Outcomes of laparoscopic repeat liver resection for recurrent liver cancer

A system review and meta-analysis

Yufu Peng, MD, Fei Liu, MD, Yonggang Wei, MD, Bo Li, MD, PhD

Abstract

Background: With the improvements of surgical instruments and surgeons’ experience, laparoscopic liver resection has been applied for recurrent tumors. However, the value of laparoscopic repeat liver resection (LRLR) is still controversial nowadays, which compelled us to conduct this meta-analysis to provide a comprehensive evidence about the efficacy of LRLR for recurrent liver cancer.

Methods: A computerized search was performed to identify all eligible trials published up to April 2019. This meta-analysis was conducted to estimate the perioperative data and oncological outcomes of LRLR by compared with open repeat liver resection (ORLR) and laparoscopic primary liver resection (LPLR). A fixed or random-effect modal was established to collect the data.

Results: A total of 1232 patients were included in this meta-analysis (LRLR: n = 364; ORLR: n = 396; LPLR: n = 472). LRLR did not increase the operative time compared to OLR (WMD = 15.92 min; 95%CI: –33.53 to 65.37; P = .53). Conversely, LRLR for patients with recurrent tumors was associated with less intraoperative blood loss (WMD = –187.33 mL; 95%CI: –249.62 to –125.02; P < .00001), lower transfusion requirement (OR = 0.24; 95%CI: 0.06–1.03; P = .05), fewer major complications (OR = 0.42; 95%CI: 0.23–0.76; P = .004), and shorter hospital stays (WMD = –2.31; 95%CI: –3.55 to –1.07; P = .0003). In addition, the oncological outcomes were comparable between the two groups. However, as for the safety of LRLR compared with LPLR, although the operative time in LRLR group was longer than LPLR group (WMD = 58.63 min; 95%CI: 2.99–114.27; P = .04), the blood loss, transfusion rates, R0 resection, conversion, postoperative complications, and mortality were similar between the two groups.

Conclusions: LRLR for recurrent liver cancer could be safe and feasible in selected patients when performed by experienced surgeons.

Abbreviations: CCC = central cholangiocarcinoma, CLM = colorectal liver metastasis, CI = confidence interval, HCC = hepatocellular carcinoma, LPLR = laparoscopic primary liver resection, LRLR = laparoscopic repeat liver resection, NETLM = neuroendocrine tumor liver metastasis, OR = odds ratios, OLR = open repeat liver resection, WMD = weighted mean difference.

Keywords: laparoscopy, meta-analysis, primary liver resection, recurrent liver cancer, repeat liver resection

1. Introduction

With the technical and medical innovations, liver resection has now been widely accepted as the optimal treatment for patients with liver tumors.[1] However, patients often develop tumor recurrence after liver resection which is commonly limited in the residual liver.[2,3] As for the intrahepatic recurrent tumor, various therapeutic modalities including repeat liver resection, liver transplantation, radiofrequency ablation, and transarterial chemoembolization could be used to manage it, but repeat liver resection is still performed as the first-line treatment.[4-6]

Laparoscopic liver resection has been rapidly adopted worldwide following the improvements of surgical instruments and surgeons’ experience since the First International Consensus Conference on Laparoscopic Liver Surgery Convened in Louisville in 2008.[7] As being a minimally invasive surgery, it was reported with some advantages compared with traditional open liver resection, including less blood loss, fewer complications, shorter hospital stays, and equivalent oncological outcomes.[8-12] However, due to the presence of adhesions and altered anatomy caused by the previous resection, repeat liver resection has more challenges compared to initial resection, thus it was mainly performed by traditional open approach in most centers.[3-6]
Recently, some centers have applied laparoscopy for repeat hepatectomy and evaluated the safety of laparoscopic repeat liver resection (LRLR).\[13–23\]

Although there were a few systematic reviews that have assessed the outcomes of LRLR versus open repeat liver resection (ORLR),\[24,25\] some new and high-quality literatures have been published recently.\[20,21\] In addition, there was little strong evidence about the safety and feasibility of LRLR compared with laparoscopic primary liver resection (LPLR). Thus, this meta-analysis was conducted to review and update the perioperative and survival outcomes of LRLR compared with ORLR and LPLR, which could provide a comprehensive evidence about the efficacy of LRLR for recurrent tumors.

2. Materials and methods

2.1. Literature search strategy

This meta-analysis was conducted following the PRISMA guidelines.\[26\] Systematic searches of MEDLINE, EMBASE, Cochrane Library, and Web of science were performed to retrieve articles published up to April 2019. The following search terms were used: “laparoscopic or minimally invasive surgery,” repeat liver resection or repeat hepatectomy, “recurrent liver cancer or recurrent liver tumor,” “recurrent hepatocellular carcinoma or recurrent HCC or recurrent metastasis tumor.” The reference lists of eligible studies were manually searched to identify potential articles.

2.2. Study selection

The inclusion criteria were as follows:

1. observational and/or randomized studies about LRLR for recurrent liver cancer compared with LPLR, or those comparing LRLR versus ORLR for recurrent liver cancer;
2. the perioperative and/or survival outcomes could be used for analysis.

The exclusion criteria were as follows:

1. with insufficiency of data (<30 cases);
2. without clearly reported outcomes of interest.

2.3. Data extraction and quality assessment

Two reviewers (P.Y.F. and L.F.) independently extracted information from each eligible article, and disagreements were solved by discussion among all authors. The following data were extracted: the first author, publication year, country, study design, number of patients in each group, patient baseline characteristics, surgical outcomes (operative time, blood loss, transfusion requirements, open conversion, R0 resection rates), postoperative outcomes (overall complications, major complications, mortality, postoperative hospital stay), and survival outcomes. Quality of trials was assessed by using the Newcastle-Ottawa Scale (NOS).\[27\] which included patient selection, comparability of the study groups, and assessment of outcomes. A score of 0 to 9 was allocated to each study according to the parameters above, and studies with a score ≥6 were defined as high quality.

2.4. Statistical analysis

This meta-analysis was performed using Review Manager Version 5.3 (Cochrane Collaboration) and STATATA statistical software Version13. Continuous variables were calculated by the use of weighted mean difference (WMD) with 95% confidence interval (CI), and dichotomous variables were assessed by the use of odds ratios (OR) with 95%CI. Results were considered statistically significant at P value < .05. Both the Cochran’s Q test and the I-square index (I²) were conducted to assess heterogeneity of the eligible studies. P > .1 and I² < 50% were defined low heterogeneity, thus a fixed effect model was selected for statistical analysis. Otherwise, a random effect model was used. Sensitivity analysis was conducted according to the design of case matched and non-case match studies. Risk of publication bias was assessed by using Begg’s test and Egger’s test.

3. Results

3.1. Study eligibility

According to the search strategy above, a total of 718 studies were identified from the electronic databases. After removing duplicates, screening titles and abstracts, and reading full-text articles, 11 studies were enrolled in this meta-analysis. Of these, 7 studies compared LRLR and ORLR for recurrent tumors, 2 studies assessed the safety and feasibility of LRLR versus LPLR, and 2 studies evaluated the outcomes of LRLR compared with the ORLR and LPLR. Figure 1 illustrated the selection process.

3.2. Study characteristics

A total of 1232 patients were included in this meta-analysis (LRLR: n = 364; ORLR: n = 396; LPLR: n = 472). Indications for liver resection of the 11 studies mainly were HCC (n = 582, 47.24%) and colorectal liver metastasis (CLM) (n = 578, 46.92%). There were no statistical differences in patients demographics between the groups, and the baseline characteristics of the included studies were showed in Tables 1 and 2.

According to NOS scores, all the studies were assessed as high quality ranged from 7 to 9 points. Study quality assessment results were showed in Table 3.

3.3. Short-term outcomes of LRLR versus ORLR

The operative time was similar between the LRLR and ORLR groups (WMD = 47.24%) and colorectal liver metastasis (CLM) (n = 364; ORLR: n = 396; LPLR: n = 472). Indications for liver resection of the 11 studies mainly were HCC (n = 582, 47.24%) and colorectal liver metastasis (CLM) (n = 578, 46.92%). There were no statistical differences in patients demographics between the groups, and the baseline characteristics of the included studies were showed in Tables 1 and 2.

According to NOS scores, all the studies were assessed as high quality ranged from 7 to 9 points. Study quality assessment results were showed in Table 3.

3.4. Statistical analysis

This meta-analysis was performed using Review Manager Version 5.3 (Cochrane Collaboration) and STATATA statistical software Version13. Continuous variables were calculated by the use of weighted mean difference (WMD) with 95% confidence interval (CI), and dichotomous variables were assessed by the use of odds ratios (OR) with 95%CI. Results were considered statistically significant at P value < .05. Both the Cochran’s Q test and the I-square index (I²) were conducted to assess heterogeneity of the eligible studies. P > .1 and I² < 50% were defined low heterogeneity, thus a fixed effect model was selected for statistical analysis. Otherwise, a random effect model was used. Sensitivity analysis was conducted according to the design of case matched and non-case match studies. Risk of publication bias was assessed by using Begg’s test and Egger’s test.

3. Results

3.1. Study eligibility

According to the search strategy above, a total of 718 studies were identified from the electronic databases. After removing duplicates, screening titles and abstracts, and reading full-text articles, 11 studies were enrolled in this meta-analysis. Of these, 7 studies compared LRLR and ORLR for recurrent tumors, 2 studies assessed the safety and feasibility of LRLR versus LPLR, and 2 studies evaluated the outcomes of LRLR compared with the ORLR and LPLR. Figure 1 illustrated the selection process.

3.2. Study characteristics

A total of 1232 patients were included in this meta-analysis (LRLR: n = 364; ORLR: n = 396; LPLR: n = 472). Indications for liver resection of the 11 studies mainly were HCC (n = 582, 47.24%) and colorectal liver metastasis (CLM) (n = 578, 46.92%). There were no statistical differences in patients demographics between the groups, and the baseline characteristics of the included studies were showed in Tables 1 and 2.

According to NOS scores, all the studies were assessed as high quality ranged from 7 to 9 points. Study quality assessment results were showed in Table 3.

3.3. Short-term outcomes of LRLR versus ORLR

The operative time was similar between the LRLR and ORLR groups (WMD = 47.24%) and colorectal liver metastasis (CLM) (n = 364; ORLR: n = 396; LPLR: n = 472). Indications for liver resection of the 11 studies mainly were HCC (n = 582, 47.24%) and colorectal liver metastasis (CLM) (n = 578, 46.92%). There were no statistical differences in patients demographics between the groups, and the baseline characteristics of the included studies were showed in Tables 1 and 2.

According to NOS scores, all the studies were assessed as high quality ranged from 7 to 9 points. Study quality assessment results were showed in Table 3.

3.4. Statistical analysis

This meta-analysis was performed using Review Manager Version 5.3 (Cochrane Collaboration) and STATATA statistical software Version13. Continuous variables were calculated by the use of weighted mean difference (WMD) with 95% confidence interval (CI), and dichotomous variables were assessed by the use of odds ratios (OR) with 95%CI. Results were considered statistically significant at P value < .05. Both the Cochran’s Q test and the I-square index (I²) were conducted to assess heterogeneity of the eligible studies. P > .1 and I² < 50% were defined low heterogeneity, thus a fixed effect model was selected for statistical analysis. Otherwise, a random effect model was used. Sensitivity analysis was conducted according to the design of case matched and non-case match studies. Risk of publication bias was assessed by using Begg’s test and Egger’s test.
postoperative short-term outcomes of LRLR versus ORLR were showed in Figure 3.

3.4. Short-term outcomes of LRLR versus LPLR

According to this meta-analysis, the operative time was significantly longer in the LRLR group than that in LPLR group (WMD = 58.63 min; 95%CI: 2.99–114.27; P = .04). However, there was no significant difference in the intraoperative blood loss (WMD = 68.36 mL; 95%CI: −193.86 to 330.58; P = .61), transfusion (OR = 0.56; 95%CI: 0.23–1.37; P = .20), R0 resection (OR = 0.85; 95%CI: 0.34–2.12; P = .72), and conversion (OR = 1.08; 95%CI: 0.43–2.68; P = .87) between the LRLR group and LPLR group. Moreover, there were no significant differences in the term of overall complications (OR = 0.79; 95% CI: 0.44–1.43; P = .44), major complications (OR = 0.68; 95% CI: 0.29–1.58; P = .37), early postoperative mortality (OR = 2.42; 95%CI: 0.50–11.62; P = .27), and postoperative hospital stay (WMD = 0.0; 95%CI: −0.24 to 0.24; P = .99). The postoperative short-term outcomes of LRLR versus LPLR were showed in Figures 4 and 5.

3.5. Long-term outcomes

A total of 5 studies reported the survival outcomes, but the data on tumor recurrence were available in only 4 studies. The pooled results suggested that there was no significant difference in the tumor recurrence between the LRLR group and ORLR group (OR = 1.11 95%CI: 0.64–1.92; P = .71).

3.6. Sensitivity analysis

Sensitivity analysis was conducted in outcomes of LRLR versus ORLR and different results were found in transfusion. The results were listed in Table 4. Due to the limited dataset available, sensitivity analysis was not performed in outcomes of LRLR versus LPLR.
Table 1
Characteristics of included studies comparing LRLR with ORLR.

Study (author, year)	Country	Type	Group	NO.	Age (years)	Gender (M vs F)	Child-Pugh (A vs B)	Previous (L vs O)	Tumor size (cm)	Cirrhosis (n, %)	MLR (n, %)	Conversion (n, %)	Indication (n)	
Kanazawa et al, 2013	Japan	RM	LRLR	20	70 (46–83)	15:5	19:1	5:15	1.7 (0.7–3.5)	7 (35.0%)	NP	2 (10.0%)	HCC=20	
			ORLR	20	65 (43–74)	19:1	17.3	NP	2.2 (1.3–4.1)	7 (35.0%)	NP	–	HCC=20	
Chan et al, 2014	China	RM	LRLR	11	61 (43–81)	8:3	11.0	5:6	2 (1.0–4.5)	8 (72.7%)	0	0	HCC=11	
			ORLR	22	62 (43–76)	16:6	NP	NP	2 (1.0–5.0)	NP	NP	–	HCC=22	
Zhang et al, 2016	China	P	LRLR	31	54 (37–66)	NP	26.5	NP	0.31	NP	NP	NP	–	HCC=33
Liu et al, 2017	China	PSM	LRLR	30	56.5 (27–79)	23.7	30.0	9:21	2.1 (1.0–5.0)	26 (86.7%)	1 (3.3%)	4 (13.3%)	HCC=30	
			MLR	30	48.5 (28–79)	28.2	27.2	NP	2.45 (1.0–4.3)	26 (86.7%)	3 (10.0%)	–	HCC=30	
Hallet et al, 2017	France	PSM	LRLR	27	63.6 (59.0–70.9)	20.7	NP	NP	NP	NP	NP	NP	CLM=27	
			MLR	81	62.8 (57.5–70.3)	50.31	NP	NP	NP	NP	NP	NP	–	CLM=81
Ome et al, 2018	Japan	R	LRLR	33	73 (45–84)	26:7	33.0	12:21	1.8 (0.4–4.5)	13 (39.4%)	NP	0	HCC=16, CLM=15, B=2	
			ORLR	37	71 (45–84)	27:10	36:1	3:34	2.4 (0.7–5.5)	10 (27.0%)	NP	–	HCC=16, CCC=1.8×2, CLM=16, others=2	
Noda et al, 2018	Japan	R	LRLR	20	68.8±9.7	15:5	19:1	8:12	2.41±1.26	8 (40.0%)	NP	1 (5.0%)	HCC=15, CLM=5	
			ORLR	48	67.2±8.4	39.9	44:4	2.46	2.21±0.9	16 (33.3%)	NP	–	HCC=30, CLM=12	
van der Poel et al, 2019	7 European counties	PSM	LRLR	105	61±10.7	62:43	NP	39.66	2.8 (1.9–4.4)	NP	49 (46.7%)	11 (10.5%)	CLM=105	
			ORLR	105	62±9.6	62:43	NP	36:69	3.0 (2.0–4.0)	NP	49 (46.7%)	–	CLM=105	
Goh et al, 2019	Singapore	PSM	LRLR	20	68.5 (67.0–71.75)	18:2	NP	13.7	2 (1.15–2.775)	7 (35.0%)	2 (10.0%)	3 (15.0%)	HCC=20	
			ORLR	20	69 (63.0–72.25)	18:2	NP	6.5 (1.5–3.0)	7 (35.0%)	NP	0	–	HCC=20	

B = combined HCC and CCC, CCC = central cholangiocarcinoma, CLM = colorectal liver metastasis, F = female, HCC = hepatocellular carcinoma, L = laparoscopic, LRLR = laparoscopic repeat liver resection, M = male, MLR = major liver resection, NP = not reported, O = open, ORLR = open repeat liver resection, P = prospective cohort, PSM = propensity score-matched cohort, R = retrospective cohort, RM = retrospective matched cohort.
Based on the present study, the operative time was not significantly different between LRLR and ORLR groups, but it was longer in LRLR group than LPLR group. Adhesions were commonly existed after liver resection, mainly between the abdominal wall at the original incision and the resection portion of the liver. Therefore, extra operative time was spent on adhesiolysis, particularly for the densely or vascular-rich adhesions around the hepatic hilum. In the present study, our results indicated that the intraoperative blood loss was less in the LRLR group than the ORLR group and it was similar between the LRLR and LPLR groups. These could be associated with the following possible reasons. First, with the improvement of surgical instruments and surgeons’ experience, some centers have applied laparoscopy for repeat liver resection and assessed the safety and feasibility of LRLR for recurrent liver tumors. However, there is still lack of comprehensive evidence about the efficacy of LRLR versus ORLR and LPLR, which compelled us to conduct this meta-analysis. According to this analysis, LRLR had superior short-term outcomes and similar oncological features compared with ORLR, and it did not increase postoperative morbidity and mortality compared to LPLR.

Table 2
Characteristics of included studies comparing LRLR with LPLR.

| Study (author, year) | Country | Type | Group | NO. | Gender | Age (years) | Child-Pugh | Child-Pgui
intra-abdominal adhesions were converted to open surgery, the pooled data suggested that the conversion rate was comparable between the LRLR and LPLR groups. These results indicated LRLR was safe during procedures, but it is noticeable that these LRLRs enrolled in this study were mainly performed by experienced surgeons.

This present study showed that the postoperative major complications were significantly less in the LRLR group than that in the OLR group, which were comparable between the LRLR and LPLR groups. These results were consist with previous published studies, which reported laparoscopic hepatectomy had the advantages of reducing the major complications.\cite{8,21,31}

During the repeat liver resection procedures, the intra-abdominal heavy adhesions could increase the rates of postoperative complications, especially for some adhesions around hepatic hilum or intestine involving the adhesions. However, the imagine magnification of surgical field in laparoscopy help surgeons differentiate the adhesions around important tissue or organs, and the tension on adhesions caused by pneumoperitoneum could facilitate more meticulous adhesiolysis. As a

Figure 2. Forest plots comparing intraoperative outcomes between LRLR group and OLR group: (A) operative time, (B) blood loss, (C) transfusion requirement rate, (D) R0 resection rate. LRLR = laparoscopic repeat liver resection, OLR = open repeat liver resection.
result, meticulous manipulation was performed to reduce some major complications, such as biliary leakage, biliary stricture, massive hemorrhage, intestinal fistula, and liver failure. In addition, as our previous published study, minimally invasive abdominal collateral circulation in laparoscopic hepatectomy could decrease the occurrence of ascites. Furthermore, with decreased postoperative pain and early postoperative rehabilitation, laparoscopy could reduce pulmonary complications, including respiratory infection, pleural effusion, and respiratory insufficiency. Notably, our analysis suggested LRLR group

Figure 3. Forest plots comparing postoperative outcomes between LRLR group and ORLR group: (A) overall complications, (B) major complications, (C) early postoperative mortality, (D) hospital stay. LRLR = laparoscopic repeat liver resection, ORLR = open repeat liver resection.
had shorter postoperative hospital stay compared with ORLR group, which was in compliance with other literature reports.[8,11,12,24,25] Because of the less postoperative pain, early mobilization, and the early recovery of gastrointestinal function, the postoperative hospital stay in LRLR group was significantly shorter than ORLR group.[33,34]

It has now been widely accepted that laparoscopic hepatectomy could assure the tumor-free resection margin as the open approach.[9,11,33] Unexpectedly, the results of the present meta-analysis found that the rate of R0 resection was higher in LRLR group than ORLR group. It was in compliance with the trial reported by van der Poel et al which has the weight of 43.8% in

Table 1: Mean Difference of Operative Time, Blood Loss, Transfusion Requirement Rate, R0 Resection Rate, and Conversion Rate

Study or Subgroup	LRLR	LPLR	Mean Difference	Weight
Shelat 2014	112	248	136.0	0.12
Nomi 2016	216	444	228.0	0.16
Ome 2018	121	250	129.0	0.14
Goh 2019	182	400	218.0	0.17
Total (95% CI)	120	270	150.0	0.20

Figure 4. Forest plots comparing intraoperative outcomes between LRLR group and LPLR group: (A) operative time, (B) blood loss, (C) transfusion requirement rate, (D) R0 resection rate, (E) conversion rate. LPLR = laparoscopic primary liver resection, LRLR = laparoscopic repeat liver resection.
this meta-analysis. As van der Poel et al[21] reported, the lacking of information such as the use of intraoperative ultrasonography and the exact location of the lesions could cause potential bias, thus the results about the R0 resection should be approached with cautions. Nevertheless, there was a main concern that the lack of palpation could sometimes confuse surgeons’ judgement on resection margin, but laparoscopic ultrasonography or ICG fluorescence imaging can be used to compensate it. In our center, laparoscopic ultrasonography was routinely performed to confirm the positions of tumors, prevent the omissions of small tumors and guide the transection line, so that the negative resection margin could be secured. There are increasing evidences to indicate that the laparoscopic liver resection was associated with similar oncologic outcomes compared to open approach.[8,10,11] Our results also showed that the tumor recurrence rate was comparable between LRLR group and OLR group.

There are some limitations in our studies. First, although most of the included trials were conducted with case-matched,[13,14,16,17,20–22] in the absence of RCTs examining LRLR versus ORLR for recurrent tumors, selection bias regarding the selection of surgical approach was unavoidable. Second, some of the studies were not provided the important basic statistics, such as the surgical approach of previous hepatectomy and the grade of adhesions. Last but not least, none of the enrolled studies performed subgroup analysis about outcomes of major LRLR for recurrent tumors compared with ORLR and LPLR. However, major laparoscopic liver resection could associate with a relatively high risk of huge intraoperative bleeding, conversion, and liver failure, especially for patients with a history of hepatectomy. Further large sample size, well designed trials should be conducted to validate our results.

Figure 5. Forest plots comparing postoperative outcomes between LRLR group and LPLR group: (A) overall complications, (B) major complications, (C) early postoperative mortality, (D) hospital stay. LPLR=laparoscopic primary liver resection, LRLR=laparoscopic repeat liver resection.
In conclusion, our meta-analysis indicated that LRLR had superior short-term outcomes and similar oncological features compared with ORLR. Additionally, it did not increase postoperative morbidity and mortality compared to LPLR. Therefore, LRLR for recurrent liver cancer could be safe and feasible in selected patients when performed by experienced surgeons.

Author contributions

Conception of the work (L.B., and W.Y.G.) Analyzed the data (P. Y.F. and L.F.) Wrote the paper (P.Y.F., and L.F.) Revised the paper (P.Y.F. and L.F.)

Conceptualization: Yonggang Wei, Bo Li

References

[1] Gög S, Sparrelid E, Isaksson B, et al. Mortality-related risk factors and long-term survival after 4460 liver resections in Sweden-a population-based study. Langenbecks Arch Surg 2017;402:105-13.
[2] Fong Y, Fortner J, Sun RL, et al. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 1999;230:309–18. discussion 318–321.

[3] Tabrizian P, Jibara G, Shragge B, et al. Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann Surg 2015;261:947–55.

[4] Itamoto T, Nakahara H, Amano H, et al. Repeat hepatectomy for recurrent hepatocellular carcinoma. Surgery 2007;141:589–97.

[5] Ichihara S, Ichinose K, Sano S, et al. Laparoscopic liver resection for recurrent colorectal metastases. Br J Surg 2013;100:808–18.

[6] Battula N, Tsapralis D, Mayer D, et al. Repeat liver resection for recurrent colorectal metastases: a single-centre, 13-year experience. HPB (Oxford) 2014;16:157–63.

[7] Ruel JF, Chequer D, Geller DA, et al. The survival outcome of laparoscopic liver surgery: the Louisville Statement, 2008. Ann Surg 2009;250:825–30.

[8] Witowski J, Rubinkiewicz M, Mizera M, et al. Meta-analysis of short- and long-term outcomes after pure laparoscopic versus open liver surgery in hepatocellular carcinoma patients. Surg Endosc 2018;PMID 30203210.

[9] Franken C, Lau B, Petchakayala K, et al. Comparison of short-term outcomes in laparoscopic vs open hepatectomy. JAMA Surg 2014;149:941–6.

[10] Parks KR, Kuo YH, Davis JM B, et al. Laparoscopic versus open liver resection: a meta-analysis of long-term outcome. HPB (Oxford) 2014;16:109–18.

[11] Han HS, Shehta A, Ahn S, et al. Laparoscopic versus open liver resection for hepatocellular carcinoma: case-matched study with propensity score matching. J Hepatol 2015;63:643–50.

[12] Liu F, Xu H, Li Q, et al. Outcomes of pure laparoscopic Glissorian pedicle approach hepatectomy for hepatocellular carcinoma: a propensity score matching analysis. Surg Endosc 2018.

[13] Kanazawa A, Tsapralis D, Mayer D, et al. Repeat hepatectomy for colorectal liver metastases: a multi-institutional study. Ann Surg Oncol 2019;26:2500.

[14] Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Oxford, UK; 2000.

[15] Adam R, Bismuth H, Castaing D, et al. Repeat hepatectomy for colorectal liver metastases. Br J Surg 2019;106:783–9.

[16] Adam R, Bismuth H, Castaing D, et al. Repeat hepatectomy for colorectal liver metastases: a multi-institutional case-matched study with propensity score-matched analysis. Surg Endosc 2018;32:712–9.

[17] Adam R, Bismuth H, Castaing D, et al. Repeat hepatectomy for colorectal liver metastases. Ann Surg 1997;225:51–60. discussion 60–52.

[18] Goh BK, Syn N, Teo JY, et al. Systematic review and meta-analysis of laparoscopic versus open repeat hepatectomy for recurrent liver cancer. Surg Oncol 2019;28:19–30.

[19] Libera T, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339: b2700.

[20] Zheng G, Liu Q, Wang X, et al. Laparoscopic redo surgery for recurrent hepatocellular carcinoma in cirrhotic patients: feasibility, safety, and results. Ann Surg Oncol 2009;16:1490–6.

[21] Adam R, Bismuth H, Castaing D, et al. Repeat hepatectomy for colorectal liver metastases. Br J Surg 2013;100:808–18.

[22] Battula N, Tsapralis D, Mayer D, et al. Repeat liver resection for recurrent colorectal metastases: a single-centre, 13-year experience. HPB (Oxford) 2014;16:157–63.

[23] Ruel JF, Chequer D, Geller DA, et al. The survival outcome of laparoscopic liver surgery: the Louisville Statement, 2008. Ann Surg 2009;250:825–30.

[24] Franken C, Lau B, Petchakayala K, et al. Comparison of short-term outcomes in laparoscopic vs open hepatectomy. JAMA Surg 2014;149:941–6.

[25] Parks KR, Kuo YH, Davis JM B, et al. Laparoscopic versus open liver resection: a meta-analysis of long-term outcome. HPB (Oxford) 2014;16:109–18.

[26] Han HS, Shehta A, Ahn S, et al. Laparoscopic versus open liver resection for hepatocellular carcinoma: case-matched study with propensity score matching. J Hepatol 2015;63:643–50.

[27] Liu F, Xu H, Li Q, et al. Outcomes of pure laparoscopic Glissorian pedicle approach hepatectomy for hepatocellular carcinoma: a propensity score matching analysis. Surg Endosc 2018.

[28] Kanazawa A, Tsapralis D, Shimizu S, et al. Laparoscopic liver resection for treating recurrent hepatocellular carcinoma. J Hepatobiliary Pancreat Sci 2013;20:512–7.

[29] Chan AC, Poon RT, Chok KS, et al. Feasibility of laparoscopic re-resection for patients with recurrent hepatocellular carcinoma. World J Surg 2014;38:1141–6.

[30] Zhang J, Zhou ZG, Huang ZX, et al. Prospective, single-center cohort study analyzing the efficacy of complete laparoscopic resection on recurrent hepatocellular carcinoma. Chin J Cancer 2016;35:25.

[31] Hallett J, Sa Cunha A, Chequer D, et al. Laparoscopic compared to open repeat hepatectomy for colorectal liver metastases: a multi-institutional propensity-matched analysis of short- and long-term outcomes. World J Surg 2018;32:712–9.

[32] Fuks D, Cauchy F, Friche S, et al. Laparoscopy decreases pulmonary complications in patients undergoing major liver resection: a propensity score analysis. Ann Surg 2016;263:353–61.

[33] Wong-Lun-Hing EM, van Dam RM, van Breukelen GJ, et al. Randomized clinical trial of open versus laparoscopic left lateral hepatic sectionectomy within an enhanced recovery after surgery programme (ORANGE II study). Br J Surg 2017;104:525–35.

[34] Stoot JH, van Dam RM, Busch OR, et al. The effect of a multimodal fast-track programme on outcomes in laparoscopic liver surgery: a multi-centre pilot study. HPB (Oxford) 2009;11:140–4.

[35] Fretland AA, Dagenborg VJ, Bjørnely GMW, et al. Laparoscopic versus open resection for colorectal liver metastases: The OSLO-COMET randomized controlled trial. Ann Surg 2018;267:199–207.