Southeast Kansas Wheat Variety Test Results - 2020

G. F. Sassenrath
Kansas State University, gsassenrath@ksu.edu

L. Mengarelli
Kansas State University, mengo57@ksu.edu

J. Lingenfelser
Kansas State University, jling@ksu.edu

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Agronomy and Crop Sciences Commons

Recommended Citation
Sassenrath, G. F.; Mengarelli, L.; Lingenfelser, J.; and Lin, X. (2021) "Southeast Kansas Wheat Variety Test Results - 2020," *Kansas Agricultural Experiment Station Research Reports*: Vol. 7: Iss. 2. https://doi.org/10.4148/2378-5977.8049

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2021 the Author(s). Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Southeast Kansas Wheat Variety Test Results - 2020

Cover Page Footnote
This work is supported by the U.S. Department of Agriculture National Institute of Food and Agriculture, Hatch project 1018005. These data are part of the 2020 Kansas Performance Tests with Winter Wheat Varieties, SRP1158 (https://bookstore.ksre.ksu.edu/pubs/SRP1158.pdf).

Authors
G. F. Sassenrath, L. Mengarelli, J. Lingenfelser, and X. Lin
Southeast Kansas Wheat Variety Test Results - 2020

G.F. Sassenrath, L. Mengarelli, J. Lingenfelser, and X. Lin

Summary
This is a summary of the winter wheat production conditions in southeast Kansas in 2019-2020 and the results of the variety testing. Fifteen hard red and ten soft red winter wheat varieties were compared for yield and test weight. High spring rainfall increased disease pressure; cultivars were rated for Fusarium head blight and stripe rust. Average yield of hard red wheat varieties was above average at 81.1 bu/acre across all varieties. Soft red wheat yield was 102.4 bu/acre across all varieties. For comparison, previous variety yield results are reported from 2016, 2017, and 2018.

Introduction
Crop production is dependent on many factors including cultivar selection, environmental conditions, soil, and management practices. This report summarizes the environmental conditions during the 2019-2020 winter wheat growing season in comparison to previous years and the historical averages. Fifteen hard red and ten soft wheat varieties were tested at Parsons.

Experimental Procedures
The Kansas State University Crop Performance Tests were conducted in replicated research fields throughout the state. This report summarizes winter wheat production for Parsons, KS. Wheat varieties were tested in a Parsons silt loam soil (fine, mixed, active, thermic Mollic Albaqualfs) at the Southeast Research and Extension Center in Parsons. All crop variety trials are managed with conventional tillage. Individual variety results are available at the K-State Crop Performance Test web page (http://www.agronomy.k-state.edu/services/crop-performance-tests/).

Wheat was drilled in 7-in. rows at 1.2 million seed/acre (approximately 90 lb/acre) in conventional tillage with an Almaco plot drill on October 23, 2019 in Parsons and harvested June 18, 2020. Plots were 7-ft wide by 27.5-ft long. Fertilizer was applied before planting at a rate of 50-46-30 lb/acre N-P-K (dry), with an additional 60-46-30 lb/acre N-P-K (dry) applied on February 7, 2020, for both hard red and soft red cultivars. No fungicide or herbicides were applied. Historical weather data from the Parsons and Columbus mesonet stations were used (http://mesonet.k-state.edu/weather/historical/) and are reported separately (Sassenrath et al., 2021).
Results and Discussion

Rainfall during the 2019-2020 water year (WY) was near record highs (Sassenrath et al., 2021). Beginning in early January, regular high rainfall events increased the cumulative rainfall to well above average. During April, the cumulative rainfall exceeded that received during the previous WY19. On May 15, 2020, Parsons received 4.7 in. of rain in one 24-hr period. After a very wet spring, however, the rain stopped; Parsons received only 1.18 in. of rain in all of June. This dry weather coincided perfectly with wheat harvest. Wet conditions during wheat flowering contribute to fungal disease, in particular Fusarium head blight or scab (De Wolf et al., 2003). There was heavy infestation of scab in some cultivars and wheat fields (Table 1 and 2). The dry conditions at wheat maturity allowed timely harvesting, resulting in little dockage due to scab in 2020.

Winter wheat was planted on 6.6 million acres in Kansas in 2020. In the variety trials, heading notes were taken on individual varieties. Heading is defined as the date when 50% of the plot had heads emerged. Heading in the hard red varieties began April 25, 2020, and was complete by April 30. Heading in the soft red varieties occurred between April 28 and May 1, 2020. Yields in all varieties were very good in 2020 (Figures 1A and 2, and Table 1). The highest yield in the hard red wheat varieties was measured in WB4401 at 108.8 bu/acre. This is well above the 12-year average yield of 53.1 bu/acre in the variety trials, and the 12-year average yield of 40.7 bu/acre across the state.

Cultivars varied in their susceptibility to disease. High rainfall around flowering and heading increases disease pressure (De Wolf et al., 2003). Fungal disease ratings were measured in all varieties as the percent infection and the extent of infection, with 0 being no damage and 10 being the highest infection rate. Fusarium head blight (FHB) and stripe rust were both present in the variety trials and showed differences across the varieties (Figure 4B and C). Stripe rust showed greater infection rates than FHB. Varieties with higher yields tended to have better resistance to the fungal diseases.

Yields in soft red varieties were higher than the hard red varieties, as has been observed previously (Figures 1). No information on state-wide yields for soft red wheat is available, as soft red wheat production occurs primarily in the southeast region of the state, so hard red wheat variety yields are given for the KS state average. Soft red yield of 102.4 bu/acre across all varieties in 2020 was much higher than the 11-year average of 64 bu/acre for soft red wheats in the variety trials. The yields were similar to those harvested in soft red wheat in 2012 in the variety trials. The highest yield of 113.9 bu/acre was measured in AgriMaxx 503, but several other varieties had yields greater than 100 bu/acre (Table 2). One advantage of soft red wheat is greater resistance to disease. This was observed in the FHB and stripe rust disease ratings (Figure 5B and C). As with the hard red varieties, those varieties that had greater resistance to diseases tended to have higher yields.

Conclusions

Wheat produced exceptionally well in 2020. The planting conditions in the fall and relatively mild winter led to good plant stands. Notably, many plots were thinner than expected. However, ideal dry conditions during harvest made optimal and timely
harvest possible. The high probability of rainfall around May 31 in Parsons often confounds wheat harvest, making fields inaccessible and increasing disease damage.

Comparing variety performance across different growing seasons gives an understanding of how a variety responds under different growing conditions. For ease of comparison, variety testing results from the previous 5 years are provided for hard red (Table 1) and soft red (Table 2) varieties at Parsons. Note, no data were available from 2019 due to poor plant stand.

No herbicides or fungicides are normally used in the variety trials to provide an equal comparison based only on genetics. However, timely application of fungicide has been shown to be especially important in high rainfall areas such as southeast Kansas in order to control fungal diseases (De Wolf et al., 2003). Application of appropriate fungicides around flowering is especially important to control FHB (Onofre and De Wolf, 2020).

Acknowledgments
This work is supported by the U.S. Department of Agriculture National Institute of Food and Agriculture, Hatch project 1018005. These data are part of the 2020 Kansas Performance Tests with Winter Wheat Varieties, SRP1158 (https://bookstore.ksre.ksu.edu/pubs/SRP1158.pdf).

References
De Wolf, E. D., Madden, L. V., and Lipps, P. E. (2003). Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology, 93(4), 428-435.

Onofre, K.A., De Wolf, E.D. 2020. Foliar fungicide efficacy ratings for wheat disease management 2020. KSU Ag Exp Station and Coop Ext Serv. EP130. https://bookstore.ksre.ksu.edu/pubs/EP130.pdf

Sassenrath G.F., M. Knapp, X. Lin. 2021. Southeast Kansas Weather Summary – 2020. Kansas Agricultural Experiment Station Research Reports: Vol. 7.

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. Persons using such products assume responsibility for their use in accordance with current label directions of the manufacturer.
Table 1. Multiyear comparison of hard red winter wheat yields from variety trials at Parsons, KS

Hard red wheat varieties, Parsons, KS	2016	2017	2018	2020								
Company	Yeild, bu/a	Yeild, bu/a	Test weight, lb/bu	Yeild, bu/a	Test weight, lb/bu	Fusarium rating	Stripe rust rating					
AgriMAXX AM Cartwright	47.2	55.5	56.8	58.5	67.2	57.9	3	8				
AgriMAXX AM Eastwood	56.8	57.9	57.4	57.1	77.5	59.5	1	7				
Syngenta AgriPro SY Benefit	61.9	50.0	56.5	65.1	57.5	3	3					
Syngenta AgriPro SY Wolf	52.1	59.0	76.1	56.6	0	3						
Syngenta AgriPro SY Llano	61.8	36.5	57.5	56.9	58.1	57.6						
Syngenta AgriPro Bob Dole	49.0	57.4	83.5	60.2	5	1						
Syngenta AgriPro Jackpot	66.2	69.5	57.7	45.1	58.9	60.0	2	4				
AGSECO AG Gallant	57.0	69.5	57.7	45.1	58.9	60.0	2	4				
AGSECO AG Icon	56.9	52.6	57.5	47.5	58.6	60.0	2	4				
AGSECO AG Robust	56.9	52.6	57.5	47.5	58.6	60.0	2	4				
AGSECO EXP 52-5	76.1	56.6	76.1	56.6	0	3						
AGSECO Hot Rod	56.9	56.9	58.1	57.6	86.1	60.8	1	8				
AGSECO TAM 205	60.6	58.8	60.6	58.8	60.8	60.8	1	2				
Croplan EXP 26-16	60.6	58.8	60.6	58.8	60.8	60.8	1	2				
Croplan EXP 69-16	53.9	57.9	53.9	57.9	58.4	58.4	1	2				
Dyna-Gro Long Branch	56.9	55.6	56.0	41.4	57.8	58.4	1	2				
KWA Wildcat Genetics Everest	70.5	60.5	58.1	48.6	59.3	78.9	60.8	1	8			
KWA Wildcat Genetics Zenda	66.0	60.7	58.4	43.5	59.7	86.1	60.8	1	8			
Wildcat Genetics KanMark	66.1	63.8	57.5	63.8	57.5	63.8	57.5	63.8	57.5	63.8	57.5	
KWA Wildcat Genetics KS061193K-2	63.8	57.5	63.8	57.5	63.8	57.5	63.8	57.5	63.8	57.5	63.8	57.5
KWA Wildcat Genetics KS080448C*102	52.4	58.4	52.4	58.4	52.4	58.4	52.4	58.4	52.4	58.4	52.4	58.4
KWA Wildcat Genetics KS060143K-2 “Larry”	65.4	53.7	56.8	65.4	53.7	56.8	65.4	53.7	56.8	65.4	53.7	56.8
Limagrain LCS Chrome	71.9	55.4	58.7	62.9	57.5	62.9	57.5	62.9	57.5	62.9	57.5	

continued
Table 1. Multiyear comparison of hard red winter wheat yields from variety trials at Parsons, KS

Hard red wheat varieties, Parsons, KS	2016	2017	2018	2020					
	Yield, bu/a	Yield, bu/a	Test weight, lb/bu	Yield, bu/a	Test weight, lb/bu	Yield, bu/a	Test weight, lb/bu	Fusarium rating	Stripe rust rating
OGI	Doublestop CL+	66.1							
OGI	Gallagher	72.8	49.6	55.3					
OGI	Iba	74.8							
OGI	OK09915C-1	57.1							
OGI	OK13209		54.3	56.7					
OGI	Ruby Lee	64.1	58.5	57.8	56.9	58.9			
OGI	Smith’s Gold		84.5	60.1	2	1			
Polansky	Rock Star		79.2	58.3	3	2			
Scott Seed	TAM 304	70	58.5	57					
Scott Seed	TAM 305	75.8	62.8	57.1					
WestBred	WB4269	55	57	48.5	58.9	86.8	60.3	2	3
WestBred	WB4303					67.2	55.4	4	6
WestBred	WB4401		108.8	61.5	1	1			
WestBred	WB4458	62.2							
WestBred	WB4515	60.5	58.4	59.7	58.4				
WestBred	WB4699				94.5	58.7	2	2	
WestBred	WB-Cedar	66	57.6	58	42.9	59.1			
WestBred	WB-Grainfield	73.8							
Overall average	66	57.1	57.4	51.7	58.1	81.1	59.2		

Yields above average are highlighted in bold. Test weights were not available for hard red wheat in 2016.
Table 2. Multiyear comparison of soft red winter wheat yields from variety trials at Parsons, KS

Soft red wheat varieties, Parsons, KS	2016	2017	2018	2020
Company	Year	Year	Year	Year
AgriMAXX 415	82.7	91.9	56.7	102.7
AgriMAXX 444	77.0	77.8	58.6	56.7
AgriMAXX 454	56.6	62.5	56.7	58.1
AgriMAXX 463	81.6	58.4	55.9	57.3
AgriMAXX 473	83.2	65.1	57.3	106.1
AgriMAXX 475	56.4	56.7	57.3	59.0
AgriMAXX Exp 1663	96.2	61.9	0.0	0.0
Croplan 9101	60.0	60.0	59.0	59.0
Croplan 9201	52.8	63.0	59.0	59.0
Croplan 9301	76.0	58.0	59.0	59.0
Croplan HRW 9415	72.9	65.0	59.0	59.0
Croplan HRW 9434	67.6	58.0	59.0	59.0
Croplan SRW 8550	64.1	64.7	64.7	64.7
Croplan SRW 9415	72.9	65.0	59.0	59.0
Croplan SRW 9606	55.9	55.7	59.0	59.0
Pioneer 25R25	69.7	59.0	55.9	55.9
DuPont Pioneer 25R40	82.5	79.5	66.1	105.8
DuPont Pioneer 25R46	56.3	70.4	56.7	58.1
DuPont Pioneer 25R50	57.1	97.5	59.0	59.0
DuPont Pioneer 25R61	71.4	61.6	87.5	58.3
DuPont Pioneer 25R74	80.8	65.4	61.6	61.6
DuPont Pioneer 25R77	79.6	54.2	103.0	103.0

continued
Table 2. Multiyear comparison of soft red winter wheat yields from variety trials at Parsons, KS

Soft red wheat varieties, Parsons, KS	2016	2017	2018	2020
Company				
Frontier				
Magnus 1069				
MFA 2166	61.5	55.8		
MFA 2250	63.3	57.0		
MFA XP 2431	80.9	60.0	60.9	56.5
MFA 2449	73.1	59.0		
MFA XP 2474	79.9	57.0	65.1	57.2
MFA XP 2479	75.1	59.0	76.3	57.6
MFA XP 2538	75.8	57.6		
MFA XP 2539	84.6	57.9		
MFA XP 2542	81.3	57.6	63.0	58.6
MFA 2622	58.3	57.8		
MFA 2633	59.7	56.7		
OGI OCW035580S-8WF	84.4	56.8	2	4.75
OGI OK11311F	65.8	59.0		
OGI OK11754WF	55.2	59.0		
Average	71.0	59.0	78.2	57.5

Yields above average are highlighted in bold.
Figure 1. Winter wheat yield for (A) hard red wheat and (B) soft red wheat from variety trials in southeast and eastern Kansas from 2008 through 2020. In 2019, variety testing at both Ottawa and Parsons were abandoned due to flooding and poor stands. The line in the middle of the box plots is the median yield of all varieties. The upper and lower quartiles are given by the upper and lower edges of the boxes. The maximum and minimum values are given by the upper and lower “whiskers” extending from the box. Outliers are given as solid circles. For comparison, average reported state yields from Kansas are highlighted as a red X.