The THDMa revisited
- A preview -

Tania Robens1,*

1Ruder Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia

(Dated: May 14, 2021)

Abstract

We here present preliminary results on a parameter scan of the THDMa, a new physics model that extends the scalar sector of the Standard Model by an additional doublet as well as a pseudoscalar singlet. In the gauge-eigenbasis, the additional pseudoscalar serves as a portal to the dark sector, with a fermionic dark matter candidate. This model is currently one of the standard benchmarks for the LHC experimental collaborations. We apply all current theoretical and experimental constraints and identify regions in the parameter space that might be interesting for an investigation at possible future e^+e^- facilities.

\textit{Talk presented at the International Workshop on Future Linear Colliders (LCWS2021), 15-18 March 2021. C21-03-15.1}
I. INTRODUCTION

We present preliminary results for a parameter scan on the THDMa, a two Higgs doublet model (THDM) with an additional pseudoscalar that serves as a portal to dark matter [1–5]. It features 5 additional particles in the scalar sector, which we label H, A, a, H^\pm in the mass eigenbasis, as well as a fermionic dark matter candidate χ. The model contains 14 free parameters after electroweak symmetry breaking, out of which 2 are fixed by the measurement of the 125 GeV scalar as well as electroweak precision measurements. The parameter space is subject to a large number of theoretical and experimental constraints, see e.g. [6–14] for more recent work on this model. We also impose bounds from experimental searches, where we found [15–23] to have impact on the model’s parameter space. This work is a preview of more complete results [24], which will be published shortly.

II. THE MODEL

The model discussed in this work has been introduced in references [1–5], and we refer the reader to these works for a detailed discussion of the model setup. We here just list generic features for brevity, where we follow the nomenclature of [6].

The field content of the THDMa in the gauge eigenbasis consists of two scalar fields $H_{1,2}$ which transform as doublets under the $SU(2) \times U(1)$ gauge group, and an additional pseudoscalar P transforming as a singlet, as well as a dark matter candidate χ which we choose to be fermionic. The THDM part of the potential is given by

$$V_{THDM} = \mu_1 H_1^\dagger H_1 + \mu_2 H_2^\dagger H_2 + \lambda_1 (H_1^\dagger H_1)^2 + \lambda_2 (H_2^\dagger H_2)^2 + \lambda_3 (H_1^\dagger H_1)(H_2^\dagger H_2)$$
$$+ \lambda_4 (H_1^\dagger H_2)(H_2^\dagger H_1) + \left[\mu_3 H_1^\dagger H_2 + \lambda_5 (H_1^\dagger H_2)^2 + h.c. \right]$$

Fields are decomposed according to (see also e.g. [25])

$$H_i = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_i \\ v_i + \rho_i + i \eta_i \end{pmatrix}$$

where

$$v_1 = v \cos \beta, \ v_2 = v \sin \beta.$$

The scalar potential is

$$V_P = \frac{1}{2} m_P^2 P^2 + \lambda_{P_1} H_1^\dagger H_1 P^2 + \lambda_{P_2} H_2^\dagger H_2 P^2 + (v_P H_1^\dagger H_2 P + h.c.)$$
Finally, the coupling between the visible and the dark sector is mediated via the interaction
\[\mathcal{L}_\chi = -i y_\chi P \chi \gamma_5 \chi. \]

Couplings of the scalar sector to the fermionic sector arises from
\[\mathcal{L}_Y = -\sum_{i=1,2} \{ \bar{Q} Y^i_{u} H_u u_R + \bar{Q} Y^i_{d} H_d d_R + \bar{L} Y^i_{\ell} H_\ell \ell_R + \text{h.c.} \}, \]
where \(Y^i_{u,d} \) denote the Yukawa matrices, \(Q \) and \(L \) are left-handed quark and lepton doublets, and \(u_R, d_R, \ell_R \) label right-handed uptype, downtype, and leptonic gauge singlets.

We impose an additional \(Z_2 \) symmetry on the model, under which the doublets transform as \(H_1 \to H_1, H_2 \to -H_2 \), in order to avoid contributions from flavour changing neutral currents. In this work, we concentrate on the case where \(Y^u_1 = Y^d_2 = Y^\ell_2 = 0 \), which corresponds to a type II classification of Yukawa couplings in the THDM notation.

After electroweak symmetry breaking, the model is characterized by in total 14 free parameters. The mixing in the THDM sector is customary described by the mixing angles \(\alpha, \beta \). Furthermore, \(V_P \) introduces a mixing between the pseudoscalar part of the THDM and the new pseudoscalar \(P \), with introduces an additional mixing angle \(\theta \). We here choose
\[v, m_h, m_A, m_{H^\pm}, m_a, m_\chi, \cos (\beta - \alpha), \tan \beta, \sin \theta, y_\chi, \lambda_3, \lambda_{P1}, \lambda_{P2} \] (6)
as free parameters, where \(v \) and \(m_h \) are fixed to be \(\sim 246 \text{ GeV} \) and \(\sim 125 \text{ GeV} \). The leftover 12 parameters can float freely, but are subject to theoretical and experimental constraints.

III. THEORETICAL AND EXPERIMENTAL CONSTRAINTS

The models parameter space is subject to a list of theoretical and experimental constraints. Most of these have been discussed in previous publications, as e.g. \([6, 12, 14]\). For the results presented here, some bounds have been applied using private codes, others have been tested making use of publicly available tools such as SPheno \([26, 27]\), Sarah \([28–32]\), HiggsBounds \([33–39]\), HiggsSignals \([38, 40–43]\), and MadDM \([44–46]\).

The following bounds have been imposed:

- **Perturbativity, perturbative unitarity, and positivity of the potential**, leading to inequalities involving the potential couplings.

- **Constraints from electroweak precision observables** via the oblique parameters \(S, T, U \) \([47, 49]\), comparing to values from the latest Gfitter results \([50–52]\).

- **Constraints from** \(B \to X_s \gamma \), \(B_s \to \mu^+ \mu^- \), **and** \(\Delta m_s \). Details of the comparison will be given in \([24]\). For \(B \to X_s \gamma \), we use a two-dimensional fit function \([53]\) that
reflects the bounds derived in \[54\]. For the other variables, we compare (using \[55\] for theory predictions and \[56, 57\] for experimental findings)

\[
(B_s \rightarrow \mu^+\mu^-)^{\text{th}} = (3.66 \pm 0.14) \times 10^{-9}
\]

\[
(B_s \rightarrow \mu^+\mu^-)^{\text{comb, exp}} = (2.69^{+0.37}_{-0.35}) \times 10^{-9},
\]

\[
(\Delta m_s)^{\text{th}} = (17.61 \pm 1.05) \text{ ps}^{-1},
\]

\[
(\Delta m_s)^{\text{exp}} = (17.757 \pm 0.020 \pm 0.007) \text{ ps}^{-1}.
\]

The theoretical value \((\Delta m_s)^{\text{th}}\) has been derived using \[58–60\], with input values \[61–63\]

\[
f_{B_s} = (230.3 \pm 1.3) \text{ MeV}, \tilde{B}_{B_s} = 1.232 \pm 0.053, V_{cb} = (42.2 \pm 0.8) \times 10^{-3}.
\]

Upper limit on width: We impose (using the limit on \(\Gamma_h\) from \[64\])

\[
\Gamma_{h,125} \leq 9 \text{ MeV, } \Gamma_i/M_i \leq 0.5, \ i \in \{H, A, H^\pm, a\}
\]

Agreement with null-results from past and current searches and signal strength measurements. These bounds have been implemented making use of HiggsBounds and HiggsSignals, that use a factorized approach for signal rate predictions.

Dedicated LHC searches The model has been searched for in various final states. We here include bounds from \(\ell^+\ell^- + \text{MET} \ [20], h + \text{MET} \ [23], H^+\bar{t}b, H^+ \rightarrow t\bar{b} \ [65, 66], Wt + \text{MET} \ [22], \) and \(tt/\bar{b}\bar{b} + \text{MET} \ [16, 67–69]\). All of these, apart from \[16\], correspond to searches making use of full Run 2 data. All production cross sections have been calculated using Madgraph5 \[70\], with the UFO model provided in \[4, 71\]. For details, we refer to the reader to \[24\].

Dark matter constrains The calculation of dark matter relic density makes use of the tool MadDM. For direct detection, we implemented the analytic expressions presented in \[1\]. We compare these values to limits from the Planck collaboration \[72\], and require that

\[
\Omega h^2 \leq 0.1224
\]

which corresponds to a 2 \(\sigma\) limit. Direct detection bounds are compared to maximal cross section values \(\sigma_{\text{max}}^{\text{Xenon1T}} (m_\chi)\) using XENON1T result \[73\], which we implemented in terms of an approximation function \[2\]. Relic density constraints are rescaled using

\[
\sigma_{\text{max}} (m_\chi,i, \Omega_i) = \sigma_{\text{max}}^{\text{Xenon1T}} (m_\chi) \frac{0.1224}{\Omega_i},
\]

where \(m_{\chi,i}, \Omega_i\) refer to the dark matter and relic density of the specific parameter point \(i\) tested here.

\[\text{2 The numerical values have been obtained using the Phenodata database} \ [74].\]
IV. SCAN SETUP AND RESULTS

For a detailed discussion of the scan setup and steps, we refer the reader to [24].

Our initial scan ranges are determined by a number of prescans to determine regions of parameter space that are highly populated:

\[
\begin{align*}
\sin \theta & \in [-1; 0.8]; \cos (\beta - \alpha) \in [-0.08; 0.1]; \tan \beta \in [0.52; 9], \\
m_H & \in [500; 1000] \text{ GeV}, \ m_A \in [600; 1000] \text{ GeV}, \ m_{H^\pm} \in [800; 1000] \text{ GeV}, \\
m_a & \in [0; m_A], \ m_\chi \in [0; m_a], \\
y_\chi & \in [-\pi; \pi], \ \lambda_{P_1} \in [0; 10], \ \lambda_{P_2} \in [0; 4 \pi], \ \lambda_3 \in [-2; 4 \pi].
\end{align*}
\]

The fit for \(B \to X_s \gamma \) implies a lower bound on \(m_{H^\pm} \) of \(\sim 800 \text{ GeV} \) that is directly implemented in the scan setup. The values of \(m_h = 125 \text{ GeV} \) and \(v = 246 \text{ GeV} \) are set according to measurements of the Higgs boson mass as well as electroweak precision measurements. Values outside the above regions are not forbidden; we chose the scan ranges to optimize parameter point generation performance.

A. Scan results

In the following, we discuss the resulting constraints on the parameter space of the THDMa. Note that not all bounds discussed above lead to a direct limit in a two-dimensional parameter plane. In particular:

- B-physics constraints set a lower bound on \(\tan \beta \) as a function of \(m_{H^\pm} \), see figure [1] in general, \(\tan \beta > 1 \).

- Oblique parameters reduce the allowed mass differences, see figures [2] and [3]. The latter also shows comparison with bounds in the THMD decoupling limit. We see that allowing for an admixture with the second pseudoscalar in the THMDa enlarges the allowed parameter space.

- Signal strength measurements reduced the available parameter space for \(\cos (\beta - \alpha) \), such that now \(\cos (\beta - \alpha) \in [-0.04; 0.04] \), see figure [4]. Some parameter points are also excluded by direct searches, \(H/a \to \tau \tau \) [21], \(H \to h_{125} h_{125} \) [17] and \(H \to a Z \) [18, 19] searches. Values of \(\cos (\beta - \alpha) > 0.04 \) and \(\tan \beta \gtrsim 5 \) are excluded from \(h_{125} \to Z Z \) [15].
FIG. 1. Exclusion in the \((m_{H^\pm}, \tan \beta)\) plane after applying flavour constraints. The lower bound for \(m_{H^\pm} \leq 850\,\text{GeV}\) is set by the bound on \(B \rightarrow X_s \gamma\).

FIG. 2. Exclusions in the \((m_{H^\pm} - m_H, m_{H^\pm} - m_A)\) plane from oblique parameters. We see that regions where both displayed mass differences are large are excluded by the oblique parameters.

- Relic density reduced the available parameter space to regions where \(m_a - 2m_\chi \in [-100; 300]\,\text{GeV}\). Dominant annihilation channels are \(\chi \bar{\chi} \rightarrow b \bar{b}\) and \(\chi \bar{\chi} \rightarrow t \bar{t}\), where the latter channel opens up above the \(t \bar{t}\) threshold where \(m_a \gtrsim 2m_t\). Results are displayed in figure 5.

All other parameters still populate the original regions (see eqn. (9)).
FIG. 3. Exclusions in the \((m_{H^\pm} - m_A, m_H - m_A)\) plane in the THDMa (left) and THDM (right) from oblique parameters; for the latter, \(\sin \theta = \lambda_{P_1} = \lambda_{P_2} = 0\). The admixture of \(a\) releases the bounds, as expected.

FIG. 4. Exclusion in the \(\cos(\beta - \alpha), \tan \beta\) plane after HiggsBounds (HB) and HiggsSignals (HS).

V. PREDICTIONS FOR \(e^+e^-\) COLLIDERS

We now show results for rate predictions at \(e^+e^-\) colliders. In the limit where \(\sin \theta \to 0\), we recover the decoupling scenario of a standard THDM. It is therefore interesting whether we can find regions in parameter space where novel signatures, and explicitly final states with missing energy, give the largest rates. For \(HA(a)\) production, which leads to the largest rates after all constraints discussed above have been applied, at a 3 TeV collider, production cross-sections can reach up to 1 fb, where largest cross section values are achieved for \(m_A + m_H \sim 1400\) GeV. Dominant decay modes as well as cross-section predictions for such points are displayed in figure 5. \(t\bar{t}t\) final states are dominant in large regions of parameter space. The first decay mode that is novel with respect to standard THDMs is
FIG. 5. Left: Relic density as a function of $m_a - 2 m_\chi$, with the color coding referring to the mass of the DM candidate. Right: Relic density as a function of $|\sin \theta|$, with the color coding referring to the mass difference $m_a - 2 m_\chi$.

FIG. 6. Left: Combined branching ratios for HA final states, as a function of the mass sum. Right: Predictions for $tt + \bar{t}t$ rates at a 3 TeV collider, as a function of the mass sum. Color coding refers to the $t\bar{t}tt$ production cross section.

the $t\bar{t} + \bar{E}$ final state. In order to identify regions where this state dominates, we show the expected $t\bar{t}t\bar{t}$ and $t\bar{t} + \bar{E}$ cross sections in figure 7, where in the right plot we additionally include contributions mediated via Ha production. We see that indeed we can identify regions where $t\bar{t} + \bar{E}$ dominates and renders the largest rates.

VI. SUMMARY AND OUTLOOK

We presented preliminary results for a scan for the THDMa that lets all 12 free parameters of that model float freely, within ranges that were chosen to optimize scan performance. We have identified regions in parameter space that survive all current theoretical and experimental constraints, and provided a first estimate of possible production cross sections within this
FIG. 7. Production cross sections for $t\bar{t}t\bar{t}$ and $t\bar{t} + E_T$ final states, using a factorized approach. (Left:) via HA and (right:) via $HA + Ha$ production. Color coding refers to the mass scale, which is defined as $m_H + m_A$ (left)/ $m_H + 0.5 \times (m_A + m_a)$ (right), respectively.

model at future e^+e^- facilities, with a focus on signatures not present in a standard THDM. B-physics observables especially impose a lower limit on the charged mass $\sim 800 \text{ GeV}$ that varies with $\tan \beta$. Constraints from electroweak precision observables pose relatively strong constraints on the mass differences in the THDMa scalar sector for novel scalars. Requiring the relic density to lie below the current experimental measurement furthermore poses strong constraints on $|m_a - 2m_\chi|$.

ACKNOWLEDGEMENTS

The author wants to sincerely thank J. Kalinowski, W. Kotlarski, D. Sokolowska, and A.F. Zarnecki for useful discussions in the beginning of this project, and especially W. Kotlarski for help with the setup of the Sarah/ Spheno interface. Further thanks go to M. Misiak and U. Nierste for discussions regarding bounds from B-physics observables, and M. Goodsell as well as the authors of [12] for advice. This research was supported in parts by the National Science Centre, Poland, the HARMONIA project under contract UMO-2015/18/M/ST2/00518 (2016-2021), and the OPUS project under contract UMO-2017/25/B/ST2/00496 (2018-2021).

[1] Seyda Ipek, David McKeen, and Ann E. Nelson. A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation. Phys. Rev., D90(5):055021, 2014, 1404.3716.
[2] Jose Miguel No. Looking through the pseudoscalar portal into dark matter: Novel mono-Higgs and mono-Z signatures at the LHC. Phys. Rev., D93(3):031701, 2016, 1509.01110.
[3] Dorival Goncalves, Pedro A. N. Machado, and Jose Miguel No. Simplified Models for Dark Matter Face their Consistent Completions. *Phys. Rev.*, D95(5):055027, 2017, 1611.04593.

[4] Martin Bauer, Ulrich Haisch, and Felix Kahlhoefer. Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators. *JHEP*, 05:138, 2017, 1701.07427.

[5] Patrick Tunney, Jose Miguel No, and Malcolm Fairbairn. Probing the pseudoscalar portal to dark matter via $bbZ(\to \ell\ell) + \not{E}_T$: From the LHC to the Galactic Center excess. *Phys. Rev.*, D96(9):095020, 2017, 1705.09670.

[6] Tomohiro Abe et al. LHC Dark Matter Working Group: Next-generation spin-0 dark matter models. *Phys. Dark Univ.*, 27:100351, 2020, 1810.09420.

[7] Priscilla Pani and Giacomo Polesello. Dark matter production in association with a single top-quark at the LHC in a two-Higgs-doublet model with a pseudoscalar mediator. *Phys. Dark Univ.*, 21:8–15, 2018, 1712.03874.

[8] Ulrich Haisch, Jernej F. Kamenik, Augustinas Malinauskas, and Michael Spira. Collider constraints on light pseudoscalars. *JHEP*, 03:178, 2018, 1802.02156.

[9] Tomohiro Abe, Motoko Fujiwara, and Junji Hisano. Loop corrections to dark matter direct detection in a pseudoscalar mediator dark matter model. *JHEP*, 02:028, 2019, 1810.01039.

[10] Ulrich Haisch and Giacomo Polesello. Searching for dark matter in final states with two jets and missing transverse energy. *JHEP*, 02:128, 2019, 1812.08129.

[11] Ulrich Haisch and Giacomo Polesello. Searching for production of dark matter in association with top quarks at the LHC. *JHEP*, 02:029, 2019, 1812.00694.

[12] Tomohiro Abe, Motoko Fujiwara, Junji Hisano, and Yutaro Shoji. Maximum value of the spin-independent cross section in the 2HDM+a. *JHEP*, 01:114, 2020, 1910.09771.

[13] J. M. Butterworth, M. Habedank, P. Pani, and A. Vaitkus. A study of collider signatures for two Higgs doublet models with a Pseudoscalar mediator to Dark Matter. *SciPost Phys. Core*, 4:003, 2021, 2009.02220.

[14] Giorgio Arcadi, Giorgio Busoni, Thomas Hugle, and Valent Titus Tenorth. Comparing 2HDM + Scalar and Pseudoscalar Simplified Models at LHC. *JHEP*, 06:098, 2020, 2001.10540.

[15] Serguei Chatrchyan et al. Measurement of the Properties of a Higgs Boson in the Four-Lepton Final State. *Phys. Rev.*, D89(9):092007, 2014, 1312.5353.

[16] Morad Aaboud et al. Search for dark matter produced in association with bottom or top quarks in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector. *Eur. Phys. J.*, C78(1):18, 2018, 1710.11412.

[17] Morad Aaboud et al. Search for pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. *JHEP*, 01:030, 2019, 1804.06174.

[18] Morad Aaboud et al. Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the $\ell\ellbb$ final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. *Phys. Lett.*, B783:392–414, 2018, 1804.01126.
Albert M Sirunyan et al. Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at $\sqrt{s} = 13$ TeV. *Eur. Phys. J.*, C79(7):564, 2019, 1903.00941.

Albert M Sirunyan et al. Search for dark matter produced in association with a leptonically decaying Z boson in proton-proton collisions at $\sqrt{s} = 13$ TeV. *Eur. Phys. J.*, CS1(1):13, 2021, 2008.04735.

Georges Aad et al. Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at $\sqrt{s} = 13$ TeV. *Phys. Rev. Lett.*, 125(5):051801, 2020, 2002.12223.

Georges Aad et al. Search for dark matter produced in association with a single top quark in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector. 2020, 2011.09308.

Search for Dark Matter produced in association with a Standard Model Higgs boson decaying to b-quarks using the full Run 2 collision data with the ATLAS detector. Technical Report ATLAS-CONF-2021-006, CERN, Geneva, Mar 2021.

Tania Robens. in preparation.

G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, Marc Sher, and Joao P. Silva. Theory and phenomenology of two-Higgs-doublet models. *Phys. Rept.*, 516:1–102, 2012, 1106.0034.

Werner Porod. SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders. *Comput. Phys. Commun.*, 153:275–315, 2003, hep-ph/0301101.

W. Porod and F. Staub. SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM. *Comput. Phys. Commun.*, 183:2458–2469, 2012, 1104.1573.

F. Staub. SARAH. 2008, 0806.0538.

Florian Staub. From Superpotential to Model Files for FeynArts and CalcHep/CompHep. *Comput. Phys. Commun.*, 181:1077–1086, 2010, 0909.2863.

Florian Staub. Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies. *Comput. Phys. Commun.*, 182:808–833, 2011, 1002.0840.

Florian Staub. SARAH 3.2: Dirac Gauginos, UFO output, and more. *Comput. Phys. Commun.*, 184:1792–1809, 2013, 1207.0906.

Florian Staub. SARAH 4: A tool for (not only SUSY) model builders. *Comput. Phys. Commun.*, 185:1773–1790, 2014, 1309.7223.

Philip Bechtle, Oliver Brein, Sven Heinemeyer, Georg Weiglein, and Karina E. Williams. HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron. *Comput. Phys. Commun.*, 181:138–167, 2010, 0811.4169.

Philip Bechtle, Oliver Brein, Sven Heinemeyer, Georg Weiglein, and Karina E. Williams. HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron. *Comput. Phys. Commun.*, 182:2605–2631, 2011, 1102.1898.
[35] Philip Bechtle, Oliver Brein, Sven Heinemeyer, Oscar Stål, Tim Stefaniak, Georg Weiglein, and Karina Williams. Recent Developments in HiggsBounds and a Preview of HiggsSignals. PoS, CHARGED2012:024, 2012, 1301.2345.

[36] Philip Bechtle, Oliver Brein, Sven Heinemeyer, Oscar Stål, Tim Stefaniak, Georg Weiglein, and Karina E. Williams. HiggsBounds 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC. Eur. Phys. J., C74(3):2693, 2014, 1311.0055.

[37] Philip Bechtle, Sven Heinemeyer, Oscar Stål, Tim Stefaniak, and Georg Weiglein. Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors. Eur. Phys. J., C75(9):421, 2015, 1507.06706.

[38] https://higgsbounds.hepforge.org/.

[39] Philip Bechtle, Daniel Dercks, Sven Heinemeyer, Tobias Klingl, Tim Stefaniak, Georg Weiglein, and Jonas Wittbrodt. HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era. Eur. Phys. J., C80(12):1211, 2020, 2006.06007.

[40] Oscar Stål and Tim Stefaniak. Constraining extended Higgs sectors with HiggsSignals. PoS, EPS-HEP2013:314, 2013, 1310.4039.

[41] Philip Bechtle, Sven Heinemeyer, Oscar Stål, Tim Stefaniak, and Georg Weiglein. HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC. Eur. Phys. J., C74(2):2711, 2014, 1305.1933.

[42] Philip Bechtle, Sven Heinemeyer, Oscar Stål, Tim Stefaniak, and Georg Weiglein. Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC. JHEP, 11:039, 2014, 1403.1582.

[43] Philip Bechtle, Sven Heinemeyer, Tobias Klingl, Tim Stefaniak, Georg Weiglein, and Jonas Wittbrodt. HiggsSignals-2: Probing new physics with precision Higgs measurements in the LHC 13 TeV era. Eur. Phys. J., C81(2):145, 2021, 2012.09197.

[44] Mihailo Backovic, Kyoungchul Kong, and Mathew McCaskey. MadDM v.1.0: Computation of Dark Matter Relic Abundance Using MadGraph5. Physics of the Dark Universe, 5-6:18–28, 2014, 1308.4955.

[45] Mihailo Backović, Antony Martini, Olivier Mattelaer, Kyoungchul Kong, and Gopolang Mohlabeng. Direct Detection of Dark Matter with MadDM v.2.0. Phys. Dark Univ., 9-10:37–50, 2015, 1505.04190.

[46] Federico Ambrogi, Chiara Arina, Mihailo Backovic, Jan Heisig, Fabio Maltoni, Luca Mantani, Olivier Mattelaer, and Gopolang Mohlabeng. MadDM v.3.0: a Comprehensive Tool for Dark Matter Studies. Phys. Dark Univ., 24:100249, 2019, 1804.00044.

[47] Guido Altarelli and Riccardo Barbieri. Vacuum polarization effects of new physics on electroweak processes. Phys. Lett., B253:161–167, 1991.

[48] Michael E. Peskin and Tatsu Takeuchi. A New constraint on a strongly interacting Higgs sector. Phys. Rev. Lett., 65:964–967, 1990.
[49] Michael E. Peskin and Tatsu Takeuchi. Estimation of oblique electroweak corrections. *Phys. Rev.*, D46:381–409, 1992.

[50] M. Baak, J. Cúth, J. Haller, A. Hoecker, R. Kogler, K. Mönig, M. Schott, and J. Stelzer. The global electroweak fit at NNLO and prospects for the LHC and ILC. *Eur. Phys. J.*, C74:3046, 2014, 1407.3792.

[51] http://project-gfitter.web.cern.ch/project-gfitter/.

[52] Johannes Haller, Andreas Hoecker, Roman Kogler, Klaus Moenig, Thomas Peiffer, and Joerg Stelzer. Update of the global electroweak fit and constraints on two-Higgs-doublet models. *Eur. Phys. J.*, C78(8):675, 2018, 1803.01853.

[53] M. Misiak. private communication.

[54] M. Misiak, Abdur Rehman, and Matthias Steinhauser. Towards $B \to X_s \gamma$ at the NNLO in QCD without interpolation in m_c. *JHEP*, 06:175, 2020, 2002.01548.

[55] Martin Beneke, Christoph Bobeth, and Robert Szafron. Power-enhanced leading-logarithmic QED corrections to $B_q \to \mu^+\mu^-$. *JHEP*, 10:232, 2019, 1908.07011.

[56] Combination of the ATLAS, CMS and LHCb results on the $B^{0}_{(s)} \to \mu^+\mu^-$ decays. Technical Report ATLAS-CONF-2020-049, CERN, Geneva, Aug 2020.

[57] Yasmine Sara Amhis et al. Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018. *Eur. Phys. J.*, C81(3):226, 2021, 1909.12524.

[58] A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold, H. Lacker, S. Monteil, V. Niess, and S. T’Jampens. Anatomy of New Physics in $B - \bar{B}$ mixing. *Phys. Rev.*, D83:036004, 2011, 1008.1593.

[59] Alexander Lenz and Ulrich Nierste. Numerical Updates of Lifetimes and Mixing Parameters of B Mesons. In *CKM unitarity triangle. Proceedings, 6th International Workshop, CKM 2010, Warwick, UK, September 6-10, 2010*, 2011, 1102.4274.

[60] U. Nierste. private communication.

[61] S. Aoki et al. FLAG Review 2019. *Eur. Phys. J.*, C80(2):113, 2020, 1902.08191.

[62] R. J. Dowdall, C. T. H. Davies, R. R. Horgan, G. P. Lepage, C. J. Monahan, J. Shigemitsu, and M. Wingate. Neutral B-meson mixing from full lattice QCD at the physical point. *Phys. Rev.*, D100(9):094508, 2019, 1907.01025.

[63] P. A. Zyla et al. Review of Particle Physics. *PTEP*, 2020(8):083C01, 2020.

[64] Albert M Sirunyan et al. Measurements of the Higgs boson width and anomalous HVV couplings from on-shell and off-shell production in the four-lepton final state. *Phys. Rev.*, D99(11):112003, 2019, 1901.00174.

[65] Georges Aad et al. Search for dijet resonances in events with an isolated charged lepton using $\sqrt{s} = 13$ TeV proton-proton collision data collected by the ATLAS detector. *JHEP*, 06:151, 2020, 2002.11325.

[66] Georges Aad et al. Search for charged Higgs bosons decaying into a top quark and a bottom quark at $\sqrt{s}=13$ TeV with the ATLAS detector. 2021, 2102.10076.
[67] Georges Aad et al. Search for new phenomena with top quark pairs in final states with one lepton, jets, and missing transverse momentum in \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector. *JHEP*, 04:174, 2021, 2012.03799.

[68] Georges Aad et al. Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector. *JHEP*, 04:165, 2021, 2102.01444.

[69] Georges Aad et al. Search for new phenomena in final states with \(b\)-jets and missing transverse momentum in \(\sqrt{s} = 13\) TeV \(pp\) collisions with the ATLAS detector. 2021, 2101.12527.

[70] Johan Alwall, Michel Herquet, Fabio Maltoni, Olivier Mattelaer, and Tim Stelzer. MadGraph 5 : Going Beyond. *JHEP*, 06:128, 2011, 1106.0522.

[71] https://github.com/LHC-DMWG/model-repository/tree/master/models/Pseudoscalar_2HDM.

[72] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. 2018, 1807.06209.

[73] E. Aprile et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. *Phys. Rev. Lett.*, 121(11):111302, 2018, 1805.12562.

[74] Alexander Belyaev, James Blandford, and Daniel Locke. Phenodata database. https://hepmdb.soton.ac.uk/phenodata, Jan. 2017.