A MADS Box Protein Interacts with a Mating-Type Protein and Is Required for Fruiting Body Development in the Homothallic Ascomycete Sordaria macrospora

Nicole Nolting and Stefanie Pöggeler*

Department of General and Molecular Botany, Ruhr University of Bochum, 44780 Bochum, Germany

Received 23 March 2006/Accepted 1 May 2006

MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Δmcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjunction with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development.

The regulation of sexual reproduction is one of the central processes in the life cycles of most fungi. Like sex chromosomes in animals and plants, the allele type at the fungal mating-type locus determines sexual compatibility between haploid individuals in fungi (19, 20). The genetic breeding mechanism of fungi in which sexual reproduction only occurs between strains of the opposite mating type is called heterothallic. Strains of heterothallic ascomycetes exist in two mating types; these are termed Matα and Matα in Saccharomyces cerevisiae and MatA and Mata in the filamentous ascomycete Neurospora crassa. The genes that determine the fungal mating type are located at the mating-type loci. In ascomycetes, alternative versions of the mating-type locus on homologous chromosomes are termed idiomorphs and are completely dissimilar in the genes they carry (11, 42, 62).

The ascomycete fungus S. cerevisiae has the best-studied mating system. The MAT idiomorphs encode transcription factors, which in combination with other regulatory proteins are responsible for cell-type-specific gene expression, e.g., the mating-type-specific expression of pheromone and pheromone receptor genes. Each mating-type locus carries two genes: the MATα locus carries MATα1 and MATα2, and the MATa locus carries MATa1 and MATa2 (Fig. 1). The Mata1p protein has been shown to be a transcriptional activator of α-specific genes and carries the α domain as a DNA-binding motif (4). The gene product of MATa2 is a homeodomain protein and acts as a negative regulator of α-specific genes. In the MATα locus, MATα1 is the only gene to encode a functional protein, Mata1p, which is also a homeodomain transcription factor (14). However, unlike the Mata2p homeodomain protein of α cells, Mata1p does not play a role in determining the α cell type. Rather, α-specific genes are expressed because they are not repressed by Mata2p, and α-specific genes are not expressed because there is no Mata1p activator present. Mata1p does, however, have a role in diploid cells, where in conjunction with Mata2p it represses transcription of haploid-specific genes (28). To carry out their roles as transcription factors, Mata1p and Mata2p must work together with minichromosome maintenance protein 1 (Mcm1p) (4, 29). In α cells, Mcm1p activates α-specific genes, together with the homeodomain transcription factor Ste12p (28). Mcm1p is an essential sequence-specific homodimeric DNA-binding protein and a member of the MADS box transcription factor family. The MADS box is a highly conserved sequence motif characteristic of this family of transcriptional regulators. This motif was identified after sequence comparison of Mcm1p, AGAMOUS, DEFICIENS, and serum response factor (SRF), and the name MADS was derived from the “initials” of these four “founders” (63). MADS box proteins interact with diverse sequence-specific transcription factors to repress or activate different sets of genes (reviewed in reference 41). Their function in flowering plants has been studied extensively, and this protein family is a major regulator of floral organ development and controls cell differentiation as well as root architecture (2). In addition to its function in cell-type-specific gene expression, the MADS box protein Mcm1p from S. cerevisiae has a well-defined role in the control of genes that determine general metabolism (40), minichromosome maintenance (47), and the regulation of the cell cycle (36, 38).

The mating-type loci of the filamentous ascomycete N. crassa share some features with those of S. cerevisiae; however, the encoded proteins are different. The “α” idiomorph contains three genes, namely, mat A-1, mat A-2, and mat A-3 (18, 21). Two of them encode proteins with domains typical of eukaryotic transcription factors (17). The “α” idiomorph con-
contains two genes, mat a-1 and mat a-2. The mat a-1 gene encodes an HMG domain protein, whereas mat a-2 encodes a protein of unknown function (53, 64) (Fig. 1). In addition to heterothallism, a second mating system, designated homothallism, can be observed in ascomycetes. Homothallic species are self-fertile. This means that either the mycelium derived from a uninucleate ascospore or a vegetative spore of a homothallic fungus is able to complete the sexual cycle without interacting with a mating partner (50). The homothallic ascomycete Sordaria macrospora is closely related to the heterothallic ascomycete N. crassa. Analyses of the mating-type locus of S. macrospora revealed that this locus contains sequences homologous to both the mat a and mat A idiomorphs of N. crassa (59). In the mating-type locus of S. macrospora, four different open reading frames (ORFs), Smta-1, SmtA-3, SmtA-2, and SmtA-1, were identified, and all of them are transcribed (53). The proteins encoded by two of these genes (Smta-1 and SmtA-1) contain domains typical of eukaryotic transcription factors (Fig. 1). SMTA-1 and SMTA-2 are able to form a heterodimer and activate transcription of reporter genes in yeast (26). Thus, they possess properties characteristic of mating-type gene-encoded transcriptional regulators of other ascomycetes. Moreover, we have recently demonstrated that the Smta-1 gene is required for fruiting body development and sexual reproduction in S. macrospora. Deletion of Smta-1 converts the self-fertile S. macrospora to a self-sterile fungus which is no longer able to produce fruiting bodies and ascospores. Microarray analyses revealed that genes affected by SMTa-1 are numerous, including the pheromone gene ppg2 and several genes encoding components of signaling cascades (58). Thus, the mating-type proteins of homothallic filamentous ascomycetes seem to control sexual reproduction by regulating a variety of essential cellular processes. To elucidate whether additional transcription factors are involved in sexual development of the homothallic ascomycete S. macrospora, we cloned and functionally characterized the S. macrospora mcm1 gene, encoding a putative homologue of the S. cerevisiae Mcm1p protein. Deletion of the mcm1 gene leads to a pleiotropic phenotype, including reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth, as well as sexual sterility. Our results revealed that S. macrospora MCM1 is able to interact with the mating-type protein SMTA-1. Thus, for filamentous ascomycetes, this study presents the first report on the interaction between a MADS box transcription factor and a mating-type protein.

Materials and Methods

Strains and growth conditions. Cloning and propagation of recombinant plasmids was done in Escherichia coli strain SURE under standard culture conditions (23, 61). Saccharomyces cerevisiae strain YPl0-4A was used as the host strain for the two-hybrid experiments and was cultivated as described by James et al. (27). All Sordaria macrospora strains used in this work are summarized in Table 1. The S. macrospora wild-type (wt) strain K (S48977), the fus1-1 spore color mutant (S23442), and the Δku70 strain (S66001) were derived from our laboratory collection (Department of General and Molecular Botany, Ruhr University, Bochum, Germany). S. macrospora strains were cultivated on cornmeal medium or CM medium (15, 45). S. macrospora strain K, used for the isolation of RNA, was grown in Westgaard’s synthetic medium (67). S. macrospora wild-type and Δmcm1 mutant growth velocities were determined according to the method of Nowrousian and Ceula (44). Growth of mycelia was monitored by the dry cell weight. After a cultivation time of 7 days, the dry weight of each sample was estimated by vacuum filtration of a mycelium grown in 30 ml liquid culture in a petri dish. The remained cell material was dried at 60°C for 24 h and weighed. All experimental results are mean values of three independent measurements with 10 different samples each. Transformation of S. macrospora was performed as described by Nowrousian et al. (45). Transformants were selected on either nourseothricin (50 μg/ml) - or hygromycin B (110 μg/ml)-containing medium.

Identification of a cosmid clone carrying mcm1 and cloning of the mcm1 gene. An indexed S. macrospora cosmid library (57) was screened by PCR with oligonucleotide primers m1 and m2 (Fig. 2; Table 2), derived from the sequence of the Neurospora crassa ORF NCU07430.2 at the Broad Institute (http://www.broad.mit.edu/annotation/fungi/ncu/). This led to the isolation of cosmid D5 from pool VI S18-614, containing the mcm1 gene of S. macrospora. Subsequently, overlapping fragments from cosmid D5 were subcloned into vector pBluescript KS+ (Stratagene, La Jolla, CA). The sequences of the subcloned fragments were determined by DNA sequencing (MWG Biotech Customer Service, Ebersberg, Germany).

Sequence analyses. Protein sequence data were obtained from the public database NCBI Entrez (http://www.ncbi.nlm.nih.gov/entrez/) or by TBLASTP.

Table 1. Sordaria macrospora strains used in this study

Strain	Relevant genotype and phenotype	Reference or source
S48977	Wild type, homothallic	Culture collectiona
S23442	fus1-1, colored spores	Culture collectiona
S66001	Δku70; nat′ hph′	54
T1-1	Primary Δmcm1::hph′ Δku70; nat′ transformant, heterokaryotic, fertile, reduced ascospores	This study
T1-3	Primary Δmcm1::hph′ Δku70; nat′ transformant, homokaryotic, sterile, no ascospores	This study
S67718	Single spore isolate of T1-3 × S23442 cross, Δmcm1::hph′ ku70′ nat′ fus′, sterile	This study
T8	Δmcm1::hph′ nat′ mcm1′, fertile	This study

a nat′, nourseothricin resistant; nat′, nourseothricin sensitive; hph′, hygromycin resistant; hph′, hygromycin sensitive.

b Department of General and Molecular Botany, Ruhr University, Bochum, Germany.

Figure 1. Comparative genetic map of mating-type loci from the heterothallic ascomycete S. cerevisiae and the filamentous ascomycetes N. crassa and S. macrospora. The arrowed boxes represent the orientations and sizes of the ORFs in the mating-type loci. Black arrows with white bars indicate genes encoding proteins of known function; dark arrows indicate genes encoding homeodomain proteins (HD); white arrows indicate genes encoding α domain proteins (α); and striped arrows indicate genes encoding high-mobility-group domain (HMG) proteins.

TABLE 1. Sordaria macrospora strains used in this study

Strain	Relevant genotype and phenotype	Reference or source
S48977	Wild type, homothallic	Culture collectiona
S23442	fus1-1, colored spores	Culture collectiona
S66001	Δku70; nat′ hph′	54
T1-1	Primary Δmcm1::hph′ Δku70; nat′ transformant, heterokaryotic, fertile, reduced ascospores	This study
T1-3	Primary Δmcm1::hph′ Δku70; nat′ transformant, homokaryotic, sterile, no ascospores	This study
S67718	Single spore isolate of T1-3 × S23442 cross, Δmcm1::hph′ ku70′ nat′ fus′, sterile	This study
T8	Δmcm1::hph′ nat′ mcm1′, fertile	This study

a nat′, nourseothricin resistant; nat′, nourseothricin sensitive; hph′, hygromycin resistant; hph′, hygromycin sensitive.

b Department of General and Molecular Botany, Ruhr University, Bochum, Germany.
searches of the fully sequenced \textit{N. crassa} genomes at the Broad Institute (http://www.broad.mit.edu/annotation/fungi/fgi/). Protein sequence alignments were performed using the ClustalX program (65). The prediction of promoter and terminator elements was done by using different “Hamming-Clustering” methods (http://www.itb.cnr.it/sun/webgene//) and the “Promoter Predictor” (http://www.fruitfly.org/seq_tools/promoter.html).

Preparation of nucleic acids, hybridization protocols, and PCR. Isolation of \textit{S. macrospora} genomic DNA was carried out as described by Po¨ggeler et al. (59). Southern blotting and hybridization were performed according to standard techniques (61), using 32P-labeled DNA probes. PCR amplification of \textit{S. macrospora} genomic DNA or cosmid pools was performed with the HotStarTaq DNA polymerase (QIAGEN, Hilden, Germany) following the manufacturer’s protocol. The different primers used for PCR experiments were synthesized by MWG Biotech (Table 2). Total RNA was isolated from \textit{S. macrospora} at 3 to 7 days of growth, using the method of Hoge et al. (25). Reverse transcription-PCR was performed with the specific oligonucleotide primer pair m3(B) and m8 (Table 2) and was accomplished by the method of Mayrhofer et al. (37). mRNA was isolated from 1 mg of total RNA by using the PolyAtract mRNA isolation system IV (Promega, Mannheim, Germany). Northern blotting was carried out according to the method of Sambrook et al. (61).

Generation of \textit{S. macrospora} \textit{mcm1} strain. To create an \textit{mcm1} knockout construct for homologous recombination in \textit{S. macrospora}, flanking regions of the \textit{mcm1} open reading frame were amplified by PCR from \textit{S. macrospora} genomic DNA, using primer pair m33/m36 for the upstream region (808 bp) and primer pair m41/m42 for the downstream region (863 bp) (Table 2). Primer pair m41/m42 generated NotI ends. The PCR fragments were subcloned into vector pGEM-T (Promega) so that the 863-bp NotI fragment was fused with the 808-bp upstream fragment. The two sequences were separated by a single EcoRI restriction site which was used to introduce the 1.4-kb EcoRI \textit{hph} cassette of pCB1003 (9). The resulting plasmid, pMCM1-KO, was used as a template to amplify the \textit{mcm1}-\textit{hph} cassette with oligonucleotides m33 and m42 as primers. The 3,029-bp PCR fragment obtained was transformed into the \textit{Δku70} strain.

FIG. 2. Nucleotide and deduced amino acid sequences from the \textit{S. macrospora} \textit{mcm1} gene and its flanking regions and alignments with related proteins. (A) Nucleotide and deduced amino acid sequences of the \textit{S. macrospora} \textit{mcm1} gene. Introns are indicated with lowercase letters, and intron consensus sequences are underlined. The MADS box domain is indicated in gray. Putative CAAT box signal is identified at positions 1005 to 1016 is boxed. (B) MADS box domains of \textit{S. macrospora} MCM1 (SmMCM1), Mcm1p of \textit{S. cerevisiae} (ScMCM1, accession no. CAA88409.1), human SRF (HsSRF, CAI13785), \textit{Arabidopsis thaliana} AGAMOUS (AtAG, P17839), and \textit{Antirrhinum majus} DEFICIENS (AmDEF, CAA44629), aligned to maximize similarities. Identical amino acid residues are shaded in black, and functionally similar residues are boxed in gray. (C) Alignment of SAM domains of \textit{S. macrospora} MCM1 (SmMCM1), yeast MCM1p and Arg80p (ScMCM1 and ScArg80, NP_013756.1), and human SRF (HsSRF).
different GAL4-inducible promoters (this strain contains three easily assayed reporter genes under the control of for the two-hybrid experiments. To reduce the incidence of false-positive results, mid pH-MCM1 (Table 3). His-tagged proteins were purified on nickel-nitrilo-inhibitor phenylmethylsulfonyl fluoride. The protein concentrations in the cell galactoside cleavage by crude protein extracts of yeast transformants grown in Activity of mcm1 (Table 3). They were obtained after digestion of pBM1 with PstI and activation domain (pAM1) (Table 3), and pGAD-C1 (27), containing the GAL4 binding domain (pBM1) (Table 3), and pGAD-C1 (27), containing the GAL4 DNA-terminator of the entire coding region of the mcm1 gene was amplified with primers m54 and tC1, whereas h3 and m51 verified homologous recombination at the S66001) of S. macrospora to facilitate the knockout of the mcm1 gene by homologous recombination (54). Primary transformants were screened for homologous recombination by Southern blot analysis. Successful homologous recombination was confirmed by PCR amplification. The 5′-flanking region of the mcm1 gene was amplified with primers m54 and tC1, whereas h3 and m51 verified homologous recombination at the 5′-flanking region (see Fig. 4). Conventional genetic analysis of S. macrospora was performed as described by Esser (15). For segregation of the nourseothricin and hygromycin markers, the homokaryotic a67070 primary transformant T1-3 (ka7070mat1), carrying a deletion of the mcm1 gene (mcm1-3ph), was crossed with the fus1-1 mutant (S23442), producing brown ascospores. Subsequently, we isolated from this cross the hygromycin-resistant, nourseothricin-sensitive single-spore isolate S67718 (Table 1).

To rescue the phenotype of the 67718, plasmid pEGFP MCM1, carrying the coding sequences of the mcm1 gene fused to the egfp gene, was cotransformed with plasmid pB-NAT1 (32), resulting in transformant 1 (Table 1). In this experiment, the nourseothricin resistance gene nat1 of plasmid pD-NAT1 was used as a selectable marker for cotransformation (30). In plasmid pD-NAT1, the nat1 gene is under the control of the gpd promoter and trpC terminator of Aspergillus nidulans (32).

Two-hybrid analyses. For construction of the two-hybrid plasmids, the cDNA of the entire coding region of the mcm1 gene was amplified with primer pair m3(B)/m8 and subcloned into pDrive to result in plasmid pNS8 (Table 2). After being sequenced, the 675-bp BamHI mcm1 fragment of pNS8 was cloned into the yeast two-hybrid vectors pGBDU-C1 (27), containing the GAL4 DNA-binding domain (pBM1) (Table 3), and pGAD-C1 (27), containing the GAL4 activation domain (pAM1) (Table 3). Vectors pBm1d1 and pBm1d2 are derivatives of vector pBm1. They were obtained after digestion of pBm1 with PstI and Sall, respectively, and subsequently self-ligated. Both plasmids contain 3′-truncated mcm1 coding regions. Saccharomyces cerevisiae strain Peg94-A was used for the two-hybrid experiments. To reduce the incidence of false-positive results, this strain contains three easily assayed reporter genes under the control of different GAL4-inducible promoters (GAL2-ade2, GAL1-his3, and GAL7-leu2z) (27). Transformation of yeast cells was done by electroporation according to the method of Becker and Lundblad (3) in a Multiporator (Eppendorf, Hamburg, Germany) at 1.5 kV. For each transformation, 100 ng of plasmid DNA was used. After selection of transformants was done by screening for uracil (pGBDU derivates) and/or leucine (pGAD derivatives) prototrophy. Two-hybrid analyses and assays for transactivation were performed as described by Jacobsen et al. (26). Activity of β-galactosidase was measured by determination of o-nitrophenyl-galactoside cleavage by crude protein extracts of yeast transformants grown in liquid culture (68). The crude protein extracts were obtained by disrupting the yeast cells with glass beads (0.5-mm diameter) in the presence of the protease inhibitor phenylmethylsulfonyl fluoride. The protein concentrations in the cell extracts were determined by the method of Bradford (5), and enzyme activity was normalized to the protein concentrations in the samples.

Protein synthesis and purification. A His tag fusion of MCM1 was synthesized in E. coli strain M15SRK8 (QIAGEN). For this purpose, a 675-bp BamHI fragment of pBm1 was cloned into vector pQE31 (QIAGEN) to generate plasmid pH-MCM1 (Table 3). His-tagged proteins were purified on nickel-nitri-triacetic acid-agarose columns (QIAGEN) according to the supplier’s instructions.

Calmodulin binding protein (CBP)-tagged versions of MCM1 were generated by cloning a 675-bp BamHI fragment of pBm1 in either sense (pCMCM1) or inverse (pCMCM1) orientation into vector pCAL-n (Stratagene). For synthesis of the CBP-tagged versions of SMTA-1, a 921-bp BamHI/BglII cDNA fragment of pNS8 was cloned into pDrive to result in plasmid pDrive. During preparation for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), proteins were reduced and denatured via treatment with 2% Laemmli sample buffer. After 12.5% SDS-PAGE, proteins were transferred to a polyvinylidene difluoride membrane (Biometra, Göttingen, Germany) by using a semidry blotting system (Biometra). Subsequently, the blot was blocked in blocking buffer (QIAGEN)

TABLE 2. Oligonucleotides used in this study

Oligonucleotide	Sequence (5′-3′)
m1*	GAGC CGCC CGCA AATA CGGG AATG
m2	AGAC CGCC CGCT GGGT GGGT TAAG
m3(B)	GGAT CGCC CGCA ACAT CGCA CGA A
m8	GGAT CCTA AA CCGT GACC ACGA
m14	CCA TGGT CGAC TACG AGC
m16	CCA TGGT TATG ACCT GTG GCC CGG
m33	CAA GAAG AAC AAG AAC GCT TTGA
m36	GAAT TCA AAG GGG GCCT CGCG TAAT
m37	GATA AACA GCAT AAT CAC GCG
m41	GCCG CGCC GCTA GAAG AGCT GTT TTT GCT
m42	CGCC CGC GTG GA ACTG CAA GAGG GAA
m51	GCA AACA ACTT TGAA GAC CCA AG
m52	CCTA CACG AGCG CAG ATGG
m34	ACT GC GTG CAG GGC AAAGA AGG AG
tC1	GAT CCG CC T GAC GAC AAG CC

*Heterologous oligonucleotides specific for Neurospora crassa NCU07430.2 (http://www.broad.mit.edu/annotation/fungi/ncg/).

TABLE 3. Plasmids used in this study

Plasmid	Vector	Insert	Reference
pNS8	pDrive	626-bp mcm1 cDNA, including 348-bp 3′ region of wt S. macrospora, obtained by RT-PCR with m3(B)/m8	This study
pAM1	pGAD-C1	976-bp BamHI mcm1 fragment of pNS8	This study
pBM1	pGBDU-C1	976-bp BamHI mcm1 fragment of pNS8	This study
pBM1d1	pBM1	PstI-restricted mcm1 cDNA positions 1 to 660	This study
pBM1d2	pBM1	Scal-restricted mcm1 cDNA positions 1 to 460	This study
pAA1	pGAD-C1	Full-length Smt-1 positions 1 to 921	26
pAA2	pGAD-C1	Full-length Smt-2 positions 1 to 1,080	26
pAA3	pGAD-C1	Full-length Smt-3 positions 1 to 351	26
pAa1	pGAD-C1	Full-length Smta-1 positions 1 to 864	26
pBA1	pGBDU-C1	Full-length Smtk-1 positions 1 to 921	26
pBA1d1	pGBDU-C1	Smta-2 positions 1 to 726	26
pBA2	pGBDU-C1	Full-length Smtk-2 positions 1 to 1,080	26
pBA3	pGBDU-C1	Full-length Smta-3 positions 1 to 351	26
pBa1	pGBDU-C1	Full-length Smta-1 positions 1 to 864	26
pC-MCM1	pCAL-n	976-bp BamHI mcm1 fragment of pBM, sense	This study
pC-MCM1i	pCAL-n	976-bp BamHI mcm1 fragment of pBM, inverse	This study
pC-SMTA1	pCAL-n	921-bp BamHI/BglII fragment of pB-A1, sense	This study
pC-SMTA1i	pCAL-n	921-bp BamHI/BglII fragment of pB-A1, inverse	This study
pH-MCM1	pQE31	976-bp BamHI mcm1 fragment of pBM, sense	This study
pH-MCM1	pQE31	976-bp BamHI mcm1 fragment of pBM, inverse	This study
pMCM1-KO	pPTMCM1	1,800 bp EcoRII lph cassette of pClB1003	This study
pMCM1EGFP	pGL1783	869-bp Ncol fragment of wt S. macrospora, obtained by PCR with primers m14 and m16	This study
pD-NAT1		nat1 expression cassette	32
fusion protein was discarded by washing the membrane four times for 10 min with blocking buffer. Subsequently, the membrane was incubated for 1 h at room temperature with anti-RGS-His–horseradish peroxidase (HRP) conjugate antibody (QIAGEN; 1:3,000) diluted in blocking buffer and washed four times for 5 min each with Tris-buffered saline (QIAGEN). Detection of proteins was carried out with the BM chemiluminescence Western blotting kit (Roche Diagnostics, Germany) according to the supplier’s recommendations.

Fluorescence, light, and confocal laser microscopy. For localization studies, the mcm1 coding sequence was fused to the egfp gene. Cloning was carried out by amplifying an 869-bp DNA fragment from wild-type DNA, using primers m14 and m16 (Table 2). Amplification with this primer pair generated NcoI sites at the ends. After being subcloned into vector pDrive and sequenced, the amplicon was cloned into the NcoI site of plasmid pG738 (56) to create plasmid pMCM1-EGFP (Table 3). The desired plasmid encodes an mcm1-egfp fusion gene under control of the A. nidulans gpd promoter. The enhanced green fluorescent protein (EGFP) fluorescence emission was analyzed by confocal laser scanning microscopy using a Zeiss LSM 510 META microscopy system (Carl Zeiss, Jena, Germany) based on an Axiovert inverted microscope. EGFP was excited with the 488-nm line of an argon-ion laser. The fluorescence emission was selected with BP505/550 band-pass filters for EGFP. Staining of nuclei with Sytox orange and confocal visualization were performed as described by Pogger et al. (56). Transmission images were recorded using differential interference contrast optics. Images were analyzed with Zeiss LSM 510 software.

A Zeiss Axioshot or Zeiss Axio imager microscope was used for light microscopy. Pictures were captured with an AxiosCam (Zeiss) or Cool SNAP HQ camera (Roper Scientific). Recorded images were edited using Adobe Photoshop CS2. Counting of fruiting bodies on agar plates was done according to the method of Mayrhofer et al. (37). To measure hyphal compartment lengths, wt and Δmcm1 strains were grown on cornmeal medium microscope slides. When adequate growth was achieved, the mycelium was stained with calcofluor white (1 mg/ml) and covered with a coverslip. Fluorescent micrographs were taken of one hypha, starting from the edge and moving 600 μm towards the interior of the colony. In doing so, 100 different hyphae each of the wt and the Δmcm1 mutant were measured.

Nucleotide sequence accession number. The nucleotide sequence of the Sordaria macrospora mcm1 gene has been deposited in the EMBL database under accession number AM229713.

RESULTS

Sordaria macrospora possesses an mcm1 homologue. A comparative analysis of S. macrospora and N. crassa sequences revealed that both fungi share a high degree of synteny and exhibit an average of 89.5% nucleic acid identity within exons (46). Primers m1 and m2 (Table 2) were designed according to the N. crassa open reading frame NCU07430.2, encoding a putative homologue of S. cerevisiae MCM1p. This primer pair was used to perform a high-throughput PCR screening of pooled cosmid DNAs, as described in Materials and Methods (57). The isolated cosmid was then used for subcloning and sequencing of the putative S. macrospora mcm1 coding region and its flanks. The mcm1 ORF comprised 868 bp interrupted by two introns, of 132 and 55 bp, with conserved 5’ donor and 3’ acceptor sequences (51), whose presence was confirmed by sequencing the corresponding cDNAs. The mcm1 gene encodes a putative protein of 226 amino acids (aa) with a predicted molecular mass of 24.6 kDa and a calculated isoelectric point of 5.6. The size of the S. macrospora protein is very close to that of N. crassa NCU07430.2 (24.3 kDa) but is smaller than S. cerevisiae Mcm1p (32.8 kDa) and the Homo sapiens SRF protein (51.6 kDa). Overall, the predicted S. macrospora protein shares 95.6, 32.6, and 21.9% identity with the respective proteins of N. crassa, S. cerevisiae, and H. sapiens. The putative S. macrospora MCM1 protein sequence was submitted to Superfamily (35), and the presence of the SRF-like MADS box domain (aa 55 to 115), a distinct DNA-binding motif, was recorded (Fig. 2A). This domain within S. macrospora MCM1 exhibited a high degree of sequence identity with the MADS box domains of the four founder proteins of this family (Fig. 2B). In animals and fungi, members of the family of MADS box transcription factors have been classified into two main lineages, designated SRF- and MEF2-like. Members of both lineages contain MADS boxes within their core DNA-binding domains but differ within their C-terminal extensions. The sequences of the MEF2 domain are highly homologous among members of the MEF2 subfamily but are very different from those of the SRF subfamily, such as SRF and Mcm1p, which have a 26-aa SAM (SRF, Arg80p, and Mcm1p) domain adjacent to the C terminus of the MADS box (63). Based on the sequence homology within the domain adjacent to the MADS box, the S. macrospora MCM1 protein is a member of the SRF lineage of MADS box proteins (Fig. 2C).

Using the program Promoter Predictor, the presumed transcriptional start site of the mcm1 gene was predicted to be 84 nucleotides upstream of the putative mcm1 translation start codon. Sequences flanking the ATG start codon show a high level of similarity to translation initiation sites in other S. macrospora genes (51). Within the promoter region, a putative TATA box was predicted by the “Hamming-Clustering method” at position −331 relative to the transcription initiation site, while three putative CAAT boxes were identified (Fig. 2). A polyadenylation signal was predicted to be 53 bp downstream of the putative mcm1 stop codon. Thus, the transcript was estimated to have a size of 808 bp. The mcm1 gene was only very weakly expressed, but a clearly visible transcript of the expected size was detected by Northern blot analysis using enriched poly(A) RNA (Fig. 3).

The Δmcm1 deletion mutant exhibits a pleiotropic phenotype. To assess the role of MCM1 in S. macrospora, we constructed a Δmcm1 deletion strain by gene replacement (Fig. 4). For this purpose, we constructed plasmid pMCM1-KO, in which part of the region encoding amino acids 1 to 84 of mcm1 and 399 bp of the mcm1 upstream region were deleted and replaced with a hygromycin resistance cassette. The 3,029-bp amplification product obtained was transformed into S. macrospora Δka70. The S. macrospora Δka70 strain is defective in the repair of DNA double-strand breaks by nonhomologous end joining and was recently demonstrated to be an ideal recipient for gene targeting of developmental genes in S. macrospora (54). Three hygromycin-resistant colonies were isolated. Among these, two strains appeared to be heterokaryo-

FIG. 3. Transcript analysis of S. macrospora wild type. Total RNA and mRNAs were isolated during different developmental stages of the wild type (3 to 7 days). The Northern blot was probed using an mcm1-specific probe. As a control, the blot was stripped and reprobed with a gpd-specific probe.
otic and contained wt nuclei (corresponding to a 2.8-kb hybridizing fragment) as well as Δmcm1 nuclei (1.2-kb hybridizing fragment) (T1-1) (Fig. 4B), whereas one transformant (T1-3) contained only the Δmcm1 1.2-kb hybridizing fragment (Fig. 4B). To segregate the hph and nat1 markers of the homokaryotic transformant T1-3 and to obtain a Δmcm1 knockout mutant without the Δku70::nat1 background, we performed conventional genetic analyses. Southern blot analyses revealed a 1:1:1:1 segregation of hygromycin-resistant, nourseothricin-resistant, nourseothricin- and hygromycin-resistant, and nonresistant progeny, thereby illustrating that the mcm1 gene is a nonessential gene. The data from the Southern blot analyses were further confirmed by PCR amplification of the hygromycin-resistant/nourseothricin-sensitive single-spore isolate S67718 (Δmcm1) from primary transformant T1-3, which was selected for further analysis (Fig. 4C).

The Δmcm1 mutant showed a pleiotropic vegetative phenotype (Fig. 5). This mutant grew 15.4 (±1.5) mm/day, compared to 20.0 (±0.3) mm/day for the wt strain. Moreover, the mutant produced about 40% less mycelial mass than the wt after 7 days.
of growth. Furthermore, the hyphae at the peripheries of colonies of the \(\Delta mcm1 \) mutant showed some differences in branching frequency compared to those at the periphery of a wt colony (Fig. 5). Moreover, whereas a total of 42 branches were counted in the first 600 \(\mu \text{m} \) of 100 wt hyphae, the \(\Delta mcm1 \) mutant formed 129 branches (data not shown). In addition, hyphae of the mutant strain consisted of smaller compartments than the wt (Fig. 5B and C). For the wt strain, the mean hyphal compartment length was 74 \(\mu \text{m} \) (\(\pm 19 \mu \text{m} \)), whereas the \(\Delta mcm1 \) strain exhibited a decreased hyphal compartment length of only 34 \(\mu \text{m} \) (\(\pm 21 \mu \text{m} \)) (Fig. 5C). Thus, deletion of the \(mcm1 \) sequence resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment lengths during vegetative growth.

In addition to vegetative growth defects, the \(\Delta mcm1 \) mutant strain failed to complete the sexual cycle (Fig. 6). The development of sexual reproductive structures was analyzed on fructification medium. Although the mutant strain showed the formation of ascogonia and protoperithecia, it was unable to perform the transition to mature fruiting bodies (Fig. 6). When
A

Time	wt	Δmcm1
2d	![Image](0)	![Image](0)
3d	![Image](0)	![Image](0)
4d	![Image](0)	![Image](0)
7d	![Image](0)	![Image](0)

B

- **Δmcm1**
 - < 60 μm: 15%
 - 60-200 μm: 0%
 - > 200 μm: 18%

- **wt**
 - < 60 μm: 85%
 - 60-200 μm: 29%
 - > 200 μm: 18%
grown on fructification medium, the \(\Delta mcm1 \) strain produced 244 protoperithecia/cm\(^2\), similar to the wt strain (231 protoperithecia/cm\(^2\)). The mean diameters of protoperithecia in the mutant and wt were 41 and 46 \(\mu \)m, respectively. However, the fertile fruiting bodies (>200 \(\mu \)m, with a neck and ascospores) that were formed in the wt (39 perithecia/cm\(^2\)) were never observed in the \(\Delta mcm1 \) mutant, even after an extended incubation time. Thus, the mutant is completely sterile. All morphological changes of the phenotype cosegregated with the knockout \(hph \) marker in crosses between \(\Delta mcm1 \) and wt strains, indicating that deletion of the \(mcm1 \) gene was responsible for the pleiotropic mutant phenotype.

The MCM1 protein localizes to the nucleus. To examine MCM1 localization and to prove that the mutation can be complemented by a wt \(mcm1 \) copy, we generated strains expressing an \(mcm1 \)-\(egfp \) fusion gene under control of the strong constitutive \(gpd \) promoter of \(A. nidulans \) (see Materials and Methods). Mutant strains expressing the fusion gene displayed wt hyphal growth and fruiting body development, thus indicating that the \(mcm1 \) gene can complement the mutant defects and that the MCM1-EGFP fusion protein is biologically active (Fig. 7).

As shown in Fig. 7, the MCM1-EGFP fusion protein was targeted to the nuclei, where it produced a fluorescence pattern which coincided with the staining pattern of the Sytox orange nucleic acid dye. As a control for localization, we used plasmid pIG1783, containing the \(egfp \) gene under control of the \(A. nidulans \) \(gpd \) promoter (56). In \(S. macrospora \) transformants carrying this plasmid, fluorescence appeared uniformly distributed throughout the hyphae, and EGFP fluorescence was not extensively concentrated in the nuclei (data not shown). This result showed that staining of the nuclei was due to the \(S. macrospora \) MCM1 protein fused to the EGFP fluorescence marker.

The \(S. macrospora \) MCM1 protein interacts with the mating-type protein SMTA-1. In the yeast \(S. cerevisiae \), the MCM1 gene encodes an essential DNA-binding protein that, in cooperation with Mata1p, Ste12p, and the repressor Mata2p, confers mating specificity to haploid yeast cells (24, 39). To initially screen for in vivo interactions between the \(S. macrospora \) MCM1 and mating-type proteins, we performed a two-hybrid analysis by using the yeast two-hybrid system with the DNA-binding domain (BD) and activation domain (AD) derived from the GAL4 system (27). Sequence analysis of the \(S. macrospora \) MCM1 protein revealed that it contains a MADS box domain typical for DNA binding. This finding implies that the \(S. macrospora \) MCM1 protein might act as a transcriptional activator in yeast. To identify sequences of the MCM1 protein involved in transcriptional activation, the \(S. macrospora \) MCM1 protein full-length cDNA (pBM1) (Fig. 8A) and two versions carrying deletions of the 3’ end of the \(mcm1 \) coding region (pBM1d1 and pBM1d2) (Fig. 8A) were fused to sequences encoding the DNA-binding domain of the \(S. cerevisiae \) GAL4 protein (GAL4-BD). These constructs were transformed into the yeast strain PJ69-4A, which contains three reporter genes under the control of different GAL4-inducible promoters (27). PJ69-4A yeast cells, transformed with the recombinant pGDU derivatives carrying full-length or truncated versions of the \(mcm1 \) gene and the empty pGDU vector, were first tested for self-activation of reporter gene expression. The GAL4-BD–MCM1 fusion proteins encoded by pBM1 and pBM1d1 led to self-activation of reporter gene expression. A 20-fold increase in \(\beta \)-galactosidase activation compared to that of the negative control (pGDU) was observed in cells carrying either pBM1 or pBM1d1. In contrast, the 73-aa C-terminally truncated version of MCM1, encoded by pBM1d2, exhibited no measurable expression of reporter genes (Fig. 8A). Thus, the MCM1 protein seems to contain a C-terminal domain that can activate the transcription of reporter genes in yeast.

To screen for homodimerization of MCM1 as well as for the ability of MCM1 to interact with mating-type proteins of \(S. macrospora \), we tested pGDU and pGAD derivatives of the \(mcm1 \) gene in combination with pGDU and pGAD deriva-
tives carrying *S. macrospora* mating-type genes. During previous analyses, we were able to demonstrate that the mating-type protein SMTA-1 activates transcription of the yeast reporter genes *HIS3*, *ADE2*, and *LACZ* (26). Therefore, plasmid pBA1d1, harboring a truncated version of the *SmtA-1* gene and exhibiting no transcriptional activation of the yeast reporter genes, was used in this study. Similarly, we used plasmid pBM1d2, encoding a truncated version of MCM1. Our previous two-hybrid analyses demonstrated the ability of SMTA-1 to form a homodimer and to interact with SMTa-1.
able to form a homodimer and to interact with the α1 domain mating-type protein SMTA-1.

DISCUSSION

In this study, we describe the cloning and characterization of the *mcm1* gene from the homothallic ascomycete *Sordaria macrospora*. *S. macrospora* MCM1 displays significant similarities to the MADS box protein Mcm1p of *Saccharomyces cerevisiae*. Like *S. cerevisiae* Mcm1p (66), the MCM1 protein of *S. macrospora* also localizes to the nucleus. MADS box proteins are characterized by the conserved MADS box domain, which is required for DNA binding and dimmerization (63). Based on a domain adjacent to the MADS box domain, the *S. macrospora* MCM1 protein can be classified as an SRF-type MADS box protein. This group of MADS box proteins is an evolutionarily conserved subfamily of MADS box transcription factors and includes animal SRF proteins as well as yeast Mcm1p and Arg80p (1). To our knowledge, the *S. macrospora* MCM1 protein is the first SRF-type protein characterized for a filamentous ascomycete.

Recently, Damveld et al. (12) described the isolation and characterization of the RLMA protein of *Aspergillus niger*, which is a member of the MEF2-type subfamily of MADS box proteins. *A. niger* RLMA was shown to have an important role in regulating and activating gene expression in response to cell wall stress (12). In contrast to the ascomycete yeasts *S. cerevisiae* and *Schizosaccharomyces pombe*, which carry four and three MADS box proteins, respectively, we identified two MADS box genes within the available fungal genomes of the filamentous ascomycetes *N. crassa*, *Aspergillus fumigatus*, *Aspergillus nidulans*, *Chaetomium globosum*, *Fusarium graminearum*, and *Podospora anserina* (data not shown). One of these two genes encodes a MEF2-type RlmAp homologue, while the other encodes an SRF-type Mcm1p homologue. An exception is *Magnaporthe grisea*, which encodes only one SRF-type MADS box protein (12). The close relationship between *S. macrospora* and *N. crassa* suggests that *S. macrospora* also possesses a second MEF2-type MADS box protein, in addition to the SRF-type MCM1 protein.

Although *S. cerevisiae* carries four MADS box proteins in total, *S. cerevisiae* Mcm1p is an essential protein, and complete deletion of *MCM1* results in a loss of viability of yeast cells. Thus, in *S. cerevisiae*, *mcm1Δ* defects cannot be restored by the other MADS box proteins (6, 48). In contrast, our results revealed that deletion of the *mcm1* gene did not affect viability in *S. macrospora*. Therefore, the essential function of Mcm1p in *S. cerevisiae* might be a specific feature of this species, since deletion of the Mcm1p gene homologues *map1* from the ascomycete yeast *S. pombe* and *unc1* from the basidiomycete *Ustilago maydis* showed that they are not essential (31, 43, 68). For *S. macrospora*, despite being viable, the Δmcm1 strain was affected in vegetative growth and fertility. This strain grew more slowly than the wt and displayed increased hyphal branching of hyphae with reduced compartment lengths. The vegetative phenotype of *S. macrospora* might be explained by the failure of interactions of MCM1 with transcriptional regulators playing conserved roles in regulating cell cycle processes. In *S. cerevisiae*, Mcm1p and the forkhead transcription factor Fkh2p act in a DNA-bound complex to control *G_{2}/M-
pecific transcription (33). Deletion of FKH2 in S. cerevisiae leads to a 10% extended generation time compared to that described for wild-type cells (49). In S. pombe, the forkhead transcription factor Fkh2p is required for correct timing, positioning, and contraction of the division septum. Deletion of the fkh2 gene in S. pombe leads to branched cells with multiple septa (7, 8). Indeed, a gene encoding a homologue of the yeast Fkh2p protein is present in all fungal genomes available (data not shown). Therefore, it seems likely that S. macrospora also has an FKH2 homologue. Thus, the phenotypic defects observed in the Δmcm1 mutant might be explained by the inability of S. macrospora FKH2 to bind to MCM1.

In addition to the vegetative defects observed in the Δmcm1 mutant, deletion of mcm1 dramatically affected the sexual fertility of S. macrospora. The Δmcm1 mutant was only capable of producing protoperithecia and was unable to form either ascospores or perithecia. Our two-hybrid analyses revealed that MCM1 may physically interact with itself and with the α-domain mating-type protein SMTA-1. In addition, we showed that the N-terminal 155 amino acids of MCM1 containing the MADS box domain are sufficient for homodimerization and interaction with SMTA-1. Similarly, the conserved MADS box domain of S. cerevisiae Mcm1p was shown to be sufficient for dimerization and DNA binding as well as for interaction with different cofactors (6, 10).

In S. cerevisiae, Mcm1p activates α-specific genes, e.g., α-specific pheromone and pheromone receptor genes, together with the α-domain transcription factor Mata1p, and represses α-specific genes (e.g., a-specific pheromone and pheromone receptor genes), together with the homeodomain transcription factor Mata2p (4, 24). In this study, we found an interaction of S. macrospora MCM1 with SMTA-1. However, no positive interactions between MCM1 and other proteins encoded by the S. macrospora mating-type locus were detected. This result does not come as a surprise, since unlike that of S. cerevisiae, the mating-type locus of S. macrospora does not encode a Mata2p-like homeodomain transcription factor.

In S. macrospora, the α-domain protein SMTA-1 has previously been shown to interact with the mating-type locus-encoded HMG domain protein SMTα-1. Thus, the HMG domain protein SMTα-1 may be recruited via SMTα-1 into a complex which contains, among others, the MCM1 protein. Interestingly, with respect to fruiting body and ascospore development, the phenotype of a ΔSmtα-1 mutant resembles that of the Δmcm1 mutant. Similar to Δmcm1, a ΔSmtα-1 mutant was shown to be sterile and to produce only protoperithecia (58).

In heterothallic filamentous ascomycetes, the expression of pheromone and pheromone receptor genes is supposed to be controlled directly by transcription factors encoded by the mating-type genes (13). The mating-type-dependent expression of pheromone and receptor genes might be assisted by an MCM1 MADS box protein. However, the homothallic fungus S. macrospora has no genetically defined mating type and carries one mating-type locus that incorporates homologues of genes of both mating types of related heterothallic species (59). Thus, which functions does the MCM1 protein have during the sexual development of homothallic S. macrospora? In heterothallic filamentous ascomycetes, the mating-type-dependent expression of pheromone and receptor genes regulates the following two important steps in sexual reproduction: (i) the initial fertilization event, mediated by pheromone-dependent chemotraction between the reproductive structures of two compatible partners; and (ii) prior to karyogamy, the paired migration of nuclei of opposite mating types into the ascogenous hyphae (11, 62). In S. macrospora, fruiting body development is an apandrous process and therefore lacks the cooperative interaction of two opposite mating-type strains. After autogamous fertilization, i.e., pairwise fusion of nuclei present within the ascogonium without cell fusion having taken place, the protoperithecia differentiate into inner ascus initials and an outer pigmented peridial tissue of the perithecium. Meiosis and a postmeiotic division lead to eight meiotically derived ascospores in each ascus (15, 16). Thus, although the fertilization process does not involve two genetically distinct nuclei, like it does in heterothallic relatives, S. macrospora must ensure that karyogamy occurs between two nuclei only. Therefore, it has been proposed that individual nuclei of homothallic fungi could be functionally heterothallic in order to allow nucleus recognition (11, 22). This might be achieved through differential expression of mating-type genes, which then should lead to differential expression of pheromone and receptor genes (53). Indeed, S. macrospora transcriptionally expresses two pheromone genes (ppg1 and ppg2) and two pheromone receptor genes (pre1 and pre2). The proteins encoded by these genes are similar to α-factor-like and a-factor-like pheromones and to G-protein-coupled pheromone receptors of the yeast S. cerevisiae (52, 55). Moreover, pheromones and receptors have recently been demonstrated to play an important role in fruiting body development and ascosporogenesis of S. macrospora. Similar to its function in basidiomycetes, where pheromones regulate nuclear migration and clamp-cell fusion in the dikaryotic mycelium, the pheromone system of S. macrospora seems to promote crozier formation and ensure the stability of the dikaryon (37). Furthermore, we found that the S. macrospora SMTα-1 protein has a direct or indirect impact on the activation of expression of the α-factor-like pheromone gene ppg2 and, in addition, regulates the expression of a variety of genes involved in different cellular processes (58). Likewise, it is conceivable that SMTα-1, along with MCM1, might be involved in the activation of the α-factor-like pheromone gene ppg1 and numerous other genes involved in fruiting body and ascospore formation in S. macrospora.

Taken together, the pleiotropic phenotype of the Δmcm1 mutant of S. macrospora reveals that the SRF-like MADS box proteins of filamentous ascomycetes play a role in a wide range of functions, including those controlling vegetative growth as well as sexual reproduction. Further studies are necessary to elucidate the molecular mechanism underlying the complex MCM1-dependent regulatory network of filamentous ascomycetes.

ACKNOWLEDGMENTS

We thank Gisela Isowitz, Silke Nimtz, Susanne Schlewinski, and Regina Rieke for excellent technical assistance and Ulrich Kück (Ruhr University of Bochum) for laboratory resources. This work was funded by Deutsche Forschungsgemeinschaft grant PO523/3-1 (Bonn, Germany) and by the Ruhr University of Bochum. N.N. was kindly supported by a Ph.D. grant from the Konrad-Adenauer Stiftung e.V. (Bonn, Germany).
57. Pöggeler, S., M. Nowrousian, S. Jacobsen, and U. Kück. 1997. An efficient procedure to isolate fungal genes from an indexed cosmid library. J. Microbiol. Methods 29:49–61.
58. Pöggeler, S., M. Nowrousian, C. Ringelberg, J. Loros, J. Dunlap, and U. Kück. 2006. Microarray and real-time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol. Genet. Genomics 275:492–503.
59. Pöggeler, S., S. Risch, U. Kück, and H. D. Osiewacz. 1997. Mating-type genes from the homothallic fungus *Sordaria macrospora* are functionally expressed in a heterothallic ascomycete. Genetics 147:567–580.
60. Rose, M., and D. Botstein. 1983. Construction and use of gene fusions to *lacZ* (β-galactosidase) that are expressed in yeast. Methods Enzymol. 101:167–180.
61. Sambrook, J., E. F. Fritsch, and T. Maniatis. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
62. Shin, P. K., and N. L. Glass. 2000. Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. Curr. Opin. Microbiol. 3:183–188.
63. Shore, P., and A. D. Sharroks. 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229:1–13.
64. Staben, C., and C. Yanofsky. 1990. *Neurospora crassa* a mating-type region. Proc. Natl. Acad. Sci. USA 87:4917–4921.
65. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876–4882.
66. Wagner, P., and M. N. Hall. 1993. Nuclear protein transport is functionally conserved between yeast and higher eukaryotes. FEBS Lett. 321:261–266.
67. Westergaard, M., and H. K. Mitchell. 1947. Neurospora. V. A synthetic medium favoring sexual reproduction. Am. J. Bot. 34:573–577.
68. Yabana, N., and M. Yamamoto. 1996. *Schizosaccharomyces pombe map1* encodes a MADS-box-family protein required for cell-type-specific gene expression. Mol. Cell. Biol. 16:3420–3428.