A 8-Bit, 1-GHz Coarse-Fine Time-Based ADC with Split-CDAC Residue Transfer

Peiyuan Wan¹, Yucheng Bao¹, Boyong Jin¹, and Zhijie Chen¹

1. Introduction

With the scale of CMOS technology, the performance of digital circuits improved dramatically [1, 2]. However, analog circuits suffer from Signal Noise Ratio (SNR) reduction due to the decrease of supply voltage. Time-domain signal exhibiting the advantage in SNR has received more attention, because the amplitude is unrelated to the supply voltage [3, 4, 5, 6, 7]. With the shrinking of the process, the delay time is decreased, which make the speed of TBADC faster [8, 9, 10].

The TBADC is a flash architecture, which makes the operation speed rapidly decrease as the resolution increases [11, 12, 13]. To overcome this problem, a hybrid voltage-time two-step analog-to-digital converter (ADC) is proposed [14]. The two time-based converters are pipelined with residue amplifier (RA) in the ADC lead to a high-speed. However, to achieve the required accuracy and bandwidth, the RA needs more power consumption [15, 16, 17, 18, 19, 20]. This Letter presents a coarse-fine TBADC with fully time-domain quantization. The coarse and fine stages are pipelined in a fully passive way, which make the design have a better power efficiency and the residue is non-attenuated compared with the conventional passive charge sharing.

2. ADC architecture and implementation

2.1 Proposed TBADC with split-CDAC residue transfer

The proposed TBADC architecture is shown in Fig.1. The resolution of the proposed TBADC is 8-bit, which allocates 4-bit in coarse stage and 5-bit in fine stage. There is one bit redundancy to make a tolerance of gain and offset mismatch between the coarse and fine stages [23]. The coarse stage contains a coarse voltage-to-time converter (CVTC) and a 4-bit TDC. The fine stage contains a capacitive digital-to-analog converter (CDAC) serve as the residue transfer, a fine VTC (FVTC) and a 5-bit TDC. During the sampling phase, the input signals are sampled by the CVTC and CDAC. Afterward, the four most significant bits (MSBs) are generated through the coarse TBADC and then they are fed back to the CDAC to generate the residual signal (Vresp and Vresn) at the top-plate of CDAC. Before the next sampling phase, the CDAC is split and a capacitor of CDAC is moved to the FVTC to transfer the residue. The residue is quantized by fine TBADC to generate the five least significant bit (LSB).

For the capacitor which is shared with CDAC and FVTC, implements two sampling operations in a conversion cycle. It first samples the input signals as CVTC after that samples the residue as FVTC. Its kT/C noise is different from the conventional sampling operation that is only dominant by the capacitor of second stage [24, 25]. To satisfy the requirements of kT/C noise and mismatching, the capacitor of FVTC is chosen to be 16F which is sufficient for kT/C noise. The binary CDAC is 8:4:2:1:1 and needs a capacitor to serve for residue transfer. In order to minimize the total capacitor to improve the conversion rate, the MSB capacitor 8C is chosen to share with the FVTC. Therefore, the total capacitor is 32fF, where the unit capacitor is 2fF. While the fine stage implements the quantization, the rest of capacitor is idle. Therefore, the FVTC is divided into FVTC_a and FVTC_b to implement the sampling operation with the rest of capacitor respectively. With the use of ping-pong operation, the speed can be further increased.

2.2 Proposed high linearity dynamic CVTC

The CVTC in the proposed TBADC samples the input signals. Therefore, it requires a wide input range to alleviate the requirements of noise in fine stage. Fig.2 is the proposed high linearity dynamic CVTC. It is composed of a bottom-plate sampling circuit, a charge path IP and a threshold cross detector (TCD) circuit. The capacitor samples the input sig-
nal by bottom-plate sampling to strengthen the sampling linearity and then is charged by the transistor M1. Once the voltage of capacitor cross the threshold of TCD, the CVTC generate the time signals T_P and T_n. The gain of the CVTC is determined by the charging current and capacitor. Therefore, the conversion is linear if the charging current is a constant-current. In order to ensure its linearity, an appropriate threshold voltage must be selected to make the transistor M1 does not operate in the linear region. Simulation reveals a non-linearity which is less than $\pm 1/2$ LSB with a input range of $1.2V_{pp}$. For a suitable gain of the VTC, the charging current is relatively small which make the input of the TCD is always around the threshold voltage. This causes the inverter to consume extra power. The proposed CVTC add a transistor M2 to help charging the capacitor when the conversion is completed, which reduce the excess power consumption.

Due to the process, voltage and temperature variation, the gain error and offset between VTC and TDC should be considered. There is one bit redundancy to tolerate the gain error and offset less than $1/2$ LSB. In order to leave a large tolerance range, the gain error and offset is foreground calibrated. In the VTC, offset can be equivalent as an input-referred offset ΔV_{th} between the two threshold voltage. To calibrate the gain error and offset, a mismatch current which can be adjusted by the gate voltage VG of the transistor M1 is used. The time difference T_D can be expressed by Eq. (1).

$$ T_D = \alpha (V_P - V_N) + \beta \quad (1) $$

$$ \alpha = \frac{C_S (ID + 1/2ID_D)}{ID (ID + \Delta ID)}, \quad \beta = \frac{C_S [\Delta ID (V_{cm} - V_{th}) + ID \Delta V_{th}]}{ID (ID + \Delta ID)} \quad (2) $$

According to Eq. (2), offset can be removed by setting the β to zero and the gain also can be adjusted by α. The linearity of time-domain quantization is determined not only by VTC but also by TDC. The simulation with parasitic effect in TDC reveals the random mismatch between each delay cell is normally less than 1.7% which is sufficient for the TDC.

3. Simulation result

This design is based on a 65-nm CMOS technology. Fig. 3(a) summarizes the simulated SNDR and SFDR with transient noise for various input frequencies at a sampling frequency of 1 GHz. A fast Fourier transform (FFT) was performed using the 512-point ADC output. The power spectra of Nyquist frequency at a sampling frequency of 1 GHz are shown in Fig. 3(b). The SNDR and SFDR with transient noise were 47.5 and 55.8 dB, respectively. The input range is 1.2 Vpp which is benefit from the high linearity VTC.

The performance comparison with other related 8-bit 900 MS/s to 1.2 GS/s two-stage ADCs is listed in Table I. With the passive split-CDAC residue transfer, the proposed coarse-fine TBADC consumed 3.1 mW at 1 GS/s, and the supply voltage was 1.2 V. The Nyquist-frequency FOMW at a sampling frequency of 1 GHz is 15.9 fJ/conversion step.

![Fig. 1. Schematic and timing diagram of 8-bit coarse-fine TBADC.](image)

![Fig. 2. Schematic and timing diagram of the proposed CVTC.](image)

![Fig. 3. (a) SNDR and SFDR at 1 GS/s with transient noise versus input frequency (b) Spectra of a near-Nyquist input with transient noise.](image)

Reference	Technology	Residue Transfer	Supply voltage (V)	Resolution (bit)	Sampling Rate (MHz)	SNDR (dB)	SFDR (dB)	Power (mW)	FOM (fJ/conv)
[15]	65 nm	CSA	1.0	8	1000	44.4	47.5	2.3	18.7
[24]	65 nm	CSA	1.25	8	1200	43.7	55.8	5.0	35
[27]	65 nm	CSA	1.0	8	900	41.9	49.5	3.9	37
This work	65 nm	Passive	1.2	8	1000	47.5	55.8	2.3	15.9

4. Conclusion

A coarse-fine TBADC with split-CDAC residue transfer is proposed. The TBADC has a better power efficiency because the residue is transferred in a passive way. A high linearity
VTC is used to acquire a wide input range. The SNDR and SFDR are 47.5 and 55.8 dB and consume 3.1 mW at 1 GHz. Its FOMWs is 15.9 fJ/conversion step.

Acknowledgments

This work was supported by National Natural Science Foundation of China, Key Project No. 61731019, and Beijing Natural Science Foundation Project No. 4202010.

References

[1] C. Gonzalez, et al., “The 24-Core POWER9 Processor With Adaptive Clocking, 25-Gb/s Accelerator Links, and 16-Gb/s PCIe Gen4,” IEEE Journal of Solid-State Circuits 53 (2018) 91 (doi: 10.1109/JSSC.2017.2748623).

[2] C. Schaeuf, et al., “A Light-Load Efficient Fully Integrated Voltage Regulator in 14-nm CMOS With 2.5-nH Package-Equipped Air-Core Inductors,” IEEE Journal of Solid-State Circuits 54 (2019) 3316 (doi: 10.1109/JSSC.2019.2946218).

[3] G. W. Roberts and M. Ali-Bakhshian: “A Brief Introduction to Time-to-Digital and Digital-to-Time Converters,” IEEE Transactions on Circuits and Systems II: Express Briefs 57 (2010) 153 (doi: 10.1109/TCSII.2010.2043382).

[4] S. Zhu, et al., “A 0.073-mm2 10-GS/s 6-bit time-domain folding ADC in 65-nm CMOS with inherent DEM,” IEEE Journal of Solid-State Circuits 51 (2016) 1785 (doi: 10.1109/JSSC.2016.2558487).

[5] S. Zhu, et al., “A 0.073-mm2 10-GS/s 6-bit time-domain folding ADC in 65-nm CMOS with inherent DEM,” IEEE Journal of Solid-State Circuits 51 (2016) 1785 (doi: 10.1109/JSSC.2016.2558487).

[6] L.-J. Chen and S.-I. Liu: “A 10-bit 200-MS/s 5.8-mW 1.2-GS/s 8-bit two-step SAR ADC in 65-nm CMOS with passive residue transfer,” ASVLSI (2015) 20130047 (doi: 10.1587/elex.10.20130047).

[7] K.-J. Moon, et al., “Compact Time-Domain Signal Folding and Inherent DEM,” IEEE Journal of Solid-State Circuits 51 (2016) 1785 (doi: 10.1109/JSSC.2016.2558487).

[8] I.-M. Yi, et al., “An 8-Bit 10 GS/s 6-bit CMOS ADC With Compact Time-Domain Signal Folding and Inherent DEM,” IEEE Journal of Solid-State Circuits 51 (2016) 1785 (doi: 10.1109/JSSC.2016.2558487).

[9] M. Zhang, et al., “A 0.36-V 5-MS/s 16× Interpolation-Based Time-Domain ADC With 1.5-ps Uncalibrated Quantization Steps,” IEEE Journal of Solid-State Circuits 56 (2020) 3225 (doi: 10.1109/JSSC.2020.3012776).

[10] B. Xu, et al., “A 23-mW 24-GS/s 6-bit Voltage-Time Hybrid Time-Interleaved ADC in 28-nm CMOS,” IEEE Journal of Solid-State Circuits 52 (2017) 1091 (doi: 10.1109/JSSC.2016.2642204).

[11] A. Esmailiyan, et al., “A 10-Bit 10-bit 100MS/s subrange SAR ADC in 65-nm CMOS With passive residue transfer,” ASSCC (2015) 1 (doi: 10.1109/ASSCC.2015.7387462).

[12] Z. Zhu, et al., “A 73dB SNDR 20MS/s 1.28mW SAR-TDC using hybrid two-step quantization,” CICC (2017) 1 (doi: 10.1109/CICC.2017.7993701).

[13] M. Liu, et al., “A 10-bit 2.5-MS/s/2-step ADC With Selective Time-Domain Quantization in 28-nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers (2021) (doi: 10.1109/TCSI.2021.3129192).

[14] A. Esmailiyan, et al., “A 0.36-V 5-MS/s Time-Mode Flash ADC With Dickson-Charge-Pump-Based Comparators in 28-nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers 67 (2020) 1789 (doi: 10.1109/TCSI.2020.2969804).

[15] J. -H. Tsai, et al., “A 0.003 mm2 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS With Digital Error Correction and Correlated-Reversed Switching,” IEEE Journal of Solid-State Circuits 50 (2015) 1382 (doi: 10.1109/JSSC.2015.2413850).

[16] C. Liu, et al., “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS,” IEEE Journal of Solid-State Circuits 50 (2015) 2645 (doi: 10.1109/JSSC.2015.2466475).

[17] Y. M. Tousi and E. Afshari: “A Miniature 2 mW 4 bit 1.2 GS/s Delay-Line-Based ADC in 65 nm CMOS,” IEEE Journal of Solid-State Circuits 46 (2011) 2312 (doi: 10.1109/JSSC.2011.2162186).

[18] Y. Xu, et al., “A 5-bit 5-MS/s Noninterleaved Time-Based ADC in 65-nm CMOS For Radio-Astronomy Applications,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24 (2016) 3513 (doi: 10.1109/TVLSI.2016.2558105).

[19] Huo Fan, et al., “A novel redundant pipelined successive approximation register ADC,” IEEE Transactions on Circuits and Systems I: Regular Papers 67 (2020) 3225 (doi: 10.1109/TCSI.2020.3012776).

[20] B. Xu, et al., “A 10-bit 100MS/s subrange SAR ADC in 65-nm CMOS With passive residue transfer,” ASSCC (2015) 1 (doi: 10.1109/ASSCC.2015.7387462).

[21] Chin-Yu Lin and Tai-Cheng Lee: “A 12-bit 210-MS/s 5.3-mW pipelined SAR-ADC with a passive residue transfer technique,” S-DEVS (2014) 1 (doi: 10.1109/DEVS.2014.6858452).

[22] S. Zhu, et al., “A Skew-Free 10 GS/s 6-bit CMOS ADC With Compact Time-Domain Signal Folding and Inherent DEM,” IEEE Journal of Solid-State Circuits 21 (2016) 1785 (doi: 10.1109/JSSC.2016.2558487).

[23] K. Ohhata, et al., “A 900-MHz, 3.5-mW, 8-bit Pipelined Subranging ADC Combining Flash ADC and TDC,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26 (2018) 1777 (doi: 10.1109/TVLSI.2018.2827943).

[24] W. El-Halwagy, et al., “A 100-MS/s-5-GS/s, 13-5-bit Nyquist-Rate Reconfigurable Time-Domain ADC,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26 (2018) 1967 (doi: 10.1109/TVLSI.2018.2850806).

[25] V. Dhanasekaran, et al., “A Continuous Time Multi-Bit ΔΣ ADC Using Time Domain Quantizer and Feedback Element,” IEEE Journal of Solid-State Circuits 46 (2011) 639 (doi: 10.1109/JSSC.2010.2099989).

[26] L. Du, et al., “A 10-bit 100MS/s subrange SAR ADC with time-domain quantization,” ISCAS (2014) 301 (doi: 10.1109/ISCAS.2014.6865125).

IEICE Electronics Express, Vol.VV, No.NN, 1–3