AN ABELIAN SUBEXTENSION OF THE DYADIC DIVISION FIELD OF A HYPERELLIPTIC JACOBIAN

JEFFREY YELTON

Abstract. Given a field k of characteristic different from 2 and an integer $d \geq 3$, let J be the Jacobian of the “generic” hyperelliptic curve given by $y^2 = \prod_{i=1}^{d}(x - \alpha_i)$, where the α_i’s are transcendental and independent over k; it is defined over the transcendental extension K/k generated by the symmetric functions of the α_i’s. We investigate certain subfields of the field K_∞ obtained by adjoining all points of 2-power order of $J(K)$. In particular, we explicitly describe the maximal abelian subextension of $K_\infty/K(J[2])$ and show that it is contained in $K(J[8])$ (resp. $K(J[16])$) if $d \geq 2$ (resp. if $d = 1$). On the way we obtain an explicit description of the abelian subextension $K(J[4])$, and we describe the action of a particular automorphism in $\text{Gal}(K_\infty/K)$ on these subfields.

1. Introduction

Let k be any field of characteristic different from 2; let $\alpha_1, ..., \alpha_d$ be transcendental and independent over k for some integer $d \geq 3$; and let K denote the extension of k obtained by adjoining the symmetric functions of the α_i’s with separable closure denoted \bar{K}. The equation given by

$$y^2 = \prod_{i=1}^{d}(x - \alpha_i)$$

defines a hyperelliptic curve C of genus $g := [(d - 1)/2]$ over K. Its Jacobian, denoted by J, is a principally polarized abelian variety over K of dimension g. For each integer $n \geq 1$, we write $J[2^n] \subset J(\bar{K})$ for the 2^n-torsion subgroup of J and $K_n := K(J[2^n])$ for the (finite algebraic) extension K obtained by adjoining the coordinates of the points in $J[2^n]$ to K; we denote the (finite algebraic) extension $\bigcup_{n=1}^{\infty} K_n$ by $K_\infty = K(J[2^\infty])$. Let $T_2(J)$ denote the 2-adic Tate module of J; it is a free \mathbb{Z}_2-module of rank $2g$ given by the inverse limit of rank-2 $\mathbb{Z}/2^n\mathbb{Z}$-modules $J[2^n]$ with respect to the multiplication-by-2 map. The canonical principal polarization on J defines the Weil pairing $e_2 : T_2(J) \times T_2(J) \rightarrow \mathbb{Z}_2$; it is a nondegenerate, skew-symmetric, \mathbb{Z}_2-bilinear pairing on $T_2(J)$. The Weil pairing e_2 is also Galois equivariant; hence, K_∞ contains the multiplicative subgroup μ_2 of 2-power roots of unity in the separable closure of K.

We have the natural action of the absolute Galois group $G_K = \text{Gal}(\bar{K}/K)$ on each $J[2^n]$; it is well known that this action respects the Weil pairing e_2 up to multiplication by the cyclotomic character $\chi_2 : G_K \rightarrow \mathbb{Z}_2^\times$. Each element $\sigma \in G_K$ therefore acts as an automorphism in the group

$\text{GSp}(T_2(J)) := \{\sigma \in \text{Aut}_{\mathbb{Z}_2}(T_2(J)) \mid e_2(P^\sigma, Q^\sigma) = \chi_2(\sigma)e_2(P, Q) \forall P, Q \in T_2(J)\}$

of symplectic similitudes. We denote this natural Galois action by $\rho_2 : G_K \rightarrow \text{GSp}(T_2(J))$ and each modulo-2n action by $\bar{\rho}_2 : G_K \rightarrow \text{GSp}(J[2^n])$. For any field F, we write $F(\mu_2)$ for the algebraic extension of F obtained by adjoining all 2-power roots of unity. Clearly the image of ρ_2 is contained in the symplectic group

$\text{Sp}(T_2(J)) := \{\sigma \in \text{Aut}_{\mathbb{Z}_2}(T_2(J)) \mid e_2(P^\sigma, Q^\sigma) = e_2(P, Q) \forall P, Q \in T_2(J)\}$

if and only if $K = K(\mu_2)$. For each $n \geq 0$, we write $\Gamma(2^n) \triangleleft \text{Sp}(T_2(J))$ for the level-2n principal congruence subgroup consisting of automorphisms whose images modulo 2n are trivial.

It is well known that we always have $K_1 \subseteq k(\alpha_1, ..., \alpha_d)$ and that equality holds except when $d = 4$ (see [16]). The main purpose of this paper is to provide an explicit description of the maximal...
abelian subextension of K_{∞}/K_1, which we denote by K_{∞}^{ab}. (Below for any integer $n \geq 1$, we write $\zeta_{2^n} \in \bar{k}$ to denote a 2^nth root of unity.)

Theorem 1.1. Let $\gamma_{i,j} = \alpha_j - \alpha_i$ (resp. $\gamma_{i,j} = (\alpha_j - \alpha_i) \prod_{l \neq i,j} (\alpha_l - \alpha_i)$) if $d = 2g + 1$ (resp. if $d = 2g + 2$) for $1 \leq i, j \leq 2g + 1$.

a) If $g \geq 2$ and $\zeta_4 \in \bar{k}$, we have

$$K_2(\mu_2) = K_1(\mu_2, \{\sqrt{\gamma_{i,j}}\}_{1 \leq i < j \leq 2g+1}) \subseteq K_{\infty}^{ab} = K_2(\mu_2, \{\sqrt[4]{\gamma_{i,j}}\}_{i=1}^{2g+1}) \subseteq K_3(\mu_2)$$

and $\text{Gal}(K_{\infty}^{ab}/K_1(\mu_2)) \cong \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/4\mathbb{Z})^2$. If $\zeta_4 \notin \bar{k}$, we instead have $K_{\infty}^{ab} = K_2(\mu_2)$.

b) If $g = 1$ and $\zeta_8 \in \bar{k}$, we have

$$K_2(\mu_2) = K_1(\mu_2, \{\sqrt{\gamma_{i,j}}\}_{1 \leq i < j \leq 3}) \subseteq K_{\infty}^{ab} = K_2(\mu_2, \sqrt[4]{\gamma_12\gamma_13\gamma_2^2}, \sqrt[8]{\gamma_23\gamma_1^2\gamma_2^2}, \sqrt[8]{\gamma_23\gamma_3^2\gamma_12}, \sqrt[16]{\gamma_13\gamma_3^2}) \subseteq K_4(\mu_2)$$

and $\text{Gal}(K_{\infty}^{ab}/K_1(\mu_2)) \cong \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/8\mathbb{Z})^2$. If $\zeta_4 \notin \bar{k}$ but $\zeta_8 \in \bar{k}$, we instead have $K_{\infty}^{ab} = K_2(\mu_2, \sqrt[4]{\gamma_12\gamma_13\gamma_2}, \sqrt[8]{\gamma_23\gamma_1\gamma_2}, \sqrt[16]{\gamma_23\gamma_3}, \sqrt[32]{\gamma_23\gamma_1\gamma_3})$, and if $\zeta_8 \notin \bar{k}$, we instead have $K_{\infty}^{ab} = K_2(\mu_2)$.

c) Let $\sigma \in G_K$ be any Galois automorphism such that $p_2(\sigma) = -1 \in \text{GSp}(T_2(J))$. Then σ acts on K_{∞}^{ab} by fixing $K_2(\mu_2)$, changing the signs of all generators of the form $\sqrt{\gamma_{i,j}}$, and fixing (resp. changing the signs of) the remaining generators given in (2) and (3) if g is even (resp. if g is odd).

The following corollary is proven via the argument in Step 4 of the proof of [16, Lemma 3].

Corollary 1.2. Let $a_0, ..., a_{d-1} \in k$ be distinct elements and let J be the Jacobian of the hyperelliptic curve defined by the equation $y^2 = f(x) := x^d + \sum_{i=0}^{d-1} a_i x^i$. Let $\bar{a}_1, ..., \bar{a}_d \in \bar{k}$ denote the roots of the polynomial $f(x) \in k[x]$ and let $\gamma_{i,j} \in \bar{k}$ be given by formulas in terms of the \bar{a}_i's analogous to those used to define the $\gamma_{i,j}$'s in the statement of Theorem 1.1.

a) If $g \geq 2$, we have the inclusion

$$k(\bar{J}[8]) \supseteq k(\bar{J}[2])(\{\sqrt{\gamma_{i,j}}\}_{1 \leq i < j \leq 2g+1}, \{\sqrt[4]{\gamma_{i,j}}\}_{i=1}^{2g+1}).$$

b) If $g = 1$, we have the inclusion

$$k(\bar{J}[16]) \supseteq k(\bar{J}[2])(\{\sqrt[2]{\gamma_{i,j}}\}_{1 \leq i < j \leq 2g+1}, \sqrt[8]{\gamma_12\gamma_13\gamma_2^2}, \sqrt[8]{\gamma_23\gamma_1^2\gamma_2^2}, \sqrt[8]{\gamma_23\gamma_3^2\gamma_12}, \sqrt[16]{\gamma_13\gamma_3^2}).$$

c) Let σ be any automorphism in the absolute Galois group of k which acts on $k(\bar{J}[16])$ as multiplication by -1. Then σ acts on the subfields described above by changing the signs of all generators of the form $\sqrt{\gamma_{i,j}}$ and by fixing (resp. changing the signs of) all remaining generators given in (2) and (3) if g is even (resp. if g is odd).

Remark 1.3. We can also verify part (b) of Theorem 1.1 for the $d = 3$ case by combined use of the formulas given in [14] and [16]. We illustrate how to see that $K_4(\mu_2)$ contains an element whose 8th power is $\gamma_12\gamma_13\gamma_2^2$, as follows (one may use a similar argument for the other generators). For $n = 1, 2, 3$ and $1 \leq i < j < 3$, we fix elements $\sqrt[8]{\gamma_{i,j}} \in K$ whose 8th powers are $\gamma_{i,j} \in \bar{k}$ and which are compatible in the obvious way, and we fix a square root of $\sqrt[16]{\gamma_{1,2}} + \sqrt[16]{\gamma_{1,3}}$. (Note that due to the equivariance of the Weil pairing, -1 has a 8th root in $K(J[2n+1])$ for each $n \geq 1$.) Let L be the 3-regular tree defined in [14], and assume the notation used throughout this paper. Let $\{\Lambda_0, \Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4\}$ be a non-backtracking path in L, where Λ_0 is the root and $\Lambda_1 = \Lambda(\alpha_1)$. Then it is tedious but straightforward to verify that there exists a decoration $\Psi : L \setminus \{\Lambda_0\} \rightarrow \bar{k}$ (see [14, Definition 1.2]) such that $\Psi(\Lambda_2), \Psi(\Lambda_3) = \gamma_{1,2} + \gamma_{1,3} \pm 2\sqrt[16]{\gamma_{1,2}\gamma_{1,3}}$;

$$\Psi(\Lambda_3), \Psi(\Lambda_3) = -\Psi(\Lambda_2) - (\Psi(\Lambda_2) - \Psi(\Lambda_2) \pm 4(\sqrt[16]{\gamma_{1,2}} + \sqrt[16]{\gamma_{1,3}}) \sqrt[16]{\gamma_{1,2}} \sqrt[16]{\gamma_{1,3}}) \sqrt[16]{\gamma_{1,2}} \sqrt[16]{\gamma_{1,3}} \sqrt[16]{\gamma_{1,2}} \sqrt[16]{\gamma_{1,3}};$$

and

$$\Psi(\Lambda_4) = -\Psi(\Lambda_3) - (\Psi(\Lambda_3) - \Psi(\Lambda_3)) + 4\sqrt[16]{2}(\sqrt[16]{\gamma_{1,2}} + \sqrt[16]{\gamma_{1,3}} + 2\sqrt[16]{\gamma_{1,2}} \sqrt[16]{\gamma_{1,3}}) \sqrt[16]{\gamma_{1,2}} \sqrt[16]{\gamma_{1,3}} \sqrt[16]{\gamma_{1,2}} \sqrt[16]{\gamma_{1,3}}.$$
By [14 Proposition 2.5(b)], we have \(\Psi(\Lambda_2), \Psi(\Lambda_2'), \Psi(\Lambda_3), \Psi(\Lambda_3'), \Psi(\Lambda_4) \in K_4\). Moreover, from [16 Theorem 1, Remark 11(b)], we see that \(\sqrt{2} (\sqrt[3]{71,2} + \sqrt[3]{71,3} + 2 \sqrt[3]{71,2} \sqrt[3]{71,3}) \in K_3\). It follows that

\[
\sqrt[3]{71,2} + \sqrt[3]{71,3} \not\in K_4.
\]

By [16 Theorem 1], we have \(\sqrt{\pm \gamma_{i,j}}, B_1 := \sqrt{-2\gamma_{2,3}} \sqrt[3]{71,2} + \sqrt[3]{71,3} \in K_3\). Therefore, we have

\[
\sqrt{-2\gamma_{2,3}} \sqrt[3]{71,2} \sqrt[3]{71,3} = -\sqrt{-2\gamma_{2,3}} \sqrt[3]{71,2} \sqrt[3]{71,3} / B_1 \in K_4.
\]

The rest of this paper is dedicated to a proof of Theorem 1.1; our plan is as follows. We will first assume that \(k = \mathbb{C}\) and prove Theorem 1.1 in that case by viewing the situation in a topological setting similar to the author’s strategy in [15]; we will retain this assumption throughout §2 and §3. In §2 we determine generators for the 4-torsion field \(K_2\), which is contained in \(K_{\infty}^{ab}\). Then in §3 we determine generators for \(K_{\infty}^{ab}\) over \(K_2\), treating the \(g \geq 2\) case and the \(g = 1\) case separately. Finally, in §4 we generalize these results to the situation where \(k\) is any field of characteristic different from 2.

2. The 4-division field over \(\mathbb{C}\)

We assume for this section as well as in §3 that \(k = \mathbb{C}\), so that \(K\) is generated over \(\mathbb{C}\) by the symmetric functions of the transcendental elements \(\alpha_i\). We will consider \(K\) as a subfield of the function field of the ordered configuration space \(Y_d\) of \(d\)-element ordered subsets of \(\mathbb{C}\); we view \(Y_d(\mathbb{C})\) as a topological space. The fundamental group of \(Y_d\) is well known to be the pure braid group on \(d\) strands, which we denote by \(P_d\). has a well-known presentation (see [3, Lemma 1.8.2]) with generators \(A_{i,j}\) for \(1 \leq i < j \leq d\). It is known (see [3] Corollary 1.8.4 and its proof) that the center of \(P_d\) is cyclically generated by the element \(\Sigma := A_{1,2}(A_{1,3}A_{2,3})...A_{1,d}A_{2,d}...A_{d-1,d} \in P_d\).

The profinite completion \(\hat{P}_d\) of \(P_d\) is the etale fundamental group of \(Y_d\) and may be identified with the Galois group of \(K^{unr}/K(\{\alpha_i\}_{1 \leq i \leq d})\), where \(K^{unr}\) is the maximal extension of \(K\) unramified away from the primes \((\alpha_j - \alpha_i)\) for \(1 \leq i < j \leq d\). The criterion of Néron-Ogg-Shafarevich ([12 Theorem 1]) implies that the natural \(\ell\)-adic representation \(\rho_{\ell}: G_K \to \text{GSp}(T_\ell(J))\), restricted to the subgroup fixing the Galois extension \(K(\{\alpha_i\}_{1 \leq i \leq d})\), factors through the restriction map \(\text{Gal}(K/K(\{\alpha_i\}_{1 \leq i \leq d})) \to \hat{P}_d\); we denote the induced representation of \(\hat{P}_d\) also by \(\rho_2\).

There is a “universal” family of hyperelliptic curves \(C \to Y_d\) whose fiber \(C_{\overline{z}}\) over each point \(\overline{z} = (z_1, ..., z_d) \in Y_d(\mathbb{C})\) is the hyperelliptic curve given by the monic polynomial in \(\mathbb{C}[x]\) whose roots are the elements of the \(d\)-element ordered set \(\overline{z}\); this family has \(C\) as its generic fiber. We write \(\rho^{top}: P_d \to \text{Aut}(H_1(C_{\overline{z}}, \mathbb{Z}))\) for the representation induced by the monodromy representation \(P_d \cong \pi_1(Y_d, \overline{z}_0) \to \text{Aut}(\pi_1(C_{\overline{z}_0}, P_0))\) associated to the family \(C \to Y_d\), where \(\overline{z}_0 := (1, ..., d) \in Y_d(\mathbb{C})\) and \(P_0 \in C_{\overline{z}_0}\) are basepoints. The monodromy action respects the intersection pairing on \(C_{\overline{z}_0}\), and therefore, the image of \(\rho^{top}\) is contained in the group of symplectic automorphisms \(\text{Sp}(H_1(C_{\overline{z}_0}, \mathbb{Z}))\). (See [14] §2 for more details of this construction.)

As both \(P_d\) and \(\text{Sp}(H_1(C_{\overline{z}_0}, \mathbb{Z}))\) are residually finite, the representation \(\rho^{top}\) induces a representation of the profinite completion \(\hat{P}_d\) on each pro-\(\ell\) completions \(H_1(C_{\overline{z}_0}, \mathbb{Z}) \otimes \mathbb{Z}_\ell \cong H_1(C_{\overline{z}_0}, \mathbb{Z})\). For each prime \(\ell\), we denote this representation by \(\rho^{top}_\ell: \hat{B}_d \to \text{Sp}(H_1(C_{\overline{z}_0}, \mathbb{Z})) \otimes \mathbb{Z}_\ell\). Our technique is to study \(\rho_2\) by relating it to the topologically-defined representation \(\rho^{top}_2\) using a key comparison result proved by the author as [15] Proposition 2.2] in §2.

Lemma 2.1. For any prime \(\ell\), there is an isomorphism of \(\mathbb{Z}_\ell\)-modules \(H_1(C_{\overline{z}_0}, \mathbb{Z}) \otimes \mathbb{Z}_\ell \cong T_\ell(J)\), making the representations \(\rho^{top}_\ell\) and \(\rho_\ell\) isomorphic.

We now state and prove some properties of the representation \(\rho^{top}\) that we will need below.
Proposition 2.2. a) The image of $P_d < B_d$ under ρ^{top} coincides with the principal congruence subgroup $\Gamma(2) < \text{Sp}(H_1(C_{\mathfrak{z}}, \mathbb{Z}))$.

b) If d is odd, we have $\rho^{\text{top}}(\Sigma) = -1 \in \Gamma(2)$.

c) If d is even, we have $\rho^{\text{top}}(\Sigma) = 1 \in \Gamma(2)$ and $\rho^{\text{top}}(\Sigma') = -1 \in \Gamma(2)$, where $\Sigma' = A_{1,2}(A_{1,3}A_{2,3})...(A_{1,d-1}A_{2,d-1}...A_{d-2,d-1}) \in P_d$.

Proof. The statement of (a) has been shown in several works; see [1] Théorème 1, [10] Lemma 8.12, or [17] Theorem 7.3(ii).

Assume that d is odd, so $d = 2g+1$, where g is the genus of $C_{\mathfrak{z}}$. Then one deduces directly from the presentation of P_d given by [3] Lemma 1.8.2 that the abelianization of P_d is a free \mathbb{Z}-module of rank $2g^2+g$ whose generators are the images of the elements $A_{i,j}$, $1 \leq i < j \leq 2g+1$; its maximal abelian quotient of exponent 2 is therefore a $(2g^2+g)$-dimensional \mathbb{F}_2-vector space generated by the images of the $A_{i,j}$'s. Meanwhile, it follows directly from [11] Corollary 2.2 that the maximal abelian exponent-2 quotient of $\Gamma(2)$ also has rank $2g^2+g$. It follows that the restriction of ρ^{top} to P_d induces an isomorphism between the exponent-2 abelianizations of P_d and $\Gamma(2)$. Now since Σ is a product of each of the elements $A_{i,j} \in P_d$, it has nontrivial image in the exponent-2 abelianization of P_d and therefore has nontrivial image in $\Gamma(2)$. However, as Σ lies in the center of P_d and $\rho^{\text{top}}(P_d) = \Gamma(2)$ by (a), the image $\rho^{\text{top}}(\Sigma)$ lies in the center of $\Gamma(2)$. The only nontrivial central element of $\Gamma(2)$ is the scalar -1, proving part (b).

Now assume that d is even. Note that the family $C \rightarrow Y_d$ is an unramified degree-2 cover of the family $Y_{d+1} \rightarrow Y_d$ whose fiber over each $\mathfrak{z} = (z_1, ..., z_d) \in Y_d$ is $\mathbb{P}^1_{\mathbb{C}} \backslash \{z_1, ..., z_d\}$ $(Y_{d+1}$ is essentially the ordered configuration space of cardinality-$(d+1)$ subsets of $\mathbb{P}^1_{\mathbb{C}}$ whose first d elements lie in \mathbb{C}). This implies that the monodromy action ρ^{top} is induced by the monodromy action associated to the family $Y_{d+1} \rightarrow Y_d$ via the inclusion of and quotients by characteristic subgroups

$$\pi_1(\mathbb{P}^1_{\mathbb{C}}(\mathbb{C}) \backslash \{(z_i)_{1 \leq i \leq d}, \tilde{P}_0\}) \cong \pi_1(C_{\mathfrak{z}}(\mathbb{C}) \backslash \{(z_i, 0)\}_{1 \leq i \leq d}, P_0) \rightarrow \pi_1(C_{\mathfrak{z}}(\mathbb{C}), P_0)$$

(8) (here \tilde{P}_0 is the projection of the basepoint $P_0 \in C_{\mathfrak{z}}$). In fact, if we let $x_1, ..., x_d$ denote the generators of $\pi_1(\mathbb{P}^1_{\mathbb{C}}(\mathbb{C}) \backslash \{(z_i)_{1 \leq i \leq d}, \tilde{P}_0\}$ given in [7] §4, then $\pi_1(C_{\mathfrak{z}}(\mathbb{C}) \backslash \{(z_i, 0)\}_{1 \leq i \leq d}, P_0)$ is the subgroup generated by the elements x_ix_{i+1} for $1 \leq i \leq d-1$ and x_i^2 for $1 \leq j \leq d$, and $\pi_1(C_{\mathfrak{z}}(\mathbb{C}), P_0)$ is the quotient of this by the elements x_i^2. Using the fact that the images of the elements x_ix_{i+1} for $1 \leq i \leq d-2$ form a \mathbb{Z}-basis of the abelianization $H_1(C_{\mathfrak{z}}, \mathbb{Z})$, one may then explicitly compute the automorphisms of $H_1(C_{\mathfrak{z}}, \mathbb{Z})$ induced by Σ and Σ' using the statement and proof of [7] Lemma 4.1, thus verifying part (c). (One can also prove that $\rho^{\text{top}}(\Sigma) = 1$ using [7] Lemma 4.2 and the well-known fact that the kernel of Birman’s surjection onto the mapping class group coincides with the center of P_d.)

Below, for each integer $N \geq 1$, we fix $\zeta_N \in \mathbb{C}$ to be the Nth root of unity given by $e^{2\pi i/N}$.

Lemma 2.3. For any integer $N \geq 1$, the maximal abelian exponent-N subextension of K^{unr}/K_1 coincides with $K_1(\sqrt[1]{\zeta_j} - \zeta_i)_{1 \leq i < j \leq d}$. Each standard generator $A_{i,j}$ of $P_d \subset P_d = \text{Gal}(K^{\text{unr}}/K_1)$ acts on this subextension by sending $\sqrt[1]{\zeta_j} - \zeta_i$ to $\zeta_N \sqrt[1]{\zeta_j} - \zeta_i$ and fixing all of the other generators.

Proof. The first statement results from a standard application of Kummer theory. To prove the second statement, we fix some $N \geq 1$ and assume without loss of generality that $(i,j) = (d-1,d)$. Let $Y_d \rightarrow Y_d$ be the covering corresponding to the maximal abelian exponent-N subextension of K^{unr}/K_1. We choose as a topological representative of $A_{i,j}$ the loop given by $t \mapsto (1, ..., d-1, d-1 + e^{2\pi i/N}t \epsilon/2) \in Y_d(\mathbb{C})$ for $t \in [0,1]$, where ϵ is a real number satisfying $\min_{1 \leq i \leq d-2} |z_{i+1} - z_i| > \epsilon > 0$ (we are allowed to move the basepoint to $(1, ..., d-1, d-1 + \epsilon/2) \in Y_d(\mathbb{C})$ because the monodromy action we are considering factors through the abelianization of the fundamental group). We have a closed embedding of the punctured disk $B^* := \{z \in \mathbb{C} \mid 0 < |z| < 1\}$
into $Y_d(\mathbb{C})$ given by $z \mapsto (1,\ldots,d-1,d-1+\varepsilon z)$ which takes a loop representing the standard generator of $\pi_1(B^*,1/2)$ to the loop representing $A_{d-1,d}$ defined above. The pullback of the cover $Y_d^{(N)}(\mathbb{C}) \to Y_d(\mathbb{C})$ via $B^* \to Y_d(\mathbb{C})$ is clearly homeomorphic to the cover $B^* \to B^*$ given by $z \mapsto z^N$. Locally, the standard generator of $\pi_1(B^*,1/2)$ acts on the ring of holomorphic functions defined on the covering space as $\zeta \cdot \zeta_N \zeta$, and the claim follows.

$$\Box$$

We are now ready to state and prove the main result of this section which explicitly describes the extension K_2/K and in particular that it is abelian over K_1 and therefore contained in K_ab.

Theorem 2.4. For $1 \leq i, j \leq 2g + 1$, let $\gamma_{i,j}$ be defined as in the statement of Theorem 1.4. Then we have $K_2 = K_1(\{\sqrt{\gamma_{i,j}}\}_{1 \leq i < j \leq 2g+1})$. Moreover, any Galois automorphism in G_K which acts as multiplication by -1 on the subgroup $J[4]$ acts on K_2 by fixing K_1 and changing the signs of all generators $\sqrt{\gamma_{i,j}}$.

Proof. For $g = 1$, this was already shown by the author as [16] Proposition 6(a),(b)], so we assume that $g \geq 2$. In particular, this means that $K_1 = \mathbb{C}(\{\alpha_i\}_{1 \leq i \leq d})$. The first statement of the theorem was proved for odd d as [15], Proposition 3.1, but the following argument proves the full theorem for general d.

By [15] Corollary 1.2(c)], we have that ρ_2 induc3es an isomorphism $\rho_2 : \text{Gal}(K_2/K_1) \cong \Gamma(2)/\Gamma(4)$. We note from the proof of [11] Corollary 2.2] that the largest abelian quotient of $\Gamma(2)$ of exponent 2 is in fact $\Gamma(2)/\Gamma(4) \cong (\mathbb{Z}/2\mathbb{Z})^{2g+2}$; therefore, K_2 is the unique abelian subextension of K_∞/K_1 of exponent 2. Since the extension K_∞/K_1 is unramified over all primes of the form $(\alpha_j - \alpha_i)$, such a subextension must be a subgroup of $\bar{K}_2 := K_1(\{\sqrt{\alpha_j - \alpha_i}\}_{1 \leq i < j \leq 2d})$. If $d = 2g + 1$, then $\text{Gal}(\bar{K}_2/K_1)$ already has rank $2g^2 + g$ and therefore $K_2 = K_2$; moreover, Proposition 2.2(b) combined with Lemma 2.3 implies that any Galois element whose image under $\bar{\rho}_2$ is $-1 \in \Gamma(2)/\Gamma(4)$ changes the sign of each $\sqrt{\alpha_j - \alpha_i} = \sqrt{\gamma_{i,j}}$. This proves the statement in the $d = 2g + 1$ case.

Now suppose that $d = 2g + 2$. Then $\text{Gal}(\bar{K}_2/K_1)$ has rank $d(d - 1)/2 > 2g^2 + g$, which implies that $K_2 \subsetneq \bar{K}_2$. Kummer theory then tells us that $\text{Gal}(K_2/K_1)$ is canonically identified with the dual of some subgroup $H \subset K_1^\times/(K_1^\times)^2$, where both are considered as vector spaces over \mathbb{F}_2 of dimension $2g^2 + g$. Clearly H is a subspace of the space $\bar{H} \subset K_1^\times/(K_1^\times)^2$ (which itself is the dual of $\text{Gal}(K_2/K_1)$) generated by images of the elements $\alpha_j - \alpha_i$ for $1 \leq i < j \leq d$; we write $[\alpha_j - \alpha_i] = [\alpha_i - \alpha_j] \in \bar{H}$ for each such image and use additive notation for elements of \bar{H}.

We now identify H with its dual $\text{Gal}(K_2/K_1)$ via the basis $\{[\alpha_j - \alpha_i]\}_{1 \leq i < j \leq d}$ of \bar{H}. Lemma 2.3 implies that the image of each $A_{i,j} \in P_d \subset \bar{P}_d = \text{Gal}(K_{\text{unr}}/K_1)$ under ρ_2 composed with reduction modulo 4 is $[\alpha_j - \alpha_i] \in H = \text{Gal}(K_2/K_1)$. It follows from Proposition 2.2(c) that each element of H must be the sum of an even number of generators of \bar{H}.

We note that the degree-$(d-1)$ curve $C' : y^2 = \prod_{i=1}^{d-1} (x_i - 1/(\alpha_{2g+2} - \alpha_i))$ is isomorphic to the degree-d curve $C : y^2 = \prod_{i=1}^{2g+2} (x - \alpha_i)$ over the quadratic extension $K(\beta)/K$ given by

$$(x', y') \mapsto (1/(\alpha_{2g+2} - x), y/(\beta(\alpha_{2g+2} - x)^{g+1})), $$

where $\beta \in K$ is a square root of the element $\prod_{i=1}^{2g+1} (\alpha_{2g+2} - \alpha_i)$. (This is just the isomorphism of hyperelliptic curves induced from an automorphism of the projective line which moves α_{2g+2} to ∞.)

From what was shown above for the odd-degree case, we have

$$K_2(\beta) = K_1(\beta, \{\sqrt{\alpha_{2g+2} - \alpha_j}^{-1} - (\alpha_{2g+2} - \alpha_i)^{-1}\}_{1 \leq i < j \leq 2g+1}) = K_1(\beta, \{\sqrt{\gamma_{i,j}}\}_{1 \leq i < j \leq 2g+1}).$$

Thus, $K_2(\beta)$ is generated over $K_1(\{\sqrt{\gamma_{i,j}}\}_{1 \leq i < j \leq 2g+1})$ by the element β. Since each $\gamma_{i,j}$ corresponds to the element $[\alpha_j - \alpha_i] + \sum_{i \neq j} [\alpha_{2g+2} - \alpha_i] \in H$, which is the sum of an even number of generators while β^2 corresponds to $\sum_{i \neq 2g+2} [\alpha_{2g+2} - \alpha_i] \in H$, which is not, the extension
$K_1(\{\sqrt{3_{i,j}}\}_{1\leq i<j\leq 2g+1})/K_1$ must be the fixed field corresponding to $H \subset \bar{H}$ and therefore coincides with K_2. Moreover, the braid $\Sigma' \in P_{2g+2}$ defined in the statement of Proposition 2.3(c) corresponds to a Galois automorphism whose restriction to K_∞ is $-1 \in \Gamma(2) \cong \text{Gal}(K_\infty/K_1)$ by that proposition, and Lemma 2.3 implies that Σ' changes the sign of each $\sqrt{3_{i,j}}$, thus implying that any Galois element whose image under ρ_1 is $-1 \in \Gamma(2)/\Gamma(4)$ acts in this way, hence the statement in the $d = 2g + 2$ case.

3. The maximal abelian subfield over \mathbb{C}

3.1. The abelianization of the Galois group. We retain our assumption from the last section that $k = \mathbb{C}$. Having found a particular abelian subextension of K_∞/K_1, namely K_2/K_1, we shall now determine the maximal abelian subextension. In order to do this, we first need to know what its Galois group over K_1 looks like.

Lemma 3.1. The abelianization $\Gamma(2)^{ab}$ of the principal congruence subgroup $\Gamma(2) \triangleleft \text{Sp}_{2g}(\mathbb{Z}_2)$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{2g-2} \times (\mathbb{Z}/4\mathbb{Z})^{2g}$ (resp. $\mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/8\mathbb{Z})^2$), and the abelianization map $\pi : \Gamma(2) \to \Gamma(2)^{ab}$ factors through $\Gamma(2)/\Gamma(8)$ (resp. $\Gamma(2)/\Gamma(16)$) if $g \geq 2$ (resp. if $g = 1$).

Proof. The description of $\Gamma(2)^{ab}$ for the $g \geq 2$ case is given by [11] Corollary 2.2. We therefore assume that $g = 1$ and proceed to compute the commutator subgroup $[\Gamma(2), \Gamma(2)] < \Gamma(2)$.

We first claim that $[\Gamma(2), \Gamma(2)]$ contains $\Gamma(16)$. Write $\sigma = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$ and $\tau = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$. We verify by straightforward computation that for any integers $m, n \geq 1$, we have the formula

$$\sigma^m \tau^n \sigma^{-m} \tau^{-n} = \begin{bmatrix} 1 - 2^{m+n} & 2^{2m+n} \\ -2^{m+n} & 1 + 2^{m+n} + 2^{2m+n} \end{bmatrix} \in [\Gamma(2), \Gamma(2)].$$

Using this formula, we compute $(\sigma^2 \tau^{-2} \tau^{-1})(\sigma \tau \sigma^{-1} \tau^{-1})^2 \equiv \tau^8$, $(\sigma^2 \tau^{-2} \tau^{-1})(\sigma \tau \sigma^{-1} \tau^{-1})^2 \equiv \sigma^8$, and $(\sigma \tau \sigma^{-1} \tau^{-1})^4 \equiv 17$ modulo 32. It is easy to show that for $n \geq 1$, the images modulo 2^{n+1} of σ^{2n-1}, τ^{2n-1}, and the scalar matrix $1 + 2^n$ generate $\Gamma(2^n)/\Gamma(2^{n+1}) \cong (\mathbb{Z}/2\mathbb{Z})^3$; thus, in particular, $[\Gamma(2), \Gamma(2)]$ contains $\Gamma(16)$ modulo 32. Now we show by induction that for each $n \geq 5$, $[\Gamma(2), \Gamma(2)]$ contains $\Gamma(2^n)$ modulo 2^{n+1}, which suffices to prove that $[\Gamma(2), \Gamma(2)] \supset \Gamma(16)$. Assume this is the case for $n - 1$; then in particular, $[\Gamma(2), \Gamma(2)]$ contains elements which are equivalent modulo 2 to σ^{2n-2}, τ^{2n-2}, and $1 + 2^{n-1}$. On computing that the squares of such elements must be equivalent modulo 2^{n+1} to σ^{2n-1}, τ^{2n-1}, and $1 + 2^n$ respectively, the claim is proven.

We next claim that the image of $[\Gamma(2), \Gamma(2)]$ modulo 16 is cyclically generated by the image modulo 16 of $\sigma \tau \sigma^{-1} \tau^{-1}$. To see this, we recall the well-known fact that $\Gamma(2)$ decomposes as the direct product of $\{\pm 1\}$ and the subgroup generated by σ and τ and therefore, $[\Gamma(2), \Gamma(2)]$ coincides with the commutator subgroup of $\langle \sigma, \tau \rangle < \Gamma(2)$. On checking that $\sigma \tau \sigma^{-1} \tau^{-1}$ commutes with both σ and τ modulo 16, we deduce as an easy exercise in group theory that the commutator of any two elements in $\Gamma(2)/\Gamma(16)$ is a power of the image of $\sigma \tau \sigma^{-1} \tau^{-1}$. Since the smallest normal subgroup of $\Gamma(2)/\Gamma(16)$ containing these powers is simply the cyclic subgroup generated by the image of $\sigma \tau \sigma^{-1} \tau^{-1}$, we have proven the claim.

Now it follows from the fact that $\Gamma(2^n)/\Gamma(2^{n+1}) \cong (\mathbb{Z}/2\mathbb{Z})^3$ for $n \geq 1$ that $\Gamma(2)/\Gamma(16)$ has order $2^9 = 512$; meanwhile, we see from what we have computed above that the image of $\sigma \tau \sigma^{-1} \tau^{-1}$ modulo 16, which generates the image of $[\Gamma(2), \Gamma(2)]$, has order 4. Therefore, the $\Gamma(2)^{ab}$ has order 128. Since $\Gamma(2)^{ab}$ is generated by the images of -1, σ, and τ modulo $[\Gamma(2), \Gamma(2)]$, the first statement of the lemma follows from the easy verification (by considering the image of $[\Gamma(2), \Gamma(2)]$ modulo 16) that the images of σ and τ each have order 8 in $\Gamma(2)^{ab}$. \hfill \qed
In order to find the extension of K_1 corresponding to the Galois quotient described by the lemma, we consider the $g \geq 2$ and $g = 1$ cases separately.

3.2. The $g \geq 2$ case. Lemma 3.1 together with the results of [2] and the fact that $K_\infty \subset K^\text{unr}$, implies that K_{ab}^∞ is an extension of $K_2 = K_1/(\sqrt{\alpha_j - \alpha_i})$ obtained by adjoining $2g$ independent 4th roots of products of the elements $(\alpha_j - \alpha_i)$. Similarly to what we saw in the proof of Theorem 2.4, Kummer theory tells us that $\text{Gal}(K_{ab}^\infty/K_2)$ is canonically identified with some subgroup $V \subset K_2^\times/(K_2^\times)^2$, where both are considered as vector spaces over \mathbb{F}_2 of dimension $2g$. In fact, since $K_\infty \subset K^\text{unr}$, the first statement of Lemma 2.3 implies that V is also a subspace of the space \overline{V} generated by the images in $K_2^\times/(K_2^\times)^2$ of elements of the form $\sqrt{\alpha_j - \alpha_i}$, where $\overline{K}_2 = K_2(\sqrt{\alpha_j - \alpha_i})$. In our situation, this turns out to be the case.

When $g = 2$, we claim that the representation (ψ) is isomorphic to the standard representation of S_d over \mathbb{F}_2 (see [13] §2 for the construction of the standard representations over characteristic 2 of dimension $d - 1$ if d is odd and of dimension $d - 2$ if d is even).

As V is a vector space over \mathbb{F}_2 of dimension $2g$, one candidate for the action ψ is the well-known standard representation of S_d over \mathbb{F}_2 (see [13] §2.2 for the construction of the standard representations over characteristic 2 of dimension $d - 1$ if d is odd and of dimension $d - 2$ if d is even).

In our situation, this turns out to be the case.

Proof. We fix a symplectic ordered basis $\{a_1, ..., a_g, b_1, ..., b_g\}$ of $T_2(J)$, i.e. a basis satisfying $e_2(a_i, b_j) = -1 \in \mathbb{Z}_2$ for $1 \leq i \leq g$ and $e_2(a_i, b_j) = 0$ for $1 \leq i < j \leq g$ and such that the image of each a_i (resp. each b_i) in $J[2]$ is represented by the even-cardinality subset of roots given by $\{\alpha_{2i - 1}, \alpha_{2i}\}$ (resp. $\{\alpha_{2i}, ..., \alpha_{2g+1}\}$); see the statement and proof of [10, Corollary 2.11] for a description of the elements in $J[2]$ in terms of the roots α_i. In the following argument, we use the description of $[\Gamma(2), \Gamma(2)]$ given by [11, Proposition 2.1] as the subgroup of matrices (with respect to our symplectic basis) in $\text{Sp}(T_2(J))$ which lie in $\Gamma(4)$ and whose $(i, i + g)$th and $(i + g, i)$th entries are divisible by 8 for $1 \leq i \leq g$. Note in particular that the automorphisms given by $v \mapsto v + 4e_2(v, a_i)a_i$ and $v \mapsto v + 4e_2(v, b_i)b_i$ each have ± 4 as their $(i, i + g)$th or $(i + g, i)$th entries respectively, so their images in $\Gamma(4)/[\Gamma(2), \Gamma(2)]$ are nontrivial and distinct and in fact form a basis for the \mathbb{F}_2-space $\Gamma(4)/[\Gamma(2), \Gamma(2)]$.

We claim that the representation (ψ) is faithful. Indeed, suppose that ψ has nontrivial kernel. Since $d \geq 5$, this implies that the kernel of ψ contains $A_d < S_d$. Consider any element of V, written as a linear combination $\sum_{1 \leq i < j \leq 2g+1} c_{i,j}[i, j] \in V$ with $c_{i,j} \in \mathbb{F}_2$; by our assumptions this element must be fixed by A_d. But then the 2-transitivity of A_d implies that the $c_{i,j}$’s are all equal, so that V is spanned by the element $\sum_{1 \leq i < j \leq 2d}[i, j]$, which contradicts the fact that V is 2g-dimensional.

If $g \geq 3$, then [13, Theorem 1.1] implies that (ψ) is isomorphic to the standard representation of S_d, and we are done. We therefore assume that $g = 2$. It follows from the statement and proof of [13, Lemma 3.2][iii],[iv] that (ψ) is isomorphic to the standard representation if and only if the transpositions in S_d map to transvections in $\text{Aut}(V)$ (in this context a transvection is defined to be any operator $A \in \text{Aut}(V)$ such that $A - 1$ has rank 1). It therefore suffices to show that the transposition $(12) \in S_d$ acts on V as a transvection. This is equivalent to the claim that...
any element of G_2 whose image modulo 2 is $(12) \in S_d = \text{Gal}(K_1/K)$ acts by conjugation on $\Gamma(4)/[\Gamma(2),\Gamma(2)] \cong \text{Gal}(K_{ab}/K_2)$ (which is the dual of V) as a transvection. For any $a \in T_2(J)$, let $T_a \in \text{Aut}(V)$ denote the automorphism given by $v \mapsto v + c_2(v,a)a$. Then we see from the description of elements of $J[2]$ in terms of subsets of the set of α_i's which was mentioned above that the image of $T_{a_1} \in \text{Sp}(T_2(J))$ modulo 2 is (12); since (as noted above) $\{T_{a_1},T_{a_2},T_{b_1},T_{b_2}\}$ is an F_2-basis of $\Gamma(4)/[\Gamma(2),\Gamma(2)]$, we only need to calculate the conjugates of each of these basis elements by T_{a_1}. We compute that T_{a_1} commutes with each of them except for $T_{b_1}^4$, and that

$$T_{a_1}T_{b_1}T_{a_1}^{-1} = T_{b_1}T_{a_1}^{-1} \mod ([\Gamma(2),\Gamma(2)])$$

Thus, we have seen that T_{a_1} minus the identity operator acts on the F_2-space $\Gamma(4)/[\Gamma(2),\Gamma(2)]$ by sending all basis elements to 0 except for $T_{b_1}^4$, which it sends to $T_{a_1}^4$. Therefore, T_{a_1} acts as a transvection, as desired.

Now the following proposition suffices to prove Theorem 3.1(a) when $k = C$.

Proposition 3.3. The subspace V defined above is generated by the images in $\bar{\Gamma}$ of the elements $\prod_{j \neq i} \sqrt{\gamma_{i,j}} \in K_2^\times$ for $1 \leq i \leq 2g + 1$.

Proof. For $1 \leq i < j \leq 2g + 1$, we write $[i,j]' = [j,i]'$ for the elements of $K_2^\times/(K_2^\times)^2$ represented by $\sqrt{\gamma_{i,j}}$ (note that $[i,j]' = [i,j]$ in the $d = 2g + 1$ case); we need to show that V is spanned as an F_2-space by the set $\{\prod_{j \neq i}[i,j]'_1 \leq i \leq 2g+1\}$.

We know from Lemma 3.2 that the action $\psi : S_d \to \text{Aut}(V)$ defines the standard representation of S_d of dimension $d - 1$ (resp. $d - 2$) if d is odd (resp. even). We first assume that $d = 2g + 1$. By the construction of the standard representation, there exist elements $v_i \in V$ for $1 \leq i \leq 2g + 1$ which span V and satisfy the unique linear relation $\sum_{1 \leq i \leq 2g+1} v_i = 0$, and such that S_{2g+1} acts on the set of v_i's by $v_i'^\sigma = v_{\sigma(i)}$ for each permutation σ. We claim that $v_i = \sum_{j \neq i}[1,j]'$, from which it follows by acting on v_i by any transposition $(1i)$ that $v_i = \sum_{j \neq i}[i,j]'_2 \leq i \leq 2g + 1$, and we get the desired spanning set for V.

As v_i is obviously nontrivial, some $[s,t]$ appears in its expansion as a linear combination of basis elements of $\bar{\Gamma}$. Suppose that $1 \in \{s,t\}$. Then the elements $[1,j]$ appear in the expansion of v_i for all $2 \leq j \leq 2g + 1$, due to the fact that v_i is fixed by every permutation in S_{2g+1} which fixes 1. If, on the other hand, $1 \notin \{s,t\}$, then by a similar argument, all elements $[s,t]$ with $1 \notin \{s,t\}$ appear in the expansion of v_i. It follows that either (i) $v_i = \sum_{j \neq 1}[1,j]'$, (ii) $v_i = \sum_{s,t \neq 1}[s,t]'$, or (iii) $v_i = \sum_{1 \leq s < t \leq 2g+1}[s,t]'$. In case (ii), we see that $\sum_{1 \leq i \leq 2g+1} v_i = \sum_{1 \leq i < 2g+1}[s,t]' \neq 0$, a contradiction. In case (iii), we see that v_i is fixed by all elements of S_{2g+1} and therefore, all the elements v_i are equal, which contradicts the fact that V has dimension $2g$. Therefore, (i) is the case, and we are done.

Now assume that $d = 2g + 2$. By the construction of the standard representation, there exist elements $v_{i,j} = v_{j,i} \in V$ for $1 \leq i < j \leq 2g + 2$ such that for any i, $\{v_{i,j}\}_{j \neq i}$ spans V and satisfies the unique linear relation $\sum_{j \neq i} v_{i,j} = 0$; such that $v_{s,t} + v_{s,j} = v_{i,j}$ for distinct s,t,j; and such that S_{2g+2} acts on the set of $v_{i,j}$'s by $v_{i,j}' = v_{\sigma(i),\sigma(j)}$ for each permutation σ. We claim that $v_{1,2g+2} = \sum_{2 \leq j \leq 2g+1}[1,j]'$, from which we can again see by acting on $v_{1,2g+2}$ by any transposition $(1i)$ that $v_{i,2g+2} = \sum_{j \neq i}[i,j]'_2 \leq i \leq 2g + 1$, and we again get the desired spanning set for V.

By a similar analysis to what was done for the $d = 2g + 1$ case, we deduce that $v_{1,2g+2}$ is some linear combination of the elements $[i,2g+2], \sum_{2 \leq j \leq 2g+1}[1,j] + [2g+2,j]$, and $\sum_{2 \leq s < t \leq 2g+1}[s,t]$. We first note that $v_{1,2g+2}$ cannot be the sum of an odd number of terms $[s,t]$, because then that would be the case for each other $v_{i,2g+2}$, and then the $2g+1$ terms $v_{i,2g+2}$ could not sum to 0. We also note that, as in the $d = 2g + 1$ case, the element $v_{1,2g+2}$ cannot be trivial nor equal to the sum $\sum_{1 \leq s < t \leq 2g+2}[s,t]$. Finally, it is straightforward to check that if $\sum_{2 \leq s < t \leq 2g+1}[s,t]$ appears
in the expansion of $v_{1,2g+2}$, then the $v_{s,t} + v_{s,j} = v_{t,j}$ property does not hold. Our only remaining choice is that $v_{1,2g+2} = \sum_{2 \leq j \leq 2g+1} (\lfloor 1, j \rfloor + [2g+2, j]) = \sum_{2 \leq j \leq 2g+1} \lfloor 1, j \rfloor'$, and we are done.

3.3. The $g = 1$ case. Lemma 3.1 together with the results of [2] and the fact that $K_\infty \subseteq K_{\text{unr}}$, imply that K_{ab}^∞ is an extension of $K_2 = K_1(\sqrt{7_1,2}, \sqrt{7_1,3}, \sqrt{7_2,3})$ obtained by adjoining 2 independent 4th roots of products of the elements $\gamma_{i,j} \in K_1$ (recall from [16] that K_1 is generated over K by the $\gamma_{i,j}$'s both for $d = 3$ and $d = 4$). Therefore, in this case, we get via Kummer theory a canonical identification of $\text{Gal}(K_{ab}^\infty/K_2)$ with some subgroup $V \subseteq K_2^\times/(K_2^\times)^4$; the submodule V of the $\mathbb{Z}/4\mathbb{Z}$-module $K_2^\times/(K_2^\times)^4$ is free of rank 2. In fact, V is contained in the rank-3 free submodule $\tilde{V} \subseteq K_2^\times/(K_2^\times)^4$ generated by images of the elements $\sqrt{\gamma_{i,j}} \in K_2^\times$. We denote each of these images by $[i,j]' = [j,i]' \in \tilde{V}$. We now proceed to explicitly determine the rank-2 submodule $V \subset \tilde{V}$.

As with the $g \geq 2$ case, we have an action of G_2 on V which factors through the quotient $\text{Gal}(K_1/K)$; this quotient is isomorphic to S_3 both when $d = 3$ and when $d = 4$. This action sends a permutation $\sigma \in S_3$ to the automorphism of V determined by $[i,j]' = [\sigma(i), \sigma(j)]'$ for $1 \leq i < j \leq 3$. We again write $\psi : S_3 \to \text{Aut}(V)$ for this action. The following proposition suffices to prove Theorem 1.1(b) when $k = \mathbb{C}$.

Proposition 3.4. The submodule $V \subset \tilde{V}$ is generated by

$$\{[1,2]' + [1,3]', [2,3]', [2,1]' + [2,3]', 2[3,1]', 2[3,2]' + 2[1,2]'\} \subset \tilde{V}.$$

Proof. We first note that the action ψ has trivial kernel, by the same argument as was used in the proof of Proposition 3.3. Since $\text{Aut}(V/2V) \cong \text{SL}_2(\mathbb{F}_2) \cong S_3$, this implies that the induced action of ψ modulo $2V$ is isomorphic to the standard representation of S_3. By essentially the same argument that was used in the proof of Proposition 3.3 for the odd-degree case, this shows that $V/2V$ is spanned by the images modulo 2 of the elements $\sigma_{j\neq i}[i,j]'$ for $i = 1, 2, 3$, implying that

$$2[1,2]' + 2[1,3]', 2[2,3]', [2,1]' + 2[2,3]', 2[3,1]', 2[3,2]' + 2[1,2]' \in V.$$

Therefore, the element $2[1,2]' + 2[1,3]' + 2[2,3]' \in \tilde{V}$ cannot lie in V, because otherwise V would contain the subgroup generated by $2[1,2]', 2[1,3]', 2[2,3]'$ which is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^3$, contradicting the fact that V has rank 2.

Let $\Phi : \tilde{V} \to \mathbb{Z}/4\mathbb{Z}$ be the functional sending $c_1[2,3]' + c_2[3,1]' + c_3[1,2]'$ to $c_1 + c_2 + c_3 \in \mathbb{Z}/4\mathbb{Z}$. We claim that V coincides with the kernel of Φ. Suppose that for some $v \in V$, we have $\Phi(v) \neq 0$. Since $\Phi(\psi(\sigma)(v)) = \Phi(v)$ for all $\sigma \in S_3$, we have $\Phi(\sum_{\sigma \in A_3} \psi(\sigma)(v)) = 3\Phi(v) \neq 0$. But $\sum_{\sigma \in A_3} \psi(\sigma)(v) \in V$ is fixed by $A_3 \triangleleft S_3$ and is therefore some nontrivial multiple of $[1,2]' + [1,3]' + [2,3]' \in \tilde{V}$, which contradicts the fact that $2[1,2]' + 2[1,3]' + 2[2,3]' \notin V$, hence the claim. Since the image of Φ has order 4, its kernel V has order $64/4 = 16$. Meanwhile, the generators given in the statement of the proposition lie in V, and the statement now follows from the elementary verification that the group they generate also has order 16.

3.4. The action of -1. We have shown that parts (a) and (b) of Theorem 1.1 hold when $k = \mathbb{C}$; we will now prove that the element $-1 \in \Gamma(2) \cong \text{Gal}(K_\infty/K_1)$ acts as stated in Theorem 1.1(c), and then the full theorem will be proved over the complex numbers. In the odd-degree case, it follows immediately from the fact that $\rho^{\text{top}}(\Sigma) = -1$ by Proposition 2.2(b) combined with Lemma 2.3 that since $\gamma_{i,j} = \alpha_j - \alpha_i$, the element -1 acts trivially (resp. by sign change) on the generators of K_{ab}^∞/K_2 listed in the statement of the theorem if g is even (resp. if g is odd). Similarly in the even-degree case, it follows immediately from the fact that $\rho^{\text{top}}(\Sigma') = -1$ by Proposition 2.2(c) combined with Lemma 2.3 that since $\gamma_{i,j} = (\alpha_j - \alpha_i)\prod_{l \neq i,j}(\alpha_{2l+2} - \alpha_l)$, the element -1 acts trivially (resp. by sign change) on the generators of K_{ab}^∞/K_2 listed in the statement of the theorem if g is even (resp. if g is odd).
4. Proof of the Theorem in the General Case

We have now shown that Theorem 1.1 holds when $k = \mathbb{C}$; we will now prove that this suffices to show that Theorem 1.1 holds in general. In this section, whenever the ground field k is specified (e.g. $k = \mathbb{Q}$), we will write K_k (e.g. $K_\mathbb{Q}$) for the extension of k obtained by adjoining the symmetric functions of the independent transcendental elements $\alpha_1, \ldots, \alpha_d$; our goal is to show that the particular generators of $(K_C)_{\infty}^{ab}/K_C$ that we found in [2], [3] can also be used to generate K_{∞}^{ab}/K (and that any Galois element mapping to $-1 \in \text{GSp}(T_2(J))$ acts in the same way on them), where $K = K_k$ for any field k of characteristic different from 2. The rest of this section will be devoted to proving the following proposition.

Proposition 4.1. To prove Theorem 1.1 it suffices to prove the statement when $k = \mathbb{C}$.

We assume that $g \geq 2$ and only prove part (a) of the theorem as well as part (c) for the $g \geq 2$ case, noting that the claims for the $g = 1$ case result from very similar arguments. In what follows, we will freely use the obvious fact that given an abelian variety A over a field F and an extension F'/F, the finite algebraic extension $F'(A[2^n])$ coincides with the compositum $F'_2/F(A[2^n])$ for any $n \geq 1$. We first need the following lemmas.

Lemma 4.2. Let k be any field of characteristic different from 2 with separable closure \bar{k}. Then we have

a) $\text{Gal}(K_n(\mu_2)/K_1(\mu_2)) \cong \Gamma(2)/\Gamma(2^n)$ for $n \geq 1$ and thus $\text{Gal}(K_{\infty}(\mu_2)/K_1(\mu_2)) \cong \Gamma(2)$; and

b) $K_n \cap \bar{k} = k(\zeta_{2^n})$ for $n \geq 1$ and thus $K_{\infty} \cap \bar{k} = k(\mu_2)$.

Proof. The author has shown (a) for k of characteristic 0 (as [15, Proposition 4.1]) but the following argument proves (a) in the case of positive characteristic also. We first claim that the image of ρ_2 in $\text{GSp}(T_2(J))$ contains a transvection given by $v \mapsto v + e_2(v, a) a$ for some $a \in T_2(J) \setminus \mathcal{T}_2(J)$. This follows from the discussion in [2], §2.3 (see also [5], §3.1 and [6], §9-10 and note that the argument holds in positive characteristic as well). Meanwhile, since the polynomial defining the hyperelliptic curve C has full Galois group, the image of ρ_2 is isomorphic to S_{2g+1} or S_{2g+2}. It now follows from [3], Theorem 2.1.1, §2.2 that the image G_2 of ρ_2 in $\text{GSp}(T_2(J))$ contains $\Gamma(2) \wr \text{Sp}(T_2(J))$. After restricting to the absolute Galois group of $K_1(\mu_2)$, this image coincides with $\Gamma(2)$, and (a) immediately follows.

The linear disjointness of $K_n(\mu_2)$ and $\bar{k}K_1$ over $K_1(\mu_2)$ follows immediately from the fact that $\text{Gal}(kK_n/kK_1) \cong \text{Gal}(K_n(\mu_2)/K_1(\mu_2)) \cong \Gamma(2)/\Gamma(2^n)$ by part (a). Moreover, it is well known from our description of 2-torsion fields discussed above that $K_1(\mu_2) \cap \bar{k} = k(\mu_2)$, so we get $K_n(\mu_2) \cap \bar{k} = (K_n(\mu_2) \cap \bar{k}K_1) \cap \bar{k} = k(\mu_2)$. It follows that we have $K_{\infty} \cap \bar{k} = k(\mu_2)$, so to prove part (b) it suffices to show that $K_n \cap k(\mu_2) = k(\zeta_{2^n})$ for $n \geq 1$.

Let $\bar{\Gamma}(2^n) \triangleleft \text{GSp}(T_2(J))$ denote the kernel of reduction modulo 2^n for each $n \geq 1$, and write $G_2 \subset \text{GSp}(T_2(J))$ for the image of ρ_2. It is clear that $G_2 \cap \bar{\Gamma}(2^n)$ is isomorphic to the subgroup of $\text{Gal}(K_\infty/K)$ fixing K_n; meanwhile, part (a) says that $G_2 \cap \Gamma(2) = \Gamma(2)$ is isomorphic to the Galois subgroup fixing $k(\mu_2)$. Therefore, $K_n \cap k(\mu_2)$ is the fixed field of the subgroup of $\text{Gal}(K_\infty/K)$ generated by $G_2 \cap \bar{\Gamma}(2^n)$ and $\Gamma(2)$, which is easily seen to coincide with the kernel of the mod-2^n determinant map $G_2 \to (\mathbb{Z}/2^n\mathbb{Z})^\times$. But by equivariance of the Weil pairing, the fixed field of this subgroup coincides with $k(\zeta_{2^n})$, and we are done.

Let J_0 denote the Jacobian of the hyperelliptic curve C_0 defined over $K_\mathbb{Q}$ given by the equation in (1). Note that C_0 admits a smooth model \mathcal{C} over $S := \text{Spec}(\mathbb{Z}[1/2, \{\alpha_i\}_{1 \leq i \leq d}, \{(\alpha_i - \alpha_j)^{-1}\}_{1 \leq i < j \leq 2g+1}]^{S_2})$, where the superscript "S_d" indicates taking the subring of invariants under the obvious permutation action on the α_i's. Define $J \to S$ to be the abelian scheme representing the Picard functor of the
scheme \(\mathcal{C} \to S \) (see \cite[Theorem 8.1]{9}). Note that the ring \(\mathbb{Z} \left[\frac{1}{2}, \{ \alpha_i \}_{1 \leq i \leq d}, \{ (\alpha_i - \alpha_j)^{-1} \}_{1 \leq i < j \leq 2g+1} \right] \), along with all subrings of invariants under finite groups of automorphisms, is integrally closed; in particular, \(\mathcal{O}_S := \mathbb{Z} \left[\frac{1}{2}, \{ \alpha_i \}_{1 \leq i \leq d}, \{ (\alpha_i - \alpha_j)^{-1} \}_{1 \leq i < j \leq 2g+1} \right] \) is integrally closed.

For each \(n \geq 1 \), \cite[Proposition 20.7]{8} implies that the kernel of the multiplication-by-\(2^n \) map on \(\mathfrak{f} \to S \), which we denote by \(\mathfrak{f}[2^n] \to S \), is a finite étale group scheme over \(S \). Since the morphism \(\mathfrak{f}[2^n] \to S \) is finite, \(\mathfrak{f}[2^n] \) is an affine scheme; we write \(\mathcal{O}_{S,n} \supset \mathcal{O}_S \) for the minimal extension of scalars under which \(\mathfrak{f}[2^n] \) becomes constant. It follows from the fact that \(\mathcal{O}_S \) is integrally closed and from the finite étaleness of \(\mathfrak{f}[2^n] \) that \(\mathcal{O}_{S,n} \) is also integrally closed; its fraction field coincides with \(K_0(J_0[2^n]) \).

Let \(\mathcal{O}_{S,\infty} \supset \mathcal{O}_S \) denote the integrally closed extension whose fraction field coincides with the maximal abelian subextension \((K\mathcal{Q}(\mu_2))^{\mathrm{ab}}\) of \((K\mathcal{Q})_{\infty}/(K\mathcal{Q})_1(\mu_2)\). Lemmas \ref{lem:gen} and \ref{lem:finite} together imply that \((K\mathcal{Q})_2(\mu_2) \subsetneq (K\mathcal{Q}(\mu_2))^{\mathrm{ab}} \subsetneq (K\mathcal{Q})_3(\mu_2)\); that the extension \((K\mathcal{Q}(\mu_2))^{\mathrm{ab}}/(K\mathcal{Q})_1(\mu_2)\) has Galois group isomorphic to \((\mathbb{Z}/2\mathbb{Z})^{2g^2-g} \times (\mathbb{Z}/4\mathbb{Z})^{2g}\); and that the analogous statements hold over each \(\mathbb{F}_p \). Thus it is clear that for each prime \(p \neq 2 \), the fraction field of \(\mathcal{O}_{S,\infty}^{\mathrm{ab}}/(p) \) coincides with the subfield of \((K\mathcal{F}_p)_3(\mu_2)\) fixed by the kernel of the map \(\pi : \Gamma(2)/\Gamma(8) \to (\mathbb{Z}/2\mathbb{Z})^{2g^2-g} \times (\mathbb{Z}/4\mathbb{Z})^{2g} \) induced by the abelianization map \(\pi \) and is therefore the maximal abelian subextension of \((K\mathcal{F}_p)_\infty/(K\mathcal{F}_p)_1(\mu_2)\). Moreover, if \(k \) is any field of characteristic \(p \neq 2 \), then it similarly follows from Lemmas \ref{lem:gen} and \ref{lem:finite} that \((K_k(\mu_2))^{\mathrm{ab}}\) coincides with the subfield of \((K\mathcal{F}_p)_3(\mu_2)\) fixed by the kernel of \(\pi \).

Note that \(k(\mu_2) \) contains \(\mathcal{F}_p \), where the prime subfield \(\mathcal{F}_p \) is \(K \) (resp. \(\mathbb{F}_p \)) if the characteristic of \(k \) is 0 (resp. \(p \geq 3 \)). It then follows from the linear disjointness of \(K_3(\mu_2) \) and \(\mathcal{F}_p \) over \(\mathbb{F}_p(\mu_2) \) given by Lemma \ref{lem:finite} (b) that the subfield of \(K_3(\mu_2) \) fixed by the kernel of \(\pi \) coincides with the compositum of \(K_1(\mu_2) \) with the subfield of \((K\mathcal{F}_p)_3(\mu_2)\) fixed by the kernel of \(\pi \). The extension \((K_k(\mu_2))^{\mathrm{ab}}\) is therefore generated over \(K_1(\mu_2) \) by the generators of \(\mathcal{O}_{S,\infty}^{\mathrm{ab}} \) over \(\mathcal{O}_{S,1}[\mu_2] \) (resp. by the images of these generators modulo \((p) \) if \(k \) has characteristic 0 (resp. if \(k \) has characteristic \(p \geq 3 \)).

It remains to show that these generators are the same ones appearing in Theorem \ref{thm:main} for which we need another lemma.

Lemma 4.3. The fields \((K\mathcal{C})_n \) for \(n \geq 1 \), \((K\mathcal{C})_{\infty} \), and \((K\mathcal{C})^{\mathrm{ab}}_{\infty} \) coincide with the compositums of \(\mathcal{C} \) with \((K\mathcal{Q}(\mu_2))_n \), \((K\mathcal{Q}(\mu_2))_{\infty} \), and \((K\mathcal{Q}(\mu_2))^{\mathrm{ab}}_{\infty} \) respectively.

Proof. For \(n \geq 1 \), let \(\theta_n : \mathrm{Gal}((K\mathcal{C})_{\infty}/(K\mathcal{C})_n) \to \mathrm{Gal}((K\mathcal{Q})_{\infty}/(K\mathcal{Q})_n(\mu_2)) \) be the map given by the composition of the obvious inclusion map with the obvious restriction map. It is shown in the proof of \cite[Proposition 4.1]{15} that each \(\theta_n \) is an isomorphism (this can also be deduced from Lemma \ref{lem:finite} (a)). Since \(\theta_1 \) and \(\theta_3 \) are isomorphisms, they induce an isomorphism \(\Gamma(2)/\Gamma(8) \cong \mathrm{Gal}((K\mathcal{C})_3/(K\mathcal{C}))_1 \cong \mathrm{Gal}((K\mathcal{Q})_3(\mu_2)/(K\mathcal{Q})_1(\mu_2)) \), the image of whose restriction to \(\mathrm{Gal}((K\mathcal{Q}_3)/(K\mathcal{Q}))^{\mathrm{ab}}_\infty \) fixes the subfield \((K\mathcal{Q}_3)^{\mathrm{ab}}_\infty \). It follows from the definition of \(\theta_3 \) that \(K_\infty^{\mathrm{ab}} = \mathbb{C}(K\mathcal{Q}(\mu_2))^{\mathrm{ab}}_\infty \).

We now claim that \(\{ \gamma_{i,j} \}_{1 \leq i < j \leq 2g+1} \) is a set of generators for \(\mathcal{O}_{S,2}[\varsigma_8] \) over \(\mathcal{O}_{S,1}[\varsigma_8] \). Indeed, we see that \((K\mathcal{C})_1(\{ \gamma_{i,j} \}_{1 \leq i < j \leq 2g+1}) = (K\mathcal{C})_2 = \mathbb{C}(K\mathcal{Q})_2 \) and

\[
\mathrm{Gal}((K\mathcal{Q})_2/(K\mathcal{Q})_1) \cong \tilde{\Gamma}(2)/\tilde{\Gamma}(4) = \Gamma(2)/\Gamma(4) \times \langle \iota \rangle \cong (\mathbb{Z}/2\mathbb{Z})^{2g^2+g}, \times \langle \iota \rangle
\]

using Lemma \ref{lem:finite} (a) and \(\iota \) and Lemma \ref{lem:gen}. It follows that \(\mathcal{O}_{S,2} \) is generated over \(\mathcal{O}_{S,1} \) by \(\varsigma_4 \) and the square roots of integral elements \(a_{i,j} \gamma_{i,j} \) for some \(a_{i,j} \in \mathbb{Z} \) for \(1 \leq i < j \leq 2g + 1 \). Since the extension \(\mathcal{O}_{S,2} \) is unramified over \(\mathcal{O}_{S,1} \), we have \(a_{i,j} \in \{ \pm 1, \pm 2 \} \). But \(\pm 1, \pm 2 \in \mathbb{Z}[\varsigma_8] \subset \mathcal{O}_{S,1}[\varsigma_8] \), so we have \(\mathcal{O}_{S,2}[\varsigma_8] = \mathcal{O}_{S,1}[\varsigma_8, \{ \sqrt{\gamma_{i,j}} \}_{1 \leq i < j \leq 2g+1}] \), as claimed.

Next we find formulas for generators of \(\mathcal{O}_{S,\infty}^{\mathrm{ab}} \) over \(\mathcal{O}_{S,1}(\mu_2) \) using the ones we have shown for \(k = \mathcal{C} \). We know that \(\mathcal{O}_{S,\infty}^{\mathrm{ab}} \supset \mathcal{O}_{S,2}(\mu_2) = \mathcal{O}_{S,1}[\mu_2, \{ \sqrt{\gamma_{i,j}} \}_{1 \leq i < j \leq 2g+1}] \), and so, by Lemma \ref{lem:gen}, \(\mathcal{O}_{S,\infty}^{\mathrm{ab}} \) is generated over \(\mathcal{O}_{S,1}(\mu_2) \) by square roots of \(2g \) independent integral elements. Then it is
clear from Lemma 1.3 that we may choose these $2g$ elements to be of the form $a_i \sqrt[\prod_{j \neq i} \gamma_{i,j}}$ for some $a_i \in \mathbb{Z}[[\mu_2]]$ for $1 \leq i \leq 2g$ and that the extension also contains a square root of $a_{2g+1} \sqrt[\prod_{j \neq 1} \gamma_{i,j} + 1}$ for some $a_{2g+1} \in \mathbb{Z}[[\mu_2]]$. Using the fact that $O_{S,\infty}^{ab}$ is Galois over $O_S[\mu_2]$, from conjugating by Galois automorphisms that fix $Q(\mu_2)$ but permute the α_i’s, we see that we may choose the elements $a_1, ..., a_{2g+1}$ to be the same element $a \in \mathbb{Z}[[\mu_2]]$. Note that the product of these $2g+1$ elements $a \sqrt[\prod_{j \neq i} \gamma_{i,j}}$ can be written as $\pm a^{2g+1} \prod_{1 \leq i \leq j \leq 2g+1} \gamma_{i,j}$, and so this element must have a square root in $O_{S,\infty}^{ab}$. But we already know that $\pm \prod_{1 \leq i \leq j \leq 2g+1} \gamma_{i,j}$ has a square root in $O_{S,2}[\mu_2]$, so we have $\sqrt{a} \in O_{S,\infty}^{ab}$. Since \sqrt{a} is algebraic over $Q(\mu_2)$, we get $\sqrt{a} \in Q(\mu_2)$ by Lemma 1.2(b).

It follows that $O_{S,\infty}^{ab}$ is generated over $O_{S,2}[\mu_2]$ by the elements $\sqrt[\prod_{j \neq i} \gamma_{i,j}}$. Therefore, the fraction field $(K(\mathbb{Q}(\mu_2)))_{ab}^{\infty}$ of $O_{S,\infty}^{ab}$ (resp. the fraction field $(K_{\mathbb{F}_p(\mu_2)})_{ab}^{\infty}$ of $O_{S,\infty}^{ab}/(p)$ for each prime $p \neq 2$) is generated over $(K(\mathbb{Q}(\mu_2)))_{2}$ (resp. $K_{\mathbb{F}_p(\mu_2))_{2}$) by the elements given in Theorem 1.1.

What we have shown above is that if any given field k, the statement of Theorem 1.1 holds over $k(\mu_2)$. It is now clear that $K(\mathbb{Q}(\mu_2)), \{\sqrt[\prod_{j \neq i} \gamma_{i,j}}\}_{1 \leq i \leq j \leq 2g+1}, \{\sqrt[\prod_{j \neq i} \gamma_{i,j}}\}_{1 \leq i \leq 2g+1} + 1\}$ is a subextension of $K(k(\mu_2)))_{\infty} = K(\mu_2) = K_{\infty}/K_1$. If $\zeta_k \in k$, then this subextension is clearly Kummer and therefore abelian, and it must be maximal abelian since there is no larger subextension which is abelian over $K(\mu_2)$. If $\zeta_k \notin k$, then K_{∞}^{ab} must be the largest subextension of $K(k(\mu_2)), \{\sqrt[\prod_{j \neq i} \gamma_{i,j}}\}_{1 \leq i \leq j \leq 2g+1}, \{\sqrt[\prod_{j \neq i} \gamma_{i,j}}\}_{1 \leq i \leq 2g+1} + 1\}$. Thus, the statement of Theorem 1.1(a) is proved over k.

Finally, let $\sigma \in G_K$ be an element such that $p_2(\sigma) = -1 \in GSp(T_2(J))$. Then it is clear from tracing through the above arguments that σ acts on $O_{S,\infty}^{ab}$ by changing the signs of the generators $\sqrt[\prod_{j \neq i} \gamma_{i,j}}$ and by fixing (resp. changing the signs of) the remaining generators $\sqrt[\prod_{j \neq i} \gamma_{i,j}}$ if g is even (resp. if g is odd), and that therefore, it acts this way on K_{∞}^{ab}, proving part (c) over k.

References

[1] Norbert A’Campo. Tresses, monodromie et le groupe symplectique. *Commentarii Mathematici Helvetici*, 54(1):318–327, 1979.

[2] Samuele Anni and Vladimir Dokchitser. Constructing hyperelliptic curves with surjective Galois representations. *arXiv preprint arXiv:1701.05915*, 2017.

[3] Joan S. Birman. *Braids, links, and mapping class groups*. *Annals of Mathematical Studies*, (82), 1974.

[4] Armand Brumer and Kenneth Kramer. Large 2-adic galois image and non-existence of certain abelian surfaces over Q. *arXiv preprint arXiv:1701.01890*, 2017.

[5] Tim Dokchitser and Vladimir Dokchitser. Regulator constants and the parity conjecture. *Inventiones mathematicae*, 178(1):23, 2009.

[6] Alexandre Grothendieck and Michel Raynaud. Modeles de neron et monodromie. In *Groupes de Monodromie en Geometrie Algebrique*, pages 313–523. Springer, 1972.

[7] Hilaf Hasson and Jeffrey Yelton. Prime-to-p etale fundamental groups of punctured projective lines over strictly henselian fields. *arXiv preprint arXiv:1707.00649*, 2017.

[8] James S. Milne. Abelian varieties. In *Arithmetic geometry*, pages 103–150. Springer, 1986.

[9] James S. Milne. Jacobian varieties. In *Arithmetic geometry*, pages 167–212. Springer, 1986.

[10] David Mumford. Tata lectures on theta II. *Progress in Mathematics*, 43, 1984.

[11] Masatoshi Sato. The abelianization of the level d mapping class group. *Journal of Topology*, 3(4):847–882, 2010.

[12] Jean-Pierre Serre and John Tate. Good reduction of abelian varieties. *Annals of Mathematics*, pages 492–517, 1968.

[13] Ascher Wagner. The faithful linear representation of least degree of S_n and A_n over a field of characteristic 2. *Mathematische Zeitschrift*, 151(2):127–137, 1976.

[14] Jeffrey Yelton. Dyadic torsion of elliptic curves. *European Journal of Mathematics*, 1(4):704–716, 2015.

[15] Jeffrey Yelton. Images of 2-adic representations associated to hyperelliptic Jacobians. *Journal of Number Theory*, 151:7–17, 2015.

[16] Jeffrey Yelton. A note on 8-division fields of elliptic curves. *European Journal of Mathematics*, 3: 603, 2017.

[17] Jiu-Kang Yu. Toward a proof of the Cohen-Lenstra conjecture in the function field case. *Université Bordeaux I-A2X*, 351, 1996.