On The Existence of Periodic Solutions for a Certain System of Third Order Nonlinear Differential Equations

MUZAFFER ATES
Van Technical School, University of Yuzuncu Yil, 65080, Van, TURKEY
ates.muzaffer@yahoo.com

Abstract

In this paper, we study the existence and uniqueness of periodic solutions of the differential equation of the form

\[\ddot{X} + F(X, \dot{X}, \dot{X}) \dot{X} + G(X, \dot{X}) \dot{X} + H(X) = P(t, X, \dot{X}, \ddot{X}). \]

Here, we obtain some sufficient conditions which guarantee the existence of periodic solutions. This equation is a quite general third-order nonlinear vector differential equation, and one example is given for illustration of the subject.

1. Introduction

There have been done many studies concerning the problem of qualitative behaviors of solutions of certain third order nonlinear scalar and vector differential equations, see [1–11]. However, there are only a few papers on the existence and uniqueness of periodic solutions of third order nonlinear vector differential equations without any example. Some of them can be summarized here as follows:

In 1995, Feng [3] considered the differential equation of the form

\[\ddot{X} + A(t) \dot{X} + B(t) \dot{X} + H(X) = P(t, X, \dot{X}, \ddot{X}). \]

He proved the existence and uniqueness of periodic solution. Later, Tiryaki [6] investigated the boundedness and periodicity results of the solutions of vector differential equation

\[\ddot{X} + A \dot{X} + G(\dot{X}) + H(X) = P(t, X, \dot{X}, \ddot{X}). \]

Similarly, Tunç [7] proved some results on the boundedness and periodicity of the solutions of the vector differential equation

\[\ddot{X} + F(X, X) \dot{X} + B \dot{X} + H(X) = P(t, X, \dot{X}, \ddot{X}). \]

Recently, Tunç and Ates [9] studied the existence and uniqueness of periodic solutions of third order nonlinear differential equations

\[\ddot{X} + A(t) \dot{X} + G(\dot{X}) + H(X) = P(t, X, \dot{X}, \ddot{X}), \]

and

\[\ddot{X} + F(X, \dot{X}) \dot{X} + B(t) \dot{X} + H(X) = P(t, X, \dot{X}, \ddot{X}). \]

Keywords: Periodic solutions; third order nonlinear differential equations.
AMS Subject Classification: 34C25.
In this paper, we consider the nonlinear vector differential equation

\[
\ddot{X} + F(X, X, \dot{X}) \dot{X} + G(X, X) \dot{X} + H(X) = P(t, X, \dot{X}, \ddot{X})
\]

(1.1)

where \(X \in \mathbb{R}^n \) and \(t \in [0, \infty) \); \(F \) and \(G \) are \(n \times n \) - symmetric continuous matrix functions; \(H : \mathbb{R}^n \rightarrow \mathbb{R}^n \) and \(P : \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \), and \(P \) is a periodic function, that is,

\[
P(t + \omega, X, \dot{X}, \ddot{X}) = P(t, X, \dot{X}, \ddot{X}), \quad \omega > 0 \text{ is period.}
\]

Given any \(X, Y \) in \(\mathbb{R}^n \), the symbol \(\langle X, Y \rangle \) is used to denote the usual scalar product in \(\mathbb{R}^n \), that is, \(\langle X, Y \rangle = \sum_{i=1}^n x_i y_i \), thus \(\langle X, X \rangle = \|X\|^2 \).

Throughout this paper we assume that the following:

There exist \(n \times n \) real constant symmetric matrices \(A, B \) and an \(n \times n \) operator \(A(X, Y) \), such that \(H(X) = H(Y) + A(X, Y)(X - Y) \)

(1.2)

for which the eigenvalues \(\lambda_i(A(X, Y)) \) are continuous and satisfy

\[
0 < \delta_h \leq \lambda_i(A(X, Y)) \leq \Delta_h
\]

(1.3)

for fixed constants \(\delta_h \) and \(\Delta_h \).

We shall assume that \(\Delta_h \leq k\delta_h \Delta_h \), \(k < 1 \)

where

\[
k = \min \left\{ \frac{1}{8} \left(\frac{1}{2} \frac{\delta_h}{\delta_a \Delta_a} \right) \right\}.
\]

(1.4)

The eigenvalues of the related matrices are such that

\[
0 < \delta_a = \min \{\lambda_i(A), \lambda_i(F(X, Y, Z))\}, \quad \Delta_a = \max \{\lambda_i(A), \lambda_i(F(X, Y, Z))\}
\]

and

\[
0 < \delta_b = \min \{\lambda_i(B), \lambda_i(G(X, Y))\}, \quad \Delta_b = \max \{\lambda_i(B), \lambda_i(G(X, Y))\}
\]

\[
0 < \lambda_i(F(X, Y, Z) - A) \leq \frac{\sqrt{\epsilon}}{2}, \quad 0 < \lambda_i(G(X, Y) - B) \leq \frac{\sqrt{\epsilon}}{2},
\]

\((i = 1, 2, \ldots , n) \),

where

\[
\sqrt{\epsilon} \leq \min \left\{ \frac{\delta_a \delta_h}{4\Delta_h + 4\delta_a \Delta_a}, \frac{\delta_a}{6\Delta_a + 7}, \frac{1}{2} \right\}.
\]

(1.5)

Remark. Motivation of this study has been based on that of Feng [3], Tiryaki [6], Tunç [7], Tunç and Ateş [9]. Equation (1.1) is a quite general third-order nonlinear vector differential equation. In particular, many third-order differential equations which have been discussed in [1-11] are special cases of Eq. (1.1).
2. Main Result

Theorem: Suppose that

(i) there exists an \(n \times n \) real continuous operator \(A(X, Y) \) for any vectors \(X, Y \) in \(\mathbb{R}^n \), such that

\[
H(X) = H(Y) + A(X, Y)(X - Y)
\]

whose eigenvalues \(\lambda_i(A(X, Y)) \) \((i = 1, 2, \ldots, n) \) satisfy

\[
0 < \delta_h \leq \lambda_i(A(X, Y)) \leq \Delta_h
\]

for fixed constants \(\delta_h \) and \(\Delta_h \), and

\[
\Delta_h \leq k \delta_a \delta_b
\]

where the positive constant \(k \) to be determined later in the proof;

(ii) the symmetric matrices \(F \) and \(G \) have positive eigenvalues and commute with themselves as well as with the operator \(A(X, Y) \) for any vector \(X, Y, Z \) in \(\mathbb{R}^n \), and \(X, Y \) in \(\mathbb{R}^n \), respectively;

(iii) there exist finite constants \(\delta_0 \geq 0, \delta_1 \geq 0 \) such that the vector \(P \) satisfies

\[
\|P(t, X, Y, Z)\| \leq \delta_0 + \delta_1 (\|X\| + \|Y\| + \|Z\|)
\]

uniformly in \(t \geq 0 \) for all arbitrary \(X, Y, Z \) in \(\mathbb{R}^n \);

(iv) let \(0 < \varepsilon \leq 1 \)

where

\[
\sqrt{\varepsilon} \leq \min \left\{ \frac{\delta_0 \delta_h}{4 \Delta_h + 4}, \frac{\delta_1 \delta_b}{6 \Delta_a + 7}, \frac{\delta_a \delta_b}{2} \right\}.
\]

Then, if \(H(0) = 0 \) and \(\delta_1 \) is sufficiently small, then Eq. (1.1) has at least a periodic solution.

If \(P(t, X, Y, Z) = P(t) \), Eq. (1.1) has a unique periodic solution. Then, the condition (2.2) can be improved to

\[
\|P(t, X, Y, Z)\| \leq \theta_1(t) + \theta_2(t)(\|X\|^2 + \|Y\|^2 + \|Z\|^2)^{\frac{1}{2}}
\]

where \(\theta_1(t) \) and \(\theta_2(t) \) are continuous functions of \(t \) satisfying

\[
0 \leq \theta_1(t) < \alpha_0,
\]

\[
0 \leq \theta_2(t) < \alpha_1
\]

for all \(t \) in \(\mathbb{R} \).

In the subsequent discussion we require the following lemmas.

Lemma 1: Let \(D \) be a real symmetric \(n \times n \) matrix, then for any \(X \) in \(\mathbb{R}^n \) we have

\[
\delta_0 \|X\|^2 \leq \langle DX, X \rangle \leq \Delta_0 \|X\|^2
\]

where \(\delta_0, \Delta_0 \) are the least and the greatest eigenvalues of \(D \), respectively.

Proof: See [11].
Lemma 2: Let Q, D be any two real $n \times n$ commuting symmetric matrices.

Then

(i) the eigenvalues $\lambda_i(QD)$ ($i = 1, 2, \ldots, n$) of the product matrix QD

are all real and satisfy

$$\max_{1 \leq j, k \leq n} \lambda_j(Q)\lambda_k(D) \geq \lambda_i(QD) \geq \min_{1 \leq j, k \leq n} \lambda_j(Q)\lambda_k(D);$$

(ii) the eigenvalues $\lambda_i(Q + D)$ ($i = 1, 2, \ldots, n$) of the sum of the matrices Q and D are all real and satisfy

$$\min_{1 \leq j, k \leq n} \lambda_j(Q) + \max_{1 \leq j, k \leq n} \lambda_k(D) \geq \lambda_i(Q + D) \geq \min_{1 \leq j, k \leq n} \lambda_j(Q) + \min_{1 \leq j, k \leq n} \lambda_k(D).$$

Proof: See [11].

3. Proof of the Theorem

Proof. Our main tool in the proof is the vector Lyapunov function

$$V = V(t, X, Y, Z)$$

defined by

$$2V = \frac{1}{4} \langle BX, BX \rangle + \frac{3}{2} \langle BY, Y \rangle + \langle Z, Z \rangle + \langle Z + AY + \frac{1}{2} BX, Z + AY + \frac{1}{2} BX \rangle$$

(3.1)

where A and B are real $n \times n$ constant symmetric matrices.

Then, there exist positive constants δ_2 and δ_3 such that

$$\delta_2 \left(||X||^2 + ||Y||^2 + ||Z||^2 \right) \leq 2V \leq \delta_3 \left(||X||^2 + ||Y||^2 + ||Z||^2 \right),$$

(3.2)

Let us, for convenience, replace Eq. (1.1) by the equivalent form

$$\begin{cases}
\dot{X} = Y, \dot{Y} = Z \\
\dot{Z} = -F(X, Y, Z)Z - G(X, Y)Y - H(X) + P(t, X, Y, Z)
\end{cases}$$

(3.3)

Let (X, Y, Z) be any solution of (3.3), then the total derivative of V with respect to t along this solution path is

$$\dot{V} = \frac{d}{dt} V[X(t), Y(t), Z(t)] = -V_1 - V_2 - V_3 + V_4$$

(3.4)

where

$$V_1 = \frac{1}{8} \langle BX, H(X) \rangle + \langle H(X), AY \rangle + \frac{1}{4} \langle AY, G(X, Y)Y \rangle.$$
\[V_2 = \frac{1}{8} \langle BX, H(X) \rangle + \frac{1}{2} \langle F(X, Y, Z)Z, Z \rangle + 2 \langle H(X), Z \rangle \]

\[V_3 = \frac{1}{4} \langle BX, H(X) \rangle + \frac{1}{4} \langle AY, G(X, Y)Y \rangle + \frac{1}{2} \langle F(X, Y, Z)Z, Z \rangle \]

\[+ \frac{1}{2} \langle BX, (F(X, Y, Z) - A)Z \rangle + \frac{1}{2} \langle BX, (G(X, Y) - B)Y \rangle \]

\[+ \langle AY, (F(X, Y, Z) - A)Z \rangle + 2((G(X, Y) - B)Y, Z) \]

\[+ \langle (F(X, Y, Z) - A)Z, Z \rangle + \frac{1}{2} ((G(X, Y) - B)Y, AY) \]

\[V_4 = \left(\frac{1}{2} BX + AY + 2Z, P(t, X, Y, Z) \right). \]

From (1.2) we have

\[H(X) = H(0) + A(X,0)X. \]

Thus, if \(H(0) = 0 \) and condition (1.3) is satisfied, we obtain the following inequalities

\[\langle BX, H(X) \rangle = \langle BX, A(X,0)X \rangle \geq \delta_s \delta_h \|X\|^2; \]

\[\langle AY, G(X, Y) \rangle \geq \delta_s \delta_h \|Y\|^2; \]

\[\langle F(X, Y, Z)Z, Z \rangle \geq \delta_s \|Z\|^2. \]

Next, we give estimates for the other terms of \(\dot{V} \).

For some constants \(k_j > 0, (j=1,2,...,6) \), conveniently chosen later, we obtain

\[\langle H(X), AY \rangle = \frac{1}{2} \| k_1^{-1}(H(X) + k_1 AY) \|^2 - \frac{1}{2} k_1^{-2} \langle H(X), H(X) \rangle - \frac{1}{2} k_1^{-2} \langle AY, AY \rangle \]

\[\geq - \frac{1}{2} k_1^{-2} \delta_s \Delta_h \|X\|^2 - \frac{1}{2} k_1^{-2} \delta_a \Delta_a \|Y\|^2; \]

in a similar way we have the following

\[2 \langle H(X), Z \rangle \geq -k_2^{-2} \delta_s \Delta_h \|X\|^2 - k_2^{-2} \|Z\|^2; \]

\[\frac{1}{2} \langle BX, (F(X, Y, Z) - A)Z \rangle = \frac{1}{4} \left(k_3^{-1} \sqrt{B} \sqrt{F - AX} + k_3 \sqrt{B} \sqrt{F - AZ} \right)^2 \]
\[-\frac{1}{4} k_3^2 \langle BX, (F - A)X \rangle - \frac{1}{4} k_3^2 \langle BZ, (F - A)Z \rangle \]
\[\geq -\frac{1}{8} k_3^2 \Delta_h \sqrt{\varepsilon} \|X\|^2 - \frac{1}{8} k_3^2 \Delta_h \sqrt{\varepsilon} \|Z\|^2 \]
\[\geq -\Delta_h \sqrt{\varepsilon} \|X\|^2 - \frac{1}{3} \sqrt{\varepsilon} \|Z\|^2 \text{ for } k_3^2 = \min\left\{\frac{1}{8}, \frac{8}{3\Delta_h}\right\} ; \]

\[\frac{1}{2} \langle BX, (G(X, Y) - B)Y \rangle \geq -\frac{1}{4} k_4^2 \Delta_a \sqrt{\varepsilon} \|Y\|^2 - \frac{1}{4} k_4^2 \Delta_a \sqrt{\varepsilon} \|Z\|^2 \]
\[\geq -\sqrt{\varepsilon} \|X\|^2 - \frac{7}{4} \sqrt{\varepsilon} \|Y\|^2 \text{ for } k_4^2 = \min\left\{\frac{\Delta_a}{8}, \frac{14}{3\Delta_a}\right\} ; \]

\[\langle AY, (F(X, Y, Z) - A)Z \rangle \geq -\frac{1}{4} k_5^2 \Delta_a \sqrt{\varepsilon} \|Y\|^2 - \frac{1}{4} k_5^2 \Delta_a \sqrt{\varepsilon} \|Z\|^2 \]
\[\geq -\frac{3}{4} \Delta_a \sqrt{\varepsilon} \|Y\|^2 - \frac{1}{3} \sqrt{\varepsilon} \|Z\|^2 \text{ for } k_5^2 = \min\left\{\frac{1}{3}, \frac{4}{3\Delta_a}\right\} ; \]

\[2 \langle Z, (G(X, Y) - B)Y \rangle \geq -k_6^2 \frac{2 \sqrt{\varepsilon}}{3} \|Y\|^2 - k_6^2 \frac{2 \sqrt{\varepsilon}}{3} \|Z\|^2 \]
\[\geq -\frac{3}{4} \Delta_a \sqrt{\varepsilon} \|Y\|^2 - \frac{1}{3} \sqrt{\varepsilon} \|Z\|^2 \text{ for } k_6^2 = \min\left\{\frac{2}{3}, \frac{2}{\Delta_a}\right\} ; \]

and we are left with

\[\langle (F(X, Y, Z) - A)Z, Z \rangle + \frac{1}{2} \langle (G(X, Y) - B)Y, AY \rangle \geq 0 \]

because

\[\lambda_i [F(X, Y, Z) - A] \|Z\|^2 \geq 0 , \quad \lambda_i (A) \lambda_i [G(X, Y) - B] \|Y\|^2 \geq 0 . \]

Then, rearranging the terms of \(V_1, V_2 \) and \(V_3 \), we obtain the following

\[V_1 \geq \left(\frac{1}{8} \delta_b \Delta_h - \frac{1}{2} k_i^2 \delta_b \Delta_h \right) \|X\|^2 + \left(\frac{1}{4} \delta_b \Delta_h - \frac{1}{2} k_i^2 \delta_a \Delta_a \right) \|Y\|^2 \geq 0 \quad (3.5) \]

if we choose \(k_i^2 \leq \frac{1}{2} \frac{\delta_b}{\Delta_a} \) and \(\Delta_h \leq \frac{1}{8} \frac{\delta_b^2}{\Delta_a} \),

in a similar way \(V_2 \geq 0 \quad (3.6) \)
if we choose $k^2 \leq \frac{1}{2} \delta_a$ and $\Delta_h \leq \frac{1}{16} \delta_a \delta_b$

so we have $\Delta_h \leq k \delta_a \delta_b$

where

$$k = \min \left\{ \frac{1}{8} \left\{ \frac{1}{2} \delta_a \frac{\Delta_h}{\Delta_a} \right\}, \ (k < 1) \right\},$$

if we choose

$$V_3 \geq \frac{1}{4} \delta_a \delta_b - (\Delta_h + 1) \sqrt{\epsilon} \|X\|^2 + \frac{1}{4} \delta_a \delta_b - \frac{6 \Delta_a + 7}{4} \sqrt{\epsilon} \|Y\|^2 + \frac{1}{2} \delta_a - \sqrt{\epsilon} \|Z\|^2 \geq 0,$$

if we choose

$$\sqrt{\epsilon} \leq \min \left\{ \frac{\delta_a \delta_b}{4 \Delta_a + 4}, \frac{\delta_a \delta_b}{6 \Delta_a + 7}, \frac{\delta_a}{2} \right\}.$$

Then, $V_3 \geq \delta_4 (\|X\|^2 + \|Y\|^2 + \|Z\|^2)$

where, $\delta_4 = \min \left\{ \frac{1}{4} \delta_a \delta_b - (\Delta_h + 1) \sqrt{\epsilon}, \frac{1}{4} \delta_a \delta_b - \frac{6 \Delta_a + 7}{4} \sqrt{\epsilon}, \frac{1}{2} \delta_a - \sqrt{\epsilon} \right\}$.

Finally, we are left with V_1. Since $P(t, X, Y, Z)$ satisfies (2.2),

by Schwarz’s inequality we obtain

$$|V_3| \leq \left(\frac{1}{2} \Delta_a \|X\| + \Delta_a \|Y\| + 2 \|Z\| \right) \|P(t, X, Y, Z)\|

\leq \delta_5 \left(\|X\|^2 + \|Y\|^2 + \|Z\|^2 \right) \left(\delta_0 + \delta_1 \left(\|X\|^2 + \|Y\|^2 + \|Z\|^2 \right) \right)

\leq 3 \delta_0 \delta_5 \left(\|X\|^2 + \|Y\|^2 + \|Z\|^2 \right) + \sqrt{3} \delta_0 \delta_5 \left(\|X\|^2 + \|Y\|^2 + \|Z\|^2 \right)^{\frac{3}{2}}$$

where $\delta_5 = \max \left\{ \frac{1}{2} \Delta_h, \Delta_a, 2 \right\}$.

Combining the inequalities (3.5), (3.6), (3.7) and (3.8) in (3.4), we obtain

$$\dot{V} \leq -2 \delta_b \left(\|X\|^2 + \|Y\|^2 + \|Z\|^2 \right) + \delta_7 \left(\|X\|^2 + \|Y\|^2 + \|Z\|^2 \right)^{\frac{3}{2}}$$

where $\delta_b = \frac{1}{2} \min \{\delta_4, 3 \delta_a \delta_5\}$ and $\delta_7 = \sqrt{3} \delta_0 \delta_5$.

If we choose

$$\left(\|X\|^2 + \|Y\|^2 + \|Z\|^2 \right)^{\frac{1}{2}} \geq \delta_s = 2 \delta_7 \delta_b^{-1},$$

inequality (3.9) implies that

$$\dot{V} \leq -\delta_5 \left(\|X\|^2 + \|Y\|^2 + \|Z\|^2 \right)$$

in fact, we can obtain $\dot{V} \leq -1$ if we choose
\[
\left(\|X\|^2 + \|Y\|^2 + \|Z\|^2 \right) \leq \max \left\{ \delta_6^{-2}, \delta_8 \right\}.
\]

Now we can prove that for any solution \(V[X(t), Y(t), Z(t)] \) of (3.3) we ultimately have
\[
\left(\|X\|^2 + \|Y\|^2 + \|Z\|^2 \right) \leq \Delta_1
\]
where \(\Delta_1 \) is a positive constant.

Suppose on the contrary, we would have \(V(X(t), Y(t), Z(t)) \to \infty \) as \(t \to \infty \), which contradicts inequality (3.2) that \(V \) is non-negative. By using Yoshizawa’s Theorem ([10] Theorem 15.8), we know that Eq. (1.1) has at least a periodic solution.

If \(P(t, X, Y, Z) = P(t) \), let \([X_1(t), Y_1(t), Z_1(t)]\) and \([X_2(t), Y_2(t), Z_2(t)]\) be any solutions of (3.3), thus

\[
\begin{align*}
\dot{X}_1 &= Y_1, \quad \dot{Y}_1 = Z_1, \\
Z_1 &= -F(X_1, Y_1, Z_1)Z_1 - G(X_1, Y_1)Y_1 - H(X_1) + P(t) \\
\dot{X}_2 &= Y_2, \quad \dot{Y}_2 = Z_2, \\
Z_2 &= -F(X_2, Y_2, Z_2)Z_2 - G(X_2, Y_2)Y_2 - H(X_2) + P(t)
\end{align*}
\]

set \(\psi = X_1 - X_2, \quad \eta = Y_1 - Y_2, \quad \tau = Z_1 - Z_2 \), from (3.11) we obtain

\[
\begin{align*}
\dot{\psi} &= \eta, \quad \dot{\eta} = \tau, \\
\dot{\tau} &= -F(\psi, \eta, \tau)\tau - G(\psi, \eta)\eta - H(\psi)
\end{align*}
\]

Remark: Assume that Eq. (3.12) which obtained from Eq. (3.11) is true; because of the relevant literature. See Eq. (3.19) of [3], and, in particular \(2V(\xi, \eta, \zeta) \) of [3; p. 268] and [9].

Then, rearranging the Lyapunov function in terms of \(\psi, \eta, \tau \) we have
\[
2V(\psi, \eta, \tau) = \frac{1}{4} \langle B\psi, B\psi \rangle + \frac{3}{2} \langle B\eta, \eta \rangle + \langle \tau, \tau \rangle + \left(\frac{1}{2} B\psi + A\eta + \tau, \frac{1}{2} B\psi + A\eta + \tau \right).
\]

In view of (3.10) and (3.13) we have
\[
\dot{V}(\psi, \eta, \tau) \leq -\delta V(\psi, \eta, \tau)
\]
for some constant \(\delta > 0 \). By integrating both side of the inequality from 0 to \(t \) we obtain
\[V[\psi(t), \eta(t), \tau(t)] - V[\psi(0), \eta(0), \tau(0)] \leq -\delta \int_0^t V(\psi, \eta, \tau) \, dt \]

\[V[\psi(t), \eta(t), \tau(t)] \leq V[\psi(0), \eta(0), \tau(0)] - \delta \int_0^t V(\psi, \eta, \tau) \, dt \]

\[= K - \delta \int_0^t V(\psi, \eta, \tau) \, dt \]

and by using Gronwall-Reid Bellman inequality we can obtain

\[V[\psi(t), \eta(t), \tau(t)] \leq K \exp(-\delta \int_0^t V(\psi, \eta, \tau) \, dt) \]

\[\leq Ke^{-\delta t}. \]

Hence

\[\lim_{t \to \infty} \psi(t) = 0, \quad \lim_{t \to \infty} \eta(t) = 0, \quad \lim_{t \to \infty} \tau(t) = 0 \]

and this is the required result.

From Lasalle’s Theorem, we know that system (3.3) has a unique periodic solution.

The remaining of the proof can be completed by similar estimations arising in Tunç and Ateş [9].

4. Example. For \(n = 2 \)

\[F(X, Y, Z) = \begin{bmatrix} 2 + x^2 + y^2 + z^2 & 0 \\ 0 & 2(2 + x^2 + y^2 + z^2) \end{bmatrix}, \quad H(X) = \begin{bmatrix} x^2 \\ 2x^2 \end{bmatrix} \]

\[G(X, Y) = \begin{bmatrix} 1 + x^2 + y^2 & 0 \\ 0 & 2(1 + x^2 + y^2) \end{bmatrix}, \quad P(t, X, Y, Z) = \begin{bmatrix} xyz \cos(t + w) \\ 2xyz \cos(t + w) \end{bmatrix} \]

\[\lambda_1(F) = 2 + x^2 + y^2 + z^2 > 0, \quad \lambda_2(F) = 2(2 + x^2 + y^2 + z^2) > 0, \]

\[\lambda_1(G) = 1 + x^2 + y^2 > 0, \quad \lambda_2(G) = 2(1 + x^2 + y^2) > 0. \]

Acknowledgment

The author thanks the referee for correcting errors in the original manuscript and for helpful suggestions.
5. References

[1] Feng, C. H., On the existence of almost periodic solutions of nonlinear third order differential equations. *Annals of Differential Equations*, 9 (1993), no.4, 420-424.

[2] Feng, C. H., The existence of periodic solutions for a third order nonlinear differential equations. *(Chinese)* Gongcheng Shuxue Xuebao, 11 (1994), no.2, 113-117.

[3] Feng, C., On the existence of periodic solutions for a certain system of third order nonlinear differential equations. *Annals of Differential Equations*, 11 (1995), no.3, 264-269.

[4] Mehri, B.; Shadman, D., Periodic solutions of certain third order nonlinear differential equations. *Studia Scientiarum Mathematicarum Hungarica*, 33 (1997), no.4, 345-350.

[5] Meng, F. W., Ultimate boundedness results for a certain system of third order nonlinear differential equations. *J. Math. Anal. Appl.* 177 (1993), no.2, 496-509.

[6] Tiryaki, A., Boundedness and periodicity results for a certain system of third order nonlinear differential equations. *Indian J. Pure Appl. Math.*, 30 (1999), no. 4, 361-372.

[7] Tunc, C., On the boundedness and periodicity of the solutions of a certain vector differential equation of third order. *Applied Mathematics and Mechanics* (English Edition) 20 (1999), no. 2, 163-170.

[8] Tunc, C.; Ates, M., Stability and boundedness results for solutions of certain third order nonlinear vector differential equations. *Nonlinear Dynamics, Springer Netherlands*, (2006), no. 45, 273-281.

[9] Tunc, C.; Ates, M., On the periodicity results for solutions of some certain third order nonlinear differential equations. *Advances in Mathematical Sciences and Applications*, 16 (2006), no.1, 1-14.

[10] Yoshizawa, T., Stability theory and the existence of periodic solutions and almost periodic solutions. *Applied Mathematical Sciences*, Vol.14. Springer-Verlag, NewYork-Heidelberg, 1975.

[11] Afuwape, A.U., Ultimate boundedness results for a certain systems of third- order nonlinear differential equations. *Journal of Mathematical Analysis and Applications*, 97 (1983), no.1, 140-150.