Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors

Orsolya Galamb, Barbara K Barták, Alexandra Kalmár, Zsófia B Nagy, Krisztina A Szigeti, Zsolt Tulassay, Peter Igaz, Béla Molnár

Abstract

Long non-coding RNAs (lncRNAs) are members of the non-protein coding RNA family longer than 200 nucleotides. They participate in the regulation of gene and protein expression influencing apoptosis, cell proliferation and immune responses, thereby playing a critical role in the development and progression of various cancers, including colorectal cancer (CRC). As CRC is one of the most frequently diagnosed malignancies worldwide with high mortality, its screening and early detection are crucial, so the identification of disease-specific biomarkers is necessary. lncRNAs are promising candidates as they are involved in carcinogenesis, and certain lncRNAs (e.g., CCAT1, CRNDE, CRCAL1-4) show altered expression in adenomas, making them potential early diagnostic markers. In addition to being useful as tissue-specific markers, analysis of circulating lncRNAs (e.g., CCAT1, CCAT2, BLACAT1, CRNDE, NEAT1, UCA1) in peripheral blood offers the possibility to establish minimally invasive, liquid biopsy-based diagnostic tests. This review article aims to describe the origin, structure, and functions of lncRNAs and to discuss their contribution to CRC development. Moreover, our purpose is to summarise lncRNAs showing altered expression levels during tumor formation in both colon tissue and plasma/serum samples and to demonstrate their clinical implications as diagnostic or prognostic biomarkers for CRC.

Key words: Long non-coding RNA; Colorectal cancer; Colorectal adenoma; Circulating long non-coding RNAs; Exosome; Biomarker; Diagnostic marker; Prognostic marker

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.
Core tip: The present review aims to shed light on the complex world of long non-coding RNAs (lncRNAs) by discussing their origin, localization, and functions. By summarizing the constantly growing body of knowledge about lncRNA expression in colorectal tissue and by focusing on potential circulating lncRNA markers, we aim to enhance the understanding of the comprehensive picture of their diagnostic and prognostic potential in precancerous colorectal adenomas and cancer.

INTRODUCTION

Colorectal cancer (CRC) is one of the most frequent malignant diseases worldwide with a remarkably high mortality rate[1]. The number of CRC-related deaths can be reduced only by diagnosis at the earliest stage when the disease is more likely to be cured.

Long non-coding RNAs (lncRNAs), a novel family of non-protein coding RNAs (200 nt-10 kb) are of outstanding interest as their expression is often altered in various disease types including malignancies[2,3]. They are known to have a crucial role in the regulation of gene expression, alternative splicing mechanisms, protein localization and activity, formation of cellular substructures and protein complexes through their diverse interactions with DNA, RNA and proteins[3,4].

In cancers, lncRNAs are involved in every stage of carcinogenesis and tumor progression including tumor initiation, proliferation, apoptosis and migration of cancer cells, angiogenesis, tumor invasion and metastasis formation[5,6]. Their altered expression can influence several oncogenic signaling cascades including the WNT/β-catenin, PI3K/Akt, EGFR, NOTCH, mTOR and TP53 signaling pathways[4,7-20]. Besides local expression changes in cancerous tissue and tumor-related stroma, lncRNAs also remain stable in body fluids due to their resistance to RNases[2,21].

Several lncRNAs showing altered expression in colorectal tumors including precancerous adenomas have potential as early diagnostic markers[22-24]. In this review, we summarize the colorectal tumor-related tissue and circulating lncRNAs, altered lncRNA expression patterns, and technical aspects of their isolation and detection. Our aim is to show their potential as diagnostic and prognostic biomarkers based on recently published data.

HISTORY, CLASSIFICATION, FUNCTION, LIFETIME AND SUBCELLULAR LOCALIZATION OF LINCNAS

Regulatory non-coding RNAs (ncRNAs) were first reported in eukaryotes in the 1980s, of which H19[25] and Xist[26] were the first members of the family[27]. When the Human Genome Project was completed, it became clear that only a minor part of our genome codes proteins and the rest was considered as “junk” DNA[28]. Since then, our knowledge about the non-coding genome was expanded, and the still unexplored regulatory role of the ncRNA world is the focus of several studies and holds a significant clinical potential[29]. Over the past decades, along with the development of explorative molecular biology methods, the importance and function of the complex eukaryotic transcriptome have been recognized, a large proportion of which comprises the actively transcribed lncRNAs[30]. After the discovery and the intensive analysis of the class of small ncRNAs called miRNAs since 1993[31], it became evident, that other ncRNAs also play fundamental role in gene expression regulation, and that their alterations can be responsible for the disrupted molecular pathways in multiple cancers[32].

The major class of ncRNAs are lncRNAs, which are derived from highly diverse genomic context and are classified on the basis of the genomic region of origin[28]. According to the genomic database [Ensembl Release 96 (April 2019)], human lncRNAs are categorized into 3’prime overlapping ncRNA, antisense, lincRNA (long
Interspersed ncRNA), retained intron, sense intronic, sense overlapping and macro IncRNAs. The IncRNAs that are not overlapping with protein-coding genes are called stand-alone IncRNAs including the large intergenic (or intervening) IncRNA (lncRNA) group\(^{28,30}\) (e.g., XIST, H19, MALAT1, and HOTAIIR). Antisense IncRNAs are transcripts overlapping the genomic strand of a protein-coding locus in an antisense direction\(^{34}\), while sense IncRNAs are overlapped with the sense strand of protein coding genes containing exons\(^{30}\). Antisense transcription is widespread in the mammalian genome\(^{40}\); the estimated ratio of the genes with antisense transcripts varies from less than 2 to more than 70% of the total genes\(^{37}\). XIST/TSIX is a well-known example of the sense-antisense transcript pairs\(^{39}\). Pseudogenes are defined as nonfunctional sequences of genomic DNA originally derived from functional genes\(^{29}\). Long intronic ncRNAs are transcribed from the intronic sequence of a coding gene. On the basis of their association with functional DNA elements, enhancer- and promoter-associated IncRNAs can be distinguished\(^{33}\). The IncRNAs localize in the cytoplasm, nucleus, nucleolus, and also in other subcellular compartments and vesicles (such as nuclear bodies, exosomes) and the localization is related to their molecular functions\(^{31}\). Certain sequence motifs in their primary sequence are associated with the subcellular localization\(^{32}\).

As the largest class of non-coding transcripts, IncRNAs have a wide variety of functions. They can act as RNAs (e.g., ribozymes, riboswitches)\(^{43}\) and widely as ribonucleoprotein particles (RNP)\(^{44}\). They can exert their positive or negative regulatory functions either in cis or in trans\(^{45}\). One of their functions is the regulation of nuclear organization; IncRNAs can modulate the chromatin architecture (e.g., Xist) and they can also regulate inter- and intrachromosomal interactions (e.g., colorectal cancer associated transcript 1. long isoform (CCAT1-L) modulating interchromatin loops between enhancers and promoters\(^{46}\)). LncRNAs can regulate other non-coding RNAs (e.g., as miRNA sponges leading to reduced miRNA inhibitory effect on target molecules\(^{47}\)), and also can be processed into single- or double-stranded siRNAs\(^{48}\). Several gene transcription processes can be activated or blocked by IncRNAs by recruiting or inhibiting transcription factors of the target gene promoters\(^{49}\). Certain IncRNAs are linked to the process of alternative splicing (e.g., LINC001133)\(^{49}\). Furthermore, protein activity is regulated by IncRNAs and trafficking between the subcellular compartments can also be influenced by IncRNAs\(^{50}\).

Nuclear IncRNAs also contribute to chromatin remodeling as they can promote or prevent the recruitment of chromatin modifiers\(^{49}\). They are also part of nuclear bodies\(^{51}\) with scaffold function, so-called architectural IncRNAs\(^{31}\) [such as nuclear enriched abundant transcript 1 (NEAT1), a well-characterized lncRNA as a crucial component of paraspeckles\(^{51}\) and also as non-architectural IncRNAs (e.g., metastasis associated lung carcinoma transcript 1 (MALAT1) as one of the most abundant IncRNA in nuclear speckles\(^{52}\)].

Epigenetic mechanisms, such as histone modifications are also influenced by IncRNAs. For instance, IncRNA HOTAIIR (homeobox transcript antisense intergenic RNA) interacts with both LSD1/CoREST/REST complex and PRC2 as a modular scaffold that leads to coupled histone H3 lysine 27 methylation and lysine 4 demethylation\(^{53}\).

By the modulation of all three major mammalian DNA methyltransferases (DNMT1, DNMT3a, DNMT3b), IncRNAs influence DNA methylation levels resulting in altered expression of the target genes\(^{44}\). DNMT1-associated Colon Cancer Repressed IncRNA 1 (DACOR1) interacts with both chromatin and DNMT1 and targets DNMT1 protein complex to certain genomic loci, also affecting cellular SAM levels\(^{45,54}\). Altogether, the expression alterations of IncRNAs influence many biological functions that contribute to the disturbance of the complex fine-tuning machinery of non-coding RNA regulatory network during cancer formation.

Our knowledge about the posttranscriptional regulation of IncRNAs is limited, however, the stability of transcripts can be an important aspect in gene expression regulation\(^{6,27}\) as the half-life of ncRNAs correlates with their functional characteristics\(^{49}\). Each IncRNA has a unique structure, and these transcripts are characterized by complex secondary and tertiary structures which is crucial to exert their functions\(^{50}\). Although the stability of these non-coding transcripts was generally considered to be lower compared to mRNAs\(^{49}\) on the basis of a genome-wide IncRNA analysis by Clark et al\(^{49}\), a wide variety in their stability can be observed which is consistent with their functional diversity. LncRNA stability is correlated with genomic location, subcellular localization, splicing, and GC percentage, while in contrast, expression levels are not correlated with stability\(^{49}\). The half-life of IncRNAs ranges from < 30 min to > 48 h with median value at 3.5 h, and they can be classified as unstable and to highly stable IncRNAs - the latter represented at a lower percentage\(^{49}\). According to Clark et al., nuclear-enriched IncRNAs displayed significantly lower stability compared to those detected both in nucleus and cytoplasm\(^{50}\). It is
important to note that lncRNAs with even lower stability have been shown to have fundamental role (e.g., NEAT1 as scaffold lncRNA of paraspeckles, as dynamic nuclear subdomains50), furthermore, the existence of highly stable lncRNAs illustrate the biomarker potential of this subclass of non-coding transcripts.

LncRNA Expression Analysis Methods

Analysis of lncRNAs is technically challenging due to their relatively low expression level and their tissue-specific expression49, therefore, the following methods are optimized for studying lncRNAs with high sensitivity and resolution.

High-throughput sequencing serial analysis of gene expression (SAGE) is based on short cDNA sequences containing recognition sites for restriction enzymes at the transcripts’ 3’ end, and it was one of the first transcriptome analysis methods to study lncRNA expression49,51.

Among whole genome analyses, microarrays are widely used to analyse the RNA expression in a high-throughput manner from the 2000s, however, these systems are limited to studying the known RNAs. Furthermore, cross-hybridization and limited detection range due to background and saturation signals make these analyses more challenging52. In parallel, the rapid development of next generation sequencing (NGS) systems revolutionized the experimental field, as RNA-Seq provides a cost-effective and rapid solution for whole transcriptome profiling with the potential to discover novel transcripts53. The higher resolution and reproducibility of RNA-Seq compared to microarrays49 resulted in broad use of this approach. RNA-Seq supports the annotation of novel lncRNAs, RNA editing sites, and alternative splicing sites, as well54. Cap analysis of gene expression (CAGE) is an NGS-based approach to map and quantify the expression of 5’ capped RNAs49 and also to identify transcriptionally active promoter regions and Pol II-driven TSSs49.

The lncRNAs regulate and mediate interactions on different molecular levels and complex networks of these non-coding RNAs remain to be explored. RNA-binding protein immunoprecipitation (RIP) is used to study RNA-protein interactions, where the RNA of interest can be complexed with its interacting proteins, and this fraction can be selectively pulled down55. The downstream analysis can be performed by combining with the previously discussed methods, including RIP-Chip and RIP-Seq56. Native RIP is suitable for the exploration of strong and direct RNA-protein interactions, whereas the crosslinked immunoprecipitation method (CLIP) is used to study weak or indirect binding57. Crosslinking is achieved by ultraviolet light (UV) followed by RNase treatment and stringent washes which increases the specificity of the interaction detection58. In order to minimize the disadvantages of CLIP, modified methods, such as individual nucleotide resolution CLIP (iCLIP)59, and photolabile ribonucleoside-enhanced CLIP (PAR-CLIP) are also available for the identification of the exact crosslinking sites with single nucleotide resolution60.

Other RNA pull-down methods, such as chromatin isolation by RNA purification (ChIRP)61, capture hybridization analysis of RNA targets (CHART)62 and RNA antisense purification (RAP)63 can be applied to study RNA-DNA interactions to shed light on lncRNAs’ functions and identify trans-genomic interacting sites64. During ChIRP experiments, a biotin-labeled antisense probe designed to the selected lncRNA is employed to explore its interacting chromosomal fragments65. Different probe design criteria are applied in the case of CHART, as in contrast with ChIRP probes spanning the whole interesting lncRNA, the CHART method uses capture oligos specific for the accessible regions of the lncRNA candidate66. The co-purified RNA, DNA or proteins potentially interacting with the selected lncRNA can be analysed with NGS, PCR or Western blotting67. RAP can be performed with different crosslinking methods (e.g., psoralens) along with the longer biotinylated probes (> 60 bp) to enhance the RNA-DNA hybrid stability68 and to reduce the signal-to-noise ratio69.

LncRNAs are known to exert their function also by binding directly or indirectly to other RNAs60. These interactions can be studied by RAP-RNA (applying different chemical cross-linking), as 4’aminomethyltrioxalen: RAP-RNA(MMT), formaldehyde: RAP-RNA(FAD), FA and disuccinimidyl glutarate: RAP-RNA(FADG)69 or UV-crosslinked CLASH (cross-linking, ligation and sequencing of hybrids)70 methods. It is known that lncRNAs fold into secondary and tertiary structures that are crucial to exert their regulatory effects71, but the structural domains of the RNA interactome still need to be explored. Structural relationships can be studied by dimethyl sulfate sequencing (DMS-Seq), selective 2’-hydroxyl acylation analysed by primer extension sequencing (SHAPE-Seq), genome-wide fragmentation sequencing (FRAG-Seq), and parallel analysis of RNA structure (PARS) techniques72. By the intensive development
of subcellular visualization approaches, lncRNAs can be localized within the cell with high sensitivity using special fluorescent in situ hybridization (FISH) applications (single molecule FISH - smFISH, sequential FISH - seqFISH, and multiplexed error-resistant FISH - MerFISH). High resolution microscopes, as structured illumination microscopy (SIM) or stochastic optical reconstruction microscopy (STORM) enable the precise detection of certain lncRNAs and investigation of their colocalization partners. The functional investigations of lncRNAs can be performed with antisense oligonucleotides (ASO) and also by siRNAs and shRNAs via binding and affecting the target lncRNA’s functionality. The CRISPR-Cas9 genome editing technique has revolutionized functional studies in the lncRNA world, which can be employed to silence (CRISPRi) and also to overexpress (CRISPRa) the lncRNA of interest.

LncRNA Expression Alterations in Colorectal Adenoma and Cancer Tissue

Increasing evidence suggest that lncRNAs are involved in the whole process of CRC development, progression and metastasis formation - similarly to their diverse regulatory role in other types of malignancies - affecting the essential signaling pathways including WNT, TP53, PI3K/Akt, mTOR, EGFR and NOTCH1 in CRC. Abnormal expression of numerous lncRNAs including the well-known HOTAIR, MALAT1 and H19 has been described in CRC compared to normal colonic tissue samples (Table 1). From a clinical point of view, lncRNAs - with altered expression in different stages of colorectal carcinogenesis, and disease progression - have a particularly great potential to become early diagnostic and/or prognostic biomarkers.

Several studies reported the altered expression of certain lncRNAs including colon cancer associated transcript-1 (CCAT1), colorectal neoplasia differentially expressed (CRNDE-L), colorectal cancer associated lncRNA (CRCAL) 1, -2, -3 and -4 and urothelial carcinoma-associated 1 (UCA1) already in precancerous adenomas. Nissan et al. in their comprehensive RT-qPCR study were the first to demonstrate the massive (often more than 100-fold) upregulation of CCAT1 in CRC and premalignant adenoma tissue samples compared to normal colonic mucosa. Furthermore, elevated CCAT1 levels could be detected in lymph node and distant liver metastases, as well as in peripheral blood mononuclear cells (PBMCs) of CRC patients. Alaiyan et al. have confirmed the overexpression of CCAT1 in precancerous conditions and through all CRC stages using RT-qPCR and in situ hybridization (ISH). These data suggest its essential role in both early carcinogenesis and metastatic processes, moreover, in vitro studies revealed that the c-Myc oncogene could facilitate the transcription of CCAT1 by binding to its promoter. CRNDE also becomes activated already in the initial steps of tumor development as its elevated expression was observed in > 90% of neoplastic colon tissue including adenoma and adenocarcinoma samples using both microarray and RT-PCR technology. Liu et al. found significant upregulation of CRNDE-h splice variant both in adenoma and CRC tissues compared to control groups containing normal adjacent, inflammatory bowel disease and hyperplastic polyp samples. Moreover, within the CRC group, increased expression of CRNDE-h showed significant correlation with tumor size, lymph node, and distant metastasis. It was observed in vitro studies, that lncRNA CRNDE can promote CRC development and progression through epigenetic silencing of dual-specificity phosphatase 5 (DUSP5) and cyclin-dependent kinase inhibitor 1A (CDKN1A) or via activating Ras/MAPK and WNT/β-catenin signaling pathways. Furthermore, it can contribute to chemoresistance by sponging microRNAs (miR-136, miR-181a-5p) in CRC.

Some colorectal cancer associated lncRNAs [CRCALs: CRCAL-1 (AC021218.2), CRCAL-2 (LINC00858), CRCAL-3 (RP11-138J23.1) and CRCAL-4 (RP11-435O5.2)] were identified as overexpressed and novel CRC biomarkers using RNA-sequencing techniques. These lncRNAs may “be involved in the very early steps of the neoplastic process” as the expression levels of all four CRCALs were found to be elevated in colorectal adenoma samples, as well. RNA interference-mediated knockdown experiments and gene ontology analysis of The Cancer Genome Atlas (TCGA) dataset suggest the involvement of CRCAL-3 and CRCAL-4 in cell cycle regulation.

Several studies have also indicated the tumor-promoting role of UCA1 lncRNA in CRC. Intensive UCA1 expression was found to be correlated with larger tumor size, depth of invasion, and a less differentiated histology. Moreover, elevated
lncRNA	Tissue	Plasma/serum	Exosome	Expression in CRC	Ref.	Potentially diagnostic marker	Prognostic role
91H	X	X	X	Up	[130,138,152]	X (comb 1)	Up – poor prognosis
ADAMTS9-AS2	X			Down	[149]		
AFAP1-AS1	X			Up	[143,152,154]		Up - poor prognosis
AK027294	X			Up	[150]		
AK123657/BX64	X			Down	[154]		Down – poor prognosis
820							
AK307796	X			Up	[157]		
ANRIL	X			Up	[159,159]		
ATB	X	X		Up	[122,136,140]		Up - poor prognosis
BA318C17.1	X			Down	[162]		
BANCR	X	X		Down/up	[125,136,136]	X (comb 2)	Prognostic
BCAR4/HOXA-	X	X		Up/down	[140,140]		
AS2	X						
BLACAT1	X	X		Up	[129,135,140]		Up - poor prognosis
CAHM	X			Down	[111]		
CASC11	X			Up	[100]		
CASC2	X			Down	[107]		Down - poor prognosis
CCAL	X			Up	[4]		Up - poor prognosis
CCAT1	X	X		Up	[23,96-98,116,164-170]		Up – poor prognosis
CCAT1-L	X			Up	[71]		
CCAT2	X	X		Up	[134,172,170]		Prognostic
CLMA3T3	X			Up	[174,170]		Up - poor prognosis
CRNDE	X	X	X	Up	[149,150]		Up – poor prognosis
CRCAL-1/AC021218.2	X			Up	[100]		
CRCAL-2/LINC0858	X			Up	[100]		
CRCAL-3/RP11-138J23.1	X			Up	[100]		
CRCAL-4/RP11-45305.2	X			Up	[100]		
CTD903	X			Down	[27]		Down - poor prognosis
CTNNAPI	X			Down	[97]		
DACOR1	X			Up	[94]		Up - poor prognosis
DANCRI	X			Up	[78]		
DQ786243	X			Up	[78]		
EZF4 antisense	X			Up	[78]		
ENST000004304	X			Up	[81]		
ENST000004559	X			Up	[111]		
74/AC123023.1				Down	[103]		
ENST000004658	X			Down	[127]		
FER1L4	X	X		Down	[127]		Down - poor prognosis
ID	Status	Regulation	Notes				
---------------	--------	------------	-----------------------------------				
FEZF1-AS1	Up	[115,182]	Up - poor prognosis				
FTX	X	Up	Up - poor prognosis				
GAPLINC	X	Up	Prognostic				
GAS5	X, X	Down	Down - poor prognosis				
GHET1	X	Up	[160]				
H19	X	Up	[64,143,145,399,190] Up - poor prognosis				
HIF1-AS1	X, X	Up	Up - poor prognosis				
HIF2PUT	X	Up	[192]				
HOTAIR	X, X	Up	Up - poor prognosis				
HOTAIRMI	X, X	Down	Down - poor prognosis				
HOTTIP	X	Up	[195,196]				
HULC	X, X	Up	Up - poor prognosis				
KCNQ1OT1	X	Up	[196,199]				
LINC00152	X	Up	Up - poor prognosis				
LINC01133	X	Down	Down - poor prognosis				
LINC01296	X	Down	Down - poor prognosis				
lincRNA-p21	X, X	Down	Down - poor prognosis				
Lnc34a	X	Up	[208]				
LncRNA-LET/NPNT-IT1	X	Down	Down - poor prognosis				
LNCV6_116109	X	Up	[120]				
LNCV6_98390	X	Up	X (comb 2)				
LNCV6_38772	X	Up	X (comb 2)				
LNCV6_108226	X	Up	X (comb 2)				
LNCV6_84003	X	Up	X (comb 2)				
LNCV6_98602	X	Up	X (comb 2)				
LOC152578	X	Up	X (comb 3)				
LOC100287225	X	Down	[207,208]				
LOC285194/TU	X, X	Down/Up	Down - poor prognosis				
SC7	X	Down	X (comb 4)				
Malat1	X, X	Up	X (comb 4)				
MEG3	X, X	Down	Up - poor prognosis				
Nbla12061	X	Up	[124]				
ncNRF1	X	Up	[124]				
ncRAN	X	Down	[124,222]				
ncRuPAR	X	Down	[124,222]				
NEAT1	X, X	Up	X (comb 2)				
NORAD	X	X	[133] Down - poor prognosis				
NR_026817	X	Down	Down - poor prognosis				
NR_029373	X, X	Down	X (comb 2)				
LNCRNA MARKERS IN PLASMA/SERUM OF COLORECTAL TUMOR PATIENTS AND THEIR MALIGNANCY-RELATED CELL FUNCTIONS

LncRNA molecules can cross the cell membrane, and hence can be found in different body fluids, such as blood, plasma/serum or urine. They can be derived from apoptotic and necrotic cells, or from living cells by an active manner. These molecules occur in association with RNA-binding proteins or lipoprotein complexes, however, extracellular vesicles are reported to be the primary source of plasma lncRNAs. These forms contribute to the relative resistance to degradation by RNase enzymes that make circulating lncRNAs promising markers for the prognosis, diagnosis, or screening of various diseases, including CRC.

The altered expression of long non-coding RNAs in colorectal cancer tissue, plasma/serum or exosomes and the potential diagnostic value are marked with X, respectively. Combined marker sets are also represented (comb 1, comb 2, comb 3 and comb 4).

Table

LncRNA	Expression	Marker Set	Prognosis
NR_034119	Down	X	[22] Down - poor prognosis
PANDAR	Up	X (comb 2)	Up - poor prognosis
PCAT-1	Up	[22]	Up - poor prognosis
PRNCR1	Up	[22,227]	
PVT-1	Up	[19,141,228]	Up - poor prognosis
RPI-13P20.6	Down	[22]	Down - poor prognosis
RP11-462C24.1	Down/Up	[12,230,231]	Down - poor prognosis
SLC25A25-AS1	Down	[11]	Down - poor prognosis
SnaR	X		
SNHG20	Up	[23]	
SNHG22	Up	[24]	Up - poor prognosis
Sox2ot	Up	[23]	
SPRY4-IT1	Up	[12,23a]	Up - poor prognosis
TINCR	Down	[10,237]	
TUG1	X X X		
uc.388	X	[12,24c]	X (comb 4) Prognostic
uc.73a	X	[12,24c]	X
uc002kmd.1	Up	[12]	
UCA1	Up	[10,13,11,24,26]	Up - poor prognosis
UPAT	X		[10]
XIST	X X	[10,24b]	Prognostic
XLOC_000303	X	[13a]	X (comb 3)
XLOC_0006644	X	[13a]	X (comb 3)
ZFAS1	X X	[19,24a]	Up - poor prognosis
ZNF582-AS1	Down	[25]	

UCA1 levels could be detected in precancerous adenomas which increase in CRC.

In a recent publication, Lao et al. have described the gradual elevation of expression of a novel IncRNA, AC123023.1-201 (ENST0000455974) along the colonic normal-adenoma-dysplasia-carcinoma-metastasis sequence. High levels of this IncRNA were found to be significantly associated with poor survival of DNA mismatch repair proficient (pMMR) CRC patients. In vitro studies suggest that AC123023.1-201 might exert an oncogenic role in the pathomechanism of pMMR CRC via promoting JAG2-mediated Notch signaling.
several lncRNAs were reported in tumor tissues of CRC patients, and recently, additional articles have been published describing their presence in plasma or serum samples[129]. CCAT1 and HOTAIR are among the first markers reported to have significantly elevated expression in the plasma of CRC patients compared to healthy controls[130]. It was also observed that after surgical treatment of CRC patients, the serum levels of these lncRNAs decreased in comparison with pre-operative samples. HOTAIR expression was also reported in peripheral blood mononuclear cells (PBMC) of CRC blood donors as compared with controls; of note, patients with right-sided CRC had lower levels of HOTAIR lncRNA than those with left-sided cancers[89]. In contrast, HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) showed reduced expression in tumor tissue, and low levels were reported in plasma of CRC patients compared to healthy controls using nested TaqMan RT-PCR method[130]. It has been assumed that this lncRNA can inhibit intense cell division and therefore, it may function as a tumor suppressor. The expression of lncRNA SLC25A25-AS1 was also significantly decreased in both tumor tissue and serum samples, and based on in vitro measurements, it was observed that downregulation of SLC25A25-AS1 has an impact on chemoresistance and induces the epithelial-mesenchymal transition (EMT) process[130]. Low levels of Inc-GRNATI-1 were detected in the plasma of CRC patients, and with advanced TNM stages, the level of this lncRNA decreased in the peripheral blood[119]. LncRNA growth arrest specific transcript 5 (GAS5) had diminished expression in serum samples of 109 CRC patients compared with 99 healthy controls[29]. Further experiments highlighted that low level of GAS5 was correlated with advanced TNM stages and larger tumor size. LncRNAs that can enhance cell proliferation were also described in some reports. For instance, lncRNA SPRY4-IT1 was found to be significantly upregulated in CRC tissue and serum samples, and its increased expression was associated with late TNM stages. It influences proliferation, migration, and invasion of CRC cells, and has an effect on the expression of EMT-related genes[130]. Long non-coding RNA-activated by TGF-β (lncRNA-ATB) has been analysed in 50 preoperative and postoperative plasma samples of cancer patients and in 50 healthy volunteers, and its overexpression was reported in 70% (35/50) of CRC cases one month after surgery[129]. Moreover, lncRNA-ATB levels were found to be significantly higher in postoperative plasma in comparison with preoperative samples, suggesting that lncRNA might be released by other mechanisms than by the primary tumor. This research group described another lncRNA, fer-1-like protein 4 (FER1L4) that showed decreased expression level in postoperative blood samples compared with the matched preoperative ones in contrast to the above-mentioned lncRNA-ATB[125]. Wang et al. compiled a panel of IncRNA containing 3 RNAs (LOC285194, RP11-4622A1.1, and NBAL12061) that were upregulated in 61 CRC serum samples compared to healthy controls ($n = 60$)[126]. Another study selected four lncRNAs (BANCR, NR_026817, NR_029373, and NR_034119) for further experiments after high-throughput microarray analysis, and concluded that this panel was dysregulated in tissue and serum samples of colon carcinoma patients[129]. Shi et al. also performed microarray analysis on the circulating plasma IncRNA fraction using Human LncRNA Array v3.0, and 8 transcripts were further examined with RT-qPCR technique. From these candidates, expression of three (XLOC_006844, LOC51252578, and XLOC_000303) IncRNAs were found to be significantly higher in CRC plasma samples ($n = 220$) compared to cancer-free controls ($n = 180$). Another lncRNA, nuclear-enriched abundant transcript 1 (NEAT1) was identified based on microarray results as the most significantly upregulated gene in whole blood samples of CRC patients[129]. Two variants of this lncRNA, NEAT1_v1 and NEAT1_v2 were studied separately, and high levels of both two transcripts were observed[29]. Moreover, Wu et al. showed that knockdown of NEAT1_v1 caused inhibition of cell invasion and proliferation in vitro, while in case of NEAT1_v2, the knockdown of the transcript could induce cell growth. Similarly to the previous studies, lncRNA bladder cancer associated transcript 1 (BLACAT1) was also found to be overexpressed using microarray analysis and the increased expression was confirmed using RT-PCR in CRC serum samples. Liu et al. selected 3 lncRNAs, H19 antisense (H19), placmocytoma variant translocation 1 (PVT-1) and maternally expressed gene 3 (MEG3) and reported increased levels in plasma of CRC patients compared to non-cancerous controls[130]. Our knowledge on the regulation of IncRNA gene expression is incomplete; however, a study by Pedersen et al.[131] demonstrated reduced level of lncRNA CAHM in CRC patients coupled with elevated methylation of CAHM gene, which was detectable also in plasma samples.

Additional circulating lncRNAs have been described as potential biomarkers for CRC detection (e.g., HIF1A-AS1, NORAD, CCAT2 or HULC), and more are expected to be identified in the near future[132-134]. The most promising lncRNAs to date are summarised in Table 1.
APPEARANCE OF LONG NON-CODING RNAs IN EXOSOMES

Exosomes are a subgroup of extracellular vesicles (EVs) that can be found in different body fluids, including blood, serum/plasma, urine or saliva. The particles range from 30 to 100 nm in diameter, and around 2 × 10^{15} exosomes have been identified in the blood of healthy people; however, in case of cancer, the exosome numbers can increase, and reaching 4 × 10^{15}[135,136]. Recent studies highlighted that exosomes secreted by tumor cells contain DNAs, proteins, lipids, different small molecules and RNAs including lncRNAs, and these molecules may also be taken by target cells. Therefore, the contents of exosomes can influence the biological functions of the recipient cells and play an important part in long distance cell-cell communication[137].

Several differentially expressed IncRNAs in exosomes were reported in plasma/serum samples of CRC patients. According to Liu et al.[103], colorectal neoplasia differentially expressed-h (CRNDE-h) showed elevated expression in isolated exosomes of 148 CRC patients compared to benign colorectal disease patients and healthy controls. Moreover, it was observed that a high exosomal level of this lncRNA correlated with both lymph node and distant metastasis and was related to low overall survival rates. Expression of exosomal IncRNA 91H also increased in CRC serum samples, which occurs at a higher level in the vesicles, than in exosome-free sera[138]. It has been also reported that the elevated expression was decreased after surgery. Based on real-time PCR results, Barbagallo et al.[111] demonstrated that UCA1 in serum exosomes of cancerous patients was downregulated, while taurine upregulated 1 (TUG1) was overexpressed. Another study constructed a six-member (LNCV6_116109, LNCV6_98390, LNCV6_38772, LNCV1_108266, LNCV6_84003 and LNCV6_98602) panel of plasma exosomal IncRNAs based on microarray analysis that indicated overexpression in CRC patients compared to healthy individuals[139]. The increased level was already observed in the early stages of CRC suggesting that these lncRNAs are potential markers for early detection of cancer. Dong et al.[140] showed that two mRNAs (KRTAP5-4 and MAGEA3) and one lncRNA (BCAR4) extracted from sera exosomes are present at a lower level in colorectal adenoma and carcinoma patients compared to healthy individuals, and the combination of these RNAs could be used as CRC biomarkers. Interestingly, according to Li et al.[129] lncRNA GAS5 was found to be downregulated in CRC sera samples and acts as a tumor suppressor in cancer development, however, another study revealed that this lncRNA was upregulated in tissues, plasma and exosomes of CRC patients and its expression was related to TNM stage, Dukes stage, lymph node metastasis, local recurrence rate and distant metastasis rate[141].

Analysis of lncRNAs in exosomes is ongoing, and because altered levels of lncRNAs can serve as a potential markers for CRC detection, clarification of their function in cancer development is also a crucial step. The exosomal lncRNAs with altered expression in CRC are listed in Table 1.

CLINICAL RELEVANCE OF ALTERED LONG NON-CODING RNA EXPRESSION PATTERNS IN CRC

Biomarkers - as objectively measurable molecules suitable for monitoring physiological and pathological processes and the effect of treatments - have a crucial role in the clinical workup of tumors, enhancing the early diagnosis, classification of tumors, monitoring therapy response, and supporting the evolution of personalized therapies, as well[141]. lncRNAs can serve as diagnostic, prognostic and predictive biomarkers in malignant diseases including CRC[142]. Principally, lncRNAs with altered levels in different stages of tumorigenesis and progression have a great potential to become early diagnostic and/or prognostic biomarkers. Besides the remarkable expression difference associated with disease stages, the important aspect of their presence and stability in the circulatory system are opening a new path for noninvasive diagnostic applications[121,122]. CCAT1 can serve as a promising marker for early CRC recognition due to its high expression in malignant and benign colorectal tumors compared to normal controls[21,99], and its detection both in PBMC and plasma samples, as well[96,114]. Increased plasma CCAT1 could predict the presence of CRC with 75.7% sensitivity and 85.3% specificity[114]. Almost all splice variants of CRNDE lncRNA, (except for CRNDE-d), and particularly CRNME-b and CRNDE-h, were found to be intensively (approximately 5- to 100-fold) upregulated in both benign and malignant neoplastic colorectal tissue[21]. On the basis of CRNDE-h expression levels, CRC and normal tissue samples could be discriminated with 85% sensitivity and 96% specificity, which was also proven to be a highly sensitive and specific marker in
CRNDE-p, another overexpressed transcript variant of CRNDE (CRNDE-h), showed similar associations with CRC stages [103] (P < 0.001) vs a negative predictor of OS of CRC patients [34.6% (high CRNDE-h) vs 68.2% (low CRNDE-h)]. In addition, increased exosomal CRNDE-h levels were proven to be a metastasis. Exosome levels significantly correlated with tumor size, lymph node, and distant metastasis [99,103]. H19, the overall survival (OS) of CRC patients (P = 0.0005), independently from tumor (TCGA) database (n = 534) showed that H19 was the lncRNA mostly associated with CRC and it also has a prognostic capability due to its high tissue and serum levels for CRC, and it also has a prognostic capability due to its high tissue and serum levels for CRC.

The newly identified upregulated CRCAL1-4 lncRNAs might be suitable for early recognition of colorectal neoplasias, however, only marginal significance could be observed between adenoma and CRC [104]. Potential utilization in CRC screening and diagnostics of several other differentially expressed lncRNAs including BLACAT1 [129], CCAT2 [134], HULC [130], NEAT1 [128], UCA1 [129,130] and HOTAIRM1 [124] has also emerged in RT-qPCR studies analyzing circulating lncRNAs resulting in various specificity (43%-96%) and sensitivity (55%-100%) values. In addition to the altered expression levels, the DNA methylation changes of lncRNAs can hold a discriminative ability, as the amount of methylated CAHM DNA molecules in the circulatory system depends on the CRC stages; hence it can serve as a promising marker for CRC screening.

In addition to single lncRNA marker candidates, lncRNA marker combinations and multi-marker lncRNA panels have also been identified as a potential diagnostic approach. By testing the CRC diagnostic efficacy of circulating HOTAIR and CCAT1, the combined measurement of their plasma/serum levels resulted in higher sensitivity and specificity values (84.3% and 80.2%, respectively) than the above-mentioned markers alone [104]. This marker combination could provide an effective CRC diagnosis performance, moreover, it could detect CRC efficiently already at an early stage (85%). Analysis of Barbagallo et al. [105] revealed that diagnostic accuracy of serum exosome UCA1 levels for CRC (sensitivity: 100%, specificity: 43%) could be enhanced by applying it in combination with TUG1 lncRNA (sensitivity: 93%, specificity: 64%) or with circHIPK3 circular non-coding RNA (sensitivity: 100%, specificity: 70%). A promising lncRNA panel containing three lncRNAs (LOC152578, XLOC_000303, and XLOC_0006844) upregulated in CRC was identified and validated on a large independent plasma sample cohort (220 CRCs, 180 controls) (positive predictive value: 0.80, negative predictive value: 0.84, AUC = 0.975) [106]. The double-blind test on another 100 plasma samples (50 CRC, 50 cancer-free controls) also confirmed that the above-mentioned biomarker set is suitable for indicating the occurrence of CRC with 85% accuracy [125]. CRC and healthy normal cases could be distinguished based on the increased serum levels of LOC285194, RP11-46C24.1, and Nbla12061 lncRNAs (AUC = 0.793, sensitivity: 68.33%, specificity: 86.89%) [107]. The predictive value of this lncRNA signature was significantly higher than that of the conventional clinical serum protein markers (CEA, CA199, CA125, and CA724) (AUC values were 0.633, 0.567, 0.517 and 0.592, respectively) [108]. Microarray analysis of CRC-NAT tissue sample pairs revealed a four-lncRNA panel (upregulated BANCR and downregulated NR_026817, NR_029373, NR_034119) which had consistently altered pattern both in CRC tissue and serum samples compared to normal controls [29]. The high AUC, specificity and sensitivity values for both the training and validation sample sets support the reliable diagnostic ability of this biomarker set (AUC: 0.891 and 0.881; specificity: 80% and 75.83%; sensitivity: 81.67% and 89.17%) which even exceeded the diagnostic power of CEA [129]. A pilot study of Liu et al. revealed a new promising diagnostic plasma ncRNA biomarker set (H91, PVT-1, MEG3) for early-stage CRCs as the panel could differentiate CRC samples from controls with 82.76% sensitivity and 78.57% specificity [105]. According to the Lnc2Cancer 2.0 database (www.bio-bigdata.com/lnc2cancer), the most frequently described lncRNAs with prognostic value in CRC are H19 [129-132], CRNDE [103,104,136], HOTAIR [108,109] and MALAT1 [129] (Supplemental Table 1). In silico lncRNA expression analysis of CRC data from The Cancer Genome Atlas (TCGA) database (n = 534) showed that H19 was the lncRNA mostly associated with the overall survival (OS) of CRC patients (P = 0.0005), independently from tumor stage [104]. Elevated H19 levels were found to be correlated with tumor differentiation and advanced TNM stage [114], and its expression could be considered as an independent predictor for OS and disease-free survival (DFS). Other studies also confirmed that overexpression of H19 lncRNA could predict the unfavorable prognosis in CRC [140]. CRNDE-h can serve as a promising early diagnostic biomarker for CRC, and it also has a prognostic capability due to its high tissue and serum exosome levels significantly correlated with tumor size, lymph node, and distant metastasis [109,125]. In addition, increased exosomal CRNDE-h levels were proven to be a negative predictor of OS of CRC patients [34.6% (high CRNDE-h) vs 68.2% (low CRNDE-h), P < 0.001] [109]. Similar associations with CRC stages were reported for CRNDE-p, another overexpressed transcript variant of CRNDE [104]. HOTAIR lncRNA
was also observed to be a negative prognostic factor in CRC, as its upregulated expression in primary tumor tissue, even more in blood of CRC patients were found to be associated with higher mortality [Cox's proportional hazard, hazard ratio (HR) (tissue) = 4.4, HR (blood) = 5.9][90]. Significant differences in clinicopathological parameters such as less differentiated histology, greater tumor depth, and liver metastasis were observed in CRC cases with high HOTAIR expression (n = 20) compared CRCs with low HOTAIR levels (n = 80) (P < 0.05)[90]. Results of several other studies verified the correlation of higher HOTAIR levels with poorer OS[92,108]. With the RT-qPCR analysis of tissue samples from 146 stage II/III CRC patients, it was observed that patients with more intense MALAT1 lncRNA expression had a significantly worse prognosis with a HR of 2.863 for DFS and 3.968 for OS[92]. Moreover, high MALAT1 levels were found to be associated with decreased patient survival and poor response to oxaliplatin-based chemotherapy in advanced CRC patients suggesting its utility as a prognostic marker and therapeutic target in CRC[99].

In addition to CRNDE[103,107] and HOTAIR[90,116], among the 31 potentially prognostic lncRNAs published in at least two independent studies, CCAT2[103,117], GAS5[118], BLACAT1[129], CCAT1[62,118], NEAT1[128], 91H[128], and BANCR[122] lncRNAs were also detectable in the circulation suggesting their application as minimally invasive markers for CRC prognosis (Table 1 and Supplemental Table 1). As reported by Ozawa et al.[107] in a study involving two independent cohorts, the evaluation of CCAT2 expression in combination with CCAT1 may be a powerful tool for predicting tumor recurrence and prognosis in CRC patients. According to the expression analysis in tissue, plasma and exosome samples, GAS5 had a prognostic value in CRC based on its expression that was negatively correlated with TNM status, Dukes stage, and lymph node metastasis (LNM), local recurrence and distant metastasis rate, while its level was in positive relation with differentiation degree and the 3-year OS rate[118]. On the other hand, elevated BLACAT1 expression could be considered as an independent unfavorable prognostic indicator for CRC, as it was observed to be associated with advanced CRC stages and shorter OS[129]. The predictive potential of lncRNA transcript variants can differ, as the OS of CRC patients with intensive NEAT1_v1 expression was worse, while high levels of the other isoform, NEAT1_v2 was correlated with better OS[128]. Determination of clinical significance of elevated exosomal H91 lncRNA expression suggested that it might be an early minimal invasive biomarker for CRC recurrence or metastasis[118]. Gong et al.[118] evaluated the diagnostic and prognostic value of increased serum HIF1A-AS1 levels in 151 CRC and 160 healthy control samples by RT-PCR, and reported a high diagnostic efficacy (86.8% sensitivity and 92.5% specificity); moreover, it was described as a predictor for worse prognosis in CRC.

In addition to the diagnostic and prognostic utility of lncRNAs with altered expression, ongoing research focused on the role of lncRNAs in chemoresistance and therapy response prediction are revealing several lncRNAs which could be promising therapeutic targets in CRC. Similarly to the above-mentioned MALAT1 whose increased levels were found to be associated with poor response to oxaliplatin (OXA)-based chemotherapy[118], CRNDE can also contribute to oxaliplatin resistance in CRC[103,107]. According to a recent in vitro study, CRNDE facilitates the resistance against OXA or 5-fluorouracil (5FU) treatment via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling[107]. Association between high HOTAIR expression and poor response to 5FU treatment was assessed[147]. HOTAIR can contribute to 5FU resistance through suppressing miR-218 and activating NF-κB signaling in CRC[147]. HOTAIR was observed to be upregulated in drug-resistant cisplatin- or paclitaxel-treated SW620 and Colo205 CRC cells, as well[149] and could affect the chemoresistance of CRC via miR-203a-3p-mediated modulation of Wnt/β-Catenin pathway[147]. The most important tissue and circulating lncRNAs with diagnostic and prognostic potential in colorectal tumors are represented in Figure 1.

CONCLUSION

The increasing number of genome-wide expression analysis studies have led to the identification of a number of long non-coding RNAs with altered expression patterns in cancers including CRC. lncRNAs are proven to contribute to each step of the colorectal carcinogenesis and tumor progression by influencing the key cancer-related signal transduction pathways such as WNT/β-catenin, PI3K/Akt, EGFR, NOTCH, mTOR and TP53 signaling. Dysregulated lncRNAs can appear in the pre-malignant adenoma stage of CRC and the expression alterations of a relatively large number of lncRNAs were found to be associated with clinicopathological parameters indicating CRC progression. Furthermore, lncRNAs are stable and detectable in body fluids
Figure 1 The most important tissue and circulating long non-coding RNA candidates with diagnostic and prognostic potential in colorectal tumors. Long non-coding RNA (lncRNAs) upregulated in adenoma or colorectal cancer (CRC) samples compared to normal controls are marked with ↑, while the downregulated lncRNAs are depicted with ↓. Potential prognostic markers detectable both in tissue and blood specimens are highlighted in the right, where ↑ refers to lncRNAs whose higher levels were found to be associated with poor prognosis (CRNDE, HOTAIR, CCAT2, BLACAT1, CCAT1, NEAT1, 91H, HIF1A-AS1), while the low expression of lncRNA marked with ↓ (GAS5) can be a predictor of worse disease outcome in CRC patients. In case of the lncRNAs written without frame (BANCR, BCAR4, LOC285194, RP11-462C24.1, UCA1), diverse, sometimes controversial expression data are available in the scientific literature.

facilitating their utilization as early detection and prognostic biomarkers. In order to open the door for implementation of minimally invasive lncRNA-based tests in the clinical practice, certain relevant technical aspects should be considered: (1) Standardization of the pre-processing and sample preparation procedure including the applied blood collection tubes, sample storage conditions and time, optimized lncRNA isolation protocols from liquid biopsy samples; (2) Selection of appropriate quantification, quality checking and sensitive techniques allowing the precise detection of cancer-related alterations; and (3) Application of proper universal endogenous controls for increasing the reliability and the accuracy of RT-qPCR measurements. For the development of adequately sensitive and CRC-specific, clinically applicable diagnostic and prognostic tests based on lncRNA markers/marker panels, validation studies with large sample cohorts are essential. On the other hand, as recent studies shed light on the potential role of lncRNAs as novel therapeutic targets, the specific lncRNA expression alterations in liquid biopsy samples may contribute to the improved early recognition, prognosis prediction and therapy monitoring in CRC. Moreover, lncRNAs as druggable targets might represent the basis of novel therapeutic methods in the fight against cancer.

ACKNOWLEDGEMENTS

We thank Ramani Gopal PhD and Theo deVos PhD for their careful language assistance.

REFERENCES
Genetics 2013; 1008: 1008

Borsani G

81

1984; 810: Proc Natl Acad Sci USA

raf and Rif genes.

829-840 [PMID: 22393467 DOI: 10.1177/1947601911431081]

, Belayew A, Tilghman SM. Locus unlinked to alpha-fetoprotein under the control of the murine Gene with Elevated Expression in Colorectal Adenomas and Adenocarcinomas.

2

Genes Cancer 2011; 13: 196 [PMID: 23594791 DOI: 10.1186/1471-2407-13-196]

13

: 3212-3225 [PMID: 29158793 DOI: 10.7150/jca.19794]

2017;

, Junjie P, Sanjun C, Ma Y. Long non-coding RNAs in Colorectal Cancer: Progression and Future Perspectives.

: 39 [PMID: 27189224 DOI: 10.1186/s12943-016-0524-4]

2016;

, Zhou XY, Du X. Circulating long non-coding RNAs in cancer: current status and future implications.

Gastroenterol Hepatol : 837-845 [PMID: 27696511 DOI: 10.1111/j.1440-1844.2008.05580.x]

resistance of radiotherapy for human colorectal cancer and promotes tumorigenesis and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/b-catenin signaling pathway. PLoS One 2015; 8: e78700 [PMID: 24243433 DOI: 10.1371/journal.pone.0078700]

Yue B, Liu C, Sun H, Liu M, Song C, Cai R, Qiu S, Zhou M. A Positive Feed-Forward Loop between LncRNA-CYTOR and Wnt/b-Catenin Signaling Promotes Metastasis of Colon Cancer. Mol Ther 2018; 26: 1287-1298 [PMID: 29606502 DOI: 10.1038/mte.2018.02.024]

Xu S, Sui S, Zhang J, Bai N, Shi Q, Zhang G, Gao S, You Z, Zhan C, Liu F, Pang D. Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. Int J Clin Exp Pathol 2015; 8: 4881-4891 [PMID: 26191181]

Zhou J, Zhi X, Wang L, Wang W, Li Z, Tang J, Wang J, Zhang Q, Xu Z. Linc00152 promotes proliferation in gastric cancer through the EGRF-dependent pathway. J Exp Clin Res Cancer 2015; 34: 135 [PMID: 2638117 DOI: 10.1186/s13046-015-0230-6]

Yue B, Cai D, Liu C, Fang C, Yan D. Linc00152 Functions as a Competing Endogenous RNA to Confers Oxaliplatin Resistance and Holds Promising Values in Colon Cancer. Mol Ther 2016; 24: 2064-2077 [PMID: 27633443 DOI: 10.1038/mte.2016.180]

Cai Q, Wang ZQ, Wang SH, Li C, Zou ZG, Quan ZW, Zhang WJ. Upregulation of long non-coding RNA LINC00152 by SF1 contributes to galbladder cancer cell growth and tumour metastasis via PI3K/AKT pathway. Am J Transl Res 2016; 8: 4068-4081 [PMID: 27529993]

Bian Z, Zhang J, Li M, Feng Y, Yao S, Song M, Qi X, Fei B, Yin Y, Hua D, Zhang C. Long non-coding RNA LINC00152 promotes cell proliferation, migration, and metastasis of breast cancer cell line MDA-MB-231 induced by MIR-193a. Oncogenesis 2018; 7: 63 [PMID: 30115914 DOI: 10.1038/s41389-018-0067-1]

Yang X, Duan B, Zhou X. Long non-coding RNA FOXD2-AS1 functions as a tumor promotor in colorectal cancer by regulating EMT and Notch signaling pathway. Eur Rev Med Pharmacol Sci 2017; 21: 3586-3591 [PMID: 28925846]

Lu S, Dong W, Zhao F, Liu Z. LncRNA FAM83H-AS1 is associated with the prognosis of colorectal carcinoma and promotes cell proliferation by targeting the Notch signaling pathway. Oncol Lett 2017; 18: 1861-1868 [PMID: 29434883 DOI: 10.3892/ol.2017.7520]

Ji J, Tang J, Deng L, Xie Y, Jiang R, Li G, Sun B. LINC00152 promotes proliferation in hepatocellular carcinoma by targeting EpCAM via the mTOR signaling pathway. Oncotarget 2015; 6: 42813-42824 [PMID: 2640434 DOI: 10.18632/oncotarget.5970]

Jahangiri B, Khalaji-Kondori M, Asadollahi E, Sadeghizadeh M. Cancer-associated fibroblasts enhance cell proliferation and metastasis of colorectal cancer SW480 cells by provoking long noncoding RNA UCA1. J Cell Commun Signal 2019; 13: 53-64 [PMID: 29948578 DOI: 10.1007/s12079-018-0471-5]

Sun L, Jiang C, Xu C, Xue H, Zhou H, Gu L, Liu Y, Xu Q. Down-regulation of long non-coding RNA RP11-708H21.4 is associated with poor prognosis for colorectal cancer and promotes cell proliferation, migration, and apoptosis in colorectal cancer cells via MALAT1 mediated Wnt/b-Catenin signal pathway. PLoS One 2017; 12: 29799-29742 [PMID: 28427191 DOI: 10.18632/oncotarget.15846]

Thorennoor N, Faltejskova-Vychytilova P, Hornbach S, Micchova J, Kretz M, Svoboda M, Slaby O. Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer. Oncotarget 2016; 7: 622-637 [PMID: 26906418 DOI: 10.18632/oncotarget.5807]

Yang P, Yang Y, An W, Xu J, Zhang G, Jie J, Zhang Q. The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145-145 pathway. J Gastroenterol Hepatol 2017; 32: 837-845 [PMID: 27696511 DOI: 10.1111/jgh.13666]

Qi P, Zhou XY, Du X. Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer 2016; 15: 39 [PMID: 27189224 DOI: 10.1186/s12943-016-0524-4]

Yang Y, Junjie P, Sanjun C, Ma Y. Long non-coding RNAs in Colorectal Cancer: Progression and Future Directions. J Cancer 2017; 8: 3212-3225 [PMID: 29158793 DOI: 10.7150/jca.19794]

Alaytay B, Ilayev N, Stojadinovic A, Izadjoz M, Roistacher M, Pavlov V, Trzvin V, Halle D, Pan H, Trnk A, Gore AO, Nissan A. Differential expression of colon cancer related long noncoding RNA LINC00152 along the colon adenoma-carcinoma sequence. BMC Cancer 2013; 13: 196 [PMID: 23594791 DOI: 10.1186/1471-2407-13-196]

Graham LD, Pedersen SK, Brown GS, Ho T, Kassir Z, Moynihan AT, Vzgoi EF, Dunne R, Pimlott L, Young GP, Lapointe LC, Molloy PL. Colorectal Neoplasia Differentially Expressed (CRNDE), a Novel Gene with Elevated Expression in Colorectal Adenomas and Adenocarcinomas. Genes Cancer 2011; 2: 829-840 [PMID: 22393467 DOI: 10.1177/1947691914130181]

Pachnis V, Belayev A, Tilghman SM. Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci USA 1983; 81: 5522-5527 [PMID: 6206999 DOI: 10.1073/pnas.81.17.5522]

Borsani G, Tonlorenzi R, Simmler MC, Dandolo L, Arnaud D, Capra V, Grompe M, Pizzuti A, Muzny D, Lawrence C, Willard HF, Avner P, Ballabio A. Characterization of a murine gene expressed from the inactive X chromosome. Nature 1991; 351: 325-329 [PMID: 2034278 DOI: 10.1038/351325a0]

Jarrous J, Morillon A, Pinskaya M. History, Discovery, and Classification of IncRNAs. Adv Exp Med Biol 2017; 1008: 1-46 [PMID: 28915335 DOI: 10.1007/978-981-14-0307-0_1]

Kung JT, Colegnoti D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics 2013; 193;
Galamb O et al. Diagnostic and prognostic lncRNAs in colorectal tumors

651-669 [PMID: 23463798 DOI: 10.1534/genetics.112.146704]

29 Gloss BS, Dinger ME. Realizing the significance of noncoding functionality in clinical genomics. Exp Mol Med 2018; 50: 97 [PMID: 30609779 DOI: 10.1038/s12276-018-0007-2]

30 Cheng L, Wang P, Tian R, Wang S, Guo Q, Luo M, Zhou W, Liu G, Jiang H, Jiang Q. LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res 2019; 47: D140-D144 [PMID: 30388072 DOI: 10.1093/nar/gky1051]

31 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 78: 843-854 [PMID: 822626]

32 Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10: 155-159 [PMID: 19189922 DOI: 10.1038/nrg2521]

33 Ulitsky I, Bartel DP. lncRNAs: genomics, evolution, and mechanisms. Cell 2013; 154: 26-46 [PMID: 23827673 DOI: 10.1016/j.cell.2013.06.020]

34 Pelechano V, Steimetz LM. Gene regulation by antisense transcription. Nat Rev Genet 2013; 14: 880-893 [PMID: 24217315 DOI: 10.1038/nrg3594]

35 Ma I, Jaco B, Vitez, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10: 925-933 [PMID: 23690367 DOI: 10.4161/rna.24694]

36 Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakamishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, Suzuki H, Carver P, Hayashizaki Y, Wells C, Frith M, Ravasi T, Pang KC, Hallinan J, Mattick J, Hume DA, Lipovich L, Batalov S, Engstrom PG, Mizuno Y, Faghhi MA, Sandelin A, Chalk AM, Mottagui-Tabar S, Liang Z, Lenhard B, Wahlestedt C, RIKEN Genome Exploration Research Group; Genome Science Group (Genome Network Project Core Group); FANTOM Consortium. Antisense transcription in the mammalian transcriptome. Science 2005; 309: 1564-1566 [PMID: 16141073 DOI: 10.1126/science.1120290]

37 He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW. The antisense transcriptomes of human cells. Science 2008; 322: 1855-1857 [PMID: 19056939 DOI: 10.1126/science.1163853]

38 Lee JT, Davidov LS, Washavsky D, Tiss, a gene antisense to Xist at the X-inactivation centre. Nat Genet 1998; 21: 400-404 [PMID: 10387734]

39 Balakirev ES, Ayala PJ. Pseudogenes: are they "junk" or functional DNA? Annu Rev Genet 2003; 37: 123-151 [PMID: 14616058 DOI: 10.1146/annurev.genet.37.041003.103949]

40 St Laurent G, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet 2015; 31: 239-251 [PMID: 25869999 DOI: 10.1016/j.tig.2015.03.007]

41 Geisler S. Collier J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 2013; 14: 699-712 [PMID: 23898150 DOI: 10.1038/nrm3679]

42 Gudenas BL, Wang L. Prediction of lncRNA Subcellular Localization with Deep Learning from Sequence Features. Sci Rep 2018; 8: 16385 [PMID: 30401954 DOI: 10.1038/s41598-018-34768-w]

43 Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014; 157: 77-94 [PMID: 24679528 DOI: 10.1016/j.cell.2014.03.008]

44 Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate translation? Sci Adv 2017; 3: eaao2110 [PMID: 28959731 DOI: 10.1126/sciadv.aao2110]

45 Kornienko AE, Guenzl PM, Barlow DP, Paulier FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol 2013; 11: 59 [PMID: 23721193 DOI: 10.1186/1741-7007-11-59]

46 Yao BW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol 2019; 21: 542-551 [PMID: 31048766 DOI: 10.1038/s41464-019-0311-x]

47 Yang S, Sun Z, Zhou Q, Wang W, Wang G, Song J, Li Z, Zhang Z, Yang X, Xia K, Liu J, Yuan W. MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer. Cancer Manag Res 2018; 10: 2249-2257 [PMID: 30107566 DOI: 10.2147/CMAR.S166309]

48 Romero-Barron N, Legasue MF, Benhamed M, Ariel F, Crespi M. Splicing regulation by long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689-693 [PMID: 20616235 DOI: 10.1126/science.1192002]

49 Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB. An architectural strategy for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 2009; 33: 717-726 [PMID: 19217333 DOI: 10.1016/j.molcel.2009.01.026]

50 Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shy S, Segal E, Chang HY. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689-693 [PMID: 20616235 DOI: 10.1126/science.1192002]

51 Merry CR, Forrest ME, Sabers JN, Bead L, Gao XH, Hatzoglou M, Jackson MW, Wang Z, Markowitz SD, Khalil AM. DNM1L-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum Mol Genet 2015; 24: 6240-6253 [PMID: 26307038 DOI: 10.1093/hmg/ddv343]

52 Zhao Y, Sun H, Wang H. Long noncoding RNAs in DNA methylation: new players stepping into the old game. Cell Biosci 2016; 6: 45 [PMID: 27408682 DOI: 10.1186/s13578-016-0109-3]

53 Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscati P, Dinger ME, Mattick JS. Genome-wide analysis of long noncoding RNA stability. Genome Res 2012; 22: 885-898 [PMID: 22406755 DOI: 10.1101/gr.131037.111]

54 Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. Nucleic Acids Res 2009; 37: 45-58 [PMID: 19864826 DOI: 10.1093/nar/gkn428]

55 Tani H, Mizutani R, Salama K, Tano K, Iijiri K, Wakamatsu A, Isogai T, Suzuki Y, Akimitsu N. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 2012; 22: 947-956 [PMID: 22369889 DOI: 10.1101/gr.130559.111]

56 Zametkina A, Albrecht A, Steinhofel K. Long Non-coding RNA Structure and Function: Is There a Link? Front Physiol 2018; 9: 1201 [PMID: 30197665 DOI: 10.3389/fphys.2018.01201]

57 Dinger ME, Amaral PP, Mercer TR, Mattick JS. Pervasive transcription of the eukaryotic genome.
RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Gupta RA. 2014; Cell 159: 647-661 [PMID: 25307932 DOI: 10.1016/j.cell.2014.08.018]

Approach to Functionalize lncRNAs in Drug Resistance. Rinn JL, Provero P, Church GM, Clohessy JG, Pandolfi PP. An Integrated Genome-wide CRISPRa genome-scale identification of functional long noncoding RNA loci in human cells. Science 2015; 348: 363-376.e16 [PMID: 29887381 DOI: 10.1126/science.aain905]

Functional regions of long noncoding RNAs. Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A, Rinn JL, Raj A. icLIF..."
Long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients. *Carcinogenesis* 2018; 39: 1218-1224 [PMID: 2985650] DOI: 10.1002/cncr.31225-4

Long non-coding RNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. *Int J Clin Exp Pathol* 2014; 7: 3174-3181 [PMID: 25031737]

Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. *Br J Cancer* 2014; 111: 736-748 [PMID: 25029966] DOI: 10.1038/bjc.2014.333

Long non-coding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. *BMC Cancer* 2019; In press

CRNDE promotes colorectal cancer cell proliferation via epigenetically silencing DUSP5/CDKN1A expression. *Cell Death Dis* 2018; 9 [PMID: 28086904 DOI: 10.1038/s41598-017-18407-6]

Long non-coding RNA CRNDe is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients. *Carcinogenesis* 2014; 35: 1510-1515 [PMID: 24589326 DOI: 10.1009/carcin/bgul55]

MALAT1: a long non-coding RNA and its important 3' end functional motif in colorectal cancer metastasis. *Int J Oncol* 2011; 39: 169-175 [PMID: 21503572 DOI: 10.3892/ijo.2011.1007]

MALAT-1: a long non-coding RNA and its important 3' end functional motif in colorectal cancer metastasis. *Int J Oncol* 2011; 39: 169-175 [PMID: 21503572 DOI: 10.3892/ijo.2011.1007]

The IncRNA H19 Promotes Cell Proliferation by Competitively Binding to miR-200a and Dereregulating β-Catenin Expression in Colorectal Cancer. *Biomed Res Int* 2017; 2017: 2767484 [PMID: 28164171 DOI: 10.1155/2017/2767484]

Carcinogenesis 2010; 31: 350-358 [PMID: 19926638 DOI: 10.1093/carcin/bgp181]

Yang W, Jing N, Xin X. The IncRNA H19 Promotes Cell Proliferation by Competitively Binding to miR-200a and Dereregulating β-Catenin Expression in Colorectal Cancer. *Biomed Res Int* 2017; 2017: 2767484 [PMID: 28164171 DOI: 10.1155/2017/2767484]

Carcinogenesis 2010; 31: 350-358 [PMID: 19926638 DOI: 10.1093/carcin/bgp181]
proficient colon cancer. *Biochem Biophys Res Commun* 2019; 508: 339-347 [PMID: 30473216 DOI: 10.1016/j.bbrc.2018.11.085]

112 Soile C, Arnaez E, Manterola L, Otaegui D, Lawrie CH. The circulating transcriptome as a source of cancer liquid biopsy biomarkers. *Semin Cancer Biol* 2019; [PMID: 30684535 DOI: 10.1016/j.semcancer.2019.01.003]

113 Li Q, Shao Y, Zhang X, Zheng T, Miao L, Qin L, Wang B, Ye G, Xiao B, Guo J. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. *Tumour Biol* 2015; 36: 2007-2012 [PMID: 25391424 DOI: 10.1007/s13277-014-2180-3]

114 Vieireck J, Thum T. Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury. *Circ Res* 2017; 120: 381-399 [PMID: 28104771 DOI: 10.1161/CIRCRESAHA.116.308434]

115 Chen D, Sun Q, Cheng X, Zhang L, Song W, Zhou D, Lin J, Wang W. Genome-wide analysis of long noncoding RNA (IncRNA) expression in colorectal cancer tissues from patients with liver metastasis. *Cancer Med* 2016; 5: 1629-1639 [PMID: 27165841 DOI: 10.1002/cam4.728]

116 Zhao W, Song M, Zhang J, Kuerban M, Wang H. Combined identification of long non-coding RNA CCAT1 and HOXATIR in serum as an effective screening for colorectal carcinoma. *Int J Clin Exp Pathol* 2015; 8: 1431-1440 [PMID: 26823726]

117 Wan L, Kong J, Tang J, Wu Y, Xu E, Lai M, Zhang H. HOTAIRM1 as a potential biomarker for diagnosis of colorectal cancer functions the role in the tumour suppressor. *J Cell Mol Med* 2016; 20: 2036-2044 [PMID: 27307307 DOI: 10.1111/jcmm.12892]

118 Li Y, Huang S, Li Y, Zhang W, He K, Zhao M, Lin H, Li D, Qian J, Zhou C, Chen Y, Huang C. Decreased expression of LncRNA SLC25A2-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. *Tumour Biol* 2016; 37: 14205-14215 [PMID: 27553025 DOI: 10.1007/s13277-016-5254-0]

119 Ye C, Shi Z, Wang H, Li Y, Li T, Yang J, Jiang K, Ye Y, Wang S. A novel long non-coding RNA IncGNAAT1-1 is low expressed in colorectal cancer and acts as a tumour suppressor through regulating RKIP-NF-κB-Snail circuit. *J Exp Clin Pathol* 2016; 35: 187 [PMID: 27912775 DOI: 10.1186/s13046-016-0647-2]

120 Li Y, Li Y, Huang S, He K, Zhao M, Lin H, Li D, Qian J, Zhou C, Chen Y, Huang C. Long non-coding RNA growth arrest specific transcript 5 acts as a tumour suppressor in colorectal cancer by inhibiting interleukin-10 and vascular endothelial growth factor expression. *Oncotarget* 2017; 8: 13690-13702 [PMID: 28099146 DOI: 10.18632/oncotarget.14625]

121 Cao D, Ding Q, Yu W, Gao M, Wang Y. Long noncoding RNA SPRY4-IT1 promotes malignant development of colorectal cancer by targeting epithelial-mesenchymal transition. *Onco Targets Ther* 2016; 9: 5417-5425 [PMID: 27621653 DOI: 10.2147/OTT.S111794]

122 Yue B, Qiu S, Zhao S, Liu C, Zhang D, Yu F, Peng Z, Yan D. LncRNA-ATB-mediated E-cadherin repression promotes the progression of colon cancer and predicts poor prognosis. *J Gastroenterol Hepatol* 2016; 31: 595-603 [PMID: 26873001 DOI: 10.1111/jgh.13206]

123 Yue B, Sun B, Liu C, Zhao S, Zhang D, Yu F, Yan J. Long non-coding RNA FER-like protein 4 suppresses oncogenesis and exhibits promising prognostic value by associating with miR-106a-5p in colon cancer. *Cancer Sci* 2015; 106: 1323-1332 [PMID: 26224446 DOI: 10.1111/cas.12759]

124 Wang C, Yu J, Han Y, Li L, Li J, Li P, Long non-coding RNAs LOC285194, RPII-462C24.1 and Nbla12061 in serum provide a new approach for distinguishing patients with colorectal cancer from healthy controls. *Oncotarget* 2016; 7: 70769-70778 [PMID: 27983312 DOI: 10.18632/oncotarget.12220]

125 Wang R, Du L, Yang X, Jiang X, Duan W, Yan S, Xie Y, Zhu Y, Wang Q, Wang L, Yang Y, Wang C. Identification of long noncoding RNAs as potential novel diagnosis and prognosis biomarkers in colorectal cancer. *J Cancer Res Clin Oncol* 2016; 142: 2291-2301 [PMID: 27951862 DOI: 10.1007/s00432-016-2289-0]

126 Shi J, Li X, Zhang F, Zhang C, Guan Q, Cao X, Zhu W, Zhang X, Cheng Y, Ou K, Chen Q, Hu S. Circulating IncRNAs associated with occurrence of colorectal cancer progression. *Am J Cancer Res* 2015; 5: 2258-2265 [PMID: 26328256]

127 Xu Y, Xu Q, Yang L, Ye X, Liu F, Wu F, Ni S, Tan C, Cai G, Meng X, Cai S, Du X. Identification and validation of a blood-based 18-gene expression signature in colorectal cancer. *Clin Cancer Res* 2013; 19: 3039-3049 [PMID: 2353636 DOI: 10.1158/1078-0432.CCR-12-3232]

128 Wu Y, Yang L, Zhao J, Li C, Nie J, Liu F, Zhuo C, Zheng Y, Li B, Wang Z, Xu Y. Nuclear-enriched abundant transcript 1 as a diagnostic and prognostic biomarker in colorectal cancer. *Tumour Biol* 2015; 14: 2395-2407 [PMID: 26552600 DOI: 10.1186/s12059-015-0455-5]

129 Dai M, Chen X, Mo S, Li J, Huang Z, Huang S, Xu J, He B, Zou Y, Chen Y, Dai S. Meta-signature lncRNAs serve as novel biomarkers for colorectal cancer: integrated bioinformatics analysis, experimental validation and diagnostic evaluation. *Sci Rep* 2017; 7: 4652 [PMID: 28406230 DOI: 10.1038/srep46527]

130 Liu H, Ye D, Chen A, Tan D, Zhang W, Jiang W, Wang M, Zhang X. A pilot study of new promising non-coding RNA diagnostic biomarkers for early-stage colorectal cancers. *Cancer Lett* 2019; 57: 1073-1083 [PMID: 30978169 DOI: 10.1515/cletm-2019-0052]

131 Pedersen SK, Mitchell SM, Graham LD, McEvoy A, Thomas ML, Baker RT, Ross JP, Xu ZZ, Ho T, LaPointe LC, Young GP, Molloy PL. CAHM, a long non-coding RNA gene hypermethylated in colorectal neoplasia. *Epigenetics* 2014; 9: 1071-1082 [PMID: 24799664 DOI: 10.4161/epi.29046]

132 Gong W, Tian M, Qu H, Yang Z. Elevated serum levels of IncRNA HIF1A-AS1 as a novel diagnostic predictor for worse prognosis in colorectal carcinoma. *Cancer Biomark* 2017; 20: 417-424 [PMID: 28945548 DOI: 10.3233/CBM-170179]

133 Wang L, Du L, Duan W, Yan S, Xie Y, Wang C. Overexpression of long noncoding RNA NORAD in colorectal cancer associates with tumor progression. *Oncotarget* 2018; 9: 6757-6766 [PMID: 30393308 DOI: 10.18632/oncotarget.26757]

134 Yang W, Qiu S, Zhao H, Lin H, Li D, Qian J, Zhou C, Chen Y, Huang C. Long non-coding RNA growth arrest specific transcript 5 acts as a tumour suppressor in colorectal cancer by inhibiting interleukin-10 and vascular endothelial growth factor expression. *Oncotarget* 2017; 8: 13690-13702 [PMID: 28099146 DOI: 10.18632/oncotarget.14625]

135 Shao Y, Shen Y, Chen T, Xu F, Chen X, Zheng S. The functions and clinical applications of tumor-derived exosomes. *Oncotarget* 2017; 7: 60736-60751 [PMID: 27517627 DOI: 10.18632/oncotarget.11177]

136 Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. *Cancer Metastasis Rev* 2013; 32: 623-642 [PMID: 23790920 DOI: 10.1007/s10555-013-9441-0]
Galamb O et al. Diagnostic and prognostic IncRNAs in colorectal tumors

Gao T, Liu X, He B, Nie Z, Zhu C, Zhang P, Wang S. Exosomal IncRNA 91H is associated with poor development in colorectal cancer by modifying HNRNPK expression. Cancer Cell Int 2018; 18: 11 [PMID: 29106679 DOI: 10.1186/s12935-018-0506-z]

Hu D, Zhan Y, Zhu K, Bai M, Han J, Si Y, Zhang H, Kong D. Plasma Exosomal Long Non-Coding RNAs Serve as Biomarkers for Early Detection of Colorectal Cancer. Cell Physiol Biochem 2018; 51: 2704-2715 [PMID: 30562751 DOI: 10.1007/s00595-016-10006]

Dong L, Lin W, Qi P, Xu MD, Wu X, Ni S, Huang D, Weng WW, Tan C, Sheng W, Zhou X, Xu X. Circulating Long RNAs in Serum Extracellular Vesicles: Their Characterization and Potential Application as Biomarkers for Diagnosis of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2016; 25: 1158-1166 [PMID: 27197301 DOI: 10.1158/1055-9966.EPI-16-0006]

Liu L, Meng T, Yang XH, Sayim P, Lei C, Jin B, Ge L, Wang HJ. Prognostic and predictive value of long non-coding RNA GAS5 and microRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Cancer Biomark 2018; 22: 283-299 [PMID: 29630525 DOI: 10.2333/cbm.17-10111]

Molnár B, Galamb O, Kalmár A, Bartáti BK, Nagy ZB, Tóth K, Tulassay Z, Igor P, Dank M. Circulating cell-free nucleic acids as biomarkers in colorectal cancer screening and diagnosis - an update. Expert Rev Mol Diagn 2019; 19: 477-498 [PMID: 31046485 DOI: 10.1080/14737159.2019.1613891]

Ueha M, Ling J, Ivan C, Pichler M, Matsushita D, Gobinrich M, Stiegeler M, Shigeuay K, Zhang X, Chen M, Vluiu F, Balhornoumesz GA, Toiyama Y, Kusunoki M, Doki Y, Mori M, Song S, Gunther JR, Krishnan S, Slaby O, Goel A, Ajani JA, Radovich M, Calin GA. H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-ß-Catenin Signaling in Colorectal Cancer. EBioMedicine 2016; 13: 113-124 [PMID: 27892724 DOI: 10.1016/j.ebiom.2016.10.026]

Han D, Gao X, Wang M, Qiao Y, Xu Y, Yang J, Dong N, He J, Sun Q, Li G, Xu C, Tao J, Ma N. Long non-coding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget 2016; 7: 22159-22217 [PMID: 26989025 DOI: 10.18632/oncotarget.8063]

Li Q, Dai Y, Wang Y, Hou S. Differentially expressed long non-coding RNAs and the prognostic potential in colorectal cancer. Neoplasma 2016; 63: 977-983 [PMID: 27750628 DOI: 10.4149/neop_2016_61]

Yu B, Du Q, Li H, Liu HY, Ye X, Zhu B, Zhai Q, Li X. Diagnostic potential of serum exosomal colorectal neoplasia differentially expressed long non-coding RNA (CRNDE-p) and microRNA-217 expression in colorectal carcinoma. Oncotarget 2017; 8: 83745-83753 [PMID: 29137379 DOI: 10.18632/oncotarget.19407]

Li P, Zhang X, Wang J, Du L, Yang Y, Liu T, Li C, Wang C. IncRNA HOTAIR Contributes to 5FU Resistance through Suppressing miR-21 and Activating NF-xb-TS Signaling in Colorectal Cancer. Mol Ther Nucleic Acids 2017; 8: 356-369 [PMID: 28918035 DOI: 10.1038/mtna.2017.007]

Xiao Z, Qu Z, Chen Z, Fang Z, Zhou K, Huang Z, Guo X, Zhang Y. IncRNA HOTAIR is a Prognostic Biomarker for the Proliferation and Chemoresistance of Colorectal Cancer via miR-203a-3p-Mediated Wnt/ß-Catenin Signaling Pathway. Cell Physiol Biochem 2018; 46: 1275-1285 [PMID: 29680837 DOI: 10.1159/000489110]

Li P, Zhang X, Wang J, Liu X, Yu L, Yang L, Wang C. MALAT1 Is Associated with Poor Response to Oxaalipatin-Based Chemotherapy in Colorectal Cancer Patients and Promotes Chemoresistance through EZH2. Mol Cancer Ther 2017; 16: 739-751 [PMID: 28609875 DOI: 10.1158/1535-7163.MCT-16-0591]

Ozawa T, Matsuyama T, Toiyama Y, Takahashi N, Ishikawa T, Uetake H, Yamada Y, Kusunoki M, Calin G, Goel A. CCAT1 and CCAT2 long noncoding RNAs, located within the 8q24.21 'gene desert', serve as important prognostic biomarkers in colorectal cancer. Ann Oncol 2017; 28: 1882-1888 [PMID: 28838211 DOI: 10.1093/annonc/mdx248]

Su J, Zhang E, Han L, Yin D, Liu Z, He X, Zhang Y, Lin F, Qin M, Mao P, Mao W, Shen D. Long noncoding RNA BLACAT1 indicates a poor prognosis of colorectal cancer and affects cell proliferation by epigenetically silencing of p15. Cell Death Dis 2017; 8: e2665 [PMID: 28277544 DOI: 10.1038/cddis.2017.83]

Deng Q, He B, Gao T, Pan Y, Sun H, Xu Y, Li R, Ying H, Wang F, Liu J, Xiong J, Wang S. Up-regulation of 91H promotes tumor metastasis and predicts poor prognosis for patients with colorectal cancer. PLoS One 2014; 9: e103022 [PMID: 25058480 DOI: 10.1371/journal.pone.0103022]

Han X, Wang L, Ning Y, Li S, Wang Z. Long non-coding RNA AFAP1-AS1 facilitates tumor growth and promotes metastasis in colorectal cancer. Biol Res 2016; 49: 36 [PMID: 27378191 DOI: 10.1186/s40659-016-0994-3]

Wang F, Ni H, Sun F, Li M, Chen L. Overexpression of IncRNA AFAP1-AS1 correlates with poor prognosis and promotes tumorigenesis in colorectal cancer. Biomed Pharmacother 2016; 81: 152-159 [PMID: 27261580 DOI: 10.1016/j.biopha.2016.04.009]

Ni HU, Hu Z, Liu H, Hu G, Yang B, Wu S, Li F. Long non-coding RNA AK027294 involves in the process of proliferation, migration, and apoptosis of colorectal cancer cells. Tumour Biol 2016; 37: 10097-10105 [PMID: 26820130 DOI: 10.1007/s13277-015-4530-x]

Hu Y, Chen HY, Yu CY, Xu J, Wang JL, Qian J, Zhang X, Fang JY. A long non-coding RNA signature to improve prognosis prediction of colorectal cancer. Oncotarget 2014; 5: 2230-2242 [PMID: 24809982 DOI: 10.18632/oncotarget.19895]

Han J, Rong LF, Shi CB, Dong XS, Wang J, Wang BL, Wen H, He ZY. Screening of lymph node metastasis associated IncRNAs in colorectal cancer patients. World J Gastroenterol 2014; 20: 8139-8150 [PMID: 25009386 DOI: 10.3748/wjg.v20.i25.8139]

Sun Y, Zheng ZP, Li H, Zhang HQ, Ma FQ. ANRIL is associated with the survival rate of patients with colorectal cancer, and affects cell migration and invasion in vitro. Mol Med Rep 2016; 14: 1714-1720 [PMID: 27314206 DOI: 10.3892/mmr.2016.5409]

Nacamura M, Tsuoda T, Innoue Y, Okamoto H, Shirasawa S, Kotake Y. ANRIL regulates the proliferation of human colorectal cancer cells in both two- and three-dimensional culture. Mol Cell Biochem 2016; 412: 141-146 [PMID: 26708220 DOI: 10.1007/s11010-015-2618-1]

Iuchi T, Uchi R, Nambara S, Saito T, Komatsu H, Hirata H, Ueda M, Sakuraka S, Takano Y, Kurasighe J, Shinden Y, Eguhki T, Sugimachi K, Maehara Y, Mimori K. A long noncoding RNA, IncRNA-ATB, is involved in the progression and prognosis of colorectal cancer. Anticancer Res 2015; 35: 1385-1388 [PMID: 25750289]

Li W, Kang Y. A new Lnc in metastasis: long noncoding RNA mediates the metastatic functions of TGF-ß in Cancer Cell 2014; 25: 557-559 [PMID: 24823634 DOI: 10.1016/j.ccc.2014.04.014]
Ma C, He X, Zhang E, Kong R, De W, Zhang Z. Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. *Med Oncol* 2014; 37: 25326054 DOI: 10.1007/s12032-014-0253-8

Yin D, He X, Zhang E, Kong R, De W, Zhang Z. Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. *Med Oncol* 2014; 37: 62-73 DOI: 10.1007/s12032-014-0253-8

Huang G, Wu X, Li S, Xu X, Zhu H, Chen X. The long noncoding RNA CASC2 functions as a competing endogenous RNA by sponging miR-19a in colorectal cancer. *Sci Rep* 2016; 6: 26524 DOI: 10.1038/srep26524

Xin Y, Li Z, Shen J, Chan MT, Wu WK. CCAT1: a pivotal oncogenic long non-coding RNA in human cancers. *Cell Profil* 2016; 49: 255-260 DOI: 10.1111/cpr.12252

McCleland ML, Mesh K, Lorenzana E, Chopra VS, Segal E, Watanabe C, Haley B, Maybou O, Ylagalaog M, Gnad F, Firestein R. CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. *J Clin Invest* 2016; 126: 639-652 DOI: 10.1172/JCI83265

Ye Z, Zhou M, Tian B, Wu B, Li J. Expression of IncRNA-CCAT1, E-cadherin and N-cadherin in colorectal cancer and its clinical significance. *Int J Clin Exp Med* 2015; 8: 3707-3715 DOI: 10.2666466

Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XQ, Wu Z, Zhang S, Wang HB, Ge J, Lu X, Yang L, Chen L, Jin L. Human colorectal cancer-specific CCAT1-L: IncRNA regulates hemangioblast stemness interactions at the MYC locus. *Cell Res* 2014; 24: 513-531 DOI: 10.1038/cr.2014.35

Ling H, Spizzo R, Atasi Y, Nicoloso M, Shimizu M, Redis RS, Nishida N, Gafri F, Song J, Gou Z, Ivan C, Barbarotto E, De Vries I, Zhang X, Ferrucio M, Churchman M, van Galen JF, Beverloo BH, Shahriati M, Haderker F, Esteco MR, Garcia-Manero G, Patjins GA, Gotley DC, Bhardwaj V, Shereiqi E, Sen S, Multani AS, Welsh J, Yamamoto K, Taniguchi I, Song MA, Gallinger S, Casey G, Tibboelen SN, Le Marchand L, Tirikainen M, Mani SA, Zhang W, Davuluri RV, Mirmori M, Mori M, Siewert AM, Martens JW, Tomlinson I, Negrimi N, Berindan-Neagoe I, Fearns KJ, Marnier I, Zimach L. CASC2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. *Genome Res* 2013; 23: 1446-1461 DOI: 10.1101/gr.152942.112

Kasagi Y, Oki E, Ando K, Ito S, Iuchi T, Sugiyyama M, Nakashima Y, Oikaki K, Saeki H, Mirmori K, Maehara Y. The expression of CCAT2, a Novel Long Noncoding RNA Transcript, and its relationship to chromosomal polymorphism. *Genes Chromosomes Cancer* 2017; 42: 84-94 DOI: 10.1002/gcc.22521

Ye LC, Ren L, Qiu JJ, Zhu DX, Chen T, Chang JW, Lv SX, Xu J. Aberrant expression of long noncoding RNAs in colorectal cancer with liver metastasis. *Tumour Biol* 2015; 36: 8774-87754 DOI: 10.1007/s13277-015-3627-4

Ye LC, Chen T, Zhu DX, Lv SX, Qiu JJ, Yu JF, Wei Y. Downregulated long non-coding RNA CLN8R1 promotes the proliferation of colorectal cancer cells by targeting regulators of the cell cycle pathway. *Oncotarget* 2016; 7: 58931-58938 DOI: 10.18632/oncotarget.10431

Yuan Z, Xu X, Ni B, Chen D, Yang Z, Huang J, Wang J, Chen D, Wang L. Overexpression of long non-coding RNA-CTD903 inhibits colorectal cancer invasion and migration by repressing Wnt/beta-catenin signaling and predicts favorable prognosis. *Int J Onco* 2016; 48: 2675-2685 DOI: 10.3892/ijo.2016.3447

Chen X, Zhu H, Wu X, Xie X, Huang G, Xu H, Li S, Xing C. Downregulated pseudogene CTNNAP1 promote tumor growth in human brain by downregulating its cognate gene CTNNAP1 expression. *Oncotarget* 2016; 7: 55518-55528 DOI: 10.18632/oncotarget.10833

Liu Y, Zhang M, Liang L, Li J, Chen XY. Over-expression of IncRNA DANC1 is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. *Int J Clin Exp Pathol* 2015; 8: 11480-11484 DOI: 10.4172/1948-599X.1000238

Sun L, Xue H, Jiang C, Zhou H, Gu L, Liu Y, Xu C, Xu Q. LncRNA DQ786243 contributes to proliferation and metastasis of colorectal cancer both in vitro and in vivo. *Biosci Rep* 2016; 36: DOI: 10.1042/bsr20160048

Yochum GS, Cleland R, McWeeny S, Goodman RH. An antisense transcript induced by Wnt/beta-catenin signaling and predicts favorable prognosis. *48* 2016; 2675-2685 DOI: 10.1038/cr.2014.35

Chen T, Zhu DX, Lv SX, Qiu JJ, Chang WJ, Lv SX, Xu J. Aberrant expression of long noncoding RNAs in colorectal cancer with liver metastasis. *Tumour Biol* 2015; 36: 8774-87754 DOI: 10.1007/s13277-015-3627-4

Yan P, Xu ZP, Chen T, He ZY. Long noncoding RNA expression profile analysis of colorectal cancer and metastatic lymph node based on microarray data. *Onco Targets Ther* 2016; 9: 2465-2475 DOI: 10.2174/1874173814766150313

Chen N, Guo D, Xu Q, Yang M, Wang D, Peng M, Ding Y, Wang S, Zhou J. Long non-coding RNA FEZF1-AS1 facilitates cell proliferation and migration in colorectal carcinoma. *Oncotarget* 2016; 7: 11271-11283 DOI: 10.18632/oncotarget.17688

Guo XR, Hou Z, Li C, Peng LP, Wang JS, Wang B, Zhi OM. Biological significance of long non-coding RNA FTX expression in human colorectal cancer. *Int J Clin Exp Med* 2015; 8: 15591-15600 DOI: 10.2662053

Yang P, Chen T, Xu Z, Zhu H, Wang J, He Z. Long noncoding RNA G2APLINC promotes invasion in colorectal cancer by targeting SNAI2 through binding with PSF and NONO. *Oncotarget* 2016; 7: 42183-42194 DOI: 10.18632/oncotarget.9741

Ma C, Shi X, Zhu Q, Li Q, Liu Y, Yao Y, Song Y. The growth arrest-specific transcript 5 (GAS5): a pivotal tumor suppressor long noncoding RNA in human cancers. *Tumour Biol* 2017; 36: 1437-1444
Galamb O et al. Diagnostic and prognostic lncRNAs in colorectal tumors

[PMID: 26634743 DOI: 10.1007/s13277-015-4521-9]

Krell J, Frampton AE, Mirnezami R, Harding V, de Giorgio A, Roca Alonso L, Cohen P, Ottaviani S, Colombo T, Jacob J, Pellegrino L, Buchanan G, Stebbing J, Castellano L. Growth arrest-specific transcript 5 associated snoRNA levels are related to p53 expression and DNA damage in colorectal cancer. PLoS One 2014; 9(9):e85611 DOI: 10.1371/journal.pone.008561

Zheng Y, Song D, Xiao K, Yang C, Ding Y, Deng W, Song S. lncRNA GAS5 contributes to lymphatic metastasis in colorectal cancer. Oncotarget 2016; 7(20):23772-23779 [PMID: 27863421 DOI: 10.18632/oncotarget.13384]

Zhao J, Li X, Wu M, Lin C, Guo Y, Tian B. Knockdown of Long Noncoding RNA GHTET Inhibits Cell Proliferation and Invasion of Colorectal Cancer. Oncol Res 2016; 22: 303-309 [PMID: 27131316]

Liang W, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, Zhang L, Xiao LJ, Wan DC, Zhang JF, Wave MM. The IncRNA H19 promotes epithelial to mesenchymal transition by functioning as mirRNA sponges in colorectal cancer. Oncotarget 2015; 6(28):22513-22525 [PMID: 26608968 DOI: 10.18632/oncotarget.4154]

Wu KF, Liang WC, Feng L, Pang JX, Wave MM, Zhang JF, Fu WM. H19 mediates methotrexate resistance in colorectal cancer cells through activating Wnt/β-catenin pathway. Exp Cell Res 2017; 350: 312-317 [PMID: 27919747 DOI: 10.1016/j.yexcr.2016.12.003]

Yao J, Li J, Geng P, Li Y, Chen H, Zou Y. Knockdown of a HIF-2α promoter upstream long noncoding RNA impairs colorectal cancer stem cell properties in vitro through HIF-2α downregulation. Onco Targets Ther 2015; 8: 3467-3474 [PMID: 26648739 DOI: 10.2147/OTT.S81393]

Dou J, Ni Y, He X, Wu D, Li M, Wu S, Zhang R, Guo M, Zhao F. Decreasing IncRNA HOTAIR expression inhibits human colorectal cancer stem cells. Am J Transl Res 2016; 8: 98-108 [PMID: 27095541]

Luo ZF, Zhao D, Li XQ, Cui YX, Ma N, Lu CX, Liu MY, Zhou Y. Clinical significance of HOTAIR expression in colon cancer. World J Gastroenterol 2016; 22: 5254-5259 [PMID: 27298568 DOI: 10.3748/wjg.v22.i22.5254]

Ren YK, Xiao Y, Wan XB, Zhao YZ, Li J, Li Y, Han GS, Chen XB, Zou QY, Wang GC, Lu CM, Xu YC, Wang YC. Association of long non-coding RNA HOTTIP with progression and prognosis in colorectal cancer. Int J Clin Exp Pathol 2015; 8: 11458-11463 [PMID: 26617875]

Lian Y, Ding J, Zhang Z, Shi Y, Zhi Y, Li J, Peng P, Wang J, Fan Y, De W, Wang K. The long noncoding RNA HOXA transcript at the distal tip promotes colorectal cancer growth partially via silencing of p21 expression. Tumour Biol 2016; 37: 7431-7440 [PMID: 26678866 DOI: 10.1007/s13277-015-4617-2]

Yang XJ, Huang CQ, Peng CW, Hou JX, Liu JY. Long noncoding RNA HULC promotes colorectal carcinoma progression through epigenetically repressing NKD2 expression. Gene 2016; 592: 172-178 [PMID: 27496341 DOI: 10.1016/j.gene.2016.08.002]

Tanaka K, Shiota G, Meguro M, Mitsuoka Y, Oshimura M, Kawasaki H. Loss of imprinting of long QT intronic transcript 1 in colorectal cancer. Oncology 2001; 60: 268-273 [PMID: 11340379 DOI: 10.1159/000055328]

Nakano S, Murakami K, Meguro M, Soejima H, Higashimoto K, Urano T, Kugoh H, Muki T, Ikeuchi M, Oshimura M. Expression profile of LIT1/KCNQ1OT1 and epigenetic status at the KvDMR1 in colorectal cancers. Cancer Sci 2006; 97: 1147-1154 [PMID: 16965397 DOI: 10.1111/j.1349-7006.2006.00305.x]

Kong J, Sun W, Li C, Wan L, Wang S, Wu Y, Xu E, Zhang H, Lai M. Long non-coding RNA LINC01133 inhibits epithelial-mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6. Cancer Lett 2016; 380: 476-484 [PMID: 27443605 DOI: 10.1016/j.clet.2016.07.015]

Qiu JJ, Yan JB. Long non-coding RNA LINC01296 is a potential prognostic biomarker in patients with colorectal cancer. Tumour Biol 2015; 36: 7175-7183 [PMID: 25894381 DOI: 10.1007/s13277-015-4348-5]

Zhai H, Fesler A, Schee K, Fodstad O,flatmark K, Ju J. Clinical significance of long intergenic noncoding RNA-p21 in colorectal cancer. Clin Colorectal Cancer 2013; 12: 261-266 [PMID: 24012455 DOI: 10.1016/j.clcc.2013.06.003]

Wang J, Lei ZJ, Guo Y, Wang T, Qin ZY, Xiao HL, Fan LL, Chen DF, Bian XW, Liu J, Wang B. lncRNA-regulated delivery of lincRNA-p21 suppresses β-catenin signaling and tumorigenicity of colorectal cancer stem cells. Oncotarget 2015; 6: 37852-37870 [PMID: 26497997 DOI: 10.18632/oncotarget.6363]

Wang G, Li L, Zhao Q, Zhi Y, Zhao C, Li X, Ma Z, Li X, Zeng Y. lncRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep 2014; 31: 1839-1845 [PMID: 24573322 DOI: 10.3892/or.2014.3047]

Wang L, Bu P, Ai Y, Srivasan T, Chen HJ, Xiang K, Lipkin SM, Shen X. A long non-coding RNA targets microRNA mir-34a to regulate colon cancer stem cell asymmetric division. Elife 2016; 5 [PMID: 27077950 DOI: 10.7554/eLife.14620]

Yang F, Hao XS, Yuan SX, Zhang L, Zhou WP, Wang F, Sun SH. Repression of the long non-coding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell 2013; 49: 1083-1096 [PMID: 23395002 DOI: 10.1016/j.molcel.2013.01.010]

Kazemzadeh M, Safaralizadeh R, Feizi MA, Ravanbaksh H, Somi MH, Shokoohi B. Misregulation of the dependence receptor DCC and its upstream lncRNA, LOC100287225, in colorectal cancer. Cancer Biomark 2016; 16(5):499-505 [PMID: 27062707 DOI: 10.3233/CBM-160589]

Kazemzadeh M, Safaralizadeh R, Feizi MA, Somi MH, Shokoohi B. Misregulation of the dependence receptor DCC and its upstream lncRNA, LOC100287225, in colorectal cancer. Tumori 2017; 103: 40-43 [PMID: 26296848 DOI: 10.5301/tumor.5000428]

Qi P, Xu MD, Ni SJ, Huang D, Wei P, Tan C, Zhou XY, Du X, Low expression of LOC285194 is associated with poor prognosis in colorectal cancer. J Transl Med 2013; 11: 122 [PMID: 23680400 DOI: 10.1186/1479-5876-11-122]

Xu J, Zhang R, Zhao J. The Novel Long Noncoding RNA TUSC7 Inhibits Proliferation by Sponging MiR-211 in Colorectal Cancer. Cell Physiol Biochem 2017; 41: 635-644 [PMID: 28214867 DOI: 10.1159/000457935]

Ding J, Lu B, Wang J, Wang J, Shi Y, Lian Y, Zhi Y, Wang J, Fan Y, Wang Z, De W, Wang K. Long non-coding RNA Lnc554202 induces apoptosis in colorectal cancer cells via the caspase cleavage cascades. J Exp Clin Cancer Res 2015; 34: 100 [PMID: 26362196 DOI: 10.1186/s13046-015-0217-7]

Yang L, Wei H, Xiao HJ. Long non-coding RNA Lnc554202 expression as a prognostic factor in patients with colorectal cancer. Eur Rev Med Pharmacol Sci 2016; 20: 4243-4247 [PMID: 27831651]
Long non-coding RNA TUG1 promotes poor prognosis for colorectal cancer and promotes metastasis by affecting epithelial-mesenchymal transition. TUG1 indicates a novel biomarker for colorectal cancer patients with early stage colorectal cancer. Enhanced expression of long non-coding RNA Sox2ot promoted cell proliferation and cell cycle progression. Overexpression of long non-coding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Down-regulation of long non-coding RNA PRNCR1 in colorectal cancer promotes cell proliferation and predicts a poor prognosis. Long non-coding RNA RP1-13P20.6 indicates a poor prognosis for colorectal cancer and promotes metastasis by EMT pathway. A potential biomarker for prognosis via apoptosis inhibition in colorectal cancers. MEG3 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Low expression of novel lncRNA RP11-25118598 induces colorectal cancer cell migration and invasion and predicts poor overall survival for colorectal cancer patients. Enhanced expression of long non-coding RNA SNHG20 predicts poor prognosis via apoptosis inhibition in colorectal cancers. A long non-coding RNA, contributes to colorectal cancer cell migration and invasion and predicts poor overall survival for colorectal cancer patients. Upregulation of long non-coding RNA PANDAR contributes to tumor inhibition in colorectal cancer. MALAT1 is a novel biomarker for colorectal cancer, with a 742-750-fold increase in tumor recurrence and unfavorable prognosis in colorectal cancer. MALAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Down-regulation of long non-coding RNA TUG1 promotes cell proliferation and cell cycle progression. Increased expression of long non-coding RNA SNHG12 predicts poor prognosis for colorectal cancer and predicts metastasis by EMT pathway.
colorectal cancer metastasis via EMT pathway. *Oncotarget* 2016; 7: 51713-51719 [PMID: 27421138 DOI: 10.18632/oncotarget.10563]

Zhai HY, Sui MH, Yu X, Qu Z, Hu JC, Sun HQ, Zheng HT, Zhou K, Jiang LX. Overexpression of Long Non-Coding RNA TUG1 Promotes Colon Cancer Progression. *Med Sci Monit* 2016; 22: 3281-3287 [PMID: 27634385]

Sana J, Hankeova S, Svoboda M, Kiss I, Vyzula R, Stably O. Expression levels of transcribed ultraconserved regions uc.73 and uc.388 are altered in colorectal cancer. *Oncology* 2012; 82: 114-118 [PMID: 22328099 DOI: 10.1159/000336479]

Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, Fabbri M, Cimmino A, Lee EJ, Wojcik SE, Shimizu M, Tili E, Rossi S, Taccioli C, Pichiorelli F, Liu X, Zupo S, Herlea V, Gramantieri L, Lanza G, Alder H, Rassenti L, Volo S, Schmitz TD, Kipps TJ, Negrini M, Croce CM. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. *Cancer Cell* 2007; 12: 215-229 [PMID: 17785203 DOI: 10.1016/j.ccr.2007.07.027]

Wu X, He X, Li S, Xu X, Chen X, Zhu H. Long Non-Coding RNA ucoo2knd.1 Regulates CD44-Dependent Cell Growth by Competing for miR-211-3p in Colorectal Cancer. *PLoS One* 2016; 11: e0151287 [PMID: 26974131 DOI: 10.1371/journal.pone.0151287]

Bian Z, Jin L, Zhang J, Yin Y, Quan C, Hu Y, Feng Y, Liu H, Fei B, Mao Y, Zhou L, Qi X, Huang S, Hua D, Xing C, Huang Z. LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. *Sci Rep* 2016; 6: 23892 [PMID: 27046651 DOI: 10.1038/srep23892]

Ni B, Yu X, Guo X, Fan X, Yang Z, Wu P, Yuan Z, Deng Y, Wang J, Chen D, Wang L. Increased urothelial cancer associated 1 is associated with tumor proliferation and metastasis and predicts poor prognosis in colorectal cancer. *Int J Oncol* 2015; 47: 1329-1338 [PMID: 26233511 DOI: 10.3892/ijo.2015.3109]

Taniue K, Kurimoto A, Sugimasa H, Nasu E, Takeda Y, Iwasaki K, Nagashima T, Okada-Hatakeyama M, Oyama M, Kozuka-Hata H, Hiyoshi M, Kitayama J, Negishi L, Kawasaki Y, Akiyama T. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. *Proc Natl Acad Sci U S A* 2016; 113: 1273-1278 [PMID: 26768845 DOI: 10.1073/pnas.1500921113]

Lassmann S, Weiss R, Makowiec F, Roth J, Danciu M, Hopt U, Werner M. Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. *J Mol Med (Berl)* 2007; 85: 293-304 [PMID: 17143621 DOI: 10.1007/s00109-006-0126-5]

Xiao Y, Yarievich UA, Yoshikovych SV. Long noncoding RNA XIST is a prognostic factor in colorectal cancer and inhibits 5-fluorouracil-induced cell cytotoxicity through promoting thymidylate synthase expression. *Oncotarget* 2017; 8: 83171-83182 [PMID: 29137332 DOI: 10.18632/oncotarget.20487]

Wang W, Xing C. Upregulation of long noncoding RNA ZFAS1 predicts poor prognosis and prompts invasion and metastasis in colorectal cancer. *Pathol Res Pract* 2016; 212: 690-695 [PMID: 27461828 DOI: 10.1016/j.prp.2016.05.003]

Kumegawa K, Maruyama R, Yamamoto E, Ashida M, Kitajima H, Tsuyada A, Niinuma T, Kai M, Yamano HO, Sugii T, Tokino T, Shimomura Y, Imai K, Suzuki H. A genomic screen for long noncoding RNA genes epigenetically silenced by aberrant DNA methylation in colorectal cancer. *Sci Rep* 2016; 6: 26699 [PMID: 27215978 DOI: 10.1038/srep26699]
