Comparison of measured and estimated height in the elderly with different functional classifications

Ann Kristine Jansen*
Denise Angela Gonçalves dos Santos*
Déborah de Oliveira Ramiro**
Rodrigo Ribeiro dos Santos*

*Universidade Federal de Minas Gerais – UFMG, Belo Horizonte/MG, Brasil.
**Hospital Risoleta Tolentino Neves. Belo Horizonte/MG, Brasil.
E-mail: annkjansen@gmail.com
DOI: 10.15343/0104-7809.202044445453

Abstract

One of the effects of aging on the body is the reduction of height, which may overestimate the body mass index (BMI). It is hypothesized that frail elderly people are more affected by this decline in height, however this is not clear in the literature. The aim of this study was to compare the measured and estimated height and the BMI derived from measured and estimated measurements, in the elderly according to the functional classification. A cross-sectional study with secondary data was carried out with elderly people in outpatient care, classified as robust, at risk of fragility, and fragile. Estimated height was calculated from knee height and estimated BMI with the estimated height. In the statistical analysis, ANOVA test and the Hochberg's GT2 test were applied, when comparing the 3 categories of functionality. The sample consisted of 116 elderly people with a mean age of 83.6 (8.5), mostly women 73.0 (62.9%), and classified as robust 54.0 (46.6%). The difference found for height was 4.2 (5.2), 4.6 (4.9), 7.1 (5.3) cm respectively for the robust, at risk of fragility, and fragile. The difference between the robust and the fragile was significant (p=0.033). A similar result was obtained by assessing the difference between BMIs (p=0.019). The study showed that frail elderly people have greater differences between measured and estimated height, in comparison with robust people, suggesting that frail elderly people have more height impairment, which can directly impact nutritional diagnosis. Caution is suggested in the use of measured height in the elderly, particularly in the frail.

Palavras-chave: Height; Elderly; Fragility; Healthy aging.

INTRODUCTION

Measured height and weight represent the main anthropometric measures used in the assessment of nutritional status, mainly as components for the calculation of body mass index (BMI), although the accuracy of BMI is being questioned in clinical practice1, especially in the elderly2. In senescence, changes in body composition occur that cannot be detected by BMI, such as a reduction in muscle tissue, body water, bone mineral density, subcutaneous adipose tissue, and accumulation of fat in the central and intramuscular region2,3,4,5; changes that are often masked when body weight remains stable or increases6.

On the other hand, BMI continues to be
widely used in the evaluation of malnutrition and obesity due to its practicality, low cost, and relationship with chronic non-communicable diseases, including in the elderly. The Global Leadership Initiative on Malnutrition (GLIM) recently published a global consensus of indicators for assessing malnutrition in the clinical practice of adults and the elderly and included low BMI as a phenotypic criterion to be considered in diagnosis.7

Thus, measures of weight and height must be reliable in order to avoid bias distortions in the calculation of BMI. One of the factors that can influence the result of this index is the reduction in height that happens throughout life.8,9,10 Deformities in the spine associated with changes in bone metabolism in the vertebrae can cause a reduction in height as one ages. It is estimated that there is an average loss of 1 cm per decade starting from the age of 40, although there is no consensus in the literature regarding these changes. Longitudinal studies suggest that the reduction is greater in women (5 cm) than in men (3 cm) up to 70 years of age, but in octogenarians the differences between the sexes are less significant.10,11

The literature suggests that the existing differences between the estimated and measured height in the elderly occur due to the decrease in height12,13,14, and although this is more pronounced with age10,11,15,16, the relationship with functional decline is not clear of this. As a consequence of the height reduction observed in the elderly, a false increase in BMI of 0.7 and 1.6 kg/m², respectively, in men and women in their seventies, in the absence of significant weight changes, as well as 1.4- 1.5 and 2.5-2.6 kg/m² in octogenarian men and women, we can find respectively.10 Therefore, in cases where the measured height is lower than the actual height, the BMI may overestimate overweight or underestimate malnutrition.17,18

Elderly people have different levels of functionality and the hypothesis is that anthropometric changes must be associated with different degrees of functionality. Robust elderly people are independent and autonomous individuals, without functional disability. Those considered at risk of frailty are the elderly who are independent and autonomous; however, they have chronic health conditions, such as sarcopenia or multiple comorbidities that induce functional decline.19

The frail elderly have an established functional decline, are partially or totally dependent, and have a loss of autonomy due to the presence of single or multiple disabilities.19,20

Therefore, it is important to look for ways to predict height that are not affected by compression of the vertebral discs and postural problems present in the elderly. One way is to estimate height by measuring knee height,12,17,18,21,22,23,24 a quick method that is easy to apply, as it uses only one measurement and can be performed on an individual with standing and walking difficulties, and practically does not change with age.11 Other methods of estimating height such as self-reported and demispan height are available but have some limitations. The literature shows that self-reported height tends to be overestimated in the elderly.9 On the other hand, demispan, in addition to overestimating height, is not applicable in individuals with chronic pain and movement limitations in the upper limbs, conditions that are common in the elderly,25, 26,27 especially in the fragile.

In view of the scarcity of studies found evaluating the estimated height in elderly people according to the classification of their functionality, and based on the hypothesis that frail elderly people have greater height decline when compared to non-frail elderly people, this study aimed to compare height and BMI derived from measured and estimated height in the elderly.
METHODOLOGY

Study design
This was a cross-sectional study with secondary data, carried out with individuals seen at the multiprofessional outpatient clinic of the Jenny de Andrade Faria Institute at the Hospital das Clínicas of the Federal University of Minas Gerais (UFMG), evaluated from May 2015 to April 2019. The study was approved by the Teaching and Research Management of Hospital das Clínicas, UFMG and by the Research Ethics Committee of the Federal University of Minas Gerais, under number 80295616.1.0000.5149.

Participants
The sample consisted of individuals of both sexes, non-institutionalized, aged 60 years or older. Elderly people classified as robust, at risk of fragility, and fragile, according to the Visual Clinical-Functional Frailty Scale, were included. The use of this method is consistent with the World Health Organization’s International Classification of Functionality (ICF) which emphasizes functionality. This scale is based on functionality (dependence or independence for basic instrumental, or advanced activities of daily living) and the presence of risk factors for functional decline, diseases, and comorbidities. The elderly were classified into strata (1 to 10) considering the progressive reduction in vitality associated with the progressive increase in frailty, as well as in 3 categories (robust elderly, elderly at risk of frailty, and frail elderly). Robust elderly people comprise strata 1 to 3, those at risk of fragility, strata 4 and 5, and the fragile strata 6 to 10.

The robust elderly are those who are functionally independent, who may or may not have diseases. The elderly at risk of frailty, are in a dynamic state between senescence and senility, resulting in the presence of imminent functional decline. Fragile elderly people have reduced homeostatic reserve and/or the ability to adapt to biopsychosocial aggressions and, consequently, reduced autonomy and independence.

The study excluded individuals whose physical condition did not allow a complete anthropometric assessment, with edema and amputations, and individuals with incomplete anthropometric data.

Variables and measurements
Demographic, health, and anthropometric data were collected from nutrition records. Regarding demographic variables, age, sex, and education (in years of study) were analyzed. For health variables, the classification of functionality and the main health problems were assessed. The functional classification of the elderly according to the Visual Clinical-Functional Frailty Scale, described above, was categorized into robust, at risk of fragility, and fragile. Concerning health problems, the most prevalent diseases in the studied sample were evaluated.

Regarding anthropometric measurements, data on height, weight, and knee height were collected. Height was measured on a stadiometer coupled to a Balmak® mechanical scale, the ruler rod was positioned on top of the individual's head. Their head was in the Frankfurt position, upright within the elderly's possibilities, with the palms of the hands turned toward the body, with legs and feet parallel and bare. Weight was measured with the individual standing, positioned in the center of the base of the scale and barefoot. The knee height was obtained from the left leg with the individual sitting in a chair, with both knees and ankles flexed at 90° using an inextensible measuring tape, with a precision of 1mm positioned from the heel to the upper edge of the patella. The height estimated in centimeters was obtained using the formulas described in Chart 1.
Table 1 – Formulas by Chumlea et al. (1985) for the elderly over 60 years\(^2\).

Gender	Formula
Male	\((2.02 \times \text{knee height}) - (0.04 \times \text{age (years)}) + 64.19\)
Female	\((1.83 \times \text{knee height}) - (0.24 \times \text{age (years)}) + 84.88\)

BMI was calculated by dividing weight in kilograms by height in meters, squared. The cutoff points adopted were those proposed by Lipschitz for the elderly, underweight (<22 kg/m\(^2\)), normal weight (22-27 kg/m\(^2\)) and overweight (>27 kg/m\(^2\)) 29. The estimated BMI was calculated from the measured weight and the estimated height.

Statistical analysis

Data analysis was performed using the Statistical Package for the Social Sciences (SPSS Inc., Chicago, Illinois, United States) version 19.0. Continuous variables were tested for normality using the Shapiro-Wilk test and the homogeneity of variances using the Levene test. All variables studied showed normal distribution. Quantitative variables were described as mean and standard deviation when symmetric, and median and interquartile range when asymmetric. Categorical variables were described in absolute and relative frequency. The independent quantitative variables were compared between measured and estimated height as well as measured and estimated BMI by Student’s t-test for independent samples. Categorical variables were compared between BMI categories using Pearson’s chi-squared test or Fisher’s exact test, according to the proportion of expected frequencies less than 5. The analysis of variance comparing the differences between height and BMI (both measured and estimated) according to the three categories of functionality, was carried out through the analysis of variance test (ANOVA) and Hochberg’s GT2 test of multiple comparisons of means. Values of p <0.05 were considered significant.

RESULTS

The sample consisted of 116 elderly people, the majority of whom were female 73 (62.9%). The individuals’ age ranged from 63 to 107 years with a mean of 83.6 (8.5) years. Most elderly people were classified as robust 54 (46.6%) and 77 (67.0%) had systemic arterial hypertension (Table 1).

As shown in table 2, the estimated height was greater than that measured in all categories of functionality, (p <0.001). The difference in BMI was also significant, however the BMI calculated with estimated height was lower than the BMI calculated with measured height, in all categories of functionality (p <0.001).

The difference found for height was 4.2 (5.2), 4.6 (4.9), 7.1 (5.3) centimeters (cm), respectively for the robust, at risk of fragility, and fragile elderly. The difference being
between robust and fragile elderly was significant (p=0.033). A similar result was obtained by assessing the difference between BMI calculated with measured and estimated height measurements (p=0.019), as shown in Table 3.

Table 1 – Characteristics of the elderly population studied. Belo Horizonte, MG, 2015-2019.

Studied variables	Studied elderly
Age according to functionality Mean (SD)	
Robust	85.9 (5.6)
Risk of Fragility	88.5 (6.6)
Fragile	77.0 (9.1)
Gender N (%)	
Male	43 (37.1)
Female	73 (62.9)
Complete years of schooling Mean (SD)	2.9 (3.8)
Functionality N (%)	
Robust	54 (46.6)
Risk of Fragility	24 (20.7)
Fragile	38 (32.7)
Main health problems N (%)	
Systemic arterial hypertension	77 (67.0)
Diabetes Mellitus	27 (23.3)
Neurological Diseases	21 (18.1)
Osteoporosis	21 (18.1)
Joint disease	12 (10.3)

DP: desvio padrão; N: número

Table 2 – Distribution of averages of the measured and estimated heights, and measured and estimated BMIs, according to the functionality of the elderly. Belo Horizonte, MG, 2015-2019.

Functionality	n	Height measured\(^a\) (cm)	Height estimated\(^a\) (cm)	P Value\(^1\)	BMI measured\(^a\) Kg/m\(^2\)	BMI measured\(^a\) Kg/m\(^2\)	P Value\(^1\)
Robust	54	153.2 (8.4)	157.4 (9.3)	<0.001	26.4 (4.1)	25.1 (4.4)	<0.001
Risk of Fragility	24	151.9 (11.0)	156.5 (10.3)	<0.001	23.2 (4.6)	21.8 (4.2)	<0.001
Fragile	38	152.6 (8.7)	159.7 (7.8)	<0.001	26.5 (7.7)	24.2 (6.7)	<0.001

BMI, body mass index. a) mean (standard deviation). 1- Student's t-test. Measured BMI calculated with measured weight and height data. Estimated BMI calculated with measured weight and estimated height.
The present study shows that the estimated height differed from the measured height, with the estimated average height being greater than the measured one, a finding that is similar to that of other studies that used the same height estimation methodology as this study. The work of Closs et al. evaluated elderly people aged 60 to 93 years and found an average difference between the estimated and measured height of +3 cm. Fogal et al. found an average difference of +2 cm for females and found no difference between males.

Several factors can contribute to this difference. Malnutrition, sarcopenia, and osteoporosis are some examples. These disorders are caused, among others, by inadequate lifestyle and eating habits that can, in the long term, directly or indirectly impact the postural control of the elderly, making the measured height not a reliable measurement.

In this study, the estimated heights were higher than those measured in all categories of functionality, however the difference was greater in the frail elderly (+7.1 cm) compared to the robust elderly (+4.2 cm). As for the BMI, the estimated was lower than that derived from the measured height, mainly in the frail elderly (-2.4 kg/m²), in comparison with the robust (-1.7 kg/m²). The present study did not find other studies in the literature with this theme that took into account the functional classification of the elderly, a fact that makes it impossible to compare the results found.

However, understanding the different characteristics of these groups can help us evaluate the results found. Considering the Activities of Daily Living (ADLs), the robust individuals walk without difficulties and, therefore, they have no greater impediments to remain active. They usually have a dietary pattern that keeps them healthy and they display comorbidities of low complexity. The fragile, however, have a pronounced functional decline which makes them partially or totally dependent for basic, instrumental, and advanced ADLs. In general, they are not very active and are affected by diseases that directly impact their quality of life. It is believed that these factors may justify the

Table 4 – BMI classification as thin and overweight, according to the functionality of the elderly. Belo Horizonte, MG, 2015-2019.

Functionality	N	BMI measureda	BMI estimateda	P value1	BMI measureda	BMI estimateda	P Value1
Robust	54	10 (18.5)	13 (24.1)	<0.001	26 (48.1)	17 (31.5)	<0.001
Risk of Fragility	24	7 (29.2)	12 (50.0)	<0.001	4 (16.7)	3 (12.5)	<0.001
Fragile	38	13 (34.2)	14 (36.8)	<0.001	17 (44.7)	14 (36.8)	<0.001

a) number (percentage). 1- Chi-squared test.
significant difference found between the estimated and measured heights of these two functional categories of the elderly.

The literature shows that older elderly people have greater postural impairment than younger elderly people10,11,15. However, in this study it was found that the difference in height was more pronounced in the fragile, even the fragile elderly with a lower average age than the robust, suggesting that this is more related to frailty and not to the age of individuals. This corroborates with the statement that the reduction in height should not be explained only by senescence, but by deteriorated health conditions31 present in fragile elderly people. Factors of a social, biological order and the individual's nutritional condition may positively or not interfere in the reduction of height with aging31.

In addition, 18\% of the elderly people studied had osteoporosis and 34\% of fragile elderly people had a measured BMI of less than 22.0 kg/m2, situations associated with a possible reduction in measured height31,32. With aging, men and women have a decrease in the synthesis of estrogen, a hormone that is related to bone mass health. In males, the decrease in this hormone occurs gradually and at older ages. In women, however, this reduction occurs abruptly soon after the onset of menopause12.

Thus, it is believed that the height measured in fragile elderly is not the appropriate measurement to be used in clinical practice, due to the difficulty to position them according to the recommends of the World Health Organization28. Fragile elderly people, usually, have difficulties to stand on the scale, need to spread their legs to maintain balance, and are unable to maintain their upright posture due to postural changes.

The difference found in the height of the elderly reflected directly in the calculation of BMI. The measured BMI underestimated thinness in all functional categories. There was also an overestimation of overweight. Other studies have also found differences in BMI derived from estimated measurements14,15, but these did not consider the functionality of individuals, making it impossible to compare the results. Gaviilidou et al.15 observed that the difference in BMI overestimated obesity in younger elderly people and underestimated for older elderly people. In the sample by Fogal et al.14, obesity was underestimated in women. This study attributes these differences to the postural changes present in the elderly, as previously discussed.

BMI remains a widely used tool in clinical practice for diagnosing malnutrition and obesity and helps in the diagnosis of sarcopenia, in addition to being used in equations to define drug doses7,31,34,35. Therefore, the diagnosis derived from the wrong BMI can harm the individual's health. There is a need for studies that propose formulas that estimate the stature of elderly Brazilians and that take into account the individual's functionality for more accurate results, thus, avoiding wrong nutritional diagnoses.

Some limitations must be considered in the present study. The formula used in this study was developed from a sample of Caucasian individuals. Studies show that there can be precision gaps when the formula is used in different populations14. Another limitation was that the sample made it impossible to subdivide the functionality categories by sex and age groups. The robust elderly, coming from the healthy aging clinic, have as inclusion criteria only elderly people aged over 80 years, so this functional category did not include younger elderly people.
CONCLUSION

The estimated height was greater than that measured in all categories of functionality. The fragile elderly have greater differences between the measured and estimated heights, compared to the robust, suggesting that the fragile elderly have greater height impairment which can directly impact the nutritional diagnosis. Caution is suggested in the use of the height measured in the elderly and the use of the estimated height in the assessment of nutritional status is recommended, particularly in the fragile elderly individuals.

REFERENCES

1. Gonzales MC, Correia MITD, Heymsfield, SD. A requiem for BMI in clinical setting. Curr Opin Clin Nutr Metab Care 2017; 20:314–321.
2. Serván PR, Poyatos RS, Rodríguez JS, Gómez-Candela C, Luna PPG, Serra-Majem L. Special considerations for nutritional studies in elderly. Nutr Hosp. 2015; 31:84-90.
3. Fantin F, Di Francesco V, Fontana G, Zivelonghi A, Bissoli I, Zoico E, et al. Longitudinal body composition changes in old men and women: interrelationships with worsening disability, J Gerontol A Biol Sci Med Sci 2007; 62:1375-1381.
4. Reinders I, Murphy RA, Koster A, Brouwer IA, Visser M, García ME, et al. Muscle quality and muscle fat infiltration in relation to incident mobility disability and gait speed decline: the Age, Gene/Environment Susceptibility-Reykjavik Study. J Gerontol A Biol Sci Med Sci 2015; 70:1030–1036.
5. Almeida MF, Marucci MFN, Gobbo LA, Ferreira LS, Dourado DAQS, Duarte YAO, et al. Anthropometric Changes in the Brazilian Cohort of Older Adults: SABE Survey (Health, Well-Being, and Aging). J Obes 2013; 2013:695496.
6. Hughes VA, Roubenoff R, Wood M, Frontera WR, Evans WJ, Singh MAF. Anthropometric assessment of 10-y changes in body composition in the elderly. Am J Clin Nutr 2004; 80:475–82.
7. Jensen GL, Cederholm T, Correia MITD, Gonzalez MC, Fukushima R, Higashiguchi T, et. AL. GLIM Criteria for the Diagnosis of Malnutrition: A Consensus Report From the Global Clinical Nutrition Community. JPEN J Parenter Enteral Nutr 2018; 38:1-9.
8. García-Peña C, Pérez-Zepeda MU. Validity of Knee-Estimated Height to Assess Standing Height in Older Adults: A Secondary Longitudinal Analysis of the Mexican Health and Aging Study. J Nutr Health Aging. 2017; 21:262–265.
9. Butler R, McClunkey J, Morreale-Parker C, Marsh W, Rennie KL. BMI calculation in older people: The effect of using direct and surrogate measures of height in a community-based setting. Clin Nutr ESPEN 2017; 22:112–115.
10. Sorkin JD, Muller DC, Andres R. Longitudinal change in height of men and women: Implications for interpretation of body mass index. Am J Epidemiol. 1999; 150:969-977.
11. Baumgartner RN, Stauber PM, McHugh D, Koehler KM, Garry PJ. Cross-sectional Age Differences in Body Composition in Persons 60 + Years of Age. J Gerontol A Biol Sci Med Sci 1995; 50:M307-M316.
12. Fried H, Adolfsen ET, Rosenblad A, Nydahl M. Agreement between different methods of measuring height in elderly patients. J Hum Nutr Diet. 2013; 26:504-11.
13. Closs VE, Feoli AM, Shwanke CH. Altura do joelho como medida alternativa confiável na avaliação nutricional de idosos. Rev Nutr. 2015; 28:475-484.
14. Fogal AS, Franceschini S do C, Priore SE, Cotta RM, Ribeiro AQ. Stature estimation using the knee height measurement amongst Brazilian elderly. Nutr Hosp. 2015; 31:829-834.
15. Gavrilidou NN, Pihlgård M, Elmståhl I. High degree of BMI misclassification of malnutrition among Swedish elderly population: Age-adjusted height estimation using knee height and demispan. Eur J Clin Nutr. 2015; 69:565-571.
16. Carvalho EMS, Mota SPF, Silva GFP, Filho JMC. A postura do idoso e suas implicações clínicas. Geriatr Gerontol. 2011; 5:170-174.
17. Karadag B, Ozturk AO, Sener N, Altuntas Y. Use of knee height for the estimation of stature in elderly Turkish people and their relationship with cardiometabolic risk factors. Arch Gerontol Geriatr. 2012; 54:82-89.
18. Souza R, Fraga JS, Gottschall CBA, Busselino FM, Rabito EI. Avaliação antropométrica em idosos: estimativas de peso e altura e concordância entre classificações de IMC. Rev Bras Geriatr Gerontol 2013; 16:81-90.
19. Moraes EN, Moraes FM, Santos RR, Bicalho MAC, Machado CJ, Romero DE. A new proposal for the clinical-functional categorization of the elderly: visual scale of frailty (Vs- Frailty). J Aging Res Clin Practice 2016; 5:24-30.
20. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gott diener J et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001; 56:146-156.
21. Acuña K, Cruz T. Nutritional assessment of adults and elderly and the nutritional status of the Brazilian population. Arq Bras Endocrinol Metabol. 2004; 48:345-61.
22. Chumlea WC, Roche AF, Steinbaugh ML. Estimating stature from knee height for persons 60 to 90 years of age. J Am Geriatr. Soc. 1985; 33:116-120.
23. Varela FR, Ciconelli RM, Campolina AG, Soares PC. Quality of life evaluation of frail elderly in Campinas, São Paulo. Rev Assoc Med Bras. 2015; 61:423-30.
24. Melo APF, Salles RK, Vieira FGK, Ferreira MG Métodos de estimativa de peso corporal e altura em adultos hospitalizados: uma análise comparativa. Rev Bras Cineantropom Desemp Hum. 2014; 16:475-484.
25. Sant’Anna BC, Lage GM, Dores SMC, Velarde LGC, Barroso SG, Rocha GS. Análise de concordância entre métodos para estimativa da estatura de idosos atendidos em ambulatório de nutrição. Rev. Bras. Geriatr. Gerontol. 2018; 21:743-748.
26. Rech CR, Petroski EL, Böing O, Júnior RJB, Soares MR. Concordância entre as medidas de peso e estatura mensuradas e auto-referidas para o diagnóstico do estado nutricional de idosos residentes no sul do Brasil. Bras Med Esport. 2008; 14:127-131.
27. Bolton-Smith C, Woodward M, Tunstall-Pedoe H, Morrison C. Accuracy of the estimated prevalence of obesity from self reported height and weight in an adult Scottish population. J Epidemiol Community Health 2000; 54:143-8.
28. World Health Organization. Physical status: the use and interpretation of anthropometry. Genebra, 1995.452p.
29. Lipschitz DA. Screening for nutritional status in the elderly. Primary Care. 1994; 21:55-67.
30. Lorenzo-López L, Maseda A, de Labra C, Regueiro-Folgueira L, Rodríguez-Villamil JL, Millán-Calenti JC. Nutritional determinants of frailty in older adults: A systematic review. BMC Geriatr 2017; 17:108-121.
31. Fernihough A, McGovern ME. Physical stature decline and the health status of the elderly population in England. Econ Hum Biol. 2015; 16:30-44.
32. Cauley JA. Estrogen and bone health in men and women. Steroids. 2013; 99:11-15
33. Naruishi K, Yamoto H, Kido JI. Clinical effects of low body mass index on geriatric status in elderly patients. Exp Gerontol. 2018; 110:86-91.
34. Beaudart C, McCluskey E, Bruyère O, Cesari M, Rolland Y, Rizzoli R, et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 2016; 16:170-180.
35. Ix JH, Wassel CL, Stevens LA, Beck GL, Froissart M, Navis G, et al. Equations to Estimate Creatinine Excretion Rate: The CKD Epidemiology Collaboration. Clin J Am Soc Nephrol. 2011; 6:184-191.
Comparação da estatura aferida e estimada em idosos com diferentes classificações funcionais

Resumo

Um dos efeitos do envelhecimento sobre o organismo é a redução da estatura, podendo superestimar o índice de massa corporal (IMC). Hipotetiza-se que os idosos frágeis são mais afetados por este declínio estatural, no entanto isto não está claro na literatura. O objetivo desse estudo foi comparar a estatura aferida e estimada e, o IMC derivados de medidas aferidas e estimadas, em idosos de acordo com a classificação funcional. Estudo transversal com dados secundários, realizado com idosos em atendimento ambulatorial, classificados em robustos, em risco de fragilização e frágeis. A estatura estimada foi calculada a partir da altura de joelho e o IMC estimado com a estatura estimada. Na análise estatística, teste ANOVA e o teste Hochberg's GT2 foram aplicados, na comparação das 3 categorias de funcionalidade. A amostra foi composta por 116 idosos com média de idade 83,6 (8,5), maioria mulheres 73,0 (62,9%) e classificados como robustos 54,0 (46,6%). A diferença encontrada para estatura foi 4,2 (5,2), 4,6 (4,9), 7,1 (5,3) cm respectivamente para os idosos robustos, em risco de fragilização e frágeis (p=0,033), sendo esta diferença entre os robustos e os frágeis. Resultado semelhante foi obtido avaliando-se a diferença entre os IMC’s (p=0,019). O estudo mostrou que os idosos frágeis têm maiores diferenças entre a estatura aferida e a estimada, em comparação com os robustos, sugerindo que os idosos frágeis têm mais comprometimento da estatura o que pode impactar diretamente no diagnóstico nutricional. Suger-se cautela na utilização da estatura aferida em idosos particularmente nos frágeis.

Palavras-chave: Estatura; Idoso; Fragilidade; Envelhecimento saudável.

INTRODUÇÃO

A estatura e o peso aferido representam as principais medidas antropométricas utilizadas na avaliação do estado nutricional, principalmente como componentes para o cálculo do índice de massa corporal (IMC), ainda que a acurácia do IMC esteja sendo questionada na prática clínica, principalmente em idosos. Na senescência ocorrem alterações na composição corporal não detectáveis pelo IMC, como a redução de tecido muscular, da água corporal, da densidade mineral óssea, do tecido adiposo subcutâneo e acúmulo de gordura na região central e intramuscular, alterações estas muitas vezes mascaradas quando o peso corporal se mantém estável ou aumenta.

Por outro lado, o IMC continua sendo amplamente utilizado na avaliação da desnutrição e obesidade por sua praticidade, baixo custo e relação com doenças crônicas não transmissíveis, inclusive em idosos. Recentemente o Global Leadership...
Initiative on Malnutrition (GLIM) publicou um consenso global de indicadores para avaliação da desnutrição na prática clínica de adultos e idosos, e incluiu o baixo IMC como um critério fenotípico a ser considerado no diagnóstico.

Assim, medidas de peso e estatura devem ser fidedignas para não haver vieses no cálculo do IMC. Um dos fatores que pode influenciar o resultado deste índice é a redução da estatura que acontece ao longo da vida. Deformidades na coluna vertebral associadas às alterações no metabolismo ósseo nas vertebras podem ocasionar redução na estatura ao envelhecer. Estima-se que haja uma perda média de 1 cm por década a partir dos 40 anos, apesar de não haver consenso na literatura a respeito dessas alterações. Estudos longitudinais sugerem que a redução é maior em mulheres (5 cm) do que em homens (3 cm) até 70 anos, mas em octogenários as diferenças entre os sexos são menos significativas.

A literatura sugere que as diferenças existentes entre a estatura estimada e aferida em idosos ocorrem em função da diminuição da estatura e apesar desta ser mais pronunciada com a idade, não é clara a relação desta com o declínio funcional. Como consequência da redução da estatura observada em idosos pode-se ter um aumento falso no IMC de 0,7 e 1,6 kg/m², respectivamente, em homens e mulheres septuagenários na ausência significativa de alteração de peso e de 1,4-1,5 e 2,5-2,6 kg/m² em homens e mulheres octogenários.

Sendo assim, em casos em que a estatura aferida é inferior a estatura real, o IMC pode superestimar o excesso de peso ou subestimar a desnutrição.

Idosos apresentam diferentes níveis de funcionalidade e a hipótese é de que as alterações antropométricas devem estar associadas a diferentes graus de funcionalidade. Idosos robustos são indivíduos independentes e autônomos, sem incapacidade funcional. Os considerados em risco de fragilização são os idosos, independentes e autônomos, porém, apresentam condições crônicas de saúde, como sarcopenia ou comorbidades múltiplas que induzem o declínio funcional. Os idosos frágeis possuem declínio funcional estabelecido, são parciais ou totalmente dependentes e apresentam perda de autonomia, em função da presença de incapacidades únicas ou múltiplas.

Portanto é importante buscar formas de predição de estatura que não sofram interferência da compressão dos discos vertebrais e de problemas posturais presentes em idosos. Uma forma é estimar a estatura por meio da medida da altura de joelho, método rápido, de fácil aplicabilidade, pois utiliza apenas uma medida e pode ser realizada em indivíduo com dificuldade de ficar de pé e deambular e praticamente não altera com a idade.

Outros métodos de estimativa de estatura como estatura autorreferida e semi-envergadura estão disponíveis, porém possuem algumas limitações. A literatura mostra que a estatura autorreferida tem tendência a superestimação em idosos. Já a semi-envergadura, além de superestimar a estatura, não é aplicável em indivíduos com dor crônica e limitações de movimento em membros superiores, condições essas comuns em idosos, principalmente nos frágeis.

Diante da escassez de estudos encontrados avaliando a estatura estimada em idosos de acordo com classificação de sua funcionalidade, e a partir da hipótese de que idosos frágeis tem maior declínio estatural quando comparados a idosos não frágeis, este estudo teve como objetivo comparar a estatura e o IMC derivados de medidas aferidas e estimadas em idosos.
METODOLOGIA

Desenho do estudo
Trata-se de um estudo transversal com dados secundários, realizado com indivíduos atendidos no ambulatório multiprofissional do Instituto Jenny de Andrade Faria do Hospital das Clínicas da Universidade Federal de Minas Gerais (UFMG), avaliados no período de maio 2015 a abril de 2019. Este estudo foi aprovado pela Gerência de Ensino e Pesquisa do Hospital das Clínicas da UFMG e pelo Comitê de Ética em Pesquisa da Universidade Federal de Minas Gerais, sob o número 80295616.1.0000.5149.

Participantes
A amostra foi composta por indivíduos de ambos os sexos, não institucionalizados, com idade maior ou igual a 60 anos. Foram incluídos idosos classificados como robustos, em risco de fragilização e frágeis segundo a Escala Visual de Fragilidade Clínico-funcional. A utilização desse método está em coerência com a Classificação Internacional de Funcionalidade (CIF) da Organização Mundial de Saúde cuja ênfase deve ser na funcionalidade. Essa escala baseia-se na funcionalidade (dependência ou independência para atividades básicas, instrumentais ou avançadas de vida diária) e na presença de fatores de risco para o declínio funcional, doenças e comorbidades. Os idosos são classificados em estratos (1 a 10) considerando-se a redução progressiva da vitalidade associada ao aumento progressivo da fragilidade e em 3 categorias (idoso robusto, idoso em risco de fragilização e idoso frágil). Os idosos robustos compreendem os estratos de 1 a 3, os em risco de fragilização, os estratos 4 e 5, e os frágeis os estratos de 6 a 10.

Os idosos robustos são aqueles independentes funcionais, que podem apresentar doenças ou não. Os idosos em risco de fragilização são independentes funcionais, todavia, encontram-se em um estado dinâmico entre senescência e senilidade, resultando na presença de declínio funcional iminente. Os idosos frágeis apresentam redução da reserva homeostática e/ou da capacidade de adaptação às agressões biopsicossociais e, consequentemente redução da autonomia e independência.

Foram excluídos do estudo os indivíduos cuja condição física não permitiu realizar avaliação antropométrica completa, com edema e amputações e idosos com dados antropométricos incompletos.

Variáveis e medidas
Os dados demográficos, de saúde e antropométricos foram coletados dos prontuários de nutrição. Em relação às variáveis demográficas analisaram-se idade, sexo e escolaridade (em anos de estudo). Para as variáveis de saúde, avaliaram-se a classificação da funcionalidade e os principais problemas de saúde. A classificação funcional dos idosos de acordo com a Escala Visual de Fragilidade Clínico-funcional, descrita acima, foi categorizada em: idosos robustos, em risco de fragilização e frágeis. Quanto os problemas de saúde foram avaliados as doenças de maior prevalência na amostra estudada.

Em relação às medidas antropométricas, foram coletados dados de estatura, peso e altura do joelho. A estatura foi aferida em estadiômetro acoplado em uma balança mecânica da marca Balmak®, a haste da régua foi posicionada no topo da cabeça do indivíduo, a cabeça em posição de Frankfurt, posição ereta dentro das possibilidades do idoso, com as palmas das mãos voltadas para o corpo, pernas e pés paralelos e descalços. O peso foi aferido com o indivíduo de pé, posicionado no centro da base da balança e descalço. A altura do joelho foi obtida da perna esquerda com o indivíduo sentado em cadeira, com os dois joelhos e tornozelos flexionados a 90º utilizando fita métrica inextensível, com precisão de 1mm posicionada do calcanhar à borda superior da patela. A estatura estimada em centímetros foi obtida por meio das fórmulas descritas no Quadro 1.
RESULTADOS

A amostra foi composta por 116 idosos, sendo a maioria do sexo feminino 73 (62,9%). A idade dos indivíduos variou de 63 a 107 anos com média 83,6 (8,5) anos. A maioria dos idosos foi classificada como robusta 54 (46,6%) e 77 (67,0%) possuíam hipertensão arterial sistêmica (Tabela 1).

Quadro 1 – Fórmulas de Chumlea et al. (1985) para idosos acima de 60 anos²².

Sexo	Fórmula
Maculino	(2,02 x altura do joelho) – (0,04 x idade (anos)) + 64,19
Femino	(1,83 x altura do joelho) – (0,24 x idade (anos)) + 84,88

O cálculo do IMC foi realizado a partir da divisão do peso em quilogramas pela estatura em metros, elevada ao quadrado. Os pontos de corte adotados foram os propostos por Lipschitz para idosos, baixo peso (<22 kg / m²), normal (22-27 kg / m²) e sobrepeso (> 27 kg / m²)²⁹. O IMC estimado foi calculado a partir do peso aferido e da estatura estimada.

Análise estatística

A análise de dados foi realizada por meio do Statistical Package for the Social Sciences (SPSS Inc., Chicago, Illinois, Estados Unidos) versão 19.0. As variáveis contínuas foram testadas quanto a sua normalidade por meio do teste de Shapiro-Wilk e a homogeneidade das variâncias pelo teste de Levene. Todas as variáveis estudadas apresentaram distribuição normal. As variáveis quantitativas foram descritas em média e desvio padrão quando simétricas e mediana e intervalo interquartil quando assimétricas. As variáveis categóricas foram descritas em frequência absoluta e relativa. As variáveis quantitativas independentes foram comparadas entre estatura aferida e estimada e IMC aferido e estimado pelo teste de Student para amostras independentes. As variáveis categóricas foram comparadas entre as categorias de IMC pelo teste de Qui-quadrado de Pearson ou Exato de Fisher, de acordo com a proporção de frequências esperadas menores que 5. A análise de variância comparando as diferenças entre as estaturas e IMC’s (ambos aferidos e estimado) segundo as três categorias de funcionalidade, foi realizada por meio do teste de análise de variância (ANOVA) e teste de múltiplas comparações de médias Hochberg’s GT2. Consideraram-se significativos valores p<0,05.

Conforme demonstrado na tabela 2, a estatura estimada foi maior do que a aferida em todas as categorias de funcionalidade, (p<0,001). Também a diferença no IMC foi significativa, no entanto o IMC calculado com estatura estimada foi menor do que o IMC calculado com estatura aferida, em todas as
categorias de funcionalidade (p<0,001).

A diferença encontrada para estatura foi 4,2 (5,2), 4,6 (4,9), 7,1 (5,3) centímetros (cm) respectivamente para os idosos robustos, em risco de fragilização e frágeis (p=0,033), sendo esta diferença entre os robustos e os frágeis. Resultado semelhante foi obtido avaliado-

Tabela 1 – Características da população de idosos estudados. Belo Horizonte / MG, 2015-2019.

Variáveis estudadas	Idosos estudados
Idade segundo funcionalidade Média (DP)	
Robusto	85,9 (5,6)
Em risco Fragilização	88,5 (6,8)
Frágil	77,0 (9,1)
Sexo N (%)	
Masculino	43 (37,1)
Feminino	73 (62,9)
Anos completos de escolaridade Média (DP)	2,9 (3,8)
Funcionalidade N (%)	
Robusto	54 (46,6)
Em risco Fragilização	24 (20,7)
Frágil	38 (32,7)
Principais problemas de saúde N (%)	
Hipertensão arterial sistêmica	77 (67,0)
Diabetes Mellitus	27 (23,3)
Doenças Neurológicas	21 (18,1)
Osteoporose	21 (18,1)
Doença articulares	12 (10,3)

DP: desvio padrão; N: número

Tabela 2 – Distribuição das médias das estaturas aferida e estimada e IMC aferido e estimado, de acordo com a funcionalidade dos idosos. Belo Horizonte / MG, 2015-2019.

Funcionalidade	n	Estatura aferida* (cm)	Estatura estimada* (cm)	Valor de P	IMC aferido* Kg/m²	IMC estimado* Kg/m²	Valor de P
Robusto	54	153,2 (8,4)	157,4 (9,3)	<0,001	26,4 (4,1)	25,1 (4,4)	<0,001
Risco de Fragilização	24	151,9 (11,0)	156,5 (10,3)	<0,001	23,2 (4,6)	21,8 (4,2)	<0,001
Frágil	38	152,6 (8,7)	159,7 (7,8)	<0,001	26,5 (7,7)	24,2 (6,7)	<0,001

IMC, Índice de massa corporal. a) média (desvio padrão). 1- Teste t de Student. IMC aferido calculado com dados de peso e estatura aferidos. IMC estimado calculado com peso aferido e estatura estimada.

se a diferença entre o IMC calculado com medidas aferidas e com estatura estimada (p=0,019), conforme apresentado na Tabela 3.

De acordo com a Tabela 4, o IMC aferido superestimou a prevalência de sobrepeso e subestimou a magreza em todas as categorias de funcionalidade (p<0,001). Sendo que 9 (7,75%) e 13 (11,2%) dos idosos passaram a ser classificados com magreza e sem sobrepeso, respectivamente quando utilizado o IMC estimado.

Tabela 3 – Distribuição das diferenças entre a estatura estimada e a aferida e diferença entre o IMC estimado e aferido, de acordo com a funcionalidade dos idosos. Belo Horizonte / MG, 2015-2019.

Funcionalidade	Diferença de Estatura	Valor de P	Diferença de IMC	Valor de P
Robusto	4,2 (5,2)	0,033	-1,7 (1,7)	0,019
Risco de Fragilização	4,6 (4,9)		-1,0 (2,2)	
Frágil	7,1 (5,3)		-2,4 (3,1)	

IMC, Índice de massa corporal. a) média (desvio padrão). 1- Teste de ANOVA e teste de múltiplas comparações de médias Hochberg’s GT2 indicou diferença significativa entre os robustos e os frágeis, tanto na diferença de estatura quanto na diferença de IMC.

Tabela 4 – Diferença (%) de classificação quando IMC aferido e IMC estimado foram utilizados.

Funcionalidade	Sobrepeso	Magreza
Robusto	9 (7,75%)	0 (%)
Risco de Fragilização	13 (11,2%)	0 (%)

IMC, Índice de massa corporal. a) média (desvio padrão).
O presente estudo mostra que a estatura estimada diferiu da medida aferida, sendo a média da estatura estimada maior do que a aferida, achado esse, semelhante aos de outros estudos que utilizaram a mesma metodologia de estimativa de estatura, deste estudo13,14. O trabalho de Closs e colaboradores13 avaliou idosos de 60 a 93 anos e encontrou uma diferença média entre a estatura estimada e aferida de +3 cm. Fogal e colaboradores14 encontram uma diferença média de +2 cm para os indivíduos do sexo feminino e não encontram diferença entre os homens. Vários fatores, podem contribuir para que haja essa diferença. Desnutrição, sarcopenia e osteoporose são alguns exemplos. Essas desordens são provocadas entre outros, por estilo de vida e hábitos alimentares inadecuados10 que podem em longo prazo impactam direta ou indiretamente o controle postural do idoso fazendo com que a estatura aferida não seja uma medida confiável.

Neste estudo as estaturas estimadas foram mais elevadas do que as aferidas em todas as categorias de funcionalidade, no entanto a diferença foi maior nos idosos frágeis (+7,1 cm) em comparação aos idosos robustos (+4,2 cm). Quanto ao IMC, o estimado foi inferior ao derivado da estatura aferida, principalmente nos idosos frágeis (-2,4 kg/m2), em comparação com os robustos (-1,7 Kg/m2). O presente estudo não encontrou na literatura estudos com esta temática que levassem em consideração a classificação funcional do idoso, fato esse que impossibilita a comparação dos resultados encontrados.

Entretanto a compreensão das diferentes características destes grupos pode nos ajudar a avaliar os resultados encontrados. Considerando as Atividades de Vida Diária (AVD’s) os indivíduos robustos deambulam sem dificuldades e, portanto, não têm maiores impedimentos para se manterem ativos, geralmente possuem um padrão alimentar que os mantém saudáveis, apresentam comorbidades de baixa complexidade. Os frágeis, entretanto, possuem declínio funcional bem pronunciado o que os tornam parcial ou totalmente dependentes para as AVD’s básicas, instrumentais e avançadas, no geral

\begin{table}[h]
\centering
\caption{Classificação do IMC em magreza e sobrepeso, de acordo com a funcionalidade dos idosos. Belo Horizonte / MG, 2015-2019.}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline
\textbf{Funcionalidade} & \textbf{N} & \textbf{IMC aferido}a & \textbf{IMC estimado}a & \textbf{Valor de P} & \textbf{IMC aferido}a & \textbf{IMC estimado}a & \textbf{Valor de P} \\
\hline
Robusto & 54 & 10 (18,5) & 13 (24,1) & <0,001 & 26 (48,1) & 17 (31,5) & <0,001 \\
Risco de Fragilização & 24 & 7 (29,2) & 12 (50,0) & <0,001 & 4 (16,7) & 3 (12,5) & <0,001 \\
Frágil & 38 & 13 (34,2) & 14 (36,8) & <0,001 & 17 (44,7) & 14 (36,8) & <0,001 \\
\hline
\end{tabular}
\end{table}

a número (percentual). 1- Teste qui quadrado.

\section*{DISCUSSÃO}

O presente estudo mostra que a estatura estimada diferiu da medida aferida, sendo a média da estatura estimada maior do que a aferida, achado esse, semelhante aos de outros estudos que utilizaram a mesma metodologia de estimativa de estatura, deste estudo13,14. O trabalho de Closs e colaboradores13 avaliou idosos de 60 a 93 anos e encontrou uma diferença média entre a estatura estimada e aferida de +3 cm. Fogal e colaboradores14 encontram uma diferença média de +2 cm para os indivíduos do sexo feminino e não encontram diferença entre os homens. Vários fatores, podem contribuir para que haja essa diferença. Desnutrição, sarcopenia e osteoporose são alguns exemplos. Essas desordens são provocadas entre outros, por estilo de vida e hábitos alimentares inadecuados10 que podem em longo prazo impactam direta ou indiretamente o controle postural do idoso fazendo com que a estatura aferida não seja uma medida confiável.

Neste estudo as estaturas estimadas foram mais elevadas do que as aferidas em todas as categorias de funcionalidade, no entanto a diferença foi maior nos idosos frágeis (+7,1 cm) em comparação aos idosos robustos (+4,2 cm). Quanto ao IMC, o estimado foi inferior ao derivado da estatura aferida, principalmente nos idosos frágeis (-2,4 kg/m2), em comparação com os robustos (-1,7 Kg/m2). O presente estudo não encontrou na literatura estudos com esta temática que levasssem em consideração a classificação funcional do idoso, fato esse que impossibilita a comparação dos resultados encontrados.

Entretanto a compreensão das diferentes características destes grupos pode nos ajudar a avaliar os resultados encontrados. Considerando as Atividades de Vida Diária (AVD’s) os indivíduos robustos deambulam sem dificuldades e, portanto, não têm maiores impedimentos para se manterem ativos, geralmente possuem um padrão alimentar que os mantém saudáveis, apresentam comorbidades de baixa complexidade. Os frágeis, entretanto, possuem declínio funcional bem pronunciado o que os tornam parcial ou totalmente dependentes para as AVD’s básicas, instrumentais e avançadas, no geral
são pouco ativos, são acometidos por doenças que impactam diretamente sua qualidade de vida\(^{19,20}\). Acredita-se que estes fatores podem justificar a diferença significativa encontrada entre as estaturas estimadas e aferidas destas duas categorias funcionais de idosos.

A literatura demonstra que idosos mais velhos apresentam maior comprometimento postural do que idosos mais jovens\(^{10,11,15}\). No entanto, neste trabalho encontrou-se que mesmo os idosos frágeis apresentando média de idade menor do que a dos robustos, a diferença de estatura foi mais pronunciada nos frágeis, sugerindo que essa está mais relacionada a fragilidade e não à idade dos indivíduos, o que corrobora com a afirmativa de que a redução da estatura não deve ser explicada somente pela senescência, mas pelas condições de saúde deteriorada\(^{31}\), condição presente nos idosos frágeis. Fatores de ordem social, biológica e a condição nutricional do indivíduo podem interferir de forma positiva ou não na redução da estatura com o envelhecimento\(^{31}\).

Além disso, 18% dos idosos estudados possuíam osteoporose e 34% dos idosos frágeis apresentavam IMC aferido menor que 22,0 Kg/m\(^2\), situações associadas à possível redução na estatura aferida\(^{31,32}\). Com o envelhecimento homens e mulheres têm um decréscimo na síntese de estrogênio, hormônio esse, que está relacionado a saúde da massa óssea. No sexo masculino, a diminuição desse hormônio ocorre de forma gradativa e em idades avançadas. Nas mulheres, no entanto, essa redução ocorre de forma abrupta logo após o início da menopausa\(^{32}\).

Assim, acredita-se que a estatura aferida em idosos frágeis não é a medida adequada para ser utilizada na prática clínica. Observa-se, ao aferir a estatura destes idosos, dificuldade do posicionamento conforme preconizado pela Organização Mundial de Saúde\(^{28}\). Idosos frágeis, geralmente, apresentam dificuldades para ficar de pé na balança, precisam afastar as pernas para manter o equilíbrio e não conseguem manter a postura ereta em função das alterações posturais.

A diferença encontrada na estatura dos idosos refletiu diretamente no cálculo do IMC. O IMC aferido subestimou a magreza em todas as categorias funcionais. Houve também a superestimação do sobrepeso. Outros trabalhos também encontraram diferenças no IMC derivado de medidas estimadas\(^{14,15}\), porém estes não consideraram a funcionalidade dos indivíduos impossibilitando uma comparação de resultados. Gavriilidou e colaboradores\(^{15}\) observaram que a diferença no IMC superestimou a obesidade em idosos mais jovens e subestimou para idosos mais idosos. Na amostra de Fogal e colaboradores\(^{14}\) a obesidade foi subestimada em mulheres. Este estudo atribui essas diferenças às alterações posturais presentes nos idosos, conforme abordado anteriormente.

O IMC continua sendo uma ferramenta amplamente utilizada na prática clínica para diagnóstico de desnutrição e obesidade e auxilia no diagnóstico da sarcopenia além de ser utilizado em equações para definir dose de fármacos\(^{7,33,34,35}\). Portanto, o diagnóstico derivado de IMC equivocado pode trazer prejuízos para a saúde do indivíduo. Há necessidade de estudos que proponham fórmulas que estimem a estatura dos idosos brasileiros e que levem em consideração a funcionalidade do indivíduo para resultados mais precisos evitando assim diagnósticos nutricionais errados.

Algumas limitações devem ser consideradas no presente estudo. A fórmula utilizada nesse estudo foi desenvolvida a partir de uma amostra de indivíduos caucasianos. Estudos mostram que pode haver falhas de precisão quando a fórmula é utilizada em populações diferentes\(^{14}\). Outra limitação foi que a amostra inviabilizou a subdivisão das categorias de funcionalidade por sexo e faixas etárias. Os idosos robustos, oriundos do ambulatório de envelhecimento saudável, tem como critério de inclusão somente idosos com idade maior ou igual a 80 anos, sendo assim essa categoria funcional não compreendeu idosos mais jovens.
CONCLUSÃO

A estatura estimada foi maior do que a aferida em todas as categorias de funcionalidade. Os idosos frágeis têm maiores diferenças entre a estatura aferida e a estimada, em comparação com os robustos, sugerindo que os idosos frágeis têm maior comprometimento da estatura o que pode impactar diretamente no diagnóstico nutricional. Sugere-se cautela na utilização da estatura aferida em idosos e recomenda-se a utilização da estatura estimada na avaliação do estado nutricional, particularmente nos frágeis.

REFERÊNCIAS

1. Gonzales MC, Correia MITD, Heymsfield, SD. A requiem for BMI in clinical setting. Curr Opin Clin Nutr Metab Care 2017; 20:314–321.
2. Servân PR, Poyatos RS, Rodríguez JS, Gómez-Caneda L, Luna PPG, Serra-Majem L. Special considerations for nutritional studies in elderly. Nutr Hosp. 2015; 31:84-90.
3. Fantini F, Di Francesco V, Fontana G, Zivelonghi A, Bissoli L, Zoico E, et al. Longitudinal body composition changes in old men and women: interrelationships with worsening disability. J Gerontol A Biol Sci Med Sci 2007; 62:1375-1381.
4. Reinders J, Murphy RA, Koster A, Brouwer IA, Visser M, García ME, et al. Muscle quality and muscle fat infiltration in relation to incident mobility disability and gait speed decline: the Age, Gene/Environment Susceptibility-Reykjavik Study. J Gerontol A Biol Sci Med Sci 2015; 70:1030–1036.
5. Almeida MF, Marucci MFN, Gobbo LA, Ferreira LS, Durado DAQS, Duarte YAO, et al. Anthropometric Changes in the Brazilian Cohort of Older Adults: SABE Survey (Health, Well-Being, and Aging). J Obes 2013; 2013:695496.
6. Hughes VA, Roubenoff R, Wood M, Frontera WR, Evans WJ, Singh MAF. Anthropometric assessment of 10-y changes in body composition in the elderly. Am J Clin Nutr 2004; 80:475–82.
7. Jensen GL, Cederholm T, Correia MITD, Gonzalez MC, Fukushima R, Higashiguchi T, et. Al. GLIM Criteria for the Diagnosis of Malnutrition: A Consensus Report From the Global Clinical Nutrition Community. JPEN J Parenter Enteral Nutr 2018; 38:1-9.
8. García-Peña C, Pérez-Zepeda MU. Validity of Knee-Estimated Height to Assess Standing Height in Older Adults: A Secondary Longitudinal Analysis of the Mexican Health and Aging Study. J Nutr Health Aging. 2017; 21:262-265.
9. Butler R, McClincy J, Morreale-Parker C, Marsh W, Rennie KL. BMI calculation in older people: The effect of using direct and surrogate measures of height in a community-based setting. Clin Nutr ESPEN 2017; 22:112–115.
10. Sorkin JD, Muller DC, Andres R. Longitudinal change in height of men and women: Implications for interpretation of body mass index. Am J Epidemiol. 1999; 150:969-977.
11. Baumgartner RN, Stauber PM, McHugh D, Koehler KM, Garry PJ. Cross-sectional Age Differences in Body Composition in Persons 60 + Years of Age. J Gerontol A Biol Sci Med Sci 1995; 50:M307-M316.
12. Frid H, Adolfsson ET, Rosenblad A, Nydahl M. Agreement between different methods of measuring height in elderly patients. J Hum Nutr Diet. 2013; 26:504-11.
13. Closs VE, Feoli AM, Shwanke CH. Altura do joelho como medida alternativa confiável na avaliação nutricional de idosos. Rev Nutr. 2015; 28:475-484.
14. Fogal AS, Franceschini S do C, Priore SE, Cotta RM, Ribeiro AQ. Stature estimation using the knee height measurement amongst Brazilian elderly. Nutr Hosp. 2015; 31:829-834.
15. Gavrilidou NN, Pihlsgård M, Elmhås I. High degree of BMI misclassification of malnutrition among Swedish elderly population: Age-adjusted height estimation using knee height and demispan. Eur J Clin Nutr. 2015; 69:565-571.
16. Carvalho EMS, Mota SPF, Silva GPF, Filho JMC. High degree of BMI misclassification of malnutrition among Swedish elderly population: Age-adjusted height estimation using knee height and demispan. Eur J Clin Nutr. 2015; 69:565-571.
17. Carvalho EMS, Mota SPF, Silva GPF, Filho JMC. A postura do idoso e suas implicações clínicas. Geriatr Gerontol. 2011; 5:170-174.
18. Carvalho EMS, Mota SPF, Silva GPF, Filho JMC. The nutritional assessment of adults and elderly and the nutritional status of the Brazilian population. Arq Bras Endocrinol Metabol. 2004; 48:345-61.
19. Carvalho EMS, Mota SPF, Silva GPF, Filho JMC. The nutritional assessment of adults and elderly and the nutritional status of the Brazilian population. Arq Bras Endocrinol Metabol. 2004; 48:345-61.
1985; 33:116-120.
23. Varela FR, Ciconelli RM, Campolina AG, Soarez PC. Quality of life evaluation of frail elderly in Campinas, São Paulo. Rev Assoc Med Bras. 2015; 61:423-30.
24. Melo APF, Salles RK, Vieira FGK, Ferreira MG métodos de estimativa de peso corporal e altura em adultos hospitalizados: uma análise comparativa. Rev Bras Cineantropom Desemp Hum. 2014; 16:475-484.
25. Sant’Anna BC, Lage GM, Dores SMC, Velarde LGC, Barroso SG, Rocha GS. Análise de concordância entre métodos para estimativa da estatura de idosos atendidos em ambulatório de nutrição. Rev. Bras. Geriatr. Gerontol. 2018; 21:743-748.
26. Rech CR, Petroski EL, Böing O, Júnior RJB, Soares MR. Concordância entre as medidas de peso e estatura mensuradas e auto-referidas para o diagnóstico do estado nutricional de idosos residentes no sul do Brasil. Bras Med Esport. 2008; 14:127-131.
27. Bolton-Smith C, Woodward M, Tunstall-Pedoe H, Morrison C. Accuracy of the estimated prevalence of obesity from self reported height and weight in an adult Scottish population. J Epidemiol Community Health 2000; 54:143-8.
28. World Health Organization. Physical status: the use and interpretation of anthropometry. Genebra, 1995.452p.
29. Lipschitz DA. Screening for nutritional status in the elderly. Primary Care. 1994; 21:55-67.
30. Lorenzo-López L, Maseda A, de Labra C, Regueiro-Folgueira L, Rodríguez-Villamil JL, Millán-Calenti JC. Nutritional determinants of frailty in older adults: A systematic review. BMC Geriatr 2017; 17:108-121.
31. Fernihough A, McGovern ME. Physical stature decline and the health status of the elderly population in England. Econ Hum Biol. 2013; 16:30-44.
32. Cauley JA. Estrogen and bone health in men and women. Steroids. 2015; 99:11-15
33. Nuruishi K, Yumoto H, Kido JL. Clinical effects of low body mass index on geriatric status in elderly patients. Exp Gerontol. 2018; 110:86-91.
34. Beaudart C, McCloskey E, Bruyère O, Cesari M, Rolland Y, Rizzoli R, et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 2016; 16:170-180.
35. Ix JH, Wassel CL, Stevens LA, Beck GJ, Froissart M, Navis G, et al. Equations to Estimate Creatinine Excretion Rate: The CKD Epidemiology Collaboration. Clin J Am Soc Nephrol. 2011; 6:184-191.