Актуальні питання фармацевтичної і медичної науки та практики

Том 13, № 2(33), травень – серпень 2020 р.

Current issues in pharmacy and medicine: science and practice

Volume 13 No. 2 May – August 2020

Scientific Medical Journal. Established in April 1997
Zaporizhzhia State Medical University
Submit papers are peer-reviewed

© Актуальні питання фармацевтичної і медичної науки та практики, 2020
ОРИГІНАЛЬНІ ДОСЛІДЖЕННЯ

Автори	Назва та опис дослідження
Гоцуля А. С., Книш Є. Г.	Синтез, будова та властивості похідних 7’-{(4-аміно-5-гію-1,2,4-тріазол-3-й)mетил}теофіліну
Гоцуля А. С., Федотов С. О.	Синтез і властивості 5-{(5-аміно-1,3,4-тіадіазол-2-й)mетил}-4-феніл-1,2,4-тріазол-3-йону та його деяких С-похідних
Вельчинська О. В.	Синтез нових апіл похідних Nκ-(2’-бромо-1’,1’-дифлуоро-2’-хлороетил)урацилу з потенційною протипухлинною активністю
Крищишин-Дилевич А. П.	Синтез і протипухлинна активність 2-ціано-2-{4-оксо-3-фенілтіазолідин-2-йліден}N-арилacetамідів
Романенко М. І., Іванченко Д. Г., Александрова К. В., Макоїд О. Б.	Синтез і фізико-хімічні властивості 8-амінопохідних 7-м-бромобензил-3-метилксантину
Шепета Ю. Л., Роман О. М., Нектієгаєв І. О., Лесик Р. Б.	Синтез і біологічна активність нових роданін-тріазольних кон’югатів з 2-(2,6-дихлорофеніламіно)бензильним фрагментом у молекулах
Юшин І. М., Лозинський А. В., Федусевич О.-М. В., Воуччук О. Я., Лесик Р. Б.	Синтез нових 5-заміщених 2-піразолілтіазол-4-онів як потенційних біологічно активних сполук
Савич А. О., Марчишин С. М., Кравчук Л. О.	Дослідження якісного складу та кількісного вмісту флавоноїдів у зборах антидіабетичних № 3 і № 4 методом HPLC
Марчишин С. М., Будняк Л. І., Івасюк І. М.	Дослідження дубильних речовин у траві та бульбах смикавця їстівного (Cyperus esculentus L.) методом HPLC
Одинцова В. М., Панасенко О. І., Корнієвська В. Г., Корнієвський Ю. І., Діденко Д. А.	Хромато-мас-спектрометрична характеристика настойок коношини лучної та собової крапиви
Панасенко О. І., Аксонова І. І., Мозуль В. І., Денисенко О. М., Карпун Е. О., Лісунова О. А.	Хромато-масспектроскопічне дослідження хімічного складу українських популяцій маруні щиткової
Кучеренко Л. І., Хромильова О. В., Портна О. О., Ткаченко Г. І.	Щодо підбору оптимальних умов проведення аналізу суміші глини з тіотріазоліном методом високої ефективної рідної хроматографії

ORIGINAL RESEARCH

Автори	Назва та опис дослідження
Hotsulia A. S., Knysh Ye. H.	Synthesis, structure and properties of 7’-{(4-amino-5-thio-1,2,4-triazole-3-yl)methyl}theophylline derivatives
Hotsulia A. S., Fedotov S. O.	Synthesis and properties of 5-{(5-amino-1,3,4-thiadiazole-2-yl)thio}methyl)-4-phenyl-1,2,4-triazole-3-thione and its some S-derivatives
Velchynska O. V.	Synthesis of new alkyl derivatives of Nκ-(2’-bromo-1’,1’-difluoro-2’-chloroethyl)uracil with potential antitumor activity
Krystchychyn-Dylevych A. P.	Synthesis and anticancer activity of 2-cyano-2-(4-oxo-3-phenylthiazolidin-2-ylidene)-N-arylacetamides
Romanenko M. I., Ivanchenko D. H., Aleksandrova K. V., Makoid O. B.	Synthesis and physical-chemical properties of 8-aminoderivatives of 7-m-bromobenzyl-3-methylxanthine
Shepeta Yu. L., Roman O. M., Nektiehaiev I. O., Lesyk R. B.	Synthesis and biological activity of new rhodanine-triazole conjugates with 2-(2,6-dichlorophenylamino)benzyl moity in the molecules
Yushyn I. M., Lozynskyi A. V., Fedusevych O.-M. V., Vovchuk O. Ya., Lesyk R. B.	Synthesis of novel 5-substituted 2-pyrazolylthiazol-4-ones as potential biologically active compounds
Savych A. O., Marchyshyn S. M., Kravchuk L. O.	Investigation of the qualitative composition and quantitative content of flavonoids in the herbal antidiabetic collections № 3 and № 4 by the method of HPLC
Marchyshyn S. M., Budniak L. I., Ivasiuk I. M.	Investigation of tannins in herb and tubers of the yellow nutgrass (Cyperus esculentus L.) (chufa) by HPLC method
Odynytsva V. M., Panasenko O. I., Korniievska V. H., Korniievsyi Yu. I., D. Didenko A.	Chromato-mas-spectroscopic characteristics of red clover and motherwort tinctures
Panasenko O. I., Aksonova I. I., Mozul V. I., Denysenko O. M., Karpun Ye. O., Lisunova O. A.	Chromato-mas-spectroscopic study of the chemical composition of growing in Ukraine Tanacetum corymbosum (L.) Sch. Bip. populations
Kucherenko L. I., Khromylova O. V., Portna O. O., Tkachenko H. I.	Optimization of glycine and thiotriazole compound analysis by high-performance liquid chromatography
Зміст

ОРИГІНАЛЬНІ ДОСЛІДЖЕННЯ

Солодовник В. А., Гладишев В. В., Бурлака Б. С., Пухальська І. О.
Дериватографічне вивчення мазі з піроктон оламіном для терапії та профілактики себорейного дерматиту

Бурлака Б. С., Бєленічев І. Ф., Гладишев В. В., Супрун Е. В., Лисянська Г. П.
Обґрунтування вибору допоміжних речовин для створення інтраназального гелю рецепторного антагоніста інтерлейкіна-1β (IL-1ra)

Сафонов А. А., Неємвіка А. В.
Дослідження актопротекторної активності 2-((5-(2-бромфеніл)-4-заміщених-4Н-1,2,4-триазол-3-іл)тіо)ацетатів

Самура В. В., Панасенко М. О.
Вплив протипухлинної терапії на стан кардіогемодинаміки у хворих на множинну мієлому залежно від функції нирок

Поліщук Н. М., Кирик Д. Л., Юрчук І. С., Філіпова О. М., Ліщенко Т. М., Єгорова С. В.
Біологічні властивості основних збудників гнійно-запальних захворювань у хірургічних хворих Запорізької лікарні швидкої допомоги

Аніщенко М. А.
Основні тенденції сучасного реформування законодавства України у сфері охорони здоров’я

Стетенко Г. С.
Концептуальні засади реформування вітчизняної охорони здоров’я: до питання формулювання принципів

Дорошенко Е. Ю., Ніканоров О. К., Ляхова І. М., Левченко Л. І., Пузік С. Г., Черненко О. Є., Гурєєва А. М., Сазанова І. О.
Фізична терапія спортсменів із діафізарними переломами кісток гомілки після інтрахіруретичного остеосинтезу (на матеріалі командних спортивних ігор)

ОГЛЯДИ

Карпенко Ю. В., Панасенко О. І., Книш Є. Г.
Біологічно орієнтований синтез ліків (BIODS) на основі гетерилпохідних 2,5-дизаміщених 1,3,4-оксадіазолів (Частина 1)

ORIGINAL RESEARCH

Solodovnyk V. A., Hladyshev V. V., Burlaka B. S., Pukhalska I. O.
Derivatographic study of the ointment with piroctone olamine for therapy and prevention of seborheic dermatitis

Burlaka B. S., Bielenichev I. F., Hladyshev V. V., Suprun E. V., Lysianska H. P.
Selection of excipients for the purpose of creating an intranasal gel of interleukin-1 receptor antagonist β (IL-1ra)

Safonov A. A., Neemyvaka A. V.
Actoprotective activity research of 2-((5-(2-bromophenyl)-4-substitued-4H-1,2,4-triazole-3-yl)(thio)acetates

Samura B. B., Pansenko M. O.
Antitumor treatment and cardiohemodynamics in patients with multiple myeloma depending on renal function

Polishchuk N. M., Kyryk D. L., Yurchuk I. Ye., Filippova O. M., Lishchenko T. M., Yehorova S. V.
Biological properties of the major causes factors of pururently inflammatory diseases of surgical patients in Zaporizhzhia Clinical Hospital of Emergency and Critical Care Medicine

Anishchenko M. A.
The main tendencies of the current reform of the Ukrainian legislation in the field of health care

Stetsenko H. S.
Conceptual bases for reforming the national health care system: to the formulation of principles

Doroshenko E. Yu., Nikanorov O. K., Liakhova I. M., Levchenko L. I., Puzik S. H., Chernenko O. Ye., Hurieieva A. M., Szananova I. O.
Physical therapy of athletes with diaphysis shin bone fractures after intramedullary osteosynthesis (based on team sports games)

REVIEW

Karpenko Yu. V., Pansenko O. I., Knysh Ye. H.
Biologically oriented synthesis of medicines (BIODS) based on heteryl/poxid 2,5-disubstitued 1,3,4-oxadiazoles (Part 1)

До уваги авторів!

3 липня 2020 року редакційною колегією журналу «Актуальні питання фармацевтичної і медичної науки та практики» затверджено нові вимоги до статей, що надсилаються для публікації.

Ознайомитись з вимогами Ви можете на сайті – http://pharmed.zsmu.edu.ua/about/submissions
Синтез і фізико-хімічні властивості 8-амінопохідних 7-м-бромобензил-3-метилксантину

М. І. Романенко*⁠, Д. Г. Іванченко*⁠, К. В. Александрова⁠, О. Б. Макоїд⁠

Запорізький державний медичний університет, Україна

Сучасний етап науково-технічного прогресу фармацевтичної науки пов'язаний із розвитком цілеспрямованого синтезу біологічно активних сполук і створенням на їхній основі нових високоефективних і мало токсичних лікарських засобів, які б могли конкурувати з дорогими імпортними препаратами. Широкий спектр біологічної активності природних ксантинів стимулював пошук біологічно активних сполук серед їхніх синтетичних аналогів, що призвело до створення низки лікарських засобів (аминофілін, дипрофілін, пентохіфілін, компلازم) тощо, які успішно застосовуються сьогодення. Підводячи підсумки, слід зазначити, що 8-бромоксантини, які містять бензильні замісники в положеннях 1 або 7, – це нові синтони для структурної модифікації ксантинової молекули.

Мета роботи – вивчення умов реакції 8-бromo-7-m-bromobenzyl-3-methylxanthine з первинними і вторинними аліфатичними амінами, дослідження їхніх фізико-хімічних властивостей.

Матеріали та методи. Температуру плавлення визначали відкритим капілярним способом на приладі ПТП (М). Елементний аналіз виконали на приладі Elementar Vario L cube, ПМР-спектри зняли на спектрометрі Bruker SF-400 (робоча частота – 400 МГц, розчинник – DMSO, внутрішній стандарт – ТМС).

Результати. Реакцію 7-m-bromobenzyl-8-bromo-3-methylxanthine з амінами проводили у сталевому автоклаві в середовищі метанолу при 170 °С. Треба наголосити: незважаючи на надлишок первинного чи вторинного аміну, заміщується тільки атом Брому в положенні 8 молекули ксантину з утворенням відповідних 8-amino-7-m-bromobenzyl-3-methylxanthines. Отримані 8-aminoxanthines – білі кристалічні сполуки з високими температурами плавлення, що зумовлено їхнім існуванням як асоціатів через наявність водневих зв'язків. Структура синтезованих сполук однозначно доведена методом ПМР-спектроскопії.

Висновки. Розробили прості за виконанням методику синтезу 8-амінопохідних 7-м-бромобензил-3-метилксантину. Здійснили ПМР-спектроскопічне вивчення отриманих сполук, однозначно підтвердивши їхню будову. Показали перспективність синтезованих речовин для наступної модифікації їхньої структури.

Synthesis and physical-chemical properties of 8-aminoderivatives of 7-m-bromobenzyl-3-methylxanthine

M. I. Romanenko, D. H. Ivanchenko, K. V. Aleksandrova, O. B. Makoid

The current stage of scientific and technological progress in pharmaceutical science is associated with the development of the targeted synthesis of biologically active compounds and the creation of new highly effective and low-toxic drugs on their basis that could compete with expensive imported drugs. A wide range of biological activity of natural xanthines stimulated the search for biologically active compounds among their synthetic analogs, which led to the creation of a row of drugs (Aminophylline, Diprophyllinum, Pentoxiphyllinum, Complamin, etc.) that are used successfully to nowadays. It is known that derivatives of 1- and 7-benzylxanthines exhibit versatile pharmacological effects. It should be noted that 8-bromoxanthines containing benzyl substituents at positions 1 or 7 are convenient synthons for further structural modification of the xanthine molecule.

The aim of this work is to study the reaction conditions of 8-bromo-7-m-bromobenzyl-3-methylxanthine with primary and secondary aliphatic amines and to study their physical-chemical properties.

Materials and methods. The melting point has been determined with the open capillary method using the PTP-M device. Elemental analysis has been performed with the Elementar Vario L cube, NMR-spectra has been taken on a spectrometer Bruker SF-400 (operating frequency – 400 MHz, solvent – DMSO, internal standard – TMS).

Results. The reaction of 7-m-bromobenzyl-8-bromo-3-methylxanthine with amines was carried out in a steel autoclave in methanol at 170 °C. It should be noted that despite the excess of the primary or secondary amine, only the Bromine atom in position 8 of the xanthine molecule was replaced with the formation corresponding 8-amino-7-m-bromobenzyl-3-methylxanthines. The obtained 8-aminoxanthines
were white crystalline compounds with high melting points in virtue of their existence in the form of associates due to hydrogen bonds. The structure of the synthesized compounds was unambiguously proved by the method of NMR-spectroscopy.

Conclusions. Simply implemented methods for the synthesis of 8-amino-7-m-bromobenzyl-3-methylxanthines were developed. NMR-spectroscopic study of the obtained compounds, which clearly confirms their structure, was conducted. The prospective of the synthesized compounds for subsequent modification of their structure was demonstrated.

Key words: xanthine, organic synthesis, NMR-spectroscopy.

Current issues in pharmacy and medicine: science and practice 2020; 13 (2), 202–205

Синтез и физико-химические свойства 8-аминопроизводных 7-м-бромуbensензил-3-метилксантината

Н. И. Романенко, Д. Г. Иванченко, Е. В. Александрова, О. Б. Макоед

Современный этап научно-технического прогресса фармацевтической науки связан с развитием целенаправленного синтеза биологически активных соединений и созданием на их основе новых высокоэффективных и малотоксичных лекарственных средств, которые могли бы конкурировать с дорогими импортными препаратами. Широкий спектр биологической активности природных ксантинов стимулировал поиск биологически активных соединений среди их синтетических аналогов, что привело к созданию новых лекарственных средств (аминофиллин, дипрофиллин, пентоксифиллин, компламин и др.), которые успешно применяют. Известно, что производные 1- и 7-бензилксантинов проявляют разностороннее фармакологическое действие. Следует отметить, что 8-бромоксантины, содержащие бензильные заместители в положениях 1 или 7, – удобные синтоны для дальнейшей структурной модификации ксантиновой молекулы.

Цель работы – изучение условий реакции 8-бromo-7-м-бромобензил-3-метилксантината с первичными и вторичными алифатическими аминами и исследование их физико-химических свойств.

Материалы и методы. Температуру плавления определяли открытым капиллярным способом с использованием прибора ПТП (М). Элементный анализ выполнили на приборе Elementar Vario L cube, ПМР-спектры сняты на спектрометре Bruker SF-400 (рабочая частота – 400 МГц, растворитель –ДМСО, внутренний стандарт – ТМС). Результаты элементного анализа в табличной форме приведены в подразделе 3.1. Анализ аминов, дослідження їхніх фізико-хімічних властивостей.

Сучасний етап науково-технічного прогресу фармацевтичної науки пов’язаний з розвитком інноваційних схем для синтезу біологічно активних сполук і створенням на їх основі нових високоэффективних і малотоксичних лікарських засобів, в тому числі з допомогою приладів кінгстон. При приладі пікір. Зіставлення фізико-хімічних властивостей. Елементний аналіз виконали на приладі Elementar Vario L cube, ПМР-спектри зняті на спектрометрі Bruker SF-400 (робоча частота – 400 МГц, розчинник – ДМСО, внутрішній стандарт – ТМС). Результати елементного аналізу відповідають розрахованім.

Аналітичні дані синтезованих сполук наведені в таб. Вивчення умов реакції 8-бromo-7-м-бромобензил-3-метилксантину з первинними і вторинними алифатичними амінами, дослідження їхніх фізико-хімічних властивостей.
Результати
Оскільки нижчі первинні та вторинні аміни є досить легкими сполуками з невисокою температурою кипіння (отримано при 170 °C), реакцію 7-м-бромобензил-8-брому-3-метилксантину (1) з амінами проводили в сталевому автоклаві в середовищі метанолу при 170 °C протягом 5 год (рис. 1). Треба наголосити: незважаючи на надлишок первинного середовища метанолу при 170 °C протягом 5 год (рис. 1), реакцію 7-м-бромобензил-8-брому-3-метилксантину (1) з амінами проводили в сталевому автоклаві в середовищі метанолу при 170 °C протягом 5 год (рис. 1).

Таблиця 1. Фазо-хімічні характеристики синтезованих сполук (2–13)

Споляка	Tпл, °C	Емпірична формула	Вхід, %
2	290–291	C₈H₁₁BrN₃O₂	51,1
3	293–294	C₈H₁₁BrN₃O₂	37,8
4	285–286	C₈H₁₁BrN₃O₂	77,8
5	195–196	C₈H₁₁BrN₃O₂	75,9
6	270–271	C₈H₁₁BrN₃O₂	85,7
7	280–281	C₈H₁₁BrN₃O₂	28,6
8	237–238	C₈H₁₁BrN₃O₂	82,8
9	224–225	C₈H₁₁BrN₃O₂	58,6
10			

Рис. 1. Схема синтезу 8-аміно-7-м-бромобензил-3-метилксантину (2).

Таблиця 2. Величини хімічного зсуву в ПМР-спектрах бензиліденгідразидів 3-метил-7-етилксантиніл-8-тіооцтової кислоти (2–13)

Споляка	δ-шкала, м.ч.	СН₃NH	Н₃СН₂	Н₃СН₃	Інші сигнали	
2	10,54	7,52 (c, 1Н); 7,39 (d, 1Н); 7,25 (m, 2Н)	6,96 (c, 2Н)	5,21	3,28	
3	10,60	7,49 (с, 1Н); 7,39 (d, 1Н); 7,24 (m, 2Н)	7,08 (кв, 1Н)	5,20	3,32	2,82 (d, 3Н)
4	10,76	7,37 (m, 2Н); 7,24 (t, 1Н); 7,12 (d, 1Н)	–	5,37	3,37	2,90 (c, 6Н)
5	10,51	7,50 (c, 1Н); 7,35 (d, 1Н); 7,22 (m, 2Н)	7,07 (t, 1Н)	5,22	3,32	3,37 (m, 2Н); 1,18 (т, 3Н)
6	10,80	7,37 (m, 2Н); 7,21 (t, 1Н); 7,12 (d, 1Н)	–	5,30	3,37	3,21 (кв, 4Н); 1,04 (т, 6Н)
7	10,50	7,50 (c, 1Н); 7,37 (т, 1Н); 7,21 (m, 2Н)	7,03 (t, 1Н)	5,24	3,32 (c, 5Н) +NCH₃	1,57 (m, 2Н); 0,87 (т, 3Н)
8	10,60	7,50 (c, 1Н); 7,37 (c, 1Н); 7,25 (m, 2Н)	7,28 (т, 1Н)	5,27	3,30	5,90 (m, 1Н); 5,14–5,05 (m, 2Н); 3,98 (т, 2Н)
9	10,56	7,50 (c, 1Н); 7,37 (d, 1Н); 7,22 (m, 2Н)	7,08 (т, 1Н)	5,23	3,31 (c, 5Н) +NCH₃	1,51 (m, 2Н); 1,30 (m, 2Н); 0,91 (т, 3Н)
10	10,53	7,50 (c, 1Н); 7,39 (d, 1Н); 7,22 (m, 2Н)	6,75 (d, 1Н)	5,27 (кв, 2Н)	3,30	3,84 (m, 1Н); 1,53 (m, 2Н); 1,17 (d, 3Н); 0,84 (т, 3Н)

Висновки
1. Розроблені прості виконанні методики синтезу 8-аміно-7-м-бромобензил-3-метилксантину.
2. Здійснено ПМР-спектроскопічне вивчення отриманих сполук, що одноznачно підтверджує їхню будову.
3. Показана перспектива синтезованих речовин для модифікації їхніх структур.
Synthesis and physico-chemical properties of 8-amino derivatives of 7-bromobenzyl-3-methylxanthine

Иванченко Д. Г., доцент каф. биологической химии, Запорожский государственный медицинский университет, Украина.

Synthesis and physico-chemical properties of 8-amino derivatives of 7-bromobenzyl-3-methylxanthine with β-dicarbonyl compounds / Д. Г. Иванченко, М. І. Романенко, М. В. Назаренко, Д. Г. Иванченко et al. Current issues in pharmacy and medicine: science and practice, 2015. № 2. С. 4-8. https://doi.org/10.14739/2409-2932.2015.2.45125

References

1. Mashkovskij, M. D. (2016). Lekarské vědne svestv [Medical supplies] (16th ed.). Moscow, ООО “Izdatelstvo Novaya voyna”.

2. Ivanchenko, D. G. (2015). Syntez, fizyko-khimichni ta biolohichni vlastyvosti 1,8-dyzamishchenykh teobrominu. IV. 8-R-Thioderdzuyut 1-benzyltheobromine [Synthesis, physical-chemical and biological properties of 1,8-disubstituted of theobromine. IV. 8-Thioderivatives of 1-methyltheobromine]. Current issues in pharmacy and medicine: science and practice, (3), 4-8. [in Ukrainian].

3. Matviychuk, O. P., Matviychuk, A. V., & Ivanchenko, D. G. (2015). Eksperimentalne doslidzhennia diuretychnykh vlastnosti novykh 7-N-metylbenzyl-8-zamishchenykh teofilinu [Experimental research of diuretic properties of new 7-methyl-N-benzyl-8-substituted theophylline]. Farmatsevtychnyi zhurnal, 59, 69-77. [in Ukrainian].

4. Kharade, S. V., Sanchez-Andres, J. V., Fulton, M. G., Shelton, E. J., et al. (2019). Structure-Activity Relationships, Pharmacokinetics, and Pharmacodynamics of the Kir6.2/SUR1-Specific Channel Opener VU0071063 / S. V. Kharade, J. V. Sanchez-Andres, M. G. Fulton et al. Journal of Pharmacology and Experimental Therapeutics. 2019. Vol. 370, Iss. 3. P. 350-359. https://doi.org/10.1124/jpet.119.257204

5. Romanenko, N. I., Nazarenko, M. V., Ivanchenko, D. G., Pakhomo, O. O., & Sharapova, T. A. (2015). The study of reactions of 7-substituted 8-hydrazino-3-methylxanthine with β-dicarbonyl compounds. Current issues in pharmacy and medicine: science and practice, (2), 4-8. https://doi.org/10.14739/2409-2932.2015.2.45125

6. Ivanchenko, D. G., Romanenko, M. I., Samara, B. A., & Kornienko, V. I. (2015). Syntez, fizyko-khimichni ta biolohichni vlastyvosti 1,8-dyzamishchenykh teobrominu. IV. 8-R-thioderdzuyut 1-benzyltheobromine [Synthesis, physical-chemical and biological properties of 1,8-disubstituted of theobromine. IV. 8-Thioderivatives of 1-methyltheobromine]. Current issues in pharmacy and medicine: science and practice, 10(3), 272-277. [in Ukrainian].

7. Ivanchenko, D. G., Romanenko, M. I., Samara, B. A., & Kornienko, V. I. (2015). Syntez, fizyko-khimichni ta biolohichni vlastyvosti 1,8-dyzamishchenykh teobrominu. IV. 8-R-thioderdzuyut 1-benzyltheobromine [Synthesis, physical-chemical and biological properties of 1,8-disubstituted of theobromine. IV. 8-Thioderivatives of 1-methyltheobromine]. Current issues in pharmacy and medicine: science and practice, 10(3), 272-277. [in Ukrainian].

8. Kharade, S. V., Sanchez-Andres, J. V., Fulton, M. G., Shelton, E. J., Blobaum A. L., Engers, D. W., Hofmann, Ch. S., ... Denton, J. S. (2019). Structure-Activity Relationships, Pharmacokinetics, and Pharmacodynamics of the Kir6.2/SUR1-Specific Channel Opener VU0071063. Journal of Pharmacology and Experimental Therapeutics. 370(3), 350-359. https://doi.org/10.1124/jpet.119.257204

9. Romanenko, N. I., Nazarenko, M. V., Ivanchenko, D. G., Pakhomova, O. O., & Sharapova, T. A. (2015). The study of reactions of 7-substituted 8-hydrazino-3-methylxanthine with β-dicarbonyl compounds. Current issues in pharmacy and medicine: science and practice, (2), 4-8. https://doi.org/10.14739/2409-2932.2015.2.45125

10. Romanenko, N. I., Nazarenko, M. V., Ivanchenko, D. G., Pakhomo, O. O., & Sharapova, T. A. (2015). The study of reactions of 7-substituted 8-hydrazino-3-methylxanthine with β-dicarbonyl compounds. Current issues in pharmacy and medicine: science and practice, (2), 4-8. https://doi.org/10.14739/2409-2932.2015.2.45125