COHOMOLOGICAL CONSTRUCTION OF RELATIVE TWISTS

VALERIO TOLEDANO LAREDO

ABSTRACT. Let \(g \) be a complex, semi–simple Lie algebra, \(h \subset g \) a Cartan subalgebra and \(D \) a subdiagram of the Dynkin diagram of \(g \). Let \(g_D \subset l_D \subset g \) be the corresponding semi–simple and Levi subalgebras and consider two invariant solutions \(\Phi \in (U g \otimes^3 [\hbar])^g \) and \(\Phi_D \in (U g_D \otimes^3 [\hbar])^{g_D} \) of the pentagon equation for \(g \) and \(g_D \) respectively. Motivated by the theory of quasi–Coxeter quasitriangular quasibialgebras [TL3], we study in this paper the existence of a relative twist, that is an element \(F \in (U g \otimes^2 [\hbar])^l_D \) such that the twist of \(\Phi \) by \(F \) is \(\Phi_D \). Adapting the method of Donin and Shnider [DS], who treated the case of an empty \(D \), so that \(l_D = h \) and \(\Phi_D = 1 \otimes \otimes^3 \), we give a cohomological construction of such an \(F \) under the assumption that \(\Phi_D \) is the image of \(\Phi \) under the generalised Harish–Chandra homomorphism \((U g \otimes^3)^l_D \to (U g_D \otimes^3)^{g_D} \). We also show that \(F \) is unique up to a gauge transformation if \(l_D \) is of corank 1 or \(F \) satisfies \(F \Theta = F^{21} \) where \(\Theta \in \text{Aut}(g) \) is an involution acting as \(-1 \) on \(h \).

1. Introduction

Let \(g \) be a complex, semi–simple Lie algebra, \(h \subset g \) a Cartan subalgebra, \(R_g = \{ \alpha \} \subset h^* \) the corresponding root system and \(D_g \) the Dynkin diagram of \(g \) relative to a choice \(\alpha_1, \ldots, \alpha_n \in h^* \) of simple roots of \(g \). Let \(D \subseteq D_g \) be a subdiagram of the Dynkin diagram of \(g \) and denote by \(g_D \subset l_D \subset g \) the corresponding diagrammatic subalgebra, \(i.e. \), the semi–simple subalgebra generated by the root vectors corresponding to the simple roots in \(D \), and Levi subalgebra \(l_D = g_D + h \) respectively. Note that

\[l_D = g_D \oplus c_D \]

where the centre \(c_D \) of \(l_D \) is spanned by the fundamental coweights \(\lambda_j^\vee \in h \), with \(j \) such that \(\alpha_j \notin D \).

Let \(h \) be a formal variable and consider two fixed, invariant elements

\[\Phi \in 1 + h^2 (U g \otimes^3 [\hbar])^g \quad \text{and} \quad \Phi_D \in 1 + h^2 (U g_D \otimes^3 [\hbar])^{g_D} \]

satisfying the pentagon equation

\[\text{id} \otimes \Delta(\Psi) \cdot \Delta \otimes \text{id} \otimes (\Psi) = 1 \otimes (\Psi \cdot \text{id} \otimes \Delta \otimes \text{id}(\Psi)) \cdot (\Psi \otimes 1) \quad (1.1) \]
We shall be concerned in this paper with the cohomological solution of the following relative twist equation

\[(\Phi)_F := 1 \otimes F \cdot \text{id} \otimes \Delta(F) \cdot \Phi \cdot \Delta \otimes \text{id}(F^{-1}) \cdot F^{-1} \otimes 1 = \Phi_D\]

(1.2)

with respect to an element \(F\) which is invariant under the adjoint action of \(I_D\)

\[F \in 1 + h \left(U \mathfrak{g} \otimes \mathfrak{h}[h] \right)^{I_D} \]

Our motivation for studying (1.2) comes from the theory of quasi–Coxeter quasitriangular quasibialgebras [TL3]. These are, informally speaking, bialgebras which carry representations of both Artin’s braid groups \(B_n\) and the generalised braid group \(B_{\mathfrak{g}}\) of type \(\mathfrak{g}\) on the tensor products of their finite–dimensional modules. One of the main results in [TL3] is the rigidity of quasi–Coxeter quasitriangular quasibialgebra structures on \(U \mathfrak{g}[h]\). In conjunction with the results of [TL4], this shows in particular that the monodromy of the Casimir connection introduced in [MTL] is described by Lusztig’s quantum Weyl group operators [Lu], thus proving a conjecture formulated independently by the author [TL1, TL2] and De Concini (unpublished). The rigidity result of [TL3] depends on Drinfel’d’s uniqueness theorem for quasitriangular quasibialgebra deformations of \(U \mathfrak{g}\) [Dr2] and on the uniqueness, up to gauge transformations, of solutions of (1.2) when \(I_D\) is of corank 1.

Rather than incorporating the required uniqueness result into [TL3], we decided to study the existence of solutions of (1.2) as well and present our results in a separate publication. These may in fact be of independent interest since the relevant deformation complex turns out to be a perturbation of the Chevalley–Eilenberg complex for a suitable, non–coboundary Lie algebra structure on \(\mathfrak{g}^*\). Our method is very close to that of Donin–Shnider [DS, §3] who solved the equation (1.2) when \(D\) is empty, so that \(I_D = \mathfrak{h}\) and \(\Phi_D = 1 \otimes 3\), and \(\Phi\) satisfies in addition

\[\Phi^{321} = \Phi^{-1} \quad \text{and} \quad \Phi^\Theta = \Phi\]

(1.3)

where \(\Theta \in \text{Aut}(\mathfrak{g})\) is an involution acting as \(-1\) on \(\mathfrak{h}\). The possibility of ladder ing down, that is solving (1.2) only when \(|D \setminus D| = 1\) allows us to bypass the use of (1.3) and to construct in §5 a suitable \(F\) under the sole assumption that \(\Phi_D\) is the projection of \(\Phi\) with respect to the generalised Harish–Chandra homomorphism \((U \mathfrak{g} \otimes \mathfrak{h})^{I_D} \rightarrow (U \mathfrak{g} \otimes \mathfrak{h})^{I_D}\) defined in §2. Our proof proceeds along the lines of Donin and Shnider’s, the main difference being in the cohomology theory needed to deal with secondary obstructions, which is defined and computed in §4. The uniqueness of solutions of (1.2) is obtained in §6 under the weaker assumption that the infinitesimal of \(\Phi\) projects onto that of \(\Phi_D\) and that either \(I_D\) is of corank 1 or \(F\) satisfies \(F^{\Theta} = F^{21}\). Section 3 contains some standard material on the classical Yang–Baxter equations.
Remark 1.1. A non–cohomological proof of the existence of F may be given in the case where Φ and Φ_D are Lie associators by adapting Etingof and Kazhdan’s method [EK]. The latter corresponds to the case when $I_D = \mathfrak{h}$ but can be modified by replacing the Verma modules used in [EK] by their generalised counterparts obtained by inducing from the parabolic subalgebra $\mathfrak{p}_D \subset \mathfrak{g}$ corresponding to D.

2. Generalised Harish–Chandra homomorphisms

For each $k \geq 1$, we define below an algebra homomorphism

$$\pi^k_D : (U\mathfrak{g}^{\otimes k})^{\mathcal{C}D} \rightarrow U\mathfrak{g}^{\otimes k}$$

which restricts to the identity on $U\mathfrak{g}^{\otimes k}$ and is equivariant with respect to adjoint action of I_D. For $D = \emptyset$ and $k = 1$, π^1_D is the Harish–Chandra homomorphism $\pi : U\mathfrak{g}^\mathfrak{b} \rightarrow U\mathfrak{h}$. The definition of π^1_D is similar to that of π, see e.g., [Di, §7.4.1–7.4.3] which we follow closely. Write

$$\mathfrak{g} = \mathfrak{n}^-_D \oplus I_D \oplus \mathfrak{n}^+_D$$

where the nilpotent subalgebras \mathfrak{n}^+_D are spanned by the roots vectors e_α, f_α respectively, with α ranging over the positive roots of \mathfrak{g} not lying in the root system R_D of \mathfrak{g}_D. Set

$$I_k = (U\mathfrak{g}^{\otimes k})^{\mathcal{C}D} \cap \sum_{i=1}^k U\mathfrak{g}^{\otimes k} \cdot (\mathfrak{n}^+_D)_i$$

where, for $y \in U\mathfrak{g}$,

$$y_i = 1^{\otimes (i-1)} \otimes y \otimes 1^{\otimes (k-i)} \in U\mathfrak{g}^{\otimes k}$$

Proposition 2.1.

(i) $I_k = (U\mathfrak{g}^{\otimes k})^{\mathcal{C}D} \cap \sum_{i=1}^k (\mathfrak{n}^-_D)_i \cdot U\mathfrak{g}^{\otimes k}$.

(ii) I_k is a two–sided ideal in $(U\mathfrak{g}^{\otimes k})^{\mathcal{C}D}$ invariant under the adjoint action of I_D.

(iii) $(U\mathfrak{g}^{\otimes k})^{\mathcal{C}D} = I_k \oplus U\mathfrak{g}^{\otimes k}$.

Proof. (i) By the PBW theorem,

$$U\mathfrak{g}^{\otimes k} \cong U\mathfrak{n}^- D^{\otimes k} \otimes U\mathfrak{l}^D^{\otimes k} \otimes U\mathfrak{n}^+ D^{\otimes k}$$

is spanned by the monomials

$$u(q_1^j; x; p_i^j) = f^q_{\beta_1,1} \cdots f^q_{\beta_m,1} \cdots f^q_{\beta_1,k} \cdots f^q_{\beta_m,k} \cdot x^e_{\beta_1,1} \cdots e^q_{\beta_m,1} \cdots e^q_{\beta_1,k} \cdots e^q_{\beta_m,k}$$

where $x \in U\mathfrak{l}^D$, β_1, \ldots, β_m are the positive roots in $R_\emptyset \setminus R_D$ and $q_1^j, p_i^j \in \mathbb{N}$. Let $\iota^* : \mathfrak{h}^* \rightarrow \mathfrak{c}_D^*$ be the restriction map. Since $u(q_1^j; x; p_i^j)$ has weight $\iota^* \sum_{i,j} p_{i,j} \beta_j - \iota^* \sum_{i,j} q_{i,j} \beta_j$ for the adjoint action of \mathfrak{c}_D, $(U\mathfrak{g}^{\otimes k})^{\mathcal{C}D}$ is spanned by the $u(q_1^j; x; p_i^j)$ such that

$$\iota^* \sum_{i,j} p_{i,j} \beta_j = \iota^* \sum_{i,j} q_{i,j} \beta_j$$
Note that, since each \(\beta_j \) restricts on \(\mathfrak{c}_D \) to a non–trivial linear combination of the simple roots \(\alpha_\ell \not\in D \), with non–negative coefficients, \(\sum_{i,j} \pi_{i,j} \beta_j = 0 \) iff \(\sum_{i,j} \pi_{i,j} = 0 \). It follows that

\[
I_k = \langle u(q_{i,j}^j; x; p_{i,j}^j) \rangle \subseteq (U\mathfrak{g}^{\otimes k})^{\mathfrak{c}_D} \sum_{i,j} p_{i,j}^j > 0
\]

\[
= \langle u(q_{i,j}^j; x; p_{i,j}^j) \rangle \subseteq (U\mathfrak{g}^{\otimes k})^{\mathfrak{c}_D} \sum_{i,j} q_{i,j}^j > 0
\]

\[
= (U\mathfrak{g}^{\otimes k})^{\mathfrak{c}_D} \cap \bigoplus_{i=1}^k (\mathfrak{n}_D^-)_i \cdot U\mathfrak{g}^{\otimes k}
\]

as claimed. (ii) \(I_k \) is a left ideal by definition and, by (i), it is also a right ideal. It is moreover invariant under the adjoint action of \(\mathfrak{l}_D \) since \(\mathfrak{n}_D^- \) are.

(iii) is now obvious ■

Corollary 2.2. The projection \(\pi_\mathfrak{c}_D^k \) of \((U\mathfrak{g}^{\otimes k})^{\mathfrak{c}_D} \) onto \(U\mathfrak{g}^{\otimes k}_D \) defined by the ideal \(I_k \) is equivariant for the adjoint action of \(\mathfrak{l}_D \) and therefore gives rise to the following commutative diagram of algebra homomorphisms

\[
\begin{array}{ccc}
(U\mathfrak{g}^{\otimes k})^{\mathfrak{c}_D} & \xrightarrow{\pi_\mathfrak{c}_D^k} & U\mathfrak{g}^{\otimes k}_D \\
\bigcup & & \bigcup \\
\bigcup & & \bigcup \\
(U\mathfrak{g}^{\otimes k})^{\mathfrak{l}_D} & \xrightarrow{\pi_\mathfrak{l}_D^k} & (U\mathfrak{g}^{\otimes k})^{\mathfrak{g}_D}
\end{array}
\]

where the rightmost horizontal arrows are induced by the Lie algebra projection \(\mathfrak{l}_D \rightarrow \mathfrak{g}_D \).

Definition 2.3. We denote the composition of the horizontal arrows by \(\overline{\pi}_\mathfrak{c}_D^k \) and refer to \(\overline{\pi}_\mathfrak{l}_D^k \) or \(\overline{\pi}_\mathfrak{g}_D^k \) as generalised Harish–Chandra homomorphisms.

Note that \(\overline{\pi}_D^k \) and \(\overline{\pi}_D^l \) are equivariant under the natural action of the symmetric group \(\mathfrak{S}_k \). We record for later use the following two results

Proposition 2.4. For any \(i, l \leq k \), \(x \in (U\mathfrak{g}^{\otimes k})^{\mathfrak{c}_D} \) and \(y \in (U\mathfrak{g}^{\otimes l})^{\mathfrak{c}_D} \), one has

\[
\text{id}^{\otimes i} \otimes \Delta \otimes \text{id}^{\otimes (k-i-1)} \circ \pi_\mathfrak{c}_D^k(x) = \pi_\mathfrak{c}_D^{k+1} \circ \text{id}^{\otimes i} \otimes \Delta \otimes \text{id}^{\otimes (k-i-1)}(x) \quad (2.1)
\]

\[
1^{\otimes i} \circ \pi_\mathfrak{l}_D^l(y) \otimes 1^{\otimes (k-l-i)} = \pi_\mathfrak{g}_D^k(1^{\otimes i} \otimes y \otimes 1^{\otimes (k-l-i)}) \quad (2.2)
\]

These identities remain valid if \(\pi_\mathfrak{c}_D^k, \pi_\mathfrak{c}_D^{k+1} \) and \(\pi_\mathfrak{l}_D^l \) are replaced by \(\overline{\pi}_\mathfrak{c}_D^k, \overline{\pi}_\mathfrak{l}_D^k \) and \(\overline{\pi}_\mathfrak{g}_D^k \) respectively.

Proof. Let

\[
\gamma = \text{id}^{\otimes i} \otimes \Delta \otimes \text{id}^{\otimes (k-i-1)} : U\mathfrak{g}^{\otimes k} \rightarrow U\mathfrak{g}^{\otimes (k+1)}
\]
Since γ is equivariant for the adjoint action of \mathfrak{g}, it maps $(U\mathfrak{g}^{\otimes k})^{c_D}$ to $(U\mathfrak{g}^{\otimes (k+1)})^{c_D}$ so that the right-hand side of (2.1) is well-defined. One readily checks that

$$\gamma(I_k) \subset I_{k+1}$$

and that $\gamma(U_{i_D}^{\otimes k}) \subset U_{i_D}^{\otimes (k+1)}$ so that (2.1) holds. (2.2) is proved in the same way. The fact that these identities hold when π_{i_D} is replaced by π_{j_D} throughout follows from the fact that $\pi_{i_D}^{j_D} = \pi^{\otimes j} \circ \pi^{j_D}$ where $\pi : U_{i_D} \to U\mathfrak{g}_D$ is a Hopf algebra homomorphism.

Corollary 2.5. Let $d_H : U\mathfrak{g}^{\otimes k} \to U\mathfrak{g}^{\otimes (k+1)}$ be the Hochschild differential given by

$$d_H x = 1 \otimes x + \sum_{i=1}^{k} (-1)^i \mathrm{id}^{\otimes(i-1)} \otimes \Delta \otimes \mathrm{id}^{\otimes(k-i)} (x) + (-1)^{k+1} x \otimes 1 \quad (2.3)$$

Then,

$$d_H \circ \pi_{i_D}^k = \pi_{i_D}^{k+1} \circ d_H \quad \text{and} \quad d_H \circ \pi_{j_D}^k = \pi_{j_D}^{k+1} \circ d_H$$

3. **Classical Yang–Baxter equations**

We review below some well-known results on the classical Yang–Baxter equations due to Drinfeld [Dr1].

Define the classical Yang–Baxter map $Y_B : \mathfrak{g}^{\otimes 2} \otimes \mathfrak{g}^{\otimes 2} \to \mathfrak{g}^{\otimes 3}$ by

$$Y_B(r,s) = [r^{12}, s^{13}] + [r^{13}, s^{23}] + [s^{12}, r^{13} + r^{23}] + [s^{13}, r^{23}]$$

Identify the exterior algebra $\wedge \mathfrak{g}$ with its image in the tensor algebra $T\mathfrak{g}$ via the antisymmetrisation map

$$X_1 \wedge \ldots \wedge X_k \longrightarrow \mathrm{Alt}_k (X_1 \otimes \ldots \otimes X_k) = \frac{1}{k!} \sum_{\sigma \in S_k} (-1)^{\sigma(1)} X_{\sigma(1)} \otimes \ldots \otimes X_{\sigma(k)}$$

One readily checks that if $r, s \in \wedge^2 \mathfrak{g}$, then

$$Y_B(r,s) = 6 \mathrm{Alt}_3 [r^{12}, s^{13}] \quad (3.1)$$

Lemma 3.1. If $r = r_1 \wedge r_2$, $s = s_1 \wedge s_2 \in \wedge^2 \mathfrak{g}$, then

$$Y_B(r,s) = \frac{3}{2} \sum_{1 \leq i,j \leq 2} [r_i, s_j] \wedge r_{3-i} \wedge s_{3-j} \quad (3.2)$$

Proof. We have

$$4[r^{12}, s^{13}] = [r_1, s_1] \otimes r_2 \otimes s_2 - [r_1, s_2] \otimes r_2 \otimes s_1 - [r_2, s_1] \otimes r_1 \otimes s_2 + [r_2, s_2] \otimes r_1 \otimes s_1$$

Antisymmetrising both sides and using (3.1), we find (3.2) ■

Let (\cdot, \cdot) be a non-degenerate, ad-invariant, symmetric bilinear form on \mathfrak{g} and let $\Omega = \sum_i x_i \otimes x^i$, where $\{x_i\}, \{x^i\}$ are dual basis of \mathfrak{g} with respect
to \((\cdot,\cdot)\), be the corresponding symmetric, invariant tensor in \(\mathfrak{g} \otimes \mathfrak{g}\). It is well–know that \([\Omega_{12},\Omega_{23}]\) lies in \((\bigwedge^3 \mathfrak{g})^\mathfrak{g}\) and generates it if \(\mathfrak{g}\) is simple. Let

\[
 r_\mathfrak{g} = \sum_{\alpha > 0} \frac{(\alpha, \alpha)}{2} e_\alpha \wedge f_\alpha \in \bigwedge^2 \mathfrak{g}
\]

(3.3)

where \(e_\alpha \in \mathfrak{g}_\alpha, f_\alpha \in \mathfrak{g}_{-\alpha}\) are root vectors such that \([e_\alpha, f_\alpha] = h_\alpha\) so that

\[
 (e_\alpha, f_\alpha) = \frac{1}{2}(h_\alpha, e_\alpha), f_\alpha) = \frac{1}{2}(h_\alpha, [e_\alpha, f_\alpha]) = \frac{1}{2} (h_\alpha, h_\alpha) = \frac{2}{(\alpha, \alpha)}
\]

(3.4)

By the following result, \(r_\mathfrak{g}\) is a solution of the modified classical Yang–Baxter equation (MCYBE), that is the equation

\[
 [r_\mathfrak{g}^{12}, r_\mathfrak{g}^{23} + r_\mathfrak{g}^{13}] + [r_\mathfrak{g}^{13}, r_\mathfrak{g}^{23}] \in (\bigwedge^3 \mathfrak{g})^\mathfrak{g}
\]

(3.5)

Proposition 3.2 (Drinfeld).

\[
 YB(r_\mathfrak{g}, r_\mathfrak{g}) = \frac{1}{2}[\Omega_{12}, \Omega_{23}]
\]

Remark 3.3. We shall refer to \(r_\mathfrak{g}\) given by (3.3) as the standard (Drinfeld) solution of the MCYBE corresponding to the bilinear form \((\cdot,\cdot)\).

4. **CLASSICAL \(r\)–MATRICES AND CHEVALLEY–EILENBERG COHOMOLOGY**

4.1. The aim of this section is to compute the cohomology of the complex

\[
 ((\bigwedge \mathfrak{g})^{\mathfrak{g}_D}, d) \quad \text{where} \quad d = [r_\mathfrak{g} - r_{\mathfrak{g}_D}, \cdot]
\]

is given by the Schouten bracket with the difference of the standard solutions of the modified classical Yang–Baxter equations for \(\mathfrak{g}\) and \(\mathfrak{g}_D\) respectively.

The computation is carried out by identifying \(d\) with a perturbation of the Chevalley–Eilenberg differential on \(\bigwedge \mathfrak{g} = \bigwedge (\mathfrak{g}^*)^*\) induced by a suitable Lie algebra structure on \(\mathfrak{g}^*\). When \(D = \emptyset\), so that \(l_D = \mathfrak{h}\), this identification is well–known and follows readily from the fact that the relevant Lie algebra structure on \(\mathfrak{g}^*\) is given in terms of the cobracket \(\delta : \mathfrak{g} \to \mathfrak{g} \wedge \mathfrak{g}\) defined by

\[
 \delta(X) = [r_\mathfrak{g}, X] = -\text{ad}(X)r_\mathfrak{g}
\]

When \(D \neq \emptyset\) the relevant Lie algebra structure on \(\mathfrak{g}^*\) is described in §4.4 and is not of coboundary type. We begin with a few reminders.

4.2. Recall that the Schouten bracket

\[
 \mathbb{[},\mathbb{]} : \bigwedge^k \mathfrak{g} \otimes \bigwedge^l \mathfrak{g} \to \bigwedge^{k+l-1} \mathfrak{g}
\]
on the exterior algebra $\bigwedge \mathfrak{g}$ is defined by

$$[[X_1 \land \cdots \land X_k, Y_1 \land \cdots \land Y_l]] = \sum_{i,j} (-1)^{i+j}[[X_i, Y_j] \land X_1 \land \cdots \land \hat{X}_i \land \cdots \land X_k \land Y_1 \land \cdots \land \hat{Y}_j \land \cdots \land Y_l]$$

(4.1)

The Schouten bracket satisfies

$$[[X, Y]] = -(-1)^{(k-1)(l-1)}[[Y, X]]$$

for any $X \in \bigwedge^k \mathfrak{g}$ and $Y \in \bigwedge^l \mathfrak{g}$ and

$$[[X, [Y, Z]]] = \left([[X, Y], Z] + (-1)^{(k-1)(l-1)}[[Y, [X, Z]]] \right)$$

for any such X, Y and $Z \in \bigwedge \mathfrak{g}$, and therefore endows $\bigwedge \mathfrak{g}$ with the structure of a \mathbb{Z}–graded Lie algebra, provided its grading is defined by

$$\text{deg}(\bigwedge^k \mathfrak{g}) = k - 1$$

Moreover, since

$$[[X, Y] \land Z]] = [[X, Y]] \land Z + (-1)^{(k-1)(l-1)}[[Y, [X, Z]]]$$

for any $X \in \bigwedge^k \mathfrak{g}$ and $Y \in \bigwedge^l \mathfrak{g}$, the map $X \mapsto [[X, Y]]$ is a homomorphism of $\bigwedge \mathfrak{g}$ into the \mathbb{Z}–graded Lie algebra of derivations of the exterior algebra $\bigwedge \mathfrak{g}$ endowed with its standard grading.

Note that any $r \in \bigwedge^2 \mathfrak{g}$ defines a degree 1 derivation $d_r = [r, \cdot]$ of $\bigwedge \mathfrak{g}$. Its square is readily computed from

$$d_r^2(Y) = [r, [r, Y]] = [[[r, r], Y] - [r, [r, Y]]] = [[[r, r], Y] - d_r^2(Y)$$

Since d_r^2 is also an algebra derivation of $\bigwedge \mathfrak{g}$, and $[[X, Y]] = -\text{ad}(Y)X$ for any $X \in \bigwedge \mathfrak{g}$ and $Y \in \mathfrak{g}$, d_r is a differential if, and only if

$$[r, r] \in (\bigwedge \mathfrak{g})^g$$

and therefore, by lemma 3.1, iff r is a solution of the MCYBE (3.5).

4.3. Let now

$$r_\mathfrak{g} \in \bigwedge^2 \mathfrak{g} \quad \text{and} \quad r_{\mathfrak{g}D} \in \bigwedge^2 \mathfrak{g}_D$$

be solutions of the MCYBE for \mathfrak{g} and \mathfrak{g}_D respectively such that $r_\mathfrak{g} - r_{\mathfrak{g}D}$ is invariant under \mathfrak{g}_D. This is the case for example if both $r_\mathfrak{g}$ and $r_{\mathfrak{g}D}$ are the standard solutions (3.3) of MCYBE relative to a non–degenerate, ad–invariant bilinear form (\cdot, \cdot) on \mathfrak{g} and its restriction to \mathfrak{g}_D respectively.
Indeed, \mathfrak{n}_D^+ and \mathfrak{n}_D^- are invariant under the adjoint action of \mathfrak{g}_D and (\cdot, \cdot) yields a \mathfrak{g}_D-equivariant identification $(\mathfrak{n}_D^+)^* \cong \mathfrak{n}_D^-$ with respect to which

$$r_\mathfrak{g} - r_{\mathfrak{g}_D} = \sum_{\alpha \in R_\mathfrak{g}^+ \setminus R_D} \frac{(\alpha, \alpha)}{2} e_\alpha \wedge f_\alpha$$ \hspace{1cm} (4.2)$$

is the image in $\bigwedge^2 (\mathfrak{n}_D^+ \oplus \mathfrak{n}_D^-)$ of

$$\text{id}_{\mathfrak{n}_D^+} \in \text{End}(\mathfrak{n}_D^+) \cong \mathfrak{n}_D^+ \otimes \mathfrak{n}_D^- \subset (\mathfrak{n}_D^+ \oplus \mathfrak{n}_D^-)^{\otimes 2}$$

under the projection $(\mathfrak{n}_D^+ \oplus \mathfrak{n}_D^-)^{\otimes 2} \to \bigwedge^2 (\mathfrak{n}_D^+ \oplus \mathfrak{n}_D^-)$. We shall need the following simple

Lemma 4.1. For any $X = X_1 \wedge \cdots \wedge X_k \in \bigwedge^k \mathfrak{g}$, the following holds on $\bigwedge \mathfrak{g}$

$$[X, \cdot] = (-1)^{k-1} \sum_{i=1}^k (-1)^{i-1} e(X_1 \wedge \cdots \wedge \widehat{X_i} \wedge \cdots \wedge X_k) \cdot \text{ad}(X_i)$$ \hspace{1cm} (4.3)$$

where $e(Y)$ is exterior multiplication by Y. In particular, if $X \in \bigwedge \mathfrak{g}_D$ and $\sum \in (\bigwedge \mathfrak{g})_{\mathfrak{g}_D}$, then $[X, \sum] = 0$.

Proposition 4.2. Let $r_\mathfrak{g}, r_{\mathfrak{g}_D}$ be solutions of the MCYBE for $\mathfrak{g}, \mathfrak{g}_D$ respectively such that $r_\mathfrak{g} - r_{\mathfrak{g}_D}$ is invariant under \mathfrak{g}_D. Then

(i) $[r_\mathfrak{g} - r_{\mathfrak{g}_D}, \cdot]$ leaves $(\bigwedge \mathfrak{g})_{\mathfrak{g}_D}$ invariant.

(ii) Its restriction to $(\bigwedge \mathfrak{g})_{\mathfrak{g}_D}$ coincides with that of $[r_\mathfrak{g}, \cdot]$ and is therefore a differential.

(iii) $[r_\mathfrak{g} - r_{\mathfrak{g}_D}, r_\mathfrak{g} - r_{\mathfrak{g}_D}] = [r_\mathfrak{g}, r_\mathfrak{g}] - [r_{\mathfrak{g}_D}, r_{\mathfrak{g}_D}]$.

Proof. (i) Since $r_\mathfrak{g} - r_{\mathfrak{g}_D}$ is invariant under \mathfrak{g}_D, and the Schouten bracket is equivariant for the adjoint action of \mathfrak{g}, $[r_\mathfrak{g} - r_{\mathfrak{g}_D}, \cdot]$ leaves $(\bigwedge \mathfrak{g})_{\mathfrak{g}_D}$ invariant.

(ii) By Lemma 4.1, $[r_{\mathfrak{g}_D}, Y] = 0$ for any $Y \in (\bigwedge \mathfrak{g})_{\mathfrak{g}_D}$ so that

$$[r_\mathfrak{g} - r_{\mathfrak{g}_D}, Y] = [r_\mathfrak{g}, Y]$$ \hspace{1cm} (4.4)$$

for any such Y. (iii) Since $r_\mathfrak{g} - r_{\mathfrak{g}_D}$ is invariant under \mathfrak{g}_D, we find, by (4.4)

$$[r_\mathfrak{g} - r_{\mathfrak{g}_D}, r_\mathfrak{g} - r_{\mathfrak{g}_D}] = [r_\mathfrak{g}, r_\mathfrak{g}] - [r_{\mathfrak{g}_D}, r_{\mathfrak{g}_D}]$$

as claimed \blacksquare.

Remark 4.3. Note that the proof of (iii) only uses the \mathfrak{g}_D-invariance of $r_\mathfrak{g} - r_{\mathfrak{g}_D}$. Thus, if $r_\mathfrak{g} \in \bigwedge^2 \mathfrak{g}$ is a solution of the MCYBE and $r_{\mathfrak{g}_D} \in \bigwedge^2 \mathfrak{g}_D$ is such that $r_\mathfrak{g} - r_{\mathfrak{g}_D}$ is invariant under \mathfrak{g}_D, then $r_{\mathfrak{g}_D}$ is a solution of the MCYBE for \mathfrak{g}_D. Moreover, if $r_\mathfrak{g}$ is the standard solution of the MCYBE then so is $r_{\mathfrak{g}_D}$. Indeed, if $\pi \in \text{End}(\bigwedge^2 \mathfrak{g})$ is the projection onto \mathfrak{g}_D-invariants, then

$$r_\mathfrak{g} - r_{\mathfrak{g}_D} = \pi(r_\mathfrak{g} - r_{\mathfrak{g}_D})$$

$$= \pi(r_\mathfrak{g} - \pi_D^2(r_\mathfrak{g}) + \pi_D^2(r_\mathfrak{g}) - r_{\mathfrak{g}_D}) = r_\mathfrak{g} - \pi_D^2(r_\mathfrak{g})$$
where the last equality follows from the \mathfrak{g}_D-invariance of $r_{\mathfrak{g}} - \pi_D^2(r_{\mathfrak{g}})$ and the fact that $\pi(\pi_D^2(r_{\mathfrak{g}}) - r_{\mathfrak{g}_D}) \in (\wedge^2 \mathfrak{g}_D)^{\mathfrak{g}_D} = \{0\}$. Thus, $r_{\mathfrak{g}_D} = \pi_D^2(r_{\mathfrak{g}})$ is the standard solution of the MCYBE for \mathfrak{g}_D.

4.4. Identify \mathfrak{g}^* and \mathfrak{g} as vector spaces by using the bilinear form (\cdot, \cdot), and endow \mathfrak{g}^* with the following Lie algebra structure
\[\mathfrak{g}^* = (n_D^+ \oplus \pi_D^-) \times (\mathfrak{g}_D \oplus c_D) \] (4.5)
where π_D^- is n_D^- with the opposite bracket, \mathfrak{g}_D acts on n_D^+ by the adjoint action and c_D acts on n_D^\pm by $\pm 1/2$ times the adjoint action. Denoting the corresponding bracket on \mathfrak{g}^* by $[\cdot, \cdot]^*$, we therefore have
\[[x, y]^* = [x_D, y_D] + [x_D, y_+ + y_-] + [x_+ + x_-, y_D] + [x_+, y_+] - [x_-, y_-] + \frac{1}{2} [x_0, y_+ - y_-] + \frac{1}{2} [x_+ - x_-, y_0] \] (4.6)
where, $z_D \in \mathfrak{g}_D$, $z_\pm \in n_D^\pm$ and $z_0 \in c_D$ are the components of $z \in \mathfrak{g}^*$ corresponding to the decomposition (4.5). Thus, \mathfrak{g}_D is a Lie subalgebra of \mathfrak{g}^* and its coadjoint action on $(\mathfrak{g}^*)^* = \mathfrak{g}$ coincides with its adjoint action on \mathfrak{g}.

Let now $\delta \in \text{End}(\bigwedge \mathfrak{g})$ be the bilinear obtained by regarding $\bigwedge \mathfrak{g}$ as the Chevalley–Eilenberg complex of \mathfrak{g}^*. The following result identifies $[r_{\mathfrak{g}} - r_{\mathfrak{g}_D}, \cdot]$ with a perturbation of δ.

Theorem 4.4. If $r_{\mathfrak{g}}$ and $r_{\mathfrak{g}_D}$ are the standard solutions of the MCYBE corresponding to (\cdot, \cdot) and its restriction to \mathfrak{g}_D respectively, the following holds on $\bigwedge \mathfrak{g}$
\[[r_{\mathfrak{g}} - r_{\mathfrak{g}_D}, \cdot] = 2\delta + e(v_i) \cdot [\text{ad}(v_i) \cdot (1 + 2P_+)]^\wedge \] (4.7)
where $\{v_i\}, \{v'\}$ are basis of \mathfrak{g}_D^* dual with respect to (\cdot, \cdot), $P_+ : \mathfrak{g} \to n_D^+$ is the projection corresponding to the decomposition (4.5) and $T \in \mathfrak{gl}(\mathfrak{g}) \to T^\wedge \in \mathfrak{gl}(\bigwedge \mathfrak{g})$ is the Lie algebra homomorphism given by
\[T^\wedge X_1 \wedge \ldots \wedge X_k = \sum_{i=1}^k X_1 \wedge \ldots \wedge TX_i \wedge \ldots \wedge X_k \]

Proof. It is sufficient to check (4.7) on elements of $\mathfrak{g} \subset \bigwedge \mathfrak{g}$ since both sides are degree 1 algebra derivations of $\bigwedge \mathfrak{g}$. In turn, it is easier to check that the transposes of both sides coincide as maps $\bigwedge^2 \mathfrak{g} \to \mathfrak{g}$. By definition, $\delta^t = [\cdot, \cdot]^*$. Since $e(v)^t = i(v)$ where $i(v)$ is the contraction operator defined by
\[i(v) Y_1 \wedge \cdots \wedge Y_l = \sum_{i=1}^l (-1)^{i-1} (v, Y_i) Y_1 \wedge \cdots \wedge \hat{Y}_i \wedge \cdots \wedge Y_l \]
and $\text{ad}(X)^t = -\text{ad}(X)$ for any $X \in \mathfrak{g}$, we find, using (4.2) and (4.3)
\[[r_{\mathfrak{g}} - r_{\mathfrak{g}_D}, \cdot]^t = \sum_{\alpha \in R_D^+ \setminus R_D} \frac{(\alpha, \alpha)}{2} (\text{ad}(e_\alpha) i f_\alpha - \text{ad}(f_\alpha) i (e_\alpha)) \]
which, applied to \(u \wedge v \in \Lambda^2 g \) yields

\[
\sum_{\alpha \in R^+_g \setminus R_D} \frac{\alpha \cdot \alpha}{2} (f_{\alpha, u}[e_{\alpha, v}] - (f_{\alpha, v}[e_{\alpha, u}] - (e_{\alpha, u})f_{\alpha, v}) + (e_{\alpha, v})f_{\alpha, u})
\]

\[
= [u_+, v] + [u, v_+] - [u_-, v] - [u, v_-]
\]

\[
= 2[u_+, v_+] - 2[u_-, v_-] + [u_0, v_+ - v_-] + [u_+ - u_-, v_0]
\]

\[
+ [u_+, v_D] + [u_D, v_+] - [u_-, v_D] - [u_D, v_-]
\]

Comparing with (4.6), we see that this is equal to

\[
2[u, v]^* - 2[u_D, v_D] - [u_D, v_+] - [u_+ - u_-, v_0]
\]

\[
= 2[u, v]^* - [u_D, v] - [u_0, v_+ - v_-] + [u_+ - u_-, v_D]
\]

\[
= 2[u, v]^* - (1 + 2P_-)([u_D, v] + [u, v_D])
\]

where \(P_- \) is the projection onto \(\mathfrak{n}^-_D \) which commutes with the adjoint action of \(g_D \). Noting that, for \(x, y \in g \), one has

\[
ad(v^i)(v_i x \wedge y = (v_i x)[v^i, y] - (v_i y)[v^i, x] = [x_D, y] + [x, y_D]
\]

we therefore find

\[
[r_g - r_{g_D},]^i = 2[\cdot, \cdot]^* - (1 + 2P_-)ad(v_i)(v^i)
\]

which yields (4.7) since \(P'_+ = P_+ \).

4.5. Note that \((\bigwedge g)^{I_D} \) is a subcomplex of \((\bigwedge (g^{g_D}, [r_g - r_{g_D},])) \) since \(r_g - r_{g_D} \) is of weight zero. Note also that the restriction of \([r_g - r_{g_D},] \) to

\[
(\bigwedge I_D)^{I_D} = (\bigwedge g^{g_D})^{I_D} \bigwedge \mathfrak{c}_D \subset (\bigwedge g)^{I_D}
\]

is zero since \(r_g - r_{g_D} \) is invariant under \(I_D \).

Theorem 4.5. If \(r_g, r_{g_D} \) are the standard solutions of the MCYBE for \(g, g_D \) respectively, the inclusions

\[
(\bigwedge I_D)^{I_D}, 0) \rightarrow (\bigwedge g)^{I_D}, [r_g - r_{g_D},]) \rightarrow (\bigwedge g)^{g_D}, [r_g - r_{g_D},])
\]

are quasi–isomorphisms.

Proof. Denote \([r_g - r_{g_D},] \) by \(d \). It is sufficient to find an \(I_D \)–equivariant, diagonalisable operator \(C \in \text{End}(\bigwedge g) \) with kernel \(\bigwedge I_D \) and an \(I_D \)–equivariant homotopy \(h \in \text{End}(\bigwedge g) \) such \(dh + hd = C \). Noting that \(\mathfrak{c}_D \subset g^* \) acts on \(\bigwedge g \) via the coadjoint action with non–negative weights only so that the corresponding subspace of invariants is precisely \(\bigwedge I_D \), we see that a suitable \(C \) is given by the Casimir operator

\[
C = \text{ad}^*(t_i) \text{ad}^*(t^i)
\]

where \(\text{ad}^* \) is the coadjoint action of \(g^* \) on \(\bigwedge g \) and \(\{t_i\}, \{t^i\} \) are dual basis of \(\mathfrak{c}_D \) with respect to \((\cdot, \cdot) \). We claim that

\[
h = \text{ad}^*(t_i)t^i
\]
satisfies $dh + hd = 2C$. It is well–known that h satisfies $\delta h + h\delta = C$, where $\delta \in \text{End}(\bigwedge g)$ is the Chevalley–Eilenberg differential. Indeed,

$$
\delta h + h\delta = \delta \text{ad}^*(t_i)(\iota(t^i)) + \text{ad}^*(t_i)\iota(t^i)\delta
$$

$$
= \text{ad}^*(t_i)(\delta \iota(t^i) + \iota(t^i)\delta)
$$

$$
= \text{ad}^*(t_i) \text{ad}^*(t^i)
$$

where we have used the fact that δ is equivariant for ad^* and the identity $\delta \iota(X) + \iota(X)\delta = \text{ad}^*(X), X \in g^*$. By theorem 4.4, it therefore suffices to show that h anticommutes with

$$
k = e(v_j) \cdot [(1 + 2P_+) \cdot \text{ad}(v^j)]^\wedge
$$

Bearing in mind the following identities for $X, Y \in g$ and $T \in \text{gl}(g)$

$$
\iota(X)e(Y) + e(Y)\iota(X) = (X,Y),
$$

$$
[T^\wedge, \iota(X)] = \iota(TX) \quad \text{and} \quad [T^\wedge, e(Y)] = e(TY)
$$

and the fact that $\text{ad}^*(X)^\wedge = \text{ad}^*(X)$ for any $X \in g^*$, we find

$$
k h = e(v_j) \cdot [(1 + 2P_+) \cdot \text{ad}(v^j)]^\wedge \cdot \text{ad}^*(t_i)\iota(t^i)
$$

$$
= \text{ad}^*(t_i)e(v_j) \cdot [(1 + 2P_+) \cdot \text{ad}(v^j)]^\wedge \cdot \iota(t^i)
$$

$$
= -\text{ad}^*(t_i)\iota(t^i)e(v_j) \cdot [(1 + 2P_+) \cdot \text{ad}(v^j)]^\wedge
$$

as claimed \blacksquare

Since $(\bigwedge^i g_D)^{\otimes D} = 0$ for $i = 1, 2$, we obtain in particular the following

Corollary 4.6.

$$
H^1((\bigwedge g)^{\otimes D}; [r_g - r_{g_D}, \cdot]) \cong \mathfrak{c}_D
$$

$$
H^2((\bigwedge g)^{\otimes D}; [r_g - r_{g_D}, \cdot]) \cong \bigwedge^2 \mathfrak{c}_D
$$

$$
H^3((\bigwedge g)^{\otimes D}; [r_g - r_{g_D}, \cdot]) \cong \bigwedge^3 \mathfrak{c}_D \oplus (\bigwedge g_D)^{\otimes D}
$$

5. **Existence of twists**

5.1. Let

$$
\Phi \in 1^{\otimes 3} + h^2 (Ug^{\otimes 3}[h])^g
$$

be a solution of the pentagon equation (1.1). We shall need to assume that Φ is non–degenerate in the sense defined below. Write

$$
\Phi = 1^{\otimes 3} + h^2 \varphi \mod h^3 \quad \text{where} \quad \varphi \in (Ug^{\otimes 3})^g
$$

Taking the coefficient of h^2 in the pentagon relation for Φ, we find that $d_H \varphi = 0$ where d_H is the Hochschild differential given by (2.3). Thus,

$$
\text{Alt}_3(\varphi) \in (\bigwedge g)^g = \bigoplus_i (\bigwedge g_i)^{g_i}
$$

(5.1)
where \(g_i \) are the simple factors of \(g \).

Definition 5.1. \(\Phi \) is a non-degenerate solution of the pentagon equation if the components of \(\text{Alt}_3(\varphi) \) along the decomposition (5.1) are all non-zero.

Since each \((\bigwedge^3 g_i)^0 \) is one-dimensional and generated by \([\Omega_{12}^i, \Omega_{23}^i] \), where \(\Omega^i \in (g_i \otimes g_i)^0 \) is the symmetric element corresponding to the Killing form of \(g_i \), \(\Phi \) is a non-degenerate solution of the pentagon equation iff

\[
\text{Alt}_3(\varphi) = \frac{1}{6} [\Omega_{12}, \Omega_{23}] \quad (5.2)
\]

where \(\Omega \in (g \otimes g)^0 \) corresponds to a non-degenerate, ad-invariant, symmetric bilinear form \((\cdot, \cdot) \) on \(g \).

Let now \(D \subseteq D_\emptyset \) be a subdiagram, and set

\[
\Phi_D = \pi_D^3(\Phi) \in 1 + h^2 \left(U(g_D \otimes [h]) \right)^{D_D}
\]

where \(\pi_D^3 \) is the generalised Harish-Chandra homomorphism defined in §2. By proposition 2.4, \(\Phi_D \) satisfies the pentagon equation. Note that \(\Phi_D \) is non-degenerate if \(\Phi \) is.

Theorem 5.2. If \(\Phi \) is non-degenerate, there exists an element

\[
F \in 1^\otimes 2 + h \left(U(g \otimes [h]) \right)^{D_D}
\]

such that

\[
(\Phi)_F = \Phi_D \quad \text{and} \quad \pi_D^2(F) = 1 \otimes 1 \quad (5.3)
\]

Modulo \(h^2 \), one has

\[
F = 1^\otimes 2 + h(r_g - r_{g_D})
\]

where \(r_g, r_{g_D} \) are the standard solutions of the MCYBE for \(g \) and \(g_D \) corresponding to \((\cdot, \cdot) \). If \(\Phi \) satisfies in addition

\[
\Phi^{321} = \Phi^{-1} \quad \text{and} \quad \Phi^\Theta = \Phi \quad (5.4)
\]

where \(\Theta \in \text{Aut}(g) \) is an involution acting as \(-1\) on \(h \), then \(F \) may be chosen such that

\[
F^\Theta = F^{21} \quad (5.5)
\]

Remark 5.3. If \(\Phi \) is an associator, that is satisfies in addition \(\text{id} \otimes \varepsilon \otimes \text{id}(\Phi) = 1^\otimes 2 \), where \(\varepsilon : Ug \to C \) is the counit, then so is \(\Phi_D \) since one checks that \(\pi_D^{321} \otimes \varepsilon \otimes \pi_D^{k-1} \circ \pi_D^{k-1} \circ \pi_D^3 = \pi_D^{k-1} \circ \pi_D^{k-1} \circ \pi_D^{321} \). In this case, it follows from (5.3) that \(F \) is a twist, i.e., satisfies \(\varepsilon \otimes \text{id}(F) = 1 = \text{id} \otimes \varepsilon(F) \).

5.2. The proof of theorem 5.2 is given in §5.3–§5.8. It closely follows the argument of Donin–Shnider [DS, §3] where theorem 5.2 is proved, under the additional assumption (5.4), in the case \(D = \emptyset \). The reader familiar with Donin and Shnider’s argument will readily recognize that a relevant difference is that the cohomology group

\[
H^3(\bigwedge g; [r_g, \cdot]) \simeq \bigwedge h \quad (5.6)
\]
which governs the secondary obstructions theory in [DS] is replaced by the group

\[H^3((\bigwedge g)^{BD}, [r_g - r_{gD}, \cdot]) \cong \bigwedge^3 \mathfrak{c}_D \bigoplus (\bigwedge^3 gD)^{BD} \]

(5.7)

which was computed in §4. Another significant difference is that the possibility of laddering down from \(D_g \) to \(D \) through intermediate diagrams, as explained in §5.3, allows in effect to assume that \(\mathfrak{c}_D \) is at most two-dimensional, thus killing the first component of the secondary obstruction in (5.7) and rendering the assumption (5.4) unnecessary to prove the existence of \(F \).

5.3. Although we will only use this from §5.7 onwards, note that we may assume that \(| D_g \setminus D| \leq 2\). Indeed, assume theorem 5.2 proved in this case and let

\[D_g = D_1 \supset D_2 \supset \cdots \supset D_{m-1} \supset D_m = D \]

be a nested chain of diagrams such that \(| D_j \setminus D_{j+1}| \leq 2\). For any pair \(D'' \subseteq D' \subseteq D_g \), denote by \(\mathfrak{c}_{D'', D'} \subset \mathfrak{g} \) the span of the fundamental coweights \(\lambda_k^\vee \), with \(k \) such that \(\alpha_k \subset D' \setminus D'' \) and by

\[\pi^k_{D''', D'} : U^{\otimes k}_{D'''} \mathfrak{c}_{D''', D'} \rightarrow U^{\otimes k}_{D''} \]

the corresponding generalised Harish–Chandra homomorphism. Set \(\Phi_1 = \Phi \) and, for \(j = 1 \ldots m-1 \)

\[\Phi_{j+1} = \pi^3_{D_{j+1}, D_j}(\Phi_j) = \pi^3_{D_{j+1}, D_g}(\Phi) \]

so that \(\Phi_m = \Phi_D \). Let

\[F_j \in 1^{\otimes 2} + h(U^{\otimes 2}_{D_j}[h])^{BD_{j+1}} \]

be such that

\[(\Phi_j)F_j = \Phi_{j+1} \quad \text{and} \quad \pi^2_{D_{j+1}, D_j}(F_j) = 1^{\otimes 2} \]

then

\[F = F_{m-1} \cdots F_1 \]

is readily seen to satisfy (5.3). Note that if \(\Phi \) satisfies in addition (5.4) then so does each \(\Phi_j \) since \(\pi^k_D \) is equivariant for the action of the symmetric group \(\mathfrak{S}_k \) and of \(\Theta \). In that case, choosing each \(F_j \) such that \(F_j^\Theta = F_j^{21} \) yields an \(F \) which satisfies \(F^\Theta = F^{21} \).

5.4. We begin by solving equation (5.3) mod \(h^2 \). Let \(f \in (U^{\otimes 2})^{1D} \) and set \(F = 1^{\otimes 2} + hf \). Since \(\Phi \) and \(\Phi_D \) are equal to \(1^{\otimes 3} \) mod \(h^2 \), the coefficient of \(h \) in \((\Phi)_F - \Phi_D\) is

\[1 \otimes f + \text{id} \otimes \Delta(f) - \Delta \otimes \text{id}(f) - f \otimes 1 = d_H f \]

Thus, \(F \) is a solution of (5.3) mod \(h^2 \) if, and only if, \(f \) is a Hochschild 2–cocycle such that \(\pi^2_D f = 0 \).
5.5. Let now \(n \geq 1 \) and let
\[
F = 1 \otimes^2 + hf + \cdots + h^n f_n \in 1 \otimes^2 + h(Ug \otimes^2 [h]) I_D
\]
be a solution of (5.3) mod \(h^{n+1} \). We shall derive below a necessary and sufficient condition for (5.3) to possess a solution mod \(h^{n+2} \) of the form
\[
\tilde{F} = F + h^{n+1} f_{n+1}
\]
where, for any \(\Psi \)
\[
f_{n+1} \in (Ug \otimes^2) I_D \quad \text{satisfies} \quad \pi^2_D(f_{n+1}) = 0
\]
Define \(\xi \in Ug \otimes^3 \) by
\[
1 \otimes F \cdot \id \otimes \Delta(F) \cdot \Phi - \Phi_D \cdot F \otimes 1 \cdot \Delta \otimes \id(F) = h^{n+1} \xi \quad \text{mod} \ h^{n+2}
\] (5.8)
Then, \(\tilde{F} \) is a solution of (5.3) mod \(h^{n+2} \) if, and only if \(d_H f_{n+1} = -\xi \).

Lemma 5.4. The element \(\xi \) is invariant under \(I_D \) and satisfies
\[
d_H \xi = 0 \quad \text{and} \quad \pi^2_D(\xi) = 0
\]

Proof. The invariance of \(\xi \) under \(I_D \) follows from that of \(\Phi, \Phi_D \) and \(F \).

Since \(F = 1 \otimes^2 \) mod \(h \),
\[
h^{n+1} \xi = (\Phi)_F - \Phi_D \quad \text{mod} \ h^{n+2}
\]
Since \(F \) is invariant under \(g_D \), the restriction of
\[
\Delta_F(\cdot) = F \cdot \Delta(\cdot) \cdot F^{-1}
\]
to \(Ug_D \) is equal to \(\Delta \) and \(\Phi_D \) satisfies the pentagon equation with respect to \(\Delta_F \). Since this is also the case of \((\Phi)_F \), we find, working mod \(h^{n+2} \), that
\[
0 = \text{Pent}_{\Delta_F}((\Phi)_F) = \text{Pent}_{\Delta_F}(\Phi_D) + h^{n+1} d_H \xi = h^{n+1} d_H \xi
\]
where, for any \(\Psi \in Ug \otimes^3 \) and map \(\bar{\Delta} : Ug \to Ug \otimes^2 \),
\[
\text{Pent}_{\bar{\Delta}}(\Psi) = 1 \otimes \Psi \cdot \id \otimes \bar{\Delta} \otimes \id(\Psi) \cdot \Psi \otimes 1 - \id \otimes \bar{\Delta}(\Psi) \cdot \bar{\Delta} \otimes \id \otimes^2(\Psi)
\]
Finally, from \(\pi^2_D(F) = 1 \otimes^2 \) and \(\Phi_D = \pi^3_D(\Phi) \), we get, using proposition 2.4 that
\[
h^{n+1} \pi^2_D(\xi) = (\pi^2_D(\Phi)) \pi^2_D(F) - \Phi_D = 0
\]
\(\blacksquare \)

Lemma 5.5. If \(\Phi \) and \(F \) satisfy (5.4) and (5.5) respectively, then
\[
\xi^\Theta = -\xi^{321}
\] (5.9)

Proof. We have, working mod \(h^{n+2} \),
\[
\Phi_D^\Theta + h^{n+1} \xi^\Theta = 1 \otimes F^{21} \cdot \id \otimes \Delta(F^{21}) \cdot \Phi \cdot \Delta \otimes \id((F^{21})^{-1}) \otimes (F^{21})^{-1} \otimes 1
\]
\[
= (F \otimes 1 \cdot \Delta \otimes \id(F) \cdot \Phi^{321} \cdot \id \otimes \Delta(F^{-1}) \cdot 1 \otimes F^{-1})^{321}
\]
\[
= ((1 \otimes F \cdot \id \otimes \Delta(F) \cdot \Phi \cdot \Delta \otimes \id(F^{-1}) \cdot F^{-1} \otimes 1)^{-1})^{321}
\]
\[
= (((\Phi_D + h^{n+1} \xi)^{-1})^{321}
\]
\[
= (\Phi_D^{-1} - h^{n+1} \xi)^{321}
\]
whence (5.9) since \(\Phi_D = \pi^3_D(\Phi) \) satisfies (5.4) \(\blacksquare \)
Corollary 5.6. The element F may be extended to a solution of (5.3) mod h^{n+2} if, and only if $\text{Alt}_3 \xi = 0$. If in addition Φ, F satisfy (5.4) and (5.5) respectively, the extension may be chosen so as to satisfy (5.5).

Proof. $\text{Alt}_3 \xi = 0$ if, and only if $\xi = \partial_H g$ for some $g \in U \mathfrak{g} \otimes^2 \mathfrak{g}$, which may then be chosen invariant under I_D. By corollary 2.5, we have

$$0 = \pi^3_D \xi = \pi^3_D \partial_H g = \partial_H \pi^2_D g$$

so that, setting $f_{n+1} = -(g - \pi^2_D (g))$ we have

$$\partial_H f_{n+1} = -\xi \quad \text{and} \quad \pi^2_D f_{n+1} = 0$$

and $F + h^{n+1} f_{n+1}$ is a solution of (5.3) mod h^{n+2}. If Φ, F satisfy (5.4) and (5.5) respectively, then, by lemma 5.5

$$\partial_H f\Theta_{n+1} = -\xi^\Theta = \xi^{321} = -(\partial_H f_{n+1})^{321} = \partial_H f_{n+1}^{21}$$

so that $f_{n+1}^{'} = \frac{1}{2}(f_{n+1} + (f_{n+1}^{21})^{\Theta})$ satisfies

$$\partial_H f_{n+1}^{'} = \xi, \quad \pi^2_D f_{n+1}^{'} = 0 \quad \text{and} \quad (f_{n+1}^{'} \Theta = (f_{n+1}^{321})$$

and $F + h^{n+1} f_{n+1}^{'}$ solves (5.3) mod h^{n+2} and satisfies (5.5) \] 5.6. We consider first the case $n = 1$ so that $F = 1 + hf$ where $f \in (U \mathfrak{g} \otimes^2 \mathfrak{g})_{I_D}$. By lemma 5.9 below, adding a 2-coboundary to f does not affect the extendability of F to a solution mod h^3. We may therefore assume that $f \in (\Lambda^2 \mathfrak{g})_{I_D}$. In this case, since Φ and Φ_D are equal to $1 \otimes^3 \mathfrak{g}$ mod h^2, we get

$$\xi = \varphi - \varphi_D + f^{23}(f^{12} + f^{13}) - f^{12}(f^{13} + f^{23})$$

where $\Phi = 1 + h^2 \varphi$ mod h^3 and $\varphi_D = \pi^3_D \varphi$. Thus, F extends to a solution mod h^3 if, and only if,

$$\text{Alt}_3 (\varphi) - \text{Alt}_3 (\varphi_D) = \text{Alt}_3 (f^{12} (f^{13} + f^{23}) - f^{23} (f^{12} + f^{13}))$$

We shall need the following

Lemma 5.7. For any $f, \chi \in \Lambda^2 \mathfrak{g}$, one has

$$\text{Alt}_3 (f^{12} (\chi^{13} + \chi^{23}) + \chi^{12} (f^{13} + f^{23}) - f^{23} (\chi^{12} + \chi^{13}) - \chi^{23} (f^{12} + f^{13})) = [f, \chi]$$

(5.10)

where $[\cdot, \cdot]$ is the Schouten bracket (4.1).

Proof. Since

$$(f^{12} (\chi^{13} + \chi^{23}))^{(1,3)} = f^{23} (\chi^{13} + \chi^{12}),$$

$$(f^{12} \chi^{23})^{(1,2)} = -f^{12} \chi^{13} \quad \text{and} \quad (\chi^{12} f^{13})^{(2,3)} = \chi^{13} f^{12}$$
the left–hand side of (5.10) is equal to
\[
2 \text{Alt}_3 \left(f^{12}(\chi^{13} + \chi^{23}) + \chi^{12}(f^{13} + f^{23}) \right) = 4 \text{Alt}_3(f^{12}\chi^{13} + \chi^{12}f^{13})
\]
\[
= 4 \text{Alt}_3([f^{12}, \chi^{13}])
\]
\[
= \frac{2}{3} \text{YB}(f, \chi)
\]
\[
= [f, \chi]
\]
where we used (3.1) and lemma 3.1 ■

Corollary 5.8. Let \(f \in (\bigwedge^2 g)^{l_D} \) be such that \(\overline{\pi}_D(f) = 0 \). Then, the element
\[
F = 1 + hf
\]
does to a solution \(\tilde{F} \) of (5.3) mod \(h^3 \) if, and only if,
\[
\frac{1}{2}[f, f] = \text{Alt}_3 \varphi - \text{Alt}_3 \varphi_D
\]
In that case, and provided (5.4) holds, \(\tilde{F} \) may be chosen so as to satisfy (5.5).

Let \((\cdot, \cdot)\) be the non–degenerate, ad–invariant, symmetric bilinear form on \(g \) such that
\[
\text{Alt}_3(\varphi) = \frac{1}{6} [\Omega_{12}, \Omega_{23}]
\]
and \(r_g, r_{g_D} \) be the standard solutions of the MCYBE determined by \((\cdot, \cdot)\) and its restriction to \(g_D \) respectively, so that \(\overline{\pi}_D^2(r_g) = r_{g_D} \). We henceforth set
\[
f = r_g - r_{g_D} \in (\bigwedge^2 g)^{l_D}
\]
(5.12)
By corollary 5.8, \(F = 1 + hf \) extends to a solution of (5.3) mod \(h^3 \) which, in addition, satisfies (5.5) if (5.4) holds. Indeed, by proposition 4.2, lemma 3.1 and proposition 3.2, we have
\[
[f, f] = [r_g, r_g] - [r_{g_D}, r_{g_D}]
\]
\[
= \frac{2}{3} (\text{YB}(r_g, r_g) - \text{YB}(r_{g_D}, r_{g_D})) = \frac{1}{3} ([\Omega_{12}, \Omega_{23}] - [\Omega_{12}, \Omega_{23}])
\]
5.7. Assume now \(n \geq 2 \) and let
\[
F = 1 + hf + h^2 f_2 + \ldots + h^n f_n
\]
be a solution of (5.3) mod \(h^{n+1} \). Let \(\xi = \xi(f; f_2, \ldots, f_n) \in U_g^{\otimes 3} \) be given by (5.8). By \S 5.5, \(\xi \) is a Hochschild 3–cocycle and \(F \) extends to a solution mod \(h^{n+2} \) if, and only if \(\xi \) is a coboundary. This, however need not be the case. We note none–the–less that if \(\chi \in (U_g^{\otimes 2})^{l_D} \) satisfies
\[
d_H \chi = 0 \quad \text{and} \quad \overline{\pi}_D(\chi) = 0
\]
then \(F + h^n \chi \) is also a solution of (5.3) mod \(h^{n+1} \) which could admit an extension mod \(h^{n+2} \). By the following result, the extendability of \(F + h^n \chi \) only depends upon the Hochschild cohomology class of \(\chi \).
Lemma 5.9. If χ is a Hochschild 2–coboundary, then the element $F + h^n \chi$ can be extended to a solution mod h^{n+2} of (5.3) if, and only if F can.

Proof. It suffices to prove one implication since $F = (F + h^n \chi) - h^n \chi$. Write $\chi = d_H g$ with $g \in U g^{10}$. By corollary 2.5,

$$0 = \pi^2_D(\chi) = d_H \pi^1_D g$$

so that $\chi = d_H g'$ where $g' = (1 - \pi^1_D) g$ is invariant under I_D and lies in the kernel of π^1_D. Let $\bar{F} = F + h^{n+1} f_{n+1}$ be a solution mod h^{n+2} of (5.3). Then

$$\bar{F}' = u^{\otimes 2} \cdot \bar{F} \cdot \Delta(u)^{-1}$$

where $u = 1 + h^2 g$, is equal to $F + h^n \chi$ mod h^{n+1} and solves (5.3) mod h^{n+2} since

$$(\Phi) \bar{F}' = u^{\otimes 3} \cdot 1 \otimes \bar{F} \cdot \id \otimes \Delta(\bar{F}) \cdot \id \otimes \Delta(\Delta(u))^{-1} \cdot \Phi$$

$$= u^{\otimes 3} \cdot \Phi_D \cdot (u^{\otimes 3})^{-1}$$

where the first equality follows from the g–invariance of Φ and the last from the g_D–invariance of u.

We may therefore assume that χ lies in $(\wedge^2 g)^{10}$. We then note that, for $n \geq 2$,

$$\xi(f; f_2, \ldots, f_n + \chi) = \xi(f; f_2, \ldots, f_n) + f^{23}(\chi^{12} + \chi^{13}) + \chi^{23}(f^{12} + f^{13})$$

$$- f^{12}(\chi^{13} + \chi^{23}) - \chi^{12}(f^{13} + f^{23})$$

so that $F + h^n \chi$ possesses an extension mod h^{n+2} if, and only if,

$$\text{Alt}_3(\xi(f; f_2, \ldots, f_n)) = [f, \chi]$$

where we used lemma 5.7

Proposition 5.10. The element $\bar{\xi} = \text{Alt}_3(\xi) \in (\wedge^3 g)^{10}$ satisfies

$$[f, \bar{\xi}] = 0 \quad \text{and} \quad \pi^2_D(\bar{\xi}) = 0$$

We defer the proof of proposition 5.10 to §5.8 in order to conclude the proof of theorem 5.2. By proposition 5.10, $\bar{\xi}$ is a 3–cocycle in $((\wedge g)^{10}, [f, \cdot])$ and we must show that it is a 3–coboundary. By theorem 4.5

$$\bar{\xi} = [f, \chi] + \eta$$ \hspace{1cm} (5.13)$$

for some $\chi \in (\wedge^2 g)^{10}$ and

$$\eta \in (\bigwedge^3 I_D)^{10} = \bigwedge^3 \epsilon_D \oplus (\bigwedge^3 g_D)^{BD} = (\bigwedge^3 g_D)^{BD}$$

where the first equality follows from the fact that $(\bigwedge^i g_D)^{BD} = 0$ for $i = 1, 2$ and the second from the assumption that $|D g \setminus D| \leq 2$ so that ϵ_D is at
most two–dimensional. Applying π^3_D to both sides of (5.13), we find, since $\pi^2_D(f) = 0$, that

$$0 = \pi^2_D([f, \chi] + \eta) = \eta$$

Note that if Φ, F satisfy (5.4) and (5.5) respectively, then by lemma 5.5

$$\tilde{\xi}^\Theta = \text{Alt}_3(\xi^\Theta) = \text{Alt}_3(-\xi^{321}) = \bar{\xi}$$ \hspace{1cm} (5.14)

Since $f^\Theta = -f$, this implies

$$[[f, \chi]] = [[f, \chi]^\Theta] = -[[f, \chi]]$$

so that $\chi' = 1/2(\chi - \chi^\Theta)$ satisfies $\chi'^\Theta = -\chi' = \chi^{21}$ and $[[f, \chi']] = \bar{\xi}$ and $F + \hbar^n \chi'$ is a solution of (5.3) mod \hbar^{n+1} possessing an extension to a solution mod \hbar^{n+2} satisfying (5.5). This completes the proof of theorem 5.2.

Remark 5.11. If Φ satisfies (5.4), it is not necessary to ladder down, i.e., assume that $|D_\mathfrak{g} \setminus D| \leq 2$. Indeed, by theorem 4.5, there exist unique elements $u \in \wedge^3 c_D$, $v \in (\wedge^3 g_D)^{g_D}$ and a $\chi \in (\wedge^2 g)^{l_D}$ such that

$$\tilde{\xi} = u + v + [[f, \chi]]$$

Since $\tilde{\xi}$ and u are killed by π^3_D, $v = 0$. Applying Θ to both sides and using (5.14), we find that $u^\Theta = u$. This however implies that $u = 0$ since Θ acts by -1 on $\wedge^3 \mathfrak{h} \supseteq \wedge^3 c_D$.

5.8. Proof of proposition 5.10.

We begin with some preliminary lemmas. Let $\Delta : U \mathfrak{g} \rightarrow U \mathfrak{g} \otimes^2$ be a linear map. Let

$$\xi = \xi_1 \otimes \cdots \otimes \xi_k \in U \mathfrak{g} \otimes^k$$

$i \leq k$, and write

$$\Delta(\xi_i) = \sum_a \xi'_{i,a} \otimes \xi''_{i,a}$$

For any enumeration j_1, \ldots, j_{k+1} of $[1, k+1]$, we set

$$\xi^{j_1, \ldots, j_{i-1}, j_i j_{i+1}, j_{i+2}, \ldots, j_{k+1}} = \sum_a \eta_a$$

where $\eta_a \in U \mathfrak{g} \otimes^{(k+1)}$ is the decomposable tensor with component ξ^ℓ in position j_ℓ if $\ell \leq i - 1$ and in position j_{i+1} if $\ell \geq i + 1$ and components $\xi'_{i,a}, \xi''_{i,a}$ in positions j_i and j_{i+1} respectively. In other words,

$$\xi^{j_1, \ldots, j_{i-1}, j_i j_{i+1}, j_{i+2}, \ldots, j_{k+1}} = \sigma(\xi^{1, \ldots, i-1, i, i+1, i+2, \ldots, k+1})$$

$$= \sigma \circ \text{id}^{\otimes (i-1)} \otimes \Delta \otimes \text{id}^{\otimes (k-i)} \xi$$

where $\sigma \in \mathfrak{S}_{k+1}$ is the permutation mapping ℓ to i_ℓ.

Lemma 5.12. For any $\xi \in \bigwedge^k g$, one has

$$(k + 1) \text{Alt}_{k+1} \left(\sum_{i=1}^{k} (-1)^i \text{id}^\otimes (i-1) \otimes \tilde{\Delta} \otimes \text{id}^{(k-i)} \xi \right)$$

$$= \sum_{1 \leq a < b \leq k+1} (-1)^{a+b} \left((\text{Alt}_k \xi)^{ab,1,\ldots,\hat{a},\ldots,k+1} - (\text{Alt}_k \xi)^{ba,1,\ldots,\hat{b},\ldots,k+1} \right)$$

(5.15)

Proof. For any $i \in [1, k]$ and $a \neq b \in [1, k + 1]$, set

$$\mathcal{S}_{i}^{a,b} = \{ \sigma \in S_{k+1} | \sigma(i) = a, \sigma(i + 1) = b \}$$

Then, the left-hand side of (5.15) is equal to

$$\frac{1}{k!} \sum_{1 \leq a < b \leq k+1} (-1)^i \sigma \left((\sigma \xi)^{(i)}_{(1),\ldots,\sigma(i-1),ab,\sigma(i+2),\ldots,\sigma(k+1)} - (\sigma \xi)^{(i)}_{(1),\ldots,\sigma(i-1),ba,\sigma(i+2),\ldots,\sigma(k+1)} \right)$$

$$= \frac{1}{k!} \sum_{1 \leq a < b \leq k+1} (-1)^i (-1)^\sigma \left((\sigma \xi)^{ab,1,\ldots,\hat{a},\ldots,k+1} - (\sigma \xi)^{ba,1,\ldots,\hat{b},\ldots,k+1} \right)$$

where, for any $\sigma \in \mathcal{S}_{k+1}^{a,b}$,

$$\sigma \in \mathcal{S}_{k}^{i} = \{ \tau \in S_{k} | \tau(i) = 1 \}$$

is the permutation determined by the commutativity of the following diagram

$$[1, k] \setminus \{i\} \overset{\sigma}{\longrightarrow} [1, k + 1] \setminus \{i, i + 1\}$$

where the horizontal arrow are the obvious monotone identifications. Noting that $\sigma \rightarrow \sigma$ is an isomorphism of $\mathcal{S}_{k+1}^{a,b}$ onto \mathcal{S}_{k}^{i} and deferring for the time being the proof that

$$(-1)^i (-1)^\sigma = (-1)^{a+b} (-1)^\sigma$$

(5.16)

we see that the above is equal to

$$\frac{1}{k!} \sum_{1 \leq a < b \leq k+1} (-1)^{a+b} (-1)\sigma \left((\sigma \xi)^{ab,1,\ldots,\hat{a},\ldots,k+1} - (\sigma \xi)^{ba,1,\ldots,\hat{b},\ldots,k+1} \right)$$
and therefore to the right–hand side of (5.15). We turn now to the proof of
(5.16). Let \(\sigma \in S_{k-1} \) be the permutation determined by the commutativity
of

\[
[1,k] \ \{i\} \rightarrow [1,k-1] \rightarrow [1,k+1] \ \{i,i+1\}
\]

where the horizontal arrows are the obvious monotone identifications. Since
\((−1)^{\overline{\sigma}} = (−1)^{\overline{\overline{\sigma}}} \cdot (−1)^{i−1} \), it suffices to prove that
\((−1)^{\sigma} = (−1)^{\overline{\overline{\sigma}}} (−1)^{a+b−1} \).
This clearly holds if \(a = 1 \) and \(b = 2 \). In the general case, letting \(\tau \in S_{k+1} \) be
the unique permutation such that \(\tau \) is increasing on \([1,k+1]\ \{a,b\}\), \(\tau(a) = 1 \) and \(\tau(b) = 2 \), so that
\((−1)^{\tau} = (−1)^{a+b−1} \), and noting that \(\overline{\overline{\tau \circ \sigma}} = \overline{\sigma} \), we see
that

\[
(−1)^{\sigma} = (−1)^{a+b−1}(−1)^{\tau \circ \sigma} = (−1)^{a+b−1}(−1)^{\overline{\overline{\tau \circ \sigma}}} = (−1)^{a+b−1}(−1)^{\overline{\overline{\sigma}}}
\]

Lemma 5.13. For any \(Y, X_1, \ldots, X_k \in g \), one has

\[
Y \land X_1 \land \ldots \land X_k = \frac{1}{(k+1)!} \sum_{\tau \in S_k} (-1)^{τ} X_{τ(1)} \otimes \cdots \otimes X_{τ(i−1)} \otimes Y \otimes X_{τ(i)} \otimes \cdots \otimes X_{τ(k)}
\]

(5.17)

Proof. Set \(Z_1 = Y \) and \(Z_j = X_{j−1} \) for \(j = 2 \ldots k+1 \). By definition, \((k+1)!\) times the left–hand side of (5.17) is equal to

\[
\sum_{\tau \in S_{k+1}} (-1)^{\tau} Z_{τ(1)} \otimes \cdots \otimes Z_{τ(k+1)}
\]

\[
= \sum_{1 \leq j \leq k+1} (-1)^{\tau} X_{τ(1)} \otimes \cdots \otimes X_{τ(j−1)} \otimes Y \otimes X_{τ(j+1)} \otimes \cdots \otimes X_{τ(k+1)}
\]

For any \(\tau \in S_{k+1} \) such that \(\tau(j) = 1 \), let \(\overline{\tau} \in S_{k} \) be the permutation
determined by the commutativity of

\[
[1,k] \rightarrow [1,k+1] \ \{j\}
\]

where the horizontal arrows are the obvious monotone identifications. Since
\((−1)^{\overline{\overline{\tau}}} = (−1)^{\overline{\overline{\tau}}} \cdot (−1)^{j−1} \), it suffices to prove that
\((−1)^{\overline{\overline{\tau}}} = (−1)^{\overline{\overline{\tau}}} \cdot (−1)^{a+b−1} \).
This clearly holds if \(a = 1 \) and \(b = 2 \). In the general case, letting \(\tau \in S_{k+1} \) be
the unique permutation such that \(\tau \) is increasing on \([1,k+1]\ \{a,b\}\), \(\tau(a) = 1 \) and \(\tau(b) = 2 \), so that
\((−1)^{\tau} = (−1)^{a+b−1} \), and noting that \(\overline{\overline{\tau \circ \sigma}} = \overline{\sigma} \), we see
that

\[
(−1)^{\sigma} = (−1)^{a+b−1}(−1)^{\tau \circ \sigma} = (−1)^{a+b−1}(−1)^{\overline{\overline{\tau \circ \sigma}}} = (−1)^{a+b−1}(−1)^{\overline{\overline{\sigma}}}
\]
Then, $(-1)\tau = (-1)^{i}(1)^{-1}$ and the above is equal to

$$
\sum_{1 \leq j \leq k+1 \atop \tau \in S_{k+1} : \tau(j) = 1} (-1)^{j-1} \tau X_{\tau(1)} \otimes \cdots \otimes X_{\tau(j-1)} \otimes Y \otimes X_{\tau(j)} \otimes \cdots \otimes X_{\tau(k)}
$$

which proves (5.17) ■

Lemma 5.14. For any $f \in \bigwedge^2 g$ and $\eta \in \bigwedge^k g$, one has

$$
\sum_{1 \leq a < b \leq k+1} (-1)^{a+b} [f_{a,b}, \eta_{a,1,\ldots,\hat{a},\ldots,k+1} + \eta_{b,1,\ldots,\hat{b},\ldots,k+1}] = -\frac{k+1}{2} [f, \eta]
$$

(5.18)

Proof. We may assume that f, η are of the form

$$
f = f_1 \wedge f_2 = \frac{1}{2} (f_1 \otimes f_2 - f_2 \otimes f_1)
$$

$$
\eta = \eta_1 \wedge \ldots \wedge \eta_k = \frac{1}{k!} \sum_{\sigma \in S_k} (-1)^{\sigma} \eta_{\sigma(1)} \otimes \cdots \otimes \eta_{\sigma(k)}
$$

The left–hand side of (5.18) is then equal to

$$
\frac{1}{2k!} \sum_{1 \leq a < b \leq k+1 \atop \sigma \in S_k} (-1)^{a+b} (-1)^{\sigma}
$$

$$
[f_{1}^{a} f_{2}^{b} - f_{2}^{a} f_{1}^{b}, (\eta_{\sigma(1)} \otimes \cdots \otimes \eta_{\sigma(k)})^{a,1,\ldots,\hat{a},\ldots,k+1} + (\eta_{\sigma(1)} \otimes \cdots \otimes \eta_{\sigma(k)})^{b,1,\ldots,\hat{b},\ldots,k+1}]
$$

$$
= \frac{1}{2k!} \sum_{1 \leq a < b \leq k+1 \atop \sigma \in S_k} (-1)^{a+b} (-1)^{\sigma}
$$

$$
\eta_{\sigma(2)} \otimes \cdots \otimes \eta_{\sigma(a)} \otimes [f_1, \eta_{\sigma(1)}] \otimes \eta_{\sigma(a+1)} \otimes \cdots
$$

$$
\cdots \otimes \eta_{\sigma(b-1)} \otimes f_2 \otimes \eta_{\sigma(b)} \otimes \cdots \otimes \eta_{\sigma(k)}
$$

$$
- \eta_{\sigma(2)} \otimes \cdots \otimes \eta_{\sigma(a)} \otimes f_2 \otimes \eta_{\sigma(a+1)} \otimes \cdots
$$

$$
\cdots \otimes \eta_{\sigma(b-1)} \otimes [f_1, \eta_{\sigma(1)}] \otimes \eta_{\sigma(b)} \otimes \cdots \otimes \eta_{\sigma(k)}
$$

$$
- \eta_{\sigma(2)} \otimes \cdots \otimes \eta_{\sigma(a)} \otimes [f_2, \eta_{\sigma(1)}] \otimes \eta_{\sigma(a+1)} \otimes \cdots
$$

$$
\cdots \otimes \eta_{\sigma(b-1)} \otimes f_1 \otimes \eta_{\sigma(b)} \otimes \cdots \otimes \eta_{\sigma(k)}
$$

$$
+ \eta_{\sigma(2)} \otimes \cdots \otimes \eta_{\sigma(a)} \otimes f_1 \otimes \eta_{\sigma(a+1)} \otimes \cdots
$$

$$
\cdots \otimes \eta_{\sigma(b-1)} \otimes [f_2, \eta_{\sigma(1)}] \otimes \eta_{\sigma(b)} \otimes \cdots \otimes \eta_{\sigma(k)}
$$

(5.19)
Setting \(\sigma' = \sigma \circ (1 \cdots a) \) in the first summand and \(\sigma' = \sigma \circ (1 \cdots b - 1) \) in the second, we see that their sum is equal to

\[
\frac{1}{2k!} \sum_{1 \leq a < b \leq k+1, \sigma \in S_k} (-1)^{b-1} (-1)^{\sigma}
\]

\[
\eta_{\sigma(1)} \otimes \cdots \otimes \eta_{\sigma(a-1)} \otimes [f_1, \eta_{\sigma(a)}] \otimes \eta_{\sigma(a+1)} \otimes \cdots
\]

\[
\cdots \otimes \eta_{\sigma(b-1)} \otimes f_2 \otimes \eta_{\sigma(b)} \otimes \cdots \otimes \eta_{\sigma(k)}
\]

and therefore to

\[
\frac{1}{2k!} \sum_{1 \leq a < b \leq k+1, \sigma \in S_k} (-1)^{b} (-1)^{\sigma}
\]

\[
\eta_{\sigma(1)} \otimes \cdots \otimes \eta_{\sigma(a-1)} \otimes f_2 \otimes \eta_{\sigma(a)} \otimes \cdots
\]

\[
\cdots \otimes \eta_{\sigma(b-2)} \otimes [f_1, \eta_{\sigma(b-1)}] \otimes \eta_{\sigma(b)} \otimes \cdots \otimes \eta_{\sigma(k)}
\]

and therefore to

\[
\frac{1}{2k!} \sum_{1 \leq a \neq b \leq k, \sigma \in S_k} (-1)^{b-1} (-1)^{\sigma}
\]

\[
\eta_{\sigma(1)} \otimes \cdots \otimes \eta_{\sigma(a-1)} \otimes [f_1, \eta_{\sigma(a)}] \otimes \eta_{\sigma(a+1)} \otimes \cdots
\]

\[
\cdots \otimes \eta_{\sigma(b-1)} \otimes f_2 \otimes \eta_{\sigma(b)} \otimes \cdots \otimes \eta_{\sigma(k)}
\]

\[
= \frac{k+1}{2} f_2 \wedge (\text{ad}(f_1) \eta)
\]

where we used lemma 5.13. Similarly, the sum of the last two summands in (5.19) is equal to

\[
-\frac{k+1}{2} f_1 \wedge (\text{ad}(f_2) \eta)
\]

Thus, the left–hand side of (5.18) is equal to

\[
\frac{k+1}{2} (f_2 \wedge \text{ad}(f_1) \eta - f_1 \wedge \text{ad}(f_2) \eta) = -\frac{k+1}{2} [f_1 \wedge f_2, \eta]
\]

as claimed \(\blacksquare\)

Proof of Proposition 5.10. Write

\[
(\Phi)_F = \Phi_D + h^{n+1} \xi + h^{n+2} \psi \mod h^{n+3}
\]

for some \(\psi \in U g^{\otimes 3} \). Since \(\Phi_D \) is equal to 1 mod \(h^2 \) and satisfies the pentagon equation with respect to \(\Delta_F(\cdot) = F \Delta(\cdot) F^{-1} \), we have, mod \(h^{n+3} \),

\[
0 = \text{Pent}_{\Delta_F}((\Phi)_F)
\]

\[
= \text{Pent}_{\Delta_F}(\Phi_D) + h^{n+1} d^\Delta_F(\xi) + h^{n+2} d^\Delta_F(\psi)
\]

where, for any \(\eta \in U g^{\otimes 3} \),

\[
d^\Delta_F \eta = 1 \otimes \eta - \Delta_F \otimes \text{id}^{\otimes 2}(\eta) + \text{id} \otimes \Delta_F \otimes \text{id}(\eta) - \text{id}^{\otimes 2} \otimes \Delta_F(\eta) + \eta \otimes 1
\]
is equal to \(d_H \mod \hbar \). Applying \(\text{Alt}_4 \) to both sides, and using lemmas 5.12 and 5.14, we find, with \(\tilde{\xi} = \text{Alt}_3 \xi \in (\wedge^3 g)^{D} \)
\[
0 = \text{Alt}_4 (d_H^\Delta \xi) \\
= \frac{h}{2} \sum_{1 \leq a < b \leq 4} (-1)^{a+b} [f^{ab}, \tilde{\xi}^{a,1,\ldots,\hat{a},\ldots,4}] \\
= \frac{h}{2} \sum_{1 \leq a < b \leq 4} (-1)^{a+b} [f^{ab}, \tilde{\xi}^{a,1,\ldots,\hat{a},\ldots,4} + \tilde{\xi}^{b,1,\ldots,\hat{b},\ldots,4}] \\
= -h[f, \tilde{\xi}]
\]
where we used the fact that, for any \(x \in U g \)
\[
\Delta_F(x) = \Delta(x) + h[f, \Delta(x)] \mod h^2
\]
so that
\[
\Delta_F(x) - \Delta_F(x)^{21} = 2h[f, \Delta(x)]
\]
This proves our claim since
\[
\tilde{\pi}_D^3 \tilde{\xi} = \text{Alt}_3 \tilde{\pi}_D^3 \xi = 0
\]

6. Uniqueness of twists

Let
\[
\Phi = 1 + h^2 \varphi + \cdots \in 1 + h^2 (U g \otimes^3 [h])^g \
\Phi_D = 1 + h^2 \varphi_D + \cdots \in 1 + h^2 (U g \otimes^3 [h])^{g_D}
\]
be two solutions of the pentagon equation (1.1) which are non–degenerate in the sense of definition 5.1. Contrary to §5, we do not assume in this subsection that \(\Phi_D = \tilde{\pi}_D^3 (\Phi) \) but merely that
\[
\tilde{\varphi}_D = \tilde{\pi}_D^3 (\tilde{\varphi}) \tag{6.1}
\]
where
\[
\tilde{\varphi} = \text{Alt}_3 \varphi \in (\wedge^3 g)^g \quad \text{and} \quad \tilde{\varphi}_D = \text{Alt}_3 \varphi_D \in (\wedge^3 g_D)^{g_D}
\]
This implies in particular that if \((\cdot, \cdot), (\cdot, \cdot)_D \) are the bilinear forms on \(g, g_D \) corresponding to \(\Phi, \Phi_D \) via (5.2) respectively, then \((\cdot, \cdot)_D \) is the restriction of \((\cdot, \cdot) \) to \(g_D \). We denote the corresponding standard solutions of the MCYBE for \(g \) and \(g_D \) by \(r_g, r_{g_D} \). Let now
\[
F_i = 1^{\otimes 2} + h f_i + \cdots \in 1 + h (U g \otimes^2 [h])^{g_D}, \quad i = 1, 2
\]
be two elements such that \((\Phi)_{F_i} = \Phi_D \). Since \(d_H f_i = 0 \), we have
\[
\tilde{f}_i = \text{Alt}_2 f_i \in (\wedge^2 g)^{g_D}
\]
Theorem 6.1. Let F_1, F_2 be as above and assume that \(\tilde{f}_i = r_{\mathfrak{g}} \mod (\bigwedge^2 \mathfrak{t}_D)_D \). Then,

(i) there exist elements

\[
\begin{align*}
 u & \in 1 + hU_{\mathfrak{g}}[h]^{1D} \quad \text{and} \quad \lambda \in h \bigwedge^2 \mathfrak{c}_D[h] \\
\end{align*}
\]

such that

\[
F_2 = \exp(\lambda) \cdot u \otimes u \cdot F_1 \cdot \Delta(u)^{-1}
\]

(6.2)

(ii) If

\[
\pi_D^2(F_i) = 1^{\otimes 2}, \quad i = 1, 2
\]

(6.3)

\[u \] may be chosen such that \(\pi_D^1(u) = 1 \).

(iii) If

\[
F_i^\Theta = F_i^{21}, \quad i = 1, 2
\]

(6.4)

then \(\lambda = 0 \) and \(u \) may be chosen such that \(u^\Theta = u \). \(u \) is then unique with this property.

(iv) If \(|D_{\mathfrak{g}} \setminus D| \leq 1 \), then \(\lambda = 0 \) and \(u \) is unique up to multiplication by \(\exp(c) \) for some \(c \in h\mathfrak{c}_D[h] \).

Proof. (i)–(ii) Set \(f = r_{\mathfrak{g}} - r_{\mathfrak{g}D} \)

and write

\[
f_i = d_H g_i + f + \nu_i
\]

for some \(g_i \in U_{\mathfrak{g}}^{1D} \), where \(\nu_i = \pi_D^2(f_i) \in (\bigwedge^2 \mathfrak{t}_D)_D = \bigwedge^2 \mathfrak{c}_D \). Then, replacing \(F_i \) by

\[
\exp(-h\nu_i) \cdot (1 - hg_i) \otimes (1 - hg_i) \cdot F_i \cdot \Delta(1 - hg_i)^{-1}
\]

we may assume that

\[
F_i = 1^{\otimes 2} + hf \mod h^2
\]

(6.5)

Note that if (6.3) holds, then, by corollary 2.5

\[
0 = \pi_D^2 f_i = d_H \pi_D^2 g_i
\]

and, replacing \(g_i \) by \(g_i - \pi_D^2 g_i \), we may assume that \(\pi_D^1(g_i) = 0 \). Similarly, if (6.4) holds, then

\[
d_H g_i^\Theta + f^\Theta + \nu_i^\Theta = d_H g_i + f^{21} + \nu_i^{21}
\]

Since \(f^\Theta = -f = f^{21} \), this yields

\[
\nu_i^\Theta = -\nu_i \quad \text{and} \quad d_H g_i^\Theta = d_H g_i
\]

whence \(\nu_i = 0 \) since \(\Theta \) acts as multiplication by \(+1 \) on \(\text{bigwedge}^2 \mathfrak{c}_D \subseteq \text{bigwedge}^2 \mathfrak{h} \) and, replacing \(g_i \) by \(1/2(g_i + g_i^\Theta) \), we may assume that \(g_i^\Theta = g_i \).

We wish now to construct two sequences

\[
v_n \in U_{\mathfrak{g}}^{1D} \quad \text{and} \quad \mu_n \in \bigwedge^2 \mathfrak{c}_D
\]
where the last equality stems from the fact that v can show that

$$
\eta = \mu_n + \cdots + \mu_1
$$

one has

$$
F_2 = \exp(\lambda_n) \cdot u_n \otimes u_n \cdot F_1 \cdot \Delta(u_n)^{-1}
$$

mod h^{n+1}. If (6.3) (resp. (6.4)) holds, we require in addition that $\pi_D^1(v_n) = 0$ (resp. $v_n^\Theta = v_n$ and $\mu_n = 0$) for all n.

By (6.5), we may set $v_1 = 0 = \mu_1$. Assume therefore v_k, μ_k constructed for $k = 1 \ldots n$ and some $n \geq 1$. Let F'_1 be defined by the right–hand side of (6.6) so that

$$
F_2 = F'_1 + h^{n+1}\eta \mod h^{n+2}
$$

if (6.3), (6.4) hold respectively. Set $v_{n+1} = -v$ and

$$
F''_1 = (1 + h^{n+1}v_{n+1})^2 \cdot F'_1 \cdot \Delta(1 + h^{n+1}v_{n+1})^{-1}
$$

$$
= (1 + h^{n+1}v_{n+1})^2 \cdot \exp(\lambda_n) \cdot u_n^2 \cdot F_1 \cdot \Delta(u_n)^{-1} \cdot \Delta(1 + h^{n+1}v_{n+1})^{-1}
$$

$$
= \exp(\lambda_n) \cdot ((1 + h^{n+1}v_{n+1})u_n)^2 \cdot F_1 \cdot \Delta((1 + h^{n+1}v_{n+1})u_n)^{-1}
$$

where the last equality stems from the fact that v_{n+1} is invariant under I_D. We have

$$
F_2 = \exp(-h^{n+1}\mu) F''_1 \mod h^{n+2}
$$

so the inductive step may be completed by setting $\mu_{n+1} = -\mu$ provided we can show that μ lies in $\Lambda^2 \epsilon_D$. To see this, let

$$
\overline{F}_2 = 1 + hf + h^2 f_2 + \cdots + h^{n+1} f_{n+1}
$$

be the truncation of F_2 mod h^{n+2} and define

$$
\xi = \xi(f; f_2, \ldots, f_{n+1}) \in (U \mathfrak{g}^3)^{I_D}
$$

by

$$
1 \otimes \overline{F}_2 \cdot \id \otimes \Delta(\overline{F}_2) \cdot \Phi - \Phi_D \cdot \overline{F}_2 \otimes 1 \cdot \Delta \otimes \id(\overline{F}_2) = h^{n+2}\xi \mod h^{n+3}
$$

By lemma 5.4, $d_H \xi = 0$ and, by corollary 5.6, $\text{Alt}_3 \xi = 0$ since \overline{F}_2 extends to a solution mod h^{n+3}. Similarly, if F''_1 is the truncation of F''_1 mod h^{n+2},
the corresponding error ξ'' satisfies $d_H\xi'' = 0$ and $\text{Alt}_3 \xi'' = 0$. Since $F''_1 = F'_2 + h^{n+1}\mu \mod h^{n+2}$ and, for $n \geq 1$

$$\xi'' - \xi = \xi(f; f_2, \ldots, f_{n+1} + \mu) - \xi(f; f_2, \ldots, f_{n+1})$$

$$= f^{23}(\mu_{12} + \mu_{13}) + \mu_{23}f^{12} + f^{13} - f^{12}(\mu_{13} + \mu_{23}) - \mu_{12}(f_{13} + f^{23})$$

we find, using lemma 5.7, that $[f, \mu] = 0$. By theorem 4.5, this implies that

$$\mu = [f, x] + y$$

where $y \in \bigwedge^2 \mathfrak{c}_D$ and $x \in \mathfrak{g}^{10} = \mathfrak{c}_D \subseteq \mathfrak{h}$. Since f is of weight 0, $[f, x] = -\text{ad}(x)f = 0$ whence $\mu = y \in \bigwedge^2 \mathfrak{c}_D$.

(iii) Let $u \in 1 + h(U\mathfrak{g}[\mathfrak{h}])^{10}$, with $u^{\Theta} = u$, be such that

$$u \otimes u \cdot F_1 \cdot \Delta(u)^{-1} = F_1$$

(6.8)

We claim that $u = 1$. Assume that $u = 1 \mod h^n$ for some $n \geq 1$ and write $u = 1 + h^n u_n \mod h^{n+1}$, where $u_n \in U\mathfrak{g}^{10}$ is fixed by Θ. Taking the coefficient of h^{n+1} in (6.8) we find that $d_H u_n = 0$. This implies that u_n lies in \mathfrak{g} and therefore in \mathfrak{h} since it is of weight zero. Since Θ acts as -1 on \mathfrak{h} however, $u_n = 0$ as claimed.

(iv) If $|D\mathfrak{g} \setminus D| \leq 1$, then $\bigwedge^2 \mathfrak{c}_D = 0$ so that $\lambda = 0$. Let now $u \in 1 + h(U\mathfrak{g}[\mathfrak{h}])^{10}$ be such that

$$u \otimes u \cdot F_1 \cdot \Delta(u)^{-1} = F_1$$

(6.9)

and write $u = 1 + hu_1 \mod h^2$. Taking the coefficient of h in (6.9), we find that $d_H u_1 = 0$ so that $u_1 \in \mathfrak{g}^{10} = \mathfrak{c}_D$. Now let $u^{(2)} = u \cdot \exp(-hu_1) = 1 + h^2 u_2 \mod h^2$. Repeating the above argument with $u^{(2)}$, we find that $u_2 \in \mathfrak{c}_D$ and finally that there exists a sequence $u_n \in \mathfrak{c}_D$, $n \geq 1$ such that

$$u = \prod_{n \geq 1} \exp(h^n u_n) = \exp(\sum_{n \geq 1} h^n u_n)$$

\[\square\]

References

[Di] J. Dixmier, Algebres enveloppantes. Cahiers Scientifiques, Fasc. XXXVII. Gauthier–Villars Editeur, 1974.

[DS] J. Donin, S. Shnider, Cohomological construction of quantized universal enveloping algebras, Trans. Amer. Math. Soc. 349 (1997), 1611–1632.

[Dri] V. G. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians (Berkeley 1986), 798–820, AMS, 1987.

[Dr2] V. G. Drinfeld, Quasi–Hopf algebras, Leningrad Math. J. 1 (1990), 1419–1457.

[EK] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2 (1996), 1–41.

[Lu] G. Lusztig, Introduction to quantum groups. Progress in Mathematics, 110. Birkhäuser, Boston, 1993.

[MTL] J. J. Millson, V. Toledano Laredo, Casimir operators and monodromy representations of generalised braid groups, Transform. Groups 10 (2005), 217-254.
[TL1] V. Toledano Laredo, *A Kohno–Drinfeld theorem for quantum Weyl groups*, Duke Math. J. **112** (2002), 421–451.

[TL2] V. Toledano Laredo, *Flat connections and quantum groups*, The 2000 Twente Conference on Lie Groups. Acta Appl. Math. **73** (2002), 155–173.

[TL3] V. Toledano Laredo, *Quasi–Coxeter algebras, Dynkin diagram cohomology and quantum Weyl groups*, math.QA/0506529.

[TL4] V. Toledano Laredo, *Quasi–Coxeter quasitriangular quasibialgebras and the Casimir connection*, in preparation.

Université Pierre et Marie Curie–Paris 6, Institut de Mathématiques de Jussieu, UMR 7586, Case 191, 16 rue Clisson, F-75013 Paris

E-mail address: toledano@math.jussieu.fr