Hydrogen Sulfide Prodrugs—A review

Yueqin Zheng
Georgia State University, yzheng6@student.gsu.edu

Xingyue Ji
Georgia State University, xji@gsu.edu

Kaili Ji
Georgia State University

Binghe Wang
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_facpub

Part of the Chemistry Commons

Recommended Citation

Yueqin Zheng, Xingyue Ji, Kaili Ji, Binghe Wang, Hydrogen sulfide prodrugs—a review, Acta Pharmaceutica Sinica B, Volume 5, Issue 5, 2015, Pages 367-377, ISSN 2211-3835, doi: https://doi.org/10.1016/j.apsb.2015.06.004.
Hydrogen sulfide prodrugs—a review

Yueqin Zheng, Xingyue Ji, Kaili Ji, Binghe Wang*

Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA

Received 5 May 2015; accepted 3 June 2015

KEY WORDS
Hydrogen sulfide (H₂S); Gasotransmitters; H₂S prodrugs; H₂S-hybrid nonsteroidal anti-inflammatory drugs; Controllable H₂S prodrugs; Hydrolysis-based H₂S prodrugs

Abstract Hydrogen sulfide (H₂S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H₂S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H₂S prodrugs for various reasons. In this review, we summarize different H₂S prodrugs, their chemical properties, and some of their potential therapeutic applications.

© 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hydrogen sulfide (H₂S), a well-known lethal, toxic gas with the smell of rotten eggs, is recognized as one of the three gasotransmitters in mammals, which also include nitric oxide (NO) and carbon monoxide (CO). The literature evidence suggests that hydrogen sulfide possesses the following activities: anti-inflammatory, anti-tumor, ion channel regulation, cardiovascular protection, and antioxidation. However, the exact role that hydrogen sulfide plays depends on the specific circumstance, its concentration, and the interplays with other signaling molecules, especially NO and CO. This is a major area of research in developing hydrogen sulfide-based therapeutics, but is beyond the scope of this review. Another major issue is finding appropriate ways of delivering hydrogen sulfide to the relevant location, at the right concentration, and with the appropriate pharmacokinetics. Much of this issue stems from the fact that it is unrealistic to use gaseous hydrogen sulfide itself or its salt such as sodium sulfide in therapeutic applications in human. Thus there is a great deal of interest in searching for appropriate hydrogen-sulfide-releasing agents, which are commonly referred to as H₂S donors or prodrugs. This review provides a summary of developments in this field mostly during the last five years with a focus on the chemistry concepts.

1.1. H₂S chemistry

H₂S is a weak acid and soluble in water (up to 80 mmol/L at 37°C). The pKₐ values (37°C) for the first and second dissociation steps are about 6.88 and 19, respectively. Under physiological conditions (pH = 7.4), H₂S largely exists in two forms: the neutral molecular form (H₂S) and an ionic form (HS⁻) (Scheme 1). S²⁻ is a very minor component simply because of the second pKₐ being very high. However, the bioactive form is still unknown, and the term H₂S is usually used referring to the total sulfide species. Although H₂S has good solubility in water, it is still very unstable in solution. It is easy oxidized in the presence of oxygen. In addition, the volatility of hydrogen sulfide adds complications to experiments. For example, half of the dose of H₂S could be lost in 5 min from open cell culture wells. H₂S concentration can decrease so rapidly that the precise measurement of H₂S concentration is a great challenge in this field.

1.2. H₂S biology

In mammals, three enzymes are involved in sulfur-containing amino acid metabolism and thus responsible for the in vivo production of H₂S. Two of them are pyridoxal-5'-phosphate (PLP)-dependent enzymes: cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). CBS is expressed predominantly in the central nervous system (CNS). Relatively high concentrations (47 μmol/L to 166 μmol/L) of H₂S have been observed in the brains of mammals. The normal cellular function of CBS is in the trans-sulfuration pathway, catalyzing the condensation of homocysteine with serine to form cystathionine. In the 1980s, CBS isolated from rat liver and kidney was reported to produce H₂S from cysteine. In contrast to CBS, CSE is mainly responsible for the production of H₂S outside of the CNS. CBS and CSE share a common feature of catalytic promiscuity. The relative contributions of CBS and CSE to H₂S generation at low homocysteine concentration are about 7:3. However, CBS activity is confined to chemical transformations at the β-position, while CSE is proficient at catalyzing reactions at the β- and γ-carbons of substrates. Furthermore, because homocysteine appears to be unable to bind to the site at which the external aldimine with PLP is formed in CBS, CSE's contribution to the H₂S pool is increased under conditions of moderate and severe hyperhomocysteinemia. A third H₂S-producing enzyme, 3-mercaptoppyruvate sulfurtransferase (3MST), was thought to exist, as H₂S was not depleted in CBS knockout mouse brain. 3MST, a PLP-independent enzyme, is localized in the neurons in the brain along with cysteine aminotransferase (CAT), while CBS is localized in the astrocytes, a type of glia, in the CNS. 3MST and CAT are also found in the vascular endothelium. CAT catalyzes the reaction of L-cysteine with α-ketoglutarate to form 3-mercaptoppyruvate (3MP), which is further catalyzed by 3MST to generate H₂S in the presence of thiol and reducing agents (Fig. 1). Overall, H₂S production in mammals is intimately connected to the metabolic pathways of sulfur containing amino acids. The PLP-dependent trans-sulfuration pathway, which contains both CBS and CSE for H₂S production, is localized in the cytosol. H₂S synthesis via CAT and 3MST occurs in the cytosol and mitochondria.

2. H₂S prodrugs

In the past several years, many series H₂S prodrugs have been developed. They could be divided into three general classes: plant-derived natural products, hydrolysis-based H₂S prodrugs, and controlled-release H₂S prodrugs.

2.1. Plant-derived natural products

Allium vegetables, represented by garlic and onions, have long been considered as salubrious foods that have anti-inflammatory functions, and their active ingredients have been shown to reduce the risk of diabetes and cardiovascular diseases. It was not until 2007 that studies from Kraus' group showed that the...
vaseoactivity of garlic compounds was correlated with H$_2$S production23, which suggested that the major beneficial effects of allium vegetable diets are mediated by the biological production of H$_2$S from organic polysulfides.

To date, several sulfur-containing components from garlic or garlic preparations have been identified (\textgamma-glutamylcysteines and alliin in the intact garlic; ajoene and allyl mercaptan in the steam-distilled garlic oil; S-allyl-cysteine and S-allyl-mercaptopcysteine in the aged garlic extract; and methiin in the garlic homogenate). Among all the different components, only three of them, S-allylcysteine (SAC), diallyl disulfide (DADS), and diallyl trisulfide (DATS) have been shown to have pharma cological effects, which are correlated with the H$_2$S signaling pathway41,42. DADS and DATS are major components of garlic oil35, and are derived from allilcin, which is unstable in H$_2$S from DADS.

The third sulfur-containing compound in allium vegetables related to H$_2$S production is S-allyl-cysteine (SAC), a reduced cysteine analog of SAC and CR-SPRC, respectively. It was found that SAC and its analog significantly lowered mortality and improved cardiac function. The activity of CSE, CAT, GSH, and plasma H$_2$S in the in vivo rat model25 showed that SAC and CR-SPRC, a cysteine analog of SAC, upregulated cysteine synthase and increased plasma H$_2$S concentrations. Rats used in an acute myocardial infarction and heart failure model were treated with SAC or CR-SPRC, respectively. It was found that SAC and its analog significantly lowered mortality and improved cardiac function. The activity of CSE, CAT, GSH, and plasma H$_2$S concentration were increased in SAC-pretreated and CR-SPRC-treated rats, suggesting its cardioprotective effect via a H$_2$S-mediated pathway. However, there is no report on H$_2$S production directly from SAC in the biological systems.

Recently, Kondo et al.30 published a H$_2$S prodrugs: SG-1002 (Fig. 2), which is a polysulfur mixture containing 92\% α sulfur, 7\% sodium sulfate and a trace amount of other sulfur derivatives. In one study, SG-1002 was administered to C57BL/6J or CSE knockout mice to investigate the effects of genetic modulation of CSE and exogenous H$_2$S in a pressure overload-induced heart failure model. It was found that CSE knockout mice exhibited significantly greater cardiac dilatation and dysfunction than wild-type mice after transverse aortic constriction, and cardiac-specific CSE transgenic mice maintained cardiac structure and function after transverse aortic constriction. H$_2$S afforded by SG-1002 could upregulate the vascular endothelial growth factor (VEGF)-Akt-endothelial nitric oxide synthase (eNOS)-nitric oxide (no)-cGMP pathway with preserved mitochondrial functions, attenuated oxidative stress, and increased myocardial vascular density. The results show oral H$_2$S therapy prevents the transition from compensated to decompensated heart failure in part via upregulation of endothelial nitric oxide synthase and increased nitric oxide bioavailability. However what needs to be noted concerning these studies is that the mechanism of H$_2$S release from SG-1002 is not described. More studies are needed to prove the correlation of H$_2$S production and the observed pharmacological effects.

2.2. Hydrolysis-based H$_2$S prodrugs

Hydrolysis-based H$_2$S prodrugs primarily consist of four classes of analogs: namely, inorganic sulfite salts including NaHS, Na$_2$S and CaS; Lawesson’s reagent and analogs; 1,2-dithiole-3-thiones; and arylthioamides derivatives. For arylthioamides derivatives, some classified them as thiol-activated H$_2$S donors. Since these compounds are easily hydrolyzed to generate H$_2$S in PBS buffer, they are summarized in this section.

2.2.1. Inorganic sulfite salts

NaHS and Na$_2$S are two widely used H$_2$S donors in basic research. Upon hydrolysis, both compounds could generate H$_2$S quickly in PBS buffer (pH 7.4). In aqueous state under physiological pH, the ratio of HS$^-$/H$_2$S is around 3:119,47. NaHS and Na$_2$S have been extensively used in studying the biological effect of hydrogen sulfide. For example, in an ovalbumin-treated rat model68, NaHS treatment could increase peak expiratory flow (PEF), and decrease goblet cell hyperplasia, collagen deposition score, the total cells recovered from bronchoalveolar fluid, and influx of eosinophils and neutrophils. Additionally, administration of NaHS also significantly attenuated activation of pulmonary inducible nitric oxide synthase (iNOS). Those results suggested that H$_2$S possessed anti-inflammatory and

\begin{align*}
\text{Sulfur-containing compounds in intact garlic resulting from conversion of amino acid alliin.} \\
\text{Scheme 2}
\end{align*}

\begin{align*}
\text{Proposed H$_2$S production from DADS by reactions involving thiol.} \\
\text{Scheme 3}
\end{align*}
anti-remodeling effect in asthma pathogenesis, presumably by the cystathionine-gamma-lyase (CSE)/H2S pathway. Using NaHS as a H2S donor, Du et al. examined the possible role of H2S in the pathogenesis of oleic acid (OA)-induced acute lung injury (ALI) and its regulatory effects on the inflammatory response. Intraperitoneal injection of NaHS (56 μmol/L) into OA-treated rats increased the pressure of oxygen in the arterial blood (PaO2), reduced the lung wet/dry ratio and alleviated the degree of ALI. Additionally, NaHS decreased inflammatory cytokine such as IL-6 and IL-8 levels and increased anti-inflammatory cytokine IL-10 levels in the plasma and lung tissues. Similarly, Na2S inhibited IL-1β levels and significantly increased anti-inflammatory cytokine IL-10 levels in an acute lung injury model.

2.2.2. Lawesson’s reagent and analogs

Lawesson’s reagent, which is widely used for sulfurization in organic synthesis, also releases H2S upon hydrolysis, and it has been used as a H2S donor in some studies. Compared to inorganic sulfide, the release rate with Lawesson’s reagent is much slower. After incubation of Lawesson’s reagent in buffer or rat liver homogenate for 60 min, the conversion to H2S was about 18% or 11%, respectively. In work by Medeiros et al., Lawesson’s reagent was used as a H2S donor to evaluate its protective effect against alendronate (ALD)-induced gastric damage in rats. In this study, Lawesson’s reagent was orally administered once daily for 4 days. Induction of gastric damage by ALD (30 mg/kg) was seen 30 min after ALD administration. The results showed that pretreatment with Lawesson’s reagent (27 μmol/kg) attenuated ALD-mediated gastric damage, reduced TNF-α, IL-1β, and malondialdehyde formation; lowered myeloperoxidase activity; and increased the level of GSH in the gastric tissue. All those results suggested that Lawesson’s reagent plays a protective role against ALD-induced gastric damage by activation of ATP-sensitive potassium (KATP) channels. In another study, Lawesson’s reagent also attenuated ethanol-induced macroscopic damage in a dose-dependent fashion. However, Lawesson’s reagent also releases H2S spontaneously upon hydrolysis in aqueous solution, and it suffers from poor water solubility, which may pose a limit for its further applications.

GYY4137, a water-soluble derivative of Lawesson’s reagent, could also release H2S upon hydrolysis. Compared to Lawesson’s reagent and sulfide salts, it can generate H2S at a slower rate. With the use of the H2S microelectrode or the DTNB (5, 5-dithiobis(2-nitrobenzoic acid)) assay, it was found that incubation of GYY4137 in aqueous solution (pH 7.4, 37 °C) resulted in the release H2S, and the concentration of H2S peaked at around 6–10 min, and remained at a low level (<10 μmol/L) over a sustained period of 100 min. In one experiment, the administration of GYY4137 (133 μmol/kg i.v. or intraperitoneal) to anesthetized rats could also boost the concentration of H2S in plasma to around 75 μmol/L at the 30 min point, and the concentration remained elevated (above 40 μmol/L) for more than 180 min. Additionally, GYY4137 did not cause any significant cytotoxic effect, or alter the cell cycle profile or p53 expression of cultured rat vascular smooth muscle cells. However, NaHS was previously reported to induce apoptotic cell death of cultured fibroblasts and smooth muscle cells. The differences in the safety profile between GYY4137 and NaHS may be attributed to the differences in H2S release rate and the concentration of H2S generated.

In work published by Liu et al., GYY4137 was employed as a H2S donor to investigate its effects on CVB3-induced myocarditis and possible underlying mechanisms. The results showed that GYY4137 suppressed CVB3-induced secretion of enzymes implicated in cardiocyte damage including LDH, CK-MB, and decreased the level of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6. Moreover, GYY4137 also inhibited the activation of NfκB and the IkBα degradation induced by CVB3. Notably, the phosphorylation of p38, ERK1/2 and JNK1/2 induced by CVB3 was also suppressed by GYY4137. Taken together, GYY4137 exerted its anti-inflammatory effect in CVB3-infected cardiomyocytes, which was possibly associated with H2S generation by GYY4137. The anti-inflammatory mechanism may be associated with the inhibition of NfκB and the mitogen-activated protein kinase (MAPK) signaling pathway.

Additionally, at a concentration of 400 or 800 μmol/L, GYY4137 also showed some anti-cancer effect with 30%–70% death in seven different human cancer cell lines (HeLa, HCT-116, Hep G2, HL-60, MCF-7, MV4-11 and U2OS) and no effect on the survival of normal human lung fibroblasts (IMR90, WI-38). In contrast, NaHS did not show any anticancer effect (400 μmol/L), and only showed less potent growth inhibition (15%–30%, 800 μmol/L). The author attributed such difference to the different H2S release rate between GYY4137 and NaHS. Incubation of GYY4137 (400 μmol/L) in culture medium released low concentrations (<20 μmol/L) of H2S, with the concentration sustained over a period of 7 days. In contrast, incubation of NaHS (400 μmol/L) in the same way led to much higher concentrations (up to 400 μmol/L) of H2S with a much shorter duration (1 h). It is well-known that the effect of H2S is concentration-dependent with high concentrations (above 250 μmol/L) being toxic, thus it is easy to understand that release kinetics and peak concentration would make much difference to the overall effect of a H2S donor. The in vivo antitumor effect of GYY4137 was also evaluated. In a xenograft mice model (HL-60 and MV4-11 cells), GYY4137 could significantly inhibit tumor growth at dosages of 100–300 mg/kg/day.

Despite all the success described above, other independent studies sometimes showed opposite effect when NaHS was used as a donor. For example, H2S in the form of NaHS showed protective...
effect for colon cancer cells64, increased proliferation of colon cancer cells, and reduced apoptosis in several cell lines65. These disparate observations may be due to the use of different H\(_2\)S donors, which release H\(_2\)S at different rates, give different byproducts, and have different peak concentrations. Although ZYJ1122 (Fig. 3), an analog of GYY4137 lacking sulfur, was inactive in all cancer cell lines tested, it is unclear what byproducts GYY4137 would generate in cells, because the metabolism for GYY4137 is expected to be complicated. Additionally, it should be kept in mind that the percentage of hydrolysis for GYY4137 is low, which means that the majority of GYY4137 remained in the cells. Since relatively high concentrations of GYY4137 was used (400 and 800 \(\mu\)mol/L), it is entirely possible that the observed anticancer effect may be caused by GYY4137 itself or its metabolism products, and not necessarily the released H\(_2\)S. The convoluted situation with the observed effects of "H\(_2\)S" is a strong indication that future experiments need to be benchmarked against a standard and standard conditions with careful control and documentation of concentrations.

In order to tune the H\(_2\)S release capability of GYY4137, structural modifications on the phosphorodithioate moiety were made to GYY4137 to afford a series of \(O\)-substituted phosphorodithioate-based H\(_2\)S donors (Fig. 3)66. Their H\(_2\)S releasing properties were evaluated by fluorescence methods. After incubation (100 \(\mu\)mol/L) in PBS buffer (pH 7.4) for 3 h at room temperature, \(N,O\)-diarylated donors and GYY4137 could release H\(_2\)S with a final concentration of around 800 nmol/L. However, the \(O\)-alkylated donors showed very weak H\(_2\)S production (data not shown in the paper). The protective effects of \(N,O\)-diarylated donors against \(H_2O_2\)-induced oxidative damage in H9C2 cells were investigated. Specifically, the donors were incubated with the cells for 24 h before \(H_2O_2\) was added. Then cell viability was determined by the CCK-8 assay after incubation for another 5 h. The results showed that in the absence of a H\(_2\)S donor, cell viability decreased by about 65%. In the presence of H\(_2\)S donors (\(N,O\)-diarylated donors, GYY4137 and NaHS), a much higher level cell viability was observed, especially for one \(N,O\)-diarylated donor, which increased the cell viability to about 95% at the concentration of 100 \(\mu\)mol/L. These results suggested that the H\(_2\)S donors did present protective effects against oxidative injury. As mentioned above, the biological results obtained for these donors should be carefully associated with the generation of H\(_2\)S. Further experiments may be needed to clarify this.

2.2.3. Arylthioamides derivatives

A series of arylthioamides were synthesized by Vincenzo Calderone et al.67, and their H\(_2\)S release properties were evaluated. The synthesized compounds were incubated with or without \(L\)-cysteine in PBS buffer at 37 \(^\circ\)C, and H\(_2\)S release was recorded by amperometry. The results showed that compounds 1-3 (Fig. 4) did not generate a detectable level of H\(_2\)S (<2 \(\mu\)mol/L) in the absence of \(L\)-cysteine; however, they did release H\(_2\)S in the presence of \(L\)-cysteine with \(C_{\text{max}}\) of about 10 \(\mu\)mol/L. For compounds 4 and 5 with strong electron-withdrawing substituents, no detectable levels of H\(_2\)S were observed with or without \(L\)-cysteine. Based on those results, it seems that the H\(_2\)S release mechanism for arylthioamides is thiol-activated, and Xian et al.68 did classify arylthioamides as thiol-activated H\(_2\)S donors. However, some analogs in this series also generated detectable amounts of H\(_2\)S in the absence of \(L\)-cysteine, especially compound 12, which did not show any difference in the amount of H\(_2\)S released with or without \(L\)-cysteine. It is well characterized that hydrolysis of thioacetamide would lead to H\(_2\)S formation. So it could be concluded that the hydrolysis of arylthioamides could also give H\(_2\)S. Actually, Wallace et al.69 classified these compounds as hydrolysis-based H\(_2\)S donors. It may be more reasonable to say that both mechanisms contribute to H\(_2\)S generation because there is no clear evidence to exclude either.

After confirmation of H\(_2\)S release from arylthioamides, compound 1 was chosen for further pharmacological studies. It strongly abolished the noradrenaline-induced vasoconstriction in isolated rat aortic rings and hyperpolarized the membranes of human vascular smooth muscle cells in a dose-dependent fashion. After oral administration of compound 1, the systolic blood pressure of the animals was significantly reduced. These findings make arylthioamides promising H\(_2\)S donors for further study.

No matter what the H\(_2\)S release mechanism for arylthioamides is, it should be noted that incubation of 1 nmol/L of the donors only release H\(_2\)S with a \(C_{\text{max}}\) value of about 10 \(\mu\)mol/L, which means that the major species in solution is still the donor itself. Thus it is still premature to associate the observed bioactivities with the generation of H\(_2\)S alone, because the bioactivities may be caused by the donor itself or a combination of various species. Actually, this issue is quite common among the organic H\(_2\)S donors. More detailed and well-designed control experiments are needed to address this issue.

2.2.4. 1,2-Dithiole-3-thiones and H\(_2\)S-hybrid nonsteroidal anti-inflammatory drugs

1,2-Dithiole-3-thiones (DTT) has also been used as a H\(_2\)S donor. Although its H\(_2\)S-release mechanism is still not fully clarified, it is widely accepted that hydrolysis is part of the underlying mechanism for the generation of H\(_2\)S from DTT77.

The use of nonsteroidal anti-inflammatory drugs (NSAIDs) suffers from unacceptable risk of gastrointestinal ulceration and bleeding70-73. In order to reduce such side effects, DTTs have been conjugated to NSAIDs to form HS-hybrid NSAIDs (HS-NSAIDs, Fig. 5), which showed significant reduction of gastrointestinal damage compared to the parent NSAIDs73,74. In addition, HS-NSAIDs also boosted the anti-inflammatory activity of their NSAIDs counterparts. In a work by Fiorucci et al.75, DTT was conjugated to diclofenac to afford a HS-NSAID-hybrid ATB337, and its anti-inflammatory effect was investigated along with diclofenac in rats. In a rat air pouch model, orally

![Figure 3](image-url)
Figure 3 The chemical structures for Lawesson’s reagent-based H\(_2\)S donors.
administrated ATB-337 dose-dependently suppressed the activity of both COX-1 and COX-2, and the efficiency was comparable to that of diclofenac. Additionally, pretreatment with ATB-337 and diclofenac led to a reduction of carrageenan-induced paw swelling volume. Notably, pretreatment with ATB-337 at 10 μmol/kg achieved a reduction in edema formation comparable to that seen with diclofenac at 30 μmol/kg. This enhanced potency was probably associated with the generation of H₂S from ATB-337.

An enhanced anti-inflammatory effect was also observed for ATB-429. In addition to their anti-inflammatory effect, other HS-NSAIDs including HS-sulindac (HS-SUL), HA-aspirin (HS-ASA), HS-ibuprofen (HS-IBU), and HS-naproxen (HS-NAP), were also reported to exhibit anti-proliferative effect against human colon, breast, pancreatic, prostate, lung, and leukemia cancer cell lines. The conjugation with 5-(4-hydroxyphenyl)-1,2-dithiol-3-thione (ADT-OH) significantly increased the growth inhibitory effect of NSAID by 28- to >3000-fold.

Along the line of NSAID’s antiproliferation effect, Kashifi et al. prepared a compound NBS-1120 (Fig. 6), which could release NO, H₂S and aspirin at the same time. NBS-1120 inhibited HT-29 colon cancer growth with IC₅₀ values of 45.5±2.5, 19.7±3.3, and 7.7±2.2 nmol/L at 24, 48, and 72 h time points, respectively. This is the most potent NSAID-based anticancer agent so far. Mechanistic studies showed that NBS-1120 induced apoptosis, and arrested the cells at G₀/G₁ phase. NBS-1120 also showed promising in vivo antitumor effect. It significantly inhibited tumor growth by 85% in mice bearing a human colon cancer xenograft.

Accumulating evidence supports that H₂S plays a vital role in the modulation of mitochondrial cell death pathways and in the regulation of cellular bioenergetics. Multiple studies revealed that H₂S donors help maintain mitochondrial integrity, reduce the release of mitochondrial death signals, and attenuate mitochondrially-regulated cell death responses of various types. Szabo et al. prepared a compound AP39 (Fig. 6) with two moieties: ADT-OH for H₂S generation and triphenylphosphinium (TPP) for mitochondrial targeting. Cell imaging studies confirmed that AP39 was primarily internalized in mitochondria. After confirming the mitochondria-targeting H₂S delivery, compound AP39 was employed to investigate its effect on bioenergetics, viability, and mitochondrial DNA integrity in bEnd.3 murine microvascular endothelial cells in vitro. At a
concentration of 100 nmol/L, incubation of AP39 with bEnd.3 cells caused an increase in basal oxygen consumption rate (OCR), which represented respiratory reserve capacity, a key bioenergetic parameter. Meanwhile, AP39 (30 and 100 nmol/L) could also induce an increase in FCCP (carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone)-stimulated OCR. However, when the concentration of AP39 was increased to 300 nmol/L, an inhibitory effect was observed instead. AP39 could also attenuate the loss of cellular bioenergetics during oxidative stress caused by glucose oxidase. Additionally, Co-treatment of ADT-OH with TPP targeting moiety did not show any antioxidant or cytoprotective effect in oxidatively stressed endothelial cells even at a concentration of 300 nM, which is attributed to its inability to enter mitochondrial compartment. In contrast, ADT-OH without the TPP targeting moiety did not show any antioxidant or cytoprotective effect in oxidatively stressed endothelial cells even at a concentration of 300 nmol/L, which is attributed to its inability to enter mitochondrial compartment. In summary, the various mitochondrial effects observed for AP39 are consistent with the role of H2S in the regulation of mitochondrial function.

Although DTT and its NSAID hybrids showed promising H2S-related bioactivities both in vitro and in vivo, it is still unclear how those agents release H2S in vivo. Hydrolysis for sure partially contributes to the release of H2S from DTT. Because of the presence of disulfide bonds in DTT, thiols could also activate DTT through reduction to release H2S. Therefore, further experiments are needed to elucidate its H2S release mechanism.

2.3. Controllable H2S Prodrugs

The goal of controllable H2S prodrugs was to develop H2S prodrugs, which are stable in aqueous solutions and during sample preparation. The prodrugs can release H2S in the presence of triggers, which could be enzymes, pH, biomolecules, UV-light, and others. However, this is still a great challenge in this field. Currently, there are three examples: thiol activation, light activation, and bicarbonate activation.

2.3.1. Thiol activation

In 2011 Xian’s group developed the first thiol activated H2S prodrugs: N-mercapto (N-SH)-based derivatives. The strategy was based on the instability of the N-SH bond. The thiol group was first protected with acyl groups, and then the protected nitrogen-sulfur bond could be stable to some degree. In the presence of thiol species in the biological system, H2S release can be triggered by thiol exchange. A detail mechanism is shown in Scheme 4. The prodrug is first activated by thiol exchange between a thiol species (cysteine or GSH) and the prodrug to generate S-acylated cysteine and N-mercaptobenzamide. Then one of the intermediates, N-mercaptobenzamide, reacts with cysteine to form cysteine perthiol, which is followed by interaction with cysteine to release H2S. In this mechanistic study, the Xian’s group found that perthiol could also be a key intermediate in H2S generation. In 2013, Xian’s lab published a series of perthiol-based H2S prodrugs, with a release mechanism similar to that of the previous example. Briefly, thiol exchange initiates the reaction to form penicillamine perthiol intermediate, which is followed by thiol attack again to produce either a disulfide and H2S (Scheme 5, pathway a), or a new perthiol, which would interact with another thiol species to release H2S (Scheme 5, pathway b).

To show the therapeutic potential of perthiol H2S prodrugs, Xian’s laboratory also tested the protective effect of these prodrugs against myocardial ischemia/reperfusion (MI/R) injury in a murine model system, since H2S was proven to show such effects. In these experiments, mice were subjected to 45 min left ventricular ischemia followed by 24 h reperfusion. Then prodrugs or vehicles were administered into the left ventricular lumen at 22.5 min of myocardial ischemia. Compared to vehicle-treatment alone, mice treated with prodrugs displayed a significant reduction in circulating levels of cardiac troponin I and myocardial infarct size per area-at-risk, suggesting that perthiol H2S prodrugs indeed exhibit cardiac protection in MI/R injury. It should be noted that the reaction between prodrugs and cysteine yields many reactive sulfane sulfur species. Therefore, further studies on H2S-related and sulfane sulfur-related mechanisms are still needed.

Based on similar strategies, Calderone and coworkers reported dithioperoxanhydride as a thiol-activated H2S prodrugs in 2013. The acylpersulfides were proposed to be key intermediates. The H2S-releasing mechanism is the same as that of perthiol H2S prodrugs (Scheme 6).

2.3.2. Photo-induced H2S Prodrugs

The second type of controllable H2S prodrugs is light-activated H2S prodrugs. Recently, there have been two examples published. The first one is gem-dithiol-based-H2S prodrugs. In 2013, Xian and coworkers identified geminal-dithiol (gem-dithiol) as a structure, which could release H2S in aqueous solution. Then a photo-cleavable structure (a 2-nitrobenzyl group) was introduced to protect the gem-thiols group. When the molecules were exposed to UV-light, gem-dithiols were regenerated. Subsequent hydrolysis leads to H2S release. Based on this strategy, several gem-dithiol-based H2S prodrugs were prepared. Methylene Blue assay indicated that 200 μmol/L prodrugs could generate a peak concentration of 36 μmol/L H2S under UV irradiation (365 nm). However, there are two

Scheme 4 Proposed N-SH H2S prodrugs H2S releasing mechanism.
obvious drawbacks of these prodrugs. First, H$_2$S release rate depends on the hydrolysis of gem-dithiol, which is nearly fixed. Second, the reactive byproducts 2-nitrosobenzaldehyde can react with H$_2$S, which results in diminishing H$_2$S generation. Later, Nakagawa's group8 investigated another type of photo-induced H$_2$S prodrugs: ketoprofenate-caged H$_2$S prodrugs (Scheme 7). Upon UV irradiation (300–350 nm) for 10 min, 500 μmol/L of the prodrug would generate 30 μmol/L of H$_2$S in fetal bovine serum together with 2-propenylbenzophenone and CO$_2$. These two photo-induced H$_2$S prodrugs successfully demonstrated the photo-triggering concept, but the cytotoxicity induced by UV-light could limit their applications.

2.3.3. Thiolamino acid

Thiolamino acids as the third class of controllable H$_2$S-releasing prodrugs were first reported by Giannis and coworkers9 in 2012. Thioglycine and thiovaline were shown to release H$_2$S in the presence of bicarbonate under physiological conditions. The mechanism is shown in Scheme 8.

The thiolamino acids interacted with bicarbonate to form carbamate intermediates, which undergoes a cyclization reaction leading to N-carboxyanhydride and H$_2$S release (Scheme 8). 1H NMR spectroscopy studies were carried out to measure the decomposition of thioglycine in the presence of NaHCO$_3$. In a 40 mmol/L bicarbonate solution at 40 °C, 35% N-carboxyanhydride were formed in 72 h. Since there is a high bicarbonate concentration (27 mmol/L) in blood at physiological pH, thiolamino acids can be an H$_2$S prodrug candidate. Giannis and coworkers9 compared the H$_2$S-releasing capacities of thiolamino acids with that of GYY4137. About 50 μmol/L H$_2$S from 100 μmol/L of thioglycine could be detected by a fluorescent probe dibromobimane, while GYY4137 liberated less H$_2$S at the same condition. Giannis and coworkers also tested the pharmacological benefits of such H$_2$S prodrugs. Results showed that thioglycine and thiovaline could enhance intracellular cyclic guanosine monophosphate (cGMP) concentration and promote vasorelaxation. One possible limit of the bicarbonate activated H$_2$S prodrugs stems from the reactivity of thiolamino acids, which could quickly undergo amidation reaction under aerobic conditions (Scheme 9)10.

Scheme 5 Proposed perthiol H$_2$S prodrugs H$_2$S releasing mechanism.

Scheme 6 Proposed dithioperoxyanhydride H$_2$S releasing mechanism.

Scheme 7 H$_2$S release from photo-induced H$_2$S prodrugs.

Scheme 8 Proposed mechanism of H$_2$S release from thiolamino acids.

Scheme 9 Amidation of thiolacid.
3. Conclusions

The review gives a brief summary of the current state of H2S prodrugs. These prodrugs not only play an important role as research tools but also are promising candidates for the development of therapeutic agents. All prodrugs have their advantages, and also limitations. The most challenging in this field is still the development of prodrugs with precise control of the release kinetics so that they mimic endogenous H2S generation. The effects of prodrugs themselves and the byproducts need to be taken into consideration in all the biological experiments. Thus, new hydrogen sulfide prodrugs with improved control of release kinetics are needed in this field.

References

1. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 1996;16:1066–71.
2. Vandiver MS, Snyder SH. Hydrogen sulfide: a gasotransmitter of clinical relevance. J Mol Med 2012;90:255–63.
3. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 2012;92:791–896.
4. Szabo C. Hydrogen sulphone and its therapeutic potential. Nat Rev Drug Discov 2007;6:917–35.
5. Lowicki E, Beltowski J. Hydrogen sulfide (H2S)—the third gas of interest for pharmacologists. Pharmacol Rep 2007;59:4–24.
6. Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice. Science 2005;308:518.
7. Li L, Moore PK. Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? Trends Pharmacol Sci 2008;29:84–90.
8. Li T, Zhao B, Wang C, Wang H, Liu Z, Li W, et al. Regulatory effects of hydrogen sulfide on IL-6, IL-8 and IL-10 levels in the plasma and pulmonary tissue of rats with acute lung injury. Exp Biol Med 2008;233:1081–7.
9. Andruski B, McCafferty DM, Ignacy T, Millen B, McDougall JJ. Leukocyte trafficking and pain behavioral responses to a hydrogen sulfide donor in acute monoarthritis. Am J Physiol Regul Integr Comp Physiol 2008;295:R814–20.
10. Shirotriyi S, Kandu JK, Na HK, Surh YJ. Diallyl trisulphone inhibits phorbol ester-induced tumor promotion, activation of AP-1, and expression of COX-2 in mouse skin by blocking JNK and Akt signaling. Cancer Res 2010;70:1932–40.
11. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 2001;20:6008–16.
12. Liu L, Liu H, Sun D, Qiao W, Qi Y, Sun H, et al. Effects of H2S on myogenic responses in rat cerebral arterioles. Circ J 2012;76:1012–9.
13. Buckler KJ. Effects of exogenous hydrogen sulfide on calcium signalling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells. Pflug Arch 2012;463:743–54.
14. Lisjak M, Srivastava N, Teklic T, Civale L, Lewandowski K, Wilson I, et al. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol Biochem 2010;48:931–5.
15. Zhao Y, Biggs TD, Xian M. Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun 2014;50:11788–805.
16. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 2008;117:2351–60.
17. Osborne NN, Ji D, Majid AS, Del Soldato P, Sparatore A. Glutamate oxidative injury to RGC-5 cells in culture is necrostatin sensitive and blunted by a hydrogen sulfide (H2S)-releasing derivative of aspirin (ACS14). Neurochem Int 2012;60:365–78.
18. Paul BD, Snyder SH. H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 2012;13:499–507.
19. Gigengbach W. Optical spectra of highly alkaline sulfur solutions and the second dissociation constant of hydrogen sulfide. Inorg Chem 1971;10:1333–8.
20. Ungerer PW, Aurelie, Demoulign G, Bourasseau E, Moupin P. Application of Gibbs ensemble and NPT Monte Carlo simulation to the development of improved processes for H2S-rich gases. Mol Simul 2004;30:631–48.
21. Hughes MN, Centelles MN, Moore KP. Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radic Biol Med 2009;47:1346–53.
22. DeLeon ER, Stoy GF, Olson KR. Passive loss of hydrogen sulfide in biological experiments. Anal Biochem 2012;421:203–7.
23. Peng B, Xian M. Hydrogen sulfide detection using nuclophilic substitution-cyclization-based fluorescent probes. Methods Enzymol 2015;554:47–62.
24. Peng H, Cheng Y, Dai C, King AL, Lefer DJ, et al. A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew Chem Int Ed 2011;50:9672–5.
25. Wang K, Peng H, Wang B. Recent advances in thiol and sulfide reactive probes. J Cell Biochem 2014;115:1007–22.
26. Lin VS, Chang CJ. Fluorescent probes for sensing and imaging biological hydrogen sulfide. Curr Opin Chem Biol 2012;16:595–601.
27. Qian Y, Karpus J, Kabil O, Zhang S Y, Zhu H L, Banerjee R, et al. Selective fluorescent probes for live-cell monitoring of sulfide. Nat Commun 2012;3:495.
28. Uppeti AR, New EJ, Chang CJ. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J Am Chem Soc 2011;133:10078–80.
29. Miles EW, Kraus JP. Cystathione beta-synthase: structure, function, regulation, and location of homocystinuria-causing mutations. J Biol Chem 2004;279:29871–4.
30. Goodwin LR, Francom D, Dieken FP, Taylor JD, Warenycia MW, Reifenstein RJ, et al. Determination of sulfide in brain tissue by gas dialysis/ion chromatogaphy: postmortem studies and two case reports. J Anal Toxicol 1989;13:105–9.
31. Warenycia MW, Goodwin LR, Benishin CG, Reifenstein RJ, Francom DM, Taylor JD, et al. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol 2004;67:973–81.
32. Savage JC, Gould DH. Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr 1990;526:540–5.
33. Stipanuk MH, Beck PW. Characterization of the enzymatic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 1982;206:627–77.
34. Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R. Relative contributions of cystathionine β-synthase and γ-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 2009;284:22457–66.
35. Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R. H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 2009;284:11601–12.
36. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H. 3-Mercaptopropionate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 2009;11:703–14.
37. Mikami Y, Shibuya N, Kimura Y, Nagahara N, Yamada M, Kimura H. Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J Biol Chem 2011;286:39379–86.
38. Milher JA. Mechanisms by which garlic and allyl sulfur compounds suppress carcinogenic bioactivation. Garlic and carcinogenesis. *Adv Exp Med Biol* 2001;492:69–81.

39. Rahman K. Historical perspective on garlic and cardiovascular disease. *J Nutr* 2001;131:977s–9s.

40. Powolny AA, Singh SV. Multitargeted prevention and therapy of cancer by dialyl trisulfide and related Allium vegetable-derived organosulfur compounds. *Cancer Lett* 2008;269:305–14.

41. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, et al. Hydrogen sulfide mediates the vasoactivity of garlic. *Proc Nail Acad Sci U S A* 2007;104:17977–82.

42. Chuah SC, Moore PK, Zhu YZ. S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. *Am J Physiol Heart Circ Physiol* 2007;293:H2693–701.

43. Amagase H. Clarifying the real bioactive constituents of garlic. *J Nutr* 2006;136:716s–2s.

44. Truong D, Hindmarsh W, O'Brien PJ. The molecular mechanisms of diallyl disulfide and diallyl sulfide induced hepatocyte cytotoxicity. *Chem Biol Interact* 2009;180:79–88.

45. Huang C, Kan J, Liu X, Ma F, Tran B H, Zou Y, et al. Cardioprotective effects of a novel hydrogen sulfide agent—controlled release formulation of S-propargyl-cysteine on heart failure rats and molecular mechanisms. *PLoS One* 2013;8:e92905.

46. Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, et al. H₂S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. *Circulation* 2013;127:1116–27.

47. Ellis AJ, Giggenbach W. Hydrogen sulphide ionization and sulphur hydrolysis in high temperature solution. *Geochim Cosmochim Acta* 1971;35:247–60.

48. Chen YH, Wu R, Geng B, Qi Y F, Wang PP, Yao W Z, et al. Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. *Cytokine* 2009;45:117–23.

49. Escheci A, Kiss L, Ohal G, Horvath EM, Hawkins H, Szabo C, et al. Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. *Clin Sci* 2008;115:91–7.

50. Zhi L, Ang A D, Zhang H, Moore PK, Bhatia M. Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human mono- cyte cell line U937 via the ERK-NF-κB pathway. *J Leukoc Biol* 2007;81:1322–32.

51. Zhang H, Zhi L, Moocchhal SM, Moore PK, Bhatia M. Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis. *J Leukoc Biol* 2007;82:894–905.

52. Zhang H, Hsu S, Ng SW, Adhikari S, Moocchhal SM, Bhatia M. Hydrogen sulfide up-regulates substance P in polymicrobial sepsis-associated lung injury. *J Immunol* 2007;179:4153–60.

53. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H₂S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. *Science* 2008;322:587–90.

54. Ghasemi M, Dehpour AR, Moore KP, Mani AR. Role of endogenous hydrogen sulfide in neurogenic relaxation of rat corpus cavernosum. *Biochem Pharmacol* 2012;83:1261–8.

55. Tumir H, Bosnir J, Vedrina-Dragojevic I, Dragun Z, Tomic S, Puntaric D. Preliminary investigation of metal and metalloid contamination of drinking water in Croatia. *Homeopathy* 2010;99:183–8.

56. Li YF, Xiao CS, Hui RT. Calcium sulfide (CaS), a donor of hydrogen sulfide (H₂S): a new antihypertensive drug? *Med Hypotheses* 2009;73:445–7.

57. Ozturk T, Ertas E, Mert O. Use of Lawesson’s reagent in organic syntheses. *Chem Rev* 2007;107:5210–78.

58. Li L, Rossioni G, Sparatore A, Lee LC, del Soldato P, Moore PK. Anti-inflamatory and gastrointestinal effects of a novel diclofenac derivative. *Free Radic Biol Med* 2007;42:706–19.

59. Nicolau LA, Silva RO, Damasceno SR, Carvalho NS, Costa NR, Aragao KS, et al. The hydrogen sulfide donor, Lawesson’s reagent, prevents alemadronate-induced gastric damage in rats. *Braz J Med Biol Res* 2013;46:708–14.

60. Medeiros JV, Bezerra VH, Gomes AS, Barbosa AL, Lima-Junior RC, Soares PM, et al. Hydrogen sulfide prevents ethanol-induced gastric damage in mice: role of ATP-sensitive potassium channels and caspacin-sensitive primary afferent neurons. *J Pharmocol Exp Ther* 2009;330:764–70.

61. Wu Z, Peng H, Du Q, Lin W, Liu Y. GYY4137, a hydrogen sulfide-releasing molecule, inhibits the inflammatory response by suppressing the activation of nuclear factor κB and mitogenactivated protein kinases in Coxsackie virus B1-infected rat cardiomyocytes. *Mole Med Rep* 2015;11:1837–44.

62. Lee ZW, Zhou J, Chen CS, Zhao Y, Tan CH, Li L, et al. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. *PLoS One* 2011;6:e21077.

63. Wallace JL. Hydrogen sulfide-releasing anti-inflammatory drugs. *Trends Pharmacol Sci* 2007;28:501–5.

64. Rose P, Moore PK, Ming SH, Nam OC, Armstrong JS, Whiteman M. Hydrogen sulfide protects colon cancer cells from chemopreventive agent β-phenylethyl isothiocyanate induced apoptosis. *World J Gastroenterol* 2005;11:3990–7.

65. Cai WJ, Wu MJ, Ju LH, Wang C, Zhu YC. Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21. *Cell Biol Int* 2010;34:565–72.

66. Park CM, Zhao Y, Zhu Z, Pacheco A, Peng B, devarie-Baez NO, et al. Synthesis and evaluation of phosphorodithioate-based hydrogen sul- fide donors. *Mol Biosyst* 2013;9:2430–4.

67. Martelli A, Testai L, Citi V, Marino A, Pugliesi I, Barresi E, et al. Arylthioamides as H₂S donors: cysteine-activated releasing properties and vascular effects in vitro and in vivo. *ACS Med Chem Lett* 2013;4:904–8.

68. Zhao Y, Biggs TD, Xian M. Hydrogen sulfide (H₂S) releasing agents: chemistry and biological applications. *Chem Commun* 2014;50:11788–805.

69. Caliendo G, Cirino G, Santagada V, Wallace JL. Synthesis and biological effects of hydrogen sulfide (H₂S): development of H₂S-releasing drugs as pharmacuticals. *J Med Chem* 2010;53:6275–86.

70. Schnitzer TJ, Burmester GR, Mysler E, Hochberg MC, Doherty M, Elursam E, et al. Comparison of lumiracoxib with naproxen and ibuprofen in the therapeutic arthritis research and gastrointestinal event trial (TARGET), reduction in ulcer complications: randomised controlled trial. *Lancet* 2004;364:665–74.

71. Singh G, Fort JG, Goldstein JL, Levy RA, Hanrahian PS, Bello AE, et al. Celecoxib versus naproxen and diclofenac in osteoarthritis patients: SUCCESS-I study. *Am J Med* 2006;119:255–66.

72. Kurahara K, Matsumoto T, Iida M, Honda K, Yao T, Fujishima M. Clinical and endoscopic features of nonsteroidal anti-inflammatory drug-induced colonic ulcerations. *Am J Gastroenterol* 2001;96:473–80.

73. Sparatore A, Santus G, Giustarini D, Rossi R, Del Soldato P. Therapeutic potential of new hydrogen sulfide-releasing hybrids. *Expert Rev Clin Pharmacol* 2011;4:109–21.

74. Chan MV, Wallace JL. Hydrogen sulfide-based therapeutics and gastrointestinal diseases: translating physiology to treatments. *Am J Physiol Gastrointest Liver Physiol* 2013;305:G467–73.

75. Wallace JL, Caliendo G, Santagada V, Cirino G, Fiorucci S. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. *Gastroenterology* 2007;132:261–71.

76. Fiorucci S, Orlandi S, Mencarelli A, Caliendo G, Santagada V, Distrittu E, Santucci L, Cirino G, Wallace JL. Enhanced activity of a hydrogen sulfide-releasing derivative of mesalamine (ATB–429) in a mouse model of colitis. *Br J Pharmacol* 2007;150:996–1002.

77. Chattopadhyay M, Kodela R, Nath N, Dastagirzada YM, velaquez-Martinez CA, Boring D, et al. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: a general property and evidence of a tissue type-independent effect. *Biochem Pharmacol* 2012;83:715–22.
78. Chattopadhyay M, Kodela R, Olson KR, Kashfi K. NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model. *Biochem Biophys Res Commun* 2012;419:523–8.

79. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. *Proc Natl Acad Sci U S A* 2007;104:15560–5.

80. Szabo C, Papapetropoulos A. Hydrogen sulphide and angiogenesis: mechanisms and applications. *Br J Pharmacol* 2011;164:853–65.

81. Suzuki K, Olah G, Modis K, Coletta C, Kulp G, Gero D, et al. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. *Proc Natl Acad Sci U S A* 2011;108:13829–34.

82. Sun WH, Liu F, Chen Y, Zhu YC. Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion. *Biochem Biophys Res Commun* 2012;421:164–9.

83. Szczesny B, Modis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, et al. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. *Nitric Oxide* 2014;41:120–30.

84. Le Trionnaire S, Perry A, Szczesny B, Szabo C, Winyard PG, Whatmore JL, et al. The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(3-thioxo-5H-1,2-dithiol-5-yl)phenoxy)decyltriphenylphosphonium bromide (AP39). *Med Chem Commun* 2014;5:728–36.

85. Zhao Y, Wang H, Xian M. Cysteine-activated hydrogen sulfide (H₂S) donors. *J Am Chem Soc* 2011;133:15–7.

86. Zhao Y, Bhushan S, Yang C, Otsuka H, Stein JD, Pacheco A, et al. Controllable hydrogen sulfide donors and their activity against myocardial ischemia-reperfusion injury. *ACS Chem Biol* 2013;8:1283–90.

87. Roger T, Raynaud F, Bouillaud F, Ransy C, Simonet S, Crespo C, et al. New biologically active hydrogen sulfide donors. *ChemBiochem* 2013;14:2268–71.

88. Devarie-Baez NO, Bagdon PE, Peng B, Zhao Y, Park CM, Xian M. Light-induced hydrogen sulfide release from “caged” gem-dithiols. *Org Lett* 2013;15:2786–9.

89. Fukushima N, Ieda N, Sasakura K, Nagano T, Hanaoka K, Suzuki T, et al. Synthesis of a photocontrollable hydrogen sulfide donor using ketoprofenate photocages. *Chem Commun* 2014;50:587–9.

90. Zhou Z, von Wantoch Rekowski M, Coletta C, Szabo C, Bucci M, Cirino G, et al. Thioglycine and t-thiovaline: biologically active H₂S-donors. *Bioorg Med Chem* 2012;20:2675–8.

91. Pan J, Devarie-Baez NO, Xian M. Facile amide formation via S-nitrosothioacids. *Org Lett* 2011;13:1092–4.