A Note on Minimal Hypersurfaces of an Odd Dimensional Sphere

Sharief Deshmukh 1,*, and Ibrahim Al-Dayel 2,*

1 Department of Mathematics, College of Science, King Saud University, P.O.Box-2455, Riyadh 11451, Saudi Arabia
2 Department of Mathematics and Statistics, College of Science, Imam Muhammad Ibn Saud Islamic University, P.O. Box-65892, Riyadh 11566, Saudi Arabia; iaaldayel@imamu.edu.sa

* Correspondence: shariefd@ksu.edu.sa

Received: 17 January 2020; Accepted: 11 February 2020; Published: 21 February 2020

Abstract: We obtain the Wang-type integral inequalities for compact minimal hypersurfaces in the unit sphere S^{2n+1} with Sasakian structure and use these inequalities to find two characterizations of minimal Clifford hypersurfaces in the unit sphere S^{2n+1}.

Keywords: clifford minimal hypersurfaces; sasakian structure; integral inequalities; reeb function; contact vector field

MSC: 53C40; 53C42; 53C25

1. Introduction

Let M be a compact minimal hypersurface of the unit sphere S^{n+1} with shape operator A. In his pioneering work, Simons [1] has shown that on a compact minimal hypersurface M of the unit sphere S^{n+1} either $A = 0$ (totally geodesic), or $\|A\|^2 = n$, or $\|A\|^2 (p) > n$ for some point $p \in M$, where $\|A\|$ is the length of the shape operator. This work was further extended in [2] and for compact constant mean curvature hypersurfaces in [3]. If for every point p in M, the square of the length of the second fundamental form of M is n, then it is known that M must be a subset of a Clifford minimal hypersurface

$$S^l \left(\sqrt{\frac{l}{n}} \right) \times S^m \left(\sqrt{\frac{m}{n}} \right),$$

where l, m are positive integers, $l + m = n$ (cf. Theorem 3 in [4]). Note that this result was independently proven by Lawson [2] and Chern, do Carmo, and Kobayashi [5]. One of the interesting questions in differential geometry of minimal hypersurfaces of the unit sphere S^{n+1} is to characterize minimal Clifford hypersurfaces. Minimal hypersurfaces have also been studied in (cf. [6–8]). In [2], bounds on Ricci curvature are used to find a characterization of the minimal Clifford hypersurfaces in the unit sphere S^4. Similarly in [3,9–11], the authors have characterized minimal Clifford hypersurfaces in the odd-dimensional unit spheres S^3 and S^5 using constant contact angle. Wang [12] studied compact minimal hypersurfaces in the unit sphere S^{n+1} with two distinct principal curvatures, one of them being simple and obtained the following integral inequality,

$$\int_M \|A\|^2 \leq n\text{Vol}(M),$$
where \(Vol(M) \) is the volume of \(M \). Moreover, he proved that equality in the above inequality holds if and only if \(M \) is the Clifford hypersurface,

\[
S^1 \left(\sqrt{\frac{T}{n}} \right) \times S^m \left(\sqrt{\frac{n - 1}{n}} \right).
\]

In this paper, we are interested in studying compact minimal hypersurfaces of the unit sphere \(S^{2n+1} \) using the Sasakian structure \((\varphi, \xi, \eta, g)\) (cf. [13]) and finding characterizations of minimal Clifford hypersurface of \(S^{2n+1} \). On a compact minimal hypersurface \(M \) of the unit sphere \(S^{2n+1} \), we denote by \(N \) the unit normal vector field and define a smooth function \(f = g(\xi, N) \), which we call the Reeb function of the minimal hypersurface \(M \). Also, on the hypersurface \(M \), we have a smooth vector field \(v = \varphi(N) \), which we call the contact vector field of the hypersurface (\(v \) being orthogonal to \(\xi \) belongs to contact distribution). Instead of demanding two distinct principal curvatures one being simple, we ask the contact vector field \(v \) of the minimal hypersurface in \(S^{2n+1} \) to be conformal vector field and obtain an inequality similar to Wang’s inequality and show that the equality holds if and only if \(M \) is isometric to a Clifford hypersurface. Indeed we prove

Theorem 1. Let \(M \) be a compact minimal hypersurface of the unit sphere \(S^{2n+1} \) with Reeb function \(f \) and contact vector field \(v \) a conformal vector field on \(M \). Then,

\[
\int_M (1 - f^2) \|A\|^2 \leq 2n \int_M (1 - f^2)
\]

and the equality holds if and only if \(M \) is isometric to the Clifford hypersurface \(S^l \left(\sqrt{\frac{l}{2n}} \right) \times S^m \left(\sqrt{\frac{m}{2n}} \right) \),

where \(l + m = 2n \).

Also in [12], Wang studied embedded compact minimal non-totally geodesic hypersurfaces in \(S^{n+1} \) those are symmetric with respect to \(n + 2 \) pair-wise orthogonal hyperplanes of \(R^{n+2} \). If \(M \) is such a hypersurface, then it is proved that

\[
\int_M \|A\|^2 \geq nVol(M),
\]

and the equality holds precisely if \(M \) is a Clifford hypersurface. Note that compact embedded hypersurface has huge advantage over the compact immersed hypersurface, as it divides the ambient unit sphere \(S^n \) into two connected components.

In our next result, we consider compact immersed minimal hypersurface \(M \) of the unit sphere \(S^{2n+1} \) such that the Reeb function \(f \) is a constant along the integral curves of the contact vector field \(v \) and show that above inequality of Wang holds, and we get another characterization of minimal Clifford hypersurface in the unit sphere \(S^{2n+1} \). Precisely, we prove the following.

Theorem 2. Let \(M \) be a compact minimal hypersurface of the unit sphere \(S^{2n+1} \) with Reeb function \(f \) a constant along the integral curves of the contact vector field \(v \). Then,

\[
\int_M \|A\|^2 \geq 2nVol(M)
\]

and the equality holds if and only if \(M \) is isometric to the Clifford hypersurface \(S^l \left(\sqrt{\frac{l}{2n}} \right) \times S^m \left(\sqrt{\frac{m}{2n}} \right) \),

where \(l + m = 2n \).
2. Preliminaries

Recall that conformal vector fields play an important role in the geometry of a Riemannian manifold. A conformal vector field v on a Riemannian manifold (M, g) has local flow consisting of conformal transformations, which is equivalent to

$$L_v g = 2\rho g. \quad (1)$$

The smooth function ρ appearing in Equation (1) defined on M is called the potential function of the conformal vector field v. We denote by (φ, ξ, η, g) the Sasakian structure on the unit sphere S^{2n+1} as a totally umbilical real hypersurface of the complex space form $(\mathbb{C}^{n+1}, \mathcal{J}, \langle \cdot, \cdot \rangle)$, where \mathcal{J} is the complex structure and $\langle \cdot, \cdot \rangle$ is the Euclidean Hermitian metric. The Sasakian structure (φ, ξ, η, g) on S^{2n+1} consists of a $(1,1)$ skew symmetric tensor field φ, a smooth unit vector field ξ, a smooth 1-form η dual to ξ, and the induced metric g on S^{2n+1} as real hypersurface of C^{n+1} and they satisfy (cf. [13])

$$\varphi^2 = -I + \eta \otimes \xi, \quad \eta \circ \varphi = 0, \quad \eta(\xi) = 1, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y), \quad (2)$$

and

$$(\nabla \varphi) (X, Y) = g(X, Y)\xi - \eta(Y)X, \quad \nabla_X \xi = -\varphi X, \quad (3)$$

where X, Y are smooth vector fields, ∇ is Riemannian connection on S^{2n+1} and the covariant derivative

$$(\nabla \varphi)(X, Y) = \nabla_X \varphi Y - \varphi (\nabla_X Y).$$

We denote by N and A the unit normal and the shape operator of the hypersurface M of the unit sphere S^{2n+1}. We denote the induced metric on the hypersurface M by the same letter g and denote by ∇ the Riemannian connection on the hypersurface M with respect to the induced metric g. Then, the fundamental equations of hypersurface are given by (cf. [14])

$$\nabla_X Y = \nabla_X Y + g(AX, Y), \quad \nabla_X N = -AX, \quad X, Y \in \mathcal{X}(M), \quad (4)$$

$$R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(AY, Z)AX - g(AX, Z)AY, \quad (5)$$

$$(\nabla A)(X, Y) = (\nabla A)(Y, X), \quad X, Y \in \mathcal{X}(M), \quad (6)$$

where $\mathcal{X}(M)$ is the Lie algebra of smooth vector fields and $R(X, Y)Z$ is the curvature tensor field of the hypersurface M. The Ricci tensor of the minimal hypersurface M of the unit sphere S^{2n+1} is given by

$$\text{Ric}(X, Y) = (2n - 1)g(X, Y) - g(AX, AY), \quad X, Y \in \mathcal{X}(M) \quad (7)$$

and

$$\sum_{i=1}^{2n} (\nabla A)(e_i, e_i) = 0 \quad (8)$$

holds for a local orthonormal frame $\{e_1, \ldots, e_{2n}\}$ on the minimal hypersurface M.

Using the Sasakian structure (φ, ξ, η, g) on the unit sphere S^{2n+1}, we analyze the induced structure on a hypersurface M of S^{2n+1}. First, we have a smooth function f on the hypersurface M defined by $f = g(\xi, N)$, which we call the Reeb function of the hypersurface M, where N is the unit normal vector field. As the operator φ is skew symmetric, we get a vector field $v = \varphi N$ defined on M, which we call the contact vector field of the hypersurface M. Note that the vector field v is orthogonal to ξ, and therefore lies in the contact distribution of the Sasakian manifold S^{2n+1}. We denote by $u = \xi^T$ the tangential component of ξ to the hypersurface M and, consequently, we have $\xi = u + fN$. Let α and β be smooth 1-forms on M dual to the vector fields u and v, respectively, that is, $\alpha(X) = g(X, u)$ and $\beta(X) = g(X, v), X \in \mathcal{X}(M)$. For $X \in \mathcal{X}(M)$, we set $JX = (\varphi X)^T$ the tangential component of φX to the hypersurface, which gives a skew symmetric $(1,1)$ tensor field J on the hypersurface M. It follows
that $\varphi X = JX - \beta(X)N$. Thus, we get a structure $(J, u, v, \alpha, \beta, f, g)$ on the hypersurface M and using properties in Equations (2) and (3) of the Sasakian structure (φ, ξ, η, g) on the unit sphere S^{2n+1} and Equation (4), it is straightforward to see that the structure $(J, u, v, \alpha, \beta, f, g)$ on the hypersurface M has the properties described in the following Lemma.

Lemma 1. Let M be a hypersurface of the unit sphere S^{2n+1}. Then, M admits the structure $(J, u, v, \alpha, \beta, f, g)$ satisfying

(i) $f^2 = -1 + \alpha \otimes u + \beta \otimes v,$

(ii) $Ju = -f v,$ $Jv = fu,$

(iii) $g(JX, JY) = g(X, Y) - \alpha(X)\alpha(Y) - \beta(X)\beta(Y),$

(iv) $\nabla_X u = -fX + fAX,$ $\nabla_X v = -fX - fAX,$

(v) $(\nabla f)(X, Y) = g(X, Y)u - \alpha(Y)X + g(AX, Y)v - \beta(Y)AX,$

(vi) $\nabla f = -Au + v,$

(vii) $\|u\|^2 = \|v\|^2 = (1 - f^2),$ $g(u, v) = 0,$

where ∇f is the gradient of the Reeb function f.

Let Δf be the Laplacian of the Reeb function f of the minimal hypersurface M of the unit sphere S^{2n+1} defined by $\Delta f = \text{div} \nabla f$. Then using Lemma 1 and $\frac{1}{2} \Delta f^2 = f \Delta f + \|\nabla f\|^2$ and Equations (6) and (8), we get the following:

Lemma 2. Let M be a minimal hypersurface of the unit sphere S^{2n+1}. Then, the Reeb function f satisfies

(i) $\Delta f = -\left(2n + \|A\|^2\right)f,$

(ii) $\frac{1}{2} \Delta f^2 = -\left(2n + \|A\|^2\right)f^2 + \|\nabla f\|^2.$

On the hypersurface M of the unit sphere S^{2n+1}, we define a $(1, 1)$ tensor field $\Psi = JA - AJ$, then it follows that $g(\Psi X, Y) = g(X, \Psi Y), X, Y \in \mathcal{X}(M)$, that is, Ψ is symmetric and that $tr \Psi = 0$. Next, we prove the following:

Lemma 3. Let M be a compact minimal hypersurface of the unit sphere S^{2n+1}. Then,

$$\int_M \left(1 - f^2\right) \|A\|^2 = \int_M \left(2n - 2n(2n + 1)f^2 + \frac{1}{2} \|\Psi\|^2\right).$$

Proof. Using Equation (7), we have $Ric(v, v) = (2n - 1) \|v\|^2 - \|Av\|^2$. Now, using Lemma 1, we get

$$(\mathcal{L}_0 \Psi)(X, Y) = -2f g(X, Y) - g(\Psi X, Y),$$

which on using the fact that $tr \Psi = 0$, gives

$$|\mathcal{L}_0 \Psi|^2 = 8nf^2 + \|\Psi\|^2.$$

Also, using (iii) of Lemma 1, we have

$$\|JA\|^2 = \|A\|^2 - \|Au\|^2 - \|Av\|^2,$$

which together with second equation in (iv) of Lemma 1 and the fact that $tr JA = 0$, implies

$$\|\nabla v\|^2 = 2nf^2 + \|A\|^2 - \|Au\|^2 - \|Av\|^2.$$
Note that second equation in (iv) of Lemma 1 also gives
\[
\text{div} v = -2nf.
\]

Now, inserting above values in the following Yano’s integral formula (cf. [15])
\[
\int_M \left(Ric(v,v) + \frac{1}{2} |\mathcal{L}_v g|^2 - ||\nabla v||^2 - (\text{div} v)^2 \right) = 0,
\]
we get
\[
\int_M \left((2n-1) ||v||^2 + 2nf^2 + \frac{1}{2} ||\Psi||^2 - ||A||^2 + ||Au||^2 - 4n^2 f^2 \right) = 0. \tag{9}
\]

Also, (vi) of Lemma 1, gives \(Au = v - \nabla f\), that is, \(||Au||^2 = ||v||^2 + ||\nabla f||^2 - 2v(f)\), which on using \(\text{div}(fv) = v(f) + f\text{div} v = v(f) - 2nf\), gives
\[
||Au||^2 = ||v||^2 + ||\nabla f||^2 - 2\text{div}(fv) - 4nf^2.
\]

Inserting above value of \(||Au||^2\) in Equation (9), yields
\[
\int_M \left(2n ||v||^2 - 2nf^2 + \frac{1}{2} ||\Psi||^2 - ||A||^2 + ||\nabla f||^2 - 4n^2 f^2 \right) = 0. \tag{10}
\]

Integrating (ii) of Lemma 2, we get
\[
\int_M ||\nabla f||^2 = \int_M \left(2n + ||A||^2 \right) f^2,
\]
which together with \(||v||^2 = 1 - f^2\) and Equation (10) proves the integral formula. \(\square\)

Lemma 4. Let \(M\) be a minimal hypersurface of the unit sphere \(S^{2n+1}\). Then, the contact vector field \(v\) is a conformal vector field if and only if \(JA = AJ\).

Proof. Suppose that \(JA = AJ\). Then, using Lemma 1 and symmetry of shape operator \(A\) and skew symmetry of the operator \(J\), we have
\[
(\mathcal{L}_v g)(X,Y) = g(\nabla_X v, Y) + g(\nabla_Y v, X) = -2f g(X,Y), \quad X \in \mathfrak{X}(M),
\]
which proves that \(v\) is a conformal vector field with potential function \(-f\). Conversely, suppose \(v\) is conformal vector field with potential function \(\rho\). Then, using Equation (1), we have
\[
(\mathcal{L}_v g)(X,Y) = g(\nabla_X v, Y) + g(\nabla_Y v, X) = 2\rho g(X,Y),
\]
which on using Lemma 1, gives
\[
g(-JAX - fX,Y) + g(-JAY - fY,X) = 2\rho g(X,Y),
\]
that is,
\[
g(AJX - JAX,Y) = 2(\rho + f) g(X,Y).
\]

Choosing a local orthonormal frame \(\{e_1, \ldots, e_{2n}\}\) on the minimal hypersurface \(M\) and taking \(X = Y = e_i\) in above equation and summing, we get \(\rho = -f\). This gives \(g(AJX - JAX,Y) = 0\), \(X, Y \in \mathfrak{X}(M)\), that is, \(JA = AJ\). \(\square\)
Lemma 5. Let M be a minimal hypersurface of the unit sphere S^{2n+1}. If the contact vector field v is a conformal vector field on M, then

$$A_H = \frac{\|A\|^2}{2n}v.$$

Proof. Suppose v is a conformal vector field. Then, by Lemma 4, we have $fA = Af$. Note that for the Hessian operator A_f of the Reeb function f using Lemma 1, we have

$$A_f(X) = \nabla_X \nabla f = \nabla_X(v - Au) = -fX - \nabla_X Au, \quad X \in \mathfrak{X}(M),$$

which on using (vi) of Lemma 1, gives

$$A_f(X) = -f(X + A^2X) - (\nabla A)(X, u).$$

Taking covariant derivative in above equation gives

$$\left(\nabla A_f\right)(X, Y) = -X(f)((Y + A^2Y) - f \left(\nabla A^2\right)(X, Y) - \left(\nabla^2 A\right)(X, Y, u) + (\nabla A)(Y, AX) - f (\nabla A)(Y, AX),$$

where we used (iv) of Lemma 1. Now, on taking a local orthonormal frame $\{e_1, \ldots, e_{2n}\}$ on the minimal hypersurface M and taking $X = Y = e_i$ in above equation and summing, we get

$$\sum_{i=1}^{2n} \left(\nabla A_f\right)(e_i, e_i) = -\nabla f - A^2 \nabla f - f \sum_{i=1}^{2n} \left(\nabla A^2\right)(e_i, e_i) - \sum_{i=1}^{2n} \left(\nabla^2 A\right)(e_i, e_i, u) + \sum_{i=1}^{2n} \left(\nabla A\right)(e_i, Ae_i).$$

Note that for the minimal hypersurface, we have

$$\sum_{i=1}^{2n} \left(\nabla A\right)(e_i, Ae_i) = \sum_{i=1}^{2n} \left(\nabla A^2\right)(e_i, e_i) - \sum_{i=1}^{2n} \left(\nabla^2 A\right)(e_i, e_i, u) + \sum_{i=1}^{2n} \left(\nabla A\right)(e_i, J e_i).$$

Thus, the previous equation takes the form

$$\sum_{i=1}^{2n} \left(\nabla A_f\right)(e_i, e_i) = -\nabla f - A^2 \nabla f - 2f \sum_{i=1}^{2n} \left(\nabla A^2\right)(e_i, e_i) - \sum_{i=1}^{2n} \left(\nabla^2 A\right)(e_i, e_i, u) + \sum_{i=1}^{2n} \left(\nabla A\right)(e_i, J e_i). \quad (11)$$

Now, using the definition of Hessian operator, we have

$$R(X, Y)\nabla f = \left(\nabla A_f\right)(X, Y) - \left(\nabla A_f\right)(Y, X),$$

which gives

$$\text{Ric}(Y, \nabla f) = g \left(Y_i \sum_{i=1}^{2n} \left(\nabla A_f\right)(e_i, e_i) - Y(Af) \right)$$

and we conclude

$$Q(\nabla f) = -\nabla(\Delta f) + \sum_{i=1}^{2n} \left(\nabla A_f\right)(e_i, e_i), \quad (12)$$
where Q is the Ricci operator defined by $Ric(X,Y) = g(QX,Y)$, $X,Y \in \mathfrak{X}(M)$. Using (i) of Lemma 2, we have
\[
\nabla (\Delta f) = -2n \nabla f - \|A\|^2 \nabla f - f \nabla \|A\|^2
\]
and, consequently, using $Q(X) = (2n - 1)X - A^2X$ (outcome of Equation (7)), the Equation (12) takes the form
\[
\sum_{i=1}^{2n} (\nabla A_f) (e_i, e_i) = (2n - 1) \nabla f - A^2 (\nabla f) - 2n \nabla f - \|A\|^2 \nabla f - f \nabla \|A\|^2,
\]
that is,
\[
\sum_{i=1}^{2n} (\nabla A_f) (e_i, e_i) = -\nabla f - A^2 (\nabla f) - \|A\|^2 \nabla f - f \nabla \|A\|^2. \quad (13)
\]
Also, note that
\[
X (\|A\|^2) = X \left(\sum_{i=1}^{2n} g(Ae_i, Ae_i) \right) = 2 \sum_{i=1}^{2n} g((\nabla A) (X, e_i), Ae_i) = 2 \sum_{i=1}^{2n} g(X, (\nabla A) (e_i, Ae_i)),
\]
where we have used Equation (6) and symmetry of the shape operator A. Therefore, the gradient of the function $\|A\|^2$ is
\[
\nabla \|A\|^2 = 2 \sum_{i=1}^{2n} (\nabla A) (e_i, Ae_i),
\]
and, consequently, Equation (13), takes the form
\[
\sum_{i=1}^{2n} (\nabla A_f) (e_i, e_i) = -\nabla f - A^2 (\nabla f) - \|A\|^2 \nabla f - 2f \sum_{i=1}^{2n} (\nabla A) (e_i, Ae_i). \quad (14)
\]
Using Equations (11) and (14), we conclude
\[
-\|A\|^2 \nabla f = -\sum_{i=1}^{2n} (\nabla^2 A) (e_i, e_i, u) + \sum_{i=1}^{2n} (\nabla A) (e_i, Je_i). \quad (15)
\]
Now, using Equations (6) and (8) and the Ricci identity, we have
\[
\sum_{i=1}^{2n} (\nabla^2 A) (e_i, e_i, u) = \sum_{i=1}^{2n} (\nabla^2 A) (e_i, u, e_i) = \sum_{i=1}^{2n} (R(e_i, u) Ae_i - AR(e_i, u)e_i),
\]
which on using Equation (5) and $trA = 0$ gives
\[
\sum_{i=1}^{2n} (\nabla^2 A) (e_i, e_i, u) = -\|A\|^2 Au + 2n Au. \quad (16)
\]
Also, using $JA = AJ$, we have
\[
\sum_{i=1}^{2n} (\nabla A) (e_i, je_i) = \sum_{i=1}^{2n} (\nabla e_i J Ae_i - A ((\nabla J) (e_i, e_i) + J (\nabla e_i e_i)) = \sum_{i=1}^{2n} ((\nabla J) (e_i, Ae_i) - A ((\nabla J) (e_i, e_i)),
\]
which on using (v) of Lemma 1, yields

$$\sum_{i=1}^{2n} (\nabla A) (e_i, Je_i) = \|A\|^2 v - 2nAu. \quad (17)$$

Finally, using (vi) of Lemma 1 and Equations (16) and (17) in Equation (15), we get

$$- \|A\|^2 (Au + v) = \|A\|^2 Au - 2nAu + \|A\|^2 v - 2nAu$$

and this proves the Lemma. \(\blacksquare\)

3. Proof of Theorem 1

As the contact vector field \(v\) is a conformal vector field by Lemma 4, we have \(JA = AJ\), that is, \(\Psi = 0\). Then Lemma 3 implies

$$\int_M (1 - f^2) \|A\|^2 = \int_M (2n - 2n(2n + 1)f^2),$$

that is,

$$\int_M (1 - f^2) \|A\|^2 = \int_M (2n(1 - f^2) - 4nf^2). \quad (18)$$

Therefore, we get the inequality

$$\int_M (1 - f^2) \|A\|^2 \leq \int_M 2n(1 - f^2).$$

Moreover, if the equality holds, then by Equation (18), we get \(f = 0\), which in view of (vi), (vii) of Lemma 1, we conclude that \(Au = v\) and that the contact vector field \(v\) is a unit vector field. As \(v\) is a conformal vector field, combining \(Au = v\) with Lemma 5, we get \(\|A\|^2 v = 2nv\), that is, \(\|A\|^2 = 2n\). Therefore, \(M\) is a Clifford hypersurface (cf. [5]).

The converse is trivial.

4. Proof of Theorem 2

As the Reeb function \(f\) is a constant along the integral curves of the contact vector field \(v\), we have \(v(f) = 0\). Note that \(\text{div}(fv) = v(f) + f\text{div}v = -2nf^2\), which on integration gives \(f = 0\), and consequently, the contact vector field \(v\) is a unit vector field. Then Lemma 3, implies

$$\int_M \|A\|^2 = \int_M \left(2n + \frac{1}{2} \|\Psi\|^2\right), \quad (19)$$

which proves the inequality

$$\int_M \|A\|^2 \geq 2n\text{Vol}(M).$$

If the equality holds, then by Equation (4.1), we get that \(\Psi = 0\), that is, \(JA = AJ\). Thus, by Lemma 4, the contact vector field \(v\) is a conformal vector field. Using Lemma 5, we get \(\|A\|^2 = 2n\). Therefore, \(M\) is a Clifford hypersurface (cf. [5]).

The converse is trivial.

Author Contributions: Conceptualization, S.D. and I.A.-D.; methodology, S.D.; software, I.A.-D.; validation, S.D. and I.A.-D.; formal analysis, S.D.; investigation, I.A.-D.; resources, S.D.; data curation, I.A.-D.; writing—original draft preparation, S.D. and I.A.-D.; writing—review and editing, S.D. and I.A.-D.; visualization, I.A.-D.; supervision, S.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Acknowledgments: This work is supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Simons, J. Minimal varieties in riemannian manifolds. *Ann. Math.* **1968**, *88*, 62–105. [CrossRef]
2. Lawson, H.B., Jr. Local rigidity theorems for minimal hypersurfaces. *Ann. Math.* **1969**, *89*, 187–197. [CrossRef]
3. Min, S.H.; Seo, K. A characterization of Clifford hypersurfaces among embedded constant mean curvature hypersurfaces in a unit sphere. *Math. Res. Lett.* **2017**, *24*, 503–534. [CrossRef]
4. Perdomo, O. Rigidity of minimal hypersurface of spheres with constant Ricci curvature. *Rev. Colomb. Mat.* **2004**, *38*, 73–85.
5. Chern, S.S.; Carmo, M.D.; Kobayashi, S. Minimal submanifolds of a sphere with second fundamental form of constant length. In *Functional Analysis and Related Fields*; Springer: New York, NY, USA, 1970; pp. 59–75.
6. Lei, L.; Xu, H.; Xu, Z. On Chern’s conjecture for minimal hypersurface in spheres. *arXiv* **2017**, arXiv:1712.01175.
7. Perdomo, O. Another proof for the rigidity of Clifford minimal hypersurfaces of S^n. *Mat. Ins. Univ.* **2005**, *13*, 1–6.
8. Sun, H.; Ogiue, K. Minimal hypersurfaces of unit sphere. *Tohoku Math. J.* **1997**, *149*, 423–429. [CrossRef]
9. Haizhong, L. A characterization of Clifford minimal hypersurfaces in S^3. *PAMS* **1995**, *123*, 3183–3187. [CrossRef]
10. Montes, R.R.; Verderesi, J.A. Minimal surfaces in S^3 with constant contact angle. *Monatsh. Math.* **2009**, *157*, 379–386. [CrossRef]
11. Montes, R.R.; Verderesi, J.A. Contact angle for immersed surfaces in S^{2n+1}. *Diff. Geom. Appl.* **2007**, *25*, 2–100. [CrossRef]
12. Wang, Q. Rigidity of Clifford minimal hypersurfaces. *Monatsh. Math.* **2003**, *140*, 163–167. [CrossRef]
13. Blair, D.E. *Contact Manifolds in Riemannian Geometry*; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1976; Volume 509.
14. Chen, B.-Y. *Total Mean Curvature and Submanifolds of Finite Type, Volume 1 of Series in Pure Mathematics*; World Scientific Publishing Co.: Singapore, 1984.
15. Yano, K. *Integral Formulas in Riemannian Geometry*; Marcel Dekker: New York, NY, USA, 1970.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).