We show that for each M-theory background, having subspaces with metrics of given type, there exist M2-brane configurations, which in appropriate limit lead to two-spin magnon-like energy-charge relations, established for strings on $AdS_5 \times S^5$, its β-deformation, and for membrane in $AdS_4 \times S^7$.

Keywords: M-theory, M/field theory correspondence, spin chains.

1 Introduction

One of the predictions of the AdS/CFT correspondence is that the string theory on $AdS_5 \times S^5$ should be dual to $\mathcal{N} = 4$ Super Yang Mills (SYM) theory in four dimensions [1], [2], [3]. The spectrum of the string states and of the operators in SYM should be the same. The recent checks of this conjecture beyond the supergravity approximation are connected to the idea to search for string solutions, which in semiclassical limit (large conserved charges) are related to the anomalous dimensions of certain gauge invariant operators in the planar SYM [4], [5]. On the field theory side it was established that the corresponding dilatation operator is connected to the Hamiltonian of integrable Heisenberg spin chain [6].

In a recent paper [7], Hofman and Maldasena explored a specific semiclassical limit for strings on $R \times S^2$ subspace of $AdS_5 \times S^5$ and related it to the spin chain magnon states. This limit leads to significant simplifications, and thus allows for further improvement of our knowledge about the string/gauge spectrum duality. More specifically, the ”giant magnon” solution obtained in [7] is a string with energy E and spin J, which in the limit $E, J \rightarrow \infty$, $(E - J)$-finite, obey the energy-charge relation

$$E - J = \frac{\sqrt{\lambda}}{\pi} \cos \theta_0,$$

\[\text{1e-mail: bozhilov@inrne.bas.bg}\]
where \(\lambda \) is the 't Hooft coupling, proportional to the square of the string tension \(T \), and the geometric angle \(\theta_0 \) is identified with the magnon momentum \(p \) on the spin chain side through the equality

\[
\cos \theta_0 = | \sin(p/2) | .
\]

In [8], N. Dorey proposed dispersion relation describing magnon \textit{bound states}

\[
E - J = \sqrt{Q^2 + \frac{\lambda}{\pi^2} \sin^2(p/2)},
\]

(1.1)

where \(Q \) is the number of the constituent magnons, which should correspond on the string theory side to the two-spin energy-charge relation

\[
E - J_2 = \sqrt{J_1^2 + \frac{\lambda}{\pi^2} \sin^2(p/2)}.
\]

(1.2)

The folded string solution used in [8] as confirmation of the above proposal, in the limit

\[
E, J_2 \to \infty, \quad E - J_2, J_1 - \text{finite},
\]

gives

\[
E - J_2 = \sqrt{J_1^2 + \frac{4\lambda}{\pi^2}} = 2\sqrt{\left(\frac{J_1}{2}\right)^2 + \frac{\lambda}{\pi^2}}.
\]

(1.3)

As far as the folded string configuration is symmetric, this state was interpreted as consisting of two excitations with momenta \(p = \pm \pi \), each carrying half of the total angular momentum (spin) \(J_1 \). The conclusion drawn was that then (1.3) agrees with (1.1). In a subsequent paper [11], N. Dorey et al. was able to find string solution, which gives exactly the relation (1.2) after the identification \(p = 2 \tan^{-1}(1/k) \), where \(k \) is a free parameter. The same result has been obtained in [12]-[18], by identifying different parameters in the string solutions with \(p \), or by purely group theoretic means [19]. Evidently, the general structure is [13]

\[
E - J_2 = \sqrt{J_1^2 + k^2 \lambda},
\]

(1.4)

where \(k \) is a constant depending on the particular solution.

The above results have been obtained for strings moving on the type IIB \(AdS_5 \times S^5 \) background. However, it turns out that relation of the type (1.4) also holds for strings on the \(\beta \)-deformed \(AdS_5 \times S^5 \) [20]. The difference with (1.2) is in the shift

\[
\frac{p}{2} \to \frac{p}{2} - \pi \beta,
\]

where \(\beta \) is the deformation parameter [16], [17].

\(^2\)Obtained in [9], [10].
The influence of the NS-NS field on the two-spin giant magnon has been also examined [21]. The resulting changes in (1.4) are: new constant k^2 and

$$J_1^2 \rightarrow \text{const} J_1^2.$$

For further investigations of the giant magnon properties see [22]-[28] and references therein.

In this letter, we will show that there exist string configurations, which satisfy magnon-like dispersion relations of the type

$$E - AJ_2 = \sqrt{BJ_1^2 + CT^2}, \quad T^2 \sim \lambda,$$

depending on three parameters A, B and C. Moreover, our main result is that the equality (1.5) also holds for specific M2-brane configurations in M-theory. Such solution has been already found for membrane moving on a subspace of $AdS_4 \times S^7$ [29].

2 Two-spin magnon-like relations from M-theory

We will work with the following gauge fixed membrane action and constraints [30], which coincide with the gauge fixed Polyakov type action and constraints after the identification (see for instance [31]) 2

$$2\lambda^0 T_2 = L = \text{const}:$$

$$S_M = \int d^3\xi L_M = \frac{1}{4\lambda^0} \int d^3\xi \left[G_{00} - \left(2\lambda^0 T_2 \right)^2 \det G_{ij} \right],$$

$$G_{00} + \left(2\lambda^0 T_2 \right)^2 \det G_{ij} = 0,$$

$$G_{0i} = 0.$$

In (2.1)-(2.3), the metric induced on the membrane worldvolume G_{mn} is given by

$$G_{mn} = g_{MN} \partial_m X^M \partial_n X^N,$$

where g_{MN} is the target space metric. The equations of motion for X^M, following from (2.1), are as follows ($G \equiv \det G_{ij}$)

$$g_{LN} \left[\partial_0^2 X^N - \left(2\lambda^0 T_2 \right)^2 \partial_i \left(G G^{ij} \partial_j X^N \right) \right]$$

$$+ \Gamma_{L,MN} \left[\partial_0 X^M \partial_0 X^N - \left(2\lambda^0 T_2 \right)^2 G G^{ij} \partial_i X^M \partial_j X^N \right] = 0,$$

where

$$\Gamma_{L,MN} = g_{LK} \Gamma_{MN}^K = \frac{1}{2} \left(\partial_M g_{NL} + \partial_N g_{ML} - \partial_L g_{MN} \right)$$

are the components of the symmetric connection corresponding to the metric g_{MN}.

3
If we split the target space coordinates as $x^M = (x^\mu, x^a)$, where x^μ are those on which the background does not depend, the conserved charges are given by the expression

$$Q_\mu = \frac{1}{2\lambda^2} \int d\xi^1 d\xi^2 g_{\mu N} \partial_0 X^N.$$ \hspace{1cm} (2.6)

Now, let us turn to our particular tasks. Consider backgrounds of the type

$$ds^2 = c^2 \left[-dt^2 + c_1^2 d\theta^2 + c_2^2 \cos^2 \theta d\varphi_1^2 + c_3^2 \sin^2 \theta d\varphi_2^2 + c_4^2 f(\theta) d\varphi_3^2\right],$$ \hspace{1cm} (2.7)

where c, c_1, c_2, c_3, c_4 are arbitrary constants, and $f(\theta)$ takes two values: $f(\theta) = 1$ and $f(\theta) = \sin^2 \theta$. We embed the membrane into (2.7) in the following way

$$X^0(\xi^m) \equiv t(\xi^m) = \Lambda_0^0 \xi^0, \quad X^1(\xi^m) = \theta(\xi^2),$$

$$X^2(\xi^m) \equiv \varphi_1(\xi^m) = \Lambda_0^2 \xi^0,$$

$$X^3(\xi^m) \equiv \varphi_2(\xi^m) = \Lambda_0^3 \xi^0,$$

$$X^4(\xi^m) = \varphi_3(\xi^m) = \Lambda_1^4 \xi^1,$$

$$\mu = 0, 2, 3, 4, \quad a = 1, \quad \Lambda_0^a, \ldots, \Lambda_4^a = \text{constants}.$$ \hspace{1cm} (2.8)

This ansatz corresponds to M2-brane extended in the θ-direction, moving with constant energy E along the t-coordinate, rotating in the planes defined by the angles φ_1, φ_2, with constant angular momenta J_1, J_2, and wrapped along φ_3. The computations show that for this embedding, the constraints (2.3) and the equations of motion for the membrane coordinates $X^\mu(\xi^m)$ are satisfied identically. Moreover, it turns out that the remaining constraint (2.2) is first integral of the equation of motion for $X^a = X^1 = \theta$. That is why, it remains to solve the differential equation (2.2) only.

We begin with the case $f(\theta) = 1$, when (2.2) reduces to

$$K\theta^2 + V(\theta) = 0,$$

$$K = -(2\Lambda^0 T_2 c^2 c_1 c_4 \Lambda_1^4)^2,$$

$$V(\theta) = c^2 \left\{ (\Lambda_0^0)^2 - (\Lambda_0^2 c_2)^2 - (\Lambda_0^3 c_3)^2 - (\Lambda_0^4 c_2)^2 \right\} \sin^2 \theta.$$ \hspace{1cm} (2.9)

From (2.9) one obtains the turning point ($\theta' = 0$) for the effective one dimensional motion

$$M^2 = \frac{(\Lambda_0^0)^2 - (\Lambda_0^2 c_2)^2}{(\Lambda_0^3 c_3)^2 - (\Lambda_0^4 c_2)^2}.$$ \hspace{1cm} (2.10)

The solution of (2.9) is

$$\xi^2(\theta) = \frac{2\Lambda^0 T_2 c c_1 c_4 \Lambda_1^4 \sin \theta}{M \left[(\Lambda_0^3 c_3)^2 - (\Lambda_0^4 c_2)^2 \right]^{1/2}} F_1(1/2, 1/2, 1/2; 3/2; \sin^2 \theta, \frac{\sin^2 \theta}{M^2}),$$ \hspace{1cm} (2.11)

where $F_1(a, b_1, b_2; c; z_1, z_2)$ is one of the hypergeometric functions of two variables. On this solution, the conserved charges (2.6) take the form ($Q_0 \equiv -E$, $Q_2 \equiv J_1$, $Q_3 \equiv J_2$, $Q_4 = 0$)

$$\frac{E}{\Lambda_0^0} = \frac{2\pi^2 T_2 c^2 c_1 c_4 \Lambda_1^4}{\left[(\Lambda_0^3 c_3)^2 - (\Lambda_0^4 c_2)^2 \right]^{1/2}} F_1(1/2, 1/2; 1; M^2),$$ \hspace{1cm} (2.12)
\[
\frac{J_1}{\Lambda_0^2} = \frac{2\pi^2 T_2 c^3 c_1 c_2^2 c_4 A_1^4}{[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2]^{1/2}} 2 F_1(-1/2, 1/2; 1; M^2), \tag{2.13}
\]
\[
\frac{J_2}{\Lambda_0^2} = \frac{2\pi^2 T_2 c^3 c_1 c_2^2 c_4 A_1^4}{[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2]^{1/2}} \left[2 F_1(1/2, 1/2; 1; M^2) - 2 F_1(-1/2, 1/2; 1; M^2) \right], \tag{2.14}
\]

where \(2 F_1(a, b; c; z)\) is the Gauss’ hypergeometric function.

Our next aim is to consider the limit, in which \(M\) tends to its maximum value: \(M \to 1_-\). In this case, by using (2.10) and (2.12)-(2.14), one arrives at the energy-charge relation

\[
E - \frac{J_2}{c_3} = \sqrt{\left(\frac{J_1}{c_2} \right)^2 + (4\pi T_2 c^3 c_1 c_4 A_1^4)^2}, \tag{2.15}
\]

for

\[
E, J_2/c_3 \to \infty, \quad E - J_2/c_3, J_1/c_2 - \text{finite}. \tag{2.16}
\]

Now, we are going to consider the case \(f(\theta) = \sin^2 \theta\) (see (2.7)), when (2.2) takes the form

\[
\tilde{K} \theta^2 + V(\theta) = 0, \tag{2.17}
\]

\[
\tilde{K} = -(2\lambda^0 T_2 c^2 c_1 c_4 A_1^4)^2 \sin^2 \theta = K \sin^2 \theta,
\]

where \(V(\theta)\) and correspondingly \(M^2\) are the same as in (2.9) and (2.10). The solution of (2.17) is given by the equality

\[
\xi^2(\theta) = \frac{\lambda^0 T_2 c c_4 A_1^4 \sin^2 \theta}{M [(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2]^{1/2}} F_1(1, 1/2, 1/2; 2; \sin^2 \theta, \frac{\sin^2 \theta}{M^2}), \tag{2.18}
\]

and is obviously different from the previously obtained one. The computations show that on (2.18) the conserved charges (2.6) are as follows

\[
\frac{E}{\Lambda_0} = \frac{2\pi T_2 c^3 c_1 c_4 A_1^4}{[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2]^{1/2}} \ln \left(\frac{1 + M}{1 - M} \right), \tag{2.19}
\]

\[
\frac{J_1}{\Lambda_0^2} = \frac{2\pi T_2 c^3 c_1 c_2^2 c_4 A_1^4}{[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2]^{1/2}} \left[\frac{1 - M^2}{2} \ln \left(\frac{1 + M}{1 - M} \right) + M \right], \tag{2.20}
\]

\[
\frac{J_2}{\Lambda_0^2} = \frac{2\pi T_2 c^3 c_1 c_2^2 c_4 A_1^4}{[(\Lambda_0^3 c_3)^2 - (\Lambda_0^2 c_2)^2]^{1/2}} \left[\frac{1 + M^2}{2} \ln \left(\frac{1 + M}{1 - M} \right) - M \right]. \tag{2.21}
\]

Taking \(M \to 1_-\), one sees that it corresponds again to the limit (2.16), and the two-spin energy-charge relation is

\[
E - \frac{J_2}{c_3} = \sqrt{\left(\frac{J_1}{c_2} \right)^2 + (2\pi T_2 c^3 c_1 c_4 A_1^4)^2}, \tag{2.22}
\]

which differs from (2.15) only by a factor of 4 in the second term on the right hand side.
It is instructive to compare the above results with the string case by using the same approach. To this end, for correspondence with the membrane formulae, we will use the Polyakov action and constraints in diagonal worldsheet gauge

\[S_S = \int d^2 \xi \mathcal{L}_S = \int d^2 \xi \frac{1}{4 \lambda_0} \left[G_{00} - \left(2 \lambda^0 T \right)^2 G_{11} \right], \]

\[G_{00} + \left(2 \lambda^0 T \right)^2 G_{11} = 0, \]

\[G_{01} = 0, \]

where

\[G_{mn} = g_{MN} \partial_m X^M \partial_n X^N, \quad \partial_m = \partial / \partial \xi^m, \quad m = (0, 1), \quad M = (0, 1, \ldots, 9). \]

The usually used conformal gauge corresponds to \(2 \lambda^0 T = 1. \)

An appropriate string theory background is

\[ds^2 = c^2 \left[-dt^2 + c_1^2 d\theta^2 + c_2^2 \cos^2 \theta d\varphi_1^2 + c_3^2 \sin^2 \theta d\varphi_2^2 \right]. \]

(2.23)

We consider string embedding in (2.23) of the type

\[X^0(\xi^m) \equiv t(\xi^m) = \Lambda_0^0 \xi^0, \quad X^1(\xi^m) = \theta(\xi^1), \]

\[X^2(\xi^m) \equiv \varphi_1(\xi^m) = \Lambda_0^2 \xi^0, \]

\[X^3(\xi^m) \equiv \varphi_2(\xi^m) = \Lambda_0^3 \xi^0, \quad \Lambda_0^0, \Lambda_0^2, \Lambda_0^3 = \text{constants}. \]

(2.24)

This ansatz corresponds to string extended in the \(\theta \)-direction, moving with constant energy \(E \), and rotating in the planes given by the angles \(\varphi_1, \varphi_2 \), with constant angular momenta \(J_1, J_2 \). Our calculations show that in the limit (2.16), the string configuration (2.24) is characterized by the following magnon-like relation

\[E = \frac{J_2}{c_3} = \sqrt{\left(\frac{J_1}{c_2} \right)^2 + (4T c_2 c_1)^2}. \]

(2.25)

Obviously, the two-spin energy-charge relations (2.15), (2.22) for membranes and (2.25) for strings are of the same type.

3 Discussion

We have shown here that for each M-theory background, having subspaces with metrics of the type (2.7), there exist M2-brane configurations given by (2.8), which in the limit (2.16) lead to the two-spin, magnon-like, energy-charge relations (2.15) and (2.22).

Examples for target space metrics of the type (2.7) are several subspaces of \(R \times S^7 \), contained in the \(\text{AdS}_4 \times S^7 \) solution of M-theory. As we already noticed in the introduction, a membrane configuration has been found in [29], corresponding to membrane moving on one of the possible \(\text{AdS}_4 \times S^7 \) subspaces, with the desired properties. Namely, the background metric is given by

\[ds^2 = (2l_p R)^2 \left\{ -dt^2 + 4 \left[d\psi^2 + \cos^2 \psi d\varphi_1^2 + \sin^2 \psi \left(\cos^2 \theta_0 d\varphi_2^2 + \sin^2 \theta_0 d\varphi_3^2 \right) \right] \right\}. \]

6
where the angle θ is fixed to an arbitrary value θ_0, and the background 3-form field on AdS_4 vanishes. The obtained two-spin, magnon-like, energy-charge relation is

$$E - \frac{J_2}{2 \cos \theta_0} = \sqrt{\left(\frac{J_1}{2}\right)^2 + \left[2\sqrt{\pi} T_2 (l_p R)^3 \Lambda_1^4 \sin \theta_0 \right]^2},$$

and it corresponds to $c = 2l_p R$, $c_1 = 2$, $c_2 = 2$, $c_3 = 2 \cos \theta_0$, $c_4 = 2 \sin \theta_0$ in (2.22).

Moreover, it is not difficult to see that there exist 4 different subspaces of $R \times S^7$ of the type (2.7), when one of the isometry coordinates ϕ_1, ϕ_2, ϕ_3 or ϕ_4 equals zero, for which membrane embedding of the type (2.8) ensures the existence of 12 solutions with semiclassical behavior described by (2.15) or (2.22), corresponding to different values of the parameters c, c_1, ..., c_4.

Let us show that this is indeed the case. To this end, we parameterize the metric on $R \times S^7$ subspace of $AdS_4 \times S^7$ as follows

$$ds^2 = (2l_p R)^2 \left\{-dt^2 + 4 \left\{d\psi_1^2 + \cos^2 \psi_1 d\phi_1^2 + \sin^2 \psi_1 \left[d\psi_2^2 + \cos^2 \psi_2 d\phi_2^2 + \sin^2 \psi_2 \left(d\theta^2 + \cos^2 \theta d\phi_3^2 + \sin^2 \theta d\phi_4^2\right)\right]\right\}\right\}.$$

If we fix $\phi_4 = 0$, we will have two subcases for which the metric will be of the type (2.7): (ψ_1, θ) fixed to (ψ_1^0, θ_0),

$$ds_1^2 = (2l_p R)^2 \left\{-dt^2 + 4 \left\{\cos^2 \psi_1^0 d\phi_1^2 + \sin^2 \psi_1^0 \left[d\psi_2^0 + \cos^2 \psi_2^0 d\phi_2^2 + \sin^2 \psi_2^0 \cos^2 \theta_0 d\phi_3^2\right]\right\}\right\},$$

and (ψ_2, θ) fixed to (ψ_2^0, θ_0),

$$ds_2^2 = (2l_p R)^2 \left\{-dt^2 + 4 \left\{d\psi_1^2 + \cos^2 \psi_1 d\phi_1^2 + \sin^2 \psi_1 \left[d\psi_2^0 + \cos^2 \psi_2^0 d\phi_2^2 + \sin^2 \psi_2^0 \cos^2 \theta_0 d\phi_3^2\right]\right\}\right\}.$$

The appropriate membrane embedding of the type (2.8) for the background given by ds_1^2 is

$$X^0(\xi^m) = t(\xi^m) = \Lambda_0^0 \xi^0,$$

$$X^1(\xi^m) = \phi_1(\xi^m) = \Lambda_1^0 \xi^1,$$

$$X^2(\xi^m) = \psi_2(\xi^2),$$

$$X^3(\xi^m) = \phi_2(\xi^m) = \Lambda_3^0 \xi^0,$$

$$X^4(\xi^m) = \phi_3(\xi^m) = \Lambda_4^0 \xi^0.$$

It corresponds to $J_{\phi_1} = 0$, $(J_{\phi_2}, J_{\phi_3}) \neq 0$. In the limit $M \to 1_-$, J_{ϕ_2} is finite, whereas $J_{\phi_3} \to \infty$. The energy-charge relation $E(J_{\phi_1}, J_{\phi_2})$ is particular case of the one in (2.15), because ds_1^2 conform to $f = 1$ in (2.7). It reads

$$E - \frac{J_{\phi_3}}{2 \sin \psi_1^0 \cos \theta_0} = \sqrt{\left(\frac{J_{\phi_2}}{2 \sin \psi_1^0}\right)^2 + [2\sqrt{\pi} T_2 (l_p R)^3 \Lambda_1 \sin \psi_1^0 \cos \psi_1^0]^2}.$$
For the background described by ds^2, there are two possible embeddings of the type (2.8). They are

\begin{align*}
X^0(\xi^m) &= t(\xi^m) = \Lambda_0^0 \xi^0, \\
X^1(\xi^m) &= \psi_1(\xi^2), \\
X^2(\xi^m) &= \varphi_1(\xi^m) = \Lambda_0^2 \xi^0, \\
X^3(\xi^m) &= \varphi_2(\xi^m) = \Lambda_0^3 \xi^0, \\
X^4(\xi^m) &= \varphi_3(\xi^m) = \Lambda_0^4 \xi^0,
\end{align*}

and

\begin{align*}
X^0(\xi^m) &= t(\xi^m) = \Lambda_0^0 \xi^0, \\
X^1(\xi^m) &= \psi_1(\xi^2), \\
X^2(\xi^m) &= \varphi_1(\xi^m) = \Lambda_0^2 \xi^0, \\
X^3(\xi^m) &= \varphi_2(\xi^m) = \Lambda_0^3 \xi^0, \\
X^4(\xi^m) &= \varphi_3(\xi^m) = \Lambda_0^4 \xi^0.
\end{align*}

For the first case, $(J_{\varphi_1}, J_{\varphi_2}) \neq 0$, $J_{\varphi_1} = 0$. In the limit $M \to 1-\cdot J_{\varphi_1}$ is finite, while $J_{\varphi_2} \to \infty$. For the second case, $(J_{\varphi_1}, J_{\varphi_3}) \neq 0$, whereas $J_{\varphi_2} = 0$. In the above mentioned limit, J_{φ_1} is finite, $J_{\varphi_3} \to \infty$. The energy-charge relations $E(J_{\varphi_1}, J_{\varphi_2})$ and $E(J_{\varphi_1}, J_{\varphi_3})$ are particular cases of the relation (2.22), because ds^2 correspond to $f = \sin \theta$ in (2.7). The explicit expressions for $E(J_{\varphi_1}, J_{\varphi_2})$ and $E(J_{\varphi_1}, J_{\varphi_3})$ are given by

\begin{align*}
E &= \frac{J_{\varphi_2}}{2 \cos \psi_2^0} = \sqrt{\left(\frac{J_{\varphi_2}}{2}\right)^2 + \left[2^6 \pi T_2 (l_p R)^3 \Lambda_1^4 \sin \psi_2^0 \cos \theta_0\right]^2},
\end{align*}

and

\begin{align*}
E &= \frac{J_{\varphi_3}}{2 \sin \psi_3^0 \cos \theta_0} = \sqrt{\left(\frac{J_{\varphi_3}}{2}\right)^2 + \left[2^6 \pi T_2 (l_p R)^3 \Lambda_1^4 \cos \psi_3^0\right]^2}.
\end{align*}

Thus, we showed that for $\varphi_4 = 0$ there exist three membrane configurations with the searched properties. By performing the same analysis for the subspaces defined by $\varphi_1 = 0$, $\varphi_2 = 0$ or $\varphi_3 = 0$, one can find another nine membrane solutions with the same type of semiclassical behavior.

More examples for target space metrics of the type (2.7), for which there exist the membrane configurations (2.8) giving rise to two-spin magnon-like energy-charge relations, can be found for instance in different subspaces of the $AdS_7 \times S^4$ solution of M-theory and not only there.

Acknowledgments

The author would like to thank R.C. Rashkov for an useful comment on the subject considered here. This work is supported by NSFB grants Φ−1412/04 and VU−F−201/06.
References

[1] Juan M. Maldacena, *The Large N Limit of Superconformal Field Theories and Supergravity*, Adv. Theor. Math. Phys. 2 (1998) 231-252; Int. J. Theor. Phys. 38 (1999) 1113-1133, [arXiv:hep-th/9711200v3].

[2] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, *Gauge Theory Correlators from Non-Critical String Theory*, Phys. Lett. B 428 (1998) 105-114, [arXiv:hep-th/9802109v2].

[3] Edward Witten, *Anti De Sitter Space And Holography*, Adv. Theor. Math. Phys. 2 (1998) 253-291, [arXiv:hep-th/9802150v2].

[4] David Berenstein, Juan Maldacena, Horatiu Nastase, *Strings in flat space and pp waves from $\mathcal{N}=4$ Super Yang Mills*, JHEP 0204 (2002) 013, [arXiv:hep-th/0202021v3].

[5] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, *A semi-classical limit of the gauge/string correspondence*, Nucl. Phys. B 636 (2002) 99-114, [arXiv:hep-th/0204051v3].

[6] J. A. Minahan and K. Zarembo, *The Bethe-ansatz for $\mathcal{N} = 4$ super Yang-Mills*, JHEP 0303 (2003) 013, [arXiv:hep-th/0212208v3].

[7] Diego M. Hofman, Juan Maldacena, *Giant Magnons*, J. Phys. A 39 (2006) 13095-13118 [arXiv:hep-th/0604135v2].

[8] Nick Dorey, *Magnon bound states and the AdS/CFT correspondence*, J. Phys. A 39 (2006) 13119-13128, [arXiv:hep-th/0604175v2].

[9] S. Frolov, A.A. Tseytlin, *Rotating string solutions: AdS/CFT duality in non-supersymmetric sectors*, Phys. Lett. B 570 (2003) 96-104, [arXiv:hep-th/0306143v2].

[10] G. Arutyunov, S. Frolov, J. Russo, A.A. Tseytlin, *Spinning strings in $AdS_5 \times S^5$ and integrable systems*, Nucl. Phys. B 671 (2003) 3-50, [arXiv:hep-th/0307191v3].

[11] Heng-Yu Chen, Nick Dorey, Keisuke Okamura, *Dyonic Giant Magnons*, JHEP 0609 (2006) 024, [arXiv:hep-th/0605155v2].

[12] Gleb Arutyunov, Sergey Frolov, Marija Zamaklar, *Finite-size Effects from Giant Magnons*, DOI: 10.1016/j.nuclphysb.2006.12.026, [arXiv:hep-th/0606126v2].

[13] J.A. Minahan, A. Tirziu, A.A. Tseytlin, *Infinite spin limit of semiclassical string states*, JHEP 0608 (2006) 049, [arXiv:hep-th/0606145v2].

[14] Marcus Spradlin, Anastasia Volovich, *"Dressing the Giant Magnon"*, JHEP 0610 (2006) 012, [arXiv:hep-th/0607009v3]; Chrysostomos Kalousios, Marcus Spradlin, Anastasia Volovich, *Dressing the Giant Magnon II*, [arXiv:hep-th/0611033v1].

[15] M. Kruczenski, J, Russo ans A.A. Tersytlin, *Spiky strings and giant magnons on $S^5*, JHEP 0610 (2006) 002, [arXiv:hep-th/0607044v3].
[16] Chong-Sun Chu, George Georgiou, Valentin V. Khoze, Magnons, Classical Strings and beta-Deformations, JHEP 0611 (2006) 093, [arXiv:hep-th/0606220v2].

[17] N.P. Bobev, R.C. Rashkov, Multispin Giant Magnons, Phys. Rev. D 74 (2006) 046011, [arXiv:hep-th/0607018v3].

[18] Keisuke Okamura, Ryo Suzuki, A Perspective on Classical Strings from Complex Sine-Gordon Solitons, Phys. Rev. D 75 (2007) 046001, [arXiv:hep-th/0609026v3].

[19] Heng-Yu Chen, Nick Dorey, Keisuke Okamura, The Asymptotic Spectrum of the N=4 Super Yang-Mills Spin Chain, [arXiv:hep-th/0610295v1].

[20] Oleg Lunin, Juan Maldacena, Deforming field theories with $U(1) \times U(1)$ global symmetry and their gravity duals, JHEP 0505 (2005) 033, [arXiv:hep-th/0502086v4].

[21] Wung-Hong Huang, Giant Magnons under NS-NS and Melvin Fields, JHEP 0612 (2006) 040, [arXiv:hep-th/0607161v4].

[22] Juan Maldacena, Ian Swanson, Connecting giant magnons to the pp-wave: An interpolating limit of $\text{AdS}_5 \times S^5$, [arXiv:hep-th/0612079v3].

[23] J. A. Minahan, Zero modes for the giant magnon, JHEP 0702 (2007) 048 [arXiv:hep-th/0701005v3].

[24] Davide Astolfi, Valentina Forini, Gianluca Grignani, Gordon W. Semenoff, Gauge invariant finite size spectrum of the giant magnon, [arXiv:hep-th/0702043v3].

[25] Benoit Vicedo, Giant Magnons and Singular Curves, [arXiv:hep-th/0703180v1].

[26] J. Kluson, Rashmi R. Nayak, Kamal L. Panigrahi, Giant Magnon in NS5-brane Background, [arXiv:hep-th/0703244v2].

[27] Georgios Papathanasiou, Marcus Spradlin, Semiclassical Quantization of the Giant Magnon, [arXiv:0704.2389v1 [hep-th]].

[28] N.P. Bobev, R.C. Rashkov, Spiky Strings, Giant Magnons and beta-deformations, [arXiv:0706.0442v1 [hep-th]].

[29] P. Bozhilov, R.C. Rashkov, Magnon-like dispersion relation from M-theory, Nucl. Phys. B 768 [PM] (2007) 193-208, [arXiv:hep-th/0607116v3].

[30] P. Bozhilov, Probe branes dynamics: exact solutions in general backgrounds, Nucl. Phys. B 656 (2003) 199-225, [arXiv:hep-th/0211181v3].

[31] S. A. Hartnoll and C. Nunez, Rotating membranes on G_2 manifolds, logarithmic anomalous dimensions and $\mathcal{N} = 1$ duality, JHEP 02 (2003) 049, [arXiv:hep-th/0210218v2].

[32] P. Bozhilov, Membrane solutions in M-theory, JHEP 08 (2005) 087, [arXiv:hep-th/0507149v2].
[33] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, *Integrals and series. v.3: More special functions*, NY, Gordon and Breach, 1990.