Antimicrobial, Antiviral Activity and GC-MS Analysis of Essential Oil Extracted from Achillea fragrantissima Plant Growing In Sinai Peninsula, Egypt

Gamil S G Zeedan1*, Abeer M. Abdalhamed1, Mahmoud E. Ottai2, Sobhy-Abdelshafy1 and Eman Abdeen1

1Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
2Department of Genetics and cytology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt
3Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, University of Sadat City, Monifa, Egypt

Abstract

Medicinal plants are considered new resources for producing agents that could act as alternatives to antibiotics in treatment of antibiotic-resistant bacteria. The present study aimed to evaluate the efficacy of essential oil extracted from Achillea fragrantissima plant growing in Egypt for antimicrobial, antiviral activities and chemical composition analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). We also performed determination of essential oil antimicrobial activity by agar desk diffusion method and Minimal Inhibitory Concentration (MIC). Also, antiviral activity on ORF virus by pock reduction test was performed. It was reduced virus titer from 5.9 to 1.00 at 180 minutes. Detection of beta lactams resistant bacteria (Gram-positive bacteria Staphylococcus aureus, Staphylococcus epidermidis (MRSA) and Gram-negative bacteria Escherichia coli) by PCR with primers of mecA gene and Bela gene. The essential oil obtained by hydrodistillation was analyzed by GC-MS. The major components were found to be Santolina triene (1.97%), 2,5,5-trimethyl-3,6-heptadien-2-ol (8.23%) Eucalyptol 8.17, trans-2,7-Dimethyl-4,6octadien-2-ol (24.40%), 1,5-Heptadien-4-one-3,5-Dimethyl (7.65%), Artemisia alcohol (3.49%), α-Thujone (33.97%), Cissabinol (1.92%), Lavandulol (0.71%), 2-Octen-4-ol, 2-methyl (2.02%), 5-Cyclohexen1ol,4-methyl1 (1 methylthymyl) (CAS) (2.15%), α-terpineol (0.05%), Estragole (0.71%) Lavandulyl acetate (0.49%), Sabinyl acetate (2.12 %), Germacrened (0.94%). Finally, our study proved that the essential oil has bactericidal effect on some bacterial resistant antibiotic (Gram-positive bacteria Staphylococcus aureus, Staphylococcus epidermidis (MRSA) and Gram-negative bacteria Escherichia coli) as well as antiviral activity against ORF virus but it is still need further extensive studies for safety and drug interaction.

Keywords: Achillea fragrantissima; Essential oil; Antimicrobial activity; GC/MS; Antiviral; PCR

Introduction

Medicinal plants still constitute one of the major source of drugs in modern as well as traditional medicine throughout the world [1,2]. Since a long period of time, plants have been a valuable source of natural products for maintaining animals and human health [2,3]. The development of multidrug-resistant (MDR) bacteria takes place because of the accumulation of different antibiotic resistance mechanisms inside the same strain which able to live in the presence of antibiotics drugs so that standard treatments become ineffective [4,14-16]. Although, the pharmaceutical companies have produced a number of new antibiotics recently, but even then microorganism resistance to antibiotics increased throughout the world [5,7]. This situation has attracted attention of researchers towards herbal products for developing and improve the antibacterial drugs quality [6,7].

Natural products of higher plants may possess a new source of antimicrobial agents with possibly novel mechanisms for treatment of infectious diseases [8,9]. Medicinal plants contain active principles which can be used as alternative effective herbal drugs against common bacterial infections [10]. They would be the best source to obtain a variety of drugs and active compounds. Therefore, such plants should be investigated to better understand their properties, safety and efficiency [11]. Essential oils are commercially used in different industries such as pharmaceutical, agronomic, food, sanitary, cosmetic and perfume [12]. In medicine they are used antioxidant, antitumor and antifungal [13-16].

The genera Achillea belongs to Family Asteraceae are widely distributed in the Middle East countries [17]. Ancient people had been used Achillea species in traditional medicine to alloy pain, spasms and inflammation [18,3,4]. In Arabian countries all Achillea species were referred to locally names as Qaysum, Gesoom or Bu’eithraan [20,42]. Numerous studies describe the various pharmacological effects of the Achillea fragrantissima hydrodistilled volatile oils in management of several diseases, used topically and orally [18-21]. Researchers studied antibacterial properties of various plants against Gram-negative as well as Gram-positive bacterial strains but only few reports on drug resistant bacteria and antiviral activity. Our study was aimed to evaluate in vitro antibacterial of essential oil extracted from Achillea fragrantissima plant against Gram-positive bacteria Staphylococcus aureus, Staphylococcus epidermidis (MRSA) and Gram-negative bacteria Escherichia coli isolated from bovine mastitis as well as antiviral activity against ORF virus isolated from skin lesion of human and animals.

*Corresponding author: Gamil S G Zeedan, Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, P.O. Box 12622 El-Behouse Street, Dokki, Giza, Egypt, Tel: +20233371499; Fax: +20233370931; Mobile: 01114513605; E-mail: gamillez@yahoo.com

Received September 20, 2014; Accepted October 07, 2014; Published October 14, 2014

Citation: Zeedan GSG, Abdalhamed AM, Ottai ME, Abdelshafy S, Abdeen E (2014) Antimicrobial, Antiviral Activity and GC-MS Analysis of Essential Oil Extracted from Achillea fragrantissima Plant Growing In Sinai Peninsula, Egypt. J Microb Biochem Technol 5: 006. doi: 10.4172/1948-5948.S8-006

Copyright: © 2014 Zeedan GSG, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Materials and Methods

Plant material and extraction

The aerial parts with leaves and flowers of *Achillea fragrantissima* plant were collected from Saint Catherine, South Sinai, Egypt in November 2013. Authentication of the plant was performed by the group of Genetics and Breeding of Medicinal and Aromatic plants at the Department of Genetics and cytology, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt. These samples were air-dried in shade at room temperature until constant weight (about 20 days). The dried aerial parts of the plant materials were ground with a blender. The aerial plant parts powder was stored at 4°C in a tightly covered bottle. One hundred grams of plant powder was subjected to hydrodistillation in a microscale (v/w) return flow distillation apparatus according to [25]. The essential oil was collected, dried over anhydrous sodium sulphate and stored at 4°C until used.

Gas chromatography and mass spectrometry (GC-MS) analysis

The essential oil was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) (NRC-GC/El-MS Lab), according to method [25-27] column with 0.25 μm film thickness, Helium was used as carrier gas; the flow through the column was 1.4 ml/min. The column temperature was programmed from 40 to 85°C at 10°C/min, increased from 85 to 300°C at rate of 5°C/min and finally held for 10 min. The MS operating parameters were as follows: ionization voltage, 70 V; ionization current, 2 A; Ion source temperature, 200°C, resolution, 1000. Mass unit were monitored from 30 to 450 m/z. Determination and identification of each components in the oil was based on RI relatives to n-alkanes and computer matching with library search report, as well as by comparison of the fragmentation patterns of mass spectra [27].

Bacterial strain

Microbial strains: Gram-positive bacteria *Staphylococcus aureus*, *Staphylococcus epidermidis* (MRSA) and Gram-negative bacteria *Escherichia coli* were isolated from bovine mastitis provided by Veterinary Research Division at National Research Center (NRC), Egypt. All bacteria strains were stored in broth containing 25% (v/v) glycerol (Sigma-Aldrich) at -20°C until used.

Virus strain

The egg-adopted ORF virus was provided by Dr. G.S. Zeedan, NRC, Cairo, Egypt. Virus was propagated in the Chorio-Allantoic Membranes (CAM) of Specific Pathogen Free (SPF) embryonated chicken eggs (11 days age) as previously described by [28]. Both CAM and AF were harvested and ground in 0.1 M sterile PBS. The homogenate was frozen at -20°C and thawed three times and then centrifuged at 3000 rpm/15 min. Then supernatant was titrated and stored at -20°C until used.

Animal used

Twenty five clinically healthy Albino rats (130-150 g body weight) were obtained from Animal house of National Research Center Cairo Egypt, and randomly divided into 5 groups for experiment. The Animals were housed in a well-ventilated animal room under standardized conditions of 24°C; relative humidity 50 ± 5% and 12 hours light/dark cycle at the Animal House, National Research Center, Giza, Egypt. Feed and water were supplied adlibitum to meet the requirements of the NRC [29]. Rats were acclimatized for 15 days before the start of the experiment.

Toxicity of essential oil

Essential oil was diluted as the following: 100, 200, 300, 400 and 800 μl/ml then 1 ml for each rat was injected S.C./I.P twice dose one week interval. Behavioral alterations, inflammatory effects, illness, and weight changes were recorded for 2 weeks post-treatment. Control animals (Rats). The toxicity of essential oil in ECE was examined as follows: inoculated 0.2 ml from each concentration of essential oil into Chorio-Allantoic Membranes (CAM) and Chorio-Allantoic Sac (CAS) incubated at 37°C for 7 days daily examination. The maximum non-lethal dose was taken as the maximum non-toxic concentration.

Antiviral activity of essential oil determined by Pock Reduction Assay

Virus titer was estimated by cytopathogenicity by tenfold dilution method 0.02 ml of each dilution was inoculated in five CAM of ECE for each dilution and expressed as 50 % Egg Infectious Dose per ml (EID50/ml). The calculation Calculated for each tested was was performed according to [30].

Antimicrobial activity

Essential oils were individually tested against Gram-positive bacteria *Staphylococcus aureus*, *Staphylococcus epidermidis* (MRSA) and Gram-negative bacteria *Escherichia coli* were previously isolated from bovine mastitis by Agar diffusion methods and Minimal Inhibitory Concentration (MIC).

Agar diffusion method: These methods were performed according to Forbes et al. [31]. Bacteria cultures were diluted with sterile physiological saline solution with reference to the MF Farland 0.5 standard to achieve inoculums of approximately 106 CFU/ml. A suspension was swab in three directions on 4 mm thick Mueller Hinton Agar (MHA) (Oxoid) with a cotton swap. Modified discs of 6 mm were prepared using a Whitman filter paper. 100 discs were obtained by punching and putting in vials-bottles and sterilizing in an oven at 170°C for 30 min. The discs were impregnated with 20 μl of essential oil. Prepared discs containing the various essential oil were carefully placed on the inoculated plates using a sterilized forceps in each case [31]. The disc with solvent alone used as negative control and antibiotic discs as control positive. The plates were then turned upside-down and incubated at 37°C for 24 h in an incubator by the same manner used rosette with 6 well puncture the agar and 50 μl each well by essential oil, Tween 20 with saline and saline only as control negative. The results were taken by measuring the Diameter of the Inhibition Zone (DIZ) around the disc or well. This was repeated thrice and mean ± SD was calculated.

Minimal inhibitory concentration (MIC) using microdilution method

It was done according to [32,33] guidelines for determination of Minimum Inhibitory Concentration (MIC). The MIC was defined as lowest concentration of essential oils that inhibiting visible bacterial growth after incubation for 20 h at 37°C. Into each well of microplate 100 μl of Mueller-Hinton Broth (Oxoid) inoculated with the bacteria strain. An aliquot (100 μl) of the essential oil was added in first well serial dilutions of the essential oils were prepared in a 96 well micro titer plate, including one growth control and one sterility control. The contents of the wells were mixed and micro plates were incubated
at 37°C for 24 h. Micro titer plates were incubated at 37°C for 24 h. The activity was measured as a function of turbidity. Lack of turbidity was further confirmed by pouring suspension aliquot of 0.1 ml into pre-sterilized Petri dishes with nutrient agar medium. The tests were conducted in triplicate.

Estimation of the number of the viable bacterial cells

The time that taken by essential oil to kill staphylococcus and *E. coli* were evaluated by the time-kill assay method. The Time-kill curves were performed in tube containing nutrient or Muller Hinton broth, using inoculums density of approximately (10⁶ CFU/ml) in the presence of essential oil. The tubes were continuously shaken and incubated at 37°C. Samples were obtained at 0, 2, 4, 8 and 16. At each sample time, they were taken and serially diluted log 2, 4, 8, 16, 32. 100 µl of undiluted and diluted samples were inoculated in nutrient agar or Muller Hinton agar. The plates were incubated at 37°C for 24 h. Micro titer plates were incubated at 37°C for 24 h.

Polymerase chain reaction (PCR)

Detection of the mec A and Bela A Genes for *Staphylococcus epidermidis* strains and *E. coli* were accomplished using PCR amplification. Cells were suspended in a lysis buffer containing 1 M Tris HCl, 5 M NaCl, and 0.1 M EDTA, which was incubated at 95°C for 10 minutes. After incubation, the suspension was centrifuged at 23 000 rpm for 5 min. The supernatant was used as a template in PCR. PCR assay was carried out as described by [34]. Using primers Beta-lactams gene resistant MRSA Mec A F (GTGAAGATATACCAAGTGATT) and R (GTGAAGATATACCAAGTGATT) gave 147 bp PCR product of mecA gene from strains *Staphylococcus epidermidis* and also using primer Beta-lactams gene resistant for *E. coli* bla C (F) TGCCGACGACTGACAGCCAAA (R) TTTCTTCGAACTGCGCTTGCACGCGC 462 [35,34]. The final PCR products were visualized using UV-trans-illuminator after electrophoresis on 1.5% agarose gel containing 50 µg/mL EtBr.

Statistical analysis

All data were subjected to statistical analysis including the calculation of the mean and standard Deviation. Significance between data of control and infected groups was evaluated by the Student t-test at level P<0.05 according to [36] using SPSS version 15 computer program.

Results

The volatile oil or (essential oil) was extracted from aerial parts, leaves and flowers of *A. fragrantissima* by conventional hydro distillation, which gave liquid oil, ranged pale yellow oil to yellow with a strong penetrating pleasant odor characteristic of each plant. The identified compounds, together with the Retention Indices (RI) of the compounds are shown in Table 1. The main chemical compounds with a strong penetrating pleasant odor characteristic of each plant. The identified compounds, together with the Retention Indices (RI) of the compounds are shown in Table 1. The main chemical compounds were visualized using UV-trans-illuminator after electrophoresis on 1.5% agarose gel containing 50 µg/mL EtBr.

Table 1: Chemical composition and relative content of the essential oil extracted from *A. fragrantissima* by Gas Chromatography–Mass Spectrometry (GC/MS).

No.	RT	Compounds	RRT	Area %
1	9.1	Santolina triene	0.57	1.97
2	12.5	2,5,trimethyl(3,6-epidien2ol	0.75	8.23
3	13.16	Eucalyptol	0.83	8.17
4	13.67	trans2,7Dimethyl4,octadien2ol	0.86	24.4
5	14.23	1,5Heptadien4one, 3,6Brimethyl	0.89	7.65
6	15.18	Artemisia alcohol	0.95	3.49
7	15.76	âThujone	1	33.97
8	16.62	Cissabiol	1.04	1.92
9	17.38	Lavandulol	1.09	0.71
10	17.47	2 Octen4ol, 2methyl	1.1	2.02
11	17.42	3Cyclohexen1ol,4methyl(1methyl)CAS	1.12	2.15
12	18.08	âTerpineol	1.13	1.06
13	18.24	Estragole	1.15	0.71
14	20.77	Lavandulyl acetate	1.3	0.49
15	20.87	Sabinyl acetate	1.31	2.12
16	25.84	Germacrened	1.62	0.94

Figure 1: Determination of volatile oil fraction area by GC/MS analysis.

Figure 2: *Achillea fragrantissima* essential oil analyzed by GC-MS.

Antimicrobial activity by the agar diffusion method

The essential oil extracted from *A. fragrantissima* inhibited the growth of the microorganisms tested. It was especially active against *Staphylococcus aureus*, MRSA and *E. coli*. The *Staphylococcus aureus* showed the highest sensitivity to essential oil effect ranged from (18-22 mm–24-26 mm) and MRSA from (14-16 mm), (16-18 mm) and followed by *E. coli* from (8-11 mm) and (12-16 mm) inhibition zone.
The essential oil was observed safe, no effect in the nature and color of embryo fluid comparing with control as well as experimental animals this result is in agreement with [51,52]. It was reduced infectivity titer...
of ORF virus from log_{10} 5.9 to 0.00 within 180 minutes. Antiviral effect
inoculation on CAM, Finally, Our results proved that the
Achillea
reduced plaque size and number when mixing with ORF virus before
viruses were reduce log_{10} 5-1 and they infectivity titer were reduced 21
viruses infectivity titer. Also, they observed that the concentration of
[53]. They found the essential oil caused sharp reduction in small pox
cells as in Table 3 and Figure 5. This result was in agreement with
to production cytokines which blocked viral infection other health
cells as in Table 3 and Figure 5. This result was in agreement with
[53]. They found the essential oil caused sharp reduction in small pox
viruses infectivity titer. Also, they observed that the concentration of
viruses were reduce log_{10} 5-1 and they infectivity titer were reduced 21
and 25 time more than control group. We found that the essential oil
reduced plaque size and number when mixing with ORF virus before
inoculation on CAM, Finally, Our results proved that the Achillea

Figure 3: Effect of A Achillea fragrantissima essential oil on the viability of various microorganisms. The bacterial cells were grown broth media incubated with essential oil at 37°C with different time ranged from 0 to 16 hours and the number of viable cells was estimated as previously described Figure 3 (A) Staphylococcus aureus and Figure 3 (B) E. coli.

Figure 4: Electrophoretic pattern of PCR product (147 pb for mec A gene and 462 bp for bat gene) in 1.5% agarose gel stained with ethedium bromide lane1: amplified 147 bp for MRSA mec A gene, lane2, 3 and 5: negative PCR product amplified and Lane 4 amplified 462 bp for bat gene for E. coli. M: DNA marker (100pb).

Figure 5 : Reduction of ORF virus titer by treated with A. fragrantissima essential oil and kept at 37°C.

A. fragrantissima essential oil has antiviral and antibacterial activities on
B-lactmase resistant

Conclusion

The composition of the essential oil of Achillea fragrantissima
growing in Sinai, Egypt has been analyzed by GC-MS and its
antimicrobial activity against Gram-positive bacteria Staphylococcus
aureus, Staphylococcus epidermis (MRSA) and Gram-negative bacteria Escherichia coli as well as antiviral activity against ORF virus
reduced titer from 5.9 to 1. Detection of B-lactam antibiotic resistance bacteria was done by PCR with primers mec A and Bela genes. The results proved that the essential oil can be used in the treatment of diseases caused by the drug resistant microorganism. But, still need further extensive researches are required to prove safety, drugs
interaction and clinical studies are required to prove the safety of the
oil as a medicine.

Authors' Contributions

Gamal S.G. Zeedian and Abeer M. Abdalhamed authors': conception of the research idea, study design, data collection, main part of laboratory work and interpret the data and reviewed the manuscript; Mohmoud E. Ottai and Sobhy Abdelshafy authors': study design, collection of plant from Sinai, Egypt, Identification of plant with group of Genetics and Breeding of Medicinal and Aromatic plants, data analysis of GC-MS and drafting the manuscript; Eman Abdeen author: study design and part of laboratory work. All authors have read and
approved the final revised manuscript

Conflict of Interests

The authors do not have any conflict of interests regarding the
content of the paper.

Acknowledgement

We would like to thank the group of Genetics and Breeding of Medicinal and Aromatic plants, Department of Genetics and cytology, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo for their kind cooperation in identification of medicinal plant .

References

1. Nemeth E, Bernath J (2008) Biological activities of yarrow species (Achillea spp.). Curr Pharm Des 14: 3151-3167.
2. YeÅŸÅŸilda E, Honda G, Sezik E, Tabata M, Goto K, et al. (1993) Traditional medicine in Turkey. IV. Folk medicine in the Mediterranean subdivision. J Ethnopharmacol 39: 31-38.
3. Ruth S, Aviva D, Helmut D, Günther S, Doris R, Márton K (1987) The sesquiterpene lactones from A. fragrantissima. Tetrahedron 43: 4125-4132.
4. Benedek B, Kopp B (2007) Achillea millefolium L. s.l. revisited: recent findings confirm the traditional use. Wien Med Wochenschr 157: 312-314.

5. Unlu M, Daferera D, Dömmez E, Polissiou M, Tepe B, et al. (2002) Compositions and the in vitro antimicrobial activities of the essential oil of Achillea setacea and Achillea terefolia (Compositae). J Ethnopharmacol 83: 117-121.

6. Harbottle H, Thukur S, Zhao S, White DG (2006) Genetics of antimicrobial resistance. Anim Biotechnol 17: 111-124.

7. Khan R, Isliam B, Akram M, Shafik S, Ahmad A, et al. (2009) Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 14: 586-597.

8. Bonjar S (2004) Evaluation of antimicrobial properties of some medicinal plants used in Iran. J Ethnopharmacol 94: 301-305.

9. Nouredem JAK, Misman S, Lacmata ST, Stefan M, Kuijte JR, et al. (2013) Antibacterial activities of the methanol extracts of ten Cameroonian vegetables against Gram-negative multidrug-resistant bacteria. BMC Complementary and Alternative Medicine 13: 26-33.

10. Lentino JR, Narita M, Yu VL (2008) New antimicrobial agents as therapy for resistant gram-positive cocci. Eur J Clin Microbiol Infect Dis 27: 3-15.

11. Ali-Shayeh MS, Yaniv Z, Mahajna J (2000) Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. J Ethnopharmacol 73: 221-232.

12. Nascimento GGF, Locatelli J, Freitas PC, Silva GL (2012) Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology 31: 247-256.

13. Rajjurkar NS, Gaikwad K (2012) Evaluation of photochemical, antioxidant activity and elemental content of Aridum capitulis veneris leaves. Journal of Chemical and Pharmaceutical Research 4: 365-374.

14. Selapanna S, Akoh CC (2002) Flavonoids and antioxidant capacity of Georgia-grown Vidalia onions. J Agric Food Chem 50: 5338-5342.

15. Shimada K, Fujikawa K, Yahara K, Nakamura H (1992) Antioxidative properties of xanthan on the autooxidation of soybean in cyclodextrin emulsion. Journal of Agric Food Chem 40: 945-948.

16. Skohan P, Storeng R, Scudiero D, Monks A, McMahon J, et al. (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82: 1107-1112.

17. Sohant MM, Zakri AK (2009) Antiviral screening of forty-two Egyptian medicinal plants. J Ethnopharmacol 126: 102-107.

18. Palombo EA, Semple SJ (2001) Antibacterial activity of traditional Australian medicinal plants. J Ethnopharmacol 77: 151-157.

19. Kossaibati MA, Esslemont RJ (1997) The costs of production diseases in dairy herds in England. Vet J 154: 41-51.

20. Ahmed AA, Jakupov k, Seif El-din AA, Melek FR (1990) Irregular oxygenated monoterpene from Achillea fragrantissima. Phytochemistry 29: 1322-1324.

21. Ahmad I, Aql F (2007) In vitro efficacy of bioactive extracts of 15 medicinal plants against ES77L-producing multidrug-resistant enteric bacteria. Microbiol Res 162: 264-275.

22. Lewis K, Ausubel FM (2006) Prospects for plant-derived antibacterials. Nat Biotechnol 24: 1504-1507.

23. Islam B, Khan SN, Haque I, Alam M, Mushfiq M, et al. (2006) Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba. J Antimicrob Chemother 62: 751-757.

24. Chovanová R, Mikulášová M, Vaverková Š (2013) In Vitro Antibacterial and Antiviral Resistance Modifying Effect of Bioactive Plant Extracts on Methicillin-Resistant Staphylococcus epidermidis. International Journal of Microbiology, Volume Article ID 789689.

25. Massada Y (1976) Analysis of Essential Oil by Gas Chromatography and Spectrometry. J Wiley & Sons New York.

26. Adams R (1995) Identification of Essential Oil Compo- nents by Gas Chromatography/Mass Spectroscopy. Allured Publishing Co., Carol Stream, IL.

27. Vanden Dool H, Kratz PD (1963) A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J Chromatogr 11: 463-471.

28. Zeedan GSG, Abdalhameed AM, Ottai ME, Abdelshafi S, Abdeen E (2014) Antimicrobial, Antiviral Activity and GC-MS Analysis of Essential Oil Extracted from Achillea fragrantissima Plant Growing In Sinai Peninsula, Egypt. J Microb Biochem Technol S8: 006. doi:10.4172/1948-5948.JMBT.1000506.
49. Aboutable EA, Soliman FM, El-Zalani SM, Brunke EJ, El-Kersh TA (1986) Essential oil of Achillea fragrantissima (Forssk.) Sch. Bip. Egypt J Pharm Sci 27: 215-219.

50. Hammad HM, Albu C, Matar SA, Litescu SC, Al Jaber HI, et al. (2013) Biological activities of the hydro-alcoholic and aqueous ex-tracts of Achillea biebersteinii Afan. (Asteraceae) grown in Jordan. African Journal of Pharmacy and Pharmacology 7: 1686-1694.

51. Shahwar D, Rehman SU, Raza MA (2010) Acetyl cholinesterase inhibition potential and antioxidant activities of ferulic acid isolated from Impatiens bicolor Linn. Journal of Medicinal Plant Research 4: 260-266.

52. el-Shazly AM, Hafez SS, Wink M (2004) Comparative study of the essential oils and extracts of Achillea fragrantissima (Forssk.) Sch. Bip. and Achillea santolína L. (Asteraceae) from Egypt. Pharmazie 59: 226-230.

53. Martineau F, Picard FJ, Lansac N, Ménard C, Roy PH (2000) Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 44: 231–238.

54. Zmantar T, Chaieb K, Ben Abdallah F, Ben Kahia-Nakbi A, Ben Hassen A, et al. (2008) Multiplex PCR detection of the antibiotic resistance genes in Staphylococcus aureus strains isolated from auricular infections. Folia Microbiol (Praha) 53: 357-362.