DATA REPORT

Pleiotropic effect of a novel mutation in GCNT2 causing congenital cataract and a rare adult i blood group phenotype

Sek-Shir Cheong1, Sarah Hull2, Benjamin Jones3, Ravinder Chana2, Nicole Thornton1, Vincent Plagnol4, Anthony T Moore1,2,5 and Alison J Hardcastle1

Mutations in GCNT2 have been associated with the rare adult i blood group phenotype with or without congenital cataract. We report a novel homozygous frameshift mutation c.1163_1166delATCA, p.(Asn388Argfs*20) as the cause of congenital cataract in two affected siblings. Blood group typing confirmed that both affected males have the rare adult i phenotype, supporting the hypothesis that the partial association of I/i phenotype and congenital cataract is due to the differential expression of GCNT2 isoforms.

Human Genome Variation (2017) 4, 17004; doi:10.1038/hgv.2017.4; published online 16 February 2017

Congenital cataracts (CCs) account for 3–5% of visual impairment in children in the United Kingdom,1 with a prevalence of 1–6 per 10,000 births, at least 50% of which are inherited.2,3 CC can be inherited as an isolated phenotype, in combination with other ocular features including microphthalmia/anophthalmia and aniridia,4,5 or as a syndromic condition associated with a broad range of extra-ocular phenotypes, such as developmental delay, skeletal defects and dental anomalies.4–7 Identification of the genetic cause of CCs is challenging due to genetic heterogeneity,8,9 and in some cases establishing genotype–phenotype correlation is hindered by intrafamilial phenotypic variability and variable disease progression.7,8

The human blood group I and i antigens are carbohydrate structures on glycoproteins and glycolipids on the cell surface, which were first discovered on human red blood cells.9 These antigens were subsequently identified in other tissues including reticulocytes and lens epithelium.10 The phenotype of I/i blood group is determined by the presence of I or i antigens and the expression of these antigens is developmentally regulated; i antigens are predominant on fetal red blood cells, whereas adult human red blood cells fully express I antigens with a very low level of i antigens. The conversion of i to I occurs during the first 18 months after birth as a result of the expression of the I-bearing enzyme, β-1,6-N-acetylglucosaminyltransferase 2 (encoded by GCNT2), which adds a GlcNAc-β-1–6 branch onto the poly-GlcNAc chains.11,12 Therefore, absence of this enzyme gives rise to the adult i phenotype, a rare autosomal recessive condition.13,14

The association of recessive mutations in the GCNT2 gene with CC and the rare adult i phenotype has been reported in 11 families, of differing ethnic origin (Table 1).10,15–19 In this study, we identified a novel homozygous GCNT2 frameshift mutation in a reportedly non-consanguineous Caucasian family with CC by whole-exome sequencing (WES), and subsequent I and i blood typing confirmed an adult i phenotype.

A reportedly non-consanguineous three-generation Caucasian family comprising two affected brothers, II:2 and II:3, was recruited to the study (Figure 1a). Patient (II:2), now age 40 years, was noted in early infancy to have reduced vision. Examination under anesthesia was performed at the age of 4 months, which identified pendular nystagmus and bilateral lamellar cataracts. Initial management was with pupil dilatation using guttae atropine 0.5% in each eye. At 10 months of age, cataract surgery was performed with lens aspiration, which left him aphakic. Contact lens refractive correction was subsequently used. Further treatment included two left lens surgical capsulotomies at the age of 2 and 17 years, right occlusion therapy for left amblyopia and squint surgery for left esotropia at the age of 2 years. At the age of 3 years, the first recorded uniocular visual acuity was 6/24 Snellen (right eye, RE), and 4/60 (left eye, LE). At last review, at 40 years old, visual acuity was 6/60 (RE), and 6/24 (LE) with refractive correction of +13.25/–2.25 × 105 (RE), +14.75/–1.25 × 170 (LE).

Patient (II:3), now age 39 years, was noted at 2 months of age by his mother to have nystagmus and a white reflex. Central lens opacities were found with abnormal posterior curvature of the lens, and normal fundi. Lens aspiration was performed in the left eye at 7 months of age, and in the right eye at 10 months of age with soft contact lens refractive correction afterwards. Further procedures included left needle capsulotomy at 8 months of age, left laser capsulotomy at the age of 15 years, secondary sulcus intraocular lens in the right eye at the age of 19 years and in the left eye at 29 years of age. Axial lengths on 8 scan ultrasound prior to lens insertion demonstrated long axial lengths of 27.88 mm (RE), 29.31 mm (LE) and refractive errors of +10.50/–1.00 × 10 (RE), and +10.00/–2.00 × 15 (LE). At the age of 29 years, Snellen visual acuity was 6/36 in both eyes. Fundus examinations and electroretinogram were normal in both siblings and there was no evidence of anterior segment dysgeneses or glaucoma.

Both parents were examined. Their mother (I:2) had subtle pendular nystagmus and bilateral lamellar cataracts. Findings could be age-related. Their deceased father (I:1) was unilaterally aphakic (trauma-related), the other lens was clear. Both affected siblings had uncomplicated births and were

1 UCL Institute of Ophthalmology, London, UK; 2 Moorfields Eye Hospital, London, UK; 3 IBGRL Red Cell Reference Laboratory, NHS Blood and Transplant, Bristol, UK; 4 UCL Genetics Institute, London, UK and 5 Ophthalmology Department, UCSF School of Medicine, San Francisco, CA, USA.

Correspondence: AJ Hardcastle (ahardcastle@ucl.ac.uk)
Received 31 August 2016; revised 5 January 2017; accepted 6 January 2017
No	Homo/Comp. Het	Nucleotide change	Protein change	Location (Exon)	Ethnicity	Clinical features	Ref.	Polyphen2 (human variation score 0 to 1)	SIFT (tolerance index 0 to 1)	Blosum 62 score (−4 to 11)	ExAC total individuals (heterozygous or homozygous)		
1	Homo	c.1043G > A/c.1043G > A	p.(G348E)/p.(G348E)	3	Taiwanese (1 family)	Yes	Yes	15	POS (0.548)	DMG (0)	−2	9/60 694	
2	Comp. Het	c.1043G > A/c.1148G > A	p.(G348E)/p.(R383H)	3	Taiwanese (1 family)	Yes	Yes	15	POS (0.548)	BNG (0.037)	TOL (0.08)	−2	9/60 694; 5/60 682
3	Homo	Segmental deletion (deletion encompassing exons 1B, 1C, 2 and 3)	No protein	NA	Taiwanese (1 family)	Yes	Yes	15	NA	NA	NA		
4	Homo	c.505G > A/c.505G > A	p.(A169T)/p.(A169T)	1C	White (5 unrelated patients)	Yes	No	10	PRD (0.990)	DMG (0)	0	572/60 656 (1/60 656)	
5	Comp. Het	c.505G > A/c.683G > A	p.(A169T)/p.(R226Q)	1C	White (1 patient)	Yes	No	10	PRD (0.998)	DMG (0)	0	572/60 656	
6	Comp. Het	c.1000G > A/c.1043G > A	p.(G334R)/p.(G348E)	2	Japanese (1 family)	Yes	Yes	16	POS (0.745)	TOL (0.51)	−2	1/57 697; 9/60 694	
7	Homo	c.977G > A/c.977G > A	p.(W326F)/p.(W326F)	3	Arabic (4 families)	Yes	Yes	17	NA	NA	0/58 867		
8	Homo	c.929G > A/c.929G > A	p.(G310D)/p.(G310D)	3	Persian Jews (1 family)	Yes	Yes	18	POS (0.798)	DMG (0.05)	−1	2/54 924	
9	Homo	Segmental deletion (~93 kb deletion encompassing exons 1B, 1C, 2 and 3)	No protein	NA	Pakistani (2 families)	Yes	Yes	19	NA	NA	NA		
10	Homo	c.1163_1166delATCA/c.1163_1166delATCA	p.(N388Rfs*20)/p.(N388Rfs*20)	3	White (1 family)	Yes	Yes	This study	NA	NA	0/60 675		

Abbreviations: BNG, benign; Comp. het, compound heterozygous; DMG, damaging; ExAC, Exome Aggregation Consortium; Homo, homozygous; NA, not available; PRD, probably damaging; POS, possibly damaging; TOL, tolerated. All variant annotations are numbered in accordance with GCNT2-B (Ensembl transcript ID: ENST00000316170), except p.(A169T) and p.(R226Q) variants, which are numbered according to GCNT2-C (Ensembl transcript ID: ENST00000265012) due to their locations in GCNT2-C-specific exon 1C (Figure 2). For each mutation, ethnicity and number of the reported families are shown. The clinical features describe the presence or absence of adult i blood group and cataracts in the affecteds. In silico analysis of GCNT2 mutations identified is presented. Polyphen2 appraises mutations quantitatively as benign, possibly damaging or probably damaging based on the model’s false-positive ratio. SIFT results are reported to be tolerated if tolerance index is ≥ 0.05 or damaging if tolerance index is < 0.05. Blosum 62 substitution matrix score; positive numbers indicate a substitution more likely to be tolerated evolutionarily and negative numbers suggest the opposite. ExAC denotes variants in the Exome Aggregation Consortium database (accessed 10 July 2016). The frequency of each variant contributing to the compound heterozygous mutation is separated by a semicolon “;”. None of the patient variants were identified in a homozygous state in the control population consisting of 60 656 individuals, except variant p.(A169T), indicated by †, in which one European individual from the control population was reported to be homozygous for the variant. The mutation reported in this study is highlighted in bold.
well with normal development. All investigations were conducted in accordance with the principles of the Declaration of Helsinki. The study was approved by the local ethics committees at Moorfields Eye Hospital, UK. After written informed consent was obtained from all subjects, blood samples were donated and genomic DNA was extracted from peripheral blood lymphocytes using conventional methodologies. Patients were clinically assessed by experienced ophthalmologists. Inheritance of CC was consistent with recessive disease (Figure 1a).

WES was performed for individual II:3 using Nimblegen sequence capture (v2) and a HiSeq2000 sequencer (Illumina, San Diego, CA, USA). Reads were aligned to the hg19 human reference sequence using Novoalign (Novocraft, www.novocraft.com) version 2.05. The ANNOVAR tool (OpenBioinformatics, www.openbioinformatics.org/annovar/) was used to annotate sequence variants. Filtering was performed to identify variants with a minor allele frequency \(\leq 0.005 \) in 1000 Genomes Project (www.1000genomes.org/), the National Heart, Lung, and Blood Institute Exome Sequencing Project Exome Variant Server (http://evs.gs.washington.edu/EVS/), Exome Aggregation Consortium database (http://exac.broadinstitute.org/) and our internal University College London exomes consortium database comprising of 1,980 exomes. Variants were then cross-referenced with CatMap (http://cat-map.wustl.edu/) for variants in known cataract genes. WES data were also analyzed by ExomeDepth\(^2\) to identify any potential causative exonic copy number variations. The \(\text{GCNT2}\) variant in exon 3 was tested for segregation in the affected males (II:2 and II:3), their mother (I:2) and the children of II:2 (III:1 and III:2) by direct sequencing. Primer sequences are available on request. \(\text{GCNT2}\) cDNA is numbered in accordance with Ensembl transcript ID ENST00000316170, with +1 corresponding to the A of the ATG translation initiation codon.

Figure 1. Novel homozygous \(\text{GCNT2}\) frameshift mutation in a CC family. (a) Pedigree of the study family with two affected siblings. Shaded squares denote affected males; dotted circles, carrier females; dotted square, carrier male. Arrowhead indicates proband in the family. (b) Exome sequence alignments of control (top panel) and individual II:3 (bottom panel) viewed using Integrative Genomics Viewer (https://www.broadinstitute.org/igv/) shows a 4-bp deletion in exon 3 of the \(\text{GCNT2}\) gene in the proband (indicated by dashed box). Nucleotide sequences and corresponding amino acid residues are shown below the exome data tracks. (c) Sequence electropherograms demonstrate segregation of the \(\text{GCNT2}\) mutation. The proband (II:3) and his affected brother (II:2) are homozygous for the 4-bp deletion. Their mother (I:2) and the children of II:2 (III:1 and III:2) are carriers for the mutation. Control sequence electropherogram is shown above I:2 sequence. The exon 3 mutation is predicted to cause a frameshift \([\text{c.1163}_3\text{1166delATCA}, \text{p.(Asn388Argfs*20)}]\). \(\text{GCNT2}\) cDNA is numbered in accordance with Ensembl transcript ID ENST00000316170, with +1 corresponding to the A of the ATG translation initiation codon.

Mutations in \(\text{GCNT2}\) causing CC and rare adult i blood group phenotype

S-S Cheong et al

Official journal of the Japan Society of Human Genetics

Human Genome Variation (2017) 17004
Figure 2. GCNT2 gene structure and isoforms annotated with reported mutations. (a) All previously reported GCNT2 mutations, including homozygous and compound heterozygous missense mutations, a homozygous nonsense mutation and segmental deletions. Mutations in GCNT2 exon 2 or exon 3, or segmental deletions encompassing exons 1B, 1C, 2 and 3, were reported in patients with CC and an adult i blood group phenotype (Table 1), whereas the mutations in exon 1C (homozygous A169T/A169T and compound heterozygous A169T/R226Q) were found in patients with an adult i blood group phenotype without cataract (Table 1). The novel homozygous GCNT2 frameshift mutation identified in this study, p.(N388Rfs*20), is located in exon 3 (indicated by †). (b) Schematic of GCNT2 genomic structure with black bars representing coding exons (not to scale). Three alternatively transcribed exon 1 (1A, 1B and 1C) indicate exons used in different GCNT2 isoforms. (c) Three GCNT2 isoforms designated GCNT2-A, -B and -C result from alternative transcribed exon 1, but identical exon 2 and 3. The size of each protein isoform is also shown.

ACKNOWLEDGEMENTS
The authors declare no conflict of interest.

REFERENCES
1 Mitry D, Bunce C, Wormald R, Leamon S, Simkiss P, Cumberland P et al. Causes of certifications for severe sight impairment (blind) and sight impairment (partial sight) in children in England and Wales. Br J Ophthalmol 2013; 97: 1431–1436.
2 Francis PJ, Moore AT. Genetics of childhood cataract. Curr Opin Ophthalmol 2004; 15: 10–15.
3 Gillespie RL, O’Sullivan J, Ashworth J, Bhaskar S, Williams S, Biswas S et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology 2014; 121: 2124–2137.
4 Litt M, Kramer P, LaMortella DM, Murphey W, Lowrie EN, Weleber RG. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 1998; 7: 471–474.
5 Khan AO, Aldahmesh Ma, Meyer B. Recessional congenital total cataract with microcornea and heterozygote carrier signs caused by a novel missense CRYAA mutation (R54C). Am J Ophthalmol 2007; 144: 949–952.
6 Ng D, Thakker N, Corcoran CM, Donnad J, Perveen R, Schneider A et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCO2. Nat Genet 2004; 36: 411–416.
7 Coccia M, Brooks SP, Webb TR, Christodoulou K, Wozniak IO, Munday V et al. X-linked cataract and Nance-Horan syndrome are allelic disorders. Hum Mol Genet 2009; 18: 2643–2655.
8 Richter L, Flodman P, Barria von-Bischhoffshausen F, Burch D, Brown S, Nguyen L et al. Clinical variability of autosomal dominant cataract, microcornea and corneal opacity and novel mutation in the alpha A crystallin gene (CRYAA). Am J Med Genet A 2008; 146A: 833–842.

9 Wiener AS, Unger LJ, Cohen L, Feldman J. Type-specific cold autoantibodies as a cause of acquired hemolytic anemia and hemolytic transfusion reactions: biology test with bovine red cells. Ann Intern Med 1956; 44: 221–240.

10 Yu LC, Twu YC, Chou ML, Reid ME, Gray AR, Moulds JM et al. The molecular genetics of the human I locus and molecular background explain the partial association of the adult i phenotype with congenital cataracts. Blood 2003; 101: 2081–2088.

11 Marsh WL. Anti-i: a cold antibody defining the li relationship in human red cells. Br J Haematol 1961; 7: 200–209.

12 Marsh WL, Nichols ME, Reid ME. The definition of two I antigen components. Vox Sang 1971; 20: 209–217.

13 Fukuda M, Fukuda MN, Hakomori S. Developmental change and genetic defect in the carbohydrate structure of band 3 glycoprotein of human erythrocyte membrane. J Biol Chem 1979; 254: 3700–3703.

14 Kościelak J, Zdebiska E, Wilczyńska Z, Miller-Podraza H, Dzierzkowa-Borodej W. Immunochemistry of li-active glycosphingolipids of erythrocytes. Eur J Biochem 1979; 96: 331–337.

15 Yu LC, Twu YC, Chang CY, Lin M. Molecular basis of the adult i phenotype and the gene responsible for the expression of the human blood group I antigen. Blood 2001; 98: 3840–3845.

16 Inaba N, Hiruma T, Togayachi A, Iwasaki H, Wang X-H, Furukawa Y et al. A novel I-branching beta-1,6-N-acetylglucosaminyltransferase involved in human blood group I antigen expression. Blood 2003; 101: 2870–2876.

17 Pras E, Raz J, Yahalom V, Frydman M, Garzozi HJ, Pras E et al. A nonsense mutation in the glucosaminyl (N-acetyl) transferase 2 gene (GCNT2): association with autosomal recessive congenital cataracts. Invest Ophthalmol Vis Sci 2004; 45: 1940–1945.

18 Wussuki-Lior O, Abu-Horowitz A, Netzer I, Almer Z, Morad Y, Goldich Y et al. Hematologic biomarkers in childhood cataracts. Mol Vis 2011; 17: 1011–1015.

19 Borck G, Kakar N, Hoch J, Friedrich K, Freudenberg J, Nürnberg G et al. An Alu repeat-mediated genomic GCNT2 deletion underlies congenital cataracts and adult i blood group. Hum Genet 2012; 131: 209–216.

20 Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 2012; 28: 2747–2754.

21 Marsh WL. Scoring of hemagglutination reactions. Transfusion 1972; 12: 352–353.