Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

A. A. Hemeda (a), I. A. Lairje (b) and E. A. Tarif (c)

(a, c) Department of Mathematics, Faculty of Science, Tanta University, Egypt.
(b) Department of Mathematics, Faculty of Science, Omar Al-Mukhtar University, Libya.

Corresponding author: Atif Abd Elglil Hemeda
e-mail: aahemeda@yahoo.com

KEY WORDS
New iterative method; Homotopy perturbation method; Integro-differential equations of fractional derivative order; Caputo fractional derivative.

ABSTRACT
In this work, we implement relatively new analytical techniques, the new iterative method (NIM) and homotopy perturbation method (HPM), for solving linear and nonlinear integro-differential equations of fractional derivative order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytical and approximate solutions for different types of fractional differential and integro-differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to integro-differential equations of fractional derivative order.

© Faculty of Science, Tanta University.

1. Introduction
In the past decades, both mathematicians and physicists have devoted considerable effort to find robust and stable numerical and analytical methods for solving fractional differential and integro-differential equations of physical interest. Numerical and analytical methods have included finite difference method [1-3], Adomian decomposition method [4-8], variational iteration method [9-12], homotopy perturbation method (HPM) [13-16], generalized differential transform method [17-20], homotopy analysis method [21-23] and new iterative method (NIM) [24-30, 44, 45]. Among them, the HPM and the NIM...
[13-16, 24-30, 44, 45] provides an effective procedure for explicit and numerical solutions of a wide and general class of differential and integro-differential systems representing real physical problems. In both methods, the validity of them is independent of whether or not there exist small parameters in the considered equation.

The motivation of this work is to extend the analysis of both the NIM proposed by Gejji-Jafari [24-32] and the HPM proposed by He [13-16] with a reliable algorithms to solve linear and nonlinear integro-differential equations with fractional derivative order defined as follows: nonlinear integro-differential equations with fractional derivative order defined as follows:

\[
y^{(\alpha)}(x) + f(x)y(x) + \int_{a}^{b} w(x,t)y^{(q)}(t)y^{(m)}(t) \, dt = g(x) \tag{1a}
\]

\[
\frac{d^{k} y}{d x^{k}} = h_{k}, \quad k = 0, 1, 2, ..., n - 1; \quad h_{k} \in \mathbb{R} \tag{1b}
\]

Where \(h_{k}, \quad k = 0, 1, 2, ..., n - 1 \) are real constants, \(q, m, n \) are integers and \(\alpha \) is fraction with \(q \leq m \leq n - 1 < \alpha \leq n \). In (1) the functions \(f, g \) and \(w \) are given solution. The obtained results shown that these methods with the modification algorithms are very simple and effective.

For considering some properties of the fractional order differential operator, consider the nonlinear differential equation:

\[
D_{x}^{\alpha} y(x) = f(y, y', ..., y^{(n-1)}), \quad x > 0 \tag{2}
\]

Where \(n - 1 < \alpha \leq n \), \(f \) is a nonlinear function and \(D_{x}^{\alpha} \) denotes the differential operator in the sense of Caputo [33], defined by:

\[
D_{x}^{\alpha} f(x) = I_{x}^{n-\alpha} D_{x}^{\alpha} f(x). \tag{3}
\]

Here \(D_{x}^{\alpha} \) is the usual differential operator of order \(\alpha \) and \(I_{x}^{\alpha} \) is the Riemann-Liouville integral operator of order \(\alpha > 0 \), defined by:

\[
I_{x}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{x} (x-\xi)^{\alpha-1} f(\xi) \, d\xi, \quad x > 0. \tag{4}
\]

Properties of the operators \(I_{x}^{\alpha} \) and \(D_{x}^{\alpha} \) can be found in [34, 35], we mention only the following, For \(f \leq C_{\mu} \), \(\mu \geq -1 \), \(\beta \geq 0 \) and \(\nu > -1 \):

1. \(I_{x}^{\alpha} I_{x}^{\beta} f(x) = I_{x}^{\alpha+\beta} f(x) = I_{x}^{\beta} I_{x}^{\alpha} f(x) \),

2. \(I_{x}^{\alpha} x^{\nu} = \frac{\Gamma(\nu+1)}{\Gamma(\nu+1+\alpha)} x^{\nu+\alpha} \),

3. \(D_{x}^{\alpha} x^{\nu} = \frac{\Gamma(\nu+1)}{\Gamma(\nu+1-\alpha)} x^{\nu-\alpha} \).

2. Analysis of the Methods.

In this section, we discuss the analysis and the algorithms of the two considered methods.

2.1. New Iterative Method.

Consider the following general functional equation [24-32]:

\[
y(x) = f(x) + N(y(x)), \tag{5}
\]

where \(N \) is a nonlinear operator from a Banach space \(B \rightarrow B \) and \(f \) is a known function (element) of the Banach space \(B \). We are looking for a solution \(y \) of Equation (5) having the series form:

\[
y(x) = \sum_{i=0}^{\infty} y_{i}(x). \tag{6}
\]

The nonlinear operator \(N \) can be decomposed as:

\[
N \left(\sum_{i=0}^{\infty} y_{i} \right) = N(y_{0})
\]
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

\[
+ \sum_{i=1}^{\infty} \left\{ N \left(\sum_{j=0}^{i} y_j \right) - N \left(\sum_{j=0}^{i-1} y_j \right) \right\}. \quad (7)
\]

From Equations (6) and (7), Equation (5) is equivalent to:

\[
\sum_{i=0}^{\infty} y_i = f + N \left(y_0 \right)
\]

\[
+ \sum_{i=1}^{\infty} \left\{ N \left(\sum_{j=0}^{i} y_j \right) - N \left(\sum_{j=0}^{i-1} y_j \right) \right\}. \quad (8)
\]

We define the recurrence relation:

\[
y_0 = f,
\]

\[
y_1 = N \left(y_0 \right),
\]

\[
y_{n+1} = N \left(y_0 + y_1 + \ldots + y_n \right) - N \left(y_0 + y_1 + \ldots + y_{n-1} \right),
\]

\[n = 1, 2, \ldots\] (9)

Then

\[(y_1 + y_2 + \ldots + y_{n+1}) = N (y_0 + y_1 + \ldots + y_n),\]

\[n = 1, 2, \ldots, \] (10)

and

\[y = \sum_{i=0}^{\infty} y_i. \] (11)

Then \(n\)-term approximate solution of Equations (5) and (6) is given by

\[y \left(x \right) = \sum_{i=0}^{n-1} y_i.\]

Remark 1. If \(N\) is a contraction, i.e.,

\[\| N(x) - N(y) \| \leq k \| x - y \|, \quad 0 < k < 1,\]

then:

\[\| y_{n+1} \| \leq k^{n+1} \| y_0 \|, \quad n = 0, 1, 2, \ldots\]

Proof. From Equation (9), we have:

\[y_0 = f,\]

\[\| y_1 \| = \| N \left(y_0 \right) \| \leq k \| y_0 \|,\]

\[\| y_2 \| = \| N \left(y_0 + y_1 \right) \| \leq k \| y_1 \| \leq k^2 \| y_0 \|,\]

\[\| y_3 \| = \| N \left(y_0 + y_1 + y_2 \right) \| \leq k \| y_2 \| \leq k^3 \| y_0 \|,\]

\[\vdots\]

\[\| y_{n+1} \| = \| N \left(y_0 + \ldots + y_n \right) \| \leq k^{n+1} \| y_0 \|, \quad n = 0, 1, 2, \ldots\]

Remark 1. If \(N\) is a contraction, i.e.,

\[\| N(x) - N(y) \| \leq k \| x - y \|, \quad 0 < k < 1, \]

then:

\[\| y_{n+1} \| \leq k^{n+1} \| y_0 \|, \quad n = 0, 1, 2, \ldots\]

Proof. From Equation (9), we have:

\[y_0 = f, \]

\[\| y_1 \| = \| N \left(y_0 \right) \| \leq k \| y_0 \|, \]

\[\| y_2 \| = \| N \left(y_0 + y_1 \right) \| \leq k \| y_1 \| \leq k^2 \| y_0 \|, \]

\[\| y_3 \| = \| N \left(y_0 + y_1 + y_2 \right) \| \leq k \| y_2 \| \leq k^3 \| y_0 \|, \]

\[\vdots \]

\[\| y_{n+1} \| = \| N \left(y_0 + \ldots + y_n \right) \| \leq k^{n+1} \| y_0 \|, \quad n = 0, 1, 2, \ldots\]

From Equations (6) and (7), Equation (5) is equivalent to:

\[
\sum_{i=0}^{\infty} y_i = f + N \left(y_0 \right)
\]

\[
+ \sum_{i=1}^{\infty} \left\{ N \left(\sum_{j=0}^{i} y_j \right) - N \left(\sum_{j=0}^{i-1} y_j \right) \right\}. \quad (8)
\]

We define the recurrence relation:

\[
y_0 = f, \]

\[
y_1 = N \left(y_0 \right), \]

\[
y_{n+1} = N \left(y_0 + y_1 + \ldots + y_n \right) - N \left(y_0 + y_1 + \ldots + y_{n-1} \right), \]

\[n = 1, 2, \ldots\] (9)

Then

\[(y_1 + y_2 + \ldots + y_{n+1}) = N (y_0 + y_1 + \ldots + y_n),\]

\[n = 1, 2, \ldots, \] (10)

and

\[y = \sum_{i=0}^{\infty} y_i. \] (11)

Then \(n\)-term approximate solution of Equations (5) and (6) is given by

\[y \left(x \right) = \sum_{i=0}^{n-1} y_i.\]

Remark 1. If \(N\) is a contraction, i.e.,

\[\| N(x) - N(y) \| \leq k \| x - y \|, \quad 0 < k < 1, \]

then:

\[\| y_{n+1} \| \leq k^{n+1} \| y_0 \|, \quad n = 0, 1, 2, \ldots\]

Proof. From Equation (9), we have:

\[y_0 = f, \]

\[\| y_1 \| = \| N \left(y_0 \right) \| \leq k \| y_0 \|, \]

\[\| y_2 \| = \| N \left(y_0 + y_1 \right) \| \leq k \| y_1 \| \leq k^2 \| y_0 \|, \]

\[\| y_3 \| = \| N \left(y_0 + y_1 + y_2 \right) \| \leq k \| y_2 \| \leq k^3 \| y_0 \|, \]

\[\vdots \]

\[\| y_{n+1} \| = \| N \left(y_0 + \ldots + y_n \right) \| \leq k^{n+1} \| y_0 \|, \quad n = 0, 1, 2, \ldots\]

2.2. The Reliable Algorithm.

After the above presentation of the new iterative method, we present a reliable approach of this method. This new modification can be implemented for integer order and fractional order linear and nonlinear integro-differential equations. To illustrate the basic idea of the new algorithm, we consider the nonlinear integro-differential equation with fractional derivative order (1) defined as follows:

\[D_x^\alpha y \left(x \right) + f \left(x \right) y \left(x \right) \]

\[= \int_a^b \left[w \left(x, t \right) y^{(q)} \left(t \right) y^{(m)} \left(t \right) d t \right] \]

\[= g \left(x \right), \quad (12a)\]

with the initial conditions:

\[\frac{d^k y \left(0 \right)}{dx^k} = h_k, \quad k = 0, 1, 2, \ldots, n-1; \quad h_k \in \mathbb{R}. \]

(12b)

In view of the new iterative method, the above nonlinear integro-differential equation (12) is equivalent to the nonlinear integral equation:

\[y \left(x \right) = I_x^\alpha \left[g \left(x \right) \right] - I_x^\alpha \left[f \left(x \right) y \left(x \right) \right] \]

\[= f - N \left(y \right), \quad \text{where} \]

\[f = I_x^\alpha \left[g \left(x \right) \right], \quad (14a)\]
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

Remark 2. When the general functional Equation (5) is linear, the recurrence relation (9) can be simplified in the form:

\[
y_{n+1} = N(y_n), \quad n = 0, 1, 2, \ldots
\]

Proof. From the properties of integration and by using equations (9), (14b), we have:

\[
y_{n+1} = N(y_0 + \ldots + y_{n-1} + y_n)
\]

The convergence of the NIM has been proved in [31, 32]. We get the solution of Equation (13) by employing the recurrence relation (9) or (15).

2.3. Homotopy Perturbation Method.

In this subsection the basic ideas of the HPM are introduced [13-16].

To achieve our goal m we consider the following nonlinear differential equation:

\[
L(y) + N(y) = \Psi(x), \quad x \in \Omega,
\]

with the boundary conditions:

\[
B \begin{pmatrix} u, \frac{d y}{d x} \end{pmatrix} = 0, \quad x \in \Gamma,
\]

where \(L \) is a linear operator, \(N \) is a nonlinear operator, \(B \) is a boundary operator, \(\Psi(x) \) is a Known analytic function and \(\Gamma \) is the boundary of the domain \(\Omega \).

By the homotopy technique [13-16], He constructs a homotopy \(\nu(x, p) : \Omega \times [0, 1] \rightarrow R \) which satisfies:

\[
H(\nu, p) = (1 - p)[L(\nu) - L(y_0)] + p[L(\nu) + N(\nu) - \Psi(x)] = 0, \quad (17a)
\]

or

\[
H(\nu, p) = L(\nu) - L(y_0) + pL(y_0) + p[N(\nu) - \Psi(x)] = 0, \quad (17b)
\]

where \(x \in \Omega, \quad p \in [0, 1] \) is an impeding parameter and \(y_0 \) is an initial approximation which satisfies the boundary conditions. Obviously, from (17), we have

\[
H(\nu, 0) = L(\nu) - L(y_0),
\]

\[
H(\nu, 1) = L(\nu) + N(\nu) - \Psi(x) = 0.
\]

The change process of \(p \) from zero to unity is just that of \(\nu(x, p) \) from \(y_0 \) to \(y \). In topology, this is called deformation, \(L(\nu) - L(y_0) \) and \(L(\nu) + N(\nu) - \Psi(x) \) are called homotopic. The basic assumption is that the solution of Equation (17) can be expressed as a power series in \(p \):

\[
\nu = y_0 + p y_1 + p^2 y_2 + \ldots.
\]

Setting \(p = 1 \), the approximate solution of Equation (16) is given by:

\[
y = \lim_{p \rightarrow 1} y = y_0 + y_1 + y_2 + \ldots.
\]

The convergence of the series (20) has been proved in [38, 39]. For the author you can see [40-43].

2.4. The Reliable Algorithm.

Now we introduce a suitable algorithm to handle in a realistic and efficient way the nonlinear integro-differential equations of fractional derivative order (1) defined in the form:

\[
D^{(\alpha)} y(x) + f(x) y(x)
\]

\[
+ \int_{a}^{b} w(x, t) y^{(q)}(t) y^{(m)}(t) d t = g(x),
\]

with the initial conditions:

\[
\frac{d^{k} y(0)}{d x^{k}} = h_{k}, \quad k = 0, 1, 2, \ldots, n-1; \quad h_{k} \in R,
\]

In view of the homotopy technique, we can construct the following homotopy:

\[
D^{(\alpha)} y(x) + f(x) y(x) - g(x)
\]

where \(x \in \Omega, \quad p \in [0, 1] \) is an impeding parameter and \(y_0 \) is an initial approximation which satisfies the boundary conditions. Obviously, from (17), we have

\[
H(\nu, 0) = L(\nu) - L(y_0),
\]

\[
H(\nu, 1) = L(\nu) + N(\nu) - \Psi(x) = 0.
\]

The change process of \(p \) from zero to unity is just that of \(\nu(x, p) \) from \(y_0 \) to \(y \). In topology, this is called deformation, \(L(\nu) - L(y_0) \) and \(L(\nu) + N(\nu) - \Psi(x) \) are called homotopic. The basic assumption is that the solution of Equation (17) can be expressed as a power series in \(p \):

\[
\nu = y_0 + p y_1 + p^2 y_2 + \ldots.
\]

Setting \(p = 1 \), the approximate solution of Equation (16) is given by:

\[
y = \lim_{p \rightarrow 1} y = y_0 + y_1 + y_2 + \ldots.
\]

The convergence of the series (20) has been proved in [38, 39]. For the author you can see [40-43].

2.4. The Reliable Algorithm.

Now we introduce a suitable algorithm to handle in a realistic and efficient way the nonlinear integro-differential equations of fractional derivative order (1) defined in the form:

\[
D^{(\alpha)} y(x) + f(x) y(x)
\]

\[
+ \int_{a}^{b} w(x, t) y^{(q)}(t) y^{(m)}(t) d t = g(x),
\]

with the initial conditions:

\[
\frac{d^{k} y(0)}{d x^{k}} = h_{k}, \quad k = 0, 1, 2, \ldots, n-1; \quad h_{k} \in R,
\]

In view of the homotopy technique, we can construct the following homotopy:

\[
D^{(\alpha)} y(x) + f(x) y(x) - g(x)
\]
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

\[
D^\alpha y(x) = -\frac{2x^{2-\alpha}}{\Gamma(3-\alpha)} \frac{x^3}{4} + \int_0^1 xy(t) dt ,
\]

with the initial condition:
\[
y(0) = 0.
\]

In view of the NIM, from (14a), we obtain:
\[
y_0(x) = x^2 - \frac{x^{1+\alpha}}{4\Gamma(2+\alpha)},
\]

Therefore, from (13) the integro-differentia Equation (26) is equivalent to the integral equation:
\[
y(x) = x^2 - \frac{x^{1+\alpha}}{4\Gamma(2+\alpha)} + \frac{1}{\Gamma(x)} \int_0^1 t y(t) dt .
\]

Let \(N(y) = \frac{1}{\Gamma(x)} \int_0^1 t y(t) dt . \)

Therefore, from (15) we can obtain easily the following first few components of the solution for Equation (26):
\[
y_0(x) = x^2 - \frac{x^{1+\alpha}}{4\Gamma(2+\alpha)},
\]
\[
y_1(x) = \frac{(3+\alpha)\Gamma(2+\alpha) - 1}{4(3+\alpha)^2} x^{1+\alpha},
\]
\[
y_2(x) = \frac{(3+\alpha)\Gamma(2+\alpha) - 1}{4(3+\alpha)^2 \Gamma(2+\alpha)^2} x^{1+\alpha},
\]

\[
y_3(x) = \frac{(3+\alpha)\Gamma(2+\alpha) - 1}{4(3+\alpha)^2 \Gamma(2+\alpha)^3} x^{1+\alpha},
\]

\[
y_4(x) = \frac{(3+\alpha)\Gamma(2+\alpha) - 1}{4(3+\alpha)^2 \Gamma(2+\alpha)^4} x^{1+\alpha},
\]

and so on, in the same manner the rest of components can be obtained.

The 6-term approximate solution for Equation (26) is:
\[
y(x) = \sum_{i=0}^5 y_i
\]

\[
y(x) = x^2 - \frac{x^{1+\alpha}}{4\Gamma(2+\alpha)} + \frac{(3+\alpha)\Gamma(2+\alpha) - 1}{4(3+\alpha)^2 \Gamma(2+\alpha)^2} x^{1+\alpha} + \frac{(3+\alpha)\Gamma(2+\alpha) - 1}{4(3+\alpha)^2 \Gamma(2+\alpha)^3} x^{1+\alpha}.
\]

3. Applications.

In this section we present some examples to illustrate the power of the given methods with the considered algorithms.

Example 3.1. Consider the following example with \(y^{(q)}(t) = 1, \ m = 0, \ n = 1 \) and \(0 < \alpha \leq 1 \):
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

The same results can be obtained by using Equation (9) instead to Equation (15).

In view of the HPM, the homotopy for Equation (26) by equation (22), can be constructed as:

\[D_x^\alpha y(x) = \frac{2x^{2-\alpha}}{\Gamma(3-\alpha)} - \frac{x}{4} \int_0^1 t y(t) \, dt \]

Substituting (24) and the initial condition (26b) into (28) and equating terms with identical powers of \(p \); we obtain the following set of fractional integro-differential equations:

- \(p^0 : D_x^\alpha y_0 = \frac{2x^{2-\alpha}}{\Gamma(3-\alpha)} - \frac{x}{4} \); \(y_0(0) = 0 \),
- \(p^1 : D_x^\alpha y_1 = \frac{1}{1} \int_0^1 t y_0(t) \, dt \); \(y_1(0) = 0 \),
- \(p^2 : D_x^\alpha y_2 = \frac{1}{1} \int_0^1 t y_1(t) \, dt \); \(y_2(0) = 0 \),
- \(p^3 : D_x^\alpha y_3 = \frac{1}{1} \int_0^1 t y_2(t) \, dt \); \(y_3(0) = 0 \),

Consequently, the first few components of the homotopy perturbation solution for Equation (26) are derived as follows:

\[y_0(x) = x^2 \frac{1 + x^{1+\alpha}}{4\Gamma(2 + \alpha)}, \]
\[y_1(x) = \frac{(3 + \alpha)\Gamma(2 + \alpha) - 1}{4(3 + \alpha)^2\Gamma(2 + \alpha)^2} x^{1+\alpha}, \]
\[y_2(x) = \frac{(3 + \alpha)\Gamma(2 + \alpha) - 1}{4(3 + \alpha)^3\Gamma(2 + \alpha)^3} x^{1+\alpha}, \]
\[\vdots \]
\[y_5(x) = \frac{(3 + \alpha)\Gamma(2 + \alpha) - 1}{4(3 + \alpha)^5\Gamma(2 + \alpha)^6} x^{1+\alpha}, \]

and so on, in the same manner the rest of components can be obtained. The 6-term approximate solution for Equation (26) is:

\[y(x) = \sum_{i=0}^{5} y_i = \frac{x^2}{4\Gamma(2 + \alpha)} + \frac{(3 + \alpha)\Gamma(2 + \alpha) - 1}{4(3 + \alpha)^2\Gamma(2 + \alpha)^2} x^{1+\alpha} + \frac{(3 + \alpha)\Gamma(2 + \alpha) - 1}{4(3 + \alpha)^3\Gamma(2 + \alpha)^3} x^{1+\alpha} + \frac{(3 + \alpha)\Gamma(2 + \alpha) - 1}{4(3 + \alpha)^4\Gamma(2 + \alpha)^4} x^{1+\alpha} + \frac{(3 + \alpha)\Gamma(2 + \alpha) - 1}{4(3 + \alpha)^5\Gamma(2 + \alpha)^5} x^{1+\alpha} + \frac{(3 + \alpha)\Gamma(2 + \alpha) - 1}{4(3 + \alpha)^6\Gamma(2 + \alpha)^6} x^{1+\alpha}, \]

which is the same result obtained by the NIM in (27).

Table 1.
\(\alpha \)
\hline
0.2
0.4
0.6
0.8
1.0

Figure 1.
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

Table 1 and Figure 1 showing the 6-term approximate solution for Equation (26) obtained for different values of α by the two methods. When $\alpha=1$, the obtained approximate solutions are in high agreement with those obtained from the exact solution $y(x)=x^2$ for Equation (26). Of course the accuracy can be improved by computing more of terms than the computed sex-term.

Example 3.2. Consider the following example with $y^{(q)}(t)=1$, $m=1$, $n=2$ and $1<\alpha\leq 2$.

$$D_x^\alpha y(x)=D_x^\alpha \cos x + x \int_0^{\pi/2} x t y'(t) \, dt,$$

with the initial conditions:

$$y(0)=1, \quad y'(0)=0.$$

(30a)

By the NIM, as the above example, we obtain:

$$y_0(x)=\cos x + \frac{x^{1+\alpha}}{\Gamma(2+\alpha)}.$$

Therefore, the integro-differential equation (30) is equivalent to the integral equation:

$$y(x)=\cos x + \frac{x^{1+\alpha}}{\Gamma(2+\alpha)} + I_x^\alpha \left[\int_0^{\pi/2} x t y'(t) \, dt \right].$$

(31)

Let $N(y)=I_x^\alpha \left[\int_0^{\pi/2} x t y'(t) \, dt \right]$. Therefore, from (15) we can obtain easily the following first few components of the solution for Equation (30).

$$y_0(x)=\cos x + \frac{x^{1+\alpha}}{\Gamma(2+\alpha)},$$

$$y_1(x) = \left(\frac{\pi}{2} \right)^{2+\alpha} \frac{x^{1+\alpha}}{\Gamma(1+\alpha)\Gamma(3+\alpha)} - \frac{x^{1+\alpha}}{\Gamma(2+\alpha)},$$

$$y_2(x) = \left(\frac{\pi}{2} \right)^{2(2+\alpha)} \frac{(1+\alpha)x^{1+\alpha}}{\Gamma(1+\alpha)\Gamma(3+\alpha)^2} - \left(\frac{\pi}{2} \right)^{2+\alpha} \frac{x^{1+\alpha}}{\Gamma(1+\alpha)\Gamma(3+\alpha)},$$

$$y_3(x) = \left(\frac{\pi}{2} \right)^{5(2+\alpha)} \frac{(1+\alpha)^4 x^{1+\alpha}}{\Gamma(1+\alpha)\Gamma(3+\alpha)^5} - \left(\frac{\pi}{2} \right)^{4(2+\alpha)} \frac{(1+\alpha)^3 x^{1+\alpha}}{\Gamma(1+\alpha)\Gamma(3+\alpha)^4},$$

and so on, in the same manner the rest of components can be obtained. The 6-term approximate solution for Equation (30) is:

$$y(x) = \sum_{i=0}^{5} y_i = \cos x + \sum_{i=0}^{5} \left(\frac{\pi}{2} \right)^{5(2+\alpha)} \frac{(1+\alpha)^4 x^{1+\alpha}}{\Gamma(1+\alpha)\Gamma(3+\alpha)^5}.$$

(32)

The same results can be obtained by using equation (9).

By the HPM, the homotopy for Equation (30) obtained from Equation (22) can be constructed as:

$$p^3 : D_x^\alpha y_3 = x \int_0^{\pi/2} t y_2'(t) \, dt,$$

$$y_3(0)=0, \quad y_3'(0)=0$$

$$y_2(x) = \left(\frac{\pi}{2} \right)^{2(2+\alpha)} \frac{(1+\alpha)x^{1+\alpha}}{\Gamma(1+\alpha)\Gamma(3+\alpha)^2} - \left(\frac{\pi}{2} \right)^{2+\alpha} \frac{x^{1+\alpha}}{\Gamma(1+\alpha)\Gamma(3+\alpha)},$$

$$y_3(x) = \left(\frac{\pi}{2} \right)^{5(2+\alpha)} \frac{(1+\alpha)^4 x^{1+\alpha}}{\Gamma(1+\alpha)\Gamma(3+\alpha)^5} - \left(\frac{\pi}{2} \right)^{4(2+\alpha)} \frac{(1+\alpha)^3 x^{1+\alpha}}{\Gamma(1+\alpha)\Gamma(3+\alpha)^4},$$

Substituting (24) and the initial condition (30b) into (32) and equating the terms with identical powers of p, we obtain the following set of fractional integro-differential equations:

$$p^0 : D_x^\alpha y_0 = D_x^\alpha \cos x + x,$$

$$y_0(0)=1, \quad y_0'(0)=0,$$

$$p^1 : D_x^\alpha y_1 = x \int_0^{\pi/2} t y_0'(t) \, dt,$$
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

\[y_1 (0) = 0, \quad y'_1 (0) = 0, \]
\[p^2 : D_x^\alpha y_2 = \int_0^\pi t y'_1 (t) \, dt, \]
\[y_2 (0) = 0, \quad y'_1 (0) = 0, \]

Consequently, the first few components of the homotopy perturbation solution for Equation (30) are derived as follows:

\[y_0 (x) = \cos x + \frac{x^{1+\alpha}}{\Gamma (2 + \alpha)}, \]
\[y_1 (x) = \left(\frac{\pi}{2} \right)^{2+\alpha} \frac{x^{1+\alpha}}{\Gamma (1+\alpha)\Gamma (3+\alpha)} - \frac{x^{1+\alpha}}{\Gamma (2+\alpha)}, \]
\[y_2 (x) = \left(\frac{\pi}{2} \right)^{(2+\alpha)} \frac{(1+\alpha)x^{1+\alpha}}{\Gamma (1+\alpha)\Gamma (3+\alpha)}^2 \]
\[\quad - \left(\frac{\pi}{2} \right)^{2+\alpha} \frac{x^{1+\alpha}}{\Gamma (1+\alpha)\Gamma (3+\alpha)}, \]
\[\vdots \]
\[y_5 (x) = \left(\frac{\pi}{2} \right)^{5(2+\alpha)} \frac{(1+\alpha)^4x^{1+\alpha}}{\Gamma (1+\alpha)\Gamma (3+\alpha)^5} \]
\[\quad - \left(\frac{\pi}{2} \right)^{4(2+\alpha)} \frac{(1+\alpha)^3x^{1+\alpha}}{\Gamma (1+\alpha)\Gamma (3+\alpha)^4}, \]

and so on, in the same manner the rest of components can be obtained. The 6-term approximate solution for Equation (30) is:

\[y (x) = \sum_{i=0}^{5} y_i = \cos x + \]
\[\left(\frac{\pi}{2} \right)^{5(2+\alpha)} \frac{(1+\alpha)^4x^{1+\alpha}}{\Gamma (1+\alpha)\Gamma (3+\alpha)^5} \]
\[\quad - \left(\frac{\pi}{2} \right)^{4(2+\alpha)} \frac{(1+\alpha)^3x^{1+\alpha}}{\Gamma (1+\alpha)\Gamma (3+\alpha)^4}, \quad (33) \]

Which is the same result obtained by the NIM in (31).

Table 2.

x	\(\alpha=1.25\)	\(\alpha=1.50\)	\(\alpha=1.75\)	\(\alpha=2.0\)	
0	0.1	0.1	0.1	0.1	
5	0.999883	0.997036	0.996359	0.996223	0.9961950
10	1.002350	0.998558	0.998916	0.998504	0.9984078
15	1.009620	0.979015	0.969305	0.966889	0.9659260
20	1.023160	0.966563	0.947148	0.941502	0.9396930

Figure 2.

Table 2 shows the 6-term approximate solution for Equation (30) obtained for different values of \(\alpha\) by the two methods. When \(\alpha = 2\), the obtained approximate solutions are in high agreement with those obtained from the exact solution \(y (x) = \cos x\) for Equation (30). Of course the accuracy can be improved by computing more of terms than the computed six-term.

Example 3.3. Consider the following example with \(y^{(q)} (t) = 1, \quad m = 0, \quad n = 0\) and \(2 < \alpha \leq 3\):

\[D_x^\alpha y (x) = e^x - x + \int_0^1 x t y (t) \, dt, \quad (34a) \]

with the initial conditions

\[y (0) = y' (0) = y'' (0) = 1. \quad (34b) \]

In this example, we obtain:

\[y_0 (x) = e^x - \frac{x^{1+\alpha}}{\Gamma (2 + \alpha)}. \]

Therefore, the integro-differential equation (34) is equivalent to the integral equation:

\[y (x) = e^x - \frac{x^{1+\alpha}}{\Gamma (2 + \alpha)} + \int_0^x x t y (t) \, dt. \]

Let \(N (y) = \int_0^x x t y (t) \, dt\). Therefore, we can obtain the following approximate solutions:
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

\[y_0(x) = e^x - \frac{x^{1+\alpha}}{\Gamma(2 + \alpha)}, \]

\[y_1(x) = -\frac{x^{1+\alpha}}{(3 + \alpha)\Gamma(2 + \alpha)^2} + \frac{x^{1+\alpha}}{\Gamma(2 + \alpha)}, \]

\[y_2(x) = -\frac{x^{1+\alpha}}{(3 + \alpha)^2 \Gamma(2 + \alpha)^3} + \frac{x^{1+\alpha}}{(3 + \alpha)\Gamma(2 + \alpha)^2}, \]

\[\vdots \]

\[y_5(x) = -\frac{x^{1+\alpha}}{(3 + \alpha)^5 \Gamma(2 + \alpha)^6} \]

and so on. The 6-term approximate solution for Equation (34) is:

\[y(x) = \sum_{i=0}^{5} y_i = e^x - \frac{x^{1+\alpha}}{(3 + \alpha)^5 \Gamma(2 + \alpha)^6}. \] (35)

The same results can be obtained by using equation (9).

As the above Examples, the homotopy for Equation (34) becomes:

\[D_{\alpha}^x y(x) - e^x + x = p \left[x \int_{0}^{1} t y(t) \, dt \right]. \] (36)

Also, we can obtain the following set of fractional integro-differential equations:

\[p^0 : D_{\alpha}^x y_0 = e^x - x, \]

\[y_0(0) = y'_0(0) = y''_0(0) = 1, \]

\[p^1 : D_{\alpha}^x y_1 = x \int_{0}^{1} t y_0(t) \, dt, \]

\[y_1(0) = y'_1(0) = y''_1(0) = 0, \]

\[p^2 : D_{\alpha}^x y_2 = x \int_{0}^{1} t y_1(t) \, dt, \]

\[y_2(0) = y'_2(0) = y''_2(0) = 0, \]

\[p^3 : D_{\alpha}^x y_3 = x \int_{0}^{1} t y_2(t) \, dt, \]

\[y_3(0) = y'_3(0) = y''_3(0) = 0, \]

\[\vdots \]

solving the above set of equations, we obtain the following first few components of the homotopy perturbation solution for Equation (34):

\[y_0(x) = e^x - \frac{x^{1+\alpha}}{\Gamma(2 + \alpha)}, \]

\[y_1(x) = -\frac{x^{1+\alpha}}{(3 + \alpha)\Gamma(2 + \alpha)^2} + \frac{x^{1+\alpha}}{\Gamma(2 + \alpha)}, \]

\[y_2(x) = -\frac{x^{1+\alpha}}{(3 + \alpha)^2 \Gamma(2 + \alpha)^3} + \frac{x^{1+\alpha}}{(3 + \alpha)\Gamma(2 + \alpha)^2}, \]

\[\vdots \]

\[y_5(x) = -\frac{x^{1+\alpha}}{(3 + \alpha)^5 \Gamma(2 + \alpha)^6} \]

In the same manner the rest of components can be obtained. The 6-term approximate solution for Equation (34) is:

\[y(x) = \sum_{i=0}^{5} y_i = e^x - \frac{x^{1+\alpha}}{(3 + \alpha)^5 \Gamma(2 + \alpha)^6}, \] (37)

Which is the same result obtained by the NIM in (35).

Table 3

x	\(\alpha=25\)	\(\alpha=25\)	\(\alpha=25\)	\(\alpha=30\)	\(y_{Exact}\)
0.2	0.122140	0.122140	0.122140	0.122140	1.221403
0.4	1.491820	1.491820	1.491820	1.491820	1.497825
0.6	1.822120	1.822120	1.822120	1.822120	1.822119
0.8	2.225540	2.225540	2.225540	2.225540	2.225541
1.0	2.718280	2.718280	2.718280	2.718280	2.718282
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

Figure 3.

From Table 3 and Figure 3, it is clear that the obtained 6-term approximate solutions, for different values of α, by the two methods are in high agreement with those obtained from the exact solution $y(x) = e^x$ for Equation (34).

Example 3.4. Consider the following integro-differential equation:

$$D_x^\alpha y(x) = D_x^\alpha (x e^x) - x (e - 1)$$

$$+ \int_0^1 x t y'(t) \, dt, \quad 1 < \alpha \leq 2, \quad (38a)$$

with the initial conditions:

$$y(0) = 0, \quad y'(0) = 1. \quad (38b)$$

Therefore, the integro-differential equation (38) is equivalent to the integral equation:

$$y_0(x) = x e^x - \frac{(e - 1)x^{1+\alpha}}{\Gamma(2 + \alpha)},$$

$$y_1(x) = -\frac{(e - 1)x^{1+\alpha}}{\Gamma(1 + \alpha)\Gamma(3 + \alpha)} + \frac{(e - 1)x^{1+\alpha}}{\Gamma(2 + \alpha)},$$

$$y_2(x) = -\frac{(e - 1)(1 + \alpha)x^{1+\alpha}}{\Gamma(1 + \alpha)\Gamma(3 + \alpha)^2} + \frac{(e - 1)x^{1+\alpha}}{\Gamma(1 + \alpha)\Gamma(3 + \alpha)},$$

$$y_3(x) = -\frac{(e - 1)(1 + \alpha)^2x^{1+\alpha}}{\Gamma(1 + \alpha)\Gamma(3 + \alpha)^3} + \frac{(e - 1)(1 + \alpha)x^{1+\alpha}}{\Gamma(1 + \alpha)\Gamma(3 + \alpha)^4},$$

and so on. The 6-term approximate solution for Equation (38) is:

$$y(x) = \sum_{i=0}^5 y_i = x e^x - \frac{(e - 1)(1 + \alpha)^4x^{1+\alpha}}{\Gamma(1 + \alpha)\Gamma(3 + \alpha)^5}. \quad (39)$$

The same results can be obtained by using Equation (9).

Also, as above, the homotopy for Equation (38) is:

$$D_x^\alpha y(x) - D_x^\alpha (x e^x) + x (e - 1)$$

$$= p \left[x \int_0^1 t y'(t) \, dt \right]. \quad (40)$$

In the same manner, we can obtain the following set of equations:

$$p^0 : D_x^\alpha y_0 = D_x^\alpha (x e^x) - x (e - 1),$$

$$y_0(0) = y_0'(0) = 1,$$

$$p^1 : D_x^\alpha y_1 = x \int_0^1 t y_0'(t) \, dt,$$

$$y_1(0) = y_1'(0) = 0,$$

$$p^2 : D_x^\alpha y_2 = x \int_0^1 t y_1'(t) \, dt,$$

$$y_2(0) = y_2'(0) = 0,$$

$$p^3 : D_x^\alpha y_3 = x \int_0^1 t y_2'(t) \, dt,$$

$$y_3(0) = y_3'(0) = 0,$$

and so on. Solving the above set of equations, we obtain the following first few components of the homotopy perturbation solution for Equation (38):

$$y_0(x) = x e^x - \frac{(e - 1)x^{1+\alpha}}{\Gamma(2 + \alpha)},$$

$$y_1(x) = -\frac{(e - 1)x^{1+\alpha}}{\Gamma(1 + \alpha)\Gamma(3 + \alpha)} + \frac{(e - 1)x^{1+\alpha}}{\Gamma(2 + \alpha)},$$

$$y_2(x) = -\frac{(e - 1)(1 + \alpha)x^{1+\alpha}}{\Gamma(1 + \alpha)\Gamma(3 + \alpha)^2} + \frac{(e - 1)x^{1+\alpha}}{\Gamma(1 + \alpha)\Gamma(3 + \alpha)},$$

and so on.
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

The 6-term approximate solution for Equation (38) is:

\[y(x) = \sum_{i=0}^{5} y_i(x) = x e^x - \frac{(e-1)(1+\alpha)^4 x^{1+\alpha}}{\Gamma(1+\alpha)\Gamma(3+\alpha)^5}, \quad (41) \]

which is the same result obtained in (39) by the NIM.

Table 4.

x	\(\alpha=1.28\)	\(\alpha=1.5\)	\(\alpha=1.75\)	\(\alpha=2.0\)	\(y_{\text{Exact}}\)
0.2	0.244252	0.244276	0.244280	0.244280	0.244281
0.4	0.596603	0.596726	0.596729	0.596730	
0.6	1.092960	1.093260	1.093270	1.093271	
0.8	1.779830	1.780410	1.780430	1.780433	
1.0	2.717290	2.718230	2.718270	2.718270	2.718282

From Table 4 and Figure 4, it is clear that the obtained 6-term approximate solutions, for different values of \(\alpha\), by the two methods are in high agreement with those obtained from the exact solution \(y(x) = x e^x\) for Equation (38).

Example 3.5. Consider the following nonlinear integro-differential equation with:

\[
q = 0, \quad m = 1, \quad n = 2 \quad \text{and} \quad 1 < \alpha \leq 2.
\]

\[
D_x^\alpha y(x) = \frac{6x^{3-\alpha}}{\Gamma(4-\alpha)} - \frac{3x}{7} + \int_0^1 x t y(t) y'(t) \, dt, \quad (42a)
\]

with the initial conditions:

\[
y(0) = 0, \quad y'(0) = 0. \quad (42b)
\]

In this example, we obtain:

\[
y_0(x) = x^3 - \frac{3x^{1+\alpha}}{7\Gamma(2+\alpha)},
\]

and the nonlinear integro-differential equation (42) is equivalent to the nonlinear integral equation:

\[
y(x) = x^3 - \frac{3x^{1+\alpha}}{7\Gamma(2+\alpha)} + I_x^\alpha \left[\int_0^1 x t y(t) y'(t) \, dt \right].
\]

Let \(N(y) = \left[\int_0^1 x t y(t) y'(t) \, dt \right].\) Therefore, from (9) we can obtain the following approximate solutions for Equation (42):

\[
y_0(x) = x^3 - \frac{3x^{1+\alpha}}{7\Gamma(2+\alpha)},
\]

\[
y_1(x) = [3x^{1+\alpha} \left[3(5+\alpha) + 7(3+2\alpha) \cdot \Gamma(1+\alpha)(-4-\alpha+(5+\alpha)\Gamma(2+\alpha)) \right] - 147\alpha(1+\alpha) \cdot (4+\alpha)(3+2\alpha)\Gamma(1+\alpha)\Gamma(2+\alpha)^2, \]

\[
y_2(x) = 3x^{1+\alpha} \left[\frac{27(5+\alpha)^2}{3+2\alpha} - 126(20 + 9\alpha + \alpha^2)\Gamma(1+\alpha) + 588(4+\alpha) \cdot (3+2\alpha)\Gamma(1+\alpha)^2 + 147\alpha(4+\alpha) \cdot (3+2\alpha)\Gamma(1+\alpha)^2 + 147\alpha(1+\alpha) \cdot (4+\alpha)(3+2\alpha)\Gamma(1+\alpha)^3 - 3773\alpha \cdot (1+\alpha)(4+\alpha)\Gamma(1+\alpha)^4 - 686\alpha^5 \cdot (4+\alpha)(3+2\alpha)\Gamma(\alpha)^3 \Gamma(2+\alpha) + 735(4+\alpha) + 735(4+\alpha)(3+2\alpha) \right].
\]
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

\[y_0(x) = x^3 - \frac{3x^{1+\alpha}}{7\Gamma(2+\alpha)}, \]
\[y_1(x) = [3x^{1+\alpha} [(5 + \alpha) + 7(3 + 2\alpha)] \cdot \Gamma(1 + \alpha)(-4 - \alpha + (5 + \alpha) \cdot \Gamma(2 + \alpha))] (5 + \alpha) + 7(3 + 2\alpha) \Gamma(1 + \alpha)(-4 - \alpha + 5(5 + \alpha) \cdot \Gamma(2 + \alpha))] + 4[6 + 17\alpha + 11\alpha^2] \Gamma(2 + \alpha) \cdot \Gamma(1 + \alpha)(-4 - 5(5 + \alpha) \Gamma(2 + \alpha))] / [1372(1 + \alpha)(5 + \alpha)^2 \Gamma(1 + \alpha) \cdot \Gamma(2 + \alpha)^4], \]
and so on. The 4-term approximate solution for equation (42), obtained by the two methods, for different values of \(\alpha \) are listed in Table 5. It is clear that the approximate solutions are in high agreement with those obtained from the exact solution \(y(x) = x^3 \) for Equation (42).

\(x \)	Method	\(\alpha = 1.50 \)	\(\alpha = 1.75 \)	\(\alpha = 2.0 \)	\(y_{\text{Exact}} \)
0.2	NIM	7.96502	7.99201	7.99840	8.00
	HPM	7.96500	7.99210	7.99839	
0.4	NIM	6.38021	6.39475	6.39872	6.40
	HPM	6.38020	6.39474	6.39871	
0.6	NIM	2.15455	2.15840	2.15957	2.16
	HPM	2.15455	2.15838	2.15956	
0.8	NIM	5.10881	5.11644	5.11898	5.12
	HPM	5.10880	5.11646	5.11897	
1.0	NIM	9.98044	9.99344	9.99800	9.99800
	HPM	9.98043	9.99344	9.99800	9.99800

and so on. By the HPM, the homotopy for Equation (42) obtained from Equation (22) takes the form:

\[D_x^\alpha y(x) = \frac{6x^{3-\alpha}}{\Gamma(4-\alpha)} - \frac{3x}{7}, \]

Substituting (24) and the initial conditions (42b) into (43) and equating the terms with identical powers of \(p \), we obtain the following set of linear integro differential equations of fractional derivative order:

\[p^0 : D_x^\alpha y_0 = \frac{6x^{3-\alpha}}{\Gamma(4-\alpha)} - \frac{3x}{7}, \]
\[y_0(0) = y_0'(0) = 0, \]
\[p^1 : D_x^\alpha y_1 = x \int_0^1 t y_0(t) y_0'(t) \, dt, \]
\[y_1(0) = y_1'(0) = 0, \]
\[p^2 : D_x^\alpha y_2 = x \int_0^1 t (y_0(t) y_0'(t) + y_1(t) y_0''(t)) \, dt, \]
\[y_2(0) = y_2'(0) = 0, \]
\[p^3 : D_x^\alpha y_3 = x \int_0^1 (y_0(t) y_0'(t) + y_1(t) y_1'(t) + y_2(t) y_0''(t)) \, dt \]
\[y_3(0) = y_3'(0) = 0, \]
and so on. Solving the above set of equations, we obtain the following first few components of the homotopy perturbation solution for Equation (42):
Example 3.6. Finally, consider the following nonlinear integro-differential equation with: \(q = 0, \ m = 0, \ n = 2 \) and \(1 < \alpha \leq 2 \);

\[
D_x^\alpha y(x) = e^x - \frac{(e^2 + 1)x}{4} + \int_0^1 x t y^2(t) \, dt,
\]

(44a)

With the initial conditions:

\[
y(0) = 1, \quad y'(0) = 1.
\]

(44b)

As above, we obtain:

\[
y_0(x) = e^x - \frac{(e^2 + 1)x^{1+\alpha}}{4 \Gamma(2 + \alpha)}.
\]

Also, the nonlinear integro-differential equation (44) is equivalent to the nonlinear integral equation:

\[
y(x) = e^x - \frac{(e^2 + 1)x^{1+\alpha}}{4 \Gamma(2 + \alpha)} + I_x^\alpha \left[\int_0^1 x t y^2(t) \, dt \right].
\]

Let \(N(y) = I_x^\alpha \left[\int_0^1 x t y^2(t) \, dt \right] \). Therefore, from (9) we can obtain the following approximate solutions for Equation (44):

\[
y_0(x) = e^x - \frac{(e^2 + 1)x^{1+\alpha}}{4 \Gamma(2 + \alpha)},
\]

\[
y_1(x) = \frac{(e^2 + 1)x^{1+\alpha}}{4 \Gamma(2 + \alpha)} - \frac{(e^2 + 1)x^{1+\alpha}}{2(3+\alpha) \Gamma(2 + \alpha)^2} + \frac{(e^2 + 1)^2 x^{1+\alpha}}{16(4+2\alpha) \Gamma(2 + \alpha)^3},
\]

\[
y_2(x) = \frac{(e^2 + 1)x^{1+\alpha}}{4 \Gamma(2 + \alpha)} + \frac{(e^2 + 1)^2 x^{1+\alpha}}{2(3+\alpha) \Gamma(2 + \alpha)^2} - \frac{(e^2 + 1)^2 x^{1+\alpha}}{16(4+2\alpha) \Gamma(2 + \alpha)^3} + \frac{(e^2 + 1)^2 x^{1+\alpha}}{1024 \Gamma(2 + \alpha)^3}.
\]

\[\left[\frac{256 + (e^2 + 1)^3}{2(2 + \alpha)^3 \Gamma(2 + \alpha)^6} - \frac{(e^2 + 1)^2}{16(2 + \alpha)^2} \right] \frac{(e^2 + 1)^2}{2(2 + \alpha)^2 (3+\alpha) \Gamma(2 + \alpha)^5}
\]

and so on. Solving the above set of equations, we obtain the following first few components of the homotopy perturbation solution for Equation (44):

\[
y_0(x) = e^x - \frac{(e^2 + 1)x^{1+\alpha}}{4 \Gamma(2 + \alpha)} + \frac{128(e^2 + 1)}{(2 + \alpha)(3+\alpha) \Gamma(2 + \alpha)^4}
\]

\[+ \frac{64(-1)^{-\alpha}(e^2 + 1)^2 (\Gamma(3+\alpha) - \Gamma(3+\alpha,-1))}{(2+\alpha) \Gamma(2 + \alpha)^3}
\]

\[+ \frac{1024(-1)^{-\alpha}(e^2 + 1)^2 (\Gamma(3+\alpha) - \Gamma(3+\alpha,-1))}{(3+\alpha) \Gamma(2 + \alpha)^3}
\]

By the HPM, the homotopy, for Equation (44) takes the form:

\[
D_x^\alpha y(x) = e^x - \frac{(e^2 + 1)x}{4} = p \left[x \int_0^1 t y^2(t) \, dt \right].
\]

(45)

As above, we can obtain the following set of linear integro-differential equations of fractional derivative order:

\[
p^0 : D_x^\alpha y_0 = e^x - \frac{(e^2 + 1)x}{4},
\]

\[
y_0(0) = y_0'(0) = 0,
\]

\[
p^1 : D_x^\alpha y_1 = x \int_0^1 t y_0^2(t) y_0'(t) \, dt,
\]

\[
y_1(0) = y_1'(0) = 0,
\]

\[
p^2 : D_x^\alpha y_2 = x \int_0^1 2t y_0(t) y_1'(t) \, dt,
\]

\[
y_2(0) = y_2'(0) = 0,
\]

\[
p^3 : D_x^\alpha y_3 = x \int_0^1 (2y_0(t) y_2(t) + y_1^2(t)) \, dt,
\]

\[
y_3(0) = y_3'(0) = 0,
\]

and so on. Solving the above set of equations, we obtain the following first few components of the homotopy perturbation solution for Equation (44).
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

\[y_1(x) = \frac{(e^2 + 1)x^{1+\alpha}}{4\Gamma(2+\alpha)} - \frac{(e^2 + 1)x^{1+\alpha}}{2(3+\alpha)\Gamma(2+\alpha)^2} \]
\[+ \frac{(e^2 + 1)^2 x^{1+\alpha}}{16(4+2\alpha)\Gamma(2+\alpha)^3}, \]
\[y_2(x) = \frac{(-1 + e^{-2})x^{1+\alpha}[(1 + e^{-2})(3 + \alpha) - 16\Gamma(3 + \alpha) + 8(6 + 5\alpha + \alpha^2)\Gamma(2 + \alpha)^2]}{64(6 + 5\alpha + \alpha^2)\Gamma(2 + \alpha)^5}, \]
\]
and so on.

\(x \)	0.2	0.4	0.6	0.8	1.0
\(y_{\text{NIM}} \)	1.22139	1.49175	1.82185	2.22491	2.71705
\(y_{\text{HPM}} \)	1.22135	1.49171	1.82177	2.22480	2.71692
\(y_{\text{Exact}} \)	1.22140	1.49182	1.82212	2.22556	2.71828

In Table 6, the 4-term approximate solution, obtained by the two methods, when \(\alpha = 2 \) with the corresponding exact solution \(y(x) = e^x \) for equation (44). It is clear that the two solutions are in high agreement.

4. Conclusion.

In this work, the NIM and HPM with a reliable algorithms employed to solve linear and nonlinear integro-differential equations with fractional derivative order. The modified algorithms make the steps of solution are simple. The obtained results by the two methods, for different values of \(\alpha \); are in high agreement with those obtained from the corresponding exact solutions. This exhibit that these methods needs much less computations and they have a very fast convergency when applied to solve this type of equations.

References

[1] M. M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56, (2006), 80-90.
[2] C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 220, (2007), 813-823.
[3] V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. Ferrera-Mejias and H. R. Hicks, Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys., 192, (2003), 406-421.
[4] S. Momani and K. Al-Khaled, Numerical solutions for systems of fractional differential equations by the decomposition method, Appl. Math. Comput., 162(3), (2005), 1351-1365.
[5] S. Momani, An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simul. 70, (2005), 110-118.
[6] S. Momani, Non-perturbative analytical solutions of the space- and time-fractional Burgers' equations, Chaos Soliton. Fract., 28, (2006), 930-937.
[7] S. Momani and Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput. 177, (2006), 488-494.
[8] Z. Odibat and S. Momani, Approximate solutions for boundary value problems of time-fractional wave equation, Appl. Math. Comput. 181, (2006), 1351-1358.
[9] M. G. Sakar, F. Erdogan and A. Yıldırım, Variational iteration method for time-fractional Fornberg-Whitham equation, Comput. Math. Appl., 63, (2012), 1382-1388.
[10] A. A. Elbeleze, A. Kilicman and B. M. Taib, Application of homotopy perturbation and variational iteration methods for Fredholm integro-differential equation of fractional order, Abstract and Applied Analysis, V. 2012, Article ID 763139, 14 pages, doi:10.1155/2012/763139.
Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

[11] J. H. He, A short remark on fractional variational iteration method, Phys. Lett. A, 375(38), (2011), 3362-3364.

[12] S. Yang, A. Xiao and H. Su, Convergence of the variational iteration method for solving multi-order fractional differential equations, Comput. Math. Appl., 60 (2010) 2871-2879.

[13] A. Kadem and A. Kilicman, The approximate solution of fractional Fredholm integro-differential equations by variational iteration and homotopy perturbation methods, Abstract and Applied Analysis, V 2012, Article ID 486193, 10 pages, 2012.

[14] Y. Nawaz, Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations, Comput. Math. Appl., 61(8), (2011), 2341-23.

[15] M. S. Chowdhury, I. Hashim and S. Momani, The multistage homotopy perturbation method: a Powerful scheme for handling the Lorenz system, Chaos Soliton. Fract., 40(4) (2009) 1929-1037.

[16] A. A. Hemeda, Homotopy perturbation method for solving partial differential equations of fractional order, Int., J. Math. Anal., 6(49), (2012), 2431-2448.

[17] V. Erturk, S. Momani and Z. Odibat, Application of generalized differential transform method to multi-order fractional differential equations, Comm. Nonlin. Sci. Numer. Simul. 13(8), (2008), 1642-1654.

[18] Z. Odibat and S. Momani, generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 21(2), (2008), 194-199.

[19] J. Liu and G. Hou, Numerical solutions of the space- and time- fractional coupled Burgers' equations by generalized differential transform method, Appl. Math. Comput., 217(16), (2011), 7001-7008.

[20] S. Momani and Z. Odibat, A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor's formula, J. Comput. Appl. Math. 220(1-2), (2008), 85-95.

[21] M. Dehghan, J. Mana.an and A. Saadatmandi, Solving nonlinear fractional partial differential equations using homotopy perturbation method, Numer. Methods partial differential equations, 26, (2010), 448-479.

[22] I. Hashim, O. Abdulaziz and S. Momani, Homotopy analysis method for fraction IVPs, Comm. Nonlin. Sci. Numer. Simul., 14 (2009) 674-684.

[23] Z. Odibat, S. Momani and H. Xu, A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations, Appl. Math. Modell., 34 (2010), 593-600.

[24] V. Daftardar-Gejji and H. Jafari, An iterative method for solving non-linear functional equations, J. Math. Anal. Appl., 316, (2006), 753-763.

[25] S. Bhalekar and V. Daftardar-Gejji, New iterative method: application to partial differential equations, Appl. Math Comput., 2(203), (2008), 778-784.

[26] V. Daftardar-Gejji and S. Bhalekar, Solving fractional diffusion-wave equations using a new iterative method, Fractional Calculus & Applied Analysis, 11(2), (2008), 193-202.

[27] V. Daftardar-Gejji and S. Bhalekar, Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method, Comput. Math. Appl., 59(5), (2010), 1801-1809.

[28] H. Jafari, S. Sei., A. Alipoor and M. Zabihi, An iterative method for solving linear and nonlinear fractional diffusion-wave equation, Int. e-Journal of Numerical Analysis and Related Topics, 3, (2009), 20-32.

[29] A. A. Hemeda, New iterative method: An application for solving fractional physical differential equations, Abstract and Applied Analysis, V. 2013, Article ID 617010, 9 pages, http://dx.doi.org/10.1155/2013/617010.
A. A. Hemeda, New iterative method: Application to n^{th}-order integro-differential equations, INFORMATION, Japan, 16 (6(B)), (2013), 3841-3852.

A. A. Hemeda, Formulation and solution of nth-order derivative fuzzy integro-differential equation using new iterative method with a reliable algorithm, J. Appl. Math., V 2012, Article ID 325473, 17 pages, doi:10:1155/2012/325473.

S. Bhalekar and V. Daftardar-Jejji, Convergence of the new iterative method, Int. J. Differential Equations, V. 2011, Article ID 989065, 10 pages, doi:10.1155/2011/989065.

M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II, J. Roy. Astr., Soc. 13(1967), 529-539.

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, (1999).

K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional differential equations, John Wiley and Sans, New York, (1993).

Y. Cherruault, Convergence of Adomain's method, Kybernetes, 18(19881), 31-38.

A. A. Hemeda, Homotopy perturbation method for solving systems of nonlinear coupled equations, Appl. Math. Sci., 6(96), (2012), 4787-4800.

A. A. Hemeda, Variational iteration method for solving non-linear partial differential equations. Chaos Solitons & Fractals, 39(2009), 1297-1303.

A. A. Hemeda, Variational iteration method for solving wave equation, Comput. Math. Appl., 56, (2008), 1948-1953.

A. A. Hemeda, Variational iteration method for solving nonlinear coupled equations in 2-dimensional space in fluid mechanics, Int. J. Contem. Math. Sci., 7(37), (2012), 1839-1852.

A. A. Hemeda, New iterative method: Application to n^{th}-order integro-differential equations, INFORMATION, Japan, 16 (6(B)), (2013), 3841-3852.

A. A. Hemeda, Formulation and solution of nth-order derivative fuzzy integro-differential equation using new iterative method with a reliable algorithm, J. Appl. Math., V 2012, Article ID 325473, 17 pages, doi:10:1155/2012/325473.

S. Bhalekar and V. Daftardar-Jejji, Convergence of the new iterative method, Int. J. Differential Equations, V. 2011, Article ID 989065, 10 pages, doi:10.1155/2011/989065.

M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II, J. Roy. Astr., Soc. 13(1967), 529-539.

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, (1999).

K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional differential equations, John Wiley and Sans, New York, (1993).

Y. Cherruault, Convergence of Adomain's method, Kybernetes, 18(19881), 31-38.

A. A. Hemeda, Homotopy perturbation method for solving systems of nonlinear coupled equations, Appl. Math. Sci., 6(96), (2012), 4787-4800.

A. A. Hemeda, Variational iteration method for solving non-linear partial differential equations. Chaos Solitons & Fractals, 39(2009), 1297-1303.

A. A. Hemeda, Variational iteration method for solving wave equation, Comput. Math. Appl., 56, (2008), 1948-1953.

A. A. Hemeda, Variational iteration method for solving nonlinear coupled equations in 2-dimensional space in fluid mechanics, Int. J. Contem. Math. Sci., 7(37), (2012), 1839-1852.

A. A. Hemeda, Formulation and solution of nth-order derivative fuzzy integro-differential equation using new iterative method with a reliable algorithm, J. Appl. Math., V 2012, Article ID 325473, 17 pages, doi:10:1155/2012/325473.

S. Bhalekar and V. Daftardar-Jejji, Convergence of the new iterative method, Int. J. Differential Equations, V. 2011, Article ID 989065, 10 pages, doi:10.1155/2011/989065.

M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II, J. Roy. Astr., Soc. 13(1967), 529-539.

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, (1999).

K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional differential equations, John Wiley and Sans, New York, (1993).

Y. Cherruault, Convergence of Adomain's method, Kybernetes, 18(19881), 31-38.