The value of diastolic function parameters in the prediction of left atrial appendage thrombus in patients with nonvalvular atrial fibrillation

Rami Doukky1,2*, Enrique Garcia-Sayan3, Heather Gage1, Vijaigameh Nagarajan2, Anna Demopoulos1, Marek Cena2, Noreen T Nazir1, George J Karam1, Richard G Trohman1 and Rasa Kazlauskaite4

Abstract

Background: Left ventricular diastolic impairment and consequently elevated filling pressure may contribute to stasis leading to left atrial appendage thrombus (LAAT) in nonvalvular atrial fibrillation (AF). We investigated whether transthoracic echocardiographic parameters can predict LAAT independent of traditional clinical predictors.

Methods: We conducted a retrospective cohort study of 297 consecutive nonvalvular AF patients who underwent transthoracic echocardiogram followed by a transesophageal echocardiogram within one year. Multivariate logistic regression analysis models were used to determine factors independently associated with LAAT.

Results: Nineteen subjects (6.4%) were demonstrated to have LAAT by transesophageal echocardiography. These patients had higher mean CHADS2 scores [2.6 ± 1.2 vs. 1.9 ± 1.3, P = 0.009], higher E:e’ ratios [16.6 ± 6.1 vs. 12.0 ± 5.4, P = 0.001], and lower mean e’ velocities [6.5 ± 2.1 cm/sec vs. 9.1 ± 3.2 cm/sec, P = 0.001]. Both E and e’ velocity were associated with LAAT formation independent of the CHADS2 score, warfarin therapy, left ventricular ejection fraction (LVEF), and left atrial volume index (LAVI) [E:e’ odds-ratio = 1.14 (95% confidence interval = 1.03 – 1.3), P = 0.009; e’ velocity odds-ratio = 0.68 (95% confidence interval = 0.5 – 0.9), P = 0.007]. Similarly, diastolic function parameters were independently associated with spontaneous echo contrast.

Conclusion: The diastolic function indices E:e’ and e’ velocity are independently associated with LAAT in nonvalvular AF patients and may help identify patients at risk for LAAT.

Keywords: Diastolic function, Left atrial appendage thrombus, Spontaneous echo contrast (SEC), Atrial fibrillation

Background

Nonvalvular atrial fibrillation (AF) is the most common sustained cardiac dysrhythmia and the most frequent cause of cardio-embolic stroke [1]. It is well known that left atrial appendage thrombi (LAAT) are the source of most embolic strokes in patients with nonvalvular AF [2,3]. It is, likewise, widely accepted that transeosophageal echocardiography (TEE) can identify LAAT and left atrial blood stasis, manifesting as spontaneous echo contrast (SEC), a known precursor of LAAT and systemic thromboembolism (Figure 1) [4-6].

It is physiologically plausible that impaired diastolic function and consequent elevation in the left ventricular filling pressure (LVFP) lead to left atrial stasis which results in LAAT formation and subsequent risk of systemic thromboembolism. Prior reports suggest that two-dimensional echocardiographic parameters such as left ventricular ejection fraction (LVEF), left atrial volume index (LAVI) and LVEF/LAVI are associated with LAAT in patients with AF [7,8]. In this investigation, we sought to determine whether e’ velocity (as a surrogate for left ventricular relaxation) and E:e’ (as a measure of left ventricular filling pressure) are predictive of LAAT formation and SEC independent of confounding covariates. Furthermore, we sought to integrate diastolic function indices with other echocardiographic
parameters to propose a prediction rule for LAAT in patients with nonvalvular AF.

Methods
Patient population and study design
A retrospective cohort study design was implemented. We queried the echocardiography laboratory database at Rush University Medical Center to identify all consecutive adult patients with nonvalvular AF who underwent a TEE to “rule-out” left atrial appendage thrombus between January 1, 2005 and December 31, 2009. Of those, we only included patients who had a previous transthoracic echocardiogram (TTE) within 1 year of the TEE. Patients with atrial flutter, without intervening episodes of atrial fibrillation, were not included. We excluded patients with valvular AF due to mitral stenosis and those with conditions known to alter E and e' velocities; namely mitral regurgitation greater than 2+ in severity (on a 0 to 4 scale), post mitral valve surgical or percutaneous intervention, and post orthotopic heart transplantation status. Patients with isolated aortic valvular disease, aortic valve prosthesis and right-sided valvular heart disease were not excluded [1].

An expert board-certified (NBE) echocardiographer (RD), who was blinded to the TTE and clinical data, reviewed all TEE images to determine the presence or absence of LAAT [LAAT(+) and LAAT(−)], SEC and depressed left atrial appendage emptying velocity (<40 cm/sec) by pulsed-wave Doppler. LAAT was defined as a circumscribed and uniformly echodense intracavitary mass distinct from the underlying left atrial or left atrial appendage endocardium and the pectinate muscles, and present in more than one imaging plane [9]. Left atrial appendage sludge, defined as a dynamic gelatinous, precipitous echodensity, without a discrete mass, present throughout the cardiac cycle was categorized as LAAT [10,11]. SEC was defined as dynamic “smoke-like” echoes with the characteristic swirling motion with optimal gain setting during the entire cardiac cycle [12].

All TTEs were reviewed offline by a board-certified (NBE) echocardiographer who was blinded to TEE and clinical data (HG). The mitral inflow early-diastolic
pulsed-wave Doppler velocity (E) and the lateral mitral annulus tissue Doppler early-diastolic velocity (e') were measured (cm/sec) and the E/e' ratio was calculated (Figure 1). We did not analyze e' velocities sampled from the medial mitral annulus, since this was not routinely obtained according to our laboratory protocol at the time when the study TTEs were performed (2005–2009). The Doppler measurements were obtained by averaging data from 3–5 consecutive beats. The left ventricular septal and posterior wall thicknesses and end-diastolic as well as end-systolic internal dimensions were measured from 2-dimensional and M-mode TTE images [13]. The left ventricular mass was calculated using the Devereux formula [14]. The left ventricular systolic and diastolic volumes and LVEF were measured using the biplane Simpson’s method or the Teichholz formula only when the former was not feasible due to suboptimal apical views [13,15]. The left atrial dimensions (antero-posterior, medio-lateral and supero-inferior) were measured and the left atrial volume was calculated using the formula \[\frac{4}{3} \pi \left(\frac{D1}{2} \left(\frac{D2}{2} \left(\frac{D3}{2} \right) \right) \right) \] where each “D” represents one of three atrial dimensions [13]. All volume and mass measurements were indexed to the body surface area. The heart rhythm during TTE acquisition was determined from examination of the rhythm strip on the screen display.

Finally, a detailed chart review was performed to collect data on demographics, comorbidities, anticoagulant and antiplatelet use, and INR (international normalized ratio). Congestive heart failure (CHF) was defined as any clinical heart failure or LVEF < 40%. Date-of-onset and chronicity of AF were determined from patients’ health records. Paroxysmal AF was defined as AF spontaneously reverting to sinus rhythm within 7 days from onset. Persistent AF was defined as AF lasting more than 7 days, but less than 6 months, or any AF events terminated by electrical or chemical cardioversion or radiofrequency ablation within 6 months from onset. Permanently AF was defined as lasting more than 6 months [1]. The CHADS2 score was calculated from the sum of risk predictors of CHF, hypertension, age ≥75, diabetes mellitus, stroke or transient ischemic attack (TIA); weighing each by “1” except for prior stroke/transient ischemic attack (TIA) which was weighed by “2” [16]. The CHA2DS2-VASc score was calculated from the sum of the risk factors of CHF, hypertension, age 65–74 or ≥75 years, diabetes mellitus, stroke/TIA, vascular disease, female gender; weighing each by “1” except for stroke/TIA and age ≥75 which were weighed by “2” [17]. The primary outcome of the study was TEE-identified LAAT. The secondary outcome was TEE-identified SEC.

Statistical analysis
The two-tailed Student’s t-test was used to compare normally-distributed continuous variables which were expressed as mean ± standard deviation (SD). The Mann–Whitney-U test was used to compare categorical variables which did not adhere to a normal distribution (Table 1). Prior to the TEE, adequate anticoagulation was confirmed in 14 (74%) subjects with LAAT, and twelve of these (86%) had a CHADS2 score ≥2. AF
Table 1 Baseline clinical characteristics

	LAAT (+)	LAAT (−)	P value
Age (years), mean ± SD	N = 19	N = 278	
	66 ± 13	62 ± 14	0.37
Age ≥ 75 years, n (%)			
	5 (26%)	55 (20%)	0.49
Male gender, n (%)			
	14 (74%)	176 (63%)	0.36
Hypertension, n (%)			
	16 (84%)	177 (64%)	0.07
Diabetes mellitus, n (%)	8 (42%)	73 (26%)	0.13
Congestive heart failure, n (%)	15 (79%)	132 (47%)	0.01
History of stroke or TIA, n (%)	2 (11%)	27 (10%)	0.91
Aspirin, n (%)			
	9 (47%)	122 (44%)	0.79
Clopidogrel, n (%)			
	2 (11%)	16 (6%)	0.41
Antiplatelet, n (%)			
	10 (53%)	126 (46%)	0.56
Warfarin, n (%)			
	15 (79%)	148 (53%)	0.03
CHADS2 score, mean ± SD	2.6 ± 1.2	1.9 ± 1.3	0.009*
CHA2DS2-VASc Score, mean ± SD	3.5 ± 1.7	2.8 ± 1.8	0.08*
CHADS2 Score ≥ 2, n (%)	17 (89%)	158 (57%)	0.005
Duration since first AF episode (days), median (interquartile range)	691.5 (30-1163)	162 (4-1249)	0.28*
AF type, n (%)			
Paroxysmal	8 (42%)	153 (55%)	0.27
Persistent	4 (21%)	58 (21%)	0.98
Permanent	7 (37%)	67 (24%)	0.21
Creatinine (mg/dL), mean ± SD	1.6 ± 0.7	1.4 ± 1.0	0.047*

LAAT: left atrial appendage thrombus; SD: standard deviation; TIA: transient ischemic attack; AF: atrial fibrillation. *Mann-Whitney U test.

chronicity and duration were not different between those with and without LAAT (Table 1). Compared to the 297 analyzed subjects, the 63 patients excluded for lacking a qualifying TTE had no significant differences in the prevalence of LAAT [3 (4.8%) vs. 19 (6.4%), P = 0.62], mean age (59 ± 17 vs. 63 ± 14 years, P = 0.13), mean CHADS2 score (2.1 ± 1.3 vs. 1.9 ± 1.3, P = 0.20), and gender distribution [41 (65%) vs. 190 (64%) men, P = 0.87]. Furthermore, they had a similar prevalence of CHF, age ≥ 75 years, diabetes, stroke/TIA history, and warfarin use (all P values >0.18).

Ee’ and e’ velocity association with LAAT

The mean Ee’ among LAAT(+) patients was significantly higher than those who were LAAT(−) [16.6 ± 6.1 vs. 12.0 ± 5.4, respectively; P = 0.001]. Conversely, the e’ velocity was significantly lower among LAAT(+) subjects [6.5 ± 2.1 vs. 9.1 ± 3.2, P = 0.006] (Figure 2, Table 2). Among LAAT(+) subjects, none (0%) had a normal Ee’ of ≤8; whereas 16 (84%) had an Ee’ ≥ 12, indicative of elevated LVFP [18]. Furthermore, there was a stepwise increase in the prevalence of LAAT with increasing Ee’ and decreasing e’ velocity (Figure 3). Additionally, LAAT(+) subjects had a significantly higher LAVI and left ventricular volume index but lower LVEF (Table 2). Not surprisingly, there was a modest, but highly statistically significant, linear correlation between the CHADS2 score and diastolic indices of the Ee’ and e’ velocity, with Spearman’s correlation coefficients “r” of 0.34 (P < 0.001) and −0.32 (P < 0.001), respectively. Since only a minority of the patients (33%) were in sinus rhythm at the time of TTE, and thus had no A wave in the mitral inflow Doppler waveforms, it was not feasible to classify the patients based on their grade of diastolic dysfunction (typically graded from I to IV).

A multivariate logistic regression analysis demonstrated that the CHADS2 score is associated with LAAT independent of warfarin use [OR = 1.47 per one point CHADS2 score increment (CI = 1.04–2.1), P = 0.03], while warfarin use had a borderline association with LAAT (Table 3; Model-1). When Ee’ was added to Model-1, it was independently associated with LAAT [OR = 1.14 per one point increment (CI = 1.05–1.2), P = 0.002] while the CHADS2 score (Model-2, Table 3). To ensure that this association is not simply a confounder to impaired left ventricular function and left atrial volume, we added LVEF and LAVI to the model forming Model-3, in which Ee’ LVEF and LAVI were independently associated with LAAT, whereas the value of the CHADS2 and warfarin use was further negated (Table 3, Model-3).

Similarly, when e’ velocity then LVEF and LAVI were sequentially introduced to Model-1 (Models 4 and 5), e’ velocity was independently “protective” of LAAT after adjusting for other covariates [OR = 0.68 for each 1 cm/sec increment in e’ velocity, P = 0.007] while the CHADS2 score was not (Table 3; Model-5). The Hosmer and Lemeshow test demonstrated a good fit of Models 3 and 5 (Table 3). Nearly identical results were obtained when analyzing the CHA2DS2-VASc score instead of CHADS2 score.

Additionally, Ee’ and e’ velocity were also associated with LAAT independent of the individual components of CHADS2 score [Ee’ odds-ratio = 1.07 per 1 point increment (CI = 1.01-1.14), P = 0.02; e’ velocity odds-ratio = 0.87 per 1 cm/sec increment (CI = 0.77-0.98), P = 0.03]. These models maintained a good model fit (Hosmer and Lemeshow test P values = 0.30 and 0.23, respectively). Similar findings were noted with the CHA2DS2-VASc score.

We did not test Ee’ and e’ velocity in a single regression model due to inherent co-linearity between these parameters. However, we compared (using ROC analysis) the diagnostic performance of the predicted probabilities of LAAT derived from an Ee’ based regression
model (Model-3) versus an e’ velocity based one (Model-5). This analysis demonstrated that the contribution of E:e’ and e’ velocity to the prediction of LAAT was comparable, as the AUC associated with models 3 and 5 were similar (0.86 and 0.87, respectively; P = 0.33).

Ee’ and e’ velocity association with SEC

One-hundred fourteen subjects (38%) had significant SEC by TEE, including all 19 subjects (100%) with LAAT (Table 2). These patients, as compared to those without SEC, had significantly higher mean E’ [14.2 (±5.6) vs. 11.4 (±5.4), P = 0.001] and lower e’ velocity [7.7 (±2.5) vs. 9.6 (±3.4) cm/sec, P < 0.001]. In multivariate logistic regression analyses, E:e’ and e’ velocity were associated with SEC independent of LVEF, LAVI, CHADS2 score, and warfarin therapy (Table 4), with similar results when substituting the CHA2DS2-VASc for the CHADS2 score.

Diagnostic performance: ROC analyses

The receiver operator characteristics (ROC) curves demonstrated that the Ee’ and e’ velocity have good discriminatory capacity in predicting LAAT with respective areas under the curve (AUC) of 0.72 and 0.74, which trended to be larger than the 0.65 AUC associated with the CHADS2 score (P = 0.17 and 0.052, respectively), as shown in Figure 4. In this population, the ROC curve point-coordinates identified an E:e’ value of ≥9.4 to have 100% sensitivity and 38% specificity for LAAT; whereas E:e’ ≥15 was associated with a specificity of 78% at the respective curves.

Table 2 Univariate analysis: Echocardiographic parameters

Echocardiographic parameters	LAAT (+)	LAAT (−)	P value
E:e’ ratio, mean ± SD	16.6 ± 6.1	120 ± 5.4	0.001
E:e’ > 8, n (%)	19 (100%)	195 (70%)	0.006
E:e’ ≥ 12, n (%)	16 (84%)	127 (46%)	0.001
e’ velocity (cm/sec), mean ± SD	6.5 ± 2.1	9.1 ± 3.2	0.001
Spontaneous echo contrast, n (%)	19 (100%)	95 (34%)	< 0.001
Depressed LAA emptying velocity*, n (%)	19 (100%)	132 (48.0%)	< 0.001
LA volume index (mL/m²), mean ± SD	44 ± 13	30 ± 13	< 0.001
LV volume index (mL/m²), mean ± SD	96 ± 38	73 ± 35	0.01
LV mass index (g/m²), mean ± SD	124 ± 45	124.0 ± 44	1.0
LVEF (%), mean ± SD	26 ± 17	45 ± 20	< 0.001

LAAT: left atrial appendage thrombus; SD: standard deviation; LAA: left atrial appendage; LA: left atrial; LV: left ventricular; LVEF: left ventricular ejection fraction.

*Depressed LAA emptying velocity < 40 cm/sec.
Figure 3 Prevalence of left atrial appendage thrombus based on E/e' ratio and e' velocity.

Table 3 Multivariate analysis: Predictors of left atrial appendage thrombus

	Odds-Ratio	95% CI	P value
Clinical Model 1			
CHADS2 Score (per 1 point)	1.47	1.04 – 2.1	0.03
Warfarin	3.1	1.0 – 9.6	0.051
Clinical, E/e', and 2-D echo Model-2			
E/e' (per 1 point)	1.14	1.05 – 1.2	0.002
CHADS2 score (per 1 point)	1.36	0.9 – 2.0	0.10
Warfarin	3.5	1.05 – 11.8	0.04
Model-3			
E/e' (per 1 point)	1.14	1.03 – 1.3	0.009
LVEF (per 10 point)	0.62	0.4 – 0.9	0.008
LAVI (per 10 mL/m²)	1.59	1.1 – 2.3	0.02
CHADS2 score (per 1 point)	0.93	0.6 – 1.5	0.74
Warfarin	2.73	0.7 – 10.7	0.15
Clinical, e' velocity, and 2-D echo Model 4			
e' velocity (per 1 cm/sec)	0.70	0.6 – 0.9	0.004
CHADS2 score (per 1 point)	1.27	0.9 – 1.8	0.20
Warfarin	2.87	0.9 – 9.5	0.08
Model 5			
e' velocity (per 1 cm/sec)	0.68	0.5 – 0.9	0.007
LVEF (per 10 point)	0.67	0.5 – 1.01	0.03
LAVI (per 10 mL/m²)	1.89	1.3 – 2.8	0.002
CHADS2 score (per 1 point)	0.86	0.5 – 1.4	0.53
Warfarin	2.1	0.6 – 7.9	0.26

CI: confidence intervals; LVEF: left ventricular ejection fraction (%); LAVI: left atrial volume index (mL/m²). *The Hosmer and Lemeshow test of the final models (3 and 5) showed good fit (P values = 0.91 and 0.76, respectively).
expense of a low sensitivity (32%). An e' velocity \(\leq 10 \text{ cm/sec} \) was associated with 100% sensitivity for LAAT (Figure 4). Only a CHADS2 score of zero was “protective” from LAAT.

Discussion

This retrospective cohort study of patients with nonvalvular AF demonstrates that the Doppler diastolic function parameters of E:e' and e' velocity are associated with LAAT formation and SEC independent of LVEF, LA volume, and other clinical predictors such as CHADS2 (or CHA2DS2-VASc) score and warfarin use. Furthermore, diastolic function parameters seem to negate the predictive value of the CHADS2 or CHA2DS2-VASc score. If prospectively validated, these findings would indicate that echocardiographic diastolic function parameters may help physicians identify patients at very low risk of LAAT, given their excellent sensitivity. Previous reports have demonstrated that reduced LVEF is associated with LAAT [7,19,20]. Despite the fact that E:e' and e' velocity are tightly related to systolic function, [18] we demonstrated that diastolic parameters are associated with LAAT independent of LVEF, likely driven by subjects with impaired diastolic function but preserved LVEF. Furthermore, the study findings are consistent with a recently published study by our group demonstrating that B-type Natriuretic Peptide, a surrogate for LVFP, is predictive of LAAT [21]. These findings are physiologically plausible, as atrial emptying is likely to be diminished with impaired diastolic relaxation and elevated LVFP, leading to atrial blood stasis and thrombus formation. This pathophysiology was the basis for the study hypothesis.

![Figure 4](http://www.cardiovascularultrasound.com/content/12/1/10)

After the inception of this study Iwakura et al. reported that E:e' is associated with LAAT independent of other echocardiographic parameters such as LVEF and LA dimensions [22]. Our investigation not only confirms these findings, but also demonstrates the independent association between diastolic function parameters and

Table 4 Multivariate analysis: Predictors of spontaneous echo contrast

Model	Odds-Ratio	95% CI	P value
Clinical Model-6			
CHADS2 Score (per 1 point)	1.39	1.2 – 1.7	0.001
Warfarin	2.22	1.4 – 3.7	0.002

Clinical, E/e', and 2-D echo Model-7* | | |
E:e' (per 1 point)	1.07	1.002 – 1.1	0.04
LVEF (per 10 point)	0.95	0.8 – 1.2	0.63
LAVI (per 10 mL/m²)	1.53	1.13 – 2.1	0.006
CHADS2 (per 1 point)	1.22	0.9 – 1.6	0.20
Warfarin	2.06	1.01 – 4.2	0.048

Clinical, e' velocity, and 2-D Echo Model-8* | | |
e' velocity (per 1 cm/sec)	0.85	0.7 – 0.97	0.01
LVEF (per 10 point)	1.0	0.8 – 1.2	0.98
LAVI (per 10 mL/m²)	1.61	1.2 – 2.2	0.002
CHADS2 (per 1 point)	1.18	0.9 – 1.6	0.29
Warfarin	1.94	0.94 – 4.0	0.07

CI: confidence intervals; LVEF: left ventricular ejection fraction (%); LAVI: left atrial volume index (mL/m²). *The Hosmer and Lemeshow test of the final models (7 and 8) showed good fit (P values = 0.25 and 0.75, respectively).
LAAT beyond clinical and other echocardiographic risk predictors.

A previous report has demonstrated that permanent AF is an independent predictor of LAAT, [23] a finding that was not confirmed in our study (Table 1). We suspect that permanent AF status is no more than a confounder for severe left ventricular systolic and diastolic impairment and left atrial enlargement.

This study showed an association between warfarin use and LAAT (Model-1). Clearly, this is not a cause and effect relationship, but rather it is the result of a clinical bias as physicians are likely to use warfarin in patients perceived to be at high risk for LAAT and stroke. This association dissipated once we introduced diastolic parameters, LVEF and LAVI into the regression model.

The authors are cognizant of the small sample size and infrequent LAAT events, which impaired our ability to analyze many covariates within a single regression model. Thus, we meticulously chose the covariates to be analyzed in the logistic regression models and we applied rigorous examination of the goodness of fit of all these models. Nevertheless, it is plausible that some weakly associated parameters may have been missed. Furthermore, the secondary SEC endpoint analyses were consistent with the primary endpoint analyses; thus adding validity to the study conclusions. Moreover, we chose not to test \(E/e' \) and \(e' \) velocity within a single regression model, as the inherent co-linearity between these indices is likely to negate the effects of one another. However, we demonstrated that the predictive values of regression models containing \(E/e' \) and \(e' \) velocity (Models 3 and 5) are similar. Our data does not demonstrate significant superiority of either parameter.

LAVI was shown to be a strong independent predictor of LAAT in multiple reports; [7,8] a finding that was confirmed in this study. However, the predictive value of LAVI was greater when tested with \(e' \) velocity (Model-5) vs. \(E/e' \) (Model-3). This slight discrepancy is explained by the fact that left atrial enlargement is, in part, a manifestation of elevated LVFP assessed by \(E/e' \) [18,24]. Thus, LAVI lost some of its predictive value after adjusting for \(E/e' \). On the other hand, LAVI was a stronger predictor (OR = 1.89 per 10 mL/m²) when \(e' \) velocity (rather than \(E/e' \)) was included in Model-5 (Table 3). This seems plausible since \(e' \) velocity in itself is not a measure of LVFP. These findings further support the hypothesis that surrogate measures of LVFP such as LAVI, \(E/e' \) or B-type natriuretic peptide are important predictors for LAAT.

Predicting LAAT is certainly important in some clinical scenarios, such as prior to electrical cardioversion [25,26]. Since LAAT is the source of the majority of systemic thromboembolic events in patients with AF, [2,3] it is plausible that diastolic function parameters (\(E/e' \) and \(e' \) velocity) can also help predict embolic stroke. We speculate that, in nonvalvular AF, diastolic impairment and elevated LVFP represent the link between CHADS² risk factors and systemic embolism [27]. We are fully aware that the patient population in this study is distinctly different from that of the AF patient population at large. Furthermore, although LAAT is a precursor of systemic thromboembolism and stroke, [28,29] these endpoints are not necessarily interchangeable. Further validation of this concept in a prospective hard endpoint (stroke) outcome study is warranted.

Our study has a few limitations. First, the retrospective design is an obvious limitation. Second, although the majority of the TTEs were performed within a few days prior to the TEE, some preceded the TEE by as long as 12 months. Thus, the loading conditions at the time of the TTE and TEE may be different for many subjects. However, analysis of the relatively “volume independent” \(e' \) velocity yielded similar results to those observed with \(E/e' \) [30] supporting the study conclusions. Lastly, the small sample size and limited number of events constitute another limitation. Therefore, the findings of this hypothesis-generating study are not applicable clinically at this time, as they demand prospective validation.

Conclusion

Our investigation demonstrates that the diastolic function indices of \(E/e' \) and \(e' \) velocity are associated with LAAT in patients with nonvalvular AF, independent of clinical and echocardiographic covariates. These findings need to be externally validated, and could potentially be incorporated into a prediction rule that could be utilized clinically for risk stratification for LAAT in patients with nonvalvular AF.

Abbreviations

AF: Atrial fibrillation; AUC: Area under the curve; CHF: Congestive heart failure; CI: Confidence intervals; E: Mitral inflow early-diastolic flow velocity; e′: Mitral annulus early-diastolic tissue velocity; INR: International normalized ratio; LA: Left atrial; LAAT: Left atrial appendage thrombus; LAVI: Left atrial volume index; LV: Left ventricular; LVEF: Ventricular ejection fraction; LVFP: Left ventricular filling pressure; OR: Odd-ratio; ROC: Receiver operating characteristic; SD: Standard deviation; SEC: Spontaneous echo contrast; TEE: Transesophageal echocardiography; TTE: Transesophageal echocardiogram.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

EG-S, MD: Concept, design, statistical analysis, final manuscript approval. RD, MD: Echo image interpretation, manuscript drafting and editing. RD, MD: Echo-image interpretation, design, manuscript drafting and editing. VN: data collection, cohort definition, data management, manuscript drafting and editing. AD, MD: data collection, data management, manuscript editing. MC, MD: data collection, data management, manuscript editing. MC, MD: data collection, data management, manuscript editing. NTN, MD: data collection, clinical adjudication. GJK, BS: data collection and management. RT, MD: MBA: critical review and editing. RK, MD, MSc: design, concept, critical review and editing. All authors read and approved the final manuscript.
Funding
Rush-County Collaborative research grant (non-profit).

Author details
1Division of Cardiology, Rush University Medical Center, 1653 W. Congress Pkwy, Chicago, IL 60612, USA. 2Division of Adult Cardiology, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA. 3Division of Cardiology, Mount Sinai Hospital, Chicago, IL, USA. 4Department of Preventive Medicine, Rush University Medical Center, Chicago, IL, USA.

Received: 13 January 2014 Accepted: 17 February 2014

References
1. Fuster V, Ryden LE, Cannon DS, Crijns HJ, Curtis AB, E llenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation – executive summary: a report of the American College of Cardiology / American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation). J Am Coll Cardiol 2006, 48(4):854–905.
2. Archer SL, James KE, K xemen LR, Cohen IS, Ezekowitz MD, Gornick CC. Role of transesophageal echocardiography in the detection of left atrial thrombus in patients with chronic nonrheumatic atrial fibrillation. Am Heart J 1995, 130(2):287–295.
3. Caplan LR, D’Cruz I, Hiebrandt C, Hammerstingl C, Luderitz B, Omran H. Effects of atrial size, atrial fibrillation, and stroke. Ann Neurol 1986, 19(2):158–161.
4. Benhmidt P, Schmidt H, Hammerstingl C, Luderitz B, Omran H. Patients with atrial fibrillation and dense spontaneous echo contrast at high risk for stroke and atrial fibrillation. J Am Coll Cardiol 2008, 51(11):1807–1812.
5. Leung DY, Black WC, Cunnane GB, Hopkins AP, Walsh WF. Prognostic implications of left atrial spontaneous echo contrast in nonvalvular atrial fibrillation. J Am Coll Cardiol 1994, 24(3):755–762.
6. Zabalgoitia M, Halperin JL, Pearce LA, Blackshear JL, Asinger RW, Black IW. Transthoracic echocardiographic correlates of left atrial appendage thrombus formation in patients with nonvalvular atrial fibrillation. Stroke Prevention in Atrial Fibrillation III Investigators. J Am Coll Cardiol 1998, 31(7):1622–1626.
7. Ayarla S, Kumar S, O’Sullivan DM, Silverman DJ. Echocardiographic predictors of left atrial appendage thrombus formation. J Am Soc Echocardiogr 2011, 24(5):499–505.
8. Doukky R, Khandelwal A, Garcia-Sayan E, Gage H. External validation of a novel transthoracic echocardiographic tool in predicting left atrial appendage thrombus formation in patients with nonvalvular atrial fibrillation. Eur Heart J Cardiovasc Imaging 2013, 14(9):876–881.
9. Aschenberg W, Schulte M, Kremmer P, Schroder E, Siglow V, Bleifeld W. Transthoracic two-dimensional echocardiography for the detection of left atrial appendage thrombosis. J Am Coll Cardiol 1998, 31(7):163–166.
10. Svirvinkle P, Pecotis-Fino L, Lindholm B. Coronary artery disease in end-stage renal disease: no longer a simple plumbing problem. J Am Soc Nephrol 2003, 14(7):1927–1939.
11. Puwanant S, Varr BC, Shrestha K, Hussen SK, Tang WH, Gabriel RS, Wazni OM, Bhargava M, Saliba W, Thomas JD, et al. Role of the CHADS2 score in the evaluation of thromboembolic risk in patients with atrial fibrillation undergoing transesophageal echocardiography before pulmonary vein isolation. J Am Coll Cardiol 2009, 54(22):2032–2039.
12. Fatkin D, Herbert E, Fenley MP. Hematologic correlates of spontaneous echo contrast in patients with atrial fibrillation and implications for thromboembolic risk. Am J Cardiol 1994, 73(9):672–676.
13. Lang RM, Bierij M, Devereux RB, Fleischkamp FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Sharenow JS, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005, 18(12):1440–1463.
14. Devereux RB, Alonso DR, Lutas EM, Gottlieb GI, Cargo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986, 57(6):450–458.
15. Teichholz LE, Kreulen T, Herman MV, Golin R. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol 1976, 37(1):7–11.
16. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA 2001, 285(22):2864–2870.
17. Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst S, Van Gelder IC, Al-Atr A, Hindricks G, Prendergast B, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J 2010, 31(19):2369–2429.
18. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Fleischkamp FA, Pellikka PA, Evangelista A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009, 22(2):107–133.
19. Fuster V, Ryden LE, Asinger RW, Atar D, Bassand JP, (-) et al. Transcatheter aortic valve implantation: from concept to clinical reality. Circulation 2011, 124(16):1770–1795.
20. Doukky R, Gage H, Nagrajan V, Demopoulos A, Cena M, Garcia-Sayan E, Karmal GJ, Kazlauskate R. B-type natriuretic Peptide predicts left atrial appendage thrombus in patients with nonvalvular atrial fibrillation. J Am Coll Cardiol 2005, 46(9):1342–1344.
21. Doukky R, Gage H, Nagrajan V, Demopoulos A, Cena M, Garcia-Sayan E, Karmal GJ, Kazlauskate R. B-type natriuretic peptide predicts left atrial appendage thrombus in patients with nonvalvular atrial fibrillation. J Am Coll Cardiol 2011, 57(13):1417–1422.
22. Wysokienski KE, Ammash N, Sobande F, Kalsi H, Hodge D, McBane RD. Predicting left atrial thrombi in atrial fibrillation. Am Heart J 2010, 159(4):665–671.
23. Wang J, Nagueh SF. Echocardiographic assessment of left ventricular filling pressures. Heart Fail Clin 2008, 4(1):57–70.
24. Klein AL, Grimm RA, Murray RD, Apperson-Hansen C, Asinger RW, Black IW, Davidoff R, Erbel R, Halperin JL, Orinelli DA, et al. Use of transesophageal echocardiography to guide cardioversion in patients with atrial fibrillation. N Engl J Med 2001, 344(19):1410–1420.
25. Klein AL, Grimm RA, Jasper SE, Murray RD, Apperson-Hansen C, Lieber EA, Black IW, Davidoff R, Erbel R, Halperin JL, et al. Efficacy of transesophageal echocardiography-guided cardioversion of patients with atrial fibrillation at 6 months: a randomized controlled trial. Am Heart J 2006, 151(2):380–389.
26. Demopoulos A, Gage H, Cena M, Nagrajan V, Karam G, Doukky R. Diastolic Dysfunction Mediates Left Atrial Appendage Thrombus Formation in Patients with Atrial Fibrillation [Abstract]. J Am Coll Cardiol 2011, 57(14):E714-E714.
27. Bayard YL, Omran H, Neuzil P, Thuesen L, Pichler M, Rowland E, Ramondo A. Use of transesophageal echocardiography to guide cardioversion in patients with atrial fibrillation. Eur Heart J 2006, 27(5):542–550.
28. Bayard YL, Omran H, Neuzil P, Thuesen L, Pichler M, Rowland E, Ramondo A. Use of transesophageal echocardiography to guide cardioversion in patients with atrial fibrillation. J Am Coll Cardiol 2006, 48(4):854–905.
29. Bayard YL, Omran H, Neuzil P, Thuesen L, Pichler M, Rowland E, Ramondo A. Use of transesophageal echocardiography to guide cardioversion in patients with atrial fibrillation. J Am Coll Cardiol 2006, 48(4):854–905.
30. Yalcin F, Kaftan A, Muderrisoglu H, Korkmaz ME, Flachskampf FA, Garcia M, Thomas JD. Is Doppler tissue velocity during early left ventricular filling preload independent? Heart 2002, 87(4):336–339.

Cite this article as: Doukky et al. The value of diastolic function parameters in the prediction of left atrial appendage thrombus in patients with nonvalvular atrial fibrillation. Cardiovascular Ultrasound 2014 12:10.