REEB FOLIATIONS ON S^5 AND CONTACT 5-MANIFOLDS VIOLATING THE THURSTON-BENNEQUIN INEQUALITY

ATSUHIDE MORI

Abstract. We obtain the following two results through foliation theoretic approaches including a review of Lawson’s construction of a codimension-one foliation on the 5-sphere:
1) The standard contact structure on the 5-sphere deforms to ‘Reeb foliations’.
2) We define a 5-dimensional Lutz tube which contains a plastikstufe. Inserting it into any contact 5-manifold, we obtain a contact structure which violates the Thurston-Bennequin inequality for a convex hypersurface with contact-type boundary.

1. Introduction and preliminaries

The first aim of this paper is to show that the standard contact structure D_0 on S^5 deforms via contact structures into spinnable foliations, which we call Reeb foliations (§2). Here a spinnable foliation is a codimension-one foliation associated to an open-book decomposition whose binding is fibred over S^1. In 1971, Lawson [16] constructed a spinnable foliation on S^5 associated to a Milnor fibration. We construct such a spinnable foliation on S^5 as the limit D_1 of a family $\{D_t\}_{0\leq t<1}$ of contact structures. Since S^5 is compact, the family $\{D_t\}_{0\leq t<1}$ can be traced by a family of diffeomorphisms $\varphi_t : S^5 \to S^5$ with $\varphi_0 = \text{id}$ and $(\varphi_t)_*D_0 = D_t$ (Gray’s stability).

The second aim is to show that any contact 5-manifold admits a contact structure which violates the Thurston-Bennequin inequality for a convex hypersurface (§3). We define a 5-dimensional Lutz tube and explain how to insert it into a given contact 5-manifold to violate the inequality. Moreover a 5-dimensional Lutz tube contains a plastikstufe, which is an obstruction to symplectic fillability found by Niederkrüger [22] and Chekanov. A different Lutz twist on a contact manifold (M^{2n+1}, α) was recently introduced in Etnyre-Pancholi [6] as a modification of the contact structure $D = \ker \alpha$ near an n-dimensional submanifold. Contrastingly, the core of our Lutz tube is a codimension-two contact submanifold. We change the standard contact structure on S^5 by inserting a Lutz tube along the binding of the open-book decomposition of a certain Reeb foliation.

The author [21] also showed that any contact manifold of dimension > 3 violates the Thurston-Bennequin inequality for a non-convex hypersurface. However he conjectures that the inequality holds for any convex hypersurface in the standard S^{2n+1}. See §4 for related problems.

The rest of this section is the preliminaries.

1.1. Thurston-Bennequin inequality. A positive (resp. negative) contact manifold consists of an oriented $(2n+1)$-manifold M^{2n+1} and a 1-form α on M^{2n+1} with $\alpha \wedge (d\alpha)^n > 0$ (resp. $\alpha \wedge (d\alpha)^n < 0$). The (co-)oriented hyperplane distribution $D = \ker \alpha$ is called the contact structure on the contact manifold (M^{2n+1}, α). In the case where (M^{2n+1}, α) is positive, the symplectic structure $d\alpha|_{\ker \alpha}$ on the oriented vector bundle $\ker \alpha$ is also positive, i.e., $(d\alpha)^n|_{\ker \alpha} > 0$. Hereafter we assume that all contact structures and symplectic structures are positive.

In this subsection, we assume that any compact connected oriented hypersurface Σ embedded in a contact manifold (M^{2n+1}, α) tangents to the contact structure $\ker \alpha$ at finite number of interior points. Note that the hyperplane field $\ker \alpha$ is maximally non-integrable. Let $S_+(\Sigma)$ (resp. $S_-(\Sigma)$) denote the set of the positive (resp. negative) tangent points, and $S(\Sigma)$ the union $S_+(\Sigma) \cup S_-(\Sigma)$. The sign of the tangency at $p \in S(\Sigma)$ coincides with the sign of $\{(d\alpha|_\Sigma)^n\}_p$. Considering on $(\ker \alpha, d\alpha|_{\ker \alpha})$, we see that the symplectic orthogonal of the intersection $T\Sigma \cap \ker \alpha$ forms an oriented line field L on Σ, where the singularity of L coincides with $S(\Sigma)$.

2000 Mathematics Subject Classification. Primary 57R17, Secondary 57R30, 57R20.

Key words and phrases. Contact structures; foliations; Milnor fibrations; open-book decompositions.
Definition 1.1. The singular oriented foliation \mathcal{F}_{Σ} defined by $T\mathcal{F}_{\Sigma} = L$ is called the characteristic foliation on Σ with respect to the contact structure $\ker \alpha$.

Put $\beta = \alpha|\Sigma$ and take any volume form ν on Σ. Then we see that the vector field X on Σ defined by $\iota_X \nu = \beta \wedge (d\beta)^{n-1}$ is a positive section of L. Moreover,

$$\iota_X \{ \beta \wedge (d\beta)^{n-1} \} = -\beta \wedge \iota_X (d\beta)^{n-1} = 0, \quad \beta \wedge (d\beta)^{n-1} \neq 0 \implies \beta \wedge \iota_X d\beta = 0.$$

Thus the flow generated by X preserves the conformal class of β. Since ν is arbitrary, we may take X as any positive section of L. Therefore the 1-form β defines a holonomy invariant transverse contact structure of the characteristic foliation \mathcal{F}_{Σ}.

On the other hand, for any volume form $\mu(\neq \nu)$ on Σ, we see that the sign of $\text{div} X = (L_X \mu)/\mu$ at each singular point $p \in S(\Sigma)$ coincides with the sign of μ. Thus \mathcal{F}_{Σ} contains the information about the sign of the tangency to the contact structure $\ker \alpha$. We also define the index $\text{Ind} p = \text{Ind}_p \chi$ of a singular point $p \in S(\Sigma)$ by using the above vector field X.

Definition 1.2. Suppose that the boundary $\partial \Sigma$ of the above hypersurface Σ is non-empty, and the characteristic foliation \mathcal{F}_{Σ} is positively (i.e., outward) transverse to $\partial \Sigma$. Then we say that Σ is a hypersurface with contact-type boundary. Note that $\beta \partial \Sigma = \alpha \partial \Sigma$ is a contact form.

Remark. The Liouville vector field X on a given exact symplectic manifold $(\Sigma, d\lambda)$ with respect to a primitive 1-form λ of $d\lambda$ is defined by $\iota_X d\lambda = \lambda$. If X is positively transverse to the boundary $\partial \Sigma$, then $(\partial \Sigma, \lambda|\partial \Sigma)$ is called the contact-type boundary. The above definition is a natural shift of this notion into the case of hypersurfaces in contact manifolds.

Let D^2 be an embedded disk with contact-type boundary in a contact 3-manifold. We say that D^2 is overtwisted if the singularity $S(D^2)$ consists of a single sink point. Note that a sink point is a negative singular point since it has negative divergence. A contact 3-manifold is said to be overtwisted, or tight depending on whether there exists an overtwisted disk with contact-type boundary in it, or not. We can show that the existence of an overtwisted disk with contact-type boundary is equivalent to the existence of an overtwisted disk with Legendrian boundary, which is an embedded disk D' similar to the above D^2 except that the characteristic foliation $\mathcal{F}_{D'}$ tangents to the boundary $\partial D'$, where $\partial D'$ or $-\partial D'$ is a closed leaf of $\mathcal{F}_{D'}$.

Let Σ be any surface with contact-type (i.e., transverse) boundary embedded in the standard S^3. Then Bennequin[4] proved the following inequality which implies the tightness of S^3:

Thurston-Bennequin inequality. $\sum_{p \in S_-(\Sigma)} \text{Ind} p \leq 0$.

Eliashberg proved the same inequality for symplectically fillable contact 3-manifolds ([8]), and finally for all tight contact 3-manifolds ([1]). Recently Niederkrüger[22] and Chekanov found a $(n + 1)$-dimensional analogue of an overtwisted disk with Legendrian boundary — a plastikeifte which is roughly the trace $K^{n-1} \times D^2$ of an overtwisted disk D^2 with Legendrian boundary travelling along a closed integral submanifold $K^{n-1} \subset M^{2n+1}$. However, in order to create some meaning of the above inequality in higher dimensions, we need a $2n$-dimensional analogue of an overtwisted disk with contact-type boundary.

Remark. The Thurston-Bennequin inequality can also be written in terms of relative Euler number: The vector field $X \in T\Sigma \cap \ker \alpha$ is a section of $\ker \alpha|\Sigma$ which is canonical near the boundary $\partial \Sigma$. Thus under a suitable boundary condition we have

$$\langle e(\ker \alpha), [\Sigma, \partial \Sigma] \rangle = \sum_{p \in S_-(\Sigma)} \text{Ind} p - \sum_{p \in S_+(\Sigma)} \text{Ind} p.$$

Then the Thurston-Bennequin inequality can be expressed as

$$-\langle e(\ker \alpha), [\Sigma, \partial \Sigma] \rangle \leq -\chi(\Sigma).$$

There is also an absolute version of the Thurston-Bennequin inequality for a closed hypersurface Σ with $\chi(\Sigma) \leq 0$, which is expressed as $|\langle e(\ker \alpha), [\Sigma] \rangle| \leq -\chi(\Sigma)$, or equivalently

$$\sum_{p \in S_-(\Sigma)} \text{Ind} p \leq 0 \quad \text{and} \quad \sum_{p \in S_+(\Sigma)} \text{Ind} p \leq 0.$$
The above symplectic manifold \((M,\alpha)\) is said to be convex if there exists a contact vector field transverse to \(\Sigma\).

Let \(Y\) be a contact vector field positively transverse to a closed convex hypersurface \(\Sigma\), and \(\Sigma \times (-\varepsilon,\varepsilon)\) a neighbourhood of \(\Sigma = \Sigma \times \{0\}\) with \(Y = \partial / \partial z\) (\(z \in (-\varepsilon,\varepsilon)\)). We may assume that the contact form \(\alpha\) is \(Y\)-invariant after rescaling it by multiplying a suitable positive function. Note that this rescaling does not change the level set \(\{\alpha(Y) = 0\}\). By perturbing \(Y\) in \(V_\alpha\), if necessary, we can modify the Hamiltonian function \(H = \alpha(Y)\) so that the level set \(\{H = 0\}\) is a regular hypersurface of the form \(\Gamma \times (-\varepsilon,\varepsilon)\) in the above neighbourhood \(\Sigma \times (-\varepsilon,\varepsilon)\), where \(\Gamma \subset M\) is a codimension-2 submanifold. Put \(h = H|\Sigma\).

Definition 1.4. The submanifold \(\Gamma = \{h = 0\} \subset \Sigma\) is called the **dividing set** on \(\Sigma\) with respect to \(Y\). \(\Gamma\) divides \(\Sigma\) into the **positive region** \(\Sigma_+ = \{h \geq 0\}\) and the **negative region** \(\Sigma_- = \{-h \leq 0\}\) so that \(\Sigma = \Sigma_+ \cup (-\Sigma_-)\). We orient \(\Gamma\) as \(\partial \Sigma_+ = \partial \Sigma_-\).

Note that \(\pm |\Sigma|\{\pm H > 0\}\) is the Reeb field of \(\alpha / |H| = \beta / |H| \pm dz\), where \(\beta\) is the pull-back of \(\alpha|\Sigma\) under the projection along \(Y\). Since the 2n-form
\[
\Omega = (d\beta)^n - 1 \wedge (H d\beta + n \beta dH)
\]
satisfies \(\Omega \wedge dz = \alpha \wedge (d\alpha)^n > 0\), the characteristic foliation \(F_\Sigma\) is positively transverse to the dividing set \(\Gamma\). Thus \(\Gamma\) is a positive contact submanifold of \((M,\alpha)\). The open set \(U = \{H < \varepsilon'\}\) is of the form \((-\varepsilon',\varepsilon') \times \Gamma \times (-\varepsilon,\varepsilon)\) for sufficiently small \(\varepsilon' > 0\). Let \(\rho(H) > 0\) be an even function of \(H\) which is increasing on \(H > 0\), and coincides with \(1/|H|\) except on \((-\varepsilon',\varepsilon')\). Then we see that \(d(\rho\alpha)|\text{int } \Sigma_\pm\) are symplectic forms.

On the other hand, let \((\Sigma_\pm, d\lambda_\pm)\) be compact exact symplectic manifolds with the same contact-type boundary \((\partial \Sigma_\pm, \mu)\), where we fix the primitive 1-forms \(\lambda_\pm\) and assume that \(\mu = \lambda_\pm |\partial \Sigma_\pm\). Then \(\lambda_i + dz\) is a z-invariant contact form on \(\Sigma_i \times \mathbb{R}\) (\(i = +\) or \(-\), \(z \in \mathbb{R}\)).

Definition 1.5. The contact manifold \((\Sigma_i \times \mathbb{R}, \lambda_i + dz)\) is called the **contactization** of \((\Sigma_i, d\lambda_i)\). Take a collar neighbourhood \((-\varepsilon',0] \times \partial \Sigma_i \subset \Sigma_i\) such that
\[
\lambda_i + dz|((-\varepsilon',0] \times \partial \Sigma_i \times \mathbb{R}) = e^s \mu + dz \quad (s \in (-\varepsilon',0]).
\]
We modify \(\lambda_i + dz\) near \((-\varepsilon',0] \times \partial \Sigma_i \times \mathbb{R}\) in a canonical way into a contact form \(\alpha_i\) with
\[
\alpha_i|((-\varepsilon',0] \times \partial \Sigma_i \times \mathbb{R}) = e^{-s^2/\varepsilon'} \mu - \frac{s}{\varepsilon'} dz.
\]
We call the contact manifold \((\Sigma_i \times \mathbb{R}, \alpha_i)\) the **modified contactization** of \((\Sigma_i, d\lambda_i)\).

Remark. The above symplectic manifold \((\Sigma_i, d\lambda_i)\) can be fully extended by attaching the half-symplectization \((\mathbb{R} > 0 \times \partial \Sigma_i, d(\varepsilon' \mu))\) to the boundary. The interior of the modified contactization is then contactomorphic to the contactization of the fully extended symplectic manifold.
The modified contactizations $\Sigma_+ \times \mathbb{R}$ and $\Sigma_- \times \mathbb{R}'$ match up to each other to form a connected contact manifold $((\Sigma_+ \cup (-\Sigma_-)) \times \mathbb{R}, \alpha)$ where $\mathbb{R}' = -\mathbb{R}$. Indeed, α can be written near $\Gamma \times \mathbb{R} = \partial \Sigma_+ \times \mathbb{R} = \partial \Sigma_- \times (-\mathbb{R}')$ as

$$\alpha((-\varepsilon', \varepsilon')) \times \mathbb{R} = e^{-s/\varepsilon'} \mu - \frac{s}{\varepsilon} dz \quad (s \in (-\varepsilon', \varepsilon'), z \in \mathbb{R}).$$

Definition 1.6. The contact manifold $((\Sigma_+ \cup (-\Sigma_-)) \times \mathbb{R}, \alpha)$ is called the unified contactization of $\Sigma = \Sigma_+ \cup (-\Sigma_-)$. Since $(-\Sigma_+ = \Sigma_-$ and $(-\Sigma)_- = \Sigma_+$, the unified contactization of $-\Sigma = \Sigma_+ \cup (-\Sigma_-)$ can be obtained by turning the unified contactization of $\Sigma_+ \cup (-\Sigma_-)$ upside-down. Note that $-\Sigma \in V_\alpha$.

Clearly, a small neighbourhood of any convex hypersurface $\Sigma_+ \cup (-\Sigma_-)$ is contactomorphic to a neighbourhood of $(\Sigma_+ \cup (-\Sigma_-)) \times \{0\}$ in the unified contactization.

Conceptually, a convex hypersurface in contact topology play the same role as a contact-type hypersurface in symplectic topology — both are powerful tools for cut-and-paste because they have canonical neighbourhoods modeled on the unified contactization and the symplectization. Further Giroux[9] showed that any closed surface in a contact 3-manifold is smoothly approximated by a convex one. This fact closely relates contact topology with differential topology in this dimension.

On the other hand, there exists a hypersurface which cannot be smoothly approximated by a convex one if the dimension of the contact manifold is greater than three (see [21]).

Definition 1.7. A compact connected oriented embedded hypersurface Σ with non-empty contact-type boundary in a contact manifold (M, α) is said to be convex if there exists a contact vector field Y such that $\alpha(Y)/\Sigma > 0$ and Y is transverse to Σ.

Put $h = \alpha(Y)/\Sigma$ after perturbing Y. Then the dividing set $\Gamma = \{h = 0\}$ divides Σ into the positive region $\Sigma_+ = \{h \geq 0\}$ and the (possibly empty) negative region $\Sigma_- = \{h \leq 0\}$ so that $\Sigma = \Sigma_+ \cup (-\Sigma_-)$ and $\partial \Sigma = \partial \Sigma_+ \setminus \partial \Sigma_- \neq \emptyset$.

Note that the above definition avoids touching of Γ to the contact-type boundary $\partial \Sigma$. Now the Thurston-Bennequin inequality can be written as

Thurston-Bennequin inequality for convex hypersurfaces. $\chi(\Sigma_-) \leq 0$ (or $\Sigma_- = \emptyset$).

Suppose that there exists a convex disk $\Sigma = D^2$ with contact-type boundary in a contact 3-manifold which is the union $\Sigma_+ \cup (-\Sigma_-)$ of a negative disk region $\Sigma_- \leq \Sigma$ and a positive annular region Σ_+. Then the convex disk Σ violates the Thurston-Bennequin inequality and is called a convex overtwisted disk ($\chi(\Sigma_-) = 1 > 0$). Conversely, it is clear that any overtwisted disk with contact-type boundary is also approximated by a convex overtwisted disk.

Definition 1.8. A convex overtwisted hypersurface is a connected convex hypersurface $\Sigma_+ \cup (-\Sigma_-)$ with contact-type boundary which satisfies $\chi(\Sigma_-) > 0$.

Note that any convex overtwisted hypersurface Σ contains a connected component of Σ_+ whose boundary is disconnected. This relates to Calabi’s question on the existence of a compact connected exact symplectic 2n-manifold $(n > 1)$ with disconnected contact-type boundary. McDuff[18] found the first example of such a manifold. Here is another example:

Example 1.9. (Mitsumatsu[19], Ghys[8] and Geiges[7]) To obtain a symplectic 4-manifold with disconnected contact-type boundary, we consider the mapping torus $T_A = T^2 \times [0, 1]/A \cong ((x, y), z)$ of a linear map $A \in SL(2, \mathbb{Z}) (A : T^2 \times \{1\} \to T^2 \times \{0\})$ with $\det A > 2$. Let $dvol_T^{\mathbb{R}}$ be the standard volume form on $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ and v_\pm eigenvectors of A which satisfy $Av_\pm = \pm a v_\pm$, where $a > 1$ and $dvol_T^{\mathbb{R}}(v_+, v_-) > 0$.

In general, a cylinder $[-1, 1] \times M^3$ admits a symplectic structure with contact-type boundary if M^3 admits a co-orientable Anosov foliation (Mitsumatsu[19]). In the case where $M^3 = T_A$, the 1-forms $\beta_\pm = \pm a^{-1} dvol_T^{\mathbb{R}}(v_\pm, \cdot)$ define Anosov foliations. Then the cylinder

$$\left(W_A = [-1, 1] \times T_A, d(\beta_+ + s \beta_-) \right) \quad (s \in [-1, 1])$$

is a symplectic manifold with contact-type boundary $(-T_A) \sqcup T_A$.

Using the above cylinder W_A, we construct a convex overtwisted hypersurface in Σ.
2. CONVERGENCE OF CONTACT STRUCTURES TO FOLIATIONS

First we define a supporting open-book decomposition on a closed contact manifold.

Definition 2.1. Let \((M^{2n+1}, \alpha)\) be a closed contact manifold and \(O\) an open-book decomposition on \(M^{2n+1}\) by pages \(P_\theta (\theta \in \mathbb{R}/2\pi \mathbb{Z})\). Suppose that the binding \((N^{2n-1} = \partial P_\theta, \alpha|N^{2n-1})\) of \(O\) is a contact submanifold. Then if there exists a positive function \(\rho\) on \(M^{2n+1}\) such that
\[
d\theta \wedge (d(\rho \alpha))^n > 0 \quad \text{on} \quad M^{2n+1} \setminus N^{2n-1},
\]
the open-book decomposition \(O\) is called a **supporting open-book decomposition** on \((M^{2n+1}, \alpha)\).

The function \(\rho\) can be taken so that \(\rho \alpha\) is axisymmetric near the binding. Precisely, we can modify the function \(\rho\) near a tubular neighbourhood \(N^{2n-1} \times D^2\) except on the binding \(N^{2n-1} \times \{0\}\), if necessary, so that with respect to the polar coordinates \((r, \theta)\) on the unit disk \(D^2\)

- i) the restriction \(\rho \alpha|(N^{2n-1} \times D^2)\) is of the form \(f(r) \mu + g(r)d\theta\),
- ii) \(\mu\) is the pull-back \(\pi^*(\rho \alpha|N^{2n-1})\) under the projection \(\pi : N^{2n-1} \times D^2 \to N^{2n-1}\),
- iii) \(f(r)\) is a positive function of \(r\) on \(N^{2n-1} \times D^2\) with \(f'(r) < 0\) on \((0,1]\), and
- iv) \(g(r)\) is a weakly increasing function with \(g(r) \equiv r^2\) near \(r = 0\) and \(g(r) \equiv 1\) near \(r = 1\).

Next we prove the following theorem.

Theorem 2.2. Let \(O\) be a supporting open-book decomposition on a closed contact manifold \((M^{2n+1}, \alpha)\) of dimension greater than three \((n > 1)\). Suppose that the binding \(N^{2n-1}\) of \(O\) admits a non-zero closed 1-form \(\nu\) with \(\nu \wedge (d(\rho \alpha|N^{2n-1}))^{n-1} = 0\) where \(\rho\) is a function on \(M^{2n+1}\) satisfying all of the above conditions. Then there exists a family of contact forms \(\{\alpha_t\}_{0 \leq t < 1}\) on \(M^{2n+1}\) which starts with \(\alpha_0 = \rho \alpha\) and converges to a non-zero 1-form \(\alpha_1\) with \(\alpha_1 \wedge d\alpha_1 \equiv 0\). That is, the contact structure \(\ker \alpha_1\) then deforms to a spinnable foliation.

Proof. Take smooth functions \(f_1(r), g_1(r), h(r)\) and \(e(r)\) of \(r \in [0,1]\) such that

- i) \(f_1 \equiv 1\) near \(r = 0\), \(f_1 \equiv 0\) on \([1/2,1]\), \(f'_1 \leq 0\) on \([0,1]\),
- ii) \(g_1 \equiv 1\) near \(r = 1\), \(g_1 \equiv 0\) on \([0,1/2]\), \(g'_1 \geq 0\) on \([0,1]\),
- iii) \(h \equiv 1\) on \([0,1/2]\), \(h \equiv 0\) near \(r = 1\),
- iv) \(e\) is supported near \(r = 1/2\), and \(e(1/2) \neq 0\).

Put \(f_t(r) = (1-t)f(r) + tf_1(r)\), \(g_t(r) = (1-t)g(r) + tg_1(r)\) and
\[
\alpha_t(N \times D^2) = f_t(r)((1-t)\mu + th(r)\nu) + g_t(r)d\theta + te(r)dr,
\]
where \(\nu\) also denotes the pull-back \(\pi^*\nu\). We extend \(\alpha_t\) by
\[
\alpha_t(M \setminus (N \times D^2)) = \tau \rho \alpha + (1-\tau)d\theta \quad \text{where} \quad \tau = (1-t)^2.
\]
Then we see from \(d\nu \equiv 0\) and \(\nu \wedge (d\mu)^{n-1} \equiv 0\) that \(\alpha_t \wedge (d\alpha_t)^n\) can be written as
\[
n_f^{-1}(1-t)^n(g'_1f_1 - f'_1g_1)\mu \wedge (d\mu)^{n-1} \wedge dr \wedge d\theta \quad \text{on} \quad N \times D^2 \quad \text{and}
\]
\[
\tau^{n+1} \rho^{n+1} \alpha \wedge (d\alpha)^n + \tau^n(1-\tau)d\theta \wedge (d(\rho \alpha))^n \quad \text{on} \quad M \setminus (N \times D^2).
\]
Therefore we have
\[
\alpha_t \wedge (d\alpha)^n > 0 \quad (0 \leq t < 1), \quad \alpha_1 \wedge d\alpha_1 \equiv 0 \quad \text{and} \quad \alpha_1 \neq 0.
\]
This completes the proof of Theorem 2.2.

Remark.

1) A similar result in the case where \(n = 1\) is contained in the author’s paper: Any contact structure \(\ker \alpha\) on a closed 3-manifold deforms to a spinnable foliation.

2) The orientation of the compact leaf \(\{r = 1/2\}\) depends on the choice of the sign of the value \(e(1/2)\). Here the choice is arbitrary.

We give some examples of the above limit foliations which relate to the following proposition on certain \(T^2\)-bundles over the circle.
Proposition 2.3 (Van Horn[20]). Let $T_{A_{m,0}}$ denote the mapping torus $T^2 \times [0,1]/A_{m,0} \cong \{(x, y), z\}$ of the linear map $A_{m,0} = \begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix} : T^2 \times \{1\} \to T^2 \times \{0\}$ ($m \in \mathbb{N}$). Then $\ker(dy + mxdz)$ is the unique Stein fillable contact structure on $T_{A_{m,0}}$ (up to contactomorphism). Moreover it admits a supporting open-book decomposition $O_{m,0}$ such that

i) the page is a m-times punctured torus, and

ii) the monodromy is the right-handed Dehn twist along (the disjoint union of m loops parallel to) the boundary of the page.

Let \mathbb{C}^3 be the $\xi\eta\zeta$-space, and π_ξ, π_η and π_ζ denote the projections to the axes.

Example 2.4 (Lawson’s foliation). The link L of the singular point $(0,0,0)$ of the complex surface $\{\xi^4 + \eta^3 + \zeta^3 = 0\} \subset \mathbb{C}^3$ is diffeomorphic to the T^2-bundle $T_{A_{m,0}}$. (To see this, consider the projective curve $\{\xi^3 + \eta^3 + \zeta^3 = 0\} \subset \mathbb{CP}^2$ diffeomorphic to T^2. Since L is the union of the Hopf fibres over this torus, it is also a T^2-bundle over the circle.) Moreover, since L is Stein fillable, it is contactomorphic to $(T_{A_{m,0}}, \mu = dy + 3zdx)$. Indeed the open-book decomposition $O_{m,0}$ in Proposition 2.3 is equivalent to the supporting open-book decomposition $\{\arg(\pi_\xi (L) = \theta)_{\theta \in \mathbb{R}/2\pi \mathbb{Z}}\}$ on L. (To see this, regard ξ as a parameter and consider the curve $C_\xi = \{\eta^3 + \zeta^3 = -\xi^4\}$ on the $\eta\zeta$-plane, which is diffeomorphic to $T^2 \setminus \{\text{three points}\}$. Then we can see that the fibration $\{(\xi) \times C_\xi \cap B^6\}_{|\xi| = \varepsilon}$ is equivalent to the page fibration of $O_{3,0}$, where B^6 denotes the unit hyperball of $\mathbb{C}^3 \approx \mathbb{R}^6 \ni (x_1, y_1, \ldots, x_3, y_3, \varepsilon)$. We put $\Lambda = 3 \sum_{i=1} (x_i dy_i - y_i dx_i)$ and $V_{\varepsilon, \theta} = \{\varepsilon^3 + \xi^3 = \varepsilon e^{\varepsilon/\pi}B^6 \cap B^6 \ (\theta \in \mathbb{R}/2\pi \mathbb{Z})\}$.

Then Gray’s stability implies that $\partial V_{\varepsilon, \theta} \subset (S^5, \Lambda|S^5)$ is contactomorphic to L. Since $\xi^4 + \eta^3 + \zeta^3$ is a homogeneous polynomial, the 1-form $\Lambda|V_{\varepsilon, \theta}$ is conformal to the pull-back of the restriction of Λ to $\Sigma_{\varepsilon, \theta} = \{\rho \mid \rho > 0, \rho \in V_{\varepsilon, \theta} \cap S^5 \subset \{\arg(\xi^3 + \eta^3 + \zeta^3 = \theta)\}$ under the central projection. Indeed $\rho x_id(\rho y_i) - \rho y_id(\rho x_i) = \rho^2 (x_i dy_i - y_i dx_i)$ holds for any function ρ. Thus the fibration $\{\Sigma_{\varepsilon, \theta}\}_{\theta \in \mathbb{R}/2\pi \mathbb{Z}}$ extends to a supporting open-book decomposition on the standard S^5. We put $\nu = dz$ and apply Theorem 2.2 to obtain a limit foliation $F_{m,0}$ of the standard contact structure. This is the memorable first foliation on S^5 discovered by Lawson[16].

For other examples, we need the following lemma essentially due to Giroux and Mohns.

Lemma 2.5 (see [11]). Let $f : \mathbb{C}^n \to \mathbb{C}$ be a holomorphic function with $f(0, \ldots, 0) = 0$ such that the origin $(0, \ldots, 0)$ is an isolated critical point. Take a sufficiently small hyperball $B_\varepsilon = \{|z_1|^2 + \cdots + |z_n|^2 = \varepsilon^2\}$. Then there exists a supporting open-book decomposition on the standard S^{2n-1} such that the binding is contactomorphic to the link $\{f = 0\} \cap \partial B_\varepsilon$ and the page fibration is equivalent to the fibration $\{\{f = \delta\} \cap B_\varepsilon\}_{|\delta| = \varepsilon'}$ ($0 < \varepsilon' < \varepsilon$).

Proof. Take the hyperball $B_\varepsilon' = \{|z_1|^2 + \cdots + |z_{n+1}|^2 = \varepsilon^2\}$ on \mathbb{C}^{n+1} and consider the complex hypersurface $\Sigma_k = \{z_{n+1} = k f(z_1, \ldots, z_n)\} \cap B_\varepsilon'$ with contact-type boundary $\partial \Sigma_k (k \geq 0)$. Then Gray’s stability implies that $\partial \Sigma_k$ is contactomorphic to $\partial \Sigma_0 = \partial B_\varepsilon$. From $dz_{n+1}\Sigma_{\infty} = 0$ and $(x_{n+1}dy_{n+1} - y_{n+1}dx_{n+1})(-y_{n+1}\partial/\partial x_{n+1} + x_{n+1}\partial/\partial y_{n+1}) \geq 0$, we see that $\{\arg(f|\partial \Sigma_k) = \theta\}_{\theta \in S^1}$ is a supporting open-book decomposition of $\partial \Sigma_k$ equivalent to $\{\{f = \delta\} \cap B_\varepsilon\}_{|\delta| = \varepsilon'}$ if k is sufficiently large and $\varepsilon' > 0$ is sufficiently small.

Example 2.6. Consider the polynomials $f_1 = \xi^6 + \eta^3 + \zeta^2$ and $f_2 = \xi^4 + \eta^4 + \zeta^2$. Then the link L_m of the singular point $(0,0,0) \in \{f_m = 0\}$ is contactomorphic to the above T^2-bundle $T_{A_{m,0}}$ with the contact form $\mu = dy + mxdz$ ($m = 1, 2$). Indeed $O_{m,0}$ is equivalent to the supporting open-book decomposition $\{\arg(\tau_\xi (L_m) = \theta)_{\theta \in \mathbb{R}/2\pi \mathbb{Z}}\}$ on L_m. To see this, regard ξ as a parameter and consider $C_\xi = \{f_m = 0\}$ on the $\eta\zeta$-plane, which is diffeomorphic to $T^2 \setminus \{m \text{ points}\}$. Then we can see that the fibration $\{\{\xi\} \times C_\xi \cap B^6\}_{|\xi| = \varepsilon}$ is equivalent to the page fibration of $O_{m,0}$.

On the other hand, Lemma 2.3 says that there exists a supporting open-book decomposition on the standard S^5 which is equivalent to the Milnor fibration with binding L_m. We put $\nu = dz$ and apply Theorem 2.2 to obtain a limit foliation $F_{m,0}$ ($m = 1, 2$).
Definition 2.7.

1) Let \(f : \mathbb{C}^{n+1} \rightarrow \mathbb{C} \) be a holomorphic function with \(f(0, \ldots, 0) = 0 \) such that the origin is an isolated critical point or a regular point of \(f \). If the origin is singular, the Milnor fibre has the homotopy type of a bouquet of \(n \)-spheres. Suppose that the Euler characteristic of the Milnor fibre is positive, that is, the origin is regular if \(n \) is odd. Then we say that the Milnor fibration is \(PE \) (=positive Euler characteristic).

2) Let \(\mathcal{O} \) be a supporting open-book decomposition of the standard \(S^{2n+1} \). Suppose that the binding is the total space of a fibre bundle \(\pi \) over \(\mathbb{R}/\mathbb{Z} \geq t \), and the Euler characteristic of the page is positive. Then if \(\nu = \pi^* dt \) satisfies the assumption of Theorem 2.2 the resultant limit foliation is called a Reeb foliation.

The above \(\mathcal{F}_{m,0} \) (\(m = 1, 2, 3 \)) are Reeb foliations associated to PE Milnor fibrations. To obtain other examples of foliations associated to more general Milnor fibrations, Grauert’s topological characterization of Milnor fillable 3-manifolds is instructive ([12], see also [2]).

3. Five-dimensional Lutz tubes

In this section, we define a 5-dimensional Lutz tube by means of an open-book decomposition whose page is a convex hypersurface. We insert the Lutz tube along the binding of a certain characterization of Milnor fillable 3-manifolds is instructive ([12], see also [2]).

3.1. Convex open-book decompositions

We explain how to construct a contact manifold with an open-book decomposition by convex pages.

Proposition 3.1. Let \((\Sigma_{\pm}, d\lambda_{\pm}) \) be two compact exact symplectic manifolds with contact-type boundary. Suppose that there exists an inclusion \(\iota : \partial\Sigma_- \rightarrow \partial\Sigma_+ \) such that \(\iota^*(\lambda_+|\partial\Sigma_+) = \lambda_-|\partial\Sigma_- \). Let \(\varphi \) be a self-diffeomorphism of the union \(\Sigma = \Sigma_+ \cup_\iota (-\Sigma_-) \) supported in \(\text{int} \Sigma_+ \cup \text{int}(-\Sigma_-) \) which satisfies

\[
(\varphi|\Sigma_{\pm})^*\lambda_{\pm} - \lambda_{\pm} = dh_{\pm}
\]

for suitable positive functions \(h_{\pm} \) on \(\Sigma_{\pm} \). We choose some connected components of \(\partial\Sigma_+ \setminus \iota(\partial\Sigma_-) \) and take their disjoint union \(B \). Then there exists a smooth map \(\Phi \) from the unitedification \(\Sigma \times \mathbb{R} \) to a compact contact manifold \((M, \alpha)\) such that

- i) \(\Phi|(\Sigma \setminus B) \times \mathbb{R} \) is a cyclic covering which is locally a contactomorphism,
- ii) \(P_0 = \Phi(\Sigma \setminus \{0\}) \approx \Sigma \) is a convex page of an open-book decomposition \(\mathcal{O} \) on \((M, \alpha)\),
- iii) \(\Phi(B \times \mathbb{R}) \approx B \) is the binding contact submanifold of \(\mathcal{O} \), and
- iv) \(\varphi \) is the monodromy map of \(\mathcal{O} \).

Proof. In the case where \(\Sigma_- = \emptyset \) and \(B = \partial\Sigma_+ \), this proposition was proved in Giroux [10] (essentially in Thurston-Winkelnkemper[25]). Then \(\mathcal{O} \) is a supporting open-book decomposition. In general, let \(\Sigma \times \mathbb{R} \) be the unified contactization, i.e., the union of the modified contactizations of \(\Sigma_{\pm} \) by the attaching map \((\iota, -id_{\mathbb{R}^c}) : \partial\Sigma_- \times \mathbb{R}^c \rightarrow \partial\Sigma_+ \times \mathbb{R}(=-\mathbb{R}^c) \). Consider the quotient \(\Sigma \times ((\mathbb{R}/2\pi c\mathbb{Z}) \times \mathbb{R}^c) \) of \(\Sigma \times (\mathbb{R}/2\pi c\mathbb{Z}) \times \mathbb{R}^c \), and cap-off the boundary components \(B \times (\mathbb{R}/2\pi c\mathbb{Z}) \) by replacing the collar neighbourhood \((-\varepsilon, 0] \times B \times (\mathbb{R}/2\pi c\mathbb{Z}) \) with \((B \times D^2, (\lambda_+|B) + r^2d\theta) \) where \(\theta = z/c \). Adding constants to \(h_{\pm} \) if necessary, we may assume that \(h_{\pm} \) are the restrictions of the same function \(h \). We change the identification \((x, z + 2\pi c) \sim (x, z) \) to \((x, z + h) \sim (\varphi(x), z) \) before capping-off the boundary \(B \times S^1 \). This defines the map \(\Phi \) and completes the proof. \(\Box \)

Remark. Giroux and Mohsen proved that any symplectomorphism supported in \(\text{int} \Sigma_+ \) is isotopic via such symplectomorphisms to \(\varphi \) with \(\varphi^*\lambda_+ - \lambda_+ = dh_+ \) (\(\exists h_+ > 0 \)). They also proved that there exists a supporting open-book decomposition on any closed contact manifold by interpreting the result of Ibort-Martinez-Presas[14] on the applicability of Donaldson-Auroux’s asymptotically holomorphic methods to complex functions on contact manifolds (see [10]).
3.2. Definition of Lutz tubes. Let W_A be the symplectic manifold with disconnected contact-type boundary $(-T_A)\cup T_A$ in Example 1.9. Then, by a result of Van Horn [26], each of the boundary component is a Stein fillable contact manifold. Note that $\text{tr}(A^{-1}) > 2$ and $(-T_A) \approx T_A^{-1}$.

Precisely, there exists a supporting open-book decomposition on T_A described as follows.

Proposition 3.2.

1) (Honda[13], see also Van Horn[26]) Any element $A \in SL(2;\mathbb{Z})$ with $\text{tr} A > 2$ is conjugate to at least one of the elements

$$A_{m,k} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & k_1 \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & k_m \\ 0 & 1 \end{pmatrix} \in SL(2;\mathbb{Z}),$$

where $m \in \mathbb{Z}_{>0}$, $k = (k_1, \ldots, k_m) \in (\mathbb{Z}_{\geq 0})^m$ and $k_1 + \cdots + k_m > 0$.

2) (Van Horn[26]) The contact manifold $(T_{A_{m,k}}, (\beta_- + \beta_+)|T_{A_{m,k}})$ ($k \neq 0$) admits a supporting open-book decomposition which is determined up to equivalence by the following data:

- **Page:** The page P is the m-times punctured torus $\bigcup_{i \in \mathbb{Z}_m} P_i$, where P is divided into three-times punctured spheres P_i by mutually disjoint loops γ_i with $P_i \cup P_{i+1} = \gamma_i$.

- **Monodromy:** The monodromy is the composition $\tau(\partial P) \circ \prod_{i=1} \{\tau(\gamma_i)\}^{k_i}$, where $\tau(\gamma)$ denotes the right-handed Dehn twist along γ.

These data determines a PALF (=positive allowable Lefschetz fibration) structure of the canonical Stein filling V of the contact manifold $T_{A_{m,k}}$ if $m \geq 2$ (see Loi-Piergallini [17] and Giroux [10]). Here we see through the PALF structure that attaching 1-handles to the page corresponds to attaching 1-handles to the canonical Stein filling, and adding right-handed Dehn twists along non-null-homologous loops to the monodromy corresponds to attaching 2-handles to the canonical Stein filling. Thus we have

$$\chi(V) = 1 - (\#(0\text{-handles})) - (m+1)(\#(1\text{-handles})) + (m+k_1 + \cdots + k_m)(\#(2\text{-handles})) > 0.$$

In the case where $m = 1$, let ℓ_1 and ℓ_2 denote simple loops on P which intersect transversely at a single point. It is well-known that $\tau(\partial P)$ is isotopic to $(\tau(\ell_1) \circ \tau(\ell_2))^k$. This new expression determines a PALF structure with $12 + k_1$ singular fibres on the canonical Stein filling V of $T_{A_{1,k_1}}$.

Then we have $\chi(V) = 1 - 2 + 12 + k_1 > 11$. Thus the following corollary holds.

Corollary. The contact manifold $(T_A, (\beta_- + \beta_+)|T_A)$ admits a Stein filling V with $\chi(V) > 0$.

Then the unified contactization of $W_A \cup (-V)$ under the natural identification $\{1\} \times T_A \sim \partial V$ contains a convex overtwisted hypersurface $(W_A \cup (-V)) \times \{0\}$.

Now we define a 5-dimensional Lutz tube.

Definition 3.3. Putting $\Sigma_+ = W_A$, $\Sigma_- = \emptyset$, $B = -\{\{-1\} \times T_A\} \approx T_A^{-1}$, and $\varphi = \text{id}_\Sigma$, we apply Proposition 3.1 to obtain a contact manifold $T_{A^{-1}} \times D' \approx T_A \times D^2$ ($D' = -D^2$), which we call the 5-dimensional Lutz tube associated to A (tr $A > 2$).

The next proposition explains how to insert a Lutz tube.

Proposition 3.4. Let $(V, d\lambda)$ be an exact strong symplectic filling of T_A with $\text{tr} A > 2$, $\psi : V \to V$ a diffeomorphism supported in $\text{int} \ V$. Suppose that $\chi(V) > 0$ and $\psi^* \lambda - \lambda = dh$ ($\exists h > 0$). Putting $\Sigma_+ = V$, $\Sigma_- = \emptyset$, $B = \partial V$ and $\varphi = \psi$, we apply Proposition 3.1 to obtain a closed contact manifold (M^5, α) with an open-book decomposition whose binding is T_A. Next we consider the union $W_A \cup (-V)$ with respect to the natural identification $i : \partial V \to \{1\} \times T_A \subset W_A$. Again putting $\Sigma_+ = W_A$, $\Sigma_- = V$, $B = \partial W_A \setminus i(\partial V)$ and $\varphi = (\text{the trivial extension of } \psi^{-1})$, we apply Proposition 3.1 to obtain another contact manifold (M', α') with an open-book decomposition, where the page is a convex overtwisted hypersurface and the binding is $T_{A^{-1}}$. Then there exists a diffeomorphism from M^5 to M' which preserves the orientation and sends T_A to $-T_{A^{-1}}$. We may consider that (M', α') is obtained by inserting the 5-dimensional Lutz tube associated to A along the binding T_A of a supporting open-book decomposition on (M^5, α).

Remark. 1) Similarly, we can insert a 5-dimensional Lutz tube along any codimension-2 contact submanifold with trivial normal bundle which is contactomorphic to T_A (tr $A > 2$).
Particularly, we can insert the Lutz tube associated to A^{-1} along the core of the Lutz tube associated to A. Then we obtain a 5-dimensional analogue of the full Lutz tube.

2) We may consider the original 3-dimensional (half) Lutz tube as a trivial open-book decomposition by positive annuli whose binding is a connected component of the boundary. That is, starting with the exact symplectic annulus $([-1, 1] \times S^1, s \theta)$ ($s \in [-1, 1], \theta \in S^1$) we can construct the 3-dimensional Lutz tube by Proposition 3.1 ($\varphi = \text{id}$).

3) Geiges constructed an exact symplectic 6-manifold $[-1, 1] \times M^5$ with contact-type boundary, where M^5 is a certain T^4-bundle over the circle. From his example, we can also construct a 7-dimensional Lutz tube. The author suspects that this Lutz tube enables us to change not only the contact structure but also the homotopy class of the almost contact structure of a given contact 7-manifold. See Question 5.3 in Etnyre-Pancholi.

3.3. Exotic contact structures on S^5. We can insert a Lutz tube into the standard S^5. Namely,

Theorem 3.5. In the case where $m \leq 2$ and $k \neq 0$, $T_{A_{m,k}}$ is contactomorphic to the link of the isolated singular point $(0,0)$ of the hypersurface $\{f_{m,k} = 0\} \subset C^3$, where

\[
\begin{align*}
f_{1,k_1} &= (\eta - 2\xi^2)(\eta^2 + 2\eta \xi + \xi^4 - \xi^{4+k_1}) + \xi^2 \quad \text{and} \\
f_{2,k_1,k_2} &= \{(\xi + \eta)^2 - \xi^{2+k_1}\} \{(\xi - \eta)^2 + \xi^{2+k_2}\} + \xi^2.
\end{align*}
\]

Let $O_{m,k}$ denote the Milnor fibration of the singular point $(0,0,0) \in \{f_{m,k} = 0\}$.

Remark. From Theorem 2.2 and Lemma 2.5 we obtain a Reeb foliation $F_{m,k}$ associated to $O_{m,k}$.

In order to prove Theorem 3.5 we prepare an easy lemma.

Lemma 3.6.

1) The complex curve

\[
C = \{\xi^2 = -(\eta - p_1) \cdots (\eta - p_{m+2})\} \quad (m = 1, 2)
\]

on the $\eta\xi$-plane C^2 is topologically an m-times punctured torus in \mathbb{R}^4 if the points p_i are mutually distinct. These points are the critical values of the branched double covering $\pi_\eta|C$, where $\pi_\eta : C^2 \to C$ denotes the projection to the η-axis.

2) Let $B : p_1 = p_1(\theta), \ldots, p_{m+2} = p_{m+2}(\theta)$ be a closed braid on $C \times S^1$ ($\theta \in S^1$). Then the above curve $C = C_\theta$ traces a surface bundle over S^1. Fix a proper embedding $l : \mathbb{R} \to C$ into the η-axis such that $l(1) = p_1(0), \ldots, l(m+2) = p_{m+2}(0)$. Suppose that the closed braid B is isotopic to the geometric realization of a composition

\[
\prod_{j=1}^{j} \{\sigma_i(j)^q(j) \text{ where } q(j) \in \mathbb{Z}, i(j) \in \{1, \ldots, m+1\}\},
\]

where $\sigma_i : C \to C$ denotes the right-handed exchange of p_i and p_{i+1} along the arc $l([i,i+1])$ ($i = 1, \ldots, m+1$). Then the monodromy of the surface bundle C_θ is the composition

\[
\prod_{j=1}^{j} \{\tau(\ell_i(j)) \text{ where } \ell_i = (\pi_\eta|C)^{-1}(l([i,i+1]))\}.
\]

Proof of Theorem 3.5 Regard $\xi \neq 0$ as a small parameter and take the branched double covering $\pi_\eta|C_\xi$ of the curve $C_\xi = \{f_{m,k} = 0, \xi = \text{const}\} \cap B^6$. Then the critical values of $\pi_\eta|C_\xi$ are

\[
p_1, p_2 = -\xi^2(1 - (\xi^{k_1})^{1/2}) \quad \text{and} \quad p_3 = 2\xi_2 \quad \text{in the case where } m = 1
\]

\[
(p_1, p_2 = -\xi(1 - (\xi^{k_1})^{1/2}), p_3, p_4 = \xi(1 - (\xi^{k_2})^{1/2}) \text{ in the case where } m = 2).
\]

As ξ rotates along a small circle $|\xi| = \varepsilon$ once counterclockwise, the set $\{p_1, \ldots, p_{m+2}\}$ traces a closed braid, which is clearly a geometric realization of the composition

\[
(\sigma_1 \circ \sigma_2)^{q_1}(\sigma_1)^{q_2} \quad (\text{resp. } (\sigma_1 \circ \sigma_2 \circ \sigma_3)^{q_1}(\sigma_1)^{q_2}(\sigma_3)^{q_2}).
\]

From Lemma 3.6 and the well-known relation

\[
\tau(\partial C_\xi) \simeq (\tau(\ell_1) \circ \tau(\ell_2))^{q_1} \quad (\text{resp. } \tau(\partial C_\xi) \simeq (\tau(\ell_1) \circ \tau(\ell_2) \circ \tau(\ell_3))^{q_1}),
\]

we obtain a Reeb foliation $F_{m,k}$ associated to $O_{m,k}$.
we see that the link of the singular point \((0,0,0) \in \{ f_{m,k} = 0 \}\) admits the supporting open-book decomposition in Proposition 3.2. This completes the proof of Theorem 3.5. □

If we insert the Lutz tube associated to \(A_{m,k}\) \(m = 1,2, k \neq 0\) along the binding of the supporting open-book decomposition equivalent to \(\mathcal{O}_{m,k}\), we obtain a contact structure \(\ker(\alpha_{m,k})\) on \(S^5\). Then the page becomes a convex overtwisted hypersurface. The following theorem can be proved in a similar way to the proof of Lemma 2.2.

Theorem 3.7. The contact structure \(\ker(\alpha_{m,k})\) \(m = 1, 2, k \neq 0\) deforms via contact structures into a foliation which is obtained by cutting and turbulizing the page leaves of the Reeb foliation \(\mathcal{F}_{m,k}\) along the hypersurface corresponding to the boundary of the Lutz tube.

Let \((M', \alpha')\) be the contact connected sum of any contact 5-manifold \((M^5, \alpha)\) with the above exotic 5-sphere \((S^5, \alpha_{m,k})\). Then we see that the contact manifold \((M' \approx M^5, \alpha')\) contains a convex overtwisted hypersurface. Namely,

Theorem 3.8. Any contact 5-manifold admits a contact structure which violates the Thurston-Bennequin inequality for a convex hypersurface with contact-type boundary.

3.4. Plastikstufes in Lutz tubes

We show that there exists a plastikstufe in any 5-dimensional Lutz tube. First we define a plastikstufe in a contact 5-manifold.

Definition 3.9. Let \((M^5, \alpha)\) be a contact 5-manifold and \(\iota : T^2 \rightarrow M^5\) a Legendrian embedding of the torus which extends to an embedding \(\iota : D^2 \times S^1 \rightarrow M^5\) of the solid torus. Then the image \(\iota(D^2 \times S^1)\) is called a plastikstufe if there exists a function \(f(r)\) such that

\[
(r^2 d\theta + f(r) dr) \wedge (\iota^* \alpha) = 0, \quad \lim_{r \to 0} \frac{f(r)}{r^2} = 0 \quad \text{and} \quad \lim_{r \to 1} |f(r)| = \infty,
\]

where \(r\) and \(\theta\) denote polar coordinates on the unit disk \(D^2\).

Example 3.10. Consider the contactization

\[
(\mathbb{R} \times T_A, \mathbb{R}(\mathbb{R}T_A \times \mathbb{R}(\mathbb{R}t)), \alpha = \beta_+ + s\beta_- + dt)
\]

of the exact symplectic manifold \((\mathbb{R} \times T_A, d(\beta_+ + s\beta_-))\), where \(\beta_\pm\) are the 1-forms described in Example 1.10. Take coordinates \(p\) and \(q\) near the origin on \(T^2 = \mathbb{R}^2/\mathbb{Z}^2\) such that \(p = q = 0\) at the origin, \(\partial/\partial p = v_+\) and \(\partial/\partial q = v_-\). Then for small \(\varepsilon > 0\), the codimension-2 submanifold

\[
\mathcal{P} = \{ p = \varepsilon a^{-2}g(s), q = \varepsilon a^2sg(s) \} \subset \mathbb{R} \times T_A \times \mathbb{R}
\]

is compactified to a plastikstufe on the Lutz tube \(T_A \times D^2\), where \(g(s)\) is a function with

\[
g(s) \equiv 0 \quad \text{on} \quad (\infty, 1], \quad \text{and} \quad g(s) \equiv \frac{1}{s \log s} \quad \text{on} \quad [2, \infty).
\]

Note that the boundary \(\{(\infty, (0, 0, z), t) \mid z \in S^1, t \in S^1\} \approx T^2\) of the plastikstufe is a Legendrian torus, and on the submanifold \(\mathcal{P}\) the contact form \(\alpha\) can be written as

\[
\alpha|\mathcal{P} = a^{-2} dq + sa^2 dp + dt = \varepsilon (g(s) + 2sg'(s)) \, ds + dt.
\]

Indeed, as \(s \to \infty,

\[
g(s) \to 0, \quad sg(s) \to 0 \quad \text{and} \quad \int_2^s (g(s) + 2sg'(s))ds \to -\infty.
\]

Remark. As \(\varepsilon \to 0\), the above plastikstufe converges to a solid torus \(S^1 \times D^2\) foliated by \(S^1\) times the straight rays on \(D^2\), i.e., the leaves are \(\{ t = \text{const} \}\).

The following theorem is proved in the above example.

Theorem 3.11. There exists a plastikstufe in any 5-dimensional Lutz tube.

Corollary. (Niederkrüger-van Koert) Any contact 5-manifold \((M^5, \alpha)\) admits another contact structure \(\ker \alpha'\) such that \((M^5, \alpha')\) contains a plastikstufe.
3.5. Topology of the pages. We decide the Euler characteristic of the page of the open-book decomposition given in Theorem 3.5 which is diffeomorphic to

$$ F = \{ f_{m,k}(\xi, \eta, \zeta) = \delta \} \cap \{ |\xi|^2 + |\eta|^2 + |\zeta|^2 \leq \varepsilon \}, $$

where $\delta \in \mathbb{C}, \varepsilon \in \mathbb{R}_{>0}, 0 < |\delta| \ll \varepsilon \ll 1$. Let π_ζ, π_η and π_ξ denote the projections to the axes.

In the case where $m = 1$, the critical values of $\pi_\xi|F$ are the solutions of the system

$$ f_1,(k_1) - \delta = 0, \quad \frac{\partial}{\partial \eta} f_1,(k_1) = 0, \quad \frac{\partial}{\partial \zeta} f_1,(k_1) = 2\zeta = 0 \quad \text{and} \quad |\xi| \ll \varepsilon. $$

Therefore, for each critical value ξ of $\pi_\xi|F$, we have the factorization

$$ (\eta - 2\xi^2)(\eta^2 + 2\xi^2\eta + \xi^4 - \xi^{4+k_1}) - \delta = (\eta - a)^2(\eta + 2a) $$

of the polynomial of η, where the parameter $a \in \mathbb{C}$ depends on ξ. By comparison of the coefficients of the η^1-terms and the η^0-terms we have

$$ -4\xi^4 + \xi^4 - \xi^{4+k_1} = a^2 - 2a^2 - 2a^2 \quad \text{and} \quad -2\xi^6 + 2\xi^{6+k_1} - \delta = 2a^3. $$

Eliminating the parameter a, we obtain the equation

$$ 4\xi^{12+k_1}(9 - \xi^{k_1})^2 = 108\xi^6(1 - \xi^{k_1})\delta + 27\delta^2. $$

Then we see that $\pi_\xi|F$ has $12 + k_1$ critical points, which indeed satisfy $a \neq -2a$, i.e., the map $\pi_\xi|F$ defines a PALF structure on F with $12 + k_1$ singular fibres. Thus we have

$$ \chi(F) = 1 - 2 + 12 + k_1 = 11 + k_1. $$

In the case where $m = 2$, we have the factorization

$$ \{ (\xi + \eta)^2 - \xi^{2+k_1} \} \{ (\xi - \eta)^2 + \xi^{2+k_2} \} - \delta = (\eta - a)^2(\eta + a + b)(\eta + a + b) \quad (a, b \in \mathbb{C}). $$

By comparison of the coefficients we have

$$ \begin{cases}
\xi^2(2 + \xi^{k_1} - \xi^{k_2}) = 2a^2 + b^2 \\
\xi^3(\xi^{k_1} + \xi^{k_2}) = ab^2 \\
\xi^4(1 - \xi^{k_1})(1 + \xi^{k_2}) - \delta = a^2(a^2 - b^2).
\end{cases} $$

In order to eliminate a, b, we put $a = u + v$ and $\xi^2(2 + \xi^{k_1} - \xi^{k_2}) = 6uv$. Then we have

$$ \begin{cases}
6uv - 2(u + v)^2 = b^2 \\
\xi^3(\xi^{k_1} + \xi^{k_2}) = -2(u^3 + v^3) \\
\xi^4(1 - \xi^{k_1})(1 + \xi^{k_2}) - \delta = (u + v)^4 + 2(u^3 + v^3)(u + v).
\end{cases} $$

Further we put

$$ p = uv, \quad q = u^3 + v^3 \quad \text{and} \quad r = (u + v)^4 + 2(u^3 + v^3)(u + v). $$

Then p, q and r are polynomials of ξ. Eliminating a from

$$ q = q(p, a) = 3pa - a^3 \quad \text{and} \quad r = r(p, a) = -6pa^2 + 3a^4, $$

we obtain

$$ (27q^4 - r^3) + 54(pq^2 - p^3q^2) + 18p^2r^2 - 81p^4r = 0, $$

which is a polynomial equation of ξ. As $\delta \to 0$, the left hand side converges to

$$ \xi^{12+k_1+k_2} \left\{ 1 - \frac{\xi^{k_1} - \xi^{k_2}}{2} + \frac{(\xi^{k_1} + \xi^{k_2})^2}{16} \right\}. $$

Therefore $\pi_\xi|F$ has $12 + k_1 + k_2$ critical points, which indeed satisfy $4a^2 \neq b^2$ and $b \neq 0$, i.e., the map $\pi_\xi|F$ defines a PALF structure on F with $12 + k_1 + k_2$ singular fibres. Thus we have

$$ \chi(F) = 1 - 3 + 12 + k_1 + k_2 = 10 + k_1 + k_2. $$
3.6. **Symplectic proof.** In this subsection we sketch another proof of the following theorem, which is slightly weaker than Theorem 3.5 and the result of the previous subsection.

Theorem 3.12. The contact manifold $T_{A_{m,k}}$ $(m = 1, 2)$ is contactomorphic to the binding of a supporting open-book decomposition on the standard S^5 whose page $P_{m,k}$ satisfies $\chi(P_{m,k}) = 11 + k_1$ in the case where $m = 1$ and $\chi(P_{m,k}) = 10 + k_1 + k_2$ in the case where $m = 2$.

We start with the following observation.

Observation. 1) We consider the fibre

$$V_\delta = \{\xi^2 + \eta^2 + \zeta^2 = \delta\} \subset \mathbb{C}^3$$

of the singular fibration $f(\xi, \eta, \zeta) = \xi^2 + \eta^2 + \zeta^2 : \mathbb{C}^3 \to \mathbb{C}(\exists \delta)$, which we call the first fibration. If $\delta \neq 0$, the restriction $\pi_\xi|V_\delta$ is a singular fibration over the ξ-axis, which we call the second fibration. The fibre of the second fibration is

$$F_\xi = (\pi_\xi|V_\delta)^{-1}(\xi) = \{\eta^2 + \zeta^2 = \delta - \xi^2\}.$$

If $\xi^2 \neq \delta$, the restriction $\pi_\eta|F_\xi$ has critical values $\pm \gamma = (\delta - \xi^2)^{1/2}$. That is, the second fibre F_ξ is a double cover of the η-axis branched over $\pm \gamma$. We call $\pi_\eta|F_\xi$ the third fibration. Then the line segment between $\pm \gamma$ lifts to the vanishing cycle

$$\{(0, \gamma x, \gamma y) \mid (x, y) \in S^1 \subset \mathbb{R}^2\} \approx S^1 \subset F_\xi$$

which shrinks to the singular points $(\delta^{1/2}, 0, 0)$ on the fibres $F_{\delta^{1/2}}$. On the other hand, the line segment between $\delta^{1/2}$ on the ξ-axis lifts to the vanishing Lagrangian sphere

$$L = \{(\delta^{1/2} x, \delta^{1/2} y, \delta^{1/2} z) \mid (x, y, z) \in S^2 \subset \mathbb{R}^3\} \approx S^2 \subset V_\delta$$

which shrinks to the singular point $(0, 0, 0)$ on V_0. The monodromy of the first fibration around $\delta = 0$ is the Dehn-Seidel twist along the Lagrangian sphere L (see [10]).

2) Next we consider the tube

$$B' = \{[\xi + \eta^2 + \zeta^2] \leq \varepsilon\} \cap B^6$$

of the regular fibration $g(\xi, \eta, \zeta) = \xi + \eta^2 + \zeta^2 : \mathbb{C}^3 \to \mathbb{C}$. Let V'_δ denote the fibre $g^{-1}(\delta)$ of the first fibration g and F'_ξ the fibre of the second fibration $\pi_\xi|V'_\delta$. The third fibration $\pi_\eta|F'_\xi$ has two critical points $(\delta - \xi)^{1/2}$ on the η-axis. Then the line segment between $(\delta - \xi)^{1/2}$ lifts to the vanishing circle

$$\{((\delta - \xi)^{1/2} x, (\delta - \xi)^{1/2} y) \mid (x, y) \in S^1 \subset \mathbb{R}^2\} \approx S^1 \subset F'_\xi$$

which shrinks to the singular point $N = (\delta, 0, 0)$ on F'_δ. By attaching a symplectic 2-handle to B', we can simultaneously add a singular fibre to each second fibration $\pi_\xi|V'_\delta$ so that the above vanishing cycle shrinks to another singular point S than N. Here the vanishing cycle traces a Lagrangian sphere from the north pole N to the south pole S. (The attaching sphere can be considered as the equator.) The symplectic handle body $B' \cup (\text{the 2-handle})$ can also be realized as a regular part

$$f^{-1}(U) \cap B^6 \quad (\exists U \approx D^2, U \neq 0)$$

of the singular fibration f in the above 1). Thus we can add a singular fibre $V_0 \cap B^6$ to it by attaching a symplectic 3-handle. That is, the tube $\{|f| \leq \varepsilon\} \cap B^6$ of the singular fibration f can be considered as the result of the cancellation of the 2-handle and the 3-handle attached to the above tube B' of the regular fibration g. Note that such a cancellation preserves the contactomorphism-type of the contact-type boundary.

Proof of Theorem 3.12. Take the tubes $\{|h_m| \leq \varepsilon\} \cap B^6$ $(m = 1, 2)$ of the regular fibrations

$$h_1(\xi, \eta, \zeta) = \xi + \eta^3 + \zeta^2 \quad \text{and} \quad h_2(\xi, \eta, \zeta) = \xi + \eta^4 + \zeta^2.$$

Let $F_{m,\xi}$ denote the fibre of the second fibration $\pi_\xi|h_m^{-1}(\delta)$. Then the third fibration $\pi_\eta|F_{m,\xi}$ has $m + 2$ singular fibres $(m = 1, 2)$. We connect the corresponding critical values on the η-axis by a simple arc consisting of $m + 1$ line segments $\sigma_1, \ldots, \sigma_{m+1}$, which lift to vanishing cycles.
Remark. 1) Giroux and Mohsen further conjectured that, for any supporting open-book decomposition on a contact manifold \((M^{2n+1}, \alpha)\), we can attach a \(n\)-handle to the page to produce a Lagrangian \(n\)-sphere \(S^n\), and then add a Dehn-Seidel twist along \(S^n\) to the monodromy to obtain another supporting open-book decomposition on \((M^{2n+1}, \alpha)\) \((\text{[10]}))\). We did a similar replacement of the supporting open-book decomposition in the above proof of Theorem 3.12 by means of symplectic handles.

2) Take a triple covering from the three-times punctured torus to the once punctured torus \(F_{1, \xi}\) such that \(\ell_2\) lifts to a long simple closed loop. Then from the relations

\[
\tau(\partial F_{1, \xi}) \simeq (\tau(\ell_1) \circ \tau(\ell_2))^6 \quad \text{(resp. } \tau(\partial F_{2, \xi}) \simeq (\tau(\ell_1) \circ \tau(\ell_2) \circ \tau(\ell_3))^4) \]

we see that the Dehn twist along the boundary of the three-times punctured torus is also isotopic to a composition of Dehn twists along non-separating loops. On the other hand, take a double covering from the four-times punctured torus to the twice punctured torus \(F_{2, \xi}\) such that \(\ell_2\) lifts to a long simple closed loop. Then from the relations

\[
\tau(\partial F_{2, \xi}) \simeq \{\tau(\ell_1)^{-1} \circ \tau(\ell_1) \circ \tau(\ell_3) \circ \tau(\ell_2))^4 \circ \tau(\ell_1) \}
\]

we see that the Dehn twist along the boundary of the four-times punctured torus is also isotopic to a composition of Dehn twists along non-separating loops.

Problem. Can we generalize Theorem 3.12 to the case where \(m = 3\) or \(4\)?

4. Further discussions

A (half) Lutz twist along a Hopf fibre in the standard \(S^3\) produces a basic overtwisted contact manifold \(S^3\) diffeomorphic to \(S^3\). This overtwisted contact structure is supported by the negative Hopf band. Indeed any overtwisted contact manifold \(M^3\) is a connected sum with \(S^3\) (i.e., \(M^3 = \# \exists M^3 \# S^3\)). Moreover a typical supporting open-book decomposition on \(M^3\) is the Murasugi-sum (=plumbing) with a negative Hopf band (see [10]). — The author’s original motivation was to find various Lutz tubes in a given overtwisted contact 3-manifold or simply in \(S^3\). (See [20] for the first model of a Lutz tube by means of a supporting open-book decomposition.) Since the binding of the trivial supporting open-book decomposition on \(S^3\) is a Hopf fibre, the above Lutz twist inserts a Lutz tube along the binding. Then the Lutz twist produces a non-supporting trivial open-book decomposition \(O\) by convex overtwisted disks. In 5-dimensional case, the Lutz tube (i.e., the neighbourhood of the binding of \(O\)) is replaced by a 5-dimensional Lutz tube which contains a plastikstufe, and the convex overtwisted disk (i.e., the page) by a convex overtwisted hypersurface violating the Thurston-Bennequin inequality. The idea of placing a Lutz tube around the binding of a non-supporting open-book decomposition is also found in the recent work of Ishikawa [13]. However, in general, the insertion of a 5-dimensional Lutz tube requires only the normal triviality of the contact submanifold \(T_A\) in the original contact manifold.

Problem 4.1. Suppose that a contact 5-manifold \((M^5, \alpha)\) contains a Lutz tube. Then does it always contain a convex overtwisted hypersurface?
We also have the basic exotic contact 5-manifold \mathbb{S}^5 which is diffeomorphic to S^5 and supported by the 5-dimensional negative Hopf band. Here the negative Hopf band is the mirror image of the positive Hopf band which is (the page of) the Milnor fibration of $(0,0,0) \in \{\xi^2 + \eta^2 + \zeta^2 = 0\}$. Thus the monodromy of the negative Hopf band is the inverse of the Dehn-Seidel twist (see Observation 1) in §3.6. The fundamental problem is

Problem 4.2. Does \mathbb{S}^5 contains a Lutz tube or a plastikstufe? Could it be that \mathbb{S}^5 is contactomorphic to $(S^5, \ker(\alpha_{m,k}))$? Note that almost contact structures on S^5 are mutually homotopic.

The next problem can be considered as a variation of Calabi’s question (see §1).

Problem 4.3. Does the standard $S^{2n+1} (n > 1)$ contains a convex hypersurface with disconnected contact-type boundary?

If there is no such hypersurfaces, the following conjecture trivially holds.

Conjecture 4.4. The Thurston-Bennequin inequality holds for any convex hypersurface with contact-type boundary in the standard S^{2n+1}.

References

[1] D. Bennequin: *Entrelacements et équations de Pfaff*, Astérisque, **107-108** (1983), 83–161.
[2] C. Caubel, A. Nemethi and P. Popescu-Pampu: *Milnor open books and Milnor fillable contact 3-manifolds*, Topology **45**(3) (2006) 673–689.
[3] Y. Eliashberg: *Filling by holomorphic discs and its applications*, Geometry of low-dimensional manifolds 2, London Math. Soc. Lect. Note Ser., **151**(1990), 45–72.
[4] Y. Eliashberg: *Contact 3-manifolds twenty years since J. Martinet’s work*, Ann. Inst. Fourier, **42** (1991), 165–192.
[5] Y. Eliashberg and W. Thurston: *Confoliations*, A.M.S. University Lecture Series, **13** (1998).
[6] J. Etnyre and D. Pancholi: *On generalizing Lutz twists*, preprint (2009), [arXiv:0903.0295 [math.SG]]
[7] H. Geiges: *Symplectic manifolds with disconnected boundary of contact type*, Int. Math. Res. Notices, **1** (1994), 23–30.
[8] E. Ghys: *Déformation de flots d’Anosov et de groupes fuchsiens*, Ann. Inst. Fourier, **42** (1992), 209–247.
[9] E. Giroux: *Convexité en topologie de contact*, Comm. Math. Helv., **66** (1991), 637–677.
[10] E. Giroux: *Géométrie de contact: de la dimension trois vers les dimensions supérieures*, Proc. ICM-Beijing, **2** (2002), 405–414.
[11] E. Giroux: *Contact structures and symplectic fibrations over the circle*, Notes of the summer school “Holomorphic curves and contact topology”, Berder, 2003.
[12] H. Grauert: *Über Modifikation und exceptionelle analytische Mengen*, Math. Ann. **146** (1962), 331–368.
[13] K. Honda: *On the classification of tight contact structures II*, J. Diff. Geom., **55** (2000), 83–143.
[14] A. Ibort, D. Martinez and F. Presas: *On the construction of contact submanifolds with prescribed topology*, J. Diff. Geom., **56** (2000), 235–283.
[15] M. Ishikawa: *Compatible contact structures of fibred Seifert links in homology 3-spheres*, preprint (2009).
[16] H. Lawson: *Codimension-one foliations of spheres*, Ann. of Math., **94** (1971), 494–503.
[17] A. Loi and R. Piergallini: *Compact Stein surfaces with boundary as branched covers of B^4*, Invent. Math. **143**(2001), 325–348.
[18] D. McDuff: *Symplectic manifolds with contact type boundaries*, Invent. Math. **103**(1991), 651–671.
[19] Y. Mitsumatsu: *Anosov flows and non-Stein symplectic manifolds*, Ann. Inst. Fourier **45**(1995), 1407–1421.
[20] A. Mori: *A note on Thurston-Winkelnkemper’s construction of contact forms on 3-manifolds*, Osaka J. Math. **39**(2002), 1–11.
[21] A. Mori: *On the violation of Thurston-Bennequin inequality for a certain non-convex hypersurface*, preprint (2009).
[22] K. Niederkrüger: *The plastikstufe — a generalization of the overtwisted disk to higher dimensions*, Algerbr. Geom. Topol. **6** (2006), 2473–2508.
[23] K. Niederkrüger and O. van Koert: *Every contact manifold can be given a non-fillable contact structure*, Int. Math. Res. Notices, **23**(2007), rnm115, 22 pages.
[24] W. Thurston: *Norm on the homology of 3-manifolds*, Memoirs of the A. M. S., **339** (1986), 99–130.
[25] W. Thurston and E. Winkelnkemper: *On the existence of contact forms*, Proc. A. M. S., **52** (1975), 345–347.
[26] J. Van Horn-Morris: *Constructions of open book decompositions*, Thesis (2007), Univ. of Texas at Austin.

Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
E-mail address: ka-mori@ares.eonet.ne.jp