(\alpha, \beta)-METERSATISFYINGTHE T-CONDITION OR THE \sigma T-CONDITION

SALAH G. ELGENDI AND LÁSZLÓ KOZMA

Abstract. We describe the (\alpha, \beta)-metrics whose the T-tensor vanishes (T-condition) and the (\alpha, \beta)-metrics that satisfy the \sigma T-condition \sigma_h T^{\alpha}_{\beta k} = 0, where \sigma_h = \frac{\partial \sigma}{\partial x^h} and \sigma is a smooth function on M. These classes have already been obtained by Z. Shen and G. S. Asanov in a completely different approach. The Finsler metrics of the first class are Berwaldian, the metrics of the second class are almost regular non-Berwaldian Landsberg metrics.

1. INTRODUCTION

The T-tensor plays an interesting role in Finsler geometry and general relativity. It was introduced by M. Matsumoto [3]. M. Hashiguchi [6] showed that a Landsberg space remains a Landsberg space under all conformal changes of the Finsler function if and only if its T-tensor vanishes. By a famous observation of Z. I. Szabó [12], a positive definite Finsler manifold with vanishing Cartan tensor vanishes if it admits smooth function \phi such that \sigma T^{r}_{\alpha k} = 0, where \sigma and \phi is a smooth function on M. Therefore, it will be more beneficial to consider the case when a Landsberg space remains Landsberg under some conformal transformation. In [5], it was studied in the case when the condition \sigma T^{r}_{\alpha k} = 0 is satisfied for some conformal change by \sigma on M.

In this paper, we study the T-tensor of the (\alpha, \beta)-metrics. An (\alpha, \beta)-metric F is of the form F = \alpha\phi(s), s := \frac{\partial}{\partial x^i}. We start by studying the Cartan tensor C^{r}_{ijk} of (\alpha, \beta)-metrics. We show that the Cartan tensor C^{r}_{ijk} vanishes identically and hence the space is Riemannian if and only if \phi(s) = \sqrt{k_1 + k_2 s^2}, where k_1 and k_2 are constants.

We calculate the T-tensor for the (\alpha, \beta)-metrics, and we find necessary and sufficient conditions for (\alpha, \beta)-metrics to satisfy the T-condition. By solving some ODEs, we show that an (\alpha, \beta)-metric satisfies the T-condition if and only if it is Riemannian or \phi(s) has the following form

\phi(s) = c_3 s^{\frac{c_1}{c_2 - 1}} (c_2 s^2 - c_1) \sqrt{s}.

We introduce the notion of \sigma T-condition. We say that a Finsler space satisfies this condition if it admits smooth function \sigma(x) such that \sigma_h T^{h}_{ijk} = 0, where \sigma_h = \frac{\partial \sigma}{\partial x^h}. We find necessary and sufficient conditions for an (\alpha, \beta)-metric to satisfy the \sigma T-condition. Moreover, we show that the (\alpha, \beta)-metrics satisfy the \sigma T-condition if and only if the T-tensor vanishes (this is the trivial case) or \phi(s) is given by

\phi(s) = c_3 \exp \left(\int_0^s \frac{c_1 \sqrt{t^2 - l^2} + c_2 t}{c_3 \sqrt{t^2 - l^2} + c_2 t + 1} dt \right).

It is worthy to mention that the above special (\alpha, \beta)-metrics have already been obtained by Z. Shen [10]. Namely, the formulas of \phi(s) that characterized the T-condition produce positively

2010 Mathematics Subject Classification. 53B40, 58B20.

Key words and phrases. (\alpha, \beta)-metrics; T-tensor; T-condition; \sigma T-condition; Landsberg space; Berwald space.
almost regular Berwald metrics. One can predict that the metric is not regular in this case because the T-condition vanishes (by Szabó’s observation). In his paper, Shen showed this almost regular property. The non-trivial formula that characterized the σT-condition (with some restrictions) provides the class of (almost regular) Landsberg metrics which are not Berwaldian.

In [3], it was claimed that the long existing problem of regular Landsberg non-Berwaldian spaces is (closely) related to the question:

Is there any Finsler space admitting a smooth function σ such that σT_{ijk} ≡ 0, σ_{r} = \frac{∂σ}{∂x^r}?

In this paper we confirm this claim in the almost regular case, since the class of (almost regular) Landsberg metrics obtained by Z. Shen in his quoted paper [10].

2. The Cartan tensor and T-tensor of (α, β)-metrics

Let M be an n-dimensional smooth manifold. The tangent space to M at p is denoted by T_p M; TM := \bigcup_{p \in M} T_p M is the tangent bundle of M, and TM ↪ M is the tangent bundle projection. We fix a chart (U, (u^1, ..., u^n)) on M. It induces a local coordinate system (x^1, ..., x^n, y^1, ..., y^n) on TM, where

\forall i \in \{1, ..., n\}, (x^i := u^i \circ \tau, y^i(v) := v(u^i) \quad (v \in \tau^{-1}(U)).

By abuse of notation, we shall denote the coordinate functions u^i also by x^i.

Let α be a Riemannian metric, β a 1-form on M. Locally,

α := a_{ij} \, dx^i \otimes dx^j, \quad β := b_{i} \, dx^i.

The Riemannian metric α induces naturally a Finsler function F_α on TM given by F_α(v) := \sqrt{\alpha_T(v,v)}. Similarly, the 1-form β can be interpreted as a smooth function

\overline{β} : TM → \mathbb{R}, \quad \overline{β}(v) := β_{τ(v)}(v).

Locally,

F_α = (\overline{β})_{(τ)}(a_{ij} \circ τ) y^i y^j, \quad \overline{β} = (b_i \circ τ) y^i.

In what follows, as usual, we shall simply write α and β instead of F_α and \overline{β}, respectively.

For any p ∈ M, we define

\|β_p\|_α := \sup_{v \in T_p M \setminus \{0_p\}} \frac{β(v)}{α(v)}.

An (α, β)-metric for M is a function F on TM := \bigcup_{p \in M} (T_p M \setminus \{0_p\}) defined by

F := α(φ \circ s), \quad s := \frac{β}{α},

where φ : (-b_0, b_0) ↪ \mathbb{R} is a smooth function (b_0 > 0).

Now suppose that \|β_p\|_α < b_0 for any p ∈ M. Then F = α(φ ∘ \frac{β}{α}) is a (positive definite) Finsler function if and only if φ satisfies the following conditions:

(2.1) \quad \phi(t) > 0, \quad φ(t) - tφ′(t) + (x^2 - t^2)φ''(t) > 0,

where t and x are arbitrary real numbers with |t| < x < b_0. (For a proof, see Shen [10], Lemma 2.1)

In this case we say that F is a regular (α, β)-metric. If \|β_p\|_α ≤ b_0 for all p ∈ M, then F = α(φ ∘ \frac{β}{α}) is called almost regular (under condition (2.1)). An almost regular (α, β)-metric F = α(φ ∘ \frac{β}{α}) is positively almost regular if φ is defined only on (0, b_0).

For an (α, β)-metric F = αφ(s), the components g_{ij} = \frac{1}{2} \frac{∂^2}{∂y^i∂y^j} F^2 of the fundamental tensor can be calculated by the formula

(2.2) \quad g_{ij} = ρ a_{ij} + ρ b_{i} b_{j} + ρ_1 (b_i α_j + b_j α_i) + ρ_2 α_i α_j,
where $\alpha_i := \frac{\partial \phi}{\partial \rho_i} = \frac{(a_i+\rho \phi)}{\alpha \phi} y^i$ and

$\rho := \phi^2 - s\phi'$,

$\rho_0 := \phi'^2 + \phi''$,

$\rho_1 := \phi' - s(\phi'^2 + \phi''')$,

$\rho_2 := s^2(\phi'^2 + \phi''') - s\phi'$,

see Chern-Shen [3], p. 179, where $b_i = a^{ij} b_j$.

Moreover, we have

$$\det(g_{ij}) = \phi^{n+1}(\phi - s\phi')^{n-2}((\phi - s\phi') + (b^2 - s^2)\phi'') \det(a_{ij}),$$

where $b^2 := b^i b_i$.

The formula for the inverse metric g^{ij} can be found in [3] as follows.

Proposition 2.1. For an (α, β)-metric $F = \alpha \phi(s)$, the inverse (g^{ij}) of the matrix (g_{ij}) is given by

$$g^{ij} = \frac{1}{\phi} a^{ij} + \mu_0 \phi \phi'^2 + \mu_1 (\phi \phi'^2 + \phi'^3) + \mu_2 \phi^4 \alpha^3,$$

where $\mu_0 := -\frac{\phi'''}{\phi(\phi + \phi'') \phi'}$, $\mu_1 := -\frac{\phi}{\phi(\phi + \phi'') \phi'}$, $\mu_2 := \frac{\phi_1 (\phi + \phi' + \phi''\phi')}{\phi(\phi + \phi'') \phi'}$ and $m^2 := b^2 - s^2$.

Remark 2.2. It should be noted that the choice $\phi(s) = c_1 s + c_2 \sqrt{b^2 - s^2}$, c_1 and c_2 are constants is excluded. Indeed, the function $\rho + \phi \phi'' m^2$ appearing in the denominators of μ_0, μ_1 and μ_2 can be written as follows

$$\rho + \phi(s) \phi''(s) m^2 = \phi(s)(\phi(s) - s\phi'(s) + b^2 - s^2 \phi''(s)).$$

So $\rho + \phi \phi'' m^2 = 0$ yields

$$\phi(s)(\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s)) = 0,$$

which contradicts to condition [2.1]. To avoid not only this contradiction, but also the dividing by zero (in μ_0, μ_1 and μ_2), we must exclude the choice of ϕ for which $\rho + \phi \phi'' m^2 = 0$. Since ϕ cannot be zero, we have

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) = 0.$$

The solution of this ODE is the function

$$\phi(s) = c_1 s + c_2 \sqrt{b^2 - s^2},$$

where c_1 and c_2 are constants.

It should be noted that, in the literature, the metric $F = \alpha \phi(s)$, $\phi(s) = k_1 s + k_2 \sqrt{1 + k_3 s^2}$, $k_1 > 0$ is a Finsler metric of Randers-type. But with certain choice of the constant k_3, we can get the case where the metric tensor is singular ($\det(g_{ij}) = 0$). For example,

Example 1. Let $M = \mathbb{R}^n$, $\alpha = |y|$ and $\rho = \varepsilon y^1$, ε is a constant. Then, we have

$$a_{ij} = \delta_{ij}, \quad b^2 = \varepsilon^2.$$

Then the metric $F = \alpha \phi(s)$, $\phi(s) = c_1 s + c_2 \sqrt{\varepsilon^2 - s^2}$, by [2.3], is singular in the sense that its metric tensor has vanishing determinant.

Lemma 2.3. The components $C_{ijk} = \frac{1}{2} \frac{\partial g_{ij}}{\partial \phi_k}$ of the Cartan tensor of an (α, β)-metric are given by

$$C_{ijk} = \frac{\rho_1}{2\alpha}(h_{ij} m_k + h_{jk} m_i + h_{ik} m_j) + \frac{\rho_0}{2\alpha} m_i m_j m_k,$$

where $h_{ij} = a_{ij} - \alpha_i \alpha_j$ and $m_i := b_i - s \alpha_i$.

Proof. Differentiating (2.2) with respect to g^{ik} and taking into account that $\frac{\partial a}{\partial \rho_i} = \frac{m_i}{\alpha}$, we have

$$2C_{ijk} = \frac{\rho'}{\alpha} a_{ij} m_k + \frac{\rho'}{\alpha} h_k b_j m_k + \frac{\rho'}{\alpha} (b_i \alpha_j + b_j \alpha_i) m_k + \frac{\rho_1}{\alpha} (b_i h_{jk} + b_j h_{ik})$$

$$+ \frac{\rho_2}{\alpha} \alpha_i \alpha_j m_k + \frac{\rho_2}{\alpha} (\alpha_i h_{jk} + \alpha_j h_{ik}).$$
Since
\[\frac{\partial \alpha_j}{\partial y^i} = \frac{1}{\alpha} h_{jk}, \quad \rho' = \rho_1, \quad \rho'_1 = -s \rho'_0, \quad \rho'_2 = s^2 \rho'_0 - \rho_1 \]
the result follows. \(\Box \)

\textbf{Remark 2.4.} The covariant vector \(m_i \) satisfies the properties
\[m_i \neq 0, \quad y^i m_i = 0, \quad m^2 = m^i m_i = b^i m_i \neq 0, \quad b^i h_{ij} = m_j, \]
where \(m^2 = b^2 - s^2 \).

\textbf{Lemma 2.5.} Let \((M, F) \) be an \((\alpha, \beta) \)-metric with \(n \geq 3 \) such that
\[\zeta(h_{ij} m_k + h_{jk} m_i + h_{ik} m_j) + \eta m_i m_j m_k = 0, \]
where \(\zeta(x, y) \) and \(\eta(x, y) \) are smooth functions on \(TM \). Then \(\zeta \) and \(\eta \) must vanish.

\textbf{Proof.} Assume that
\[\zeta(h_{ij} m_k + h_{jk} m_i + h_{ik} m_j) + \eta m_i m_j m_k = 0. \]
Contracting the above equation by \(b^i b^j \) and using Remark 2.4 we obtain
\[(2.4) \quad 3 \zeta + \eta m^2 = 0. \]
And the contraction by \(g^{ij} \) gives
\[(2.5) \quad (n + 1) \zeta + \eta m^2 = 0. \]
Now, taking the fact that \(n \geq 3 \), subtracting \((2.4) \) and \((2.5) \) we get \(\zeta = 0 \) and \(\eta = 0 \). \(\Box \)

\textbf{Lemma 2.6.} Let \((M, F) \) be an \((\alpha, \beta) \)-metric with \(n \geq 3 \). If there exist covectors \(A_i \) and \(B_j \) on \(TM \) such that \(y^i A_i = 0, y^j B_i = 0 \) and the following combination is satisfied
\[h_{ij} A_k + h_{jk} A_i + h_{ik} A_j + B_k m_j m_k + B_j m_i m_k + B_k m_i m_j = 0, \]
then \(A_i \) and \(B_i \) must vanish at each point of \(TM \), that is, \(A_i \) and \(B_i \) are zero covectors.

\textbf{Proof.} Assume that
\[h_{ij} A_k + h_{jk} A_i + h_{ik} A_j + B_k m_j m_k + B_j m_i m_k + B_k m_i m_j = 0. \]
Contracting the above equation by \(b^i b^j \) and using Remark 2.4 we obtain
\[(2.6) \quad 2(A_{\beta} + m^2 B_{\beta}) m_k + m^2 (A_k + m^2 B_k) = 0, \]
where we use the notations \(A_{\beta} := A_\beta b^\beta \) and \(B_{\beta} := B_\beta b^\beta \). Using the facts that \(y^i A_i = 0, y^j B_i = 0 \), the contraction by \(a^{ij} \) gives
\[(2.7) \quad (n + 1)A_k + 2B_{\beta} m_k + m^2 B_k = 0. \]
Again, contracting the equations \((2.6) \) and \((2.7) \) by \(b^k \) gives rise to
\[(2.8) \quad A_{\beta} + m^2 B_{\beta} = 0, \]
\[(2.9) \quad (n + 1)A_{\beta} + 3m^2 B_{\beta} = 0. \]
Multiplying \((2.8) \) by 3 and subtracting it from \((2.9) \), then using the fact that \(n > 2 \), we get that \(A_{\beta} = 0, B_{\beta} = 0 \). By substitution into \((2.6) \) and \((2.7) \) and repeating the last process we obtain
\[A_k = 0 \] and \(B_k = 0 \). \(\Box \)

By the help of Lemma 2.5 one can easily prove the following theorem.

\textbf{Theorem 2.7.} For the \((\alpha, \beta) \)-metrics with \(n \geq 3 \), the following assertions are equivalent:
\begin{enumerate}
\item \(\rho_1 = 0. \)
\item \(\rho_2 = 0. \)
\item \((\alpha, \beta) \)-metric is Riemannian.
\item \(\phi = \sqrt{k_1 s^2 + k_2}. \)
\end{enumerate}

For a Finsler manifold \((M, F) \), the T-tensor is defined by
\[T_{ijk} = FC_{ijk} - F(C_{ij} C_{r k} + C_{jr} C_{ik} + C_{ir} C_{jk}) + C_{r ij} \ell_k + C_{r jk} \ell_i + C_{rijk} \ell_r, \]
where \(\ell_j := \hat{\partial}_j F, C_{ijk} := \hat{\partial}_r C_{ijk} \) and \(\hat{\partial}_j \) is the differentiation with respect to \(y^j \). The T-tensor is totally symmetric in all of its indices.
Theorem 2.8. The T-tensor of an (α, β)-metric takes the form:

$$T_{hijk} = \Phi(h_{hi}h_{jk} + h_{ij}h_{hk} + h_{hijk})$$

$$+ \Psi(h_{hk}m_{ij} + h_{ij}m_{hk} + h_{hijk}m_{ij} + h_{jk}m_{hk} + h_{hk}m_{ij}m_{hk})$$

$$+ \Omega m_{ij}m_{hk}m_{ij}m_{hk}$$

where

$$\Phi := -\frac{\rho_1\phi}{2\alpha}(s + \alpha K_{1}m^{2}),$$

$$\Omega := \frac{\rho_0\phi}{2\alpha} - \frac{2\rho_0\phi'}{\alpha} - 3\phi(k_{2}(\rho_1 + \frac{\rho_2m^{2}}{2}) + \frac{\rho_3\phi_{0}}{2\alpha\rho}),$$

$$K_{1} := \frac{\rho_1(1 + \mu m^{2})}{2\alpha\rho},$$

$$K_{2} := \frac{\rho_0(1 + \mu m^{2})}{2\alpha\rho} + \frac{\rho_1 m_{ij}m_{hk}m_{ij}m_{hk}}{2\alpha}.$$

Proof. By using Lemma 2.3 and making use of the fact that $\dot{\chi}_{s} = \frac{m_{ij}}{\alpha}$, we have

$$\dot{h}_{ij}C_{ijk} = -\frac{\rho_1}{2\alpha^{2}}(h_{hk}m_{ij} + h_{ij}m_{hk} + h_{jkh}n_{ij} + h_{kh}m_{ij} + h_{hijk})$$

$$- \frac{s\rho_1}{2\alpha^{2}}(h_{ik}h_{jk} + h_{jkh}h_{ij} + h_{kh}h_{ij}) + \frac{s\rho_0}{2\alpha^{2}}(h_{ij}m_{hk}m_{ij} + h_{i}m_{j}m_{hk})$$

$$+ h_{hijk}m_{ij} + h_{hk}m_{ij} + h_{hijk}m_{hk} + h_{hijk}m_{ij} + h_{hk}m_{ij}m_{hk}$$

$$+ \frac{s\rho_0}{2\alpha^{2}}(h_{ij}m_{hk} + h_{hk}m_{ij} + h_{jk}m_{hk} + h_{hk}m_{ij}m_{hk})$$

$$+ h_{hijk}m_{ij} + h_{hk}m_{ij} + h_{hijk}m_{hk} + h_{hijk}m_{ij} + h_{hk}m_{ij}m_{hk}$$

$$+ \frac{\rho_0}{2\alpha^{2}}(h_{ij}m_{hk} + h_{hk}m_{ij} + h_{jk}m_{hk} + h_{hk}m_{ij}m_{hk}).$$

where $n_{ij} := \alpha m_{j} + \alpha m_{i}$. By making use of the fact that K_{1} and K_{2} satisfy

$$\frac{\rho_1}{2\alpha}(K_{2}m^{2} + \frac{\rho_1}{\alpha}) = K_{1}(\frac{\rho_1}{\alpha} + \frac{\rho_0 m^{2}}{2\alpha}),$$

we have

$$C_{ij}C_{hk} + C_{ikr}C_{hi} + C_{ikr}C_{hi} = \left(\frac{\rho_1 K_{2}}{2\alpha} + \frac{\rho_0}{\alpha^{2}\rho}\right)(h_{ij}m_{hk}m_{ij} + h_{hijk}m_{ij} + h_{hk}m_{ij}m_{hk}$$

$$+ h_{jkh}m_{ij}m_{hk} + h_{hijk}m_{ij} + h_{hk}m_{ij}m_{hk} + h_{hijk}m_{ij} + h_{hk}m_{ij}m_{hk})$$

$$+ \frac{\rho_1 K_{1}m^{2}}{2\alpha}(h_{ij}h_{jk} + h_{jkh}h_{ij} + h_{hijk}h_{ij}).$$

Since $\ell_{i} := \dot{\chi}_{i} = \phi\alpha_{i} + \phi' m_{i}$, we get

$$C_{hijk}C_{hk} + C_{hijk}C_{hk} + C_{hijk}C_{hk} = \frac{\rho_0}{\alpha}(m_{ij}m_{hk} + m_{k}m_{nj}) + \frac{2\rho_0}{\alpha}m_{ij}m_{hk}m_{jk}$$

$$+ \rho_{1}\phi(h_{ij}m_{hk} + h_{jk}m_{ij}m_{hk} + h_{hk}m_{ij} + h_{ij}m_{hk} + h_{jkh}m_{ij} + h_{hijk}m_{ij} + h_{hijk}m_{ij} + h_{hk}m_{ij}m_{hk})$$

$$+ \frac{\rho_1}{2\alpha}(h_{ijk} + h_{hijk} + h_{ijk} + h_{jkh}n_{ij} + h_{ijk}m_{hk} + h_{hijk}m_{ij}).$$

Now, taking the fact that $F = \alpha\phi$ into account, the T-tensor of the space (M, F) is given by

$$T_{hijk} = FC_{hijk} - F(C_{sij}C_{sk} + C_{sik}C_{i} + C_{sij}C_{sk}) + C_{hijk} \ell_{j} + C_{hijk} \ell_{i} + C_{ijk} \ell_{h}$$

$$= \Phi(h_{hijk} + h_{hk}h_{ijk} + h_{hijk}h_{ij})$$

$$+ \Psi(h_{hijk}m_{ij} + h_{hk}m_{hk} + h_{hk}m_{ij} + h_{hk}m_{hk} + h_{hk}m_{jk} + h_{hijk}m_{hk})$$

$$+ \Omega m_{ij}m_{hk}m_{ij}m_{hk}.$$

For an (α, β)-metric, one can calculate Φ, Ψ and Ω to obtain the formula for its T-tensor. Or one can, easily, use Maple program for these calculations, for example we have the following corollary.
Corollary 2.9. The T-tensor of Kropina metric, $(F = \frac{1}{b} s, \phi(s) = 1/s)$, is given by
\[T_{hijk} = \frac{2}{\alpha^2 b^2} s^2 (h_{hi} h_{jk} + h_{hj} h_{ik} + h_{hk} h_{ij}) + \frac{2}{3 \alpha^2 b^2} s^3 (h_{hi} m_{mj} + h_{hj} m_{ik} + h_{hj} m_{ik} m_{hk} + h_{j} m_{ih} m_{jk} + h_{hk} m_{mj} + h_{ik} m_{ih} m_{jk}) + \frac{6}{\alpha^2 b^2} m_{ih} m_{ik} m_{jk} m_{hk}. \]

The T-tensor of Randers metric, $(F = \alpha (1 + s), \phi(s) = 1 + s)$, is given by
\[T_{hijk} = \frac{4 b^2 + 2 s^2 + 2 s}{4 \alpha} (h_{hi} h_{jk} + h_{hj} h_{ik} + h_{hk} h_{ij}). \]

It is to be noted that the T-tensor of Kropina metric is also obtained by Shibata [11] and [13]. The T-tensor of Randers metric has been studied by Matsumoto [8].

3. The T-condition and σT-conditions

The Finsler spaces with vanishing T-tensor are called Finsler spaces satisfying the T-condition, for example, see [3]. In a similar manner, we will call the Finsler spaces admitting a function $\sigma(x)$ such that $\sigma_i T_{hij}^b = 0$, $\sigma_k := \frac{d \sigma}{dx}$ Finsler spaces satisfying the σT-condition. In this section, we characterize the (α, β)-metrics satisfying the T-condition and the σT-condition.

Theorem 3.1. The (α, β)-metrics with $n \geq 3$ satisfy the T-condition if and only if $\Phi = 0$.

Proof. Let $T_{hijk} = 0$, then we have
\[\Phi(h_{hi} h_{jk} + h_{hj} h_{ik} + h_{hk} h_{ij}) + \Psi(h_{hi} m_{mj} + h_{hj} m_{ik} + h_{hk} m_{ik} m_{hk}) + h_{ij} m_{ih} m_{jk} + h_{ik} m_{ih} m_{jk} + \Omega m_{ih} m_{ik} m_{jk} = 0. \]

Contracting the above equation by b^i, we get
\[(\Phi + m^2 \Psi) h_{ijk} + (\Psi + m^2 \Omega) m_{ij} m_{jk} = 0. \]

Since $n \geq 3$, Lemma 2.5 implies
\[\Phi + m^2 \Psi = 0, \quad 3 \Psi + m^2 \Omega = 0. \]

Again, contraction by a^i, we obtain
\[((n + 1) \Phi + m^2 \Psi) h_{ijk} + (n + 3) \Psi + m^2 \Omega = 0. \]

Then, taking the fact that $n \geq 3$ into account, we get
\[(n + 1) \Phi + m^2 \Psi = 0, \quad (n + 3) \Psi + m^2 \Omega = 0. \]

Now, solving the equations (3.2) and (3.3) for Φ, Ψ and Ω, we have $\Phi = 0, \Psi = 0$ and $\Omega = 0$.

Conversely, let $\Phi = 0$. Then we have either $\rho_1 = 0$ or $s + \alpha K_1 m^2 = 0$. If $\rho_1 = 0$ (the space is Riemannian), then $\rho_0 = 0$ and hence $\Psi = 0$ and $\Omega = 0$. And if $s + \alpha K_1 m^2 = 0$, one can conclude that $\Psi = 0$ and $\Omega = 0$ (see the proof of Theorem 4.1). \hfill \square

Proposition 3.2. The T-tensor $T^b_{ijk} := g^{hr} T_{r ij k}$ is given by
\[T^b_{ijk} = \frac{\Phi}{\rho} (h^b_{hi} h_{jk} + h^b_{hj} h_{ik} + h^b_{hk} h_{ij}) + \frac{\Psi}{\rho} (h^b_{hi} m_{mj} + h^b_{hj} m_{ik} + h^b_{hj} m_{mj} m_{hk} + h^b_{j} m_{ih} m_{jk} + h^b_{hk} m_{mj} + h_{ij} m^b_{mk} + h_{ik} m^b_{mk} + h_{jk} m_{ih} m_{jk}) + \frac{\Omega}{\rho} m^b_{ih} m_{ik} m_{jk} + (\mu^b_0 + \mu^b_1 \alpha^b)(\Phi(h^b_{hj} m_{ij} + h^b_{hj} m_{ik} + h^b_{hk} m_{ij}) + \Psi(m^b_{hj} m_{ij} + h^b_{hk} m_{ij} + h^b_{jk} m_{ij} + 3 m_{ij} m_{jk}) + \Omega m^b_{ih} m_{ik} m_{jk}). \]

Proof. The proof is a straightforward calculation by using Proposition 4.1. \hfill \square

Theorem 3.3. The (α, β)-metrics with $n \geq 3$ satisfy the σT-condition if and only if
\begin{enumerate}
 \item[(a)] $\Phi + m^2 \Psi = 0$.
 \item[(b)] $m^2 \Omega + 3 \Psi = 0$.
 \item[(c)] $\sigma_j = \frac{d \sigma}{dx} b_j = 0$.
\end{enumerate}
Proof. By using Proposition 5.3.1, we have
\[
\sigma_h T_{ijk}^h = \frac{\Phi}{\rho} \left(\left(\sigma_i - \sigma_0 \alpha \right) h_{jk} + \left(\sigma_j - \sigma_0 \alpha \right) h_{ik} + \left(\sigma_k - \sigma_0 \alpha \right) h_{ij} \right) + \frac{\Psi}{\rho} \left(\left(\sigma_k - \sigma_0 \alpha \right) m_i m_j + \left(\sigma_j - \sigma_0 \alpha \right) m_i m_k + \left(\sigma_i - \sigma_0 \alpha \right) m_j m_k \right) + \left(\sigma_\beta - s \sigma_0 \alpha \right) (h_{ij} m_k + h_{ik} m_j + h_{jk} m_i) + \frac{\Omega}{\rho} \left(\sigma_\beta - s \sigma_0 \alpha \right) m_i m_j m_k + \left(\mu_0 \sigma_0 + \mu_1 \sigma_0 \alpha \right) (\Phi (h_{ik} m_j + h_{ij} m_k + h_{jk} m_i) + \Psi \left(\sigma_\beta - s \sigma_0 \alpha \right) m_i m_j m_k + \Omega m^2 m_i m_j m_k).
\]

where \(\sigma_0 := \sigma_i b^i \) and \(\sigma_\beta := \sigma_\beta b^i \). Using the fact that \(m_i = b_i - s \alpha_i \), we get
\[
\sigma_h T_{ijk}^h = \frac{\Phi}{\rho} \left(\left(\sigma_i - \sigma_0 \alpha \right) h_{jk} + \left(\sigma_j - \sigma_0 \alpha \right) h_{ik} + \left(\sigma_k - \sigma_0 \alpha \right) h_{ij} \right) + \frac{\Psi}{\rho} \left(\left(\sigma_k - \sigma_0 \alpha \right) h_{jk} + \left(\sigma_i - \sigma_0 \alpha \right) h_{ik} + \left(\sigma_j - \sigma_0 \alpha \right) m_i m_j + \left(\sigma_j - \sigma_0 \alpha \right) m_i m_k + \left(\sigma_i - \sigma_0 \alpha \right) m_j m_k \right) + \left(\sigma_\beta - s \sigma_0 \alpha \right) (h_{ij} m_k + h_{ik} m_j + h_{jk} m_i) + \frac{\Omega}{\rho} \left(\sigma_\beta - s \sigma_0 \alpha \right) m_i m_j m_k + \left(\mu_0 \sigma_0 + \mu_1 \sigma_0 \alpha \right) (\Phi (h_{ik} m_j + h_{ij} m_k + h_{jk} m_i) + \Psi \left(\sigma_\beta - s \sigma_0 \alpha \right) m_i m_j m_k + \Omega m^2 m_i m_j m_k).
\]

The above equation can be written in the following form
\[
\sigma_h T_{ijk}^h = \left(\frac{\sigma_0 \Phi}{\rho} + \frac{\Psi}{\rho} \left(\sigma_\beta - s \sigma_0 \alpha \right) + \left(\Phi + m^2 \Psi \right) \left(\mu_0 \sigma_0 + \mu_1 s \sigma_0 \alpha \right) \right) (h_{ik} m_j + h_{ij} m_k + h_{jk} m_i) + \frac{\Omega}{\rho} \left(\sigma_\beta - s \sigma_0 \alpha \right) m_i m_j m_k + \left(\mu_0 \sigma_0 + \mu_1 s \sigma_0 \alpha \right) (\Phi (h_{ik} m_j + h_{ij} m_k + h_{jk} m_i) + \Psi \left(\sigma_\beta - s \sigma_0 \alpha \right) m_i m_j m_k + \Omega m^2 m_i m_j m_k).
\]

Putting \(A_i := A_{mi} + \Phi \tau_i, \ B_i := \frac{\Phi}{\rho} m_i + \Psi \tau_i \), where \(\tau_i := \frac{1}{\rho} (\sigma_i - \sigma_0 \alpha b_i) \) and
\[
A := \frac{\sigma_0 \Phi}{\rho} + \frac{\Psi}{\rho} \left(\sigma_\beta - s \sigma_0 \alpha \right) + \left(\Phi + m^2 \Psi \right) \left(\mu_0 \sigma_0 + \mu_1 s \sigma_0 \alpha \right), \quad B := \frac{\Omega}{\rho} \left(\sigma_\beta - s \sigma_0 \alpha \right) + \left(\Phi + m^2 \Psi \right) \left(\mu_0 \sigma_0 + \mu_1 s \sigma_0 \alpha \right).
\]

By using the above quantities, \(\sigma_h T_{ijk}^h \) can be written as follows
\[
\sigma_h T_{ijk}^h = h_{ij} A_k + h_{ik} A_j + h_{jk} A_i + B_j m_i m_k + B_j m_i m_k + B_h m_i m_j.
\]

Now, putting \(\sigma_h T_{ijk}^h = 0 \) and since \(y^i A_i = 0, y^i B_i = 0 \), one can use Lemma 2.4.2 to conclude that
\[
A_i = 0, \quad B_i = 0.
\]

Contracting the above two equations by \(b^i \) and then by \(\sigma^i := a^i \sigma_j \), respectively, we have
\[
Am^2 = -\Phi \tau_\beta, \quad Bm^2 = -3 \Psi \tau_\beta,
\]
\[
Am_\sigma = -\Phi \tau_\sigma, \quad Bm_\sigma = -3 \Psi \tau_\sigma,
\]
where \(\tau_\beta := \tau_i b^i, \ m_\sigma := m_i \sigma^i \) and \(\tau_\sigma := \tau_i \sigma^i \). Now, we claim that both sides of the four equalities in (3.4) must vanish. We prove this claim via contradiction, so we assume that, for example, the
sides of the third equality are non zero, hence by dividing the first equality on the third one, we can get

\[m^2 \tau_\sigma = m_\sigma \tau_\beta. \]

From which, we have

\[
\left(b^2 - \frac{\beta^2}{\alpha^2} \right) \left(\sigma^2 - \frac{\sigma \sigma_0}{\alpha} \sigma_\beta \right) = \left(\sigma_\beta - \frac{\beta}{\alpha^2} \sigma_0 \right) \left(\sigma_\beta - \frac{\sigma_0}{\alpha} b^2 \right),
\]

where \(\sigma^2 := \sigma_i \sigma^i \). Now, simplifying the above equation we get the following

\[
\alpha^2 \left(b^2 \sigma^2 - \sigma_\beta^2 - \sigma_\alpha \right) - \sigma^2 \beta^2 + \sigma_0 \sigma_\beta \beta = 0.
\]

Making use of the facts that \(\frac{\partial \sigma_0}{\partial y^i} = \sigma_i \) and the functions \(\sigma^2, \sigma_\beta, b^2 \) are functions on \(M \), that is, they are functions of \(\left(x' \right) \) only, then differentiating the above equation with respect to \(y^i \), we have

\[
2 \alpha \left(b^2 \sigma^2 - \sigma_\beta^2 - \sigma_\alpha \right) \sigma_\alpha = 0,
\]

which gives \(\sigma_\alpha = 0 \) and hence \(\sigma = 0 \). Therefore, \((n + 3) \sigma_\alpha = 0 \).

By using the properties \(\alpha = \sqrt{a_{ij} y^i y^j} \) and \(\frac{\partial (\phi \sigma_0)}{\partial y^i} = a_{ij} \), differentiating the above equation with respect to \(y^j \) and then by \(y^k \), we get

\[
\sigma_i a_{jk} + \sigma_j a_{ki} + \sigma_k a_{ij} = 0.
\]

Contracting the above equation by \(a^{ij} \), we get

\[
(n + 3) \sigma_k = 0,
\]

which gives \(\sigma_k = 0 \) and this means that \(\sigma \) is constant and this is a contradiction. Consequently, all sides of the equalities in (3.1) are zero. That is,

\[
Am^2 = 0, \quad \Phi \tau_\beta = 0, \quad Bm^2 = 0, \quad \Psi \tau_\beta = 0,
\]

\[
Am_\sigma = 0, \quad \Phi \tau_\sigma = 0, \quad Bm_\sigma = 0, \quad \Psi \tau_\sigma = 0.
\]

Since \(m^2 \neq 0 \) and \(\Phi, \Psi \) can not be zero, then \(A = 0, \quad B = 0, \quad \tau_\beta = 0, \quad \tau_\sigma = 0 \) and hence \(\tau_i = 0 \). In other words, we have

\[
\frac{\sigma_0 \Phi}{\sigma_0 \rho} + \frac{\Psi}{\rho} \left(\sigma_\beta - s \frac{\sigma_0}{\alpha} \right) + \left(\Phi + m^2 \Psi \right) \left(\mu_0 \sigma_\beta + \mu_1 \frac{\sigma_0}{\alpha} \right) = 0,
\]

\[
\frac{\Omega}{\rho} \left(\sigma_\beta - s \frac{\sigma_0}{\alpha} \right) + 3 \frac{\sigma_0 \Psi}{\sigma_0 \rho} + \left(\Omega m^2 + 3 \Psi \right) \left(\mu_0 \sigma_\beta + \mu_1 \frac{\sigma_0}{\alpha} \right) = 0,
\]

\[
\sigma_k - \frac{\sigma_0}{\sigma_0} b_k = 0.
\]

Therefore \(\sigma_\beta = \frac{\omega b^2}{\sigma_0} \) and taking the fact that \(\sigma \neq 0 \) into account, we get

\[
\left(\frac{1}{\sigma_0 \rho} + \mu_0 \frac{b^2}{\sigma_0} + \mu_1 \frac{1}{\alpha} \right) \left(\Phi + m^2 \Psi \right) = 0,
\]

\[
\left(\frac{1}{\sigma_0 \rho} + \mu_0 \frac{b^2}{\sigma_0} + \mu_1 \frac{1}{\alpha} \right) \left(\Omega m^2 + 3 \Psi \right) = 0.
\]

Now the choice \(\frac{1}{\sigma_0 \rho} + \mu_0 \frac{b^2}{\sigma_0} + \mu_1 \frac{1}{\alpha} = 0 \) gives the ODE \(\rho - s \rho_1 - s^2 \phi'' = 0 \), which has the solution \(\phi = k s \). This solution is just again the same background Riemannian metric \(\alpha \) up to some constants. So, we should have \(\Phi + m^2 \Psi = 0 \) and \(\Omega m^2 + 3 \Psi = 0 \).

Conversely, if the conditions (a), (b) and (c) are satisfied, then the result is obviously obtained.

\[\Box \]

Remark 3.4. The condition

\[
\sigma_j - \frac{\sigma_0}{\sigma_0} b_j = 0
\]

is equivalent to \(\sigma_j = e^{a(x)} b_j \). Indeed,

\[
\sigma_j = \frac{\sigma_0}{\sigma_0} b_j \iff \partial_j \ln \sigma_0 = \partial_j \ln b \iff \sigma_0 = e^{a(x)} b \iff \sigma_j = e^{a(x)} b_j,
\]

where \(a(x) \) is an arbitrary, locally defined function on \(M \).
4. Some ODEs

In this section, we focus our study on the T-condition and σT-condition. By solving some ODEs, we find explicit formulas for (α, β)-metrics that satisfy the T-condition and σT-condition.

We define a function $Q(s)$ as follows

$$Q(s) := \frac{\phi'}{\phi - s\phi'}.$$

The function $Q(s)$ simplifies and helps to solve the ODEs that will be treated in this section. Moreover, ϕ is given by

$$\phi(s) = \exp\left(\int_0^s \frac{Q}{1 + tQ} \, dt\right). \tag{4.1}$$

Theorem 4.1. An (α, β)-metric with $n \geq 3$ satisfies the T-condition if and only if it is Riemannian or ϕ is given by

$$\phi(s) = c_3 s \frac{a^2}{(cb^2 - cs)^{\frac{1}{2}}}. \tag{4.2}$$

Proof. By Theorem 3.1, any (α, β)-metric satisfies the T-condition if and only if $\Phi = 0$. So, taking the fact that $\phi - s\phi' \neq 0$ into account, the ODE $s + \alpha K_1 m^2 = 0$ can be rewritten as follows

$$Q' + \left(\frac{1}{s} + \frac{2s}{m^2}\right) Q = -\frac{2}{m^2}.$$

This is a first order linear differential equation and has the solution

$$Q = \frac{cb^2 - 1}{s} - cs = \frac{c(b^2 - s^2) - 1}{s}, \quad c \text{ is a constant.}$$

Hence,

$$1 + sQ = cb^2 - cs^2, \quad \frac{Q}{1 + sQ} = \frac{1}{s} - \frac{1}{cs(b^2 - s^2)}.$$

By using (4.1), $\phi(s)$ is given by (4.2). Plugging $\phi(s)$ in Ψ and Ω, we have $\Psi = 0$ and $\Omega = 0$. \qed

Theorem 4.2. An (α, β)-metric with $n \geq 3$ satisfies the σT-condition if and only if it satisfies the T-condition or ϕ is given by

$$\phi(s) = c_3 \exp\left(\int_0^s \frac{c_1 \sqrt{b^2 - t^2} + c_2 t}{t(c_1 \sqrt{b^2 - t^2} + c_2 t) + 1} \, dt\right). \tag{4.3}$$

Proof. First we should write Φ and Ψ in terms of $Q(s)$ and its derivations with respect to s, as follows

$$\Phi = -\frac{\phi(\phi - s\phi')^2(Q - sQ')(sm^2\phi'Q' + (2s\phi + m^2\phi')Q)}{4\alpha(m^2\phi'Q' + \phi Q)},$$

$$\Psi = -\frac{\phi(\phi - s\phi')^2Q''(sm^2\phi'Q' + (2s\phi + m^2\phi')Q)}{4\alpha(m^2\phi'Q' + \phi Q)}.$$

Now, making use of the condition (2.1), Remark (2.2) and the fact that $\phi - s\phi' \neq 0$, the condition $\Phi + m^2\Psi = 0$ gives the following two possible ODEs

$$Q + \left(\frac{1}{s} + \frac{2s}{m^2}\right) Q = -\frac{2}{m^2} \tag{4.4}$$

or

$$sm^2\phi'Q' + 2s\phi Q + m^2\phi Q = 0 \tag{4.5}$$

The ODE (4.5) can be given in the form

$$Q' + \frac{1}{s} + \frac{2s}{m^2} Q = -\frac{2}{m^2}$$

which gives the trivial case, that is, the T-tensor vanishes. The ODE (4.4) has the solution

$$Q(s) = c_1 s + c_2 \sqrt{b^2 - s^2}.$$

By using (4.1), $\phi(s)$ is given by (4.3). \qed
5. Examples and Concluding remarks

We start by giving two classes of examples satisfying the σT-condition.

Example 2. Let $M = \mathbb{R}^n$ and α, β be given by

$$\alpha = f(x^1)|y|, \quad \beta = f(x^1)y^1,$$

where $|y|$ is the Euclidean norm and $f(x^1)$ is arbitrary function on M. Then, the class

$$F = \sqrt{\alpha^2 + p\beta\sqrt{\alpha^2 - \beta^2} + q\beta^2 e^{\frac{p}{\sqrt{p^2 - 4q}}}} \arctanh\left(\frac{p + 2\beta\sqrt{\alpha^2 - \beta^2} + q\beta^2}{\sqrt{p^2 - 4q}}\right)$$

satisfies the σT-condition, where p and q are arbitrary constants. Indeed, in this class, one can see that the function $\phi(s)$ is given by

$$\phi(s) = \sqrt{1 + ps\sqrt{1 - s^2} + qs^2 e^{\frac{p}{\sqrt{p^2 - 4q}}}} \arctanh\left(\frac{2p + 2s\sqrt{1 - s^2} + q}{\sqrt{p^2 - 4q}}\right).$$

Using the formula of $\phi(s)$, it is much simpler to use the Maple program to show that

$$\Phi + m^2\Psi = 0, \quad m^2\Omega + 3\Psi = 0.$$

Moreover, since $\beta = f(x^1)y^1$, then we have $b_1 = f(x^1)$, $b_2 = \cdots = b_n = 0$ and taking Remark 3.4 into account, $\alpha_1 = \frac{\alpha}{\beta} = \omega(x^1)f(x^1)$, for some function $\omega(x^1)$ on M, therefore one can see that $\sigma(x) = \theta(x^1)$ where $\theta(x^1)$ is an arbitrary function on M. Another way, one can use the Finsler package and Maple program to calculate the T-tensor, but in this case we have to choose the dimension, say $n = 3$, then one can find that

$$T^1_{ijk} = 0, \quad \text{for all } i, j, k = 1, 2, 3.$$

And since, $\sigma = \theta(x^1)$, then $\sigma_1 = \frac{\partial \theta}{\partial x^1}$ and hence

$$\sigma_1 T^1_{ijk} = \frac{\partial \theta}{\partial x^1} T^1_{ijk} = 0.$$

Example 3. Let $M = \mathbb{R}^3$, and $\alpha = \sqrt{(y^2)^2 + e^{2x^2}((y^1)^2 + (y^3)^2)}, \beta = y^2$. Then, the class

$$F = \sqrt{\alpha^2 + \beta\sqrt{\alpha^2 - \beta^2} e^{\frac{1}{\sqrt{\alpha^2 - \beta^2}}} \arctan\left(\frac{2\beta}{\sqrt{\alpha^2 - \beta^2} + 1}\right)}$$

satisfies the σT-condition. As in the previous example, we repeat the same process. So, one can see that the function $\phi(s)$ is given by

$$\phi(s) = \sqrt{1 + s\sqrt{1 - s^2} e^{\frac{1}{\sqrt{1 - s^2}}} \arctan\left(\frac{2s}{\sqrt{1 - s^2} + 1}\right)}.$$

Using Maple program, or by hand, we can show that

$$\Phi + m^2\Psi = 0, \quad m^2\Omega + 3\Psi = 0.$$

Since $\beta = y^2$, then we have $b_2 = 1$, $b_1 = b_3 = 0$. As in the previous example, we can have $\sigma(x) = \theta(x^2)$ for some functions $\theta(x^2)$ on M. Or instead, using the Finsler package and Maple program, we obtain that

$$T^2_{ijk} = 0, \quad \text{for all } i, j, k = 1, 2, 3.$$

And since, $\sigma = \theta(x^2)$, then $\sigma_2 = \frac{\partial \theta}{\partial x^2}$ and hence

$$\sigma_2 T^2_{ijk} = \frac{\partial \theta}{\partial x^2} T^2_{ijk} = 0.$$

Finally, we have the following remarks:

- Consider the conformal transformation of a Finsler function F, that is, $\mathcal{T} = \kappa(x)F$, where $\kappa(x)$ is positive smooth function on M. Then, by simple and straightforward calculations, one can obtain that the T-tensor is transformed by the formula

$$\mathcal{T}^h_{ijk} = \kappa(x)T^h_{ijk}.$$

In Example 2, one can see that the conformal transformation of F by any positive smooth function $\kappa(x^1)$ still satisfying the σT-condition, that is, $\mathcal{T} = \kappa(x^1)F$ satisfies the σT-condition. Also, in Example 3, the Finsler function $\mathcal{F} = \kappa(x^2)F$ satisfies the σT-condition.
• By the following special choice \(c_2 := -c \) and \(c_1 := cb^2 - 1 \) \((b^2 \text{ is constant}) \), the class \((4.3) \) becomes
\[
\phi(s) = c_3 s^{c_1 + 1 \over 1 + c_1 + c_2 s^2} (1 + c_1 + c_2 s^2)^{c_1 + 1 \over 1 + c_1 + c_2 s^2},
\]
which is the same as the one obtained by [10] (7.4 in Theorem 7.2). Moreover, this metric is positively almost regular Berwaldian.

It should be noted that this irregularity is studied by Z. Shen [10]. Here we confirm that this metric is not regular Finsler metric because it has vanishing T-tensor. This because of Z. Szabó’s result, that is, positive definite Finsler metric with vanishing T-tensor is Riemannian.

• If \(b(x) = b_0 \), then \((4.3) \) can be rewritten as follows
\[
\phi(s) = c_3 \exp \left(\int_0^s \frac{c'_2}{c'_2 + 1} \sqrt{1 - \left(\frac{t}{b_0} \right)^2 + c_1 t} \ dt \right), \quad c'_2 := c_2 / b_0.
\]
We notice that the above formulae for \(\phi \) is the same as the one obtained in [10] (1.3 in Theorem 1.2). Under some restrictions on \(\beta \), this represents a class of Landsberg non-Berwaldian Finsler spaces. Also, with a special choice of the constants, \(b_0 = 1 \) and \(c_1 = 0 \), we obtain
\[
\phi(s) = c_3 \exp \left(\int_0^s \frac{c'_2}{c'_2 + 1} \sqrt{1 - t^2} \ dt \right),
\]
which is obtained by Asanov [2].

• Summarizing above, the classes \((4.2) \) and \((4.3) \) are almost regular \((\alpha, \beta)\)-metrics. Moreover, the class \((4.3) \) of \((\alpha, \beta)\)-metrics that satisfies the \(\sigma T \)-condition, when \(b(x) = b_0 \) for some constant \(b_0 \), is the same as the class which is obtained by Z. Shen in [10] Theorem 1.2. This confirms our previous claim in [5] that the long existing problem of regular Landsberg non-Berwaldian spaces is (closely) related to the question:

Is there any Finsler space admitting functions \(\sigma_r(x) \) such that \(\sigma_r T_{ijk}^r = 0 \)?

References

[1] G. S. Asanov, *New examples of \(S^4 \)-like Finsler spaces*, Rep. Math. Phys., 16 (1979), 329–333.
[2] G. S. Asanov, *Finsleroid-Finsler spaces of positive-definite and relativistic types*, Rep. Math. Phys., 58 (2006), 275–300.
[3] G. S. Asanov and E. G. Kirnasov, *On Finsler spaces satisfying the T-condition*, Aeq. Math., 24 (1982), 66–73.
[4] S. S. Chern and Z. Shen, *Riemann-Finsler Geometry*, World Scientific Publishers 2004.
[5] S. G. Elgendi, *On the problem of non-Berwaldian Landsberg spaces*, Bull. Aust. Math. Soc., 102 (2020), 331–341.
[6] M. Hashiguchi, *On conformal transformations of Finsler metrics*, J. Math. Kyoto Univ., 16 (1976), 25–50.
[7] M. Matsumoto, *V-transformations of Finsler spaces. I. Definition, infinitesimal transformations and isometries*, J. Math. Kyoto Univ., 12 (1972), 479–512.
[8] M. Matsumoto, *On Finsler spaces with Randers metric and special forms of important tensors*, J. Math. Kyoto Univ., 14 (1974), 477–498.
[9] M. Matsumoto, *On three dimensional Finsler spaces satisfying the T and \(B^p \) conditions*, Tensor, N. S., 29 (1975), 13–20.
[10] Z. Shen, *On a class of Landsberg metrics in Finsler geometry*, Canad. J. Math., 61 (2009), 1357–1374.
[11] C. Shibata, *On Finsler spaces with Kropina metric*, Rep. Math. Phys., 13 (1978), 117–128.
[12] Z. Szabó, *Positive definite Finsler spaces satisfying the T-condition are Riemannian*, Tensor, N. S., 35 (1981), 247–248.
[13] Nabil L. Youssef, S. H. Abed and S. G. Elgendi, *Generalized \(\beta \)-conformal change and special Finsler spaces*, Int. J. Geom. Methods Mod. Phys., 9 (3) (2012), 1250016, 25 pages.

Email address: salah.ali@fsci.bu.edu.eg, salahelgendi@yahoo.com
URL: http://www.bu.edu.eg/staff/salahali7

LÁSZLÓ KOZMA, DEPARTMENT OF GEOMETRY, INSTITUTE OF MATHEMATICS, UNIVERSITY OF DEBRECEN, P. O. BOX 400, HUNGARY

Email address: kozma@unideb.hu
URL: http://www.math.unideb.hu/kozma-laszlo/