THE SPECTRAL THEOREM FOR BIMODULES IN HIGHER RANK GRAPH C*-ALGEBRAS

ALAN HOPENWASSER

Abstract. In this note we extend the spectral theorem for bimodules to the higher rank graph C*-algebra context. Under the assumption that the graph is row finite and has no sources, we show that a bimodule over a natural abelian subalgebra is determined by its spectrum iff it is generated by the Cuntz-Krieger partial isometries which it contains iff the bimodule is invariant under the gauge automorphisms. We also show that the natural abelian subalgebra is a masa iff the higher rank graph satisfies an aperiodicity condition.

1. Introduction

Many C*-algebras can be coordinitized – a property that proves very useful both in the study of the C*-algebra and also of its subalgebras. Coordinitization is achieved by presenting the C*-algebra as a groupoid C*-algebra. The unit space of the groupoid is associated with an abelian subalgebra which is often, though not always, a masa. (The abelian subalgebra depends on the choice of coordinates and need not be intrinsic.) A great many of the (non-self-adjoint) subalgebras of a groupoid C*-algebra either contain the “diagonal” abelian algebra or are a bimodule over it. When the groupoid is r-discrete and principal, one of the most fundamental tools used in the study of subalgebras is the spectral theorem for bimodules of Muhly and Solel [4]. Roughly speaking, this says that a bimodule is determined by the coordinates on which it is supported.

When the groupoid is not principal, it is no longer true that a bimodule is determined by its spectrum. For graph C*-algebras, [2] contains a characterization of those bimodules which are determined by their spectra: these are the bimodules which are invariant under the gauge automorphisms. (Another equivalent condition is that the bimodule be generated by the Cuntz-Krieger partial isometries which it contains.) Graph C*-algebras have been extensively studied in the last decade; see [5] for an excellent summary and a bibliography of relevant papers. More recently, considerable attention has turned to a multi-dimensional analog, the higher rank graph C*-algebras.

Date: March 29, 2022.
2000 Mathematics Subject Classification. Primary 47L40.
Key words and phrases. C*-algebras, groupoids, bimodules.
In the paper in which higher rank graph C*-algebras were first formalized [3], Kumjian and Pask modified the path groupoid model for graph C*-algebras to produce a model for higher rank graph C*-algebras. The purpose of this note is to extend the spectral theorem for bimodules as it appears in [2] for graph C*-algebras to the higher rank context. Section 2 will provide a brief review of the notation and construction of higher rank graph C*-algebras and their associated path groupoids. Section 3 is devoted to the spectral theorem for bimodules in the higher rank context. It also contains a characterization of when the “diagonal” is a masa.

2. Higher rank C*-algebras and the path groupoid

A k-graph (Λ, d) is a small category Λ together with a functor d: Λ → N^k which satisfies the following factorization property: if λ ∈ Λ and d(λ) = m + n with m, n ∈ N^k, then there exist unique µ, ν ∈ Λ such that λ = µν, d(µ) = m, and d(ν) = n. For n ∈ N^k, we let Λ^n = d^{−1}(n) and note that Λ^0 can be identified with the objects in Λ.

When k = 1, Λ is the category of finite paths from a directed graph; Λ^0 is the set of vertices; Λ^1 is the set of directed edges; and Λ^n is the set of paths of length n. A higher rank graph is a multi-dimensional analog of an ordinary directed graph.

The category Λ has range and source maps r and s (so λ is a morphism from s(λ) to r(λ)). For each object v, and each n ∈ N^k, let Λ^n(v) = {λ ∈ Λ | d(λ) = n, r(λ) = v}. We assume throughout this paper that each Λ^n(v) is a finite, non-empty set. (This is usually expressed by saying that Λ is row finite and has no sources.)

A higher rank graph C*-algebra, C*(Λ), is the universal C*-algebra generated by a family of partial isometries {s_λ | λ ∈ Λ} satisfying:

1. {s_v | v ∈ Λ^0} is a family of mutually orthogonal projections,
2. s_λ s_μ = s_λ s_μ, for all composable λ, μ ∈ Λ (i.e., for all λ, μ with r(μ) = s(λ)),
3. s_v^* s_λ = s_v, where v = s(λ),
4. for all v ∈ Λ^0 and all n ∈ N^k, s_v = ∑_{λ ∈ Λ^n(v)} s_λ s_λ^*.

Any set of partial isometries in a C*-algebra which satisfies these four conditions is known as a Cuntz-Krieger family; if {t_λ | λ ∈ Λ} is a Cuntz-Krieger family, then the map s_λ ↦ t_λ extends to a homomorphism of C*(Λ) to the C*-algebra generated by the t_λ.

The description above is take largely from [3], where the reader can find more detail and a number of examples. The same source provides more complete information about the path groupoid, G, which we now summarize.

Let Ω_k denote the following k-graph:

- Obj Ω_k = N^k.
- Ω_k = {(m, n) | (m, n) ∈ N^k × N^k and m ≤ n}.
- r(m, n) = m; s(m, n) = n.
- d: Ω_k → N^k by d(m, n) = n − m.
Infinite path space in Λ is then defined to be
\[\Lambda^\infty = \{ x : \Omega_k \to \Lambda \mid x \text{ is a } k\text{-graph morphism} \}. \]
For \(v \in \Lambda^0 \), let \(\Lambda^\infty(v) = \{ x \in \Lambda^\infty \mid x(0) = v \} \). For each \(p \in \mathbb{N}^k \), define a shift map, \(\sigma^p : \Lambda^\infty \to \Lambda^\infty \), by \(\sigma^p(x)(m,n) = x(m+p,n+p) \).

Using the factorization property, Kumjian and Pask show that \(x \in \Lambda^\infty \) is determined by the values \(x(0,m), m \in \mathbb{N}^k \). They also show that if \(\lambda \in \Lambda \) and \(x \in \Lambda^\infty \) with \(x(0) = s(\lambda) \), then we can concatenate \(\lambda \) to \(x \): there is a unique \(y \in \Lambda^\infty \) such that \(x = \sigma^d(\lambda)y \) and \(\lambda = y(0,d(\lambda)) \). Naturally, we write \(y = \lambda x \). This leads immediately to the factorization of any infinite path \(x \in \Lambda^\infty \) as a product of a finite path (an element of \(\Lambda \)) and an infinite tail: \(x = x(0,p)\sigma^px \), for any \(p \in \mathbb{N}^k \).

For any \(\lambda \in \Lambda \), let \(Z(\lambda) = \{ \lambda x \in \Lambda^\infty \mid s(\lambda) = x(0) \} \) \[= \{ y \in \Lambda^\infty \mid y(0,d(\lambda)) = \lambda \} \]

The collection \(\{ Z(\lambda) \mid \lambda \in \Lambda \} \) generates a topology on path space \(\Lambda^\infty \); in this topology each \(Z(\lambda) \) is a compact, open set. The map \(\lambda x \mapsto x \) is a homeomorphism of \(Z(\lambda) \) onto \(Z(s(\lambda)) \) and each map \(\sigma^p \) is a local homeomorphism.

\(\Lambda^\infty \) will be identified with the set of units in the groupoid \(\mathcal{G}_\Lambda \), which is defined by
\[\mathcal{G}_\Lambda = \{(x,n,y) \in \Lambda^\infty \times \mathbb{Z}^k \times \Lambda^\infty \mid \sigma^p x = \sigma^q y \text{ and } n = p - q \}. \]

When \(k = 1 \), \(\Lambda^\infty \) reduces to the usual infinite path space and \(\mathcal{G}_\Lambda \) is the usual groupoid based on shift equivalence on path space. Inversion in \(\mathcal{G}_\Lambda \) is given by \((x,n,y)^{-1} = (y,-n,x) \). Composable elements consist of those with matching third and first coordinates, in which case multiplication is given by \((x,n,y)(y,m,z) = (x,n+m,z) \). \(\Lambda^\infty \) is identified with the space of units, \(\mathcal{G}_\Lambda^0 \), via \(x \mapsto (x,0,x) \). A basis for a topology on \(\mathcal{G}_\Lambda \) is given by the family
\[Z(\lambda,\mu) = \{ (\lambda z,d(\lambda) - d(\mu),\mu z) \mid z \in \Lambda^\infty(v) \}, \]
where \(\lambda,\mu \in \Lambda \) and \(s(\lambda) = s(\mu) = v \). The topology generated by this basis is locally compact and Hausdorff. \(\mathcal{G}_\Lambda \) is then a second countable, \(r \)-discrete, locally compact groupoid; each basic open set \(Z(\lambda,\mu) \) is compact. The identification of \(\Lambda^\infty \) with \(\mathcal{G}_\Lambda^0 \) is a homeomorphism. The groupoid C*-algebra, \(\mathcal{C}^*(\mathcal{G}_\Lambda) \), is isomorphic to the higher rank graph C*-algebra, \(\mathcal{C}^*(\Lambda) \).

The gauge action which appears in the spectral theorem for bimodules is an action of the \(k \)-torus \(\mathbb{T}^k \) on \(\mathcal{C}^*(\Lambda) \). First, a bit of notation: if \(t \in \mathbb{T}^k \) and \(n \in \mathbb{N}^k \) then \(t^n = t_1^{n_1}t_2^{n_2}\cdots t_k^{n_k} \). If \(\{ s_\lambda \mid \lambda \in \Lambda \} \) is a generating Cuntz-Krieger family, then so is \(\{ t^{d(\lambda)}s_\lambda \mid \lambda \in \Lambda \} \); the universal property then yields an automorphism \(\gamma_t \) of \(\mathcal{C}^*(\Lambda) \) such that \(\gamma_t(s_\lambda) = t^{d(\lambda)}s_\lambda \), for all \(\lambda \).
The fixed point algebra of the gauge action is an AF subalgebra of $C^*(\Lambda)$; it is generated by all $s_\lambda s_\mu^*$ with $d(\lambda) = d(\mu)$. The map Φ_0 of $C^*(\Lambda)$ onto the fixed point algebra given by $\Phi_0(f) = \int_{\pi_k} \gamma_t(f) \, dt$ is a faithful conditional expectation. For details concerning this, see [3].

It is shown in [3] that G_Λ is amenable; consequently, $C^*(G_\Lambda) = C^*_{red}(G_\Lambda)$. Proposition II.4.2 in [6] allows us to identify the elements of $C^*(G_\Lambda)$ with (some of the) elements of $C_0(G_\Lambda)$, the continuous functions on G_Λ vanishing at infinity. (Note, however, that all continuous functions on G_Λ with compact support are elements of $C^*(G_\Lambda)$.)

For each $m \in \mathbb{Z}^k$, let G_m be the set of those elements (x,n,y) in G_Λ with $n = m$. The conditional expectation Φ_0 is just restriction map to G_0. Restriction to G_m is also a map of $C^*(G_\Lambda)$ into itself; this is seen by observing that it is given by the norm decreasing map Φ_m defined by $\Phi_m(f) = \int_{\pi_k} t^{-m} \gamma_t(f) \, dt$. If B is a closed linear subspace of $C^*(\Lambda)$ which is left invariant by the gauge automorphisms, then $\Phi_m(B) \subseteq B$, for each m.

3. THE SPECTRAL THEOREM FOR BIMODULES

Throughout this section, Λ is a k-graph for which each $\Lambda^m(v)$ is finite and non-empty and G is the associated r-discrete locally compact groupoid. Elements of the groupoid C^*-algebra (= higher rank graph C^*-algebra) are viewed as continuous functions on G. (Since k does not vary, we drop the subscript from the notation for the groupoid.) As above, we identify path space Λ^∞ with the space of units of G; with this identification $C_0(\Lambda^\infty)$ becomes an abelian subalgebra of $C^*(G)$. Λ^∞ is not compact except when Λ has finitely many objects (“vertices”), hence the use of C_0.

For simplicity of notation, let A denote the groupoid C^*-algebra and let D denote $C_0(\Lambda^\infty)$. At the end of the section we will discuss when D is a masa in A.

Since G is r-discrete, the Haar system can be taken to be counting measure, and so is not mentioned explicitly. Since elements of A are interpreted as functions on G, multiplication is given by a convolution type formula

$$fg(x,n,y) = \sum f(x,p,z)g(z,q,y)$$

where the sum is taken over all composable pairs (x,p,z) and (z,q,y) with $p + q = n$. (For functions in A, the series will converge.) In particular, if $f \in A$ and $g \in D$,

(1) $$gf(x,n,y) = g(x,0,x)f(x,n,y),$$

(2) $$gf(x,n,y) = f(x,n,y)g(y,0,y).$$

For each $\lambda \in \Lambda$, let s_λ denote the characteristic function of the set $Z(\lambda, s(\lambda))$. Then \{ $s_\lambda \mid \lambda \in \Lambda$ \} forms a Cuntz-Krieger family and generates A as a C^*-algebra. This can be checked using the definition of $Z(\lambda, s(\lambda))$ and the formula given above for multiplication. Note also that, for $\lambda, \mu \in \Lambda$ with $s(\lambda) = s(\mu)$, $s_\lambda s_\mu^*$ is the characteristic function of the set $Z(\lambda, \mu).$
If \(B \subseteq A \) is a bimodule over \(D \), we define the spectrum of \(B \) to be:

\[
\sigma(B) = \{(x, n, y) \in G \mid f(x, n, y) \neq 0 \text{ for some } f \in B\}.
\]

The spectrum \(\sigma(B) \) is an open subset of \(G \). On the other hand, any open subset \(P \) of \(G \) determines a \(D \)-module \(A(P) \) given by

\[
A(P) = \{ f \in A \mid f(x, n, y) = 0 \text{ for all } (x, n, y) \notin P \}.
\]

Since \(P \) is open, if \((x, n, y) \in P \), then there is a basic open set \(Z(\lambda, \mu) \) such that \((x, n, y) \in Z(\lambda, \mu) \subseteq P \). It follows that \(s_\lambda s_\mu^* \in A(P) \); since \(s_\lambda s_\mu^* \) has the value 1 at \((x, n, y) \), we obtain \(\sigma(A(P)) = P \), for any open subset \(P \subseteq G \).

It is clear that if \(B \) is a bimodule over \(D \) then \(B \subseteq A(\sigma(B)) \); equality does not always hold. A counterexample in the special case of Cuntz algebras (algebras determined by 1-graphs with only one vertex) can be found in [1]. Also, it is shown in [2] that there is a counterexample for any graph \(C^* \)-algebra which is not AF. (For AF \(C^* \)-algebras the Muhly-Solel spectral theorem for bimodules says that \(B = A(\sigma(B)) \) always.) Thus counterexamples exist for all 1-graphs which contain a loop.

A characterization of those bimodules which are determined by their spectra – \(B = A(\sigma(B)) \) – is given in the graph \(C^* \)-algebra context in [2]. The main result in this note is the extension to the higher rank context:

Theorem (Spectral Theorem for Bimodules). Let \(\Lambda \) be a row finite \(k \)-graph with no sources. Let \(G \) be the associated path groupoid. Let \(A = C^*(\Lambda) = C^*(G) \) and \(D = C_0(\Lambda^\infty) \). If \(B \subseteq A \) is a bimodule over \(D \), then the following are equivalent:

1. \(B = A(\sigma(B)) \).
2. \(B \) is generated by the Cuntz-Krieger partial isometries which it contains.
3. \(B \) is invariant under the gauge automorphisms.

Proof. (1) \(\Rightarrow \) (2). Assume \(P \) is an open subset of \(G \). Let \(B \) be the bimodule generated by the Cuntz-Krieger partial isometries in \(A(P) \). Each such partial isometry has its support in \(P \), so \(\sigma(B) \subseteq P \) and \(B \subseteq A(P) \). We need to show that any function \(f \) in \(A(P) \) is actually in \(B \). We claim that it is sufficient to do this for functions which are supported on some \(Z(\lambda, \mu) \subseteq P \). Indeed, it then follows readily that functions supported on compact subsets of \(P \) are in \(B \) (every compact subset of \(P \) is contained in a finite union of subsets of the form \(Z(\lambda, \mu) \)) and the compactly supported functions in \(A(P) \) are dense in \(A(P) \).

If \(f \) has support in \(Z(\lambda, \mu) \), with the aid of convolution formulas (1) and (2) it is easy to find a function \(g \) supported in \(\Lambda^\infty \) such that \(f = gs_\lambda s_\mu^* \). Since \(s_\lambda s_\mu^* \in B \) and \(g \in D \), \(f \in B \) also.

(2) \(\Rightarrow \) (3). Since a gauge automorphism maps a Cuntz-Krieger partial isometry to a scalar multiple of itself, \(B \) is trivially left invariant when it is generated by its Cuntz-Krieger partial isometries.
(3) ⇒ (1). Let \(\mathcal{B} \) be a gauge invariant bimodule and let \(P = \sigma(\mathcal{B}) \). Since \(\mathcal{B} \subseteq A(P) \) is automatic, we just need to show that \(A(P) \subseteq \mathcal{B} \). For each \(m \in \mathbb{Z}^k \), let \(P_m = P \cap \mathcal{G}_m \), so that \(P = \bigcup_m P_m \). Since \(\Phi_m \) maps \(A(P) \) onto \(A(P_m) \) and, for each \(f, f \) is in the closed linear span of the \(\Phi_m(f) \), we need merely show that \(A(P_m) \subseteq \mathcal{B} \), for each \(m \).

Fix \(m \). Suppose that \(\alpha, \beta \in \Lambda \) satisfy \(s(\alpha) = s(\beta) \) and \(d(\alpha) - d(\beta) = m \). Denote \(\mathcal{G}_{\alpha, \beta} = \{(\alpha z, m, \beta w) \mid z, w \in \Lambda^\infty(s(\alpha))\} \) and \(P_{\alpha, \beta} = P_m \cap \mathcal{G}_{\alpha, \beta} \). Now, by what we have just proven \(A(P_m) \) is the closed linear span of the Cuntz-Krieger partial isometries which it contains. But if \(s_\alpha s_\beta^* \) is one of these, then \(s_\alpha s_\beta^* \in A(P_{\alpha, \beta}) \), so \(A(P_m) \) is the closed linear span of the \(A(P_{\alpha, \beta}) \). This reduces the task to showing that \(A(P_{\alpha, \beta}) \subseteq \mathcal{B} \) for each suitable pair \(\alpha, \beta \).

We can finish the proof by transferring the problem to (a subset of) \(\mathcal{G}_0 \); the latter is a principal groupoid so the Muhly-Solel spectral theorem for bimodules is available. Let

\[
\mathcal{G}_0(s(\alpha)) = \{(z, 0, w) \mid z, w \in \Lambda^\infty(s(\alpha))\}.
\]

The map \(\psi: \mathcal{G}_0(s(\alpha)) \to \mathcal{G}_{\alpha, \beta} \) given by \((z, 0, w) \mapsto (\alpha z, m, \beta w) \) is a homeomorphism. Let \(\mathcal{Q} \) be the inverse image of \(P_{\alpha, \beta} \) under this map. Note that \(f \mapsto s_\alpha f s_\beta^* \) carries \(\mathcal{Q} \) onto \(A(P_{\alpha, \beta}) \).

Let

\[
\mathcal{C} = \{f \in A(\mathcal{G}_0(s(\alpha))) \mid s_\alpha f s_\beta^* \in \mathcal{B}\}.
\]

We claim that \(\mathcal{C} \) is a bimodule over \(\mathcal{D} \). Since \(\mathcal{D} \) is generated by projections of the form \(s_\lambda s_\lambda^* \), it suffices to show that \(\mathcal{C} \) is closed under multiplication left and right by such projections. Now if \(f \in \mathcal{C} \), then, since \(s_\alpha s_\lambda s_\lambda^* f s_\beta^* \neq 0 \) exactly when \(s_\lambda s_\lambda^* \leq s_\alpha s_\alpha^* \),

\[
s_\alpha s_\lambda s_\lambda^* f s_\beta^* = s_\alpha s_\lambda s_\lambda^* s_\alpha f s_\beta^* = s_\alpha s_\alpha^* s_\alpha f s_\beta^* \in \mathcal{B}.
\]

The last assertion uses \(s_\alpha s_\alpha^* \in \mathcal{D} \) and \(s_\alpha f s_\beta^* \in \mathcal{B} \). Thus \(\mathcal{C} \) is a left bimodule over \(\mathcal{D} \); the argument that it is a right bimodule is similar.

The definition of \(\mathcal{Q} \) implies that \(\sigma(\mathcal{C}) \subseteq \mathcal{Q} \). The gauge invariance of \(\mathcal{B} \) implies that \(\sigma(\mathcal{C}) = \mathcal{Q} \). Indeed, let \(q \in \mathcal{Q} \) and let \(p = \psi(q) \). Since \(p \in \mathcal{B} \), there is \(f \in \mathcal{B} \) such that \(f(p) \neq 0 \). Then \(\Phi_m(f)(p) \neq 0 \) and, by gauge invariance, \(\Phi_m(f) \in \mathcal{B} \). If \(g = s_\alpha^* \Phi_m(f) s_\beta \), then \(g \in \mathcal{C} \) and \(g(q) \neq 0 \).

Since \(\sigma(\mathcal{C}) = \mathcal{Q} \) and the Muhly-Solel spectrum for bimodules holds in \(A(\mathcal{G}_0) \), we have \(\mathcal{C} = A(\mathcal{Q}) \). This implies that \(A(P_{\alpha, \beta}) \subseteq \mathcal{B} \). \(\square \)

As mentioned earlier, \(\mathcal{D} = C_0(\Lambda^\infty) \) need not be a masa in \(\mathcal{A} \). For the graph \(C^* \)-algebra case, it was shown in [2] that \(\mathcal{D} \) is a masa if, and only if, every loop has an entrance. Kumjian and Pask [3] define an analogous condition, the aperiodicity condition, for higher rank graphs and use this to extend the Cuntz-Krieger uniqueness theorem. Their condition also extends the masa theorem. Here are the relevant definitions: an element \(x \in \Lambda^\infty \) is periodic with non-zero period \(p \in \mathbb{Z}^k \) if, for every \((m, n) \in \Omega \) with \(m + p \geq 0 \), \(x(m + p, n + p) = x(m, n) \). If there is an element \(n \in \mathbb{N}^k \) such that \(\sigma^n(x) \)
is periodic, x is \textit{eventually periodic}; otherwise, x is \textit{aperiodic}. Finally, Λ satisfies the \textit{aperiodicity condition} if, for every $v \in \Lambda^0$, there is an aperiodic path $x \in \Lambda^\infty(v)$.

Note that x is eventually periodic with period p if, and only if, $(x, p, x) \in \mathcal{G}$. Kumjian and Pask prove that Λ satisfies the aperiodicity condition if, and only if, the points in \mathcal{G} with trivial isotropy are dense in \mathcal{G}^0 [3, Proposition 4.5]. We will show below that the aperiodicity condition is also equivalent to the assertion that \mathcal{G}^0 is the interior of the isotropy group bundle \mathcal{G}^1. (Note: in the Kumjian-Pask proposition, \mathcal{G}^0 is viewed as Λ^∞; we will view \mathcal{G}^0 as the open subset $\{(x, 0, x) \mid x \in \Lambda^\infty\} \subset \{x, p, x \in \mathcal{G} \mid p \in \mathbb{Z}^k\}$.) Renault [6, Proposition II.4.7] has shown that, $C^*_0(\mathcal{G}^0)$ is a masa in $\mathcal{A}^*_{\text{red}}(\mathcal{G})$ if, and only if, \mathcal{G}^0 is the interior of \mathcal{G}^1. Since the path groupoid \mathcal{G} is amenable, Renault’s Proposition yields the masa theorem.

Proposition. Λ satisfies the aperiodicity condition if, and only if, \mathcal{G}^0 is the interior of \mathcal{G}^1.

Proof. Assume that the aperiodicity condition holds. Let $(x, p, x) \in \mathcal{G}^1$ with $p \neq 0$. We shall show that we can approximate (x, p, x) by points in \mathcal{G} which are not in \mathcal{G}^1. This shows that (x, p, x) is not in the interior of \mathcal{G}^1. Since \mathcal{G}^0 is an open subset of \mathcal{G}^1, it follows that \mathcal{G}^0 is the interior.

Let $Z(\alpha, \beta)$ be a neighborhood of (x, p, x). For m sufficiently large (meaning for each m_i sufficiently large), $m + p \geq 0$ and both $x(0, m)$ and $x(0, m + p)$ lie in $Z(\alpha)$ and in $Z(\beta)$. Since $(x, p, x) \in \mathcal{G}$, $\sigma^m(x) = \sigma^{m+p}(x)$ and $x(0, m)$ and $x(0, m + p)$ have a common source v. Choose y aperiodic in $\Lambda^\infty(v)$. Let $z = x(0, m)y$ and $w = x(0, m + p)y$. Then $z \neq w$ and $(z, p, w) \in Z(\alpha, \beta)$. So $(z, p, w) \notin \mathcal{G}^1$ and (z, p, w) approximates (x, p, x).

Now suppose that Λ does not satisfy the aperiodicity condition. By Proposition 4.5 in [3], there is $x \in \Lambda^\infty$ which cannot be approximated by aperiodic points. Since x must be eventually periodic there is a non-zero element p of \mathbb{Z}^k such that $(x, p, x) \in \mathcal{G}$. If (x, p, x) could be approximated in the topology of \mathcal{G} by points outside \mathcal{G}^1, it would follow that x is a limit of aperiodic points in Λ^∞ – a contradiction. This shows that (x, p, x) is in the interior of \mathcal{G}^1 and so \mathcal{G}^0 is not the interior. \hfill \square

This Proposition, Proposition II.4.7 in [6], and the amenability of \mathcal{G} yield the following theorem.

Theorem. \mathcal{D} is a masa in \mathcal{A} if, and only if Λ satisfies the aperiodicity condition.

References

[1] Alan Hopenwasser and Justin Peters, Subalgebras of the Cuntz C*-algebra, arXiv math.OA/0304013
[2] Alan Hopenwasser, Justin Peters, and Stephen Power, Subalgebras of graph C*-algebras, arXiv math.OA/0409075
[3] Alex Kumjian and David Pask, Higher rank graph C*-algebras, New York J. Math. 6 (2000), 1–20 (electronic). MR 2001b:46102
[4] Paul S. Muhly and Baruch Solel, *Subalgebras of groupoid C*-algebras*, J. Reine Angew. Math. 402 (1989), 41–75. MR 90m:46098

[5] Iain Raeburn, *Graph algebras*, CBMS Regional Conf. Ser. in Math., Amer. Math. Soc., Providence, to appear.

[6] Jean Renault, *A groupoid approach to C*-algebras*, Springer, Berlin, 1980. MR 82h:46075

Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487

E-mail address: ahopenwa@euler.math.ua.edu