This article can be cited before page numbers have been issued, to do this please use: A. Lahiri, L. Yang, O. Hoefft and F. Endres, Mater. Adv., 2021, DOI: 10.1039/D0MA00954G.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Biodegradable Zn-Ion Battery with lignin composite electrode and Bio-Ionic Liquid Based Electrolyte: Possible In Situ Energy Generation by Lignin Electrocatalysis

Abhishek Lahiri¹,² *, Li Yang¹, Oliver Hoefft¹, Frank Endres¹ *

¹Institute of Electrochemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 6, 38678 Clausthal-Zellerfeld, Germany
²Department of Chemical Engineering, Brunel University London, London UB8 3PH, UK

Corresponding Authors: abhishek.lahiri@brunel.ac.uk; frank.endres@tu-clausthal.de

Abstract

Electrochemical energy storage with lignin-based composite electrodes offer a cheap and renewable source for batteries. Lignin composites have mainly been used in supercapacitors and little has been investigated related to applying these composites in batteries. Here we show a hybrid Zn-ion battery with polymer/lignin composite electrode as cathode, Zn anode and bio-ionic liquid electrolytes as a biodegradable battery. Interestingly, the polymer/lignin composite cathode led to a higher discharge capacity compared to the charge capacity over the entire 100 charge/discharge cycling process. It was observed that lignin concentration in the composite polymer electrode was crucial in obtaining such a phenomenon. Using SEM, electrochemical analysis and NMR, we showed that lignin electrocatalytically oxidizes during battery charging that produced the extra energy. This results in obtaining a higher discharge capacity compared to the charge capacity. It is anticipated that such an electrocatalytic technique can be extended to other battery systems to harness clean electrochemical energy from biomass.

Introduction

Development of batteries with sustainable materials is important to reduce the battery cost as well as reduce the complexity of end-of-life battery recycling process. Biomass composite electrodes are potential alternative to metal oxide electrodes due to its abundance and biodegradable properties. Besides electrodes, current batteries use toxic and flammable electrolytes which makes
battery recycling a challenging aspect. Therefore, new environmentally friendly electrolytes are equally necessary to develop for producing safe batteries.

Among different biomass, Lignin is a naturally occurring biopolymer present in plant cells. It has a complex polymeric structure comprising mainly of hydroxybenzene, guaiacyl (4-alkyl-2-methoxyphenol) and syringyl (4-alkyl-2, 5-dimethoxyphenol).\(^1\)\(^-\)\(^3\) Due to its vast availability, effective valorization of lignin is of significant interest. Until now, main attention has been given towards lignin fractionation and/or depolymerisation using green chemistry routes to form value-added aromatics as products.\(^2\)\(^,\)\(^4\)\(^-\)\(^6\) However, the feasibility beyond the lab-scale has been questioned mainly due to the complex structure of lignin and its heterogeneity.\(^6\) In comparison to depolymerisation, some recent studies have shown the prospect of directly catalyzing lignin to electricity using a biomass fuel cell which works at elevated temperatures between 80 and 550 °C.\(^7\)\(^-\)\(^9\) However, the low conversion efficiency, costly electrodes (usually noble metals), elevated temperatures as well as low power density hinders further exploitation of the process.

Lignin derivative such as lignosulfonates and its composites with conducting polymers have shown some promise in energy storage.\(^10\)\(^-\)\(^13\) The quinone groups formed by electrooxidation of guaiacyl and syringyl in lignin are excellent moieties for reversible redox reactions which has been exploited for sensing molecules and for charge storage.\(^12\)\(^-\)\(^14\) Lignin based composite electrodes have been tested as capacitors in acidic or alkaline solutions.\(^10\)\(^-\)\(^13\) For batteries, lignin has been used as binders and electrodes\(^15\)\(^,\)\(^16\) wherein the electrodes were made by carbonizing of lignin\(^16\)\(^-\)\(^19\). Casado et al showed the possibility of Na ion storage in lignin/ poly(3,4-ethylenedioxythiophene) composite electrode in ionic liquids which showed a capacity of 70 mAh g\(^{-1}\) at a low current density of 25 mA g\(^{-1}\).\(^20\)

Here, we demonstrate a new phenomenon in which lignin present in the polypyrrole composite electrode not only acts as a charge storage medium but also acts as an energy generating source during running of Zn-ion battery in bio-ionic liquid electrolytes. This in situ energy generation in-effect leads to > 100% columbic efficiency.

Results and Discussion

The composite electrode of polypyrrole (PPy) and lignin was obtained by electropolymerisation. The microstructures of PPy and PPy/lignin composite electrodes are shown in figure 1. PPy shows
the formation of coagulated large particles (figure 1a). The PPy/lignin composite shows a slightly
different morphology as the concentration of lignin in the electrolyte is changed. As higher
concentration of lignin is incorporated in PPy, much smoother morphology (figure 1d and figure
1e) is obtained with the presence of small particles of around 1 μm in size. An increase in particle
size is again observed with increase in lignin concentration (figure 1f). Comparing the
microstructures of various composites in figure 1, it is evident that lignin significantly changes the
PPy morphology.

Figure 1: Microstructure of Polypyrrole and PPy/lignin composite electrodeposited on carbon
paper from (a) 0.05 M LiClO₄, 0.1 M pyrrole (b) 0.05 M LiClO₄, 0.1 M pyrrole, 0.5 mg/mL
lignosulfonate (c) 0.05 M LiClO₄, 0.1 M pyrrole, 1.25 mg/mL lignosulfonate (d) 0.05 M LiClO₄,
0.1 M pyrrole, 2.5 mg/mL lignosulfonate (e) 0.05 M LiClO₄, 0.1 M pyrrole, 3.75 mg/mL
lignosulfonate (f) 0.05 M LiClO₄, 0.1 M pyrrole, 5 mg/mL lignosulfonate

The Raman and X-ray photoelectron spectroscopy (XPS) of PPy and PPy/lignin composites are
shown in figures 2 and 3, respectively. The Raman spectra in figure 2 shows characteristic peaks
of polypyrrole. From Raman, it can be observed that on addition of lignin to polypyrrole, almost
insignificant shifts are observed. Most of the lignin peaks get merged within the polypyrrole
structure. However, changes in the Raman intensity are evident. With the addition of 0.5 mg/mL
lignin in the electrolyte, a slight increase in the Raman intensity is observed which increases on
addition of lignin to 2.5 mg/mL to the electrolyte and decrease on further addition of lignin. This indicates that number of active functional groups/cross-linkage in the composite is highest with the electrolyte containing 2.5 mg/mL of lignin. Due to overlap of lignin modes and polypyrrole modes, it is not possible to distinguish the concentration of the lignin in the electrode.

Figure 2: Raman spectra of polypyrrole and polypyrrole with different lignin concentration. PPy/lign1 was synthesized from aqueous solution containing 0.05 M LiClO$_4$, 0.1 M pyrrole and 0.5 mg/mL of lignosulfonate. PPy/lign2 was synthesized from aqueous solution containing 0.05 M LiClO$_4$, 0.1 M pyrrole and 2.5 mg/mL of lignosulfonate. PPy/lign3 was synthesized from aqueous solution containing 0.05 M LiClO$_4$, 0.1 M pyrrole and 5 mg/mL of lignosulfonate.

The XPS spectra of PPy and PPy/lignin composite electrode are compared in figure 3. From the XPS survey spectra in figure 3a, peaks related to C 1s, N 1s, O 1s, Cl 1s and S 2p are observed. The S 2p and Cl 1s come from lignosulfonate and LiClO$_4$ present in the electrolyte, respectively. The presence of S 2p confirms the formation of PPy/lignin composite electrode. The C 1s detailed spectra are shown in figure 3b. PPy shows three peaks at 284.8 eV (C-C bond), 286.3 eV (C-OH, C-N) and 288.1 eV (C=O). The presence of lignin in the PPy broadens the C 1s spectra and an increase in the intensity at 286.3 eV is evident. This peak increase is due to the presence of p-
hydroxyphenyl, guaiacyl, and syringyl moieties of lignin. The N 1s detailed spectra also shows some changes. On addition of lignin in the PPy, the N 1s spectra in figure 3c changes from a symmetric peak to an asymmetric peak. Furthermore, a shoulder at 401 eV is observed which clearly indicates additional lignin moieties present in the PPy matrix.

Figure 3 (a) XPS Survey spectra of PPy and PPy with different lignin concentrations (b) C 1s detailed spectra of PPy and PPylignin composites (c) N 1s spectra of PPy and PPylignin composites

Figure 4a shows the cyclic voltammetry curves of polypyrrole (PPy) and PPy/lignin composite in 50 wt% choline acetate (ChAc) + 50 wt% water and 1 mol/kg of Zn acetate (ZnAc₂) in (50 wt% ChAc + 50 wt% water). PPy shows almost a capacitive behavior in 50 wt% ChAc + 50 wt% water in presence and absence of ZnAc₂ whereas in PPy/lignin composite electrode an oxidation peak at 1.04 V and a large reduction wave centered at 0.95 V are observed in 50 wt% ChAc + 50 wt% water. The oxidation/reduction peak is attributed to quinone moieties formed by guaiacyl and syringyl oxidation in lignin. On addition of ZnAc₂ in the electrolyte, a shift in the oxidation peak to 1 V and reduction peak to 0.81 V is observed. The shift in the oxidation/reduction peaks confirms that Zn ions are being stored in the biopolymer matrix. The contribution of the capacitive process in PPy/lignin composite electrode was determined by plotting log of current (at a particular voltage) versus log of scan rates according to the equation $i=a\nu^b$ where a is a constant and b is a value ranging from 0.5 (diffusion controlled contribution) to 1 (capacitive contribution). The current was chosen at the peak potentials at 0.95 V and 0.76 V in the anodic and cathodic processes (from figure S1a), respectively. From figure S1b, the value of b was found to be 0.73 and 0.65 for the
cathodic and anodic processes, respectively which suggests capacitive process to be the main contribution to charge storage. The contribution to capacitive and faradic processes is shown in figure 4b from which it is evident that with increase in scan rate capacitive process becomes more prominent. The hybridization of both faradic and capacitive processes is an added benefit in high energy density battery systems for fast charging of the battery.

Figure 4 (a) CV of PPy and PPy/lignin composite electrode in different electrolytes at a scan rate of 10 mV sec\(^{-1}\) (b) Capacitive contribution to the total capacity at different scan rates (orange represents the capacitive process and olive color represents the faradic process) (c) The charge-discharge profile of PPy in 1 mol/kg of ZnAc\(_2\) in (50 wt% ChAc + 50 wt% water) at a current density of 200 mA g\(^{-1}\) (d) The charge-discharge profile of PPy/lignin composite (2.5mg/mL lignin concentration in electrolyte for the deposition) in 1 mol/kg of ZnAc\(_2\) in (50 wt% ChAc + 50 wt% water) at a current density of 200 mA g\(^{-1}\) (e) Galvanostatic charge-discharge with cycle number at a current density of 200 mA g\(^{-1}\) (f) The charge-discharge profile of different PPy/lignin composite in 1 mol/kg of ZnAc\(_2\) in (50 wt% ChAc + 50 wt% water)
Figure 4c and 4d compares the charge discharge of PPy and PPy/lignin composite electrode in Zn-ion batteries. In PPy the charge discharge curve shows that an initial discharge capacity of 65 mAh g⁻¹ is achieved for Zn storage and the charging process takes considerably longer time. In comparison, on addition of lignin to PPy, a remarkable change in the charge-discharge behavior is observed in figure 4d. A synergic effect is seen with a higher initial discharge capacity of almost 130 mAh g⁻¹ which can be related to the presence of lignin which acts as additional Zn storage sites and leads to an initial higher discharge capacity. However, strangely the discharge capacity is higher than the charge capacity which can occur due to irreversibility or a secondary reaction that generates in situ energy during the charge process. The irreversibility would be detrimental to the battery performance as Zn would be consumed with cycling leading to lower battery performance, however, the in situ energy generation might lead to new battery chemistry.

The galvanostatic charge-discharge curves with number of cycles of PPy and PPy/lignin composite is compared in figure 4e. Compared to figure 4d, it is evident that in the first cycle the charge capacity is higher than discharge capacity for the PPy/lignin composite. However, from the second cycle a higher discharge capacity compared to charge capacity is observed. Repeated experiments with different PPy/lignin composites showed that such a behavior is observed sometimes in the first cycle but reverses from the second cycle. The instability in the charge/discharge behavior in figure 4e can be ascribed to the heterogeneous and complex structure of lignin. With change in lignin concentration in PPy, a similar behavior of increased discharge capacity compared to charge capacity is seen (figure 4f and figure S2) until a certain concentration. With higher concentration of lignin in PPy, not only a significant decrease in capacity storage is observed but also the charge capacity becomes higher than discharge capacity (PPy-lig 3, figure 4f). This might be due to a phase change in PPy/lignin composite (see figure 1 wherein a significant change in the morphology is observed with varying lignin in the biopolymer matrix) which inhibits the secondary reaction to take place. Also, higher concentration of lignin leads to lowering of active sites in the polymer as seen from figure 2. The galvanostatic charge-discharge curves of different PPy/lignin composites are shown in figure S2. Except for the case of PPy-λig 3, it is evident that in all the cases the discharge capacity is higher than charge capacity (figure S2).

To understand the influence of lignin in generating energy during charging, the electrolyte and electrode were analyzed. The CV of PPy and PPy/lignin composite in the Zn ion containing electrolyte with and without lignin is shown in figure 5a. PPy in the electrolyte shows a capacitive
behavior. However, on addition of lignosulfonate in the electrolyte, a clear increase in current from 0.95 V is observed (red line, figure 5a) which can be associated with electrocatalytic oxidation/dissolution of lignin. In PPy/lignin composite electrode the CV shows an oxidation/reduction behavior which is related to the quinone redox process. However, with lignosulfonate in the electrolyte, an increase in current as well as a shift in the oxidation potential by less than 100 mV (pink line, figure 5a) is evident.

Figure 5 (a) CV of PPy and PPy/lignin composite in 1 mol/kg ZnAc$_2$ in (50 wt% ChAc + 50 wt% water) and the same electrolyte containing lignosulfonate (2.5 mg/mL) performed at 10 mV sec$^{-1}$ (b) SEM of PPy/lignin composite after 50 CV cycles in 1 mol/kg ZnAc$_2$ in (50 wt% ChAc + 50 wt% water) (c) Specific capacity difference between discharge and charge (d) Charge/discharge cycles of PPy/lignin composite electrodeposited on indium tin oxide at 300 mA g$^{-1}$.

It has been shown that Zn can accelerate the depolymerisation of lignin in formic acid and therefore the increase in current in figure 5a along with the reduced potential can be associated with the increase in electrocatalytic oxidation/dissolution of lignin. Therefore, on running the battery, the increase in discharge capacity compared to charge capacity can be associated with the
electrons generated by the electrocatalytic oxidation/dissolution of lignin during battery charging. To prove the electrocatalytic oxidation/dissolution behavior from the PPy/lignin composite electrode, CV cycles were run in the 50 wt% ChAc + 50 wt% water electrolyte (figure S3). It is evident from the CV curves (figure S3b) that with cycling, the current related to redox reaction increases and reaches almost saturation after about 40 cycles. This is in contrast with that observed in PPy (figure S3a) in the same electrolytes wherein a decrease in the redox reaction took place. This indicates that lignin is electrocatalytically oxidized/dissolved and generates energy during this process. Furthermore, the microstructure of PPy/lignin composite observed after CV cycles in figure 5b shows formation of number of particles of about 1 μm in size compared to fewer particles observed in figure 1d. Furthermore, on plotting the difference between the discharge capacity and charge capacity with cycle number for different PPy/lignin composite electrodes (figure 5c), it is evident that the capacity difference fades with cycling which confirms the irreversible lignin oxidation/dissolution during the charge process. However, with different lignin concentration in PPy, an additional average energy of about 5 mAh g⁻¹ is still present even after 50 cycles. This suggests that the electrooxidation/dissolution of lignin in this electrolyte is slow. It has been shown that lignin dissolution is difficult in ionic liquids with low yields of 6% at 110 °C.²⁸ Therefore, it is anticipated that the lignin powered battery would result in producing additional energy for a long time and less energy will be needed to charge the battery. In order to relegate the effect of carbon current collector in producing extra energy, PPy/lignin composite was deposited on ITO and the battery was tested in the same electrolyte. Figure 5d again shows a higher discharge compared to charge which decreases with cycle number. Although the specific capacity decreases significantly with cycle number, the discharge is more than charge even after 200 cycles which clearly indicates that the current collector has no role in producing extra energy during charging. However repeated experiments showed that the battery capacity is significantly affected (fig S4) which might be due to the heterogeneous structure of lignin resulting in different polymer composites. From figure S4, it is noted that the specific capacity difference between discharge and charge lies in the range of 0.2-0.8 mAh g⁻¹ and at times shows this phenomenon to be reversed. Furthermore, ageing of pyrrole was found to be critical as only the PPy/lignin composite from aged pyrrole resulted in obtaining higher discharge capacity compared to the charge capacity (see experimental section). Our repeated experiments showed that 80% of the time, we can obtain a higher discharge capacity compared to the charge capacity.
To understand the electrocatalysis phenomena of lignin in the battery, FTIR, NMR and XPS were used. Figure 6 compares the changes in the FTIR spectra of PPy and PPy/lignin. The FTIR spectra of PPy and PPy/lignin mainly show blue-shift in the composite electrode which has been reported to be due to masking effect of the conducting electrode even at higher concentrations of lignin in the composite. The region between 1200 and 1500 cm$^{-1}$ (related to monolignol vibrations and C-C, C-O stretch in lignin and C-N and N-H in-plane bending in PPy) has been shown to be the region where both lignin and polypyrrole vibrations overlap. Therefore, the change in this region in the case of cycled PPy/lignin composite would indicate the electrocatalytic oxidation of lignin has taken place. Figure 6b compares the IR spectra of polypyrrole before and after cycling in Zn-ion battery from which it is evident that between 1400 and 1500 cm$^{-1}$, a blue shift in the PPy spectrum is observed after cycling.

![Figure 6](image)

Figure 6: (a) IR spectra of electrodeposited polypyrrole (black line) and polypyrrole-lignin composite (red line) (b) Comparison of polypyrrole (black line) and polypyrrole after cycling in Zn-ion battery (red line) (c) Comparison of polypyrrole-lignin composite (Black line) and polypyrrole-lignin composite after cycling in Zn-ion battery (red line)

In the region of 1100 and 1400 cm$^{-1}$, new peaks are formed and a prominent peak at 1389 cm$^{-1}$ appears. These new peaks can be related to Zn-N bonds formed in the electrode. In comparison to PPy, if we look into the PPy/lignin composite in figure 6c, it becomes evident that between 1205 and 1500 cm$^{-1}$, most of the peaks disappear. As this region is related to the lignin vibrations, the disappearance of the peaks might be related to the electrocatalytic oxidation/dissolution of lignin which must have provided the extra energy during charging of the battery.
The electrolyte was analyzed using 1H NMR. Comparing the 1H NMR spectra (figures S5-S8), it is evident that certain changes take place at the choline region at 2.88, 3.19 and 3.73 ppm and acetate region at 1.66 ppm30. On performing charge-discharge cycles with PPy electrode, a downfield shift in both choline and acetate region by 0.04 and 0.03 ppm is observed whereas the electrolyte cycled in PPy/lignin shows an upfield shift by 0.06 and 0.07 ppm, respectively compared to ZnAc$_2$ containing electrolyte. This clearly indicates that the lignin in the PPy/lignin electrode might have dissolved in the electrolyte. Xu et al found similar results wherein both cation and anion are affected on dissolution of lignin in choline carboxylate ionic liquids30.

The electrode was further investigated with XPS to evaluate the structural changes in the electrodes. XPS of as synthesized PPy and PPy/lignin and after cycling in the Zn-ion battery are compared in figure S9. A stark difference in after cycled PPy and PPy/lignin is observed wherein the survey spectra (figure S9a) show the presence of Zn which gets trapped into the polymer matrix during cycling31, thereby reducing the capacity with cycle number. Also, there is a loss in C 1s and S 2p peaks which can be related with exchange on anion from C 1s by CH$_3$COO$, and dissolution of sulfur species in the bio-ionic liquid, respectively. From the C 1s spectra (figure S9b), the PPy shows a peak split whereas PPy/lignin shows broadening of the peak. In PPy, the deconvoluted peaks are attributed to C, C-O/C-N and C=O whereas in PPy/lignin besides these peaks, an additional peak related to COOH is seen at 288.5 eV. 31,32 The N 1s spectra in figure S9c show peak splitting in both PPy and PPy/lignin after cycling. In PPy peak splits are observed at 402 eV and 398.3 eV whereas in PPy/lignin two peaks at 402.5 and 399.7 eV are distinguished. In PPy, the peaks are due to C=N$^+$ and Zn-N33 respectively, whereas in PPy/lignin the peaks can be attributed to C=N$^+$ and C=N.29 This shift in the peak arises due to the change in Zn coordination with the cathode. From O 1s spectra (figure S9d), it is evident the presence of lignin in PPy changes the O 1s spectra from a symmetric to an asymmetric peak with a shoulder occurring at 530.6 eV. The change in the peak occurs due to the additional p-hydroxyphenyl, guaiacyl, and syringyl moieties present in lignin. The peaks at 532.0 ±0.5 eV and 533.5 ±0.5 eV occur due to C=O and C-O, respectively. 34 After cycling, a shift in O 1s for PPy is observed to 531.5 and 530.2 eV. The lower binding energy can be attributed to the presence of Zn in PPy matrix which forms ZnO whereas the higher binding energy peak relates with the C=O. In contrast, the cycled PPy/lignin composite shows an almost symmetric curve similar to original PPy which clearly indicates that the lignin moieties have oxidized/dissolved in the electrolyte.
Conclusion

In conclusion, we have shown a unique battery chemistry wherein a higher discharge capacity is obtained compared to charge capacity in a biomass based composite electrode with a bio-ionic liquid electrolyte. It was found that a secondary reaction takes place during charging of the battery which is triggered by lignin electrocatalysis in the bio-ionic liquid that generates additional energy. From the charge-discharge curves, although a significant drop in the battery capacity is observed, the discharge capacity remains higher than the charge capacity. The present results open up new avenues of exploiting lignin based composite electrodes not only for energy storage but a combined energy production/storage hybrid system which might have applicability in different batteries.

Experimental methods

The ionic liquid, choline acetate ([Ch]OAc), was purchased from IO-LI-TEC, Germany (99%). Zinc acetate and lithium perchlorate (99.99%) were obtained from Sigma-Aldrich (99%) and pyrrole (> 98%) was purchased from Alfa Aesar. The pyrrole was distilled prior to use and was stored in a refrigerator. Fresh pyrrole and aged pyrrole (after 3 weeks in refrigerator) were used to deposit polypyrrole. GCMS results showed that in aged pyrrole a partial polymerization process takes place (figure S10). The polypyrrole/lignin composites were deposited from the electrolyte containing different concentrations of lignosulfonate sodium salt (Sigma Aldrich). For battery testing, the Zn ion containing electrolyte was 1 mol/kg of ZnAc$_2$ in (50 wt% ChAc + 50 wt% water).

The polypyrrole and polypyrrole/lignin composite cathodes were prepared on a carbon paper and ITO by running ten cyclic voltammetry (CV) cycles between -0.4 V to 1.1 V vs Ag/AgCl (3M NaCl) from aqueous electrolyte containing 0.05 M LiClO$_4$ and 0.1 M pyrrole (2.5 mg/mL lignosulfonate sodium salt). After the deposition, the deposit was washed thoroughly in isopropanol. The loading mass was 0.2 mg cm$^{-2}$.

Electrochemical measurements were conducted in a flooded cell containing the polymer as the working electrode, 1 mol/kg ZnAc$_2$ in (50 wt% ChAc + 50 wt% water) as electrolyte, and Zn wire/sheet as counter and reference electrodes, respectively. Prior to the experiments, the Zn wire/sheets were mechanically polished to remove the oxide layer. The cyclic voltammetry (CV) was carried out using a VersaStat III (Princeton Applied Research) potentiostat/galvanostat.
controlled by Power-CV, galvanostatic charge−discharge test experiments were carried out using a battery tester (Arbin BT2000). SEM of the samples was carried out with a JEOL JSM7610F. FTIR was performed on ATR Vertex 70X. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with Avance III 600 MHz FT-NMR spectrometer (Bruker, Germany). The solvent used for the NMR spectroscopy was D₂O.

X-ray Photoelectron spectra (XPS) were obtained using an ultrahigh vacuum (UHV) apparatus with a base pressure below 1x10⁻¹⁰ hPa. The sample was irradiated using the Al K alpha line (photon energy of 1486.6 eV) of a non-monochromatic X-ray source (Omicron DAR 400). Electrons emitted were detected by a hemispherical analyser (Omicron EA125) under an angle of 45° to the surface normal with a calculated resolution of 0.8 eV for detail spectra and 2.1 eV for survey spectra. All XPS spectra were displayed as a function of the binding energy with respect to the Fermi level.

Acknowledgement

Financial support by the BMBF project ZIB 03XP0204C is gratefully acknowledged. We also thank Guozhu Li for XPS measurements, CUTEC for GCMS measurements and Dr. Namyslo for NMR measurements.

References

1. Ma, R.; Guo, M.; Zhang, X. Catal. Today 2018, 302, 50-60
2. Rahimi, A.; Ulbrich, A.; Coon, J. J.; Stahl, S. S. Nature, 2014, 515, 249-252
3. Wang, C.; Li, H.; Li, M.; Bian, J.; Sun, R. Sci. Rep., 2017, 7, 593
4. Sun, Z.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K. Chem. Rev., 2018, 118, 614-678
5. Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.-F.; Beckham, G. T.; Sels, B. F. Chem. Soc. Rev., 2018, 47, 852-908
6. Gillet, S.; Aguedo, M.; Petitjean, L.; Morais, A. R. C.; da Costa Lopes, A. M.; Lukasik, R. M.; Anastas, P. T. Green Chem., 2017, 19, 4200-4233
7. Lima, R. B.; Raza, R.; Qin, H.; Li, J.; Lindström, M. E.; Zhu, B. RSC Adv., 2013, 3, 5083-5089
8. Liu, W.; Mu, W.; Liu, M.; Zhang, X.; Cai, H.; Deng, Y. *Nature. Commun.*, **2014**, *5*, 3208
9. Liu, W.; Mu, W.; Ding, Y. *Angew. Chem. Int. Ed.*, **2014**, *53*, 13558-13562
10. Milczarek, G.; Inganäs, O. *Science*, **2012**, *335*, 1468-1471
11. Nagaraju, D. H.; Rebis, T.; Gabrielsson, R.; Elfwing, A.; Milczarek, G.; Inganäs, O. *Adv. Energy. Mater.*, **2014**, *4*, 1300443
12. Chaleawlert-umpon, S.; Berthold, T.; Wang, X.; Antonietti, M.; Liedel, C., *Adv. Mater. Inter.,* **2017**, *4*, 1700698
13. Che, C.; Vagin, M.; Ail, U.; Gueskine, V.; Phopase, J.; Brooke, R.; Gabrielsson, R.; Jonsson, M. P.; Mak, W. C.; Berggren, M.; Crispin, X. *Adv. Sustain. Systems.*, **2019**, *3*, 1900019
14. Milczarek, Lignosulfonate-Modified Electrodes: *Langmuir*, **2009**, *25*, 10345-10353
15. Nirmale, T. C.; Kale, B. B.; Verma, A. J. *Int. J. Biolog. Macromol.*, **2017**, *103*, 1032-1043
16. Espinoza-Acosta, J. L.; Torres-Chávez, P. I.; Olmedo-Martínez, J. L.; Vega-Rios, A.; Flores-Gallardo, S.; Zaragoza-Contreras, E. A. *J. Energy. Chem.*, **2018**, *27*, 1422-1438
17. Tenhaeff, W. E.; Rios, O.; More, K.; McGuire, M. A. *Adv. Func. Mater.*, **2014**, *24*, 86-94
18. Li, Y.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. *J. Mater. Chem. A.*, **2016**, *4*, 96-104
19. Dou, X.; Hasa, I.; Hekmatfar, M.; Diemant, T.; Behm, R. J.; Buchholz, D.; Passerini, S. *ChemSuSChem*, **2017**, *10*, 2668-2676
20. Casado, N.; Hilder, M.; Pozo-Gonzalo, C.; Forsyth, M.; Mecerreyes, D. *ChemSuSChem*, **2017**, *10*, 1783-1791
21. Santos, M. J. L.; Brolo, A. G.; Girootto, E. M. *Electrochim Acta.*, **2007**, *52*, 6141-6145
22. Malitesta, C.; Losito, I.; Sabbatini, L.; Zambonin, P. G. J. Electron. Spectrosc. **1995**, *76*, 629-634
23. Ge, H.; Qi, E.; Kang, E.-T.; Neoh, K. G. *Polymer.* **1994**, *35*, 504-508
24. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abreuña, H. D.; Simon, P.; Dunn, B. *Nat. Mater.*, **2013**, *12*, 518-522
25. Chen, C.; Wei, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.; Shen, B.; Huang, Y. *Nature Commun.*, **2015**, *6*, 6929
26. Chao, D.; Liang, P.; Chen, Z.; Bai, L.; Shen, H.; Liu, X.; Xia, X.; Zhao, Y.; Savilov, S. V.; Lin, J.; Shen, Z.X. *ACS Nano*, **2016**, *10*, 10211-10219
27. Lukatskaya, M. R., Dunn, B.; Gogotsi, Y. *Nat. Commun.* **2016**, *7*, 1264
28. Reichert, E.; Wintringer, R.; Volmer, D. A.; *Phys. Chem. Chem. Phys.*, **2012**, *14*, 5214-5221

29. Ajjan, F. N.; Jafari, M. J.; Rěbiš, T.; Ederth, T.; Inganäs, O. *J. Mater. Chem. A.*, **2015**, *3*, 12927-12937

30. Xu, A.; Guo, X.; Zhang, Y.; Li, Z.; Wang, J., *Green. Chem.*, **2017**, *19*, 4067-4073

31. Lahiri, A.; Yang, L.; Li, G.; Endres, F. *ACS Appl. Mater. Interfaces.*, **2019**, *11*, 45098-45107

32. Ge, H.; Qi, G.; Kang, E. T.; Neoh, K. G. *Polymer*, **1994**, *35*, 504-508

33. Haider, M. B. *Nanoscale. Res. Lett.*, **2017**, *2*, 5

34. Idla, K.; Talo, A.; Niemi, H. E. M.; Forsén, O.; Yläsaari, S., *Surf. Interface. Anal.*, **1997**, *25*, 837-854