Hypoplasia of Fourth Part of Vertebral Artery and Its Clinical Significance

S. Kavitha, Deepti Shastri
Department of Anatomy, Vinayaka Mission’s Kirupananda Varriyar Medical College and Hospitals, Salem, Tamil Nadu, India

Abstract

Introduction: The anatomical and morphological variation of vertebral artery has clinical importance not only to the performance of interventional or surgical procedure itself but also to ensure circulation to the hindbrain. Aim of the Study: To analyze the morphological and morphometric variations of the fourth part of vertebral arteries. Materials and Methods: The present study was conducted in the Department of Anatomy, Vinayaka Mission’s Kirupananda Varriyar Medical College and Hospitals, Salem, Tamil Nadu, India. Fifteen adult human brains’ specimens acquired from embalmed human cadavers were utilized for the study. Morphology and morphometric analysis of the fourth part of vertebral arteries were done to demonstrate the variations. Vernier caliper was used for morphometric analysis. Results: The mean diameter of the fourth part of the left vertebral artery has been larger in size than the right vertebral artery with a mean of 2.55 mm ± 0.30 mm. In one specimen, the fourth part of the left vertebral artery was very narrow with a diameter of 0.1 mm and the right vertebral artery measured 0.4 mm. Conclusion: Hypoplasia of the fourth part of the vertebral artery is a contributing factor in acute ischemia of the brain. Morphological variations of the vertebral artery are considered as an etiological factor for conditions such as atherosclerosis, infarction, vascular malformations, transient ischemic attack and syndromes such as Wallenberg’s and Medial Medullary syndrome. Vascular variations usually subject for controversy, and detailed knowledge of such variations serves as a key role in procedures such as magnetic resonance imaging, computed tomography, and neurovascular surgeries. The study will be done extensively to support the anatomical and morphological variations of vertebral arteries to make fruitful clinical implications.

Keywords: Cranial part, diameter, hypoplasia, variation, vertebral artery

INTRODUCTION

Vertebral artery is the largest branch of the first part of the subclavian artery. It has a long course from its origin to the cranial cavity, where its contribution to the brain begins. Anatomically, vertebral artery is subdivided into four parts. First part commences from its origin to the foramen transversarium of the sixth cervical vertebrae. The second part of the artery passes through the foramen transversarium of the sixth cervical vertebra to the axis vertebrae. It then passes superiorly and reaches the foramen transversarium of the atlas vertebrae. The artery then comes out from the foramen transversarium of Atlas vertebra and then winds around the vertebral groove of posterior arch of Atlas to reach the suboccipital triangle. The fourth part of the artery extends from the posterior atlantooccipital membrane to enter through the foramen magnum and reach in the posterior cranial fossa; it ascends medially to reach the medulla oblongata and then finally reach to the lower border of the pons.[1] Both vertebral arteries further join to form a basilar artery that lies in the basilar sulcus of ventral part of the pons[2] [Figure 1]. The infratentorial part of the brain will get main source of blood supply from the branches of vertebrobasilar artery system that controls main functions of blood pressure, body movements, coordination, reflexes, breathing, and many other essential functions. Hence, if any complications have been occurred, it causes vertebrobasilar insufficiency.

Address for correspondence: Dr. S. Kavitha, Vinayaka Mission’s Kirupananda Varriyar Medical College and Hospitals, Salem - 636 308, Tamil Nadu, India. Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu, India. E-mail: kavithasekar75@gmail.com

How to cite this article: Kavitha S, Shastri D. Hypoplasia of fourth part of vertebral artery and its clinical significance. J Microsc Ultrastruct 2022;10:81-4.
Vertebral artery variation are commonly encountered as abnormal origin, anomalies, and hypoplasia is found to be one of the common factors of acute ischemic stroke, especially involving the brain structures present in the posterior cranial fossa.\[3\]

The knowledge on variations of the vertebral artery was clinically very important to neurosurgeons, for operating endovascular procedures such as vertebroplasty, for treating vertebral artery stenosis and aneurysms, and for interpreting the imaging techniques of this region. Hypoplastic vertebral artery is commonly associated with regional hypoperfusion and further causing neurovascular complications such as ischemic stroke.\[4\]

Hypoplastic vertebral artery is also found to be a causal factor of acute ischemic stroke in predominantly hindbrain structures.\[5\] Even though basilar artery is an essential component of cerebral circulation, the interference of blood supply due to any cause, even for a short interval (7–8 min), would cause severe and permanent damage to brain tissue. Morphological variation of the vertebral arteries is considered to be an etiological factor for many pathological conditions such as atherosclerosis, infarcts, arteriovenous malformations, transient ischemic attacks, and certain syndromes, including Wallenberg’s syndrome and Medial Medullary syndrome.\[6\]

Hence, this study focused to identify and measure to morphological and anatomical variations in the intracranial part of vertebral arteries.

Aim of the study

The study was done to demonstrate morphological and morphometric variations of the fourth part of the vertebral arteries.

Need of the study

The anatomical and morphological variations of vertebral artery has clinical importance not only for the performance of interventional or surgical procedure itself but also to ensure the hind brain circulation. Hence, the comprehension of anatomical variations of the vertebral artery in the head and neck and neuroanatomy region is of enormous importance.

Materials and Methods

The descriptive study was conducted in the Department of Anatomy, Vinayaka Mission’s Kirupananda Variyar Medical College and Hospitals, Salem, Tamil Nadu, India, after obtaining necessary clearances from the Institutional Review Board and Ethical Committee for conducting the study. Out of 15 specimens, 10 brain specimens were procured from male cadaver while 5 brain specimens were procured from female cadaver. The age of cadaver ranges between 65 and 70 years. The brain specimens procured from the cadavers were fixed in 10% formalin solution and observed carefully to analyze the morphological variations in the right and left vertebral arteries, and their diameters were measured to demonstrate morphometric variations [Figure 2]. The diameters of the vertebral arteries were measured using the digital Vernier caliper. Digital photographic equipment and red coloring materials were also used to demonstrate the variations [Figure 3].

Statistical analysis

The measurements were subjected to statistical analysis using SPSS (Statistical Package Social Service) software version 16.0.0.247 (spss Inc.). The mean, range, and standard deviation were calculated. “Paired t-test” was done to compare the variables.

Results

One of the brain specimens showed hypoplasia of both the vertebral arteries and marked narrowing of the left vertebral artery was noted [Figure 4] with a diameter of 0.1 mm, and on the right side, the diameter was 0.4 mm [Table 1].

In the present study, the diameter of the fourth part of the right vertebral artery of the remaining 14 brain specimens ranged from 1.43 to 2.96 mm with a mean of 2.06 ± 0.42 mm [Table 2].

![Figure 1: Normal vertebral arteries](image1)

![Figure 2: Measuring diameter of left vertebral artery (hypoplasia) using Vernier caliper](image2)
The diameter of the fourth part of the left vertebral artery ranged from 2.05 to 2.96 mm with a mean of 2.55 ± 0.30 mm [Table 2].

In the present study, the mean diameter of the left fourth part of the vertebral artery was significantly higher when compared to the right fourth part of the vertebral artery (P > 0.017) [Table 3].

DISCUSSION

Congenital abnormality of vertebral arteries predominantly shows morphometric changes, tortuosity of both vertebral arteries, and hypoplastic HBV is defined as where lumen measures a diameter of <2 mm in a study stating no clear consensus in the definition.[4]

In the embryonic period, the cervical intersegmental arteries degenerate except the seventh intersegmental artery which persists and forms the proximal part of subclavian and vertebral arteries.[7]

Park *et al.* reported 3.4% of patents with ischemic stroke exhibited hypoplastic vertebral artery bilaterally as well as unilaterally causing posterior circulatory Stroke this explains the significance of anatomical variations of vertebral artery in causing ischemic stroke.[8]

Akar *et al.*, in their study on microsurgical anatomy of vertebral artery’s dimension, length, and branches in 11 cadaveric specimens, have noted that right vertebral arteries were bigger than the left vertebral arteries.[9,10] However, the current study shows larger diameter on the left vertebral artery than the right vertebral artery.

Katsanos *et al.* have reported that the significance of hypoplastic vertebral artery ranges from 1.9% to 11.6% and the incidence of HVA was 5%. In the present study, the diameter of the cranial part of the right vertebral arteries ranged from 1.43 to 2.96 mm and the left vertebral artery ranged from 2.05 to 2.96 mm [Table 2].

Although numerous studies have elaborated on cranial part of vertebral artery and its branches, length, and it variations are unequal in size in 60% and the left vertebral artery is often larger in size than the right vertebral artery.[13,14] Similar findings were found in the present study too.

Chuang *et al.* have described operational definitions of the vertebral artery hypoplasia which varies between diameters of 2–3 mm, otherwise the asymmetry value will be ≥1.7 mm.[15]

Blickenstaff *et al.* have established that the incidence of hypoplasia and congenital atresia was more common in the left vertebral artery, it is usually larger in size compared to the right, and it carries more amount of blood to the brain;[16,17] and the same was established in the current study too.

The radiological study stated that hypoplastice vertebral artery causes high risk of ischemia stroke and some neurological problems due to the reduction of the blood flow of posterior cranial fossa structures.[18]

Uzmsel *et al.* have quoted that the definition of vertebral artery hypoplasia has not been precisely stated. He conducted in living humans using ultrasonography and concluded that <2mm diameter of lumen of vertebral artery are considered as hypoplastic and in his study he reported that 1.9% of cases shown hypoplastic vertebral artery & 6% cases exhibited up to 3mm diameter of vertebral artery.[19]

The present study also emphasizes the same findings; hypoplasia of the vertebral artery was noted in one case. It was not associated with the hypoplasia of the basilar artery [Figure 4].

Table 1: Variation of vertebral artery diameter

	Right vertebral artery	Left vertebral artery
Mean (mm)	0.4	0.1

	Right vertebral artery (mm)	Left vertebral artery (mm)
Mean	2.6	2.55
Minimum	1.43	2.5
Maximum	2.96	2.96
SD	0.42	0.30
Variance	0.18	0.9
The knowledge of these variations in the vertebral artery is helpful for the neurosurgeons to plan and execute surgeries for the treatment of stenosis, aneurysms, and arteriovenous malformations in the posterior cranial fossa.

Conclusion

Hypoplasia of the fourth part of the vertebral artery is a contributing factor in acute ischemia of the brain. Morphological variations of the vertebral artery are considered as an etiological factor for conditions such as atherosclerosis, infarction, vascular malformations, and transient ischemic attack and syndromes such as Wallenberg’s and Medial Medullary syndrome. Vascular variations are clinically significant; detailed knowledge of such variations serves as a key role in procedures such as magnetic resonance imaging, computed tomography, and neurovascular surgeries. The study will be done extensively to support the anatomical and morphological variations of vertebral arteries to make fruitful clinical implications.

Acknowledgments

The authors sincerely wish to thank the management and administrators of Vinayaka Mission’s Kirupananda Variyar Medical College and Hospital, Salem, Tamil Nadu, India, for their whole-hearted support and permission to utilize their resources and conduct this study. The authors acknowledge the great help received from the scholars whose articles have been cited and included in references to this manuscript. The authors are also grateful to authors/editors/publishers of all those articles, journals, and books from where the literature for this article has been reviewed and discussed. The authors are grateful to *Journal of Microscopy and Ultrastructure (JMAU)* editorial board members and JMAU team of reviewers who have helped to bring quality to this manuscript.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Standring S. Text book of Gray’s Anatomy. The Anatomical Basis of Clinical Practice International. 40th ed. London: Elsevier; 2008. p. 250, 449.
2. Datta AK. Essentials of Human Anatomy Part 2. 5th ed. Kolkata: Current Books International; 2009. p. 185-90.
3. Heary RF, Albert TJ, Ludwig SC, Vaccaro AR, Wolansky LJ, Leddy TP, et al. Surgical anatomy of the vertebral arteries. Spine (Phila Pa 1976) 1996;21:2074-80.
4. Fisher CM, Goren I, Okabe N, White PD. Atherosclerosis of the carotid and vertebral arteries – Extrakranial and intrakranial. J Neuropathol Exp Neurol 1965;24:455-76.
5. Campos D. Hypoplasia of the vertebral artery in human – A case report. J Morphol Sci 2015;32:206-8.
6. Padmavathi G, Rajeshwari T, Niranjana Murthy KV. Study of the variations in the origin and termination of basilar artery. Anat Narkata 2011;5:54-9.
7. Newton TH, Mani RL. The vertebral artery. Radiol Skull Brain 1974;8:1659-72.
8. Park JH, Kim JM, Roh JK. Hypoplastic vertebral artery: Frequency and associations with ischemic stroke territory. J Neurol Neurosurg Psychiatry 2007;78:954-8.
9. Akar ZC, Dujovny M, Slavin KV, Gomez-Tortosa E, Ausman JI. Microsurgical anatomy of the intracranial part of the vertebral artery. Neurol Res 1994;16:171-80.
10. Ogeng’o J, Olabu B, Sinkeet R, Ogeng’o NM, Elbusaid H. Vertebral artery hypoplasia in a black Kenyan population. Int Sch Res Notices 2014;2014:934510.
11. Katsanos AH, Kosmidou M, Kyrtsis AP, Giannopoulos S. Is vertebral artery hypoplasia a predisposing factor for posterior circulation cerebro ischemic events? A comprehensive review. Eur Neuro 2013;70:78-83.
12. Katsanos AH, Giannopoulos S. Increased risk for posterior circulation ischaemia in patients with vertebral artery hypoplasia: A systematic review and meta-analysis. Eur Stroke J 2017;2:171-7.
13. Shoj MM, Tubbs RS, Khaki AA, Shokouhi G, Farahani RM, Moen A. A rare variation of the vertebral artery. Folia Morphol (Warsz) 2006;65:167-70.
14. Patasi B, Yeung A, Goodwin S, Jalali A. Anatomic variation of the origin of the left vertebral artery. Int J Anat Var 2009;2:83-5.
15. Chuang YM, Chan L, Wu HM, Lee SP, Chu YT. The clinical relevance of vertebral artery hypoplasia. Acta Neuro Taiwan 2012;21:1-7.
16. Blickenstaff KL, Weaver FA, Yellin AE, Stain SC, Finck E. Trends in the management of traumatic vertebral artery injuries. Am J Surg 1989;158:101-5.
17. Geethanari BG, Shashirekha M, Anna Jose B, Ammar Murthuza A. Morphological study of the vertebral arteries in adult human cadavers. Int J Anat Res 2016;4:2381-5.
18. Jeng JS, Yip PK. Evaluation of vertebral artery hypoplasia and asymmetry by color-coded duplex ultrasonography. Ultrasound Med Biol 2004;30:605-9.
19. Uzmandel D, Kurtoglu Z, Bagdatoglu C, Kara A, Yildiz A. Unilateral variant vertebral artery with an aneurysm of the basilar tip: A case report. Int J Anat Var 2009;2:96-8.

Table 3: Statistically compared fourth part of right and left vertebral artery diameters – paired t-test

Paired differences	Mean±SD	SEM	95% CI of the difference	t	DF	Significant	
			Lower				
Right vertebral artery diameter – left vertebral artery diameter	-0.4957±0.3335	0.08915	-0.6831	-0.30311	-5.560	13	0.017

SD: Standard deviation, SEM: Standard error of mean, CI: Confidence interval, DF: Degree of freedom