Intragenic ERG deletions do not explain the biology of ERG-related acute lymphoblastic leukemia

Eliska Potuckova¹, Jan Zuna¹, Lenka Hovorkova³, Julia Starkova³, Jan Stary², Jan Trka³ and Marketa Zaliova¹

¹Childhood Leukaemia Investigation Prague (CLIP), Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
² Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic

Supplementary materials

Supplementary Methods

Cell line cultivation
Cell lines were maintained in Dulbecco’s modified Eagles Medium (HeLa and HEK293T; Thermo Fisher Scientific, Massachusetts, USA) or in Roswell Park Memorial Institute medium (NALM6 and REH; Thermo Fisher Scientific) supplemented with 10% of heat-inactivated Fetal Bovine Serum (FBS; Biosera, France) and Antibiotic-Antimycotic (Thermo Fisher Scientific).

Cloning of ERG isoforms
All PCR amplifications were performed using PCR Extender System (5 PRIME GmbH, Germany) according to manufacturer’s instructions. PCR products amplified from cDNA were visualized by electrophoresis on 1.5% agarose gel. Selected PCR products were cloned into pCR™4-TOPO® Vector using TOPO® TA Cloning® Kit for Sequencing according to manufacturer’s protocol (Thermo Fisher Scientific). Coding sequences of ERG isoforms were re-amplified from pCR™4-TOPO® Vector by PCR using primer pairs extended at 5’ termini with sequence motifs recognized by XhoI and PstI or EcoRV and XhoI restriction enzymes. PCR products were cut by EcoRV and XhoI restriction enzymes (FastDigest restriction enzymes, Thermo Fisher Scientific) and ligated into pcDNA3.1 vector (kindly provided by Dr. Anthony Ford, Institute of Cancer Research, UK) utilizing T4 DNA Ligase (Thermo Fisher Scientific). Full length coding sequences of successfully cloned inserts were analyzed by Sanger sequencing to exclude clones with PCR-introduced artefacts.
Table A: PCR primers used for amplification and cloning of ERG isoforms

targeted isoform	primer	primer sequence (5' to 3')
ERG3	forward	GATCGCATTATGGCCAGCAC
ERG2	forward 1	CATGATTAGACCTGTCCCGGAC
ERG2	forward 2	CTGAAGGACATGATTAGACGAGTGCC
ERG2	forward 3	CATGATTAGACGTGTCCCGG
ERG2, ERG3	reverse	GCCAGGTCCTTATGAGTAAGTGGCC

Primers used for cloning from pCR™4-TOPO® into pcDNA3.1

cloned insert	primer	primer sequence (5' to 3')
ERG3, ERG3var, ERGaber	EcoRV-forward	CATGATATCGATGGATTATGGAAGCACC
	Xhol-reverse	CATCTCGAGGCCAGGTCTTTAGTAAATGTGGCC

Sequences recognized by restriction enzymes are underlined, sequences encoding His and Myc tags are in bold italics

In vitro transcription and translation assay (T/T assay)
Two separate segments of ERGaber coding sequence encoding ERGaberN and ERGaberC were amplified from ERGaber-pcDNA3.1 plasmid by PCR using primers listed in Table B. The synthesized proteins were analyzed by western blot.

Table B: PCR primers used to synthesize ERGaberN and ERGaberC templates for T/T assay

	forward primer 5’ to 3’	reverse primer 5’ to 3’
ERGaberN	CTCCTGACATAGATCCGCTCACTATAGGTTAACCACGTTGGCCAGCTATTAAAGGAAGG	
ERGaberC	CTCCTGACATAGATCCGCTCACTATAGGTTAACCACGTTGGCCAGCTATTAAAGGAAGG	

Forward primers annealing to 5’ terminus of particular reading frame (starting with start codon; underlined) were extended at 5’ termini to contain T7 promoter sequence (20n motif; bold italics) and Kozak consensus sequence (5n extension of sequence annealing to start codon in 5’direction; bold italics) according to recommendation of kit’s producer (Promega).

Transfection of HeLa and HEK293T cells
HeLa and HEK293T cells were seeded on 6 well plate at densities of 480,000 or 600,000 cells per well, respectively, 24 hours before the transfection. Adherent cultures were transfected using Lipofectamine2000 (Thermo Fisher Scientific) reagent according to manufacturer’s instructions: 6,4μg plasmid DNA with 8μl of Lipofectamine2000 in 2ml of serum-free medium per well.

Western blot
Protein concentration of nuclear and cytoplasmic protein lysates was determined by Lowry method using DC™ Protein Assay (Bio-Rad, California, USA). Protein lysates and proteins synthesized by T/T assay were diluted in Bolt® LDS Sample Buffer with Bolt® Sample Reducing Agent (Thermo Fisher Scientific) and incubated at 70°C for 10min. Proteins were separated by electrophoresis on Bolt™ 4-12% Bis-Tris Plus Gels (Thermo Fisher Scientific), transferred to nitrocellulose membrane (Bio-Rad) and blocked by Blotting-Grade Blocker (Bio-Rad). Membranes were probed with primary antibodies overnight. Membrane-bound primary antibodies were detected using appropriate secondary antibodies conjugated with horseradish peroxidase (primary and secondary antibodies are listed in Table C). Antibody complexes were visualized using Clarity™ ECL Western Blotting Substrate Kit (Bio-
Rad), SuperSignal™ West Pico Chemiluminescent Substrate Kit and/or SuperSignal™ West Femto Maximum Sensitivity Substrate Kit (Thermo Fisher Scientific) followed by exposition to X-ray films.

Table C: Primary and secondary antibodies

Antibody	Producer (Cat. No.)	Application	Dilution
Anti-ERG antibody (EPR3863)TC	Abcam (ab110639)	WB, M	1:1000WB, 1:250M
Erg-1/2/3 Antibody (C-17)TC	Santa Cruz (sc-354)	WB	1:1000
Erg-1/2/3 Antibody (C-20)TC	Santa Cruz (sc-353)	WB	1:1000
Anti-TATA binding protein TBP antibodyTC	Abcam (ab63766)	WB	1:1000
Monoclonal Anti-GAPDH antibody produced in mouseNC	Sigma-Aldrich (G8795)	WB	1:10000
Goat Anti-Mouse IgG [H + L]-HRP	Bio-Rad (1706516)	WB	1:3000
Goat Anti-Rabbit IgG (H+L)-HRP	Bio-Rad (1706515)	WB	1:4000
Alexa Fluor® 488 Goat Anti-Rabbit IgG(H+L) F(AB)2	Jackson ImmunoResearch (111-546-045)	M	1:500

MC – monoclonal, PC – polyclonal, WB – western blotting, M – confocal fluorescence microscopy

Confocal microscopy

HeLa and HEK293T cells were seeded on sterile cover slips placed inside 6 well plates at densities of 240,000 or 300,000 cells per well, respectively, 24 hours before transfection. The transfection with pcDNA3.1 based ERG constructs was performed as described above. Forty-eight hours after transfection cells were fixed by 4% paraformaldehyde (30min), blocked by Normal Goat Serum (Cell Signalling, Massachusetts, USA; 15min), incubated with a primary antibody (60min) and a secondary antibody conjugated with Alexa Fluor® 488 (30min; for antibodies see Table C). Finally, cells were stained by DAPI (Thermo Fisher Scientific) and placed on a microscope slide covered with ProLong® Gold Antifade Reagent (Thermo Fisher Scientific). Microscope slides were inspected using Leica DMi8 inverted microscope equipped with TCS SP8 confocal system and Leica Application Suite X software (Leica Microsystems, Germany). Alexa Fluor® 488 was excited by the 488nm laser and detected in the range of 520-547nm and DAPI was excited by the 405nm laser and detected in the range of 410-452nm.

Quantification of physiological ERG isoforms by PCR

All measurements were performed on 2720 Thermal Cycler (Applied Biosystems, USA). Forward primer annealing to exons 9/10 junction and reverse primer annealing to exon 12 were used to quantify expression of ERG isoforms containing ERG exon 10, while forward primer annealing to exons 9/11 junction and reverse primer annealing to exon 13 were used to quantify expression of ERG isoforms lacking ERG exon 10. The amplification was carried out in TaqMan® Universal PCR Master Mix (Applied Biosystems, USA) supplemented with primers and probe. Annealing temperature was 63°C for both ERG detection systems. Measurements were performed in duplicate. For graphical presentation all expression data were normalized to the lowest expression value within the dataset which was set to 1. Mann-Whitney U test was used to analyze differences in expression between two subgroups.
Table D: PCR primers and probe used for quantification of physiological ERG isoforms

primer/probe	5’to 3’ sequence
ERG+10 forward primer	GCATGCTAGAAACACAGGGGT
ERG+10 reverse primer	GGAAGGAGATGGTGAGCAGC
ERG-10 forward primer	GGTTAATGCATGCTAGAAACACAGTTTA
ERG-10 reverse primer	CTGTGTTGCTCAAGATCTGATAAGG
probe*	CGACTGGGCGTGGGTTGG

ERG+10 = detection system for ERG isoforms containing ERG exon 10; ERG-10 = detection system for ERG isoforms lacking ERG exon 10;
* the identical probe labelled with 6FAM at 5’ and TAMRA with 3’ was used in both ERG detection systems
Supplementary Figures

(A) Coding sequence of ERGaber (exons 5 and 14 in black, exon 6 in blue) with nucleotides organized into codons corresponding to the reading frame(s) of physiological transcript variants demonstrating its disruption at exon 6/14 junction (highlighted by green rectangle).

(B) Coding sequence of ERGaber with nucleotides organized into codons of the reading frame following canonical start site. The alternative part of this reading frame is displayed in Italics.

(C) Amino acid sequence of ERGaberN encoded by reading frame following canonical start site. Amino acids encoded by alternative frame are displayed in red. Amino acids constituting ETS domain are in bold.

(D) Coding sequence of ERGaber with nucleotides re-organized into codons preserving the canonical reading frame of exon 14 used in physiological transcript variants. The alternative part of this reading frame (including alternative start codon) is displayed in Italics.

(E) Amino acid sequence of ERGaberC encoded by reading frame following alternative start site. Amino acids encoded by alternative frame are displayed in red. Amino acids constituting ETS domain are in bold.

Figure A: In silico analysis of ERGaber reading frame(s) and encoded proteins

(A) Coding sequence of ERGaber (exons 5 and 14 in black, exon 6 in blue) with nucleotides organized into codons corresponding to the reading frame(s) of physiological transcript variants demonstrating its disruption at exon 6/14 junction (highlighted by green rectangle).

(B) Coding sequence of ERGaber with nucleotides organized into codons of the reading frame following canonical start site. The alternative part of this reading frame is displayed in Italics.

(C) Amino acid sequence of ERGaberN encoded by reading frame following canonical start site. Amino acids encoded by alternative frame are displayed in red. Amino acids constituting ETS domain are in bold.

(D) Coding sequence of ERGaber with nucleotides re-organized into codons preserving the canonical reading frame of exon 14 used in physiological transcript variants. The alternative part of this reading frame (including alternative start codon) is displayed in Italics.

(E) Amino acid sequence of ERGaberC encoded by reading frame following alternative start site. Amino acids encoded by alternative frame are displayed in red. Amino acids constituting ETS domain are in bold.
HeLa (A) and HEK293T (B) cells were transiently transfected by ERG3, ERG3var and ERGaber isoforms in pcDNA3.1 vector or by empty vector. Forty-eight hours after transfection the presence and subcellular localisation of ERG isoforms was analyzed by confocal microscopy using Ab-N antibody. Scale bars represent 10μm.

Figure B: Analysis of subcellular localization of ERG isoforms by confocal microscopy
Individual lanes (highlighted by black arrows) of these scans (X-ray films from western blot analyses) were cut and grouped and are presented in Figure 5. Remaining lanes were excluded from the analysis because of protein degradation (ALL-14, 1, 15, 6, 16, 4, 9, 8) or subclonality of ERGdel (ERGdel positive by PCR but negative by SNPArray; ALL-13 and 17).