Elevated plasma tyrosine kinases VEGF-D and HER4 in heart failure patients decrease after heart transplantation in association with improved haemodynamics

Salaheldin Ahmed1,2 · Abdulla Ahmed1,2 · Joanna Säleby1,2 · Habib Bouzina1,2 · Jakob Lundgren1,2 · Göran Rådegran1,2

Received: 15 October 2019 / Accepted: 13 December 2019 / Published online: 20 January 2020
© The Author(s) 2020

Abstract
Receptor tyrosine kinases (RTKs) are implicated in cardiovascular growth and remodelling. We aimed to identify the plasma levels of RTKs and related proteins and their association with haemodynamic alterations in heart failure (HF) and related pulmonary hypertension (PH) following heart transplantation (HT). Using proximity extension assay, 28 RTKs and related proteins were analysed in plasma from 20 healthy controls and 26 HF patients before and 1-year after HT. In end-stage HF, out of 28 RTKs, plasma vascular endothelial growth factor-D (VEGF-D) and human epidermal growth factor-4 (HER4) were elevated compared to controls \((p < 0.001) \), but decreased \((p < 0.0001) \) and normalised after HT. Following HT, plasma changes (Δ) of VEGF-D correlated with Δmean pulmonary artery pressure \((r_s = 0.65, p = 0.00049) \), Δpulmonary artery wedge pressure \((r_s = 0.72, p < 0.0001) \), Δpulmonary arterial compliance (PAC) \((r_s = -0.52, p = 0.0083) \) and Δpulmonary vascular resistance (PVR) \((r_s = 0.58, p = 0.0032) \). ΔHER4 correlated with Δmean right atrial pressure \((r_s = 0.51, p = 0.012) \), ΔNT-proBNP \((r_s = 0.48, p = 0.016) \) and Δcardiac index \((r_s = -0.56, p = 0.0044) \). In HF patients following HT, normalisation of VEGF-D reflected reversal of passive pulmonary congestion and restored PAC and PVR; whereas the normalisation of HER4 reflected decreased volume overload and improved cardiac function. The precise function of these proteins, their potential clinical use and pathophysiological relation in HF and related PH remain to be elucidated.

Keywords Haemodynamics · Heart failure · Heart transplantation · Pulmonary hypertension · Receptor protein-tyrosine kinases

Introduction
Heart failure (HF), a global pandemic present in 1–2% of the adult population, is caused by pathological changes in structural and/or functional properties of the cardiomyocytes, cardiac interstitium, or both [1, 2]. Apart from pure haemodynamic overload, the progression of HF involves abnormal biochemical signalling of neurohormones, inflammatory cytokines and receptor tyrosine kinases (RTK), culminating into aberrant cardiac vascularisation and maladaptive left ventricular remodelling [2–4].

A frequent complication in HF irrespective of ejection fraction is pulmonary hypertension (PH) impacting negatively on symptoms and outcome. PH due to left heart disease (LHD) is mainly induced by left HF, congenital or valvular heart diseases and if sustained may lead to endothelial dysfunction, followed by excessive vasoconstriction and pulmonary vascular remodelling [5–7]. Moreover, such PH may advance into a “fixed” phenotype, harbouring stiff vessels unresponsive to pulmonary vasodilators, potentially imposing a relative contraindication for heart transplantation (HT) [7–9].
In the field of HF, blood borne biomarkers, including proteomics, are an area of immense interest and may in addition to their clinical utility, provide a profound pathophysiological understanding [8, 9]. Likewise, the most recent state-of-the-art review of PH pathology and pathobiology, highlight the importance of future biomarker research in the field of PH [10]. Noteworthy are RTKs and related proteins, involved in signalling pathways of vascular remodelling in PH, such as in pulmonary arterial hypertension (PAH), angiogenesis as well as in cardiac remodelling [10–12]. RTK are also emerging as potential prognostic and/or diagnostic targets in PH [10, 13, 14].

Although the principle aetiology of PH-LHD has been described, the precise underlying pathophysiology remains unclear and whether treatment of the pulmonary vascular component with PAH targeted therapies is beneficial, remains uncertain [15, 16]. Identifying new proteins related to the reversal of HF and associated PH with corresponding haemodynamic improvement may consequently aid in non-invasive and rapid detection of haemodynamic deterioration and in generating new hypotheses for experimental testing and clinical research. This may in turn offer new approaches for optimised treatments of HF and aid in future clinical decision making such as the incorporation of a multi-marker panel of biomarkers for personalisation of care [9, 17].

In search for new biomarkers potentially associated with the pathophysiology of HF and concomitant PH, we aimed to identify the plasma levels of RTKs and related proteins and their association with haemodynamic alterations in HF and related PH, before vs. after HT.

Material and methods

Study population

The present study, including those with PH-LHD, focused on end-stage left HF patients who were haemodynamically evaluated at Skåne University Hospital, Lund, Sweden between October 2011 and February 2016 and who approved to be included in a prospective cohort study and had blood samples collected before and during the 1-year follow-up after HT (n = 29). Amongst these, patients with missing postoperative haemodynamic data (n = 2) or with persistent PH after HT (n = 1) were excluded. Systolic and diastolic left ventricular dysfunction was diagnosed with echocardiography and/or magnetic resonance imaging and HF diagnosis was based on 2016 ESC guidelines [1]. The study also included 20 healthy controls, enrolled between December 2015 and March 2017, with no reported events of myocardial infarction, atrial fibrillation, stroke or diabetes mellitus. All participants were ≥ 18 years old. The study was conducted in accordance to the declaration of Helsinki and Istanbul. Ethical approval was obtained from the ethical board in Lund, Sweden (diary numbers: 2010/114; 2010/442; 2011/368; 2011/777; 2014/92 and 2015/270). Informed written consents were obtained individually from all participants.

Protein analysis

Venous blood samples, collected between October 2011 and March 2017 from healthy controls and patients during clinical evaluations of HF during right heart catheterisation (RHC) before and 1-year after HT, were utilised. The samples were stored at −80 °C in the Lund Cardio Pulmonary Register (LCPR) cohort of Region Skåne’s biobank, initiated 2011. There was no time separation between blood sampling and the haemodynamic assessments before and 1-year after HT.

Plasma levels of NT-proBNP and 28 proteins belonging or related to RTK were analysed with proximity extension assay (PEA), which utilises pairs of protein specific oligonucleotide-linked antibodies and involves qPCR, to detect and quantify target proteins (Proseek Multiplex Cardiovascular II, III and Oncology II kits, Olink Proteomics, Uppsala, Sweden) [18]. All panels are validated regarding sensitivity, dynamic range, specificity, precision (repeatability and reproducibility) and scalability. More information can be found by downloading the panel specific validation data documents, www.olink.com/downloads. The proteins’ levels were expressed with linear NPX (Normalised Protein Xpression), a relative quantification scale in arbitrary units.

Proteins

Plasma proteins were grouped according to receptors and associated ligands into (1) vascular endothelial growth factor (VEGF) family: platelet-derived growth factor subunit (PDGF)-A, PDGF-B, VEGF-A, VEGF-D, VEGF-receptor (VEGFR)-2, VEGFR-3, placenta growth factor (PIGF); (2) epidermal growth factor (EGF) family: amphiregulin, pro-epidermal growth factor (EGF), EGF receptor (EGFR), proheparin-binding EGF-like growth factor (HB-EGF), human epidermal growth factor receptor 2 (HER2), HER3, HER4, transforming growth factor alpha (TGF-α); (3) TEK family: angiopoietin-1, angiopoietin-1 receptor (Tie-2); (4) TAM receptor kinase (TAM) family: tyrosine-protein kinase Mer (MERTK), tyrosine-protein kinase receptor UFO (AXL); (5) ephrin receptor family: ephrin type-A receptor 2 (EphA2), ephrin type-B receptor 4 (EphB4); (6) intracellular tyrosine kinase family: tyrosine-protein kinase ABL1 (ABL1), tyrosine-protein kinase Lyn (LYN), proto-oncogene tyrosine-protein kinase Src (SRC); (7) other tyrosine kinases: fibroblast growth factor-binding protein 1 (FGF-BP1), hepatocyte growth factor (HGF), proto-oncogene...
tyrosine-protein kinase receptor Ret (RET) and stem cell factor (SCF).

Haemodynamic assessment

Haemodynamics were evaluated in patients by RHC in supine position, by inserting a Swan Ganz catheter (Baxter Health Care Corp, Santa Ana, CA) through an introducer predominantly into the right internal jugular vein. Acquired parameters included mean-, systolic- and diastolic pulmonary artery pressures (mPAP, sPAP, dPAP), mean right atrial pressure (MRAP) and pulmonary artery wedge pressure (PAWP). Heart rate (HR) and cardiac output (CO) were obtained by electrocardiography and thermodilution, respectively. Mixed venous oxygen saturation (SvO2) was measured from the pulmonary artery and arterial oxygen saturation (SaO2) from the radial artery. Arteriovenous oxygen difference a-vO2diff = (SaO2 − SvO2) × plasma haemoglobin × 1.34. Mean arterial pressure (MAP) was measured noninvasively.

Haemodynamic definitions and renal clearance

Calculated parameters include cardiac index (CI) = CO/body surface area (BSA), stroke volume (SV) = CO/HR, stroke volume index (SVI) = SV/BSA, transpulmonary pressure gradient (TPG) = mPAP − PAWP, pulmonary vascular resistance (PVR) = TPG/CO, PVR index (PVRI) = TPG/CI, diastolic pulmonary pressure gradient (DPG) = dPAP − PAWP, right ventricular stroke work index (RVSWI) = (mPAP − MRAP) × SVI, left ventricular stroke work index (LVSWI) = (MAP − PAWP) × SVI and pulmonary arterial compliance (PAC) = SV/(sPAP − dPAP). The creatinine-based estimation of glomerular filtration rate (eGFR) was calculated using the revised Lund-Malmö formula [19].

PH-LHD was diagnosed by cardiologists, defined according to guidelines as a resting mPAP ≥ 25 mmHg and a PAWP > 15 mmHg. This was further sub-classified into (1) isolated post-capillary PH (DPG < 7 mmHg and/or PVR ≤ 3 WU) or (2) combined post- and pre-capillary PH (DPG ≥ 7 and/or PVR > 3 WU) [5]. HT were performed in accordance with the International Society for Heart Lung Transplantation [20, 21]. The heart transplantation procedures were performed at Skåne University Hospital, Lund, Sweden.

Patients’ characteristics

Patients’ characteristics before and 1-year after HT are shown in Table 1 as previously described [22]. Among the 26 included patients, three (11.5%) had diabetes mellitus, five (19%) had hypertension and 14 (54%) had a history of atrial fibrillation before HT. Haemodynamic characteristics of all patients (n = 26) and a subgroup (n = 19) with PH-LHD are described in Table 2 and Supplementary Table 1, respectively. MPAP, PAWP, MRAP, PVR, PVR-I and a-vO2diff decreased, whereas MAP, CO, CI, SV, SVI, PAC, LVSWI and SvO2 increased after HT (p < 0.0003). Moreover, TPG, DPG, HR and RVSWI did not change before vs. 1-year after HT (FDR < 0.01). Patients’ eGFR did not differ before vs. after HT (p = 0.15). In addition, the 20 controls had a median (IQR) age of 41 (26.8–50.5) years, MAP 89 (95–100) mmHg, BSA 1.92 (1.75–1.99) m² (n = 19) and 10 (50%) were female.

Statistics

Given the small population and dominance of non-parametric data, Wilcoxon signed-rank test, Mann–Whitney U test and Spearman’s rank correlation were used as appropriate. Values are presented as median [interquartile range (IQR)], unless otherwise stated. The two-stage step-up procedure of false discovery rate (FDR) was used to adjust for mass significance [23]. Two-sided p values lower than FDR thresholds were considered statistically significant. Statistical analyses were performed using Prism version 8.01 for Windows, GraphPad Software, La Jolla California USA, www.graphpad.com).

Study setup

Three protein level specific comparisons were made, control vs. pre-HT, control vs. post-HT and post-HT vs. pre-HT. To select relevant proteins related to the reversal of HF and PH, three inclusion criteria were set: (1) a significant difference between post-HT vs. pre-HT, (2) a significant difference between control vs. pre-HT, as well as (3) a level change resembling a normalisation pattern towards controls’ levels after HT (FDR < 0.01). Proteins meeting all inclusion criteria were tested for correlation with NT-proBNP and haemodynamic parameters reflecting pulmonary passive congestion as well as right and left sided cardiac parameters, i.e. mPAP, PAC, PAWP, PVR, MRAP, CI and LVSWI (FDR < 0.1). Proteins meeting all three criteria and reflecting haemodynamic alterations were of specific interest. Next, specific correlations within the pre-HT group between proteins’ levels and haemodynamics were made. The study setup is summarised in (Fig. 1).

Results

Protein selection

The proteins’ baseline values and plasma alterations following HT are presented in Table 3. Out of 28 RTKs, nine
proteins met all three inclusion criteria (Fig. 1), of which VEGF-D and HER4 were associated with the largest number of haemodynamic parameters.

Plasma VEGF-D and HER4 in end-stage heart failure patients

In end-stage HF patients with or without PH, the plasma levels of VEGF-D (Fig. 2) and HER4 (Fig. 3) were elevated in
Table 2 Patients' haemodynamic data before and 1-year after heart transplantation

Haemodynamic parameter	Pre-HT (n = 26)	Post-HT (n = 26)	Δ (Post-HT)–(Pre-HT) (n = 26)	p value			
	n	Median (IQR)	n	Median (IQR)	n	Median (IQR)	Post-HT vs. Pre-HT
MAP (mmHg)	25	82 (77–93)	26	102 (91 to 108)	25	15 (9 to 27)	1.2 × 10^{-6}*
mPAP (mmHg)	25	29 (24–38)	26	14 (12 to 17)	25	−15 (−26 to −7.5)	1.8 × 10^{-7}*
PAWP (mmHg)	24	20 (18–25)	26	7 (4 to 9.3)	24	−17 (−21 to 6.5)	2.4 × 10^{-7}*
MRAP (mmHg)	25	14 (7.5–18)	25	3 (1 to 4)	24	−12 (−15 to 3.3)	4.4 × 10^{-6}*
TPG (mmHg)	24	8.5 (6–12)	26	8 (5 to 10)	24	−1.5 (−6 to 2)	0.17
DPG (mmHg)	24	1 (0–3.8)	26	2 (0.25 to 4)	24	0 (0 to 3.5)	0.8
HR (beats/min)	25	73 (69–82)	26	82 (73 to 89)	25	7 (−4 to 15)	0.063
CO (L/min)	25	3.3 (2.6–4.1)	26	5.5 (5 to 6.5)	25	2.2 (1.2 to 2.9)	6 × 10^{-8}*
CI (L/min/m²)	25	1.8 (1.4–2.2)	26	2.8 (2.6 to 3.2)	25	1.1 (0.65 to 1.6)	1.2 × 10^{-7}*
SV (mL/beat)	25	48 (35–58)	26	72 (66 to 78)	25	23 (14 to 34)	4.2 × 10^{-7}*
SVI (mL/beat/m²)	25	25 (18–29)	26	36 (33 to 40)	25	12 (6.5 to 18)	1.2 × 10^{-7}*
PVR (WU)	24	2.4 (1.4–3.5)	26	1.4 (0.89 to 1.9)	24	−1.3 (−1.9 to −0.036)	6.5 × 10^{-5}*
PVR index (WU/m²)	24	5.1 (2.9–6.9)	26	2.8 (1.7 to 3.7)	24	−2.4 (−4 to −0.42)	5.3 × 10^{-4}*
PAC (mL/mmHg)	25	2.2 (1.8–3.1)	26	5.4 (4.1 to 6.6)	25	3.2 (1.3 to 4)	0.00029*
LVSWI (mmHg×mL/m²)	24	1541 (1052–2007)	26	3344 (3167 to 3810)	24	1675 (1224 to 2532)	1.2 × 10^{-7}*
RVSWI (mmHg×mL/m²)	25	362 (294–615)	25	429 (317 to 516)	24	62 (−119 to 245)	0.64
SaO₂ (%)	25	96 (94–97)	23	97 (96 to 98)	22	1.7 (−0.2 to 2.8)	0.046
SvO₂ (%)	25	52 (47–60)	26	69 (66 to 72)	25	17 (11 to 24)	8.3 × 10^{-7}*
a-VO₂diff (mL O₂/L)	25	74 (63–81)	23	42 (40 to 51)	22	−32 (−40 to −19)	2.4 × 10^{-6}

A single CO value was calculated by indirect Fick before HT. Δ indicate parameter development following HT

*IQR interquartile range, WU wood unit, MAP mean artery pressure, mPAP mean pulmonary artery pressure, PAWP pulmonary artery wedge pressure, MRAP mean right atrial pressure, TPG transpulmonary pressure gradient, DPG diastolic pressure gradient, HR heart rate, CO cardiac output, CI cardiac index, SV stroke volume, SVI stroke volume index, PVR pulmonary vascular resistance, PAC pulmonary arterial compliance, LVSWI left ventricular stroke work index, RVSWI right ventricular stroke work index, SaO₂ arterial oxygen saturation, SvO₂ venous oxygen saturation, a-VO₂diff arteriovenous oxygen difference

*p < 0.0003, FDR < 0.01
comparison to controls ($p < 0.001$, FDR < 0.01). In response to HT, resolving pre-existing HF, these levels decreased ($p < 0.0001$, FDR < 0.01) and normalised, matching controls’ levels (Table 3).

Plasma VEGF-D and HER4 level changes correlate with haemodynamic alterations

Spearman’s correlation coefficients and corresponding p values of associations between changes (Δ) in proteins’ levels with ΔNT-proBNP and Δhaemodynamic parameters following HT are illustrated in Table 4. ΔVEGF-D (Fig. 2) correlated with ΔmPAP, ΔPAWP, ΔPAC and ΔPVR ($p < 0.01$; FDR < 0.1); whereas ΔHER4 (Fig. 3) correlated with ΔNT-proBNP, ΔMRAP and ΔCI ($p < 0.02$; FDR < 0.1). Baseline correlations of VEGF-D and HER4 with haemodynamic parameters before HT are described in Supplementary Table 2.

Other RTKs and related proteins in end-stage heart failure patients

The plasma levels of VEGFR-3, HER2, TGF-α, Tie-2, HGF and FGF-BP1 were elevated in patients with severe HF with or without PH, compared to healthy controls ($p < 0.01$, FDR < 0.01). In response to HT, resolving HF and PH, these levels decreased ($p < 0.01$, FDR < 0.01) towards controls’ levels. Plasma SCF were, however, low in HF patients in comparison to healthy controls ($p < 0.0001$, FDR < 0.01). These levels increased after HT ($p < 0.01$), matching the controls’ levels (Table 3). These seven proteins correlated either with few clinical parameters or none as described in Table 4. Baseline correlations between proteins and selected haemodynamic parameters before HT are described in Supplementary Table 2.

Discussion

RTK signalling regulates diverse cellular functions through activation of the downstream mitogen-activated protein kinases, of which ERK1/2, ERK5 and JNK are pivotal in cardiac development, hypertrophy as well as in both physiological and pathophysiological cardiac remodelling [3]. In the present study, among the 28 RTKs and related proteins, plasma VEGF-D and HER4 were elevated in severe HF patients compared to controls. The elevated plasma VEGF-D and HER4 normalised after HT, matching controls’ levels. The decrease of plasma VEGF-D after HT furthermore reflected reversed passive pulmonary congestion and possibly pulmonary vasoconstriction, with the latter indicated by correlations with PAC and PVR. Moreover, decreased HER4 after HT was associated with improved cardiac function and decreased volume overload. Identifying the precise functional roles of VEGF-D and HER4, as well as their clinical implications may be of great importance as these proteins
Table 3 Proteins’ alterations in controls and patients before and 1-year after heart transplantation

Protein (AU)	Control ($n = 20$)	Pre-HT ($n = 26$)	Post-HT ($n = 26$)	Δ (Post-HT)–(Pre-HT) ($n = 26$)	p value				
	n	Median (IQR)	n	Median (IQR)	n	Median (IQR)			
			n		n				
NT-proBNP	20	1.1 (1.1–1.2)	26	24 (11–40)	26	2 (1.4–5.8)	3.6×10$^{-13}$*	5.0×10$^{-5}$*	3.0×10$^{-8}$*
VEGF family									
PDGF-A	20	7.4 (5.3–11)	26	7.4 (4.5–11)	26	5.2 (3.5–8.3)	0.82	0.055	0.071
PDGF-B	20	716 (404–965)	26	506 (228–802)	26	337 (220–707)	0.078	0.023	0.92
PIGF	20	120 (110–154)	26	188 (157–217)	26	203 (168–265)	2.6×10$^{-6}$*	2.1×10$^{-9}$*	0.32
VEGF-A	19	562 (490–692)	26	798 (666–1061)	26	847 (709–999)	4.7×10$^{-5}$*	5.7×10$^{-6}$*	0.65
VEGF-D	20	110 (94–121)	26	243 (199–262)	26	126 (92–163)	5.0×10$^{-8}$*	0.17	4.2×10$^{-7}$*
VEGFR-2	19	96 (83–103)	26	72 (60–79)	26	73 (60–82)	3.7×10$^{-5}$*	2.8×10$^{-7}$*	0.99
VEGFR-3	19	53 (43–55)	25	59 (53–66)	25	44 (39–49)	0.0051*	0.020	6.0×10$^{-8}$*
EGF family									
Amphiregulin	19	2.7 (2.3–3)	25	5.4 (4–9.6)	26	4.1 (3.5–5.2)	1.3×10$^{-9}$*	1.7×10$^{-7}$*	0.020
EGFR	20	2.6 (2.4–2.9)	26	2.2 (2–2.4)	26	1.9 (1.8–2)	0.0012*	0.011	0.045
HER2	19	87 (74–103)	25	106 (100–119)	26	79 (70–86)	1.7×10$^{-5}$*	6.8×10$^{-12}$*	7.5×10$^{-6}$*
HER3	19	177 (158–186)	25	172 (151–195)	26	170 (147–189)	0.64	0.385	0.84
HER4	19	23 (19–25)	25	29 (25–32)	26	20 (17–21)	0.00021*	0.087	1.2×10$^{-7}$*
EGF	19	395 (164–713)	25	132 (54–265)	26	163 (77–373)	0.80	0.67	0.30
HB-EGF	20	60 (43–81)	26	54 (41–77)	26	49 (43–74)	0.00014*	0.0088	1.2×10$^{-7}$*
TGF-α	19	2.3 (1.9–2.6)	25	4.2 (3.7–4.9)	26	3.7 (2.9–4.2)	0.0019*	0.0001*	6.0×10$^{-8}$*
TAM family									
AXL	20	163 (145–198)	26	197 (164–249)	26	187 (166–261)	0.021	0.012	0.82
MERTK	20	12 (11–15)	26	18 (14–24)	26	16 (14–20)	3.1×10$^{-5}$*	8.5×10$^{-5}$*	0.15
TEK family									
Angiopoietin-1	20	306 (205–502)	26	295 (160–587)	26	213 (154–503)	0.80	0.31	0.58
Tie-2	20	185 (164–199)	26	273 (241–289)	26	184 (158–203)	1.9×10$^{-8}$*	0.97	6.0×10$^{-8}$*
Ephirns									
EphA2	19	2.8 (2.6–3)	25	3.1 (2.8–4)	26	4.2 (3–5)	0.019	6.5×10$^{-5}$*	0.019
EphB4	20	2.7 (2.4–2.9)	26	3 (2.5–3.7)	26	3.1 (2.5–3.7)	0.078	0.082	0.23
Intracellular TK									
ABL1	19	24 (8.3–40)	25	17 (11–29)	26	18 (13–28)	0.76	0.62	0.79
LYN	19	6.9 (4.4–9.3)	25	5 (3.3–6.5)	26	4.8 (3.1–6.9)	0.11	0.044	0.77
SRC	20	117 (109–138)	26	105 (52–147)	26	110 (68–162)	0.24	0.66	0.25
Other TK									
FGF-BP1	19	20 (18–20)	25	27 (19–36)	26	20 (17–22)	0.0032*	0.97	0.00010*
HGF	19	45 (38–58)	25	110 (91–176)	26	58 (47–74)	2.8×10$^{-10}$*	0.014	1.2×10$^{-7}$*
may be utilised as potential biomarkers, with possible pathophysiological importance, in HF and related PH.

VEGF-D is known to be a potent mediator involved in lymph and regular angiogenesis, endothelial proliferation as well as vascular and cardiac remodelling, through VEGFR-3 and/or VEGFR-2 binding [24, 25]. It is expressed by a variety of tissues, most abundantly in heart, lungs and skeletal muscles [26]. VEGFR-3 is expressed in endothelial cells and crucial for primary vascular network maturation and early cardiovascular system development [27]. In a mouse model of chronic airway inflammation, elevated VEGF-D expression induced lymphatic sprouting and increased lymphatic drainage [28]. In the clinical field, plasma VEGF-D is furthermore a diagnostic and a severity marker of lymphangiopleiomyomatosis [29].

Dyspnoea and pulmonary extravascular fluid accumulation are common, non-specific features in HF, particularly in PH-LHD due to backward transmission of elevated left sided filling pressures, increasing PAWP and mPAP [6, 30, 31]. In a clinical study of dyspnoeic patients, plasma VEGF-D correlated with NT-proBNP and elevated levels were most abundantly found in HF diagnosed patients. Accordingly, the authors hypothesised that the elevated plasma VEGF-D may be a marker of HF and pulmonary congestion, where VEGF-D upregulation may be involved in pulmonary vascular and/or cardiac remodelling [30]. Likewise, in a recent study, plasma VEGF-D correlated with PAWP and its elevation in HF patients was hypothesised to augment pulmonary lymphatic clearance and mitigate the symptoms of pulmonary congestion [32]. Interestingly, we found that plasma VEGFR-3 levels changed similarly to VEGF-D, which theoretically may reflect increased VEGF-D mediated signalling, thereby increased pulmonary lymphangiogenesis and lymphatic clearance, mitigating potential symptoms of pulmonary congestion. In the present study, we provide additional evidence that elevated plasma of VEGF-D levels in end-stage HF normalise along with the haemodynamics in response to HT. Furthermore, the decrease in plasma VEGF-D after HT correlated with ∆mPAP, ∆PAWP, ∆PVR and ∆PAC, indicating a decrease in passive pulmonary congestion and potentially, if existent, reversal of PAC and PVR towards a restored pulmonary vascular state. Therefore, VEGF-D may have the potential to be used as a biomarker to assess the haemodynamic strain and/or the severity of HF and PH-LHD as well as in the differentiation between isolated post and combined post and pre-capillary PH, as it correlated with mPAP, PAWP and PVR.

Furthermore, VEGF-mediated VEGFR-2 activation stimulates cardiomyocyte growth [33] and intramyocardially administrated VEGF-D facilitates therapeutic cardiac angiogenesis, increasing myocardial perfusion in patients with refractory angina [34]. Additionally, a meta-analysis showed that treatment with approved multiple tyrosine

Protein (AU)	Control (n=20)	Pre-HT (n=26)	Post-HT (n=26)	Δ (Post-HT)–(Pre-HT) (n=26)	p value
RET	19	16 (12–20)	25	25	0.54
SCF	19	210 (161–263)	26	26	0.53
PDGF-A	19	349 (324–440)	25	169 (86–257)	0.0061
PDGF-B	19	216 (161–263)	25	109 (86–257)	0.0034
PlGF	19	14 (10–19)	25	14 (10–19)	0.0086
VEGF	19	210 (161–263)	26	26	0.53
PlGF	19	349 (324–440)	25	169 (86–257)	0.0061
VEGF	19	216 (161–263)	25	109 (86–257)	0.0034
VEGF	19	14 (10–19)	25	14 (10–19)	0.0086

Table 3 (continued)
kinase inhibitors was associated with higher risk of congestive heart failure compared to non-tyrosine kinase treated [35]. In the present study, however, the plasma levels of VEGFR-2 did not change before vs. after HT and remained

Fig. 2 Plasma VEGF-D and correlations with haemodynamic changes following heart transplantation. Outliers calculated with Tukey’s fence. HT heart transplantation, AU arbitrary units, r_s Spearman’s correlation coefficient; ***$p<0.0001$. Haemodynamic abbreviations as in Table 2. a VEGF-D levels in controls and heart failure patients before and 1-year after HT. The decrease (Δ) of VEGF-D post-HT correlated with b ΔmPAP, c ΔPAWP, d ΔPAC and e PVR

Fig. 3 Plasma HER4 and correlations with haemodynamic changes following heart transplantation. Outliers calculated with Tukey’s fence. HT heart transplantation, AU arbitrary units, r_s Spearman’s correlation coefficient; **$p<0.001$; ***$p<0.0001$. Haemodynamic abbreviations as in Table 2. a HER4 levels in controls and heart failure patients before and 1-year after HT. The decrease (Δ) of HER4 post-HT correlated with b ΔNT-proBNP, c ΔMRAP and d improved CI
Table 4 Correlation analysis of changes (Δ) between NT-proBNP and haemodynamics with proteins corresponding to the reversal of heart failure before and after heart transplantation

Proteins	VEGFR-3 (AU)	HER2 (AU)	HER4 (AU)	TGF-α (AU)	Tie-2 (AU)	HGF (AU)	SCF (AU)
n	24	24	24	24	25	24	24
rs	0.32 (0.48)	0.14 (0.52)	0.22 (0.30)	0.42 (0.51)	0.23 (0.30)	0.22 (0.30)	0.26 (0.44)
p	0.25 (0.23)	0.23 (0.23)	0.19 (0.39)	0.15 (0.51)	0.15 (0.51)	0.19 (0.39)	0.16 (0.44)
p	0.42 (0.25)	0.23 (0.23)	0.23 (0.23)	0.23 (0.23)	0.23 (0.23)	0.23 (0.23)	0.23 (0.23)
p	0.22 (0.20)	0.15 (0.51)	0.05 (0.97)	0.38 (0.54)	0.38 (0.54)	0.05 (0.97)	0.38 (0.54)
rs	0.15 (0.51)	0.19 (0.39)	0.05 (0.97)	0.38 (0.54)	0.38 (0.54)	0.05 (0.97)	0.38 (0.54)
p	0.25 (0.23)	0.23 (0.23)	0.23 (0.23)	0.23 (0.23)	0.23 (0.23)	0.23 (0.23)	0.23 (0.23)
rs	0.22 (0.30)	0.19 (0.39)	0.05 (0.97)	0.38 (0.54)	0.38 (0.54)	0.05 (0.97)	0.38 (0.54)
p	0.23 (0.23)	0.19 (0.39)	0.05 (0.97)	0.38 (0.54)	0.38 (0.54)	0.05 (0.97)	0.38 (0.54)
rs	0.23 (0.23)	0.19 (0.39)	0.05 (0.97)	0.38 (0.54)	0.38 (0.54)	0.05 (0.97)	0.38 (0.54)
p	0.23 (0.23)	0.19 (0.39)	0.05 (0.97)	0.38 (0.54)	0.38 (0.54)	0.05 (0.97)	0.38 (0.54)
rs	0.23 (0.23)	0.19 (0.39)	0.05 (0.97)	0.38 (0.54)	0.38 (0.54)	0.05 (0.97)	0.38 (0.54)
p	0.23 (0.23)	0.19 (0.39)	0.05 (0.97)	0.38 (0.54)	0.38 (0.54)	0.05 (0.97)	0.38 (0.54)
rs	0.23 (0.23)	0.19 (0.39)	0.05 (0.97)	0.38 (0.54)	0.38 (0.54)	0.05 (0.97)	0.38 (0.54)
p	0.23 (0.23)	0.19 (0.39)	0.05 (0.97)	0.38 (0.54)	0.38 (0.54)	0.05 (0.97)	0.38 (0.54)

Proteins: VEGFR-3 = vascular endothelial growth factor receptor-3, HER2 and HER4 = human epidermal growth factor receptor 2 and 4, TGF-α = transforming growth factor alpha, Tie-2 = vascular endothelial growth factor-D receptor alpha.

VEGFR-3 is a key signalling axis has recently emerged as a novel target to ameliorate extravascular fluid accumulation or directly mediate a beneficial or pathological progression of PVR and PAC in HF patients with or without related PH. Note-worthy is, however, that the correlations between plasma VEGF-D with PAC and PVR may be explained by decongestion. The inverse hyperbolic PVR-PAC relationship is sensitive to acute and chronic PAWP elevations, which decrease PAC at a given PVR. This PAWP increase results in augmented total right ventricular pulsatil-e load, proposedly through enhancing pulmonary arterial pressure pulse, thereby increasing sPAP [39]. Collectively, whether VEGF-D elevation is a compensatory mechanism to ameliorate extravascular fluid accumulation or directly mediate a beneficial or pathological progression of PVR, PAC (independent of LV filling pressures) and/or vascular remodelling secondary to sustained pulmonary and cardiac congestion in HF and PH remain to be investigated. Moreover, VEGF-D may be of prognostic utility and aid in risk stratification of HF patients with passive pulmonary congestion, as PAC was proposed as a novel parameter in separating PH due to left HF patients at higher risk of death [40] and a strong predictor of mortality in HF with preserved ejection fraction [41] (Fig. 4).

HER4 signalling is pivotal in myocardial development, ventricular growth, proliferation and functional homeostasis of the adult heart and together with HER2 and their ligand Neuregulin-1 exert protective roles in the myocardium, e.g. enhancing cardiac repair mechanisms, reduce infarction-induced apoptosis and improve left ventricular ejection fraction [42]. Consequently, Neuregulin-1/HER2/HER4 signalling axis has recently emerged as a novel target to treat congestive HF and a current clinical trial is determining the efficacy of Neuregulin-1 administration (ClinicalTrials...
Herein, we demonstrate that plasma levels of HER2 and HER4 were high in severe HF compared to controls. These levels decreased post-HT, matching controls' levels. Furthermore, the decrease in HER4 levels after HT correlated with ∆NT-proBNP, ∆MRAP and increased CI, reflecting reduced cardiac volume overload as well as improved cardiac function. In contrast to our results, another study showed that HER2 and HER4 tissue expressions are suppressed in the myocardium of HF patients in comparison to hearts from healthy controls [43]. This inconsistency can be explained by the fact that circulating receptors do not necessarily reflect a tissue-specific production, as the high plasma concentration in our study may originate from other tissues. Hypothetically, plasma elevation of HER2 and HER4 in response to HF and related haemodynamic worsening may slow HF progression by potentiating Neuregulin-1 effects. To note, however, receptors in plasma may operate differently than the membrane bound receptors and may exert antagonistic effects [44].

Other proteins, which either correlated with few clinical parameters or none, are FGF-BP1, TGF-α, HGF, SCF and Tie-2. These, in addition to the aforementioned proteins, may collectively be beneficial or related to the pathophysiological processes of HF. Noteworthy, SCF levels were low before HT, following an increase after HT towards controls’ levels. This may support that low plasma levels of SCF are associated with increased cardiovascular disease and mortality [45].

Limitations of our study include a small population and slightly younger controls. However, our study size corresponds to other HT studies, which has resulted in larger trials. A major strength is the use of PEA to assess plasma proteins’ levels. This method is highly sensitive, specific and avoids unspecific binding. Even if isoform specific detection of VEGF-D was absent, PEA is superior to traditional multiplex immunoassays [18]. False positive results may, however, be present due to the large number of statistical tests conducted despite adjusting for mass significance. Also, confounding factors such as medication intake, diurnal variations and other comorbidities may have influenced our results. The effects of postoperative withdrawal of HF medications (ACE-inhibitors, β-blockers and mineral corticoid receptor antagonists) on plasma proteins’ levels are unknown. However, it is established that ACE-inhibitors reduce ventricular wall stress and increase CO, whereas β-blockers enhance left ventricular geometry and function [46, 47]. Given that RTK signalling is involved in cardiac remodelling and hypertrophy [3], the use of ACE-inhibitors and β-blockers may thus have affected the proteins’ levels. Also, baseline VEGF-D levels correlated with mPAP, PAWP, PAC and PVR, which slightly allow to avoid the post-HT medication limitation. However, this is not apparent for HER4, as its baseline values only correlated with NT-proBNP and MRAP (Supplementary Table 2). Moreover, the use of angiotensin receptor blockers was almost equally distributed between the pre and post-HT groups, and therefore may not have affected our results. Although Everolimus and Sirolimus, (mTOR inhibitors) were not used in our cohort, these are known to inhibit angiogenesis, VEGF-D, VEGF-A and potentially VEGFR [48–51]. Tacrolimus inhibits VEGF, Angiopoietin-1 and Tie-2 [52]. Cyclosporine inhibits VEGF-mediated endothelial migration and angiogenesis [53]. Even though the role of steroids and cell cycle inhibitors remains unknown on plasma proteins’ levels, Mycophenolate mofetil has been proposed...
to downregulate downstream HER2 signalling pathways AKT, ERK and JAK-STAT3 [54]. Renal clearance, however, may only have had a minimal role in altering the proteins’ plasma concentrations in the transplant patients, as eGFR was unaltered following HT. Moreover, the present correlations between proteins and haemodynamics do not necessarily imply a causal relationship and should thus be interpreted with caution. Nevertheless, the present study is hypothesis generating and our findings may be of interest in developing a multi-marker panel for optimal future management of HF and related PH.

In conclusion, in HF patients, the decrease and normalisation of the elevated plasma VEGF-D after HT correlated with ΔmPAP, ΔPAWP, ΔPVR and ΔPAC, indicating VEGF-D to be a potential biomarker of reversed pulmonary passive congestion and possibly restored pulmonary vascular milieu. Moreover, the decrease of elevated plasma HER4 in HF patients correlated with ΔNT-proBNP, ΔMRAP and ΔCI, reflecting reduced cardiac volume overload and improved cardiac function in response to HT. Altogether, we encourage further research to elaborate the precise roles of these proteins and their clinical implications in HF and related PH as potential biomarkers of haemodynamic strain and/or HF/PH-LHD severity, for optimal clinical management of HF patients as well as better understanding of processes underlying the pathophysiology of HF.

Acknowledgements Open access funding provided by Lund University. We acknowledge the support of the Hemodynamic Laboratory staff, The Section for Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden; and The Section for Cardiology, the Department of Clinical Sciences, Lund University, Lund, Sweden. Exceptional gratitude to Anneli Ahlqvist for her efforts in LCPR administration and blood sample management. We also acknowledge the biobank services for their retrieval of blood samples from LCPR performed at Labmedicine Skåne, University and Regional Laboratories, Region Skåne, Sweden.

Funding The work was supported by unrestricted research Grants from Avtal om Läkarutbildning och Forskning (ALF) and Actelion Pharmaceuticals Sweden AB. The funding organisations played no role in the collection, analysis or interpretation of the data and had no right to restrict the publishing of the manuscript.

Compliance with ethical standards

Conflict of interest Mr. Salaheldin Ahmed and Mr. Abdulla Ahmed report no conflicts of interest. Dr. Säleby reports an unrestricted research grant from The Swedish Society of Pulmonary Hypertension on behalf of GlaxoSmithKline. Mr. Bouzina reports an unrestricted research grant from The Swedish Society of Pulmonary Hypertension on behalf of GlaxoSmithKline. Dr. Lundgren reports unrestricted research grants from The Swedish Society of Pulmonary Hypertension on behalf of Actelion Pharmaceuticals Sweden AB. Dr. Rådegran reports unrestricted research grants from ALF’ and Actelion Pharmaceuticals Sweden AB, during the conduct of the study. Mr. Abdulla Ahmed and Mr. Salaheldin Ahmed report personal lecture fees. Dr. Säleby reports personal lecture fees from Actelion Pharmaceuticals Sweden AB outside the submitted work. Mr. Bouzina reports personal lecture fees from Actelion Pharmaceuticals Sweden AB outside the submitted work. Dr. Lundgren reports personal lecture fees from Actelion Pharmaceuticals Sweden AB and GlaxoSmithKline outside the submitted work. Dr. Rådegran reports personal lecture fees from Actelion Pharmaceuticals Sweden AB, GlaxoSmithKline, Nordic Infucare and Bayer Health Care outside the submitted work. Dr. Rådegran is, and has been, primary or coinvestigator in clinical PAH trials for GlaxoSmithKline, Actelion Pharmaceuticals Sweden AB, Pfizer, Bayer and United Therapeutics and in clinical heart transplantation immunosuppression trials for Novartis. The companies had no role in the data collection, analysis and interpretation and had no right in disapproving of the manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GCM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group (2016) 2016 ESC Guidelines for the Diagnosis and Treatment of Chronic Heart Failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200
2. Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358:2148–2159
3. Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heartbeat tale. Physiol Rev 90:1507–1546
4. Gögürbaru R, Bochenek ML, Schäfer K (2019) Angiogenic endothelial cell signaling in cardiac hypertrophy and heart failure. Front Cardiovasc Med 6:20
5. Galí N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk-Noordegraaf A, Boghiatti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Mattucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M, ESC Scientific Document Group (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEP), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119
6. Rosenkranz S, Gibbs JSR, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiery JL (2016) Left ventricular heart failure and pulmonary hypertension. Eur Heart J 37:942–954
7. Cheli M, Vachiery JL (2015) Controversies in pulmonary hypertension due to left heart disease. F1000Prime Rep 7:7
8. Ibrahim NE, Januzzi JL Jr (2018) Established and emerging roles of biomarkers in heart failure. Circ Res 123:614–629
9. Lund LH, Gabrielsen A, Nyman U, Grubb A, Larsson A, Hansson LO, Flodin M, Nordin B, Assarsson E, Lundberg M, Holmquist G, Björkesten J, Bucht A, Ibrahim NE, Januzzi JL Jr (2017) Beyond natriuretic peptides—pathophysiology leading to clinical use? J Heart Lung Transplant 33:1213–1214
10. Humbert M, Guignabert C, Bonnet S, Dorfmüller P, Klinger JR, Dorfmüller P, Klinger JR, Alpert JS, Pepine CJ, Langewouters G, Adamek M, Strosznajder J, Borst DE, Vachiery JL, Champion H, Coghlan JG, Cotter G, Gränsbo K, Nilsson J, Melander O, Orho-Melander M, Pajusola K, Breitman M, Alitalo K (2019) Prolargin and matrix metalloproteinase-10: a potent inhibitor of angiogenesis in chronic heart failure. J Heart Lung Transplant 38:2547–2555
11. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2:a006502
12. Bersell K, Arab S, Haring B, Kühn B (2009) Neuregulin1/Erbb4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270
13. Klykhammar D, Hesselstrand R, Nielsen S, Scheele C, Rådegran G (2017) Angiogenic and inflammatory biomarkers for screening and follow-up in patients with pulmonary arterial hypertension. Scand J Rheumatol 47:319–324
14. Saleby J, Bouzina H, Lundgren J, Rådegran G (2017) Angiogenic and inflammatory biomarkers in the differentiation of pulmonary hypertension. Scand Cardiovasc J 51:261–270
15. Fang JC, DeMarco T, Givertz MM, Borlaug BA, Lewis GD, Rame JE, Gomberg-Maitland M, Murali S, Frantz RP, McGlothlin D, Horn EM, Benza RL (2012) World Health Organization Pulmonary Hypertension Group 2: pulmonary hypertension due to left heart disease in the adult—a summary statement from the Pulmonary Hypertension Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 31:913–933
16. Charalampopoulos A, Lewis R, Hickey P, Durrington C, Elliot S, Pajusola K, Breitman M, Alitalo K (1998) Cardiomyocyte proliferation due to left heart disease. Frontiers in medicine 5:174
17. Ibrahim NE, Januzzi JL (2017) Beyond natriuretic peptides for diagnosis and management of heart failure. Clin Chem 63:211–222
18. Assarsson E, Lundberg M, Holmquist G, Björkестen J, Bucht A, Ibrahim NE, Januzzi JL Jr (2017) Pulmonary hypertension due to left heart disease. Lung transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant 35:1–23
19. Ahmed A, Ahmed S, Arvidsson M, Bouzina H, Lundgren J, Rådegran G (2019) Prolargin and matrix metalloproteinase-2 in heart failure after heart transplantation and their association with haemodynamics. ESC Heart Failure. https://doi.org/10.1002/ehf2.12560
20. Benjamini Y, Krieger AM, Yekutieli D (2006) Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93:491–507
21. Achen MG, Jeltsch M, Kukk E, Mäkinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95:548–553
22. Bharadwaj S, Roy H, Heikura T, Ylä-Herttuala S (2005) VEGF-A, VEGF-D and VEGF-DANc induced intramural hyperplasia in carotid arteries. Eur J Clin Invest 35:669–676
23. Achen MG, Stacker SA (2012) Vascular endothelial growth factor-D: signaling mechanisms, biology, and clinical relevance. Growth Factors 30:283–296
24. Anagnostopoulou A, Baxley RL, Sykes B, Powers ER, Desser TS, Brown KK, Cordier JF, Meyer C, Cottin V, Brozek JL, Smith K, Wilson KC, Moss JG (2016) Official American Thoracic Society/ European Respiratory Society Clinical Practice Guidelines: lymphangiopneumomatosis diagnosis and management. Am J Respir Crit Care Med 194:748–761
25. Borné Y, Gransbo K, Nilsson J, Melander O, Orho-Melander M, Smith JG, Engström G (2018) Vascular endothelial growth factor D, pulmonary congestion, and incidence of heart failure. J Am Coll Cardiol 71:580–582
26. Vachiery JL, Adir Y, Barberà JA, Champion H, Coglian GJ, Cottin V, De Marco T, Galiè N, Ghio S, Gibbs JSR, Martinez F, Semigran MJ, Wells A, Seeger W (2013) Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol 62:D100–D108
27. Houston BA, Maleszewski JJ, Konik EA, DuBrock R, Champion H, Cogliano GJ, Cotter G, Gränsbo K, Nilsson J, Melander O, Orho-Melander M, Pajusola K, Breitman M, Alitalo K (2019) VEGF-D is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95:548–553
28. Balak P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Bachtler J, Stacker SA, Ylä-Herttuala S, Jackson DG, Alitalo K, McDonald DM (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115:247–257
29. McCormack FX, Gupta N, Finlay GR, Young LR, Taveira-DaSilva AM, Glasgow CG, Steagall WK, Johnson SR, Sahin SA, Ryu JH, Strange C, Seyama K, Sullivan EJ, Klotho RM, Downey GP, Chapman JT, Han MK, D’Armentio JM, Inoue Y, Henske EP, Bissler JJ, Colby TV, Kinder BW, Wikenheiser-Brokamp KA, Brown KK, Corder JF, Meyer C, Cottin V, Brozek JL, Smith K, Wilson KC, Moss JG (2016) Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guidelines: lymphangiopneumomatosis diagnosis and management. Am J Respir Crit Care Med 194:748–761
30. Pajusola K, Breitman M, Alitalo K (1998) Cardiomyocyte proliferation due to left heart disease. Lung transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant 35:1–23
31. Ahmed A, Ahmed S, Arvidsson M, Bouzina H, Lundgren J, Rådegran G (2019) Prolargin and matrix metalloproteinase-2 in heart failure after heart transplantation and their association with haemodynamics. ESC Heart Failure. https://doi.org/10.1002/ehf2.12560
37. Al-Husseini A, Kraskauskas D, Mezzaroma E, Nordio A, Far-
kas D, Drake JJ, Abbate A, Felty Q, Voelkel NF (2015) Vascul-
lar endothelial growth factor receptor 3 signaling contributes to
angioinfiltrative pulmonary hypertension. Pulm Circ 5:101–116
38. Sáley J, Bouzina H, Ahmed S, Lundgren J, Rådegran G (2019)
Plasma receptor tyrosine kinase RET in pulmonary arterial hyper-
tension diagnosis and differentiation. ERJ Open Res 5:00037
39. Tedford RJ, Hassoun PM, Mathai SC, Girgis RE, Russell SD,
Thiemann DR, Cingolani OH, Mudd JO, Borlaug BA, Redfield
MM, Lederer DJ, Kass DA (2012) Pulmonary capillary wedge
pressure augments right ventricular pulsatile loading. Circulation
125:289–297
40. Miller WL, Grill DE, Borlaug BA (2013) Clinical features,
hemodynamics, and outcomes of pulmonary hypertension due to
chronic heart failure with reduced ejection fraction: pulmonary
hypertension and heart failure. JACC Heart Fail 1:290–299
41. Al-Naamani N, Preston IR, Paulus JK, Hill NS, Roberts KE
(2015) Pulmonary arterial capacitance is an important predictor
of mortality in heart failure with a preserved ejection fraction.
JACC Heart Fail 3:467–474
42. Wadugu B, Kühn B (2012) The role of neuregulin/ErbB2/
ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol
302:H2139–H2147
43. Rohrbach S, Niemann B, Silber RE, Holtz J (2005) Neuregulin
receptors erbB2 and erbB4 in failing human myocardium. Basic
Res Cardiol 100:240–249
44. Heaney ML, Golde DW (1998) Soluble receptors in human dis-
terceptions, and well-being in patients with heart failure the metoprolol
of controlled-release metoprolol on total mortality, hospitaliza-
tion, and death. J Intern Med 282:508–521
45. Björkbacka H, Yao Mattisson I, Wigren M, Melander O, Fredrik-
son GN, Bengtsson E, Gonçalves I, Almgren P, Lagerstedt JO,
Orho-Melander M, Engström G, Nilsson J (2017) Plasma stem
cell factor levels are associated with risk of cardiovascular disease
and death. J Intern Med 282:508–521
46. Hjalmarson À, Goldstein S, Fagerberg B, Wedel H, Waagstein
F, Kjekshus J, Wikstrand J, El Allaf D, Vitovec J, Aldershile
J, Halinen M, Dietz R, Neuhaus K-L, Jánosi A, Thorgerirsson G,
Dunselman PHJM, Gullestad L, Kuch J, Herlitz J, Rickenbacher
P, Ball S, Gottlieb S, Deedwania P, Group tHM-S (2000) Effects of
controlled-release metoprolol on total mortality, hospitalization,
and well-being in patients with heart failure the metoprolol
CR/ XL randomized intervention trial in congestive heart failure
(MERIT-HF). JAMA 283:1295–1302
47. López-Sendón J, Swedberg K, McMurray J, Tamargo J, Maggioni
AP, Dargie H, Tendera M, Waagstein F, Kjekshus J, Lechat P,
Pedersen CT, Members TF (2004) Expert consensus document on angioteinsin converting enzyme inhibitors in cardiovascular
disease: The Task Force on ACE-inhibitors of the European Soci-
y of Cardiology. Eur Heart J 25:1454–1470
48. Ko HT, Yin JL, Wyburn K, Wu H, Eris JM, Hambly BD, Chad-
ban SJ (2012) Sirolimus reduces vasculopathy but exacerbates
proteinuria in association with inhibition of VEGF and VEGFR
in a rat kidney model of chronic allograft dysfunction. Nephrol
Dial Transplant 28:327–336
49. Goldberg HJ, Harari S, Cottin V, Rosas IO, Peters E, Biswal S,
Cheng Y, Khindri S, Kovarik JM, Ma S, McCormack FX, Henske
EP (2015) Everolimus for the treatment of lymphangiioleio-
omatosis: a phase II study. Eur Respir J 46:783
50. Young L, Lee H-S, Inoue Y, Moss J, Singer LG, Strange C, Nakata
K, Barker AF, Chapman JT, Brantly ML, Stocks JM, Brown KK,
Lynch JP, 3rd, Goldberg HJ, Downey GP, Swigris JJ, Taveira-
DaSilva AM, Krischer JP, Trapnell BC, McCormack FX, Group
MT (2013) Serum VEGF-D as a concentration to a biomarker of
lymphangiioleiomatosi severity and treatment response: a prospective analysis of the Multicenter International Lymphangiio-
leiomatosi Efficacy of Sirolimus (MILES) trial. Lancet Respir
Med 1:445–452
51. Budde K, Zonnenberg BA, Frost M, Cheung W, Urva S, Brech-
enmacher T, Stein K, Chen D, Kingswood JC, Bissler JJ (2016)
Pharmacokinetics and pharmacodynamics of everolimus in patients with renal angiomyolipoma and tuberous sclerosis complex or lymphangiioleiomatosi. Br J Clin Pharmacol
81:958–970
52. Choe J-Y, Lee S-J, Park S-H, Kim S-K (2012) Tacrolimus (FK506)
inhibits interleukin-1β-induced angiopoietin-1, Tie-2 receptor, and
vascular endothelial growth factor through down-regulation of
JNK and p38 pathway in human rheumatoid fibroblast-like syn-
oviocytes, J Bone Spine 79:137–143
53. Hugh J, Van Voorhees AS, Nijhawan RI, Bagel J, Lebwohl M,
Blauvelt A, Hsu S, Weinberg JM (2014) From the Medical Board
of the National Psoriasis Foundation: the risk of cardiovascular
disease in individuals with psoriasis and the potential impact of
current therapies. J Am Acad Dermatol 70:168–177
54. Aghazadeh S, Yazdanparast R (2016) Mycophenolic acid poten-
tiates HER2-overexpressing SKBR3 breast cancer cell line to
induce apoptosis: involvement of AKT/FOXO1 and JAK2/STAT3
pathways. Apoptosis 21:1302–1314
55. Du Bois D, Du Bois EF (1916) Clinical calorimetry: tenth paper
with obstructive pulmonary disease. Arch Intern Med 17:863–871

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.