Evidence to Support Karyotypic Variation of the Mosquito, Anopheles peditaeniatus in Thailand

Author: Choochote, Wej

Source: Journal of Insect Science, 11(10) : 1-12

Published By: Entomological Society of America

URL: https://doi.org/10.1673/031.011.0110

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.
Evidence to support karyotypic variation of the mosquito, Anopheles peditaeniatus in Thailand

Wej Choochote

Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Eight isoline colonies of Anopheles peditaeniatus Leicester (Diptera: Culicidae) were established from wild-caught females collected from buffalo-baited traps at 8 localities in Thailand. They showed 2 types of X (X₂, X₃) and 4 types of Y (Y₂, Y₃, Y₄, Y₅) chromosomes based on the number and amount of major block(s) of heterochromatin present in the heterochromatic arm, and were tentatively designated as Forms B (X₂, X₃, Y₂), C (X₃, Y₃), D (X₃, Y₄) and E (X₂, X₃, Y₅). Form B was found in Nan, Ratchaburi, and Chumphon provinces; Form C was obtained in Chon Buri province; Form D was recovered in Kamphaeng Phet province; and Form E was acquired in Chiang Mai, Udon Thani, and Ubon Ratchathani provinces. Crossing studies among the 8 isoline colonies, which were representative of 4 karyotypic forms of An. peditaeniatus, revealed genetic compatibility in providing viable progenies and synaptic salivary gland polytene chromosomes through F₂-generations, thus suggesting the conspecific nature of these karyotypic forms. These results were supported by the very low intraspecific sequence variations (0.0 - 1.1%) of the nucleotide sequences in ribosomal DNA (ITS2) and mitochondrial DNA (COI and COII) of the 4 forms.

Keywords: COI, COII, crossing experiment, Hyrcanus group, ITS2, metaphase karyotype

Correspondence: wchocho@mail.med.cmu.ac.th

Editor: Susan Paskewitz was editor of this paper

Received: 1 December 2009, Accepted: 24 December 2009

Copyright: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

ISSN: 1536-2442 | Vol. 11, Number 10

Cite this paper as:
Choochote W. 2011. Evidence to support karyotypic variation of the mosquito, Anopheles peditaeniatus in Thailand. Journal of Insect Science 11:10 available online: insectscience.org/11.10
Introduction

The Hyrcanus group of the Myzorhynchus series of the subgenus *Anopheles* (Diptera: Culicidae) comprises a large number of species that occur widely in Asia. At least 8 species of this group, i.e. *Anopheles argyropus* Swellengrebel, *An. crawfordi* Reid, *An. nigerrimus* Gilles, *An. nitidus* Harrison, Scanlon and Reid, *An. paraliae* Sandosham, *An. peditaeniatus* Leicester, *An. pursati* Laveran, and *An. sinensis* Wiedemann are recorded in Thailand (Harrison and Scanlon 1975; Rattanarithikul et al. 2006). Among these, *An. nigerrimus*, *An. peditaeniatus*, and *An. sinensis* are suspected as vectors of *Plasmodium vivax* Grassi and Feletti in Thailand (Harrison and Scanlon 1975; Rattanarithikul et al. 1996), while *An. sinensis* has been incriminated as a natural vector of *P. vivax* in Korea (Chai 1999; Ree et al. 2001) and *An. peditaeniatus* as a secondary vector of Japanese encephalitis virus in China and India (Mourya et al. 1989; Zhang 1990; Kanojia et al. 2003). Although *An. peditaeniatus* has been found abundantly and widely distributed throughout Thailand, its status as a vector of the Japanese encephalitis virus remains a crucial question that needs to be clarified more thoroughly. Additionally, this species was also considered an economic pest of cattle because of its vicious biting-behavior and ability to transmit cervid filariae of the genus *Setaria* (Reid 1968; Harrison and Scanlon 1975).

Chromosomes X1, X2 and X3 differ from each other in the number and amount of major block(s) of heterochromatin present in the heterochromatic arm, making them appear as metacentric X1, small submetacentric X2, and large submetacentric X3 chromosomes. Likewise, the evolution of Y chromosome types, i.e. very small telocentric Y1, medium telocentric Y2, large telocentric Y3, very large telocentric Y4, and submetacentric Y5 could have arisen via the process of gain, rather than loss, of major block(s) of heterochromatin (Baimai et al. 1993; Baimai 1998). Although marked genetic variation at the chromosomal level of *An. peditaeniatus* has obviously been illustrated, little is known about its genetic proximities. Accordingly, the chromosomal variant and/or distinction might be manifested as an important role in generating post-mating barrier and DNA sequence variation of some specific genomic regions. Thus, this paper presents the results of crossing experiments and comparative DNA sequencing of the ribosomal DNA (ITS2) and mitochondrial DNA (COI and COII) regions of 4 karyotypic forms of *An. peditaeniatus* strains from 8 localities in Thailand.

Materials and Methods

Field collections and the establishment of isoline colonies

Wild, fully engorged female *An. peditaeniatus* were collected from buffalo-baited traps from November 2007 to September 2008 at 8 localities in Thailand (Figure 1; Table 1). Eight isoline colonies were successfully established and maintained in an insectary using the techniques described by Kim et al. (2003). These isoline colonies were used for studies on metaphase karyotypes, crossing experiments, and molecular analyses.
Metaphase chromosome preparation

Metaphase chromosome preparation was the technique used for chromosome preparation in adult mosquitoes, as described by Choochote et al. (2001). Briefly, newly emerged adult males of laboratory-raised *An. peditaeniatus* (aged about 6-12 hr) were intra-thoracically inoculated with 0.30 μl of 1% ethanol-extracted *Gloriosa superba* L. (Liliales: Colchicaceae) solution and held in an insectary at 27 ± 2°C, with 70-80% relative humidity for 3 hr. The excised testes were incubated in 1% hypotonic sodium citrate solution, fixed in Carnoy’s fixative, stained with 10% Giemsa in phosphate buffer pH 7.2, mounted in Permount® (Fisher,
www.fishersci.com), and examined under a compound microscope. Identification of types of sex chromosomes followed the cytotaxonomic key of Baimai et al. (1993).

Crossing experiments

In crossing experiments, the 8 laboratory-raised isoline colonies of *An. peditaeniatus* were representative of the 4 karyotypic forms, i.e. Forms B [Nan strain: NnB (X₂, Y₁), Ratchaburi strain: RbB (X₃, Y₂), Chumphon strain: CpB (X₃, Y₂)], C [Chon Buri strain: CbC (X₃, Y₃)], D [Kamphaeng Phet: KpD (X₃, Y₄)], and E [Chiang Mai strain: CmE (X₃, Y₅), Udon Thani strain: UdE (X₃, Y₅), Ubon Ratchathani strain: UrE (X₂, Y₅)] (Table 1). These isoline colonies were used for crossing experiments in order to determine post-mating reproductive isolation by employing the techniques previously reported by Thongsahuan et al. (2009). Experiments were carried out once for each crossing of karyotypic forms. The salivary gland polytene chromosomes of 4th instar larvae from the crosses were investigated using the techniques described by Kanda (1979).

DNA extraction, amplification, sequencing and analysis

One individual F₁-progeny adult female from each isoline colony of *An. peditaeniatus* forms was used for DNA extraction and amplification. Genomic DNA was extracted from individual adult mosquitoes using a RED Extract-N-Amp™ Tissue PCR Kit (Sigma-Aldrich). The ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2), and mitochondrial cytochrome c oxidase subunit I (COI) and subunit II (COII) were amplified using the primers described by Park et al.
(2003), with minor modifications: 5.8S + 35 (5'-ACG CAT ATT GCA CGT CGT GG-3') and 28S - 20 (5'-GGG TTG TCA CAC ATA ACT TGA GGC-3') for ITS2; LCO1490 (5'-GGT CAA CAA ATC ATA AAG ATA TTG G-3') and HCO2198 (5'-TAA ACT TCA GGG TGA CCA AAA AAT CA-3') for COI; AnoCO2+1 (5'-GAT TAG TGC AAT GAA TTT AAG C-3') and AnoCO2END (5'-GAG ATC ATT ACT TGC TTT CAG TC-3') for COII. The PCR condition, cloning, and sequencing followed the techniques previously reported by Park et al. (2008). The PCR products were purified using the QIAquick® Gel Extraction Kit (Qiagen, www.qiagen.com), and directly sequenced with an ABI PRISMH® 3700 DNA Analyzer (Applied Biosystems, www.appliedbiosystems.com) using a Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems). Both strands were sequenced and aligned using the ClustalX multiple alignment programs (Thompson et al. 1997). The nucleotide sequence data reported are in the DDBJ/EMBL/GenBank nucleotide sequence databases with the accession numbers AB539056-AB539079. Geographical type of specimens and their sequence accession numbers within GenBank are denoted in Table 1.

Results

Cytological observations of F1-progenies of 8 isolate colonies demonstrated 2 types of X (X2, X3) and 4 types of Y (Y2, Y3, Y4, Y5) chromosomes. Based on uniquely different characteristics of Y chromosome from each isolate colony, they were tentatively designated as Forms B (X2, X3, Y2), C (X3, Y3), D (X3, Y4), and E (X2, X3, Y5). Form B was detected in 3 isolate colonies from Nan (X2, Y2), Ratchaburi (X3, Y2), and Chumphon (X3, Y2) provinces. Form C was found in 1 isolate colony from Chonburi (X3, Y3) province. Form D was obtained in 1 isolate colony from Kamphaeng Phet (X3, Y4) province. Form E was recovered in 3 isolate colonies from Chiang Mai (X3, Y5), Udon Thani (X3, Y5) and Ubon Ratchathani (X2, Y5) provinces (Figure 2; Table 1).

For crossing experiments, details of hatchability, pupation, emergence, and adult
sex-ratio of parental, reciprocal, and F₁-hybrid crosses among the 8 isolate colonies of *An. peditaeniatus* Forms B (X₂, X₃, Y₂), C (X₃, Y₃), D (X₃, Y₄), and E (X₂, X₃, Y₅) are shown in Table 2. All crosses yielded viable progenies through F₂-generations. No evidence of genetic incompatibility and/or post-mating reproductive isolation was observed among these crosses. The salivary gland polytene chromosomes of the 4th stage larvae from all crosses showed complete synapsis along the whole length of all autosomes and the X chromosome (Figure 3).

In the DNA sequence analysis, DNA sequences were determined and analyzed for the ITS2, COI, and COII regions from 8 isolate colonies representative of 4 karyotypic forms of *An. Peditaeniatus*. In these, all sequences of the ITS2 region were found to be completely identical with a length of 463 bp, but in comparison with *An. lesteri* they had a very high interspecific sequence variation of 35.4%. The results of comparative sequences of COI and COII regions revealed 548 bp for COI with 0.0 - 1.1% intraspecific sequence variations, and 672 bp for COII with 0.0 - 0.8% intraspecific sequence variations, and seven variable sites were observed from both (Figure 4). Interspecific sequence variations between *An. peditaeniatus* and *An. lesteri* in COI and COII were 3.6 - 4.0% and 3.1 - 3.5%, respectively.

Discussion

Karyotypic variation, due to the addition of an extra block of herterochromatin on sex chromosome (X, Y), is an important mechanism in the speciation process of anopheline mosquitoes and/or other dipteran insects. It could be used as a primary marker for further investigations of sibling species or subspecies status in natural populations of mosquitoes, particularly in those that have heteromorphic sex chromosomes as anophelines (Baimai 1998; Subbarao 1998). Nonetheless, limitation in use should be kept in mind since either markedly different or identical metaphase karyotypes could be cytological characteristics of sibling species or subspecies (cytological races). For example, *An. minimus* Theobald (*minimus* species A) has uniquely submetacentric X₁, medium submetacentric X₂, and submetacentric Y₁ chromosomes. *Anopheles harrisoni* Harbach and Manguin (*minimus* species C) has unique large submetacentric X₃ and large submetacentric Y₂ chromosomes (Baimai et al. 1996). *Anopheles barbirostris* Van der Wulp species A1, A2, A3, and A4 share common characteristics of medium submetacentric X₂ and subtelocentric Y₁ chromosomes, whereas submetacentric X₁, large submetacentric X₃, submetacentric Y₂, and large submetacentric Y₃ chromosomes were common phenomena of the karyotypic variation of *An. barbirostris* species A1 (Suwannamit et al. 2009).
Crossing experiments for determining hybrid non-viability, sterility, or breakdown are still a useful tool used in the recognition of anopheline species complexes. Detailed genetic incompatibility, including lack of insemination, embryonation, hatchability, larval survival, pupation, emergence, adult sex distortion, abnormal morphology, and reproductive system are useful criteria for elucidating sibling species or subspecies status (Baimai et al. 1987, 1988; Sawadipanich et al. 1990; Subbarao 1998). However, a point worth noting is that an isoline colony established from the combinative characters of morphological and/or cytological markers has to be seriously considered. A laboratory-raised colony established from a naturally mixed population should be omitted, since it may be a mixture of cryptic species or sibling species. Several intra-taxa of the anopheline species that were primarily detected with cytological differences and/or variations that

Table 2. Crossing experiments among the 8 isoline colonies of *Anopheles peditaeniatus* forms.

Crosses (Female x Male)	Total eggs (number)*	Embryonation rate*	Number hatched (%)	Number puation (%)	Number emergence (%)	Number from total emergence (%)
Parental cross						
NbB x NbB	316 (179, 137)	94	259 (81.96)	243 (93.82)	236 (97.12)	125 (52.97) 111 (47.03)
CpB x CpB	360 (196, 164)	85	281 (78.06)	267 (95.02)	267 (100.00)	128 (47.94) 139 (52.06)
RbB x RbB	341 (167, 174)	83	273 (80.60)	240 (87.91)	240 (100.00)	122 (50.83) 118 (49.17)
CbC x CbC	461 (283, 178)	80	323 (70.06)	297 (91.95)	297 (100.00)	154 (51.85) 143 (48.15)
KpD x KpD	271 (179, 91)	90	236 (87.08)	184 (77.97)	182 (98.91)	93 (51.10) 89 (48.90)
CmE x CmE	259 (136, 123)	87	210 (81.08)	174 (82.86)	167 (95.98)	77 (46.11) 90 (53.89)
UdE x UdE	325 (154, 171)	85	247 (76.00)	212 (85.83)	208 (98.11)	108 (51.92) 100 (48.08)
UdE x UrE	284 (158, 126)	78	213 (75.00)	202 (94.84)	198 (98.02)	109 (55.05) 89 (44.95)
Reciprocal cross						
NbB x CpB	336 (197, 139)	94	259 (77.08)	256 (98.84)	256 (100.00)	128 (50.00) 128 (50.00)
CpB x NbB	323 (199, 124)	91	258 (79.88)	253 (98.06)	251 (100.00)	111 (43.87) 142 (56.13)
NbB x RbB	268 (118, 150)	87	188 (70.15)	169 (89.89)	169 (100.00)	83 (49.11) 86 (50.89)
RbB x NbB	381 (185, 196)	84	267 (70.08)	251 (94.01)	251 (100.00)	128 (51.00) 123 (49.00)
NbB x CbC	391 (174, 217)	75	281 (71.87)	253 (90.04)	250 (98.81)	112 (44.80) 138 (55.20)
CbC x NbB	285 (164, 121)	73	205 (71.93)	203 (99.02)	201 (99.01)	106 (52.74) 91 (47.26)
NbB x KpD	368 (281, 87)	81	291 (79.08)	253 (86.94)	250 (98.81)	138 (55.20) 112 (44.80)
KpD x NbB	344 (192, 152)	89	306 (88.95)	294 (96.08)	291 (98.98)	163 (56.01) 128 (43.99)
NbB x CmE	374 (169, 205)	84	262 (70.05)	233 (88.93)	226 (97.00)	111 (49.12) 115 (50.88)
CmE x NbB	389 (204, 185)	85	292 (75.06)	272 (93.15)	272 (100.00)	133 (48.90) 139 (51.10)
NbB x UdE	369 (182, 187)	83	292 (79.13)	266 (91.10)	266 (100.00)	128 (48.12) 138 (51.88)
UdE x NbB	257 (161, 94)	85	213 (82.88)	207 (97.18)	199 (96.14)	98 (49.25) 101 (50.75)
NbB x UrE	374 (214, 160)	91	340 (90.91)	299 (87.94)	299 (100.00)	132 (44.15) 167 (55.85)
UrE x NbB	361 (144, 217)	72	256 (70.91)	256 (100.00)	256 (100.00)	118 (46.09) 138 (53.91)

* a Two selective egg-batches of inseminated females from each cross

* b Dissection from 100 eggs

Downloaded From: https://bioone.org/journals/Journal-of-Insect-Science on 10 Jul 2020
Terms of Use: https://bioone.org/terms-of-use
led to doubt of the status of sibling species or subspecies were subsequently confirmed by crossing experiments. These crossing experiments were for sibling species, e.g. *An. dirus* Peyton and Harrison complex (Baimai et al. 1987, 1988; Sawadipanich et al. 1990), *An. maculatus* Theobald complex (Chabpunrat 1988, Thongwat et al. 2008), and *An. minimus* complex (Choochote et al. 2002b; Somboon et al. 2005); and subspecies (cytological races), e.g. *An. sinensis* Wiedemann Forms A and B (Park et al. 2008), *An. vagus* Doenitz Forms A and B (Choochote et al. 2002a), *An. pullus* Yamada Forms A and B (Park et al. 2003), *An. aconitus* Doenitz Forms B and C (Junkum et al. 2005), and *An. campestris*-like Form B, E, and F (Thongsahuan et al. 2009).

In this study, 4 tentative karyotypic forms of *An. peditaeniatus*, i.e. Form B (X₂, X₃, Y₂), C (X₃, Y₃), D (X₃, Y₄), and E (X₂, X₃, Y₅) were obtained from natural populations in Thailand. It is interesting to note that the ancestral Form A (X₂, Y₁), reported by Baimai et al. (1993), was not detected in any isolate colonies, as only a few samples appeared to be used in the current study. Even though Form A (X₂, Y₁) was not detected in the present investigation.

Figure 3. Complete synopsis in all arms of salivary gland polytene chromosome of F₁-hybrid 4th stage larvae of *Anopheles peditaeniatus*. (A) NnB female x CpB male; (B) NnB female x RbB male, note: small gap of homosequential asynapsis was found on chromosome 3R; (C) NnB female x CbC male; (D) NnB female x KpD male, note: small gap of homosequential asynapsis was found on chromosome 3L; (E) NnB female x CmE male; (F) NnB female x UdE male; (G) NnB female x UrE male. High quality figures are available online.
markedly distinct characteristics, particularly the Y chromosomes among the 4 karyotypic forms, were enough to perform their genetic proximity thoroughly. Accordingly, the crossing experiments were carried out among the 4 karyotypic forms in order to determine the degree of genetic proximity. In addition, their comparative DNA sequences of ITS2, COI, and COII were included in this study. The results of no post-mating reproductive isolation among the 4 karyotypic forms, by yielding viable progenies and synaptic salivary gland polytene chromosomes through F2-generations, suggested their conspecific nature. The very low intraspecific sequence variations (0.0 - 1.1%) of the nucleotide sequences of ribosomal DNA (ITS2) and mitochondrial DNA (COI and COII) of the 4 karyotypic forms were strong supportive evidence. Additionally, the length (463 bp) and sequences of ITS2 regions of *An. peditaeniatus* forms obtained in this study were identical to that of a previous report (Ma and Xu 2005). Similar results have been reported in *An. sinensis* Forms A and B (Park et al. 2008), *An. vagus* Forms A and B (Choochote et al. 2002a), *An. pullus* Forms A and B (Park et al. 2003), *An. aconitus* Forms B and C (Junkum et al. 2005), and *An. campestris*-like Forms B, E, and F (Thongsahuan et al. 2009).

Acknowledgements

![Figure 4. Variable sites in the sequence alignment of the COI and COII sequences. Bases are numbered relative to the alignment. Only those positions differing from the consensus are shown. A dot indicates a base pair identical to that of the NnB sequence. Sequence names are defined in Table 1. High quality figures are available online.](image-url)
I thank the Thailand Research Fund (TRF: BRG5380021), and Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Thailand for financially supporting this research project; Assoc. Prof. Dr. Niwes Nantachit, Dean of the Faculty of Medicine, Chiang Mai University, for his interest in this research; and the Faculty of Medicine Endowment Fund for Research Publication for its financial support in defraying publication costs.

References

Baimai V. 1998. Heterochromatin accumulation and karyotypic evolution in some Dipteran insects. Zoological Studies 32: 75-88.

Baimai V, Andre RG, Harrison BA, Kijchalao U, Panthusiri L. 1987. Crossing and chromosomal evidence for two additional sibling species within the taxon Anopheles dirus Peyton and Harrison (Diptera: Culicidae) in Thailand. Proceedings of the Entomological Society of Washington 89: 157-166.

Baimai V, Harbach RE, Kijchalao U. 1988. Cytogenetic evidence for a fifth species within the taxon Anopheles dirus in Thailand. Journal of the American Mosquito Control Association 4: 333-338.

Baimai V, Kijchalao U, Rattanarithikul R. 1996. Metaphase karyotypes of Anopheles of Thailand and Southeast Asia: V. Myzomyia series, Subgenus Cellia (Diptera: Culicidae). Journal of the American Mosquito Control Association 12: 97-105.

Baimai V, Rattanarithikul R, Kijchalao U. 1993. Metaphase karyotypes of Anopheles of Thailand and Southeast Asia: I. The hyrcanus group. Journal of the American Mosquito Control Association 9: 59-67.

Chabpunnarat S. 1988. Cytogenetic study of the Anopheles maculatus complex. M.Sc. Thesis, Mahidol University Press.

Chai JY. 1999. Re-emerging Plasmodium vivax malaria in the Republic of Korea. The Korean Journal of Parasitology 37: 129-143.

Choochote W, Jitpakdi A, Sukontason KL, Chaithong U, Wongkamchai S, Pitasawat B, Jariyapan N, Suntaravitun T, Rattanachanpichai E, Sukontason K, Leemingsawat S, Rongsriyam Y. 2002a. Intraspecific hybridization of two karyotypic forms of Anopheles vagus (Diptera: Culicidae) and the related egg surface topography. Southeast Asian Journal of Tropical Medicine and Public Health 33 (3): 29-35.

Choochote W, Pitasawat B, Jitpakdi A, Rattanachanpichai E, Riyong D, Leemingsawat S, Wongkamchai S. 2001. The application of ethanol-extracted Gloriosa superba for metaphase chromosome preparation in mosquitoes. Southeast Asian Journal of Tropical Medicine and Public Health 32: 76-82.

Choochote W, Rongsriyam Y, Leemingsawat S, Jitpakdi A, Komalamisra N, Surathin K, Somboon P, Chen B, Wongkamchai S, Jariyapan N, Tippawangkosol P, Pitasawat B, Riyong D. 2002b. Intraspecific hybridization of Anopheles minimus (Diptera: Culicidae) species A and C in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 33 (3): 23-28.

Harrison BA, Scanlon JE. 1975. Medical entomology studies II. The subgenus Anopheles in Thailand (Diptera: Culicidae).
Contributions of the American Entomological Institute 12: 78.

Junkum A, Komalamisra N, Jitpakdi A, Jariyapan N, Min GS, Park MH, Cho KH, Somboon P, Bates PA, Choochote W. 2005. Evidence to support two conspecific cytological races on *Anopheles aconitus* in Thailand. *Journal of Vector Ecology* 30: 213-224.

Kanda T. 1979. Improved techniques for the preparation of polytene chromosome for some anopheline mosquitoes. *Mosquito News* 39: 568-574.

Kanojia PC, Shetty PS, Geevarghese G. 2003. A long-term study on vector abundance & seasonal prevalence in relation to the occurrence of Japanese encephalitis in Gorakhpur district, Uttar Pradesh. *Indian Journal of Medical Research* 117: 104-110.

Kim SJ, Choochote W, Jitpakdi A, Junkum A, Park SJ, Min GS. 2003. Establishment of a self-mating mosquito colony of *Anopheles sinensis* from Korea. *The Korean Journal of Parasitology* 33: 267-271.

Ma YJ, Xu JN. 2005. The Hyrcanus group of *Anopheles* (*Anopheles*) in China (Diptera: Culicidae): Species discrimination and phylogenetic relationships inferred by ribosomal DNA internal transcribed spacer 2 sequences. *Journal of Medical Entomology* 42: 610-619.

Mourya DT, Ilkal MA, Mishra AC, Jacob PG, Pant U, Ramanaujam S, Mavale MS, HR Bhat, Dhanda V. 1989. Isolation of Japanese encephalitis virus from mosquitoes collected in Karnataka State, India from 1985 to 1987. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 83: 550-552.

Park SJ, Choochote W, Jitpakdi A, Junkum A, Kim SJ, Jariyapan N. 2003. Evidence for a conspecific relationship between two morphologically and cytologically different forms of Korean *Anopheles pullus* mosquito. *Molecules and Cells* 16: 354-360.

Park MH, Choochote W, Kim SJ, Somboon P, Saeung A, Tuetan B, Tsuda Y, Takagi M, Joshi D, Ma YJ, Min GS. 2008. Nonreproductive isolation among four allopatric strains of *Anopheles sinensis* in Asia. *Journal of the American Mosquito Control Association* 24: 489-495.

Rattanarithikul R, Harrison BA, Harbach RE, Panthusiri P, Coleman RE. 2006. Illustrated keys to the mosquitoes of Thailand IV. *Anopheles. Southeast Asian Journal of Tropical Medicine and Public Health* 37(2): 1-128.

Rattanarithikul R, Konishi E, Linthicum KJ. 1996. Detection of *Plasmodium vivax* and *Plasmodium falciparum* circumsporozoites antigen in anopheline mosquitoes collected in southern Thailand. *American Journal of Tropical Medicine and Hygiene* 54: 114-121.

Ree HI, Hwang UW, Lee IY, Kim TE. 2001. Daily survival and human blood index of *Anopheles sinensis*, the vector species of malaria in Korea. *Journal of the American Mosquito Control Association* 17: 67-72.

Reid JA. 1968. Anopheline mosquitoes of Malaya and Borneo. *Studies from the Institute for Medical Research Malaysia* 31: 1-520.

Sawadipanich Y, Baimai V, Harrison BA. 1990. *Anopheles dirus* species E: chromosomal and crossing evidence for another member of the *dirus* complex. *Journal of the American Mosquito Control Association* 6: 477-481.
Somboon P, Thongwat D, Choochote W, Walton C, Takagi M. 2005. Crossing experiments of *Anopheles minimus* species C and putative species E. *Journal of the American Mosquito Control Association* 21: 5-9.

Subbarao SK. 1998. Anopheline species complexes in South-East Asia. *World Health Organization Technical Publication* Searo 18: 1-82.

Suwannamit S, Baimai V, Otsuka Y, Saeung A, Thongsahuan S, Tuetun B, Apiwathnasorn C, Jariyapan N, Somboon P, Takaoka H, Choochote W. 2009. Cytogenetic and molecular evidence for an additional new species within the taxon *Anopheles barbirostris* (Diptera: Culicidae) in Thailand. *Parasitology Research* 104: 905-918.

Thompson JD, Gibson TJ, Plewniak F, Jeannot F, and Higgins DG. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research* 25: 4876-4882.

Thongsahuan S, Baimai V, Otsuka Y, Saeung A, Tuetun B, Jariyapan N, Suwannamit S, Somboon P, Jitpakdi A, Takaoka H, Choochote W. 2009. Karyotypic variation and geographic distribution of *Anopheles campestris*-like (Diptera: Culicidae) in Thailand. *Memorias do Instituto Oswaldo Cruz* 104: 558-566.

Thongwat D, Morgan K, O’loughlin MS, Walton C, Choochote W, Somboon P. 2008. Crossing experiment supporting the specific status of *Anopheles maculatus* chromosomal form K. *Journal of the American Mosquito Control Association* 24: 194-202.

Yang MN, Ma YJ. 2009. Molecular population genetic structure of *Anopheles lesteri* (Diptera: Culicidae) based on mtDNA-COI gene sequences. *Acta Entomologica Sinica* 52: 1000-1007.

Zhang HL. 1990. The natural infection rate of mosquitoes by Japanese encephalitis B virus in Yunnan Province. *Zhonghua yufangyixue zazhi* 24: 265-267.