The Changing Epidemiology of Gastroesophageal Reflux Disease: Are Patients Getting Younger?

Takahisa Yamasaki, Colin Hemond, Mohamed Eisa, Stephen Ganocy, and Ronnie Fass*

1The Esophageal and Swallowing Center, Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA; 2Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA; 3Department of Internal Medicine, Case Western Reserve University, MetroHealth Medical Center, Cleveland, OH, USA; and 4Center for Health Care Research and Policy, Case Western Reserve University, MetroHealth Medical Center, Cleveland, OH, USA

Background/Aims
Gastroesophageal reflux disease (GERD) is a common disease globally with increasing prevalence and consequently greater burden on the Healthcare system. Traditionally, GERD has been considered a disease of middle-aged and older people. Since risk factors for GERD affect a growing number of the adult population, concerns have been raised that increasingly younger people may develop GERD. We aim to determine if the proportion of younger patients has increased among the GERD population.

Methods
The incidence of GERD as well as several variables were evaluated during an 11-year period. Explorys was used to evaluate datasets at a “Universal” and Healthcare system in northern Ohio to determine if trends at a local level reflected those at a universal level. GERD patients were classified into 7 age groups (15-19, 20-29, 30-39, 40-49, 50-59, 60-69, and ≥ 70 years).

Results
The proportion of patients with GERD increased in all age groups, except for those who were ≥ 70 years in the universal dataset (P < 0.001) and those who were ≥ 60 years in the Healthcare system (P < 0.001). The greatest rise was seen in 30-39 years in both datasets (P < 0.001). Similarly, the proportion of GERD patients who were using proton pump inhibitors increased in all age groups except for those who were ≥ 70 years in both datasets (P < 0.001), with the greatest increase being the group 30-39 years (P < 0.001).

Conclusion
Over the last decade, there has been a significant increase in the proportion of younger patients with GERD, especially those within the age range of 30-39 years.

(J Neurogastroenterol Motil 2018;24:559-569)

Key Words
Age; Epidemiology; Gastroesophageal reflux disease; Proton pump inhibitors
Introduction

Gastroesophageal reflux disease (GERD) is a common disease that can cause troublesome symptoms and have a significant impact on quality of life.1 GERD is a chronic and highly prevalent disorder. A recent systematic review showed that the prevalence of GERD is 18.1-27.8% in North America, 8.8-25.9% in Europe, 2.5-7.8% in East Asia, 8.7-33.1% in the Middle East, 11.6% in Australia, and 23.0% in South America.2 The increase in GERD prevalence may be due to multiple factors such as older age, male sex, race, intake of analgesics, consumption of certain types of food and drinks, decrease in the prevalence of Helicobacter pylori infection, smoking, family history of GERD, high body mass index (BMI), and limited physical activity. These risk factors are mostly related to a patient's lifestyle.3-5

Aging has been consistently associated with an increased risk for GERD symptoms. Some studies have reported that the effects of aging on esophageal and esophagogastric junction mechanophysical properties of patients with GERD may explain the age effect.6-8 Esophageal peristalsis may decrease, and esophageal acid exposure and anatomical disruption of the esophagogastric junction may increase with aging.9 In a meta-analysis, the prevalence of GERD symptoms was higher in subjects aged ≥ 50 years (OR, 1.32; 95%, CI, 1.12-1.54) but with significant heterogeneity between studies (I² = 91.5%, P < 0.001), indicating substantial heterogeneity among study results.10 In addition, aging was associated with increased hospitalizations for erosive esophagitis and GERD complications.11 However, in the late 1980s, aging was inversely correlated with hospitalization for esophagitis (OR for > 85 years [65-69 years: the reference], 0.66; 95% CI, 0.65-0.67).12 This reversal in association of age with erosive esophagitis suggests a cohort effect.

Johnson and Fennerty13 analyzed 11 945 patients with erosive esophagitis who were enrolled in 5 prospective, randomized, controlled clinical trials. The authors assessed the relationship between age, severe heartburn symptoms, and severe erosive esophagitis. The study demonstrated that severe erosive esophagitis became more prevalent with advancing age. Only 12% of patients aged < 21 years showed severe erosive esophagitis as compared with 37% in those aged > 70 years. The OR of having severe esophagitis increased by 1.17 (95% CI, 1.13-1.20) for each decade of age (P < 0.001).

As risk factors for GERD increasingly affect the general population, concerns have been raised that more young individuals will develop GERD and its potential consequences. Thus, the aim of this study is to determine if GERD is becoming more prevalent in younger populations than in older populations by assessing the proportion of patients with GERD in each age group using a population-based data and comparing the results with a major Healthcare system.

Materials and Methods

Patients

A population-based analysis of the Explorys dataset (Explorys Inc, Cleveland, OH, USA; http://www.explorys.com) was performed. Explorys is an aggregate electronic medical record database representing over 54 million patients from 26 institutions throughout the United States of America. De-identified data were obtained using the explore application of the Explorys platform. This placed a Healthcare gateway server behind the firewall of each participating Healthcare institution. The de-identified data were collected through billing inquiries that included diagnosis, findings, procedures, electronic health records, laboratory systems, etc. This was then processed and passed on to a data grid. A web application allowed each Healthcare organization to search and analyze the aggregated, standardized, normalized, and de-identified population level data. All data were de-identified to meet the Health Insurance Portability and Accountability Act (HIPPA) and Health Information Technology for Economic and Clinical Health (HITECH) Act standards. Therefore, this study was deemed not to be human subject research by the Institutional Review Board of the MetroHealth System. Business affiliation agreements are in place between all participating Healthcare systems and Explorys Inc. regarding contribution of electronic health records data and the use of de-identified data. Unified Medical Language Systems (UMLS) ontologies were used to map electronic health records data to facilitate searching and indexing. Diagnosis, findings, and procedures were mapped into the systematized nomenclature of medical-clinical terms (SNOMED-CT) hierarchy. Prescription medication orders were mapped to RxNorm. Laboratory test observations were mapped to logistical observation identifier names and codes (LOINC) established by the Regenstrief Institute. Through the Explorys cohort definition feature, subjects were identified by adding “Diagnosis: Gastroesophageal reflux disease” as the cohort criterion, which was determined by patients' providers. GERD patients were stratified into 7 age groups by years (15-19, 20-29, 30-39, 40-49, 50-59, 60-69, and ≥ 70). Patients younger than aged 15 years were excluded from the analysis. Secular trends of GERD
proportion were assessed for each age group.

Study Design

This was a large nationwide database cohort study using the Explorys dataset. Case identification was carried out using an electronic health search. The diagnosis information was obtained from multiple sources, making it a sensitive tool. The term “gastroesophageal reflux disease” was used in the Explorys search tool. Proportion of GERD as well as several variables such as age, sex, race, BMI, and treatment with a proton pump inhibitor (PPI) were evaluated during an 11-year period from 2006 to 2016. Using Explorys, we examined the universal patient population in the universal dataset and compared it with the patient population of a large Healthcare system in Ohio. Patient demographics, symptoms, associated conditions, and treatments were identified using a search tool. We also stratified patients into the following 5 groups with regard to BMI: underweight (BMI < 18.5 kg/m\(^2\)), normal (18.5 kg/m\(^2\) ≤ BMI < 25 kg/m\(^2\)), overweight (25 kg/m\(^2\) ≤ BMI < 30 kg/m\(^2\)), obese (BMI 30 kg/m\(^2\) ≤ BMI < 40 kg/m\(^2\)), and severely obese (BMI ≥ 40 kg/m\(^2\)). Cell counts in Explorys were rounded to the nearest 10.

Statistical Methods

Most demographic data in this study that were extracted from Explorys were categorical and were thus presented as counts and percentages. Differences across age groups for proportion of GERD and proportion of PPI usage in 2006 compared with 2016 were tested using a 2-way contingency table chi-square test. The Cochran-Armitage test was used to determine if there was a year-by-year trend in the proportion of GERD and PPI usage for the 11-year period from 2006 through 2016. Statistical significance was established at \(P < 0.05\) throughout the study. SAS version 9.4 (World Headquarters SAS Institute Inc, Cary, NC, USA) was used to analyze all statistical tests.

Results

Universal Explorys Dataset

Table 1 shows the demographics of GERD patients using the universal Explorys dataset, that the total number of patients diagnosed with GERD in a given year between 2006 and 2016 had increased from 2006 (179,300 patients) to 2014 (1,113,910 patients) but decreased in 2015 (1,113,160 patients) and 2016 (1,032,140 patients). The increase in number of GERD patients represents a growing number of health centers using the Epic electronic medical record and their datasets were incorporated into Explorys universal.

Analysis of GERD diagnosis by age groups revealed that from 2006 to 2016 the proportion of GERD patients over the age 70 (≥ 70) and diagnosed with GERD had significantly decreased (−10.6%, \(P < 0.001\)) (Fig. 1A), while the younger age groups demonstrated a significant increase in the proportion of GERD patients over the same period of time (15-19: 0.2%, \(P < 0.001\); 20-29: 2.4%, \(P < 0.001\); 30-39: 3.2%, \(P < 0.001\); 40-49: 2.8%, \(P < 0.001\); 50-59: 2.5%, \(P < 0.001\); 60-69: 0.8%, \(P < 0.001\)). The greatest increase in the proportion of patients with GERD was noted in the 30-39 years age group (Fig. 2A).

The proportion of patients with GERD by sex has been consistent from 2006 to 2016: 60.0% of the patients with GERD were women, and 40.0% were men. While the majority of the GERD patients were Caucasian, the proportion of Caucasian patients with GERD had increased from 76.1% in 2006 to a peak of 80.7% in 2015, followed by a slight decrease to 80.4% in 2016. African Americans account for the second-highest ethnicity among GERD patients. However, the proportion of GERD patients in this group has decreased over time from 16.5% in 2006 to 11.9% in 2016. The majority of patients with GERD were considered obese (45.4%) or severely obese (30.8%).

When examining PPI usage in patients with GERD by age group, results were similar to distribution of GERD diagnosis (Fig. 3A). The proportion of GERD patients using PPIs has declined significantly in the age group ≥ 70 years between 2006 and 2016 (−11.4%, \(P < 0.001\)), while the proportion of GERD patients using PPIs in the other remaining age groups has increased significantly (15-19 years: 0.2%, \(P < 0.001\); 20-29 years: 2.0%, \(P < 0.001\); 30-39 years: 3.5%, \(P < 0.001\); 40-49 years: 3.5%, \(P < 0.001\); 50-59 years: 2.8%, \(P < 0.001\); 60-69 years: 0.3%, \(P < 0.001\)). The highest increase was noted in the 30-39 years age group (Fig. 4A).

Healthcare System

The data collected from patients affiliated with the Northern Ohio Healthcare system showed results similar to the universal dataset. Table 2 demonstrates the demographics of GERD patients at the Healthcare system. The total number of GERD diagnoses in each year had increased 108.0% from 2006 (9,110 patients) to 2015 (18,950 patients). In 2016, the total number of patients diagnosed with GERD decreased slightly to 18,460 patients (2.6%). As previously mentioned, the total numbers represent inclusion of new Epic users into the database.
Table 1. Demographics of Gastroesophageal Reflux Disease Patients Using a Universal Explorys Dataset

Age (yr, n [%])	Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	Trend test
15-19		1200	1540	1920	2570	2900	3610	4920	6340	8440	9050	9170	25.07 < 0.001
		0.7	0.6	0.7	0.7	0.6	0.6	0.6	0.7	0.8	0.8	0.8	
20-29		3270	4139	6450	9010	12310	17710	25460	33030	42400	44340	43280	106.04 < 0.001
		1.8	1.7	2.2	2.4	2.6	2.9	3.2	3.5	3.8	4.0	4.2	
30-39		7820	11120	15350	20760	28260	37300	52160	64340	78950	81440	78480	91.31 < 0.001
		4.4	4.6	5.2	5.5	5.8	6.2	6.5	6.7	7.1	7.3	7.6	
40-49		15810	21600	28300	36410	47980	61030	84370	101980	123330	125370	119800	66.70 < 0.001
		8.8	8.9	9.5	9.7	9.9	10.1	10.4	10.1	11.1	11.3	11.6	
50-59		28670	39180	49310	62040	81670	102210	139460	167670	199430	202000	190600	49.13 < 0.001
		16.0	16.2	16.5	16.5	16.8	17.0	17.3	17.5	17.9	18.2	18.5	
60-69		38990	52580	64030	80870	104850	128990	174020	207490	243070	247180	232140	17.72 < 0.001
		21.8	21.8	21.4	21.6	21.5	21.4	21.5	21.7	21.8	22.2	22.5	
≥ 70		72870	96430	115620	141540	182490	219110	285830	326930	362370	348880	310040	–168.81 < 0.001
		40.6	39.9	38.6	37.7	37.5	36.4	35.4	34.1	32.5	31.3	30.0	
Sex (male, n [%])		71310	96210	119700	148100	190460	235780	317490	377940	441900	441050	409560	
		39.8	40.0	39.5	39.1	39.2	39.3	39.5	39.7	39.6	39.7		
Race (n [%])		136420	186920	231290	293760	384950	482130	648510	770180	893210	897940	829430	
Caucasian		76.1	77.4	77.3	78.3	79.0	80.1	80.3	80.4	80.1	80.7	80.4	
African American		29510	34690	41990	50660	65870	79130	104780	115120	133320	132280	122840	
Hispanic/Latino		16.5	14.4	14.0	13.5	13.5	13.1	13.0	12.0	12.0	11.9	11.9	
		0.6	0.7	0.8	0.9	0.9	0.8	0.8	0.9	0.9	0.9	0.9	
Asian		1940	2590	3130	4310	5620	72600	96200	143900	162600	159000	148500	
		1.1	1.1	1.0	1.1	1.2	1.2	1.2	1.5	1.5	1.4	1.4	
Native American or Alaskan Native	-	-	-	-	-	-	-	-	-	-	-		
Asian/Pacific Islander	-	-	-	-	-	-	-	-	-	-	-		
Unknown Race		26670	40640	59970	60300	76840	92900	115860	127790	140100	140480	133180	
		14.9	16.8	17.0	16.0	15.8	15.4	14.3	13.3	12.6	12.6	12.9	
Other		5250	7120	9490	11450	14620	18440	25930	34230	45780	47520	45930	
		2.9	2.9	3.2	3.1	3.0	3.1	3.2	3.6	4.1	4.2	4.4	
The proportion of younger patients has increased among the GERD population.

| Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Total number of GERD | 179 300 | 241 470 | 299 190 | 375 110 | 487 170 | 602 110 | 807 900 | 957 650 | 1 113 910 | 1 113 160 | 1 032 140 |
| BMI (n [%]) | | | | | | | | | | | | | | | |
| Severe obesity (BMI \geq 40 kg/m2) | 8350 | 12 080 | 16 430 | 21 910 | 30 370 | 39 680 | 57 130 | 69 980 | 84 130 | 87 470 | 83 180 |
| Obesity (30 \leq BMI < 40 kg/m2) | 12 230 | 17 850 | 23 650 | 30 970 | 42 970 | 56 670 | 83 970 | 103 420 | 126 710 | 134 850 | 129 360 |
| Overweight (25 \leq BMI < 30 kg/m2) | 2310 | 3400 | 4720 | 6310 | 8440 | 10 900 | 14 860 | 17 820 | 22 820 | 27 800 | 33 390 |
| Normal (20 \leq BMI < 25 kg/m2) | 530 | 740 | 950 | 1260 | 1770 | 2410 | 3340 | 4190 | 5690 | 7670 | 10 480 |
| Underweight (BMI < 20 kg/m2) | 530 | 740 | 950 | 1260 | 1770 | 2410 | 3340 | 4190 | 5690 | 7670 | 10 480 |
| PPI usage (n) | 117 470 | 165 810 | 210 560 | 265 410 | 343 550 | 431 220 | 584 000 | 706 240 | 828 400 | 831 990 | 761 910 |
| 15-19 yr | 580 | 770 | 1020 | 1330 | 1460 | 1860 | 2560 | 3470 | 4680 | 5000 | 5060 |
| 20-29 yr | 1650 | 2440 | 3640 | 4880 | 6650 | 9820 | 14 590 | 19 470 | 25 440 | 27 240 | 26 090 |
| 30-39 yr | 4160 | 6370 | 9310 | 12 520 | 16 750 | 23 030 | 33 120 | 42 360 | 53 290 | 56 190 | 53 680 |
| 40-49 yr | 9680 | 13 880 | 19 030 | 24 700 | 32 260 | 42 280 | 59 510 | 73 970 | 91 120 | 93 760 | 85 350 |
| 50-59 yr | 18 960 | 27 290 | 35 260 | 44 810 | 58 890 | 75 060 | 102 450 | 126 490 | 152 300 | 155 030 | 144 190 |
| 60-69 yr | 27 230 | 38 270 | 47 480 | 60 760 | 78 420 | 97 790 | 132 380 | 160 230 | 189 290 | 192 840 | 178 840 |
| \geq 70 yr | 50 750 | 70 120 | 86 480 | 106 110 | 136 680 | 166 030 | 219 040 | 256 440 | 285 730 | 275 790 | 242 560 |

GERD, gastroesophageal reflux disease; BMI, body mass index; PPI, proton pump inhibitor.
The proportion of patients with GERD by sex has been fairly consistent. When viewing GERD diagnoses in a given year, the proportion ranged from 63.0% to 66.9% for women and from 33.0% to 37.1% for men. Most patients diagnosed with GERD are Caucasian, followed by African Americans, which is similar to that seen in the Universal dataset. The Healthcare system dataset had a population of Native Americans/Alaskan Natives (0.1-0.3%) and Asian/Pacific Islanders (0.1-0.2%). However, Native Americans/Alaskan Natives or Asian/Pacific Islanders were not mentioned in the Universal dataset due to their very small population size relative to the other ethnicities who composed the GERD population. There was no clear trend in GERD incidence by race. While the Universal dataset showed that most patients diagnosed with GERD were obese (44.0-48.0%), the Healthcare system data showed that most patients were severely obese (45.0-49.0%).

The proportion of patients with GERD was also analyzed, and it was found that most patients were aged ≥ 70 years (Fig. 1B). As with the Universal dataset, the proportion of patients diagnosed with GERD in a given year who are aged ≥ 70 years has been decreasing from 2006 to 2016. In addition, the proportion of patients with GERD diagnosis who were aged ≥ 70 years dropped significantly by 9.7% (P < 0.001). The proportion of patients with GERD in the 60-69 years age group demonstrated a slight decrease (–0.5%, P = 0.347). The proportion of patients with GERD in the remaining age groups showed a significant increase (15-19 years: 0.02%, P = 0.957; 20-29 years: 2.2%, P < 0.001;
The proportion of younger patients has increased among the GERD population. In general, the number of patients with GERD in our study has increased over time. However, the observed numerical increase in patients in the dataset represents an increase in the number of registered institutions in Explorys.

Our study showed that the proportion of patients with GERD has increased in all age groups, with the exception of those who were using PPIs, has increased significantly (aged 15-19: 0.3%, $P = 0.010$; aged 20-29: 2.7%, $P < 0.001$; aged 30-39: 4.6%, $P < 0.001$; aged 40-49: 3.8%, $P < 0.001$; aged 50-59: 2.6%, $P < 0.001$) (Fig. 4B).

Discussion

The present study is a large, population-based cohort study that examined if GERD is becoming more common among younger populations when using trend analysis. In general, the number of patients with GERD in our study has increased over time. However, the observed numerical increase in patients in the dataset represents an increase in the number of registered institutions in Explorys.

Our study showed that the proportion of patients with GERD has increased in all age groups, with the exception of those who...
Table 2. Demographics of Gastroesophageal Reflux Disease Patients Using Northern Ohio Healthcare System

Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Total number of GERD	9110	9710	10 600	11 340	12 240	13 010	14 990	17 050	18 580	18 950	18 460

Age (yr, n [%])

Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
15-19	110	100	100	130	120	170	190	220	230	270	220
(1.2)	(1.0)	(0.9)	(1.1)	(1.0)	(1.3)	(1.3)	(1.3)	(1.2)	(1.4)	(1.2)	(1.2)
20-29	280	310	380	390	450	550	670	800	1020	1110	980
(3.1)	(3.2)	(3.6)	(3.4)	(3.7)	(4.2)	(4.5)	(4.7)	(5.5)	(5.9)	(5.3)	(5.3)
30-39	490	540	690	780	920	970	1170	1560	1820	2000	1820
(5.4)	(5.6)	(6.5)	(6.9)	(7.5)	(7.5)	(7.8)	(9.2)	(9.8)	(10.6)	(9.9)	(9.9)
40-49	980	1080	1200	1410	1570	1640	1930	2340	2660	2720	2640
(10.8)	(11.1)	(11.3)	(12.4)	(12.8)	(12.6)	(12.9)	(13.7)	(14.3)	(14.4)	(14.4)	(14.3)
50-59	1800	1930	2250	2410	2700	2870	3280	3980	4420	4540	4240
(19.8)	(19.9)	(21.2)	(21.3)	(22.1)	(22.1)	(21.9)	(23.3)	(23.8)	(24.0)	(23.0)	(23.0)
60-69	2040	2260	2380	2620	2810	3030	3490	3840	4080	4100	4040
(22.4)	(23.1)	(22.5)	(23.1)	(23.3)	(23.3)	(23.5)	(22.5)	(22.0)	(21.6)	(21.9)	(21.9)
≥ 70	2540	1130	2630	2630	2590	2580	2850	2880	2780	2780	3350
(27.9)	(11.6)	(24.8)	(23.2)	(21.2)	(19.8)	(19.0)	(16.9)	(15.0)	(14.7)	(18.1)	(21.5)

Sex (male, n [%])

Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
3070	3230	3650	3870	4330	4490	5310	6140	6800	6920	6840	
(33.7)	(33.3)	(34.4)	(34.1)	(35.4)	(34.5)	(35.4)	(36.0)	(36.6)	(36.5)	(37.1)	(37.1)

Race (n [%])

Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Caucasian	4440	4750	5270	5540	5990	6450	7210	7990	8690	8860	9330
(48.7)	(48.9)	(49.7)	(48.9)	(48.9)	(49.6)	(48.1)	(46.9)	(46.8)	(46.8)	(50.1)	(50.1)
African American	3260	3460	3730	4020	4310	4650	5080	5830	6460	6560	6160
(35.8)	(35.6)	(35.2)	(35.4)	(35.2)	(35.7)	(33.9)	(34.2)	(34.8)	(34.6)	(33.4)	(33.4)

Unknown Race

Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
690	780	880	1060	1230	1390	1520	1600	1880	2050	2070	
(7.6)	(8.0)	(8.3)	(9.3)	(10.0)	(10.7)	(10.1)	(9.4)	(10.1)	(10.8)	(11.2)	(11.2)
The Proportion of Younger Patients Has Increased Among the GERD Population

Table 2. Continued

Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Total number of GERD	9110	9710	10600	11340	12240	13010	14990	17050	18580	18950	18460
BMI (n [%])											
Severe obesity (BMI \(\geq 40 \text{ kg/m}^2\))	460 (47.4)	520 (47.7)	590 (46.1)	710 (48.3)	780 (47.9)	850 (45.5)	1110 (48.1)	1360 (47.9)	1540 (48.0)	1660 (47.8)	1540 (49.0)
Obesity (30 \(\leq\) BMI < 40 kg/m\(^2\))	300 (30.9)	350 (32.1)	410 (32.0)	470 (32.0)	530 (32.5)	620 (33.2)	750 (32.5)	950 (33.5)	1050 (32.7)	1190 (34.3)	1090 (34.6)
Overweight (25 \(\leq\) BMI < 30 kg/m\(^2\))	50 (3.1)	50 (2.8)	60 (3.1)	70 (3.4)	100 (3.1)	110 (3.2)	130 (3.0)	160 (3.1)	190 (3.1)	220 (3.5)	230 (3.8)
Normal (20 \(\leq\) BMI < 25 kg/m\(^2\))	30 (2.1)	30 (1.8)	40 (2.3)	40 (2.0)	50 (2.5)	60 (1.6)	70 (1.7)	80 (1.8)	100 (1.9)	120 (2.6)	120 (2.2)
Underweight (BMI < 20 kg/m\(^2\))	50 (2.1)	30 (2.3)	30 (2.0)	30 (2.5)	40 (1.6)	50 (1.7)	60 (1.8)	70 (1.9)	90 (2.6)	70 (2.2)	
PPI usage (n)											
Total	7550	8050	8750	9310	9920	10550	11640	13130	14620	15240	15310
15-19 yr	40	50	40	40	60	60	90	100	110	140	130
20-29 yr	160	190	230	250	290	380	440	520	710	790	730
30-39 yr	390	430	540	600	690	770	890	1160	1420	1600	1490
40-49 yr	870	970	1040	1220	1330	1380	1610	1920	2250	2340	2340
50-59 yr	1660	1790	2060	2190	2400	2580	2850	3360	3810	3950	3760
60-69 yr	1870	2060	2170	2370	2510	2710	3020	3280	3550	3620	3590
\(\geq\) 70 yr	2240	2220	2310	2260	2240	2180	2260	2280	2230	2260	2760

GERD, gastroesophageal reflux disease; BMI, body mass index; PPI, proton pump inhibitor.
were aged ≥ 70 years in both the universal and Healthcare system datasets. In the system dataset, it was also found that the proportion of patients diagnosed with GERD has been decreasing in those who are aged ≥ 60 years.

GERD has been considered to be a disease of middle aged and older subjects. One study demonstrated that the prevalence of gastroesophageal reflux symptoms was significantly higher in subjects aged ≥ 50 years as compared with those who were aged < 50 years (OR, 1.32; 95% CI, 1.12-1.54; P < 0.001). In a population-based cohort study from Norway, participants were evaluated for the degree of their GERD symptoms during the past 12 months. The study demonstrated that the incidence of GERD-related symptoms increased with age. Despite the results of our study, the age groups 60-70 years and ≥ 70 years remained the largest as compared with all other age groups (as has been shown by the aforementioned studies).

In our study, however, the greatest rise in the proportion of patients with GERD diagnosis was seen in young adults aged 30-39 years in both datasets during the last decade. These results clearly suggest that younger subjects are more exposed today to risk factors for GERD development as compared with 10 years ago. In addition, it appears that risk factors for GERD continue to affect a growing number of the adult population—but specifically younger subjects, with resulting in early development of GERD. In a population-based study, more than 30.0% of heartburn sufferers reported reduced work productivity, with younger age being associated with these findings. Another retrospective study demonstrated that reflux esophagitis is present in 28.7% of all patients between the ages of 1 month and 20 years who underwent an upper endoscopy, which is a dramatic increase over the past 14 years. Interestingly, several studies have demonstrated that erosive reflux disease symptoms, such as heartburn and regurgitation, decrease in severity with aging.

An important finding of our study was the general characteristic of GERD patients who were primarily obese or severely obese, older women, and Caucasian. These findings are consistent with several epidemiological studies, suggesting that GERD is more common in overweight/obese subjects, Caucasians, and older women. While erosive esophagitis and Barrett's esophagus (the more severe presentations of GERD) are more common in overweight/obese subjects, Caucasians, and older males, most GERD patients have nonerosive reflux disease (NERD), which is primarily a female disease explaining the results of our study. NERD accounts for 60-70% of the GERD patients.

In our study, the proportion of GERD patients using PPIs fell significantly in those who were over 70 years old in the universal dataset. In contrast, the proportion of GERD patients using PPIs has significantly increased in the other age groups, with the greatest increase being in the 30-39 years old group. Both trends closely follow the incidence trends of GERD in the same age groups. While PPI consumption remains high, with Americans spending more than 10 billion dollars per year for the different PPIs, concerns have been raised about the possible development of side effects. Based on our study results, more GERD patients are starting on chronic PPI treatment at a younger age, which may potentially increase the likelihood of long-term adverse events such as chronic kidney disease, osteoporosis, gastrointestinal infection, pneumonia, and others.

Our study has several limitations that need to be discussed. The results are based on the Explorys dataset, which originates from 26 major Healthcare systems and 360 hospitals overall. This vast dataset is de-identified and thus may not reveal regional or individual hospital trends. Contributions to the dataset originate from many hospitals around the country, but this may not truly represent the diverse Healthcare system in the United States. Furthermore, the diagnosis of GERD was based on the term “Diagnosis: gastroesophageal reflux disease” as the cohort criterion without clarifying the severity of symptoms. Thus, we could not determine the relationship between severity of GERD and age. Consequently, it is assumed that GERD was diagnosed based on endoscopic findings or patient symptoms. In addition, Explorys is susceptible to limited documentation by physicians, which can lead to error in data collection and confound analysis.

In conclusion, GERD remains predominantly a disease of the middle aged and elderly with a higher proportion among Caucasians and females. However, there has been a significant increase in the proportion of patients with GERD in the younger age groups. Support for our findings comes from the proportion of patients with GERD who were using PPIs in our patient population. Our study suggests that physicians should be more aware that the proportion of young adults with GERD has been increasing continuously. It is also possible—although not evaluated in our study—that the proportion of young adults among patients with erosive esophagitis or Barrett’s esophagus has been increasing as well. The ramifications of the aforementioned trend remain to be elucidated.

Financial support: None.

Conflicts of interest: None.

Author contributions: Ronnie Fass: study design, data analysis,
References

1. Tack J, Becher A, Mulligan C, Johnson DA. Systematic review: the burden of disruptive gastro-oesophageal reflux disease on health-related quality of life. Aliment Pharmacol Ther 2012;35:1257-1266.
2. El-Serag HB, Sweet S, Winchester CC, Dent J. Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 2014;63:871-880.
3. Mahadeva S, Raman MC, Ford AC, et al. Gastro-oesophageal reflux is more prevalent in Western dyspeptics: a prospective comparison of British and South-East Asian patients with dyspepsia. Aliment Pharmacol Ther 2005;21:1483-1490.
4. Jarosz M, Taraszewska A. Risk factors for gastroesophageal reflux disease: the role of diet. Prz Gastroenterol 2014;9:297-301.
5. Saberi-Firoozi M, Khademolhosseini F, Yousefi M, Mehrabani D, Zare N, Heydari ST. Risk factors of gastroesophageal reflux disease in Shiraz, southern Iran. World J Gastroenterol 2007;13:5486-5491.
6. Lee J, Anggiansah A, Anggiansah R, Young A, Wong T, Fox M. Effects of age on the gastroesophageal junction, esophageal motility, and reflux disease. Clin Gastroenterol Hepatol 2007;5:1392-1398.
7. Achem AC, Achem SR, Stark ME, DeVault KR. Failure of esophageal peristalsis in older patients: association with esophageal acid exposure. Am J Gastroenterol 2003;98:35-39.
8. Ter RB, Johnston BT, Castell DO. Influence of age and gender on gastroesophageal reflux in symptomatic patients. Dis Esophagus 1998;11:106-108.
9. Becher A, Dent J. Systematic review: ageing and gastro-oesophageal reflux disease symptoms, oesophageal function and reflux oesophagitis. Aliment Pharmacol Ther 2011;33:442-454.
10. Easchi LH, Ratnakamaran R, Yuan Y, Solaymani-Dodaran M, Bazzoli F, Ford AC. Global prevalence of, and risk factors for, gastro-oesophageal reflux symptoms: a meta-analysis. Gut 2018;67:430-440.
11. Thuklani N, Sonnenberg A. The influence of environmental risk factors in hospitalization for gastro-oesophageal reflux disease-related diagnoses in the United States. Aliment Pharmacol Ther 2010;31:852-861.
12. Sonnenberg A, Massey BT, Jacobsen SJ. Hospital discharges resulting from esophagitis among Medicare beneficiaries. Dig Dis Sci 1994;39:183-188.
13. Johnson DA, Fennerty MB. Heartburn severity underestimates erosive esophagitis severity in elderly patients with gastroesophageal reflux disease. Gastroenterology 2004;126:660-664.
14. Ness-Jensen E, Lindam A, Lagergren J, Hveem K. Changes in prevalence, incidence and spontaneous loss of gastro-oesophageal reflux symptoms: a prospective population-based cohort study, the HUNT study. Gut 2012;61:1390-1397.
15. Dean BB, Crawford JA, Schmitt CM, Wong J, Ofman JJ. The burden of illness of gastro-oesophageal reflux disease: impact on work productivity. Aliment Pharmacol Ther 2003;17:1309-1317.
16. Matsuura B, Nunoi H, Miyake T, Hiasa Y, Onji M. Obesity and gastrointestinal liver disorders in Japan. J Gastroenterol Hepatol 2013;28(suppl 4):48-53.
17. Pilotto A, Franceschi M, Leandro G, et al. Clinical features of reflux esophagitis in older people: a study of 840 consecutive patients. J Am Geriatr Soc 2006;54:1537-1542.
18. Maekawa T, Kinoshita Y, Okada A, et al. Relationship between severity and symptoms of reflux oesophagitis in elderly patients in Japan. J Gastroenterol Hepatol 1998;13:927-930.
19. Kraven MR, Kia L, O’Dwyer LC, Stern F, Taft TH, Keefer L. Systematic review: methodological flaws in racial/ethnic reporting for gastro-oesophageal reflux disease. Dis Esophagus Published Online First: 1 Mar 2018. doi: 10.1093/dote/dox154.
20. Hershcovic I, Fass R. Nonerosive reflux disease (NERD) - an update. J Neurogastroenterol Motil 2010;16:8-21.
21. Fass R, Fennerty MB, Vakil N. Nonerosive reflux disease—current concepts and dilemmas. Am J Gastroenterol 2001;96:303-314.
22. Vaezi MF, Yang YX, Howden CW. Complications of proton pump inhibitor therapy. Gastroenterology 2017;153:33-48.