Adaptive evolution of feed-forward loops versus diamonds to filter out short spurious signals

Short title: Adaptive evolution of feed-forward loops and alternatives to them

Kun Xiong¹, Alex K. Lancaster², Mark L. Siegal³, Joanna Masel⁴*

¹ Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
² Ronin Institute, Montclair, New Jersey, United States of America
³ Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
⁴ Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America

* Corresponding author

Email: masel@email.arizona.edu
Abstract

Transcriptional regulatory networks (TRNs) are enriched for certain network motifs. This could either be the result of natural selection for particular hypothesized functions of those motifs, or it could be a byproduct of mutation (e.g. of the prevalence of gene duplication) and of less specific forms of selection. We have developed a powerful new method for distinguishing between adaptive vs. non-adaptive causes, by simulating TRN evolution under different conditions. We simulate mutations to transcription factor binding sites in enough mechanistic detail to capture the high prevalence of weak-affinity binding sites, which can complicate the scoring of motifs. Our simulation of gene expression is also highly mechanistic, capturing stochasticity and delays in gene expression that distort external signals and intrinsically generate noise. We use the model to study a well-known motif, the type 1 coherent feed-forward loop (C1-FFL), which is hypothesized to filter out short spurious signals. We found that functional C1-FFLs evolve readily in TRNs under selection for this function, but not in a variety of negative controls. Interestingly, a new “diamond” motif also emerged as a short spurious signal filter. Like the C1-FFL, the diamond integrates information from a fast pathway and a slow pathway, but their speeds are based on gene expression dynamics rather than topology. When there is no external spurious signal to filter out, but only internally generated noise, only the diamond and not the C1-FFL evolves.

Author Summary

Frequently occurring motifs are thought to be fundamental building blocks of biological networks, conducting specific functions. However, we still lack definitive evidence that these motifs have evolved “adaptively” (to perform the particular function proposed for them), rather
than “non-adaptively” (as byproducts of some other function, or as an artifact of patterns of
mutations). Here we develop a powerful null model that captures important non-adaptive
factors that can shape the evolution of transcriptional regulatory networks, and use it to provide
the missing piece of evidence of adaptive origin in the case of the most studied motif, a feed-
forward loop that is hypothesized to filter out short spurious signals. We also find evidence for
an alternative solution to this problem, where the functionality of the feed-forward loop is
encoded not in network topology, but in the dynamics of gene expression. Our model is suitable
for studying whether other network features have evolved adaptively vs. non-adaptively.
Introduction

Transcriptional regulatory networks (TRNs) are integral to development and physiology, and underlie all complex traits. An intriguing finding about TRNs is that certain “motifs” of interconnected transcription factors (TFs) are over-represented relative to random re-wirings that preserve the frequency distribution of connections [1, 2]. The significance of this finding remains open to debate.

The canonical example is the feed-forward loop (FFL), in which TF A regulates a target C both directly, and indirectly via TF B, and no regulatory connections exist in the opposite direction [1-3]. Each of the three regulatory interactions in a FFL can be either activating or repressing, so there are eight distinct kinds of FFLs [4; Fig 1]. Given the eight frequencies expected from the ratio of activators to repressors, two of these kinds of FFLs are significantly over-represented [4]. In this paper, we focus on one of these two over-represented types, namely the type 1 coherent FFL (C1-FFL), in which all three links are activating rather than repressing (Fig 1, top left). C1-FFL motifs are an active part of systems biology research today, e.g. they are used to infer the function of specific regulatory pathways [5, 6].

The over-representation of FFLs in observed TRNs is normally explained in terms of selection favoring a function of FFLs. Specifically, the most common adaptive hypothesis for the over-representation of C1-FFLs is that cells often benefit from ignoring short-lived signals and responding only to durable signals [3, 4, 7]. Evidence that C1-FFLs can perform this function comes from the behavior both of theoretical models [4] and of in vivo gene circuits [7]. A C1-FFL can achieve this function when its regulatory logic is that of an “AND” gate, i.e. both the direct path from A to C and the indirect path from A to B to C must be activated before the response is
triggered. In this case, the response will only be triggered if, by the time the signal trickles through the longer path, it is still active on the shorter path as well. This yields a response to long-lived signals but not short-lived signals.

However, just because a behavior is observed, we cannot conclude that the behavior is a historical consequence of past selection favoring that behavior [8, 9]. The explanatory power of this adaptive hypothesis of filtering out short-lived and spurious signals needs to be compared to that of alternative, non-adaptive hypotheses [10]. The over-representation of C1-FFLs might be a byproduct of some other behavior that was the true target of selection [11]. Alternatively, it might be an intrinsic property of TRNs generated by mutational processes – gene duplication patterns have been found to enrich for FFLs in general [12], although not yet C1-FFLs in particular. Adaptationist claims about TRN organization have been accused of being just-so stories, with adaptive hypotheses still in need of testing against an appropriate null model of network evolution [13-23].

Here we develop such a computational null model of TRN evolution, and apply it to the case of C1-FFL over-representation. We simulate gene duplication and deletion, and sufficient realism in our model of cis-regulatory evolution to capture the non-adaptive effects of mutation in shaping TRNs. In particular, we consider “weak” TF binding sites (TFBSs) that can easily appear de novo by chance alone, and from there be selected to bind a TF more strongly.

It is also important to capture the stochasticity of gene expression, which causes the number of mRNAs and hence proteins to fluctuate [24, 25]. This is because demand for spurious signal filtering and hence C1-FFL function may arise not just from external signals, but also from
internal fluctuations. Stochasticity in gene expression also shapes how external spurious signals are propagated. Stochasticity is a constraint on what TRNs can achieve, but can be adaptively co-opted in evolution [26]; either way, it might underlie the evolution of certain motifs. Most computational models of TRN evolution that consider gene expression as the major phenotype do not simulate stochasticity in gene expression (see [27-29] for three notable exceptions). The genotype to phenotype map we develop here does include intrinsic stochasticity in gene expression.

Here we use this model to ask whether AND-gated C1-FFLs evolve as a response to selection for filtering out short and spurious external signals, compared to conditions that control for both mutational biases and for less specific forms of selection. We find that they evolve far more often under these specific selection conditions than under control conditions, providing long-awaited support for the adaptive hypothesis. We also ask whether there are alternative motifs that evolve to solve the same selective challenge. We find that a “diamond” [30] is such a motif, filtering out short spurious signals by requiring them to arrive not through both a long and a short path, but through both a fast and a slow path of equal topological lengths. We also compare motifs that evolve to filter out external spurious signals to those that evolve in response to intrinsic stochastic noise in gene expression. We find that while both diamonds and C1-FFLs evolve in response to the former, only diamonds evolve in response to the latter.
Fig 1. Feed-forward loops come in eight subtypes. TF A and TF B can activate (indicated by arrows) or repress (indicated by bars) expression of the effector C as well as other TFs. Autoregulation is allowed, but not shown. Following Milo et al. [1], we exclude the case in which A and B regulate one another, rather than treating this case as two overlapping FFLs.
Models

Overview of the model

We simulate the dynamics of TRNs as the TFs activate and repress one another’s transcription. For each moment in developmental time (i.e. on the timescale of one cell responding to stimuli), we simulate the numbers of nuclear and cytoplasmic mRNAs in a cell, the protein concentrations, and the chromatin state of each transcription start site. Transitions between three possible chromatin states -- Repressed, Intermediate, and Active -- are a stochastic function of TF binding, and transcription initiation from the Active state is also stochastic. An overview of the model is shown in Fig 2. The pattern of TF binding affects chromatin, which affects transcription rates, eventually affecting the concentration of TFs and so completing regulatory feedback loops. The genotype is specified by a set of cis-regulatory sequences that contain TFBSs to which TFs may bind (which, as nucleotide sequences, are subject to realistic mutational parameters), by which consensus sequence each TF recognizes and with what affinity, and by 5 gene-specific parameters that control gene expression as a function of TF binding: mean duration of transcriptional bursts, mRNA degradation, protein production, and protein degradation rates, and gene length which affects delays in transcription and translation. An external signal is treated like another TF, and the concentration of an effector gene in response is a primary determinant of fitness, combined with a cost associated with gene expression (Fig 2). Mutants replace resident genotypes as a function of the difference in estimated fitness. Parameter values, taken as far as possible from Saccharomyces cerevisiae, are summarized in Table 1. Source code in C is available at https://github.com/MaselLab/network-evolution-simulator.
Table 1. Major model parameters

Parameter	Values1	Bounds2	References
Length of cis-regulatory sequence	150 bp		[31]
Length of TF recognition sequence	8 bp		[32]
Length occupied by a TF on each side of recognition sequence	3 bp		[34]
Dissociation constant between TF and perfect TFBS, $K_d(0)$	$10^{9.9, 6.0}$ M3	$(0, 10^{-5})$	[37, 38]
Dissociation constant between TF and non-specific DNA, $K_d(3)$	10^{-8} M		[33]
Base rate of transition from Repressed to Intermediate	0.15 min$^{-1}$		[44]
Maximum transition rate from Repressed to Intermediate	0.92 min$^{-1}$		[40, 44]
Base rate of transition from Intermediate to Repressed	0.67 min$^{-1}$		[44]
Maximum transition rate from Intermediate to Repressed	4.11 min$^{-1}$		
Base rate of transition from Intermediate to Active	0.025 min$^{-1}$		[40]
Maximum transition rate from Intermediate to Active	3.3 min$^{-1}$		[40]
Transition rate from Active to Intermediate, $r_{\text{Act to Int}}$	$10^{\eta(1.27, 0.228)}$ min$^{-1}$	$[0.59, 64.7]$	[40, 49, 50]
Length of gene, L			
Rate of transcription initiation, $r_{\text{max trans init}}$	6.75 min$^{-1}$		[40]
Speed of transcription elongation	330 codon/min		[51, 80, 81]
Time for transcribing UTRs and for terminating transcription	1 min		[51, 80, 81]
Rate of mRNA degradation, $r_{\text{mRNA_deg}}$	$10^{\eta(1.49, 0.267)}$ min$^{-1}$	$[7.5 \times 10^{-4}, 0.54]$	[82]
Speed of translation elongation	0.5 min		[55]
Translation initiation time	$10^{\eta(0.322, 0.416)}$		
Rate of protein degradation, $r_{\text{protein_deg}}$	$10^{\eta(1.88, 0.761)}$ min$^{-1}$	$[3.0 \times 10^{6}, 0.69]$	[83]
Protein synthesis rate, $r_{\text{protein_syn}}$	molecule mRNA$^{-1}$ min$^{-1}$	$[4.5 \times 10^{-3}, 61.4]$	[55]
Saturation concentration of effector protein, N_e_{sat}	10,000 molecules/cell		[58]
Fitness cost of protein expression for a gene with $L = 10^{2.568}$, C_{trans}	2×10^{-6} (molecules/min)$^{-1}$		[58, 59]
Maximum number of effector gene copies	5		
Maximum number of TF gene copies, excluding the signal	19		

1 Parameters in bold can be altered by mutation, and the table shows the distributions from which their initial values are sampled. Parameter estimation is described either in the Methods or S1 Text section 2-5.

2 Boundary values use the same unit as the parameter values. Parentheses mean the parameter cannot take the boundary values; brackets mean the opposite. We also use these bounds to constrain mutation (see S1 Text section 8).

3 The uniform distribution is denoted as U(min, max).

4 The normal distribution is denoted as N(mean, SD).
Fig 2. Overview of the model. As an example, we show a simple TRN that contains two genes. Top: major biological processes (arrows) simulated in the model. Bottom: fitness is primarily determined by the concentration of an effector protein (here shown as beneficial as in Eq. 2, but potentially deleterious in a different environment as in Eq. 3), with a secondary component coming from the cost of gene expression (proportional to the rate of protein production), combined to give an instantaneous fitness at each moment in developmental time.

Transcription factor binding

Transcription of each gene is controlled by TFBSs present within a 150-bp cis-regulatory region, corresponding to a typical yeast nucleosome-free region within a promoter [31]. The perfect TFBS for a typical yeast TF has information content equivalent to 13.8 bits [32]; this means that
in a simplified model of binding where only one of the four nucleotides is a good match at each
site, ~7 bp are recognized as an optimal consensus binding site. Maerkl & Quake [33] reported
that the TFBSs of two yeast TFs, Pho4p and Cbf1p, can have up to 2 mismatched sites within
their 6 bp consensus binding sequence, while still binding the TF above background levels [33].
Our model therefore tracks TFBSs with up to 2 mismatches. This low information content
implies a higher density of TFBSs within our cis-regulatory regions than our algorithm was able
to handle, so we instead assigned each TF an 8-bp consensus sequence. Two TFs cannot
simultaneously occupy overlapping stretches, which we assume extend beyond the recognition
sequence to occupy a total of 14 bp [34]; this captures competitive binding. Hindrance between
TFBSs is shown in Fig 3A; TFs are assumed to work in both orientations [35].

Sites with \(m > 3 \) mismatches are assumed to still bind at a background rate equal to \(m = 3 \)
mismatches, with dissociation constant \(K_d(3) = 10^{-5} \text{ M} \) [33] for all TFs. We assume that each of
the last three bp makes an equal and independent additive contribution \(\Delta G_{bp} < 0 \) to the binding
energy [36]: although not always true, this approximates average behavior well [33]. We ignore
cooperativity in binding. Dissociation constants of eukaryotic TFs for perfect TFBSs can range
from \(10^{-5} \) M [37] to \(10^{-11} \) M [38]. We initialize each TF with its own value of \(\log_{10}(K_d(0)) \) sampled
from a uniform distribution between -6 and -9, with mutation capable of further expanding this
range, subject to \(K_d(0) < 10^{-5} \) M. Substituting \(m = 0 \) and \(m = 3 \) into

\[
\Delta G_m = -RT \ln K_d(m) = \Delta G_0 - \min(m, 3) \Delta G_{bp},
\]

we can solve for \(\Delta G_{bp} \) and \(\Delta G_0 \), and thus obtain \(K_d(1) \) and \(K_d(2) \).
Because TFs bind non-specifically to DNA at a high background rate, each nucleosome-free stretch of 14 bp can be considered to be a non-specific binding site (NSBS). A haploid \textit{S. cerevisiae} genome is 12 Mb, 80% of which is wrapped in nucleosomes [39], yielding approximately 10^6 potential non-specific binding sites (NSBSs). In a yeast nucleus of volume 3×10^{15} liters, the NSBS concentration is of order 10^{-4} M. To find the concentration of free TF [TF] in the nucleus given a total TF concentration of C_{TF}, we consider

\[
K_d = \frac{[\text{binding}_{site}][TF]}{[\text{binding}_{site} \cdot TF]}.
\]

in the context of NSBSs, substitute [TF:NSBS] with C_{TF} - [TF], and solve for

\[
[\text{TF}] = \frac{K_d(3)}{K_d(3)+[\text{NSBS}]} C_{TF} = \frac{10^{-5}}{10^{-5}+10^{-4}} C_{TF}.
\]

Thus, about 90% of total TFs are bound non-specifically, leaving about 10% free. The relatively small number of specific TFBSs is not enough to significantly perturb the proportion of free TFs, and so for the specific TFBSs with $m<3$ that are of interest in our model, we simply use $K_d^*(m) = 10K_d(m)$ to account for the reduction in the amount of available TF due to non-specific binding.

We also rescale K_d^* from moles/liter to the more convenient number of molecules per cell by multiplying by 3×10^{15} liter \times 6.02×10^{23} molecules/mole $= 1.8 \times 10^9$ molecules cell$^{-1}$ M$^{-1}$, for a total multiplication factor of 1.8×10^{10} molecule M$^{-1}$. If there were only one binding site, it would be bound for a fraction of time

\[
P = \frac{N_i}{K_d^* + N_i}
\] (1)
where \(N_i \) is the per-cell number of molecules of TF \(i \); note that we assume all TF molecules are located in the nucleus.

The transition rates between chromatin states (see section below) are a function of the numbers of activators \(A \) and repressors \(R \) bound to a cis-regulatory region. Note that in our model, each TF is either always an activator, or always a repressor, independently of binding context. The joint probability distribution of \(A \) and \(R \) is derived in S1 Text section 1.

Fig 3. The numbers of TFBSs, and any hindrance between them, determines the regulatory logic of effector expression. (A) TFs (yellow boxes) recognize 8 bp (red) sites while occupying and thus excluding other TFs from a 14 bp long space. The sequence on the top allows simultaneous binding but that on the bottom does not. (B) We use the pattern of TFBSs (red and yellow bars along black cis-regulatory sequences) to classify the regulatory logic of the effector gene. C1-FFLs are classified first by whether or not they are capable of simultaneously binding the signal and the TF (top vs bottom). Further classification is based on whether either the signal or the TF has multiple non-overlapping TFBSs, allowing it to activate the effector without help from the other (solid arrow). The three subtypes on the bottom (where the signal and TF cannot
bind simultaneously) are rarely seen, and omitted from further analysis; they are shown here for completeness. I1-FFL and I3-FFL stand for type 1 and type 3 incoherent feed-forward loops, respectively [7].

Transcriptional regulation

Activation of the effector gene requires at least two TFBSs to be occupied by activators – not necessarily different activators. The requirement for two activators makes the effector gene capable of evolving an AND-gate via a configuration of TFBSs in which the only way to have two TFs bound is for them to be different TFs (Fig 3B). All other genes are AND-gate-incapable, meaning that their activation requires only one TFBS to be occupied by an activator. P_A denotes the probability of having at least one activator bound for an AND-gate-incapable gene, or two for an AND-gate-capable gene. P_R denotes the probability of having at least one repressor bound.

Noise in yeast gene expression is well described by a two step process of transcriptional activation [40, 41], e.g. nucleosome disassembly followed by transcription machinery assembly. We denote the three possible states of the transcription start site as Repressed, Intermediate, and Active (Fig 2). Transitions between the states depend on the numbers of activator and repressor TFs bound (e.g. via recruitment of histone-modifying enzymes [42, 43]). We make conversion from Repressed to Intermediate range, as a function of P_A, from the background rate 0.15 min$^{-1}$ of histone acetylation [44; presumed to be followed by nucleosome disassembly], to the rate of nucleosome disassembly 0.92 min$^{-1}$ for the constitutively active PHOS promoter [40]:

$$r_{Rep _to _Int} = 0.92P_A + 0.15(1 - P_A).$$
We make conversion from Intermediate to Repressed a function of P_R, ranging from a background histone de-acetylation rate of 0.67 min$^{-1}$ [44], up to 4.11 min$^{-1}$, with that maximum chosen so as to keep a similar maximum:basal rate ratio as that of $r_{\text{Rep}_\to_\text{Int}}$:

$$r_{\text{Int}_\to_\text{Rep}} = 4.11P_R + 0.67(1 - P_R).$$

We assume that repressors disrupt the assembly of transcription machinery [45] to such a degree that conversion from Intermediate to Active does not occur if even a single repressor is bound. In the absence of repressors, activators facilitate the assembly of transcription machinery [46]. Brown et al. [40] reported that the rate of transcription machinery assembly is 3.3 min$^{-1}$ for a constitutively active PHO5 promoter, and 0.025 min$^{-1}$ when the Pho4 activator of the PHO5 promoter is knocked out. We use this range to set

$$r_{\text{Int}_\to_\text{Act}} = 3.3P_{A,\text{no}_R} + 0.025P_{\text{not}A,\text{no}_R}$$

where P_{A,no_R} is the probability of having no repressors and either one (for an AND-gate-incapable gene) or two (for an AND-gate-capable gene) activators bound, and $P_{\text{not}A,\text{no}_R}$ is the probability of having no TFs bound (for AND-gate-incapable genes) or having no repressors and not more than one activator bound (for AND-gate-capable genes).

The promoter sequence not only determines which specific TFBSs are present, but also influences non-specific components of the transcriptional machinery [47, 48]. We capture this via gene-specific but TF-binding-independent rates $r_{\text{Act}_\to_\text{Int}}$ with which the machinery
disassembles and a burst of transcription ends. In other words, we let TF binding regulate the
frequency of “bursts” of transcription, while other properties of the cis-regulatory region
regulate their duration. E.g., yeast transcription factor Pho4 regulates the frequency but not
duration of bursts of PHO5 expression, by regulating the rates of nucleosome removal and of
transition to but not from a transcriptionally active state [40]. We estimate the distribution of
$r_{\text{Act_to_Int}}$ from the observed rates of mRNA production of 255 yeast genes [49] that are likely to
have similarly low nucleosome occupancy [50] and thus are constitutively open to expression
(see S1 Text section 2 for details and also for the bounds of $r_{\text{Act_to_Int}}$). For modeling simplicity, we
assume that the core promoter sequence responsible for the value of $r_{\text{Act_to_Int}}$ is distinct from
the 150-bp sequences in which our TFBSs are found.

mRNA and protein dynamics

Once in the Active state, a gene initiates new transcripts stochastically at rate $r_{\max_{\text{transc_init}}} = 6.75$
mRNA/min [40]. There is a delay before transcription is completed, of duration $1 + L / 600$
minutes, where L is the length of the ORF in codons (see S1 Text section 3).

We model a second delay between the completion of a transcript and the production of the first
protein from it. The delay comes from a combination of translation initiation and elongation; it
ends when the mRNA is fully loaded with ribosomes all the way through to the stop codon and
the first protein is produced. We ignore the time required for mRNA splicing; introns are rare in
yeast [51]. mRNA transportation from nucleus to cytosol, which is likely diffusion-limited [52,
53], is fast even in mammalian cells [54] let alone much smaller yeast cells, and the time it takes
is also ignored. The median time in yeast for initiating translation is 0.5 minute [Table 1 in 55],
and the genomic average peptide elongation rate is 330 codon/min [55]. After an mRNA is
produced, we therefore wait for $0.5 + L / 330$ minutes, and then model protein production as continuous at a gene-specific rate $r_{\text{protein, syn}}$ (see S1 Text section 4 for details of $r_{\text{protein, syn}}$).

Protein transport into the nucleus is rapid [56] and is approximated as instantaneous and complete, so that the newly produced protein molecules immediately increase the probability of TF binding. Each gene has its own mRNA and protein decay rates, initialized from distributions taken from data (see S1 Text section 5).

All the rates regarding transcription and translation are listed in Table 1, including distributions estimated from data, and hard bounds imposed to prevent unrealistic values arising during evolution.

Developmental simulation

Our algorithm is part-stochastic, part-deterministic. We use a Gillespie algorithm [57] to simulate stochastic transitions between Repressed, Intermediate, and Active chromatin states, and to simulate transcription initiation and mRNA decay events. Fixed (i.e. deterministic) delay times are simulated between transcription initiation and completion, and between transcript completion and the production of the first protein. Protein production and degradation are described deterministically with ODEs, and updated frequently in order to recalculate TF concentrations and hence chromatin transition rates. We initialize developmental simulations with no mRNA or protein (except for the signal), and all genes in the Repressed state. Details of our simulation algorithm are given in the S1 Text section 6.

Selection conditions
Filtering out short spurious signals is a special case of signal recognition more generally. In environment 1, expressing the effector is beneficial, and in environment 2 it is deleterious. We select for TRNs that take information from the signal and correctly decide whether to express the effector. In our control condition, the signal is “on” at a constant level when the effector is beneficial in environment 1, and off in environment 2. Fitness is a weighted average across these two environments. In our test condition (Fig 4), the signal is constantly on in environment 1 and briefly on (for the first 10 minutes) in environment 2 – selection is to ignore this short spurious signal. The signal is treated as though it were an activating TF whose concentration is controlled externally, with an “off” concentration of zero and an “on” concentration of 1,000 molecules per cell, which is the typical per-cell number of a yeast TF [58].

We make fitness quantitative in terms of a “benefit” $B(t)$ as a function of the amount of effector protein $N_e(t)$ at developmental time t. Our motivation is the scenario in which the effector protein directs resources from metabolic program I to II. When program II produces benefits,

\[
B(t) = \begin{cases}
 b_{max} \frac{N_e(t)}{N_{e, sat}}, & N_e(t) < N_{e, sat} \\
 b_{max}, & N_e(t) \geq N_{e, sat}
\end{cases}
\]

(2)

where b_{max} is the maximum benefit if all resources were redirected to program II, and $N_{e, sat}$ is the minimum of amount of effector protein to achieve this. Similarly, when program I is beneficial,
We set \(N_{e_{sat}} \) to 10,000 molecules, which is about the average molecule number of a metabolism-associated protein per cell in yeast [58]. Without loss of generality given that fitness is relative, we set \(b_{max} \) to 1.

A second contribution to fitness comes from the cost of gene expression \(C(t) \) \textbf{(Fig 2, bottom center)}. We make this cost proportional to the total protein production rate. We estimate a fitness cost of gene expression of \(2 \times 10^{-6} \) per protein molecule translated per minute, based on the cost of expressing a non-toxic protein in yeast [59; see S1 Text section 7 for details].

We simulate gene expression for 90 minutes of developmental time (\textbf{Fig 4}), and calculate “cellular fitness” in a given environment as the average instantaneous fitness \((B(t)-C(t))\) over these 90 minutes. We consider environment 2 to be twice as common as environment 1 (a “signal” should be for an uncommon event rather than the default), and take the appropriate weighted average.
Fig 4. Selection for filtering out short spurious signals. The selection condition contains two environments. Each environment is a 90 min simulation of gene expression given signal input and the fitness effect of the effector. The signal is shown in black. Red illustrates favorable behavior of the effector in each of the environments, and, in comparison, blue shows a poor solution. See S1 Fig for examples of the evolved phenotypes.

Evolutionary simulation

We simulate a novel version of origin-fixation (weak-mutation-strong-selection) evolutionary dynamics, i.e. the population contains only one resident genotype at any time, and mutant genotypes are either rejected or chosen to be the next resident. Estimators \hat{F} of genotype fitness are averaged over 200 developmental replicates per environment in the case of the mutant, plus an additional 800 should it be chosen to be the next resident. The mutant replaces the resident if

$$\frac{\hat{F}_{\text{mutant}} - \hat{F}_{\text{resident}}}{|\hat{F}_{\text{resident}}|} \geq 10^{-8}.$$
This differs from Kimura’s [60] equation for fixation probability, but captures the same flavor; due to stochasticity in \hat{F}, fixation probability is a monotonic function of the true difference in fitness. Note that it is possible, especially at the beginning of an evolutionary simulation, for relative fitness to be paradoxically negative. In this rare case, for simplicity, we use the absolute value of \hat{F} on the denominator.

If 2000 successive mutants are all rejected, the simulation is terminated; upon inspection, we found that these resident genotypes had evolved to not express the effector in either environment. We refer to each change in resident genotype as an evolutionary step. We stop the simulation after 50,000 evolutionary steps; at this time, most replicate simulations seem to have reached a fitness plateau (S2 Fig); we use all replicates except those terminated early. To reduce the frequency of early termination in the case where the signal was not allowed to directly regulate the effector, we used a burn-in phase selecting on a more accessible intermediate phenotype (see S1 Text section 9). In this case, burn-in occurred for 1000 evolutionary steps, followed by the usual 50,000 evolutionary steps with selection for the phenotype of interest (S2 Fig).

Genotype Initialization

We initialize genotypes with 3 activator genes, 3 repressor genes, and 1 effector gene. Cis-regulatory sequences and consensus binding sequences contain As, Cs, Gs, and Ts sampled with equal probability. Rate constants associated with the expression of each gene, are sampled from the distributions described above and summarized in Table 1.

Mutation
A genotype is subjected to 5 broad classes of mutation, at rates summarized in Table 2 and justified in S1 Text section 8. First are single nucleotide substitutions in the cis-regulatory sequence; the resident nucleotide mutates into one of the other three types of nucleotides with equal probability. Second are single nucleotide changes to the consensus binding sequence of a TF, with the resident nucleotide mutated into one of the other three types at equal probability. Both of these can affect the number and strength of TFBSs.

Table 2. Mutation rates and effect sizes

Mutation	Relative rate	Effect of mutation[1]
Single nucleotide substitution	5.25×10^{-8} per gene	
Gene deletion	1.5×10^{-7} per gene[2]	
Gene duplication	1.5×10^{-7} per gene[2]	
Mutation to consensus sequence of a TF	3.5×10^{-9} per gene	
Mutation to TF identity (activator vs. repressor)	3.5×10^{-9} per gene	
Mutation to \(K_d(0)\)	3.5×10^{-9} per gene	\(k = 0.5, \mu = -5[2], \sigma = 0.776\)
Mutation to \(L\)	1.2×10^{-11} per codon	
Mutation to \(r_{protein_syn}\)	9.5×10^{-12} per codon	\(k = 0.5, \mu = 0.021[2], \sigma = 0.760\)
Mutation to \(r_{protein_deg}\)	9.5×10^{-12} per codon	\(k = 0.5, \mu = -1.88, \sigma = 0.739\)
Mutation to \(r_{Act_to_Int}\)	9.5×10^{-12} per codon	\(k = 0.5, \mu = 1.57[2], \sigma = 0.773\)
Mutation to \(r_{mRNA_deg}\)	9.5×10^{-12} per codon	\(k = 0.5, \mu = -1.19, \sigma = 0.396\)

Mutation to these quantitative rates takes the form \(\log_{10}x' = \log_{10}x + \text{Normal}(k(\mu - \log_{10}x), \sigma)\), where \(x\) is the original value of a rate and \(x'\) is the value after mutation. See S1 Text section 8 for details.

The value of this parameter is different during burn-in. See S1 Text section 8 for details.

Third are gene duplications or deletions. Because computational cost scales steeply (and non-linearly) with network size, we do not allow effector genes to duplicate once there are 5 copies, nor TF genes to duplicate once the total number of TF gene copies is 19. We also do not allow the signal, the last effector gene, nor the last TF gene to be deleted.

Fourth are mutations to gene-specific expression parameters. Most of these \((L, r_{Act_to_Int})\) apply to both TFs and effector genes, while mutations to the gene-specific values of \(K_d(0)\) apply only to TFs. Each mutation to \(L\) increases or decreases it by 1 codon, with equal probability unless \(L\) is at the upper or lower bound. Effect sizes of mutations to the other five parameters are modeled in such a way that mutation would maintain log-
normal stationary distributions for these values, in the absence of selection or arbitrary bounds (see S1 Text section 8 for details). Upper and lower bounds (S1 Text section 8) are used to ensure that selection never drives these parameters to unrealistic values.

Fifth is conversion of a TF from being an activator to being a repressor, and vice versa. The signal is always an activator, and does not evolve.

Importantly, this scheme allows for divergence following gene duplication. When duplicates differ due only to mutations of class 4, i.e. protein function is unchanged, we refer to them as “copies” of the same gene, encoding “protein variants”. Mutations in classes 2 and 5 can create a new protein.

Results

Functional AND-gated C1-FFLs evolve readily under selection for filtering out a short spurious signal

We begin by simulating the easiest case we can devise to allow the evolution of C1-FFLs for their purported function of filtering out short spurious signals. The signal is allowed to act directly on the AND-gate-capable effector, so all that needs to evolve is a single activating TF between the two, as well as AND-logic for the effector. We score motifs at the end of a set number of generations (see Methods). Evolved C1-FFLs are scored and classified into subtypes based on the presence of non-overlapping TFBSs (Fig 3B). The important subtype comparison for our purposes being the AND-gated C1-FFL vs. the next three non-AND-gated C1-FFL types combined (OR-gated, signal-controlled, and slow-TF-controlled); the remaining three logic subtypes are
vanishingly rare. The adaptive hypothesis predicts the evolution of the subtype with AND-
regulatory logic, which requires both the effector to be stimulated both by the signal and by the
slow TF. While all replicates show large increases in fitness, a multimodal distribution of final
fitness states is observed, indicating whether or not the replicate was successful at evolving the
phenotype of interest rather than becoming stuck at an alternative locally optimal phenotype
(Fig 5A). AND-gated C1-FFLs frequently evolve in the high fitness outcomes, but not the low
fitness outcomes (Fig 5B).

We also see C1-FFLs that, contrary to expectations, are not AND-gated; while found primarily in
the low fitness replicates, some are also in the high fitness genotypes (Fig 5B). However, this is
based on scoring motifs and their logic gates on the basis of all TFBSs, even those with two
mismatches and hence low binding affinity. Unless these weak TFBSs are deleterious, they will
appear quite often by chance alone. A random 8-bp sequence has probability \(\binom{8}{2} \times 0.25^6 \times
0.75^2 = 0.0038 \) of being a two-mismatch binding site for a given TF. In our model, a TF has the
potential to recognize 137 different sites in a 150-bp cis-regulatory sequence (taking into
account steric hindrance at the edges), each with 2 orientations. Thus, by chance alone a given
TF will have \(0.0038 \times 137 \times 2 \approx 1 \) two-mismatch binding sites in a given cis-regulatory
sequence (ignoring palindromes for simplicity), compared to only \(~0.1\) one-mismatch TFBSs.
Excluding two-mismatch TFBSs when scoring motifs significantly reduces the non-AND-gated C1-
FFLs, while only modestly reducing the observed frequency of adaptively evolved AND-gated C1-
FFLs in the high fitness mode (Fig 5C).
Fig 5. AND-gated C1-FFLs are associated with a successful response to selection for filtering out short spurious signals. (A) Distribution of fitness outcomes across replicate simulations, calculated as the average fitness over the last 10,000 steps of the evolutionary simulation. We divide genotypes into a low-fitness group (blue) and a high-fitness group (red) using as a threshold an observed gap in the distribution. (B) High fitness outcomes are characterized by the presence of an AND-gated C1-FFL. “Any logic” counts all seven subtypes shown in Fig 3B. Because one TRN can contain multiple C1-FFLs of different subtypes, “Any logic” will generally be less than the sum of the occurrences of all seven subtypes. See S1 Text section 10 for details on the calculation of the y-axis. (C) The over-representation of AND-gated C1-FFLs becomes even more pronounced relative to alternative logic-gating when weak (two-mismatch) TFBSs are excluded while scoring motifs. Data are shown as mean±SE of the occurrence over replicate evolution simulations. \(n = 23 \) for high-fitness group, and \(n = 24 \) for low-fitness group.
To confirm the functionality of these AND-gated C1-FFLs, we mutated the evolved genotype in two different ways (Fig 6A) to remove the AND regulatory logic. As expected, this lowers fitness in the presence of the short spurious signal but increases fitness in the presence of constant signal, with a net reduction in fitness (Fig 6B). This is consistent with AND-gated C1-FFLs representing a tradeoff, by which a more rapid response to a true signal is sacrificed in favor of the greater reliability of filtering out short spurious signals.

Fig 6. Destroying the AND-logic of a C1-FFL removes its ability to filter out short spurious signals. (A) For each of the \(n = 23 \) replicates in the high fitness group in Fig 5, we perturbed the AND-logic in two ways, by adding one binding site of either the signal or the slow TF to the cis-regulatory sequence of the effector gene, done for the subset of evolutionary steps for that replicate with AND-gated C1-FFLs and lacking other potentially confounding motifs (see S1 Text section 11 for details). (B) Destroying the AND-logic slightly increases the ability to respond to the signal, but leads to a larger loss of fitness when short spurious signals are responded to. Data are shown as mean±SE over replicate evolutionary simulations.
To test the extent to which C1-FFLs can evolve non-adaptively, we simulated evolution under three negative control conditions: 1) neutrality, i.e. all mutations are accepted to become the new resident genotype; 2) no spurious signal, i.e. the effector should be expressed under a constant “ON” signal and not under a constant “OFF” signal; 3) harmless spurious signal, i.e. the effector should be expressed under a constant “ON” environment whereas effector expression in the “OFF” environment with short spurious signals is neither punished nor rewarded beyond the cost of unnecessary gene expression. AND-gated C1-FFLs evolve much less often under all three negative control conditions (Fig 7). Non-AND-gated C1-FFLs do evolve under the negative control conditions (Fig 7A), but disappear when weak TFBSs are excluded during motif scoring (Fig 7B).
Fig 7. Selection for filtering out short spurious signals is the primary cause of C1-FFLs. TRNs are evolved under different selection conditions, and we score the probability that at least one C1-FFL is present (S1 Text section 10). Weak (two-mismatch) TFBSs are included (A) or excluded (B) during motif scoring. Data are shown as mean±SE over evolutionary replicates. C1-FFL occurrence is similar for high-fitness and low-fitness outcomes in control selective conditions (S3 Fig), and so all evolutionary outcomes were combined. n = 30 for “Neutral”, n = 34 for “No spurious signal”, n = 30 for ”Harmless spurious signal”. “Spurious signal filter required (high fitness subset)” uses the same data as in Fig 5.

Diamond motifs are an alternative adaptation in more complex networks

Sometimes the source signal will not be able to directly regulate an effector, and must instead operate via a longer regulatory pathway involving intermediate TFs [61]. In this case, even if the signal itself takes the idealized form shown in Fig 4, its shape after propagation may become distorted by the intrinsic processes of transcription. Motifs are under selection to handle this distortion.

To enforce indirect regulation, we ran simulations in which the signal was not allowed to bind to the cis-regulatory sequence of effector genes. The fitness distribution of the evolutionary replicates has only one mode (S4 Fig), so we compared the highest fitness, lowest fitness, and median fitness replicates. In agreement with results when direct regulation is allowed, genotypes of low and medium fitness contain few AND-gated C1-FFLs, while high fitness genotypes contain many (Fig 8A, left).
Fig 8. Both AND-gated C1-FFLs and AND-gated diamonds (A) are associated with high fitness in complex networks under selection to filter out short spurious signals. Out of 115 simulations (S4 Fig), we took the 30 with the highest fitness (H), the 30 with the lowest fitness (L), and 30 of around median fitness (M). AND-gated motifs are scored while including weak TFBSs, near-AND-
gated motifs are those scored only when these are excluded. It is possible for the same genotype to contain one of each, resulting in overlap between the red AND-gated columns and the dotted near-AND-gated columns. Weak TFBSs upstream, i.e. not in the effector, are shown both included (B) and excluded (C). See S1 Text section 10 for y-axis calculation details. Error bars show mean±SE over replicate evolutionary simulations.

While visually examining the network context of these C1-FFLs, we discovered that many were embedded within AND-gated “diamonds” to form “FFL-in-diamonds” (Fig 8A right). This led us to discover that AND-gated diamonds also occurred frequently without AND-gated C1-FFLs to form “isolated diamonds” (Fig 8A middle). Note that it is in theory possible, but in practice uncommon, for diamonds to be part of more complex conjugates. Systematically scoring the AND-gated isolated diamond motif confirmed its high occurrence (Fig 8B, middle).

An AND-gated C1-FFL integrates information from a short/fast regulatory pathway with information from a long/slow pathway, in order to filter out short spurious signals. A diamond achieves the same end of integrating fast and slow transmitted information via differences in the gene expression dynamics of the two regulatory pathways, rather than via topological length (Fig 9).

Note that a simple transcriptional cascade, signal -> TF -> effector, has also been found experimentally to filter out short spurious signals, e.g. when the intermediate TF is rapidly degraded, dampening the effect of a brief signal [62]. Two such transcriptional cascades involving different intermediate TFs form a diamond, so the utility of a single cascade is a potential explanation for the high prevalence of double-cascade diamonds. However, in this
case we would have no reason to expect marked differences in expression dynamics between the two TFs, as illustrated in Fig 9. We will also see below that AND-gates evolve between the two cascades.

Fig 9. The two intermediate TFs in an AND-gated “diamond” motif have different expression dynamics and propagate the signal at different speeds. The expression of the two TFs in one representative AND-gated isolated diamond from a high-fitness genotype in Fig 8B is shown. Each TFs is a different protein, and each is encoded by 3 gene copies, shown separately in colors, with the total in thick black. The expression of one TF plateaus faster than that of the other; this is characteristic of the AND-gated diamond motif, and leads to the same functionality as the AND-gated C1-FFL. The two TFs are indistinguishable topologically, but can be easily and
reliably assigned identities as “fast” and “slow” by using the fact that the fast TF degrades faster (has higher $r_{\text{protein} _\text{deg}}$). We use the geometric mean $r_{\text{protein} _\text{deg}}$ over gene copies of a TF in order to differentiate the two TFs for analysis in Fig 9 and elsewhere.

Weak TFBSs make motif scoring more difficult

Results depend on whether we include weak TFBSs when scoring motifs. Weak TFBSs can either be in the effector’s cis-regulatory region, affecting how the regulatory logic is scored, or upstream, affecting only the presence or absence of motifs. When a motif is scored as AND-gated only when two-mismatch TFBSs in the effector are excluded, we call it a “near-AND-gated” motif. Recall from Fig 3B that effector expression requires two TFs to be bound, with only one TFBS of each type creating an AND-gate. When a second, two-mismatch TFBS of the same type is present, we have a near-AND-gate. TFs may bind so rarely to this weak affinity TFBS that its presence changes little, making the regulatory logic still effectively AND-gated. A near-AND-gated motif may therefore evolve for the same adaptive reasons as an AND-gated one. Fig 8B and C shows that both AND-gated and near-AND-gated motifs are enriched in the high fitness genotypes.

When we exclude upstream weak TFBSs while scoring motifs, FFL-in-diamonds are no longer found, while the occurrence of isolated C1-FFLs and diamonds increases (Fig 8C). This makes sense, because adding one weak TFBS, which can easily happen by chance alone, can convert an isolated diamond or C1-FFL into a FFL-in-diamond (added between intermediate TFs, or from signal to slow TF, respectively).
AND-gated isolated C1-FFLs appear mainly in the highest fitness outcomes, while AND-gated isolated diamonds appear in all fitness groups (Fig 8C), suggesting that diamonds are easier to evolve. 18 out of 30 high-fitness evolutionary replicates are scored as having a putatively adaptive AND-gated or near-AND-gated motif in at least 50% of their evolutionary steps when upstream weak TFBSs are ignored (close to addition of bars in Fig 8C, because these two AND-gated motifs rarely coexist in a high-fitness genotype). The remaining 12 have more complex arrangements of weak TFBSs that mimic a single strong one.

Just as for the AND-gated C1-FFLs evolved under direct regulation and analyzed in Fig 6, perturbation analysis supports an adaptive function for AND-gated C1-FFLs and diamonds evolved under indirect regulation (Fig 10A.i, 10B.i). Breaking the AND-gate logic of these motifs by adding a (strong) TFBS to the effector cis-regulatory region reduces the fitness under the spurious signal but increases it under the constant “ON” beneficial signal, resulting in a net decrease in the overall fitness.

If we add a two-mismatch TFBS instead, this converts an AND-gated motif to a near-AND-gated motif. This lowers fitness only when the extra link is from the slow TF to the effector, and not when the extra link is from the fast TF to the effector (Fig 10B.ii, 10C.ii). Indeed, these extra links are tolerated during evolution too: if we take the 7 high-fitness replicates that contain a near-AND-gated C1-FFL in at least 5% of the evolutionary steps, in all 7 cases this motif is near-AND-gated rather than AND-gated because of an extra weak TFBS for the fast TF, while this is never due to a weak TFBS for the slow TF in C1-FFLs. Similarly, out of the 20 high-fitness replicates that contain a near-AND-gated diamond, 11 cases are primarily because of an extra weak TFBS of the fast TF, 9 cases (all of them OR-gated) are because of weak TFBSs for both TFs,
and no cases are primarily due to an extra TFBS for the slow TF. By chance alone, fast and slow TF should be equally likely to contribute the weak TFBS that makes a motif near-AND-gated rather than AND-gated. This non-random occurrence of weak TFBSs creating near-AND-gates illustrates how even weak TFBSs can be shaped by selection against some (but not all) motif-breaking links.
Fig 10. Perturbation analysis shows that AND-gated C1-FFLs (A) and diamonds (B) filter out short spurious signals. We add a strong TFBS (i) or a two-mismatch TFBS (ii) or (iii); the latter creates near-AND-gated motifs. Allowing the effector to respond to the slow TF alone slightly increases the ability to respond to the signal, but leads to a larger loss of fitness when effector expression is undesirable. Allowing the effector to respond to the fast TF alone does so only when the conversion uses a strong TFBS not a two-mismatch TFBS. (A) We perform the perturbation on 5 of the 11 high-fitness replicates from Fig 8B that evolved an AND-gated C1-FFL. (B) (i) and (ii) are based on 4 of the 26 high-fitness replicates from selection to filter out short spurious external signals (Fig 8B), (iii) is based on 18 of the 31 replicates from selection for signal recognition in the absence of an external spurious signal (Fig 11B). The 26 and 31 replicates were the ones with AND-gated diamond. Replicate exclusion was based on the co-occurrence of other motifs with the potential to confound results (see S1 Text section 11 for details). Data are shown as mean±SE of the averaged fitness over replicate evolutionary simulations.

AND-gated isolated diamonds also evolve in the absence of external spurious signals

We simulated evolution under the same three control conditions as before, this time without allowing the signal to directly regulate the effector. In the “no spurious signal” and “harmless spurious signal” control conditions, motif frequencies are similar between low and high fitness genotypes (S5 Fig, S6 Fig), and so our analysis includes all evolutionary replicates. When weak (two-mismatch) TFBSs are excluded, AND-gated isolated C1-FFLs are seen only after selection for filtering out a spurious signal, and not under other selection conditions (Fig 11A). However, AND-gated isolated diamonds also evolve in the absence of spurious signals, indeed at even higher frequency (Fig 11B). Results including weak TFBSs are similar (S7 Fig).
Perturbing the AND-gate logic in these isolated diamonds reduces fitness via effects in the environment where expressing the effector is deleterious (Fig 10B.iii). Even in the absence of external short spurious signals, the stochastic expression of intermediate TFs might effectively create short spurious signals when the external signal is set to “OFF”. It seems that AND-gated diamonds evolve to mitigate this risk, but that AND-gated C1-FFLs do not. The duration of internally generated spurious signals has an exponential distribution, which means that the optimal filter would be one that does not delay gene expression [63]. The two TFs in an AND-gated diamond can be activated simultaneously, but they must be activated sequentially in an AND-gated C1-FFL; the shorter delays possible with AND-gated diamonds might explain why only diamonds and not FFLs evolve to filter out intrinsic noise in gene expression.

Fig 11. Selection for filtering out a short spurious signal is the primary way to evolve AND-gated isolated C1-FFLs (A), but AND-gated isolated diamonds also evolve in the absence of spurious signals (B). The selection conditions are the same as in Fig 7, but we do not allow the signal to directly regulate the effector. When scoring motifs, we exclude all two-mismatch TFBSs; more comprehensive results are shown in S7 Fig. See S1 Text section 10 for the calculation of y-axis. Data are shown as mean±SE over evolutionary replicates. n = 30 for
“Neutral”, \(n = 50 \) for “No spurious signal”, and \(n = 60 \) for “Harmless spurious signal”. We reused data from Fig 8 for “Spurious signal filter required (high fitness)”, \(n = 30 \).

Discussion

There has never been sufficient evidence to satisfy evolutionary biologists that motifs in TRNs represent adaptations for particular functions. Critiques by evolutionary biologists to this effect [13-23] have been neglected, rather than answered, until now. While C1-FFLs can be conserved across different species [64-67], this does not imply that specific “just-so” stories about their function are correct. In this work, we study the evolution of AND-gated C1-FFLs, which are hypothesized to be adaptations for filtering out short spurious signal [3]. Using a novel and more mechanistic computational model to simulate TRN evolution, we found that AND-gated C1-FFLs evolve readily under selection for filtering out a short spurious signal, and not under control conditions. Our results support the adaptive hypothesis about C1-FFLs.

Previous studies have also attempted to evolve adaptive motifs in a computational TRN, successfully under selection for circadian rhythm and for multiple steady states [68], and unsuccessfully under selection to produce a sine wave in response to a periodic pulse [23]. Our successful simulation might offer some methodological lessons, especially a focus on high-fitness evolutionary replicates, which was done by us and by Burda et al. [68] but not by Knabe et al. [23]. Knabe et al. [23] suggested that including a cost for gene expression may suppress unnecessary links and promote motifs. However, we found AND-gated C1-FFLs still evolve in the high-fitness genotypes under selection for filtering out a spurious signal, even when there is no cost of gene expression (S8 Fig).
AND-gated C1-FFLs express an effector after a noise-filtering delay when the signal is turned on, but shut down expression immediately when the signal is turned off, giving rise to a “sign-sensitive delay” [3, 7]. Rapidly switching off has been hypothesized to be part of their selective advantage, above and beyond the function of filtering out short spurious signals [63]. We selected only for filtering out a short spurious signal, and not for fast turn-off, and found that this was sufficient for the adaptive evolution of AND-gated C1-FFLs.

Most previous research on C1-FFLs has used an idealized implementation (e.g. a square wave) of what a short spurious signal entails [4, 63, 69]. In real networks, noise arises intrinsically in a greater diversity of forms, which our model does more to capture. Even when a “clean” form of noise enters a TRN, it subsequently gets distorted with the addition of intrinsic noise [70]. Intrinsic noise is ubiquitous and dealing with it is an omnipresent challenge for selection. Indeed, we see adaptive diamonds evolve to suppress intrinsic noise, even when we select in the complete absence of extrinsic spurious signals.

Our model, while complex for a model and hence capable of capturing intrinsic noise, is inevitably less complex than the biological reality. However, we hope to have captured key phenomena, albeit in simplified form. E.g., a key phenomenon is that TFBSs are not simply present vs. absent but can be strong or weak, i.e. the TRN is not just a directed graph, but its connections vary in strength. Our model, like that of Burda et al. [68] in the context of circadian rhythms, captures this fact by basing TF binding affinity on the number of mismatch deviations from a consensus TFBS sequence. While in reality, the strength of TF binding is determined by additional factors, such as broader nucleic context and cooperative behavior between TFs.
reviewed in Inukai et al. [71]), these complications are unlikely to change the basic dynamics of frequent appearance of weak TFBSs and enhanced mutational accessibility of strong TFBSs from weak ones. Similarly, AND-gating can be quantitative rather than qualitative [72], a phenomenon that weak TFBSs in our model provide a simplified version of. Note that our model, while powerful in some ways, is computationally limited to small TRNs.

Core links in adaptive motifs involve strong not weak TFBSs. However, weak (two-mismatch) TFBSs can create additional links that prevent an adaptive motif from being scored as such. Some potential additional links are neutral while others are deleterious; the observed links are thus shaped by this selective filter, without being adaptive. Note that there have been experimental reports that even weak TFBSs can be functionally important [73, 74]; these might, however, better correspond to 1-mismatch TFBSs in our model than two-mismatch TFBSs.

Ramos et al. [74] and Crocker et al. [73] identified their “weak” TFBSs in comparison to the strongest possible TFBS, not in comparison to the weakest still showing affinity above baseline.

A striking and unexpected finding of our study was that AND-gated diamonds evolved as an alternative motif for filtering out short spurious external signals, and that these, unlike FFLs, were also effective at filtering out intrinsic noise. Diamonds are not overrepresented in the TRNs of bacteria [2] or yeast [75], but are overrepresented in signaling networks (in which post-translational modification plays a larger role) [76], and in neuron networks [1]. In our model, we treated the external signal as though it were a transcription factor, simply as a matter of modeling convenience. In reality, signals external to a TRN are by definition not TFs (although they might be modifiers of TFs). This means that our indirect regulation case, in which the signal is not allowed to directly turn on the effector, is the most appropriate one to analyze if our interest is in TRN motifs that mediate contact between the two. Note that if we were to score
the signal as not itself a TF, we would observe adaptive C1-FFLs but not diamonds in this case, in agreement with the TRN data. However, this TRN data might miss functional diamond motifs that spanned levels of regulatory organization, i.e. that included both transcriptional and other forms of regulation. The greatest chance of finding diamonds within TRNs alone come from complex and multi-layered developmental cascades, rather than bacterial or yeast [77]. Multiple interwoven diamonds are hypothesized to be embedded with multi-layer perceptrons that are adaptations for complex computation in signaling networks [30].

The function of a motif relies ultimately on its dynamic behavior, with topology merely a means to that end. The C1-FFL motif is based on two pathways between signal and effector, one much faster than the other, which is achieved by making them different lengths. This same function was achieved non-topologically in our adaptively evolved diamond motifs. Multiple motifs have previously been found capable of generating the same steady state expression pattern [21]; here we find multiple motifs for a much more complex function.

It is difficult to distinguish adaptations from “spandrels” [8]. Standard procedure is to look for motifs that are more frequent than expected from some randomized version of a TRN [2, 78]. For this method to work, this randomization must control for all confounding factors that are non-adaptive with respect to the function in question, from patterns of mutation to a general tendency to hierarchy – a near-impossible task. Our approach to a null model is not to randomize, but to evolve with and without selection for the specific function of interest. This meets the standard of evolutionary biology for inferring the adaptive nature of a motif [13-23].
Acknowledgements

Work was supported by the University of Arizona and by a Pew Scholarship to JM, John Templeton Foundation grant 39667 to JM and KX, and by National Institutes of Health grants R35GM118170 to MLS and R01GM076041 to JM and AKL. We thank Hinrich Boeger for helpful discussions and careful reading of the manuscript, Jasmin Uribe for early work on this project, and the high-performance computing center at the University of Arizona for generous allocations.
References

1. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: Simple building blocks of complex networks. Science. 2002;298:824-827.

2. Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of *Escherichia coli*. Nat Genet. 2002;31:64-68. doi: 10.1038/ng881.

3. Alon U. Network motifs: theory and experimental approaches. Nature Reviews Genetics. 2007;8:450-461.

4. Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA. 2003;100:11980-11985. doi: 10.1073/pnas.2133841100.

5. Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. The Plant Cell. 2013;25:820-833. doi: 10.1105/tpc.113.109355.

6. Peter IS, Davidson EH. Assessing regulatory information in developmental gene regulatory networks. Proc Natl Acad Sci USA. 2017;114:5862-5869. doi: 10.1073/pnas.1610616114.

7. Mangan S, Zaslaver A, Alon U. The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J Mol Biol. 2003;334:197-204. doi: 10.1016/j.jmb.2003.09.049.

8. Gould SJ, Lewontin RC. The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme. Proc R Soc Lond, Ser B: Biol Sci. 1979;205:581-598.

9. Graur D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E. On the Immortality of Television Sets: “Function” in the Human Genome According to the Evolution-Free
10. Masel J, Promislow DEL. Answering evolutionary questions: A guide for mechanistic biologists. Bioessays. 2016;38:704-711. doi: 10.1002/bies.201600029.

11. Widder S, Solé R, Macía J. Evolvability of feed-forward loop architecture biases its abundance in transcription networks. BMC Systems Biology. 2012;6:7. doi: 10.1186/1752-0509-6-7.

12. Cordero OX, Hogeweg P. Feed-forward loop circuits as a side effect of genome evolution. Mol Biol Evol. 2006;23:1931-1936.

13. Artzy-Randrup Y, Fleishman SJ, Ben-Tal N, Stone L. Comment on "Network Motifs: Simple Building Blocks of Complex Networks" and "Superfamilies of Evolved and Designed Networks". Science. 2004;305:1107. doi: 10.1126/science.1099334.

14. Jenkins D, Stekel D. De Novo Evolution of Complex, Global and Hierarchical Gene Regulatory Mechanisms. J Mol Evol. 2010;71:128-140.

15. Lynch M. The evolution of genetic networks by non-adaptive processes. Nature Reviews Genetics. 2007;8:803-813. doi: 10.1038/nrg2192.

16. Mazurie A, Bottani S, Vergassola M. An evolutionary and functional assessment of regulatory network motifs. Genome Biol. 2005;6:R35.

17. Solé RV, Valverde S. Are network motifs the spandrels of cellular complexity? Trends Ecol Evol. 2006;21:419-422.

18. Tsuda ME, Kawata M. Evolution of Gene Regulatory Networks by Fluctuating Selection and Intrinsic Constraints. PLoS Comp Biol. 2010;6:e1000873.

19. Wagner A. Does Selection Mold Molecular Networks? Sci STKE. 2003;2003:pe41. doi: 10.1126/stke.2003202.pe41.
20. Kuo PD, Banzhaf W, Leier A. Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence. BioSyst. 2006;85:177-200. doi: 10.1016/j.biosystems.2006.01.004.

21. Payne JL, Wagner A. Function does not follow form in gene regulatory circuits. Scientific Reports. 2015;5:13015. doi: 10.1038/srep13015.

22. Ruths T, Nakhleh L. Neutral forces acting on intragenomic variability shape the *Escherichia coli* regulatory network topology. Proc Natl Acad Sci USA. 2013;110:7754-7759. doi: 10.1073/pnas.1217630110.

23. Knabe JF, Nehaniv CL, Schilstra MJ. Do motifs reflect evolved function?—No convergent evolution of genetic regulatory network subgraph topologies. BioSyst. 2008;94:68-74. doi: 10.1016/j.biosystems.2008.05.012.

24. Kærn M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to phenotypes. Nature Reviews Genetics. 2005;6:451-464. doi: 10.1038/nrg1615.

25. Raser JM, O'Shea EK. Noise in Gene Expression: Origins, Consequences, and Control. Science. 2005;309:2010-2013.

26. Eldar A, Elowitz MB. Functional roles for noise in genetic circuits. Nature. 2010;467:167–173. doi: 10.1038/nature09326.

27. Draghi J, Whitlock M. Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks. Evolution. 2015;69:2345-2358. doi: 10.1111/evo.12732.

28. Jenkins DJ, Stekel DJ. A New Model for Investigating the Evolution of Transcription Control Networks. Artif Life. 2009;15:259-291. doi:10.1162/artl.2009.Stekel.006.
29. Henry A, Hemery M, François P. \(\phi\)-evo: A program to evolve phenotypic models of biological networks. PLoS Comp Biol. 2018;14:e1006244. doi: 10.1371/journal.pcbi.1006244.

30. Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits. London: Chapman and Hall/CRC; 2007.

31. Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, et al. Genome-scale identification of nucleosome positions in \(S\). \(cerevisiae\). Science. 2005;309:626-630.

32. Wunderlich Z, Mirny LA. Different gene regulation strategies revealed by analysis of binding motifs. Trends Genet. 2009;25:434-440. doi: 10.1016/j.tig.2009.08.003.

33. Maerkl SJ, Quake SR. A Systems Approach to Measuring the Binding Energy Landscapes of Transcription Factors. Science. 2007;315:233-237. doi: 10.1126/science.1131007.

34. Zhu J, Zhang MQ. SCPD: a promoter database of the yeast \(S\). \(cerevisiae\). Bioinformatics. 1999;15:607-611. doi: 10.1093/bioinformatics/15.7.607.

35. Sharon E, Kalma Y, Sharp A, Raveh-sadka T, Levo M, Zeevi D, et al. Articles Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat Biotechnol. 2012;30:521-530. doi: 10.1038/nbt.2205.

36. Benos PV, Bulyk ML, Stormo GD. Additivity in protein-DNA interactions: how good an approximation is it? Nucleic Acids Res. 2002;30:4442-4451.

37. Park S, Chung S, Kim KM, Jung KC, Park C, Hahm ER, et al. Determination of binding constant of transcription factor myc-max/max-max and E-box DNA: The effect of inhibitors on the binding. Biochim Biophys Acta Gen Subj. 2004;1670:217-228. doi: 10.1016/j.bbabio.2003.12.007.
38. Nalefski EA, Nebelitsky E, Lloyd JA, Gullans SR. Single-molecule detection of transcription factor binding to DNA in real time: Specificity, equilibrium, and kinetic parameters. Biochemistry. 2006;45:13794-13806. doi: 10.1021/bi0602011.

39. Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet. 2007;39:1235-44.

40. Brown CR, Mao C, Falkovskaia E, Jurica MS, Boeger H. Linking Stochastic Fluctuations in Chromatin Structure and Gene Expression. PLoS Biol. 2013;11:e1001621. doi: 10.1371/journal.pbio.1001621.

41. Mao C, Brown CR, Falkovskaia E, Dong S, Hrabeta-Robinson E, Wenger L, et al. Quantitative analysis of the transcription control mechanism. Mol Syst Biol. 2010;6:431. doi: 10.1038/msb.2010.83.

42. Shahbazian MD, Grunstein M. Functions of Site-Specific Histone Acetylation and Deacetylation. Annu Rev Biochem. 2007;76:75-100. doi: 10.1146/annurev.biochem.76.052705.162114.

43. Voss TC, Hager GL. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nature Reviews Genetics. 2013;15:69-81. doi: 10.1038/nrg3623.

44. Katan-Khaykovich Y, Struhl K. Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes Dev. 2002;16:743-52. doi: 10.1101/gad.967302.

45. Courey AJ, Jia S. Transcriptional repression: the long and the short of it. Genes Dev. 2001;15:2786-2796. doi: 10.1101/gad.939601.and.

46. Poss ZC, Ebmeier CC, Taatjes DJ. The Mediator complex and transcription regulation. Crit Rev Biochem Mol Biol. 2013;48:575-608. doi: 10.3109/10409238.2013.840259.
47. Decker KB, Hinton DM. Transcription Regulation at the Core: Similarities Among Bacterial, Archaeal, and Eukaryotic RNA Polymerases. Annu Rev Microbiol. 2013;67:113-139. doi: 10.1146/annurev-micro-092412-155756.

48. Roy AL, Singer DS. Core promoters in transcription: old problem, new insights. Trends Biochem Sci. 2015;40:165-171. doi: 10.1016/j.tibs.2015.01.007.

49. Pelechano V, Chávez S, Pérez-Ortí n JE. A Complete Set of Nascent Transcription Rates for Yeast Genes. PLoS ONE. 2010;5:e115560.

50. Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F, et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol. 2005;3:e384.

51. Dujon B. The yeast genome project: what did we learn? Trends Genet. 1996;12:263-270. doi: 10.1016/0168-9525(96)10027-5.

52. Niño CA, Hérissant L, Babour A, Dargemont C. mRNA nuclear export in yeast. Chemical Reviews. 2013;113:8523-8545. doi: 10.1021/cr400002g.

53. Smith C, Lari A, Derrer CP, Ouwehand A, Rossouw A, Huisman M, et al. In vivo single-particle imaging of nuclear mRNA export in budding yeast demonstrates an essential role for Mex67p. J Cell Biol. 2015;211:1121-1130. doi: 10.1083/jcb.201503135.

54. Mor A, Suliman S, Ben-Yishay R, Yunger S, Brody Y, Shav-Tal Y. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat Cell Biol. 2010;12:543-552. doi: 10.1038/ncb2056.

55. Siwiak M, Zielenkiewicz P, Jacobson A, Grebogi C, Kito K. A Comprehensive, Quantitative, and Genome-Wide Model of Translation. PLoS Comp Biol. 2010;6:e1000865. doi: 10.1371/journal.pcbi.1000865.
56. van Drogen F, Stucke VM, Jorritsma G, Peter M. MAP kinase dynamics in response to pheromones in budding yeast. Nat Cell Biol. 2001;3:1051.

57. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry. 1977;81:2340-2361.

58. Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, et al. Global analysis of protein expression in yeast. Nature. 2003;425:737-741. doi: 10.1038/nature02046.

59. Kafri M, Metzl-Raz E, Jona G, Barkai N. The Cost of Protein Production. Cell Reports. 2016;14:22-31. doi: 10.1016/j.celrep.2015.12.015.

60. Kimura M. On the probability of fixation of mutant genes in a population. Genetics. 1962;47:713-719.

61. Balázsi G, Barabási AL, Oltvai ZN. Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc Natl Acad Sci USA. 2005;102:7841-7846.

62. Hooshangi S, Thiberge S, Weiss R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci USA. 2005;102:3581-3586. doi: 10.1073/pnas.0408507102.

63. Dekel E, Mangan S, Alon U. Environmental selection of the feed-forward loop circuit in gene-regulation networks. Phys Biol. 2005;2:81.

64. Boyle AP, Araya CL, Brdlik C, Cayting P, Cheng C, Cheng Y, et al. Comparative analysis of regulatory information and circuits across distant species. Nature. 2014;512:453-456. doi: 10.1038/nature13668.
Kemmeren P, Sameith K, van de Pasch LAL, Benschop JJ, Lenstra TL, Margaritis T, et al. Large-Scale Genetic Perturbations Reveal Regulatory Networks and an Abundance of Gene-Specific Repressors. Cell. 2014;157:740-752. doi: 10.1016/j.cell.2014.02.054.

Stergachis AB, Neph S, Sandstorm R, Haugen E, Reynolds AP, Zhang M, et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature. 2014;515:365-370. doi: 10.1038/nature13972.

Madan Babu M, Teichmann SA, Aravind L. Evolutionary Dynamics of Prokaryotic Transcriptional Regulatory Networks. J Mol Biol. 2006;358:614-633. doi: 10.1016/j.jmb.2006.02.019.

Burda Z, Krzywicki A, Martin OC, Zagorski M. Motifs emerge from function in model gene regulatory networks. Proc Natl Acad Sci USA. 2011;108:17263-17268. doi: 10.1073/pnas.1109435108.

Hayot F, Jayaprakash C. A feedforward loop motif in transcriptional regulation: induction and repression. J Theor Biol. 2005;234:133-143.

Pedraza JM, van Oudenaarden A. Noise Propagation in Gene Networks. Science. 2005;307:1965-1969. doi: 10.1126/science.1109090.

Inukai S, Kock KH, Bulyk ML. Transcription factor–DNA binding: beyond binding site motifs. Curr Opin Genet Dev. 2017;43:110-119. doi: 10.1016/j.gde.2017.02.007.

Wang D, Yan K-K, Sisu C, Cheng C, Rozowsky J, Meyerson W, et al. Loregic: A Method to Characterize the Cooperative Logic of Regulatory Factors. PLoS Comp Biol. 2015;11:e1004132. doi: 10.1371/journal.pcbi.1004132.

Crocker J, Abe N, Rinaldi L, McGregor Alistair P, Frankel N, Wang S, et al. Low Affinity Binding Site Clusters Confer Hox Specificity and Regulatory Robustness. Cell. 2015;160:191-203. doi: 10.1016/J.CELL.2014.11.041.
74. Ramos AI, Barolo S. Low-affinity transcription factor binding sites shape morphogen responses and enhancer evolution. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2013;368:20130018. doi: 10.1098/rstb.2013.0018.

75. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, et al. Transcriptional regulatory networks in *Saccharomyces cerevisiae*. Science. 2002;298:799-804.

76. Ma'ayan A, Jenkins SL, Neves S, Hasseldine A, Grace E, Dubin-Thaler B, et al. Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science. 2005;309:1078-1083. doi: 10.1126/science.1108876.

77. Rosenfeld N, Alon U. Response Delays and the Structure of Transcription Networks. J Mol Biol. 2003;329:645-654. doi: 10.1016/S0022-2836(03)00506-0.

78. Kashtan N, Itzkovitz S, Milo R, Alon U. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics. 2004;20:1746-1758. doi: 10.1093/bioinformatics/bth163.

79. SGD Project. [cited 2018 April 2]. Available from: https://yeastmine.yeastgenome.org.

80. Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat Methods. 2013;10:119-121. doi: 10.1038/nmeth.2305.

81. Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science. 2011;332:475-478. doi: 10.1126/science.1202142.

82. Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO. Precision and functional specificity in mRNA decay. Proc Natl Acad Sci USA. 2002;99:5860-5865. doi: 10.1073/pnas.092538799.
83. Belle A, Tanay A, Bitincka L, Shamir R, O'Shea EK. Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci USA. 2006;103:13004-13009. doi: 10.1073/pnas.0605420103.
Supporting information

S1 Fig. Examples of evolved phenotypes under selection for filtering out a short spurious signal. The figure shows the average expression of the effector protein over 200 replicate developmental simulations in each of the two environments. A high-fitness phenotype and a low-fitness phenotype, as defined in Fig 5, are shown for comparison. The signal is allowed to directly regulate the effector in these simulations.

S2 Fig. Representative fitness trajectories under selection to filter out short spurious signals. (A) The signal is allowed to directly regulate the effector genes. (B) The signal cannot directly regulate the effector genes. Note the average is weighted, with environment 2 being considered twice as common as environment 1.

S3 Fig. Genotypes evolved under control selective conditions: (A) “harmless spurious signal”, and (B) “no spurious signal”. There is no clear evidence of a multimodal distribution of fitness outcomes among replicates (left), and C1-FFLs occur equally in the 10 genotypes of the highest fitness vs. the 10 genotypes of the lowest fitness (right), and so the entire distribution (left) was used to produce Fig 7. Data are shown as mean±SE over evolutionary replicates.

S4 Fig. Fitness distribution of 115 evolutionary replicates under selection for filtering out short spurious signals, when the signal cannot directly regulate the effector. The fitness of a replicate is the average genotype fitness over the last 10,000 evolutionary steps. Colors indicate replicates analyzed elsewhere.
S5 Fig. Evolution when responding to a spurious signal is harmless, when the signal is not allowed to directly regulate the effector. (A) Fitness distribution of 60 replicate simulations. The occurrence of both (B) FFL-in-diamonds and (C) isolated diamonds were similar in the 10 genotypes with the highest fitness vs. in 10 genotypes with the lowest fitness. Weak (two-mismatch) TFBSs are included when scoring motifs. Data are shown as mean±SE over replicates. Isolated C1-FFLs rarely evolve under this condition, therefore their occurrence is not plotted.

S6 Fig. Evolution when there is no spurious signal, when the signal is not allowed to directly regulate the effector. (A) Fitness distribution of 50 replicate simulations. The occurrence of both (B) FFL-in-diamonds and (C) isolated diamonds were similar in the 10 genotypes with the highest fitness vs. in 10 genotypes with the lowest fitness. Weak (two-mismatch) TFBSs are included when scoring motifs. Data are shown as mean±SE over replicates. Isolated C1-FFLs rarely evolve under this condition, therefore their occurrence is not plotted.

S7 Fig. Selection for filtering out a short spurious signal is the primary way to evolve AND-gated C1-FFLs (A), but AND-gated isolated diamonds also evolve in the absence of spurious signals (B). The signal is not allowed to directly regulate the effector, and the right hand sides of (A) and (B) are identical to Fig 11. When scoring motifs, we either include (left) or exclude (right) all two-mismatch TFBSs in the cis-regulatory sequences of intermediate TF genes and effector genes. See S1 Text section 10 for the calculation of y-axis. Data are shown as mean±SE over evolutionary replicates.

S8 Fig. After removing the cost of gene expression, AND-gated C1-FFLs are still associated with a successful response to selection for filtering out a short spurious signal. The signal can
directly regulate the effector genes. (A) Distribution of fitness outcomes across 46 replicate simulations. (B) 10 out of 13 replicates with the highest fitness [the 13 replicates are in red in (A)] still evolve AND-gated C1-FFLs. Replicates with the 4th, 6th, and 8th highest fitness evolve the motif shown in (C) rather than AND-gated C1-FFLs. The “high-fitness” group therefore replace the three replicates with replicates with the 11th to 13th highest fitness. Bars are mean±SE of the occurrence over replicate evolutionary simulations. 5 replicates [blue in (A)] with the lowest fitness do not contain AND-gated C1-FFLs or the motif in (C). (C) AND-gated C1-FFLs with a long arm. Note that both S and B need to be present to induce the expression of E, therefore this motif can also act as spurious signal filter.

S1 Text. Additional details of the model and algorithms