Supporting Information

for

Host–guest complexes of conformationally flexible C-hexyl-2-bromoresorcinarene and aromatic N-oxides: solid-state, solution and computational studies

Rakesh Puttreddy¹, Ngong Kodiah Beyeh²,³, S. Maryamdokht Taimoory³, Daniel Meister³, John F. Trant*³ and Kari Rissanen¹*

Address: ¹University of Jyväskylä, Department of Chemistry, P. O. Box 35, 40014 Jyväskylä, Finland, ²Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309-4479, USA and ³Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4, Canada

Email: John F. Trant - j.trant@uwindsor.ca, Kari Rissanen - kari.t.rissanen@jyu.fi

*Corresponding author

Experimental details, ¹H NMR solution-data, X-ray crystallography experimental details and computational data

Table of Contents
I General information ... S2
II Solid-state analyses... S2
III Computational study .. S5
IV Solution studies .. S17
V References ... S28
I General information

All solvents used for syntheses and crystal growth are reagent grade, and are used as received. Pyridine N-oxide (1), 2-methylpyridine N-oxide (2), 3-methylpyridine N-oxide (3), 4-methylpyridine N-oxide (4), 2,6-dimethylpyridine N-oxide (5), 4-methoxypyridine N-oxide (8), 4-phenylpyridine N-oxide (10), 4,4’-bipyridine N,N’-dioxide (11) and 4,4’-bipyridine N,N’-dioxide (12) as guests were purchased from Sigma Aldrich. C-ethyl-2-bromoresorcinarene (BrC2), C-propyl-2-bromoresorcinarene (BrC3) and C-hexyl-2-bromoresorcinarene (BrC6) were synthesized according to reported procedure [1]. 2-Methoxypyridine N-oxide (6), 3-methoxypyridine N-oxide (7) and 2,6-dimethoxypyridine N-oxide (9) were synthesized as reported [2]. The 1H NMR spectra were recorded on a Bruker Avance DRX 500 MHz spectrometer. Chemical shifts are calibrated to the residual solvent signals.

Ia General crystallization procedure: To a solution of BrC6 (0.018 mmol) in methanol (1.0 ml), was added respective aromatic N-oxide (0.070 mmol) dissolved in methanol (0.5 ml) at room temperature. The reaction mixtures were heated (3-5 minutes) to clear solutions using heat-gun and the hot solutions were filtered to remove insoluble precipitates. Slow evaporation of light orange-red colour filtrates provides single crystals suitable for X-ray diffraction analysis.

II Solid-state analyses

Single-crystal X-ray data for 3@BrC6, 4@BrC6, 6@BrC6, 7@BrC6, 8@BrC6, 11@BrC6, and 12@BrC6 were collected on a dual source Rigaku SuperNova Oxford diffractometer [3] equipped with an Atlas detector using mirror-monochromated Cu Kα (λ = 1.54184 Å) radiation. The data for 5@BrC6 were measured using a Rigaku SuperNova single-source Oxford diffractometer with an Atlas EoS CCD detector using mirror-monochromated Mo-Kα (λ = 0.71073 Å) radiation. Single-crystal X-ray data for BrC6 were measured on a Bruker Nonius Kappa CCD diffractometer [4] equipped with an APEX-II CCD detector using graphite-monochromated Mo Kα (λ = 0.71073 Å) radiation. The data obtained from Bruker Nonius Kappa diffractometer were performed using the program COLLECT [5] and HKL DENZO AND SCALEPACK [6]. The data collection and reduction for complexes performed using Rigaku instruments were done by the program CrysAlisPro [3], the gaussian face index absorption correction method [3] was used for these complexes. The intensities for data collected using Bruker Nonius Kappa diffractometer were corrected for absorption using SADABS [6] with multi-scan absorption correction type method. All the structures were solved with direct methods (SHELXS[7]) and refined by full-matrix least squares on F² using the OLEX2 software [8] which utilizes the SHELXL-2013 module [7]. No attempt was made to locate the hydrogens for disordered solvent molecules. Constraints (AFIX and EADP) and restraints (DFIX and ISOR) are used for disorder models in particular lower-rim alkyl chains.
Table S1: X-ray experimental details for 3@BrC6 - 6@BrC6

Complex	3@BrC6	4@BrC6	5@BrC6	6@BrC6	
CCDC No:	1837604	1837605	1837606	1837607	
Empirical formula	C_{76}H_{96}Br_{4}N_{4}O_{12}	C_{61}H_{87}Br_{4}N_{4}O_{12}	C_{120}H_{161}Br_{8}N_{2}O_{20}	C_{60}H_{83}Br_{4}N_{2}O_{12}	
Formula weight	1577.20	1345.95	2590.78	1329.91	
Temperature (K)	123.00(10)	120.00(10)	120.00(10)	120.00(10)	
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic	
Space group	P-1	P-1	P.1	P2_1/c	
Unit cell dimensions: a (Å)	14.8156(5)	13.8761(5)	12.6797(8)	21.3724(18)	
	14.8686(6)	15.5316(6)	21.2707(13)	11.1431(10)	
	17.7798(6)	15.6532(6)	24.4864(15)	25.7133(2)	
	88.783(3)	80.377(3)	113.785(6)	90	
	71.093(3)	89.829(3)	97.433(5)	97.3173(8)	
	78.562(3)	69.999(3)	90.822(5)	90	
Volume / Å³	3627.8(2)	3120.1(2)	5984.9(7)	6073.90(9)	
Z	2	2	2	4	
Density (calculated) mg/m³	1.444	1.433	1.438	1.454	
Absorption Coefficient mm⁻¹	3.221	3.626	2.746	3.719	
F(000)	1632	1392	2670	2744	
Crystal size (mm³)	0.13 x 0.12 x 0.10 x 0.08 x 0.16 x 0.10 x 0.25 x 0.17 x 0.05 0.05 0.07 0.05	0.16 x 0.10 x 0.25 x 0.17 x 0.07 0.05	0.16 x 0.10 x 0.25 x 0.17 x 0.07 0.05	0.16 x 0.10 x 0.25 x 0.17 x 0.07 0.05	
θ range for data collection (°)	3.04 to 66.75	3.40 to 66.75 2.99 to 25.0 3.47 to 66.75	3.40 to 66.75 2.99 to 25.0 3.47 to 66.75	3.40 to 66.75 2.99 to 25.0 3.47 to 66.75	
Reflections collected	21600	17730	53033	33131	
[R(int)]	[0.0327]	[0.0371]	[0.1019]	[0.0358]	
Reflections [I>2sigma(I)]	11180	8958	11813	9966	
Data completeness (%)	99.04	98.97	98.82	99.83	
Data/ restraints/ parameters	127520/889	109534/44/712	2104145/1343	107610/705	
Goodness-of-fit on F²	1.119	1.028	1.048	1.026	
Final R₁ indices [I>2sigma(I)]	R₁ = 0.0368,	R₁ = 0.0590,	R₁ = 0.0940,	R₁ = 0.0361,	
	wR₂ = 0.0861	wR₂ = 0.1547	wR₂ = 0.2253	wR₂ = 0.0952	
Final R indices [all data]	R₁ = 0.0433,	R₁ = 0.0722,	R₁ = 0.1545,	R₁ = 0.0383,	
	wR₂ = 0.0983	wR₂ = 0.1658	wR₂ = 0.2732	wR₂ = 0.0980	
Largest diff. peak/hole (e.Å⁻³)	0.556/	1.675/	3.676/	1.243/	
	-0.583	-2.546	-0.970	-0.552	
Complex	7@BrC6	8@BrC6	MeOH+BrC6	11@BrC6	12@BrC6
-----------------	--------------	--------------	-------------	-------------	-------------
CCDC No	1837608	1837609	1837610	1837611	1837612
Empirical formula	C$_{130}$H$_{172}$Br$_{8}$N$_4$O$_{26}$	C$_{60}$H$_{86}$Br$_{3}$N$_2$O$_{13}$	C$_{60}$H$_{86}$Br$_{3}$O$_9$	C$_{60}$H$_{86}$Br$_{4}$N$_2$O$_{13}$	C$_{60}$H$_{86}$Br$_{4}$N$_2$O$_{13}$
Formula weight	2845.99	1422.99	1172.74	1425.01	1392.97
Temperature (K)	120.01(10)	120.00(1)	170.0(1)	120.0(1)	120.0(1)
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1	P-1	P-1
Unit cell	10.7228(11)	11.9096(2)	10.501(2)	10.0437(3)	15.2700(9)
Dimensions: a (Å)	14.9600(15)	13.4509(2)	15.161(3)	17.0384(4)	18.0854(7)
b (Å)	21.203(2)	20.6387(4)	17.053(3)	21.0991(7)	24.1760(12)
c (Å)	103.231(9)	91.3963(15)	90.81(3)	69.181(3)	75.629(4)
α (°)	90.560(8)	101.1181(17)	107.46(3)	76.589(3)	88.489(4)
β (°)	104.941(9)	90.7080(14)	94.12(3)	79.976(2)	83.697(4)
γ (°)	3190.4(6)	3242.71(11)	2581.3(10)	3266.16(18)	6428.5(6)
Volume / Å3	1284308	1837610	1837611	1837612	
Z	1	2	2	2	4
Dens (calculated)	1.481	1.457	1.509	1.449	1.439
Absorption Coefficient mm$^{-1}$	3.598	3.540	3.173	3.515	3.547
F(000)	1468	1468	1204	1472	2872
θ range for data collection (°)	3.36 to 66.75	3.29 to 66.75	2.53 to 25.25	4.14 to 66.75	2.91 to 66.75
Reflections	19440	19340	11117	18594	37439
collected [R(int)]	[0.0989]	[0.0227]	[0.0404]	[0.0407]	[0.0618]
Refinements	6912	10571	22555	9439	16443
[I>2sigma(I)]	98.81	99.08	99.50	99.08	98.97
Data completeness (%)	11163/59/793	11378/7/793	9313/0/605	11474/11/824	22566/104/1550
Data/ restraints/ parameters	1.002	1.037	1.011	0.976	1.031
Goodness-of-fit on F2	0.0736	0.0289	0.0397	0.0468	0.0891,
[I>2sigma(I)]	wR$_1$ = 0.1672	wR$_2$ = 0.0753	wR$_3$ = 0.0803	wR$_2$ = 0.1171	wR$_2$ = 0.2289
Final R indices	R$_1$ = 0.1217,	R$_1$ = 0.0316,	R$_1$ = 0.0627,	R$_1$ = 0.0567,	R$_1$ = 0.1142,
[all data]	wR$_2$ = 0.2041	wR$_2$ = 0.0776	wR$_2$ = 0.1221	wR$_2$ = 0.0882	wR$_2$ = 0.2529
Largest diff.	0.993/	0.595/	0.474/	0.990/	3.604/
peak/hole (eÅ3)	-1.669	-0.531	-0.487	-0.620	-1.372
III Computational study

IIIa General Information

Molecular mechanics analysis of the complexes between three \(\text{C-hexyl-2-bromoresorcinarene (BrC6)}, \ \text{C-ethyl-2-bromoresorcinarene (BrC2)}\) and \(\text{C-propyl-2-bromoresorcinarene (BrC3)}\) hosts and \(N\)-oxide \(3\) were initially carried out using Jaguar/Maestro software package [9] and OPLS-2005 force field. In order to make sure that we were adequately screening the conformer space of the complexes in these simulations, no constraints were applied on either \(N\)-oxide or acetone molecules.

The low energy conformer of \(3@\text{BrC2}, \ 3@\text{BrC3},\) and \(3@\text{BrC6}\) complexes were then optimized using the Gaussian 09 suite [10] of programs at the density functional theory (DFT) level with M062X/6-31G(d,p) [11] within the IEF-PCM solvation model [12]. All of the optimized complex geometry were confirmed by frequency calculations as minima with zero imaginary frequencies.

Single point calculations were performed on these optimized structures using long-range corrected (LRC) exchange-correlation functional with inclusion of dispersion correction, \(\omega B97X-D\) in order to obtain a more accurate treatment of stacking type interactions [13].

Structure analysis such as Molecular Electrostatic Potential (MEP) surface map, was performed using GaussView v5.0.8.4.

A topological analysis of the electron density was performed with Bader’s quantum theory of atoms in molecules (QTAIM) using the AIM2000 software [14].

Of note, the energies implemented in Table 2 are not interaction energies. We believe that calculated and predicted interaction energy for more than three components (out \(N\)-oxide, in \(N\)-oxide, as well as acetone molecule with receptor) won’t be much accurate due to basis set superposition errors” (BSSEs) and “basis set incompleteness errors” (BSIEs) and in our idea the counterpoise correction of interaction energy for removing these errors won’t be effective to completely remove the errors. The reported energies in Table 2, obtained from quantum theory of atom in molecule (QTAIM) only shows the contributions of different possible non-covalent interactions on energetic aspect and stability of the calculated structures and provide a basis to explain the presence of these attractive interactions in the systems and distinguish them from weak interactions. As mentioned in Table 2 (See manuscript), electron density \(p(r)\) and Laplacian of the electron density \(\nabla^2 p(r)\) at the BCP, is related to bond order and in turn bond strength. \(E_{(B)}\) is the energy [15] of those bonds (vary from 2.9 to 11.0 kcal/mol for H-bonds and 0.8 to 1.9 kcal/mol for other classes of non-covalent interactions) which is calculated from following equation.

Although, they have important role in energetic aspect of complex, they are not the interaction energy.

\[
E_{(B)} = 1/2V_c
\]

\[
V_c = 1/4 \nabla^2 p(r_c) - 2G_c
\]

Where \(V_c\) is the potential energy density and the kinetic energy density at the BCP.
Table S3: Isodesmic reaction schemes for comparing relative energy of the 3@BrC2, 3@BrC3 and 3@BrC6 complexes.

	Isodesmic Reaction Scheme	Relative Energy (kcal/mol)
3@BrC2	![Reaction Scheme](image)	11.3
3@BrC3	![Reaction Scheme](image)	10.9
3@BrC6	![Reaction Scheme](image)	0

Figure S1: The plotted molecular graph and topological properties $3@BrC6$ complex by QTAIM analysis.

IIIb. DFT Calculated host-guest complex geometries for $3@BrC2$

Br	-0.21242300	3.75438200	-2.27278600
Br	-6.05212000	-0.43967100	-1.67032500
Br	0.03492100	-3.44498000	-3.56893200
Br	6.19317600	-0.54492000	-1.54851100
O	2.20394000	2.49342600	-0.42903500
O	-2.50197400	3.13352500	-0.39352500
H	-2.43447900	4.16368700	-0.25666000
O	-4.40569500	1.68856800	-0.05979300
H	-3.95255100	2.32555500	-0.12399100
O	-4.77586200	-3.04689100	-0.64772600
H	-5.44182900	-2.78836000	-1.30528500
O	-2.33428500	-3.59395400	-1.81293500
H	-3.16527400	-3.63293200	-1.30935300
O	2.39436600	-3.73305300	-1.64998800
H	2.26176900	-3.70064600	-2.60374300
O	4.87404800	-3.07835700	-0.64998100
H	4.17786100	-3.67232500	-0.97686700
O	4.67414700	1.65010800	-0.00770600
H	5.37753600	1.61263400	-0.67537100
C	-0.04870700	1.50024000	1.76357200
Atoms	X-coordinates	Y-coordinates	Z-coordinates
-------	---------------	---------------	---------------
H	-0.01433400	0.92094400	2.68191200
C	1.15468600	1.83477800	1.14496100
C	1.10977700	2.50687500	-0.08813800
C	-0.13358000	2.87595300	-0.60838800
C	-1.32207200	2.63704600	0.08463200
C	-1.28955500	1.89985600	1.27455300
C	-2.59714000	1.52508300	1.95538400
H	-3.28897600	2.36533100	1.82362100
C	-2.47728400	1.28144200	3.46820400
H	-3.46455300	0.43843600	3.82944300
C	-2.00962300	2.51037800	4.22277000
H	-2.69447900	3.35111300	4.08712600
C	-1.00846100	2.82291600	3.92610000
C	-1.97370500	2.30593500	5.31574200
C	-2.69710000	-0.96338800	1.47702500
H	-1.85111700	-1.08068300	2.15358900
C	-3.20818900	-2.10242100	0.85651700
C	-4.26653100	-1.93398900	-0.04107900
C	-4.73419300	-0.65339800	-0.33506000
C	-4.21033700	0.48195200	0.28892500
C	-3.19544300	0.31798300	1.24638200
C	-2.59173700	-3.47781300	1.09882200
H	-2.62757600	-4.22739900	0.66762500
C	-2.50206800	-3.79998400	2.59794100
H	-1.98794300	-4.76157700	2.71483800
C	-1.88390500	-3.04861100	3.10237300
C	-3.87696600	-3.85648600	3.25609200
H	-4.38593900	-2.89132400	3.17815800
H	-3.79145400	-4.10965000	4.31566800
C	-4.50996400	-4.61024100	2.77727200
C	-0.03025100	-3.56810100	1.04463900
H	-0.03927700	-3.46504000	2.12445500
C	1.20238500	-3.64159200	0.39754400
C	1.19591200	-3.69980100	-1.00068000
C	-0.00721700	-3.66175800	-1.69549500
C	-1.23586300	-3.62662800	-1.03068000
C	-1.25444900	-3.58219300	0.37084600
C	2.54765100	-3.52127600	1.10189700
H	3.21052800	-4.29027800	0.68730600
C	2.49288600	-3.76472800	2.61829900
C	3.48846400	-3.54686400	3.01936200
H	1.81142400	-3.04300000	3.08382300
C	2.09639600	-5.19203100	2.98881800
H	2.10254500	-5.32624100	4.07389000
H	2.79880100	-5.91189500	2.55730100
C	1.09693900	-5.44388800	2.62270300
C	2.60068100	-1.00234000	1.34195500
H	1.71999900	-1.09959800	1.97856400
C	3.11593500	0.27190900	1.11467900
C	4.21162400	0.39375700	0.25695600
C	4.76830300	-0.74466700	-0.32572300
C	4.26005300	-2.01978000	-0.06451700
C	3.15443400	-2.15668600	0.78928800
C	2.49814400	1.49795600	1.77159600
H	3.16631700	2.34922500	1.58966000
C	2.43631400	1.33090000	3.29908900
----	--------	--------	--------
H	1.90075500	2.19149300	3.71931600
H	1.85032700	0.44023400	3.55221400
C	3.82492300	1.22099000	3.92095100
H	3.75887500	1.13076200	5.00806100
H	4.42881700	2.10409700	3.68925200
H	4.35433500	0.34244500	3.54026900
O	-2.31010000	5.58218400	0.19013500
N	-1.06162500	5.63992200	0.62289500
C	-0.75755000	5.14866400	1.84543400
H	-1.60700000	4.79695800	2.25456000
C	0.55852600	5.08471000	2.25456000
H	0.78360700	4.67820600	3.23348700
C	1.56893700	5.51938500	1.39840600
H	2.61023900	5.43370100	1.69206000
C	1.23920600	6.05550900	0.15648700
C	-0.10690200	6.13422000	-0.18403900
H	-0.47076500	6.51218400	-0.85366000
H	2.26814600	6.46081100	-0.85366000
H	2.06423700	7.45625000	-1.25990100
H	2.23754000	5.74723200	-1.68916700
H	3.26985900	6.45244500	-0.42797500
O	2.22061100	0.38337700	-3.75850100
N	1.16519100	0.18681100	-3.04798000
C	-0.04807900	0.59794600	-3.49965900
H	-0.01011200	1.10728000	-4.45394100
C	-1.21025000	0.40586200	-2.76781500
C	-1.12220600	-0.25743000	-1.54539200
H	-2.01702900	-0.44329200	-0.96246100
C	0.12595200	-0.64036200	-1.07343100
H	0.23506600	-1.12631000	-0.10885300
C	1.25680400	-0.42438800	-1.83774100
H	2.26323600	-0.70980000	-1.55433100
C	-2.51340300	0.98853600	-3.24018800
H	-3.36525200	0.41891100	-2.85655000
H	-2.57338200	1.02543900	-4.33019500
H	-2.59358400	2.01247900	-2.85639000
O	0.00079600	-1.36409500	3.61505300
C	-0.02512200	-0.38217300	5.78702000
H	0.74418100	-0.49110000	6.55611500
H	-0.95517100	-0.38733300	6.29665000
H	0.09906400	0.56455800	5.28027000
C	0.02305400	-1.53941000	4.82371700
C	0.10006200	-2.92330500	5.41399000
H	-0.63660400	-3.04195600	6.21315100
H	1.08997600	-3.06144000	5.86286200
H	-0.05424800	-3.67937600	4.64181700
Illc. DFT Calculated host-guest complex geometries for 3@BrC3

Br	2.46935800	5.12096800	0.97065900
Br	-4.78850000	2.64165900	1.02130200
Br	-3.19170800	-2.79471700	-4.15443100
Br	4.00981400	0.13405400	-4.25348700
Br	2.26120200	-2.35097000	-3.78519200
Br	2.58497200	-1.84472500	-4.54671000
Br	-0.29597900	-3.46035900	-3.82644700
Br	0.63444000	-3.17412200	-3.84563900
Br	-4.18807800	-2.45270700	-1.37424500
Br	-4.41656500	-1.83394000	-0.66100800
Br	-4.62905300	-0.40843400	0.35844700
H	-5.18308400	0.27483300	-0.10778900
H	-2.85054000	3.09492900	2.71310700
H	-3.01464500	3.62776100	2.35868000
H	0.31320500	4.06857900	2.71914100
H	-0.60073900	3.74273300	2.81913600
O	4.34616500	2.69882000	0.58654800
O	4.27091200	3.51895300	0.04182500
O	4.72000000	1.02320700	-1.51732100
O	4.72116500	-1.69184300	-0.69184300
C	-1.56598300	-0.43369700	2.29880700
C	-0.81444000	-1.15540100	2.60954600
C	-1.42689400	0.88974300	2.71183600
C	-2.40226500	1.79907400	2.30030100
C	-3.47106900	1.37796100	1.50583900
C	-3.59564000	0.04276000	1.10942300
C	-2.63685300	-0.88939100	1.53510000
C	-2.78934600	-2.36631300	1.18111100
H	-3.86143800	-2.56054000	1.06486500
C	-2.11204300	-2.67975600	-0.14637100
C	-2.85036600	-2.66479000	-1.34014700
C	-2.19841900	-2.90920400	-2.55162500
C	-0.83438900	-3.21228300	-2.60786800
C	-0.09661300	-3.26859600	-1.41364500
C	-0.75219100	-2.97618900	-0.21836600
C	-0.17097100	-2.97604900	0.70204100
C	1.38886400	-3.60470200	-1.42753300
C	1.60139200	-4.13155300	-2.36518800
C	2.24435000	-2.34117200	-1.41700400
C	2.65969200	-1.76495600	-2.62074900
C	3.46408900	-0.62655600	-2.60812700
C	3.89481500	-0.04063000	-1.41288100
C	3.48370200	-0.60450100	-0.19365700
C	2.65061200	-1.72313100	-0.23670400
C	2.31946600	-2.14770500	0.70777900
C	3.95460600	-0.02139500	1.13828700
H	4.92543100	0.45616100	0.96409100
C	2.99131700	1.05706200	1.62329000
C	1.84774700	0.75337500	2.35991500
H	1.64823200	-0.28766000	2.60710500
C	0.94126000	1.72247800	2.79290200
C	1.15631500	3.05485300	2.41263700
C	2.28835100	3.37197500	1.65382400
C	3.21715000	2.39792900	1.28591200
C	-0.28216600	1.34003300	3.61263000
C 4.20835300 4.02432400 -3.91334600
H 5.05181400 4.70954600 -3.98532000
H 3.35406800 3.05092300 -4.33602400
C 3.82707100 3.80358000 -2.47744300
C 2.53867900 3.06524500 -2.22397400
H 2.41230400 2.25728300 -2.95072700
H 1.70602600 3.76794900 -2.34421500
H 2.51116200 2.66082500 -1.21143300
O 1.09660500 -2.61170400 2.72781800
C 2.08409200 -3.00216900 4.85994800
H 2.49677000 -1.99781300 4.75009700
H 2.87059400 -3.71569300 5.12050800
H 1.36162700 -3.00648900 5.68442500
C 1.37404100 -3.42236500 3.60061800
C 1.02192300 -4.87887500 3.45637000
H 1.93968600 -5.43504600 3.23216200
H 0.30848700 -5.02312200 2.64322000
H 0.62528300 -5.27930400 4.39301500
O -6.27427200 1.00906900 -1.15044000
C -6.72960400 2.25520600 -3.11687600
H -7.19961000 1.85886100 -4.02106100
H -5.95308000 2.96292800 -3.42246800
H -7.46684500 2.75944100 -2.49291100
C -6.05882000 1.15592200 -2.34648000
C -5.16611200 0.22642100 -3.12192900
H -4.57535300 -0.40302700 -2.45688800
H -4.52103800 0.80069900 -3.78976400
H -5.79502800 -0.42682500 -3.73757500
IIIc. DFT Calculated host-guest complex geometries for 3@BrC6

Atom	x	y	z
Br	-6.03679900	-1.83405900	-0.14046300
Br	-4.15722300	5.56463300	-0.97836900
Br	-0.51799800	2.87327800	5.32892700
Br	-1.03029900	-4.93054200	4.54504800
O	-4.89634600	0.48223500	-1.81862500
H	-5.73665900	0.25688300	-1.39125000
O	-3.66637200	-3.73981700	0.11814300
H	-4.40259900	-4.22031700	-0.43554400
O	-4.15611100	3.13027100	-2.86499900
H	-4.70291400	3.91282000	-2.90553300
O	-1.50883300	5.41803900	0.35753100
H	-0.96108500	5.18123700	1.12649600
O	-0.42880200	4.22952200	-0.54554500
H	-0.77602300	4.42716100	3.47582400
O	0.47220500	0.03745600	4.72671300
H	0.95233800	-2.67445800	4.65181900
C	0.13200100	1.53091000	5.87790900
H	0.13938000	0.49019000	6.23401500
C	1.46289600	1.83078500	5.18669700
H	1.53170700	2.90927600	4.98234000
H	1.50720700	1.33723800	4.20345900
C	2.66151500	1.39240900	6.02412200
H	2.59046700	0.31209300	6.20639600
H	2.60969600	1.87400100	7.00902800
C	3.99303800	1.71614600	5.35802100
H	4.84240000	1.34085700	5.93622100
H	4.04271900	1.26759600	4.35902300
H	4.11214600	2.79853700	5.24237900
C	-2.14720500	2.11296200	-2.11242000
C	-3.07053800	3.16783800	-2.06041100
C	-2.83505100	4.22498200	-1.17575800
C	-1.65832600	4.32229300	-0.42702100
C	-0.68762400	3.31728700	-0.54554500
C	-0.98436000	2.21698700	-1.35145800
----	---------------	----------------	----------------
H	-0.25957500	1.40277600	-1.39911100
C	0.65952400	3.42358800	0.15946700
H	0.78731500	4.44914900	0.52073800
C	1.83652300	3.18175900	-0.79548400
H	2.74583000	3.19901000	-0.18270500
C	1.77188400	2.18914900	-1.25964400
H	1.94972000	4.24849300	-1.88157900
H	1.16214600	4.10429500	-2.63443300
H	1.78107100	5.24087100	-1.44013700
C	3.32374900	4.23277500	-2.54766800
H	4.07957000	4.43202700	-1.77600900
H	3.53405700	3.22340100	-2.93123400
C	3.46375700	5.24435200	-3.68448200
H	3.07506000	6.21768300	-3.35337200
H	2.82515500	4.92449000	-4.52019000
C	4.90380100	5.42819900	-4.17493400
H	5.34858800	4.44503900	-4.37642800
H	4.89365300	5.96377800	-5.13087800
C	5.78608500	6.19187200	-3.18786300
H	6.79762600	6.32223500	-3.58169700
H	5.86952900	5.67081600	-2.22977000
C	5.37156600	7.18569600	-2.99017700
C	0.70785300	2.53076600	1.38430200
C	0.12352400	2.98256700	2.56962200
C	0.12897000	2.16949700	3.70023900
C	0.64250100	0.87170600	3.66596400
C	1.31908200	0.44686000	2.51760600
C	1.32599700	1.28137800	1.39876200
H	1.78859600	0.92436900	0.48194500
C	1.96561900	-0.92586500	2.52778600
H	2.41882700	-1.06175700	3.51761600
C	3.10143400	-1.06790100	1.50401100
H	2.69413700	-1.06587400	0.48390100
H	3.74773100	-0.18433800	1.58787100
C	3.94026000	-2.32729800	1.71447900
H	4.24112300	-2.38850000	2.76997700
H	3.33190900	-3.21994400	1.51125400
C	5.19253200	-2.34209800	0.84015700
H	4.89691200	-2.33031700	-0.21992900
H	5.75618000	-1.41282400	1.01274800
C	6.10821500	-3.53537200	1.10400700
H	5.58864800	-4.46551800	0.83274500
H	6.31109400	-3.60199400	2.18209300
C	7.43644200	-3.46284700	0.35480000
H	7.24321300	-3.39497900	-0.72319900
H	7.95815500	-2.53862000	0.63533300
C	8.33006100	-4.66870400	0.63206200
H	9.28097800	-4.59797100	0.09763600
H	7.83696600	-5.59580400	0.32104000
H	8.54927100	-4.75321300	1.70127300
C	0.91352200	-2.00451000	2.33398100
C	0.48780900	-2.82761800	3.38609400
C	-0.44653200	-3.83539100	3.12306700
C	-0.96594100	-4.04616000	1.83955900
C	-0.53810400	-3.22078100	0.78733300
H	0.35748600	-2.19524200	1.07341300
H	0.66013200	-1.52556700	0.26737500
S15
C -2.06908200 -0.25500200 2.68593300
H -1.56803300 -1.18988400 2.90731000
C -3.06411300 1.65770500 3.62668900
H -3.28571200 2.15708000 4.56060200
C -3.35267800 2.17836000 2.37212200
C -3.98747000 3.54193300 2.22401300
H -4.68255300 3.54729800 1.38062500
H -3.21626900 4.28405700 2.01402500
H -4.51968700 3.83130800 3.12954300
O 2.99989100 4.73370000 1.86683400
N 3.56991900 3.71862700 2.41099700
C 4.69208080 3.08613700 1.97796230
H 4.87901000 3.53011800 0.83519000
C 5.19504300 1.97631100 2.34444900
H 6.00639000 1.49730400 1.80742100
C 4.75247000 1.48669100 3.56807100
H 5.20492900 0.60402000 4.00903300
C 3.71031600 2.14648700 4.22294400
C 3.15006700 3.26219000 3.61963800
H 2.33151700 3.82663500 4.04819900
C 3.19431200 1.68332300 5.55864800
H 3.12605900 0.59295600 5.58653200
H 2.20129100 2.08903000 5.76322300
H 3.86910800 1.99989300 6.35963400
IV Solution studies

A 10 mM stock solution of the C-hexyl-2-methylresorcinarene BrC6 host and 20 mM of the guests were prepared in the respective solvents (acetone-d₆, CD₃OD/CDCl₃ 1:1 v/v and CD₃OD/DMSO-d₆ 9:1 v/v). For the pure host, aliquot 300 μL of the 10 mM stock solution and diluted with the NMR solvent to final volume 450 μL with a concentration 6.6 mM. For the pure guest, aliquot 150 μL of the 20 mM stock solution and diluted to a final volume 450 μL with a concentration 6.6 mM. For the 1:1 host–guest, aliquot 300 μL of host and 150 μL of guest were mixed to final volume 450 μL to give a concentration 6.6 mM.

Figure S2: An expansion of the ¹H NMR (6.6 mM at 298 K, 500 MHz) of BrC6 complexes with 1. Spectra are produced from BrC6, 1 and an equimolar mixture of BrC6 and 1 in: (a) (CD₃)₂O, (b) CD₃OD/CDCl₃ 1:1 v/v, and (c) CD₃OD/DMSO-d₆ 9:1 v/v. Dashed lines highlight the observed shift changes of the resonances, labels are in ppm.
Figure S3: An expansion of the 1H NMR (6.6 mM at 298 K, 500 MHz) of BrC6 complexes with 2. Spectra are produced from BrC6, 2 and an equimolar mixture of BrC6 and 2 in: (a) (CD$_3$)$_2$O, (b) CD$_3$OD/CDCl$_3$ 1:1 v/v, and (c) CD$_3$OD/DMSO-d_6 9:1 v/v. Dashed lines highlight the observed shift changes of the resonances, labels are in ppm.
Figure S4: An expansion of the 1H NMR (6.6 mM at 298 K, 500 MHz) of BrC6 complexes with 4. Spectra are produced from BrC6, 4 and an equimolar mixture of BrC6 and 4 in: (a) (CD$_3$)$_2$O, (b) CD$_3$OD/CDC$_3$ 1:1 v/v, and (c) CD$_3$OD/DMSO-d$_6$ 9:1 v/v. Dashed lines highlight the observed shift changes of the resonances, labels are in ppm.
Figure S5: An expansion of the 1H NMR (6.6 mM at 298 K, 500 MHz) of BrC6 complexes with 5. Spectra are produced from BrC6, 5 and an equimolar mixture of BrC6 and 5 in: (a) (CD$_3$)$_2$O, (b) CD$_3$OD/CDC$_3$ 1:1 v/v, and (c) CD$_3$OD/DMSO-d_6 9:1 v/v. Dashed lines highlight the observed shift changes of the resonances, labels are in ppm.
Figure S6: An expansion of the 1H NMR (6.6 mM at 298 K, 500 MHz) of BrC6 complexes with 6. Spectra are produced from BrC6, 6 and an equimolar mixture of BrC6 and 6 in: (a) (CD$_3$)$_2$O, (b) CD$_3$OD/CDC1$_3$ 1:1 v/v, and (c) CD$_3$OD/DMSO-d_6 9:1 v/v. Dashed lines highlight the observed shift changes of the resonances, labels are in ppm.
Figure S7: An expansion of the 1H NMR (6.6 mM at 298 K, 500 MHz) of BrC6 complexes with 7. Spectra are produced from BrC6, 7 and an equimolar mixture of BrC6 and 7 in: (a) (CD$_3$)$_2$O, (b) CD$_3$OD/CDC$_3$ 1:1 v/v, and (c) CD$_3$OD/DMSO-d$_6$ 9:1 v/v. Dashed lines highlight the observed shift changes of the resonances, labels are in ppm.
Figure S8: An expansion of the 1H NMR (6.6 mM at 298 K, 500 MHz) of BrC6 complexes with 8. Spectra are produced from BrC6, 8 and an equimolar mixture of BrC6 and 8 in: (a) (CD$_3$)$_2$O, (b) CD$_3$OD/CDCl$_3$ 1:1 v/v, and (c) CD$_3$OD/DMSO-δ$_6$ 9:1 v/v. Dashed lines highlight the observed shift changes of the resonances, labels are in ppm.
Figure S9: An expansion of the 1H NMR (6.6 mM at 298 K, 500 MHz) of BrC6 complexes with 9. Spectra are produced from BrC6, 9 and an equimolar mixture of BrC6 and 9 in: (a) (CD$_3$)$_2$O, (b) CD$_3$OD/CDC$_3$ 1:1 v/v, and (c) CD$_3$OD/DMSO-d_6 9:1 v/v. Dashed lines highlight the observed shift changes of the resonances, labels are in ppm.
Figure S10: An expansion of the 1H NMR (6.6 mM at 298 K, 500 MHz) of BrC6 complexes with 10. Spectra are produced from BrC6, 10 and an equimolar mixture of BrC6 and 10 in: (a) (CD$_3$)$_2$O, (b) CD$_3$OD/CDCl$_3$ 1:1 v/v, and (c) CD$_3$OD/DMSO-d$_6$ 9:1 v/v. Dashed lines highlight the observed shift changes of the resonances, labels are in ppm.
Figure S11: An expansion of the 1H NMR (6.6 mM at 298 K, 500 MHz) of BrC6 complexes with 11. Spectra are produced from BrC6, 11 and an equimolar mixture of BrC6 and 11 in: (a) (CD$_3$)$_2$O, (b) CD$_3$OD/CDCl$_3$ 1:1 v/v, and (c) CD$_3$OD/DMSO-d_6 9:1 v/v. Dashed lines highlight the observed shift changes of the resonances, labels are in ppm.
Figure S12: An expansion of the 1H NMR (6.6 mM at 298 K, 500 MHz) of BrC6 complexes with 12. Spectra are produced from BrC6, 12 and an equimolar mixture of BrC6 and 12 in: (a) (CD$_3$)$_2$O, (b) CD$_3$OD/CDCl$_3$ 1:1 v/v, and (c) CD$_3$OD/DMSO-d$_6$ 9:1 v/v. Dashed lines highlight the observed shift changes of the resonances, labels are in ppm. No analysis of between BrC6 and 12 in acetone-d$_6$ due to limited solubility of 12 at 6.6 mM.
V References

1. Beyeh N. K, Weimann D. P, Kaufmann L, Schalley C. A, and Rissanen K, Chem. – A Eur. J., 2012, 18, 5552–5557.
2. (a) Katritzky, A. R.; Lagowski, J. M. Chemistry of the heterocyclic N-oxides; Organic chemistry; Academic Press, 1971; (b) Albini, A. Heterocyclic N-oxides; Taylor & Francis, 1991.
3. Rigaku Oxford Diffraction 2016, CrysAlisPro 38.43.
4. Bruker AXS BV, Madison, WI, USA; 1997–2004.
5. Otwinowski, Z. and Minor, W. Methods Enzymol. 1997, 276, 307–326.
6. Blessing, R. H. J. Appl. Cryst. 1997, 30, 421–426.
7. Sheldrick, G.M. Acta Cryst. A 2015, 71, 3–8
8. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339–341.
9. (a) Schrödinger Release 2017-2: MacroModel, Schrödinger, LLC, New York, NY, 2017; (b) Schrödinger Release 2017-2: Maestro, Schrödinger, LLC, New York, NY, 2017.
10. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zhang, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J.e.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, A. R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D02; Gaussian, Inc., Wallingford, CT, 2009.
11. Walker, M.; Harvey, A. J. A.; Sen, A.; Dessent, C. E. H. J. Phys. Chem. A 2013, 117, 12590–12600.
12. Tomasi, J.; Mennucci, B.; Cances, E. J. Mol. Struct.: THEOCHEM 1999, 464, 211–226.
13. Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
14. Bader, R. F. W. Atoms in Molecules, A Quantum Theory; Oxford University Press: Oxford, 1990
15. (a) Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170–173; (b) Yureno, Y. P.; Zhurakivsky, R. O.; Samijlenko, S. P.; Ghomi, M.; Hovorun, D. M. Chem. Phys. Lett. 2007, 447, 140–146.