The Secular Trends in Male:Female Ratio at Birth in Postwar Industrialized Countries

Piet Hein Jongbloet, Gerhard A. Zielhuis, Hans M.M. Groenewoud, and Pieternel C.M. Pasker-de Jong

Department of Epidemiology and Biostatistics, University Medical Centre St. Radboud, Nijmegen, The Netherlands

Finnish investigators [Vartiainen et al. Environmental Chemicals and Changes in Sex Ratio: Analysis Over 250 Years in Finland. Environ Health Perspect 107:813–815 (1999)] presented the sex ratio of all newborn babies from 1751 to 1997 in order to evaluate whether Finnish long-term data are compatible with the hypothesis that the decrease in the ratio of male to female births after World War I and World War II in industrial countries is caused by environmental factors. They found an increase in the proportion of males from 1751 to 1920, which was interrupted by peaks in male births during World War I and World War II and followed by a decrease thereafter, similar to the trends in many other countries. The turning point of male proportion, however, preceded the period of industrialization and introduction of pesticides and hormonal drugs. Thus, a causal association between these environmental exposures and this decrease is unlikely. In addition, none of the various family parameters (e.g., paternal age, maternal age, age difference in parents, birth order) could explain the historical time trends. Vartiainen et al. concluded that at present it is unknown how these historical trends could be mediated. The postwar secular decline of the male:female ratio at birth is not an isolated phenomenon and parallels the decline of perinatal mortality and mortality, congenital anomalies, and various constitutional diseases. This parallelism indicates a common etiology and may be caused by reduction of conceptopathology, as a correlate to increasing socioeconomic development. An inverted dose response or the dose-response fallacy due to vanishing male conceptuses explains the low sex ratios before World War I and World War II in newborns from black parents and from the lowest socioeconomic classes. Key words: neural tube defects, ovopathy, primary sex ratios, secondary sex ratios, socioeconomic patterning, tertiary sex ratios, vanishing male conceptuses. Environ Health Perspect 109:749–752 (2001). [Online 13 July 2001.] http://ehpnet1.niehs.nih.gov/docs/2001/109p749-752jongbloet/abstract.html

In this paper we focus on the maturation of the oocyte and liquefaction of the cervical mucus in animal and human reproduction. We also offer a unifying concept that explains the fluctuations in sex determination at conception, that is, the primary sex ratio (PSR), and the shorter male life expectancy at every age from conception onward. Male-biased loss of pathologic conceptuses entails reversal of the secondary sex ratio (SSR) at birth; male-biased loss of children and adults affects the decline of the tertiary sex ratio during life, causing the increasing “gender gap.”

Unifying hypothesis on sex determination. The intricate connections between either equal proportions of each sex and optimal conceptions at the core of the fertile window of the menstrual cycle, or between disproportionate rates of male-biased and pathologic conceptuses outside of this window are due to periovulatory hormone variation, which simultaneously modulates cervical liquefaction and oocyte maturation. The cervical liquefaction plays a pivotal role in the migration of the spermatocytes (11), whereas developmental competence of the human oocyte is acquired during follicle formation and meiotic progression (12).

Before midcycle, both liquefaction of the mucus plug and maturation of the oocyte are modulated by estrogens. Concordance of both facilitates equal access and fertilization of optimally matured oocytes by X- and Y-bearing spermatocytes and full expression of the genetic potential resulting in good embryo quality.

In contrast, nonoptimal liquefaction and maturation due to hormonal disturbances occur at the very beginning and the end of the fertile window. Because the head, length, perimeter, and area of Y-bearing spermatoza are significantly smaller than those of X-bearing spermatoza, and their necks and tails are shorter (13), differential migration of the Y-bearing spermatozoa (14) and preferential fertilization of nonoptimally matured oocytes are likely. The pleotropic nature of experimentally induced aging of the oocyte in animals before or after ovulation [i.e. overripeness ovopathy (15–17)] depends on molecular, biochemical, and physiologic processes in the oocyte, which encompasses both nuclear and cytoplasmic constituents. The teratogenic results are impossibility of fertilization, improper implantation, prenatal loss, transitory retardation in the rate of development, and a spectrum of anomalies such as deficiencies in organogenesis or differentiation in various tissues and organ systems. Thus, ovopathy entails comorbidity of a broad spectrum of mutually interrelated conditions, and the teratogenic components apparently depend on degree and pleotropic nature of overripeness ovopathy (18).

Dose-response sex ratio increase and reversal as a dose-response fallacy. This male-biased loss of conceptuses and individuals can evolve in sex ratio reversal, as shown by the overrepresentation of male blastocysts or births in rabbits after a short delay in fertilization and sex ratio reversal after a prolonged delay (19,20). Positive and, after having surpassed a certain threshold, negative dose-response gradients are due to vanishing...
male conceptuses, in analogy with the "vanishing twins" during pregnancy, as is very well known from the epidemiology of twins. This phenomenon explains some theoretical con-
structions necessary for explaining the inconsist-
esities and controversies in epidemiologic data (21), namely, distortion by differential prenatal loss or an inverted dose-response gradient (22,23), or the dose-response fal-
cacy (24). The unexpectedly low SSRs after extended preovulatory phases in humans (25) and in many other pathologic condi-
tions can be cleared up by this fallacy (26), as is shown below.

We do not claim that this dose-response fal-
cacy is an all-purpose explanation. SSR reversal will only occur in case of an extreme accumulation of conceptopathology associated with a disproportional (male-biased) pregnancy loss. Further amelioration and optimalization of the periconceptional con-
tions will entrain a positive dose response, from which is followed by a negative one after having passed a certain threshold.

The often-seen SSR reversal below the 100:100 level (27) cannot be reconciled exclusively by overreppens ovopathy, but only by its combined action with deleterious subthalal X-linked genes, which in males is not compensated for by a second X-chromo-
some with normal genes (28). Both mecha-
nisms are necessary because SSR reversal under the 100:100 level occurs only after extreme accumulation of periconceptional casualty, whereas genetic mechanisms run randomly and independently from the eliciting
exogenous factors.

The "U"-shaped configuration of SSR and pathologic progeny vs-à-vis timing of ovulation. The tendencies toward disproportional attrition and loss of conceptusses at the very beginning and very end of the fertility window versus optimal survival at the middle of the window are in line with the "U"-shaped configuration in relation to the esti-
mated ovulation date for conceptions that are destined to end in spontaneous abortion (29). In addition, these tendencies explain the other well-known "U"-shaped probabilities for delivering male offspring vs-à-vis timing of insemination in various animals or estimated ovulation in humans: insemination at the time of ovulation apparently biases the SSR in favor of equal sex proportions, in contrast to a moderate increase in males before or after ovulation (for pooled data, 94:100 vs. 117:100) (30). The similarity of mechanisms in SSR determination in both nonhuman and human progeny fit this concept.

The close connection between either reproductive success and equal proportion of sexes or high SSRs and male-biased patho-
logic progeny is in line with the high SSRs found in miscarriages, stillbirths, and progeny with developmental defects. Male-biased attrition caused by inappropriate timing of ovulation or fertilization during the receptive period is shown in infants from women with irregular cycles compared to regular cycles (119:100 vs. 91:100) (31) and in early prena-
tal loss, as suggested by the gradually decreasing sex ratios in 12-15-week versus 16-19-week fetal deaths (32).

High-risk conditions for conceptopathology. The risk factors for nonoptimal periovu-
latory modulation of cervical liquefaction and oocyte maturation in humans are associ-
ated with high-risk conceptions related to compromised ovulation and/or fertilization: for example, nonoptimal maternal age and interpregnancy interval, specific seasons, endocrinologic disturbances, inadequate diet and socioeconomic status (SES), wars and other stressors, unhealthy lifestyle, and occupa-
tional burden (33).

Lessons about folic acid. Research has shown that folic acid deficiencies lead to neural tube defects and to developmental anomalies of the eyes, digestive tract, lungs, skeletal, and face. Wynn and Wynn (34) stressed the importance of women taking folic acid supplements before conception because estradiol and progesterone—both necessary for optimal maturation of the oocyte—are depressed by inadequate folate or vitamin B12 intake and induce long follicular phases or delayed ovulation, both of which are markers for slow down in embryonic growth and risk of congenital anomalies (34). The recently established 4-fold increase in maternal risk of having a child with Down syndrome, when affected by abnormal folate metabolism (35), has shown that pathologic conception is the culpit of meiotic nondisjunction in this con-
tinuum of pregnancy wastage.

Gradual attrition in the rate of oocyte pathology may account for the strongly diver-
gent sex ratios in spontaneously aborted and/or terminated fetuses with neural tube defects. The sex ratios apparently depend on the site of the lesion along the neuroaxis: more males have low spinal lesions involving the sacrum, but high thoracic and cervical involvement is biased toward females (36,37). This basic concept, therefore, may help to reduce overestimated genetic determinism.

Effects of inadequate diet and maternal depletion. Punnett (38) reported in 1902 that favorable nutritive conditions tend to produce females, and males tend to be pro-
duced in unfavorable conditions. This has received support from observations and experiments on numerous animals. Animals that receive critical (minimally adequate) levels of nutrition are barely able to ensure fertility and, if so, they produce malformed offspring: below this threshold of nutritional adequacy, animals become infertile (34,39).

In rhesus monkeys and women, gonadal function, particularly the preovulatory phase, is strongly affected by caloric intake, as reflected in length of the menstrual cycle (39,40). Dieting, long-distance running, or situations that create a demand for perfor-
manve and new adjustments increase the risk of longer or shorter menstrual cycles (41,42) and luteal inadequacy (43).

Poor nutritional status and low prepgreg-
ancy body mass index of the mother endan-
ger the outcome of pregnancy and also increase the risk of congenital malformations (44,45). The relationship between maternal body depletion and male-biased prenatal loss or developmental pathology in the surviving fetuses is illustrated by the effect of extreme famine exposure during the Dutch Hunger Winter (December 1944–January 1945). The prevalence of central nervous system defects in children and the prevalence of schizophrenia, personality disorder (46), or coronary heart disease (47) in adults were much higher in people who were conceived during these months than in the months before and after. Male-biased mortality before and after birth is always higher in indi-
viduals with these defects (48,49).

SSR and socioeconomic status. Length of the menstrual cycle and menstrual disorders are powerfully influenced by social position (50,51). Lower SES mothers suffer more frequently from menstrual disorders, and they are more likely to have low standards of nutrition and abnormal body mass index (51,52), to smoke tobacco, and to use drugs (53,54). In addition, they often use less safe and effective methods of contraception, which may result in unplanned and unwanted pregnancies (55), often at a very young or an advanced maternal age, and in very short or very (unintendedly) long birth-to-conception intervals.

This accumulation of conceptopathology in the lowest SES strata suggests the highest dose exposure and explains many puzzling aspects of well-known social patterning of developmental anomalies and neonatal, infant, or adult morbidity and mortality, even when the effects of race and birth order are taken into account (51,56). This high dose exposure also elucidates the lowest SSRs in the lowest SES ranges (9,10). In our hypothe-
sis, they are due to inverted dose response or SSR reversal. The SSR increases when the family's socioeconomic level rises from low to moderate is due to decreasing rates of concepto-
pathology and, hence, increasing rates of optimally matured and fertilized oocytes (i.e., less male-biased fetal loss and more male sur-
vivors). Finally, when the socioeconomic level improves further, the SSR decreases to more equal gender proportions after having reached a plateau (9,10); this is due to increased rates
of optimal conceptions. Thus, improvements in nutritional standards, general health, and prenatal care are operative over only one part of the socioeconomic scale: the SSRs always reach a level beyond which they are no longer biologically meaningful (9). Populations in socioeconomic transition—characterized by continuous improvements in living conditions, nutrition, and reproductive hygiene—also show always-increasing SSRs, which go hand in hand with less pregnancy wastage and increases in natural fertility and male survivors (57–61). These divergences between low and high SSRs, and particularly the dose-response fallacy, may help to explain the exceptions to the general SSR decrease after World War II in some countries (Italy, Spain, France, Ireland, and Australia) (62).

The postwar decreases of the SSRs in industrialized countries. The same line of thought accounts for the large and increasing SSRs among children from black parents in the United States (2) or in the (southern and poor) nonmetropolitan areas in Italy (8), in contrast to the decreasing SSRs among children from white parents and (northern and wealthier) metropolitan areas.

In conclusion, we agree with Vartiainen et al. (6) that the cause of these fluctuations of male to female births before and after World War I and World War II in industrial countries cannot be caused by the introduction of pesticides. In contrast, we suggest that the very low SSRs before World War I and World War II were caused by an accumulation of congenital abnormalities, namely, inappropriate oocyte and spermatozoonocytotrophin preparation. The sex ratio at birth. J Biosoc Sci 3:23–41 (1971).

Rostrom J, James WH. Maternal age, parity, social class and sex ratio. Ann Hum Genet 41:205–217 (1977).

Moghissi KS, Huirne PA, Zielhuis GJ. Environmental chemicals and changes in sex ratio: analysis over 250 years in Finland. Environ Health Perspect 107:813–815 (1999).

Mocarelli P, Gerboux PM, Ferrari E, Patterson DG, Kieszk SZ, Rembi P, Vincelli N, Signorini S, Tramacere P, Cerroni V, et al. Paternal concentrations of dioxin and sex ratio of offspring. Lancet 355:1858–1863 (2000).

Aristol P, Zonta LA. Reduced male births in major Italian cities. Hum Reprod 14:2112–2113 (1999).

Teitelbaum MS, Mantel N. Socio-economic factors and the sex ratio at birth. J Biosoc Sci 3:23–41 (1971).

Rostrom J, James WH. Maternal age, parity, social class and sex ratio. Ann Hum Genet 41:205–217 (1977).

Moghissi KS. Sperm migration through the human cervix. In: Vascular M ucc in Human Reproduction (Elstein M, Moghissi KS, Borth R, eds). Copenhagen: Scriptor 1973:228–252.

Schramm RD, Bavister BD. A macaque model for studying mechanisms controlling oocyte development and maturation in human and non-human primates. Hum Reprod 7:130–131 (1992).

Cui KH. Size differences between human X and Y spermatoozoid and preferential differentiation of meiosis in human spermatozoa. Hum Reprod 3:61–67 (1997).

Broer KH, Winkhaus H, Sombroek H, Kaiser R. Frequency of Y-chromatin-bearing spermatozoa in intrauterine postcoital tests. Int J Fertil 21:181–185 (1976).

Witschi E. Overresemblance of the egg as a cause of twinning and teratogenesis: a review. Cancer Res 12:763–797 (1952).

Mikamo K. Intrafollicular overresemblance and teratogenic development. Cytogenetics 7:212–233 (1968).

Mattenhe JH & Swarts JH & M. Harms H. Mu lder K. A classification of sex ratio anomalies in Graafian follicles by LH in relation to praecocial development of rat oocytes. J Reprod Fertil 100:65–70 (1994).

Hill M, Schinzel PA, Zielhuis FJ, Pasker-de Jong PCM. Interval between pregnancies and risk of spontaneous abortions. Epidemiology 11:738–739 (2000).

Khoury MJ, Flanders WD, James LM, Erickson JD, Haire J. Human teratogens, prenatal mortality and selection bias. Am J Epidemiol 130:361–370 (1989).

Khoury MJ, James LM, Flanders WD, Erickson JD. Interpretation of recurring weak associations obtained from epidemiologic studies of suspected human teratogens. Teratology 46:49–77 (1992).

Selevan SG, Lemasters KM. The dose-response fallacy in human reproductive studies of toxic exposures. Occup Med 6:451–455 (1996).

Weinberg CR, Baird DD, Wilcox AJ. The sex of the baby may be related to the length of the follicular phase in the conception cycle. Hum Reprod 10:304–307 (1995).

Jongbloet PH, Pasker PCM, Groenewoud HMM, Zielhuis GA. Unpublished data.

Wynn M, Wynn A. No Nation can Rise Above the Level of its Women. The Caroline Walker Lecture. London: The Caroline Walker Trust, 1993:1–39.

Hobbs CA, Sherman SL, Pi Y, Hopkins SE, Torfs CP, Hine RJ, Pogribna M, Roe R, Jones SJ. Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am J Hum Genet 67:623–630 (2000).

Little J, Elwood JM. Epidemiology of the neural tube defects. In: Reproductive and Perinatal Epidemiology (Koslow MD, ed). Boston: BC Decker, 1998:336–392.

Sellers J, Miller A. Neural tube defects, and multisite closure of the human neural tube. Am J Med Genet 58:332–336 (1995).

Punnett RC. On nutrition and sex-determination in man. Proc Camb Philos Soc 12:262–277 (1902).

Wynn M, Wynn A. Historical associations of congenital malformations. Int J Environ Stud 17:7–12 (1981).

Reichman NE, junk T, Taylor PR, Nair PP, Jones Y, Campbell WS. Effects of dietary fat on length of the follicular phase of the menstrual cycle in a controlled diet setting. Obstet Gynecol Surv 47:643–694 (1992).

Harlow SD, Matuson G. The association between weight, physical activity, and stress, and variation in the length of the menstrual cycle. Am J Epidemiol 133:38–49 (1991).

Harlow SD, Epperson SA. Epidemiology of menstruation and its relevance to women’s health. Epidemiol Rev 17:265–286 (1995).

Cummings DC, Wheeler GD, Harber VJ. Physical activity, nutrition, and reproduction. In: Human Reproductive Ecology: Interactions of Environment, Fertility, and Behavior (Campbell KL, Wink L, eds). New York: New York Academy of Sciences, 1994:55–76.

Huenemann RL, Nutrition and Family Planning. Nutr/75.3. Geneva: World Health Organization, 1975:2–43.

Litt P, Taylor PR, Brand RA. Sexual dimorphism in neonatal body mass index is a risk factor for an offspring with gastroschisis. Epidemiology 10:717–721 (1999).

Sussel E, Hoek HW, Brown A. Neurodevelopmental disorders after prenatal famine. Am J Epidemiol 142:213–216 (1998).

Roseboom TJ, van der Meulen JH, Offen PH, Osmond C, Barker DJ, Micoch RF, Bailer OP. Coronary heart disease in adults after prenatal exposure to famine. Heart 84:595–598 (2000).

Brown AS, Sussel ES. Sex differences in prevalence of congenital neural defects after periconceptual famine exposure. Epidemiology 8:53–56 (1997).

Källén B, Cicchi G, Knudsen LB, Castilla EE, Robert D, Dalvitt AK, Lancaster PL, Mastroiacovo P. International study of sex ratio and twinning of neural tube defects. Teratology 52:322–331 (1995).

Münster K, Schmidt LH, Helm PL. Growth and weight in the menstrual cycle—a cross-sectional study from a Danish county. Br J Obstet Gynaecol 99:422–429 (1992).

Power C, Matthews S. Origin and inequality in a national population sample. Lancet 350:1584–1589 (1997).

Butler NR, Alberman ED. The effects of smoking in pregnancy. In: Perinatal Problems: The Second Report of the 1938 British Perinatal Mortality Survey under the Auspices of the National Birthright Trust Fund.
54. Pierce JP, Fiore MC, Novotny TE, Hatziandreou EJ, Davis RM. Trends in cigarette smoking in the United States. Educational differences are increasing. JAMA 61:56–60 (1999).
55. Hellerstedt WL, Pirie PL, Lando HA, Curry SJ, McBride CM, Grothaus MA, Nelson J. Differences in preconceptional and prenatal behaviors in women with intended and unintended pregnancies. Am J Public Health 88:663–666 (1998).
56. Peltonen M, Rosén M, Lundberg V, Asplund K. Social patterning of myocardial infarction and stroke in Sweden. Am J Epidemiol 151:283–292 (2000).
57. Abramowicz M, Barnett HL. Sex ratio of infant mortality. Am J Dis Child 11:314–315 (1970).
58. Cruz-Coke R. Birth control and genetic changes in Chile. Lancet 1:591–592 (1976).
59. Hytten FE. Boys and girls. Br J Obstet Gynaecol 89:97–99 (1982).
60. Jejeebhoy SJ. Evidence of increasing natural fertility. Soc Biol 4:386–399 (1983).
61. Williams RJ, Gloster SP. Human sex ratio as it relates to caloric availability. Soc Biol 39:285–291 (1992).
62. Parazzini F, La Vecchia C, Levi F, Franceschi S. Trends in male:female ratio among newborn infants in 29 countries from five continents. Hum Reprod 11:1394–1396 (1998).