Analytical Solution of the Transport Equation for Exponentially Decreasing Initial Concentration in Shallow Water Table Condition in an Irrigated Field

Ram Pal¹*, M. Imtiyaz² and H. C. Sharma³

¹Krishi Vigyan Kendra, Madhepura, Bihar Agricultural University, Sabour, Bahalpur, Bihar- 852113, India.
²Department of Soil, Water, Land Engineering and Management, College of Agricultural, Engineering and Technology, Allahabad Agricultural Institute, Deemed University, Allahabad-7, Uttar Pradesh, India.
³Department of Irrigation and Drainage Engineering, College of Technology G.B. Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttaranchal, India.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/CJAST/2020/v39i630557
Editor(s):
(1) Dr. Ahmed Fawzy Yousef, Desert Research Center, Egypt.
Reviewers:
(1) Elisha Akech Ochungo, University Of Nairobi, Kenya.
(2) Wasiu Agunbiade Lamidi, Osun State University, Nigeria.
(3) Ningappa M. Rolli, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/52529

Received 15 September 2019
Accepted 20 November 2019
Published 13 April 2020

ABSTRACT
Most of the agricultural activities are limited for the depth of 15 – 20 cm and rest soil remain enact for long periods which inhibits the microbial activities below this depths and create an initial concentration of nutrients exponentially decreasing with depth. An attempt has been made to develop analytical models for time-dependent nitrification/ denitrification and depth-dependent absorption of urea fertilizer in high water table conditions with fertigation. Laplace transformation method was used to solve the unsteady-state advection-dispersion equation. The analytical solutions that can be derived by this method assist understanding of the movement of fertilizer in irrigated fields. The developed models were validated with the experimental results. They were closely predicting the fertilizer movement in one-dimension soil medium. The little deviation of result from observed values may be due to change of dispersion coefficient and velocity with moisture

*Corresponding author: E-mail: rampalag97@gmail.com;
content. Here these parameters were assumed as constant throughout the time under consideration. Models developed for constant degradation rate is predicting very close to observe values which shows that the soil under study has no depth-dependent degradation. The developed models may be helpful for the planning of drain design, nutrient management and assessment of potential hazards to groundwater in agricultural fields by the knowledge of exact transport parameters and boundary conditions universally.

Keywords: Transport equation; initial concentration; shallow water; irrigated field.

1. INTRODUCTION

The topsoil up to a depth of 15-20 cm supports most of the seasonal and shallow deep-rooted cereals crops. These types of crops may be grown successfully without tillage in a wide range of soil. The popularity of zero-till machines in Indian agriculture avoids the tillage of soil up to a great extent. Addition of different biofertilizers and soil ameliorators increase the biological activities in upper soil and leave the lower soil enact and creates the situation of exponentially decreasing initial concentration of different soil nutrients in soil mass in high water table areas. Mathematical modelling of processes, in the unsaturated zone, is useful for the agricultural management of cultivated sites, for prediction of the fate of agrochemicals, and assessment of the potential hazard of shallow groundwater contamination. The difficulty of solving the transport equation in the unsaturated zone relies on its strong nonlinearity. Although significant efforts have been made to overcome the mathematical difficulties, most analytical solutions are derived for one-dimensional vertical transport under various simplifying assumptions. Accounting for the spatial heterogeneity of natural soils renders the transport problem even more complicated.

Bresler and Laufer [1] simulated the movement of nitrate inhomogeneous soil profile in the presence of NO$_3$-N production (nitrification). Sexton et al. [2] modelled nitrate-nitrogen movement and dissipation in fertilized agricultural lands but did not include representation of any other fertilizer from nitrogen. Wagenet et al. [3] extended the mathematical analysis of Cho and Misra et al. [4] to describe the transport and transformation of urea, ammonium nitrogen and nitrate nitrogen soil profile as a function of depth and time subject to either steady or pulse feed application of nitrogen, and validated with controlled laboratory experiments.

Wagenet et al. [3] developed research and development type models on the fate of nitrogen in the root zone by simplifying assumptions of water and solute processes in the field. Watts and Hanks [5] and Tillotson and Wagenet [6] developed a model that simulated most of the major transformations of the nitrate as well as the uptake by the crop, but fell short of fully describing the system in the plant growth and yield response. Benbi et al. [7] also developed soil water, nitrogen models. Zadi et al. [8] combined functional sub-model and analytical solution to the steady-state convection dispersion equations to predict the nitrate concentration in the root zone. They also investigated the penetration of reactive solute into a soil during a cycle of water infiltration and redistribution by deriving analytical closed-form solutions for fluid flux, moisture content and contaminant concentration Sander and Braddock [9] presented a range of analytical solutions to the combined transient water and solute transport for horizontal flow. Smedt [10] reported an analytical solution and analysis of solute transport in rivers affected by diffusive transfer in the hyporheic zone. Khakpour and Kambiz [11] reported an analytical solution of transport phenomena within the PEM fuel cell. Srinivasan and Clement [12] reported analytical solutions for sequentially coupled one-dimensional reactive transport problems. Sadek [14] compared the various available analytical solution with numerical methods is deduced that the analytical solution may be used as a versatile tool for assessment of contaminant transport. Jozse and Janos [14] derived an analytical solution of the coupled 2-D turbulent heat and vapour transport equations and the complementary relationship of evaporation. Guerrero and Skaggs [15] presented a general analytical solution for linear, one-dimensional advection-dispersion equation with distance-dependent coefficients. An integrating factor was employed to obtain a transport equation that has a self-adjoint differential operator, and a solution was found using the generalized integral transform technique.

The mechanisms of solute transport in the irrigated field are significantly influenced by attenuation processes such as adsorption and
nitrification/denitrification processes. Most of the available analytical solutions are based on linear equilibrium adsorption and first-order nitrification and possibly zeroth-order production (van Genuchten and Alves [16] for several analytical solutions). Here the movement of urea fertilizer was analytically solved under depth-dependent adsorption factor and combination of constant and exponential nitrification/denitrification rate for exponentially decreasing initial condition. Following assumptions were considered for formulating the boundary value problems:

1. The soil is unconfined, homogeneous and isotropic overlain by an impermeable layer which is having water table depth H meter from the soil surface.
2. The water through deep percolation moves vertically downward until it joins the groundwater.
3. Darcy and Fick’s laws hold good.
4. The fluid is of constant density and viscosity.

In the present study 1-D, Richard’s equation in combination with solute transport equation, which incorporates nitrification and de-nitrification, and depth-dependent soil and water matrix factor, was used to characterize the movement of applied fertilizer in irrigated agriculture having shallow water table conditions.

Governing Equation

Transport equation in the unsaturated porous medium is given by:

\[\frac{\partial}{\partial t} \left[\theta C \right] + \frac{\partial}{\partial z} \left(\theta D \frac{\partial C}{\partial z} - q C \right) - \alpha \theta C - \beta C \gamma \theta = 0 \]
(1)

where \(C = C(z, t) \) is the concentration of chemical in the liquid phase in mg/l, \(S = S(z, t) \) is the concentration of chemical in the solid phase in mg/l, \(D = D(z, t) \) is the dispersion coefficient in m²/day, \(\partial = \partial \) (z, t) is the volumetric water content cm³/cm³, \(q = q(z, t) \) is the flux of water in m/day, \(\rho = \rho (z) \) is the soil bulk density in gm/cm³, \(\alpha = \alpha (z) \) is the first-order degradation rate constant in the liquid phase, \(\beta = \beta (z) \) is the first-order degradation rate constant in the solid phase, \(\gamma = \gamma (z) \) is the zero-order production rate constant in the liquid phase. Here \(\alpha, \beta, \gamma \) and are zero or greater.

Considering that soil medium remains intact with time, and introducing mass balance equation for one-dimensional unsteady unsaturated flow condition as given by Chow et al. [17], Eqn. (1) reduces to:

\[\frac{\partial C}{\partial t} + \frac{\partial}{\partial z} \left(\nu \frac{\partial C}{\partial z} - RC \gamma \theta \right) = 0 \]
(2)

where \(\nu = q / \theta \), \(R = \left(\alpha + \frac{\beta \theta}{\theta} \right) \) and, the factor representing the combined effect of liquid and solid phase degradation rate. Here we assume \(R(C) = R_0 - b \), \(C_0 - C \) where \(R_0 \) represents potential degradation rate at the land surface; \(b \) is reduction factor due to which degradation decreases linearly as the depth from the land surface it increases up to a specific value; and \(C_0 \) is initial concentration at the ground surface. For the development of the model, the combination of constant and exponentially decreasing nitrification/de-nitrification rate which may be given as \(\gamma (t) = \gamma_0 + \gamma_1 e^{-r t} \), where \(\gamma_0, \gamma_1 \) and \(r \) are constant nitrification/de-nitrification rates, \(r \) is decay constant and \(t \) represents time.

The initial and boundary conditions in mathematical terms, for the solute flow problem in the unsaturated zone under the above situation, may be written as:

\[C(z, o) = C_1(z, o) \quad \text{at}\ t = o \quad \text{for} \ o < z < H \]

\[C(0, t) = C_1 \quad \text{at}\ t > o \quad \text{for} \ z = o \]

\[C(H, t) = C_2 \quad \text{at}\ t > o \quad \text{for} \ z = H \]
(3)

where \(C_1 = g_1e^{n_1}, C_2 = g e^{n_2}, g_1 \) and \(g \) are the concentrations at the ground surface and \(H \) meter below the soil surface before application of fertigation. \(C_1(z, 0) \) is the distribution of initial concentration in the porous medium. Devising a transform given by Eqn. (4) converted the Eqn. (2) and Eqn. (3) into standard heat flow equation and given by Eqn (5) and Eqn. (6), respectively.

\[C(z, t) = V(z, t) \exp \left(\frac{y z}{2D} - \frac{y^2}{4D} + b \right) \left(\frac{z e^{-rt}}{b - r} + \frac{\gamma_0 + \gamma_1 e^{-r t}}{b - r} \right) \]
(4)

\[\frac{\partial V}{\partial z} = \frac{1}{D} \frac{\partial}{\partial t} \]
(5)

\[V(z, 0) = (C_1 - A - B) e^{-z} = f(z) \]
(6)

\[V(0, t) = (C_1 - A - B) e^{-z} = f(t) \]

\[V(H, t) = E(C_1 - A - B) e^{-z} = f(t) \]

35
Where,
\[
A = \frac{y_a + bC_0 - R_a}{b}, \quad d = \frac{v^2}{4D}, \quad a = \frac{v}{2D}, \quad E = e^{-at}, \quad \text{and} \quad B = \frac{\gamma_1}{b - r}.
\]

The general solution of transformed Eqn (5) under initial and boundary condition Eqn(6) is given by Carslaw and Jaeger [18] and Ozisik [19] as below:
\[
V(z, t) = \frac{2}{H} \sum_{m=1}^{\infty} e^{-\beta_m^2 z} \sin \beta_m z \left[f_1(0) + \sum_{m=1}^{\infty} f_2(0) e^{-D\beta_m^2 t} \int_{0}^{t} e^{-D\beta_m^2 (\tau-\tau)} d\tau + \frac{z}{H} f_2(t) \right]
\]
\[
- \frac{2}{H} \sum_{m=1}^{\infty} \beta_m z \sin \beta_m z \left[f_1(0) e^{-D\beta_m^2 t} + \frac{z}{H} f_2(t) \right]
\]
\[
+ \frac{2}{H} \sum_{m=1}^{\infty} (-1)^m \beta_m z \sin \beta_m z \left[f_2(0) e^{-D\beta_m^2 t} + \frac{z}{H} f_2(t) \right]
\]
(7)

where \(\beta_m\) is the root of \(\sin \beta_m H = 0\) and \(\tau\) is a dummy variable. The solution of the transport equation was obtained for exponentially decreasing initial concentration of nitrogen in soil profile with the help of equation (7) and transformed initial and boundary conditions. When \(C_z = p - e^{kz}\) i.e. exponentially decreasing with depth, then the final solution of Eqn. (7) takes the following form:
\[
C(z, t) = \frac{2}{H} e^{x-z-d} \sum_{m=1}^{\infty} A_m \sin \beta_m z \left[(p - A - B) \frac{\beta_m}{(k-a) + \beta_m^2} \left[1 - (-1)^m \right] \right]
\]
\[
- \frac{2}{H} e^{x-z-d} \sum_{m=1}^{\infty} A_m \sin \beta_m z \left[\frac{\beta_m}{k-a} \right] \left[1 - (-1)^m \right] \left[e^{kz} \right]
\]
\[
+ \left(\frac{1}{H} \right) \left(C_1 - A - Be^{-r} \right) \left[g - e^{kz} \right] + \frac{z}{H} \left(C_1 - A - Be^{-r} \right) \left[e^{kz} \right]
\]
\[
- \frac{2}{H} e^{x-z-d} \sum_{m=1}^{\infty} \beta_m z \sin \beta_m z \left[\left(g_1 - A - B \right) A_1 \right]
\]
\[
- \frac{2}{H} e^{x-z-d} \sum_{m=1}^{\infty} \sin \beta_m z \left[\left(g_1 - A - B \right) A_1 \right]
\]
\[
+ \frac{2}{H} e^{x-z-d} \sum_{m=1}^{\infty} (-1)^m A_m \beta_m z \left[\left(g - A - B \right) A_1 \right] + \frac{z}{H} \left(g - A - B \right) A_1 \left[e^{kz} \right]
\]
\[
+ \frac{2}{H} e^{x-z-d} \sum_{m=1}^{\infty} (-1)^m A_m E \beta_m z \left[\frac{\beta_m}{k} \right] \left[\left(g - A - B \right) A_1 \right] + \frac{z}{H} \left[\left(g - A - B \right) A_1 \right] \left[e^{kz} \right]
\]
(8)

When degradation is constant with depth i.e. \(b=0\) Eqn (8) become imperative so for this situation another transformation equation (Eqn. 9) was devised to transform the original problem into standard heat flow equation and given as
\[C(z,t) = V(z,t) \exp \left(\frac{yz}{2D} \left(\frac{v^2}{4D} \right) t + \frac{y^2 e^{-rt}}{r} \right) + \frac{y_0^2 + R}{t} \]

Equation (9) transform the problem into a simple heat flow equation under a constant degradation rate and gave the final solution of the problem as:

\[C(z,t) = \frac{2}{H} e^{az-dt} \sum_{n=1}^{\infty} A_n \sin \beta_n z \left(p - B_2 \right) - \frac{\beta_n}{a^2 + \beta_n^2} \left(1 - \left(-1 \right)^n \right) E \]

This transformation Eqn. (9) transform the problem into a simple heat flow equation under a constant degradation rate and gave the final solution of the problem as:

\[C(z,t) = \frac{2}{H} e^{az-dt} \sum_{n=1}^{\infty} A_n \sin \beta_n z \left(p - B_2 \right) - \frac{\beta_n}{(k-a)^2 + \beta_n^2} \left(1 - \left(-1 \right)^n \right) E e^{rt} \]

\[+ \left(1 - \frac{z}{H} \right) \left(C_1 - A_1 - B_2 e^{-rt} \right) e^{az} + E \frac{z}{H} \left(C_2 - A_2 - B_2 e^{-rt} \right) e^{az} \]

\[- \frac{2}{H} e^{az-dt} \sum_{n=1}^{\infty} \frac{\sin \beta_n z (g_1 - B_2) A_2 + B_2 + A_1 t}{A_2 + A_1 e^{Kt}} \]

\[+ \frac{2}{H} e^{az-dt} \sum_{n=1}^{\infty} \frac{\sum_{n=1}^{\infty} \frac{\sin \beta_n z (g - B_2) E A_2}{\beta_n}}{M + A_2 + A_1 e^{Kt}} \]

\[+ \frac{2}{H} e^{az-dt} \sum_{n=1}^{\infty} \frac{\sin \beta_n z (g - B_2) E A_2}{\beta_n} \]

\[+ \frac{2}{H} e^{az-dt} \sum_{n=1}^{\infty} \frac{\sum_{n=1}^{\infty} \frac{\sin \beta_n z (g - B_2) E A_2}{\beta_n}}{M + A_2 + A_1 e^{Kt}} \]

\[+ \frac{2}{H} e^{az-dt} \sum_{n=1}^{\infty} \frac{\sum_{n=1}^{\infty} \frac{\sin \beta_n z (g - B_2) E A_2}{\beta_n}}{M + A_2 + A_1 e^{Kt}} \]

\[+ \frac{2}{H} e^{az-dt} \sum_{n=1}^{\infty} \frac{\sum_{n=1}^{\infty} \frac{\sin \beta_n z (g - B_2) E A_2}{\beta_n}}{M + A_2 + A_1 e^{Kt}} \]

\[+ \frac{2}{H} e^{az-dt} \sum_{n=1}^{\infty} \frac{\sum_{n=1}^{\infty} \frac{\sin \beta_n z (g - B_2) E A_2}{\beta_n}}{M + A_2 + A_1 e^{Kt}} \]

\[+ \frac{2}{H} e^{az-dt} \sum_{n=1}^{\infty} \frac{\sum_{n=1}^{\infty} \frac{\sin \beta_n z (g - B_2) E A_2}{\beta_n}}{M + A_2 + A_1 e^{Kt}} \]

Equation (8) and equation (10) give the complete solution of transport equation (2) under constant and depth-dependent degradation rate for the combination of constant and exponentially denitrification rate. In further analysis, they would be treated as Model 1 and Model 2, respectively.

Experimental plot: The size of the experimental plot was 5 m x 5 m, surrounded by 1-meter buffer zone earlier used by Behera [20] and Garg et al. [21] and lined by a galvanized iron sheet as discussed by Jaynes et al. [22]. The line of tensiometers and soil-water samplers were put 1.5 away from the side boundary, double ring infiltrometer was kept at the centre of the plot while access tubes were installed on the centre line of the plot. Depth of both tensiometers and samplers were kept 15, 30, 50, 75, 100 and 150 cm below the ground surface. First and sixth were installed 50 cm away from the boundary and the distance between two were kept 80 cm, access tubes were installed 125 cm from the boundary. Observation wells were installed at two corners diagonally, keeping in mind the general flow direction of water movement. All soil water samplers were connected by a lateral line through HDPP (high-density polyvinyl pipe) and
connected to a vacuum pump which creates suction and pressure in a sampler for collection of leachate sample.

Collection of field data: Nitrogen solution of 448 ppm concentration, representing the nitrogen dose of 334 N kg/ha, was applied in the experimental plot instantaneously to simulate the fertilization. Leachate samples were collected with the help of soil-water sampler and vacuum pump. Collected samples were brought to the laboratory and analyzed for total nitrogen content with the help of Kjeldahl unit.

3. RESULTS AND DISCUSSION

3.1 Verification of the Analytical Solution with Experimental

Physical, chemical, textural and transport parameters, required to validate the developed models, were obtained by standard methods. Computer programmes for model-1 and model-2 were developed in C++ language with defining the all input parameters in the programme except space and time. Just by giving the value of space and time one can get the concentration of fertilizer at that space and time. Performance of developed models was compared with experimental results and shown in Figs. 1 to 13. First 6 figures are showing the performance of developed models at 0.15 m, 0.30 m, 0.50 m, 0.75 m, 1.00 m and 1.50 m respectively. At 0.15 m first, four days both model-1 and model-2 were over predicting a little more than observed value but from the third day onwards both predicted very close to the observed values which may be seen in Fig. 1. Similar performance of models was also observed for other depths except for 1.5 m and is depicted in Fig. 2 to Fig. 5 that may be due to preferential flow (funnelling, fingering and channelling) of water through the soil or highly disturbed upper soil layer during the installation of soil-water sampler or combination of these two. Similar performance of models was also depicted in Fig. 7 to Fig. 13 at a different day and further validated their performance. Table 1 shows the per cent deviation of concentration predicted by developed models and observed values. The deviation is very less except for the first two days.

3.2 Limiting Conditions

Analytical solutions are given by Eqns. (8) and (10) under different conditions can be used to obtain the following analytical solutions as special cases: (1) Analytical solutions when the nitrification rate is constant by substituting \(\gamma_1 = 0 \) in the above equations. (2) Analytical solutions when the nitrification rate is exponentially decreasing by substituting \(\gamma_0 = 0 \) in the above equations. (3) Analytical solutions when there is no nitrification by substituting \(\gamma_0 = 0 \) and \(\gamma_1 = 0 \) in the above equations. Graphical comparison of developed models with observed value for this condition is shown in (4) Analytical solutions for non-absorbing solutes by substituting \(R_0 \) and \(b = 0 \) in the above equations. Variations in concentrations under limiting conditions were negligible for model 2 as compared to model 1 in similar situations. Model-2 performed better than Model-1 at each day. Hence it may be concluded that the under local soil condition there is no degradation with depth for nitrogen concentration in shallow groundwater table condition.

![Fig. 1. Performance of developed models at different days at 15 cm depth](image)
Fig. 2. Performance of developed models at different days at 30 cm depth

Fig. 3. Performance of developed models at different days at 50 cm depth

Fig. 4. Performance of developed models at different days at 75 cm depth
Fig. 5. Performance of developed models at different days at 100 cm depth

Fig. 6. Performance of developed models at different days at 150 cm depth

Fig. 7. Performance of developed models at different depth on first day
Fig. 8. Performance of developed models at different depth on second day

Fig. 9. Performance of developed models at different depth on third days

Fig. 10. Performance of developed models at different depth on fourth days
Fig. 11. Performance of developed models at different depth on fifth days

Fig. 12. Performance of developed models at different depth on seventh days

Fig. 13. Performance of developed models at different depth on tenth days
Fig. 14. Performance of developed models at different depth on fifteenth days

Fig. 15. Performance of developed models at different depth on twentieth days

Fig. 16. Performance of model-1 under limiting condition at different depth on first day
Table 1. Observed and predicted concentration (ppm) by equation 8 and equation 10

Time(days)	Model 1	Model 2	Observed	% deviation	% deviation
1	409.46	395.2	375	9.19	5.39
2	470.26	464.23	451	4.27	2.93
3	481.4	477.44	473	1.78	0.94
4	483.73	480.1	478	1.20	0.44
5	484.34	480.76	481	0.69	-0.05
7	484.84	480.83	482	0.59	-0.24
10	485.64	480.73	483	0.55	-0.47

4. CONCLUSION

Developed models would be successfully used for the prediction of fertilizer movement in the irrigated field where the water table is high with the accurate knowledge of local transport parameters. Deviation in observed and predicted concentrations were highest on the first day and decreases continuously as time passes this may be due to the highly disturbed top layer caused due to installation of instruments and G.I. sheet. Hence, the preferential flow of solute must be minimized before taking the actual observation to avoid such an outcome.

ACKNOWLEDGEMENT

The first author gratefully acknowledges UGC, New Delhi for providing fellowship to carrying out this research work.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Bresler E, Laufer A. Simulation of nitrate movement in soil under transient unsaturated flow condition. Israel Journal of Agriculture Research. 1974;23:141-153.
2. Saxton KE, Schuman GE, Burwell RE. Modelling nitrate movement and dissipation in fertilized soils. Soil Science Society American Journal. 1977;41:265-273.
3. Wagenet RJ, Bigger JW, Nielsen DR. Tracing the transformation of urea fertilizer during leaching. Soil Science Society American Journal. 1977;41:896-902.
4. Misra C, Nielsen DR, Bigger JW. Nitrogen transformation in soil during leaching: ii. steady state nitri"cation and nitrate reduction. Soil Science Society American Proceeding. 1974;38:294-299.
5. Watts DC, Hanks RJ. A soil nitrogen model for irrigated corn on sandy soils. Soil Science Society American Journal. 1978; 42:492-499.
6. Tillotson WR, Wagenet RJ. Simulation of fertilizer nitrogen under cropped situations. Soil Science. 1982;133:133-143.
7. Benbi DK, Prihar SS, Cheema HS. A model to predict changes in soil moisture, NO−3 -N content and N uptake by wheat. Fertilizer Research. 1991;28(1):73-84.
8. Izadi B, Ashraf MS, Studer D, McCann I, King B. A simple model for the prediction of nitrate concentration in the potato root zone. Agricultural Water Management. 1996;30:41-56.
9. Sander GC, Braddock RD. Analytical solutions to the transient, unsaturated transport of water and contaminants through horizontal porous media advances in Water Resources; 2005.
10. Smect. Analytical solution and analysis of solute transport in rivers affected by diffusive transfer in the hyporheic zone. Journal of Hydrology. 2007;339(1-2):29-38.
11. Mehrzad Khakpour, Kambiz Vafai. Analysis of transport phenomena within PEM fuel cells – An analytical solution. International Journal of Heat and Mass Transfer. 2008;51(15-16):3712-3723.
12. Srinivasan V, Clement TP. Analytical solutions for sequentially coupled one-dimensional reactive transport problems – Part I: Mathematical derivations. Advances in Water Resources. 2008;31(2):203-218.
13. Sadek. Comparison between numerical and analytical solution of solute transport models. Journal of African Earth Sciences. 2009;55(1-2):63-68.
14. Jozsef Szilagyi, Janos Jozsa. Analytical solution of the coupled 2-D turbulent heat and vapor transport equations and the complementary relationship of evaporation. Journal of Hydrology. 2009; 372(1-4):61-67.
15. Guerrero JS, Pérez TH Skaggs. Analytical solution for one-dimensional advection–dispersion transport equation with distance-dependent coefficients. Journal of Hydrology. 2010;390(1-2):57-65.
16. Van Genuchten MT, Alves WJ. Analytical solution of the one-dimensional convection-dispersion solute transport equation, U. S. D. A. Tech. Bull. 1982; 1661:151.
17. Chow VT, Maidment DR, Mays LW. Applied Hydrology. McGraw-Hill International, New York; 1988.
18. Carslaw HS, Jaeger JC. Conduction of heat in solids. Clarendon press, London; 1959.
19. Ozisik MN. Heat Conduction. John Wiley and Sons, New York; 1980.
20. Behera S, Jha MK, Kar S. Dynamics of water flow and fertilizer solute leaching in lateritic soils of Kharagpur region, India. Agricultural Water Management. 2003;63: 77–98.
21. Garg KK, Jha MK, Kar S. Field investigation of water movement and nitrate transport under perched water table conditions. Bio-Systems Engineering. 2005;92(1):69–84.
22. Jaynes DB, Rice RC, Hunsaker DJ. Solute transport during chemigation of a level basin. ASAE Transaction. 1992;36:1809-1815.

© 2020 Pal et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/52529