Design of Pulse Shapes Based on Sampling with Gaussian Prefilter

Edwin Hammerich
Ministry of Defence
Kulmbacher Str. 58–60, D-95030 Hof, Germany
E-mail: edwin.hammerich@ieee.org

Abstract—Two new pulse shapes for communications are presented. The first pulse shape generates a set of pulses without intersymbol interference (ISI) or is ISI-free for short. In the neighborhood of the origin it is similar in shape to the classical cardinal sine function but is of exponential decay at infinity. This pulse shape is identical to the interpolating function of Unser [11] extended the standard sampling paradigm to the shift-invariant spaces. This pulse shape is not ISI-free but it generates a causal appearance since it is of superexponential decay for negative times. It is closely related to the orthonormal generating function considered earlier by Unser in the context of shift-invariant spaces. This pulse shape is obtained from the first pulse shape by spectral factorization and leads, interestingly enough, to expressions in terms of ortho-analogs [2].

The computation of the orthonormal generating function, φ_{orth}, is accomplished in Section III of the present paper. Rather than extracting the square root as suggested in [11], our approach is based on spectral factorization and leads, interestingly enough, to expressions in terms of q-analogs [2]. As an application, two new pulse shapes are proposed and discussed in Section IV.

The following notations and conventions are adopted: $L^2(\mathbb{R})$ is the space of square-integrable functions (or finite-energy signals) $f: \mathbb{R} \to \mathbb{C} \cup \{\infty\}$ with inner product $\langle f_1, f_2 \rangle = \int_{-\infty}^{\infty} f_1(x)\overline{f_2(x)} \, dx$. For the Fourier transform we use the definition $\hat{f}(\omega) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} e^{-i\omega x}f(x) \, dx$, where x denotes time and ω angular frequency. Finally, $\delta_n = 0, n \in \mathbb{Z} \setminus \{0\}$, and $\delta_0 = 1$.

II. SAMPLING IN SHIFT-INvariant SPACES AND LOCALIZATION SPACES REVISITED

The purpose of the present section is to motivate the pulse shapes presented in Section IV. To this end, we give a brief overview of sampling in shift-invariant spaces and localization spaces with an emphasis on those spaces defined by a Gaussian generator or a Gaussian prefiler respectively.

Suppose that $\varphi \in L^2(\mathbb{R})$ is a continuous function satisfying $\varphi(x) = O(|x|^{-1-\epsilon})$ as $x \to \pm \infty$ for some $\epsilon > 0$ and for any $\lambda > 0$ the system of functions $\{\varphi(\cdot - n\lambda); n \in \mathbb{Z}\}$ forms a Riesz basis in $L^2(\mathbb{R})$. Furthermore, suppose that for any $\lambda > 0$

$$\sum_{n=-\infty}^{\infty} \varphi(n\lambda)e^{-in\omega} \neq 0, \omega \in \mathbb{R}. \quad (1)$$

The shift-invariant space $V_\Lambda(\varphi)$ is the subspace of $L^2(\mathbb{R})$ defined as

$$V_\Lambda(\varphi) = \left\{ f; f(x) = \sum_{n \in \mathbb{Z}} c_n \varphi(x - n\lambda), \; c \in \ell^2(\mathbb{Z}) \right\}. \quad (2)$$

Then, the following sampling theorem applies.

Theorem 1: For any $\lambda > 0$ and $f \in V_\Lambda(\varphi)$ it holds that

$$f(x) = \sum_{n \in \mathbb{Z}} f(n\lambda)\varphi_{\text{int}}(x - n\lambda), \; x \in \mathbb{R}, \quad (3)$$

where the interpolating function $\varphi_{\text{int}} \in V_\Lambda(\varphi)$ is given by

$$\varphi_{\text{int}}(\omega) = \varphi(\omega) + \sum_{n \in \mathbb{Z}} \varphi(n\lambda)e^{-in\omega} \varphi(\omega + n\lambda), \quad (4)$$

This theorem is due to Walter [12], who originally stated and proved it for orthonormal systems $\{\varphi(\cdot - n); n \in \mathbb{Z}\}$. The theorem was later generalized to Riesz bases by Unser [11], who also considered alternative generating functions for $V_\Lambda(\varphi)$ like φ_{int} as above and φ_{ortho} (see below). In an attempt to retain the flavor of the original Whittaker–Kotelnikov–Shannon (WKS) sampling theorem [8], in [7] prior to sampling a prefiler

$$(P_\varphi f)(x) = \int_{-\infty}^{\infty} f(y)\overline{\varphi(y - x)} \, dy \quad (5)$$

with prefiler function $\varphi \in L^2(\mathbb{R})$ has been applied to an arbitrary finite-energy signal $f \in L^2(\mathbb{R})$. The so-called localization space

$$\mathcal{P}_\varphi = \{ g = P_\varphi f; f \in L^2(\mathbb{R}) \}$$
then corresponds to the space of bandlimited signals in the classical WKS sampling theorem. The goal is to recover the filter output signal \(g = P \phi f \) from sample values \(g(n \lambda), n \in \mathbb{Z} \), either perfectly or at least with an acceptable error. To this end, the autocorrelation function \(\Phi \) of \(\varphi \),

\[\Phi = P \Phi \in \mathcal{P}_\varphi \quad \text{Fourier} \quad \hat{\Phi}(\omega) = \sqrt{2\pi} |\hat{\varphi}(\omega)|^2, \]

is needed. The (second) interpolating function \(\Phi_{\text{int}} \in \mathcal{P}_\varphi \) is defined by its Fourier transform

\[\hat{\Phi}_{\text{int}}(\omega) = \frac{\lambda}{\sqrt{2\pi} \sum_{k \in \mathbb{Z}} \Phi(\omega + k \Lambda)}, \]

where \(\Lambda \) is as in (4). Note that because of the Riesz basis condition still imposed on \(\varphi \) (see (7) for the full set of assumptions), which is equivalent to the existence of positive constants \(A \) and \(B \) (possibly depending on \(\lambda \)) so that

\[0 < A \leq \sum_{n = -\infty}^{\infty} |\hat{\varphi}(\omega + n \Lambda)|^2 \leq B < \infty, \omega \in \mathbb{R}, \]

(see (1) for a proof in the case of \(\lambda = 1 \)), the denominator in (7) never will vanish. In general, \(\Phi_{\text{int}} \neq P \Phi \varphi_{\text{int}} \). In the special case of a Gaussian prefiler function,

\[\varphi(x) = \frac{1}{\sqrt{2\pi(1/\beta)}} e^{-\frac{x^2}{2(1/\beta)^2}} \quad \text{Fourier} \quad \hat{\varphi}(\omega) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \]

where the parameter \(\beta > 0 \) controls effective bandwidth, the following sampling theorem has been deduced [6, 7].

Theorem 2: For any \(\lambda > 0 \) let the interpolating function \(\Phi_{\text{int}} \) be defined by (7). Then for any function \(g \in \mathcal{P}_\varphi \) the function \(\tilde{g} \) given by

\[\tilde{g}(x) = \sum_{n \in \mathbb{Z}} g(n \lambda) \Phi_{\text{int}}(x - n \lambda), \quad x \in \mathbb{R}, \]

is again in \(\mathcal{P}_\varphi \), it perfectly reconstructs \(g \) at the sampling instants \(x_n = n \lambda, n \in \mathbb{Z} \), and for all other \(x \in \mathbb{R} \) the absolute approximation error \(|g(x) - \tilde{g}(x)| \) becomes small as soon as \(\lambda \leq 1/\beta \), then decaying superexponentially to zero as \(\lambda \to 0 \).

In the present setting of a Gaussian prefiler function \(\varphi \) as given in (9) (which will be assumed for the rest of the paper) one has

\[\hat{\Phi}_{\text{int}}(\omega) = \frac{\lambda}{\sqrt{2\pi}} \frac{e^{-\frac{(\omega/\Lambda)^2}{2}}}{\sqrt{-1 + i(\omega/\Lambda)^2}}, \]

where

\[\theta_3(z, \tau) = \frac{1}{\sqrt{-1 + i\tau}} \sum_{n = -\infty}^{\infty} e^{-\frac{\pi^2}{4}(z+n)^2} \]

is a Jacobi theta function [9] with parameter \(\tau \) given by

\[\tau = i(\lambda \beta)^2/(4\pi). \]

By inversion of the Fourier transform we obtain after use of Jacobi's \(\tau \to -1/\tau \) transformation that [5, 6]

\[\Phi_{\text{int}}(x) = \frac{i\pi \tau}{\theta_3'(0, -\frac{1}{\tau})} \frac{\vartheta_1(x \lambda, -\frac{1}{\tau})}{\sinh(i\pi x/\lambda)}, \]

where \(\vartheta_1(z, \tau) = 2 \sum_{n=0}^{\infty} q^{(n+\frac{1}{2})^2} (-1)^n \sin((2n+1)\pi x), q = e^{i\pi \tau}, \tau > 0 \), is another theta function [9]. When \(\lambda \leq 1/\beta \), it holds with high accuracy that \(\Phi_{\text{int}}(x) \approx S_0(x) \), where [5]

\[S_0(x) \triangleq \frac{\sin(\pi x/\lambda)}{\sinh(\pi x/\lambda)} \]

Note that in our context \(i\tau \) is always a negative real number and that \(S_0(x) \) decays exponentially to zero as \(x \to \pm \infty \).

Fig. 1 shows the interpolating function \(\Phi_{\text{int}} \) for \(\beta = 100 \) and \(\lambda = 1/\beta \); actually, the approximation (15) for \(\Phi_{\text{int}}(x) \) has been used.

III. Spectral Factorization of the Interpolating Function

We start by compiling a few prerequisites [2].

Definition 1: For any \(a \in \mathbb{R} \) and \(q \in \mathbb{C} \) with \(|q| < 1 \) the \(q \)-Pochhammer symbol \((a; q)_n \) is defined by

\[(a; q)_n = (1 - a)(1 - aq) \cdots (1 - aq^{n-1}), \quad n = 1, 2, \ldots, \]

\[(a; q)_{\infty} = \lim_{n \to \infty} (a; q)_n, \]

\[(a; q)_0 = 1. \]

The following identity of Euler holds true for any \(q \in \mathbb{C}, |q| < 1 \), and \(z \in \mathbb{C} \):

\[1 + \sum_{n=1}^{\infty} q^{\frac{n(n-1)}{2}} z^n = \prod_{n=0}^{\infty} (1 + z q^n). \]

Jacobi's triple product identity

\[\sum_{n=-\infty}^{\infty} q^n z^n = \prod_{n=1}^{\infty} (1 - q^{2n})(1 + q^{2n-1}z^{-1})(1 + q^{2n-1}z) \]

will also be needed. In our case always

\[q = e^{i\pi \tau}, \]

where the parameter \(\tau \) is as in (13). The special \(q \)-Pochhammer symbols

\[(q^2; q^2)_n = \prod_{k=1}^{n} (1 - q^{2k}), \quad Q_0 \triangleq (q^2; q^2)_{\infty} \]

will occur frequently.

Theorem 3: For the function

\[\varphi_{\text{ortho}}(x) = \frac{1}{\sqrt{(q^2; q^2)_{\infty}}} \sum_{n=0}^{\infty} (-1)^n q^n \phi(x - n \lambda), \]

where

\[\phi(x) = \frac{\beta^{1/2}}{\pi^{1/4}} e^{-\frac{a^2}{4} x^2} \]

is the Gaussian function [9] normalized to unit energy, i.e. \(\int_{\mathbb{R}} |\phi(x)|^2 \, dx = 1 \), it holds that

\[\hat{\Phi}_{\text{int}}(\omega) = \sqrt{2\pi} |\varphi_{\text{ortho}}(\omega)|^2, \quad \omega \in \mathbb{R}. \]

Proof: The definition (11) of the interpolating function \(\Phi_{\text{int}} \) may be written in the Fourier domain as

\[\hat{\Phi}_{\text{int}}(\omega) = \sqrt{2\pi \lambda} \frac{|\hat{\varphi}(\omega)|^2}{\sqrt{-1 + i\theta_3(\omega/\Lambda, \tau)}}. \]
Then, Eq. (21) becomes
\[
|\hat{\varphi}_{\text{ortho}}(\omega)|^2 = \lambda \frac{|\hat{\varphi}(\omega)|^2}{\sqrt{-17} \theta_3(\omega/\Lambda, \tau)}.
\]
Since the theta function (22) has the second representation
\[
\vartheta_3(x, \tau) = 1 + 2 \sum_{n=0}^{\infty} q^{-1} \cos(2\pi nx) = \sum_{n=-\infty}^{\infty} q^{n^2} e^{2\pi inx},
\]
we obtain by means of Eq. (17), putting
\[
P(z) = \prod_{n=1}^{\infty} (1 + q^{2^{n-1}}z^{-1})
\]
and subsequently \(z = e^{2\pi i x}\), for \(\vartheta_3(x, \tau)\) the factorization
\[
\vartheta_3(x, \tau) = Q_0^{1/2} P(e^{2\pi i x}) \cdot Q_0^{1/2} P(e^{2\pi i x}), \quad x \in \mathbb{R}.
\]
Since the function \(x \mapsto \vartheta_3(x, \tau)\) is real-valued and positively lower bounded on \(\mathbb{R}\) so is the function \(x \mapsto |P(e^{2\pi i x})|\). As a consequence, the definition of \(\varphi_{\text{ortho}}\) in the Fourier domain by
\[
\varphi_{\text{ortho}}(x) = \chi^{1/2} e^{2\pi i x} P(e^{2\pi i x}),
\]
will result in a function \(\varphi_{\text{ortho}} \in L^2(\mathbb{R})\) satisfying Eq. (21).

Now, we need to invert the Fourier transform. Since \(x \mapsto 1/P(e^{2\pi i x})\) is a bounded 1-periodic function, it is in \(L^2([0, 1])\) and thus has a Fourier series expansion
\[
\sum_{n=-\infty}^{\infty} a_n e^{2\pi i nx}, \quad a \in L^2(\mathbb{Z}),
\]
with the coefficients
\[
a_n = \int_{0}^{1} e^{2\pi i nx} \frac{1}{P(e^{2\pi i x})} \, dx, \quad n \in \mathbb{Z}.
\]
By inverse Fourier transform we now obtain (putting \(c = \chi^{1/2}(-i\tau)^{-1/4}Q_0^{-1/4}\)) that
\[
\varphi_{\text{ortho}}(x) = \frac{c}{2\pi} \int_{-\infty}^{\infty} e^{ix\omega} \frac{\hat{\varphi}(\omega)}{P(e^{2\pi i \omega/\Lambda})} \, d\omega
\]
\[= c \sum_{n=-\infty}^{\infty} a_n \int_{-\infty}^{\infty} e^{i(x-n\lambda)\omega} \hat{\varphi}(\omega) \, d\omega
\]
\[= c \sum_{n=-\infty}^{\infty} a_n \varphi(x-n\lambda)
\]
\[= \frac{1}{Q_0^{1/2}} \sum_{n=-\infty}^{\infty} a_n \varphi(x-n\lambda).
\]
The computation of the coefficients (22) is carried out in the complex domain.

Case \(n = -1, -2, \ldots\): After substitution in (22) of \(x\) by \(1 - x\) we obtain
\[
a_n = \int_{0}^{1} e^{-2\pi i nx} \frac{1}{P(e^{-2\pi i x})} \, dx
\]
\[= \frac{1}{2\pi} \int_{|z|=1} \frac{z^{-n-1}}{P(z^{-1})} \, dz,
\]
where integration in the contour integral is performed counterclockwise around the unit circle. Since the integrand function is analytic within a neighbourhood of the closed unit disc, we obtain by means of Cauchy’s integral theorem that \(a_n = 0, n = -1, -2, \ldots\)

Case \(n = 0, 1, \ldots\): Eq. (22) now directly yields by transition to a contour integral that
\[
a_n = \lim_{M \to \infty} \frac{1}{2\pi i} \int_{|z|=1} \frac{z^{n-1}}{P_M(z)} \, dz
\]
where
\[
P_M(z) = \prod_{k=0}^{M-1} (1 + q^{2k+1}z^{-1}), \quad M = 1, 2, \ldots,
\]
and the path of integration is same as before. The integrand function in the integral defining \(I_M(n)\) has simple poles at
\[z_m = -q^{2m+1}, \quad m = 0, 1, \ldots, M - 1,
\]
lying inside of the unit circle. By means of the theorem of residues we obtain
\[
I_M(n) = \sum_{m=0}^{M-1} \text{Res}_{z_m} \frac{z^{n-1}}{P(z)}.
\]
We compute that
\[
\text{Res}_{z_m} \frac{z^{n-1}}{P(z)} = \text{Res}_{z_m} \frac{z^n}{zP(z)} = \frac{z^n}{zP(z)} = \frac{\text{Res}_{z_m}(z - z_m)}{\prod_{k=0, k \neq m}^{M} (1 + q^{2k+1}z^{-1})} = \frac{z^n}{zP(z)} = \frac{\text{Res}_{z_m}(z - z_m)}{\prod_{k=0, k \neq m}^{M} (1 + q^{2k+1}z^{-1})} = \frac{(q^{2}; q^{2})_{\infty}}{(q^{2}; q^{2})_{\infty}} \frac{\prod_{k=1}^{m} (1 - q^{-2k})}{\prod_{k=1}^{m} (1 - q^{-2k})} = \frac{(q^{2}; q^{2})_{\infty}}{(q^{2}; q^{2})_{\infty}} \frac{\prod_{k=1}^{m} (1 - q^{2k})}{\prod_{k=1}^{m} (1 - q^{2k})} = \frac{(q^{2}; q^{2})_{\infty}}{(q^{2}; q^{2})_{\infty}} \frac{\prod_{k=1}^{m} (1 - q^{2k})}{\prod_{k=1}^{m} (1 - q^{2k})} = \frac{(q^{2}; q^{2})_{\infty}}{(q^{2}; q^{2})_{\infty}} \frac{\prod_{k=1}^{m} (1 - q^{2k})}{\prod_{k=1}^{m} (1 - q^{2k})},
\]
treating in the case of \(m = 0\) the empty product as one. After replacement of \(q\) in Eq. (16) with \(q^2\) we get
\[
1 + \sum_{m=1}^{\infty} \frac{q^{m(m-1)}}{(q^{2}; q^{2})_{m}} z^m = \prod_{m=0}^{\infty} (1 + zq^{2m}).
\]
Hence
\[
a_n = \frac{(q^{2}; q^{2})_{\infty}}{(q^{2}; q^{2})_{\infty}} \frac{\prod_{m=0}^{\infty} (1 - q^{2(m+1)}q^{2m})}{(q^{2}; q^{2})_{\infty}} = \frac{(q^{2}; q^{2})_{\infty}}{(q^{2}; q^{2})_{\infty}} \frac{\prod_{m=0}^{\infty} (1 - q^{2(m+1)}q^{2m})}{(q^{2}; q^{2})_{\infty}} = \frac{(q^{2}; q^{2})_{\infty}}{(q^{2}; q^{2})_{\infty}} \frac{\prod_{m=0}^{\infty} (1 - q^{2(m+1)}q^{2m})}{(q^{2}; q^{2})_{\infty}} = \frac{(q^{2}; q^{2})_{\infty}}{(q^{2}; q^{2})_{\infty}} \frac{\prod_{m=0}^{\infty} (1 - q^{2(m+1)}q^{2m})}{(q^{2}; q^{2})_{\infty}} = \frac{(q^{2}; q^{2})_{\infty}}{(q^{2}; q^{2})_{\infty}} \frac{\prod_{m=0}^{\infty} (1 - q^{2(m+1)}q^{2m})}{(q^{2}; q^{2})_{\infty}}.
ISI-free pulses. Indeed, from representation (7) it is readily seen that for all \(\omega \in \mathbb{R} \) it holds
\[
\sum_{n \in \mathbb{Z}} \Phi_{\text{int}}(n\lambda)e^{-in\omega\lambda} = \frac{\lambda}{\sqrt{2\pi}} \sum_{n \in \mathbb{Z}} \Phi_{\text{int}}(\omega + n\Lambda) = 1, \tag{23}
\]
(the left-hand equation being Poisson’s summation formula; e.g., [4], [11]), which is equivalent to \(\Phi_{\text{int}}(n\lambda) = \delta_n, \quad n \in \mathbb{Z} \).

Therefore, the set of shifted pulses \(\{ \Phi_{\text{int}}(x - n\lambda); n \in \mathbb{Z} \} \) is ISI-free at points in time \(x_n = n\lambda \) (cf. [3]).

B. Orthonormal Pulses with ISI-Free Matched Filter Output

1) Orthonormal Pulses: It is well-known [11] that for an arbitrary function \(\varphi \in L^2(\mathbb{R}) \) the system of functions \(\{ \varphi(x - n\lambda); n \in \mathbb{Z} \} \) forms an orthonormal system in \(L^2(\mathbb{R}) \) if and only if in (5) \(A = B = 1 \) may be chosen. For the function \(\varphi_{\text{ortho}} \) of Theorem 3 this is true because of Eq. (21) and the right-hand equation in (23). Therefore, \(\varphi_{\text{ortho}} \) may be used as a pulse shape to generate a set \(\{ \varphi_{\text{ortho}}(x - n\lambda); n \in \mathbb{Z} \} \) of orthonormal pulses.

2) Matched Filter: At the receiver, the filter \(P_{\varphi_{\text{ortho}}} \) obtained by replacing the prefilter function \(\varphi \) in (5) with \(\varphi_{\text{ortho}} \) forms a matched filter allowing optimal detection of the pulses \(\varphi_{\text{ortho}}(x - n\lambda) \) at points in time \(x_n = n\lambda, \quad n \in \mathbb{Z} \), in the presence of noise. Thanks to orthogonality, overlap of different pulses doesn’t matter. Moreover, since [cf. (6) and Eq. (21)]
\[
P_{\varphi_{\text{ortho}}} = \Phi_{\text{int}},
\]
the ISI-free pulses \(\Phi_{\text{int}}(x - n\lambda), \quad n \in \mathbb{Z}, \) of Section IV-A are recovered at the matched filter output.

In the light of the last application, the two proposed pulse shapes \(\Phi_{\text{int}} \) and \(\varphi_{\text{ortho}} \) are seen to correspond to the classical pulse shapes produced by a raised-cosine filter or a root raised-cosine filter respectively [10]. Recall that the proposed pulse shapes decay (super-)exponentially as \(x \to \pm \infty \) whereas the classical pulse shapes merely decay as \(1/x^3 \).

ACKNOWLEDGEMENT

The author wishes to thank Ayush Bhandari for interesting discussions and helpful suggestions concerning some topics of this paper.

REFERENCES

[1] A. Aldroubi and M. Unser, Sampling Procedures in Function Spaces and Asymptotic Equivalence with Shannon’s Sampling Theory, *Numer. Funct. Anal. Optim.*, vol. 15, pp. 1–21, 1994.
[2] G. E. Andrews, *The Theory of Partitions*, Cambridge University Press, Cambridge, UK, 1998.
[3] A. Bhandari, “Splines and ISI Free Communication: Schoenberg meets Nyquist,” IEEE ISSPA, Sharjah, 2007.
[4] K. Grochenig, *Foundations of Time–Frequency Analysis*, Birkhäuser, Boston, 2001.
[5] E. Hammerich, “A Sampling Theorem for Time-Frequency Localized Signals,” *Sampl. Theory Signal Image Process.*, vol. 3, pp. 45–81, 2004.
[6] E. Hammerich, “Sampling in Shift-Invariant Spaces with Gaussian Generator,” *Sampl. Theory Signal Image Process.*, vol. 6, pp. 71–86, 2007.
[7] E. Hammerich, “A Generalized Sampling Theorem for Frequency Localized Signals,” *Sampl. Theory Signal Image Process.*, vol. 8, pp. 127–146, 2009.
[8] A. J. Jerri, “The Shannon Sampling Theorem—Its Various Extensions and Applications: A Tutorial Review,” *Proc. IEEE*, vol. 65, pp. 1565–1596, 1977.
[9] W. Magnus, F. Oberhettinger, and R. P. Soni, *Formulas and Theorems for the Special Functions of Mathematical Physics*, Springer-Verlag, Berlin, 1966.
[10] J. Proakis, *Digital Communications*, McGraw-Hill, New York, 2001.
[11] M. Unser, “Sampling—50 Years After Shannon,” *Proc. IEEE*, vol. 88, pp. 569–587, 2000.
[12] G. G. Walter, “A Sampling Theorem for Wavelet Subspaces,” *IEEE Trans. Inf. Theory*, vol. 38, pp. 881–884, 1992.