Early initiation of Sodium-glucose cotransporter 2 inhibitors is important, irrespective of ejection fraction: SOLOIST-WHF in perspective

Subodh Verma1, Stefan D. Anker2, Javed Butler3 and Deepak L. Bhatt4

1Division of Cardiac Surgery, St. Michael’s Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 2W8, Canada; 2Department of Cardiology (CVK) and Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, and the German Centre for Cardiovascular Research (DZHK) Partner Site, Berlin, Germany; 3Department of Medicine, University of Mississippi School of Medicine, Jackson, MI, USA and 4Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA, USA

Worsening heart failure (WHF) requiring hospitalization represents a vulnerable period for patients with heart failure.1,2 Such individuals, irrespective of the aetiology of heart failure, are at heightened risk of urgent heart failure visits, recurrent heart failure hospitalizations (HHF), and death. The early phase management of such patients is focused on the relief of congestion (with intravenous loop diuretics), stabilization of haemodynamics, and optimization of tissue perfusion. As clinical stabilization is achieved and successful weaning from intravenous to oral therapies has begun, this pre-discharge phase is characterized by optimization of evidence-based therapies, which in the case of heart failure with reduced ejection fraction (HFrEF) includes angiotensin-converting enzyme inhibitors/angiotensin receptor blockers/angiotensin receptor nepirilsyn inhibitors, β-blockers, and mineralocorticoid receptor antagonists.3 These disease-modifying therapies, when instituted early, serve to markedly reduce morbidity and mortality following discharge.4–9

Sodium-glucose cotransporter 2 (SGLT2) inhibitors, originally described as therapies for hyperglycaemia, have now emerged as powerful tools to reduce heart failure outcomes in patients with HFrEF.10–19 In two recently completed studies—DAPA-HF (Study to Evaluate the Effect of Dapagliflozin on the Incidence of Worsening Heart Failure or Cardiovascular Death in Patients With Chronic Heart Failure) and EMPEROR-Reduced (EMPagliflozin outletmE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction)—dapagliflozin and empagliflozin, respectively, reduced the risk of cardiovascular death and HHF by 26% in patients with HFrEF.20–22 Importantly, these benefits were observed consistently in those with and without type 2 diabetes, were in addition to excellent background heart failure therapies, and resulted in an improvement in patient reported quality of life indices.20–32 Because both trials recruited patients with chronic ambulatory HFrEF [and excluded patients with hospitalization due to decompensated heart failure less than 4 weeks prior to enrolment (DAPA-HF)], it can be argued that the question of in-hospital initiation of SGLT2 inhibitors during a WHF event has remained unanswered. In addition, whether SGLT2 inhibitors would be beneficial irrespective of ejection fraction was unclear.

To address these two questions, the SOLOIST-WHF (Effect of Sotagliflozin on Cardiovascular Events in Patients With Type 2 Diabetes Post Worsening Heart Failure) trial was conducted.33 A total of 1222 patients with type 2 diabetes [with an estimated glomerular filtration rate (eGFR) ≥ 30 mL/min/1.73 m²] who had been recently hospitalized for WHF were studied. Patients had to be treated with intravenous diuretics during the index hospitalization, and prior to randomization had to be stable, off intravenous inotropes, off oxygen, and had to have transitioned to oral diuretics. In addition, participants had to have either a brain natriuretic peptide level of ≥150 pg/mL (≥450 pg/mL if atrial fibrillation was present) or an N-terminal pro-brain natriuretic peptide level of ≥600 pg/mL (≥1800 pg/mL if atrial fibrillation was present). Eligible patients were randomized to receive the SGLT2/SGLT1 inhibitor sotagliflozin (200 mg once daily with up-titration to 400 mg as tolerated) vs. placebo either before or within 3 days of discharge. Approximately 20% of patients randomized had an ejection fraction of ≥50%, and the median eGFR was ~50 mL/min/1.73 m². Half of the patients received their first dosing while still in the hospital and the other half within 3 days following discharge. The ultimate primary endpoint of SOLOIST-WHF—which in order to preserve statistical power was changed because of the premature closure of the study due to loss of funding from the
sponsor during the onset of the COVID-19 pandemic— was the composite of total H HF, urgent heart failure visits, or cardiovascular deaths. It was reduced by 33% in those receiving sotagliflozin vs. placebo [hazard ratio (HR) 0.67; 95% confidence interval (CI) (0.52, 0.85), \(P = 0.0009 \)]. This translated into a number needed to treat of four patients for a year. The cumulative incidence curves for the primary outcome separated early and were significant by day 28 post-randomization. Efficacy was consistent across baseline ejection fraction (Figure 1), eGFR categories (above and below 60 mL/min/1.73 m\(^2\)), and in those who received initial therapy in-hospital vs. within 3 days of being discharged. The time to first event of either cardiovascular death or H HF was reduced by 29% [HR 0.71; 95% CI (0.56, 0.89); \(P = 0.003 \)]. The hazard ratio for cardiovascular death was 0.84 [(95% CI 0.58, 1.22); \(P = 0.36 \)].

The trial, which originally planned to enrol ~4000 patients, had to be truncated, as noted above. Despite this challenge, the primary outcome (both the original and the revised) demonstrated a meaningful and statistically significant benefit of sotagliflozin, although the trial had limited power to detect differences in mortality. Treatment was also associated with a significant improvement in quality of life as reported by a 4.1-point increase in the Kansas City Cardiomyopathy Questionnaire-12 score in sotagliflozin-treated vs. placebo-treated patients (\(P = 0.005 \)). Beyond Week 4, the mean decrement in the eGFR was significantly lower in the sotagliflozin arm vs. placebo (\(P = 0.02 \)). There were no major safety issues with sotagliflozin. Diarrhoea (6.9% vs. 4.1%) and severe hypoglycaemia (1.5% vs. 0.3%) were higher in the sotagliflozin-treated vs. placebo-treated patients.

There are several important take-aways from SOLOIST-WHF. First, in people with type 2 diabetes admitted with WHF requiring intravenous diuretics, SGLT2 inhibitors should be initiated as soon as the patient is clinically stable, preferably prior to discharge (or within days of discharge) during the phase of oral therapy optimization (Figure 2). Prior studies of SGLT2 inhibitors, namely DAPA-HF and EMPEROR-Reduced, focused primarily on ambulatory patients with chronic HFrEF with and without diabetes. SOLOIST-WHF provides the first clinical trial evidence of efficacy of earlier initiation of SGLT2 inhibitors. The results of SOLOIST-WHF raise the possibility that this effect is present irrespective of baseline ejection fraction. By stratification factor at randomization, 256 patients had an EF classified as ≥50%, and the HR was 0.48 (95% CI 0.27, 0.86). Of the 1222 patients enrolled, 725 had an available baseline ejection fraction of <40% while 230 and 264 had ejection fractions of 40–49% and ≥50%, respectively. The HR for the primary outcome was apparently similarly reduced in all groups (0.69, 0.74, and 0.66, respectively). Because the subgroup of patients with ejection fraction above 50% was modest in size, further data of SGLT2 inhibitors in heart failure with preserved ejection fraction (HFrEF) are eagerly anticipated.

Figure 1 Primary efficacy outcome of SOLOIST-WHF (composite of total hospitalization for heart failure, urgent heart failure visits, or cardiovascular deaths) as stratified by LVEF. LVEF, left ventricular ejection fraction. \(^1\)Classification based on available baseline LVEF value and does not correspond exactly with categories defined by the randomization stratification factor, which is shown in the top two rows of the figure. Randomization in the study was stratified by baseline LVEF (<50% and ≥50%), and the actual baseline value was also recorded in the study case report form. After unblinding of the database, it was noted that there were a small number of inconsistencies between the classification of patients based on the randomization stratification factor and available baseline LVEF value. Specifically, 3 patients randomized in the <50% stratum did not have an available LVEF value in the database, 9 patients with available LVEF value <50% were randomized in the ≥50% stratum, and 17 patients with available LVEF value ≥50% were randomized in the <50% stratum. \(^2\)Post hoc. Adapted from Bhatt et al. \(^3\)

LVEF, %	Number of Patients	HR (95% CI) for Sotagliflozin vs Placebo
<50	966	0.72 (0.56–0.94)
≥50	256	0.48 (0.27–0.86)
LVEF, %\(^1\)		
<40	725	0.69 (0.51, 0.92)
40 to <50	230	0.74 (0.40, 1.39)
≥50	264	0.66 (0.38, 1.15)
LVEF, %\(^1\)\(^2\)		
<40	725	0.69 (0.51, 0.92)
≥40	494	0.68 (0.45, 1.03)

ESC Heart Failure 2020; 7: 3261–3267
DOI: 10.1002/ehf2.13148
The combined analysis of the SOLOIST-WHF and SCORED (Effect of Sotagliflozin on Cardiovascular and Renal Events in Patients With Type 2 Diabetes and Moderate Renal Impairment Who Are at Cardiovascular Risk) trials further supports that there was a consistent benefit of sotagliflozin in HFpEF. The EMPEROR-Preserved (EMPaligliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction; ClinicalTrials.gov Identifier: NCT03619213) trials that are ongoing will provide valuable information in those with HFpEF in the ambulatory setting. Ongoing studies in patients with acute heart failure that include people with and without diabetes will help answer this question further (DAPA-HF-TIMI 68, ClinicalTrials.gov Identifier: NCT04363697; EMPULSE, ClinicalTrials.gov Identifier: NCT04157751). While SOLOIST-WHF studied patients with type 2 diabetes, evidence from both DAPA-HF and EMPEROR-Reduced point toward an entirely consistent benefit of dapagliflozin and empagliflozin in those with and without type 2 diabetes. Therefore, it would be reasonable to hypothesize that the benefits noted in SOLOIST-WHF would also extend to those without type 2 diabetes.

As expected, compared with DAPA-HF and EMPEROR-Reduced, patients enrolled in SOLOIST-WHF were at higher risk. Indeed, the placebo event rate for first cardiovascular death or HHF (per 100 patient years) was 48% in SOLOIST-WHF. In contrast, the placebo event rates in DAPA-HF and EMPEROR-Reduced were 15.3% and 21%, respectively, in the entire cohort and 25.5% and 28.5% in those with diabetes. These data further emphasize how diabetes in the context of heart failure is associated with worse clinical outcomes.

Several mechanism(s) have been put forward to help explain the benefits of SGLT2 inhibition on heart failure. The early separation of the curves (within days)—which is also seen for dapagliflozin in DAPA-HF and for empagliflozin in EMPEROR-Reduced—may point toward an important haemodynamic effect of SGLT2 inhibition in patients with heart failure. Indeed, recent human physiological studies in heart failure have indicated that SGLT2 inhibition promotes fractional sodium excretion within a few hours of treatment initiation—an effect that is exaggerated in the context of a loop diuretic. In acute heart failure, the EMPA-RESPONSE-AHF (Effects of Empagliflozin on Clinical Outcomes in Patients With Acute Decompensated Heart Failure) pilot study has shown an early effect on diuresis and reduction in whole body water content. Other relevant mechanisms may include an increase in erythropoietin, inhibition of the sympathetic nervous system, improved kidney function, changes in substrate utilization, direct myocardial effects, modulation of autophagy/mitophagy, and a stimulation of a fasting transcriptional paradigm. SGLT2 inhibitors have also been shown to have favourable effects on left ventricular remodelling in people with and without diabetes and in those with systolic or diastolic dysfunction. While most of these mechanisms have been described with SGLT2 inhibitors per se, it is important to point out that sotagliflozin also

![Figure 2](image-url)
inhibits SGLT1, which may have additional glycaemic and cardiovascular benefit. Indeed, in the SCORED study that was conducted in people with type 2 diabetes and chronic kidney disease, sotagliflozin was associated with significant haemoglobin A1C improvements at low eGFR levels (those at which conventional SGLT2 inhibitors do not demonstrate similar efficacy). SGLT1 inhibition may also produce distinct vascular effects, and that may explain the unique, early efficacy of sotagliflozin to reduce rates of ischaemic events (including stroke) in SCORED. The exact impact of the SGLT1 inhibition component of sotagliflozin in addition to its SGLT2 inhibitory effects may only be assessable in head-to-head studies.

In summary, SOLOIST-WHF argues strongly for more upstream use of SGLT2 and SGLT2/1 inhibitors in patients with WHF. A hospitalization for heart failure marks a vulnerable phase wherein failure to initiate guideline-directed medical therapy constitutes a major missed opportunity to reduce patient morbidity and mortality. In-hospital initiation of such therapy is an independent predictor of better medication adherence and outcomes. While recent data from the GWTG-HF (Get With the Guidelines-Heart Failure) registry suggest that a large proportion of patients with HFrEF would have. How to integrate, optimize, and overcome inertia remains the Achilles heel of contemporary heart failure management.

Acknowledgements

We would like to thank Hwee Teoh, PhD of HTaq Biomedical Editorial and Education Services Inc and M. Gail Rudakevich, MSc (BMC) of Synapse Visuals for their help in constructing the figures.

Conflict of interest

S.V. holds a Tier 1 Canada Research Chair in Cardiovascular Surgery and reports receiving research grants and/or speaking honoraria from Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, EOCI Pharmacomm Ltd, HLS Therapeutics, Janssen, Merck, Novartis, Novo Nordisk, Pfizer, PhaseBio, Sanofi, Sun Pharmaceuticals, and the Toronto Knowledge Translation Working Group. He is the President of the Canadian Medical and Surgical Knowledge Translation Research Group, a federally incorporated not-for-profit physician organization. S.D.A. reports receiving fees from Abbott, Bayer, Boehringer Ingelheim, Cardiac Dimension, Impulse Dynamics, Novartis, Occlutech, Servier, and Vifor Pharma, and grant support for IITs from Abbott and Vifor Pharma. J.B. is a consultant for Abbott, Amgen, Array, AstraZeneca, Bayer, Boehringer Ingelheim, CVRx, Eli Lilly, G3 Pharmaceutical, Impulse Dynamics, Innolife, Janssen, Luitpold, Medtronic, Merck, Novartis, Novo Nordisk, Relypsa, Sequana, StealthPeptide, and Vifor. D.B. serves as Chair of SOLOIST-WHF and SCORED (with research funding paid to Brigham and Women’s Hospital) and reports the following relationships—Advisory Board: Cardax, CellProthera, Cereno Scientific, Elsevier Practice Update Cardiology, Level Ex, Medscape Cardiology, MyoKardia, PhaseBio, PLx Pharma, Regado Bioncs; Board of Directors: Boston VA Research Institute, Society of Cardiovascular Patient Care, ToBeSoft; Chair: American Heart Association Quality Oversight Committee; Data Monitoring Committees: Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute, for the PORTICO trial, funded by St. Jude Medical, now Abbott), Cleveland Clinic (including for the ExCEED trial, funded by Edwards), Contego Medical (Chair, PERFORMANCE 2), Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine (for the ENVISAGE trial, funded by Daiichi Sankyo), Population Health Research Institute; Honoraria: American College of Cardiology (Senior Associate Editor, Clinical Trials and News, ACC.org; Vice-Chair, ACC Accreditation Committee), Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute; RE-DUAL PCI clinical trial steering committee funded by Boehringer Ingelheim; AEGIS-II executive committee funded by CSL Behring), Belvoir Publications (Editor in Chief, Harvard Heart Letter), Canadian Medical and Surgical Knowledge Translation Research Group (clinical trial steering committees), Duke Clinical Research Institute (clinical trial steering committees, including for the PRONOUNCE trial, funded by Ferring Pharmaceuticals), HMP Global (Editor in Chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (Guest Editor; Associate Editor), K2P (Co-Chair, interdisciplinary curriculum), Level Ex, Medtelligence/ReachMD (CME steering committees), MJH Life Sciences, Population Health Research Institute (for the COMPASS operations committee, publications committee, steering committee, and USA national co-leader, funded by Bayer), Slack Publications (Chief Medical Editor, Cardiology Today’s Intervention), Society of Cardiovascular Patient Care (Secretary/Treasurer), WebMD (CME steering committees); Other: Clinical Cardiology (Deputy Editor), NCDR-ACTION Registry Steering Committee (Chair), VA CART Research and Publications Committee (Chair); Research Funding: Abbott, Affimimmune, Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Cardax, Chiesi, CSL Behring, Eisai, Ethicon, Ferring Pharmaceuticals, Forest Laboratories, Fractyl, Idorsia,

DOI: 10.1002/ehf2.13148

ESC Heart Failure 2020; 7: 3261–3267
Ironwood, Ischemix, Lexicon, Lilly, Medtronic, MyoKardia, Pfizer, PhaseBio, PLx Pharma, Regeneron, Roche, Sanofi, Synergy, The Medicines Company; Royalties: Elsevier (Editor, Cardiovascular Intervention: A Companion to Braunwald’s Heart Disease); Site Co-Investigator: Biotronik, Boston Scientific, CSI, St. Jude Medical (now Abbott), Svelte; Trustee: American College of Cardiology; Unfunded Research: FlowCo, Merck, Novo Nordisk, Takeda.

References

1. Butler J, Yang M, Manzi MA, Hess GP, Patel MJ, Rhodes T, Givertz MM. Clinical course of patients with worsening heart failure with reduced ejection fraction. J Am Coll Cardiol 2019; 73: 935–944.
2. Greene SJ, Fonarow GC, Vadugananathan M, Khan SS, Butler J, Gheorghiade M. The vulnerable phase after hospitalization for heart failure. Nat Rev Cardiol 2015; 12: 220–229.
3. Arriag A, Rudiger A. Acute heart failure: from pathophysiology to optimal treatment. Cardiov Med 2017; 20: 229–234.
4. Gracia E, Hamid A, Butler J. Timely management of new-onset heart failure. Circulation 2019; 140: 621–623.
5. Khan MS, Butler J, Greene SJ. Recognizing the significance of outpatient worsening heart failure. J Am Heart Assoc 2020; 9: e017485.
6. Yancy CW, Jessup M, Bozkurt B, Butler J, Case DE Jr, Colvin MM, Drazner MH, Filipponi P, Fonarow GC, Givertz MM, Hellenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. 2017 ACC/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol 2017; 70: 776–803.
7. Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, DeVore AD, Yancy CW, Fonarow GC. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol 2017; 70: 2476–2486.
8. Berghofer KE, Ju C, DeVore AD, Hardy NG, Fonarow GC, Yancy CW, Heidenreich PA, Bhatt DL, Peterson ED, Hernandez AF. Trends in 30-day readmission rates for patients hospitalized with heart failure: findings from the get with the guidelines-heart failure registry. Circ Heart Fail 2016; 9.
9. Hellenberg SM, Warner Stevenson L, Ahmad T, Amin VJ, Bozkurt B, Butler J, Davis LL, Drazner MH, Kirkpatrick JN, Peterson PN, Reed BN, Roy CI, Storrow AB. 2019 ACC expert consensus decision pathway on risk assessment, management, and clinical trajectory of patients hospitalized with heart failure: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 2019; 74: 1966–2011.
10. Bhatt DL, Verma S, Braunwald E. The DAPA-HF trial: a momentous victory in the war against heart failure. Cell Metab 2019; 30: 847–849.
11. Connelly KA, Bhatt DL, Verma S. Can we declare a victory against cardio-renal disease in diabetes? Cell Metab 2018; 28: 813–815.
12. Verma S, Bhatt DL. More CREDENCE for SGLT2 inhibition. Circulation 2019; 140: 1448–1450.
13. Verma S, Juni P, Mazer CD. Pump, pipes, and filter: do SGLT2 inhibitors cover it all? Lancet 2019; 393: 3–5.
14. Verma S, McMurray JV. The serendipitous story of SGLT2 inhibitors in heart failure. Circulation 2019; 139: 2537–2541.
15. Farkou M, Verma S. Prevention of heart failure with SGLT-2 inhibition: insights from CVD-REAL. J Am Coll Cardiol 2018; 71: 2507–2510.
16. Verma S, Lass CSP, Kosiborod M. Empagliflozin and heart failure. Circulation 2019; 139: 2831–2834.
17. Verma S, McGuire DK, Kosiborod MN. Two tales: one story. EMEROR-Reduced and DAPA-HF. Circulation 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.051122.
18. Cherney DZI, Oudutay A, Verma S. A big win for diabetic kidney disease: CRE-DANCE. Cell Metab 2019; 30: 814–815.
19. Cherney DZI, Verma S. DAPA-CKD: the beginning of a new era in renal protection. JACC Basic Transl Sci 2020 (Accepted).
20. McMurray JV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bocchi E, Bohm M, Choi DJ, Chopra V, Chuquiere E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nichols SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F. Investigators EM-RIF Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383: 1413–1424.
21. Zannad F, Ferreira JP, Pocock SJ, Zeller C, Anker SD, Chandler M, de la Llave M, Caterino A, Chatterjee K, Gheorghiade M, Jhund PS, McMurray JV. Effect of dapagliflozin according to baseline systolic blood pressure in the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure trial (DAPA-HF). Eur Heart J 2020; 41: 3402–3418.
22. Kosiborod MN, Jhund PS, Doherty KF, Dzau V, Petrie MC, Verma S, Nicolau JC, Merkely B, Kitakaze M, DeMets DL, Inzucchi SE, Kober L, Martinez FA, Ponikowski P, Sabatine MS, Solomon SD, Bengtsson O, Lindholm D, Niklasson A, Sjostrand M, Langkilde AM, McMurray JV. Effects of dapagliflozin on symptoms, function, and quality of life in patients with heart failure and reduced ejection fraction: results from the DAPA-HF trial. Circulation 2020; 141: 90–99.
23. Jhund PS, Solomon SD, Doherty KF, Heerspink HJL, Anand IS, Bocchi E, de Boer RA, Desai AS, Diez M, Drozdz J, Dukat A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CE, Verma S, Docherty KF, Jhund PS, McMurray JV. Effect of dapagliflozin according to baseline systolic blood pressure in the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure trial (DAPA-HF). Eur Heart J 2020; 41: 3402–3418.
24. Kosiborod MN, Jhund PS, Doherty KF, Dzau V, Petrie MC, Verma S, Nicolau JC, Merkely B, Kitakaze M, DeMets DL, Inzucchi SE, Kober L, Martinez FA, Ponikowski P, Sabatine MS, Solomon SD, Bengtsson O, Lindholm D, Niklasson A, Sjostrand M, Langkilde AM, McMurray JV. Effects of dapagliflozin on symptoms, function, and quality of life in patients with heart failure and reduced ejection fraction: results from the DAPA-HF trial. Circulation 2020; 141: 90–99.
Langkilde AM, Sjostrand M, McMurray JV. Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction: results of DAPA-HF. Circulation 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.050391.

26. Jackson AM, Dewan P, Anand IS, Belohvalek J, Bengtsson O, de Boer RA, Bohn M, Boulton DW, Chopra VK, DeMets DL, Docherty KF, Dukat A, Gresales PJ, Howlett JG, Inzucchi SE, Katoval T, Kober L, Kosiborod MN, Langkilde AM, Lindholm D, Ljungman CEA, Martinez FA, O’Meara E, Sabatine MS, Sjostrand M, Solomon SD, Tereshchenko S, Verma S, Jhund PS, McMurray Jv. Dapagliflozin and diuretic use in patients with heart failure and reduced ejection fraction in DAPA-HF. Circulation 2020;142:1040–1054.

27. Petrie MC, Verma S, Docherty KF, Inzucchi SE, Anand I, Belohvalek J, Bohn M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukat A, Fagard R, Januzzi J, Katoval T, Kinnun M, Ljungman CEA, Merkely B, Nicolaou JC, O’Meara E, Vinh PN, Schou M, Tereshchenko S, Kober L, Kosiborod MN, Langkilde AM, Martinez FA, Ponikowski P, Sabatine MS, Sjostrand M, Solomon SD, Johnson P, Gresales PJ, Boulton D, Bengtsson O, Jhund PS, McMurray Jv. Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA 2020;323:1353–1368.

28. Docherty KF, Jhund PS, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, DeMets DL, Sabatine MS, Bengtsson O, Sjostrand M, Langkilde AM, Desai AS, Diez M, Howlett JG, Katoval T, Ljungman CEA, O’Meara E, Petrie MC, Schou M, Verma S, Vinh PN, Solomon SD, McMurray Jv. Effects of dapagliflozin on DAPA-HF according to background heart failure therapy. Eur Heart J 2020;41:2379–2392.

29. Docherty KF, Jhund PS, Anand I, Bengtsson O, Bohn M, de Boer RA, DeMets DL, Desai AS, Drozdz J, Howlett J, Inzucchi SE, Johanson P, Katoval T, Kober L, Kosiborod MN, Langkilde AM, Lindholm D, Martinez FA, Merkely B, Nicolaou JC, O’Meara E, Ponikowski P, Sabatine MS, Sjostrand M, Solomon SD, Tereshchenko S, Verma S, McMurray Jv. Effect of dapagliflozin on outpatient worsening of patients with heart failure and reduced ejection fraction: a prespecified analysis of DAPA-HF. Circulation 2020;142:1623–1632.

30. Packer M, Anker SD, Butler J, Filipinatis GS, Ferreira JP, Pocock S, Carson PE, Anand IS, Doehner W, Haass M, Komajda M, Miller AB, Pehrson S, Teerlink J, Brueckmann M, Jamal W, Zeller C, Schnaidt S, Zannad F, EMPEROR-Reduced Trial Committees and Investigators. Effect of empagliflozin on the clinical stability of patients with heart failure and a reduced ejection fraction: the EMPEROR-reduced trial. Circulation 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.051783.

31. Anker SD, Butler J, Filipinatis G, Khan MS, Marx N, Lam CSP, Schnaidt S, Ostad AP, Brueckmann M, Jamal W, Bocchi E, Ponikowski P, Perrone S, Januzzi J, Verma B, Böhm M, Ferreira JP, Pocock S, Zannad F, Packer M. Effect of empagliflozin on cardiovascular and renal outcomes in patients with heart failure by baseline diabetes status—results from the EMPEROR-Reduced trial. Circulation 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.051824.

32. Butler J, Anker SD, Filipinatis G, Khan MS, Ferreira JP, Pocock S, Giannetti N, Januzzi J, Pina I, Lam C S P, Ponikowski P, Sattar N, Verma S, Brueckmann M, Jamal W, Verdin O, Peil B, Zeller C, Zannad F, Packer M, editors. Empagliflozin and Heart Related Quality of Life Outcomes in Patients with Heart Failure with Reduced LVEF: Results from the EMPEROR-Reduced Trial. American Heart Association (AHA) Scientific Sessions; 2020–17; Virtual.

33. Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, Lewis JB, Riddle MC, Voors AA, Metra M, Lund LH, Komajda M, Testani JM, Wilcox CS, Ponikowski P, Lopes RD, Verma S, Lapuerta P, Pitt B, SOLOIST-WHF Trial Investigators. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med 2020. https://doi.org/10.1056/NEJMoa2030183.

34. Anker SD, Butler J, Filipinatis G, Jamai W, Salsali A, Schnee J, Kimura K, Zeller C, George J, Brueckmann M, Zannad F, Packer M, Committees EM-PT, Investigators. Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale and design of the EMPEROR-Preserved trial. Eur J Heart Fail 2019;21:1279–1287.

35. Cavender MA, Steg PG, Smith SC Jr, Eagle K, Ohman EM, Goto S, Kuder J, Im K, Wilson PW, Bhatt DL. Investigators RR. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the reduction of atherothrombosis for continued health (REACH) registry. Circulation 2015;132:923–931.

36. Verma S. Are the cardiorenal benefits of SGLT2 inhibitors due to inhibition of the sympathetic nervous system? JACC Basic Transl Sci 2020;5:180–182.

37. Lopaschuk GD, Verma S. Empagliflozin’s fuel hypothesis: not so soon. Cell Metab 2016;24:200–202.

38. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci 2020;5:632–644.

39. Vallon V, Verma S. Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annu Rev Physiol 2020;83. https://doi.org/10.1146/annurev-physiol-031620-095920.

40. Sabatine MS, DeMets DL, Inzucchi SE, Kober L, Kosiborod MN, Langkilde AM, Martinez FJ, Bengtsson O, Ponikowski P, Sjostrand M, Solomon SD, McMurray JV, editors. Timing of Onset of Clinical Benefit With Dapagliflozin in Patients With Heart Failure: An Analysis From the Dapagliflozin and Prevention of Adverse-Outcomes in Heart Failure Trial (DAPA-HF). American Heart Association (AHA) Scientific Sessions; 2019 November 16–18; Philadelphia, USA.

41. Rao VS, Ahmad T, Brisco-Backik MA, Bonventre JV, Wilson FP, Siew ED, Felker GM, Anstrom K, Mahoney DD, Bart BA, Tang WHW, Velazquez EJ, Testani JM. Renal effects of intensive volume removal in heart failure patients with preexisting worsening heart failure. Circ Heart Fail 2019;12:e005552.

42. Damman K, Beusekamp JC, Boorsma EM, Swart HP, Smilde TDJ, Elvan A, van Eck JWM, Heerspink HJJ, Voors AA. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail 2020;22:713–722.

43. Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, Teoh H, Leiter LA, Goto S, Kuder J, Eagle K, Ohman EM, Atar D, Pinney S, Macaluso F, Sartori S, Absalac VM, Lala A, Tamler R, Sanz J, Fuster V, Badimon JJ, EMPA-TROPISM (ATRU-4) investigators. Randomized trial of empagliflozin in non-diabetic patients with heart failure and reduced ejection fraction. J Am Coll Cardiol 2020. https://doi.org/10.1016/j.jacc.2020.11.008.

44. Packer M. SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their mechanism of action. Diabetes Care 2020;43:508–511.

45. Santos-Gallego CG, Vargas-Delgado AP, Requena JA, Garcia-Ropero A, Mancini D, Pinney S, Macaluso F, Sartori S, Roque M, Sabatel-Perez F, Cordero AR, Zafar MU, Fergus I, Atallah-Lajam F, Contreras JP, Velay C, Moreno PB, Absacol VM, Lala A, Tamler R, Sanz J, Fuster V, Badimon JJ, EMPA-TROPISM (ATRU-4) investigators. Randomized trial of empagliflozin in non-diabetic patients with heart failure and reduced ejection fraction. J Am Coll Cardiol 2020. https://doi.org/10.1016/j.jacc.2020.11.008.

46. Shim CY, Seo J, Cho I, Lee CJ, Cho LJ, Lhagvasuren P, Kang SM, Ha JW, Han G, Jang Y, Hong GR. Randomized,
controlled trial to evaluate the effect of dapagliflozin on left ventricular diastolic function in patients with type 2 diabetes mellitus: the IDDIA trial. Circulation 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.051892

47. Lee MMY, Brooksbank KJM, Wetherall K, Mangion K, Roditi G, Campbell RT, Berry C, Chong V, Coyle L, Docherty KF, Dreisbach JG, Labinjoh C, Lang NN, Lennie V, McConnachie A, Murphy CL, Petrie CJ, Petrie JR, Speirits IA, Sourbron S, Welsh P, Woodward R, Radjenovic A, Mark PB, McMurray JJV, Jhund PS, Petrie MC, Sattar N. Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction: SUGAR-DM-128. N Engl J Med 2020. https://doi.org/10.1056/NEJMoa2030186

48. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, Zuo F, Quan A, Farkouh ME, Fitchett DH, Goodman SG, Goldenberg RM, Al-Omran M, Gilbert RE, Bhatt DL, Leiter LA, Juni P, Zinman B, Connelly KA. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomised controlled clinical trial. Circulation 2019; 140: 1693–1702.

49. Cariou B, Charbonnel B. Sotagliflozin as a potential treatment for type 2 diabetes mellitus. Expert Opin Investig Drugs 2015; 24: 1647–1656.

50. Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, Lewis JB, Riddle MC, Inzucchi SE, Kosiborod MN, Cherney DZI, Dwyer JP, Scirica BM, Bailey CJ, Diao R, Ray KK, Udell JA, Lopes RD, Lapuerta P, Steg PG, Investigators. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med 2020. https://doi.org/10.1056/NEJMoa2030186

51. Bhagat AA, Greene SJ, Vaduganathan M, Fonarow GC, Butler J. Initiation, continuation, withwitching, and withdrawal of heart failure medical therapies during hospitalization. JACC Heart Fail 2019; 7: 1–12.

52. Butler J, Arbogast PG, Belue R, Daugherty J, Jain MK, Ray WA, Griffin MR. Outpatient adherence to beta-blocker therapy after acute myocardial infarction. J Am Coll Cardiol 2002; 40: 1589–1595.

53. Vaduganathan M, Claggett BL, Jhund PS, Cunningham JW, Pedro Ferreira J, Zannad F, Packer M, Fonarow GC, McMurray J, Solomon SD. Estimating lifetime benefits of comprehensive disease-modifying pharmacological therapies in patients with heart failure with reduced ejection fraction: a comparative analysis of three randomised controlled trials. Lancet 2020; 396: 121–128.

54. Ponikowski P, Kirwan BA, Anker SD, McDonagh T, Dorobantu M, Drozdz J, Fabien V, Filippatos G, Gohring UM, Keren A, Khintibidze I, Kragten H, Martinez FA, Metra M, Milicic D, Nicolau JC, Ohlsson M, Parkhomenko A, Pascual-Figal DA, Ruschitzka F, Sim D, Skouri H, van der Meer P, Lewis BS, Comin-Colet J, von Haehling S, Cohen-Solal A, Danchin N, Dargie HJ, Motro M, Butler J, Fiedle T, Jensen KH, Pocock S, Jankowska EA, AFFIRM-AHF investigators. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet 2020. https://doi.org/10.1016/S0140-6736(20)32339-4

55. Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, Lam CSP, Ponikowski P, Voors AA, Jia G, McNulty SE, Patel MJ, Roessig L, Koglin J, O’Connor CM, Group VS. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med 2020; 382: 1883–1893.

56. Teerlink JR, Diaz R, Felker GM, McMurray J, Metra M, Solomon SD, Adams KF, Anand I, Aria-Mendoza A, Biering-Sorensen T, Bohm M, Bonderman D, Cleland JG, Corbalan R, Crespo-Leiro MG, Dahlstrom U, Echeverria LE, Fang JC, Filippatos G, Fonseca C, Goncalvesova E, Goudev AR, Howlett JG, Lanfear DE, Li J, Lund M, Macdonald P, Mareev V, Momomura RD, O’Meara E, Parkhomenko A, Ponikowski P, Ramires FJA, Serpytis P, Slivka K, Spinjar J, Suter TM, Tomcsanyi J, Vandekerckhove H, Vinereanu D, Voors AA, Yilmaz MB, Zannad F, Sharpsten L, Legg JC, Varin C, Honarpour N, Abasi SA, Malik FI, Kurtz CE, GALACTIC-HF Investigators. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med 2020. https://doi.org/10.1056/NEJMoa2025797