The genome of walking catfish \textit{Clarias magur} (Hamilton, 1822) unveils the genetic basis that may have facilitated the development of environmental and terrestrial adaptation systems in air-breathing catfishes.

Abstract

The walking catfish \textit{Clarias magur} (Hamilton, 1822) (magur) is an important catfish species inhabiting the Indian subcontinent. It is considered as a highly nutritious food fish and has the capability to walk to some distance, and survive a considerable period without water. Assembly, scaffolding and several rounds of iterations resulted in 3,484 scaffolds covering \(\sim 94\% \) of estimated genome with 9.88 Mb largest scaffold, and N50 1.31 Mb. The genome possessed 23,748 predicted protein encoding genes with annotation of 19,279 orthologous genes. A total of 166 orthologous groups represented by 222 genes were found to be unique for this species. The Computational Analysis of gene Family Evolution (CAFE) analysis revealed expansion of 207 gene families and 100 gene families have rapidly evolved. Genes specific to important environmental and terrestrial adaptation, viz. urea cycle, vision, locomotion, olfactory and vomeronasal receptors, immune system, anti-microbial properties, mucus, thermoregulation, osmoregulation, air-breathing, detoxification, etc. were identified and critically analysed. The analysis clearly
indicated that *C. magur* genome possessed several unique and duplicate genes similar to that of terrestrial or amphibians’ counterparts in comparison to other teleostean species. The genome information will be useful in conservation genetics, not only for this species but will also be very helpful in such studies in other catfishes.

Key words: *Clarias magur*, whole genome, environmental adaptation, genomics, walking catfish

1. Introduction

Family Clariidae (air-breathing catfishes) is an important group of ray-finned fishes those are primarily the inhabitants of freshwater ecosystem representing 116 species in 16 genera with diverse distribution throughout Africa and Asia (https://www.fishbase.in/search.php, accessed on 07 March 2020). The walking catfish *Clarias magur* (Hamilton, 1822), one of the 116 valid species of family Clariidae, is a freshwater catfish popularly known as magur. The *C. magur* was differentiated from *Clarias batrachus* by Ng and Kottelat3 based on deeply serrated pectoral spine and the difference in the head shape. This was also genetically differentiated with Indian Clariids based on mitochondrial cytochrome c oxidase subunit 1 (COI) sequences.3 The species is popular for good taste and a valuable source of dietary protein and the increase in demand for the fish led to massive over exploitation. Its culture has gained priority among the catfishes in India and adjacent countries viz. Bangladesh and Nepal due to its thersapeutic and nutritional attributes, but could not gain momentum due to the complex captive breeding behaviour. It is categorized as an endangered (A3cde + 4acde) species as per IUCN Red List (https://www.iucnredlist.org/species/168253/6470089, accessed on 07 March 2020). Magur belongs to the group of the amphibious air-breathing catfish which are adapted to inhabit muddy marsh, swamp areas and also transit to terrestrial habitat for short duration in search of water. Hence, the species generally experiences hypoxia, which gets aggravated due to water deficit during the summer season. The fish can survive both in water and land habitats as it has innate characters and the underlying molecular pathways to face the challenges of both the habitats.

The life is supposed to have originated from aquatic habitat, the transition to terrestrial habitat was considered to be a big leap in biological evolution. For this habitat transition, the radical changes in biological processes took place during millions of years of evolution. To cope up with two different habitats, amphibious fishes underwent adaptation that might have included perception, olfaction, aerial respiration, terrestrial locomotion, immunological evolution, higher ammonia tolerance, modification of aerial vision, ionic balance, osmoregulation, detoxification of xenobiotic compounds, etc. For terrestrial locomotion, magur uses pectoral fins for snake-like movement. It also possesses dual breathing adaptation to survive even in water with low dissolved oxygen (DO) and air. The accessory respiratory organ in *C. magur* comprises supra-branchial chambers, the fan or gill plates and the respiratory tree. Various *Clarias* species were reported to produce mucus on their skin surface to protect against microorganism and to prevent water loss during land migration.10-12 The epidermal mucus of *C. magur* possesses a broad spectrum of antibacterial properties and helps to prevent colonization by parasites and fungi.13 Magur is also reported to be a facultative ureotelic that uses urea cycle to convert the harmful ammonia to urea during terrestrial adaptation.14 Comparative genomics and evolutionary analysis of selected traits can provide the understanding of the pathways or mechanisms responsible for fish ecology and adaptation.

In the present study, we generated a draft genome of *C. magur* through assembly of next-generation sequencing (NGS) data from different sequencing platforms and thoroughly analysed, which gave a comprehensive insight on environmental and terrestrial adaptation genes. The salient structural variation in genes with respect to the specific traits for environmental and terrestrial adaptation including locomotion, immunity, osmoregulation, ionic balance, vision, olfaction, detoxification of xenobiotic compounds, etc. that distinguished *C. magur* from other fishes were identified and discussed. The genome sequence information of this species represents an important resource and knowledge to develop genomic selection strategies to overcome the problems associated with this valuable catfish and also to boost both the fundamental and the applied research in *C. magur* as well as other important catfish species.

2. Materials and methods

2.1. Fish specimen

For whole genome sequencing, a farm bred and reared healthy male specimen of *C. magur* from ICAR-Central Institute of Freshwater Aquaculture (CIFA), Bhubaneswar, India, was chosen. The fish was anesthetized and the testes samples were collected in September 2013. Handling of fish was carried out following the guidelines for control and supervision of experiments on animals by the Government of India and approved by Institutional Animal Ethics Committee (AEC) of ICAR-National Bureau of Fish Genetic Resources (NBFRG) and ICAR-CIFA. For genome size estimation methodology please see Supplementary note 1.1.

2.2. Genome sequencing

High molecular weight genomic DNA was extracted using standard phenol-chloroform extraction method at ICAR-CIFA. A multi-platform (short, medium and log reads) sequencing strategy was adopted to generate approximately 180-fold NGS data on five different NGS platforms. Useful NGS data utilized in the genome assembly is presented in Table 1. Brief sequencing methodology is given in Supplementary note 1.2.

2.3. De novo genome assembly

Pre-processing of the raw reads/data of Illumina, Roche 454 and Ion Torrent (which includes filtering and removal of low-quality bases and reads with adaptor contamination) was carried out using NGSQC Toolkit to obtain a set of high-quality usable reads, while pre-processing of NanoporeMinIon and PacBio data was done using in-built feature of MaSuRCA software Version 3.2.9. The *de novo* genome assembly was carried out through a hybrid approach following a pipeline utilizing both short and long reads generated from multiple NGS platforms (Fig. 1). Initially, the assembly was carried out on MaSuRCA software utilizing both long and short reads data. The PacBio and Nanopore MinIon reads were supplied as Nanopore
type in MaSuRCA assembler. The assembly was further improved by iterating with two rounds of Pilon18 software using Illumina reads followed by scaffolding using SSPACE19 and gap closing with SOAPdenovoGapCloser20 and LR_gapcloser21 for improving the assembly. After closing the gaps, the assembly was further improved by 10 rounds of iteration using Pilon.

2.4. Assembly completeness and genome characterization

The genome assembly completeness validation was assessed using three criteria, viz. BUSCO (Benchmarking Universal Single Copy Orthologs)22 analysis, N50 value, and remapping of the NGS reads, transcriptome reads and bacterial artificial chromosome (BAC) end sequences (generated in our lab, unpublished), expressed sequence tag (EST) sequences downloaded from the public domain on to the assembled scaffolds. The N50 value for the genome scaffolds was generated using an in-house Perl script, while reads mapping was done using Bowtie223 software. The guanine-cytosine (GC) content of the \textit{C. magur} genome was calculated using an in-house Perl script. Repeat identification was carried out using both homology and de novo-based approaches. First, RepeatMasker (v. 3.3.0)24 (http://www.repeatmasker.org) was employed to detect known transposable elements (TEs) based on a homology search against the Repbase TE library.
2.5. Gene prediction and functional annotation

We combined the homology (Scipio31) de novo (Augustus32and GlimmerHMM33) EST (Exonerate34) and transcript alignment-based approaches (HISAT35,36 and StringTie36) to predict the protein coding genes in the C. magur genome was also analysed by mapping of the quality Illumina reads to the assembled scaffolds using Bowtie2. The single-nucleotide polymorphism (SNP) identification was carried out using Samtools mpileup.30

2.6. Comparative genome and evolution analysis

2.6.1. Global comparison of gene sets with other fishes

Protein sequences from 14 species viz. Astyanax mexicanus (Family: Characidae), Danio rerio (Family: Cyprinidae), Gasterosteus aculeatus (Family: Gasterosteidae), Gadus morhua (Family: Gadidae), Ictalurus punctatus (Family: Ictaluridae), Latimeria chalumnae (Family: Latimeriidae), Lepisosteus oculatus (Family: Lepisosteidae), Oryzias latipes (Family: Adrianichthyidae), Oreochromis niloticus (Family: Cichlidae), Poecilia formosa (Family: Poeciliidae), Petromyzon marinus (Family: Petromyzontidae), Tetraodon nigroviridis (Family: Tetraodontidae), Takifugu rubripes (Family: Takifugidae), Xiphophorus maculatus (Family: Poeciliidae) were used for comparison of gene sets. The OrthoFinder pipeline37 was used to deduce the gene family in the common ancestor of the species and to understand the evolutionary relationship among the annotated genes through cross species comparative analyses by performing all vs. all blast using the BLASTp tool with e-value cut off value 10^{-5}. The single copy genes were further aligned using MUSCLE software38 and the conserved regions were extracted using Gblocks server39 with default parameters. The coding sequences of each single copy gene family were concatenated to form one super gene for each species. The phylogenetic analysis of the super alignment was performed using maximum-likelihood method implemented in PhyML (ver. 3.0) software40 with Jones-Taylor-Thornton (JTT) model for amino acid (AA) substitutions, a gamma correction with four discrete classes and an estimated alpha parameter. The PAML MCMCtree program41,42 was used to estimate the divergence times among the species based on the approximate likelihood method43 and the molecular clock data, which was taken from the divergence time of TimeTree database44 between the fugu and the teleostes.

2.6.2. CAFE analysis

The computational analysis of gene family evolution (CAFE)45 analysis was carried out with default parameters to estimate the contraction and expansion of the genes with respect to the above mentioned 14 fish species. The positive selections of the genes were carried out on the single copy genes present in 11 fish species, viz. D. rerio, G. aculeatus, G. morhua, I. punctatus, L. ocellatus, O. latipes, O. niloticus, P. formosa, T. nigroviridis, T. rubripes and X. maculatus, by estimating the dn/ds ratio using the codeML package of PAML software (version 4.9). Additional information is provided in Supplementary note 1.5.

2.7. Retrieval of genes for specific features and environmental and terrestrial adaption and their comparative analysis with respect to C. magur

The methodology in brief for retrieval, identification and analysis of environmental and terrestrial adaption specific genes and comparative analysis with respect to C. magur is described in Supplementary note 1.6.

3. Results and discussion

In the present study, the C. magur genome was sequenced using multiple sequencing platforms and assembled through a pipeline utilizing hybrid assembly strategy. A slight variation in genome size of magur was recorded as 929 Mb with flow-cytometry,46 927.8 Mb by KmerGenie57 and 1.02 Gb through MaSuRCA assembler. In comparison, the other catfishes have genome sizes of ~700 Mb (Pangasianodon hypophthalmus),48 1.0 Gb (I. punctatus)49 and ~900 Mb (C. batrachus).50 It is assumed that C. magur have undergone the teleost-specific genome duplication (TSGD) event, as the event was reported in other catfishes.51,52

3.1. Genome assembly, completeness and characterization

Using MaSuRCA based hybrid assembly, a total of 4,189 scaffolds were obtained which was further reduced to 3,484 after scaffolding with SSPACE program (Table 2). The Non-ATGC characters or gaps in the assembly were reduced by many folds with application of GapClosures tool, followed by LR GapClosures. The 10 rounds of iteration with Pilon software further reduced the gaps in assembly by 1.05 folds. The final assembly resulted in a high-quality draft genome of C. magur distributed in 3,484 scaffolds covering 94% of genome.
with 1.3 Mb N50 value and 9.88 Mb largest scaffold. Additional information is provided in Supplementary note 2.1-2.

The draft genome of *C. magur* exhibited 95.6% genome completeness (2,472 genes) including 2,377 (91.9%) complete or single copy genes, 94 (3.6%) complete and duplicated genes, 39 (1.5%) fragmented genes and 76 (3.0%) missing genes when compared with the BUSCO listed genes (2,586 genes). The BUSCO estimate of 95.6% completeness of the core genes in the genome was almost similar to *I. punctatus*, where females had higher recombination rate and GC content than the males.\(^5\) The correlation between the GC content and the recombination rate have also been reported in *I. punctatus*, where females had higher recombination rate and GC content than the males.\(^5\)

The estimated repeats content in *C. magur* was slightly higher than the *I. punctatus*, *C. batrachus* and other teleosts, but lower than the *D. rerio*. The variation in repeat coverage as compared to *I. punctatus* indicated that *C. magur* had undergone slightly more active adaptive evolution (Table 3). The variation in repeat content plays an important role in adaptive evolution and genome structure in fishes and other vertebrates due to unequal recombination.\(^5,6,7\) Although *C. batrachus* and *C. magur* are closely related but later one contains higher repeat elements, where DNA/TcMar-Tc1 covers 20% of the repeatome. Genome coverage by the SINE elements was 19.71% of the total predicted repeatomes in *C. magur* (Supplementary Table S2). Thus, the result correlates with the *I. punctatus* repeatome, where DNA/TcMar-Tc1 covers 20% of the repeatome. Genome coverage by the SINE elements was

Table 2. Assembly statistics of *C. magur* genome at different level of assembly procedures

Assembly parameters	Assembler used			
	MaSuRCA (all scaffolds)	MaSuRCA + SSPACE	MaSuRCA + SSPACE + gap closing	MaSuRCA + SSPACE + gap closing + Round of Pilon iteration
No. of scaffolds	4,189	3,484	3,484	3,484
Total no. of bases	939,613,751	941,364,448	941,311,119	941,297,321
Maximum scaffold length (bp)	9,885,606	9,885,622	9,885,651	9,885,605
Average scaffold length (bp)	573,309	665,336	665,336	665,324
N50 value	1,121,494	1,316,660	1,316,660	1,316,675
N75 value	415,886	540,075	493,992	540,073
Non-ATGC character (%)	0.02	0.174	0.052	0.050
Total no. of gaps	20,066	1,636,977	493,992	469,042
BUSCO (%)	92.9	95.4	95.5	95.6

Table 3. Repeat content in important fish genomes

Repeat elements	*Clarias magur*	*Clarias batrachus*\(^5\)	*Ictalurus punctatus*\(^5\)	*Danio rerio*\(^5\)	*Gasterosteus aculeatus*\(^5\)	*Oryzias latipes*\(^5\)	*Tarikfuga rubripes*\(^5\)	*Tetraodon nigroviridis*\(^5\)	*Cyprinus carpio*\(^5\)		
	Copies	Length (bp)	%	%	%	%	%	%	%		
SINE	164,766	20,428,238	2.17	1.15	1.3	2.71	0.51	0.89	0.2	0.1	0.55
LINE	183,188	48,381,323	5.14	3.39	3.2	3.2	3.29	4.4	2.99	1.63	3.58
LTR	128,008	53,010,768	5.63	3.67	3.94	4.71	1.9	1.39	1.03	0.49	2.28
DNA	831,307	151,406,708	16.08	15.37	18	44.31	3.01	8.53	1.43	0.98	13.71
Unclassified	553,287	96,363,887	10.24	6.61	7.04	4.84	4.77	15.47	1.45	2.49	11.11
Small RNA	29,383	4,782,445	0.51	—	0.16	—	—	—	—	—	—
Satellites	11,023	2,387,873	0.25	0.08	0.74	—	—	—	—	—	—
Simple repeats	788,282	37,450,953	3.98	0.02	6.23	—	—	—	—	—	—
Low complexity	70,314	3,723,201	0.40	—	0.50	—	—	—	—	—	—
Total	—	—	43.72	30.28	41.1	59.78	13.48	30.68	7.1	5.7	31.23

mammals, chicken and insects.\(^5,5^\) The correlation between the GC content and the recombination rate have also been reported in *I. punctatus*, where females had higher recombination rate and GC content than the males.\(^5^\)

The estimated repeats content in *C. magur* was slightly higher than the *I. punctatus*, *C. batrachus* and other teleosts, but lower than the *D. rerio*. The variation in repeat coverage as compared to *I. punctatus* indicated that *C. magur* had undergone slightly more active adaptive evolution (Table 3). The variation in repeat content plays an important role in adaptive evolution and genome structure in fishes and other vertebrates due to unequal recombination.\(^5,6,7\) Although *C. batrachus* and *C. magur* are closely related but later one contains higher repeat elements. This might be one of the reasons for the higher genome size (1.02 Gb) in *C. magur* as compared to *C. batrachus* (900 Mb). The fraction of Class-I TE (retro-transposons) and Class-II TE (DNA transposons) were 16.82 and 13.54%, respectively, to the total genome size. This might be one of the reasons for the higher genome size (1.02 Gb) in *C. magur* as compared to *C. batrachus* (900 Mb). The fraction of Class-I TE (retro-transposons) and Class-II TE (DNA transposons) were 16.82 and 13.54%, respectively, to the total genome size.
more in C. magur as compared to the I. punctatus, T. rubripes and O. latipes, but little lower than D. rerio.

3.2. Gene prediction and annotation

In the magur genome 23,748 proteins encoding genes were predicted and annotated (Fig. 3) and 82.71% of these predicted genes were supported by the EST or RNA-Seq evidence. The protein coding genes were almost similar in number to that of I. punctatus and D. rerio. Average gene and coding sequence lengths were 13,879 and 1,335 bp, respectively, with an average of eight exons per gene, which is almost similar to D. rerio, but less than I. punctatus (Table 4). The Blast2GO analysis for functional annotation resulted homology of 99.7% of the annotated genes to protein present in NR database, 67% showed identity with InterPro database, 87.23% were mapped on Gene Ontology (GO) terms, while 56.6% were mapped on Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

3.3. Genome evolution

3.3.1. Comparative insights of evolution of genes related to specific characteristics of C. magur

The cross species comparative analysis using OrthoFinder revealed that a total of 19,279 genes in C. magur were orthologous with the 14 teleost species, out of which 43 genes were single copy orthologues among the species, which were used in phylogenetic analyses. The phylogenetic relationship obtained from the single copy genes data set yielded (Fig. 4) almost similar result to that of the previous reports. The MCMC tree analysis revealed that the C. magur evolved around 40 million years ago (mya) and the Clarids diverged 60.8 mya from I. punctatus. Further, 14,716 orthologous genes were observed in magur and 17,499 genes in I. punctatus, where 8,288 orthologous groups were found to be common between I. punctatus and C. magur. A total of 983 ortho-groups represented by 1,968 genes were present in I. punctatus, but absent in C. magur.

Since coelacanth (L. chalumnae) is known for its transition from water to land, thus, comparing the genes lost in coelanth and C. magur, in comparison to I. punctatus, may provide a clue regarding the genes which were lost during the course of land adaptation. As compared to I. punctatus, about 3,935 orthologous genes were absent in coelacanth, and 582 genes were lost both in C. magur and coelacanth. Further, the two species also lost the elastin like genes, while it was present in high copy numbers in I. punctatus. Aquatic teleost possesses a heart outflow tract, known as ‘bulbus arteriosus’, as their respiratory component. Elastin genes, especially elastin b, are a major component for neofunctionalization and acquisition of bulbus arteriosus. Although C. magur and coelacanth possess elastin b genes but lack other elastin genes. To acquire air-breathing capability during the land transition, it is important to acquire cardiac muscle rather than smooth muscle, thus, the elastin may have been lost during the course of evolution. With respect to the I. punctatus, 13 olfactory genes were found to be absent in C. magur and coelacanth. During land adaptation, various terrestrial specific olfactory genes were gained while some aquatic specific olfactory genes lost. The loss of two genes viz. G patch3 and cd ipt responsible for lens development in camera-type eye gives a small hint that how the fishes have modified their vision for terrestrial adaptation.

A total of 166 orthologous groups, represented by 222 genes, were found to be unique in C. magur. These genes were manually checked to confirm its uniqueness using literature and databases, such as UniProt and NCBI’s Protein. A total of 20 genes were found to be uniquely present in C. magur, but absent in other reported teleosts. (Supplementary Table S3: Unique genes Annotation). Some of the genes which are generally not reported in teleost are uniquely present in C. magur. Organisms’ adaptation and acquisition of new functions doesn’t solely depend on the acquisition of new genes but also on intense selective pressure acting on different gene families. To overcome the challenges of terrestrial adaptation, the C. magur might have undergone positive selection in its gene families. We identified 203 positively selected genes in C. magur from 541 one-to-one orthologues representing 11 teleost genomes (Supplementary Table 4. A comparative statistics of genes in C. magur genome with some other teleost genomes

Species	Assembled genome size (Mb)	Number of genes	Mean CDS length	Number of exons per gene
Claris magur	941	23,748	1,335.00	8
Claris batrachus	900	22,914	—	—
Pangasianodon	700	28,850	978.00	—
Hypophthalmus	604	1,000	2,864.00	10.9
Ictalurus punctatus	1,412	1,412	2,864.00	10.9
Cyprinus carpio	1,700	52,610	1,487.25	7.48
Takifugu rubripes	393	1,617.17	10.69	
Oryzias latipes	868	1,553.13	10.04	
Gasterosteus aculeatus	461	20,787	1,592.37	9.88
S4: Positive_gene_selection). The positively selected key protein coding genes of C. magur are discussed (Supplementary note). The CAFE analysis of C. magur genome revealed 207 gene families were expanded, 89 gene families were contracted and 100 gene families were observed to be rapidly evolving (Supplementary Table S5: CAFE Summary). It was noticed that the C. magur genome is likely to have highest expansion and rapidly evolving gene families after P. formosa and D. rerio (Fig. 5). Most of the expanded genes are related to immunological functions. These genes might play important role in adaptation of C. magur on land as it has to face the pathogens of both water and land habitats. Around 100 copies of extracellular calcium-sensing receptor are present in C. magur. These receptors have a key role in calcium storage and homeostasis. The transition of fish from sea water to freshwater and then the terrestrial adaptation.

Figure 4. Phylogenetic relationship based on single copy genes among different fishes. The blue box represents the position of C. magur in the phylogenetic tree which forms clade with I. punctatus.

Figure 5. Phylogenetic tree constructed based on the single copy genes among different fish species showing number of gene families in different colours, i.e. red: Values: numbers of expanded gene families, blue-values: numbers of contracted gene families and maroon-values: numbers of rapidly evolving gene families. The expansion, contraction and rapidly evolving gene families were estimated by CAFE analysis.

Gene families (Expansion/Contraction/Rapidly evolving)
needs change in mineral content and physiology. Fishes have continuous access to calcium in water and the regulation of the internal calcium level was done by gills and intestine, whereas the terrestrial vertebrates occasionally ingest calcium. The plasma concentration of calcium is almost the same in fishes and terrestrial vertebrates. Thus, a large copy number of calcium-sensing receptors found in C. magur might help them to store and regulate calcium level when it is on land.

A total of 23 copies of myoglobin genes were reported in C. magur, which is higher than the C. batrachus (15 copies), lungfish (7 copies), and most of them other vertebrates (2–3 copies). These genes were arranged on five scaffolds of C. magur genome. Out of 23 genes' copies, 19 were arranged as tandem repeats on Scaffold 320 (14 copies) and on Scaffold 248 (5 copies), which is also reported to be tandemly duplicated in C. batrachus. Myoglobin genes role are crucial for adaptation in hypoxic condition, where they rapidly oxygenate and deoxygenate to maintain oxygen balance during the period of fluctuation in oxygen supply and demand. Ten copies of sult16b gene were significantly expanded in C. magur, while 12 copies were reported in C. batrachus. Sult16b gene eliminates or neutralizes the deleterious effect of different xenobiotic compounds from aquatic and terrestrial environments and, thereby, may protect the C. magur in the hypoxic conditions. Additional information is provided in Supplementary note, 2.3-4.

3.3.2. Evolution of genes specific to environmental and terrestrial adaptation in C. magur

3.3.2.1. Urea cycle

C. magur is a facultative ureotelic organism, which changes to ammonotelic when it lives in water and excretes ammonia as a waste product; but switches to ureotelic when it lives on land or under limited water availability and excretes urea as a waste product. Switching from ammonotelic to facultative ureotelic was a key step in transition from water to land. Urea is produced by two pathways, viz. purine catabolism and urea cycle. The carbamoyl phosphate synthetase (CPS) is an essential enzyme of urea cycle and three different isoforms of CPS genes (CPSI, II, III) are reported in vertebrates. CPSII is involved in pyrimidine biosynthesis, while CPSI and III are involved in nitrogen metabolism via ornithine–urea cycle. CPSI is found mainly in terrestrial vertebrates, while CPSII is found in all vertebrates. CPSIII is present in fishes and invertebrates. CPS utilizes ammonia as a nitrogen donor, while CPSIII utilizes glutamine. Lungfishes are facultative ureotelic and their CPS is more of terrestrial vertebrate specific rather than fish specific. Saha and Rath reported that C. batrachus and H. fossilis showed both CPSI and CPSIII activities. To check whether the C. magur's CPSIII is fish specific or specific to terrestrial adapted vertebrates like lungfish, we retrieved genes related to urea cycle and performed a phylogeny of all the three reported CPS from mammals, amphibians and fishes. CPSII separates the fish specific CPSII clade from other CPSII in phylogeny, but CPSIII is reported to be more fish specific rather than terrestrial vertebrate specific (Supplementary Fig. S1). There are also reports that both glutamine and ammonia can act as a nitrogen substrate for CPSIII, but the enzymatic activity is much less when the nitrogen substrate is ammonia. In understanding the selective pressure operating on the urea cycle pathway in the selected species, positive selection was absent in C. magur, but the ASS gene was found to be positively selected (P < 0.05) in C. batrachus. An interesting observation was seen with CPSIII enzyme of C. magur that exhibited constraint selection, as also observed in coelacanth where terrestrial vertebrates containing CPSI displayed constraint selection when compared with teleost CPSII (Table 5). Thus, it may be concluded that both ammonia and glutamine could act as a nitrogen source but with different specificity. The fishes which have the capacity to migrate to land possess both glutamine and ammonia as nitrogen source and switch according to the habitat. The glutamine activity was lost in tetrapod vertebrates as the CPSI don’t show glutamine activity.

3.3.2.2. High ammonia tolerance

Ammonia is the primary nitrogenous waste in fishes which is highly toxic and should be excreted promptly or converted to a less toxic form. C. magur is a facultative ureotelic organism. The urea cycle CPSIII enzyme of C. magur showed positive selection towards the terrestrial vertebrate side. Thus, the CPSIII transformed itself to terrestrial vertebrate specific ammonia excretion which is achieved in the form of urea by utilizing urea cycle to adapt on land successfully. The C. magur also contained one copy of Hiuase enzyme, like D. rerio, lungfish and various tetrapods, while two copies were present in coelacanth. This enzyme in C. magur is closely related to D. rerio. It is responsible for urea production by purine catabolism, thereby, helps in elimination of ammonia in the form of urea.

3.3.2.3. Vision adaptation

The light behaviour in both the water and the air medium differ due to their different refractive indices (i.e. 1.33 and 1.00, respectively). The obligate aquatic fishes possess myopic vision in air, while amphibious fishes (like mudskipper, C. magur, coelacanth and lungfishes) need to be enriched for both the aquatic and the terrestrial vision with specialized eye for good aerial vision to protect themselves from the terrestrial predators. Visual pigments are composed of an opsin gene and chromophore, which is linked by a Schiff's base.

Vertebrates contain five opsin genes subfamilies, viz. rhodopsin (RH1), green-sensitive (RH2), long wavelength sensitive (LWS), short wave sensitive (SWS1 and SWS2), and are related to vision pigment. In C. magur, three copies of LWS genes and single copy of RH1 and RH2 genes are present while SW opsin genes (SWS1 and SWS2) were absent which helps in ultraviolet vision. Aquatic fishes need ultraviolet vision and so they possess SW opsin genes, while terrestrial animals tend their vision more towards the violet vision rather than ultraviolet, thereby, reducing the damage of retina from UV rays. Since ultraviolet light leads to retinal damage, thus, many vertebrates including human, chicken, cow, etc. have evolved a protective mechanism which minimizes the retinal damage by shifting SWS1 function more towards violet range. C. magur and mudskipper have evolved from this barrier by losing the two SWS genes from their genome. The peak absorption spectra based on the five crucial sites (S180A, H197Y, Y277F, T285A and A308S) was found to be between 531 and 560 nm and, thus, two genes (LWS1 and LWS2) in C. magur might be responsible for wide range of colour sensitivity, with respect to other fishes, which might aid C. magur to achieve a better vision adaptation on land as well as in the water. The absence of genes for lens development in camera-type eyes in C. magur also gives small hints that how the fish have modified their vision for terrestrial adaptation.

3.3.2.4. Terrestrial locomotion

C. magur is known for its ability for locomotion on land, especially during or just after the rainfall, covering a good distance. The
terrestrial locomotion of C. magur is much similar to the snake-like movement achieved by pulling its body across land with the help of pectoral fins. The HOX genes cluster play a crucial role in shaping various body structures during the development, mainly limb development in tetrapods. The limb muscle activity is controlled by the motor neuron present at the brachial and lumbar portions of the spinal cord, which is arranged on a ventral column, known as the lateral motor column (LMC).

The C. magur uses pectoral fins, with one thick and strong fin ray, for terrestrial locomotion that may be due to the acquisition of the extra copy of HOXC9 gene (i.e. HOXC9b). The presence of HOXC9b and HOXA9 might prevent Foxp1 activation followed by blocking of HOX5–HOX8 protein (Fig. 6), thereby, limiting the LMC to the areas of the spinal cord adjacent to the limbs.79 The higher level of Foxp1 gene in the progenitors initiates the development of LMC neurons by activating molecular cascades, comprising a variety of the transcription factors, followed by the Radh2 protein that helps in determination of the defined neuronal subtypes within LMC. However, Jung et al.80 opined that it is not adequate to prevent LMC formation just by blocking the HOX5–HOX8 expression, but it requires both HOXC9 and HOXA9 activities. The fuel for such locomotion requires partial catabolism of AAs that leads to the formation of alanine, and, thus, the excess cellular ammonia can be converted to alanine. The alanine is further used as an energy source for locomotion, as in the case of mudskipper, but it is still not evaluated in C. magur or C. batrachus.81 Further study is required to verify the use of alanine as an energy source for locomotion in walking catfishes. The enzyme responsible for partial AA

Table 5. Statistics of positive selection analysis consisting of five core genes of urea cycle presenting C. magur genome

Gene symbol	Description	w2 (whole average)	w1 (other average)	w0 (target)	P value	Gene accession used
CPSIII/CP5-1	Carbamoyl phosphate synthetase I	26.54865	0.08304	0.08492	0.03283	XM_030344175.1, XM_003445297.5, ENSGACO0000006528, XM_003662030.3, XM_678190.8, ENSGACO0000006528, XM_02266069.1, XM_017470565.1, ENSNIG00000030134
ARG	Arginase	0.41884	1.26263	0.41884	0.987334507	ENSGMOG00000011638, ENSONIOG00000019093, ENSORLG00000013422, ENSPFPG00000030515, ENSXMAT00000030115.1, ENSGACO00000010116, ENSNIG00000013422, ENSDARG00000037429, ENSIPUG00000012184, ENSNIG0000003576, ENSAMXG00000018351
ASS	Argininosuccinate synthetase	0.09263	0.09255	0.00519	0.8413	XM_030354861.1, XM_013268308.3, XM_004074754.4, XM_007569492.9, XM_005803750.3, XM_003965377.3, BT027121.1, XM_017460037.1, XM_001100603.1, XM_022668830.1, XM_003965377.3
OTC	Ornithine transcarbamoylase	0.15579	0.13981	0.124	0.557372	XM_030344190.1, XM_003452965.5, XM_004081420.3, XM_007553598.2, XM_005790682.2, XM_031869540.1, XM_02983221.1, XM_001334635.5, XM_017469522.1, CR726453.2, XM_022666681.8
ASL	Argininosuccinate lyase	5.14178	12.26195	0.8588	0.002128002	XM_030360658.1, XM_003446968.5, XM_023962606.1, XM_007553621.2, XM_005813822.2, BT027159.1, XM_011611380.2, CR683679.2, NM_004511.1, XM_017492937.1, XM_022676076.1
NAG	N-acetyl glutamate	8.62059	1.73699	9.56018	0.16634673	XM_030340845.1, XM_003446461.5, XM_023957901.1, XM_007568283.2, XM_005814019.3, XM_003964403.3, ENSNIG00000011167, XM_021473514.1, XM_022673110.1, XM_017461971.1, ENSGACO0000005126

Magur genome unveils genetic basis of adaptation
3.3.2.5. Olfaction and vomeronasal systems

Olfaction is a vital component of the fish sensory system for catching prey, searching food, mating and protection from predators. The odorant molecules in the environment are detected through the ORs. The olfactory repertoire in C. magur almost resembles the other teleost and we didn’t find any air-borne olfactory system here, as in case of animals (Fig. 7). Teleost fishes usually contain 30–71 delta class ORs, while 79 OR is reported in C. magur, indicating that this species has a rich source of water-based odorants. As the C. magur is partial land dwelling and could spend a considerable time out of water on land, the absence of alpha and gamma groups of ORs for airborne odorant is surprising. Additional information on olfactory receptors is provided in Supplementary note 2.6.

Catalysis is present in C. magur, but there is no experimental evidence, although this may be useful for locomotion as well as to lower the nitrogenous content in the cell. Additional information is provided in Supplementary note 2.6.

3.3.2.6. Immunological adaptation

The adaptive/acquired immune system in vertebrates comprises major histocompatibility complex (MHC) I and II proteins along with their regulator proteins. The MHC I involves in presentation of antigens derived from the intracellular environment, while MHC II present antigens derived from the antigen presenting cells, like macrophages, B cells or dendritic cells. 85 We identified 16 MHC I genes in C. magur distributed in lineages, viz. five copies of U lineage, five copies of Z lineage, five copies of L lineage and one copy of S lineage. MHC II genes consist of 12 alpha and 15 beta copies. The variation in MHC I genes present in C. magur may provide additional benefits as more diverse range of pathogens are found on the land. The species needs an extra gadget of immune system for land adaptation to deal with the pathogens of both the land and the aquatic habitats. The presence of transcriptional regulators, thymus transcription factor and T cell receptor might also provide strength to the immune system of the C. magur.

The amphibious fishes have to adapt themselves among the wide range of pathogens residing both in land and water. C. magur possesses a well-developed immune system that comprised of all the genes required for innate as well as adaptive immunity. In teleost, three antibody isotypes of immunoglobulin heavy chains, mediating the humoral immune response, are present and characterized as immunoglobulin heavy chains delta (IgD), mu (IgM), and tau (IgT). 86 All the immunoglobulin heavy chain loci were distributed on two scaffolds in C. magur genome, where 20 IgD constant domains, 8 IgM constant domains and 3 zeta domains were present on scaffold 290; and 9 IgD constant domains, 3 IgM constant domains and 3 zeta domains were located on scaffold 33. Additional information is provided in Supplementary note 2.8.
The innate immunity of \textit{C. magur} also reflects a well characterized immune component which provides different layers of protection against a wide range of pathogens. Innate immunity of \textit{C. magur} is characterized by inflammasome activation (Supplementary Fig. S2), which in turn activates a cascade of proteins and signalling pathways involved in inflammatory responses. Inflammasome assembly can be activated either through pathogen pattern recognition receptors followed by activation and production of IL-1 family cytokines to trigger a local/systematic acute phase response or through promoting the cell death of intracellular pathogens via pyroptosis.87,88 In the magur genome, we also identified all the genes and/or components that might be involved in the inflammasome assembly and its activation.
It also shows the expansion in the TLR-13 genes that helps in extra-
cellular pathogen pattern recognition. There are also expansions in
various immune-like domains in C. magur when compared with the
other teleosts. Some of the immunological genes also show positive
selection, thereby, giving an added feature to C. magur to combat
with its diverse and wide range of pathogens. C. magur also has a
large repertoire of mucin genes which helps in secretion of mucus.
Mucus not only helps in preventing water loss from the body but
also forms a barrier to pathogen and it also contains various immu-
noglobulins. Additional information about Mucin genes in C. magur
is also provided in Supplementary note 2.9.

C. magur showed presence of seven antimicrobial peptides
(AMPs) which also help it to fight against pathogens from two differ-
et habitats. Additional information about AMP genes in C. magur
is given in Supplementary note 2.10.

3.3.2.7. Fluid and thermal balance
Desiccation on land is the major challenge for terrestrial adaptation.
To survive on land, the amphibious fish should have some mecha-
nism to prevent water loss or obtain sufficient water and avoid ther-
mal imbalances. In order to avoid water loss, some fishes have
habitat beneath rock and vegetation, while some remain in logs or
moisten their body by rolling in mud.6 Land dwelling fishes and
amphibians have a cutaneous surface on their skin which secretes
mucus and, thereby, inhibits cutaneous water loss and desiccation.
Lungfishes form a mucus cocoon during aestivation to reduce water
loss.89 C. magur possesses a well-developed mucus system with 15
mucin genes showing expansion. There is also an expansion of the
MUC19 gene in C. magur, with respect to D. rerio, which is
expressed in the dorsal and ventral skin of frogs and regarded as the
major mucin protein on the surface.90 C. magur also possesses ex-
panded copies of thermoregulation genes which sense high tempera-
ture. TRPV1 is a thermoregulatory gene with two copies in C. magur,
but just a single copy in D. rerio, that get activated at nox-
ious temperature, while it also has TRPV4, TRPM4 and TRPM5
that get activated at warm temperature.91 C. magur can also survive in
a very low temperature as it has 11 copies of TRPM8 genes that
sense cold temperature. Additional information about thermoregula-
tory genes of C. magur is given in Supplementary note 2.11.

Biological systems need a constant mechanism to exchange water
and nutrients with the environment either by consumption of water
in liquid form or food or its excretion in the form of urine, sweat and
faeces. Thus, the osmotic homeostasis regulates the osmotic pressure
and prevents the cells from accumulating toxic waste and water. The
osmotic homeostasis can be achieved by passive ion and water trans-
port across the cell membranes and intracellular spaces, active up-
take or excretion of ions and through the production and
accumulation of osmolytes. To get insight into the osmoregulation of
C. magur we identified the osmoregulatory repertoire in the genome.

Aquaporins (Aqps) are a set of small (26–34 kDa) membrane pro-
teins that specifically transport water, glycerol, ammonia, urea and
passive ion across the cell membranes. The Aqps in the eukaryotes
are mostly classified, based on their sequence characteristics, into
four subgroups: (i) classical Aqps (Aqp0, 1, 2, 4 and 5) that only per-
meate water, (ii) aquaglyceroporins (Aqp3, 7, 9 and 10) that perme-
ate glycerol and urea in addition to water, (iii) Aqp8-type of
aquammoniaporins (Aqp6 and 8) that present low water permeabil-
ity and have different phylogenetic from the others, and (iv) unortho-
dox Aqps (Aqp11 and 12) that are highly deviated asparagine-
proline-alanine (NPA) motifs and intracellular locations.92 A total of
24 Aqps genes were identified in C. magur, which is higher than the
O. latipes, L. oculatus, D. rerio and human, but lower than the eury-
haline Atlantic salmon. C. magur has five classical water Aqps, eight
aquaglyceroporins, three aquammoniaporins and two unorthodox
Aqps (Supplementary Fig. S3). Claudin and occludin genes belongs
to the tight junction protein group and are responsible for regulation
of the ion and water flow between the epithelial cells. Invertebrates
contain 4–5 claudin genes, while ~20 claudin genes are present in
mammalian vertebrates, but the fishes have a large repertoire of clau-
din genes. The fugu genome contains 56 claudin,93 while goby gene
ontology is represented by 40 claudin.94 The C. magur shows expansion
in claudin genes and contains 67 claudin genes as well as 6 occludin
genes.

Fishes also use active ion transport (majority are sodium transport-
ners) through the kidney, intestine and gills to maintain the os-
motic balance. There are three mechanisms to support sodium
take, viz. Na+/H+ exchange via the NHE3b protein, Na+/Cl− co-
transport via the NCC protein and coupling of Na+ absorption with
H+ secretion by a V type H+−ATPase.55 We were able to identify 29
genes for Na+/H+ exchange, 16 Na+/K+−ATPase catalytic alpha
subunits and 11 Na+/K+/Cl−ATPase regulatory beta subunits in the C. magur
genome. The magur shows an expansion in sodium transporter,
as compared to D. rerio and Nile tilapia. The Na+/Cl− co-
transporter is categorized into three subgroups, viz. KCC, NKCC1 and
NKCC2. Majority of the Na+/Cl− co-transporter genes of C. magur
falls in the KCC group which was also reported in goby and
mudskipper, while D. rerio falls in NKCC1 group (Fig. 9).

The fishes produce osmolytes to actively take up and retain water.
The euryhaline teleost acclimate high salinity by utilizing cyclic pol-
yol myo-inositol phospholipid, which requires two enzymes, viz.
myo-D inositol 3-phosphate synthase (MIPS) and inositol mono-
phosphatase (IMPA), for its production. Some fishes are reported to
actively produce myo-inositol along with a sodium/myo-inositol co-
transporter (SMIT).96 The SMIT transporter is the characteristic fea-
ture of the marine fishes,97 whereas it is absent in freshwater fishes.
We identified three copies of IMPA, one copy of MIPS and two cop-
ies of SMIT in C. magur. The presence of SMIT gene in C. magur
may be involved in hypoxic condition.

Water balance also depends on the homeostasis of ions. In aquatic
habitat, the essential ions are readily available in water, but it is not
the case on land and, thus, ion balance is more challenging on land.
In aquatic organisms, particularly fishes, the ions are exchanged
gut via ionocytes while the kidney plays a small role in the
ion regulation and homeostasis. In amphibious fish, ion exchange
is carried out either through cutaneous skin or through kidney, but
the branchial elimination is almost absent.6 In a study on amphibious
mangrove killifish, which is acclimated to air on a hypersaline sur-
face, the cross section of the skin shows increased ionocyte and the
whole-body Na+ level was 30% higher than the control fish.98 Amphi-
bious modulates the rate of ion flux to regulate the ion bal-
ance on land. C. magur shows expansion of sodium transporter
protein copies, with respect to D. rerio, which may play an important
role in ion homeostasis during terrestrial transition. In one study
where the marine habitant mudskimmer (Periophthalmodon schlos-
seri) and the freshwater habitant marble goby (Oxyeleotris marmor-
ata) were taken out of water for 6 h, the Ca2+ homeostasis was
maintained by a severe decrease in Ca2+ efflux to almost zero.99 In
C. magur, a large repertoire of 122 CaSR genes might help in cal-
cium homeostasis. During the course of terrestrial adaptation, the
ion regulation is shifted from gills to skin and kidney in case of
amphibians, as also observed in C. magur, and to kidney and salt glands in case of bird and reptiles.6

3.3.2.8. Air-breathing adaptation
Oxygen is a vital source of energy that is involved in aerobic respiration for efficient energy production and harness energy through oxidative phosphorylation. The vertebrates have evolved their own respiratory system which functions as per their habitat. The respiratory organ acts as a regulator which decides the amount of oxygen available for distribution. Some of the air-breathing fishes have developed lungs or a respiratory swim bladder, while others have modified their gills, branchial cavities, skin, pharynx, pneumatic duct or intestine for aerial respiration during their terrestrial habitat.100 In C. magur, the accessory respiratory organ comprises supra-branchial chambers which is located dorsally to the gill cavities and has the respiratory membrane lining, the fan or gill plates and the respiratory tree.

The oxygen delivery to the tissue is essential for their energy metabolism. Myoglobin is an oxygen binding protein found in the skeletal and the cardiac muscle and is involved in the delivery of the oxygen to the peripheral tissues. The C. magur showed expansion of myoglobin genes, which may be useful during its frequent exposure to the hypoxic condition or occasional terrestrial migration. In hypoxic condition, myoglobin maintains the supply and demand of the fluctuating oxygen through rapid oxygenation and deoxygenation.66 It also plays a crucial role in protecting the tissues from the reactive oxygen species (ROS) damage.100 In addition, the other oxygen delivery agent haemoglobins also exhibited expansion in C. magur genome.

Elastin b gene showed contraction, in terms of copy number, in C. magur, which is a major component reported for neofunctionalization and acquisition of bulbus arteriosus which is a respiratory component in aquatic teleost. For terrestrial adaptation, C. magur might have acquired cardiac muscle for air-breathing rather than the aquatic teleost-specific smooth muscle. Thsd7b gene is responsible for vascular development and angiogenic patterning during angiogenesis.101,102 Angpt2b gene, involved in angiogenesis,103 has undergone strong selection in C. magur.

3.3.2.9. Detoxification and xenobiotic degradation
Pollution, being a major concern worldwide, has adversely affected human life as well as aquatic flora and fauna. The C. magur also faces a wide range of toxic chemicals not only from aquatic but also from terrestrial habitats along with the drying water bodies. In order

Figure 9. Phylogenetic tree constructed on the basis of sodium/potassium/chloride co-transporter (NKCC) and potassium/chloride co-transporters (KCC) genes of human and different fish species. C magur possesses more expansions of KCC genes as compared to NKCC1 and NKCC2 genes (shown in grey shade). C magur is depicted in red colour.
to minimize or eliminate the toxic effect of xenobiotic compound, the species has evolved CYP superfamily genes, a member of P450 protein superfamily, which helps in detoxification through metabolism. The C. magur genome comprises 85 complete CYP genes, lower than the D. rerio 94 genes but higher than the I. punctatus 61 genes103 and fugu 54 genes.106 The CYP2 gene has undergone expansion in C. magur (36), which is again lesser than the D. rerio (40). C. magur also showed expansion of sulf16b genes with respect to other teleosts. These genes play a key role in xenobiotic degradation. Additional information is provided in Supplementary note 2.12.

4. Conclusion

We elucidated the draft genome of walking catfish C. magur with the coverage of 94.0% of estimated genome size. The genome provides a comprehensive understanding of evolution of C. magur with respect to other fish species and the genes/gene families which have evolved for environmental and terrestrial adaptations. It is evidenced in present study that the C. magur genome possesses large numbers of unique and species-specific genes that have evolved in due course of evolutionary process and their specific functions support C. magur for living in adverse environmental conditions. The study also reveals that the presence of evolved specific genes/gene families may have facilitated the development of additional capabilities for environmental adaptations particularly in the catfishes. The genome information is a valuable genomic resource for its conservation management and would be a very useful model for studying genes responsible and their molecular mechanism in hypoxia/ammonia tolerance, locomotion, vision, hearing, olfaction, respiration, osmoregulation, antimicrobial substances, metabolic depression, pollutant degradation, antioxidant defence system, etc. not only for this species but also will be very helpful in such studies for other teleosts too.

Acknowledgements

The authors are highly grateful to the Director, ICAR-NBFGR, Lucknow, for providing the necessary facilities, moral support and guidance to carry out this work. Authors are also grateful to the Director, ICAR-CIFA, Bhubaneswar, Director, ICAR-IASRI, New Delhi and Vice Chancellor, AAU Anand for providing necessary support. The technical and ministerial support provided by all concerned staffs of all organizations during the study are also duly acknowledged.

Accession numbers

Bio-project accession No. PRJNA448280 and accession QNUK0000000

Ethics approval

The specimen was collected and handled as per the guidelines issued by the Committee for the Purpose of Control and Supervision on Experiments on Animals (CPCSEA), Ministry of Fisheries, Animal Husbandry and Dairying, Government of India, New Delhi, and approved by the Institute Animal Ethics Committee (AEC) of ICAR-CIFA, Bhubaneswar, India.

Funding

The financial support provided by Department of Biotechnology (DBT), Ministry of Science and Technology, Govt. of India, New Delhi vide sanction grant no. BT/PR3688/AQQ/3/571/2011 for the present work is duly acknowledged.

Conflict of interest

None declared.

Data availability

The scaffolds of C. magur genome have been submitted in NCBI GenBank genome database (Submission ID No. SUB3861236).

Supplementary data

Supplementary data are available at DNAS online.

References

1. Devassy, A., Kumar, R., Shajitha, P.P., et al. 2016, Genetic identification and phylogenetic relationships of Indian clariids based on mitochondrial COI sequences, Mitochondrial DNA Part A, 27, 3777–80.
2. Fricke, R., Eschmeyer, W.N. and Van der Laan, R. 2020, Eschmeyer’s catalogue of fishes: genera, species, references. https://www.calacademy.org/scientists/projects/eschmeyers-catalog-of-fishes (2 February 2020, date last accessed).
3. Ng, H.H. and Kottele, M. 2008, The identity of Clarisas batrachus (Linneus, 1758), with the designation of a neotype (Teleostei: Clariidae), Zool. J. Linnean Soc., 153, 725–32.
4. Islam, M.N., Islam, M.S. and Alam, M.S. 2007, Genetic structure of different populations of walking catfish (Clariasbatrachus L.) in Bangladesh, Biochem. Genet., 45, 647–62.
5. Saha, N. and Ratha, B. 2007, Functional ureogenesis and adaptation to ammonia metabolism in Indian freshwater air-breathing catfishes, Fish Physiol. Biochem., 33, 283–95.
6. Wright, P.A. and Turko, A.J. 2016, Amphibious fishes: evolution and phenotypic plasticity, J. Exp. Biol., 219, 2245–59.
7. You, X., Biao, C., Zan, Q., et al. 2014, Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes, Nat. Commun., 5, 1–8.
8. Munshi, J.D. 1961, The accessory respiratory organs of Clarias batrachus (Linn.), J. Morphol., 109, 115–39.
9. Olson, K.R., Ghosh, T.K., Roy, P.K. and Munshi, J.S. 1995, Microcirculation of gills and accessory respiratory organs of the walking catfish Clarias batrachus, Anat. Rec., 242, 381–99.
10. Garg, T.K. and Mittal, A.K. 1993, Observations on the function of mucous cells in the epidermis of the cat-fish Clarias batrachus exposed to sodium dodecyl sulfate, Bioimed. Environ. Sci., 6, 119–33.
11. Hedmon, O. 2018, Fish mucus: a neglected reservoir for antimicrobial peptides, Asian J. Pharm. Res. Dev., 6, 6–11.
12. Olayemi, O.O., Ademike, K. and David Ayin, A. 2015, Evaluation of antimicrobial potential of a galactose-specific lectin in the skin mucus of African catfish (Clarias gariepinus, Burchell, 1822) against some aquatic microorganisms, Res. J. Microbiol., 10, 132–44.
13. Loganathan, K., Muniyam, M., Arul Prakash, A., Senthil Raja, P. and Prakash, M. 2011, Studies on the role of mucus from Clarias batrachus (Linn.) against selected microbes, Int. J. Pharma. Appl., 2, 202–6.
14. Banerjee, B., Koner, D., Hasan, R. and Saha, N. 2020, Molecular characterization and ornithine-urea cycle genes expression in air-breathing magur catfish (Clarias magur) during exposure to high external ammonia, Genomics, 112, 2247–60.
15. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989, Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, U.S.A.
16. Patel, R.K. and Jain, M. 2012, NGS QC Toolkit: a toolkit for quality control of next generation sequencing data, PLoS One, 7, e30619.
17. Zimin, A.V., Marçais, G., Puu, D., Roberts, M., Saleberg, S.L. and Yorke, J.A. 2013, The MaSuRCA genome assembler, Bioinformatics, 29, 2669–77.
65. Doherty, A.H., Ghalambor, C.K. and Donahue, S.W. 2015, Evolutionary physiology of bone: bone metabolism in changing environments, *Physiology (Bethesda)*, 30, 17–29.

66. Millkan, G.A. 1937, Experiments on muscle haemoglobin in vivo; the instantaneous measurement of muscle metabolism, *Proc. R. Soc. Lond. Ser. B-Biol. Sci.*, 123, 218–41.

67. Koch, J., Liebmann, J., Spies, R., Last, M., Amemiya, C.T. and Burmester, T. 2016, Unusual diversity of myoglobin genes in the lungfish, *Mol. Biol. Evol.*, 33, 3033–41.

68. Mos, L., Cooper, G.A., Serben, K., Cameron, M. and Koop, B.F. 2008, Effects of diesel on survival, growth, and gene expression in rainbow trout (*Oncorhynchus mykiss*) fry, *Environ. Sci. Technol.*, 42, 2656–62.

69. Zhu, L., Qi, K., Xia, B., Sun, X. and Chen, B. 2016, Transcriptomic response to water accommodated fraction of crude oil exposure in the gill of Japanese flounder, *Paralichthys olivaceus*, *Mar. Pollut. Bull.*, 106, 283–91.

70. Chew, S.F. and Ip, Y.K. 2014, Excretory nitrogen metabolism and defense against ammonia toxicity in air-breathing fishes, *J. Fish Biol.*, 84, 603–38.

71. Hong, J., Salo, W.L., Lusty, C.J. and Anderson, P.M. 1994, Carbamoyl phosphate synthetase III, an evolutionary intermediate in the transition between glutamine-dependent and ammonia-dependent carbamoyl phosphate synthetases, *Mol. Biol.*, 243, 131–40.

72. van den Hoff, M.J., Jonker, A., Beintema, J.J. and Lammers, W.H. 1995, Evolutionary relationships of the carbamoyl phosphate synthetase genes, *J. Mol. Evol.*, 41, 81–32.

73. Laberge, T. and Walsh, P.J. 2011, Phylogenetic aspects of carbamoyl phosphate synthetase in lungfish: a transitional enzyme in transitional fishes, *Comp. Biochem. Physiol. Part D Genomics Proteomics*, 6, 187–94.

74. Chew, S.F., Ong, T.F. and Ho, L. 2003, Urea synthesis in the African lungfish *Protopterus dollois*-hepatic carbamoyl phosphate synthetase III and glutamine synthetase are upregulated by 6 days of aerial exposure, *J. Exp. Biol.*, 206, 3615–24.

75. Loong, A.M., Hiong, K.C., Lee, S.M., Wong, W.P., Chew, S.F. and Ip, Y.K. 2005, Ornithine-urea cycle and urea synthesis in African lungfishes, *Pflugers Arch.*, 451, 243–51.

76. van Norren, D. and Schellekens, P. 1990, Blue light hazard in rat, *Exp. Eye Res.*, 51, 329–39.

77. Shibata, T., Shibata, K., Iida, Y., Inoue, N., Ishige, M. and Doi, M. 2001, Antioxidant activities of some Japanese soybeans, *J. Agric. Food Chem.*, 49, 2293–9.

78. van den Hoff, M.J., Jonker, A., Beintema, J.J. and Lammers, W.H. 1995, Evolutionary relationships of the carbamoyl phosphate synthetase genes, *J. Mol. Evol.*, 41, 81–32.

79. Laberge, T. and Walsh, P.J. 2011, Phylogenetic aspects of carbamoyl phosphate synthetase in lungfish: a transitional enzyme in transitional fishes, *Comp. Biochem. Physiol. Part D Genomics Proteomics*, 6, 187–94.

80. Jung, H., Mazzoni, E.O., Soshnikova, N., et al. 2014, Evolving Hox activity profiles govern diversity in locomotor systems, *Dev. Cell*, 29, 130–1.

81. Shi, Y. and Yokoyama, S. 2003, Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates, *Proc. Natl. Acad. Sci. USA*, 100, 8308–13.

82. Yokoyama, S. and Radlwimmer, F.B. 2001, The molecular genetics and evolution of red and green color vision in vertebrates, *Genetics*, 158, 1697–710.

83. Ballo, M. 2014, Evolving locomotion with Hoxc9, *Dev. Cell.*, 29, 130–1.

84. Jung, H., Mazzeno, E.O., Soshnikova, N., et al. 2014, Evolving Hox activity profiles govern diversity in locomotor systems, *Dev. Cell.*, 29, 171–87.

85. Ip, Y.K., Lem, C.B., Chew, S.F., Wilson, J.M. and Randall, D.J. 2001, Partial amino acid catabolism leading to the formation of alanine in Periophthalmodon schlissleri (mudskipper): a strategy that facilitates the use of amino acids as an energy source during locomotory activity on land, *J. Exp. Biol.*, 204, 1615–24.

86. Yang, L., Jiang, H., Wang, Y., et al. 2019, Expansion of vomeronasal receptor genes in teleost fish, *J. Mol. Evol.*, 84, 1261–2.

87. Vizcaino, M.C., Galindo-Villegas, J., Perez, O., Estenssoro, L. and et al. 2016, Differential modulation of IgT and IgM upon parasitic, bacterial, viral, and dietary challenges in a Perciform fish, *Front. Immunol.*, 7, 637.

88. Riera Romo, M., Perez-Martinez, D. and Castillo Ferrer, C. 2016, Innate immunity in vertebrates: an overview, *Immunology*, 148, 125–39.

89. Guo, H., Callaway, J.B. and Ting, J.P. 2015, Inflammamotaxis: mechanism of action, role in disease, and therapeutics, *Nat. Med.*, 21, 677–87.

90. Chew, S.F. and Hiong, K. 2014, Aestivation and brain of the African lungfish *Protopterus annectens*, *Temperature (Austin)*, 1, 82–3.

91. Lang, T., Klasson, S., Larsson, E., Johansson, M.E., Hansson, G.C. and Samuelsson, T. 2016, Searching the evolutionary origin of epithelial mucin protein components-mucins and FCGBP, *Mol. Biol. Evol.*, 33, 1921–36.

92. Gau, P., Poon, J., Ufret-Vincenty, C., Snelson, C.D., Gordon, S.E., Rabille, D.W. and Dhaka, A. 2013, The zebrafish ortholog of TRPV1 is required for heat-induced locomotion, *J. Neurosci.*, 33, 5249–60.

93. Cao, J. and Shi, F. 2019, Comparative analysis of the aquaporin gene family in 12 fish species, *Animals*, 9, 233.

94. Loh, Y.H., Christoffels, A., Brenner, S., Hunziker, W. and Venkatesh, B. 2004, Extensive expansion of the claudin gene family in the teleost fish, *Fugu rubripes*, *Genome Res.*, 14, 1248–57.

95. Adam-Kalchhauser, I., Blobberg, A., Larsson, T., et al. 2020, The round goby genome provides insights into mechanisms that may facilitate biological invasions, *BMC Biol.*, 18, 1–33.

96. Hwang, P.P. and Chou, M.Y. 2013, Zebrafish as an animal model to study ion homeostasis, *Pflugers Arch.*, 465, 1233–47.

97. Ratnapaksa, J., Tung, W., Tung, W., et al. 2015, Cell migration, *J. Biol. Chem.*, 290, 26233–42.

98. Beck, M.J. and Rand, D.M. 2007, Aromatic Hydrocarbons, *Science*, 315, 1766–70.

99. Fenwick, J.C. and Lam, T.J. 1988, Calcium fluxes in the teleost fish *Oreochromis* and the mudskipper (Periophthalmus), *J. Exp. Biol.*, 144, 201–17.

100. Hsia, C.C., Schmitz, A., Lambertz, M., Perry, S.F. and Mina, J.N. 2013, Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky, *Physiol. Zool.*, 86, 347–84.

101. Stoddard, S.V., Welsh, C.L., Palopoli, M.M., et al. 2019, Structure and function insights garnered from in silico modeling of the thrombospondin type-1 domain-containing 7A antigen, *Proteins*, 87, 136–45.

102. Li, Y.L., Lin, M.H., Lai, Z.Y., Jiang, J.P., Huang, Y.C., Jao, L.E. and Chuang, Y. 2016, Motor neuron-derived Thsd7a is essential for zebrafish vascular development via the Notch-dll4 signaling pathway, *J. Biomed. Sci.*, 23, 59.

103. Costa, R.A., Cardoso, J.C. and Power, D.M. 2017, Evolution of the angiopeptin-like gene family in teleosts and their role in skin regeneration, *BMC Evol. Biol.*, 17, 14.

104. Luch, A. and Baird, W.M. 2005, The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons, *Imperial College Press*, London, 21, 982–988.

105. Zhang, J., Yao, J., Wang, R. et al. 2014, The cytchrome P450 genes of channel catfish: their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq data sets, *Biochimica et Biophysica Acta (BBA)-General Subjects.*, 1840, 2813–28.

106. Nelson, D.R. 2003, Comparison of P450s from human and fugu: 420 million years of vertebrate P450 evolution, *Arch. Biochem. Biophys.*, 409, 18–24.