Local symmetries in complex networks

Petter Holme

Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, U.S.A.

Symmetry—invariance to certain operators—is a fundamental concept in many branches of physics. We propose ways to measure symmetric properties of vertices, and their surroundings, in networks. To be stable to the randomness inherent in many complex networks, we consider measures that are continuous rather than dichotomous.

The main operator we suggest is permutations of the paths of a certain length leading out from a vertex. If these paths are more similar (in some sense) than expected, the vertex is a local center of symmetry in networks. We discuss different precise definitions based on this idea and give examples how different symmetry coefficients can be applied to protein interaction networks.

PACS numbers: 89.75.Fb, 89.75.Hc

I. INTRODUCTION

Since the turn of the century, the field of complex networks has been one of the most active areas of statistical physics [1; 2; 4; 9]. One of the central questions is to find quantities for measuring network structure (how a network differs from a random graph). The basic assumption is that the network structure is related to the function of the network. Thus, by measuring network structural quantities, one can say something both about the forces that created the network, and about how dynamic systems on the network behave. One important concept in many areas of physics (particle physics, condensed matter physics and more [5]) is symmetry— invariance to particular operators. Our approach (particle physics, condensed matter physics and more (5)) is to presuppose that symmetry can be useful to study complex networks—a degree-symmetry coefficient in this definition of degree-symmetry is permutations of the paths of a certain length leading out from a vertex. If these paths are more similar (in some sense) than expected, the vertex is a local center of symmetry in networks. We discuss different precise definitions based on this idea and give examples how different symmetry coefficients can be applied to protein interaction networks.

FIG. 1 An illustration of perfect degree symmetry (a) and perfect symmetry of external traits (b). In (a) different symbols represent different degrees. In (b) a symbol represents an external trait (in this paper we exemplify this by functional categories of proteins). (Non-self-intersecting) paths of length two will, in both cases, first lead to a triangle, then to a square, which means the circle is a center of symmetry.

II. DEFINITION OF THE MEASURE

We consider a network modeled by an unweighted and undirected graph of N vertices, V, and M edges, E. We assume the graph have no multiple edges or self-edges. Let $X(i)$ be a vertex trait or structural quantity—for example: degree, betweenness centrality [2; 4; 9], or a protein function. Consider a vertex i and the paths of length l leading out from this vertex. These paths can be thought of as the look of the network from the vantage point i. The cut-off length l reflects that the influence of the network i on i’s function decreases with distance. In principle one can use any decaying function to lower the weight of distant vertices. We chose the simplest functional form (at least the easiest to implement)—a step function weighing vertices at a distance l, or less, from i equal (while yet more distant vertices are not considered at all). In the numerical examples, we will choose the shortest non-trivial value, $l = 2$. The sequences of $X(i)$-values along these paths are the input to the symmetry measure. We denote such sequences:

$$Q^i_l = [X(v^1_{i,l}), \ldots, X(v^l_{i,l})],$$

where $v^j_{m,i}$ is the j’th vertex along the m’th path of length l leading out from i. Then let $F(X, X’)$ be a function measuring the similarity of two X-values (for integer valued X-functions, one example of an F-function is Kronecker’s delta). A first attempt to construct a symmetry measure is to sum $F(X(i), X(j))$
for vertex pairs at the same distance from \(i \) in \(Q^X_l(i), \) i.e.
\[
\tilde{s}_l(i) = \frac{1}{\Lambda} \sum_{0 \leq n \leq a' \leq p} \sum_{j=1}^l F(X(i,n),X(i',n'))
\]
(2)
where
\[
\Lambda = (l - 1) \binom{p}{2}
\]
(3)

This measure has many statistical discrepancies. For example, all paths that go via a particular neighbor of \(i \) contribute to the sum. In practice this means that vertices with a high degree \(\tilde{s}_l(i) \) at a distance close to \(l \) will (by virtue of the many paths that overlap up to \(l \)) trivially have a high \(\tilde{s}_l(i)/\Lambda. \) To get around this problem we omit path segments at indices lower than \(i \) in \(Q^X_l(i) \) (for details, see Ref. (5)). Let \(S_l(i) \) denote the number of such terms (a way to calculate \(S_l(i) \) is given in Ref. (5)). Then a measure compensating for terms from path with the same beginnings is given by:
\[
s'_l(i) = \frac{\tilde{s}_l(i) - S_l(i)}{\Lambda - S_l(i)}, \text{ provided } \Lambda > S_l(i).
\]
(4)

The degree sequence is often considered an inherent property of the system. Structure should, in such cases, be defined relative to a null-model of random graphs conditioned to the same degree distribution as the network. A measure where zero denotes neutrality can be constructed as:
\[
s_l(i) = s'_l(i) - (s'_l(i)),
\]
where \(\langle \cdot \rangle \) denotes average over an ensemble of random graphs with the same set of degrees as the original network. A way to sample such null-model graphs is to randomly rewire the edges of the original network (at every time step keeping the vertices’ degrees are conserved). Note that, for such rewiring procedures, there are many sample-technical considerations needed to achieve ergodicity and statistical independence. We use the scheme proposed in Ref. (11) and 1000 sample averages. If the X-function only depends on the network, one can recalculate it for each individual realization of the null-model. If the information behind \(X(i) \) is external, then one has to let the trait be associated with \(i \) throughout the randomization process, or randomly distribute the traits among the vertices. The former situation is suitable if the trait has some connection to the degree, the latter (that we use in this paper) is more appropriate if there are no such connections.

To apply the framework described above one has to specify a function \(X \) mapping \(V \) to integer or real numbers. Furthermore one has to chose an \(F \)-function indicating if two vertices are considered similar or not. In this paper we discuss binary valued \(F \)-functions \(F(X(i), X(j)) = 1 \) if \(i \) and \(j \) are considered similar, \(F(X(i), X(j)) = 0 \) otherwise, but one can also think of real valued \(F \)-functions where a high value means a high similarity between the two arguments.

III. APPLICATIONS TO PROTEIN INTERACTION NETWORKS

One of the most successful applications of complex network analysis is studies of large-scale microbiological net-
works. Such studies can be performed at different levels of the cellular organization—from genetic regulation (12, 14), via protein interactions (7, 13), to biochemical networks (14, 16). We will use protein interaction networks as our example. In protein interaction networks the vertices are typically an entire proteome (i.e. all proteins in an organism). The edges represent pairs of proteins than can bind physically to each other. It is important to note that at only a small fraction of the protein interactions is in effect at particular location in a particular cell. The biological information one can hope to get out from studying the protein interaction network is thus rather limited. Dynamic properties of the cellular activity, i.e. the functions of a particular cell, are beyond the reach of static network theory. The study of the protein interaction network, in this paper, serves more as an example of symmetry analyses, than an advance in proteomics. If symmetry has some relation to the protein functions, like degree is correlated with lethality (8), one can use the symmetry coefficient for functional classification or prediction.

The particular protein interaction data we use (from the yeast \(S. \) cerevisiae) was taken from MIPS (10) January 23, 2005 (the same data set as used in Ref. (6)). The network has \(N = 4580 \) and \(M = 7434. \) MIPS also provide functional classification of the proteins (12). This is a hierarchical classification where, for example, the top-level category “metabolism” is subdivided into e.g. “amino acid metabolism,” and so on. One protein can be assigned none, one or many functional categories; so, to make a symmetry measure out of this information, let \(X(i) \) be the set of top-level functions of \(i, \) and let
\[
F(X,X') = \begin{cases}
1 & \text{if } X = X' \\
0 & \text{otherwise}
\end{cases}
\]
(6)

We choose this \(F \)-function because it is the simplest. For a more thorough investigation of protein interaction sym-
metries one might consider other functions, like the real valued Jaccard-index.

Apart from the functional symmetry coefficient we will also measure the degree-symmetry coefficient as in Ref. (5). In this case \(X(i) \) is the degree, or number of neighbors, of \(i. \) For highly skewed degree distributions, as protein interaction networks are known to have (8), it is appropriate to use:
\[
F(k,k') = \begin{cases}
1 & \text{if } \exists i \text{ such that } a_i \leq k, k' < a_i+1 \\
0 & \text{otherwise}
\end{cases}
\]
(7)

We use \(a = 2 \) and \(i = 0, 1, 2, 3, \ldots. \)

In Fig. 2(a) we give an example of a protein with high degree symmetry, YKR010c. Since its neighbors are all equal (i.e. all pairs of neighbors \((i,i') \) have \(F(k_i, k_{i'}) = 1 \)) this is not surprising. Even many second-neighbors are equivalent in this respect (such as YLR377c, YNL113w and YNL099c). Fig. 2(b) shows the functional overlap in the same subgraph. Although the overlapping vertex pairs are rather few, YKR010c has a positive functional symmetry coefficient (rather weak, however, with a p-value of around five per-
cent). The main reason for this is that similar vertices are very rare due to the quite strict definition of similarity (Eq. 6).
FIG. 2 Example from the *S. cerevisiae* protein interaction network illustrating the symmetries of YKR010c. The concentric ellipses mark the first and second neighborhoods. (a) illustrates the configuration giving the symmetry coefficient 0.809. (b) illustrates the functional symmetries resulting in a functional symmetry coefficient of 0.299. The vertices connected by a shaded area have the identical sets of functions.

FIG. 3 The two-neighborhood of YGL250w in the *S. cerevisiae* protein interaction network. The symbols are the same as in Fig. 2. (a) shows the degree symmetry situation giving the symmetry coefficient −0.178. (b) shows the functional overlaps in the two-neighborhood of YGL250w giving a functional symmetry coefficient of 0.965.
IV. DISCUSSION AND CONCLUSIONS

In this paper we have proposed a general framework for measuring symmetries of the surrounding of a vertex. The basic idea is that observational processes often take the form of walks; in other words, that the symmetry means that the network looks the same along many paths leading out from a vertex. This leads us to the principle that if the set of paths of a limited length l out from a vertex i is invariant to permutations, then i is a local center of symmetry. We exemplify this framework, and the derived symmetry coefficient, by studying the protein interaction network of $S. cerevisiae$. For this network databases catalog traits of the vertices, which allow two fundamentally different symmetries to be measured: the degree symmetry (where the similarity is related to the network structure) and functional symmetry (where the similarity stems from external information). These two coefficients are exemplified by two proteins in very different symmetry configurations (one with high degree symmetry and weakly positive functional symmetry, another with degree asymmetry and very high functional symmetry). We do not attempt to deduce the biological meaning of the symmetry coefficients. But we can conceive that symmetry and biological function are related from the presence of “network-motifs” in biological networks. Network motifs are small, statistically overrepresented subgraphs with, presumably, specific functions. If one vertex controls, or is controlled by, several such motifs, then it would have high (degree, functional or other) symmetry coefficient. To conclude, we believe symmetries can be a useful concept for analyzing complex networks. There are, furthermore, many ways to extend this work to other measures and applications.

Acknowledgments

PH acknowledges financial support from the Wenner-Gren foundations, the National Science Foundation (grant CCR-0331580), and the Santa Fe Institute.

References

[1] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys., 74:47–98, 2002.
[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks: Structure and dynamics. Physics Reports, 424:175–308, 2006.
[3] E. H. Davidson. The Regulatory Genome: Gene Regulatory Networks In Development And Evolution. Academic Press, Burlington MA, 2006.
[4] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford, 2003.
[5] P. Holme. Detecting degree symmetries in networks. Phys. Rev. E, 74, 2006. e-print [physics/0605029]
[6] P. Holme and M. Huss. Role-similarity based functional prediction in networked systems: application to the yeast proteome. J. Roy. Soc. Interface, 2:327–333, 2005.
[7] J. Janin and S. J. Wodak, editors. Protein Modules and Protein-Protein Interactions, volume 61 of Advances in Protein Chemistry. Academic Press, Amsterdam, 2002.
[8] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai. Lethality and centrality in protein networks. Nature, 411:41–42, 2001.
[9] M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45:167–256, 2003.
[10] P. Fagel, S. Kovac, M. Oesterheld, B. Brauner, I. Dunger-Kaltenbach, G. Frishman, C. Montrone, P. Mark, V. Stümpflen, H. W. Mewes, A. Ruepp, and D. Frishman. The MIPS mammalian protein-protein interaction database. Bioinformatics, 21:832–834, 2004.
[11] J. M. Roberts Jr. Simple methods for simulating sociomatrixes with given marginal totals. Social Networks, 22:273–283, 2000.
[12] A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko, U. Güldener, G. Mannhaupt, M. Münsterkötter, and H. W. Mewes. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res., 32:5539–5545, 2004.
[13] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31:64–68, 2002.
[14] A. Wagner. Robustness and Evolvability in Living Systems. Princeton University Press, Princeton NJ, 2005.
[15] S. Yook, Z. Oltvai, and A.-L. Barabási. Functional and topological characterization of protein interaction networks. Proteomics, 4:928–942, 2004.
[16] J. Zhao, H. Yu, J. Luo, Z. W. Cao, and Y.-X. Li. Complex networks theory for analyzing metabolic networks. Chinese Science Bulletin, 51:1529, 2006.