ADAPTIVE ITERATIVE LINEARISED FINITE ELEMENT METHODS FOR IMPLICITLY CONSTITUTED INCOMPRESSIBLE FLUID FLOW PROBLEMS AND ITS APPLICATION TO BINGHAM FLUIDS

PASCAL HEID AND ENDRE SULI

Abstract. In this work, we introduce an iterative linearised finite element method for the solution of Bingham fluid flow problems. The proposed algorithm has the favourable property that a subsequence of the sequence of iterates generated converges weakly to a solution of the problem. This will be illustrated by two numerical experiments.

1. Introduction

In this work, we consider implicitly constituted incompressible fluid flow problems, as introduced by Rajagopal in [36,37]. Instead of demanding, as in the classical theory of continuum mechanics, that the Cauchy stress is an explicit function of the symmetric part of the gradient of the velocity vector, one may allow an implicit relation of those two quantities. For a rigorous mathematical analysis, including the proof of the existence of a weak solution for models of implicitly constituted fluids we refer the reader to [9] and [10] for steady and unsteady flows, respectively. Regarding the numerical analysis of such fluid flow models, very few results have been published so far. In [13] the authors proved the weak convergence of a sequence of finite element approximations to a weak solution in the steady case. An a posteriori analysis of finite element approximations of the model was carried out in [28], in addition, those authors proved the weak convergence of an adaptive finite element method. We further refer to [26] for a numerical investigation of several finite element discretisation methods and linearisation schemes for Bingham and stress-power-law fluids. Just recently, in [18], the author proposed a semismooth Newton method for the numerical approximation of a steady solution to implicit constitutive fluid flow problems. For the numerical analysis of the unsteady case (not considered in this work) we refer to [15,38].

The aim of this work is to extend the theory of [28] to adaptive iterative linearised finite element methods for implicitly constituted fluid flow problems; i.e., in contrast to [28], we will take into account the approximation of a finite element solution by a (linear) iteration scheme. Subsequently, it shall be shown that this abstract analysis can be applied in the context of Bingham fluids.

The organisation of the paper is as follows: In Section 2, we present the preliminaries, including the formulation of the problem, its finite element approximation, as well as an a posteriori error analysis. In Section 3, we will state the adaptive iterative linearised finite element method (AILFEM), and prove the convergence of this algorithm. Since this result can be shown by some minor modifications of the analysis in [28], we will omit the details of the proof, and rather give a rough sketch in Appendix A and highlight where the main differences occur. Next, in Section 4, we will verify the assumptions required for the convergence of AILFEM for Bingham flows. We will perform corresponding numerical experiments in Section 5, and conclude our work with some closing remarks.

Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
E-mail addresses: pascal.heid@maths.ox.ac.uk, endre.suli@maths.ox.ac.uk.
2010 Mathematics Subject Classification. 65J15, 35Q35, 65N50.
Key words and phrases. Implicitly constituted incompressible fluid flow problems, Bingham fluids, finite element methods, Kačanov scheme, Zarantonello iteration, adaptive algorithm.

PH acknowledges the financial support of the Swiss National Science Foundation (SNF), Project No. P2BEP2_191760.
2. Preliminaries

In this section, we will introduce the model of a steady flow of an incompressible fluid in a bounded open Lipschitz domain \(\Omega \subset \mathbb{R}^d, d \in \{2,3\} \), with polyhedral boundary \(\partial \Omega \), which satisfies an implicit constitutive relation given by a maximal monotone \(r \)-graph. Beforehand, let us introduce some basic notions concerning Lebesgue and Sobolev spaces.

2.1. Basic notations. For any measurable open set \(\omega \subseteq \Omega \) and \(s \in [1,\infty) \) we denote by \(L^s(\omega) := L^s(\omega; \mathbb{R}) \) the Lebesgue space of \(s \)-integrable functions with corresponding norm \(\|f\|_{s,\omega} := \left(\int_\omega |f(x)|^s \, dx \right)^{1/s} \). Moreover, \(L^\infty(\Omega) = L^\infty(\omega; \mathbb{R}) \) denotes the Lebesgue space of essentially bounded functions with the norm \(\|f\|_{\infty,\omega} := \text{ess sup}_{x \in \omega} |f(x)| \), and \(L^0_0(\omega) := \{ f \in L^s(\omega) : \int_\omega f \, dx = 0 \} \) denotes the set of functions (in the corresponding Lebesgue space) with zero mean value. We note that, for \(s \in (1,\infty) \), \(L^s(\omega) \) and \(L^s_0(\omega) \) are the dual spaces of \(L^s(\omega) \) and \(L^s_0(\omega) \), respectively, where \(s^\prime \in (1,\infty) \) is the Hölder conjugate of \(s \), i.e., \(1/s + 1/s^\prime = 1 \).

Likewise, for \(s \in [1,\infty) \), we denote by \(W^{1,s}(\omega)^d := W^{1,s}(\omega; \mathbb{R}^d) \) the space of vector-valued Sobolev functions. Moreover, for \(s \in [1,\infty) \), the space of vector-valued Sobolev functions with zero trace along the boundary is denoted by \(W^0_0(\omega)^d \) and is equipped with the norm \(\|f\|_{1,s,\omega} := \|\nabla f\|_{s,\omega} \). Equivalently, for \(s \in [1,\infty) \), \(W^0_0(\omega)^d \) is the closure in \(W^{1,s}(\omega)^d \) of \(D(\omega)^d := C^\infty_0(\omega)^d \), i.e., the space of smooth (vector-valued) functions with compact support in \(\omega \), and its dual space, for any \(s \in (1,\infty) \), is denoted by \(W^{-1,s^\prime}(\omega)^d \). The norm in the dual space \(W^{-1,s^\prime}(\omega)^d \) is as usual given by

\[
\|\varphi\|_{-1,s^\prime,\omega} := \sup_{\|\psi\|_{1,s,\omega} = 1} \langle \varphi, \psi \rangle,
\]

where \(\langle \cdot, \cdot \rangle \) signifies the duality pairing. In the sequel, for \(\omega = \Omega \), we omit the domain in the subscript of the norms; e.g., we write \(\|\cdot\|_s := \|\cdot\|_{s,\Omega} \).

Finally, for \(\delta, \kappa \in \mathbb{R}^{d\times d} \) we denote by \(\delta : \kappa \) the Frobenius inner-product, and by \(|\kappa| \) the Frobenius norm.

2.2. Problem formulation. As before, let \(\Omega \subset \mathbb{R}^d, d \in \{2,3\} \), be a bounded open Lipschitz domain with polyhedral boundary \(\partial \Omega \). For \(r \in (1,\infty) \), we set

\[
\tilde{r} := \begin{cases}
\frac{dr}{2(d-r)} & \text{if } r \leq \frac{3d}{d+2}, \\
1/r' & \text{otherwise,}
\end{cases}
\]

where \(r' \in (1,\infty) \) denotes the Hölder conjugate of \(r \). Then, the implicitly constituted incompressible fluid flow problem under consideration reads as follows: for \(f \in L^{\tilde{r}'}(\Omega)^d \) find \((u, p, S) \in W^{1,\tilde{r}'}(\Omega)^d \times L^0_0(\Omega) \times L^r(\Omega)^{d\times d} \) such that

\[
\begin{aligned}
\text{div}(u \otimes u + pI - S) &= f & \text{in } D'(\Omega)^d, \\
\text{div } u &= 0 & \text{in } D'(\Omega), \\
(Du(x), S(x)) &\in A(x) & \text{for a.e. } x \in \Omega;
\end{aligned}
\tag{1}
\]

where \(Du := \frac{1}{2}(\nabla u + (\nabla u)^T) \in \mathbb{R}^{d\times d} \) signifies the symmetric velocity gradient. Moreover, \(A : \Omega \to \mathbb{R}^{d\times d} \times \mathbb{R}^{d\times d} \) is a maximal monotone \(r \)-graph, i.e., for almost every \(x \in \Omega \) the following properties are satisfied:

(A1) \((0,0) \in A(x) \);
(A2) For all \((\kappa_1, \delta_1), (\kappa_2, \delta_2) \in A(x) \),

\[
\delta_1 - \delta_2 : (\kappa_1 - \kappa_2) \geq 0;
\]

(A3) If \((\kappa, \delta) \in \mathbb{R}^{d\times d} \times \mathbb{R}^{d\times d} \) and

\[
(\delta - \delta) : (\kappa - \kappa) \geq 0 \quad \text{for all } (\bar{\kappa}, \bar{\delta}) \in A(x),
\]

then \((\kappa, \delta) \in A(x) \);
(A4) There exist a non-negative function \(m \in L^1(\Omega) \) and a constant \(c > 0 \), such that for all \((\kappa, \delta) \in \mathcal{A}(x) \) we have that
\[
\delta : \kappa \geq -m(x) + c|\kappa|^r + |\delta|^r;
\]

(A5) The set-valued mapping \(\mathcal{A} : \Omega \rightarrow \mathbb{R}_+^{d \times d} \) is measurable, i.e., for any closed sets \(C_1, C_2 \subset \mathbb{R}_+^{d \times d} \) we have that
\[
\{ x \in \Omega : \mathcal{A}(x) \cap (C_1 \times C_2) \neq \emptyset \}
\]
is a Lebesgue measurable subset of \(\Omega \).

The existence of a (not necessarily unique) solution to \((1) \) for \(r > \frac{2d}{d+2} \) was first established in [9]. The proof is based on a (monotone) measurable selection \(S^* : \Omega \times \mathbb{R}_+^{d \times d} \rightharpoonup \mathbb{R}_+^{d \times d} \) of the graph \(\mathcal{A} \); i.e., for all \(\kappa \in \mathbb{R}_+^{d \times d} \) we have that \((\kappa, S^*(x, \kappa)) \in \mathcal{A}(x) \) for almost every \(x \in \Omega \). In turn, the measurable selection \(S^* : \Omega \times \mathbb{R}_+^{d \times d} \rightharpoonup \mathbb{R}_+^{d \times d} \) was approximated by a sequence of strictly monotone mappings \(S^n : \Omega \times \mathbb{R}_+^{d \times d} \rightharpoonup \mathbb{R}_+^{d \times d} \); \(n = 0, 1, 2, \ldots \), obtained by a mollification of \(S^* \). In this work, following [28], we allow for more general graph approximations.

Assumption 2.1. For any \(n \in \mathbb{N} \) there exists a mapping \(S^n : \Omega \times \mathbb{R}_+^{d \times d} \rightharpoonup \mathbb{R}_+^{d \times d} \) such that
- \(S^n(\cdot, \cdot) : \Omega \rightarrow \mathbb{R}_+^{d \times d} \) is measurable for all \(\kappa \in \mathbb{R}_+^{d \times d} \),
- \(S^n(x, \cdot) : \mathbb{R}_+^{d \times d} \rightharpoonup \mathbb{R}_+^{d \times d} \) is continuous for almost every \(x \in \Omega \),
- \(S^n(\cdot, \cdot) \) is strictly monotone in the sense that, for all \(\kappa_1 \neq \kappa_2 \in \mathbb{R}_+^{d \times d} \), we have that
 \[
 (S^n(x, \kappa_1) - S^n(x, \kappa_2)) : (\kappa_1 - \kappa_2) > 0
 \]
 for almost every \(x \in \Omega \);
- There exist constants \(\hat{c}_1, \hat{c}_2 > 0 \) and non-negative functions \(\tilde{m} \in L^1(\Omega) \) and \(\tilde{k} \in L^r(\Omega) \) such that, uniformly in \(n \in \mathbb{N} \),
 \[
 |S^n(x, \kappa)| \leq \hat{c}_1|\kappa|^{r-1} + \tilde{k}(x),
 \]
 \[
 S^n(x, \kappa) : \kappa \geq \hat{c}_2|\kappa|^r - \tilde{m}(x)
 \]
for all \(\kappa \in \mathbb{R}_+^{d \times d} \) and almost every \(x \in \Omega \).

Of course, we also need that \(S^n \) approximates, in a certain sense, the measurable selection \(S^* \) of \(\mathcal{A} \); this will be made precise in Section 3. Then, the regularised counterpart of problem \((1) \) is given as follows: for \(f \in L^1(\Omega)^d \) find \((u^n, p^n) \in W_0^{1,r}(\Omega)^d \times L^r_0(\Omega) \) such that
\[
\begin{align*}
\text{div}(u^n \otimes u^n + p^n \mathbb{I} - S^n(u^n)) &= f & \text{in } D'(\Omega)^d, \\
\text{div} u^n &= 0 & \text{in } D'(\Omega).
\end{align*}
\]
We note that in the problem formulation above and in the following, the explicit dependence of \(S^n \) on \(x \in \Omega \) will be suppressed.

2.3. Finite element spaces. In this work, we consider a sequence \(\{ T_N \} \) of shape-regular conforming triangulations of \(\Omega \), such that \(T_N+1 \) is obtained by a refinement of \(T_N \). For any \(m \in \mathbb{N} \) let us denote by \(P_m \) the space of polynomials of degree at most \(m \). Then, the corresponding conforming finite element spaces are given by
\[
\begin{align*}
V(T_N) := \{ V \in W_0^{1,2}(\Omega)^d : V|_K \in P_v(K) \text{ for all } K \in T_N \}, \\
Q(T_N) := \{ Q \in L^\infty(\Omega) : Q|_K \in P_Q(K) \text{ for all } K \in T_N \},
\end{align*}
\]
where \(P_v \) and \(P_Q \) are spaces of polynomials such that \(P^d_t \subseteq P_v \subseteq P^d_t \) and \(P^d_0 \subseteq P_Q \subseteq P^d_0 \), for some \(i^* \geq j^* \geq 0 \). We note the nestedness \(V(T_N) \subseteq V(T_{N+1}) \) and \(Q(T_N) \subseteq Q(T_{N+1}) \) of the finite element spaces. We further introduce the space of discretely divergence-free velocity vectors
\[
V_0(T_N) := \left\{ V \in V(T_N) : \int_\Omega Q \text{div } V \, dx = 0 \text{ for all } Q \in Q(T_N) \right\},
\]
and the space
\[
Q_0(T_N) := \left\{ Q \in Q(T_N) : \int_\Omega Q \, dx = 0 \right\}.
\]
In order to apply the analysis from [28], we need to impose the same assumptions on the velocity-pressure pairs of finite element spaces. In the following, for any \(K \in \mathcal{T}_N \),

\[
\mathcal{U}^N(K) := \bigcup \{ K' \in \mathcal{T}_N : \overline{K} \cap \overline{K'} \neq \emptyset \}
\]
denotes the patch of (not necessarily facewise) neighbours of \(K \).

Assumption 2.2. We assume that for each \(N \in \mathbb{N} \) there exists a linear projection operator \(\mathcal{J}_\text{div}^N : W_0^{1,1}(\Omega)^d \to \mathcal{V}(\mathcal{T}_N) \) such that, for all \(s \in [1, \infty) \),

- \(\mathcal{J}_\text{div}^N \) preserves divergence in the dual of \(\mathcal{Q}(\mathcal{T}_N) \); i.e., for \(v \in W_0^{1,s}(\Omega)^d \) we have that
 \[
 \int_{\Omega} \div v \, dx = \int_{\Omega} \div \mathcal{J}_\text{div}^N v \, dx \quad \text{for all } Q \in \mathcal{Q}(\mathcal{T}_N).
 \]
- \(\mathcal{J}_\text{div}^N \) is locally defined, i.e., we have that
 \[
 \mathcal{J}_\text{div}^{N+1} v|_{\mathcal{U}^{N+1}(K)} = \mathcal{J}_\text{div}^N v|_{\mathcal{U}^N(K)}
 \]
 for all \(v \in W_0^{1,s}(\Omega)^d \) and all \(K \in \mathcal{T}_N \) such that each element \(K' \) in \(\mathcal{U}^N(K) \) has remained unrefined\(^1\)
- \(\mathcal{J}_\text{div}^N \) is locally \(W^{1,1} \)-stable, i.e., there exists a constant \(c > 0 \) independent of \(N \), such that
 \[
 \int_K |\mathcal{J}_\text{div}^N v| + h_K |\nabla \mathcal{J}_\text{div}^N v| \, dx \leq c \int_{\mathcal{U}^N(K)} |v| + h_{\mathcal{T}_N}(x) |\nabla v| \, dx \tag{4}
 \]
 for all \(v \in W_0^{1,s}(\Omega) \) and all \(K \in \mathcal{T}_N \); here \(h_K := |K|^{1/d} \) and \(h_{\mathcal{T}_N}(x) = |K'|^{1/d} \) for \(x \in K' \in \mathcal{T}_N \).

Assumption 2.3. We assume that for each \(N \in \mathbb{N} \) there exists a linear projection operator \(\mathcal{J}_\mathcal{Q}^N : L^1(\Omega) \to \mathcal{Q}(\mathcal{T}_N) \) such that \(\mathcal{J}_\mathcal{Q}^N \) is locally \(L^1 \)-stable, i.e., there exists a constant \(c > 0 \) independent of \(N \), such that

\[
\int_K |\mathcal{J}_\mathcal{Q}^N q| \, dx \leq c \int_{\mathcal{U}^N(K)} |q| \, dx \quad \text{for all } q \in L^1(\Omega) \text{ and all } K \in \mathcal{T}_N.
\]

As shown in [13], the local stability \(^1\) implies the global \(W^{1,s} \)-stability, i.e., for each \(s \in [1, \infty) \), there exists \(c_s > 0 \), such that

\[
\| \mathcal{J}_\mathcal{Q}^N v \|_{1,s} \leq c_s \| v \|_{1,s} \quad \text{for all } v \in W_0^{1,s}(\Omega)^d. \tag{5}
\]

Similarly, we obtain the global stability of the operator \(\mathcal{J}_\mathcal{Q}^N : L^1(\Omega) \to \mathcal{Q}(\mathcal{T}_N) \). Moreover, thanks to Assumption 2.2 the following discrete counterpart of the inf-sup condition holds; see [5, Lem. 4.1].

Proposition 2.4. For all \(s \in (1, \infty) \) there exists a constant \(\beta_s > 0 \), independent of \(N \in \mathbb{N} \), such that

\[
\sup_{v \in \mathcal{V}(\mathcal{T}_N) \setminus \{0\}} \frac{\int_{\Omega} \div v \, dx}{\|v\|_{1,s}} \geq \beta_s \|Q\|_{s'} \quad \text{for all } Q \in \mathcal{Q}_0(\mathcal{T}_N), \tag{6}
\]

where \(s' \) denotes, as usual, the Hölder conjugate of \(s \), i.e., \(\frac{1}{s} + \frac{1}{s'} = 1 \).

Remark 2.5. Examples of velocity-pressure pairs of finite elements satisfying the Assumptions 2.2 and 2.3 as well as the nestedness of the discrete spaces, are given by:

- The lowest order Taylor–Hood element, i.e., the \(\mathbb{P}_2 - \mathbb{P}_1 \) element,
- The \(\mathbb{P}_2 - \mathbb{P}_0 \) element;

we refer to [8].

Remark 2.6. In order to work with discretely (rather than pointwise) divergence-free finite element velocity vectors, we will restrict ourselves in this work to the range \(r > \frac{2d}{s+1} \); this is crucial for the bound \(^2\) below.

\(^1\)This means that \(\{K' \in \mathcal{T}_N : \overline{K'} \cap \overline{K} \neq \emptyset\} = \{K' \in \mathcal{T}_{N+1} : \overline{K'} \cap \overline{K} \neq \emptyset\} \).

\(^2\)This means that \(\{K' \in \mathcal{T}_N : \overline{K'} \cap \overline{K} \neq \emptyset\} = \{K' \in \mathcal{T}_{N+1} : \overline{K'} \cap \overline{K} \neq \emptyset\} \).
2.4. **The Galerkin approximation.** First of all, in order to inherit the discrete counterpart of the skew-symmetry of the convection term from the continuous case, we define as in [13, 28] the trilinear form

$$B[v, w, h] := \frac{1}{2} \int_{\Omega} (v \otimes h) : \nabla w - (v \otimes w) : \nabla h \, dx$$

for all \((v, w, h) \in W^{1,r}(\Omega)^d \times W^{1,r}(\Omega)^d \times W^{1,r'}(\Omega)^d\). Then, it can be shown that the trilinear form is bounded in the sense that

$$B[v, w, h] \leq C_B \|v\|_{1,r} \|w\|_{1,r} \|h\|_{1,r'}$$

for some constant \(C_B > 0\); see, e.g., [28, §3.3]. Moreover, since \(r' \geq r\), the following skew symmetry property holds:

$$B[u, v, v] = 0 \quad \text{for all } u \in W^{1,r}(\Omega)^d, \ v \in W^{1,r'}(\Omega)^d.$$

Then, the regularised discrete problem is to find \((U^n_N, P^n_N) \in V(T_N) \times Q_0(T_N)\) such that

$$\int_{\Omega} S^n(\nabla U^n_N) : D V \, dx + B[U^n_N; U^n_N, V] - \int_{\Omega} P^n_N \div V \, dx = \int_{\Omega} f \cdot V \, dx,$$

$$\int_{\Omega} Q \div U^n_N \, dx = 0,$$

for all \(V \in V(T_N)\) and \(Q \in Q(T_N)\). We note that [4] has a solution, see [28, p. 1344].

Remark 2.7. In the (semi-)discrete setting, the convection term can be reformulated as

$$B[U; U, w] = \int_{\Omega} B[U, U] \cdot w \, dx, \quad U \in V(T_N), \ w \in W_0^{1,r'}(\Omega)^d,$$

where \(B[U, U] \in \mathbb{P}_{2r-1}(T_N)\), which is the space of piecewise \(\mathbb{P}_{2r-1}\) functions on \(T_N\).

2.4.1. Linear approximation

Assume that we have at our disposal an iterative solver for the discrete problem [4]. For given \(N, n \in \mathbb{N}\), let \(\Phi^n_N : V(T_N) \times Q_0(T_N) \rightarrow V(T_N) \times Q_0(T_N)\) be the iteration function of one step of the iterative solver; i.e.,

$$(U^{n+1}_{N, \ell}, P^{n+1}_{N, \ell}) := \Phi^n_N(U^n_N, P^n_N),$$

where \((U^{n,0}_N, P^{n,0}_N) \in V(T_N) \times Q_0(T_N)\) is an initial guess. Of course, we need to impose some kind of convergence property on the iteration scheme [10]. To that end, we define the *discrete residuals* \(F^n_{N,pde}(U, P), V) := \int_{\Omega} S^n(\nabla U) : D V \, dx + B[U, U, V] - \int_{\Omega} P \div V \, dx - \int_{\Omega} f \cdot V \, dx,\) and

$$(F^n_{N,ic}(U), Q) := \int_{\Omega} Q \div U \, dx,$$

respectively.

Assumption 2.8. For any \(n, N \in \mathbb{N}\) we have that

$$\left\|F^n_{N,pde}(U^{n,\ell}_N, P^{n,\ell}_N)\right\|_{N-1,r'} := \sup_{V \in V(T_N) \setminus \{0\}} \frac{\langle F^n_{N,pde}(U^{n,\ell}_N, P^{n,\ell}_N), V \rangle}{\|V\|_{1,r}} \rightarrow 0 \quad \text{as } \ell \rightarrow \infty,$$

and

$$\left\|F^n_{N,ic}(U^{n,\ell}_N)\right\|_{N-1,r} := \sup_{Q \in Q(T_N) \setminus \{0\}} \frac{\langle F^n_{N,ic}(U^{n,\ell}_N), Q \rangle}{\|Q\|_{r'}} \rightarrow 0 \quad \text{as } \ell \rightarrow \infty.$$
2.5. A posteriori error analysis. In this subsection, we will recall an a posteriori error estimate from [28, §4] in a slightly modified form: As has been already pointed out in the introduction, in contrast to [28], we take into account inexact finite element approximations obtained by the iteration scheme [10]. We further note that the proof of the a posteriori error estimate only requires some minor modifications in the analysis from [28, §4], and thus the details will be omitted.

Before we can state any results, we need some preparatory work. First, let us define the residual by

\[\mathcal{R}(u, p, S) := (\mathcal{R}^{de}(u, p, S), \mathcal{R}^{ic}(u)) \in W^{-1}(\Omega) \times L^r_0(\Omega), \]

where, for \((u, p, S) \in W^{1,\sigma}_0(\Omega)^d \times L^r_0(\Omega) \times L^{r'}(\Omega; \mathbb{R}^{d \times d})\),

\[\langle \mathcal{R}^{de}(u, p, S), v \rangle := \int_{\Omega} S \cdot \nabla v \, dx + B[u; u, v] - \int_{\Omega} p \nabla v \, dx - \int_{\Omega} f \cdot v \, dx, \]

\[\langle \mathcal{R}^{ic}(u), q \rangle := \int_{\Omega} q \nabla u \, dx \]

for any \(v \in W^{1,\sigma}_0(\Omega)^d\) and \(q \in L^r_0(\Omega)\). Moreover, we adopt the following assumption concerning the existence of a quasi-interpolation operator.

Assumption 2.9. We assume that for any \(N \in \mathbb{N}\) there exists a linear projection operator \(\Pi_N : L^1(\Omega; \mathbb{R}^{d \times d}) \to \mathbb{P}_{r-1}(\mathcal{T}_N; \mathbb{R}^{d \times d})\), such that \(\Pi_N\) is locally \(L^1\)-stable; i.e., there exists a constant \(c > 0\), independent of \(N\), such that

\[\int_K |\Pi_N S| \, dx \leq c \int_{t^{N}(K)} |S| \, dx \quad \text{for all } S \in L^1(\Omega; \mathbb{R}^{d \times d}) \text{ and all } K \in \mathcal{T}_N. \]

Remark 2.10. For instance, we may define \(\Pi_N : L^1(\Omega; \mathbb{R}^{d \times d}) \to \mathbb{P}_{r-1}(\mathcal{T}_N; \mathbb{R}^{d \times d})\) by

\[\int_{\Omega} \Pi_N S : \mathbf{D} \, dx = \int_{\Omega} S : \mathbf{D} \, dx \quad \text{for all } \mathbf{D} \in \mathbb{P}_{r-1}(\mathcal{T}_N; \mathbb{R}^{d \times d}). \]

For the rest of the paper let \(t\) and \(\hat{t}\) be such that

\[\frac{2d}{d+1} < t < r \quad \text{and} \quad \hat{t} := \frac{td}{2d-t}, \quad \text{if } r \leq \frac{3d}{d+2} \quad (15a) \]

\[t = r \quad \text{and} \quad \hat{t} = \hat{r} = \hat{r}', \quad \text{otherwise}. \quad (15b) \]

We note that \(\hat{t} < \hat{r'}\) for \(r \leq \frac{3d}{d+2}\). Then, for any \(K \in \mathcal{T}_N\) and \((U, P, S) \in \mathcal{V}(\mathcal{T}_N) \times \mathbb{Q}_0(\mathcal{T}_N) \times L^{r'}(\Omega; \mathbb{R}^{d \times d})\), we define the local error indicators as follows:

\[E_N^{de}(U, P; S; K) := \|h_K (-\nabla \Pi_N S + B[U, U] + \nabla P - f)\|_{t,K} \]

\[+ \left\| h_{\partial K} \left[(\Pi_N S - PT) \right] \right\|_{t,K} + \|S - \Pi_N S\|_{t,K}, \]

\[E_N^{ic}(U; K) := \|\nabla U\|_{t,K}, \]

\[E_N(U, P; S; K) := E_N^{de}(U, P; S; K) + E_N^{ic}(U; K), \]

where \(h_K := |K|^{1/4}\) and \(h_{\partial K} := |\partial K|^{1/4-1}\). For \(\mathcal{M} \subseteq \mathcal{T}_N\) we further define

\[E_N^{de}(U, P; S; \mathcal{M}) := \sum_{K \in \mathcal{M}} E_N^{de}(U, P; S; K), \]

\[E_N^{ic}(U; \mathcal{M}) := \|\nabla U\|_{t,\Omega(\mathcal{M})}, \]

where \(\Omega(\mathcal{M}) = \bigcup_{K \in \mathcal{M}} K\), and

\[E_N^{de}(U, P; S) := E_N^{de}(U, P; S; \mathcal{T}_N), \]

\[E_N^{ic}(U) := E_N^{ic}(U; \mathcal{T}_N) = \|\nabla U\|_{t}. \]
Finally, we set
\[E_N(U, P, S) := E_N^{\text{pde}}(U, P, S) + E_N^{\text{ic}}(U). \]

Next, we introduce a graph approximation error as follows: for \(D \in L'(\Omega; \mathbb{R}_{\text{sym}}^{d \times d}) \) and \(S \in L'(\Omega; \mathbb{R}_{\text{sym}}^{d \times d}) \) let
\[
E_A(D, S) := \int_{\Omega} (\kappa \delta)^r |D - \kappa|^r + |S - \delta|^r' \, dx.
\]

(17)

Now we are in a position to recall two important results from [28]. The second result is slightly modified on account of inexact finite element approximations of (9), meaning that we do not require \((U, P) = (U_N^0, P_N^0)\) in Theorem 2.12 below, in contrast to the corresponding results in [28].

Lemma 2.11 ([28 Lem. 4.2]). The triple \((u, p, S) \in W_0^{1, r}(\Omega)^d \times L_0^r(\Omega) \times L'^{(\Omega; \mathbb{R}_{\text{sym}}^{d \times d})} \) is a solution of (9) if and only if
\[
R(u, p, S) = 0 \quad \text{in } W^{-1, i}(\Omega)^d \times L_0^r(\Omega) \quad \text{and} \quad E_A(Du, S) = 0.
\]

(18)

Theorem 2.12 ([28 Thm. 4.3 & Cor. 4.4]). For any \(U \in V(T_N) \) and \(P \in Q_0(T_N) \) the following bounds hold true:
\[
\langle R^{\text{pde}}(U, P, S^n(DU)), v \rangle \leq C_1 \sum_{K \in T_N} E_N^{\text{pde}}(U, P, S^n(DU); K)^{ij} \|v\|_{1, i't, (K)} + C_2 \left\| F_{N, \text{pde}}^n(U, P) \right\|_{N, -1, i't} \|J_N^{\text{pde}}v\|_{1, i't}
\]

(19)

for all \(v \in W_0^{1, r}(\Omega) \), and
\[
\left\| R^{\text{pde}}(U, P, S^n(DU)) \right\|_{W^{-1, i}(\Omega)^d} \leq \bar{C}_1 E_N^{\text{pde}}(U, P, S^n(DU))^{ij} + \bar{C}_2 \left\| F_{N, \text{pde}}^n(U, P) \right\|_{N, -1, i't},
\]

(20)

where \(C_1, \bar{C}_1, C_2, \) and \(\bar{C}_2 \) depend only on the shape-regularity, \(i' \), and on the dimension \(d \), however are independent of \(n, N \in \mathbb{N} \). Moreover,
\[
\langle R^{\text{ic}}(U), Q \rangle \leq \sum_{K \in T_N} E_N^{\text{ic}}(U; K)^{ij} \|Q\|_{i't, K}
\]

(21)

for any \(Q \in L_{i'}'(\Omega) \), and
\[
\left\| R^{\text{ic}}(U) \right\|_{i't} \leq E_N^{\text{ic}}(U).
\]

(22)

Proof. By the definition of \(R^{\text{pde}} \), cf. [14], and Remark 2.7 we have that
\[
\langle R^{\text{pde}}(U, P, S^n(DU)), v \rangle = \int_{\Omega} S^n(DU) : Dv + B[U, U] \cdot v - P \div v - f \cdot v \, dx
\]

for all \(v \in W_0^{1, r}(\Omega) \). Then, since \(J_{\text{div}}^N : W_0^{1, r}(\Omega)^d \to V(T_N) \), it follows from [11] that
\[
\langle R^{\text{pde}}(U, P, S^n(DU)), v \rangle = \int_{\Omega} \Pi_NS^n(DU) : D(v - J_{\text{div}}^Nv) + B[U, U] \cdot (v - J_{\text{div}}^Nv) - P \div (v - J_{\text{div}}^Nv) - \int_{\Omega} f \cdot (v - J_{\text{div}}^Nv) \, dx
\]

\[
+ \int_{\Omega} (S^n(DU) - \Pi_NS^n(DU)) : D(v - J_{\text{div}}^Nv) \, dx
\]

\[
+ \left\| F_{N, \text{pde}}^n(U, P), J_{\text{div}}^Nv \right\|.
\]

We note that, compared to the proof of [28 Thm. 4.3], we simply had to add the last term \(\langle F_{N, \text{pde}}^n(U, P), J_{\text{div}}^Nv \rangle \) on account of general discrete elements \(U \in V(T_N) \) and \(P \in Q_0(T_N) \); concerning this term, [13] and [5] imply that
\[
\langle F_{N, \text{pde}}^n(U, P), J_{\text{div}}^Nv \rangle \leq \left\| F_{N, \text{pde}}^n(U, P) \right\|_{N, -1, i't} \|J_{\text{div}}^Nv\|_{1, i't} \leq c_\delta \left\| F_{N, \text{pde}}^n(U, P) \right\|_{N, -1, i't} \|v\|_{1, i't}.
\]

The remainder can be bounded by standard techniques in a posteriori error analysis; indeed, similarly as was shown in the proof of [28 Thm. 4.3], we have by a local application of the
divergence theorem, Hölder’s inequality, the local stability of J_{div}^N, cf. [4], an interpolation estimate on $V(T_N)$, and a scaled trace theorem that

$$
\langle R^{\text{pde}}(U, P, S^n(DU)), v \rangle
\leq C \left(\sum_{K \in T_N} \left\{ \|h_K(- \text{div} \Pi_N S^n(DU) + B[U, U] + \nabla P - f)\|_{\tilde{L}^p, K} \|v\|_{1, p, \tilde{H}^N(K)}
+ \|h_K^{1/2} \|\Pi_N S^n(DU) - P\|\|v\|_{1, p, \tilde{H}^N(K)}
+ \|S^n(DU) - \Pi_N S^n(DU)\|_{\tilde{L}^p, K} \|v\|_{1, p, K} \right\}
+ \|\nabla \Pi_n^N(U, P)\|_{N, -1, \tilde{L}^p, \tilde{H}^N} \right)
$$

for some constant $C > 0$ independent of $n, N \in \mathbb{N}$; both [19] and [20] can be derived from this inequality by further applications of Hölder’s inequality and by the shape-regularity of the mesh. The remainder, i.e., [21] and [22], follow immediately from the definitions of $R^{ ic}$ and $E^{ ic}$, and Hölder’s inequality.

\[\square \]

3. Convergent Adaptive Iterative Linearised Finite Element Method

In the following, we will present an adaptive algorithm which exploits an interplay of the iterative linearised finite element method [10], adaptive mesh refinement, and graph approximation. In particular, we modify the AFEM and the corresponding analysis from [28] by taking into account inexact finite element approximations of [9] obtained by the iteration scheme [10]. We note that this can be done in a rather straightforward manner, and that the proofs only require minor adaptations; therefore, we will only give rough sketches of the proofs and highlight where the main differences occur.

For the remainder of this work, we assume that there exists a computable bound $\eta_{A,n} : L^r(\Omega; \mathbb{R}^{d \times d}_{\text{sym}}) \to \mathbb{R}_{\geq 0}$ such that

$$
\mathcal{E}_{A}(D, S^n(D)) \leq \eta_{A,n}(D) \quad \text{for all } D \in L^r(\Omega; \mathbb{R}^{d \times d}_{\text{sym}}).
$$

For instance, we may define

$$
\eta_{A,n}(D) := \int_{\Omega} |S^n(D) - S^*(D)|^{r'} \, dx.
$$

For the purpose of the convergence of the adaptive iterative linearised finite element method (AILFEM), cf. Algorithm [4], we need to further impose the following assumption.

Assumption 3.1. For every $\epsilon > 0$ there exists a positive integer $\hat{n} \in \mathbb{N}$ such that

$$
\eta_{A,n}(Dv) < \epsilon \quad \text{for all } v \in W_0^{1,r}(\Omega)^d \text{ and } n > \hat{n}.
$$

We note that this hypothesis is stronger than the related one [28, Assumption 5.6]. In particular, in contrast to [28], we do not want to include the term $\mathcal{E}_{A}(D, S^n(D))$ in our algorithm below, since it is, in general, not computable; in this case, however, [28, Assumption 5.6] is not sufficient to prove Step 4 of the proof of Theorem 3.6 in Appendix A.

In Algorithm [4] and below we use the following abbreviations:

$$
\begin{align*}
F_{N, pde}^{n, \ell} &:= F_{N, pde}^{n, \ell}(U_N^{n, \ell}, P_N^{n, \ell}), \\
F_{N, ic}^{n, \ell} &:= F_{N, ic}^{n, \ell}(U_N^{n, \ell}), \\
\mathcal{E}_N(n, \ell) &:= \mathcal{E}_N(U_N^{n, \ell}, P_N^{n, \ell}), \\
\mathcal{E}_{A}(N, n, \ell) &:= \mathcal{E}_{A}(DU_N^{n, \ell}, S^n(DU_N^{n, \ell})), \\
\eta_{A}(N, n, \ell) &:= \eta_{A,n}(DU_N^{n, \ell}).
\end{align*}
$$
Moreover, $\zeta : \mathbb{N} \rightarrow \mathbb{R}_{>0}$ is any given function such that
\[\zeta(N) \rightarrow 0 \quad \text{as} \quad N \rightarrow \infty. \tag{23} \]

Algorithm 1 Adaptive iterative linearised finite element method (AILFEM)

1: Input initial guesses $U^{0,0}_0 \in V(T_0)$ and $P^{0,0}_0 \in Q_0(T_0)$ for an initial triangulation T_0 of Ω.
2: Let $N = \ell = 0$ and $n_0 = 1$.
3: loop
4: \hspace{1em} while $\| F_{N,pde}^n,\ell \|_{N,-1,t'} + \| F_{N,ie}^n,\ell \|_{N,-1,r} \geq \inf \{ \max \{ E_N(n_N, \ell), \eta_A(N, n_N, \ell) \}, \zeta(N) \} \ do$
5: \hspace{2em} Let $(U_{N}^{n+1}, P_{N}^{n+1}) = \Phi_N^n(U_{N}^{n,\ell}, P_{N}^{n,\ell})$.
6: \hspace{2em} $\ell \leftarrow \ell + 1$.
7: end while
8: Set $\ell_N := \ell$.
9: if $E_N(n_N, \ell_N) \geq \eta_A(N, n_N, \ell_N)$ then
10: \hspace{1em} MARK and REFINE the mesh to obtain T_{N+1} from T_N.
11: \hspace{1em} Let $n_{N+1} = n_N$.
12: \hspace{1em} else
13: \hspace{2em} Let $n_{N+1} = n_N + 1$.
14: end if
15: $N \leftarrow N + 1$.
16: end loop

Remark 3.2. Since $t \leq \max \{ t', r \}$ and as Ω is a bounded domain, there exist constants $C_r, C_t > 0$ independent of N, n, ℓ such that
\[\| F_{N,pde}^n,\ell \|_{N,-1,t'} \leq C_r \| F_{N,pde}^n,\ell \|_{N,-1,t} \quad \text{and} \quad \| F_{N,ie}^n,\ell \|_{N,-1,t} \leq C_t \| F_{N,pde}^n,\ell \|_{N,-1,t} . \]

Similarly,
\[\| F_{N,ie}^n,\ell \|_{N,-1,t} \leq C \| F_{N,ie}^n,\ell \|_{N,-1,r} \]
for some constant $C > 0$ independent of N, n, ℓ. Moreover, in view of Assumption 2.8 and the equivalence of the norms in finite-dimensional spaces, the while-loop in Algorithm [1] (lines 4–7) terminates after finitely many steps.

For the subroutine MARK we may either employ the Maximum or Dörfler strategy, see [4] and [14], respectively. Subsequently, we use a refinement procedure, which bisects all marked elements at least once, removes any hanging nodes, and guarantees the shape-regularity of the sequence of meshes $\{ T_N \}_N$. For instance, but not exclusively, we can apply Newest Vertex Bisection, cf. [32].

We need one more assumption for the convergence of the sequence of iterates generated:

Assumption 3.3. Let $\{ (U_{N}^{n,\ell,N}, P_{N}^{n,\ell,N}) \}_N \subset W_0(\Omega)^d \times L^2(\Omega)$ be the sequence generated by Algorithm [1]. Then, at least one of the following two boundedness properties holds:

- There exist constants c_p, \tilde{c}_r and $s \in [1, r)$ such that
 \[\langle F_{N,ie}^n,\ell, P_{N,ie}^n,\ell \rangle \leq c_p + \tilde{c}_r \| U_{N}^{n,\ell,N} \|_{1,r}^s \quad \text{for all} \quad N = 0, 1, 2, \ldots ; \tag{24} \]

- There exists a constant $c_U > 0$ such that
 \[\| U_{N}^{n,N} - U_{N}^{n,\ell,N} \|_{1,r} \leq c_U \quad \text{for all} \quad N = 0, 1, 2, \ldots , \tag{25} \]
where $U_{N}^{n,N}$ is the velocity vector of a solution of $[9]$.
Remark 3.4. We emphasize that (24) is certainly satisfied if the sequence \(\{P_{N}^{n,\ell,N}\}_{N} \) is uniformly bounded in \(L^{r}(\Omega) \), or if \(U_{N}^{n,\ell,N} \), for \(N = 0, 1, 2, \ldots \), are discretely divergence-free; in the latter case, we indeed have that \(\langle F_{N,ic}^{n,\ell,N}, P_{N}^{n,\ell,N} \rangle = 0 \).

The purpose of Assumption 3.3 is to guarantee the uniform boundedness of \(\left\| U_{N}^{n,\ell,N} \right\|_{1,r} \), and, in turn by (2), the uniform boundedness of \(\left\| S^{n,N}(DU_{N}^{n,\ell,N}) \right\|_{r'} \).

Lemma 3.5. Given Assumption 3.3, we have that
\[
\left\| U_{N}^{n,\ell,N} \right\|_{1,r} + \left\| S^{n,N}(DU_{N}^{n,\ell,N}) \right\|_{r'} \leq c_{r} \quad \text{for all } N = 0, 1, 2, \ldots,
\]
where \(c_{r} \) depends on the source function \(f \), the constants \(\tilde{c}_{1}, \tilde{c}_{2} \) from Assumption 2.1, the functions \(\hat{k} \) and \(\hat{m} \) from Assumption 2.7, the constants \(c_{p} \) and \(\tilde{c}_{p} \) from Assumption 3.5, \(\zeta_{\max} := \max_{N \in \mathbb{N}} (\zeta(\cdot)) \), and the constant \(C_{r} \) from Remark 3.3.

Proof. By our observation from before, we only need to verify the uniform boundedness of the generated sequence of velocity vectors. The assumption (25) immediately implies the uniform boundedness of \(\left\| U_{N}^{n,\ell,N} \right\|_{1,r} \), since \(U_{N}^{n,\ell} \) is uniformly bounded in \(n \) and \(N \), cf. (28) § 3.4.

Now let (24) be given. For the proof of this case we will proceed along the lines of (28) § 3.4. By the definitions (11) and (12) and the skew-symmetry (8) we have that
\[
\int_{\Omega} S^{n,N}(DU_{N}^{n,\ell,N}) : DU_{N}^{n,\ell,N} \, dx = \int_{\Omega} f \cdot U_{N}^{n,\ell,N} \, dx + \left(F_{N,ic}^{n,\ell,N}, P_{N}^{n,\ell,N} \right) + \left(F_{N,pde}^{n,\ell,N}, U_{N}^{n,\ell,N} \right);
\]
we note the latter two summands arise, in contrast to (28) § 3.4, since we are considering inexact finite element approximations of (9) that are possibly not discretely divergence-free. Invoking the assumption (24) and the modus operandi of Algorithm 1, we obtain the upper bound
\[
\int_{\Omega} S^{n,N}(DU_{N}^{n,\ell,N}) : DU_{N}^{n,\ell,N} \, dx \leq \left(\left\| f \right\|_{-1,r'} + C_{r} \zeta_{\max} \right) \left\| U_{N}^{n,\ell,N} \right\|_{1,r} + c_{p} + \tilde{c}_{p} \left\| U_{N}^{n,\ell,N} \right\|_{1,r}.
\]
Consequently, since \(1 \leq s < r \), Assumption 2.1 cf. (3) implies that \(\left\| U_{N}^{n,\ell,N} \right\|_{1,r} \) is uniformly bounded, and thus the claim is verified.

Finally, we will state the convergence property of the AILFEM, cf. Algorithm 1.

Theorem 3.6 (28, Cor. 5.8). Let \(\{(U_{N}^{n,\ell,N}, P_{N}^{n,\ell,N})\}_{N} \subset W_{0}^{1}(\Omega)^{d} \times L_{0}^{0}(\Omega) \) be the sequence generated by Algorithm 1. Given all the assumptions made so far, we have that there exists a subsequence of \(\{(U_{N}^{n,\ell,N}, P_{N}^{n,\ell,N}), S^{n,N}(DU_{N}^{n,\ell,N})\}_{N} \) with weak limit \((u_{\infty}, p_{\infty}, S_{\infty}) \in W_{0}^{1,r}(\Omega)^{d} \times L_{0}^{0}(\Omega) \times L_{r'}^{0}(\Omega; \mathbb{R}^{d \times d}) \) that solves (1).

A sketch of the proof of Theorem 3.6 shall be postponed to Appendix A.

4. Application to Bingham fluids

In this section we will apply AILFEM, cf. Algorithm 1 to Bingham fluids\(^2\). Those fluids have wide-ranging applications, for instance in gas and oil industry, cf. [16], or in the food industry, cf. [33], and were introduced in the early 1920s by E.C. Bingham, cf. [7]. Bingham fluids behave like a rigid body as long as the shear stress is below a threshold value, the so-called yield stress \(\sigma \), and like a Newtonian fluid for shear stress exceeding this value. In particular, one has that
\[
\left| D \right| = 0 \iff \left| S \right| \leq \sigma,
\]
\[
\left| D \right| > 0 \iff S = \sigma \frac{D}{|D|} + 2\nu D,
\]
2We note that this approach can equally be applied to certain Herschel-Bulkley fluids. However, for simplicity of the presentation, we will restrict the analysis to Bingham fluids.
where ν denotes the viscosity of the fluid. In turn, a measurable selection of the corresponding maximal monotone 2-graph is given by

$$S^*(D) = \begin{cases} 0 & \text{if } |D| = 0, \\ \frac{\sigma}{\sqrt{|D|^2 + n^2}} + 2\nu D & \text{else.} \end{cases}$$

For the approximation of $S^* : \Omega \times \mathbb{R}^{d \times d}_{\text{sym}} \to \mathbb{R}^{d \times d}_{\text{sym}}$ by a sequence of strictly monotone mappings we will use the Bercovier–Engelman regularisation, cf. [6]:

$$S_n^*(D) := \left(\frac{\sigma}{\sqrt{|D|^2 + n^2}} + 2\nu\right) D = \left(\frac{\sigma}{|D|_n^2} + 2\nu\right) D, \quad n = 1, 2, \ldots, \quad (27)$$

where $|\kappa|_n := \sqrt{|\kappa|^2 + n^{-2}}$ for $\kappa \in \mathbb{R}^{d \times d}_{\text{sym}}$. Indeed, this graph approximation satisfies Assumption 2.1, and, for $\eta_{A_n}(D) := \int_\Omega |S_n^*(D) - S^*(D)|' \, dx$, Assumption 3.1 is satisfied as well; cf. [28, §7]. Then, the weak formulation of the regularised discrete Bingham fluid flow problem reads as follows: find $(U_N^n, P_N^n) \in V(T_N) \times Q_0(T_N)$ such that

$$\int_\Omega \left(\frac{\sigma}{|DU_N^n|_n} + 2\nu\right) DU_N^n : DV \, dx + \mathcal{B}(U_N^n; U_N^n, V) - \int_\Omega P_N^n \operatorname{div} V \, dx = \int_\Omega f \cdot V \, dx \quad (28a)$$

$$- \int_\Omega Q \operatorname{div} U_N^n \, dx = 0 \quad (28b)$$

for all $(V, Q) \in V(T_N) \times Q(T_N)$. Upon defining

$$a_n(U; V, W) := \int_\Omega \left(\frac{\sigma}{|DU|_n} + 2\nu\right) DV : DW \, dx, \quad U, V, W \in V(T_N), \quad (29)$$

and

$$b(Q, V) := - \int_\Omega Q \operatorname{div} V \, dx, \quad V \in V(T_N), \quad Q \in Q(T_N),$$

the problem [28] can be stated equivalently as follows: find $(U_N^n, P_N^n) \in V(T_N) \times Q_0(T_N)$ such that

$$a_n(U_N^n; U_N^n, V) + \mathcal{B}(U_N^n; U_N^n, V) + b(P_N^n, V) = \int_\Omega f \cdot V \, dx \quad (30a)$$

$$b(Q, U_N^n) = 0 \quad (30b)$$

for all $(V, Q) \in V(T_N) \times Q(T_N)$.

In the following, we will examine the regularised Bingham problem [30], and thereby introduce an iterative solver; initially, we will restrict ourselves to the case of a slowly flowing fluid, i.e., we will neglect the convection term, and subsequently analyse the general case involving the convection term.

4.1. Kačanov iteration for slowly flowing Bingham fluids

As mentioned before, to begin with we will neglect the convection term. Consequently, the problem amounts to finding $(U_N^n, P_N^n) \in V(T_N) \times Q_0(T_N)$ such that

$$a_n(U_N^n; U_N^n, V) + b(P_N^n, V) + b(Q, U_N^n) = \int_\Omega f \cdot V \, dx \quad (31)$$

for all $(V, Q) \in V(T_N) \times Q(T_N)$. We will now state some properties, partially borrowed from [3], of the form $a_n : V(T_N) \times V(T_N) \times V(T_N) \to \mathbb{R}$ defined in [29], which will be important in the analysis later on. But first, let us recall Korn's inequality:

$$\|Du\|_2 \leq \|u\|_{1,2} \leq \sqrt{2} \|Du\|_2 \quad \text{for all } u \in W^{1,2}_0(\Omega)^d. \quad (32)$$

Lemma 4.1. (a) For $\mu(t) := \frac{\sigma}{\sqrt{t+n^2}} + 2\nu$, $t \geq 0$, we have that

$$2\nu(t-s) \leq \mu_n(t^2) - \mu_n(s^2)s \leq (\sigma n + 2\nu)(t-s) \quad \text{for all } t \geq s \geq 0. \quad (33)$$
(b) For any $U \in \mathcal{V}(T_N)$, the bilinear form $a_n(U; \cdot, \cdot)$ is uniformly coercive with
\[
a_n(U; V, V) \geq \nu \|V\|_{1,2}^2 \quad \text{for all } V \in \mathcal{V}(T_N),
\]
and bounded with
\[
a_n(U; V, W) \leq (\sigma_n + 2\nu) \|V\|_{1,2} \|W\|_{1,2} \quad \text{for all } V, W \in \mathcal{V}(T_N). \tag{34}
\]

(c) The strong monotonicity property
\[
a_n(U; U, U - V) - a_n(V; U, U - V) \geq \nu \|U - V\|_{1,2}^2,
\]
as well as the Lipschitz continuity
\[
a_n(U; U, W) - a_n(V; V, W) \leq (\sqrt{3}\sigma_n + 2\nu) \|U - V\|_{1,2} \|W\|_{1,2} \tag{36}
\]
hold for all $U, V, W \in \mathcal{V}(T_N)$.

Proof. In order to prove (a), let us define $\xi_n(t) := \mu_n(t^2)t$. Then, by the mean-value theorem we have that
\[
\inf_{\tau \geq 0} \xi_n'(\tau)(t - s) \leq \mu_n(t^2)\tau - \mu_n(s^2)\tau \leq \sup_{\tau \geq 0} \xi_n'(\tau)(t - s) \quad \text{for all } t \geq s \geq 0.
\]
Moreover, a straightforward calculation reveals that
\[
\xi_n'(\tau) = 2\nu + \frac{\sigma_n - 2}{(\tau^2 + n^{-2})^{\frac{3}{2}}},
\]
and, in turn,
\[
2\nu \leq \xi_n'(\tau) \leq 2\nu + \sigma_n \quad \text{for all } \tau \geq 0;
\]
this yields (a). The assertion (b) can be shown in a straightforward manner by invoking Korn’s inequality [32]. In order to verify (c), we first note that it can be shown that
\[
\|DU - DV\|_2^2 \geq \frac{\|DU\|_n^2 - \|DV\|_n^2}{\|DU\|_n^2} |DV : DU - DV| \tag{33}
\]

Consequently,
\[
a_n(U; U, U - V) - a_n(V; V, U - V)
\]
\[
= \int_{\Omega} 2\nu|DU - DV|^2 + \sigma \left(|DU - DV|^2 - \frac{\|DU\|_n^2 - \|DV\|_n^2}{\|DU\|_n^2} DV : DU - DV \right) \, dx
\]
\[
\geq \int_{\Omega} 2\nu|DU - DV|^2 \, dx
\]
\[
\geq \nu \|U - V\|_{1,2}^2.
\]
Finally, the asserted Lipschitz continuity can be established as in the proof of [23, Prop. 2.2(b)] thanks to (33).

With the properties stated in Lemma 4.1, it can be shown that the weak convection-free problem (31) has a unique solution.

Proposition 4.2 ([3] Prop. 1). The problem (31) has a unique solution $(U_n^0, P_n^0) \in \mathcal{V}(T_N) \times \mathcal{Q}_0(T_N)$ with $\|U_n^0\|_{1,2} \leq \nu^{-1}C_P \|f\|_2$, where C_P is the constant from the Poincaré–Friedrichs inequality.

In order to approximate the unique solution $(U_n^0, P_n^0) \in \mathcal{V}(T_N) \times \mathcal{Q}_0(T_N)$ of (31), we will employ the Kačanov iteration, see, e.g., [17,21,40] and Kačanov’s original work [27], which is defined as follows: given $U_n^{0,\ell} \in \mathcal{V}(T_N)$ and $P_n^{0,\ell+1} \in \mathcal{V}(T_N) \times \mathcal{Q}_0(T_N)$ such that
\[
a_n(U_n^{0,\ell}; U_n^{0,\ell+1}, V) + b(P_n^{0,\ell+1}, V) + b(Q, U_n^{0,\ell+1}) = \int_{\Omega} f \cdot V \, dx \tag{37}
\]
for all $(V, Q) \in \mathcal{V}(T_N) \times \mathcal{Q}(T_N)$, where $U_n^{0,0} \in \mathcal{V}(T_N)$ is an initial guess. Thanks to Lemma 4.1 the Kačanov iteration (37) is well-defined, see, e.g., [3, §3]. Moreover, Assumption 3.3 is satisfied.
since the velocity vectors $\mathbf{U}^{n,\ell}_N$ are discretely divergence-free; cf. Remark 3.4. It remains to show that the sequence generated by the Kačanov iteration converges to the unique solution established in the proposition above, which will be done based on the works \cite{22,25}. For that purpose we define the functional $H_n : \mathbb{V}(T_N) \to \mathbb{R}$ by

$$
H_n(\mathbf{U}) := \int_{\Omega} \varphi_n(|D\mathbf{U}|^2) \, dx - \int_{\Omega} \mathbf{f} \cdot \mathbf{U} \, dx,
$$

(38)

where

$$
\varphi_n(s) := \frac{1}{2} \int_0^s \mu_n(t) \, dt \quad \text{with} \quad \mu_n(t) = \frac{\sigma}{\sqrt{t + n^2}} + 2\nu,
$$

for $s,t \geq 0$. In particular,

$$
H_{n}(\mathbf{U}) = \int_{\Omega} (\sigma |D\mathbf{U}|^2 + \nu|D\mathbf{U}|^2) \, dx - \int_{\Omega} \mathbf{f} \cdot \mathbf{U} \, dx.
$$

Moreover, we have that

$$
\langle H_n'(\mathbf{U}), \mathbf{V} \rangle = a_n(\mathbf{U}; \mathbf{U}, \mathbf{V}) - \int_{\Omega} \mathbf{f} \cdot \mathbf{V} \, dx,
$$

where H_n' denotes the Gateaux derivative of H_n. We will now state some known properties – in a slightly different setting – of the functional H_n, cf. (38).

Lemma 4.3. (A) For any $\mathbf{U}, \mathbf{V} \in \mathbb{V}(T_N)$ we have that

$$
H_n(\mathbf{U}) - H_n(\mathbf{V}) \geq \frac{1}{2} \alpha_n(\mathbf{U}; \mathbf{U}, \mathbf{U}) - \frac{1}{2} \alpha_n(\mathbf{U}; \mathbf{V}, \mathbf{V}) - \int_{\Omega} \mathbf{f} \cdot \mathbf{U} \, dx + \int_{\Omega} \mathbf{f} \cdot \mathbf{V} \, dx.
$$

(B) Let $\mathbf{U}^n_N \in \mathbb{V}_0(T_N)$ denote the velocity vector of the unique solution of (31). Then, \mathbf{U}^n_N is the global minimiser of H_n in $\mathbb{V}_0(T_N)$, and we have that

$$
\frac{\nu}{2} \| \mathbf{U} - \mathbf{U}^n_N \|_{1,2}^2 \leq H_n(\mathbf{U}) - H_n(\mathbf{U}^n_N) \leq \frac{\sqrt{3\sigma n + 2\nu}}{2} \| \mathbf{U} - \mathbf{U}^n_N \|_{1,2}^2
$$

for all $\mathbf{U} \in \mathbb{V}_0(T_N)$.

(C) Let $\{\mathbf{U}^{n,\ell}_N\}_{\ell} \subset \mathbb{V}_0(T_N)$ be the sequence generated by (37). Then, the following monotonicity property holds:

$$
H_n(\mathbf{U}^{n,\ell+1}_N) - H_n(\mathbf{U}^{n,\ell}_N) \geq \frac{\nu}{2} \| \mathbf{U}^{n,\ell+1}_N - \mathbf{U}^{n,\ell}_N \|_{1,2}^2 \quad \text{for all } \ell = 0, 1, 2, \ldots.
$$

For the proof of (A) we refer to \cite[Lem. 3.1]{23}. The assertion (B) can be shown in the same way as \cite[Lem. 2]{25}, using the properties from Lemma 4.1 and noting that we only consider discretely divergence-free velocity vectors. Finally, the property (C) follows as in the proof of \cite[Thm. 2.5]{24}, since the velocities involved are again discretely divergence-free.

Now we are in a position to prove the convergence of the sequence of velocity vectors $\{\mathbf{U}^{n,\ell}_N\}_{\ell}$ generated by (37) to $\mathbf{U}^n_N \in \mathbb{V}(T_N)$. The following result, as well as its proof, are borrowed from \cite[Thm. 1]{22}; however, as the setting in this work is slightly different, we recall the proof of the statement.

Theorem 4.4. Let $\mathbf{U}^n_N \in \mathbb{V}_0(T_N)$ be the velocity vector of the unique solution of (31) and let $\{\mathbf{U}^{n,\ell}_N\}_{\ell} \subset \mathbb{V}_0(T_N)$ be the sequence generated by the iteration scheme (37). Then, the following a posteriori error estimate holds:

$$
\| \mathbf{U}^{n,\ell}_N - \mathbf{U}^n_N \|_{1,2} \leq \frac{\sigma n + 2\nu}{\nu} \| \mathbf{U}^{n,\ell+1}_N - \mathbf{U}^{n,\ell}_N \|_{1,2}, \quad \ell = 0, 1, 2, \ldots
$$

Moreover, H_n contracts along the sequence generated by (37):

$$
H_n(\mathbf{U}^{n,\ell+1}_N) - H_n(\mathbf{U}^n_N) \leq q_{\text{con}}(H_n(\mathbf{U}^{n,\ell}_N) - H_n(\mathbf{U}^n_N)),
$$

\[3\]Without loss of generality we assume here and in the following that $\mathbf{U}^{n,0}_N \in \mathbb{V}_0(T_N)$.
Proof. We first address the a posteriori error estimate. The strong monotonicity (35) yields that
\[\nu \left\| U_n^{n,\ell} - U_n^{n} \right\|_{1,2}^2 \leq a_n(U_n^{n,\ell}; U_n^{n,\ell}, U_n^{n,\ell} - U_n^{n}) - a_n(U_n^{n}; U_n^{n}, U_n^{n,\ell} - U_n^{n}). \]

Then, since \(U_n^{n,\ell} \) and \(U_n^{n,\ell} \) are discretely divergence-free, i.e., \(b(P_n^{n,\ell}, U_n^{n,\ell} - U_n^{n}) = b(Q, U_n^{n}) = 0 \) for all \(Q \in Q(T_N) \), (31) implies that \(a_n(U_n^{n}; U_n^{n}, U_n^{n,\ell} - U_n^{n}) = \int_{\Omega} f \cdot (U_n^{n,\ell} - U_n^{n}) \, dx \), and, in turn,
\[\nu \left\| U_n^{n,\ell} - U_n^{n} \right\|_{1,2}^2 \leq a_n(U_n^{n,\ell}; U_n^{n,\ell}, U_n^{n,\ell} - U_n^{n}) - \int_{\Omega} f \cdot (U_n^{n,\ell} - U_n^{n}) \, dx. \]

Now recalling the iteration scheme (37) and that \(U_n^{n,\ell+1} \) is discretely divergence-free, this further leads to
\[\nu \left\| U_n^{n,\ell} - U_n^{n} \right\|_{1,2}^2 \leq a_n(U_n^{n,\ell}; U_n^{n,\ell}, U_n^{n,\ell+1}, U_n^{n,\ell} - U_n^{n}). \]

Finally, by invoking the bound (34), we get
\[\left\| U_n^{n,\ell} - U_n^{n} \right\|_{1,2} \leq \frac{\sigma n + 2\nu}{\nu} \left\| U_n^{n,\ell+1} - U_n^{n,\ell} \right\|_{1,2}. \]

Next, we will establish the contraction of \(H_n \) along \(\{U_n^{n,\ell}\} \). Indeed, we have that
\[H_n (U_n^{n,\ell+1}) - H_n (U_n^{n}) = H_n (U_n^{n,\ell}) - H_n (U_n^{n}) - (H_n (U_n^{n,\ell+1}) - H_n (U_n^{n,\ell})). \]
\[\overset{39}{\leq} H_n (U_n^{n,\ell}) - H_n (U_n^{n}) - \frac{\nu}{2} \left\| U_n^{n,\ell+1} - U_n^{n,\ell} \right\|_{1,2}^2. \]
\[\overset{31}{\leq} H_n (U_n^{n,\ell}) - H_n (U_n^{n}) - \frac{\nu^3}{2(\sigma n + 2\nu)^2} \left\| U_n^{n,\ell} - U_n^{n} \right\|_{1,2}^2. \]
\[\overset{39}{\leq} \frac{\nu^3}{(\sqrt{3} \sigma n + 2\nu)(\sigma n + 2\nu)^2} (H_n (U_n^{n,\ell}) - H_n (U_n^{n})), \]
which shows (42). \(\square \)

Remark 4.5. We emphasize that related results can be found in [12] and [23].

Corollary 4.6. As before, let \(U_n^{n} \) be the velocity vector of the unique solution of (31) and let \(\{U_n^{n,\ell}\} \) be the sequence generated by (37). Then the following inequality holds:
\[\left\| U_n^{n} - U_n^{n,\ell} \right\|_{1,2} \leq \sqrt{\frac{\sqrt{3} \sigma n + 2\nu}{\nu} q_{\text{con}}^{\ell/2}} \left\| U_n^{n} - U_n^{n,0} \right\|_{1,2}. \] (43)

Thus, since \(q_{\text{con}} \in (0, 1) \), we have that \(U_n^{n,\ell} \to U_n^{n} \) for \(\ell \to \infty \).

Proof. This follows immediately from Theorem 4.4 and (39). \(\square \)

Next, we will establish the convergence of the sequence of iterations for the pressure.

Corollary 4.7. Let \((U_n^{n}, P_n^{n}) \in V(T_N) \times Q_0(T_N) \) be the unique solution of (31), and let \(\{U_n^{n,\ell}, P_n^{n,\ell}\} \) be the sequence generated by (37). Then we have that
\[\left\| P_n^{n} - P_n^{n,\ell+1} \right\|_{2} \leq \beta_2^{-1}(\sqrt{3} \sigma n + 3)(\sigma n + 2\nu) \left\| U_n^{n,\ell+1} - U_n^{n,\ell} \right\|_{1,2}, \] (44)
and \(P_n^{n,\ell} \to P_n^{n} \) as \(\ell \to \infty \).
Proof. Take any $V \in \mathcal{V}(T_N)$. Since both U_N^n and $U_N^{n,\ell+1}$ are discretely divergence-free, it follows from (31) and (37) that
\[
b(P_N^n - P_N^{n,\ell+1}, V) = a_n(U_N^n; U_N^{n,\ell+1}, V) - a_n(U_N^n; U_N, V) = a_n(U_N^n; U_N, V) + a_n(U_N^n; U_N, V) - a_n(U_N^n; U_N, V).
\]
Invoking (34), (36), and, subsequently, (41), we find that
\[
b(P_N^n - P_N^{n,\ell}, V) \leq (\sigma n + 2\nu) \left\|U_N^n + 1 - U_N^n\right\|_1 \left\|V\right\|_1 + (\sqrt{3}\sigma n + 2\nu) \left\|U_N^n - U_N^n\right\|_1 \left\|V\right\|_1
\leq (\sigma n + 2\nu) \left\|U_N^n + 1 - U_N^n\right\|_1 \left\|V\right\|_1 + (\sqrt{3}\sigma n + 2\nu) \left\|U_N^n - U_N^n\right\|_1 \left\|V\right\|_1
= (\sqrt{3}\sigma n + 3)(\sigma n + 2\nu) \left\|U_N^n + 1 - U_N^n\right\|_1 \left\|V\right\|_1 .
\]
Finally, the discrete inf-sup condition (6) implies (44). The convergence of the pressure sequence now follows immediately from Corollary 4.6. \qed

We remark that, thanks to Corollaries 4.6 and 4.7, the Assumption 2.8 is satisfied, since $F_{N,pde}^n : \mathcal{V}(T_N) \times \mathcal{Q}_0(T_N) \rightarrow \mathcal{V}(T_N)^*$ is a continuous operator. Nonetheless, we will state a convenient upper bound for the discrete residual.

Corollary 4.8. Let $(U_N^n, P_N^n) \in \mathcal{V}(T_N) \times \mathcal{Q}_0(T_N)$ be the unique solution of (31), and let $(U_N^n, P_N^{n,\ell})$ be the sequence generated by (37). Then we have that
\[
\left\|F_{N,pde}^{n,\ell}\right\|_{N, -1, 2} \leq \left(2\sqrt{3}\sigma n^2 + 5(\sqrt{3} + 1)\sigma n + 12\nu\right) \left\|U_N^n - U_N^{n,\ell-1}\right\|_{1, 2},
\]
and
\[
\left\|F_{N,ic}^{n,\ell}\right\|_{N, -1, 2} = 0.
\]
Consequently,
\[
\left\|F_{N,pde}^{n,\ell}\right\|_{N, -1, 2} + \left\|F_{N,ic}^{n,\ell}\right\|_{N, -1, 2} \rightarrow 0 \quad \text{for} \quad \ell \rightarrow \infty.
\]

Proof. Since $(U_N^n, P_N^n) \in \mathcal{V}_0(T_N) \times \mathcal{Q}_0(T_N)$ is a solution of (31), we find that, for any $V \in \mathcal{V}(T_N)$,
\[
\langle F_{N,pde}^n(U_N^n, P_N^n), V \rangle = \langle F_{N,pde}^n(U_N^n, P_N^{n,\ell}), V \rangle = \langle F_{N,pde}^n(U_N^n, P_N^n), V \rangle - a_n(U_N^n; U_N, V) + b(P_N^n - P_N^n, V).
\]
Hence, by (36) and (the proof of) Corollary 4.7, it further follows that
\[
\langle F_{N,pde}^n, V \rangle \leq (\sqrt{3}\sigma n + 2\nu) \left\|U_N^n - U_N^n\right\|_1 \left\|V\right\|_1 + (\sqrt{3}\sigma n^2 + 3)(\sigma n + 2\nu) \left\|U_N^n - U_N^{n,\ell-1}\right\|_1 \left\|V\right\|_1 .
\]
Finally, recalling (41) and employing the triangle inequality yields
\[
\langle F_{N,pde}^n, V \rangle \leq (\sqrt{3}\sigma n + 2\nu)(\sigma n^2 + 3) + (\sqrt{3}\sigma n^2 + 3)(\sigma n + 2\nu) \left\|U_N^n - U_N^{n,\ell-1}\right\|_1 \left\|V\right\|_1 ,
\]
which implies the first estimate. Moreover, (45) follows immediately from the definition of $F_{N,ic}^n$, cf. (12), and as $U_N^{n,\ell}$ is discretely divergence-free. \qed

Remark 4.9. The Kačanov scheme (37) was already considered in the paper [3], in which it was referred to as the Picard iteration. However, we (significantly) improved their convergence results, cf. [3] Prop. 4 & Thm. 2. We further note that both of our convergence results, cf. (13) and (44), depend adversely on the regularisation parameter n; in particular, the convergence may slow down for increasing n, which was already observed in [20]. Just recently, this issue was addressed in [35]. Indeed, those authors proposed a nonlinear solver based on Anderson
acceleration, introduced in [2], applied to the iteration scheme (37) in order to accelerate the convergence. Moreover, this also lead to a method that is, to a certain extent, robust with respect to the regularisation parameter n.

4.2. Zarantonello iteration for general Bingham fluids. Now we will also incorporate the convection term. Restricting the test functions to $V_0(T_N)$, the problem reduces to finding $U^n_N \in V_0(T_N)$ such that

$$a_n(U^n_N; U^n_N, V) + B(U^n_N; U^n_N, V) = \int_\Omega f \cdot V \, dx \quad \text{for all } V \in V_0(T_N).$$

(46)

Let us define, for any given $U \in V(T_N)$, the linear and invertible operator $A^n_N[U] : V(T_N) \rightarrow V(T_N)^*$ by

$$A^n_N[U](V) := a_n(U; V, W) \quad \text{for all } V, W \in V(T_N),$$

(47)

and $F^n_N : V(T_N) \rightarrow V(T_N)^*$ by

$$(F^n_N(U), V) := A^n_NU(V) + B[U, U, V] - f(V),$$

(48)

where $f(V) := \int_\Omega f \cdot V \, dx$ for all $V \in V(T_N)$. Then, problem (46) can be stated equivalently as follows: find $U^n_N \in V_0(T_N)$ such that

$$F^n_N(U^n_N) = 0 \quad \text{in } V_0(T_N)^*,$$

(49)

and (30a) can be restated as

$$b(P^n_R, V) = - (F^n_N(U^n_N), V) \quad \text{for all } V \in V(T_N).$$

(50)

We will consider the following fixed-point iteration scheme for the solution of (49):

$$U^{n+1}_N = T^n_N(U^n_N, 0) := U^n_N - \delta J^{-1}F^n_N(U^n_N),$$

(51)

where $U^{0, n}_N \in V_0(T_N)$ is an initial guess and $\delta > 0$ is a damping parameter. Moreover, $J : V_0(T_N) \rightarrow V_0(T_N)^*$ denotes the isometric isomorphism between $V_0(T_N)$ and $V_0(T_N)^*$ from the Riesz representation theorem, where $V_0(T_N)$ is endowed with the inner-product $(U, V) = \int_\Omega \langle U, V \rangle \, dx$. We note that (51) is, in particular, the Zarantonello iteration, cf. Zarantonello’s original work [39] or the monograph [40] §25.4. Moreover, the iteration scheme (51) can be stated equivalently as

$$\int_\Omega D U^{n+1}_N : D V \, dx = \int_\Omega D U^n_N : D V - \delta (F^n_N(U^n_N), V) \quad \text{for all } V \in V_0(T_N).$$

(52)

We will now examine the convergence of this iteration scheme. First, we will establish the self-mapping property $T^n_N : B^{N, u}_R \rightarrow B^{N, u}_R$, where $B^{N, u}_R := \{ U \in V_0(T_N) : \|DU\|_2 \leq R \}$ for a suitable choice of $R > 0$.

Lemma 4.10. Assume the small data property

$$\|f\|_* := \sup_{V \in V_0(T_N) \setminus \{0\}} \frac{f(V)}{\|D V\|_2} \leq \frac{\nu^2}{2\sqrt{2C_B}}.$$

(53)

If $0 < \delta \leq 2(4\nu + \sigma n)^{-1}$, then we have that

$$T^n_N(B^{N, u}_R) \subseteq B^{N, u}_R \quad \text{for} \quad \frac{\nu - \sqrt{\nu^2 - 2\sqrt{2C_B}\|f\|_*}}{2\sqrt{2C_B}} \leq R \leq \frac{\nu + \sqrt{\nu^2 - 2\sqrt{2C_B}\|f\|_*}}{2\sqrt{2C_B}};$$

(54)

in particular, the radius R is independent of $n, N \in \mathbb{N}$.

4This follows from the Lax–Milgram theorem, since, for any $U \in V(T_N)$, $a_n(U; \cdot, \cdot)$ is coercive and bounded on $V(T_N) \times V(T_N)$.
Theorem 4.11. \(L \) is Lipschitz continuous on \(\nu \).

Proof. By the definitions of the operators \(T^n_N \), \(F^n_N \), and \(A^n_N \), cf. (51), (48), and (47), respectively, we have that

\[
\| DT^n_N(U) \|_2^2 = \int_{\Omega} DU : DT^n_N(U) \, dx - \delta u_n(U, U, T^n_N(U)) - \delta B[U; U, T^n_N(U)] + \delta f(T^n_N(U))
\]

\[
= \int_{\Omega} (1 - \delta u_n(|DU|^2)) DU : DT^n_N(U) \, dx - \delta B[U; U, T^n_N(U)] + \delta f(T^n_N(U)).
\]

Thanks to (33) and the assumption on \(\delta \) we further have that \(|1 - \delta u_n(|DU|^2)| \leq (1 - 2\delta) \). Hence, the Cauchy–Schwarz inequality, (7), and Korn's inequality further yield that

\[
\| DT^n_N(U) \|_2 \leq (1 - 2\delta) \| DU \|_2 + 2\sqrt{2}/\delta \| DU \|_2^2 + \delta \| f \|_*.
\]

Consequently, in order to obtain a self-mapping, we need to find \(R > 0 \) such that

\[
(1 - 2\delta)R + 2\sqrt{2}/\delta R^2 + \delta \| f \|_* \leq R,
\]

which can simply be determined from the corresponding quadratic equation, whose solutions are given by the bounds in (54).

Next, we will show that the operator \(F^n_N : V_0(T_N) \to V_0(T_N) \) is strongly monotone and Lipschitz continuous on \(B_R^N \), for \(R \) as in (54), since this implies the convergence of the Zarantonello iteration scheme (51).

Theorem 4.11. Suppose that the assumptions of Lemma 4.10 hold. For \(R > 0 \) as in (54) we have that

\[
\langle F^n_N(U) - F^n_N(V), U - V \rangle \geq \nu_F(R) \| U - V \|_{1,2}^2 \quad \text{for all } U, V \in B_R^N,
\]

where \(\nu_F(R) := (\nu - \sqrt{2}/C_B) > 0 \), and

\[
|\{F(U) - F(V), W\}| \leq L_F(R, n) \| U - V \|_{1,2} \| W \|_{1,2}
\]

for all \(U, V \in B_R^N, W \in V_0(T_N) \), where \(L_F(R, n) := (\sqrt{3}/\sigma n + 2\nu + 2\sqrt{2}/C_B)R \). In particular, the iteration scheme (51) converges, for any initial guess \(U_{N,0}^n \in B_R^N \) and \(0 < \delta < 2\nu_LF^{-2} \), to the unique solution \(U_N^n \) of (46) contained in the closed ball \(B_R^N \).

Proof. For any \(U, V \in B_R^N \) we have by the definition of \(F^n_N \) that

\[
\langle F^n_N(U) - F^n_N(V), U - V \rangle = a_n(U; U, U - V) - a_n(V; V, U - V)
\]

\[
+ B[U; U, U - V] - B[V; V, U - V].
\]

We note that

\[
B[U; U, U - V] - B[V; V, U - V] = B[U - V; U, U - V] - B[V; U - V, U - V],
\]

and thus, by (8), (7), and (32).

\[
|B[U; U, U - V] - B[V; V, U - V]| \leq \sqrt{2}/C_B \| DU \|_2 \| U - V \|_{1,2} \leq \sqrt{2}/C_B R \| U - V \|_{1,2}^2.
\]

This, together with (45), immediately implies (55). We note that \(\nu - \sqrt{2}/C_B R > 0 \) for any \(R \) as in (54).

Next we will show the local Lipschitz continuity of \(F^n_N \). Take any \(U, V \in B_R^N \) and \(W \in V_0(T_N) \). By the triangle inequality we have that

\[
|F^n_N(U) - F^n_N(V)| \leq |a_n(U; U, W) - a_n(V; V, W)| + |B[U; U, W] - B[V; V, W]|.
\]

Similarly as before, the second summand can be bounded by

\[
|B[U; U, W] - B[V; V, W]| \leq |B[U - V; U, W] - B[V; U - V, U]| + |B[U; U, W] - B[V; V, W]| \leq 2\sqrt{2}/C_B R \| U - V \|_{1,2} \| W \|_{1,2}.
\]

Together with the bound (56) this implies that

\[
|F^n_N(U) - F^n_N(V)| \leq (\sqrt{3} + 2\nu + 2\sqrt{2}/C_B)R \| U - V \|_{1,2} \| W \|_{1,2}.
\]
Finally, we note that $\delta < 2\nu_F(R)L_F(R,n)^{-2} < 2(4\nu + \sigma n)^{-1}$, and therefore Lemma 4.11 implies that $T^0_N : B^N_{R,u} \rightarrow B^N_{R,u}$ is a self-map. Consequently, the strong monotonicity [55] together with the Lipschitz continuity (56) imply that $T^N_n : B^N_{R,u} \rightarrow B^N_{R,u}$ is a contraction on $B^N_{R,u}$, see, e.g., the proof of [40, Thm. 25.B]. Thus, by the Banach fixed-point theorem, the sequence generated by (57) converges to the unique solution U^N_n of (49) in $B^N_{R,u}$.

Remark 4.12. We note that a small data assumption similar to [53] guarantees the existence of a unique solution of the steady Navier–Stokes equation for Newtonian fluids, see, e.g., [19, Ch. 4, Thm. 2.2]. Its proof is also based on the contraction of an iterative mapping, which, however, is different from the one stated in (51).

Corollary 4.13. The problem (30) has a unique solution $(U^N_n, P^N_n) \in \mathcal{V}(T_N) \times Q_0(T_N)$ such that $U^N_n \in B^N_{R,u}$.

Proof. This follows immediately from Theorem 4.11 and the (discrete) inf-sup condition (6). □

Now let us consider the pressure term. To that end, we define the iteration scheme

$$
\int_\Omega D(U^N_n : \nu) \, dx + \delta \beta b(P^N_n, V) = \int_\Omega D(U^N_n : \nu) \, dx - \delta \beta b(P^N_n, V) \quad (57a)
$$

$$
b(U^N_n, Q) = 0 \quad (57b)
$$

for all $(V, Q) \in \mathcal{V}(T_N) \times Q(T_N)$, where $U^N_n \in \mathcal{V}(T_N)$ is an arbitrary initial guess.

Corollary 4.14. Let $U^N_n \in B^N_{R,u}$, where R satisfies (54), and $0 < \delta < 2\nu_F L_F^{-2}$, cf. Theorem 4.11. Then, the sequence $\{(U^N_n, P^N_n)\}_\ell$ generated by (57) converges to the solution (U^N_n, P^N_n) from Corollary 4.13.

Proof. We note that the sequence of velocity vectors $\{U^N_n\}_\ell$ satisfies (52), and thus, by Theorem 4.11 we have that $\{U^N_n\}_\ell$ converges strongly to U^N_n in $W^{1,2}_0(\Omega)^d$. Moreover, since (U^N_n, P^N_n) is a solution of (30), we further get that $b(P^N_n, V) = -\beta b(U^N_n, V)$ for all $V \in \mathcal{V}(T_N)$, cf. (50).

Consequently, in view of (57a), we obtain

$$
\delta b(P^N_n - P^N_n, V) = \int_\Omega D(U^N_n : U^N_n) \, dx + \delta \beta b(U^N_n, V)
$$

$$
\leq \left\|U^N_n - U^N_n\right\|_{1,2} \left\|V\right\|_{1,2} + \delta L_F(R,n) \left\|U^N_n - U^N_n\right\|_{1,2} \left\|V\right\|_{1,2}.
$$

Then, the discrete inf-sup condition (6) implies that

$$
\left\|P^N_n - P^N_n\right\|_{2} \leq (\beta \delta)^{-1} \left\|U^N_n - U^N_n\right\|_{1,2} \left\|V\right\|_{1,2} + \beta L_F(R,n) \left\|U^N_n - U^N_n\right\|_{1,2}.
$$

together with the first part, i.e., the convergence of the sequence of the velocity vectors, this implies the convergence of the sequence of the pressure iterates. □

5. Numerical experiments

Now we will perform two numerical experiments in order to highlight our analytical findings, one with and one without the convection term. Our algorithm is implemented in Python using the FEniCS software [1,29]. We will use the Taylor–Hood element pair for the discretisation, whereby our initial mesh consists of 32 uniform triangles, and, the initial velocity-pressure pair is chosen, in each case, to be the constant null function. For the graph approximation we will consider the mappings $S^m := S^m = S^m$, where the latter is defined as in [27]; in the following, we call m the graph approximation exponent and n the graph approximation index. Then, it can be shown that

$$
\mathcal{E}_A(D, S^m(D)) = \mathcal{E}_A(D, S^m(D)) \leq \frac{C(\sigma, \nu)}{2^m} =: \eta_{\Lambda,n}(D),
$$

where $C(\sigma, \nu) > 0$ depends on the yield stress σ and the viscosity ν, cf. [28, §7]; in our experiments below, we set $C(\sigma, \nu) := 4$. We will select the elements for the refinement by the use of the Dörfler marking strategy, cf. [14]. Subsequently, the mesh is refined by the DOLFIN [30,31] subroutine.
refine, which applies the Plaza algorithm [34]; we note that this refinement method is based on a number of bisections. The function \(\zeta \) from (23), which is of a rather theoretical purpose for our convergence analysis, is defined as \(\zeta(N) := N^{-1} \). Moreover, after each mesh refinement or graph approximation update we perform at least one iteration step, independently of whether or not the criterion of the while loop, cf. line 4 in Algorithm 1, is satisfied; of course, this does not interfere with the convergence of the algorithm.

5.1. Bingham problem without the convection term. We will consider the Bingham fluid flow problem stated in [3, §6.1.1], see also [20, §5.2]. We note that this is one of the very few problems for which the analytical solution is known. Here, the physical domain is given by \(\Omega := (0, 1) \times (0, 1) \), with Euclidean coordinates denoted by \((x, y)\), the yield stress is set to \(\sigma := 0.3 \), and the fluid viscosity is \(\nu = 1 \). Then, the analytical solution for the velocity term is given by

\[
\mathbf{u}_\infty = \begin{cases}
\frac{1}{8} (0.4^2 - (0.4 - 2y)^2), & 0 \leq y \leq 0.2, \\
\frac{1}{8}, & 0.2 < y < 0.8, \\
\frac{1}{8} (0.4^2 - (2y - 1.6)^2), & 0.8 \leq y \leq 1.
\end{cases}
\]

(58)

Moreover, the Dirichlet boundary conditions are chosen accordingly to the solution \(\mathbf{u}_\infty \). In Figure 1 (left) we plot the error of the velocity vector \(\| \mathbf{u}_\infty - \mathbf{U}_N \| \), as well as the a posteriori residual estimator

\[
E_N \left(\mathbf{U}_N, \mathbf{P}_N, \tilde{S}_N (\mathbf{U}_N) \right)^{1/2} + \| \mathbf{P}_{N,pde} (\mathbf{U}_N, \mathbf{P}_N) \|_{-1,2},
\]

(59)

against the number of elements in the mesh; here, \((\mathbf{U}_N, \mathbf{P}_N)\) is the final iterate obtained by the Kačanov iteration (37) on a given discrete space. We can see that the error of the velocity vector decays almost at a rate of \(\mathcal{O}(|T_N|^{-1}) \), whilst the convergence rate of the residual estimator is \(\mathcal{O}(|T_N|^{-1/2}) \). Furthermore, in Figure 1 (right), we visualise an intermediate mesh generated by the AILFEM. We observe that the mesh was mainly refined along the lines \(y = 0.2 \) and \(y = 0.8 \), i.e., the neighbourhood of the rigid regions, cp. (58). In [3, Fig. 6.2], spikes of the error for the velocity approximation were observed in exactly those regions. Hence, this indicates that our mesh refinement strategy works well for the given example.

Figure 1. Kačanov iteration for the Experiment 5.1. Left: Convergence plot of the AILFEM. Right: Adaptively refined mesh with 8706 elements.
Table 1. Kačanov iteration for the Experiment 5.1. The number of iterations (nit) on the given discrete space, as well as the final graph approximation exponent m, against the number of elements (noe) in the mesh.

noe	32	40	86	132	222	324	478	620	922	1326	1878	2884
nit	6	1	3	1	2	1	2	2	2	1	6	
m	5	5	7	7	8	8	9	10	11	12	12	14

noe	3812	6162	8012	13044	18210	26476	33868
nit	2	8	8	14	24	19	23
m	14	15	16	17	18	18	19

In Table 1 we list the number of iteration steps on each given Galerkin space, as well as the final graph approximation exponent m, against the number of elements in the mesh. Unfortunately, the number of iteration steps (slightly) grows with an increasing graph approximation exponent m (and increasing number of elements in the mesh), which is in line with the estimator from Corollary 4.8. However, we want to point out that the final graph approximation exponent $m = 19$ leads to a corresponding index $n = 2^{19} \approx 5 \cdot 10^5$ in (27). In contrast, we note that the nonlinear variational Newton solver from FEniCS with default settings already failed to converge (in 50 steps) for $n = 100$. Indeed, it was already noted in [11] that, in the given setting, the domain of convergence for the Newton solver shrinks at a rate $O(n^{-1})$.

5.2. Bingham problem with the convection term. For the Bingham fluid flow problem with the convection term we set the right-hand side function to

$$ f := \left(\sin(\pi x) \cos(\pi y) - \cos(\pi x) \sin(\pi y) \right). $$

where as before $(x,y) \in \Omega := (0,1)^2$ denote the Euclidean coordinates, and impose homogeneous Dirichlet boundary conditions. Again, we consider the yield stress $\sigma = 0.3$, and the fluid viscosity $\nu = 1$. In the case of the Zarantonello iteration, we choose the damping parameter adaptively to be $\delta(n) := n^{-1} = 2^{-m}$. In Figure 2 we plot the a posteriori residual estimator (59) against the number of elements in the mesh; even though, in presence of the convection term, we have guaranteed convergence for the Zarantonello iteration only, we will also consider the Kačanov scheme:

$$ a_n(U_N^{n,\ell}; U_N^{n,\ell+1}, V) + B(U_N^{n,\ell}; U_N^{n,\ell+1}, V] + b(P_N^{n,\ell+1}, V) + b(Q, U_N^{n,\ell+1}) = \int_\Omega f \cdot V \, dx, \quad (60) $$

for all $(V, Q) \in V(T_N) \times Q(T_N)$. As we can observe, the residual estimator decays at a rate $O(|T_N|^{-1/2})$ for both methods. Moreover, the Zarantonello scheme performed a total of 414 iteration steps, whereas the Kačanov procedure only required 58 iteration steps. In both cases, the final graph approximation exponent was $m = 23$. We note that the application of the Anderson acceleration, as proposed in [35] for the convection-free problem, might also enhance the convergence in the case that the convection term is included; however, this question is beyond the scope of our work considered here.

Remark 5.1. We note that the iteration scheme (60) is also known as Picard’s iteration, especially in the case of a constant viscosity, i.e., in the context of Newtonian fluids. Indeed, in [19, Ch. 4], the uniqueness of the solution of the steady-state Navier–Stokes equation for Newtonian fluids under a small data assumption was proved by the contraction property of the fixed-point iteration corresponding to the Picard iteration. However, that analysis cannot be generalised to the setting considered here, as the bound on the source term f depends in an unfavourable manner on the graph approximation index n; in particular, for $n \to \infty$, the only possible choice for the data is $f = 0$.

6. Conclusion

In this work, in the context of implicitly constituted fluid flow problems, we further developed the adaptive finite element algorithm from [28] by taking into account the nonlinear solver, leading to the adaptive iterative linearised finite element algorithm introduced here. We showed that the Kačanov and Zarantonello methods satisfy the assumptions on the nonlinear solver for the convergence of the AILFEM for Bingham fluids without and with inclusion of the convection term, respectively. Our numerical results indicate that the Kačanov method does also convergence in the presence of the convection term, even with a significantly smaller number of iteration steps compared to the Zarantonello iteration, at least in the case of the specific model problem considered.

Appendix A.

In this appendix we will give a very rough sketch of the proof of Theorem 3.6. We emphasise once more that this result can be verified by some minor modifications, which will be stressed below, in the analysis of [28].

For the purpose of the proof, we will define, for $s \in [1, \infty]$, the spaces

$$ V_s^* := \bigcup_{N \geq 0} V(T_N)_{1,s}^1 \subset W_0^{1,s}(\Omega)^d \quad \text{and} \quad Q_s := \bigcup_{N \geq 0} Q_0(T_N)^{1,s} \subset L^s_0(\Omega). $$

We will now establish the convergence in several steps.

Step 1 ([28, Lem. 5.2]): Show that, for at least a not relabelled subsequence, we have that

$$ U_{N}^{p,\ell,\tau} \rightharpoonup u_\infty \quad \text{weakly in } W_0^{1,\tau}(\Omega)^d, $$

$$ P_{N}^{p,\ell,\tau} \rightharpoonup p_\infty \quad \text{weakly in } L^0(\Omega), $$

$$ S_N(DU^{N,\ell,\tau}_N) \rightharpoonup S_\infty \quad \text{weakly in } L^r(\Omega; \mathbb{R}_{\text{sym}}^{d \times d}), $$

for some $(u_\infty, p_\infty, S_\infty) \in V_\infty^r \times Q_0^s \times L^r(\Omega; \mathbb{R}_{\text{sym}}^{d \times d})$, as $N \to \infty$. Then, further verify that

$$ R^{pde}(U^{p,\ell,\tau}_N, P_{N}^{p,\ell,\tau}, S_{N}(DU^{N,\ell,\tau}_N)) \rightharpoonup R^{pde}(u_\infty, p_\infty, S_\infty) \quad \text{weakly* in } W^{-1,\tau}(\Omega)^d, $$

$$ R^{ic}(U^{p,\ell,\tau}_N) \rightharpoonup R^{ic}(u_\infty) \quad \text{weakly in } L^r(\Omega), $$

for some $(u_\infty, p_\infty, S_\infty) \in V_\infty^r \times Q_0^s \times L^r(\Omega; \mathbb{R}_{\text{sym}}^{d \times d})$, as $N \to \infty$. Then, further verify that
and
\[(\mathcal{R}(u_\infty, p_\infty, S_\infty), (v, q)) = 0 \quad \text{for all } q \in \mathbb{Q}_{0,\infty}'_r, v \in \mathbb{V}'_r. \]

A key ingredient of the proof of those properties is the uniform bound \[26\] from Lemma \[3.5\] as this yields the existence of weak limit points \(u_\infty \in \mathbb{V}'_\infty \) and \(S_\infty \in L^{r'}_d(\Omega; \mathbb{R}^{d \times d}) \). Then, in order to show that the weak limit \(u_\infty \in \mathbb{V}'_\infty \) is weakly divergence-free with respect to \(\mathbb{Q}_{0,\infty}'_r \), we have to employ an interpolation error bound for the operator \(J^N_Q \) and use that \(\|F^N_{N,pde} J^N \|_{N,-1,r} \to 0 \) as \(N \to \infty \) by line 4 in Algorithm \[1\] and \[23\]. The weak convergence of the pressure iterates can again be shown via the boundedness of this sequence. In turn, for the sake of proving the uniform boundedness of the sequence of pressure iterates we have to employ the discrete inf-sup condition \[6\]. We further note that, compared to the analysis in \[28\], we have in this context an additional term \(\langle F^N_{N,pde} J^N, V \rangle, V \in \mathbb{V}(T_N) \), which, however, can be bounded uniformly in \(N \) by
\[|\langle F^N_{N,pde} J^N, V \rangle| \leq C r \zeta_{\text{max}} \|V\|_r, \]
where \(\zeta_{\text{max}} := \max_{N \in \mathbb{N}} \zeta(N) \), cf. line 4 in Algorithm \[1\] and \[23\], and \(C_r \) is the constant from Remark \[3.2\]. The remaining properties \[61\], \[65\] can be established as in \[28\] using the density \(\mathbb{V}_\infty \subseteq \mathbb{V}'_\infty \), and, on account of inexact finite element approximations, since \(\langle F^N_{N,pde} J^N, \mathbb{V} \rangle \) vanishes as \(N \to \infty \).

In the following, \(\{\{U^N_n,\ell_N, P^N_n,\ell_N, S^n_n(DU^N_n,\ell_N)\}\} N \subset W^{1,r}_d(\Omega) \times L^1_0(\Omega) \times L^{r'}_d(\Omega; \mathbb{R}^{d \times d}) \) will always denote a not relabelled subsequence with weak limit \((u_\infty, p_\infty, S_\infty) \in \mathbb{V}_r \times \mathbb{Q}_{0,\infty}'_r \times L^{r'}(\Omega; \mathbb{R}^{d \times d}) \) as obtained in Step 1. We will show below, cf. Steps 2–4, that \((u_\infty, p_\infty, S_\infty) \) is a solution of \[1\] by verifying that the equivalent properties \[18\] from Lemma \[2.11\] are satisfied.

Step 2 (\[28\ Cor. 5.3\]): Show that
\[\mathcal{E}_N(n_N,\ell_N) \to 0 \quad \text{as } N \to \infty \]
implies that
\[\mathcal{R}(u_\infty, p_\infty, S_\infty) = 0 \quad \text{in } W^{-1,r}_d(\Omega) \times L^1_0(\Omega). \]

Indeed, this claim follows from Theorem \[2.12\] the weak* convergence from \[61\], the weak convergence from \[62\] (with respect to \(L^1(\Omega) \)), the fact that \(\|F^N_{N,pde} \|_{N,-1,r} \to 0 \) as \(N \to \infty \), and the uniqueness of the limit point.

Step 3 (\[28\ Lem. 5.4\]): The next step is to verify that
\[\mathcal{E}_A(N, n_N, \ell_N) \to 0 \quad \text{as } N \to \infty \]
yields
\[(Du_\infty(x), S_\infty(x)) \in \mathcal{A}(x) \quad \text{for almost every } x \in \Omega. \]

In turn, by definition of \(\mathcal{E}_A \), cf. \[17\], we have that \(\mathcal{E}_A(Du_\infty, S_\infty) = 0 \).

The proof of this statement is quite lengthy and technical, and we shall simply refer to the corresponding proof of \[28\ Lem. 5.4\]. We note, however, that on account of inexact finite element approximations \(U^N_n,\ell_N \in \mathbb{V}(T_N) \) of \[6\] there appears an additional term \(\langle F^N_{N,pde} J^N, \Phi_{N,j} \rangle, N, j \in \mathbb{N} \), in the proof\footnote{In particular, this additional term occurs in the summand \(\Pi_{k,j} \), for \(k = N \), of Step 2 in the proof of \[28\ Lem. 5.4\] on page 1359.} where \(\{\Phi_{N,j}\}_N \) is uniformly bounded in \(W^{1,r}_d(\Omega)^d \). Consequently,
\[|\langle F^N_{N,pde} J^N, \Phi_{N,j} \rangle| \leq \|F^N_{N,pde} \|_{N,-1,r} \|\Phi_{N,j}\|_{1,r} \to 0 \quad \text{as } N \to \infty, \]
Consequently, Lemma A.1 yields that, for a further not relabelled sub-subsequence, (64) is satisfied. From the first part we know that there exists an integer \(N \) such that

\[
\ell_n(N) + 1 = \ell_n + 1 = \tilde{n} + 1,
\]

which yields the desired contradiction; since \(\ell_A(N, \eta_N, \ell_N) \leq \ell_A(N, \eta_N, \ell_N) \), we have established property (65).

Next, we assume again for the sake of contradiction that there exists an \(\epsilon > 0 \) such that

\[
\ell_A(N, n_N, \ell_N) \geq \epsilon \quad \text{for all } N = 0, 1, 2, \ldots .
\]

In view of Assumption 3.1 this implies that \(n_N = \tilde{n} \) for some \(\tilde{n} \in \mathbb{N} \) and all \(N \) large enough.

Consequently, Lemma A.1 yields that, for a further not relabelled sub-subsequence, \(\ell_A(N, n_N, \ell_N) \to 0 \) as \(N \to \infty \). In particular, for some \(N \) large enough we have that \(\ell_A(N, n_N, \ell_N) \leq \epsilon \), and thus, by lines 9–14 of Algorithm 1, we set \(n_{N+1} = n_N + 1 = \tilde{n} + 1 \), which yields the desired contradiction; since \(\ell_A(N, n_N, \ell_N) \leq \ell_A(N, \eta_N, \ell_N) \), we have established property (65).

Step 4 ([28, Thm. 5.7]): Show that (66) holds for the subsequence from Step 1, and (64) for a sub-subsequence of that subsequence.

In order to prove those two assertions, we will need the following preliminary result.

Lemma A.1 ([28 Lem. 5.5]). If \(n_N = \tilde{n} \) for some \(\tilde{n} \in \mathbb{N} \) and all \(N \) large enough, then we have that, for at least a not relabelled sub-subsequence,

\[
\ell_A(N, n_N, \ell_N) \to 0 \quad \text{as } N \to \infty.
\]

The proof of this lemma is again very technical and long. However, up to some minor modifications, it coincides with the corresponding proof in [28]. Indeed, we only have to deal with some additional terms of the form \((F^{(N, n_N, \ell_N)}_{\text{pde}}, V_N) \) and \((F^{(N, n_N, \ell_N)}_{\text{ic}}, Q_N) \), where \(V_N \in \mathbb{V}(\mathbb{T}_N) \) and \(Q_N \in \mathbb{Q}(\mathbb{H}_N) \) are uniformly bounded in \(W^{1,s}(\Omega) \), \(s \in \{r, t'\} \), and \(L^s(\Omega) \), \(s \in \{r, t'\} \), respectively. Hence, those terms vanish as \(N \) goes to infinity thanks to the employed stopping criterion of the while-loop (lines 4–6) in Algorithm 1 and Remark 3.2.

Now we will use Lemma A.1 to prove Step 4, which will be done along the lines of the proof of [28 Thm. 5.7]. First, assume for the sake of contradiction that there exists a positive constant \(\epsilon > 0 \) such that, for some not relabelled sub-subsequence,

\[
\ell_A(N, n_N, \ell_N) \geq \epsilon \quad \text{for all } N = 0, 1, 2, \ldots .
\]

From the first part we know that there exists an integer \(N_0 \) such that \(\ell_A(N, n_N, \ell_N) \leq \epsilon \). Consequently, by the modus operandi of AILFEM, we have that \(n_N = n_{N_0} \) for all \(N \geq N_0 \). However, then Lemma A.1 contradicts (66), and thus, at least for a not relabelled sub-subsequence, (64) is satisfied.

REFERENCES

1. M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes, and G.N. Wells, The FEniCS Project Version 1.5, Archive of Numerical Software 3 (2015), no. 100.

2. D.G. Anderson, Iterative procedures for nonlinear integral equations, J. Assoc. Comput. Mach. 12 (1965), 547–560. MR 184447

3. A. Aposporidis, E. Haber, M.A. Olshanskii, and A. Veneziani, A mixed formulation of the Bingham fluid flow problem: analysis and numerical solution, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 29-32, 2434–2446. MR 2803637

4. I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math. 44 (1984), no. 1, 75–102. MR 745088

5. L. Benkő, L. C. Berselli, L. Diening, and M. Ružička, On the finite element approximation of p-Stokes systems, SIAM J. Numer. Anal. 50 (2012), no. 2, 373–397. MR 2914267

6. M. Bercovier and M. Engelman, A finite element method for incompressible non-Newtonian flows, J. Comput. Phys. 56 (1984), no. 3, 313–326. MR 755935

7. E.C. Bingham, Fluidity and plasticity, International chemical series, McGraw-Hill, 1922.

8. D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. MR 3097958
9. M. Bulíček, P. Gwiazda, J. Málek, and A. Świerczewska-Gwiazda, *On steady flows of incompressible fluids with implicit power-law-like rheology*, Adv. Calc. Var. 2 (2009), no. 2, 109–136. MR 2523124
10. ______, *On unsteady flows of implicitly constituted incompressible fluids*, SIAM J. Math. Anal. 44 (2012), no. 4, 2756–2801. MR 3023393
11. E. J. Dean and R. Glowinski, *Operator-splitting methods for the simulation of Bingham visco-plastic flow*, Chinese Ann. Math. Ser. B 23 (2002), no. 2, 187–204. MR 1924135
12. L. Diening, M. Fornasier, R. Tomasi, and M. Wank, A relaxed Kačanov iteration for the p-Poisson problem, Numer. Math. 145 (2020), no. 1, 1–34.
13. L. Diening, C. Kreuzer, and E. Suli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology, SIAM J. Numer. Anal. 51 (2013), no. 2, 984–1015.
14. W. Dörfler, *A convergent adaptive algorithm for Poisson’s equation*, SINUM 33 (1996), 1106–1124.
15. P. E. Farrell, P. A. Gazca-Orozco, and E. Suli, Numerical analysis of unsteady implicitly constituted incompressible fluids: 3-field formulation, SIAM J. Numer. Anal. 58 (2020), no. 1, 757–787. MR 4065669
16. I.A Frigaard, K.G. Paso, and P.R. de Souza Mendes, *Bingham’s model in the oil and gas industry*, Rheol Acta 56 (2017), no. 3, 259–282.
17. E. M. Garau, P. Morin, and C. Zuppa, *Convergence of an adaptive Kačanov FEM for quasi-linear problems*, Appl. Numer. Math. 61 (2011), no. 4, 512–529.
18. P.A. Gazca-Orozco, *A semismooth Newton method for implicitly constituted non-Newtonian fluids and its application to the numerical approximation of Bingham flow*, Tech. Report 2103.00263, arxiv.org, 2021.
19. V. Girault and P.-A. Raviart, *Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383
20. P.P. Grinevich and M.A. Olshanskii, *An iterative method for the Stokes-type problem with variable viscosity*, J. Comput. Appl. Math. 31 (2000), no. 5, 3959–3978. MR 1734507
21. P. Heid and E. Suli, *A convergent adaptive algorithm for Poisson’s equation*, SINUM 33 (1996), 1106–1124.
22. P. Heid and T.P. Wihler, *Energy Contraction and Optimal Convergence of Adaptive Iterative Linearized Finite Element Methods*, Comput. Methods Appl. Math. 21 (2021), no. 2, 407–422. MR 4235817
23. P. Heid and E. Suli, On the convergence rate of the Kačanov scheme for shear-thinning fluids, Tech. Report 2101.01398, arxiv.org, 2021.
24. P. Heid and T. P. Wihler, *Adaptive iterative linearization Galerkin methods for nonlinear problems*, Math. Comp. 89 (2020), no. 326, 2707–2734.
25. P. Heid and T.P. Wihler, *On the convergence of adaptive iterative linearized Galerkin methods*, Calcolo 57 (2020), no. 3, 24. MR 4131951
26. J. Hron, J. Málek, J. Šebel, and K. Toušíka, A novel view on computations of steady flows of Bingham fluids using implicit constitutive relations, Tech. report, Project MORE Preprint, 2017.
27. L. M. Kačanov, Variational methods of solution of plasticity problems, J. Appl. Math. Mech. 23 (1959), 880–883. MR 0112408
28. C. Kreuzer and E. Suli, Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 5, 1333–1369.
29. A. Logg, K.A Mardal, G.N. Wells, et al., *Automated solution of differential equations by the finite element method*, Springer, 2012.
30. A. Logg and G.N. Wells, *DOLFIN: Automated Finite Element Computing*, ACM Transactions on Mathematical Software 37 (2010), no. 2.
31. A. Logg, G.N. Wells, and J. Hake, *DOLFIN: a C++/Python Finite Element Library*, ch. 10, Springer, 2012.
32. W.F. Mitchell, *Adaptive refinement for arbitrary finite-element spaces with hierarchical basis*, J. Comput. Appl. Math. 36 (1991), 65–78.
33. J. Ortega, *Bingham fluid simulation in porous media with lattice boltzmann method*, IntechOpen, 11 2019.
34. A. Plaza and G. F. Carey, *Local refinement of simplicial grids based on the skeleton*, Appl. Numer. Math. 32 (2000), no. 2, 195–218. MR 1734507
35. S. Pollock, L.G. Rebholz, and D. Vargun, An efficient nonlinear solver and convergence analysis for a viscoplastic flow model, Tech. Report 2108.08945, arxiv.org, 2021.
36. K. R. Rajagopal, *On implicit constitutive theories for fluids*, J. Fluid Mech. 550 (2006), 243–249. MR 2263984
37. E. Suli and T. Tschepel, Fully discrete finite element approximation of unsteady flows of implicitly constituted incompressible fluids, IMA Journal of Numerical Analysis 40 (2019), no. 2, 801–849.
38. E. H. Zarantonello, *Solving functional equations by contractive averaging*, Tech. Report 160, Mathematics Research Center, Madison, WI, 1960.
39. E. Zeidler, *Nonlinear functional analysis and its applications. II/B*, Springer-Verlag, New York, 1990.