Regularization of ill-posed mixed variational inequalities with non-monotone perturbations

Nguyen TT Thuy

Abstract
In this paper, we study a regularization method for ill-posed mixed variational inequalities with non-monotone perturbations in Banach spaces. The convergence and convergence rates of regularized solutions are established by using a priori and a posteriori regularization parameter choice that is based upon the generalized discrepancy principle.

Keywords: monotone mixed variational inequality, non-monotone perturbations, regularization, convergence rate

1 Introduction
Variational inequality problems in finite-dimensional and infinite-dimensional spaces appear in many fields of applied mathematics such as convex programming, nonlinear equations, equilibrium models in economics, and engineering (see [1-3]). Therefore, methods for solving variational inequalities and related problems have wide applicability. In this paper, we consider the mixed variational inequality: for a given \(f \in X^* \), find an element \(x_0 \in X \) such that

\[
\langle Ax_0 - f, x - x_0 \rangle + \varphi(x) - \varphi(x_0) \geq 0, \quad \forall x \in X,
\]

where \(A : X \to X^* \) is a monotone-bounded hemicontinuous operator with domain \(D(A) = X \), \(\phi : X \to \mathbb{R} \) is a proper convex lower semicontinuous functional and \(X \) is a real reflexive Banach space with its dual space \(X^* \). For the sake of simplicity, the norms of \(X \) and \(X^* \) are denoted by the same symbol \(|| \cdot || \). We write \(\langle x^*, x \rangle \) instead of \(x^*(x) \) for \(x^* \in X^* \) and \(x \in X \).

By \(S_0 \) we denote the solution set of the problem (1). It is easy to see that \(S_0 \) is closed and convex whenever it is not empty. For the existence of a solution to (1), we have the following well-known result (see [4]):

Theorem 1.1. If there exists \(u \in \text{dom} \phi \) satisfying the coercive condition

\[
\lim_{||x|| \to \infty} \frac{\langle Ax, x - u \rangle + \varphi(x)}{||x||} = \infty,
\]

then (1) has at least one solution.
Many standard extremal problems can be considered as special cases of (1). Denote \(\phi \) by the indicator function of a closed convex set \(K \) in \(X \),

\[
\psi(x) = \begin{cases}
0 & \text{if } x \in K, \\
\infty & \text{otherwise}.
\end{cases}
\]

Then, the problem (1) is equivalent to that of finding \(x_0 \in K \) such that

\[
\langle Ax_0 - f, x - x_0 \rangle \geq 0, \quad \forall x \in K.
\]

In the case \(K \) is the whole space \(X \), the later variational inequality is of the form of the following operator equation:

\[
Ax = f.
\]

When \(A \) is the Gâteaux derivative of a finite-valued convex function \(F \) defined on \(X \), the problem (1) becomes the nondifferentiable convex optimization problem (see [4]):

\[
\min_{x \in X} [F(x) + \psi(x)].
\]

Some methods have been proposed for solving problem (1), for example, the proximal point method (see [5]), and the auxiliary subproblem principle (see [6]). However, the problem (1) is in general ill-posed, as its solutions do not depend continuously on the data \((A, f, \phi) \), we used stable methods for solving it. A widely used and efficient method is the regularization method introduced by Liskovets [7] using the perturbative mixed variational inequality:

\[
\langle A_h x^*_h + \alpha U(x^*_h - x_\alpha) - f_\alpha, x - x^*_h \rangle + \varphi_\epsilon(x) - \varphi_\epsilon(x^*_h) \geq 0, \quad \forall x \in X,
\]

where \(A_h \) is a monotone operator, \(\alpha \) is a regularization parameter, \(U \) is the duality mapping of \(X \), \(x_\alpha \in X \) and \((A_h, f_\alpha, \phi_\epsilon) \) are approximations of \((A, f, \phi) \), \(\tau = (h, \delta, \epsilon) \). The convergence rates of the regularized solutions defined by (6) are considered by Buong and Thuy [8].

In this paper, we do not require \(A_h : x_\alpha \in X \) to be monotone. In this case, the regularized variational inequality (6) may be unsolvable. In order to avoid this fact, we introduce the regularized problem of finding \(x^*_h \in X \) such that

\[
\langle A_h x^*_h + \alpha U(x^*_h - x_\alpha) - f_\alpha, x - x^*_h \rangle + \varphi_\epsilon(x) - \varphi_\epsilon(x^*_h) \geq 0, \quad \forall x \in X, \quad \mu \geq h,
\]

where \(\mu \) is positive small enough, \(U^\epsilon \) is the generalized duality mapping of \(X \) (see Definition 1.3) and \(x_\alpha \) is in \(X \) which plays the role of a criterion of selection, \(g \) is defined below.

Assume that the solution set \(S_0 \) of the inequality (1) is non-empty, and its data \(A, f, \phi \) are given by \(A_h, f_\alpha, \phi_\epsilon \) satisfying the conditions:

1. \(||f - f_\alpha|| \leq \delta, \delta \to 0; \)
2. \(A_h : X \to X^* \) is not necessarily monotone, \(D(A_h) = D(A) = X \), and

\[
||A_h x - Ax|| \leq h\delta(||x||), \quad \forall x \in X, \quad h \to 0,
\]

with a non-negative function \(g(t) \) satisfying the condition

\[
g(t) \leq g_0 + g_1 t^v, \quad v = s - 1, \quad g_0, \quad g_1 \geq 0;
\]
(3) \(\phi_{\varepsilon} : X \to \mathbb{R} \) is a proper convex lower semicontinuous functional for which there exist positive numbers \(c_{\varepsilon} \) and \(r_{\varepsilon} \) such that
\[
\phi_{\varepsilon}(x) \geq -c_{\varepsilon}||x|| \quad \text{as } ||x|| > r_{\varepsilon}
\]
and
\[
|\phi_{\varepsilon}(x) - \phi(x)| \leq \varepsilon d(||x||), \quad \forall x \in X, \varepsilon \to 0,
\]
\[
|\phi_{\varepsilon}(x) - \phi_{\varepsilon}(y)| \leq C_{0}||x - y||, \quad \forall x, y \in X,
\]
where \(C_{0} \) is some positive constant, \(d(t) \) has the same properties as \(g(t) \).

In the next section we consider the existence and uniqueness of solutions \(x_{n}^{\varepsilon} \) of (7), for every \(\alpha > 0 \). Then, we show that the regularized solutions \(x_{n}^{\varepsilon} \) converge to \(x_{0} \in S_{0} \) in the \(x_{\varepsilon} \)-minimal norm solution defined by
\[
||x_{0} - x_{\varepsilon}|| = \arg\min_{x \in S_{0}} ||x - x_{\varepsilon}||.
\]

The convergence rate of the regularized solutions \(x_{n}^{\varepsilon} \) to \(x_{0} \) will be established under the condition of inverse-strongly monotonicity for \(A \) and the regularization parameter choice based on the generalized discrepancy principle.

We now recall some known definitions (see [9-11]).

Definition 1.1. An operator \(A : D(A) = X \to X^{*} \) is said to be
(a) hemi-continuous if \(A(x + t_{n}y) - Ax \) as \(t_{n} \to 0^{+}, x, y \in X \), and demicontinuous if \(x_{n} \to x \) implies \(Ax_{n} \to Ax \);
(b) monotone if \(\langle Ax - Ay, x - y \rangle \geq 0 \), \(\forall x, y \in X \);
(c) inverse-strongly monotone if
\[
\langle Ax - Ay, x - y \rangle \geq m_{A}||Ax - Ay||^{2}, \quad \forall x, y \in X,
\]
where \(m_{A} \) is a positive constant.

It is well-known that a monotone and hemi-continuous operator is demicontinuous and a convex and lower semicontinuous functional is weakly lower semicontinuous (see [9]). And an inverse-strongly monotone operator is not strongly monotone (see [10]).

Definition 1.2. It is said that an operator \(A : X \to X^{*} \) has \(S \)-property if the weak convergence \(x_{n} \rightharpoonup x \) and \(\langle Ax_{n} - Ax, x_{n} - x \rangle \to 0 \) imply the strong convergence \(x_{n} \to x \) as \(n \to \infty \).

Definition 1.3. The operator \(U^{\varepsilon} : X \to X^{*} \) is called the generalized duality mapping of \(X \) if
\[
U^{\varepsilon}(x) = \{x^{*} \in X^{*} : \langle x^{*}, x \rangle = ||x^{*}|| \cdot ||x|| : ||x^{*}|| = ||x||^{s} \}, \quad s \geq 2.
\]
When \(s = 2 \), we have the duality mapping \(U \). If \(X \) and \(X^{*} \) are strictly convex spaces, \(U^{\varepsilon} \) is single-valued, strictly monotone, coercive, and demicontinuous (see [9]).

Let \(X = L^{p}(\Omega) \) with \(p \in (1, \infty) \) and \(\Omega \subset \mathbb{R}^{m} \) measurable, we have
\[
U(\psi) = ||\psi||^{2-p}_{L^{p}(\Omega)}|\psi(t)|^{p-2}\psi(t), \quad t \in \Omega.
\]
Assume that the generalized duality mapping \(U^{\varepsilon} \) satisfies the following condition:
\[
\langle U^{\varepsilon}(x) - U^{\varepsilon}(y), x - y \rangle \geq m_{A}||x - y||^{s}, \quad \forall x, y \in X,
\]
where m_s is a positive constant. It is well-known that when X is a Hilbert space, then $U^s = I$, $s = 2$ and $m_s = 1$, where I denotes the identity operator in the setting space (see [12]).

2 Main result

Lemma 2.1. Let X^* be a strictly convex Banach space. Assume that A is a monotone-bounded hemicontinuous operator with $D(A) = X$ and conditions (2) and (3) are satisfied. Then, the inequality (7) has a non-empty solution set S, for each $\alpha > 0$ and $f_0 \in X^*$.

Proof. Let $x_\alpha \in \text{dom } \phi_\alpha$. The monotonicity of A and assumption (3) imply the following inequality:

$$\frac{\langle Ax + \alpha U^f(x - x_\alpha), x - x_\alpha \rangle + \psi_\epsilon(x)}{|x|} \geq \alpha \frac{||x - x_\alpha||^{-1} (||x - x_\alpha|| - ||x - x_\epsilon||)}{|x|} - ||Ax_\epsilon|| \left(1 + \frac{||x_\epsilon||}{|x|}\right) - c_\epsilon, \quad s \geq 2,$$

for $|x| > r_\alpha$. Consequently, (2) is fulfilled for the pair $(A + \alpha U^f, \phi_\epsilon)$. Thus, for each $\alpha > 0$ and $f_0 \in X^*$, there exists a solution of the following inequality:

$$\langle Ax + \alpha U^f(x - x_\alpha) - f_0, z - x \rangle + \psi_\epsilon(z) - \psi_\epsilon(x) \geq 0, \quad \forall z \in X, x \in X. \quad (14)$$

Observe that the unique solvability of this inequality follows from the monotonicity of A and the strict monotonicity of U^f. Indeed, let x_1 and x_2 be two different solutions of (14). Then,

$$\langle Ax_1 + \alpha U^f(x_1 - x_\alpha) - f_0, z - x_1 \rangle + \psi_\epsilon(z) - \psi_\epsilon(x_1) \geq 0, \quad \forall z \in X \quad (15)$$

and

$$\langle Ax_2 + \alpha U^f(x_2 - x_\alpha) - f_0, z - x_2 \rangle + \psi_\epsilon(z) - \psi_\epsilon(x_2) \geq 0, \quad \forall z \in X. \quad (16)$$

Putting $z = x_2$ in (15) and $z = x_1$ in (16) and add the obtained inequalities, we obtain

$$\langle Ax_1 - Ax_2, x_2 - x_1 \rangle + \alpha \langle U^f(x_1 - x_\alpha) - U^f(x_2 - x_\alpha), x_2 - x_1 \rangle \geq 0.$$

Due to the monotonicity of A and the strict monotonicity of U^f, the last inequality occurs only if $x_1 = x_2$.

Let x^δ_{α} be a solution of (14), that is,

$$\langle Ax^\delta_{\alpha} + \alpha U^f(x^\delta_{\alpha} - x_\alpha) - f_0, z - x^\delta_{\alpha} \rangle + \psi_\epsilon(z) - \psi_\epsilon(x^\delta_{\alpha}) \geq 0, \quad \forall z \in X. \quad (17)$$

For all $h > 0$, making use of (8), from (17) one gets

$$\langle Ax^\delta_{\alpha} + \alpha U^f(x^\delta_{\alpha} - x_\alpha) - f_0, z - x^\delta_{\alpha} \rangle + \psi_\epsilon(z) - \psi_\epsilon(x^\delta_{\alpha}) \geq -h g(||x^\delta_{\alpha}||)||z - x^\delta_{\alpha}||, \quad \forall z \in X. \quad (18)$$

Since $\mu \geq h$, we can conclude that each x^δ_{α} is a solution of (7).

Let x^μ_{α} be a solution of (7). We have the following result.

Theorem 2.1. Let X and X^* be strictly convex Banach spaces and A be a monotone-bounded hemicontinuous operator with $D(A) = X$. Assume that conditions (1)-(3) are
satisfied, the operator \(U^t\) satisfies condition (13) and, in addition, the operator \(A\) has the \(S\)-property. Let

\[
\lim_{\alpha \to 0} \frac{\mu + \delta + \varepsilon}{\alpha} = 0. \tag{19}
\]

Then \(\{x^t_n\}\) converges strongly to the \(x_s\)-minimal norm solution \(x_0 \in S_0\).

Proof. By (1) and (7), we obtain

\[
\begin{align*}
\langle A_h x^t_n + \alpha U^t(x^t_n - x_s) - f_s, x_0 - x^t_n \rangle + \varphi_t(x_0) - \varphi_t(x^t_n) \\
+ \langle Ax_0 - f_s, x^t_n - x_0 \rangle + \varphi(x^t_n) - \varphi(x_0) \geq -\mu g(||x^t_n||)||x_0 - x^t_n||.
\end{align*}
\]

This inequality is equivalent to the following

\[
\begin{align*}
\alpha \langle U^t(x^t_n - x_s) - U^t(x_0 - x_s), x^t_n - x_0 \rangle &\leq \alpha \langle U^t(x_0 - x_s), x_0 - x^t_n \rangle \\
+ \langle A_h x^t_n - Ax^t_n, x_0 - x^t_n \rangle \\
+ \langle Ax_0 - Ax^t_n, x^t_n - x_0 \rangle + (f - f_s, x_0 - x^t_n) \\
+ \varphi_t(x_0) - \varphi_t(x_0) + \varphi(x^t_n) - \varphi_t(x^t_n) \\
+ \mu g(||x^t_n||)||x_0 - x^t_n||.
\end{align*}
\]

The monotonicity of \(A\), assumption (1), and the inequalities (8), (9), (13) and (20) yield the relation

\[
m_s||x^t_n - x_0||^t \leq \left[\frac{h + \mu}{\alpha} g(||x^t_n||) + \frac{\delta}{\alpha} \right] ||x_0 - x^t_n||
\]

\[
+ \frac{\varepsilon}{\alpha} [d(||x_0||) + d(||x^t_n||)] + \langle U^t(x_0 - x_s), x_0 - x^t_n \rangle. \tag{21}
\]

Since \(\mu/\alpha \to 0\) as \(\alpha \to 0\) (and consequently, \(h/\alpha \to 0\)), it follows from (19) and the last inequality that the set \(x^t_n\) are bounded. Therefore, there exists a subsequence of \(x^t_n\) weakly converging to \(\bar{x} \in X\).

We now prove the strong convergence of \(\{x^t_n\}\) to \(\bar{x}\). The monotonicity of \(A\) and \(U^t\) implies that

\[
0 \leq \langle Ax^t_n - A\bar{x}, x^t_n - \bar{x} \rangle
\]

\[
\leq \langle Ax^t_n + \alpha U^t(x^t_n - x_s) - A\bar{x} - \alpha U^t(\bar{x} - x_s), x^t_n - \bar{x} \rangle
\]

\[
= \langle Ax^t_n + \alpha U^t(x^t_n - x_0), x^t_n - \bar{x} \rangle - \langle A\bar{x} + \alpha U^t(\bar{x} - x_s), x^t_n - \bar{x} \rangle. \tag{22}
\]

In view of the weak convergence of \(\{x^t_n\}\) to \(\bar{x}\), we have

\[
\lim_{\alpha \to 0} \langle A\bar{x} + \alpha U^t(\bar{x} - x_s), x^t_n - \bar{x} \rangle = 0. \tag{23}
\]

By virtue of (8),

\[
\langle Ax^t_n + \alpha U^t(x^t_n - x_s), x^t_n - \bar{x} \rangle
\]

\[
= \langle Ax^t_n - A_h x^t_n + \alpha U^t(x^t_n - x_s), x^t_n - \bar{x} \rangle
\]

\[
\leq \langle A_h x^t_n + \alpha U^t(x^t_n - x_s), x^t_n - \bar{x} \rangle + h g(||x^t_n||)||x^t_n - \bar{x}||. \tag{24}
\]

Using further (7), we deduce

\[
\langle A_h x^t_n + \alpha U^t(x^t_n - x_s), x^t_n - \bar{x} \rangle
\]

\[
= \langle A_h x^t_n + \alpha U^t(x^t_n - x_s) - f_s, x^t_n - \bar{x} \rangle + (f_s, x^t_n - \bar{x})
\]

\[
\leq (f_s, x^t_n - \bar{x}) + \varphi_t(\bar{x}) - \varphi_t(x^t_n) + \mu g(||x^t_n||)||\bar{x} - x^t_n||. \tag{25}
\]
Since $x^*_a \to \tilde{x}$ and ϕ is proper convex weakly lower semicontinuous, we have from (25) that
\[
\lim_{\alpha \to 0} \langle A\alpha x^*_a + \alpha U'(x^*_a - x), x^*_a - \tilde{x} \rangle \leq 0. \tag{26}
\]
By (22)-(24) and (26), it results that
\[
\lim_{\alpha \to 0} \langle Ax^*_a - Ax^*_\alpha, x^*_a - \tilde{x} \rangle = 0.
\]
Finally, the S property of A implies the strong convergence of $\{x^*_a\}$ to $\tilde{x} \in X$. We show that $\tilde{x} \in S_0$. By (8) and take into account (7) we obtain
\[
\langle Ax^*_a + \alpha U'(x^*_a - x) - f, x - x^*_a \rangle + \phi(x) - \phi(x^*_a)
\geq -(h + \mu)g(||x^*_a||)||x - x^*_a||, \quad \forall x \in X. \tag{27}
\]
Since the functional ϕ is weakly lower semicontinuous,
\[
\phi(\tilde{x}) \leq \lim_{\alpha \to 0} \inf \phi(x^*_a). \tag{28}
\]
Since $\{x^*_a\}$ is bounded, by (9), there exists a positive constant c_2 such that
\[
\phi(x^*_a) \leq \phi(\tilde{x}) + c_2 \varepsilon. \tag{29}
\]
By letting $\alpha \to 0$ in the inequality (7), provided that A is demicontinuous, from (8), (9), (28), (29) and condition (1) imply that
\[
\langle Ax^*_\alpha - f, x - \tilde{x} \rangle + \phi(x) - \phi(\tilde{x}) \geq 0, \quad \forall x \in X.
\]
This means that $\tilde{x} \in S_0$.
We show that $\tilde{x} = x_0$. Applying the monotonicity of U' and the inequalities (8), (9) and (13), we can rewrite (17) as
\[
\langle U'(x - x_\alpha), x^*_\alpha - x \rangle \leq \left[\frac{h + \mu}{\alpha} g(||x^*_\alpha||) + \frac{\delta}{\alpha} \right] ||x - x^*_\alpha|| + \frac{\varepsilon}{\alpha} [d(||x||) + d(||x^*_\alpha||)], \quad \forall x \in S_0.
\]
Since $\alpha \to 0$, ω/α, δ/α, $\mu/\alpha \to 0$ (and $h/\alpha \to 0$), the last inequality becomes
\[
\langle U'(x - x_\alpha), \tilde{x} - x \rangle \leq 0, \quad \forall x \in S_0.
\]
Replacing x by $t\tilde{x} + (1 - t)x$, $t \in (0, 1)$ in the last inequality, dividing by $(1 - t)$ and then letting t to 1, we get
\[
\langle U'(\tilde{x} - x_\alpha), \tilde{x} - x \rangle \leq 0, \quad \forall x \in S_0
\]
or
\[
\langle U'(\tilde{x} - x_\alpha), \tilde{x} - x \rangle \leq \langle U'(\tilde{x} - x_\alpha), x - x_\alpha \rangle, \quad \forall x \in S_0.
\]
Using the property of U', we have that $||\tilde{x} - x_\alpha|| \leq ||x - x_\alpha||$, $\forall x \in S_0$. Because of the convexity and the closedness of S_0, and the strictly convexity of X, we can conclude that $\tilde{x} = x_0$. The proof is complete.
\]
Now, we consider the problem of choosing posteriori regularization parameter $\tilde{\alpha} = \alpha(\mu, \delta, \varepsilon)$ such that
\[
\lim_{\mu, \delta, \varepsilon \to 0} \alpha(\mu, \delta, \varepsilon) = 0 \quad \text{and} \quad \lim_{\mu, \delta, \varepsilon \to 0} \frac{\mu + \delta + \varepsilon}{\alpha(\mu, \delta, \varepsilon)} = 0.
\]

To solve this problem, we use the function for selecting \(\tilde{\alpha} = \alpha(\mu, \delta, \varepsilon) \) by generalized discrepancy principle, i.e. the relation \(\tilde{\alpha} = \alpha(\mu, \delta, \varepsilon) \) is constructed on the basis of the following equation:

\[
\rho(\tilde{\alpha}) = (\mu + \delta + \varepsilon)^p \tilde{\alpha}^{-q}, \quad p, q > 0,
\]

with \(\rho(\tilde{\alpha}) = \tilde{\alpha} (c + ||x^*_u - x_\alpha||^{-1}) \), where \(\tilde{x}^*_u \) is the solution of (7) with \(\alpha = \tilde{\alpha} \), \(c \) is some positive constant.

Lemma 2.2. Let \(X \) and \(X^* \) be strictly convex Banach spaces and \(A : X \to X^* \) be a monotone-bounded hemicontinuous operator with \(D(A) = X \). Assume that conditions (1), (2) are satisfied, the operator \(U^* \) satisfies condition (13). Then, the function \(\rho(\alpha) = \alpha (c + ||x^*_u - x_\alpha||^{-1}) \) is single-valued and continuous for \(\alpha \geq \alpha_0 > 0 \), where \(x^*_u \) is the solution of (7).

Proof. Single-valued solvability of the inequality (7) implies the continuity property of the function \(\rho(\alpha) \). Let \(\alpha_1, \alpha_2 \geq \alpha_0 \) be arbitrary \((\alpha_0 > 0) \). It follows from (7) that

\[
\alpha_1 \langle U^*(x^*_{u_1} - x_u), x^*_{u_1} - x^*_{u_2} \rangle + \alpha_2 \langle U^*(x^*_{u_2} - x_u), x^*_{u_1} - x^*_{u_2} \rangle + \langle A_h x^*_{u_1} - A_h x^*_{u_2}, x^*_{u_1} - x^*_{u_2} \rangle \geq -\mu (g(||x^*_{u_1}||) + g(||x^*_{u_2}||)) ||x^*_{u_1} - x^*_{u_2}||,
\]

where \(x^*_{u_1} \) and \(x^*_{u_2} \) are solutions of (7) with \(\alpha = \alpha_1 \) and \(\alpha = \alpha_2 \). Using the condition (2) and the monotonicity of \(A \), we have

\[
\alpha_1 \langle U^*(x^*_{u_1} - x_u) - U^*(x^*_{u_2} - x_u), x^*_{u_1} - x^*_{u_2} \rangle \leq (\alpha_2 - \alpha_1) \langle U^*(x^*_{u_2} - x_u), x^*_{u_1} - x^*_{u_2} \rangle + (h + \mu) (g(||x^*_{u_1}||) + g(||x^*_{u_2}||)) ||x^*_{u_1} - x^*_{u_2}||.
\]

It follows from (13) and the last inequality that

\[
m_\gamma ||x^*_{u_1} - x^*_{u_2}|| \leq \frac{|\alpha_1 - \alpha_2|}{\alpha_0} ||x^*_{u_2} - x_u||^{-1} + (h + \mu) (g(||x^*_{u_1}||) + g(||x^*_{u_2}||)).
\]

Obviously, \(x^*_{u_1} \to x^*_u \) as \(\mu \to 0 \) and \(\alpha_1 \to \alpha_2 \). It means that the function \(||x^*_u - x_\alpha||^{-1} \) is continuous on \([\alpha_0, +\infty) \). Therefore, \(\rho(\alpha) \) is also continuous on \([\alpha_0, +\infty) \).

Theorem 2.2. Let \(X \) and \(X^* \) be strictly convex Banach spaces and \(A : X \to X^* \) be a monotone-bounded hemicontinuous operator with \(D(A) = X \). Assume that conditions (1)- (3) are satisfied, the operator \(U^* \) satisfies condition (13). Then

(i) there exists at least a solution \(\tilde{\alpha} \) of the equation (30),

(ii) let \(\mu, \delta, \varepsilon \to 0 \). Then

\[
(1) \quad \tilde{\alpha} \to \alpha
\]

(2) if \(0 < p < q \) then \(\frac{\mu + \delta + \varepsilon}{\tilde{\alpha}} \to 0 \), \(x^*_{u_0} \to x_0 \in S_0 \) with \(x_0 \)-minimal norm and there exist constants \(C_1, C_2 > 0 \) such that for sufficiently small \(\mu, \delta, \varepsilon > 0 \) the relation

\[
C_1 \leq (\mu + \delta + \varepsilon)^p \tilde{\alpha}^{-1-q} \leq C_2
\]

holds.
Proof.
(i) For $0 < \alpha < 1$, it follows from (7) that
\[
\langle A\alpha x_\alpha^\tau + \alpha U'(x_\alpha^\tau - x_\ast) - f_\ast, x_\ast - x_\alpha^\tau \rangle + \varphi_\varepsilon(x_\ast) - \varphi_\varepsilon(x_\alpha^\tau) \\
\geq -\mu g(||x_\alpha^\tau||)||x_\ast - x_\alpha^\tau||.
\]
Hence,
\[
\alpha \langle U'(x_\alpha^\tau - x_\ast), x_\alpha^\tau - x_\ast \rangle \leq \mu g(||x_\alpha^\tau||)||x_\ast - x_\alpha^\tau|| + \varphi_\varepsilon(x_\ast) - \varphi_\varepsilon(x_\alpha^\tau) \\
+ \langle A\alpha x_\alpha^\tau - Ax_\alpha^\tau, Ax_\alpha^\tau - Ax_\ast + f + f - f_\ast, x_\ast - x_\alpha^\tau \rangle.
\]
We invoke the condition (1), the monotonicity of A, (8), (10), (12), and the last inequality to deduce that
\[
\alpha||x_\alpha^\tau - x_\ast||^{t-1} \leq (h + \mu)g(||x_\alpha^\tau||) + C_0 + ||Ax_\ast - f|| + \delta.
\] (33)
It follows from (33) and the form of $\rho(\alpha)$ that
\[
\alpha^q \rho(\alpha) = \alpha^{1+q}(\varepsilon + ||x_\alpha^\tau - x_\ast||^{t-1}) \\
= c\alpha^{1+q} + \alpha^q \times \alpha||x_\alpha^\tau - x_\ast||^{t-1} \\
\leq c\alpha^{1+q} + \alpha^q[(h + \mu)g(||x_\alpha^\tau||) + C_0 + ||Ax_\ast - f|| + \delta].
\]
Therefore, $\lim_{\alpha \to +0} \alpha^q \rho(\alpha) = 0$.
On the other hand,
\[
\lim_{\alpha \to +\infty} \alpha^q \rho(\alpha) \geq c \lim_{\alpha \to +\infty} \alpha^{1+q} = +\infty.
\]
Since $\rho(\alpha)$ is continuous, there exists at least one $\bar{\alpha}$ which satisfies (30).
(ii) It follows from (30) and the form of $\rho(\bar{\alpha})$ that
\[
\bar{\alpha} \leq c^{-1/(1+q)} \mu + \delta + \varepsilon)^{p/(1+q)}.
\]
Therefore, $\bar{\alpha} \to 0$ as $\mu, \delta, \varepsilon \to 0$.
If $0 < p < q$, it follows from (30) and (32) that
\[
\left[\frac{\mu + \delta + \varepsilon}{\bar{\alpha}} \right]^p \\
= \left([\mu + \delta + \varepsilon]^{1-q} \bar{\alpha}^{1-q} \right)^p \\
= \left[c\bar{\alpha} + \bar{\alpha}||x_\alpha^\tau - x_\ast||^{t-1} \right]^{p-1} \\
\leq c\alpha^{1+q-p} + \alpha^{q-p} [2\mu g(||x_\alpha^\tau||) + C_0 + ||Ax_\ast - f|| + \delta].
\]
So,
\[
\lim_{\mu, \delta, \varepsilon \to 0} \left[\frac{\mu + \delta + \varepsilon}{\bar{\alpha}} \right]^p = 0.
\]
By Theorem 2.1 the sequence x_α^τ converges to $x_\ast \in S_0$ with x_\ast-minimal norm as $\mu, \delta, \varepsilon \to 0$.
Clearly,
\[
(\mu + \delta + \varepsilon)^q \bar{\alpha}^{-1-q} = \bar{\alpha}^{-1} \rho(\bar{\alpha}) = (c + ||x_\alpha^\tau - x_\ast||^{t-1}),
\]
therefore, there exists a positive constant C_2 such that (32). On the other hand, because $c > 0$ so there exists a positive constant C_1 satisfied (32). This finishes the proof.
\[\square\]
Theorem 2.3. Let X be a strictly convex Banach space and A be a monotone-bounded hemicontinuous operator with $D(A) = X$. Suppose that

(i) for each h, δ, $\varepsilon > 0$ conditions (1)-(3) are satisfied;
(ii) U^* satisfies condition (13);
(iii) A is an inverse-strongly monotone operator from X into X^*, Fréchet differentiable at some neighborhood of $x_0 \in S_0$ and satisfies
$$||A(x) - A(x_0) - A'(x_0)(x - x_0)|| \leq \tilde{\tau}||A(x) - A(x_0)||;$$

(iv) there exists $z \in X$ such that
$$A'(x_0)^*z = U^*(x_0 - x_*);$$
then, if the parameter $\alpha = \alpha(\mu, \delta, \varepsilon)$ is chosen by (30) with $0 < p < q$, we have
$$||A^{\alpha}(x_0) - A(x_0)|| = O\left(\sqrt{\delta + \mu + \varepsilon + \alpha}\right).$$

Proof. By an argument analogous to that used for the proof of the first part of Theorem 2.1, we have (21). The boundedness of the sequence $\{x^{\alpha}_n\}$ follows from (21) and the properties of $g(t), d(t)$ and α. On the other hand, based on (20), the property of U^* and the inverse-strongly monotone property of A we get that
$$\|A(x^{\alpha}_n) - A(x_0)\|^2 \leq m_1^{-1}\left\{\left[(h + \mu)g(\|x^{\alpha}_n\|) + \delta + \alpha\|x^{\alpha}_n - x_*\|^{r-1}\right]\|x_0 - x^{\alpha}_n\| + \varepsilon [d(\|x_0\|) + d(\|x^{\alpha}_n\|)]\}.$$

Hence,
$$||A(x^{\alpha}_n) - A(x_0)|| = O\left(\sqrt{\delta + \mu + \varepsilon + \alpha}\right).$$

Further, by virtue of conditions (iii), (iv) and the last estimate, we obtain
$$\langle U^*(x_0 - x_*), x_0 - x^{\alpha}_n \rangle = \langle z, A'(x_0)(x_0 - x^{\alpha}_n) \rangle \leq \|z\|(1 + \tilde{\tau})\|A(x^{\alpha}_n) - A(x_0)\| \leq \|z\|(1 + \tilde{\tau})O\left(\sqrt{\delta + \mu + \varepsilon + \alpha}\right).$$

Consequently, (21) has the form
$$m_n\|x^{\alpha}_n - x_0\|^r \leq \frac{2\mu g(\|x^{\alpha}_n\|) + \delta}{\alpha}\|x_0 - x^{\alpha}_n\| + \|z\|(1 + \tilde{\tau})O\left(\sqrt{\delta + \mu + \varepsilon + \alpha}\right) + \\frac{\varepsilon}{\alpha}[d(\|x_0\|) + d(\|x^{\alpha}_n\|)].$$

When α is chosen by (30), it follows from Theorem 2.1 that
$$\alpha(\mu, \delta, \varepsilon) \leq C_1^{-1/(1+q)}(\mu + \delta + \varepsilon)^{\eta/(1+q)}.$$
and
\[
\frac{\mu + \delta + \varepsilon}{\alpha(\mu, \delta, \varepsilon)} \leq C_2(\mu + \delta + \varepsilon)^{1-\eta} a(\mu, \delta, \varepsilon)
\]
\[
\leq C_2 C_1^{-\eta/(1+\eta)}(\mu + \delta + \varepsilon)^{1-\eta/(1+\eta)}.
\]

Therefore, it follows from (35) that
\[
m_s ||x^\tau_{(\mu, \delta, \varepsilon)} - x_0||^s \leq \tilde{C}_1(\mu + \delta + \varepsilon)^{1-\eta} ||x^\tau_{(\mu, \delta, \varepsilon)} - x_0||
\]
\[
+ \tilde{C}_2(\mu + \delta + \varepsilon)^{1-\eta} + \tilde{C}_3(\mu + \delta + \varepsilon)^{\eta/(2+\eta)},
\]
where \(\tilde{C}_i, i = 1, 2, 3,\) are the positive constants. Using the implication
\[
a, b, c \geq 0, \quad s > t, \quad d' \leq ba^t + c \Rightarrow d' = O(b^{(t-1)} + c),
\]
we obtain
\[
||x^\tau_{(\mu, \delta, \varepsilon)} - x_0|| = O((\mu + \delta + \varepsilon)^{\mu_2}).
\]

Remark 2.1 If \(\alpha\) is chosen a priori such that \(\alpha \sim (\mu + \delta + \varepsilon)^\eta,\) \(0 < \eta < 1,\) it follows from (35) that
\[
m_s ||x^\tau_{(\mu, \delta, \varepsilon)} - x_0||^s \leq \tilde{C}_4(\mu + \delta + \varepsilon)^{1-\eta} ||x_0 - x^\tau_{(\mu, \delta, \varepsilon)}||
\]
\[
+ \tilde{C}_5(\mu + \delta + \varepsilon)^{\eta/2} + \tilde{C}_6(\mu + \delta + \varepsilon)^{1-\eta}.
\]

Therefore,
\[
||x^\tau_{(\mu, \delta, \varepsilon)} - x_0|| = O((\mu + \delta + \varepsilon)^{\mu_2}), \quad \mu_2 = \min \left\{ \frac{1 - \eta}{s}, \frac{\eta}{2s} \right\}.
\]

Remark 2.2 Condition (34) was proposed in [13] for studying convergence analysis of the Landweber iteration method for a class of nonlinear operators. This condition is used to estimate convergence rates of regularized solutions of ill-posed variational inequalities in [14].

Remark 2.3 The generalized discrepancy principle for regularization parameter choice is presented in [15] for the ill-posed operator equation (4) when \(A\) is a linear and bounded operator in Hilbert space. It is considered and applied to estimating convergence rates of the regularized solution for equation (4) involving an accretive operator in [16].

Competing interests

The author declares that they have no competing interests.

Received: 10 February 2011 Accepted: 21 July 2011 Published: 21 July 2011

References

1. Badriev, IB, Zadzornov, OA, Ismagilov, LN: On iterative regularization methods for variational inequalities of the second kind with pseudomonotone operators. Comput Meth Appl Math. 3(2), 223–234 (2003)
2. Konnov, IV: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)
3. Konnov, IV, Volotskaya, EO: Mixed variational inequalities and economic equilibrium problems. J Appl Math. 2(6), 289–314 (2002). doi:10.1155/S1110757X02106012
4. Ekeland, I, Temam, R: Convex Analysis and Variational Problems. North-Holland Publ. Company, Amsterdam (1970)
5. Noor, MA: Proximal methods for mixed variational inequalities. J Opt Theory Appl. 115(2), 447–452 (2002). doi:10.1023/A:1020848524253
6. Cohen, G: Auxiliary problem principle extended to variational inequalities. J Opt Theory Appl. 59(2), 323–333 (1988)
7. Liskovets, OA: Regularization for ill-posed mixed variational inequalities. Soviet Math Dokl 43, 384–387 (1991) (in Russian)
8. Buong, Ng, Thuy, NgTT: On regularization parameter choice and convergence rates in regularization for ill-posed mixed variational inequalities. Int J Contemporary Math Sci. 4(3), 181–198 (2008)
9. Alber, YaI, Ryazantseva, IP: Nonlinear Ill-Posed Problems of Monotone Type. Springer, New York (2008)
10. Liu, F, Nashed, MZ: Regularization of nonlinear ill-posed variational inequalities and convergence rates. Set-Valued Anal. 6, 313–344 (1998). doi:10.1023/A:1008643727826
11. Zeidler, E: Nonlinear Functional Analysis and Its Applications. Springer, New York (1985)
12. Alber, YaI, Notik, AI: Geometric properties of Banach spaces and approximate methods for solving nonlinear operator equations. Soviet Math Dokl. 29, 611–615 (1984)
13. Hanke, M, Neubauer, A, Scherzer, O: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer Math. 72, 21–37 (1995). doi:10.1007/s002110050518
14. Buong, Ng: Convergence rates in regularization for ill-posed variational inequalities. CUBO, Math J. 21(3), 87–94 (2005)
15. Engl, HW: Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates. J Opt Theory Appl. 52, 209–215 (1987). doi:10.1007/BF00941281
16. Buong, Ng: Generalized discrepancy principle and ill-posed equation involving accretive operators. J Nonlinear Funct Anal Appl Korea. 9, 73–78 (2004)

Cite this article as: Thuy: Regularization of ill-posed mixed variational inequalities with non-monotone perturbations. Journal of Inequalities and Applications 2011 2011:25.

doi:10.1186/1029-242X-2011-25

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ➤ springeropen.com