Metamodel Quality Requirements and Evaluation (MQuaRE)

Taciana N. Kudo¹,²
Renato F. Bulcão-Neto¹
Auri M. R. Vincenzi²

¹Instituto de Informática, UFG, Goiânia-GO, Brazil
{taciana,rbulcao}@ufg.br
²Departamento de Computação, UFScar, São Carlos-SP, Brazil
auri@dc.ufscar.br

V 2.0
September, 2020
Revision History

Date	Version	Description	Author
19th August	1.0	First version of MQuaRE documentation	Taciana Novo Kudo Renato F. Bulcão-Neto
			Auri M. R. Vincenzi
1st September	2.0	Changes in the MQuaRE annexes	Taciana Novo Kudo Renato F. Bulcão-Neto
Summary

1. INTRODUCTION... 7
 1.1. Scope.. 7
 1.2 Organization of MQuaRE... 7
 1.3. TERMS AND DEFINITIONS... 8
2. METAMODEL QUALITY REQUIREMENTS.. 8
 2.1 Pre-conditions for Metamodel Quality Requirements... 9
 2.2 Metamodel Quality Requirements Verification.. 9
 2.3 List of Metamodel Quality Requirements.. 9
3. QUALITY MODEL.. 10
 3.1. Structure used for the quality model... 11
 3.2. The MQuaRE’s quality model... 11
 3.2.1 Compliance characteristic... 11
 3.2.2 Conceptual suitability characteristic... 12
 3.2.3 Usability characteristic... 12
 3.2.4 Maintainability characteristic... 12
 3.2.5 Portability characteristic.. 12
4. METAMODEL QUALITY MEASURES.. 12
 4.1. The format used for quality measures documentation.. 13
 4.2. List of Metamodel Quality Measures.. 13
 I. COMPLIANCE... 13
 I.i Conceptual Compliance.. 13
 II. CONCEPTUAL SUITABILITY... 14
 II.i Conceptual Completeness... 14
 II.ii Conceptual Correctness... 14
 II.iii Conceptual Appropriateness... 14
 III. USABILITY... 15
 III.i Appropriateness Recognizability.. 15
 III.ii Learnability... 15
 IV. MAINTAINABILITY.. 16
 IV.i Modularity.. 16
 IV.ii Reusability.. 16
 IV.iii Modifyability... 16
 V. PORTABILITY... 17
 V.i Adaptability.. 17
 V.ii Replaceability.. 17
5. QUALITY EVALUATION PROCESS.. 18
 5.1. Establish the metamodel evaluation requirements... 18
 5.1.1. Establish the objective of evaluating the metamodel... 19
 5.1.2. Define the metamodel quality requirements... 19
 5.1.3. Identify the artifacts to be used in the evaluation.. 19
 5.2. Specify the metamodel evaluation.. 21
 5.2.1. Select the metamodel quality measures... 21
 5.2.2. Define decision criteria for metamodel quality measures.. 21
 5.2.3. Establish decision criteria for evaluating the metamodel... 21
 5.3. Design the metamodel evaluation.. 22
 5.3.1. Plan metamodel evaluation activities... 22
 5.4. Execute the metamodel evaluation.. 22
 5.4.1. Compute metamodel quality measurements.. 22
 5.4.2. Apply decision criteria for metamodel quality measures... 22
 5.4.3. Apply decision criteria for metamodel evaluation.. 22
5.5. Conclude the metamodel evaluation

5.5.1. Review the metamodel evaluation results

5.5.2. Create the metamodel evaluation report

ANNEX A – COMPARISON WITH THE PREVIOUS MODELS

ANNEX B – ORIGINS OF MQUARE MEASURES

ANNEX C - MEASURES OF ISO/IEC 25023:2016 INCLUDED IN MQUARE

ANNEX D – METAMODEL QUALITY REQUIREMENTS

ANNEX E - MQUARE QUALITY MEASURES

ANNEX F – METAMODEL QUALITY REQUIREMENTS, MEASURES, ARTIFACTS AND TARGET VALUES

ANNEX G - CRITERIA FOR EVALUATING THE METAMODEL

ANNEX H – MEASUREMENTS TABLE

ANNEX I - METAMODEL QUALITY EVALUATION PLAN (MQEP)

ANNEX J - MQUARE QUALITY EVALUATION REPORT TEMPLATE
List of Figures

Figure 1: An overview of MQuaRE: evaluation process and quality requirements, measures, and model............7

Figure 2: Metamodel requirements categorization..9

Figure 3: Commonly used structure for quality models..11

Figure 4: The MQuaRe’s quality model with characteristics (C) and sub-characteristics (SC).................................11

Figure 5: Relationship between quality model and measures..13

Figure 6: The MQuaRE's Metamodel Evaluation Process...19
LIST OF TABLES

Table 1: Conceptual compliance measures... 14
Table 2: Conceptual completeness measures.. 14
Table 3: Conceptual correctness measures... 14
Table 4: Conceptual appropriateness measures... 14
Table 5: Appropriateness recognizability measures.. 15
Table 6: Learnability measures.. 16
Table 7: Modularity measures.. 16
Table 8: Reusability measures.. 16
Table 9: Modifiability measures.. 17
Table 10: Adaptability measures... 17
Table 11: Replaceability measures... 18
Table 12: Association between metamodel versions and evaluation purposes.......... 20
Table 13: Association between metamodel artifacts and metamodel quality requirements... 20
Table 14: The example of decision criteria for conceptual coverage measure........... 21
Table 15: The example of decision criteria for evaluating the metamodel.................. 21
Table 16: The example of measurement table... 23
1. INTRODUCTION

1.1. Scope

Models are the primary artifacts of model-driven software engineering (MDSD) [1], and a terminal model is a representation that conforms to a given software metamodel [2, 3]. As the quality of a software metamodel directly impacts the quality of terminal models, software metamodel quality is an essential aspect of MDSD.

However, the literature reports a few proposals for metamodel quality evaluation, but most lack a general solution for the quality issue. Some efforts focus on quality measures [4], a quality evaluation model [5], or a quality evaluation model with structural measures borrowed from OO design [6-8]. Thus, we support there is a need for a more thorough solution for metamodel quality evaluation, with potential benefits to MDSD in general.

This document describes a metamodel quality evaluation framework called MQuaRE (Metamodel Quality Requirements and Evaluation). MQuaRE is an integrated framework composed of metamodel quality requirements, a metamodel quality model, metamodel quality measures, and an evaluation process, with a great contribution of the ISO/IEC 25000 series [9] for software product quality evaluation.

1.2 Organization of MQuaRE

The Metamodel Quality Requirements and Evaluation (MQuaRE) is a complete proposal to guide software metamodels quality evaluation. The complete view of MQuaRE is presented in the Figure 1 and includes:

- **The MQuaRE's quality requirements**: MQuaRE offer 19 (nineteen) requirements that an metamodel user and an evaluator can use to consider the metamodel quality.
- **The MQuaRE's quality model**: MQuaRE offer 5 (five) characteristic and 10 (ten) sub-characteristics of metamodel quality that drive the documentation of metamodel quality requirements.
- **The MQuaRE's quality measures**: MQuaRE offer 23 (twenty three) measures to quantify the quality characteristics and sub-characteristics applying predefined measurement functions.
- **The MQuaRE's process**: MQuaRE describes a process with 5 (five) activities that define how quality model and requirements must be used in an evaluation activities, and when the measures will be applied to calculate the quality values. Besides that, the process defines the tasks input and output artifacts, and users' roles.

![Figure 1: An overview of MQuaRE: evaluation process and quality requirements, measures, and model.](image)
1.3. TERMS AND DEFINITIONS

For the purposes of this document, the following terms and definitions apply.

. **concept**: foundation elements of a metamodel (metamodel elements), e.g., a concept may be a class, relationship, or attribute in a UML metamodel. As we propose MQuARE as a generic-purpose framework, concepts may vary according to the specification language of the metamodel under evaluation.

. **evaluator**: person that performs a metamodel quality evaluation. [10]

. **evaluation requester**: person that requests a metamodel quality evaluation. [10]

. **evaluation tool**: instrument that can be used during a metamodel quality evaluation to collect data, to perform interpretation of data or to automate part of the evaluation. [10]

. **measure**: variable to which a value is assigned as the result of measurement. [10]

. **measurement**: set of operations having the object of determining a value to be assigned to a measure. [11]

. **measurement function**: algorithm or calculation performed to combined the measure elements. [11]

. **metamodel element**: any things that are part of a modelling, such as the attributes, operations, relations, and semantics of a class.

. **metamodel quality**: degree to which the metamodel elements satisfy needs when used under specified conditions.

. **metamodel quality evaluation**: systematic examination of the extent to which a metamodel is capable of satisfying stated needs.

. **metamodel specification**: includes all types of metamodel specification, including requirements specification, design specification, user documentation, or all of these.

. **quality measure**: measure that is defined as a measurement function of two or more values of quality measure elements. [11]

. **quality measure element**: measure defined in terms of an attribute and the measurement method for quantifying it, including optionally the transformation by a mathematical function. [11]

. **quality property**: measurable component of quality. [12]

. **user documentation**: describes how a metamodel can be used and contemplates the usage scenarios. A user documentation can be a user manual, a tutorial, a wizard, a "how to" lists or all of these.

. **usage scenario**: a real-world example of how one or more stakeholders or organizations interact with the metamodel. It describes the steps, events, and/or actions which need to occur for instantiating the metamodel.

2. METAMODEL QUALITY REQUIREMENTS

Quality requirements specification plays a crucial role in the metamodel evaluation process. Should quality requirements are not stated clearly, a same metamodel may be interpreted and evaluated variously by different people. As a result, one achieves an inconsistent metamodel evaluation.

Metamodel requirements address both the inherent and the assigned property requirements. The inherent property requirements include functional requirements and quality requirements. Functional requirements include the domain-specific requirements. Quality requirements may also imply architectural and structural requirements, and they are defined accordingly the characteristics of compliance, conceptual suitability, usability, maintainability, and portability. The assigned property requirements are composed by managerial requirements, including requirements for version control, delivery deadlines, copyright, to name a few. Figure 2 provides a categorization of metamodel requirements. Metamodel quality requirements (MQR) may comprise multiples aspects of a metamodel, e.g., whether it is easy to use and maintain or compliant to specific standards, if applicable.

1 For instance, CASE tools to create instances of a metamodel, checklists to collect inspection data, or spreadsheets to produce synthesis of measures.

2 The term "measure" refers collectively to base measures, derived measures, and indicators.
Pre-conditions for Metamodel Quality Requirements

A quality model drives the documentation of MQRs. Despite that, we recommend the following pre-conditions for MQR:

- MQR shall be uniquely identified and following the objective of the metamodel evaluation;
- MQR shall be associated with quality sub-characteristics, as defined in the MQuaRE’s quality model;
- MQR shall be specified in terms of a quality measure and a target value, which is the acceptable value for fulfilling a particular MQR;
- An acceptable tolerance value for the target value of a particular MQR shall be documented;
- Specific concepts and terms used in the metamodel should be used to avoid misunderstandings of the MQR;
- MQR shall be validated and approved by an evaluation requester.

Metamodel Quality Requirements Verification

Defining the MQR is essential to avoid inconsistencies in the metamodel evaluation. Here is a list of recommendations to ensure the quality of MQR:

- MQR shall be verifiable, reviewed, and approved;
- Evaluation tools, techniques, or other resources (e.g., effort or time) required for verification shall be documented;
- Identified conflicts between MQR shall be documented;
- Identified conflicts between MQR or between MQR and metamodel concepts shall be documented;
- The stakeholders’ identities shall be documented.

List of Metamodel Quality Requirements

MQuaRE provides 19 (nineteen) MQRs that meet the pre-conditions presented in Section 2.1 and can be reused by metamodel users and evaluators.

MQR01	The metamodel conceptual foundation must comply with widely-accepted and sound theories, regulations, standards, and conventions.
MQR02	The metamodel must cover the concepts found in its specifications.
MQR03	The metamodel must represent the concepts found in its specifications correctly.
MQR04	The metamodel must represent the concepts required for achieving specific usage objectives.
MQR05	The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the usage scenarios described in the user documents.
MQR06 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the demonstration features of metamodel concepts.

MQR07 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the evident concepts to the user in the metamodel specifications.

MQR08 - The users must be able to recognize whether a metamodel contain concepts whose purpose is correctly understood without prior training.

MQR09 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the metamodel user documentation.

MQR10 - The metamodel must be composed of discrete concepts such that a change of one concept has minimal impact on other concepts.

MQR11 - The metamodel must be composed of discrete concepts such that a creation of model elements does not enforce ordered modelling actions.

MQR12 - The metamodel must be able to be reused to modelling usage scenarios for different application domains.

MQR13 - The users must be able to recognize metamodel modifications accordingly the changes documented in the metamodel specification during metamodel development life cycle.

MQR14 - The users must be able to recognize metamodel modifications accordingly the change comments confirmed in review.

MQR15 - The metamodel must be reused modified without introducing inconsistencies or degrading metamodel quality.

MQR16 - The metamodel must be able to be adapted to modelling usage scenarios for different application domains.

MQR17 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without introducing any additional learning or workaround.

MQR18 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without degrading metamodel quality degree.

MQR19 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain by using similar concepts of previous metamodel.

3. QUALITY MODEL

The quality of a metamodel is the degree to which it provides value to a modeling activity. These stated needs are represented in MQuaRE by a quality model that categorizes metamodel quality into characteristics, which in some cases, subdivide into sub-characteristics. This hierarchical decomposition provides a convenient breakdown of metamodel quality.
3.1. Structure used for the quality model

The measurable quality-related properties of a metamodel are called quality properties. It is necessary to identify a collection of properties that cover characteristics or sub-characteristics, obtain quality measures for each, and combine them to achieve a derived quality measure corresponding to the quality characteristic or sub-characteristic. Thus, the quality model allows the categorization of MQRs. Figure 3 shows the relationship between quality characteristics and sub-characteristics, and quality properties.

![Figure 3: Commonly used structure for quality models.](image)

3.2. The MQuaRE’s quality model

The MQuaRE’s quality model revises ISO/IEC 25010 [9], ISO/IEC 9126-1 [13], and related research [4-7], and incorporates quality characteristics and sub-characteristics with some amendments (see ANNEX A). Five characteristics form the MQuaRE’s quality model, as depicted in Figure 4: Compliance, Conceptual Suitability, Usability, Maintainability, and Portability — further subdivided into sub-characteristics. These characteristics may work as a checklist for ensuring a comprehensive coverage of metamodel quality. Next, we describe the characteristics and sub-characteristics present in the MQuaRE’s quality model.

![Figure 4: The MQuaRe's quality model with characteristics (C) and sub-characteristics (SC).](image)

3.2.1 Compliance characteristic

The degree to which a metamodel must comply with items, such as widely accepted and sound theories, regulations, standards, and conventions. This characteristic includes the following sub-characteristic:

- **Conceptual compliance sub-characteristic**: the degree to which the conceptual foundation of a metamodel complies with widely accepted and sound theories, regulations, standards, and conventions.
3.2.2 Conceptual suitability characteristic

The degree to which a metamodel satisfies requirements when used under specified conditions. This characteristic includes the sub-characteristics below:

- **Conceptual completeness sub-characteristic**: the degree to which the set of metamodel concepts covers all the specified requirements.
- **Conceptual correctness sub-characteristic**: the degree to which the metamodel provides the correct modeling results with the needed degree of precision.
- **Conceptual appropriateness sub-characteristic**: the degree to which the metamodel facilitates the accomplishment of modeling tasks, and for determining their adequacy for performing these tasks.

3.2.3 Usability characteristic

The degree to which a metamodel can be used to achieve specific goals in a specified application domain. This characteristic includes the appropriateness recognizability and learnability sub-characteristics.

- **Appropriateness recognizability sub-characteristic**: the degree to which users can recognize whether a metamodel is appropriate for their needs or not.
- **Learnability sub-characteristic**: the degree to which a metamodel can be used by specified users to achieve specified learning goals in a given context of use.

3.2.4 Maintainability characteristic

The degree of effectiveness and efficiency with which a metamodel can be modified by the intended maintainers. This characteristic includes modularity, reusability, and modifiability sub-characteristics.

- **Modularity sub-characteristic**: the degree to which a metamodel is composed of discrete concepts such that a change of one concept has minimal impact on other concepts.
- **Reusability sub-characteristic**: the degree to which usage scenarios can be used in more than one metamodel.
- **Modifiability sub-characteristic**: the degree to which a metamodel can be effectively and efficiently modified without introducing inconsistencies or degrading existing metamodel quality.

3.2.5 Portability characteristic

The degree of effectiveness and efficiency with which a metamodel can be transferred from one application domain to another. This characteristic includes adaptability and replaceability sub-characteristics.

- **Adaptability sub-characteristic**: the degree to which a metamodel can effectively and efficiently be adapted for different application domains.
- **Replaceability sub-characteristic**: the degree to which a metamodel can replace another specified metamodel for the same purpose in the same application domain.

Therefore, the MQuaRE provides 5 quality characteristics and 10 ready-to-use sub-characteristics. Moreover, the quality model is flexible to be adapted to specific metamodels contexts, and new characteristics and sub-characteristics can be included.

4. METAMODEL QUALITY MEASURES

The quality characteristics and sub-characteristics can be quantified by applying measurement functions. A measurement function is a formula used to combine quality measure elements. The result of applying a measurement function is called a quality measure. In this way, quality measures are quantifications of the quality characteristics and sub-characteristics. Figure 5 illustrates the relationships between the quality model’s components and the quality measures’ elements.
4.1. The format used for quality measures documentation

Every quality measure is described by an identification code, the measure name, a description of the information provided by the measure, and a measurement function. The following is the definition of each data field of the quality measure documentation format in MQuaRE:

- **ID**: quality measure identification code consisting of two parts:
 - an abbreviated alphabetic code with the initial letter in uppercase of the quality characteristic followed by two letters representing the sub-characteristic. For instance, the ID UAp is for the quality measures of the Appropriateness Recognizability sub-characteristic of the Usability characteristic;
 - an ordinal number of the sequential order within a quality sub-characteristic. For instance, the ID UAp-2 means the second quality measure (i.e., demonstration coverage) of the Appropriateness Recognizability sub-characteristic of the Usability characteristic.

- **Name**: denomination used to refer a quality measure.

- **Description**: the information about the quality measure.

- **Measurement function**: showing how the *quality measures elements* are combined to produce the quality measure.

4.2. List of Metamodel Quality Measures

The current version of MQuaRE includes 23 (twenty-three) metamodel quality measures bound to the quality model as follows: Compliance (2), Conceptual Suitability (4), Usability (5), Maintainability (8), and Portability (4). These measures are the result of an analysis of related work [4-7] and the ISO/IEC 25023 [11] and ISO/IEC 9126-3 [14] standards. The relation between the MQuaRE measures and these foundation works can be found in **ANNEX B** and **ANNEX C**. Observe that the quality measures presented next can be chosen according to the purpose of the evaluation, the selected quality characteristics, and the possibility of apply the measurements.

I. COMPLIANCE

i. Conceptual Compliance

Conceptual compliance measures are used to assess the degree to which the conceptual foundation of a metamodel complies with widely accepted and sound theories, regulations, standards, and conventions.

Table 1: Conceptual compliance measures.

ID	Name	Description	Measurement function
CCc-1	Conceptual	Which widely-accepted and sound theories, regulations, standards, and	A nominal list of widely-accepted and sound theories, regulations, standards, and
	foundation	conventions is the metamodel	conventions to which the metamodel is compliant.

1 This characteristic was removed from the ISO 25000’s quality model, but we included it with specific quality measures for metamodels.
ID	Name	Description	Measurement function
CCc-2	Backward Traceability	Which are the metamodel concepts that can be traced back to their conceptual foundations?	A nominal list of each metamodel concept with its respective conceptual foundation.

II. CONCEPTUAL SUITABILITY

II.i Conceptual Completeness

Conceptual completeness measures are used to assess the degree to which the set of metamodel concepts covers all the specified requirements.

Table 2: Conceptual completeness measures.

ID	Name	Description	Measurement function
CCp-1	Conceptual coverage	What proportion of the specified concepts has been modeled?	X = 1 – A / B
A = Number of missing concepts.
B = Number of concepts described in the metamodel specification.
0 <= X <= 1.
The closer to 1, the more complete. |

NOTE 1. Concepts can be specified in a metamodel specification, including requirements specification, design specification, user documentation or all of these.

NOTE 2. A missing concept is detected when the metamodel does not have ability to model a concept that is specified.

II.ii Conceptual Correcteness

Conceptual correctness measures are used to assess the degree to which the metamodel provides the correct modeling results with the needed degree of precision.

Table 3: Conceptual correctness measures.

ID	Name	Description	Measurement function
CCr-1	Conceptual correctness	What proportion of metamodel concepts is modeled correctly?	X = 1 - A / B
A = Number of incorrectly modeled concepts.
B = Number of concepts considered in the evaluation.
0 <= X <= 1. The closer to 1, the more correct. |

II.iii Conceptual Appropriateness

Conceptual Appropriateness measures are used to assess the degree to which the metamodel facilitates the accomplishment of modelling tasks, and for determining their adequacy for performing these tasks.

Table 4: Conceptual appropriateness measures.

ID	Name	Description	Measurement function
CAp-1	Conceptual appropriateness of usage objective	What proportion of the metamodel concepts provides appropriate outcome to achieve a specific usage objective?	X = 1 – A / B
A = Number of missing or incorrectly modeled concepts among those that are required for achieving a specific usage objective.
B = Number of concepts required for achieving a specific usage objective.
0 <= X <= 1. The closer to 1, the more appropriateness. |

NOTE 1. This measure will typically be considered for the most important or the most frequently identified usage objectives. Thus, this quality measure is first calculated for each of the defined usage objectives that can be pursued in the metamodel, and then the next quality measure “Conceptual Appropriateness of Metamodel” can be calculated collectively across all usage objectives to provide a metamodel measure.

CAp-2 | Conceptual appropriateness of metamodel | What proportion of the metamodel concepts is required by the users to achieve their objectives provides appropriate outcome? | \[x = \sum_{i=1}^{n} \frac{A_i}{n} \]
A_i = Appropriateness score for usage objective i,
that is, the measured value of CAp-1 for i-th specific usage objective.
\[N = \text{Number of usage objectives.} \]
\[0 \leq X \leq 1. \] The closer to 1, the more appropriateness.

III. USABILITY

III.i Appropriateness Recognizability

Users have to be able to select a metamodel which is suitable for their intended use. The quality measures for appropriateness recognizability are used to assess the degree to which users can recognize whether a metamodel is appropriate for their needs.

Table 5: Appropriateness recognizability measures.

ID	Name	Description	Measurement function
UAp-1	Description completeness	What proportion of usage scenarios is described in the metamodel specifications?	\[X = A / B \]
		A = Number of usage scenarios described in the user documents that match usage scenarios described in the metamodel specifications.	B = Number of usage scenarios described in the metamodel specifications.
		\[0 \leq X \leq 1. \] The closer to 1, the more complete.	
UAp-2	Demonstration coverage	What proportion of metamodel concepts requiring demonstration have demonstration capability?	\[X = A / B \]
		A = Number of concepts with demonstration features.	B = Number of concepts that could benefit from demonstration features.
		\[0 \leq X \leq 1. \] The closer to 1, the more capable.	

NOTE 1. This measure indicates how much the metamodel specifications demonstrate how the metamodel can be used. This includes "wizards" or "how to".

ID	Name	Description	Measurement function
UAp-3	Evident concepts	What proportion of metamodel concepts is evident to the user?	\[X = A / B \]
		A = Number of concepts evident to the user.	B = Number of concepts described in the metamodel specification.
		\[0 \leq X \leq 1. \] The closer to 1, the better.	

NOTE 1. This measure indicates whether users will be able to locate concepts (A) by exploring metamodel specification (B), e.g. by inspecting the metamodel class diagram.

ID	Name	Description	Measurement function
UAp-4	Concept understandability	What proportion of metamodel concepts is correctly understood without prior training?	\[X = A / B \]
		A = Number of concepts whose purpose is correctly understood without prior training.	B = Number of concepts described in the metamodel specification.
		\[0 \leq X \leq 1. \] The closer to 1, the better.	

NOTE 1. This measure indicates whether users will be able to understand concepts (A) by exploring design specification (e.g. by inspecting the metamodel class diagram).

III.ii Learnability

Learnability measures are used to assess the degree to which a metamodel can be adopted by specified users to achieve specified goals of learning in a specified context of use.

Table 6: Learnability measures.

ID	Name	Description	Measurement function
ULe-1	User guide completeness	What proportion of metamodel concepts is described in the user documentation that enable the use of the metamodel?	\[X = A / B \]
		A = Number of concepts described in the user documentation as required.	B = Number of concepts required to be
Learnability is strongly related to appropriateness recognitionability, and appropriateness recognitionability measurements are indicators of the learnability potential of the metamodel.

IV. MAINTAINABILITY

IV.i Modularity

Modularity measures are used to assess the degree to which a metamodel is composed of discrete concepts such that a change of one concept has minimal impact on other concepts.

Table 7: Modularity measures.

ID	Name	Description	Measurement function
MMo-1	Coupling of concepts	How strongly are the concepts independent and how many concepts are free of impacts from changes to other metamodel concepts?	\[X = \frac{A}{B} \]
			A = Number of concepts with no impact on others.
			B = Number of specified concepts which are required to be independent.
			0 <= X <= 1. The closer to 1, the less coupling.
MMo-2	Complexity of exercise	How complex is building terminal models by analyzing the structure of the metamodel?	\[X = A - B \]
			A = Number of instantiation elements that must be done in order.
			B = Number of instantiation groups that must be completed, but in any order.
			The higher, the more complex, i.e., the metamodel requires more ordered actions when creating the model elements.

NOTE 1. In the case of hierarchy (specialization/generalization), all created objects inside the hierarchy count as a single instantiation element, when ordered after their parent, whether or not those contained objects are required to be created in a particular order.

IV.ii Reusability

Reusability measures are used to assess the degree to which usage scenarios can be used in more than one metamodel.

Table 8: Reusability measures.

ID	Name	Description	Measurement function
MRe-1	Reusability per application domain	How reusable is the metamodel to an application domain?	\[X = 1 - \frac{A}{B} \]
			A = Number of usage scenarios which were not possible to be reused for an application domain in particular
			B = Number of usage scenarios described in the metamodel specifications.
			0 <= X <= 1. The closer to 1, the better.

IV.iii Modifiability

Modifiability measures are used to assess the degree to which a metamodel can be effectively and efficiently modified without introducing inconsistencies or degrading existing metamodel quality.

Table 9: Modifiability measures.

ID	Name	Description	Measurement function
MMd-1	Conceptual stability	How stable is the metamodel specification during the metamodel's development life cycle?	\[X = 1 - \frac{A}{B} \]
			A = Number of concepts changed during the metamodel's development life cycle.
			B = Number of concepts described in the metamodel specification.
			0 <= X <= 1. The closer to 1, the more stable.
MMd-2	Change	Are changes to metamodel	\[X = \frac{A}{B} \]
ID	Name	Description	Measurement function
PAd-1	Adaptability per application domain	How adaptable is the metamodel to an application domain?	$X = 1 - \frac{A}{B}$
			$A = \text{Number of usage scenarios which were not possible to be modeled for an application domain in particular}$
			$B = \text{Number of usage scenarios described in the metamodel specifications}$
			$0 \leq X \leq 1$. The closer to 1, the better.

V. PORTABILITY

V.i Adaptability

Adaptability measures are used to assess the degree to which a metamodel can effectively and efficiently be adapted for different application domains.

Table 10: Adaptability measures.

ID	Name	Description	Measurement function
PAd-1	Adaptability per application domain	How adaptable is the metamodel to an application domain?	$X = 1 - \frac{A}{B}$
			$A = \text{Number of usage scenarios which were not possible to be modeled for an application domain in particular}$
			$B = \text{Number of usage scenarios described in the metamodel specifications}$
			$0 \leq X \leq 1$. The closer to 1, the better.

V.ii Replaceability

Replaceability measures are used to assess the degree to which a metamodel can replace another specified metamodel for the same purpose in the same application domain.

Table 11: Replaceability measures.

ID	Name	Description	Measurement function
PRe-1	Usage similarity	What proportion of usage scenarios of the replaced metamodel can be modeled without any additional learning or workaround?	$X = \frac{A}{B}$
			$A = \text{Number of usage scenarios which can be modeled without any additional learning or workaround}$
			$B = \text{Number of usage scenarios in the replaced metamodel}$
			$0 \leq X \leq 1$. The closer to 1, the better.
PRe-2	Metamodel quality equivalence	What proportion of the quality measures is satisfied after replacing previous metamodel by this one?	
-------	-------------------------------	--	
		X = A / B	
		A = Number of quality measures of the new metamodel which are better or equal to the replaced metamodel	
		B = Number of quality measures of the replaced metamodel that are relevant	
		0 <= X <= 1. The closer to 1, the better.	

NOTE 1. The relevance of quality measures is specialist’s prerogative.

PRe-3	Conceptual inclusiveness	Can the similar concepts easily be used after replacing previous metamodel by this one?
		X = A / B
		A = Number of concepts which produce similar results as before
		B = Number of concepts which have to be used in the replaced metamodel
		0 <= X <= 1. The closer to 1, the better.

5. QUALITY EVALUATION PROCESS

The MQaRE’s process model assumes that the evaluation founds on the MQaRE’s requirements, making clear the objectives and criteria of assessment. Besides, the MQaRE’s quality model and measures should also be considered in the evaluation process. Figure 6 depicts a BPMN-based representation for the MQaRE’s evaluation process with activities, user roles, and input and output artifacts. Activities and the respective tasks are detailed next.

![Figure 6: The MQaRE’s Metamodel Evaluation Process.](image)
5.1. Establish the metamodel evaluation requirements

In this activity, the evaluation requester must identify metamodel quality evaluation requirements, taking into account the evaluation purpose. The inputs for this activity is the metamodel quality evaluation needs; the metamodel to be evaluated, including its specifications, and applicable evaluation tools and methodologies. This activity consists of the following tasks:

5.1.1. Establish the objective of evaluating the metamodel

The purpose of the metamodel quality evaluation shall be documented, and will be a basis for the further evaluation activities and tasks. The evaluation purpose depends on the version of the metamodel: final or intermediate. Table 12 shows examples of some evaluation purposes:

5.1.2. Define the metamodel quality requirements

The metamodel quality requirements shall be specified using the MQuaRE quality characteristics and sub-characteristics. The evaluation requester can choose the metamodel quality requirements from a preliminary list of 19 (nineteen) metamodel quality requirements that can be reused, reviewed, and refined available and is available in ANNEX D.

5.1.3. Identify the artifacts to be used in the evaluation

Every metamodel-related artifact available for the evaluation shall be identified and registered. Examples of metamodel artifacts include: metamodel specifications (requirements and design documents), metamodel implementation, metamodel user documentation, metamodel history documentation, specification of different application domains, metamodel to be replaced by the evaluated metamodel. The availability of some metamodel artifacts will be important to enable the evaluation of some MQRs (see Table 13).

Table 12: Association between metamodel versions and evaluation purposes.

Metamodel version	Purpose
Intermediate version	Assure quality for the metamodel
	Decide on the acceptance of an intermediate metamodel version
	Access the ongoing feasibility of the ongoing metamodel
	Predict or estimate final metamodel quality
	Discover improvement points in the metamodel
	Collect information on intermediate metamodel version in order to control and manage the process
Final version	Decide on the acceptance of the metamodel
	Compare a metamodel with others
	Select a metamodel from among alternative metamodels
	Assess both positive and negative effects of a metamodel
	Discover improvement points in the metamodel
Table 13: Association between metamodel artifacts and metamodel quality requirements.

Metamodel specifications	Metamodel implementation	Metamodel user documentation	Metamodel history documentation	Specification of different application domains	Metamodel to be replaced by the evaluated metamodel
MQR01	X				
MQR02	X	X			
MQR03	X				
MQR04	X	X	X		
MQR05	X		X		
MQR06	X				
MQR07	X				
MQR08	X				
MQR09	X		X		
MQR10	X				
MQR11	X				
MQR12	X	X	X		
MQR13	X		X		
MQR14	X		X		
MQR15	X				
MQR16	X			X	
MQR17	X			X	
MQR18	X				X
MQR19	X				

As illustrated in Figure 6, the main output artifact of this activity “Establish the metamodel evaluation requirements” is a high-level Metamodel Quality Evaluation Plan (MQEP – a template for the MQEP is available in ANNEX I). A first version of the MQEP should contain the purposes of the metamodel evaluation, the specification of metamodel quality requirements, and the artifacts available to be used in the evaluation execution.

5.2. Specify the metamodel evaluation

This activity is executed by the evaluation requester. It consumes a high-level MQEP as input and consists of the following tasks:

5.2.1. Select the metamodel quality measures

The requester shall select quality measures to cover all MQRs chosen in Section 5.1.2. The ANNEX E presents the list of 23 (twenty three) metamodel quality measures organized by requirements that could be chosen according to the requirements selected for the evaluation.

5.2.2. Define decision criteria for metamodel quality measures

Decision criteria are numerical thresholds or targets used to determine the need for action or further investigation or to describe the level of confidence in a given result. The requester must define target value and acceptance tolerance for each selected measure.

Figure 7 presents an example with the measure "conceptual coverage" where the target value was set to 1, i.e., full conceptual coverage of the metamodel's implementation in relation to its specifications. In addition, an acceptable value of 0.75 is also assigned, i.e., quality requirement 2 can be met if at least 75% of the specified concepts are implemented. Although the target and tolerance values are the prerogative of the evaluation requester, ANNEX F offers a template to facilitate the definition of these values for each selected measure.
Table 14: The example of decision criteria for conceptual coverage measure.

Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Interpretation of the measurement value	Target value	Acceptable tolerance value
Conceptual suitability	Conceptual completeness	MQR02	CCp-1 - Conceptual coverage	What proportion of the specified concepts has been modeled?	The closer to 1, the more complete.	1	0.75

5.2.3. Establish decision criteria for evaluating the metamodel

The requester should prepare a procedure for further summarization, with separate criteria for different quality characteristics, each of which may be in terms of individual quality sub-characteristics and measures. The formulas must be defined according to the notes received in each individual quality measure.

Figure 8 presents an example, in which the sub-characteristic Conceptual Appropriate has 2 measures (CAp-1 and CAp-2) and the general score for this sub-characteristic is given by the arithmetic mean of CAp-1 and CAp-2. Note that the general mark of the characteristic in question is given by the arithmetic average of the marks of each sub-characteristic of quality. It is worth mentioning that although these formulas are the requester's choice, **ANNEX G** provides a form to define these formula to calc the quality value for characteristics and sub-characteristics.

Table 15: The example of decision criteria for evaluating the metamodel.

Characteristic	Sub-characteristic	Quality Requirements	Measures	Sub-characteristic formula	Characteristic formula
Conceptual suitability	Conceptual completeness	MQR02 - The metamodel must cover the concepts found in its specifications.	CCp-1 - Conceptual coverage	CCp1	
	Conceptual correctness	MQR03 - The metamodel must represent the concepts found in its specifications correctly.	CCr1 - Conceptual correctness	CCr1	
	Conceptual appropriateness	MQR04 - The metamodel must represent the concepts required for achieving specific usage objectives.	CAp-1 - Conceptual appropriateness of usage objective	CAp = (CAp1 + CAp2) / 2	(CCp1 + CCr1 + CAp) / 3

The primary output artifact of this activity is a revised high-level MQEP, containing the chosen quality measures as well as decision criteria for metamodel quality measures and assessment.

5.3. Design the metamodel evaluation

This is the last activity executed by the evaluation requester before starting the evaluation execution. The revised high-level MQEP previously presented is input data for this activity, and a evaluation plan shall be defined.

5.3.1. Plan metamodel evaluation activities

In this task, those metamodel quality evaluation activities identified shall be scheduled, taking into account the availability of resources such as personnel, evaluation tools, and examples of metamodel application domains.

The evaluation plan should be documented with the following elements:

- The purpose of the metamodel quality evaluation;
- Quality evaluation requirements, including
 - the metamodel artifacts to be used in the evaluation;
 - evaluation resources (like as personnel, tools, budget, and deadlines);
- The metamodel quality requirements;
- The metamodel quality measures;
- Decision criteria for metamodel evaluation and metamodel quality measures;
- An evaluation schedule.
As the evaluation activities evolve, the evaluation plan shall be revised until a thorough level plan. The outcome of this activity is a detailed specification of the MQEP (a template for the MQEP is available in ANNEX I).

5.4. Execute the metamodel evaluation

This activity starting the metamodel quality evaluation in which the evaluator use the thorough specification of the MQEP as the input artifact for the following tasks:

5.4.1. Compute metamodel quality measurements

The selected metamodel quality measures and described in the MQEP shall be applied to the metamodel. As a result, values on the measurement scales are computed and assigned to quality measures.

5.4.2. Apply decision criteria for metamodel quality measures

The decision criteria for measures defined in the MQEP (task described in Section 5.2.2) shall be applied to the measured values.

5.4.3. Apply decision criteria for metamodel evaluation

The set of decision criteria for assessment defined in the MQEP (task described in Section 5.2.3) shall be summarized into quality characteristics and sub-characteristics. A statement of the extent to which the metamodel meets quality requirements describes the assessment results, which should:

1. establish an appropriate degree of confidence that the metamodel can meet the evaluation requirements;
2. identify specific deficiencies concerning the evaluation requirements and additional evaluations needed to determine the scope of those deficiencies;
3. identify particular limitations or conditions placed on the use of the metamodel;
4. identify weaknesses or omissions in the evaluation and any additional evaluation that is needed.

The outcomes of this activity are the: (a) measured value, (b) final measure value, (c) sub-characteristic value, and (d) characteristic value. The final measurement value is the measured value compared to the target value and acceptance value defined in the activity “5.2.3. Establish decision criteria for evaluating the metamodel”. The evaluator must document all of these values. For this, ANNEX H offers a measurement table that can ve used to facilitate this task.

Table 16: The example of measurement table.

Characteristic	Sub-characteristic	Quality Requirement	Measure	Measured value	Final measurement value	Sub-characteristic value	Characteristic value
Conceptual suitability	Conceptual completeness	MQR02 - The metamodel must cover the concepts found in its specifications.	Ccp-1 Conceptual coverage	A = 0 B = 20 x = 1	1.0	1.0	

5.5. Conclude the metamodel evaluation

This activity requires as input the detailed specification of MQEP, metamodel quality measurements results, and quality evaluation results. It consists of the following tasks:

5.5.1. Review the metamodel evaluation results

Both the metamodel evaluator and the evaluation requester shall carry out a joint review of the evaluation results. All documentation generated must be reassessed, and adaptations can be made when justified and documented.

5.5.2. Create the metamodel evaluation report

Depending on how the evaluation report is to be used, it should include the following items, among others: the MQEP, computed measurements results, performed analyses, intermediate results or interpretation decisions,
the evaluators’ profiles, the final result of the metamodel quality evaluation, and any necessary information to be able to repeat or reproduce the assessment.

The final outcome is a metamodel quality evaluation report (a template for the report is available in Annex J).

6. FINAL REMARKS

The MQuaRE framework was proposed as a response to the lack of a more thorough solution for metamodel quality evaluation. The MQuaRE requirements, model, and measures can be adapted to the specific contexts of a metamodel. New characteristics and sub-characteristics can be included in the MQuaRE’s quality model as well as corresponding measures and requirements. The MQuaRE framework should serve as a guide for metamodel quality evaluation, but it should not hamper execution.

7. REFERENCES

[1] Markus Herrmannsdorfer and Guido Wachsmuth. 2014. Evolving Software Systems. Springer, Berlin, Heidelberg, Chapter Coupled Evolution of Software Metamodels and Models, 33–63.

[2] OMG. 2002. Meta Object Facility (MOF) Specification, Version 1.4. Object Management Group, Inc. (2002).

[3] Éric Vépa, Jean Bézivin, Hugo Bruneliere, and Frédéric Jouault. 2006. Measuring model repositories. In Model Size Metrics Workshop - a MODELS 2006 Satellite Event. Springer, Genoa, Italy, 1–5.

[4] Haohai Ma, Weizhong Shao, Lu Zhang, Zhiyi Ma, and Yanbing Jiang. 2004. Applying OO Metrics to Assess UML Meta-models. In UML 2004 — The Unified Modeling Language. Modeling Languages and Applications, Thomas Baar, Alfred Strohmeier, Ana Moreira, and Stephen J. Mellor (Eds.). Springer, Berlin, 12–26.

[5] Vjeran Strahonja. 2007. The Evaluation Criteria of Workflow Metamodels. In 29th International Conference on Information Technology Interfaces. IEEE, New York, NY, USA, 553–558.

[6] Zhiyi Ma, Xiao He, and Chao Liu. 2013. Assessing the quality of metamodels. Frontiers of Computer Science 7, 4, Article 558 (2013), 12 pages.

[7] Juri Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. 2014. Mining metrics for understanding metamodel characteristics. In Proceedings of the 6th International Workshop on Modeling in Software Engineering (MiSE 2014). ACM, New York, NY, USA, 55–60.

[8] James Williams, Athanasios Zolotas, Nicholas Matragkas, Louis Rose, Dimitios Kolovos, Richard Paige, and Fiona Polack. 2013. What do metamodels really look like?. In Proceedings of the 3rd International Workshop on Experiences and Empirical Studies in Software Modeling. CEUR-WS, 55–60.

[9] ISO/IEC. 2014. ISO/IEC 25000:2014 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Guide to SQuaRE. ISO/IEC 25000:2014 2 (2014), 1–27

[10] ISO/IEC. 2011. ISO/IEC 25040:2011. Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Evaluation process.

[11] ISO/IEC. 2016. ISO/IEC 25023:2016 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Measurement of system and software product quality. ISO/IEC 25023:2016 1 (2016), 1–45.

[12] ISO/IEC. 2011. ISO/IEC 25010:2011 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System and software quality models.

[13] ISO/IEC. 2001. ISO/IEC 9126-1:2001 Software engineering — Product quality — Part 1: Quality model. ISO/IEC 9126-1:2001 1 (2001), 1–25.

[14] ISO/IEC. 2003. ISO/IEC TR 9126-3:2003 Software engineering — Product quality — Part 3: Internal metrics. ISO/IEC 9126-3:2003 2 (2003), 1–62.
[15] Strahonja, V. "The Evaluation Criteria of Workflow Metamodels," 2007 29th International Conference on Information Technology Interfaces, Cavtat, 2007, pp. 553-558, doi: 10.1109/ITI.2007.4283831

[16] Ma et al. “Applying OO Metrics to Assess UML Meta-models. UML - The Unified Modeling Language. Modeling Languages and Applications”. 2004. Springer Berlin Heidelberg, Berlin, Heidelberg, 12–26. DOI:https://doi.org/10.1007/978-3-540-30187-5_2

[17] Ma, Z., He, X. & Liu, C. “Assessing the quality of metamodels”. 2013. Front. Comput. Sci. 7, 558–570. https://doi.org/10.1007/s11704-013-1151-5

[18] Sprinkle, J. "Analysis of a metamodel to estimate complexity of using a domain-specific language". 2010. In Proceedings of the 10th Workshop on Domain-Specific Modeling (DSM '10). Association for Computing Machinery, New York, NY, USA, Article 13, 1–6. DOI:https://doi.org/10.1145/2060329.2060359
ANNEX A – COMPARISON WITH THE PREVIOUS MODELS

MQuaRE Model	ISO/IEC 25010 [12]	ISO/IEC 9126-1 [13]	Related work
1. Compliance			
1.1. Conceptual compliance		Functionality	[15]
2. Conceptual suitability	Functional suitability	Functionality	[16] [17]
2.1. Conceptual completeness	Functional completeness		[15]
2.2. Conceptual correctness	Functional correctness	Accuracy	[15]
2.3. Conceptual appropriateness	Functional appropriateness	Suitability	
3. Usability	Usability		
3.1. Appropriateness recognizability	Appropriateness recognizability	Understandability	[15] [16] [17]
3.2. Learnability	Learnability	Learnability	
4. Maintainability	Maintainability	Maintainability	
4.1. Modularity	Modularity		[15] [18]
4.2. Reusability	Reusability		[16] [17]
4.3. Modifiability	Modifiability	Stability	[15]
5. Portability	Portability	Portability	
5.1. Adaptability	Adaptability	Adaptability	[15]
5.2. Replaceability	Replaceability	Replaceability	[15]
ANNEX B – ORIGINS OF MQUARE MEASURES

The following list presents 23 measures: three new ones, twelve adapted from the ISO/IEC 25023 [11], seven adapted from the ISO/IEC 9126-3 [14], and one from a research paper.

MQuaRE measures	ISO/IEC 25023:2016 [11]
Compliance measures (NEW)	
Conceptual compliance measures (NEW)	
CCCc-1 Conceptual foundation [14]	
CCCc-2 Backward Traceability (NEW)	
Conceptual suitability measures	Functional suitability measures
Conceptual completeness measures	Functional completeness measures
Ccp-1 Conceptual coverage	FCp-1-G Functional coverage
Conceptual correctness measures	Functional correctness measures
CCr-1 Conceptual correctness	FCr-1-G Functional correctness
Conceptual appropriateness measures	Functional appropriateness measures
CAp-1 Conceptual appropriat. of usage objective	FAp-1-G Functional appropriat. of usage objective
CAp-2 Conceptual appropriat. of metamodel	FAp-2-G Functional appropriat. of system
Usability measures	Usability measures
Appropriateness recognizability measures	Appropriateness recognizability measures
UAp-1 Description completeness	UAp-1-G Description completeness
UAp-2 Demonstration coverage	UAp-2-S Demonstration coverage
UAp-3 Evident concepts [14]	
UAp-4 Concept understandability [14]	
Learnability measures	Learnability measures
ULe-1 User guide completeness	ULe-1-G User guide completeness
Maintainability measures	Maintainability measures
Modularity measures	Modularity measures
MMO-1 Coupling of concepts	MMO-1-G Coupling of concepts
MMO-2 Complexity of exercise [18]	
Reusability measures	Reusability measures
MRe-1 Reusability per application domain (NEW)	
Modifiability measures	Modifiability measures
MMd-1 Conceptual stability [14]	
MMd-2 Change recordability [14]	
MMd-3 Change impact [14]	
MMd-4 Modific. impact localization [14]	
MMd-5 Modification correctness	MMd-3-S Modification correctness
Portability measures	Portability measures
Adaptability measures	Adaptability measures
PAD-1 Adaptability per application domain (NEW)	
Replaceability measures	Replaceability measures
PRe-1 Usage similarity	PRe-1-G Usage similarity
PRe-2 Metamodel quality equivalence	PRe-2-S Product quality equivalence
PRe-3 Conceptual inclusiveness	PRe-3-S Functional inclusiveness
ANNEX C - MEASURES OF ISO/IEC 25023:2016 INCLUDED IN MQUARE

The following list presents the measures of ISO/IEC 25023:2016 [11] included and not included in MQuaRE due to the understanding of not being part of the scope of the quality of a metamodel. Also shown are the new measures that were defined in MQuaRE that complements the list of quality measures.

ISO/IEC 25023:2016 [11]	MQuaRE measures
Functional suitability measures	**Compliance measures (NEW)**
Functional completeness measures	Conceptual compliance measures (NEW)
Fcp-1-G Functional coverage	CCc-1 Conceptual foundation [14]
Functional correctness measures	CCc-2 Backward traceability (NEW)
FCr-1-G Functional correctness	Conceptual suitability measures
Functional appropriateness measures	Conceptual completeness measures
FAp-1-G Functional appropriat. of usage objective	CCp-1 Conceptual coverage
FAp-2-G Functional appropriat. of system	Conceptual correctness measures
Performance efficiency measures	Conceptual appropriateness measures
Time behaviour measures	CAp-1 Conceptual appropriat. of usage objective
PTb-1-G Mean response time	CAp-2 Conceptual appropriat. of metamodel
PTb-2-G Response time adequacy	**Capacity measures**
PTb-3-G Mean turnaround time	PCa-1-G Transaction processing capacity
PTb-4-G Turnaround time adequacy	PCa-2-G User access capacity
PTb-5-G Mean throughput	PCa-3-S User access increase adequacy
Resource utilization measures	**Compatibility measures**
PRu-1-G Mean processor utilization	NAM
PRu-2-G Mean memory utilization	**Usability measures**
PRu-3-G Mean I/O devices utilization	Appropriateness recognizability measures
PRu-4-S Bandwidth utilization	UAp-1-G Description completeness
Usability measures	UAp-2 Demonstration coverage
Appropriateness recognizability measures	UAp-3-Evident concepts [14]
UAp-1-G Description completeness	UAp-4 Concept understandability [14]
UAp-2-S Demonstration coverage	Learnability measures
UAp-3-S Entry point self-descriptiness	ULe-1-G User guide completeness
Learnability measures	ULe-2-S Entry fields defaults
ULe-1-G User guide completeness	ULe-3-S Error message understandability
ULe-2-S Entry fields defaults	ULe-4-S Self-explanatory user interface
ULe-3-S Error message understandability	**Resource utilization measures**
ULe-4-S Self-explanatory user interface	PRu-1-G Mean processor utilization
Learnability measures	PRu-2-G Mean memory utilization
Performance efficiency measures	PRu-3-G Mean I/O devices utilization
Time behaviour measures	PRu-4-S Bandwidth utilization
PTb-1-G Mean response time	**Conceptual correctness measures**
PTb-2-G Response time adequacy	CCr-1 Conceptual correctness
PTb-3-G Mean turnaround time	Conceptual appropriateness measures
PTb-4-G Turnaround time adequacy	CAp-1 Conceptual appropriat. of usage objective
PTb-5-G Mean throughput	CAp-2 Conceptual appropriat. of metamodel
Resource utilization measures	**Capacity measures**
PRu-1-G Mean processor utilization	PCa-1-G Transaction processing capacity
PRu-2-G Mean memory utilization	PCa-2-G User access capacity
PRu-3-G Mean I/O devices utilization	PCa-3-S User access increase adequacy
PRu-4-S Bandwidth utilization	**Compatibility measures**
Compatibility measures	NAM
Co-existence measures	Cco-1-G Co-existence with other products
Cco-1-G Co-existence with other products	**Interoperability measures**
Interoperability measures	Cin-1-G Data formats exchangeability
Cin-1-G Data formats exchangeability	Cin-2-G Data exchange protocol sufficiency
Cin-2-G Data exchange protocol sufficiency	Cin-3-S External interface adequacy
Cin-3-S External interface adequacy	**Usability measures**
Usability measures	Appropriateness recognizability measures
Appropriateness recognizability measures	UAp-1-G Description completeness
UAp-1-G Description completeness	UAp-2 Demonstration coverage
UAp-2-S Demonstration coverage	UAp-3-Evident concepts [14]
UAp-3-S Entry point self-descriptiness	UAp-4 Concept understandability [14]
Learnability measures	Learnability measures
ULe-1-G User guide completeness	ULe-1-G User guide completeness
ULe-2-S Entry fields defaults	ULe-2-S Entry fields defaults
ULe-3-S Error message understandability	ULe-3-S Error message understandability
ULe-4-S Self-explanatory user interface	ULe-4-S Self-explanatory user interface

* These characteristics and sub-characteristics do not apply to metamodels (NAM), in our humble opinion.
| ISO/IEC 25023:2016 [11] | MQuaRE measures |
|------------------------|------------------|
| **Operability** | NAM |
| UOp-1-G Operational consistency | |
| UOp-2-G Message clarity | |
| UOp-3-S Functional customizability | |
| UOp-4-S User interface customizability | |
| UOp-5-S Monitoring capability | |
| UOp-6-S Undo capability | |
| UOp-7-S Understandable categorization of inform. | |
| UOp-8-S Appearance consistency | |
| UOp-9-S Input device support | |
| **User error protection measures** | NAM |
| UEp-1-G Avoidance of user operation error | |
| UEp-2-S User entry error correction | |
| UEp-3-S User error recoverability | |
| **User interface aesthetics measures** | NAM |
| UIn-1-S Appearance aesthetics of user interfaces | |
| **Accessibility measures** | NAM |
| UAc-1-G Accessibility for users with disabilities | |
| UAc-2-S Supported languages adequacy | |
| **Reliability measures** | NAM |
| RMa-1-G Fault correction | |
| RMa-2-G Mean Time between failure | |
| RMa-3-G Failure rate | |
| RMa-4-S Test coverage | |
| **Availability measures** | NAM |
| RAv-1-G System availability | |
| RAv-2-G Mean down time | |
| **Fault tolerance measures** | NAM |
| RFT-1-G Failure avoidance | |
| RFT-2-S Redundancy of components | |
| RFT-3-S Mean fault notification time | |
| **Recoverability measures** | NAM |
| RRe-1-G Mean recovery time | |
| RRe-2-S Backup data completeness | |
| **Security measures** | NAM |
| SCo-1-G Access controllability | |
| SCo-2-G Data encryption correctness | |
| SCo-3-S Strength of cryptographic algorithms | |
| **Integrity measures** | NAM |
| Sin-1-G Data integrity | |
| Sin-2-G Internal data corruption prevention | |
| Sin-3-S Buffer overflow prevention | |
| **Non-repudiation measures** | NAM |
| SNo-1-G Digital signature usage | |
| **Accountability measures** | NAM |
| SAC-1-G User audit trail completeness | |
| SAC-2-S System log retention | |
| **Authenticity measures** | NAM |
| SAu-1-G Authentication mechanism sufficiency | |
| SAu-2-S Authentication rules conformity | |
| **Maintanability measures** | NAM |
| MMo-1-G Coupling of concepts | |
| MMo-2-S Cyclomatic complexity adequacy | |
| **Modularity measures** | NAM |
| MMo-1-G Coupling of concepts | |
| MMo-2-S Complexity of exercise [Sprinkle,2010] | |
| ISO/IEC 25023:2016 [11] | MQuaRE measures |
|---|--|
| Reusability measures | Reusability measures |
| MRe-1-G Reusability of assets | MRe-1 Reusability per application domain (NEW) |
| MRe-2-S Coding rules conformity | |
| Analisability measures | NAM |
| MAn-1-G System log completeness | |
| MAn-2-S Diagnosis function effectiveness | |
| MAn-3-S Diagnosis function sufficiency | |
| Modifiability measures | Modifiability measures |
| MMd-1-G Modification efficiency | MMd-1 Conceptual stability[14] |
| MMd-2-G Modification correcteness | MMd-2 Change recordability[14] |
| MMd-3-S Modification capability | MMd-3 Change impact[14] |
| | MMd-4 Modific. impact localization[14] |
| | MMd-5 Modification correctness |
| Testability measures | NAM |
| MTe-1-G Test function completeness | |
| MTe-2-S Autonomous testability | |
| MTe-3-S Test restartability | |
| Portability measures | Portability measures |
| Adaptability measures | Adaptability measures |
| PAd-1-G Hardware environmental adaptability | PAd-1 Adaptability per application domain (NEW) |
| PAd-2-G System softw. environmental adaptability | |
| PAd-3-S Operational environmental adaptability | |
| Installability measures | NAM |
| PIn-1-G Installation time efficiency | |
| PIn-2-G Ease of installation | |
| Replaceability measures | Replaceability measures |
| PRe-1-G Usage similarity | PRe-1 Usage similarity |
| PRe-2-S Product quality equivalence | PRe-2 Metamodel quality equivalence |
| PRe-3-S Functional inclusiveness | PRe-3 Conceptual inclusiveness |
| PRe-4-S Data reusability/import capability | |
ANNEX D – METAMODEL QUALITY REQUIREMENTS

Characteristic	Sub-characteristic	Metamodel Quality Requirements
Compliance	Conceptual	
	compliance	MQR01 - The metamodel conceptual foundation must comply with widely-accepted and sound theories, regulations, standards, and conventions.
	Conceptual	
	completeness	MQR02 - The metamodel must cover the concepts found in its specifications.
	correctness	MQR03 - The metamodel must represent the concepts found in its specifications correctly.
	appropriateness	MQR04 - The metamodel must represent the concepts required for achieving specific usage objectives.
Conceptual	suitability	
Usability	Appropriateness	
	recognizability	MQR05 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the usage scenarios described in the user documents.
		MQR06 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the demonstration features of metamodel concepts.
		MQR07 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the evident concepts to the user in the metamodel specifications.
		MQR08 - The users must be able to recognize whether a metamodel contain concepts whose purpose is correctly understood without prior training.
Learnability		MQR09 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the metamodel user documentation.
Maintainability	Modularity	MQR10 - The metamodel must be composed of discrete concepts such that a change of one concept has minimal impact on other concepts.
		MQR11 - The metamodel must be composed of discrete concepts such that a creation of model elements does not enforce ordered modelling actions.
	Reusability	MQR12 - The metamodel must be able to be reused to modelling usage scenarios for different application domains.
	Modifiability	MQR13 - The users must be able to recognize metamodel modifications accordingly the changes documented in the metamodel specification during metamodel development life cycle.
		MQR14 - The users must be able to recognize metamodel modifications accordingly the change comments confirmed in review.
		MQR15 - The metamodel must be reused modified without introducing inconsistencies or degrading metamodel quality.
Characteristic	Sub-characteristic	Metamodel Quality Requirements
---------------	-------------------	--------------------------------
Portability	Adaptability	MQR16 - The metamodel must be able to be adapted to modelling usage scenarios for different application domains.
	Replaceability	MQR17 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without introducing any additional learning or workaround.
		MQR18 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without degrading metamodel quality degree.
		MQR19 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain by using similar concepts of previous metamodel.
ANNEX E - MQUARE QUALITY MEASURES

Metamodel quality measures organized by characteristics, sub-characteristic, and metamodel quality requirements.

Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Measurement function
Compliance	Conceptual	MQR01	CCc-1 - Conceptual foundation	Which widely-accepted and sound theories, regulations, standards, and conventions is the metamodel compliant to?	A nominal list of widely-accepted and sound theories, regulations, standards, and conventions to which the metamodel is compliant.
	compliance		CCc-2 - Backward Traceability	Which are the metamodel concepts that can be traced back to their conceptual foundations?	A nominal list of each metamodel concept with its respective conceptual foundation.
Conceptual	completeness	MQR02	CCp-1 - Conceptual coverage	What proportion of the specified concepts has been modeled?	\(X = 1 - \frac{A}{B} \) \(A = \) Number of missing concepts. \(B = \) Number of concepts described in the metamodel specification. \(0 \leq X \leq 1 \). The closer to 1, the more complete.
Conceptual	correctness	MQR03	CCr-1 - Conceptual correctness	What proportion of metamodel concepts are modeled correctly?	\(X = 1 - \frac{A}{B} \) \(A = \) Number of incorrectly modeled concepts. \(B = \) Number of concepts considered in the evaluation. \(0 \leq X \leq 1 \). The closer to 1, the more correct.
Conceptual	appropriateness	MQR04	CAp-1 - Conceptual appropriateness of usage objective	What proportion of the metamodel concepts provides appropriate outcome to achieve a specific usage objective?	\(X = 1 - \frac{A}{B} \) \(A = \) Number of missing or incorrectly modeled concepts among those that are required for achieving a specific usage objective. \(B = \) Number of concepts required for achieving a specific usage objective. \(0 \leq X \leq 1 \). The closer to 1, the more appropriateness.
Conceptual	appropriateness		CAp-2 - Conceptual appropriateness of metamodel	What proportion of the metamodel concepts required by the users to achieve their objectives provides appropriate outcome?	\(x = \sum_{i=1}^{n} \frac{A_i}{n} \) \(A_i = \) Appropriateness score for usage objective \(i \), that is, the measured value of CAp-1 for \(i \)-th specific usage objective. \(n = \) Number of usage objectives. The closer to 1, the more appropriateness.
Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Measurement function
---------------	-------------------	-----	----------	---------------------	----------------------
Usability	Appropriateness	MQR05	UAp-1 - Description completeness	What proportion of usage scenarios is described in the metamodel specifications?	$X = A / B$
	recognizability			A = Number of usage scenarios described in the user documents that match usage scenarios described in the metamodel specifications. B = Number of usage scenarios described in the metamodel specifications. $0 \leq X \leq 1$. The closer to 1, the more complete.	
		MQR06	UAp-2 - Demonstration coverage	What proportion of metamodel concepts requiring demonstration have demonstration capability?	$X = A / B$
				A = Number of concepts with demonstration features. B = Number of concepts that could benefit from demonstration features. $0 \leq X \leq 1$. The closer to 1, the more capable.	
		MQR07	UAp-3 - Evident concepts	What proportion of metamodel concepts are evident to the user?	$X = A/B$
				A = Number of concepts evident to the user. B = Number of concepts described in the metamodel specification. $0 \leq X \leq 1$. The closer to 1, the better.	
		MQR08	UAp-4 - Concept understandability	What proportion of metamodel concepts are correctly understood without prior training?	$X = A / B$
				A = Number of concepts whose purpose is correctly understood without prior training. B = Number of concepts described in the metamodel specification. $0 \leq X \leq 1$. The closer to 1, the better.	
Learnability		MQR09	ULe-1 - User guide completeness	What proportion of metamodel concepts is described in the user documentation that enable the use of the metamodel?	$X = A / B$
				A = Number of concepts described in the user documentation as required. B = Number of concepts required to be documented. $0 \leq X \leq 1$. The closer to 1, the more complete.	
Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Measurement function
---------------	-------------------	-------	---	--	--
Maintainability	Modularity	MQR10	MMO-1 - Coupling of concepts	How strongly are the concepts independent and how many concepts are free of impacts from changes to other metamodel concepts?	$X = \frac{A}{B}$
$A =$ Number of concepts with no impact on others					
$B =$ Number of specified concepts which are required to be independent.					
$0 \leq X \leq 1$.					
The closer to 1, the less coupling.					
		MQR11	MMO-2 - Complexity of exercise	How complex is building terminal models by analyzing the structure of the metamodel?	$X = A - B$
$A =$ Number of instantiation elements that must be done in order					
$B =$ Number of instantiation groups that must be completed, but in any order					
The higher, the more complex, i.e., the metamodel requires more ordered actions when creating the model elements.					
Reusability		MQR12	MRe-1 - Reusability per application domain	How reusable is the metamodel to an application domain?	$X = 1 - \frac{A}{B}$
$A =$ Number of usage scenarios which were not possible to be reused for an application domain in particular					
$B =$ Number of usage scenarios described in the metamodel specifications					
$0 \leq X \leq 1$.					
The closer to 1, the better.					
Modifiability		MQR13	MMd-1 - Conceptual stability	How stable is the metamodel specification during the metamodel's development life cycle?	$X = 1 - \frac{A}{B}$
$A =$ Number of concepts changed during the metamodel's development life cycle.					
$B =$ Number of concepts described in the metamodel specification.					
$0 \leq X \leq 1$.					
The closer to 1, the more stable.					
		MQR14	MMd-2 - Change recordability	Are changes to metamodel specifications recorded adequately?	$X = \frac{A}{B}$
$A =$ Number of changes in concepts having change comments confirmed in review.					
$B =$ Number of concepts changed from original metamodel specification.					
$0 \leq X \leq 1$.					
The closer to 1, the more recordable.					
The change control 0 indicates poor change control.					
		MQR15	MMd-3 - Change impact	What is the frequency of adverse impacts after modification?	$X = 1 - \frac{A}{B}$
$A =$ Number of detected adverse impacts after modifications.					
$B =$ Number of modifications made.					
$0 \leq X \leq 1$.					
The closer to 1, the better.					
Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Measurement function
---------------	-------------------	-----	----------	---------------------	----------------------
			MMd-4 - Modification impact localization	How large is the impact of the modification on the metamodel?	\[X = \frac{A}{B} \]
\[A = \text{Number of concepts affected by modification, confirmed in review.} \]					
\[B = \text{Number of concepts described in the metamodel specification.} \]					
\[0 \leq X \leq 1. \]					
\[\text{The closer to 0, the lesser impact of modification.} \]					
			MMd-5 - Modification correctness	What proportion of modifications has been implemented correctly?	\[X = 1 - \frac{A}{B} \]
\[A = \text{Number of modifications that caused an adverse impact within a defined period after made.} \]					
\[B = \text{Number of modifications made.} \]					
\[0 \leq X \leq 1 \]					
\[\text{The closer to 1, the better.} \]					
			PAd-1 - Adaptability per application domain	How adaptable is the metamodel to an application domain?	\[X = \frac{A}{B} \]
\[A = \text{Number of usage scenarios which were not possible to be modeled for an application domain in particular} \]					
\[B = \text{Number of usage scenarios described in the metamodel specifications} \]					
\[0 \leq X \leq 1 \]					
\[\text{The closer to 1, the better.} \]					
		MQR16	MQR17	MQR18	MQR19
\[A = \text{Number of usage scenarios which can be modeled without any additional learning or workaround} \]					
\[B = \text{Number of usage scenarios in the replaced metamodel} \]					
\[0 \leq X \leq 1 \]					
\[\text{The closer to 1, the better.} \]					
		MQR17	PRe-2 - Metamodel quality equivalence	What proportion of the quality measures is satisfied after replacing previous metamodel by this one?	\[X = \frac{A}{B} \]
\[A = \text{Number of quality measures of the new metamodel which are better or equal to the replaced metamodel} \]					
\[B = \text{Number of quality measures of the replaced metamodel that are relevant} \]					
\[0 \leq X \leq 1 \]					
\[\text{The closer to 1, the better.} \]					
\[A = \text{Number of concepts which produce similar results as before} \]
\[B = \text{Number of concepts which have to be used in the replaced metamodel} \]
\[0 \leq X \leq 1 \]
\[\text{The closer to 1, the better.} \]
ANNEX F – METAMODEL QUALITY REQUIREMENTS, MEASURES, ARTIFACTS AND TARGET VALUES

Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Interpretation of the measurement value	Target value	Acceptable tolerance value	
Compliance	Conceptual compliance	MQR01	CCc-1 - Conceptual foundation	Which widely-accepted and sound theories, regulations, standards, and conventions is the metamodel compliant to?				
			CCc-2 - Backward Traceability	Which are the metamodel concepts that can be traced back to their conceptual foundations?				
Conceptual suitability	Conceptual completeness	MQR02	CCp-1 - Conceptual coverage	What proportion of the specified concepts has been modeled?	The closer to 1, the more complete.			
	Conceptual correctness	MQR03	CCr-1 - Conceptual correctness	What proportion of metamodel concepts are modeled correctly?	The closer to 1, the more correct.			
	Conceptual appropriateness	MQR04	CAp-1 - Conceptual appropriateness of usage objective	What proportion of the metamodel concepts provides appropriate outcome to achieve a specific usage objective?	The closer to 1, the more appropriateness.			
			CAp-2 - Conceptual appropriateness of metamodel	What proportion of the metamodel concepts required by the users to achieve their objectives provides appropriate outcome?	The closer to 1, the more appropriateness.			
Usability	Appropriateness recognizability	MQR05	UAp-1 - Description completeness	What proportion of usage scenarios is described in the metamodel specifications?	The closer to 1, the more complete.			
			UAp-2 - Demonstration coverage	What proportion of metamodel concepts requiring demonstration have demonstration capability?	The closer to 1, the more capable.			
			UAp-3 - Evident concepts	What proportion of metamodel concepts are evident to the user?	The closer to 1, the better.			
			UAp-4 - Concept understandability	What proportion of metamodel concepts are correctly understood without prior training?	The closer to 1, the better.			
Learnability			ULe-1 - User guide completeness	What proportion of metamodel concepts is described in the user documentation that enable the use of the metamodel?	The closer to 1, the more complete.			
Maintainability	Modularity	MQR10	MMO-1 - Coupling of concepts	How strongly are the concepts independent and how many concepts are free of impacts from changes to other metamodel concepts?	The closer to 1, the less coupling.			
Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Interpretation of the measurement value	Target value	Acceptable tolerance value	
---------------	-------------------	-------	----------------------------------	--	---	--------------	---------------------------	
			MQR11	MMo-2 - Complexity of exercise	How complex is building terminal models by analyzing the structure of the metamodel?	The higher, the more complex, i.e., the metamodel requires more ordered actions when creating the model elements.		
	Reusability	MQR12	MRe-1 - Reusability per application domain	How reusable is the metamodel to an application domain?	The closer to 1, the better.			
			MQR13	MMd-1 - Conceptual stability	How stable is the metamodel specification during the metamodel's development life cycle?	The closer to 1, the more stable.		
			MQR14	MMd-2 - Change recordability	Are changes to metamodel specifications recorded adequately?	The closer to 1, the more recordable. The change control 0 indicates poor change control.		
			MQR15	MMd-3 - Change impact	What is the frequency of adverse impacts after modification?	The closer to 1, the better.		
				MMd-4 - Modification impact localization	How large is the impact of the modification on the metamodel?	The closer to 0, the lesser impact of modification.		
				MMd-5 - Modification correctness	What proportion of modifications has been implemented correctly?	The closer to 1, the better.		
	Adaptability	MQR16	PAd-1 - Adaptability per application domain	How adaptable is the metamodel to an application domain?	The closer to 1, the better.			
	Replaceability	MQR17	PRe-1 - Usage similarity	What proportion of usage scenarios of the replaced metamodel can be modeled without any additional learning or workaround?	The closer to 1, the better.			
			MQR18	PRe-2 - Metamodel quality equivalence	What proportion of the quality measures is satisfied after replacing previous metamodel by this one?	The closer to 1, the better.		
			MQR19	PRe-3 - Conceptual inclusiveness	Can the similar concepts easily be used after replacing previous metamodel by this one?	The closer to 1, the better.		
ANNEX G - CRITERIA FOR EVALUATING THE METAMODEL

Characteristic	Sub-characteristic	Quality Requirements	Measures	Sub-characteristic formula	
Compliance	Conceptual compliance	MQR01 - The metamodel conceptual foundation must comply with widely-accepted and sound theories, regulations, standards, and conventions.	CCc-1 - Conceptual foundation		
			CCc-2 - Backward Traceability		
Conceptual suitability	Conceptual completeness	MQR02 - The metamodel must cover the concepts found in its specifications.	CCp-1 - Conceptual coverage		
	Conceptual correctness	MQR03 - The metamodel must represent the concepts found in its specifications correctly.	CCr-1 - Conceptual correctness		
	Conceptual appropriateness	MQR04 - The metamodel must represent the concepts required for achieving specific usage objectives.	CAp-1 - Conceptual appropriateness of usage objective	CAp-2 - Conceptual appropriateness of metamodel	
Usability	Appropriateness recognizability	MQR05 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the usage scenarios described in the user documents.	UAp-1 - Description completeness		
		MQR06 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the demonstration features of metamodel concepts.	UAp-2 - Demonstration coverage		
		MQR07 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the evident concepts to the user in the metamodel specifications.	UAp-3 - Evident concepts		
		MQR08 - The users must be able to recognize whether a metamodel contain concepts whose purpose is correctly understood without prior training.	UAp-4 - Concept understandability		
	Learnability	MQR09 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the metamodel user documentation.	ULe-1 - User guide completeness		
Characteristic	Sub-characteristic	Quality Requirements	Measures	Sub-characteristic formula	Characteristic formula
---------------	-------------------	---	---	-----------------------------	------------------------
Maintainability	Modularity	MQR10 - The metamodel must be composed of discrete concepts such that a change of one concept has minimal impact on other concepts.	MMO-1 - Coupling of concepts		
		MQR11 - The metamodel must be composed of discrete concepts such that a creation of model elements does not enforce ordered modelling actions.	MMO-2 - Complexity of exercise		
	Reusability	MQR12 - The metamodel must be able to be reused to modelling usage scenarios for different application domains.	MRe-1 - Reusability per application domain		
	Modifiability	MQR13 - The users must be able to recognize metamodel modifications accordingly the changes documented in the metamodel specification during metamodel development life cycle.	MMd-1 - Conceptual stability		
		MQR14 - The users must be able to recognize metamodel modifications accordingly the change comments confirmed in review.	MMd-2 - Change recordability		
		MQR15 - The metamodel must be reused modified without introducing inconsistencies or degrading metamodel quality.	MMd-3 - Change impact		
			MMd-4 - Modification impact localization		
			MMd-5 - Modification correctness		
	Adaptability	MQR16 - The metamodel must be able to be adapted to modelling usage scenarios for different application domains.	PAd-1 - Adaptability per application domain		
Portability	Replaceability	MQR17 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without introducing any additional learning or workaround.	PRe-1 - Usage similarity		
		MQR18 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without degrading metamodel quality degree.	PRe-2 - Metamodel quality equivalence		
		MQR19 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain by using similar concepts of previous metamodel.	PRe-3 - Conceptual inclusiveness		
ANNEX H – MEASUREMENTS TABLE

Characteristic	Sub-characteristic	Quality Requirement	Measure	Measured value	Final measurement value	Sub-characteristic value	Characteristic value
Compliance	Conceptual compliance	MQR01 - The metamodel conceptual foundation must comply with widely-accepted and sound theories, regulations, standards, and conventions.	CCc-1 Conceptual foundation				
			CCc-2 Backward Traceability				
Conceptual suitability	Conceptual completeness	MQR02 - The metamodel must cover the concepts found in its specifications.	Ccp-1 Conceptual coverage				
	Conceptual correctness	MQR03 - The metamodel must represent the concepts found in its specifications correctly.	CCr-1 Conceptual correcteness				
	Conceptual appropriateness	MQR04 - The metamodel must represent the concepts required for achieving specific usage objectives.	CAp-1 Conceptual appropriat. of usage objective				
			CAp-2 Conceptual appropriat. of metamodel				
Usability	Appropriateness recognizability	MQR05 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the usage scenarios described in the user documents.	UAp-1 Description completeness				
			UAp-2 Demonstration coverage				
			UAp-3 Evident concepts				
			UAP-4 Concept understandability				
			ULe-1 User guide completeness				
Characteristic	Sub-characteristic	Quality Requirement	Measure	Measured value	Final measurement value	Sub-characteristic value	Characteristic value
---------------	-------------------	---------------------	---------	----------------	-------------------------	-------------------------	---------------------
Maintainability	Modularity	MQR10 - The metamodel must be composed of discrete concepts such that a change of one concept has minimal impact on other concepts.	MMo-1 Coupling of concepts				
		MQR11 - The metamodel must be composed of discrete concepts such that a creation of model elements does not enforce ordered modelling actions.	MMo-2 Complexity of exercise				
	Reusability	MQR12 - The metamodel must be able to be reused to modelling usage scenarios for different application domains.	MRe-1 Reusability per application domain				
	Modifiability	MQR13 - The users must be able to recognize metamodel modifications accordingly the changes documented in the metamodel specification during metamodel development life cycle.	MMd-1 Conceptual stability				
		MQR14 - The users must be able to recognize metamodel modifications accordingly the change comments confirmed in review.	MMd-2 Change recordability				
		MQR15 - The metamodel must be reused modified without introducing inconsistencies or degrading metamodel quality.	MMd-3 Change impact	MMd-4 Modif. impact localization	MMd-5 Modification correctness		
Portability	Adaptability	MQR16 - The metamodel must be able to be adapted to modelling usage scenarios for different application domains.	PAd-1 Adaptability per application domain				
	Replaceability	MQR17 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without introducing any additional learning or workaround.	PRe-1 Usage similarity				
		MQR18 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without degrading metamodel quality degree.	PRe-2 Metamodel quality equivalence				
		MQR19 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain by using similar concepts of previous metamodel.	PRe-3 Conceptual inclusiveness				
ANNEX I - METAMODEL QUALITY EVALUATION PLAN (MQEP)

Metamodel identification: ___

Evaluation Requester: ___ Plan elaboration date: / /

1. Evaluation Requirements

1.1. Purpose

Choose the evaluation purpose according to the metamodel version available for quality evaluation:

Ongoing metamodel version	Select
Assure quality for the metamodel	
Decide on the acceptance of an intermediate metamodel version	
Access the ongoing feasibility of the ongoing metamodel	
Predict or estimate final metamodel quality	
Discover improvement points in the metamodel	
Collect information on intermediate metamodel version in order to control and manage the process	

Final metamodel version	Select
Decide on the acceptance of the metamodel	
Compare a metamodel with others	
Select a metamodel from among alternative metamodels	
Assess both positive and negative effects of a metamodel	
Discover improvement points in the metamodel	

1.2. Metamodel artifacts

The availability of metamodel-related artifacts is crucial to enable the evaluation of metamodel quality requirements. Choose the artifacts that will be available during the quality evaluation process:

Metamodel artifacts available	Select
Metamodel specifications (requirements and design documents)	
Metamodel implementation	
Metamodel user documentation	
Metamodel history documentation	
Specification of different application domains	
Metamodel to be replaced by the evaluated metamodel	

1.3. Resources

Evaluation resources must be defined, such as personnel, roles involved in the evaluation, evaluation tools to be used, evaluation budget, evaluation deadlines, and examples of metamodel application domains.
2. Metamodel Quality Requirements

The availability of specific metamodel artifacts is required to evaluate each metamodel quality requirement (MQR). Then, select each MQR for evaluation according to the available artifacts for you:

Quality Requirements	Metamodel artifacts required	Select
MQR01 - The metamodel conceptual foundation must comply with widely-accepted and sound theories, regulations, standards, and conventions.	- Metamodel specifications	
MQR02 - The metamodel must cover the concepts found in its specifications.	- Metamodel specifications	
MQR03 - The metamodel must represent the concepts found in its specifications correctly.	- Metamodel specifications - Metamodel implementation	
MQR04 - The metamodel must represent the concepts required for achieving specific usage objectives.	- Metamodel specifications - Metamodel implementation - Metamodel user documentation	
MQR05 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the usage scenarios described in the user documents.	- Metamodel specifications - Metamodel user documentation	
MQR06 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the demonstration features of metamodel concepts.	- Metamodel specifications - Metamodel user documentation	
MQR07 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the evident concepts to the user in the metamodel specifications.	- Metamodel specifications - Metamodel implementation	
MQR08 - The users must be able to recognize whether a metamodel contain concepts whose purpose is correctly understood without prior training.	- Metamodel specifications - Metamodel implementation	
MQR09 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the metamodel user documentation.	- Metamodel specifications - Metamodel user documentation	
MQR10 - The metamodel must be composed of discrete concepts such that a change of one concept has minimal impact on other concepts.	- Metamodel implementation	
MQR11 - The metamodel must be composed of discrete concepts such that a creation of model elements does not enforce ordered modelling actions.	- Metamodel implementation	
MQR12 - The metamodel must be able to be reused to modelling usage scenarios for different application domains.	- Metamodel specifications - Metamodel user documentation - Specification of different application domains	
MQR13 - The users must be able to recognize metamodel modifications accordingly the changes documented in the metamodel specification during metamodel development life cycle.	- Metamodel specifications - Metamodel history documentation	
MQR14 - The users must be able to recognize metamodel modifications accordingly the change comments confirmed in review.	- Metamodel specifications - Metamodel history documentation	
MQR15 - The metamodel must be reused modified without introducing inconsistencies or degrading metamodel quality.	- Metamodel specifications - Metamodel history documentation	
MQR16 - The metamodel must be able to be adapted to modelling usage scenarios for different application domains.	- Metamodel user documentation - Specification of different application domains	
MQR17 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without introducing any additional learning or workaround.	- Metamodel user documentation - Metamodel to be replaced by the evaluated metamodel	
MQR18 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without degrading metamodel quality degree.	- Metamodel specifications - Metamodel implementation	
MQR19 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain by using similar concepts of previous metamodel.	- Metamodel specifications - Metamodel implementation	
3. Metamodel Quality Measures

The selected quality measures must cover all chosen MQRs. Observe to which quality sub-characteristic (and characteristic) each measure is associated. Now, select quality measures according to the MQRs chosen for this evaluation:

Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Measurement function	Select
Compliance	Conceptual	MQR01	CCc-1 - Conceptual foundation	Which widely-accepted and sound theories, regulations, standards, and conventions is the metamodel compliant to?	A nominal list of widely-accepted and sound theories, regulations, standards, and conventions to which the metamodel is compliant.	
	compliance		CCc-2 - Backward Traceability	Which are the metamodel concepts that can be traced back to their conceptual foundations?	A nominal list of each metamodel concept with its respective conceptual foundation.	
Conceptual completeness	MQR02	CCp-1	- Conceptual coverage	What proportion of the specified concepts has been modeled?	X = 1 – A / B	
A = Number of missing concepts.						
B = Number of concepts described in the metamodel specification.						
0 <= X <= 1.						
The closer to 1, the more complete.						
Conceptual correctness	MQR03	CCr-1	- Conceptual correctness	What proportion of metamodel concepts are modeled correctly?	X = 1 - A / B	
A = Number of incorrectly modeled concepts.						
B = Number of concepts considered in the evaluation.						
0 <= X <= 1.						
The closer to 1, the more correct.						
Conceptual appropriateness	MQR04	CAp-1	- Conceptual appropriateness of usage objective	What proportion of the metamodel concepts provides appropriate outcome to achieve a specific usage objective?	X = 1 – A / B	
A = Number of missing or incorrectly modeled concepts among those that are required for achieving a specific usage objective.						
B = Number of concepts required for achieving a specific usage objective.						
0 <= X <= 1.						
The closer to 1, the more appropriateness.						
		CAp-2	- Conceptual appropriateness of metamodel	What proportion of the metamodel concepts required by the users to achieve their objectives provides appropriate outcome?	x = \sum_{i=1}^{n} Ai / n	
Ai = Appropriateness score for usage objective i, that is, the measured value of CAp-1 for i-th specific usage objective.						
N = Number of usage objectives.						
The closer to 1, the more appropriateness.						
Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Measurement function	Select
---------------	-------------------	-----------	---------------------------	---	---	--------
		MQR05	UAp-1 - Description	What proportion of usage scenarios is described in the metamodel specifications?	$X = \frac{A}{B}$	
			completeness		$A = \text{Number of usage scenarios described in the user documents that match usage scenarios described in the metamodel specifications.}$ $B = \text{Number of usage scenarios described in the metamodel specifications.}$ $0 \leq X \leq 1.$ The closer to 1, the more complete.	
		MQR06	UAp-2 - Demonstration	What proportion of metamodel concepts requiring demonstration have demonstration capability?	$X = \frac{A}{B}$	
			coverage		$A = \text{Number of concepts with demonstration features.}$ $B = \text{Number of concepts that could benefit from demonstration features.}$ $0 \leq X \leq 1.$ The closer to 1, the more capable.	
		MQR07	UAp-3 - Evident concepts	What proportion of metamodel concepts are evident to the user?	$X = \frac{A}{B}$	
					$A = \text{Number of concepts evident to the user.}$ $B = \text{Number of concepts described in the metamodel specification.}$ $0 \leq X \leq 1.$ The closer to 1, the better.	
		MQR08	UAp-4 - Concept	What proportion of metamodel concepts are correctly understood without prior training?	$X = \frac{A}{B}$	
			understandability		$A = \text{Number of concepts whose purpose is correctly understood without prior training.}$ $B = \text{Number of concepts described in the metamodel specification.}$ $0 \leq X \leq 1.$ The closer to 1, the better.	
		MQR09	ULe-1 - User guide	What proportion of metamodel concepts is described in the user documentation that enable the use of the metamodel?	$X = \frac{A}{B}$	
			completeness		$A = \text{Number of concepts described in the user documentation as required.}$ $B = \text{Number of concepts required to be documented.}$ $0 \leq X \leq 1.$ The closer to 1, the more complete.	
Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Measurement function	Select
---------------	-------------------	-----	----------	--------------------	----------------------	--------
Modularity		MQR10	MMo-1 - Coupling of concepts	How strongly are the concepts independent and how many concepts are free of impacts from changes to other metamodel concepts?	\(X = \frac{A}{B} \)	
A = Number of concepts with no impact on others						
B = Number of specified concepts which are required to be independent.						
0 <= X <= 1. The closer to 1, the less coupling.						
		MQR11	MMo-2 - Complexity of exercise	How complex is building terminal models by analyzing the structure of the metamodel?	\(X = A - B \)	
A = Number of instantiation elements that must be done in order						
B = Number of instantiation groups that must be completed, but in any order.						
The higher, the more complex, i.e., the metamodel requires more ordered actions when creating the model elements.						
Maintainability	Reusability	MQR12	MRe-1 - Reusability per application domain	How reusable is the metamodel to an application domain?	\(X = 1 - \frac{A}{B} \)	
A = Number of usage scenarios which were not possible to be reused for an application domain in particular						
B = Number of usage scenarios described in the metamodel specifications.						
0 <= X <= 1. The closer to 1, the better.						
	Modifiability	MQR13	MMd-1 - Conceptual stability	How stable is the metamodel specification during the metamodel's development life cycle?	\(X = 1 - \frac{A}{B} \)	
A = Number of concepts changed during the metamodel's development life cycle.						
B = Number of concepts described in the metamodel specification.						
0 <= X <= 1. The closer to 1, the more stable.						
		MQR14	MMd-2 - Change recordability	Are changes to metamodel specifications recorded adequately?	\(X = \frac{A}{B} \)	
A = Number of changes in concepts having change comments confirmed in review.						
B = Number of concepts changed from original metamodel specification.						
0 <= X <= 1. The closer to 1, the more recordable. The change control 0 indicates poor change control.						
Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Measurement function	Select
---------------	-------------------	-----	----------	--------------------	----------------------	--------
		MQR15	MMd-3 - Change impact	What is the frequency of adverse impacts after modification?	$X = 1 - \frac{A}{B}$	
A = Number of detected adverse impacts after modifications.						
B = Number of modifications made.						
$0 <= X <= 1$						
The closer to 1, the better.						
			MMd-4 - Modification impact localization	How large is the impact of the modification on the metamodel?	$X = \frac{A}{B}$	
A = Number of concepts affected by modification, confirmed in review.						
B = Number of concepts described in the metamodel specification.						
$0 <= X <= 1$.						
The closer to 0, the lesser impact of modification.						
			MMd-5 - Modification correctness	What proportion of modifications has been implemented correctly?	$X = 1 - \frac{A}{B}$	
A = Number of modifications that caused an adverse impact within a defined period after made.						
B = Number of modifications made.						
$0 <= X <= 1$						
The closer to 1, the better.						
Adaptability		MQR16	PAd-1 - Adaptability per application domain	How adaptable is the metamodel to an application domain?	$X = 1 - \frac{A}{B}$	
A = Number of usage scenarios which were not possible to be modeled for an application domain in particular						
B = Number of usage scenarios described in the metamodel specifications						
$0 <= X <= 1$						
The closer to 1, the better.						
Portability						
Replaceability		MQR17	PRe-1 - Usage similarity	What proportion of usage scenarios of the replaced metamodel can be modeled without any additional learning or workaround?	$X = \frac{A}{B}$	
A = Number of usage scenarios which can be modeled without any additional learning or workaround						
B = Number of usage scenarios in the replaced metamodel						
$0 <= X <= 1$.						
The closer to 1, the better.						
Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Measurement function	Select
---------------	-------------------	-------	---------------------------------	---	--	--------
		MQR18	PRe-2 - Metamodel quality equivalence	What proportion of the quality measures is satisfied after replacing previous metamodel by this one?	$X = A / B$	
A = Number of quality measures of the new metamodel which are better or equal to the replaced metamodel						
B = Number of quality measures of the replaced metamodel that are relevant						
$0 \leq X \leq 1$. The closer to 1, the better.						
		MQR19	PRe-3 - Conceptual inclusiveness	Can the similar concepts easily be used after replacing previous metamodel by this one?	$X = A / B$	
A = Number of concepts which produce similar results as before
B = Number of concepts which have to be used in the replaced metamodel
$0 \leq X \leq 1$. The closer to 1, the better. | |
4. Criteria for Metamodel Quality Measures

Measures decision criteria are numerical thresholds or targets used to determine some needs, or describe the level of confidence in a given result. Next, define a target value and an acceptable tolerance value to each chosen measure:

Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Interpretation of the measurement value	Target value	Acceptable tolerance value
Compliance	Conceptual compliance	MQR01	CCc-1 - Conceptual foundation	Which widely-accepted and sound theories, regulations, standards, and conventions is the metamodel compliant to?			
Conceptual suitability	Conceptual completeness	MQR02	CCc-2 - Backward Traceability	Which are the metamodel concepts that can be traced back to their conceptual foundations?			
Conceptual appropriateness	MQR04	CAp-1 - Conceptual appropriateness of usage objective	What proportion of the metamodel concepts provides appropriate outcome to achieve a specific usage objective?	The closer to 1, the more appropriateness.			
Conceptual appropriateness	MQR03	CCp-1 - Conceptual coverage	What proportion of the specified concepts has been modeled?	The closer to 1, the more complete.			
Conceptual appropriateness	MQR08	UAp-3 - Evident concepts	What proportion of metamodel concepts are evident to the user?	The closer to 1, the better.			
Usability	Appropriateness recognizability	MQR07	UAp-2 - Demonstration coverage	What proportion of metamodel concepts requiring demonstration have demonstration capability?	The closer to 1, the more capable.		
Learnability	UAp-4 - Concept understandability	MQR06	UAp-1 - Description completeness	What proportion of usage scenarios is described in the metamodel specifications?	The closer to 1, the more complete.		
Learnability	ULe-1 - User guide completeness	MQR05	UAp-1 - Description completeness	What proportion of usage scenarios is described in the metamodel specifications?	The closer to 1, the more complete.		
Maintainability	Modularity	MQR10	MMo-1 - Coupling of concepts	How strongly are the concepts independent and how many concepts are free of impacts from changes to other	The closer to 1, the less coupling.		
Characteristic	Sub-characteristic	MQR	Measures	Measure Description	Interpretation of the measurement value	Target value	Acceptable tolerance value
---------------	-------------------	------	----------------------------------	---	--	--------------	---------------------------
		MQR11	MMo-2 - Complexity of exercise	How complex is building terminal models by analyzing the structure of the metamodel?	The higher, the more complex, i.e., the metamodel requires more ordered actions when creating the model elements.		
Reusability		MQR12	MRe-1 - Reusability per application domain	How reusable is the metamodel to an application domain?	The closer to 1, the better.		
Modifiability		MQR13	MMd-1 - Conceptual stability	How stable is the metamodel specification during the metamodel’s development life cycle?	The closer to 1, the more stable.		
		MQR14	MMd-2 - Change recordability	Are changes to metamodel specifications recorded adequately?	The closer to 1, the more recordable. The change control 0 indicates poor change control.		
		MQR15	MMd-3 - Change impact	What is the frequency of adverse impacts after modification?	The closer to 1, the better.		
		MQR16	PAd-1 - Adaptability per application domain	How adaptable is the metamodel to an application domain?	The closer to 1, the better.		
Portability		MQR17	PRe-1 - Usage similarity	What proportion of usage scenarios of the replaced metamodel can be modeled without any additional learning or workaround?	The closer to 1, the better.		
Replaceability		MQR18	PRe-2 - Metamodel quality equivalence	What proportion of the quality measures is satisfied after replacing previous metamodel by this one?	The closer to 1, the better.		
		MQR19	PRe-3 - Conceptual inclusiveness	Can the similar concepts easily be used after replacing previous metamodel by this one?	The closer to 1, the better.		
5. Criteria for Evaluating the Metamodel

Evaluation decision criteria shall be defined with separate evaluation criteria for different quality characteristics, which may be in terms of individual quality sub-characteristics and measures. Now, register the formulas that will be used to calculate characteristics' and sub-characteristics' grades:

Characteristic	Sub-characteristic	Quality Requirements	Measures	Sub-characteristic formula	Characteristic formula
Compliance	Conceptual compliance	MQR01 - The metamodel conceptual foundation must comply with widely-accepted and sound theories, regulations, standards, and conventions.	CCc-1 - Conceptual foundation		
				CCc-2 - Backward Traceability	
	Conceptual completeness	MQR02 - The metamodel must cover the concepts found in its specifications.	CCp-1 - Conceptual coverage		
	Conceptual correctness	MQR03 - The metamodel must represent the concepts found in its specifications correctly.	CCr-1 - Conceptual correctness		
	Conceptual appropriateness	MQR04 - The metamodel must represent the concepts required for achieving specific usage objectives.	CAp-1 - Conceptual appropriateness of usage objective		
				CAp-2 - Conceptual appropriateness of metamodel	
Usability	Appropriateness recognizability	MQR05 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the usage scenarios described in the user documents.	UAp-1 - Description completeness		
		MQR06 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the demonstration features of metamodel concepts.	UAp-2 - Demonstration coverage		
		MQR07 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the evident concepts to the user in the metamodel specifications.	UAp-3 - Evident concepts		
		MQR08 - The users must be able to recognize whether a metamodel contain concepts whose purpose is correctly understood without prior training.	UAp-4 - Concept understandability		
Learnability		MQR09 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the metamodel user documentation.	ULe-1 - User guide completeness		
Characteristic	Sub-characteristic	Quality Requirements	Measures	Sub-characteristic formula	Characteristic formula
---------------	-------------------	--	--	---------------------------	------------------------
Maintainability	Modularity	MQR10 - The metamodel must be composed of discrete concepts such that a change of one concept has minimal impact on other concepts.	MMo-1 - Coupling of concepts		
		MQR11 - The metamodel must be composed of discrete concepts such that a creation of model elements does not enforce ordered modelling actions.	MMo-2 - Complexity of exercise		
	Reusability	MQR12 - The metamodel must be able to be reused to modelling usage scenarios for different application domains.	MRe-1 - Reusability per application domain		
		MQR13 - The users must be able to recognize metamodel modifications accordingly the changes documented in the metamodel specification during metamodel development life cycle.	MMd-1 - Conceptual stability		
		MQR14 - The users must be able to recognize metamodel modifications accordingly the change comments confirmed in review.	MMd-2 - Change recordability		
		MQR15 - The metamodel must be reused modified without introducing inconsistencies or degrading metamodel quality.	MMd-3 - Change impact	MMd-4 - Modification impact localization	MMd-5 - Modification correcteness
Portability	Replaceability	MQR16 - The metamodel must be able to be adapted to modelling usage scenarios for different application domains.	PAd-1 - Adaptability per application domain		
		MQR17 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without introducing any additional learning or workaround.	PRe-1 - Usage similarity		
		MQR18 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without degrading metamodel quality degree.	PRe-2 - Metamodel quality equivalence		
		MQR19 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain by using similar concepts of previous metamodel.	PRe-3 - Conceptual inclusiveness		
6. Metamodel Evaluation Activities

Evaluation activities must be included in the evaluation schedule, containing the responsibilities of the parties involved in the evaluation and the activity deadlines. The schedule of activities will depend on the number of measures to be evaluated, the number of evaluators involved, the deadlines, among others items.

Evaluation process activity	Evaluators	Start date	End date
Execute the metamodel evaluation			
Make metamodel quality measurements			
CCc-1 Conceptual foundation			
CCc-2 Backward Traceability			
CCp-1 Conceptual coverage			
CCr-1 Conceptual correctness			
CAp-1 Conceptual appropriat. of usage objective			
CAp-2 Conceptual appropriat. of metamodel			
UAp-1 Description completeness			
UAp-2 Demonstration coverage			
UAp-3 Evident concepts			
UAp-4 Concept understandability			
ULe-1 User guide completeness			
MMO-1 Coupling of concepts			
MMO-2 Complexity of exercise			
MRe-1 Reusability per application domain			
MMd-1 Conceptual stability			
MMd-2 Change recordability			
MMd-3 Change impact			
MMd-4 Modification impact localization			
MMd-5 Modification correctness			
PAd-1 Adaptability per application domain			
PRe-1 Usage similarity			
PRe-2 Metamodel quality equivalence			
PRe-3 Conceptual inclusiveness			
Apply decision criteria for quality measures			
Apply decision criteria for metamodel evaluation			
Conclude the metamodel evaluation			
Review the metamodel evaluation results			
Create the metamodel evaluation report			
7. Measurements Table

The measurements table must be filled in during the assessment by each evaluator to be included in the final metamodel evaluation report.

Characteristic	Sub-characteristic	Quality Requirement	Measure	Measured value	Final measurement value	Sub-characteristic value	Characteristic value
Compliance	Conceptual compliance	MQR01 - The metamodel conceptual foundation must comply with widely-accepted and sound theories, regulations, standards, and conventions.	CCc-1 Conceptual foundation				
			CCc-2 Backward Traceability				
Conceptual suitability	Conceptual completeness	MQR02 - The metamodel must cover the concepts found in its specifications.	Ccp-1 Conceptual coverage				
	Conceptual correctness	MQR03 - The metamodel must represent the concepts found in its specifications correctly.	CCr-1 Conceptual correctness				
	Conceptual appropriateness	MQR04 - The metamodel must represent the concepts required for achieving specific usage objectives.	CAp-1 Conceptual appropriat. of usage objective				
			CAp-2 Conceptual appropriat. of metamodel				
Usability	Appropriateness recognizability	MQR05 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the usage scenarios described in the user documents.	UAp-1 Description completeness				
			UAp-2 Demonstration coverage				
			UAp-3 Evident concepts				
			UAP-4 Concept understandability				
	Learnability	MQR06 - The users must be able to recognize whether a metamodel is appropriate for their needs accordingly the demonstration features of metamodel concepts.					
			ULe-1 User guide completeness				
Maintainability	Modularity	MQR10 - The metamodel must be composed of discrete concepts such that a change of one concept has minimal impact on other concepts.	MMO-1 Coupling of concepts				
Characteristic	Sub-characteristic	Quality Requirement	Measure	Measured value	Final measurement value	Sub-characteristic value	Characteristic value
---------------	-------------------	--	--	----------------	-------------------------	-------------------------	---------------------
		MQR11 - The metamodel must be composed of discrete concepts such that a creation of model elements does not enforce ordered modelling actions.	MMo-2 Complexity of exercise				
Reusability		MQR12 - The metamodel must be able to be reused to modelling usage scenarios for different application domains.	MRe-1 Reusability per application domain				
	Modifiability	MQR13 - The users must be able to recognize metamodel modifications accordingly the changes documented in the metamodel specification during metamodel development life cycle.	MMd-1 Conceptual stability				
		MQR14 - The users must be able to recognize metamodel modifications accordingly the change comments confirmed in review.	MMd-2 Change recordability				
		MQR15 - The metamodel must be reused modified without introducing inconsistencies or degrading metamodel quality.	MMd-3 Change impact			MMd-4 Modific. impact localization	
						MMd-5 Modification correctness	
Adapability		MQR16 - The metamodel must be able to be adapted to modelling usage scenarios for different application domains.	PAd-1 Adaptability per application domain				
Portability	Replaceability	MQR17 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without introducing any additional learning or workaround.	PRe-1 Usage similarity				
		MQR18 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain, without degrading metamodel quality degree.	PRe-2 Metamodel quality equivalence				
		MQR19 - The metamodel must be able to replace another specified metamodel for the same purpose in the same application domain by using similar concepts of previous metamodel.	PRe-3 Conceptual inclusiveness				
Metamodel identification: ___

Evaluator: ___________________________ Evaluation period: ______________________

1. Quality evaluation plan

Provide an overview of the quality evaluation plan.

2. The evaluators and their qualifications

Describe a brief overview of the evaluators’ qualifications.

3. Problems or workarounds in adverse events

Describe problems and workarounds that may have occurred during the evaluation.

4. The results from the measurements and analyses performed

Provide the measurements table filled with the measurements values and also a detailed analysis of the results.

5. Result of the evaluation

Describe the results of the evaluation with the summarization of grades by characteristics and sub-characteristics.