ON THE VERLINDE FORMULAS FOR SO(3)-BUNDLES

DEREK KREPSKI AND ECKHARD MEINRENKEN

Abstract. This paper computes the quantization of the moduli space of flat SO(3)-bundles over an oriented surface with boundary, with prescribed holonomies around the boundary circles. The result agrees with the generalized Verlinde formula conjectured by Fuchs and Schweigert.

1. Introduction

Let G be a compact, connected Lie group, Σ a compact oriented surface of genus h with r boundary components. Given conjugacy classes $C_1, \ldots, C_r \subset G$, denote by

$$\mathcal{M}(\Sigma, C_1, \ldots, C_r)$$

the moduli space of flat G-bundles over Σ, with boundary holonomies in prescribed conjugacy classes C_j. The choice of an invariant inner product on \mathfrak{g} defines a symplectic structure on the moduli space. Under suitable integrality conditions the moduli space carries a pre-quantum line bundle L, and one can define the quantization

$$\mathcal{Q}(\mathcal{M}(\Sigma, C_1, \ldots, C_r)) \in \mathbb{Z}$$

as the index of the Spin$_c$-Dirac operator with coefficients in L. (It may be necessary to use a partial desingularization as in [16].) Choosing a complex structure on Σ further defines a Kahler structure on the moduli space. If G is simply connected, Kodaira vanishing results [20] show that the above index coincides with the dimension of the space of holomorphic sections of L. It is given by the celebrated Verlinde formula [22, 21, 7, 19, 5]. For symplectic approaches to the Verlinde formulas, much in the spirit of the present paper, see [11, 10, 12, 6, 2].

Much less is known for non-simply connected groups. For surfaces without boundary ($r = 0$), and taking $G = \text{PU}(n)$, Verlinde-type formulas were obtained by Pantev [17] in the case $n = 2$ and by Beauville [4] for n prime. For more general compact, semi-simple connected Lie groups, Fuchs and Schweigert [9] conjectured a generalization of the Verlinde formula, expressed in terms of orbit Lie algebras. Partial results on these conjectures were obtained in [2].

In this article, we will establish Fuchs-Schweigert formulas for the index (2) for the simplest case $G = \text{SO}(3)$. We will use the recently developed quantization procedure [15, 14] for quasi-Hamiltonian actions with group-valued moment map [1]. In order to apply these techniques, we present the moduli spaces (1) as symplectic quotients of quasi-Hamiltonian \tilde{G}-spaces for the universal cover $\tilde{G} = \text{SU}(2)$. In more detail, let $D_i \subset \text{SU}(2)$ be conjugacy classes, and consider the quasi-Hamiltonian $\text{SU}(2)$-space

$$\tilde{M} = D_1 \times \cdots \times D_s \times \text{SU}(2)^{2h}$$
with moment map the product of holonomies,
\[
\tilde{\Phi}(d_1, \ldots, d_s, a_1, b_1, \ldots, a_h, b_h) = \prod_{i=1}^s d_i \prod_{j=1}^h (a_j b_j^{-1} a_j^{-1} b_j^{-1}).
\]

Put \(M = \tilde{M}/\Gamma\), where \(\Gamma \subset Z^{s+2h}\) is the subgroup preserving \(\tilde{M} \subset SU(2)\) and \(\tilde{\Phi}\). Then \(M\) is a quasi-Hamiltonian \(SU(2)\)-space, and all connected components of \(\tilde{\Phi}\) are symplectic quotients \(\tilde{M}/SU(2)\) for suitable choices of \(D_j\) (see Section 2.3). Our first main result gives necessary and sufficient conditions under which the space \(M\) admits a level \(k\) pre-quantization [13]. Using localization, we then compute the corresponding quantization \(Q(M) \in \mathbb{R}^k(SU(2))\), an element of the level \(k\) fusion ring (Verlinde ring). These results are summarized in Theorem 3.7. We reformulate the result as an equivariant version of the Fuchs-Schweigert formula (Theorem 4.1); the non-equivariant formula (see (16) in Section 4) is then obtained from a ‘quantization commutes with reduction’ principle.

Using the results of [14], it is also possible to compute quantizations of moduli spaces for non-simply connected groups of higher rank. However, the determination of the pre-quantization conditions and the evaluation of the fixed point contributions becomes more involved. We will return to these questions in a forthcoming paper; see also the author’s abstracts in Oberwolfach Report No. 2011/09.

2. Preliminaries

The following notation, consistent with [15], will be used in this paper. For the Lie group \(SU(2)\) let \(T\) be the maximal torus given as the image of
\[
j : U(1) \to SU(2), \quad j(z) = (z \ 0 \ 0 \ \bar{z}).
\]
Let \(\Lambda = \ker \exp_T \subset t\) denote the integral lattice and \(\Lambda^* \subset t^*\) its dual, the (real) weight lattice. Let \(\rho \in \Lambda^*\) be the generator dual to the generator \(d_j(2\pi i) \in \Lambda\). We will use the basic inner product
\[
\langle \xi, \xi' \rangle := \frac{1}{4\pi^2} \text{tr}(\xi^\dagger \xi'), \quad \xi, \xi' \in \mathfrak{su}(2)
\]
to identify \(\mathfrak{su}(2) \cong \mathfrak{su}(2)^*\). Under this identification, \(\|\rho\|^2 = \frac{1}{2}\), and \(\Lambda = 2\Lambda^*\) with generator \(2\rho\). The following two elements of \(SU(2)\) will play a special role in this paper:
\[
u_* = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad t_* = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}
\]
Observe that \(t_* = \exp(\rho/2)\), with square \(c = \exp \rho\) the non-trivial element in the center \(Z := Z(SU(2)) \cong \mathbb{Z}_2\). The element \(u_* \in N(T)\) represents the non-trivial element of the Weyl group \(W = N(T)/T \cong \mathbb{Z}_2\). Both \(u_*, t_*\) are contained in the conjugacy class \(D_* \subset SU(2)\) of elements of trace 0. Note that \(D_*\) is the unique conjugacy class in \(SU(2)\) that is invariant under multiplication by \(Z\). The quotient \(C_* = D_*/Z \cong \mathbb{R}P(2)\) is the conjugacy class in \(SO(3)\) consisting of rotations by \(\pi\).

2.1. The fusion ring \(R_k(SU(2))\). We view the representation ring \(R(SU(2))\) as the subring of \(C^\infty(SU(2))\) generated by characters of \(SU(2)\)-representations. As a \(\mathbb{Z}\)-module, it is free with basis \(\chi_0, \chi_1, \chi_2, \ldots\), where \(\chi_m\) is the character of the irreducible \(SU(2)\)-representation on the \(m\)-th symmetric power \(S^m(\mathbb{C}^2)\). The ring structure is determined by the formula
\[
\chi_m \chi_{m'} = \chi_{m+m'} + \chi_{m+m'-2} + \cdots + \chi_{|m-m'|}.
\]
For $k = 0, 1, 2, \ldots$ let $I_k(\text{SU}(2))$ be the ideal generated by χ_{k+1} and let
\[R_k(\text{SU}(2)) = R(\text{SU}(2))/I_k(\text{SU}(2)) \]
be the level k fusion ring (or Verlinde ring). As a \mathbb{Z}-module, $R_k(\text{SU}(2))$ is free, with basis $\tau_0, \tau_1, \ldots, \tau_k$ the images of $\chi_0, \chi_1, \ldots, \chi_k$ under the quotient homomorphism. Let $q = e^{\frac{i\pi}{k+2}}$ be the $2k + 4$-th root of unity, and define special points
\[t_l = j(q^{l + 1}), \quad l = 0, \ldots, k. \]
Then $I_k(\text{SU}(2)) \subset R(\text{SU}(2))$ has another description as the ideal of characters vanishing at all special points (3). Hence, the evaluation of characters at the special points descends to evaluations $R_k(\text{SU}(2)) \to \mathbb{C}$, $t \mapsto \tau(t_l)$.

The product in the complexified fusion ring $R_k(\text{SU}(2)) \otimes_{\mathbb{Z}} \mathbb{C}$ can be diagonalized using the S-matrix, given by the Kac-Peterson formula
\[S_{m,l} = (\frac{k}{2} + 1)^{-\frac{1}{2}} \sin \left(\frac{\pi(l+1)(m+1)}{k+2} \right), \]
for $l, m = 0, 1, \ldots, k$. The S-matrix is orthogonal, and the alternative basis elements
\[\tilde{\tau}_l = \sum_m S_{0,l} S_{m,l} \tau_m \]
satisfy $\tilde{\tau}_m(t_l) = \delta_{m,l}$, hence
\[\tilde{\tau}_m \tilde{\tau}_{m'} = \delta_{m,m'} \tilde{\tau}_m. \]
The basis elements $\{\tau_0, \ldots, \tau_k\}$ are expressed in terms of the alternative basis as $\tau_m = \sum_l S_{0,l} S_{m,l} \tilde{\tau}_l$.

2.2. Quasi-Hamiltonian G-spaces

We recall some basic definitions and facts from [1]. Let G be a compact Lie group with Lie algebra \mathfrak{g}, equipped with an invariant inner product, denoted by a dot \cdot. Let θ^L, θ^R denote the left-invariant, right-invariant Maurer-Cartan forms on G, and let $\eta = \frac{1}{2\pi}[\theta^L, \theta^R]$ denote the Cartan 3-form on G. For a G-manifold M, and $\xi \in \mathfrak{g}$, let ξ^t denote the generating vector field, defined in terms of the action on functions $f \in \mathcal{C}^\infty(M)$ by $(\xi^t f)(x) = \left. \frac{d}{dt} \right|_{t=0} f(\exp(-t\xi)x)$. The Lie group G is itself viewed as a G-manifold for the conjugation action.

Definition 2.1. A quasi-Hamiltonian G-space is a triple (M, ω, Φ) consisting of a G-manifold M, a G-invariant 2-form ω on M, and an equivariant map $\Phi : M \to G$, called the moment map, satisfying:

1. $d\omega + \Phi^*\eta = 0$,
2. $i_{\xi^t}\omega + \frac{1}{2}\Phi^*(([\theta^L, \theta^R] \cdot \xi)) = 0$ for all $\xi \in \mathfrak{g}$,
3. at every point $x \in M$, $\ker \omega_x \cap \ker d\Phi_x = \{0\}$.

The fusion product of two quasi-Hamiltonian G-spaces (M_1, ω_1, Φ_1) and (M_2, ω_2, Φ_2) is the product $M_1 \times M_2$, with the diagonal G-action, 2-form
\[\omega = pr_1^*\omega_1 + pr_2^*\omega_2 + \frac{1}{2}pr_1^*\Phi_1^*\theta^L \cdot pr_2^*\Phi_2^*\theta^R, \]
and moment map $\Phi = \Phi_1 \Phi_2$.

The symplectic quotient of a quasi-Hamiltonian G-space is the symplectic space $M/G = \Phi^{-1}(e)/G$. Similar to the theory of Hamiltonian group actions, the group unit e is a regular value of Φ if and only if G acts locally freely on the level set $\Phi^{-1}(e)$, and in this case the pull-back of the 2-form to the level set descends to a
symplectic 2-form on the orbifold $\Phi^{-1}(e)/G$. If e is a singular value, then $M//G$ is a singular symplectic space as defined in [18].

The conjugacy classes $C \subset G$ are basic examples of quasi-Hamiltonian G-spaces. The moment map is the inclusion into G, and the 2-form ω is given on generating vector fields by the formula

$$\omega_g(\zeta^\sharp(g), \xi^\sharp(g)) = \frac{1}{2}(\xi \cdot \text{Ad}_g\zeta - \zeta \cdot \text{Ad}_g\xi).$$

Together with the double $D(G) = G \times G$, equipped with diagonal G-action and moment map $\Phi(g, h) = g h g^{-1} h^{-1}$, these are the building blocks of the main example appearing in this paper. As shown in [1], the moduli space of flat G-bundles over a compact, oriented surface Σ of genus h with s boundary components, with boundary holonomies in prescribed conjugacy classes C_j, $j = 1, \ldots, s$, is a symplectic quotient of a fusion product:

$$M(\Sigma, C_1, \ldots, C_s) = C_1 \times \cdots \times C_s \times D(G)^h//G.$$

If the group G is simply connected, then the fibers of the moment map for any compact, connected quasi-Hamiltonian G-space are connected. In particular, (7) is connected in that case. If G is non-simply connected, the space (7) may have several components.

To clarify the decomposition into components, we use the following construction. Suppose $p: \tilde{G} \to G$ is a homomorphism of compact, connected Lie groups, with finite kernel Z. Then Z is a subgroup of the center of \tilde{G}, and $G = \tilde{G}/Z$. For any quasi-Hamiltonian G-space (N, ω, Φ), let \tilde{N} denote the fiber product defined by the pull-back square

$$\begin{array}{ccc}
\tilde{N} & \xrightarrow{\Phi} & \tilde{G} \\
p \downarrow & & \downarrow p \\
N & \xrightarrow{\Phi} & G
\end{array}$$

Then $(\tilde{N}, \tilde{\omega}, \tilde{\Phi})$ is a quasi-Hamiltonian \tilde{G}-space, for the diagonal \tilde{G}-action on $\tilde{N} \subset N \times \tilde{G}$, and with the 2-form $\tilde{\omega} = p^*_N \omega$. Simple properties of this construction are:

Proposition 2.2. (i) We have a canonical identification of symplectic quotients

$$\tilde{N}/\tilde{G} \cong N/G.$$

(ii) For a fusion product $N = N_1 \times \cdots \times N_r$ of quasi-Hamiltonian G-spaces, the space \tilde{N} is a quotient of $\tilde{N}_1 \times \cdots \times \tilde{N}_r$ by the group $\{(c_1, \ldots, c_r) \in Z^r \mid \prod_{j=1}^r c_j = e\}$.

(iii) If $\Phi: N \to G$ lifts to a moment map $\Phi': N \to \tilde{G}$, thus turning N into a quasi-Hamiltonian \tilde{G}-space (N, ω, Φ'), then $\tilde{N} = N \times Z$ as a fusion product of quasi-Hamiltonian \tilde{G}-spaces. Here Z is viewed as a quasi-Hamiltonian \tilde{G}-space, with trivial action and with moment map the inclusion to \tilde{G}.

Proof. (i) By definition of \tilde{N}, the level sets $\Phi^{-1}(\tilde{e})$ and $\Phi^{-1}(e)$ are identified, and the pull-backs of the 2-forms to the level sets coincide. Since central elements in \tilde{G} act trivially on \tilde{N}, the orbit spaces $\Phi^{-1}(\tilde{e})/\tilde{G}$ and $\Phi^{-1}(e)/G$ are identified as well.
(ii) Think of the spaces \tilde{N}_i as submanifolds of $N_i \times \tilde{G}$. The canonical map

$$\tilde{N}_1 \times \cdots \times \tilde{N}_r \to \tilde{N}, \ (x_1, g_1, x_2, g_2, \ldots, x_r, g_r) \mapsto (x_1, \ldots, x_r, g_1, \ldots, g_r)$$

is exactly the quotient map by \{ $(c_1, \ldots, c_r) \in \mathbb{Z}^r \mid \prod_{j=1}^r c_j = e$ \}, and it preserves the \tilde{G}-actions and 2-forms.

(iii) The map $N \times \mathbb{Z} \to \tilde{N}$, $(x, c) \mapsto (x, \Phi'(x)c)$ is the desired diffeomorphism. □

2.3. The moduli space example. Our main interest is the moduli space of flat SO(3)-bundles with prescribed boundary holonomies, i.e. (7) with $G = SO(3)$. In the notation of the previous Section, we will describe the quasi-Hamiltonian SU(2)-space \tilde{N} associated to the quasi-Hamiltonian SO(3)-space $N = C_1 \times \cdots \times C_s \times D(SO(3))^h$.

Choose conjugacy classes $D_j \in SU(2)$ with $p(D_j) = C_j$, and define a quasi-Hamiltonian SU(2)-space

$$\tilde{M} = D_1 \times \cdots \times D_s \times D(SU(2))^h.$$

Put

$$M = \tilde{M}/\Gamma,$$

where $\Gamma \subset \mathbb{Z}^{s+2h}$ consists of $\gamma = (\gamma_1, \ldots, \gamma_{s+2h})$ with the properties $\prod_{j=1}^s \gamma_j = e$ and $\gamma_j D_j = D_j$ for $j \leq s$. (Equivalently, $\gamma_j = e$ for all $D_j \neq D_*$.) The conditions guarantee that γ acts on \tilde{M}, preserving the 2-form and moment map which hence descend to $M = \tilde{M}/\Gamma$. Let $C_* \cong \mathbb{R}P(2)$ be the SO(3)-conjugacy class consisting of rotations by π. It is the unique SO(3)-conjugacy class whose pre-image in SU(2) is connected. This pre-image is the SU(2)-conjugacy class $D_* \cong S^2$ of matrices of trace 0.

Lemma 2.3. With N as above, we have

$$\tilde{N} \cong \begin{cases}
M & \text{if } \exists j : C_j = C_* \\
M \times Z & \text{if } \forall j : C_j \neq C_*.
\end{cases}$$

Proof. The moment map $D(SU(2)) \to SU(2)$ (given by Lie group commutator) is invariant under the action of $Z \times Z$, hence it descends to a lift $D(SO(3)) \to SU(2)$ of the commutator map for SO(3). Thus

$$\tilde{D}(SO(3)) = D(SO(3)) \times Z.$$

If $C_j \neq C_*$, the map $D_j \to C_j$ is a diffeomorphism, and defines a lift of the moment map $C_j \to SO(3)$. Hence

$$\tilde{C}_j = D_j \times Z$$

in that case. On the other hand, the conjugacy class C_* satisfies

$$\tilde{C}_* = D_*.$$

With these ingredients, the claim follows from Proposition 2.2. □

We may choose the labeling of the conjugacy classes C_1, \ldots, C_s in such a way that $C_j = C_*$ for $j \leq r$ and $C_j \neq C_*$ for $j > r$. The space (10) is then a fusion product

$$M = M' \times D_{r+1} \times \cdots \times D_s \times D(SO(3))^h,$$

(11)
where $\mathbf{D}(\text{SO}(3))$ is viewed as a quasi-Hamiltonian SU(2)-space (using the canonical lift of the SO(3) moment map, as in the proof of Lemma 2.3), and where

$$M' = (\mathcal{D}_s \times \cdots \times \mathcal{D}_s) / \Gamma'$$

with r factors, and with $\Gamma' = \{(\gamma_1, \ldots, \gamma_r) \in Z^r | \prod \gamma_j = e\}$. Let us describe the 2-form ω' of the space M', in terms of its pull-back $\tilde{\omega}'$ to the universal cover $\tilde{M} = \mathcal{D}_s \times \cdots \times \mathcal{D}_s$. Since the 2-form on \mathcal{D}_s is just zero, only the fusion terms contribute. By iterative use of the formula (5) for the fusion product, one obtains

$$\tilde{\omega}' = \frac{1}{2} \sum_{i<j} g_i^* \theta^L \cdot \text{Ad}_{g_{i+1} \cdots g_{j-1}}(g_j^* \theta^R),$$

where $g_i: \tilde{M} \to \mathcal{D}_s \subset \text{SU}(2)$ denotes projection onto the i-th factor.

3. Quantization of the moduli space of flat $\text{SO}(3)$-bundles

In this section we use localization to compute the quantization of the space $M = (\mathcal{D}_1 \times \cdots \times \mathcal{D}_s \times \mathbf{D}(\text{SU}(2))^h) / \Gamma$, as an element of the level k fusion ring $R_k(\text{SU}(2))$.

3.1. Pre-quantization. Recall that we fix the inner product \cdot on $\mathfrak{su}(2)$ to be the basic inner product. Then $\eta \in \Omega^3(\text{SU}(2))$ is integral, and represents a generator $x \in H^3(\text{SU}(2); \mathbb{Z}) \cong \mathbb{Z}$. The condition $d\omega + \Phi^* \eta = 0$ from the definition of a quasi-Hamiltonian space says that the pair (ω, η) defines a relative cocycle in $\Omega^3(\Phi)$, the algebraic mapping cone of the pull-back map $\Phi^*: \Omega^*(G) \to \Omega^*(M)$. Let $k \in \mathbb{N}$.

Definition 3.1. [13, 15] A level k pre-quantization of a quasi-Hamiltonian SU(2)-space (M, ω, Φ) is an integral lift $\alpha \in H^3(\Phi; \mathbb{Z})$ of the class $k[(\omega, \eta)] \in H^3(\Phi; \mathbb{R})$.

A necessary and sufficient condition for the existence of a level k pre-quantization is that for all smooth singular 2-cycles $\Sigma \in Z_2(M)$, and all smooth singular 3-chains $C \in C_3(G)$ such that $\partial C = \Phi(\Sigma)$,

$$k(\int_{\Sigma} \omega + \int_{C} \eta) \in \mathbb{Z}.$$

We list some basic properties and examples of level k pre-quantizations.

(a) The set of level k pre-quantizations is a torsor under the torsion group $\text{Tor}(H^2(M; \mathbb{Z}))$ of isomorphism classes of flat line bundles.

(b) The level k pre-quantized conjugacy classes of SU(2) are exactly those of the elements $\exp(\frac{2\pi}{k} \rho)$ with $m = 0, \ldots, k$ [15, Proposition 7.3].

(c) The double $\mathbf{D}(\text{SO}(3))$ (viewed as a quasi-Hamiltonian SU(2)-space) admits a level k pre-quantization if and only if k is even [15, Proposition 7.4].

(d) If M_1 and M_2 are pre-quantized quasi-Hamiltonian SU(2)-spaces at level k, then their fusion product $M_1 \times M_2$ inherits a pre-quantization at level k. Conversely, a pre-quantization of the product induces pre-quantizations of the factors. See [13, Proposition 3.8].

(e) A level k pre-quantization of M induces a pre-quantization of the symplectic quotient $M//\text{SU}(2)$, equipped with the k-th multiple of the symplectic form.

(f) The long exact sequence in relative cohomology gives a necessary condition $k\Phi^*(x) = 0$ for the existence of a level k pre-quantization. If $H^2(M; \mathbb{R}) = 0$, this condition is also sufficient [13, Proposition 4.2].
if and only if the following conditions are satisfied:

3.2. Pre-quantization of \(M, \omega, \Phi \) from \([15]\) produces a pre-quantization \(\mathbb{Q}(M) \in R_k(\text{SU}(2)) \), an element of the level \(k \) fusion ring. It is obtained as a push-forward in twisted equivariant \(K \)-homology, using the Freed-Hopkins-Teleman theorem \([8]\) to identify \(R_k(\text{SU}(2)) \) with the equivariant twisted \(K \)-homology of \(\text{SU}(2) \) at level \(k+2 \). This is the quasi-Hamiltonian counterpart of the \(\text{Spin}_c \) quantization of an ordinary compact Hamiltonian \(\text{SU}(2) \)-space, which produces an element of \(R(\text{SU}(2)) \) as the equivariant index of a \(\text{Spin}_c \)-Dirac operator with coefficients in an equivariant pre-quantum line bundle. The quantization procedure for quasi-Hamiltonian \(G \)-spaces satisfies properties similar to its Hamiltonian analog. These include

1. compatibility with products, \(\mathbb{Q}(M_1 \times M_2) = \mathbb{Q}(M_1) \mathbb{Q}(M_2) \); and
2. the ‘quantization commutes with reduction’ principle, \(\mathbb{Q}(M/\!/G) = \mathbb{Q}(M)^G \).

Here \(R_k(G) \rightarrow \mathbb{Z} \), \(\tau \rightarrow \tau^G \) is the trace defined by \(\tau^G_m = \delta_m,0 \).

3.2. Pre-quantization of \(M \). Let us now consider level \(k \) pre-quantizations of the quasi-Hamiltonian \(\text{SU}(2) \)-space

\[
M = (\mathcal{D}_1 \times \cdots \times \mathcal{D}_s \times \mathcal{D}(\text{SU}(2))^h)/\Gamma
\]

from (10).

Theorem 3.2. The quasi-Hamiltonian \(\text{SU}(2) \)-space \(M \) carries a level \(k \) pre-quantization if and only if the following conditions are satisfied:

(i) The conjugacy classes \(\mathcal{D}_j \) are of the form \(\text{SU}(2). \exp(m_j \rho) \) with \(m_j \in \{0, \ldots, k\} \),

(ii) if \(h \geq 1 \), then \(k \in 2\mathbb{N} \),

(iii) if the number of \(\mathcal{D}_r \)-factors is \(r \geq 3 \), then \(k \in 4\mathbb{N} \).

Note that if at least one \(\mathcal{D}_s \)-factor appears, then the first condition requires that \(k \in 2\mathbb{N} \) since \(\mathcal{D}_s = \text{SU}(2). \exp(\frac{1}{2} \rho) \).

Proof. Since a level \(k \) pre-quantization of \(M \) induces a level \(k \) pre-quantization of the universal cover \(\tilde{M} \), it is a necessary condition that all \(\mathcal{D}_j \) be pre-quantizable. That is, \(\mathcal{D}_j = \text{SU}(2). \exp(m_j \rho) \) with \(m_j \in \{0, \ldots, k\} \).

Let us enumerate the conjugacy classes in such a way that \(\mathcal{D}_1 = \cdots = \mathcal{D}_r = \mathcal{D}_s \). Using the decomposition (11) and the known pre-quantization conditions (b),(c) for the conjugacy classes \(\mathcal{D}_j \) and the double \(\mathcal{D}(\text{SO}(3)) \), together with the fusion property (d), the proof is reduced to the case \(h = 0, s = r \). We may thus assume \(M = (\mathcal{D}_1 \times \cdots \times \mathcal{D}_r)/\Gamma \) with \(r \) factors. If \(r = 1 \) then \(M = \mathcal{D}_s \), which is pre-quantized at level \(k \) if and only if \(k \) is even. Suppose \(r > 1 \). The non-trivial element \(c \in \mathbb{Z} \) acts on \(H^2(\mathcal{D}_s; \mathbb{R}) \cong \mathbb{R} \) as multiplication by \(-1 \). Hence, \(\Gamma \) acts on \(H^2(M; \mathbb{R}) \cong \mathbb{R}^r \) by componentwise sign changes. In particular, the \(\Gamma \)-invariant part is trivial. Since \(\Gamma \) acts freely, it follows that

\[
H^2(M; \mathbb{R}) \cong H^2(\tilde{M}; \mathbb{R})^\Gamma = 0.
\]
Hence, by Property (f), a level k pre-quantization exists if and only if $k\Phi^*(x) = 0$. If $r = 2$, so that $M = (D_s \times D_s)/\mathbb{Z}_2$, Poincaré duality gives that $H^3(M; \mathbb{Z}) \cong \mathbb{Z}_2$; therefore $2\Phi^*(x) = 0$. Hence the condition $k \in 2\mathbb{N}$ is also sufficient if $r = 2$.

It remains to consider the case $r \geq 3$. By Property (g), the condition $k \in 4\mathbb{N}$ is sufficient. Let us show that it is also necessary. Observe that the non-identity component of the normalizer, the circle $Tu_* = N(T) - T$, is a single conjugacy class inside $N(T)$. Since $u_* \in D_s$, it follows that $Tu_* \subset D_s$. Let $X \subset M = D_s \times \cdots \times D_s$ be the 2-torus given as the image of the map

$$T \times T \to \tilde{M}, \quad (h_1, h_2) \mapsto (h_1 u_*, h_2 u_*, h_1 h_2 u_*, u_*, \ldots, u_*),$$

and denote by X its image in M. Let $\hat{\omega}_X, \omega_X$ be the pull-backs of the quasi-Hamiltonian 2-forms on \tilde{X}, X. Since $Tu_* = u_* T$, we have $\hat{\Phi}(X) = \Phi(X) \subset Tu_*^T$. Since the generator $x \in H^3(SU(2), \mathbb{Z})$ pulls back to zero on this circle (for dimension reasons), the existence of a level k pre-quantization of M requires that $k \int_X \omega_X \in \mathbb{Z}$. Since the projection $\tilde{X} \to X$ is a 4-fold covering, $\int_X \omega_X = \frac{1}{4} \int_{\tilde{X}} \hat{\omega}_X$. Hence it is necessary that $k \int_{\tilde{X}} \hat{\omega}_X \in 4\mathbb{Z}$.

Let $\theta \in \Omega^1(T; t)$ be the Maurer-Cartan form for T. From the general formula (12), and using $(hu_*)^\theta = -h^\theta, (hu_*)^\theta = h^\theta$, we obtain

$$\hat{\omega}_X = \frac{1}{2}(-h_1^\theta \wedge h_2^\theta + h_1^\theta \wedge (h_1 h_2)^\theta - h_2^\theta \wedge (h_1 h_2)^\theta) = \frac{1}{2} h_1^\theta \wedge h_2^\theta.$$

Writing elements of T in the form $h = j(e^{2\pi i v})$, we may take $v \in [0, 1]$ as the coordinate on $T \cong \mathbb{R}/\mathbb{Z}$. Since the lattice Λ is generated by 2ρ, we find $h_1^\theta = 2dv_1 \otimes \rho$, hence

$$\hat{\omega}_X = 2\|\rho\|^2 \ dv_1 \wedge dv_2 = dv_1 \wedge dv_2$$

integrates to 1. This gives the condition $k \in 4\mathbb{N}$. \hfill \Box

3.3. Fixed point components.

Suppose M is a level k pre-quantized quasi-Hamiltonian SU(2)-space, and let $Q(M) \in R_k(SU(2))$ be its quantization. By [15, Theorem 9.5], the numbers $Q(M)(t)$ with $t = t_l, \ l = 0, \ldots, k$ are given as a sum of contributions from the fixed point manifolds of t:

\begin{equation}
Q(M)(t) = \sum_{F \subset M^t} \int_F \frac{\hat{A}(F)}{D_{\mathbb{R}}(\nu_F, t)} \ Ch(\mathbb{L}_F, t)^{1/2}.
\end{equation}

The ingredients of the right hand side will be described below, and explicitly computed in the context of our main example (10). The quantizations of SU(2)-conjugacy classes and of the double $D(SO(3))$ (viewed as a quasi-Hamiltonian SU(2)-space) were computed in [15].

For the remainder of this section, we therefore focus on the case $h = 0$, $s = r \geq 2$, i.e. $M = (D_s \times \cdots \times D_s)/T$.

3.3.1. Fixed point sets of M.

We need to determine the components $F \subset M^t$ of the fixed point manifold for $t = t_l, \ l = 0, \ldots, k$, and describe various aspects of F and its normal bundle ν_F. Consider first a general regular element $t \in T^{reg}$. Define the following two submanifolds of D_s, labeled by the elements of the center $Z = \{e, c\}$ as follows:

$$Y^{(c)} = D_s \cap T = \{t_*, t_*^{-1}\}, \ Y^{(c)} = Tu_*.$$
Thus $Y^{(c)}$ is the fixed point set of $\text{Ad}(t_*)$, while $Y^{(c)}$ consists of elements satisfying $\text{Ad}(t_*)(g) = cg$. Note that both are Z-invariant. For $\gamma = (\gamma_1, \ldots, \gamma_r) \in \Gamma$, consider the Γ-invariant submanifold
\[
\tilde{F}(\gamma) = Y^{(\gamma_1)} \times \cdots \times Y^{(\gamma_r)}.
\]
and put $F^{(\gamma)} = \tilde{F}(\gamma)/\Gamma$. Let $l(\gamma)$ be the number of γ_i's that are equal to c. Then $\tilde{F}(\gamma)$ is a disjoint union of $2^{r-l(\gamma)}$ tori of dimension $l(\gamma)$. Let $\varepsilon = (e, \ldots, e)$ denote the group unit in Γ. If $\gamma \neq \varepsilon$, then Γ acts transitively on the set of components of $\tilde{F}(\gamma)$. Hence $F^{(\gamma)}$ is a (connected) torus, and since $|\Gamma| = 2^{r-1}$, it follows that the projection restricts to a $2^{l(\gamma)-1}$-fold covering on each component of $F^{(\gamma)}$. If $\gamma = \varepsilon$, $F^{(\varepsilon)}$ consists of 2^r points, and hence $F^{(\varepsilon)}$ consists of two points.

Proposition 3.3. The fixed point set of $t \in T_{\text{reg}}$ in M is
\[
M^t = \begin{cases}
F^{(\varepsilon)} & \text{if } t \notin \{t_*, t_*^{-1}\}, \\
\prod_{\gamma \in \Gamma} F^{(\gamma)} & \text{if } t \in \{t_*, t_*^{-1}\}.
\end{cases}
\]

Proof. An element $(g_1, \ldots, g_r) \in \tilde{M}$ maps to a point in M^t if and only if there exists $\gamma = (\gamma_1, \ldots, \gamma_r) \in \Gamma$ with $\text{Ad}(t)g_i = g_i\gamma_i$, for $i = 1, \ldots, r$. If $\gamma_i = e$, this condition gives $g_i = t$, since t is regular. If $\gamma_i = c$, the condition says that $\text{Ad}(g_i^{-1})(t) = \gamma_i t$. Since t is regular, this happens if and only if $t \in \{t_*, t_*^{-1}\}$, with $g_i \in N(T)$ representing the non-trivial Weyl group element. \qed

3.3.2. The symplectic volume of the components of the fixed point set. Each $F^{(\gamma)} \subset M^t$ is a quasi-Hamiltonian T-space, with moment map the restriction of Φ. (See e.g. [14, Proposition 3.1].) In particular, they are symplectic.

Lemma 3.4. The symplectic volume of each component of $F^{(\gamma)}$ is equal to 1. Thus $\text{vol}(F^{(\gamma)}) = 2^{1-l(\gamma)}$.

Proof. The construction from [3] associates to any quasi-Hamiltonian G-space (with G compact, but possibly disconnected) a Liouville volume, in such a way that the volume of a fusion product is the product of the volumes. If $G = T$, so that the space is symplectic, the Liouville volume coincides with the symplectic volume. For a G-conjugacy class $C \cong G/G_g$, the Liouville volume is given by the formula [3, Proposition 3.6]
\[
\text{vol}C = |\det_{g_g}(1 - \text{Ad}_g)|^{1/2} \frac{\text{vol}(G)}{\text{vol}(G_g)},
\]

involving the Riemannian volumes of G and of the stabilizer group G_g. The spaces $Y^{(z)}$ for $z \in Z$ can be viewed as conjugacy classes for the group $N(T)$, of elements t_* if $z = e$ and u_* if $z = c$. Application of the formula gives
\[
\text{vol}(Y^{(z)}) = \begin{cases}
2 & \text{if } z = e, \\
1 & \text{if } z = c.
\end{cases}
\]

This is obvious for $z = e$, while for $z = c$ (so that $g = u_*$, $N(T)_g = \mathbb{Z}_4$) we have $|\det_t(1 - \text{Ad}_{u_*})|^{1/2} = \sqrt{2}$ (since Ad_{u_*} acts as -1 on t), $\text{vol}(N(T)) = 2\text{vol}(T) = 2||\alpha|| = 2\sqrt{2}$, and $\text{vol}(N(T)_g) = 4$. It follows that
\[
\text{vol}(\tilde{F}(\gamma)) = \prod_{i=1}^{r} \text{vol}(Y^{(\gamma_i)}) = 2^{r-l(\gamma)}.
\]
Since the moment map for the quasi-Hamiltonian $N(T)$-space $\tilde{F}(\gamma)$ takes values in T, this coincides with the symplectic volume. Since $2^{r-l} (\gamma)$ is also the number of components of $\tilde{F}(\gamma)$, it follows that each component has volume 1.

\square

3.4. Fixed point contributions.

In this Section, we assume that $M = (D_\ast \times \cdots \times D_\ast)/\Gamma$ carries a level k pre-quantization. Thus $k \in 2\mathbb{N}$ if $r = 2$ and $k \in 4\mathbb{N}$ if $r > 2$.

Our aim is to compute the fixed point contributions to $Q(M)(t)$, as described in formula (13), for $t = t_\ast, l = 0, \ldots, k$.

If $t \neq t_\ast$, Proposition 3.3 shows that $M^t = F(\varepsilon)$ consists of just two points, covered by the set $\hat{M}^t = \tilde{F}(\varepsilon)$ (consisting of 2^r points). The fixed point contribution of $F(\varepsilon)$ is just that for $\tilde{F}(\varepsilon)$, divided by $|\Gamma| = 2^{r-1}$. Hence

$$Q(M)(t) = 2^{1-r} Q(M^t) = 2^{1-r} Q(D_\ast)^r(t),$$

with $Q(D_\ast) = \tau_{k/2}$ [15, Proposition 11.2].

If $t = t_\ast$, $Q(M)(t_\ast)$ is a sum over the contributions from all $F(\gamma)$, $\gamma \in \Gamma$. The contribution from $F(\gamma)$ is $2^{1-r} (Q(D_\ast)(t_\ast))^r$, as before. Calculation of the contributions from $F = F(\gamma)$, $\gamma \neq \varepsilon$ requires more work:

Proposition 3.5. The contribution of the fixed point manifold $F = F(\gamma)$, $\gamma \neq \varepsilon$ to $Q(M)(t_\ast)$ is

$$\int_F \frac{\hat{A}(F)}{D_y(v_F, t_\ast)} \frac{\text{Ch}(L_F, t_\ast)^{1/2}}{\text{Ch}(L_F, t_\ast)^{1/2}} = 2^{1-r} \left(\frac{k}{2} + 1\right)^{(\gamma)/2} \varphi(\gamma),$$

where the scalar $\varphi(\gamma) = \mu_{F(\gamma)}(t_\ast) \in U(1)$ is the action of t_\ast on the pre-quantum line bundle over $F(\gamma)$.

Proof. Since $F = F(\gamma)$ is a torus, $\hat{A}(F) = 1$. To compute the D_y-class, note that the normal bundle of Tu_\ast in D_\ast is an orientable real line bundle, hence it is trivializable. Consequently, the normal bundle $v_{\tilde{F}(\gamma)}$ to $\tilde{F}(\gamma)$ in M is trivializable, and thus the normal bundle $v_F = v_{\tilde{F}(\gamma)}/\Gamma$ to F in M is a flat Euclidean vector bundle of rank $2r - l(\gamma)$. The element t_\ast acts by multiplication by -1 on the fibers of v_F, since $\text{Ad}(t_\ast)$ has order 2 and cannot act trivially. By definition of the D_y-class (see [2, Section 2.3] or [14, Section 5.3]), it follows that

$$D_y(v_F, t_\ast) = i^{\text{rank}(v_F)/2} \text{det}^{1/2} (1 - (-1)) = (2t)^{-l(\gamma)/2}.$$

By [15, Proposition 9.3], the restriction $TM|_F$ inherits a distinguished Spin-c-structure (depending on the choice of level k pre-quantization), equivariant for the action of t_\ast. The line bundle $L_F \to F$ is the Spin-c-line bundle associated to this Spin-c-structure, and

$$\text{Ch}(L_F, t_\ast)^{1/2} = \sigma(L_F)(t_\ast)^{1/2} \exp\left(\frac{1}{2} \partial_1(L_F)\right)$$

is the square root of its equivariant Chern character, with $\sigma(L_F)(t_\ast) \in U(1)$ the action of t_\ast the Spin-c-line bundle. As discussed in [2, Section 2.3] (see also [14, Section 5.3]), the sign of the square root is determined as follows. Since Φ restricts to a surjective map $F \to T$, the fixed point set F meets $\Phi^{-1}(e)$. Pick any $x \in F \cap \Phi^{-1}(e)$. Observe that ω is non-degenerate at points of $\Phi^{-1}(e)$, and choose a t_\ast-invariant compatible complex structure to view $T_x M$ as a Hermitian vector space. Let $A \in U(T_x M)$ be the transformation defined by t_\ast and $A^{1/2}$ its unique square root for which all eigenvalues are of the form e^{iu} with $0 \leq u < \pi$. Then

$$\sigma(L_F)(t_\ast)^{1/2} = \varphi(\gamma) \text{det}_{C}(A^{1/2}).$$

Since \(t_* \) acts trivially on \(T_mF \) and as \(-1\) on the normal bundle, the transformation \(A^{1/2} \) acts trivially on \(T_nF \) and as \(i \) on the normal bundle. Thus \(\det_C(A^{1/2}) = i^{r-l(\gamma)/2} \), which cancels a similar factor in the expression for the \(D_2 \)-class.

It remains to find the integral \(\int_F \exp(\frac{1}{2}c_1(\mathcal{L}_F)) \). To this end, we interpret \(\mathcal{L}_F \) as a pre-quantum line bundle. By the same argument as in Property (g) of Section 3.1, (see also [15, Section 11.1]), the level \(k \) pre-quantization and the canonical twisted Spin\(_c\)-structure on \(M \) combine to give an element of \(H^3(\Phi; \mathbb{Z}) \) at level \(2k+4 \). Since \(H^2(M; \mathbb{R}) = 0 \), this element defines a pre-quantization at level \(2k+4 \). Pull-back to \(\hat{F} \) defines a level \(2k+4 \) pre-quantization of \(F \), with \(\mathcal{L}_F \) as the pre-quantum line bundle. Hence \(c_1(\mathcal{L}_F) \) is the \(2k+4 \)-th multiple of the class of the symplectic form on \(F \). It follows that

\[
\int_F \exp(\frac{1}{2}c_1(\mathcal{L}_F)) = (k+2)^{l(\gamma)} \text{vol}(F) = 2^{1-l(\gamma)/2} \left(\frac{4}{2} + 1 \right)^{l(\gamma)/2}
\]

where we have used Lemma 3.4.

The phase factors \(\varphi^{(\gamma)} \) depend on the choice of pre-quantization. Recall again that the set of pre-quantizations of a quasi-Hamiltonian \(\text{SU}(2) \)-space is a torsor under the group of isomorphism classes of flat line bundles. In our case this is the group

\[
\text{Tor}(H^2(M; \mathbb{Z})) \cong \text{Hom}(\Gamma, U(1)).
\]

The homomorphism \(\psi: \Gamma \to U(1) \) defines the flat line bundle \(\hat{M} \times_{\Gamma} C_\psi \), where \(C_\psi \) is the 1-dimensional \(\Gamma \)-representation defined by \(\psi \). Changing the pre-quantization by such a flat line bundle changes \(\varphi^{(\gamma)} \) for \(F = F^{(\gamma)} \) to \(\psi(\gamma)\varphi^{(\gamma)} \).

Lemma 3.5. \(\psi: \Gamma \to U(1) \) is a distinguished pre-quantization if and only if \(\psi(\gamma) = 1 \) for all \(\gamma \in \text{Hom}(\Gamma, U(1)) \).

Lemma 3.6. If \(r \geq 3 \) and \(k \in 4\mathbb{N} \), the phase factor for the pre-quantization labeled by \(\psi \in \text{Hom}(\Gamma, U(1)) \) is given by

\[
\varphi^{(\gamma)} = (-1)^{\frac{k}{r}} \left(r-l(\gamma)/2 \right) \psi(\gamma).
\]

Proof. The phase factor \(\varphi^{(\gamma)} \) for the distinguished pre-quantization at level 4 is given by \(\det_C(A) = (-1)^{-l(\gamma)/2} \), in the notation from the proof of Proposition 3.5. For the distinguished pre-quantization at level \(k \in 4\mathbb{N} \), we have to take the \(\frac{k}{r} \)-th power of this number, and changing the pre-quantization by \(\psi \) we have to multiply by \(\psi(\gamma) \).

If \(r = 2 \), there are \(|\Gamma| = 2 \) distinct pre-quantizations at all even levels \(k \in 2\mathbb{N} \), related by elements \(\psi \in \text{Hom}(\Gamma, U(1)) \). Aside from the discrete fixed point set \(F^{(c)} \), there is a single non-discrete fixed point component \(F^{(\gamma)} \) of \(t_* \), given by \(\gamma = (c, c) \). The non-trivial homomorphism \(\psi \in \text{Hom}(\Gamma, U(1)) \cong \mathbb{Z}_2 \) satisfies \(\psi(c, c) = -1 \), hence the weight \(\varphi^{(\gamma)} \) is equal to 1 for one of the pre-quantizations and \(-1\) for the other.

3.5. Quantization of \(M \). We are now ready to summarize our computation of \(\mathcal{Q}(M) \) for \(M = (D_* \times \cdots \times D_*)/\Gamma \). Assuming that \(k \) is even, recall that \(D_* \) has a unique pre-quantization at level \(k \), and \(\mathcal{Q}(D_*) = \tau_{k/2} \). Define an element

\[
\chi = \tau_0 - \tau_2 + \tau_4 - \cdots + (-1)^{k/2} \tau_k \in R_k(\text{SU}(2)).
\]
By the orthogonality relations for $R_k(SU(2))$, this element satisfies $\chi(t) = (\frac{k}{2} + 1)$ and $\chi(t) = 0$ for $t = t_l$, $l \neq k/2$. Hence we may write the sum over the fixed point contributions as follows:

$$Q(M)(t) = 2^{1-r}\left(\tau_{k/2}(t)^r + \chi(t) \sum_{\gamma \in \Gamma \setminus \{\varepsilon\}} (\frac{k}{2} + 1)^{l(\gamma)/2 - 1}\varphi(\gamma)\right)$$

Theorem 3.7. Consider the quasi-Hamiltonian $SU(2)$-space $M = (D_1 \times \cdots \times D_4)/\Gamma$ with $r \geq 2$ factors, where $\Gamma \subset Z^r$ consists of all $\gamma = (\gamma_1, \ldots, \gamma_r)$ with $\prod_{i=1}^r \gamma_i = e$.

1. If $r \geq 2$, the space M is pre-quantized at level k if and only if $k \in 4\mathbb{N}$. The different pre-quantizations are indexed by the elements $\psi \in Hom(\Gamma, U(1))$, and the corresponding level k quantization is given by the formula,

$$Q_{\psi}(M) = 2^{1-r}\left((\tau_{k/2})^r + \chi \sum_{\gamma \in \Gamma \setminus \{\varepsilon\}} \psi(\gamma)(\frac{k}{2} + 1)^{l(\gamma)/2 - 1}(-1)^{k/2} = \frac{k}{4}(r-\frac{r}{2})\right).$$

2. If $r = 2$, the space M is pre-quantized at level k if and only if $k \in 2\mathbb{N}$.

At any such level, there are two distinct pre-quantizations indexed by the action ± 1 of t_* on the pre-quantum line bundle over $F(\gamma)$, for $\gamma = (c,e)$. The corresponding level k quantizations of M are

$$Q_{\pm}(M) = \frac{1}{2}((\tau_{k/2})^2 \pm \chi).$$

3.6. Multiplicity computations.

Being elements of $R_k(SU(2))$, the coefficients of $Q(M)$ in its decomposition with respect to the basis τ_0, \ldots, τ_k must be integers. In this Section, we will compute these multiplicities for small r.

3.6.1. $r = 2$ factors.

Assume $k \in 2\mathbb{N}$, and let $Q_{\pm}(M)$ be the quantizations corresponding to the pre-quantizations labeled by ± 1. The multiplication rules for level k characters give

$$(\tau_{k/2})^2 = \tau_0 + \tau_2 + \ldots + \tau_k.$$

Hence, if $k \in 4\mathbb{N}$ we obtain

$$Q_{+}(M) = \tau_0 + \tau_4 + \ldots + \tau_k,$$

$$Q_{-}(M) = \tau_2 + \tau_6 + \ldots + \tau_{k-2},$$

while for $k \in 4\mathbb{N} - 2$,

$$Q_{+}(M) = \tau_0 + \tau_4 + \ldots + \tau_{k-2},$$

$$Q_{-}(M) = \tau_2 + \tau_6 + \ldots + \tau_k.$$

3.6.2. $r = 3$ factors.

Let $Q_{\psi}(M)$ denote the level $k \in 4\mathbb{N}$ pre-quantization indexed by $\psi \in Hom(\Gamma, U(1))$. Since $r = 3$, $l(\gamma) = 2$ for any $\gamma \neq \varepsilon$ and the quantization formula simplifies to:

$$Q_{\psi}(M) = \frac{1}{4}\left(\tau_{2m}^3 + \chi \sum_{\gamma \neq \varepsilon} \psi(\gamma)\right).$$

For the trivial homomorphism $\psi = 1$, we have $\sum_{\gamma \neq \varepsilon} \psi(\gamma) = 3$, while for a non-trivial homomorphism $\psi \neq 1$, $\sum_{\gamma \neq \varepsilon} \psi(\gamma) = -1$. We have,

$$(\tau_{k/2})^3 = \tau_0 + 3\tau_2 + \ldots + (\frac{k}{2} + 1)\tau_{k/2} + \ldots + 3\tau_{k-2} + \tau_k.$$
We therefore obtain
\[Q_\psi(M) = (\tau_0 + 2\tau_4 + 3\tau_8 + \ldots + 3\tau_{k-8} + 2\tau_{k-4} + \tau_k) \]
\[+ (\tau_6 + 2\tau_{10} + \ldots + 2\tau_{k-10} + \tau_{k-6}) \]
if \(\psi = 1 \),
\[Q_\psi(M) = (\tau_0 + 4\tau_4 + 6\tau_8 + \ldots + 3\tau_{k-8} + 2\tau_{k-4} + \tau_k) \]
\[+ (\tau_2 + 2\tau_6 + 3\tau_{10} + \ldots + 3\tau_{k-10} + 2\tau_{k-6} + \tau_{k-2}) \]
if \(\psi \neq 1 \).

Note that the coefficients are symmetric about the midpoint \(\frac{k}{2} \) of the interval \([0, k]\).

In closed form, \(Q_\psi(M) = \sum_{j=0}^{k/2} a_{2j} \tau_{2j} \), where
\[a_{2j} = \begin{cases} \frac{1}{4}(2j + 1 + 4\delta_j, 1)(-1)^j & : 2j \leq k/2, \\ \frac{1}{4}(k - 2j + 1 + 4\delta_j, 1)(-1)^j & : 2j \geq k/2. \end{cases} \]

3.6.3. \(r = 4 \) factors. If \(r = 4 \) we have \(|\Gamma| = 8 \). There is a unique element \(\gamma' \in \Gamma \) with \(l(\gamma') = 4 \), and \(l(\gamma) = 2 \) for \(\gamma \neq \gamma', \varepsilon \). Hence we may write the quantization formula for levels \(k \in 4\mathbb{N} \) as:
\[Q_\psi(M) = \frac{1}{8} \left(\tau_{k/2}^4 + \left(\psi(\gamma) \left(\frac{k}{2} + 1 \right) + (-1)^{k/4} \sum_{l(\gamma) = 2} \psi(\gamma) \chi \right) \right). \]

One finds that there are 4 homomorphisms \(\psi \) with \(\sum_{l(\gamma) = 2} \psi(\gamma) = 0 \), \(\psi(\gamma') = -1 \) and 3 homomorphisms with \(\sum_{l(\gamma) = 2} \psi(\gamma) = 2 \). Of course, \(\sum_{l(\gamma) = 2} \psi(\gamma) = 6 \), \(\psi(\gamma') = 1 \) for \(\psi = 1 \). Therefore, we have
\[Q_\psi(M) = \begin{cases} \frac{1}{8} \left(\tau_{k/2}^4 + \left(6(-1)^{k/4} + \left(\frac{k}{2} + 1 \right) \right) \chi \right) & : \psi = 1 \\ \frac{1}{8} \left(\tau_{k/2}^4 - \left(\frac{k}{2} + 1 \right) \chi \right) & : \sum_{l(\gamma) = 2} \psi(\gamma) = 0 \\ \frac{1}{8} \left(\tau_{k/2}^4 + (2(-1)^{k/4+1} + \left(\frac{k}{2} + 1 \right) \right) \chi & : \sum_{l(\gamma) = 2} \psi(\gamma) = -2 \end{cases} \]

with
\[(\tau_{k/2})^4 = \sum_{j=0}^{k/2} (\frac{k}{2} + 1 - 2j^2 + jk) \tau_{2j}. \]

One may verify that the multiplicities of \(\tau_{2j} \) in \(Q_\psi(M) \) are integers, as required.

4. Fuchs-Schweigert

The formulas appearing in Theorem 3.7 may be rewritten in terms of the so-called S-matrix. For \(z \in Z \), define \(S(z) \) by
\[S(z) = \begin{cases} 1 & \text{if } z = c \\ \tilde{S}(z) & \text{if } z = e. \end{cases} \]

In the terminology of [9], \(S(z) \) is the S-matrix of the orbit Lie algebra associated to the central element \(z \). (This interpretation may seem obscure for SU(2), but becomes natural for higher rank groups.) Consider once again the space \(M = M/\Gamma \) from (10). Recall that \(\Gamma \) consists of elements \(\gamma = (\gamma_1, \ldots, \gamma_{s+2h}) \in Z^{s+2h} \) such that \(\prod_{j=1}^s \gamma_j = e \), and \(\gamma_j = e \) for all \(j \leq s \) with \(C_j \neq C_e \). In particular \(|\Gamma| = 2^{2h+r-1} \) if \(r \geq 1 \), while \(|\Gamma| = 2^{2h} \) if \(r = 0 \). To write the Fuchs-Schweigert formula, it is convenient to use the following notation. For \(\gamma \in \Gamma \), let \(\sum_l^{(\gamma)} \) denote the full sum \(\sum_{l=0}^{k} \gamma_l \) if all \(\gamma_l = e \), and consisting of the single term \(l = \frac{k}{2} \) if at least one \(\gamma_l \neq e \). (For higher rank groups, this becomes a sum over level \(k \) weights that are fixed...
under the action of all $\gamma_i \in \mathbb{Z}$ on the set of level k weights.) We will prove the following equivariant analogue to the Fuchs-Schweigert formula:

Theorem 4.1. Suppose the quasi-Hamiltonian $\text{SU}(2)$-space

$$M = (\mathcal{D}_1 \times \cdots \times \mathcal{D}_s \times \mathcal{D}(\text{SU}(2))^h) / \Gamma$$

is pre-quantized at level k. Then

$$Q(M) = \frac{1}{|\Gamma|} \sum_{\gamma_1, \ldots, \gamma_s} \varphi'(\gamma) \sum_{l} \tilde{S}_{m_1,l}^{(\gamma_1)} \cdots \tilde{S}_{m_s,l}^{(\gamma_s)} \tilde{\tau}_l,$$

where $\varphi'(\gamma) \in \mathbb{U}(1)$ are phase factors depending on the choice of pre-quantization, with $\varphi'(\varepsilon) = 1$.

An explicit description of the phase factors $\varphi'(\gamma)$ will be given during the course of the proof.

Proof of Theorem 4.1. The space M is a fusion product of the space $(\mathcal{C}_x)\hat{\tau}$, conjugacy classes $\mathcal{D}_j \neq \mathcal{D}_i$, and h factors of $\mathcal{D}(\text{SO}(3))$ (viewed as a quasi-Hamiltonian $\text{SU}(2)$-space). Since the fusion product in the basis $\tilde{\tau}_m$ is diagonalized, we may verify the formula separately for factors of these three types.

We begin with the case $h = 0, s = r$, with $r \geq 3$ (thus necessarily $k \in 4\mathbb{N}$). We re-write the right hand side of (14), separating the term $\gamma = \varepsilon$ from the sum over terms $\gamma \neq \varepsilon$. The right hand side of (14) becomes

$$Q(M) = \frac{1}{|\Gamma|} \left(\varphi'(\varepsilon) \sum_{l} (S_{k/2,l})^r \tilde{\tau}_l + \sum_{\gamma \neq \varepsilon} \varphi'(\gamma) \frac{(S_{k/2,k/2})^r - \tilde{\tau}_l}{(S_{0,k/2})^r} \tilde{\tau}_{k/2} \right).$$

The sum over l is just $(\tau_{k/2})^r$. The element $\chi \in R_k(\text{SU}(2))$ considered in Section 3.5 satisfies $\chi(t_l) = (\left. \frac{r}{2} \right) + 1)\delta_{l,k/2}$ for $l = 0, \ldots, k$, hence

$$\tilde{\tau}_{k/2} = (\left. \frac{r}{2} \right) + 1)^{-1} \chi.$$

Furthermore, by definition of the S-matrix,

$$S_{0,k/2} = (\left. \frac{r}{2} \right) + 1)^{-\frac{r}{2}}, \quad S_{k/2,k/2} = (\left. \frac{r}{2} \right) + 1)^{-\frac{r}{2}}(1)^{-1}.$$

Equation (15) becomes

$$Q(M) = \frac{1}{2^{r-1}} \left(\varphi'(\varepsilon) (\tau_{k/2})^r + \sum_{\gamma \neq \varepsilon} \varphi'(\gamma) (-1)^{\left(\frac{r}{2} - l(\gamma) \right)} \left((\left. \frac{r}{2} \right) + 1 \right)^{-1} \chi \right)$$

which agrees with Theorem 3.7 for $\varphi'(\gamma) = \psi(\gamma)(-1)^{\frac{k(k-1)}{2}}$.

The calculation is similar for the case $h = 0, s = r = 2, k \in 2\mathbb{N}$. Here, $|\Gamma| = 2$, and the generator $\gamma = (c, e) \in \Gamma$ has $l(\gamma) = 2$. We hence obtain

$$Q(M) = \frac{1}{2} \left(\varphi'(\varepsilon, \varepsilon) \tau_{k/2}^r + \varphi'(c, c) \chi \right)$$

which agrees with Theorem 3.7 if we put $\varphi'(\varepsilon, \varepsilon) = 1$, and $\varphi'(c, c) = \pm 1$. If $h = 0$ and $s = r = 1, k \in 2\mathbb{N}$, then $\Gamma = \{\varepsilon\}$, and the formula becomes $Q(M) = \varphi'(\varepsilon)\tau_{k/2}$, which is the correct expression for $Q(\mathcal{D}_s)$ for $\varphi'(\varepsilon) = 1$. Similarly, if $h = r = 0, s = 1$ so that M is a conjugacy class $\mathcal{D}_j \neq \mathcal{D}_s$, the formula reduces to $Q(M) = \tau_m = Q(\mathcal{D}_s)$.

Consider finally the case $h = 1, s = 0$ so that $M = \mathcal{D}(\text{SO}(3))$. Pre-quantizability of this space requires $k \in 2\mathbb{N}$, and as shown in [15] the distinct pre-quantizations
are indexed by $\varphi \in \text{Hom}(\Gamma, U(1))$, with $\Gamma = \mathbb{Z} \times \mathbb{Z}$. Separating off the term (e, e), (14) becomes
\[
Q(M) = \frac{1}{4} \left(\varphi'(\epsilon) \sum_l \frac{1}{S_{0,l}^2} \bar{\tau}_l + \sum_{\gamma \neq (e, e)} \varphi'(\gamma) \frac{1}{S_{0,k/2}^2} \bar{\tau}_{k/2} \right).
\]
We have $\frac{1}{S_{0,k/2}^2} \bar{\tau}_{k/2} = \chi$, and
\[
Q(D(SU(2))) = \sum_m \tau_m^2 = \sum_{l,m} S_{m,l}^2 \bar{\tau}_l = \sum_l \frac{1}{S_{0,l}^2} \bar{\tau}_l,
\]
where we use the symmetry and orthogonality of the S-matrix. Thus the formula may be re-written
\[
Q(M) = \frac{1}{4} \left(\varphi'(\epsilon) Q(D(SU(2))) + \sum_{\gamma \neq (e, e)} \varphi'(\gamma) \chi \right).
\]
This agrees with the formula for $Q(D(SO(3))$ given in [15, Section 11.4] if one puts $\varphi'(e, e) = 1$ and $\varphi'(\gamma) = (-1)^{k/2} \varphi(\gamma)$ for $\gamma \neq (e, e)$.

By combining this result with the ‘quantization commutes with reduction’ theorem for quasi-Hamiltonian spaces [15, Theorem 10.1], and since the coefficient of τ_0 in $\bar{\tau}_l$ is $S_{0,l}^2$, we obtain the Fuchs-Schweigert formula [9] for the $SO(3)$ moduli space $\mathcal{M} (\Sigma, C_1, \ldots, C_s)$, where Σ is of genus h with s boundary components. Recall that this moduli space has up two 2 connected components, of the form $\mathcal{M} / \! / SU(2)$ for suitable choice of lifts D_j. We have,
\[
(16) \quad Q(M / \! / SU(2)) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \varphi'(\gamma) \sum_l \frac{S^{(\gamma_1)}_{m_1,l} \cdots S^{(\gamma_s)}_{m_s,l}}{(S_{0,l})^{s+2h-2}}.
\]

Remark 4.2. The above Fuchs-Schweigert type formula computes the quantization of the moduli space of $SO(3)$-bundles interpreted as the index of a pre-quantum line bundle, while the original conjecture in [9] concerns the dimension of the space of conformal blocks. It is expected that, just as in the case of simply-connected groups, the space of conformal blocks can be re-interpreted as the space of holomorphic sections, and that a Kodaira vanishing result can further identify its dimension with the index considered here. We are not aware of a reference addressing such questions in generality for non-simply connected groups.

References

[1] A. Alekseev, A. Malkin, and E. Meinrenken, Lie group valued moment maps, J. Differential Geom. 48 (1998), no. 3, 445–495.
[2] A. Alekseev, E. Meinrenken, and C. Woodward, The Verlinde formulas as fixed point formulas, J. Symplectic Geom. 1 (2001), no. 1, 1–46.
[3] A. Alekseev, E. Meinrenken, and C. Woodward, Duistermaat-Heckman measures and moduli spaces of flat bundles over surfaces, Geom. and Funct. Anal. 12 (2002), 1–31.
[4] A. Beauville, The Verlinde formula for $PGL(p)$, The mathematical beauty of physics (Saclay, 1996), Adv. Ser. Math. Phys., vol. 24, World Sci. Publishing, 1997, pp. 141–151.
[5] A. Beauville and Y. Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), no. 2, 385–419.
[6] J.M. Bismut and F. Labourie, Symplectic geometry and the Verlinde formulas, Surveys in differential geometry: differential geometry inspired by string theory, Int. Press, Boston, MA, 1999, pp. 97–311.
[7] G. Faltings, A proof for the Verlinde formula, Jour. of Algebraic Geometry 3 (1990), 347–374.
[8] D. Freed, M. Hopkins, and C. Teleman, *Loop Groups and Twisted K-Theory I*, arXiv:0711.1906.
[9] J. Fuchs and C. Schweigert, *The action of outer automorphisms on bundles of chiral blocks*, Comm. Math. Phys. **206** (1999), 691–736.
[10] L. C. Jeffrey, *The Verlinde formula for parabolic bundles*. J. London Math. Soc., 63 (2001) 754-768.
[11] L. C. Jeffrey and F. C. Kirwan, *Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface*, Ann. of Math. (2) **148** (1998), no. 2, 109–196.
[12] L. C. Jeffrey and J. Weitsman, *Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula*. Commun. Math. Phys. **150**(1992), 593-630.
[13] D. Krepski, *Pre-quantization of the moduli space of flat G-bundles over a surface*, J. Geom. Phys. **58** (2008), no. 11, 1624–1637.
[14] E. Meinrenken, *Twisted k-homology and group-valued moment map*, arXiv:1008.1261.
[15] E. Meinrenken and R. Sjamaar, *Singular reduction and quantization*, Topology **38** (1999), 699–763.
[16] T. Pantev, *Comparison of generalized theta functions*, Duke Math. J. **76** (1994), no. 2, 509–539.
[17] R. Sjamaar and E. Lerman, *Stratified symplectic spaces and reduction*, Ann. of Math. (2) **134** (1991), 375–422.
[18] A. Szenes, *Verification of Verlinde’s formulas for SU(2)*, Internat. Math. Res. Notices (1991), no. 7, 93–98.
[19] C. Teleman, *Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve*, Invent. Math. **134** (1998), no. 1, 1–57. MR 1646586 (2000b:14014)
[20] A. Tsuchiya, K. Ueno, and Y. Yamada, *Conformal field theory on universal family of stable curves with gauge symmetries*, Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, 1989, pp. 459–566.
[21] E. Verlinde, *Fusion rules and modular transformations in 2d conformal field theory*, Nuclear Phys. B **300** (1988), 360–376.