Attention in natural scenes: contrast affects rapid visual processing and fixations alike

Bernard Marius 't Hart1,†, Hannah Claudia Elfriede Fanny Schmidt1,†, Ingo Klein-Harmeyer1 and Wolfgang Einhäuser1,2

1Department of Neurophysics, Philipps-University Marburg, Marburg, Germany
2Center for Interdisciplinary Research (ZiF), Bielefeld, Germany

For natural scenes, attention is frequently quantified either by performance during rapid presentation or by gaze allocation during prolonged viewing. Both paradigms operate on different time scales, and tap into covert and overt attention, respectively. To compare these, we ask some observers to detect targets (animals/vehicles) in rapid sequences, and others to freely view the same target images for 3 s, while their gaze is tracked. In some stimuli, the target’s contrast is modified (increased/decreased) and its background modified either in the same or in the opposite way. We find that increasing target contrast relative to the background increases fixations and detection alike, whereas decreasing target contrast and simultaneously increasing background contrast has little effect. Contrast increase for the whole image (target + background) improves detection, decrease worsens detection, whereas fixation probability remains unaffected by whole-image modifications. Object-unrelated local increase or decrease of contrast attracts gaze, but less than actual objects, supporting a precedence of objects over low-level features. Detection and fixation probability are correlated: the more likely a target is detected in one paradigm, the more likely it is fixated in the other. Hence, the link between overt and covert attention, which has been established in simple stimuli, transfers to more naturalistic scenarios.

1. Introduction
Two measures are frequently used to probe attention in natural scenes: performance for briefly presented stimuli and gaze allocation. While gaze allocation is referred to as a shift of ‘overt’ attention, performance improvements are taken as evidence for an allocation of ‘covert’ attention to the respective stimulus, independent of the location fixated. The control circuits for gaze-shifts by eye movements and for shifts of covert attention overlap (‘pre-motor theory of attention’ [1]) and in simple detection paradigms shifts in covert attention, indeed, precede eye movements [2]. It is largely unknown, however, whether rapid detection performance and gaze allocation, which are measures that operate on very different time scales, are similarly closely linked when it comes to processing of natural scenes. If so, they should be influenced similarly by variations of stimulus features. Here, we ask whether a feature that is frequently associated with attention, luminance contrast, affects performance during rapid serial visual presentation (RSVP) and gaze during prolonged viewing alike.

(a) Rapid visual processing
Observers can distinguish images they have seen in a rapid sequence from previously unseen images for presentation durations well under 150 ms [3]. Similarly, the ‘gist’ of a scene is recognized very rapidly [4–6]. It has remained challenging, however, to define gist independently from content perceived ‘in a glance’ [7], which renders statements on its quick perception circular. Hence, rapid visual processing is frequently probed by detecting a certain target category.
such as gender recognition [13]. Despite this evidence for
Second, decreasing local contrast increases the probability
model) towards the centre of a photograph frequently yield
First, the tendency to look towards the centre of a stimulus
[31,32], its mechanistic assumptions have been challenged.
gaze is, indeed, increased compared with control locations
classes [30], and the frequency of its features at the centre of
While the saliency map predicts gaze well for some stimulus
for gaze and rapid detection.
(c) Rapid visual processing and image features
Categorical information is contained in an image’s amplitude
spectrum [20]. The relevance of this global feature for human
processing has, however, been challenged [21–23], and local
features seem, in general, to be more relevant for natural
scene processing [21]. Here, we focus on local features, and
because colour contributes little to early stages of detection
[24], limit ourselves to luminance contrast.
(d) Gaze as proxy for attention
Attention is often operationalized by gaze orientation (‘overt
attention’). Although the precedence of task over stimulus fea-
tures is established [25–28], most modelling has focused on
stimulus-driven aspects. The ‘saliency map’ [29] implements
such a view by stating that regions of high differences within
various features (‘contrasts’) will be preferentially attended.
(e) Low-level features and objects in guiding gaze
While the saliency map predicts gaze well for some stimulus
classes [30], and the frequency of its features at the centre of
gaze is, indeed, increased compared with control locations
[31,32], its mechanistic assumptions have been challenged.
First, the tendency to look towards the centre of a stimulus
and the bias of putting highly salient items (according to the
model) towards the centre of a photograph frequently yield
an overestimation of the saliency map’s performance [33,34].
Second, decreasing local contrast increases the probability
of a region to be fixated [35], rather than increasing it. This
result, at first glance, seems to contradict the good prediction
of fixations by the saliency map, but becomes understandable
if one interprets the saliency-map model as predictor of inter-
esting objects in a scene [36]: in this view, objects rather
than features attract gaze [37]. The effect that strong contrast
modifications attract attention—irrespective of increase or
decrease—can be reconciled with this view: it is a plausible
hypothesis that strongly modified regions may become qualita-
tively different from the background (imagine an extreme
case, where the contrast is set to 0 leaving just a grey disc in
the case of the grey-scale images in Einhäuser & König [35])
and thus may act as object-like items with respect to attracting
attention. However, the original data of Einhäuser & König
[35] alone are also consistent with a feature-based explanation,
such as an increase in texture contrast [38]. How contrast
modifications interact with objects already present in the
scene for guiding gaze and how they affect (rapid) object
detection has remained unaddressed.
(f) This paper: linking gaze and rapid processing
In three experiments, we assess how the two paradigms—rapid
presentation and gaze allocation—relate to stimulus features
and each other. In experiment 1, luminance contrast of objects
in a scene is modified, and the effect on gaze is measured.
Unlike previous studies [35,39], modifications here are applied
to objects rather than to random locations. In experiment 2,
the same stimuli are used as targets in an RSVP paradigm. In
experiment 3, contrast modifications have the shape of an
object from one category (e.g. animal), but are superimposed
over an image of a different category (e.g. foliage), and gaze
is measured. This allows disentangling of the effect of contrast
modifications per se (shape), from the effects of contrast modifi-
cations of objects (shape and appearance). The combination of
experiment 1 and 3 thereby tests the hypothesis of whether
objects or second-order low-level features, such as texture con-
trast [38], drive attention: if texture contrast or a related low-
level measure were solely responsible for the increase of atten-
tion to contrast-decreased random locations, then the V-shaped
effect of contrast modifications on fixation should prevail for
modified objects. If, however, objects are primarily attracting
attention, the attracting effect of the contrast decrease should
compete with the repulsive effect of a reduced visibility of the
object, and thus the effect should weaken for contrast decreases.
The combination of experiment 1 and 2 will directly test the
hypothesis of whether the two seemingly distinct forms of
attention, overt attention in space and covert attention in
time, are linked in natural scene processing.

2. Methods

(a) Participants
Twenty-four students of the Philipps-University Marburg par-
cipated in the experiments (11 female, 13 male, age: 20–29 years,
mean age: 24.0 ± 2.5 years), eight in each experiment. All had
normal or corrected to normal vision, were naive to the purpose
of the study and had not been exposed to the stimuli prior to the
experiment. All gave written informed consent prior to participation.

(b) Experimental set-up
Experiments were conducted in a light and sound isolated
room. Stimuli were presented on a 19.7” EIZO Flex Scan F77S
CRT monitor at 100 Hz and 1152 × 864 pixel resolution with maximum luminance (white) of 33.0 cd m⁻² and minimum luminance (black) of 0.001 cd m⁻². Observers were restrained by a chin and forehead rest at a viewing distance of 60 cm. Stimulus size was 30.9° × 23.4° (952 × 714 pixels) in experiments 1 and 2, (i) ‘opposite modifications’, (ii) ‘same modifications’, left 2 columns: negative modifications (−10%, −5%), middle column: neutral (identical in both rows, global contrast decrease to 90.9% compared to the original image), right two columns: positive modifications (+5%, +10%). (c) Two-dimensional histogram of object positions. Displayed size corresponds to stimulus size (952 × 714 pixels, 30.9° × 23.4° visual angle): for each image, pixels are assigned a 1 whenever they are in the target object, or a 0 when they fall in the background; these binary maps are added. Colour map scales from 0 to the maximum entry (35 objects). (d) Two-dimensional histogram of fixation locations of experiment 1, aggregated over all neutral stimuli. Histogram is first normalized to unit integral for each stimulus and subsequently averaged over stimuli and observers. Colour map scales from 0 to maximum entry (0.0017). (e) Six-point ROC curves for each of the eight observers in experiment 2, based on their confidence ratings (see Methods for details), circle indicates the hit/false alarm rate of each observer based on their answer irrespective of confidence.

Figure 1. Stimuli and basic behaviour. (a) Example neutral stimuli of target category animal (i) or vehicle (ii). (b) Stimulus modifications as used in experiments 1 and 2. (i) ‘opposite modifications’. (ii) ‘same modifications’, left 2 columns: negative modifications (−10%, −5%), middle column: neutral (identical in both rows, global contrast decrease to 90.9% compared to the original image), right two columns: positive modifications (+5%, +10%). (c) Two-dimensional histogram of object positions. Displayed size corresponds to stimulus size (952 × 714 pixels, 30.9° × 23.4° visual angle): for each image, pixels are assigned a 1 whenever they are in the target object, or a 0 when they fall in the background; these binary maps are added. Colour map scales from 0 to the maximum entry (35 objects). (d) Two-dimensional histogram of fixation locations of experiment 1, aggregated over all neutral stimuli. Histogram is first normalized to unit integral for each stimulus and subsequently averaged over stimuli and observers. Colour map scales from 0 to maximum entry (0.0017). (e) Six-point ROC curves for each of the eight observers in experiment 2, based on their confidence ratings (see Methods for details), circle indicates the hit/false alarm rate of each observer based on their answer irrespective of confidence.

(c) Stimuli and procedure

(i) Experiment 1: overt attention for contrast-modified objects

Stimuli for experiment 1 were based on 90 images from the PASCAL VOC 2010 database [44], 45 containing one or more means of transportation (vehicles), 45 containing one or more ‘animals’ (birds or mammals; figure 1a). Pixels belonging to these ‘target’ objects are defined within the database. The term ‘target’ refers to all objects of the target category in an image, irrespective whether there is one instance (e.g. one animal) or multiple instances (e.g. several animals). The remainder of the image will be referred to as ‘background’.
To modify contrast of objects or images, images were converted to the physiologically defined DKL colour space [45]. All modifications were performed along the luminance axis. Zero on this axis in DKL space corresponds to half the maximum luminance (i.e. 16.4 cd m^{-2}). Contrast is modified by scaling around this point, i.e. by subtracting 16.4 cd m^{-2} from the luminance of a pixel, multiplying it with a contrast-change factor (α, 2 − α or 1/1.1, see below), and then adding 16.4 cd m^{-2} again.

To keep all stimuli within the gamut of the screen, luminance contrast of all images was scaled by a contrast-change factor of 1/1.1 (i.e. 90.9%) prior to any further processing. From each of the resulting 90 neutral images (figure 1b, middle column), a total of eight contrast-modified versions were created. We modified target contrast and background contrast either in the same or the opposite way (figure 1b). When target contrast was decreased, background contrast was either increased ('opposite modification') or also increased ('same modification'); when target contrast was increased, background contrast was either decreased ('opposite modification') or also increased ('same modification'). Technically, in 'opposite' modifications, the pixels of the target object and the pixels of the background by a contrast-change factor 2 − α. In 'same' modifications, the pixels of the target object and of the background were scaled by the same contrast-change factor α. For both modification types, four levels of α were used: 0.90 and 0.95 (negative modifications, decrease in contrast), 1.05 and 1.10 (positive modifications, increase in contrast). Throughout the paper, we refer to those as −10%, −5%, +5% and +10%, respectively. With 90 neutral images, four opposite modifications and four same modifications per image, this procedure resulted in 810 stimuli in total.

Observers were presented each of the 810 stimuli once for 3 s. To start a new trial, observers fixated a central fixation spot for 300 ms, after which the image was onset immediately. If observers failed to obtain steady fixation after 5 s, the eye-tracker underwent a recalibration. Observers were instructed to study the image carefully and told explicitly that they were free to look wherever they like during image presentation. The whole experiment was split into nine blocks of 90 trials, organized such that each of the 90 base images was used only once per block. Otherwise, stimuli were ordered randomly. Observers were encouraged to take breaks between the blocks.

(ii) Experiment 2: rapid serial visual presentation for contrast-modified objects

The 810 stimuli of experiment 1 served as ‘target’ images for experiment 2. In addition, 553 images from various databases (http://www.photolibrary.uk.com/ and http://visionlab.ece.uiuc.edu/datasets.html) that contained neither target category served as distractors. Distractor images were scaled in luminance contrast by a contrast-change factor of 1/1.1 to span the same dynamic range as neutral target images, but no other modifications were applied.

Observers started a trial by fixating centrally for 300 ms. Immediately afterwards, a 1-s stream of 20 images that either contained 0 or 1 target image was presented at 20 Hz. To avoid primacy or recency effects, the target’s serial position was between 6 and 15. Selection and order of distractors were random, but no distractor occurred more than once per sequence. After the presentation, observers were asked to simultaneously report whether the sequence had contained a target and—for computing a six-point receiver operator characteristic (ROC; see below)—the confidence (sure, probable, guess) of their decision by pressing one of six buttons on a standard keyboard. Animal and vehicle targets were tested in separate sessions of 810 trials each (405 target sequences and 405 distractor sequences). Each session was split into 18 blocks, and the same target image did not occur more than once per block. Half of the observers started with the animal session, the other half with the vehicle session. Behaviour was quantified by signal-detection theory. ‘Hit’ implies correct report of target presence, ‘false alarm’ reporting presence despite actual absence, ‘correct reject’ correctly reporting absence and ‘miss’ reporting absence despite actual presence. To compute a six-point ROC per individual, confidence ratings were used [46]: responses were sorted by confidence (‘present sure’, ‘present probable’, ‘present guess’, ‘absent guess’, ‘absent probable’, ‘absent sure’), and the criterion was shifted along these levels. The ROC’s lower left corner corresponds to all responses treated as ‘absent’ judgement (i.e. zero hits, zero false alarms), the first non-trivial point then represents detection performance when only ‘sure present’ responses are counted as present judgement, the second point counts ‘sure present’ and ‘probable present’ as present, and so forth until the upper right point where all ratings are considered as present judgements, resulting in a 100% hit and a 100% false alarm rate. By definition, the middle point of this curve (all absent responses counted as absent, all present responses as present judgement) is identical to the hit/false alarm rate when confidence ratings are ignored (cf. figure 1e).

(iii) Experiment 3: overt attention, disentangling shape and appearance

Of the 90 images from experiment 1 and 2, 20 animal images and 20 vehicle images were selected at random, in addition to 20 high-resolution natural-scene images from the Tübingen Natural Image Database (http://images.kyb.tuebingen.mpg.de), which contained mostly foliage (figure 4a, top). If required, these images were cropped and downsampled using cubic interpolation and were reduced in luminance by a contrast-change factor of 1/1.1.

Twenty triplets of one image per category (animal, vehicle, foliage) were formed. For these triplets, shape and location of the object in one target image (animal or vehicle only) was used to introduce a contrast modification akin to experiment 1 and 2 on the two other images (figure 4a), resulting in four stimuli per triplet and modification strength (animal shape on foliage image; animal shape on vehicle image; vehicle shape on foliage; vehicle shape on animal image). Using the four ‘opposite’ contrast-modification levels from experiments 1 and 2 and the neutral stimulus, this procedure results in 20 stimuli per triplet.

Note that for the neutral condition, animal shape on foliage and vehicle shape on foliage are identical. In order to have the same number of stimuli for each modification level, however, these duplicates were not removed, such that there were indeed 400 stimuli in total (20 triplets of 20 stimuli). Similarly, a ‘same’ modification would not make the shape visible, but just scale the global contrast of the image, which is unlikely to affect fixation probability on a given object. As this assumption was tested in experiment 1, ‘same’ modifications were not used in experiment 3. The experiment was split into 10 blocks of 40 images each; otherwise, the procedure was identical to experiment 1.

3. Results

(a) Neutral images and basic behaviour

In experiment 1, observers made on average 11.2 ± 1.2 (mean ± s.d. over observers) fixations per neutral image. Although the target covers only 9.5% ± 8.8% of the image’s surface area, 56.6% ± 9.3% of fixations fall inside the object (mean ± s.d. over images). Targets tend to occur towards the centre of the image (figure 1c) as do fixations (figure 1d). In addition to such central bias, other confounding factors correlate with the fraction of fixations inside the object.
probability (animal: r = 0.312, p < 0.001; detection, animal; r_{223} = 0.187, p = 0.005). Although the r-values—not surprisingly—leave substantial variance in fixation behaviour and detection performance that is not explained by contrast, these data show that for both target categories, detection and fixation probability are significantly influenced by the contrast of the object relative to the background.

(c) Comparing effects of contrast manipulation on detection and fixation probability

To make fixation probability and hit rate commensurate, we normalize both relative to the neutral image and obtain a measure of percentage change relative to neutral. This normalization also removes any variability between images that results from features other than the luminance-contrast modifications, and would therefore affect the neutral and modified versions of an image alike. Such properties, for example, include the size of an object, its centrality with respect to the image (cf. [34]) or general feature-based (dis-) similarity to distractors in experiment 2. When comparing the effects of ‘opposite’ contrast modifications, we find qualitatively similar behaviour between fixation and detection probability (figure 3c): if object contrast increases relative to neutral, then fixation and detection probability increase, whereas a decrease has no (fixation) or a slight positive (detection) effect. A simultaneous increase of object and background contrast (‘same modification’) has no effect on the object’s fixation probability (figure 3b, dotted line). This indicates that a general upregulation of contrast in an image does not change the probability that objects are fixated. Average dwell times and the total number of fixations per stimulus are not affected by this same manipulation, either. In contrast to the fixation data, there is a clear effect of simultaneous modifications on detection probability: detection probability decreases if image contrast is decreased, and increases if image contrast is increased (figure 3b, dashed line). This indicates that the contrast of the target image (i.e. relative to the distractor stream) rather than the contrast of the target object is the relevant feature for detection probability in this condition. This effect may also contribute to the slight

(b) Modified images with object modification opposing background modification

To verify that contrast modifications are effective, we measure RMS contrast of the object for the five ‘opposite’ modification levels (two positive, two negative, one neutral): despite considerable variability across images that results from the intrinsic variability of contrast across stimuli, the modifications effectively altered luminance contrast (figure 2a, F_{4,39} = 199.7, p < 0.001, repeated measures ANOVA). Across all images with ‘opposite’ or no modification, we find a significant correlation between RMS contrast and fixation probability (r_{448} = 0.169, p < 0.001, figure 2b) and between RMS contrast and detection probability (r_{448} = 0.253, p < 0.001, figure 2c). These correlations persist if vehicle and animal targets are considered separately (fixation, vehicle: r_{223} = 0.134, p < 0.001; fixation, animal: r_{223} = 0.257, p = 0.045; detection, vehicle: r_{223} = 0.312, p < 0.001; detection, animal; r_{223} = 0.187, p = 0.005). Although the r-values—not surprisingly—leave substantial variance in fixation behaviour and detection performance that is not explained by contrast, these data show that for both target categories, detection and fixation probability are significantly influenced by the contrast of the object relative to the background.
positive effect for negative contrast modifications on the object (figure 3a, left), as for the ‘opposite’ modifications, a negative change to the object implies a positive change to the background. Such a positive change would draw attention to the target stimulus, which, in turn, makes detection of the target object easier.

(d) Direct comparison of detection and fixation probability

To directly compare the relation between hit rate and fixation probability for each modification level, we correlate the two measures per image. The two measures are significantly correlated when all data are aggregated ($r_{\text{all}} = 0.294, p < 0.001$, figure 3c), and for animals ($r_{403} = 0.364, p < 0.001$) and vehicles ($r_{403} = 0.390, p < 0.001$) separately. For 7/9 modification levels, the correlations are significant (figure 3d), and this individual significance persists when the alpha-level is adjusted for multiple (nine) tests to an expected false discovery rate [48] of 5%. Taken together, this shows that both behavioural measures are not only driven similarly by object contrast but are also correlated per image, irrespective of the modification applied to object or image.

(e) Effect of contrast as such (experiment 3)

Unlike earlier studies [35,39], we here modify an object’s luminance contrast rather than a random location. This combines two effects: the effect of contrast as such and a ‘highlighting’ of the object. In other words, the modification of the object’s appearance coincides with a change in low-level features within the object’s shape. In experiment 3, we test whether the fact that we do not see an attractive effect of negative modifications is a result of these two effects adding up and thus cancelling out for negative modifications. When modifications take the shape of an object from a different scene (figure 4d), we indeed observe the V-shaped effect of luminance contrast described earlier (figure 4b). There is a main effect of the modification level ($F_{4,28} = 75.94, p < 0.001$), a main effect of whether the object shape is applied to an image containing an object or neutral ($F_{1,7} = 12.9, p < 0.001$), and an interaction between these two factors ($F_{4,28} = 10.16, p = 0.015$), and an interaction between these two factors ($F_{4,28} = 10.16, p = 0.015$). This confirms the effects observed earlier for contrast modifications at random locations and furthermore shows that the presence of a true object (appearance and shape) reduces the effect of an object-shaped contrast modification (shape only). In addition, the fact that the V-shaped effect is preserved on foliage images, which contain few or no nameable objects, excludes...
Figure 4. Modifications of contrast detached from modification of object. (a) Stimuli for experiment 3: (i) examples of foliage images used in addition to the vehicle and animal database; (ii) animal shape (same as figure 2a) superimposed over vehicle image at the five different modification levels; (iii) animal shape superimposed over foliage image at the five different modification levels. (b) Dashed line: fraction of fixations on object/animal shape, when superimposed on a vehicle/animal image (mean and s.e.m. over participants); dotted line: fraction of fixations on object/animal shape, when superimposed on foliage image; grey solid line: data from experiment 1 (contrast-modified object) for comparison (same data as figure 3a without normalization). Note that the seemingly weak effect in (b) when compared with figure 3a mostly results from different scaling of the axes; the normalization of figure 3a absorbs interimage variance and enables qualitative comparison to the data of experiment 2; all statistical analysis was, however, performed on the raw data.

(a) Effect of luminance contrast on overt attention

Although a correlation between fixated locations and contrast during free-viewing [30–32] is largely undisputed, this correlation does not imply a causal drive of attention by contrast [33–35,49]. One key argument against luminance contrast’s causal role is the increase of fixation probability when contrast of an arbitrary location is sufficiently decreased locally [35,39], resulting in a V-shaped dependence of fixation probability on contrast. To reconcile this finding of Einhaüser & König [35] with a low-level feature-based approach to attention, an attractive effect of texture contrast (second-order contrast) on attention was proposed [38]. In this view, texture contrast, which by definition is a V-shaped function of contrast, rather than first-order contrast drives attention. However, the V-shaped effect of contrast has also been in seeming conflict with the positive correlation of fixations with contrast and with the observation that for contrast modifications that ramp gradually over the whole image (either from \(a = -1 \) at one end to \(a = +1 \) at the other or between \(a = 0 \) and \(a = +1 \) or \(a = -1 \)), fixation probability scales linearly with this contrast modification [50,51]. This linear effect for large-scale ramps was observed notably for the same instruction (‘study the images carefully’) that yielded the V-shaped function of local modifications in Einhaüser & König [35] and is also used here, refuting one concern put forward in Parkhurst & Niebur [38]. Unlike in the previous studies, we here apply contrast modifications to objects. Comparing the data of experiment 1 and 3 thus provides evidence for an alternative possibility to resolve the question as to why fixation probability scales linearly with contrast for global modifications, and is V-shaped for local modifications at random locations: if contrast is bound to an object, a contrast increase also increases fixation probability while a contrast decrease has little effect. If contrast is, however, not bound to an object (experiment 3), then the V-shape re-emerges, even for rather subtle modifications. Taken together, this suggests that local contrast modifications induce an object-like quality, which attracts attention, rather than the contrast modification per se. When unrelated to an actual object, these ‘shape-only’ objects compete with actual objects (thus the larger V-shaped effect on foliage), while when tied to an object, an increase in contrast increases fixation probability by increasing the saliency of the object as such. At the present stage, an alternative explanation is still conceivable: negative modifications preserve the attractiveness of the object (even if contrast would be reduced to 0, the object would still be identifiable through its other features, in particular, colour contrasts), whereas the contrast decrease per se has little effect (unlike for the local modifications on greyscale images in Einhaüser & König [35] or the shape-only objects). With both interpretations, however, our data provide further support to an object-mediated effect of low-level features [37] and thus for an object-based rather than a feature-based selection process for overt attention [52]. Object precedence over low-level features does not imply that semantic object knowledge is required to deploy attention: for example, modified objects (and regions) could also be more easily discriminated from the background and be salient for this reason [53]. In addition, our data show that both shape and appearance of an object are

4. Discussion

We demonstrate that the probability of an object to be fixated in a scene and the probability of the same object to be detected as target during rapid serial visual processing are correlated across distinct groups of observers. Both measures are qualitatively similarly affected by changes to the object’s luminance contrast. These results are in line with the hypothesis that detection during rapid presentation and the allocation of gaze during prolonged viewing tap into the same mechanisms, which are likely to be linked to attention.
of relevance for attracting attention. In conclusion, experiments 1 and 3 provide further evidence that objects, rather than the low-level features constituting them, are the primary driver of overt attention.

(b) Effect of luminance contrast on rapid detection
The effect of luminance contrast on detection of targets in rapidly presented sequences is twofold: first, increased contrast of an image (i.e. target and background together) increases detection probability, whereas decreased contrast decreases detection probability. This shows, in line with earlier findings [18], that increased contrast relative to the sequence enhances detection probability. Interestingly, this result is in contrast to results on temporally isolated stimuli, for which contrast modifications of the whole image need to be extreme to show an effect on detection performance [54]. This discrepancy may be interpreted as evidence for the notion that the effects found here arise from attentional limitations in sequential processing rather than from recognition limitations per se. Second, increased target contrast and simultaneously decreased background contrast increases detection probability; in turn, for the reverse modification little effect is observed, and if any, the performance improves for lowered target contrasts. The latter is probably a consequence of the negative effect of target contrast and the positive effect of background contrast cancelling each other out in this case. Therefore, the observed effect is consistent with a positive relation between target contrast and recognition performance described earlier for temporally isolated detection [55]. Taken together, performance is improved when contrast is increased, both spatially (target object relative to background) or temporally (target image relative to distractor sequence).

For a given image, its dissimilarity to the set of distractors, for example in terms of low-level features, will affect detection performance, making targets in some images harder to detect than in others [18]. Such differences cannot affect the general pattern described here, as the qualitative effect of contrast modifications holds under normalization to the neutral version of each image (figure 3a,b). The difference could add additional variance to the raw performance used for a comparison with fixation data; such would, however, only be able to weaken the correlation between experiments, as experiment 1 is agnostic about the distractors used in experiment 2. Similarly, it cannot be excluded—as in all RSVP studies using this dataset—that the background substantially contributes to target detection as it sets gist and context of the scene. The pattern of results renders a dominant effect of background, however, exceedingly unlikely: compare, for example, performance in the ‘same’ condition at −10% (figure 3b) and performance at +10% in the ‘opposite’ condition (figure 3o). In these cases, the background, which constitutes the largest part of the image, is exactly the same (figure 1b). Nonetheless, detection performance is nearly inverted between these two conditions (+19.3% compared with −15.7% change relative to neutral, figure 3a,b). Hence, while background- and target-distractor similarity almost certainly do contribute to detection performance, they are uncritical for our present results.

(c) Comparison of overt and covert attention
Provided a working definition that adopts the notion of attention as selective upregulation of processing resources for some stimuli at the expense of others [56], and the acknowledgment that such selection can occur in either space or time, this paper asks whether both forms of attention share commonalities for natural scene processing. When starting from a purely spatial notion of selective attention, one can rephrase the question equivalently as to whether the observed limitations on rapid processing are ‘attentional’ in the sense that they share properties with spatial attention. For example, when the ‘same’ modification results in experiment 2 are reinterpreted as a more efficient masking of a low-contrast target image embedded in higher-contrast distractors when compared with a high-contrast stimulus in a stream of lower-contrast distractors, the paper shows that such masking has commonalities with spatial attention as expressed by gaze allocation.

For simple stimuli, the selection of saccadic targets (overt attention) and recognition performance among distractors (covert attention) have long been established to share common mechanisms [2]. The pre-motor theory of attention [1] even postulates a common neural substrate for covert and overt attentional shifts. Because outside the realm of natural stimuli RSVP is frequently used as measure of covert attention, and attentional limitations, such as the attentional blink [14], transfer to natural stimulus sequences [15,16], it is likely that our experiment 2 indeed measures a form of covert attention. Under this premise, the present data are the first direct evidence that covert and overt attention exploit similar features also for natural scenes. Even though the observed correlations are not extremely high (of the order of 0.3), they are highly significant for most modification levels. The unexplained variance can, in part, result from sources that by definition influence only one of the experiments (e.g. target–distractor similarity in experiment 2) and from the disjoint sets of observers. Hence, this study is first evidence that the tight coupling between covert and overt attention [2] transfers from simple to complex natural stimuli.

(d) Implications for real-world processing?
Laboratory eye-tracking experiments, even when using natural stimuli, have limited predictive power for real-world gaze allocation [57]. When observers move actively through real or virtual environments, the functional role of objects (e.g. obstacle versus target [58]), the spatial layout of a scene [59] or even empty locations that have a meaning for action as known from memory [60,61] modulate and supersede saliency as defined by low-level features. In addition, it is at least debatable whether natural perception can or should be decomposed into discrete snapshots [62,63]; and even though saccadic eye movements may provide a natural temporal discretization of perception, the integration over subsequent snapshots remains a challenge [64]. As of now, it remains an open question as to what extent our present data obtained in natural stimuli can be transferred to even more naturalistic—real-world or virtual environment—scenarios. Nonetheless, by demonstrating that two very different measures of attention—covert attention in time and overt attention in space—are correlated in natural scene processing, the present data provide an important step towards bridging the gap between theories and models of attention that are based on comparably simple laboratory stimuli and attention deployment in the real world.
46. Macmillan N, Creelman C. 2005 Detection theory, 2nd edn. Mahwah, NJ: Lawrence Erlbaum Associates.

47. Peli E. 1990 Contrast in complex images. J. Opt. Soc. Am. A 7, 2032 – 2040. (doi:10.1364/JOSAA.7.002032)

48. Benjamins Y, Hochberg Y. 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Metrol. 57, 289 – 300.

49. Baddeley RJ, Tatler BW. 2006 High frequency edges (but not contrast) predict where we fixate: a Bayesian system identification analysis. Vision Res. 46, 2824 – 2833. (doi:10.1016/j.visres.2006.02.024)

50. Einhäuser W, Rutishauser U, Frady EP, Nadler S, König P, Koch C. 2006 The relation of phase noise and luminance contrast to overt attention in complex visual stimuli. J. Vis. 6, 1148 – 1158. (doi:10.1167/6.11.1)

51. Engmann S, ’t Hart BM, Sieren T, Onat S, König P, Einhäuser W. 2009 Saliency on a natural-scene background: effects of color- and luminance-contrast add linearly. Atten. Percept. Psychophys. 71, 1337 – 1352. (doi:10.3758/APP.71.6.1337)

52. Nuthmann A, Henderson JM. 2010 Object-based attentional selection in scene viewing. J. Vis. 10, 20. (doi:10.1167/10.8.20)

53. Gao D, Mahadevan V, Vasconcelos N. 2008 On the plausibility of the discriminant center-surround hypothesis for visual saliency. J. Vis. 8, 13. (doi:10.1167/8.7.13)

54. Macé MJ, Delorme A, Richard G, Fabre-Thorpe M. 2010 Spotting animals in natural scenes: efficiency of humans and monkeys at very low contrasts. Anim. Cogn. 13, 405 – 418. (doi:10.1007/s10071-009-0290-4)

55. Naber M, Hilger M, Einhäuser W. 2012 Animal detection and identification in natural scenes: image statistics and emotional valence. J. Vis. 12, 25. (doi:10.1167/12.1.25)

56. James W. 1890 Principles of psychology. New York, NY: Holt.

57. ’t Hart BM, Vockeroth J, Schumann F, Bartl K, Schneider E, König P, Einhäuser W. 2009 Gaze allocation in natural stimuli: comparing free exploration to head-fixed viewing conditions. Vis. Cogn. 17, 1132 – 1158. (doi:10.1080/13506280902834696)

58. Rothkopf CA, Ballard DH. 2009 Image statistics at the point of gaze during human navigation. Vis. Neurosci. 26, 81 – 92. (doi:10.1017/S0952523808080978)

59. Cristino F, Baddeley R. 2009 The nature of the visual representations involved in eye movements when walking down the street. Vis. Cogn. 17, 880 – 903. (doi:10.1080/13506280902834696)

60. Land MF, McLeod P. 2000 From eye movements to actions: how batsmen hit the ball. Nat. Neurosci. 3, 1340 – 1345. (doi:10.1038/81887)

61. Diaz G, Cooper J, Rothkopf C, Hayhoe M. 2013 Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task. J. Vis. 13, 20. (doi:10.1167/13.1.20)

62. VanRullen R, Reddy L, Koch C. 2005 Attention-driven discrete sampling of motion perception. Proc. Natl Acad. Sci. USA 102, 5291 – 5296. (doi:10.1073/pnas.0409172102)

63. Kline KA, Eagleman DM. 2008 Evidence against the temporal subsampling account of illusory motion reversal. J. Vis. 8, 13. (doi:10.1167/8.4.13)

64. Schneider WX. 2013 Selective visual processing across competition episodes: a theory of task-driven visual attention and working memory. Phil. Trans. R. Soc. B 368, 20130060. (doi:10.1098/rstb.2013.0060)