
5. Simanshu DK, Nissley DV, McCormick F: RAS Proteins and Their Regulators in Human Disease. Cell 2017, 170:17-33.
6. Cheng S, Cao D, Hotman DA, Yuan L, Bergo MO, Li L: Farnesyltransferase haplodeficiency reduces neuropathology and rescues cognitive function
in a mouse model of Alzheimer disease. J Biol Chem 2013, 288:35952-35960.

S8 VIRAL BRAIN EXPRESSION OF APP C-TERMINAL FRAGMENT PRESERVES MEMORY IN ALZHEIMER’S DISEASE MOUSE MODELS
Carole Deyts1, Mary Clutter1, Nicholas Pierce1, Todd E. Golde2, Angèle T. Parent1
1 Department of Neurobiology, The University of Chicago, Chicago, IL, USA; 2 Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):SHORT

Correspondence: Angèle T. Parent

Background
Our study explores the amyloid precursor protein (APP) as a whole cellular component that might influence neuronal function and impact the course of AD [1]. We previously reported that the in vitro accumulation of APP C-terminal fragment (CTF) caused by overexpression of membrane-tethered APP intracellular domain (mAICD) favors axodendritic outgrowth as a result of direct coupling with Gαs and subsequent activation of adenylyl cyclase and CREB signaling [2, 3]. PKA-dependent and associated CREB signaling strongly correlate with synaptic enhancement and memory consolidation. As a proof of concept, we tested if recombinant adeno-associated virus (rAAV)-mediated expression of mAICD could alleviate memory deficits in an AD mouse model.

Methods
We generated mAICD construct and mAICD variant lacking the Gαs interaction site. We used neonatal rAAV brain delivery to achieve high and prolonged in vivo brain expression of mAICD in the 5XFAD transgenic mouse model of amyloidosis. We subjected 5XFAD mice to memory behavior tasks at 6-months and analyzed the Aβ burden.

Results
Our results show that mAICD expression affects spatial working memory as depicted by an improvement in novel object recognition and spontaneous alternation in 5XFAD mice. The expression of mAICD construct lacking the Gαs-protein interaction site did not have this outcome. Immunohistochemical analysis revealed that mAICD expression produced a significant decrease of Aβ deposition in the hippocampus. Our findings also indicate that G-protein signaling mediated by mAICD facilitates axodendritic outgrowth and the accumulation of APP at the cell surface.

Discussion
We have identified the significance of APP-CTF and its associated signaling partners in contributing to cognitive function and amyloidogenic cascade. Our results demonstrate that mAICD-mediated signaling events could alter APP processing, reduce Aβ burden, and enhance memory process in AD mouse models.

Conclusions
mAICD expression favors non-amyloidogenic processing of APP and rescues cognitive deficit in AD mice.

References
1. Deyts, C., Thinakaran, G., Parent, A.T.: APP Receptor? To Be or Not To Be. Trends Pharmacol Sci 2016, 37:390-411.
2. Deyts, C., Vetrivel, K.S., Das, S., Shepherd, Y.M, Dupré, D.J., Thinakaran, G., Parent, A.T.: Novel Gαs-protein signaling associated with membrane-tethered APP intracellular domain. J Neurosci 2012, 32:1714-1729.
3. Deyts, C., Clutter, M., Herrera, S., Jovanovic, N., Goddi, A., Parent, A.T.: Loss of presenilin function is associated with a selective gain of APP function. eLife 2016, 5.

S9 MUSCLEBLIND IS A NOVEL MODIFIER OF FUS-MEDIATED NEURODEGENERATION IN VIVO
Ian Caspi1, 2, Karthik Krishnamurthy1, Sukheleen Kour2, Nandini Ramesh1, 2, Rogan Grant2, Eric N Anderson2, Stacie Oliver2, Lauren Goochenour2, Krishani Patel2, Vadreenath Tripathy2, Jared Sterneck2, Amanda M Glaeser2, 6, Christopher J Donnelly2, 6, Marc-David Ruepp7, Piera Pasinelli1, Udai Bhan Pandey1, 2, 8
1 Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA; 2 Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA USA; 3 Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; 4 Department of Neurobiology, The University of Chicago, Chicago, IL, USA; 5 Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; 6 Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland; 7 Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA; 8 Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
Molecular Neurodegeneration 2019, 14(Suppl 1):SHORT

Correspondence: Udai Bhan Pandey

Background
Amyotrophic lateral Sclerosis (ALS) is a devastating motor neuron disease involving the progressive loss of neurons in the brain and spinal cord. Mutations of the gene Fused in Sarcoma (FUS), which codes for the protein FUS, have been linked with ALS pathogenesis. FUS is a DNA/RNA-binding protein that plays critical roles in RNA metabolism including RNA trafficking and alternative splicing.

Methods
To identify dominant modifiers of FUS-associated neurodegeneration, we performed an unbiased genetic screen in our fly model of ALS followed by in-depth validation in mammalian neuronal models and FUS patient-derived iPSC motor neurons.

Results
Unexpectedly, we identified muscleblind (mbl), the Drosophila homolog of human muscleblind-like (MBNL), as a novel suppressor of FUS-mediated neurodegeneration in vivo. RNAi-mediated knockdown of endogenous Drosophila mbl rescues neurodegenerative phenotypes such as retinal degeneration, reduced life span and neuromuscular junction defects caused by pathogenic mutations in FUS. Ectopic expression of muscleblind strongly enhanced FUS toxicity in vivo. We observed that FUS and muscleblind physically interact in mammalian cells. Muscleblind is a strong suppressor of dendritic morphological defects and toxicity in mammalian neurons. Interestingly, muscleblind is a component of cytoplasmic stress granules in mammalian neuronal cells. We observed that muscleblind protects against FUS toxicity by promoting degradation of stalled cytoplasmic stress granules in mammalian neurons and ALS patient motor neurons. To understand the molecular mechanisms of mbl mediated suppression, we performed RNA sequencing using Drosophila brains expressing WT or mutant FUS with or without mbl. We identified several predominantly nuclear genes whose expression is altered by FUS expression, and subsequently returned to almost normal following knockdown of endogenous mbl.

Conclusions
Our data suggests an unexpected function of mbl in FUS-mediated neurodegeneration and demonstrates that muscleblind is a regulator of toxicity associated with FUS in Drosophila, primary mammalian neurons and patient motor neurons.
S10 UNRVEILING AMYLOID TOXICITY: FROM STRUCTURE TO FUNCTION
Karen Marshall, Devkee Vadukul, Saskia Pollack, Luca Biasetti, Lenzie Ford, Mahmoud Bukar Maina, Youssra Al-Hilaly, Louise Serpell
School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
Molecular Neurodegeneration 2019, 14(Suppl 1):SHORT

Correspondence: Louise Serpell

Background
Many proteins and peptides with different primary sequences share the ability to self-assemble to form amyloid fibrils. A large number of these have been implicated in protein misfolding diseases but many perform functional roles in living organisms [1]. Aβ and tau are key proteins that have the ability to self-assemble and are deposited in brains of patients with Alzheimer’s disease.

Methods
Using a unique combination of molecular biophysics, structural biology and cell biology, we have explored the relationship between sequence, amyloidogenicity and toxicity.

Results
A variant of the Alzheimer’s Aβ peptide has been designed in order to examine the specific structural variations that lead to Aβ toxicity [2]. Key differences have been identified in the aggregation propensity, which are closely linked to cellular uptake and functional effects including memory loss in a model organism. Oxidative stress results in the formation of dityrosine cross-linked Aβ and tau related to the neurodegeneration observed in Alzheimer’s disease, highlighting a key role for tyrosine in amyloidogenic proteins [3]. A truncated form of tau is able to self-assemble to form bona-fide paired helical filament, providing an ideal model system for toxicity studies [4].

Discussion
Here we will describe how these striking observations have led to insights into the mechanism of Aβ and tau toxicity.

Conclusions
These studies are providing a platform to better understand deleterious effects of oligomeric proteins in disease and how amyloid fibrils are controlled for functional, non-toxic roles.

References
1. Marshall KE, Marchante R, Xue WF, Serpell LC: The relationship between amyloid structure and cytotoxicity, Pione 2014; 8(2):28860.
2. Marshall KE, Vadukul DM, Dahal L, Theisen A, Fowler MW, Al-Hilaly Y, Ford L, Kemenes G, Day U, Staras K et al: A critical role for the self-assembly of Amyloid-beta1-42 in neurodegeneration. Scientific reports 2016; 6:30182.
3. Al-Hilaly YK, Williams TL, Stewart-Parker M, Ford L, Skaria E, Cole M, Bucher WG, Morris KL, Sada AA, Thorpe JR, Serpell LC: A central role for dityrosine crosslinking of Amyloid-beta in Alzheimer’s disease. Acta neuropathologica communications 2013; 1(1):83.
4. Al-Hilaly YK, Pollack SJ, Vadukul D, Citossi F, Rickard JE, Simpson M, Stoney JMD, Harrington CR, Wischik CM, Serpell LC: Alzheimer’s disease-like paired helical filament assembly from truncated tau protein is independent of disulphide cross-linking. Journal of molecular biology 2017; 429(23):3650

S11 EPGENETIC MICROGLIAL MEMORY OF PERIPHERAL INFLAMMATION SHAPES NEUROLOGICAL DISEASE
Ann-Christin Wendeln1,2,3, Karoline Degenhardt1,2,3, Lalit Kauranji4,5, Michael Gertig4,5, Thomas Ulas4,5, Gaurav Jain4,5, Jessica Wagner1,2,3, Lisa M. Häslar1,2, Kateleen Wild1,2, Angelos Skodras1,2, Thomas Blank2,3, Thomas Staszewski2,3, Moumita Datta2,3, Tonatiuh Pena2, Vincenzo Capecci2,3, Md. Rezaul Islam2,3, Cemil Kerimoglu2, Matthias Staufenbiel1,2,3, Joachim L. Schultze6,7, Marc Beyer2, Marco Prinz8,10, Mathias Jucker1,2, André Fischer4,5, Jonas J. Neher1,2
1German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; 2Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; 3Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Germany; 4Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany; 5Department for Systems Medicine and Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Germany; 6Genomics and Immunoregulation, LIME-Institute, University of Bonn, Germany; 7Platform for Single Cell Genomics and Epigenomics at the University of Bonn and the German Center for Neurodegenerative Diseases, Germany; 8Institute of Neuropathology, Freiburg University Medical Centre, Germany; 9Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; 10BI OSS Centre for Biological Signalling Studies, University of Freiburg, Germany
Molecular Neurodegeneration 2019, 14(Suppl 1):SHORT

Correspondence: Ann-Christin Wendeln

Background
Innate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished, training and tolerance, which are mediated by epigenetic mechanisms and enhance or suppress subsequent inflammation, respectively. Whether immune memory occurs in tissue-resident macrophages in vivo and how it may affect pathology remains largely unknown.

Methods
Peripheral immune stimulation with lipopolysaccharides was applied to mouse models of cerebral β-amyloidosis and stroke. Brain tissue was subsequently analyzed histologically and biochemically. Microglia were isolated from immune stimulated mice and analyzed by RNA-sequencing and ChIP-sequencing to assess their transcriptome and enhancer repertoire.

Results
We demonstrate that peripherally applied inflammatory stimuli induce acute immune training and tolerance in the brain. Strikingly, in a mouse model of Alzheimer’s pathology, immune training exacerbates while tolerance alleviates cerebral β-amyloidosis; similarly, peripheral immune stimulation modifies pathological features after stroke. Training and tolerance lead to differential epigenetic reprogramming of brain-resident macrophages, microglia, that persists for at least six months and impacts microglial gene expression and function.

Discussion
Our results provide first evidence for innate immune memory in tissue-resident macrophages. Long-lasting functional changes of microglia based on epigenetic alterations in response to peripheral immune stimuli impact pathological features of cerebral β-
Amyloidosis and stroke, indicating epigenetic microglial reprogramming as an important modifier of brain pathology.

Conclusions
Peripheral inflammatory stimuli induce innate immune memory effects in the brain and lead to long-lasting epigenetic reprogramming of microglia, thereby modulating later occurring neuropathology.

Methods
Using a luciferase reporter assay and patient-derived induced pluripotent stem cell (iPSC) neurons, antisense oligonucleotide (ASO) sequences that preferentially reduce repeat-containing transcripts that form pathogenic nuclear RNA foci and dipeptide repeat (DPR) proteins.

Results
Optimization of ASO chemistry and the chirality of the phosphorothioate backbone resulted in potent stereopure ASOs, with sub-nanomolar activity in the reporter assay, and nanomolar activity in C9-ALS patient-derived fibroblasts and neurons, as well as in primary neurons from C9BAC mice. Stereopure ASOs, including the lead candidate WVE-3972-01, demonstrated improved in vitro metabolic stability compared to stereorandom ASOs in mouse brain homogenates. Intracerebroventricular injection of WVE-3972-01 into C9BAC mice resulted in substantial and sustained reduction of repeat-containing C9ORF72 transcripts, RNA foci, and DPR proteins, without altering total C9ORF72 protein levels.

Discussion
WVE-3972-01 specifically targets transcripts that contain the G4C2 repeat expansion in the first intronic region of the C9ORF72 gene, thereby preventing production of toxic RNA foci and DPR proteins with minimal alteration of total C9ORF72 protein levels.

Conclusions
Results suggest that preferential targeting of repeat-containing transcripts using stereopure ASOs may be a viable therapeutic approach for the treatment of ALS and FTD.
S14 PERIPHERAL APOE IMPACTS CNS COGNITION AND ALZHEIMER'S PATHWAYS
Chia-Chen Liu1, Yuanxin Chen, Na Zhao1, Yuan Fu1, Yingxue Ren2, Wenhui Qiao1, Na Wang1, Justin Rogers1, Jing Zhao1, Cynthia Mencia Linares1, Joshua Knight1, Lindsey Felton1, Aishe Kurt1, John Fryer1, Yan W. Asmann1, Betty Kim1, Guojun Bu1

1Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; 2Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA

Correspondence: Chia-Chen Liu

Background
The ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) [1]. ApoE promotes Aβ aggregation and deposition and is associated with impaired brain lipid homeostasis, glucose metabolism, vascular functions and increased neuroinflammation [2,3]. Thus, understanding the pathobiology of apoE4 represents a great opportunity to both uncover mechanisms underlying AD risk and also explore new strategies for AD therapy. ApoE is abundantly expressed in the brain and in periphery. In fact, apoE concentration in plasma is about 10 times higher than that in the cerebral spinal fluid [4]. As peripheral apoE, produced mainly by the liver, is secreted from brain apoE by the blood-brain barrier (BBB) [5,6], it is not clear whether and how peripheral apoE affects the function of the central nervous system (CNS) and AD pathogenesis.

Methods
We have developed novel mouse models expressing human apoE3 or apoE4 in an inducible, cell type-specific manner. After breeding to albumin-Cre (Alb-Cre) mice which drive apoE expression specifically in periphery. In fact, apoE concentration in plasma is about 10 times higher than that in the cerebral spinal fluid [4]. As peripheral apoE, produced mainly by the liver, is secreted from brain apoE by the blood-brain barrier (BBB) [5,6], it is not clear whether and how peripheral apoE affects the function of the central nervous system (CNS) and AD pathogenesis.

Conclusions
Our findings demonstrate that peripheral apoE isoforms have differential effects on CNS functions and AD-related pathways.

References
1. Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak-Vance, M.A.: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 1993, 261(5123): 921–923.
2. Bu, G. Apolipoprotein E and its receptors in Alzheimer disease: pathways, pathogenesis and therapy. Nat Rev Neurosci, 2009, 10(5): 333-344.
3. Liu, C.C., Kanekyo, T., Xu, H., and Bu, G. Apolipoprotein E and Alzheimer disease. Mechanisms and Therapy, Nat Rev Neuro, 2013, 9(2): 109-118.
4. Cruchaga, C., Kasuwe, J.S., Novotny, P., Bales, E.K., Pickering, E.H., Mayo, K., Bertelsen, S., Hinrichs, A., Fagan, A.M., Holtzman, D.M., et al: Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Hum Mol Genet, 2012, 21(20): 4558-4571.
5. Martinez-Morillo, E., Hansson, O., Atagi, Y., Bu, G., Minthon, L., Diamandis, E.P., and Nielsen, H.M: Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer’s disease patients and controls. Acta Neuropathol, 2014, 127(5): 633-643.
6. Linton, M.F., Gish, R, Hubl, S.T., Butler, E., Esquivel, C., Bay, W.J., Boyle, J.K., Wardell, M.R., and Young, S.G.: Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation. J Clin Invest, 1991, 88: 270-281.
S16 PET RADIOLIGANDS BASED ON BISPECIFIC ANTIBODIES FOR IMAGING OF AMYLOID-BETA PATHOLOGY
Dag Sehlin1,2, Greta Hultqvist1,*,3, Xiaotian Fang1, Silvio Meier4, Gunnar Antoni5, Lars Lannfelt6,3, Sina Syvänen2
1Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; 2Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden; 3PET Centre, Uppsala University Hospital, Uppsala, Sweden; 4BioArctic AB, Stockholm, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):SHORT

Correspondence: Dag Sehlin

Background
Traditionally PET radioligands for brain imaging are based on small drug-like molecules. Antibodies are large molecules with low and slow brain distribution and have therefore not been used for brain PET. However, antibodies can be designed for more efficient passage across the blood-brain barrier (BBB) into the brain. Thus, the aim of the present study was to develop antibody-based radioligands, of different formats and sizes, for PET imaging of soluble amyloid-beta (Aβ) protofibrils, which are suggested to cause neurodegeneration in Alzheimer’s disease (AD) [1].

Methods
Prototibril selective antibody mAb158 [2] was fused with either transferrin receptor (TR) antibody 8D3 [3] or fragments of 8D3 resulting in three different bispecific antibodies. Binding to TR via the 8D3 binding domain enabled receptor mediated transcytosis across the BBB while the mAb158-moiety bound to Aβ in the brain parenchyma. The bispecific antibodies were then labeled with iodine-124 (124I) and used for PET imaging in tg-ArcSwe and wild-type mice of different ages.

Results
All three bispecific antibodies bound both Aβ protofibrils and TR, and displayed up to 80-fold better BBB transport compared to unmodified mAb158. There was a clear difference between PET images obtained in tg-ArcSwe and wild-type mice at three days post injection. The PET signal displayed up to 80-fold better BBB transport compared to unmodified mAb158. The PET signal correlated closely with levels of Aβ protofibrils measured in brain homogenate [4]. Compared with [11C]PiB, antibody based PET imaging detected Aβ pathology at an earlier stage and with a larger dynamic range.

Discussion and Conclusions
Pototibrils were visualized in vivo with PET. To our knowledge this is the first time antibody-based ligands have been successfully used for imaging of a target inside the brain. In a longer perspective, the use of bispecific antibodies as PET ligands may enable imaging of proteins involved in diseases of the brain for which imaging agents are lacking today.

References
1. Tiiman A, Jarvet J, Gräslund A, Vukojević V. Heterogeneity and Turnover of Intermediates during Amyloid-β Peptide Aggregation Studied by Fluorescence Correlation Spectroscopy. Biochemistry 2015, 54:7203-7211.

Correspondence: Jüri Jarvet

S17 TIME-RESOLVED THIOFLAVIN T FLUORESCENCE INTENSITY FLUCTUATION ANALYSIS AND TIRF MICROSCOPY FOR ULTRASENSITIVE CHARACTERIZATION OF AMYLOIDOGENIC NANO-PLAQUES
Jüri Jarvet1,*, Ann Tiiman1, Vladana Vukojević2, Astrid Gräslund3
1Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden; 2Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm; Sweden; 3The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
Molecular Neurodegeneration 2019, 14(Suppl 1):SHORT

Correspondence: Jüri Jarvet

Background
Fluorescence correlation spectroscopy (FCS) is a time-resolved spectroscopic technique that can measure the concentration and size of fluorescently labeled single particles. Thioflavin T (ThT) can be used to fluorescently label amyloid structures. The FCS method benefits from the fact that many ThT molecules bind to a single amyloid aggregate. By using FCS we were able to detect with single-molecule sensitivity very low levels of small structured amyloidogenic nano-plaque particles and to monitor their propagation in time using time-resolved studies of the Amyloid β (Aβ) peptide in vitro. We could identify Aβ aggregates of different sizes with molecular weight from 260 kDa to more than 1 × 106 kDa and revealed the hitherto unobserved kinetic turnover of intermediates during the aggregation process [1].

Methods
Time-resolved detection of ThT fluorescence intensity fluctuations in a sub-femtoliter sized observation volume element, allowed us to monitor ThT active nano-plaques with single-particle sensitivity. Total Internal Reflection Fluorescence (TIRF) microscopy measures fluorescence in a very thin layer (100 nm above the cover glass) of the sample.

Results
The results show that unlike bulk fluorescence ThT spectroscopy, time-resolved ThT fluorescence intensity fluctuation analysis allows direct detection, quantification and size determination of small structured amyloidogenic nano-plaques in solution. In addition, TIRF microscopy could be used to visualize the nano-plaque aggregates. TIRF was also used to follow the elongation of amyloid fibrils during Aβ amyloid formation in vitro.

Discussion
FCS and TIRF microscopy allow observation of very low concentrations of ThT-labeled amyloid particles in different solvents. The single particle observations give rise to very strong background suppression.

Conclusions
We can measure very low levels of the ThT active nano-plaques that are related to the actual amyloid states present in fibrils found in brain tissue.

Reference
1. Tiiman A, Jarvet J, Gräslund A, Vukojević V. Heterogeneity and Turnover of Intermediates during Amyloid-β Peptide Aggregation Studied by Fluorescence Correlation Spectroscopy. Biochemistry 2015, 54:7203-7211.

Correspondence: Niina A. Koistinen

POSTER PRESENTATIONS
P1-A01 ADAM10 DEPENDENT NUCLEAR LOCALIZATION OF THE APP-BINDING PROTEIN FE65 IS ATTENUATED IN NEURONALLY DIFFERENTIATED SH-SY5Y CELLS
Niina A. Koistinen, Preeti M. Menon, Anna-Lena Ström
Department of Biochemistry and Biophysics, Stockholm University, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Niina A. Koistinen

Background
Fe65 is a brain enriched adaptor protein involved in various cellular processes [1]. Fe65 interacts with the amyloid-β precursor protein (APP) [2], and has been proposed to be involved in APP/AICD (APP intracellular domain)-dependent transcriptional activity [3]. The mechanisms behind Fe65 and APP/AICD nuclear localization are not completely understood. We have previously shown that Fe65 nuclear localization is dependent on α-secretase processing [4]. Here we further investigated the role of α-secretase processing in Fe65 nuclear localization during neuronal differentiation.

Methods
SH-SY5Y cells differentiated for 6 days with RA or PMA, and treated with α- or γ-secretase inhibitors (GI254023X, Batimastat or DAPT) were subject for subcellular fractionation and western blot analysis.

Results
The inhibition of α-secretases by Batimastat (a broad-spectrum metalloproteinase inhibitor), or γ-secretase with DAPT, decreased Fe65 nuclear levels to the same extent in both undifferentiated and

POSTER PRESENTATIONS
P1-A01 ADAM10 DEPENDENT NUCLEAR LOCALIZATION OF THE APP-BINDING PROTEIN FE65 IS ATTENUATED IN NEURONALLY DIFFERENTIATED SH-SY5Y CELLS
Niina A. Koistinen, Preeti M. Menon, Anna-Lena Ström
Department of Biochemistry and Biophysics, Stockholm University, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Niina A. Koistinen

Background
Fe65 is a brain enriched adaptor protein involved in various cellular processes [1]. Fe65 interacts with the amyloid-β precursor protein (APP) [2], and has been proposed to be involved in APP/AICD (APP intracellular domain)-dependent transcriptional activity [3]. The mechanisms behind Fe65 and APP/AICD nuclear localization are not completely understood. We have previously shown that Fe65 nuclear localization is dependent on α-secretase processing [4]. Here we further investigated the role of α-secretase processing in Fe65 nuclear localization during neuronal differentiation.

Methods
SH-SY5Y cells differentiated for 6 days with RA or PMA, and treated with α- or γ-secretase inhibitors (GI254023X, Batimastat or DAPT) were subject for subcellular fractionation and western blot analysis.

Results
The inhibition of α-secretases by Batimastat (a broad-spectrum metalloproteinase inhibitor), or γ-secretase with DAPT, decreased Fe65 nuclear levels to the same extent in both undifferentiated and
differentiated SH-SYSY cells. However, specific inhibition of ADAM10 with GI254023X was shown to have a more prominent effect on blocking Fe65 nuclear localization in undifferentiated SH-SYSY cells.

Discussion

α-secretase processing seems to play a key role in promoting Fe65 nuclear localization. However, Fe65 nuclear localization appears to be regulated by different α-secretases. Hence, ADAM10 had a more prominent role in undifferentiated SH-SYSY cells, whereas other α-secretases, in addition to ADAM10, were involved in Fe65 nuclear localization in differentiated SH-SYSY cells. Moreover, transcriptionally active AICD has been suggested to be generated through the β-secretase pathway [5, 6]. Since α-secretases have several other substrates than APP, our results indicate that Fe65 nuclear function is not exclusively dependent on its interaction with APP/AICD.

Conclusions

α-secretase processing seems to have a prominent role in regulating Fe65 nuclear localization, and different α-secretases are involved in regulating Fe65 nuclear entry in non-differentiated and differentiated cells. Moreover, Fe65 nuclear function is not exclusively dependent on APP.

References

1. Chow WN, Cheung HN, Li W, Lau KF: FE65: Roles beyond amyloid precursor protein processing. Cell Mol Biol Lett 2015, 20(1):66-87.
2. Mingoli G, de Candia P, Bonetti A, Faraonio R, Zambrano N, Russo T: The beta-amyloid precursor protein functions as a cytosolic anchoring site that prevents Fe65 nuclear translocation. J Biol Chem 2001, 276(9):6545-6550.
3. Cao X, Sudhof TC: A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 2001, 292(5527):115-120.
4. Koistinen NA, Edlund AK, Menon PK, Ivanova EV, Bacanu S, Iverfeldt K: Nuclear localization of amyloid-beta precursor protein-binding protein Fe65 is dependent on regulated intramembrane proteolysis. PLoS One 2017, 12(3):e0173888.
5. Flammang B, Pardossi-Piquard R, Sevalle J, Debayle D, Dabet-Gay AS, Thevenot A, Lauritzen I, Checler F: Evidence that the amyloid-beta protein precursor intracellular domain, AICD, derives from beta-secretase-generated C-terminal fragment. J Alzheimers Dis 2012, 30(1):145-153.
6. Goedger ZV, Rajendran L, Trutzel A, Kohli BM, Nitsch RM, Konietzko U: Nuclear signaling by the APP intracellular domain occurs predominantly through the amyloidogenic processing pathway. J Cell Sci 2009, 122(Pt 20):3703-3714.

P1-A05 INTERNAL STRUCTURE OF AMYLOID BETA PEPTIDE OLIGOMERS
C.M. Baronio, A. Barth
Stockholm University, Department of Biochemistry and Biophysics, Arhenius Laboratories, 10691 Stockholm, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: C.M. Baronio

Background

The aggregation of peptides and proteins is a biological phenomenon which can cause the appearance of many neuropathological diseases as Alzheimer’s disease. Here, the protein of interest is the amyloid beta (Aβ) peptide, the aggregates of which are toxic, because they cause synaptic cell dysfunctions and/or death. The amyloid fibrils consist of parallel β-sheets, whereas the β-sheet structure of the amyloid oligomers is antiparallel. In our experimental studies [1] with infrared spectroscopy on mixtures of Aβ40 and Aβ42, one of the peptides was 13C-labelled. They showed that the absorption of the C=O bond in the backbone (amide I band) shifts to lower wavenumbers when the percentage of labeled peptide increases. Our aim is to simulate spectra, to reproduce experimental behavior and to elucidate the structure of individual peptides within Aβ oligomers.

Methods

A Matlab program [2] was used in order to simulate the amide I infrared spectra of antiparallel β-sheets and β-barrels, which consist of mixtures of labeled and unlabeled peptides. Normal coordinate analysis is used to predict infrared absorbance spectra of peptides. The force constant matrix, calculated according to the transition dipole coupling theory and coupling constants from density functional theory, describes the interactions between the peptide groups. Statistical distribution of labeled and unlabeled strands is examined using 3000 structures, each one with a different isotopic composition, for each experimental 12C/13C ratio.

Results

The results confirm the downshift of the absorbance band at increasing labeling ratios.

Discussion

This shift towards lower wavenumbers is smaller when individual peptides contribute a hairpin or a 3-stranded block instead of a single strand to the structure.

Conclusions

Ongoing calculations and comparison with the experiments will reveal which one of the three structural units is the building block of the oligomers.

References

1. Baldassarre M, Baronio CM, Morozova-Roche LA, Barth A: Amyloid β-peptides 1-40 and 1-42 form oligomers

P1-A03 AMYLOID β-PEPTIDES 1-40 AND 1-42 FORM OLIGOMERS WITH MIXED β-SHEETS
Maurizio Baldassarre, Cesare M. Baronio, Andreas Barth
Department of Biochemistry and Biophysics, Stockholm University, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Andreas Barth

Background

Two main amyloid-β peptides of different length (Aβ40 and Aβ42) are involved in Alzheimer’s disease. Their relative abundance is decisive for the severity of the disease and mixed oligomers may contribute to the toxic species. However, little is known about the extent of mixing in oligomers. Other proteins have also been suspected to coaggregate with Aβ.

Methods

We used Fourier transform infrared spectroscopy in combination with 13C-labeling and spectrum calculation to study whether Aβ40 and Aβ42 co-aggregate. Mixtures of monomeric labeled Aβ40 and unlabeled Aβ42 (and vice versa)were co-incubated for ~20 min and their infrared spectra recorded.

Results

The spectra of the 1:1 mixtures were different from the average spectra of the labeled and unlabeled peptides, indicating that the vibrational coupling between amide oscillators was affected by mixing. The position of the main 13Camide I’ band shifted to higher wavenumbers with increasing admixture of 12C-peptide due to the presence of 12C-amides in the vicinity of 13C-amides. The effect could be reproduced in spectrum calculations [1].

Discussion

The experimental results indicate a largely random distribution of Aβ40 and Aβ42 in the β-sheets of the mixed aggregates. Spectrum calculations are consistent with structural models in which each peptide contributes at least two adjacent β-strands (hairpin) to the β-sheets of the oligomers.

Conclusions

This work highlights the relevance of heterogeneous aggregates for Alzheimer’s and other neurodegenerative diseases.

Reference

1. Baldassarre M, Baronio CM, Morozova-Roche LA, Barth A: Amyloid β-peptides 1-40 and 1-42 form oligomers
P1-A06 APP Ser675 PHOSPHORYLATION AFFECTS α-SECRETASE PROCESSING RESULTING IN DECREASED SECRETION OF NEUROPROTECTIVE ECTODOMAIN sAPPα
Preeti K. Menon, Niina A. Koistinen, Anna-Lena Ström
Department of Biochemistry and Biophysics, Stockholm University, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Preeti K. Menon

Background
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by abnormal deposition of the amyloid-β (Aβ) peptide. Aβ is produced after amyloidogenic (β-secretase) processing of the transmembrane amyloid precursor protein (APP) [1]. However, APP can also be processed by α-secretases, instead resulting in release of neuroprotective sAPPα. Growing evidence indicate that aberrant post-translational modifications of APP may play a pivotal role in AD pathogenesis by dysregulating APP processing (reviewed in [2]). APP Ser675 phosphorylation occurs in AD brains [3] and in this study we therefore investigated the effect of this modification on APP processing.

Methods
SK-N-AS cells expressing APPwt, APP-S675A or APP-S675E were treated with the γ-secretase inhibitor DAPT, together with an α-secretase inhibitor (GI254023X or Batimastat), and the release of sAPPα and APP CTFs levels analyzed by western blotting. In addition, the APP-FE65 interaction and the cell surface localization of APP was analyzed by a TAP-tag pull down and a biotinylation assay, respectively.

Results
We show that mimicking APP Ser675 phosphorylation (APP-S675E) decreases the release of sAPPα, while the level of an alternative APP-C83-CTF fragment was increased. Moreover, we found that while APP-Ser675E increased the APPFe65 interaction, the level of APP-Ser675E at the plasma membrane were unaltered.

Discussion
Taken together these results suggest that APP Ser675 phosphorylation alters the α-secretase processing of APP at the plasma membrane.

Conclusions
As α-secretase processing of APP is an essential step in decreasing the generation of Aβ, our results suggest that Ser675 phosphorylation could contribute to AD pathology.

References
1. Olsson F., Schmidt S., Althoff V., Munter LM., Jin S., Rosqvist S., et al. Characterization of Intermediate Steps in Amyloid Beta Production under Near-native Conditions. J Biol Chem. 2014;289:1540–50.
2. Fluhrer R., Multhaup G., Schlicksupp A., Okochi M., Takeda M., Lammich S., et al. Identification of a Δβ-Secretase Activity, Which Truncates Amyloid β-Peptide After Its Presenilin-dependent Generation. J Biol Chem. 2003;278:5531–8.
3. Portelius E., Van Broeck B., Andreasson U., Gustavsson MK., Mercken M., Zetterberg H., et al. Acute effect on the Aβ isoform pattern in CSF in response to γ-secretase modulator and inhibitor treatment in dogs. J Alzheimers Dis. 2010;21:1005–1012.
and macaque and determined the presence of APP c-terminal fragments using a number of c-terminal antibodies, western blotting, mass spectrometry and immunoprecipitation.

Results
We found that a 23 kDa band - possibly corresponding to APP-CTF-η - was present at much higher levels in human than in rat brain. The identity of the 23 kDa band was confirmed by siRNA silencing and mass spectrometry. In adult brain, the 23 kDa band was abundant in guinea pig and macaque but neither in rat, wildtype nor APP transgenic mice. Opposite to adult, the CTF pattern was similar in human and mouse embryonic brain, with low levels of all CTFs and no detectable levels of the 23 kDa CTF. No significant differences were detected between AD and control brain.

Discussion
The relative abundance of the 23 kDa band in guinea pig and macaque can possibly explain why these species develop amyloid plaques whereas mice and rats don’t. The absence of the 23 kDa band in human APP transgenic mice indicates that it is the environment in the human brain, rather than the human APP gene, that influences the differential processing.

Conclusions
We detect important differences in APP processing between mice and rats and humans which should be taken into consideration when translating animal model studies to clinical trials.

Reference
1. Willem M et al: η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 2015, 526:443-7

P1-A09 NEURONAL Aß42 IS PRESENT AT THE PRESYNAPTIC SIDE OF THE SYNAPSE
Yang Yu1, Daniel C. Jans2, Bengt Winblad1, Lars Tjernberg1, Sophia Schedin-Weiss3
1Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Division of Neurogeriatrics, 141 57 Huddinge, Sweden; 2Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, 171 65, Stockholm, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Yang Yu

Background
The amyloid β-peptide containing 42 amino acids (Aß42) is neurotoxic and believed to be acausative agent in Alzheimer disease (AD), but the molecular details behind its role in the initiating events leading to clinical AD are elusive. It has previously been shown that the Aß generating enzyme γ-secretase is enriched at both sides of the synapse [1]. However, since γ-secretase has a multitude of substrates besides the Aß precursor protein (APP), the question of where Aß is produced is still open.

Methods
Mouse primary hippocampal neurons cultured for 21 days in vitro were imaged with super-resolution microscopy (STED, STORM and three-dimensional STED). To visualize the location of Aß42, we used a C-terminal specific Aß42 antibody (anti-ABC42), the presynaptic marker synaptophysin or postsynaptic marker PSD95, combined with a confocal channel for actin staining.

Results
We focused on the neurites, and found that STED made it possible to distinguish between different Aß42 structures. A large fraction of Aß42 was present in small vesicles found in the presynapse, opposite to PSD95 clusters in mushroom, thin and stubby spines, as well as in immature synapses. Interestingly, the majority of these vesicles were not stained by synaptophysin, suggesting that Aß42 is present in a different type of vesicle at the presynapse. We also quantified the relative presence of Aß42 in the pre- and postsynaptic sides of the synapse, showing that 97% of the presynapses, but only 5.2% of the dendritic spine heads, contained Aß42.

Discussion
Aß vesicles are highly abundant at the presynapse in vesicles that lack synaptophysin. Other studies have in line with our results concluded that Aß42 is secreted at the synapse, and that the major pool is independent on synaptic activity [2].

Conclusions
Aß42 is present at the presynaptic side of the synapse in vesicles lacking synaptophysin.

References
1. Schedin-Weiss S, Caesar I, Winblad B, et al. Super-resolution microscopy reveals γ-secretase at both sides of the neuronal synapse. Acta Neuropathologica Communications, 2016, 4: 29.
2. Lundgren J L, Ahmed S, Winblad B, et al. Activity-independent release of the amyloid β-peptide from rat brain nerve terminals. Neuroscience letters, 2014, 566: 125-130.

P1-A10 THIOREDODIN-80 PROTECTS AGAINST AD-LIKE PATHOLOGY THROUGH AUTOHAPY-LYSOSOMAL PATHWAY REGULATION
Gorka Gerenu1,2, Torbjörn Persson1, Julen Goikolea1, Javier Calvo-Garrido1, Philipp Pottmeier1, Helen Poska1, Jenny Presto1, Angel Cedazo-Minguez2
1Karolinska Institutet; Department of Neurobiology, Care Sciences and Society; Center for Alzheimer Research, Division for Neurogeriatrics, 141 57 Huddinge, Sweden; 2Biodonostia Health Research Institute, Neuroscience Area, Donostia-San Sebastián, Gipuzkoa, 2014, Spain
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Gorka Gerenu

Background
Aggregation and accumulation of amyloid-beta (Aß) is believed to be of great importance in the pathogenesis of Alzheimer disease (AD). We recently reported that Thioredoxin-80 (Tx80), a truncated form of Thioredoxin-1, prevents the toxic effects of Aß and inhibits its aggregation in vitro. Tx80 is present in human brain and cerebrospinal fluid, with dramatically reduced levels in AD patients. In this study, we investigated the effect of Tx80 in in vivo and in vitro models of Aß pathology.

Methods
We developed transgenic models of Drosophila Melanogaster that overexpresses human Trx80, human Aß42 or both; exclusively in the central nervous system. Longevity and Locomotor tests were assessed and the results were confirmed by further molecular studies. SHSY-5Y neuroblastoma cell line was used to confirm and enhance the power of our results.

Results
We found that Tx80 prevents Aß accumulation in the brain and rescues the reduction in lifespan and locomotor impairment seen in Aß42 expressing flies. We showed that Tx80 induces autophagolysosome formation and reverse the inhibition of Atg4B-Atg8a/b pathway caused byAß42. These effects were confirmed in human neuroblastoma cells with an effect of Tx80 on reducing Aß42 levels and activating the autophagic machinery.

Conclusions
These results give insight about the function of Tx80 in vivo and suggest that Tx80 has an effect on the formation of autophagolysosomes, which results in enhanced Aß42 degradation. In addition, it adds support to the view that Tx80 can be part of a novel therapeuutic treatment for AD.
P1-A11 A ROLE OF ALZHEIMER'S DISEASE ASSOCIATED γ-SECRETASE ACTIVITY IN LIPID METABOLISM AND LIPID DROPLET FORMATION

Esteban Gutierrez1, Dieter Lütjohann2, Lars Kürschner3, Christoph Thiele4, Jochen Walter5

1Department of Neurology, University Hospital Bonn, Germany; 2Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; 3Life and Medical Sciences (LIMES), Membrane Biology & Biochemistry, University of Bonn, Bonn, Germany; 4Molecular Neurodegeneration, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; 5The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia; 6Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, New York, USA; 7Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Huddinge, Sweden; 8Department of Biochemistry and Biophysics, Arhenius Laboratories, Stockholm University, Stockholm, Sweden

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Jochen Walter

Background
Mutations in the presenilins (PS) or the amyloid precursor protein (APP) are a major cause of familial Alzheimer’s disease (AD). PS proteins are the catalytically active components of the γ-secretase complex that cleavages C-terminal fragments (CTF) of APP to generate the amyloid β peptide (Aβ). While the involvement of PS and APP in AD is well recognized in the production of Aβ, additional mechanisms potentially linking these proteins to AD pathogenesis are not comprehensively understood. It has been shown that PS proteins are also involved in cellular cholesterol metabolism (1–3). This study aimed to further elucidate the role of PS proteins and the APP CTF on cellular metabolism of sterols, triglycerides and lipid droplets (LD).

Materials and Methods
γ-Secretase activity was modulated pharmacologically or genetically in human astroglia H4 or mouse embryonic fibroblasts. LD content was analyzed by fluorescence microscopy using the dye LDL540. Sterol levels and esterification ratios where analyzed by gas-liquid chromatography-mass spectrometry (GLCMS) and the Amplex red cholesterol assay. The interaction between APP CTF and cholesterol was studied by fluorescence microscopy on cell models overexpressing an APP C99-GFP fusion protein, combined with cholesterol staining using Filipin.

Results
Genetic deletion of PS or pharmacological inhibition of γ-secretase activity lead to significantly increased amounts of lipid droplets and triglycerides, together with significantly higher levels of the cholesterol precursors lathosterol and desmosterol, and significantly lower sterol esterification ratios. Moreover, following pharmacological inhibition of γ-secretase, overexpressed APP C99-GFP accumulated in cholesterol positive intracellular membrane structures. Increased expression and accumulation of C99-GFP was shown to correlate with an increased number of cellular LDs. These effects were associated with increased activity of the liver X receptor and upregulation of target genes that regulate cellular lipid metabolism.

Discussion and Conclusions
Our findings support an important role of PS and γ-secretase activity in cellular lipid metabolism. We identified alterations relevant to cellular sterol and lipid homeostasis upon loss of γ-secretase activity. Furthermore, the observed association of C99-GFP with cholesterol in cell-based assays, together with the correlation between C99-GFP accumulation and increased LD formation, indicates that this γ-secretase substrate represents a potential link between PS activity and lipid metabolism.

References
1. Area-Gómez, E., Del Carmen Lara Castillo, M., Tambini, M. D., Guardia-Laguarda, C., Groof, A. J. C. de, Madra, M., Ikenouchi, J., Umeda, M., Bird, T. D., Sturley, S. L., and Schon, E. A. (2012) Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. The EMBO journal 31, 4106–4123
2. Grimm, M. O. W., Grimm, H. S., Patzold, A. J., Zinner, E. G., Halonen, R., Dueering, M., Tschape, J. A., Strooper, B. de, Müller, U., Shen, J., and Hartmann, T. (2005) Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nature cell biology 7, 1118–1123
3. Tamboli, I. Y., Prager, K., Thal, D. R., Thelen, K. M., Dewachter, I., Pietrzik, C. U., St George-Hyslop, P., Sisodia, S. S., Strooper, B. de, Heneka, M. T., Filippov, M. A., Müller, U., van Leuven, F., Listjohann, D., and Walter, J. (2008) Loss of gamma-secretase function impairs endocytosis of lipoprotein particles and membrane cholesterol homeostasis. The Journal of Neuroscience 28, 12097–12106

P1-A13 INHIBITION OF AMYLOID β PEPTIDE 1-40 (Aβ40) AGGREGATION BY ANTI-PROFIBRIL AB ANTIBODY STUDIED BY FLUORESCENCE CORRELATION SPECTROSCOPY AND DUAL-COLOR FLUORESCENCE CROSS-CORRELATION SPECTROSCOPY

Ann Tiiman1, Juri Jarvet1, Alessandra Bonito-Olivaa, W Vallen Graham3, Thomas P. Salmar4, Astrid Gräslund5, Lars Terenius5, Vladana Vukojević1

1Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; 2The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia; 3Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, New York, USA; 4Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Huddinge, Sweden; 5Department of Biochemistry and Biophysics, Arhenius Laboratories, Stockholm University, Stockholm, Sweden

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Ann Tiiman

Background
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is characterized by the self-assembly of amyloid β (Aβ) peptides and their deposition into plaques. Conformation-sensitive antibodies are able to bind to early Aβ aggregates and inhibit amyloid formation, but the detailed kinetic mechanisms underlying this complex process are not fully understood. We have recently shown that timeresolved methods with single-molecule sensitivity can characterize the turnover of intermediates during Aβ aggregation [1], and use here this novel approach to analyze the effect of the SC9.A2 antibody on the time course of Aβ aggregation.

Methods
Fluorescence Correlation Spectroscopy (FCS), dual-color Fluorescence Cross-Correlation spectroscopy (FCCS) and Confocal Laser Scanning Microscopy (CLSM) were used to characterize in vitro the effects of the SC9.A2 antibody on the time course of Aβ 1-40 (Aβ40) aggregation.

Materials include: recombinant unlabeled Aβ40 peptide, fluorescently tagged Aβ40-Alexa488, SC9.A2 antibody, fluorescently tagged SC9.A2-DyLight633 antibody and Thioflavin T.

Results
Our study shows that the SC9.A2 antibody inhibits Aβ aggregation in solution in a concentration dependent manner and can totally abolish this process at higher concentrations, for 10 μM Aβ40 the required antibody concentration was 120 ± 60 ng/ml. The SC9.A2 antibody does not bind to the functionally active Aβ40 monomers, but selectively interacts with early intermediates formed during the aggregation process.

Discussion
It is generally accepted that oligomers are the most toxic species in the Aβ aggregation pathway and their early detection and clearance are crucial for successful AD therapy and prevention [2]. The newly developed SC9.A2 antibody binds to early intermediates and can be used to detect amyloid formation in tissue sections and reduce toxicity in vivo.

Conclusions
Inhibition of Aβ aggregation by the SC9.A2 antibody occurs through its interactions with early intermediates in the Aβ aggregation process, not with Aβ monomers.

References
1. Tiiman A, Jarvet J, Gräslund A, Vukojević V. Heterogeneity and Turnover of Intermediates during Amyloid-β (Aβ) Peptide Aggregation Studied by Fluorescence Correlation Spectroscopy. Biochemistry 2015, 54:7203-7211.
2. Graham WV, Bonito-Oliva A, Salmar TP. Update on Alzheimer’s Disease Therapy and Prevention Strategies. Annu Rev Med 2017, 68:413-430.
P1-A14 γ-SECRETASE INHIBITION INDUCES LIPID DROPLET ACCUMULATION VIA APP-CTF ACCUMULATION
Naoto Oikawa1, Ulrike C. Müller2, Jochen Walter1
1Department of Neurology, University of Bonn, Bonn, Germany; 2Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Naoto Oikawa

Background
Abnormal cholesterol metabolism is suspected as one of the factors contributing to Alzheimer disease (AD) pathogenesis. We and others have previously shown that γ-secretase dysfunction, which appears to be a main consequence caused by clinical presenilin mutations relevant to familial AD, increases cholesterol level in non-neuronal cells [1, 2]. Additionally, we proposed that increase of one of the γ-secretase substrates, amyloid precursor protein C-terminal fragments (APP-CTFs), is a possible mediator of the cholesterol increase [2]. In this study, we examined the involvement of APP-CTFs in the metabolism of cholesterol and lipid droplets in neuronally differentiated SH-SY5Y (nSY5Y) cells and in mouse embryonic fibroblasts lacking APP expression (MEFs-APPKO).

Methods
nSY5Y cells differentiated by retinoic acid or MEFs-wild type (MEFs-WT) or MEFs-APPKO were treated with a γ-secretase inhibitor, N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). To suppress APP-CTF accumulation in nSY5Y cells upon DAPT treatment, cells were co-treated with inhibitors of β-secretase or γ-secretase. Levels of lipid droplets and cholesterol were measured by oil red-O staining and enzymatic assay, respectively.

Results
γ-Secretase inhibition in nSY5Y cells by DAPT significantly increased levels of lipid droplet and cholesterol and affected the expression profile of the proteins involved in cholesterol metabolism, such as ABCA1, NPC1, sterol regulatory element-binding protein 2, and LDLR. Suppression of the DAPT-induced APP-CTFs accumulation completely rescued lipid droplet accumulation; however, cholesterol accumulation and abnormal expression profile of the proteins were not rescued by suppression of the APP-CTFs accumulation. Additionally, γ-secretase inhibition induced lipid droplet accumulation only in MEFs-WT but not in MEFs-APPKO in contrast to cholesterol accumulation, which was detected in both of them upon DAPT treatment.

Discussion/Conclusions
These results indicate that γ-secretase inhibition has complex effects on cellular lipid metabolism in neuronal and non-neuronal cells, partly involving accumulated APP-CTFs.

References
1. Grimm MO, Grimm HS, Pätzold AJ, Zinser EG, Halonen R, Duering M, et al. Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat Cell Biol. 2005;7(11):1118–1123.
2. Tamboli IY, Prager K, Thal DR, Thelen KM, Dewachter I, Pietrzik CU, et al. Loss of gamma-secretase function impairs endocytosis of lipoprotein particles and membrane cholesterol homeostasis. J Neurosci. 2008;28(46):12097–12106.
3. Area-Gomez E, Del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarda C, de Groof AJ, Madra M, et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 2012;31(21):4106-4123.

P1-A15 ULTRASTRUCTURAL ANALYSIS OF VESICLE KINETICS IN APPswe/Ind MICE
Luca Biasetti1, Stephanie A. Rey1, Catherine A. Smith1, Milena W. Fowler1, Sarah L. King1, Mariana Vargas-Caballero2, Louise C. Serpell1, Kevin Staras1
1Dementia Research Group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, UK; 2Institute for Life Sciences, University of Southampton, Southampton, UK
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Luca Biasetti

Background
Alzheimer’s disease (AD) is characterized by neurological pathology that causes progressive deterioration of the brain and its functions. The majority of AD cases are sporadic, although there are some hereditary forms which are already onset. It is known that normal synaptic function and information transmission are impaired in the disease; however, the specific cellular targets and underlying mechanisms are yet to be fully elucidated. An important candidate substrate is the population of neurotransmitter-containing vesicles located in the presynaptic terminals, known to be critical determinants of synaptic efficacy.

Methods
Here we investigate the properties of pre-synaptic vesicles that are recruited by synaptic activity in CA3-CA1 hippocampal synapses from acute brain slices obtained from 3-month-old transgenic APPswe/Ind mice [1]. Specifically, we couple electrophysiological stimulation with FM1-43FX dye labelling and then photoconvert fluorescently-labelled vesicles for subsequent ultrastructural analysis [2].

Results
Our results show a robust and significant increase in the total number of vesicles recruited by a saturating loading simulus hippocampal CA1 synapses versus matched controls. Furthermore, we observe differences in the physical organization of pools; in particular, functional vesicles located at sites closer to the active zone in the AD model versus controls.

Discussion
Our findings suggest that changes and defects in vesicle turnover and clearance in the presynaptic terminal may play an important role in the network dysfunction seen in Alzheimer’s disease.

References
1. Jankowsky JL, Slunt HH, Gonzales V, Savonenko AV, Wen JC, Jenkins NA, Copeland NG, Younkin LH, Les ter HA, Younkin SG, Borchelt DR. Persistent amyloidosis following suppression of Aβ production in a transgenic model of Alzheimer disease. PLoS medicine. 2005;2(12):e355.
2. Manu V, Burden JJ, Crawford F, Staras K. Ultrastructural readout of functional synaptic vesicle pools in hippocampal slices based on FM dye labeling and photoconversion. nature protocols. 2014;9(6):1337-47
Correspondence: Cecilia Wallin

Background
Neuroinflammation and deposits of insoluble amyloid β (Aβ42) in the synaptic cleft are features in Alzheimer’s disease (AD) and strong candidates for the initiation of the neurodegeneration process. S100B is an abundant pro-inflammatory calcium-binding protein chronically up-regulated in AD and associated with senile plaques.

Methods
Our approach combines complementary molecular, cellular and biophysical methods.

Results
We demonstrate a novel role for the neuronal S100B protein as a chaperone-like molecule that interacts with Aβ42, inhibiting its aggregation and decreasing Aβ42 toxicity. This involves a dynamic interaction of Aβ42 with an interfacial cleft within the S100B dimer which is favored by calcium-binding to S100B. Further, we establish that the aggregation-suppressing activity is influenced by calcium-binding to S100B, as different microscopic steps in Aβ42 aggregation (primary and secondary nucleation) are differentially affected, depending on whether calcium is bound to S100B or not. Our results also show that S100B protects cells from Aβ42-mediated toxicity, rescuing cell viability and decreasing apoptosis induced by Aβ42 in cell cultures.

Discussion
The fact that S100B is one of the most abundant proteins in the brain (0.5% of total protein) which is further augmented in the aging brain, upon traumatic brain injury and in AD itself, suggests that our findings of this novel regulatory role of S100B over Aβ42 aggregation may be a very relevant process in the context of AD physiopathology.

Conclusions
Our work support previous evidence for roles of S100 proteins in neurodegeneration, and establish a novel view for a relationship between inflammation and protein deposition, by implicating the proinflammatory S100B protein in a novel chaperone-like function as regulator of Aβ42 aggregation and toxicity. Also, our findings suggest that molecular targeting of S100B could be translated into the development of novel approaches to ameliorate AD neurodegeneration.
metal ions [1]. The self-assembly of Aβ peptides is suggested as a central process in Alzheimer’s disease (AD) [2]. Here we study in detail how metal ions affect the Aβ aggregation properties and self-assembly.

Methods

In these studies we used a combination of spectroscopic methods such as nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence spectroscopy, as well as aggregation kinetics and atomic force microscopy (AFM) imaging.

Results

Ongoing studies show changed Aβ properties and aggregation patterns upon metal binding. The monomeric Aβ peptide binds metal ions such as Zn(II), Mn(II), Pb(IV), Hg(II), and Ag(I) ions specifically at the N-terminus in the milli-to micromolar range, both located in a membrane mimicking environment and as a free monomer in buffer solutions. The metal ion interaction is transient and pulse field gradient translational diffusion experiments reveal a more compact structure in the presence of a metal ion. The compact structure suggests an induced fold of the N-terminal part of the Aβ peptide around the metal ion to coordinate the ligands. How the affinity for the Aβ/metal complex changes during the aggregation pathways are still unclear. Preliminary results show modulation of the aggregation process in a metal ion concentration-dependent manner.

Discussion

From the physiological perspective, metal binding to the Aβ peptide might influence 1) the chemical properties of the Aβ peptide and hence its aggregation propensities and the expression of Aβ(PP, 2) oxidative stress from induction of reactive oxygen species and 3) miss-localized essential metal ions and both gain of toxicity and loss of function. The similarities and differences in how different metal ion species affect the amyloid aggregation properties in relation to biological relevance are subject to further investigation.

Conclusions

Coordinating metal ligands in the peptide are typically located in the N-terminus. A specific metal binding mode affects the structure of the Aβ peptide and hence its properties.

References

1. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR: Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci. 1998;158:47–52.
2. Selkoe DJ, Hardy J: The amyloid hypothesis of Alzheimer’s disease. Neuron 1998; 15(Suppl 1): 607–619.
3. Söderberg K, Guterstam P, Langel Ü, Gräslund A: Targeting prion propagation using peptide constructs with signal sequence motifs. Arch Biochem Biophys 2014; 564: 254–261.

P1-A19 PEPTIDE CONSTRUCTS WITH SIGNAL SEQUENCE MOTIFS EFFICIENTLY MODIFIES THE AMYLOID-β PEPTIDE AGGREGATION KINETICS IN VITRO

Sylwia Król1, Cecilia Wallin1, Jüri Jarvet1, Sebastian Wärmländer1, Anja Henning-Knecht1, Mazin Magzoub2, Astrid Gräslund1
1 Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden; 2 Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE

Correspondence: Sylwia Król

Background

Alzheimer’s disease (AD) is characterized by abnormal deposition of neurotoxic amyloid-β (Aβ) peptides. Up to date a variety of potential inhibitors of aggregation of Aβ have been studied, but in most cases their mechanism of action is still not fully understood. In this study we present results on how the Aβ peptide self-assembly is modified by two novel peptide constructs; NCAM-Prion and NCAM-Aβ. The peptides exhibit properties of cell penetrating peptides (CPP) and were originally designed to reduce prion propagation [1]. They consist of two segments, one hydrophobic signal sequence from the Neuronal cell adhesion molecule-1 (NCAM1-19), which is followed by a prion protein (1-6) sequence (KRPKPP), or the Aβ (16-20) sequence plus one extra K (KLVFF).

Methods

Effects of NCAM-Prion and NCAM-Aβ on the Aβ fibril formation were studied by Thioflavin T (ThT) fluorescence kinetic experiments, while potential secondary structure changes and conformational rearrangements were investigated by circular dichroism (CD) and Magnetic resonance (NMR). Atomic force microscopy imaging of the fibril formation upon addition of NCAMPrion and NCAM-Aβ peptides.

Results and discussion

Our experiments revealed that NCAM-Prion and NCAM-Aβ affect the Aβ amyloid aggregation process in a concentration-dependent manner. 1D and 2D NMR experiments indicated an interaction between the Aβ peptide and the NCAM-Prion peptide. The CD spectra confirmed concentration and time dependent structural changes of secondary structures of both Aβ peptide in the presence of the NCAMPrion or NCAM-Aβ peptides and of the NCAM-Prion and NCAM-Aβ peptides alone. Upon incorporation of an additional sample purification step, size exclusion chromatography (SEC), it was also revealed that the effect from NCAM peptides on Aβ fibril formation differed depending on the starting material of Aβ.

Conclusion

The outcome of the Aβ amyloid formation process is dependent on the presence of the two peptide constructs. Such peptides may be considered as starting points for developing therapies against AD.

1. Söderberg K, Guterstam P, Langel Ü, Gräslund A: Targeting prion propagation using peptide constructs with signal sequence motifs. Arch Biochem Biophys 2014; 564: 254–261.
Conclusions
Our in vitro results showing specific interactions between Hg(II) ions and the Aβ(1-40) peptide provides evidence at a molecular level for the previously suggested connection between AD and mercury exposure.

References

1. Bukhari, H., Glotzbach, A., Kolbe, K., Leonhardt, G., Loosse, C., and Müller, T. (2017) Small things matter: Implications of APP intracellular domain AKD nuclear signaling in the progression and pathogenesis of Alzheimer's disease. Prog Neurobiol 156, 189-213

2. Bukhari, H., Kolbe, K., Leonhardt, G., Loosse, C., Schröder, E., Krauer, S., Marcus, K., and Müller, T. (2016) Membrane tethering of APP c-terminal fragments is a prerequisite for T668 phosphorylation preventing nuclear sphere generation. Cell Signal 28, 1725-1734

3. Schrötter, A., Mastalski, T., Nens, F. M., Neumann, M., Loosse, C., Pfeiffer, K., Magraoui, F. E., Platta, H. W., Erdmann, R, Theiss, C, Uszkoreit, J, Eisenacher, M., Meyer, H. E., Marcus, K, and Müller, T. (2013) Fe65 regulates and interacts with the Bloom syndrome protein in dynamic nuclear spheres - potential relevance to Alzheimer's disease. J Cell Sci 126, 2480-2492

P1-A21 AMYLOID PRECURSOR PROTEIN SIGNALS TO THE NUCLEUS GENERATING p53-CONTAINING SPHERICAL COMPLEX
Hassan Bukhari 1, Katharina Kolbe 1, David Marks 1, Sophia Meermeyer 1, Verian Bader 2, Anne-Mette Bjerg Petersen 3, Katharina Heß 3, Werner Paulus 3, Michael T Heneka 3, Konstanze Winkhofer 3, Thomas Günther-Pomorski 3, Thorsten Müller 1
1Cell Signaling, Molecular Biochemistry, Ruhr-University Bochum, Germany; 2Molecular Cell Biology, Institute of Biochemistry and Pathobiology, Ruhr University Bochum, 44801 Bochum, Germany; 3Institute of Neuropathology, University Hospital Münster, Münster, Germany; 4German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127, Bonn, Germany; 5Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Thorsten Müller
Background
Amyloid precursor protein has been suggested to signal to the nucleus via its cytosolic domain (1). Cleavage of APP as well as its phosphorylation are thought to modulate this pathway (2) – mechanisms that are known to be involved in the pathology of Alzheimer's disease (AD).

Methods
By the use of confocal imaging, fluorescence-lifetime imaging, photo-activated localization microscopy, and electron microscopy the nuclear APP-dependent complex has been studied in cell culture and human brain hippocampal slices. Confocal live cell imaging has been used to study nuclear complex dynamics.

Results
APP signaling causes the generation of a nuclear complex consisting of Fe65, TIP60, BLM (3), p53 and other proteins. The APP c-terminal domain is not a prerequisite for genesis of the complex in the nucleus, but regulates its formation via its interaction to the FE65 adapter protein, which depends on APP cleavage and/or phosphorylation. Upon genesis, the spherical complex, which does not contain a membrane coating, is highly dynamic and single complexes fuse to larger structures. Initial data point to a high toxicity of the complex, especially in neuronal cells.

Discussion
Derived from the nuclear complex composition, including DNA helicases like BLM, the histone acetyl transferase TIP60, and the tumor suppressor p53, this APP signaling pathway might play a role in DNA replication or repair.

Conclusions
Early stages of Alzheimer's disease are characterized by neurons that are positive for cell cycle re-entry markers indicating that adult neurons got a signal to induce mitosis. Oxidative damage including accumulation of mutations in mitochondrial DNA are currently discussed to occur in early stage AD. These immunostaining derived observations might be the consequence of APP signaling to the cellular nucleus. Thus, the APP-derived generation of nuclear aggregates might be a relevant pathway in AD.

P1-A22 AMYLOID PRECURSOR PROTEIN FAMILY MEMBERS FUNCTION AS SYNAPTIC CELL ADHESION MOLECULES
Simone Eggert 1, Sandra Schilling 1, Susann Ludewig 2, Alexander August 1, Paul Strocker 1, Jonathan Stephan 1, Martin Korte 1, Ulrike Müller 3 and Stefan Kins 1
1Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Cellular Neurobiology, TU Braunschweig, Zoological Institute, 38106 Braunschweig, Germany; 3Department of Animal Physiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 5Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Stefan Kins
Background
The amyloid precursor protein (APP) plays a pivotal role in synapse formation and synaptic plasticity. In part, these functions are mediated by the secreted ectodomain, sAPPAlph. However, accumulating evidence also suggests an essential function of membrane tethered full-length APP and its homologues APLP1 and APLP2 at the synapse.

Methods
We used different biochemical studies, including ITC, in vitro bead aggregation assay and Co-IPs to analyze trans-dimerization properties of APP/APLPs. The mixed co-culture assay was used to analyze APP/APLPs synaptogenic activity. For analysis of APLP1 and Fe65/Fe65L1 knockout mice different immunochemical, electrophysiological and behavioral studies were performed.

Results
We observed pre- and postsynaptic localization of all APP family members and could show that they form trans-directed dimers (1), modulated by metal (copper/zinc) and heparin binding (2). Further, heterologous expression of APP/APLPs in non-neuronal cells induces presynaptic differentiation in contacting axons of co-cultured neurons, similar to other synaptic adhesion molecules (SAMs). Finally, we show that Fe65/Fe65L1 knockouts have spatial learning and memory deficits and severe motor impairments, hippocampal LTP deficits and neuromuscular junction (NMJ) abnormalities. Notably, NMJ deficits were aggravated in APLP2/Fe65-DKO and APLP2/Fe65L1-DKO mice when compared to single Fe65- and Fe65L1-KO mice [3].

Discussion
Our data demonstrate that APP/APLPs form trans-directed dimers, possibly organizing in interplay with copper, zinc and heparin the pre- and postsynaptic site, essential for proper synapse formation/maintenance. Finally, as the Fe65/Fe65L1 knockout mice deficits resembled those of mutant APP mice, lacking the Fe65 binding site, our data suggest a central role for Fe65 proteins at the synapse possibly downstream of APP/APLPs.

Conclusions
Together, our results demonstrate that the APP family members have typical features of SAMs, likely involved in interplay with Fe65 in synapse formation and maintenance.

References

1. Schilling S, Mehr A, Ludewig S, Stephan J, Zimmermann M, August A, Strocker P, Korte M, Koo EH, Müller U, et al: APLP1 is a synaptic cell adhesion molecule, supporting maintenance of dendritic spines and basal synaptic transmission. J Neurosci 2017.

2. Baumkötter F, Schmidt N, Vargas C, Schilling S, Weber R, Wagner K, Fiedler S, Klug W, Radzimanowski J, Nickolus S, et al: Amyloid precursor protein dimerization and synaptogenic function depend on copper
binding to the growth factor-like domain. J Neurosci. 2014, 34:11159-11172.

3. Strecke P, Ludewig S, Rust M, Mundinger TA, Gorlich A, Karchan EG, Mehrfeld C, Herz J, Korte M, Guennette SY, Kins S. FE65 and FE65L1 share common synaptic functions and genetically interact with the APP family in neuromuscular junction formation. Sci Rep 2016, 6:2565

1. Faller P, and Hureau C: Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-beta peptide. Dalton Trans 2009, 7: 1080–1094.

2. Hesse L, Beher D, Masters CL, and Multhaup G. The βA4 amyloid precursor protein binding to copper. FEBS Lett 1994, 349: 109–116.

3. Bush AI, Multhaup G, Moir RD, Williamson TG, Small DH, Rumble B, Pollwein P, Beyreuther K, and Masters CL. A novel zinc(II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer’s disease. J. Biol. Chem 1993, 268: 16109–16112.

4. Miller Y, Ma B, and Nussinov R. Zinc ions promote Alzheimer Aβ aggregation via population shift of polymeric states. Proc. Natl. Acad. Sci 2010, 107: 9490–9495.

5. Welander H, Frånberg J, Graff C, Sundström E, Winblad B, and Tjernberg LO. Abeta43 is more frequent than Abeta40 in amyloid plaque cores from Alzheimer disease brains. J. Neurochem 2009, 110: 697–706.
In wildtype (WT) mice, as well as progression of and response to disease, alterations in microglial marker expression and function are not well-understood. We recently investigated the role of microglia in ES-induced vulnerability to AD, we investigated the effect of ES on microglial marker expression and function in vivo.

Background
Microglia are the innate immune cells of the CNS and play important roles in neuroinflammation related with neurological disorders. Yet, studying human microglia is challenging because of the rarity and difficulty in acquiring primary cells from human fetal or adult CNS tissue. We aimed to develop and characterize an in vitro model of microglia from peripheral blood mononuclear cells, and to study their function by disease progression in Amyotrophic lateral sclerosis (ALS).

Methods
In this study, the functional characteristics of slow ALS (ALS (S)) and ALS (ALS (R)) were analyzed after establishment of microglia-like cells (iMG) model in human mononuclear cells. Induced microglial cells (iMG) were generated that the adherent cells (monocytes) isolated from peripheral blood mononuclear cells were culture with GM-CSF and IL-34 for 21 days.

Results
We find that iMG express appropriate markers and function as primary human microglia. Functional assessment of iMG reveals that they secrete cytokines in response to inflammatory stimuli, migrate, and robustly phagocytosis function. Furthermore, whole-transcriptome analysis demonstrates that they are highly similar to cultured adult human microglia. iMG from rapidly progressing patients (Rapid-iMG) shows dysmorphic morphology and severe impaired phagocytosis function. Transcriptome analysis exhibits that low NCKAP1 expression is associated with impaired phagocytosis in Rapid-iMG. Finally, overexpression of NCKAP1 gene in ALS(R) iMG restored dysfunctional phagocytosis and knockdown of NCKAP1 gene in ALS(S) iMG decreased phagocytosis.

Conclusions
Taken together, these findings demonstrate that iMG can be used to study microglial function, providing important new insight into human neurological disease and microglia modification by NCKAP1 gene may be a potentially useful therapeutic strategy for Neurodegenerative diseases.

P1-B03 INHIBITION OF APOPTOSIS SIGNAL-REGULATING KINASE 1 REDUCES GLOVASCULAR INFLAMMASOME AFTER ISCHEMIC INJURY

So Yeong Cheon1, Bon-Nyeo Koo1,2

1 Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; 2 Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea

Correspondence: So Yeong Cheon

Background
Ischemic injury triggers inflammatory mediator production, which is one of the main factors in pathology of ischemic stroke [1, 2]. Inflammasomes are innate immune complex, are involved in pathogenesis of diseases, such as atherosclerosis, and Alzheimer’s disease [3]. The previous studies have demonstrated that endothelial cells and astrocytes are closely associated with inflammation-related mediators. ASC-like receptor (NLR) protein (NLRP) inflammasome [4, 5]. Apoptosis signal-regulating kinase 1 (ASK1) is closely related to the inflammatory response and is involved in productions of inflammation-related mediators [6].

Methods
Therefore, in this study, we investigated whether ASK1 affects inflammasomes in astrocytes and endothelial cells under ischemic condition which is performed in vivo study by using middle cerebral artery occlusion/reperfusion model in C57BL6 mice. Alteration of inflammasome-associated components was confirmed by real-time PCR.

Results
Our data showed that ICAM-1, endothelial cell activation marker, and GFAP, reactive astrocyte maker, were upregulated after ischemic injury. Also, NLRP2 and NLRP3 were increased in the ischemic cortex and striatum respectively. Inflammasome components, such as ASC and caspase-1, are efficiently upregulated after ischemic injury. Also, inflammatory cytokines, including IL-1β, and IL-18 were increased in the brain lesion. However, inhibition of ASK1 by small interfering RNA significantly decreased the levels of NLRP2, NLRP3, ASC, and caspase-1, thereby reducing IL-1β, and IL-18 levels in the cerebral cortex and striatum respectively.
Conclusions
Collectively, inhibition of ASK1 may be novel strategy for reduction of inflammasomes after ischemic stroke.

References
1. Amantia D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT: Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBs J 2009, 276:13-26.
2. Brea D, Sobrino T, Ramos-Cabrer P, Castillo J: Inflammatory and neuroimmunomodulatory changes in acute cerebral ischemia. Cerebrovasc Dis 2009, 27 Suppl 1:48-64.
3. Guo H, Callaway JB, Ting JP: Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015, 21:677-687.
4. Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Li F, Xin T, Pang Q, Yi F: NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 2014, 34:660-667.
5. Sun X, Song X, Zhang L, Sun J, Wei X, Meng L, An J: NLRP2 is highly expressed in a mouse model of ischemic stroke. Biochem Biophys Res Commun 2016, 479:656-662.
6. Cheon SY, Kim EJ, Kim JM, Kam EH, Ko BW, Koo BN: Regulation of Microglia and Macrophage Polarization via Apoptosis Signal-Regulating Kinase 1 Silencing after Ischemic/Hypoxic Injury. Front Mol Neurosci 2017, 10:261.

P1-B06 ENRICHMENT-DEPENDENT DEFICITS IN HIPPOCAMPAL NEUROGENESIS MEDIATED BY FAMILIAL ALZHEIMER’S-DISEASE-LINKED PS1 VARIANTS IS RESCUED BY MICROGLIAL DEPLETION
Sylvia Ortega-Martinez, Nisha Palla, Xiaojing Zhang, Myles R. Mintz, Pablo Oyler-Castrillo, Sangram S. Sisodia
Department of Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Sylvia Ortega-Martinez

Background
Presenilin 1 (PS1) plays a critical role in neurogenesis. Hippocampal neurogenesis is required for the normal cognitive and emotional function of the brain, and constitutes a key target in Alzheimer Disease (AD). We have demonstrated that ubiquitous expression of familial, early-onset Alzheimer’s disease (AD)-linked PS1 (FAD-PS1) mutants impairs environmental enrichment (EE)-induced proliferation and neurogenesis of adult hippocampal progenitor cells (AHPNCs) in a non-cell autonomous manner (1, 2, 3). These impairments are, at least in part, due to alterations in the levels of specific chemokines and growth factors secreted from microglia expressing FAD-PS1 variants.

Methods
1 month-old male mice expressing PrP promoter-driven human wild-type PS1, M146L and ΔE9 were fed with PLX5622 for 7 days, then subject to Standard Housing or EE conditions for 1 month. PLX5622 is a CSF1 receptor antagonist, used to deplete microglia in adult brain. Animals were injected with a single bolus of BrdU, and sacrificed after 24 hours or 2 weeks. Baseline anxiety behavior was tested using Marble Burying and Dark/light test. Brain immunostaining was used to assess proliferation, neurogenic cell density, differentiation and survival of hippocampal progenitors. Quantification was performed using unbiased stereological methods (2, 3).

Results
Compared with mice expressing human WT PS1, mice expressing FAD-PS1 linked mutations exhibit lower rates of proliferation, neural stem cells and GFAP+ cells in the hippocampus following EE. These deficits were correlated with higher rates of baseline anxiety behaviors. PLX5622-mediated depletion of microglia in mice expressing FAD-PS1 linked variants rescued the deficits in AHNPC proliferation and differentiation and aberrant baseline anxiety.

Conclusions
PLX5622-mediated depletion of microglia in mice expressing FAD-PS1 linked variants rescues deficits in AHNPC proliferation and baseline anxiety of those mice. These findings reinforce the important role of microglia in the regulation of neurogenesis in FAD-PS1 models.
Background

Inflammasome-driven neuroinflammation is postulated to play a role in Multiple Sclerosis (MS), but there is no direct evidence that the nod-like receptor protein 3 (NLRP3) inflammasome is involved in MS pathogenesis. Uric acid was shown to be one of the danger signals involved in the activation of the NLRP3 inflammasome; notably, the concentration of uric acid is increased in the serum and in the CSF of MS individuals.

Methods

PBMCs from 41 MS individuals with a diagnosis of primary progressive MS (PPMS), stable relapsing-remitting MS (RRMS), or benign MS (BMS) and from 10 age and sex matched healthy controls (HC) were primed with LPS and stimulated with Monosodium Urate Crystals (MSU). The expression of the NLRP3, ASC, caspase-1, caspase-8, IL-1β and IL-18 inflammasome genes was evaluated by RT-PCR whereas production of the pro-inflammatory cytokines IL-1β and IL-18 was measured by ELISA in supernatants.

Results

Results showed that: 1) uric acid serum concentration was significantly increased in PPMS alone compared to all other groups; 2) mRNA for NLRP3, ASC and IL-18 was up regulated in PPMS and in AMS patients, as well, but caspase-8 mRNA was up regulated only in PPMS; 3) IL-18 production was significantly increased in PPMS alone, in whom a direct correlation between hyperuricemia and caspase-8 was detected.

Discussion

Taken together our results suggest that in PPMS patients a possibly prolonged and chronic stimulation would result in the up-regulation of the mRNA expression of NLRP3, ASC, caspase-8 and IL-18 genes and of IL-18 pro-inflammatory cytokine; this could be justified by the observation that hyperuricemia is present in PPMS patients.

Conclusion

The NLRP3/caspase-8 inflammasome pathway is activated in PPMS, possibly as a consequence of hyperuricemia. Therapeutic strategies reducing NLRP3 activation and/or lowering hyperuricemia could be useful in the therapy of PPMS.

Grant by Italian Ministry of Health: Ricerca Corrente 2016-17
Zetteberg1,3, K. Höglund1,3
1Institute of Neuroscience and Physiology, Department of Psychiatry and
ment of nine A
Immunoprecipitation of human CSF with ZSYM73 allowed measure-
Results
assisted laser desorption ionization time-of-flight mass spectrometry
as a biomarker in CSF for early and advanced stages of Alzheimer

Background
The 7.5 kD postsynaptic protein neurogranin (Ng) is being evaluated
Background
Correspondence:
Bruno Becker
S-405 30 Gothenburg, Sweden
Neurochemistry Laboratory, Mölndal, Sweden

Correspondence:
Bruno Becker, Elena Camporesi, Henrik Zetterberg, and Kaj Blennow
P1-C02 APPLICATION OF AFFIBODY ZSYM73, A NOVEL, NON-ANTIBODY
PROTEIN, FOR STUDYING PATTERNS OF Aβ PEPTIDES IN HUMAN
CEREBROSPINAL FLUID
M. Rozga1, K. Dillner Bergstedt2, E. Frejd2, E. Portelius1,3, K. Blennow1,3, H.
Zetterberg1, K. Höglund1,3
1Institute of Neuroscience and Physiology, Department of Psychiatry and
Neurochemistry, Mölndal, Sweden; 2Affibody AB, Affibody AB, Stockholm,
Sweden; 3Sahlgrenska University Hospital, Clinical Neurochemistry Laborato-
yry, Mölndal, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: M. Rozga

Background
Aβ peptides are centrally involved in the pathogenesis of AD pathology.
Proteomic analysis of brain and cerebrospinal fluid (CSF) revealed that Aβ
is de facto a heterogeneous mixture of more than 40 peptides possessing
different chain length and post-translational modifications [1]. The ZSYM73
Affibody represents a novel class, non-antibody affinity protein,
designed for selective and tight binding of the Aβ peptide (2). The aim of
this study was to assess the binding profile of ZSYM73 and evaluate the
potential of ZSYM73 as a convenient and robust tool for mapping en-
dogenous Aβ peptides in biological samples.

Methods
Immunoprecipitation (IP) of Aβ from CSF and brain tissue using ZSYM73
and anti-Aβ antibodies 6E10 and 4G8, followed by matrix assisted laser
desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)
analyses.

Results
Immunoprecipitation of human CSF with ZSYM73 allowed measure-
ment of nine Aβ peptides starting at amino acid position 1, 5 or 11 and
ending at position from 37 up to 43. A total number of Aβ peptides de-
tected in insoluble brain fraction was sixteen: three beginning at amino
acid position 1 and thirteen cleaved at seven different positions within
the N-terminal part of the peptide chain. In addition to monomeric Aβ,
ZSYM73 recognizes and binds Aβ dimers and trimers.

Discussion
The epitope for ZSYM73 is located outside the first eleven N-terminal
amino acids of the Aβ sequence. The last S-7 residues of the Aβ C-
tail are crucially involved in the interaction between Aβ and ZSYM73
and possibly stabilization of the Aβ-ZSYM73 complex. ZSYM73 offers
improved IP yield comparing to 6E10 or 4G8 antibodies.

Conclusions
Our data demonstrate the utility and robustness of ZSYM73 as a novel,
non-antibody affinity protein to detect and measure Aβ peptides. The
combination of ZSYM73 with anti-Aβ antibodies allows for a more de-
tailed and complete mapping of Aβ isoforms in human samples.

References
1. Mansson JE, Nilsson J et al: An online nano-LC-ESI-FTICR-MS method for
comprehensive characterization of endogenous fragments from amyloid
beta and amyloid precursor protein in human and rat cerebrospinal fluid.
J Mass Spectrom 2012, 47(5):591-603.
2. Lindberg H, Hard T, Lotblom J, Stahl S. A truncated and dimeric form
of an Affibody library on bacteria enables FACS-mediated isolation of
amyloid-beta aggregation inhibitors with subnanomolar affinity. Biotech-
nol J 2015, 10(1):1707-1718.

P1-C03 DETECTION OF NEUROGRANIN COMPLEXES OF ~38 KD AND ~12
KD IN CSF
Bruno Becker, Elena Camporesi, Henrik Zetterberg, and Kaj Blennow
Institute of Neuroscience and Physiology, Department of Psychiatry and
Neurochemistry, The Sahlgrenska Academy at University of Gothenburg,
S-405 30 Gothenburg, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Bruno Becker

Background
The 7.5 kD postsynaptic protein neurogranin (Ng) is being evaluated
as a biomarker in CSF for early and advanced stages of Alzheimer
disease (AD). Although its name implies granular aggregates of the
protein, complexes of Ng have so far not been detected in CSF.

Methods
Neurogranin was immunoprecipitated from CSF using monoclonal
antibody NG36 immobilized on magnetic beads. After washing, the
beads were extracted in non-reducing and reducing SDS sample buff-
er and analyzed via western blots. The detection antibody was bio-
tinylated NG2 monoclonal antibody.

Results
Complexes of an apparent size of approximately 38 kD and mono-
meric Ng (about 12 kD) were detected in Ng immunoprecipitated
from CSF on Western blots under non-reducing conditions. This indi-
cates the presence of either trimeric to tetrameric Ng or of com-
plexes of similar size with other proteins in the samples.
The complex was sensitive to reduction, therefore disulfide bridges are
likely to be involved in complex formation.

Discussion
For quantative assays of Ng it is important to be aware of the mo-
lecular species present. Judging by the apparent size of the complex,
a Ng trimer seems most likely, although a Ng tetramer or the pres-
ence of other proteins cannot be ruled out. Furthermore, artefactual
complex formation via intermolecular disulfide bridge formation
upon oxidation, for example during sample preparation or SDS PAGE,
is possible. Therefore, we intend to perform MS analysis of the ex-
cised complex, and use SDS-PAGE independent methods for complex
detection, such as homogeneous ELISA (same capture and detection
antibody).

Conclusions
Western blot data from immunoprecipitated samples of CSF indicates
the presence of higher molecular weight complexes of Ng. It will be
of interest to analyze the nature of the complex and to see whether
the extent of complex formation differs between samples from AD
patients and controls.

P1-C04 THE PLASMA PROTEIN AND ACTIVITY OF CHOLINE
ACETYLTRANSFERASE IN PATIENTS WITH ALZHEIMER’S DISEASE
COMARED TO CONTROLS
Azadeh Karami1,2, Taher Darreh-Shori1, Henrik Zetterberg2,4,5,6, Kaj
Blennow2,4,5,6, Maria Erikstöter7
1Center for Alzheimer Research, Division of Translational Alzheimer
Neurobiology, Department of Neurobiology, Care Sciences and Society,
Karolinska Institutet, Stockholm, Sweden; 2Clinical Neurochemistry
Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; 3Center
for Alzheimer Research, Division of Clinical Genomics, Department of
Neurobiology, Care Sciences and Society, Karolinska Institutet,
Stockholm, Sweden; 4Department of Psychiatry and Neurochemistry,
Institute of Neuroscience and Physiology, the Sahlgrenska Academy at
the University of Gothenburg, Mölndal, Sweden; 5Department of
Molecular Neuroscience, UCL Institute of Neurology, Queen Square,
London, UK; 6UK Dementia Research Institute at UCL, London, UK;
7Theme Aging, Karolinska University Hospital, Huddinge, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Azadeh Karami

Background
One of the most prevalent forms of dementia is Alzheimer’s disease
(AD), the symptoms of which are deterioration of memory loss and
cognitive functions brought about partly by a decrease in cholinergic
neurotransmission.

Being incurable, treatment with cholinesterase inhibitors (ChEI)
brings symptoms relief. Choline acetyltransferase (ChAT), the enzyme
responsible for biosynthesis of acetylcholine (ACh), has recently been
found in both the cerebrospinal fluid and plasma. Given that extra-
cellular ChAT may regulate extrasynaptic levels of ACh, it may prove
to be crucial in AD patients’ prognosis and cognitive performance.

Methods
A recently developed integrated sandwich ELISA protocol was used
to measure the activity and protein concentration of ChAT in plasma
samples. Totally 181 samples were collected from 32 AD, 30 MCI and
22 SCI patients at the time of diagnosis at a memory clinic and 97 samples obtained from a group of age-matched healthy controls (HC) from the Gothenburg biobank.

Discussion

Among patients with MCI and AD, ChAT activity and protein were the highest, while the values were lower for SCI-diagnosed patients, and lowest for HC (ChAT protein concentration: p<0.0016 for AD vs. MCI, p < 0.0002 for AD vs. SCI, p < 0.0001 for AD vs. HC, MCI vs HC p< 0.0001, SCI vs HC p< 0.0001 and ChAT activity: p< 0.0448 for AD vs. SCI).

Conclusions

This study shows for the first time, that plasma ChAT activity and protein levels differ in AD and MCI vs SCI patients and healthy controls, making this an interesting marker to further explore in the quest for biomarkers which can distinguish patients in different cognitive stages.

P1-C06 BASELINE LEVELS OF CSF TAU FRAGMENTS ENDING AT AMINO ACIDS 123 AND 224 ARE ASSOCIATED WITH RATE OF COGNITIVE DECLINE IN ALZHEIMER’S DISEASE

Claudia Cicognola,1,2 Enk Portelli1,2, Lucilla Parnetti1, Kaj Blennow1, Kina Höglund1,2,4

1Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Möln达尔, Sweden; 2Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Möln达尔, Sweden; 3Department of Medicine, Neurology Clinic, University of Perugia, Perugia, Perugia, Italy; 4Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Claudia Cicognola

Background

Tau pathology is a hallmark of Alzheimer’s disease (AD). Recent data suggest that tau is present in the cerebrospinal fluid (CSF) as a series of fragments. Through immunoprecipitation-mass spectrometry (IPMS), we have identified two abundant CSF pools of tau ending at amino acid (aa) 123 and 224. Our aim was to assess if baseline CSF concentrations of these fragments is associated to cognitive decline in AD.

Methods

CSF samples from 16 AD, 38 mild cognitive impairment (MCI), 20 MCI due to AD (MCI-AD) and 21 other neurological diseases (OND) subjects were collected at baseline. Subjects were clinically diagnosed, with AD CSF biomarkers (Abeta42, total tau, phosphorylated tau) used as support. Cognitive assessment at follow-up was performed through Mini Mental State Examination (MMSE) every 6 months for ~2.3 years. Tau 123 and 224 fragments were measured in-house ELISA and single-molecule array (Simoa) assays, respectively. Subjects were classified into quartiles based on the baseline concentrations and tested for association to disease progression, as examined by longitudinal change in MMSE.

Results

Baseline levels of tau 123 and 224 were significantly higher in AD vs. OND (p=0.03 and 0.0017, respectively), MCI-AD vs. MCI (p=0.0061; p=0.0018) and MCI-AD vs. OND (p=0.0011; p<0.0001). MMSE score decreased significantly over years from baseline for the highest quartile (Q4) for both fragments (p<0.0001).

Discussion

Through IP-MS, we identified CSF pools of tau fragments ending at aa 123 and 224. Baseline CSF levels were successful in discriminating AD from OND; MCI-AD from MCI and MCI-AD from OND. Longitudinal deterioration in cognitive performance, as measured by MMSE, was associated to highest baseline levels of tau 123 and tau 224.

Conclusions

Baseline levels of CSF tau fragments ending at aa 123 and aa 224 might represent a prognostic biomarker for rate of cognitive decline in AD.

P1-C06 PROTEOMICS ANALYSIS IDENTIFIES NEW MARKERS ASSOCIATED WITH CAPILLARY CEREBRAL AMYLOID ANGIOPATHY IN ALZHEIMER’S DISEASE

David C Hondius1,2, Kristel N Eigenhuis2, Tjado HJ Morrema1, Roel C van der Schors1, Pip van Nierop2, Marianna Bugiani3, Ka Wan Li4, Jeroen JM Hoozemans1, August B Smit1, Annemieke JM Rozemuller1

1Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, The Netherlands; 2Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, The Netherlands

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: David C Hondius

1Authors with equal contribution

Background

In Alzheimer’s disease (AD) amyloid beta (Aβ) aggregates in parenchymal plaques or around the brain vasculature, which is known as cerebral amyloid angiopathy (CAA). In CAA type 1 Aβ accumulates in both capillaries and larger vessels. CAA type 1 occurs in approximately 40% of all AD patients, contributes to the symptomatic manifestation of AD, and could even result in rapidly progressive dementia. The pathophysiology of CAA is elusive and biomarkers for CAA are warranted for stratification of patients involved in clinical trials and future therapy. The objective of this study is to identify proteins selectively involved in CAA by laser dissection assisted mass spectrometry analysis on postmortem human brain tissue.

Methods

For this study we selected postmortem human brain tissue of AD cases with severe plaque pathology (n=7), cases with severe CAA type 1 (n=7) and cognitively healthy control cases (n=6). Grey matter of the occipital cortex areas with high pathological burden were visualized with Aβ immunostaining and subsequently isolated by laser microdissection. Proteins were quantified using Orbitrap LC-MS/MS and MaxQuant software.

Results

Initial data analysis shows a clear distinction in the proteome between AD patients with and without CAA. By contrasting the experimental groups we were able to identify individual proteins that are specific for CAA pathology. Data obtained by mass spectrometry was confirmed using immunohistochemistry and immunoblotting.

Conclusions

The distinct changes identified in the proteome of CAA pathology provides insight in the biology of CAA and yields potentially valuable data on CAA biomarkers.

P1-C07 TESTING NEUROFILAMENT LIGHT (NF-L) CHAIN IN BLOOD SAMPLES TO MONITOR NEURODEGENERATIVE DISEASES AND SUPPORT CLINICAL DRUG DEVELOPMENT: QUALIFICATION OF AN ULTRASENSITIVE IMMUNO-ASSAY USING CLINICAL SERUM AND PLASMA SAMPLES

Christine Bain, Marion Emeric-Bourgoigne, Renaud Jasnowski, Cendrine Josson, Marc Essedaigui, Nicolas Anfossi

ABL, 321 avenue Jean Jaurès, 69007 Lyon, France

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Christine Bain

Background

NF-L has been recently reported as a potential biomarker of neuronal damage in numerous neuroinflammatory disorders, including Alzheimer’s disease (AD) [1], multiple sclerosis (MS) [2] or traumatic brain injury (TBI) [3]. Furthermore, NF-L levels in cerebrospinal fluid and blood have been reported as normalized following effective MS therapy [4]. In that context, we aimed at assessing the performance of an
ultrasensitive method to quantify NF-L in human serum or plasma and evaluating its routine use to support clinical drug development.

Methods
Trueness, precision, parallelism, dilution linearity and lower limit of quantification (LLOQ) of the Simoa kit (QuanterixTM) have been assessed in serum and plasma samples from healthy donors and patients with neuroinflammatory disorders.

Results
Dosing endogenous NF-L levels demonstrated good precision of the method, when tested at the minimal required dilution with intra- and inter-run variability ranging from respectively 1.6% and 19.9% and 5.2 and 19.9% depending on the concentration level. The parallelism study shows that test samples can be serially diluted without impacting measured NFL concentration. Finally, based on these results, LLOQ could be set at 0.6 pg/mL in diluted blood matrix. Finally, levels of endogenous NF-L measured from 10 healthy donors did not differ significantly between paired serum (4.8-13.9 pg/mL) and plasma (4.4-10.9 pg/mL).

Discussion
Our results related to high performance and sensitivity of the Simoa-based method to dose NFL are in accordance with recent data [5], strengthening the benefit to dose circulating NFL in clinical samples using this technology.

Conclusions
NF-L is now ready to be tested with accuracy and high sensitivity in both human serum and plasma samples. As these matrices are easy to collect and store frozen in the context of clinical trials, NFL testing can now support clinical drug development in many neurodegenerative pathologies, either in prospective or retrospective settings.

References
1. Weston P, et al. Serum neurofilament light in familial Alzheimer disease: a marker of early neurodegeneration. Neurology. 2017; 89(21): 2167–2175.
2. Disanto G, et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017; 81(6): 857–870.
3. Shahim P, et al. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci Rep. 2016; 6: 36791.
4. Piehl F, et al. Plasma neurofilament light chain levels in patients with MS switching from injectable therapies to fingolimod. MS Journal. 2017; 1-9
5. Kuhle J, et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence and Simoa. Clin Chem Lab Med. 2016; 54(10): 1655-1661.

P1-C08 BRAIN CREATINE KINASE (CKB): A MARKER FOR OXIDATIVE STRESS IN EARLY ALZHEIMER’S DISEASE
Rebecca Sjöberg1, Jinar Rostami1, David Kjol1, Nicholas Mitso1, Fredrik Edfors1, Anna Erlandsson1, Mathias Uhlén1, Jan Mulder1
1Department of Neuroscience, Karolinska Institute, Stockholm, Sweden; 2Department of Public Health and Caring Science, Uppsala University, Uppsala, Sweden; 3Department of Proteomics and Nanobiotechnology, Royal Institute of Technology, Stockholm, Sweden

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Rebecca Sjöberg

Background Alzheimer’s disease (AD) is an age-related neurodegenerative disease without any treatment or cure. Available therapeutics only aim to improve cognitive functions and delay disease progression. It is reported that the onset of pathological changes, including oxidative stress, precede clinical presentation of symptoms, this poses a need for diagnostic markers that enable early detection of alterations associated with AD [1, 2]. Brain creatine kinase (CKB) is an enzyme that regulates available adenosine triphosphate (ATP) levels in the brain. It has been previously reported that CKB is sensitive to oxidation and reduced CKB activity is observed in the AD brain [3]. This could make CKB a potential marker for oxidative stress in AD.

Methods
Human post-mortem brain samples (frontal and temporal cortex) from patients with AD, Lewy body dementia (DLB), non-demented age-matched controls and non-demented controls aged 49-60 were used to quantify CKB on transcript level and protein level (using immunofluorescence, western blot and targeted mass spectrometry).

Results
We found CKB to be only expressed in astrocytes. CKB was upregulated on transcript level but down-regulated on protein level in AD when compared to age-matched non-demented controls. In DLB and control subjects protein levels of CKB varied depending on degree of amyloid plaque load. No relationship between CKB levels and tangles or Lewy bodies was observed.

Discussion
Presence of amyloid beta peptides (especially 1-42) have shown to induce oxidative stress [4] and since CKB is sensitive to oxidation this consequently leading to loss of function and protein degradation. This explains the down-regulation on protein level of CKB when amyloid plaques are present.

Conclusions
CKB protein is down-regulated in AD likely due to protein oxidation. Diagnostics based on measuring reduced CKB activity or quantifying post-translational modifications of CKB could provide insights in the oxidative stress in the pre-clinical phase of disease.

References
1. Bhat, A.H., et al: Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine & Pharmacotherapy. 2015, 74: 101-110.
2. Van Cauwenberghce, C., Van Broeckhoven, C., & Sleeegers, K: The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genetics in Medicine. 2016, 18: 421–430.
3. Akesenov, M., Aksenova, M., Butterfield, D.A., & Markesbery, W.R: Oxidative modification of creatine kinase bb in Alzheimer’s disease brain. Journal of Neurochemistry. 2000, 74: 2520-2527.
4. Huang, W.J., Zhang, X., & Chen, W.W: Role of oxidative stress in Alzheimer’s disease. Biomedical Reports. 2016, 4: 519–522.

P1-C09 HIGH DETECTION SENSITIVITY WITH ANTIBODY-BASED PET RADIOLIGAND FOR AMYLOID BETA IN THE BRAIN
Xiaotian T. Fang1, Greta Hultqvist1,2, Silvio R. Meier1, Gunnar Antoni3,4, Dag Sehlin1, Stina Syvänen1
1Department of Public Health and Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden; 2Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden; 3Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden; 4PET Centre, Uppsala University Hospital, Uppsala, Sweden

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Xiaotian T. Fang

Background
Amyloid-beta (Aβ) PET has become an important aid in Alzheimer’s disease diagnosis, and an inclusion criterion for enrolment of patients into clinical trials of new anti-Aβ treatments. All available Aβ PET radioligands bind to insoluble fibrils, i.e. Aβ plaques. Levels of prefibrillar Aβ forms, e.g. soluble oligomers and protofibrils, correlate better than plaques with disease severity, and these soluble forms are neurotoxic. The aim was to create an antibody-based radioligand, recognizing fibrillar Aβ, and also smaller, soluble aggregates. We designed and expressed a small recombinant bispecific antibody construct, di-scFv 3D6-8D3 targeting the Aβ N-terminus and the transferrin receptor (TIR).

Methods
Two mouse models were used in this study: tg-Swe (KM670/671NL) harbouring the Swedish AβPP and, tg-ArcSwe which has the Swedish and the Arctic (E693G) mutations. 3D6-8D3 was 124I labeled using...
Chloramine-T. Animals were injected intravenously with [124I]3D6-8D3 (6.0±2.2 MBq), then scanned 14, 24 and/or 72h post-injection.

Results
TFR, expressed at the blood-brain barrier, functioned as a shuttle between blood-brain. 3D6-8D3 bound to Aβ1-40 (Kd: 1.22 nM) and to TFR (Kd: 12.19 nM) pre- and post- radiolabeling with iodine-124. [124I]3D6-8D3 was retained in transgenic animals brain while it was cleared from the wild-type brain. This was observed from 24h onwards, and at 72h, 18 m.o. transgenes displayed SUVRbrain/cer of 2.2-3.5 while wildtype mice showed ratios close to unity. In a subset of mice scanned with [11C]PIB, wt mice displayed ratios of unity while transgenes showed slightly elevated SUVR of 1.2, indicating improved sensitivity with [124I]3D6-8D3 compared with [11C]PIB. Brain concentrations of [124I]3D6-8D3 correlated with soluble Aβ (p < 0.0001), not with total Aβ, i.e. plaque load (p = 0.34).

Discussion
[124I]3D6-8D3 displayed better sensitivity than [11C]PIB, and brain concentrations correlated with soluble neurotoxic forms of Aβ.

Conclusions
We created a small bispecific antibody-based radioligand capable of crossing the BBB, subsequently binding to and visualizing intrabrain Aβ.

P1-C10 LEVELS OF UNMODIFIED AND TOTAL IAPP IN RETINA AND BRAIN OF ALZHEIMER’S DISEASE PATIENTS
Nina Schultz1, Elin Byman1, the Netherlands Brain Bank2, Malin Wennström1
1Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden, 2Netherlands Institute for Neuroscience, Amsterdam, the Netherlands

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Nina Schultz

Background
Recent studies show accumulation of islet amyloid polypeptide (IAPP) in the brain of Alzheimer’s disease (AD) patients, suggesting an additional amyloid peptide, beside amyloid beta, to be implicated in AD [1, 2]. We have in a previous study shown a toxic impact of the peptide on brain pericytes [3]. In the current study we investigate whether IAPP deposits also in the retina, if it affects the retinal pericyte population and if retinal levels correlate with hippocampal IAPP levels.

Methods
Soluble and insoluble fractions of retinal and brain homogenates from AD patients (n=12) and non-demented controls (NC) (n=8) were generated by either formic acid dissolution or ultracentrifugation/guanine hydrochloride treatment. ELISA was used to analyse levels of unmodified IAPP and total (unmodified and modified) IAPP. The retinal and hippocampal tissue were immunostained against the pericyte marker NG2 in order to analyse the number of pericytes, the vessel length and number of pericytes per vessel.

Results
We found reduced levels of unmodified IAPP and unaltered total IAPP in the insoluble retina fraction and reduced number of retinal pericytes in AD patients. Moreover, unmodified retinal IAPP levels as well as pericyte numbers correlated with the corresponding hippocampal variable and levels of unmodified IAPP correlated positively with number of retinal pericytes.

Discussions
Our studies suggest that IAPP can accumulate in the retina and that modifications of the peptide are associated with pericyte alterations in AD patients. Moreover, the accumulation of IAPP in the hippocampus correlates with IAPP levels in retina, suggesting that retina can function as a type of window for IAPP induced hippocampal changes.

Conclusions
Our studies demonstrate that IAPP levels are altered in the AD retina and suggest that modifications of IAPP may play a role in AD vasculopathy.

References
1. Jackson K, Barisone GA, Diaz E, Jin LW, DeCarli C, Despa F: Amylin deposition in the brain: A second amyloid in Alzheimer disease? Ann Neurol 2013, 74:517-526.
2. Oksarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT: In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. The American journal of pathology 2015, 185:834-846.
3. Schultz N, Byman E, Fex M, Wennstrom M: Amylin alters human brain pericyte viability and NG2 expression. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2016.

P1-C11 SPECT IMAGING AND BRAIN RETENTION OF RECOMBINANT BISPECIFIC AND UNMODIFIED ANTIBODIES IN AN AMYLOID BETA MOUSE MODEL
Tobias Gustavsson, Stina Syvänen, Dag Sehlin
Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Tobias Gustavsson

Background
Multiple immunotherapeutic agents have been evaluated as treatment in Alzheimer's disease, but with limited success. This can, at least partly, be attributed to the blood-brain barrier (BBB) which drastically reduces brain entry of large molecules such as antibodies. In this project, we have evaluated a bispecific antibody targeting Aβ protofibrils and the transferrin receptor, RmAb158-scFv8D3, in comparison with unmodified RmAb158.

Methods
RmAb158-scFv8D3 and RmAb158 were labeled with 125I and injected into tg-ArcSwe and WT mice, aged 18-24 months. Blood pharmacokinetics were evaluated over a period of 27 days and SPECT scans were performed at 6, 14 and 27 days. Brain was isolated following SPECT scanning and radioactivity was measured ex vivo. Autoradiography was performed on 20 µm brain sections to investigate antibody intrabrain distribution while Aβ pathology was examined with Aβ immunohistochemistry.

Results
RmAb158-scFv8D3 showed a faster blood clearance compared to RmAb158. SPECT showed a higher uptake and more uniform distribution of RmAb158-scFv8D3 compared to RmAb158. Antibody brain retention, expressed as percent of injected dose (%ID), was 0.8±0.25% and 0.3% at 3 days; 0.3±0.13% and 0.15% at 14 days; and 0.12±0.03% and 0.05±0.008% at 27 days for RmAb158-scFv8D3 and RmAb158, respectively. Ex vivo autoradiography of RmAb158-scFv8D3 and RmAb158 injected mice revealed that while RmAb158-scFv8D3 was uniformly distributed throughout the brain, coinciding with Aβ pathology, RmAb158 was confined to central brain areas and a few high intensity hotspots in the brain parenchyma.

Conclusion
The bispecific antibody RmAb158-scFv8D3 showed higher brain concentrations than unmodified RmAb158 at all studied time points after administration demonstrating the feasibility of TIR mediated transcytosis. In addition, the global distribution pattern in the brain
pale parenchyma was fundamentally different between the two types of antibodies; RmAb158-scFv8D3 was detected throughout the brain in line with the abundant brain Aβ pathology while RmAb158 appeared in a more scattered pattern.

P1-C12 INCREASED LEVELS OF EXTRACELLULAR MATRIX PROTEINS IN CEREBROSPINAL FLUID FROM PATIENTS WITH ALZHEIMER’S DISEASE

Karolina Minta,1 Kai Biennow2, Henrik Zetterberg1,2,3, Ulf Andreasson1,2

1Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Sweden; 2Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; 3Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; 4UK Dementia Research Institute at UCL, London, UK

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Karolina Minta

Background

Brevican, neurocan, tenascin-C and tenascin-R are extracellular matrix (ECM) proteins expressed in the brain. Brevican and neurocan belong to the chondroitin sulfate proteoglycan family, the most abundant proteoglycans in CNS. Together with tenascins and hyaluronic acid they form perineuronal nets that are responsible for synaptic stabilization in the brain. They play important roles in proliferation, migration and differentiation of neurons and other cell types in the brain. They are also expressed in various pathological conditions being the major inhibitory component of glial scars. The aim of the study was to investigate if ECM protein concentrations in CSF are linked to the neurodegenerative process in Alzheimer’s disease (AD).

Methods

Lumbar CSF samples from a non-AD control group (n=28) and a neurochemically diagnosed AD group (n=33), matched for age and gender, were analyzed using commercially available ELISAs. The AD patients had abnormal core AD CSF biomarker (Aβ42, t-tau and p-tau) levels, while controls had normal levels. Non-parametric Mann-Whitney U test was used to examine group differences, while Spearman’s rho nonparametric test was used for correlations.

Results

Brevican, neurocan and tenascin-R levels were significantly higher in AD group compared to controls (p=0.0002, p=0.002, p=0.0017, respectively). There was no significant difference in CSF tenascin-C concentration between AD patients and controls. Brevican, neurocan and tenascin-R concentrations correlated with tau and p-tau levels (r=0.6-0.7, p<0.0001). Tenascin-C only correlated with tau (r=0.3, p=0.04)

Conclusions

The study shows that increased CSF levels of brevican, neurocan and tenascin-R are associated with AD, indicating that these ECM proteins might represent novel biomarkers for AD. The correlations with tau and p-tau levels further support that these proteins are related to AD-type neurodegeneration.

P1-C13 CEREBROSPINAL FLUID a-SYNUCLEIN LEVELS ARE ASSOCIATED WITH PIB-PET RETENTION AND ESTIMATED YEARS TO SYMPTOM ONSET IN PRECLINICAL AUTOSOMAL DOMINANT ALZHEIMER’S DISEASE

Daniel Twohig1, Elena Rodriguez-Vieitez2, Kalicharan Patra3, Anne Fagan3, Randall J. Bateman1, John C. Morris1, Agneta Nordberg2, Henrietta M. Nielsen1, for the Dominantly Inherited Alzheimer Network (DIAN)

1Stockholm University, Department of Neurochemistry, Stockholm, Sweden; 2Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Stockholm, Sweden; 3Washington University School of Medicine, Department of Neurology, St Louis, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Daniel Twohig

Background

Accumulating evidence of increased cerebrospinal fluid (CSF) α-synuclein (aSyn) levels and aSyn pathology in the brains of Alzheimer’s disease (AD) patients suggests that aSyn is involved in AD pathogenesis1–3. To investigate whether CSF aSyn alterations occur during the preclinical phase of AD we assessed CSF aSyn levels in a cross-sectional sample from the Dominantly Inherited Alzheimer Network (DIAN) including asymptomatic and symptomatic participants carrying autosomal dominant AD gene mutations in the amyloid precursor protein (APP), presenilin-1 (PSEN1), or presenilin-2 (PSEN2) genes, and their non-mutation carrying relatives.

Methods

A total of n=142 participants were analyzed. Specifically, n=92 participants with autosomal dominant AD mutations including n=24 APP, n=50 PSEN1, and n=38 PSEN2 mutation carriers (MCs), along with n=50 genetically related non-mutation carrying control participants (NCs). Quantification of CSF aSyn was performed using a commercially available sandwich enzyme-linked immunosorbent assay (ELISA) (Anaspec). A total of n=133 participants underwent 11C-Pittsburgh Compound B (PiB) positron emission tomography (PET) imaging.

Results

We found an increase in CSF aSyn levels in symptomatic MCs versus NCs (p=0.03), and CSF aSyn was positively correlated to the estimated years to symptom onset (EYO) (p=0.05) across all MCs. Importantly, in asymptomatic MCs higher CSF aSyn levels were related to higher PiB-PET retention in several brain areas. This relationship was reversed once the MCs had developed clinical symptoms whereby lower CSF aSyn levels were correlated to higher PiB-PET retention in selected brain regions.

Conclusions

Elevated CSF aSyn levels are linked to the development of dementia symptoms in autosomal dominant AD, with increasing CSF aSyn levels being positively correlated to amyloid deposition during the preclinical stages of disease. Future studies detailing the molecular links between altered CSF, brain parenchymal aSyn levels, amyloid pathology and the development of AD symptoms are needed in order to reveal the role of aSyn in the pathogenesis of AD.

References

1. Hamilton, R. L. Levy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol. 10, 378–384 (2000).
2. Wennström, M. et al. Low CSF levels of both α-synuclein and the α-synuclein cleaving enzyme neurosin in patients with synucleinopathy. PLoS One 8, e53250 (2013).
3. Larson, M. E. et al. Soluble Alpha-Synuclein Is a Novel Modulator of Alzheimer’s Disease https://dian.wustl.edu/our-research/clinical-trial/study-sites/

P1-C14 HIGH BLOOD GLUCOSE LEVELS WITH APOE ε3 RELATED TO WORSE COGNITIVE FUNCTION IN COMMUNITY ELDERS

Qiu Qi, Lin Xiang, Sun Lin, Min-jie Zhu, Tao Wang, Jing-hua Wang, Guanjun Li, Shi-fu Xiao, Xia Li

Department of Psychogeriatrics, Shanghai Mental Health Center, Shanghai JiaoTong University School of Medicine, Shanghai, China

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Shi-fu Xiao, Xia Li

Background

Few studies investigated the effects of blood glucose (BG) on cognitive function in community dwelling elderly with Apolipoprotein E (APOE) ε3. Objective To explore the effect of high BG levels in APOE ε3 carriers on cognitive function in non-demented community older adults, compared to counterparts with APOE ε4 or APOE ε2 genotypes. We divided the groups as the APOE ε2 (ε2/ ε2, ε2/ ε3), ε3 (ε3/ ε3), ε4(ε3/ε4, ε4/ ε4) groups. The
partial correlation analyses and multivariate linear regression analyses were utilized to assess the cognitive function and laboratory data like BG and lipid data in different APOE carriers. Furthermore, white matter hyperintensity (WMH) was measured on MRI in 77 participants.

Results

With adjustment for age, education and sex, higher BG in non-demented communities’ older adults was associated with cognitive decline on immediate memory and verbal fluency. In APOE ε3 group, elevated BG was associated with cognitive decline in immediate memory, verbal fluency, and perceptual reasoning. In APOE ε4 group, higher glucose was also correlated with visual spatial reasoning decline. A trend association was showed that higher BG had severer WMHs.

Conclusion

Higher BG was correlated with different cognitive domains decline in APOE ε3 carriers in non-dementia older adults.

P1-D01 NEW INSIGHTS INTO THE AGGREGATION OF α-SYNUCLEIN AT LOW CONCENTRATIONS

Ksenia Aftitska 1, Anna Fucikova 2, Volodymyr V. Shvadchak 1, Dmytro A. Yushchenko 1

1 Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2 Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Ksenia Aftitska

Background

α-Synuclein is an intrinsically disordered protein that is expressed in neurons. Misfolding of αsyn in amyloid fibrils is one of hallmarks of Parkinson’s disease, the second most common neurodegenerative disorder [1]. Although there were several attempts to find critical concentration of α-synuclein fibrillization [2,3], aggregation of α-synuclein at low concentrations has not been characterized and fibril dissociation constant Kd has not been determined.

Methods

We studied kinetics of α-synuclein aggregation at protein concentrations in the range 0.11-20 μM. Aggregation was monitored using CD-spectroscopy and Thioflavine T (ThT), a dye which increases its fluorescence upon binding to β-sheet-rich protein aggregates. The formed aggregates were characterized by atomic force microscopy (AFM).

Results

The samples of α-synuclein with concentrations 5-20 μM demonstrated typical first-order aggregation kinetics according to ThT and formation of fibrils visualized by AFM. The samples of 0.4-5 μM α-synuclein showed atypical kinetics with saturation before complete monomer depletion. Although according to CD spectra the β-sheet content in these samples increased during the aggregation, the structure of the formed aggregates was different from amyloid fibrils that was shown by AFM microscopy. The samples of 0.11-0.4 μM α-synuclein did not aggregate. From the kinetic curves we calculated Kd of α-synuclein fibrils and found that it is in the range of 0.4 μM.

Discussion

Our data suggest that the typical α-synuclein amyloid fibrils are formed at the protein concentrations higher than 5 μM, whereas at low μM concentrations α-synuclein forms β-sheet-rich aggregates. Similar structures were also observed at the initial stages of aggregation of 45 μM α-synuclein [4]. Calculated Kd of α-synuclein fibrils is similar to Kd of another amyloid protein Aβ [5].

Conclusions

We show that aggregation of α-synuclein occurs at much lower concentrations than it was reported earlier. Also for the first time we calculated Kd of α-synuclein fibrils.

References

1. Mait, P., Manna, J., and Dunbar, G. L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl Neurodegener 2017, 6: 28.

2. Wood, S. J., Wypych, J., Steavenson, S., Louis, J. C., Citron, M., and Biere, A. L. alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 1999, 274: 19509-19512.

3. van Raaij, M. E., van Gestel, J., Segers-Nolten, I. M., de Leeuw, S. W., and Subramaniam, V. Concentration dependence of alpha-synuclein fibril length assessed by quantitative atomic force 2 / 2 microscopy and statistical- mechanical theory. Biophys J 2008, 95: 4871-4878.

4. Ruggeri, F. S., Adamcik, J., Jeong, J. S., Lashuel, H. A., Mezenga, R., and Dietler, G. Influence of the beta-sheet content on the mechanical
properties of aggregates during amyloid fibrillization. Angew Chem Int Ed Engl 2015, 54: 2462-2466.

5. O’Nuallain, B., Shivaprasad, S., Kheterpal, I., and Wetzel, R. Thermodynamics of A beta(1-40) amyloid fibril elongation. Biochemistry 2005, 44: 12709-12718.

P1-D02 ACCUMULATION OF AGGREGATED ALPHA-SYNUCLEIN IN HUMAN ASTROCYTES AFFECTS THE AUTOPHAGOSOMAL PATHWAY
Jinar Rostami1, Staffan Holmqvist2, Martin Ingelsson1, Joakim Bergström1, Laurent Roybon2, Anna Erlandsson1
1Department of Public Health and Caring Science, Uppsala University, Sweden; 2Department of Experimental Medical Science, Lund University, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1)POSTER

Correspondence: Jinar Rostami

Background
Parkinson’s disease (PD) is characterized by intracellular neuronal inclusions called Lewy bodies, which are mainly composed of aggregated alpha-synuclein [1,2]. In addition to the neuronal pathology, alpha-synuclein inclusions also appear frequently in astrocytes. Being the most abundant glial cell type in the brain, astrocytes have great impact on tissue homeostasis [3], but their role in PD remains elusive. The aim of this study was to clarify the effect of alpha-synuclein aggregates on the autophagosomal pathway in astrocytes.

Methods
Human astrocytes were treated with Cy3-labelled alpha-synuclein aggregates for 24 h, after which the cells were thoroughly washed and incubated for additional 0, 3 or 6 days in alpha-synuclein free medium.

Results and discussion
The astrocytes engulfed large amounts of alpha-synuclein aggregates, which were stored in the trans-Golgi network region rather than degraded resulting in mitochondrial damage and ER swelling. Immunostainings for the autophagosomal marker, LC3BII, suggested increased autophagosome formation at the earliest time points after alpha-synuclein exposure, but declined to control levels at the latest time point. To study the fusion and turnover of autophagosomes to autolysosomes, LC3BII/I ratios were measured by Western blot analysis. The alpha-synuclein exposed cells displayed significantly higher levels of LC3BII/I, indicating that the alpha-synuclein accumulation affects the autophagosomal turnover. This result was further verified using a transfection method including the LC3B-RFP-GFP gene where the GFP protein is sensitive to low pH resulting in only RFP appearance. Accordingly, 3 days following alpha-synuclein exposure, most cells displayed RFP labeled vesicles whereas at day 6 following alpha-synuclein exposure, most cells had RFP/GFP labeled vesicles, suggesting altered autophagosome-lysosome fusion.

Conclusion
In summary, our results demonstrate that accumulation of alpha-synuclein aggregates in human astrocytes affect the autophagosomal pathway, which may influence the supporting function of astrocytes to neurons, consequently leading to exacerbated neuronal damage.

References
1. Spillantini MG, Crowther RA, Jakobsson A, Horvath K, Morimitsu T, et al.: Aggregation of alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences. 1998;95:6469-6473.
2. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M: Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences. 1998;95:6469-6473.
3. Sojka P, Siedlak SL, Bermon SL, Brundin P, Bonifati V, et al.: The role of alpha-synuclein in Parkinson’s disease: emerging insights from biological sciences. J Neurosci 2010, 30:10009-10017.
4. Cereda E, Colombo C, Porcellati C: The role of alpha-synuclein in Parkinson’s disease and other synucleinopathies. J Neurol 2012, 259:971-979.
5. O’Nuallain, B., Shivaprasad, S., Kheterpal, I., and Wetzel, R. Thermodynamics of A beta(1-40) amyloid fibril elongation. Biochemistry 2005, 44: 12709-12718.

P1-D03 IN SITU PROXIMITY LIGATION ASSAY REVEALS COLOCALIZATION OF ALPHA-SYNUCLEIN AND SNARE PROTEINS IN MURINE PRIMARY NEURONS
Emma Persson, Leire Almandoz-Gil, Veronica Lindström, Martin Ingelsson, Anna Erlandsson, Joakim Bergström
Department of Public Health and Caring Sciences / Molecular Geriatrics, Uppsala University, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1)POSTER

Correspondence: Emma Persson

Background
The aggregation of alpha-synuclein (αSyn) is the pathological hallmark of Parkinson’s disease. However, the physiological function of the protein and how it relates to its pathological effects remain poorly understood. One of the proposed roles of αSyn is to promote the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly by binding to VAMP-2 [1]. The objective of this study was to visualize the co-localization between αSyn and the SNARE proteins (VAMP-2, SNAP-25 and syntaxin-1) using in situ proximity ligation assay (PLA) [2].

Methods
Cortical primary neurons were cultured from E14 non-transgenic or transgenic mice expressing human A30P αSyn. The neurons were analyzed with sandwich ELISA, immunofluorescence and PLA.

Results
With an αSyn antibody, a PLA signal indicating close proximity between αSyn and the three SNARE proteins was observed both in the soma and throughout the processes. No differences in the extent of PLA signals were seen between non-transgenic and transgenic neurons. ELISA analysis detected 600 pM of human αSyn in A30P neurons but no difference in total levels of αSyn. Immunofluorescence images indicated 13% of A30P neurons to be human αSyn positive. With an antibody specific against human αSyn, the PLA signal was seen to a lesser degree, mostly located to the soma.

Discussion
PLA have previously been used to study interactions between αSyn and other synaptic proteins [3-6]. This is the first time co-localization have been visualized between αSyn and the SNARE proteins using in situ PLA in primary neurons. The PLA puncta were abundant in the processes which could indicate localization in the synaptic boutons.

Conclusions
In situ PLA is a method that can be used to investigate the co-localization of αSyn and the SNARE proteins in primary neuronal cultures and could potentially uncover pathological changes in protein levels and/or distribution.

References
1. Buré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC: Alpha-synuclein promotes SNAREcomplex assembly in vivo and in vitro. Science 2010, 329:1663-1667.
2. Götz O, Leuchthi RFT, Gullberg M, Larsson LG, Landegren U: Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 2008, 45:227-232.
3. Bellucci A, Navaria L, Falarti E, Zaltieri M, Bono F, Collo G, Spillantini MG, Grazia M, Missale C, Spano P: Redistribution of DAT/synapsin complexes visualized by 'in situ' proximity ligation assay in transgenic mice modelling early Parkinson's disease. PLoS One 2011, 6:e27959.
4. Roberts RF, Wade-Martins R, Alegre-Abarrategui J: Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson's disease brain. Brain 2015, 138:1642-1657.
5. Zaltieri M, Grigoletto J, Longhena F, Navarria L, Favero G, Castrezzati S, Colivicchi MA, Della Corte L, Rezzani R, Pizzi M, et al: α-Synuclein and synapsin III cooperatively regulate synaptic function in dopaminergic neurons. J Cell Sci 2015, 128:2231-2243.
6. Di Maio R, Barrett PJC, Hoffman EA, Barrett CW, Zharikov A, Borah A, Hu X, McCoy J, Chu CT, Burton EA, et al: α-Synuclein binds to TOM20 and
A hallmark of Parkinson’s disease (PD) is the formation of Lewy bodies (LBs) in neurons. LBs are cytoplasmic protein rich aggregates, in which a-synuclein (a-syn) is the most abundant protein. Recently, recessive mutations were discovered in the a-syn (DNAJC6) encoding gene, that were linked to a juvenile form of PD. A-syn is a DNAJ co-chaperone of the HSP70 chaperones, which are important for protein folding and homeostasis in the cell.

Methods

To address our questions, we have used HEK293 and N2a cell culture, KO of a-syn by Crispr/CAS9 method, produced recombinant proteins and performed a-syn based thioflavin T assays of a-syn aggregation. Endocytosis has been measured using fluorescently labeled transferrin and cell death using trypan blue.

Results

We observed that auxilin KO cells, which overexpressed a-syn-Dsred, contained more a-syn aggregates than did the parental control cells. Moreover, we observed an increased cell death in KO cells that overexpressed a-syn-Dsred. The increased cell death in a-syn-Dsred Auxilin KO cells could be prevented by re-introducing Auxilin into these cells. With use of recombinant proteins, we found that auxilin inhibits a-syn aggregation as well in vitro. As both a-syn and auxilin, are important for endocytosis and exocytosis in neurons, we explored how these dynamics were affected in HEK293T cells. We observed that endocytosis was impaired in cells that had KO of a-syn and overexpressed a-syn-Dsred, but not in parental control cells.

Discussion

Our results suggest, that increased aggregation of a-syn-Dsred can impair endocytosis in the absence of auxilin which ultimately affects cell survival.

Conclusions

These results links a cellular role of auxilin in preventing vulnerability to a-syn aggregates, and this provides a possible explanation for how recessive mutations in the a-syn gene could be linked to PD.
3.3, n=6, p=0.006). Similarly, there was a significant deficit recorded by accelerating rotated at 22 months (Wildtype 169.2±17.6, n=6; Knockout 83.2±21.4, n=6, p=0.010).

Discussion
Disease models with knockout of RAB39B show key pathological features of PD, including increased aSN levels and deficits in fine motor control. This suggests shared underlying pathological mechanisms between RAB39B-mediated PD and other forms of PD.

Conclusions
We have generated unique models that recapitulate aspects of the human disease; these will be useful tools to determine the neuro-pathological mechanisms underlying RAB39B-mediated PD, its role in the regulation of aSN homeostasis, and the therapeutic potential of RAB39B.

Reference
1. Wilson GR, Sim JC, McLeach C, Giannandrea M, Galea CA, Riseley JR et al. Mutations in RAB39B cause X-linked early onset Parkinson disease with α-synuclein pathology. Am J Hum Genet 2014, 95(6):729-35.

P1-D07 CHARACTERIZATION OF ALPHA-SYNucleIN PATHOLOGY PROGRESSION IN h[A30P]-ALPHA-SYNucleIN TRANSGENIC MICE FOLLOWING INTRAMUSCULAR INJECTION OF SONICATED PRE-FORMED ALPHA-SYNucleIN FIBRILS
Fredrik Eriksson1, Adeline Rachalski1, Wen Li2, Jessica Sigvardsson1, Christer Möller1, Jia Yi Li2, Eva Nordström1
1BioArctic AB, Stockholm, Sweden; 2Department of Experimental Medical Science, Lund University, Lund, Sweden

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Fredrik Eriksson

Background
Onset of alpha-synuclein pathology and motor phenotype following intramuscular injection of sonicated pre-formed alpha-synuclein fibrils (PFF) in A53T and WT alpha-synuclein transgenic mice was recently published [1] and later replicated in A30P transgenic mice. The aim of this study was to further characterize the model with regards to progression of alpha-synuclein pathology in h[A30P] alpha-synuclein transgenic mice.

Methods
8-10 weeks old h[A30P]AlphaSYN tg mice were unilaterally injected in the right gastrocnemius muscle with 1 μg of PFF. At pre-defined time-points post injection and at terminal disease, mice were sacrificed and tissues collected and evaluated for alpha-synuclein pathology.

Results
A time dependent progression of alpha-synuclein pathology was observed. At 1 week post injection all mice exhibited pSer129-alpha-synuclein positive neurites in the lumbar sections of the spinal cord which progressed to the thoracal and cervical parts at 2 weeks post injection. Terminal animals, i.e. mice exhibiting severe motor deficits at time of sacrifice, showed pathology throughout the CNS including brain. The progression of pathology co-incided with an increase of neurofilament light chain (NfL) in both CSF and plasma, suggesting that NfL can serve as a marker of disease progression in this model.

Discussion
As described for the A53T transgenic mice, intramuscular PFF injection results in a synchronized onset of alpha-synuclein pathology also in A30P mice. The approach will significantly improve the use of this otherwise highly heterogenic mouse strain in pre-clinical evaluation of alpha-synuclein targeted therapies.

Conclusions
Intramuscular injection of PFF results in a time dependent progression of alpha-synuclein pathology in A30P transgenic mice.

Reference
1. Sacino AN et al: Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. PNAS 2014 Jul 22;111(29):10732-7.

P1-E01 GENETIC ANALYSIS OF THE GENES ASSOCIATED WITH ALZHEIMER’S DISEASE AND FRONTOTEMPORAL LOBAR DEGENERATION IN EARLY-ONSET DEMENTIA PATIENTS
Laura Luukkainen1, Johann Kruger1, Seppo Helsalmi3, Laura Kytövuori1,2, Riitta Ahmasalo1, Eino Sojte1,5, Mikko Hiltunen1, Anne M Rames1,2
1Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland; 2Medical Research Center, Oulu University Hospital, Oulu, Finland; 3Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland; 4Neurology, Lapland Central Hospital, Rovaniemi, Finland; 5Neuro Center, Kuopio University Hospital, Kuopio, Finland

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Laura Luukkainen

Background
Amyloid precursor protein (APP), presenilin-1 (PSEN1) and presenilin-2 (PSEN2) mutations account for under 10% of early-onset Alzheimer’s disease (EOAD) cases [1]. To date, over 280 mutations in these genes have been identified [1]. Mutations in C9ORF72, microtubule associated protein tau (MAPT) and progranulin (GRN) genes account for 60% of inherited frontotemporal lobar degeneration (FTLD) cases [2]. The aim of this study was to evaluate the contributions of the mutations associated with AD and FTLD in a cohort of early-onset dementia (EOD).

Methods
The study population consisted of 39 patients (mean age of onset 54.8±6.3 years) with EOD diagnosed at two memory outpatient clinics in Finland. The patients had early-onset disease and one or two dementia patients in family or atypical or rapidly progressive clinical picture. The patients carrying the APOE ε4 allele or the C9ORF72 expansion were excluded. Mutations were identified by NGS-based exome sequencing and confirmed by Sanger sequencing.

Results
We identified two pathogenic mutations; PSEN1 p.His163Arg and MAPT p.Arg406Trp. The patient with PSEN1 p.His163Arg had rapidly evolving amnesia, clumsiness, myoclonic jerks and upper limb tremor. Later she became euphoric and got facial dyskinesia and vocal tic. The patient with MAPT p.Arg406Trp mutation had familial EOD with mood symptoms that evolved to psychosis. No pathogenic APP or GRN mutations were identified.

Discussion
The phenotype of the patients carrying PSEN1 p.His163Arg mutation has been recognized to include aphasia, apraxia, amnestic and depression symptoms, visual hallucinations, rigid-bradykinetic syndrome and multifocal myoclonus [3-5]. Progression of euphoria and vocal tic might also be part of the neurodegenerative process. MAPT p.Arg406Trp mutation has been reported to cause both EOAD and FTLD [6]. Rapidly progressing disorder with psychosis has been reported in a Japanese patient [7].

Conclusions
Autosomal dominant mutations MAPT p.Arg406Trp and PSEN1 p.His163Arg were identified in a Finnish EOD cohort.

References
1. Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer disease revisited. Alzheimers Dement 2016, 12:733-48.
2. Le Ber I. Genetics of frontotemporal lobar degeneration: an update and diagnosis algorithm. Rev Neurol (Paris) 2013, 169:811-19.
3. Gómez-Tortosa E, Barquero S, Barón M, Gil-Neciga E, Castellanos F, Zurdo D. Case Report: a sporadic Early-onset Alzheimer’s disease (EOAD) patient carrying the PSEN1 R486W mutation. J Alzheimers Dis 2016, 54:1337-45.
4. Yagi R, Miyamoto R, Morino H, Izumi Y, Kuramochi M, Kurashige T, Maruyama H, Mizuno N, Kurihara H, Kawakami H. Detecting gene mutations in Japanese Alzheimer’s patients by semiconductor sequencing. Neurobiol Aging 2014, 35:1780.e1-5.
5. Lohmann E, Guerreiro RJ, Erginel-Unaltuna N, Gururian N, Bilgic B, Guvri H, Hanagasi HA, Luu N, Emre M, Singleton A. Identification of PSEN1 and PSEN2 gene mutations and variants in Turkish dementia patients. Neurobiol Aging 2012, 33:1850.e17-27.

6. Carney RM, Kohli MA, Kunkle BW, Naj AC, Gilbert JR, Züchner S, Pericak-Vance MA. Parkinsonism and distinct dementia patterns in a family with the MAPT R406W mutation. Alzheimer Dement 2014, 10:360-5.

7. Saito Y, Geyer A, Sasaki R, Kuzuhara S, Namba E, Miyasaka T, Suzuki K, Murayama S. Early-onset, rapidly progressive familial tauopathy with R406W mutation. Neurology 2002, 58:811-3.

P1-E04 EMPLOYING GENETIC CODE EXPANSION TO STUDY PROCESSING OF AMYLOID PRECURSOR PROTEIN

Lea S. van Husen1, Simon J. Elsässer2, Thomas P. Sakmar1,3, Manija A. Lea S. van Husen1, Simon J. Elsässer2, Thomas P. Sakmar1,3, Manija A.

1 Department of Biology, University of Rome Tor Vergata, Rome, Italy; 2 Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy; 3 Department of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Giovanna Menduti

Alzheimer’s disease (AD) etiology involves polygenic and multifactorial causes, along with environmental risk factors. An interesting relationship between the catabolism of GABA and AD progression was suggested [1,2]. Succinic semialdehyde dehydrogenase (SSADH) is the enzyme responsible for the conversion of succinic semialdehyde (SSA), a GABA catabolite. Moreover, SSA can be directed to a minor route, generating gammahydroxybutyrate (GHB). Different missense mutations of SSADH gene (ALDH5A1), leading to enzyme failure, cause a rare metabolic disorder known as SSADH deficiency. Furthermore, common polymorphisms have been identified which affect SSADH activity when in vitro expressed [3,4]. A link between SSADH and cognitive impairment may be envisaged, since SSADH polymorphism c.538C>T was found to affect survival and cognitive performance in the elderly [5] and an increase of a GHB catabolite was reported in AD patients [6]. Therefore, the present study was aimed to search a possible association between ALDH5A1 SNPs and AD. We performed a case-control study by genotyping a population of 300 AD patients and 300 matched controls for c.538C>T and c.545C>T SNPs of the ALDH5A1 gene by TaqMan assays. DNA samples were obtained by the Biobanca of IRCCS Fatebenefratelli (Brescia). AD patients have been selected according to NINCDS-ADRDA criteria and MMSE ≤25. All individuals (cases and controls) have been genotyped for the APOE ε2, ε3 and ε4 polymorphism. Our results show that the T allele of the c.538C>T ALDH5A1 SNP is more frequent in samples with AD than in controls. Furthermore, when considering both SNPs, we identified one haplotype with higher frequency in AD patients than in controls. This case-control study suggests that ALDH5A1 SNPs may be related to AD onset/progression, reinforcing the hypothesis that GABA catabolism alterations might be involved in AD.

References

1. Bai X, Edden RA, Gao F, Wang G, Wu L, Zhao B, et al.: Decreased γ-aminobutyric acid levels in the parietal region of patients with Alzheimer’s disease. J. Magn. Reson. Imaging. 2015; 41:1326–31.

2. Roy U, Stute L, Höfling C, Hartlage-Rübsamen M, Matsyk J, Roßner S, et al.: Sex- and age-specific modulation of brain GABA levels in a mouse model of Alzheimer’s disease. Neurobiol Aging [Internet]. 2017; 62:168–79.

3. Malaspina P, Roulet JB, Pearl PL, Ainslie GR, Vogel KR, Gibson KM.: Succinic semialdehyde dehydrogenase deficiency (SSADHD): Pathophysiological complexity and multifactorial trait associations in a rare monogenic disorder of GABA metabolism. Neurochem. Int. 2016, p. 72–84.

4. Akaboshi S, Hogema BM, Novellatto A, Malaspina P, Salomons GS, Maropoulos GD, et al.: Mutational Spectrum of the Succinate Semialdehyde Dehydrogenase (ALDH5A1) Gene and Functional Analysis of 27 Novel Disease-Causing Mutations in Patients with SSADH Deficiency. Hum. Mutat. 2003; 22:442–50.

5. De Rango F, Leone O, Dato S, Novellatto A, Bruni AC, Berardelli M, et al.: Cognitive functioning and survival in the elderly: The SSADH C538T polymorphism. Ann. Hum. Genet. 2008, 72:630–5.
6. Salminen A, Jouhten P, Sarajärvi T, Haapasalo A, Hiltunen M: Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer’s disease. Neurochem. Int. 2016. p. 13–24.

P1-E06 MUTATION ANALYSES OF DISEASE CAUSING GENES IN PATIENTS WITH EARLY ONSET FORMS OF NEURODEGENERATIVE DISORDERS
María Pagnon, Carl Näslund, RoseMarie Lundin, Lena Klinder, Malin Degerman Gunnarsson, Lars Lannfelt, Martin Ingelsson, Vilmantas Giedraitis
Department of Public Health and Caring Sciences/Geriatrics, Uppsala University
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: María Pagnon

Background
Most forms of dementia have a clear genetic background and several disease genes have been identified. Mutations in the tau gene lead to frontotemporal dementia, whereas mutations in the genes for amyloid precursor protein (APP) and the presenilins (PSEN1, PSEN2) cause early-onset, dominantly inherited forms of Alzheimer’s disease (AD). In Parkinson’s disease (PD) several genes resulting in autosomal dominant (α-synuclein and LRRK2) or autosomal recessive disease (Parkin, PINK1, DJ1, and ATP13A2) have been described.

Methods
DNA samples from 79 patients with early onset forms of AD, frontotemporal dementia, dementia with Lewy bodies or PD were analyzed during two rounds of analyses. Genes with known pathogenic mutations causing familial early onset disease as well as genes associated with disease in large genome wide association studies were included. All coding exons of selected genes were amplified using sequence enrichment technology, followed by high throughput sequencing.

Results
We have identified three AD patients carrying known disease causing mutations in the PSEN1 gene, leading to Pro264Leu and Met146Val amino acid substitution. We also discovered a new APP mutation in two siblings, suffering from an aggressive early onset form of Alzheimer’s disease. The presence of this mutation has been mapped in the extensive family and we have excluded the possibility that it is a rare polymorphism by screening 500 other subjects with and without AD. Furthermore, in several of the PD patients we have found mutations in the PINK1 and GBA genes, which might be related to the disease development.

Conclusions
Even though familial forms of dementia are uncommon, it is important to identify disease-causing mutations. Our findings have helped us to confirm the clinical diagnoses. We also hope that the identification of new pathogenic mutations will enable us to better understand the underlying disease mechanisms.

P1-E07 ASSOCIATION OF POLYMORPHISM rs934945 GENE PER2 WITH SLEEP DISORDER IN THE MALE POPULATION IN RUSSIA/SIBERIA
Almira Gafarova1,2, Elena Gromova1,2, Dmitry Panov1,2, Igor Gagulin1,2, Eldar Krymov1,2, Mikhail Voevoda1,2, Vladimir Maximov1,2, Valery Gafarov1,2
1Institute of Cytology and Genetics, Novosibirsk, Russia; 2Institute of Internal and Preventive Medicine, Novosibirsk, Russia
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Eldar Krymov

Background
We aimed to study the prevalence and associations of gene PER2 with sleep disorders in the male population aged 25–44 years in Russia/Siberia (Novosibirsk)

Methods
A random representative sample of the male population aged 25-44 years who were residents of one of Novosibirsk district was examined in 2014-2016. A random method was used to select 200 men (mean age= 35.5 years) who underwent psychosocial testing using the C.D. Jenkins scale “4-item Jenkins Sleep Questionnaire”. In men, included in the study, the frequency distribution of genotypes rs934945 of the PER2 gene was studied. Approved by Ethical Board. Differences in the frequency distribution of genotypes of the PER2 gene between the groups were evaluated by the Chi square test (X2).

Results
The most common genotype of rs934945 PER2 gene was genotype G/G - 65,36%. A/G was in 30.17% and genotype A/A was in 4,47% of men. Those carriers with the A/A genotype have a increasing tendency of anxious dreams during sleep compared to carriers of other genotypes. Carriers of genotype A/A often wake up during the night. Sleep was the strongest in men with A/G and G/G genotype. Lack of sleep (5 hours or less) is also more common in persons who had genotype with homozygous allele A was presented in.

Conclusions
The gene PER2 (rs934945) in our population has a relationship with various chronotype that plays an important role in understanding the basics of sleep disorders.

P1-E09 SYSTEMS GENETICS IDENTIFIES MODIFIERS OF ALZHEIMER’S DISEASE RISK AND RESILIENCE
Sarah M. Neuner1,2, Timothy J. Hohman3, Ryan Richholt4, David A. Bennett5,6, Julie A. Schneider6,7, Philip L. De Jager8, Matthew J. Huentelman4, Kristen M.S. O’Connell, Catherine C. Kaczorowski9
1The Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA; 2The Jackson Laboratory, Bar Harbor, ME, USA; 3Yanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; 4Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA; 5Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA; 6Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; 7Department of Pathology, Rush University Medical Center, Chicago, IL, USA; 8Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York NY; 9Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Sarah M. Neuner, Catherine C. Kaczorowski

Background
Recent studies of familial Alzheimer’s disease (AD) cases suggest genetic modifiers may delay the onset and progression of AD symptoms by decades. Although modifiers promoting resilience may provide key targets for the prevention of AD, they remain largely unidentified in human populations. To address this significant need, our lab recently developed a novel panel of genetically diverse AD mice.

Methods
Female B6-SXFAD mice were bred to males from the BXD genetic reference panel. F1 offspring were phenotyped across the lifespan. Genetic interval mapping was utilized to identify areas of the genome containing variants that modify the observed variation in AD-relevant phenotypes.

Results
We have found that genetic background has a profound effect on the expressivity of the SXFAD transgene. We identified multiple genomic regions associated with resilience or susceptibility to AD, including the APOE locus and two novel loci. We validated positional candidate Trpc3 as a modifier of AD symptoms with translational relevance in human populations.

Discussion
Our results demonstrate the incorporation of genetic diversity into animal models of AD is a critical step toward identifying translationally relevant mechanisms underlying disease. As each BXD line is fully inbred, each F1 AD-BXD line studied here can be replicated across time and laboratories, maximizing rigor and reproducibility. This approach is of broad interest to the neurodegenerative field, as it can be used with a variety of transgenic models to identify common and unique mechanisms across diseases.
Conclusions

Here we use a variety of techniques to both confirm known genetic associations with AD and identify novel variants (e.g. Trpc3) that may play a role in disease onset and progression. Overall, results here significantly advance our understanding of how individual genetic variation provides protection to AD, and demonstrate the utility of our panel as an important resource for the study of AD.

P1-E10 NOVEL ARPP21 MUTATIONS ARE IDENTIFIED IN AMYOTROPHIC LATERAL SCLEROSIS (ALS) PATIENTS

Chun Hao Wong1, Simon D Topp1, Youn-Bok Lee1, Sarah Mueller1, Graham Cocks1, Bradley N Smith1, Nicola Ticozzii2, John Landers3, Christopher E Shaw4

1Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK; 2Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy; 3Department of Neurology, University of Massachusetts Medical School, Worcester, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Chun Hao Wong

Background

The evolution of next generation sequencing has led to exponential growth in our understanding of ALS genetics. Here, we report a new candidate gene ARPP21 identified through whole-exome sequencing in a cohort of familial ALS cases. Two novel variants absent in controls are shared by several unrelated index cases for which currently known genes have yet to be accounted for. To understand the contribution of ARPP21 in ALS, we have screened the gene extensively and modelled the identified variants in cellular models.

Methods

Direct sequencing was performed on over 2000 ALS cases and 1000 controls of UK, US and Italian origin. Disease modelling was performed in HEK239T, SH-SY5Y and primary rat cortical neurons.

Results

Both variants linked with familial ALS (p.P563L; p.P747L) are identified in a replication sporadic ALS cohort. Two novel variants absent in controls are shared by several unrelated index cases for which currently known genes have yet to be accounted for. To understand the contribution of ARPP21 in ALS, we have screened the gene extensively and modelled the identified variants in cellular models.

Discussion

Mutation frequencies of ARPP21 in current study are approximately 1.6% in familial cases and 0.3% in sporadic cases. Cellular studies of ARPP21 mutants have recapitulated pathological hallmarks of ALS.

Conclusions

By combining the genetics and follow-up functional assays, we have identified ARPP21 as a novel ALS candidate gene that has not been described in neurodegeneration.

Background

The Cure Alzheimer’s Fund Genome Project identified a novel, highly penetrant mutation in the angiotensin converting enzyme 1 (ACE1) gene that is associated with increased risk for Alzheimer’s disease (AD). ACE1 is best known for its role in blood pressure control. Mutant ACE1 could cause AD pathogenesis by raising blood pressure, since midlife hypertension has been associated AD[1]. However, ACE1 is expressed in all tissues including brain and can cleave many substrates[2]. Therefore, any of the myriad of ACE1 functions in the brain or periphery could have a role in AD pathogenesis. The goal of this study is to determine how this mutation increases the risk of AD.

Methods

The role of mutant ACE1 in AD was investigated in cultured forebrain neurons from wild-type (WT) and knock-in (KI) mice and in human SH-SY5Y cells stably expressing either WT ACE1 or mutant ACE1 and in vivo in aged cohorts of WT and KI mice. To determine the effect of ACE1 KI on amyloid pathology, rAAV1- BR1-2ΔKR-42 and control rAAV1- BR1-2ΔKR were stereotaxically injected into the brains of WT or KI mice and ACE1 KI crosses with SxFAD amyloid mice were analyzed.

Results

Blood pressure is unchanged in KI mice, but KI mice show higher ACE1 protein levels in cortical brain regions and in cultured forebrain neurons compared to WT mice. Unexpectedly, mutant ACE1 reduces cell survival in SH-SY5Y cells, cultured mouse forebrain neurons and in mouse brains. Neurodegeneration observed in KI mice is accelerated by Aß. Increased cell death is related to a toxic gain-of-function of mutant ACE1.

Discussion

These studies will provide novel information about the physiological function ACE1 in the brain, and how altered ACE1 function may cause AD.

Conclusions

Mutant ACE1 increases the risk of AD at least in part by increasing neuronal cell death.

References

1. Kovipelto M, Laakso MP, Tuomilehto J, Nissinen A, Soininen H: Hypertension and hypercholesterolaemia as risk factors for Alzheimer's disease: potential for pharmacological intervention. CNS drugs 2002, 16:435-444.
2. Bernstein KE, Ong FS, Blackwell WL, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM: A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacological reviews 2013, 65:1-46.

P1-E13 A HEXAMERIC REPEAT EXPANSION WITHIN THE SVA RETROTRANSPOSON INSERTION IN THE TAF1 GENE INFLUENCES DISEASE EXPRESSION OF X-LINKED DYSTONIA- PARKINSONISM

Charles Joyordan Reyes1, Ana Westenberger1, Norbert Brüggemann1, Valerija Dobricic2, Aloysius Domingo3,4, Gerard Saranza5, Henrike Hanßen1,2, Karen Gütz1, Kimberly Biegemann1, Aleksandar Rakovic1, Roland Dominic Jamora2, Raymond Rosales6, Katja Lohmann1, Lars Bertram7, Inke R. König7, Christine Klein1

1Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; 2Department of Neurology, University of Lübeck, Lübeck, Germany; 3Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy; 4XDP Study Group, Philippine Children’s Medical Center, Quezon City, Philippines; 5Department of Neurosciences, College of Medicine - Philippine General Hospital, University of the Philippines, Manila, Manila, Philippines; 6Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany; 7Institute for Neurodegenerative Disease, Charlestown, MA, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Christine Klein (christine.klein@neuro.uni-luebeck.de)

Background

X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disorder showing clinical features of both dystonia and parkinsonism.
XDP is associated with the intronic insertion of a SINE-VNTR-Alu (SVA) retrotransposon in the TAF1 gene. Recently, the length of the polymorphic (CCCTCT)n domain within this SVA retrotransposon was shown to inversely correlate with age at onset (AAO) in 140 XDP patients. However, to what extent this repetitive sequence influences the clinical manifestation of XDP remains unknown.

Methods

To systematically describe the impact of the (CCCTCT)n domain on disease expressivity, we genotyped 405 SVA carriers and correlated repeat length with the following clinical parameters in patients: dystonia severity (n=19), AAO (n=223), and initial clinical manifestation (n=188). Furthermore, we genotyped post-mortem brain samples from two affected individuals.

Results

Repeat length ranged from 30 to 55 in our dataset and showed significant positive and inverse correlations with dystonia severity (r=0.48, p<0.05) and AAO (r=-0.61, p<0.00001), respectively. In turn, the AAO directly determines whether dystonia (n=149) or parkinsonism (n=39) will be the initial manifestation of XDP. Moreover, we found that repeat length is unstable and exhibits somatic mosaicism in the brain.

Discussion

The discovery of the first genetic modifier of XDP expressivity sets up a framework that might yield an efficient and targeted (gene) therapy for this severe disease. In addition, the occurrence of somatic mosaicism in the brain offers insight as to why XDP presents with a neurological phenotype despite the broad requirement of TAF1 for transcription in all cells of the body.

Conclusions

Overall, our work provides comprehensive evidence that the length of the (CCCTCT)n domain within the SVA retrotransposon insertion acts as a genetic modifier of disease expressivity in XDP. Functional studies are warranted to elucidate the mechanism(s) by which this hexameric repeat expansion modifies the XDP phenotype.

References

1. Makino S, Kaji R, Ando S, Tomizawa M, Yaruno K, Goto S, Matsumoto S, Tabuena MD, Maranon E, Daniels M, Lee LV, Ogawara K, Tooyama J, Akatsu H, Nishimura M, Tamiya G. Reduced neuronspecific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet. 2007, 80(3):393-406.

2. Bragg DC, Mangkalaphiban K, Vaine CA, Kulkarni NJ, Shin D, Yadav R, D’halak J, Ton M, Cheng A, Russo CT, Ang M, Acuña P, Russo CT, Acuña P, Tabuena MD, Maranon E, Daniels M, Lee LV, Ogawara K, Tooyama J, Akatsu H, Nishimura M, Tamiya G. Reduced neuronspecific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet. 2007, 80(3):393-406.

3. Williams PA, Harder JM, John SWM: Glaucoma as a Metabolic Optic Neuropathy: Making the Case for Nicotinamide Treatment in Glaucoma. J Glaucoma 2017.

4. Williams P, Harder J, Foxworth N, Cardozo B, Cochran K, John S: Nicotinamide and WILDS act together to prevent neurodegeneration in glaucoma. Frontiers in Neuroscience 2017, 11(232).

5. Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, Smithies O, John SW: Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 2017, 355(6326):756-760.

6. Forster PA-F03 RETINAL GANGLION CELL DEGENERATION IN HUMAN GLAUCOMA

Correspondence: James R Tribble

Background

Glaucoma is a neurodegenerative disease that affects ~80 million people worldwide and can lead to irreversible blindness. Animal models of glaucoma have demonstrated early mitochondrial abnormalities [1], synaptic loss and dendritic pruning in retinal ganglion cells [2] (RGC, the retinal output neuron) prior to axon loss and apoptosis. To date no studies have confirmed that these early changes occur in human glaucoma.

Methods

Donor glaucoma eyes (n=3; mean age 74.5yrs) and controls (n=3; mean age 83yrs) were used. Images of DAPI stained nuclei were acquired (2-Photon microscope) and cell counts performed (Fiji). Retinal areas corresponding to visual field test locations were prepared for Serial Block Face Scanning Electron Microscopy (Zeiss Sigma VPSEM, Gatan3View2). Volumetric data (79x79x100μm, resolution 19.2x19.2x100nm) were collected and analysed using the SVA retrotransposon in the TAF1 gene. Further, we used Nmnat1 gene therapy (the terminal enzyme in NAD+ production). This is the first instance of a successful gene therapy in a complex age-related disease targeting a common mechanism.

Conclusions

Targeting neuronal metabolic decline and neuronal mitochondria may offer safe, neuroprotective treatments for glaucoma and other age-related neurodegenerations.

References

1. Williams PA, Harder JM, John SWM: Glaucoma as a Metabolic Optic Neuropathy: Making the Case for Nicotinamide Treatment in Glaucoma. J Glaucoma 2017.

2. Williams P, Harder J, Foxworth N, Cardozo B, Cochran K, John S: Nicotinamide and WILDS act together to prevent neurodegeneration in glaucoma. Frontiers in Neuroscience 2017, 11(232).

3. Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, Smithies O, John SW: Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 2017, 355(6326):756-760.
showed a 58% reduction in area under the curve for mitochondria (P=0.021) and a 71% reduction for synapses (P=0.002) in glaucomatous RGCs compared to controls. Mitochondria occupied 67% less dendritic volume in glaucoma (P=0.009) compared to controls with a marked reduction in cristae integrity. Indices of cytoplasmic vacuolation and autophagosomes were not significantly different in glaucomatous RGCs.

Discussion
Our data provide the first evidence that mitochondrial network abnormalities and synapse loss occurs in RGCs prior to cell death in human glaucomatous eyes. These findings concur with similar changes observed in animal models of glaucoma [1,2] and other neurodegenerative [3].

Conclusions
Our findings support the concept that surviving RGCs provide a neural substrate for the recovery of vision in glaucoma and raise the potential for neuro-regenerative therapies for patients.

Funding
Fight for Sight, UK

References
1. Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, Smithies O, John SW: Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 2017, 355(6326):756-760.
2. Della Santina L, Inman DM, Lupien CB, Horner PJ, Wong RO: Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci. 2013, 33(44):17444-57.
3. Cai Q, Tammineni P: Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer's Disease. J Alzheimers Dis. 2017, 57(4):1087-1103.

P1-F04 MICRONRNA-19A-PTEN AXIS IS INVOLVED IN THE DEVELOPMENTAL DECLINE OF AXON REGENERATION CAPACITY IN RETINAL GANGLION CELLS
Heather K Mak1, Xu Cao1, Jasmine SY Yung1, Shuk Han Ng1, Christopher KS Leung1
1Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC; 2The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Hong Kong, PRC.
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Heather K Mak

Background
While several transcription factors have been implicated in the regulation of axon regeneration in retinal ganglion cells (RGCs) [3-9], the molecular mechanisms governing the developmental decline in axon regenerative capacity are poorly understood. This study investigated developmental changes of microRNAs and their roles in the regulation of RGC axon regeneration.

Methods
Microarray was performed on purified RGCs from Sprague Dawley rats at E21, P6, and P30. The association between developmental decline in miR-19a and upregulation of PTEN was investigated with ISH and Western blot. The impact of miR-19a on axon regeneration was demonstrated in vivo following optic nerve crush (p ≤ 0.001). Upregulation of miR-19a increased the number of regenerated axons by 2-fold (p ≤ 0.005), respectively, and increased human RGC axon and total neurite lengths by 26.7% and 59.8% (p ≤ 0.025), respectively. Upregulation of miR-19a increased the number of regenerated axons by 2-fold following optic nerve crush (p ≤ 0.006).

Discussion
Our data uncover a previously unrecognized involvement of the miR-19a-PTEN axis in regulating the developmental decline in axon regenerative capacity of RGCs, and underscore the potential therapeutic application of intravitreal injection of microRNAs to rejuvenate aged RGCs for axon regeneration in the treatment of optic neuropathies.

Conclusions
miR-19a is a heterochronic marker that drastically decreases in expression during the maturation of RGCs, which relieves the suppression of PTEN and contributes to the developmental decline of axon regenerative capacity.

References
1. Goldberg JL, Klassen MP, Hua Y, Barres BA: Amacrine- signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 2002, 296:1860-1864.
2. Goldberg JL, Espinosa JS, Xu Y, Davidson N, Kovacs GTA, Barres BA: Retinal Ganglion Cells Do Not Extend Axons by Default. Neuron 2002, 33:689-702.
3. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu U, Connolly L, Kramvis I, Sahin M, He Z: Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science 2008, 322:93-96.
4. Moore DL, Blackmore MG, Hu Y, Kaestner HK, Bixby JL, Lemmon VP, Goldberg JL: KLF family members regulate intrinsic axon regeneration ability. Science 2009, 326:298-301.
5. Smith PD, Sun F, Park KK, Cai B, Wang C, Kuvako K, Martinez-Carasco I, Connolly L, He Z: SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 2009, 64:617-623.
6. Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner BA, He Z: Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 2011, 480:372-375.
7. Welsbie DS, Yang Z, Ge Y, Mitchell KL, Zhou X, Martin SE, Berlinciche CA, Hackler LJ, Fuller J, Fu J, Cao L-H, Han B, Auld D, Xue T, Hira S-I, Germain L, Simard-Bisson C, Blouin R, Nguyen JV, Davis C-HO, Enke RA, Böyle SL, Merbs SL, Marsh-Armstrong N, Haswurth WW, DaAntonio A, Nickells RW, Ingelse J, Harne J, Yau K-W, et al.: Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci U S A 2013, 110:4045-4050.
8. Duan X, Qiao M, Bei F, Kim IJ, He Z, Sanes JR: Subtype- Specific Regeneration of Retinal Ganglion Cells following Axotomy: Effects of Osteopontin and mTOR Signaling. Neuron 2015, 85:1244–1256.
9. Norsworthy MW, Bei F, Kawaguchi R, Wang Q, Tran NM, Li Y, Brommer B, Zhang Y, Wang C, Sanes JR, Coppola G, He Z: Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others. Neuron 2017, 94(11):1211-1224.
10. Zhang Y, Ueno Y, Liu XS, Buller B, Wang X, Chopp M, Zhang ZG: The MicroRNA-17-92 Cluster Enhances Axonal Outgrowth in Embryonic Cortical Neurons. Journal of Neuroscience 2013, 33:6885-6894.
11. Han J, Kim HJ, Schafer ST, Paquetu A, Clemenson GD, Toda T, Oh J, Pankonin AR, Lee BS, Johnston ST, Sarkan A, Denili AM, Gage FH: Functional Implications of miR-19 in the Migration of Newborn Neurons in the Adult Brain. Neuron 2016, 91:79-89.

P1-G01 UNFOLDED PROTEIN RESPONSE ACTIVATION IN C9orf72 FTD CASES
Jeroen J.M. Hoozemans1, Prya Gamb1, Irene van Dijken1, Lieke H. Meeter2, Shami Melhem2, John C. van Swieten2, Annemieke J.M. Rozemuller1, Anke Dijkstra1
1Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; 2Alzheimer Center Rotterdam and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Jeroen J.M. Hoozemans

Background
Multiple mutations are known to correspond with frontotemporal degeneration (FTD), but the most common mutation is the G4C2 repeat expansion in C9orf72. Although the mechanism by which C9orf72
expansions could cause neurodegeneration is unclear, several studies have indicated the involvement of the Unfolded Protein Response (UPR). The UPR is a stress response located in the endoplasmic reticulum (ER) that protects the cell against misfolded proteins through activation of the ER-stress sensors PERK, IRE1 and ATF6. Chronic activation or aberrant signaling of the UPR results in neurodegeneration.

Methods

Using immunohistochemistry we assessed the presence of UPR activation markers phosphorylated PERK and phosphorylated IRE1alpha in the frontal cortex, hippocampus and cerebellum of FTD patients with the C9orf72 repeat expansion in C9orf72 (n=17) and non-neurological control cases (n=7). The presence of UPR activation was compared with the occurrence of pTDP-43, P62, and dipeptides (GA, GR, GP).

Results:

In the frontal cortex and hippocampus no difference was observed in the occurrence of pPERK between control and C9-FTD cases. Interestingly, the occurrence of pPERK was increased in the granular layer of the cerebellum in C9-FTD cases. In contrast, pIRE1alpha was significantly increased in the frontal cortex and not in the hippocampus and cerebellum. No clear correlation between the occurrence UPR markers and pTDP-43, P62, and dipeptides was observed.

Conclusions

We report increased levels of UPR markers in C9-FTD, which varies between brain regions. Our data suggest that the UPR can be differentially regulated in different brain regions in one neurological disease.

P1-G02 PROGRANULIN GENE THERAPY IMPROVES PATHOLOGY AND REVERSES SOCIAL DEFICITS IN MOUSE MODELS OF FRONTOTEMPORAL DEMENTIA AND NEURONAL CEROID LIPOFUSCOSIS DUE TO PROGRANULIN MUTATIONS

Andrew E. Arrant, Vincent C. Orsylko, Daniel E. Unger, Erik D. Roberson

Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Andrew E. Arrant

Background

Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of Frontotemporal Dementia (FTD). GRN mutations exhibit a gene-dose effect, with homozygous GRN mutations causing the lysosomal storage disorder Neuronal Ceroid Lipofuscinosis (NCL). All known disease-causing GRN mutations are loss-of-function mutations, most of which cause progranulin haploinsufficiency. Therefore, boosting progranulin levels is a rational approach to treatment.

Methods

We generated an AAV2/1-progranulin vector (AAV-Grn) to test whether restoration of progranulin could correct NCL-like pathology in Grn−/− mice and social behavior deficits in Grn+/− mice. AAVGrn or an AAV-GFP control vector were infused into the medial prefrontal cortex (mPFC) of 10–12 month-old wild-type, Grn+/−, and Grn−/− mice. Grn−/− mice were euthanized for assessment of pathology 8–10 weeks later, and Grn+/− mice were assessed for social behavior 4–6 weeks later.

Results

AAV-Grn reduced lipofuscinosis and normalized cathepsin D activity in Grn−/− mice. AAV-Grn also reduced microgliosis in Grn−/− mice in several brain regions. At the AAV injection site, AAV-Grn induced an apparent non-self reaction to progranulin that was not observed in wild-type or Grn+/− mice and is unlikely to occur in FTD-GRN patients. AAV-Grn reversed social deficits and normalized markers of lysosomal dysfunction in Grn−/− mice.

Discussion

These data show that restoration of progranulin to progranulin-insufficient mice reduces FTD/NCL-like pathology, normalizes markers of lysosomal dysfunction, and reverses deficits in social behavior. Our AAVGrn vector expressed progranulin with a C-terminal tag that disrupted binding of progranulin to sortilin, showing that sortilin is not required for these beneficial effects of progranulin.

Conclusions

These data provide support for the use of progranulin-boosting therapies in GRN mutation carriers.

P1-G03 miR-874 REGULATES EXTRACELLULAR PROGRANULIN LEVEL BY TARGETING SORTILIN IN THE BRAIN

Jaekwang Kim1,2, Chris W. Lee1,3, Leonard Petrucelli1, Jungsu Kim1

1Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA; 2Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea; 3Biomedical Research Institute of New Jersey, Cedar Knolls, NJ USA

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Jaekwang Kim

Background

Mutations in the Progranulin gene (GRN) are a major cause of frontotemporal lobar degeneration with ubiquitin positive inclusions (FTLD-U). GRN polymorphisms are also known to modify the risk for Alzheimer’s disease (AD) [1]. Therefore, understanding Progranulin (PGRN)’s function and regulatory mechanisms may have broad relevance for both FTLD and AD. Recently, Sortilin (Sort1), a type-1 receptor, has been identified as a key regulator of PGRN in the brain which mediates endocytosis of extracellular PGRN [2]. Thus, identifying regulatory mechanisms of Sort1 is likely to provide novel opportunities to better understand PGRN regulation.

Methods

miRNAs which targets Sort1 were first identified using miRNA-target prediction algorithms and then validated by luciferase assay and western blot analysis. To express miRNA in the brain, we injected AAV8 encoding miRNA or control empty vector (Ctl) into cerebral ventricles of newborn C57BL6/J mice. Then, we analyzed the levels of Sort1 and PGRN in cortex and hippocampus at 3 months of age.

Results

Here, we demonstrated that microRNA-874 (miR-874) suppresses Sort1 expression at the posttranscriptional level through directly binding to the 3’UTR of its mRNA. In contrast, inhibition of endogenous miR-874 significantly increased the levels of Sort1 in neuronal N2a cells, suggesting that Sort1 expression is actively suppressed by endogenous miR-874 under basal condition. Importantly, overexpression of miR-874 increases the levels of extracellular PGRN by suppressing Sort1 expression in neuronal cells, whereas inhibition of miR-874 decreases the levels of extracellular PGRN. Moreover, we demonstrated that cerebral expression of miR-874 using adenovirus-associated virus significantly increases the levels of extracellular PGRN by suppressing Sort1 expression in cortices and hippocampi of C57BL6/J mice.

Conclusions

Taken together, we identified miR-874 as a novel negative regulator of Sort1 expression in the brain. Our data further support a novel regulatory mechanism of extracellular PGRN by miR-874.

References

1. Kao AW, McKay A, Singh PP, Brunet A, Huang EJ. Progranulin, lysosomal regulation and neurodegenerative disease. Nat Rev Neurosci 2017, 18:325-333.
P1-G07 LYSOSOMAL CHANGES CHARACTERIZING FRONTOTEMPORAL DEMENTIA
M Del Campo M,1, I Rodal2, A Rábano2, CE Teunissen1
1Neurochemistry lab, Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, The Netherlands; 2Brain bank tissue (BT)-CIEN, CIEN Foundation, Madrid, Spain
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: M Del Campo M

Background
Frontotemporal lobar degeneration (FTLD) is the second most prevalent dementia in young patients. Despite its etiology remains largely unknown, genetic studies suggest an involvement of the autophagy/lysosome system in FTLD pathogenesis. We previously observed several lysosome-related proteins changed in the cerebrospinal fluid (CSF) of control cases and FTLD pathological subtypes (FTLD-Tau and FTLD-TDP)(1). Here we performed a pilot characterization of those lysosome-related proteins in FTLD postmortem tissue to unravel whether changes occur also in the brain and their potential as novel players in the development of the different FTLD subtypes.

Methods
Immunohistochemical characterization of GLA, LAMTOR2, HexA and CTSD was performed in post-mortem frontal cortex of FTLD-Tau (n=6), FTLD-TDP (n=5) and age-matched nondemented controls (n=4). CTSD was further analysed in an additional FTLD cohort (n=17) extended with cases with Alzheimer’s disease (AD, n=6) and amyotrophic lateral sclerosis (ALS, n=6).

Results
GLA immunoreactivity was comparable among the different diagnostic groups. Intraneuronal LAMTOR2 tended to be increased in FTLD-TDP compared to controls (p=0.06). Intraneuronal HexA was significantly reduced in both FTLD-TDP- and FTLD-Tau (p<0.05). Strikingly, a nuclear-like pattern of CTSD was observed in sporadic cases of FTLD-TDP and specific cases of FTLD-Tau (Pick’s disease, p<0.05). CTSD nuclear-like staining was also present in AD (p<0.05) but absent in ALS or non-demented controls.

Discussion
We found that both LAMTOR2 and HexA were changed in FTLD cases. The nuclear-like inclusions of CTSD observed in specific subtypes of FTLD and AD suggest a possible miss-localization of this protein in sporadic cases developing dementia. Since CTSD is involved in the degradation of protein aggregates within the brain, aberrant localization could enhance protein aggregation and misfolding, thereby participating in the pathogenesis of specific types of dementia.

Conclusion
This data suggest that the autophagy/lysosome system is compromised in FTLD cases, revealing new potential players in FTLD.

Reference
1. Teunissen CE, et al. (2016) Novel diagnostic cerebrospinal fluid protein biomarkers for pathologic subtypes of frontotemporal dementia determined by proteomics. Alzheimer’s Dement Diagnosis, Assess Dis Monit 9. doi:10.1016/j.dadm.2015.12.004.
aggregates formed by the mutant proteins in polyglutamine diseases, like Huntington’s disease and spinocerebellar ataxia type 7 (SCA7) [4, 5]. However, if disruption of FUS/TLS function occurs in polyglutamine diseases and if this contributes to pathology is still unclear. In this study we therefore investigated how expression of the SCA7 disease protein ATXN7 affects FUS/TLS properties and functions.

Methods
The expression and subcellular localization of FUS/TLS was investigated in a transgenic SCA7 mouse model, by cell fractionation, western blot, filter trap and microscopy. In addition, the mRNA levels of FUS/TLS regulated mRNAs were determined by semi-quantitative RT-PCR.

Results
We found that upon induction of mutant ATXN7 expression the total FUS/TLS level increased and co-localization of FUS/TLS and insoluble ATXN7 aggregates could be observed. Moreover, we found that the levels of several FUS/TLS regulated mRNAs were decreased in SCA7 cells.

Discussion
Although FUS/TLS was sequestered into mutant ATXN7 aggregates, an increase in the total FUS/TLS level could be observed in cells expressing the SCA7 disease protein. Additionally, despite the increased abundance of FUS/TLS, the RNA regulatory function was disrupted. Consistent with this, overexpression of wild-type FUS/TLS in mice has previously been shown to cause neurodegeneration and result in an ALS-like phenotype [6].

Conclusions
Disruption of FUS/TLS could contribute to the neuronal dysfunction in SCA7 and potentially other polyglutamine diseases.

References
1. Mackenzie IRA, Neumann M: Fused in Sarcoma Neuropathology in Neurodegenerative Disease. Cold Spring Harb Perspect Med 2017, 7(12).
2. Kwiatkowski TJ, Jr., Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T et al: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009, 323(5918):1205-1208.
3. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P et al: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009, 323(5918):1208-1211.
4. Alves S, Marais T, Biferi MG, Furling D, Marinello M, El Hachimi K, Carter N, Ruberg M, Stevanin G, Brice A et al: Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener 2016, 11(1):58.
5. Doi H, Okamura K, Bauer PO, Furukawa Y, Shimizu H, KurosaWA M, Machida Y, Miyazaki H, Mitsu K, Kuroiya Y et al: RNA-binding protein TLS is a major nuclear aggregate-integrating protein in huntingtin exon 1 with expanded polyglutamine-expressing cells. J Biol Chem 2008, 283(10):6489-6500.
6. Mitchell JC, McGoldrick P, Vance C, Hortobagyi T, Sreedharan J, Rogelj B, Tudor EL, Smith BN, Klasen C, Miller CC et al: Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose- dependent fashion. Acta Neuropathol 2013, 125(2):273-288.
P2-H02 DEVELOPMENT OF TISSUE-SELECTIVE ABCA1 AGONISTS AS ALZHEIMER'S DISEASE THERAPEUTICS
Cutler Lewandowski1, Manel Ben Aissa1,2, Sue Lee1, Bhargava Karumudi1, Gregory Thatcher1
1Department of Medicinal Chemistry and Pharmacognosy, University of Illinois-Chicago, USA; 2UICentre, University of Illinois-Chicago, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Cutler Lewandowski

Background
Apolipoprotein E (APOE) ε4 allele is the strongest risk factor for sporadic Alzheimer's disease (AD) [1]. ApoE4-containing lipoproteins have lower lipid content, which decreases stability and contributes to loss of lipoprotein function [2]. To correct these deficits, we have developed tissue-selective ABCA1 agonists (TSAAgs) that induce central nervous system expression of cholesterol transporter ABCA1, thereby increasing lipid content of apoE4- containing lipoproteins, with minimal impact on peripheral lipogenesis. TSAAgs also ameliorate additional aspects of AD, including neuroinflammation and insulin resistance [3,4].

Methods
High-throughput screening (HTS) utilized luciferase reporter elements expressed by CCF-STTG1 astrocytoma (primary screen) and HepG2 hepatocellular carcinoma cells (counter screen) linked to ABCA1 and SREBP1c promoters, respectively. Iterative chemical synthesis was used to develop novel analogs of HTS hits to establish TSAAg structure-activity relationships. Analogs were tested in vitro via PCR/immunoblot for both lipid- and insulin-related genes, ELISA for inflammatory markers, and a fluorescent cholesterol efflux assay.

Results
Prioritized HTS hits – those demonstrating anti-inflammatory and insulin-sensitizing properties in addition to TSAAg activity – served as scaffolds to generate a library of structural analogs. In vitro evaluation of this analog library established structure-activity relationships that identified compounds with improved TSAAg activity and guided further structural modification.

Discussion
The results demonstrate a proof-of-concept to develop TSAAgs with multifunctional therapeutic potential for Alzheimer's disease. Future in vivo experiments in healthy mice will establish pharmacokinetic profiles, determine magnitude and mechanisms of tissue-selective ABCA1 induction, and monitor alterations in peripheral lipogenesis. Finally, treatments in the EFAD mouse model will assess TSAAg effects on cognitive and pathological deficits [5].

Conclusions
Our study represents a novel strategy to develop small molecule drug candidates that target multiple aspects of AD pathology. Upon conclusion of this project we hope to establish TSAAg compounds as leads for further pharmaceutical development and human clinical testing.

References
1. Corder EH, et al.: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993. 261(5123): 921-923.
2. Morrow JA, et al.: Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry 2000. 39(38): 11657-11666.
3. Matsuzaki T, et al.: Insulin resistance is associated with the pathology of Alzheimer disease: the Hisayama study. Neurology 2010. 75(9): 764-770.
4. Bolos M, Perea JR, Avila J: Alzheimer's disease as an inflammatory disease. Biomol Concepts, 2017, 8(1): 37-43.
5. Tai LM, et al.: EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer's disease. J Lipid Res 2017. 58(9): 1733-1755.

P2-H03 INTERVENTION MECHANISMS OF EFFECTOR MOLECULES ON AMYLOID-BETA AND TAU PROTEIN AGGREGATES
Julia Stockmann1, Andreas Nabers1, Atanu Archaya2, Léon Beyer1, Victor Batista1, Klaus Gerwert1
1Department of Biophysics, Ruhr University Bochum, Bochum, Germany; 2Yale Department of Chemistry, Yale University, New Haven, Connecticut, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Julia Stockmann

Background
Protein aggregation plays a significant role in Alzheimer’s disease (AD) progression and therapy. The aggregation of Amyloid-beta (Aβ) peptides and tau proteins lead to the forming of plaques and neurofibrillary tangles in the brain. For AD treatment effector molecules have been tested, which are proposed to trigger the unfolding of those proteins.

Methods
An immuno-infrared-sensor [1,2] was used, which enables the immobilization of Aβ peptides or tau proteins in different secondary structure isoforms, simultaneously or separately. Different effector molecules, such as berberine or methylene blue, were flushed over the immobilized proteins in a flow-through system to investigate the intervention potential on aggregated biomarkers.

Results
The recorded amide I band is sensitive to the conformation of the peptides displaying amide I bands. Synthetic Aβ fibrils showed a characteristic amide I maximum around 1628 cm⁻¹ indicating a high content of β-sheet structures, while monomeric and disordered helical proteins had maxima around 1648 cm⁻¹. Aβ fibrils and tau tangles treated with effector molecules showed a distinct shift of the amide I maxima to higher wavenumbers [3].

Discussion
Treatment of Aβ and tau with effector molecules changed the amide I bands over time indicating a change in the secondary structure of such proteins. The extent of the amide I band gave information about the efficiency of the effector molecule. Methylene blue unfolds pathogenic tau proteins, which results in a shift of the amide I band from fibrillary to a more monomeric and unfolded helical state [3]. On the other hand, berberine seems to decelerate Aβ aggregation [3].

Conclusions
The immuno-infrared sensor enables the analysis of the secondary structure of Aβ peptides and tau proteins. Thus, it is possible to directly monitor the intervention of effector molecules on pathogenic proteins. This approach may be used to identify promising drug candidates in-vitro from a huge data base for AD treatment and clinical trials.

References
1. Nabers A, Oltersch J, et al. An infrared sensor analysing label-free the secondary structure of the Abeta peptide in presence of complex fluids. BioPhotonics, 2016, 9(3):224-234
2. Nabers A et al. Amyloid-B-Secondary Structure Distribution in Cerebrospinal Fluid and Blood Measured by an Immuno-IR-Sensor: A Biomarker Candidate for Alzheimer’s Disease. Analytical Chemistry, 2016, 88(5):2755-2762
3. Schartner J. et al.: An ATR–FTIR Sensor Unraveling the Drug Intervention of Methylene Blue, Congo Red, and Berberine on Human Tau and Aβ. ACS Med. Chem. Lett., 2017, 8(7):710-714.

P2-H05 BRICHOS: INITIAL STUDIES TO TREAT NEUROPATHOLOGY AND MEMORY DYSFUNCTION IN ALZHEIMER KNOCK-IN MOUSE MODELS
Shaffi Manchanda, Simone Tambaro, Per Nilsson and Jan Johansson
Department of Neurobiology, Care Sciences and Society (NVS), Division of Neuroergiatrics, Karolinska Institutet, Novum 5th floor, 14157 Huddinge, Sweden

Molecular Neurodegeneration 2019, 14(Suppl 1) Poster

Correspondence: Shaffi Manchanda

Background
Alzheimer’s disease (AD) is characterized by progressive deposition of extracellular amyloid plaques of amyloid-β (Aβ) peptide and intracellular neurofibrillary tangles of phosphorylated tau protein followed by synaptic dysfunction, neuronal loss and cognitive decline. BRICHOS (Bri 2, Chondromodulin, pro-SP-C) was identified as a chaperone like domain derived from Bri2 protein associated with familial dementia, chondromodulin and prosurfactant protein C (pro-SP-C) [1]. It has been shown to prevent Aβ-induced neurotoxicity and reduction in γ-oscillations (implicated in learning and memory) in animal models [2]. In line of these findings, the current study was aimed to evaluate the passage of Bri2 BRICHOS over blood brain barrier (BBB) and its potency to ameliorate Aβ pathology, neuroinflammation and memory performance in novel APP-knock-in AD mouse models, APPNL-G-F harbouring the Swedish (KM670/671NL) and Beyreuther/Iberian (I716F) mutations, and APPNL-G-F mice additionally harbouring the arctic mutation.

Methods
APPNL-G-F mice (12-13 months old) were injected with PBS or recombinant human Bri2 BRICHOS (20mg/kg) intravenously. After 2 hours, cerebrospinal fluid (CSF) and brain were collected from each mouse and analysed for the permeability across BBB by western blotting.

Results
Recombinant Bri2 BRICHOS was detected in the CSF and in brain of APPNL-G-F after 2 hours of its administration compared to their PBS treated control counterparts.

Discussion
Presence of recombinant Bri2 BRICHOS in the CSF and in brain reveals that it can cross BBB and reach brain parenchyma. This data provides us the basis to investigate the therapeutic potential of Bri2 BRICHOS in APP-knock-in mice. We will use Morris Water Maze and Novel Object Recognition tasks to test memory based functions and analyse the Aβ burden and neuroinflammation by immunohistochemistry and western blots.

Conclusions
These preliminary findings provide us incentives to explore BRICHOS domain as a therapeutic candidate against AD-associated neuropathology and cognitive dysfunctions.

References
1. Sanchez-Pulido L, Devos D, Valencia, A: BRICHOS: a conserved domain in proteins associated with dementia, respiratory distress and cancer. Trends Biochem Sci 2002, 27:329-332.
2. Poska H, Haslbeck M, Kurudenkandy FR, Hermansson E, Chen G, Kostallas G, Abelein A, Biverstal H, Crux S, Fisahn A, et al: Dementia-related Bri2.
P2-H06 NOVEL PRECLINICAL MILD TRAUMATIC BRAIN INJURY AND AGING MOUSE MODEL: A MULTIDIMENSIONAL APPROACH TO DEVELOP DISEASE MODIFYING THERAPIES

Sue Hyun Lee¹, Manel Ben Aissa¹,², Yue-ting Wang¹,², Fernando Tobias¹, Stephanie Cologna³, Olusola Ajilore⁴, Gregory R.J. Thatcher¹,²

¹Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, IL, USA; ²Department of Chemistry, University of Illinois at Chicago, IL, USA; ³Department of Psychiatry, University of Illinois at Chicago, IL, USA; ⁴UCentre for Drug Discovery, University of Illinois at Chicago, IL, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Sue Hyun Lee

Background

Recent reports associate traumatic brain injury (TBI) to earlier onset dementia. However, the link between mild trauma and its role to deplete a person’s “cognitive reserve” as they age is still unknown. Our primary objective is to develop a preclinical model where functional damage and future consequences induced by mTBI that contribute to increased risk of dementia can be identified and disease modifying strategies can be tested.

Methods

We developed an oxidative stress-induced mouse model (Aldh2-/-) in conjunction with a closed head injury model to mimic post-mTBI cognitive deficits and neuroinflammatory pathology. Brain proton magnetic resonance spectroscopy (MRS) was used to assess changes using noninvasive measures of early disease identification, and matrix-assisted laser desorption/ionization imaging (MALDI) mass spectrometry was used to elucidate molecular distributions in tissue sections, ranging from 24 hrs-1-month post-injury. Novel library of small molecules (NMZ) that reactivate CREB through NO/cGMP signaling pathways was used as potential therapeutics for TBI.

Results

Aldh2-/- mice exhibited accelerated cognitive deficits which were further characterized using a chemoproteomic approach to identify differentially expressed proteins linked to accelerated aging. Interestingly, when mTBI was administered, it led to exacerbation of neuroinflammation, neuronal and synaptic pathology, and post-concussive syndrome 24 hrs post-injury. In addition, MRS and MALDI data suggested that early changes can be tracked non-invasively and spatially mapped. NMZ tested in this model reversed post-concussive syndrome, decreased inflammation, and alleviated damage from other contributors of mTBI.

Discussion

These studies provide greater insight into the underlying mechanisms of TBI leading to early diagnosis, target identification, and treatment to alleviate higher dementia risk.

Conclusions

Our studies introduce full characterization of a novel mouse model of mTBI that provide valuable resource to further identify potential biomarkers for detection so that disease modifying therapies could be developed.

P2-H07 BLOOD-BRAIN-BARRIER PERMEABILITY OF THE Bri2 AND THE proSP-C BRICHOS DOMAINS

Simone Tambaro, Lorena Galan-Acosta, Gefei Chen, Jenny Presto, Per Nilsson and Jan Johansson

Department of Neurobiology, Care Sciences and Society (NVS), Division of Neurogenetics, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Simone Tambaro

Background

Preventing protein misfolding and aggregation is a therapeutic strategy for neurodegenerative disorders such as Alzheimer’s disease (AD) [1]. Recently, we reported that the chaperone BRICHOS domains from human surfactant protein C (proSP-C) and from integral membrane protein 2B (Bri2) efficiently delay Aβ42 fibril formation and its neurotoxicity in vitro [2] and in vivo [3, 4] assays. Based on these results, we investigated the potential of BRICHOS as an anti-Aβ aggregation AD drug; in this study we analyzed the serum half-life and the blood-brain barrier (BBB) permeability of proSP-C and Bri2 BRICHOS.

Methods

Human proSP-C and Bri2 BRICHOS domains were expressed in E. coli cells and purified by immobilized metal affinity and size exclusion chromatography. The BRICHOS domains were injected intravenously in adult wild-type mice (C57BL/6NTac). Blood samples were collected at 5, 30, 60 and 120 minutes after the injections. At 120 minutes post injection CSF samples were collected from the cisterna magna, mice were perfused and brains were removed and analyzed by immunoprecipitation, western blot, ELISA and immunohistochemistry.

Results

Bri2 BRICHOS was detected in the CSF and in the brain parenchyma two hours after intravenous administration in about 75% of the treated mice. Positive staining for Bri2 BRICHOS was observed in the choroid plexus and in some cases in the cortex. On the contrary, proSP-C BRICHOS was not detected in the brain even though it exhibited a higher serum half-life (75±8min) compared to Bri2 BRICHOS (29±3min).

Discussion

These findings support that Bri2 BRICHOS can reach the brain parenchyma after systemic injection, and indicate also that the BRICHOS domain from proSP-C and Bri2 have different pharmacokinetic properties and BBB permeability.

Conclusions

Taken together, these results provide the bases for a further exploration of Bri2 BRICHOS as a new therapeutic strategy for neurodegenerative disorders, in particular AD.

References

1. Muchowski PJ. Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neurom Mech 2014, 7(6):659-65.

2. Willander H, Presto J, Askarieh G, Biverstå H, Frohm B, Knight SD, Johansson J, Linse S. BRICHOS domains efficiently delay fibrillation of amyloid-β-peptide. J Biol Chem 2012, 287(37):31608-17.

3. Hermansson E, Schultz S, Crowther D, Linse S, Winblad B, Westermark G, Johansson J, Presto J. The chaperone domain BRICHOS prevents CNS toxicity of amyloid-β peptide in Drosophila melanogaster. Dis Model Mech 2014, 7(6):659-65.

4. Poska H, Haslbeck M, Kuruendenkandy FR, Hermansson E, Chen G, Kostallas G, Abelein A, Biverstå H, Crox S, Fisahn A, Presto J, Johansson J. Dementia-related Bri2 BRICHOS is a versatile molecular chaperone that efficiently inhibits Aβ42 toxicity in Drosophila. Biochem J, 2016, 473(20):3683-3704.
aimed to reduce soluble Aβ. The aim of the present study was to investigate if a novel PET radioligand, based on an antibody directed towards soluble aggregates of Aβ, could be used to detect changes in Aβ levels after treatment with a β-secretase (BACE-1) inhibitor.

Methods

Transgenic animals (tg-ArcSwe [2], model of Aβ pathology), were treated during 3 months with BACE-1 inhibitor NB-360 [3] and compared to an untreated control group. After treatment, animals were PET scanned with Aβ protophibril selective radioligand [124I]Rmab158-scFvD3 [4]. A baseline group also underwent PET scanning. Brain tissue was isolated after PET and Aβ levels were measured in tissue homogenates.

Results

Treated animals showed significantly lower in vivo PET signal than untreated animals, and further, similar signals to the baseline group. The PET results corresponded well with decreased Aβ levels measured in post mortem brain.

Discussion

Antibody based PET imaging benefits from very specific binding to the target structure. With our protophibril selective radioligand we are able to image a soluble and dynamic species of Aβ which seems to be a promising marker for early diagnosis and to monitor disease progression [5] and treatment effects.

Conclusions

Several AD treatments [6] are currently in phase 2 and 3 clinical trials but there are limited possibilities to study their effects on a molecular level in vivo. With our previously developed protophibril selective radioligand [124I]Rmab158-scFvD3 we here demonstrate the ability to monitor treatment effects with PET imaging in tg-ArcSwe mice.

References

1. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004).

2. Lord, A. et al. The Arctic Alzheimer mutation facilitates early intraneuronal Aβ aggregation and senile plaque formation in transgenic mice. Neurobiol. Aging 27, 67–77 (2006).

3. Neumann, U. et al. A novel BACE inhibitor NB-360 shows a superior pharmacological profile and robust reduction of amyloid-β and neuroinflammation in APP transgenic mice. Mol. Neurodegener. 10, 44 (2015).

4. Hultqvist, G., Sylänen, S., Fang, X. T., Lannfelt, L. & Söderberg, E. Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor. Theranostics 7, 308–318 (2017).

5. Söderberg, E. et al. Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer's disease. Nat. Commun. 7, 10759 (2016).

6. Hung, S.-Y. & Fu, W.-M. Drug candidates in clinical trials for Alzheimer’s disease. J. Biomed. Sci. 24, (2017).

Correspondence: Ulf Neumann

Background

Stopping amyloid-β (Aβ) deposition by BACE-1 inhibition appears to be a promising strategy to treat Alzheimer’s disease (AD), but treatment in established dementia stages was unsuccessful. We hypothesize that BACE-1 inhibitor treatment needs to start in early stage Aβ deposition and before the onset of significant neurodegeneration. Prevention treatment puts high burdens on the safety and tolerability, to be addressed already in the drug design and selection process.

Methods

CNP520 was designed and profiled in vitro, using animal pharmacological, pharmacokinetic and metabolism studies and underwent toxicological profiling with oral studies up to 39 weeks duration. Clinical Phase I and Phase IIa studies in healthy elderly volunteers established its safety, tolerability, and active dose range.

Results

CNP520 is a potent and selective BACE-1 inhibitor in vitro. Due to its high brain penetration and plasma protein binding, free compound levels in the periphery are low. Significant Aβ reduction was observed in animals. Results of toxicity studies have not raised major safety concerns. No effects on myelin, muscle spindles, retina, pigmented organs were observed. Humans Phase I studies showed a dose- and time-dependent reduction of CSF Aβ, and a pharmacokinetic profile suitable for once-daily dosing. A 3-months study showed that CNP520 is safe and tolerated in a dosing range that resulted in 90% reduction of CSF Aβ.

Discussion

The profile of CNP520 supports its use in prevention studies of AD. Generation Study 1 and 2 have been initiated, which aim to test CNP520 at 15 or 50 mg in a population of enhanced risk to develop AD, patients being included based on their age, APOE4 genotype and Aβ positivity.

Conclusions

Properties of CNP520 make it suited for the use in prevention trials of AD, the ongoing clinical studies will allow to test the concept of prevention treatment in AD.

Clinical trial registration: EUDRACT number 2013-005576-18.
used to measure Aβ40 and Aβ42 levels while editing efficiency was assessed through next generation sequencing (NGS). Furthermore, adeno- associated virus (AAV) vectors were used for direct injection of the APPSwe guideRNA and Cas9 into the hippocampus of Tg2576 mice.

Results
We were able to show effective disruption of the mutated APPSwe allele in human AD patient fibroblasts and Tg2576 mice brains using the CRISPR/Cas9 system. There was statistically significant reduction in Aβ40 and Aβ42 levels in the edited fibroblasts while NGS showed robust indel formation in the APPSwe allele both in edited fibroblasts and hippocampus of Tg2576 mice. The same ex vivo procedure is currently ongoing for the PSEN1 M146L mutation while further in vivo experiments will be conducted on knock-in APPSwe mice.

Discussion/Conclusions
Effective disruption of the APPSwe allele is possible, both in vivo and in vitro, through the CRISPR/Cas9 system. We believe that the CRISPR/Cas9 system has the potential to be developed as a tool for future gene therapy against AD caused by certain APP and PSEN1 point mutations associated with increased Aβ.

References
1. Bertram L, Tanzi RE. The Genetics of Alzheimer’s Disease. Prog Mol Biol Transl Sci. 2012, 107:79–100.
2. Johnston JA, Cowburn RF, Norgren S, Wiehager B, Venizelos N, Winblad B, et al. Increased betaamyloid release and levels of amyloid precursor protein (APP) in fibroblast cell lines from family members with the Swedish Alzheimer’s disease APP670/671 mutation. FEBS Lett. 1994, 354:274–8.
3. Citron M, Vigo-Pelfrey C, Teplow DB, Miller C, Schenk D, Johnston J, et al. Excessive production of amyloid beta-protein by peripheral cells of asymptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc Natl Acad Sci U S A. 1994, 91:11993–7.
4. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013, 8:2281–308.

P2-H11 AdipoRon, A ADIPONECTIN RECEPTOR AGONIST, RESCUES COGNITIVE DEFICITS, REDUCED ALZHEIMER’S DISEASE PATHOLOGIES AND PREVENTED NEURODEGENERATION BY ENHANCING NEURONAL INSULIN SENSITIVITY IN SFXAD MICE
Roy Chun-Laam NG1,2, Koon-Ho Chan1,3,4, Hoo RLC, Chung SK, Xu A, Lam KSL, Chan KH. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener 2016, 11:1–16.

Correspondence: Roy Chun-Laam NG

Background
Adiponectin (APN) reduces with age and has been implicated in Alzheimer’s disease (AD). It is hypothesized that reduction of adiponectin impairs cerebral insulin signaling leading to β-amyloid accumulation, Tau hyperphosphorylation and glia activation that are the major events in AD [1, 2]. Enhancing insulin signaling can improve memory functions in AD patients [3]. Adiponectin possesses anti-oxidative and anti-inflammatory effects that may treat metabolic disease. Recently, novel adiponectin agonist, AdipoRon, has shown insulin sensitizing and anti-diabetic effects in mouse hippocampal HT-22 cells by promoting AMPK activation. Oral gavage of AdipoRon also enhanced hippocampal insulin sensitivity in SFXAD mice. In contrast, SFXA-ΔAPN/- mice exacerbated spatial memory functions with increased Aβ accumulation in the cerebral blood vessels and had hippocampal insulin resistance upon stereotoxic injection of insulin.

Conclusion
Together, our results suggest that reduced APN level worsen AD pathologies and AdipoRon can enhance neuronal insulin sensitivity, inhibit inflammation and reverse AD-related pathologies and cognitive functions.

References
1. Ng HCL, Cheng OY, Kwan JSC, Ho PWL, Cheng KKY, Yeung PKK, Zhou LL, Hoo RLC, Chung SK, Xu A, Lam KSL, Chan KH. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener 2016, 11:1–16.
2. Waragai M, Adame A, Trinh I, Sekiyama K, Takamatsu Y, Une K, Masliah E, Hashimoto M. Possible Involvement of Adiponectin, the Anti-Diabetes Molecule, in the Pathogenesis of Alzheimer’s Disease. J Alzheimer’s Dis 2016, 52:1453–1459.
3. Watson GS, Claxton A, Arbuckle M, Lerverenz J, Cross D, Gerton BL. Transnasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment. Arch Neurol 2012, 69:29–38.

P2-H13 A NOVEL PLATFORM TECHNOLOGY FOR THE PRODUCTION OF CONFORMATION-SPECIFIC ANTIBODIES AGAINST AMYLOID PROTOFIBRIL SPECIES
W Vallen Graham1, 2, Alessandra Bonito-Oliva3, Sophia Schedin-Weiss2, Ronald J. Parchem1, 3, Caroline Graff2, Vladana Vukojevic2, Lars O. Tjernberg2, Lars Terenius4, Bengt Winblad2, Thomas P. Sakmar1, 2

Correspondence: W Vallen Graham

Background
The precise role of amyloid in the initiation and progression of Alzheimer’s disease (AD) remains controversial. Recently, there have been promising results from conformation-specific amyloid beta- targeting biologics in clinical trials, thereby reigniting debate about the amyloid hypothesis [1]. Discovering conformation-specific monoclonal antibodies (mAbs) that target soluble intermediates of amyloid is challenging due to the inherent transient nature of the misfolded complex. We have engineered a chaperone-like amyloid binding protein (CLABP) that enables the stabilization of protofibrils. CLABP-stabilized protofibrils can be used as immunogen to accelerate the discovery of high-affinity anti-protofibril mAbs [2].

Methods
We employed an engineered CLABP, NUCB1, to stabilize protofibrils for use as immunogen in mice. Through primary and secondary screenings we selected a pool of mAbs with the exceptional
capability to bind specifically protofibril species, while showing minimal activity against the monomeric protein. The mAbs selected after initial screens were further characterized in several in vitro assays and in immunohistological studies of an AD mouse model as well as brain tissue from an AD patient.

Results
We show that an immunization campaign with NUCB1-protofibril complex produces mAbs that specifically target amyloid protofibrils, inhibiting their further aggregation. In line with conformation-specific binding, the mAbs appear to react with an intracellular antigen in diseased tissue, but only weakly with amyloid plaques. We hypothesize that the mAbs we describe here recognize a secondary or quaternary structural epitope that is common to multiple amyloid protofibrils.

Discussion
The amyloid protofibril stabilization method that we developed is valid for amyloid from multiple sources and can be applied to the preparation of mAbs against multiple types of amyloid protofibrils.

Conclusions
We report a novel method to create anti-protofibril mAbs that are conformationally-sensitive. The anti-protofibril mAbs we prepared have utility as research tools to study amyloid protofibril formation and structure, and may also have potential as diagnostic and therapeutic leads.

References
1. Graham WV, Bonito-Oliva A, Sakmar TP: Update on Alzheimer’s Disease Therapy and Prevention Strategies. Annu Rev Med 2017, 68:413-430.
2. Bonito-Oliva A, Babash S, Sakmar TP, Graham WV: Nucletinind 1 binds to multiple types of prefibrillar amyloid and inhibits fibrillization. Sci Rep 2017, 7:42880.

P2-H15 EVALUATING CALPAIN-1 AND CATHEPSIN B AS THERAPEUTIC TARGETS FOR NEURODEGENERATION
Rachel C. Knopp, Manel Ben Aissa, Sue Lee, Ammar Jastaniah, Ragda Izar, Gregory R.J. Thatcher
Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60612
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Rachel C. Knopp
Background
Neurodegeneration, an umbrella term for disorders with irreversible neuronal loss, is a significant global health concern. Therapeutic development has been hindered by several roadblocks, one of which is lack of in-depth exploration of potential targets. This research focuses on Calpain 1 (CAPN1), a calcium-dependent cysteine protease implicated in pathogenesis of AD, traumatic brain injury (TBI), and ischemic stroke. Prolonged CAPN1 over-activation indirectly permeabilizes lysosomes, leading to release of Cathepsin B (CTSB), a lysosomal cysteine-protease implicated in neurodegeneration. Several reports propose CAPN1 and CTSB as therapeutic targets in AD and TBI, but fail to identify efficacious strategies for inhibition. We hypothesize that dual CAPN1/CTSB inhibition affords superior neuroprotection over selective inhibition.

Methods
Inhibition profiles (potency, selectivity, reversibility) of small molecules were characterized through enzymatic screening assays. Subsequently, neuroprotection was characterized in SH-SYSY cells using Oxygen Glucose Deprivation (OGD), an in vitro model simulating ischaemia-reperfusion injury in stroke. Additional in vitro models induced by chemical insult were utilized to monitor CAPN1/CTSB substrates with roles in neuroplasticity/neurodegeneration via immunoblots.

Results
We have established inhibition and neuroprotective profiles of selective vs. dual inhibitors. All inhibitors were differentially neuroprotective against OGD-induced cell death in different treatment paradigms (pretreatment, ischemia and reperfusion). Monitoring spectrin breakdown products (CAPN1-specific) identified different pathways of neuronal death with varying neuroinsults.

Discussion
After establishing the selectivity of inhibitors for CAPN1 and CTSB, monitoring of peptide substrate proteolysis confirmed inhibitory effects in neuronal cultures. CAPN1 was found to be a highly dynamic protease, with time dependent hyper-activation following neurodeath.

Conclusions
Neuroprotective profiles suggest the strength of CAPN1/CTSB inhibitor strategies vary based on treatment paradigms. We have just completed testing this strategy in a murine model of mild TBI which, following behavioral and biochemical analysis, will allow us to distinguish the impact of these strategies in vivo.

P2-H16 NEUROBEHAVIOUR EFFECT OF COCONUT OIL IN SCOPOLAMINE INDUCED AMNESIA IN RATS
Kiran Chanabasappa Nilugal1, Janice Ng Gin Xiang2, Santosh fattepur1, Mohd Fadli Asmani1, Ibrahim Abdullah1
1School of pharmacy Management and Science University Shah Alam Selangor Malaysia; 2School of Pharmacy La Trobe University Australia
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Kiran Chanabasappa Nilugal
Background
Memory loss has been the major symptom of the progressive neurodegenerative Alzheimer’s disease (AD) and has affected AD patients the most. Scopolamine act as a cholinergic antagonist known to produce amnesia effect to mimic the cognitive impairment found in AD. Medicinal plants with antioxidant activities have been traditionally used to slow down the degeneration of neurons. The present study aimed to investigate the potential of extra virgin coconut oil (EVCO) to attenuate scopolamine (0.6 mg/kg, i.p.) induced amnesia and histopathological changes in rat hippocampus and cerebral cortex.

Methods
This study was conducted on 20 Sprague-Dawley (100-150g) female rats and the rats were divided into 5 groups (6 each). Group 1 served as negative control given normal saline (1 ml/day, p.o.) for 8 days. Group 2 served as positive control received scopolamine (0.6 mg/kg, i.p.) on the 8th day. Group 3 treated with piracetam (200 mg/kg/day, p.o.), group 4 with EVCO (0.25 ml/kg/day, p.o.) and group 5 with EVCO (0.5 ml/kg/day, p.o.) for 8 consecutive days, then followed by scopolamine (0.6 mg/kg, i.p.) administration on the 8th day. Behavioral stress tests such as T-maze and Rota rod tests were carried out. At the end of the experiments, rats’ brains were dissected and divided sagittally into two portions, the first was homogenized for determination of acetylcholinesterase activity and the second was used for histopathologic examination.

Results
This study indicated that EVCO when used for the treatment of scopolamine-induced amnesia produced increased time on the Rota rod and a reduction of duration of rats to reach food in the T-maze test. EVCO also showed a slight reduction of AChE activity and the histopathological findings showed the neurons appear more or less like normal ones but with more dark spots.

Conclusions
This study revealed that the treatment of amnesia-induced rats with EVCO significantly ameliorates the cognitive impairment of AD in rats.
P2-H17 TARGETED BRICHOS DOMAIN DELIVERY TO THE BRAIN USING FOCUSED ULTRASOUND-INDUCED BLOOD-BRAIN BARRIER OPENING

Lorena Galan-Acosta1, Carlos Sierra2, John Blight1, Per Nilsson1, Elisa E. Konofagou2*, Jan Johansson1
1Department of Neurobiology, Care Sciences and Society (NVS), Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Sweden;
2Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA;
3Department of Radiology, Columbia University, New York, New York, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):10

Correspondence: Lorena Galan-Acosta

Background
The BRICHOS domain is encoded in more than 10 human genes associated with cancer, dementia (Bri2/ITM2b) and amyloid lung disease (proSP-C) [1]. Studies have shown that overexpression of Bri2/ITM2b is associated with cancer, dementia (Bri2/ITM2b) and amyloid lung disease (proSP-C) [1].

Methods
A FUS transducer was used to target the left hippocampus of the mouse brain in vivo in the presence of intravenous lipid microbubbles and BRICHOS domain. Mice were kept for 2 hours after sonication to allow the BRICHOS domain to diffuse into the parenchyma, and then sacrificed for assessing the delivery by ex vivo immunohistochemistry (IHC) for proSP-C or Bri2 BRICHOS. The neuronal marker NeuN was used for assaying possible neuronal uptake. BBB opening was confirmed in vivo by magnetic resonance imaging. The overall brain histology was evaluated for microscopic damage.

Results
Successfully targeted brain BRICHOS domain delivery was achieved in 6 out of 10 cases. Notably, IHC showed selective uptake of Bri2 BRICHOS by a specific subset of neurons in dentate gyrus in the FUS targeted hippocampus section. Microhemorrhages were observed only in 6 out of 10 cases. Notably, IHC showed selective uptake of Bri2 BRICHOS by a specific subset of neurons in dentate gyrus in the FUS targeted hippocampus section. Microhemorrhages were observed only transiently and non-invasively [6].

Conclusions
This study indicates that FUS is a safe methodology for targeted brain BRICHOS domain delivery, which can potentially be used in the analyses of BRICHOS treatment on AD pathology.

References
1. Sanchez-Pulido L, Devos D, Valencia A: BRICHOS: a conserved domain in proteins associated with dementia, respiratory distress and cancer. Trends Biochem Sci 2002, 27:329-332.
2. Hermansson E, Schultz S, Crowther D, Linse S, Winblad B, Westermark G, Johansson J, Presto J: The chaperone domain BRICHOS prevents CNS toxicity of amyloid-beta peptide in Drosophila melanogaster. Dis Model Mech 2014, 7:659-665.
3. Knight SD, Presto J, Linse S, Johansson J: The BRICHOS domain, amyloid fibril formation, and their relationship. Biochemistry 2013, 52:7523-7531.
4. Poska H, Haslbeck M, Kurukenkandy FR, Hermansson E, Chen G, Kostallas G, Abelein A, Biverstal H, Crux S, Fisahn A, et al: Dementia-related Bri2 is a versatile molecular chaperone that efficiently inhibits Abeta(42) toxicity in Drosophila. Biochem J 2016, 473:3683-3704.
5. Tambaro S, Galan-Acosta L, Leppert A, Presto J, Johansson J: BRICHOS - an anti-amyloid chaperone: evaluation of blood-brain barrier permeability of Bri2 BRICHOS. Amyloid 2017, 24:7-8.
6. Wang S, Samiotaki G, Olumolade O, Fehlman JA, Konofagou EE: Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening. Ultrasound Med Biol 2014, 40:130-137.
Alzheimer neural circuits are thought to result in neurodegeneration causing misfolding of tau proteins into prions and their propagation along neural circuits are thought to result in neurodegeneration causing Alzheimer’s disease (AD), progressive supranuclear palsy, and other tauopathies. Little is known about the molecular processes mediating tau prion replication and spreading in different brain regions. Sortilin is a type-1 transmembrane protein that serves as a vacular protein sorting receptor and has pleiotropic functions in neuronal protein trafficking and viability [1]. Stimulation by a recent report that sortilin appears to be one protein contributing to the regional vulnerability. Therefore, sortilin-mediated lysosomal degradation may be an important mechanism underlying tau proteostasis in human tauopathies.

Conclusions
These findings provide evidence for selective vulnerability in mice, thus affording a model for identification of additional molecules that could mitigate the levels of tau prions in human tauopathies.

References
1. Nykjaer A, Willnow T: Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 2012, 35:261–270.
2. Uchiyama K, Tomita M, Yano M, Chida J, Hara H, Das N, Nykjaer A, Sakauchi S: Prions amplify through degradation of the VPS10P sorting receptor sortilin. PLoS Pathogens 2017, 13:e1006470.
3. Rogalin E, Meng Y, Lee J, et al.: The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer’s disease. Nat Genet 2017, 39:168–177.
4. HU F, Padukkavudana T, Vaehter C, Brady O, Zheng Y, Mackenzie I, Feldman H, Nykjaer A, Stittmatter S: Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 2010, 68:654–67.
5. Sanders D, Kaufman S, Devos S, Sharma A, Mirbaha H, Li A, Barker S, Foley A, Thorpe J, Serpell J, Miller T, Ginberg L, Seeley W, Diamond M: Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 2014, 82:1271–1288.
6. Allen B, Ingram E, Takao M, et al.: Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 2002, 22:9340–9351.
7. Johnson N, Condello C, Guan S, Oehler A, Becker J, Gavidia M, Carlson G, Giles K, Prusiner S: Evidence for sortilin modulating regional accumulation of human tau prions in transgenic mice. Proc Nat Acad Sci USA 2017, 113:E11029–E11036.
8. Braak H, Del Tredici K: The pathological process underlying Alzheimer’s disease in individuals under thirty. Act Neuropathol 2011, 121:171–181.
MECHANISMS UNDERLYING TAU DEGRADATION

Cara L. Croft1,2,3, Kaitlyn Rewis1,2,3, Pedro E. Cruz1,2,3, Marshall S. Goodwin1,2,3, Daniel H. Ryu1,2,3, Benoit I. Giasson1,2,3, Todd E. Golde1,2,3 Center for Translational Research in Neurodegenerative Disease; 2Department of Neuroscience; 3McKnight Brain Institute, University of Florida, Gainesville, Florida, USA

Correspondence: Cara L. Croft

Background

Tau inclusions comprised of aggregated, post-translationally modified tau species are one of the two pathological hallmarks of Alzheimer’s disease (AD). A dysfunction of canonical protein degradation pathways has been implicated in the tauopathies such as AD. Reengaging these pathways to degrade accumulating tau could be therapeutically viable, however, the role of the autophagy-lysosome system and the ubiquitin-proteasome system and their clearance of physiological and pathological tau species still remains to be fully determined.

Methods

We have developed several recombinant adeno-associated viral (rAAV) vectors that enable the activation and inhibition of lysosomal and proteasomal pathways. Using HEK293T cell models and organotypic mouse brain slice cultures (BSCs) we explore the effects of enhancing and reducing lysosomal or proteasomal activity on the accumulation of wild-type or mutated MAPT.

Results

By using rAAVs to overexpress the herpes simplex virus type 1 (HSV-1)-encoded neurovirulence protein IC343.5 to inhibit autophagy and the essential autophagy protein Beclin-1 to enhance autophagy we are able to determine the effects of the autophagy-lysosome system on the clearance of tau in our cell and BSC models of tauopathy. In addition, we have developed methods to drive intracellular expression of antibody fragments known as intrabodies to target tau and have fused these intrabodies to functional domains which target tau for increased proteasomal or lysosomal degradation.

Discussion

By overexpressing biological inhibitors and activators of key protein degradation pathways we can dissect mechanisms determining the clearance of protein aggregates which can lead to neurodegenerative proteinopathies such as the accumulation of tau in tauopathies.

This rAAV toolkit provides a robust and reliable system to explore tau degradation in biological systems.

Conclusions

Our rAAV toolkit in combination with our novel cell and slice culture models of tauopathy can enable us to understand the mechanisms underlying autophagy-lysosome and ubiquitin-proteasome dysfunction in the tauopathies.
P2-109 SPPL2b: A NOVEL PROTEIN RELATED TO TAU PATHOLOGY IN
ALZHEIMER’S DISEASE?
M Del Campo1, L Boonkamp1, VI Wiersma2, A Nolle3, W Scheper4, AB
Smit5, RE Van Kesteren5, R Fluhrer6, B Schröder6, J Hoozemans7, CE
Teunissen1

1Department of Clinical Chemistry, VU University Medical Center, the
Netherlands; 2Department of Clinical genetics and Alzheimer Center, VU
University Medical Center and department of Functional Genomics,
Molecular Neurodegeneration, Center for Neurogenomics and Cognitive
Research (CNCR), VU University, The Netherlands; 3Department of
Molecular and Cellular Neurobiology, Center for Neurogenomics and
Cognitive Research (CNCR), VU University, The Netherlands; 4DZNE –
German Center for Neurodegenerative Diseases, Munich, Germany; 5
Institute for Metabolic Biochemistry, Ludwig-Maximilians University
Munich, Munich, Germany; 6 Institute of biochemistry, CAU Kiel
University, Germany; 7Department of pathology, VU University Medical
Center, the Netherlands

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: M Del Campo

Background
Alzheimer’s disease (AD) is characterized by the presence of amylo-
oid beta (Aβ) plaques and neurofibrillary tangles (NFT). SPPL2b is a
transmembrane protease involved in the processing of ITM2B
(BRI2) and TNFα, substrates involved in Aβ plaque and NFT for-
mation. Previously, we have shown that levels of SPPL2b were 10-fold increased in early stages of Alzheimer’s disease (Braak III–IV) [1], which was to a lower extent reflected in the cerebrospinal fluid (CSF) of AD cases. We also observed co-localization of SPPL2b with phosphorylated tau. Here, we aimed to investigate the functional relation between SPPL2b and tau in cell and ani-
mal models.

Materials and Methods
SPPL2b was quantified in hippocampus tissue of mice models driven
by Aβ pathology (APP-PS1, n=5) and tau pathology (P301S, n=5) as
well as in HEK293 cells overexpressing mutated Tau (P301S-Tau; n = 4). Corresponding wild-type mice and control cells were also in-
cluded (n = 4-5/group).

Results
SPPL2b was 10-fold increased in the hippocampus of the mice overexpressing tau P301S (p < 0.0001) compared to wild-type. In contrast, no changes were observed in the hippocampus of APP-
PS1 mice. Human cell lines overexpressing the mutated tau form
also showed a strong increase in SPPL2b levels (p <0.0001) com-
pared to controls.

Discussion
Our results from mice and cell models suggest that the strong SPPL2b changes previously observed in AD post-mortem tissue are likely driven by tau pathology and not by Aβ aggregates.

Conclusions
Considering that SPPL2b is a novel Tau binding protein with un-
known physiological function, it will be important to unravel whether the strong SPPL2b changes observed in early stages of AD aid to prevent tau pathology (i.e. via lysosomal degradation) or contribute to the development of AD (i.e. neurotoxicity, tau spreading).

Reference
1. Del Campo M, Hoozemans JIM, Dekkers L-L, Rozemuller AJ, Korth C, Müll er-Schiffmann A, et al. BRI2-BRICHOS is increased in human amyloid plaques in early stages of Alzheimer’s disease. Neurobiol Aging 2014;35:1596–604.

P2-101 STRUCTURAL INSIGHTS INTO APOLIPOPROTEIN E ISOFORMS:\nUNDERSTANDING THE MAJOR RISK FACTOR FOR LATE ONSET
ALZHEIMER’S DISEASE
Ana-Caroline Raulin1, Lucas Krafft2, John McGeehan3, John Atack2, Louise
C. Serpell1

1Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex UK; 2 Sussex Drug Discovery Centre, School of Life
Sciences, University of Sussex, Falmer, E Sussex, UK; 3School of Biological
Sciences, Faculty of Science, Portsmouth, Hampshire, UK

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Ana-Caroline Raulin

Background
Alzheimer’s disease (AD) is the leading cause of dementia in the
elderly, with age as a primary risk factor. Environmental and gen-
etic factors also modulate the onset of sporadic, late-onset cases of
the disease (LOAD). With respect to genetics, the APOE geno-
type, and more particularly the ε4 variant of the gene, has been
identified as a major risk factor [1]. Very little is known about the
ε2 variant of APOE4, which has been shown to be protective
against the onset of the disease. Understanding why a factor is
protective is as important as understanding how a factor may
present a risk as this information may lead to the discovery of new therapeutic targets.

Methods
The differences between human recombinant ApolipoproteinE
(ApoE) isoforms were investigated at the structural level using a
range of biophysical techniques (including analytical ultracentri-
fugation, circular dichroism spectroscopy, fluorescence spectros-
copy and transmission electron microscopy (TEM)) to
characterise their conformation and stability as well as their
self-assembly properties.

Results
The three isoforms adopted a tetrameric conformation in
physiological buffer and displayed a similar, high α-helix con-
tent in solution. Unfolding studies did not reveal significant dif-
ferences between ApoE3 and E4. However, the three isoforms
differed in terms of self-assembly properties, with ApoE4 hav-
ing a higher propensity to form fibrillar aggregates than
ApoE2 and ApoE3 as shown both by thioflavin-T fluorescence
and TEM.

Discussion
One of the main hypotheses behind the onset of AD revolves around
protein misfolding and aggregation, hence the observation that
ApoE4, one of the major risk factor for LOAD, is prone to fibril forma-
tion in vitro is of great interest.

Conclusions
Studying the structure of ApoE has highlighted major differences be-
tween the three isoforms, mainly in terms of aggregation propensity
which is interesting in the context of protein misfolding and aggre-
gation in AD [2].

References
1. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC,
Small GW, Roses AD, Haines JL, Pericak-Vance MA. Gene dose of apolipo-
protein E type 4 allele and the risk of Alzheimer’s disease in late onset
families. Science 1993, 261 (5123): 921–923.
2. Hatters DM, Zhong N, Rutenber E, and Weisgraber, KH: Amino-Terminal
Domain Stability Mediates Apolipoprotein E Aggregation into Neurotoxic
Fibrils. J Mol Biol 2006, 361: 932- 44.
P2-J02 CELL AUTONOMOUS EFFECTS OF APOE ε4/ε4 ON HUMAN iPSC-DERIVED ASTROCYTES AND MICROGLIA

Julia TCW1, Sarah E. Bertelsen1, Shuang A. Liang2, Lu Qian1, Cristhian Fimbres1, Raja Jain1a, Elizabeth J. Sikora1, Wayne W. Poon1, Alison M. Goate1

1Department of Neuroscience, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 2Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Julia TCW

Background

Apolipoprotein E (APOE) is the most significant risk gene for late-onset Alzheimer’s disease (AD). APOE ε4/ε4 homozygosity increases AD risk by >14-fold [1]. Although an association between the APOE ε4 allele and increased AD risk is well-established, the mechanisms underlying this genetic risk on particular brain cell types is elusive. We hypothesized that the APOE ε4/ε4 genotype contributes to disease risk through cell autonomous mechanisms in glia.

Methods

We have differentiated astrocytes [2], microglia [3], cortical neurons [4] and brain microvascular endothelial cells [5] from human induced pluripotent stem cells (iPSC) derived from non-isogenic and isogenic cohort of cells selected based on APOE genotype. RNAseq was performed, and differentially expressed genes of APOE ε4/ε4 compared to ε3/ε3 were analyzed in each cell type. We executed Gene Set Enrichment Analysis (GSEA) to identify the top significantly enriched genes, followed by Ingenuity Pathway Analysis (IPA).

Results

When APOE ε4/ε4 transcriptomes were compared to ε3/ε3 by GSEA the most significantly enriched pathways are cholesterol biosynthesis (positive enrichment) in astrocytes and lysosomal pathways (negative) in microglia. Overlapping pathway analysis (FDR<0.05) of both cell types showed positive enrichment of cholesterol biosynthesis and lipid metabolism regulatory networks. Consistently, lysosomal pathways of microglia enriched in GSEA are associated with phagosome maturation and autophagic function, defects of which leads to increased lipid accumulation and decreased lipid catabolism.

Discussion

In addition to effects on Aβ APOE genotype appears to alter glial handling of lipids including those engulfed as a result of neurodegeneration.

Conclusions

Human CNS cell type based iPSC models allowed us to elucidate APOE ε4/ε4 cell autonomous effects; astrocytes and microglia of APOE ε4/ε4 compared to ε3/ε3 have deficits in lipid metabolism, leading to an increased cholesterol accumulation.

References

1. Genin, E., et al., APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry. 2011. 16: 903-907.
2. TCW, J., et al., An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2017. 9: 600-614.
3. Abud, EM, et al., iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron, 2017. 94: 278-293.
Acrylamide (10 fM and higher) attenuated the differentiation process in SH-SY5Y cells and neurite outgrowth was reduced at concentrations ≥10 μM. In the C17.2 cell line, 1 μM acrylamide significantly reduced the number of neurons and altered the ratio between the cell phenotypes. Ten micromolar of acrylamide also reduced the expression of the neuronal and astrocyte biomarkers.

Discussion
Concomitantly with earlier studies [2], we showed that neurotoxic effects of acrylamide are concentration-dependent and accumulate over time. It is not the accumulation of acrylamide, but rather the accumulation of damages over prolonged exposure time that leads to neurotoxicity [3]. Hence, it raises the question about the developmental consequences of prenatal acrylamide exposure and what the tolerated daily intake of acrylamide should be during pregnancy. In the SH-SYSY cell line, acrylamide induced significant effects on differentiation starting at 10 fM, which is seven orders of magnitude lower than the estimated plasma concentration of free acrylamide in the fetus.

Conclusions
Although the neurotoxic concentrations in the femtomolar range seem to be specific for the SH-SYSY cell line, the fact that micromolar concentrations of acrylamide seem to attenuate the differentiation process in both cell lines raises the interest to further investigations on the possible developmental neurotoxicity of acrylamide.

References
1. LoPachin, R. M., Gavin, T., and Barber, D. S: Type-2 alkenes mediate synaptotoxicity in neurodegenerative diseases. Neurotoxicology 2008, 29:871-882.
2. LoPachin, R. M: The changing view of acrylamide neurotoxicity. Neurotoxicol 2004, 25:617-630.
3. Cuffton, K., Padilla, S., Tilson, H., Anthony, D., Raymer, J., and MacPhail, R: The impact of dose rate on the neurotoxicity of acrylamide: the interaction of administered dose, target tissue concentrations, tissue damage, and functional effects. Toxicol Appl Pharmacol 1996, 139:163-176.

P2-K03 CEREBROSPINAL FLUID FROM ALZHEIMER PATIENTS AFFECTS CELL-MEDIATED NERVE GROWTH FACTOR PRODUCTION AND CELL SURVIVAL IN VITRO
Homira Behbahani1, Manuel Navarro Oviedo1, Sumonto Mitra1, Bengt Linderoth2, Åke Seiger3, Lars O. Tjernberg4, Lars Wahlberg5 and Maria Eriksson6, 7
1Karolinska Institutet, 1Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics; 2Division of Clinical Geriatrics Huddinge, Sweden; 3Clinical Neuroscience, Karolinska University Hospital, Stockholm Sweden; 4Theme Aging; 5Stiftelsen Stockholms Sjukhem, Stockholm, Sweden; 6NeGene Inc, Providence, RI USA
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Homira Behbahani

Background
Alzheimer’s disease (AD) is characterized by early degeneration of cholinergic neurons and has been associated with decreased levels of nerve growth factor (NGF) [1]. Thus, increasing the NGF levels is a potential treatment strategy [2]. Encapsulated cell bio-delivery (ECB) of NGF is an emerging technique for direct drug delivery of molecules. We previously tested ECB for delivery of NGF to the basal forebrain cholinergic neurons in ten AD patients in a first-in-human study [3, 4]. The results from these studies were promising [5] however; there was an inter-capule difference of cell survival and NGF-release among the devices which needs to be investigated before further clinical trials. Objective
The aim was to identify factors that might affect the survival of encapsulated cells (NGC-0295 cell) and alterations in their NGF production, respectively.

Methods
We studied the effect of Abeta-peptides and IL-1beta on a cell line (NGC-0295), overproducing NGF using apoptosis assay, flow cytometry, western blot, and liquid chromatography mass spectroscopy. Further, NGC-0295 cells were exposed to AD CSF, subjective cognitive impairment (SCI) and Lewy body dementia (LBD) patients CSF and the effect of AD CSF on NGF release was investigated and compared to SCI and LDB CSF.

Results
In vitro studies revealed that neither Abeta40 nor Abeta42 had any major impact on the cell viability or NGF production at physiological concentrations. In contrast, there was a dose-dependent response of IL-1beta on NGF production over time. The exposure of NGF-producing cells to CSF from AD patients showed significantly reduced NGF release as compared to SCI and LBD patients CSF. Preliminary, we identified 3 differentially expressed proteins in AD CSF compared to SCI and LDB, which are involved in inflammatory pathways by mass spectrometer.

Conclusion
Cell survival and NGF-release are not affected by Abeta-peptides while the NGF-release is affected by IL-1beta with implications for the role of inflammation in this therapeutic platform.

References
1. Bartus, R.T., On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol, 2000. 163(2): p. 495-529.
2. Mufson, E.J., et al., Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother, 2008. 8(11): p. 1703-18.
3. Jorgensen, J.R., et al., Cometin is a novel neurotrophic factor that promotes neurite outgrowth and neuroblast migration in vitro and supports survival of spiral ganglion neurons in vivo. Exp Neurol, 2012. 233(1): p. 172-81.
4. Wahlberg, L.U., et al., Targeted delivery of nerve growth factor via encapsulated cell biodelivery in Alzheimer disease: a technology platform for restorative neurosurgery. J Neurosurg, 2012. 117(2): p. 340-7.
5. Karami, A., et al., Changes in CSF cholinergic markers in response to cell therapy with NGF in patients with Alzheimer’s disease. Alzheimers Dement, 2015. 11(1): p. 1316-28.

P2-K04 UNRAVELING THE SYNAPTIC VULNERABILITY IN ALZHEIMER’S DISEASE: THE PROTEOME OF THE OUTER MOLECULAR LAYER OF THE DENTATE GYRUS
Hazel Haytural1, Saket Milind Ngarm1,2, Bengt Winblad1, Lars O. Tjernberg1, Susanne Frykman1
1Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden;
2Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden;
3Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Maryland, USA

Correspondence: Hazel Haytural

Background
Synaptic dysfunction occurs early in Alzheimer disease (AD) pathogenesis and strongly correlates with cognitive decline [1]. Increasing evidence suggests that some synapses are more vulnerable than others, however, little is known about what might be causing this selective vulnerability. Therefore, in this project, we studied the proteome of the outer molecular layer (OML) of the dentate gyrus, which contains the synapses of the perforant pathway that are affected early in AD pathogenesis[2].

Methods
The OML of the dentate gyrus was cut out from 5 AD cases and 5 nondemented controls using laser microdissection (LMD). The microdissected tissues were dissolved, and digested by trypsin. Peptides from each sample were labeled with different isobaric tags, pooled together, and pre-fractionated into 72 fractions using high resolution isoelectric focusing (HiRIEF) [3]. Each fraction was then analyzed by liquid chromatography-mass spectrometry (LC-MS).

Results
In total, we calculated the relative expression levels of 7460 proteins in AD cases compared to controls. We are now in the process of analyzing the data to identify proteins with significantly altered levels in AD and controls, and to further subject them to Ingenuity Pathway Analysis.

Discussion
Pre-fractionation reduces sample complexity and increases the number of low-abundant proteins that can be identified and quantified, increasing the possibility to reveal proteins and pathways of importance for disease pathogenesis. This study shows that LMD combined with MS is a powerful tool to assess region-specific changes.

Conclusions
To our knowledge, the proteome of the OML of the dentate gyrus has not been studied before and can provide invaluable insights into the mechanisms behind the dysfunction of synapses of the perforant pathway.

References
1. Masliah E, et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 2001, 56(1):127-129.
2. Scheff SW, et al. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2006, 27(10):1372-84.
3. Branca RM, et al. HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat Methods 2014, 11(1):59-62.
methodsbuch.

In the present study, we investigated ultrastructural morphology of demyelinating SC in Wallerian degeneration and chronic inflammatory demyelinating polyneuropathy (CIDP) using SBFscanning electron microscopy and immunoelectron microscopy. In addition, biochemical assays and fluorescence analysis on LC3-GFP-RFP mice were employed for the analysis of autophagic flux in Wallerian degeneration.

Results
We observed many electron microscopic findings showing diverse modes autophagy-mediated myelin clearance in demyelinating SC in Wallerian degeneration and inflammatory segmental demyelination. LC3-GFP-RFP mice showed the activation of autophagic flux in non-compact myelin regions of SC in Wallerian degeneration. Inhibition of autophagy in SC via SC-specific deletion of atg7 gene delayed demyelination in Wallerian degeneration. Finally, inhibition of lysosome resulted in a significant delay in SC demyelination in Wallerian degeneration and a CIDP mouse model.

Discussion
Demyelination of the peripheral nerves appears to require active phenotype changes of SC for efficient myelin clearance in lesioned nerves.

Conclusions
Our findings suggest that the autophagic flux in SC is required for demyelination in Wallerian degeneration and inflammatory segmental demyelination.

Reference
1. 2019, 14(Suppl 1):30 Page 62 of 73

Correspondence: Hwan Tae Park

Background
The myelin sheath is an essential plasma membrane compaction made by Schwann cell (SC), the only glial cell in the peripheral nerves, for rapid conduction of electrical impulse through the axon. SCs have the unique ability to dedifferentiate and to destroy the myelin sheath under various demyelination conditions. [1]

Methods
In the present study, we investigated ultrastructural morphology of demyelinating SC in Wallerian degeneration and chronic inflammatory demyelinating polyneuropathy (CIDP) using SBFscanning electron microscopy and immunoelectron microscopy. In addition, biochemical assays and fluorescence analysis on LC3-GFP-RFP mice were employed for the analysis of autophagic flux in Wallerian degeneration.

Results
We observed many electron microscopic findings showing diverse modes autophagy-mediated myelin clearance in demyelinating SC in Wallerian degeneration and inflammatory segmental demyelination. LC3-GFP-RFP mice showed the activation of autophagic flux in non-compact myelin regions of SC in Wallerian degeneration. Inhibition of autophagy in SC via SC-specific deletion of atg7 gene delayed demyelination in Wallerian degeneration. Finally, inhibition of lysosome resulted in a significant delay in SC demyelination in Wallerian degeneration and a CIDP mouse model.

Discussion
Demyelination of the peripheral nerves appears to require active phenotype changes of SC for efficient myelin clearance in lesioned nerves.

Conclusions
Our findings suggest that the autophagic flux in SC is required for demyelination in Wallerian degeneration and inflammatory segmental demyelination.

Reference
1. 2019, 14(Suppl 1):30 Page 62 of 73
Conclusions

Taken together, our results provide evidence for cell-type specific roles of TBK1 in the modulation of synaptic growth and organization during neuronal development and aging.

Methodology

For this purpose, we used hippocampal samples of WT mice fed a high fat diet. In addition, rat primary neurons and glial cultures were treated with 27-OH hydroxycholesterol (27-OH) concentration on the levels of S100A8 and RAGE in the brain.

Results

In this study, we report that high fat diet and excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, induce the upregulation of the glial inflammatory mediator S100A8 as well as its receptor RAGE both in vivo and in vitro. S100A8 is observed as extracellular aggregates, and at high concentrations, it can contribute to neurodegeneration and AD. In this study, we investigated the effects of high cholesterol diet and high 27-hydroxycholesterol (27-OH) concentration on the levels of S100A8 and RAGE in the brain.

Discussion and Conclusions

These results, together with our recent finding that S100A8 escalates the production of Aβ (2), may indicate that the S100A8/RAGE increase in the brain is one of the mechanisms behind the association of high peripheral cholesterol and excess 27-OH in the pathogenesis of AD.

References

1. Solomon A, Leoni V, Kivipelto M, Besga A, Öksengård AR, Julin P, Svensson L, Wahlund LO, Andreasen N, Winblad B et al.: Plasma levels of 24S-hydroxycholesterol reflect brain volumes in patients without objective cognitive impairment but not in those with Alzheimer’s disease. Neuroscience Letters 2009, 462(1):89-93.

2. Lodeiro M, Puerta E, Ismail M-A-M, Rodriguez-Rodriguez P, Ronnback A, Codita A, Parrado-Fernandez C, Maioli S, Gil-Bea F, Merino-Serrais P et al.: Aggregation of the Inflammatory S100A8 Precedes Aβ Plaque Formation in Transgenic APP Mice: Positive Feedback for S100A8 and Aβ Production. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2016.

P2-K12 NEUROPROTECTIVE EFFECTS OF A PALMITOYLATED PROLACTIN-RELEASING PEPTIDE ANALOG IN THE APP/PS1 TRANSGENIC MOUSE MODEL OF ALZHEIMER’S DISEASE

Correspondence: Martina Holubová

Background

Alzheimer’s disease (AD) is one of the most common types of dementia characterized by progressive memory loss, cognitive decline and aberrant behavior. Currently, there is no effective treatment of AD. Type 2 diabetes mellitus was reported to be a risk factor for AD, and anorexigenic and anti-diabetic insulin and glucagon-like peptide 1 agonists were found to prevent AD features in animal models of AD. In this study, we examined the role of novel anorexigenic lipidized analog of prolactin-releasing peptide (PrRP) in the development of neurodegenerative changes.

Method

6-8 months-old APPSWE/PS1dE9 (APP/PS1) transgenic mice (n=9-10 per group) were once-daily subcutaneously injected with saline, 0.2 mg/kg liraglutide or 5 mg/kg [N-palm-Glu-Lys11] prolactin-releasing peptide 31 (palm11-PrRP31). After 2 months of treatment, the mice were transcardially perfused with saline. One hemisphere of each brain was post-fixed in 4% paraformaldehyde and used for immunohistochemistry analysis of β-amyloid (Aβ) plaque load and neuroinflammation. The other hemisphere was used for western blot analysis.

Results

Both liraglutide and palm11-PrRP31 were shown to significantly reduce both number and size of the β-amyloid deposits in the hippocampus and cortex of the APP/PS1 mice. Both anorexigenic lipopeptides also reduced inflammatory response associated with the Aβ plaques, namely microglia and astrocytes activation.

Discussion

The results demonstrate clear neuroprotective effects of palm11-PrRP31 which were comparable to the previously published effects of liraglutide (2).

Conclusions

Treatment with palmitoylated PrRP analog seems to be a promising tool for therapy of AD.

Acknowledgements

This work was supported by grants 16-00918S (GA CR), RVO:61388963 (CAS) and The Alzheimer Foundation Czech Republic – AWAST Foundation.

References

1. Hölscher C: New drug treatments show neuroprotective effects in Alzheimer’s and Parkinson’s diseases. Neuronal Regen Res. 2014, 9(21): 1870-1873.

2. McLean PL, Pathinarathy V, Favier E, Hölscher C: The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci. 2011, 31(7): 6587-94.
Background

Shortage of nerve growth factor (NGF) in the basal forebrain in Alzheimer's disease (AD) is a potential treatment for Alzheimer's disease, but peripheral nociceptive signaling prevents therapeutic doses of NGF [2, 3]. In the Hereditary Sensory and Autonomic Neuropathy type V (HSAN V) the mutant NGF-R100W displays conserved neurotrophic properties and decreased pain signaling [4, 5]. A variant of the HSAN V mutant, NGF-R100E [6], was examined along with NGF mutants NGF-W99A/Q96A, NGF-K95A/Q96A [7] and NGF-K95A/Q96A, to determine TrkA signaling and neurite outgrowth abilities.

Methods

Recombinant U2OS cells were used to study activation of TrkA. PC12 cells and human fetal dorsal root ganglion (DRG) neurons were used to study cell survival and neurite outgrowth.

Results

NGF-R100E displayed potent effects on studied functions, generally more potent than wild-type NGF. The double mutant NGF-K95A/Q96A displayed increased signaling via the TrkA receptor but had no effect on ERK1/2 phosphorylation, cell survival or neurite outgrowth. NGF-W99A activated TrkA but was unable to increase cell survival and neurite outgrowth to the same extent as NGF.

Discussion

NGF-R100E improved TrkA activation as well as signaling and functional effects in human DRG neurons compared with NGF. Neither TrkA-SHC1 nor TrkA-PLCγ1 signaling or phosphorylation of ERK1/2 was affected in a way that can explain the effects of the NGF-R100E mutant in HSAN V. Alterations in loop 4 of NGF were studied using the NGF-K95A/Q96A mutant. Interestingly, the TrkA signaling of NGF-K95A/Q96A is conserved and improved at high concentrations, while the neurite outgrowth abilities are completely abolished.

Conclusions

Differentiated activation of the TrkA signaling cascade and the neurite outgrowth capacity by NGF mutants suggest that there are possibilities to obtain selective NGF/TrkA modulation.

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Harriet Williams

Background

Alzheimer's disease (AD) is the most common form of dementia, impacting at least 5 million Americans. It is estimated that by 2050, 16 million Americans will be affected by the disease. Currently there is no effective treatment or preventative strategy. One of the major obstacles facing the development of these therapeutics, is a lack of predictive animal models. One reason for this may be that the existing models are based on familial mutations, which account for only 2-5% of the AD population. The Model Organism Development and Evaluation of Late-onset Alzheimer's Disease (MODEL-AD) center has been established as a consortium, consisting of Indiana University, The Jackson Laboratory, Sage Bionetworks and University of California Irvine. Our goal is to develop panel of at least 50 mouse models for late onset AD (LOAD) that more faithfully recapitulate the human condition.

Methods

There are three cores: the Bioinformatics and Data Management Core (BDMC), the Disease Modeling Project (DMP) and the Preclinical Testing Core (PTC). Each core has specific aims to developing new testing pipelines and models for LOAD.

Results

The BDMC is charged with prioritizing novel variants, developing analytical pipelines for human-mouse phenotype comparisons, and analyzing phenotypic data. Biomarkers and disease endophenotypes will be compared to patient data wherever possible. The DMP will create new models for LOAD, based on variants identified by the BDMC, and will be phenotypically characterized through standardized pipelines. The PTC has established a pipeline for tertiary screening. This pipeline includes predetermined go/no-go criteria to evaluate the efficacy of novel compounds in newly developed models, that show an AD-like phenotype.

Discussion

All models, protocols, and data are to be made widely available through the Sage-Synapse portal.

Conclusions

We aim to seek input and collaborations from the AD community. For more information see http://www.model-ad.org
underlying loss of function RAB39B mutation-caused XLMR and parkinsonism.

Conclusions
Our study reveals a novel role of RAB39B in regulating autophagy and thus synaptic plasticity.

P2-K16 AUTOPHAGY-MEDIATED Aβ METABOLISM AND NEURODEGENERATION IN ALZHEIMER’S DISEASE
Richeng Jiang1, Simone Tambaro1, Misaki Sekiguchi2, Takashi Saito2, Takaomi C Saito2, Bengt Winblad1, Martin Hallbeck1, Per Nilsson1
1Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden; 2Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan, 3Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science, Linköping University, Linköping, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Richeng Jiang

Background
Autophagy is dysregulated in Alzheimer’s disease (AD). We have previously shown that autophagy, in addition to its degradative function, mediates the secretion of Aβ and hence directly influences Aβ plaque formation [1]. This was shown using transgenic APP overexpressing mice. Immunoelectron microscopy data indicated the involvement of multi-vesicular bodies (MVB) in this secretion [2]. Since the APP overexpression induces a number of artifacts that may influence the results we have here investigated the role of autophagy in Aβ metabolism using a novel APP knock-in mouse model of AD, APPNL-F, recently generated [3].

Methods
Autophagy-deficient APP knock-in mice were generated by conditional genetic deletion of autophagy-related gene 7 (Atg7) in a novel APP knock-in mouse model of AD (APPNL-F). Exosome isolation is ongoing to measure the Aβ content. The intracellular Aβ is identified by immunoelectronmicroscopy. Knock down of autophagy genes is performed in SHSY-5Y cells.

Results
Autophagy-deficient APPNL-F mice exhibit drastically lowered Aβ plaque load as well as pronounced intracellular Aβ accumulation. Manipulation of MVB biogenesis in SHSY-5Y cells altered the secretion of Aβ.

Discussion
The use of non-overexpressing mouse models facilitates interpretation of in vivo data. The lowered Aβ plaque load and the increased intracellular Aβ accumulation of the autophagy-deficient APPNL-F mice confirm our previous data and establish that autophagy plays a key role in Aβ secretion even under physiological APP levels.

Conclusions
Autophagy influences secretion/transfer of Aβ in neuronal cells and causes neurodegeneration in knock-in mouse model of AD.

References
1. Nilsson, P., et al., Aβ Secretion and Plaque Formation Depend on Autophagy. Cell Reports, 2013. 5(1): p. 61-69.
2. Nilsson, P., et al., Autophagy-Related Protein 7 Deficiency in Amyloid β (Aβ) Precursor Protein Transgenic Mice Decreases Aβ in the Multivesicular Bodies and Induces Aβ Accumulation in the Golgi. The American Journal of Pathology, 2015. 185(2): p. 305-313.
3. Saito, T., et al., Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci, 2014. 17: p. 661-663.

P2-K18 BRAIN REGION-SPECIFIC ENHANCEMENT OF REMYELINATION AND PREVENTION OF DEMYELINATION BY THE CSF1R KINASE INHIBITOR BLZ945
Nicola Beckmann1, Elisa Giorgetti1, Anna Neuhaus2, Stefan Zurbruegg2, Nathalie Accart1, Paul Smith1+, Julien Perdoux1, Ludovic Perrot1, Mark Nash1, Sandrine Desayaud2, Peter Wipflil2, Wilfried Friaufl3, Derya R. Shimshek2
1Musculoskeletal Disease Area; 2Neuroscience; 3Autoimmunity, Transplantation and Inflammation; 4Global Scientific Operations; 5PK Sciences; 6Preclinical Safety, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Derya R. Shimshek

Background
Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system (CNS). While multiple effective immunomodulatory therapies for MS exist today, they lack the scope of promoting CNS repair, in particular remyelination. Microglia play a pivotal role in regulating myelination processes, and the colony-stimulating factor 1 (CSF-1) pathway is a key regulator for microglia differentiation and survival.

Methods: We investigated the effects of the CSF-1 receptor kinase inhibitor, BLZ945, on central myelination processes in the 5-week murine cuprizone model by non-invasive and longitudinal magnetic resonance imaging (MRI) and histology.

Results
Therapeutic 2-week BLZ945 treatment caused a brain region-specific enhancement of remyelination in the striatum/cortex, which was absent in the corpus callosum/external capsule. This beneficial effect correlated positively with microglia reduction, increased oligodendrocytes and astrogliosis. Prophylactic BLZ945 treatment prevented excessive demyelination in the corpus callosum by reducing microglia and increasing oligodendrocytes. In the external capsule oligodendrocytes were depleted but not microglia and a buildup of myelin debris and axonal damage was observed.

Discussion
BLZ945 treatment seems to induce prompt differentiation of oligodendrocyte precursor cells (OPCs) as NG2-positive OPCs were reduced but mature oligodendrocytes (ODs) increased. Furthermore, discrepancy between MRI signal and MTR may indicate poor myelin debris removal in a given area, pointing to the importance of assessing both parameters. Prophylactic BLZ945 treatment and TREM2 knock-out animals in the cuprizone model displayed similar results indicating that the CSF1R and TREM2 pathway may converge and even interact to exert similar downstream events.

Conclusions
Our data suggest that a short-term therapeutic inhibition of the CSF-1 receptor pathway enhances central remyelination by modulating neuroinflammation. Hence, BLZ945 might be considered clinically for promoting myelination in combination with standard-of-care treatments in MS patients.

P2-K19 CELLULAR PROCESSES LINKING TRAUMATIC BRAIN INJURY AND ALZHEIMER’S DISEASE
Linn Gallasch, Marlena Zyśk, Anna Erlandsson
Department of Public Health and Caring Sciences, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Background
It has been demonstrated that there is an epidemiological association between traumatic brain injury (TBI) and the development of
Alzheimer’s disease (AD) later in life, but the cellular mechanism behind this link remains elusive [1].

Methods
In this study we aimed to investigate the cellular connection between TBI and AD by using an in vitro TBI model. Primary neurons, astrocytes and oligodendrocytes, derived from E14 wild-type mouse cortices, were exposed to synthetic Aβ42 protofibrils for 24h and then mechanically injured by scalpel cuts. The cellular response to the injury was investigated by immunocytochemistry and Western blot analysis.

Results and discussion
Previously, we have demonstrated that the astrocytes in the co-culture engulf dead cells following the scratch injury [2]. Moreover, astrocytes readily engulf Aβ42 protofibrils, but are unable to degrade the ingested material effectively [3]. Hence, TBI and Aβ42 protofibril exposure result in high loads of engulfed material in astrocytes, which led us to focus this study on autophagy. Our results show that the number of puncta/cell and the total expression of LC3B was increased following Aβ42 protofibril exposure and TBI, indicating that the autophagy pathway was affected. However, the LC3BII/LC3BI ratio was unchanged. Importantly, there was no effect on the number of apoptotic cells following injury, Aβ42 protofibril exposure or a combination of both treatments, indicating that there is no widespread Aβ-induced cell death in direct response to the injury. To further clarify the effect on the autophagy pathway we will perform LC3B tandem sensor assays to monitor autophagic flux and also examine p62 levels. Moreover, we will investigate the long-term effect of Aβ42 protofibril exposure and TBI on cell survival and autophagy.

Conclusion
In order to prevent the onset of AD, a better understanding of the cellular and molecular mechanisms triggering the first steps of the disease is highly desirable. Our data suggest that phagocytic astrocytes and the autophagic processes may be interesting to study in this context.

References
1. Edwards G III, Moreno-Gonzales I, Soto C: Amyloid-beta and tau pathology following repetitive mild traumatic brain injury. Biochemical and Biophysical Research Communications 2017, 483 (4): 1137.
2. Lööv C, Hillered L, Ebendal T, Erlandsson A: Engulfing astrocytes protect neurons from contact-induced apoptosis. PLOS One 2012, 7 (3): e35090.
3. Söllvander S, Nikitidou E, Brolin R, Söderberg L, Sehlin J, Lannfelt L, Hansson Edalat M, Mannervik B: Accumulation of amyloid-β by astrocytes results in enlarged endosomes and microvesicle-induced apoptosis of neurons. Molecular Neurodegeneration 2016, 11 (1): 38.

P2-K20 GLUTATHIONE TRANSFERASE IN CNS: GUARDIANS AGAINST NEURODEGENERATION
Helena Lindström, Birgitta Sjödin, Bengt Mannervik
Department of Biochemistry and Biophysics, Stockholm University, Sweden
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Background
Glutathione transferases (GSTs) comprise a superfamily of enzymes prominently involved in detoxication by making toxic electrophiles more polar and therefore more easily excretable. Ubiquitously expressed throughout the organism, GSTs counteract pathology in all organs and tissues, including the CNS [1]. Furthermore, some GSTs have developed alternative functions, augmenting the protective effect. Thus GSTs are involved in the biosynthesis of steroid hormones including progesterone, a neurohormone the CNS levels of which are altered in pathologies including Parkinson, Alzheimer, Huntingdon disease, multiple sclerosis, and other neurodegenerative disorders. Estradiol triggered formation of progesterone in neurons has been found to provide important protection against oxidative stress [2].

Methods
To complement the characterization of the horse enzyme EcaGST A3-3 [3] with inhibition studies, 1096 FDA-approved compounds were screened for inhibitory effect on EcaGST A3-3 activity. The in vitro measurements of enzyme activity were followed spectrophotometrically.

Results
Our experiments have revealed that a member of the Alpha class GSTs in human, horse and pig is catalyzing the obligatory double-bond isomerization of Δ5-androstene-3,17-dione to Δ4-androstene-3,17-dione and of Δ5- pregnene-3,20-dione to Δ4-pregnen-3,20-dione on the biosynthetic pathways to testosterone and progesterone. Five FDA-approved compounds had IC50 values in the nanomolar range and two in the micromolar range.

Discussion and Conclusion
The equine GST A3-3, as well as the human enzyme, is the most efficient steroid double-bond isomerase known so far in mammals, suggesting a physiologically significant role in the synthesis of steroid hormones. This notion is supported by significant suppression of progesterone synthesis in a cell line by the inhibition of GST A3-3 activity by drugs as well as by RNAi [4]. The inhibition pattern of EcaGST A3-3 is similar to that of HsaGST A3-3.

References
1. Mazzetti AP, Fiorile MC, Primavera A, LaBello M: Glutathione transferases and neurodegenerative diseases. Neurochem Int 2015, 82:10-18.
2. Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermeno G, Mitro N, Viviani B, Garcia-Segura LM, Caruso D: Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol 2014, 113:56-69.
3. Lindström H, Peer SM, Ing NH, Mannervik B: Characterization of equine GST A3-3 as a steroid isomerase. J Steroid Biochem Mol Biol 2018, in press, doi.org/10.1016/j.jsbmb.2017.11.011.
4. Raffalli-Mathieu F, Ore C, Stridsberg M, Hansson Edalat M, Mannervik B: Targeting human glutathione transferase A3-3 attenuates progesterone production in human steroidogenic cells. Biochem J 2008, 414:103-109.
fluorescent proteins (ddRFP) with the anchoring tags for microtubular or synaptic localization.

Discussion

Coexpressing TAFs and ddRFP-based sensors targeting different compartments or different caspases within the same cell, we expect to characterize spatiotemporal dynamics of caspase signalling in cell models of neurodegeneration.

Conclusion

Tau-anchored FRET-based caspase sensors (TAFSs) give spatiotemporal information and when coexpressed with ddRFP-based sensors is expected to increase our understanding of signal transduction networks within living cells.

Reference

[1] Ivanova, Elena V., Ricardo A. Figueroa, Tom Gatsinzi, Einar Hallberg, and Kerstin Verfeldt: Anchoring of FRET Sensors—A Requirement for Spatiotemporal Resolution. Sensors (Basel, Switzerland). 2016, 16: 703. https://doi.org/10.3390/s16050703.
P2-K25 MYELIN BREAKDOWN LEADS TO BIN1 ACCUMULATION IN AMYLOID DEPOSITS
Pierre De Rossi1, Robert J. Andrew1, Tim Musial2, Sofia V. Krause1, Virginie Buggia-Prevot1, Richard C. Rice1, Peter Pytel3, Dan Nicholson4, Gopal Thinakaran5

1Department of Neurobiology, The University of Chicago, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637, USA; 2Department of neurological sciences, Rush University, 600 S. Paulina St., Chicago, Illinois 60612; 3Department of Pathology, The University of Chicago, The University of Chicago, Chicago, IL 60637, USA; 4Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, The University of Chicago, Chicago, IL 60637, USA; 5Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, The University of Chicago, Chicago, IL 60637, USA

Correspondence: Pierre De Rossi

Background
The deposition of amyloid-β (Aβ) peptide in extracellular senile plaques is a hallmark of Alzheimer’s disease (AD). Aβ is derived from the cleavage of amyloid precursor protein (APP) by the β- and γ-secretases. It has been proposed as the key trigger in the complex cascade of events which lead to AD. Genome-wide association studies have recently identified BIN1 as a major susceptibility locus for late-onset AD (LOAD). We previously reported a predominant expression of BIN1 in mature oligodendrocytes and the white matter tracts. Interestingly, recent in vitro studies described a role for BIN1 in APP processing by BACE1 and Aβ production. However, the role of BIN1 in Aβ generation in vivo remains to be reported.

Methods
In this study, we explored BIN1 localization within the amyloid deposits in different model for Alzheimer disease. We explored the change of solubility properties of BIN1 using sequential detergent extraction. We investigated BIN1 localization within the deposits using confocal and STED microscopy. We confirmed our observations by immunoEM.

Results
Here, we report an increase in the levels of insoluble BIN1 in the brains of 5XFAD transgenic mice. We also observe a striking accrual of BIN1 within the amyloid deposits in multiple transgenic models of AD and in the human brain. This aberrant BIN1 localization was distinct from dystrophic neurite accumulation of APP and BACE1. Our immunoEM results suggest that the accumulation of insoluble BIN1 appears along the amyloid processes. We hypothesize that BIN1 insolubility and accumulation is a consequence of myelin destruction and the extracellular release of BIN1.

Discussion
Altogether, our results suggest a reorganization of myelin proteins surrounding the amyloid deposits and the change of BIN1 biophysical properties in relation to Aβ accumulation in the brain.

Conclusions
Our results bring new evidence of myelin protein reorganization associated with amyloid deposition. This work opens new avenues related to myelin pathology observed in AD.

P2-K26 DELETION OF A SINGLE BIN1 ALLELE DOES NOT ALTER AMYLOID PATHOLOGY IN A MOUSE MODEL OF ALZHEIMER’S DISEASE
Robert J. Andrew, Pierre De Rossi, Thomas Guerbette, Sofia V. Krause, Elle M. Rathbun, R. Casey Rice, Gopal Thinakaran

Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, Illinois, USA

Correspondence: Robert J. Andrew

Background
BIN1 was identified as the second most prevalent risk factor for late-onset Alzheimer’s disease (AD) in genome-wide association studies. A reduction in neuronal BIN1 isoform has been reported in patients with AD. Though little is known about BIN1 function in the brain, the loss of BIN1 expression has been proposed to influence BACE1 trafficking and Aβ production in vitro.

Methods
Mice with germine deletion of a single Bin1 allele were analysed for BACE1 and APP distribution by immunofluorescence microscopy. Following crossing to the 5XFAD model of amyloidosis, the amyloid burden was assessed at 4 months of age using mAb-3D6 (anti-Aβ) and ThioflavinS staining. Endogenous Aβ and soluble and insoluble Aβ were measured using MesoScale Multi-plex assays.

Results
Deletion of a single Bin1 allele in mice, resulted in 50% reduction in BIN1 protein levels in the brain. However, the partial loss of BIN1 expression did not grossly affect BACE1 distribution in mouse brain, alter endogenous Aβ levels or cause significant cognitive or motor deficits in a range of behavioural paradigms. The loss of a single Bin1 allele in 5XFAD mice resulted in no significant difference in amyloid burden, as observed by immunofluorescence microscopy or ELISA, compared to littermate controls with two Bin1 alleles. The partial reduction in BIN1 expression did not alter behavioural deficits in 5XFAD mice associated with amyloid deposition in vivo.

Discussion
Despite prior reports of reduced neuronal BIN1 levels associated with AD and a role in BACE1 trafficking and Aβ generation in vitro, reduction of BIN1 protein within the brain of non-transgenic and 5XFAD mice resulted in no significant change in amyloid production or deposition.

Conclusions
Our results indicate that the mechanism(s) through which risk is conferred by polymorphisms in the BIN1 gene is not through a role in amyloid generation or deposition.

P2-K29 A NOVEL SEX-DEPENDENT AND ESTROGEN-SENSITIVE EFFECT OF THE HUMAN GENE RPS23RG1 ON SYNAPTIC FUNCTION AND PLASTICITY
Yu Sun, Spencer Gibson, Juan C. Piña-Crespo, Huaxi Xu

Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA

Correspondence: Yu Sun

Background
The ability of estrogens to improve hippocampus-dependent cognitive function, including learning and memory, is not well understood. Here we report a novel sex-dependent and estrogen-sensitive effect of the novel retroposed human gene RPS23RG1 [1,2] on synaptic function and plasticity in mouse hippocampus.

Materials and Methods
We used slice electrophysiology to study late-LTP (L-LTP) in hippocampal slices from young (21-28-days-old) and adult (2-3 months
Institute, Cedar-Sinai Medical Center, Los Angeles, CA, USA
Pathology and Laboratory Medicine, Department of Neurology,
1Department of Cell and Molecular Biology, Feinberg School of
β-cerebral deposition of amyloid
The neurodegenerative Alzheimer

to G162.0 ± 2.6 vs 153.6 ± 31.62, p= 0.6380). In addition, we observed that the ef-
expression, even in male mice.

Sensitiver to estrogens and limited to the sexually mature female
expression, like estrogen function, also declines during normal brain
expression, even in male mice.

1. Zhang YW, Liu S, Zhang X, Li WB, Chen Y, Huang X, Sun L, Luo W, Netzer
2. Huang X, Chen Y, Li WB, Cohen SN, Liao FF, Li L, Xu H, Zhang YW (2010)
3. Yan L, Chen Y, Li W, Huang X, Badie H, Jian F, Huang T, Zhao Y, Cohen
4. CypD deficient mice were crossed with 5xFAD mice (an AD mouse
5. We found that the interaction between OSCP/CypD elevates in
P2-K33 AMYLOID β-CYCLOPHILIN D-OSCP MAKES THE DEVIL’S TRIANGLE OF MITOCHONDRIAL F1FO ATP SYNTHASE DYSFUNCTION IN ALZHEIMER’S DISEASE
Esha Gauba, Lan Guo, Heng Du
Department of Biological Sciences, University of Texas at Dallas, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Esha Gauba

Somatic mitochondrial dysfunction in Alzheimer’s disease (AD) is
strongly associated with F1FO ATP synthase (F1FO ATP5) deregulation,
which results in inefficient OXPHOS and collapsed mitochondrial
membrane potential, as well as excess mitochondrial Permeability
Transition pore (mPTP) formation. Recent studies from our lab have
determined the physical interaction between a F1FO ATP5 subunit
Oligomycin Sensitivity Conferring Protein (OSCP) and Amyloid β (Aβ),
as well as the interaction between Aβ and the key mPTP regulator
Cyclophilin D (CypD) in AD brains (1, 2). Given the known interplay
of OSCP with CypD raises an intriguing question that whether Aβ is a factor
promoting the formation of OSCP/CypD complex in AD-related
pathological settings, thus inducing excess mPTP formation and
aggravating synaptic mitochondrial dysfunction in AD.

Methods
CypD deficient mice were crossed with 5xFAD mice (an AD mouse
model). The mice at different ages were used to isolate synaptic
mitochondria brain to perform mitochondrial studies & brain cryosec-
tions for immunostaining and interaction studies.

Results
We found that the interaction between OSCP/CypD elevates in
Aβ-rich conditions in AD mouse brains along with reduced synaptic
mitochondrial function and F1FO ATP5 dysfunction. Moreover,
OSCP/Aβ interaction decreases with CypD depletion in a dose
dependent manner in AD conditions. Lastly, dose-dependent
CypD depletion restored the decreased OSCP levels in AD mice
brain together with attenuated mitochondrial OXPHOS function,
restored ATP levels, and mitigated mitochondrial calcium hand-
ling capacity as well as alleviated F1FO ATP5 enzymatic activity
in AD mouse brains.

Discussion
We have determined the binding interplay of the proteins- OSCP,
CypD and Aβ and revealed the deleterious impact of such interac-
tions on mitochondrial function in AD conditions.

P2-K32 ABNORMAL HIPPOCAMPAL AXONAL ORGANIZATION IN ADULT CONDITIONAL BACE1 KNOCKOUT MICE
Ming-Hsuan Ou-Yang1, Jonathan E. Kurz2, Toshihiro Nomura3, Jelena
Popovic1, Tharinda W. Rajapaksha1, Hongxin Dong2, Anis Contractor4,5,
Dane M. Chetkovich1,6, Warren G. Toutellotte7,8, Robert Vassar1
1Department of Cell and Molecular Biology, Feinberg School of Medicine,
Northwestern University, Chicago, IL, USA; 2Department of Pediatrics,
Feinberg School of Medicine, Northwestern University, Chicago, IL, USA;
3Department of Physiology, Feinberg School of Medicine, Northwestern
University, Evanston, IL, USA; 4Department of Psychiatry and Behavioral
Sciences, Feinberg School of Medicine, Northwestern University,
Chicago, IL, USA; 5Department of Neurology and Clinical Neuroscience,
Feinberg School of Medicine, Northwestern University, Chicago, IL, USA;
6Department of Pathology, Division of Neuropathology, Feinberg School
of Medicine, Northwestern University, Chicago, IL, USA; 7Department of
Pathology and Laboratory Medicine, Department of Neurology,
Neurological Surgery, and Board of Governors Regenerative Medicine
Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Ming-Hsuan Ou-Yang

Background
The neurodegenerative Alzheimer’s disease (AD) is characterized by
cerebral deposition of amyloid β which, suggested by a large body of
evidence, plays an important role in disease progression, β-site APP
cleaving enzyme (BACE1) is the initiating enzyme in the produc-
tion of Aβ and thus a prime therapeutic target of AD. However,
BACE1 deletion is known to cause neurological phenotypes in germ-
line BACE1 knockout mice due to insufficient cleavage of its vast var-
iety of substrates. While BACE1 inhibitors have advanced into clinical

trials, little is known about function of BACE1 in adults. The pheno-
types observed in BACE1 knockout mice could result from the role of
BACE1 in developmental stages. On the other hand, developmental
compensation could also mask phenotypes that would be otherwise
detected when BACE1 is inhibited in a later age.

Methods
In order to dissect the roles of BACE1 in the brain and in adult life,
we generated BACE1fl/fl mice in which BACE1 gene exon 2 was
flanked by loxP sites and crossed them to either CamKIIa-Cre mice
to generate fore-brain specific BACE1 knockout or R26CreERT2 mice
to generate tamoxifen-inducible BACE1fl/fl, R26CreERT2 mice.

Results
We evaluated BACE1 conditional knockout mice for phenotypes
previously reported in germ-line BACE1 knockout mice and both condi-
tional knockout mice appeared to be largely normal, with one
notable exception. Surprisingly, despite having normal memory and
LTP, both conditional knockout mice have abnormalities in hippo-
campal mossy fiber organization as reported in germ-line BACE1
knockout mice. Importantly, this abnormality is correlated with the
levels of CHL1, a BACE1 substrate involved in axon guidance. Discus-
sion Future studies will be required to understand potential func-
tional effects of BACE1-associated mossy fiber abnormalities.

Conclusion
Our results agree with early clinical trials that BACE1 inhibition in
adults may be well-tolerated, yet caution is warranted for long-term side-effects.

References
1. 1. Zhang YW, Liu S, Zhang X, Li WB, Chen Y, Huang X, Sun L, Luo W, Netzer
W, Threadgill R, Wiegand G, Wang R, Cohen SN, Greengard P, Liao FF, Li,
Xu H (2009) A functional mouse retrospoted gene Rps23r1 reduces
Alzheimer's beta-amyloid levels and tau phosphorylation. Neuron 64:328-
340.
2. Huang X, Chen Y, Li WB, Cohen SN, Liao FF, Li L, Xu H, Zhang YW (2010)
The Rps23r gene family originated through retroposition of the
ribosomal protein S23 mRna and encodes proteins that decrease
Alzheimer’s beta-amyloid level and tau phosphorylation. Hum Mol Genet
19:3835-3843.
3. Yan L, Chen Y, Li W, Huang X, Badie H, Jian F, Huang T, Zhao Y, Cohen
SN, Li L, Zhang YW, Luo H, Tu S, Xu H (2016) RPS23RG1 reduces Abeta
oligomer-induced synaptic and cognitive deficits. Sci Rep 6:18668.
P2-K35 AMYLIN PATHOLOGY IN FAMILIAL ALZHEIMER’S DISEASE – REDUCING SYSTEMIC AMYLIN DYSHOMEOSTASIS AMELIORATES BEHAVIOR CHANGES IN ALZHEIMER’S DISEASE RATS
Han Ly1,2, Nirmal Verma1,2, Fengen Wu1,2, John Hardy3, Tammaryn Bank, Institute of Psychiatry, London, UK

BEHAVIOR CHANGES IN ALZHEIMER’S DISEASE RATS

BEHAVIOR CHANGES IN FAMILIAL ALZHEIMER’S DISEASE RATS

Conclusions

These results convey a triad of the proteins interactions and depicts that Aβ promotes CypD/OSCP interaction, which is potentially a critical cause of mitochondrial dysfunction in AD brain.

References

1. Beck, S. J., L. Guo, A. Phensy, J. Tian, L. Wang, N. Tandon, E. Gauba, L. Lu, J. M. Pascual and S. Kroener (2016). "Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer’s disease." Nature communications 7: 11483.
2. Gauba, E., L. Guo and H. Du (2017). "Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice." Journal of Alzheimer’s Disease 55(4): 1351-1362.

Conclusions

Amylin dyshomeostasis ameliorates behavior changes in a rat model of amylin-Aβ interaction.

References

1. Jackson K, Barisone G, Jin L-W, DeCarli C, Despa F. Amylin deposition in the brain: a second amyloid in Alzheimer disease? Ann Neurol 2013, 74(4):517-526.
2. Fawver JN, Ghiwot Y, Koola C, Carrera W, Rodriguez-Rivera J, Hernandez C, et al: Islet amyloid polypeptide (IAPP): a second amyloid in Alzheimer’s disease. Curr Alzheimer Res 2014;11:928-40.
3. Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westmark GT: In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. Am J Pathol. 2015, 185:834-46.
result in de-regulation of histone gene expression and lead to altered cell homeostasis in ALS patients.

References
1. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M: iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 2014, 159(4):896-910.
2. Braak H, Del Tredici K: Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol 2012, 25(4):708-14.
3. Adori C, Glück L, Barde S, Yoshitake T, Kovacs GG, Mulder J, Maglóczky Z, Havas L, Bölcskei K, Mitsios N, Uhlén M, Szolcsányi J, Kehr J, Rönnbäck A, Schwartz T, Rehfeld JF, Karkanji T, Palkovits M, Schulz S, Hökfelt T: Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer’s disease. Acta Neuropathol 2015, 129(6):541-63.
P2-04 WIDESPREAD DISTRIBUTION OF TAUOPATHY IN PRECLINICAL ALZHEIMER'S DISEASE:
Stephanie A. Schultz1,2, Brian A. Gordon2,3,4, Shruti Mishra2, Yi Su2, Nigel J. Cairns3,5, John C. Morris3,5, Beau M. Ances3,5, Tammie L.S. Benzinger2,3,6

1Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO; 2Department of Radiology, Washington University School of Medicine, St. Louis, MO; 3Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO; 4Department of Psychological & Brain Sciences, Washington University, St. Louis, MO; 5Department of Neurology, Washington University School of Medicine, St. Louis, MO; 6Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO

Molecular Neurodegeneration 2019, 14(Suppl 1):POSTER

Correspondence: Stephanie A. Schultz

1 Contributed equally

Background
The Braak and Braak staging of neurofibrillary tangle (NFT) pathology in Alzheimer disease (AD) proposes that tauopathy in the form of NFTs develops early in the medial temporal lobes in cognitively normal (CN) adults. However, in vivo quantification remains unexamined in individuals with preclinical AD. Understanding both the spatial pattern and severity of tauopathy in brain positron emission tomography (PET) scans in this at-risk group is of great importance in the context of designing clinical trials and pharmacological interventions. Therefore the aim of this study was to leverage the recent development of tau-PET to examine the distribution and severity of tauopathy in CN adults with preclinical AD as determined by positive beta-amyloid biomarkers.

Methods
One hundred and ten CN older adults underwent 18F-AV-1451-tau-PET and florbetapir-beta-amyloid-PET imaging. Tau-PET data were processed with 34 cortical and 9 subcortical FreeSurfer regions and averaged across both hemispheres. Individuals were classified as being beta amyloid-positive (preclinical AD) or negative (control) based on a beta-amyloid-PET value. We compared the tau-PET binding in the two groups using linear regressions, adjusting for age and sex.

Results
After adjustment for multiple comparison correction, the preclinical AD cohort had higher tau-PET binding within 8 regions: precuneus (B=0.115, p=0.003), amygdala (B=0.133, p=0.004), banks of the superior temporal sulcus (B=0.107, p=0.002), entorhinal cortex (B=0.173, p=0.003), fusiform gyrus (B=0.096, p=0.001), inferior parietal cortex (B=0.114, p=0.002), inferior temporal cortex (B=0.111, p=0.002), and middle temporal cortex (B=0.108, p=0.001).

Discussion
Our study reports elevated patterns of tauopathy in preclinical AD in the medial temporal lobe and parietal lobe and association regions, suggestive of more widespread tauopathy early in the disease process.

Conclusions
These results suggest that therapies targeting tauopathy could be considered earlier in the disease course in order to prevent or ameliorate cognitive decline.
4. Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC: Single App knockin mouse models of Alzheimer’s disease. Nat Neurosci 2014, 17(5):661-663.

5. Pchitskaya E, Kraskovskaya N, Chernyuk D, Popugaeva E, Zhang H, Vlasova O, Bezprozvanny I: Stim2-Eb3 Association and Morphology of Dendritic Spines in Hippocampal Neurons. Scientific reports 2017, 7(1):017-17762.

6. Wu J, Ryskamp DA, Liang X, Egorova P, Zakharova O, Hung G, Bezprozvanny I: Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington’s Disease Mouse Model. The Journal of Neuroscience 2016, 36(1):125-141.

7. Pchitskaya E, Popugaeva E, Bezprozvanny I: Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2017, 30(17):3066-30660.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.