Extraction of Mucilage as a Binder From the Petals OF Hibiscus Rosasinensis Linn and its Comparative Evaluation –In Vitro

Suchita Gokhale1*, Gaurav Dubey1, Pritam Khandave1, Shubhangi Kshirsagar

Ideal College of Pharmacy and Research, kalyan.

ABSTRACT

Hibiscus rosasinensis Linn are used in medicines in emollients and also it is used to treat burning sensations and skin disease. Mucilage of Hibiscus rosasinensis contains L-rhamnose, D-galactose, D-galactouronic acid, and D-glucuronic acid. The present article is trying to present an investigation is to extract the mucilage from the petals of flower of Hibiscus rosasinensis and use it in a paracetamol tablets as a binder. As the mucilage having granulating and binding properties so it is used in tablets, using paracetamol as a model drug. The Ph of mucilage was found to be 6.5 and all the physicochemical properties i.e. solubility and swelling index was studied. In this investigation wet granulation technique is used for the formation of granules using the above described mucilage which having the concentration of 2%, 5% and 7% w/v to use as a binder.’

Keywords: Hibiscus rosasinensis, Mucilage, binder, Tragacanth, Acacia

*Corresponding Author Email: suchitagokhale7@gmail.com
Received 29 August 2018, Accepted 06 September 2018
INTRODUCTION
Tablet binders are one of the most essential elements in the formulation of a tablet. Because they promote cohesiveness, the binders, also called adhesives, help the other ingredients in a tablet to mix together. Tablet binders are used to turn powder to granules; this is achieved through the process of granulation. During granulation, powder substances are accumulated to form larger particles called granules. [1] When powdery particles or granules are intended for compression into a tablet, they must have two important properties:
1. Flow property – tablets should be a consistent weight and uniform strength
2. Compressibility – tablets should remain intact, compact, and stable, even when pressure is applied
3. Before undergoing the granulation process, these properties can be achieved by adding binders to the formulation. Binders should be utilized if a tablet displays poor fluidity and compressibility.

As the study of mucilage of plant get deep, it results into many interest towards pharmaceutical application such thickening agent, binders, etc. And this mucilage having eco-friendly and low paying advantage. And this mucilage also can be used in solid and liquid dosage form, due to their local accessibility. [3] In this investigation we are using the mucilage of Hibiscus rosasinensis as a binder for paracetamol tablet. And this binder can be used as an option for the expensive synthetic excipients. [1] In this investigation we have used conventional and microwave method for the isolation of mucilage from the flower petals. [2]

MATERIALS AND METHOD

The flower of hibiscus rosasinens is was collected from the botanical garden of the institution and method used in the isolation of mucilage from the petals of the flower was conventional and microwave method.

Isolation of mucilage:

The isolation processes for the mucilage from the petals are conventional and microwave method. For the isolation of mucilage by conventional method, hibiscus flower petals were accurately weighed 50g and then powdered with the help of mechanical blender for 5 minutes. And then it is soaked in distil water (1000 ml) for 24 hr in a round bottom flask. It was then boiled in water for 1 hr under reflux condenser and occasionally stirring and then kept aside for 2 hr with this mucilage will float on the water. The material was then filtered through muslin cloth, and hot distil water
was added from the sides of the marc and squeezed to remove the mucilage completely. Add equal volume of ethanol to the filtrate to precipitate it out and kept inside in refrigerator for one day for perfect settling. After a day it was filtered and dried completely in an incubator at 37\(^0\)C then it is powdered and weighed finally. For the isolation of mucilage by microwave method, the very first step is similar to the above method before heating. After blending and soaking process the mixture was kept in a microwave oven at 420W intensity for 7-8 minutes. Then after this process the beaker is removed and kept aside for cooling for 2hr to release the mucilage into water. The later process was same as of above method was. \(^{[4]}\)

Phytochemical characterization of mucilage:

The Molish’s test and ruthenium red test was performed to check the presence of carbohydrates in the mucilage. Then organoleptic and physicochemical properties were observed which are explained in below Table 1. \(^{[5]}\)

Sr. no.	Characteristics	Inference
1	Color	Brown
2	Taste	Mucilaginous
3	Odour	Odourless
4	Appearance	sticky
5	Ash value (% w/v)	
	Total ash	2
	Acid insoluble ash	1.5
	Water soluble ash	2.5
6	Surface tension	904.68
7	Loss on drying (%)	15%
8	Swelling index	2 ml
9	Melting point	112\(^0\)C
10	pH	6.5
11	Viscosity	2.008 poise

Drug-excipients compatibility study:

The drug-excipients study is done to check whether the drug is compatible with other excipients used or not. Because drug must be compatible or stable with i.e.it should not make any chemical reaction with excipients used, which results in the production of stable, safe, attractive, effective and easy to administer product. \(^{[6]}\)

Preparation and Evaluation of Tablets:

As it was stated above that mucilage was used in a concentration of 2\%, 5\% and 7\% w/v for the preparation of granules. The method was used for formation of granules is by wet granulation for paracetamol tablet as a model drug. The granules were prepared and were evaluated for different physical properties like bulk density, angle of repose, hausner ratio, tapped density and Carr’s
consolidation index, to check the compressibility and flow properties. The formula for preparation of paracetamol tablets are described in table 2. The granules were prepared and were pressed into a flat faced tablet of mean average weight 200 mg ±7.5%, diameter 8 mm ±0.1 mm in eight stationary rotary tableting machine at an arbitrary pressure load unit of 6 tones. The compressed tablets were then evaluated for weight variation, hardness, friability, content uniformity, disintegration and dissolution test.

Table 2 Formula for preparation of paracetamol tablets

Ingredients (mg/tablet)	HF2%	HF5%	HF7%	S10%	HFT5%	HFA5%
Paracetamol	100	100	100	100	100	100
Lactose	50	60	70	60	60	60
Tragacanth	-	-	-	-	1%	-
Acacia	-	-	-	-	-	1%
Maize starch	-	-	-	20%	-	-
Talc	9	9	9	9	9	9
Magnesium stearate	1	1	1	1	1	1

HF: - granules prepared by using Hibiscus flower mucilage at 2%, 5% and 7% w/v concentration.

HFT: - granules prepared by using hibiscus flower mucilage with the help of tragacanth

HFA: - granules prepared by using hibiscus flower mucilage with the help of acacia.

Table 3 characterization of granules prepared by different concentration of binders

Batches	Bulk density (gm/ml)	Tapped density (gm/ml)	Cars consolidation index(%)	Hausner ratio	Angle of repose
HF2%	0.295	0.390	17.13	1.05	28.16
HF7%	0.290	0.370	14.52	1.19	28.05
S10%	0.310	0.350	10.62	1.22	29.00
HFT5%	0.350	0.295	17.15	1.29	29.53
HFA5%	0.320	0.290	12.32	1.20	29.12

RESULTS AND DISCUSSION

The mucilage yields for a flower petals by conventional and microwave method was found to be 4.2% and 8.33% respectively. This indicates that the microwave method of extraction of mucilage is more efficient and gives more yield as compared to the conventional method. The identification of the isolated mucilage (carbohydrate) was confirmed with the positive result of Molish’s test (purple color formation) and ruthenium red test (formation of pink color) respectively. The extracted mucilage was practically insoluble in ethanol, acetone and chloroform and slightly soluble in water. It is neutral in nature as it shows the pH of 6.5 of 1% w/v of solution this neutrality suggests that Hibiscus flower mucilage is less irritating to the GIT, when used in the uncoated tablets. The interaction between drug and mucilage is checked by comparing the IR
spectra of pure drug with the combined spectra of pure drug and mucilage. All the characterization parameters for the prepared granules were found to be within acceptable limit by using different concentration of binders. Which conclude that the granules are having good flow properties and are suitable for tablet formation. The tablets are made and are evaluated by the different parameters as given in table 4. All the batches of tablets exhibited good content uniformity, weight uniformity hardness and friability values within the limits of Indian pharmacopoeia. The disintegration time of tablet was found to increase with increase in the concentration of mucilage. The dissolution studies were performed by using USP type-II apparatus at 50rpm in a phosphate buffer medium. The dissolution test profile of tablets at different time intervals is described in the given table 5.

Table 4 Evaluation parameters of tablets

Batches	Weight variation (mg)	Disintegration time (min)	Hardness (kg/cm²)	Friability (%)	Uniformity of content (%)
HF2%	187.04	2.10	3.00	0.425	98.20
HF7%	188.75	2.25	3.60	0.445	98.56
HF10%	192.10	2.60	3.82	0.465	98.61
HFT5%	198.26	3.30	4.02	0.556	99.26
HFA5%	198.60	4.45	4.20	0.589	99.68

HFT: - tablets prepared by using tragacanth HFA: - tablets prepared by using acacia

Table 5 Dissolution profile for tablets at different tie interval

Batches	D10	D20	D30	D40	D50	D60
HF2%	35.26	42.68	56.18	67.0	78.34	90.45
HF5%	30.51	35.23	49.18	62.17	80.01	90.86
HF7%	20.41	32.18	46.52	60.56	69.3	85.90
S10%	21.33	39.26	46.76	80.13	87.33	98.25
HFT5%	31.66	37.82	52.23	72.66	82.80	91.66
HFA5%	30.56	35.13	51.20	75.18	83.0	90.15

D: Dissolution time interval in minutes
CONCLUSION

The *Hibiscus rosasinensis* mucilage from flower petals is a suitable pharmaceutical additive which could be used as a binder in tablet formulation and thus has a high potential for substitution for other binder and with acacia, tragacanth it gives up to 100% drug release within time limit. As compared to the other concentration used the $S_{10\%}$, $HFT_{5\%}$ and $HFA_{5\%}$ gives 98.25%, 91.66% and 90.15% respectively more sustained release.

REFERENCES

1. Malviya, R., Srivastava, P., Kulkarni, G. T., Applications of mucilages in drug delivery: A Review, Advances in Biological Research, 2011, 5 (1), 01-07.
2. Singh, K., Kumar, A., Langyan, N., Ahuja, M., Evaluation of Mimosa pudica seed mucilage as sustained-release excipient, AAPS PharmSciTech, 2009, 10 (4), 1121–1127
3. The Wealth of India-A Dictionary of Indian Raw Materials and Industrial Procedures, National Institute of Science and Communication, Council of scientific and Industrial Research, New Delhi, India, 1998, Vol-V (H-K), 91.
4. Shah, B. N., Seth, A. K., Microwave assisted isolation of mucilage from the fruits of abelmoschus esculentus, Hygeia. J. D. Med, 2011, 3 (1), 54- 57.
5. Sravani, B., Deveswaran, R., Bharath, S., Studies on Vigna Mungo mucilage as a pharmaceutical excipient, J. Chem. Pharm. Res, 2011, 3(2), 118-125.
6. Singh, S. K., Singh, S., Evaluation of Cassia fistula Linn. Seed mucilage in tablet formulations, Int. J. Pharm Tech Res, 2010, 2(3), 1839-1846.

7. Government of India, Ministry of health and family welfare, Indian Pharmacopoeia, 2010, Vol-I, 559, 560, 634, A-4.1, A-4.4.

8. R. Khanna, S. Agarwal, A. Ahuja. Mucoadhesive Buccal Tablets of Clotrimazole for Oral Candidiasis. Drug Dev Industrial Pharm 1997; 23(8): 831-837.

9. M. Khurana, D. Saikh, P. Thakkar and I. Bakshi. Formulation & Evaluation of mucoadhesive tablet using dry flex seed mucilage. J Pharma Biomedical Sci 2011; 6(6): 18-25.

10. D. Harris. JR. Robinson. Drug delivery via the mucous membranes of the oral cavity. J Pharma Sci 1992. 81, 1-10.

11. Prasanthi NL, Manikiran N, Rama, R. In vitro drug release studies of ziprasidine from tablets using natural gums from biosphere. Archives of Appl. Sci. Res 2011; 3(2):513- 519.

12. Varkhade CB, Pawar HA. Spectrophotometric Estimation of Total Polysaccharides in Plantago ovata Husk Mucilage. International Journal of Chemical and Pharmaceutical Analysis, 2013; 1(1): 2-4.

13. Chanda R, Nath LK, Mahapatra S. Formulation development of oral mucoadhesive coated Terbutaline sulphate tablets using some natural materials extracted from edible fruits available in India. Iran J Pharm Sci, 2009; 5(1): 3–12.

14. Kokate, CK. Practical Pharmacognosy, 4th ed., Vallabh Prakashan, New Delhi, India; 1994. pp. 112-120.

15. Nep EI, Conway BR. Characterization of Grewia Gum, a Potential Pharmaceutical Excipient. J Excipients and Food Chem, 2010; 1(1 SRC – Google Scholar): 30-40.

16. Bruschi ML, Jones DS, Panzeri H, Gremião MPD, Freitas O, Lara EHG. Semisolid systems containing propolis for the treatment of periodontal disease: in vitro release kinetics, syringeability, rheological, textural, and mucoadhesive properties. J Pharm Sci, 2007; 96:2074-89.

17. Rao YM, Vani G, Rameshary RB, Design and evaluation of mucoadhesive drug delivery systems. Indian Drugs, 1998; 35: 558-565.

18. Chanda, R., Design and Development of Mucoadhesive Drug Delivery Systems. M. Pharm Thesis, Jadavpur University; 2000, pp 45.
19. Chanda R, Nath LK, Mahapatra S. Formulation Development of Oral Mucoadhesive Coated Terbutaline Sulphate Tablets Using Some Natural Materials Extracted from Edible Fruits Available in India. Iranian J Pharm Sci, 2009; 5: 3-12.

20. Prabakaran L, Murthy SN, Karpakavalli M. Extraction and characterization of Hybiscus Rosa-Sinensis leaves mucilage for Pharmaceutical applications. RGUHS Journal of Pharmaceutical Sciences, 2011; 1(3): 232-238.

21. Gupta A, Garg S, Khar KR. Measurement of Bioadhesive strength of mucoadhesive Buccal tablets: Design of an in-vitro Assembly. Indian Drugs, 1992; 4 (30):152-155.

22. Dash S, Murthy PN, Deb P, Chakraborty J, Das B. Optimization and characterization of purified polysaccharide from Musa sapientum L as a pharmaceutical excipient. Food Chemistry, 2014; 149.

23. Peppas, NA, Buri, PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Contr. Release, 1985; 2: 257-275.

24. Lehr CM, Bouwstra JA, Bodde HE. Junginger HE. A surface energy analysis of mucoadhesion contact angle measurements on polycarbophil and pig intestinal mucosa in physiologically relevant fluids. Pharmaceut. Res, 1992; 9: 70-75.

25. Andreas BS, Krajicek ME. Comparison of the mucoadhesive properties of various polymers. Adv Drug Deliv Rev, 2005; 57: 1713–23.