The modern reverse shoulder arthroplasty and an updated systematic review for each complication: part II

Sarav S. Shah, MD a,*, Alexander M. Roche, BA b, Spencer W. Sullivan, BS b, Benjamin T. Gaal, BA b, Stewart Dalton, MD b, Arjun Sharma, BS b, Joseph J. King, MD b, Brian M. Grawe, MD b, Sarena Namdari, MD b, Macy Lawler, BS b, Joshua Helmkamp, BS b, Grant E. Garrigues, MD b, Thomas W. Wright, MD b, Bradley S. Schoch, MD b, Kyle Flik, MD b, Randall J. Otto, MD b, Richard Jones, MD b, Andrew Jawa, MD b, Peter McCann, MD b, Joseph Abboud, MD b, Gabe Horneff, MD b, Glen Ross, MD b, Richard Friedman, MD b, Eric T. Ricchetti, MD b, Douglas Boardman, MD b, Robert Z. Tashjian, MD b, Lawrence V. Gulotta, MD b

a American Shoulder and Elbow Surgeons (ASES) Multicenter Taskforce for RSA Complications, Rosemont, IL, USA
b ASES Multicenter Taskforce for RSA Complications, Rosemont, IL, USA

Keywords: Reverse shoulder arthroplasty complications instability humeral fracture glenoid fracture acromial fracture heterotopic ossification

Level of evidence: Level IV; Systematic Review

Background: Globally, reverse shoulder arthroplasty (RSA) has moved away from the Grammont design to modern prosthesis designs. The purpose of this study was to provide a focused, updated systematic review for each of the most common complications of RSA by limiting each search to publications after 2010. In this part II, the following were examined: (1) instability, (2) humerus/glenoid fracture, (3) acromial/scapular spine fractures (AF/SSF), and (4) problems/miscellaneous.

Methods: Four separate PubMed database searches were performed following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Overall, 137 studies for instability, 94 for humerus/glenoid fracture, 120 for AF/SSF, and 74 for problems/miscellaneous were included in each review, respectively. Univariate analysis was performed with chi-square and Fisher exact tests.

Results: The Grammont design had a higher instability rate vs. all other designs combined (4.0%, 1.3%; \(P < .001 \)), and the onlay humerus design had a lower rate than the lateralized glenoid design (0.9%, 2.0%; \(P = .02 \)). The rate for intraoperative humerus fracture was 1.8%; intraoperative glenoid fracture, 0.3%; postoperative humerus fracture, 1.2%; and postoperative glenoid fracture, 0.1%. The rate of AF/SSF was 2.6% (371/14235). The rate for complex regional pain syndrome was 0.4%; deltoid injury, 0.1%; hematoma, 0.3%; and heterotopic ossification, 0.8%.

Conclusions: Focused systematic reviews of recent literature with a large volume of shoulders demonstrate that using non-Grammont modern prosthesis designs, complications including instability, intraoperative humerus and glenoid fractures, and hematoma are significantly reduced compared with previous studies. As the indications continue to expand for RSA, it is imperative to accurately track the rate and types of complications in order to justify its cost and increased indications.

© 2020 Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Although initially indicated for patients with rotator cuff arthropathy, reverse shoulder arthroplasty (RSA) indications have recently expanded to include osteoarthritis with an intact rotator cuff, as well as tumor resection, postinfectious sequelae, chronic dislocations, and revisions of failed arthroplasties. RSA is frequently used to treat difficult clinical diagnoses; consequently, it is not surprising to see a relatively high complication rate. Reports have concluded that indications such as rheumatoid arthritis have a higher risk of intraoperative and postoperative fracture, and that prior nonarthroplasty shoulder surgery confers a higher complication rate post RSA compared with those with no prior surgery on the ipsilateral shoulder.

The use of RSA has continued to rise, and it has become the majority shoulder arthroplasty since 2016. It has had an even more profound effect on revision shoulder arthroplasty than what...
previously has been documented in the primary setting. The precise knowledge of the probability and implications of the various complications are imperative for judicious use of RSA. Complications have been well described; the studies in the literature, however, are heterogeneous (eg, different indications, different prostheses, and different populations) and definitions vary between authors. The reported complication rate is variable among reports and seems to be influenced substantially by the mix of primary and revision procedures included in each study. Patient factors including smoking status, diabetes, Parkinson disease, and preoperative American Society of Anesthesiologists score have all been linked to increased complications and/or unfavorable outcomes. Some advocate that primary shoulder arthroplasty is performed more efficiently by higher-volume surgeons, and complications have been reported to decrease with surgeon experience. Recent data have defined a volume-outcome relationship where, likely related to surgical experience, ancillary staff familiarity, and protocolized pathways, hospital surgical volumes of 54-70 RSAs/year correlate with the highest outcomes.

The majority of the published studies on RSA have historically reported on a Grammont-style RSA (glenosphere with medialized center of rotation [MG] along with an inlay humeral component that mediates the glenosphere [MH]). Lessons learned using this style of prosthesis have led to the introduction of new designs with multiple options for glenosphere lateral offset and eccentricity, different neck-shaft angulations, and humeral-based lateralization (LH). These design modifications translate into different biomechanics compared with the first generation of RSA. As the concept, design, and surgical technique of RSA continue to improve, the rates and types of complications may change over time. One study noted that after implant modifications, there have been statistically significant declines in baseplate failure, humeral dissociation, and glenosphere dissociation. Further, a recent study noted that primary RSA performed with contemporary implants and surgical techniques seems to be associated with a very low rate of reoperation.

As the indications and use of RSA continue to expand, it is important to track the rate and types of complication as the procedure continues to develop over time. The purpose of this 2-part study was to provide a focused systematic review for the most common complications of RSA using contemporary prosthetic designs, therefore limiting studies to those published after 2010. In this part II, a systematic review was performed for (1) instability, (2) humerus/glenoid fracture, (3) acromial/scapular spine fractures, and (4) problems/miscellaneous. We established a study design and specific objectives before commencing each literature research.

Instability

Methods

A systematic review was performed using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search was performed using the PubMed medical database in April 2020 (Fig. 1). The search terms used were [(Dislocation) OR (Instability) OR (Revision) OR (Reoperation) OR (Complication) AND (reverse shoulder arthroplasty) OR (reverse total shoulder) OR (reverse total shoulder arthroplasty)] with filters as follows: date range (1/1/2010 to 12/31/2019), species (human), and language (English). The search resulted in 761 total titles. Inclusion criteria were titles that specified primary or revision RSA. Exclusion criteria were duplicate titles, review articles, editorials, technique articles without reported patient outcomes, cadaveric studies, kinematic/finite element model/computer model analyses, case reports, survey studies, elastography/histologic studies, cost-benefit analyses, and instructional course lecture articles. After application of these criteria, 323 titles remained for abstract review.

Articles that reported 2-year follow-up studies with clearly reported instability, reoperation, revision, or complication data were included. Articles with <15 patients, a minimum average follow-up of <24 months, and evaluated treatment of shoulder peri-prosthetic infection, blood transfusion rates, venous thromboembolism rates, RSA with concomitant tendon transfer, or RSA for tumor were excluded. This process eliminated 154 more articles, leaving 169 for full-text review. Articles with repeat data from publications prior to 2010 without further instability on long-term follow-up were also excluded in the full-text review. Definition of instability/dislocation was left to the discretion of each individual study. This final elimination stage resulted in 137 articles for inclusion in the analysis. Two authors (A.M.R. and S.S.S.) reviewed the articles and collected the data.

The rates of instability overall and according to (1) revision status (primary vs. revision arthroplasty vs. failed open reduction internal fixation [ORIF] proximal humerus fracture [PHF]), (2) publication date (2010-2016 vs. 2017-2020), (3) diagnosis, (4) center of rotation (CoR) (medialized vs. lateralized), and (5) prosthesis design were determined by pooled statistics. CoR and prosthesis design was determined according to Routman et al, who stated that a glenosphere with a CoR of ≤5 mm to the glenoid face is considered an MG, and a glenosphere with a CoR >5 mm lateral to the glenoid face is considered a lateralized glenoid (LG). Comparisons were also made to Zumstein et al.

Statistical analysis was performed using SPSS (version 26; IBM Corp., Armonk, NY, USA). Univariate analysis was performed with the chi-square test, or with Fisher exact test when the expected count for at least 1 cell in the comparison was less than 5. The alpha level for statistical significance was set to 0.05.

Results

The majority of the studies were Level IV (96) and III (37), with only 3 Level II and 1 Level I evidence studies.* A total of 9306 shoulders were included in the analysis with a mean age of 72.1 years and 69.0% of female sex. The overall instability rate was 3.3% (308/9306 shoulders) at a mean follow-up of 3.2 years. When stratified by reoperations required and time to instability, 73.5% of dislocations required revision of components and 59.5% of shoulders with instability occurred within the first 90 days post-operatively (Table I). In total, there were 20 different implant systems encountered. Primary RSA instability rates were significantly lower at 2.5% vs. revision RSA (5.7%) or RSA for failed ORIF PHF rates (5.3%) (P < .001, P = .01, respectively) (Table II). The Grammont design (MG/MH) had a significantly higher instability rate vs. all other designs combined (4.0%, 1.3%; P < .001). Instability rates, especially modern non-Grammont designs, have significantly decreased compared with Zumstein et al (Table III).

Humerus/glenoid fracture

Methods

A systematic review was performed using PRISMA guidelines. The search was performed using the PubMed medical database in

* References 1, 4, 5, 7–9, 14, 20, 25, 26, 29–31, 35, 37, 40–42, 44, 46–49, 51–55, 58, 61, 62, 64, 66, 72, 73, 75, 77, 78, 80, 81, 83–85, 87, 91–93, 98, 102, 103, 106–108, 110, 111, 113, 114, 116–119, 123, 125, 128, 131, 133, 136–138, 143, 146, 147, 149, 154, 155, 157, 160, 162–164, 169, 172–174, 178, 183, 185, 186, 188, 192, 194, 195, 197, 198, 200, 202, 204, 207–209, 213, 215, 217, 219, 220, 223–225, 228, 229, 231, 237, 245, 246, 250–255, 258–262, 264, 266, 267, 270, 273, 275, 277, 281, 287, 290, 292.
The search terms used were [(perioperative complication) OR (Complication) OR (Humerus fracture) OR (Glenoid Fracture) OR (Fracture) OR (Intraoperative fracture) OR (postoperative fracture) OR (revision) OR (reoperation) AND [(reverse shoulder arthroplasty) OR (reverse total shoulder) OR (reverse total shoulder arthroplasty)]] with filters as follows: date range (1/1/2010 to 5/1/2019), species (human), and language (English). The search resulted in 573 total titles. Inclusion criteria were titles that specified primary or revision RSA. Exclusion criteria were duplicate titles, review articles, editorials, technique articles without reported patient outcomes, cadaveric studies, kinematic/finite element model/computer model analyses, case reports, survey studies, elastography/histologic studies, cost-benefit analyses, and instructional course lecture articles. After application of these criteria, 304 titles remained for abstract review. Articles that reported 2-year follow-up studies with perioperative complication data, postoperative complication data, or clearly reported humerus fracture, glenoid fracture, intraoperative fracture, and postoperative fracture were included. Articles with <25 patients, a minimum average follow-up of <24 months, and evaluated treatment of shoulder periprosthetic infection, blood transfusion rates, venous thromboembolism rates, RSA with concomitant tendon transfer, or RSA for tumor were excluded. This process eliminated 195 more articles, leaving 109 for full-text review. Definition of glenoid/humerus fracture was left to the discretion of each individual study. This final elimination stage resulted in 94 articles for inclusion in the analysis. Two authors (B.G. and S.S.S.) reviewed the articles and collected the data.

The rates of intraoperative humerus fracture (IHF), intraoperative glenoid fracture (IGF), postoperative humerus fracture (PostHF), postoperative glenoid fracture (PGF), overall and according to (1) diagnosis and (2) prosthesis design were determined by pooled statistics. Prosthesis design was defined according to Routman et al. Comparisons were also made to Zumstein et al.

Statistical analysis was performed using SPSS (version 26). Univariate analysis was performed with the chi-square test, or with Fisher exact test when the expected count for at least 1 cell in the comparison was less than 5. The alpha level for statistical significance was set to 0.05.

Results

The vast majority of the studies were Level IV and III evidence studies. A total of 5539 shoulders were included in the analysis with a mean age of 71.3 years and 67.4% of female sex at a mean follow-up of 3.5 years. The overall rate was as follows: IHF = 1.8% (91/5539 shoulders), IGF = 0.3% (15/5539), PostHF = 1.2% (69/5539), and PGF = 0.1% (6/5539). In total, there were 20 different implant systems encountered. IGF and IHF rates using modern non-Grammont designs have significantly decreased compared with...
Zumstein et al (Table IV). Additionally, 62.7% of the postoperative fractures were attributed to traumatic events. When stratified by management, the majority of IHF and IGF were treated conservatively (Table V).

Methods
A systematic review was performed using PRISMA guidelines.180 The search was performed using the PubMed and Web of Science databases in March 2020 (Fig. 3). The search terms used were [(reverse shoulder) OR (reverse total shoulder) OR (inverted shoulder)] with filters as follows: date range (1/1/2010–12/31/2019), species (human), and language (English). The search resulted in 1863 total titles. Studies were included if they (1) reported clinical outcomes of RSA and (2) reported the incidence of acromial and scapular spine fractures. Duplicate titles, review articles, meta-analyses/systematic reviews, editorials, technique studies, or studies with fewer than 10 patients were excluded. Abstract review was then performed. Exclusion criteria were biomechanical studies, anatomic/cadaver studies, computer modeling studies, studies focusing on one outcome or complication other than AF, RSA for oncologic indications, isolated radiographic studies, and studies that excluded AF or SSF. Title and abstract review excluded 876 articles, leaving 340 articles for full-text review. In addition to the

Table I
Instability rates overall, stratified by reoperations required and time to instability

Studies included	Shoulders	Instability present	Rate, % (n/n)	
Overall	137	9306	308	33 (308/9306)
Stratified by reoperations	127	6620	226	—
Revision of components	—	—	166	73.5 (166/226)
Closed reduction	—	—	41	18.1 (41/226)
Open reduction	—	—	1	0.4 (1/226)
Stratified by time to instability	32	1712	84	—
<90 d	—	—	50	59.5 (50/84)
>90 d	—	—	34	40.5 (34/84)

The majority of shoulders with instability occurred within the first 90 days postoperatively and were treated with revision of components as final treatment.

Table II
Rates of instability according to (1) publication date (2010-2016 vs. 2017-2020), (2) revision status (primary vs. revision arthroplasty vs. failed ORIF PHF), and (3) center of rotation

Studies included	Shoulders	Instability present	Rate, %	P value	
Year published					
2010-2016	68	4638	165	3.6	.18
2017-2020	69	4668	143	3.1	—
Primary vs. revision					
Primary RSA	86	6607	168	2.5	<.001 vs. revision; .01 vs. ORIF
Revision arthroplasty	37	1404	80	5.7	.81 vs. ORIF
Failed ORIF PHF	9	226	12	5.3	—
Center of rotation					
Medialized	88	4950	141	2.8	.15
Lateralized	22	1065	22	2.1	—

ORIF, open reduction internal fixation; PHF, proximal humerus fracture; RSA, reverse shoulder arthroplasty. Primary RSA had significantly lower instability rates compared to both revision and failed ORIF PHF.

Table III
Rates of instability according to diagnosis and prosthesis design

Studies included	Shoulders	Instability present	Rate, %	P value	
Diagnosis					
Cuff tear arthropathy	15	905	21	2.3	.02 vs. PHF; <.001 vs. failed arthroplasty
PHF	36	1654	67	4.1	.03 vs. failed arthroplasty
Failed arthroplasty	29	1243	72	5.8	.62 vs. instability arthropathy
Instability arthropathy	4	80	3	3.8	>.99 vs. PHF; .44 vs. CTA
Prosthesis design					
LG/MH	22	1021	20	2.0	.02 vs. MG/LH
MG/LH	16	1888	17	0.9	.02 vs. LG/MH
LG/LH	1	45	2	4.4	—
Subtotal	39	2954	39	1.3	<.001 vs. MG/MH
MG/MH	73	2932	116	4.0	—
Author					
Zumstein et al	21	782	37	4.7	—
Current study	137	9303	308	3.3	.04
Current study: subtotal of non-Grammont designs	39	2954	39	1.3	<.001

PHF, proximal humerus fracture; LG, lateralized glenoid; MH, medialized humerus; MG, medialized glenoid; LH, lateralized humerus; CTA, cuff tear arthropathy; JSES, Journal of Shoulder and Elbow Surgery.

The Grammont design (MG/MH) had a significantly higher instability rate vs. all other designs combined (4.0%, 1.3%; P < .001), instability rates, especially modern non-Grammont designs, have significantly decreased compared to Zumstein et al (JSES, 2011). Bold indicates statistical significance (P < .05).

* Fisher exact test.

Zumstein et al (Table IV). Additionally, 62.7% of the postoperative fractures were attributed to traumatic events. When stratified by management, the majority of IHF and IGF were treated conservatively (Table V).

Acromial and scapular spine fractures

Methods
A systematic review was performed using PRISMA guidelines.180 The search was performed using the PubMed and Web of Science databases in March 2020 (Fig. 3). The search terms used were [(reverse shoulder) OR (reverse total shoulder) OR (inverted shoulder)] with filters as follows: date range (1/1/2010–12/31/2019), species (human), and language (English). The search resulted in 1863 total titles. Studies were included if they (1) reported clinical outcomes of RSA and (2) reported the incidence of acromial and scapular spine fractures. Duplicate titles, review articles, meta-analyses/systematic reviews, editorials, technique studies, or studies with fewer than 10 patients were excluded. Abstract review was then performed. Exclusion criteria were biomechanical studies, anatomic/cadaver studies, computer modeling studies, studies focusing on one outcome or complication other than AF, RSA for oncologic indications, isolated radiographic studies, and studies that excluded AF or SSF. Title and abstract review excluded 876 articles, leaving 340 articles for full-text review. In addition to the
prior exclusion criteria, studies that did not mention AF and/or SSF were excluded; however, studies that had no acromial or scapular spine stress fractures in their population were included if they specifically mentioned a lack of these fractures. This final elimination stage excluded 220 articles, resulting in 120 articles included for final analysis. Two of 4 authors (S.D./J.K./A.S./S.S.S.) reviewed the articles and collected the data.

Acromial and scapular spine fracture rates overall and according to (1) revision status (primary vs. revision arthroplasty), (2) pre-operative diagnoses, and (3) implant design were determined by

Figure 2 Preferred Reporting Items for Systematic Reviews and Meta-Analyses diagram for humerus/glenoid fracture.

Table IV

Studies included	Shoulders	Fx present	Rate, %	P value	
Current study					
Intraop. humerus Fx	94	5539	97	1.8	.56
Intraop. glenoid Fx	94	5539	15	0.3	.01*
Postop. humerus Fx	94	5539	69	1.2	.71
Postop. glenoid Fx	94	5539	6	0.1	—
Zumstein et al					
Intraop. humerus Fx	21	782	16	2.0	.56
Intraop. glenoid Fx	21	782	7	0.9	.01*
Postop. humerus Fx	21	782	11	1.4	.71
Postop. glenoid Fx	21	782	NR	NR	—
Current study: subtotal of non-Grammont designs					
Intraop. humerus Fx	1057	0	0	0.0	<.001
Intraop. glenoid Fx	1057	1	1	0.1	.01*
Postop. humerus Fx	1057	23	23	2.2	.23
Postop. glenoid Fx	1057	1	1	0.1	—

Intraop., intraoperatively; Postop., postoperatively; Fx, fracture; NR, not reported; JSES, Journal of Shoulder and Elbow Surgery.

Intraoperative glenoid fracture rates and intraoperative humerus fracture using modern non-Grammont designs have significantly decreased compared with Zumstein et al (JSES, 2011). Bold indicates statistical significance (P < .05).
Table V
Number of fractures treated conservatively and fracture rates stratified by diagnosis and prosthesis design

Diagnosis	CTA	RCT	PHF	Failed arthroplasty
Intraop. humerus Fx	247	0	0.8	5.5 (71/1290)*
Intraop. glenoid Fx	0.3	0	0.1	0.2 (3/1290)
Postop. humerus Fx	0.2	0.8	0.5	2.6 (33/1290)
Postop. glenoid Fx	0.2	0.8	0.5	2.6 (33/1290)

Prosthesis design

Shoulders	LG/MH	MG/LH	LG/LH	MG/MH
Intraop. humerus Fx	0	0	0	1.6 (46/2839)\(^y\)
Intraop. glenoid Fx	0.3	0	0.1	0.3 (2839)\(^y\)
Postop. humerus Fx	2.1	2.5	0	1.1 (31/2839)\(^\)
Postop. glenoid Fx	0	0.3	0	0.2 (5/2839)

Intraop., intraoperatively; Postop., postoperatively; Fx, fracture; CTA, cuff tear arthropathy; RCT, rotator cuff tear; PHF, proximal humerus fracture; LG, lateralized glenoid; MH, medialized humerus; MG, medialized glenoid; LH, lateralized humerus.

\(^*\) P < .001 vs. CTA; \(^\) P < .001 vs. RCT; \(^\) P < .001 vs. PHF.

\(^y\) P < .001 vs. CTA; \(^\) P = .09 vs. RCT; \(^\) P < .001 vs. PHF.

\(^x\) P = .001 vs. LG/MH.

\(^\) P = .03 vs. MG/LH; \(^\) P = .03 vs. LG/MH.

Figure 3 Preferred Reporting Items for Systematic Reviews and Meta-Analyses diagram for Acromial/Scapular Spine fractures
pooled statistics. Prosthesis design was defined according to Routman et al.210 Comparisons were also made to Zumstein et al.293

Statistical analysis was performed using SPSS (version 26). Univariate analysis was performed with the chi-square test, or with Fisher exact test when the expected count for at least 1 cell in the comparison was less than 5. The alpha level for statistical significance was set to 0.05.

Results

The studies were mostly retrospective and provided Level III (38 studies) and Level IV evidence (78 studies), with 3 studies at Level II and 1 study providing Level I evidence.1 A total of 14,235 shoulders were included in the analysis with a mean age of 72.1 years and 58.7% of female sex. The overall rate of AF and/or SSF was 2.6% (371/14,235 RSAs) at a mean follow-up of 4.3 years. When stratified by type, AF were more commonly reported than SSF. A diagnosis of inflammatory arthritis had significantly higher rates of AF/SSF compared with CTA, RCT, and PHF. Despite improved surgeon diagnosis in diagnosing acriomial/scapular fracture, there was no significant increase in fracture rates compared with Zumstein et al293 (Table VI). The fracture rate was 2.5% after primary RSA and 2.7% after revision RSA ($P = .76$). There was no difference in acromial/scapular fracture rates for the Grammont design (MG/MH), at 2.5% (71/2817), vs. all other designs combined, at 2.5% (133/5420) (Table VII).

Problems and miscellaneous

Methods

A systematic review was performed using PRISMA guidelines.180 The search was performed using the PubMed medical database in July 2019 (Fig. 4). The search terms used were [(Complication) OR (Revision) OR (Reoperation) OR (Algodystrophy) OR (CRPS) OR (Deltoid rupture) OR (Deltoid injury) OR (Hematoma) OR (Seroma) OR (Heterotopic ossification) AND (reverse shoulder arthroplasty) OR (reverse total shoulder) OR (reverse total shoulder arthroplasty)] with filters as follows: date range (1/1/2010 to 05/31/2019), species (human), and language (English). The search resulted in 1008 total titles. Inclusion criteria were titles that specified primary or revision RSA. Exclusion criteria were duplicate titles, review articles, editorials, technique articles without reported patient outcomes, cadaveric studies, kinematic/finite-element model/computer model analyses, case reports, survey studies, elastography/histologic studies, cost-benefit analyses, and instructional course lecture articles. After application of these criteria, 209 titles remained for abstract review. Articles that reported 2-year follow-up studies clearly reported algodystrophy, complex regional pain syndrome (CRPS), deltoid rupture, deltoid injury, hematoma, seroma, heterotopic ossification (HO), reoperation, revision, or complication data were included. Articles with <15 patients, a minimum average follow-up of <24 months, and evaluated treatment of shoulder periprosthetic infection, blood transfusion rates, venous thromboembolism rates, RSA with concomitant tendon transfer, or RSA for tumor were excluded. This process eliminated 96 more articles, leaving 113 for full-text review. Definition of detoid rupture, deltoid injury, hematoma, seroma, and/or HO was left to the discretion of each individual study. As there was rarely specific notation for algodystrophy/CRPS, any study with a description of pain as a postoperative problem/complication without an etiology was included; this was typically defined as “persistent pain” or “chronic pain.” This final elimination stage resulted in 74 articles for inclusion in the analysis. Two authors (S.W.S. and S.S.S.) reviewed the articles and collected the data. Comparisons were made to Zumstein et al.293

Statistical analysis was performed using SPSS (version 26). Univariate analysis was performed with the chi-square test, or with Fisher exact test when the expected count for at least 1 cell in the comparison was less than 5. The alpha level for statistical significance was set to 0.05.

Results

The studies were mostly retrospective and provided Level III or IV evidence.1 A total of 5529 shoulders were included in the analysis with a mean age of 71.5 years and 67.3% of female sex at a mean follow-up of 3.4 years. The overall rate was algodystrophy/CRPS = 0.4% (23/5529 shoulders), deltoid injury = 0.1% (5/5529), hematoma = 0.3% (15/5529), and HO = 0.8% (46/5529). Hematoma rates have significantly decreased compared to Zumstein et al (Table VIII). Additionally, 46.7% of all cases of hematoma were reported as requiring OR drainage.

Discussion

RSA has had wide adoption, with authors reporting good results in patients <55 years of age105 and patients >65 years of age and OA with an intact rotator cuff.109,110 Given the ubiquitous utility of RSA, it is not surprising to see variable complication rates being reported. However, as the indications continue to expand, the implants and prosthesis design improve as well. By limiting each search to publications after 2010 and by performing a systematic review for each complication, our study was able to examine large sample sizes and provide useful analyses based on diagnosis and prosthesis design that are typically difficult with registry studies or case series. Registry studies have large sample sizes, but classically only report revision rates and lack data on specific complication rates without revision.164,165 By contrast, case series usually lack a large sample size that is necessary to make specific comparisons with increased power. The results of this study will serve for better patient education and be helpful for surgeon planning for RSA based on diagnosis and prosthesis design.

On the basis of this study, the global instability rate was 3.3% (308/9306) at a mean follow-up of 3.2 years. Instability rates, especially modern non-Grammont designs, have significantly decreased compared with Zumstein et al. The majority of dislocations required revision of components and occurred within the first 90 days postoperatively. Primary RSA instability rates were significantly lower vs. revision RSA or RSA for failed ORIF PHF. The Grammont design (MG/MH) had a significantly higher instability rate vs. all other designs combined. Finally, the MG/LH design had a significantly lower rate than the LG/MH. Once instability occurs, it is difficult to manage. Instability can be treated with closed reduction but may have limited success, ultimately leading to revision or poor outcome without further intervention.204

1 References 2, 5, 12–15, 19, 21, 24, 28, 42–44, 46, 47, 50, 54, 58, 61, 65, 68, 71, 74, 77, 81, 84, 90–92, 95, 96, 99–102, 105, 106, 109–111, 113, 115, 118–120, 127, 129–131, 134, 135, 138, 139, 143, 145, 147, 149, 150, 152, 153, 155, 156, 161, 162, 166, 167, 169, 171, 173–175, 181–184, 186, 187, 189–191, 195, 200–202, 205, 213, 214, 218, 221, 224–226, 229–234, 238, 241, 243, 248, 249, 250, 252, 256, 259, 269–273, 276, 280, 285, 288–290.

2 References 3, 4, 6, 10, 15, 22, 23, 27, 32, 41, 42, 45, 48, 49, 51, 52, 55, 56, 58–60, 67, 74, 80, 81, 84, 88, 94, 98, 102, 106, 111, 113, 119, 122, 123, 127, 128, 142, 147, 151, 165, 169, 171, 173, 174, 177, 182, 187, 190, 192, 193, 195, 199, 202, 205, 206, 212, 216, 219, 222, 223, 231, 252, 257, 261, 262, 264, 269, 270, 274, 282, 283, 292.
compared with patients without signs of instability.246 Instability has been shown to have negative effects on ASES scores.233 The incidence of more subtle forms of instability was left to each study; the incidence of more subtle forms of instability was most commonly associated with traumatic events, can be decreased by type 116 12,688 327 .001 vs. RCT; <.001 vs. inflammatory arthritis had significantly higher rates compared to CTA, RCT, and PHF. Despite improved surgeon awareness in diagnosing Acromial/Scapular Fx, there was no significant increase in rates compared to Zumstein et al (JSES, 2011).

Fisher exact test.

However, revision may still lead to recurrent instability.40,137 Furthermore, it is important to note that the definition of instability was left to each study; the incidence of more subtle forms of instability has been shown to have negative effects on ASES scores compared with patients without signs of instability.246

There are multiple variables that may play a role in the etiology of instability: male gender, prior open operations, preoperative diagnoses of proximal humeral or tuberosity nonunion,192,204 superior baseplate inclination,246 and intraoperative resection of tuberosities.102,204 Furthermore, achieving anatomic soft tissue tensioning, specifically of the deltoid, plays a role in the overall stability of the prosthesis. It has been suggested that obesity may prevent the surgeon from accurately evaluating soft tissue tensioning during surgery, leading to subsequent instability.48 Additionally although some reports have found absence of subscapularis repair being significantly associated with prosthetic instability,40 others found no difference between repair vs. no repair,245 and using a lateralized RSA subscapularis repair may not be necessary.218

On the basis of this study, the global rate for IHF was 1.8% (91/5539 shoulders); IGF, 0.3% (15/5539); PostHF, 1.2% (69/5539); and PGF, 0.1% (6/5539), with the majority of intraoperative fractures, both glenoid and humerus, treated with no additional intervention. IGF and IHF rates using modern non-Grammont designs, have significantly decreased compared to Zumstein et al. Numerous factors play a role in the incidence of fracture. Risk of IHF has been shown to be increased by female sex, history of instability, prior hemiarthroplasty, and revision RSA cases.265 To avoid IHF during revision surgery, lateral humeral split has been suggested as the least aggressive means of extracting the humeral implant. Glenoid fractures during surgery are rare, typically related to the reaming or fixation process; IGFs may occur in PHF cases as a result of overreaming because there is less sclerotic bone in the typically unaffected glenoid.211 Although many glenoid fractures can be addressed by fixation or redirection of the baseplate, in the case of substantial glenoid fractures it may be necessary to implement a 2-stage bone grafting and reimplantation process. Patients treated with RSA combined with allograft-prosthetic composite48 and cement-within-cement fixation of the humeral component in revision RSA have both been discussed as at risk for PostHF.250 PostHF are most commonly associated with traumatic events, can have significant negative impacts on clinical outcomes, and has been shown to be more likely to occur in older patients, females, and those operated on via a transdeltoid approach.11

An explanation for some recent studies reporting fracture is the “the learning curve” of a new implant.14 Many intraoperative fractures occurred early on with the use of a short-stem prosthesis14 as well as stemless implants.15 Because of the technically demanding nature of stemless implants, there is a high susceptibility to fracture both intraoperatively and postoperatively, especially fracture of the humeral metaphysis due to excessive bone impaction in soft bone.150

On the basis of this study, the overall rate of AF and/or SSF was 2.6% (371 of 14,235 RSAs [1.6% for AF and 1.0% for SSF]). This is similar to the recent King et al122 study (2.8%); however, our study is inclusive of 2 more years of data with approximately 5000 more shoulders included. A diagnosis of inflammatory arthritis had significantly higher rates of AF/SSF compared with CTA, RCT, and

Table VI

Diagnosis	Studies included	Shoulders	Acromial/scapular Fx	Rate, %	P value
CTA	21	1407	36	2.6	.04
PHF	12	307	2	0.7	.053
RCT	8	647	16	2.5	
Inflammatory	5	153	12	7.8	.001

Fx, Fracture; CTA, cuff tear arthropathy; PHF, proximal humerus fracture; RCT, massive rotator cuff tear; JSES, Journal of Shoulder and Elbow Surgery.

A diagnosis of inflammatory arthritis had significantly higher rates compared to CTA, RCT, and PHF. Despite improved surgeon awareness in diagnosing Acromial/Scapular Fx, there was no significant increase in rates compared to Zumstein et al (JSES, 2011).

Fisher exact test.

Table VII

Prosthesis design	Studies included	Shoulders	Acromial/scapular fractures	Rate, %	P value
Primary vs. revision					
Primary RSA	82	7244	181	2.5	.76
Revision RSA	21	707	19	2.7	
Prosthesis design					
LG/MH	16	2534	72	2.8	.13
MG/LH	13	2746	60	2.2	.37
LG/LH	1	140	1	0.7	.26
Subtotal		5420	133	2.5	
MG/MH	45	2817	71	2.5	

RSA, reverse shoulder arthroplasty; LG, lateralized glenoid; MH, medialized humerus; MG, medialized glenoid; LH, lateralized humerus.

There was no difference in acromial/scapular fracture rates for the Grammont design (MG/MH) at 2.5% (71/2817) vs. all other designs combined at 2.5% (133/5420).

Fisher exact test.
PHF. Despite improved surgeon awareness (including expansion of previous definition168 to include persistent pain without magnetic resonance imaging or bone scan changes and improved diagnostic imaging) for diagnosing acromial/scapular fracture, there was no significant increase in rates compared with Zumstein et al. Some authors have theorized that acromion fractures are caused by excessive tensioning of the deltoid with RSA that causes significant inferior stress on the acromion70,148 possibly influenced by the anatomic position of the acromion.227 Excessive lowering of the humerus can lead to arm lengthening and thus increased resting tension of the deltoid on the tip of the acromion.278 Also, excessive medialization may create a lower deltoid wrapping angle, leading to a more vertical line of pull from the deltoid producing an increased bending moment arm applied to the acromion, further placing the acromion at risk for fracture. In these cases, the greater tuberosity cannot act as a pulley of reflection for the deltoid anymore.278

In our study, the LG/MH design had the highest reported incidence of AF/SSF at 2.8%. This compares to 2.5% and 2.2% in the MG/MH and MG/LH designs, respectively. All comparisons were not statistically significant. A finite element study by Wong et al.284 showed that glenosphere lateralization significantly increased acromial stress by 17%. Other studies have shown a decreased deltoid moment arm with glenosphere lateralization, which may also affect acromial stresses.86,97 As the moment arm decreases, there is increased force required by the deltoid to abduct the arm in elevation, thus increasing stress on the acromion.

Table VIII

	Studies included	Shoulders	Incidence	Current study rate, % (n/n)	Zumstein et al rate, % (n/n)	P value current study vs. Zumstein et al
CRPS	74	5529	23	0.4 (23/5529)	0.5 (4/782)	.77
Deltoid injury	74	5529	5	0.1 (5/5529)	—	—
Hematoma	74	5529	15	0.3 (15/5529)	2.6 (20/782)	$<.001$
Heterotopic ossification	74	5529	46	0.8 (46/5529)	0.8 (6/782)	.86

CRPS, complex regional pain syndrome; RSA, reverse shoulder arthroplasty; JSES, Journal of Shoulder and Elbow Surgery.

Hematoma rates have significantly decreased compared with Zumstein et al (JSES, 2011).

*Fisher exact test.
AF and SSF can lead to worse outcomes after RSA105,148,168,241,249,268; however, these patients typically still have better functional scores compared with preoperative values.105,148,249 Some authors advocate operative intervention for displaced AF affecting a large portion of the deltoid; however, operative intervention has not been shown to improve overall outcomes.168 No consensus on the recommended treatment of these fractures has been reached.105,168,208 Risk factors for AF and SSF reported in clinical studies are osteoporosis, a smaller lateral offset of the greater tuberosity, and increased arm lengthening.196,210 One theory about how to prevent SSF is to avoid putting screws through the junction of the scapular spine and the scapular body, which may act as a stress riser. One study showed a significantly lower rate of SSF when no superior screws were used (0% of 112 RSAs) compared with when screws were used above the metaglene central cleft (4.4% of 209 RSAs).130 Another study suggests that coracoacromial ligament transection during surgical exposure for RSA alters strain patterns along acromion and scapular spine, leading to an accumulation of microtrauma, which may lead to stress fracture.247

The term problem refers to events perceived as adverse but unlikely to affect the final outcome, that is, algodystrophy/CRPS, hematoma, and heterotopic ossification.25 On the basis of this study, the overall rate for algodystrophy/CRPS is 0.4% (23/5529 shoulders); deltoid injury, 0.1% (5/5529); hematoma, 0.3% (15/5529); and HO, 0.8% (46/5529). Hematoma rates have significantly decreased compared with Zumstein et al. CRPS may perhaps be underestimated in the literature; many studies report persistent pain,59,67,182 chronic pain,81 or greater than moderate pain.4 Thus, in an attempt to accurately gauge the rates of CRPS, we included any exposure for RSA alters strain patterns along acromion and scapular spine, leading to an accumulation of microtrauma, which may lead to stress fracture.247

Conclusion

Focused systematic reviews of recent literature with a large volume of shoulders demonstrate that using modern non-Grammont prostheses designs, complications including instability, intraoperative humerus and glenoid fractures, and hematoma are significantly decreased compared with previous studies. In addition, modern RSA designs carry an AF/SSF rate of 2.5%. As the indications continue to expand for RSA, it is imperative to accurately track the rate and types of complications in order to justify its cost and increased indications.

Disclaimer

The authors, their immediate families, and any research foundations with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

References
65. Ekelund A, Nyberg R. Can reverse shoulder arthroplasty be used with few complications in rheumatoid arthritis? Clin Orthol Relat Res 2017;469:2483–8. https://doi.org/10.1007/s11999-017-4654-4.

66. Elhassan BT, Wagner ER, Werthel JD, Lehanneur M, Lee J. Reverse total shoulder arthroplasty outcomes with and without subscapularis repair. J Shoulder Elbow Surg 2017;26:662–8. https://doi.org/10.1016/j.jse.2016.09.027.

67. Gaeremynck P, Amstey J, Saab C, Szymanski C, et al. Clinical and radiological outcomes of 17 reverse shoulder arthroplasty cases performed after failed humeral head resurfacing. Orthop Traumatol Surg Res 2019;105:1495–501. https://doi.org/10.1016/j.otsr.2019.06.017.

68. Gallinet D, Adam A, Gasse N, Roget S, Obert L. Improvement in shoulder rotation in complex shoulder fractures treated by reverse shoulder arthroplasty. J Shoulder Elbow Surg 2013;22:28–34. https://doi.org/10.1016/j.jse.2012.03.011.

69. Garofalo R, Brody F, Castagna A, Cecarelli E, Krishnan SG. Reverse shoulder arthroplasty with glenoid bone grafting for anterior glenoid rim fracture associated with glenohumeral dislocation and proximal humerus fracture. J Shoulder Elbow Surg 2016;25:982–9. https://doi.org/10.1016/j.jse.2016.09.009.

70. Gerber C, Canonica S, Catanzaro S, Ernstbrunner L. Longitudinal observational study of reverse total shoulder arthroplasty for irreparable rotator cuff dysfunction: results after 15 years. J Shoulder Elbow Surg 2018;27:831–8. https://doi.org/10.1016/j.jse.2017.10.037.

71. Giardella A, Ascione F, Mocchi M, Berlosconi M, Romano AM, Oliva F, et al. Reverse total shoulder versus non-weight-bearing shoulder: mid-term outcomes with minimum 5-year follow-up. J Shoulder Elbow Surg 2020;29:561–70. https://doi.org/10.1016/j.jse.2019.07.016.

72. Giuseffi S, Sterbeul P, Sperling J, Sanchez-Sotelo J. Short-term un cemented primary reverse shoulder arthroplasty: clinical and radiological outcomes. Bone Joint J 2014;96-B:526–9. https://doi.org/10.1302/0301-620X.96B3.2702.

73. Gobezie R, Shishani Y, Lederman E, Denard PJ. Can a functional difference be detected in reverse arthroplasty with 135° versus 155° prosthesis for the treatment of rotator cuff arthropathy: a prospective randomized study. J Shoulder Elbow Surg 2019;28:813–8. https://doi.org/10.1016/j.jse.2018.11.094.

74. Grammont PM, Baulet D. Delta shoulder prosthesis for rotator cuff rupture. Orthopédics 1993:16:65–8.

75. Greiner SH, Back DA, Herrmann S, Perka C, Asbach P. Degenerative changes of the deltoid muscle have impact on clinical outcome after reversed total shoulder arthroplasty. Arch Orthop Trauma Surg 2010;130:173–87. https://doi.org/10.1007/s00207-009-0901-y.

76. Groh GI, Groh GM. Complications rates, reoperation rates, and the learning curve in reverse shoulder arthroplasty. J Shoulder Elbow Surg 2014;23:388–94. https://doi.org/10.1016/j.jse.2013.06.002.

77. Grubhofer F, Wieser K, Meyer DC, Catanzaro S, Beeler S, Riedl K, et al. Reverse total shoulder arthroplasty for patients with Parkinson’s disease: a matched cohort study. J Shoulder Elbow Surg 2019;28:56–60. https://doi.org/10.1016/j.jse.2018.10.007.

78. Gupta A, Thussbras C, Koh M, Seebauer L. Management of glenoid bone defects with reverse shoulder arthroplasty-surgical technique and clinical outcomes. J Shoulder Elbow Surg 2018;27:853–62. https://doi.org/10.1016/j.jse.2017.10.004.

79. Gupta AK, Chalmers PN, Rahman Z, Bruce B, Harris JD, McCormick F, et al. Reverse total shoulder arthroplasty in patients of varying body mass index. J Shoulder Elbow Surg 2014;23:35–42. https://doi.org/10.1016/j.jse.2013.07.043.

80. Hamid N, Connor PM, Fleischf JD, Alessandro DF. Acromial fracture after reverse shoulder arthroplasty. Am J Orthop (Belle Mead NJ) 2011;40:E125–9. https://doi.org/10.2106/AJOC.2010.1502.

81. Hamilton MA, Diep P, Craciureanu C, Wright TK, Zimmerman JD, et al. Effect of reverse shoulder design philosophy on muscle arm moment. J Orthop Res 2015;33:905–13. https://doi.org/10.1002/jor.22803.

82. Hanssen S, Casagrale D, Nezi T. "Shaping" humeral head autograft reverse shoulder arthroplasty: treatment for primary glenohumeral osteoarthritis with significant posterior glenoid bone loss (B2, B3, and C type). Orthopedics 2017;40:1045–54. https://doi.org/10.3928/01477447-20170327-04.

83. Hare WD, Morris WT, Zuckerman JD, Roche CP. Comparison of reverse total shoulder arthroplasty outcomes with and without subscapularis repair. J Shoulder Elbow Surg 2017;26:682–8. https://doi.org/10.1016/j.jse.2016.09.027.
145. Lenarz C, Shishani Y, McCrum C, Nowinski R, Edwards TB, Gobeze R. Is reverse shoulder arthroplasty appropriate for the treatment of fractures in the older patient? Evidence-based practices. Clin Orthop Relat Res 2011;469:3214–31. https://doi.org/10.1007/s11999-011-0555-2.

146. Leonidou A, Virani S, Buckle C, Yeoh C, Relwani J. Reverse shoulder arthroplasty with a cementless short metaphyseal humeral prosthesis without a stem: clinical and radiologic outcomes in a prospective study from an independent centre. Eur J Orthop Surg Traumatol 2020;30:89–96. https://doi.org/10.1007/s00590-019-02531-2.

147. Leung B, Horodyski M, Struk AM, Wright TW. Functional outcome of hemi-arthroplasty compared with reverse total shoulder arthroplasty in the treatment of rotator cuff tear arthropathy. J Shoulder Elbow Surg 2012;21:319–23. https://doi.org/10.1016/j.jse.2011.05.021.

148. Levy JC, Anderson C, Samson A. Classification of postoperative acromial fractures following reverse shoulder arthroplasty. J Bone Joint Surg Am 2013;95:e104. https://doi.org/10.2106/JBJS.K.01516.

149. Levy JC, Berglund D, Vakharia R, DeVito P, Tahal DS, Mijc D, et al. Primary reverse shoulder arthroplasty without bone-grafting for severe glenoid bone loss in patients with osteoarthritis and intact rotator cuff. J Bone Joint Surg Am 2016;98:1801–7. https://doi.org/10.1177/1758573415628783.

150. Levy O, Narvani A, Hous N, Abraham R, Relwani J, Pradhan D, et al. Reverse shoulder arthroplasty with a cementless short metaphyseal humeral implant without a stem: clinical and radiologic outcomes in prospective 2- to 7-year follow-up study. J Shoulder Elbow Surg 2016;25:1362–70. https://doi.org/10.1016/j.jse.2015.12.017.

151. Levy O, Walecka J, Anic G, Tiweli O, Delta Rotonda G, Abraham R, et al. Bilateral reverse total shoulder arthroplasty—functional outcome and activities of daily living. J Shoulder Elbow Surg 2017;26:85–96. https://doi.org/10.1016/j.jse.2016.09.010.

152. Lindstrom BJ, Christiansen E, Downes K, Simon P, Mclendon PB, Hass AVND, et al. Is there a relationship between preoperative diagnosis and clinical outcomes in reverse shoulder arthroplasty? An experience in 699 shoulders. J Shoulder Elbow Surg 2019;28:5110–7. https://doi.org/10.1016/j.jse.2019.09.007.

153. Lopez Y, Alcobia-Diaz B, Galan-Olleros M, Garcia-Fernandez C, Picado AL, Marco F. Reverse shoulder arthroplasty versus nonoperative treatment for 3- or 4-part proximal humeral fractures in elderly patients: a prospective randomized controlled trial. J Shoulder Elbow Surg 2019;28:2259–71. https://doi.org/10.1016/j.jse.2019.06.024.

154. Lopez Y, Garcia-Coiradas J, Serrano-Mateo I, Garcia-Fernandez C, Marco F. Reverse shoulder arthroplasty for acute proximal humeral fractures in the geriatric patient: results, health-related quality of life and complication rates. Int Orthop 2016;40:771–81. https://doi.org/10.1007/s00264-015-3085-2.

155. Lopez Y, Garcia-Fernandez C, Arriaza A, Rizo B, Marcelo H, Marco F. Midterm outcomes of bone grafting in glenoid defects treated with reverse shoulder arthroplasty. J Shoulder Elbow Surg 2017;26:1581–8. https://doi.org/10.1016/j.jse.2017.01.017.

156. Lopez Y, Rodriguez-Gonzalez A, Garcia-Fernandez C, Marco F. Scapula insufficiency fractures after reverse total shoulder arthroplasty in rotator cuff arthropathy: what is their functional impact? Rev Esp Ciur Ortop Traumatol 2015;39:318–25. https://doi.org/10.1016/j.recot.2015.01.003.

157. Luciani P, Farinelli L, Procaccini R, Verducci C, Gigante A. Primary reverse shoulder arthroplasty with an eccentric all-polyethylene glenosphere to treat failed hemiarthroplasty and the sequelae of proximal humeral fractures. Int Orthot 2017;41:141–8. https://doi.org/10.1007/s00520-016-1388-1.

158. Merolla G, Wagner E, Spening JW, Paladini P, Fabbi E, Porcellini G. Early clinical and radiological outcomes of reverse shoulder arthroplasty with an eccentric all-polyethylene glenosphere to treat failed hemiarthroplasty and the sequelae of proximal humeral fractures. Int Orthot 2017;41:141–8. https://doi.org/10.1007/s00520-016-1388-1.

159. Merolla G, Wagner E, Spening JW, Paladini P, Fabbi E, Porcellini G. Revision of failed shoulder hemiarthroplasty to reverse total arthroplasty: analysis of 157 revision implants. J Shoulder Elbow Surg 2018;27:75–81. https://doi.org/10.1016/j.jse.2017.06.038.

160. Merolla G, Walch G, Ancione F, Paladini P, Fabbi E, Padolino A, et al. Grammont humeral design versus onlay curved-stem reverse shoulder arthroplasty: comparison of clinical and radiographic outcomes with minimum 2-year follow-up. J Shoulder Elbow Surg 2018;27:701–10. https://doi.org/10.1016/j.jse.2017.06.038.

161. Mollon B, Water J, Carpenter S, Kouser DM, Marcantonio D, Wiltier BP. Influence of body mass index on clinical outcomes in reverse total shoulder arthroplasty. J Orthop Surg Adv 2016;27:134–42.

162. Middleton C, Ori O, Phillips S, Bampounakis K, Higgs D, Falworth M, et al. A reverse shoulder arthroplasty with increased offset for the treatment of cuff-deficient shoulders with glenohumeral arthritis. Bone Joint J 2014;96-B:936–42. https://doi.org/10.1302/0301-620x.96b6.32946.

163. Mizuno N, Denard PJ, Raisi P, Walsh G. The clinical and radiographical results of reverse total shoulder arthroplasty with eccentric glenosphere. Int Orthot 2012;36:1647–53. https://doi.org/10.1007/s00264-012-1593-0.

164. Mizuno N, Denard PJ, Raisi P, Walsh G. Reverse total shoulder arthroplasty for primary glenohumeral osteoarthritis in patients with a biconcave glenoid. J Shoulder Elbow Surg 2013;22:1297–304. https://doi.org/10.1016/j.jse.2013.08.020.

165. Moeini S, Rasmussen JV, Solomonsson B, Domeij-Arverud E, Fenstad AM, Belanger RH, Sanchez-Sotelo J, Sperling JW. Reverse shoulder arthroplasty in older patients: is it worth it? A subjective functional outcome study. J Shoulder Elbown Surg 2018;27:260–7. https://doi.org/10.1016/j.jse.2018.06.026.

166. Molin B, Mollah SA, Roche CP, Zuckerman JD. Impact of glenosphere size on clinical outcomes after reverse total shoulder arthroplasty: an analysis of 297 shoulders. J Shoulder Elbow Surg 2016;25:763–71. https://doi.org/10.1016/j.jse.2015.10.027.

167. Molin B, Mollah SA, Roche CP, Zuckerman JD. Impact of scapular notching on clinical outcomes after reverse total shoulder arthroplasty: an analysis of 476 shoulders. J Shoulder Elbow Surg 2017;26:1253–61. https://doi.org/10.1016/j.jse.2016.11.043.

168. Morello P, Ernstbrunner L, Zueger C, Schatz M, Seittering G, Skursky R, et al. Short to midterm results of stemless reverse shoulder arthroplasty in a selected patient population compared to a matched control group with stem. Int Orthop 2016;40:2115–20. https://doi.org/10.1007/s00264-016-3249-5.

169. Morris BJ, Haigler RE, Cochran JM, Laughlin MS, Elkousy HA, Gartsman GM, et al. Outcome of rotator cuff tear arthropathy. J Shoulder Elbow Surg 2012;21:342–9. https://doi.org/10.1016/j.jse.2011.05.021.

170. Motta C, Grasso CJ, Sivakumar GM, Shichay Sh, Rowland DY, et al. Early follow-up of reverse total shoulder arthroplasty in patients sixty years of age or younger. J Bone Joint Surg Am 2013;95:1877–83. https://doi.org/10.1016/j.jbjs.2013.08.005.
S.S. Shah, A.M. Roche, S.W. Sullivan et al. JSES International 5 (2021) 121–137

preoperative etiology. Arch Orthop Trauma Surg 2013;133:463–71. https://doi.org/10.1007/s00402-013-1688-7.

273. Werner BC, Gubler UV, Dines JS, Dines DM, Warren RF, Craig EV, et al. Acromion compromise does not significantly affect clinical outcomes after reverse shoulder arthroplasty: a matched case-control study. HSS J 2019;15:147–52. https://doi.org/10.1007/s11420-018-9653-1.

274. Werner BC, Wong AC, Mahony CT, Craig EV, Dines DM, Warren RF, et al. Clinical outcomes after reverse shoulder arthroplasty with and without subacromial repair: the importance of considering glenosphere lateralization. J Am Acad Orthop Surg 2018;26:e114–9. https://doi.org/10.1016/j.jaaos.2018.01.005.

275. Werner BS, Abdelkawi AF, Boehm D, Hudek R, Plumhoff P, Burkhart KJ, et al. Long-term analysis of revision reverse shoulder arthroplasty using cemented long stems. J Shoulder Elbow Surg 2017;26:273–8. https://doi.org/10.1016/j.jse.2016.05.015.

276. Werner BS, Boehm D, Gohlie F. Revision to reverse shoulder arthroplasty with retention of the humeral component. Acta Orthop 2013;84:473–8. https://doi.org/10.3109/17453674.2013.642433.

277. Werner BS, Bohm D, Abdelkawi A, Gohlie F. Glenoid bone grafting in reverse shoulder arthroplasty for long-standing anterior shoulder dislocation. J Shoulder Elbow Surg 2014;23:1655–61. https://doi.org/10.1016/j.jse.2014.02.017.

278. Werthel JD, Schoch BS, van Veen SC, Elhassan BT, An KN, Cofield RH, et al. Acromial fractures in reverse shoulder arthroplasty: a clinical and radiographic analysis. J Shoulder Elbow Arthroplasty 2018;2. https://doi.org/10.1177/24715492187177628.

279. Whatley AN, Fowler RL, Warner JJ, Higgins LD. Postoperative rupture of the anterolateral deltoid muscle following reverse total shoulder arthroplasty in patients who have undergone open rotator cuff repair. J Shoulder Elbow Surg 2014;23:1208–14. https://doi.org/10.1016/j.jse.2013.11.032.

280. Wiater BP, Boone CR, Koueiter DM, Wiater JM. Early outcomes of staged bilateral reverse total shoulder arthroplasty: a case-control study. Bone Joint J 2013;95-B:1232–8. https://doi.org/10.1302/0301-620x.95b9.31445.

281. Wiater JM, Moravek JE Jr, Budge MD, Koueiter DM, Marcantonio D, Wiater BP. Clinical and radiographic results of cementless reverse total shoulder arthroplasty: a comparative study with 2 to 5 years of follow-up. J Shoulder Elbow Surg 2014;23:1208–14. https://doi.org/10.1016/j.jse.2013.11.032.

282. Wieser K, Borbas P, EK ET, Meyer DC, Gerber C. Conversion of stemmed hemi- or total reverse total shoulder arthroplasty: advantages of a modular stem design. Clin Orthop Relat Res 2015;473:651–60. https://doi.org/10.1007/s11999-014-3985-2.

283. Willis M, Min W, Brooks JP, Mulieri P, Walker M, Pupello D, et al. Proximal humeral malunion treated with reverse shoulder arthroplasty. J Shoulder Elbow Surg 2012;21:507–13. https://doi.org/10.1016/j.jse.2011.01.042.

284. Wong MT, Langohr GDG, Athwal GS, Johnson JA. Implant positioning in reverse shoulder arthroplasty has an impact on acromial stresses. J Shoulder Elbow Surg 2016;25:1889–95. https://doi.org/10.1016/j.jse.2016.04.011.

285. Wright JO, Ho A, Kalma J, Koueiter D, Esterle J, Marcantonio D, et al. Uncemented reverse total shoulder arthroplasty as initial treatment for comminuted proximal humerus fractures. J Orthop Trauma 2019;33:e263–9. https://doi.org/10.1097/bot.0000000000001485.

286. Wright MA, Keener JD, Chamberlain AM. Comparison of clinical outcomes after anatomic total shoulder arthroplasty and reverse shoulder arthroplasty in patients 70 years and older with glenohumeral osteoarthritis and an intact rotator cuff. J Am Acad Orthop Surg 2020;28:e222–9. https://doi.org/10.5435/JAAOS-D-19-00166.

287. Wright TW, Roche CP, Wright L, Flurin PH, Crosby LA, Zuckerman JD. Reverse shoulder arthroplasty augments for glenoid wear. Comparison of posterior augments to superior augments. Bull Hosp Jt Dis (2013) 2015;73(Suppl 1):512–8.

288. Yoon JP, Seo A, Kim J, Lee CH, Baek SH, Kim SY, et al. Deltoid muscle volume affects clinical outcome of reverse total shoulder arthroplasty in patients with cuff tear arthropathy or irreparable cuff tears. PLoS One 2017;12:e0174361. https://doi.org/10.1371/journal.pone.0174361.

289. Youn SM, Deo S, Poon PC. Functional and radiologic outcomes of uncemented reverse shoulder arthroplasty in proximal humeral fractures: cementing the humeral component is not necessary. J Shoulder Elbow Surg 2016;25:e83–9. https://doi.org/10.1016/j.jse.2015.09.007.

290. Young AA, Smith MM, Bacle G, Moraga C, Walch G. Early results of reverse shoulder arthroplasty in patients with rheumatoid arthritis. J Bone Joint Surg Am 2011;93:1915–23. https://doi.org/10.2106/JBJS.L.00300.

291. Zafra M, Uceda P, Flores M, Carpintero P. Reverse total shoulder replacement for nonunion of a fracture of the proximal humerus. Bone Joint J 2014;96-B:1239–43. https://doi.org/10.1302/0301-620x.96b11.33157.

292. Zilber S, Camana E, Lapner P, Haritinian E, Nove Josserand L. Reverse total shoulder prosthesis revision. J Shoulder Elbow Surg 2018;27:1477–83. https://doi.org/10.1016/j.jse.2018.05.002.

293. Zumstein MA, Pinedo M, Old J, Boileau P. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg 2011;20:146–57. https://doi.org/10.1016/j.jse.2010.08.001.