1 Introduction

An n-fold Kuga variety, which we will refer to as a Kuga variety, is a variety over a Siegel modular variety such that each fibre is a product of n copies of the abelian variety or Kummer variety to which it corresponds in the base. In this paper, we study the Kodaira dimension of n-fold Kuga varieties, X^n_p, over the moduli spaces \mathcal{A}_p of $(1, p)$-polarised abelian surfaces with canonical level structure for prime $p \geq 3$.

There are results about the Kodaira dimensions of some special kinds of Kuga varieties: \cite{V}, \cite{FV} have proved the unirationality of Kuga families, i.e. the 1-fold Kuga varieties, over moduli spaces of principally polarised abelian varieties of dimension 4 and 5; in \cite{PSMS}, we computed the Kodaira dimension of any Kuga variety over moduli spaces of principally polarised abelian varieties of dimension $g \geq 2$. It is therefore natural to ask for the Kodaira dimension of Kuga varieties of other kinds, for example, the X^n_p described above.

A connection between modular forms and differential forms on arbitrary Kuga varieties is established in \cite{M}. This gives us some information about the Kodaira dimensions, assuming a specific compactification for the Kuga varieties, which is referred to as a Namikawa compactification in \cite{PSMS}. Specifically, \cite{M} Theorem 1.3 translates to:

Theorem 1. Let X be a Namikawa compactification of X^n_p. Then

$$\kappa(\overline{\mathcal{A}}_p, (n + 3)\mathcal{L} - \Delta_A) \leq \kappa(K_X) \leq 3$$

where $\overline{\mathcal{A}}_p$ is a toroidal compactification of \mathcal{A}_p, \mathcal{L} is the \mathbb{Q}-line bundle of weight 1 modular forms of Γ_p and Δ_A is the boundary divisor of $\overline{\mathcal{A}}_p$.

The Kodaira dimension is a birational invariant by definition, so $\kappa(X^n_p) = \kappa(X)$. Moreover, if X has canonical singularities, then $\kappa(X) = \kappa(K_X)$, and hence $\kappa((n + 3)\mathcal{L} - \Delta_A)$ is a lower bound for $\kappa(X^n_p)$.

We say a Kuga variety X^n_p is of relative general type if its Kodaira dimension equals the dimension of the base \mathcal{A}_p of X^n_p, namely 3, which is also the maximum value $\kappa(X^n_p)$ can attain.
This paper is divided into two parts: in Section 2 we show that for \(n > 2 \) and any \(p \), the particular Namikawa compactification \(X \) of \(X^n_p \) constructed in [PSMS] has canonical singularities; in Section 3 we search for a lower bound of \((p, n)\) for which \(\kappa((n + 3)L - \Delta_A) = 3 \). We summarise our result in the following theorem:

Theorem 2. A Kuga variety \(X^n_p \) is of relative general type if

- \(p \geq 3 \) and \(n \geq 4 \);
- \(p \geq 5 \) and \(n \geq 3 \).

Combining the results of [GH] and [HS], which say \(X^0_p = A_p \) is of general type for \(p \geq 37 \), we can mark on the \((p, n)\)-plane a region for which the Kuga varieties are of relative general type as in Figure 1.

![Figure 1](image)

1.1 Construction of Kuga varieties

The moduli space \(A_p \) of \((1, p)\)-polarised abelian surfaces with canonical level structure, defined and studied in [HKW1 Chapter I.1], is given as the quotient of the Siegel upper half plane \(\mathbb{H}_2 \) by the action of a certain arithmetic subgroup \(\Gamma_p \) of \(\text{Sp}(4, \mathbb{Z}) \). Recall the Siegel upper half space of degree \(g \) is defined as

\[
\mathbb{H}_g = \{ \tau \in M_{g \times g}(\mathbb{C}) : \tau = \tau^t, \Im \tau > 0 \} .
\]

Note that for any integer \(k \geq 2 \), the Grassmannian \(\text{Gr}(2, \mathbb{C}^k) \) is isomorphic to the orbit space \(M_{k \times 2}(\mathbb{C})/\text{GL}(2, \mathbb{C}) \) of all \(k \times 2 \) matrices modulo right multiplication by the invertible matrices in \(\text{GL}(2, \mathbb{C}) \). So the Siegel upper
half plane \mathbb{H}_2 can be identified with a subset of $\text{Gr}(2, \mathbb{C}^4)$ by sending an element τ to the $\text{GL}(2, \mathbb{C})$-equivalence class of block matrices:

$$\tau \mapsto \begin{bmatrix} \tau \\ 1_2 \end{bmatrix}.$$

For any prime $p \geq 3$, we define

$$\Gamma_p = \left\{ \gamma \in \text{Sp}(4, \mathbb{Z}) : \gamma - 1 \in \begin{pmatrix} p \mathbb{Z} & p \mathbb{Z} & p \mathbb{Z} & p^2 \mathbb{Z} \\ p \mathbb{Z} & p \mathbb{Z} & p \mathbb{Z} & p \mathbb{Z} \\ p \mathbb{Z} & p \mathbb{Z} & p \mathbb{Z} & p \mathbb{Z} \\ p \mathbb{Z} & p \mathbb{Z} & p \mathbb{Z} & p \mathbb{Z} \end{pmatrix} \right\},$$

which is of finite index in $\text{Sp}(4, \mathbb{Z})$. This group Γ_p acts on $H^2 \subset \text{Gr}(2, \mathbb{C}^4)$ by left multiplication on the $\text{GL}(2, \mathbb{C})$-equivalence classes of block matrices, which is an analogue of linear fractional transformations:

$$\gamma \cdot \tau = \begin{bmatrix} \gamma \cdot \begin{bmatrix} \tau \\ 1_2 \end{bmatrix} \end{bmatrix}, \quad \gamma \in \Gamma_p, \tau \in \mathbb{H}_2.$$

The quotient of \mathbb{H}_2 by this action of Γ_p gives the moduli space A_p.

In [HKW1, Chapter I.2B], a 1-fold Kuga variety X^1_p over A_p is constructed. This method can be extended to construct an n-fold Kuga variety X^n_p over A_p for any positive integer n by defining an extension $\tilde{\Gamma}_p^n$ of Γ_p and a left action of it on $\mathbb{C}^{2n} \times \mathbb{H}_2$ which descends to that of Γ_p on \mathbb{H}_2. First, by identifying \mathbb{C}^{2n} with the set of $n \times 2$ complex matrices, we can identify $\mathbb{C}^{2n} \times \mathbb{H}_2$ with a subset of $\text{Gr}(2, \mathbb{C}^{n+4})$ by sending an element (Z, τ) to a $\text{GL}(2, \mathbb{C})$-equivalence class of block matrices:

$$(Z, \tau) \mapsto \begin{bmatrix} Z \\ \tau \\ 1_2 \end{bmatrix}.$$

We define the following group

$$\tilde{\Gamma}_p^n = \left\{ (l, \gamma) = \begin{pmatrix} 1_n & l \\ 0 & \gamma \end{pmatrix} \in M_{n \times 4}(\mathbb{Z}) \rtimes \Gamma_p : \gamma \in \Gamma_p \right\}.$$

The group $\tilde{\Gamma}_p^n$ acts on $\mathbb{C}^{n} \times \mathbb{H}_2$ by left multiplication on the $\text{GL}(2, \mathbb{C})$-equivalence classes of block matrices. Explicitly, for $\tilde{\gamma} = (l, \gamma) \in \tilde{\Gamma}_p^n$ and $\tilde{\tau} = (Z, \tau) \in \mathbb{C}^{2n} \times \mathbb{H}_2$, then

$$\tilde{\gamma} \cdot \tilde{\tau} = \begin{bmatrix} (1_n & l) \cdot \begin{bmatrix} Z \\ \tau \\ 1_2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} Z + l \cdot \tau \\ \gamma \cdot \begin{bmatrix} \tau \\ 1_2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} (Z + l \cdot \tau) \cdot N \\ \gamma \cdot \tau \\ 1_2 \end{bmatrix}$$

for some $N \in \text{GL}(2, \mathbb{C})$.

3
The quotient of \((\mathbb{C}^{2n} \times \mathbb{H}_2)\) by this action of \(\tilde{\Gamma}_p^n\) gives the Kuga variety \(X_p^n\). The projection \(\mathbb{C}^{2n} \times \mathbb{H}_2 \to \mathbb{H}_2\) induces a map \(\pi: X_p^n \to A_p\). Indeed, [PSMS] [N], all fibres are the product of \(n\) copies of the torus parametrised by the corresponding point in the base \(A_p\), up to a change of basis of \(\mathbb{C}^2\) for each copy.

2 Canonical singularities

2.1 Namikawa compactification

The explicit construction of a Namikawa compactification \(X\) of the Kuga variety \(X_p^n\) is the main purpose of section 1 in [PSMS]. Here we briefly introduce its idea and some notations to be used in the latter sections.

Definition 2.1. A Namikawa compactification of \(X_p^n\) is an irreducible normal projective variety \(X\) containing \(X_p^n\) as an open subset, together with a projective toroidal compactification \(\overline{A}_p\) of \(A_p\) for which the following conditions hold.

1. \(\pi: X_p^n \to A_p\) extends to a projective morphism \(\overline{\pi}: X \to \overline{A}_p\);
2. every irreducible component of \(\Delta_X := X \setminus X_p^n\) dominates an irreducible component of \(\Delta_A := \overline{A}_p \setminus A_p\).

Therefore \(X\) sits inside the commutative diagram

\[
\begin{array}{ccc}
X_p^n & \longrightarrow & X \\
\downarrow \pi & & \downarrow \overline{\pi} \\
A_p & \longrightarrow & \overline{A}_p
\end{array}
\]

and \(\overline{\pi}\) does not contract any divisor.

Namikawa compactifications are constructed by toroidal methods in [N]. We now describe the partial compactification at an integral boundary component \(\tilde{F}\) of rank \(g' \leq 2\) of \(X_p^n\) which leads to a Namikawa compactification. The boundary component \(\tilde{F}\) can be written as \(\mathbb{C}^n \times F\), an extension of a rank \(g'\) boundary component \(F < \mathbb{H}_2\) of \(A_p\), where \(F\) corresponds to a rank \(g'' := g - g'\) isotropic sublattice of \(\mathbb{Z}^4\) defined up to the transitive action of \(\text{Sp}(4, \mathbb{Z})\). Let \(\tilde{\mathcal{P}}(\tilde{F})\) be the stabiliser subgroup of \(\tilde{F}\) in \(\mathbb{R}^{4n} \times \text{Sp}(4, \mathbb{R})\), which can be embedded in \(\text{GL}(n + 4, \mathbb{R})\). We also define the following subgroups of \(\tilde{\mathcal{P}}(\tilde{F})\):

\[
\begin{align*}
\tilde{\mathcal{P}}'(&\tilde{F}) := \text{Centre of the unipotent radical of } \tilde{\mathcal{P}}(\tilde{F}) \\
\tilde{\Gamma}^n := \tilde{\mathcal{P}}'(&\tilde{F}) \cap \tilde{\Gamma}_p^n \\
\tilde{\mathcal{P}}''(&\tilde{F}) := (\tilde{\mathcal{P}}(\tilde{F}) \cap \tilde{\Gamma}_p^n) / \tilde{\Gamma}^n
\end{align*}
\]
An explicit expression of the above matrix groups can be found in [N, Section 2] and [PSMS, Section 1]. Also note that both \(\tilde{\Upsilon}^n \) and \(P''(\tilde{F}) \) inherit the action of \(\Gamma_p^n \) on \(C^{2n} \times \mathbb{H}_2 \).

Consider the Siegel domain realisation of \(\mathbb{H}_2 \), which gives \(C^{2n} \times \mathbb{H}_2 \) as an open subset of

\[
(C^{g'\times n} \times C^{g''\times n}) \times (\mathbb{H}_{g'} \times M_{g'\times g''}(\mathbb{C}) \times M_{g''}^{sym}(\mathbb{C})).
\]

Then taking the partial quotient by \(\tilde{\Upsilon}^n \) near the boundary component \(\tilde{F} \) corresponds to translations in the imaginary directions of the factors \(C^{g'\times n} \) and \(M_{g''}^{sym}(\mathbb{C}) \) respectively. Therefore there is an open subset of

\[
C^{g'\times n} \times (\mathbb{C}^*)^{g''\times n} \times \mathbb{H}_{g'} \times C^{g'\times g''} \times (\mathbb{C}^*)^{g''\times g''}
\]

that uniformises \(X_p^n \).

Using a suitable cone decomposition \(\Sigma(\tilde{F}) \), we can extend the action of \(P''(\tilde{F}) \) to a smooth torus embedding \(\text{Temb}(\Sigma(\tilde{F})) \) for the torus part \((\mathbb{C}^*)^{g''\times g''} \). The partial compactification of \(X_p^n \) at the boundary component \(\tilde{F} \) is then given as the quotient of (an open subset of) the torus bundle

\[
\tilde{X}(\tilde{F}) := \mathbb{H}_{g'} \times C^{g'\times g''} \times C^{g'\times n} \times \text{Temb}(\Sigma(\tilde{F}))
\]

by the action of \(P''(\tilde{F}) \). Note that this decomposition of \(\tilde{X}(\tilde{F}) \) into its factors is preserved by the quotient.

In practice, such a cone decomposition \(\Sigma(\tilde{F}) \) can be given by an extension of the perfect cone decomposition near the boundary component \(F \) of \(A_p \). Furthermore, this extension can be chosen carefully to satisfy more conditions as listed in [PSMS, proposition 1.4]. In particular, the set of cone decompositions is compatible at each cusp such that it results in a Namikawa compactification \(X \). Also, the local uniformising space \(\tilde{X}(\tilde{F}) \) of \(X \) has canonical singularities.

We will prove in the remaining subsections that for any \(p \) and \(n > 2 \), this Namikawa compactification \(X_p^n \) has canonical singularities.

2.2 The general strategy

We will separately examine the singularities in the interior and the boundary of \(X \), and check if they are canonical by applying the Reid–Shepherd-Barron–Tai (RST) criterion.

We will need the following set up to state the RST criterion [R]: Suppose \(G \) is a finite group acting on the complex vector space \(C^m \) linearly. For a non-trivial element \(\gamma \in G \) of order \(k \), the eigenvalues of its action on \(C^m \) can be expressed as an \(m \)-tuple \((\xi^{a_1}, \cdots, \xi^{a_m}) \), with \(\xi \) being a primitive \(k \)-th
root of unity and α_j being a non-negative integer less than k for any j. We define, with dependence on the choice of ξ, the type of γ to be

$$\frac{1}{k}(\alpha_1, \cdots, \alpha_m)$$

and its associated RST sum to be

$$\text{RST}(\gamma) := \sum_{i=1}^{m} \frac{\alpha_i}{k}.$$

Furthermore, we say that γ is a quasi-reflection if all but one α_j’s are 0, or equivalently γ preserves a divisor.

The RST criterion is then given by the following:

Theorem 3 ([R, 4.11]). Let G be a finite group which acts on \mathbb{C}^m as above. Then \mathbb{C}^m/G has a canonical singularity if G contains no quasi-reflection, and if every non-trivial element $\gamma \in G$ satisfies the inequality

$$\text{RST}(\gamma) \geq 1.$$

Note that, since we need to check the above inequality involving the RST sum for every element in G, it does not matter which root of unity ξ was chosen to give the type of a generator γ of G.

2.2.1 Strategy in the interior

In the interior X^n_p of X, a singularity corresponds to a point $\tilde{\tau} = (Z, \tau)$ in $\mathbb{C}^{2n} \times \mathbb{H}_2$ fixed by $\tilde{\Gamma}_p^n$. We are allowed to apply the RST criterion to check if $\tilde{\tau}$ corresponds to a canonical singularity: suppose $\tilde{\gamma}$ is an element in the isotropy group $\text{iso}(\tilde{\tau}) < \tilde{\Gamma}_p^n$ of $\tilde{\tau}$. By ([1]), it is clear that one can consider the action of $\tilde{\gamma}$ separately as the action of γ on the \mathbb{H}_2 factor and that of $\tilde{\gamma}$ on the \mathbb{C}^{2n} factor. Also, $\tilde{\gamma}$ fixes $\tilde{\tau}$ only if γ fixes τ. The isotropy group $\text{iso}(\tilde{\tau})$ of $\tilde{\tau}$ in $\tilde{\Gamma}_p^n$ is finite, so any nontrivial element $\tilde{\gamma} = (l, \gamma)$ in $\text{iso}(\tilde{\tau})$ is a torsion element and $l = 0$. As a result of ([1] Theorem 4.1), the induced action of any element $\gamma \in \text{iso}(\tau) \leq \Gamma_p$ of order k on the tangent space $T_{\tau}(\mathbb{H}_2)$ can be diagonalised under suitable local coordinates. It will be shown that $\tilde{\gamma}$ also acts diagonally on $T_Z(\mathbb{C}^{2n})$. This gives us the finite dimensional representation of $\text{iso}(\tilde{\tau})$ required for the application of the RST criterion.

Note that it suffices to apply the RST criterion at a limited number of singularities in X^n_p:

Lemma 1. Let $\tilde{\tau} = (Z, \tau)$ be a point in $\mathbb{C}^{2n} \times \mathbb{H}_2$ that corresponds to a canonical singularity in X^n_p. Then either τ corresponds to a canonical singularity in A_p, or $\text{iso}(\tilde{\tau}) = \langle \tilde{\sigma} := (0, -1_4) \rangle < \tilde{\Gamma}_p^n$. In the latter case, τ corresponds to a smooth point.
Proof. The isotropy group of $\tilde{\tau}$, $\text{iso}(\tilde{\tau})$, cannot contain a quasi reflection: according to [M, Lemma 7.1], a non-trivial element $\tilde{\gamma} \in \text{iso}(\tilde{\tau})$ does not fix any divisor in \mathcal{X}_p^n.

Consider any nontrivial $\tilde{\gamma} := (0, \gamma) \in \text{iso}(\tilde{\tau})$. If γ acts trivially on H_2, then $\gamma = -1_4$.

Moreover, by the definition of RST sums, we have

$$\text{RST}(\tilde{\gamma}) \geq \text{RST}(\gamma)$$

So $\tilde{\tau}$ corresponds to a canonical singularity in \mathcal{X}_p^n if τ corresponds to a canonical singularity in \mathcal{A}_p.

2.2.2 Strategy in the boundary

A singularity in the boundary of X correspond to a point $\tilde{\tau}$ in $\tilde{X}(\tilde{F})$ fixed by $\tilde{P}''(\tilde{F})$ near a boundary component \tilde{F} of rank g'. Again, the RST criterion can be applied to check if $\tilde{\tau}$ corresponds to a canonical singularity: Let $\tilde{\tau} := (Z, \tau)$, where $Z \in C^{2n}$ and $\tau \in H_p \times \text{Temb}(\Sigma(\tilde{F}))$. As mentioned in section 2.1, $\tilde{P}''(\tilde{F})$ preserves the decomposition of $\tilde{X}(\tilde{F})$, so $\tilde{\gamma}$ acts on each factors of $\tilde{X}(\tilde{F})$ separately. A calculation similar to (*) shows that locally at $\tilde{\tau}$, $\tilde{\gamma} = (l, \gamma) \in \tilde{P}''(\tilde{F})$ fixes $\tilde{\tau}$ only if γ fixes τ. However, different from what we had in section 2.2.1, $\tilde{\gamma}$ may not be a torsion element, i.e. l could be non-zero. Nevertheless, the action of $\tilde{\gamma}$ on the tangent space of a resolution of $\tilde{X}(\tilde{F})$ at $\tilde{\tau}$ at $\tilde{\tau}$ is of finite order, so the RST criterion can be applied there.

The following observations are useful for checking whether these singularities are canonical:

1. [PSMS] Lemma 1.3]: Let $(\tilde{X}(\tilde{F}))^*$ be a smooth $\tilde{P}''(\tilde{F})$-equivariant resolution of $\tilde{X}(\tilde{F})$. If $\tilde{P}''(\tilde{F})$ has no quasireflection, then the partial compactification $\tilde{P}''(\tilde{F}) \setminus \tilde{X}(\tilde{F})$ has canonical singularities if $\tilde{P}''(\tilde{F}) \setminus (\tilde{X}(\tilde{F}))^*$ has canonical singularities. In particular, this implies that we can apply the RST criterion at the singularities in $\tilde{P}''(\tilde{F}) \setminus (\tilde{X}(\tilde{F}))^*$ instead.

2. Let $\tilde{\tau} = (Z, \tau)$ correspond to a canonical singularity near \tilde{F}. Then either τ corresponds to a canonical singularity in the boundary of $\overline{\mathcal{A}_p}$, or $\text{iso}(\tilde{\tau}) = (\tilde{\sigma} := (l, -1_4)) < \tilde{P}''(\tilde{F})$ for some $l \in L$. In the latter case, τ corresponds to a smooth point. The proof is similar to that in Lemma 1. Again, this implies that we only need to apply the RST criterion at a limited number of singularities.

2.3 Singularities in the interior of compactification

In this section, we will identify the singularities in \mathcal{X}_p^n and show that for $n > 2$, they are all canonical.
First we identify singularities that project to non-canonical singularities in A_p. It is given in the proof of [HKW2, Theorem 1.8] that for any odd prime p, the singular points in A_p are exactly the points that lie on the two disjoint curves C_1 and C_2. Any point on one of these curves corresponds to a point τ in H_2, whose isotropy group in Γ_p is generated by a single generator. Its induced action the tangent space of H_2 at τ is also given there: one can write any point in the tangent space $T_{\tau}(H_2)$ in the form

$$
\begin{pmatrix}
\tau_1 + x & \tau_2 + y \\
\tau_2 + y & \tau_3 + z
\end{pmatrix}.
$$

So the tuple (x, y, z) can be considered as the local coordinates for $T_{\tau}A_p$, and the respective action of a generator of $\text{iso}(\tau)$ on $T_{\tau}(H_2)$ with these coordinates is given by

$$(x, y, z) \mapsto (-x, -iy, z) \text{ along } C_1;$$

$$(x, y, z) \mapsto (\rho^2 x, -\rho y, z) \text{ along } C_2,$$

where $\rho = e^{2\pi i/3}$.

Therefore, the chosen generators are of types $\frac{1}{4}(2, 3, 0)$ and $\frac{1}{6}(4, 5, 0)$ when the root of unity ξ is chosen to be i and $e^{2\pi i/6}$ respectively on each curve C_1 and C_2. By applying the RST criterion to the isotropy groups, it is clear that singularities on C_1 are canonical but those on C_2 are not.

Let $\tilde{\tau} := (Z, \tau) \in \mathbb{C}^{2n} \times \mathbb{H}_2$ such that τ corresponds to a point in C_2. Let $\tilde{\sigma} := (0, -1_4)$ and $\tilde{\gamma} := (0, \gamma)$, where γ is the generator of $\text{iso}(\tau)$ with the action on $T_{\tau}(H_2)$ described above. Then either $\text{iso}(\tilde{\tau}) = \langle \tilde{\gamma}, \tilde{\sigma} \rangle$ or $\text{iso}(\tilde{\tau}) = \langle \tilde{\gamma} \rangle$.

We shall first compute the type of $\tilde{\gamma}$. We only need to understand the action of $\tilde{\gamma}$ at a point $\tilde{Y} = (Z + Y, \tau)$ on the tangent space $T_{\tau}(\mathbb{C}^{2n} \times \{\tau\}) \simeq T_Z(\mathbb{C}^{2n})$ to complete the type of $\tilde{\gamma}$. To do this, we need the explicit expressions of the set C_2 and its isotropy group $\text{iso}(\tau)$ from [HKW2, Definition 1.5]:

$$C_2 = \left\{ \begin{pmatrix}
\rho & 0 \\
0 & \tau_3
\end{pmatrix} : \rho = e^{2\pi i/3}, \tau_3 \in \mathbb{H}_1 \right\},$$

$$\text{iso}(\tau) = \langle \gamma = \begin{pmatrix}
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \rangle.$$

Following (8), the action of $\tilde{\gamma}$ at \tilde{Y} in $T_{\tau}(\mathbb{C}^{2n} \times \{\tau\})$ is given by

$$\tilde{\gamma} \cdot \tilde{Y} = \begin{pmatrix}
(Z + Y) \cdot N \\
\tau \\
1_2
\end{pmatrix},$$

where $N = \begin{pmatrix}
(\rho + 1)^{-1} & 0 \\
0 & 1
\end{pmatrix}$.

Since $\tilde{\gamma}$ fixes (Z, τ), $Z \cdot N = Z$ and $\tilde{\gamma}$ acts on $T_Z(\mathbb{C}^{2n})$ diagonally by sending the set of local coordinates Y to $Y \cdot N$.
Note that \((\rho + 1)^{-1} = e^{2\pi i (5/6)}\). So by choosing the primitive root of unity to be \(e^{2\pi i /6}\), which is the same as that for the \(\mathbb{H}_2\) factor, we have an extra \(n\) copies of \(5/6\)'s and \(n\) copies of \(0\)'s in the RST sum of \(\tilde{\gamma}\). In other words, the type of \(\tilde{\gamma}\) is \(\frac{1}{6}(4,5,0,5,\cdots,5,0,\cdots,0)\).

As for the type of \(\tilde{\sigma}\), since \(\tilde{\sigma}\) acts trivially on \(T_\tau(\langle Z \rangle \times \mathbb{H}_2)\), the first entries in the type of \(\tilde{\sigma}\) which correspond to the \(\mathbb{H}_2\) factor are all \(0\)'s. On the other hand, the calculation in (2) shows that \(\tilde{\sigma}\) acts on the set of local coordinates in \(T_2(C^{2n})\) diagonally by \(X \mapsto -X\). So the type of \(\tilde{\sigma}\) is \(\frac{1}{6}(0,0,0,1,\ldots,1)\) when the primitive root of unity \(\xi\) is chosen to be \(-1\).

Since \(\tilde{\sigma}\) commutes with \(\tilde{\gamma}\), we can draw the following table which shows the type of a non-trivial element \(\tilde{\gamma}^{k_1} \tilde{\sigma}^{k_2} \in \text{iso}(\tilde{\tau})\), where \(0 \leq k_1 \leq 5\) and \(0 \leq k_2 \leq 1\).

\(k_2\)	\(k_1\)	0	1
0		\(N/A\)	\(\frac{1}{6}(0,0,0,1,\cdots,1,1,\cdots,1)\)
1	\(\frac{1}{6}\)	\(\frac{1}{6}(4,5,0,5,\cdots,5,0,\cdots,0)\)	\(\frac{1}{6}(4,5,0,2,\cdots,2,3,\cdots,3)\)
2	\(\frac{1}{6}\)	\(\frac{1}{6}(2,4,0,4,\cdots,4,0,\cdots,0)\)	\(\frac{1}{6}(2,4,0,1,\cdots,1,3,\cdots,3)\)
3	\(\frac{1}{6}\)	\(\frac{1}{6}(0,3,0,3,\cdots,3,0,\cdots,0)\)	\(\frac{1}{6}(0,3,0,0,\cdots,0,3,\cdots,3)\)
4	\(\frac{1}{6}\)	\(\frac{1}{6}(4,2,0,2,\cdots,2,0,\cdots,0)\)	\(\frac{1}{6}(4,2,0,5,\cdots,5,3,\cdots,3)\)
5	\(\frac{1}{6}\)	\(\frac{1}{6}(2,1,0,1,\cdots,1,0,\cdots,0)\)	\(\frac{1}{6}(2,1,0,4,\cdots,4,3,\cdots,3)\)

The types of all non-trivial elements in \(\langle \tilde{\gamma} \rangle\) are given by the first column of the table, while that in \(\langle \tilde{\gamma}, \tilde{\sigma} \rangle\) are given by the entire table. Notice the RST criterion only fails when \(n \leq 2\):

\[
\text{RST}(\tilde{\gamma}^5) < 1.
\]

We conclude that for \(n > 2\), both \(\langle \tilde{\gamma} \rangle\) and \(\langle \tilde{\gamma}, \tilde{\sigma} \rangle\) satisfy the RST criterion, and therefore \(\tilde{\tau}\) is a canonical singularity in \(X^n_p\), no matter \(\text{iso}(\tilde{\tau}) = \langle \tilde{\gamma}, \tilde{\sigma} \rangle\) or \(\text{iso}(\tilde{\tau}) = \langle \tilde{\gamma} \rangle\).

Finally, for any singularity that corresponds to a point in \(C^{2n} \times \mathbb{H}_2\) whose isotropy group is \(\langle \tilde{\sigma} \rangle\), we only need study the first row of the table: there is no quasi-reflection and the RST inequality is satisfied for any \(n\). Therefore such singularity is always canonical.

2.4 Singularities in the boundary of compactification

In this section we will check that every singularity in the boundary of \(X\) is canonical.

First, we identify all the non-canonical singularities in \(\overline{\mathcal{X}}_p\). Consider the compact curves \(C^*_1\) and \(C^*_2\) containing \(C_1\) and \(C_2\) in \(\overline{\mathcal{X}}_p\). Then from [HKW2, Propositions 2.15 and 3.4], for any odd prime \(p\), the complement \(\overline{\mathcal{A}}_p \setminus (C^*_1 \cup C^*_2)\) contains only isolated singularities. The types of a generator
in the respective isotropy groups are given as $\frac{1}{2}(1, 1, 1)$ or $\frac{1}{3}(1, 2, 1)$. So both isotropy groups satisfy the RST criterion, and these singularities in X are canonical. Therefore, any non-canonical singularity in X has to project down to $C_1^* \setminus C_1$ or $C_2^* \setminus C_2$.

From the same source above, each set $C_1^* \setminus C_1$ and $C_2^* \setminus C_2$ consists of $(p^2 - 1)/2$ points, one in each of the rank 1 boundary components called peripheral components [HKW1 Definition I.3.105]. [HKW2 Proposition 2.8] further says that near one of these boundary component F, the singularities in C_1^* and C_2^* are represented by $Q_1 = (i, 0, 0)$ and $Q_2 = (p, 0, 0)$ as points in $\mathbb{H}_1 \times \mathbb{C} \times \mathbb{C}$, the Siegel domain realisation of \mathbb{H}_2, with $p = e^{2\pi i/3}$.

First consider the singularity in X associated to Q_2: let $\tilde{\tau} := (Z, \tau) \in \tilde{X}(\tilde{F})$ such that $\tau = Q_2$. From [HKW2 Propositions 2.5 and 2.8], the stabiliser subgroup of τ in $P''(F) \cong (P(F) \cap \Gamma_p)/(P(F) \cap \Gamma_p)$ is generated by the order 6 element $\gamma = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

Let $\tilde{\gamma} := (l, \gamma)$ be the corresponding generator in $\text{iso}(\tilde{\tau})$, and let $\tilde{\sigma} := (l, -1_4)$ for some $l \in L$. Then again $\text{iso}(\tilde{\tau}) = \langle \tilde{\gamma} \rangle$ or $\text{iso}(\tilde{\tau}) = \langle \tilde{\gamma}, \tilde{\sigma} \rangle$. To find the types of elements in $\text{iso}(\tilde{\tau})$, we consider their actions on each factor of $\tilde{X}(\tilde{F})$, a $P''(\tilde{F})$-equivariant resolution of $\tilde{X}(\tilde{F})$. [T Lemmas 5.1 and 5.2] describes such a resolution of singularities for the moduli space of polarised abelian g-folds, as well as a formula for the RST sum of a generator γ in the isotropy group. Explicitly when $g = 2$, there are three factors in the resolution of \mathbb{H}_2: $\mathbb{H}_{g'}, \mathbb{C}^{g'g''}$ and a torus at infinity. The following submatrices are extracted from the entries γ_{ij} of γ:

$$\gamma' = \begin{pmatrix} \gamma_{11} & \gamma_{13} \\ \gamma_{31} & \gamma_{33} \end{pmatrix}, \quad U = \begin{pmatrix} \gamma_{22} \end{pmatrix}.$$

Suppose γ' has eigenvalues $\lambda^{\pm 1}$ and U has eigenvalue μ. Then the eigenvalues of the action of γ on the tangent space of the $\mathbb{H}_{g'}$ factor, the $\mathbb{C}^{g'g''}$ factor and the torus at infinity in the resolution of \mathbb{H}_2 are λ, $\lambda \mu$ and 0 respectively.

In our case, γ' has eigenvalues $e^{\pm 2\pi i/3}$ and U has eigenvalue 1. Therefore, when $e^{2\pi i/6}$ is chosen to be the primitive root of unity, the $\mathbb{H}_{g'}$, $\mathbb{C}^{g'g''}$ and the torus at infinity factors contribute $\frac{1}{3}$, $\frac{1}{6}$ and 0 to the RST sum respectively.

For the RST sum over the remaining $\mathbb{C}^n \times (\mathbb{C}^*)^n$ factor of $\tilde{\tau}$, follow [T] and consider the action of $\tilde{\gamma}$ on $\tilde{Y} := (Z + Y, \tau)$ in the tangent space at Z of the resolved \mathbb{C}^{2n} factor:

$$\tilde{\gamma} \cdot \tilde{Y} = \begin{pmatrix} (Z' + Y) \cdot N \\ \tau \\ 1_2 \end{pmatrix}$$

where $Z' = Z + l \cdot (\tau)$ and $N = \begin{pmatrix} \frac{1}{p+1} & 0 \\ 0 & 1 \end{pmatrix}$.

10
Again \(\tilde{\gamma} \) fixes \(\tilde{\tau} \), so \(Z' \cdot N = Z \) and \(\tilde{\gamma} \) acts on the tangent space diagonally by sending the local coordinates \(Y \) to \(Y \cdot N \). The eigenvalues of the action are the eigenvalues of \(N \), which are \(e^{\pm \pi i/6} \) and 1. When we choose \(e^{\pi i/6} \) to be the primitive root of unity for \(\tilde{\gamma} \), which is the same choice as the other factors, they contribute \(n \) copies of \(\frac{e^{\pi i/6}}{6} \) and \(n \) copies of 0 to the RST sum.

Do the same for \(\tilde{\sigma} \) to find \(\text{RST}(\tilde{\sigma}) \): write \(\sigma = -1 \) and consider the submatrices \(\sigma' \) and \(U \) extracted from \(\sigma \) in the same way as above. Their eigenvalues are \(\{1, -1\} \) and \(-1 \) respectively, which contribute 0 to the RST sum for all 3 factors of the solution of \(\mathbb{H}_2 \) after resolving. Following (M), the action of \(\tilde{\sigma} \) on the tangent space of the resolved \(\mathbb{C}^n \times (\mathbb{C}^*)^n \) factor at \(Z \) is again multiplication by \(-1 \) to the local coordinates \(Y \).

Therefore, we can draw a similar table as in the previous subsection for each element \(\tilde{\sigma}^{k_1} \tilde{\sigma}^{k_2} \in \text{iso}(\tilde{\tau}) \), where \(0 \leq k_1 \leq 5 \) and \(0 \leq k_2 \leq 1 \):

\[
\begin{array}{c|cc}
 & 0 & 1 \\
\hline
k_2 & N/A & \frac{1}{2}(0, 0, 0, 1, \cdots, 1, 1, \cdots, 1) \\
0 & \frac{1}{2}(2, 1, 0, 5, \cdots, 5, 0, \cdots, 0) & \frac{1}{2}(2, 1, 0, 2, \cdots, 2, 3, \cdots, 3) \\
1 & \frac{1}{2}(4, 2, 0, 4, \cdots, 4, 0, \cdots, 0) & \frac{1}{2}(4, 2, 0, 1, \cdots, 1, 3, \cdots, 3) \\
2 & \frac{1}{2}(0, 3, 0, 3, \cdots, 3, 0, \cdots, 0) & \frac{1}{2}(0, 3, 0, 0, \cdots, 0, 3, \cdots, 3) \\
3 & \frac{1}{2}(2, 4, 0, 5, \cdots, 2, 0, \cdots, 0) & \frac{1}{2}(2, 4, 0, 5, \cdots, 5, 3, \cdots, 3) \\
4 & \frac{1}{2}(4, 5, 0, 1, \cdots, 1, 0, \cdots, 0) & \frac{1}{2}(4, 5, 0, 4, \cdots, 4, 3, \cdots, 3) \\
5 & \frac{1}{2}(4, 5, 0, 1, \cdots, 1, 0, \cdots, 0) & \frac{1}{2}(4, 5, 0, 4, \cdots, 4, 3, \cdots, 3) \\
\end{array}
\]

One can check that there is no quasi-reflection, and the RST sum is at least 1 everywhere on the table. So the RST criterion is satisfied for both \(\{\tilde{\gamma}\} \) and \(\{\tilde{\gamma}, \tilde{\sigma}\} \). Thus for all \(n \geq 1 \), the singularity in \(X \) that corresponds to \((Z, Q_2) \) is canonical.

Now we replace \(Q_2 \) by \(Q_1 \) everywhere in the above to check whether the other singularity in the boundary component \(\tilde{F} \) is canonical or not. Again, let \(\tilde{\tau} = (Z, \tau) \) such that \(\tau = Q_1 \). The stabiliser subgroup of \(\tau = Q_1 \) in \(P^\mu(F) \) is generated by the order 4 element

\[
\gamma = \begin{pmatrix}
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

First we calculate \(\text{RST}(\gamma) \). Extract the submatrices \(\gamma' \) and \(U \) as before. The eigenvalues of \(\gamma' \) are \(\pm \imath \) and the eigenvalue of \(U \) is 1. When \(\imath \) is the chosen primitive root of unity, the \(\mathbb{H}_{\imath} \) factor, the \(\mathbb{C}^n \) factor and the torus at infinity in the resolution of \(\mathbb{H}_2 \) contribute a \(\frac{2}{3} \), a \(\frac{1}{2} \) and a 0 to the RST sum respectively. Consider the action of \(\tilde{\gamma} \) at \(Y = (Z + Y, \tau) \). Then (M)
gives:
\[
\tilde{\gamma} \cdot \tilde{Y} = \begin{bmatrix} (Z' + Y) \cdot N \end{bmatrix} \quad \text{where} \quad Z' = Z + l \cdot \left(\begin{array}{c} \tau_2 \end{array} \right) \quad \text{and} \quad N = \left(\begin{array}{cc} -i & 0 \\ 0 & 1 \end{array} \right).
\]

Once more \(Z' \cdot N = Z\) and \(\tilde{\gamma}\) acts on the tangent space diagonally by sending the local coordinates \(Y\) to \(Y \cdot N\). This action has eigenvalues \(\frac{3 \pi i}{4}\) and 1, which contribute \(n\) copies of \(\frac{3}{4}\) and \(n\) copies of 0 to the RST sum over the resolved \(\mathbb{C}^n \times (\mathbb{C}^*)^n\) factor when the primitive root of unity chosen is \(i\).

The RST sums of \(\tilde{\sigma}\) restricted to each factor is the same as the case of \(Q_2\).

Therefore we can draw the table for the type of \(\tilde{\gamma}^{k_1} \tilde{\sigma}^{k_2} \in \text{iso}(\tau)\), where \(0 \leq k_1 \leq 3\) and \(0 \leq k_2 \leq 1:\)

\(k_1\)	\(0\)	1
0	N/A	\(\frac{1}{2}(0, 0, 0, 1, \cdots, 1, 1, \cdots, 1)\)
1	\(\frac{1}{4}(2, 1, 0, 3, \cdots, 3, 0, \cdots, 0)\)	\(\frac{1}{2}(2, 1, 0, 1, \cdots, 1, 2, \cdots, 2)\)
2	\(\frac{1}{4}(0, 2, 0, 2, \cdots, 2, 0, \cdots, 0)\)	\(\frac{1}{2}(0, 2, 0, 0, \cdots, 0, 2, \cdots, 2)\)
3	\(\frac{1}{4}(2, 3, 0, 1, \cdots, 1, 0, \cdots, 0)\)	\(\frac{1}{2}(2, 3, 0, 3, \cdots, 3, 2, \cdots, 2)\)

The RST criterion is satisfied for both \(\langle \tilde{\gamma} \rangle\) and \(\langle \tilde{\gamma}, \tilde{\sigma} \rangle\), so for all \(n \geq 1\), the singularity in \(X\) that corresponds to \((Z, Q_1)\) is canonical.

We summarise our findings in the following theorem:

Theorem 4. *Singularities in the Namikawa compactification \(X\) of \(X^n_p\) are canonical for \(n \geq 3\). For \(n = 1, 2\), the set of non-canonical singularities in \(X\) is exactly the preimage under \(\pi\) of the curve \(C_2\) in \(X^1_p\) and \(X^2_p\) respectively.*

3 Low weight cusp form trick

In this section, we will prove the following theorem:

Theorem 5. *The equality \(\kappa(\overline{A}_p, (n + 3)L - \Delta_A) = 3\) is satisfied for the following values of \(n\) and \(p\):

- \(p \geq 3\) and \(n \geq 4\);
- \(p \geq 5\) and \(n \geq 3\).*

To find a lower bound for \(\kappa((n + 3)L - \Delta_A)\), which is the rate of growth with respect to \(m\) of the dimension of the space of weight \(m(n + 3)\)-cusp forms of \(\Gamma_p\), we use the “low weight cusp form trick”, which has been used in this context in [GH] and [GS], and more widely thereafter.
Suppose $n > N$ and there exists a non-zero weight $3 + N$ cusp form F of Γ_p, that is, $F \in H^0((3+N)L-\Delta_A)$. For any non-zero $F' \in H^0(m(n-N)L)$,

$$F^m F' \in H^0(m(n+3)L-\Delta_A).$$

Fixing F, the space of cusp forms in the form of $F^m F'$ then grows at the same rate as $H^0(m(n-N)L)$ with respect to m, which is known to be $O(m^3)$. So $\kappa((n+3)L-\Delta_A) \geq 3$.

Therefore, X^n_p is of relative general type if $h := \dim H^0((3+N)L-\Delta_A) > 0$.

To find a lower bound for h, we apply Gritsenko’s lifting of Jacobi cusp forms mentioned in [G, Theorem 3], which states the existence of an injective lifting $J_cusp(k, p) \hookrightarrow S_k(\Gamma[p])$ where $J_cusp(k, p)$ is the space of Jacobi cusp forms of weight k and index $p \geq 1$, and $S_k(\Gamma[p])$ is the space of weight k cusps forms of $\Gamma[p]$, with the paramodular group $\Gamma[p]$ defining the moduli space of $(1, p)$-polarised abelian surfaces without level structure as $\Gamma[p]\backslash \mathbb{H}_2$. But since $\Gamma_p \leq \Gamma[p]$, the image of the lifting is also contained in $S_k(\Gamma_p)$.

From [EZ], $\dim J_cusp(k, p) \geq j(k, p)$ (equality holds when $k \geq p$), where

$$j(k, p) := \begin{cases} \sum_{j=0}^{t} \left(\dim M_{k+2j} - \left(\left\lfloor \frac{k^2}{4p} \right\rfloor + 1 \right) \right), & \text{if } k \text{ is even} \\ \sum_{j=1}^{t} \left(\dim M_{k+2j-1} - \left(\left\lfloor \frac{k^2}{4p} \right\rfloor + 1 \right) \right), & \text{if } k \text{ is odd} \end{cases}$$

with M_r being the space of modular forms of weight r for $\text{SL}(2, \mathbb{Z})$.

It is a general fact that

$$\dim M_r = \begin{cases} \left\lfloor \frac{r^2}{12} \right\rfloor, & \text{if } r \equiv 2 \mod 12 \\ \left\lfloor \frac{r^2}{12} \right\rfloor + 1, & \text{otherwise} \end{cases}$$

By a simple computation, it can be found that the first prime p such that $j(k, p) > 0$ for $k = 5$ and 6 are $p = 5$ and 3 respectively. Note:

1. $\dim(S_k(\Gamma_p)) \geq j(k, p)$ for any k, p;
2. $j(k, p)$ increases with p;
3. the isomorphism in [M, Theorem 1.1]

$$\bigoplus_{m \geq 0} H^0(X^n_p, K^{\otimes m}_p) = \bigoplus_{m \geq 0} M_{(n+3)m}(\Gamma_p)$$

establishes that $\kappa(X^n_p)$ is non-decreasing with respect to n, because the same is true for $\dim(M_{(n+3)m}(\Gamma_p))$.

By letting $k = 3 + N = 2 + n$, this shows that for the values of n and p stated in Theorem 5, $\dim(S_k(\Gamma_p)) \geq j(k, p) \geq 1$. This concludes our proof for Theorem 5.
4 Possible improvements

By following [HS] and applying the Riemann-Roch theorem on the exceptional divisor E of a blow-up at a non-canonical singularity in $X^1_{p^1}$, we may be able to improve our boundary at $n = 1$ by finding two consecutive primes p' and p'' with $p' < p''$ such that $\kappa(X^1_{p'}) < \kappa(X^1_{p''})$. However, that would involve understanding the intersection behaviour of divisors on the 4-fold E, which is expected to be complicated. The low density of prime numbers near 37 makes the quest less promising: the estimate for p' we find by this method may not be smaller than 31.

There are a few more questions that can be asked: for example, whether the boundary we have drawn can be improved for $p = 5$ and $p = 3$. The image of Gritsenko’s lift is not the entire $S_k(\Gamma_p)$ or even $S_k(\Gamma[p])$, so we might be able to find a weight 4 cusp form with respect to Γ_p or $\Gamma[p]$ through other means which improves the bound at $p = 5$, and likewise for $p = 3$. Another question is to calculate $\kappa(X^n_{p^p})$ for other $X^n_{p^p}$ not of relative general type by considering the slope of Siegel cusp forms of Γ_p, which is the ratio between weight and vanishing order at ∞, and to draw a boundary on the (p,n)-plane separating the regions with $\kappa(X^n_{p^p}) = -\infty$ and $\kappa(X^n_{p^p}) \geq 0$. We can also extend the problem by considering $p = 2$, non-prime p, or abelian surfaces without level structure.

References

[EZ] M. Eichler, D. Zagier. The Theory of Jacobi Forms Birkhäuser, 1985.

[FV] G. Farkas, A. Verra. The universal abelian variety over \mathcal{A}_5. Ann. Sci. Éc. Norm. Supér. 49, 521-542, 2016.

[G] V. Gritsenko. Irrationality of the moduli spaces of polarized abelian surfaces Abelian Varieties: Proceedings of the International Conference held in Egloffstein, Germany, October 3-8, 1993, De Gruyter, 63–82, 2011.

[GH] V. Gritsenko, K. Hulek. Appendix to the paper “Irrationality of the moduli spaces of polarized abelian surfaces” Abelian Varieties: Proceedings of the International Conference held in Egloffstein, Germany, October 3-8, 1993, De Gruyter, 83–84, 2011.

[GS] V. A. Gritsenko, G. K. Sankaran. Moduli of Abelian surfaces with a $(1,p^2)$ polarisation Izv. RAN. Ser. Mat. 60(5), 19–26, 1996.

[HKW1] K. Hulek, C. Kahn, S. Weintraub. Moduli Spaces of Abelian Surfaces: Compactification, Degenerations and Theta Functions De Gruyter, 1993.
[HKW2] K. Hulek, C. Kahn, S. Weintraub. Singularities of the moduli spaces of certain abelian surfaces *Compositio Mathematica*. **79**, 231–253, 1991.

[HS] K. Hulek, G.K. Sankaran. The Kodaira dimension of certain moduli spaces of abelian surfaces *Compositio Mathematica*. **90**, 1–35, 1994.

[M] S. Ma. Universal abelian variety and Siegel modular forms *Algebra Number Theory*. **15**(8), 2089–2122, 2021.

[N] Y. Namikawa. Toroidal degeneration of abelian varieties II, *Math. Ann*. **245**, 117–150, 1979.

[PSMS] F. Poon, R. Salvati Manni, G.K. Sankaran. Slopes of Siegel cusp forms and geometry of compactified Kuga varieties, Preprint arXiv: 2109.06142v1, 2021.

[R] M. Reid. Young Persons Guide to Canonical Singularities *Proceedings of Symposia in Pure Mathematics*, **188**, 321–340, 1997.

[T] Y.-S. Tai. On the Kodaira dimension of the moduli space of abelian varieties. *Invent. Math.*, **68**, 425–439, 1982.

[V] A. Verra. On the universal principally polarized abelian variety of dimension 4. *Contemp. Math*. **465**, 253–274, AMS 2008.