ON THE GROUP OF STRONG SYMPLECTIC HOMEOMORPHISMS

Augustin Banyaga

Abstract. We generalize the "hamiltonian topology" on hamiltonian isotopies to an intrinsic "symplectic topology" on the space of symplectic isotopies. We use it to define the group $SSympeo(M, \omega)$ of strong symplectic homeomorphisms, which generalizes the group $Hameo(M, \omega)$ of hamiltonian homeomorphisms introduced by Oh and Muller. The group $SSympeo(M, \omega)$ is arcwise connected, is contained in the identity component of $Sympeo(M, \omega)$; it contains $Hameo(M, \omega)$ as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup $[SSympeo(M, \omega), SSympeo(M, \omega)]$ is contained in $Hameo(M, \omega)$.

1. Introduction

The Eliashberg-Gromov symplectic rigidity theorem says that the group $Symp(M, \omega)$ of symplectomorphisms of a closed symplectic manifold (M, ω) is C^0 closed in the group $Diff^\infty(M)$ of C^∞ diffeomorphisms of M (see [8]). This means that the "symplectic" nature of a sequence of symplectomorphisms survives topological limits. Also Lalonde-McDuff-Polterovich have shown in [9] that for a symplectomorphism, being "hamiltonian" is topological in nature. These phenomena attest that there is a C^0 symplectic topology underlying the symplectic geometry of a symplectic manifold (M, ω).

According to Oh-Muller ([10]), the automorphism group of the C^0 symplectic topology is the closure of the group $Symp(M, \omega)$ in the group $Homeo(M)$ of homeomorphisms of M endowed with the C^0 topology. That group, denoted $Sympeo(M, \omega)$ has been called the group of symplectic homeomorphisms:

$$Sympeo(M, \omega) =: \overline{Symp(M, \omega)}.$$

1991 Mathematics Subject Classification. MSC2000:53D05; 53D35.
Key words and phrases. hamiltonian homeomorphisms, hamiltonian topology, symplectic topology, strong symplectic homeomorphisms, C^0 symplectic topology.

Typeset by $\text{AMS-}\TeX$
The C^0 topology on $\text{Homeo}(M)$ coincides with the metric topology coming from the metric

$$d_0(g, h) = \max(\sup_{x \in M} d_0(g(x), h(x)), \sup_{x \in M} d_0(g^{-1}(x), h^{-1}(x)))$$

where d_0 is a distance on M induced by some riemannian metric [11].

On the space $P\text{Homeo}(M)$ of continuous paths $\gamma : [0, 1] \to \text{Homeo}(M)$, one has the distance

$$\overline{d}(\gamma, \mu) = \sup_{t \in [0, 1]} \overline{d}^1(\gamma(t), \mu(t)).$$

Consider the space $P\text{Ham}(M)$ of all isotopies $\Phi_H = [t \mapsto \Phi^t_H]$ where Φ^t_H is the family of hamiltonian diffeomorphisms obtained by integration of the family of vector fields X_H for a smooth family $H(x, t)$ of real functions on M, i.e.

$$\frac{d}{dt} \Phi^t_H(x) = X_H(\Phi^t_H(x))$$

and $\Phi^0_H = \text{id}$. Recall that X_H is uniquely defined by the equation

$$i(X_H)\omega = dH$$

where $i(.)$ is the interior product.

The set of time one maps of all hamiltonian isotopies $\{\Phi^t_H\}$ form a group, denoted $\text{Ham}(M, \omega)$ and called the group of hamiltonian diffeomorphisms.

Definition The hamiltonian topology [11] on $P\text{Ham}(M)$ is the metric topology defined by the distance

$$d_{\text{ham}}(\Phi_H, \Phi_H') = \|H - H'\| + \overline{d}(\Phi_H, \Phi_H')$$

where

$$\|H - H'\| = \int_0^1 \text{osc}(H - H')dt.$$

and the oscillation of a function u is

$$\text{osc}(u) = \max_{x \in M} u(x) - \min_{x \in M} u(x).$$
Let $Hameo(M,\omega)$ denote the space of all homeomorphisms h such that there exists a continuous path $\lambda \in PHomeo(M)$ such that

$$\lambda(0) = id, \lambda(1) = h$$

and there exists a Cauchy sequence (for the d_{ham} distance) of hamiltonian isotopies Φ_{H^n}, which C^0 converges to λ (in the d metric).

The following is the first important theorem in the C^0 symplectic topology [11]:

Theorem (Oh-Muller)

The set $Hameo(M,\omega)$ is a topological group. It is a normal subgroup of the identity component $Sympeo_0(M,\omega)$ in $Sympeo(M,\omega)$. If $H^1(M,\mathbb{R}) \neq 0$, then $Hameo(M,\omega)$ is strictly contained in $Sympeo_0(M,\omega)$.

Remark

It is still unknown in general if the inclusion

$$Hameo(M,\omega) \subset Sympeo_0(M,\omega)$$

is strict.

The group $Hameo(M,\omega)$ is the topological analogue of the group $Ham(M,\omega)$ of hamiltonian diffeomorphisms.

The goal of this paper is to construct a subgroup of $Sympeo_0(M,\omega)$, denoted $SSympeo(M,\omega)$ and nicknamed the group of strong symplectic homeomorphisms, containing $Hameo(M,\omega)$, that is:

$$Hameo(M,\omega) \subset SSympeo(M,\omega) \subset Sympeo_0(M,\omega).$$

Like $Hameo(M,\omega)$, the group $SSympeo(M,\omega)$ is defined using a blend of the C^0 topology and the Hofer topology on the space $Iso(M,\omega)$ of symplectic isotopies of (M,ω).

We believe that $SSympeo(M,\omega)$ is "more right" than the group $Sympeo(M,\omega)$ for the C^0 symplectic topology. In particular the flux homomorphism seems to exist on $SSympeo(M,\omega)$. This will be the object of a future paper.
The results of this paper have been announced in [1].

The C^0 counterpart of the C^∞ contact topology is been worked out in [5], [6].

2. The symplectic topology on $Iso(M,\omega)$

Let $Iso(M,\omega)$ denote the space of symplectic isotopies of a compact symplectic manifold (M,ω). Recall that a symplectic isotopy is a smooth map $H : M \times [0,1] \to M$ such that for all $t \in [0,1]$, $h_t : M \to M$, $x \mapsto H(x,t)$ is a symplectic diffeomorphism and $h_0 = id$.

The "Lie algebra" of $Symp(M,\omega)$ is the space $symp(M,\omega)$ of symplectic vector fields, i.e the set of vector fields X such that $i_X\omega$ is a closed form.

Let ϕ_t be a symplectic isotopy, then

$$\dot{\phi}_t(x) = \frac{d\phi_t}{dt}(\phi_t^{-1}(x))$$

is a smooth family of symplectic vector fields.

By the theorem of existence and uniqueness of solutions of ODE's,

$$\Phi \in Iso(M,\omega) \mapsto \dot{\phi}_t$$

is a 1-1 correspondence between $Iso(M,\omega)$ and the space $C^\infty([0,1],symp(M,\omega))$ of smooth families of symplectic vector fields. Hence any distance on $C^\infty([0,1],symp(M,\omega))$ gives rise to a distance on $Iso(M,\omega)$.

An intrinsic topology on the space of symplectic vector fields.

We define a norm $||.||$ on $symp(M,\omega)$ as follows: first we fix a riemannian metric g (which may be the one we used to define d_0 above, or any other riemannian metric), and a basis $B = \{h_1,..,h_k\}$ of harmonic 1-forms. For Hodge theory, we refer to [12].

Recall that the space $harm^1(M,g)$ of harmonic 1-forms is a finite dimensional vector space and its dimension is the first Betti number of M.
On $\text{harm}^1(M, g)$, we put the following "Euclidean" norm:

for $H \in \text{harm}^1(M, g)$, $H = \sum \lambda_i h_i$, define:

$$|H|_B =: \sum |\lambda_i|.$$

This norm is equivalent to any other norm. Here we choose this one for convenience in the calculations and estimates to come later.

Given $X \in \text{sym}(M, \omega)$, we consider the Hodge decomposition of $i_X \omega$ [10]: there is a unique harmonic 1-form H_X and a unique function u_X such that

$$i_X \omega = H_X + du_X$$

Now we define a norm $||.||$ on the space $\text{symp}(M, \omega)$ by:

$$||X|| = |H_X|_B + \text{osc}(u_X).$$

(1)

It is easy to see that this is a norm. Let us just verify that $||X|| = 0$ implies that $X = 0$. Indeed $|H_X|_B = 0$ implies that $i_X \omega = du_X$, and $\text{osc}(u_X) = 0$ implies that u_X is a constant, therefore $du_X = 0$.

Remark

This norm is not invariant by $\text{Symp}(M, \omega)$. Hence it does not define a Finsler metric on $\text{Symp}(M, \omega)$.

The norm $||.||$ defined above depends of course on the riemannian metric g and the basis B of harmonic 1-forms. However, we have the following:

Theorem 1

All the norms $||.||$ defined by equation (1) using different riemannian metrics and different basis of harmonic 1-forms are equivalent.

Hence the topology on the space $\text{symp}(M, \omega)$ of symplectic vector fields defined by the norm (1) is intrinsic : it is independent of the choice of the riemannian metric g and of the basis B of harmonic 1-forms.
For each symplectic isotopy $\Phi = (\phi_t)$, consider the Hodge decomposition of $i_{(\dot{\phi}_t)}\omega$

$$i_{(\dot{\phi}_t)}\omega = H_t^{\Phi} + du_t^{\Phi}$$

where H_t^{Φ} is a harmonic 1-form.

We define the length $l(\Phi)$ of the isotopy $\Phi = (\phi_t)$ by:

$$l(\Phi) = \int_0^1 (|H_t^{\Phi}| + osc(u_t^{\Phi}))dt = \int_0^1 ||\dot{\phi}_t||dt$$

One also writes

$$\int_0^1 ||\dot{\phi}_t||dt = ||\dot{\phi}_t||.$$

In the expressions above, we have written $|H_t^{\Phi}|$ for $|H_t^{\Phi}|_B$, where B is a fixed basis of $harm^1(M,g)$, for a fixed riemannian metric g.

We define the distance $D_0(\Phi, \Psi)$ between two symplectic isotopies $\Phi = (\phi_t)$ and $\Psi = (\psi_t)$ by:

$$D_0(\Phi, \Psi) = |||\dot{\phi}_t - \dot{\psi}_t||| = \int_0^1 (|H_t^{\Phi} - H_t^{\Psi}| + osc(u_t^{\Phi} - u_t^{\Psi}))dt.$$

Denote by $\Phi^{-1} = (\phi_t^{-1})$ and by $\Psi^{-1} = (\psi_t^{-1})$ the inverse isotopies.

Remarks
1. The distance $D_0(\Phi, \Psi) \neq l(\Psi^{-1}\Phi)$ unless Ψ and Φ are hamiltonian isotopies (see proposition 1).
2. $l(\Phi) \neq l(\Phi^{-1})$ unless Φ is hamiltonian.

In view of the remarks above, we define a more ”symmetrical” distance D by:

$$D(\Phi, \Psi) = (D_0(\Phi, \Psi) + D_0(\Phi^{-1}, \Psi^{-1}))/2$$

Following [11], we define the symplectic distance on $Iso(M,\omega)$ by:

$$d_{symp}(\Phi, \Psi) = d(\Phi, \Psi) + D(\Phi, \Psi).$$

Definition. The symplectic topology on $Iso(M,\omega)$ is the metric topology defined by the distance d_{symp}.
Theorem 1’

The symplectic topology on \(\text{Iso}(M, \omega) \) natural: it is independent of all choices involved in its definition.

We may also define another distance \(D^\infty \) on \(\text{Iso}(M, \omega) \):

\[
D_0^\infty(\Phi, \Psi) = \sup_{t \in [0,1]}(|H_t^\Phi - H_t^\Psi| + \text{osc}(u_t^\Phi - u_t^\Psi))
\]

\[
D^\infty(\Phi, \Psi) = (D_0^\infty(\Phi, \Psi) + D_0^\infty(\Phi^{-1}, \Psi^{-1}))/2
\]

and

\[
d^\infty_{\text{symp}}(\Phi, \Psi) = \overline{d}(\Phi, \Psi) + D^\infty(\Phi, \Psi)
\]

Proposition 1.

Let \(\Phi = (\phi_t), \Psi = (\psi_t) \) be two hamiltonian isotopies and \(\sigma_t = (\psi_t)^{-1}\phi_t \) then

\[
|||\dot{\sigma}_t||| = |||\dot{\phi}_t - \dot{\psi}_t||| = \int_0^1 \text{osc}(u_t^\Phi - u_t^\Psi)dt
\]

Proof

This follows immediately from the equation

\[
\dot{\sigma}_t = (\psi_t^{-1})_*(\dot{\phi}_t - \dot{\psi}_t),
\]

which is a consequence of proposition 4. \(\square \)

Corollary.

The distance \(d_{\text{sym}} \) reduces to the hamiltonian distance \(d_{\text{ham}} \) when \(\Phi \) and \(\Psi \) are hamiltonian isotopies.

The symplectic topology reduces to the "hamiltonian topology" of [11] on paths in \(\text{Ham}(M, \omega) \).

A Hofer-like metric on \(\text{Symp}(M, \omega) \)
For any $\phi \in \text{Symp}(M, \omega)$, define:

$$e_0(\phi) = \inf(l(\Phi))$$

where the infimum is taken over all symplectic isotopies Φ from ϕ to the identity.

The following result was proved in [2].

Theorem.

The map $e : \text{Symp}(M, \omega) \to \mathbb{R} \cup \{\infty\}$:

$$e(\phi) =: (e_0(\phi) + e_0(\phi^{-1}))/2$$

is a metric on the identity component $\text{Symp}(M, \omega)_0$ in the group $\text{Symp}(M, \omega)$, i.e. it satisfies (i) $e(\phi) \geq 0$ and $e(\phi) = 0$ iff ϕ is the identity.

(ii) $e(\phi) = e((\phi)^{-1})$

(iii) $e(\phi, \psi) \leq e(\phi) + e(\psi)$.

The restriction to $\text{Ham}(M, \omega)$ is bounded from above by the Hofer norm.

Recall that the Hofer norm [8] of a hamiltonian diffeomorphism ϕ is

$$||\phi||_H = \inf(l(\Phi_H))$$

where the infimum is taken over all hamiltonian isotopies Φ_H from ϕ to the identity.

The Hofer-like metric above depends on the choice of a riemannian metric g and a basis \mathcal{B} of harmonic 1-forms. Hence it is not "natural". However, by theorem 1, all the metrics constructed that way are equivalent; so they define a natural topology on $\text{Symp}(M, \omega)$.

3. Strong symplectic homeomorphisms

Definition: A homeomorphism h is said to be a strong symplectic homeomorphism if there exists a continuous path $\lambda : [0, 1] \to \text{Homeo}(M)$ such that $\lambda(0) = \text{id}; \lambda(1) = h$ and a sequence $\Phi^n = (\phi^n_t)$ of symplectic isotopies, which
converges to λ in the C^0 topology (induced by the norm \overline{d}) and such that Φ^n is Cauchy for the metric d_{symp}.

We will denote by $SSympeo(M,\omega)$ the set of all strong symplectic homeomorphisms. This set is well defined independently of any riemannian metric or any basis of harmonic 1-forms.

Clearly, if M is simply connected, the set $SSympeo(M,\omega)$ coincides with the group $Hameo(M,\omega)$.

We denote by $SSympeo(M,\omega)^\infty$ the set defined like in $SSympeo(M,\omega)$ but replacing the norm d_{symp} by the norm d_{symp}^∞.

Let $\mathcal{P}Homeo(M)$ be the set of continuous paths $\gamma : [0,1] \to Homeo(M)$ such that $\gamma(0) = id$, and let $\mathcal{P}^\infty(Harm^1(M))$ be the space of smooth paths of harmonic 1-forms.

We have the following maps:

$A_1 : Iso(M,\omega) \to \mathcal{P}Homeo(M), \Phi \mapsto \Phi(t)$

$A_2 : Iso(M,\omega) \to \mathcal{P}^\infty(Harm^1(M), \Phi \mapsto \mathcal{H}^\Phi$.

$A_3 : Iso(M,\omega) \to C^\infty(M \times [0,1], \mathbb{R}), \Phi \mapsto u^\Phi$.

Let Q be the image of the mapping $A = A_1 \times A_2 \times A_3$ and \overline{Q} the closure of Q inside $I(M,\omega) =: \mathcal{P}Homeo(M) \times \mathcal{P}^\infty(Harm^1(M) \times C^\infty(M \times [0,1], \mathbb{R})$, with the symplectic topology, which is the C^0 topology on the first factor and the metric topology from D on the second and third factor.

Then $SSympeo(M,\omega)$ is just the image of the evaluation map of the path at $t=1$ of the image of the projection of Q on the first factor. This defines a surjective map:

$a : Q \to SSympeo(M,\omega)$

The symplectic topology on $SSympeo(M,\omega)$ is the quotient topology induced by a.
Our main result is the following

Theorem 2.

Let \((M, \omega)\) be a closed symplectic manifold. Then \(SSympeo(M, \omega)\) is an arcwise connected topological group, containing \(Hameo(M, \omega)\) as a normal subgroup, and contained in the identity component \(Sympeo_0(M, \omega)\) of \(Sympeo(M, \omega)\).

If \(M\) is simply connected, \(SSympeo(M, \omega) = Hameo(M, \omega)\). Finally, the commutator subgroup \([SSympeo(M, \omega), SSympeo(M, \omega)]\) of \(SSympeo(M, \omega)\) is contained in \(Hameo(M, \omega)\).

Conjectures

1. Let \((M, \omega)\) be a closed symplectic manifold, then
\[
[SSympeo(M, \omega), SSympeo(M, \omega)] = Hameo(M, \omega).
\]

2. The inclusion \(SSympeo(M, \omega) \subset Sympeo_0(M, \omega)\) is strict.

3. The results in theorem 2 hold for \(SSympeo(M, \omega)\).

Conjecture 3 is supported by a result of Muller asserting that \(Hameo(M, \omega)\) coincides with \(Hameo(M, \omega)\) which is defined by replacing the \(L^{1, \infty}\) Hofer norm by the \(L^\infty\) norm [8].

Measure preserving homeomorphisms

On a symplectic \(2n\) dimensional manifold \((M, \omega)\), we consider the measure \(\mu_\omega\) defined by the Liouville volume \(\omega^n\). Let \(Homeo_0^{\omega\infty}(M)\) be the identity component in the group of homeomorphisms preserving \(\mu_\omega\). We have:

\[
Sympeo_0(M, \omega) \subset Homeo_0^{\omega\infty}(M).
\]

Oh and Muller [11] have observed that \(Hameo(M, \omega)\) is a sub-group of the kernel of Fathi’s mass-flow homomorphism [7]. This is a homomorphism \(\theta : Homeo_0^{\omega\infty}(M) \to H_1(M, \mathbb{R})/\Gamma\), where \(\Gamma\) is some sub-group of \(H_1(M, \mathbb{R})\). Fathi proved that if the dimension of \(M\) is bigger than 2, then \(\text{Ker}\theta\) is a simple group. This leaves open the following question [11]:

Is $\text{Homeo}_0^\omega(S^2) = \text{Symp}_0(S^2, \omega)$ a simple group?

But $\text{Symp}_0(S^2, \omega)$ contains $\text{Hameo}(S^2, \omega)$ as a normal subgroup. The question is to decide if the inclusion

$$\text{Hameo}(S^2, \omega) \subset \text{Symp}_0(S^2, \omega)$$

is strict. Since $SS\text{ympeo}(S^2, \omega) = \text{Hameo}(S^2, \omega)$, our conjecture 2 implies that $\text{Homeo}_0^\omega(S^2) = \text{Symp}_0(S^2, \omega)$ is not a simple group, a conjecture of [9].

Questions

1. Is $SS\text{ympeo}(M, \omega)$ a normal subgroup of $\text{Symp}_0(M, \omega)$?
2. Is $[\text{Symp}_0(M, \omega), \text{Symp}_0(M, \omega)]$ contained in $\text{Hameo}(M, \omega)$?

4. Proofs of the results

4.1. Proof of theorem 1

If B and B' are two basis of $\text{harm}^1(M, g)$, then elementary linear algebra shows that $|.|_B$ and $|.|_{B'}$ are equivalent. This implies that the corresponding norms on $\text{symp}(M, \omega)$ are also equivalent.

Let us now start our construction with a riemannian metric g and a basis $B = (h_1, h_k)$ of $\text{harm}^1(M, g)$. We saw that for any $X \in \text{symp}(M, \omega)$,

$$i_{X} \omega = H_{X} + du_{X}$$

and we wrote $H_{X} = \sum \lambda_{i} h_{i}$.

Let g' be another riemannian metric. The g'-Hodge decomposition of $i_{X} \omega$ is:

$$i_{X} \omega = H'_{X} + du'_{X}$$

where H'_{X} is g'-harmonic.

Consider the g'-Hodge decompositions of the members h_{i} of the basis B i.e.

$$h_{i} = h'_{i} + dv_{i}$$
where h'_i is g' harmonic.

$B' = (h'_1, \ldots, h'_k)$ is a basis of $\text{harm}^1(M, g')$. Indeed if $\sum r_i h'_i = 0$, then $\sum r_i h_i = d(\sum r_i v_i)$. Hence $\sum r_i h_i$ is identically zero because it is an exact harmonic form. Therefore all r_i are zero since $\{h_i\}$ form a basis.

The 1-form

$$H'_X =: \sum \lambda_i h'_i$$

is a g'-harmonic form representing the cohomology class of $i_X \omega$. By uniqueness, $H'_X = H''_X$.

Hence

$$|H'_X|_{g'} = \sum |\lambda_i| = |H_X|_g$$

Furthermore $H'_X = \sum \lambda_i (h_i - dv_i) = H_X + dv$ where $v = - \sum \lambda_i v_i$. Hence

$$i_X \omega = H'_X + du'_X = H_X + d(v + u'_X)$$

By uniqueness in the g-Hodge decomposition of $i_X \omega$,

$$u_X = v + u'_X.$$

Denote by $||X||_{g'}$, resp. $||X||_g$, the norm of X using the riemannian metric g' and the basis B', resp. using the riemannian metric g and the basis B. Then:

$$||X||_{g'} = |H'_X|_{g'} + \text{osc}(u'_X) = |H'_X|_{g'} + \text{osc}(u_X - v)$$

$$\leq |H'_X|_{g'} + \text{osc}(u_X) + \text{osc}(-v)$$

$$= |H_X|_{g} + \text{osc}(u_X) + \text{osc}(v) = ||X||_g + \text{osc}(v).$$

Similarly,

$$||X||_g = |H_X|_{g} + \text{osc}(u_X) = |H_X|_{g} + \text{osc}(v + u'_X)$$

$$\leq (|H_X|_{g} + \text{osc}(u'_X)) + \text{osc}(v) = ||X||_{g'} + \text{osc}(v).$$
Setting \(a = \|X\|_g, b = \|X\|_{g'}, c = \text{osc}(v) \), we proved \(a \leq b + c \) and \(b \leq a + c \). Subtracting these inequalities, we get \(a - b \leq b - a \) and \(b - a \leq a - b \). This gives \(a \leq b \) and \(b \leq a \), i.e. \(a = b \).

We proved that given the couple \((g, B)\) of a riemannian metric \(g\) and a basis of \(g\)-harmonic 1-forms, and any other riemannian metric \(g'\), there is a basis \(B'\) of \(g'\)-harmonic 1-forms so that \(\|X\|_g = \|X\|_{g'}\), hence the norm \(\|\cdot\|\) is independent of the riemannian metric up to the equivalence relation due to change of basis. In conclusion, all the norms on \(\text{symp}(M, \omega)\) given by formula (1) are equivalent. \(\Box\)

For the purpose of the proof of the main theorem, we fix a riemannian metric \(g\) and a basis \(B = (h_1, \ldots, h_k)\) of \(\text{harm}^1(M, g)\). The norm of a harmonic 1-form \(H\) will be simply denoted \(\|H\|\) and the norm of a symplectic vector field \(X\) will be simply denoted \(\|X\|\).

4.2. Proof of theorem 2

Let \(h_i \in S\text{Sympeo}(M, \omega)\) \(i = 1, 2\) and let \(\lambda_i\) be continuous paths in \(\text{Homeo}(M)\) with \(\lambda_i(0) = \text{id}, \lambda_i(1) = h_i\) and let \(\Phi^n_i\) be \(d_{\text{symp}}\)-Cauchy sequences of symplectic isotopies converging \(C^0\) to \(\lambda_i\).

Then \(\Phi^n_1(\Phi^n_2)^{-1}\) converges \(C^0\) to the path \(\lambda_1(t)(\lambda_2(t))^{-1}\). Here \(\Phi^n_1(\Phi^n_2)^{-1}(t) = \phi^n_1(t)(\phi^n_2(t))^{-1}\).

By definition of the distance \(d_{\text{symp}}\), \(\Phi^n\) is a \(d_{\text{symp}}\)-Cauchy sequence if and only if both \(\Phi^n\) and \((\Phi^n)^{-1}\) are \(D_0\) - Cauchy and \(\overline{D}\) - Cauchy sequences.

Main lemma.

If \(\Phi^n = (\phi^n_i)\) and \(\Psi^n_i = (\psi^n_i)\) are \(d_{\text{symp}}\)-Cauchy sequences in \(\text{Iso}(M)\), so is \(\rho^n_i = \phi^n_i \psi^n_i\).

It will be enough to prove that \(\rho^n_i\) is a \(D_0\) - Cauchy sequence. Indeed since \((\Phi^n)^{-1}\) and \((\Psi^n)^{-1}\) are \(D_0\) - Cauchy by assumption, the main lemma applied to their product implies that their product is also \(D_0\) Cauchy. Hence \((\Psi^n)^{-1}(\Phi^n)^{-1} = ...)
\((\Phi^n\Psi^n)^{-1} = (\rho^n)^{-1}\) is a \(D_0\) - Cauchy sequence. This will conclude the proof that \(SSympeo(M,\omega)\) is a group.

We will use the following estimate:

Proposition 2. There exists a constant \(E\) such that for any \(X \in \text{symp}(M,\omega)\), and \(H \in \text{harm}^1(M,g)\)

\[
|H(X)| = \sup_{x \in M}|H(x)(X(x))| \leq E||X|||H|
\]

Proof. Let \((h_1, \ldots, h_r)\) be the chosen basis for harmonic 1-forms and let \(E = \max_i E_i\) and \(E_i = \sup_V (\sup_{x \in M}|h_i(x)(V(x))|\) where \(V\) runs over all symplectic vector fields \(V\) such that \(||V|| = 1\).

Without loss of generality, we may suppose \(X \neq 0\) and set \(V = X/||X||\). Let
\[H = \sum \lambda_i h_i.\] Then \(H(X) = ||X|| \sum \lambda_i h_i(V)\). Hence

\[
|H(X)| \leq ||X|| \sum |\lambda_i| \sup_x (|h_i(x)(V(x))|) \leq ||X|| \sum |\lambda_i|E = E||X|||H|.
\]

\(\square\)

We will also need the following standard facts:

Proposition 3.

Let \(\varphi\) be a diffeomorphism, \(X\) a vector field and \(\theta\) a differential form on a smooth manifold \(M\), Then

\[
(\varphi^{-1})^*[i_X \phi^*\theta] = i_{\varphi_*X}\theta
\]

Proposition 4.

If \(\phi_t, \psi_t\) are any isotopies, and if we denote by \(\rho_t = \phi_t\psi_t\), and by \(\dot{\varphi}_t = (\phi)^{-1}_t\)
then

\[
\dot{\rho}_t = \dot{\phi}_t + (\dot{\phi}_t)_* \psi_t
\]

and

\[
\dot{\phi}_t = -((\phi)_t^{-1})_* (\dot{\phi}_t)
\]
Proposition 5.

Let θ_t be a smooth family of closed 1-forms and ϕ_t an isotopy, then

$$\phi^*_t \theta_t - \theta_t = dv_t$$

where

$$v_t = \int_0^t (\theta_t(\dot{\phi}_s) \circ \phi_s) ds$$

Proof of the main lemma

If ϕ_t, ψ_t are symplectic isotopies, and if $\rho_t = \phi_t \psi_t$, propositions 3, 4 and 5 give:

$$i(\dot{\rho}_t) \omega = \mathcal{H}^\phi_t + \mathcal{H}^\psi_t + dK(\Phi, \Psi)$$

where $K = K(\Phi, \Psi) = u_t^\phi + (u_t^\psi) \circ (\phi_t)^{-1} + v_t(\Phi, \Psi)$, and

$$v_t(\Phi, \Psi) = \int_0^t (\mathcal{H}_t^\psi(\dot{\phi}_s) \circ \phi_s^{-1}) ds.$$

Let now ϕ^n_t, ψ^n_t be Cauchy sequences of symplectic isotopies, and consider the sequence $\rho^n_t = \phi^n_t \psi^n_t$.

We have:

$$|||\dot{\rho}^n_t - \dot{\rho}^m_t||| = \int_0^1 |\mathcal{H}^\phi_t - \mathcal{H}^\phi_t^n + \mathcal{H}^\psi_t - \mathcal{H}^\psi_t^n + \text{osc}(K(\Phi^n, \Psi^n) - K(\Phi^m, \Psi^m))| dt$$

$$\leq \int_0^1 |\mathcal{H}^\phi_t - \mathcal{H}^\phi_t^n| dt + \int_0^1 |\mathcal{H}^\psi_t - \mathcal{H}^\psi_t^n| dt$$

$$+ \int_0^1 \text{osc}(u_t^\phi - u_t^{\phi^n}) dt + \int_0^1 \text{osc}(u_t^\psi) \circ (\phi^n_t)^{-1} - u_t^{\psi^n} \circ (\phi^m_t)^{-1}) dt$$

$$+ \int_0^1 \text{osc}(v_t(\Phi^n, \Psi^n) - v_t(\Phi^m, \Psi^m)) dt$$

$$= |||\dot{\phi}^n_t - \dot{\phi}^m_t||| + \int_0^1 |\mathcal{H}^\phi_t^n - \mathcal{H}^\phi_t^m| dt + A + B$$
where
\[A = \int_0^1 \text{osc}(u^\Psi_n t) \circ (\phi^n_t)^{-1} - u^\Psi_m t \circ (\phi^m_t)^{-1}) dt \]
and
\[B = \int_0^1 \text{osc}(v_t(\Phi^n, \Psi^n) - v_t(\Phi^m, \Psi^m) dt \]

We have:
\[A \leq \int_0^1 \text{osc}(u^\Psi_n t) \circ (\phi^n_t)^{-1} - u^\Psi_m t \circ (\phi^m_t)^{-1}) dt + \int_0^1 \text{osc}(u^\Psi_m t) \circ (\phi^m_t)^{-1} - (u^\Psi_m t) \circ (\phi^m_t)^{-1}) dt \]
\[= \int_0^1 \text{osc}(u^\Psi_n t - u^\Psi_m t) dt + C \]

where
\[C = \int_0^1 \text{osc}(u^\Psi_m t \circ (\phi^n_t)^{-1} - u^\Psi_m t \circ (\phi^m_t)^{-1}) dt. \]

Hence
\[|||\dot{\rho}^n_t - \dot{\rho}^m_t||| \leq |||\dot{\rho}^n_t - \dot{\rho}^m_t||| \]
\[+ \int_0^1 |H^\Psi_n t - H^\Psi_m t)|dt + \int_0^t \text{osc}(u^\Psi_n t - u^\Psi_m t) dt + B + C \]
\[= |||\dot{\rho}^n_t - \dot{\rho}^m_t||| + |||\dot{\psi}^n_t - \dot{\psi}^m_t||| + B + C \]

We now show that \(C \to 0 \) when \(m, n \to \infty \).

Sub-lemma 1 (reparametrization lemma [11])

\(\forall \epsilon \geq 0, \exists m_0 \) such that
\[C = \int_0^1 \text{osc}(u^\Psi_m t \circ (\phi^n_t)^{-1} - u^\Psi_m t \circ (\phi^m_t)^{-1}) dt =: |||u^\Psi_m t \circ (\phi^n_t)^{-1} - u^\Psi_m t \circ (\phi^m_t)^{-1})|| \leq \epsilon \]

if \(m \geq m_0 \) and \(n \) large enough

Remark

This is the "reparametrization lemma" of Oh-Muller [11] (lemma 3.21. (2)). For the convenience of the reader and further references, we include their proof.
Proof

For short, we write u_m for u_t^m and μ^n_t for $(\phi^n_t)^{-1}$.

First, there exists m_0 large such that $||u_m - u_{m_0}|| \leq \epsilon/3$ for $m \geq m_0$, since (u_m) is a Cauchy sequence for the distance $d(u_n, u_m) = \int_0^1 osc(u_n - u_m)dt$.

Therefore

$$||u_{m} \circ \mu^n_t - u_{m_0} \circ \mu^n_t)|| \leq ||u_m - u_{m_0}|| + ||u_{m_0} \circ \mu^n_t - u_{m_0} \circ \mu^m_t)|| + ||u_{m_0} \circ \mu^m_t - u_{m_0} \circ \mu^n_t)||$$

$$\leq (2/3)\epsilon + ||u_{m_0} \circ \mu^n_t - u_{m_0} \circ \mu^m_t)||$$

By uniform continuity of u_{m_0}, there exists a positive δ such that if $d(\mu^n_t, \mu^m_t) \leq \delta$, then $\max osc((u_{m_0} \circ \mu^n_t - u_{m_0} \circ \mu^m_t)) \leq \epsilon/6$. Hence $||u_{m_0} \circ \mu^n_t - u_{m_0} \circ \mu^m_t)|| \leq \epsilon/3$ for n, m large. Recall that μ^n_t is a d- Cauchy sequence. \qed

To show that $\dot{\rho}^n_t$ is a Cauchy sequence, the only thing which is left is to show that $B \to 0$ when $n, m \to \infty$.

Let us denote $v_t(\Phi^n, \Psi^n)$ by v^n_t , \mathcal{H}^t by \mathcal{H}^t_n or \mathcal{H}_n and $(\phi^n_t)^{-1}$ by μ^n_t.

For a function on M, we consider the norm

$$|f| = \sup_{x \in M} |f(x)|$$

We have:

$$|v^n_t - v^n_m| = \int_0^t (H_n(\dot{\mu}^n_s) \circ \mu^n_s - H_m(\dot{\mu}^m_s) \circ \phi^n_s)ds$$

$$\leq \int_0^1 |((H_n - H_m)(\dot{\mu}^n_s)) \circ \mu^n_s|ds$$

$$+ \int_0^1 |H_m(\dot{\mu}^n_s - \dot{\mu}^m_s) \circ \mu^m_s|ds$$

$$+ \int_0^1 |H_m(\dot{\mu}^n_s - \mathcal{H}^m_n(\dot{\mu}^n_s)) \circ \mu^m_s|ds$$
The last integral can be estimated as follows:

\[\int_0^1 |\mathcal{H}_m(\dot{\mu}_s^n) \circ \mu_s^n - \mathcal{H}_m(\dot{\mu}_s^n) \circ \mu_s^m| ds \]

\[\leq \int_0^1 |\mathcal{H}_m(\dot{\mu}_s^n) \circ \mu_s^n - \mathcal{H}_m(\dot{\mu}_s^n) \circ \mu_s^n| ds \] (1)

\[+ \int_0^1 |\mathcal{H}_m(\dot{\mu}_s^n) \circ \mu_s^n - \mathcal{H}_m(\dot{\mu}_s^m) \circ \mu_s^n| ds \] (2)

\[+ \int_0^1 |\mathcal{H}_m(\dot{\mu}_s^n) \circ \mu_s^m - \mathcal{H}_m(\dot{\mu}_s^m) \circ \mu_s^n| ds \] (3)

for some integer \(n_0 \).

Proposition 2 gives \(E|\mathcal{H}_m|D_0((\Phi^n)^{-1}, (\Phi^{n_0})^{-1}) \leq 2E|\mathcal{H}_m|D((\Phi^n), (\Phi^{n_0})^{-1}) \) as an upper bound for (1) and (3).

It also gives the following estimates:

\[\int_0^1 |(\mathcal{H}_n - \mathcal{H}_m)(\dot{\mu}_s^n) \circ \mu_s^n| ds \leq E|\mathcal{H}_n - \mathcal{H}_m| \int_0^1 ||\dot{\mu}_s^n|||ds \]

\[= E. |\mathcal{H}_n - \mathcal{H}_m|. I((\Phi^n)^{-1}) \]

and

\[\int_0^1 |(\mathcal{H}_m(\dot{\mu}_s^n - \dot{\mu}_s^m)) \circ \mu_s^m| ds \leq E.|\mathcal{H}_m| \int_0^1 |(\dot{\mu}_s^n - \dot{\mu}_s^m)||ds \]

\[= E.|\mathcal{H}_m|D_0((\Phi^n)^{-1}, (\Phi^m)^{-1}) \leq 2E|\mathcal{H}_m|D(\Phi^n, \Phi^m). \]

Therefore, we get the following estimate:

\[|v_t^n - v_t^m| \leq E.|\mathcal{H}_n - \mathcal{H}_m|. I((\Phi^n)^{-1}) + E.|\mathcal{H}_m|2(D(\Phi^n, \Phi^m) + 4D(\Phi^n, \Phi^{n_0})) + G \]
where
\[G = \int_0^1 |\mathcal{H}_m(\tilde{\mu}_s^n) \circ \mu_s^n - \mathcal{H}_m(\tilde{\mu}_s^n) \circ \mu_s^m|ds \]

Since \(osc(v^n_t - v^m_t) \leq 2|v^n_t - v^m_t| \), we see that
\[
\int_0^1 osc(v^n_t - v^m_t)dt \leq 2(l(\Phi^n)^{-1}) \int_0^1 |\mathcal{H}_n^t - \mathcal{H}_m^t|dt \\
+ E(2D(\Phi^m, \Phi^n) + 4D(\Phi^n, \Phi^{n_0})\int_0^1 |\mathcal{H}_m^t|dt + \int_0^1 Gdt
\]

We need the following facts:

Sub-lemma 2 (Reparametrisation lemma)

\(\forall \epsilon > 0, \exists n_0 \) such that
\[
L = \int_0^1 Gdt = \int_0^1 (\int_0^1 |\mathcal{H}_m(\tilde{\mu}_s^n) \circ \mu_s^n - \mathcal{H}_m(\tilde{\mu}_s^n) \circ \mu_s^m|ds)dt \leq \epsilon
\]

for \(n \geq n_0 \) and \(m \) sufficiently large.

Proposition 6

\(l((\Phi^n)^{-1}) \) and \(\int_0^1 |\mathcal{H}_m^t|dt \) are bounded for every \(n, m \).

We finish first the estimate for \(\int_0^1 osc(v^n_t - v^m_t)dt \) using sub-lemma 2 and proposition 6.

Putting together all the information we gathered, we see that:
\[
\int_0^1 osc(v^n_t - v^m_t)dt \leq 2(l(\Phi^n)^{-1}) \int_0^1 |\mathcal{H}_n^t - \mathcal{H}_m^t|dt \\
+ E(2D(\Phi^m, \Phi^n) + 4D(\Phi^n, \Phi^{n_0})\int_0^1 |\mathcal{H}_m^t|dt + L
\]

\(\leq 2l((\Phi^n)^{-1})D(\Phi^n, \Phi^m) + E(2D(\Phi^m, \Phi^n) + 4D(\Phi^n, \Phi^{n_0})\int_0^1 |\mathcal{H}_m^t|dt + L
\)
Therefore:

\[
\int_0^1 \text{osc}(v^n_t - v^m_t) dt \to 0
\]

when \(n, m \to \infty \), and \(n_0 \) is chosen sufficiently large. This finishes the proof of the main lemma.

\[\square\]

Proof of proposition 6

This follows from the estimates:

\[
l((\Phi^n)^{-1}) \leq D((\Phi^n)^{-1}, \Phi^{n_0}) + l(\Phi^{n_0})
\]

and

\[
\int_0^1 |H^t_m| dt \leq \int_0^1 |H^t_m - H^t_{n_0}| dt + \int_0^1 |H^t_{n_0}| dt
\]

\[
\leq D(\Phi^m, \Phi^{n_0}) + \int_0^1 |H^t_{n_0}| dt
\]

for any \(n_0 \). Hence if \(n_0 \) is sufficiently large, \(l((\Phi^n)^{-1}) \) and \(\int_0^1 |H^t_m| dt \) are bounded.

\[\square\]

Proof of sub-lemma 2

\[
G = \int_0^1 |\mathcal{H}_m(\hat{\mu}^{n_0}_s) \circ \mu^n_s - \mathcal{H}_m(\hat{\mu}^{n_0}_s) \circ \mu^m_s| ds
\]

\[
\leq \int_0^1 |\mathcal{H}_m(\hat{\mu}^{n_0}_s) \circ \mu^n_s - \mathcal{H}_m(\hat{\mu}^{n_0}_s) \circ \mu^m_s| ds
\]

\[
+ \int_0^1 |\mathcal{H}_{n_0}(\hat{\mu}^{n_0}_s) \circ \mu^n_s - \mathcal{H}_{n_0}(\hat{\mu}^{n_0}_s) \circ \mu^m_s| ds
\]

\[
+ \int_0^1 |\mathcal{H}_{n_0}(\hat{\mu}^{n_0}_s) \circ \mu^n_s - \mathcal{H}_m(\hat{\mu}^{n_0}_s) \circ \mu^m_s| ds
\]

for some \(m_0 \).
Exactly like in the proof of sub-lemma 1
\[G(t, n, m) \leq 2|\mathcal{H}_m^t - \mathcal{H}_m^{t_0}|L(\Psi^{n_0})^{-1}) + F \]
where
\[F = \int_0^1 |\mathcal{H}_{m_0}(\dot{\mu}_s^{n_0}) \circ \mu_s^n - \mathcal{H}_{m_0}(\dot{\mu}_s^{n_0}) \circ \mu_s^m|ds \]
By uniform continuity of \(\mathcal{H}_{m_0}(\dot{\mu}_s^{n_0}) \), \(F \to 0 \) when \(n, m \to \infty \) since \(\mu_s^n \) is Cauchy.

By similar arguments as in the sub-lemma 1, \(G \to 0 \) and hence \(L \to 0 \) when \(m, n \to \infty \).

This concludes the proof of that \(SSympeo(M, \omega) \) is a group.

The fact that it is arcwise connected in the ambient topology of \(Homeo(M) \) is obvious from the definition.

\(Hameo(M, \omega) \) is a normal subgroup of \(SSympeo(M, \omega) \) since it is normal in \(Sympeo(M, \omega) \) [11].

Let \(h, g \in SSympeo(M, \omega) \) and let \(\Phi^n, \Psi^n \) be symplectic isotopies which form Cauchy sequences and \(C^0 \) converge to \(h, g \). By the main lemma the sequence \(\Phi^n \Psi^n(\Phi^n)^{-1}(\Psi^n)^{-1} \) is a Cauchy sequence. It obviously converges \(C^0 \) to the commutator \(hgh^{-1}g^{-1} \in SSympeo(M, \omega) \).

It is a standard fact that \(\Phi^n \Psi^n(\Phi^n)^{-1}(\Psi^n)^{-1} \) is a hamiltonian isotopy.

Indeed let \(\phi_t \) and \(\psi_t \) be symplectic isotopies, and let \(\sigma_t = \phi_t \psi_t \phi_t^{-1} \psi_t^{-1} \), then
\[\dot{\sigma}_t = X_t + Y_t + Z_t + U_t \]
with \(X_t = \dot{\phi}_t, Y_t = (\phi_t)_* \dot{\psi}_t, Z_t = -((\phi_t)_\# \dot{\psi}_t^{-1})_* \phi_t, \) and \(U_t = -((\sigma_t)_\# \dot{\psi}_t) \).

By proposition 5, \(i(X_t + Z_t)\omega \) and \(i(Y_t + U_t)\omega \) are exact 1-forms. Hence \(\sigma_t \) is a hamiltonian isotopy.

By proposition 1, the metric \(D \) coincides with the one for hamiltonian isotopies. Hence \(\Phi^n \Psi^n(\Phi^n)^{-1}(\Psi^n)^{-1} \) is a Cauchy sequence for \(d_{ham} \). Therefore:
\[[SSympeo(M, \omega), SSympeo(M, \omega)] \subset Hameo(M, \omega) \].
This finishes the proof of the main result. \hfill\Box

Appendix

For the convenience of the reader, we give here the proofs of propositions 3, 4, and 5.

Proof of proposition 3

Let θ be a p-form, X a vector field and ϕ a diffeomorphism. For any $x \in M$ and any vector fields Y_1, \ldots, Y_{p-1}, we have:

\[
(\phi^{-1})^* [i_X \phi^* \theta](x)(Y_1, \ldots, Y_{p-1}) = (i_X \phi^* \theta)(\phi^{-1}(x))(D_x \phi^{-1}(Y_1(x)), \ldots, D_x \phi^{-1}(Y_{p-1}(x)))
\]

\[
= (\phi^* \theta)(\phi^{-1}(x))(X_{\phi^{-1}(x)}, D_x \phi^{-1}(Y_1(x)), \ldots, D_x \phi^{-1}(Y_{p-1}(x)))
\]

\[
= \theta(\phi^{-1}(x))(D_{\phi^{-1}(x)} \phi(X_{\phi^{-1}(x)}), D_{\phi^{-1}(x)} \phi D_x \phi^{-1}(Y_1(x)), \ldots, D_{\phi^{-1}(x)} \phi D_x \phi^{-1}(Y_{p-1}(x))
\]

\[
= \theta(x)((\phi_* X)_x, Y_1(x), \ldots, Y_{p-1}(x))
\]

\[
= (i(\phi_* X) \theta)(x)(Y_1, \ldots, Y_{p-1})
\]

since $D_{\phi^{-1}(x)} \phi D_x \phi^{-1} = D_x (\phi \phi^{-1}) = id$.

Therefore $(\phi^{-1})^* [i_X \phi^* \theta] = i(\phi_* X) \theta$ \hfill\Box

Proof of proposition 4

This is just the chain rule. See [6] page 145. \hfill\Box

Proof of proposition 5

For a fixed t, we have

\[
\frac{d}{ds} \phi_*^s \theta_t = \phi_*^s (L_{\phi_*^s \theta_t}),
\]

where L_X is the Lie derivative in the direction X. Since θ is closed, we have:

\[
\frac{d}{ds} \phi_*^s \theta_t = \phi_*^s (di_{\phi_*^s \theta_t}) = d(\phi_*^s (\theta_t(\phi_*^s))) = d(\theta_t(\phi_*^s) \circ \phi_*).
\]

Hence for every u

\[
\phi_*^u \theta_t - \theta_t = \int_0^u \frac{d}{ds} \phi_*^s \theta_t ds = d(\int_0^u (\theta_t(\phi_*^s) \circ \phi_* ds)
Now set $u = t$. □

References

[1] A. Banyaga, *On the group of symplectic homeomorphisms*
C. R. Acad. Sci. Paris Ser. 1 346(2008) 867-872

[2] A. Banyaga, *A Hofer-like metric on the group of symplectic diffeomorphisms*,
Preprint 2008.

[3] A. Banyaga, *Sur la structure du groupe des difféomorphismes qui préseruent une forme symplectique,*
Comment. Math. Helv. 53(1978) pp.174–227.

[4] A. Banyaga, *The structure of classical diffeomorphisms groups,*
Mathematics and its applications vol 400.
Kluwer Academic Publisher’s Group, Dordrecht, The Netherlands (1997).

[5] A. Banyaga, P. Spaeth, *The group of contact homeomorphisms,*
Preprint, 2008.

[6] A. Banyaga. P. Spaeth, *The C^0 contact topology and the group of contact homeomorphisms*
Preprint, 2008.

[7] A. Fathi, *Structure of the group of homeomorphisms preserving a good measure on a compact manifold*
Ann. Scient. Ec. Norm. Sup. 13(1980), 45-93.

[8] H. Hofer, E. Zehnder *Symplectic invariants and hamiltonian dynamics,*
Birkhauser Advanced Texts, Birkhauser Verlag (1994)

[9] F. Lalonde, D. McDuff, L. Polterovich, *Topological rigidity of hamiltonian loops and quantum homology,*
Invent. math. 135(1999) 369-385.

[10] S. Muller, *The group of hamiltonian homeomorphisms in the L^∞ norm,*
J. Korean Math.Soc. to appear.

[11] Y-G. Oh and S. Muller *The group of hamiltonian homeomorphisms and C^0-symplectic topology,*
[12] F. Warner *Foundations of differentiable manifolds and Lie groups*,
Scott, Foresman and Company (1971).

Department of Mathematics
The Pennsylvania State University
University Park, PA 16802