GENERALIZED CONDITIONAL YEH-WIENER INTEGRALS FOR THE SAMPLE PATH-VALUED CONDITIONING FUNCTION

JOONG HYUN AHN* AND JOO SUP CHANG†

Abstract. The purpose of this paper is to treat the generalized conditional Yeh-Wiener integral for the sample path-valued conditioning function. As a special case of our results, we obtain the results in [6].

1. Introduction

Let \(t = g(s) \) be a monotonically decreasing and continuous function on \([0, S]\) with \(g(S) > 0 \) and let \(\Omega = \{(s, t) \mid 0 \leq s \leq S, \ 0 \leq t \leq g(s)\} \). Let \(C(\Omega) \) be a space of all real continuous functions \(x \) on \(\Omega \) such that \(x(s, t) = 0 \) for all \((s, t)\) in \(\Omega \) satisfying \(st = 0 \).

In [3], the authors treated the generalized conditional Yeh-Wiener integral which includes the conditional Yeh-Wiener integral in [5] and the modified conditional Yeh-Wiener integral in [1]. In [5–8], Park and Skoug treated the conditional Yeh-Wiener integral for various kinds of conditioning functions including the sample path-valued conditioning function.

Received August 10, 2016. Revised September 9, 2016. Accepted September 9, 2016.

2010 Mathematics Subject Classification: 28C20, 60J65.

Key words and phrases: Generalized conditional Yeh-Wiener integral, sample path-valued conditioning function.

* Corresponding author.
† This work was supported by Hanyang University in 2013.
© The Kangwon-Kyungki Mathematical Society, 2016.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
The purpose of this paper is to treat the generalized conditional Yeh-Wiener integral for the sample path-valued conditioning function. We obtain the formula for the generalized conditional Yeh-Wiener integral and then evaluate it for two kinds of functionals. As a special case of our results, we obtain the results in [6].

2. Generalized Conditional Yeh-Wiener integrals for sample path-valued conditioning function

For a functional F of x in $C(\Omega)$, $E(F) = \int_{C(\Omega)} F(x) dm(x)$ is called a generalized Yeh-Wiener integral of F if it exists ([3]). As a stochastic process, $\{(x(s, t))|(s, t) \in \Omega\}$ has a mean $E(x(s, t)) = 0$ and $E(x(s, t)x(u, v)) = \min\{s, u\}\min\{t, v\}$. Let $C[0, g(S)]$ denote the standard Wiener space with the Wiener measure and assume that ψ is in $C[0, g(S)]$.

For a generalized Yeh-Wiener integrable function F of x in $C(\Omega)$, consider the generalized conditional Yeh-Wiener integral of the form

\[(2.1) \quad E(F(x)|x(S, (\cdot, \wedge T) = \psi((\cdot, \wedge T))\]

with $g(S) = T$ and $a \wedge b = \min\{a, b\}$. Here, $(\cdot, \wedge T)$ belongs to $[0, g(s)]$ for $0 \leq s \leq S$. Since two processes $x(S, t \wedge T)$ and $\{x(s, t) - (s/S)x(S, t \wedge T)|(s, t) \in \Omega\}$ are (stochastically) independent, we have

\[(2.2) \quad E(F(x)|x(S, (\cdot, \wedge T) = \psi((\cdot, \wedge T))\]

\[\quad = E(F(x(\cdot, \cdot)) - \frac{s}{S}x(S, (\cdot, \wedge T) + \frac{s}{S}\psi((\cdot, \wedge T)))\]

for almost all ψ in $C[0, T]$. Here, for the notational convenience, we denote $\cdot = (\cdot)$.

Especially, if $g(s) = T$ for all $0 \leq s \leq S$, then $(\cdot, \wedge T) = (\cdot)$, which agrees with (2.2) in [6]. This means that our result (2.2) is a slight generalization of the result in [6].

Let $y(\cdot)$ be a tied-down Brownian motion, that is,

\[\{y(t) \mid 0 \leq t \leq T\} = \{w \in C[0, T] \mid w(T) = \xi\}.

Then, as is well known ([6]), $y(\cdot)$ can be expressed in terms of the standard Wiener process,

\[y(t) = w(t) - \frac{t}{T}w(T) + \frac{t}{T}\xi.\]
The following theorem is one of our main results, which is slightly different from Theorem 1 in [6].

Theorem 2.1. If $F \in L_1(C(\Omega), m)$, then we have

\begin{equation}
E_w(E(F(x) \mid x(S, (\cdot) \wedge T) = \sqrt{S}w((\cdot) \wedge T)) = E(F(x)),
\end{equation}

\begin{equation}
E(F(x) \mid x(S, T) = \sqrt{S} \xi)
= E_w \left\{ E \left(F(x) \mid x(S, (\cdot) \wedge T) = \sqrt{S} \left(w((\cdot) \wedge T) - \frac{(\cdot) \wedge T}{T}w((\cdot) \wedge T) + \frac{(\cdot) \wedge T}{T} \xi \right) \right) \right\}.
\end{equation}

Proof. (1) Using (2.2), we write

\begin{equation}
E_w(E(F(x) \mid x(S, (\cdot) \wedge T) = \sqrt{S} w((\cdot) \wedge T))
= E_w \left\{ E \left(F(x(s, t) - (s/S)x(S, t \wedge T) + (s/\sqrt{S})\psi(t \wedge T)) \right) \right\}.
\end{equation}

Let $y(s, t) = x(s, t) - (s/S)x(S, t \wedge T) + (s/\sqrt{S})\psi(t \wedge T)$ for all (s, t) in Ω. Then we have $E(y(s, t) = 0$ and $E(y(s, t)y(u, v)) = \min\{s, u\}\min\{t, v\}$. This means that $\{(y(s, t)|(s, t) \in \Omega\}$ is a generalized Yeh-Wiener process, and the right-hand side of (2.5) becomes $\int_{C(\Omega)} F(y)dm(y) = E(F(x))$. Thus, we obtain the formula (2.3).

(2) We use Theorem 2 in [5] to have

\begin{equation}
E(F(x) \mid x(S, T) = \sqrt{S} \xi)
= E \left\{ F(x(s, t) - \frac{\cdot \wedge T}{S}x(S, T) + \frac{\cdot \wedge T}{\sqrt{S}} \psi((::) \wedge T) \right) \right\}.
\end{equation}

We can rewrite the right-hand side of (2.6) as the following form:

\begin{equation}
E \left\{ F(x(s, t) - \frac{\cdot \wedge T}{S}x(S, (\cdot) \wedge T)
+ \frac{\cdot \wedge T}{S}x(S, (\cdot) \wedge T) - \frac{\cdot \wedge T}{T}x(S, T) + \frac{\cdot \wedge T}{T} - \sqrt{S} \xi \right) \right\}.
\end{equation}

We use $E(x(s, t)x(u, v)) = \min\{s, u\}\min\{t, v\}$ to show that two processes $x(s, (\cdot) - (s/S)x(S, (\cdot) \wedge T)$ and $x(S, (\cdot) \wedge T) - ((\cdot) \wedge T)x(S, T)/T)$ are stochastically independent. Furthermore, $\sqrt{S} \left(w((\cdot) \wedge T)(w(T)/T)\right)$ and $x(S, (\cdot) \wedge T) - ((\cdot) \wedge T)x(S, T)/T)$ are equivalent processes, where $w((\cdot)$ is the standard Wiener process. Thus, (2.7) becomes
Therefore, we get the formula (2.4). \hfill \square

For the special case \(g(s) = T \) for \(0 \leq s \leq S \), we have the same result of Theorem 1 in [6]. In a certain sense, our result is a slight generalization of the result in [6].

In [6], Park and Skoug treated the rectangle \(Q \), but we treat the more general region \(\Omega \). Let \(\Omega \) be the region given by

\[\Omega = \{(s, t) \mid 0 \leq s \leq S, \ 0 \leq t \leq g(s) \} \]

where \(t = g(s) \) is a monotonically decreasing and continuous function on \([0, S]\) with \(g(S) = T > 0 \). In the following two theorems we evaluate the generalized conditional Yeh-Wiener integral for the sample path-valued conditioning function.

Theorem 2.2. Let \(F \) be a functional on \(C(\Omega) \) given by \(F(x) = \int_{\Omega} x(s, t) ds dt \). Then we have

\[
E(F(x) \mid x(S, (\cdot) \wedge T) = \psi((\cdot) \wedge T)) = \frac{S}{2} \int_0^T \psi(t) dt + \frac{\psi(T)}{S} \int_0^S \int_0^{g(s)} s dt ds.
\]

Proof. By (2.2) and Fubini theorem, we have

\[
E(F(x) \mid x(S, (\cdot) \wedge T) = \psi((\cdot) \wedge T)) = \int_{\Omega} E\left(x(s, t) - \frac{s}{S} x(S, (\cdot) \wedge T) + \frac{s}{S} \psi((\cdot) \wedge T) \right) ds dt.
\]

\[
= \int_{\Omega} \frac{s}{S} \psi((\cdot) \wedge T) ds dt.
\]
The right hand side of the last equality in (2.10) comes from the fact that $E(x(s, t)) = 0$ and $m(C(\Omega)) = 1$. By the straightforward calculation, we have

$$(2.11) \quad E(F(x) \mid x(S, (\cdot) \wedge T)) = \psi((\cdot) \wedge T)$$

$$= \int_0^S \int_0^{g(s)} \frac{s}{S} \psi((\cdot) \wedge T) dtds$$

$$= \frac{S}{2} \int_0^T \psi(t) dt + \frac{\psi(T)}{S} \int_0^S \int_T^{g(s)} s dt ds,$$

which is our desired result.

Theorem 2.3. Let F be a functional on $C(\Omega)$ given by $F(x) = \int_\Omega x^2(s, t) ds dt$ and $g(S) = T$. Then we have

$$(2.12) \quad E(F(x) \mid x(S, (\cdot) \wedge T)) = \psi((\cdot) \wedge T)$$

$$= \frac{S^2 T^2}{12} + \frac{S}{3} \int_0^T \psi^2(t) dt + \int_0^S \int_T^{g(s)} \left(st - \frac{s^2}{S} T + \frac{s^2}{S^2} \psi^2(T) \right) dt ds.$$

Proof. By (2.2) and Fubini theorem, we have

$$(2.13) \quad E(F(x) \mid x(S, (\cdot) \wedge T)) = \psi((\cdot) \wedge T)$$

$$= \int_\Omega E \left(\left(x(s, t) - \frac{s}{S} x(S, (\cdot) \wedge T) + \frac{s}{S} \psi((\cdot) \wedge T) \right)^2 \right) ds dt$$

$$= \int_\Omega \left\{ st - \frac{s^2}{S} (t \wedge T) + \frac{s^2}{S^2} \psi^2(t \wedge T) \right\} dt ds.$$

The right hand side of the last equality in (2.13) comes from the fact that $E(x(s, t)) = 0$, $E(x(s, t)x(u, v)) = \min\{s, u\} \min\{t, v\}$ and $m(C(\Omega)) = 1$. By the straightforward calculation, the right hand side of the last equality in (2.13) becomes

$$(2.14) \quad \frac{S^2 T^2}{12} + \frac{S}{3} \int_0^T \psi^2(t) dt$$

$$+ \int_0^S \int_T^{g(s)} \left(st - \frac{s^2}{S} T + \frac{s^2}{S^2} \psi^2(T) \right) dt ds,$$

which is our desired result. □
Remark 2.4. In Theorem 2.2 and Theorem 2.3, we have the extra terms which does not appear in Example 1 and Example 2 of [6]. This means that Park and Skoug’s examples in [6] are the special case of our results for the rectangle Ω.

References

[1] J. S. Chang, Modified conditional Yeh-Wiener integral with vector-valued conditioning function, J. Korean Math. Soc. 38 (2001), 49–59.
[2] J. S. Chang and J. H. Ahn, A note on the modified conditional Yeh-Wiener integral, Comm. Korean Math. Soc. 16 (2001), 627–635.
[3] J. S. Chang and J. H. Ahn, Generalized conditional Yeh-Wiener integral, Rocky Mountain J. Math. 35 (2005), 1099–1114.
[4] K. S. Chang, J. M. Ahn and J. S. Chang, An evaluation of conditional Yeh-Wiener integrals, Pacific J. Math. 124 (1986), 107–117.
[5] C. Park and D. L. Skoug, Conditional Yeh-Wiener integrals with vector-valued conditioning functions, Proc. Amer. Math. Soc. 105 (1989), 450–461.
[6] C. Park and D. L. Skoug, Sample path-valued conditional Yeh-Wiener integrals and a Wiener integral equation, Proc. Amer. Math. Soc. 115(1992), 479–487.
[7] C. Park and D. L. Skoug, Multiple path-valued conditional Yeh-Wiener integrals, Proc. Amer. Math. Soc. 124 (1996), 2029–2039.
[8] C. Park and D. L. Skoug, Boundary-valued conditional Yeh-Wiener integrals and a Kac-Feynman Wiener integral equation, J. Korean Math. Soc. 33 (1996), 763–775.

Joong Hyun Ahn
Department of Mathematics
Hanyang University
Seoul 04763, Korea
E-mail: aaajh@hanyang.ac.kr

Joo Sup Chang
Department of Mathematics
Hanyang University
Seoul 04763, Korea
E-mail: jschang@hanyang.ac.kr