1. 緒言

船舶や海洋構造物向け厚鋼板の溶接部の破壊靭性評価にはき裂先端開口変位（CTOD）試験が適用されることが多い。CTOD試験では疲労き裂の導入が要求されるが、溶接部には複雑な残留応力分布を生じており、溶接ままの状態では疲労き裂形状が不均一となる場合がある。そのため、適正な形状の疲労予き裂を導入する目的で、その前処理として局部圧縮処理（以後、プラテン処理と称す）や逆曲げ処理を実施することが推奨されている。

一方、逆曲げ処理は、CTOD試験時とは逆方向の曲げ荷重を付与することで、機械切欠き底近傍に圧縮塑性ひずみを導入し、除荷後に引張残留応力場を形成することで疲労予き裂発生・進展を促進する方法である。逆曲げ処理は通常の曲げ負荷によるCTOD試験と同程度の荷重が必要となるが、プラテン処理のような特に大きな荷重を必要としない。そのため利便性が高く、高強度鋼及び極厚材にも適用しやすい方法であるが、処理が不適切であると疲労予き裂形状の改善効果が得られない場合がある。また、逆曲げ処理は限界CTOD値を過大評価する可能性があることが指摘されているが、その原因は解明されていない。

ISO 15653の2018年改訂版では、Annex Cに逆曲げ処理条件の推奨範囲が盛り込まれた。これは近年の実験・解析検討等に基づき示されたものであるが、他方で以前より逆曲げ処理に否定的な報告もあり、依然として逆曲げ処理の有効性については議論が分かれる。

本研究では、継手CTOD試験における逆曲げ処理の有効性を検証するとともに、適正な逆曲げ条件を検討することを目的に、板厚70mmの船体構造造用降伏点460MPa級TMCP鋼のサブマージアーク溶接継手を用いた実験的検討を行った。さらに、有限要素法（FEM）解析により継手試験片の残留応力分布を解析し、疲労予き裂形状と限界CTOD値に及ぼす残留応力改善処理条件の影響について考察を行った。

2. 継手CTOD試験

2.1 実験方法

2.1.1 供試鋼と溶接継手

供試鋼には板厚70mmの船体構造造用降伏点460MPa級TMCP鋼（IACS UR W31 Rev.2準拠EH47）を用いた。供試
鋼の化学成分と機械的特性を Table 1, 2 にそれぞれ示す。

サブマージアーク溶接（SAW）により溶接継手（溶接長 2000 mm）を作製した。開先形状はレ形（開先角度 30°, ルートギャップ 10 mm）であり、溶接ワイヤは Y-DM3（ワイヤ直径 4.8 mm）、フラックスは NB-55E（ワイヤ、フラックス共に日鉄溶接工業製）、鋼製の裏当材を使用した。溶接電流を 750 A, 電圧を 30 V, 溶接速度を 30 cm/min とし、1 パスの入熱量 49.5 kJ/cm, 予熱無し、パス間温度 150℃以下の条件にて、全 30 パスで溶接施工を行った、溶接による角変形を抑制するため、ストロングバックを鋼板の裏面（初層側）に均等に 7 处所取り付けた。Fig. 1 に溶接積層図と溶接部断面マクロ写真を示す。

2.1.2 CTOD 試験

Fig. 2 に CTOD 試験片形状を示す。正方形断面（W=B）の 3 点曲げ試験片であり、板表面に対して垂直方向に溶接融合線に沿った板厚貫通切欠きを加工した。機械切欠きは長さ 32 mm, 先端角度 60°, 先端半径 0.1 mm とした。溶接残留応力の改善（低減又は平坦化）効果を調べるために、逆曲げ（逆曲げ閉口量 Vrb = 0.2, 0.3, 0.4 mm）かプラテン（直径 φ = 75, 40, 30, 20 mm）処理のいずれかを施した。また、比較のために受け入れままの試験片も用いた。

逆曲げ処理は室温での 4 点曲げ負荷により実施し、クリップゲージを機械切欠き端部の内蔵型ナイフエッジに取り付け、逆曲げ時の閉口量（Vrb）が所定値となるように制御した。逆曲げ時の最大荷重（Prb）も測定し、次式で定義されるリミットロード（PL）との比（Prb/PL）を求めた。

\[
P_{rb} = \frac{B(W - a_m)^2}{S - S_0} \
\]

ただし、B は板厚、W は試験片幅、am は機械切欠き長さ、S と S0 はそれぞれ 4 点曲げにおける外側と内側のスパン、σy は

Table 1 Chemical composition of steel used

C	Si	Mn	P	S	Others
0.10	0.03	1.43	0.007	0.002	Cu, Ni, Nb, Ti

Table 2 Mechanical properties of steel used

YP [MPa]	TS [MPa]	EL [MPa]	YR [%]
472	571	25	83

Fig. 1 Pass sequence and macrostructure of a SAW multi-pass welded joint for CTOD specimens

Fig. 2 Shape and dimensions of a CTOD specimen (unit: mm)
は室温での降伏応力である。\(\sigma_y \) は Table 2 の母材の YP を使用した。また、逆曲げ時に生じる圧縮塑性域寸法（\(\omega_{rb} \)）を次式に応用した。

\[
\omega_{rb} = \frac{\pi}{8} \left(\frac{K_{rb}}{\left(L \sigma_y \right)} \right)^2
\]

式 (2)

\(L \) はノッチ拘束係数であり、2.3 とした。\(K_{rb} \) は応力拡大係数であり、次式を用いた。

\[
K_{rb} = \frac{P_{rb} (S - S_t)}{BW^{1.5}} \cdot g_1 \left(\frac{a_{min}}{W} \right)
\]

式 (3)

\[
g_1 \left(\frac{a_{min}}{W} \right) = \frac{3}{2} \left[\left(\frac{a_{min}}{W} \right)^{0.5} \left(18 - \frac{a_{min}}{W} \right) \left(1 + \frac{a_{min}}{W} \right) \right]
\]

式 (4)

プラテン処理は機械切欠き加工前に実施し、直径（\(\phi \)）が 75, 40, 30, 20 mm の円断面の圧盤を使用して、圧盤のひずみ量 1% にて試験片両面から同時に加圧した。\(\phi = 75 \) mm の場合は試験片の中心に 1 カ所加圧し、\(\phi = 40, 30, 20 \) mm の場合はリガメントに広範囲に塑性ひずみが導入されるように 2 ~ 9箇所加圧した。逆曲げ処理とプラテン処理の実績を Table 3 に示す。

試験片表面の疲労予き裂導入は 3 点曲げにより最大荷重（\(P_{fmax} \)）を 50 kN、最小荷重（\(P_{fmin} \)）を 5 kN（応力比 0.1）の条件にて、試験片表面の疲労予き裂長さの目標を 3 mm として実施した。CTOD 試験は -60℃の試験温度で実施した。ISO 15353に準拠して、次式により CTOD（\(\delta \)）を算出し、荷重とクリップゲージ変位の挙動に対応した CTOD の破壊限界値（\(\delta_{cr} \））を求めた。

\[
\delta = \frac{K^2 (1 - \nu^2)}{m \sigma_y E} + f_p \cdot \frac{0.43(V - a_0)\sigma_y}{0.43(V - a_0) + a_0 + z}
\]

式 (5)

ここで、

\[
m = 4.9 - 3.5R_y
\]

式 (6)

\[
f_p = (-1.4R_y^2 + 2.8R_y - 0.35) [0.8 + 0.2\exp(-0.019(B - 25))]
\]

式 (7)

ただし、\(K \) は応力拡大係数、\(\sigma_y \) は試験温度での降伏応力、\(E \) はヤング率、\(\nu \) はポアソン比、\(a_0 \) は初期き裂長さ、\(K_p \) はクリップゲージ変位の塑性成分、\(z \) はナイフエッジ高さ、\(R_y \) は試験温度での降伏比（\(\sigma_y/\sigma_t \）、\(\sigma_t \) は試験温度での引張強度）である。ここでは、ヤング率は 206 GPa、ポアソン比は 0.3 とした。\(\sigma_y \) と \(\sigma_t \) は次式に応用室温での母材の降伏応力（\(\sigma_{y0} \））と引張強度（\(\sigma_{t0} \））から推定した値を用いた。

\[
\sigma_y = \sigma_{y0} + \left(\frac{10^5}{491 + 1.87} \right) - 189
\]

式 (8)

No.	Technique	Reversed bending	Local compression					
		\(P_{fmax} \) [kN]	\(P_{fmin} \) [kN]	\(a_{min} \) [mm]	\(\sigma_y \) [mm]	Number of compression	Maximum Load [kN]	Plastic strain [%]
U1	N. A. (As-received)	-	-	-	-	-	-	-
U2	N. A. (As-received)	-	-	-	-	-	-	-
U3	N. A. (As-received)	-	-	-	-	-	-	-
R1	Reversed bending	0.2	203	0.59	0.87	-	-	-
R2	Reversed bending	0.2	195	0.57	0.81	-	-	-
R3	Reversed bending	0.2	202	0.59	0.86	-	-	-
R4	Reversed bending	0.3	295	0.87	1.85	-	-	-
R5	Reversed bending	0.3	308	0.91	2.01	-	-	-
R6	Reversed bending	0.3	286	0.84	1.74	-	-	-
R7	Reversed bending	0.4	376	1.10	3.00	-	-	-
R8	Reversed bending	0.4	377	1.11	3.01	-	-	-
R9	Reversed bending	0.4	366	1.07	2.84	-	-	-
L1	Local compression	-	-	-	75	1	3,200	0.87
L2	Local compression	-	-	-	75	1	3,500	1.00
L3	Local compression	-	-	-	75	1	3,200	1.03
L4	Local compression	-	-	-	40	2	1,280	0.94
L5	Local compression	-	-	-	30	4	960	1.07
L6	Local compression	-	-	-	20	9	530	1.03
ただし、\(T \) は試験温度（℃）である。溶接継手の寸法からCTOD試験片の数は制限され、無処理、逆曲げ、プラテン（\(\varphi=75 \text{mm} \)）の場合は各3本ずつ、プラテン（\(\varphi=40, 30, 20 \text{mm} \)）の場合は各1本ずつの試験を実施した。

2.2 実験結果

疲労予き裂前縁形状の直線性を定量化するため、下記のパラメータ \(X \) を定義した。

\[
X = \max \{ a_i - a_0 \} \quad (i = 2 \ldots 8)
\]

ただし、\(a_0 \) はISO 12135に従って求めた初期き裂長さであり、\(a_i (i=2\ldots8) \) は板厚内部の測定点でのき裂長さである。すなわち \(X \) は大きい程、疲労予き裂前縁形状が直線から逸脱していることを示す。\(X_{\text{a0}} \) は疲労予き裂前縁形状の直線性の指標であり、ISO 15653では0.2を超えてはいけない。また、\(a_0 \) と\(a_n \) の差を疲労予き裂長さ \(a_i \) 全測定点でのき裂長さ \(a_i (i=1\ldots9) \) の最小値と\(a_0 \) の差を最小疲労予き裂長さ \(a_{\text{mnt}} \) とそれぞれ定義した。

Table 4に疲労予き裂導入の条件と評価結果、Fig.3に各条件での疲労予き裂前縁形状の例をそれぞれ示す。受け入れまでは厚さ中央付近で疲労予き裂長さが短くな、溶接継手の残留応力分布の影響を受けている。いずれも疲労予き裂前縁形状の直線性（\(X_{\text{a0}} \leq 0.2 \)）は満足していたが、最小疲労予き裂長さはISO 12135での要求値（\(a_{\text{mnt}} \geq 0.025 \text{m} \）を満たしていたなかった。逆曲げやプラテン処理を施すことで疲労予き裂前縁形状は改善したが、それぞれの処理条件に応じて程度に違いが見られた。ISO 15653のAnnex Cでは、逆曲げ処理における\(a_i/a_n \)を1.0～1.5とすることを推奨している。

No.	Technique	\(\text{Fatigue loading} \)	\(\text{Evaluation results of fatigue precracking} \)							
	\(P_{\text{max}} \) [kN]	\(P_{\text{mean}} \) [kN]	\(N_t \)	\(a_i \) [mm]	\(a_i/a_n \)	\(X \) [mm]	\(X_{\text{a0}} \)	\(a_{\text{mnt}} \) [mm]	Validity	
U1	N. A. (As-received)	50	5	9.87E+04	2.43	-	1.60	0.046	1.38	Invalid
U2	N. A. (As-received)	50	5	1.37E+05	2.92	-	1.98	0.056	1.63	Invalid
U3	N. A. (As-received)	50	5	1.01E+05	2.87	-	1.91	0.055	1.19	Invalid
R1	Reversed bending	50	5	1.07E+05	4.28	4.38	2.16	0.060	2.79	Valid
R2	Reversed bending	50	5	1.16E+05	4.46	4.92	2.17	0.060	2.95	Valid
R3	Reversed bending	50	5	9.73E+04	3.73	3.86	1.73	0.049	2.36	Valid
R4	Reversed bending	50	5	6.06E+04	3.58	1.73	0.98	0.028	2.30	Valid
R5	Reversed bending	50	5	5.90E+04	3.64	1.61	0.97	0.027	2.23	Valid
R6	Reversed bending	50	5	5.96E+04	3.43	1.76	0.89	0.025	2.39	Valid
R7	Reversed bending	50	5	5.28E+04	4.09	1.22	0.66	0.018	2.76	Valid
R8	Reversed bending	50	5	5.03E+04	3.92	1.16	0.68	0.019	2.34	Valid
R9	Reversed bending	50	5	5.06E+04	3.94	1.24	0.82	0.023	2.33	Valid
L1	Local compression	50	5	6.60E+04	5.75	-	0.86	0.023	2.29	Valid
L2	Local compression	50	5	5.12E+04	3.91	-	0.63	0.018	1.97	Valid
L3	Local compression	50	5	5.26E+04	3.77	-	0.52	0.015	1.75	Valid
L4	Local compression	50	5	7.66E+04	6.01	-	1.59	0.042	1.77	Valid
L5	Local compression	50	5	7.65E+04	3.97	-	2.04	0.057	0.75	Invalid
L6	Local compression	50	5	1.42E+05	7.94	-	3.57	0.089	2.09	Valid
板厚中心部は長くなったためである。

Table 5 に CTOD 試験結果、Fig. 6, 7 に \(\delta_c \) 及び \(\phi \) の関係をそれぞれ示す。各条件の試験繰り返し数が限られているが、今回実施の試験条件では、受け入れままでプラ TEN材の限界 CTOD 値は同程度、逆曲げ材はそれらに比較して限界 CTOD 値がやや高めの傾向を示した。受け入れままで逆曲げ（\(V_{rb} = 0.2 \text{ mm} \)）及びプラテン（\(\phi = 20, 30, 40 \text{ mm} \）は、疲労予き裂前縁が湾曲しており、疲労予き裂前縁形状が限界 CTOD 値に影響を及ぼす可能性がある。そこで、疲労予き裂前縁が無視無差のとなった逆曲げ（\(V_{rb} = 0.3, 0.4 \text{ mm} \）とプラ TEN（\(\phi = 75 \text{ mm} \）の \(\delta_c \) を比較すると、逆曲げ（\(V_{rb} = 0.3, 0.4 \text{ mm} \）は \(\delta_c \) の平均値が 0.29 mm、最小値が 0.16 mm に対し、プラ TEN（\(\phi = 75 \text{ mm} \）は平均値が 0.18 mm、最小値が 0.09 mm と差異が認められた。また、逆曲げ処理の場合は、\(V_{rb} \) が大きくなるに従い \(\delta_c \) が上昇するようにも見えるが、ばらつきが大きいため明確ではない。

3. CTOD 試験片の残留応力解析

3.1 解析方法

継手 CTOD 試験の結果に及ぼす残留応力分布の影響を検討するため、FEM により SAW 多層溶接、試験体の切り出し、残留応力改善処理（逆曲げ、プラ TEN）の一貫シミュレーションを行った。シミュレーションには大阪大学にて開発されたプログラム JWRIAN を用いた。Fig. 8 に解析対象となる SAW 多層溶接継手の形状と寸法を示す。熱弾塑性 FEM
Table 5 Results of CTOD tests

No.	Technique	B [mm]	W [mm]	a_0 [mm]	a_f [mm]	T [°C]	Load [kN]	V_p [mm]	Type	δ_{cr} [mm]
U1	N. A. (As-received)	70.0	70.0	34.4	2.43	-60	289	1.35	u	0.48
U2	N. A. (As-received)	70.0	70.0	34.9	2.92	-60	204	0.08	u	0.08
U3	N. A. (As-received)	69.7	70.0	34.9	2.87	-60	233	0.17	u	0.12
R1	Reversed bending	70.0	70.0	36.3	4.28	-60	257	0.92	u	0.34
R2	Reversed bending	70.0	70.0	36.5	4.46	-60	261	1.20	u	0.41
R3	Reversed bending	70.0	70.0	35.7	3.73	-60	220	0.11	u	0.10
R4	Reversed bending	69.8	70.0	35.6	3.58	-60	231	0.28	u	0.15
R5	Reversed bending	70.0	70.0	35.6	3.64	-60	231	0.28	u	0.15
R6	Reversed bending	69.9	70.0	35.4	3.43	-60	239	0.30	u	0.16
R7	Reversed bending	69.7	70.0	36.1	4.09	-60	277	2.51	u	0.77
R8	Reversed bending	69.7	70.0	35.9	3.92	-60	246	0.49	u	0.22
R9	Reversed bending	69.7	70.0	35.9	3.94	-60	239	0.38	u	0.18
L1	Local compression	69.7	70.0	37.7	5.75	-60	199	0.16	u	0.11
L2	Local compression	69.4	70.0	35.9	3.91	-60	217	0.15	u	0.11
L3	Local compression	69.3	70.0	35.8	3.77	-60	190	0.06	u	0.07
L4	Local compression	69.6	70.0	38.0	6.01	-60	206	0.30	u	0.15
L5	Local compression	69.4	70.0	36.0	3.97	-60	258	0.74	u	0.29
L6	Local compression	69.4	70.0	39.9	7.94	-60	167	0.10	u	0.08

Fig. 6 Relationship between V_p and δ_{cr}

Fig. 7 Relationship between ϕ and δ_{cr}

Fig. 8 Shape and dimensions of a SAW multi-pass welded joint (unit: mm)
により、SAW多層溶接のシミュレーションを行った。Fig.9にメッシュ分割図を示す。本モデルは、節点数101136、要素数87660である。拘束部材と裏当ても実験と同様にモデル化した。材料の応力ひずみ関係は弾完全塑性体とし、実験に用いた溶接継手の母材と溶接金属の高温引張試験（試験温度：200, 400, 600, 800℃）の結果に基づき、それらの部位の降伏応力の温度依存性を設定した。弾完全塑性体の場合は、加工硬化を考慮する場合に比べ、発生する残留応力の絶対値は小さくなるが、本解析は残留応力改善処理条件の影響を相対的に比較することが主目的であり、大きな影響は無いか、その他の物性値（ヤング率、ポアソン比、熱伝導率、比熱、熱伝達係数）は、溶接構造用圧延鋼板SM490Aの実測値に基づき設定した。

その後、溶接継手の溶接線方向中央よりCTOD試験片の寸法（B=W=70mm、余盛残し）を切り出した。本解析では、切り出しに伴う残留応力の再配分が考慮されている。切り出した試験片にブラテン処理を施すことを想定し、試験片の中心部の直径75mmの領域に表裏から全ひずみ1%に相当する強制変位を加え、除荷した。なお、実験のブラテン処理は余盛を削除した後に行ったが、本解析では余盛付きのモデルをそのまま使用し、加圧領域の表面の節点に強制変位を加えた。

さらに、Fig.10に示すCTOD試験片のモデル（節点数：328091、要素数：313532）に、上記のシミュレーションにより得られた残留応力分布（ブラテン処理無し／有り）をマッピングし、応力再配分の計算を行った。ブラテン処理無しのモデルには、4点曲げによる逆曲げ処理（Vrb=0.2, 0.3, 0.4mm）を行い、残留応力分布の変化を調べた。

3.2 解析結果

Fig.11にSAW多層溶接継手の残留応力分布コンター図（ミーゼス応力）及び変形図（等倍）を示す。ストロングバッケにより角変形が抑制されており、溶接継手の変形は小さい。Fig.12に溶接継手から切り出したCTOD試験片のブラテン処理前後の溶接線方向（x方向）中央断面における機械切欠き開口方向（z方向）残留応力分布コンター図を示す。機械切欠きを加工し、挿入する溶接融合線近傍において、ブラテン処理前は表裏層部で引張、板厚中央部で圧縮の残留応力が観察される。
応力であるのに対し、プラテン処理後は残留応力がほぼ一様になった。プラテン処理前の残留応力分布は、Wooらの極厚多層溶接継手の残留応力分布の測定結果と同様の傾向を示している。

Fig. 13 に受け入れまま、逆曲げ処理後（$V_{rb}=0.4$ mm）、プラテン処理後（$\phi=75$ mm）のCTOD試験片中心における切欠き面に平行な断面のz方向残留応力分布のコンター図を示す。受け入れままの場合は、溶接継手の初期残留応力分布を反映し、板厚中心の切欠き底近傍にかなり大きな圧縮残留応力が生じていた。逆曲げ処理後は切欠き底近傍の残留応力はほぼ一様な引張に転じたが、その前方には初期残留応力分布の影響が残っている。それに対し、プラテン処理
後は溶接端部の初期残留応力がほぼ是正されていた。Fig.14
に各前処理条件での板厚中央部における切欠き底近傍の z 方
向残留応力分布を示す。逆曲げ量の増加に伴い切欠き底近
傍の引張残留応力域が拡大するが、その前後には溶接端部
の初期残留応力に起因すると考えられる圧縮残留応力が認
められた。一方、プラテン処理後は、切欠き底より先に広
範囲の引張残留応力場があり、初期残留応力の影響は認め
られなかった。

4. 考 察

4.1 逆曲げ条件が疲労予き裂前縁形状と限界 CTOD に
及ぼす影響

逆曲げ材の実験結果で示した通り、\(V_f \) が小さい程疲労予
き裂前縁形状が湾曲し（Fig.3）、\(a_f/\omega_{rb} \) が大きい程
X/\(a_0 \) が増加する傾向（Fig.4）が確認された。これは、Fig.14に示し
た通り機械切欠き底近傍の引張残留応力域の寸法が\(\omega_{rb} \) に依
存するためであり、\(V_f \) が小さく、\(a_f/\omega_{rb} \) が大きくなると、
逆曲げで生成した引張残留応力場を過大した疲労予き裂が初
期残留応力の影響を大きく受けるためと推察される。

また、逆曲げ材はプラテン処理材に比較して\(\delta_{cr} \) が高めと
なる傾向（Fig.6）が確認され、この理由を下記のように考
える。Fig.14に示した通り、逆曲げ処理は機械切欠き底の
近傍に引張残留応力を導入するが、今回の実験で導入した
疲労予き裂先端位置に対応する機械切欠き底から 3 〜 5mm
離れた位置では溶接端部の初期残留応力が存在している。
今回対象とした SAW 多層溶接端部では、脆性破壊の起点と
なりやすい板厚中央部近傍の初期残留応力は圧縮であり、
\(\delta_{cr} \) の上昇に寄与したことが推察される。ただし、本研究の
残留応力解析では、疲労予き裂のモデル化までは行ってい
ない。疲労予き裂の導入後は、逆曲げにより導入された機
械切欠き底近傍の引張残留応力域が解放され、疲労予き裂先
端部の局所応力やき裂先端開口変位に影響を及ぼす21)。そのた
め、\(\delta_{cr} \) に及ぼす残留応力の影響を定量的に評価するために
は、疲労予き裂導入による残留応力再配分を考慮する必要
がある。なお、初期残留応力の影響のある受け入れまま材は、
プラテン処理材と同等の\(\delta_{cr} \) を示した。受け入れまま材は、
疲労予き裂前縁が湾曲しており、それに起因する局所的な応
力集中の増加についても考慮する必要があると考えられる。

溶接端部の残留応力分布は、溶接方法や拘束条件によっ
て変化する。例えば、本研究ではレ形開先の片面溶接を対
象としたが、K 形開先等の両側溶接の場合は表面層と板
厚中央部の残留応力の差がより顕著となる。また、板厚中
心部の残留応力が引張となる 1 バス大入熱溶接部材の場合
は、その残留応力分布の影響により、\(\delta_{cr} \) を低下させること
も有り得ると考えられる。逆曲げ条件が\(\delta_{cr} \) に及ぼす影響を
明確化するには、溶接方法や拘束条件の影響も含め今後更
なる検討を要する。

4.2 局部圧縮条件が疲労予き裂前縁形状と限界 CTOD に
及ぼす影響

Fig.3 で示した通り、小径のプラテンでは、表層部は疲労
予き裂長さが短く、板厚中央部は長くなり、疲労予き裂前
縁形状がむしろ悪化した。プラテンによる塑性ひずみは、
試験片表面に対し 45° 傾いた方向に導入されることが知られ
ている7)。そのため、小径プラテンでは、塑性ひずみが表層
部近傍にしか導入されず、表層部近傍に圧縮残留応力が生
じたものと推察される。これより、プラテン処理によるよ
分解能効果を観察するためには、板厚相当の直径の
圧盤を用いることが好ましいと考えられる。また、Fig.13 及びFig.14 に示した通り、板厚相当の十分
大きな直径の圧盤を使用すれば、試験片の初期残留応力は
是正され、切欠き底近傍には引張残留応力場が生成された
状態となる。溶接までは板厚中央部の残留応力が圧縮であ
る場合、プラテン処理後の方が、受け入れままや逆曲げ処
理後と比べて板厚中央部のき裂先端部近傍の引張応力が大き
く、脆性破壊の駆動力が高い。さらに、プラテン処理後は予
ひずみの影響により材料の脆性が劣化する場合があり22)23)。

Fig.14 Residual stress (σ_z) distribution ahead of notch root in the mid-thickness of each CTOD specimen
δnに影響を及ぼした可能性もあるが、Towersら7によるとプラテン処理による1%のずみ付与の影響は小さい。

以上より、極厚溶接構造物に一様な疲労予き裂を導入するためには、板厚相当直径の大径プラテンを使用することが好ましい。ただし、その場合は過度に安全側の評価結果を与える懸念があることに注意を要する。

5. 結 言

極厚溶接構造のCTOD試験における残留応力改善条件の影響を調査することを目的とし、板厚70mmのEH47によるSAW溶接を用いた実験とFEMによる残留応力解析を行った。本研究で得られた知見は以下の通りである。

・逆曲げ処理を行うことで疲労予き裂前縁形状は改善し、\(a_{cr} \)が小さい程、その効果が高まることが確認された。今回対象とした溶接構造物では、逆曲げ時の閉口変位 \(V_{rb} \)が大きく、圧縮塑性域寸法に対する疲労予き裂を長さ \(0.5 \text{mm} \)以下の場合は大径プラテンと同程度の直線的な疲労予き裂前縁形状が得られた。また、逆曲げ材はプラテン材と比べて高い限界CTODを示した。

・プラテン処理により直線的な疲労予き裂前縁形状を得るためには、板厚相当の大径プラテンを用いることが好ましい。広範囲の小径プラテン処理は効果が薄く、場合によっては疲労予き裂前縁形状を悪化させることがある。

・残留応力解析により、SAW多層溶接構造物の溶接融合線近傍の残留応力は、表裏層部で引張、板厚中心部で圧縮となることが確認された。逆曲げ処理は機械切欠き底近傍に引張残留応力を導入するが、引張残留応力の寸法は逆曲げ量に依存し、またその前方には溶接応力の初期残留応力分布が残っていた。この初期残留応力分布が逆曲げ材の疲労予き裂前縁形状や限界CTODに影響していることが示唆された。

参考文献

1) ISO 12135: Metallic materials - Unified method of test for the determination of quasistatic fracture (2016).
2) WES 1108: Standard test method for Crack-Tip Opening Displacement (CTOD) fracture toughness measurement (2016).
3) BS 7448-1: Fracture Mechanics Toughness Tests - Part 1: Method for determination of \(K_{ic} \), critical CTOD and critical J values of metallic materials (1991).
4) ISO 15653: Metallic materials - Methods of test for the determination of quasistatic fracture toughness of welds (2018).
5) WES 1109: Guideline for Crack-Tip Opening Displacement (CTOD) fracture toughness test method of weld heat-affected zone (1995).
6) ASTM E1820: Standard Test Method for Measurement of Fracture Toughness (2020).
7) O. L. Towers and M. G. Dawes: Welding Institute Research on the Fatigue Precracking of Fracture Toughness Specimens, Elastic-Plastic Fracture Test Methods: The User’s Experience, ASTM STP 856 (1985), 23-26.
8) S. Machida, T. Miyata, M. Toyosada and H. Hagiwara: Study of Methods for CTOD Testing of Weldments, Fatigue and Fracture Testing of Weldments, ASTM STP 1058 (1990), 142-156.
9) H. S. Reemsnyder, H. G. Pirsaki and M. G. Dawes: Residual Stresses and Fatigue Pre-cracking Techniques for Weldment Fracture Toughness Specimens, Journal of Testing and Evaluation, 20-6 (1991), 416-423.
10) S. Jeong, H. Kim, S. Shin, T. Park: Effect of Reverse Bending Method on Pre-crack Straightness in CTOD Test of Welded Thick Steel Plates, Proceedings of IMECE 2014, International Mechanical Engineering Congress and Exposition, Montreal, Quebec, Canada, 2014, ASME, Paper IMEC 201437909 (2014).
11) Y. Mikami, T. Kawabata, T. Tagawa, H. Kitano, A. Kiuchi, Y. Kayamori, S. Kanna, T. Sakuragi, Y. Imai, M. Ohata, M. Mochizuki, F. Minami, S. Aihara and Y. Hagiwara: Numerical simulation of residual stress modification by reverse bending of notched fracture toughness test specimens of multipass welds, Theoretical and Applied Fracture Mechanics, 92 (2017), 214-222.
12) Y. Shimada, H. Shimamuki and T. Inoue: Effect of welding residual stress modification methods applied to weld joint CTOD specimen for test results, 溶接構造シンポジウム2014講演論文集, (2014).
13) T. Inoue: 簡易補正逆曲げCTOD試験法, 公技番号 2015-502260 (2015).
14) T. Inoue: 高精度逆曲げ法CTOD試験, 公技番号 2015-502261 (2015).
15) H. Nishikawa, T. Oda, M. Shibahara, H. Serizawa and H. Murakawa: Three-dimensional Thermal-elastic-plastic FEM Analysis for Predicting Residual Stress and Deformation under Multi-pass Welding, Proceedings of the 14th International Offshore and Polar Engineering Conference, 4 (2004), 126-132.
16) H. Murakawa, T. Oda, S. Ito, H. Serizawa, M Shibahara and H. Nishikawa: Iterative Substructure Method for Fast Computation of Thermal Elastic Plastic Welding Problems, Journal of Kansai Society of Naval Architects of Japan, 243 (2005), 67-70. (in Japanese)
17) H. Nishikawa, H. Serizawa and H. Murakawa: Development of Large-scaled FEM for Analysis of Mechanical Problems in Welding, Journal of the Japan Society of Naval Architects and Ocean Engineers, 2 (2005), 379-385. (in Japanese)
18) H. Nishikawa, H. Serizawa and H. Murakawa: Actual Application of Large-scaled FEM for Analysis of Mechanical Problems in Welding, Quarterly journal of the Japan Welding Society, 24, 2 (2006), 168-173. (in Japanese)
19) H. Nishikawa, H. Serizawa and H. Murakawa: Actual Application of FEM to Analysis of Large Scale Mechanical Problem in Welding, Science and Technology of Welding and Joining, 12, 2 (2007), 147-152.
20) W. W. Wen, G. B. An, E. J. Kingston, A. T. DeWald, D. J. Smith and M. R. Hill: Through-thickness distributions of residual stresses in two extreme heat-input thick welds: A neutral diffusion, contour method and deep hole drilling study, Acta Materialia, 61 (2013), 3564-3574.
21) Y. Mikami, H. Kitano and T. Kawabata: Through Process Modeling of the Fracture Toughness Test of Multipass Welds Incorporating Residual Stress Distribution, Procedia Structural Integrity, 13 (2018), 1804-1810.
22) C. Miki, S. Sasaki, H. Kyuba and I. Takenoi: Deterioration of Fracture Toughness of Steel by Effect of Tensile and Compressive Prestrain, Proceedings of Japan Society of Civil Engineers, 640 (2000), 165-175. (in Japanese)
23) W. A. Meeth, T. L. Panontin and M. R. Hill: Analytical and Experimental Study of Fracture in Bend Specimens Subjected to Local Compression, Fatigue and Fracture Mechanics: 33rd Volume, ASTM STP 1417, W. G. Reuter and R. S. Piascik, Eds., American Society for Testing and Materials, West Conshohocken, PA, (2002)