Statins for primary cardiovascular prevention in the elderly

Juan Pedro-Botet1, Elisenda Climent1, Juan J Chillarón1, Rocio Toro2, David Benaiges1, Juana A Flores-Le Roux1
1Lipid and Vascular Risk Unit, Endocrinology department, Hospital del Mar. Spain
2Department of Medicine, School of Medicine, Cádiz University, Cádiz, Spain

Abstract

The elderly population is increasing worldwide, with subjects > 65 years of age constituting the fastest-growing age group. Furthermore, the elderly face the greatest risk and burden of cardiovascular disease mortality and morbidity. Although elderly patients, particularly those older > 75, have not been well represented in randomized clinical trials evaluating lipid-lowering therapy, the available evidence supporting the use of statin therapy in primary prevention in older individuals is derived mainly from subgroup analyses and post-hoc data. On the other hand, elderly patients often have multiple co-morbidities that require a high number of concurrent medications; this may increase the risk for drug-drug interactions, thereby reducing the potential benefits of statin therapy. The aim of this review was to present the relevant literature regarding statin use in the elderly for their primary cardiovascular disease, with the associated risks and benefits of treatment.

Keywords: Cardiovascular disease; Dyslipidaemia; Elderly; Primary prevention; Statins

1 Introduction

The incidence of cardiovascular disease (CVD) in all its clinical forms, such as coronary, cerebrovascular and peripheral vascular disease, rises sharply with age, as does the prevalence of the main cardiovascular risk factors including obesity, hypertension, dyslipidemia and type 2 diabetes mellitus. It is estimated that over 80% of men and women 75 years of age or older have clinically-manifest CVD,[1] and that the elderly have the greatest risk and burden of CVD morbidity and mortality.[2,3] Since the cardiovascular consequences are much more serious in older than younger patients, for both death and long-term disability and owing to the population ageing, cardiovascular prevention in the elderly is gaining increasing importance, and influencing health policy worldwide.

On the other hand, the elderly population is physiologically heterogeneous, ranging from incapacitated nursing home residents to marathon runners. This heterogeneity must be taken into account when preventive therapies for chronic diseases are considered.[4] The main differential characteristics between elderly and younger populations are as follows: (1) older people differ more among themselves than younger people in many ways; (2) shorter life expectancy than younger people; (3) chronological age does not correspond to vascular age; (4) substantial variation in physiological age among individuals attributable to frailty, co-morbidities and cognitive decline; (5) risk factors for cardiovascular disease do not predict outcomes as well as they do for younger individuals; (6) competing causes of mortality mask the potential benefits of some therapies; (7) frailty may exacerbate adverse effects of therapy; (8) polypharmacy may result in increased risk for drug interactions; and (9) adverse effects of therapies, especially pharmacological, are more severe in older individuals since they predispose to reduced physical activity, sarcopenia, and falls. In this respect, older adults may be at increased risk for adverse outcomes associated with the diagnostic and therapeutic interventions required for disease management due at least in part to age-associated non-cardiac vulnerabilities, such as cognitive impairment and frailty. Therefore, the applicability to older adults of intervention strategies for cardiovascular prevention based on evidence derived largely from younger and healthier populations is uncertain and requires careful scrutiny.

Preventing CVD with statins in the elderly is even more important given the considerable underuse of statin treatment in this specific population although they have, on average, the highest CVD risk.[5-8] For example, in the secon-
dary prevention setting, the probability of statins being prescribed declined with increased cardiovascular risk in patients between the ages of 66 and 74; the likelihood of receiving a statin fell by 6.4% for each yearly increase in age and each 1% increase in predicted 3-year mortality risk.\[^5\] In 2013, the American Heart Association issued a scientific statement on secondary prevention of atherosclerotic CVD in older adults.\[^9\] Obviously, there remain challenges and many barriers to implementing the CVD prevention guidelines, even when dyslipidaemia treatment is concerned.\[^10\] Some of the barriers to more effective management of dyslipidaemia, particularly concerning lipid-lowering drug therapy, are also financial constraints, especially in low and middle income European countries as demonstrated by the data on differences in achieving lipid goal values in different countries.\[^11\] The question of primary CVD prevention with statins in the elderly is complex and only subgroup analyses from randomized studies are available.\[^12\] Since the elderly without CVD and their caregivers face a high-stake decision on statin treatment, we provide an overview of the role of statin therapy in this specific population.

2 Lipids in the elderly

Age and sex are physiological factors with a strong influence on lipid profile. Sex differences in lipoprotein levels are further affected by age. In the Framingham Heart Study,\[^13\] low-density lipoprotein (LDL) cholesterol concentrations rose progressively with age, until 60 in men and 70 in women. In the Framingham Offspring Study,\[^14\] apolipoprotein B (apo B) levels also increased with age in both men and women, and more markedly in the latter after menopause. Interestingly, LDL cholesterol levels reach a plateau in men between the ages of 50 and 60, and in women between 60 and 70.\[^15\] These plasma changes in LDL cholesterol are due at least in part to increased liver synthesis of very-low-density lipoproteins (VLDL) and their conversion to LDL together with a decline in VLDL and LDL catabolism due to the reduced expression of LDL receptors.\[^16,17\] Concerning LDL size, age per se is associated with raised concentrations of atherogenic LDL particles rather than a reduction in particle diameter.\[^18\]

In addition, high-density lipoprotein (HDL) cholesterol levels decrease in males during adolescence and early adulthood; however, in the elderly, they are unchanged or slightly increased. In contrast, HDL cholesterol concentrations remain stable in women throughout their lifetime; however, menopause often causes a small drop in their HDL cholesterol level.\[^19\] Furthermore, triglyceride concentrations increase progressively in men, reaching peak values between the ages of 40 and 50, declining slightly thereafter. In women, triglyceride levels increase throughout life and are higher in those on oestrogen therapy.\[^15\]

In general, higher total and LDL cholesterol levels are associated with increased risk of CVD in middle-aged and early old-aged patients. This association is attenuated in old age but can be reversed.\[^20-23\] Cholesterol levels may decline in old age owing to frailty or as a result of co-morbid conditions such as cancer.\[^24\] An apparent rise in the mortality rate associated with low cholesterol levels in older people may be related to several factors, such as changes in cholesterol metabolism, malnutrition, frailty and chronic diseases, which simultaneously lower cholesterol concentrations and raise the mortality risk.\[^25,26\] After adjustment for chronic disease states, the positive association between serum cholesterol levels and increased risk of death from coronary heart disease in men and women with a mean age of 79.2 years over a 5-year follow-up was restored.\[^27\] Although the relative differences in cholesterol level-related risks diminish with age, the absolute effects of cholesterol levels on cardiovascular mortality rates are much greater in the elderly.

On the other hand, there has been substantial debate regarding statin use for primary prevention in women.\[^28-31\] However, since these studies have certain limitations, their conclusions should be viewed with caution.

3 Statin therapy

Meta-analyses from randomized clinical trials of statin therapy over the past two decades showed consistent reductions in cardiovascular events in both primary and secondary prevention populations, regardless of age.\[^29,32\] Further, one Cochrane review found statin therapy for those in primary prevention, over a wide age range, to be safe and effective.\[^33\]

Available evidence supporting the use of statin therapy in primary prevention in older individuals derives mainly from sub-group analyses and post-hoc data (Table 1). Earlier primary prevention trials with statins did not usually focus on the elderly. In the West of Scotland Coronary Prevention Study (WOSCOPS),\[^34\] the first primary prevention of coronary heart disease with pravastatin in men with hypercholesterolemia, no patients ≥ 65 years were included. In the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS),\[^35\] 22% of subjects were over 65 years of age and a subgroup analysis based on sex-stratified median age (> 57 years in men and 62 years in women) showed no difference in CVD risk reduction with lovastatin therapy. In the Lipid-Lowering Trial component

Journal of Geriatric Cardiology | jgc@jgc301.com; http://www.jgc301.com
Table 1. Clinical intervention studies in primary prevention of cardiovascular disease in elderly patients.

Study	N	Age range (yr)	Statin (dose)	Mean follow-up (yr)	Main results	NNT
AFCAPS/TexCAPS[35]	6,605	45–73	Lovastatin (20–40 mg)	5.2	37% reduction in non-fatal myocardial infarction, unstable angina and sudden death.	49
ALLHAT-LLT[36]	10,335	≥ 55	Pravastatin (40 mg)	4.8	No significant reductions in mortality, coronary heart disease or stroke vs. usual care (4.8 years).	NS
ASCOT-LLA[37]	10,305	40–75	Atorvastatin (10 mg)	3.3	36% reduction in non-fatal myocardial infarction and coronary death.	164
CARDS[38]	2,838	40–75	Atorvastatin (10 mg)	3.9	37% reduction in fatal and non-fatal myocardial infarction, coronary death, unstable angina, and revascularization.	42
MEGA[39]	7,832	40–70	Pravastatin (10–20 mg)	5.0	31% reduction in coronary events.	150
CHS[40]	1,914	> 65	Statins	7.3	44% reduction in all-cause mortality.	46
PROSPER[41]	5,804	70–82	Pravastatin (40 mg)	3.2	15% reduction in coronary death, non-fatal myocardial infarction and stroke.	59
JUPITER[42]	17,802	60–71	Rosuvastatin (20 mg)	1.9	44% reduction in non-fatal myocardial infarction, cerebrovascular event, revascularization, coronary death and unstable angina.	95

NNT: number needed to treat; NS: non-significance.

of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT)[36] pravastatin 40 mg did not significantly reduce either all-cause mortality or coronary heart disease compared with usual care in older participants with well-controlled hypertension and moderately elevated LDL cholesterol. No significant heterogeneity was observed when these results were assessed in pre-specified subgroups by age (≥ 65 vs. < 65 years).

In the elderly subgroup of 6,570 patients > 60 years of age in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA)[37] the relative risk reduction in coronary events was similar to those < 60 years (34% vs. 36%, respectively). The efficacy of statin therapy in elderly patients with diabetes was evaluated in a subgroup analysis from the Collaborative Atorvastatin Diabetes Study (CARDS).[38] In 1,129 diabetic patients aged 65–75, treatment with atorvastatin 10 mg daily reduced the risk of first major coronary events by 38% compared to placebo.

Subgroup analysis of the Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese (MEGA) study also revealed the benefit of pravastatin 10–20 mg daily, showing a 30–40% reduction in clinical events across multiple age ranges, including in patients > 65.[39] In the Cardiovascular Health Study,[40] a non-randomized clinical trial on primary prevention conducted in individuals > 65, the all-cause mortality rate decreased with statin treatment and the results were similar in the subgroup of subjects who were over 75 years of age.

The Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) was the first trial designed specifically to investigate the effects of pravastatin, 40 mg daily in the elderly aged 70–82 years; however, it was conducted in patients with pre-existing vascular disease or at a high risk of CVD, including stroke.[41] Although this was not a primary prevention trial, no benefit in terms of reducing total mortality was observed in subjects without CVD.

A sub-study of the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) analyzed the effects of rosuvastatin or placebo in an asymptomatic population of 5,695 subjects over the age of 70.[42] The absolute risk reduction in the incidence of non-fatal myocardial infarction, non-fatal stroke, hospitalization for unstable angina, arterial revascularization or CVD death was 48% greater in the elderly treated with a statin, and the number needed to treat (NNT) for four years to prevent one cardiovascular event was 24 compared with 36 in subjects aged 50–69 years. Furthermore, this trial also demonstrated a relatively short time to achieve this benefit.

Two meta-analyses of primary prevention trials with statins have been reported.[43,44] The first included more than 70,000 subjects found some benefits, particularly for all-cause mortality and major coronary and cerebrovascular events, in subjects over 65 years; however, they did not reach statistical significance.[43] The most recent meta-analysis pooled data from eight trials enrolling 24,674 subjects and demonstrated that statins significantly reduced the incidence of myocardial infarction by almost 40% and stroke by almost one quarter, but did not significantly prolong survival in the median 3.5-year follow-up.[44] Estimated NNT were 83 to prevent one cardiovascular event and 142
to prevent one stroke in people over the age of 65. A Cochrane Collaboration combined individual level data on older people enrolled in a larger number of primary prevention studies including those with up to 10% of participants with CVD. They estimated NNT of 196 to prevent one stroke, 56 to prevent any cardiovascular event, and 96 to prevent one death over five years. This is similar to the Cholesterol Treatment Trialists Collaborators analysis of individual data from 27 trials (average ages in the early 1960’s) of NNT of 167 to prevent one vascular event for people at a lower risk of cardiovascular events within 10 years compared to NNT of 67 for those at higher risk. At this point, it should be to stressed that the long-term value of preventive treatments in the elderly has always been somewhat uncertain, since it is difficult to know whether, and to what extent, preventive interventions preserve their impact. Thus, recommendations based only on preventive measures that extend life are misplaced in the elderly, in whom the prevention of morbidity is almost as important.

In December 2014, the Statins for Reducing Events in the Elderly (STAREE) study, a large five year randomized primary prevention clinical trial (n = 12,000) comparing atorvastatin (40 mg) with placebo in healthy people > 70 years of age was launched, with total mortality or institutionalization being the primary end-points.

4 Adverse effects

The use of statins in clinical practice has been associated with higher rates of side effects and intolerance than in clinical trials. The most frequent complaints are related to muscle. Cross-sectional studies in adults reported that 20% experienced musculoskeletal pain during statin use. Estimates of the incidence of myopathy vary widely and are unlikely to be determined from randomized trials, since many had a statin tolerance run-in phase or excluded patients with previous reports of statin intolerance.

A recent systematic review of five randomized, controlled trials and 11,132 patients on the efficacy and safety of intensive statin therapy in older patients with coronary heart disease showed that myopathy, rhabdomyolysis and creatine kinase levels > 10 times the upper normal limit occurred in very few cases, and only 13 cases were reported. In the Understanding Statin Use in America and Gaps in Patient Education survey of over ten thousand current and former statin users, muscle related side effects were reported by 29% of participants; 84% of patients were taking at least one additional medication that had potential interaction with their statin.

Adverse cognitive effects have been described as the second most common complaint of patients taking statins in the community. Reversible impaired cognition, or worsening of dementia, in older patients treated with statins have also been reported, and while the potential relationship between statins and cognitive impairment has been a subject of controversy, the US Food and Drug Administration (USFDA) issued a caveat against the prescribing of statins. Two recent systematic reviews evaluating the effects of statins on cognition have been reported: one found no evidence to suggest an effect of statins on dementia, cognitive function, or incidence of Alzheimer’s disease; in the other, in patients without baseline cognitive dysfunction, short-term data were mostly consistent with no adverse effect of statins on cognition, and long term data may support a beneficial role for statins in the prevention of dementia.

In recent years, it has been observed that the use of statins increases the risk of type 2 diabetes. In fact, in 2012 the European Medicines Agency (EMA) published guidelines related to an increased risk of diabetes associated with statin therapy. This effect is applicable to all members of the statin family (except pitavastatin), is dose-dependent and therefore, more pronounced with high-power statins and has a clear relationship with age; furthermore, this risk is increased in patients with pre-diabetes, or at high risk of developing diabetes. The European Society of Atherosclerosis recently established guidelines for the use of statins in patients at high risk of developing type 2 diabetes. The clinical significance of statin-related diabetes remains an unknown quantity in older patients who may not develop microvascular complications.

Other considerations include increases in liver transaminase levels, which usually resolve after dose reduction, or discontinuation of the drug, or may also normalize spontaneously. No association between statin use and the presence and severity of non-alcoholic fatty liver disease or liver-related mortality has been found. Data showing that the elderly are more prone to an increase in liver enzyme activity, or the risk of liver injury caused by statins than middle-aged individuals are lacking, and the review by the USFDA found serious liver injury with statins to be rare and unpredictable.

Concerning renal adverse effects, an observational study of more than two million statin users based on analysis of administrative databases concluded that high-potency statins were associated with an increased diagnostic rate of acute kidney injury, especially within the first 120 days post-statin initiation compared with low-potency statins. However, more recently, data from 149,882 patients years of follow-up from clinical trials failed to show any rise in re-
nal-related serious adverse events with statins compared with controls.\(^\text{[73]}\)

The development of cataracts was considered a side effect of statins in early studies. Although the US FDA removed this observation from labeling in 1991, cataracts have again been associated with statins in large cohort studies from England and Wales and the United States military health system.\(^\text{[74,75]}\) A recent meta-analysis showed a protective effect of statins against cataracts; however, younger age and longer statin therapy duration were associated with greater benefits, while no benefit was observed among older people.\(^\text{[76]}\) Thus, to settle the issue of the statin-cataract relationship, a randomized clinical trial should be conducted, or cataracts included as an end-point in epidemiological studies.

Finally, publication and outcome reporting biases pose a substantial threat to the validity of clinical research findings and thus, to informed decision making in health care. In this respect, it has been suggested that patient-level safety data are necessary to assess statin side effects and that published data and patient-level data can differ.\(^\text{[77]}\) Moreover, Catalá-López, et al.\(^\text{[78]}\) pointed to a significant sponsorship bias in the cost effectiveness of statins for cardiovascular prevention.

A further concern when considering statins for elderly subjects is the issue of drug interactions and the altered relationships involving drug metabolism and the ageing body. Two main predictors of drug-drug interactions are age and the severity and chronicity of disease. Significant pharmacodynamic changes that occur with ageing include a decline in gastrointestinal absorption, changes in drug volume distribution based on a fall in albumin levels, changes in total body water and lean body mass, increases in body fat percentage and, finally, drug metabolism dwindling with age. Furthermore, drug clearance decreases with age, resulting from a decline in the glomerular filtration rate.\(^\text{[79]}\)

The elderly with dyslipidemia will require different pharmacological therapies according to their associated co-morbidities. In this respect, it has been reported that 47% of patients \(> 75\) are on \(\geq 5\) drugs.\(^\text{[80]}\) On the other hand, a study of \(> 950,000\) patient records from two US databases showed that 83% of patients with dyslipidemia used a CYP3A4-metabolised statin and that, of these, 25%–30% also received a CYP3A4 inhibitor.\(^\text{[81]}\) This suggests that patients treated with statins have a particularly high risk of developing drug-drug interactions, some of which may lead to drug discontinuations owing to adverse events.

Thus, it is crucial in medical decision making in cardiovascular prevention involving elderly patients to establish a therapeutic partnership with good communication aimed at assessing how they feel about their treatment regimen. In person interviews conducted with 356 community-living elderly patients with a mean age of 76 years and predominantly female (75%) examined their willingness to take a medication (i.e., a statin) for the primary prevention of myocardial infarction. Their willingness to take any medication hinged on the risk of side effects rather than the potential benefit that could be derived from taking a medication. For this reason, many older patients are reluctant to start taking a new medication.\(^\text{[82]}\)

5 Conclusions

Although evidence has demonstrated that statins are beneficial to the elderly, shared decision making is very important in old age. In primary prevention, each patient’s characteristics predisposing to adverse effects, as well as quality of life, should be considered in the decision to start treatment, balancing the probable benefits with the potential risks. More studies, education and representation of the elderly population are required to establish cost-effective interventions and systematic approaches to adherence that would help reduce cardiovascular morbidity and mortality in this specific population.

Acknowledgement

We thank Miss Christine O’Hara for review of the English version of the manuscript.

References

1. Go AS, Mozaffarian D, Roger VL, et al.; Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 2014; 129: e28–e292.
2. Perk J, De Backer G, Gohlke H, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J 2012; 33: 1635–1701.
3. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63: 2889–2934.
4. Strandberg TE, Kolehmainen L, Vuorio A. Evaluation and treatment of older patients with hypercholesterolemia: a clinical review. JAMA 2014; 312: 1136–1144.
5. Ko DT, Mamdani M, Alter DA. Lipid-lowering therapy with

http://www.jgc301.com; jgc@mail.sciencep.com | Journal of Geriatric Cardiology
statins in high-risk elderly patients: the treatment-risk paradox. JAMA 2004; 291: 1864–1870.
6 Lavie CJ. Treatment of hyperlipidemia in elderly persons with exercise training, nonpharmacologic therapy, and drug combinations. Am J Geriatr Cardiol 2004; 13 (Suppl 1): S29–S33.
7 Niska R, Han B. Statins for secondary cardiovascular disease prevention for older primary care patients. J Natl Med Assoc 2009; 101: 705–710.
8 Robinson JG, Booth B. Statin use and lipid levels in older adults: National Health and Nutrition Examination Survey, 2001 to 2006. J Clin Lipidol 2010; 4: 483–490.
9 Fleg JL, Forman DE, Berra K, et al. Secondary prevention of atherosclerotic cardiovascular disease in older adults. A scientific statement from the American Heart Association. Circulation 2013; 128: 2422–2446.
10 Zannad F, Dallelouville J, Macfadyen RJ, et al. Prevention of cardiovascular disease guided by total risk estimations–challenges and opportunities for practical implementation: highlights of a CardioVascular Clinical Trialists (CVCT) Workshop of the ESC Working Group on CardioVascular Pharmacology and Drug Therapy. Eur J Prev Cardiol 2012; 19: 1454–1464.
11 Reiner Z. How to improve cardiovascular diseases prevention in Europe? Nutr Metab Cardiovasc Dis 2009; 19: 451–454.
12 Brugts JJ, Yetgin T, Hoeks SE, et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ 2009; 338: b2376.
13 Abbott RD, Garrison RJ, Wilson PW, et al. Joint distribution of lipoprotein cholesterol classes. The Framingham study. Arteriosclerosis 1983; 3: 260–272.
14 Schaefer EJ, Lamon-Fava S, Cohn SD, et al. Effects of age, gender, and menopausal status on plasma low density lipoprotein cholesterol and apolipoprotein B levels in the Framingham Offspring Study. J Lipid Res 1994; 35: 779–792.
15 Gobal FA, Mehta JL. Management of dyslipidemia in the elderly population. Ther Adv Cardiovasc Dis 2010; 4: 375–383.
16 Ericsson S, Eriksson M, Vitolis S, et al. Influence of age on the metabolism of plasma low density lipoproteins in healthy males. J Clin Invest 1991; 87: 591–596.
17 Liu H, Li J. Aging and dyslipidemia: a review of potential mechanisms. Ageing Res Rev 2015; 19: 43–52.
18 Lernieux I, Pascot A, Tchernow A, et al. Visceral adipose tissue and low-density lipoprotein particle size in middle-aged versus young men. Metabolism 1999; 48: 1322–1327.
19 Walter M. Interrelationships among HDL metabolism, aging, and atherosclerosis. Arterioscler Thromb Vase Biol 2009; 29: 1244–1250.
20 Krommal RA, Cain KC, Ye Z, et al. Total serum cholesterol levels and mortality risk as a function of age. A report based on the Framingham data. Arch Intern Med 1993; 153: 1065–1073.
21 Weverling-Rijnsburger AW, Blauw GJ, Lagaay AM, et al. Total cholesterol and risk of mortality in the oldest old. Lancet 1997; 350: 1119–1123.
22 Schatz IJ, Masaki K, Yano K, et al. Cholesterol and all-cause mortality in elderly people from the Honolulu Heart Program: a cohort study. Lancet 2001; 358: 351–355.
23 Foody JM, Rathore SS, Galusha D, et al. Hydroxymethylglutaryl-CoA reductase inhibitors in older persons with acute myocardial infarction: evidence for an age-statin interaction. J Am Geriatr Soc 2006; 54: 421–430.
24 Afrilalo J, Alexander KP, Mack MJ, et al. Frailty assessment in the cardiovascular care of older adults. J Am Coll Cardiol 2014; 63: 747–762.
25 Tilvis RS, Valvanne JN, Strandberg TE, et al. Prognostic significance of serum cholesterol, lathosterol, and sitosterol in old age; a 17-year population study. Ann Med 2011; 43: 292–301.
26 Fontana L, Addante F, Copetti M, et al. Identification of a metabolic signature for multidimensional impairment and mortality risk in hospitalized older patients. Aging Cell 2013; 12: 459–466.
27 Corti MC, Guralnik JM, Salive ME, et al. Clarifying the direct relation between total cholesterol levels and death from coronary heart disease in older persons. Ann Intern Med 1997; 126: 753–760.
28 Petretta M, Costanzo P, Perrone-Filardi P, et al. Impact of gender in primary prevention of coronary heart disease with statin therapy: a meta-analysis. Int J Cardiol 2010; 138: 25–31.
29 Cholesterol Treatment Trialsists’ (CTT) Collaborators, Mihaylova B, Emberson J, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 2012; 380: 581–590.
30 Kostis WJ, Cheng JQ, Dobrzynski JM, et al. Meta-analysis of statin effects in women versus men. J Am Coll Cardiol 2012; 59: 572–582.
31 Mosca L. Sex, statins, and statistics. Lancet 2015; 385: 1368–1369.
32 Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 27 randomised trials. Lancet 2010; 376: 1670–1681.
33 Taylor F, Huffman MD, Macedo AF, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2013; 1: CD004816.
34 Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301–1307.
35 Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998; 279: 1615–1622.
ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in moderately hypercholesterolemic, hypertensive patients targeted to pravastatin vs. usual care: the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). *JAMA* 2002; 288: 2998–3007.

Sever PS, Dahlöf B, Poulter NR, *et al.* Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. *Lancet* 2003; 361: 1149–1158.

Neil HA, DeMicco DA, Luo D, *et al.* Analysis of efficacy and safety in patients aged 65-75 years at randomization: Collaborative Atorvastatin Diabetes Study (CARDs). *Diabetes Care* 2006; 29: 2378–2384.

Nakaya N, Mizuno K, Ohashi Y, *et al.* Low-dose pravastatin and age-related differences in risk factors for cardiovascular disease in hypercholesterolaemic Japanese: analysis of the management of elevated cholesterol in the primary prevention group of adult Japanese (MEGA study). *Drugs Aging* 2011; 28: 681–692.

Lemaire RN, Psay BM, Heckbert SR, *et al.* Therapy with hydroxyethylmethylglycine coenzyme a reductase inhibitors (statins) and associated risk of incident cardiovascular events in older adults: evidence from the Cardiovascular Health Study. *Arch Intern Med* 2002; 162: 1395–1400.

Shepherd J, Blauw GJ, Murphy MB, *et al.* Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. *Lancet* 2002; 360: 1623–1630.

Glynn RJ, Koenig W, Nordestgaard BG, *et al.* Rosuvastatin for primary prevention in older persons with elevated C-reactive protein and low to average low-density lipoprotein cholesterol levels: exploratory analysis of a randomized trial. *Ann Intern Med* 2010; 152: 488–496.

Brugts JJ, Yetgin T, Hoeks SE, *et al.* The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomized controlled trials. *BMJ* 2009; 338: b2376.

Savarese G, Gatto AM Jr, Paolillo S, *et al.* Benefits of statins in elderly subjects without established cardiovascular disease: a meta-analysis. *J Am Coll Cardiol* 2013; 62: 2090–2099.

Sigurdsson AF. Benefits of statins in healthy elderly subjects: what is the number needed to treat? *J Am Coll Cardiol* 2014; 63: 2302.

Savarese G, Perrone-Filardi P. Benefits of statins in healthy elderly subjects: what is the number needed to treat? *J Am Coll Cardiol* 2014; 63: 2303.

STAREE Study Investigators. A clinical trial of statin therapy for reducing events in the elderly (STAREE), 2014. Clinical-Trials.gov Website. http://clinicaltrials.gov/show/NCT02099123. (Accessed Jan 21, 2015).

Phan BA, Bittner V. Lipid-lowering therapy in patients 75 years and older: clinical priority or superfluous therapy? *Prog Cardiovasc Dis* 2014; 57: 187–196.

Schwartz JB. Primary prevention: do the very elderly require a different approach? *Trends Cardiovasc Med* 2015; 25: 228–239.

Expert Dyslipidemia Panel, Grundy SM. An International Atherosclerosis Society position paper: global recommendations for the management of dyslipidemia. *J Clin Lipidol* 2013; 7: 561–565.

Anderson TJ, Grégoire J, Hegele RA, *et al.* 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. *Can J Cardiol* 2013; 29: 151–167.

Yan YL, Qiu B, Hu LJ, *et al.* Efficacy and safety evaluation of intensive statin therapy in older patients with coronary heart disease: a systematic review and meta-analysis. *Eur J Clin Pharmacol* 2013; 69: 2001–2009.

Cohen JD, Brinton EA, Ito MK, *et al.* Understanding statin use in America and gaps in patient education (USAGE): an internet-based survey of 10,138 current and former statin users. *J Clin Lipidol* 2012; 6: 208–215.

Richardson K, Schoen M, French B, *et al.* Statins and cognitive function: a systematic review. *Ann Intern Med.* 2013; 159: 688–697.

Desai C, Martin S, Blumenthal RS. Non-cardiovascular effects associated with statins. *BMJ* 2014; 349: g3743.

Padala KP, Padala PR, McNelis DP, *et al.* The effect of HMG-CoA reductase inhibitors on cognition in patients with Alzheimer’s dementia: a prospective withdrawal and rechallenge pilot study. *Am J Geriatr Pharmacother* 2012; 10: 296–302.

US Food and Drug Administration, Clarke PE. Cholesterol lowering drugs get labeling changes, 2014. U.S. Food and Drug Administration Website. http://www.fda.gov/Drugs/ResourcesForYou/SpecialFeatures/ucm290856.htm. (Accessed Jan 19, 2015).

Swiger KJ, Manalac RJ, Blumenthal RS, *et al.* Statins and cognition: a systematic review and meta-analysis of short- and long-term cognitive effects. *Mayo Clin Proc* 2013; 88: 1213–1221.

Sattar N, Preiss D, Murray HM, *et al.* Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. *Lancet* 2010; 375: 735–742.

Ridker PM, Pradhan A, Mac Fadyen JG, *et al.* Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. *Lancet* 2012; 380: 565–571.

Pharmacovigilance Working Party (PhVWP): December 2011 plenary meeting, 2012. European Medicines Agency Website. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2012/01/WC500120115.pdf. (Accessed Jan 14, 2015).

Water DD, Ho JE, Demico DA, *et al.* Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. *J Am Coll Cardiol*
63 Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. *JAMA* 2011; 305: 2556–2564.
64 Carter AA, Gomes T, Camacho X, et al. Risk of incident diabetes among patient treated with statins: population based study. *BMJ* 2013; 346: f2610.
65 Zaharan NL, Williams D, Bennett K. Statins and risk of treated incident diabetes in a primary care population. *Br J Clin Pharmacol* 2013; 75: 1118–1124.
66 Dormuth CR, Filion KB, Paterson JM, et al. Higher potency statins and the risk of new diabetes: multicentre, observational study of administrative databases. *BMJ* 2014; 348: g3244.
67 Sattar NA, Ginsberg H, Ray K, et al. The use of statins in people at risk of developing diabetes mellitus: evidence and guidance for the clinical practice. *Atheroscler Suppl* 2014; 15: 1–15.
68 Argo CK, Loria P, Caldwell SH, et al. Statins in liver disease: a molehill, an iceberg, or neither? *Hepatology* 2008; 48: 662–669.
69 Oni ET, Sinha P, Karim A, et al. Statin use is not associated with presence of and severity of nonalcoholic fatty liver disease. *Arch Med Res* 2014; 45: 52–57.
70 Leuschen J, Mortensen EM, Frei CR, et al. Association of statin use with cataracts: a propensity score-matched analysis. *JAMA Ophthalmol* 2013; 131: 1427–1434.
71 Kostis JB, Dobrzynski JM. Prevention of cataracts by statins: a meta-analysis. *J Cardiovasc Pharmacol Ther* 2014; 19: 191–200.
72 Wieseler B, Wolfram N, McGauran N, et al. Completeness of reporting of patient-relevant clinical trial outcomes: comparison of unpublished clinical study reports with publicly available data. *PLoS Med.* 2013; 10: e1001526.
73 Catalá-López F, Sanfélix-Gimeno G, Ridao M, et al. When are statins cost-effective in cardiovascular prevention? A systematic review of sponsorship bias and conclusions in economic evaluations of statins. *PLoS One* 2013; 8: e69462.