Riemann-Roch, Stability and New Non-Abelian Zeta Functions for Number Fields

Lin WENG

In this paper, we introduce a geometrically stylized arithmetic cohomology for number fields. Based on such a cohomology, we define and study new yet genuine non-abelian zeta functions for number fields, using an intersection stability.

1. A New Cohomology

(1.1) Arithmetic Cohomology Groups

Let F be a number field with discriminant Δ_F. Denote its (normalized) absolute values by S_F, and write $S_F = S_{\text{fin}} \cup S_{\infty}$, where S_{∞} denotes the collection of all archimedean valuations. For simplicity, we use v (resp. σ) to denote elements in S_{fin} (resp. S_{∞}).

Denote by $A = A_F$ the ring of adeles of F, by $\text{GL}_r(A)$ the rank r general linear group over A, and write $A := A_{\text{fin}} \oplus A_{\infty}$ and $\text{GL}_r(A) := \text{GL}_r(A_{\text{fin}}) \times \text{GL}_r(A_{\infty})$ according to their finite and infinite parts.

For any $g = (g_{\text{fin}} : g_{\infty}) = (g_v : g_{\sigma}) \in \text{GL}_r(A)$, define the injective morphism $i(g) := i(g_{\infty}) : F^r \to A^r$ by $(f) \mapsto (f; g_{\sigma} \cdot f)$. Let $F^r(g) := \text{Im}(i(g))$ and set

$$A^r(g) := \{ (a_v : a_{\sigma}) \in A^r : g_v(a_v) \in \mathcal{O}_v, \forall v; \text{ and } \exists f \in F^r \text{ s.t. } g_v(f) \in \mathcal{O}_v, \forall v \text{ and } (f; a_{\sigma}) = i(g_{\infty})(f) \}.$$

Then we have the following 9-diagram with exact columns and rows:

$$
\begin{array}{cccccc}
0 & \downarrow & 0 & \downarrow & 0 & \downarrow \\
0 \to & A^r(g) \cap F^r(g) & \to & A^r(g) & \to & A^r(g) / A^r(g) \cap F^r(g) \to 0 \\
0 & \downarrow & A^r & \downarrow & A^r / F^r(g) & \to 0 \\
0 \to & F^r(g) & \to & A^r & \to & A^r / A^r(g) + F^r(g) \to 0 \\
0 & \downarrow & 0 & \downarrow & 0 \\
\end{array}
$$

Motivated by this and Weil's adelic cohomology theory for divisors over algebraic curves, (see e.g., [24] and [29]), we introduce the following

Definition. For any $g \in \text{GL}_r(A)$, define its 0-th and 1-st arithmetic cohomology groups by

$$H^0(A_F, g) := A^r(g) \cap F^r(g), \quad \text{and} \quad H^1(A_F, g) := A^r / A^r(g) + F^r(g).$$

Theorem. (Serre Duality=Pontrjagin Duality) As locally compact groups,

$$H^1(A_F, g) \simeq H^0(A_{F, k_F} \otimes g^{-1}).$$

Here k_F denotes an idelic dualizing element of F, and \otimes the Pontrjagin dual. In particular, H^0 is discrete and H^1 is compact.

Remark. For $v \in S_{\text{fin}}$, denote by ∂_v the local different of F_v, the v-completion of F at v, and by \mathcal{O}_v the valuation ring with π_v a local parameter. Then $\partial_v =: \pi_v^{\text{ord}_v(\partial_v)} \cdot \mathcal{O}_v$. We call $\kappa_F := (\partial_v^{\text{ord}_v(\partial_v)} : 1) \in I_F := \text{GL}_1(A)$ an idelic dualizing element of F.

1
Proof. As usual, introduce a basic character χ on A by $\chi := (\chi^r; \chi^{z(r)})$ where $\chi^z := \lambda \circ \text{Tr}_{g}$ with $\lambda : \mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$, and $\lambda_{\sigma} := \lambda_{\infty} \circ \text{Tr}_{g}$ with $\lambda_{\infty} : \mathbb{R} \to \mathbb{R}/\mathbb{Z}$. Then the pairing

$$(x, y) \mapsto e^{2\pi i x \langle \sigma, y \rangle}$$

induces natural isomorphisms $\hat{A}^r \simeq A^r$ (as locally compact groups) and $(F^r)^{\perp} \simeq F^r$ (as discrete subgroups). With this, a direct local calculation shows that $(A^r(g))^{\perp} = A^r(\kappa_{g} \otimes g^{-1})$ and $(F^r(g))^{\perp} \simeq F^r(\kappa_{g} \otimes g^{-1})$. This completes the proof since

$$(A^r(g) \cap F^r(g))^{\perp} = (A^r(g))^{\perp} + (F^r(g))^{\perp}.$$

(1.2) Arithmetic Counts

Motivated by the Pontrjagin duality and the fact that the dimension of a vector space is equal to the dimension of its dual, one basic principal we adopt in counting locally compact groups is the following:

Counting Axiom. If $\#_{\mathbb{g}}$ counts a certain class of locally compact groups G, then $\#_{\mathbb{g}}(G) = \#_{\mathbb{g}}(\hat{G})$.

Practically, our counts of arithmetic cohomology groups are based on the Fourier inverse formula, or more accurately, the Plancherel formula in Fourier analysis over locally compact groups. (See e.g. [9].)

While any reasonable test function on A^r would do, as a continuation of a more classical mathematics and also for simplicity, we set $f := \prod_{v} f_{v} \cdot \prod_{v} f_{\sigma}$. Here f_{v} is the characteristic function of \mathcal{O}_{v}^{c}; $f_{\sigma}(x_{\sigma}) := e^{-\pi \lvert x_{\sigma} \rvert^2}/2$ if σ is real; and $f_{\tau}(x_{\sigma}) := e^{-\pi \lvert x_{\sigma} \rvert^2}$ if σ is complex. Moreover, we take the following normalization for the Haar measure dx, which we call standard, on A: locally for v, dx is the measure for which \mathcal{O}_{v} gets the measure $N(\partial_{v})^{-1/2}$, while for σ real (resp. complex), dx is the ordinary Lebesgue measure (resp. twice the ordinary Lebesgue measure).

Definition. (1) The arithmetic counts of the 0-th and the 1-st arithmetic cohomology groups for $g \in \text{GL}_{r}(A)$ are defined to be

$$\#_{\mathbb{g}}(H^{0}(A_{F}, g)) := \#_{\mathbb{g}}(H^{0}(A_{F}, g); f, dx) := \int_{H^{0}(A_{F}, g)} |f(x)|^{2} dx;$$

$$\#_{\mathbb{g}}(H^{1}(A_{F}, g)) := \#_{\mathbb{g}}(H^{1}(A_{F}, g); \hat{f}, d\xi) := \int_{H^{1}(A_{F}, g)} |\hat{f}(\xi)|^{2} d\xi.$$

Here dx denotes (the restriction of) the standard Haar measure on A, $d\xi$ (the induced quotient measure from) the dual measure (with respect to χ), and \hat{f} the corresponding Fourier transform of f;

(2) The 0-th and the 1-st arithmetic cohomologies of $g \in \text{GL}_{r}(A)$ are defined to be

$$h^{0}(A_{F}, g) := \log \left(\#_{\mathbb{g}}(H^{0}(A_{F}, g)) \right)$$

and

$$h^{1}(A_{F}, g) := \log \left(\#_{\mathbb{g}}(H^{1}(A_{F}, g)) \right).$$

(1.3) Serre Duality and Riemann-Roch

For the arithmetic cohomologies just introduced, we have the following

Theorem. (1) (Serre Duality) $h^{1}(A_{F}, g) = h^{0}(A_{F}, \kappa_{F} \otimes g^{-1})$;

(2) (Riemann-Roch Theorem)

$$h^{0}(A_{F}, g) - h^{1}(A_{F}, g) = \deg(g) - \frac{r}{2} \cdot \log |A_{F}|.$$
and Tate’s Riemann-Roch theorem ([28, Thm. 4.2.1] and/or [14, XIV, §6]), i.e., the Poisson summation formula, by the fact that \(\left(H^0(A_F, g) \right)^\perp = H^0(A_F, \kappa_F \otimes g^{-1}) \). This then completes the proof.

Often, for our own convenience, we also write \(e^{\eta(A_F, g)} = \#_{ga}(H^i(A_F, g)) \) simply as \(H^i_{ga}(F, g) \), \(i = 1, 2 \).

With this, the above additive version may be rewritten as

Theorem’. (1) (Serre Duality) \(H^1_{ga}(F, g) = H^0_{ga}(F, \kappa_F \otimes g^{-1}) \);

(2) (Riemann-Roch Theorem) \(H^0_{ga}(F, g) = H^1_{ga}(F, g) \cdot N(g) \cdot N(\kappa_F)^{-2}, \) where as usual \(N(g) \) denotes \(e^{\deg(g)} \).

Remarks. (1) Our work here is motivated by the works of Weil, Tate, van der Geer-Schoof, and Li, as well as the works of Lang, Arakelov, Szpiro, Moreno, Neukirch, Deninger, Connes, and Borisov. For details, please see the references below, in particular [31]. Also, it would be extremely interesting if one could relate the work here with that of Connes [5] and Deninger [7, 8].

(2) One may apply the discussion in this paper to wider classes of (multiplicative) characters and test functions. We leave this to the reader. (See e.g., [28], [29] and [18].)

2. New Non-Abelian Zeta Functions

(2.1) Intersection Stability

For a metrized vector sheaf \((E, \rho)\) on \(\text{Spec}(O_F) \), define its associated \(\mu \)-invariant by

\[
\mu(E, \rho) := \frac{\deg_A(E, \rho)}{\text{rank}(E)},
\]

where \(O_F \) denotes the ring of integers of a number field \(F \) and \(\deg_A \) the Arakelov degree of \((E, \rho)\). (See e.g. [16].) By definition, a proper sub metrized vector sheaf \((E_1, \rho_1)\) of \((E, \rho)\) consists of a proper sub vector sheaf \(E_1 \) of \(E \) such that \(\rho_1 \) is induced from the restriction of \(\rho \) via the injection \(E_1 \hookrightarrow E \).

Definition. A metrized vector sheaf \((E, \rho)\) is called stable (resp. semi-stable) if for all proper sub metrized vector sheaf \((E_1, \rho_1)\) of \((E, \rho)\),

\[
\mu(E_1, \rho_1) < \mu(E, \rho) \quad (\text{resp.} \quad \mu(E_1, \rho_1) \leq \mu(E, \rho)).
\]

Remarks. (1) Despite the fact that we define it independently, the intersection stability in arithmetic, motivated by Mumford’s work [20] in geometry, was first introduced by Stuhler in [26,27], see also [11,12,19 and 4]. Standard facts concerning Harder-Narasimhan filtrations and Jordan-Hölder graded metrized vector sheaves hold in this setting as well. For details, see e.g., [4,19 and 31].

(2) The intersection stability plays a key role in our work on non-abelian class field theory for Riemann surfaces in [30]. Motivated by this, as a fundamental problem, we ask whether a Narasimhan-Seshadri type correspondence holds in arithmetic in [31].

For \(g = (g_v; g_s) \in \text{GL}_r(A) \), introduce a torsion-free \(O_F \)-module

\[
H^0(A_F, g)_{\text{fin}} := H^0(\text{Spec}(O_F), g) := \{ f \in F^m : g_v f \in O_v, \forall v \}
\]

in \(F^r \). Denote the associated vector sheaf on \(\text{Spec}(O_F) \) by \(\mathcal{E}(g) \), that is,

\[
\mathcal{E}(g) := H^0(\text{Spec}(O_F), g).
\]

Moreover, note that \(F^r \), via completion, is densely embedded in \(A^r_\infty \). Thus to introduce metrics on \(\mathcal{E}(g) \) is the same as to assign metrics on the determinants, i.e., on the top exterior products, of the associated data.
(See e.g., [16, Chap. V].) Hence without loss of generality, we may assume that \(r = 1 \). In this case, the metric on \(\mathcal{E}(g) \) associated to \(g \) is defined to be the one such that for the rational section \(1 \in F, \)
\[
\|1\|_\sigma := \|g_\sigma\|_\sigma := |g_\sigma|\text{N}_r:=[F_r:Q_r].
\]
Denote such a metric on \(\mathcal{E}(g) \) by \(\rho(g) \) for \(g \in GL_r(A) \).

As such, we obtain a canonical map \((\mathcal{E}(\cdot), \rho(\cdot)) : GL_r(A) \to \Omega_{\text{Spec}(O_F), r} \) by assigning \(g \) to \((\mathcal{E}(g), \rho(g)) \), where \(\Omega_{\text{Spec}(O_F), r} \) denotes the collection of all metrized vector sheaves of rank \(r \) over \(\text{Spec}(O_F) \). Clearly, \((\mathcal{E}(\cdot), \rho(\cdot)) \) factors through the quotient group \(GL_r(F) \backslash GL_r(A) \) where \(GL_r(F) \) is embedded diagonally in \(GL_r(A) \). Denote this resulting map by \((\mathcal{E}(\cdot), \rho(\cdot)) \) too by an abuse of notation.

Denote by \(\mathcal{M}_{F,r}(d) \) the subset of \(\Omega_{\text{Spec}(O_F), r} \) consisting of semi-stable metrized vector sheaves of (Arakelov) degree \(d \). Since for a fixed, the semi-stability condition is a bounded and closed one, with respect to the natural topology, \(\mathcal{M}_{F,r}(d) \) is compact. (See e.g. [11, 26 and 27].)

Denote by \(\mathcal{M}_{A,r}(d) \subset GL_r(F) \backslash GL_r(A) \) the inverse image of \(\mathcal{M}_{F,r}(d) \) with respect to \((\mathcal{E}(\cdot), \rho(\cdot)) \), and denote the corresponding map by
\[
\Pi_{F,r}(d) : \mathcal{M}_{A,r}(d) \to \mathcal{M}_{F,r}(d)
\]
which we call the (algebraic) moment map. As a subquotient of \(GL_r(A) \), \(\mathcal{M}_{A,r}(d) \) admits a natural topology, the induced one. Moreover, by a general result due to Borel [2], which in our case is more or less obvious, the fibers of \(\Pi_{F,r}(d) \) are all compact. Thus in particular, \(\mathcal{M}_{A,r}(d) \), which we call the moduli space of semi-stable adelic bundles of rank \(r \) and degree \(d \), is compact. In particular, as a subquotient of \(GL_r(A) \), \(\mathcal{M}_{A,r}(d) \) carries a natural measure induced from the standard one on \(GL_r(A) \), which we call the Tamagawa measure, and denote by \(d\mu_{A,r}(d) \). For the same reason, there is also a natural measure on \(\mathcal{M}_{F,r}(d) \), which we call the hyperbolic measure, and denote it by \(d\mu_{F,r}(d) \).

Clearly, the total volumes of \(\mathcal{M}_{A,r}(d) \) (resp. \(\mathcal{M}_{F,r}(d) \)) with respect to \(d\mu_{A,r}(d) \) (resp. \(d\mu_{F,r}(d) \)) are different important non-commutative invariants for number fields. Note that according to what we call the Bombieri-Vaaler trick [1], i.e., by multiplying \(g \) with \((1; e^r)\) where \(t_{sr} := N_r \cdot t \) with \(t \in \mathbb{R} \), we obtain a natural isomorphism between \(\mathcal{M}_{A,r}(d) \) and \(\mathcal{M}_{A,r}(d-n\cdot t) \) where \(n := |F : Q| \). (Even though it is an open problem that semi-stability is closed under tensor operation [4], the case here in which one is of rank 1 is rather obvious.) Consequently, the above volumes are independent of degrees \(d \). Denote them by \(W_F(r) \) and \(w_F(r) \) respectively.

2.2 Functional Equation: A Formal Calculation

Let \(F \) be a number field with discriminant \(\Delta_F \). Denote by \(\mathcal{M}_{A,r} \) the moduli space of semi-stable adelic bundles of rank \(r \), that is, \(\mathcal{M}_{A,r} := \bigcup_{N \in \mathbb{R}_+} \mathcal{M}_{A,r}[N] \) where \(\mathcal{M}_{A,r}[N] := \mathcal{M}_{A,r}(\log N) \). By using the Bombieri-Vaaler trick in (2.1), as topological spaces, \(\mathcal{M}_{A,r} \simeq \mathcal{M}_{A,r}[\|\Delta_F\|^2] \times \mathbb{R}_+ \). Hence we obtain a natural measure \(d\mu \) on \(\mathcal{M}_{A,r} \) from the Tamagawa measures on \(\mathcal{M}_{A,r}[N] \) and \(\frac{dt}{t} \) on \(\mathbb{R}_+ \).

For any \(E \in \mathcal{M}_{A,r} \), define \(H^i_{ga}(F, E) := H^i_{ga}(F, g) = e^{j(i)(\mathcal{A}_F, g)} \) for any \(g \in GL_r(A) \) such that \(E = [g] \). Since for any \(a \in GL_r(F) \), \(H^i_{ga}(F, a \cdot g) = H^i_{ga}(F, g) \) \(H^i_{ga}(F, E) \) is well-defined for \(i = 0, 1 \).

With respect to fixed real constants \(A, B, C, \alpha \) and \(\beta \), introduce the formal integration \(Z_{F,r; A, B, C; \alpha, \beta}(s) \) as follows:
\[
Z_{F,r; A, B, C; \alpha, \beta}(s) := (\|\Delta_F\|^{\frac{s}{2}})^s \int_{E \in \mathcal{M}_{A,r}} \left(H_{ga}^0(F, E)^A \cdot N(E)^{B+C} - N(E)^{\alpha s + \beta}\right) d\mu(E).
\]
Then formally,
\[
Z_{F,r; A, B, C; \alpha, \beta}(s) = I(s) - II(s) + III(s),
\]
where
\[
I(s) := (\|\Delta_F\|^{\frac{s}{2}})^s \int_{E \in \mathcal{M}_{A,r}, N(E) \leq \|\Delta_F\|^2} \left(H_{ga}^0(F, E)^A \cdot N(E)^{B+C} - N(E)^{\alpha s + \beta}\right) d\mu(E); \\
II(s) := (\|\Delta_F\|^{\frac{s}{2}})^s \int_{E \in \mathcal{M}_{A,r}, N(E) \geq \|\Delta_F\|^2} N(E)^{\alpha s + \beta} d\mu(E); \\
III(s) := (\|\Delta_F\|^{\frac{s}{2}})^s \int_{E \in \mathcal{M}_{A,r}, N(E) \geq \|\Delta_F\|^2} H_{ga}^0(F, E)^A \cdot N(E)^{B+C} d\mu(E).
\]
By Theorem 1.3, i.e., the multiplicative Serre duality and Riemann-Roch theorem, we have

\[III(s) = (|\Delta_F|^{-\frac{B}{2}})^{-s} \int_{E \in \mathcal{M}_{A,F,r}, N(E) \leq |\Delta_F|^\frac{1}{2}} H_{g\alpha}^0(F,E)^A \cdot N(E)^B(-s-\frac{A+2C}{B}+\alpha) d\mu(E), \]

by the fact that \(N(E_1 \otimes E_2^\vee) = N(E_1)^{\text{rank}(E_2)} \cdot N(E_2)^{-\text{rank}(E_1)} \). Hence, formally,

\[Z_{F,r,A,B,C;\alpha,\beta}(s) = I(s) + I(-s - \frac{A+2C}{B}) - II(s) + IV(s), \]

where

\[IV(s) := (|\Delta_F|^{-\frac{B}{2}})^{-s-\frac{A+2C}{B}} \int_{E \in \mathcal{M}_{A,F,r}, N(E) \leq |\Delta_F|^\frac{1}{2}} N(E)^\alpha(-s-\frac{A+2C}{B}+\beta) d\mu(E). \]

Moreover, by definition,

\[-II(s) = - \int_{E \in \mathcal{M}_{A,F,r}, N(E) \geq |\Delta_F|^\frac{1}{2}} N(E)^\alpha+\beta d\mu(E) = - \int_{\mathcal{M}_{A,F,r},|\Delta_F|^\frac{1}{2}} d\mu(E) \cdot \int_1^\infty t^{\alpha+\beta} dt \]

\[= - W_F(r) \cdot t^{\alpha+\beta} \bigg|_1^\infty = W_F(r) \cdot \frac{1}{\alpha s + \beta}, \]

provided that \(\alpha s + \beta < 0 \).

Similarly,

\[IV(s) = \int_{\mathcal{M}_{A,F,r},|\Delta_F|^\frac{1}{2}} d\mu(E) \cdot \int_0^1 t^{\alpha(-s-\frac{A+2C}{B}+\beta)} dt = W_F(r) \cdot \frac{1}{\alpha(-s-\frac{A+2C}{B}+\beta)}, \]

provided that \(\alpha(-s-\frac{A+2C}{B}) + \beta > 0 \).

Therefore, formally,

\[Z_{F,r,A,B,C;\alpha,\beta}(s) = I(s) + I(-s - \frac{A+2C}{B}) + W_F(r) \cdot \left(\frac{1}{\alpha s + \beta} + \frac{1}{\alpha(-s-\frac{A+2C}{B}) + \beta} \right). \]

As a direct consequence, we have the following

Functional Equation. With the same notation as above, formally,

\[Z_{F,r,A,B,C;\alpha,\beta}(s) = Z_{F,r,A,B,C;\alpha,\beta}(-s - \frac{A+2C}{B}). \]

(2.3) Non-Abelian Zeta Functions for Number Fields

To justify the arguments in (2.2), we consider convergences of two types.

Type 1. Convergence for II(s) and IV(s), where

\[II(s) = (|\Delta_F|^{-\frac{B}{2}})^{-s} \int_{E \in \mathcal{M}_{A,F,r}, N(E) \geq |\Delta_F|^\frac{1}{2}} N(E)^\alpha d\mu(E); \]

\[IV(s) = (|\Delta_F|^{-\frac{B}{2}})^{-s-\frac{A+2C}{B}} \int_{E \in \mathcal{M}_{A,F,r}, N(E) \leq |\Delta_F|^\frac{1}{2}} N(E)^\alpha(-s-\frac{A+2C}{B}+\beta) d\mu(E). \]

From the calculation in (2.2), when \(\text{Re}(\alpha \cdot s + \beta) < 0 \) and \(\text{Re}(\alpha \cdot (-s-\frac{A+2C}{B}) + \beta) > 0 \), being holomorphic functions,

\[II(s) = -W_F(r) \cdot \frac{1}{\alpha s + \beta} \quad \text{and} \quad IV(s) = W_F(r) \cdot \frac{1}{\alpha(-s-\frac{A+2C}{B}) + \beta}. \]
Type 2. Convergence for $I(s)$ and $I(-s - \frac{A+2C}{B})$ where

$$I(s) = (|\Delta_F|^{-\frac{s}{2}})^s \int_{E \in \mathcal{M}_{A,F,r}} \left(H^0_{ga}(F,E)^A \cdot N(E)^{B_s+C} - N(E)^{\alpha s+\beta} \right) d\mu(E).$$

By the discussion above about $II(s)$, unless $B = \alpha$, $I(s)$ and $I(-s - \frac{A+2C}{B})$, and hence $Z_{F,r;A,B,C;\alpha,\beta}(s)$ cannot be meromorphically extended as a meromorphic function to the whole s-plane. (See also the discussion below.) Thus, we introduce the following

Compatibility Conditions: $\alpha = B$ and $\beta = C$.

With this, by a change of variables, we also assume that $B = 1$ and $C = 0$ so as to obtain the following integration:

$$Z_{F,r;A}(s) := Z_{F,r;A_{-1,0};-1,0}(s) := (|\Delta_F|^s)^s \int_{E \in \mathcal{M}_{A,F,r}} \left(H^0_{ga}(F,E)^A - 1 \right) \cdot N(E)^{-s} d\mu(E).$$

Furthermore, for any $g \in \text{GL}_r(\mathbb{A})$, from the definition and the fact that $H^0_{ga}(A_F,g)$ is discrete, by writing down each term precisely,

$$H^0_{ga}(F,g) = 1 + \sum_{\alpha \in H^0(\text{Spec} \mathbb{O}_F,\mathcal{E}(g))\setminus \{0\}} \exp \left(-\pi \sum_{\sigma : \mathbb{R}} |g_\sigma \cdot \alpha|^2 - 2\pi \sum_{\sigma : \mathbb{C}} |g_\sigma \cdot \alpha|^2 \right) =: 1 + H^0_{ga}(F,g).$$

In this expression, the first term is simply the constant function 1 on the moduli space, while each term in the second decays exponentially. With this, by a standard argument about convergence of an integration of theta series for higher rank lattices in reduction theory, see e.g., [25, Chap. III, Lect. 15], and the fact that 1 in the first term $H^0_{ga}(F,E)^A$ cancels with the second term 1 in the combination $H^0_{ga}(F,E)^A - 1$, we conclude that $II(s)$ and $II(-s - A)$ are all holomorphic functions, provided $A > 0$. All in all, we have proved the following

Main Theorem. For any strictly positive real number A,

$$Z_{F,r;A}(s) := (|\Delta_F|^s)^s \int_{E \in \mathcal{M}_{A,F,r}} \left(H^0_{ga}(F,E)^A - 1 \right) \cdot N(E)^{-s} d\mu(E)$$

is holomorphic when $\text{Re}(s) > A$. Moreover,

1. $Z_{F,r;A}(s)$ admits a meromorphic continuation to the whole complex s plane which only has simple poles at $s = 0$ and $s = A$ with the same residue $W_F(r)$, i.e., the Tamagawa volume of the moduli space $\mathcal{M}_{A,F,r}[|\Delta_F|];$
2. $Z_{F,r;A}(s)$ satisfies the functional equation

$$Z_{F,r;A}(s) = Z_{F,r;A}(A - s).$$

Main Definition. The function $Z_{F,r}(s) := Z_{F,r;1}(s)$ is called the rank r non-abelian zeta function of F.

Remarks. The latest definition may be justified by Iwasawa’s ICM talk at MIT. (See e.g., [13 and/or 31].) As they stand, our non-abelian zeta functions expose non-abelian aspect of number fields. For details, see e.g., [31].

(2) One may simply use moduli spaces $\mathcal{M}_{F,r}(d)$ to introduce new non-commutative zeta functions for number fields as well.

Acknowledgement. I would like to thank Ch. Deninger for the discussion and introducing me the works of Stuhler and Grayson. Special thanks are also due to G. van der Geer for introducing and explaining to me his joint work with R. Schoof.
REFERENCES

[1] E. Bombieri & J. Vaaler, On Siegel’s lemma. Invent. Math. 73 (1983), no. 1, 11–32.
[2] A. Borel, Some finiteness properties of adele groups over number fields, Publ. Math., IHES, 16 (1963) 5-30
[3] A. Borisov, Convolution structures and arithmetic cohomology, to appear in Comp. Math.
[4] J.-B. Bost, Fibrés vectoriels hermitiens, degré d’Arakelov et polygones canoniques, Appendix A to Exp. No. 795, Séminaire Bourbaki 1994/95, Astérisque 237 (1996), 154–161.
[5] A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Sel. math. New ser 5 (1999), no. 1, 29–106.
[6] Ch. Deninger, On the Γ-factors attached to motives. Invent. Math. 104 (1991), no. 2, 245–261.
[7] Ch. Deninger, Motivic L-functions and regularized determinants, in Proc. Sympos. Pure Math, 55, Motives, edited by U. Jannsen, S. Kleiman and J.-P. Serre, (1994), 707-743
[8] Ch. Deninger, Some analogies between number theory and dynamical systems on foliated spaces. Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998). Doc. Math. 1998, Extra Vol. I, 163–186
[9] G.B. Folland, A course in abstract harmonic analysis, Studies in advanced mathematics, CRC Press, 1995
[10] G. van der Geer & R. Schoof, Effectivity of Arakelov Divisors and the Theta Divisor of a Number Field, Sel. Math., New ser. 6 (2000), 377-398
[11] D. R. Grayson, Reduction theory using semistability. Comment. Math. Helv. 59 (1984), no. 4, 600–634.
[12] D. R. Grayson, Reduction theory using semistability. II. Comment. Math. Helv. 61 (1986), no. 4, 661–676.
[13] K. Iwasawa, Letter to Dieudonné, April 8, 1952, in Zeta Functions in Geometry, edited by N.Kurokawa and T. Sunuda, Advanced Studies in Pure Math. 21 (1992), 445-450
[14] S. Lang, Algebraic Number Theory, Springer-Verlag, 1986
[15] S. Lang, Fundamentals on Diophantine Geometry, Springer-Verlag, 1983
[16] S. Lang, Introduction to Arakelov Theory, Springer-Verlag, 1988
[17] X. Li, A note on the Riemann-Roch theorem for function fields. Progr. Math., 139, (1996), 567–570.
[18] C. Moreno, Algebraic curves over finite fields. Cambridge Tracts in Mathematics, 97, Cambridge University Press, 1991
[19] A. Moriwaki, Stable sheaves on arithmetic curves, a personal note dated in 1992
[20] D. Mumford, Geometric Invariant Theory, Springer-Verlag, (1965)
[21] J. Neukirch, Algebraic Number Theory, Grundlehren der Math. Wissenschaften, Vol. 322, Springer-Verlag, 1999
[22] A.N. Parshin, On the arithmetic of two-dimensional schemes. I. Distributions and residues. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 4, 736–773, 949.
[23] J.-P. Serre, Zeta and L functions, in Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row (1965), 82-92
[24] J.-P. Serre, Algebraic Groups and Class Fields, GTM 117, Springer-Verlag (1988)
[25] C. L. Siegel, *Lectures on the geometry of numbers*, notes by B. Friedman, rewritten by K. Chandrasekharan with the assistance of R. Suter, Springer-Verlag, 1989.

[26] U. Stuhler, Eine Bemerkung zur Reduktionstheorie quadratischer Formen. Arch. Math. **27** (1976), no. 6, 604–610.

[27] U. Stuhler, Zur Reduktionstheorie der positiven quadratischen Formen. II. Arch. Math. **28** (1977), no. 6, 611–619.

[28] J. Tate, Fourier analysis in number fields and Hecke’s zeta functions, Thesis, Princeton University, 1950

[29] A. Weil, *Basic Number Theory*, Springer-Verlag, 1973

[30] L. Weng, Non-Abelian Class Field Theory for Riemann Surfaces, at math.AG/0111240

[31] L. Weng, A Program for Geometric Arithmetic, at math.AG/0111241

Lin WENG
Graduate School of Mathematics
Kyushu University
Fukuoka, 812-8581
JAPAN