Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues
Lei Qin1,2, Tailin He2, Sheng Chen1,2, Dazhi Yang1, Weihong Yi1✉, Huiling Cao2✉ and Guozhi Xiao2✉

Mechanotransduction is a fundamental ability that allows living organisms to receive and respond to physical signals from both the external and internal environments. The mechanotransduction process requires a range of special proteins termed mechanotransducers to convert mechanical forces into biochemical signals in cells. The Piezo proteins are mechanically activated nonselective cation channels and the largest plasma membrane ion channels reported thus far. The regulation of two family members, Piezo1 and Piezo2, has been reported to have essential functions in mechanosensation and transduction in different organs and tissues. Recently, the predominant contributions of the Piezo family were reported to occur in the skeletal system, especially in bone development and mecha-stimulated bone homeostasis. Here we review current studies focused on the tissue-specific functions of Piezo1 and Piezo2 in various backgrounds with special highlights on their importance in regulating skeletal cell mechanotransduction. In this review, we emphasize the diverse functions of Piezo1 and Piezo2 and related signaling pathways in osteoblast lineage cells and chondrocytes. We also summarize our current understanding of Piezo channel structures and the key findings about PIEZO gene mutations in human diseases.

INTRODUCTION
Mechanotransduction is a fundamental ability that allows living organisms to receive and respond to physical signals from the internal and external environments and has been found and characterized in all five kingdoms of life. For bacteria or other simple organisms, mechanotransduction is required to sense stretching, osmotic pressure, and other mechanical forces.1 In mammals, mechanotransduction is involved in many physiological processes,2,3 such as touch, gravity, proprioception, sound, air flow, vascular development, and blood pressure. Successful and precise mechanotransduction is essential for proper organ function, whereas abnormal or faulty mechanotransduction could lead to a wide array of diseases, such as deafness,4 cardiovascular diseases,5 metabolic defects,6 fibrosis,7 cancer metastasis,8 neuronal disorders,9 and osteoporosis.8 The mechanotransduction process requires a range of special proteins termed mechanotransducers to convert mechanical forces into biochemical signals, which further induce a series of sequential reactions in cells. As the primary mechanism for mechanotransduction, mechanically activated (MA) ion channels can be directly stimulated by mechanical forces that are applied to cell envelopes with fast and efficient responses of either cell membrane excitation or the activation of intracellular signaling.1,5 Before 2010, our understanding of the gating mechanism of MA channels was mostly from bacterial work. The discovery of the Piezo channel family opens a new area in the field to study the components and functions of eukaryotic MA channels.

In 2010, a tour de force of work by Patapoutian and colleagues uncovered a new group of mammalian MA channels named the Piezo family.10 This groundbreaking study attracted great attention from a number of researchers worldwide to study the functions of the two family members Piezo1 and Piezo2 in different tissues and organs. During the past 10 years, studies using experimental mouse models have indicated that Piezo1 is mainly expressed in nonexcitable cell types11 and is critical for transducing mechanical forces applied externally and internally at the plasma membrane.12 In contrast, Piezo2 is primarily expressed in sensory neurons,11 including somatosensory ganglia, outer hair cells, enterochromafﬁn cells of the gut, and Merkel cells, but not somatic cells.13 Cumulative evidence suggests that Piezo1 is required for vascular development and function,14 red blood cell volume regulation,15 epithelial homeostasis,16 the lineage choice of neural stem cells,17 axon growth,18 and urinary osmolarity.19 Piezo2 has essential roles in sensory processes, such as gentle touch sensation,20 mechanical nociception21 and proprioception,22 and indispensable functions in auditory sensation,23 gastrointestinal physiology,24,25 and respiratory physiology.26 More recently, the predominant contributions of the Piezo family were reported to occur in the skeletal system, especially in bone development and mecha-stimulated bone homeostasis.27–30 These studies demonstrate the important functions of Piezo proteins in regulating stem cell fate and osteoblast lineage cell mechanotransduction. Here we summarize our current understanding of Piezo family functions in different tissue backgrounds.
piezoelectric properties have opened a new era of mechanical transduction research. Enormous efforts have been made to illustrate their physiological and pathological significance based on the properties of MA ion channels.

Molecular Structures of Piezo Proteins

In parallel with the considerable studies focused on the biological functions of Piezo1 and Piezo2 as mechanotransducers, great attention has also been given to deciphering their molecular composition and structures. Coste et al. first reported that both Piezo1 and Piezo2 are unusually large proteins with predicted lengths of 2,100–4,700 aa and contain 24–36 TM domains, which makes Piezo the largest plasma membrane ion channel complex identified thus far. Piezo proteins have unique sequences without any repetitive sequence patterns. In addition to their giant molecular weight, Piezo proteins lack apparent sequence homology with any other known ion channels or proteins.

The molecular structure of the full-length (2,547 aa) mouse Piezo1 channel was first revealed by cryo-electron microscopy (cryo-EM) at a resolution of 4.8 Å in 2015. Later, the mouse Piezo1 structure was solved at higher resolution (3.8 Å and 3.97 Å) by cryo-EM. Structurally, high-resolution cryo-EM techniques have resolved the “nanobowl” configuration of Piezo proteins, which deform lipid bilayers locally into a dome shape. Overall, the mouse Piezo1 protein has a three-bladed, propeller-shaped homotrimeric architecture (Fig. 1a, b), composing a unique 38-TM-helix topology in each subunit with a total of 114 TM helices in the trimeric channel complex. For each subunit, Piezo1 is composed of a central ion-conducting pore module and three peripheral mechanotransduction modules (Fig. 1a). These distinct and separable modules of Piezo1 are responsible for different channel functions. The pore module contains the extracellular Cap structure, the TM pore formed from three pairs of TMs, and the intracellular C-terminal domain (CTD). Functional studies of the Piezo1 modulus found that residues 2,189–2,547 of mouse Piezo1 inside the pore module govern fundamental pore properties, including unitary conductance, ion selectivity, and pore blockage. A minimal region of the Piezo1 protein (aa 2,172–2,547) was reported to be able to fold and function as a channel pore domain. The peripheral mechanotransduction module includes a long beam-like structure, a peripheral blade, and a unique anchor domain. Importantly, the long beam structure supports and bridges the blade into the central pore module. The large extracellular blade domains can curve the plasma membrane (Fig. 1c), and the three blades are assembled into functional trimers. Furthermore, the anchor domain formed from a hairpin structure is connected to the CTD plane by the inner helix and outer helix pair, which maintains the integrity of the channel. Functional studies showed that residues 1–2,190 of the mechanotransduction module confer mechanosensitivity to trimeric channel pores. The structure of the mechanotransduction module is essential for Piezo1 mechanical activation.

The structure of Piezo2 is rather similar to that of Piezo1, sharing approximately 42% sequence homology. The Piezo2 channel is also a three-bladed, propeller-like trimer that comprises 114 TM helices (38 per protomer). Compared to Piezo1, there are several charged residues at the interface between the beam and the CTD in the Piezo2 channel, which maintain the mechanosensitivity. In addition, extra constriction sites between the two inner helices of the Piezo2 channel were reported, which resulted in the Piezo2 channel having a narrower cavity than the Piezo1 channel.

These structural differences between Piezo1 and Piezo2 suggest that the TM site might serve as a TM gate that controls the channel permeability and mechanosensitivity. Detailed structural illustrations and discussion of Piezo proteins are presented in three recently published review articles.
The structures of proteins determine their functions. The structural data of the Piezo1 channel reveal a particular lever-like topological feature for mechanosensitivity (Fig. 1c).44 The extracellular blade structures are coupled with the central "cap" domain through the beams (residues H1300–S1362) to form lever-like apparatuses.54,55 Moreover, three sets of lever-like apparatuses constitute enormous three-bladed, propeller-like machinery to serve as mechanotransducers.45,48 These lever-like apparatuses enable Piezo channels with effective conformational changes from blades to a relatively slight opening of the central pore that allows cation-selective permeation (Fig. 1c).44 Piezo channels are nonselective cationic mechanosensitive channels that are permeable to alkali ions (K\(^+\), Na\(^+\), and Cs\(^+\)), divalent cations (Ba\(^{2+}\), Ca\(^{2+}\), Mg\(^{2+}\), and Mn\(^{2+}\)), and several organic cations (tetramethyl ammonium (TMA), tetraethyl ammonium (TEA)).56 Illustrations were modified from Wang et al.52 and Jiang et al.11

The activation of Piezo channels has been reported to be regulated by several associated proteins. Mouse Piezo1 has a
Mechanical stimulus has been widely recognized as a vital element for embryonic bone formation, and postnatal bone development, and adult bone maintenance and repair. Recent advances in skeletal genetics and molecular biology have demonstrated that Piezo proteins are greatly involved in bone development and mechanical responses.

In the bone tissue, the expression of both Piezo1 and Piezo2 was detected, but Piezo1 mRNA had higher expression than Piezo2 in osteoblasts and osteocytes. During embryonic bone development, whole-mount in situ hybridization of mouse limb buds showed that both Piezo1 and Piezo2 were expressed in the forming buds from embryonic day E12.5 to E14.5 with different distribution patterns. Piezo1 was mainly expressed in the interdigital region, whereas Piezo2 was primarily expressed in the forming digit and wrist. Furthermore, fluorescent reporters showed that Piezo1 protein was detected in the connecting tissue, associated muscles, and differentiating Osterix-positive osteoblasts at the primary ossification centers of E13.5 and E15.5 embryos and postnatal P0 pups during long bone development. Comparably, Piezo2 protein was found to be expressed in multiple cell types, such as Osterix-positive osteoblasts, growth plate chondrocytes, tendons, connective tissues in the muscle, and skin cells. During postnatal development, Piezo1 expression was progressively upregulated in young mice. However, the expression of Piezo2 mRNA in cortical bone was reduced as the mice grew. Consistently, the expression level of Piezo1 was much higher than that of Piezo2 in cortical samples from young adult mice. Moreover, in vitro cell differentiation studies conducted with primary MSCs and BMMs revealed that Piezo1 was highly expressed in early differentiating osteoblast progenitors, whereas expression of Piezo2 was induced during osteoclastogenic differentiation. These observations suggest that Piezo1 and Piezo2 may play distinct roles in the regulation of bone remodeling.

Because global deletion of Piezo1 leads to embryonic lethality in mice, studies focused on the functions of Piezo1 in skeletal tissues utilize tissue-specific deletion at different bone developmental stages (Table 1). Two research groups showed that deletion of Piezo1 in limb and head MSCs using Prx1-Cre in mice (Piezo1Prx1−/−) resulted in severe bone developmental defects. Even though there was no marked skeletal difference between Piezo1Prx1−/− mice and their control littermates at E17.5, newborn (Piezo1Prx1−/−) mice displayed reduced bone formation and multiple bone fractures in the forelimbs (radius and ulna). Interestingly, the hindlimbs (femur and tibia), which have higher bone mass than the forelimbs, showed only a subtle skeletal phenotype at P0. However, at P3, Piezo1Prx1−/− pups displayed increased cortical porosity and multiple spontaneous fractures in the hindlimbs. When pups grew to 3 and 6 weeks old, compared to their control littermates, Piezo1Prx1−/− mice exhibited significantly shorter and smaller long bones with decreased cortical and trabecular bone mass. These results suggest that Piezo1 contributes minimally to skeletal patterning but is critical for bone formation during skeletal development. These results also suggest that the abnormal bone phenotype from Piezo1 deficiency may be associated with mechanical loading. During pregnancy, embryos float in an amniotic fluid environment in the uterus, which results in less weight bearing for embryonic bones. However, after birth, the weight-bearing long bones, especially the hindlimbs, started to show defects.

Bone modeling is tightly controlled by a balance between bone formation and bone resorption. To unveil the mechanisms underlying the dramatic bone loss in Piezo1Prx1−/− mice, the cellular activities of both bone formation and bone resorption were examined. Wang et al. did not observe significant changes in osteoblastogenesis or the serum levels of procollagen type I N-terminal propeptide (P1NP), an in vivo marker for bone formation, in Piezo1Prx1−/− mice. Instead, the weight-bearing long bones, especially the hindlimbs, were studied to reveal defects.
Table 1. Piezo1 in bone development and homeostasis

Cre	Development	Bone phenotype	Loading model	Unloading model	
MSC	Piezo1-Cre²	P0: subtle difference; P3: increased cortical porosity in femurs	Short long bones; significant trabecular bone mass loss; reduced cortical bone thickness and surface; reduced collagen expression	Increased osteoclast number and bone resorption activities; increased eroded surface, increased osteoclast number	Under FSS, WT BMSC-derived osteoblasts strongly increase Col2α1 and Col9α1 expression but not in Piezo1-deficient cells
Osteoblast lineage cell	Ocn-Cre¹⁰	n.a.	Reduced trabecular and cortical bone mass	n.a.	n.a.
Runc1-Cre²³	P1: no calvarial bone defects; no detectable trabecular bone loss; P5: first rib fracture appears	2 weeks: multiple fractures in the ribs and femurs; shorter long bones. 12 weeks: pelvic dysplasia; reduced trabecular bone mass; no alteration of calvarial thickness or porosity	Reduced trabecular and cortical bone mass	Increased osteoclast number	n.a.
Col2α1-Cre²⁵	n.a.	3 weeks: multiple bone fractures in the ribs	Reduced trabecular and cortical bone mass	n.a.	n.a.
Col1-CreER²¹	n.a.	8-week aged mice, inject Tamoxifen for 2 weeks	Reduced trabecular bone volume with most pronounced in the secondary spongiosa; no significant reduction of cortical thickness and trabecular bone mass below the growth plates	n.a.	n.a.
Ocn-Cre²⁸	P0: similar skeletal size, incomplete of cranial closure	8 and 16 weeks: shorter stature, lower body weight; significant bone loss in both male and female.	Reduced trabecular bone mass and cortical thickness; compromised collagen expression	Increased TRAP-positive osteoclasts	n.a.
Dmp1-Cre²⁷	Normal body weight	5, 8, and 12 weeks: normal body weight; low bone mineral density; difference increased as mice mature	Normal femur length; reduced trabecular bone mass and bone stiffness; spontaneous fractures in the tibia at 12 weeks	Reduced bone formation rate; reduced osteoblastic marker gene expression (Col1α1, Ocn, Bglap); reduced serum Ocn and PINP.	Similar TRAP staining; no change of Nfact1/ Apc5/Ctsk/Mmp9 mRNA level; no change of serum CTX-1.
Dmp1-Cre¹⁰	n.a.	n.a.	Decreased bone mass in both trabecular and cortical bones; no spontaneous fractures	Increased osteoclast numbers	n.a.
Dmp1-Cre¹⁰	n.a.	n.a.	Decreased bone mass in both trabecular and cortical bones; no spontaneous fractures	Increased osteoclast numbers	n.a.
Osteoclasts	Ctsk-Cre¹⁰	n.a.	Normal bone mass	Unaffected bone resorption	n.a.
Lyz2-Cre¹⁰	n.a.	12 weeks: no detectable skeletal phenotype	n.a.	n.a.	n.a.

p postnatal, *PINP* aminoterminal propeptide of type I collagen, *FSS* fluid shear stress, *WT* Wield type, *BMSC* bone marrow stromal cell, *Col* collagen, *HLU* hind limb unloading, *Ctsk* Catepsin K, *TRAP* tartrate-resistant acid phosphatase, *cKO* conditional knockout, *MAR* mineralization apposition rate, *BFR* bone formation rate, *Ocn* osteocalcin, *Bglap* bone gamma-carboxyglutamate protein, *Nfact1* nuclear factor kB activator 1, *Apc5* acid phosphatase 5, *Mmp9* matrix metallopeptidase 9, *CTX-1* crosslinked C-telopeptide of type I collagen, *Wnt1* Wnt family member 1, *Sost* sclerostin, *OPG* osteoprotegerin, n.a. not applicable
Piezo1/2 proteins in skeleton
L Qin et al.

reduced bone formation, reduced serum levels of P1NP, and decreased expression of Osterix, an osteoblast differentiation marker, in Piezo1Ptx1 bone samples.29 The reasons for this discrepancy remain to be determined. Despite the contradictory observations on bone formation, the bone loss in Piezo1Ptx1 mice was confirmed by increased bone resorption in the Piezo1-deficient mice. Both research groups reported that Piezo1Ptx1 mice exhibited increased osteoclast number and osteoclast differentiation, accompanied by enhanced bone-resorbing activities at 3 and 6 weeks of age.29,30

Interestingly, the low bone mass phenotype in Piezo1Ptx1 mice seems to be restricted to load-bearing long bones. The calvariae, which are less load-bearing than long bones,95 from Piezo1Ptx1 mice were indistinguishable from their control littermates at 6 weeks of age.29 To test the involvement of Piezo1 from MSCs in mechanotransduction, both control and Piezo1Ptx1 mice were subjected to 6 days of tail suspension. The results showed that mechanical unloading from tail suspension led to bone mass loss in control mice but not in Piezo1Ptx1 mice.30 This difference resulted from nonresponsive osteoclasts in Piezo1 deletion mice. Recently, Piezo1 from Osteolectin+ cells, a subset of skeletal stem cells and progenitors in bone marrow, was reported to have essential functions in maintaining bone mass.96 Mice with Piezo1 deletion in Osteolectin+ cells displayed reduced bone mineral density and cortical bone thickness at 2 months of age.96 Together, these results demonstrate the importance of Piezo1 in MSCs and progenitor cells for mechanotransduction during bone development through inhibiting osteoclast-mediated bone resorption.

During skeletal development, MSCs differentiate into osteoblast lineage cells, which are controlled by several key transcription factors. Among these factors, Runt-related transcription factor 2 (Runx2) is a master regulator that controls the commitment of MSCs to osteoblastic lineage cells during bone development.97,98 Osterix is actively expressed in osteoblast progenitors and osteoblasts and is considered a preosteoblast marker.99,100 Collagen type 1 (Col1) is expressed from preosteoblasts to mature osteoblasts.101 Moreover, osteocalcin is highly expressed in mature osteoblasts,100 and Dmp1 is a well-known marker for osteocytes and mature osteoblasts.102,103 To examine the involvement of Piezo1 at different osteoblastic development stages, different promoters of these transcription factors were used in transgenic mouse models.

Mice lacking Piezo1 in Runx2-expressing cells (Piezo1Runx2)93 showed normal calvarial bone with no marked trabecular bone mass change in the vertebral body at P0.93 However, the first occurrence of rib fracture appeared at P5, and limb fractures appeared at 2 weeks of age in all Piezo1Runx2 mice.93 Moreover, Piezo1Runx2 mice of both sexes displayed shortened of the long bones and pelvic dysplasia.93 Along with these observations, a remarkable reduction in trabecular bone mass was observed from 2 weeks of age onwards.93 These bone defects were tightly associated with abnormal osteoblast functions in these animals, which presented a flattened appearance of osteoblasts on the surface of trabecular bone and significant reductions in serum P1NP and procollagen type I carboxyterminal propeptide levels in Piezo1Runx2 mice.93

The deletion of Piezo1 in Osterix-positive cells (Piezo1Osterix) caused multiple bone fractures in the ribs in 3-week-old mice without causing any obvious bone defects at P0.93 Piezo1Osterix mice showed a reduction in the expression of Osterix and trabecular and cortical bone mass.29 The inducible deletion of Piezo1 in osteoblasts with Col1-Cre/ERT (Piezo1Col1ERT) in 10-week-old mice also resulted in reduced trabecular bone mass, decreased cortical thickness, and compromised collagen expression.30 Piezo1Col1ERT mice showed increased bone resorption, as demonstrated by more tartrate-resistant acid phosphatase-positive osteoclasts.30 Another study was conducted for Piezo1 deletion in mature osteoblasts using mouse Osteocalcin-Cre (Piezo1Ocn). At P0, Piezo1Ocn mice displayed skeletal sizes similar to those of their control littermates, but the mutant mice had incomplete closure of their cranial sutures.28 At 8 and 16 weeks of age, compared to control littermates, Piezo1Ocn mice suffered from significant bone mass loss, shorter weight-bearing long bones (femurs and tibiae), and reduced long bone strength, resulting in shorter stature and lower body weight.28 Cellular- and tissue-level examinations further revealed a significant reduction in osteoblast differentiation in the bone of Piezo1Ocn mice.28 Consistent with these phenotypes, both mechanical loading (treadmill exercise) and unloading (hindlimb unloading model) failed to alter osteoblast and osteoclast functions in Piezo1Ocn mice.28 Therefore, these results demonstrate that Piezo1 expression in osteoblasts contributes to mechanosensation under both load and unloading conditions, which is essential for proper bone growth in development and homeostasis.

At the final stage of osteoblast differentiation, the majority of differentiated osteoblasts become osteocytes that are embedded in the mineralized matrix. Osteocytes are considered master regulators and major mechanoresponsive cells in bone remodeling.79-81,90 Deletion of Piezo1 using Dmp1-Cre transgenic mice resulted in progressive osteopenia53,50,93 (Fig. 2). Piezo1Dmp1 mice had normal body weights from newborns (P0) to young adults (12 weeks).27,30 Although Piezo1Dmp1 mice had normal femur length, microcomputed tomography revealed that Piezo1Dmp1

![Fig. 2 Osteocyte Piezo1 deficiency leads to significant bone loss. a, b Micro-CT scanning of distal femurs from 3-month-old control (Piezo1fl/fl) and conditional knockout (cKO) mice with specific Piezo1 loss in osteocytes (Piezo1Dmp1). a', b' Cross-section of CT scan images at the red line in a, b for trabecular and cortical bone mass detection in Control and cKO mice. c, d Rhodamine-phalloidin staining of the F-actin cytoskeleton of cross-section samples of femurs from 3-month-old control and cKO mice. F-actin in green; DAPI in blue](image-url)
mice displayed significantly reduced trabecular bone mass and bone stiffness,22,30 Li et al. observed spontaneous fractures in the tibiae of Piezo1Dmp1 mice at 12 weeks of age,27 whereas Wang et al. reported no spontaneous fracture in their Piezo1Dmp1 mice.30 This difference could be explained by the different Dmp1 promoters used in the studies: Li et al. used the 8-kb Dmp1-Cre, while Wang et al. used the 9.6-kb Dmp1-Cre. The osteopenic phenotypes raised from osteocyte Piezo1 deletion could result from both reduced bone formation and enhanced bone resorption. Li et al. reported a reduced bone formation rate in Piezo1Dmp1 mice, which is further supported by low osteoblast number and reduced Wnt1 mRNA expression in cortical bone.27 Increased osteocalcin number and enhanced pro-osteoclastogenic cytokine production were observed in Piezo1Dmp1 mice.27 Anabolic cortical loading27 and ulna loading34 experiments further showed that Piezo1Dmp1 mice failed to thicken their cortical bone due to impaired bone formation. In short, Piezo1 in osteocytes regulates mechanotransduction under load conditions by activating bone formation and inhibiting bone resorption.

In addition to the osteoblast lineage cells discussed above, Wang et al. deleted Piezo1 expression in osteoblasts through Ctsk-Cre in mice.30 Piezo1Ctsk mice developed normally with indistinguishable stature and body weight, normal bone mass, and unaffected bone resorption compared to their control littermates.30 These results were consistent with the low expression of Piezo1 in the osteosteat-like cell line RAW264.7.27 Similarly, mice with osteoclast deletion of Piezo1 generated by Hendrickx et al. using Lyz2-Cre displayed a normal skeletal phenotype.29 Compared to Piezo1, the phenotype of Piezo2 deficiency in osteoblast lineage cells is trivial. Deletion of Piezo2 in MSCs with Prx1-Cre or in osteoblast lineage cells with Osterix-Cre displayed grossly normal skeletal development at P0 and no obvious length difference in long bones with normal bone mass at later stages.29 Unlike Piezo1 deletion in these cells, loss of Piezo2 caused no fractures in mice.29 Considering the low expression of Piezo2 in osteoblasts and osteocytes,27,92 these observations suggest that Piezo2 alone has limited contributions to bone development and bone homeostasis. Interestingly, when Piezo1 and Piezo2 were doubly deleted (dKO) in MSCs, more severe skeletal defects were observed than Piezo1 single-KO.29 In dKO mice, additional fractures were found in the femurs at P0 compared to the forelimb fractures observed in Piezo1 single-KO mice.29 dKO mice also had shorter long bones and more severely reduced cortical and trabecular bone mass than Piezo1 single-KO mice.29 At the tissue level, dKO mice showed further reductions in the bone formation rate, expression of Osterix, and serum level of P1NP, as well as further upregulation of the expression of osteoclast marker genes, compared to Piezo1 single-KO mice.29 In addition, dKO bone showed enhanced cell apoptosis.29 This aggravating effect on bone phenotypes was also observed in Piezo1- and Piezo2-dKO mice using Runx2-Cre93 or Osterix-Cre94 but not Dmp1-Cre.93 Collectively, these results suggest an important role of Piezo1 in osteoblast lineage cells and a functional redundancy of Piezo1 and Piezo2 in bone.

In addition, several pioneering studies have been conducted to manipulate Piezo activation in a mouse model and cell culture. Li et al.27 tested the Piezo1 agonist Yoda1 in WT mice. Yoda1 administration to 4-month-old female WT C57BL/6J mice for 2 weeks at 5 μmol/kg−1 body weight significantly increased bone mass in the treatment group without obvious effects on body weight or osteocalcin bone resorption activity.27 Zhang and co-workers reported that low-intensity pulsed ultrasound (LIPUS) stimulated Piezo1 channels in the osteoblastic cell line MC3T3-E1.104 LIPUS-induced Piezo1 channel opening allowed calcium influx, activated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and F-actin polymerization, and further enhanced cell migration and proliferation.104 The authors proposed a potential mechanism: PIEZO1 activation in osteoblasts is tightly related to LIPUS-induced bone regeneration and fracture repair in clinical practice.

Taken together, these genetic mouse studies demonstrate a critical role for Piezo1 in MSCs and osteoblast lineage cells in the regulation and maintenance of skeletal development and homeostasis. Piezo1 mediates cellular mechanosensation in MSCs, osteoblasts, and osteocytes, which further influences bone formation and bone resorption. Furthermore, Piezo2 acts as an additional partner for Piezo1 in the control of bone mass and mechanotransduction.

SIGNALLING PATHWAYS RELATED TO PIEZO1 IN BONE

Consistent with its in vivo gene expression, Piezo1 is highly expressed in cell lines and primary cells derived from MSCs and osteoblast lineage cells in vitro. Experiments conducted on cultured cell systems unveil several important signaling pathways that are involved in the mechanical activation and regulation of Piezo1 channels in bone (Fig. 3).

Piezo1 is expressed in both primary MSC and MSC-derived cell lines. Published studies demonstrate an essential function of Piezo1 in MSC fate determination under various mechanical stimuli.29,105 In cultured MSCs, the expression of Piezo1 was localized to the plasma membrane of human bone marrow-derived UE7T-13 cells (human MSCs) with especially high accumulation in cellular lamellipodia and filopodia tips.105 The results of hydrostatic pressure (HP) stimulation showed that 0.01 MPa HP induced the expression of Piezo1 but not that of Piezo2 or transient receptor potential vanilloid 4 (TRPV4) in UE7T-13 cells.105 HP or Yoda1 induced the expression of bone morphogenetic protein 2 (Bmp2) in UE7T-13 cells. The upregulation of Bmp2 seems to be mediated by Erk1/2 and p38, whose phosphorylation is modulated by Piezo1. Since Bmp2 is an essential bone morphogenetic protein that promotes the differentiation of MSCs into osteoblasts,106 this Piezo1-Bmp2 pathway controls MSC stem cell fate by promoting osteoblast differentiation and inhibiting adipocyte differentiation during bone development. In addition to HP stimulation, cultured primary MSCs displayed more robust Ca2+ influx and enhanced osteogenic differentiation when they were subjected to fluid shear stress (FSS).29 However, these processes were blocked by the Cre adenovirus-mediated deletion of Piezo1 in MSCs.29 The deletion of Piezo1 in MSCs abolished their osteogenic responses to FSS due to inactivation of Yes associated protein 1 (Yap1) and catenin β1 (Ctnnb1) signaling by increasing their phosphorylation for cytoplasmic degradation.29 The results from in vitro bone marrow stromal cell (BMSC) culture and in vivo bone samples further suggest that Piezo1-dependent Yap1 and Ctnnb1 activation is mediated by nuclear factor of activated T cells (Nfat) activation through protein phosphatase 3 catalytic subunit alpha (Ppp3ca), an important intracellular Ca2+ sensor in cells.29 Piezo1-activated Ppp3ca/Nfat1/Yap1/Ctnnb1 signaling was enhanced by Yoda1 treatment and inhibited by gadolinium (Gd3+), a potent calcium channel blocker, and cyclosporin A (a commonly used Ppp3ca inhibitor).29 Furthermore, BMSCs can sense substrate rigidity and translocate cytoplasmic Yap1 to the nuclear compartment when cultured on a stiff matrix (40 kPa).29 Piezo1-deficient BMSCs lost the ability to sense and respond to stiff substrates and displayed weaker intracellular Ca2+ signaling with diffusive Yap1 localization in the cytoplasm and nuclei.29

Piezo1 mRNA was also expressed in murine osteoblastic MC3T3-E1 cells105,107 and primary BMSC-derived osteoblasts.28 The expression level of Piezo1 is tightly associated with osteoblastic differentiation capacity. In an in vitro osteogenic medium-induced differentiation model, higher expression of Piezo1 was detected in more mature osteoblasts.28 Knockdown of Piezo1 expression by siRNA in MC3T3-E1 cells decreased the expression of osteoblastic marker genes, including alkaline phosphatase (Alp), osteocalcin,
Piezo1/2 proteins in skeleton
L Qin et al.

and collagen type 1 alpha 1 (Col1a1). Piezo1 in osteoblasts also actively participates in mechanical stimuli-induced calcium flux. Piezo1 protein expression was increased in MC3T3-E1 cells by FSS in a timely manner. There was a 2.6-fold increase in Piezo1 protein expression after 30 min of FSS treatment, but the difference disappeared within 60 min after treatment. The activation of Piezo1 upon FSS stimuli further induced the phosphorylation of protein kinase B (PKB/AKT) and GSK-3β, followed by the translocation of β-catenin into the nuclei, where it modulated Runx2 expression. Reducing Piezo1 expression by siRNA or pharmacologically inhibiting Piezo1 through GsMTX4 greatly reduced the MA currents in MC3T3-E1 cells.

In addition to osteoblastic cell lines, primary osteoblasts need Piezo1 for mechanotransduction. Primary osteoblasts showed significantly increased expression of Piezo1 and osteoblast marker genes upon FSS treatment for 2 h in culture. However, these cells had dramatically reduced expression of osteoblast marker genes and Alp activity in a cell rotation system that generated a microgravity condition. Furthermore, primary osteoblasts derived from Piezo1Ocn mice exhibited significantly reduced poking- or Yoda1-induced currents with drastically reduced Ca2+ staining. Molecularly, osteoblasts from Piezo1Ocn mice had decreased phosphorylation of CaMKII and Creb and reduced expression of Runx2 and Atf4, two key transcription factors required for osteoblast differentiation. Interestingly, osteoblasts from Piezo1flox mice treated under microgravity through cell rotation decreased MA currents. In addition, BMSC-derived osteoblasts from Piezo1flox mice displayed a global transcriptome difference from wild-type (WT) osteoblasts. Specifically, in Gene Ontology analysis, the expression of genes encoding the extracellular matrix (ECM) proteins Col2a1, Col9a1, and Col10a1 was significantly downregulated by Piezo1 deletion. Interestingly, the expression levels of Col2a1 and Col9a1 were strongly induced by FSS treatment in WT osteoblasts but not in osteoblasts derived from Piezo1flox mice. Since Col2 and Col9 were reported to inhibit osteoclast activity, these results could explain the bone mass loss in Piezo1flox mice through enhanced osteoclast activities.

Piezo1 was also expressed in the osteocyte cell lines IDG-SW3 and MLO-Y4. The results showed that, among 78 calcium channels detected in MLO-Y4 cells under static conditions, Piezo1 was the most highly expressed calcium channel. Specifically, Piezo1 displayed an approximately 200-fold higher expression level than Piezo2 in MLO-Y4 cells. Published studies demonstrate an essential role of Piezo1 in regulating mechanical stimuli responses in osteocytes. In IDG-SW3 cells, mechanical cyclic stretching through cell culture substrates inhibited Sclerostin expression by phosphorlyating PKB/AKT at the Ser473 site. This process was inhibited by the pharmacological inhibition of Piezo1 by GsMTX4 or by Piezo1 deletion. In MLO-Y4 cells, the results from both RNA sequencing and real-time quantitative PCR (RT-qPCR) analyses showed that FSS significantly upregulated the expression of Piezo1. Downregulation of Piezo1 by short hairpin RNA (shRNA) largely blocked the increases in intercellular signals and Bmp signals through the Erk1/2-p38 pathways. The activation of Piezo1 in MSCs leads to osteoblastic differentiation and inhibition of adipocytic differentiation. Mechanical stimuli, such as FSS, poking, and exercise, induce Piezo1 activation in MSC-derived osteoblasts and MC3T3-E1 cell lines. Piezo1 activation stimulates intracellular signal responses, including Ca2+ flux, CamKII-Creb signaling, and collagen type 2 and 9 expression in osteoblasts. As a result, Piezo1 activation enhances osteoblastic differentiation but inhibits osteoclastic activity. Piezo1 channels from primary osteocytes, MLO-Y4 or IDG-SW3 cell lines can be triggered by FSS and stretching stimuli. The activation of Piezo1 further induces Ca2+ flux, phosphorylation of Akt, and Yap1 activation in osteocytes. As a result, Piezo1 channels contribute to bone formation in these cells.

Fig. 3 Piezo1 signaling in osteoblast lineage cells. a) The activation of Piezo1 channels in primary MSCs or UE7T-13 cell lines can be triggered by hydrostatic pressure (HP), fluid shear stress (FSS), matrix rigidity, and Yoda1, which further activate the Ppp3a-Nfat/Yap-Wnt pathway through Ca2+ signals and Bmp signals through the Erk1/2-p38 pathways. The activation of Piezo1 in MSCs leads to osteoblastic differentiation and inhibition of adipocytic differentiation. b) Mechanical stimuli, such as FSS, poking, and exercise, induce Piezo1 activation in MSC-derived osteoblasts and MC3T3-E1 cell lines. Piezo1 activation stimulates intracellular signal responses, including Ca2+ flux, CamKII-Creb signaling, and collagen type 2 and 9 expression in osteoblasts. As a result, Piezo1 activation enhances osteoblastic differentiation but inhibits osteoclastic activity. c) Piezo1 channels from primary osteocytes, MLO-Y4 or IDG-SW3 cell lines can be triggered by FSS and stretching stimuli. The activation of Piezo1 further induces Ca2+ flux, phosphorylation of Akt, and Yap1 activation in osteocytes. As a result, Piezo1 channels contribute to bone formation in these cells.
calcium and the expression of Ptgs2 (prostaglandin-endoperoxide synthase 2) and Tnfrsf11b (TNF receptor superfamily member 11b) induced by FSS. Silencing Piezo1 in MLO-Y4 cells blunted Wnt1 expression and Yap1 activation by FSS. To further evaluate Piezo1 activation in the bone formation process, Yoda1 was administered to 4-month-old C57BL/6J mice for 2 weeks. Examination of bone samples showed increases in cortical bone thickness and cancellous bone mass in the distal femur after Yoda1 treatment, without any obvious alteration in mouse body weight. This bone formation induced by Yoda1-activated Piezo1 channels resulted from increased bone formation, which was confirmed by the increased serum level of osteocalcin in Yoda1-treated mice. In addition to cell lines, primary osteocytes derived from Piezo1Ocn mice exhibited significantly reduced poking-induced currents compared to control osteocytes. Moreover, Sost expression was significantly upregulated in bone tissue from Piezo1Ocn mice. Together, these results demonstrate the importance of Piezo1 in the mechanotransduction of MSCs and osteoblast lineage cells.

PIEZO PROTEINS IN CHONDROCYTES
Articular cartilage is another important part of the skeleton that supports mechanical loading from body weight and daily activities. Articular cartilage is the hydrated connective tissue that lines the contacting surfaces of the opposing bones in diarthrodial joints, whose function is to minimize friction and distribute mechanical loading within the joints. This cartilage tissue is avascular and consists primarily of chondrocytes and ECM. Chondrocytes are the only cells in articular cartilage and can sense a complex array of mechanical stimuli, including stretching force, compression loading, and shear stress within the joints through molecules and receptors resident in the cell membrane, such as integrins, Ca2+ channels, and primary cilia. These mechanoreceptors transduce mechanical signals into biochemical signals, modulating the balance between anabolism and catabolism of the ECM in cartilage homeostasis. In a pathological scenario, altered mechanical loading patterns could lead to the onset and progression of osteoarthritis (OA) due to the degradation of articular cartilage raised from faulted mechanotransduction in chondrocytes. Recently, an increasing number of studies have focused on cellular and molecular mechanotransduction signaling in chondrocytes. Piezo proteins have been demonstrated to have robust expression in chondrocytes and play a vital role in the mechanotransduction of chondrocytes. In 2014, Lee et al. performed experiments to examine the expression of Piezo channels in articular cartilage of humans, pigs, and mice by RT–qPCR analysis and immunofluorescence staining. They found that both Piezo1 and Piezo2 were highly expressed in primary chondrocyte cultures and cartilage tissues. Du et al. also observed appreciable expression of both Piezo1 and Piezo2 proteins in mouse primary chondrocytes by western blotting. However, in contrast to the above results, Servin-Vences et al. reported that the Piezo1 transcript, but not the Piezo2 transcript, could be reliably measured in mouse primary chondrocytes by RT–qPCR analysis. In addition, an animal study showed that loss of Piezo1 in chondrocytes with Col2a1-Cre (Piezo1Lox/Lox) led to a high incidence of skeletal fractures and pelvic dysplasia in mice at 12 weeks of age. Piezo1Lox/Lox mice had no obvious defect in cortical bone thickness but displayed a nearly 50% reduction in trabecular bone volume compared to their age-matched control littermates. Interestingly, the defects were most pronounced in the secondary spongiosa, where large numbers of flattened osteoblasts were found on the Piezo1Lox/Lox trabecular bone surface. These data suggest that Piezo1 is essential for endochondral ossification. More detailed studies are required to examine the expression of Piezo2 in chondrocytes.

Published data suggest that Piezo channels mediate mechanotransduction in chondrocytes mainly through their regulation of Ca2+ influx. Du and co-workers demonstrated that high levels of cyclic tensile strain (CTS) could upregulate the expression of Piezo1 and Piezo2 in chondrocytes. Moreover, compressing isolated porcine chondrocytes with atomic force microscopy at high levels of compression (>45% strain) significantly increased the intracellular Ca2+ levels. This calcium influx could be suppressed by gene modification through Piezo1 or Piezo2 siRNA or by pharmacological treatment with a Piezo1 inhibitor GsMTx4. Furthermore, Ca2+ responses in isolated mouse chondrocytes were significantly evoked by CTS stimulation at a high strain level of 18%, which was obviously inhibited by Piezo1 or Piezo2 knockdown. It should be noted that these mechanical treatments mentioned above are considered to be hyperphysiological and injurious loadings, which can lead to the development of OA. Therefore, the elevated Piezo activation upon high-strain mechanical stimuli in chondrocytes could play a crucial role in promoting the initiation and progression of OA. Cumulative evidence from cultured chondrocytes supports this notion. In cultured human chondrocytes, abnormal mechanical stretch force increased the expression of PIEZO1 protein, resulting in excessive Ca2+ influx. Massive cytoplasmic Ca2+ activated ER stress and upregulated the expression of caspase-12, which further led to chondrocyte apoptosis by activating the mitochondrial pathway. Since cell death is an important pathological feature of OA, it is possible that blocking Piezo1 activity provides some protective effects for chondrocytes. Reported results showed that Piezo1 inhibition by GsMTx4 could protect chondrocytes against high strain-induced cell death. Moreover, urocin1, a corticotropin-releasing factor-related peptide in chondrocytes, was found to exert chondroprotective effects by maintaining Piezo1 in a closed conformation and preventing Ca2+ overload. In addition to calcium flux, Piezo1 participates in OA pathogenesis, probably by promoting inflammatory responses in chondrocytes. In human samples, osteoarthritic cartilage had significantly increased Piezo1 expression compared to healthy cartilage. Lee and colleagues recently showed that interleukin-1α (IL-1α), an OA-related inflammatory cytokine, upregulated Piezo1 expression, and abnormal F-actin cytoskeleton patterns in porcine chondrocytes. These chondrocytes became more sensitive to injurious levels of loading, exhibiting enhanced Ca2+ signaling upon Yoda-1 treatment or mechanical loading. Mechanistically, IL-1α enhanced Piezo1 expression through p38 mitogen-activated protein kinase and transcription factors HNF4 and ATF2/CREBP1 in chondrocytes, where CREBP1 has been shown to bind directly to the proximal PIEZO1 gene promoter. This whole process is considered a positive feedback loop in which IL-1α exposure leads to Piezo1 upregulation, which further enhances the sensitivity of chondrocytes in response to external loading and finally the progression of OA.

Moreover, one essential issue regarding OA is joint pain upon sustained weight bearing and joint movement. Published data suggest that blocking nerve growth factor activity reduces joint pain and improved joint functions in OA patients. Moreover, that OA pain partially resulted from sensory neuron axonal growth in subchondral bone by osteoclast secretion of nerve growth factor neurotropin-1. These results suggest that sensory innervation is tightly associated with OA pain. Considering the extensive involvement of neuronal Piezo2 in skeletal homeostasis, it would be worth examining the function of Piezo2 in OA pain. Thus, developing drugs or inhibitors targeting Piezo proteins could be beneficial to chondrocyte survival as a potential treatment for OA. Taken together, current data support that Piezo proteins play an essential role in.
hypertension model, indicating that the opening of Piezo1 channels in endothelial cells to facilitate capillary formation. Piezo1 deletion in mice resulted in embryonic death at E9.5 as a failure of vascular system during embryonic development. Embryos lacking Piezo1 activity resulted in embryonic death at E9.5 as a failure of cardiovascular system development due to impaired endothelial cell alignment. During lung development, when alveolar pressure increases, pulmonary microvessel endothelial cells stretch to regulate lung vascular permeability and pressure through the mechanosensory channel Piezo1. Piezo1 deletion impaired the ability of endothelial cells to respond to pressure by targeting calcium-dependent cysteine protease calpain and AJ protein VE-cadherin. Furthermore, Piezo1 regulates the development and function of lymphatic valves and lymphatic vessels. Mice lacking lymphatic or endothelial Piezo1 failed to transduce the signals of oscillating shear stress, resulting in retarded body growth, defective lymphatic valve formation, and reduced lymphatic vessel density. In addition to the circulatory system and respiratory system, Piezo1 participates in angiogenesis and blood pressure control. Retailleau et al. showed that Piezo1 enhanced Ca2+ influx in endothelial cells to facilitate capillary formation. Piezo1 deficiency reduced the wall thickness and diameter of arteries in a hypertension model, indicating that the opening of Piezo1 channels affects arterial remodeling. Furthermore, endothelial Piezo1 senses fluid flow and transmits the signal to adjacent smooth muscle cells, leading to the constriction of smooth muscle and elevation of blood pressure. Although the detailed mechanisms are still incompletely understood, Piezo1 seems to control calcium flux in endothelial cells in response to an external pressure increase or fluid flow stimulation.

In addition to endothelial cells, Piezo1 was also reported to be highly expressed in other tissues, such as the heart, adipose tissue, pancreas, and bone marrow. Jiang and co-workers showed that Piezo1 loss in cardiomyocytes impaired Ca2+ overload and transmits the signal to adjacent smooth muscle cells, leading to the constriction of smooth muscle and elevation of blood pressure. Although the detailed mechanisms are still incompletely understood, Piezo1 seems to control calcium flux in endothelial cells in response to an external pressure increase or fluid flow stimulation.

In addition to endothelial cells, Piezo1 deletion impaired the ability of endothelial cells to respond to pressure by targeting calcium-dependent cysteine protease calpain and AJ protein VE-cadherin. Furthermore, Piezo1 regulates the development and function of lymphatic valves and lymphatic vessels. Mice lacking lymphatic or endothelial Piezo1 failed to transduce the signals of oscillating shear stress, resulting in retarded body growth, defective lymphatic valve formation, and reduced lymphatic vessel density. In addition to the circulatory system and respiratory system, Piezo1 participates in angiogenesis and blood pressure control. Retailleau et al. showed that Piezo1 enhanced Ca2+ influx in endothelial cells to facilitate capillary formation. Piezo1 deficiency reduced the wall thickness and diameter of arteries in a hypertension model, indicating that the opening of Piezo1 channels affects arterial remodeling. Furthermore, endothelial Piezo1 senses fluid flow and transmits the signal to adjacent smooth muscle cells, leading to the constriction of smooth muscle and elevation of blood pressure. Although the detailed mechanisms are still incompletely understood, Piezo1 seems to control calcium flux in endothelial cells in response to an external pressure increase or fluid flow stimulation.

In addition to endothelial cells, Piezo1 was also reported to be highly expressed in other tissues, such as the heart, adipose tissue, pancreas, and bone marrow. Jiang and co-workers showed that Piezo1 loss in cardiomyocytes impaired Ca2+ overload and transmits the signal to adjacent smooth muscle cells, leading to the constriction of smooth muscle and elevation of blood pressure. Although the detailed mechanisms are still incompletely understood, Piezo1 seems to control calcium flux in endothelial cells in response to an external pressure increase or fluid flow stimulation.

In addition to endothelial cells, Piezo1 deletion impaired the ability of endothelial cells to respond to pressure by targeting calcium-dependent cysteine protease calpain and AJ protein VE-cadherin. Furthermore, Piezo1 regulates the development and function of lymphatic valves and lymphatic vessels. Mice lacking lymphatic or endothelial Piezo1 failed to transduce the signals of oscillating shear stress, resulting in retarded body growth, defective lymphatic valve formation, and reduced lymphatic vessel density. In addition to the circulatory system and respiratory system, Piezo1 participates in angiogenesis and blood pressure control. Retailleau et al. showed that Piezo1 enhanced Ca2+ influx in endothelial cells to facilitate capillary formation. Piezo1 deficiency reduced the wall thickness and diameter of arteries in a hypertension model, indicating that the opening of Piezo1 channels affects arterial remodeling. Furthermore, endothelial Piezo1 senses fluid flow and transmits the signal to adjacent smooth muscle cells, leading to the constriction of smooth muscle and elevation of blood pressure. Although the detailed mechanisms are still incompletely understood, Piezo1 seems to control calcium flux in endothelial cells in response to an external pressure increase or fluid flow stimulation.

In addition to endothelial cells, Piezo1 deletion impaired the ability of endothelial cells to respond to pressure by targeting calcium-dependent cysteine protease calpain and AJ protein VE-cadherin. Furthermore, Piezo1 regulates the development and function of lymphatic valves and lymphatic vessels. Mice lacking lymphatic or endothelial Piezo1 failed to transduce the signals of oscillating shear stress, resulting in retarded body growth, defective lymphatic valve formation, and reduced lymphatic vessel density. In addition to the circulatory system and respiratory system, Piezo1 participates in angiogenesis and blood pressure control. Retailleau et al. showed that Piezo1 enhanced Ca2+ influx in endothelial cells to facilitate capillary formation. Piezo1 deficiency reduced the wall thickness and diameter of arteries in a hypertension model, indicating that the opening of Piezo1 channels affects arterial remodeling. Furthermore, endothelial Piezo1 senses fluid flow and transmits the signal to adjacent smooth muscle cells, leading to the constriction of smooth muscle and elevation of blood pressure. Although the detailed mechanisms are still incompletely understood, Piezo1 seems to control calcium flux in endothelial cells in response to an external pressure increase or fluid flow stimulation.

In addition to endothelial cells, Piezo1 deletion impaired the ability of endothelial cells to respond to pressure by targeting calcium-dependent cysteine protease calpain and AJ protein VE-cadherin. Furthermore, Piezo1 regulates the development and function of lymphatic valves and lymphatic vessels. Mice lacking lymphatic or endothelial Piezo1 failed to transduce the signals of oscillating shear stress, resulting in retarded body growth, defective lymphatic valve formation, and reduced lymphatic vessel density. In addition to the circulatory system and respiratory system, Piezo1 participates in angiogenesis and blood pressure control. Retailleau et al. showed that Piezo1 enhanced Ca2+ influx in endothelial cells to facilitate capillary formation. Piezo1 deficiency reduced the wall thickness and diameter of arteries in a hypertension model, indicating that the opening of Piezo1 channels affects arterial remodeling. Furthermore, endothelial Piezo1 senses fluid flow and transmits the signal to adjacent smooth muscle cells, leading to the constriction of smooth muscle and elevation of blood pressure. Although the detailed mechanisms are still incompletely understood, Piezo1 seems to control calcium flux in endothelial cells in response to an external pressure increase or fluid flow stimulation.

In addition to endothelial cells, Piezo1 deletion impaired the ability of endothelial cells to respond to pressure by targeting calcium-dependent cysteine protease calpain and AJ protein VE-cadherin. Furthermore, Piezo1 regulates the development and function of lymphatic valves and lymphatic vessels. Mice lacking lymphatic or endothelial Piezo1 failed to transduce the signals of oscillating shear stress, resulting in retarded body growth, defective lymphatic valve formation, and reduced lymphatic vessel density. In addition to the circulatory system and respiratory system, Piezo1 participates in angiogenesis and blood pressure control. Retailleau et al. showed that Piezo1 enhanced Ca2+ influx in endothelial cells to facilitate capillary formation. Piezo1 deficiency reduced the wall thickness and diameter of arteries in a hypertension model, indicating that the opening of Piezo1 channels affects arterial remodeling. Furthermore, endothelial Piezo1 senses fluid flow and transmits the signal to adjacent smooth muscle cells, leading to the constriction of smooth muscle and elevation of blood pressure. Although the detailed mechanisms are still incompletely understood, Piezo1 seems to control calcium flux in endothelial cells in response to an external pressure increase or fluid flow stimulation.

In addition to endothelial cells, Piezo1 deletion impaired the ability of endothelial cells to respond to pressure by targeting calcium-dependent cysteine protease calpain and AJ protein VE-cadherin. Furthermore, Piezo1 regulates the development and function of lymphatic valves and lymphatic vessels. Mice lacking lymphatic or endothelial Piezo1 failed to transduce the signals of oscillating shear stress, resulting in retarded body growth, defective lymphatic valve formation, and reduced lymphatic vessel density. In addition to the circulatory system and respiratory system, Piezo1 participates in angiogenesis and blood pressure control. Retailleau et al. showed that Piezo1 enhanced Ca2+ influx in endothelial cells to facilitate capillary formation. Piezo1 deficiency reduced the wall thickness and diameter of arteries in a hypertension model, indicating that the opening of Piezo1 channels affects arterial remodeling. Furthermore, endothelial Piezo1 senses fluid flow and transmits the signal to adjacent smooth muscle cells, leading to the constriction of smooth muscle and elevation of blood pressure. Although the detailed mechanisms are still incompletely understood, Piezo1 seems to control calcium flux in endothelial cells in response to an external pressure increase or fluid flow stimulation.

In addition to endothelial cells, Piezo1 deletion impaired the ability of endothelial cells to respond to pressure by targeting calcium-dependent cysteine protease calpain and AJ protein VE-cadherin. Furthermore, Piezo1 regulates the development and function of lymphatic valves and lymphatic vessels. Mice lacking lymphatic or endothelial Piezo1 failed to transduce the signals of oscillating shear stress, resulting in retarded body growth, defective lymphatic valve formation, and reduced lymphatic vessel density. In addition to the circulatory system and respiratory system, Piezo1 participates in angiogenesis and blood pressure control. Retailleau et al. showed that Piezo1 enhanced Ca2+ influx in endothelial cells to facilitate capillary formation. Piezo1 deficiency reduced the wall thickness and diameter of arteries in a hypertension model, indicating that the opening of Piezo1 channels affects arterial remodeling. Furthermore, endothelial Piezo1 senses fluid flow and transmits the signal to adjacent smooth muscle cells, leading to the constriction of smooth muscle and elevation of blood pressure. Although the detailed mechanisms are still incompletely understood, Piezo1 seems to control calcium flux in endothelial cells in response to an external pressure increase or fluid flow stimulation.
related to migraine pain. In traumatic brain injury (TBI), Piezo1 also contributes to cell mobility through a positive role in blocking Abeta peptides, which are elevated in the central nervous system (CNS) after TBI. Moreover, in the cultured human cardiomyocyte cell line AC16, Piezo2 was upregulated under cyclic mechanical simulation. In prostate cancer cells, shRNA knockdown of Piezo1 exhibited reductions in adapting neurons, mechanosensitive fibers. Mice lacking Piezo2 in proprioceptive nerves displayed slow growth and poor motor coordination. Deletion of Piezo2 in the mesencephalic trigeminal nucleus decreased limb coordination. Loss of Piezo2 in peripheral sensory neurons decreased pinch.

Table 2: Conditional deletion of Piezo1 in experimental mice

Tissue type	Cre	Phenotype	Mechanism
Global deletion		Embryos died at E9.5 lacking modeling of vasculature	Impaired endothelial cell alignment in response to shear stress; failing to remodel arteries
Endothelial cells	Cadherin5-CreERT2	Inhibited Ca²⁺ influx induced by Yoda1; more sensitive to α-adrenergic agonists	Piezo1 transduced fluid flow signal to constriction of mesenteric arteries, which are responsible for total peripheral resistance
	Cadherin5-CreERT2	Impaired physical performance and lower body weight after sustained activity	Piezo1 targeted calcium-dependent cysteine protease calpain to maintain homeostasis of the endothelial barrier
	iEC-Cre¹³²	Increased lung vascular permeability by high-volume mechanical ventilation	Piezo1 regulated lung vascular permeability by targeting endothelial VE-cadherin
	iEC-Cre¹³³	Increased lung microvessel pressure; impaired regulation of lung endothelial barrier	
	Tie2-Cre or Lyve1-Cre¹³⁴	Reduced amount of lymphatic valves	
	Tie2-CreERT2¹³⁸	Upregulated arterial blood pressure	Failed to produce NO or vasodilate because of insensitivity to flow stimulation
Adult endothelial cells	SCL-CreERT¹³⁶	Impaired angiogenesis; inhibited endothelial sprouting and lumen formation after subjected to wall shear stress	Piezo1 increased intracellular Ca²⁺ and activated MT1-MMP pathway
Lymphatic endothelial cells	Prox1-CreERT2¹³⁵	Inhibited formation and maintenance of lymphatic valves and lymphatic vessels	Piezo1 transduced the signal of OSS to control lymphatic valves and lymphatic vessels
Smooth muscle cells	sm22-Cre¹⁴	Reduced activity of ion channels in caudal artery myocytes induced by stretch; reduced arterial diameter, wall thickness, and cross-sectional area treated with Angiotensin II	Piezo1 sensed flow and pressure to regulate structural remodeling of arteries
Adipocytes	Adiponectin-Cre¹⁴¹	Increased insulin resistance; decreased pgWAT weight and increased pro-inflammatory and lipolysis genes after HFD fed; hepatic steatosis with increased fatty acid synthesis genes	Piezo1 participated in TLR4-mediated inflammation
	Adiponectin-CreERT2¹⁴⁰	Impaired adipocyte differentiation, causing inflammation and insulin insensitivity	Piezo1 promoted the secretion of adipogenic FGF1 to facilitate adipocyte precursor differentiation
Myeloid cells	LysM-Cre¹⁴³	Ameliorated pulmonary inflammation	Piezo1 exhibited proinflammatory effects by activating AP-1c and EDN1 and stabilizing HIF1α
Acinar cells	Ptf1a-CreER¹⁴²	Ameliorated pancreatitis, including reduced edema, neutrophil infiltration, hemorrhage, and tissue necrosis	Piezo1 activated cytoplasmic calcium signals that are toxic to pancreatic acinar cells, resulting in cellular necrosis and pancreatitis
Nodose and petrosal sensory ganglia neurons	Phox2b-Cre	Attenuated baroreflex and activity of aortic depressor nerve	The mechanism is still unclear whether targeting Ca²⁺-induced phospholipase C δ, β, or other signaling pathways
DRG neurons	Piezo1/2 ΔKO¹⁵⁶	Inhibited Ca²⁺ influx induced by Yoda1	
	shRNA KD¹⁵⁹		

E embryonic, VE vascular endothelial, NO nitric oxide, MT1 membrane-type 1, MMP matrix metalloproteinase, OSS oscillating shear stress, pgWAT perigonadal white adipose tissue, HFD high fat diet, TLR4 Toll-like receptor 4, FGF1 fibroblast growth factor 1, AP-1 activator protein-1, EDN1 endothelin-1, HIF1α hypoxia-inducible factor-1α, DRG dorsal root ganglion

Bone Research (2021) 9:44
Piezo2 proteins in skeleton
L Qin et al.

Table 3. Conditional deletion of Piezo2 in experimental mice

Tissue type	Cre Phenotype	Mechanism
Global deletion	Lethal within 24 h of birth	Piezo2-mediated gentle touch sensation inhibited mechanical pain responses
CNS neurons	Insensitive to gentle dynamic touch but still	Piezo2 was involved in the transduction of noxious mechanical forces by pure
Mesencephalic trigeminal nucleus	sensitive to noxious pinch	mechanosensory and polymodal nociceptor corneal neuron classes
Peripheral sensory neurons	Diminished limb coordination	
Proprioceptive neurons	Less sensitive to touch and proprioception but more sensitive to mechanical pain responses	
Na(v)1.8-positive sensory neurons	Reduced percentage of rapidly adapting neurons and of intermittently and slowly adapting neurons; reduced mechano-sensitive terminals and lower frequency of nerve terminal impulse discharges subjected to mechanical stimulation; decreased eye blinks evoked by von Frey filaments	
Nodose ganglia neurons	Impaired touch sensation	Loss of mechanically activated currents in DRG neuronal cultures
Jugular, trigeminal, and DRG neurons	Reduced vagal nerve firing in response to lung inflation; increased tidal volume	
Na(v)1.8-positive sensory ganglia neurons	Impaired bladder control and sensation of bladder filling; longer intervals between bladder contractions	
Urothelial cells	Attenuated baroreflex and activity of aortic depressor nerve	
Gastrointestinal epithelial cells	Reduced frequencies of overall slowly adapting Aβ fibers; decreased sensitivity to gentle touch	
Endothelial cells	Decreased mechanosensitive epithelial secretion	

Table 4. Conditional deletion of Piezo1 in experimental mice

Tissue type	Cre Phenotype	Mechanism
Skeletal muscle	Lethal within 24 h of birth	Piezo2-mediated gentle touch sensation inhibited mechanical pain responses
CNS neurons	Insensitive to gentle dynamic touch but still	Piezo2 was involved in the transduction of noxious mechanical forces by pure
Mesencephalic trigeminal nucleus	sensitive to noxious pinch	mechanosensory and polymodal nociceptor corneal neuron classes
Peripheral sensory neurons	Diminished limb coordination	
Proprioceptive neurons	Less sensitive to touch and proprioception but more sensitive to mechanical pain responses	
Na(v)1.8-positive sensory neurons	Reduced percentage of rapidly adapting neurons and of intermittently and slowly adapting neurons; reduced mechano-sensitive terminals and lower frequency of nerve terminal impulse discharges subjected to mechanical stimulation; decreased eye blinks evoked by von Frey filaments	
Nodose ganglia neurons	Impaired touch sensation	Loss of mechanically activated currents in DRG neuronal cultures
Jugular, trigeminal, and DRG neurons	Reduced vagal nerve firing in response to lung inflation; increased tidal volume	
Na(v)1.8-positive sensory ganglia neurons	Impaired bladder control and sensation of bladder filling; longer intervals between bladder contractions	
Urothelial cells	Attenuated baroreflex and activity of aortic depressor nerve	
Gastrointestinal epithelial cells	Reduced frequencies of overall slowly adapting Aβ fibers; decreased sensitivity to gentle touch	
Endothelial cells	Decreased mechanosensitive epithelial secretion	

pieblinks evoked by harmful mechanical stimuli. Piezo2 in sensory neurons also participates in urination. The depletion of Aδ- and c-fiber subsets, two primary sensory neuron types, impaired bladder control and the sensation of bladder filling and prolonged the intervals of bladder contractions in mice. In addition, Piezo2 in various neuronal subsets exhibits diverse functions in controlling respiration. The deletion of Piezo2 in jugular, trigeminal, and DRG neuros caused respiratory distress in mouse pups, which could not survive 24 h after birth. Mice lacking Piezo2 in vagal and spinal sensory neurons survived but lived with decreased vagal nerve firing and abnormally increased lung tidal volume. However, the conditional deletion of Piezo2 in nodose ganglia or endothelial cells did not affect the lung structure or oxygen saturation in mice.

In addition to the high expression of Piezo1 in endothelial cells and Piezo2 in neurons, Piezo1 and Piezo2 displayed some functional redundancy in certain tissues. Zeng et al. found that Piezo1 and Piezo2 double KO in epibranial placode-derived ganglia diminished baroreflex and nerve activity, resulting in hypertension, while Piezo1 or Piezo2 single-KO mice did not show these phenotypes. Piezo2 is predominantly expressed in sensory tissues, including DRG neurons. Fernandez et al. reported that the deletion of either Piezo1 or Piezo2 in mammalian DRG neurons inhibited the inward calcium current and mechanosensation, which was regulated by the activation of TRPV1. Furthermore, Piezo proteins receive and transduce mechanical forces in epithelial tissues. Piezo1 mediates touch and pressure sensitivity in pancreatic acinar cells, one of the main epithelial cells in the pancreas. Knockdown of Piezo1 in bladder urothelial cells reduced the sensitivity and signal transduction of mechanical forces in the bladder. Moreover, epithelial Piezo2 KO led to disorders in sensory functions of gentle touch and in secretion functions. Taken together, these studies demonstrate the indispensable roles of Piezo proteins in the development and function of various tissues (Fig. 5).

It is worth mentioning that Piezo2, through its expression in proprioceptive neurons, regulates skeletal integrity. While blocking Piezo2 expression through Pnx1-Cre, Coll1a1-Cre or Coll2a1-Cre did not cause abnormal spinal alignment in mice, deletion of Piezo2 in proprioceptive neurons using PValb-Cre resulted in dramatic spine malalignment and misshapen joints, which was due to the development of abnormal skeletal muscle functions through an impaired proprioceptive system. These phenotypes highly resemble those observed in human diseases...
that DmPiezo KO in Drosophila and nerve repair, or patterning during development but displayed accelerated of Piezo1 in mice exhibited no obvious defects in axon guidance in axon growth and suggests that this function should be further assessed in humans, who may benefit from axon regeneration and nerve repair. These results suggest that Piezo proteins function in diverse tissues.

PIEZO PROTEINS IN HEALTH AND DISEASES

Increasing evidence from animal models highlights the diversity and importance of Piezo proteins in organ development and homeostasis (Fig. 5). It should be noted that some functions of Piezo1 and Piezo2 have been assessed only in mouse tissues and even seem to be contradictory in different species. For example, Koser et al. reported that knockdown of Piezo1 using morpholino in Xenopus led to slowed axon growth and pathfinding abnormalities. However, Song et al. reported that DmPiezo KO in Drosophila and sensory neuron-specific KO of Piezo1 in mice exhibited no obvious defects in axon guidance or patterning during development but displayed accelerated axon regeneration after injury. These contradictory results may be attributed to species differences and/or compensatory effects. However, it indeed reveals the important role of Piezo1 in axon growth and suggests that this function should be further assessed in humans, who may benefit from axon regeneration and nerve repair.

Emerging evidence shows that PIEZO proteins play important roles in human health and diseases (Fig. 6). Recently, whole-exome sequencing of patients with varied disorders across different ethnic and geographical backgrounds identified several loss- and gain-of-function mutations in PIEZO1 or PIEZO2 genes. For example, loss-of-function mutations in the human PIEZO1 gene are linked to autosomal-recessive congenital generalized lymphatic dysplasia of Fotiou, which is characterized by widespread lymphoedema affecting all parts of the body. Gain-of-function mutations in the human PIEZO1 gene cause hereditary xerocytosis, also known as dehydrated stomatocytosis, characterized by primary erythrocyte dehydration and compensated hemolytic anemia. Loss-of-function mutations in the human PIEZO2 gene result in an autosomal-recessive syndrome of muscular atrophy, often accompanied by arthrogryposis, perinatal respiratory distress, and scoliosis. Gain-of-function mutations in the human PIEZO2 gene lead to three clinical types of autosomal-dominant distal arthrogryposis (DA), including DA3 [also known as Gordon syndrome (GS)], DA5, and Marden–Walker syndrome (MWS). GS is characterized by multiple contractures of the limbs and cleft palate, and DA5 is related to additional ocular manifestations. MWS shares a musculoskeletal phenotype similar to DA5 and GS but is further characterized by hindbrain malformations and developmental delay. In addition to hereditary human diseases, PIEZO proteins are tightly associated with several cancers. Sun et al. reported that PIEZO1 was upregulated in colon cancer tissues, which was closely correlated with poor prognosis of colon cancer, and that PIEZO1 overexpression in vitro promoted the migration and metastasis of colon cancer cells. Lou et al. found that PIEZO2 was downregulated in breast cancer tissues and could be used as a prognostic biomarker of breast cancer.

In addition to mutation-related diseases, clinical studies have revealed abnormal Piezo protein expression in several pathological conditions. Jiang and colleagues showed that heart samples from patients with hypertrophic obstructive cardiomyopathy expressed a significantly higher level of PIEZO1 mRNA than those from normal human hearts. This result indicated that autonomic
upregulation of PIEZO1 in cardiomyocytes contributed to cardiomyopathy through altered mechanical stress conditions in these patients. Moreover, the expression of PIEZO1 proteins varies in human bone during osteopenia and aging. Sun et al.28 reported that the mRNA and protein levels of PIEZO1 were significantly lower in osteoporosis patients than in normal patients. Zhou et al.29 found that the gene expression of PIEZO1 and PIEZO2 from human bone MSCs was negatively correlated with age. Together, these results demonstrate the importance of PIEZO genes in inherited diseases and PIEZO proteins in different pathological conditions. Considering the wide involvement and species-specific functions of PIEZO proteins in living organisms, large-scale studies are needed to reveal the functions of PIEZO1 and PIEZO2 in physiological and pathological processes. The underlying molecular mechanisms can enhance our understanding of PIEZO proteins in human health and contribute to the discovery of effective therapies for related diseases.

CONCLUSIONS AND PERSPECTIVES

With 10 years of great efforts from scientists worldwide, the mystery of Piezo proteins has gradually been unraveled. The essential functions and unique structures of Piezo proteins have been reported in various tissue backgrounds from different species. There are several questions that deserve further detailed investigation. First, the molecular mechanisms underlying Piezo1-mediated mechanotransduction in bone remain elusive and require further investigation. Second, whether and how the expression of Piezo1 in skeletal cells or the expression of Piezo2 in neurons contributes to bone fracture healing remains to be determined. Third, there are several puzzling but intriguing questions that link Piezo proteins to OA pathogenesis and OA pain. For example, what are the functions of Piezo1 channels in chondrocytes under physiological and pathological loading conditions? Is Piezo2 expression in sensory neurons associated with OA pain, and if so, how? Together with these questions, it is encouraged to involve more pharmacological animal and clinical studies to develop new drugs or novel therapeutics for relevant pathologies.

ACKNOWLEDGEMENTS

We apologize to the authors whose studies may have been overlooked in this review article. This work was supported by the National Key Research and Development Program of China Grant (2019YFA0906004), the National Natural Science Foundation of China Grants (81991513, 82022047, 81630066, 81870352, 81972100), the Guangdong Provincial Science and Technology Innovation Council Grant (2017B030301018), the Science and Technology Innovation Commission of Shenzhen Municipal Government Grants (JCY20180302174246105, KQJSCX2018031914434843, JSGG20180503182321166), and the China Postdoctoral Science Foundation (2019M651641).

AUTHOR CONTRIBUTIONS

L.Q., H.C., and G.X. conceptualized and wrote the outline of the manuscript; L.Q., T.H., S.C., and D.Y. wrote the draft of the article. This work was supported by the National Key Research and Development Program of China Grant (2019YFA0906004), the National Natural Science Foundation of China Grants (81991513, 82022047, 81630066, 81870352, 81972100), the Guangdong Provincial Science and Technology Innovation Council Grant (2017B030301018), the Science and Technology Innovation Commission of Shenzhen Municipal Government Grants (JCY20180302174246105, KQJSCX2018031914434843, JSGG20180503182321166), and the China Postdoctoral Science Foundation (2019M651641).

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

REFERENCES

1. Árnadóttir, J. & Chalif, M. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39, 111–137 (2010).
2. Duscher, D. et al. Mechanotransduction and fibrosis. J. Biomech. 47, 1997–2005 (2014).
3. Romani, P., Valarcé-Jimenez, L., Frezza, C. & Dupont, S. Crosstalk between mechanotransduction and metabolism. Nat. Rev. Mol. Cell Biol. 22, 22–38 (2021).
4. Vollrath, M. A., Kwan, K. Y. & Corey, D. P. The micromachinery of mechanotransduction in hair cells. Annu. Rev. Neurosci. 30, 339–365 (2007).
5. Lyon Robert, C., Zanella, F., Omens Jeffrey, H. & Sheikh, F. Mechanotransduction in cardiac hypertrophy and failure. Circ. Res. 116, 1462–1476 (2015).
6. Broders-Bondon, F., Nguen Ho-Bouldoire, T. H., Fernandez-Sanchez, M.-E. & Farge, E. Mechanotransduction in tumor progression: the dark side of the force. J. Cell Biol. 217, 1571–1587 (2018).
7. Ostrow, L. W. & Sachs, F. Mechanosensation and endothelin in astrocyte-hypothetical roles in CNS pathophysiology. Brain Res. Brain Res. Rev. 48, 488–508 (2005).
8. Klein-Nulend, J., Bacaba, R. G., Veldhuijzen, J. P., Van & Loon, J. J. Microgravity and bone cell mechanosensitivity. Adv. Space Res. 32, 1551–1559 (2003).
32. McHugh, B. J. et al. Integrin activation by Fam38A uses a novel mechanism of
33. Xiao, B. Levering mechanically activated Piezo channels for potential pharma-
35. Suslak, T. J. et al. Piezo is essential for amiloride-sensitive stretch-activated
37. Datkhaeva, I. et al. Identi
30. Wang, L. et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis
29. Zhou, T. et al. Piezo1/2 mediate mechanotransduction essential for bone for-
28. Sun, W. et al. The mechanosensitive Piezo1 channel is required for bone for-
25. Wang, F. et al. Mechanosensitive ion channel Piezo2 is important for
40. Li, S. et al. Novel mutations in TPM2 and PIEZO2 are responsible for distal
11. Jiang, Y., Yang, X., Jiang, J. & Xiao, B. Structural designs and mechanogating
12. Murthy, S. E., Dubin, A. E. & Patapoutian, A. Piezos thrive under pressure:
46. Fang, X.-Z. et al. Structure, kinetic properties and biological function of
38. Fotiou, E. et al. Novel mutations in PIEZO1 cause an autosomal recessive gen-
26. Wang, F. et al. Architecture of the mammalian mechanosensitive Piezo1 channel.
59. Cox, C. D. et al. Removal of the mechanoprotective in
66. Zhang, T., Chi, S., Jiang, F., Zhao, Q. & Xiao, B. A protein interaction mechanism
43. Saotome, K. et al. Structure of the mechanically activated ion channel Piezo1.
52. Poole, K., Herget, R., Lapatsina, L., Ngo, H. D. & Lewin, G. R. Tuning Piezo ion
51. Taberner, F. J. et al. Structure-guided examination of the mechanogating
50. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
59. Gottlieb, P. A. & Sachs, F. Piezo1: properties of a cation selective mechanical
57. Gnanasambandam, R., Gottlieb, P. A. & Sachs, F. The kinetics and the permeation
45. Guo, Y. R. & MacKinnon, R. Structure-based membrane dome mechanism for
44. Ge, J. et al. Architecture of the mammalian mechanosensitive Piezo1 channel.
42. Ge, J. et al. Architecture of the mammalian mechanosensitive Piezo1 channel.
43. Saotome, K. et al. Structure-guided examination of the mechanogating
44. Wang, Y. et al. A lever-like transduction pathway for long-distance chemical-
45. Wang, Y. et al. Elife 4, e12088 (2015).
46. Wang, Y. et al. Elife 4, e12088 (2015).
47. Wang, J., Jiang, J., Yang, X., Wang, L. & Xiao, B. Novel mechanosensitive Piezo1 channel:
48. Wang, F. et al. Structural and functional characterization of the Piezo1 channel pore domain.
49. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
50. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
51. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
52. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
53. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
54. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
55. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
56. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
57. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
58. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
59. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
60. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
61. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
62. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
63. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
64. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
65. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
66. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
67. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
68. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
69. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
70. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel
136. Kang, H. et al. Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. Am. J. Physiol. Cell Physiol. 316, C92–C103 (2019).

137. Rode, B. et al. Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nat. Commun. 8, 350 (2017).

138. Wang, S. et al. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J. Clin. Investig. 126, 4527–4536 (2016).

139. Jiang, F. et al. The mechanosensitive Piezo1 channel mediates heart mechanochemo transduction. Nat. Commun. 12, 869 (2021).

140. Wang, S. et al. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat. Commun. 11, 2303 (2020).

141. Zhou, C. et al. Mechanosensitive ion channel Piezo1 regulates diet-induced adipose inflammation and systemic insulin resistance. Front. Endocrinol. 10, 373 (2019).

142. Florez-Paz, D., Bali, K. K., Kuner, R. & Gomis, A. A critical role for Piezo2 channels in mediating low-threshold mechanically-evoked ATP release in urothelial cell cultures. Int. J. Mol. Sci. 21, 4644 (2020).

143. Alcaino, C. et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc. Natl. Acad. Sci. U. S. A. 115, E7632–E7641 (2018).

144. De Felice, D. & Alaimo, A. Mechanosensitive Piezo channels in cancer: focus on altered calcium signaling in cancer cells and in tumor progression. Cancers 12, 1780 (2020).

145. Wang, S. et al. Piezo2 mediates low-threshold mechanically-evoked ATP release in urothelial cell cultures. Int. J. Mol. Sci. 21, 4644 (2020).

146. Chen, P. et al. Mechanosensitive Piezo1 in endothelial cells promotes angiogenesis to support bone fracture repair. Cell Calcium. 97, 104321 (2021).

147. Song, Y. et al. The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron 102, 373.e6–389.e6 (2019).

148. Alper, S. L. Genetic diseases of PIEZO1 and PIEZO2 dysfunction. Curr. Top. Membr. 79, 97–134 (2017).

149. Martín-Almedina, S., Mansour, S. & Ostergaard, P. Human phenotypes caused by PIEZO1 mutations; one gene, two overlapping phenotypes? J. Physiol. 596, 985–992 (2018).

150. Romero, L. O. et al. A dietary fatty acid counteracts neuronal mechanical sensitization. J. Physiol. 597, 1554–1564 (2019).

151. Ma, S. et al. Common PIEZO1 allele in African populations causes RBC dehydration and attenuates plasmidom infection. Cell 173, 443.e2–455.e2 (2018).

152. Zarychanski, R. et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120, 1908–1915 (2012).

153. Zeng, W. Z. et al. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362, 464–467 (2018).

154. Nickolls, A. R. et al. Transcriptional programming of human mechanosensory neuron subtypes from pluripotent stem cells. Cell Rep. 30, 932.e7–946.e7 (2020).

155. Romero, L. O. et al. A dietary fatty acid counteracts neuronal mechanical sensitization. Nat. Commun. 11, 2997 (2020).

156. Wang, S. et al. Piezo2 mediates injury-induced tactile pain in mice and humans. Sci. Transl. Med. 10, eaat9892 (2018).

157. Alcaino, C. et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc. Natl. Acad. Sci. U. S. A. 115, E7632–E7641 (2018).