Magnetic properties of $S=1/2$ J_1-J_2 one-dimensional magnets, VO(XO$_4$)(2,2’-bpy) (X=S, Mo; bpy = bipyridine)

H. Kikuchi1, Y. Ishikawa1, Y. Fujii2, A Matsuo3, K Kindo3

1Department of Applied Physics, University of Fukui, Fukui 910-8507, Japan
2Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
3The Institute for Solid State Physics (ISSP), the University of Tokyo, 277-8581 Kashiwa, Japan

E-mail: kikuchi@u-fukui.ac.jp

Abstract. Magnetic susceptibility, high field magnetization and specific heat of $S=1/2$ J_1-J_2 spin chain compounds VO(XO$_4$)(2,2’-bpy) (X=S, Mo; bpy = bipyridine) are measured. VO(SO$_4$)(2,2’-bpy) is found to be a one-dimensional Heisenberg antiferromagnet with $J_1/k_B=6.5$ K and $J_2=0$. A ratio $j=J_2/J_1$ of VO(MO$_4$)(2,2’-bpy) is estimated to be about 0.2 with $J_1/k_B=51$ K. Spin gap is not observed in both the compounds, which is consistent with the theoretical prediction.

1. Introduction

One dimensional Heisenberg antiferromagnets (1D HAF) with the nearest J_1 and the second-nearest J_2 interactions (J_1-J_2 model or zigzag chain model) are the simplest frustrated magnets. Because several interesting magnetic phases[1], including the nematic spin phase[2], are predicted to be realized in the J_1-J_2 model with $S=1/2$, several experimental and theoretical works on J_1-J_2 model have been conducted. Given the fact that the quantum phase transitions are mainly determined by the relative ratio of J_1 of J_2, actual model compounds with different parameters are required to perform experimental studies on the ground state phase diagram.

The V$^{4+}$ ions ($S=1/2$) in VO(XO$_4$)(2,2’-bpy) (X=S, Mo; bpy = bipyridine) [3] form double chain such that these compounds can be regarded as new materials for the J_1-J_2 model (Fig. 1). The exchange interactions between the V$^{4+}$ ions in each compound are assumed to be mediated through the XO$_4$ ionic group. We have already reported the measurement results of magnetic susceptibility and high field magnetization of up to 35 T of VO(MO$_4$)(2,2’-bpy) [4]. However it was not possible to accurately determine the values of exchange coupling, because of the masking by magnetic impurities and very large saturation magnetic field.

In the present study, we report the results of magnetic susceptibility, high field magnetization up to about 60 T and specific heat of VO(XO$_4$)(2,2’-bpy). In addition, we discuss the determination of the exchange coupling constants of these compounds.
2. Experiments
Powder samples of VO(XO$_4$)(2,2'-bpy) were synthesized by hydrothermal method, according to the procedure reported in Ref. 3. The quality of the specimen was investigated by powder X-ray diffraction. All the measurements were performed using the prepared powder samples. Magnetic susceptibility was measured using a SQUID (superconducting quantum interference device) magnetometer (MPMS, Quantum Design) in the temperature range of 2 - 300 K. High-field magnetizations of up to 60 T were measured using a pulsed high magnet at the Institute for Solid State Physics. Specific heat measurements were performed using a Quantum Design PPMS by the relaxation method under an applied field of up to 7 T.

3. Results and Discussion
The following sections present the measurement results of VO(SO$_4$)(2,2'-bpy) and VO(MoO$_4$)(2,2'-bpy), and the corresponding discussion and analysis.
3.1. VO(SO$_4$)$_2$(2,2'-bpy)

Figure 2 shows the temperature dependence of the magnetic susceptibility of VO(SO$_4$)$_2$(2,2'-bpy) measured at 100 Oe. The inset indicates the temperature dependence of the reciprocal susceptibility. A fit of a high temperature region of $\chi(T)$ to the Curie-Weiss law yields an antiferromagnetic Weiss temperature of $\Theta = -30$ K. A broad peak observed at 4.1 K confirms the one-dimensional nature of this compound. Magnetic susceptibility of the $S = 1/2$ J_1-J_2 model was calculated using the density-matrix renormalization-group method [5]. Best-fit results of the calculation to the experimental data are obtained for $J_1/k_B=6.5$ K and j ($=J_2/J_1$) = 0, as indicated by a solid line in Fig. 2. Furthermore, the Lande’s g value is estimated to be 1.85,
Figure 5. The temperature dependence of the magnetic susceptibility of VO(MoO$_4$)(2-2’-bpy). Theoretical calculation for $J_1/k_B = 51$ K and different values of $j = 0-0.3$ are plotted.

Figure 6. High field magnetization of VO(MoO$_4$)(2-2’-bpy) measured at 1.3 K up to 60 T. The solid line is the calculated magnetization with $J_1/k_B = 51$K and $j = 0.2$.

Figure 7. The temperature dependence of the specific heat of VO(MoO$_4$)(2-2’-bpy).

which is consistent with the reported values 1.925-1.976 as determined by the ESR experiment [6]. Given the ratio parameter $j = 0$, VO (SO$_4$)(2,2’-bpy) is described as a simple HAF rather than the J_1-J_2 model material. Figure 3 shows the high field magnetization curve measured at 1.3 K. The magnetization curve exhibits a down-convex form, which is commonly observed in the magnetization of 1D HAF. The field derivative of the magnetization dM/dH has a peak at around 9 T, which is the saturation magnetic field. The theoretical curve at $T=0$ calculated for 1D HAF without J_2 [7] agrees well with the experimental data as shown in Fig. 3. Figure 4 shows the temperature dependence of specific heat measured at different fields up to 7 T. The lattice contribution is not subtracted because an isostructural compound without magnetic ions is not known. A broad peak is observed in the specific heat measured in zero field at around
3.5 K, which corresponds to the temperature at which $\chi(T)$ is the maximum. Inset shows the magnetic field dependence of the peak temperature of specific heat. Upon increasing the applied field, the peak temperature monotonically decreases.

3.2. VO(MoO$_4$)(2,2'-bpy)

Figure 5 shows the temperature dependence of $\chi(T)$ of VO(MoO$_4$)(2,2'-bpy). A broad maximum is observed at around 40 K, which is higher than that observed for VO(MoO$_4$)(2,2'-bpy). Low temperature upturn is because of a small amount of magnetic impurities. Given the fact that the simple 1D HAF model is insufficient to fit the experimental data, finite J_2 is suggested to be present in this compound. We thus made an attempt to obtain the best-fit for the experimental data. Although quantitative fitting is not obtained, the experimental data qualitatively agree to the theoretical curve for $J_1/k_B = 51$ K and $j = 0.2$, as plotted in Fig. 5. Figure 6 shows the high field magnetization curve measured at 1.3 K. As expected from large exchange constant J_1, magnetization does not attain its saturation value of 1 μ_B even at the highest field of 60 T. Using the parameters determined from $\chi(T)$ $J_1/k_B = 51$ K and $j = 0.2$, we calculated the theoretical magnetization curve, as shown in Fig. 6, which agrees to the experimental data. Figure 7 shows the temperature dependence of specific heat at zero field. Here, the lattice contribution is not subtracted.

No anomaly associated with the magnetic phase transition was observed despite the large values of the exchange constant. This implies that VO(MoO$_4$)(2,2'-bpy) has good one-dimensionality. Spin gap is not observed both in the magnetization and the specific heat data. The gapless behavior for the J_1-J_2 spin chain with $j = 0.2$ is consistent with the theoretical expectation that the quantum phase transition occurs at $j_c = 0.2441$ from gapless spin fluid to the gapped dimer phase with an increase in j from 0 [8]. It is found that the ground state of VO(MoO$_4$)(2,2'-bpy) belongs to the gapless spin fluid phase.

4. Conclusion

In summary, we have determined the magnetic susceptibility, high-field magnetization and specific heat of $S = 1/2$ J_1-J_2 spin chain compounds VO(XO$_4$)(2,2'-bpy) (X = S, Mo; bpy = bipyridine). VO(SO$_4$)(2,2'-bpy) is found to be a one-dimensional Heisenberg antiferromagnet with $J_1/k_B = 6.5$ K and $J_2 = 0$. The ratio $j = J_2/J_1$ of VO(MoO$_4$)(2,2'-bpy) is estimated to be about 0.2 with $J_1/k_B = 51$ K. Spin gap is not observed in both compounds, which is consistent with the theoretical prediction.

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas “Novel States of Matter Induced by Frustration” (19052005) and by a Grant-in-Aid for Scientific Research(C) (23540389).

References

[1] Hikihara T, Kaburagi M and Kawamura H 2001 Phys. Rev. B 63 721 and references therein
[2] Hikihara T, Kecke L, Momoi T and Furusaki A 2008 Phys. Rev. B 78 144404
[3] Khan M I, Giri S, Ayesh S and Doedens R J 2002 Inorg. Chem. Commun. 7 721
[4] Kikuchi H, Fujii Y, Chiba M, Mitsudo S and Idehara T 2005 Polyhedron 24 2835
[5] Maeshima N and Okunishi K 2000 Phys. Rev. B 62 934
[6] Takahashi N, Okubo S, Ohta H, Sakurai T, Ishikawa Y, Fujisawa M and Kikuchi H 2011 Appl. Magn. Reson. 40 481
[7] Griffiths R B Phys. Rev. 1964 133 A768
[8] Okamoto K and Nomura K 1992 Phys. Lett. A 169 433