CP content of $D^0 \to h^+h^-\pi^0$

Jim Libby

Department of Physics, Indian Institute of Technology, Madras
Chennai, 600036, India

Quantum-correlated $\psi(3770) \to DD$ decays collected by the CLEO-c experiment are used to perform measurements of F_+, the fractional CP-even content of the self-conjugate decays $D \to \pi^+\pi^-\pi^0$ and $D \to K^+K^-\pi^0$. Values of 0.973 ± 0.017 and 0.732 ± 0.055 are obtained for $\pi^+\pi^-\pi^0$ and $K^+K^-\pi^0$, respectively. The high CP-even content of $D \to \pi^+\pi^-\pi^0$, in particular, makes this a promising mode for improving the precision on γ and for measurements of CP violation in D decay.

PRESENTED AT

The 7th International Workshop on Charm Physics
(CHARM 2015)
Detroit, MI, 18-22 May, 2015

\footnote{Work supported by the UK-India Education and Research Initiative}
1 Introduction

A better determination of the unitarity triangle angle $\gamma = \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$ is required for testing the CP violation mechanism within the Standard Model. Sensitivity to γ can be obtained by studying CP-violating observables in $B^{\mp} \rightarrow D K^{\mp}$ decays, where D indicates a neutral charm meson reconstructed in a final state common to both D^0 and D^{*0} mesons, including CP-eigenstates [1]. The current world average precision on γ is much worse than that of the other angles of the unitarity triangle [2]. Therefore, including additional D-meson final states is desirable to reduce the statistical uncertainty on γ at current and future facilities.

In the case that the D does not decay to a pure CP eigenstate, information is required on the strong decay dynamics in order to relate the CP-violating observables to γ. This information can be obtained from studies of quantum-correlated $D \bar{D}$ mesons produced in e^+e^- collisions at an energy corresponding to the mass of the $\psi(3770)$ [3, 4, 5, 6]. The decay $D \rightarrow \pi^+\pi^-\pi^0$ is a promising candidate to be added to the modes used in the γ measurement. Its Dalitz plot has been studied by the CLEO and BaBar collaboration using flavour-tagged D^0 decays and exhibits a strikingly symmetric distribution that suggests the decay may be dominated by a single CP eigenstate [7, 8]. An isospin analysis [9] of the amplitude model for $D^0 \rightarrow \pi^+\pi^-\pi^0$ presented in Ref. [8] concludes that the final state is almost exclusively $I = 0$. Therefore, given that the parity and G-parity of the three-pion final state is odd and $G = (-1)^I C$, the final state is expected to be $C = -1$ and $CP = +1$. As its branching ratio of $1.43 \pm 0.06\%$ [2] is significantly larger than those of the pure two-body CP-even modes, it has the potential to contribute strongly in any analysis making use of such decays. The channel $D \rightarrow K^+K^-\pi^0$ is a similar, but less abundant, self-conjugate mode that has also attracted interest [10, 11]. These proceedings present the first analysis of these decays using quantum-correlated $D \bar{D}$ decays, and measurements of their CP content, making use of the CLEO-c $\psi(3770)$ data set. These measurements allow the inclusive decays to be included in future $B^{\mp} \rightarrow D K^{\mp}$ analyses in a straightforward and model-independent manner, thus allowing for an improved determination of the angle γ. Further it has been shown that improved determinations of CP violating parameters in the charm sector can be made with these measurements [12].

These proceedings are based on Refs. [13] and [14] and are structured as follows. Section 2 describes how quantum-correlated D decays are used to determine the CP content. The results are presented in Sect. 3. In Sect. 4 the implications for the measurement of the unitarity triangle angle γ are discussed. Section 5 gives the conclusions.
2 Measuring the CP content

Consider a $\psi(3770) \to D\bar{D}$ analysis in which the signal decay mode is $D \to h^+h^-\pi^0$. Let M^+ designate the number of “double-tagged” candidates, after background subtraction, where one D meson is reconstructed in the signal mode of interest, and the other is reconstructed in a CP-odd eigenstate. The quantum-numbers of the $\psi(3770)$ resonance then require that the signal mode is in a CP-even state, hence the $+ \,$ superscript. The observable M^- is defined in an analogous manner. Let S^+ (S^-) designate the number of “single-tagged” CP-odd (CP-even) candidates in the data sample, where a D meson is reconstructed decaying to a CP eigenstate, with no requirement on the final state of the other D meson in the event. The small effects of $D^0\bar{D}^0$ mixing are eliminated from the measurement [13].

On the assumption that for double-tagged candidates the reconstruction efficiencies of each D meson are independent, then the quantity $N^+ \equiv M^+/S^+$ has no dependence on the branching fractions or reconstruction efficiencies of the CP-eigenstate modes, and can be directly compared with the analogous quantity N^- to gain insight into the CP content of the signal mode. The CP fraction is defined

$$F_+ \equiv \frac{N^+}{N^+ + N^-},$$

and is 1 (0) for a signal mode that is fully CP-even (CP-odd). The notation $F_+(\pi^+\pi^-\pi^0)$ and $F_+(K^+K^-\pi^0)$ is used in the discussion when it is necessary to distinguish between the two final states. In addition, tagging the final state with $K^0\pi^+\pi^-$ and measuring the yield in bins of the $K^0\pi^+\pi^-$ Dalitz of plot for which the strong phase parameters of the decay are known [15] yields further sensitivity to F_+ [14].

Amplitude models of $D^0 \to \pi^+\pi^-\pi^0$ and $D^0 \to K^+K^-\pi^0$ are available from studies of flavour-tagged D^0 decays performed by the BaBar collaboration [8 11]. These models can be used to calculate predictions for the CP content for each decay. Values of $F_+(\pi^+\pi^-\pi^0) = 0.92$ and $F_+(K^+K^-\pi^0) = 0.64$ are obtained.

3 Results

The data set analysed consists of e^+e^- collisions produced by the Cornell Electron Storage Ring (CESR) at $\sqrt{s} = 3.77$ GeV and collected with the CLEO-c detector. The integrated luminosity of the data set is 818 pb$^{-1}$. The CLEO-c detector is described in detail elsewhere [16]. Simulated Monte Carlo (MC) samples of signal decays are used to estimate selection efficiencies. Possible background contributions are determined from a generic MC sample corresponding to approximately ten times the integrated luminosity of the data set. The EVTGEN generator [17] is used to
simulate the decays. The detector response is modelled using the GEANT software package [18].

Table 1 lists the reconstructed D^0 and \bar{D}^0 final states. The unstable final state particles are reconstructed in the following decay modes: $\pi^0 \to \gamma \gamma$, $K^0_S \to \pi^+ \pi^-$, $\omega \to \pi^+ \pi^- \pi^0$, $\eta \to \gamma \gamma$, $\eta \to \pi^+ \pi^- \pi^0$ and $\eta' \to \eta(\gamma \gamma) \pi^+ \pi^-$. The π^0, K^0_S, ω, η and η' reconstruction procedure is identical to that used in Ref. [19].

Type	Final states
Signal	$\pi^+ \pi^- \pi^0$, $K^+ K^- \pi^0$
CP-even	$K^0 S \pi^0$, $K^0 \pi^0$, K^0_ω, K^0_η, K^0_η'
CP-odd	$K^0 S \pi^0$, $K^0 \pi^0$, K^0_ω, K^0_η, K^0_η'
Mixed CP	K^0_ω, K^0_η, K^0_η'

Final states that do not contain a K^0_L are fully reconstructed via two kinematic variables: the beam-constrained candidate mass, $M_{bc} \equiv \sqrt{s/4c^4} - p_D^2/c^2$, where p_D is the D-candidate momentum, and $\Delta E \equiv E_D - \sqrt{s}/2$, where E_D is the D-candidate energy. The M_{bc} and ΔE distributions of correctly reconstructed D-meson candidates will peak at the nominal D^0 mass and zero, respectively. Neither ΔE nor M_{bc} distributions exhibit any peaking structure for combinatoric background. The double-tagged yield is determined from counting events in signal and sideband regions of M_{bc} after placing requirements on ΔE. The yield determination procedure is identical to that presented in Refs. [20, 19].

The selection procedures are almost identical to those presented in Refs. [20, 19]; additional details of the selection can be found in Ref. [13]. Figure 1 shows the M_{bc} distributions for CP-tagged signal candidates, summed over all CP-even and CP-odd tags, respectively, where the CP-tag final state does not contain a K^0_L meson. No significant signal is seen in any of the modes tagged by a CP-even eigenstate, whereas significant signals are seen in most modes tagged by CP-odd eigenstates.

Many K^0_L mesons produced do not deposit any reconstructible signal in the detector. However, double-tag candidates can be fully reconstructed using a missing-mass squared (M_{miss}^2) technique [21] for tags containing a single K^0_L meson. Yields are extracted from the signal and sideband regions of the M_{miss}^2 distribution. Figure 2 shows the M_{miss}^2 distributions for candidates tagged with either a $K^0_L \pi^0$ or K^0_ω tag.

It is also necessary to know the single-tag yield for the CP-eigenstates to normalise the double-tagged yields appropriately to obtain a value of F_+. The details of this selection can be found in Ref. [13].

The yields of double-tagged and single CP-tag candidates are used to determine the quantities N^+ and N^-, and from these the CP fraction F_+. The values for
N^+ and N^- are calculated from the ensemble of CP-odd and CP-even tags, respectively, accounting for statistical and systematic uncertainties, and allowing for the correlations that exist between certain systematic components.

The measured values for N^+ and N^- for the two signal modes are displayed in Fig. 3. It can be seen that there is consistency between the individual CP tags for each measurement. From these results it is determined that $F_+(\pi^+\pi^-\pi^0) = 0.968 \pm 0.017 \pm 0.006$ and $F_+(K^+K^-\pi^0) = 0.731 \pm 0.058 \pm 0.021$, where the first uncertainty is statistical and the second is systematic. In addition, the binned yields from the $K^0_{L,S}\pi^+\pi^-$ tagged are used to determine values of F_+ which are found to be consistent with those from the CP tags alone [14]. The combined values are 0.973 ± 0.017 and 0.732 ± 0.055 for $\pi^+\pi^-\pi^0$ and $K^+K^-\pi^0$, respectively [14]. These values are slightly higher than, but compatible with, the model predictions reported in Sect. 2.

4 Implications for the measurement of γ

Sensitivity to the unitarity triangle angle γ is obtained by measuring the relative rates of $B^\pm \to D(h^+h^-\pi^0)K^\mp$ decays and related observables. These partial widths and those involving flavour-specific D meson decays can be used to construct the partial-widths ratio R_{F_+} and CP-asymmetry A_{F_+}:

$$R_{F_+} \equiv \frac{\Gamma(B^- \to D_{F_+}K^-) + \Gamma(B^+ \to D_{F_+}K^+)}{\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to D^0K^+)}.$$

Figure 1: M_{bc} distributions for $D \to \pi^+\pi^-\pi^0$ candidates tagged by CP-even (a) and CP-odd (b) eigenstates. Tags involving a K^0_L are not included. The vertical dotted lines indicate the applied signal window.
Figure 2: M^2_{miss} distributions for $D \to \pi^+ \pi^- \pi^0$. The shaded histogram indicates the peaking background. The vertical dotted lines indicate the applied signal window.

\[
A_{F^+} \equiv \frac{\Gamma(B^- \to D_{F^+} K^-) - \Gamma(B^+ \to D_{F^+} K^+)}{\Gamma(B^- \to D_{F^+} K^-) + \Gamma(B^+ \to D_{F^+} K^+)},
\]

where D_{F^+} indicates a D meson of CP-even content F^+, established through its decay into the final state $h^+ h^- \pi^0$. These observables are directly analogous to the usual so-called GLW [1] observables R_{CP^\pm} and A_{CP^\pm}, where the D meson is reconstructed in a pure CP eigenstate.

Then R_{F^+} and A_{F^+} are found [13] to have the following dependence on the underlying physics parameters:

\[
R_{F^+} = 1 + r^2_B + (2F^+ - 1) \cdot 2r_B \cos \delta_B \cos \gamma,
\]
\[
A_{F^+} = (2F^+ - 1) \cdot 2r_B \sin \delta_B \sin \gamma/R_{F^+},
\]

which reduces to the equivalent expressions for R_{CP^\pm} and A_{CP^\pm} in the case F^+ is 1 or 0. Therefore inclusive final states such as $h^+ h^- \pi^0$ may be cleanly interpreted in terms of γ and the other parameters of interest, provided that F^+ is known. At leading order the only difference that the CP asymmetry A_{F^+} has with respect to the pure CP-eigenstate case is a dilution factor of $(2F^+ - 1)$.

5 Conclusion

Data corresponding to an integrated luminosity of 818 pb$^{-1}$ collected by the CLEO-c experiment in e^+e^- collisions at the $\psi(3770)$ resonance have been analysed for
the decays $D \to \pi^+\pi^-\pi^0$ and $D \to K^+K^-\pi^0$. Measurements of F_+, the fractional CP-even content of each decay have been performed showing that $D^0 \to \pi^+\pi^-\pi^0$ is nearly a pure CP-even eigenstate. It has been demonstrated that such self-conjugate inclusive channels can be cleanly included in measurements of the unitarity-triangle angle γ, using $B^\mp \to DK^\pm$ decays. The high value of F_+ obtained for $D \to \pi^+\pi^-\pi^0$ makes this channel, in particular, a valuable addition to the suite of D-decay modes used in the measurement of γ at LHCb and Belle-II. Improved precision on the F_+ parameters can be obtained using the larger $\psi(3770)$ data set available at BESIII, and similar measurements can also be performed for other self-conjugate final states.

Acknowledgments

This analysis was performed using CLEO-c data, and as a member of the former CLEO collaboration I thank it for this privilege. I am grateful for support from the UK-India Education and Research Initiative.

References

[1] M. Gronau and D. London, Phys. Lett. B 265 (1991) 172.

[2] K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38 (2014) 090001.

[3] M. Gronau, Y. Grossman and J.L. Rosner, Phys. Lett. B 508 (2001) 37.
[4] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68 (2003) 054018.

[5] A. Bondar and A. Poluektov, Eur. Phys. J. C 55 (2008) 51; A. Bondar and A. Poluektov, Eur. Phys. C 47 (2006) 347.

[6] D. Atwood and A. Soni, Phys. Rev. D 68 (2003) 033003.

[7] D. Cronin-Hennessey et al. (CLEO collaboration), Phys. Rev. D 72 (2005) 031102(R), Erratum Phys. Rev. D 75 (2007) 119904.

[8] B. Aubert et al. (BaBar collaboration), Phys. Rev. Lett. 99 (2007) 251801.

[9] M. Gaspero, B. Meadows, K. Mishra and A. Soffer, Phys. Rev. D 78 (2008) 014015.

[10] C. Cawlfield et al. (CLEO collaboration), Phys. Rev. D 74 (2006) 031108(R).

[11] B. Aubert et al. (BaBar collaboration), Phys. Rev. D 76 (2007) 011102.

[12] S. Malde, C. Thomas and G. Wilkinson, Phys. Rev. D 91 (2015), 094032.

[13] M. Nayak et al., Phys. Lett. B 740 (2015) 1.

[14] S. Malde et al., Phys. Lett. B 747 (2015) 9.

[15] J. Libby et al. (CLEO collaboration), Phys. Rev. D 82 (2010) 112006; R.A. Briere et al. (CLEO collaboration), Phys. Rev. D 80 (2009) 032002. update.

[16] Y. Kubota et al. (CLEO collaboration), Nucl. Instrum. Meth. A 320 (1992) 66; D. Peterson et al., Nucl. Instrum. Meth. A 478 (2002) 142; M. Artuso et al., Nucl. Instrum. Meth. A 502 (2003) 91; R.A. Briere et al. (CLEO-c/CESR-c Taskforces and CLEO-c collaboration), Cornell LEPP Report CLNS Report No. 01/1742 (2001).

[17] D.J. Lange, Nucl. Instrum. Meth. A 462 (2001) 152.

[18] R. Brun et al., GEANT 3.21, CERN Program Library Long Writeup W5013, unpublished.

[19] N. Lowrey et al. (CLEO collaboration), Phys. Rev. D 80 (2009) 031105(R).

[20] D.M. Asner et al. (CLEO collaboration), Phys. Rev. D 78 (2008) 012001.

[21] Q. He et al. (CLEO collaboration), Phys. Rev. Lett. 100 (2008) 091801.