The retinoblastoma protein/p16INK4A pathway but not p53 is disrupted by human papillomavirus in penile squamous cell carcinoma

Elzbieta Stankiewicz,1 David M Prowse,1 Elena Ktori,1 Jack Cuzick,2 Laurence Ambroisine,2 Xiaoxi Zhang,1 Sakunthala Kudahetti,1 Nicholas Watkin,3 Catherine Corbishley4 & Daniel M Berney1

1Queen Mary University of London, Centre for Molecular Oncology and Imaging, Barts and The London School of Medicine and Dentistry, 2Queen Mary University of London, Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, 3The Department of Urology, St George’s Hospital, Tooting, and 4The Cellular Pathology Department, St George’s Hospital, Tooting, London, UK

Date of submission 7 December 2009
Accepted for publication 20 April 2010

Aims: The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood. Human papillomavirus (HPV) may be involved in carcinogenesis, but few studies have compared cell-cycle protein expression in HPV positive and negative cancers. The aim was to determine the extent of HPV infection in different histological subtypes of PSCC and its impact on the expression of key cell-cycle proteins: p53, p21, p16INK4A and retinoblastoma (RB) protein.

Methods and results: One hundred and forty-eight PSCC samples were examined immunohistochemically for RB, p16INK4A, p53 and p21 protein expression. One hundred and two cases were typed for HPV by PCR. HPV DNA was detected in 56% of tumours, with HPV16 present in 81%. Basaloid tumours were related strongly to HPV infection (10 of 13), while verrucous were not (three of 13). Fifty-nine per cent (38 of 64) of usual type SCCs had HPV infection. RB protein correlated negatively (\(P < 0.0001\)) and p16INK4A (\(P < 0.0001\)) and p21 (\(P = 0.0002\)) correlated positively with HPV infection. p53 did not correlate with HPV infection.

Conclusions: HPV infection is present in more than half of penile cancers and it is responsible for RB pathway disruption. However, no link between HPV and p53 immunodetection was found. Only basaloid and half of usual-type PSCCs correlate with HPV infection, confirming possible separate aetiologies for those tumours.

Keywords: human papillomavirus, p16INK4A, p21, p53, penile squamous cell carcinoma, retinoblastoma

Abbreviations: HPV, human papillomavirus; PCR, polymerase chain reaction; PSCC, penile squamous cell carcinoma; RB, retinoblastoma (protein)

Introduction

Penile carcinoma is rare in developed countries, representing 0.3–0.5% of male malignancies in Europe and the United States.1 In the United Kingdom there are approximately 600 (rate one per 100 000) new cases each year, mainly after the sixth decade.1,2 The vast majority (95%) are squamous cell
carcinomas (SCC). These may be divided into usual type (70%) followed by more aggressive basaloid (10%) and a slow-growing, low-grade group of 'verrucciform' tumours (20%). Verruciform lesions include verrucous carcinoma, warty carcinoma and papillary squamous cell carcinomas. Mixed tumours of usual type and one or more of other subtypes of SCC also exist.

Risk factors for penile cancer include lack of circumcision during childhood, phimosis and cigarette smoking. There is some confusion as to the role of infection with human papillomavirus (HPV) in penile cancer as, contrary to cervical cancer, the incidence rate of HPV positivity varies from 15% to 77.5%, depending upon detection range, population studied and tumour type. HPV16 is the most prevalent infection, similar to other HPV-related ano-genital cancers. Basaloid and warty tumours have been shown to be associated strongly with human papillomavirus infection. Therefore, penile cancer may resemble vulvar cancer, which has two different aetiologies, one related to HPV infection and one that is not.

The carcinogenic abilities of high-risk HPV types are well known due to extensive studies on cervical cancer. Viral oncoproteins E6 and E7 can disrupt cell-cycle checkpoints and apoptosis by interacting respectively with tumour suppressor proteins, retinoblastoma (RB) protein and p53. RB protein regulates cell-cycle progression, protecting the cell from uncontrolled proliferation, and is regulated by cyclin-dependent kinase phosphorylation. p16INK4A can inhibit cyclin-dependent kinase-mediated RB protein phosphorylation, preventing cell-cycle progression. In cells infected with high-risk HPV viral E7 protein binds directly to RB protein, causing its inactivation and down-regulation, which prevents cell-cycle control by p16INK4A. In these circumstances accumulation of p16INK4A can occur, which is an indication of HPV infection. p53 can also inhibit cancer development and tumour growth through its ability to efficiently inhibit cell proliferation and promote apoptotic cell death. In cancers harbouring high-risk HPV, expression of viral E6 protein can inactivate p53 through its down-regulation, and an inverse correlation between HPV positivity and p53 overexpression has been found in some cancer sites but not others. HPV E7 protein can additionally overcome the inhibitory function of p21. p21 is a p53-responsive protein and induces cell cycle arrest in the presence of DNA damage. E7 protein binds to p21 and abrogates its inhibitory functions, therefore overcoming DNA damage-induced cell-cycle arrest, despite high levels of p21.

The mechanisms of oncogenesis in penile cancer are not fully understood. There are no data on RB protein expression in penile cancer and results on p53 in relation to HPV are inconclusive. Limited data are available on p16INK4A immunodetection and p21 expression in penile tumours. Therefore, we investigated HPV infection type in one of the largest series of penile SCC to test the hypothesis that HPV type and its association with key cell-cycle proteins has differential effects on the tumour subtypes, in order to elucidate their role in tumour pathogenesis.

Materials and methods

The study was conducted upon approval from East London and the City Research Ethics Committee. We reviewed retrospectively the Cellular Pathology Department Registry of St George’s Hospital to identify patients treated for penile SCC between 2001 and 2007. We retrieved 148 penile SCCs. Ninety-seven samples were usual-type SCCs, 17 basaloïd, 15 pure verrucous carcinomas, seven mixed verrucous/usual type, seven mixed verrucous/warty, two warty and three warty/usual types. Twenty-one cases were obtained from excision biopsies/circumcisions, 82 from glandectomies and 45 from partial/total penectomies. All cases were re-reviewed by an expert uropathologist (CC), including subtyping, grading and staging by standard methodologies.

POLYMERASE CHAIN REACTION (PCR)

One hundred and two wax blocks from penile SCC cases were available for DNA extraction with a QIAamp DNA Mini kit (51304; Qiagen, Crawley, UK). Beta-globin PCR was performed using primers B1 and B19 to confirm the adequacy of the extracted DNA. Validated samples were tested for the presence of HPV DNA by a broad-spectrum HPV PCR method using short PCR fragment (SPF10) primers, which amplify a 65-base pairs (bp) fragment of the L1 open reading frame and HPV genotypes identified by the INNO-LiPA line probe assay (Innogenetics NV, Ghent, Belgium).

IMMUNOHISTOCHEMISTRY

Tissue microarray blocks were prepared using a manual microarrayer. Three × 1 mm tissue cores were taken from each tumour. Four µm sections were cut and immunostained using standard heat-induced antigen retrieval methods and the ABC kit (PK-6200; Vector Laboratories, Peterborough, UK), according to the manufacturer’s instructions. Primary antibody
dilutions were: 1:50 for RB (NCL-RB-358; Novocastra, Newcastle, UK), 1:100 for p16INK4A (MS-1064-PO; Neomarkers, Fremont, CA, USA), 1:1000 for p53 (M7001; Dako, Glostrup, Denmark) and p21 (M7202; Dako, Glostrup, Denmark). The antibody used against RB (clone 13A10) binds to the N-terminal region of the protein and detects RB regardless of phosphorylation status. Positive controls included CIN III for p16INK4A, placenta for p21, anaplastic thyroid cancer for p53 and tonsil for RB. The staining pattern of RB, p53 and p21 was nuclear. p16INK4A showed both nuclear and cytoplasmic immunoreactivity.

Sections were scored semiquantitatively by a consultant genitourinary pathologist (DB). For nuclear positivity each core was given an estimated visual score between 0 and 100%, representing the percentage of positively stained neoplastic nuclei. The intensity of staining was also measured as: 1 (weak), 2 (medium) and 3 (strong). The final score was deduced by multiplying the percentage of staining by intensity to give an expression score from 0 to 300. p53 expression was always strong; therefore, nuclear score alone was applied. Cytoplasmic expression of p16INK4A was determined by intensity of staining alone. The core with the highest score was selected for analysis. Statistical analysis was performed using StatsDirect software, version 2.60.6000. The correlations between antibodies were evaluated using Spearman’s rank correlation test and the tumour type or HPV infection was evaluated by χ\(^2\) test or Fisher’s exact probability test. Comparisons between antibody expression in different histological subtypes of SCCs were restricted to usual type, verrucous and basaloid only. The warty group of tumours was too heterogeneous and included only two pure warty samples. Similar to previous papers, the cut-off points selected for antibody positivity were: >0 for p16INK4A, \(\geq 5\) for p53 and >5 for p21.\(^{24,25,26}\) As RB is normally highly expressed in tissue we chose the median value of 240 and above (cut-off \(\geq 240\)) as indicative of high expression of RB in penile SCC. All analyses were two-sided; \(P < 0.05\) was considered to be significant.

Results

One hundred and forty-eight tumours were analysed, which comprised 97 usual-type SCCs, 17 basaloid, 15 verrucous, seven mixed verrucous/usual type and 12 mixed warty and other SCC subtypes. The histopathological features of the tumours are listed in Table 1. Of these, 102 cases were also suitable for HPV analysis.

HPV infection

HPV DNA was detected in 57 of 102 (56%) penile SCCs. Of these HPV-positive tumours, 39 of 57 (68%) were single, 17 of 57 (30%) multiple HPV-type infections containing up to six low- and high-risk HPV types, and one sample (2%) contained unidentified HPV (Table 2). High-risk type 16 was the most prevalent type, present in 46 of 57 (81%) of HPV-positive tumours. HPV18 was not detected. In the majority of HPV-positive tumours [33 of 57 (58%)] HPV16 was the only HPV type detected (Table 2).

Differences in HPV infection were observed between the histological subtypes of PSCC. For the usual type, HPV DNA was detected in 38 of 64 (59%) tumours, with high-risk HPV16 present in 33 of 38 (87%) cases. Mixed warty subtypes were positive for HPV DNA in six of 11 (55%) cases, with HPV16 present in three of six (50%) cases. Basaloid tumours showed higher

Table 1. Histological grade and stage of different subtypes of penile squamous cell carcinoma

SCC subtype	Grade (1–3)	Stage (1–4)	No data						
	n	1	2	3	1	2	3	4	
All SCCs	148	35	59	54	49	70	16	7	6
Usual type	97	13	49	35	28	46	12	6	5
Verrucous	15	12	3	0	8	7	0	0	0
Basaloid	17	0	2	15	5	7	3	1	1
Mixed warty	12	9	2	1	7	4	1	0	0

SCC, Squamous cell carcinoma; No data, there was no tumour stage available for six patients, which underwent penile circumcision or excision biopsy.
positivity, 10 of 13 (77%) for HPV DNA, with HPV type 16 present in 100% of these cases. In contrast, HPV was detected in only three of 13 (23%) verrucous tumours, and HPV16 was not found (0%).

Immunohistochemistry

The positive expression of proteins and mean values are listed in Table 3. High RB protein expression (Figure 1A) was detected in 85 of 147 (58%) of penile SCC, and significant differences were observed between histological groups ($P < 0.0001$). A high percentage of verrucous cases (87%), an intermediate number of usual type (60%) and few basaloid cancers (12%) expressed high RB levels. The mean RB expression was twofold lower in basaloid than in verrucous and usual subtypes.

p16$^{\text{INK4A}}$ demonstrated both nuclear and cytoplasmic immunoreactivity (Figure 1B). Overall, 47% of PSCCs were positive for cytoplasmic p16$^{\text{INK4A}}$ expression, with significant differences between histological groups: 13% of verrucous, 52% usual and 94% of basaloid cases were p16$^{\text{INK4A}}$-positive. Basaloid samples had very high mean expression of nuclear and cytoplasmic p16$^{\text{INK4A}}$, while mean expression of p16$^{\text{INK4A}}$ in verrucous samples was very low and

Table 2. Human papillomavirus DNA detection by polymerase chain reaction method in different histological subtypes of penile squamous cell carcinoma

HPV genotype distribution	HPV	6	11	16	33	6	11	16	16	16	31	51	6	11	6	31	6	X
DNA Positive	16	16	45	31	35	45	52	33	32	16	16	16	33	11				
	45	45	31	33														

Table 3. Positive expression of RB, nuclear and cytoplasmic p16$^{\text{INK4A}}$, p53 and p21 in all penile squamous cell carcinomas and in regard to histological subtypes

SCC subtype	RB (≥240)	nuc p16$^{\text{INK4A}}$ (>0)	cyt p16$^{\text{INK4A}}$ (>0)	p53 (≥ 5%)	p21 (>5%)
All SCCs	85/147 (58)	205.6/212 (45)	65/144 (45)	54.2/113	113/143
Usual type	58/97 (60)	212/124 (52)	48/93/124 (52)	62.3/75/75	75/93/20.9
Verrucous	13/15 (87)	248/1/7	2.7/2/15 (13)	2.7/13/13	13/15/15
Basaloid	12/17 (12)	118.2/16/17	102.4/16/17	102.4/16/17	102.4/16/17
Mixed warty	6/11 (55)	199/2/12	16.7/3/12 (25)	16.7/3/12	16.7/3/12

nuc p16$^{\text{INK4A}}$, Nuclear p16$^{\text{INK4A}}$, cyt p16$^{\text{INK4A}}$, cytoplasmic p16$^{\text{INK4A}}$.

© 2011 Blackwell Publishing Ltd, Histopathology, 58, 433–439.
usual type showed intermediate values. There was a significant inverse correlation between RB and p16INK4A expression ($P < 0.0001$) in penile SCCs.

p53 immunodetection (Figure 1C) showed no significant difference between histological subtypes of SCC, and was present in 79% of cases overall. Intensity of p21 staining was weak (Figure 1D) and present in 62%, with no difference in the expression between different SCC subtypes. No relationship was detected between p53 and p21 expression. There was a positive correlation between p21 and p16INK4A expression (Spearman's $\rho = 0.658793$, $P < 0.0001$) and negative correlation with RB (Spearman's $\rho = -0.499952$, $P < 0.0001$).

There was also a strong positive correlation between HPV infection and p21 ($P = 0.0002$) and p16INK4A ($P < 0.0001$) immunodetection and negative correlation with RB expression ($P < 0.0001$) in penile SCC.

Discussion

The rate of HPV infection in penile cancer varies widely, depending upon the population studied and sensitivity and specificity of the method used. Our results suggest that in a developed country, unlike cervical cancer, penile cancer has at least two aetiologies: one HPV-related and one unrelated (similar to vulvar cancer), as we detected HPV DNA in 56% (57 of 102) of PSCC cases. This is consistent with our previous report of HPV prevalence in PSCC of 54%, and a recent review that found that 48% of 1266 cases from 30 studies of invasive penile cancer were...
HPV-positive. We confirm the existence of differences in HPV infection between histological subtypes. HPV prevalence in usual-type SCC varies between 11% and 71%, and the 59% (38/64) reported by us falls well within this range. As reported previously by our group, verrucous tumours were mainly HPV-negative, confirming the lack of HPV involvement in this neoplasm, while basaloïd carcinomas showed a strong correlation with HPV infection.

HPV16 is the most prevalent type in our study and was detected in 81% (46 of 57) of positive samples and in more than half of these as a single infection, suggesting that this HPV genotype is more likely to contribute to the carcinogenic process. However, 17 of 57 (30%) patients had multiple HPV-type infections, which is similar to other penile studies. The significance of multiple HPV infections in cancer development is not clear, and reports on increased risk for carcinoma in women with multiple HPV infections, compared to those infected with a single HPV type, are contradictory.

Comparing these results with protein expression reveals that basaloid tumours have an aetiology related to high-risk HPV infection, which manifests itself in high p16INKn4A and decreased RB expression, as has been shown in cervical cancer. The aetiology of usual-type SCC can be attributed to HPV infection in only approximately half the tumours, showing corresponding loss of RB and gain of p16INKn4A protein expression. This is analogous to the involvement reported for HPV in carcinogenesis of anal SCC and tonsillar carcinoma.

Detection of p53 protein by immunohistochemistry in penile cancer varies between 41.5% and 89%, and there is a lack of reports comparing different histological types. We detected p53 immunostaining in 79% (103 of 143) of penile SCCs, and the value was very similar regardless of histology (Table 3). There was no correlation between high-risk HPV infection and p53 immunostaining, which is in agreement with previous reports on penile SCC. We used the DO-7 clone antibody, which mainly detects mutated p53 but is also able to recognize wild-type (wt) p53. Therefore, it may detect wt p53 when it is highly expressed in cells. High-risk HPV infection also causes oncogenic stress to the cell, which induces normal cellular responses such as increased p53 levels in order to induce cell cycle arrest. Keratinocytes or fibroblasts expressing high-risk HPV E7 protein are well known to overexpress wt p53; however, there is evidence that in E7 expressing cells wt p53 is transcriptionally inactive. Additional studies on p53 mutations are necessary to confirm its mutational status in these tumours.

p21 was expressed in 62% (88 of 143) of penile SCC, with no significant difference between tumour subtypes. Lam and Chan showed lower p21 expression in penile cancer but in a much smaller cohort. Interestingly, p21 did not correlate with p53 and some cases expressed high levels of p21 despite low or absent p53 protein, suggesting p53-independent activation of p21. Surprisingly, similar to tonsillar SCC, we found a positive correlation of p21 with HPV infection (P = 0.0002). Additionally, p21 correlated positively with p16INKn4A (P < 0.0001) and negatively with RB protein expression (P < 0.0001). Funk et al. reported that high-risk HPV16 E7 protein can bind directly to p21 and abrogate DNA damage-induced cell-cycle arrest, despite high levels of p21. He suggested that it is possible that the release of E2F from RB and inactivation of p16INKn4A and p21 are all necessary for the ability of E7 to bypass cell-cycle arrest signals. Conversely, there is emerging evidence that p21 in certain cancers may itself act as an oncogene and actually promote proliferation.

To our knowledge, this is the largest study to examine penile cancer pathogenesis by comparing HPV type with proteins affected commonly by HPV infection. We have demonstrated that HPV infection in penile SCC disrupts the RB/p16INKn4A pathway through down-regulation of RB and elimination of cell-cycle control from p16INKn4A, manifesting itself in accumulation of p16INKn4A, which fails to block cell-cycle progression. p21 was widely expressed, consistent with abnormal cell-cycle regulation. However, p21 seems to be regulated independently from p53 and may be involved in the oncogenic process. We confirm that penile tumours seem to have two different aetiologies: one related to HPV and one unrelated. These data suggest that use of the bivalent HPV16/18 prophylactic vaccine in men could reduce the occurrence of penile SCC by about 45%.

Acknowledgements

This work was supported by the Jean Shanks Foundation and the Orchid Cancer Appeal.

References

1. Narayana AS, Olney LE, Loening SA, Weimar GW, Culp DA. Carcinoma of the penis: analysis of 219 cases. Cancer 1982; 49: 2185–2191.
2. Robinson D, Coupland V, Moller H. An analysis of temporal and generational trends in the incidence of anal and other HPV-related cancers in Southeast England. Br. J. Cancer 2009; 100: 527–531.
3. Bleeker MC, Heideman DA, Snijders PJ, Horenblas S, Dillner J, Meijer CJ. Penile cancer: epidemiology, pathogenesis and prevention. World J. Urol. 2009; 27: 141–150.
4. Cubilla LC, Velazquez EF, Barreto JE, Ayala G. The penis. In Mills SE, Carter D, Groenest J, Oberman HA, Reuter VE, Stoler MH eds. *Sternberg’s diagnostic surgical pathology*. Philadelphia: Lippincott Williams & Wilkins, 2004; 2233–2276.

5. Daling JR, Madeleine MM, Johnson LG et al. Penile cancer: importance of circumcision, human papillomavirus and smoking in *in situ* and invasive disease. *Int. J. Cancer* 2005; 116; 606–616.

6. Munoz N. Human papillomavirus and cancer: the epidemiological evidence. *J. Clin. Virol.* 2000; 19; 1–5.

7. Pascual A, Pariente M, Godinez JM et al. High prevalence of human papillomavirus 16 in penile carcinoma. *Histol. Histopathol.* 2007; 22; 177–183.

8. Lont AP, Kroon BK, Horenblas S et al. Presence of high-risk human papillomavirus DNA in penile carcinoma predicts favorable outcome in survival. *Int. J. Cancer* 2006; 119; 1078–1081.

9. IARC Working Group on the Evaluation of Carcinogenic Risks to Human papillomaviruses. *IARC Monogr. Eval. Carcinog. Risks Hum.* 2007; 90; 1–636.

10. De Vuyst H, Clifford GM, Nascimento MC, Madeleine MM, Franceschi S. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. *Int. J. Cancer* 2009; 124; 1626–1636.

11. Rubin MA, Kleter B, Zhou M et al. Detection and typing of human papillomavirus DNA in penile carcinoma: evidence for multiple independent pathways of penile carcinogenesis. *Am. J. Pathol.* 2001; 159; 1211–1218.

12. Trimbile CL, Hidesheim A, Brinton LA, Shah KV, Kurman RJ. Heterogeneous etiology of squamous carcinoma of the vulva. *Obstet. Gynecol.* 1996; 87; 59–64.

13. Nevins JR. The Rb/E2F pathway and cancer. *Hum. Mol. Genet.* 2001; 10; 699–703.

14. Funk JO, Galloway DA. Inhibiting CDK inhibitors: new lessons from DNA tumor viruses. *Trends Biochem. Sci.* 1998; 23; 337–341.

15. Sano T, Oyama T, Kashiwabara K, Fukuda T, Nakajima T. Inhibiting CDK inhibitors: new lessons. *Trends Biochem. Sci.* 1998; 23; 337–341.

16. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. *Cell* 2009; 137; 413–431.

17. Koyamatsu Y, Yokoyama M, Nakao Y et al. A comparative analysis of human papillomavirus types 16 and 18 and expression of p53 gene and Ki-67 in cervical, vaginal, and vulvar carcinomas. *Gynecol. Oncol.* 2003; 90; 547–551.

18. Funk JO, Waga S, Harry JB, Espeling E, Stillman B, Galloway DA. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. *Genes Dev.* 1997; 11; 2090–2100.

19. Prowse DM, Ktori EN, Chandrasekaran D, Prapa A, Baithan S. Human papillomavirus-associated increase in p16INK4A expression in penile lichen sclerosus and squamous cell carcinoma. *Br. J. Dermatol.* 2008; 158; 261–265.

20. Ferreux E, Lont AP, Horenblas S et al. Evidence for at least three alternative mechanisms targeting the p16INK4A/ cyclin D/Rb pathway in penile carcinoma, one of which is mediated by high-risk human papillomavirus. *J. Pathol.* 2003; 201; 109–118.

21. Lam KY, Chan KW. Molecular pathology and clinicopathologic features of penile tumors: with special reference to analyses of p21 and p53 expression and unusual histologic features. *Arch. Pathol. Lab. Med.* 1999; 123; 895–904.

22. Sobin LH, Wittekind C. *TNM classification of malignant tumours*. 6th edn. New York: Wiley-Liss, 2002.

23. Martins AC, Faria SM, Colognha AJ, Suaid HJ, Tucci S Jr. Immunohistoexpress of p53 protein and proliferating cell nuclear antigen in penile carcinoma. *J. Urol.* 2002; 167; 89–92; discussion 92–83.

24. Guerrero D, Guarch R, Ojer A et al. Hypermethylation of the thymosin-1 gene is associated with poor prognosis in penile squamous cell carcinoma. *BJU Int.* 2008; 102; 747–755.

25. Yanagawa N, Osakabe M, Hayashi M, Tamura G, Motoyama T. Frequent epigenetic silencing of the FHIT gene in penile squamous cell carcinomas. *Virchows Arch.* 2008; 452; 377–382.

26. Shoji T, Tanaka F, Takata T et al. Clinical significance of p21 expression in non-small-cell lung cancer. *J. Clin. Oncol.* 2002; 20; 3565–3571.

27. Backes DM, Kurman RJ, Pimenta JM, Smith JS. Systematic review of human papillomavirus prevalence in invasive penile cancer. *Cancer Causes Control* 2009; 20; 449–457.

28. Gregoire L, Cubilla AL, Reuter VE, Haas GP, Lancaster WD. Preferential association of human papillomavirus with high-grade histologic variants of penile-invasive squamous cell carcinoma. *J. Natl Cancer Inst.* 1995; 87; 1705–1709.

29. Stankiewicz E, Kudahetti SC, Prowse DM et al. HPV infection and immunohistochemical detection of cell-cycle markers in verrucous carcinoma of the penis. *Mod. Pathol.* 2009; 22; 1160–1168.

30. Bezerra AL, Lopes A, Santiago GH, Ribeiro KC, Latorre MR, Villa LL. Human papillomavirus as a prognostic factor in carcinoma of the penis: analysis of 82 patients treated with amputation and bilateral lymphadenectomy. *Cancer* 2001; 91; 2315–2321.

31. Senba M, Kumatori A, Fujita S et al. The prevalence of human papillomavirus genotypes in penile cancers from northern Thailand. *J. Med. Virol.* 2006; 78; 1341–1346.

32. Fife KH, Cramer HM, Schroeder JM, Brown DR. Detection of multiple human papillomavirus types in the lower genital tract correlates with cervical dysplasia. *J. Med. Virol.* 2001; 64; 550–559.

33. Gargiulo F, De Francesco MA, Schreiber C et al. Prevalence and distribution of single and multiple HPV infections in cytologically abnormal cervical samples from Italian women. *Virus Res.* 2007; 125; 176–182.

34. Nam EJ, Kim JW, Kim SW et al. The expressions of the Rb pathway in cervical intraepithelial neoplasia; predictive and prognostic significance. *Gynecol. Oncol.* 2007; 104; 207–211.

35. Lu DW, El-Mofty SK, Wang HL. Expression of p16, Rb, and p53 proteins in squamous cell carcinomas of the anorectal region harboring human papillomavirus DNA. *Mod. Pathol.* 2003; 16; 692–699.

36. Halkump HC, Mooreen JJ, Claessen SM et al. P21 Cip1/WAF1 expression is strongly associated with HPV-positive tonsillar carcinoma and a favorable prognosis. *Mod. Pathol.* 2009; 22; 686–693.

37. Lopes A, Bezerra AL, Pinto CA, Serrano SV, de Mell OC, Villa LL. p53 as a new prognostic factor for lymph node metastasis in penile carcinoma: analysis of 82 patients treated with amputation and bilateral lymphadenectomy. *J. Urol.* 2002; 168; 81–86.

38. Lam KY, Chan AC, Chan KW, Leung ML, Srivastava G. Expression of p53 and its relationship with human papillomavirus in penile carcinomas. *Eur. J. Surg. Oncol.* 1995; 21; 613–616.

39. Eichten A, Westfall M, Pietenpol JA, Munger K. Stabilization and functional impairment of the tumor suppressor p53 by the human papillomavirus type 16 E7 oncoprotein. *Virology* 2002; 295; 74–85.

40. Gartel AL. Is p21 an oncogene? *Mol. Cancer Ther.* 2006; 5: 1385–1386.