Enhancer RNA SLIT2 Inhibits Bone Metastasis of Breast Cancer Through Regulating P38 MAPK/c-Fos Signaling Pathway

Peng Li†, Zhiping Lin‡, Qianzheng Liu§, Siyuan Chen*, Xiang Gao†, Weixiong Guo*, Fan Gong*, Jinsong Wei* and Hao Lin*

1 Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China, 2 Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China, 3 Orthopedic Center, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China

Background: Breast cancer (BRCA) is the most common cancer in women, while the bones are one of the most common sites of metastasis. Although new diagnostic methods or radiation or chemotherapies and targeted therapies have made huge advances, the occurrence of bone metastasis is also linked with poorer survival. Enhancer RNAs (eRNAs) have been demonstrated to participate in the progression of tumorigenesis and metastasis. However, the role of eRNAs in BRCA bone metastasis remains largely unclear.

Method: Gene expression profiling of 1,211 primary BRCA and 17 bone metastases samples were retrieved from The Cancer Genome Atlas (TCGA) database, and the significant prognostic eRNAs were identified by Cox regression and least absolute shrinkage and selection operator (LASSO) regression. The acceptable accuracy and discrimination of the nomogram were indicated by the receiver operating characteristic (ROC) and the calibration curves. Then target genes of eRNA, immune cell percentage by CIBERSORT analysis, immune genes by single-sample gene set enrichment analysis (ssGSEA), hallmark of cancer signaling pathway by gene set variation analysis (GSVA), and reverse phase protein array (RPPA) protein chip were used to build a co-expression regulation network and identified the key eRNAs in bone metastasis of BRCA. Finally, Cell Counting Kit-8 (CCK8) assay, cell cycle assay, and transwell assay were used to study changes in cell proliferation, migration, and invasiveness. Immunoprecipitation assay and Western blotting were used to test the interaction and the regulation signaling pathways.

Results: The 27 hub eRNAs were selected, and a survival-related linear risk assessment model with a relatively high accuracy (area under curve (AUC): 0.726) was constructed. In addition, seven immune-related eRNAs (SLIT2, CLEC3B, LBPL1, FRY, RASGEF1B, DST, and ITIH5) as prognostic signatures for bone metastasis of BRCA were further confirmed by LASSO and multivariate Cox regression and CIBERSORT analysis. Finally, in vitro assay demonstrated that overexpression of SLIT2 reduced proliferation and metastasis in BRCA cells. Using high-throughput co-expression regulation network, we identified that SLIT2 may regulating P38 MAPK/c-Fos signaling pathway to promote the effects of metastasis.
INTRODUCTION

Breast cancer (BRCA) is the most common cancer in females, and it can also affect males (1). In the last decade, new diagnostic methods, such as BRCA surgery, radiation, chemotherapy, hormone therapy, targeted chemotherapies, and immunotherapy, have made huge advances, but patient survival decreases markedly once cancer cells spread to various parts of the body, which is referred to as metastasis (2). In patients with metastatic disease, bone is the most common site of metastasis and the most common site of first distant relapse, with roughly half (48%) of BRCA patients developing bone metastases after treatment (3). Dormant cancer cells in bone are unable to actively divide and evade cytotoxic therapy, leading to most tumor recurrence and treatment failure (4). Although the tumor lines failed to grow progressively, they formed small dormant microscopic foci maintained at constant mass by balanced proliferation and apoptosis (5). Key factors inducing bone metastasis include the tumor microenvironment (TME), intrinsic tumor cell factors, tumor-specific immune response, or angiogenesis (6). It is essential to investigate the potential tumorigenic and metastatic mechanisms of BRCA and subsequently to identify the prognostic biomarkers and therapeutic targets underlying the interplay between these factors. Great progress in the development of molecular biology techniques makes the prognosis of bone metastasis of BRCA much more convenient. In this study, prognostic biomarkers that associate with bone metastasis of BRCA were identified.

BRCA bone metastasis includes a series of complex interactions between BRCA cells and TME, which will affect the biological effectiveness and promote distant metastatic tumor growth (7). One particularly important theory of metastasis is “seed and soil” by Stephen Paget, which was made in 1889 (8). He hypothesized that a small population of tumor cells with augmented metastatic abilities is the “seed”, while the distant secondary site provides appropriate conditions for development of organ-specific metastases, which means the “soil”. Biological studies have identified important molecular interactions including growth factors, guidance molecules, chemokines, and signaling pathways between the tumor cells (seed) and TME (soil) (9). However, the molecular mechanisms of seed–soil in BRCA bone metastases still need to be further investigated.

With the update of the second- and third-generation sequencing technologies, non-coding RNAs (ncRNAs) have since gained considerable attention due to their ability to regulate gene expression. Enhancer RNA (eRNA) is a type of ncRNA transcribed from the enhancer (10). Enhancer is a kind of DNA sequence that activates the transcription of a target gene by interacting with target gene promoter and plays important roles in human diseases (11). Previous studies have demonstrated the potential role of eRNAs altering by oncogenes and signaling pathways activating in human cancers (12). EN1 is highly expressed in the BRCA (13) and ESRI can globally increase eRNA transcription in BRCA (14). Oncogene-induced eRNAs like TAOK1 are associated with overall survival (OS) in kidney renal clear cell carcinoma and can directly promote tumorigenesis (15). Tumor suppressors can also induce eRNAs to contribute to tumor repress process. CELF2 is highly expressed in stomach adenocarcinoma (16). Taken together, eRNAs play significant roles in tumor progression, which indicate the clinical use of eRNA-related therapy.

As a cellular environment, the TME is composed of endothelial cells, immune cells, mesenchymal cells, inflammatory mediators, and extracellular matrix molecules (17). TME is associated with induction of metastasis, immune system suppression, escape from immune detection, and drug resistance of BRCA (18). Nowadays, many computational methods support the analysis of tumor immune landscape of gene expression and immunological cell types in TME by CIOBSORT algorithm (19). Based on the development of bioinformatics, the differential expressed eRNAs and the regulatory signaling pathway were identified from The Cancer Genome Atlas (TCGA) databases between BRCA bone metastasis patients and primary tumors. Moreover, we also establish a complete protein–protein interaction network to reveal the downstream mechanisms of further exploring the prognostic biomarkers and therapeutic targets to provide a basis and reference for the prognostic risk of BRCA bone metastasis. Interestingly, we found that low level of SLIT2 expression promotes BRCA cell proliferation and leads to a metastatic process through MAPK/c-Fos signaling pathway. This study provides a promising strategy for the prediction of BRCA bone metastasis.

METHODS AND MATERIALS

Data Extraction

The RNA-seq profiles of 1,211 primary BRCA and 17 bone metastases tissue were downloaded from TCGA (https://tcga-data.nci.nih.gov) in formats of Fragments Per Kilobase per Million (FPKM) and raw counts. Phenotype data including demographics (age at diagnosis, gender, and ethnicity), tumor information (neoplasm histologic grade, clinical stage, and
Union for International Cancer Control/American Joint Committee on Cancer (UICC/AJCC) TNM classification) and outcome data (survival time and vital status) were also retrieved from the database.

Differential Expression Analysis and Functional Enrichment Analysis

Edge R algorithm was applied to identify the differentially expressed genes (DEGs) between 1,211 primary BRCA and 17 BRCA bone metastasis tissue samples (20). Genes with |log2 fold change (FC)| >1.0 and false discovery rate (FDR) value <0.05 were defined as DEGs. DEG analysis between the two groups was also performed. Besides, Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were utilized to explore the signaling pathways and biological processes that enriched DEGs (21).

Validation of Immune Clustering Among Enhancer RNAs

The expression of differential eRNAs between primary BRCA patients and BRCA bone metastasis patients and the correlation in 22 immune cell types was determined by cell-type identification by estimating the relative subsets of RNA transcripts (CIBERSORT). CIBERSORT was run with 1,000 permutations and a threshold <0.05 as recommended. Then the immune infiltration levels of 29 immune cell types in primary BRCA patients and BRCA bone metastasis patients were investigated by single-sample gene set enrichment analysis (ssGSEA) according to their specific surface markers. By using the R package “Gene set variation analysis (GSVA)”, the gene expression in primary BRCA patients and BRCA bone metastasis patients of different immune cell infiltration was ranked.

Definition of Enhancer RNA Prognostic Model

The differential eRNAs were analyzed using univariate and multivariate Cox proportional hazards regression analyses to establish a prognostic predictive model. A risk score formula was constructed as previously described (22). BRCA patients were divided into low-risk and high-risk groups by the median scores to validate the prognostic model. In addition, the accuracy and efficiency of the prognostic model were evaluated by receiver operating characteristic (ROC) curve analyses. The OS between the low-risk and high-risk groups was performed by the Kaplan–Meier analysis. Then the correlations between risk scores and clinical characteristics were analyzed by univariate and multivariate Cox regressions.

Network of Immune-Related Enhancer RNA Prognostic Signature for Breast Cancer Bone Metastasis

First of all, bone metastasis of BRCA-related eRNAs, differential transcription factors, and eRNA target genes were obtained from the above screening; then the hallmark of cancer signaling pathways in all the samples was quantified as continuous variables by GSVA, and immune cells and genes were retrieved from CIBERSORT and ssGSEA, respectively. Then, the co-expression analysis was performed among the seven expression modules, which were displayed in different colors. The cluster dendograms aggregate genes with a common gene expression pattern in the same color module. Purple indicates the immune cell types by CIBERSORT, blue shows the hallmark by GSVA, indigo blue means the immune genes by ssGSEA, yellow means the transcription factors of eRNAs, pink indicates the target genes of eRNAs, and green shows the reverse phase protein array (RPPA) protein chip. The interaction pairs between eRNAs and immune cell types by CIBERSORT, hallmark by GSVA, immune genes by ssGSEA, transcription factors, target genes, and RPPA protein were used to construct the regulation network of BRCA bone metastasis.

Lentivirus Generation

A mixture of 2.7 μg of pCMV-dR8.91, 0.3 μg of VSCG, and 3 μg of target overexpression or shRNA vector for a 10-cm plate was transfected into 293T cells (obtained from American Type Culture Collection (ATCC), 10% Dulbecco’s modified Eagle’s medium (DMEM)) using PEI (#24314, Polysciences, USA). After 6 h, the media were changed, and the supernatants were collected at both 48 and 72 h post-transfection. The collected supernatants were filtered using 0.45-μm syringe filter and used to infect MCF7 cells (obtained from ATCC, 10% DMEM medium) with 0.8 μl/ml of polybrene. Target cells were incubated in an equal amount of lentiviral particle containing full growth media for 24 h, and then the media were changed with fresh media and incubated for 2 days. Then the infected cells were selected with puromycin for 1 week to get a stable cell line. A mycoplasma PCR assay was evaluated for the detection of contaminating mycoplasma.

Cell Proliferation Assay

Cell suspensions were prepared from different groups, 3,000 cells per 96 well, five duplicate wells per time period, and cultured in a 5% CO2 37°C incubator for the indicated time point. Then 10 μl of Cell Counting Kit-8 (CCK8) reagent (#C0037, Beyotime Biotechnology, China) was added to each well, and the absorbance of each well was measured at 450 nm using a microplate reader (BioTek, USA). Count each value and compile a proliferation curve. Results are representative of three independent experiments.

Cell Cycle Analysis

From different groups, 10^5 cells were collected and washed with phosphate-buffered saline (PBS) twice to remove the effects of trypsin (without EDTA) (#C0205, Beyotime Biotechnology, China) and then fixed overnight by 70% ethanol according to the cell cycle kit (#KGA512, KeyGEN Biotech China); all reagents were added sequentially and protected from light for 30 min and then analyzed by flow cytometry (ACEA Biosciences, USA). Results are representative of three independent experiments.
Migration and Invasion Assay

Transwell migration and invasion assays were performed as previously described (23). Briefly, MCF7 stable cell lines (1 x 10^5 cells/well) in serum-free DMEM were seeded into the upper chamber of a transwell apparatus with an 8-µm pore size membrane (#3414, Corning Incorporated, Corning, NY, USA). For the invasion assay, the upper chamber was pre-coated with matrigel (200 µg/ml, #354234, BD Biosciences, Bedford, MA, USA) according to the manufacturer’s protocol. For both migration and invasion assays, the medium of the lower chamber contained complete medium. After 24 h, the migrated or invaded cells at the lower surface of the filter were fixed and stained with crystal violet, then photos the filters were taken with an inverted microscope, and the cells were calculated. The average migrated/invaded cell number represented at least six different fields in each filter. Results are representative of three independent experiments.

Western Blotting Analysis

The cells of each group were lysed in lysis buffer (#P0013B, Beyotime Biotechnology, China). Determine the quality of the harvested protein by using bicinechinonic acid (BCA) kit (#P0012, Beyotime Biotechnology, China). Then, 20 µg of total proteins was separated on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gels and transferred on polyvinylidene difluoride (PVDF) membrane (#ISEQ00010, Millipore, USA) using the semi-dry transfer method. The membranes were blocked for 1 h in Tris-buffered saline containing 5% non-fat dried milk at room temperature (RT) and incubated overnight at 4°C with the relevant antibodies: SLIT2 (#47600), GFP (#55494), p-P38 MAPK (#4511), T-P38 MAPK (#8690), p-C-Fos (#5348), T-C-Fos (#2250), and β-actin (#4970) (1:1,000, all from Cell Signaling Technology, USA). Membranes were rinsed and incubated for 1 h with the corresponding peroxidase-conjugated secondary antibodies (#ab205718, #ab205719, Abcam, USA). Chemiluminescent detection was performed using the enhanced chemiluminescence (ECL) kit (#1251473, Thermo Fisher, USA). Bands were analyzed using ImageJ software (version 1.6 NIH) to verify the relative levels of the above markers. Results are representative of three independent experiments.

Immunoprecipitation Assay

For immunoprecipitation experiments, the cells were lysed with immunoprecipitation lysis buffer (Thermo Fisher Scientific) containing protease inhibitors and phosphatase inhibitors cocktail (Sigma-Aldrich). Cell lysates were then incubated with anti-SLIT2 antibody and protein A/G beads (Thermo Fisher Scientific) at 4°C for 6 h. After being washed with immunoprecipitation lysis buffer, the beads were boiled for 5 min with 2× SDS loading buffer. Eluted proteins were used for Western blotting analysis.

Immunohistochemistry Validation

BRCA tissues (n = 20) or normal tissues (n = 4) of breast were obtained from the Affiliated Hospital of Guangdong Medical University. This study was approved by the Ethical Review Board of the Affiliated Hospital of Guangdong Medical University (#PJ2019-017KT). Informed written consent was obtained from each patient or their guardians. Immunohistochemistry (IHC) staining was performed on formalin-fixed paraffin-embedded (FFPE) tumor tissue sections. The tumor tissues were fixed in 10% formalin, embedded in paraffin, and serially sectioned into 4-µm-thick sections for histopathological study. Sections were deparaffinized in xylene, rehydrated in absolute and 90% ethanol serially, and washed with distilled water. After antigen retrieval in citrate buffer (0.01 M, pH 6.4), they were incubated in blocking solution (5% horse serum, 3% bovine serum albumin (BSA), 0.1% Tween-20 in PBS) for 1 h at RT, and then stained with antibodies against SLIT2 (Cell Signaling Technology, USA) at 4°C overnight in a humidified chamber. Sections were then washed several times with PBS and incubated 1 h at RT with the secondary antibody. All sections were counterstained with hematoxylin, dehydrated and mounted, and processed with peroxidase-conjugated avidin/biotin and 3’-3-diaminobenzidine (DAB) substrate (Leica Microsystem). IHC images were independently analyzed blindly by three pathologists.

Statistical Analysis

In this study, the R software (www.r-project.org; version 3.6.1; Institute for Statistics and Mathematics, Vienna, Austria) was used for all statistical analysis processes. Only a two-sided p-value <0.05 was considered as statistically significant for all analysis processes. Statistical analyses were performed using the GraphPad Prism software (version 8; GraphPad Software Inc., San Diego, CA), and statistical significance was determined by p < 0.05. Comparisons between two groups were made using an unpaired Student’s t-test or one-way ANOVA.

RESULTS

Screening of Differentially Expressed Genes and Functional Enrichment Analysis

The analytical process of the study is summarized in the flowchart (Figure 1). A total of 1,784 DEGs were identified between 1,211 primary BRCA and 17 bone metastases samples, including 644 upregulated genes and 1,140 downregulated genes in the heatmap (Supplementary Data 1A). The volcano plot of these DEGs is presented in Figure 2A. Then the GO functional enrichment analyses and KEGG pathway enrichment analyses were performed by using R’s clusterProfiler software package. The significant enrichment items of biological processes (BPs), cellular components (CCs), and molecular functions (MFs) were extracellular structure organization, extracellular matrix, and structural constituent of ribosome (Figure 2B). The KEGG pathways identified Ribosome, Oxidative phosphorylation, ECM–receptor interaction, and TGF-β signaling pathway (Figure 2C).
Screening of Differential Enhancer RNAs of Bone Metastasis and Independent Prognostic Analysis

The heatmap and volcano plot of 282 differentially expressed eRNAs (198 downregulated and 84 upregulated) are shown in Supplementary Data 1B and Figure 3A. The determination of lambda coefficient by least absolute shrinkage and selection operator (LASSO) regression and the coefficients of the model is presented in Figure 3B and Supplementary Data 2A. We then performed a univariable Cox regression analysis, 27 selected eRNAs related to prognosis were essential for model fitting according to p-values <0.05, and the forest map is shown in Supplementary Data 2B.

The risk line and risk scatterplot of OS illustrated the distribution of risk score among all bone metastases of BRCA patients (Supplementary Data 2C, D). In the Kaplan–Meier survival analysis, risk score for OS had prognostic value for bone metastasis of BRCA patients with the survival time of the high-risk group was significantly shorter than that of the low-risk group (Figure 3C, $p < 0.001$). In addition, the ROC curve showed that the area under curve (AUC) in the prognostic model was 0.726 and demonstrated that the risk score model had a stable performance (Figure 3D). Moreover, by principal component analysis (PCA) of high- and low-risk groups according to respective median risk scores, we also indicated that bone metastasis of BRCA patients in different risk groups was distributed in two directions (Figure 3E). The above data illustrate that the calibration, discrimination, and goodness of fit (GOF) of the multivariate Cox regression model were acceptable.

We then performed univariate Cox regression analyses (Figure 3F) and multivariate Cox regression analyses (Figure 3G) to evaluate whether clinical parameters (including age, pathologic TNM classification, and stage) and the risk score
are independent prognostic factors of OS. The data indicated that the risk score and pathologic M classification or grade were independent prognostic predictors for OS in the univariate Cox regression analyses, while only the stage and pathologic TNM classification were independent prognostic predictors for OS in the multivariate Cox regression analyses.

The Prognostic Signature of Clinical Characteristics and the Immune Response

Then, we compared the differences between eRNA values and clinical pathologic characteristics. The boxplots of clinical correlation analysis of 48 differential eRNAs among primary tumor (Supplementary Data 3A), distant metastasis (Supplementary Data 3B), regional lymph nodes (Supplementary Data 3C), and tumor stage (Supplementary Data 3D) are shown in Supplementary Data 3A–D. The eRNA values for the pathologic T3 and T4 stages were significantly lower than those for the pathologic T1 and T2 stages. The same phenomenon was observed for different pathologic N or M stages. The eRNA values for the pathologic tumor stage IV groups were significantly lower than those for the stage I, II, and III groups.

We then explored the relationship between eRNA expression and tumor-infiltrating immune cells in bone metastasis of BRCA patients and primary BRCA patients by CIBERSORT algorithm. The contents of various immune cells in each sample were presented by bar plot, and the results suggested that immune cells had a significantly prognostic value for bone metastasis of BRCA (Supplementary Data 3E). In addition, the group boxplot according to the relationship between eRNA expressions and immune cells revealed that naïve B cells, naïve CD4 T cells, CD4 resting memory T cells, follicular helper T cells, activated NK cells, resting dendritic cells, and resting mast cells were negatively correlated with the risk score, while resting NK cells, M0 macrophages, and neutrophils were positively correlated with the risk score (Supplementary Data 3F). The correlation analysis revealed the co-expression patterns between prognostic immune cells. Furthermore, we also found a poor correlation coefficient between the 22 immune cells (Supplementary Data 3G). The population with negative relation included M1 macrophages and M2 macrophages (R = −0.45) and M2 macrophage and CD8 T cells (R = −0.43). Further, CD8 T cells and activated NK cells (R = 0.42) and CD8 T cells and M1 macrophages (R = 0.39) had a positive relation.
Identification of the Enhancer RNAs Co-Expressed Transcription Factors

The heatmap and volcano plot of 37 differentially expressed transcription factors (19 downregulated and 18 upregulated) identified between primary BRCA samples and bone metastasis samples are shown in Supplementary Data 1D and Figure 4A. The heatmap and volcano plot of 32 differential hallmarks signaling pathways (18 downregulated and 14 upregulated) identified between primary BRCA samples and bone metastasis of BRCA samples are shown in Supplementary Data 1C and Figure 4B. Moreover, the correlation of GSVA score of hallmarks signaling pathways and bone metastasis of BRCA was investigated (Figure 4C). Immune cell infiltration status was assessed by applying the ssGSEA approach to validate the relationships between the primary BRCA samples and bone metastasis of BRCA samples with tumor immune characteristic. The heatmap of the 29 immune-related terms were incorporated to deconvolve the abundance of diverse immune cell types in primary BRCA samples.
and bone metastasis of BRCA samples (Figure 4D). We found that primary BRCA groups have higher immune scores than the bone metastasis of BRCA sample groups. In addition, the heatmap and volcano plot of 37 target genes are shown in Supplementary Data 4A, C.

Exploration of the Correlation Between Hub Genes and Prognostic Immune Cells

Finally, the heatmap of 29 differentially expressed eRNAs was identified between primary BRCAs and bone metastasis of BRCA samples, as shown in Figure 5A. A total of seven different dimension correlation networks were constructed with 12 eRNAs, 13 differential transcription factors, 14 eRNA target genes in ERIC database, 22 immune cells of CIBERSORT, 17 immune gene set by ssGSEA, 18 hallmark of cancer signaling pathways by GSVA, and six immune cells (Figures 5B, C). Interestingly, seven eRNAs (SLIT2, CLEC3B, LBPL1, FRY, RASGEF1B, DST, and ITIH5) were considered to have a significant co-expression relationship in these seven different dimension correlation networks. Furthermore, we also found that these genes were also significantly correlated with each other. We supposed that the eRNAs of SLIT2, CLEC3B, LBPL1, FRY, RASGEF1B, DST, and ITIH5 play crucial roles in the tumorigenesis and bone metastasis of BRCA.
Identification of the Enhancer RNAs by ATAC-Seq

We then analyzed the eRNAs by ATAC-seq. The chromatin immunoprecipitation (ChIP) peak coverage is shown in Figure 6A. Genomic annotation by vennpie was calculated by UpSet plot (Figure 6B). We provide plotDistToTSS to calculate the percentage of binding sites upstream and downstream from the transcription start site (TSS) of the nearest genes and to visualize the distribution (Figure 6C). The average profile of ChIP peaks binding to TSS region is shown in Figure 6D. Once the annotated nearest genes were obtained, we can perform functional enrichment analysis to identify predominant biological themes among these genes by incorporating biological knowledge provided by GO functional enrichment analyses and KEGG pathway enrichment
analyses. The significant enrichment items of BPs, CCs, and MFs were skeletal system development, centrosome, and cell adhesion molecule binding (Figure 6E). The KEGG pathways identified MAPK signaling pathway (Figure 6F).

SLIT2 Inhibited the Proliferation and Migration of Breast Cancer Cells

We further investigated the SLIT2 expression in different cancer types and found that the expression level of SLIT2 was significantly downregulated in most cancer types (Figure 7A). Moreover, the expression of SLIT2 was also downregulated in BRCA tumor tissues (Figure 7B). We further analyzed data from public databases to evaluate the prognostic effect of SLIT2 in BRCA patients. Low expression of SLIT2 was associated with poor survival in BRCA patients (Figure 7C). We then examined the expression of SLIT2 by IHC assay and found that there was low expression of SLIT2 in tumor and high expression in peri-tumor. Representative IHC images are shown in Figure 7D.

FIGURE 6 | Identification of the eRNAs by ATAC-seq. (A) The ChIP peak coverage. (B) Genomic annotation by vennpie. (C) The percentage of binding sites upstream and downstream from the TSS. (D) The average profile of ChIP peaks binding to TSS region. (E) The GO functional enrichment analyses of ATAC-seq. (F) The KEGG pathway enrichment analyses of ATAC-seq. eRNAs, enhancer RNAs; ChIP, chromatin immunoprecipitation; TSS, transcription start site; GO, Gene Oncology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
To verify the function of SLIT2 in the proliferation and migration of BRCA cells, human BRCA cell MCF7 with SLIT2 overexpression (SLIT2-OE) and downregulation (SLIT2-shRNA) was established (Figures 8A, B). The expression of SLIT2 was identified by qPCR (Figure 8A) and Western blotting (Figure 8B). As shown in Figure 8C, SLIT2 overexpression remarkably inhibited MCF7 cell proliferation in vitro, while SLIT2 knockdown significantly promoted MCF7 cell proliferation. Consistent with the results in proliferation, cell cycle assay also showed that overexpression of SLIT2 induced G1 cell cycle arrest, while SLIT2 downregulation promoted MCF7 cell G1 distribution (Figures 8D, E).

BRCA cell invasion or metastasis is the major cause of death. We then examined the effects of SLIT2 on the ability of BRCA cell migration and invasion in vitro. SLIT2 overexpression prominently reduced MCF7 cell migration in the transwell migration assays (Figures 8F, G). Further, SLIT2 overexpression significantly reduced invaded MCF7 cells in the transwell invasion assay (Figures 8H, I). The data above indicated that SLIT2 inhibited the proliferation and migration of BRCA cells.

SLIT2 Regulate Breast Cancer Proliferation and Migration Through P38 MAPK/c-Fos Signaling Pathway

We found that SLIT2 inhibited the proliferation and migration of BRCA cells, but the mechanism still needed to be further explored. As shown in Figure 5B, the target gene of SLIT2 was c-Fos, and the KEGG enrichment analysis by ATAC-seq (Figure 6E) showed that the eRNAs were enriched in MAPK signaling pathway. Previous data have also indicated that MAPK/c-Fos may regulate the migration of cancer cells, and the interaction between SLIT2 and MAPK was analyzed by co-immunoprecipitation assay. The results showed that SLIT2 interacted with P38 MAPK (Figure 9A). Moreover, Western blotting also showed that SLIT2 overexpression inhibited the phosphorylation of P38 MAPK and c-Fos, while downregulation of SLIT2 upregulated the phosphorylation of P38 MAPK and c-
Fos (Figure 9B). In addition, the effects of SB202190, a specific inhibitor of p38 MAPK, significantly inhibit the phosphorylation of P38 MAPK and c-Fos upregulated by SLIT2 shRNA (Figure 9B). Moreover, we then examined the cell cycle, migration, and invasion in SLIT2-OE cells treated with SB202190. SB202190 showed significant promotion on the G1 distribution (Figure 9C), migration (Figure 9D), and invasion (Figure 9E) of SLIT2 overexpression MCF7 cells. The data above indicated that SLIT2 regulates BRCA migration through MAPK/c-Fos signaling pathway.
SLIT2 regulates breast cancer proliferation and migration through MAPK/FOS signaling pathway. (A) Co-immunoprecipitation (IP) of SLIT2 interacts with MAPK in SLIT2-expressing MCF7 cells. (B) Western blotting of the phospho-MAPK/total-MAPK and phospho-c-Fos/total-c-Fos from three independent experiments in SLIT2 knockdown or SLIT2 overexpression cells with or without p38 MAPK inhibitor SB202190 (10 μM). (C) Cell cycle assay of in SLIT2 knockdown cells with or without MAPK inhibitor SB202190. (D) Cell migration assay performed by transwell in SLIT2 knockdown cells with or without MAPK inhibitor SB202190. (E) Cell invasion assay was performed by transwell with matrigel in SLIT2 knockdown with or without MAPK inhibitor SB202190. Three independent experiments were performed. All data are presented as mean ± standard deviation (SD). Comparisons between the groups were made by one-way analysis of variance (ANOVA). *p < 0.05, **p < 0.001, and ***p < 0.0001.
DISCUSSION

BRCA is one of the most common cancers and is the primary cause of cancer death in women (24). When BRCA spreads beyond the breast, one of the most common places is the bones (25). Bone metastases occur in roughly 70% of women and are often the first symptom that the BRCA has relapsed, and finding and treating bone metastases early on can be critical in preventing problems later (26). Thus, this study aimed to analyze transcriptomic profiles of bone metastatic tumor to identify prognostic biomarkers to control metastasis.

eRNAs are short ncRNA molecules that are transcribed from the loci of enhancers (27). They are involved in the regulation of gene transcription and can be a therapeutic target for diseases (28). Oncogenes or oncogenic signaling pathway activation often enhances the activation and production of eRNAs in human cancers. Several hundred eRNAs were found to be differentially expressed in prostate cancer (29). In MCF-7, a BRCA cell, estrogen-induced transcription of eRNA was found to be upregulated (30). Another study showed that eRNAs are significantly reduced in throat cancer (11). The data resources provide opportunities to characterize the functions of eRNAs across different cancer types.

Here, in our study, bioinformatics analysis was used to construct eRNAs expression profiles of 1,211 primary BRCA and 17 bone metastases of BRCA samples downloaded from TCGA database. Then we further explored the relationships between differential eRNAs and clinical characteristics, immune cell infiltration, and a prognostic signature by ssGSEA, LASSO, Cox, and multivariate Cox regression. Our study found that the constructed prognostic model by ROC curves, calibration curves, and ssGSEA score could clearly predict the OS and bone metastasis of BRCA. Thus, our study suggested that the screened eRNAs play an important role in the progression of bone metastasis of BRCA and could be used as important reference markers for further research. Finally, seven eRNAs (SLIT2, CLEC3B, LBPL1, FRY, RASgef1B, DST, and ITIH5) were considered to have significant co-expression relationship in seven different dimension correlation networks constructed with 12 eRNAs, 13 differential transcription factors, 14 eRNA target genes in ERIC database, 22 immune cells of CIBERSORT, 17 immune gene set by ssGSEA, 18 hallmark of cancer signaling pathways by GSVA, and six immune cells.

A previous study had demonstrated that the extracellular matrix protein ITIH5 blocks tumor progress, migration, and metastasis of various types including bladder, breast, and pancreatic cancers. Michael Rose et al. showed that ITIH5 induces a shift in TGF-β superfamily signaling involving Endoglin and reduces risk for BRCA metastasis and tumor death. Veeck et al. indicated that ITIH5 is a novel prognostic marker in invasive node-negative BRCA, and its aberrant expression is caused by promoter hypermethylation (31). Aberrant expression of the Spectraplakin Dystonin (DST) has been observed in various cancers, including melanoma (32) and BRCA (33) Jain et al. showed that DST antagonizes YAP activity and suppresses BRCA tumorigenesis (33). Gene CLEC3B (C-type lectin domain family 3, member B) encoding tetranectin in humans has been identified as a potential diagnostic and prognostic biomarker in lung cancer and association with the immune microenvironment (34), was downregulated in hepatocellular carcinoma, and promoted metastasis and angiogenesis via AMPK and VEGF signals (35).

Recent studies indicated that SLIT2 is frequently inactivated in large B-cell lymphoma (36), lung, breast, colorectal, thyroid (37), gastric (38), and glioma tumors, showing that SLIT2 was a candidate tumor suppressor gene, and recent studies have shown that SLIT2 expression is suppressed or reduced by hypermethylation in the promoter region in various cancers. Tavora showed that deleting endothelial SLIT2 suppressed metastatic dissemination in mouse models of breast and lung cancer (39). In addition, soluble SLIT2 can act as a potent therapeutic drug in BRCA cells, while relevant mechanism still needed to be further explored. In our study, we found that SLIT2 overexpression inhibited MCF7 cell proliferation and migration, while downregulation of SLIT2 promoted the proliferation and migration. In addition, overexpression of SLIT2 induced G1 cell cycle arrest, while SLIT2 downregulation promoted MCF7 cells G1 distribution. Moreover, SLIT2 interacted with P38 MAPK and SLIT2 overexpression, inhibiting the phosphorylation of P38 MAPK and c-Fos, while downregulation of SLIT2 upregulated the phosphorylation of P38 MAPK and c-Fos. Our data indicated that SLIT2 regulates BRCA progression and migration through MAPK/c-Fos signaling pathway.

In conclusion, the seven eRNAs were identified to have independent prognostic significance for bone metastasis of BRCA, which was closely associated with clinical characteristics, the immune response, the TME, and prognosis. The results of this study offer a means to predict the prognosis and survival of bone metastasis of BRCA compared with traditional prediction methods.

CONCLUSION

Based on the co-expression network for bone metastasis of BRCA-related eRNAs, we screened key eRNAs to explore a prognostic model in predicting the bone metastasis. The results of this study provided bioinformatics information in exploring the molecular mechanisms of the metastasis to the bone. Besides, we identified the potential regulatory signaling pathway of SLIT2 in BRCA bone metastasis, which provides a promising therapeutic strategy for metastasis of BRCA.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.
AUTHOR CONTRIBUTIONS

PL, ZL, HL, and JW designed and performed the research. QL, SC, and XG analyzed and interpreted the data and drafted the manuscript. QL, SC, XG, WG, and FG collected the data and designed the methodology. PL, ZL, HL, and JW reviewed the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (81570260); the Natural Science Foundation of Guangdong Province, China (2020A1515011565); Medical Scientific Research Foundation of Guangdong Province, China (A2019463); Science and Technology Program of Zhanjiang, China (2019A01032); Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation (“Climbing Program” Special Funds) (pdjh2020b0259); and Students Innovation Experiment Program of Guangdong Medical University (FZZY001).

ACKNOWLEDGMENTS

We thank The Cancer Genome Atlas (TCGA) team for allowing us to use their data.

REFERENCES

1. Veronesi U, Boyle P, Goldhirsh A, Orecchia R, Viale G. Breast Cancer. Lancet (2005) 365:1727–41. doi: 10.1016/S0140-6736(05)67646-4
2. DeSantis C, Siegel R, Bandi P, Jemal A. Breast Cancer Statistics, 2011. CA Cancer J Clin (2011) 61:89–18. doi: 10.3322/caac.20103
3. Liang Y, Zhang H, Song X, Yang Q. Metastatic Heterogeneity of Breast Cancer: Molecular Mechanism and Potential Therapeutic Targets. Semin Cancer Biol (2020) 60:14–27. doi: 10.1016/j.semcancer.2019.08.012
4. Yin JI, Pollock CB, Kelly K. Mechanisms of Cancer Metastasis to the Bone. Cell Res (2005) 15:57–62. doi: 10.1038/sj.cr.7290266
5. Udagawa T, Fernandez A, Achilles EG, Folkman J, D’Amato RJ. Persistence of Microscopic Human Mammals in Mice: Alterations in the Angiogenic Balance Accompany Loss of Tumor Dormancy. FASEB J (2002) 16:1361–70. doi: 10.1096/fj.01-0813com
6. Chhichhilya Y, Suman P, Singh S, Munshi A. The Genomic Architecture of Metastasis in Breast Cancer: Focus on Mechanistic Aspects, Signalling Pathways and Therapeutic Strategies. Med Oncol (2021) 38:95. doi: 10.1007/s12032-021-01547-1
7. Weber CE, Kuo PC. The Tumor Microenvironment. Surg Oncol (2012) 21:172–7. doi: 10.1016/j.suronc.2011.09.001
8. Langley RR, Fidler IJ. The Seed and Soil Hypothesis Revisited—the Role of Tumor-Stroma Interactions in Metastasis to Different Organs. Int J Cancer (2011) 128:2527–35. doi: 10.1002/ijc.26031
9. Fokas E, Engenhart-Cabillic R, Danilidis K, Rose F, An HX. Metastasis: The Seed and Soil Theory Gains Identity. Cancer Metastasis Rev (2007) 26:705–15. doi: 10.1007/s10555-007-9088-5
10. Zhang Z, Hong W, Ruan H, Jing Y, Li S, Liu Y, et al. HeRA: An Atlas of Enhancer RNAs Across Human Tissues. Nucleic Acids Res (2021) 49:D932–8. doi: 10.1093/nar/gkaa940
11. Zhang Z, Lee JH, Ruan H, Ye Y, Krakowiak J, Hu Q, et al. Transcriptional Landscape and Clinical Utility of Enhancer RNAs for eRNA-Targeted Therapy in Cancer. Nat Commun (2019) 10:4562. doi: 10.1038/s41467-019-12543-5
12. Li W, Notani D, Rosenfeld MG. Enhancers as Non-Coding RNA Transcription Units: Recent Insights and Future Perspectives. Nat Rev Genet (2016) 17:207–23. doi: 10.1038/nrg.2016.4
13. Beltran AS, Graves LM, Blancafort P. Novel Role of Engrailed 1 as a Prosurvival Transcription Factor in Basal-Like Breast Cancer and Engineering of Interference Peptides Block its Oncogenic Function. Oncogene (2014) 33:4767–77. doi: 10.1038/onc.2013.422
14. Li W, Hu Y, Oh S, Ma Q, Merkurjev D, Song X, et al. Condensin I and II Complexes License Full Estrogen Receptor Alpha-Dependent Enhancer Activation. Mol Cell (2015) 59:188–202. doi: 10.1016/j.molcel.2015.06.002
15. Harvey KF, Zhang X, Thomas DM. The Hippo Pathway and Human Cancer. Nat Rev Cancer (2013) 13:246–57. doi: 10.1038/nrc3458
16. Barretina J, Caponigro G, Stranasky N, Venkatasekaran K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia Enables Predictive Modelling of Anticancer Drug Sensitivity. Nature (2012) 483:603–7. doi: 10.1038/nature10933
17. Cacho-Diaz B, Garcia-Botello DR, Wegman-Ostrosky T, Reyes-Soto G, Ortiz-Sanchez E, Herrera-Montalvo LA. Tumor Microenvironment Differences Between Primary Tumor and Brain Metastases. J Transl Med (2020) 18:1. doi: 10.1186/s12967-019-02189-8
18. Malla RR, Deepak K, Merchant N, Dasari VR. Breast Tumor Microenvironment: Emerging Target of Therapeutic Phytochemicals. Phytomedicine (2020) 70:153227. doi: 10.1016/j.phymed.2020.153227
19. Wu M, Wang Y, Liu H, Song J, Ding J. Genomic Analysis and Clinical Implications of Immune Cell Infiltration in Gastric Cancer. Biosci Rep (2020) 40:BSR20193308. doi: 10.1042/BSR20193308
20. Anders S, Huber W. Differential Expression Analysis for Sequence Count Data. Genome Biol (2010) 11:R106. doi: 10.1186/gb-2010-11-10-r106
21. Hung KS, Hsiao CC, Pai TW, Hu CH, Tzou WS, Wang WD, et al. Functional Enrichment Analysis Based on Long Noncoding RNA Associations. BMC Syst Biol (2018) 12:45. doi: 10.1186/s12918-018-0571-0

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.743840/full#supplementary-material

Supplementary Figure 1 | The heatmap of Identification and independent prognosis analysis of eRNAs in BRCA bone metastasis. (A) The heatmap of DEGs identified between primary breast cancer and bone metastases of breast cancer samples. (B) The heatmap of keygens identified between primary breast cancer and bone metastases of breast cancer samples. (C) The heatmap of differential hallmark signaling pathways between primary BRCA samples and bone metastasis of BRCA samples. (D) The heatmap of differentially expressed transcription factors between primary BRCA samples and bone metastasis of BRCA samples.

Supplementary Figure 2 | Screening of eRNAs from bone metastasis of BRCA. (A) Analyses by a LASSO regression further fine-tuned the selection of eRNAs. (B) Univariate Cox regression models identified 48 eRNAs that are associated with OS. The distribution of risk score of OS among all bone metastasis of BRCA samples by risk line (C) and risk scatterplot (D).

Supplementary Figure 3 | The prognostic signature of clinical characteristics and the immune response. The boxplots of clinical correlation analysis of differential eRNAs among primary tumor (A), distant metastasis (B), regional lymph nodes (C) and tumor stage (D). (E) The bar plot of various immune cells in all BRCA samples. (F) The group boxplot of these prognostic immune cells by CIBERSORT analysis. (G) The coHeatmap of these prognostic immune cells by CIBERSORT analysis.

Supplementary Figure 4 | The target genes of eRNAs. (A) The heatmap of target genes of eRNAs. (B) The volcano plot of target genes of eRNAs.

Supplementary Figure 5 | IHC staining of SLIT2 in tumor or peri-tumor of BRCA patients.
