The *arabidopsis* zinc finger proteins SRG2 and SRG3 are positive regulators of plant immunity and are differentially regulated by nitric oxide.

Citation for published version:
Cui, B, Xu, S, Li, Y, Umbreen, S, Frederickson Matika, D, Yuan, B, Jiang, J, Liu, F, Pan, Q & Loake, GJ 2020, 'The *arabidopsis* zinc finger proteins SRG2 and SRG3 are positive regulators of plant immunity and are differentially regulated by nitric oxide', *New Phytologist*. https://doi.org/10.1111/nph.16993

Digital Object Identifier (DOI):
10.1111/nph.16993

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
New Phytologist

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The *Arabidopsis* zinc finger proteins SRG2 and SRG3 are positive regulators of plant immunity and are differentially regulated by nitric oxide

Beimi Cui1,2,3,4, Shiwen Xu1, Yuan Li2, Saima Umbreen2, Debra Frederickson2, Bo Yuan1,3, Jihong Jiang1,3, Fengquan Liu4, Qiaona Pan1,2,3 and Gary J. Loake2,3,5

1The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; 2Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; 3Transformational Centre for Biotechnology of Medicinal and Food Plants, Jiangsu Normal University – Edinburgh University, Xuzhou 221116, China; 4Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 5Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK

Authors for correspondence:
Qiaona Pan
Email: qiaona.pan@gmail.com
Gary J. Loake
Email: gloake@ed.ac.uk

Received: 13 March 2020
Accepted: 25 September 2020

New Phytologist (2020)
doi: 10.1111/nph.16993

Key words: *Arabidopsis thaliana*, disease resistance, nitric oxide, plant immunity, redox regulation, S-nitrosylation, zinc finger.

Summary

- Nitric oxide (NO) regulates the deployment of a phalanx of immune responses, chief among which is the activation of a constellation of defence-related genes. However, the underlying molecular mechanisms remain largely unknown. The *Arabidopsis thaliana* zinc finger transcription factor (ZF-TF), S-nitrosothiol (SNO) Regulated 1 (SRG1), is a central target of NO bioactivity during plant immunity. Here we characterize the remaining members of the SRG gene family.
- Both SRG2 and, especially, SRG3 were positive regulators of salicylic acid-dependent plant immunity. Analysis of SRG single, double and triple mutants implied that SRG family members have additive functions in plant immunity and, surprisingly, are under reciprocal regulation.
- SRG2 and SRG3 localized to the nucleus and functioned as ethylene-responsive element binding factor-associated amphiphilic repression (EAR) domain-dependent transcriptional repressors: NO abolished this activity for SRG3 but not for SRG2. Consistently, loss of GSNOR function, resulting in increased (S)NO concentrations, fully suppressed the disease resistance phenotype established from SRG3 but not SRG2 overexpression. Remarkably, SRG3 but not SRG2 was S-nitrosylated *in vitro* and *in vivo*.
- Our findings suggest that the SRG family has separable functions in plant immunity, and, surprisingly, these ZF-TFs exhibit reciprocal regulation. It is remarkable that, through neofunctionalization, the SRG family has evolved to become differentially regulated by the key immune-related redox cue, NO.

Introduction

A key feature upon attempted pathogen infection is the rapid production of the small, redox-active molecules nitric oxide (NO) and reactive oxygen species (ROS) (Grant & Loake, 2000; Gupta *et al*., 2011; Yu *et al*., 2014). NO, in particular, orchestrates a plethora of immune responses in plants, including salicylic acid (SA) biosynthesis and signalling (Feechan *et al*., 2005; Tada *et al*., 2008; Lindermayr *et al*., 2010), phytoalexin accumulation (Delledonne *et al*., 1998) and programmed cell death development (Delledonne *et al*., 2001; Yun *et al*., 2011).

The principal route for NO bioactivity is thought to be S-nitrosylation, the addition of an NO moiety to a cysteine (Cys) thiol to form an S-nitrosothiol (SNO) (Spadaro *et al*., 2010; Astier *et al*., 2005; Lee *et al*., 2008; Chen *et al*., 2009), formed by the reaction of NO with glutathione (GSH), with GSNOR acting as a reservoir of NO bioactivity (Corpas & Barroso, 2014). Thus, GSNOR loss-of-function mutants display increased GSNO concentrations and enhanced total cellular S-nitrosylation (Feechan *et al*., 2005) and are impaired in multiple modes of plant immunity (Feechan *et al*., 2005; Tada *et al*., 2008) and also some developmental programmes (Kwon *et al*., 2012). GSNOR RNA interference lines show similar phenotypes in tomato (Hussain *et al*., 2019), suggesting the function of GSNOR is conserved across numerous dicotyledonous species.

© 2020 The Authors
New Phytologist © 2020 New Phytologist Trust
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
In addition to the indirect SNO-reductase activity of GSNOR, Thioredoxin h5 may also function as a denitrosylase by directly reducing SNO groups present in some S-nitrosylated proteins (Kneeshaw et al., 2014), providing an additional layer of regulation. Interestingly, NO and GSNO have also been shown to have separable and overlapping functions in the development of plant immunity, possibly because they reox-modulate the activity of different target proteins (Yun et al., 2016).

The accumulating data suggest that NO production following the pathogen-triggered nitrosative burst contributes to the reprogramming of plant immune-response genes (Parani et al., 2004; Zago et al., 2006; Palmieri et al., 2008; Bellin et al., 2013; Xu et al., 2013). However, the molecular mechanism(s) responsible remain largely opaque. To date, NO has been proposed to modulate the translocation of the transcriptional coactivator NPR1 into the nucleus (Tada et al., 2008; Lindermayr et al., 2010) and the specific DNA-binding activity of its protein interactor, the basic leucine-zipper transcription factor, TGA1 (Lindermayr et al., 2010). Recently, the zinc finger transcription factor (ZFTF), SNO Regulated Gene 1 (SRG1), was shown to be a positive regulator of plant immune responses, by acting as a transcriptional repressor, presumably by suppressing the transcription of an immune repressor (Cui et al., 2018). Significantly, SRG1 function during the plant immune response was shown to be modulated by S-nitrosylation of cysteine (Cys) 87, a highly evolutionary conserved residue, leading to both compromised DNA binding and, by extension, transcriptional repression activity.

Here we characterize the remaining members of the SRG gene family. Both SRG2 and, especially, SRG3 function as positive regulators of SA-dependent plant immunity. Genetic analysis of SRG single, double and triple mutants revealed that SRG family members have additive functions in plant immunity and, unexpectedly, are reciprocally regulated. Both SRG2 and SRG3 localized to the nucleus and acted as transcriptional repressors. Significantly, NO abolished this activity for SRG3 but not for SRG2. The absence of GSNOR function, leading to increased (S)NO concentrations, fully suppressed the disease resistance phenotype established from SRG3 overexpression but this was not found to be the case for overexpression of SRG2. SRG3 but not SRG2 was S-nitrosylated in vitro and in vivo, further highlighting the differences between these two SRG proteins. Our findings collectively suggest that the SRG family has separable functions in plant immunity and, surprisingly, these ZFTFs exhibit reciprocal regulation. It is remarkable that through neo-functionalization the SRG family has evolved to become differentially regulated by the key immune-related reox cue, NO.

Materials and Methods

Plant materials

Arabidopsis thaliana (Arabidopsis) seeds were placed in ½ Murashige & Skoog (MS) medium, and subsequently 12-d-old plants were transferred to soil and grown at 22°C either under short-day conditions of 8 h : 16 h, light : dark (employed for pathogen infiltration experiments and quantitative PCR (qPCR) analysis) or under 16 h : 8 h, light : dark conditions (utilized for seed collection and plant transformation).

All plant genotypes including Col-0, srg1 (SALK_119663), srg2 (GABI_404D05), srg3 (SAIL_1213_C07), sid2-2 (Oide et al., 2013) and gsnor1-3, were confirmed by PCR genotyping. The primers used are given in Supporting Information Table S1.

For the construction of SRG2 or SRG3 overexpression lines, the open reading frame (ORF) of SRG2 or SRG3 was fused to the CaMV35S promoter and C-terminal FLAG tag within the binary vector pGWB11 (Nakagawa et al., 2007), employing the Gateway cloning system. To generate constructs for the conditional expression of either SRG2 or SRG3, the coding sequence of these genes was inserted into the Xhol/SpeI sites of the β-oestriadiol-inducible vector pER8 (Zuo et al., 2000). The resulting constructs were subsequently transferred into Arabidopsis Col-0 plants by Agrobacterium-mediated plant transformation (Clough & Bent, 1998; Zhang et al., 2006). Plant transformants were confirmed by both antibiotic resistance and genotyping. To conditionally induce SRG2/ SRG3 gene expression, 6-wk-old plants were sprayed with 100 μM β-oestriadiol (Sigma) or dimethyl sulphoxide (DMSO; Invitrogen) and incubated for 48 h before further experiments.

The double mutant srg2 srg3 was obtained by crossing the individual mutant lines. In a similar fashion, the SRG2 and SRG3 overexpression lines (SRG2-OX and SRG3-OX, respectively) were crossed with the salicylic acid induction deficient (sid) 2 and gsnor1-3 mutants, employing the transgenic lines as pollen donors, to create the SRG2-OX sid2-2, SRG3-OX sid2-2, SRG2-OX gsnor1-3 and SRG3-OX gsnor1-3 lines. To generate the srg1 srg2 srg3 triple mutant line, a sgr1-specific DNA sequence (14–34 bp) of the corresponding ORF was cloned into the CRISPR-Cas9 system vector pDe-CAS9 as previously described (Pyott et al., 2016). The resulting construct was subsequently transformed into the srg2 srg3 double mutant line by Agrobacterium-mediated transformation. Plants carrying the transgenic construct were selected in the T1 generation by spraying with a 120 mg l⁻¹ solution of BASTA. The resulting transgenic plants were confirmed as srg1 srg2 srg3 triple mutants by PCR genotyping.

Pathogen inoculation

The bacteria pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 expressing the avrRpm1 avirulence gene (Pst DC3000 (avrRpm1)) was cultured in low-salt LB medium (10 g l⁻¹ tryptone, 5 g l⁻¹ yeast extract and 5 g l⁻¹ NaCl, pH 7.0) containing appropriate antibiotics and grown overnight in the dark at 28°C. Bacteria were collected by centrifugation and washed twice with 10 mM MgCl₂, then finally suspended in 10 mM MgCl₂ at a final concentration of 10⁵ cells ml⁻¹. This bacterial solution was pressure-infiltrated into the leaves of 5-wk-old Arabidopsis plants of the indicated genotypes. At least 10 leaves from five different plants of a given genotype were inoculated for each experiment. Bacterial titres were determined at the time points indicated. The experiments were repeated at least three times.
Chemical treatments and histological staining

Ten-day-old seedlings or leaves from 5-wk-old plants were infiltrated with 1 µM flg22, 5 mM SA, 0.3 mM sodium nitroprusside (SNP) or 0.2 mM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) as required. Samples were subsequently collected at the indicated time points for qPCR assays. Mean values and SD were obtained from three biological replicates.

To assay cell death development, Arabidopsis leaves were stained using trypan blue (10 g phenol, 10 ml glycerol, 10 ml lactic acid, 10 ml water and 10 mg Trypan blue) by boiling for 2 min. Leaves were then destained with 2.5 g ml⁻¹ chloral hydrate after cooling to room temperature. Images were taken following successful destaining. Subsequently, the relative intensity of staining was quantified by Image J (v.1.51j8, Java 1.8.0_261, Wayen Rasband, National Institutes of Health, Bethesda, MD, USA).

To explore the ROS burst, leaves were immersed in 0.5 mg ml⁻¹ nitro blue tetrazolium (NBT; Sigma) for 3 h to detect superoxide formation or 1 mg ml⁻¹ 3,3′-diaminobenzidine (DAB; Sigma) to score for hydrogen peroxide formation, for 8 h at room temperature in the dark. Following clearance of Chl, stained leaf discs were submerged in ethanol until clear and then photographed.

Quantification of cell death and ROS

Quantification of hydrogen peroxide was as previously described (Chen et al., 2013) with minor modifications. Leaves were stained with freshly prepared 1 mg ml⁻¹ DAB (Sigma) solution for 8 h, and Chl was then removed with ethanol. The resulting leaves were ground in liquid nitrogen after their weight was recorded and then solubilized in 0.2 M HClO₄, followed by centrifugation at 10 000 g for 15 min to remove debris. The absorbance of the resulting supernatants was measured immediately at A₄₅₀ and quantified by comparison with a standard curve generated with known concentrations of H₂O₂ in 0.2 M HClO₄-DAB.

Quantification of superoxide was adapted as described previously (Chen et al., 2013) with minor modifications. The leaf was stained with fresh NBT (0.5 mg ml⁻¹; Sigma) for 3 h, and then Chl was removed by addition of ethanol. The NBT-stained leaves were ground in liquid nitrogen, solubilized in 2 M KOH-DMSO, and then centrifuged at 10 000 g for 15 min to remove debris. The samples were evaluated at A₆₃₀ and compared with a standard curve, generated with known amounts of NBT in the KOH-DMSO mix.

To measure electrolyte leakage induced by cell death, leaves from 5-wk-old plants were cut into 5-mm-diameter slices and soaked in water for 6 h, the conductivity of the solution was measured with a DiST WP conductivity meter (Hanna Instruments, Woonsocket, RI, USA) as previously described (Cui et al., 2018). The units for this assay are microsvedbergs cm⁻¹ (µS cm⁻¹), where the distance refers to that between the electrodes.

Reactive oxygen species production among wild-type Col-0 and mutant Arabidopsis plants was determined by luminol-based assay (Gómez-Gómez et al., 1999; Smith & Heese, 2014). Leaves were cut into 5-mm-diameter slices and floated overnight on water. Subsequently, the water was removed and 0.1 ml of H₂O₂ supplied containing 20 µM luminol, 1 µg horseradish peroxidase (Fluka, Gillingham, UK) and flg22 (Sigma) was added. Luminescence was measured in a Multimode Plate Reader SpectraMax M5 (Molecular Devices, Gillingham, UK) for 35 min; 1 µM flg22 was used in this experiment.

SA determination

Plant material (0.1 g) was collected and ground in liquid nitrogen. Samples were extracted using 95% ethanol and the resulting liquid was analysed by high-performance liquid chromatography-mass after centrifugation (Kim et al., 2013).

Fluorescence microscopy and dual luciferase assays

For the localization of SRG2 and SRG3, the SRG2 or SRG3 ORFs were cloned into the binary vector pEarleyGate103, using the Gateway system, so their expression was driven by the CaMV35S promoter and a C-terminal green fluorescent protein (GFP) tag was added (Earley et al., 2006). The truncation of the ethylene-responsive element binding factor-associated amphipathic repression (ER) motif of SRG proteins was undertaken utilizing a QuikChange II Site-Directed Mutagenesis Kit (Stratagene, Agilent Technologies, Cheadle, UK). The resulting constructs were transiently transformed into tobacco leaves or Arabidopsis protoplasts. A Leica TCS SP5 II confocal microscope was employed for GFP imaging (excitation 488 nm, emission 500–600 nm). Also, protein extracts were obtained from transformed leaves or protoplasts and subjected to Western blotting using an anti-GFP antibody (Sigma).

To score SRG2 and SRG3 for potential transcriptional repressive activity, 10 µl of the indicated DNA (4 µg of effector plasmid, 5 µg of reporter plasmid and 5 µg of internal plasmid) was transformed into Arabidopsis protoplasts and incubated for 16 h. The resulting cells were then collected and extracted for luciferase activity assay using a Dual-Luciferase Report Assay System (Promega) with a SpectraMax M5 Multimode Plate Reader (Molecular Devices). Ten replicates were measured for each experiment. Each experiment was repeated at least three times.

qPCR

Total RNA was extracted from 0.1 g plant tissue using a RNA isolation mini-kit (Agilent Technologies) and cDNA was synthesized from 2 µg total RNA employing oligo (dT) primers and reverse transcriptase (First-Strand cDNA Synthesis Kit; Invitrogen). PCR was performed in a 20 µl reaction containing SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA), cDNA and primers (listed in Table S1) utilizing the LightCycler® 480 Real-Time PCR System (Roche). UBQ10 and...
UBC9 were used as internal controls. Mean values and standard deviations were obtained from at least three biological replicates.

Protein expression and S-nitrosylation

The ORFs of either **SRG2** or **SRG3** were cloned into the expression vector pMAL-c5X with a maltose-binding protein (MBP) tag at the N-terminus. The construct was transformed into *Escherichia coli* strain BL21(DE3) for protein expression, then purified using amylose magnetic beads (New England Biolabs, Ipswich, MA, USA). The purified protein was utilized for further experiments.

S-nitrosylation assays employing purified recombinant protein or proteins extracted directly from plant tissue were interrogated by the biotin switch assay (BSA) (Jaffrey & Snyder, 2001). CysNO was synthesized by dissolving 13 mg of reduced free l-cysteine in 0.5 ml of 0.1 M HCl, and then added to 0.5 ml of 220 mM NaNO₂ to obtain 110 mM CysNO. The CysNO was maintained in the dark for 20 min and then diluted to working concentration. Freshly prepared CysNO was always utilized in any experiments performed.

Statistics

Data are expressed as means ± SD from a minimum of three independent experiments. Statistical analysis of the data was carried out using ANOVA analysis followed by Dunnett’s test unless otherwise specified. Differences were considered significant at *P* < 0.05 (*) and highly significant at *P* < 0.01 (**).

Results

The expression of SRG1 homologues, SRG2 and SRG3, are induced by pathogens and NO

Previously we identified an *Arabidopsis* C2H2 type ZF-TF, SRG1, which positively regulates plant immunity (Cui et al., 2018). SRG1 function is regulated at the transcriptional and post-transcriptional level by NO (Cui et al., 2018). Phylogenetic analysis showed that four C2H2-type ZF-TFs were classified into a small group: **SRG1**, **SRG2** (At3g46090), **SRG3** (At5g59820) and **SRG4** (At3g46070) (Fig. S1a). In order to examine whether these *Arabidopsis* SRG1 paralogues are also involved in plant immunity, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to determine if the expression of these genes was transcriptionally activated by the plant immune activator SA, flg22, a pathogen-associated molecular pattern (PAMP) derived from bacterial flagellin or *Pst* DC3000, a virulent bacterial pathogen on the Col-0 accession of *Arabidopsis* (Whalen et al., 1991). Expression of **SRG2** and **SRG3** was induced by all three of these immune-related stimuli (Figs 1a–d, S1b,c), implying that these genes might participate in the establishment of plant immunity. By contrast, transcripts of **SRG4** did not accumulate in response to these cues (Fig. S1d), so this gene was not investigated further. Interestingly, the expression of both **SRG2** and **SRG3** could also be induced by the NO donors, SNP and GSNO (Figs 1e,f, S1e–i). Either SNP- or GSNO-induced **SRG3** expression was also significantly reduced in the presence of the NO scavenger, cPTIO. Conversely, SNP- and GSNO-induced **SRG2** expression was only weakly reduced by this NO scavenger (Figs 1e,f, S1g). Thus, while **SRG3** expression is responsive to NO, the accumulation of **SRG2** transcripts appears to be strikingly less sensitive to this redox signalling cue.

Constitutive expression of SRG2 and SRG3 enhances plant immunity

To gain further insights into the possible role(s) of **SRG2** and **SRG3** in plant immunity, plants containing 35S::SRG2-FLAG (SRG2-OX) or 35S::SRG3-FLAG (SRG3-OX) transgenes were generated. These transgenic lines exhibited reduced stature compared with wild-type Col-0 (Fig. 2a,b). Further, the FW of these lines was directly correlated with the strength of **SRG2** or **SRG3** expression (Fig. 2c–f). Thus, **SRG2** and **SRG3** expression negatively impacts *Arabidopsis* stature.

To examine the effect of **SRG2** and **SRG3** on basal immunity, *Pst* DC3000 was inoculated into **SRG2-OX** and **SRG3-OX** transgenic plants and the bacterial titre determined over time. The amount of infiltrated *Pst* DC3000 in the **SRG2-OX** and **SRG3-OX** transgenic lines was comparable to wild-type Col-0 at 0 d post-inoculation (dpi) (Fig. 2g,h), which suggests that **SRG2-OX** and **SRG3-OX** transgenic plants can be infiltrated to similar extents as the wild-type. Hence, **SRG2** and **SRG3** overexpression does not reduce the amount of infiltrated bacteria. A reduced titre of *Pst* DC3000 was detected in **SRG2-OX** and **SRG3-OX** transgenic plants compared with the wild-type at 3 dpi (Fig. 2g,h). Further, our data suggest that the level of **SRG2** and **SRG3** expression is directly related to the extent of resistance against *Pst* DC3000, demonstrating that **SRG2** and **SRG3** act as positive regulators of plant basal disease resistance.

We next examined the impact of **SRG2** and **SRG3** expression on *R* gene-mediated disease resistance. *Pst* DC3000 expressing the avirulence gene *avrRpm1* (*Pst* DC3000(*avrRpm1*)) is recognized by the R protein, RPM1, in the Col-0 accession of *Arabidopsis* (Grant et al., 1995). The titre of *Pst* DC3000 (*avrRpm1*) in **SRG-OX** plants was significantly less than that in the wild-type at 3 dpi (Fig. 2i,j), indicating that overexpression of **SRG2** or **SRG3** leads to increased resistance against *Pst* DC3000 (*avrRpm1*). These results imply that overexpression of **SRG2** or **SRG3** in *Arabidopsis* enhances both basal defence and *R* gene-mediated resistance. Collectively, our findings therefore suggest that **SRG2** and **SRG3** are positive regulators of plant immunity.

SRG2 and **SRG3** overexpression lines exhibit elevated cell death, accumulation of ROS and constitutive PR1 expression

High levels of **SRG2** and **SRG3** overexpression resulted in the formation of microlesions, which was confirmed by trypan blue (TB) staining and associated microscopy (Fig. 3a). The relative intensity of cell death staining was quantified by IMAGEJ, which indicated that microlesion formation increased with increasing...
SRG2 or SRG3 expression (Fig. 3b). Thus, SRG2-OX#2 and SRG3-OX#2 lines exhibited increased cell death relative to SRG2-OX#1 and SRG3-OX#1 lines (Fig. 3b). The formation of these microlesions did not occur within cotyledons and did not appear to be temperature-dependent.

ROS formation is a key early defence response (Grant & Loake, 2000; Torres et al., 2006). Therefore, we treated the leaves of SRG2-OX and SRG3-OX lines with either DAB, which stains hydrogen peroxide (H₂O₂), or NBT, which stains superoxide (O₂⁻) (Jabs et al., 1996; Thordal-Christensen et al., 1997; Grant et al., 2000), to determine potential accumulation of these molecules. Both SRG2-OX and SRG3-OX lines exhibited increased DAB and NBT staining compared with that of wild-type Col-0 (Fig. 3c–f). Further, increasing SRG2 or SRG3 expression resulted in enhanced DAB and NBT staining (Fig. 3d,f). We also determined the expression of the SA marker gene, Pathogenesis-Related1 (PR1). As expected, PR1 expression was significantly increased in SRG2-OX and SRG3-OX lines compared with wild-type Col-0 (Fig. 3g) and was positively correlated to SRG transcript accumulation. Taken together, our results show that overexpression of SRG2 or SRG3 activates a number of immune responses, including cell death development, ROS production and PR1 expression.

SRG2 and SRG3 promote increased basal and R gene-mediated immunity

To further investigate the biological contribution of SRG2 and SRG3 in plant immunity, T-DNA insertion lines for these genes were obtained and homozygous loss-of-function mutants generated utilizing PCR genotyping (Fig. S2a). The expression level of SRG1, SRG2 and SRG3 in these T-DNA loss-of-function
insertion lines was determined by qPCR, which confirmed that these lines were null mutants for the relevant genes and also indicated a complex transcriptional relationship among them (Fig. 4a). Surprisingly, loss-of-function mutations in either SRG1 or SRG3 strikingly reduced SRG2 expression. SRG3 expression, by contrast, was not reduced in loss-of-function srg1 plants and was only reduced by c. 30% in a loss-of-function srg2 line. SRG1 transcript accumulation was reduced c. 60% in either srg2 or srg3

Fig. 2 Either SRG2 or SRG3 overexpression in Arabidopsis enhances pathogen resistance. (a–c) Morphological phenotype (a, b) and FW measurements (c) of 6-wk-old SRG overexpression (SRG-OX) lines and Col-0 under short-day conditions (8 h : 16 h, light : dark). Bars, 1 cm. Error bars indicate means ± SD (n ≥ 5). **, P < 0.01. (d, e) mRNA level of SRG2 (d) and SRG3 (e) in the stated Arabidopsis lines. Error bars indicate means ± SD from three to six biological replicates. **, P < 0.01. (f) Western blot analysis of either SRG2 or SRG3 protein expression in SRG overexpression lines using an anti-FLAG antibody. Total protein extracted from fresh leaves of indicated lines was used in these experiments. Wild-type Col-0 plants served as negative controls. Coomassie Brilliant Blue (CBB) stain was employed as loading control. (g–j) Bacterial titre of Pseudomonas syringae pv. tomato (Pst) DC3000 (g, h) and Pst DC3000 carrying avrRpm1 (i, j) in the indicated plant genotypes. Error bars indicate mean ± SD (n = 7). One-way ANOVA assay: **, P < 0.01. All experiments were repeated at least three times.

Fig. 3 Both SRG2 and SRG3 overexpression promotes activation of Arabidopsis key defence responses. (a) Cell death development was scored by trypan blue (TB) staining. Leaves from 6-wk-old plants were stained and observed by microscopy. Bars, 100 μm. (b) The relative intensity of TB staining was performed with ImageJ software. Error bars indicate means ± SD, n ≥ 10. **, P < 0.01. (c) Accumulation of H2O2 in 6-wk-old plant leaves was determined by 3,3’-diaminobenzidine (DAB) staining. Bar, 5 mm. (d) Quantification of H2O2 in 10-d-old Arabidopsis seedlings of the indicated genotypes; 0.1 g of seedlings from each line were grouped as one sample. Error bars indicate means ± SD (n = 5). **, P < 0.01. (e) Accumulation of superoxide in 6-wk-old plant leaves was detected by nitro blue tetrazolium (NBT) staining. Bar, 5 mm. (f) Quantification of superoxide production in 10-d-old seedlings of the indicated genotypes. Error bars indicate means ± SD. Experiments were repeated three times with similar results. **, P < 0.01. (g) mRNA level of PR1 in the stated Arabidopsis lines. Error bars indicate means ± SD.
loss-of-function mutants. These three ZF-TFs are therefore under reciprocal regulation. The expression of SRG genes in the SRG overexpression lines also revealed a complex relationship between these transcription factors (Fig. S2b).

Of these C2H2 ZF TFs, SRG2, SRG3 and SRG1 share high similarities in DNA sequence and might function redundantly. Therefore, a srg2 srg3 double loss-of-function mutant was obtained by crossing the associated single mutants, followed by PCR analysis of F2 plants. We also generated a srg1 srg2 srg3 triple loss-of-function mutant. As SRG1 and SRG2 are closely linked, we employed CRISPR/Cas9 gene editing technology to mutate SRG1 in a srg2 srg3 double mutant. Interestingly, phenotypic analysis indicated there was a small increase in FW in the srg1, srg2 and srg3 single SRG loss-of-function mutants compared with that of the wild-type and a significant increase in FW in the triple loss-of-function mutant (Fig. 4b,c). Thus, loss-of-function mutations in SRG1, SRG2 and SRG3 exhibit partially overlapping impacts on Arabidopsis growth. The expression of these ZF-TFs was then determined in the associated double and triple mutants (Fig. S2c–e). SRG2 expression was abolished in the srg2 srg3 double mutant and in the srg1 srg2 srg3 triple loss-of-function mutant. In a similar fashion, SRG3 expression was abolished in the srg2 srg3 double loss-of-function mutant and the srg1 srg2 srg3 triple loss-of-function mutant.

To examine if SRG2, SRG3 and SRG1 have redundant functions in plant immunity, Pst DC3000 (avrRpm1) was infiltrated into the associated loss-of-function mutants and the bacterial titre was recorded over time (Fig. 4d). Both single loss-of-function mutants support more Pst DC3000(ayvRpm1) compared with wild-type Col-0 and the titre in the srg2 srg3 loss-of-function line was significantly higher than that in the respective single loss-of-function mutants, indicating disruption of SRG2 or SRG3 leads to an increased titre of Pst DC3000(ayvRpm1). Significantly, statistical analysis revealed that the titre of PstDC3000(ayvRpm1) in the srg1 srg2 srg3 triple loss-of-function mutant is significantly higher than that in the srg2 srg3 double mutant and srg1, srg2 and srg3 single loss-of-function mutants. Also, the srg2 srg3 double mutant is more susceptible than srg2 and srg3 single loss-of-function mutants. The impact of these mutations on basal disease resistance was tested. Similar results were observed following inoculation of Pst DC3000 (Fig. 4e).

Taken together, our findings suggest that SRG1, SRG2 and SRG3 are required for R gene-mediated protection and basal resistance and there is functional redundancy between these ZF-TFs.

Loss of SRG2, SRG3 and SRG2 SRG3 function reduces cell death development, ROS production and SA accumulation

As SRG2-OX and SRG3-OX lines exhibited elevated cell death development, we assessed the biological consequence of a loss of either SRG2 or SRG3 function on development of the hypersensitive response (HR) during the development of immunity. Leaves were stained by TB after Pst DC3000(ayvRpm1) infiltration, and TB staining was then quantified. Cell death development was diminished in these mutants relative to wild-type Col-0 at 12 h post-inoculation (hpi; Fig. S3a,b). Further, this result was confirmed by transient overexpression of either SRG2 or SRG3 in the respective SRG loss-of-function lines using an β-estradiol-inducible expression system (Zuo et al., 2000) (Fig. S3c,d). β-estradiol-treated plants showed higher SRG2 or SRG3 expression respectively and increased TB staining in leaves, whereas mock treatment did not induce either SRG2 or SRG3 expression, and cell death development was similar to that scored in the srg2 and srg3 loss-of-function mutants (Fig. S3c,d). To further determine the extent of HR cell death in these lines, electrolyte leakage was quantified (Fig. 5a,b). Again, the amount of electrolyte leakage was reduced in these single, double and triple SRG loss-of-function mutants compared with wild-type Col-0, with that in the srg1 srg2 srg3 triple loss-of-function mutant most pronounced (Fig. 5a), implying that SRG2, SRG3 and SRG1 play important roles in HR development during immunity. Further, we examined the effects of transient conditional SRG2 or SRG3 overexpression in srg2 or srg3 loss-of-function lines, respectively, on
electrolyte leakage. Following challenge with *Pst* DC3000 (*avrRpm1*), β-estradiol cued SRG2 or SRG3 transient overexpression resulted in higher electrolyte leakage relative to mock-treated plants (Fig. 5b).

We determined ROS production upon *Pst* DC3000 challenge in the single, double and triple SRG loss-of-function mutants by a luminol-based assay (Gómez-Gómez *et al.*, 1999). ROS production was slightly reduced in *srg1*, *srg2* and *srg3* single loss-of-function mutants and also in the *srg2* *srg3* double loss-of-function mutant in response to *Pst* DC3000 (Fig. 5c). Statistical analysis showed that total ROS accumulation was significantly reduced in the *srg1* *srg2* *srg3* triple loss-of-function mutant compared with the related double or single loss-of-function mutants (Fig. S3d). Further, we used flg22 to examine PAMP-induced ROS production in these lines. The ROS burst was faster and stronger in wild-type Col-0 after treatment with flg22, whereas it was reduced in the related double and triple loss-of-function mutants (Figs 5d, S3e). Further, the *srg1* *srg2* *srg3* triple loss-of-function mutant exhibited reduced total ROS production following flg22 treatment relative to the *srg1*, *srg2*, *srg3* single loss-of-function mutants. Moreover, increased ROS accumulation was observed following conditional transient overexpression of either SRG2 or SRG3 relative to the mock control (Figs 5e, S3f).

Overexpression of either SRG2 or SRG3 induced Respiratory Burst Oxidase Homolog D (RBOHD) expression, which encodes the key source of pathogen-triggered apoplastic ROS (Grant & Loake, 2000; Torres *et al.*, 2006) (Fig. S3g). Together, these results further support the suggestion that SRG2, SRG3 and SRG1 play important and redundant functions required for immune-related ROS production.

We also examined the expression of the SA-associated marker, PRI, in response to inoculation of *Pst* DC3000 (Fig. 6a). Compared with the wild-type, PRI expression was reduced in all SRG loss-of-function mutants. However, the *srg2* *srg3* double loss-of-function mutant exhibited a reduction greater than that in the single *srg1*, *srg2* and *srg3* loss-of-function mutants, and the triple *srg1* *srg2* *srg3* loss-of-function mutant showed lower PRI expression than the double mutant at both 12 and 24 hpi. Further, SA concentrations in these lines were also analysed upon *Pst* DC3000 infection. The concentration of SA was similar in all tested plant lines without infection (Fig. 6b), suggesting that the size of *srg* mutants may not be associated with SA accumulation. A significant increase of SA in wild-type Col-0 plants was observed upon pathogen inoculation at both 12 and 24 hpi, whereas SA concentration in the single, double and triple *SRG* loss-of-function mutants, especially the triple mutant, was significantly decreased compared with wild-type Col-0 (Fig. 6b), linking the pathogen susceptibility of these SRG loss-of-function mutants to a decrease in SA accumulation. Therefore, we also determined the expression level of *CBP60g*, SARD1 and WRKY62 genes implicated in the regulation of SA synthesis in this collection of mutant lines in response to *Pst* DC3000 inoculation. Expression of *CBP60g*, SARD1 and WRKY62 was reduced upon *Pst* DC3000 infection in all of these mutants and this was especially pronounced in the *srg1* *srg2* *srg3* triple loss-of-function mutant (Fig. S4), further implicating SRG2, SRG3 and SRG1 in

![Fig. 5](https://example.com/fig5.png)

Fig. 5 Loss of SRG2 and SRG3 function reduces both cell death development and accumulation of reactive oxygen species (ROS) in *Arabidopsis*. (a, b) Electrolyte leakage triggered by *Pseudomonas syringae* pv. *tomato* (*Pst*) DC3000 in the indicated lines was measured with a conductivity meter. Error bars indicate means ± SD (*n* = 8). One-way ANOVA assays were performed to determine significant differences at 36 h post-inoculation (hpi) relative to wild-type Col-0 (a) or wild-type Col-0 dimethyl sulphoxide (DMSO) (b). ***, *P* < 0.01. (c–e) ROS production in response to *Pst* DC3000 (c) or flg22 (d, e) treatment was determined by a luminol-based assay. Error bars indicate means ± SD (*n* = 6).
SA-associated immune responses. We also crossed our SRG2-OX and SRG3-OX lines with the SA biosynthesis-deficient mutant, salicylic acid induction deficient 2-2 (sid2-2) (Oide et al., 2013). In SRG2-OX sid2-2 and SRG3-OX sid2-2 lines the reduced physical stature resulting from overexpression of either SRG2 or SRG3 was only partially recovered (Fig. 6c,d), implying that the impact of either SRG2 or SRG3 overexpression on Arabidopsis growth is not totally dependent on SA accumulation. However, the titre of Pst DC3000 in either SRG2-OX sid2-2 or SRG3-OX sid2-2 lines was similar to that in wild-type Col-0 plants (Fig. 6e,f). Similar results were observed following inoculation of Pst DC3000 (avrRpm1) (Fig. 6g,h). Collectively, these results suggest that SRG2 and SRG3 regulate plant immunity through the SA pathway.

SRG2 and SRG3 encode NO-regulated transcriptional repressors

SRG2 and SRG3 are plant C2H2 ZF TFs containing a predicted nuclear localization signal (NLS) (Fig. 7a). To test the functionality of this domain, SRG2 and SRG3 were fused to the C-terminus of GFP downstream of the CaMV 35S promoter. Each of the resulting constructs was then transiently transformed into tobacco leaves (Fig. 5a) or Arabidopsis protoplast (Fig. S5c). The integrity of each of these fusion proteins was confirmed by Western blot analysis (Fig. S5b,d). In both tobacco and Arabidopsis, SRG2-GFP and SRG3-GFP localized to the nucleus.

Similar to SRG1, SRG2 and SRG3 both contain a leucine-rich EAR motif-like sequence within their C-terminus (Fig. 7a). This motif has previously been reported to function as a transcriptional repressor (Kagale & Rozwadowski, 2011; Cui et al., 2018). Therefore, we carried out a transcriptional activity assay in Arabidopsis protoplasts with either a Galactose 4 DNA Binding Domain fused with either SRG2 or SRG3 (GAL4-DB-SRG2 or GAL4-DB-SRG3, respectively) together with a reporter gene comprising five copies of the GAL4 DNA-binding site fused to the firefly Luciferase (LUC) reporter gene (Fig. 7b). Both SRG2 and SRG3 exhibited transcriptional repression activity and this activity was abolished by truncation of the EAR motif (Fig. 7c), which did not influence their localization (Fig. S5c–g).

It has been previously reported that NO may modulate the transcriptional repressive activity of SRG1 (Cui et al., 2018). Therefore, we tested if NO might impact the transcriptional repressive activity of either SRG2 or SRG3. As expected, application of the NO donor, SNP, strikingly reduced the ability of SRG3 to operate as a transcriptional repressor. Surprisingly, and in complete contrast, NO was not found to blunt the transcriptional repressive activity of SRG2 following the addition of two distinct NO donors, SNP (Fig. 7d) and GSNO (Fig. 7e). In a gnor1-3 genetic background, which chronically accumulates (S)NO, SRG3-dependent transcriptional repression was abolished (Fig. 7f), which was not the case for SRG2-dependent transcriptional repression, which was slightly diminished. However, the chronic, long-term accumulation of (S)NO in the gnor1-3 line may result in the indirect action of these molecules on this activity. To determine if SRG function might be impacted by NO in SRG overexpression plants, we determined the NO concentration in these lines. The concentration of NO accumulation in these plants was similar to that of the wild-type line (Fig. S6). Collectively, our findings show that, remarkably, SRG2 and SRG3, despite their high degree of sequence similarity, were differentially regulated by direct NO function.

NO selectively S-nitrosylates SRG proteins

S-nitrosylation is a key mechanism to convey NO bioactivity (Astier et al., 2011; Yu et al., 2012). As our data suggest that NO can directly inhibit SG3 but not SRG2 transcriptional repression activity, we determined if either SRG2 or SRG3 could be directly modified by NO. We generated recombinant SRG2 and SRG3 proteins using a MBP fusion protein system (MBP-SRG2 and MBP-SRG3, respectively) and exposed these proteins to the natural NO donors, GSNO (Fig. 8a) or Cys-NO (Fig. 8b) and monitored their possible S-nitrosylation by the BSA. No SRG2-SNO formation was detected by either GSNO or Cys-NO treatment in vitro (Fig. 8a,b), even following long film exposure times to detect weak signals (Fig. S7). By contrast, MBP-SRG3 was S-nitrosylated strongly in response to both GSNO and Cys-NO (Fig. 8a,b). In order to confirm and extend these findings, MBP-SRG2 and MBP-SRG3 were subjected to a range of GSNO concentrations and possible SNO formation determined. In agreement with our previous data, SRG3 was S-nitrosylated and, further, this redox-based PTM occurred in a GSNO concentration-dependent fashion (Fig. 8d). However, formation of SRG2-SNO could not be detected, even over a range of GSNO concentrations (Fig. 8e). Together, these data suggest that NO selectively modifies SRG proteins in vitro.

To determine if either SRG2 or SRG3 could be S-nitrosylated in vivo, we generated C-terminal FLAG-tagged SRG2 (SRG2-FLAG) and SRG3 (SRG3-FLAG), respectively. Subsequently, Arabidopsis protoplasts expressing the indicated transgene were exposed to GSNO and endogenous proteins subjected to the BSA. Subsequently, biotinylated proteins were purified with streptavidin beads. These proteins were then immunoblotted with an anti-FLAG antibody. SRG3 was found to be S-nitrosylated in vivo. By contrast, no S-nitrosylation of SRG2 could be detected (Fig. 8e). We next tested possible S-nitrosylation of SRG2 and SRG3 in gnor1-3 plants, which show increased concentrations of GSNO accumulation and, by extension, elevated levels of global SNO-protein formation. The BSA assay revealed the formation of SRG3-SNO. Conversely, no SRG2-SNO was detected (Fig. 8f). These data suggest that SRG3 but not SRG2 can be S-nitrosylated in vivo in a gnor1-3 genetic background.

We next investigated if SRG3-SNO formation or S-nitrosylation of SRG2 occurred during attempted pathogen infection. Following Pst DC3000 inoculation, SRG3-SNO formation was detected from 6 hpi (Fig. 8h). By contrast, SRG2-SNO could not be detected at any of the time points tested (Fig. 8g,h). Collectively, these findings imply that SRG3 but not SRG2 is the target of in vitro and in vivo S-nitrosylation.

To further explore the possible impact of increased SNO concentrations on phenotypes resulting from SRG overexpression,
Fig. 6 *Arabidopsis* SRG2 and SRG3 function in salicylic acid (SA)-dependent signalling and immunity. (a) mRNA level of *PR1* in the given plant genotypes following pathogen challenge. Six-week-old plants were inoculated as indicated, followed by quantitative PCR. *Pseudomonas syringae pv. tomato* (Pst) DC3000 was resuspended in 10 mM MgCl$_2$ and MgCl$_2$ was used as mock. Error bars indicate means ± SD from three independent biological replicates. ***, $P < 0.01$ (significant difference compared with wild-type Col-0 by ANOVA assay). (b) Total salicylic acid (SA) concentrations in the indicated *Arabidopsis* lines in response to pathogen challenge. Six-week-old plants were challenged as indicated, and the SA concentration was subsequently analysed by high-performance liquid chromatography. Error bars indicate ± SD ($n = 3$). ANOVA assays were performed to determine significant differences compared with wild-type Col-0 at 24 h post inoculation (hpi). ***, $P < 0.01$. (c) Morphological phenotypes of the indicated plant genotypes at 6 wk old under short-day conditions. Bar, 2 cm. (d) FW in the stated *Arabidopsis* lines at 6 wk old under short-day conditions (8 h : 16 h, light : dark). Error bars indicate means ± SD ($n = 8$). ***, $P < 0.01$ (ANOVA assay). (e–h) The titre of Pst DC3000 (e, f) or Pst DC3000(*avrRpm1*) (g, h) was determined at 0 and 3 d post-inoculation (dpi) following infiltration of virulent Pst DC3000 (e, f) or avirulent Pst DC3000 carrying *avrRpm1* (g, h) (1×10^5 CFU ml$^{-1}$). Error bars indicate means ± SD ($n = 7$). ***, $P < 0.01$ (ANOVA assay). All experiments were repeated at least three times.
we crossed SRG2-OX and SRG3-OX lines with gsnor1-3 plants. SRG3-OX#1 gsnor1-3 plants resembled the gsnor1-3 line in terms of stature (Fig. 9a) and FW (Fig. 9b). However, gsnor1-3 only partially suppressed the growth phenotype of the SRG2-OX#1 line (Fig. 9a,b). Further, leaf infiltration of Pst DC3000 revealed that SRG3-OX#1 gsnor1-3 plants supported an increased titre of bacteria relative to SRG2-OX#1 gsnor1-3 plants (Fig. 9c,d). In aggregate, increased SNO concentrations in gsnor1-3 plants abolished SRG3-dependent disease resistance but not SRG2-OX#1 mediated protection.

Discussion

Our findings show that SRG2 and SRG3 function as transcriptional repressors, presumably through the recruitment of the corepressor, TOPLESS, via interaction with their EAR domain, in a similar fashion to SRG1 (Cui et al., 2018). Further, SRG3 was S-nitrosylated in vitro by both Cys-NO and GSNO, two natural NO donors, and in vivo in response to attempted pathogen infection. Also, following (S)NO accumulation and subsequent SRG3 S-nitrosylation, the transcriptional repressive activity of SRG3 was abolished. In addition, gsnor1-3, which results in increased total cellular (S)NO accumulation, suppressed the growth and immunity phenotypes associated with ectopic overexpression of SRG3 in SRG3-OX gsnor1-3 lines. Remarkably, SRG2 was not S-nitrosylated either in vitro or in vivo following attempted pathogen infection. It was also surprising that (S)NO accumulation failed to directly abolish the transcriptional repressive activity of SRG2. Moreover, gsnor1-3 did not fully suppress the growth and immunity phenotypes associated with ectopic overexpression of SRG2. In aggregate, our results show that SRG C2H2 ZnTFs exhibit differential capacities to act as substrates for NO-mediated S-nitrosylation. Thus, while SRG1 and SRG3 undergo SNO formation, which regulates their biological
The closely related family member, SRG2, is not a substrate for this redox-based PTM and is therefore, by extension, not regulated by this modification. Thus, the SRG family of C2H2 ZnTFs, despite their high similarity, are remarkably differentially regulated by NO bioactivity. Collectively, our findings support a model that is presented and described in Fig. 10.

By employing a molecular modelling strategy, we established that in both SRG1 and SRG3, Cys87, a highly conserved target residue for SNO formation (Cui et al., 2018), is completely solvent exposed and fully accessible for modification by NO. Conversely, in SRG2, Cys87 is significantly less accessible to NO-driven S-nitrosylation (Fig. 8a–d). Thus, our data suggest that the observed differential S-nitrosylation of SRG proteins is facilitated by the structural location of Cys87 within SRG2 relative to the position of this residue within SRG1 and SRG3. To the extent of our knowledge, this is the first report of a closely related protein family being differentially regulated by this redox-based modification in either plants or animals.

Differential regulation of a plant TF gene family by a given PTM has, for example, also been demonstrated for the basic leucine zipper TGA transcriptional activators which function in both plant immunity and development (Pontier et al., 2002). This TF family consisting of 10 members has been proposed to bind TGACG-motifs in SA-regulated promoters from...
Arabidopsis and tobacco, which have been shown to be functionally relevant (Zhang et al., 1999; Després et al., 2000). Two TGA TFs are specifically targeted for developmental stage-specific proteolysis by the 26S proteasome, presumably following ubiquitination of a target lysine residue (Pontier et al., 2002).

Thus, TGA TFs may be regulated by differential targeted proteolysis, serving to modulate the contribution of specific members of this multigene TF family to complex developmental pathways.

To explore the differential S-nitrosylation of SRG proteins further, we undertook phylogenetic analysis to determine the possible selective pressure on SRG1, SRG2 and SRG3 (Methods S1, S2). This analysis suggested more nonsynonymous to synonymous substitutions, indicating the presence of positive selection (Table S2). Thus, the duplication of SRG genes may have resulted in subfunctionalization: the resulting gene copies post-duplication specialize to perform different functions within the same genetic pathway. Alternatively, neofunctionalization might have ensued, where one gene copy maintains the ancestral function while the additional copies are selected to perform novel activities outside the original genetic pathway. Our SRG functional data suggest that loss-of-function mutations in SRG1, SRG2 or SRG3 result in decreased disease resistance. Further, the negative impact on disease resistance of the sr2 sr3 double loss-of-function mutant is additive relative to the sr2 and sr3 single loss-of-function mutants, implying that these genes may have evolved, at least partially, separate functions in the regulation of plant immunity. Further, the sr1 sr2 sr3 triple loss-of-function mutant exhibits greater pathogen susceptibility relative to the sr2 sr3 double loss-of-function mutant, indicating that all three SRG genes may have related but separable functions associated with plant immunity. Null loss-of-function mutations within the same genetic pathway would not be expected to be additive. These findings are therefore consistent with neofunctionalization of the SRG gene family, where one gene copy maintains the ancestral function, while the additional copies are selected to perform novel functions outside the original genetic pathway. Our experimental data also demonstrate that SRG1 and SRG3 are actively S-nitrosylated and this redox-based PTM regulates the activity of these proteins. By contrast, SRG2 is not subject to SNO formation. This feature also clearly differentiates SRG proteins at the molecular level.

Fig. 9 SRG overexpression phenotypes are differentially suppressed by gsnor1-3. (a) Morphological phenotype of indicated genotypes of 6-wk-old plants grown under short-day conditions. Bar, 2 cm. (b) FW quantification of the stated 6-wk-old Arabidopsis lines grown under short-day conditions. Error bars indicate means ± SD (n = 8). **, P < 0.01; ns, not significant. (c) Genotyping analysis of the indicated plant lines. Specific primers for analysis of the T-DNA insertion site in gsnor1-3 plants were employed to perform this experiment. (d) Detection of SRG protein expression in SRG overexpression (SRG-OX) lines. Western blot analysis was carried out to detect SRG proteins in the indicated plant lines using an anti-FLAG antibody. Coomasie Brilliant Blue (CBB) stain was employed as a loading control. (e, f) Titre of Pseudomonas syringae pv. tomato (Pst) DC3000(avrRpm1) (e) or Pst DC3000 (f) was determined at 0 and 3 d post-inoculation (dpi) in each indicated line. The concentration of bacteria used in these experiments was 1 × 10⁸ CFU ml⁻¹. Error bars indicate means ± SD (n = 7). Experiments were repeated three times with similar results. **, P < 0.01; ns, not significant.
The evolution of transcriptional regulatory networks has been proposed to occur predominantly through variation in *cis*-regulatory elements located within the promoters of target genes (Sorrells *et al.*, 2015; Sorrells & Johnson, 2015). This is because mutations in transcription factors would potentially result in widespread consequences relative to mutations within the regulatory elements themselves. Conversely, the accumulating data imply that variations in transcriptional regulators themselves can also drive the evolution of complex transcriptional regulatory networks, supported through gene duplication events of cognate transcriptional activators (Force *et al.*, 1999; Innan & Kondrashov, 2010). We suggest that the plant SRG family of C2H2 ZnTFs represents a quintessential example of this type of transcriptional-network evolution.

Interestingly, our results suggest that all members of the SRG family of ZnTFs reciprocally regulate the transcription of other members of this gene family. Thus, loss-of-function mutations in SRG1, SRG2 or SRG3 impact the associated transcript accumulation of the other two SRG genes. For example, direct comparison of SRG transcript abundances shows that loss of SRG3 function results in a 80% reduction in transcript accumulation for SRG2 and a 70% reduction for SRG1. These data establish SRG3 as the SRG family member that has the greatest influence on the expression of other SRG genes. Analysis of the promoter sequences associated with SRG genes reveals, in each case, multiple potential binding motifs for C2H2 ZnTFs. Therefore, it is possible that the observed reciprocal regulation of mRNA abundance amongst SRG family members is mediated through the direct binding of a given SRG TF to cognate *cis*-elements within the promoter sequences of other SRG genes. However, our data suggest that SRG1, SRG2 and SRG3 function as transcriptional repressors and hence mutations in these TFs would be expected to increase rather than decrease the transcript abundance of other SRG family members. Thus, the observed reciprocal regulation of gene expression amongst SRG family members may not occur through direct promoter binding and subsequent transcriptional regulation. More likely, our data infer that SRG reciprocal regulation occurs indirectly, perhaps by the given SRG repressing the transcription of a transcriptional repressor, which would ordinarily target other SRG family members.

Reciprocal regulation of gene expression is typically linked to feedback loops. A classic example is the circadian clock where the basic molecular architecture consists of negative-feedback loops where positive and negative components control each other’s expression to generate oscillations with an approximate 24 h period (Bell-Pedersen *et al.*, 2005). In this context, the first described feedback loop of the *Arabidopsis* circadian clock was based on the reciprocal regulation between TIMING OF CAB EXPRESSION 1 (TOC1) and CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY). CCA1 and LHY are Myb TFs that bind directly to the TOC1 promoter to negatively regulate its expression, while TOC1 binds directly to the CCA1 and LHY promoters negatively regulating their expression (Gendron *et al.*, 2012). The molecular mechanism underpinning SRG reciprocal regulation would therefore be an interesting target for future investigation, especially because, unlike the plant circadian clock example, SRG reciprocal regulation is likely to be indirect and also there is a general paucity of information on similar molecular interactions in plants.
Acknowledgements

BC and QP were supported by a China Scholarship Council (CSC) scholarship. QP was subsequently funded by the Natural Science Foundation of Jiangsu Province of China (SBK2017040656) and the National Natural Science Foundation of China (31700241). DF was funded by an award from the Daphne Jackson Trust together with the University of Edinburgh. This work was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) research grant BB/D01189/1 to GJL. We thank Nottingham Arabidopsis Stock Centre for providing seeds of Arabidopsis mutants. We also would like to thank Dr Jianru Zuo (Institute of Developmental Biology and Genetics, China) and Dr Chengcai Chu (Institute of Developmental Biology and Genetics, China) for sharing vectors for the chemical transcriptional induction system and transcriptional repressive activity assay, respectively.

Author contributions

BC, QP and GJL formulated the experimental strategy. QP, BC, DF, YL, SX, SU, BY and JJ performed experiments. QP, BC, FL, and GJL wrote the paper.

ORCID

Beimi Cui https://orcid.org/0000-0002-4901-1988
Fengquan Liu https://orcid.org/0000-0001-9325-1500
Gary J. Loake https://orcid.org/0000-0002-7989-9180
Qiaona Pan https://orcid.org/0000-0002-9142-1905

References

Astier J, Besson-Bard A, Lamotte O, Bertoldo J, Bourque S, Terenzi H, Cui B, Pan Q, Clarke D, Villarreal MO, Umbreen S, Yuan B, Shan W, Jiang J, Loake GJ. 2018. S-nitrosylation of the zinc finger protein SRG1 regulates plant immunity. Nature Communications 9: 4226.

Delledonne M, Xia Y, Dixon RA, Lamb C. 1998. Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585–588.

Delledonne M, Zeier J, Marocco A, Lamb C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences, USA 98: 13454–13459.

Després C, DeLong C, Glaze S, Liu E, Fobert PR. 2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12: 279–290.

Earley KW, Haag JR, Pontes O, Oppper K, Juehne T, Song K, Pikaard CS. 2006. Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal 45: 616–629.

Feechan A, Kwon E, Yun BW, Wang YQ, Pallas JA, Loake GJ. 2005. A central role for S-nitrosothiols in plant disease resistance. Proceedings of the National Academy of Sciences, USA 102: 8054–8059.

Force A, Lynch M, Pickett FB, Amores A, Yan Y-L, Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545.

Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA. 2012. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences, USA 109: 3167–3172.

Gómez-Gómez L, Felix G, Boller T. 1999. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. The Plant Journal 18: 277–284.

Grant J, Loake GJ. 2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiology 124: 21–29.

Grant J, Yun BW, Loake GJ. 2000. Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and MeJA but is dependent on MAPKK activity. The Plant Journal 24: 569–582.

Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL. 1995. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269: 843–846.

Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT. 2011. On the origins of nitric oxide. Trends in Plant Science 16: 160–168.

Hussain A, Yun BW, Kim JH, Gupta KJ, Hyung NI, Loake GJ. 2019. Novel and conserved functions of S-nitrosoglutathione reductase (GSNOR) in Arabidopsis. Journal of Experimental Botany 70: 4877–4886.

Innan H, Kondrashov F. 2010. The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics 11: 97–108.

Jabs T, Dietrich RA, Dangl JL. 1995. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853–1856.

Jaffrey SR, Snyder SH. 2001. The bimot switch method for the detection of S-nitrosylated proteins. Science’s STKE 2001: p1.

Kagale S, Rozwadowski K. 2011. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6: 141–146.

Kim Y, Park S, Gilmour SJ, Thomashow MF. 2013. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptionome and freezing tolerance of Arabidopsis. The Plant Journal 75: 364–376.

Kneschew S, Gelineau S, Tada Y, Loake GJ, Spoel SH. 2014. Selective protein denitrosylation activity of Thioredoxin-h5 modulates plant immunity. Molecular Cell 56: 153–162.

Kwon E, Feechan A, Yun BW, Hwang BH, Pallas JA, Kang JG, Loake GJ. 2012. AEGSNORI function is required for multiple developmental programs in Arabidopsis. Plantas 236: 887–900.

Lee U, Wie C, Fernandez BO, Feildisch M, Vierling E. 2008. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20: 786–802.

Lindermayr C, Sell S, Muller B, Leister D, Durnera J. 2010. Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22: 2894–2907.
Mengel A, Ageeva A, Georgii E, Bernhardt J, Wu KQ, Durner J, Lindermayr C. 2017. Nitric oxide modulates histone acetylation at stress genes by inhibition of histone deacetylases. *Plant Physiology* 173: 1434–1452.

Mengel A, Chaki M, Shekariesfahlani A, Lindermayr C. 2013. Effect of nitric oxide on gene transcription - S-nitrosylation of nuclear proteins. *Frontiers in Plant Science* 4: 293.

Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamura K, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T. 2007. Development of series of gateway binary vectors, pGWBS, for realizing efficient construction of fusion genes for plant transformation. *Journal of Bioscience and Bioengineering* 104: 34–41.

Oide S, Bejai S, Staal J, Guan N, Kaliff M, Dixelius C. 2013. A novel role of PR2 in abscisic acid (ABA) mediated, pathogen-induced callose deposition in *Arabidopsis thaliana*. *New Phytologist* 200: 1187–1199.

Palmieri MC, Sell S, Huang X, Scherf M, Werner T, Durner J, Lindermayr C. 2008. Nitric oxide-responsive genes and promoters in *Arabidopsis thaliana*: a bioinformatics approach. *Journal of Experimental Botany* 59: 177–186.

Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL. 2004. Microarray analysis of nitric oxide responsive transcripts in *Arabidopsis*. *Plant Biotechnology Journal* 2: 359–366.

Pontier D, Privat I, Trifa Y, Zhou JM, Lam E. 2002. Differential regulation of TGA transcription factors by post-transcriptional control. *The Plant Journal* 32: 641–653.

Pyott DE, Sheehan E, Molnar A. 2016. Nitric oxide-responsive gene transcription - S-nitrosylation targets GSNO reductase for selective autophagy during plant immunity. *New Phytologist* 214: 1276–1288.

Pyott DE, Sheehan E, Molnar A. 2016. Engineering of CRISPR/Cas9-mediated transformation of *Arabidopsis thaliana*: a bioinformatics approach. *Journal of Experimental Botany* 59: 177–186.

Pyott DE, Sheehan E, Molnar A. 2016. Nitric oxide-responsive gene transcription - S-nitrosylation targets GSNO reductase for selective autophagy during plant immunity. *New Phytologist* 214: 1276–1288.

Smith JM, Heese A. 2014. Rapid bioassay to measure early reactive oxygen species production in *Arabidopsis* leaves in tissue in response to living *Pseudomonas syringae*. *Planta* 239: 135–146.

Sorrells TR, Johnson AD. 2015. Determination of NO concentration in plants. *World of Science* 2: 24–30.

Torres MA, Jones JD, Dangl JL. 2006. Reactive oxygen species signaling in response to pathogens. *Plant Physiology* 141: 373–378.

Wang YQ, Feechan A, Yun BW, Spoel SH, Chu CC, Wang YQ, Loake GJ. 2010. The redox switch: dynamic regulation of protein function by cysteine modifications. *Physiologia Plantarum* 138: 360–371.

Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou ZL, Song JQ, Wang C, Zuo JR, Dong X. 2008. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. *Science* 321: 952–956.

Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. 1997. Subcellular localization of H2O2 in plants. *H2O2* accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. *The Plant Journal* 11: 1187–1194.

Torres MA, Jones JD, Dangl JL. 2006. Reactive oxygen species signaling in response to pathogens. *Plant Physiology* 141: 373–378.

Wang YQ, Feechan A, Yun BW, Shafei R, Hofmann A, Taylor P, Xue P, Yang FQ, Xie ZS, Pallas JA et al. 2009. S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. *Journal of Biological Chemistry* 284: 2131–2137.

Whalen MC, Innes RW, Bent AF, Staskawicz BJ. 1991. Identification of *Pseudomonas syringae* pathogen of Arabidopsis and a bacterial locus determining avirulence on both *Arabidopsis* and soybean. *Plant Cell* 3: 49–59.

Xu S, Guerra D, Lee U, Vierling E. 2013. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in *Arabidopsis*. *Frontiers in Plant Science* 4: 430.

Yu MD, Lamattina L, Spoel SH, Loake GJ. 2014. Nitric oxide function in plant biology: a redox cue in deconvolution. *New Phytologist* 202: 1142–1156.

Yu M, Yun B-W, Spoel SH, Loake GJ. 2012. A sleigh ride through the SNO: regulation of plant immune function by protein S-nitrosylation. *Current Opinion in Plant Biology* 15: 424–430.

Yun BW, Feechan A, Yin MH, Said NBB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH et al. 2011. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. *Nature* 478: 264–268.

Zago E, Morsa S, Dat JF, Alard P, Ferrari A, Inze D, Delledonne M, Van Breusegem F. 2006. Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. *Plant Physiology* 141: 404–411.

Zhan Z, Wang C, Chen L, Yang H, Peng J, Gong X, Ren B, Wu R, Mu J, Li Y et al. 2018. S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. *Molecular Cell* 71: 142–154.e6.

Zhang X, Henriques R, Lin S-S, Niu Q-W, Chua N-H. 2006. *Agrobacterium*-mediated transformation of *Arabidopsis thaliana* using the floral dip method. *Nature Protocols* 1: 641.

Zhang Y, Fan W, Kinkema M, Li X, Dong X. 1999. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. *Proceedings of the National Academy of Sciences, USA* 96: 6523–6528.

Zuo J, Niu QW, Chua NH. 2000. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. *The Plant Journal* 24: 265–273.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Fig. S1 Phylogenetic tree of C2H2 type zinc finger genes in *Arabidopsis*.

Fig. S2 Identification of SRG mutants.

Fig. S3 Loss of SRG function affects *Arabidopsis* cell death development and ROS.

Fig. S4 SA-related gene expression in *srsg* mutants.

Fig. S5 SRG2 and SRG3 encode nuclear-located proteins.

Fig. S6 Determination of NO concentration in *SRG2* and *SRG3* overexpression lines.

Fig. S7 SRG2 is not S-nitrosylated in response to NO accumulation.

Fig. S8 Computational modelling reveals structural differences between SRG proteins.

Methods S1 SRG protein structure analysis.

Methods S2 Evolutionary analysis of *SRG* genes.

Table S1 Primer list.

Table S2 Evolutionary analysis of *SRG* genes.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.