ABSTRACT
This study was aimed to isolate soil fungi from agriculture soil and study their roles in the biodegradation of carbendazim fungicide at different concentrations were explored for two periods of incubation. Results showed the highest degradation rates of carbendazim at 4 part per million (ppm) concentration were observed by using single culture of Aspergillus niger (69.66% and 99.96% after 10 and 20 days, respectively). In the mixed cultures of Exerohilum sp., Fusarium sp., and A. niger, the maximum degradation rate (98.34%) was achieved at the same concentration after 10 days. The mixed culture of Exerohilum sp. and Fusarium sp. demonstrated the highest degradation rates of (92.14% and 55.74%) at 8 and 12 ppm concentrations, respectively, after 10 days of incubation.

Keywords: Carbendazim, soil fungi, biodegradation, mixed cultures

CARBENDAZIM
قابلية بعض الفطريات على التكسير الحيوي للمبيد الفطري

شيماء سعيد رحيم مصطفى عبد الوهاب الدوسري حامد طالب السعد
باحث استاذ مساعد استاذ

المستخلص
يهدف هذا البحث إلى عزل بعض فطريات التربة ودراسة دورها كعزلات مفردة ومختلطة في التكسير الحيوي للمبيد الفطري كاربنزايم ويتراكيز مختلفة والفطريات زميتين من الحصن. أظهرت النتائج أن أعلى نسبة تكسير حيوي للمبيد الفطري في تركيز 4 جزء بالمليون لوحظت في المزرعة المفردة للفطر Aspergillus niger وكانت (69.66% و 99.96%) على التتابع بعد 10 و 20 يوم من الحصن. أما المزرعة الفطرية المكونة من الفطرتين Fusarium و A. niger Exerohilum sp. فقد سجّلت أعلى نسبة تكسير حيوي وبلغ (98.34%) بعد 10 أيام من الحصن ولنفس التركيز السابق. سجّلت المزرعة المختلطة للفطريات Fusarium sp. و Exerohilum sp. فضّلت سجّلت أعلى نسبة تكسير حيوي بلغ (92.14% و 55.74%) بتركيز 8 و 12 جزء بالمليون على التوالي بعد عشرة أيام من الحصن.

الكلمات المفتاحية: كاربنزايم، فطريات التربة، التكسير الحيوي، عزلات مختلطة.

Received: 25/2/2020, Accepted: 19/5/2020
INTRODUCTION

Pests (viruses, nematodes, fungi and bacteria i.e.,) and diseases can affect crops, thereby decreasing the economic outputs of farms. Disease organisation and prevention are best performed through integrated pest management using combined methods, which involve the use of pesticides (18,23,24,27, 28). Carbendazim fungicide (methyl 1 H-benzimidazol-2-ylcarbamate) is a systemic wide-spread benzimidazole used in managing a broad range of pathogenic fungi affecting various plants and treating infected soil (11,12,39). World health organization categorised carbendazim as a dangerous chemical, as one of the main contaminants frequently detected in food and the environment, carbendazim has severe effects on humans and other forms of life because of its low degradation rate and persistence in soil and water for prolonged periods, which may reach 12 months (25,32,37). Carbendazim accumulates in the environment after frequent use and negatively influences soil nature and human health (4). Therefore, alternative approaches must be developed for the management of fungicide contamination. In general, conventional treatment is nearly ineffective in pesticide removal because of the toxicity of pesticides (26,33). Many microorganisms, including fungi, play an important role in the degradation of unwanted compounds or wastes and convert them into safe, acceptable, or valuable products. The application of fungal technology for the clean-up of contaminants has shown promise since 1985 (5, 6 , 19 , 20). Several previous studies deal with the biodegradation of carbendazim by fungi such as (2,3,17). Given the widespread use of this fungicide and its harmful impact on the environment, the current study was conducted for the investigation of the role and capability of some soil fungi in the degradation of this pollutant and remove it from the soil.

MATERIALS AND METHODS

Samples collection

Soil samples from four agricultural areas were collected. From each area, six soil samples were collected from the surface layer (0-15cm) . All soil samples were air dried and stored in sterile plastic bags at 4 °C until use. Carbendazim residues in soil samples were determined (Table1) as described previously by (10).

No. of station	Name of station	Range µg/g	Mean µg/g	±St.D	Longitude	Latitude
St.1	Abu-Al-Kaseeb	0-2.67	1.615	0.961	N: 30° 27' 28"	E: 47° 58' 40"
St.2	Al-Hartha	0.58-1.92	1.200	0.480	N: 30° 38' 46"	E: 47° 45' 3"
St.3	Al-Zubair	0.46-2.09	1.291	0.555	N: 30° 25' 57"	E: 47° 41' 2"
St.4	Shatt-Al-Arab	0-3.05	0.931	1.215	N: 30° 34' 9"	E: 47° 48' 58"

Culture media

Three types of culture media, namely, malt extract agar (MEA), corn meal agar (CMA) and potato dextrose agar (PDA, Hi Media Company, India), were used for the cultivation and preservation of fungal isolates. In the biodegradation experiments, a Czapeks-Dox broth medium was used. This medium was prepared as follows: FeSO₄•2H₂O, 0.1 g; MgSO₄•7H₂O, 0.1 g; KCl, 0.5 g; K₂HPO₄, 1 g; NaNO₃, 3 g; sucrose, 30 g; were weight and dissolved in one liter of D.W., all media were sterilised by autoclaving at 121 °C under 15 pounds/inch² for 15 min.

Chemicals

Carbendazim was purchased from (Toronto company, Canada). A standard stock solution from its 2000 ppm concentration was prepared by dissolving 2 mg of the standard in 1ml of dimethyl sulfoxide and stored until use at 4 °C. Residual pesticides from liquid media or soil were extracted using solvents and chemicals purchased from Biosolve (France), J. T. Baker (Germany) and Himedia (India).

Fungal isolation and identification

Fungi were isolated from soil samples through the dilution method (38). Approximately 10 g from each soil sample was added to 90 ml of sterile physiological saline in a 250 mL flask to 10⁻¹ dilution, from which a serial dilution of up to 10⁻⁸ was prepared. From each dilution, 1 ml was transferred to sterile petridishes. MEA, CMA and PDA were then added separately to each sample. Furthermore, 250 mg/l chloramphenicol was added for each media to inhibit bacterial growth. All the
culture media were incubated for 7–14 days at 25± 2 °C. The fungi were purified and identified on the basis of their morphological features depending on (14,30). A live culture from each fungal species was transferred to a PDA slant and stored at 4 °C until use.

Preliminary screening for fungal isolates
The ability of fungi to tolerate different concentrations of carbendazim was tested as previously described by (1). Firstly, all the fungi were activated by culturing them on PDA media. The PDA media which was supplemented with 1, 2 and 3 ppm carbendazim were inoculated by a piece obtained by a 6 mm cork borer from each fungal isolate. The culture medium without fungicide served as the control. The experiment was performed in triplicate for each fungi and concentration. All of the plates were incubated for 7 days at 25 ± 2 °C. The tolerance of fungi to carbendazim was calculated as follows (16):

\[
\text{Inhibition \%} = \left(\frac{\text{the growth in control (mm)} - \text{the growth in test (mm)}}{\text{the growth in control (mm)}} \right) \times 100
\]

Ability of single isolate to biodegrade carbendazim: The biodegradation of carbendazim in liquid medium at 4 ppm for two periods (10 and 20 days) was performed as previously described by (3) by using fungi showing maximum resistance against carbendazim in the previous test. Conical flasks (250 ml) containing 100 ml of Czapek-Dox broth with 4 ppm carbendazim were inoculated with a piece from the fungal isolates previously selected using a 6 mm cork borer. The experiment was performed in triplicate for each fungi. The flasks were then incubated in a shaker incubator at 120 rpm, 25 °C for 10 and 20 days. To exclude contamination, a control flask containing 4 ppm carbendazim without any fungi were prepared.

Ability of mixed cultures to biodegrade carbendazim: Depending on the results of the prior experiments, three fungal isolates that demonstrated excellent degradation rates were selected, and their capability to degrade carbendazin in mixed culture for 10 days was studied as previously described by (8). Conical flasks (250 ml) containing 100 ml of Czapek-Dox broth with 4, 8 or 12 ppm carbendazim were used in the degradation tests. The flasks were inoculated with a mixture of the three fungal isolates following a previously described method. All possible mixtures were prepared.

Extraction and quantification of carbendazim residues: Carbendazim residues were extracted from the single and mixed liquid cultures with 100 ml of dichloromethane in a separating funnel, shook well numerous times and left to settle until two layers were formed; the organic layer was obtained, and residual water was removed by passing the organic layer in anhydrous sodium sulphate (3). The extract was stored in clean container at 4 °C until analysis.

HPLC analysis: The extract samples were injected in an High-performance liquid chromatography (HPLC) type Shimadzu LC solution equipment for the identification and quantification of carbendazim residues. The column was C18 (250 mm, 25 cm, 4.6 mm), the mobile phase consisted of acetonitrile/water (90:10 v/v), the flow rate was 0.5 ml/min, the injection volume was 20 µl and the UV/vis wavelength was 254 nm. The carbendazim degradation percentage was calculated as follows (21):

\[
\text{Degradation \%} = \left(\frac{\text{ppm of pesticide in control} - \text{ppm of pesticide in test}}{\text{ppm of pesticide in control}} \right) \times 100
\]

Statistical analysis
One-way ANOVA was applied using the Minitab ver.16. Relative least significant difference (RLSD) values were calculated for the identification of significant difference in fungal degradation rate. A complete randomised design was employed.

RESULTS AND DISCUSSION

Fungal identification: A total of 23 fungal species belonging to 11 genera were isolated from the soil samples (Table 2). The number of isolated fungi was moderate compared with other studies on agricultural soils. One of the possible reasons was high air temperature, which may have reached 50 °C and negatively affected fungal growth in soil, during the
isolation periods; the use of different fungicides also negatively affected their growth (15, 36). Anamorphic fungi came in the first position in their appearance, This finding was in accordance with other studies (13,29) ; this group of fungi have good resistance to harsh environments and produce a large number of reproductive cells; these features enable them to readily diffuse in all environments (29).

Table 2. Numbers and Occurrence (%) of the Fungal Species Isolated from soil samples

No	Species	N. of samples appeared in	Occurrence %
1	Alternaria alternata	6	25
2	Alternaria sp.	8	33.3
3	Aspergillus candidus	15	62.5
4	A. flavus	9	37.5
5	A. fumigatus	17	70.8
6	A. niger	24	100
7	A. terreus	12	50
8	A. versicolor	6	25
9	A. wentii	1	4.1
10	Chaetomium elatum	1	4.1
11	C. globosum	2	8.3
12	C. madransense	4	16.6
13	C. semon-citilli	2	8.3
14	Cladosporium herbarum	4	16.6
15	Exserohilum sp.	5	20.8
16	Fusarium sp.	4	16.6
17	Humicola grisea	1	4.1
18	Microascus trigonosporus	8	33.3
19	Myrothecium gramineum	1	4.1
20	Penicillium sp1.	5	20.8
21	Penicillium sp2.	2	8.3
22	Stachybotrys sansevieria.	1	4.1
23	Ulocladium sp.	6	25

Preliminary screening
The growth rates of some fungal species, including Aspergillus flavus, A. fumigatus, Exserohilum sp. and Ulocladium sp., were unaffected and grew well at all concentrations, achieving 0% inhibition rate. By contrast, some fungal species that were unable to tolerate carbendazim at different concentrations showed inhibition rates ranging from 7.55 to 91.17 (Table 3, Figs 1 and 2). Carbendazim in solid medium was allowed to degrade for the selection of the best degrading species and exclusion of non-degrading species. The results showed the variable inhibition rates of fungal groups and species related to the same genus possibly because of the enzymatic activity of each species and their tolerance to fungicide (16). The tolerant nature of some fungi, such as A. fumigatus and A. flavus, are suspected to be due to their adaptation to environmental stress caused by the repeated incorrect use of pesticides. This result is similar to previous findings (16,19,21,34). statistically significant differences (p<0.01) were shown in the ability of fungi to tolerate different carbendazim concentrations.

Fig. 1-Growth of Exserohilum sp. at 1,2and 3ppm of carbendazim, the growth was completely not affected when compared with control.
fungi showed degradation rates ranging from 38.30% to 60.50% (Fig. 3). The six isolates showed good degradation rates ranging from (93.52%) for A. fumigatus with the highest residual concentration (0.136µg/ml) to (99.96%) for A. niger with the lowest residual concentration (0.0007 µg/ml, Fig. 4) after 20 days. These fungi showed heavy mycelial growth in contrast to other species and the control, which may cause increase in contact between the fungal cells and pesticide molecules in the media. Such increase accelerates the pull and entry of pesticides inside cells or promotes contact between pesticides and extracellular enzymes secreted by fungi; thus, degradation rate also increases (16,19, 22). Statistical analysis showed no significant differences (p˃0.05) in the residual concentration and degradation rate during the 10 days. However, significant differences in degradation rate and residual pesticide concentration were found after 20 days (p<0.01). Significant differences (p<0.01) in the degradation rate of carbendazim pesticide at 4ppm between 10 and 20 days were also observed.

Table 3. preliminary test of fungi against carbendazim

No.	Species	Control (mm)	Colony diameter (mm) at different concentrations of carbendazim(µg/ml)	Inhibition % at different concentrations of carbendazim	Inhibition mean						
		1ppm	2ppm	3ppm	1ppm	2ppm	3ppm				
1	Aspergillus flavus	85	85	85	85	0	0	0		0a	
2	A. fumigatus	85	85	85	85	0	0	0		0a	
3	Exserohilum sp.	85	85	85	85	0	0	0		0a	
4	Ulocladium sp.	85	85	85	85	0	0	0		0a	
5	Fusarium sp.	75	69.5	70	68.5	7.33	6.66	8.66	7.55	7.55a	
6	A. niger	85	85	75	67.5	0	11.76	20.58	10.78	10.78a	
7	Microascus trigonosporus	50	33.5	28.5	26.5	33	43	47	41.33	41.33bc	
8	Alternaria sp.	50	41.5	26	16	17	48	68	44.33	44.33bc	
9	A. alternata	25	15	14	5	40	44	80	54.67	54.67cdef	
10	Stachybotrys sansevieria	30	19.5	11.5	8.5	35	61.66	71.66	56.11	56.11cdef	
11	Cheatongium semon-citrilli	25	13	10	8.5	48	60	66	58	58defg	
12	C. elatum	25	13	10	8.5	48	60	66	58	58defg	
13	C. globosum	25	13	10	8.5	48	60	66	58	58defg	
14	Myrothecium gramineum	54	31.5	20	11.5	41.66	62.62	78.70	61.10	61.10efgh	
15	Penicillium sp.1.	78	49	24.5	11.5	37.17	68.58	85.25	63.67	63.67efgh	
16	Penicillium sp.2.	85	20.5	34	18.5	75.88	60	78.23	71.37	71.37efgh	
17	Cladosporium herbarum	26	8.5	7	5.5	67.30	73.07	78.84	73.07	73.07efgh	
18	Humicola grisea	85	36	20.5	11.5	57.64	75.88	86.47	73.33	73.33bc	
19	A. candidus	78	12.5	10.5	8.5	83.97	86.53	89.10	86.53	86.53h	
20	A. wentii	75	10.5	9	6.5	86	88	91.33	88.44	88.44a	
21	A. vesicolor	77.5	10.5	9	7	86.45	88.38	90.96	89.10	89.10a	
22	C. madransense	41	4.5	4	4	89.02	90.24	90.24	89.78	89.78a	
23	A. terreus	85	9.5	7.5	5.5	88.82	91.17	93.52	91.17	91.17a	
Fig. 3. Biodegradation of Carbendazim by Single fungal Isolates at 4ppm for 10 day (p>0.05).

Fig. 4. Biodegradation of Carbendazim by Single fungal Isolates at 4ppm for 20 days (p<0.01).

Biodegradation of carbendazim by mixed cultures: The fungi that showed the excellent biodegradation ability in the previous experiment, namely, (A) *Exerohilum* sp., (B) *Fusarium* sp. and (C) *A. niger*, were used as mixed culture, and all possible mixtures were prepared. Mixture AB demonstrated the maximum residual concentration of 0.120 µg/ml at 4ppm and the lowest biodegradation rate of 94.28%. However, mixture ABC exhibited the lowest residual concentration (0.034µg/ml) and highest degradation rate of (98.34%, Fig. 5). All of the mixed isolates enhanced the biodegradation rate of carbendazim as compared with single isolates at 4ppm for 10 days. This result indicates that concentration did not greatly affect the fungi and the fungi adapted to grow in pesticide-contaminated soil; the fungi may have adapted through their synergistic effects when they grew together (35) thus, fungi enhances the biodegradation and removal of pesticides in the environment (14,35,41). By contrast, at 8and12ppm, variable degradation rates were observed among the mixed cultures, so as fungicide concentration increased, degradation rate decreased. This result indicated that increasing fungicide concentration negatively affects fungal growth and degradation rate. Mixture AB (*Exerohilum* sp. *+Fusarium* sp.) showed the highest degradation rate in both concentrations, at 8ppm, the mixture ABC showed the lowest degradation rate (53.99%), whereas mixture AB demonstrated the highest degradation rate (92.14%, Fig. 6). At 12 ppm, the results showed that mixture AB also achieved the lowest residual concentration of (3.024 µg/ml) and the highest degradation rate of (55.74%). Furthermore, mixture ABC showed the highest residual concentration of 4.479µg/ml with the lowest degradation rate of 34.44% (Fig. 7). It was appeared that mixture AB formed good growth and turbidity in the media possibly because of the synergistic enzymatic activities of the species. A single species cannot completely degrade pesticides at high concentrations, whereas the presence of two or more species may enhance biodegradation rate (35). Other mixtures did not enhance the biodegradation rate. However, some mixed isolates exhibited lower degradation rates than their corresponding single isolates possibly because of the antibiosis between the species in the media. This mechanism may have inhibited their growth and affected the degradation rate; furthermore, competition for nutrients in the media may have negatively affected the biodegradation rate (9,31). These findings are consistent with those of previous
Significant differences among the residual concentrations of pesticides of the media with 4, 8 or 12 ppm fungicide concentrations (p<0.01) and among the degradation rates after 10 days (p<0.01) were observed.

Fig. 5. Biodegradation of Carbendazim by Mixed fungal Isolates at 4 ppm for 10 days (p<0.01). Where A: Exerohilum sp., B: Fusarium sp., C: A. niger

Fig. 6. Biodegradation of Carbendazim by Mixed fungal Isolates at 8 ppm for 10 days (p<0.01). Where A: Exerohilum sp., B: Fusarium sp., C: A. niger

Fig. 7. Biodegradation of Carbendazim by Mixed fungal Isolates at 12 ppm for 10 days (p<0.01). Where A: Exerohilum sp., B: Fusarium sp., C: A. niger

CONCLUSIONS
Most of the isolated fungi exhibit a good growth and tolerated the carbendazim concentration in the primary screening. As single isolate the fungus A. niger exhibited a high degradation potential with the ability to degrade 69.66% and 99.96% of total carbendazim fungicide after 10 and 20 days of incubation. As mixed isolates the mixture ABC exhibit a good degradation potential at 4ppm concentration with 98.34% degradation percentage. Where at 8 and 12 ppm, the mixture AB demonstrated the highest degradation rate with 92.14% and 55.74% respectively.

Acknowledgement
We thank the Ecology Department, College of Science and Marine Science Centre, University of Basra, for supporting this study

REFERENCES
1. Abd El-Ghany, T.M., and I.A. Masmali, 2016. Fungal biodegradation of organophosphorus insecticides and their impact on soil microbial population. J. Plant. Pathol.Microbiol. 7(5):1-7.
2. Ahlawat, O.P., P. Gupta, S. Kumar, D.K. Sharma, and K. Ahlawat, 2010. Bioremediation of fungicides by spent mushroom substrate and its associated microflora. Indian J. Microbiol. 50(4):390-395
3. Ashour, E., A. Ahmed, A.S. Al-Meshal, M.W. Sadik, and N.S. Essam, 2013. Biodegradation of herbicide glyphosate by fungal strain isolated from herbicides polluted soils in the Riyadh area. Int. J. Curr. Microbiol. App. Sci. 2(3):359-381
4. Banyiova, K., A. Necasova, J. Kohoutek, I. C. Justin, and P. Cupr, 2016. New experimental data on the human dermal absorption of simazine and carbendazim help to refine the assessment of human. Environ. Chem. Lett. expo. Chemosphere. 145:148–156.
5. Bastos, A.C., and N. Magan, 2009. Trametesversicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int. Biodet. Biodeg. 63: 389-394.
6. Canet, R., J.G. Birnstingl, D.G. Malcolm, J. M. Lopez-Real, and A.J. Beck, 2001. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Biore.Tecnol. 76:113-7.
7. Chauhan, A., and J.Singh, 2015. Biodegradation of DDT. J Text. Sci. Eng. 3: 1-5.
8. Cycon, M., and Z. Piotrowska-Seget, 2016. Pyrethroid-Degrading microorganisms and their potential for the bioremediation of contaminated soils: A review. Front. Microbiol. 7: 1-26.
9. Cycon, M., A. Zmijowska, and Z. Piotrowska-Seget, 2014. Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. Int. J. Environ. Sci. Tech. 11:1305–1316
10. EPA. U.S. Environmental Protection Agency. 2007. Method 1699: Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS,1200 Pennslyvania Avenue NW, Washington, pp: 2046.
11. Fang, H., Y.Wang, C. Gao, H. Yan, B.Dong, and Y. Yu, 2012. Isolation and characterization of Pseudomonas sp. CBW capable of degrading carbendazim. Biodegradation .21:939–946
12. Goodson, W.H., L. Lowe, D.O. Carpenter, M. Gilbertson, A.M. Ali, and S.A.L. De-Certain, 2015. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. J. Carcinog. 36:254–296
13. Guarro, J., J. Gene, A.M. Stachigel, and J. Figueras, 2012. Atlas of soil Ascomycetes, CBS-KNAW Fungal Biodiversity Center Utrecht. Netherland, pp :997.
14. Harish, R., M. Supreeth, and J.B. Chauhan, 2013. Biodegradation of organophosphate pesticide by soil fungi. Adv. Bio.Tech. 12 (9):1-8.
15. Isabel, F., P. Ccludia, G. Helena, P. Rute, S. Ines, and C. Fernanda, 2012. Higher temperatures reduces the effects of litter quality on decomposition by aquatic fungi. Freshwater Bio. 57 (11):2306-2317
16. Jain, R., V. Garg, and D.Yadav, 2014. In vitro comparative analysis of MCP degrading potential of Aspergillus flavus, Fusarium pallidoroseum, and Macrophomina sp. Biodegradation. 25: 437-46.
17. Javaid, M.K., M. Ashiq, and M.Tahir, 2016. Potential of biological agents in the decontamination of agriculture soil. J. Scientifica. 2016:1-9
18. Juber,K.S., S.B.AL-Juboory and A.A.AL-Samaraaya,2006.Evaluation of switch fungicide residue in the grape fruits in the field and cold storage.Iraq.J.Agri.Scie. 37(1):137-142.(In Arabic).
19. Kubba, J.A., I. S. H. Al Zubaedi, E.Abid Salih, and A.S.Al Saadl, 2016. Evaluation of the cellulytic fungi isolated from agricultural wastes producing of bioethanol. Iraq. J.Agri. Scie. 74(4):1111-1114
20. Magan, N. 2007. Ecophysiology: impact of the environment on growth, synthesis of compatible solutes, and enzyme production. In: Boddy, L.; Frankland, J.C. and van W. P., Ed. Ecology of saprotrophic basidiomycetes. Amsterdam: Elsevier Ltd. pp: 55.
21. Mohiddin, F.A., and M.R Khan, 2013. Tolerance of fungal and bacterial biocontrol agents to six pesticides commonly used in the control of soil-borne plant pathogens. Afr. J. Res. 8(43): 5331-5334.
22. Nath, M.M., R. Chalamala, and M.G. Prasad, 2012. Mycodegradation of malathion by a soil fungal isolate, Aspergillus niger. Int. J. Basic App. Chem. Sci. 2(1):108-115.
23. Pérez-Villanueva, M., and J.S.Chin-Pampillo, 2017. Removal of carbamates and
detoxification potential in a biomixture: fungal bioaugmentation versus traditional use. Ecotox. Enviro.Safety. 135 :252–258
24. Pourreza, N., S. Rastegarzadeh, and A. Larki, 2015. Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV–vis spectrophotometry. J.Talanta. 134:24–29
25. Qiu, X., W. Zeng, W. Yu, Y. Xue, Y. Pang, X. Li, and X. Li, 2015. Alkyl chain cross-linked sulfobutylated lignosulfonate: a highly efficient dispersant for carbendazim suspension concentrate. Chem. Eng. 3: 1551–1557
26. Rajeswari, R., and S. Kanmani, 2009. TiO2-based heterogeneous photocatalytic treatment combined with ozonation for carbendazim degradation. Iran J. Environ. Heal. Sci. Eng. 6:61–66.
27. Rodríguez-Rodríguez, C. E., K. Madrigal-León, M. Masís-Mora, M. Pérez-Villanueva, and J. S. Chin-Pampillo, 2017. Removal of carbamates and detoxification potential in a biomixture: Fungal bioaugmentation versus traditional use. J.Ecoto. Envi.Safe.135 : 252–258
28. Said, I. A., and D. M. A. Jaff, 2020. Evaluation of chevalier WG and atlantis OD herbicides to control weeds in winter wheat fields. Iraq.J.Agri. Scie. 51(special issue):96-100
29. Serna-Chavez, H.; Fierer, N. and Van-Bodegom, P. M. 2013. Global drivers and patterns of microbial abundance in soil. Glob. Ecol. Biogeogr. .22: 1162–1172.
30. Seifert, K., G.M. Jones, W. Games, and B. Kendrick, 2011. The Genera of Hyphomycetes, CBS-KNAW Fungal Biodiversity Center Utrecht. Netherland. pp:485.
31. Singh, H. 2006. Mycoremediation: Fungal Bioremediation. John Wiley and Sons Inc, New Jersey. p p: 35.
32. Singh, S., N. Singh, V. Kumar, S.Datta, A. Wani, D. Singh, K. Singh, and J. Singh, 2016. Toxicity, monitoring, and biodegradation of the fungicide Carbendazim. Environ. Chem. Lett. 14(3):317-329.
33. Soyeb, A., M. Suchanda, G.K. Ghosh, P.K. Biswas, and M.C. Kundu, 2016. Effect of pesticides on mineral nitrogen content and soil microbial population in a lateritic soil of West Bengal. Int.J. Pla., Ani. Environ. Sci. 6(3):27–32.
34. Thabit, T.M.A. and M. H. El-Naggar, 2014. Potential impact of some soil-borne fungi on biodegradation of some organophosphorous nematicides. Amer. J. Environ. Prot. 3(6): 299-304
35. Tripathi, P., P.C. Singh, A. Mishra, P.S. Chauhan, S. Dwivedi, R.T. Bais, and R.D. Tripathi, 2013. Trichoderma: a potential bioremediation for environmental clean up. Clean Tech. Environ. Pol. 15(4): 541-550.
36. Vacher, C., D. Vile, E. Helion, D. Piou, and D. Marie-Laure, 2008. Distribution of parasitic fungal species richness: influence of climate versus host species diversity. Biodiversity Res. 14: 786-798.
37. Wang, H., Y. Yang, L. Huang, S. Zhang, Y. He, Q. Gao, and Q. Ye, 2017. Effects of superabsorbent polymers on the fate of fungicidal carbendazim in soils. J. Haza. Mat. 328: 70–79
38. Wicklow, D. T., and C. Wittingham, 1974. Soil micro fungal changes among the profiles of disturbed conifer hardwood forest. Ecology. 55:3-16
39. Yantian, Y., W. Haiyan, H. Lei, Z. Sufen, H. Yupeng, G. Qi, and Y. Qingfu, 2017. Effects of superabsorbent polymers on the fate of fungicidal carbendazim in soils. J. Haza.Mate. 328: 70–79
40. Yunlong, Y.U., C.H.U.Xiaoqiang, P.A.Guohui, X.Yueqin, and F. Hua, 2009. Effect of repeated application of fungicide carbendazim on its persistence and microbial community in soil. J. Eenviron. Sci. 21: 179-185
41. Zhou, X., S. Xu, L. Liu, and J. Chen, 2007. Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration (REMI). Biores. Technol. 98:2958–2962.