Generation of a recombinant rabies Flury LEP virus carrying an additional G gene creates an improved seed virus for inactivated vaccine production

Lihong Tao, Harbin Veterinary Research Institute
Jinying Ge, Harbin Veterinary Research Institute
Xijun Wang, Harbin Veterinary Research Institute
Zhiyuan Wen, Harbin Veterinary Research Institute
Hongyue Zhai, Harbin Veterinary Research Institute
Tao Hua, Harbin Veterinary Research Institute
Bolin Zhao, Harbin Veterinary Research Institute
Dongni Kong, Harbin Veterinary Research Institute
Chinglai Yang, Emory University
Zhigao Bu, Harbin Veterinary Research Institute

Journal Title: Virology Journal
Volume: Volume 8, Number 454
Publisher: BioMed Central | 2011-09-25, Pages 1-7
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1186/1743-422X-8-454
Permanent URL: http://pid.emory.edu/ark:/25593/f77b1

Final published version: http://www.virologyj.com/content/8/1/454

Copyright information:
© 2011 Tao et al; licensee BioMed Central Ltd.
This is an Open Access work distributed under the terms of the Creative Commons Attribution 2.0 Generic License (http://creativecommons.org/licenses/by/2.0/).

Accessed April 22, 2020 8:57 PM EDT
Generation of a recombinant rabies Flury LEP virus carrying an additional G gene creates an improved seed virus for inactivated vaccine production

Lihong Tao1, Jinying Ge1, Xijun Wang1, Zhiyuan Wen1, Hongyue Zhai1, Tao Hua1, Bolin Zhao1, Dongni Kong1, Chinglai Yang2 and Zhigao Bu1*

Abstract

The rabies Flury Low Egg Passage virus (LEP) has been widely used as a seed virus to generate inactive vaccine. Here, we established a reverse genetic system for LEP and generated a recombinant LEP virus (rLEP-G) that carries two identical G genes. This recombinant virus showed similar properties to those of LEP with respect to in vitro growth, neurotropism index, and virulence in mice. rLEP-G produced 4.3-fold more G protein than did LEP in BHK-21 cells. The inactivated vaccine generated from rLEP-G induced significantly higher virus neutralization titers in mice and dogs than those produced in response to LEP-derived vaccine. Our results suggest that rLEP-G is an improved seed virus candidate for inactivated rabies virus vaccine manufacture.

Keywords: Rabies virus, LEP, recombinant, inactivated vaccine

Introduction

Rabies virus (RV) belongs to the genus Lyssavirus of the family Rhabdoviridae, and causes a fatal neurological disease in humans and animals [1]. More than 55,000 people die of rabies each year, and about 95% of these deaths occur in Asia and Africa [2]. An estimated 31,000 people die from dog rabies in Asia each year, with most cases occurring in India and China [3,4]. The most cost-effective strategy for preventing rabies in people is to eliminate rabies in dogs via vaccination [5-7]. Inactivated rabies vaccine has been shown to be a safe and efficient means to control rabies in dogs. However, the vaccination rate of dogs in many developing countries is low, especially in rural areas, mainly due to low economic development and the high cost of vaccination [8]. More efficient and lower cost inactivated vaccine is, therefore, still needed.

The surface glycoprotein (G) of RV is the major antigen responsible for the induction of protective immunity [1]. Increasing G protein levels should, therefore, enhance the protective viral neutralization antibody (VNA) response. The rabies Flury low egg passage virus (LEP) has been widely used as a seed virus to generate inactive vaccine for humans and animals because of its high immunogenicity and high growth titer in cell culture [9]. Here, we generated a recombinant LEP virus that carries two identical G genes to increase G protein expression. Growth curves, neurotropism index, virulence, and the G protein expression level of the double-G LEP were tested in vitro and in vivo. The immunogenicity of the inactivated vaccine derived from this double-G LEP was also evaluated in mice and dogs and compared with that of LEP.

Materials and Methods

Viruses and cells

Neuroblastoma (NA) cells of A/J mouse origin were grown in Eagle’s minimum essential medium (MEM) supplemented with 10% fetal bovine serum (FBS). Baby hamster kidney (BHK-21) cells were grown in...
Dulbecco’s modified Eagle’s MEM (DMEM) supplemented with 10% FBS. The RV LEP (AV2012) was obtained from the China Veterinary Culture Collection Center and propagated in BHK-21 cells. A street virus, GX/09, was isolated from the brain of a dog that died of rabies and was propagated in the brain of adult mice. All viruses were kept in at -70°C before use.

Plasmids construction
Viral RNA was extracted with an RNasy mini kit according to the manufacturer’s instructions (QIAGEN, Valencia, CA). The extracted RNA was subjected to RT-PCR with virus specific primer pairs (Table 1) and high-fidelity PfX DNA polymerase (Invitrogen Corp., Carlsbad, CA) to generate three overlapping PCR fragments (F1, F2, and F3) that encompassed the entire viral genome. The assembled cDNA, containing the hammerhead ribozyme sequence (HamRz), was inserted between the G-L noncoding region by changing three nucleotide residues at positions 4,907 (T to G), 4,910 (G to T) and 4,912 (C to A) by using a site-directed mutagenesis system (Invitrogen) with the primers shown in Table 1. The fragment was further digested with Pme I, and the supernatants from virus-positive cultures were used to produce virus stocks in BHK-21 cells. The rescued virus generated from the full-length plasmid pLEP-G was designated as rLEP-G.

Multistep growth assays
Confluent BHK-21 or NA cell monolayers grown in 6-well plates were infected with LEP or rLEP-G at a multiplicity of infection (MOI) of 0.01. After incubation for 1 h at 37°C, the inoculums were removed and the cells were washed twice with PBS. BHK-21 and NA cells were replenished with DMEM containing 2% FBS or with MEM containing 0.2% FBS, respectively, and incubated at 37°C. Culture supernatant (100 μl) was harvested at 0, 1, 2, 3, 4, and 5 days post-inoculation for virus titration.

Virus titration
Monolayers of NA or BHK-21 cells in 24-well plates were infected with 10-fold dilutions of virus suspension and incubated at 37°C. At 48 h post-infection, an IFA test was performed. Foci were counted under a fluorescence microscope and calculated as focus forming unit/ml (FFU/ml).

The in vitro neurotropism index was expressed as the logarithm of the titer of virus stock in NA cells minus the logarithm of the titer of the same stock in BHK-21 cells [10]. The virus titers for neurotropism index calculation were based on the titration results of virus stock harvested at 72 h post infection.

Western blotting
BHK-21 cells grown in 6-well plates were infected with LEP or rLEP-G at an MOI of 1 and incubated for 48 h. G gene expression was confirmed by using western blotting as described previously [11]. Briefly, cell extracts were subjected to 10% polyacrylamide gel electrophoresis (SDS-PAGE), and then blotted to nitrocellulose membrane. The membrane was incubated with a mixture of mouse anti-G protein polyclonal antiserum and anti-β-actin monoclonal antibody (Santa Cruz Biotechnology), as the first antibody, and then with IRDye700-
| Purpose       | Name          | Primer (5’-3’)⁴    |
|--------------|---------------|-------------------|
| For F1       | amplification | F1-F              |
|              |               | TGGCTAGCTTAAAGCGTCCGAGTTAAGCGTAATAGGAATTTCTCTATAGTCACGGTTAACAAACAAAACAAAGAA ⁵ |
|              |               | F1-R              |
|              |               | GGCACGGGTACTCCACATAACTTGAGTTTGCC ⁴ |
| For F2       | amplification | F2-F              |
|              |               | AGGCTGTATAAGTCTTTAAGGGAGCA ⁴ |
|              |               | F2-R              |
|              |               | ATCGGGGTTCGCCGCTCTTGACACAAC ⁴ |
| For F3       | amplification | F3-F              |
|              |               | TATGCTAGCTCTGTTAAAGCTCCACGAATC |
|              |               | F3-R              |
|              |               | CGATCCCGGGcgggggccccctcttagccatctgcagcccgaggtgccgaggtggtggaggtggtggaggtgctgccgacccACGCTTAACAAATACAAAT ⁶ |
| For Pme I    | mutation      | Pmu-F             |
|              |               | GACTTGAAGTTAACAGGATGACGGG ⁴ |
|              |               | Pmu-R             |
|              |               | GGCGGGTCACTCTGTAAAACCTGAGTC |
| For G gene   | amplification | G1                |
|              |               | ATGCCTTTAACAGTTTTATCCTGTTTACCCTCT |
|              |               | G2                |
|              |               | GCATCTTTAACACTTGAAGTGTCAAAAGGATGA |
| For N gene   | amplification | HN-F              |
|              |               | GCCGAATTCAATGGATGCCGACAAAGATTGT |
|              |               | HN-R              |
|              |               | CGCGGTACCTATAGGCTACCTGAATACG |
| For L gene   | amplification | HL-F              |
|              |               | GCCGAATTCAATGGATGCAGGGAGATTGGT |
|              |               | HL-R              |
|              |               | CCAGGGTACCTAACAAACTGTAATCTA |
| For LEP-G    | confirmation  | G3                |
|              |               | ATGCCTTTCTCTGAATGTGG |
|              |               | G4                |
|              |               | GGTTTGGAAGACATATAC |

⁴ Restriction enzyme sites are shown in boldface. ⁵ The HamRz sequence is shown in italics. ⁶ The HdvRz sequence is shown in lowercase. ⁷ The nucleotides that were changed are underlined.
stored in -70°C. The infectious viruses in the

ultrasonic sound to increase the cell extraction dissolu-

tion was submitted to three cycles of freezing and thaw-

supernatant by using a rubber policeman. The suspen-

C. At 96 h post-infection, cells were suspended in the

LEP or rLEP-G at an MOI of 0.01 and incubated at 37°

BHK-21 cells grown in 75 cm² flask were infected with

conjugated anti-mouse IgG (Rockland, Gilbertsville, PA)
as the second antibody. The mouse anti-G protein poly-

denicity were analyzed by using the Odyssey infrared

image system (LiCor). The densitometry of each band

was quantified with Photoshop CS2. The G/β-actin ratio

was calculated by dividing the densitometry of the G

protein band by that of the β-actin protein band.

Infection of mice
The virulence of LEP and rLEP-G for adult mice was
measured in 6-week-old female Balb/c mice (Vital River,
Beijing). To determine the 50% lethal dose (LD₅₀) of
each virus, groups of five adult mice were inoculated
intracerebrally (i.c.) with 30 μl or intramuscularly (i.m.)
with 100 μl of serial 10-fold dilutions of LEP or rLEP-G.
After infection, mice were observed for 21 days for clin-
ical signs or death. The LD₅₀ of each virus was calcu-
lated by using the method of Reed and Muench [12].

Preparation of inactivated vaccines
BHK-21 cells grown in 75 cm² flask were infected with
LEP or rLEP-G at an MOI of 0.01 and incubated at 37°
C. At 96 h post-infection, cells were suspended in the
supernatant by using a rubber policeman. The suspension
was submitted to three cycles of freezing and thawing
(-20°C/37°C, 5 min each) and then subjected to
ultrasonic sound to increase the cell extraction dissolu-
tion. After centrifuge, supernatants were collected and
stored in -70°C. The infectious viruses in the

Immuno
genesis of mice
Groups of ten 4-week-old female Balb/c mice were
inoculated i.m. in the gastrocnemius muscle with 100 μl
of 20- or 80-fold dilutions of inactivated vaccine pre-
parations. Groups of six 3-month-old Beagles were
inoculated i.m. with 1 ml of inactivated vaccine
preparations.

VNA assay
Three weeks after immunization, mice were bled from
the retro-orbital sinus under isoflurane inhalation
anesthesia and Beagles were bled from the vein of the
front leg. Sera were tested for neutralizing antibodies
(VNA) by using the rapid fluorescent focus inhibition
test (RFFIT) [13]. Neutralization titers, defined as the
highest serum dilution that neutralizes 50% of the chal-
lenge virus, were normalized to international units (IU)
according to the World Health Organization anti-RV
antibody standard.

Results
Recovery of rLEP-G from cloned cDNA
The full-length genome plasmids of recombinant LEP
carrying two identical G genes were assembled and used
to rescue recombinant virus. The resulting virus was
designated as rLEP-G. To exclude the possibility of con-
tamination with LEP, a cDNA fragment covering the G-
G noncoding region was amplified from the genomic
RNA of the rescued recombinant virus and LEP, respec-
tively, by using RT-PCR with a set of primers, G3 and
G4. The amplified cDNA fragments were digested with
Pme I. A fragment with the expected size of 1,125 bp
was amplified from the genomic RNA of rLEP-G,
whereas RT-PCR with the genomic RNA of LEP did not
amplify any detectable product (Figure 2A). The ampli-
fied cDNA fragment was digested with Pme I, and 610-
bp and 515-bp bands were observed (Figure 2B).
Sequence analysis further confirmed that the virus was
rescued from cloned pLEP-G. RV G protein expression
by rLEP-G in BHK-21 cells was compared with that of
LEP by using Western blot analysis. G protein was
expressed at a significantly higher level in rLEP-G-
infected cells than in LEP-infected cells (Figure 2C). In
LEP-infected cells, the G/β-actin ratio was 1.2, whereas
in rLEP-G-infected cells the G/β-actin ratio was 5.1,
indicating an approximate 4.3-fold increase in G protein levels in rLEP-G-infected cells due to expression from the additional G gene.

Growth properties of rLEP-G in vitro
To examine whether insertion an identical G gene into the genome of the LEP strain would affect the growth properties of the virus \textit{in vitro}, we compared the growth of rLEP-G and LEP in both neuronal NA cells and non-neuronal BHK-21 cells. The multistep growth curves of rLEP-G (the third passage generation from BHK-21 cells) were compared with that of LEP in NA cells. There were no significant differences in growth patterns in both cell lines (Figure 3A, B) between rLEP-G and LEP. Furthermore, LEP and rLEP-G showed similar \textit{in vitro} neurotropism indices of 0.84 and 0.85, respectively, which indicates that the additional G gene did not affect the \textit{in vitro} neurotropism of the LEP strain.

To examine the genome stability of rLEP-G in cell culture, the virus was serially passaged in BHK-21 cells 10 times. RT-PCR analysis revealed that the additional G gene in the rLEP-G genome was stable for at least 10 passages in BHK-21 cells. The titer of rLEP-G also remained high at approximately $1 \times 10^8$ FFU/ml, from the third to the tenth passage (Figure 4).

Pathogenicity of rLEP-G in adult mice
The G protein plays an important role in the pathogenicity of RV. Therefore, we needed to investigate whether insertion of an additional G gene would affect virulence. Accordingly, adult mice were inoculated with rLEP-G and LEP, respectively. The results showed that both rLEP-G and LEP caused neurological symptoms, such as paralysis and hyperactivity, and killed mice after i.c. inoculation. The LD$_{50}$ of rLEP-G following i.c. inoculation was 2 FFU, which was 2-fold higher than that of LEP (Figure 5). Peripheral pathogenicity was also examined following i.m. inoculation. All mice survived i.m. inoculation with $10^6$ FFU of rLEP-G, whereas, one of the five mice inoculated i.m. with the same dose of LEP died. This result indicates that the \textit{in vivo} neuro-invasiveness and peripheral pathogenicity of LEP did not increase after insertion of the additional G gene.

Induction of VNA in mice and dogs
VNA is mainly induced by viral antigen G protein and plays a key role in immune protection from rabies. To investigate whether increased expression of G in the seed virus improves the VNA response of inactivated rabies vaccine, two inactivated vaccines were respectively preparations from LEP and rLEP-G infected cell cultures as described in materials and methods. The virus titers in supernatant of LEP and rLEP-G infected cell cultures were $10^{8.3}$ FFU/ml and $10^{7.3}$ FFU/ml respectively. The preparations were then tested in adult mice by using \textit{i.m.}
inoculation with. There were no significant differences in VNA response between the mice that received 0.1 ml of 20-fold diluted LEP vaccine preparation (containing 5.2 log10 FFU/0.1 ml) and those that received 0.1 ml of 20-fold diluted LEP-G vaccine preparation (for LEP and 5.1 log10 FFU/0.1 ml for rLEP-G). However, the VNA of mice immunized with an 80-fold diluted rLEP-G vaccine preparation (containing 4.5 log10 FFU/0.1 ml) was significantly higher than that of mice immunized with a similarly diluted LEP vaccine preparation (containing 4.4 log10 FFU/0.1 ml) (P < 0.01) (Figure 6A). In dogs, 1 ml of rLEP-G vaccine preparation (containing 7.3 log10 FFU/ml) induced a VNA mean titer of 54 IU, which was significantly higher than that of mice immunized with an 80-fold diluted rLEP-G vaccine preparation (containing 7.3 log10 FFU/ml) for LEP and 5.1 log10 FFU/ml for rLEP-G. However, the VNA of mice immunized with an 80-fold diluted LEP-G vaccine preparation (containing 7.2 log10 FFU/ml) (P < 0.05) (Figure 6B). These results indicate that the rLEP-G strain is a more immunogenic seed virus for use in the development of inactive vaccines against rabies.

**Discussion**

Mass vaccination of dogs has proven to be an effective way to control rabies in this species. However, current live attenuated vaccines can have safety issues [14,15], and the use of current inactivated vaccines is limited in developing countries because of high manufacturing costs. Increasing G protein expression in RV seed viruses is hypothesized to improve rabies inactivated vaccines not only via immunogenicity but also through increased manufacturing productivity. Previous studies have demonstrated the feasibility of introducing an additional G gene into the RV genome [16-18]. By using reverse genetics technology, Faber et al. generated a double-G gene recombinant RV (SPBNGA-GA). This double-G virus showed a 1.6-fold increase in G protein expression in cell culture relative to that of its single-G gene parent virus (SPBNGA). Inoculation with SPBNGA-GA live virus provided more efficient protective immunity than did the SPBNGA strain in mice. However, the utility of SPBNGA-GA as a seed virus for inactivated vaccine production has not been evaluated further [18]. In another study, Hosokawa-Muto et al. generated a double-G gene recombinant RV RC-HL. This virus showed a 1.5-fold increase in G protein expression in cell culture compared with that induced in the single-G gene parent virus RC-HL [16]. When the recombinant double-G gene recombinant RV RC-HL and wild-type RC-HL were inactivated and used to vaccinated mice, no significant difference in RV neutralization antibody responses was observed.

Here, we generated a recombinant LEP virus carrying an additional G gene, rLEP-G. This recombinant virus produced strikingly higher levels of G protein in cell culture and showed similar in vitro growth properties and bio-safety characteristics. Inactivated vaccine prepared from rLEP-G induced significantly higher RV VNA titers in mice and dogs than those induced by LEP-derived vaccine, indicating that rLEP-G represents an improved seed virus candidate for inactivated RV vaccine manufacture.

Since G protein is a major contributor to the pathogenicity of rabies virus [19-22], we evaluated whether this increase in G protein expression affected the virulence of the rLEP-G virus. We found that the insertion of this additional G gene results in increase of G protein expression but not in increase of the neuro-invasiveness or peripheral pathogenicity of the virus in adult mice. In other studies, introduction of one or two additional G genes into the genome of rabies virus resulted in a higher level of G protein expression and attenuate pathogenicity in adult mice [17,18,23]. As the pathogenicity of a particular RV strain correlates inversely with its ability to trigger apoptosis in neuron cells [23], one possible explanation for this discrepancy is that some lethal viruses, such as LEP and rLEP-G, rarely induced apoptosis in neuron cells. In fact, our previous data had shown that there was no clear correlation between apoptosis
induction and the viral replication titers or glycoprotein expression level among LEP and its relative mutants or chimerical viruses.[19]}

Acknowledgements

We thank Susan Watson for editing the manuscript. This work was supported by Chinese National S&T Plan (2009ZX10004-214), by the grant from Chinese Ministry of Agriculture (200803014) and by the GHI program of Emory University.

Author details

1State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, P.R. China. 2Department of Microbiology and Immunology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA.

Authors’ contributions

LT, HZ and TH carried out the plasmid construct cloning, rescued and characterized the recombinant virus. LT, XG, XW and ZW carried out the immunization assay and data analysis. BZ and DK participated in the animal immunization. ZB designed the whole study, provided general supervision and prepared the manuscript. CY participated in experiment design and helped preparing the manuscript. All authors have read and approved the submitted manuscript.

Competing interests

The authors declare that they have no competing interests.

References

1. Dietzschold B, Schnell M, Koprowski H: Pathogenesis of rabies. Curr Top Microbiol Immunol 2005, 292:45-56.
2. WHO: Rabies. 2009.
3. Song M, Tang Q, Wang DM, Mo ZJ, Guo SH, Li H, Tao YX, Rupprecht CE, Feng ZJ, Liang GD: Epidemiological investigations of human rabies in China. BMC Infect Dis 2009, 9:210.
4. Zhang S, Tang Q, Wu X, Liu Y, Zhang F, Rupprecht CE, Hu R: Rabies in ferret badgers, southeastern China. Emerg Infect Dis 2009, 15(8):946-949.
5. Wilde H, Khavplod P, Khamtham T, Hemachudha T, Tepsumethanon V, Lumlerdacha B, Mitmompoint C, Sripria V: Rabies control in South and Southeast Asia. Vaccine 2005, 23(17-18):2284-2289.
6. Fu ZF: Rabies and rabies research: past, present and future. Vaccine 1997, 15(Suppl):S20-24.
7. WHO Expert Consultation on rabies First report: WHO Technical Report Series 937 2005, 1-121.
8. Knobel DL, Cleaveland S, Coleman PG, Fevre EM, Meltzer MI, Miranda ME, Shaw A, Zinsstag J, Meslin FX: Re-evaluating the burden of rabies in Africa and Asia. Bull World Health Organ 2005, 83(5):360-368.
9. Koprowski H, Cox HR: Studies on chick embryo adapted rabies virus; culture characteristics and pathogenicity. J Immunol 1948, 60(4):533-554.
10. Morimoto K, Hooper DC, Carbaugh H, Fu Z, Koprowski H, Dietzschold B: Rabies virus quasispecies: implications for pathogenesis. Proc Natl Acad Sci USA 1998, 95(6):3152-3156.
11. Ge J, Deng G, Wen Z, Tian G, Wang Y, Shi J, Wang X, Li Y, Hu S, Jiang Y, et al: Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J Virol 2007, 81(3):150-158.
12. Reed LJ, Muench H: A simple method of estimating fifty percent endpoints. Am J Hyg 1938, 27.
13. Smith JS: New aspects of rabies with emphasis on epidemiology, diagnosis, and prevention of the disease in the United States. Clin Microbiol Rev 1996, 9(2):166-176.
14. Bellinger DA, Chang J, Bunn TO, Pick JR, Murphy M, Rahija R: Rabies induced in a cat by high-egg-passage Flury strain vaccine. J Am Vet Med Assoc 1983, 183(9):997-998, 965.
15. Fehlner-Gardiner C, Muldoon F, Nadin-Davis S, Wandeler A, Kush J, Jordan LT: Laboratory diagnosis of rabies in Canada for calendar year 2006. Can Vet J 2008, 49(4):359-361.
16. Houkawa-Muto J, Ito N, Yamada K, Shimizu K, Sugiyama M, Minamato N: Characterization of recombinant rabies virus carrying double glycoprotein genes. Microbiol Immunol 2006, 50(3):187-196.
17. Faber M, Li J, Kean RB, Hooper DC, Alugupalli KR, Dietzschold B: Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc Natl Acad Sci USA 2009, 106(27):11300-11305.
18. Faber M, Pulmanausahakul R, Hodavadekar SS, Spitsin S, McGee D, Schnell MJ, Dietzschold B: Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. Journal of virology 2002, 76(7):3374-3381.
19. Tao L, Ge J, Wang X, Zhai H, Hua T, Zhao B, Kong D, Yang C, Chen H, Bu Z: Molecular basis of neurovirulence of Flury rabies virus vaccine strains: importance of the polymerase and the glycoprotein R333Q mutation. Journal of virology 2010, 84(17):8926-8936.
20. Mebatsion T, Schnell MJ, Cox JH, Finke S, Conzelmann KK: Highly stable expression of a foreign gene from rabies virus vectors. Proc Natl Acad Sci USA 1996, 93(14):7310-7314.
21. Dietzschold B, Wunner WH, Wiktor TJ, Lopes AD, Lafon M, Smith CL, Koprowski H: Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci USA 1983, 80(1):70-74.
22. Morimoto K, Foley HD, McGee D, Schnell MJ, Dietzschold B: Reinvestigation of the role of the rabies virus glycoprotein in viral pathogenesis using a reverse genetics approach. J Neurovirol 2000, 6(5):375-381.
23. Morimoto K, Hooper DC, Spitsin S, Koprowski H, Dietzschold B: Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. Journal of virology 1999, 73(1):510-518.

doi:10.1186/1743-422X-8-454
Cite this article as: Tao et al: Generation of a recombinant rabies Flury LEP virus carrying an additional G gene creates an improved seed virus for inactivated vaccine production. Virology Journal 2011 8:454.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution