Safety and Efficacy of Percutaneous Mitral Valve Repair Using the MitraClip® System in Patients with Diabetes Mellitus

Katharina Hellhammer*, Tobias Zeus*, Jan Balzer, Silke van Hall, Christos Rammos, Rabea Wagstaff, Malte Kelm, Tienush Rassaf*

University Hospital Düsseldorf, Medical Faculty, Dept. of Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Düsseldorf, Germany

Abstract

Background: Patients with diabetes mellitus show a negative outcome in percutaneous coronary intervention, aortic valve replacement and cardiac surgery. The impact of diabetes on patients undergoing treatment of severe mitral regurgitation (MR) using the MitraClip system is not known. We therefore sought to assess whether percutaneous mitral valve repair with the MitraClip system is safe and effective in patients with diabetes mellitus.

Methods and Results: We included 58 patients with severe and moderate-to-severe MR in an open-label observational single-center study. Nineteen patients were under oral medication or insulin therapy for type II diabetes mellitus. MitraClip devices were successfully implanted in all patients with diabetes and in 97.4% (n = 38) of patients without diabetes (p = 0.672). Periprocedural major cardiac adverse and cerebrovascular events (MACCE) occurred in 5.1% (n = 2) of patients without diabetes whereas patients with diabetes did not show any MACCE (p = 0.448). 30-day mortality was 1.7% (n = 1) with no case of death in the diabetes group. Short-term follow up of three months showed a significant improvement of NYHA class and quality of life evaluated by the Minnesota Living with Heart Failure Questionnaire in both groups, with no changes in the 6-minute walk test.

Conclusions: Mitral valve repair with the MitraClip system is safe and effective in patients with type II diabetes mellitus.

Trial Registration: MitraClip Registry NCT02033811

Introduction

Mitral valve regurgitation (MR) is the second common valvular heart disease and severely affects morbidity and mortality [1–5]. Surgical treatment for many years used to be the first line treatment for patients with severe symptomatic MR [6]. Percutaneous mitral valve repair (PMVR) with the MitraClip system, however, has emerged to an effective therapeutic alternative for patients who can not undergo surgery due to high surgical risk [7]. Many of the high-risk patients present with diabetes mellitus, which is known to worsen outcome in patients referred to percutaneous coronary intervention (PCI) [8–12], cardiac surgery [13–15] or transcatheter aortic valve replacement (TAVI) [16,17]. The impact of diabetes on treatment of MR using the MitraClip system is not known. We therefore sought to assess whether percutaneous mitral valve repair with the MitraClip system is safe and effective in patients with diabetes mellitus.

Methods

The protocol for this trial and supporting CONSORT checklist are available as supporting information; see Checklist S1 and Protocol S1.

Patient selection and study design

A total of 58 Patients with symptomatic severe or moderate-to-severe MR evaluated by trans-thoracic and trans-esophageal echocardiography who underwent PMVR with the MitraClip System at the Heart Center Düsseldorf were included in the study (Figure 1). All patients were discussed in the institutional heart team and declined for surgical treatment due to high operative...
Patients were included into our registry after informed written consent was obtained. The registry is registered at clinical trials (NCT02033811). In a sub-analysis of this registry, patients were grouped according to the presence of type II diabetes mellitus (oral medication or on insulin therapy). The objective of the study was to evaluate the safety and efficacy of the MitraClip procedure in patients with diabetes mellitus with a follow-up after 3 months. Study procedures were in accordance with the Declaration of
Helsinki and the institutional Ethics Committee of the Heinrich-Heine University approved the study protocol.

Data collection and definitions

Collected data included patient characteristics, imaging findings, periprocedural in hospital data, laboratory results and follow up data up to three month after PMVR. Blood samples for biochemistry and hematology analysis results were taken before the procedure. Clinical outcome parameters for follow up after three months were NYHA classification, 6-minute walk test (6MWT), and quality of life measured by the Minnesota Living With Heart Failure Questionnaire (MLHF Q). Trans-thoracic echocardiography (TTE) was performed before the procedure and during follow up. Trans-esophageal echocardiography (TEE) was performed at baseline. Severity of mitral regurgitation was classified by TTE and TEE by measuring vena contracta (VC) and regurgitation volume. A severe mitral regurgitation was defined as a VC ≥ 0.7 cm and a regurgitation volume ≥ 60 ml [18,19].

In-hospital complications were reported for both groups. The definition of MACCE (major adverse cardiac and cerebrovascular event) included death, ST-elevation myocardial infarction, stroke and procedure related re-operation. A significant mitral stenosis after procedure was defined as a mean gradient >10 mmHg. Peripheral vascular complications were defined as minor vascular complication according to VARC II [38]. A major vascular complication was defined according to VARC II as overt bleeding either associated with a drop in hemoglobin level of at least 3.0 g/dL or requiring transfusion of two or three units of whole blood, or causing hospitalization, or permanent injury, or requiring surgery and does not meet criteria of life-threatening or disabling bleeding.

Procedure

The MitraClip procedure was performed either in general anesthesia or deep sedation using TEE and fluoroscopy for guidance. The procedure and the MitraClip System have previously been described in detail [20,21]. After a femoral venous access and transseptal puncture, the system is positioned in the left atrium. The arms of the clip are aligned perpendicular to the long axis of the leaflet edges and the clip is advanced into the left ventricle. After grasping the leaflets and checking the leaflet insertion the clip is deployed and the system removed.

Table 1. Baseline characteristics of patients undergoing MitraClip grouped according to the presence of diabetes mellitus type II.

	diabetes (n = 19)	no diabetes (n = 39)	p-value
Age, years \pm SD	68.9 \pm 3	73 \pm 11.3	0.071
Male gender, n (%)	16 (84.2)	23 (59.0)	0.055
BMI (kg/m2) \pm SD	28.1 \pm 4.5	26 \pm 4.6	0.175
Logistic EuroSCORE \pm SD	18.7 \pm 15.5	18.6 \pm 17.6	0.975
CAD, n (%)	11 (57.9)	24 (61.5)	0.790
COPD, n (%)	5 (26.3)	9 (23.1)	0.787
Pulmonary hypertension, n (%)	11 (57.9)	26 (66.7)	0.514
Atrial fibrillation, n (%)	5 (26.3)	15 (38.5)	0.362
Hypertension, n (%)	19 (100)	36 (92.3)	0.214
Previous CABG, n (%)	5 (26.3)	11 (28.2)	0.880
Previous valve replacement, n (%)	2 (10.5)	8 (20.5)	0.472
Previous PCI (<3 month), n (%)	1 (5.3)	1 (2.6)	0.557
Previous myocardial infarction, n (5)	9 (47.4)	13 (33.3)	0.301
NYHA class III or IV, n (%)	17 (89.5)	35 (89.7)	0.649
Chronic kidney disease, n (%)	11 (57.9)	21 (53.8)	0.771
HbA1c, % \pm SD	7.9 \pm 1.4	5.9 \pm 0.5	<0.01
Glucose, mg/dL \pm SD	183 \pm 54	110 \pm 26	<0.01
GFR, ml/min \pm SD	51 \pm 21	61 \pm 23	0.117
BNP, pg/ml \pm SD	3315 \pm 4184	2918 \pm 2805	0.686
EF, % \pm SD	37 \pm 13	45 \pm 16	0.062
LVEDD, mm \pm SD	61 \pm 14	59 \pm 11	0.584
MR grade III, n (%)	18 (94.7)	30 (76.9)	0.142
MR type			
functional, n (%)	17 (89.5)	36 (92.3)	0.533
degenerative, n (%)	2 (10.5)	3 (7.7)	0.533
6-MWT, m \pm SD	275 \pm 90	296 \pm 121	0.511
MLHF Q \pm SD	44.7 \pm 14.9	43.4 \pm 12.3	0.734

SD = standard deviation; BMI = body mass index; CAD = coronary artery disease; COPD = chronic obstructive pulmonary disease; CABG = coronary artery bypass grafting; PCI = percutaneous coronary intervention; NYHA = New York Heart Association; BG = blood glucose; GFR = glomerular filtration rate; BNP = brain natriuretic peptide; EF = ejection fraction; LVEDD = left ventricular end-diastolic diameter; MR = mitral regurgitation; 6-MWT = 6-minute walk test; MLHF Q = Minnesota Living With Heart Failure Questionnaire. doi:10.1371/journal.pone.0111178.t001
Continuous data were expressed as mean ± standard deviation (SD) and compared with the unpaired student’s t-test or Mann-Whitney U test if not normally distributed. Normality was checked with the Kolmogorov-Smirnov test. Categorical variables were evaluated as percentage and compared with the χ²-square test or Fisher’s exact test. Statistical analysis was performed with SPSS Statistics 22 (IBM) and Prism (GraphPad). A p-value < 0.05 was considered to be significant.

Results

We enrolled 58 patients with symptomatic severe and moderate-to-severe MR. Nineteen patients (32.8%) presented with diabetes mellitus type II with either oral medication or insulin therapy. Groups did not differ except for HbA1c and blood glucose levels. Baseline characteristics are summarized in Table 1.

Statistical Analysis

Continuous data were expressed as mean ± standard deviation (SD) and compared with the unpaired student’s t-test or Mann-Whitney U test if not normally distributed. Normality was checked with the Kolmogorov-Smirnov test. Categorical variables were evaluated as percentage and compared with the χ²-square test or Fisher’s exact test. Statistical analysis was performed with SPSS Statistics 22 (IBM) and Prism (GraphPad). A p-value < 0.05 was considered to be significant.

Primary endpoint – safety

The primary endpoint of this study was related to safety with regard to successful clip implantation, in-hospital complication rate, and 30-day mortality. MitraClips have been implanted successfully in all patients with diabetes, whereas one patient in the non-diabetic group had to undergo surgery for significant mitral stenosis. Complications were defined as MACCE (non-diabetes: 5.1% vs. diabetes: 0.0%), sepsis (non-diabetes: 5.1% vs. diabetes: 0.0%), ventilation > 24 hours (non-diabetes: 2.6% vs. diabetes: 0.0%), peripheral vascular complications (non-diabetes: 5.1% vs. diabetes: 5.3%), acute kidney injury stage III (0.0% vs. 0.0%), pacemaker damage (non-diabetes: 2.6% vs. diabetes: 0.0%), stroke

Table 2. Periprocedural results of patients undergoing MitraClip grouped according to the presence of diabetes mellitus type II.

	diabetes (n = 19)	no diabetes (n = 39)	p-value
Successful clip implantation, n (%)	19 (100.0)	38 (97.4)	0.672
multiple clip implantation (>2), n (%)	0 (0.0)	0 (0.0)	
Procedure duration, min ± SD	121 ± 43	120 ± 37	0.895
Radiation time, min ± SD	30 ± 12	27 ± 11	0.388
Significant mitral stenosis, n (%)	0 (0.0)	1 (2.6)	0.672
Peripher vascular complication, n (%)	1 (5.3)	2 (5.1)	0.704
Stroke, n (%)	0 (0.0)	0 (0.0)	
MACCE, n (%)	0 (0.0)	2 (5.1)	0.448
Pacemaker damage, n (%)	0 (0.0)	1 (2.6)	0.672
Sepsis, n (%)	0 (0.0)	2 (5.1)	0.448
Ventilation > 24 h, n (%)	0 (0.0)	1 (2.6)	0.672
Acute kidney injury stage III, n (%)	0 (0.0)	0 (0.0)	
Major bleeding, n (%)	0 (0.0)	1 (2.6)	0.672
Mitral valve surgery, n (%)	0 (0.0)	1 (2.6)	0.672
Death	0 (0.0)	0 (0.0)	
30-day mortality, n (%)	0 (0.0)	1 (2.6)	0.672

MACCE = major cardiac and cerebrovascular events.
Major bleeding was defined according to VARC II as overt bleeding either associated with a drop in hemoglobin level of at least 3.0 g/dL or requiring transfusion of two or three units of whole blood, or causing hospitalization, or permanent injury, or requiring surgery and does not meet criteria of life-threatening or disabling bleeding.

doi:10.1371/journal.pone.0111178.t002

Figure 2. Changes in functional parameters after short-term follow up (3 months). A NYHA class before and 3 months after MitraClip. B 6-MWT before and 3 months after MitraClip. C Results of MLHF Q before and 3 months after MitraClip. NYHA = New York Heart Association; 6-MWT = 6-minute walk test; MLHF Q = Minnesota Living With Heart Failure Questionnaire. ns = non significant (p≥0.05). *** denotes p<0.0001, ** denotes p<0.001.
doi:10.1371/journal.pone.0111178.g002
Patients with diabetes (Figure 3). Observations were made in 65.8% (n = 25) of patients without diabetes and in all patients with diabetes. Ventricular end-diastolic diameter (61 mm) and ejection fraction (37% to 11 mm; p = 0.05) did not change in patients with diabetes. In patients with diabetes 6-MWT (275 ± 90 m to 308 ± 11 m; p = 0.057), ejection fraction (37 ± 13% to 35 ± 13%; p = 0.45) and left ventricular end-diastolic diameter (61 ± 14 mm to 63 ± 11 mm; p = 0.243) were also unaffected. MR reduction ≥ 1 grade was observed in 65.8% (n = 25) of patients without diabetes and in all patients with diabetes (Figure 3).

Secondary endpoint – efficacy

The secondary endpoints were related to efficacy with regard to procedure duration (non-diabetes: 120 ± 37 min vs. diabetes: 121 ± 43 min; p > 0.05), multiple clip implantation (0.0% vs. 0.0%) and radiation time (non-diabetes: 27 ± 11 min vs. diabetes: 30 ± 12 min; p > 0.05).

At the time of follow up, significant improvement of NYHA class was seen in both groups from 3.1 ± 0.6 to 2.2 ± 0.5 (p < 0.0001) in patients without diabetes and 3.2 ± 0.6 to 2.2 ± 0.5 (p < 0.0001) in patients with diabetes. Quality of life measured by the MLHF Questionnaire was improved with a score reduction from 43 ± 15 to 36 ± 14 (p < 0.0001) in non-diabetic patients and 45 ± 12 to 36 ± 11 (p < 0.001) in patients with diabetes (Figure 2). 6-MWT (296 ± 121.6 m to 300 ± 130.8 m; p = 0.743), left ventricular ejection fraction (45 ± 16% to 44 ± 13%; p = 0.660), and left ventricular end-diastolic diameter (59 ± 11 mm to 60 ± 12 mm; p = 0.163) did not change in patients without diabetes. In patients with diabetes 6-MWT (275 ± 90 m to 308 ± 11 m; p = 0.057), ejection fraction (37 ± 13% to 35 ± 13%; p = 0.45) and left ventricular end-diastolic diameter (61 ± 14 mm to 63 ± 11 mm; p = 0.243) were also unaffected. MR reduction ≥ 1 grade was observed in 65.8% (n = 25) of patients without diabetes and in all patients with diabetes (Figure 3).

Discussion

The key findings of our study are: i) mitral valve repair with the MitraClip system is safe and effective in patients with diabetes mellitus. ii) This is associated with an improvement in functional status after three months follow up.

Patients with diabetes are at higher risk when undergoing PCI or cardiac surgery [8–15]. The underlying mechanisms are multifacriar and involve an increased platelet activity, endothelial dysfunction [22,23], impaired wound healing, and a higher risk for infections caused by hyperglycemia [24,25]. Patients with diabetes moreover often present with comorbidities such as impaired renal function or coronary artery disease, which increase the surgical risk. PMVR with the MitraClip system has been shown to be safe and feasible and an alternative for surgical mitral valve repair in high-risk patients [7,20]. The role of diabetes in those patients, however, has not been investigated so far.

In our study population none of the diabetic patients died within 3 months follow-up. However, slightly higher mortality rates have been described [26–28]. These high mortality rates may reflect the morbidity of the patients who are referred to MitraClip procedure - sometimes as palliative therapy - and the importance of careful patient selection and risk stratification. Successful clip implantation was 100% in the diabetic group and 97.4% in the non-diabetic group. Overall complication rate was low in our study population, which has also been proved in other studies [29,30] and confirms the safety of the procedure. Diabetic patients did not present with a higher complication rate.

Previous studies have identified diabetes mellitus to be a risk factor for early and late mortality after surgical mitral valve repair [31,32,35]. Therefore it has been included in risk models like the Euroscore II or the STS score. Hospital mortality rates for mitral valve repair have been described from 1.5% to 6.5% [36,37]. Complications like deep sternal wound infection, stroke or acute renal failure after cardiac surgery are more likely in diabetic patients [33,34,35]. A less invasive treatment option like the MitraClip procedure in diabetic patients therefore seems to be an good alternative. Clinical outcome was improved after three months follow up in patients with diabetes and in non-diabetic patients. NYHA class was reduced and quality of life improved. These findings consist with other reports [26,28]. No improvement was observed in the 6-MWT in both groups, which may be due to the short-term period of follow up. Baseline ejection fraction was moderately to severely reduced in both groups and left ventricular end-diastolic diameter enlarged. Recovery might be seen after a longer period. In contrast, a previously published...
study reported a reduction of left ventricular end-diastolic volume after short-term follow-up of up to 30 days and one year probably due to early reverse remodeling [28]. Our study has limitations. PMVK using the MitraClip system is safe and event rates are low. Therefore, a prospective randomized study with more patients and longer follow-up time is needed. Furthermore, patients should be classified concerning the duration of diabetes and diabetes-induced comorbidities.

Conclusion

We here show that the MitraClip procedure can be performed safely and effectively in patients with type II diabetes mellitus. Our short-term follow up shows an improvement in functional status in our patients with no negative influence on 3-month-mortality.

References

1. Jung B, Baron G, Butchart EG, Delahaye F, Goblike-Barwulf C, et al. (2003) A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J 24: 1231–43.
2. Nkomo VT, Gardin JM, Skelton TN, Gottlieb JS, Scott CG, et al. (2006) The burden of valvular heart diseases: a population-based study. Lancet 368: 1003–11.
3. Rossi A, Dini FL, Faggiano P, Agriola E, Cicora M, et al. (2011) Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantiative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart 97: 1675–80.
4. Trichon BH, Felker GM, Shae LV, Cabell CH, O’Connor CM (2003) Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am J Cardiol 91: 330–43.
5. Patel JB, Bogers BD, Barnes ME, Rihal CS, Daly RC, et al. (2004) Mitral regurgitation in patients with advanced systolic heart failure. J Card Fail 10: 805–91.
6. Bonnus RO, Carabello BA, Chatterjee K, de Leon AC, Jr, Faxon DP, et al. (2008) 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 52: e1–142.
7. Feldman T, Foster E, Glower DD, Kar S, Rinaldi MJ, et al. (2011) Percutaneous repair or surgery for mitral regurgitation. N Engl J Med 364: 1395–406.
8. Ellis SG, Vandormael MG, Cowley MJ, Di Sciascio G, Deligonul U, et al. (1990) Beyond restenosis: five-year clinical outcomes from second-generation coronary stents. Circulation 97: 1695–1701.
9. Bitkover CV, Gardin B (1996) Mediastintis after cardiovascular operations: a case-control study of risk factors. Ann Thorac Surg 65: 36–40.
10. Salemon NW, Page US, Okies JE, Stephens J, Krause AH, et al. (1983) Diabetes mellitus and coronary artery bypass: short-term risk and long-term prognosis. J Thorac Cardiovasc Surg 85: 264–71.
11. Taramasso M, Maisano F, Dent M, Lahb A, Cama G, et al. (2014) Percutaneous edge-to-edge repair in high-risk and elderly patients with degenerative mitral regurgitation: Midterm outcomes in a single-center experience. J Thorac Cardiovasc Surg DOE 101:161–172. In press.
12. Reichenbauer H, Schillinger W, Baldis S, Hausleiter J, Bauer C, et al. (2013) Clinical outcomes through 12 months in patients with degenerative mitral regurgitation treated with the MitraClip® device in the ACCESS-EU/Europe Phase I trial. Eur J Cardiothorac Surg 44: e320–21.
13. Koch CG, Weng YS, Zhou SX, Savino JS, Mathew JP, et al. (2004) Mitral regurgitation treated with the MitraClip and Diabetes Mellitus.

Supporting Information

Checklist S1 CONSORT Checklist. (DOC)

Protocol S1 Trial Protocol. (DOC)

Acknowledgments

All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Author Contributions

Conceived and designed the experiments: TR MK TZ JB. Performed the experiments: KH RW CR ShH. Analyzed the data: CR RW KH ShH TR MK. Contributed reagents/materials/analysis tools: TR MK TZ JB. Wrote the paper: KH TZ JB CR ShH RW MK TR.
33. Parolari A, Pesce LL, Pacini D, Mazzanti V, Salis S, et al. (2012) Risk factors for perioperative acute kidney injury after adult cardiac surgery: role of perioperative management. Ann Thorac Surg 93: 584–91.
34. Ariyaratnam P, Bland M, Loubani M (2010) Risk factors and mortality associated with deep sternal wound infections following coronary bypass surgery with or without concomitant procedures in a UK population: A basis for a new risk model? Interact Cardiovasc Thorac Surg 11: 543–546.
35. Brown JR, Edwards FH, O’Connor GT, Ross CS, Furnary AP (2006) The diabetic disadvantage: historical outcomes measures in diabetic patients undergoing cardiac surgery — the pre-intravenous insulin era. Semin Thorac Cardiovasc Surg 18: 281–8.
36. Craver JM, Cohen C, Weintraub WS (1990) Case-matched comparison of mitral valve replacement and repair. Ann Thorac Surg 49: 964–9.
37. Fremes SE, Goldman BS, Ivanov J, Weisel RD, David TE, et al. (1989) Valvular surgery in the elderly. Circulation 80: 177–90.
38. Kappetein AP, Head SJ, Genereux P, Piazza N, van Mieghem NM, et al. (2013) Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. J Thorac Cardiovasc Surg 145: 6–23.