Catalyst characterization Ni-Sn nanoparticles supported in Al₂O₃ and MgO: Acetophenone hydrogenation

Yasna León-Gutiérrez¹ and Galo Cárdenas-Triviño²

Abstract
Monometallic and bimetallic Ni and Sn catalysts were prepared in different ratios by the Solvated Metal Atom Dispersed (SMAD) method for the catalytic hydrogenation of acetophenone to 1-phenylethanol. The preparation of the catalysts was carried out by evaporation of Ni and Sn metal atoms and subsequent co-deposition at 77 K using 2-isopropanol as solvent on alumina and magnesium oxide as supports. X-ray photoelectron spectroscopy (XPS) analysis showed a high percentage of nickel atoms in zero valence, while the tin phases were founded in reduced and oxidized form. The average size of the nanoparticles measured by transmission electron microscopy (TEM) ranged from 8 to 15 nm while the metal dispersion on the surface measured by hydrogen chemisorption ranged from 0.07% for Ni1% Sn0.3%/MgO to 3.2% for Ni5%/MgO. Thermogravimetric analysis shows that γ-Al₂O₃ catalysts exhibit higher thermal stability than MgO catalysts. The catalysis results showed that the best support is MgO reaching 66% conversion in Ni5% Sn0.5%/MgO catalyst.

Keywords
metal nanoparticles, metal vapor, catalytic properties, electron microscopy, surface properties

Date received: 27 April 2021; accepted: 30 August 2022

Introduction
The hydrogenation of acetophenone for the production of 1-phenylethanol is a model reaction of great interest because not only the ketone function is susceptible to being reduced by hydrogenation, but also the phenyl ring. Thus, the non-selective hydrogenation of acetophenone can lead, in addition to 1-phenylethanol, to the production of acetylcyclohexane, methylcyclohexyl ketone, ethylbenzene, ethlycyclohexane and 1-cyclohexylethanol, showing the importance of selectivity in this reaction. Metallic catalysts used in selective hydrogenation are commonly based on Pt, Rh, Ru, and Pd however none of these metals, is for itself a good catalyst for selective reduction of carbonyl groups. In addition, since they are expensive metals, their massive use in catalytic processes involves additional economic costs. Other alternatives consider the use of more accessible metals, such as nickel. However, because of their less

¹Department of Biological and Chemical Sciences, Faculty of Medicine and Science, San Sebastián University, Santiago, Chile
²DIMAD, Engineering Faculty, School of Chemical Engineering, Bio-Bío University, Concepción, Chile

Corresponding author:
Galo Cárdenas-Triviño, DIMAD, Engineering Faculty, School of Chemical Engineering, Bio-Bío University, 1202 I. Collao Ave, Concepción 4050231, Chile.
Email: gcardenas@ubiobio.cl

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
activity, it is common that higher pressures are required to achieve economically viable conversions.

The supported metallic catalysts often improve drastically when a small amount of a second metal is added, displaying not only an activity increase but also selectivity. Selectivity can be improved with the addition of elements like P, Sn or MgO introduced in the reactor. Nevertheless, Sn can modify the stability and selective function of the metallic catalyst in two ways, through a “geometric effect” to decrease the number of adjacent atoms by dilution avoiding deposits of undesirable carbonaceous materials on the active phase, and an “electronic effect” caused by the formation of alloys or inter-metallic compounds.

The results found in the literature reveal the tin active type is ionic in cationic state Sn(II). Li and Klabunde prepared the Pt-Sn catalyst system in SiO$_2$ and Al$_2$O$_3$ supports through Solvated Metal Atom Deposition (SMAD) method. This method allows the production of very small zero-value bi-metallic particles. It implies the simultaneous vapor in a reactor under high vacuum followed by condensation at 77 K in presence of Al$_2$O$_3$ or MgO depending on the support used, for 1.5 hours after which the matrix turns black at the end of co-deposition. The mixture was thawed for 1 hour at room temperature under vacuum until reaching 5–10 μm of Hg while the crucibles are heated to red heat producing the sublimation of the metals.

A Dewar flask with liquid nitrogen was placed around the reactor and Ni, Sn, and 100 mL of 2-propanol were simultaneously deposited at 77 K in presence of Al$_2$O$_3$ or MgO depending on the support used, for 1.5 hours after which the matrix turns black at the end of co-deposition. The mixture was thawed for 1 hour at room temperature under vacuum through the elimination of liquid nitrogen from the Dewar. Finally, the solvent dispersed metal colloid was kept stirring for 24 hours in the reactor at room temperature under an inert atmosphere of N$_2$ (g).

Transmission electron microscopy and selected area electron diffraction

Transmission electron microscopy images were obtained on a JEOL JEM 1200 EXII. The catalyst to be analyzed was placed in an agate mortar and dispersed in 2-propanol. A drop of each dispersion is dropped on a 150-mesh carbon-coated copper grid. The micrographs were obtained using 120 kV, 60 cm, and 4.209 Å wavelength. Calibration was carried out by diffracting electrons on a standard Au film (Aldrich Chemical 99.99%) evaporated over a copper grid. To study the particle size, representative regions of each sample were selected, and then between 80 to 100 particles were measured in each sample. Then using Origin 6.0 software (Microcal Software Inc.) a frequency histogram was made to determine the particle average size fitting both Gaussian and normal distribution functions.

Thermal studies

The thermogravimetric studies of the catalysts were performed under a nitrogen atmosphere using a TGA-7 from Perkin-Elmer. A sample mass between 5 to 10 mg was placed in a crucible on the thermal microbalance and heated using a program from 25°C to 550°C and a heating rate of 10°C min$^{-1}$, continuously recording the mass changes in the sample during the experiment.

Surface characterization by gas adsorption (H$_2$, N$_2$)

The hydrogen chemisorption was carried out at 373 K on a Micromeritics ASAP 2010 equipment provided with a
thermal conductivity detector. Before the analysis, the samples were reduced in situ under hydrogen flow (50 cm³ min⁻¹) at 673 K for 1 hour. Hereafter, the reactive gas was displaced with argon and the temperature was kept constant for 2 hours, then reduced to 373 K. Once the baseline was restored, different H₂ pulses were sent to the sample support until complete saturation of the metallic surface. The BET specific metallic surface area and the ratio H/Ni were obtained through the assessment of the chemically adsorbed amount of H₂ at 373 K. Nitrogen adsorption at 77 K was carried out to determine the specific surface area of the catalyst. Measures were done in the same apparatus. An amount between 100 and 200 mg of the catalyst was degassed in high vacuum at 350°C for 2 hours. The sample was then cooled to 77 K and analyzed automatically by the equipment evaluating the changes in equilibrium by sending successive pulses of nitrogen until the equilibrium pressure was reached.

Infrared studies

Infrared spectra were measured in solid solution on KBr discs by using an FT-IR Nicolet Change 330 spectrophotometer coupled to a PC with Omnis software analysis. Spectra were recorded at a resolution of 5 cm⁻¹ and 128 scans accumulated in the range from 400 to 4000 cm⁻¹.

X-ray photoelectron spectroscopy

Spectra were recorded in a Leybold HL 10 spectrometer with a mono-chromatized Mg Kα X-ray source (hv = 1253.6 eV) operated a 10 mA and 10 kV. All binding energies (BE) were referred to the C 1s line at 284.6 eV.

Catalytic performance - acetophenone hydrogenation

The acetophenone hydrogenation was performed in a 200 mL stainless steel vessel equipped with a pressure gauge and connected to a hydrogen tank (99.99% purity). The powdered catalyst was added to the reactor and a constant flow of H₂ gas was maintained to reduce the surface oxide that could be formed and then heated to 250°C for 1 h.

Once the catalyst has been properly prepared for catalytic testing, the reactor is cooled to room temperature and 70 mL of acetophenone 0.40 mol L⁻¹ in methanol solution was added homogenizing the mixture with a magnetic stirrer. The reactor was placed in a furnace with digital controlled temperature and heated at a rate of 5°C min⁻¹. The reaction progress was determined by taking samples periodically from the reaction system and immediately analyzed in a gas chromatograph HNU Systems GC 321 loaded with Carbopack B 80/120 6.6% Carbowax column and He flow of 25 mL min⁻¹ and thermal conductivity detector. The percentage conversion of acetophenone to 1-phenylethanol was determined using a calibration curve made with standard addition.

Results and discussion

Transmission electron microscopy and selected area electron diffraction

In Figure 1 the transmission electron micrographs for selected catalysts are presented. In Table 4, average particle sizes obtained by TEM and by H₂ chemisorption are summarized. In general, the size of the dispersed particles over Al₂O₃ is smaller than the ones supported on MgO. These sizes are comparable to the non-metallic and bimetallic nonsupported colloids obtained by this method on different organic solvents.²²,²³ The size difference between the two supports is attributed to the different interactions between the support and the particles.²⁴,²⁵ Tin-containing catalysts tend to show a larger particle size compared to monometallic catalysts. This nucleation is related in similar materials to the formation of binary intermetallic compounds.²⁶

In Figure 2 is presented the selected area electron diffraction patterns of the mono and bi-metallic Ni₅.0%/MgO series in MgO and γ-Al₂O₃. The formation of intermetallic compounds of nickel and tin was found in bimetallic catalysts in both supports. A summary of the observed crystallographic values for Ni₅%/MgO and Ni₅%/Sn₁.0%/MgO catalysts is presented in Table 1.

The crystalline planes and spacing found were allocated by comparison with the JCPDS database.²⁷ The presence of several metallic phases in the bimetallic catalysts has made it difficult to study the precise composition of the metallic nanoparticles. However, it has been possible to confirm the presence of metallic nickel phases in the monometallic catalysts. For the bi-metallic compounds the existence of Ni, Sn, SnO, and Nix-Sny phases are noticed, corroborating that the formation of inter-metallic compounds depends on the molar ratio Ni:Sn.²⁸

Thermal studies

In Figure 3 the thermogravimetric analysis for mono and bimetallic catalysts at 1% nickel in alumina and magnesium oxide is presented. Temperature decomposition intervals and percentage mass loss are summarized in Table 2. Alumina catalysts show higher thermal stability compared to those with MgO as support, displaying a slowly and steadily weight loss in a wide range of temperatures. In this set of catalysts, it was found that for higher tin content the thermal stability of the sample decreases. In the MgO catalysts, this trend is not observed, both bimetallic catalysts have shown higher stability than the respective nickel and tin monometallic catalysts. The difference observed
between Ni1% Sn0.3%/MgO and Ni1% Sn0.5%/MgO between 325°C and 400°C is attributed to the fact that in the former, according to the findings obtained by chemisorption which will be discussed later, the dispersion is lower in this sample, giving it higher thermal resistance. This could be related to the formation of new bimetallic phases as found by SAED for the Ni5% catalyst series.

The MgO support may be acting as a suitable surface for the formation of new bimetallic phases during the condensation of the solvated metal vapor in the synthesis of the metal nanoparticles. For both groups of catalysts, a higher tin content is related to a higher mass loss at low temperature, which is consistent with a higher amount of solvent incorporated. The solvent incorporation is considered to occur through an interaction of the oxygen atom of the 2-propanol with the metal particles on the catalyst surface, the higher tin-oxygen energy interaction compared to that of nickel-oxygen explains these differences.29,30

The information provided by the thermogram suggests that the interaction between the metal particles and the

Figure 1. Electron micrograph (100 K) for selected Ni5%/MgO and Ni1%/Al2O3 catalysts series. (A) Ni5%/MgO, (B) Ni5%Sn0.3%/MgO, (C) Ni5%Sn1%/MgO, (D) Ni1%/γ-Al2O3 (dark field), (E) Ni1%Sn0.3%/γ-Al2O3, (F) Ni1%Sn0.5%/γ-Al2O3.
Figure 2. Selected Area Electron Diffraction of selected samples.

Table 1. Electron diffraction of the Ni5%/MgO and Ni5% Sn1.0%/MgO catalyst.

Catalyst	D (cm)	\(d_{(h,k,l)}\)_{exp} (Å)	Phases and \(hkl\)	\(d_{(h,k,l)}\)_{exp} (Å)
Ni5%/MgO	1.971	2.172	Ni (0.0,2)	2.172
	2.695	1.561	MgO (5,1,1)	1.560
	4.319	0.974	Ni (0.1,1.4)	0.980
Ni5% Sn1.0%d/MgO	1.942	2.167	Ni (0.0,2)	2.172
	2.290	1.838	NiSn (11,1,1)	1.830
	3.217	1.308	Sn (2,2,0)	1.309
	3.855	1.092	Ni₃Sn₄ (−2.2,4)	1.090
			MgO (8,0,0)	1.085
			SnO (4,2,3)	1.095
support is different for MgO and γ-Al₂O₃. The presence of electron-deficient metallic particles in γ-Al₂O₃ has been reported for Pd³¹ and Pt³² demonstrating that the nature of the support can induce the modulation of the electron density on the active sites. In the catalysts presented in this work, the difference in decomposition temperatures for both supports can be attributed to this effect.

Surface characterization by gas adsorption (H₂, N₂)

Table 3 summarizes the metallic area, the specific surface, the ratio H/Ni and the assessment of average particle size from the results of hydrogen and nitrogen adsorption of the catalysts. The ratio H/Ni is related to the dispersion of the metal nickel phase and was founded low for both supports.

In addition, it can be observed that for MgO the rate H/Ni in the monometallic Ni catalyst is slightly larger regarding the bi-metallic Ni-Sn catalysts. Consequently, although Ni and Sn enriched nanoparticles are produced in the reduced state during the synthesis, bimetallic NiₓSnᵧ alloys are also formed as observed by electron diffraction analysis. This leads to a decrease in the amount of hydrogen adsorbed during the experiment. Low dispersion can be attributed to a partial coating of Ni particles by SnOₓ species. This behavior has been reported by Asgardi et al.³³ and Antolini et al.³⁴ for PtSn catalysts.

It is also possible that the presence of organic matter from the trace solvent when in contact with the metal, gives rise to pseudo-organo-metallic compounds that prevent hydrogen chemisorption.³⁵ The existing particle size difference between the one determined by hydrogen chemisorption and TEM is because for chemisorption the size has been determined by the equation \(d = \frac{5 \times 10^{-4}}{S \cdot \rho} \), where \(d \) is the particle diameter (Å), \(S \) is the metallic surface (m² g⁻¹) area and \(\rho \) the specific gravity of the metal phase (g mL⁻¹). This model assumes cubic shape particles with five faces exposed to the gas and one to the support, which is not completely true considering the electron microscopy images, which show a rather spherical shape.

Infrared Studies

Table 4 shows the main absorption bands found for selected catalysts. When comparing the spectrum of the pure support with the corresponding mono or bimetallic catalysts, bands around 2960-2860 cm⁻¹ and 1475-1490 cm⁻¹ appear, attributable to asymmetric tension of the C-H bond in methyl groups and C-H flexion, respectively. Also, around 1260, 1098, and 1031 cm⁻¹ absorption bands related to hydroxyl O-H flexion and C-O stretching modes are found.
These observations are compatible with the presence of 2-propanol incorporated in the nanoparticles. Compared to the infrared fingerprint for the pure solvent, only small shifts are found, which can be originated from the interaction of the solvent with the metal surface through the oxygen atom.

Table 3. Metallic area, specific surface, H/Ni, and particles size determined for chemisorption and TEM of mono-metallic and bi-metallic catalyst supported in MgO and Al2O3.

Sample	\(S_{\text{BET}}\)	\(S_{\text{Metallic}}\)	H/Ni	d \(_{\text{Ni}}\) (H2)	d \(_{\text{Ni}}\) (TEM)
\(\gamma\)-Al2O3	124	—	—	—	—
Ni1%\(\gamma\)-Al2O3	119	7.7	1.2	73.3	4.9
Ni1% Sn0.3%/\(\gamma\)-Al2O3	121	5.6	0.8	100.1	5.0
Ni1% Sn0.5%/\(\gamma\)-Al2O3	119	10.1	1.5	55.6	4.5
Sn1.0%/\(\gamma\)-Al2O3	111	—	—	—	—
Ni5%/\(\gamma\)-Al2O3	110	3.8	0.6	147.4	9.3
Ni5% Sn0.5%/\(\gamma\)-Al2O3	108	3.5	0.6	136.0	10.9
Ni5% Sn1.0%/\(\gamma\)-Al2O3	109	4.1	0.5	162.8	12.2
MgO	195	—	—	—	—
Ni1%/MgO	175	—	a	—	b
Ni1% Sn0.3%/MgO	184	0.5	0.07	b	6.9
Ni1% Sn0.5%/MgO	183	3.7	0.6	152.9	7.7
Sn1.0%/MgO	194	—	—	—	—
Ni5%/MgO	185	21.5	3.2	26.2	13.6
Ni5% Sn0.5%/MgO	192	16.2	2.4	34.2	12.9
Ni5% Sn1.0%/MgO	185	5.1	0.8	110.0	14.6

*It could not be determined.

bValues out of range.

Table 4. FT-IR analysis of the support \(\gamma\)-Al2O3 and MgO, and catalysts Ni5%/\(\gamma\)-Al2O3 and Ni5% Sn0.5%/MgO.

Catalyst bands	Solvent assignment	Support bands	
Ni5% / \(\gamma\)-Al2O3		\(\gamma\)-Al2O3	3448
3456		\(\gamma\)-Al2O3	3448
2962*	\(\nu_{\text{asym}}\) CH\(_3\)	3645	
2925*	\(\nu_{\text{asym}}\) C-H, CH\(_2\)	3647	
2859*	\(\nu_{\text{sym}}\) C-H, CH\(_2\)	3442	
1637		\(\gamma\)-Al2O3	1643
1475*	\(\delta\) CH\(_3\)	3700	
1407*	\(\delta\) CH\(_3\)	MgO	3698
1260*	\(\delta\) O-H	800	
3700		MgO	3698
3645			3647
3442			3442
2960*	\(\nu_{\text{asym}}\) CH\(_3\)	1629	
2924*	\(\nu_{\text{sym}}\) CH\(_3\)	1490	
2859*	\(\nu_{\text{sym}}\) CH\(_2\)	1426	
1629			1633
1490			1486
1426			1424
1261*	\(\delta\) O-H	1098*	
1098*	\(\nu\) C-O	3700	
1031*	\(\nu\) C-O	MgO	3698

*X-Ray Photoelectron Spectroscopy

A summary of the binding energies for Ni 3p\(_{3/2}\) and Sn 3d\(_{1/2}\) is shown in Table 5. Literature assign binding energies values of 853.8 ± 0.1 eV to Ni 3p\(_{3/2}\) levels in the metallic state and 853.6 ± 0.1 eV for nickel in the +2 oxidation.
In the case of metallic tin, the binding energy is 484.6 ± 0.1 eV, while for the oxidized species it is approximately 487 eV. Nickel in the alumina catalysts presents a peak at 853.5 eV which can be assigned to both Ni⁰ and Ni⁺² since the energy difference between both species is only 0.2 eV. In the case of tin, the 485 eV spike can assign the species Sn⁰ while the highest binding energy around 487 eV is attributed to the presence of tin oxides of Sn⁺² or Sn⁺⁴ valences. Previous reports show that alumina strongly interacts with tin impeding its reduction, and this effect could be the reason to promote tin oxidation. Bi-metallic catalysts supported on MgO present the same signals as those supported on γ-Al₂O₃. The Sn/Ni surface atomic ratios determined by XPS suggest that Sn is mainly found in the top layers of the catalyst.

Catalytic performance - acetoephone hydrogenation

The pressure for the reaction was set at 100 psi at a temperature of 80°C, being. It has been found that for the same reaction, similar conversion yields have been obtained but using higher temperatures and pressures. For example, with 15% m/m Ag catalysts supported on molecular sieves Yadav and Mewada have obtained the same conversion percentage reached in this work but at a higher pressure of 147 psi and a higher temperature of 160°C. Tanash et al. achieved lower pressures for the catalytic hydrogenation of acetoephone using ruthenium catalysts supported on alumina with conversions of up to 80% at pressures between 43 and 87 psi and temperatures in the range of 58 to 86°C. However, the process presents a low selectivity, obtaining secondary products such as acetylcylohexane and 1-cyclohexylethanol. A better selectivity has been reported by Costa et al. using nickel-based catalysts at 145 psi and 80°C to favor the hydrogenation reaction at the C=O bond more than the C=C, however, they have only reached a 30% conversion rate. In the series of catalysts tested in this work, the best conversion of acetoephone to 1-phenylethanol occurs with Ni⁵% Sn⁰.5%/MgO catalysts, since they showed higher metal surface area in the hydrogen chemisorption measurements. In Figure 4 it can be observed a high level of conversion when Ni⁵% Sn⁰.5%/MgO catalyst is used, reaching 66% after 7 reaction hours, however when using a 1.0% Sn catalyst the activity decay.

This effect is consistent with the findings obtained from the surface characterization of the catalysts. It can be observed that Ni⁵% Sn⁰.5%/MgO catalyst, with a higher Sn content, leads to a 70% decrease in metal surface area, in addition to an increase in nanoparticle size and a noticeable decrease in the H/Ni ratio in comparison with Ni⁵% Sn⁰.5%/MgO. The decrease in exposed nickel surface area leads to lower activity in the conversion of acetophenone to 1-phenylethanol. On the other hand, the conversion rate found for Ni⁵% Sn⁰.5%/MgO in this work may be related to the surface polarity. From the TGA results, it can be observed that Al₂O₃ catalysts, compared to those of MgO, seem to retain a higher amount of solvent as observed in the mass loss at low temperatures, which may be associated with a higher surface polarity. A less polar surface favors the adsorption of acetoephone which once hydrogenated generates 1-phenylethanol, a molecule of higher polarity and therefore lower affinity to the catalyst, leaving the surface free to continue the catalytic cycle. The monometallic catalyst supported on MgO shows no activity, independently from having a higher dispersion. The same effect has been shown by alumina-supported catalysts, which also show low dispersion. It has been reported that

Catalyst	Binding energy (eV)	Surface atomic ratios				
	Ni 3p₃/₂	Sn 3d₁/₂	Ni/support	Sn/support	Sn/Ni	
Ni¹%/Al₂O₃	853.4	—	0.016	—	—	
Ni¹% Sn⁰.3%/γ-Al₂O₃	853.5	484.8	487.2	0.015	0.0027	5.7
Ni¹% Sn⁰.5%/γ-Al₂O₃	853.5	484.2	487.8	0.017	0.0030	4.8
Sn¹.0%/γ-Al₂O₃	—	484.4	—	0.0074	—	—
Ni¹%/MgO	—	—	—	—	—	—
Ni¹% Sn⁰.3%/MgO	853.4	484.7	487.3	0.023	0.0012	19.2
Ni¹%Sn⁰.5%/MgO	853.4	484.0	487.5	0.013	0.0021	6.06
Sn¹.0%/MgO	—	—	—	—	—	—

*Not determined.

state. In the case of metallic tin, the binding energy is 484.6 ± 0.1 eV, while for the oxidized species it is approximately 487 eV. Nickel in the alumina catalysts presents a peak at 853.5 eV which can be assigned to both Ni⁰ and Ni⁺² since the energy difference between both species is only 0.2 eV. In the case of tin, the 485 eV spike can assign the species Sn⁰ while the highest binding energy around 487 eV is attributed to the presence of tin oxides of Sn⁺² or Sn⁺⁴ valences. Previous reports show that alumina strongly interacts with tin impeding its reduction, and this effect could be the reason to promote tin oxidation. Bi-metallic catalysts supported on MgO present the same signals as those supported on γ-Al₂O₃. The Sn/Ni surface atomic ratios determined by XPS suggest that Sn is mainly found in the top layers of the catalyst.
the addition of a secondary nonactive metal, could improve the activity and selectivity of the hydrogenation reactions.45

Conclusions

Two catalyst series have been synthesized using MgO and γ-Al2O3 as supports on which metallic nanoparticles were deposited through the SMAD method. TEM micrographs have revealed that the average particle size range from 8 to 15 nm detecting the presence of metallic nickel phases while tin it has been found oxidized in Sn(II) and Sn(IV) states. The size differences are attributed to the different interactions of these metals with both supports. The tin-containing catalysts show in general a larger particle size and a higher degree of crystallinity compared to those monometallic ones. Also depending on the proportion of Ni and Sn used the presence of NiSn type intermetallic phases has been detected with a higher presence in the MgO catalysts which may be acting as an appropriate surface for the formation of these species during the condensation of the solvated metal atoms through the SMAD method. The addition of Sn to the catalysts has proved to be an initiator of hydrogenation of the acetophenone through the C=O bond, increasing selectivity for 1-phenylethanol production. The best conversion of acetophenone to 1-phenylethanol was achieved at 100 psi and 80°C reaching 66% with the Ni5% Sn0.5%/MgO catalyst which represents an improvement compared to other catalysts used for this same hydrogenation reaction that require more drastic pressure and temperature conditions to achieve higher yields.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors would like to Fondecyt grant n°1080704 and Electron Microscopy Center, Dirección de Investigación, Universidad de Concepción for the performed analysis.

ORCID iD

Galo Cárdenas-Triviño https://orcid.org/0000-0001-6644-4438

References

1. Zhang XB. Preparation of 1-phenylethanol by selective hydrogenation of acetophenone over alumina-supported Co catalysts. React Kinetics, Mech Catal 2011; 102(2): 417–424.
2. Bhosale A, Yoshida H, Fujita S, et al. Carbon dioxide and water: An effective multiphase medium for selective hydrogenation of nitriles with a Pd/Al2O3 catalyst. J CO2 Utilization 2016; 16: 371–374.
3. Yan X, Zhang Q, Zhu M, et al. Selective hydrogenation of benzene to cyclohexene over Ru–Zn/ZrO2 catalysts prepared by a two-step impregnation method. J Mol Catal A: Chem 2016; 413: 85–93.
4. Tian Z, Liu C, Li Q, et al. Nitrogen- and oxygen-functionalized carbon nanotubes supported Pt-based catalyst for the selective hydrogenation of cinnamaldehyde. Appl Catal A: Gen 2015; 506: 134–142.
5. Campos CH, Rosenberg E, Fierro JL, et al. Hydrogenation of nitro-compounds over rhodium catalysts supported on poly [acrylic acid]/Al2O3 composites. Appl Catal A: Gen 2015; 489: 280–291.
6. Currall K and Jackson SD. Hydrogenation of 4-nitroacetophenone over Rh/silica. Appl Catal A: Gen 2014; 484: 59–63.
7. Shi D, Arroyo-Ramírez L, and Vohs JM. The use of bimetallics to control the selectivity for the upgrading of lignin-derived oxygenates: Reaction of anisole on Pt and PtZn catalysts. J Catal 2016; 340: 219–226.
8. Stassi JP, Zgolicz PD, Rodriguez VI, et al. Ga and In promoters in bimetallic Pt based catalysts to improve the performance in the selective hydrogenation of citral. Appl Catal A: Gen 2015; 497: 58–71.
9. Wang J, Wang Y, Chen G, et al. Highly Loaded and Dispersed Ni2P/Al2O3 Catalyst with High Selectivity for Hydrogenation of Acetophenone. Catalysts 2018; 8(8): 2018.
10. Lv Z, Wang J, Zhang S, et al. Highly selective hydrogenation of acetophenone over supported amorphous alloy catalyst. Appl Organomet Chem 2020; 34(4): e5555.
11. Zhu H, Anjum DH, Wang Q, et al. Sn surface-enriched Pt–Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation. J Catal 2014; 320: 52–62.
12. Vicente A, Lafaye G, Espeel C, et al. The relationship between the structural properties of bimetallic Pd–Sn/SiO2
catalysts and their performance for selective citral hydrogenation. *J Catal* 2011; 283(2): 133–142.

13. Masai M, Mori K, Muramoto H, et al. Dehydrogenation activity of nickel–tin-silica catalyst. *J Catal* 1975; 38(1): 128–134.

14. Masai M, Honda K, Kubota A, et al. Dehydrogenation and hydrogenation activity of palladium-tin-silica and nickel-tin-silica. *J Catal* 1977; 50(3): 419–428.

15. Li Y-X and Klabunde KJ. Studies of Pt-Sn/Al2O3 catalysts prepared by Pt and Sn coevaporation (solvated metal atom dispersion). *J Catal* 1990; 126(1): 173–186.

16. Cárdenas-Triviño G and Triviño-Matus S. Synthesis and characterization of Fe, Co, and Ni colloids in 2-mercaptoethanol. *Nanomater Nanotechnology* 2020; 10: 1–10.

17. Cárdenas-Triviño G, Saludes-Betanzo MJ, and Vergara-González L. Bactericides of chitosan metal quantum dots microbial pathogenicity against E. coli, S. aureus, and S. Typhi. *Int J Polym Sci* 2020: 5920941–5921014.

18. Amsarajan S and Jagirdar BR. Air-Stable Carbon-Fe Based Magnetic Nanostructures. *Eur J Inorg Chem* 2019; 2019(10): 1374–1383.

19. Bhattacharya C and Jagirdar BR. Monodisperse colloidal metal nanoparticles to core–shell structures and alloy nanosystems via digestive ripening in conjunction with solvated metal atom dispersion: a mechanistic study. *The J Phys Chem C* 2018; 122(19): 10559–10574.

20. Li YX, Zhang YF, and Klabunde KJ. Spectroscopic characterization of platinum-tin bimetallic catalysts prepared by solvated metal atom dispersion (SMAD). *Langmuir* 1988; 4(2): 385–391.

21. Cárdenas G, Oliva R, Reyes P, et al. Synthesis and properties of PdSn/Al2O3 and PdSn/SiO2 prepared by solvated metal atom dispersed method. *J Mol Catal A: Chem* 2003; 191(1): 75–86.

22. Cárdenas G and León Y. Synthesis and characterization of NiSn colloids and active solids prepared in organic solvents by CLD. *Colloid Polym Sci* 2004; 282(4): 394–401.

23. Cárdenas G, León Y, Moreno Y, et al. Synthesis and properties of NiSn colloids using different metal ratios by CLD. *Colloid Polym Sci* 2006; 284(6): 644–653.

24. Bobadilla LF, Penkova A, Alvarez A, et al. Glycerol steam reforming on bimetallic NiSn/CoO–MgO–Al2O3 catalysts: Influence of the support, reaction parameters and deactivation/regeneration processes. *Appl Catal A: Gen* 2015; 492: 38–47.

25. Penkova A, Bobadilla LF, Romero-Sarria F, et al. Pyridine adsorption on NiSn/MgO–Al2O3: An FTIR spectroscopic study of surface acidity. *App Surf Sci* 2014; 317: 241–251.

26. Branco JB, Ferreira AC, Gonçalves AP, et al. Methanol synthesis over binary copper-f block element intermetallic compounds. *Catal Commun* 2016; 84: 103–107.

27. JCPDS. *Powder Diffraction File, Inorganic Phases*, JCPDS; 1997.

28. Onda A, Komatsu T, and Yashima T. Preparation and Catalytic Properties of Single-Phase Ni–Sn Intermetallic Compound Particles by CVD of Sn(CH3)4 onto Ni/Silica. *J Catal* 2001; 201(1): 13–21.

29. Darwent BB, U. S. N. B. of Standards and U. S. D. of Commerce. *Bond Dissociation Energies in Simple Molecules*. U.S. National Bureau of Standards, 1970.

30. Speight J. *Lange’s Handbook of Chemistry*. 70th Anniversary Edition. McGraw-Hill Education, 2005.

31. Cárdenas G and Acuña J. Nickel nanoparticles and solids using organic solvents. *Colloid Polym Sci* 2001; 279(5): 442–448.

32. Cárdenas G, Tello A, and Segura R. Synthesis and TEM studies of nickel colloids prepared in nonaqueous solvents. *Boletin De La Sociedad Chilena De Quimica* 2001; 46(4): 441–447.

33. Asgardi J, Calderon JC, Alcaide F, et al. Carbon monoxide and ethanol oxidation on PtSn supported catalysts: Effect of the nature of the carbon support and Pt:Sn composition. *Appl Catal B: Environ* 2015; 168–169: 33–41.

34. Antolini E and Gonzalez ER. Effect of synthesis method and structural characteristics of Pt–Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium. *Catal Today* 2011; 160(1): 28–38.

35. Claus P and Hofmeister H. electron microscopy and catalytic study of silver catalysts: structure sensitivity of the hydrogenation of crotonaldehyde. *The J Phys Chem B* 1999; 103(14): 2766–2775.

36. Khurat AN, Pendleton P, Badalyan A, et al. Decomposition of Nickel Formate on Sol–Gel Alumina and Characterization of Product by X-Ray Photoelectron and TOF-SIMS Spectroscopy. *J Catal* 2002; 205(1): 7–15.

37. Shabaker JW, Simonetti DA, Cortright RD, et al. Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies. *J Catal* 2005; 231(1): 67–76.

38. Serrano-Ruiz JC, Huber GW, Sánchez-Castillo MA, et al. Effect of Sn addition to Pt/Al2O3 catalysts: An XPS, 119Sn Mössbauer and microcalorimetry study. *J Catal* 2006; 241(2): 378–388.

39. Bobadilla LF, Romero-Sarria F, Centeno MA, et al. Promoting effect of Sn on supported Ni catalyst during steam reforming of glycerol. *Int J Hydrogen Energy* 2016; 41(22): 9234–9244.

40. Yadav GD and Mewada RK. Selective hydrogenation of acetoephone to 1-phenyl ethanol over nanofibrous Ag-OMS-2 catalysts. *Catal Today* 2012; 198(1): 330–337.

41. Tanash M, Abboushi E, Mahmoud A, et al. Ruthenium Catalyzed Hydrogenation of Acetophenone: A Kinetic Modeling Study. *JORDAN JOURNAL OF CHEMISTRY* 2019; 14(4): 131–138.

42. Costa DC, Soldati AL, Bengoa JF, et al. Phosphorus as a promoter of a nickel catalyst to obtain 1-phenylethanol from
chemoselective hydrogenation of acetophenone. *Heliyon* 2019; 5(6): e01859.

43. Raj KJA, Prakash MG, Mahalakshmy R, et al. Selective hydrogenation of acetophenone over nickel supported on titania. *Catal Sci Technology* 2012; 2(7): 1429–1436.

44. Costa DC, Bengoa JF, Marchetti SG, et al. Impact of the surface hydrophobicity/hydrophilicity ratio on the catalytic properties of Ni nanoparticles/MCM-41 system used in the hydrogenation of acetophenone. *Catal Today* 2021; 372: 20–26.

45. Matsuo K and Klabunde KJ. Clustering of metal atoms in organic media: 9. High-Activity NiMgO catalysts prepared by metal vapor methods. Surface area and particle size effects. *J Catal* 1982; 73(2): 216–227.