Supplementary Material for
Towards understanding the mechanisms of new particle formation in the Eastern Mediterranean

Rima Baalbaki1, Michael Pikridas2, Tuija Jokinen1, Tiia Laurila1, Lubna Dada1, Spyros Bezantakos2, Lauri Ahonen1, Kimmo Neitola1,2, Anne Maisser2, Elie Bimenyimana2, Aliki Christodoulou2,3, Florin Unga1, Chrysanthos Savvides4, Katrianne Lehtipalo1,5, Juha Kangasluoma1, George Biskos2, Tuukka Petäjä1, Velimatti Kerminen1, Jean Sciare2, Markku Kulmala1

1Institute for Atmospheric and Earth System Research (INAR) / Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki, 00014, Finland
2Climate & Atmosphere Research Centre (CARE-C), The Cyprus Institute, P.O. Box 27456, Nicosia, CY-1645, Cyprus
3IMT Lille Douai, Université de Lille, SAGE - Département Sciences de L'Atmosphère et Génie de L'Environnement, 59000, Lille, France
4Ministry of Labour, Welfare and Social Insurance, Department of Labour Inspection (DLI), Nicosia, Cyprus
5Finnish Meteorological Institute, Helsinki, Finland

Correspondence to: rima.baalbaki@helsinki.fi

1. Data availability
Table S1. Availability of hourly data (%) from the three particle measuring instruments.

Month	PSM	NAIS	SMPS
January	72.8	93.4	16.1
February	96.4	94.5	94.6
March	83.6	96.4	75.1
April	83.3	100.0	99.7
May	67.6	99.7	91.5
June	43.5	100.0	55.7
July	41.5	100.0	81.0
August	77.4	100.0	96.1
September	93.5	99.9	98.5
October	90.3	100.0	96.8
November	80.0	99.9	1.7
December	100.0	100.0	0.0

2. PSM setup, operation and data handling

2.1. PSM core sampling inlet
The PSM inlet design was first introduced by Kangasluoma et al. (2016). It is a simple design encompassing a 6-mm tube fitted inside a 10-mm tube using a Swagelok T piece (Figure S1). In normal operating conditions, the 3rd outlet of the T-piece is connected to vacuum which enables drawing higher flow through the 10-mm tube than the PSM flow, allowing the PSM to sample from the middle of this flow and thus minimizing losses caused by diffusion to the inlet walls (Figure S1a). During the background measurements, the 3rd outlet is
connected to particle-free pressurized air with a high enough flow rate allowing the PSM to sample this particle free air (Figure S1b)

![Diagram](image)

(a) Sample air in 2.5 lpm to PSM inlet

Sample air excess out
(Vacuum bypass flow of 5 lpm)

(b) Zero air out 2.5 lpm to PSM inlet

Zero air in
(Pressurized bypass flow of 5 lpm)

Figure S1. A schematic of the PSM core sampling inlet during normal operation (a) and during background measurements (b).

2.2. PSM diluter

We used a prototype diluter which was designed at the University of Helsinki and later commercialized by Airmodus under the name “Airmodus nanoparticle diluter” (AND). The diluter has a cylindrical shape made of three modules. The first module, from the air-sampling side, serves as a switchable ion filter which removes charged ions and particles up to a certain size and allows the measurement of neutral particles only. In this study the ion filter was turned off. The second module is a core sampling piece radially connected to a vacuum source which draws 5 lpm excess flow from the sampling air. The third module constitutes the dilution module where clean dry air is introduced radially into the sampled air flow. The differential pressure across the dilution unit is continuously monitored and is kept constant by a feedback mechanism to a PID controlled proportional valve which determines the dilution flow required to keep the dilution ratio constant. The design of the diluter was made as compact as possible to reduce losses and optimize penetration efficiency. Additionally, the dilution flow was monitored with a TSI flow meter and was used along with the pressure measurements to determine and correct for the real-time dilution factor.

2.3. nCNC (PSM+CPC) inversion

In principle, the PSM is a mixing-type condensation particle counter but without the measuring optics. It uses diethylene glycol (DEG) to grow nano-sized particles (~1-3 nm) up to around 90 nm. Subsequently, these particles enter the CPC and are further grown with butanol to sizes measurable by the CPC optical detector. In the first stage, the mixing ratio of DEG vapour with sample flow is scanned by continuously incrementing then decrementing the saturator flow between 0.1 and 1.3 liters per minute (lpm) while keeping the sample flow
constant. By varying the mixing ratio, the particle cut-off size is changed (i.e., at higher mixing ratio, smaller particles are activated and grown thus lower cut-off is achieved). Therefore, the nCNC measures the total particle concentration above a certain diameter and inversion algorithms are required to retrieve the size distribution below 3 nm. The two most popular methods to invert PSM data are the kernel function method and the step inversion method. The expectation-maximization (EM) method has been recently recommended over the kernel method because it is less sensitive to random errors (Cai et al., 2018; Chan et al., 2020). Here, we compare the kernel method and the EM method using PSM data from the whole measurement period. Data pretreatment before inversion was done similarly for the two methods and included a:

1) Diagnostic check that identifies and removes erroneous data based on instrument diagnostics and flags.
2) Background subtraction: the instrumental background of the PSM was continuously monitored with daily automated random background (zero) checks. The background was subtracted from the measured data except in the cases where the background was very high (> 10% of the measured concentrations) then the corresponding data was deemed unusable until the background decreased to normal levels.
3) Correction for the time-delay between PSM and CPC which is typically ~5 seconds.
4) Noise filtering procedure achieved by applying a 6th order median filter on the one second resolution data.
5) Quality check using the method suggested by Chan et al. (2020).
6) Minimization of the inversion matrix using a saturator flow inversion window of 0.08 lpm which minimized the saturator flow (corresponding to cut-off diameter) scans from ~120 to 16 per one-direction of the scan.
7) While pre-averaging before the inversion step is recommended for noisy data, here we did not pre-average in order to capture the fast variations in the data.
8) The minimized cut-offs matrix is differentiated to retrieve the concentration in each size bin which is the input for the kernel inversion method. This step is not necessary for the EM method which takes the cut-off matrix as input (the varying total particle concentration at each saturator flow rate). Further explanation about the theoretical approach of each inversion method can be found in Cai et al. (2018).

During the inversion step, four kernels corresponding to four size channels (dp), with the following diameters: 1.1 nm, 1.3 nm, 1.5 nm, and 2.4 nm were used with the kernel inversion method whereas 50 kernels between 1.1 nm and 2.4 nm were used for the EM inversion method. The kernels are Gaussian-shaped and represent the derivative of the laboratory-derived detection efficiency curves with respect to the saturator flow rate. The median (μ) of the kernel function at each dp is equal to the saturator flow having half maximum detection efficiency at this diameter, whereas the width i.e. standard deviation (σ) is equal to p_1/(d_p+q_1) where p_1 and q_1 are fitting parameters derived from the calibration curve. An example of PSM calibration curve data is shown in Figure 1 from Cai et al. (2018). Note that the actual input to the EM method is the detection efficiency curves rather than the kernels.

After the inversion step, inverted data was transformed from dN/ddp to dN/dlogdp and averaged to longer times: five minutes and one hour. The comparison of the inversion methods was made by comparing the total dN/dlogdp concentration from the kernel and EM methods to each other. The two methods were reasonably comparable using the one hour resolution data (Figure S2), although there is some scatter at low total concentrations, and the 5 min average data revealed sometimes considerable deviations. Here, we mainly use 1 hour resolution data for the presented analysis thus we chose to use the data from the kernel inversion method because it gave better uniformity for the particle size distribution below 3 nm.
Figure S2. Comparison between total dN/dlogDp concentrations (cm\(^{-3}\)) between 1.1 and 2.4 nm computed from PSM data using the Kernel inversion method and the E&M method. Each data point represents one hour time resolution. Blue points represent data with global radiation lower than 50 W.m\(^{-2}\) (night-time data). Green points represent data with global radiation higher than 50 W.m\(^{-2}\) (day-time data). The red line represents the 1:1 line.

3. NAIS inlet penetration efficiency

Figure S3. Penetration efficiency through the NAIS inlet based on a turbulent or laminar flow calculations.

4. SMPS hygroscopicity corrections

The “ambient” SMPS particle size distribution was back calculated from the dry distribution using the hygroscopicity model of Petters and Kreidenweis (2007). This model relies on the Köhler theory which
describes the equilibrium between the droplet phase and vapor phase. The traditional Köhler equation (Eq. S1)
links the equilibrium size of the growing aerosol particle, its chemical composition and water content to the
ambient water vapor saturation ratio (S) (Köhler, 1936).

\[
S = \frac{P_{w,eq}}{P_{w,sat}} = \frac{RH(D)}{100} = a_w \exp \left(\frac{4\sigma M_w}{RT \rho_w D} \right) \quad \text{Eq. S1}
\]

Where:
- \(P_{w,eq} \) is the equilibrium vapor pressure of water over the droplet surface (Pa)
- \(P_{w,sat} \) is the saturation vapor pressure over a pure flat water surface (Pa)
- \(a_w \) is the activity of water in solution (unitless)
- \(M_w \) is the molecular weight of water (kg mol\(^{-1}\))
- \(\sigma \) is the surface tension of the solution – air interface (N m\(^{-1}\))
- \(\rho_w \) is the density of water (kg m\(^{-3}\))
- \(D \) is the diameter of the droplet (m)

Petters and Kreidenweis (2007) introduced a single hygroscopicity parameter (\(\kappa \)) which described the water
activity (\(a_w \)) and the difference in the densities and molar masses of water and the dry material:

\[
\frac{1}{a_w} = 1 + \kappa \frac{V_{dry}}{V_w} \quad \text{Eq. S2}
\]

Where:
- \(V_{dry} \) is the volume of the dry aerosol particle
- \(V_w \) is the volume of water

Assuming additive volumes, the Köhler equation can be reformulated to the \(\kappa \)-Köhler equation which can also
be written in the form of hygroscopic growth factor (HGF) which is defined as the ratio between wet particle
diameter (\(D_{p,wet} \)) and dry particle diameter (\(D_{p,dry} \)):

\[
\frac{RH(D)}{100} = \frac{D_{p,wet}^3 - D_{p,dry}^3}{D_{p,wet}^3 - D_{p,dry}^3 (1 - \kappa)} \exp \left(\frac{4\sigma M_w}{RT \rho_w D_{p,wet}} \right) \quad \text{Eq. S3}
\]

In this study average seasonal values of \(\kappa \) were retrieved from hygroscopic tandem differential mobility analyzer (HTDMA) measurements performed in parallel to our study (Table S2). The hygroscopic \(\kappa \) values
for each SMPS size bin were extrapolated from the HTDMA size resolved measurements by linear regression.
The particle size distributions at ambient RH conditions was then calculated using equation S3, by
incorporating the respective \(\kappa \) values per size bin, and the measured size distribution at dry conditions.
Next, the ambient (real) particle diameter was calculated from \(\kappa \) by solving equation S3, which was later used
to calculate the real particle size distribution (before drying).

To show an example of the effect of humidity corrected particle size distribution on NPF-related parameters,
we compared the dry condensation sink to that calculated when the particle sizes were assumed to be
equilibrated to the ambient RH. This comparison shows that the actual condensation sink is sometimes up to
3.5 times higher than the dry condensation sink but on average it is between 1.1 and 1.3 times higher than the
dry one (Figure S4).
Table S2. HTDMA derived kappa (κ) parameter.

Diameter (nm)	Spring	Summer	Fall	Winter	Average
30	0.19	0.23	0.14	0.16	0.18
80	0.19	0.28	0.17	0.15	0.2
160	0.22	0.26	0.21	0.22	0.23

Figure S4. The top panel shows the effect of particle hygroscopic growth factor (GF) on condensation sink (CS) calculations presented as the ratio between condensation sink calculated from the “ambient” distribution and condensation sink calculated from the “dry” distribution. The bottom and top edges of the box plot represent 25% and 75% percentiles. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the ‘+’ symbol. The bottom panel shows median RH (%) with 25th and 75th percentiles.

5. Identification of days with high dust loading

The method proposed by Drinovec et al. (2020) permits the calculation mineral dust concentrations with high time resolution using the following equation

\[\text{Mineral dust}_{PM_{10-1}} = \frac{b_{abs,V1} - b_{abs,PM_{1}}}{EF \times MAC} \]

Eq. S4

Where \(b_{abs,V1} \) is the absorption coefficient (at 370nm) measured by the aethalometer (model AE33, Magee Scientific, USA) coupled to a virtual impactor (VI). \(b_{abs,PM_{1}} \) is the absorption coefficient (at 370nm) measured by a second AE33 Aethalometer sampling through a PM\(_{1}\) sharp-cut cyclone, EF is the enhancement factor of the VI and MAC is the mass absorption cross section for dust. The last two coefficients were used as determined experimentally by Drinovec et al. (2020) where additional information about the method and the instruments used can be found.
From the mineral dust daily time series we defined a daily threshold above which a day is considered having high dust loading (Table S3). When aethalometer measurements were not available, coarse particle mass loading (PM$_{10}$ - PM$_{2.5}$), determined by a Tapered Element Oscillating Microbalance (TEOM), was used to identify dust days. Additional information about the TEOM used can be found in Pikridas et al. (2018). The threshold for coarse PM was defined based on the linear regression between coarse PM and mineral dust concentration.

Table S3. List of dates with high dust loading

Date	Date	Date	Date	Date
6-Feb-18	21-Mar-18	26-Apr-18	22-May-18	23-Oct-18
7-Feb-18	22-Mar-18	27-Apr-18	23-May-18	24-Oct-18
8-Feb-18	23-Mar-18	1-May-18	24-May-18	31-Oct-18
9-Feb-18	24-Mar-18	2-May-18	8-Jun-18	1-Nov-18
10-Feb-18	25-Mar-18	3-May-18	9-Jun-18	2-Nov-18
5-Mar-18	26-Mar-18	4-May-18	23-Jul-18	3-Nov-18
6-Mar-18	27-Mar-18	5-May-18	24-Jul-18	4-Nov-18
7-Mar-18	28-Mar-18	6-May-18	18-Oct-18	24-Jan-19
8-Mar-18	19-Apr-18	7-May-18	19-Oct-18	25-Jan-19
20-Mar-18	20-Apr-18	21-May-18	21-Oct-18	26-Jan-19

6. **Time range of Daytime conditions** (global radiation > 50 W m$^{-2}$)

![Figure S5. Monthly range of time of day having global radiation > 50 W. m$^{-2}$.](image)
7. Diurnal cycle of particle mode concentrations

Figure S6. The diurnal cycle (at radiation >50 W. m2) of particle number concentration of Cluster mode (a), Nucleation mode (b), Aitken mode (c), and Accumulation mode (d). The shaded areas with black dashed boundaries represent the 25th and 75th percentile limits while the solid line represents the median and the squares indicate the mean. Notice the difference in the y-scale between the top and bottom plots.
8. Example of event classes

Figure S7. Examples of class Ia (a), class Ib (b), class II (c), bump (d), undefined (e) and non-events (f).
9. NPF specific parameters

Table S4. Monthly values of observed formation rates (cm\(^{-3}\) s\(^{-1}\)) during NPF events calculated within the event duration using hourly data.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	All
\(J_{1.5}\) (cm\(^{-3}\) s\(^{-1}\))													
Mean	11.03	21.74	26.18	42.23	8.95	4.99	11.01	11.95	5.69	7.70	20.34		
SD	19.43	41.37	43.77	93.81	11.24	5.88	15.55	17.03	7.12	3.82	51.11		
25\(^{th}\)	2.32	2.92	3.54	4.37	2.80	0.90	1.90	1.20	0.71	4.77	2.24		
Median	4.90	10.31	10.01	10.12	4.48	2.14	4.22	6.70	3.15	8.15	6.45		
75\(^{th}\)	9.47	23.11	31.40	41.29	9.74	7.20	12.60	17.49	7.57	10.64	18.41		
90\(^{th}\)	30.01	50.89	70.69	108.72	24.61	14.44	30.82	24.32	17.49	49.84			
N	28	84	140	150	91	31	33	60	108	4	729		

\(J_3\) (cm\(^{-3}\) s\(^{-1}\))													
Mean	2.73	5.52	8.13	9.72	4.48	4.45	5.91	3.89	6.06	2.51	2.77	6.17	
SD	4.17	5.91	10.99	17.18	5.84	6.26	9.95	5.49	8.55	4.81	1.97	10.65	
25\(^{th}\)	0.45	1.46	1.60	1.55	0.81	0.76	0.53	0.46	0.36	0.28	1.45	0.79	
Median	1.65	3.81	3.62	3.85	2.03	1.46	2.46	1.08	2.15	0.63	2.42	2.53	
75\(^{th}\)	2.55	7.51	9.99	11.00	5.64	6.35	5.47	6.13	8.54	2.19	4.09	6.82	
90\(^{th}\)	7.35	14.27	20.18	23.77	10.59	11.21	19.81	12.75	17.38	6.69	5.45	16.91	
N	28	83	134	166	109	31	47	36	60	96	4	794	

\(J_7\) (cm\(^{-3}\) s\(^{-1}\))													
Mean	0.79	1.81	1.57	1.73	1.75	0.55	2.13	0.69	1.37	0.79	1.01	1.47	
SD	0.87	2.02	1.75	2.83	2.11	0.57	4.43	1.16	2.05	0.79	0.43	2.26	
25\(^{th}\)	0.21	0.46	0.31	0.30	0.20	0.20	0.10	0.08	0.21	0.17	0.70	0.22	
Median	0.46	1.38	0.94	0.67	1.04	0.37	0.49	0.23	0.61	0.53	1.15	0.65	
75\(^{th}\)	1.21	2.31	2.23	2.12	2.19	0.76	1.79	0.77	1.64	1.33	1.33	1.86	
90\(^{th}\)	2.07	3.88	4.02	4.04	5.35	1.25	6.90	2.40	3.41	2.03	1.35	3.81	
N	26	83	130	163	103	31	49	37	57	93	4	776	
Figure S8. Comparison of growth rates measured in this study to growth rates measured at 12 European sites (Manninen et al., 2010).

Figure S9. The median (a) and mean (b) averages of the diurnal size segregated condensation sink (s^{-1}) computed over the whole measurement period of this study.
Table S5. Seasonal comparison between condensation sink ($\times 10^{-3} \text{s}^{-1}$) measured at Finokalia, Crete and CAO (Mean, Median and Standard deviation computed from daily medians).

Season	Finokalia	CAO				
	Kalivitis et al. (2019)	This Study				
	Mean	Median	SD	Mean	Median	SD
Winter	4.3	3.5	2.9	12.18	9.11	8.35
Spring	5.8	5.5	3.0	14.07	12.97	7.86
Summer	9.1	9.0	3.1	10.65	7.84	9.39
Autumn	6.5	6.0	3.4	5.16	4.97	2.15

Figure S10. The monthly diurnal cycle of condensation sink (s$^{-1}$) during event (blue) and non-event (green) days. The shaded areas represent 25th to 75th percentile while the solid line represents the median.
10. The relation between some parameters and NPF events

Figure S11. Month wind roses during event and non-event days.

Wind speed (m/s)
- W ≥ 10
- 9 ≤ W < 10
- 8 ≤ W < 6
- 4 ≤ W < 4
- 2 ≤ W < 2
- 0 ≤ W < 2

13
Figure S12. (a) Monthly variation of PM$_{2.5}$ (µg.m$^{-3}$). (b) Monthly variation of PM$_{2.5}$ (µg.m$^{-3}$) separated between event (blue) and non-event (green) days. The bottom and top edges of the box plots indicate the 25th and 75th percentiles, respectively. The central mark indicates the median. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the ‘+’ symbol.

Data presented have daily time resolution.
Figure S13. (a) Monthly variation of PM$_{10}$ (μg.m$^{-3}$). (b) Monthly variation of PM$_{10}$ (μg.m$^{-3}$) separated between event (blue) and non-event (green) days. The bottom and top edges of the box plots indicate the 25th and 75th percentiles, respectively. The central mark indicates the median. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the '+' symbol. Data presented have daily time resolution.
References

Cai, R., Yang, D., Ahonen, L. R., Shi, L., Korhonen, F., Ma, Y., Hao, J., Petäjä, T., Zheng, J., Kangasluoma, J., and Jiang, J.: Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier, Atmospheric Measurement Techniques, 11, 4477-4491, https://doi.org/10.5194/amt-11-4477-2018, 2018.

Chan, T., Cai, R., Ahonen, L. R., Liu, Y., Zhou, Y., Vanhanen, J., Dada, L., Chao, Y., Liu, Y., Wang, L., Kulmala, M., and Kangasluoma, J.: Assessment of particle size magnifier inversion methods to obtain particle size distribution from atmospheric measurements, Atmospheric measurement Techniques Discussions, 2020, 1-21, https://doi.org/10.5194/amt-2019-465, 2020.

Drinovec, L., Sciare, J., Stavroulas, I., Bezantakos, S., Pikridas, M., Unga, F., Savvides, C., Višić, B., Remškar, M., and Močnik, G.: A new optical-based technique for real-time measurements of mineral dust concentration in PM10 using a virtual impactor, Atmospheric Measurement Techniques, 13, 3799-3813, https://doi.org/10.5194/amt-13-3799-2020, 2020.

Kalivitis, N., Kerminen, V. M., Kouvarakis, G., Stavroulas, I., Tzitzikalaki, E., Kalkavouras, P., Daskalakis, N., Myriokefalitakis, S., Bougiatioti, A., Manninen, H. E., Roldin, P., Petäjä, T., Boy, M., Kulmala, M., Kanakidou, M., and Mihalopoulos, N.: Formation and growth of atmospheric nanoparticles in the eastern Mediterranean: results from long-term measurements and process simulations, Atmospheric Chemistry and Physics, 19, 2671-2686, https://doi.org/10.5194/acp-19-2671-2019, 2019.

Kangasluoma, J., Franchin, A., Duplissy, J., Ahonen, L., Korhonen, F., Attoui, M., Mikkilä, J., Lehtipalo, K., Vanhanen, J., Kulmala, M., and Petäjä, T.: Operation of the Airmodus A11 nano Condensation Nucleus Counter at various inlet pressures and various operation temperatures, and design of a new inlet system, Atmospheric Measurement Techniques, 9, 2977-2988, https://doi.org/10.5194/amt-9-2977-2016, 2016.

Köhler, H.: The nucleus in and the growth of hygroscopic droplets, Transactions of the Faraday Society, 32, 1152-1161, https://doi.org/10.1039/TF9363201152, 1936.

Manninen, H. E., Nieminen, T., Asmi, E., Gagné, S., Häkkinen, S., Lehtipalo, K., Aalto, P., Vana, M., Mirme, A., Mirme, S., Hörak, U., Plass-Dülmer, C., Stange, G., Kiss, G., Hoffer, A., Törö, N., Moerman, M., Henzing, B., de Leeuw, G., Brinkenberg, M., Kouvarakis, G. N., Bougiatioti, A., Mihalopoulos, N., O'Dowd, C., Ceburnis, D., Arneth, A., Svenningsson, B., Swietlicki, E., Tarozzi, L., Decesari, S., Facchini, M. C., Birmili, W., Sonntag, A., Wiedensohler, A., Boulot, J., Sellegri, K., Laj, P., Gysel, M., Bukowiecki, N., Weingartner, E., Wehrle, G., Laaksonen, A., Hamed, A., Joutsensaari, J., Petäjä, T., Kerminen, V. M., and Kulmala, M.: EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events, Atmospheric Chemistry and Physics, 10, 7907-7927, https://doi.org/10.5194/acp-10-7907-2010, 2010.

Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmospheric Chemistry and Physics, 7, 1961-1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.

Pikridas, M., Vrekoussis, M., Sciare, J., Kleanthous, S., Vasiliadou, E., Kizas, C., Savvides, C., and Mihalopoulos, N.: Spatial and temporal (short and long-term) variability of submicron, fine and sub-10 μm particulate matter (PM1, PM2.5, PM10) in Cyprus, Atmospheric Environment, 191, 79-93, https://doi.org/10.1016/j.atmosenv.2018.07.048, 2018.