Generalizations of Perelomov’s identity on the completeness of coherent states

Martin Greiter
Institut für Festkörperphysik, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

Ronny Thomale
Department of Physics, Stanford University, Stanford, California 94305, USA
(Received 5 March 2012; published 30 April 2012)

We prove the Perelomov identity for arbitrary 2D lattices using Fourier transformation. We further generalize it to situations where the origin does not coincide with a lattice site and where the form of the exponential factor is reminiscent of magnetic wave functions in uniaxial rather than symmetric gauge.

DOI: 10.1103/PhysRevB.85.155145 PACS number(s): 75.10.Jm, 02.30.Lt, 02.30.Fn

I. INTRODUCTION

Studies of two-dimensional spin liquids,1–18 which were originally motivated by the problem of high-Tc superconductivity, are enjoying a renaissance of interest in present days.19–24 One of the reasons is the accumulation of numerical evidence for spin-liquid phases in various two-dimensional spin models, including the Hubbard model on a honeycomb lattice25 and the next-nearest neighbor Heisenberg antiferromagnet on the square lattice, usually referred to as the J1–J2 model.26 Another reason is that they constitute intricate examples of topological phases,27–32 which currently receive significant interest in the context of topological insulators.33–35

In fact, the concept of topological order27–30 was discovered in a two-dimensional spin liquid, the (Abelian) chiral spin liquid (CSL).2,4–6,11,16,23,24,36 The idea of this spin s = 1/2 liquid, due to D. H. Lee,37 is to describe spin flip operators \(\hat{S}_j^z \) in a background of down spins by a bosonic quantum Hall wave function at Landau level filling factor \(\nu = 1/2 \). Kalmeyer and Laughlin6 discovered that this wave function, when supplemented by an appropriate gauge factor \(G(z) = \pm 1 \), is a spin singlet. As first pointed out by Zou, Douçot, and Shastry,5 the proof relies on an identity established by A. M. Perelomov in 1971 in the context of the completeness of systems of coherent states.38

The Abelian CSL is the simplest example of a class of spin liquids, which are constructed using Landau level wave functions in fictitious or auxiliary magnetic fields. More recent examples of this class include the spin \(S = 1 \) chirality liquid (which is constructed via Schwinger boson projection form two Abelian CSLs with opposite chirality), the spin \(s \) non-Abelian CSL [which supports spinon excitations with SU(2) level \(k = 2s \) statistics], and a hierarchy of spin-liquid states [which suggests that spinons in parity and time reversal invariant antiferromagnets with integer spin \(s = 2 \) and higher obey SU(2) level \(k = s \) non-Abelian statistics].

All the spin liquids in this class share two features. First, the mechanism of fractional quantization yielding spinon (and holon) excitations, is both mathematically and conceptually similar to the mechanism of fractional quantization in quantized Hall states. The fractional quantum number in the spin liquids is the spin \(s = 1/2 \) of the spinon, which is fractional in the context of Hilbert spaces built out of spin flips, which carry spin one. The Abelian CSL is related to a Laughlin state in the quantum Hall system, while the family of non-Abelian CSLs are reminiscent of the Moore-Read39,40 and Read-Rezayi states.41 Second, many analytical results available for these highly complex states, including the singlet property for Abelian5,6 and non-Abelian CSL states15 as well as the recent construction of a parent Hamiltonian24 for the non-Abelian CSL states, rely on Perelomov’s identity.38

This identity was originally derived from the properties of the Jacobi \(\theta \) functions and used to show that there is only one linear relation between certain systems of coherent states. In this paper, we show that Perelomov’s identity can be generalized or reformulated in several ways, which are highly expedient for applications to spin liquids.

To be precise, we do three things. First, we proof that the identity holds for arbitrary 2D lattices with one site per unit cell using Fourier transformation. Second, we generalize the identity to situations where the origin does not coincide with a lattice site. Third, we rewrite the identity such that the form of the exponential factor is reminiscent of magnetic wave functions in uniaxial rather than symmetric gauge. The last result is particularly useful when the spin liquids are formulated on lattices with periodic boundary conditions.

II. THE PERELOMOV IDENTITY

Consider a lattice spanned by \(\eta_{n,m} = na + mb \) in the complex plane, with \(n \) and \(m \) integer and the area of the unit cell \(\Omega \) spanned by the primitive lattice vectors \(a \) and \(b \) set to \(2\pi \),

\[\Omega = |\Im(ab)| = 2\pi, \]

where \(\Im \) denotes the imaginary part. Let \(G(\eta_{n,m}) = (-1)^{(n+1)(m+1)} \). Then

\[\sum_{n,m} P(\eta_{n,m})G(\eta_{n,m})e^{-\frac{1}{2}|\eta_{n,m}|^2} = 0 \]

for any polynomial \(P \) of \(\eta_{n,m} \).

Proof. It is sufficient to prove the identity for the generating functional

\[\sum_{n,m} e^{\frac{1}{2}\eta_{n,m}^* \zeta e^{-\frac{1}{2}|\eta_{n,m}|^2} = 0}. \]

Since \(G(\eta_{n,m}) \) takes the value \(-1\) on a lattice with twice the original lattice constants, we may rewrite this as

\[\sum_{n,m} e^{\frac{1}{2}(|\eta_{n,m}|^2 - 2|\eta_{n,m}|^2 - 2n,m = e^{-\frac{1}{2}|\eta_{n,m}|^2} = 0}. \]

1098-0121/2012/85(15)/155145(3) 155145-1 ©2012 American Physical Society
Kalmeyer and Laughlinb observed that for the square lattice, the second sum in Eq. (4) can be expressed as a sum of the (Dirac comb) identity

\begin{equation}
\sum_{n,m} e^{\pm 2\pi i (n\alpha + m\beta)} = \delta(\alpha \beta),
\end{equation}

which is just the 2D equivalent of the Dirac comb identity

\begin{equation}
\sum_{n,m} e^{\pm 2\pi i n} = \sum_{n=-\infty}^{\infty} \delta(x-n).
\end{equation}

The right-hand side of Eq. (9) is obviously zero if \(x \) is not an integer and manifestly periodic in \(x \) with period 1. To verify the normalization, observe that since for any \(N \) odd,

\begin{equation}
\sum_{n'=\frac{-N}{2}}^{\frac{N}{2}} e^{2\pi i ny/N} = \begin{cases} N & \text{for } y = N \times \text{integer}, \\ 0 & \text{otherwise}. \end{cases}
\end{equation}

This implies

\begin{equation}
\frac{1}{N} \sum_{y=-\frac{N}{2}}^{\frac{N}{2}} \sum_{n'=\frac{-N}{2}}^{\frac{N}{2}} e^{2\pi i ny/N} = 1,
\end{equation}

which in the limit \(N \to \infty \) is equivalent to

\begin{equation}
\int_{-\frac{1}{2}}^{\frac{1}{2}} dy \frac{1}{N} \sum_{n'=\frac{-N}{2}}^{\frac{N}{2}} e^{2\pi i ny/N} = 1.
\end{equation}

Substituting \(x = y/N \) yields

\begin{equation}
\int_{-\frac{1}{2}}^{\frac{1}{2}} dx \sum_{n'=\frac{-N}{2}}^{\frac{N}{2}} e^{2\pi i nx} = 1,
\end{equation}

which proves the normalization in Eq. (9).

We proceed by evaluation of the Fourier transform of \(f(\eta) = e^{\pm 2\pi i |\eta|^2}; \)

\begin{equation}
\tilde{f}(\xi) = \int d^2\eta e^{\mp 2\pi i \xi \cdot \eta} e^{\pm 2\pi i |\eta|^2} e^{i\theta(\eta, \xi)}
= \int d^2\eta e^{\mp 2\pi i \xi \cdot \eta} e^{i\xi \cdot \eta} = 4 \pi e^{-|\xi|^2 + i \xi \cdot \eta},
\end{equation}

where we have used the integral

\begin{equation}
\int d^2\eta F(\eta) e^{-\xi \cdot \eta} \quad = \quad F(i\partial_x) \int d^2\eta e^{-\xi \cdot \eta} \mid_{\xi=0} = \int d^2\eta e^{-\frac{1}{2} |\eta|^2} e^{i\theta(\eta, w)}
= \alpha \pi F(i\partial_y) e^{\frac{1}{2} w \omega_z} = \alpha \pi \int d^2\eta e^{-\frac{1}{2} |\eta|^2} e^{i\theta(\eta, w)}
\end{equation}

with \(F(\eta) = e^{\pm 2\pi i \eta \cdot \alpha} \), \(\alpha = 4 \), and \(w = 2i \sigma \).

Substituting Eq. (10) into Eq. (7), we obtain

\begin{equation}
\sum_{n,m} f(\eta_{n,m}) = 2 \sum_{n',m'} e^{-i(\xi',w') \cdot \eta_{n,m}}
\end{equation}

If we now substitute \(n' = -n, m' = -m \), and hence \(i\xi' = \eta_{n,m} \) into the right-hand side of Eq. (11), we obtain Eq. (4). This completes the proof.

III. GENERALIZATION TO LATTICES WHERE THE ORIGIN DOES NOT COINCIDE WITH A LATTICE SITE

We now assume a shifted lattice with the sites given by

\begin{equation}
\eta_{n,m} = na + mb + c,
\end{equation}

where \(n \) and \(m \) are integer and \(a, b, \) and \(c \) are complex numbers such that the area of the unit cell \(\Omega \) spanned by the primitive lattice vectors \(a \) and \(b \) remains set to \(2\pi \) [see Eq. (1) above]. Then for any polynomial \(P \) of \(\eta_{n,m}, \)

\begin{equation}
\sum_{n,m} P(\eta_{n,m}) G(\eta_{n,m}) e^{-\frac{1}{2} |\eta_{n,m}|^2} = 0,
\end{equation}

where the gauge factor is now given by

\begin{equation}
G(\eta_{n,m}) = (-1)^{n+1}(m+1) e^{-\frac{1}{2} (\eta_{n,m} \cdot \bar{c})}.
\end{equation}

\textbf{Proof:} With \(\eta'_{n,m} = \eta_{n,m} - c \), we write the exponential in Eq. (13) as

\begin{equation}
e^{-\frac{1}{2} |\eta_{n,m}|^2} = e^{-\frac{1}{2} |\eta'_{n,m}|^2} e^{i\eta'_{n,m} \cdot c} e^{-\frac{1}{2} |c|^2} = e^{-\frac{1}{2} |\eta'_{n,m}|^2} e^{i\eta'_{n,m} \cdot c} e^{-\frac{1}{2} |c|^2}.
\end{equation}

If we now absorb the last two factors into the polynomial

\begin{equation}
P(\eta_{n,m}), \end{equation}

Eq. (14) reduces to Eq. (2).

\textbf{Comment.} For most applications, it is convenient to write Eq. (14) as

\begin{equation}
G(\eta_{n,m}) = (-1)^{n+1}(m+1) e^{\frac{1}{2} (\overline{(a' a + b' b) c} - (a'' a + b'' b) c')},
\end{equation}

where \(a' a + b' b = a'' a + b'' b \).
where \(a = a' + i a'' \), \(b = b' + i b'' \), \(c = c' + i c'' \), and \(a', a'', \) etc., are real.

IV. THE PERELOMOV IDENTITY IN UNIAXIAL GAUGE

The generalized identity Eq. (13) with Eq. (14) can further be rewritten as

\[
\sum_{n,m} P(\eta_{n,m}) G(\eta_{n,m}) e^{-\frac{1}{2} \Im(\eta_{n,m})^2} = 0, \tag{16}
\]

with the gauge factor now given by

\[
G(\eta_{n,m}) = (-1)^{(n+1)(m+1)} e^{\frac{1}{2} \Im(\eta_{n,m} - \eta_{n,m})}. \tag{17}
\]

Proof. If we substitute

\[
P(\eta_{n,m}) \to P(\eta_{n,m}) e^{\frac{1}{2} \Im(\eta_{n,m})^2}
\]
into Eq. (13), we obtain for the product of all the exponential factors

\[
e^{-\frac{1}{2} \Im(\eta_{n,m})^2} e^{\frac{1}{2} \Im(\eta_{n,m} - \eta_{n,m})^2} = e^{-\frac{1}{2} \Im(\eta_{n,m})^2} e^{\frac{1}{2} \Im(\eta_{n,m} - \eta_{n,m})^2} = e^{-\frac{1}{2} \Im(\eta_{n,m})^2} e^{\frac{1}{2} \Im(\eta_{n,m} + \Im(\eta_{n,m}))^2}.
\]

For a rectangular lattice with \(a'' = b' = c'' = 0 \), this gauge factor reduces to

\[
G(\eta_{n,m}) = (-1)^{n+m+1}. \tag{19}
\]

ACKNOWLEDGMENTS

We wish to thank W. Lang for his critical reading of parts of this manuscript. M.G. is supported by the German Research Foundation under Grant FOR 960. R.T. is supported by an STIP fellowship at Stanford University.