Calcifying Nested Stromal-Epithelial Tumor of the Liver
An Update and Literature Review

Mark Benedict, DO; Xuchen Zhang, MD, PhD

Calcifying nested stromal-epithelial tumor is a rare entity that has gone by a variety of names in the literature: ossifying malignant mixed epithelial and stromal tumor, ossifying stromal-epithelial tumor, and desmoplastic nested spindle cell tumor of the liver. To our knowledge, approximately 38 cases have been reported in the literature. The histogenesis is still largely unknown but histopathologically is characterized by nests of spindle and epithelioid cells in an organoid arrangement surrounded by a prominent dense myofibroblastic stroma with occasional psammomatous calcification and focal heterotopic ossification. Vascular invasion is rare and tumoral recurrence is uncommon with only a single reported case of metastasis leading to death. Treatment is mainly by surgical intervention with the role of chemotherapy seeming limited, but lack of data hinders a true recommendation. It is important to rule out other processes such as hepatoblastoma, calcified hemangioma, synovial sarcoma, metastatic ossifying stromal-epithelial tumor, and desmoplastic nest-like ossifying malignant mixed epithelial and stromal tumor, nonbiliary tumor of the liver with nests of epithelioid and spindle cells and an associated desmoplastic stroma. The average size is 12.6 cm with a range of 2.1 to 30 cm. CNSET may display irregular borders as well as multinodularity with the cut surface showing a homogeneous, tan, granular-appearing texture (Figure 1). The histologic features that characterize CNSET are well-circumscribed, macrolobulated masses, with enhancement and calcification. Areas of calcification appear hyperdense, whereas cystic or myxoid components within the tumor appear hypodense. On magnetic resonance imaging examination, there is a predominant T1 hypointensity and T2 hyperintensity. Based on the imaging characteristics of CNSET, the radiologic interpretation is likely to be a hepatoblastoma or a calcified hemangioma.

PATHOLOGIC FINDINGS
The gross examination of CNSET often reveals a well-circumscribed and lobulated mass with variable calcifications. The average size is 12.6 cm with a range of 2.1 to 30 cm. CNSET may display irregular borders as well as multinodularity with the cut surface showing a homogeneous, tan, granular-appearing texture (Figure 1). The histologic features that characterize CNSET are well-circumscribed nests of relatively bland-appearing cells surrounded by a variably cellular desmoplastic stroma. The cells comprising these nests are small, uniformly spindled to large eosinophilic epithelioid cells. The spindle cells within the nests are arranged in short fascicles at the periphery of the nest, while the epithelioid cells are more apparent in the

Accepted for publication December 18, 2017.
Published online October 24, 2018.
From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
The authors have no relevant financial interest in the products or companies described in this article.
Corresponding author: Xuchen Zhang, MD, PhD, Department of Pathology, Yale University School of Medicine, 310 Cedar St, PO Box 208023, New Haven, CT 06520 (email: xuchen.zhang@yale.edu).

Arch Pathol Lab Med—Vol 143, February 2019
264
Source, y	Age, y/Sex	Clinical	Location	Size, cm	Follow-up
Assmann et al,19 2012	16/Male	Palpable abdominal mass/Cushing-like body habitus	Right and left lobes	Unknown	Disease free/post liver transplant
	3.1/Female	Obstructed	Left lobe	6.5	Disease free
Marin et al,28 2010	33/Male	Epigastric pain, pyrosis, regurgitations	Left lobe	20	Unknown
Teseen et al,29 2017	13/Female	Cushing syndrome/worsening abdominal pain	Right lobe	17.3	Disease free/post liver transplant
Weeda et al,9 2016	16/Male	Cushing syndrome/weight gain, distended abdomen	Spans right and left lobe	19.5	Disease free
Heywood et al,15 2002	28/Female	Incidental	Right lobe	14.5	Recurrence developed after 72 mo
Hill et al,20 2005	2/Male	Abdominal mass	Right lobe	5.5	Disease free
	6/Female	Incidental	Right lobe	2.8	Disease free
	6/Female	Incidental	Right lobe	7.5	Disease free
	14/Female	Abdominal mass	Left lobe	15	Disease free
Heerema-Mckenney et al,4 2005	2/Male	Incidental	Left lobe	12	Disease free
	11/Female	Cushing syndrome/abdominal mass	Left lobe	12	Disease free
	12/Female	Cushing syndrome/abdominal mass	Right lobe	Unknown	Disease free
	14/Female	Ileus	Unknown	30	Recurrence after 12 mo
Brodsky et al,2 2008	17.5/Female	Cushing syndrome	Left lobe	22	Recurrence after 12 mo
Meir et al,16 2009	2.5/Female	Incidental	Right lobe	5.5	Disease free
Grazzi et al,18 2010	25/Female	Diarrhea/abdominal pain	Right lobe	17	Disease free
Makhlouf et al,6 2009	14/Female	Incidental	Right lobe	16	Disease free
	19/Male	Incidental	Right lobe	10	Recurrence after 168 mo
	15/Female	Incidental	Right lobe	12	Unknown
	18/Female	Incidental	Right lobe	20	Died at 40 mo/postoperative complications/no recurrence
Rod et al,17 2009	32/Female	Incidental	Right lobe	11	Disease free
	16/Male	Cushing syndrome	Right lobe	19	Disease free
	33/Female	Incidental	Right lobe	10	Disease free
	2/Female	Incidental	Right lobe	5.5	Disease free
Oviedo Ramirez et al,22 2010	17/Female	Facial edema and acne	Left lobe	13.2	Disease free
	33/Male	Abdominal pain/dyspepsia	Left lobe	16	Unknown
Wang et al,14 2011	34/Female	Incidental	Left lobe	13	Disease free
Procopio et al,2 2014	23/Female	Abdominal pain	Left lobe	16	Unknown
Schaffer et al,3 2016	14/Female	Abdominal distention (associated with Beckwith-Wiedemann syndrome)	Left lobe	12	Disease free
Khoshnam et al,2 2017	14/Female	Cushing syndrome/abdominal pain (associated with Beckwith-Wiedemann syndrome)	Right lobe	12	Disease free
Homann et al,22 2011	16/Female	Ileus	Left lobe	Unknown	Died after 37 mo/pulmonary metastasis
Ghodke et al,21 2012	9/Male	Abdominal pain, fever, jaundice	Unknown	5	Unknown
Malowany et al,8 2013	2/Female	Incidental (associated with Beckwith-Wiedemann syndrome)	Right lobe	2.1	Unknown
Geramizadeh et al,19 2012	8/Male	Weight gain, abdominal pain	Right lobe	10	Died after 10 d (status postsurgical intervention)
Samarghandi et al,13 2015	11/Female	Weight gain, abdominal pain	Right lobe	20	Unknown
Total	38 Cases		Right lobe: 20	Average 12.6 cm	
	27 Female		Left lobe: 11		
Calcifying nested stromal-epithelial tumors are of uncertain histogenesis with several hypotheses as to the cell of origin. One postulation is an epithelial origin with differentiation toward a mesenchymal phenotype. In contrast another study has speculated a mesenchymal origin with the expression of WT-1, which reflects a mesenchymal to epithelial phenotype. Additionally, Assmann et al investigated factors involved in mesenchymal-epithelial transition and demonstrated increased expression of the mesenchymal-epithelial transition factors SNAIL, SLUG, TWIST, c-Met, vimentin, and β-catenin. These findings indicate impaired mesenchymal-epithelial transition as a possible pathogenetic mechanism of this rare tumor. Heerema-McKenney et al noted the focal intimate association of bile ducts and cellular nests, which also shared expression of CD56, leading to the theory of a possible hepatic mesenchymal precursor cell with primitive differentiation along the bile duct lineage. Lending support to such a notion is the CD56 expression seen in proliferating bile ducts of obstructive liver disease but not in so-called resting bile ducts.

HISTOGENESIS AND MOLECULAR CHARACTERISTICS

Calcifying nested stromal-epithelial tumors are of uncertain histogenesis with several hypotheses as to the cell of origin.1 One postulation is an epithelial origin with differentiation toward a mesenchymal phenotype. In contrast another study has speculated a mesenchymal origin with the expression of WT-1, which reflects a mesenchymal to epithelial phenotype.4 Additionally, Assmann et al investigated factors involved in mesenchymal-epithelial transition and demonstrated increased expression of the mesenchymal-epithelial transition factors SNAIL, SLUG, TWIST, c-Met, vimentin, and β-catenin. These findings indicate impaired mesenchymal-epithelial transition as a possible pathogenetic mechanism of this rare tumor.19 Heerema-McKenney et al noted the focal intimate association of bile ducts and cellular nests, which also shared expression of CD56, leading to the theory of a possible hepatic mesenchymal precursor cell with primitive differentiation along the bile duct lineage. Lending support to such a notion is the CD56 expression seen in proliferating bile ducts of obstructive liver disease but not in so-called resting bile ducts.4

CLINICAL BEHAVIOR AND ASSOCIATIONS

Although there are only limited data on the clinical progression, or lack thereof, owing to the small number of cases reported, we may still draw some conclusions based on the available data. To date there is only 1 incidence of tumor metastasis.22 A 16-year-old female patient, who received a liver transplant, was found to have lung metastases 28 months postoperatively (biopsy-proven metastatic CNSET) and then later died (37 months post transplant).22 However, in most cases with follow-up data, disease-free survival after resection (or transplant) appears to be 71% (24 of 34) with no recurrence of disease after follow-up, although 12% (4 of 34) of patients experienced a recurrence of their disease (range, 12–168 months of follow-up) and 1 patient died 40 months after transplant.6 Interestingly, among 3 of the adult cases, the presence of a calcified mass since childhood was found, which again points to a seemingly benign and indolent clinical course.4 However, with the tumor’s recurrence potential, a more apt designation would be a tumor of low malignant potential until further cases with clinical follow-up are reported.

Interestingly, of the 38 reported cases of CNSET, 3 are in association with BWS. Beckwith-Wiedemann syndrome is characterized by an overgrowth syndrome with numerous signs and symptoms depending on the affected individual: omphalocole, other abdominal wall defects, macroGLOSSIA, visceromegaly, or hypoglycemia. Of the 3 reported associations, 2 cases of BWS are genetically confirmed. All the 3 cases show WT-1 positivity and none of them have a concurrent diagnosis of Wilms tumor, causing Khoshnam et al to postulate that there may be some cross-reaction between WT-1 and the BWS loci in the short arm of chromosome 11.

DIFFERENTIAL DIAGNOSIS

Calcifying nested stromal-epithelial tumor, having both an epithelial and mesenchymal component with variable calcification and ossification, lends itself to a myriad of differential diagnostic considerations. The differential diagnosis includes synovial sarcoma, hepatoblastoma, desmoplastic small round cell tumor, inflammatory myofibroblastic tumor, spindle cell carcinoma, metastatic gastrointestinal stromal tumor,
and finally, rhabdomyosarcoma.4,6,12,20 Hepatoblastomas, especially epithelial and mesenchymal hepatoblastomas, contain mesenchymal components such as fibroblastic stroma or osteoid, which makes them a very important differential diagnostic consideration in the setting of CNSET with osteoid formation.12 However, a distinguishing feature of hepatoblastoma is the presence of fetal or embryonal hepatocytes and the positivity of immunohistochemical staining for AFP or Hep Par 1. Additionally, extramedullary hematopoiesis is common in fetal and embryonal subtypes of hepatoblastoma. Small cell undifferentiated hepatoblastoma with its sheets of keratin-positive cells, oval hyperchromatic nuclei, variable nucleoli, and increased mitotic activity may also enter the differential diagnosis.23 The challenging aspect to this subtype is the lack of histology, recapitulating either the fetal liver or embryonal differentiation.23 Similar to CNSET, small cell undifferentiated hepatoblastomas are negative for AFP and Hep Par 1.23,24 However, the described translocation involving the long arm of chromosome 22 and loss of INI1 expression in a subset of small cell undifferentiated hepatoblastomas may aid in the differential with CNSET.24–27 Synovial sarcoma, the biphasic pattern, has spindle-shaped cells resembling synoviocytes and epithelial cells, which may form nests and cords. When there is doubt about the distinction on morphologic

Figure 2. A, Low-power photomicrograph revealing a well-circumscribed tumor of the liver with an organoid proliferation of spindle or epithelioid cells and osteoid formation surrounded by prominent myofibroblastic stroma. B, High-power photomicrograph showing spindle and epithelioid cell nests with intermixed osteoid formation. C, Photomicrograph of β-catenin immunohistochemical stain showing cytoplasmic and nuclear staining pattern. D, Photomicrograph of WT-1 immunohistochemical stain showing cytoplasmic dotlike paranuclear staining pattern (hematoxylin-eosin, original magnifications ×20 [A] and ×200 [B]; original magnification ×400 [C and D]).
grounds, one may also consider the usefulness of identifying the SYT-SSX1 and SYT-SSX2 translocations characteristic of synovial sarcoma by polymerase chain reaction. None of the CNSET cases are reported positive for the SYT-SSX rearrangement. Desmoplastic small round cell tumor is composed of small round blue cells in nests and anastomosing trabeculae surrounded by desmoplastic stroma. Like CNSET, desmoplastic small round cell tumors may also show areas of predominately spindle cell morphology and focal necrosis or cystic degeneration. Desmoplastic small round cell tumors are typically both positive for WT-1 stain and t(11;22) WT1-EWS translocation. However, WT-1-EWS translocation is lacking, although WT-1 nuclear or cytoplasmic dotlike paranuclear staining pattern can be seen in CNSET cases.5,6,20 Metastatic gastrointestinal stromal tumors usually have perinuclear vacuolization and often distinct nuclear palisading without desmoplastic stroma. The positive immunohistochemical stains for CD34, CD117, and DOG-1 in gastrointestinal stromal tumor are typically negative in CNSET. In the distinction of CNSET from neuroendocrine tumors, the positivity of CNSET for CD56 and neuron-specific enolase may cause confusion initially, but CNSETs are negative for synaptophysin and chromogranin A.

TREATMENT CONSIDERATIONS

Treatment considerations for CNSET include wedge resections for smaller tumors and more substantial interventions in the form of partial hepatectomy or liver transplant for larger tumors.22,28,29 Chemotherapy using soft tissue sarcoma or hepatoblastoma protocol has been reported in the literature. However, it is unclear whether chemotherapy has any significant role in preventing tumor recurrence, as the complete resection of tumor has proved reported in the literature. However, it is unclear whether chemotherapy holds any benefit with the current data available.

SUMMARY

Calyfing nested stromal-epithelial tumor is rare and is most commonly seen in young children with a female predominance. The histogenesis is still largely unknown but histopathologically is characterized by nests of spindled cells in an organoid arrangement with or without intermixed epithelioid cells surrounded by a prominent dense myofibroblastic stroma with occasional psammomatous calcification and focal heterotopic ossification. Vascular invasion is rare and tumoral recurrence is uncommon with only a single reported case of metastasis leading to death. Other patient deaths are the result of postoperative complications and not directly due to tumoral causes. Treatment is mainly by surgical intervention with the role of chemotherapy seeming limited but lack of data hinders a true recommendation. It is important to rule out other processes such as hepatoblastoma, calcified hemangioma, synovial sarcoma, metastatic gastrointestinal stromal tumor, desmoplastic small round cell tumor, among others, which appear similar radiographically and histologically.

References

1. Ishak K, Goodman ZD, Stocker JT. Miscellaneous malignant tumors. In: Tumors of the Liver and Intrahepatic Bile Ducts. Washington, DC: Armed Forces Institute of Pathology; 2001:271–278.
2. Khoshnahn R, Robinson H, Clay MR, Schaffer LR, Gillespie SE, Shehata BM. Califying nested stromal-epithelial tumor (CNSET) of the liver in Beckwith-Wiedemann syndrome. Eur J Med Genet. 2017;60(2):136–139.
3. Procopio F, Di Tommaso L, Armenia B, Quaglino V, Roncalli M, Torzilli G. Nested stromal-epithelial tumour of the liver: An unusual liver entity. World J Hepatol. 2014;6(3):155–159.
4. Hereema-McKenny A, Leuschner I, Smith N, Sennesj F, Finegold MJ. Nested epithelial stromal tumour of the liver: six cases of a distinctive pediatric neoplasm with frequent calcifications and association with cushing syndrome. Am J Surg Pathol. 2005;29(4):491–498.
5. Brodsky SV, Sandoval C, Sharma N, et al. Recurrent nested stromal epithelial tumor of the liver with extrahepatic metastasis: case report and review of literature. Pediatr Dev Pathol. 2008;11(6):469–473.
6. Makhlouf HR, Abdal-AL MM, Wang G, Goodman ZD. Califying nested-epithelial-tumors of the liver: a clinicopathologic, immunohistochemical, and molecular genetic study of 9 cases with a long-term follow-up. Am J Surg Pathol. 2009;33(7):976–983.
7. Schaffer LR, Shehata BM, Yin J, Schrankiewitz E, Alazraki A. Califying stromal and epithelial CNSET (CNSET): a newly recognized entity to be considered in the radiologist's differential diagnosis. Clin Imaging. 2016;40(1):137–139.
8. Malowany JJ, Merritt NH, Chan NG, Ngan BY. Nested stromal epithelial tumor of the liver in Beckwith-Wiedemann syndrome. Pediatr Dev Pathol. 2013;16(4):312–317.
9. Weeda VB, de Reuver PR, Bras H, Zsiros J, Lamers WH, Aronson DC. Cushing syndrome as presenting symptom of califying nested-stromal-epithelial tumor of the liver in an adolescent boy: a case report. J Med Case Rep. 2016;10:160.
10. Geramizadeh B, Foroutan H, Foroutan A, Bordbar M. Nested stromal epithelial tumor of liver presenting with Cushing syndrome: a rare case report. Indian J Pathol Microbiol. 2012;55(2):253–255.
11. Yan W, Jing Z, Huang W-B, Qiu R, Ma H-H, Zhou X-I. Califying stromal-epithelial tumor of the liver: a case report and review of literature. Int J Surg Pathol. 2011;19(2):268–272.
12. Misoa S, Bihari C. Desmoplastic nested spindle cell tumours and nested stromal epithelial tumours of the liver. APIMIS. 2016;124(4):245–251.
13. Samarghandi A, Barker DW, Hingsberg EA, Finegold MJ, Hall NC. CT, MRI, and 18F-FDG PET/CT in a patient with nested stromal epithelial tumor of the liver. Clin Nucl Med. 2015;40(2):131–133.
14. Wang Y, Zhou J, Huang WB, Rao Q, Ma HH, Zhou XJ. Califying nested epithelial-tumor of the liver: a case report and review of literature. Int J Surg Pathol. 2011;19(2):268–272.
15. Heywood G, Burgart LJ, Vagorney DM. Ossifying malignant mixed epithelial and stromal tumor of the liver: a case report of a previously undescribed tumor. Cancer. 2002;94(14):1018–1022.
16. Meir K, Maly A, Dowiner V, et al. Nested (ossifying) stromal epithelial tumor of the liver. case report. Pediatr Dev Pathol. 2009;12(3):233–236.
17. Refa A, Voicu M, Chiche L, et al. Cushing's syndrome associated with a nested stromal epithelial tumor of the liver: hormonal, immunohistochemical, and molecular studies. Eur J Endocrinol. 2009;161(5):805–810.
18. Grazzi GL, Vetrone G, d’Erizzo A, et al. Nested stromal-epithelial tumor (NSET) of the liver: a case report of an extremely rare tumor. Pathol Res Pract. 2010;206(4):282–286.
19. Assmann G, Kappler R, Zeindl-Eberhart E, et al. beta-Catenin mutations in 2 nested stromal epithelial tumors of the liver--a case report. Pediatr Dev Pathol. 2005;8(11):111–113.
20. Ghozde RK, Sathe PA, Kandalkar BM. Califying nested stromal epithelial tumor of the liver: an unusual tumor of uncertain histogenesis. J Postgrad Med. 2012;58(2):160–162.
21. Hommann MA, Kaemmerer D, Daffner W, et al. Nested stromal epithelial tumor of the liver–liver transplantation and follow-up. J Gastrointest Cancer. 2011;42(4):292–295.
22. Badve S, Logdberg L, Lal A, et al. Small cells in hepatoblastoma lack “oval” cell phenotype. Mod Pathol. 2003;16(9):930–936.
23. Sharma D, Subbarao G, Suxena K. Hepatoblastoma. Semin Diagn Pathol. 2017;34(2):192–200.
24. Hansen K, Bagtas J, Mark H, Homans A, Singer DB. Undifferentiated small cell hepatoblastoma with a unique chromosomal translocation: a case report. Pediatr Pathol. 1992;12(3):457–462.
25. Gunawan B, Schader KL, Sattler B, et al. Undifferentiated small cell hepatoblastoma with a chromosomal translocation (22;22)(q11;q13). Histopa-thology. 2002;40(5):485–487.
26. Oviedo Ramirez MJ, Bas Bernal A, Ortiz Ruiz E, Bermejo J, De Alava E, Hernandez T. Desmoplastic nested spindle cell tumor of the liver in an adult. Ann Diagn Pathol. 2010;14(1):44–49.
27. Marin C, Robles R, Fuster M, Parrilla P. Laparoscopic liver resection of a desmoplastic nested round cell tumor cell tumor complicated by Cushing’s syndrome. Pediatr Transplant. 2017;21(6).