AtCCX3 Is an Arabidopsis Endomembrane H+-Dependent K+ Transporter$^{1[W][OA]}

Jay Morris, Hui Tian, Sunghun Park, Coimbatore S. Sreevidya, John M. Ward, and Kendal D. Hirschi*
Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77845 (J.M., S.P., K.D.H.); Plant Physiology Group, United States Department of Agriculture/Agriculture Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 (J.M., K.D.H.); Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (H.T., J.M.W.); and Department of Immunology, M.D. Anderson Cancer Center, Houston, Texas 77030 (C.S.S.)

The Arabidopsis (Arabidopsis thaliana) cation calcium exchangers (CCXs) were recently identified as a subfamily of cation transporters; however, no plant CCXs have been functionally characterized. Here, we show that Arabidopsis AtCCX3 (At3g14070) and AtCCX4 (At1g54115) can suppress yeast mutants defective in Na$^+$, K$^+$, and Mn$^{2+}$ transport. We also report high-capacity uptake of 86Rb$^+$ in tonoplast-enriched vesicles from yeast expressing AtCCX3. Cation competition studies showed inhibition of 86Rb$^+$ uptake in AtCCX3 cells by excess Na$^+$, K$^+$, and Mn$^{2+}$. Functional epitope-tagged AtCCX3 fusion proteins were localized to endomembranes in plants and yeast. In Arabidopsis, AtCCX3 is primarily expressed in flowers, while AtCCX4 is expressed throughout the plant. Quantitative polymerase chain reaction showed that expression of AtCCX3 and AtCCX4 increased in plants treated with NaCl, KCl, and MnCl$_2$. Insertional mutant lines of AtCCX3 and AtCCX4 displayed no apparent growth defects; however, overexpression of AtCCX3 caused increased Na$^+$ accumulation and increased 86Rb$^+$ transport. Uptake of 86Rb$^+$ increased in tonoplast-enriched membranes isolated from Arabidopsis lines expressing CCX3 driven by the cauliflower mosaic virus 35S promoter. Overexpression of AtCCX3 in tobacco (Nicotiana tabacum) produced lesions in the leaves, stunted growth, and resulted in the accumulation of higher levels of numerous cations. In summary, these findings suggest that AtCCX3 is an endomembrane-localized H$^+$-dependent K$^+$ transporter with apparent Na$^+$ and Mn$^{2+}$ transport properties distinct from those of previously characterized plant transporters.

The plant vacuole and other endomembrane compartments play an important role in the sequestration of various compounds (Marschner, 1995; Marty, 1999). Concentration gradients of Na$^+$, Ca$^{2+}$, Cd$^{2+}$, NO$_3^-$, and Mn$^{2+}$ are established across these membranes by cation/H$^+$ exchange activities (Schumaker and Sze, 1985; Salt and Wagner, 1993; Barkla and Pantoja, 1996; Gonzalez et al., 1999). Several genes encoding these transport activities have been identified (Shigaki and Hirschi, 2006). However, the biological functions of many of the individual transporters remain for the most part undefined.

CCXs (for calcium cation exchangers) were previously identified as CAX (for cation exchanger) homologs. Recently CAX7 to CAX11 were reclassified as CXC1 to CXC5 due to higher homology to mammalian K$^+$-dependent Na$^+$/Ca$^{2+}$ antiporters (Shigaki et al., 2006). CAXs are cation/H$^+$ antiporters that show high-capacity, low-affinity transport and have been characterized in a variety of plants (Blumwald and Poole, 1986; Kasai and Muto, 1990; Ettinger et al., 1999; Cheng et al., 2002; Luo et al., 2005). CAXs are energized by the pH gradient established by proton pumps such as H$^+$-ATPase or H$^+$-pyrophosphatase (Kamiya and Maeshima, 2004). Several plant CAXs have been characterized as vacuole-localized transporters, which function in H$^+$-coupled antiport of Ca$^{2+}$, Mg$^{2+}$, and Mn$^{2+}$, resulting in the accumulation of these cations in vacuoles (Hirschi, 1999; Pittman and Hirschi, 2001; Pittman et al., 2004a). CCXs have not been studied, and it would be interesting to compare and contrast their activities with those of CAXs and the less closely related Na$^+$ (K$^+$/H$^+$) exchangers of the NHX family.

CAX proteins have N-terminal regulatory domains (Pittman and Hirschi, 2001), and AtCAX1 and AtCAX2 were originally cloned as functional N-terminal deletions (lacking the negative regulatory domain; Hirschi et al., 1996). We refer to these forms as sCAX1 and sCAX2 (Shigaki and Hirschi, 2006). Tobacco (Nicotiana tabacum) plants expressing AtsCAX1 exhibit Ca$^{2+}$

1This work was supported by the U.S. Department of Agriculture/Agricultural Research Service (Cooperative Agreement no. 58-62550-6001), the National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 2005-34402-17121 to K.D.H.). The National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 2005-34402-17121 to K.D.H.). The National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 58–6001), the National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 2005-34402-17121 to K.D.H.). The National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 58–6001), the National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 2005-34402-17121 to K.D.H.). The National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 58–6001), the National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 2005-34402-17121 to K.D.H.). The National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 58–6001), the National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 2005-34402-17121 to K.D.H.). The National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 58–6001), the National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 2005-34402-17121 to K.D.H.). The National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 58–6001), the National Science Foundation (grant nos. NSF 0344350 and NSF 020977), and the U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service (grant no. 2005-34402-17121 to K.D.H.).

* Corresponding author; e-mail kendallhb@bcm.tmc.edu.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Kendal D. Hirschi (kendallhb@bcm.tmc.edu).

$^{[W]}$ The online version of this article contains Web-only data.

$^{[OA]}$ Open Access articles can be viewed online without a subscription.

www.plantphysiol.org/cgi/doi/10.1104/pp.108.118810

Copyright © 2008 American Society of Plant Biologists. All rights reserved.
deficiencies, leaf necrosis, tip burning, and hyper-sensitivity to ion imbalances, as well as increased tonoplast Ca$^{2+}$/H$^+$ transport activity (Hirschi, 1999). The N termini of CCXs lack homology with CAXs, and it is not known if the N terminus has a regulatory function.

Arabidopsis (Arabidopsis thaliana) CCXs are related to mammalian plasma membrane Na$^+$/Ca$^{2+}$ exchangers (NCXs). The NCXs mediate the exchange of Na$^+$ for Ca$^{2+}$ depending on the electrochemical gradients, and NCKXs (for Na$^+$/Ca$^{2+}$/K$^+$) transport K$^+$ and Ca$^{2+}$ in exchange for Na$^+$ (Lyton, 2007). Interestingly, both NCX and NCKX exchangers can operate in a forward (Ca$^{2+}$ exit) or reverse (Ca$^{2+}$ entry) mode, which is mediated by the change in Na$^+$ gradients and the potential across the membrane (Cai and Lytton, 2004a). However, the extent to which CCX transporters from Arabidopsis transport Na$^+$ or K$^+$ has not been addressed.

To investigate the function of CCX transporters, we cloned AtCCX3 and the closely related AtCCX4. We expressed the transporters in various yeast strains in order to compare and contrast their functions to those of AtCAX1 and AtNHX1 transporters. We monitored the expression and localization of AtCCX3 in yeast cells and in planta. Finally, we overexpressed AtCCX3 in plants and examined ion uptake and plant growth. Collectively, these findings demonstrate that AtCCX3 is an endomembrane H$^+$-dependent K$^+$ transporter.

RESULTS

AtCCXs Show Homology to Mammalian NCKXs

A family of genes originally identified as members of plant CAXs (Maser et al., 2001) were recently found to have high similarity to mammalian NCKX6 (a member of the CCX family) and weak similarity to AtNHX1 (Supplemental Fig. S1A). Thus, these transporters were reclassified as AtCCXs (Shigaki and Hirschi, 2006). We hypothesized that these putative transporters might function in cation homeostasis. We prepared open reading frame (ORF) clones for AtCCX3 and AtCCX4 from Arabidopsis (Columbia ecotype) genomic DNA, since these genes were predicted to contain no introns. The cloned AtCCX3 and AtCCX4 open reading frames contained 1,935 and 1,938 nucleotides, which could encode 644 and 645 amino acids and produce putative proteins of 70.1 and 70.8 kD, respectively. AtCCX3 and AtCCX4 are 79.50% identical and 86.02% similar to one another. They share more identity (26.8% identical, 46.9% similar) with human (Homo sapiens) HsNCKX6 than with AtCAX1 (12.1% identical, 25.1% similar). In contrast to AtNHX1, a known plant Na$^+$ transporter, the AtCCXs have very little sequence homology (Supplemental Fig. S1A). Both AtCCX3 and AtCCX4 contain short N-terminal hydrophilic domains, which are not related to the AtCAX1 N-terminal autoinhibitory domain (Supplemental Fig. S1B). Comparisons of the AtCCX3, AtCCX4, and HsNCKX6 proteins show a short (25 amino acids) N-terminal region, followed by five transmembrane domains separated from another seven transmembrane domains by a long hydrophilic region (75 amino acids for HsNCKX6 and 115 amino acids for AtCCX4). By contrast, AtCAX1 has a long N-terminal domain containing 65 amino acids and has two sets of four transmembrane domains separated by a shorter hydrophilic domain (35 amino acids). Also, AtCCX3, AtCCX4, and HsNCKX6 have very short (15 amino acids) C-terminal domains compared with AtCAX1, which has a longer C-terminal region (25 amino acids; Supplemental Fig. S1C). Phylogenetic analysis of AtCCX1 to AtCCX5, AtCAXs, and the human K$^+$-dependent Na$^+$/Ca$^{2+}$ antiporter HsNCKX6 clearly indicates that CCXs are more closely related to the K$^+$-dependent Na$^+$/Ca$^{2+}$ antiporter than to any of the CAXs (Supplemental Fig. S1A; Shigaki et al., 2006). Specifically, AtCCX3 and AtCCX4 share the characteristic α-repeats GNG(A/S)PD in α1 and (G/S)(N/D) SxGD in α2 with HsNCKX6 (Supplemental Fig. S1B; Cai and Lytton, 2004a, 2004b); these are highly conserved Ca$^{2+}$ and Na$^+$ domains (Winkfein et al., 2003; Kang et al., 2005).

Expression of AtCCX3 and AtCCX4 in Yeast

AtCCX3 and AtCCX4 were cloned into the pIHGpd vector (Nathan et al., 1999) for expression in yeast under the control of the GPD promoter. To test the possibility of a CCX N-terminal regulatory domain, we made a truncation in the AtCCX3 ORF (AtsCCX3). These plasmids were then introduced into the yeast strains AXT3 (ena1::HIS3::ena4, nha1::LEU2, nix1::TRP1, ura3-1; Yokoi et al., 2002) and wx1 (nix1 mutant; Nass et al., 1997) with defects in vacuolar Na$^+$/K$^+$ transport. AtCCX3 and AtCCX4 expression did not alter growth of the yeast in Arg phosphate (AP) medium (Fig. 1A) compared with vector controls. Also, expression of AtsCCX3 or AtNHX1 did not affect the growth of the yeast strain (Fig. 1A). AtCCX3 and AtCCX4 suppressed the Na$^+$ and K$^+$ sensitivity of these yeast strains (AXT3 and wx1) deficient in vacuolar Na$^+$/H$^+$ transport (Fig. 1, B and C); however, AtsCCX3 did not suppress the Na$^+$ and K$^+$ sensitivity in these strains. We also tested both the hemagglutinin (HA)-AtCCX3 and AtCCX3-GFP tagged proteins, and they both showed similar phenotypes to the native AtCCX3 (data not shown). Yeast cells expressing all of the AtCCX3 and AtCCX4 variants were unable to suppress the Ca$^{2+}$ sensitivity of yeast strains deficient in vacuolar Ca$^{2+}$ transport (data not shown). Yeast cells expressing AtCAXs all show increased Ca$^{2+}$ transport when truncated in their N-terminal domain (Hirschi, 1999; Shigaki et al., 2001, 2003; Pittman et al., 2004b). A lack of N-terminal regulation, the ability to suppress Na$^+$-sensitive phenotypes, and the inability to suppress Ca$^{2+}$-sensitive phenotypes in yeast suggests functions for AtCCX3 and AtCCX4 that differ from those of CAXs.
We also tested the possibility that AtCCX3 and AtCCX4 transport other metals, thus making the host yeast cells tolerant or hypersensitive to these metals. Expression of AtCCX3 in an Mg\(^{2+}\)-requiring strain (CM66) did not suppress the ion sensitivity of these strains (MacDiarmid and Gardner, 1998). AtCCX3-expressing cells were also tested with a range of metals, such as Al\(^{3+}\), Cd\(^{2+}\), Cu\(^{2+}\), Ni\(^{2+}\), and Zn\(^{2+}\), in various mutant yeast strains (K661, K667; Salt and Wagner, 1993; Cunningham and Fink, 1996; Liu et al., 1997; Tuttle et al., 2003). In each case, AtCCX3 cells were indistinguishable from vector controls in our assay conditions. However, expression of AtCCX3 could suppress Mn\(^{2+}\) growth sensitivity in a yeast strain defective in both plasma and vacuolar membrane Mn\(^{2+}\) transport (smf1 + smf2; Supek et al., 1996; Cohen et al., 2000; Luk and Culotta, 2001; Fig. 1D). AtsCCX3 was unable to suppress the Mn\(^{2+}\) growth sensitivity, suggesting that truncating AtCCX3 does not activate a function that is different from that of the CAXs, where N-terminal truncations enhance function (Hirschi et al., 1996; Hirschi, 1999; Pittman and Hirschi, 2001; Pittman et al., 2002a, 2002b). This suppression of Mn\(^{2+}\) sensitivity phenocopied AtsCAX2 expression, a known vacuolar Mn\(^{2+}\) transporter (Fig. 1D; Pittman et al., 2004b). However, this is the only phenotype that overlaps with CAX transporters, and the other transport properties firmly establish distinct non-CAX functions for AtCCX3.

Transport Properties of AtCCX3 in Yeast

In order to determine whether AtCCX3 mediated K\(^{+}\) transport, we measured \(^{86}\)Rb\(^{+}\) uptake as a tracer for K\(^{+}\) into yeast cells and yeast microsomal membranes (Venema et al., 2002; Pittman et al., 2004a, 2004b). In wx1 yeast, only cells expressing AtCCX3 or AtsCAX2 showed higher \(^{86}\)Rb\(^{+}\) uptake at high K\(^{+}\) concentrations (20 mM; data not shown) relative to vector controls. At low external K\(^{+}\) (0.02 mM) concentrations, \(^{86}\)Rb\(^{+}\) uptake by cells expressing AtCCX3 and AtsCAX2 was similar to that of vector controls (data not shown). As shown before, uptake of \(^{86}\)Rb\(^{+}\) by AtNHX1 was inhibited by...
benzamil (Venema et al., 2003). However, treatment of AtCCX3-expressing yeast cells with benzamil to measure $^{86}\text{Rb}^+$ uptake inhibition was inconclusive (data not shown). Uptake of $^{86}\text{Rb}^+$ from both AtNHX1 and AtCCX3 required MgCl$_2$, as the removal of MgCl$_2$ resulted in a reduction in $^{86}\text{Rb}^+$ uptake (Fig. 2A). These results support the idea that Mg$^{2+}$ is required to activate the vacuole-type H$^+$-ATPase to generate a pH gradient across the vesicle. Thus, in yeast, AtCCX3 appears to behave as a low-affinity K$^+$/proton exchanger in a manner similar to AtNHX1.

These phenotypes suggest that AtCCX3 has a role in K$^+$ transport, but the suppression of the Δmsf1, Δmsf2 Mn$^{2+}$-sensitive yeast strain also suggests that AtCCX3 functions in Mn$^{2+}$ transport (Cohen et al., 2000). To further investigate the yeast phenotypes, $^{86}\text{Rb}^+$ uptake into vesicles was measured in the presence of excess nonradioactive KCl, NaCl, MnCl$_2$, CaCl$_2$, and ZnCl$_2$. Excess (300 μM) KCl and NaCl reduced $^{86}\text{Rb}^+$ uptake mediated by AtNHX1 and AtCCX3 by 50% and 40%, respectively (Fig. 2B), but no decrease in uptake was measured in the presence of excess CaCl$_2$ or ZnCl$_2$. Intriguingly, MnCl$_2$ only reduced AtCCX3-mediated uptake of $^{86}\text{Rb}^+$ but not that of AtNHX1 (Fig. 2B). Taken together, these results suggest that AtCCX3 mediates H$^+$-dependent uptake of K$^+$ and Na$^+$, similar to NHX1, yet is distinct in its cation specificity to a divalent cation, such as Mn$^{2+}$.

Metal Measurements in Yeast Expressing AtCCX3 and AtNHX1

We tested the alkali cation content in mutant alone or in yeast strains expressing AtCCX3 and AtNHX1 after cells were exposed to 100 mM NaCl or KCl. Yeast cells expressing AtCCX3 and AtNHX1 showed a 25% increase in Na$^+$ and a 50% increase in K$^+$ content, compared with yeast cells expressing only the vector (Fig. 3). Thus, CCX3 promotes Na$^+$ or K$^+$ uptake similar to NHX1. In a preliminary experiment of wild-type W303-1A yeast cells expressing AtCCX3, the Mn$^{2+}$ content was 85% higher compared with that in cells expressing only vector. Thus, AtCCX3 expressed in yeast cells could play a role in Na$^+$, K$^+$, and Mn$^{2+}$ homeostasis.

Localization of AtCCX3 in Yeast and Plants

An N-terminal HA-tagged AtCCX3 construct conferred resistance to high Na$^+$ and K$^+$ stress in wx1 (data not shown). We utilized this construct to identify the cellular location of AtCCX3. As shown in Figure 4A, western-blot analysis of yeast membranes fractionated on Suc gradients showed that AtCCX3 colocalized with vacuolar membranes. The distribution of HA-AtCCX3 corresponded with the yeast vacuolar membrane marker alkaline phosphatase but not with the plasma membrane marker Pma1p. As further confir-
formation of yeast endomembrane localization, the AtCCX3-GFP expressed in yeast also appeared to reside on intracellular membranes, as the signal overlapped with vacuolar protein P51 fused to red fluorescent protein (Fig. 4B; Carter et al., 2004). These results suggest that AtCCX3 functions as an endomembrane cation transporter in yeast.

To investigate the subcellular localization of AtCAX3 in plants, microsomal membranes from transgenic lines harboring the AtCCX3-GFP fusion protein were fractionated. Centrifugation through a linear Suc gradient was first used to compare the distribution of the epitope-tagged transporter in transgenic Arabidopsis (Fig. 5A) with that of markers for the tonoplast, plasma membrane, and endoplasmic reticulum lumen. As shown in Figure 5A, the tagged proteins were located in fractions of 26% to 37% Suc. The AtCCX3-GFP protein was associated with fractions enriched in endomembranes, as indicated by the sedimentation profiles, which overlapped with a vacuole-type H⁺-ATPase (V-ATPase subunit B; Ward et al., 1992) but not with an endoplasmic reticulum (BiP; Cheng et al., 2002) or the plasma membrane (AHA3; Fardo and Serrano, 1989) protein. To provide further confirmation for the localization in plants, we examined the transient expression of 35S::GFP in onion (Allium cepa) cells (Sivitz et al., 2007). Fluorescence associated with 35S::GFP alone was localized to both the cytosol and the nucleus. In contrast, fluorescence was consistent with cytoplasmic vesicles and the vacuolar membrane, but some localization to the plasma membrane cannot be excluded in plant cells expressing 35S::AtCCX3-GFP (Fig. 5B).

Figure 4. Subcellular localization of AtCCX3 in yeast. A, Subcellular localization of epitope-tagged HA-AtCCX3 to the vacuole membrane. Yeast membranes were fractionated on 10% to 50% (w/w) Suc gradients, and equal amounts of protein (15 mg) were separated by SDS-PAGE, blotted, and subjected to western-blot analysis using antibodies against HA, the vacuolar membrane marker alkaline phosphatase (ALP), and the plasma membrane H⁺-ATPase (PMA1). B, Subcellular localization of CCX3-GFP. GFP was fused to the C terminus of full-length AtCCX3 and coexpressed with the yeast vacuolar membrane protein P51. The fusion protein and vacuolar marker were observed by confocal microscopy. The green channel (excitation at 488 nm, emission at 522 nm, and barrier filter at 522–535 nm) and red channel (excitation at 480 nm, emission at 530 nm with a fluorescent long-pass filter) images were captured with Fluoview software (Olympus America).

Figure 5. AtCCX3 localization in plants. A, Localization of epitope-tagged CCX3-GFP to the tonoplast. Arabidopsis microsomal membranes were fractionated on 10% to 50% (w/w) Suc gradients. Aliquots were collected and equal amounts of protein (10 mg) were separated by SDS-PAGE, blotted, and subjected to western-blot analysis using antibodies against GFP and plant membrane markers: the vacuolar ATPase subunit B, the plasma membrane H⁺-ATPase (AHA3), and the endoplasmic reticulum protein (BiP; StressGen Biotechnologies). B and C, Projection confocal images of onion epidermis transiently expressing 35S::CCX3-GFP (B) or 35S::GFP (C). D and E, Differential interference contrast images of onion epidermis (D corresponds to B and E corresponds to C). The arrows indicate the position of the nucleus in D and E.
Expression of \textit{AtCCX3} and \textit{AtCCX4} in Arabidopsis

Analysis of publicly available Arabidopsis microarray data indicates that \textit{AtCCX3} is expressed at very low levels and predominantly in flowers and pollen grains (Bock et al., 2006; https://www.genevestigator.ethz.ch). This low level of expression made the use of northern blot and GUS promoter::reporter analysis difficult (data not shown). In order to more precisely monitor expression, we conducted reverse transcription (RT)-PCR and detected the expression of \textit{AtCCX3} primarily in flowers, roots, and stems of wild-type Arabidopsis (Fig. 6A). \textit{AtCCX4} appears to be expressed in pollen and throughout the plant and at levels substantially higher than \textit{AtCCX3} (Bock et al., 2006; https://www.genevestigator.ethz.ch).

The ability of \textit{AtCCX3} to suppress a yeast mutant sensitive to Na\(^+\) and K\(^+\) and the increased sensitivity of wild-type yeast to Mn\(^{2+}\) prompted us to examine whether these or other cations could induce \textit{AtCCX3} expression in Arabidopsis roots, leaves, and flowers. Expression of \textit{AtCCX3} increased 2- to 3-fold in response to exogenous Na\(^+\) and K\(^+\), and by 0.5-fold compared with Mn\(^{2+}\), in both roots and flowers (Fig. 6B). We then directly compared the changes in \textit{AtCCX3} expression with those of \textit{AtNHX1} under salt stress conditions. An increase in \textit{AtNHX1} in response to Na\(^+\) has been reported previously (Yokoi et al., 2002). Although \textit{AtCCX3} is expressed at much lower levels than \textit{AtNHX1}, expression of both genes was induced by Na\(^+\) treatment in roots, leaves, and flowers (Fig. 6C). However, the basal level of \textit{AtNHX1} expression was much higher than that of \textit{AtCCX3}.

Analysis of T-DNA Insertional Mutants of \textit{AtCCX3} and \textit{AtCCX4}

To investigate the physiological function of \textit{AtCCX3} and \textit{AtCCX4} in Arabidopsis, we obtained two independent lines containing T-DNA insertions inside each open reading frame (Supplemental Fig. S2D). Homozygous lines were isolated by screening for the presence of the T-DNA insert and lack of native \textit{AtCCX}. We isolated two different mutant alleles for \textit{AtCCX3}, termed \textit{atccx3-1} and \textit{atccx3-2}, and two alleles for \textit{AtCCX4}, termed \textit{atccx4-1} and \textit{atccx4-2}. RT-PCR analysis of the four different alleles showed no expression of \textit{AtCCX3} or \textit{AtCCX4} in the respective mutants (Supplemental Fig. S2, B and C). Pollen viability, pollen tube growth, and seed set were not altered in these mutants (data not shown), nor were there any other discernible growth abnormalities.

Ectopic Expression of \textit{AtCCX3}

To further test the function of \textit{AtCCX3} in Arabidopsis, \textit{AtsCCX3} and \textit{AtCCX3} were expressed using the cauliflower mosaic virus 35S promoter. Despite increased expression of \textit{AtCCX3} RNA in the Arabidopsis lines, no visible changes in plant growth or development were detected (Supplemental Fig. S2A; J. Morris, unpublished data). However, lack of an \textit{AtCCX3}-specific antibody prevented actual quantification of alterations of \textit{AtCCX3} protein amounts.

\textit{35S::AtCCX3} Arabidopsis plants treated with exogenous NaCl accumulated 35\% more Na\(^+\) compared with controls (26,490 ± 370 µg g\(^{-1}\) dry weight for \textit{35S::AtCCX3}, 17,305 ± 2,145 µg g\(^{-1}\) dry weight for controls). In contrast, when grown under normal conditions, there was only a modest Na\(^+\) accumulation in
35S::AtCCX3 lines (6,044 ± 55 μg g⁻¹ for 35S::AtCCX3, 5,772 ± 73 μg g⁻¹ for controls).

To determine the in planta K⁺ transport properties of AtCCX3, we performed direct ⁸⁶Rb uptake assays into whole plants and vacuole-enriched vesicles isolated from Arabidopsis roots. Vesicles from 35S::AtCCX3 and AtNHX1 plants both showed higher ⁸⁶Rb uptake at high K⁺ concentrations (50 mM; Fig. 7A) and no uptake at low external K⁺ concentration (0.05 mM; data not shown). Similar to our yeast assay, uptake of ⁸⁶Rb in membranes isolated from AtNHX1 plants was inhibited by benzamil (Fig. 7A; Venema et al., 2002). As in our yeast assay, benzamil showed less inhibition on ⁸⁶Rb uptake into membranes from 35S::AtCCX3 plants. Reduced uptake of ⁸⁶Rb in both AtNHX1- and 35S::AtCCX3-expressing plants was found when the H⁺ gradient was disrupted by removing MgCl₂ from the reaction mixtures. Like our yeast assays, these plant membrane uptake values suggest that AtCCX3 is an H⁺-driven Na⁺, K⁺, and Mn²⁺ exchanger.

We also tested the inhibition of ⁸⁶Rb uptake by competition with excess (300 μM) nonlabeled cation chlorides. Similar to our results in yeast, excess KCl and NaCl reduced ⁸⁶Rb uptake, while CaCl₂ and ZnCl₂ had no effect on ⁸⁶Rb uptake into membranes isolated from cells expressing AtNHX1 and AtCCX3 (Fig. 7B). However, excess MnCl₂ reduced the uptake of ⁸⁶Rb by 57% in membranes from 35S::AtCCX3-expressing membranes but showed no inhibition of ⁸⁶Rb uptake in AtNHX1-expressing membranes (Fig. 7B). These transport measurements again suggest that AtCCX3 has a role in Na⁺, K⁺, and Mn²⁺ homeostasis in planta.

The Arabidopsis AtCCX3 and AtsCCX3 were also heterologously expressed in tobacco (KY14 variety). As shown in Figure 8C, AtCCX3 RNA accumulated in all 35S::AtCCX3 transgenic lines. The inability to detect transcript in the vector lines indicates the specificity of the primers used during the amplification process. Visible alterations in plant growth were readily apparent in the 35S::AtCCX3-expressing lines (Fig. 8C). After 3 weeks of growth in sterile conditions, 100% (17 of 17) of the primary transformants expressing 35S::AtCCX3 formed leaves with small yellowing necrotic lesions (Fig. 8A). After being transferred to soil, the lines appeared to partially recover for a period of 3 to 5 d. After 1 week, these phenotypes reoccurred in all 17 of the primary transformants; however, the roots of these plants did not show altered growth. As shown in Figure 8, A and B, after 3 months, all of the 35S::AtCCX3-expressing plants were severely stunted. The 35S::AtCCX3 transgenic lines with the least dramatic growth changes always displayed low levels of 35S::AtCCX3 expression (data not shown). In contrast to these dramatic phenotypes, the 12 35S::AtsCCX3-expressing lines displayed phenotypes indistinguishable from the vector-expressing controls. Because the 35S::AtCCX3 phenotypes were so dramatic, we repeated the transformation process and obtained identical results in a replicate experiment (data not shown).

35S::AtCCX3 lines were selected for further study on the basis of their T1 phenotype and their ability to make seeds. All lines analyzed that displayed these dramatic phenotypes, the 12 35S::AtsCCX3 lines, as well as the vector control lines, were selected for further study on the basis of their T1 phenotype and their ability to make seeds. All lines analyzed that displayed the altered morphology were fertile (n = 13). The same growth abnormalities revisited all of the lines in the second generation. When grown from seed in tobacco culture, the T2 plants appeared normal and unperturbed for the first 2 weeks, after which time the leaves began to display altered growth phenotypes (data not shown). T2 35S::AtCCX3-transformed plants that were sown and grown in the greenhouse also displayed leaf symptoms after 3 weeks of growth (Fig. 8B). Once again, none of the 35S::AtsCCX3 or vector control-expressing plants displayed these phenotypes.

Effects of AtCCX3 on Plant Growth

The symptoms of the 35S::AtCCX3-expressing tobacco plants could not be phenocopied in vector control lines under any growth conditions tested (excess and depleted Na⁺, Mg²⁺, K⁺, Mn²⁺, and Ca²⁺; data not shown). Primary transformants and T2 35S::AtCCX3-expressing plants displayed altered morphology regardless of the medium used for growth. Con-
AtCCX3 expression may alter various mineral levels simultaneously, making suppression of the phenotypes dependent on the addition or subtraction of multiple components. To ascertain whether 35S::AtCCX3 expression altered ion content, we measured the total accumulation of ions in both mature and young leaves. In 35S::AtCCX3-expressing plants, young leaves accumulated at least 40% more K⁺ and Na⁺ (Fig. 9A) compared with control lines and maintained these increased levels for K⁺ and Na⁺, even as the leaves matured (Fig. 9B). Mn²⁺ levels also increased as the plant leaves matured. One explanation for these growth defects is that the alterations in cellular Mn²⁺ and other cations may produce excess reactive oxygen species. To test this, we isolated total leaf protein from vector- and 35S::AtCCX3-expressing plants and detected the carbonyl content of the proteins. As shown in Supplemental Figure S3A, the protein carbonyl content was higher in 35S::AtCCX3-expressing plants compared with vector controls and AtsCCX3-expressing lines. In fact, these alterations were detectable before the onset of morphological changes in leaf architecture. Together, these findings suggest that AtCCX3 has a role in ion homeostasis in plants and that when AtCCX3 expression is heightening, increases in protein oxidation occur.

DISCUSSION

The plant vacuole is a cation depot, and numerous transporters have been proposed to mediate influx and efflux from this endomembrane compartment (Marty, 2005).
Here, we use yeast suppression screens, in planta expression analysis, yeast and plant membrane transport studies, and AtCCX-generated phenotypes in transgenic tobacco to suggest that AtCCX3 expression is judiciously regulated and is part of an ensemble of transporters regulating K⁺, Na⁺, and possibly Mn²⁺ levels within plant cells.

Sequence Comparison of AtCCXs and HsNCKX6

Phylogenetic analysis recently identified five Arabidopsis CCX transporters as being closely related to mammalian Na⁺/Ca²⁺ exchangers (Supplemental Fig. S1A; Shigaki et al., 2006). The functions of AtCCX1 to AtCCX5 in plants are unknown, although they may functionally resemble NCKXs. NCKX exchangers are involved in mammalian signaling (Blaustein and Lederer, 1999; Lee et al., 2002) by catalyzing the electrogenic countertransport of four Na⁺ for one Ca²⁺ and one K⁺ (Cervetto et al., 1989; Dong et al., 2001). Like the HsNCKX6, AtCCX3 and AtCCX4 have similar conserved a-repeats (Supplemental Fig. S1B), which may play a critical role in maintaining a proper chemical microenvironment for ion binding (Cai and Lytton, 2004b). AtCCX3, AtCCX4, and HsNCKX6 also share similar membrane topologies, which differ from that of AtCAX1 (Supplemental Fig. S1C).

Function of AtCCX3 and AtCCX4 in Yeast

Our data show that AtCCX3 and AtCCX4 have functions distinct from AtNHX1. Results from transport assays in yeast are consistent with the phylogenetic analysis and indicate a possible Na⁺/K⁺ transport function for AtCCX3 and AtCCX4 (Fig. 1; Shigaki et al., 2006). Like AtNHX1, AtCCX3- and AtCCX4-expressing cells can suppress the Na⁺ and K⁺ sensitivities of mutant yeast strains defective in vacuolar Na⁺ and K⁺ transport (Fig. 1, B and C). Similarly, AtCCX3-mediated K⁺ (⁸⁶Rb⁺) uptake in yeast cells was similar to that of AtNHX1-expressing cells (Fig. 2). However, benzamil had greater inhibition of ⁸⁶Rb⁺ uptake in cells expressing AtNHX1 than in cells expressing AtCCX3. Furthermore, AtCCX3-expressing yeast cells facilitated the uptake of various cations at concentrations comparable to that of AtNHX1-expressing cells (Fig. 3). These results support the idea that AtCCX3 activity promotes K⁺ and Na⁺ accumulation into endomembrane compartments such as the vacuole.

AtCCX3- and AtCCX4-expressing yeast cells did not completely phenocopy AtNHX1-expressing yeast cells. AtCCX3- and AtCCX4-expressing cells could not suppress the hygromycin sensitivity of ntx1-deficient cells (data not shown; Nass and Rao, 1998; Darley et al., 2000). Both AtCCX3 and AtNHX1 are predominantly localized to the vacuole (see below), in contrast to the prevacuolar localization of yeast NHXp1 (Nass and Rao, 1998). A possible altered localization could explain the inability of AtCCX3-expressing cells to suppress this defect in the yeast secretory pathway. AtCCX3 expression suppressed the growth sensitivity in a yeast strain defective in both plasma and vacuolar membrane Mn²⁺ transport (Fig. 1D; Supek et al., 1996; Cohen et al., 2000; Luk and Culotta, 2001). The ability of AtCCX3 to suppress the growth defects of a Mn²⁺-sensitive yeast strain as well as excess Mn²⁺ decreasing ⁸⁶Rb⁺ uptake in yeast vacuolar vesicles suggest that AtCCX3 is involved in Mn²⁺ homeostasis. The ability to suppress yeast growth defects in Na⁺ and Mn²⁺ homeostasis has not been observed with heterologous expression of AtNHX1 or AtCAX1 and suggests that AtCCX3 has distinct transport properties.

Our other yeast data further support AtCCX3 and AtCCX4 having biochemical functions distinct from CAX transporters. For example, N-terminal truncations of AtCAX1 and AtCAX2 suppress the Ca²⁺ sensitivity of yeast cells defective in vacuolar Ca²⁺ transport (Hirschi et al., 1996). In contrast, expression of both full-length and N-terminal truncations of AtCCX3 and AtCCX4 in yeast could not suppress these Ca²⁺ transport defects. Furthermore, the N-terminal domains of AtCCX3 and AtCCX4 were required for function. The requirement of the N-terminal domain in these yeast assays suggests that AtCCX3 and AtCCX4 do not contain a CAX-like N-terminal regulatory domain.

AtCCX3 Is an Endomembrane-Localized Transporter in Flowers

Functional epitope tags of AtCCX3 demonstrated that AtCCX3 localized to the endomembrane in both yeast and plants (Figs. 4 and 5). Furthermore, AtCCX3 appeared to function at the yeast vacular membrane as a cation transporter (Figs. 1 and 2). Whether AtCCX3 is localized exclusively on the plant vacuole or also on the trans-Golgi network and prevacuolar compartment is unclear at this time.

Although the precise role of AtCCX3 is still unclear, low AtCCX3 expression levels suggest that AtCCX3 might have a role in cation uptake in a specific subset of cells rather than be involved in bulk cation uptake (Fig. 6). Furthermore, the localization of AtCCX3 to the plant vacuole, and possibly other endomembrane compartments, combined with expression in floral tissue (Supplemental Fig. S2, A and B; publicly available microarray data) propose possible functions associated with the pollen vacuole during tube elongation and polarized tip growth (Cheung et al., 2003; Holdaway-Clarke et al., 2003).

AtCCX3 Phenotypes in Plants

AtCCX3 and AtCCX4 may function in concert with numerous other transporters to regulate pollen growth. The atccx3 and atccx4 lines displayed no altered pollen phenotypes, and general plant growth
appeared robust in all our assays (Supplemental Fig. S2, B and C; data not shown). This lack of altered growth could be related to the expression of other AtCCX transporters during vegetative and pollen development (Sze et al., 2004; Bock et al., 2006). Many Arabidopsis T-DNA mutants lack any morphological phenotype, presumably due to functional redundancy (Krysan et al., 1999). Our working hypothesis is that AtCCX3 and AtCCX4 have similar functions because they arose from a gene duplication.

The strong phenotype resulting from overexpression of AtCCX3 in tobacco indicates that AtCCX3 must be carefully modulated. Tobacco plants ectopically expressing 35S::AtCCX3 were stunted in growth and contained necrotic lesions in the leaf interveinal regions (Fig. 8A). These tobacco phenotypes differentiate AtCCX3 from both AtCAX1- and AtNHX1-overexpressing phenotypes. The AtCCX3 phenotypes were not observed in plants expressing AtsCCX3 (Fig. 8A). In contrast, ectopic expression of AtsCAX1 in tobacco produces dramatic phenotypes (Hirschi, 1999). This further suggests that AtCCX3 does not contain an N-terminal regulatory domain. The fundamental cause of AtCCX3-mediated tobacco phenotypes is less apparent than with the AtsCAX1-expressing lines. That is, AtsCAX1-expressing lines are Ca2+-deficient and application of exogenous Ca2+ can restore normal growth (Hirschi, 1999). In contrast, the AtCCX3-expressing lines could not be rescued by enhancing or reducing NaCl, KCl, or MnCl2 levels (data not shown). Possibly, the AtCCX3-expressing lines disrupt tonoplast V-type H+-translocating ATPase activity, causing a general disruption in pH homeostasis. In fact, altered expression of CAX transporters can produce alterations in vacuolar H+-ATPase activity (Shigaki and Hirschi, 2006); however, these CAX phenotypes are not as severe at those documented here. Like AtNHX1-expressing plants, AtCCX3 lines were able to accumulate Na+; however, unlike AtNHX1-expressing lines, these plants did not appear to be Na+ tolerant (data not shown; Apse et al., 1999, 2003).

Although no phenotypes related to changes in Mn2+ concentrations could be observed in Arabidopsis either lacking or expressing 35S::AtCCX3, the Mn2+ inhibition of 86Rb uptake in vacuole-enriched vesicles suggests that AtCCX3 has a role in Mn2+ homeostasis (Fig. 7B). This lack of whole plant phenotypes could be related to functional redundancy that may prohibit fluctuations in Mn2+ content that could cause deleterious phenotypes in Arabidopsis (Pittman et al., 2004a).

Protein Oxidation Is Increased in Plants Expressing AtCCX3

AtCCX3 function may be related to plant reactive oxygen species signaling (Supplemental Fig. S3). Indeed, tobacco plants expressing 35S::AtCCX3 showed much higher oxidation of proteins compared with controls (Supplemental Fig. S3). The drastic phenotypes observed in 35S::AtCCX3 tobacco lines may be due to the perturbation of transient metal concentrations in AtCCX3-expressing tobacco lines (Figs. 8 and 9). Regulation of metal concentrations is essential for plant antioxidant systems (Halliwell and Gutteridge, 2006). When in excess, these metals can produce highly toxic hydroxyl radicals through a Fenton reaction, resulting in oxidative damage (Halliwell, 2006).

In summary, we have characterized what are to our knowledge the first CCX transporters from plants. We demonstrate that AtCCX3 resides predominantly on an endomembrane and may function as an H+-dependent K+ transporter that can also transport Na+ and Mn2+. The ability to transport both monovalent and divalent cations will need to be directly demonstrated, although it is analogous to yeast SMF1, which transports Fe2+ and is permeable by Na+, Li+, and K+ (Chen et al., 1999). This dual-capacity transport suggests a role in vacuolar cation homeostasis in planta, which might protect a subset of cells from metal ion overload (Chen et al., 1999).

MATERIALS AND METHODS

See Supplemental Table S1 for primer information.

Cloning of AtCCX3 and AtCCX4 cDNAs and Plasmid DNA Constructs

AtCCX3 and AtCCX4 were amplified from Arabidopsis (*Arabidopsis thaliana*) genomic DNA using PCR. Both AtCCX3 and AtCCX4 are predicted to have no introns. The primers are listed in Supplemental Table S1 (primers 1–5).

AtCCX3, AtCCX4, and AtsCCX3 cDNAs were subcloned into the yeast expression vector pHGpd (Nathan et al., 1999; Pittman and Hirschi, 2001; Pittman et al., 2002a).

The AtsCCX2 plasmid was cloned previously (Shigaki et al., 2003). The Arabidopsis Na+/H+ exchanger AtNHX1 was PCR cloned from plasmid DNA with the primers listed in Supplemental Table S1 (primers 6 and 7) and cloned into yeast expression vectors.

The AtCCX3 and AtCCX4 ORFs were cloned into a modified pBIN19 vector (Dr. Toshiro Shigaki, Clontech, personal communication). The resulting constructs contained the cauliflower mosaic virus 35S promoter fragment driving expression of the transporters and the NOS terminator (Hull et al., 2000).

The triple HA epitope-tagged AtCCX3 (HA-AtCCX3) was constructed as described previously (Shigaki et al., 2003). The primers used are listed in Supplemental Table S1 (primers 8–11). The two fragments were ligated with the yeast expression vector pHGpd (Nathan et al., 1999).

The C-terminal GFP tag AtCCX3 (CCX3-GFP) was constructed as described previously (Cheng et al., 2004). The primers used are listed in Supplemental Table S1 (primers 12–15). After cloning into the appropriate yeast vectors, this expression cassette was also cloned into pBIN19.

Yeast Strains and Growth Conditions

The following *Saccharomyces cerevisiae* yeast strains were used in this study: W303-1A (*MATa ade2-1 can1-100 his3-11,15 leu2-3, 112 ura3-1; Wallis et al., 1989) and R100 (Δnhx1::UR3; Nazz et al., 1997), which is isogenic to W303 and AXT3 (en1::HIS3 ena1::LEU2, nhx1::TRP1, ura3-1; Yokoi et al., 2002). The Mn2+-sensitive strain DΔm1 + Δm2 was used in yeast growth assays (Cohen et al., 2000). The Mg2+-sensitive yeast strain CM66 (*MATa Δhl1::HIS3, Δhl2::TRP1; hsc1-200, ura3-52, leu2-1, lys2-202 trpl-1::V63; Liu et al., 2002) was used in yeast growth assays as well. The yeast strains K661 (*MATa Δvcx1::URA3, ade2-1 can1-100 his3-11,15 leu2-3,112 trpl-1 ura3-1; Cunningham and Fink, 1996) and K667 (cnb1::LEU2 pmcl::TRP1 vcx1Δ; Cunningham and Fink, 1996) were also used in yeast growth assays. Yeast
metal-sensitive growth assays were performed as described previously (Hirschi et al., 1996; Nass et al., 1997; Nass and Rao, 1998; Darley et al., 2000; Shigaki et al., 2003; Padmanaban et al., 2007). Yeast samples for liquid culture assays were 5-fold serial diluted, and 10 μL of the 125-fold diluted inoculum was grown in 190 μL of medium supplemented with various concentrations of NaCl, KCl, and MnCl; at 30°C with continuous shaking. For the NaCl assays, the A1x3 strain, the medium was supplemented with 1 mM KC (Yokoi et al., 2002). After 48 h, optical density at 600 nm (OD$_{600}$) measurements were taken.

Yeast Sample Processing and Cation Analysis

Yeast culture conditions and sample processing were modified from previous studies (Lahner et al., 2003; Ede et al., 2005; Mei et al., 2007). Yeast strains expressing vector, A1NHX1, or A1CCX3 were grown overnight in AP medium. After measuring the OD$_{600}$ equal numbers of cells were grown in 5 mL of yeast peptone dextrose (YPD) supplemented with 100 mM NaCl or 200 μM MnCl$_2$ for 16 h.

Plant Materials and Growth

Arabidopsis ecotype Columbia was used as the wild type. Agrobacterium tumefaciens GV3101 was transformed with A1CCX3, AtCCX3, or vector controls (Sambrook et al., 1989). Arabidopsis plants were transformed using the floral dip method (Clough and Bent, 1998). Tobacco (Nicotiana tabacum ‘KY14’; Korner’kov et al., 2007) transformation was done using the leaf disc method as described previously (Tarczynski et al., 1992).

Cation Analysis of Tobacco and Arabidopsis Plants

Arabidopsis seeds expressing 35S::A1CCX3 were planted on half-strength Murashige and Skoog (MS) + 1% Suc plates and grown for 10 d. Plants were transferred to soil and watered with 100 mL of 50 mM NaCl twice weekly. Plants were harvested at 35 d of age, dried at 68°C, and ground. Tobacco seeds were germinated on half-strength MS + 3% Suc and grown for 2 weeks, then transferred to soil. At 28 and 40 d of age, leaves were removed, dried at 68°C, and ground. Inductively coupled plasma (ICP) analysis was done as described previously (Franson, 1989).

86Rb$^+$ Uptake Assay in Yeast and Arabidopsis Roots

A yeast strain (w1x) expressing A1CCX3, A1NHX1, and vector were grown for 16 h in AP selection medium, and membrane vesicles were isolated as described previously (Pittman and Hirschi, 2001; Cheng and Hirschi, 2003; Pittman et al., 2004b). Plants were grown hydroponically, and membrane vesicles were isolated as described previously (Pittman and Hirschi, 2001; Shigaki et al., 2001, 2003; Cheng et al., 2003).

Time-dependent 86Rb$^+$ uptake measurements into membrane vesicles were performed as described previously (Venema et al., 2002; Cheng et al., 2003; Pittman et al., 2004a, 2004b). For the measurement of ΔpH-dependent KCI uptake, vacuole-enriched membrane (100 μg protein mL$^{-1}$) vesicles were incubated in buffer containing 0.3 M sorbitol, 5 mM Tris-MES (pH 7.6), 25 mM KCl, 0.1 mM sodium azide, and 0.2 mM sodium orthovanadate. The vesicles were added to 1 mM MgSO$_4$ and 1 mM ATP to reach a steady-state pH gradient for 5 min at 25°C before the addition of 86Rb$^+$ (1 μCi mL$^{-1}$; GE Bioscience). Benzamil was used at 10 μM to inhibit A1NHX1 uptake. For metal competition experiments, 25 μM 86Rb$^+$ uptake was measured at the 8-min time point in the presence of 300 μM concentrations of the nonradioactive metals KCl, NaCl, CaCl$_2$, MnCl$_2$, and ZnCl$_2$.

Protein Isolation and Western-Blot Analysis of Epitope-Tagged AtCCX3 from Yeast and Plants

Total protein was isolated from yeast expressing HA-AtCCX3 using the glass bead method (Ausubel et al., 1998). Suc fractionation and western blotting of membranes were done as described previously (Pittman et al., 2004a, 2004b). The vacuolar marker ALP (Molecular Probes) was used at a 1:2,000 dilution, and the plasma membrane H$^+$/ATPase Pma1p was used at a 1:1,000 dilution. For the GFP-tagged protein, total plant protein was isolated as described previously (Fitzpatrick and Keegstra, 2001).

Microsomal membranes were prepared from AtCCX3-GFP-expressing Arabidopsis leaf tissues as described previously (Cheng et al., 2003). Immunoblotting was performed as described previously (Pittman and Hirschi, 2001). The GFP epitope and the membrane marker proteins were detected as described previously (Cheng et al., 2003).

Onion Epidermis Bombardment and Visualization of the GFP Subcellular Localization

Single epidermis layers were removed from white onion (Allium cepa) bulb and placed on the surface of a MS plate (Murashige and Skoog, 1962) containing 2% Suc and 50 μg mL$^{-1}$ ampicillin. The constructs 35S::CCX3-GFP and 35S::GFP were introduced into onion epidermal cells by particle bombardment. The process of particle preparation, coating, and bombardment was as described previously (Sivitz et al., 2007). The GFP fluorescence acquisition was performed with a Plan Apo 20×/0.75 numerical aperture objective. Images were recorded with picture size of 512 × 512 pixels. Individual sections along whole cells were captured in IDS format and then transferred into TIFF files.

RNA Extraction and RT-PCR

RNA was isolated using the RNeasy Plant Kit (Qiagen) according to the instructions of the manufacturer. RT-PCR was performed to detect mRNA transcript in Arabidopsis of AtCCX3 and AtCCX4 knockout lines, Arabidopsis plants overexpressing A1CCX3 and AtCCX3, and tobacco plants ectopically expressing A1CCX3 and AtCCX3. One microliter of the first-strand cDNA was used to amplify an A1CCX3 gene-specific fragment and an Act1 fragment (Geisler et al., 2000). Primers are listed in Supplemental Table S1 (primers 18–23). The relative intensities in different lanes within each individual experiment were independent of the number of PCR cycles performed.

Isolation of Homozygous T-DNA Insertional Lines

To isolate ccx3 and ccx4 null alleles, two T-DNA insertion lines were obtained from the SAIL T-DNA insertion collection (Sessions et al., 2002) for AtCCX3 (SAIL_F-09, ccx3-1; SAIL_C30-05, ccx3-2) and two from the SALK T-DNA insertion collection (Alonso et al., 2003) for AtCCX4 (SALK_113447, ccx4-1; SALK_040227, ccx4-2). Homozygous plants from each T2 generation were obtained by PCR screening using primers listed in Supplemental Table S1 (primers 24–27). For AtCCX4, primers 5 and 28 listed in Supplemental Table S1 were used.

Quantitative Real-Time PCR Analysis of AtCCX3

At 14 d of age, 25 plants were transferred to control medium or medium supplemented with 100 mM KCl, 50 mM NaCl, or 1 μM MnCl$_2$. After 24 h, the plants were harvested and total plant RNA was extracted using the RNeasy Plant Kit (Qiagen). For floral RNA, 25 plants were transferred to soil and watered weekly with 50 mL of 100 mM KCl, 50 mM NaCl, or 1 μM MnCl$_2$ solution. RNA was extracted using the RNeasy Plant Kit (Qiagen). Serial dilutions of RNA were made from 5 μg to 5 ng, and first-strand cDNA was synthesized as described previously (Geisler et al., 2000). The PCR amplification was performed with 5 μL of cDNA, 0.5 μM of each primer, and 1 × SYBR Green PCR mix (Invitrogen). The primers used are listed in Supplemental Table S1 (primers 29–34). Quantitative PCR was done using the SYBR Green probe, 1 μg of cDNA, and the ABI 7900HT RT-PCR system (Applied Biosystems). Real-time PCR amplification was performed and calculations were made with the ABI Prism 7700 sequence detection system (Applied Biosystems). Relative transcript abundance was determined using the comparative ΔΔC$_T$ method with SDS software version 2.2.2 (Applied Biosystems). For a standard control, expression of the 18S ribosomal subunit was used.

Protein Oxidation Analysis

Carbonyl assays for the analysis of oxidized proteins in plant cells were performed as described previously (Levine et al., 1994; Davletova et al., 2005; Cheng et al., 2006). Total protein was isolated from young and old leaves of 6-week-old tobacco plants ectopically expressing AtCCX3, AtCCX3, and vector only, as described previously (Cheng et al., 2006). The oxidized proteins were detected by protein gel blotting using anti-dinitrophenylhydrazine antibody (Davletova et al., 2005).
Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers AtCCX3: NM_112262 and AtCCX4: NM_104289.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. AtCCX3 and AtCCX4 amino acid comparison with the CAX family of transporters and HsNCKX6.

Supplemental Figure S2. Altered expression of AtCCX3 in Arabidopsis mutants.

Supplemental Figure S3. Protein oxidation from tobacco plants expressing AtCCX3.

Supplemental Table S1. Oligonucleotide primers used in the experiments.

ACKNOWLEDGMENTS

We thank Dr. Ramon Gonzalez for providing AtNHX1 in pDR196. We thank Bronwyn Barkla and Herven Sze for critical reading of the manuscript. We also thank Adam Gillum for his help with the preparation of the figures. Received May 8, 2008; accepted August 30, 2008; published September 5, 2008.

LITERATURE CITED

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657.

Apsel MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na⁺/H⁺ antiporter in Arabidopsis. Science 285: 1256–1258.

Apsel MP, Sottosanto JB, Blumwald E (2003) Vacular cation/H⁺ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na⁺/H⁺ antiporter. Plant J 36: 229–239.

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidmana JG, Smith JA, Barkla BJ, Pantoja O, Apse MP, Sottosanto JB, Blumwald E (1996) Molecular cloning of a receptor-like kinase that interacts with receptor-like proteins. Plant Cell 8: 1245–1254.

Cai X, Lytton J (2000) Identification of a Ca⁺⁺/H⁺ antiporter in the plant chloroplast thylakoid membrane. Plant Physiol 119: 1379–1386.

Fitzpatrick LM, Keegstra K (2001) A method for isolating a high yield of Arabidopsis chloroplasts capable of efficient import of precursor proteins. Plant J 25: 59–65.

Franson MAH (1989) 3120 metals by plasma emission spectrometry. In Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC, pp 3.53–3.62.

Geisler M, Frangne N, Gomes E, Martinho E, Palmgren MG (2000) The AAT4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol 124: 1814–1827.

Gonzalez A, Koren’Kov V, Wagner GJ (1999) A comparison of Zn, Mn, Cd, and Ca transport mechanisms in oat root tonoplast vesicles. Plant Physiol 173: 203–209.

Haliwell B (2006) Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. Plant Physiol 141: 312–322.

Haliwell B, Gutteridge JMC (2006) Free Radicals in Biology and Medicine, Ed 4. Clarendon Press, Oxford.

Hirschi K (2003) Vacular H⁺/Ca²⁺ transport: who’s directing its traffic? Trends Plant Sci 8: 100–104.

Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11: 2113–2122.

Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H⁺/Ca²⁺ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93: 8782–8786.

Holaday-Clarke TL, Weddle NM, Kim S, Robl A, Parris C, Kunkel JG, Ettlinger WF, Clear AM, Fanning KJ, Peck ML (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol 6: R77.

Kamiya T, Maeshima M, Huang P, Shulaev V, Schlauch K, Mittler R (2005) Cloning and characterization of CXIP1, a novel PICOT domain-containing Arabidopsis protein that associates with CAX1. J Biol Chem 278: 6503–6509.

AtCCX3 Is a Vacular Exchanger Involved in Cation Homeostasis

Cheng NH, Liu JZ, Brock A, Nelson RS, Hirschi KD (2006) AtGXRox, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J Biol Chem 281: 26280–26288.

Cheng NH, Liu JZ, Nelson RS, Hirschi KD (2004) Characterization of CXXIP4, a novel Arabidopsis protein that activates the H⁺/Ca²⁺ antiporter, CAX1. FEBS Lett 559: 99–106.

Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15: 347–364.

Cheung AY, Chen CY, Tao LZ, Andreyeva T, Twell D, Wu HM (2003) Regulation of pollen tube growth by Rac-like GTPases. J Exp Bot 54: 73–81.

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743.

Cohen A, Nelson H, Nelson N (2000) The family of SMF metal ion transporters in yeast cells. J Biol Chem 275: 33838–33394.

Cunningham KW, Fink GR (1996) Calcineurin inhibits VCX1-dependent H⁺/Ca²⁺ exchange and induces Ca²⁺ ATPases in Saccharomyces cerevisiae. Mol Cell Biol 16: 2226–2237.

Darley CP, van Wuytswinkel OC, van der Woude K, Mager WH, de Boer DK, Zimmerman J, Barajas P, Cheuk R, et al. (2000) Genome-wide insertional mutagenesis of Arabidopsis thaliana and Saccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na⁺/H⁺ exchangers. Biochem J 351: 241–249.

Daletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17: 269–281.

Dong H, Light PE, French RJ, Lytton J (2001) Electrophysiological characterization and ionic stoichiometry of the rat brain K⁺/Na⁺/Ca²⁺ exchanger, NKCC2. J Biol Chem 276: 25919–25928.

Eide D, Clark S, Nair TM, Gehi M, Gribskov M, Guerinot M, Harper J (2005) Characterization of the yeast iomeone: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol 6: R77.

Ettlinger WF, Clear AM, Fanning KJ, Peck ML (1999) Characterization of a Ca⁺⁺/H⁺ antiporter in the plant chloroplast thylakoid membrane. Plant Physiol 119: 1379–1386.

Fitzpatrick LM, Keegstra K (2001) A method for isolating a high yield of Arabidopsis chloroplasts capable of efficient import of precursor proteins. Plant J 25: 59–65.

Franson MAH (1989) 3120 metals by plasma emission spectrometry. In Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC, pp 3.53–3.62.

Geisler M, Frangne N, Gomes E, Martinho E, Palmgren MG (2000) The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol 124: 1814–1827.

Gonzalez A, Koren’Kov V, Wagner GJ (1999) A comparison of Zn, Mn, Cd, and Ca transport mechanisms in oat root tonoplast vesicles. Plant Physiol 173: 203–209.

Haliwell B (2006) Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. Plant Physiol 141: 312–322.

Haliwell B, Gutteridge JMC (2006) Free Radicals in Biology and Medicine, Ed 4. Clarendon Press, Oxford.

Hirschi K (2003) Vacular H⁺/Ca²⁺ transport: who’s directing its traffic? Trends Plant Sci 8: 100–104.

Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11: 2113–2122.

Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H⁺/Ca²⁺ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93: 8782–8786.

Holaday-Clarke TL, Weddle NM, Kim S, Robl A, Parris C, Kunkel JG, Ettlinger WF, Clear AM, Fanning KJ, Peck ML (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol 6: R77.

Kamiya T, Maeshima M, Huang P, Shulaev V, Schlauch K, Mittler R (2005) Cloning and characterization of CXIP1, a novel PICOT domain-containing Arabidopsis protein that associates with CAX1. J Biol Chem 278: 6503–6509.
Kasai M, Muto S (1990) Ca"-pump and Ca"/H" antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from corn leaves. J Membr Biol 114: 133–142
Koren’kov V, Park S, Cheng NH, Sreeviidy C, Lachmansingh J, Morris J, Hirschi K, Wagner G (2007) Enhanced Ca"-selective root-nodule transport in tobacco expressing Arabidopsis cation exchangers. Planta 225: 403–411
Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283–2290
Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JP, Ward JM, McIntyre L, et al (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21: 1215–1221
Lee SH, Kim MH, Park KH, Earm YE, Ho WK (2002) K+–dependent Na+/Ca2+ exchange is a major Ca2+-clearance mechanism in axon terminals of rat neurohypophysis. J Neurosci 22: 6891–6899
Levine RL, Williams JA, Stadtmann EP, Shacter E, Lester P (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233: 346–357
Liu GZ, Wang HW, Huang J, Tian AG, Wang YJ, Zhang JS, Chen SY (2002) A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Mol Biol Plant 59: 809–820
Lyttton J (2007) Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J 406: 365–382
MacDiarmid CW, Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminium ion. J Biol Chem 273: 1727–1732
Maeshima M (2000) Vacular H+-pyrophosphatase. Biochim Biophys Acta 1465: 37–51
Marschner H (1995) Mineral Nutrition of Higher Plants, Ed 2. Academic Press, San Diego
Marty F (1999) Plant vacuoles. Plant Cell 11: 587–600
Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi KD, Marty F (2001) Phylogenetic analysis of guard cells. Plant Physiol 126: 2180–2189
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497
Nass R, Cunningham KW, Rao R (1997) Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase: insights into mechanisms of sodium tolerance. J Biol Chem 272: 26145–26152
Nass R, Rao R (1998) Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast: implications for vacuole biogenesis. J Biol Chem 273: 21054–21060
Lindenquist L, M Johnson TR (1999) Identification of SSF1, CNS1, and HCH1 as multicopy suppressors of a Saccharomyces cerevisiae CAX2 cation transporter. J Biol Chem 274: 5857–5862
Pittman JK, Shigaki T, Cheng NH, Hirschi KD (2002a) Mechanism of N-terminal autoinhibition in the Arabidopsis Ca2+/H+ antiporter CAX1. J Biol Chem 277: 26452–26459
Pittman JK, Shigaki T, Marshall JL, Morris JL, Cheng NH, Hirschi KD (2004b) Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter. Planta Mol Biol 56: 959–971
Pittman JK, Sreeviidy C, Shigaki T, Ueoka-Nakanishi H, Hirschi KD (2002b) Distinct N-terminal regulatory domains of Ca2+/H+ antiporters. Plant Physiol 130: 1054–1062
Ratajczak R (2000) Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta 1465: 17–36
Salt DE, Wagner GJ (1995) Cadmium transport across tonoplast of vesicles from oat roots: evidence for a Ca2+/H+ antiporter activity. J Biol Chem 269: 12297–12302
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
Schumaker KS, Sze H (1985) A Ca2+/H+ antiport system driven by the proton electrochemical gradient of a tonoplast H+-ATPase from oat roots. Plant Physiol 97: 1111–1117
Sessions A, Burke E, Presting G, Auer G, McElver J, Patton D, Dietrich R, Ho P, Bacwaden J, Ko C, et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14: 2985–2994
Shigaki T, Cheng NH, Pittman JK, Hirschi K (2001) Structural determinants of Ca2+ transport in the Arabidopsis H+/Ca2+ antiporter CAX1. J Biol Chem 276: 43152–43159
Shigaki T, Hirschi KD (2006) Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants. Plant Biol 8: 419–429
Shigaki T, Pittman JK, Hirschi KD (2003) Manganese specificity determinants in the Arabidopsis metal/H+ antiporter CAX2. J Biol Chem 278: 6610–6617
Shigaki T, Rees I, Nakahle L, Hirschi KD (2006) Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. J Mol Evol 63: 815–825
Sivitz AB, Reinders A, Johnson ME, Krentz AD, Groot C, Perroux JM, Ward JM (2007) Arabidopsis sucrose transporter AtSUC2: high-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiol 143: 188–198
Supek F, Supekova L, Nelson H, Nelson N (1996) A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci USA 93: 5105–5110
Sze H, Padmanaban S, Cellier F, Honys D, Hirschi KD (2003) A dominant allele of PDR1 alters Na/Ca-K exchanger. Biochemistry 42: 815–825
Schnetkamp PPM (2003) Scanning mutagenesis of the alpha repeats of the Arabidopsis calcium-dependent protein kinase CDPK2. J Biol Chem 278: 22453–22458
Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mtdII gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci USA 99: 2600–2604
Tuttle MS, Radisky D, Li L, Kaplan J (2003) A dominant allele of PDR1 alters transition metal resistance in yeast. J Biol Chem 278: 1273–1280
Venema K, Belver A, Marin-Manzano MC, Rodriguez-Rosales MP, Donaire JP (2003) A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants. J Biol Chem 278: 22453–22459
Venema K, Quintero FJ, Pardo JM, Donaire JP (2002) The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J Biol Chem 277: 2415–2418
Wang Q, Chrebet G, Brodsky G, Rolfe M, Rothstein R (1989) A hyper-recombination mutation in the Saccharomyces cerevisiae identifies a novel eukaryotic topoisomerase. Cell 58: 409–419
Wallis JW, Chrebet G, Brodsky G, Rolfe M, Rothstein R (1989) A hyper-recombination mutation in the Saccharomyces cerevisiae identifies an N-terminal autoinhibitory domain. Plant Physiol 127: 1020–1029
Winkfein RJ, Baizan R, yeast. Mol Biol Cell 16: 587–600
Copyright © 2008 American Society of Plant Biologists. All rights reserved.