Collagen isolation with acid soluble method from the skin of Red Snapper (*lutjanus* sp.)

BFD Zaelani, **M Safithri**, **K Tarman**, **I Setyaningsih** and **Meydia**

1 Department of Biochemistry, Faculty of Mathematic and Natural Science
2 Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science
3 Division of Marine Biotechnology, Center for Coastal and Marine Resources Studies

Corresponding author: mega.safithri@gmail.com (M Safithri)

Abstract. Collagen is an extracellular matrix connective tissue that account for about 30% of the total protein. Red snapper skin has the potential as an alternative source of collagen that can increase the added value of food and fishery industrial waste. This research aimed to isolate collagen by acid-soluble method and collagen characterization. Isolation of red snapper skin collagen consists of two stages, which are pretreatment with 0.1 M NaOH over 12 hours and hydrolysis with 0.5 M acetic acid over 48 hours. The pretreatment process resulted a non-collagen protein content at 0.2576% mg/mL. Hydrolysis with acetic acid yielded 9.71% (wet) and 41.19% (dry). Chemical analysis by amino acid analysis showed the dominant amino acid glycine, proline, arginine and alanine. Physical characterization of collagen was done by FTIR analysis and showed the presence of amide group A, B, I, II and III which belong to typical group of collagen.

1. Introduction

Collagen is a main structural white tissue that covers almost 30% of total body protein. It largely used as a substance of cosmetic production and other industries, such as biomedic, pharmacy, and so on. In cosmetic production, collagen functions to reduce wrinkle on face. In biological function, collagen roles on tissue and organ formation, and involved on fission, defend, and cell diferentation [35]. Commercial collagen commonly comes from bovine and porcine, which is banned by certain religion in Indonesia. In addition, collagen derived from bovine is feared to be contaminated by *Bovine Spongiform Encephalopathy* (BSE) also called as mad cow disease, foot and mouth disease, or swine flu if it derived from porcine [8]. Therefore, it need to find other alternative sources of collagen.

Fish are potential as an alternative collagen source which is safe and easy to find. Collagen from fish is derived from its skin, bone, offal, or scales. Fish skin, which is a side-product from fillet industri or factory, is a waste. Fish skin are contained collagen with various rendemen (10-63%), and depends on fish type, extracting material, or extraction techniques [27]. Utilization of fish skin as collagen source can reduce the amount of waste or increase its added value. One of fish skin that can be used as collagen source is red snapper. Red snapper production at 2010 reaches 123.827 tons from fisheries sector and 2300 tons from aquaculture sectore [3]. Increasing of collagen used in comestic indutry makes its demand becomes higher. Therefore, the production of collagen usage from red snapper fish are potential to be developed.

Collagen production from fish skin using isolation process are done on several studies. Ali *et al.* [7] had isolated collagen from red snapper’s scale. Peranginangin *et al.* [30] also had isolated collagen from
grouper’s skin. Red snapper’s skin is used as collagen source through acid-soluble method in this study. The usage of acid soluble method has some advantages, such as only need a few tools and time, produce high rendemen with a few waste, and low production cost. The study aims to isolate collagen from red snapper’s skin using acid soluble method and to characterize the isolated collagen.

2. Material and Method

This research was conducted in three process, that is preparation and sample characterization of red snapper skin, collagen isolation and collagen characterization including yield value, amino acids, and functional groups with Fourier Transform Infra Red (FTIR).

2.1. Sample Preparation and Chemical Characterization

Red snapper’s skin are obtained from Pasar Anyar, Bogor, West Java. The skin of red snapper is cleaned and separated from the meat that is still left on the skin. Red snapper skin samples were cut ± 2x2 cm and stored in the freezer for the next process. The red snapper to be used is an analysis of chemical composition including determination of water content [2] and determination of protein concentration [1].

2.2. Pretreatment (Widowati [39])

The red snapper fish skin was treated with NaOH solution at 4⁰ C. Fish skin soaked in 0.1 M NaOH solution with a ratio of 1:10 (b / v) for 12 hours. NaOH solution was changed for every 2 hours. then analysis the protein content quantitatively with Bradford and Bovine Serum Albumin (BSA) tests as standard as well as to determine the concentration of non-collagen protein and the best immersion time [10]. After 12 hours treatment the skin is washed with distilled water to neutralize the pH.

2.3. Collagen extraction (Erizal et al. [13])

The fish skin after pretreatment and neutral was then treated with 0.5 M acetic acid by comparing the ratio of skin with acetic acid 1:10 (b / v) for 48 hours at 4⁰ C. Next, filtered using cheesecloth. The filtrate obtained was immersed with NaCl until the concentration was 1 M and stored for 12 hours. Then centrifuged 6000 rpm for 1 hour. The resulting pellets were dissolved with 0.5 M acetic acid, then put into a dialysis bag and dialyzed with distilled water for 12 hours. Aquades are replaced every 4 hours. After 12 hours collagen in the dialysis bag was centrifuged at 6000 rpm for 30 minutes. The results of the pellet are then freeze-dried until solid collagen is obtained and the yield is calculated.

2.4. Amino Acid Analysis (Nollet dan Leo [26])

Amino acid analysis was carried out using the Ultra Performance Liquid Chromatography (UPLC). This method begins with the hydrolysis of sample and 5 mL of 6 N HCl is added and then vortexed. The sample was then hydrolyzed by heating using an oven at 110⁰C for 22 hours. The sample was cooled in a 50 mL volumetric flask then tasted with distilled water. Filter the sample using milipore filter paper 0.45 μm. The filtrate was taken and added AABA (alpha amino acid butyric acid) and aquabides. Pipette solution, add Acc flour borate and reagent flour A. Then the mixture is vortexed and left for one minute. The sample was then incubated for 10 minutes at 55⁰C, then injected into the UPLC.

2.5. Analisis Gugus Fungsi dengan FTIR (Yan et al. [41])

KBr is ground until smooth, then put into a pellet container to then be printed to form a thin layer to be used as a blank. KBr and mg with ration 1/10 (b/b) of the test sample are mixed, then crushed until smooth and evenly mixed in the agate mortar. Measurement of blanks and test samples is carried out at wave numbers 4000-400 cm⁻¹.

3. Result and Discussion

3.1. Sample Preparation and Chemical Characterization

Red snapper’s skin are obtained from Pasar Anyar, Bogor, West Java. Sample are characterized using chemical composition analysis. The analysis aims to determine the eligibility of red snapper’s skin as
collagen source. Proximate calculation aims to determine pre-treatment process in collagen producing. Fish are known as high protein source which largely used in food industries. Collagen is a protein derivative that usually contains in skin, boned, and scale’s skin. The result shows protein content in red snapper’s skin has 16.34% (wet) and 68.56% (dry). Nurjanah and Abdullah [29] stated that the protein content of fish ranges from 15-25%. Protein content both in meat and fish skin are relatively same [17]. The protein content of red snapper’s skin is lower than white snapper’s skin [16], which is 28.05 ± 0.41% and higher than patin’s skin, which is 4.69% [32]. The results are suspected because species and habitat of the fish are different. The crude protein content of fish skin describes the possible maximum collagen component that can be extracted. High protein levels in skin fish causes the skin to be easily damaged acid or alkaline condition, and microbial activity. So that the skin will easily rot [31].

Water content level in food can lead to ingredient damage, such as microbiological, chemical, and enzymatic processes. The results of the study shows that the water content contained in the red snapper’s skin was 76.42%. This water content is higher when compared to bigeye snapper’s skin, which is 68.08 ± 0.05% and lower than the water content of catfish’s skin, which is 79.95% (Kittiphattanabawon et al. [21]; Rusli [32]. Water content in skin fish are lower that in its meat. The difference of water content are caused by several factors: habitat differences, environmental condition, and fish species. In a material, water content consists of free water and chemically bound water. The measured water content is the free water in the raw material. The water content also determines the freshness and the durability of a material. Holma et al. [18] stated that fish generally consisted of 70-84% water, 15-24% protein, 0.1-22% fat and 1-2% minerals.

4. Pretreatment with NaOH Solution
This pre-treatment process aims to remove contaminants such as fat, minerals, and non-collagen protein on skin fish. The process is done at 4 °C in order to keep the collagen protein of skin fish does not damaged or denatured by hot temperature. Zhou and Regenstein [43] state that there are two alkaline solutions that can be used to remove non-collagen protein, which is NaOH and Ca(OH)₂. The usage of alkaline solutions in the pre-treatment process is more effective to remove the non-collagen proteins and has lower level of protein loss than using acid solution [37].

![Figure 1. Concentration of non-collagen protein in the NaOH solution.](image)

The chemical material changes occur as a result of reaction between fish skin with NaOH in the pre-treatment process. The remaining NaOH solution from soaking process will appear turbid, because process of deproteinase are happened on skin fish. Deproteinase or non collagen protein removal process is caused by NaOH solution which could break the telopeptide of collagen molecule, so that the skin tissue of the fish expands.
Liu et al. [24] stated that the usage of 0.1 M NaOH can dissolve non-collagen protein without causing collagen loss in the skin, while the concentration above 0.1 M significantly causes collagen loss in the pre-treatment process. According to the study of Gadi et al. [14], the concentration of 0.1 M NaOH solution with 12 hours of soaking is quite stable and effective to dissolve non-collagen protein. High NaOH concentration with long soaking time will cause the amount of the dissolved protein increases. Therefore it suspected that not only non-collagen proteins are dissolved, but also collagen proteins.

4.1. Collagen Yield
The collagen yield which produced from red snapper’s skin contains 9.71% wet base and 41.19% dry base. The greater the yield produced, the more efficient the treatment is applied [40]. The obtained yield value is greater than in Wibawa et al. [38], with the similar usage of raw material which is 5.71%. Moreover, the value also more smaller than the collagen yield of white snapper’s skin without dialysis method in [16], which is 13.87%.

The difference of the yield can be caused by the difference on extraction methods, solution concentration, material type, also the difference both on temperature and extraction times. The reduction of dry yield was accompanied by with increased NaCl concentration. It shows that the higher NaCl concentration, the greater water content and salt that bound together with acetic acid and extracted protein [33].

4.2. Amino acid of Collagen
Amino acid contributes to the stability of the helix collagen structure. Amino acids glycine, proline, and hydroxyproline are the main amino acid that forms collagen, and rarely found in other proteins except collagen and elastin [14]. Aberoumand [4] stated that the content of amino acids in collagen is glycine, with low tyrosine and histidine level and does not contain tryptophan and cysteine. Amino acid composition of collagen are shown in Table 1.

Collagen is formed from three polypeptide chains that are mutually twisted to form triple helix structure with a unique amino acid arrangement, which is Gly-X-Y. X is proline and Y is hydroxyproline. Kittiphaattanabawon et al. [22] stated that glycine is an amino acid that forms collagen, and represents about one third of collagen total amino acid. The statement accordances to this study result, where glycine has dominant value in red snapper skin collagen, which is equal to 28.28%. The value is greater than both the glycine content in red snapper skin collagen (25.2%) by Jongjareonrak et al. [20] and skin collagen of white snapper (21.93%) by [16]. Glycine plays role in reducing steric resistance and triggering hydrogen bonds in the helix chain [6]. Besides, glycine also functions to form three alpha helix chains into super helical structures.

In the other hand, proline that contained in collagen also plays a role in maintaining the integrity of the collagen structure. Red snapper skin collagen has 12.96% proline, which is relatively large. That amount is lower than the proline content in white snapper’s skin, which is 11.93% (Hardiyanti [16]) and smaller than the red snapper skin collagen by Jongjareonrak et al. [20], which is 13.1%. High proline content in collagen protein will increase thermal stability. Proline is a unique amino acid in collagen because it plays a role to maintain structural integrity of collagen. Huang et al. [19], stated that both the pyrolidine ring of proline and hydroxyproline limit the conformation of the polypeptide chain and help strengthen the triple helix thermal stability.

Red snapper collagen contains amino acid alanine at 10.42%. This amino acid content of alanine is lower than collagen alanine content in white snapper’s skin, which is 11.25% [16]. The ability of collagen to expand is a result of the amount of polar amino acid compositions in collagen, such as arginine, lysine, serine, and threonine, so that it forms a bond with water (Nurhayati et al. [28]). Differences in collagen's natural amino acid composition depend on the environment, especially temperature, and habitat of the species (Zhou and Regenstein [43]). Moreover, extraction methods, extracting material concentration, and different amino acid analysis methods will also influenced. Hydrophobic amino acid in this analysis result was 62.99% and hydrophilic amino acids was 37%.
Table 1. Amino acid composition of collagen from the skin of red snapper.

No	Amino acid	Result (%)
1	Histidine	1.29
2	Serine	4.02
3	Arginine	11.87
4	Glycine	28.28
5	Aspartate	5.00
6	Glutamate	7.17
7	Threonine	3.49
8	Alanine	10.42
9	Proline	12.96
10	Lysine	4.18
11	Tyrosine	1.06
12	Valine	2.49
13	Isoleucine	1.13
14	Leucine	3.10
15	Phenylalanine	3.58

The high concentration of acetic acid that used during the extraction can affect the proportion of amino acids. The research that conducted by Nurhayati et al. [28] showed that the amino acids in collagen with acid treatment 1.5 M had a lower proportion than 0.5 M. It happens because the usage of acids with higher concentrations could lead to substitution of negative ions in salts with positive ions in acids faster, so that it can break the structure of the protein.

4.3. Functional Group of Collagen

The collagen infrared spectrum results are shown in Figure 2, while the characteristics of the collagen functional group from FTIR analysis are shown in Table 2. Based on the collagen FTIR spectrum of red snapper’s skin shows absorption peaks in the area of amide A, amide B, amide I, amide II, and amide III which is a typical absorption of collagen. Amide absorption peak of amide A in red snapper’s collagen was detected at wavenumber around 3417.86 cm\(^{-1}\). Amide A shows the stretching vibration of \(\text{NH}\) which occurs in the range 3440-3400 cm\(^{-1}\), when \(\text{NH}\) groups of peptides involved in hydrogen bonds, the position will shift to a lower frequency of around 3300 cm\(^{-1}\) [36].

Collagen FTIR spectrum showed the presence of an amide B absorption peak detected at wavenumber 2924.09 cm\(^{-1}\). Amide B group is in the absorption area at wavenumber 2935-2915 cm\(^{-1}\) [11]. Amide B wavenumber is formed from asymmetrical stretching of CH2 groups. Higher wavenumbers can be associated with the presence of the free NH3 from lysine or N-terminus group. Therefore, the smaller wavenumbers in collagen show that the collagen has a lower amount of lysine [9].

The detected wavenumber of amide I in red snapper collagen is 1647.21 cm\(^{-1}\). Amide I is a typical functional group that composes collagen in range 1700-1600 cm\(^{-1}\) wavenumber [23]. It was a stretching of C = O groups from peptide bonds and related to the secondary structure of protein. Muyonga et al. [25] stated that amide I consists of four components of secondary structure protein, which is \(\alpha\)-helix, \(\beta\)-sheet, \(\beta\)-turn, and random coil that overlap to each others. The peak absorption area of the \(\alpha\)-helix
component (1654 cm\(^{-1}\) and 1658 cm\(^{-1}\)) β-sheets (1624 cm\(^{-1}\) and 1642 cm\(^{-1}\)), β-turn (1666 cm\(^{-1}\), 1672 cm\(^{-1}\), 1680 cm\(^{-1}\), 1688 cm\(^{-1}\)), and random coil (1640-1648 cm\(^{-1}\)).

Amida II, which is a typical functional group of collagen, is detected around 1562.34 cm\(^{-1}\). Amida II shows the presence both CN stretching and NH bending in the absorption area of 1575-1480 cm\(^{-1}\) (Kong and Yu 2007). The lower absorption indicates that the NH group is involved in bonding with the α chain [5], a complete triple helix from collagen (Zhang et al. [42]) and hydrogen bonds in collagen [12].

| Table 2. Characteristics of the collagen functional group from FTIR analysis. |
|---------------------------------|-----------------|-----------------|---------------------|
| Amide | Adsorption of area standard (cm\(^{-1}\)) | Absorption obtained (cm\(^{-1}\)) | Characteristic of amide |
| Amide A | 3400-3440\(^1\) | 3417.86 | N-H stretching |
| Amide B | 2935-2915\(^2\) | 2924.09 | Asimetrikal stretching CH\(_2\) |
| Amide I | 1600-1700\(^3\) | 1647.21 | C-O stretching |
| Amide II | 1480-1575\(^4\) | 1562.34 | C-N stretching dan N-H bending |
| Amide III | 1200-1400\(^4\) | 1246.02 | N-H bending dan C-H stretching |

Source: \(^1\)Singh et al. [36]; \(^2\)Coates [11]; \(^3\)Kong dan Yu [23]; \(^4\)Kittiphattanabawon et al. [22]

Figure 2. Spectrum infrared of collagen.

Amide III peak absorption was at 1400-1200 cm\(^{-1}\), which showed intermolecular interactions of CH stretching and NH bending in collagen [22]. Amide III absorption peak in collagen of red snapper’s skin was detected at wavenumber 1246.02 cm\(^{-1}\). Amide III intensity is related to the existence of triple helix structure which is known from the ratio of amide absorption III with absorption peak at 1450 cm\(^{-1}\) approach to 1. The result showed that the ratio was 0.85, whereas collagen will denature by ratio intensity in 0.59. That condition indicates a loss of triple helix structure or known as gelatin. Gomez-Guillen et al. [15] stated that the collagen denaturation due to the heating process can cause its triple helix chain to transform completely into a single chain α-helix (gelatin) with a wavenumber around 1235 cm\(^{-1}\). It occurs due to the thermal depolymerization process, which is the process of breaking the organized structure of triple helix collagen due to the temperature increased of extraction process [34].
5. Discussions

Collagen in red snapper’s skin was successfully isolated by acid soluble method with collagen yield 9.71% at wet base and 41.19% of dry base. The characterization shows that it has common collagen functional groups (amide A, amide B, amide I, amide II, and amide III) and the amino acid level are dominated by 28% glycine, 13% proline, 12% arginine and 10% alanine.

Acknowledgements

This research was supported by Ministry of research, Technology and Higher Education of Indonesia, Center For Coastal and Marine Resources Studies of Bogor Agricultural University (CCMRS-IPB), and also Superior Research Program of Universities number 1664/IT3.11/PN.2018.

References

[1] [AOAC] Association of Official Analytical Chemist. 2005. *Official Method of Analysis* (18 Edn). Mayland (US): Published by The Association of Official Analytical Chemist, Inc.

[2] [BSN] National Standard Agency. 2006. *Determination of Water Content on Fishery Products: SNI 01-2354.2-2006*. Jakarta (ID): National Standard Agency.

[3] [KKP] Marine and Fisheries Ministry. 2010. *Capture Fisheries Statistics 2010*. Jakarta (ID): KKP Press.

[4] Aberoumand A. 2012. Comparitive study between different methods of collagen extraction from fish and it’s properties. *World App Sci J*. 16(3): 316-319.

[5] Ahmad M, Benjakul S and Nalinanon S. 2010. Compositional and physicochemical characteristics of acid solubilized collagen extracted from the skin of unicorn leatherjacket (*Aluterus monoceros*). *Food Hydrocolloids*. 24:588-594.doi: 10.1016/j.foodhyd.2010.03.001.

[6] Alhana, Suprijah P and Tarman K. 2015. Extraction and characterization of collagen from sea cucumber gamma. *JPHPI*. 18(2): 150-162.

[7] Ali M, Noor NM and Leksono YS. 2010. Collagen extraction from red snapper scales (*Lutjanus* Sp). *Proceedings of Semknar Center for Research and Development of product processing and biotechnology and waters.

[8] Ata STW, Yulianty R, Sami EJ and Ramli N. 2016. Collagen isolation from the skin and bones of skipjack fish (*Katsuwonus pelamis*). *J Pharm Med Sci*. 1(1): 27-30.

[9] Barzideh Z, Latiff AA, Gan CY, Benjakul S and Karim AA. 2014. Isolation and characterization of collagen from the ribbon jellyfish (*Chrysaora spI*). *Int J of Food Sci and Technol*. 49:1490-1499.doi:10.1111/ijfs.12464.

[10] Bradford MM. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *J Anall Biochem*. doi: 10.1002/9780470027318.a560.

[11] Coates J. 2006. Interpretation of infrared specta, a practical approach. *Encyclopedia of Anal Chem*. doi: 10.1002/9780470027318.a560.

[12] Duan R, Zhang J, Du X, Yan X and Konno K. 2009. Properties of collagen from skin, scale and bone of carp (*Cyprinus carpio*). *Food Chem*. 112: 702-706.

[13] Erizal, Abbas B, Setyo AK, Sulistiono GS and Sudirman. 2014. Effect of gamma irradiation on the physico-chemical properties of collagen in solution. *J Sains Materi Indones*. 15(4): 221-225.

[14] Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME and Montero MP. 2011. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. *Food Hydrocolloids*. 25: 1813-1827. doi:10.1016/j.foodhyd.2011.02.007.

[15] Hardiyanti R. 2017. Optimization of extraction and characterization of collagen from the skin of white snapper (*Lates Calcarifer*) [essay]. Bogor (ID): Bogor Agricultural University.

[16] Helfman GS, Collete BB and Facey DE. 2009. *The Diversity of Fishes. 2nd ed*. Chichester: John Wiley & Sons Ltd.
[18] Holma K, Ayinsa and Maalekuu BK. 2013. Effect of traditional fish processing methods on the proximate composition of red fish stored under ambient room conditions. American J of Food Nut. 3(3): 73-82.

[19] Huang YR, Shiah CY, Chen HH and Haung BC. 2011. Isolation and characterization of acid and pepsin-solubilized collagen of the skin balloon fish (Diodon holocanthus). Food Hydrocolloids. 25: 1507-1513. doi:10.1016/j.foodhyd.2011.02.011.

[20] Jongjareonrak A, Benjakul S, Visessanguan W, Nagai T and Tanaka M. 2005. Isolation and characterization of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vittatus). J Sci Food Agr. 85(7): 1203-1210. doi: 10.1002/jsfa.2072.

[21] Kittiphattanabawon P, Benjakul S, Visessanguan W, Nagai T and Tanaka M. 2005. Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chem. 89: 363-372. doi: 10.1016/j.foodchem.2004.02.042.

[22] Kittiphattanabawon P, Benjakul S, Visessanguan W and Shahidi F. 2010. Isolation and characterization of collagen from cartilages of brownbranded bamboo shark (Chiloscyllium punctatum) and blacktip shark (Carcharhinus limbatis). Food Sci Technol. 43: 792-800. doi: 10.1016/j.lwt.2010.01.006.

[23] Kong J and Yu S. 2007. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochem Biophys Sin. 39(8): 549-559.

[24] Liu D, Wei G, Li T, Hua J, Lu J, Regenstein JM and Zhou P. 2015. Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin. Food Chem. 172: 836-843.

[25] Muyonga JH, Cole CGB and Duodu KG. 2004. Characterisation of acids soluble collagen from skins of young and adult Nileperch (Lates niloticus). Food Chem. 85(1): 81-89.

[26] Nollet and Leo ML. 1996. Handbook of Food Analysis Amino Acid. Francis: CRC Press.

[27] Nurhayati and Peranginangin R. 2009. The prospect of utilizing fishery waste as a source of collagen. Squalen. 4(3): 83-92.

[28] Nurhayati, Tazwir and Murniyati. 2013. Extraction and characterization of acid soluble collagen from the skin of tilapia (Oreochromis niloticus). JPBKP. 8(1): 85-92.

[29] Nurjanah and Abdullah A. 2010. Smart Choosing Fish and Preparing the Process. Bogor (ID): IPB Press.

[30] Peranginangin R, Kusumawati R and Apriantoro EW. 2008. Isolation and characterization of collagen extracted from the skin of groupers (Ephinephalus Tauvina). Proceedings of the annual national seminar V results of fisheries and marine research in the field of fisheries. Faculty of agriculture: Gajah Mada University.

[31] Rahmat A, Sahubawa L and Yusuf I. 2008. The effect of repetition of liming with quicklime (CaO) on the physical quality of tanned ray skin. Majal Kulit, Karet, dan Plastik. 24:19-24.

[32] Rusli A. 2004. Study of fresh gelatin extraction process from the skin of catfish (Pangasius hypophthalmus) [thesis]. Bogor (ID): Bogor Agricultural University.

[33] Sahubawa L and Ustad. 2014. Preservation Technology and Processing of Fisheries Products. Yogyakarta (ID): Gadjah Mada University Press.

[34] Sai KP and Babu M. 2001. Studies on Rana tigerina skin collagen. Comp Biochem and Physiol B. 128: 81-89.

[35] Setyowati H and Setyani W. 2015. The potential of nanokolagen as fish scales Cosmeceutical. J Farm Sains Kom. 12(1): 30-40.

[36] Singh P, Benjakul S, Maqsood S and Kishimura H. 2011. Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus). Food Chem. 124: 97-105. doi: 10.1016/j.foodchem.2010.05.111.

[37] Suptijah P, Indriani D and Wardoyo SE. 2018. Isolation and characterization of collagen from the skin of catfish (Pangasius sp.). J sains Natur Univ Nusa Bangsa. 8(1): 8-23.

[38] Wibawa SF, Retnoningrum DS and Suhartono MT. 2015. Acid soluble collagen from skin of common carp (Cyprinus carpio L), red snapper (Lutjanus sp.) and milkfish (Chanos chanos). World App Sci J. 33(6): 990-995. doi: 10.5829/idosi.wasj.2015.33.06209.
[39] Widowati N. 2017. Collagen isolation from Chirocentrus dorab (Chirocentrus dorab) by acid soluble collagen method and physicochemical [essay] bogor (ID): Bogor Agricultural University.

[40] Wijaya H. 2014. Isolation and characterization of crab proteins (Scylla serrata), squid (Phtololigo duvauceilil), kacang hijau (Vigna raidata (L.) R. Wilczek), dan lentils sword (Canavalia ensiformis (L.) DC) for the manufacture of allergen isolates [dissertation]. Bogor (ID): Bogor Agricultural University.

[41] Yan M, Li B, Zhao X, RenG, Zhuang Y, Hou H, Zhang X, Chen L and Fan Y. 2008. Characterization of acid soluble collagen from the skin of walleye Pollock (Theragra chalcogramma). Food Chem. 107:1581-1586. doi:10.1016/j.foodchem.2007.10.027.

[42] Zhang Q, Wang Q, Lv S, Lu J, Jiang S, Regenstein JM and Lin L. 2016. Comparison of collagen and gelatin extracted from the skins of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). Food Biosci. 13:41-48. doi:10.1016/j.fbio.2015.12.005.

[43] Zhou P and Regenstein JM. 2005. Effects of alkaline and acid pretreatment on alaska pollock skin gelatin extraction. J Food Sci. 70(6): C392-396.