Subinhibitory Concentrations of Bacteriostatic Antibiotics Induce \textit{relA}-Dependent and \textit{relA}-Independent Tolerance to \textit{β}-Lactams

Pavel Kudrin, Vallo Varik, Sofia Raquel Alves Oliveira, Jelena Beljantseva, Teresa Del Peso Santos, Ivgen Dzygyr, Dominik Rejman, Felipe Cava, Tanel Tenson, Vasili Hauryliuk

University of Tartu, Institute of Technology, Tartu, Estonia; Department of Molecular Biology, Umeå University, Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Prague, Czech Republic

ABSTRACT The nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance, and virulence. During amino acid starvation, the \textit{Escherichia coli} (p)ppGpp synthetase RelA is activated by deacylated tRNA in the ribosomal A-site. An increase in (p)ppGpp is believed to drive the formation of antibiotic-tolerant persister cells, prompting the development of strategies to inhibit (p)ppGpp synthesis. We show that in a biochemical system from purified \textit{E. coli} components, the antibiotic thiostrepton efficiently inhibits RelA activation by the A-site tRNA. In bacterial cultures, the ribosomal inhibitors thiostrepton, chloramphenicol, and tetracycline all efficiently abolish accumulation of (p)ppGpp induced by the Ile-tRNA synthetase inhibitor mupirocin. This abolishment, however, does not reduce the persister level. In contrast, the combination of dihydrofolate reductase inhibitor trimethoprim with mupirocin, tetracycline, or chloramphenicol leads to ampicillin tolerance. The effect is independent of RelA functionality, specific to \textit{β}-lactams, and not observed with the fluoroquinolone norfloxacin. These results refine our understanding of (p)ppGpp's role in antibiotic tolerance and persistence and demonstrate unexpected drug interactions that lead to tolerance to bactericidal antibiotics.

KEYWORDS \textit{β}-lactam, RelA, antibiotics, mupirocin, persistence, ppGpp, ribosomes, thiostrepton, tolerance, trimethoprim

Bacteria use an array of molecular systems to sense their environment and respond accordingly. The modulation of intracellular concentrations of alarmone nucleotides pppGpp and ppGpp, collectively referred to as (p)ppGpp, is one such system (1). An acute increase in (p)ppGpp levels upon stress—the so-called stringent response—drives the reallocation of available metabolic resources, gearing up bacterial physiology for stress resistance and survival. This regulatory system is of significant medicinal importance; (p)ppGpp plays a key role in the regulation of bacterial virulence (2) and contributes to bacterial survival during antibiotic treatment by both increasing the antibiotic tolerance of the bacterial population as a whole (3, 4) and driving the formation of a small subpopulation of highly tolerant cells, the so-called persister cells (5–7), in a generally sensitive culture. Therefore, (p)ppGpp signaling is a promising target for antibacterial drug development.

Cellular synthesis and degradation of (p)ppGpp is mediated by the members of the RelA/SpoT homolog (RSH) protein family, which are subdivided into two classes: “long” multidomain and “short” single-domain RSHs (8). In \textit{Escherichia coli} two proteins, RelA and SpoT, represent the “long” RSHs. SpoT is a bifunctional protein, which can both...
synthesize and degrade (p)ppGpp and serves as a “hub” that integrates numerous stress signals and maintains the basal levels of the alarmone (9). RelA, also referred to as “the stringent factor,” has only one enzymatic activity, (p)ppGpp synthesis, and is specialized for the rapid response to a specific stress signal, amino acid starvation (10, 11). RelA is a ribosome-associated protein that works at the interface of active protein biosynthesis and ribosomal stalling in the presence of “hungry” codons, i.e., codons that are not efficiently decoded by cognate aminoacylated tRNAs due to amino acid shortage. It directly inspects the aminoacylation status of the incoming tRNA molecule in the ribosomal A-site (12–14) and, upon recognition of deacylated tRNA, i.e., lacking an amino acid attached to the 3′ CCA end, (p)ppGpp production by the enzyme is dramatically activated (10, 15). Conversely, active translation inhibits RelA via direct competition with translational factors, such as EF-G, and charged tRNA that does not activate RelA (10, 15, 16). The taxonomic distribution of RelA and SpoT is limited to Betaproteobacteria and Gammaproteobacteria, while the majority of bacterial species, including probably the second-best studied bacterial model organism, the firmicute Bacillus subtilis, possess a single “long” bifunctional RSH, Rel (8). Like RelA, it is a ribosome-associated factor, and Rel’s synthetic activity is activated by deacylated tRNA (17). However, like SpoT (and unlike RelA), Rel is capable of hydrolyzing (p)ppGpp (17). The “short” RSH proteins are single-domain proteins that either synthesize (small alarmone synthetase [SAS]) or degrade (small alarmone hydrolase [SAH]) (p)ppGpp. E. coli lacks SAS, while in B. subtilis these proteins are represented by two enzymes, RelQ and RelP (18); both bacterial species lack SAHs (8). In response to stress conditions, the activity of SASs is regulated on the transcriptional level (10, 18), as well as via activation by (p)ppGpp (19, 20).

(p)ppGpp-mediated signaling is a promising target for the development of antibacterial agents since, first, this regulatory mechanism plays a central role in bacterial virulence and tolerance to antibiotics and, second, the (p)ppGpp-mediated cytoplasmic stringent response is absent in eukaryotes (21, 22). Several compounds targeting the stringent response have been developed in recent years. These molecules were suggested to act either via direct inhibition of RSHs, such as the (p)ppGpp analogue Relacin (21), or via catalytic hydrolysis of (p)ppGpp, such as antibiofilm peptide 1018 and its derivatives (22, 23). However, our follow-up studies have shown that neither Relacin nor peptide 1018 specifically inhibits the stringent response in live cells (24, 25).

An alternative strategy for inhibition of the stringent response is to take advantage of the intimate connection between the stringent response and ribosomal protein biosynthesis and to exploit existing antibiotics that target bacterial protein biosynthesis. The cyclic peptide thiostrepton is an efficient inhibitor of both translational GTPases, targeting initiation factor IF2 and elongation factors EF-Tu and EF-G on the ribosome (26–28), and E. coli RelA (at least in the test tube [29, 30]). This antibiotic intercalates between helices 43 and 44 of 23S rRNA and the ribosomal protein L11 (31). The latter is indispensable for the functionality of RelA (32), while the activity of EF-G is only moderately affected by the removal of L11 (33). The antibiotic tetracycline inhibits translation by precluding the accommodation of the A-site tRNA (34). Since binding of deacylated tRNA to the A-site is a prerequisite for the activation of RelA during amino acid starvation, it has been suggested that tetracycline can act as an indirect RelA inhibitor (30, 35). Moreover, all antibiotics targeting protein biosynthesis are expected to inhibit the RelA-mediated stringent response indirectly: inhibition of translation decreases the consumption of amino acids, which leads to an increase in the tRNA aminoacylation level. The prime example of this mechanism is seen with the antibiotic chloramphenicol, which is often used as a convenient tool for stringent response inhibition due to its fast uptake (36, 37).

In this report we reexamined the connections among antibiotic treatment, (p)ppGpp accumulation, antibiotic tolerance, and persistence. Using an E. coli in vitro translation and stringent response system assembled from individual purified components, we compared inhibition of the stringent factor RelA and translocation factor EF-G by the antibiotics thiostrepton, tetracycline, and chloramphenicol. We have contrasted our
biochemical data with the effects of antibiotics in bacterial cultures by measuring bacterial growth and nucleotide pools using a high-pressure liquid chromatography (HPLC)-based approach. Finally, to put the results into an infection-relevant perspective, we tested the effects of the inhibition of the RelA-mediated stringent response by antibiotics on *E. coli* susceptibility to the β-lactam antibiotic ampicillin, which targets the cell wall, and to the fluoroquinolone antibiotic norfloxacin, which targets topoisomerase.

RESULTS

Thiostrepton specifically inhibits RelA activation by A-site deacylated tRNA while not affecting RelA activation by the ribosome itself. Before proceeding with experiments, we had to address the problem of thiostrepton’s tendency for precipitation. Using dynamic light scattering as a readout of precipitation, we tested the effects of addition of two commonly used organic solvents (dimethyl sulfoxide [DMSO] and 2,2,2-trifluoroethanol [TFE], both at 3% [wt/vol]) and a hydrophilic nonionic surfactant, Poloxamer 407 (trademarked by BASF as Pluronic F-127) at 0.1% (wt/vol). While the addition of DMSO and TFE has only a modest effect on thiostrepton’s solubility, Pluronic F-127 keeps the antibiotic in solution at concentrations up to 15 μM (see Fig. S3A in the supplemental material). We have validated that the addition of the surfactant did not interfere with the *in vitro* system by monitoring the 70S-dependent activity of translational GTPase EF-G (see Fig. S3B in the supplemental material) and the stringent response factor RelA (see Fig. S3C in the supplemental material).

After establishing the conditions under which thiostrepton is soluble in a wide range of concentrations, we characterized RelA inhibition by the antibiotic using an *in vitro* stringent response system (38). We used two specificity controls. First, we took advantage of thiostrepton-resistant ribosomes carrying an A1067U mutation in the 23S rRNA (39). Second, we monitored the inhibition of the GTPase activity of translocase EF-G, a well-studied molecular target of thiostrepton. GTP hydrolysis by EF-G was efficiently inhibited by thiostrepton both when the experiment was performed in the presence of vacant 70S ribosomes (Fig. 1A) and when 70S ribosomes were programmed with poly(U) model mRNA and deacylated tRNAPhe (Fig. 1B). At the same time in both experimental systems, EF-G activation by A1067U ribosomes is far less sensitive to thiostrepton, an observation in good agreement with earlier reports (39). Unlike EF-G, weak induction of RelA’s enzymatic activity by vacant ribosomes is virtually insensitive to thiostrepton (Fig. 1C). However, the situation changes dramatically when RelA is activated by ribosomes programmed poly(U) mRNA and deacylated tRNAPhe (Fig. 1D). In this system RelA is almost 30 times more active than in the presence of empty 70S ribosomes, which is consistent with a role of deacylated tRNA in the activation of RelA (10). Thiostrepton efficiently inhibits RelA, although the inhibition is incomplete. The turnover rate of the remaining thiostrepton-insensitive ppGpp synthesis is similar to that observed in the absence of deacylated tRNAPhe (73 versus 44 ppGpp per RelA per min). The A1067U rRNA mutation results in near-complete immunity to thiostrepton, a stronger effect than that observed in the case of EF-G (compare Fig. 1B and D). We confirmed the strict tRNA dependence of RelA inhibition by thiostrepton observed in the poly(U)-driven system using a more physiologically relevant model system, i.e., RelA activated by ribosomal initiation complexes programmed with model mRNA with an open reading frame coding for the MF dipeptide (Fig. 1E and F).

Next, we tested whether the dependence of RelA inhibition by thiostrepton on the presence of A-site deacylated tRNA, the ultimate inducer of the enzyme’s enzymatic activity (10, 35) and a key factor in promoting RelA binding to the ribosome (40), is specific to this antibiotic. We have tested antibiotics tetracycline and chloramphenicol that inhibit translation and have been reported to abrogate RelA-mediated ppGpp accumulation in live bacteria (30, 35–37). Inhibition by tetracycline is rather inefficient and, somewhat surprisingly, only mildly more pronounced in the presence of deacylated A-site tRNA (see Fig. S4A in the supplemental material). Chloramphenicol, while
being a potent inhibitor of translation, has no effect on RelA (see Fig. S4B in the supplemental material).

Inhibition of translation by antibiotics blocks the RelA-mediated stringent response in live cells. To put our biochemical results in the context of bacterial physiology, we characterized the effects of translational inhibitors on the intracellular levels of nucleotides ppGpp, GTP, GDP, and ATP in *E. coli* and *B. subtilis* using an HPLC-based approach. These two common model organisms represent the two archetypical regulatory architectures of the stringent response system; *E. coli* relies on direct regulation of RNAP by ppGpp (41), while in *B. subtilis* ppGpp synthesis effectuates changes in the transcriptional program indirectly via consumption of GTP (42), affecting the ratio of GTP and ATP levels which, in turn, is sensed by RNAP (43). We contrasted the effects of three antibiotics specifically targeting protein biosynthesis—thiostrepton, chloramphenicol, and tetracycline—with that of trimethoprim, an antimetabolite anti-
biotic that blocks the production of tetrahydrofolate by dihydrofolate reductase, resulting in the inhibition of glycine, methionine, dTTP, and purine biosynthesis (44). To induce (p)ppGpp accumulation, we pretreated exponentially growing bacterial cultures with a competitive inhibitor of the isoleucyl-tRNA synthetase antibiotic mupirocin (pseudomonic acid). This treatment dramatically increases the amount of deacylated tRNA in the cell, leading to activation of RelA/Rel and triggering an acute stringent response (45) (Fig. 2A).

All of the antibiotics targeting translation tested in the biochemical assays also inhibit mupirocin-induced ppGpp accumulation both in E. coli (BW25113 wild-type strain) (Fig. 2) and B. subtilis (BSB1 wild-type strain) (Fig. 3). Since E. coli is insensitive to thiostrepton in vivo due to a lack of cellular uptake (46), experiments with this antibiotic could be performed only with B. subtilis. With the exception of B. subtilis treated with chloramphenicol, complete growth inhibition by three translation-targeting antibiotics causes a statistically significant drop in the levels of ppGpp below the level in unstressed cells. Importantly, inhibition of growth by trimethoprim does not lead to a decrease in the ppGpp levels in either E. coli or B. subtilis (Fig. 2B and 3B).

The ratio between the levels of GTP and ATP, rather than the (p)ppGpp levels, is the key effector of the stringent response in B. subtilis (43). The concentrations of the two triphosphate species change reciprocally during the stringent response (47), regulating the transcriptional program via initiator NTP concentrations (43). In the absence of additional antibiotics, pretreatment of the wild-type B. subtilis BSB1 strain with 70 nM mupirocin in order to induce the stringent response leads to an almost 3-fold change in the ratio of GTP to ATP.
in the GTP/ATP ratio (Table 1; see also Fig. S5 in the supplemental material). The ratio of GTP and ATP concentrations in *B. subtilis* pretreated with mupirocin readily increases with the addition of increasing concentrations of translational antibiotics tetracycline and chloramphenicol, surpassing the unstressed levels at the concentrations causing complete inhibition of growth. Conversely, the GTP/ATP ratio is nearly insensitive to the addition of trimethoprim and does not change even upon the complete inhibition of growth by a 100 μM concentration of antibiotic. The GTP levels are dramatically elevated in a ppGpp[−] *B. subtilis* strain, i.e., a strain lacking functional RSH enzymes (48).

TABLE 1 GTP/ATP ratios in *B. subtilis* upon antibiotic treatment^a

Condition	Mean GTP/ATP ratio	SD	SEM
No treatment	0.54	0.24	0.03
Mup_{P100} nM	0.18	0.04	0.05
Mup_{P100} nM Thio₁₀₀ nM	1.12	0.72	0.24
Mup_{P100} nM Tet₁₀₀ μM	1.51	0.66	0.13
Mup_{P100} nM Cam₁₀₀ μM	0.55	0.35	0.12
Mup_{P100} nM Trim₁₀₀ μM	0.21	0.06	0.01

^aArtificial starvation for isoleucine induced by addition of 70 nM mupirocin was countered by the secondary antibiotic challenge. At 30 min after the addition of antibiotics, samples were collected, and the nucleotide levels were determined by HPLC. Experiments were performed with BSB1 *B. subtilis* wild-type strain grown at 37°C in MOPS medium supplemented with 0.4% glucose and a full set of 20 amino acids at 25 μg/ml. Mup, mupirocin; Thio, thiostrepton; Tet, tetracycline; Cam, chloramphenicol; Trim, trimethoprim.
Our data show that treatment with antibiotics inhibiting protein synthesis leads to a similar effect.

Antibiotic pretreatment induces relA-dependent and -independent tolerance to the β-lactam ampicillin but not to the fluoroquinolone norfloxacin. Upon establishing that antibiotics targeting protein biosynthesis efficiently inhibit the stringent response, we proceeded to scrutinize the effects of inhibition of translation, and by proxy ppGpp accumulation, on tolerance to bactericidal antibiotics and antibiotic persistence. We use the terms tolerance and persistence according to the definitions of Brauner et al. (49): “tolerance” is the slower killing of bacterial population as a whole upon exposure to bactericidal antibiotic, whereas “persistence” is mediated by a small, slowly killed subpopulation in a generally rapidly killed culture and is manifested in biphasic killing kinetics (see Fig. S1 in the supplemental material).

We have used three *E. coli* K-12 strains: (i) a wild-type strain harboring native functional *relA* and *spoT* genes (BW25113), (ii) an isogenic “relaxed” strain with the *relA* gene deleted by the homologous recombination method of Datsenko and Wanner (50), and (iii) an isogenic strain lacking not only *relA* but also *spoT*, a less enzymatically efficient (p)ppGpp synthetase regulated by many inputs (9). The latter strain is completely devoid of ppGpp, the so-called ppGpp0 phenotype, and it was this type of strain that was originally used to propose the connection between elevated (p)ppGpp levels and persistence (6, 51, 52).

Our previous investigations of antibiotic tolerance of relaxed *E. coli* BW25113 have used the synthetic defined medium M9 supplemented with 0.4% glucose (53). However, the original report connecting (p)ppGpp and persistence in *E. coli* mostly used lysogeny broth (LB) medium (51). LB is a complex medium in which bacteria successfully adjust their physiology to several shifts of limiting nutrients along the growth curve (54, 55). This can be problematic for investigations of bacterial physiology (56), especially given that persistence can be highly sensitive to media composition (57). Therefore, we compared the growth and ampicillin killing kinetics of wild-type, relaxed, and ppGpp0 strains in LB and morpholinepropanesulfonic acid (MOPS) media. In LB the growth curves of both wild-type and ppGpp0 strains are nearly indistinguishable (see Fig. S6A in the supplemental material). However, in MOPS medium supplemented with 0.4% glucose and a full set of 20 amino acids at 25 μg/ml (the very conditions we used for nucleotide measurements), the growth of the ppGpp0 strain halts already at an optical density at 600 nm (OD600) of 0.01, whereas the relaxed strain shows no pronounced growth defect (see Fig. S6B in the supplemental material). In accordance with a study by Potrykus et al. (58), we increased the serine concentration to 400 μg/ml in our MOPS-based medium, which nearly eliminated the relative growth defect of the ppGpp0 strain: the growth rate during the exponential stage matches that of the wild type, but the ppGpp0 strain still enters the stationary phase at a somewhat lower OD600 (see Fig. S6C in the supplemental material). Next, we tested whether the tool used for the induction of the stringent response, i.e., the Ile-RS inhibitor mupirocin, by itself has an effect on bacterial viability. In good agreement with earlier reports stating that mupirocin is a bacteriostatic antibiotic (59), there is no CFU loss in wild type after 30 min of treatment with 70 μM mupirocin in either of the two media (Fig. 4A and B). The antibiotic concentration was chosen so that it decreases the growth rate approximately twice and induces a half-maximal increase in ppGpp (Fig. 2A). However, in the case of the relaxed strain, the colony count drops around 1 order of magnitude upon mupirocin treatment in LB, but not in MOPS supplemented with serine; the ppGpp0 strain loses around 1 log of CFU under both conditions. Next, we monitored the ampicillin killing kinetics of the three strains in LB (Fig. 4C) and serine-supplemented MOPS (Fig. 4D). The loss of relA does not have a statistically significant effect on persister count (i.e., CFU count at the 5-h time point) in either of the two media. The simultaneous loss of spoT and relA results in a moderate, yet statistically significant 10-fold decrease in persister count in LB; in MOPS medium the persister count is not affected. In MOPS, however, the ppGpp0 strain has moderately increased ampicillin tolerance (i.e., slower ampicillin killing of the bulk of bacterial population). The likely explanation for this is a
A moderate growth defect of the mutant since the rate of ampicillin killing is proportional to the growth rate (60).

We decided to use only relaxed and wild-type strains in the following experiments and to omit the ppGpp0 strain since (i) we could not optimize the defined medium so that there would not be any interference from growth rate and mupirocin effects present in the system already before we performed antibiotic treatments and (ii) since inhibition of de novo protein synthesis in a ΔrelA background would either way render the cell essentially ppGpp0 since E. coli SpoT's synthetic activity was rapidly lost upon the inhibition of protein synthesis (61). We decided to adhere to the original version of MOPS, i.e., supplemented with 20 amino acids at 25 μg/ml without the additional serine, since, first, under these conditions wild-type and ΔrelA strains grow similarly and, second, an overabundance of serine might cause perturbations in the metabolism of the relaxed strain (62).

We tested whether pretreatment with translational inhibitors chloramphenicol and tetracycline would affect E. coli tolerance to the β-lactam antibiotic ampicillin. To deconvolute specific antibiotic effects from growth rate effects, we used concentrations of antibiotics that reduce the growth rate by half (the experimental setup is outlined on Fig. S1 in the supplemental material; growth measurements are presented in Fig. S7 in the supplemental material). In the case of the wild-type BW25113 E. coli strain, the killing kinetics of cultures pretreated with chloramphenicol and tetracycline show a slight increase in both ampicillin tolerance and persistence compared to the untreated culture and to culture treated with trimethoprim. Increasing concentrations of translational inhibitors chloramphenicol and tetracycline roughly three times (to 20 and 2 μM, respectively) does not alter the killing kinetics (see Fig. S8 in the supplemental material), suggesting that the observed differences in killing kinetics can be attributed to the nature of the antibiotic challenge rather than to the extent of growth inhibition.
Our results are in good agreement with previous observations that the arrest of protein biosynthesis leads to increased persister formation (63). Pretreatment with mupirocin, however, results in a greatly enhanced ampicillin tolerance of the wild-type strain. This effect was strictly dependent on the functionality of the \textit{relA} gene, supporting the key role of the stringent response in bacterial persistence (5, 6, 51) and ampicillin tolerance (3, 64–67).

One could attribute the inability of chloramphenicol and tetracycline pretreatment to sensitize bacteria to ampicillin via inhibition of ppGpp production to already low intracellular ppGpp levels in rapidly growing cells prior to the ampicillin challenge: since low initial ppGpp levels could not protect the cells from ampicillin in the first place, lowering ppGpp further had no effect. In all our nucleotide measurements, an acute stringent response was initially induced by mupirocin, and then the ppGpp levels were affected by subsequent antibiotic treatments (Fig. 2 and 3).

Therefore, we repeated the time-kill assays with bacterial cultures pretreated with mupirocin in a similar fashion (Fig. 5B and E). We used translational inhibitors at concentrations that repress ppGpp below the unstressed level and result in growth inhibition by ca. 80%; in the case of trimethoprim, we used a concentration (16 \(\mu \)M) that inhibits the growth rate to the same extent. When added at these concentrations (in the absence of mupirocin), neither of the antibiotics protects cells from ampicillin in the first place, lowering ppGpp further had no effect. In all our nucleotide measurements, an acute stringent response was initially induced by mupirocin, and then the ppGpp levels were affected by subsequent antibiotic treatments (Fig. 2 and 3).

One could attribute the inability of chloramphenicol and tetracycline pretreatment to sensitize bacteria to ampicillin via inhibition of ppGpp production to already low intracellular ppGpp levels in rapidly growing cells prior to the ampicillin challenge: since low initial ppGpp levels could not protect the cells from ampicillin in the first place, lowering ppGpp further had no effect. In all our nucleotide measurements, an acute stringent response was initially induced by mupirocin, and then the ppGpp levels were affected by subsequent antibiotic treatments (Fig. 2 and 3).

Therefore, we repeated the time-kill assays with bacterial cultures pretreated with mupirocin in a similar fashion (Fig. 5B and E). We used translational inhibitors at concentrations that repress ppGpp below the unstressed level and result in growth inhibition by ca. 80%; in the case of trimethoprim, we used a concentration (16 \(\mu \)M) that inhibits the growth rate to the same extent. When added at these concentrations (in the absence of mupirocin), neither of the antibiotics protects cells from ampicillin in the first place, lowering ppGpp further had no effect. In all our nucleotide measurements, an acute stringent response was initially induced by mupirocin, and then the ppGpp levels were affected by subsequent antibiotic treatments (Fig. 2 and 3).
in tolerance (i.e., at the 1-h time point) upon pretreatment with trimethoprim alone in both the wild type and the relaxed strain. This suggests that relA-independent ampicillin tolerance is a result of the interaction between the effects of trimethoprim and mupirocin rather than an effect of either of the antibiotics. Since mupirocin is, in essence, a translational inhibitor, we tested whether the combination of trimethoprim with other translational inhibitors, i.e., chloramphenicol and tetracycline, results in the similar protective effect (Fig. 5C and F). In the wild-type strain, these combinations do, indeed, confer high levels of ampicillin tolerance throughout the whole 5-h killing experiment. In the relaxed strain the combination of trimethoprim and tetracycline has a strong protective effect, increasing both tolerance and persistence. Pretreatment with trimethoprim combined with chloramphenicol behaves similarly to the specificity control, i.e., addition of extra trimethoprim at 16 μM; while the pretreatment does decrease the initial killing rate (i.e., induces tolerance), it does not affect the plateau (i.e., does not increase persistence).

The observed combinatorial ampicillin tolerance could be explained by growth inhibition (60). However, growth inhibition does not correlate with tolerance (see Fig. S7 in the supplemental material). Alternatively, tolerance could be caused by ampicillin-tolerant Ldt enzymes overproducing DAP-DAP cross-links in the cell wall (68). However, although the mupirocin/trimethoprim combination does result in DAP-DAP accumulation, this is not essential for tolerance (see Fig. S9C in the supplemental material).

Finally, in order to discriminate between general multidrug tolerance and specific tolerance to ampicillin, we performed the same set of time-kill experiments, substituting ampicillin for the fluoroquinolone norfloxacin (Fig. 6). The two sets of killing curves are profoundly different. First, in the norfloxacin set we see a very modest effect of relA disruption, suggesting that the functionality of the RelA-mediated stringent response is

FIG 6 RelA functionality does not determine the norfloxacin tolerance of BW25113 E. coli induced by antibiotic pretreatment. The antibiotic pretreatment was performed for 30 min at 37°C in MOPS media supplemented with 0.4% glucose and amino acids at 25 μg/ml using BW25113 E. coli wild-type strain (A and B) and an isogenic relA knockout (ΔrelA; C and D), followed by the addition of norfloxacin to a final concentration of 5 μg/ml, and the surviving fraction was determined by LB plating and colony counting. Bacteriostatic antibiotics were used at concentrations reducing the growth rate by half, and concentrations are indicated in μM on the figures, e.g., mup70 indicates pretreatment with 70 μM mupirocin. Error bars indicate the standard errors of the mean (three to five biological replicates). P values were calculated using a two-tailed Welch’s t test between wild-type and relaxed strains.
not crucial to antibiotic-induced tolerance to norfloxacin under the experimental conditions used. Second, the dramatic protective effect of the trimethoprim and mupirocin combination is absent in the case of the norfloxacin data set.

DISCUSSION

In this report we characterized the effects of antibiotics targeting translation on (i) RelA-mediated (p)ppGpp synthesis and (ii) antibiotic persistence. Since (p)ppGpp is believed to be the primary driver behind the formation of persisters (5–7), one could expect that the inhibition of (p)ppGpp accumulation by antibiotics would decrease the persistence levels. We have been sequentially moving from a reductionist biochemical system to more biologically relevant measurements via the following steps: (i) biochemical studies of antibiotic effects on ppGpp production by E. coli stringent response factor RelA in the test tube; (ii) microbiological measurements of antibiotic effects on ppGpp production in E. coli and B. subtilis bacterial cultures; and, finally, (iii) microbiological characterization of the downstream effects of (p)ppGpp depletion on antibiotic tolerance of E. coli. As discussed below, in the course of this investigation we have made observations important for fields of antibiotic development, structure-functional investigations of the ribosome, antibiotic tolerance, and persistence.

Efficient solubilization of thiostrepton by Pluronic F-127. Thiostrepton is virtually insoluble in water and can only be dissolved in organic solvents, such as DMSO (46). Therefore, considerable effort has gone into the development of more soluble derivatives using chemical synthesis (69) or bioengineering approaches (70). Biochemical experiments with unmodified thiostrepton performed in aqueous buffers in the absence of solubilizing agents are at risk of potential artifacts (26). The addition of nonionic surfactant Pluronic F-127 to the reaction mixture dramatically increases thiostrepton’s solubility and renders the antibiotic amenable to biochemical studies (see Fig. S3 in the supplemental material). Importantly, since micellation of F-127 is abrogated at low temperatures (71) experiments with F-127-solubilized thiostrepton should be performed at 30 to 37°C. F-127 is successfully used for the controlled delivery of several drug classes (72), and our results suggest its usefulness for topical formulations of thiostrepton.

A-site tRNA-dependent inhibition of RelA by thiostrepton. The peptide antibiotic thiostrepton has a subnanomolar affinity to its molecular target, the 50S ribosomal subunit (73). The drug intercalates between ribosomal protein L11 and helices H43 and H44 of the 23S rRNA, affecting the structure and conformational dynamics of the so-called GTPase-associated center, GAC: the ribosomal region responsible for binding and stimulation of the GTPase activity of translational factors (31). The ribosomal protein L11 contributes to the regulation of translational GTPases, such as EF-G (31, 74), and is essential for RelA activation on the ribosome (32). The A1067U mutation in H43 renders ribosomes highly resistant to thiostrepton (39), decreasing the antibiotic affinity by 1,000-fold (73).

We have shown that thiostrepton specifically inhibits RelA activation by the A-site tRNA and has no effect on RelA activated by 70S alone, whereas EF-G is inhibited equally efficiently regardless of the presence or absence of A-site tRNA (Fig. 1). The recent cryo-electron microscopy reconstructions of E. coli RelA complexed with a “starved” ribosomal complex provide a structural explanation (12–14). On the ribosome, RelA wraps around the A-site tRNA, distorting it and driving into a conformation similar to that of preaccommodated tRNA in complex with EF-Tu, the A/T state (75). In this conformation, nucleotide C56 of the A-site tRNA elbow forms a stacking interaction with rRNA residue A1067, the very residue crucial for thiostrepton binding. Interestingly, the A1067U thiostrepton-resistant mutation used in the present study does not affect RelA activity (Fig. 1C and D). In the absence of the A-site tRNA, the N-terminal catalytic domains of 70S-bound RelA are disordered and do not form stable contacts with the ribosome (14), providing a structural explanation for insensitivity to thiostrepton.
Inhibition of protein synthesis efficiently represses (p)ppGpp accumulation.
Specific inhibition of RelA is not, however, necessary for efficient inhibition of the stringent response: all of the tested protein synthesis inhibitors indirectly inhibit an acute stringent response in both *E. coli* and *B. subtilis* (Fig. 2 and 3; see also Fig. S5 in the supplemental material). Although ribosomal antibiotics directly or indirectly target ribosome-dependent RSHs RelA (*E. coli*) or Rel (*B. subtilis*) that are responsible for the acute accumulation of (p)ppGpp under amino acid starvation, both of these organisms possess other sources of (p)ppGpp, namely, SpoT in *E. coli* (76) and two small alarmone synthetases (SASs), YjbM and YwaC in *B. subtilis* (18). However, since *E. coli* SpoT's synthetic activity is exceedingly unstable, i.e., it is lost within a minute upon inhibition of protein synthesis (61), inhibition of RelA in combination with that of protein synthesis is likely to render *E. coli* effectively unable to produce (p)ppGpp, i.e., ppGpp°.

β-Lactam tolerance is induced by antibiotic pretreatment in the absence or presence of the RelA-mediated stringent response. Efficient depletion of (p)ppGpp by antibiotics targeting translation has nontrivial effects on antibiotic tolerance and persistence. The dramatic difference in ampicillin and norfloxacin killing results (compare Fig. 5 and 6) supports the assertion that elevated levels of (p)ppGpp induce antibiotic tolerance via antibiotic-specific pathways rather than protection from antibiotics in general (57, 77–80). Although the role of (p)ppGpp in ampicillin tolerance is well established, (p)ppGpp's role in protection from gyrase inhibitors such as norfloxacin is controversial: although some studies, similar to our own results, report an absence of specific protection (81), other studies observed prominent effects (4, 82). The difference is likely to be attributable to differences in experimental conditions, such as medium composition; differences in mupirocin killing of the ppGpp° *E. coli* strain in LB and MOPS media (Fig. 4) provide yet another example of a medium-specific effect.

Preexposure to trimethoprim combined with mupirocin induces a near-complete relA-independent tolerance to *β*-lactams ampicillin and imipenem (Fig. 5B and E; see also Fig. S9D and E in the supplemental material); substitution of mupirocin for other translational inhibitors, such as chloramphenicol or tetracycline, results in a weaker effect (Fig. 5C and F). Our results reinforce the already well-established connection between antibiotic pretreatment and induction of tolerance (83), specifically for bacteriostatic antibiotics (such as inhibitors of protein synthesis) that protect bacteria from bactericidal drugs (such as *β*-lactams) (84). Since in our experimental system the protection was specific for ampicillin, as opposed to norfloxacin, we hypothesize that the effect is connected to ampicillin's mode of action. However, at present we have been unable to determine its exact molecular mechanism, though it does not appear to be the result of accumulation of DAP-DAP cross-links (see Fig. S9 in the supplemental material).

Inhibition of the ppGpp-mediated signaling: a promising drug target but not a universal solution to antibiotic persistence. Several recent reports have documented the existence of antibiotic persistence in bacterial strains lacking (p)ppGpp-mediated signaling (85, 86). Rather than acting via (p)ppGpp signaling, in *Staphylococcus aureus* persistence is associated with a stationary-phase-like physiological state, characterized by low ATP levels and the expression of characteristic stationary-phase markers (86). Similarly, *E. coli* persister populations are enriched in bacteria with low metabolic activity (87). Our double-pronged challenge targeting both nucleotide synthesis and translation could be causing *β*-lactam tolerance in a similar fashion, despite the efficient inhibition of (p)ppGpp accumulation. Finally, the abrogation of the ppGpp-mediated signaling in *E. coli* via genetic disruption of relA and spoT results in medium-specific effects on tolerance and persistence (Fig. 4), again indicating that (p)ppGpp is not the one and only driver of persistence.

Therefore, we advocate a model with numerous parallel routes leading to persistence (88). (p)ppGpp, despite being important, is not the sole driver of the phenomenon. Specific inhibitors of the stringent response are unlikely to completely eradicate persistence. However, disrupting (p)ppGpp signaling will compromise virulence (89).
and have profound effects on crucial aspects of amino acid (90) and nucleotide metabolism (42). Therefore, RSH enzymes are still a very promising drug target. Given recent progress in organic synthesis and biological engineering of thiopeptides (91), the thiostrepton molecular scaffold could lead to the development of specific and potent inhibitors of ribosome-associated RSH enzymes Rel and RelA.

MATERIALS AND METHODS

Dynamic light scattering analysis of thiostrepton solubility. Serial dilutions of thiostrepton (Tocris; 1, 2, and 5 μM) were prepared in HEPES-Polymix buffer (25 mM HEPES [pH 7.5], 1 mM dithiothreitol, 15 mM Mg2+ (92, 93) supplemented with 3% TFE, 3% DMSO, or 0.1% (wt/vol) Pluronic F-127 (Sigma). Next, 50 μl aliquots were analyzed on Zetasizer Nano S90 (Malvern) in microcuvettes (Malvern).

TLC analysis of nucleotide mixtures. Both EF-G GTPase reaction and ppGpp synthesis by RelA were monitored by thin-layer chromatography (TLC) analysis of [3H]-labeled nucleotides, followed by scintillation counting according to the method of Mechold et al. (94), with modifications. Time points from the reaction mixtures (5 μl, see below for details) were quenched by the addition 4 μl of 70% formic acid supplemented with a cold nucleotide standard used for UV-shadowing (10 mM GDP and 10 mM GTP) and spotted onto PEI-TLC plates (Macherey-Nagel). TLC was performed in 0.5 M KH2PO4 pH 3.5 buffer, the plates were dried, samples were cut into sections (guided by UV shadowing), and [3H] radioactivity was quantified by scintillation counting in Optisafe-3 (Fisher) scintillation cocktail. Conversion of the substrate to product was quantified as described earlier (38).

Enzymatic assays with *E. coli* RelA. Biochemical assays utilized in vitro translation (92) and stringent response (38) systems from *E. coli* purified components. Experiments were performed in HEPES-Polymix buffer with either 5 mM Mg2+ (for enzymatically assembled initiation complexes) or 15 mM Mg2+ (for vacant 70S, as well as nonenzymatically assembled poly(U)-programmed ribosomes) (92, 93). A detailed description of the preparation of biochemical components can be found in the supplemental material. Poly(U)-programmed system. For the poly(U)-programmed system, a mixture containing 0.5 μM 70S, 2 μM poly(U) (Sigma), 2 μM tRNAAsp (ChemBlock), 0.1% (wt/vol) Pluronic F-127, and 100 μM ppGpp was preincubated for 2 min at 37°C, followed by the addition of 30 to 100 nM RelA and 300 μM [3H]GDP (Hartman or American Radiolabeled Chemicals), followed in turn by incubation for an additional 2 min at 37°C. After that the reaction was started by the addition of ATP to the final concentration of 1 mM, and time point samples (5 μl) were taken, quenched with formic acid, and analyzed by TLC.

Initiation complex system. For the initiation complex system, a mixture containing 0.1 μM RelA, 0.5 μM initiation complex, 2 μM tRNAAsp, 300 μM [3H]GDP, and 100 μM ppGpp was preincubated at 37°C for 2 min, and then the reaction was started by the addition of 1 mM ATP, and time point samples (5 μl) were taken, quenched with formic acid, and analyzed by TLC.

GTPase assays with *E. coli* EF-G. For the GTPase assays with *E. coli* EF-G, reaction mixtures containing 0.5 μM 70S, 0.1 μM EF-G, and 0.1% Pluronic F-127 (Sigma) in HEPES-Polymix (5 mM Mg2+) were preincubated for 2 min at 37°C prior to the addition of 300 μM [3H]GTP substrate (Hartman); time point samples (5 μl) were then taken, quenched with formic acid, and analyzed by TLC (see above).

Growth assays in a 96-well plate format. Defined MOPS medium (95) was supplemented with 0.4% (wt/vol) glucose as the carbon source and the full set of 20 amino acids. The amino acid set was added either at 25 μM each (MOPS_duo) or serine was added at 400 μg/ml and the 19 other amino acids were added at 40 μg/ml (MOPS_trio). LB Lennox medium (Becton Dickinson) was prepared according to the manufacturer's instructions, but instead of autoclaving, the medium was filter sterilized using 0.2-μm pore-size filters (96). In accordance with earlier recommendations for handling the ppGpp5 strain to avoid reverts (58), the starter cultures for all three strains (i.e., the wild-type, ArelA, and ppGpp5 strains) were prepared as follows. A thick suspension was made in the medium of interest using several colonies from a fresh overnight LB agar plate, which was then diluted to a starting OD600 within 0.001 to 0.025. Growth (OD600) was monitored in flat-bottom, 96-well plates, with 100 μl of the resulting cell suspension per well. Uninoculated medium served as a negative control and a blank. The outer wells were not used and were filled with water to counteract evaporation. The plates were then covered with prewarmed (to avoid condensation) lids, followed by incubation at 37°C with shaking.

Growth inhibition of *E. coli* by bacteriostatic antibiotics. Overnight cultures were pregrown at 37°C with aeration (200 to 220 rpm) in MOPS medium supplemented with 0.4% glucose and amino acids (25 μg/ml), diluted 100-fold into 20 ml of fresh medium in 100-ml flasks, and grown until the samples reached an OD600 of 0.5. Antibiotics were then added at various concentrations, and the growth was monitored using OD600 as a readout. Growth inhibition was calculated as the increase in OD600 after 1 h of antibiotic treatment compared to the untreated control culture. Relative growth was calculated as follows: (OD600 treated − initial OD600)/OD600 untreated − initial OD600.

Killing of *E. coli* by bactericidal antibiotics. Bactericidal antibiotic killings were performed as per Kaldalu et al. (96) using ampicillin at 200 μg/ml, imipenem at 4 μg/ml, and norfloxacin at 5 μg/ml. The general experimental setup is outlined in Fig. S1 in the supplemental material. Overnight cultures were grown at 37°C with aeration (200 to 220 rpm) either in MOPS medium with 0.4% glucose and amino acids at the indicated concentrations or in filtered LB medium, diluted 100-fold into the corresponding fresh medium without reaching un the OD600 of 0.5. Pretreatment antibiotics were then added at the indicated concentrations, and the cells were incubated at 37°C for aeration for an additional 30 min. Next, the culture was challenged by the bactericidal antibiotics ampicillin (200 μg/ml), norfloxacin (5 μg/ml), or ampicillin and imipenem (200 and 4 μg/ml, respectively), and 10 μl aliquots were removed on July 24, 2018 by guest

http://aac.asm.org/
for colony counts. CFU were determined at time points by making five to six 10-fold dilutions in phosphate-buffered saline at room temperature on a sterile 96-well plate and dropping 5 μl from each dilution on an LB agar plate. Upon absorption of the spotted culture, the plates were incubated at 30°C or 37°C overnight, followed by colony counting using the most dilute droplet in which colonies were still separated well enough to enable reliable counting. We observed no differences in colony counts between overnight incubation at 30 or 37°C; however, the latter temperature was preferred since it resulted in smaller colonies and therefore yielded more precise colony counts. The surviving fraction was expressed in relation to the CFU count of the starter culture prior to the addition of bactericidal antibiotic. The data are presented as geometric means, and error bars indicate the standard errors of the mean.

Nucleotide measurements. *B. subtilis* BSB1 strain cells were grown in MOPS buffered medium optimized for *B. subtilis* according to the recommendations of Libor Krásný (unpublished data): 50 mM MOPS (pH 7.0), 1 mM (NH₄)₂SO₄, 1 mM KH₂PO₄, 2 mM MgCl₂, 2 mM CaCl₂, 50 mM MnCl₂, and 5 mM FeCl₃, supplemented with 0.4% (wt/vol) glucose as a carbon source, as well as the full set of 20 amino acids, each at 25 μM/ml. The liquid culture was started from a fresh overnight LB agar plate using several colonies to make a thick suspension in 1 ml of MOPS medium. From that suspension, 190 ml of warm supplemented medium and grown until reaching an OD₆₀₀ of 0.5. Then, 10 ml of culture was removed for nucleotide incubation at 37°C with aeration (200 to 220 rpm), the cells were 100-fold diluted into warm fresh medium in a 1-liter flask was inoculated so that the final OD₆₀₀ was 0.02. During OD₆₀₀ measurements (97) using an Agilent 1100 system with Phenomenex SecurityGuard cartridges and a Phenomenex Sphereclone SAX column (5 μm, 4.6 by 150 mm). The identity of nucleotide peaks was confirmed by (i) spiking in nucleotide standards to experimental samples and (ii) comparing the spectral properties and retention times of peaks to those of nucleotide standards. The extraction efficiencies were calculated by using spiked-in standards.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC.02173-16.

TEXT S1, PDF file, 0.4 MB.

ACKNOWLEDGMENTS

We thank Gemma Atkinson and Niilo Kaldalu for useful comments on the manuscript, Libor Krásný for sharing *B. subtilis* BSB1 strain, Jaanus Remme and Aivar Liviv for sharing the *E. coli* strain for purification of A1067U 70S ribosomes as well as the 6His EF-G overexpression construct, Martin Pavelka for sharing *E. coli* strain PM2482 lacking *ynhG* and *ycbB* genes, Viktoriya Shyp for her effort during the early stages of the project, Sergei Kasvdanik for LC-MS analysis of thiostrepton samples, Sergei Kopanchuk for introducing us to Pluronic F-127, and Mike Cashel for sharing the overexpression construct for the Rel1_seq enzyme and detailed protocols for ppGpp preparation.

This study was supported by funds from the European Regional Development Fund through the Centre of Excellence for Molecular Cell Technology (V.H. and T.T.), Estonian Science Foundation grants (PUT37 to V.H. and IUT2-22 to T.T.), the Molecular Infection Medicine Sweden (V.H. and F.C.), the Swedish Research Council (grants 2013-4680 to V.H. and 2013-2440 to F.C.), the Ragnar Söderberg Foundation (V.H.), the Knut and Alice
REFERENCES

1. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. 2015. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13:298–309. https://doi.org/10.1038/nrmicro3448.

2. Dalebrux ZD, Swanson MS. 2012. ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol 10:203–212. https://doi.org/10.1038/nrmicro2720.

3. Rodionov DG, Ishiguro EE. 1995. Direct correlation between overproduction of guanosine 3′,5′-bispyrophosphate (ppGpp) and penicillin tolerance in Escherichia coli. J Bacteriol 177:4224–4229. https://doi.org/10.1128/jb.177.15.4224-4229.1995.

4. Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou B, Coppee JY, Ghigo JM, Beloin C. 2013. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 9:e1003144. https://doi.org/10.1371/journal.pgen.1003144.

5. Gerdes K, Maisonneuve E. 2012. Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 66:103–123. https://doi.org/10.1146/annurev-micro-090212-140202.

6. Nguyen D, Yoshi-Datar A, Lepine F, Bauerle E, Olakamni O, Beer K, McKay G, Siehnel R, Schaffner J, Wang Y, Brittan BE, Singh PK. 2011. Active starvation response mediates antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334:982–986. https://doi.org/10.1126/science.1211037.

7. Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157:539–548. https://doi.org/10.1016/j.cell.2014.02.050.

8. Atkinson GC, Tenson T, Hauryliuk V. 2011. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetase domains and hydrolases across the tree of life. PLoS One 6:e23479. https://doi.org/10.1371/journal.pone.0023479.

9. Potrykus K, Cashel M. 2008. (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51. https://doi.org/10.1146/annurev.micro.62.081307.162903.

10. Haseltine WA, Block R. 1973. Synthesis of guanosine tetra- and pentaphosphate in a ribosomal system from Escherichia coli. J Biol Chem 248:35824. https://doi.org/10.1038/srep35824.

11. Andresen L, Varik V, Tozawa Y, Jimmy S, Lindberg S, Tenson T, Hauryliuk V. 2016. Auroxutrophy-based high-throughput screening assay for the identification of Bacillus subtilis stringent response inhibitors. Sci Rep 6:35824. https://doi.org/10.1038/srep35824.

12. Andresen L, Tenson T, Hauryliuk V. 2016. Cationic bacterial peptide 1018 does not specifically target the stringent response alarmone (p)ppGpp. Sci Rep 6:36549. https://doi.org/10.1038/srep36549.

13. Walter JD, Hunter M, Cobb M, Traeger G, Spiegel PC. 2012. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4. Nucleic Acids Res 40:360–370. https://doi.org/10.1093/nar/gkr623.

14. Modolero J, Cabrer B, Parmeggiani A, Vazquez D. 1971. Inhibition by siomycin and thiostrepton of both aminoacyl-tRNA and factor G binding to ribosomes. Proc Natl Acad Sci U S A 68:1796–1800. https://doi.org/10.1073/pnas.68.8.1796.

15. Brandi L, Marzi S, Fabbretti A, Fleischer C, Hill WE, Gualerzi CO, Stephen Lodmell J. 2004. The translation initiation functions of IF2: targets for thiostrepton inhibition. J Mol Biol 345:881–894. https://doi.org/10.1016/j.jmb.2003.10.067.

16. Haseltine WA, Block R, Gilbert W, Weber K. 1972. MS1 and MSIL made on ribosome in idling step of protein synthesis. Nature 238:381–384. https://doi.org/10.1038/238381a0.

17. Knutsson Jenvert RM, Holmberg Schiavone L. 2005. Characterization of the tRNA and ribosome-dependent ppGpp-synthesis by recombinant stringent factor from Escherichia coli. FEBS J 272:685–695. https://doi.org/10.1111/j.1742-4658.2004.05020.x.

18. Harms JM, Wilson DN, Schluenzen F, Connell SR, Stachelhaus T, Zaborowska Z, Spahn CM, Fucini P. 2017. Translational regulation via L11-molecular switches on the ribosome turned on and off by thiostrepton and micrococin. Mol Cell 30:26–38. https://doi.org/10.1016/j.molcel.2008.01.009.
32. Friesen JD, Fill NP, Parker JM, Haeftling WA. 1974. A new relaxed mutant of Escherichia coli with an altered SOS ribosomal subunit. Proc Natl Acad Sci U S A 71:3465–3469. https://doi.org/10.1073/pnas.71.9.3465.

33. Wang L, Yang F, Zhang D, Chen Z, Xu RM, Nierhaus KH, Gong W, Qin Y. 2012. A conserved proline switch on the ribosome facilitates the recruitment and binding of trGTPases. Nat Struct Mol Biol 19:403–410. https://doi.org/10.1038/nsmb.2254.

34. Nguyen F, Starosta AL, Arens S, Sohmen D, Donhofer A, Wilson DN. 2014. Tetracycline antibiotics and resistance mechanisms. Biol Chem 395:559–575.

35. Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH. 2002. Dissection of the mechanism for the stringent factor RelA. Mol Cell 10:779–788. https://doi.org/10.1016/S1097-2765(02)00656-1.

36. Midgley JE, Gray WJ. 1971. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli. Biochem J 122:149–159.

37. Cashel M. 1969. The control of ribonucleic acid synthesis in Escherichia coli. IV. Irrelevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J Biol Chem 244:3133–3141.

38. Shyp V, Tankov S, Ermakov A, Kudrin P, English BP, Ehrenberg M, Tenson T, Elf J, Hauryliuk V. 2012. Positive allosteric feedback regulation of the stringent response enzyme RelA by its product. EMBO Rep 13:835–843. https://doi.org/10.1038/embor.2012.106.

39. Thompson J, Cundliffe E, Dahlberg AE. 1988. Site-directed mutagenesis of Escherichia coli 23 S ribosomal RNA at position 1067 within the GTP hydrolysis centre. J Mol Biol 203:457–465. https://doi.org/10.1016/0022-2836(88)90012-5.

40. Agirrezabala X, Fernandez IS, Kelley AC, Carton DG, Ramkrishnan V, Vale M. 2013. The ribosome triggers the stringent response by RelA via a highly distorted tRNA. EMBO Rep 14:811–816. https://doi.org/10.1002/embr.201310.037.

41. Ross W, Vrentas EC, Sanchez-Vazquez P, Gaal T, Gourse RL. 2013. The magic spot: a ppGpp binding site on Escherichia coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell 50:420–429. https://doi.org/10.1016/j.molcel.2013.03.021.

42. Liu K, Myer AR, Prioulh T, Claas KB, Sabyshur KA, Amador-Noguez D, Keck JL, Wang JD. 2015. Molecular mechanism and evolution of guanylate kinase regulation by (p)ppGpp. Mol Cell 57:735–749. https://doi.org/10.1016/j.molcel.2014.12.037.

43. Krasny L, Gourse RL. 2004. An alternative strategy for bacterial ribosome biology: Bacillus subtilis rRNA transcription regulation. EMBO J 23:4437–4443. https://doi.org/10.1038/sj.emboj.7600423.

44. Gleeson R, Janssen RW, van der Plas J. 2010. The ribosome: mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacotherapy 1:14–20.

45. Hughes J, Mellows G. 1978. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 134:1297–1304.

46. Murray KD, Bremer H. 1996. Control of spot-dependent ppGpp synthesis and degradation in Escherichia coli. J Mol Biol 259:41–57. https://doi.org/10.1006/jmb.1996.0300.

47. Kwan BW, Valenta JA, Benedik MJ, Wood TK. 2013. Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother 57:1468–1473. https://doi.org/10.1128/AAC.02135-12.

48. Rodionov DG, Pisabarro AG, de Pedro MA, Kusser W, Ishiguro EE. 1995. Beta-lactam-induced bacteriolyis of amino acid-deprived Escherichia coli is dependent on GTP hydrolysis. J Bacteriol 177:992–997. https://doi.org/10.1128/JB.177.4.992-997.1995.

49. Gao W, Chua K, Davies JK, Newton HJ, Seemann T, Harrison PF, Holmes NE, Rhee HW, Hong JI, Hartland EL, Stinear TP, Howden BP. 2010. Two novel point mutations in the clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog 6:e1000944. https://doi.org/10.1371/journal.ppat.1000944.

50. Mwangi MM, Kim C, Chung M, Tsai J, Vijayaradjamodar G, Benitez M, Jarvie DP, Du L, Tomas A. 2013. Whole-genome sequencing reveals a link between beta-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. Microb Drug Resist 19:153–159. https://doi.org/10.1089/mdr.2013.0053.

51. Heath RJ, Jackowski S, Rock CO. 1994. Guanosine tetrathosphate inhibits the fatty acid and phospholipid synthesis in Escherichia coli relieved by overexpression of glycerol-3-phosphate acyltransferase (PslB). J Biol Chem 269:26584–26590.

52. Hugonnet JE, Mengin-Leclercx D, Moni J, Blauger J, Carbonnelle E, Veckerle C, Brun YV, Viennenwede M, Bouchier C, Tu K, Rice LB, Arthur M. 2016. Factors essential for ω,ω-transeptidase-mediated peptidoglycan cross-linking and beta-lactam resistance in Escherichia coli. eLife 5:e14969. https://doi.org/10.7554/eLife.14969.

53. Myers CL, Hang PC, Ng G, Yuen J, Honek JF. 2010. Semi-synthetic antibiotics of thiostrepton delimit the critical nature of tail region modifications in the control of protein biosynthesis and antibacterial activity. Bioorg Med Chem 18:4231–4237. https://doi.org/10.1016/j.bmc.2010.04.098.

54. Zhang F, Kelly WL. 2012. In vivo production of thiopetide variants. Methods Enzymol 516:3–24. https://doi.org/10.1016/B978-0-12-394291-7.00022-8.

55. Basak R, Bandyopadhyay R. 2013. Encapsulation of hydrophobic drugs in Pluronic F127 gels: effects of drug hydrophobicity, solution temperature, and pH. Langmuir 29:4350–4356. https://doi.org/10.1021/la304836e.

56. Escobar-Chavez JJ, Lopez-Cervantes M, Naik A, Kalia YN, Quintanar-Duran O, Danem-Quintanar A. 2006. Applications of thermo-reversible Pluronic F127 gels in pharmaceutical formulations. J Pharm Sci 93:399–358.
73. Baumann S, Schoof S, Bolten M, Haering C, Takagi M, Shin-ya K, Arndt HD. 2010. Molecular determinants of antibiotic resistance to thiopeptide antibiotics. J Am Chem Soc 132:6973–6981. https://doi.org/10.1021/ja909317n.

74. Porse BT, Levine I, Mankin AS, Garrett RA. 1998. The antibiotic thiol estropen inhibits a functional transition within protein L11 at the ribosomal GTPase centre. J Mol Biol 276:391–404. https://doi.org/10.1006/jmbi.1997.1541.

75. Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV, Weir JR, Ramakrishnan V. 2009. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326:688–694. https://doi.org/10.1126/science.1179700.

76. Laffter T, Gallant J. 1974. spoT, a new genetic locus involved in the stringent response in Escherichia coli. Cell 1:27–30. https://doi.org/10.1016/0092-8674(74)90151-2.

77. Gontea L, Freeze NS, McDonald KW, Cadieux PA, Burton JP, Razvi H, Reid G. 2014. Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrob Agents Chemother 58:2089–2097. https://doi.org/10.1128/AAC.02552-13.

78. Amato SM, Brynildsen MP. 2015. Persistor heterogeneity arising from a single metabolic stress. Curr Biol 25:2090–2098. https://doi.org/10.1016/j.cub.2015.06.034.

79. Hofsteenge N, van Nimwegen E, Silander OK. 2013. Quantitative analysis of persistor fractions suggests different mechanisms of formation among environmental isolates of Escherichia coli. BMC Microbiol 13:25. https://doi.org/10.1186/1471-2180-13-25.

80. Wu N, He L, Cui P, Wang W, Yuan Y, Liu S, Xu T, Zhang S, Wu J, Zhang W, Zhang Y. 2015. Ranking of persistor genes in the same Escherichia coli genetic background demonstrates varying importance of individual persistor genes in tolerance to different antibiotics. Front Microbiol 6:1003.

81. Geiger T, Kastle B, Gratani FL, Goerke C, Wolz C, 2014. Two small relA-Independent and relA-Dependent β-Lactam Tolerance. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.02463-14.

82. Chowdhury N, Kwan BW, Wood TK. 2016. Persistence increases in the absence of the alarmones guanosine tetraphosphate by reducing cell growth. Sci Rep 6:20519. https://doi.org/10.1038/srep20519.

83. Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, Clair G, Adkins JN, Cheung AL, Lewis K. 2016. Persistor formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1:16051. https://doi.org/10.1038/nmicrobiol.2016.51.

84. Orman MA, Brynildsen MP. 2013. Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother 57:3230–3239. https://doi.org/10.1128/AAC.00243-13.

85. Kaldalu N, Haurylik V, Tenson T. 2016. Persisters: as elusive as ever. Appl Microbiol Biotechnol 100:6545–6553. https://doi.org/10.1007/s00253-016-7648-8.

86. Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS. 2010. ppGpp conjugates bacterial virulence. Microbiol Mol Biol Rev 74:171–199. https://doi.org/10.1128/MMBR.00046-09.

87. Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M. 1991. Residual guanosine 3',5'-bisphosphate synthetase activity of rel-null mutants can be eliminated by spo-null mutations. J Biol Chem 266:5980–5990.

88. Just-Baringo X, Albericio F, Alvarez M. 2014. Thiopeptide engineering: a multidisciplinary effort towards future drugs. Angew Chem Int Ed Engl 53:6602–6616. https://doi.org/10.1002/anie.201307288.

89. Antoun A, Pavlov MY, Tenson T, Ehrenberg MM. 2004. Ribosome formation from subunits studied by stopped-flow and Rayleigh light-scattering. Biol Proced Online 6:35–54. https://doi.org/10.1251/bpo71.

90. Jelenc PC, Kurland CG. 1979. Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc Natl Acad Sci U S A 76:3174–3178. https://doi.org/10.1073/pnas.76.7.3174.

91. Mechold U, Murphy H, Brown L, Cashel M. 2002. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J Bacteriol 184:2878–2888. https://doi.org/10.1128/JB.184.11.2878-2888.2002.

92. Neidhardt FC, Bloch PL, Smith DF. 1974. Culture medium for enterobacteria. J Bacteriol 119:736–747.

93. Kaldalu N, Joes A, Ingelman H, Tenson T. 2016. A general method for measuring persistor levels in Escherichia coli cultures. Methods Mol Biol 1333:29–42. https://doi.org/10.1007/978-1-4939-2854-5_3.

94. Monteferriera CG, Jirgensons A, Varik V, Haurylik V, Goessens WH, Hays JP. 2016. Evaluation of the characteristics of leucyl-tRNA synthetase (LeuRS) inhibitor AN3365 in combination with different antibiotic classes. Eur J Clin Microbiol Infect Dis 35:1857–1864. https://doi.org/10.1007/s10096-016-2738-1.