DNA alterations in blood cells of *Channa punctatus* after acute exposure to 4-Nonylphenol

MADHU SHARMA*, POOJA CHADHA and PARDEEP SHARMA

Guru Nanak Dev University, Amritsar, Punjab 143 005 India

Received: 17 February 2019; Accepted: 26 September 2019

Keywords: Blood cells, Comet assay, Genotoxicity, 4-Nonylphenol

Biodiversity of freshwater is a valuable resource in terms of economic, aesthetic, cultural, educational and scientific values. But in developing countries which are densely populated almost all the rivers receive huge amount of waste from agricultural, industrial and urban discharge, due to which almost all the water bodies are contaminated with countless number of ill defining mixture of chemicals. There are a number of studies which show that in a country like India there is mismanagement of waste water as a number of rivers receive waste water directly emerging from the industries and household waste (Jadhav and Singare, 2015).

Among various organic and inorganic pollutants released into aquatic ecosystem Nonylphenol ethoxylates (NPEOs) have attained a considerable attention due to its endocrine disrupting effect. NPEOs break down to Nonylphenol (NP) in the environment due to microbial degradation (Nakada et al. 2006). But the concern grows as NP is lipophilic, hydrophilic, bio-accumulative, non-biodegradable and due to its pervasiveness in the environment. NP is widely distributed in sediments, air, water, soil and waste water (Sharma and Chadha, 2018). NP has been found above permissible levels in a number of rivers in all over the world (Gautam et al. 2015; Selviraj et al. 2014). Till date main work done on 4-NP with reference to its toxicity are mainly on its endocrine effect associated with the reproductive system (Duan et al. 2019; Cheng et al. 2019). But only few studies are related to genotoxicity using fish as a model (Sharma and Chadha, 2016).

Fish are in intimate contact with polluted water and are more susceptible to the changes, as it inhabit all zones of aquatic habitat and bio-accumulate the environmental pollutants. Furthermore, fish genotoxicity biomarkers are valuable parameters for environmental risk assessment. Comet assay is most promising and accepted method and extensively applied due to proven suitability to fish. Comet assay having sensitivity for detecting minimum intensity of DNA fragmentation and require a small amount of blood sample (Delmond et al. 2019). Blood cells in fish are a major and reliable indicator of stress.

Corresponding author’s e-mail: madhu.sрма@gmail.com
Increased DNA damage may also lead to gene activation like cytochrome p450 which activate the metabolizing enzymes which provide a defensive mechanism against genotoxicants. Similarly, Gulsoy et al. (2015) reported that when Zebra fish (D. rerio) were exposed to borax, the highest DNA damage was observed at 24 h, followed by a decrease at 48 and 72 h and again increase in the value was observed at 96 h, while treatment with boric acid induced highest effect at 96 h of exposure. The highest DNA damage was seen at 96 h after treatment with 0.31 mg/litre concentration. Decline in the value of higher concentration might be due to the threshold repair theory according to which repair enzyme gets activated only when tissue accumulates the toxicant above a threshold level.

NP is reported to induce DNA adduct formation and mutation or genomic rearrangements (Vazquez-Duhalt et al. 2005). Increased DNA damage may also lead to apoptosis and apoptosis was observed in fish sertoli cells when exposed to NP (Makkewy et al. 2011). The finding of present study suggests that 4-NP is having the genotoxic effect to fish C. punctatus and 24 h show maximum DNA damage at all the three concentrations.

Table 1. Effect of different concentrations of 4-NP on different parameters of comet assay after 24, 48, 72 and 96 h of exposure in blood cells.

Concentration	Time duration	TL (µm)	TI (%)	TM	OTM
0.15 mg/litre	Control	3.28±0.09	0.11±0.69	1.12±0.26	0.02±0.013
	Ethanol	5.5±0.84	0.37±0.16	0.02±0.01	0.1±0.04
	24 h	25.34±9.67	12.67±5.87	4.55±2.27	4.31±2.06
	48 h	10.36±1.6b	6.21±1.13	1.06±0.39	1.64±0.52
	72 h	11±0.67b	7.3±1.03b	1.44±0.29	1.52±0.23
	96 h	14.73±0.25b	9.22±0.28b	2.14±0.02	1.79±0.29
0.31 mg/litre	Control	4.5±0.86	1.5±0.41	0.07±0.03	0.36±0.08
	Ethanol	12.5±0.86c	6.39±2.54bc	0.86±0.37	1.45±0.59ab
	24 h	28.1±0.37b	11.3±0.80bc	6.64±1.35b	4.22±0.69b
	48 h	18.9±1.00d	7.51±0.21bc	1.82±0.11	2.86±0.19bc
	72 h	9.54±0.97c	4.49±0.18b	0.76±0.09	1.13±0.12a
	96 h	43.9±0.37e	25.5±0.70	13.44±0.31c	10.09±0.47d
0.63 mg/litre	Control	3±0.0001a	0.21±0.09a	0.006±0.002a	0.05±0.02a
	Ethanol	8.66±0.88c	2.73±0.43	0.227±0.009a	0.56±0.07b
	24 h	17.74±0.31d	11.45±0.41d	2.58±0.22	2.82±0.02d
	48 h	14.49±0.33d	5.68±0.44c	1.07±0.07b	1.27±0.05c
	72 h	4.20±1.68b	0.18±0.55	0.20±0.05b	0.05±1.15a
	96 h	7.08±0.11bc	1.42±0.08b	0.13±0.11a	0.39±0.02ab

The values given as mean ±standard error. Different letters (a, b, c, d) with in columns are significantly different (Tukey’s test) and signify the effect of different concentrations at different hour of exposure.

and OTM. Different authors used different parameters to study DNA damage and supported the use of different parameters for genotoxicity testing. Some suggested TL as a good indicator of genetic damage (Nwani et al. 2010), while the use of TL and TM is supported by Duez et al. 2003, use of OTM is emphasized by Sunjoy et al. 2013, furthermore use of TL, TI and TM is supported by Adeyemi et al. 2015. Blood cells were used in the present study as no cellular dissociation is required. Different degree of DNA damage has been observed in blood cells of C. punctatus after treatment with different concentrations of 4-nonylphenol after acute exposure (Fig. 1). Table 1 showed the effect of different concentrations of 4-NP (0.51 mg/litre, 0.31 mg/litre and 0.63 mg/litre) at different hours of exposure on the blood cells. Treatment with 4-NP induced significant change (P≤0.05) in all the parameters tested when compared to both control groups. High DNA damage was observed at 24 h post treatment (p.t.) followed by a decrease in the values of all the parameters at 48 and 72 h. But at 96 h again the value increased. This might be due to repair of damaged DNA or replacement of highly damaged cells or both (Banu et al. 2001). Another reason may be gene activation like cytochrome p450 which activate the metabolizing enzymes which provide a defensive mechanism against genotoxicants. Similarly, Gulsoy et al. (2015) reported that when Zebra fish (D. rerio) were exposed to borax, the highest DNA damage was observed at 24 h, followed by a decrease at 48 and 72 h and again increase in the value was observed at 96 h, while treatment with boric acid induced highest effect at 96 h of exposure. The highest DNA damage was seen at 96 h after treatment with 0.31 mg/litre concentration. Decline in the value of higher concentration might be due to the threshold repair theory according to which repair enzyme gets activated only when tissue accumulates the toxicant above a threshold level.

NP is reported to induce DNA adduct formation and mutation or genomic rearrangements (Vazquez-Duhalt et al. 2005). Increased DNA damage may also lead to apoptosis and apoptosis was observed in fish sertoli cells when exposed to NP (Makkewy et al. 2011). The finding of present study suggests that 4-NP is having the genotoxic effect to fish C. punctatus and 24 h show maximum DNA damage at all the three concentrations.

Fig. 1. Showing a different degree of DNA damage in blood cells after acute exposure with 4-NP (a) Control, (b) blood cells with mild damage, (c) blood cells with moderate damage, (d) blood cells with severe damage.
SUMMARY

The DNA damaging effect of 4-nonylphenol was evaluated in blood cells of fish *Channa punctatus* by using single gel electrophoresis assay (SGEA). Fish were exposed to three sublethal concentrations (0.15 mg/l, 0.31 mg/l and 0.63 mg/l) of 4-NP which were calculated after LC₅₀ determination. Exposure was given for 96 hours and blood sampling was done after 24, 48, 72 and 96 hours. Tail moment (TM), tail intensity (TI), tail length (TL) and olive tail moment (OTM) were used as parameters for assessing DNA damage. Comet assay results indicated significant DNA fragmentation in blood cells of *C. punctatus* as a significant increase in the values of all parameters was observed when exposed to different concentrations of 4-NP. Highest damage was observed at 24 h of exposure followed by a decrease in value at 48 and 72 h while at 96 h of exposure increase in the value of all the parameters were observed. On the other hand, after exposure to different concentrations highest damage was seen after treatment with 0.31 mg/l of NP. Owing to the results, the blood cells of *C. punctatus* show great sensitivity for 4-NP and can be used as bio-indicator for genotoxicity testing.

ACKNOWLEDGEMENTS

The authors are sincerely thankful to DST-PURSE for funds and Head, Department of Zoology for providing laboratory facility.

REFERENCES

Adeyemi O T, Osilesi O, Adebowo O O, Onajobi F D and Oyedemi S O. 2015. Variations in the levels of total protein, urea and urate in weaned male albino rats fed on processed Atlantic horse Mackerel. *Journal of Nature and Scientific Research* **5**(6): 29–39.

Bantu B S, Danadevi K, Rahman M F, Ahuja Y R and Kaiser J. 2001. Genotoxic effect of monocrotalophus to sentinel species using comet assay. *Food and Chemical Toxicology* **39**: 361–66.

Cheng Y, Shan Z, Zhou J, Bu Y, Li P and Lu S. 2019. Effects of long-term 4-nonylphenol dietary exposure on reproductive ability of Japanese quails (*Coturnix japonica*). *Environmental Science and Pollution Research* **26**: 2908.

Delmond K A, Vicari T, Guiloski I C, Dagostim A C, Voigt C L, Assis H C S, Ramsdorf W A and Cestari M M. 2019. Antioxidant imbalance and genotoxicity detected in fish induced by titanium dioxide nanoparticles (NpTiO₂) and inorganic lead (PbII). *Environmental Toxicology and Pharmacology* **47**: 42–52.

Duan P, Liu B, Zhao, Li X, Tu J, Yang W, Chen C, Long M X, Feng W, Martin F I and Xiong C. 2019. Nonylphenol effects on rat testis and sertoli cells determined by spectrochemical techniques coupled with chemometric analysis. *Chemosphere* **218**: 64–75.

Duez P, Dehon G, Kumps A and Dubois J. 2003. Statistics of the Comet assay: a key to discriminate between genotoxic effects. *Mutagen* **18**: 159–66.

Gautam G J, Chaube R and Joy K P. 2015. Toxicity and tissue accumulation of 4-nonylphenol the catfish *Heteropneustes fossilis* with a note on prevalence of 4-NP in water samples. *Endocrine Disruptors* **4**(203(1)): 1–12.

Gülsoy N, Yavuç C and Mutlu Ö. 2015. Genotoxic effects of boric acid and borax in zebrasfish, *Danio rerio* using alkaline comet assay. *EXCLI Journal* **14**: 890–99.

Kopjar N, Mustafic P, Zanella D, Buj I, Ćaleta M, Marcèja Z, Milija M, Dolenc Z and Mrakovej M. 2008. Assessment of DNA integrity in erythrocytes of *Cobitis elongate* affected by water pollution: the alkaline comet assay study. *Folia Zoolgica* **57**(1–2): 120–30.

Mekkawy I A, Mahmoud U M and Sayed A E H. 2011. Effects of 4-nonylphenol on blood cells of the African catfish *Clarias gariepinus* (Burchell, 1822). *Tissue and Cell* **43**: 223–29.

Nakada N, Tanishima T, Shinohara H, Kiri K and Takada H. 2006. Pharmaceutical chemicals and endocrine disruptors in municipal wastewater in Tokyo and their removal during activated sludge treatment. *Water Resources* **40**: 297–303.

Nwani C D, Lakra W S, Nagpure N S, Kumar R, Kushwaha B and Srivastava S K. 2010. Mutagenic and genotoxic effects of carboxusilin in freshwater fish *Channa punctatus* (Bloch) using micronucleus assay and alkaline single-cell gel. *Food Chemical and Toxicology* **48**: 202–08.

Selvaraj K K, Shamugam G, Sampath S, Larsson D G J and Ramaswamy B R. 2014. GC–MS determination of bisphenolA and alkylphenol ethoxylates in river water from India and their ecotoxicological risk assessment. *Ecotoxicology and Environmental Safety* **99**: 13–20.

Sharma M, Chadha P and Sharma S. 2014. Acute and sub chronic exposure of 4-nonylphenol to freshwater fish *Channa punctatus* to evaluate its cytotoxicity. *Biochemical and Cellular Archives* **14**(2): 363–67.

Sharma M and Chadha P. 2016. 4-Nonylphenol induced DNA damage and repair in fish, *Channa punctatus* after subchronic exposure, *Drug and Chemical Toxicology*.

Sharma M and Chadha P. 2017. Widely used non-ionic surfactant 4-nonylphenol: showing genotoxic effects in various tissues of *Channa punctatus*. *Environmental Science and Pollution Research* **24**: 11331–39.

Sharma M and Chadha P. 2018. Toxicity of non-ionic surfactant 4-nonylphenol an endocrine disruptor: A review. *International Journal of Fisheries and Aquatic Studies* **6**(2): 190–97.

Singh N P, McCoy M T, Tice R R and Schneider E L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. *Experimental Cell Research* **175**: 184–91.

Sunjog K, Kolarević S, Héberger K, Gáiecz Z, Knevečević-Vukčević J, Vukovic-Gaiecz B and Lenhardt, M. 2013. Comparison of comet assay parameters for estimation of genotoxicity by sum of ranking differences. *Anal Bioanal Chemistry* **405**: 4879–85.

Vazquez-Duhalt R, Marquez-Rocha F, Ponce E, Licea A F and Vaiana M T. 2005. Nonylphenol and integrated vision of a pollutant. *Applied Ecology and Environmental Research* **4**: 1–25.