Support Information

Fabrication of a porous β-cyclodextrin-polymer-coated solid-phase microextraction fiber for the simultaneous determination of five contaminants in water using gas chromatography–mass spectrometry

Jiongxiu Pan, Shuming Li, Fuquan Dang, Zhi-qi Zhang, Jing Zhang*

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.

*Corresponding e-mail address: zhangjing8902@snnu.edu.cn.
FIGURE CAPTIONS

1. Supplementary **Figure S1.** FT-IR spectra of (a) P-CDP, (b) tetrafluoroterephthalonitrile, and (c) β-CD.

2. Supplementary **Figure S2.** 150 mg of P-CDP was degassed at 100 °C for 24 h and then backfilled with N\textsubscript{2}. (a) N\textsubscript{2} adsorption and desorption isotherms of P-CDP. S\textsubscript{BET} is the Brunauer–Emmett–Teller surface area (m2 g-1) of P-CDP computed from the N\textsubscript{2} adsorption isotherm. P and P\textsubscript{0} are the equilibrium and saturation pressures of N\textsubscript{2} at 77K, respectively. (b) The cumulative pore volume of P-CDP.

3. Supplementary **Figure S3.** Scanning electron micrographs of (a-b) P-CDP, image at magnification of 1200 and 5000. (c) SPME fiber coated with P-CDP, image at magnification of 5000.

4. Supplementary **Figure S4.** Thermogravimetric curve of P-CDP coating in nitrogen gas atmosphere. Heating rate: 10 °C min-1.

5. Supplementary **Figure S5.** Effect of the experimental conditions on the extraction efficiency of P-CDP-coated fiber for analytes, (a) extraction temperature, (b) extraction time, (c) ionic strength, and (d) desorption time.

6. Supplementary **Figure S6.** Chromatograms of extract VOCs and odours from real samples. (spiked 70 µg L-1 benzene (1), 110 µg L-1 Phenol (2), 0.25 µg L-1 1,3-Dichlorobenzene (3), 4 µg L-1 indole (4), 0.15 µg L-1 GSM (5))

7. Supplementary **Table S1.** EFs for the different compounds on P-CDP-coated fiber.
Figure S1. FT-IR spectra of (a) P-CDP, (b) tetrafluoroterephthalonitrile, and (c) β-CD.
Figure S2. 150 mg of P-CDP was degassed at 100 °C for 24 h and then backfilled with N₂. (a) N₂ adsorption and desorption isotherms of P-CDP. \(S_{\text{BET}} \) is the Brunauer–Emmett–Teller surface area \((m^2 \text{ g}^{-1}) \) of P-CDP computed from the \(N_2 \) adsorption isotherm. \(P \) and \(P_0 \) are the equilibrium and saturation pressures of \(N_2 \) at 77K, respectively. (b) The cumulative pore volume of P-CDP.
Figure S3. Scanning electron micrographs of (a-b) P-CDP, image at magnification of 1200 and 5000. (c) SPME fiber coated with P-CDP, image at magnification of 5000.
Figure S4. Thermogravimetric curve of P-CDPs coating in nitrogen gas atmosphere.
Figure S5. Effect of the experimental conditions on the extraction efficiency of P-CDP-coated fiber for analytes, (a) extraction temperature, (b) extraction time, (c) ionic strength, and (d) desorption time.
Figure S6. Chromatograms of extract VOCs and odours from real samples. (spiked 70 µg L\(^{-1}\) benzene (1), 110 µg L\(^{-1}\) Phenol (2), 0.25 µg L\(^{-1}\) 1,3-Dichlorobenzene (3), 4 µg L\(^{-1}\) indole (4), 0.15 µg L\(^{-1}\) GSM (5))
| Compounds | Structure | Molecular weight | Quantification ions | Identification ions | EFs |
|--------------------|-----------|------------------|---------------------|--------------------------------|------|
| GSM | ![GSM structure](image) | 182 | 112(100) | 125(17), 97(15) | 53.5 |
| Indole | ![Indole structure](image) | 117 | 117(100) | 90 (41) | 58.1 |
| 1,3-Dichlorobenzene | ![1,3-Dichlorobenzene structure](image) | 147 | 146(100) | 148(65), 111(37), 75(23) | 116.1|
| Benzene | ![Benzene structure](image) | 78 | 78(100) | 51(22), 52(20) | 105.2|
| Phenol | ![Phenol structure](image) | 94 | 94(100) | 66(23) | 17.2 |