Quantifying cryptic *Symbiodinium* diversity within *Orbicella faveolata* and *Orbicella franksi* at the Flower Garden Banks, Gulf of Mexico

The genetic composition of the resident *Symbiodinium* endosymbionts can strongly modulate the physiological performance of reef-building corals. Here, we used quantitative metabarcoding to investigate *Symbiodinium* genetic diversity in two species of mountainous star corals, *Orbicella franksi* and *Orbicella faveolata*, from two reefs separated by 19 kilometers of deep water. We aimed to determine if the frequency of different symbiont genotypes varied with respect to coral host species or geographic location. Our results demonstrate that across the two reefs both coral species contained seven haplotypes of *Symbiodinium*, all identifiable as clade B and most closely related to type B1. Five of these haplotypes have not been previously described and may be endemic to the Flower Garden Banks. No significant differences in symbiont composition were detected between the two coral species. However, significant quantitative differences were detected between the east and west banks for three background haplotypes comprising 0.1%-10% of the total. The quantitative metabarcoding approach described here can help to sensitively characterize cryptic genetic diversity of *Symbiodinium* and potentially contribute to the understanding of physiological variations among coral populations.
Elizabeth A. Green¹, Sarah W. Davies², Mikhail V. Matz², Mónica Medina³*

1. Quantitative and Systems Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
2. Department of Integrative Biology, The University of Texas at Austin, 1 University Station C0990, Austin, TX 78712, USA
3.* Department of Biology, Pennsylvania State University, 326 Mueller, University Park, PA 16801, USA, (814) 867-2958, monicamedina@psu.edu, Corresponding Author

Introduction
The symbiotic relationship between scleractinian corals and dinoflagellate algae in the genus *Symbiodinium* is well known, but there is still much to understand about the establishment and plasticity of this complex symbiosis. Knowledge of *Symbiodinium* taxonomic diversity has increased over the last two decades with advancing molecular genotyping techniques detecting novel genotypes within each of the nine recognized clades (*Coffroth & Santos 2005; Pochon & Gates 2010*). Some of these genotypes may impart different physiological benefits and evidence suggests that the genetic composition of the resident *Symbiodinium* population can strongly modulate fitness traits of the coral holobiont (*Rowan et al. 1997; Sampayo et al. 2008; Voolstra et al. 2009*).

Symbiodinium algae provide hosts with photosynthetic products critical for metabolic processes and calcification (*Muscatine & Cernichiari 1969; Muscatine et al. 1984; Trench 1987*). A malfunctioning symbiosis leads to a bleaching event where the algal cells are expelled resulting in a white coloration of the coral (*Glynn 1993; Hoegh-Guldberg 1999; Hoegh-Guldberg & Smith 1989*). The coral host may or may not recover from a bleaching event (*Lang et al. 1992; Marshall & Baird 2000*), which depends on the severity and duration of stress but also can strongly depend on the presence of minor frequency *Symbiodinium* taxa (i.e. genotypes) in the holobiont prior to bleaching (*Berkelmans & van Oppen 2006; Jones et al. 2008; LaJeunesse et al. 2010a; Putnam et al. 2012*). Understanding the flexibility of symbiosis between corals capable of housing a mixed infection (*Douglas 1998; LaJeunesse et al. 2003*) versus corals with supposedly strict specificity for one symbiont type (*Diekmann 2002; Sampayo et al. 2007*) will lead to a better understanding of the ability of corals to survive environmental stressors.

Understanding the factors driving endosymbiont distributions is critical in the assessment of coral reef resilience. Different *Symbiodinium* species have shown varying photosynthetic efficiency and responses to the amount of light exposure suggesting coral host physiology is at least partially dependent on symbiotic interactions (*DeSalvo et al. 2010; Fitt & Warner 1995; Warner et al. 1996*). While the importance of the functional implications of genetic diversity within *Symbiodinium* clades and subclades and how their presence correlates with environment has been frequently pointed out in literature (*Baker 2003; Knowlton & Rohwer 2003*), only recently is evidence starting to emerge about broad physiological adaptations within *Symbiodinium* clades (*Frade et al. 2008; Van Oppen et al. 2001; Warner et al. 2006*). Some general attributes for *Symbiodinium* genotypes belonging to clades A-C have been proposed. Some members of clades A and B have been more commonly found in high irradiance environments (*Rowan et al. 1997; Toller et al. 2001*), some clade A lineages have been shown to
provide increased UV protection (Reynolds et al. 2008), and members of clade C, the most diverse Symbiodinium lineage are thought to enhance host calcification rates (Cantin et al. 2009; LaJeunesse 2005). However initial efforts to assign distinct physiological roles of Symbiodinium genotypes have been limited by the resolution of the few available genetic markers and methods. Many of the early clade level generalizations were based on coarse resolution genotyping techniques thereby missing the potential physiological contributions of undetected low frequency Symbiodinium taxa.

It is therefore essential to develop procedures to analyze Symbiodinium at the subclade level in a consistent and quantitative manner. Advances in molecular techniques utilized for Symbiodinium genotyping over the past two decades have resulted in important insights, such as mixed Symbiodinium populations in various coral species and novel symbiont genotypes that previously went undetected (Baird et al. 2007; Baker & Romanski 2007; Fay & Weber 2012; LaJeunesse 2002; Rowan et al. 1997; Thornhill et al. 2014). However, some of the electrophoresis-based methods do not guarantee detection of novel, often low-frequency genotypes, and only confidently detect strains comprising 10% or higher of the total Symbiodinium population (LaJeunesse et al. 2008; Thornhill et al. 2006). Use of next-generation sequencing (NGS) platforms is now gaining popularity as a cost effective, high throughput method capable of discovering and quantifying low frequency strains of Symbiodinium within mixed symbiotic communities, with practical detection limits down to 0.1% (Kenkel et al. 2013; Quigley et al. 2014). Quantitative investigation of low frequency Symbiodinium genotypes, with potential different physiologies, in mixed communities can greatly enhance our understanding of hidden diversity that could potentially play an important role in holobiont fitness (Jones & Berkelmans 2010; Mieog et al. 2009).

Here we introduce a universally applicable statistical framework to perform such quantitative analysis, and apply it to investigate the Symbiodinium communities within two species of the endangered Caribbean Orbicella annularis species complex (IUCN 2011), formerly known as a member of the genus Montastraea (Budd et al. 2012). The Orbicella annularis species have been previously shown to host mixed populations of Symbiodinium (Rowan & Knowlton 1995; Rowan et al. 1997). We used a metabarcoding approach to study two Orbicella species – O.faveolata and O.franksi – at two locations within the Flower Garden Banks National Marine Sanctuary (east and west bank), separated by 19 km of deep water, to see whether the Symbiodinium community variation in these host species is partitioned largely with respect to the host species or with respect to geographic location.
Methods

Locations

The Flower Garden Banks (FGB) is a National Marine Sanctuary established in 1992 and situated 185 kilometers off the coast of Texas (27°54’ N, 93°35’ W and 27°53’ N, 93°49’ W for east and west localities, respectively) in the Gulf of Mexico (Fig. 1). The east and west banks are separated by 19 kilometers. Flower Garden Banks are the most northern coral reefs in the Gulf of Mexico making it an important location to understand limits of latitudinal distributions of coral species (Schmahl et al. 2008). Twenty-four shallow-water (<50 meters) coral species reside at the east and west FGB (Schmahl et al. 2008). Compared to other Caribbean reefs, the FGB have lower species diversity, but have much higher coral cover ranging between 50% and 70% (Precht et al. 2005). In addition, the FGB is a relatively deep reef starting at 17 meters and extending beyond 45 meters (Schmahl et al. 2008). Annual average temperatures range between 18°C and 30°C providing a unique opportunity to study corals exposed to their thermal minima (Schmahl et al. 2008). The remote location of the FGB protects these reefs from most anthropogenic stressors; both land based and recreational.

Coral Collections

A total of 197 1cm x 1cm coral fragments were collected from the outer edge of Orbicella colonies at both the east and west FGB in August 2011 (O. faveolata, n=96) and August 2012 (O. franksi, n=101) with approximately n=50 per species per bank. Coral tissue was preserved in 96% ethanol and stored at room temperature. Sample depth ranged from 21 to 23 meters.

Laboratory Procedures and Host Genotyping

FGB holobiont DNA was isolated following the phenol-chloroform protocol described in Davies et al. (2013). One hundred ninety-three coral hosts were successfully amplified at nine microsatellite loci (Davies et al. 2013). STRUCTURE (version 2.3.4) output (q-score) (Falush et al. 2003; Falush et al. 2007; Hubisz et al. 2009; Pritchard et al. 2000) was used to identify non-hybrid coral colonies. Hybrids from the O. annularis species complex have been reported in literature (Budd & Pandolfi 2004; Fukami et al. 2004; Szmant et al. 1997). Only individuals with greater than 80% posterior probability of belonging to one of the two major STRUCTURE derived clusters were retained (73 samples of O. faveolata and 101 samples of O. franksi) (Foster et al. 2012). Sixty of these, fifteen colonies of O. faveolata and fifteen colonies of O. franksi from both east and west FGB, were chosen for Symbiodinium ITS-2 genotyping. To look for genetic structure among coral populations between the two locations (east and west banks), an admixture model was run starting with a uniform alpha for degree of admixture, uncorrelated allele
frequencies for five simulations, a burn-in of 300,000 steps and 10^6 Markov-Chain Monte Carlo (MCMC) iterations. STRUCTURE results were then used as input to run STRUCTURE HARVESTER to select the optimal number of clusters (K) (Earl & vonHoldt 2012; Evanno et al. 2005). Using CLUMPP (Jakobsson & Rosenberg 2007), output files from STRUCTURE HARVESTER were used to combine the results of replicated runs by computing weighted averages followed by plotting the results using DISTRUCT (Rosenberg 2004). To assess within species differentiation, each species was analyzed separately in STRUCTURE applying the same parameters for all analyses (Foster et al. 2012). An analysis of molecular variance (AMOVA) was implemented in GenAlEx (version 6.5) to assess genetic differentiation by computing pairwise F_{ST} for species and sites (Peakall & Smouse 2012).

Amplification of ITS-2 for 454 sequencing

ITS-2 was amplified in each of the sixty individual hosts and submitted for deep amplicon sequencing in January 2013 using Symbiodinium specific ITS-2 primers, ITS-Dino-forward (5’-GTGAATTGCAGAACTCCGTG-3’) (Pochon et al. 2001) and its2rev2-reverse (5’-CCTCCGCTTATAATATGCTT-3’) (Stat et al. 2009). The target amplicon was approximately 300 base pairs long. Each 30 µL PCR reaction contained 13.3 µL of water, 3.0 µL 10 x ExTaq HS buffer, 0.2 mM dNTP, 0.75 U ExTaq HS polymerase (Takara Biotechnology), 0.375 U Pfu polymerase (Agilent Technologies), 0.2 µM final primer concentration and 50 ng of DNA template (Kenkel et al. 2013). A DNA Engine Tetrad 2 Thermal Cycler (Bio-Rad, Hercules, CA, USA) was used for all amplifications. The following PCR protocol was used: 20 cycles of 94°C for five minutes, 95°C for 40 seconds, 59°C for two minutes, 72°C for one minute and final extensions of 72°C for five minutes. PCR product intensity of all individuals was determined on one two percent gel-red stained agarose gel. Additional cycles were added to individuals to obtain the same uniform band intensity (just above the visibility threshold on an agarose gel) and the final cycle number was recorded. Individuals that had not amplified by 35 cycles were repeated using a lower starting template (20 ng/µL) to reduce the inhibition by contaminants. All individuals amplified by 34 cycles except one west FGB O. faveolata and one east FGB O. faveolata which were removed from the analysis. PCR products were cleaned using GeneJET PCR purification kits (Fermentas Life Sciences). Six individuals were randomly selected and run on two percent agarose gel to ensure sufficient DNA quantities remained post clean-up.

New 30 µL PCR reactions were performed to incorporate A and B Rapid adaptors specific for 454 GS FLX. The adaptors designs were: the reverse barcoded primer sequence (A-Rapid primer+unique barcode+its2rev2 primer) and forward B-rapid primer (B-Rapid primer+ITS-
Dino) (Fig. S1). A unique barcode was assigned to each amplified coral host individual (n=58). Each reaction contained 50 ng of cleaned PCR product, 17.6 µL water, 0.2 mM dNTP, 3 µL 10 x ExTaq HS buffer, 0.75 U ExTaq HS polymerase (Takara Biotechnology), 0.375 U Pfu polymerase (Agilent Technologies), 50 ng of PCR product, 0.33 µM of 454 B- Rapid ITS2-forward (5’-CCTATCCCTGTGTCCCTTGAGAGACGHC+GTGAATTGCAGAACTCCGTG-3’), and 0.33 µM of 454 A-Rapid ITS2 adaptor with unique barcode (5’-CCATCTCATCCCTGCGTGTCTCCGACT+TGTAGCCG+CCTCCGCTTACTTATATGC TT-3’, example barcode sequence is shown in bold) (Kenkel et al. 2013). PCR was performed on a DNA Engine Tetrad 2 Thermal Cycler (Bio-Rad, Hercules, CA, USA) under the following conditions: 95°C for five minutes, four cycles of 95°C for 30 seconds, 59°C for 30 seconds, 72°C for one minute followed by incubation at 72°C for five minutes. Samples were verified on one two percent agarose gel and pooled based on band intensity. Pools were ethanol precipitated. Three to five micrograms of the cleaned product was run on a one percent SYBR Green (Invitrogen) stained gel. The target band was excised using a blue-light box and soaked in 25 µL of milli-Q water overnight at 4°C. The supernatant was submitted and sequenced at the University of Texas Austin Genome Sequencing and Analysis Facility (GSAF) aiming to obtain two thousand reads per sample.

Bioinformatic pipeline to obtain read count data

We provide a detailed bioinformatics walkthrough (Data S1). This and the updated versions of the pipeline will be hosted on Matz lab Methods web page (http://www.bio.utexas.edu/research/matz_lab/matzlabs/Methods.html). Briefly, the pipeline relies on three widely used software packages – fastx_toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), usearch (Edgar 2010) and SHRiMP2 (David et al. 2011) along with additional custom Perl scripts to streamline processing of multiple read files. The pipeline can be run on any Linux, UNIX or Mac OS-X computer. It includes four steps: (i) quality and length filtering of reads, (ii) identifying haplotypes (or operational taxonomic units, OTUs), (iii) mapping the reads to the newly assembled haplotype database, and (iv) deriving counts of unambiguous matches to each haplotype within each sample. The pipeline is suitable for fasta or fastq formatted read files, providing maximum versatility for use with the currently dominant NGS technologies. The OTUs were used as queries for BLASTn (Altschul et al. 1990) and were aligned between each other using Clustal Omega online server (version 1.2.0) (Goujon et al. 2010; McWilliam et al. 2013; Sievers et al. 2011). Alignments were examined and manually edited using SeaView (version 4.4.2) (Gouy et al. 2010). The term ‘genotype’ will hereafter be used to reference previously
published *Symbiodinium* clade types where the term ‘haplotype’ will reference the *Symbiodinium* sequences represented in our collected dataset.

Model-based Analysis: Theory and Implementation

The OTU counts analysis follows the methodology described earlier (Matz et al. 2013), implementing a Poisson-lognormal generalized linear mixed model to jointly infer parameters of interest such as OTU-specific abundance changes in response to fixed factors as well as nuisance parameters such as variation attributable to the random differences in sequencing depth among samples. Incorporation of the Poisson component into the model makes it possible to adequately analyze sparsely represented haplotypes that might be missing from many samples due to undersampling rather than true absence.

Let \(y_{oijk} \) be the count for OTU \(o \) under condition \(i \), group \(j \), sample \(k \). The model assumes that this count arises from a poisson-lognormal distribution:

\[
y_{oijk} \sim PLN(\lambda_{oijk}, \sigma^2_o)
\]

(1)

where PLN(m,v) denotes the Poisson-lognormal distribution with rate parameter m and log-variance v. In our model, the log-variance is OTU-specific, and the rate term involves regressions on both fixed and random effects.

\[
\psi_{oijk} = \log(\lambda_{oijk})
\]

The model for log-rate term takes the form

\[
\psi_{oijk} = S_{ijk} + I_o + B_{oi} + c_k + a_{oj};
\]

\[
S_{ijk} = I' + B'_i + c_k + a'_j.
\]

(2)

where \(I_o \) represents an OTU-specific intercept, \(B_{oi} \) is the fixed effect of condition \(i \) on OTU \(o \), (examples of condition being host species, location, or treatment), \(c_k \) is a random effect meant to capture the deviation in sequencing coverage in sample \(k \), and \(a_{oj} \) is the OTU-specific random effect associated with the \(j \)th level of some grouping variable (tank, block, or plot) and/or individual if the design involved repeated measures. The \(c_k \) and \(a_{oj} \) are random effects modeled as samples from Gaussian distributions; in case of \(c_k \) it is the same distribution for all OTUs and in case of \(a_{oj} \) the distributions have OTU-specific variances. Both \(B_{oi} \) and \(a_{oj} \) terms represent design matrices that can potentially include multiple factors as well as their interactions, or none at all.

The model in (2) is different from the one described in (Matz et al. 2013) in two minor
aspects. First, it does not include the secondary error term, the OTU-specific effect of sample, which would be hard to estimate without technical replicates (rare in metabarcoding); the variance that would be attributable to this term is absorbed within the haplotype-specific residual error term \(\sigma^2 \) one level up in the model hierarchy (equation [1]). Another difference is the term \(S_{ijk} \) that describes the behavior of an artificial OTU with counts equal to the sum of all counts in a sample. This “sum-OTU” is modeled together with all other OTUs, decomposing its variance into its own intercept, fixed and random components (bottom row in [2]). Its special role in the model (2) is that, after the model is fitted, the fixed OTU-specific effects (\(B_{ih} \)) are being expressed relative to the ones for the sum-OTU, which controls for possible systematic biases in coverage across experimental conditions. It also makes it possible to express the inferred OTU abundances as proportions of total, which is natural in metabarcoding.

The model is fitted to the data using a Bayesian Markov chain Monte Carlo (MCMC) procedure utilizing non-informative over-dispersed priors for fixed effects, non-informative inverse-Wishart priors (variance \(V=1 \), degree of belief \(\nu=0 \)) for variance components \(\sigma_k^2 \) and \(\sigma_{0j}^2 \) and the weakly informative inverse-Wishart prior (\(V=1 \) and \(\nu \) equal number of OTUs minus 0.998) for the residual haplotype-specific error \(\sigma^2 \) (Hadfield 2010). This formulation results in well-mixed MCMC chains and the ability to handle up to about 200 OTUs on a personal computer. The OTUs that are so sparsely represented that no reliable parameter estimates could be obtained for them are detected based on high autocorrelation among sampled values and are discarded from further analysis.

The statistical approach described above has been implemented in a user-friendly R package (MCMC.OTU) (R Developmental Core Team 2013). The official releases of the package are available from the Comprehensive R Archive Network (CRAN, http://cran.r-project.org/), while the beta-versions and the walkthrough script based on the data from this paper are available from Matz lab Methods web page (http://www.bio.utexas.edu/research/matz_lab/matzlab/Methods.html).

In addition to the model-fitting function, the package MCMC.OTU includes functions for data reformatting, selecting quantifiable OTUs based on proportion of global count, identifying OTUs for which the model generated reliable parameter estimates and for converting raw counts into log-transformed normalized data for principal component analysis and studies of among-OTU
correlations (this transformation is described in the next section). MCMC.OTU package also
includes functions to calculate statistical significance for all possible pairwise comparisons and to
plot results. The package includes extensive documentation and examples, and is designed to
make the analysis accessible to the novice R user.

 Statistical Analysis: Orbicella Data

The R script (with detailed comments) that was used to analyze *O. faveolata* data is provided
(Data S2). Briefly, the analysis involved four steps. First, outlier samples and OTUs are
discarded. The criterion for discarding samples was the total log-counts being less
by ≥ 2.5 standard deviations than the mean across all samples; this resulted in discarding of a
single sample of *O. faveolata* from the east bank. The OTUs were deemed quantifiable if they
comprised at least 0.1% of global sum of counts, as per ([Quigley et al. 2014](#)). Second, the data
are reformatted and the model is fitted; in this case the model included fixed effects of host
species (*O. faveolata* or *O. franksi*), bank (east or west) and their interaction. Third, pairwise
differences between all combinations of fixed effects are calculated based on their sampled
posterior distributions, their statistical significances are calculated as described in ([Matz et al.
2013](#)) and adjusted for multiple testing using false discovery rate (FDR) correction ([Benjamini &
Hochberg 1995](#)). Fourth, the results are visualized as trellis plots.

For principal components analysis, all OTUs detected in greater than 10% of all samples
were retained. The counts data were normalized by multiplying them by the sample size factor,
which was computed as the ratio of the sum of counts in the sample to the mean sum of counts
across samples, and log$_{10}$-transformed using a “started log” method, in which the zero counts are
replaced prior to log-transforming by a certain positive value (in this case 0.1). The MCMC.OTU
package also implements the “log-linear hybrid” transformation ([Rocke & Durbin 2003](#)), which
in downstream analyses gives very similar results to the ones obtained with the “started log”
transform. The transformed data were subjected to principal components analysis using R
([package 'vegan' Oksanen et al. 2013](#)). The log-transformed normalized data in which the original
zero count datapoints were left undefined were used to analyze pairwise correlations between
haplotype abundance across samples with the assumption that OTUs representing the same
genome (paralogs) are likely to show positive correlation, whereas negative correlation between
two OTUs indicates that they represent different genomes ([Kenkel et al. 2013](#)).

Analysis of structural conservation
Our identified seven B1 haplotypes were aligned with the 19 identified B1 ITS-2 sequences from the ITS-2 database (http://its2.bioapps.biozentrum.uni-wuerzburg.de/) and trimmed to be of equal length. The pooled dataset of the identified 19 B1 ITS-2 sequences was then used to predict the structure for the trimmed seven B1 haplotypes using the ‘model’ tool (Koetschan et al. 2010; Koetschan et al. 2012; Schultz et al. 2006; Selig et al. 2008; Wolf et al. 2005). The seven OTUs were aligned with the B1 model sequences used to predict secondary structure using the ‘sequence and structure’ tool. The resulting aligned fasta file of sequences with structure (Data S3) was opened in 4SALE to compare secondary structures looking for the four conserved attributes of the ITS-2 gene secondary structure (Schultz et al. 2005) and compensatory base changes (Seibel et al. 2006; Seibel et al. 2008).

Results

Host genetics

STRUCTURE analysis detected genetic differences between the two coral species, but no divergence between locations for either of them (Fig. 2). Output files from STRUCTURE HARVESTER showed a delta K of two for all analyses except the independent analysis of Orbicella faveolata (n=73) which showed a delta K of three (Fig. S2). This result was verified by AMOVA analysis (Table 1). AMOVA results comparing F_{ST} between sites showed no significant genetic differentiation in Orbicella franksi (Table 1). Orbicella faveolata showed small, but significant F_{ST} ($p<0.02$) between banks (Table 1), which was also reflected on the STRUCTURE plot (Fig. 2). There was a much clearer genetic differentiation between species (Fig. 2) with a significant F_{ST} of 0.07 (Table 1).

Symbiodinium metabarcoding summary

ITS-2 sequencing yielded 170,344 raw reads for 58 individuals, averaging 2,937 reads per individual (Table 2). After removing all reads shorter than 290bp, 122,867 reads representing 20,260 unique sequences remained. The clustering was performed at the 97% similarity level and resulted in 153 OTUs. The relatively high clustering threshold was chosen to maximize the power to detect low-divergence haplotypes, since in Symbiodinium even a few bases of difference in ITS-2 sequence could delineate ecologically distinct strains (e.g. LaJeunesse et al. 2004; LaJeunesse et al. 2003). All filtered reads were unambiguously mapped against this OTU collection. The sum of unambiguous match counts per sample ranged from 256 to 5,394, with median at 1,884 and 25% and 75% quartiles at 1,316 and 2,597, respectively. The sample with 256 counts was subsequently discarded, leaving 864 as the next lowest sum of counts per sample.

Model-based analysis of haplotype abundances
Of the 153 OTUs identified, ten were deemed amenable to quantitative analysis since each of them exceeded 0.1% of the total counts (Quigley et al. 2014), but for only seven of them reliable parameter estimates could be obtained since the other three were too sparse among samples (found in eight or less samples out of 57). These seven OTUs, hereafter referred to as haplotypes, were analyzed further. Haplotype II was by far the most dominant accounting for 90.06% of all reads mapped across all individuals (Fig. 3). Poisson-lognormal generalized linear mixed model analysis revealed that haplotype IV was significantly (FDR<0.026) diminished at the west bank in both species, haplotype VI was diminished in *O. faveolata* at the east bank (FDR=0.001), and haplotype VII was elevated in the west bank in both species (FDR<0.022) (Fig. 4 and Table S1).

Sequence similarities of the detected haplotypes

All seven haplotypes best matched *Symbiodinium* clade B type B1 (JN 558059.1) (Pochon et al. 2012), recently identified as *Symbiodinium minutum* (AF 333511.1) (LaJeunesse et al. 2012). After end-trimming to equalize length, haplotypes I and II matched B1 (JN 558059.1, AF 333511.1) (LaJeunesse et al. 2012; Pochon et al. 2012) with 100% identity, whereas the remaining five haplotypes did not find an exact match in the database (Data S1 and Fig. S3, (Gouy et al. 2010)). Haplotype III differs from B1 by a 13 base pair deletion. Haplotype IV differs from B1 (JN 558059.1, AF 333511.1) (LaJeunesse et al. 2012; Pochon et al. 2012) by a ten base pair insertion. Haplotype V differs from B1 (JN 558059.1, AF 333511.1) (LaJeunesse et al. 2012; Pochon et al. 2012) by nine different single nucleotide insertions. Haplotype VI differs from B1 (JN 558059.1, AF 333511.1) (LaJeunesse et al. 2012; Pochon et al. 2012) by a nine base pair deletion and thymine insertion at position 156. Haplotype VII differs from B1 (JN 558059.1, AF 333511.1) (LaJeunesse et al. 2012; Pochon et al. 2012) by an eleven base pair deletion. These indels do not occur in homopolymer regions and are unlikely to be the results of 454 sequencing error (Margulies et al. 2005).

We additionally used NCBI nBLAST to identify the top database match for all 153 OTUs. The quantitative analysis of these OTUs was not possible due to their extremely sparse representation among our samples. Moreover, some of these rare OTUs were obvious contaminants. We detected 130 top hits with B1s, one B19a, three B3, one B2, one C90, one C91, one D1, one D2, one F5.2b, two G6, one G, one host contamination (*Orbicella franksi*) and several ITS-2 sequences for free-living dinoflagellates species.

Potential paralogous copies of novel *Symbiodinium* haplotypes detected
Correlations between haplotype abundances across samples indicates whether the haplotypes might be paralogous loci from the same genome (positive correlation) or not (negative correlation) (Kenkel et al. 2013). Of the seven quantifiable haplotypes only III and V showed a significant positive correlation (p=0.016). With the exception of these two haplotypes, correlation analysis did not find evidence that any other of the haplotypes might be paralogous. Instead, it confirmed genomic independence for some of them via negative correlations: haplotypes IV and VI showed significant negative correlation with the major haplotype II (p<0.001 and 0.023, respectively), and haplotype VII was negatively correlated with haplotype I (p=0.0021) and VI (p=0.032) (Fig. S4).

Pseudogene analysis

Three B1 model sequences with structure from the ITS-2 database were used to predict the secondary structure for the seven haplotypes and top blast hit Symbiodinium B1 (JN 558059.1). Only 72.7% of the third helix for the ITS-2 reference (GI 156466871) was found in the predicted secondary structure of haplotype III, while the fourth helix of haplotype V was only 85.7% complete compared to the reference structure (GI 156466870) (Table S2). The remaining haplotypes all had 100% conservation in all four helices with the model B1 sequence with structure (GI 58081212). Using 4SALE (Seibel et al. 2006; Seibel et al. 2008) no compensatory base changes (CBC) were detected when comparing haplotypes to their reference B1 sequence from the ITS-2 database. Visual comparisons using 4SALE structure viewer for haplotype III and V with their model B1 sequence showed high conservation across sites. However, given the reduced homology modeling results for haplotype III and V coupled with their positive correlation among samples, we predict that at least one of them (most likely haplotype III) is a paralog potentially representing a non-functional copy of the rRNA gene.

Model-free approach

The first component (PC1) from the PCA explained 18.64% of the variation and principle component two (PC2) explained 11.82% of the variation. Retaining the first six components meets Kaiser’s criterion (Kaiser 1960), defined as all components with a standard deviation greater than one, and explain 62.67% of the variation. The samples were visibly partitioned with respect to the sampling locality with loadings corresponding to the three model-inferred significant haplotypes underscoring the partitioning (Fig. 5).

Discussion

Host species delineation
Nine recently developed microsatellite markers (Davies et al. 2013) were used for host genotyping to distinguish the two host species, *Orbicella faveolata* and *O. franksi*, since these species have been shown to hybridize (Budd & Pandolfi 2004; Fukami et al. 2004; Szmant et al. 1997). Species in the *Orbicella annularis* complex vary considerably morphologically, however genetic differences are not as pronounced making species identification in the *Orbicella annularis* species complex challenging (Fukami et al. 2004). Microsatellite data were analyzed using STRUCTURE (Fig. 2) and AMOVA (Table 1) to ensure that the selected individuals were not recent hybrids.

Detecting novel symbiont haplotypes

Quigley et al. (2014) verified the detection sensitivity of the method used here for genotypes from clades A, C and D down to 0.1%. In our study, five of the seven quantifiable haplotypes did not have an exact match in the NCBI sequence database and therefore were potentially novel. It remains to be seen whether these haplotypes are endemic to the FGB, since this metabarcoding approach has not yet been widely applied across the Caribbean. Another alternative (and a typical concern in metabarcoding) is that the detected rare haplotypes represent artifacts of amplification, sequencing or bioinformatics analysis, which is particularly probable in cases such as ours when OTUs are expected to be of low sequence diversity, necessitating the use of high sequence identity thresholds (97%) during OTU inference. To deal with this issue to some degree, we chose a conservative approach while selecting haplotypes for further analysis. First, guided by the Quigley et al. (2014) results we required the candidate haplotypes to be present in appreciable counts (>0.1% of total, which amounts to about one hundred for our dataset). Second, our methodology implies that the haplotypes must be found across multiple samples to be amenable for quantification. These two criteria are expected to considerably lower the chance for the inferred haplotypes to be artifacts of sequencing or PCR. An additional assurance is provided by the fact that each of the minor haplotypes was discriminated by multiple small indels or a single large (≥10bp) indel (Fig. S3), which are unlikely to happen as a result from sequencing or PCR errors. Further improvement of the reliability of detected OTUs can be obtained by sequencing independently prepared technical replicates, which we intend to explore in the future.

Another concern when using a multi-copy marker undergoing concerted evolution such as ITS-2 (Koch et al. 2003; Stat et al. 2011) is that some of the detected haplotypes could be paralogs or pseudogenes from the same genome (Thornhill et al. 2007) rather than true representative of unique symbiont strains. To address this issue, our method follows Kenkel et al. (2013) in exploring pairwise correlations among haplotype abundances. Haplotypes potentially
from the same genome are expected to show positive correlations across samples, whereas a negative correlation indicates that the haplotypes are from different, unique genomes. In our dataset, only two of the seven haplotypes (III and V) show significantly positive correlation and therefore are likely to be paralogs from the same genome. The remaining haplotypes are either uncorrelated or show negative correlations (Fig. S4). Only until single-copy genetic markers specific for *Symbiodinium* are developed will we be able to fully overcome this problem (LaJeunesse & Thornhill 2011).

Quasi-monotypic symbiont population in Orbicella species at the FGB

Even though multiple haplotypes have been detected in both *O. faveolata* and *O. franksi*, they were all closely related to clade B type B1, the most prevalent *Symbiodinium* type in the Caribbean (Baker 2003; LaJeunesse 2002; LaJeunesse et al. 2003). This result is unusual for the genus *Oorbicella*, since other assessments of *Symbiodinium* diversity in *Oorbicella* spp. throughout the Caribbean have shown mixed populations of *Symbiodinium* clades ranging from A to D (Rowan & Knowlton 1995; Rowan et al. 1997; Thornhill et al. 2006; Toller et al. 2001). A variety of environmental factors have been proposed to explain *Symbiodinium* distributions, including but not limited to depth (LaJeunesse 2002), irradiance levels (Fitt & Warner 1995), latitudinal location (LaJeunesse et al. 2003) and temperature (LaJeunesse et al. 2010b). The fact that *Oorbicella* species from the FGB harbor reduced symbiont diversity could be explained by the fact that FGB is a marginal coral reef environment. The FGB represent the northernmost latitudinal reef in the Gulf of Mexico (LaJeunesse & Trench 2000) experiences lower thermal minima relative to the rest of the Caribbean (Schmahl et al. 2008; Thornhill et al. 2008). In addition, FGB is one of the deepest reefs at which *Oorbicella* spp. are found (>17m), and it has been previously shown that corals from deeper environments have fewer mixed infections (LaJeunesse 2002). Whether the within-clade haplotype diversity detected in this study has physiological implications for host fitness remains unknown. This question could be addressed with future association studies and manipulative experiments using faster evolving loci, such as microsatellites, for a more complete characterization of the fine scale genetic diversity of *Symbiodinium* (Finney et al. 2010; Pettay & LaJeunesse 2007; Santos et al. 2004; Thornhill et al. 2014).

Symbiodinium variation between two geographic locations

Three minor *Symbiodinium* haplotypes (IV, VI and VII) represented at the level of 0.1-10% of the total were significantly different in abundance between sampled locations, but not between host species (Fig. 4). Previous studies of broadcast-spawning corals have shown genetic
differentiation of *Symbiodinium* across relatively small geographic distances (Howells et al. 2012; Howells et al. 2009; Kirk et al. 2009). Another study also showed strong genetic divergence in *Symbiodinium* communities and in host species across different habitat types (Bongaerts et al. 2010). Still, our results are unexpected given significant genetic differentiation between the host species (Fig. 2 and Table 1) and the fact that the sampled locations are in close proximity and are characterized by similar environmental conditions (Schmahl et al. 2008). The detected difference in *Symbiodinium* between east and west banks could be due to random drift in isolation: 19 kilometers of deep water with no “stepping stone” habitats could present a barrier to *Symbiodinium* dispersal, which remains a poorly understood process. Alternatively, the differences could be due to subtle variation in environmental conditions. However, this latter explanation requires no genetic recombination between the detected *Symbiodinium* haplotypes. Only then would the environmental selection be likely to alter the relative frequencies of whole genomes of these detected haplotypes including the ITS-2 marker. These alternatives will be interesting to investigate in the future using higher-resolution genetic markers for *Symbiodinium* (e.g. microsatellites), especially in conjunction with holobiont physiology.

Detecting *Symbiodinium* community shifts

Two mechanisms have been proposed to explain the plasticity of symbiosis between host and symbiont termed “shuffling” and “switching”. “Shuffling” is a change in the existing proportions of a mixed *Symbiodinium* infection whereby a dominant symbiont type may become reduced while a background symbiont type becomes prevalent (Berkelmans & van Oppen 2006; Fay & Weber 2012; LaJeunesse et al. 2009; Rowan et al. 1997; Silverstein et al. 2012; Stat et al. 2006). “Switching” is a postulated event reflecting the idea of an “open” symbiotic system when a new exogenous *Symbiodinium* becomes the dominant type (Baker 2001; Buddemeier & Fautin 1993). In order to assess whether corals “switch” or “shuffle”, we must consistently and confidently detect the cryptic *Symbiodinium* diversity. Use of a highly sensitive and quantitative genotyping method will allow for the assessment of distribution patterns of *Symbiodinium*-host relationships across spatial scales. By doing so, it will also become more feasible to examine changes in *Symbiodinium* composition over time and detect species shuffling as well as potential horizontal uptake with finer spatio-temporal resolution. The quantification methodology described here and in recent publications (Kenkel et al. 2013; Quigley et al. 2014) will contribute to a better understanding of the plasticity of symbiosis and community composition shifts. This ITS-based *Symbiodinium* metabarcoding protocol utilizes primers common to all *Symbiodinium* clades and therefore permits not only detection of known genotypes, but also discovery of new
Recent studies are also starting to apply this approach to investigate other members of the coral holobiont (Rohwer et al. 2002), such as other algae (Davies et al. 2014), fungi, protists (Cumbo et al. 2013), bacteria (Ceh et al. 2010; Morrow et al. 2012; Sunagawa et al. 2009), archaea (Beman et al. 2007) and viruses.

MCMC.OTU package: Model-based approach to quantitative metabarcoding

This paper provides a universal model-based statistical framework for analyzing the quantitative shifts in community composition based on counts data. The main advantage of our approach over previously developed techniques (Paulson et al. 2013; Segata et al. 2011; White et al. 2009) is the ability to directly analyze haplotype counts (rather than haplotype proportions) using an over-dispersed Poisson-lognormal model. This properly accounts for the possibility of a sparsely represented haplotype being absent due to under-sampling rather than due to any of the modeled effects. Furthermore, the method does not require data normalization since the model accounts for the effects of unequal sequence coverage (term c_k in equation [2]). The remaining residual biases are corrected by expressing the inferred OTU-specific effects relative to those for the artificial “sum-count” OTU (term S_{ijk} in equation [2]). The method draws power from analyzing all OTUs within a single model, and is very versatile in terms of experimental design, allowing for any combination of fixed and random effects. This methodology has been derived from recent advancements in analysis of quantitative PCR data (Matz et al. 2013) by incorporating modifications specific for metabarcoding such as the use of “sum-count” OTU and the assumption that the data are unlikely to include technical replicates (although the method can properly handle these as well). The method is not restricted to ITS or Symbiodinium and can feasibly analyze up to about 200 OTUs on a personal computer. We hope that it will be useful for a wide range of metabarcoding studies.

Conclusions

We present a novel methodology for quantitative analysis of metabarcoding data and apply it to assess Symbiodinium diversity at the remote Flower Garden Banks. Results show coral hosts Orbicella faveolata and O. franksi harbor Symbiodinium type B1, represented by seven haplotypes. Two of these haplotypes were significantly diminished at the west FGB and one was significantly diminished at the east FGB. Future work using faster evolving loci, such as Symbiodinium-specific microsatellites, may show variations between host species or geographic locations within clade B lineages. Wider use of metabarcoding, not only with ITS-2 but with additional loci, to quantify Symbiodinium genetic diversity within multiple hosts will
significantly advance our understanding of the complex dynamics of coral-Symbiodinium symbioses.

Acknowledgements

We are grateful to personnel at the FGBNMS (E. Hickerson & G.P. Schmahl) for permits (FGBNMS-2009-005-A2, A3), boat time and help during fieldwork. We also thank Eli Meyer for help with Orbicella sample collections. We also appreciate Michele Weber and Anke Kleuter for assistance editing and their expertise in Symbiodinium genetic diversity, Bishoy Kamel for bioinformatics support and Dr. Scott Hunice-Smith and staff at the Genomics Sequencing and Analysis Facility at University of Texas at Austin for technical support.

References

Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ. 1990. Basic local alignment search tool. *Journal of Molecular Biology* 215:403-410.

Baird A, Cumbo V, Leggat W, and Rodriguez-Lanetty M. 2007. Fidelity and flexibility in coral symbioses. *Marine Ecology Progress Series* 347:307-309.

Baker AC. 2001. Ecosystems: Reef Corals bleach to survive change. *Nature* 411:765-766.

Baker AC. 2003. Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. *Annual Review of Ecology, Evolution, and Systematics* 34:661-689.

Baker AC, and Romanski AM. 2007. Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: Comment on Goulet (2006). *Marine Ecology Progress Series* 335:237-242.

Beman JM, Roberts KJ, Wegley L, Rohwer F, and Francis CA. 2007. Distribution and Diversity of Archaeal Ammonia Monoxygenase Genes Associated with Corals. *Applied and Environmental Microbiology* 73:5642-5647.

Benjamini Y, and Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society Series B (Methodological)* 57:289-300.

Berkelmans R, and van Oppen MJH. 2006. The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change. *Proceedings of the Royal Society B: Biological Sciences* 273:2305-2312.

Bongaerts P, Riginos C, Ridgway T, Sampayo EM, van Oppen MJH, Englebert N, Vermeulen F, and Hoegh-Guldberg O. 2010. Genetic Divergence across Habitats in the Widespread Coral *Seriatopora hystrix* and Its Associated Symbiodinium. *PLoS ONE* 5:e10871.

Budd AF, Fukami H, Smith ND, and Knowlton N. 2012. Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). *Zoological Journal of the Linnean Society* 166:465-529.

Budd AF, and Pandolfi JM. 2004. Overlapping species boundaries and hybridization within the *Montastraea “annularis”* reef coral complex in the Pleistocene of the Bahama Islands. *Paleobiology* 30:396-425.

Buddemeier RW, and Fautin DG. 1993. Coral Bleaching as an Adaptive Mechanism. *BioScience* 43:320-326.

Cantin NE, Oppen MJH, Willis BL, Mieog JC, and Negri AP. 2009. Juvenile corals can acquire more carbon from high-performance algal symbionts. *Coral Reefs* 28:405-414.

Ceh J, Van Keulen M, and Bourne DG. 2010. Coral-associated bacterial communities on Ningaloo Reef, Western Australia. *FEMS Microbiology Ecology* 75:134-144.

Coffroth MA, and Santos SR. 2005. Genetic Diversity of Symbiotic Dinoflagellates in the Genus Symbiodinium. *Protist* 156:19-34.
Cumbo VR, Baird AH, Moore RB, Negri AP, Neilan BA, Salih A, van Oppen MJH, Wang Y, and Marquis CP. 2013. Chromera velia is Endosymbiotic in Larvae of the Reef Corals Acropora digitifera and A. tenuis. *Protist* 164:237-244.

David M, Dzamba M, Lister D, Ilie L, and Brudno M. 2011. SHRiMP2: Sensitive yet Practical Short Read Mapping. *Bioinformatics* 27:1011-1012.

Davies SW, Meyer E, Guermond SM, and Matz MV. 2014. A cross-ocean comparison of responses to settlement cues in reef-building corals. *PeerJ* 2:e333.

Davies SW, Rahman M, Meyer E, Green EA, Buschiazzo E, Medina M, and Matz MV. 2013. Novel polymorphic microsatellite markers for population genetics of the endangered Caribbean star coral, *Montastraea faveolata*. *Marine Biodiversity* 43:167-172.

DeSalvo MK, Sunagawa S, Fisher PL, Voolstra CR, Iglesias-Prieto R, and Medina M. 2010. Coral host transcriptomic states are correlated with *Symbiodinium* genotypes. *Molecular Ecology* 19:1174-1186.

Diekmann OE, R. P. M. Bak, L. Tonk, W. T. Stam, J. L. Olsen. 2002. No habitat correlation of zooxanthellae in the coral genus *Madracis* on a Curaçao reef. *Marine Ecology Progress Series* 227: 221–232.

Douglas AE. 1998. Host benefit and the evolution of specialization in symbiosis. *Heredity* 81:599-603.

Earl D, and vonHoldt B. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genetics Resources* 4:359-361.

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 26:2460-2461.

Evanno G, Regnaut S, and Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Molecular Ecology* 14:2611-2620.

Falush D, Stephens M, and Pritchard JK. 2003. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. *Genetics* 164:1567-1587.

Falush D, Stephens M, and Pritchard JK. 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. *Molecular Ecology Notes* 7:574-578.

Fay SA, and Weber MX. 2012. The Occurrence of Mixed Infections of *Symbiodinium* (Dinoflagellata) within Individual Hosts. *Journal of Phycology* 48:1306-1316.

Finney JC, Pettay D, Sampayo E, Warner M, Oxenford H, and LaJeunesse T. 2010. The Relative Significance of Host–Habitat, Depth, and Geography on the Ecology, Endemism, and Speciation of Coral Endosymbionts in the Genus Symbiodinium. *Microbial Ecology* 60:250-263.

Fitt WK, and Warner ME. 1995. Bleaching Patterns of Four Species of Caribbean Reef Corals. *The Biological Bulletin* 189:298-307.

Foster NL, Paris CB, Kool JT, Baums IB, Stevens JR, Sanchez JA, Bastidas C, Agudelo C, Bush P, Day O et al. . 2012. Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. *Molecular Ecology* 21:1143-1157.

Frade PR, Bongaerts P, Winkelhagen AJS, Tonk L, and Bak RPM. 2008. In situ Photobiology of Corals over Large Depth Ranges: A Multivariate Analysis on the Roles of Environment, Host, and Algal Symbiont. *Limnology and Oceanography* 53:2711-2723.

Fukami H, Budd AF, Don RL, Jara J, Kersanach R, and Knowlton N. 2004. Geographic Differences in Species Boundaries among Members of the *Montastraea annularis* Complex Based on Molecular and Morphological Markers. *Evolution* 58:324-337.

Glynn PW. 1993. Coral reef bleaching: ecological perspectives. *Coral Reefs* 12:1-17.

Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, and Lopez R. 2010. A new bioinformatics analysis tools framework at EMBL-EBI. *Nucleic Acids Research* 38:W695-W699.
Gouy M, Guindon S, and Gascuel O. 2010. SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. *Molecular Biology and Evolution* 27:221-224.

Hadfield JD. 2010. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCGlm R Package. *Journal of Statistical Software* 33:1-22.

Hoegh-Guldberg O. 1999. Climate change, coral bleaching and the future of the world’s coral reefs. *Marine and Freshwater Research* 50:839-866.

Hoegh-Guldberg O, and Smith GJ. 1989. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals *Stylophora pistillata* Esper and *Seriatopora hystrix* Dana. *Journal of Experimental Marine Biology and Ecology* 129:279-303.

Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, and van Oppen MJH. 2012. Coral thermal tolerance shaped by local adaptation of photosymbionts. *Nature Climate Change* 2:116-120.

Howells EJ, Oppen MJH, and Willis BL. 2009. High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of *Symbiodinium*. *Coral Reefs* 28:215-225.

Hubisz MJ, Falush D, Stephens M, and Pritchard JK. 2009. Inferring weak population structure with the assistance of sample group information. *Molecular Ecology Resources* 9:1322-1332.

IUCN. 2011. IUCN Red List of Threatened Species. Version 2011.1. IUCN, Switzerland.

Jakobsson M, and Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. *Bioinformatics* 23:1801-1806.

Jones A, and Berkelmans R. 2010. Potential Costs of Acclimatization to a Warmer Climate: Growth of a Reef Coral with Heat Tolerant vs. Sensitive Symbiont Types. *PLoS ONE* 5:e10437.

Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, and Sinclair W. 2008. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. *Proceedings of the Royal Society B: Biological Sciences* 275:1359-1365.

Kaiser HF. 1960. The Application of Electronic Computers to Factor Analysis. *Educational and Psychological Measurement* 20:141-151.

Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, and Matz MV. 2013. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (*Porites astreoides*) from different reef environments. *Molecular Ecology* 22:4335-4348.

Kirk N, Andras J, Harvell CD, Santos S, and Coffroth M. 2009. Population structure of *Symbiodinium* sp. associated with the common sea fan, *Gorgonia ventailina*, in the Florida Keys across distance, depth, and time. *Marine Biology* 156:1609-1623.

Koch MA, Dobeš C, and Mitchell-Olds T. 2003. Multiple Hybrid Formation in Natural Populations: Concerted Evolution of the Internal Transcribed Spacer of Nuclear Ribosomal DNA (ITS) in North American *Arabis divaricarpa* (Brassicaceae). *Molecular Biology and Evolution* 20:338-350.

Koetschan C, Förster F, Keller A, Schleicher T, Rudерisch B, Schwarz R, Müller T, Wolf M, and Schultz J. 2010. The ITS2 Database III - sequences and structures for phylogeny. *Nucleic Acids Research* 38:D275-279.

Koetschan C, Hackl T, Müller T, Wolf M, Förster F, and Schultz J. 2012. ITS2 database IV: Interactive taxon sampling for internal transcribed spacer 2 based phylogenies. *Molecular Phylogenetics and Evolution* (in press).
LaJeunesse TC. 2002. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. *Marine Biology* 141:387-400.

LaJeunesse TC. 2005. “Species” Radiations of Symbiotic Dinoflagellates in the Atlantic and Indo-Pacific Since the Miocene-Pliocene Transition. *Molecular Biology and Evolution* 22:570-581.

LaJeunesse TC, Bhagooli R, Hidaka M, deVantier L, Done T, Schmidt GW, Fitt WK, and Hoegh-Guldberg O. 2004. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. *Marine Ecology Progress Series* 284:147-161.

LaJeunesse TC, Bonilla HR, Warner ME, Wills M, Schmidt GW, and Fitt WK. 2008. Specificity and Stability in High Latitude Eastern Pacific Coral-Algal Symbioses. *Limnology and Oceanography* 53:719-727.

LaJeunesse TC, Loh WKW, Woesik Rv, Hoegh-Guldberg O, Schmidt GW, and Fitt WK. 2003. Low Symbiont Diversity in Southern Great Barrier Reef Corals, Relative to Those of the Caribbean. *Limnology and Oceanography* 48:2046-2054.

LaJeunesse TC, Parkinson JE, and Reimer JD. 2012. A genetics-based description of *Symbiodinium minutum* sp. nov. and *S. psygmophilum* sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria. *Journal of Phycology* 48:1380-1391.

LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldborg O, and Fitt WK. 2010b. Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus *Symbiodinium*. *Journal of Biogeography* 37:785-800.

LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, Pérez AL et al. . 2010a. Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. *Proceedings of the Royal Society B: Biological Sciences* 277:2925-2934.

LaJeunesse TC, Smith RT, Finney J, and Oxenford H. 2009. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. *Proceedings of the Royal Society B: Biological Sciences* 276:4139-4148.

LaJeunesse TC, and Thornhill DJ. 2011. Improved Resolution of Reef-Coral Endosymbiont (Symbiodinium) Species Diversity, Ecology, and Evolution through psbA Non-Coding Region Genotyping. *PLoS ONE* 6:e29013.

LaJeunesse TC, and Trench RK. 2000. Biogeography of two species of *Symbiodinium* (Freudenthal) inhabiting the intertidal sea anemone *Anthopleura elegantissima* (Brandt). *The Biological Bulletin* 199:126-134.

Lang JC, Lasker HR, Gladfelter EH, Hallock P, Jaap WC, Losada FJ, and Muller RG. 1992. Spatial and Temporal Variability during Periods of “Recovery” after Mass Bleaching on Western Atlantic Coral Reefs. *American Zoologist* 32:696-706.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z et al. . 2005. Genome sequencing in microfabricated high-density picolitre reactors. *Nature* 437:376-380.

Marshall PA, and Baird AH. 2000. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. *Coral Reefs* 19:155-163.

Matz MV, Wright RM, and Scott JG. 2013. No Control Genes Required: Bayesian Analysis of qRT-PCR Data. *PLoS ONE* 8:e71448.

McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, and Lopez R. 2013. Analysis Tool Web Services from the EMBL-EBI. *Nucleic Acids Research* 41:W597-600.

Mieog JC, Olsen JL, Berkelmans R, Bleuler-Martinez SA, Willis BL, and van Oppen MJH. 2009. The Roles and Interactions of Symbiont, Host and Environment in Defining Coral Fitness. *PLoS ONE* 4:e6364.
Morrow KM, Moss AG, Chadwick NE, and Liles MR. 2012. Bacterial Associates of Two Caribbean Coral Species Reveal Species-Specific Distribution and Geographic Variability. *Applied and Environmental Microbiology* 78:6438-6449.

Muscatine L, and Cernichiari E. 1969. Assimilation of photosynthetic products of zooxanthellae by a reef coral. *The Biological Bulletin* 137:181-202.

Muscatine L, Falkowski PG, Porter JW, and Dubinsky Z. 1984. Fate of Photosynthetic Fixed Carbon in Light- and Shade-Adapted Colonies of the Symbiotic Coral *Stylophora pistillata*. *Proceedings of the Royal Society of London Series B Biological Sciences* 222:181-202.

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, and Wagner H. 2013. vegan: Community Ecology Package. R package v2.0-10 ed.

Paulson JN, Stine OC, Bravo HC, and Pop M. 2013. Differential abundance analysis for microbial marker-gene surveys. *Nat Meth* 10:1200-1202.

Peakall R, and Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. *Bioinformatics* 28:2537-2539.

Pettay DT, and LaJeunesse TC. 2007. Microsatellites from clade B *Symbiodinium* spp. specialized for Caribbean corals in the genus *Madracis*. *Molecular Ecology Notes* 7:1271-1274.

Pochon X, and Gates RD. 2010. A new *Symbiodinium* clade (Dinophyceae) from soritid foraminifera in Hawai'i. *Molecular Phylogenetics and Evolution* 56:492-497.

Pochon X, Pawlowski J, Zaninetti L, and Rowan R. 2001. High genetic diversity and relative specificity among *Symbiodinium*-like endosymbiotic dinoflagellates in soritid foraminiferans. *Marine Biology* 139:1069-1078.

Pochon X, Putnam HM, Burki F, and Gates RD. 2012. Identifying and Characterizing Alternative Molecular Markers for the Symbiotic and Free-Living Dinoflagellate Genus *Symbiodinium*. *PLoS ONE* 7:e29816.

Precht W, ML R, GS B, and GP S. 2005. Establishment and initial analysis of deep reef stations (32–40m) at the East Flower Garden Bank. Dedicated Issue, *Gulf of Mexico Science* 21:124-127.

Pritchard JK, Stephens M, and Donnelly P. 2000. Inference of Population Structure Using Multilocus Genotype Data. *Genetics* 155:945-959.

Putnam HM, Stat M, Pochon X, and Gates RD. 2012. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. *Proceedings of the Royal Society B: Biological Sciences* 279:4352-4361.

Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV, and Bay LK. 2014. Deep-Sequencing Method for Quantifying Background Abundances of *Symbiodinium* Types: Exploring the Rare *Symbiodinium* Biosphere in Reef-Building Corals. *PLoS ONE* 9:e94297.

R Developmental Core Team. 2013. R: A language and environment for statistical computing. *R Foundation for Statistical Computing*.

Reynolds JM, Bruns BU, Fitt WK, and Schmidt GW. 2008. Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. *Proceedings of the National Academy of Sciences* 105:13674-13678.

Rohwer F, Seguritan V, Azam F, and Knowlton N. 2002. Diversity and distribution of coral-associated bacteria. *Marine Ecology Progress Series* 243:1-10.

Rogers NA. 2004. DISTRUCT: a program for the graphical display of population structure. *Molecular Ecology Notes* 4:137-138.

Rowan R, and Knowlton N. 1995. Intraspecific diversity and ecological zonation in coral-algal symbiosis. *Proceedings of the National Academy of Sciences* 92:2850-2853.

Rowan R, Knowlton N, Baker A, and Jara J. 1997. Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. *Nature* 388:265-269.
Sampayo EM, Franceschinis L, Hoegh-Guldberg OVE, and Dove S. 2007. Niche partitioning of closely related symbiotic dinoflagellates. *Molecular Ecology* 16:3721-3733.

Sampayo EM, Ridgway T, Bongaerts P, and Hoegh-Guldberg O. 2008. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. *Proceedings of the National Academy of Sciences* 105:10444-10449.

Santos SR, Shearer TL, Hannes AR, and Coffroth MA. 2004. Fine-scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (*Symbiodinium*, Dinophyceae) of the Caribbean. *Molecular Ecology* 13:459-469.

Schmahl GP, Hickerson EL, and Precht WF. 2008. Biology and Ecology of Coral Reefs and Coral Communities in the Flower Garden Banks Region, Northwestern Gulf of Mexico. In: Riegl BM, and Dodge RE, editors. Coral Reefs of the USA. Dordrecht: Springer. p 221-262.

Schultz J, Maisel S, Gerlach D, Müller T, and Wolf M. 2005. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. *RNA* 11:361-364.

Schultz J, Müller T, Achtziger M, Seibel PN, Dandekar T, and Wolf M. 2006. The internal transcribed spacer 2 database—a web server for (not only) low level phylogenetic analyses. *Nucleic Acids Research* 34:W704-707.

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W, and Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. *Genome Biology* 12:R60.

Seibel P, Muller T, Dandekar T, Schultz J, and Wolf M. 2006. 4SALE - A tool for synchronous RNA sequence and secondary structure alignment and editing. *BMC Bioinformatics* 7:498.

Seibel P, Muller T, Dandekar T, and Wolf M. 2008. Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. *BMC Research Notes* 1:91.

Selig C, Wolf M, Müller T, Dandekar T, and Schultz J. 2008. The ITS2 Database II: homology modelling RNA structure for molecular systematics. *Nucleic Acids Research* 36:D377-380.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems Biology* 7:539.

Silverstein RN, Correa AMS, and Baker AC. 2012. Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change. *Proceedings of the Royal Society B: Biological Sciences* 279:2609-2618.

Stat M, Bird CE, Pochon X, Chasqui L, Chauka LJ, Concepcion GT, Logan D, Takabayashi M, Toonen RJ, and Gates RD. 2011. Variation in *Symbiodinium* ITS2 Sequence Assemblages among Coral Colonies. *PLoS ONE* 6:e15854.

Stat M, Carter D, and Hoegh-Guldberg O. 2006. The evolutionary history of *Symbiodinium* and scleractinian hosts—Symbiosis, diversity, and the effect of climate change. *Perspectives in Plant Ecology, Evolution and Systematics* 8:23-43.

Stat M, Pochon X, Cowie ROM, and Gates RD. 2009. Specificity in communities of *Symbiodinium* in corals from Johnston Atoll. *Mar Ecol Prog Ser* 386:83-96.

Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, Weil E, Andersen GL, and Medina M. 2009. Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral *Montastraea faveolata*. *ISME J* 3:10.

Szmant AM, Weil E, Miller MW, and Colón DE. 1997. Hybridization within the species complex of the scleractinian coral *Montastraea annularis*. *Marine Biology* 129:561-572.

Thornhill D, LaJeunesse T, Kemp D, Fitt W, and Schmidt G. 2006. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. *Marine Biology* 148:711-722.
Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, and Schmidt GW. 2008. Correspondence between cold tolerance and temperate biogeography in a western Atlantic Symbiodinium (Dinophyta) lineage. *Journal of Phycology* 44:1126-1135.

Thornhill DJ, Lajeunesse TC, and Santos SR. 2007. Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. *Molecular Ecology* 16:5326-5340.

Thornhill DJ, Lewis AM, Wham DC, and LaJeunesse TC. 2014. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. *Evolution* 68:352-367.

Toller WW, Rowan R, and Knowlton N. 2001. Zooxanthellae of the *Montastraea annularis* Species Complex: Patterns of Distribution of Four Taxa of *Symbiodinium* on Different Reefs and Across Depths. *The Biological Bulletin* 201:348-359.

Trench RK. 1987. Dinoflagellates in non-parasitic symbioses. In: Taylor FJR, ed. *The Biology of Dinoflagellates*. London: Blackwell Scientific Publications, 530–570.

Van Oppen MJH, Palstra FP, Piquet AM-T, and Miller DJ. 2001. Patterns of coral–dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host–symbiont selectivity. *Proceedings of the Royal Society of London Series B: Biological Sciences* 268:1759-1767.

Voolstra C, Schnetzer J, Peshkin L, Randall C, Szmant A, and Medina M. 2009. Effects of temperature on gene expression in embryos of the coral *Montastraea faveolata*. *BMC Genomics* 10:627.

Warner ME, Fitt WK, and Schmidt GW. 1996. The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. *Plant, Cell & Environment* 19:291-299.

Warner ME, LaJeunesse TC, Robison JD, and Thur RM. 2006. The Ecological Distribution and Comparative Photobiology of Symbiotic Dinoflagellates from Reef Corals in Belize: Potential Implications for Coral Bleaching. *Limnology and Oceanography* 51:1887-1897.

White JR, Nagarajan N, and Pop M. 2009. Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples. *PLoS Comput Biol* 5:e1000352.

Wolf M, Achtziger M, Schultz J, Dandekar T, and Müller T. 2005. Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. *RNA* 11:1616-1623.
Figure 1

The study system.

A. Location of Flower Garden Banks National Marine Sanctuary, Gulf of Mexico (27°54' N, 93°35'W for east Flower Garden Banks and 27°53'N, 93°49'W west Flower Garden Banks)

Figure Credit: USGS (http://pubs.usgs.gov/of/2003/of03-002/html/FGB_figs.htm)

B. Orbicella faveolata from Panama, Photo Credit: Mónica Medina

C. Orbicella franksi from Panama, Photo Credit: Mónica Medina
Figure 2

Genetic analysis of the coral host.

DISTRACT plots from STRUCTURE, K=2 except where noted. All *Orbicella faveolata* and *Orbicella franksi* samples collected from east and west Flower Garden Banks National Marine Sanctuary, Gulf of Mexico (n=193) B. Same as ‘A’ but potential hybrids removed (n=174) C. Only *Orbicella faveolata* but with potential hybrids removed (n=73, K=3) and D. Only *Orbicella franksi* but with potential hybrids removed (n=101) E. The selected 60 *Orbicella faveolata* (n=30) and *Orbicella franksi* (n=30)
Analysis of Molecular Variance (AMOVA) Fixation index (F_{ST}) values showing genetic diversity results among *Orbicella faveolata* and *Orbicella franksi*, among *Orbicella franksi* within the two geographic locations and among *Orbicella faveolata* within the two geographic locations.
	F_{ST}	p-value
$O. faveolata$ vs $O. franksi$	0.069	0.001
$O. franksi$ East vs West	0	0.529
$O. faveolata$ East vs West	0.009	0.016
Table 2 (on next page)

The sequencing coverage and mapping efficiency by geographic location and species.

Summary of ITS-2 amplicon sequencing for two coral host species collected from Flower Garden Banks, Gulf of Mexico using the 454 GS FLX platform. Individuals are summed by geographic location and species.
	Raw Read Number	Trimmed Reads	Mapped Reads	Mapping Efficiency
East	95,478	68,670	68,637	100%
West	74,871	54,197	54,175	100%
O. faveolata	74,840	53,938	53,913	100%
O. franksi	95,509	68,929	68,899	100%
TOTAL	170,349	122,867	122,812	100%
Figure 3

The percentage of reads for the seven minor *Symbiodinium* haplotypes by geographic location and species.

The dominant *Symbiodinium* B1 haplotype II comprised the remaining bulk of reads. Total read numbers were: east:*Orbicella faveolata* = 26,916 reads, east:*Orbicella franksi* = 40,094 reads, west:*Orbicella faveolata* = 26,264 reads, west:*Orbicella franksi* = 27,503 reads.
Figure 4

Distribution of abundance of the three significantly differentially represented *Symbiodinium* haplotypes by geographic location (A) and coral species (B).
Figure 5

Principle Components Analysis (PCA) of *Symbiodinium* read data for all haplotypes accounting for >0.1% of total.

First two principal components explain 30.46% of the variation (n=57). Arrows are loadings for the three haplotypes significantly differentially represented between east and west banks according to the GLMM model.