The origin and function of anti-fungal peptides in *C. elegans*: open questions

Nathalie Pujol1,2,3, Paul A. Davis4 and Jonathan J. Ewbank1,2,3*

1 Centre d’Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France
2 INSERM, U1104, Marseille, France
3 CNRS, UMR7280, Marseille, France
4 European Molecular Biology Laboratory-European Bioinformatics Institute, Cambridge, UK
*Correspondence: ewbank@ciml.univ-mrs.fr

While innate immunity has been studied in insects since the time of Pasteur and Metchnikoff (Brey, 1998), research into nematode immune defenses was initiated only comparatively recently (Kurz and Ewbank, 2003). In the mid 1990s, through a biochemical approach, Yusuke Kato was able to isolate an antibacterial activity from the body fluid of the parasitic nematode *Ascaris suum*. This activity was ascribed to *A. suum* antibacterial factor (ASABF), a peptide that is particularly potent against Gram-positive bacteria (Kato, 1995). The subsequent molecular characterization of ASABF allowed the identification of six orthologous “ABF” peptides in the model nematode *C. elegans*, one of which, ABF-2 displays *in vitro* microbicidal activity against a range of bacteria and fungi (Kato and Komatsu, 1996; Kato et al., 2002; Zhang and Kato, 2003). The six ABF peptides were immediately recognized as sharing features with defensins, placing them in the class of cysteine-stabilized α-helix and β-sheet (CSαββ) peptides, the most wide-spread and conserved class of antimicrobial peptides (AMPs; Zhu, 2008). The constitutive expression of *abf-1* and *abf-2*, the best characterized of the six corresponding genes in *C. elegans*, overlaps in the pharynx (Kato et al., 2002); they are likely to contribute to the breakdown of the microbes that form the nematode’s normal diet. Although they undoubtedly act upon both bacteria and fungi, here, we consider only their potential role in anti-fungal defenses. Both *abf-1* and *abf-2* are up-regulated by infection with the fungus *Cryptococcus neoformans* (Means et al., 2009), while the expression of *abf-1* but not of *abf-2* is induced by infection with the natural fungal pathogens *Drechmeria coniospora* and *Harposporium* sp. (Engelmann et al., 2011). Conversely, *abf-2* is up-regulated by *Candida albicans*. It is not clear what the underlying regulatory pathways governing *abf* gene expression are (Pukkila-Worley et al., 2011), but one can speculate that their differential regulation reflects both the various modes of pathogen infection (Labad and Pujol, 2011), and also their potentially distinct spectra of antimicrobial activities.

This conserved family of defensin-like peptides is something of an exception, since overall, *C. elegans* possesses a highly derived innate immune system. It has no equivalent of NF-κB, central to immunity in many animals, and also lacks orthologs of most of the receptors known from other species to be important for triggering host defenses (Pujol et al., 2001; Gravato-Nobre and Hodgkin, 2005). Indeed, as explained more in detail below, several classes of AMPs implicated in anti-fungal defense appear to be restricted to certain nematode species, and are controlled by signal transduction cascades with a very limited phylogenetic range (Dierking et al., 2011; Labed et al., 2012). Different fungal pathogens infect either via the intestine following ingestion, or via the epidermis. They influence AMP gene expression via distinct signaling cascades, but a detailed discussion of these regulatory mechanisms is beyond the scope of this short article.

Unlike *A. suum*, which can grow to a length of 40 cm, an adult *C. elegans* measures barely 1 mm, making extraction of body fluid technically almost impossible. Many of the other putative AMP genes in *C. elegans* were initially identified on the basis of their differential regulation following *D. coniospora* infection. The first such genes were members of the *nlp* (for neuropeptide-like protein) and *cnc* (caenacin) families (Couillault et al., 2004). At the time, the former had been tentatively annotated as neuropeptides, based on their limited sequence similarity with known neuropeptides. It was, however, observed that these genes were not generally expressed in the nervous system, but rather in the epidermis (Nathoo et al., 2001). This ties in with the fact that *D. coniospora* spores attach to the nematode’s cuticle and then germinate, penetrating into the body of the worm via the epidermis. Much, but not all, of the response to infection is a cell-autonomous mechanism acting in the epidermis; reviewed in Labed and Pujol (2011). The infection-induced *nlp* genes are structurally related to the *cnc* genes. The two groups further share the property of being found in clusters in the genome. Interestingly, comparison of the syntenic regions in two other *Caenorhabditis* species, *C. briggsae* and *C. remanei* revealed that these genes are undergoing relatively rapid evolution, with clear evidence for gene duplication and gene loss, and appear to be under positive selective pressure. Indeed, over-expression of either the *nlp* or *cnc* AMPs leads to somewhat increased resistance to *D. coniospora* infection (Pujol et al., 2008; Zugasti and Ewbank, 2009), suggesting that they play a direct role in host defense against invasive fungi. This is further reinforced by the finding that the *nlp* and *cnc* AMP genes feature prominently among the few genes commonly up-regulated by *D. coniospora* and the fungi *Harposporium* sp. (Engelmann et al., 2011). The expression of *cnc-4* and *cnc-7* is also induced by virulent *C. albicans* (Pukkila-Worley et al., 2011), which like *Harposporium* sp. infects *C. elegans* via the intestine.
Since the initial phylogenetic studies, more nematode genome sequences have become available. Comparative analyses reinforce the notion of rapid gene evolution. For example, the single copy *C. remanei* gene CRE-nlp-27 corresponds to a cluster of 5 paralogs in *C. elegans* (Pujol et al., 2008), but 10 predicted paralogs in *C. japonica* (Figures 1A,B). On the other hand, there apparently has been no expansion of the cnc genes in *C. japonica*, whereas multiple paralogs are found in the other *Caenorhabditis* species (Figure 1C). We have not found orthologous genes in several other nematode species for which genome

![Diagram](image-url)

Figure 1 (A) The nlp-29 cluster in *C. elegans* together with syntenic regions from *C. briggsae* (Cbg), *C. remanei* (Cre), and *C. japonica*. AMP genes of the nlp class are shown in blue; there has been a marked expansion in *C. japonica*. The genes labeled “a” and “c” in *C. elegans*, and their orthologs (Cbg-a, Cbg-c, Cre-a, and Cre-c) are predicted to encode serpentine receptors; “b” in *C. elegans* is K09D9.9. Its ortholog in *C. japonica* is ca. 60 kb 3′ of the locus. Immediately 3′ of the gene labeled “e” in *C. japonica* there is the remnant of a degenerate paralog of K09D9.9. The figure is adapted from data in Wormbase WS230; it does not reproduce the predicted fusion of Cre-b and Cre-c, as this does not appear to be probable. Only the 3′ extremities of a, b, and c are shown. (B–D) Phylogenetic trees for selected members of the NLP (B), CNC (C), and FIPR (D) family peptides, including homologs in *C. brenneri* (CBG). A distance matrix analysis was performed using the alignment program clustalw2 to generate a guide tree via pairwise and subsequent multiple sequence alignment. This guide tree was then used to produce a true phylogenetic tree that was loaded into the Interactive Tree Of Life v2 software suite (Letunic and Bork, 2011). Partial rooted trees were extracted that correspond to interesting features within the complete FIP/FIPR/NLP/CNC tree. For the non-elegans peptides, with the exception of CBG NLP-27 and CRE NLP-27, the corresponding gene identifier is given. The numbers in brackets for the *C. japonica* gene names match the corresponding genes in (A).
sequences are available, including *Brugia malayi* (Ghedin et al., 2007), *Meloidogyne incognita* (Abad et al., 2008), and *A. suum* (Jex et al., 2011). It is possible that these parasitic nematodes have a natural environment that shields them from fungal pathogens throughout their life cycle, so that they have been able to dispense with these AMP genes (Abad et al., 2008). On the other hand, there do appear to be two similar AMP-encoding genes in *Drosophila*, CG7738, now called CG34227, and CG17738 (Couillault et al., 2004). It is notable that the former was found to be up-regulated by fungal infection (De Gregorio et al., 2002), and was found to be up-regulated by fungal infection-induced *D. coniospora* infection.

This distinction subsequently turned out to be somewhat premature, since an RNAseq-based analysis of the transcriptional response to infection showed that *fipr-22*, *fipr-23*, and *fipr-26* are up-regulated by *D. coniospora*, while the expression of five others (*fipr-1, 2, 16, 17, and 20*) is induced by the fungus *Harposporium* sp. (Engelmann et al., 2011): *fipr-22* and *fipr-23* are also induced by *C. albicans* (Pukkila-Worley et al., 2011). Because of their large number, and their relatively simple structure, establishing solid phylogenetic relationships both within the nematode clade and beyond is a difficult, and on-going task. It is already clear, however, that these genes too are undergoing relatively rapid evolution, presumably a consequence of their role in host defense. For example, in *C. elegans* there are five paralogous *fipr* genes (including the infection-regulated *fipr-22* and *fipr-23*) clustered together, for which orthologs have not been identified in *C. japonica* or *C. briggsae* (Figure 1D). A very recent study has revealed marked differences in the seasonal abundance of proliferating *C. elegans* and *C. briggsae* populations in Northern France, with *C. elegans* being much more prevalent in the cooler autumn than in summer, when *C. briggsae* predominates (Felix and Duveu, 2012). There is therefore every reason to expect that the two nematode species will not be exposed to exactly the same range of natural pathogens, since microbial communities change with the seasons, perhaps explaining the divergent evolution of their AMP gene repertoire. There is increasing evidence that the commonly used strain of *C. elegans*, N2, underwent a number of changes to adapt to culture under laboratory conditions (see for example, Duveau and Felix, 2012). In the future, it will be interesting to see whether wild isolates of *C. elegans* present variations in their AMP genes.

Most *nlp* genes not regulated by fungal infection encode peptides that are either known to have an endocrine signaling function, or are hypothesized to; certain have been matched to specific G-protein coupled receptors (Husson et al., 2007; Janssen et al., 2010). One cannot exclude the possibility that some of the putative AMPs from the CNC and NLP families also exert a regulatory function during the innate immune response to fungal infection. The metabolism and activity of several classes of neuropeptide, both in *C. elegans* and other species are influenced by neprilysins (Husson et al., 2007). Typically, these zinc metallopeptidases are found on the outer surface of animal cells. They cleave small signaling peptides and thereby block their action. Interestingly, 13 of the 27 neprilysins genes in *C. elegans* are down-regulated upon infection with *D. coniospora* or by *Harposporium* sp. It remains to be determined whether they act on the infection-induced NLPs, or on other classes of peptides, such as insulin-like peptides, which are also transcriptionally regulated upon fungal infection (Engelmann et al., 2011). If they do, this would add a further level of complexity to the regulation of the host response to pathogens.

In conclusion, the last decade has seen considerable advances in our understanding of the role and evolution of AMPs in *C. elegans*. Future studies should yield more insights into their evolutionary origins and conservation, as well as their precise mode of action and the details of their complex regulation.

ACKNOWLEDGMENTS

Work in the Ewbank lab is supported by institutional funding from the CNRS and INSERM and program grants from the ANR. WormBase is supported by a grant from the NIH.

REFERENCES

Abad, P., Gouzy, J., Aury, J.-M., Castagnone-Sereno, P., Danchin, E. G. I., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguevenne, F., Blok, V. C., Caillaud, M.-C., Coutinho, P. M., Dasilva, C., De Luca, F., Deau, F., Esquibel, M., Flutre, T., Goldstone, J. V., Hamamouch, N., Hewezi, T., Jaillon, O., Jubin, C., Leonetti, P., Magliano, M., Maier, T. R., Markov, G. V., McVeigh, P., Poole, G., Poulain, J., Robinson-Rechavi, M., Sallet, E., Segurens, B., Steinbach, D., Tygat, T., Ugarte, E., Van Ghelder, C., Veronica, P., Baum, T. J., Blaxter, M., Bleve-Zacheo, T., Davis, E. L., Ewbank, J. J., Favery, B., Grenier, E., Henrisat, B., Jones, J. T., Laudet, V., Maule, A. G., Quesneville, H., Rosso, M.-N., Schiex, T., Smant, G., Weissenbach, J., and Wincker, P. (2008). Genome sequence of the metazoan plant-parasitic nematode *Meloidogyne incognita*. *Nat. Biotechnol.* 26, 909–915.

Brey, P. T. (1998). “The contributions of the Pasteur school of insect immunity,” in *Molecular Mechanisms of Immune Responses in Insects*, eds P. T. Brey and D. Hultmark (London: Chapman & Hall), 1–39.

Couillault, C., Pujol, N., Reboul, J., Sabatier, L., Guichou, J. F., Kohara, Y., and Ewbank, J. J. (2004).
TLR-independent control of innate immunity in *Caenorhabditis elegans* by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol. 5, 488–494.

De Gregorio, E., Spellman, P. T., Tsou, P., Rubin, G. M., and Lemaître, B. (2002). The Toll and Imd pathways are the major regulators of the immune response in *Drosophila*. *EMBO J.* 21, 2568–2579.

Dierking, K., Polanowska, J., Omi, S., Engelmann, L., Gutiérrez, M., Lembo, F., Ewbank, J., and Pujol, L. (2011). Unusual regulation of a STAT protein by an SLC6 family transporter in *C. elegans* epidermal innate immunity. Cell. Microbiol. 13, 425–432.

Duveau, F., and Felix, M. A. (2012). Role of pleiotropy in the evolution of a cryptic developmental variation in *Caenorhabditis elegans*. *PLoS Biol.* 10, e1001320. doi: 10.1371/journal.pbio.1001320

Engelmann, I., Griffon, A., Tichit, L., Montanana-Sanchis, E., Wang, S., Spiro, D., Caler, E., Zhao, Q., Felix, M. A., and Duveau, F. (2012). Population dynamics and habitat sharing of natural populations of *Ascaris suum* in the filarial nematode parasite *Brugia malayi*. Nat. Immunol. 13, 741–751.

Felix, M. A., Gregory, W., Johnsson, N., Jönsson, K., Komuniecki, R., Kobayashi, T., Kurz, C. L., and Ewbank, J. J. (2003). Common structural features and molecular cloning of cDNA. *J. Biol. Chem.* 271, 30493–30498.

Kato, Y., and Tomatsu, S. (1995). ASABE, a novel cysteine-rich antibacterial peptide isolated from the nematode *Ascaris suum*. Purification, primary structure, and molecular cloning of cDNA. *J. Biol. Chem.* 271, 30493–30498.

Kato, Y., Kurz, C. L., and Ewbank, J. J. (2003). *Caenorhabditis elegans* emerges as an emerging genetic model for the study of innate immunity. Nat. Rev. Genet. 4, 389–390.

Labed, S., and Pujol, N. (2011). *Caenorhabditis elegans* antifungal defense mechanisms. *J. Invasive Fungal Infect.* 5, 110–117.

Labed, S. A., Omi, S., Gut, M., Ewbank, J. J., and Pujol, N. (2012). The pseudokinase NPI-1 is a novel regulator of antifungal peptide gene expression. *PLoS ONE* 7, e33887. doi: 10.1371/journal.pone.0033887

Letunic, I., and Bork, P. (2011). Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy. *Nucleic Acids Res.* 39, W475–W478.

Means, T. K., Mylonakis, E., Tampakakis, E., Colvin, R. A., Seung, E., Puckett, L., Tai, M. F., Stewart, C. R., Tai, M. F., and Mylonakis, E. (2006). Identification of new immune induced molecules in the haemolymph of *Drosophila melanogaster* by 2D-nanoLC MS/MS. J. Insect Physiol. 52, 379–388.

Pukkila-Worley, R., Ausubel, F. M., and Mylonakis, E. (2011). *Candida albicans* infection of *Caenorhabditis elegans* induces antifungal immune defenses. *PLoS Pathog.* 7, e1002074. doi: 10.1371/journal.ppat.1002074

Verleyen, P., Baggersman, G., D’Hertog, W., Vierstraete, E., Husson, S. J., and Schoofs, L. (2006). Identification of common structural properties specifically found in the *CaSAlphabet* family of antimicrobial peptides in nematodes and mollusks: evidence for the same evolutionary origin? *Dev. Comp. Immunol.* 27, 499–503.

Zhu, S. (2008). Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the *CaSAlphabet* defensins from nematodes to mammals. *Mol. Immunol.* 45, 828–838.

Zugasti, O., and Ewbank, J. J. (2009). Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-beta signaling pathway in *Caenorhabditis elegans* epidermis. *Nat. Immunol.* 10, 249–256.

Received: 06 July 2012; accepted: 16 July 2012; published online: 01 August 2012.

Citation: Pujol N, Davis PA and Ewbank J J (2012) The origin and function of anti-fungal peptides in *C. elegans*: open questions. *Front. Immun.* 3:237. doi: 10.3389/immu.2012.00237

This article was submitted to Frontiers in Molecular Innate Immunity, a specialty of Frontiers in Immunology. Copyright © 2012 Pujol, Davis and Ewbank. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.