Pseudorapidity distributions of produced charged hadrons in pp collisions at RHIC and LHC energies

G. Wolschin(a)

Institut für Theoretische Physik der Universität Heidelberg - Philosophenweg 16, D-69120 Heidelberg, Germany, EU

received 21 April 2011; accepted in final form 1 August 2011
published online 1 September 2011

PACS 13.85.Ri – Inclusive production with identified hadrons
PACS 24.10.Jv – Relativistic models
PACS 24.60.-k – Statistical theory and fluctuations

Abstract – The energy dependence of charged-hadron production in proton-proton collisions at RHIC and LHC energies is investigated in a non-equilibrium statistical relativistic diffusion model (RDM) with three sources for particle production. Calculated charged-hadron pseudorapidity distributions for pp at RHIC energies of $\sqrt{s}=0.2$ and 0.41 TeV, and at LHC energies of 0.9, 2.36 and 7 TeV are optimized with respect to the available data. Predictions for 14 TeV are made. The central source arising from gluon-gluon collisions becomes the major origin of particle production at LHC energies. The midrapidity dip is essentially determined by the interplay of the three sources.

Introduction. – The investigation of particle production in proton-proton collisions at LHC energies is expected to yield new insights into the underlying partonic processes. Data from the experimental collaborations are now available starting at the injection energy of $\sqrt{s}=0.9$ TeV, via 2.36 TeV, to the current maximum energy of 7 TeV [1–5].

A particularly interesting observable is the charged-hadron multiplicity density per unit of pseudorapidity. At midrapidity, it was found to be about 15% higher than predicted by the available Monte Carlo models that had been calibrated at Tevatron energies [3]. The distribution functions for non-single-diffractive events have also been measured away from midrapidity, with $|\eta|<2.5$ achieved so far [5]. Their shapes are sensitive to the partonic processes that are responsible for charged-hadron production.

In this letter I propose to analyze the pseudorapidity distribution functions of produced charged hadrons in pp collisions at RHIC and LHC energies as measured by the PHOBOS [6] and CMS [4,5] Collaborations in a schematic non-equilibrium-statistical model with three sources.

Similar ALICE data at LHC energies are also available [7], as well as older UA5 data [8] at 0.9 TeV. Corresponding ATLAS results [2,3] cannot be compared directly with the CMS and ALICE data because particles and events are selected in different regions of phase space.

The relativistic diffusion model (RDM) has proven to be useful in describing and predicting pseudorapidity distributions of produced charged particles in heavy-ion collisions at SPS, RHIC and LHC energies [9]. Related models had also been used in low-energy (non-relativistic) heavy-ion physics [10].

In heavy-ion collisions, the number of produced charged hadrons is much bigger than in pp collisions — of the order of 20000 charged hadrons in a central PbPb collision at $\sqrt{s_{NN}}=2.76$ TeV — and consequently, the application of non-equilibrium statistical methods such as those in [9,11] is clearly justified.

Special QCD effects such as the coherence of soft gluons [12] that had been predicted by perturbative QCD at low Q^2 [13–15] to produce visible effects in charged-hadron distributions generated by $e^+ e^-$ collisions are less important in the heavy-ion environment since these are averaged out through the random properties of the many-particle system.

Proton-proton collisions at the current maximum LHC energy of 7 TeV produce about 70 charged hadrons integrated over the full rapidity space, including the unmeasured region. Soft-gluon coherence as well as other coherent QCD effects may still be visible in the data, although less pronounced than in electron-positron collisions.
The number of produced particles in pp collisions is probably already large enough to test the usefulness of non-equilibrium statistical concepts, although it may be difficult to observe many-particle effects such as the shift of the fragmentation peak positions towards midrapidity with decreasing center-of-mass (c.m.) energy that is clearly seen in the heavy-ion data, and can be described analytically in the relativistic diffusion model [9,11].

Within the RDM, I investigate in this letter the energy dependence of the three sources for particle production in proton-proton collisions at RHIC and LHC energies. The energy range considered here covers RHIC energies of $\sqrt{s_{NN}} = 0.2$ and 0.41 TeV, the presently accessible LHC energies of 0.9, 2.36 and 7 TeV, and the maximum LHC energy of 14 TeV.

The sources correspond to gluon-gluon–induced production of charged hadrons centered at midrapidity, and quark-gluon processes centered at large rapidities, typically $\langle y_{1,2} \rangle \approx \pm 2.8$ at 7 TeV. Their relative sizes determine the midrapidity dip in the charged-hadron pseudorapidity distributions when added incoherently. The model is complementary to QCD-based approaches that rely on the corresponding partonic structure functions.

Prominent and detailed models for multiple hadron production are available in the literature. In particular, the dual parton model (DPM) [16,17] and the equivalent quark-gluon string model [18–20] are based on the creation and breaking of quark-gluon strings. There the total inclusive hadron production cross-section in pp collisions at energies in and below the p_{lab} = 0.2 and 0.41 TeV, the presently accessible LHC energies of 0.9, 2.36 and 7 TeV, and the maximum LHC energy of 14 TeV.

The sources correspond to gluon-gluon–induced production of charged hadrons centered at midrapidity, and quark-gluon processes centered at large rapidities, typically $\langle y_{1,2} \rangle \approx \pm 2.8$ at 7 TeV. Their relative sizes determine the midrapidity dip in the charged-hadron pseudorapidity distributions when added incoherently. The model is complementary to QCD-based approaches that rely on the corresponding partonic structure functions.

Prominent and detailed models for multiple hadron production are available in the literature. In particular, the dual parton model (DPM) [16,17] and the equivalent quark-gluon string model [18–20] are based on the creation and breaking of quark-gluon strings. There the total inclusive hadron production cross-section in pp collisions at energies in and below the p_{lab} = 0.2 and 0.41 TeV, the presently accessible LHC energies of 0.9, 2.36 and 7 TeV, and the maximum LHC energy of 14 TeV.

There the total inclusive hadron production cross-section in pp collisions at energies in and below the p_{lab} = 0.2 and 0.41 TeV, the presently accessible LHC energies of 0.9, 2.36 and 7 TeV, and the maximum LHC energy of 14 TeV.

The model is considered in the second section, the calculation of pseudorapidity distributions of produced charged hadrons in the third section, and conclusions are drawn in the fourth section.

Linear relativistic diffusion model. – The relativistic diffusion model has been developed to deal with ensembles of many particles and their distribution functions in transverse momentum and rapidity space [11]. In particular, it is well suited to predict and describe charged-hadron rapidity distributions in relativistic heavy-ion collisions from AGS, SPS and RHIC energies, to LHC energies [9]. It is tested here for proton-proton collisions at LHC energies, where the number of produced charged hadrons appears to be sufficiently large for non-equilibrium statistical concepts to apply.

The midrapidity source that arises from gluon-gluon interactions with mean value zero comes close to thermal equilibrium with respect to the variable rapidity during the interaction time τ_{int}, the width approaches equilibrium twice as fast as the mean value. I use the notion

$$\Gamma = \sqrt{8\ln2} \cdot \sigma$$

and the corresponding FWHM values are obtained from $\Gamma = \sqrt{8\ln2} \cdot \sigma$ since the partial distribution functions are Gaussians in rapidity space (but not in pseudorapidity space).
Produced charged hadrons in pp collisions at LHC energies

Table 1: Three-sources parameters for pp collisions at RHIC energies (two upper lines) and at LHC energies (four lower lines). At RHIC energies the fragmentation sources from quark-gluon interactions with particle content N_{ch}^{gg} dominate. At LHC energies the source from gluon-gluon collisions with particle content N_{ch}^{gg} is the major origin of particle production at midrapidity. Midrapidity values (last column) are from PHOBOS (inelastic) [6] for $|\eta| < 1$ at RHIC energies, and from CMS (NSD) [4, 5] for $|\eta| < 0.5$ at LHC energies. The 14 TeV value is calculated with the extrapolated parameters. See [5] for approximate average (p_T) values.

| \sqrt{s} | y_{beam} | (p_T) | τ_{int}/τ_y | $\langle y_{1.2} \rangle$ | $\Gamma_{1.2}$ | Γ_{gg} | $N_{ch}^{1.2}$ | N_{ch}^{gg} | dN/dη $|\eta \simeq 0$ |
|------------|------------|---------|---------------------|-----------------|---------|---------|---------------|---------------|-----------------|
| 0.20 | ± 5.362 | 0.39 | 0.85 | ± 2.30 | 4.4 | 4 | 9 | 4 | incl. $2.25^{+0.47}_{-0.30}$ [6] |
| 0.41 | ± 6.080 | 0.42 | 0.89 | ± 2.50 | 4.5 | 10 | 10 | 9 | incl. $2.87^{+0.44}_{-0.43}$ [6] |
| 0.90 | ± 6.866 | 0.46 | 0.93 | ± 2.70 | 4.6 | 8 | 8 | 21 | 3.48 $\pm 0.02 \pm 0.13$ [4] |
| 2.36 | ± 7.830 | 0.50 | 1.05 | ± 2.75 | 4.6 | 9 | 10 | 31 | 4.47 $\pm 0.04 \pm 0.16$ [4] |
| 7.00 | ± 8.918 | 0.55 | 1.16 | ± 2.80 | 4.6 | 10 | 12 | 46 | 5.78 $\pm 0.01 \pm 0.23$ [5] |
| 14.00 | ± 9.611 | 0.61 | 1.22 | ± 2.85 | 4.8 | 11 | 14 | 59 | 6.73 ± 0.30 |

$R_{gg}(y, t)$ for the associated partial distribution function in y-space, with N_{ch}^{gg} charged particles, cf. table 1.

Full equilibrium as determined by the temperature would be reached for $\tau_{int}/\tau_y \gg 1$. The centers of the fragmentation sources would then move to midrapidity according to the solution of the FPE, the incoherent sum of the three sources would reach a thermal distribution in pseudorapidity space. For finite times, however, the fragmentation sources do not reach $\langle y_{1.2} \rangle = 0$ during the interaction time and hence, remain far from thermal distributions in rapidity space, and do not equilibrate with the central source.

Pseudorapidity distributions. – If particle identification is not available, one has to convert the results to pseudorapidity, $\eta = -\ln[\tan(\theta/2)]$ with the scattering angle θ. The conversion from η- to η-space of the rapidity density,

$$dN/d\eta = \frac{dN}{dy} = \frac{p}{E} \frac{dN}{dy} \simeq J(\eta, \langle m \rangle / \langle p_T \rangle) \frac{dN}{dy},$$

is performed here through the approximated Jacobian

$$J(\eta, \langle m \rangle / \langle p_T \rangle) = \cosh(\eta) \cdot [1 + (\langle m \rangle / \langle p_T \rangle)^2 + \sinh^2(\eta)]^{-1/2}. \tag{6}$$

The average mass $\langle m \rangle$ of produced charged hadrons in the central region is approximated by the pion mass m_π since pions represent by far the largest fraction of produced charged hadrons, in particular, in the midrapidity source where the transformation has the biggest effect. The mean mass is larger in the fragmentation region, with $\langle m \rangle \simeq m_\pi/n_{ch}^{1.2} + m_\pi \cdot (n_{ch}^{1.2} - 1)/n_{ch}^{1.2} \simeq 0.27$ GeV at $\sqrt{s} \simeq 7$ TeV, where $n_{ch}^{1.2} = dN/dy(\langle m \rangle)$.$ \simeq 6$.

Due to the Jacobian, the partial distribution functions differ from Gaussians, but as a consequence of the relatively high mean transverse momenta at RHIC and, in particular, LHC energies $\langle p_T \rangle = 0.39–0.61$ GeV (see table 1 and [5]) the Jacobian has only a very small effect on the central source at sufficiently high values of \sqrt{s}, and almost no effect on the fragmentation sources.

For heavy-ion systems, the dependences of the diffusion model parameters on incident energy, mass and centrality at RHIC and LHC energies have been investigated in [9, 24–26]. This letter presents the first investigation within the RDM for pp collisions at high relativistic energies. The corresponding parameters are shown in table 1 as functions of the c.m. energy \sqrt{s}.

The time parameter τ_{int}/τ_y is displayed as a function of the center-of-mass energy in table 1. It is seen to increase with \sqrt{s}. An increasing time parameter implies that the local maxima of the distribution function move further away from the beam rapidity (that increases with $\ln(\sqrt{s}/m)$) with increasing energy. In accordance with the expectation, it indicates that the rapidity equilibration time τ_y decreases with rising energy, whereas the interaction time τ_{int} depends only weakly on energy in the pp system.

From the available data, it appears that the local maxima occur at rather similar positions in pseudorapidity space, $\eta \simeq 2$. This is characteristically different from heavy-ion collisions, where the maxima move outwards with increasing energy, as observed in AuAu data at RHIC [6], and described in the RDM [9]. This qualitative difference is most likely due to the larger spatial extent of the heavy-ion system.

The partial widths (FWHM) as functions of energy are found to increase linearly with $\log(\sqrt{s})$, see table 1. Here the widths are effective values: beyond the statistical widths that can be calculated from a dissipation-fluctuation theorem [27] with the RDM, they include the effect of collective expansion of the produced particles. The values at RHIC energies are resulting from a minimization with respect to the data that corresponds to the time evolution up to τ_{int}. The integration is stopped at the optimum values of τ_{int}/τ_y, $\Gamma_{1.2, gg}$, and N_{ch}^{gg} and hence, the explicit value of τ_{int} is not needed.
The normalization is given by the total number of produced charged hadrons that is taken from experiment if available, or extrapolated in case of predictions at higher energies. Hence, the model contains four parameters. It provides an analytical framework to calculate the distribution functions, and to draw physical conclusions.

The charged-particle distributions in rapidity space are obtained as incoherent superpositions of non-equilibrium and central (“equilibrium”) solutions of (1),

\[\frac{dN_{ch}}{dy}(y,t = \tau_{int}) = N_{1ch}^{R1}(y,\tau_{int}) + N_{2ch}^{R2}(y,\tau_{int}) + N_{gg}^{ch} R_3(y,\tau_{int}). \]

(7)

Results and discussion. – The results for pseudorapidity distributions of produced charged hadrons in inelastic pp collisions at two RHIC energies of 0.2 and 0.41 TeV are shown in fig. 1 in comparison with PHOBOS data [6]. The three-sources model yields excellent agreement with the data. Here the overall normalization is taken from the data, and the fit parameters are the time parameter (that determines the mean values \(\langle y_{1,2} \rangle \)), the widths \(\Gamma_{1,2,gg} \), and the number of produced particles in the central source \(N_{gg}^{ch} \).

At RHIC energies, the multiplicity density at midrapidity has still a substantial contribution from the overlapping fragmentation sources. At 0.2 TeV, the contribution from the gluon-gluon source at \(\eta = 0 \) is about 20%, at 0.41 TeV the midrapidity source is already much larger (48%), but the fragmentation sources still contribute 26% each, as shown in fig. 2.

It should be mentioned that there exist detailed microscopic calculations of fragmentation sources from \(gg \rightarrow q \) and \(gg \rightarrow q \) diagrams by Szczurek et al. [28,29] for pion production in proton-proton and heavy-ion collisions at SPS and RHIC energies. These processes are also responsible for the observed differences [30] in the production of positively and negatively charged hadrons, in particular, pions. An extension of these calculations to LHC energies is very desirable.

To determine the RDM parameters in pp collisions at LHC energies, I have performed fits of the time parameters to the maxima of the double-humped charged-hadron distributions, extrapolations of the partial widths \(\Gamma_{1,2,gg} \) with \(\log \sqrt{s} \), and corresponding extrapolations of the number of produced particles in fragmentation and central sources as functions of \(\log \sqrt{s} \), see table 1. The number of particles in the central sources is at sufficiently high energy essentially determined by the measured pseudorapidity density near midrapidity that is plotted in fig. 3 as a function of energy.

The results at LHC energies are shown in fig. 4. The model results are compared with CMS data at 0.9, 2.36 and 7 TeV [4,5], and UA5 data at 0.9 TeV [8]. The calculation at 14 TeV is performed based on an extrapolation of the multiplicity density at midrapidity with \(\log \sqrt{s} \) that yields \(dN/d\eta \approx 6.73 \pm 0.30 \) at midrapidity.

At LHC energies, the overall scenario changes in favor of particle production from the midrapidity source. The bulk of the midrapidity density is generated in the central source (73%) at 7 TeV, there is only a small overlap of the fragmentation sources at midrapidity as shown in fig. 4.

In a comparison with calculations at LHC energies that do not include the Jacobian transformation as displayed by the dotted curve in fig. 5, it is evident that the midrapidity dip structure is essentially determined within the RDM by the interplay of the three sources for particle production, and only marginally influenced by the transformation
Produced charged hadrons in pp collisions at LHC energies

Fig. 3: (Colour on-line) Charged-particle pseudorapidity densities in the central pseudorapidity region $|\eta| < 0.5$ for non-single-diffractive (NSD) proton-proton collisions as a function of the center-of-mass energy \sqrt{s}. The value at 14 TeV (circle) is extrapolated from CMS data (dots, [5]). ALICE NSD data at 0.9 and 2.36 TeV are shown for comparison (triangles, [7]). Squares at RHIC energies of 0.2 and 0.41 TeV are inelastic PHOBOS pp data for $|\eta| < 1$ [6].

Fig. 4: (Colour on-line) Pseudorapidity distributions of produced charged hadrons in pp collisions (NSD) at LHC c.m. energies of 0.9, 2.36, 7 and 14 TeV (bottom to top) as calculated in the three-sources approach and fitted to CMS NSD data [4,5]. At 0.9 TeV UA5 NSD data are also shown [8], triangles. See fig. 5 for the underlying partial distribution functions at 7 TeV.

from y- to η-space at these high energies. The central distribution including the Jacobian has no dip at LHC energies, but only a slight reduction in absolute magnitude at midrapidity, as shown by the dashed curve in fig. 5.

There is, however, also the possibility that coherent QCD effects contribute to the dip structure. Such effects go beyond the present calculation. They are also not considered in numerical event generators (see [31] as an example), which provide rather accurate representations of RHIC data, in particular for transverse momentum distributions. As compared to the analytical RDM these require, however, a substantial numerical effort.

Another purely empirical formulation of pseudorapidity distributions in multiple particle production at $\sqrt{s} = 22.4$ to 1800 GeV based on several emitting centers along the rapidity axis had been given in [32]. It yields an analytical expression for the distribution function, and four parameters are fitted to the data. As compared to the straightforward physical interpretation of the three sources in the RDM it seems, however, difficult to assign a physical meaning to the sources.

The determination of the parameters within the RDM clearly goes beyond triple-gaussian fits that are modified by the Jacobian, because the comparison with the data is based on, and constrained by, the underlying non-equilibrium statistical description. Hence the dependence of the resulting parameters on incident energy as shown in table 1 is not arbitrary, but yields a consistent physical result.

In particular, the time parameter increases with the center-of-mass energy since the rapidity relaxation time decreases. The width and particle content of the fragmentation sources do not change much with rising energy because the number of contributing valence quarks stays constant, whereas the width and, in particular, the particle content of the central source that arises from gluon-gluon collisions increases substantially due to the large increase of gluons in the system at high energy and small values of the Bjorken x.

As compared to the application of the RDM to heavy-ion collisions, it appears that transport phenomena are not fully developed in pp collisions due to the small transverse size of the system. In the energy range from 0.2 to 14 TeV considered here, the peak positions stay almost constant at
\(\eta \approx 2 \) in pseudorapidity space. The shift with energy that is present in \(AA \) systems [25], and interpreted there as a multiparticle effect, does not seem to occur in \(pp \) collisions. Hence, the full development of transport phenomena in highly relativistic collisions requires a sufficiently large system in transverse size.

Conclusion. – Based on the description of charged-hadron pseudorapidity distributions in \(pp \) collisions at RHIC and LHC energies in a non-equilibrium statistical model, I have presented calculations of pseudorapidity of the transport parameters in the relativistic diffusion of 0.9, 2.36, 7 and 14 TeV. These rely on the extrapolation of the transport parameters in the relativistic diffusion model (RDM) with increasing center-of-mass energy, and fits to the available data.

In a three-sources model, the midrapidity source that is associated with gluon-gluon collisions accounts for about 73% of the charged-particle multiplicity density measured by CMS at midrapidity in \(pp \) collisions at 7 TeV. The fragmentation sources that correspond to particles that are mainly generated from valence quark-gluon interactions are centered at relatively large values of pseudorapidity (\(\langle \eta_1 \rangle \approx \langle \eta_2 \rangle \approx \pm 2.8 \)) and hence, these contribute only marginally to the midrapidity yield.

Since the Jacobian transformation from rapidity to pseudorapidity space is close to 1 at LHC energies due to the large mean transverse momenta, the size of the midrapidity dip in the pseudorapidity distribution function is essentially determined by the relative particle content in the three sources, not by the Jacobian. Small corrections of the extrapolated values for the number of produced particles in the fragmentation sources may be required, should measured distributions beyond pseudorapidity \(\eta = 2.5 \) become available from CMS, ATLAS and ALICE at LHC energies.

This work has been supported by the ExtreMe Matter Institute EMMI.

REFERENCES

[1] **Aamodt K. et al., Eur. Phys. J. C, 68** (2010) 345.
[2] **Aad G. et al., Phys. Lett. B, 688** (2010) 21.
[3] **Aad G. et al., New J. Phys., 13** (2011) 053033.
[4] **Khachatryan V. et al., JHEP, 02** (2010) 041.
[5] **Khachatryan V. et al., Phys. Rev. Lett., 105** (2010) 022002.
[6] **Alver B. et al., Phys. Rev. C, 83** (2011) 024913.
[7] **Aamodt K. et al., Eur. Phys. J. C, 68** (2010) 89.
[8] **Ansorge R. et al., Z. Phys. C, 43** (1989) 357.
[9] **Wolschin G., Phys. Lett. B, 698** (2011) 411 and references therein.
[10] **Wolschin G., Phys. Rev. Lett., 48** (1982) 1004.
[11] **Wolschin G., Prog. Part. Nucl. Phys., 59** (2007) 374.
[12] **Akrawy M. et al., Phys. Lett. B, 247** (1990) 617.
[13] **Ermolaev B. and Fadin V., JETP Lett., 33** (1981) 269.
[14] **Mueller A., Phys. Lett. B, 104** (1981) 161.
[15] **Dokshitzer Y., Fadin V. and Kroze V., Phys. Lett. B, 115** (1982) 242.
[16] **Capella A., Kwieciński J. and Van J. T. T., Phys. Lett., 108B** (1982) 347.
[17] **Capella A. et al., Phys. Rep., 236** (1994) 225.
[18] **Kaidalov A., Phys. Lett. B, 116** (1982) 459.
[19] **Kaidalov A. and Ter-Martirosyan K., Phys. Lett. B, 117** (1982) 257.
[20] **Kaidalov A., Yad. Fiz., 66** (2003) 2044.
[21] **Uhlenbeck G. and Ornstein L., Phys. Rev., 36** (1930) 823.
[22] **Wolschin G., Eur. Phys. J. A, 5** (1999) 85.
[23] **Wolschin G., Phys. Lett. B, 569** (2003) 67.
[24] **Wolschin G., Biyajima M., Mizoguchi T. and Suzuki N., Ann. Phys. (Berlin), 15** (2006) 369.
[25] **Kuiper R. and Wolschin G., EPL, 78** (2007) 2201.
[26] **Kuiper R. and Wolschin G., Ann. Phys. (Berlin), 16** (2007) 67.
[27] **Wolschin G., EPL, 47** (1999) 30.
[28] **Szczurek A., Acta Phys. Pol. B, 35** (2004) 161.
[29] **Czech M. and Szczurek A., Phys. Rev. C, 72** (2005) 015202.
[30] **Bearden I. et al., Phys. Rev. Lett., 87** (2001) 112305.
[31] **Werner K., Pierog T. and Liu F., Phys. Rev. C, 74** (2006) 044902.
[32] **Ohsawa A., Shibuya E. and Tamada M., J. Phys. G, 37** (2010) 075003.