Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Letter to the Editor

Changes in pathogen distribution in the blood culture of neonates before and after the COVID-19 pandemic, Henan, China

Dear Editor

The reports of Li et al.¹ and Zhou et al.² in this journal, which demonstrated the changes in Streptococcus pneumoniae and Haemophilus influenzae infection in children before and after the Coronavirus disease 2019 (COVID-19) pandemic in Henan, China, recently caught our interest. However, no data were available on the changes in pathogen distribution in the blood culture of neonates before and after the COVID-19 pandemic.

Bloodstream infection is a serious infectious disease. Owing to the weak immune system that newborns have, neonates are more prone to infection by pathogens, which leads to bloodstream infection.³ Neonatal bloodstream infection is a major disease that seriously threatens the life of newborns. The incidence rate of neonatal bloodstream infection is 4.5–9.7/1000.³ Bloodstream infection is primarily caused by bacteria, fungi, and viruses. The distribution of bloodstream infection pathogen may vary in different regions. In addition, in response to COVID-19, many countries have implemented strict interventions, such as social distancing, wearing masks, limiting crowd gatherings, and restricting outdoor activities.⁴ Coronavirus disease 2019 (COVID-19), as well as its prevention and control measures, have severely affected people’s lifestyles and may also affect the epidemiology of pathogens.⁵ Analyzing pathogen distribution in bloodstream infections in neonates before and after the COVID-19 pandemic is helpful to provide a basis for hospital infection prevention and clinical management strategies.

In this study, we compared the number of positive blood cultures, the positive blood culture rate, and the constituent ratio of pathogens to explore the impact of the COVID-19 pandemic on the pathogen distribution in bloodstream infection in neonates. As shown in Fig. 1, we analyzed the number of blood culture samples sent, the number of positive blood cultures, and the positive infection rate before and after the COVID-19 pandemic. The results showed that both the number of blood culture samples and the number of positive blood cultures decreased in 2020, and then increased slightly in 2021 (after the COVID-19 pandemic) compared to that in 2018 and 2019 (before the COVID-19 pandemic). The positive rate in blood culture gradually decreased from 2018 to 2021.

Further, we analyzed the pathogen distribution in the blood cultures of neonates before and after the COVID-19 pandemic (Table 1). Our data showed that the pathogenic microorganisms present in newborn blood cultures were primarily Klebsiella pneumoniae, Escherichia coli, and coagulase-negative staphylococci before and after the COVID-19 pandemic, which account for more than 60% of pathogenic microorganisms. Among the pathogens, the abundance of Klebsiella pneumoniae, Escherichia coli, and coagulase-negative staphylococci gradually decreased from 2018 to 2021, whereas the percentage of Klebsiella pneumoniae gradually decreased from 2018 to 2020 and increased in 2021. The percentage of Escherichia coli gradually increased from 2018 to 2020 and decreased in 2021. The percentage of coagulase-negative staphylococci gradually increased from 2018 to 2021. In addition, Saccharomyces and Ochrobactrum anthropi were not detected in 2020 and 2021 (after the COVID-19 pandemic), whereas Pseudomonas aeruginosa was detected in both 2020 and 2021 but not in 2018 and 2019.

Our data showed that the COVID-19 pandemic decreased the pathogen detection rate and changed the pathogen distribution in the blood culture of neonates. With the gradual control of the COVID-19 pandemic, people’s lives will return to normal, and the pathogen distribution of blood culture in neonates will also change. For example, the proportion of Klebsiella pneumoniae decreased during the period of strict control of COVID-19 (2020), whereas the proportion increased during the recovery period of the pandemic (2021). The changes in pathogen distribution in neonatal blood cultures before and after the COVID-19 pandemic require attention.

In conclusion, we found that the number and positive rate of pathogens in the blood of neonates decreased during COVID-19, and the distribution of pathogens also changed. Continuous monitoring of the changes in pathogen distribution in the blood cultures in neonates can be helpful for preventing neonatal infection by pathogens.

Declaration of Competing Interest

None.

Acknowledgments

This work was funded by the Key Research, Development, and Promotion Projects of Henan Province (222102310067 and 202102310132) and the Medical Science and Technology Project of Henan Province (LHGJ20220774).

References

1. Li Y, Guo Y, Duan Y. Changes in Streptococcus pneumoniae infection in children before and after the COVID-19 pandemic in Zhengzhou, China. J Infect 2022;85(1):e80–1 Sep. doi:10.1016/j.jinf.2022.05.040.

https://doi.org/10.1016/j.jinf.2022.11.003
0163-4453/© 2022 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Fig. 1. The number of blood culture samples, positive blood cultures and positive blood culture rate from 2018 to 2021.

Table 1
The pathogen distribution of blood culture in neonates.

Pathogens	2018 (n = 120)	2019 (n = 98)	2020 (n = 41)	2021 (n = 43)
Klebsiella pneumoniae	29 (24.2%)	21 (21.4%)	8 (19.5%)	14 (32.6%)
E. coli	16 (13.3%)	15 (15.3%)	9 (22.0%)	4 (9.3%)
Coagulase negative staphylococci	46 (38.3%)	33 (33.7%)	12 (29.3%)	10 (23.3%)
Staphylococcus aureus	2 (1.7%)	6 (6.2%)	2 (4.9%)	0 (0)
Enterococcus faecium	4 (3.3%)	3 (3.1%)	1 (2.4%)	4 (9.3%)
Enterococcus faecalis	0 (0)	2 (2.0%)	1 (2.4%)	1 (2.3%)
Saccharomyces	10 (8.3%)	3 (3.1%)	0 (0)	0 (0)
Ochrobactrum anthropi	2 (1.7%)	2 (2.0%)	0 (0%)	0 (0)
Listeria monocytogenes	1 (0.8%)	1 (1.0%)	2 (4.9%)	0 (0)
Pseudomonas aeruginosa	0	0	1 (2.4%)	1 (2.3%)
Other pathogens	8 (6.7%)	12 (12.2%)	5 (12.2%)	9 (20.1%)

Abbreviations: COVID-19, coronavirus disease 2019.

2. Zhou J, Zhao P, Nie M, Gao K, Yang J, Sun J. Changes of Haemophilus influenzae infection in children before and after the COVID-19 pandemic, Henan, China. J Infect 2022 Oct 20. doi:10.1016/j.jinf.2022.10.019.
3. Marodi L. Neonatal innate immunity to infectious agents. Infect Immun 2006;74(4):1999–2006 Apr. doi:10.1128/IAI.74.4.1999-2006.2006.
4. Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, Schlaphach U, Reinhart K, Kissoon N. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir Med 2018;6(3):223–30 Mar. doi:10.1016/S2213-2600(18)30063-8.
5. Ayouni I, Maarouf J, Dhouib W, et al. Effective public health measures to mitigate the spread of COVID-19: a systematic review. BMC Public Health 2021;21(1):1015 May 29. doi:10.1186/s12889-021-11111-1.
6. Gasch O, Badia-Cebada L, Carmezim J, et al. Effects of the COVID-19 pandemic on incidence and epidemiology of catheter-related Bacteremia, Spain. Emerg Infect Dis 2022;28(11):2181–9 Nov. doi:10.3201/eid2811.220547.