Human $\gamma 9\delta 2$ T Lymphocytes in the Immune Response to P. falciparum Infection

Jennifer Howard, Irfan Zaidi, Séverine Loizon, Odile Mercereau-Puijalon, Julie Déchanet-Merville, Maria Mamani-Matsuda

To cite this version:

Jennifer Howard, Irfan Zaidi, Séverine Loizon, Odile Mercereau-Puijalon, Julie Déchanet-Merville, et al.. Human $\gamma 9\delta 2$ T Lymphocytes in the Immune Response to P. falciparum Infection. Frontiers in Immunology, Frontiers, 2018, 9, pp.2760. 10.3389/fimmu.2018.02760. hal-02407149

HAL Id: hal-02407149
https://hal.archives-ouvertes.fr/hal-02407149
Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Human $V_\gamma 9 V_\delta 2$ T Lymphocytes in the Immune Response to *P. falciparum* Infection

Jennifer Howard 1, Irfan Zaidi 1, Séverine Loizon 2, Odile Mercereau-Puijalon 3, Julie Déchanet-Merville 2 and Maria Mamani-Matsuda 2*

1 Division of Intramural Research (DIR), National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States,
2 Univ. Bordeaux, CNRS ImmunoConcEpT UMR 5164, Bordeaux, France, 3 Parasites and Insect Vectors Department, Institut Pasteur, Paris, France

Malaria is an infectious disease caused by the protozoan parasite *Plasmodium sp*, the most lethal being *Plasmodium falciparum*. Clinical malaria is associated with the asexual replication cycle of *Plasmodium* parasites inside the red blood cells (RBCs) and a dysregulated immune response. Although the mechanisms of immune responses to blood—or liver-stage parasites have been extensively studied, this has not led to satisfactory leads for vaccine design. Among innate immune cells responding to infection are the non-conventional gamma-delta T-cells. The $V_\gamma 9 V_\delta 2$ T-cell subset, found only in primates, is activated in response to non-peptidic phosphoantigens produced by stressed mammalian cells or by microorganisms such as Mycobacteria, *E. coli*, and *Plasmodium*. The potential protective role of $V_\gamma 9 V_\delta 2$ T-cells against infections and cancer progression is of current research interest. $V_\gamma 9 V_\delta 2$ T-cells have been shown to play a role in the early control of *P. falciparum* parasitemia and to influence malaria adaptive immunity via cytokine release and antigen presentation. They are activated and expanded during a primary *P. falciparum* infection in response to malaria phosphoantigens and their activity is modulated upon subsequent infections. Here, we review the wide range of functions by which $V_\gamma 9 V_\delta 2$ T-cells could both contribute to and protect from malaria pathology, with a particular focus on their ability to induce both innate and adaptive responses. We discuss how the multifunctional roles of these T-cells could open new perspectives on gamma-delta T-cell-based interventions to prevent or cure malaria.

Keywords: gamma-delta T cells, malaria, falciparum, immunity to malaria, antigen presenting cell (APC), cytotoxicity

INTRODUCTION

Over the last decades, the importance of a specific subset of $\gamma \delta$ T-cells in malaria infection is becoming increasingly apparent, namely $V_\gamma 9 V_\delta 2$ T-cells. Restricted to human and non-human primates, $V_\gamma 9 V_\delta 2$ T-cells constitute a non-conventional T-cell subset activated in a non-MHC dependent manner, by phosphorylated intermediates of isoprenoid biosynthesis pathways of mammalian cells and microorganisms, known as phospho-antigens (Ph-Ag) (1). The known most potent of these, HMBPP [(E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate] is produced by the DOX-P pathway used by several microorganisms (2) including the parasite responsible for malaria, *Plasmodium spp* [reviewed (3)]. Once
activated, Vγ9Vδ2 T-cells expand, produce cytokines, exert cytotoxic functions, and stimulate cells such as monocytes, resulting in improved monocyte antigen presentation capabilities (4). Despite major global effort, malaria remains a major public health concern. Nearly half of the world’s population live in malaria endemic regions, the majority in sub-saharan Africa, and it is responsible for ~216 million cases and 445,000 deaths each year (5). Efforts to create an effective vaccine are hampered by lack of understanding of the parasites interactions with our immune system. There are five species of Plasmodium that infect humans: P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. P. falciparum is the most prevalent and deadly. P. falciparum, similar to other Plasmodium, is transmitted through the bite of a female Anopheles mosquito. The extracellular, liver-invasive form, the sporozoite, is injected into the skin, where it enters the blood flow and travels to the liver. Here the parasite eventually invades hepatocytes, wherein it differentiates and divides to form the extracellular form called merozoites. Merozoites are released into the bloodstream and invade red blood cells (RBCs) where they progress through a 48 h life cycle before RBC rupture and merozoite release. Clinical disease manifests during this blood stage and is characterized by cyclical episodes of fever paroxysms. Severe malaria can be fatal and presents an array of severe symptoms including severe anemia, respiratory distress caused by severe metabolic acidosis, cerebral-malaria, multi-organ failure, and in pregnant women, placental malaria (6).

For over 100 years, it has been observed that partial immunity to malaria in endemic areas is only acquired after multiple disease episodes (7–9). In endemic settings, immunity is developed first to severe malaria (usually before 5 years old) then to clinical malaria (by 10–15 years old) (8, 10–12). Acquired immunity appears to be strain- and variant-specific and in endemic areas people are frequently re-infected by novel variants with novel antigen combinations. This complicates the assessment of protective immunity, however it is commonly accepted that sterile immunity is rarely reached and low parasitemia is a genetic peculiarity, or different microbiota and pathogen exposure early in life that drives expansion and contraction of these subsets. An in-depth discussion on the reasons for these geographical differences, and the role played by non Vγ9Vδ2 T-cells in malaria infection is beyond the scope of this review, which focuses on Vγ9Vδ2 T-cells. Vγ9Vδ2 T-cells have features associated with both innate and adaptive T-cells, and increasing evidence suggests they act as a bridge between the innate and adaptive immune systems [reviewed (28–30)]. Vγ9Vδ2 T-cells have a wide range of effector functions [reviewed (30, 31)], and it is becoming increasingly clear that during P. falciparum infection they contribute to both protection and pathology. In this review, we discuss their role as cytotoxic killer cells and their ability to initiate both innate and adaptive immune responses against P. falciparum malaria infection via cytokine release and direct antigen presentation to CD4 and CD8 T-cells.

Vγ9Vδ2 T-cells are activated during malaria infection

γδ T-cells have long been observed to expand in vivo in the peripheral blood of primary infected P. falciparum malaria patients, with the major subset being Vγ9Vδ2 T-cells (32, 33). Interestingly, expansion in the peripheral blood is greatest during recovery, after acute infection has passed (34), indicating either a delay in response, or homing to tissues during acute infection. Vγ9Vδ2 T-cells were found to be increased in human spleens during infection (35, 36), a phenomenon that was confirmed in monkey models (36). The rapid expansion of Vγ9Vδ2 T-cells during infection and their homing to sites of known importance in parasite clearance indicated that Vγ9Vδ2 T-cells could play a role in the response to infection.

Our previous work has demonstrated that the bioactive molecule released by infected red blood cells (iRBC) is a Ph-Ag of the DOX-P pathway, which is released concomitantly with iRBC rupture. We also showed that presentation of parasite Ph-Ag to Vγ9Vδ2 T-cells involves BNT3A1 on non-erythrocyte bystander cells, as RBCs and iRBCs are devoid of BNT3A1 (37). In addition to HMBPP various other signals, including IL-2, IL-15 (38, 39), CD4 T-cell interaction activation (40) and CD28 co-stimulation (41), are needed for effective Vγ9Vδ2 T-cell activation, and stimulation of Vγ9Vδ2 T-cells in different cytokine milieu emphasizes different functional behaviors (42).

Cytotoxic Vγ9Vδ2 T-cells directly target blood stage P. falciparum

In vitro studies have built a picture of how Vγ9Vδ2 T-cells directly inhibit the erythrocyte stage life-cycle. The first studies showed that Vγ9Vδ2 T-cells targeted the iRBCs in a contact dependent manner, and suggested that merozoites were the target, as inhibition of parasite life-cycle was not seen until after parasite reinvansion (43–45). Active granulysin release by the Vγ9Vδ2 T-cells was implied in mediating parasite growth inhibition, as granulysin production correlated with life-cycle inhibition (44). Experiments with granulysin and perforin deficient Vγ9Vδ2 T-cell lines confirmed that Vγ9Vδ2 T-cell inhibition of parasites was indeed granulysin-mediated but not perforin-dependent (46). Finally, in an experiment where
Vγ9Vδ2 T-cells were co-cultured with late stage iRBC and removed before rupture there was no impact on the parasite reinvasion. This showed definitively that merozoites are the target, as schizonts are not affected by granulysin release (46).

CYTOKINE RELEASING Vγ9Vδ2 T-CELLS ACT AS A TRIGGER FOR BOTH INNATE AND ADAPTIVE IMMUNE RESPONSES

Vγ9Vδ2 T-cells are highly interactive, and much of their impact on the course of an immune response stems from their modulation of other innate and adaptive immune cells by cytokine release and direct cell-cell interaction (30). Existing evidence indicates that Vγ9Vδ2 T-cells are implicated in impacting the scale and nature of both innate and adaptive immune responses to *P. falciparum* infection. A large feature of the immune response to *P. falciparum* infection is the production of inflammatory cytokines. *In vitro* studies of schizont-activated PBMCs from naïve donors, Vγ9Vδ2 T-cells have been found to produce TNFα and be the major source of IFNγ, more than NK cells or macrophages (47–50). They have also been shown to express TNFα, TGF-β, and IL-8, and occasionally IL-10, IL-2, and IL-5 (48). In *ex vivo* analysis of cord blood from mothers in an endemic setting who had experienced malaria during pregnancy, the Vγ9Vδ2 T-cells produced significantly more IFNγ and TNFα than those from healthy mothers, as did the peripheral Vγ9Vδ2 T-cells from the mother (51). This inflammatory cytokine production by Vγ9Vδ2 T-cells has been associated with both protection and pathogenesis.

Vaccination studies have been performed where healthy, malaria naïve, volunteers are exposed to three doses of *P. falciparum* (via the bite of 12–15 infected mosquitos) with the accompaniment of chloroquine treatment. This permits the parasite to mature to blood stage, when it is then swiftly killed before disease symptoms can develop. After challenge by the bites of five infected mosquitos, the inoculated volunteers remained parasite-free, indicating that they had developed a sterilizing immunity (52, 53). Vaccinated (protected) volunteers showed increased IFNγ, TNFα, and IL-2 production compared to non-vaccinated (non-protected) when PBMCs, taken pre-challenge and 1 day post-challenge, were stimulated by iRBC *in vitro* (52, 53). IFNγ levels were also increased in PBMCs from vaccinated volunteers taken days 9, 35, 140, and 400 post-challenge when stimulated by both iRBC and sporozoites (53). γδ T-cells were found to be the major IFNγ contributors, with γδ T-cells the next largest. The majority of responding cells were effector memory, indicating recall responses, and IFNγ-producing γδ T-cells were demonstrated to be a major contributor to parasite-specific recall responses (53). Thus, in these vaccines, IFNγ production by lymphocytes including γδ T-cells, correlated with acquired immunity to *P. falciparum* infection. It should be noted that Vγ9Vδ2 T-cells were not specifically measured in this study. However, as Vγ9Vδ2 T-cells are the predominant subset in the periphery of malaria naïve individuals from non-malaria endemic regions, it is reasonable to assume they were the major responding γδ T-cell subset in this study.

In longitudinal studies of semi-immune children from Papua New Guinea, the *in vitro* response of PMBCs to iRBC was measured, and subsequent malaria incidence recorded. Increased IFNγ production by PBMCs correlated with reduced risk of future moderate and high-density *P. falciparum* infection. Further, though there was much donor heterogeneity, γδ T-cells were the predominant IFNγ producing cell population (54). However, a different longitudinal study of children from Papua New Guinea suggests that γδ T-cell cytokine production is involved in severe malaria. *Ex vivo* stimulation of PBMCs from children with either severe or uncomplicated malaria or healthy controls showed that γδ T-cells and monocytes were responsible for inflammatory cytokines associated with ‘high odds’ of severe malaria (55). Several studies together have shown that Vγ9Vδ2 T-cell cytokine production is abrogated with repeat malaria exposure, and this contributes to decreasing clinical symptoms in subsequent infections.

Decreased peripheral activity of Vγ9Vδ2 T-cells has been found during the acute stage of infection in primary *P. falciparum* infected adults. Vγ9Vδ2 T-cells taken from the peripheral blood during paroxysms were found to expand less and produce less TNFα in response to IPP stimulation than Vγ9Vδ2 T-cells taken during recovery, post-treatment (though still expanded compared to uninfected controls). It was also found that there are less Vγ9Vδ2 T-cells [particularly Vγ2Jy1.2γδ T-cells (US nomenclature), the TCR subset that is particularly reactive to Ph-Ags] in circulation during *P. falciparum* paroxysm than during recovery (34).

In a longitudinal study of Ugandan children, the percentage of Vγ9Vδ2 T-cells in peripheral blood was found to be inversely correlated with prior incidence of malaria infections. *Ex vivo*, Vγ9Vδ2 T-cell proliferation, TNFα, and IFNγ production and immune-modulatory gene expression was also negatively associated with prior malaria episodes—indicating decreased peripheral blood Vγ9Vδ2 T-cell activity with increasing exposure to the parasite. Lower *in vitro* Vγ9Vδ2 T-cell responsiveness to iRBC correlated with lower subsequent incidences of symptomatic infection, but to increased probability of higher parasitemia (56). This Vγ9Vδ2 T-cell dysfunction was shown to occur because of frequent malaria episodes in childhood, an effect that was abrogated by chemoprevention in early childhood (57). The mechanism of Vγ9Vδ2 T-cell regulation is as yet unknown. Vγ9Vδ2 T-cells are very susceptible to activation-induced cell death by Fas-Fas-L interaction as demonstrated for *M. tuberculosis* (58), though active regulation cannot be ruled out.

Together, these studies indicate that while Vγ9Vδ2 T-cell inflammatory cytokine responses can control parasitemia, excessive stimulation of these cells may also result in pathology suggesting that clinical immunity to malaria may be associated with reduced Vγ9Vδ2 responses.

Several accumulated data in mice, where the equivalent of human Vγ9Vδ2 T-cell subset is not yet certain, also show the importance of the cytokine secretion activity of murine γδ T-cells (59, 60). A recent study (61) showed that clonal expansion of a subset of γδ T-cells producing macrophage colony stimulating factor (M-CSF), prevents parasitemic recurrence. While it is
Perhaps a stretch to expect a direct murine equivalent of Vγ9Vδ2 T-cells, certainly one is not yet identified, it is likely that one or more murine γδ T-cell subsets have evolved which perform the same protective and/or pathologic functions in malaria infection as human Vγ9Vδ2 T-cells. "TγδM" cells are a good candidate for one such functional equivalent of Vγ9Vδ2 T-cells.

ANTIGEN PRESENTING Vγ9Vδ2 T-CELLS STIMULATE ADAPTIVE IMMUNE RESPONSES

Another way in which Vγ9Vδ2 T-cells influence the course of an immune response is by antigen presentation to αβ T-cells. Over the last 12 years it has been demonstrated that Vγ9Vδ2 T-cells can take up, process and present exogenous Ag, both via the classical pathway to CD4 T-cells and the cross-presentation pathway to CD8 T-cells. They even have shown the ability to act as professional antigen presenting cells (APCs) and stimulate naive CD4 and CD8 T-cells (62–70). γδ T-APC resembling cells are present in malaria infected individuals, and in vitro iRBC stimulated Vγ9Vδ2 T-cells not only take on an APC phenotype but also can cross-present Ag to a memory cell line and activate naive CD4 and CD8 T-cells in a mixed-lymphocyte reaction (71). Where this might be occurring in vivo, or what the implication of repeated malaria infection could be is worth investigated. However, interesting work from liver stage malaria vaccines could shed some light on this (see below).

Overall, the data allow us to propose a global model of how peripheral Vγ9Vδ2 T-cells could control parasitemia and initiate both innate and adaptive responses (Figure 1). Whether the same cells are responsible for these functions or whether different subsets of Vγ9Vδ2 T-cell are concerned is still to be worked out.

Vγ9Vδ2 T-CELLS: CORRELATES OF PROTECTION FOR WHOLE ORGANISM MALARIA VACCINE?

Vγ9Vδ2 T-cells have been implicated in protection against liver stage immunity after vaccination with whole sporozoites.

In a mouse model of irradiated sporozoite vaccinations, it was clear that the γδ T-cells were required for induction of protective CD8 T-cell responses, but not antibodies, and were not...
acting as effectors in controlling liver stage parasite replication (72). An as yet undefined subset of mouse γδ T-cells are able to function by inducing downstream γδ T-cell responses. Further studies are required to establish which mouse γδ T-cell subsets mirror the various activities of Vγ9Vδ2 γδ T-cells and explore the effect of irradiated sporozoite vaccination doses on these cells. In humans, in the first field trial of the Sanaria® PISPZ vaccine in Mali, it was demonstrated that the Vγ9Vδ2 T-cells were highest in vaccines that remained uninfected throughout an intense malaria transmission season, compared to infected vaccines or the placebo group (72). These findings were comparable to those observed in malaria naïve individuals vaccinated with either the PISPZ vaccine or a chemoprophylaxis vaccination, who also had a remarkable increase in Vγ9Vδ2 T-cells (73). Overall, these findings are intriguing in that they suggest that liver-stage growth of *P. falciparum* can stimulate Vγ9Vδ2 T-cell activation. This activation could have several explanations: first, locally in an infected liver, hepatocytes displaying BNT3A1 or other presentation molecules could activate Vγ9Vδ2 T-cells *in situ*. Second, Vγ9Vδ2 T-cells could be activated in the draining lymph nodes of the site of infection where a substantial fraction of the sporozoites migrate, as shown by Amino et al. in mouse model (74). Third, HMBPP produced by liver stages of *Plasmodium* could be sensed in the periphery by exquisitely sensitive Vγ9Vδ2 T-cells, as seen during blood stage *P. falciparum* infections (37). Finally, the activation of Vγ9Vδ2 T-cells could be due to recognition of other antigens or metabolites.

It should be noted that in subsequent trials which used a higher dose of the PISPZ vaccine, Vγ9Vδ2 T-cell expansion did not distinguish protected vs. unprotected vaccines (75, 76). Interestingly, liver stage induced Vγ9Vδ2 T-cell expansion has not been observed in volunteers undergoing controlled human malaria infections (77). The reasons behind this are not yet understood, but given the plasticity of Vγ9Vδ2 T-cells, it may be that varying antigen loads modulate the phenotype and function of these cells.

CONCLUDING REMARKS

In conclusion, the Vγ9Vδ2 T-cell is an enigmatic cell, with a wide range of functions that can both contribute to and protect from malaria pathology. It is important to better consider this subset of γδ T-cells, especially their role in malaria vaccine protection. Given their sensitivity to Ph-Ag's such as HMBPP and apparent functional plasticity under different cytokines and stimuli dose, a cocktail of Ph-Ag and cytokines could be envisioned as an adjuvant to boost efficacy of both liver and blood stage malaria vaccines.

AUTHOR CONTRIBUTIONS

JH, IZ, and MM-M wrote the manuscript. SL and OM-P contributed to the manuscript. JD-M secured fundings.

ACKNOWLEDGMENTS

This review includes content from the Doctoral thesis of JH, which is archived at Bordeaux University library (78). This work was supported in part by grants from the Centre National de la Recherche Scientifique, the French Research Agency [ANR-12-Blanc-GDSTRESS] and the Fondation pour la Recherche Médicale (FRM, équipe labellisée). JH and IZ are supported by the Intramural Research Program of the National Institute of Allergy and Infectious Disease, NIH.

REFERENCES

1. Morita CT, Jin C, Sarikonda G, Wang H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ9Vδ2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. *Immunol. Rev.* (2007) 215:59–76. doi: 10.1111/j.1600-065X.2006.00479.x

2. Liuzzi AR, McLaren JE, Price DA, Eberl M. Early innate responses to pathogens: pattern recognition by unconventional human T-cells. *Curr Opin Immunol.* (2015) 36:31–7. doi: 10.1016/j.coi.2015.06.002

3. Guggisberg AM, Amthor RE, Odom AR. Isoprenoid biosynthesis in *Plasmodium falciparum*. *Eukaryot Cell.* (2014) 13:1348–59. doi: 10.10128/EC.00160-14

4. Eberl M, Moser B. Monocytes and gammadelta T cells: close encounters in microbial infection. *Trends Immunol.* (2009) 30:562–8. doi: 10.1016/j.it.2009.09.001

5. World Health Organisation (WHO) (2017). WHO | *World Malaria Report 2017*. Available online at: http://www.who.int/malaria/publications/ world-malaria-report-2017/en/ (Accessed February 26, 2018).

6. Murray CJL, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic analysis. *Lancet* (2012) 379:413–31. doi: 10.1016/S0140-6736(12)60934-8

7. Koch R. Professor Koch’s investigations on malaria. *Br Med J.* (1900) 1:1183–6. doi: 10.1136/bmj.1365-3024.2006.00808.x

8. Marsh K, Kinyanjui S. Immune effector mechanisms in malaria. *Parasite Immunol.* (2006) 28:51–60. doi: 10.1111/j.1365-3024.2006.00808.x

9. Trape JF, Rogier C. Combating malaria morbidity and mortality by reducing transmission. *Parasitol Today* (1996) 12:236–40. doi: 10.1016/0169-4758(96)10015-6

10. Doolan DL, Dobaño C, Baird JK. Acquired immunity to malaria. *Clin Microbiol Rev.* (2009) 22:13–36. doi: 10.1128/CMR.00025-08

11. Langhorne J, Ndungu FM, Sponsa AM, Marsh K. Immunity to malaria: more questions than answers. *Nat Immunol.* (2008) 9:725–32. doi: 10.1038/ni.205

12. Struiu SS, Riley EM. Does malaria suffer from lack of memory? *Immunol Rev.* (2004) 201:268–90. doi: 10.1111/j.1600-065X.2004.00181.x

13. Bousseta T, Okell L, Felger I, Drakeley C. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. *Nat Rev Microbiol.* (2014) 12:833–40. doi: 10.1038/nrmicro3364

14. Tran TM, Li S, Doumbo S, Doumatbe D, Huang CY, Dias S, et al. An intensive longitudinal cohort study of Malian children and adults reveals no evidence of acquired immunity to *Plasmodium falciparum* infection. *Clin Infect Dis.* (2013) 57:40–7. doi: 10.1093/cid/cit174

15. Arama C, Giusti P, Boström S, Dara V, Traore B, Dolo A, et al. Interethnic differences in antigen-presenting cell activation and TLR responses in Malian children during *Plasmodium falciparum* malaria. *PLoS ONE* (2011) 6:e18319. doi: 10.1371/journal.pone.0018319

16. Pinzon-Cherry A, Woodberry T, Kienzle V, McPhun V, Minigo G, Lampah DA, et al. Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria. *J Exp Med.* (2013) 210:1635–46. doi: 10.1084/jem.20121972

17. Urban BC, Cordery D, Shafl MJ, Bull PC, Newbold CI, Williams TN, et al. The frequency of BDCA3-positive dendritic cells is increased in the peripheral
circulation of Kenyan children with severe malaria. *Infect Immun.* (2006) 74:6700–6. doi: 10.1128/IAI.00861-06

18. Illingworth J, Butler NS, Roetynck S, Mwacharo J, Pierce SK, Bejon P, et al. Chronic exposure to *Plasmodium falciparum* is associated with phenotypic evidence of B and T cell exhaustion. *J Immunol.* (2013) 190:1038–47. doi: 10.4049/jimmunol.1202438

19. Muller-Beck ME, Uebereinde B, Amlicic M, Epp A, Fenyo D, Busse CE, et al. Atypical and classical memory B cells produce *Plasmodium falciparum* neutralizing antibodies. *J Exp Med.* (2013) 210:389–99. doi: 10.1084/jem.20121970

20. Weiss GE, Crompton PD, Li S, Walsh LA, Moir S, Traore B, et al. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. *J Immunol.* (2009) 183:2176–82. doi: 10.4049/jimmunol.0901297

21. Crompton PD, Moebius J, Portugal S, Waiberg M, Hart G, Garver LS, et al. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease. *Annu Rev Immunol.* (2014) 32:157–87. doi: 10.1146/annurev-immunol-032713-120220

22. Hafta JC, Silvie O, Matuschewski K. Cell biology and immunology of malaria. *Immunol Rev.* (2011) 249:297–316. doi: 10.1111/j.1600-065X.2010.00988.x

23. Hviid L, Barfod L, Fowkes FJ. Trying to remember: immunological B cell memory to malaria. *Trends Parasitol.* (2015) 31:89–94. doi: 10.1016/j.pt.2014.12.009

24. Schwenk RJ, Richie TL. Protective immunity to pre-erythrocytic stage malaria. *Trends Parasitol.* (2011) 27:306–14. doi: 10.1016/j.pt.2011.02.002

25. Stanisic DI, Barry AE, Good MF. Escaping the immune system: how the malaria parasite makes vaccine development a challenge. *Trends Parasitol.* (2013) 29:612–22. doi: 10.1016/j.pt.2013.10.001

26. Hviid L, Akanmori BD, Loizon S, Kutzthals JA, Ricke CH, Lim A, et al. High frequency of circulating gamma delta T cells with dominance of the V(δ1) subset in a healthy population. *Clin Exp Immunol.* (2011) 165:3190–6. doi: 10.1183/09013918.00218-2011

27. Meraviglia S, El Daker S, Dieli F, Martini F, Martino A. Perturbation and proinflammatory type activation of V delta 1(+) gamma delta T cells in African children with *Plasmodium falciparum* malaria. *Infect Immun.* (2001) 69:3190–6. doi: 10.1128/IAI.69.5.3190-3196.2001

28. Hviid L, Barfod L, Fowkes FJI. Trying to remember: immunological T cell memory. *Immunol Rev.* (2000) 178:403–14. doi: 10.1049/jimmunol.178.7.4304

29. Stanisic DI, Barry AE, Good MF. Escaping the immune system: how the malaria parasite makes vaccine development a challenge. *Trends Immunol.* (2011) 32:157–64. doi: 10.1038/jti.2011.3

30. Stanisic DI, Barry AE, Good MF. Escaping the immune system: how the malaria parasite makes vaccine development a challenge. *Trends Immunol.* (2011) 32:157–64. doi: 10.1038/jti.2011.3

31. Chen ZW. Multifunctional immune responses of HMBPP-specific V gamma 9 gamma 2 T Cells in Malaria. *Cell Mol Immunol.* (2016) 13:2273–4. doi: 10.1186/s12317-016-0224-9

32. Chang WL, van der Heyde H, Maki DG, Malkovsky M, Weidanz WP. Human gamma delta T cell subset-proliferative response to malaria antigen in vitro depends on CD4+ T cells or cytokines that signal through components of the IL-2R. *J Immunol.* (1996) 157:2096–102.

33. Elloso MM, Van Der Heyde HC, Vande Waa JA, Manning DD, Weidanz WP. The effects of interleukin-15 on human gammadelta T cell responses to *Plasmodium falciparum* in vitro. *Immunol Lett.* (1998) 64:125–32. doi: 10.1016/S0165-2478(98)00088-1

34. Jones SM, Goodier MR, Langhorne J. The response of gamma delta T cells to *Plasmodium falciparum* is dependent on activated CD4+ T cells and the recognition of MHC class I molecules. *Immunology* (1996) 89:405–12. doi: 10.1111/j.1365-2657.1996.01672.x

35. Ribot JC, Debarros A, Mancio-Silva L, Pamplona A, Silva-Santos B. B7-CD28 costimulatory signals control the survival and proliferation of murine and human \(\gamma \delta \) T cells via IL-2 production. *J Immunol.* (2012) 189:1202–8. doi: 10.4049/jimmunol.1200268

36. Nakazawa S, Brown AE, Woodruff DP, Hviid L. Targeting malaria-induced \(\gamma \delta \) T cells. *Immunol Rev.* (2001) 183:319–31. doi: 10.1111/j.0909-1684.2001.00889.x

37. Engelman I, Santamaria A, Kremsner PG, Luty AJF. Activation status of cord blood gamma delta T cells and malaria infection in humans. *J Immunol.* (1999) 163:2636–44. doi: 10.4049/jimmunol.163.6.2636

38. Vermijlen D, Ellis P, Langford C, Klein A, Engel R, Willimann K, et al. Distinct cytokine-driven responses of activated blood gammadelta T cells: insights into unconventional T cell plexitropy. *J Immunol.* (2007) 178:4304–14. doi: 10.4049/jimmunol.178.7.4304

39. Troye-Blomberg M, Worku S, Tangeerawatana P, Jamshaid R, Soderstrom K, Elghazali G, et al. Human gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the *Plasmodium falciparum* parasite express cytolitic and proinflammatory molecules. *Scand J Immunol.* (1999) 50:642–50.

40. Costa G, Loizon S, Guenot M, Mocan I, Halary F, de Saint-Basile G, et al. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. *J Exp Med.* (2009) 183:2176–82. doi: 10.1084/jem.20042486

41. Elloso MM, Van Der Heyde HC, Vande Waa JA, Manning DD, Weidanz WP. Inhibition of *Plasmodium falciparum* in vitro by human gamma delta T cells. *J Immunol.* (1994) 153:1187–94.

42. Parvaz A, Afshari S, Alikhani S. The response of gamma delta T cells to *Plasmodium falciparum* in humans, monkeys, and mice. *Exp Parasitol.* (1994) 79:391–8.
clinical malaria: a longitudinal study among Papua New Guinean children. Clin Infect Dis. (2008) 47:1380–7. doi: 10.1086/592971
55. Stanisic DI, Cutts J, Eriksson E, Fowkes FJ, Rosanas-Urgell A, Siba P, et al. γδ T cells and CD14+ monocytes are predominant cellular sources of cytokines and chemokines associated with severe malaria. J Infect Dis. (2014) 210:295–305. doi: 10.1093/infdis/jiu083
56. Jagannathan P, Kim CC, Greenhouse B, Nankya F, Savoldo B, Juergens H, et al. Loss and dysfunction of V 2+ γδ T cells are associated with antibody responses to malarial sporozoites. Sci Transl Med. (2014) 6:251ra117. doi: 10.1126/scitranslmed.3007993
57. Farrington LA, Jagannathan P, McIntyre TI, Vance HM, Boyle MJ, et al. Myeloid molecular characteristics of human γδ T cells support their acquisition of tumor antigen-presenting capacity. Cancer Immunol Immunother. (2015) 64:941–9. doi: 10.1007/s00262-015-1700-x
58. Wu Y, Wu W, Wong WM, Ward E, Thresher AJ, Goldblatt D, et al. Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. J Immunol. (2009) 183:5622–9. doi: 10.4049/jimmunol.0901772
59. Brandes M, Willmann K, Biely G, Levy N, Eberl M, Luo M, et al. Cross-presenting human gammapelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci USA. (2009) 106:2307–12. doi: 10.1073/pnas.0810039106
60. Howard J, Loizon S, Tyler CJ, Duluc D, Moser B, Meinach M, et al. The antigen-presenting potential of Vy9V82 T cells during Plasmodium falciparum blood-stage infection. J Infect Dis. (2017) 215:1569–79. doi: 10.1093/infdis/jix149
61. Zaidi I, Diallo H, Coneth S, Robbins Y, Kolansy J, Orr-Gonzalez S, et al. γδ T cells are required for the induction of sterile immunity during irradiated sporozoite vaccinations. J Immunol. (2017) 199:3781–8. doi: 10.4049/jimmunol.1700314
62. Ishizuuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, et al. Protection against malaria at 1 year and immune correlates following PISPZ vaccine. Nat Med. (2016) 22:614–23. doi: 10.1038/nm.4110
63. Amin O, Thibeurge S, Martin B, Celli S, Shorte S, Frischknecht F, et al. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med. (2006) 12:220–4. doi: 10.1038/nm1350
64. Lyke KE, Ishizuuka AS, Berry AA, Chakravarty S, DeZure A, Enama ME, et al. Attenuated PISPZ vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection. Proc Natl Acad Sci USA. (2017) 114:2711–6. doi: 10.1073/pnas.1615324114
65. Mordmüller B, Surat G, Lagler H, Chakravarty S, Ishizuuka AS, Lalremruatla, et al. Sterile protection against human malaria by chemoattenuated PISPZ vaccine. Nature. (2017) 542:145–9. doi: 10.1038/nature21060
66. Tran TM, Jones MB, Ongesa A, Bijker EM, Schats R, Venevally P, et al. Transcripctomie evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria. Sci Rep. (2016) 6:31291. doi: 10.1038/srep31291
67. Howard JR. Role of Human Gamma-Delta T Lymphocytes in the Instruction of the Adaptive Immune Response Against Plasmodium falciparum Infection. Bordeaux: University of Bordeaux.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.