Chemical Compositions and In Vitro Antiphytopathogenic Fungi Activities of the Leaf and Cones Essential Oils of Cunninghamia lanceolata From Taiwan

Kuang-Ping Hsu¹, Yu-Chang Su², and Chen-Lung Ho¹

Abstract
In this study, antiphytopathogenic fungi activities of the leaf and cones essential oils and its constituents from Cunninghamia lanceolata were evaluated in vitro against 6 plant pathogenic fungi. The main compounds responsible for the antiphytopathogenic fungi activities were isolated and identified. The essential oil from the fresh leaves and cones of C. lanceolata was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS, respectively. The leaf oil consisted primarily of ferruginol (10%), τ-cadinol (8.2%), and α-cadinol (6.6%); the cones oil’s main constituents were abietadiene (42.5%), abietatriene (13.1%), and α-pinene (9.6%). Comparing the antiphytopathogenic fungi activities of the oils suggested that leaf oil was the most effective one. Further fractionation of the leaf oil produced ferruginol, τ-cadinol, and α-cadinol. The 3 compounds exhibited very strong antiphytopathogenic fungi activities. For the antiphytopathogenic fungi activities of the leaf oil, the active source compounds were determined to be ferruginol, τ-cadinol, and α-cadinol.

Keywords
Cunninghamia lanceolata, essential oil, terpene, antiphytopathogenic fungi activity, ferruginol, τ-cadinol, α-cadinol

Received: April 29th, 2020; Accepted: May 20th, 2020.

The warm and humid island-type climate of Taiwan is rather conducive to the growth of molds or mildews; hence, they are prevalent in our environments. It causes plants in nature to be attacked by microorganisms and triggers various diseases. There are many types of microorganisms that can cause plant diseases, such as fungi, bacteria, viruses, nematodes, and among all pathogens, fungi cause the most types of diseases.¹ Plant pathogenic fungi can infect plant tissues, destroy important organs such as roots or leaves, reduce the vitality of plants, and eventually cause the death of plants.²⁻⁵ Increasing recognition of the importance of plant pathogenic fungi infections and the difficulties encountered in their treatment have stimulated the search for alternatives to synthetic chemical fungicides. However, these chemicals may cause secondary environmental pollutions.⁶⁻⁷ In recent years, scientists began looking at plant essential oils or naturally produced chemicals as fungicides. Our research team has proven on numerous occasions the antifungal efficacies of various essential oils.⁸⁻⁹ Cunninghamia lanceolata (Lamb.) Hook. (Taxodiaceae) is a traditional Chinese medicine used for the treatment of hernia, arthritis, and strangury. It is a very important tree species of silviculture in Taiwan.¹⁰ Previous studies have reported the composition and antifungal activities of wood of C. lanceolata.¹¹⁻¹⁷ However, only 1 report noted the composition of leaf essential oil, but this report did not evaluate the biological activity.¹¹ No prior study has investigated the chemical composition and biological activity of the cones essential oil. Therefore, we used hydrodistillation to collect the leaf and cones oils, and analyzed these using GC-FID and GC-MS. The second part of the study examined the antiphytopathogenic fungi activity of the essential oils and dominant constituents isolated from C. lanceolata against plant pathogenic fungi. The purpose of this study was to establish a chemical basis for the effective multipurpose utilization of the species.
Results and Discussion

Based on the dry weight of leaves and cones, hydrodistillation of *C. lanceolata* produced yellow colored oils with yields of 1.31 ± 0.06 and 0.98 ± 0.05 mL/100 g, respectively. All compounds are listed in order of their elution from the DB-5 column (Table 1). A total of 67 compounds were identified from the hydrodistilled leaf oil of *C. lanceolata*. Among the leaf oil compounds, sesquiterpene hydrocarbons were predominant (33.6%), followed by monoterpenes hydrocarbons (23.1%), oxygenated sesquiterpenes (20.3%), oxygenated diterpene (12.4%), diterpene hydrocarbon (3.9%), oxygenated monoterpenes (3.8%), and others (2.0%). Among the sesquiterpene hydrocarbons, β-selinene (5.1%), germacrene D (5.0%), and α-selinene (4.8%) were the major compounds. Of the monoterpenes hydrocarbons, α-pinene (10.1%) and limonene (4.6%) were the main components. Monoterpene hydrocarbons τ-cadinol (8.2%) and α-cadinol (6.6%) were the major compounds; of the oxygenated diterpene, ferruginol (10%) was the chief compound. After a thorough search, we found only 1 report pertaining to the leaf oil of *C. lanceolata*. In the report, the main ingredients of the leaf oil were α-limonene (27.3%), α-pinene (18.5%), β-caryophyllene (9.6%), and β-myrcene (9.6%), which were different from our present results.

Forty-seven components were identified from the cones oil. Among the component groups, diterpene hydrocarbons were the most dominant ones (62.9%), followed by monoterpenes hydrocarbons (15.2%), sesquiterpene hydrocarbons (8.4%), oxygenated sesquiterpenes (5.8%), oxygenated diterpenes (4.3%), and oxygenated monoterpenes (2.2%). Abietadiene (42.5%) and abietatriene (13.1%) were the major compounds of the diterpene hydrocarbons. Of the monoterpenes hydrocarbons, α-pinene (9.6%) was the chief compound. The search turns up no report on the cones oil of *C. lanceolata*, however. Thus, the cones oil composition on *C. lanceolata* represents the first such report in the literature.

The leaf and cones oils of *C. lanceolata* were tested against 6 plant pathogenic fungi, including 2 seedling pathogens, *Fusarium oxysporum* and *Rhizoctonia solani*, 2 leaf pathogens, *Pestalotia funerea* and *Colletotrichum gloeosporioides*, and 2 root and stem pathogens, *Ganoderma australe* and *Fusarium solani*. Figure 1 shows the antifungal indices of leaf and cones parts of *C. lanceolata* oil (at a concentration of 500 µg/mL) against plant pathogenic fungi. The antifungal indices demonstrated clearly that the leaf oil had antifungal activities superior to those of the cones oil (Figure 1). At this concentration, the antifungal indices of the leaf oil against damping-off pathogens, *F. oxysporum* and *R. solani*, were 72.3% and 100%, respectively. As for the leaf pathogens, *P. funerea* and *C. gloeosporioides*, the antifungal indices of the leaf oil were 67.3% and 90%, respectively. The antifungal indices of the oil against root rot pathogens, *G. australis* and *F. solani*, were 100% and 100%, respectively. The results obtained showed that the leaf oil had excellent antifungal activities with values >67.3%, and suppressed totally the growth of *R. solani*, *G. australis*, and *F. solani*.

In order to evaluate the half inhibition concentrations (IC$_{50}$) of the leaf and cones oils, the antifungal indices of 2 oils vs fungi were regression analyzed. The results are shown in Table 2. As the table shows, the IC$_{50}$ of leaf oil against 6 plant pathogenic fungi was between 83.2 and 308.9 µg/mL, that of cones oil was >500 µg/mL. Summarizing the above, the antifungal tests indicate that leaf essential oil of *C. lanceolata* has the strongest antiphytopathogenic bioactivity. Thus, leaf oil is singled out for further examination of its ingredients.

To further understand the antiphytopathogenic fungi activities’ ingredients of the oil extracted from the leaf of *C. lanceolata*, we have conducted a silica gel column chromatography of the leaf essential oil with the eluents mixed by n-hexane (n-hex) and ethyl acetate (EA) in different proportions (n-hex/EA = 100/0-0/100). The eluents were separated into 7 fractions (CO1-CO7). Then, we carried out experiment using 7 fractions under antifungal tests and used Nystatin as a control at a concentration of 100 µg/mL. The results are shown in Figure 2. CO4 had the best antiphytopathogenic activity with the highest antifungal indices against 6 plant pathogenic fungi. Among the plant pathogenic fungi, *R. solani*, *P. funerea*, *C. gloeosporioides*, *G. australis*, and *F. solani* were completely inhibited by the fraction.

The abovementioned results have proven that CO4 exerted the best antiphytopathogenic fungi activity. We further identified the ingredients from the CO4 fraction using GC and GC-MS. The results are shown in Table 3. Thirteen compounds were identified from CO4 fraction; τ-cadinol (30.5%), α-cadinol (29.8%), and ferruginol (30.8%) were the main ones.

Furthermore, we used the isolated and purified 3 compounds (τ-cadinol, α-cadinol, and ferruginol) to conduct antifungal tests against 6 plant pathogenic fungi, respectively. Figure 3 shows the antifungal indices of the main compounds (τ-cadinol, α-cadinol, and ferruginol) to conduct antifungal tests against 6 plant pathogenic fungi, respectively. The abovementioned results have proven that CO4 exerted the best antiphytopathogenic fungi activity. We further identified the ingredients from the CO4 fraction using GC and GC-MS. The results are shown in Table 3. Thirteen compounds were identified from CO4 fraction; τ-cadinol (30.5%), α-cadinol (29.8%), and ferruginol (30.8%) were the main ones.

Furthermore, we used the isolated and purified 3 compounds (τ-cadinol, α-cadinol, and ferruginol) to conduct antifungal tests against 6 plant pathogenic fungi, respectively. Figure 3 shows the antifungal indices of the main compounds (100 µg/mL) against 6 plant pathogens. The results indicated that 3 compounds exhibited excellent activity against *F. oxysporum*, *R. solani*, *P. funerea*, *C. gloeosporioides*, *G. australis*, and *F. solani* with the highest antifungal indices ranging from 61% to 100%.

In addition, the IC$_{50}$ values of 3 compounds are shown in Table 4. IC$_{50}$ values of τ-cadinol against *F. oxysporum*, *R. solani*, *P. funerea*, *C. gloeosporioides*, *G. australis*, and *F. solani* were 93.2, 58.3, 80.3, 58.2, 48.3, and 40.1 µg/mL. For α-cadinol, the following IC$_{50}$ values were obtained against 6 plant pathogenic fungi: 38.1, 29.2, 40.8, 10.8, 40.8, and 30.8 µg/mL for ferruginol, the following IC$_{50}$ values were obtained against 6 plant pathogenic fungi: 21.5, 26.8, 69.3, 39.8, 28.6, and 59.1 µg/mL (Table 4). Previous study have showed that these compounds with the highest antifungal indices ranging from 61% to 100%.

Results suggest that τ-cadinol, α-cadinol, and ferruginol of *C. lanceolata* leaf oil could be used as potential natural fungicide for controlling fungal pathogens and worth further investigation.
Table 1. Chemical Composition of the Leaf and Cones Essential Oils of *Cunninghamia lanceolata*.

Compound	K.I.\(^a\)	K.I.\(^b\)	Concentration (%)	Identification\(^c\)	
α-Thujene	930	929	3.6	1.2	MS, KI, ST
α-Pinene	939	937	10.1	0.1	MS, KI, ST
Camphene	954	952	0.1	0.1	MS, KI, ST
Sabinene	975	974	0.3	0.1	MS, KI, ST
β-Pinene	979	979	0.8	0.5	MS, KI, ST
β-Myrcene	991	991	1.4	0.8	MS, KI, ST
α-Terpinepine	1017	1017	0.4	0.2	MS, KI, ST
p-Cymene	1024	1025	0.2	1.3	MS, KI, ST
Limonene	1029	1030	4.6	1.0	MS, KI, ST
γ-Terpinepine	1059	1060	0.9	0.3	MS, KI, ST
Terpinolene	1088	1089	0.7	0.2	MS, KI, ST
Linalool	1096	1097	0.1	-	MS, KI, ST
cis-β-Terpinecol	1144	1146	0.1	-	MS, KI
Terpinen-4-ol	1177	1177	1.3	0.8	MS, KI, ST
α-Terpineol	1188	1189	0.9	0.6	MS, KI, ST
γ-Terpineol	1199	1196	0.1	-	MS, KI
Bornyl acetate	1288	1289	0.5	0.4	MS, KI, ST
α-Terpinyl acetate	1349	1350	0.7	0.3	MS, KI, ST
Neryl acetate	1361	1363	0.1	0.1	MS, KI, ST
α-Ylangene	1375	1374	0.1	-	MS, KI
α-Copaene	1376	1375	0.5	0.1	MS, KI
β-Elemene	1390	1391	3.6	1.4	MS, KI, ST
β-Caryophyllene	1419	1419	3.9	1.1	MS, KI, ST
β-Copaene	1432	1433	0.3	-	MS, KI
cis-β-Farnesene	1442	1442	0.4	0.1	MS, KI
α-Humulene	1454	1455	0.5	0.1	MS, KI, ST
γ-Muurolene	1479	1477	3.7	0.7	MS, KI
Germancrene D	1485	1481	5.0	1.5	MS, KI, ST
β-Selinene	1490	1486	5.1	1.4	MS, KI
α-Selinene	1498	1494	4.8	1.1	MS, KI
trans-β-Guaiene	1502	1501	0.6	0.4	MS, KI
γ-Cadinene	1513	1512	1.2	0.2	MS, KI
δ-Cadinene	1523	1520	3.3	0.4	MS, KI
trans-Cadina-1,4-diene	1534	1532	0.3	-	MS, KI
α-Cadinene	1538	1536	0.2	-	MS, KI
α-Calacorene	1545	1543	0.2	-	MS, KI
Elemol	1549	1549	0.4	0.1	MS, KI
(β)-Nerolidol	1563	1564	1.6	0.6	MS, KI
Dodecanoic acid	1566	1566	0.4	-	MS, KI, ST
Caryophyllene oxide	1583	1581	0.7	0.5	MS, KI, ST
Salvial-4(14)-en-1-one	1594	1593	0.2	-	MS, KI
Junecol	1619	1616	0.3	-	MS, KI
1-epi-Cubenol	1629	1628	0.3	-	MS, KI
γ-Eudesmol	1632	1631	0.6	0.1	MS, KI
δ-Cadinol	1640	1640	8.2	0.1	MS, KI
α-Muurrolol	1646	1645	0.3	0.3	MS, KI, ST
α-Eudesmol	1653	1652	0.2	-	MS, KI
a-Cadinol	1654	1654	6.6	2.9	MS, KI, ST
Eudesma-4(15),7-dien-1β-ol	1688	1686	0.5	-	MS, KI
Eudesm-7,11-en-4-ol	1700	1699	-	1.3	MS, KI
Vetiselineol	1731	1733	0.1	-	MS, KI

(Continued)
Experimental

Plant Materials

Fresh leaves and cones of *C. lanceolata* were collected in January 2018 from Guanyin Mt in central Taiwan (Taichung County, elevation 600 m, N 24°28′69″, 120°90′51″). The samples were compared with specimen no. ou-9886 from the herbarium of National Chung-Hsing University (NCHU) and were positively identified by Prof. Yen-Hsueh Tseng of NCHU. The voucher specimen (CLH-068) was deposited in the NCHU herbarium.

Isolation of the Leaf and Cones Essential Oil

Leaves and cones of *C. lanceolata* (1 kg) were distilled for 3 hours using a Clevenger-type apparatus and hydrodistillation technique. The essential oil obtained was dried with anhydrous sodium sulfate. The oil yields and all test data are the average of triplicate analyses.

Essential Oil Analysis

A Hewlett-Packard (HP) 6890 gas chromatograph equipped with a DB-5 fused silica capillary column (30 m × 0.25 mm × 0.25 μm film thickness, J&W Scientific) and a FID detector

Table 1. Continued

Compound	K.I.\(^a\)	K.I.\(^b\)	Leaf	Cones	Identification\(^c\)
Tetradecanoic acid	1768	1766	0.4	-	MS, KI, ST
Hinesol acetate	1784	1783	0.2	-	MS, KI
1-Octadecene	1790	1793	0.1	-	MS, KI
Pentadecanoic acid	1867	1863	0.2	-	MS, KI, ST
Isopimara-(9,11),15-diene	1905	1903	0.1	-	MS, KI
Oxacycloheptadecan-2-one	1934	1932	0.3	-	MS, KI
Cembrene	1938	1940	-	0.5	MS, KI
Phytol	1943	1942	0.7	-	MS, KI, ST
Hexadecanoic acid	1968	1968	0.4	-	MS, KI, ST
Sandaracompimara-(8,14),15-diene	1969	1969	-	0.9	MS, KI
Manool oxide	1987	1984	0.6	0.4	MS, KI
1-Eicosene	1988	1986	0.3	-	MS, KI
13-epi-Dolabradiene	2000	2001	-	1.0	MS, KI
Abieta-(8,12)-diene	2022	2020	-	2.3	MS, KI
Kaurene	2043	2041	1.3	-	MS, KI, ST
Abietatriene	2056	2054	0.3	13.1	MS, KI
Abietadiene	2087	2085	2.1	42.5	MS, KI
Neuzkol	2133	2129	0.8	-	MS, KI
Abieta-(8,14),13(15)-diene	2154	2150	0.2	2.6	MS, KI
Sandaracompimarinal	2184	2185	0.3	1.8	MS, KI
Abietal	2313	2314	-	0.8	MS, KI
Ferruginol	2371	2366	10.0	-	MS, KI, ST
Abietol	2401	2399	-	1.2	MS, KI
Compound identified					
Monoterpene hydrocarbon			23.1	15.2	
Oxygenated monoterpene			3.8	2.2	
Sesquiterpene hydrocarbon			33.6	8.4	
Oxygenated sesquiterpene			20.3	5.8	
Diterpene hydrocarbon			3.9	62.9	
Oxygenated diterpene			12.4	4.3	
Others			2.0	-	
Yield (mL/100 g)			1.31 ± 0.06	0.98 ± 0.05	

\(^{a}\)Kováts retention indices on a DB-5 column with reference\(^{18–21}\) to \(\text{n}-\)alkanes.

\(^{b}\)Kováts retention indices, experimental: \(\text{n}-\)alkanes (C\(_9\)-C\(_{24}\)) were used as reference points in the calculation of relative retention indices.

\(^{c}\)MS, NIST and Wiley library spectra, and the literature; KI, Kováts index; ST, authentic standard compounds.

\(^{d}\)Not detected.
was used for quantitative determination of the oil components. The percentage composition of the oil was computed from the GC peak areas without any corrections. Oven temperature was programmed as follows: 50 °C for 2 minutes, rising to 250 °C at 5 °C/min; injector temperature: 270 °C; carrier gas: helium with a flow rate of 1 mL/min; detector temperature: 250 °C, split ratio: 1:10. Diluted samples (1.0 µL, 1/100, v/v, in EA) were injected manually in the split mode. Identification of the oil components was based on their Kováts indices and mass spectra obtained from GC-MS analysis on a HP 6890/HP 5973 equipped with a DB-5 fused silica capillary column (30 m × 0.25 mm × 0.25 µm film thickness, J&W Scientific). The GC analysis parameters are listed above and the MS were obtained (full scan mode: scan time was 0.3 seconds and mass range was \(m/z \) 30-500) in the EI mode at 70 eV. All data were the average of triplicate analyses.

Component Identification

Identification of the essential oil constituents from the leaf and cones was based on comparisons of the Kováts retention indices, and mass spectra with those obtained from authentic standards and/or the NIST and Wiley libraries spectra, and the literature.

Isolation and Purification of Leaf Oil Components

The leaf essential oil (20 g) mixed with silica gel (60 g) (Merck 7734, Merck Co., Germany) was chromatographed on a silica gel open column (600 g) and eluted with a stepped gradient consisting of \(n \)-hex and EA (ranging from \(n \)-hex/EA = 100:0-0:100). The samples collected were screened by thin-layer chromatography (TLC) (Silica gel 60F254, Merck Co., Germany).

Table 2. IC\(_{50}\) and minimum inhibitory concentration (MIC) Values (µg/mL) of Leaf and Cones Oils From Cunninghamia lanceolata Against the Plant Pathogenic Fungi.

Essential oils	Plant pathogenic fungi	\(IC_{50} \)	MIC								
Leaf	**Fusarium oxysporum**	198.5	>500.0	95.3	250	308.9	>500.0	132.1	>500.0	90.3	125
	Rhizoctonia solani	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0
	Pestalotiopsis funerea										
	Colletotrichum gloeosporioides										
	Ganoderma australe										
	Fusarium solani										
Cones	**Fusarium oxysporum**	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0
	Rhizoctonia solani	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0	>500.0
	Pestalotiopsis funerea										
	Colletotrichum gloeosporioides										
	Ganoderma australe										
	Fusarium solani										
According to the antiphytopathogenic fungi activity assay, the CO4 exerted the best antiphytopathogenic fungi activity. Ferruginol, τ-cadinol, and α-cadinol were isolated and purified from CO4 fraction by semipreparative HPLC (column: Si-60 column, mobile phase: EtOAc/n-C₆H₁₄ = 30/70, flow rate: 1 mL/min). Ferruginol (retention time (RT): 14.3 minutes), τ-cadinol (RT: 22.1 minutes), and α-cadinol (RT: 31.2 minutes) were separately obtained. The structures of 3 compounds were confirmed by comparing physical and spectral data (including ¹H-NMR, ¹³C-NMR, and EI-MS) with the previously reported

![Antiphytopathogenic fungi activities of CO1-CO7 fractions (100 µg/mL) against 6 plant pathogenic fungi.](image)

Table 3. Constituents and Contents of CO4 Fraction From Leaf Essential Oil of Cunninghamia lanceolata.

Constituents	K.I.a	K.I.b	CO4 (%)	Identification^c
γ-Muurolene	1479	1477	1.3	MS, KI
Germacrene D	1485	1481	1.6	MS, KI, ST
β-Selinene	1490	1486	0.8	MS, KI
α-Selinene	1498	1494	0.3	MS, KI
γ-Cadinene	1513	1513	0.6	MS, KI
δ-Cadinene	1523	1520	0.9	MS, KI
τ-Cadinol	1640	1640	30.5	MS, KI
α-Muurolol	1646	1645	0.2	MS, KI, ST
α-Eudesmol	1653	1652	0.3	MS, KI
α-Cadinol	1654	1654	29.8	MS, KI, ST
Kaurene	2043	2041	2.1	MS, KI, ST
Sandaracompimarinal	2184	2185	0.1	MS, KI
Ferruginol	2371	2366	30.8	MS, KI, ST
Identified components (%)	99.3			

^aKováts retention indices on a DB-5 column with reference to n-alkanes.18–21
^bKováts retention indices, experimental: n-alkanes (C₉-C₂₄) were used as reference points in the calculation of relative retention indices.
^cMS, NIST and Wiley library spectra, and the literature; KI, Kováts index; ST, authentic standard compounds.
values. Ferruginol: Yellow oil, EI-MS for C_{20}H_{30}O (EI-MS: 286), \(^1\)H NMR (in CDCl\(_3\)): \(\delta\) (ppm) 0.88 (3H, s, H-18), 0.91 (3H, s, H-19), 1.16 (3H, s, H-20), 1.22 (3H, d, \(J = 7.0\) Hz, H-16), 1.30 (3H, d, \(J = 7.0\) Hz, H-17), 2.76 (1H, ddd, \(J = 17.0, 10.5, 7.0\) Hz, H-7a), 2.83 (1H, ddd, \(J = 2.0, 6.5, 17.0\) Hz, H-7b), 3.13 (sept, \(J = 7.0\) Hz, H-15), 6.62 (1H, s, H-11), 6.83 (1H, s, H-14); \(^{13}\)C NMR: \(\delta\) (ppm) 19.10 (C-6), 19.19 (C-2), 21.45 (C-19), 22.52 (C-16), 22.68 (C-17), 24.63 (C-20), 26.48 (C-15), 29.61 (C-7), 33.16 (C-18), 33.21 (C-4), 37.26 (C-10), 38.65 (C-1), 41.58 (C-3), 50.21 (C-5), 110.88 (C-11), 126.46 (C-14), 126.25 (C-8), 131.68 (C-13), 148.18 (C-9), 150.96 (C-12). \(\tau\)-Cadinol: Yellow oil, EI-MS for C_{15}H_{26}O (EI-MS: 222), \(^1\)H-NMR (in CDCl\(_3\)): \(\delta\) (ppm) 0.75 (d, \(J = 7.0\), H-12), 0.87 (d, \(J = 7.0\), H-13), 1.16 (s,H-14), 1.68 (s, H-15), 2.15 (m, H-11) 5.50 (s, H-4). \(^{13}\)C-NMR: \(\delta\) (ppm) 15.10 (C-12), 20.76 (C-14), 21.50 (C-13), 22.00 (C-1), 22.66 (C-7), 23.80 (C-15), 26.02 (C-11), 30.96 (C-2), 39.86 (C-5), 42.21 (C-6), 46.75 (C-6), 50.06 (C-10), 72.46 (C-9), 122.33 (C-4), 134.95 (C-3).

Antiphytopathogenic Fungi Activity Assays

The plant pathogenic fungi used were *F. oxysporum* f. sp. melonis Snyder & Hansen (BCRC32121), *R. solani* Kuhn (BCRC31626), *P. funerea* (Desmazieres) Steyaert (BCRC35266), *C. gloeosporioides* Penzig (BCRC35003), *Ganoderma australe* (Fries) Paterson

![Antifungal index](image)

Figure 3. Antiphytopathogenic fungi activities of 3 compounds (100 µg/mL) from *Cunninghania lanceolata* leaf oil against 6 plant pathogenic fungi.

Compound	*F. oxysporum* IC_{50}	*F. oxysporum* MIC	*R. solani* IC_{50}	*R. solani* MIC	*P. funerea* IC_{50}	*P. funerea* MIC	*C. gloeosporioides* IC_{50}	*C. gloeosporioides* MIC	*G. australe* IC_{50}	*G. australe* MIC	*F. solani* IC_{50}	*F. solani* MIC
\(\tau\)-Cadinol	93.2	500	58.3	250	80.3	500	58.2	250	48.3	125	40.1	125
\(\alpha\)-Cadinol	38.1	125	29.2	62.5	40.1	125	10.8	62.5	40.8	125	30.8	62.5
Ferruginol	21.5	62.5	26.8	62.5	69.3	250	39.8	125	28.6	62.5	39.1	250
control plate, the antifungal index was calculated as follows:

\[
\text{Antifungal index (\%) = (1 - D_s/D_b) \times 100}
\]

where \(D_s \) is the diameter of the growth zone in the experimental dish (cm) and \(D_b \) is the diameter of the growth zone in the control dish (cm).

Each test was repeated 5 times and the data were averaged. The IC\(_{50}\) values (the concentration in mg/mL that inhibited 50% of mycelium growth) were calculated by a probit analysis.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: We appreciate the financial support (108-2313-B-002-022 and 109-2313-B-002-010) for the research, authorship, and/or publication of this article.

ORCID ID

Chen-Lung Ho https://orcid.org/0000-0002-0354-034X

References

1. Atiqur R, Sharif MA, Sun CK. Antifungal activity of essential oil and extracts of *Piper chaba* Hunter against phytopathogenic fungi. *J Am Oil Chem* 2011;88:573-579.
2. Lopez-Reyes JG, Sparado D, Prele A, Garibaldi A, Guilino ML. Efficacy of plant essential oils on postharvest control of rots caused by fungi on different stone fruits in vitro. *J Food Prot.* 2013;76(4):631-639. doi:10.4315/0362-028X-JFP-12-342
3. Goussous SJ, Abu el-Samen FM, Tahhan RA. Antifungal activity of several medicinal plants extracts against the early blight pathogen (*Alternaria solani*). *Arch Phytopathol Plant Protect.* 2010;43(17):1745-1757. doi:10.1080/03235401003633832
4. Vespermann A, Kai M, Piechulla B. Rhizobacterial volatiles affect the growth of fungi and *Arabidopsis thaliana*. *Appl Environ Microbiol.* 2007;73(17):5639-5641. doi:10.1128/AEM.01078-07
5. Zou C-S, Mo M-H, Yu Y-Q, Zhou J-P, Zhang K-Q. Possible contributions of volatile-producing bacteria to soil fungistasis. *Soil Biology and Biochemistry.* 2007;39(9):2371-2379. doi:10.1016/j.soilbio.2007.04.009
6. Garbeva P, Hordijk C, Gerards S, de Boer W. Volatile-mediated interactions between phylogenetically different soil bacteria. *Front Microbiol.* 2014;5:289 doi:10.3389/fmicb.2014.00289
7. Garbeva P, Hordijk C, Gerards S, de Boer W. Volatiles produced by the mycophagous soil bacterium *Collimonas*. *FEBS Microbial Ecol.* 2014;87(3):639-649. doi:10.1111/1574-6941.12252
8. Hsu K-P, Ho C-L. Antimildew Effects of *Plectranthus amboinicus* Leaf Essential Oil on Paper. *Nat Prod Commun.* 2019;14(7):1-6. doi:10.1177/1934578X19862903
9. Su Y-C, Hsu K-P, Ho C-L, Composition HC-L. *Composition, in vitro* anti-inflammatory, antioxidant and antimicrobial activities of the leaf essential oil of *Machilus konishii* from Taiwan. *Nat Prod Commun.* 2016;11(9):1363-1366.
10. Yang YP, Liu HY. *Manual of Taiwan Vascular Plants*. Council of Agriculture, Executive Yuan, Taiwan; 1999.
11. Shieh JC, Sumimoto M. Identification of the volatile components in the leaves and wood of *Cunninghamia lanceolata*. *J For Ag Kyushu* U. 1992;36(3-4):301-310.
12. Shieh JC, Sumimoto M. Antifungal wood component of *Cunninghamia lanceolata*. *Mokuzai Gakkaiishi*. 1992;38(5):482-489.
13. Shieh JC, Hwang SG, Sumimoto M. Cultivation of shiitake mushrooms on the logs of a conifer, *Cunninghamia lanceolata*. *Mokuzai Gakkaiishi*. 1991;37(5):266-274.
14. Chung M-J, Cheng S-S, Lin C-Y, Chang S-T. Profiling of volatile compounds from five interior decoration timbers in Taiwan using TD/GC–MS/FID. *J Wood Sci*. 2018;64(6):823-835. doi:10.1007/s10086-018-1773-1
15. Schmidt E, Huang LT, Dai DN, Thang TD, Warner J, Jirovetz L. Analysis and olfactory description of four essential oils from Vietnam. *Nat Prod Commun.* 2016;11(10):1551-1554. doi:10.1177/1934578X1601101032
16. Wang J, JA L, SJ L, Freitag C, Morrell JJ. Antifungal activities of *Cunninghamia lanceolata* heartwood extractives. *Bioresources*. 2011;6(1):606-614.
17. Wang S-Y, Wang Y-S, Tseng Y-H, Lin C-T, Liu C-P. Analysis of fragrance compositions of precious coniferous woods grown in Taiwan. *Holzforschung*. 2006;60(5):528-532. doi:10.1515/HF.2006.087
18. Adams RP. *Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry*. 4th ed. Carol Stream, IL, USA: Allured Publishing; 2007.
19. Massada Y. *Analysis of Essential Oil by Gas Chromatography and Spectrometry*. Wiley Publishing; 1976.
20. Leffingwell JC, Alford ED. Volatile constituents of perique tobacco. *J Environ Agric Food Chem.* 2005;4:899-915.
21. Senatore F, Rigano D, De Fusco R, Bruno M. Composition of the essential oil from flowerheads of *Chrysanthemum coronarium* L. (Asteraceae) growing wild in Southern Italy. *Flavour Fragr J.* 2011;6(1):606-614.
22. Calocedrus macrolepis var. *formosana* florin leaf against plant
pathogenic fungi. Bioresour Technol. 2008;99(14):6266-6270. doi: 10.1016/j.biortech.2007.12.005

24. Ho C-L, Hua K-F, Hsu K-P, Wang EI-chen, Su Y-C. Composition and antipathogenic activities of the twig essential oil of Chamaecyparis formosensis from Taiwan. Nat Prod Commun. 2012;7(7):933-936.

25. Kofujita H, Fujino Y, Sasaki T, Hasebe M, Ota M, Suzuki K. Antifungal activity of the bark of Cryptomeria japonica and its relevant components. Mokuzai Gakkaishi. 2001;2001(47):479-486. [in Japanese].

26. Chang S-T, Wang S-Y, Wu C-L, Chen P-F, Kuo Y-H. Comparison of the antifungal activity of Cadinane skeletal sesquiterpenoids from Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung. 2000;54(3):241-245. doi:10.1515/HF.2000.041

27. Lin YT, Kuo YH, Chang BH. Studies on the Extractive Constituents of the Bark of Libocedrus Formosana Florin. II. J Chin Chem Soc. 1975;22(4):331-334. doi:10.1002/jccs.197500043

28. Ho C-L, Hsu K-P, Tseng Y-H, et al. Composition and antifungal activities of the leaf essential oil of Litsea coreana from Taiwan. Nat Prod Commun. 2010;5(10):1677-1680.