Uniqueness of differential polynomials sharing one value

Banarsi Lal1, Kuldeep Singh Charak2

Department of Mathematics, University of Jammu, Jammu-180 006, INDIA.
1 E-mail: banarsiverma644@gmail.com
2 E-mail: kscharak7@rediffmail.com

Abstract

We prove some uniqueness results which improve and generalize results of Jiang-Tao Li and Ping Li\cite{Li15}\textit{Uniqueness of entire functions concerning differential polynomials. Commun. Korean Math. Soc. 30 (2015), No. 2, pp. 93-101}.

Keywords: Meromorphic functions, sharing of values, differential polynomials, Nevanlinna theory.

AMS subject classification: 30D35, 30D30
1 Introduction

Let f be a non-constant meromorphic function in the complex plane \mathbb{C}. We assume that the reader is familiar with the standard notions of the Nevanlinna value distribution theory such as $T(r,f)$, $m(r,f)$, $N(r,f)$ (see e.g., [3]).

For $a \in \mathbb{C} \cup \{\infty\}$, we say that two meromorphic functions f and g share a CM, if $f - a$ and $g - a$ have the same set of zeros with same multiplicities, and if we do not consider the multiplicities then f and g are said to share a IM.

In [11], C.C. Yang posed the following question:

Question: What can be said about two entire functions f and g, when they share 0 CM and their derivatives share 1 CM?

In 1990, Yi [4, 5], answered the above question by proving: Let f and g be two non-constant entire functions such that f and g share the value 1 CM and $\delta(0,f) > 1/2$, where k is non-negative integer, then $f \equiv g$ unless $f(k), g(k) = 1$; and for meromorphic functions he proved: Let f and g be two non-constant meromorphic functions such that f and g share 0 and ∞ CM. If $f(k)$ and $g(k)$ share the value 1 CM and $2\delta(0,f) + (k+2)\Theta(\infty,f) > k + 3$, where k is non-negative integer, then $f \equiv g$ unless $f(k), g(k) = 1$.

For a non-constant meromorphic function h, we denote by

$$L(h) = h^{(k)} + a_1 h^{(k-1)} + a_2 h^{(k-2)} + \ldots + a_{k-1} h' + a_k h,$$

the differential polynomial of h, where a_1, a_2, \ldots, a_k are finite complex numbers and k is a positive integer. We denote the order and lower order of h by $\lambda(h)$ and $\mu(h)$, respectively. Also by $\sigma(h)$ and $\sigma(1/h)$, we denote the exponent of convergence of zeros and poles of h respectively.

Recently, Jiang-Tao Li and Ping Li [2] generalized first result of Yi (as stated above) for entire functions as

Theorem A. Let f and g be two non-constant entire functions such that f and g share 0 CM. Suppose $L(f)$ and $L(g)$ share 1 CM and $\delta(0,f) > 1/2$. If $\lambda(f) \neq 1$, then $f \equiv g$ unless $L(f), L(g) \equiv 1$.

Theorem B. Let f and g be two non-constant entire functions such that f and g share 0 CM. Suppose $L(f)$ and $L(g)$ share 1 IM and $\delta(0,f) > 4/5$. If $\lambda(f) \neq 1$, then $f \equiv g$ unless $L(f), L(g) \equiv 1$.

We recall the following definition of weighted sharing:

Definition 1.1. Let f and g be two non constant meromorphic functions and k be a non-negative integer or ∞. For $a \in \mathbb{C} \cup \{\infty\}$, we denote by $E_k(a,f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m > k$. If $E_k(a,f) = E_k(a,g)$, we say that f and g share the value a with weight k.

We write “f and g share (a,k)” to mean that “f and g share the value a with weight k”. Clearly if f and g share (a,k), then f and g share (a,p), $0 \leq p < k$. Also we note that f and g share the value a IM(ignoring multiplicity) or CM(counting multiplicity) if and only if f and g share $(a,0)$ or (a,∞), respectively.

Definition 1.2. Let f and g share 1 IM, and let z_0 be a zero of $f − 1$ with multiplicity p and a zero of $g − 1$ with multiplicity q. We denote by $N_1^{(1)} (r,1/(f − 1))$, the counting function of the zeros of $f − 1$ when $p = q = 1$. By $\overline{N}_E (r,1/(f − 1))$, we denote the counting function of the zeros of $f − 1$ when $p = q \geq 2$ and by $\overline{N}_L (r,1/(f − 1))$, we denote the counting function of the zeros of $f − 1$ when $p > q \geq 1$, each point in these counting functions is counted only once; similarly, the terms $N_1^{(1)} (r,1/(g − 1))$, $\overline{N}_E^{(1)} (r,1/(g − 1))$ and $\overline{N}_L (r,1/(g − 1))$. Also, we denote by $\overline{N}_{f > k} (r,1/(g − 1))$, the reduced counting function of those zeros of $f − 1$ and $g − 1$ such that $p > q = k$, and similarly the term $\overline{N}_{g > k} (r,1/(f − 1))$.

With the help of weighted sharing, we generalize Theorem A and Theorem B as

Theorem 1.3. Let f and g be two non-constant entire functions such that f and g share 0 CM. Suppose $L(f)$ and $L(g)$ share $(1,l)$, $l \geq 0$ with one of the following conditions:

- (i) $l \geq 2$ and $\delta(0,f) > 1/2$
- (ii) $l = 1$ and $\delta(0,f) > 3/5$
- (iii) $l = 0$ and $\delta(0,f) > 4/5$.

If $\lambda(f) \neq 1$, then $f \equiv g$ unless $L(f).L(g) \equiv 1$.

For meromorphic functions, we prove the following result:

Theorem 1.4. Let f and g be two non-constant meromorphic functions of finite order such that f and g share 0 and ∞ CM. Suppose $L(f)$ and $L(g)$ share $(1,l)$, $l \geq 0$ with one of the following conditions:

- (i) $l \geq 2$ and

$$ (k + 2)\Theta(\infty,f) + 2\delta(0,f) > k + 3 \quad (1.1) $$

- (ii) $l = 1$ and

$$ (3k + 5)\Theta(\infty,f) + 5\delta(0,f) > 3k + 9 \quad (1.2) $$

- (iii) $l = 0$ and

$$ (4k + 5)\Theta(\infty,f) + 5\delta(0,f) > 4k + 9 \quad (1.3) $$

If $\lambda(f) \neq 1$ and $\sigma(1/f) \leq \sigma(f)$, then $f \equiv g$ unless $L(f).L(g) \equiv 1$.

The main tool of our investigations in this paper is Nevanlinna value distribution theory of meromorphic functions(see [3]).
2 Proof of the Main Result

We shall use the following results in the proof of our main result:

Lemma 2.1. [2] Let \(f \) be a non-constant meromorphic function and \(k \) be a non-negative integer. Then

\[
T(r, L(f)) \leq T(r, f) + kN(r, f) + S(r, f). \tag{2.1}
\]

Lemma 2.2. [2] Let \(f \) be a non-constant meromorphic function and \(a \) be a meromorphic function such that \(T(r, a) = o(T(r, f)) \) as \(r \to \infty \). If \(f \) is not a polynomial, then

\[
N \left(r, \frac{1}{L(f) - L(a)} \right) \leq T(r, L(f)) - T(r, f) + N \left(r, \frac{1}{f - a} \right) + S(r, f) \tag{2.2}
\]

and

\[
N \left(r, \frac{1}{L(f) - L(a)} \right) \leq N \left(r, \frac{1}{f - a} \right) + kN(r, f) + S(r, f). \tag{2.3}
\]

Lemma 2.3. [1] Let \(f \) and \(g \) be two non-constant meromorphic functions.

(i) If \(f \) and \(g \) share \((1,0)\), then

\[
N_L \left(r, \frac{1}{f - 1} \right) \leq N \left(r, \frac{1}{f} \right) + N(r, f) + S(r), \tag{2.4}
\]

where \(S(r) = o(T(r)) \) as \(r \to \infty \) with \(T(r) = \max \{ T(r, f); T(r, g) \} \).

(ii) If \(f \) and \(g \) share \((1,1)\), then

\[
2N_L \left(r, \frac{1}{f - 1} \right) + 2N_L \left(r, \frac{1}{g - 1} \right) + N_E^2 \left(r, \frac{1}{f - 1} \right) - N_{f>2} \left(r, \frac{1}{g - 1} \right)
\leq N \left(r, \frac{1}{f - 1} \right) - N \left(r, \frac{1}{g - 1} \right). \tag{2.5}
\]

Lemma 2.4. [10] Suppose \(f_j \ (j = 1, 2, \ldots, n) \) and \(g_j \ (j = 1, 2, \ldots, n) \) \((n \geq 1)\) are entire functions satisfying the following conditions:

(i) \(\sum_{j=1}^{n} f_j(z)e^{g_j(z)} = f_{n+1}(z) \),

(ii) The order of \(f_j(z) \) is less than the order of \(e^{g_k(z)} \) for \(1 \leq j \leq n+1 \), \(1 \leq k \leq n \). And furthermore, the order of \(f_j(z) \) is less than the order of \(e^{g_h(z)} \) for \(n \geq 2 \) and \(1 \leq j \leq n+1 \), \(1 \leq h < k \leq m \).

Then \(f_j \equiv 0 \ (j = 1, 2, \ldots, n+1) \).

Lemma 2.5. [10] Suppose \(f_j \ (j = 1, 2, \ldots, n) \) are meromorphic functions and \(g_j \ (j = 1, 2, \ldots, n) \) \((n \geq 2)\) are entire functions satisfying the following conditions:
(i) \(\sum_{j=1}^{n} f_j(z)e^{g_j(z)} = 0. \)

(ii) \(g_j(z) - g_k(z) \) are non-constants for \(1 \leq j < k \leq n. \)

(iii) For \(1 \leq j \leq n, \ 1 \leq h < k \leq n, \)

\[T(r, f_j) = o(T(r, e^{g_h-g_k})), \]

as \(r \to \infty. \) Then \(f_j(z) \equiv 0 \ (j = 1, 2, ..., n). \)

Lemma 2.6. [10] If \(h(z) \) be a polynomial of degree \(p \) and \(f(z) = e^{h(z)} \), then \(\lambda(f) = \mu(f) = p. \)

Lemma 2.7. [10] Let \(f(z) \) and \(g(z) \) be two non-constant meromorphic functions in the complex plane. If \(\lambda(f) < \mu(g) \), then \(T(r, f) = o(T(r, g)) \) as \(r \to \infty. \)

We only prove Theorem 1.4 as the proof of Theorem 1.3 follows on the similar lines.

Proof of Theorem 1.4: First we assume that \(L(f) \equiv c, \) a finite constant. Then \(f \) has to be entire and

\[f \equiv c_1 + \sum_{i=1}^{m} p_i(z)e^{\alpha_i z}, \]

where \(c_1 \) is finite constant, \(m(\leq k) \) is a positive integer, \(\alpha_i \) are distinct complex numbers and \(p_i(z) \) are polynomials \((i = 1, 2, ..., m). \)

Since \(\lambda(f) \neq 1, \) we get \(\lambda(f) < 1 \) and so \(e^{\alpha_i z} \) is constant. Thus \(f \) is a polynomial and so \(\delta(0, f) = 0, \) which contradicts (1.1), (1.2) and (1.3).

Assume that both \(L(f) \) and \(L(g) \) are non-constant. Since \(f \) and \(g \) share 0 and \(\infty \) CM, and \(L(f) \) and \(L(g) \) share \((1, l) \), it follows from Milloux’s inequality and (2.3)

\[T(r, f) \leq \overline{N}(r, f) + N(r, \frac{1}{f}) + \overline{N} \left(r, \frac{1}{L(f)-1} \right) + S(r, f) \]

\[= \overline{N}(r, g) + N(r, \frac{1}{g}) + \overline{N} \left(r, \frac{1}{L(g)-1} \right) + S(r, f) \]

\[\leq 2T(r, g) + k\overline{N}(r, g) + N \left(r, \frac{1}{g-1} \right) + S(r, f) + S(r, g) \]

\[\leq (k + 3)T(r, g) + S(r, f) + S(r, g). \]

Similarly

\[T(r, g) \leq (k + 3)T(r, f) + S(r, f) + S(r, g). \]

Thus \(S(r, f) = S(r, g) \) and \(\lambda(f) = \lambda(g). \)
Let \(F = L(f) \) and \(G = L(g) \). Then \(F \) and \(G \) share \((1, l)\), \(l \geq 0 \). Define
\[
H = \left(\frac{F''}{F'} - \frac{2F'}{F - 1} \right) - \left(\frac{G''}{G'} - \frac{2G'}{G - 1} \right).
\] (2.6)

Assume that \(H \not\equiv 0 \). Then from (2.6), we have
\[
m(r, H) = S(r, F) + S(r, G).
\]

By the Second fundamental theorem of Nevanlinna, we have
\[
T(r, F) + T(r, G) \leq N(r, F) + N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{F - 1} \right) + N(r, G) + N \left(r, \frac{1}{G} \right)
\]
\[
+ N \left(r, \frac{1}{G - 1} \right) - N_0 \left(r, \frac{1}{F'} \right) - N_0 \left(r, \frac{1}{G'} \right) + S(r, F) + S(r, G)
\]
\[
= 2N(r, F) + N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{F - 1} \right) + N \left(r, \frac{1}{G} \right)
\]
\[
+ N \left(r, \frac{1}{G - 1} \right) - N_0 \left(r, \frac{1}{F'} \right) - N_0 \left(r, \frac{1}{G'} \right) + S(r, F) + S(r, G),
\] (2.7)

where \(N_0(r, 1/F') \) denotes the counting function of the zeros of \(F' \) which are not the zeros of \(F(F - 1) \) and \(N_0(r, 1/G') \) denotes the counting function of the zeros of \(G' \) which are not the zeros of \(G(G - 1) \).

We consider the following cases:

Case (i). If \(l \geq 1 \), then from (2.6), we have
\[
N_E^{(1)} \left(r, \frac{1}{F - 1} \right) \leq N \left(r, \frac{1}{H} \right) + S(r, F) + S(r, G)
\]
\[
\leq T(r, H) + S(r, F) + S(r, G)
\]
\[
= N(r, H) + S(r, F) + S(r, G)
\]
\[
\leq N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{G} \right) + N \left(r, \frac{1}{F - 1} \right)
\]
\[
+ N \left(r, \frac{1}{G - 1} \right) - N_0 \left(r, \frac{1}{F'} \right) - N_0 \left(r, \frac{1}{G'} \right) + S(r, F) + S(r, G)
\]
and so

\[
N \left(r, \frac{1}{F-1} \right) + N \left(r, \frac{1}{G-1} \right) = N^1 \left(r, \frac{1}{F-1} \right) + N^2 \left(r, \frac{1}{F-1} \right) + N \left(r, \frac{1}{F-1} \right) \\
+ N \left(r, \frac{1}{G-1} \right) + N \left(r, \frac{1}{G-1} \right) + S(r, F) + S(r, G) \\
\leq N(2 \left(r, \frac{1}{F} \right) + N(2 \left(r, \frac{1}{G} \right) + 2N \left(r, \frac{1}{F-1} \right) \\
+ 2N \left(r, \frac{1}{G-1} \right) + N \left(r, \frac{1}{F-1} \right) + N \left(r, \frac{1}{G-1} \right) \\
+ N_0 \left(r, \frac{1}{F} \right) + N_0 \left(r, \frac{1}{G} \right) + S(r, F) + S(r, G). \\
(2.8)
\]

Subcase 1.1: When \(l = 1 \). Then we have

\[
N \left(r, \frac{1}{F-1} \right) \leq \frac{1}{2} N \left(r, \frac{1}{F-1} | F \neq 0 \right) \leq \frac{1}{2} N(r, F) + \frac{1}{2} N \left(r, \frac{1}{F} \right), \\
(2.9)
\]

where \(N \left(r, \frac{1}{F} | F \neq 0 \right) \) denotes the zeros of \(F' \), that are not the zeros of \(F \).

From (2.8) and (2.10), we have

\[
2N \left(r, \frac{1}{F-1} \right) + 2N \left(r, \frac{1}{G-1} \right) + N \left(r, \frac{1}{F-1} \right) + N \left(r, \frac{1}{G-1} \right) \\
\leq N \left(r, \frac{1}{G-1} \right) + N \left(r, \frac{1}{F-1} \right) + S(r, F) + S(r, G) \\
\leq N \left(r, \frac{1}{F-1} \right) + \frac{1}{2} N(r, F) + \frac{1}{2} N \left(r, \frac{1}{F} \right) + S(r, F) + S(r, G). \\
(2.10)
\]

Thus, from (2.8) and (2.10), we have

\[
N \left(r, \frac{1}{F-1} \right) + N \left(r, \frac{1}{G-1} \right) \leq \frac{1}{2} N(r, F) + N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{G} \right) \\
+ \frac{1}{2} N \left(r, \frac{1}{F-1} \right) + N \left(r, \frac{1}{G-1} \right) + N_0 \left(r, \frac{1}{F} \right) + N_0 \left(r, \frac{1}{G} \right) + S(r, F) + S(r, G) \\
\leq \frac{1}{2} N(r, F) + N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{G} \right) \\
+ \frac{1}{2} N \left(r, \frac{1}{F-1} \right) + N \left(r, \frac{1}{G-1} \right) + T(r, G) \\
+ N_0 \left(r, \frac{1}{F} \right) + N_0 \left(r, \frac{1}{G} \right) + S(r, F) + S(r, G). \\
(2.11)
\]
From (2.2), (2.3), (2.7) and (2.11), we obtain

$$\begin{align*}
T(r, F) & \leq \frac{5}{2} N(r, F) + N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{G} \right) + N \left(r, \frac{1}{H} \right) \\
& \quad + \frac{1}{2} N \left(r, \frac{1}{F} \right) + S(r, F) + S(r, G) \\
& \leq \frac{5}{2} N(r, F) + N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{G} \right) + \frac{1}{2} N \left(r, \frac{1}{F} \right) + S(r, F) + S(r, G) \\
& = \frac{5}{2} N(r, F) + N \left(r, \frac{1}{L(f)} \right) + \frac{1}{2} N \left(r, \frac{1}{L(g)} \right) + \frac{1}{2} N \left(r, \frac{1}{L(h)} \right) + S(r, F) + S(r, G) \\
& \leq \frac{5}{2} N(r, f) + T(r, L(f)) - T(r, f) + N \left(r, \frac{1}{f} \right) + \frac{1}{2} N \left(r, \frac{1}{f} \right) \\
& \quad + \frac{k}{2} N(r, f) + N \left(r, \frac{1}{g} \right) + k N(r, g) + S(r, f) + S(r, g) \\
& = T(r, L(f)) - T(r, f) + \left(\frac{3k + 5}{2} \right) N(r, f) + \frac{5}{2} N \left(r, \frac{1}{f} \right) + S(r, f).
\end{align*}$$

That is,

$$2T(r, f) \leq (3k + 5\Theta(\infty, f) + 5\delta(0, f) \leq 3k + 8, a contradiction to (1.2).

Subcase 1.2: When $l \geq 2$.

In this case, we have

$$\begin{align*}
2 N_L \left(r, \frac{1}{R-1} \right) & + 2 N_L \left(r, \frac{1}{R-1} \right) + N_L^2 \left(r, \frac{1}{R-1} \right) + N \left(r, \frac{1}{R-1} \right) \\
& \leq N \left(r, \frac{1}{R-1} \right) + S(r, F) + S(r, G).
\end{align*}$$

Thus from (2.8), we get

$$\begin{align*}
N \left(r, \frac{1}{F-1} \right) + N \left(r, \frac{1}{G-1} \right) & \leq N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{G} \right) + N \left(r, \frac{1}{H} \right) \\
& \quad + N_0 \left(r, \frac{1}{F} \right) + N_0 \left(r, \frac{1}{G} \right) + S(r, F) + S(r, G) \\
& \leq N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{G} \right) + S(r, F) + S(r, G).
\end{align*}$$

(2.12)
Since \(f \) and \(g \) share 0 and \(\infty \) CM, from (2.2), (2.3), (2.7) and (2.12), we obtain

\[
T(r, F) \leq 2N(r, F) + N\left(r, \frac{1}{F}\right) + N\left(r, \frac{1}{G}\right) + S(r, F) + S(r, G)
\]

\[
\leq 2N(r, f) + N\left(r, \frac{1}{F}\right) + N\left(r, \frac{1}{G}\right) + S(r, F) + S(r, G)
\]

\[
= 2N(r, f) + N\left(r, \frac{1}{L(f)}\right) + N\left(r, \frac{1}{L(g)}\right) + S(r, f) + S(r, g)
\]

\[
\leq 2N(r, f) + T(r, L(f)) - T(r, f) + N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{g}\right) + kN(r, g) + S(r, f) + S(r, g)
\]

\[
= T(r, L(f)) - T(r, f) + (k + 2)\overline{N}(r, f) + 2N\left(r, \frac{1}{f}\right) + S(r, f).
\]

That is,

\[
T(r, f) \leq (k + 2)\overline{N}(r, f) + 2N\left(r, \frac{1}{f}\right) + S(r, f),
\]

and so \((k + 2)\Theta(\infty, f) + 2\delta(0, f) \leq k + 3\), a contradiction to (1.1).

Case (ii). If \(l = 0 \), then we have

\[
N_E^{(1)}\left(r, \frac{1}{r-1}\right) = N_E^{(1)}\left(r, \frac{1}{G-1}\right) + S(r, F) + S(r, G),
\]

\[
\overline{N}_E^{(2)}\left(r, \frac{1}{r-1}\right) = \overline{N}_E^{(2)}\left(r, \frac{1}{G-1}\right) + S(r, F) + S(r, G),
\]

and also from (2.6), we have

\[
\overline{N}\left(r, \frac{1}{F-1}\right) + N\left(r, \frac{1}{G-1}\right) \leq N_E^{(1)}\left(r, \frac{1}{F-1}\right) + \overline{N}_E^{(2)}\left(r, \frac{1}{F-1}\right) + \overline{N}\left(r, \frac{1}{F-1}\right)
\]

\[
+ N\left(r, \frac{1}{G-1}\right) + N\left(r, \frac{1}{G-1}\right) + S(r, F) + S(r, G)
\]

\[
\leq N_E^{(1)}\left(r, \frac{1}{F-1}\right) + \overline{N}_E^{(2)}\left(r, \frac{1}{F-1}\right) + N\left(r, \frac{1}{F-1}\right) + N\left(r, \frac{1}{G-1}\right)
\]

\[
+ S(r, F) + S(r, G)
\]

\[
\leq \overline{N}(2)\left(r, \frac{1}{F}\right) + \overline{N}(2)\left(r, \frac{1}{G}\right) + 2\overline{N}\left(r, \frac{1}{F-1}\right)
\]

\[
+ \overline{N}\left(r, \frac{1}{G-1}\right) + N\left(r, \frac{1}{G-1}\right) + N_0\left(r, \frac{1}{F}\right)
\]

\[
+ N_0\left(r, \frac{1}{G}\right) + S(r, F) + S(r, G).
\]

(2.13)
From (2.2), (2.3), (2.4), (2.7) and (2.13), we obtain

\[
T(r, F) \leq 2N(r, F) + N\left(r, \frac{1}{F}\right) + N(2, r, F) + N(2, r, G) + 2N(r, F) + 2N(r, F)
\]

\[
+ 2N_L\left(r, \frac{1}{F-1}\right) + N_L\left(r, \frac{1}{G-1}\right) + S(r, F) + S(r, G)
\]

\[
\leq 2N(r, F) + N\left(r, \frac{1}{F}\right) + N\left(r, \frac{1}{G}\right) + 2N\left(r, \frac{1}{F}\right) + 2N(r, F)
\]

\[
+ N\left(r, \frac{1}{G}\right) + N(r, G) + S(r, F) + S(r, G)
\]

\[
\leq 5N(r, f) + N\left(r, \frac{1}{L(f)}\right) + 2N\left(r, \frac{1}{L(f)}\right) + 2N\left(r, \frac{1}{L(g)}\right) + S(r, F) + S(r, G)
\]

\[
\leq 5N(r, f) + T(r, L(f)) - T(r, f) + N\left(r, \frac{1}{f}\right) + 2N\left(r, \frac{1}{f}\right) + 2kN(r, f)
\]

\[
+ 2N\left(r, \frac{1}{g}\right) + 2kN(r, g) + S(r, f) + S(r, g)
\]

\[
\leq T(r, L(f)) - T(r, f) + (4k + 5)N(r, f) + 5N\left(r, \frac{1}{f}\right) + S(r, f).
\]

That is,

\[
T(r, f) \leq (4k + 5)N(r, f) + 5N\left(r, \frac{1}{f}\right) + S(r, f),
\]

and so \((4k + 5)\Theta(\infty, f) + 5\delta(0, f) \leq 4k + 9\), a contradiction to (1.3).

Thus our supposition is wrong and hence \(H \equiv 0\). So (2.6) implies that

\[
\frac{F''}{F'} - \frac{2F'}{F-1} = \frac{G''}{G'} - \frac{2G'}{G-1},
\]

and so we obtain

\[
\frac{1}{F - 1} = \frac{C}{G - 1} + D,
\]

(2.14)

where \(C \neq 0\) and \(D\) are constants.

Here, the following three cases can arise:

Case (a): When \(D \neq 0, -1\). We rewrite (2.14) as

\[
\frac{G - 1}{C} = \frac{F - 1}{D + 1 - DF},
\]

we have

\[
N(r, G) = N\left(r, \frac{1}{F - (D + 1)/D}\right).
\]
By Second fundamental theorem of Nevanlinna and (2.2), we have
\[T(r, L(f)) = T(r, F) + S(r, f) \]
\[\leq \overline{N}(r, F) + \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{F-(D+1)/D}\right) + S(r, f) \]
\[\leq \overline{N}(r, F) + \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}(r, G) + S(r, f) \]
\[\leq N\left(r, \frac{1}{L(f)}\right) + 2\overline{N}(r, f) + S(r, f) \]
\[\leq T(r, L(f)) - T(r, f) + 2\overline{N}(r, f) + N(r, \frac{1}{f}) + S(r, f). \]

Thus
\[T(r, f) \leq 2\overline{N}(r, f) + N(r, \frac{1}{f}) + S(r, f), \]
and so \(2\Theta(\infty, f) + \delta(0, f) \leq 2\), which contradicts (1.1), (1.2) and (1.3).

Case (b) : When \(D = 0 \). Then from (2.14), we have
\[G = CF - (C - 1). \]
(2.15)

So if \(C \neq 1 \), then
\[\overline{N}\left(r, \frac{1}{G}\right) = \overline{N}\left(r, \frac{1}{F - (C - 1)/C}\right). \]

Since \(f \) and \(g \) share \(0 \) and \(\infty \) CM, by Second fundamental theorem of Nevanlinna, (2.2) and (2.3) gives
\[T(r, L(f)) = T(r, F) + S(r, f) \]
\[\leq \overline{N}(r, F) + \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{F-(C-1)/C}\right) + S(r, f) \]
\[= \overline{N}(r, f) + \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}(r, \frac{1}{G}) + S(r, f) \]
\[\leq \overline{N}(r, f) + N\left(r, \frac{1}{L(f)}\right) + N\left(r, \frac{1}{L(g)}\right) + S(r, f) \]
\[\leq \overline{N}(r, f) + T(r, L(f)) - T(r, f) + N(r, \frac{1}{f}) + N(r, \frac{1}{g}) + k\overline{N}(r, g) + S(r, f) \]
\[= T(r, L(f)) - T(r, f) + (k + 1)\overline{N}(r, f) + 2N(r, \frac{1}{f}) + S(r, f). \]

Thus
\[T(r, f) \leq (k + 1)\overline{N}(r, f) + 2N(r, \frac{1}{f}) + S(r, f), \]
and so \((k + 1)\Theta(\infty, f) + 2\delta(0, f) \leq k + 2\), which contradicts (1.1), (1.2) and (1.3).
Thus, $C = 1$ and so in this case from (2.15), we obtain $F \equiv G$ and so

$$L(f) \equiv L(g).$$

Case (c) : When $D = -1$. Then from (2.14) we have

$$\frac{1}{F - 1} = \frac{C}{G - 1} - 1. \quad (2.16)$$

So if $C \neq -1$, then

$$N\left(r, \frac{1}{G} \right) = N\left(r, \frac{1}{F - c/(C + 1)} \right).$$

Since f and g share 0 and ∞ CM, by Second fundamental theorem of Nevanlinna, (2.2) and (2.3), we have

$$T(r, L(f)) = T(r, F) + S(r, f)$$

\[
\leq N(r, F) + N\left(r, \frac{1}{F} \right) + N\left(r, \frac{1}{F - c/(C + 1)} \right) + S(r, f)
\]

\[
= N(r, f) + N\left(r, \frac{1}{F} \right) + N\left(r, \frac{1}{G} \right) + S(r, f)
\]

\[
\leq N(r, f) + N\left(r, \frac{1}{L(f)} \right) + N\left(r, \frac{1}{L(g)} \right) + S(r, f)
\]

\[
\leq N(r, f) + T(r, L(f)) - T(r, f) + N\left(r, \frac{1}{f} \right) + N\left(r, \frac{1}{g} \right) + kN(r, g) + S(r, f)
\]

\[
= T(r, L(f)) - T(r, f) + (k + 1)N(r, f) + 2N(r, \frac{1}{f}) + S(r, f).
\]

Thus

$$T(r, f) \leq (k + 1)N(r, f) + 2N(r, \frac{1}{f}) + S(r, f),$$

and so $(k + 1)\Theta(\infty, f) + 2\delta(0, f) \leq k + 2$, which contradicts (1.1), (1.2) and (1.3).

Thus, $C = -1$ and so in this case from (2.16), we obtain $FG \equiv 1$ and so $L(f)L[f] = 1$.

If $L(f) \equiv L(g)$, then $L(f - g) \equiv 0$ and so $f - g$ has to be entire and we have (see (3))

$$f - g = \sum_{i=1}^{m} p_i(z)e^{\alpha_i z},$$

where $m \leq k$ is a positive integer, α_i are distinct complex numbers and $p_i(z)$ are polynomials ($i = 1, 2, ..., m$).

Thus

$$\lambda(f - g) = \lambda\left(\sum_{i=1}^{m} p_i(z)e^{\alpha_i z} \right) \leq 1.$$
We consider the following cases:

Case (i). When $\lambda(f) < 1$. Since f and g share 0 and ∞ CM, we have $f / g = e^{h(z)}$, where $h(z)$ is an entire function. Also as $\lambda(f) = \lambda(g)$, we have

$$\lambda(e^{h(z)}) = \lambda(f / g) \leq \max \{\lambda(f), \lambda(1/g)\} < 1.$$

Thus $e^{h(z)}$ is a constant, say c and so $f = cg$ which implies that $L(f) \equiv cL(g)$. But $L(f) \equiv L(g)$, so we get $c = 1$ and thus $f \equiv g$.

Case (ii). When $\lambda(f) > 1$. Since f and g are meromorphic functions of finite order, by Hadamard’s factorization theorem we have

$$f(z) = \frac{P(z)}{Q(z)} e^{l_1(z)} \quad \text{and} \quad g(z) = \frac{P(z)}{Q(z)} e^{l_2(z)},$$

where $P(z)$ is the canonical product formed with the common zeros of f and g, $Q(z)$ is the canonical product formed with the common poles of f and g, and l_1, l_2 are the polynomials of degree less than or equal to $\lambda(f)$, $\lambda(g)$ respectively. Thus

$$f - g = \frac{P(z)}{Q(z)} e^{l_1(z)} - \frac{P(z)}{Q(z)} e^{l_2(z)},$$

or we can write

$$\frac{P(z)}{Q(z)} e^{l_1(z)} - \frac{P(z)}{Q(z)} e^{l_2(z)} - (f - g)e^{l_3(z)} \equiv 0, \quad (2.17)$$

where $l_3(z) \equiv 0$.

Also

$$\lambda(P) = \sigma(f) \leq \sigma(f - g) \leq \lambda(f - g) \leq 1,$$

and since $\sigma(1/f) \leq \sigma(f)$, we have

$$\lambda(Q) = \sigma(1/f) \leq \sigma(f - g) \leq \lambda(f - g) \leq 1.$$

Thus

$$\lambda \left(\frac{P}{Q} \right) \leq \max \{\lambda(P), \lambda(Q)\} \leq 1.$$

Since $f - g = (e^{l_1 - l_2})g$ and $\lambda(f) = \lambda(g) > 1$, we have $\lambda(e^{l_1}) > 1$, $\lambda(e^{l_1}) > 1$ and $\lambda(e^{l_1 - l_2}) > 1$, so $\lambda(e^{l_i}) > 1$, where $1 \leq i < j \leq 3$. Thus $l_i - l_j$ is non-constant, where $1 \leq i < j \leq 3$ and by lemma 2.6 and 2.7, we get

$$T(r, f - g) = o(T(r, e^{l_1 - l_2})) \quad \text{and} \quad T(r, P/Q) = o(T(r, e^{l_i - l_j})),$$

as $r \to \infty$. Thus by lemma 2.5, we have $P/Q \equiv 0$ and $f - g \equiv 0$ which implies that $f(z) \equiv 0$, which is a contradiction. So $l_1 = l_2$ and hence $f \equiv g$.

□
References

[1] Banerjee A. Meromorphic functions sharing one value. Int J Math Math Sci 2005; 22: 3587-3598.

[2] Jiang-Tao Li, Ping Li. Uniqueness of entire functions concerning differential polynomials. Commun. Korean Math. Soc. 30 (2015), No. 2, pp. 93-101.

[3] Hayman W.K. Meromorphic Functions. Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.

[4] Hong Xun, Yi. Uniqueness of meromorphic functions and a question of C. C. Yang. Complex Variables Theory Appl 1990; 14: no. 1-4: 169-176.

[5] Hong Xun, Yi. A question of C.C. Yang and uniqueness of entire functions. Kodai Math. J. 1990; 1: 39-46.

[6] Hong Xun, Yi. Uniqueness theorems for meromorphic functions whose n–th derivatives share the same 1–points. Complex Variables Theory Appl 1997; 14: no. 4, 421-436.

[7] Huang H, Huang B. Uniqueness of meromorphic functions concerning differential monomials. Appl Math (Irvine) 2011; 2: no. 2: 230-235.

[8] Lane, I. Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin, 1993.

[9] Li N, Yang L.Z. Meromorphic function that share small function with its differential polynomial. Kyungpook Math J 2010; 50: no. 3: 447-454.

[10] Yang C.C, Yi H.X. Uniqueness Theory of Meromorphic Functions. Kluwer Acad. Publ., Dordrecht, Math Appl 2003.

[11] Yang C.C. On two entire functions which together with their first derivatives have the same zeros. J. Math. Anal. Appl 1976; 56: 1-6.

[12] Zhang T, Lu W. Notes on a meromorphic functions sharing one small function with its derivative. Complex Variables and Elliptic Equations 2008; 53: no. 9: 857-867.