Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function

Vishnu Narayan Mishra1*, D.L. Suthar2 and S.D. Purohit3

Abstract: The aim of this paper is to evaluate four theorems for generalized fractional integral and derivative operators, applied on the product of Srivastava polynomials and generalized Mittag-Leffler function. The results are expressed in terms of generalized Wright function. Further, we also point out their relevance with the known results.

Subjects: Science; Mathematics & Statistics function; Technology; Engineering & Technology

Keywords: Marichev-Saigo-Maeda fractional operators; generalized Mittag-Leffler function; Srivastava polynomials; generalized Wright function; Orthogonal polynomials and special functions

AMS subject classifications: 26A33; 33B15; 33C05; 33C99; 44A10

ABOUT THE AUTHORS
Vishnu Narayan Mishra received the PhD in Mathematics from Indian Institute of Technology, Roorkee. His research interests are in the areas of pure and applied mathematics. He has published more than 120 research articles in reputed international journals of mathematical and engineering sciences. He is a referee and an editor of several international journals in frame of Mathematics. He guided many postgraduate and PhD students. Citations of his research contributions can be found in many books and monographs, PhD thesis and scientific journal articles.

D.L. Suthar is an Associate Professor in the Department of Mathematics at Wollo University, Dessie, Amhara Region, Ethiopia. His research interests include Special functions, Fractional calculus, Integral transforms, Basic Hypergeometric series and Mathematical physics.

S.D. Purohit is Associate Professor of Mathematics in Department of HEAS (Mathematics) at Rajasthan Technical University, Kota-324010, Rajasthan, India. His research interests include Special functions, Fractional Calculus, Integral transforms, Basic Hypergeometric Series, Geometric Function Theory and Mathematical Physics. He has published more than 100 research papers in international esteemed journals.

PUBLIC INTEREST STATEMENT
The Mittag-Leffler functions are very useful almost in all areas of applied Mathematics, that provides solutions to a number of problems formulated in terms of fractional order differential, integral and difference equations; therefore, it has recently become a subject of interest for many authors in the field of fractional calculus and its applications. In this paper, we have evaluated four theorems for generalized fractional integral and derivative operators, applied on the product of Srivastava polynomials and generalized Mittag-Leffler function and also point out their relevance with the known results.
1. Introduction

The Mittag-Leffler functions are important special functions, that provides solutions to number of problems formulated in terms of fractional order differential, integral and difference equations; therefore, it has recently become a subject of interest for many authors in the field of fractional calculus and its applications. For detailed account of fractional calculus operators along with their properties and applications, one may refer to the research monographs by Kilbas, Srivastava, and Trujillo (2001) and recent papers Mishra and Agarwal (2016), Mishra, Agarwal, and Sen (2016), and Prabhakar (1971).

The Swedish mathematician Mittag-Leffler (1903) introduced the function $E_\alpha(z)$, defined by:

$$E_\alpha(z) = \sum_{n=0}^{\infty} \frac{1}{\Gamma(\alpha n + 1)} z^n, \quad (\alpha \in \mathbb{C}); \Re(\alpha) > 0$$

(1)

A further, two-index generalization of this function was studied by Wiman (1905) as:

$$E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{1}{\Gamma(\alpha n + \beta)} z^n, \quad (\alpha, \beta \in \mathbb{C})$$

(2)

where $\Re(\alpha) > 0$ and $\Re(\beta) > 0$.

Prabhakar (1971) introduced the generalization of Mittag-Leffler function $E_{\alpha,\beta}^\gamma(z)$ in the form

$$E_{\alpha,\beta}^\gamma(z) = \sum_{n=0}^{\infty} \frac{(\gamma)_n}{\Gamma(\beta n + \gamma)n!} z^n,$$

(3)

where $\beta, \gamma, \delta \in \mathbb{C}$, $\Re(\alpha) > 0$. Further, it is an entire function of order $\left[\Re(\beta)\right]^{-1}$ (see Prabhakar, 1971, p. 7).

Shukla and Prajapati (2007) (see also Srivastava & Tomovski, 2009) defined and investigated the function $E_{\alpha,\beta}^{\gamma,q}(z)$ as

$$E_{\alpha,\beta}^{\gamma,q}(z) = \sum_{n=0}^{\infty} \frac{\gamma_q n}{\Gamma(\alpha n + \beta)n!} z^n,$$

(4)

where $\alpha, \beta, \gamma, \delta \in \mathbb{C}$, $\Re(\alpha) > 0$, $\Re(\beta) > 0$, $\Re(\gamma) > 0$, $q \in (0, 1) \cup \mathbb{N}$ and $(\gamma)_q = \frac{\Gamma(\gamma + q)}{\Gamma(\gamma)}$ denotes the generalized Pochhammer symbol, which in particular reduces to

$$q^m \prod_{r=1}^{m} \left(\frac{\gamma + r - 1}{q} \right).$$

It is remarked that certain much more general functions of the Mittag-Leffler type have already been investigated in the literature rather systematically and extensively, but for the purpose of this paper we use the function given by (4) only.

The generalized Wright function $p_{\psi^q}(z)$ defined for $z \in \mathbb{C}$, $a_i, b_j \in \mathbb{C}$, and $A_i, B_j \in \mathbb{R}(A_i, B_j \neq 0; i = 1, 2, \ldots, p; j = 1, 2, \ldots, q)$ is given by the series

$$p_{\psi^q}(z) = p_{\psi^q} \left[\frac{(a_i, A_i)_{1,p}}{(b_j, B_j)_{1,q}} | z \right] = \sum_{k=0}^{\infty} \frac{\Gamma(a_i + A_i k) z^k}{\prod_{j=1}^{q} \Gamma(b_j + B_j k) k!},$$

(5)

where $\Gamma(z)$ is the Euler gamma function and the function (5) was introduced by Wright (1935) and is known as generalized Wright function, for all values of the argument z, under the condition:
\[\sum_{j=1}^{q} B_j - \sum_{i=1}^{p} A_i > -1. \] (6)

For detailed study of various properties, generalization and application of Wright function and generalized Wright function, we refer to paper (for instance, see Wright, 1935, 1940, 1940).

The Srivastava polynomials defined by Srivastava (1968, p. 1, Equation (1)) in the following manner:

\[S_n[w](x) = \sum_{s=0}^{\lfloor w/1 \rfloor} \frac{(-1)^s A_{w,s}}{s!} x^s, \quad w = 0, 1, 2, \ldots \] (7)

where \(u \) is an arbitrary positive integer and the coefficients \(A_{w,s} \geq 0 \) are arbitrary constants, real or complex.

On account of success of the Saigo operators (Saigo, 1978, 1979), in their study on various functions in the integral equation and differential equations, Saigo and Maeda (1998) introduced the following generalized fractional and differential operators of any complex order with Appell function \(F_3(z) \) in the kernel, as follows:

Let \(a, a', \beta, \beta', \gamma \in \mathbb{C} \) and \(x > 0 \), then the generalized fractional calculus operators (the Marichev-Saigo-Maeda operators) involving the Appell function, or Horn's \(F_3 \)-function are defined by the following equations:

\[\left(I_{0+}^{a,a',\beta,\beta',\gamma} f \right)(x) = \frac{x^{-a}}{\Gamma(\gamma)} \int_{0}^{x} (x-t)^{\gamma-1} t^{-a'} \times F_3 \left(\alpha, \alpha', \beta, \beta';\gamma; 1 - \frac{t}{x}, 1 - \frac{x}{t}, 1 - \frac{t}{x} \right) f(t) dt, \quad (\Re(\gamma) > 0), \] (8)

\[\left(D_{0+}^{a,a',\beta,\beta',\gamma} f \right)(x) = \left(\frac{d}{dx} \right)^k \left(I_{0+}^{a,a',\beta,\beta',\gamma} f \right)(x), \quad (\Re(\gamma) > 0; k = \left[\Re(\gamma) + 1 \right]); \] (10)

and

\[\left(D_{0+}^{a,a',\beta,\beta',\gamma} f \right)(x) = \left(I_{0+}^{a,a',\beta,\beta',\gamma} f \right)(x) \] (12)

\[\left(D_{0+}^{a,a',\beta,\beta',\gamma} f \right)(x) = \left(\frac{d}{dx} \right)^k \left(I_{0+}^{a,a',\beta,\beta',\gamma} f \right)(x), \quad (\Re(\gamma) > 0; k = \left[\Re(\gamma) + 1 \right]); \] (13)
For the definition of the Appell function $F_3(\cdot)$ the interested reader may refer to the monograph by Srivastava and Karlsson (1985) (see Erdélyi, Magnus, Oberhettinger, and Tricomi (1953), Prudnikov, Brychkov, and Marichev (1992) and Samko, Kilbas, and Marichev (1993)).

Following Saigo and Maeda (1998), the image formulas for a power function, under operators (8) and (10), are given by:

\[
\left(I_{\alpha}^{\alpha',\beta',\gamma'}x^{\alpha-1} \right)(x) = x^{\alpha+\gamma-a'-\beta-1} \\
\times \Gamma \left(\frac{\rho + \gamma - \alpha - a' - \beta}{\rho + \beta'}, \frac{\rho + \gamma - \alpha - a' - \beta}{\rho + \gamma - \alpha - a' - \beta} \right),
\]

where $\Re(\rho) > \max \{0, \Re(\alpha + \alpha' + \beta - \gamma), \Re(\alpha' - \beta')\}$ and $\Re(\gamma) > 0$.

\[
\left(I_{\alpha}^{\alpha',\beta',\gamma'}x^{\alpha-1} \right)(x) = x^{\alpha+\gamma-a'-\beta-1} \\
\times \frac{\Gamma(1 - \rho + \gamma + \alpha + \alpha')\Gamma(1 - \rho + \alpha + \beta' - \gamma)\Gamma(1 - \rho - \beta)}{\Gamma(1 - \rho)\Gamma(1 - \rho + \alpha + \alpha' + \beta' - \gamma)\Gamma(1 - \rho + \alpha - \beta)},
\]

where $\Re(\gamma) > 0$, $\Re(\rho) < 1 + \min \{\Re(-\beta), \Re(\alpha + \alpha' - \gamma), \Re(\alpha + \beta' - \gamma)\}$.

Here, we used the symbol $\Gamma \left(\begin{array}{c} \vdots \\ \vdots \end{array} \right)$ representing the fraction of many Gamma functions.

The computations of fractional integrals and fractional derivatives of special functions of one and more variables are important from the point of view of the usefulness of these results in the evaluation of generalized integrals and generalized derivatives and the solution of differential and integral equations (for example see Baleanu, Kumar, and Purohit (2016), Kumar, Purohit, and Choi (2016), Nisar, Purohit, Abouzaid, Quraishi, and Baleanu (2016), Purohit, Kalla, and Suthar (2011), Purohit, Suthar, and Kalla (2012), Srivastava (1972, 2016), Suthar, Parmar, and Purohit (2017), Tomovski, Hilfer, and Srivastava (2010), Tomovski, Pogány, and Srivastava (2014)). Motivated by these avenues of applications, here we establish four image formulas for the generalized Mittag-Leffler function (4), involving left- and right-sided operators of Marichev-Saigo-Maeda fractional integral operators and fractional derivatives, in term of the generalized Wright function.

2. Main results
Throughout this paper, we assume that $a, a', \beta, \beta', \gamma, \delta, \rho, \mu, \eta \in \mathbb{C}$, $\lambda > 0$, such that $\Re(\delta) > 0$, $\Re(\mu) > 0$, $\Re(\eta) > 0$, $q \in (0, 1) \cup \mathbb{N}$. Further, let the constants satisfy the condition $a_i, b_j \in \mathbb{C}$ and $A_i, B_j \in \mathbb{R}$, $B_j \neq 0$, $i = 1, 2, \ldots, p; j = 1, 2, \ldots, q$, such that the condition (6) is also satisfied.

2.1. Left-sided generalized fractional integration of product of polynomial and generalized Mittag-Leffler function

In this section, we establish image formulas for the product of Srivastava polynomial and generalized Mittag-Leffler function involving left-sided operators of Marichev-Saigo-Maeda fractional integral operators (8), in term of the generalized Wright function. These formulas are given by the following theorems:

Theorem 2.1 Let $\Re(\gamma) > 0$, $\Re(\lambda) > 0$, $\Re(\rho) > \max \{0, \Re(\alpha + \alpha' + \beta - \gamma), \Re(\alpha' - \beta')\}$ then the generalized fractional integration $I_{\alpha}^{\alpha',\beta',\gamma'}$ of the product of generalized Mittag-Leffler function $E_{\beta',\gamma'}^{\alpha,\lambda}(\cdot)$ and $S_{\alpha,\beta}^{\gamma}(\cdot)$ is given by
Now, we present some special cases of (19) as below:

Interpreting the right-hand side of the above equation, in view of the definition (5), we arrive at the known result given by Chouhan, Khan, and Saraswat (2014, Equation (13)).

On setting \(n = 0, A_{0,0} = 1 \) then \(\tilde{S}_0^\alpha |x| \rightarrow 1 \) in (16), we obtained the following particular case of Theorem 2.1:

Corollary 2.1 Let the conditions of Theorem 2.1 are satisfied, then the following formula holds true

\[
\left(I_{0^+}^{a,\beta,\gamma,\delta} \left(t^{\alpha-1} \tilde{S}_0^\alpha (\alpha t^\gamma) \right) \right)(x) = \frac{x^{\alpha-\gamma-1}}{\Gamma(x)} \sum_{s=0}^{n/m} \frac{(-n)_m}{s!} \sum_{k=0}^{\infty} \frac{\Gamma(\rho + \gamma - \alpha - \beta + s \xi + \lambda k)}{\Gamma(\rho + \gamma - \alpha - \beta + s \xi + \lambda k) \Gamma(\alpha + q k) \Gamma(\alpha + q k) \Gamma(\alpha + q k)} \left((ax)^{\gamma} \right)^k.
\]

Remark 1 If we set \(q = 1 \), in Corollary 2.1, we arrive at the known result given by Chouhan, Khan, and Saraswat (2014, Equation (13)).

Now, we present some special cases of (19) as below:

For \(\alpha = \alpha + \beta, \beta' = 0, \beta = -\gamma, \gamma = \alpha \), we obtain the following relationship

\[
\left(I_{0^+}^{a,\beta,\gamma,\delta} \right)(x) = (I_{0^+}^{a,\beta,\gamma,\delta} f)(x),
\]

where the operator \(I_{0^+}^{a,\beta,\gamma,\delta} \) denotes the Saigo fractional integral operator (Saigo, 1978), which is defined by

\[
(I_{0^+}^{a,\beta,\gamma,\delta} f)(x) = \frac{x^{\alpha-\gamma-1}}{\Gamma(x)} \int_0^x (x-t)^{\alpha-1} F_2(\alpha + r, -\eta; \alpha; 1 - t \eta) f(t) dt, \quad \Re(\alpha) > 0.
\]

Corollary 2.2 Let \(\Re(\gamma) > 0, \Re(\delta) > 0, \Re(\beta) > \max \{0, \Re(\beta - \tau)\} \), then there hold the following formula:
On setting $\gamma = \sigma + \alpha + \beta + \rho$, the generalized Mittag-Leffler function is given by the following:

$$I_0^\alpha \left[a \right] = \sum_{s=0}^{\infty} \left(\frac{a}{s!} \right)^s \Gamma(s+\alpha)/\Gamma(s+1)$$

where a is a complex number and α is a positive real number.

2.2. Right-sided generalized fractional integration of product of polynomial and generalized Mittag-Leffler function

In this part, we establish image formulas for the product of Srivastava polynomial and generalized Mittag-Leffler function involving right-sided operators of Marichev-Saigo-Maeda fractional integral operators (10), in term of the generalized Wright function. These formulas are given by the following theorems:

Theorem 2.2 For $\Re(\gamma) > 0$, $\Re(1 - \gamma - \rho) < 1 + \min \left| \Re(-\beta), \Re(\alpha + \alpha' - \gamma), \Re(\alpha + \beta' - \gamma) \right|$, we have

$$\left(I_n^{\alpha, \beta, k}(t^{-\gamma} E^{n,q}_{\alpha, \beta, \gamma}(at^{-\gamma})) \right)(x) = \frac{x^{e^{-\gamma} - 1}}{\Gamma(n)} \sum_{s=0}^{\infty} \left(\frac{-n}{s!} \right) A_n^{\alpha, \beta, k}(ax^s)$$

Proof On using (4) and (7), the left-hand side of (23), can be written as:

$$\left(I_n^{\alpha, \beta, k}(t^{-\gamma} E^{n,q}_{\alpha, \beta, \gamma}(at^{-\gamma})) \right)(x) = \sum_{s=0}^{\infty} \left(\frac{-n}{s!} \right) A_n^{\alpha, \beta, k}(ax^s)$$

which on using the image formula (15), arrive at

$$\left(I_n^{\alpha, \beta, k}(t^{-\gamma} E^{n,q}_{\alpha, \beta, \gamma}(at^{-\gamma})) \right)(x) = \sum_{s=0}^{\infty} \left(\frac{-n}{s!} \right) A_n^{\alpha, \beta, k}(ax^s)$$

Interpreting the right-hand side of the above equation, in view of the definition (5), we arrive at the result (23).

On setting $n = 0$, $A_0 = 1$ then $S_0^\alpha(x) \to 1$ in (23), we obtained the following particular case of Theorem 2.2.

Corollary 2.3 The generalized fractional integration of generalized Mittag-Leffler function $E^{n,q}_{\alpha, \beta, \gamma}(t)$, is given by

$$\left(I_n^{\alpha, \beta, k}(t^{-\gamma} E^{n,q}_{\alpha, \beta, \gamma}(at^{-\gamma})) \right)(x) = \frac{x^{e^{-\gamma} - 1}}{\Gamma(n)}$$

This gives us a way to compute the fractional integrals of the generalized Mittag-Leffler function in terms of simpler functions.
provided \(\Re(\gamma) > 0, \Re(1 - \gamma - \rho) < 1 + \min \{ \Re(-\beta), \Re(\alpha + a' - \gamma), \Re(\alpha + \beta' - \gamma) \}. \)

Remark 3 If we set \(q = 1 \), in Corollary 2.3, we arrive at the known result given by Chouhan et al. (2014, Equation (15)).

When we let \(\alpha = \alpha + \beta, \alpha' = \beta' = 0, \beta = -\tau, \gamma = \alpha \), then we obtain the relationship

\[
\left(I_{\alpha}^{\alpha, \beta, \beta', \gamma} \right)(x) = (I^n_{\alpha, \beta} f)(x),
\]

where the Saigo fractional integral operator (Saigo, 1978) is defined by

\[
(I^n_{\alpha, \beta} f)(x) = \frac{1}{\Gamma(n)} \int_0^x (t-x)^{n-1} t^{-\alpha-\beta} F_1(\alpha+\beta,-;\alpha;1-x \ t)(t) \ dt.
\]

COROLLARY 2.4 If \(\Re(\alpha) > 0, \Re(\lambda) > 0, \Re(1 - \gamma - \rho) < 1 + \min \{ \Re(-\beta), \Re(\alpha) \} \), then we have

\[
\left(I_{\alpha}^{\alpha, \beta, \beta', \gamma} \left(t^{-\gamma} S^m_n(\alpha t^k) E^a_{n,a}[at^{-l}] \right) \right)(x) = \frac{x^{-\gamma-\alpha-\beta}}{\Gamma(\eta)} \sum_{s=0}^{[n/\alpha]} \frac{(-\eta)^{m,s}}{s!} \left((\alpha+\beta+\rho-\xi_s, \lambda), (\rho+\tau+\alpha-\xi_s, \lambda), (\eta, q) \right) \left((\mu, \delta), (2\alpha+\beta+\rho-\xi_s, \lambda), (\rho+\alpha-\xi_s, \lambda) \right) \left(\alpha x^{-\delta} \right),
\]

Remark 4 If we set \(q = 1, \tau = \gamma \) and \(n = 0, A_{\alpha,0} = 1 \) then \(S_n^m(x) \to 1 \) in Corollary 2.4, we arrive at the known result given by Ahmed (2014, Equation (4.1)).

2.3. Left-sided generalized fractional differentiation of product of polynomial and generalized Mittag-Leffler function

Now, we shall establish image formulas for the product of Srivastava polynomial and generalized Mittag-Leffler function involving left-sided operators of Marichev-Saigo-Maeda fractional differentiation operators (12) in term of the generalized Wright function. These formulas are given by the following theorems:

THEOREM 2.3 The generalized fractional differentiation \(D_{\alpha,0}^{\alpha, \beta, \beta', \gamma} \) of the product of generalized Mittag-Leffler function \(E^a_{n,a}(\cdot) \) and Srivastava polynomials \(S^m_n(\cdot) \) is given by

\[
\left(D_{\alpha,0}^{\alpha, \beta, \beta', \gamma} \left(t^{-\gamma} S^m_n(\alpha t^k) E^a_{n,a}[at^{-l}] \right) \right)(x) = \frac{x^{-\gamma-\alpha-\beta}}{\Gamma(\eta)} \sum_{s=0}^{[n/\alpha]} \frac{(-\eta)^{m,s}}{s!} \left((\alpha+\beta+\rho-\xi_s, \lambda), (\rho+\tau+\alpha-\xi_s, \lambda), (\eta, q) \right) \left((\mu, \delta), (2\alpha+\beta+\rho-\xi_s, \lambda), (\rho+\alpha-\xi_s, \lambda) \right) \left(\alpha x^{-\delta} \right),
\]

where \(\Re(\gamma) > 0, \Re(\lambda) > 0, \Re(\rho) > \max \{ 0, \Re(\gamma-a-a' - \beta') \}, \Re(\beta-a) \).

Proof On using (4) and (7), writing the function in the series form, the left-hand side of (29), leads to

\[
\left(D_{\alpha,0}^{\alpha, \beta, \beta', \gamma} \left(t^{-\gamma} S^m_n(\alpha t^k) E^a_{n,a}[at^{-l}] \right) \right)(x) = \sum_{s=0}^{[n/\alpha]} \frac{(-\eta)^{m,s}}{s!} A_{\alpha,s}(\alpha t^k) \left(\alpha x^{-\delta} \right)^{\eta/\delta} \left(t^l_{\alpha,0}^{\alpha, \beta, \beta', \gamma} \left(t^{-\gamma} S^m_n(\alpha t^k) E^a_{n,a}[at^{-l}] \right) \right)(x),
\]

Now, upon using the image formula (14), which is valid under the conditions stated with Theorem 2.3, we get
Now, we present one more special case of (29), by making use of identity (20), as given below:

On setting \(n = 0 \), \(A_{0,0} = 1 \) then \(S^m_0[x] \to 1 \) in (29), we obtained the following particular case of Theorem 2.3.

Corollary 2.5 Under the conditions \(\Re(\gamma) > 0, \Re(\lambda) > 0 \) and \(\Re(\rho) > \max \{0, \Re(\beta - \alpha') - \Re(\beta'), \Re(\beta - \alpha)\} \), the following formula holds

\[
\begin{align*}
&\left(D_{0+}^{\alpha',\beta',\gamma'} \left(t^{\gamma'-1} S^m_0 (\sigma t^\gamma) E^\nu_\delta [\alpha t^\alpha] \right) \right) (x) = \frac{x^{\gamma'+\nu'-\gamma'-1}}{\Gamma(\nu)} \times A_{n,z} (\sigma x^\sigma)^z \left[x^{\nu'-\gamma'-\nu'} \right] \\
&\quad \times \left((\rho - \gamma + \alpha + \beta' + \gamma') \Gamma(\rho + \gamma + \alpha + \beta' + \xi + 2 \delta + \gamma') \Gamma(\rho + \gamma + \alpha + \beta' + \xi + 2 \delta + \gamma') \right) \\
&\quad \times \left(\Gamma(\rho - \gamma + \alpha + \beta' + \gamma') \Gamma(\rho + \gamma + \alpha + \beta' + \xi + 2 \delta + \gamma') \right)^
u x^{\nu-1}.
\end{align*}
\]

Interpreting the right-hand side of the above equation, in view of the definition (5), we arrive at the result (29).

Corollary 2.6 The following generalized fractional differentiation formula holds

\[
\begin{align*}
&\left(D_{0+}^{\alpha',\beta',\gamma'} \left(t^{\gamma'-1} S^m_0 (\sigma t^\gamma) E^\nu_\delta [\alpha t^\alpha] \right) \right) (x) = \frac{x^{\gamma'+\nu'-\gamma'-1}}{\Gamma(\nu)} \times A_{n,z} (\sigma x^\sigma)^z \left[x^{\nu'-\gamma'-\nu'} \right] \\
&\quad \times \left((\rho - \gamma + \alpha + \beta' + \gamma') \Gamma(\rho + \gamma + \alpha + \beta' + \xi + 2 \delta + \gamma') \Gamma(\rho + \gamma + \alpha + \beta' + \xi + 2 \delta + \gamma') \right) \\
&\quad \times \left(\Gamma(\rho - \gamma + \alpha + \beta' + \gamma') \Gamma(\rho + \gamma + \alpha + \beta' + \xi + 2 \delta + \gamma') \right)^
u x^{\nu-1}.
\end{align*}
\]

where \(\Re(\gamma) > 0, \Re(\nu) > 0 \) and \(\Re(\rho) > \max \{0, \Re(\beta - \tau)\} \).

Remark 5 If we set \(q = 1, \tau = \gamma \) and \(n = 0, A_{0,0} = 1 \) then \(S^m_0[x] \to 1 \) in Corollary 2.6, we arrive at the known result given by Ahmed (2014, Equation (5.1)).

2.4. Right-sided generalized fractional differentiation of product of polynomial and generalized Mittag-Leffler function

Here, we establish image formulas for the product of Srivastava polynomials and generalized Mittag-Leffler function involving right-sided operators of Marichev-Saigo-Maeda fractional differentiation operators (13) in terms of the generalized Wright function. These results are given as follows:

Theorem 2.4 If \(\Re(\gamma) > 0, \Re(1 - \gamma - \rho) < 1 + \min \{ \Re(-\delta), \Re(\alpha + \alpha' - \gamma)\Re(\alpha + \beta' - \gamma) \} \), then we have

\[
\begin{align*}
&\left(D_{0+}^{\alpha',\beta',\gamma'} \left(t^{\gamma'-1} S^m_0 (\sigma t^\gamma) E^\nu_\delta [\alpha t^\alpha] \right) \right) (x) = \frac{x^{\gamma'+\nu'-\gamma'-1}}{\Gamma(\nu)} \times A_{n,z} (\sigma x^\sigma)^z \left[x^{\nu'-\gamma'-\nu'} \right] \\
&\quad \times \left((\rho - \gamma + \alpha + \beta' + \gamma') \Gamma(\rho + \gamma + \alpha + \beta' + \xi + 2 \delta + \gamma') \Gamma(\rho + \gamma + \alpha + \beta' + \xi + 2 \delta + \gamma') \right) \\
&\quad \times \left(\Gamma(\rho - \gamma + \alpha + \beta' + \gamma') \Gamma(\rho + \gamma + \alpha + \beta' + \xi + 2 \delta + \gamma') \right)^
u x^{\nu-1}.
\end{align*}
\]

Page 8 of 11
Proof. By using (4) and (7), the left-hand side of (34), can be written as

$$
\left(D_{-}^{\sigma, \alpha', \beta', \tau} \left(t^{-\gamma} S_n^m (\sigma t^\tau) E_{\alpha, \beta}^{n, q} [at^{-j}] \right) \right)(x) = \sum_{s=0}^{\lfloor n/m \rfloor} \frac{(-n)_s m^s}{s!} A_n, \sigma [\sigma t^\tau]^s
$$

which on using the image formula (15), arrive at

$$
\left(I_{-}^{\sigma, \alpha', \beta', \tau} \left(t^{-\gamma} S_n^m (\sigma t^\tau) E_{\alpha, \beta}^{n, q} [at^{-j}] \right) \right)(x)
$$

By using (4) and (7), the left-hand side of (34), can be written as

$$
\left(D_{-}^{\sigma, \alpha', \beta', \tau} \left(t^{-\gamma} S_n^m (\sigma t^\tau) E_{\alpha, \beta}^{n, q} [at^{-j}] \right) \right)(x) = \sum_{s=0}^{\lfloor n/m \rfloor} \frac{(-n)_s m^s}{s!} A_n, \sigma [\sigma t^\tau]^s
$$

which on using the image formula (15), arrive at

$$
\left(I_{-}^{\sigma, \alpha', \beta', \tau} \left(t^{-\gamma} S_n^m (\sigma t^\tau) E_{\alpha, \beta}^{n, q} [at^{-j}] \right) \right)(x)
$$

Interpreting the right-hand side of the above equation, in view of the definition (5), we arrive at the result (34).

Further, on setting $n = 0$, $A_{0,0} = 1$ then $S_0^0(x) \rightarrow 1$ in (34), we obtained the following particular case of Theorem 2.4.

Corollary 2.7 Let the conditions of Theorem 2.4 be satisfied, then the following formula holds

$$
\left(D_{-}^{\sigma, \alpha', \beta', \tau} \left(t^{-\gamma} E_{\alpha, \beta}^{n, q} [at^{-j}] \right) \right)(x) = \frac{\sigma x^{-j}}{\Gamma(\eta)}
$$

Corollary 2.8 The generalized fractional differentiation formula associated with the product of generalized Mittag-Leffler function and Srivastava polynomials, is given by

$$
\left(D_{-}^{\sigma, \alpha', \beta', \tau} \left(t^{-\gamma} S_n^m (\sigma t^\tau) E_{\alpha, \beta}^{n, q} [at^{-j}] \right) \right)(x) = \frac{\sigma x^{-j}}{\Gamma(\eta)}
$$

provided $\Re(\gamma) > 0$, $\Re(\lambda) > 0$, $\Re(1 - \gamma - \rho) < 1 + \min \left[\Re(-\beta), \Re(-\tau) \right]$.}

Remark 6 Finally, if we set $q = 1$, $\tau = \gamma$ and $n = 0$, $A_{0,0} = 1$, hence, $S_0^0(x) \rightarrow 1$ in Corollary 2.8, we arrive at the known result given by Ahmed (2014, Equation (6.1)).

Funding
The authors received no direct funding for this research.

Author details
Vishnu Narayan Mishra
E-mail: vishunarayanmishra@gmail.com
ORCID ID: http://orcid.org/0000-0002-2159-7770
D.L. Suthar
E-mail: disuthar@gmail.com
S.D. Purohit
E-mail: sunil_a_purohit@yahoo.com
ORCID ID: http://orcid.org/0000-0001-5415-1777

1 Department of Applied Mathematics & Humanities, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
2 Department of Mathematics, Wollo University, Dessie Campus, P.O. Box 1145, South Wollo, Amhara Region, Ethiopia.
3 Department of HEAS (Mathematics), Rajasthan Technical University, Kota, India.

Citation information
Cite this article as: Marichev-Saigo-Maeda fractional calculous operators, Srivastava polynomials and generalized Mittag-Leffler function, Vishnu Narayan Mishra, D.L. Suthar & S.D. Purohit, Cogent Mathematics (2017), 4: 1320830.
References

Ahmed, S. (2014). On the generalized fractional integrals of the generalized Mittag-Leffler function. SpringerPlus, 3, 198.

Baleanu, D., Kumar, D., & Purohit, S. D. (2016). Generalized fractional integrals of product of two H-functions and a general class of polynomials. International Journal of Computer Mathematics, 93, 1320–1329.

Chouhan, A., Khan, A. M., & Saraswat, S. (2014). A note on Marichev-Saigo-Maeda fractional integration operators. Journal of Fractional Calculus and Applications, 5, 88–95.

Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1953). Higher transcendental functions (Vol. 1). New York, NY: McGraw-Hill Book Company.

Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies (Vol. 204). Amsterdam: Elsevier (North-Holland) Science Publishers.

Kiryakova, V. (1994). Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series (Vol. 301). Harlow: Longman Scientific & Technical.Harlow: copublished in the United States with John Wiley & Sons, New York.

Kumar, D., Purohit, S. D., & Choi, J. (2016). Generalized fractional integrals involving product of multivariable H-function and a general class of polynomials. The Journal of Nonlinear Science and its Applications, 9, 8–21.

Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication. New York, NY: John Wiley & Sons, New York.

Mishra, L. N., & Agarwal, R. P. (2016). On existence theorems for some nonlinear functional-integral equations. Dynamic Systems and Applications, 25, 303–320.

Mishra, L. N., Agarwal, R. P., & Sen, M. (2016). Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdélyi-Kober fractional integrals on the unbounded interval. Progress in Fractional Differentiation and Applications, 2, 153–168.

Mishra, L. N., & Sen, M. (2016). On the concept of existence and local attractiveness of solutions for some quadratic Volterra integral equation of fractional order. Applied Mathematics and Computation, 285, 174–183.

Mishra, L. N., Srivastava, H. M., & Sen, M. (2016). On existence results for some nonlinear functional-integral equations in Banach algebra with applications. International Journal of Analysis and Applications, 11(1), 1–10.

Mittag-Leffler, G. M. (1903). Sur la nouvelle function E0(x). Comptes Rendus de l’Academie des Sciences Paris, 137, 554–558.

Nisar, K. S., Purohit, S. D., Abouzaid, M., Qurashi, M. A., & Baleanu, D. (2016). Generalized k-Mittag-Leffler function and its composition with Pathway integral operators. The Journal of Nonlinear Science and its Applications, 9, 3519–3526.

Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Mathematical Journal, 19, 7–15.

Prudnikov, A. P., Brychkov, Y. A, & Marichev, O. I. (1992). Integrals and series, Vol. Inverse Laplace transforms. New York, NY: Gordon and Breach Science Publishers.

Purohit, S. D. (2013). Solutions of fractional partial differential equations of quantum mechanics. The Advances in Applied Mathematics and Mechanics, 5, 639–651.

Purohit, S. D., & Kalla, S. L. (2011). On fractional partial differential equations related to quantum mechanics. Journal of Physics A: Mathematical and Theoretical, 44, 8 pp.

Purohit, S. D., Kalla, S. L., & Suthar, D. L. (2011). Fractional integral operators and the multindex Mittag-Leffler functions. Scientia Series A : Mathematical Sciences (N.S.), 21, 87–96.

Purohit, S. D., Suthar, D. L., & Kalla, S. L. (2012). Marichev-Saigo-Maeda fractional integration operators of the Bessel functions. Matematiche (Catania), 67, 21–32.

Saigo, M. (1978). A remark on integral operators involving the Gauss hypergeometric functions. Mathematical Reports of Kyushu University, 11, 135–143.

Saigo, M. (1979). A certain boundary value problem for the Euler-Darboux equation. Mathematicae Japonicae, 25, 377–386.

Saigo, M. & Maeda, N. (1998). More generalization of fractional calculus, Transform methods & special functions, Varna ’96 (pp. 386–400). Sofia: Bulgarian Academy of Sciences.

Samko, S., Kilbas, A., & Marichev, O. (1993). Fractional integrals and derivatives: theory and applications. Yverdon: Gordon and Breach Science Publishers.

Shukla, A. K., & Prajapati, J. C. (2007). On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications, 336, 797–811.

Srivastava, H. M. (1968a). On an extension of the Mittag-Leffler function. Yokohama Mathematical Journal, 16, 77–88.

Srivastava, H. M. (1972a). A contour integral involving Fox’s H-function. Indian Journal of Mathematics, 14, 1–6.

Srivastava, H. M. (2016). Some families of Mittag-Leffler type functions and associated operators of fractional calculus. TWMS Journal of Pure and Applied Mathematics, 7, 123–145.

Srivastava, H. M., & Karlsson, P. W. (1985). Multiple Gaussian hypergeometric series, Ellis Horwood series: Mathematics and its applications. Chichester: Ellis Horwood. Halsted Press (John Wiley & Sons, Inc.), New York.

Srivastava, H. M., & Saigo, M. (1987). Multiplication of fractional calculus operators and boundary value problems involving the Euler-Darboux equation. Journal of Mathematical Analysis and Applications, 121, 325–369.

Srivastava, H. M., & Saxena, R. K. (2001). Operators of fractional integration and their applications. Applied Mathematics and Computation, 118(1), 1–52.

Srivastava, H. M., & Tomovski, Z. (2009). Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Applied Mathematics and Computation, 211, 198–210.

Suthar, D. L., Parmar, R. K., & Purohit, S. D. (2017). Fractional calculus with complex order and generalized hypergeometric functions. Nonlinear Science Letters A, 8, 156–161.

Tomovski, Ž., Hilfer, R., & Srivastava, H. M. (2010). Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transforms and Special Functions, 21, 797–814.

Tomovski, Ž., Pogány, T. K., & Srivastava, H. M. (2014). Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity. Journal of the Franklin Institute, 351, 5437–5454.

Wiman, A. (1905). Über den Fundamentalsatz in der Theorie der Funktionen Eas(x). On the fundamentals in the theory of the functions Eas(x). Acta Mathematica, 29, 191–201.

Wright, E. M. (1935). The asymptotic expansion of the generalized hypergeometric functions. Journal of the London Mathematical Society, 10, 286–293.

Wright, E. M. (1940). The asymptotic expansion of integral transforms related to quantum mechanics. Journal of the London Mathematical Society, 15, 389–408.
