DEFINING R AND $G(R)$

DAN SEGAL AND KATRIN TENT

Abstract. We show that for Chevalley groups $G(R)$ of rank at least 2 over a ring R the root subgroups are (nearly always) the double centralizer of a corresponding root element. If $G(R)$ has finite elementary width, this implies that R and $G(R)$ are bi-interpretable, yielding a new approach to bi-interpretability for algebraic groups over a wide range of rings and fields.

For such groups it then follows that the group $G(R)$ is finitely axiomatizable in the appropriate class of groups provided R is finitely axiomatizable in the corresponding class of rings.

1. Introduction

A Chevalley-Demazure group scheme G assigns to each commutative ring R a group $G(R)$. If R is an integral domain with field of fractions k, one can realise $G(R)$ as the group of R-points of $G(k)$, where $G(k)$ is taken in a given matrix representation (see e.g. [Ab], §1). Group-theoretic properties of $G(R)$ tend to reflect ring-theoretic properties of R. In this paper we consider properties that are expressible in first-order language; specifically, we establish sufficient conditions for $G(R)$ to be bi-interpretable with R. This is a slightly subtle concept, explained in [HMT], Chapter 5; see §3 below. A bi-interpretation sets up a bijective correspondence between first-order properties of the group and first-order properties of the ring.

Throughout the paper, G will denote a simple Chevalley-Demazure group scheme defined by a root system Φ of rank at least 2, and R will be be a commutative integral domain. We say that $G(R)$ has finite elementary width if there exists $N \in \mathbb{N}$ such that every element of $G(R)$ is equal to a product of N elementary root elements $x_\alpha(r), \alpha \in \Phi, r \in R$.

Theorem 1.1. Let G be a simple Chevalley-Demazure group scheme of rank at least two, and let R be an integral domain such that $G(R)$ has finite elementary width. Then R and $G(R)$ are bi-interpretable, assuming in case G is of type E_6, E_7, E_8, or F_4 that R has at least two units.

The hypotheses are satisfied in particular when R is an infinite field, an infinite local ring, or a ring of algebraic integers; for a longer list see §9.

They are not always satisfied when R is a principal ideal domain. However, instead of assuming finite elementary width, we can obtain the same result under a weaker structural hypothesis. Recall that to each root α is associated a canonical image K_α of SL_2 in G; we say that $G(R)$ has finite SL_2 width if $G(R)$ is the product of finitely many of its subgroups $K_\alpha(R)$. This is certainly implied by finite elementary width, as $K_\alpha(R)$ contains the root subgroup $x_\alpha(R)$; but it is strictly weaker: for example $SL_3(\mathbb{C}[t])$ has the former property but not the latter [vdK].

Slightly limiting the range of groups, we can prove
Theorem 1.2. Let G be a simple Chevalley-Demazure group scheme of rank at least two, and let R be an integral domain such that $G(R)$ has finite SL_2 width. Assume that $Z(G) = 1$. Then R and $G(R)$ are bi-interpretable, provided R has at least four units. (In most cases, it suffices to assume $|R^*| \geq 2$.) We note that $G(R)$ has finite SL_2 width whenever R is a principal ideal domain, or more generally a Dedekind domain ([St], Chapter 8).

These results have consequences related to ‘first-order rigidity’. A group (or ring) X is first-order rigid (or relatively axiomatizable) in a class C if any member of C elementarily equivalent to X is isomorphic to X. For example, Avni, Lubotzky and Meiri [ALM] prove that all higher-rank non-uniform arithmetic groups are first-order rigid in the class of f.g. groups.

A stronger condition is relative finite axiomatizability, or FA: X is FA in C if there is a first-order sentence such that X is the unique member of C (up to isomorphism) that satisfies this sentence. When C is the class of finitely generated groups, resp. rings, the latter property is often called QFA, or quasi-finitely axiomatizable; see [NSG], [AKNZ], and for recent variations on this theme [NST]. (This should not be confused with the notion of quasi finite axiomatizability used in model theory, see e.g. [AZ].)

Suppose that $G(R)$ is bi-interpretable with R. Then $G(R)$ is first-order rigid, resp. FA in C if and only if R has this property relative to C', provided the ‘reference classes’ C and C' are suitably chosen. In particular, in §5 we establish

Corollary 1.3. Assume that G and R satisfy the hypotheses of Theorem 1.1 or Theorem 1.2. If R is first-order rigid, resp. FA, in (a) the class of finitely generated rings, (b) the class of profinite rings, (c) the class of locally compact (or t.d.l.c.) topological rings, then $G(R)$ has the analogous property in (a) the class of finitely generated groups, (b) the class of profinite groups, (c) the class of locally compact (or t.d.l.c.) topological groups.

In most cases the converse of this corollary is also valid, see §5.

In a recent paper [B], E. I. Bunina shows that (in many cases) $G(R)$ is elementarily equivalent to $G(S)$ if and only if R and S are elementarily equivalent; where applicable, this provides an alternative route to first-order rigidity in the style of the above corollary.

It is important to note that in cases (b) and (c), the first-order axioms can a priori only determine the group up to isomorphism as an abstract group, cf. [NST], §1.2; in most of the cases under consideration, this is sufficient to determine the group as a topological group, see Proposition 5.4.

Applications are presented in §9. These include

Corollary 1.4. (i) If S is a finite set of primes in a global field k then the S-arithmetic group $G(R)$ is FA among f.g. groups, assuming if $\text{char}(k) \neq 0$ that G is adjoint .

(ii) If G is simply connected and R is one of the complete local rings $\mathbb{F}_q[[t_1, \ldots, t_n]]$, $\mathfrak{o}_q[[t_1, \ldots, t_n]]$ ($n \geq 0$) then $G(R)$ is FA in the class of profinite groups.

(iii) If k is a local field then $G(k)$ is FA in the class of locally compact groups.

(Here $\mathfrak{o}_q = \mathbb{Z}_p[\zeta]$, where $q = p^f$ and ζ is a primitive $(q - 1)$th root of unity). For the fact that the S-arithmetic groups in (i) are indeed finitely generated, see [BS] and [Be].
The main point of the paper is to show how Theorems 1.1 and 1.2 may be deduced from the fact that root subgroups are definable. This in turn is a (relatively straightforward) consequence of our main structural result.

The root subgroup of G associated to a root α is denoted U_α. It seems to be part of the folklore that for a field k, the subgroup $U_\alpha(k)$ is equal to its own double centralizer in $G(k)$. We will need a more general version of this; as we could not find a reference, and the result for some rings is perhaps somewhat unexpected, we will present three different approaches to the proof, each applicable to a slightly different range of cases.

To save repetition, we will refer to the statement

‘R is infinite, and if $\Phi \in \{E_6, E_7, E_8, F_4\}$ then $R^* \neq \{1\}$’

as the standing hypothesis.

Theorem 1.5. Assume the standing hypothesis. Let U be a root subgroup of G and let $1 \neq u \in U(R)$. Write Z for the centre of G. Then

(1) \[Z(C_G(R)(u)) = U(R)Z(R) \]

unless G is of type C_n (including $B_2 = C_2$), U belongs to a short root α and $R^* = \{\pm 1\}$, in which case

(2) \[Z(C_G(R)(u)) \leq U(R)U_1(R)U_2(R)Z(R) \]

where U_1 and U_2 are root subgroups belonging to long roots adjacent to α in a B_2 subsystem.

In the exceptional case, $Z(C_G(R)(u))$ actually turns out to be two-dimensional: the precise description is given in §8.

If one assumes that R has at least four units, the theorem can be proved very quickly, and we do this in §2 below. Remaining cases are dealt with in §§6, 7 and 8; these can be skipped by the reader unconcerned with ‘difficult’ rings such as Z.

As for definability, we shall deduce

Corollary 1.6. (Under the standing hypothesis). For each root α the root subgroup $U_\alpha(R)$ is definable, unless possibly $G = \text{Sp}_4(R)$, $\text{char}(R) = 0$ and $R/2R$ is infinite; in any case $U_\alpha(R)Z(R)$ is definable.

Definable here means ‘definable with parameters’: a subset H in a group Γ is definable if there are a first-order formula φ and elements $g_1, \ldots, g_m \in \Gamma$ such that $H = \{h \in \Gamma \mid \varphi(h, g_1, \ldots, g_m)\}$ holds.

This is good enough for the proof of Theorems 1.1 and 1.2, which appear in §3 and §4.

Remark. Essentially the same proof establishes Corollary 1.6 whenever G is a k-isotropic algebraic group with the maximal k-torus defined over R, provided R has at least four units. Whether the other results can be extended in this direction remains to be seen, cf. [KRT], [ALM].

In the proofs we have frequent recourse to the Chevalley commutator formula, summarized for convenience in the Appendix.
2. Double centralizers and definability of root groups

Following [Ab] we denote by T the distinguished maximal torus of G determined by Φ. Let N denote the normalizer of T in G, so that the Weyl is group $W = N/T$. We will sometimes use the fact that W permutes the root subgroups, and acts transitively on the set of short roots and on the set of long roots. Each $w \in W$ has a coset representative $n_w \in N(R)$ (in fact, in the subgroup generated by root elements of the form $x_\alpha(\pm1)$). Thus all long (resp. short) root subgroups are conjugate in $G(R)$.

The field of fractions of R will be denoted k, and its algebraic closure \overline{k}. Sometimes we identify G with $G(\overline{k})$. We write $\pi : G \rightarrow G/Z$ for the quotient map.

We begin by clarifying the relation between the R-points of the algebraic group U_α and the 1-parameter group $x_\alpha(R)$; this is the link between Corollary 1.6 and the main theorems.

\textbf{Lemma 2.1.} Let $U = U_\alpha$ be a root subgroup. Then

\begin{equation}
U \cap G(R) = U(R) = x_\alpha(R),
\end{equation}

\begin{equation}
UZ \cap G(R) = U(R)Z(R).
\end{equation}

\textbf{Proof.} (3): If R is a PID, or more generally an intersection of PIDs (such as a Dedekind ring), this follows from [St], Lemma 49(b). In the general case, it is a consequence of the fact that the morphism x_α from the additive group scheme to G is a closed immersion ([Co], Thm. 4.1.4; [SGA] exp. XX, remark following Corollaire 5.9).

(4): Say $g = x_\alpha(\xi)z \in G(R)$ where $\xi \in \overline{k}$ and $z \in Z$. Then

$$x_\alpha(\xi)\pi = g\pi \in G(R)\pi \subseteq (G/Z)(R),$$

whence $\xi \in R$ by (3) applied to the group scheme G/Z. Thus $x_\alpha(\xi) \in U(R)$ and so $z \in Z(R)$. \hfill \square

The main step in the proof of Theorem 1.5 is

\textbf{Lemma 2.2.} Assume that if G is of type E_n or F_4 then $R^* \neq 1$, and if G is of type C_n then $R^* \neq \{\pm1\}$. Then there exists a finite set $Y \subseteq C_{G(R)}(U)$ such that $C_G(Y) \subseteq UZ$.

To deduce the main case of the theorem, observe that

$$Z \subseteq V := C_G(C_G(u)) \leq C_G(C_{G(R)}(u)) \leq C_G(Y) \leq UZ.$$

Thus if V has positive dimension we have equality throughout. If G is of classical type, it is easy to see in a matrix representation that $V \geq U$ (cf. §8). In all other cases, the results of [LT], [S1] and [S2] show that $\dim(V) = 1$. Now (1) follows by (4). The proof of Theorem 1.5 for groups of type C_n is completed in §8.

The slickest proof of Lemma 2.2 uses what we call ‘torus witnesses’. Let α and β be linearly independent roots. A \textit{torus witness} for (α, β) is an element $s \in T(R)$ that centralizes U_α and acts effectively on U_β:

$$s \in C_{T(R)}(U_\alpha), \quad C_{U_\beta}(s) = 1.$$

Note that s centralizes, respectively acts effectively, on a root group U_γ if and only if it does the same to $U_\gamma(R)$.

In most cases we can use ‘elementary torus elements’ $h_\gamma(t) \in T(R)$, defined by
$$h_\gamma(t) = x_\gamma(t)x_{-\gamma}(-t^{-1})x_\gamma(t) : x_\gamma(1)x_{-\gamma}(-1)x_\gamma(1)$$
([St], Lemma 20, [C], Lemma 6.4.4). Now $h_\gamma(t)$ acts on U_β by
$$x_\beta(r)^{h_\gamma(t)} = x_\beta(t^{-A_{\gamma\beta}r})$$
where
$$A_{\gamma\beta} = \frac{2(\gamma, \beta)}{(\gamma, \gamma)} \in \{0, \pm 1, \pm 2, \pm 3\}$$
(see [C], p. 194).

We first deal with the case where R contains at least 4 units:

Proposition 2.3. Assume that $|R^*| \geq 4$. Then for each pair (α, β) of linearly independent roots there is a torus witness $s_{\alpha, \beta}$.

Proof. Let $r \in R^*$ be such that $r^2 \neq 1 \neq r^3$. If β is orthogonal to α, then we put $s_{\alpha, \beta} = h_\beta(r)$. Now suppose α and β are non-orthogonal. If α and β span a diagram of type A_2, then there is a root $\gamma \neq \pm \alpha, -\beta$ such that $(\alpha, \beta) \neq (\alpha, \gamma)$. In this case, the actions of $h_\beta(r)$ and $h_\gamma(r)$ on U_α are inverse to each other and so $s_{\alpha, \beta} = h_\beta(r)h_\gamma(r)$ is as required. If α, β span a diagram of type B_2 or G_2, there is a root γ orthogonal to α and non-orthogonal to β and we put $s_{\alpha, \beta} = h_\gamma(r)$. \[\Box\]

Other cases will be considered later.

Proposition 2.4. Let α be a positive root. Suppose that for every positive root $\beta \neq \alpha$ there exists a torus witness s_β for (α, β). Set $Y = \{ s_\beta \mid \beta \in \Phi_+ \}$. Then
$$C_G(Y) \leq U_\alpha Z.$$

Proof. We recall the Bruhat decomposition ([C], Thm. 8.4.3, [St], p. 21). Order the positive roots as $\alpha_1, \ldots, \alpha_m$ and write $U_i = U_{\alpha_i}$. For $w \in W$ put
$$S(w) = \{ i \mid w(\alpha_i) \in \Phi_- \}$$
where Φ_- is the set of negative roots. Then each element of G can be written uniquely in the form
$$g = u_1 \cdots u_m \cdot t_{n_w} \cdot v_1 \cdots v_m$$
where $w \in W$, $t \in T$, $u_i, v_i \in U_i$ and $v_i = 1$ unless $i \in S(w)$.

We may suppose that $\alpha = \alpha_1$. For each $i \geq 2$ there is a torus witness $s_i \in Y$ for (α_1, α_i). Now let $g \in C_G(Y)$, and write g in the form (5). Then for each $j \geq 2$ we have
$$g = g^{s_j} = u_1^{s_j} \cdots u_i^{s_j} \cdot t_{n_w}^{s_j} \cdot v_1^{s_j} \cdots v_m^{s_j}.$$
Now s_j fixes u_1 and v_1, and moves each non-identity element of U_j; it also normalizes N and each U_i. It follows by the uniqueness of expression that $u_j = v_j = 1$. This holds for each $j \geq 2$, and we conclude that
$$g = u_1 t_{n_w} v_1.$$

As $t_{n_w} = v_1^{-1} u_1 v_1^{-1}$ fixes $u \in U_{\alpha_1}$, but conjugates U_{α} to $U_{w(\alpha)}$, it follows that $w(\alpha) = \alpha$; in particular, $1 \notin S(w)$, and so $v_1 = 1$.

It remains only to prove that $t_{n_w} \in Z = Z(G)$. Let γ be a root. If $\alpha + \gamma \notin \Phi$ then $U_\gamma \leq C_G(U_{\alpha})$. If $\alpha + \gamma$ and $\alpha - \gamma$ are both roots then either $2\alpha + \gamma \notin \Phi$ or
2\alpha - \gamma \notin \Phi, and then \(U_{\alpha \pm \gamma} \leq C_G(U_\alpha) \). It follows that \(t \gamma \in G \), centralizes at least one of
\[
U_\gamma, U_{-\gamma}, U_{\alpha \pm \gamma}.
\]
As \(w(\alpha) = \alpha \) this implies that \(w(\gamma) = \gamma \), and as \(\gamma \) was arbitrary it follows that \(w = 1 \). Thus \(t \gamma \in G \), centralizes at least one of
\[
U_\gamma, U_{-\gamma}, U_{\alpha \pm \gamma}.
\]
It is clear that the double centralizer of an element \(u \) is definable, by Lemma 2.5. This holds in particular when \(\Phi = G_2 \) ([St], p. 23).

The 'generic case' of Theorem 1.5, where \(|R^*| \geq 4\), is now completely established.

For the remainder of this section, we will take as given the conclusion of this theorem (in its general form), and show that it implies Cor. 1.6.

Fix a root \(\alpha \), set \(U = U_\alpha \) and fix \(u \in U, u \neq 1 \). We begin with

Lemma 2.5. \(U(R)Z(R) \) is a definable subgroup of \(G(R) \).

Proof. It is clear that the double centralizer of an element \(u \) is definable, taking \(u \) as a parameter. So if \(U \) satisfies (1) we are done.

Otherwise, (2) holds, \(\Phi = C_\alpha \) and \(\alpha \) is a short root. Set \(V = Z(C_G(R)(u)) \). Thus
\[
U(R)Z(R) \leq V \leq U_{-\beta}(R)U(R)U_{2\alpha + \beta}(R)Z(R)
\]
where \(\alpha, \beta \) make a pair of fundamental roots in a \(B_2 \)-subsystem of \(\Phi \).

Let \(g = x_{-\beta}(r)x_\alpha(s)x_{2\alpha + \beta}(t)z \in V \), where \(z \in Z \). The commutation relations give
\[
[g, x_{\alpha + \beta}(1)] = x_\alpha(\pm r)x_{2\alpha + \beta}(\pm r)x_{2\alpha + \beta}(\pm 2s)
\]
\[
[g, x_{-\alpha - \beta}(1)] = x_{-\beta}(\pm 2s)x_\alpha(\pm t)x_{-\beta}(\pm t)
\]
Now \(g \) lies in \(U(R)Z(R) \) if and only if \(r = t = 0 \), which holds if and only if
\[
[g, x_{\alpha + \beta}(1)] \in U_{2\alpha + \beta}(R)Z(R) \quad \text{and}
\]
\[
[g, x_{-\alpha - \beta}(1)] \in U_{-\beta}(R)Z(R).
\]
As \(2\alpha + \beta \) and \(-\beta \) are long roots, each of the two groups on the right is definable, as is \(V \). Hence \(U(R)Z(R) \) is definable in this case too.

Now we can complete the

Proof of Corollary 1.6. If \(G \) is adjoint then \(Z = 1 \) and \(U(R) = U(R)Z(R) \) is definable, by Lemma 2.5. This holds in particular when \(\Phi = G_2 \) ([St], p. 23).

If \(\Phi \) is not of type \(A_n, D_{2m+1} \) or \(E_6 \) we have \(Z^2 = 1 \) (loc. cit.), so in all these cases we have
\[
U(2R) = (U(R)Z(R))^2
\]
which is definable. If also \(R/2R \) is finite, then \(U(R) \) is the union of finitely many cosets of \(U(2R) \), and so definable with the help of a few parameters. If \(\Phi = B_2 \) then either \(G \) is adjoint or \(G \cong Sp_4 \). If the characteristic of \(R \) is odd then \(2R = R \). If \(\text{char}(R) = 2 \) and \(Z^2 = 1 \) then \(Z = 1 \), and there is nothing to prove. The case where \(\text{char}(R) = 0 \), \(R/2R \) is infinite and \(G \cong Sp_4 \) is the special case in the statement of the corollary. Thus we may assume that \(\Phi \notin \{G_2, B_2\} \).
Now we separate cases. Note that if \(U_\beta(R) \) is definable for some root \(\gamma \), then so is \(U_\gamma(R) \) for every root \(\gamma \) of the same length as \(\beta \), as these subgroups are all conjugate in \(G(R) \). This will be used repeatedly without special mention.

Case 1: There is a root \(\beta \) such that \(\alpha \) and \(\beta \) make a pair of fundamental roots in a subsystem of type \(A_2 \). Now the commutator formula shows that

\[
U_{\alpha+\beta}(R) = [U_\alpha(R)Z(R), x_\beta(1)],
\]

so \(U_{\alpha+\beta}(R) \) is definable; and \(\alpha + \beta \) has the same length as \(\alpha \).

Case 2: There is no such \(\beta \). Then there exist roots \(\beta \) and \(\gamma \) such that \(\alpha \), \(\beta \), \(\gamma \) form a fundamental system of type \(B_3 \) or \(C_3 \), with \(\beta \) in the middle and of the same length as \(\gamma \). Moreover, \(U_\beta(R) \) is definable by Case 1.

Now if \(\alpha \) is short and \(\beta \) is long, then \(2\alpha + \beta \) is a long root, so \(U_{2\alpha+\beta}(R) \) is definable. The formula

\[
[x_\alpha(1), x_\beta(r)z] = x_{\alpha+\beta(\pm r)}x_{2\alpha+\beta}(\pm r)
\]

\((z \in \mathbb{Z})\) shows that if \(g \in U_{\alpha+\beta}(R) \) then there exist \(v \in U_\beta(R)Z(R) \) and \(w \in U_{2\alpha+\beta}(R) \) such that \(gw^{-1} = [x_\alpha(1), v] \). As

\[
U_{\alpha+\beta}U_{2\alpha+\beta} \cap U_{\alpha+\beta}Z = U_{\alpha+\beta}
\]

it follows that \(g \in U_{\alpha+\beta}(R) \) if and only if \(g \in U_{\alpha+\beta}(R)Z(R) \) and there exist \(v, w \) as above satisfying \(gw^{-1} = [x_\alpha(1), v] \). Thus \(U_{\alpha+\beta}(R) \) is definable; as \(\alpha + \beta \) is short the result follows for \(U_\alpha(R) \).

Suppose finally that \(\alpha \) is long and \(\beta \) is short. The preceding argument, swapping the roles of \(\alpha \) and \(\beta \), shows that \(g \in U_{2\beta+\alpha}(R) \) if and only if \(g \in U_{2\beta+\alpha}(R)Z(R) \) and there exist \(v \in U_\alpha(R)Z(R) \) and \(w \in U_{2\beta+\alpha}(R) \) such that \(gw^{-1} = [x_\alpha(1), v] \). Also \(U_{\beta+\alpha}(R) \) is definable because \(\beta + \alpha \) is short like \(\beta \), and so \(U_{2\beta+\alpha}(R) \) is definable. This finishes the proof as \(2\beta + \alpha \) is long like \(\alpha \).

3. Bi-interpretation

In this section we shall assume Corollary 1.6 and deduce Theorem 1.1. The extra argument needed for Theorem 1.2 appears in the following section.

A bi-interpretation between \(R \) and \(G(R) \) has four ingredients, which we describe in the form they occur here (which is not the most general form). ‘Definability’ will be in one of two first-order languages, the language \(L_{\text{gp}} \) of group theory and the language \(L_{\text{rg}} \) of ring theory. We set \(\Gamma = G(R) \), in an attempt to avoid a forest of symbols.

1. An interpretation of \(R \) in \(\Gamma \); in most cases, this consists in an identification of \(R \) with a definable abelian subgroup \(R' \) of \(\Gamma \) such that addition in \(R' \) is the group operation in \(\Gamma \), and multiplication in \(R' \) is definable in \(\Gamma \) (thus the ring structure on \(R' \) is \(L_{\text{gp}} \) definable); in one special case, we instead take \(R' \) to be the image in \(\Gamma/Z(\Gamma) \) of a definable abelian subgroup of \(\Gamma \) (the target of an interpretation can be the quotient of \(\Gamma \) by a definable equivalence relation, see [HMT], §5.3).
2. An interpretation of \(\Gamma \) in \(R \); namely, for some \(d \in \mathbb{N} \) an identification of \(\Gamma \) with a subgroup \(\Gamma^d \) of \(\text{GL}_d(R) \), where \(\Gamma^d \) is definable in \(L_{\text{rg}} \) (thus the group structure on \(\Gamma^d \) is \(L_{\text{rg}} \) definable, being just matrix multiplication);
3. An \(L_{\text{gp}} \) definable group isomorphism from \(\Gamma \) to \(\Gamma'' \), the image of \(\Gamma^d \) in \(\text{GL}_d(R') \);
An L_{ts} definable ring isomorphism from R to R', the image of R' in $\text{GL}_d(R)$.

We assume to begin with that each root group $U_\alpha(R)$ is definable; the small changes needed to deal with the exceptional case in Cor. 1.6 are indicated at the end of this section.

Interpreting R in $G(R)$

Lemma 3.1. If U_1, \ldots, U_q are distinct positive root subgroups then the mapping $\pi_1 : U_1(R) \cdots U_q(R) \to U_1(R)$ that sends $u_1 \ldots u_q$ to u_1 (in the obvious notation) is definable.

Proof. If $g = u_1 \ldots u_q$ then
\[
\{u_1\} = gU_q(R) \cdots U_2(R) \cap U_1(R)
\]
(cf. [St] Lemma 18, Cor. 2). \square

Lemma 3.2. Let α and β be any two roots. Then the mapping $c_{\alpha\beta} : U_\alpha(R) \to U_\beta(R)$
\[
x_\alpha(r) \mapsto x_\beta(r)
\]
is definable.

Proof. Suppose first that α and β are the same length. Then there exist an element w in the Weyl group such that $w(\alpha) = \beta$, and a representative n_w for w, with $n_w \in N(R)$, such that $x_\alpha(r)n_w = x_\beta(\eta r)$ for all $r \in R$, where $\eta = \pm 1$ ([C], lemma 7.2.1). So we can define $c_{\alpha\beta}(g) = g^{n_w}$.

Now suppose that α is long and β is short. We can find a short root μ and a long root ν such that $\mu + \nu = \gamma$ is a short root. The commutator formula gives (for a suitable choice of sign)
\[
[x_{\mu}(\pm 1), x_{\nu}(s)] = x_{\gamma}(s)u_3 \ldots u_q
\]
where $u_i \in U_{j+i\nu}$, $j + l = i$ (and $q \leq 5$), so by Lemma 3.1 the map $c_{\nu\gamma}$ is definable. It follows by the first case that $c_{\alpha\beta} = c_{\alpha\nu}c_{\nu\gamma}c_{\gamma\beta}$ is definable.

Finally if α is short and β is long we have $c_{\alpha\beta} = c_{\beta\alpha}^{-1}$. \square

Lemma 3.3. Let α, β and γ be any roots. The mapping $m_{\alpha\beta\gamma} : U_\alpha(R) \times U_\beta(R) \to U_\gamma(R)$
\[
(x_\alpha(r), x_\beta(s)) \mapsto x_\gamma(rs)
\]
is definable.

Proof. By the preceding lemma we may suppose that α and γ are short and that $\gamma = \alpha + \beta$. Then apply the same argument to the formula
\[
[x_\alpha(\pm r), x_\beta(s)] = x_\gamma(rs)u_3 \ldots u_q.
\]

Now we interpret R in Γ as follows: fix a root α_0, set $R' = U_{\alpha_0}(R)$ and identify $r \in R$ with $r' = x_{\alpha_0}(r)$. Then $m_{\alpha_0\alpha_0\alpha_0}$ defines multiplication in R'. Since addition in R' is simply the group operation, we may infer
Corollary 3.4. Let \(f \) be a polynomial over \(\mathbb{Z} \). Then the mapping \(U_{\alpha_0}(R) \rightarrow U_{\alpha_0}(R) \) given by \(r' \mapsto f(r') \) is \(L_{\text{gp}} \) definable.

Interpreting \(G(R) \) in \(R \)

The group scheme \(G \) is defined as follows (see e.g. [Ab], §1). Fix a faithful representation of the Chevalley group \(G(\mathbb{C}) \) in \(\text{GL}_d(\mathbb{C}) \). The ring \(\mathbb{Z}[G] = \mathbb{Z}[X_{ij}; i, j = 1, \ldots, d] \) is the \(\mathbb{Z} \)-algebra generated by the co-ordinate functions on \(G \), taken w.r.t. a suitably chosen basis for the vector space \(\mathbb{C}^d \). For a ring \(R \) we define

\[
G(R) = \text{Hom}(\mathbb{Z}[G], R).
\]

Thus an element \(g \in G(R) \) may be identified with the matrix \((X_{ij}(g)) \), and the group operation is given by matrix multiplication.

Let \(T_{ij} \) be independent indeterminates. The kernel of the obvious epimorphism \(\mathbb{Z}[T] \rightarrow \mathbb{Z}[G] \) is an ideal, generated by finitely many polynomials \(P_l(T) \), \(l = 1, \ldots, s \) say. For a matrix \(g = (g_{ij}) \in M_d(R) \), we have

\[
g \in G(R) \iff P_l(g_{ij}) = 0 \quad (l = 1, \ldots, s).
\]

Thus \(G(R) \) is \(L_{\text{reg}} \) definable as a subset of \(M_d(R) \).

Definable isomorphisms

To complete Step 3, we exhibit a definable isomorphism \(\theta : G(R) \rightarrow G(R') \subseteq M_d(R') \). The definition of such a \(\theta \) is obvious; the work is to express this definition in first-order language.

We recall the construction of \(G(R) \) in more detail (cf [St], Chapters 2 and 3). For each root \(\alpha \) there is a matrix \(X_\alpha \in M_d(\mathbb{Z}) \) such that

\[
x_\alpha(r) = \exp(rX_\alpha) = 1 + rM_1(\alpha) + \ldots + r^qM_q(\alpha) \quad (r \in R)
\]

where \(M_i(\alpha) = X_\alpha^i/i! \) has integer entries, and \(q \) is fixed (usually \(q \leq 2 \)).

We have chosen a root subgroup \(U_0 = U_{\alpha_0}(R) \) and identified it with the ring \(R \) by \(r \mapsto r' = x_{\alpha_0}(r) \). We have identified \(\Gamma = G(R) \) with a group of matrices. Now define \(\theta : \Gamma \rightarrow M_d(R') = U_0^{d^2} \subseteq \Gamma^{d^2} \) by

\[
g\theta = (g'_{ij}).
\]

Giving \(R' \) the ring structure inherited from \(R \), this map is evidently a group isomorphism from \(\Gamma \) to its image in \(\text{GL}_d(R') \).

Lemma 3.5. For each root \(\alpha \) the restriction of \(\theta \) to \(U_{\alpha}(R) \) is definable.

Proof. Let \(\alpha \) be a root, fix \(i \) and \(j \), and write \(\theta_{ij} \) for the map \(g \mapsto g'_{ij} \). Let \(m_l \) denote the \((i, j)\) entry of the matrix \(M_l(\alpha) \). Then for \(g = x_\alpha(r) \) we have

\[
g\theta_{ij} = (1 + m_1r + \ldots + m_qr^q)'.
\]

As \(r' = x_{\alpha_0}(r) = gc_{\alpha_0} \), it follows from Cor. 3.4 that the restriction of \(\theta_{ij} \) to \(U_{\alpha}(R) \) is definable, and as this holds for all \(i, j \) it establishes the claim. \(\square \)

The next proposition is obvious, but key:

Proposition 3.6. If \(G(R) = M_1 \ldots M_n \) is the product of finitely many definable subsets \(M_i \) such that the restriction of \(\theta \) to each \(M_i \) is definable, then \(\theta \) is definable.
Suppose now that G has finite elementary width N. If the roots are $\alpha_1, \ldots, \alpha_n$ we set $n = qN$ and for $j = 1, \ldots, N$ take $M_{(j-1)q+i} = U_{\alpha_i}(R)$. Then $G(R) = M_1 \ldots M_n$ and we infer that θ is definable.

To complete Step 4, define $\psi : R \to U_0 \subseteq M_d(R)$ by $r\psi = r' = x_{\alpha_0}(r)$. This is a ring isomorphism by definition, when U_0 is given the appropriate ring structure. The expression (7) now implies

Lemma 3.7. The map ψ is L_{rg} definable.

When $U_\alpha(R)$ is not definable

Set $K = Z(\Gamma)$ and write $\sim : \Gamma \to \Gamma/K$ for the quotient map. Corollary 1.6 shows that each of the subgroups $U_\alpha(R)K$ is definable. Lemmas 3.1 - 3.3 remain valid, with essentially the same proofs, if each $U_\alpha(R)$ is replaced by $U_\alpha(R)K$. As $U_\alpha(R) \cap K = 1$ the map \sim restricts to an isomorphism $U_\alpha(R) \to U_\alpha(R)K = U_\alpha(R)$, and we define $R' := \overline{U_\alpha(R)}$, setting $r' = x_{\alpha_0}(r)$. Then Corollary 3.4 remains valid if $U_{\alpha_0}(R)$ is replaced by $U_{\alpha_0}(R)$.

The interpretation of Γ in R is as above.

We have a definable ring isomorphism $\psi : R \to \overline{U}_0$ as in Lemma 3.7.

Similarly, the group isomorphism $\theta : \Gamma \to M_d(R') = \overline{\Gamma}^d \subseteq \overline{\Gamma}^d$ is definable: in the proof of Lemma 3.5, we replace each U_i by U_iK, and then apply the map \sim to each root element that appears in the discussion.

The bi-interpretablity of Γ with R is now established in all cases.

4. BI-INTERPRETATION REVISITED: FUNDAMENTAL SL_2 SUBGROUPS

To establish Theorem 1.2, we make a different choice for the subsets M_i occurring in Proposition 3.6.

We shall assume

1. $Z(G) = 1$;
2. for each pair (α, β) of linearly independent roots there exists a ‘torus witness’ $s(\alpha, \beta)$ (see §2).

In particular, this ensures that all root subgroups in $G(R)$ are definable (Proposition 2.4). The existence of torus witnesses is established in Proposition 2.3 under the hypothesis $|R^{^*}| \geq 4$; in fact it suffices to assume $|R^{^*}| \geq 2$ unless $\Phi \in \{G_2, B_3, D_4, F_4, C_n \}$: see §6, and [ST].

Associated to each root α there is a morphism $\varphi_\alpha : SL_2 \to G$ sending $u(r) = \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}$ to $x_\alpha(r)$ and $v(r) = \begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix}$ to $x_{-\alpha}(r)$ (see [C], Chapter 6 or [St], Chapter 3). This morphism is defined over \mathbb{Z}, that is, the entries of the matrix $h \varphi_\alpha$ are given by polynomials in the entries of h with integer coefficients; say the (i, j) entry is $F_{\alpha,ij}(a, b, c, d)$ when $h = (a, b; c, d)$.

It follows that

$SL_2(R) \varphi_\alpha \subseteq G(R)$.

The key assumption is now: There is a sequence of roots $\alpha_1, \ldots, \alpha_n$ such that
(8) \[G(R) = \prod_{i=1}^{n} \text{SL}_2(R)\varphi_{\alpha_i}. \]

We keep the notation of §3. In view of Proposition 3.6, Theorem 1.2 will follow from

Proposition 4.1. For each root \(\alpha \), \(G(R) \) has a definable subset \(M_\alpha \supseteq \text{SL}_2(R)\varphi_\alpha \) such that the restriction of \(\theta \) to \(M_\alpha \) is definable.

For the proof, we fix the root \(\alpha \), set \(x(r) = x_\alpha(r) \), \(y(r) = x_{-\alpha}(r) \), and write

\[K_0 = \text{SL}_2(R)\varphi_\alpha \leq \text{SL}_2(k)\varphi_\alpha = K(k) = \langle U_\alpha(k), U_{-\alpha}(k) \rangle, \]

(for the final equality see [C], loc. cit.). Set

\[\Psi = \{ \beta \in \Phi \mid \beta + \alpha \notin \Phi, \beta - \alpha \notin \Phi \} \setminus \{ \pm \alpha \}, \]

\[\Psi' = \Phi \setminus (\Psi \cup \{ \pm \alpha \}). \]

Consider a root \(\beta \in \Psi' \). The root system \(\Xi \) spanned by \(\alpha \) and \(\beta \) is of type \(A_2 \), \(B_2 \) or \(G_2 \). Choose a positive subsystem \(\Xi_+ = \{ \alpha, \beta_1, \ldots, \beta_p \} \) with fundamental roots \(\alpha, \beta_1 \) and \(\beta = \beta_i \) for some \(i \). Let \(V_\beta \) denote the product of the root subgroups \(U_{\beta_i}(k) \); then \(K_\alpha(k)V_\beta \) is a parabolic subgroup in the corresponding rank-2 subgroup of \(G(k) \), and \(V_\beta \) is its unipotent radical. We aim to pin down elements of \(K_\alpha(k) \) by studying their action on a suitable abelian quotient \(\overline{V}_\beta \) of \(V_\beta \).

Now we separate cases.

Case (1): \(\Xi = A_2 \). Set \(\overline{V}_\beta = V_\beta = U_{\beta_1}(k)U_{\beta_2}(k) \).

Case (2): \(\Xi = B_2 \), and \(\alpha \) is short. Say \(\beta_2 = \beta_1 + \alpha, \beta_3 = \beta_1 + 2\alpha \), with \(\beta \) one of the \(\beta_i \), and set \(\overline{V}_\beta = V_\beta = U_{\beta_1}(k)U_{\beta_2}(k)U_{\beta_3}(k) \).

Case (3): \(\Xi = B_2 \), and \(\alpha \) is long. Say \(\beta_2 = \beta_1 + \alpha, \beta_3 = 2\beta_1 + \alpha \), where \(\beta \) is \(\beta_1 \) or \(\beta_2 \). Set \(\overline{V}_\beta = V_\beta/U_{\beta_3}(k) \). Note that \(\beta_3 \in \Psi \).

Case (4): \(\Xi = G_2 \), and \(\alpha \) is short. Say \(\beta_5 = 3\alpha + 2\beta_1 \). Note that \(\beta_5 \in \Psi \). We set \(\overline{V}_\beta = V_\beta/W_\beta \) where \(W_\beta \) is defined as follows:

Subcase 4a: Where \(\text{char}(k) \neq 3 \). Say \(\beta_i = (i-1)\alpha + \beta_1 \) for \(i = 2, 3, 4 \). Set \(W_\beta = U_{\beta_5}(k) \).

Subcase 4b: Where \(\text{char}(k) = 3 \). Now say \(\beta_2 = 3\alpha + \beta_1, \beta_3 = \alpha + \beta_1, \beta_4 = 2\alpha + \beta_1 \). Set \(W_\beta = U_{\beta_3}(k)U_{\beta_4}(k)U_{\beta_5}(k) = Z(V_\beta) \).

Case (5): \(\Xi = G_2 \), and \(\alpha \) is long. Say \(\beta_2 = \beta_1 + \alpha, \beta_3 = 3\beta_1 + \alpha, \beta_4 = 3\beta_1 + 2\alpha, \beta_5 = 2\beta_1 + \alpha \), and \(\beta \) is one of the \(\beta_i \), \(i \leq 4 \). Set \(\overline{V}_\beta = V_\beta/W_\beta \) where \(W_\beta = U_{\beta_5}(k)U_{\beta_4}(k)U_{\beta_2}(k) \). Note that \(\beta_5 \in \Psi \), and \(W_\beta = Z_2(V_\beta) \).

In each case, the commutator formulae show that \(\overline{V}_\beta \) is abelian, as is \(W_\beta \) in Case (5). Writing the group operation additively we have \(\overline{V}_\beta \cong k^q \) where \(q = 2 \) in Cases (1), (3) (4b) and (5), \(q = 3 \) in Case (2), \(q = 4 \) in Case (4a); we fix an isomorphism by picking as basis (the images of) \(x_{\beta_1}(1), \ldots, x_{\beta_5}(1) \).

In Cases (3), (4), (5), the subgroups \(U_{\beta_5}(k), U_{\beta_4}(k) \) and \(W_\beta \) respectively are normalized by \(K(k) \), so we have (in all cases) an induced action

\[f_\beta : K(k) \to \text{Aut}(\overline{V}_\beta). \]
Lemma 4.2. (i) The image of $K(k)$ under f_{β} is contained in $\text{SL}_2(k)$.

(ii) The composed homomorphism $\varphi_\alpha f_{\beta} : \text{SL}_2(k) \to \text{SL}_q(k)$ is defined by polynomials over \mathbb{Z}.

(iii) Except in Case (2), f_{β} is injective. In any case, $\ker f_{\beta} \leq \mathbb{Z}(K(k))$.

Proof. (i) As $K(k)$ is generated by the elements $x(r)$ and $y(r)$, it suffices to show that these act as k-linear transformations of determinant 1. This in turn is visible from the commutator formulae.

(ii) and (iii) It is a general fact (see [ABS]) that f_{β} is a rational representation of $\text{SL}_2(k)$, which means that it is defined by polynomials ([St], Lemma 69). What needs to be verified is that these have coefficients in \mathbb{Z}.

Looking more closely we see that in Cases (1), (3), (4b) and (5)

\begin{align}
\varphi_\alpha f_{\beta} = (P_{\beta,ij}(a, b, c, d)), \quad P_{\beta,ij} \in \mathbb{Z}[X_1, \ldots, X_4]
\end{align}

and h is the matrix (a, b, c, d).

Remark. Given that f_{β} is rational, it is easy to see when $\text{char}(k) = 0$ that f_{β} is \mathbb{Q}-rational (e.g., by a Galois argument). This is enough for our intended application, which actually only requires definability.
Define the subtorus T_1 by

$$T_1 = \bigcap_{\beta \in \Psi} C_T(U_\beta).$$

Recall that for each positive root $\beta \neq \alpha$ there is a torus witness $s(\alpha, \beta)$: this centralizes $K(k)$ and moves every non-identity element of U_β.

Lemma 4.3.

$$K(k)T_1(k) = \bigcap_{\beta \in \Psi} C_{G(k)}(U_\beta(R)) \cap \bigcap_{\beta \in \Psi'} N_{G(k)}(V_\beta) \cap \bigcap_{\alpha \neq \beta \in \Phi+} C_{G(k)}(s(\alpha, \beta)).$$

Proof. In one direction the inclusion is clear. Now suppose that $g \in G(k)$ commutes with $s(\alpha, \beta)$ whenever $\alpha \neq \beta \in \Phi_+$. Arguing as in the proof of Proposition 2.4, we find that

$$g = u_1 t n_w v_1$$

with $t \in T(k)$ and u_1, v_1 in $U_\alpha(k)$. If g belongs to the right side of (10), it follows that w fixes each root in Ψ and leaves invariant each of the sets $\{\beta_1, \ldots, \beta_q\}$ with $\beta_1 \in \Psi'$. Then every root apart from $\pm \alpha$ is fixed by either w or w_α, and it follows easily that w is either 1 or w_α. Thus $n_w v_1 \in K(k)$ and $g = u_1 (n_w v_1)^{t^{-1}} t \in K(k)T_1(k)$.

Remark. We note for later use that it would suffice to assume that $V_\beta(R)^g \subseteq V_\beta$ for each $\beta \in \Psi'$.

Now $T_1(k)$ normalizes each U_β, and acts k-linearly on this one-dimensional k-space, so f_β extends to a homomorphism $K(k)T_1(k) \to \text{GL}_q(k) \leq \text{Aut}(V_\beta)$, induced by the conjugation action of $K(k)T_1(k)$ on V_β. We will need

Lemma 4.4. If $g \in K(k)T_1(k)$ and $g f_\beta = 1$ then (i) g centralizes $K(k)$,

(ii) g^2 centralizes V_β, and if char(k) $\neq 2$ then g centralizes V_β.

Proof. (i) Put $D = \ker f_\beta$. Then as $T_1(k)$ normalizes $K(k)$ we have

$$[D, K(k)] \subseteq D \cap K(k) \subseteq Z(K(k))$$

by Lemma 4.2. As $K(k) \cong (P)\text{SL}_2(k)$ this implies that $[D, K(k)] = 1$. Thus g centralizes $K(k)$.

(ii) It is obvious in Cases (1) and (2) that g centralizes $V_\beta = \widehat{V}_\beta$.

Suppose we are in Case (3). If char(k) $= 2$ and $v \in V_\beta$ then $[v, g^2] = [v, g]^2 = 1$.

If char(k) $\neq 2$, we argue as follows. Set $s = h_\alpha(-1)$. Then s centralizes U_α and $U_{-\alpha}$, and acts by inversion on U_{β_1} and U_{β_2}. Now g commutes with s, so for $u \in U_\beta$ we have

$$[u, g] = [u^s, g] = [u^{-1}, g] = [u, g]^{-1},$$

because g acts trivially on both V_β/U_{β_1} and U_{β_2}. It follows that $[u, g] = 1$ since $U_{\beta_1}(k) \cong (k, +)$ and char(k) $\neq 2$.

In Cases (4) and (5), we know from Lemma 4.2 that $D \cap K(k) = 1$. Say $g = xt$ where $x \in K(k)$, $t \in T_1(k)$. then $xf_\beta = \text{diag}(\xi_1, \ldots, \xi_q)$ where t^{-1} acts by ξ, on $U_{\beta_1}(k)$; also t and x commute by (i).

In Case (4a) we have $q = 4$. Say $t = h(\chi)$ for a character χ, where $\chi(\alpha) = \xi$, $\chi(\beta_1) = \eta$. Then

$$\chi(\xi_1, \ldots, \xi_4) = (\eta, \eta \xi, \eta \xi^2, \eta \xi^3),$$

so...
while $\xi^3\eta^2 = 1$ because $t \in T_1$. Put $\lambda = \eta\xi$ and set $\delta = \text{diag}(\lambda^{-1}, \lambda)$. Then

$$xf_\beta = \text{diag}(\eta, \eta\xi, \eta\xi^2, \eta\xi^3) = \text{diag}(\lambda^3, \lambda, \lambda^{-1}, \lambda^{-3}) = \delta^{-1}\varphi_\alpha f_\beta,$$

(see the proof of Lemma 4.2). Thus $x = \delta^{-1}\varphi_\alpha$ by Lemma 4.2. As t and x commute it follows that g is semisimple; as g acts trivially on $V_\beta = V_\beta/U_{\beta_1}(k)$ and on $U_{\beta_1}(k)$ it follows that g acts trivially on V_β.

In Cases (4b) and (5) we have $q = 2$, and then $tf_\beta = \text{diag}(\xi_1^{-1}, \xi_1) = \delta$, say. Now $\delta^\sigma = \delta\varphi_\alpha f_\beta$ (see (9)), so

$$1 = (gf_\beta)^\sigma = (x^\sigma.\delta\varphi_\alpha)f_\beta.$$

Thus $x^\sigma.\delta\varphi_\alpha = 1$ by Lemma 4.2, and as above we infer that g is semisimple. Now the action of t^σ on W_β is given by $\text{diag}(\xi_1^{-1}, \xi_1, 1)$, while x^σ acts as $\text{diag}(\xi_1, \xi_1^{-1}, 1)$, by the Corollary to Lemma 4.2. So g^σ acts trivially on W_β as well as on V_β/W_β, hence trivially on V_β. Hence so does g. \hfill \Box

Put

$$A_\beta = K(k)T_1(k) \cap G(R)$$

and define

$$B_\beta = \{g \in A_\beta \mid gf_\beta \in K_0f_\beta\}.$$

Recall that in the first part of §3, we set up an identification $r \mapsto r'$ of R with a chosen root subgroup $U_0(R) = R'$, so that L_{reg} sentences about R translate into L_{sg} sentences about $G(R)$.

Lemma 4.5. (i) A_β is a definable subgroup of $G(R)$.

(ii) The relation

$$F_\beta = \{(g; a', b', c', d') \mid h = (a, b; c, d) \in \text{SL}_2(R) \text{ and } gf_\beta = h\varphi_\alpha f_\beta \} \subseteq A_\beta \times R'^4$$

is definable.

(iii) B_β is a definable subgroup of $G(R)$.

Proof. (i) This follows from Lemma 4.3 and the attached Remark, which implies that in order to define A_β we can replace each term $N_{G(R)}(V_\beta)$ by $N_{G(R)}(V_\beta(R))$ in (10).

(ii) Note first that $(a, b; c, d) \in \text{SL}_2(R)$ if and only if $a'd' - b'c' = 1$, which is definable in $G(R)$. Now for $g \in A_\beta$ and $h = (a, b; c, d) \in \text{SL}_2(R)$, the statement $gf_\beta = h\varphi_\alpha f_\beta$ is equivalent to:

$$x_{\beta_i}(1)^q \equiv \prod_{j=1}^q x_{\beta_j}(r_{ij}) \mod Y \ (i = 1, \ldots, q)$$

where $r_{ij} = P_{\beta,ij}(a, b, c, d)$, $Y = 1$ in Cases (1), (2), $Y = U_{\beta_{i+1}}(R)$ in Cases (3), (4a), and $Y = W_\beta \cap G(R)$ in Cases (4b) and (5). In each case Y is definable, in Case (5) because

$$W_\beta = \{v \in V_\beta \mid [v, x_{\beta_1}(1), x_{\beta_2}(1)] = [v, x_{\beta_2}(1), x_{\beta_1}(1)] = 1\}.$$

The map $r' \mapsto x_{\beta_j}(r)$ from $R' = U_0(R)$ to $U_{\beta_j}(R)$ is a definable bijection by Lemma 3.2, so the right-hand side of (11) is a definable function of a', b', c', d', while the left-hand side is a definable function of g.

(iii) Now $g \in B_\beta$ if and only if $g \in A_\beta$ and there exist $a', b', c', d' \in U_0(R)$ such that $(g; a', b', c', d') \in F_\beta$. \hfill \Box
Lemma 4.6.

\[\bigcap_{\beta \in \Psi} \ker f_\beta = 1. \]

Proof. Call this intersection \(D \). If \(\text{char}(k) \neq 2 \), Lemma 4.4 shows that \(D \) centralizes \(U_\beta(k) \) for every root \(\beta \), so \(D \leq \text{Z}(G) = 1 \). Now suppose that \(\text{char}(k) = 2 \). Let \(g \in D \). Then the same argument shows that \(g^2 = 1 \). Say \(g = xt \) where \(x \in K(k), \ t \in T_1(k) \). Then \(xt = tx \). Let \(x = x_u x_s \) be the Jordan decomposition; enlarging \(k \) if necessary we may assume that \(x_u \) and \(x_s \) both lie in \(K(k) \). As \(g \) is unipotent, \(x_s t = 1 \) and so \(g = x_u \in K(k) \cap D \leq \text{Z}(K(k)) = 1 \). \(\square \)

Now we are ready for the

Proof of Proposition 4.1. Put

\[C_\alpha = \bigcap_{\beta \in \Psi'} B_\beta. \]

Now define \(M_\alpha \) to be the set of \(g \in C_\alpha \) with the following property: there exist \(a', b', c', d' \in R' \) such that \(F_\beta(g; a', b', c', d') \) holds for every \(\beta \in \Psi' \). Certainly \(M_\alpha \) is a definable set and contains \(K_0 \). Let \(g \in M_\alpha \) and \(h \in \text{SL}_2(R) \) be such that \(F_\beta(g; h') \) holds for every \(\beta \in \Psi' \). Thus \(g f_\beta = h \varphi_\alpha f_\beta \) for every \(\beta \in \Psi' \).

It follows by Lemma 4.6 that \(g = h \varphi_\alpha \).

Now the map \(\theta \) sends \(h \varphi_\alpha \) to the matrix with \((i, j)\) entry \(F_{\alpha, ij}(a', b', c', d') \) where \(h = (a, b; c, d) \). Thus

\[(g \theta)_{ij} = (h \varphi_\alpha \theta)_{ij} = F_{\alpha, ij}(a', b', c', d'). \]

It follows that the restriction of \(\theta \) to \(M_\alpha \) is definable. Indeed, for \(g \in M_\alpha \) and \((y_{ij}) \in M_d(R') \), we have \(g \theta = (y_{ij}) \) if and only if there exist \(a', b', c', d' \in R' \) such that \(F_\beta(g; a', b', c', d') \) holds for every \(\beta \in \Psi' \) and \(F_{\alpha, ij}(a', b', c', d') = y_{ij} \) for all \(i \) and \(j \).

5. Axiomatizability

In §3 we set up a bi-interpretation of a specific shape between a group \(\Gamma \) and a ring \(R \), spelled out explicitly in points 1. - 4. at the beginning of the section. As is well known, this implies a close correspondence between first-order properties of the two structures: here we explore some of the consequences (professional model theorists are invited to skip the next few paragraphs!)

The interpretation of \(R \) in \(\Gamma \) involves two or three formulae: one, and if necessary two, define the subset (it was \(U_\alpha(R) \)), or its quotient \((U_\alpha(R)/\text{Z}(\Gamma))/\text{Z}(\Gamma))\), that we called \(R' \); the third defines a binary operation \(m \) on \(R' \). Let \(P_1 \) be a sentence that expresses the facts

1. each of the definable mappings denoted \(\pi_1 \) in Lemma 3.1 actually is a well defined mapping
2. the definition of \(m \) does define a binary operation on the set \(R' \)
3. \((R', +, m)\) is a commutative integral domain, where + is the group operation inherited from \(\Gamma \).

Let us call this ring \(A_\Gamma \).

The sentence \(P_1 = P_1(g) \) involves some parameters \(g_1, \ldots, g_r \) from \(G(R) \). Let \(P'_1 \) denote the sentence \(\exists h_1, \ldots, h_r. P_1(h) \). We shall use this convention for other sentences later.
Now if H is any group that satisfies P_1', the same formulae define a ring A_H. For each L_{rg} formula α there is an L_{gp} formula α^* such that $A_H \models \alpha$ iff $H \models \alpha^*$, since ring operations in A_H are expressible in terms of the group operation in H. (Note that α^* will involve parameters, obtained by substituting h_i for g_i.)

Analogously, the equations on the right-hand side of (6) may be expressed as a formula in L_{rg}, that for any ring S defines a subset $G(S)$ of S^{d^2}; and if S is an integral domain, the set $G(S)$ with matrix multiplication is a group. For each L_{gp} formula β there is an L_{rg} formula β^l such that $G(S) \models \beta$ iff $S \models \beta^l$.

Now Proposition 3.6 and Lemma 3.7 give (i) an L_{gp} formula that defines a group isomorphism $\theta : \Gamma \rightarrow G(A_{\Gamma'})$, and (ii) an L_{rg} formula that defines a ring isomorphism $\psi : R \rightarrow A_{G(R)}$. The assertions that these formulae actually define such isomorphisms can be expressed by (i) an L_{gp} sentence P_2 and (ii) an L_{rg} sentence P_3, say.

The results of §§3 and 4 amount to this: if the group G and the ring R satisfy the hypotheses of Theorem 1.1 or Theorem 1.2, then $G(R)$ satisfies the conjunction of P_1' and P_2', and R satisfies P_3', where P_3' is obtained from P_3 by adding an existential quantifier over the (ring) variables corresponding to the matrix entries of the original parameters g_i.

The correspondence $\alpha \rightarrow \alpha^*$ implies that any ring axioms satisfied by R can be expressed as properties of the group $\Gamma = G(R)$. If these axioms happen to determine the ring up to isomorphism, the existence of θ then shows that the corresponding properties of Γ, in conjunction with P_1' and P_2', determine Γ up to isomorphism. In the same way, if $G(R)$ happens to be determined by some family of group axioms, then a corresponding family of ring properties, together with P_3, will determine R.

To apply this observation we need

Proposition 5.1. (i) If $G(R)$ is a finitely generated group then R is a finitely generated ring.

(ii) If $G(R)$ is a Hausdorff topological group then R is a Hausdorff topological ring, and R is profinite, locally compact or t.d.l.c. if $G(R)$ has the same property.

Proof. (i) Suppose $G = \langle g_1, \ldots, g_m \rangle$. The entries of the matrices $g_i^{\pm 1}$ generate a subring S of R, and then $G(R) = G(S)$. Choose a root α. Then $U_\alpha(R) = U_\alpha(k) \cap G(R) = U_\alpha(k) \cap G(R) = U_\alpha(S)$.

As the map $r \mapsto x_\alpha(r)$ is bijective it follows that $R = S$.

(ii) Suppose that $G(R)$ is a (Hausdorff) topological group. Let $U_0 = U_{\alpha_0}$ be the root group discussed in §3. Then $U_0(R)$ is closed in the topology, by Lemma 2.1. Thus with the subspace topology $U_0(R)$ is a topological group; it is locally compact, compact or totally disconnected if $G(R)$ has the same property.

We have seen that R is isomorphic to a ring R', where the additive group of R' is $U_0(R)$. It remains to verify that the ring multiplication in R' is continuous. This in turn follows from the facts (a) the commutator defines a continuous map $G(R) \times G(R) \rightarrow G(R)$ and (b) the projection mapping π_1 described in Lemma 3.1 is continuous, because $U_1(R) \cdots U_q(R)$ is a topological direct product. \qed

We have stated the proposition for $G(R)$ for the sake of clarity. However a more general version is required:
Proposition 5.2. Let H be a group that satisfies P'_1 and P'_2, and put $S = A_H$. Then (i) and (ii) of Proposition 5.1 hold with S in place of R and H in place of $G(R)$.

Proof. (i) P_1 and P_2 ensure that S is a commutative integral domain and that $H \cong G(S)$. Now the result follows from the preceding proposition.

(ii) We have $S = U$ (or $S = UZ/Z$) where U (or UZ) is defined as a double centralizer (or similar, cf. Lemma 2.5) in H (and $Z = Z(H)$). It follows that U (or UZ) is closed in the topology of H. Thus S inherits a topology, which makes $(S, +)$ a topological group with the given properties. The continuity of multiplication follows as before: the assumption that the mapping π_1 is well defined implies that the corresponding product of definable subgroups is actually a topological direct product, and hence that π_1 is continuous; the other ingredients in the definition of multiplication are clearly continuous. \qed

Now we can deduce Corollary 1.3, in a slightly more general form.

Theorem 5.3. Assume that G and R satisfy the hypotheses of Theorem 1.1 or Theorem 1.2. Let Σ be a set of sentences of L_{rg} such that $R \models \Sigma$. Then there is a set $\overline{\Sigma}$ of sentences of L_{gp}, finite if Σ is finite, such that $G(R) \models \overline{\Sigma}$ and such that

(i) If R is the unique f. g. ring (up to isomorphism) satisfying Σ then $G(R)$ is the unique f. g. group (up to isomorphism) that satisfies $\overline{\Sigma}$.

(ii) If R is the unique profinite, locally compact, or t.d.l.c. ring (up to isomorphism) satisfying Σ then $G(R)$ is the unique profinite, locally compact, or t.d.l.c. group (up to isomorphism) that satisfies $\overline{\Sigma}$.

Proof. For each $\sigma \in \Sigma$ there is a formula σ^* such that for any group H that satisfies P'_1, we have $H \models \sigma^*$ iff $A_H \models \sigma$. We take $\overline{\Sigma} = \Sigma^* \cup \{P'_1, P'_2\}$. The result now follows from Proposition 5.2 by the preceding discussion. \qed

Remark. Theorem 5.3 has a converse, in most cases. If $G(R)$ is axiomatizable (or F.A.) among groups that are profinite, i.e. or t.d.l.c. then R is similarly axiomatizable in the corresponding class of rings. The proof is the same, using a suitable analogue of Proposition 5.2 (ii): in this case, it is easy to see that for a ring S, the group $G(S) \subseteq M_d(S)$ defined by the polynomial equations (6) inherits an appropriate topology from S.

We are not entirely sure whether the analogue of (i) holds in all cases. Assume that $G(R)$ is generated by its root subgroups, and either (i) the root system Φ is simply laced or (ii) $|R/2R|$ is finite and $\Phi \neq G_2$ or (iii) $|R/6R|$ is finite. Then using the idea of Lemma 3.3 one can show that if R is finitely generated as a ring then $G(R)$ is a finitely generated group. Thus we can assert: let R be a f.g. integral domain and assume (i), (ii) or (iii). If $G(R)$ is first-order rigid, resp. F.A., among f.g. groups, then R has the same property among f.g. rings.

Topological vs. algebraic isomorphism

In Theorem 5.3, the phrase ‘up to isomorphism’ refers to isomorphism as abstract groups. In part (ii), to infer that $G(R)$ is first-order rigid, or FA, in the appropriate class of topological groups, one needs to show that abstract isomorphism with $G(R)$ implies topological isomorphism. In most of the cases under discussion, this is true.
A ‘local field’ means one with a non-discrete locally compact topology, and a locally compact group means one that is not discrete.

Proposition 5.4. (i) Let k be a local field. Then any locally compact group abstractly isomorphic to $G(k)$ is topologically isomorphic to $G(k)$.

(ii) Let R be a complete local domain with finite residue field κ, and assume that G is simply connected. Then any profinite group abstractly isomorphic to $G(R)$ is topologically isomorphic to $G(R)$, unless possibly $\text{char}(\kappa) = 2$ and G is of type B_n or C_n, or $\text{char}(\kappa) = 3$ and G is of type G_2.

Proof. (i) This is equivalent to the claim that $G(k)$ is determined up to topological isomorphism by its algebraic structure.

The Bruhat decomposition of $G(k)$ is algebraically determined (e.g. by the proof of Corollary 1.6), and it expresses $G(k)$ as a finite union of products of copies of k (the root subgroups) and of k^* (the torus). It follows that any topology on G is determined by its restriction to the root subgroups, identified with k. It follows from Lemma 3.3 that the algebraic structure of k is determined by that of G. Now a local field that is algebraically isomorphic to k is topologically isomorphic to k: this is clear from the classification of local fields, see e.g. [W], Chapter 1.

In many cases a stronger result holds: every isomorphism with $G(k)$ is continuous. This holds when $k \neq \mathbb{C}$ (it may be deduced from [St], Lemma 77; cf. [BT], §9), but obviously not for $k = \mathbb{C}$.

(ii) This follows from the congruence subgroup property: if K is a normal subgroup of finite index in $G(R)$ then K contains the congruence subgroup $\ker(G(R) \to G(R/I))$ for some ideal I of finite index in R, see [Ab], Theorem 1.9. Thus every subgroup of finite index in $G(R)$ is open. Hence if $f : G(R) \to H$ is an isomorphism, where H is a profinite group, then $f^{-1}(K)$ is open in $G(R)$ for every open subgroup K of H, so f is continuous; and a continuous isomorphism between profinite groups is a homeomorphism.

Alternatively, it follows from [LS], Cor. 3.4 that $G(R)$ is finitely generated as a profinite group provided the Lie algebra over κ associated to Φ is perfect. As $G(R)$ in this case is virtually a pro-p group, this in turn implies that every subgroup of finite index is open ([DDMS], Theorem 1.17).

6. Torus witnesses in some exceptional groups

Returning to the proof of Lemma 2.2, begun in §2, we now establish the existence of the required torus witnesses for some exceptional groups, under the blanket assumption that $R^* \neq \{1\}$. A similar approach works for the other groups as well (see [ST]), but different methods will enable us in §§7 and 8 to dispense with any conditions on R^*.

We begin with the following basic observation:

Lemma 6.1. Suppose that Φ is a root system of rank at least 2 and $r \in R^* \setminus \{1\}$. If $\alpha, \beta \in \Phi$ and γ is orthogonal to α and non-orthogonal to β, then $s_{\alpha, \beta} = h_\gamma(r)$ is a torus witness for (α, β) unless $A_{\gamma, \beta} = \pm 2$ and $r = -1$ or $A_{\gamma, \beta} = \pm 3$ and $r^3 = 1$.

Note also that if $\text{char}(R) \neq 2$, α, β are non-orthogonal and $A_{\alpha, \beta} \neq 2$, then $s_{\alpha, \beta} = h_\alpha(-1)$ is a torus witness.

Lemma 6.2. Let $\Phi \in \{E_6, E_7, E_8, F_4\}$ and suppose $\alpha, \beta \in \Phi$ are orthogonal. Then there is a root γ orthogonal to α and non-orthogonal to β unless $\Phi = F_4$, and α, β are both long.
Proof. $\Phi = E_n, n = 6, 7, 8$. Let $a_1, \ldots, a_n, n \in \{6, 7, 8\}$ be a set of fundamental roots where a_{n-3} is the branching point. We may assume that $\alpha = a_1$. If β does not involve a_2, we can choose γ as a root in the subdiagram spanned by a_3, \ldots, a_n and non-orthogonal to β.

Now suppose β is a positive root involving a_2 and orthogonal to α. If there is a fundamental root $a_i, 3 \leq i \leq n$, which is non-orthogonal to β, put $\gamma = a_i$. Otherwise an easy calculation (starting from a_n) shows that for $n = 7, 8$ we have:

$$\beta = \epsilon_n(a_1 + 2a_2 + 2a_{n-5} + \frac{5}{2}a_{n-4} + \frac{3}{2}a_{n-2} + 3a_{n-3} + 2a_{n-1} + a_n)$$

whereas for $n = 6$ we must have

$$\beta = \epsilon_6(\frac{5}{4}a_1 + \frac{5}{2}a_2 + \frac{3}{2}a_4 + 3a_3 + 2a_5 + a_6).$$

In either case, β is non-orthogonal to a_2. For $n = 6, 7, 8$ let $\gamma = a_1 + 2(a_2 + \ldots + a_{n-3}) + a_{n-2} + a_{n-1}$. Then γ is orthogonal to α, but not to β.

Let a_1, \ldots, a_4 be a set of fundamental roots where a_1 is long and a_4 is short. First assume that $\alpha = a_1$. If β is short and orthogonal to α then either it is contained in the subdiagram spanned by a_3, a_4 and we choose γ in this A_2-subdiagram non-orthogonal to β. Or else we have $\beta \in \{a_1 + 2a_2 + 2a_3 + a_4, a_1 + 2a_2 + 3a_3 + a_4, a_1 + 2a_2 + 3a_3 + 2a_4\}$ and $\gamma = a_4$ or $\gamma = a_3 + a_4$ is as required.

Next assume $\alpha = a_4$ is short. If β is a positive root orthogonal to α and contained in the subdiagram spanned by a_1, a_2, then we find γ as before. Otherwise we have $\beta \in \{a_2 + 2a_3 + a_4, a_1 + a_2 + 2a_3 + a_4, a_1 + 2a_2 + 2a_3 + a_4\}$ and $\gamma = a_1$ or $\gamma = a_1 + a_2$ is as required.

Lemma 6.3. Let $\Phi \in \{E_6, E_7, E_8, F_4\}$ and suppose $\alpha, \beta \in \Phi$ are non-orthogonal and $R^* \neq \{1\}$. Then there is a torus witness for (α, β).

Proof. If α, β are non-orthogonal, then (replacing β by $-\beta$ if necessary) we may assume that they form a basis for the rank 2 subdiagram spanned by α and β. By [AL] [Thm. 7] α, β can be extended to a system of fundamental roots for Φ. If in the associated diagram there is a neighbour γ of β with $A_{\gamma, \beta} \neq \pm 2$ and γ is not a neighbour of α, then $h_\gamma(r), r \in R^* \setminus \{1\}$, is as required. We now deal with the remaining situations separately either by finding a suitable γ or by giving the witness directly.

Let $\Phi = E_n, n = 6, 7, 8$. Since any pair of adjacent fundamental roots is contained in an A_3 subdiagram, we may assume that $\alpha = a_2, \beta = a_1$ so $\gamma = a_1 + a_2 + a_3$ is as required.

Let $\Phi = F_4$. Let a_1, \ldots, a_4 be the resulting fundamental system where a_1 is long, a_n is short. First assume $\alpha = a_2, \beta = a_1$, so $\gamma = a_2 + 2a_3$ is as required. If $\alpha = a_3, \beta = a_4$, then $\gamma = a_2 + a_3$ is as required. If $\alpha = a_1, \beta = a_2$, and $\text{char}(R) \neq 2$, then $h_\alpha(-1)$ is as required. If $\text{char}(R) = 2$, then $h_{a_1}(r)$ for $r \in R^* \setminus \{1\}$ works.

We can now summarize the existence of torus witnesses as follows:

Proposition 6.4. Suppose $\Phi \in \{E_6, E_7, E_8, F_4\}$ and let $\alpha, \beta \in \Phi$ be linearly independent. Then there is a torus witness for (α, β) except possibly if $R^* = \{\pm 1\}$, $\Phi = F_4$, and α, β are orthogonal and both long.
This completes the proof of Lemma 2.2 for $\Phi \in \{E_6, E_7, E_8\}$.

Assume finally that G is of type F_4. Let a_1, \ldots, a_4 be fundamental roots of Φ where a_1, a_2 are long, a_3, a_4 are short and $\alpha = a_1$. By Proposition 6.4 there is a torus witnesses $s_{\alpha, \beta}$ for each root $\beta \neq \pm \alpha$, with the exception of the following long roots:

1. $b_2 = a_1 + 2a_2 + 2a_3$,
2. $b_3 = a_1 + 2a_2 + 2a_3 + 2a_4$,
3. $b_4 = a_1 + 2a_2 + 4a_3 + 2a_4$.

Note that the root subgroups U_1, \ldots, U_4 corresponding to a_1, b_2, b_3, b_4 commute elementwise.

To complete the proof of Lemma 2.2 for $G = F_4$ set

$$Y = \left\{ s_{\alpha, \beta} \mid \beta \in \Phi_+ \setminus \{ a_1, b_2, b_3, b_4 \} \right\} \cup \{ x_{-b_i}(1) \mid i = 1, 2, 3 \}.$$

Note that each $x_{-b_i}(1)$ centralizes each U_j ($j \neq i$), and commutes with no element of $U_i \setminus \{1\}$.

Let $g \in C_G(Y)$. We have to show that $g \in U_1Z$.

Arguing as in the proof of Proposition 2.4 we conclude that g is of the form

$$g = u_1u_2u_3u_4z \quad \text{where} \quad u_i \in U_i, \ i = 1, 2, 3, 4, \ z \in Z.$$

Since $x_{-b_3}(1)$ centralizes g and U_1, U_2, U_4, we have $u_3 = 1$. We see similarly that $u_2 = u_4 = 1$, and the result follows.

7. THE BUILDING FOR G_2

Another way to study centralizers is to examine the action of $G = G(\mathfrak{T})$ on the building associated to G. This method is practical for groups of rank 2 (see [ST]); we illustrate it here in the case of G_2, by proving

Proposition 7.1. Let G be of type G_2 and let U be a root group of G. Then there exists a finite set $Y \subseteq C_G(R)(U)$ such that $C_G(Y) \subseteq U$.

If G is a Chevalley group of type G_2, we have $Z(G) = 1$ (see [St], p. 23), and the associated spherical building Δ is a generalized hexagon, i.e. a bipartite graph of diameter 6, girth 12 and valencies at least 3 (see [VM] for more details).

For vertices x_0, \ldots, x_m in Δ, $G^{[i]}_{x_0, \ldots, x_m}$ denotes the subgroup of G fixing all elements at distance at most i from some $x_j \in \{x_0, \ldots, x_m\}$.

For $i = 0$, this is just the pointwise stabilizer of $\{x_0, \ldots, x_m\}$ in G and we omit the superscript. In this notation, a root subgroup for a generalized hexagon Δ is of the form

$$U = G^{[1]}_{x_1, \ldots, x_5}$$

for a simple (i.e. without repetitions) path (x_1, \ldots, x_5) in Δ. Thus our aim is to construct a finite set $Y \subseteq G(R)$ centralizing $G^{[1]}_{x_1, \ldots, x_5}$ such that

$$g \in C_G(Y) \implies g \in G^{[1]}_{x_1, \ldots, x_5}.$$

The generalized hexagon Δ associated to a Chevalley group of type G_2 is a Moufang hexagon, i.e. for any simple path x_0, \ldots, x_6 in Δ the root subgroup $G^{[1]}_{x_1, \ldots, x_5}$

acts regularly on the set of neighbours of \(x_0 \) different from \(x_1 \) and regularly on the set of neighbours of \(x_6 \) different from \(x_5 \) (see [TW]). As a consequence, we have
\[
G_{x_0,x_1 \ldots ,x_6}^{[1]} = 1.
\]

We will repeatedly use the following:

Remark 7.2. For any vertex \(x \in \Delta \), the stabilizer \(G_x \) is a parabolic subgroup of \(G \) and acts on the set of neighbours of \(x \) as the Zassenhaus group \(\text{PSL}_2(\mathbb{F}) \). In particular, if \(g \in G \) fixes at least three neighbours of \(x \), then it fixes all neighbours of \(x \).

Furthermore, for a path \((x,y)\) the stabilizer \(G_{x,y} \) contains a regular abelian normal subgroup acting as the additive group of \(\mathbb{F} \) on the set of neighbours of \(y \) different from \(x \).

Most arguments rely on the following observation:

Remark 7.3. Let \(H \) be a group acting on a set \(X \), let \(g \in H \) and let \(A \) be the set of fixed points of \(g \). Any \(h \in H \) centralizing \(g \) leaves the set \(A \) invariant.

In light of (13) this remark immediately implies

Corollary 7.4. For any root element \(u \in G_{x_1 \ldots ,x_5}^{[1]} \setminus \{1\} \), each \(g \in C_G(u) \) fixes \(x_3 \).

For any 12-cycle \((x_0, \ldots ,x_{12} = x_0)\) in \(\Delta \), the group \(G_{x_0 \ldots ,x_{12}} \) is a maximal torus in \(G \). We let \(U_i = G_{x_0 \ldots ,x_{i+4}} \), \(i = 0, \ldots ,11 \) denote the corresponding root subgroups (where addition is modulo 12), so \(U_1 = U \). In this notation we see that for \(1 \neq v \in U_i \) and \(g \in C_G(v) \) we have \(g \in G_{x_{i+2}} \) by Corollary 7.4.

The bipartition of the vertices leads to two types of paths \((x_0, \ldots ,x_6)\) depending on the type of the initial vertex \(x_0 \) (note that \(x_0 \) and \(x_6 \) have the same type). Since \(G \) acts transitively on ordered cycles of length 12 (of the same bipartition type), the isomorphism type of a root subgroup only depends on the type of the root group with respect to this bipartition.

It follows easily from the commutation relations (see Section 11) that the root subgroups corresponding to long roots consist of central elations, i.e. for one type of path \((x_0, \ldots ,x_6)\) we have \(G_{x_1 \ldots ,x_5}^{[2]} = G_{x_3}^{[3]} \).

First assume that \(U = U_1 = G_{x_1}^{[3]} \). Since \(U \) centralizes \(U_j \) for \(j = 10,11,0,1,2,3,4 \), we may choose \(Y \) to contain a nontrivial element from each of the \(U_j(R) \), \(j = 10,11,0,1,2,3,4 \). We add five further elements \(y_i = v_i^{h_i} \) to \(Y \) where

\[
v_1,v_2 \in U_3(R); \ v_3 \in U_4(R), \ v_4 \in U_{11}(R), \ v_5 \in U_{10}(R);
\]
\[
h_1 \in U_{11}(R); \ h_2,h_3 \in U_0(R); \ h_4 \in U_3(R), \ h_5 \in U_2(R),
\]
and \(v_i \neq 1, h_i \neq 1 \) for each \(i \). These centralize \(U \) because for \(i = 1,2 \) we have

\[
[U,y_i] \subseteq G_{x_1}^{[3]} \cap G_{x_2}^{[3]} = 1, \ [U,y_3] \subseteq G_{x_0}^{[3]} \cap G_{x_3}^{[3]} = 1, \ [U,y_4] \subseteq G_{x_1}^{[3]} \cap G_{x_3}^{[3]} = 1 \text{ and } [U,y_5] \subseteq G_{x_0}^{[3]} \cap G_{x_3}^{[3]} = 1.
\]

Now suppose that \(g \) centralizes \(Y \). Then \(g \in G_{x_0 \ldots ,x_6} \). We claim that \(g \in G_{x_i}^{[3]} \) for \(i = 1, \ldots ,5 \). Since \(g \) commutes with \(y_1 \), \(g \) fixes \(x_1^{h_1} \neq x_3,x_5 \). By Remark 7.2 this implies that \(g \in G_{x_1}^{[3]} \). Using \(y_4 \) we see similarly that \(g \in G_{x_2}^{[3]} \).

Similarly, since \(g \) commutes with \(y_2 \), \(g \) fixes \(x_3^{h_5} \) and hence also \(x_4^{h_5} \neq x_2,x_1 \). This implies that \(g \in G_{x_3}^{[3]} \). Finally, \(g \) fixes \(x_6^{h_3} \) and \(x_0^{h_5} \) because \(g \) commutes with
Now assume that $U = U_1 \neq G_{x_1}^{[3]}$, and so $U_{2i} = G_{x_{2i+1}}^{[3]}$ for $i = 0, \ldots, 5$. Then U commutes elementwise with U_{10}, U_0, U_2, U_4, and we choose Y to contain a nontrivial element from each of $U_{10}(R), U_0(R), U_2(R), U_4(R)$.

This ensures, by Remark 7.3, that any element centralizing Y must lie in

$$G_{x_0,x_2,x_4,x_5,x_6} = G_{x_0,x_1,x_2,x_3,x_4,x_5,x_6}.$$

As in the previous case, we extend Y by four or six further elements $y_i = v_i^{h_i}$, where $v_i \neq 1$, $h_i \neq 1$ for each i,

\begin{align*}
v_1 &\in U_4(R), \ v_2 \in U_2(R), \ v_3 \in U_1(R), \ v_4 \in U_{10}(R); \\
h_1 &\in U_0(R), \ h_2 \in U_{10}(R), \ h_3 \in U_3(R), \ h_4 \in U_2(R),
\end{align*}

and if $\text{char}(R) = 3$ also

$$v_5 \in U_{10}(R), \ v_6 \in U_4(R): \ h_5 \in U_3(R), \ h_6 \in U_{11}(R).$$

Note that y_1 and y_2 centralize U because

$$[U, y_1] \in G_{x_0}^{[3]}_{x_6} \cap G_{x_2}^{[1]} = 1, \ [U, y_2] \in G_{x_2}^{[3]} \cap G_{x_0}^{[1]} = 1.$$

Now let $g \in C_G(Y)$. Then g centralizes y_1, and therefore fixes $x_6^h \neq x_4, x_5$. By Remark 7.2 we get $g \in G_{x_1}^{[1]}$. In a similar way we find that $g \in G_{x_1}^{[1]}$ and $g \in G_{x_3}^{[1]}$.

It remains to show that $g \in G_{x_i}^{[1]}$ for $i = 2$ and $i = 4$. We distinguish two cases according to the characteristic of R. First assume that $\text{char}(R) \neq 3$ and extend the path (x_1, \ldots, x_5) to a simple path (x_1, \ldots, x_7). For any $v \in G_{x_2}^{[1]} \cup G_{x_4}^{[1]} \setminus \{1\}$ and $u \in U_i$ the commutator relations (see §11) with $\text{char}(k) \neq 3$ imply that $[u, v] \neq 1$. This shows that x_1, x_3 are the only neighbours y of x_2 such that $G_{y}^{[1]}$ meets U_i nontrivially.

On the other hand, for any simple path $(x_1', x_2, x_3, x_4, x_5)$ the actions of the root groups U_1 and $U_1' = G_{x_1'}^{[3]}$ on the neighbours of x_6 agree, by Remark 7.2. Since the root groups are abelian, we therefore have $[U, w] = 1$ for any $w \in U_1$.

This shows in particular that $y_3 \in C_G(R)(U)$. By the previous remark $x_1' = x_1^{h_3}$ and x_2 are the only neighbours of x_2 such that $y_3 \in G_{x_1'}^{[1]}$, and so g fixes x_1'. Again by Remark 7.2 we conclude that $g \in G_{x_2}^{[1]}$. Similarly, we see that $y_3 \in C_G(R)(U)$, and find that $g \in G_{x_3}^{[1]}$ as required.

Finally assume that $\text{char}(R) = 3$. Then the commutation relations show that

$$[U_1, U_3] = 1$$

and hence we have

$$U_1 = G_{x_2,x_4}^{[2]}.$$

As $h_5 \in U_3$ and $v_5 \in U_{10} = G_{x_0}^{[3]}$, we have $[U, y_5] \in U_1 \cap G_{x_0}^{[3]} = 1$, so $y_5 \in C_G(R)(U)$. Now Corollary 7.4 implies that g fixes $x_0^{h_5}$ and hence also $x_1^{h_5} \neq x_1, x_3$. As before we infer that $g \in G_{x_2}^{[1]}$. The same argument using y_6 shows finally that $g \in G_{x_4}^{[1]}$, and concludes the proof.
8. Root witnesses in the classical groups

In this section we establish Lemma 2.2 for the groups of classical type, and complete the proof of Theorem 1.5.

Proposition 8.1. Let \(G \) be a Chevalley group of type \(A_n, B_m, C_m \) or \(D_m \) \((n \geq 3, m \geq 2)\), and let \(R \) be an integral domain. Let \(U \) be a root subgroup of \(G \). Write \(Z \) for the centre of \(G \). There exists a set \(Y \subseteq C_G(U) \) consisting of root elements such that

\[
C_G(Y) \subseteq UZ,
\]

unless \(G \) is of type \(C_n \), \(U \) belongs to a short root \(\alpha \) and \(R^* = \{ \pm 1 \} \), in which case

\[
C_G(Y) \subseteq UU_1U_2Z
\]

where \(U_1 \) and \(U_2 \) are root subgroups belonging to long roots adjacent to \(\alpha \) in a \(C_2 \) subsystem.

Proof. Suitable sets \(Y \) are exhibited in the lemmas below for particular forms of \(G \): the universal groups \(SL_n \) and \(Sp_{2m} \) for \(A_n, C_m \) respectively, and for orthogonal versions of \(B_m \) and \(D_m \). Now if \(v \) is a unipotent element and \(v^g \in vZ \) then \(v^g = v \), because \(Z \) consists of semisimple elements (Jordan decomposition); hence both statements involving \(Y \) remain true if \(C_{G(R)} \) is replaced by ‘centralizer modulo \(Z \)’. It follows easily that if (14) or (15) holds, then it remains valid when \(G \) is replaced by \(G/Z \). In particular, they hold for the adjoint form of each group, and any group ‘between’ \(SL_n \) and \(PSL_n \).

The result for the universal forms (in cases \(B_m \) and \(D_m \)) follows directly from the established cases because root elements in \(G(R) \) lift to root elements in the covering group. \(\square \)

The precise description of \(Z(C_{G(R)}(u)) \) for \(1 \neq u \in U \) in Case (15) is given below in Proposition 8.4.

We use the notation of \([C], \S 11.3\) for the classical groups. Throughout, \(R \) denotes an integral domain, and \(e_{ij} \) the matrix with one non-zero entry equal to 1 in the \((i,j)\) place. We call a set \(Y \subseteq C_{G(R)}(U) \) satisfying (14), resp. (15) a witness set for \(U \).

In most cases, the verification that \(Y \) has the required properties is a relatively straightforward matrix calculation, which we omit. Details can be found in \([ST]\). Of course it will suffice to consider just one root of each length.

The special linear group

The root subgroups in \(SL_n \) are

\[
U_{ij} = 1 + \tau e_{ij}, \quad i \neq j.
\]

Lemma 8.2. Let \(G = SL_n, n \geq 2 \). Then a witness set for \(U_{12} \) is

\[
Y = \{ 1 + e_{pq} \mid p \neq 2, \; q \neq 1 \}.
\]
Symplectic groups and even orthogonal groups

Now we consider $C_m(\mathbb{F})$ and $D_n(\mathbb{F})$ as groups of $2m \times 2m$ matrices, as described in [C], §11.3. Here $n = 2m$ and we re-label the matrix entries writing $-i$ in place of $m + i$, $(i = 1, \ldots, m)$. For $1 \leq |i| < |j| \leq m$

(16) $\alpha_{ij} = e_{ij} + \varepsilon e_{-j,-i},$

where $\varepsilon = \pm 1$ depends on (i, j) in a manner to be specified.

We now separate cases.

Case 1: $G = C_m = \text{Sp}_{2m}$. In this case, ε is -1 or 1 according as i and j have the same or opposite signs. The root subgroups in G are

\begin{align*}
U_i &= 1 + \mathbb{F}e_{i,-i} \quad \text{(long roots)}, \quad 1 \leq |i| \leq m \\
U_{ij} &= 1 + \mathbb{F}a_{ij} \quad \text{(short roots)}, \quad 1 \leq |i| < |j| \leq m,
\end{align*}

taking $\varepsilon = -1$ if $ij > 0$, $\varepsilon = 1$ if $ij < 0$.

Lemma 8.3. Let $G = \text{Sp}_{2m}$. A witness set for the long root group U_1 is

(17) $X_1 = \{1 + e_{i,-i} \mid i \not\in \{-1, 2\}\} \cup \{1 + \alpha_{1j} \mid 2 \leq j \leq m\}$

and a witness set for the short root group U_{12} is

(18) $X_2 = \{1 + e_{i,-i} \mid i \not\in \{-1, 2\}\} \cup \{1 + \alpha_{1j} \mid j \not\pm 1, -2\}.$

Now let $v = 1 + r\alpha_{12} \in U_{12}, 0 \neq r \in R$. To identify the subgroup $Z(C_G(R)(v))$ more precisely, set

(19) $\xi = (e_{1,-2} - e_{-2,1}) - (e_{-1,2} - e_{-2,1}) + \sum_{|i|>2} e_{ii}.$

Then $\xi \in C_G(R)(v)$. If $g \in ZUU_1U_2$ and g commutes with ξ we find that

\begin{align*}
g &= \pm (1 + c\alpha_{12})(1 + ae_{1,-1})(1 - ae_{-2,2}) \\
&= \pm (1 + c\alpha_{12}) \cdot \varphi(a)
\end{align*}

for some a, $c \in \mathbb{F}$, where $\varphi : \mathbb{F} \to U_1U_{-2}$ is the ‘diagonal’ homomorphism

$r \mapsto 1 + r(e_{1,-1} - e_{-2,2}) = (1 + re_{1,-1})(1 - re_{-2,2}).$

Now we can state

Proposition 8.4. Let G and v be as above. Then

(20) $Z(C_G(R)(v)) \leq \pm U_{12}(R) \cdot \varphi(R),$

If $R^* \neq \{\pm 1\}$ and $\text{char}(R) \neq 2$.

Proof: We have already established that $C_G(C_G(R)(v)) \leq \pm U_{12} \cdot \varphi(\mathbb{F})$. If g is given by (17), both c and a appear as entries in the matrix g, so if $g \in G(R)$ then $a, c \in R$ and (18) follows.

Suppose now that $R^* \neq \{\pm 1\}$ and pick $t \in R^*$ with $t^2 \neq 1$. The torus element

$\tau := h_{1,-2}(t) = t(e_{11} + e_{22}) + t^{-1}(e_{-2,-2} + e_{-1,-1})$
lies in $C_{G(R)}(v)$. So if g in (17) is in $Z(C_{G(R)}(v))$ then τ commutes with $\varphi(a)$, and hence with $\varphi(a) - 1 = r(e_{1, -1} - e_{-2, 2})$. But

$$\tau^{-1} \cdot r(e_{1, -1} - e_{-2, 2}) \cdot \tau = t^{-2}re_{1, -1} - t^2re_{-2, 2},$$

so $t^{-2}r = t^2r = r, r = 0$ and we conclude that $g \in \pm U_{12}(R)$. This proves (19).

Assume now that $R^* = \{ \pm 1 \}$ and $\operatorname{char}(R) \neq 2$. To establish (20) it will suffice to show that $e_{1, -1} - e_{-2, 2}$ commutes with every matrix in $C_{G(R)}(v)$.

For clarity we take $n = 3$; the argument is valid for any $n \geq 2$. A matrix commuting with v is of the form

$$g = \begin{pmatrix}
 x & \bullet & \bullet & \bullet & -b & \bullet \\
 0 & x & 0 & b & 0 & 0 \\
 0 & \bullet & \bullet & \bullet & 0 & \bullet \\
 0 & a & 0 & y & 0 & 0 \\
 -a & \bullet & \bullet & \bullet & y & \bullet \\
 0 & \bullet & \bullet & \bullet & 0 & \bullet
\end{pmatrix},$$

where the blank entries are arbitrary. If g is symplectic then $2ax = 2by = 0$

$$xy + ab = 1.$$

It follows that either $x = 0$, in which case $ab = 1$, whence $a = \pm 1 = b$ and $y = 0$, or $x \neq 0$, in which case $a = 0, xy = 1$ and similarly then $x = \pm 1 = y$ and $b = 0$. Thus in any case $x = y$ and $a = b$. This now implies that g commutes with $e_{1, -1} - e_{-2, 2}$. □

Remark. The precise nature of $Z(C_{G(R)}(v))$ in the remaining case where $R^* = 1$ and $\operatorname{char}(R) = 2$ we leave open.

Case 2: $G = D_m \leq O_{2m}$. In this case, $\varepsilon = -1$ for all i, j. The root subgroups in G are

$$U_{ij} = 1 + k\alpha_{ij}, \ 1 \leq |i| < |j| \leq m.$$

Lemma 8.5. Let $G = D_m \leq O_{2m}$. A witness set for the root group U_{12} is

(21) $$X_3 = \{ 1 + \alpha_{ij} \mid (i, j) \in S \}$$

where

(22) $$S = \{ (i, j) \mid 3 \leq |i| < |j| \ or \ i = 1 < |j| \} \cup \{(-1, 2)\}.$$

Remark The same calculation actually establishes a little more: namely,

(23) $$C_{O_{2m}}(X_3) \subseteq \pm U_{12}.$$

This will be used below.

Odd orthogonal groups

Now we take $G = B_m \leq O_{2m+1}$, and write elements of G as matrices

$$g = \begin{pmatrix}
 x & a \\
 y & b \\
\
 h & h
\end{pmatrix} := (x, a, b; h)$$
where \(x = x(g) \in \overline{k} \), \(a = a(g) \) and \(b = b(g) \) are in \(\overline{k}^{2m} \) and \(h = h(g) \in M_{2m}(\overline{k}) \). For \(h \in M_{2m}(\overline{k}) \) we write
\[
 h^* = (1, 0, 0; h).
\]
The rows and columns are labelled \(0, 1, \ldots, m, -1, \ldots, -m \).

We begin with a couple of elementary observations.

Lemma 8.6. Let \(g = (x, 0, 0; h) \). Then \(g \in O_{2m+1}(\overline{k}) \) if and only if \(h \in O_{2m}(\overline{k}) \) and \(x = \pm 1 \).

Lemma 8.7. Let \(w \in M_{2m}(\overline{k}) \). Then \(g = g(x, a, b; h) \) commutes with \(w^* \) if and only if
\[
 hw = wh
\]
\[
 aw = a, \quad bw^T = b.
\]

The root elements are
\[
 u_i(r) = 1 + r(2e_{i0} - e_{0,-i}) - r^2e_{i,-i} \quad \text{(short roots), } 1 \leq |i| \leq m
\]
\[
 u_{ij}(r) = 1 + r\alpha_{ij} \quad \text{(long roots), } 1 \leq |i| < |j| \leq m,
\]
where \(\alpha_{ij} \) are as in (16) with \(\varepsilon = -1 \) for all pairs \(i, j \).

Now let \(r \neq 0 \) and consider the long root element \(v^* = u_{12}(r) \) (so \(v \) is the corresponding root element in \(D_m \)). We have
\[
 C_G(v^*) \supseteq X_3^*
\]
where \(X_3 \) is defined above (21). Now Lemma 8.7 implies: if \(g = g(x, a, b; h) \in Z(C_G(v^*)) \) then \(a\alpha_{ij} \) and \(b\alpha_{ji} \) are zero for all pairs \((i, j) \in S \) (see (22)). This now implies that \(a = b = 0 \).

It follows by Lemma 8.6 that \(x = \pm 1 \) and \(h \in O_{2m}(\overline{k}) \), and then by (23) that
\[
 h \in \pm U_{12}
\]
(here \(U_{12} \) is the corresponding root group in \(D_m \)).

Thus
\[
 g = (\pm 1, 0, 0; \pm (1 + s\alpha_{12})) = \pm u_{12}(s) \cdot (\eta, 1, \ldots, 1)
\]
for some \(s \in \overline{k} \) and \(\eta = \pm 1 \).

Finally, we note that \(u_1(1) \in C_G(v^*) \). It follows that \((\eta, 1, \ldots, 1) \) commutes with \(u_1(1) \), which forces \(\eta = 1 \). Thus \(g = \pm u_{12}(s) \). We have established

Lemma 8.8. Let \(G = B_m \leq O_{2m+1} \). A witness set for the long root group \(U_{12} \) is
\[
 X_4 = X_3^* \cup \{ u_1(1) \}.
\]

Assume henceforth that \(m \geq 3 \). We consider finally the short root group \(U_1 \). We see that \(C_G(U_1) \) contains the set
\[
 X_5 = \{ u_{ij}(1) \mid i \neq -1, \ j \neq 1 \} \cup \{ u_1(1) \}.
\]
Now let \(g = g(x, a, b; h) \in C_G(X_5) \). One finds after some calculation that
\[
 g = (x, se_{-1}, 2e_1; x1_{2m} + ye_{1,-1})
\]
(This calculation requires \(m \geq 3 \); the conclusion is false when \(m = 2 \).

Then \(\det(g) = x^{2m+1} \) so \(x \) is invertible; replacing \(s \) by \(-x^{-1}s \) and \(y \) by \(x^{-1}y \) we have
\[
 g = x(1, -se_{-1}, 2se_1; 1_{2m} + ye_{1,-1}).
\]
Then
\[g \cdot u_1(-s) = x(1 + (s^2 + y)e_{1,-1}) \in O_{2m+1}, \]
which implies \(x^2 = 1 \) and \(2(s^2 + y) = 0. \)

If \(\text{char}(k) \neq 2 \) we infer that \(g = \pm u_1(s). \)

Suppose now that \(k \) has characteristic 2. In this case the mapping \(\pi : g \mapsto h(g) \)
is an injective homomorphism ([C], page 187). If \(g \) is of the form \((24)\) and \(y = w^2 \)
then \(g\pi = u_1(w)\pi \in U_{1}\pi \), and so \(g \in U_{1}. \)

Thus is any case we have \(g \in \pm U_{1}. \) We have established

Lemma 8.9. Let \(G = B_m \leq O_{2m+1}, \) where \(m \geq 3. \) Then a witness set for the
short root group \(U_{12} \) is
\[X_5 = \{ u_{ij}(1) \mid i \neq -1, \ j \neq 1 \} \cup \{ u_1(1) \}. \]

9. Applications

We now put together a list of cases where Theorems 1.1, 1.2 and Corollary 1.3 apply. As before, \(G \) is a simple Chevalley-Demazure group scheme defined by a root system \(\Phi \) of rank at least 2 and \(R \) is a commutative integral domain.

As special cases of Theorems 1.1 and 1.2 we have

Corollary 9.1. The group \(G(R) \) is bi-interpretable with the ring \(R \) in each of the
following cases:
(i) \(R \) is a field;
(ii) \(R \) is a local ring and \(G \) is simply connected;
(iii) \(R \) is a Dedekind ring of arithmetic type, that is, the ring \(o_S \) of \(S \)-integers in
a number field \(K \) w.r.t. a finite set \(S \) of places of \(K; \)
(iv) \(R \) is a Dedekind ring with at least 4 units and \(G \) is adjoint.

Proof. This follows from the theorems whenever \(G(R) \) has finite elementary width,
or has finite \(SL_2 \) width and satisfies the hypotheses of Theorem 1.2. This holds in
case (i) : by the Bruhat decomposition ([C], Thm. 8.4.3, [St], Cor. 1 on p. 21).
case (ii) : by a theorem of Abe, [Ab] Proposition 1.6, together with [HSVZ],
Corollary 1.
case (iii) : by a theorem of Tavgen, [T] Theorem A
case (iv) : [St], Theorem 18, Cor. 1 and Lemma 49 show \(G \) has finite \(SL_2 \) width
if \(R \) is a PID. It follows by ‘uniqueness of expression’ that this still holds if \(R \) is an
intersection of PIDs inside \(k. \)

According to [VK], it should suffice in Case (iv) to assume that \(R \) is a Bézout
domain; the proof is given for \(G = SL_n. \)

To apply Corollary 1.3, we need to pick out from this list those rings that are
also FA. Now [AKNZ], Proposition 7.1 says that every f.g. commutative ring is
FA in the class of f.g. rings; it is shown in [NST], Theorem 4.4 that every regular,
unramified complete local ring with finite residue field is FA in the class of profinite
rings. (These rings are \(F_q[[t_1, \ldots, t_n]], \) \(o_q[[t_1, \ldots, t_n]] \), \(n \geq 0, \) where \(o_q = \mathbb{Z}_p[\zeta], \)
\(q = p^f, \) \(\zeta \) a primitive \((q - 1)\)th root of unity).

It is also the case that every locally compact field is FA in the class of all locally
compact rings. We are grateful to Matthias Aschenbrenner for supplying the proof
of Proposition 9.3 sketched below.

Thus we may deduce
Corollary 9.2. (i) If S is a finite set of primes in a global field k then the S-arithmetic group $G(R)$ is FA among f.g. groups, assuming that G is adjoint if $\text{char}(k) \neq 0$.

(ii) The profinite groups $G(R), R = \mathbb{F}_q[[t_1, \ldots, t_n]]$ or $R = \mathcal{O}_q[[t_1, \ldots, t_n]], n \geq 0,$ are FA among profinite groups, if G is simply connected.

(iii) If k is a local field then $G(k)$ is FA among locally compact groups.

(The case $R = \mathbb{F}_q[t], q \leq 4,$ is not included in Case (iv) above, but it is shown [CKPV] that in this case $G(R)$ has finite elementary width.)

Proposition 9.3. (M. Aschenbrenner) Let k be a locally compact field. Then k is determined up to isomorphism within the class of locally compact rings by finitely many first-order sentences.

Proof. The first axiom asserts that k is a field. Now we consider the cases.

1. If $k = \mathbb{R},$ then k is axiomatized by saying that k is Euclidean, that is, (a) -1 is not of the form $x^2 + y^2$ and (b) for every $x \in k$ either x or $-x$ is a square. (This implies that k is an ordered field for a (unique) ordering whose set of nonnegative elements is given by the squares; and no other local field is orderable.)

2. If $k = \mathbb{C},$ then k is axiomatized by saying that every element is a square.

3. Let $k = \mathbb{F}_q((t))$ where q is a power of a prime $p.$ Ax provides in [Ax] a formula φ_p that defines the valuation ring in any henselian discretely valued field of residual characteristic $p.$ We can then make a sentence which expresses that the characteristic of the field is p and the residue field of the valuation ring defined by φ_p has size $q.$ This sentence determines k up to isomorphism among all local fields.

4. The remaining case is where k is a finite extension of $\mathbb{Q}_p.$ Then we use Ax’s formula φ_p again to express that the ramification index and residue degree of k have given values e and $f.$ Then $(k : \mathbb{Q}_p) = ef.$ Let h be the minimal polynomial of a primitive element for k over $\mathbb{Q}_p,$ and let $g \in \mathbb{Q}_p[t],$ of degree $ef = \text{deg}(h),$ have coefficients sufficiently close to those of h that Krasner’s Lemma applies, i.e. g has a zero $\beta \in k$ and $k = \mathbb{Q}_p(\beta).$ Then k is determined among local fields by: $p \neq 0;$ the formula φ_p defines in k a valuation ring with residue field of characteristic $p,$ ramification index $e,$ and residue degree $f;$ and the polynomial g has a zero in $k.$ \hfill \square

Remark Regarding Chevalley groups of rank 1. It is shown in [NST], Theorem 1.4 that $\text{SL}_2(R)$ is FA among profinite groups if R is a profinite local domain that is FA among profinite rings; thus case (iv) of the corollary holds also for $G = \text{SL}_2.$

We do not know if the other cases hold for $\text{SL}_2.$ It seems extremely unlikely that $\text{SL}_2(\mathbb{Z})$ can be FA or even first-order rigid, as it is virtually free. As far as we know, however, this question is open.

Certainly $\text{SL}_2(\mathbb{Z})$ does not have finite elementary width (cf. [HSVZ] §3.2); the same holds for $\text{SL}_2(\mathbb{F}_q[t]),$ for similar reasons (it also follows from the main result of [N]). E. Plotkin (personal communication) has suggested that $\text{SL}_2(R)$ may have finite elementary width when R is a ring of S-integers in a global function field of positive characteristic and has infinitely many units.
10. Acknowledgements

We would like to thank Matthias Aschenbrenner, Brian Conrad, Philippe Gille, Bob Guralnick, Franziska Jahnke, Martin Liebeck, Evgeny Plotkin, Gopal Prasad, Donna Testermann, Nikolai Vavilov and Richard Weiss for their valuable input on various questions we asked.

11. Appendix

We recall some commutator formulae ([C], Thms. 5.2.2 and 4.1.2, or [St], Chapter 3, Cor. to Lemma 15). Here Φ is a root system, $\alpha, \beta \in \Phi$. If $\alpha + \beta \notin \Phi$ then $[x_\alpha(r), x_\beta(s)] = 1$. If $\alpha + \beta \in \Phi$ then α and β span a root system Φ_1 of rank 2 and there are three possibilities (assuming w.l.o.g. that α is short, if α and β are of different lengths). Here $\varepsilon = \pm 1$.

$\Phi_1 = A_2 :$

\[
[x_\alpha(r), x_\beta(s)] = x_{\alpha + \beta}(\varepsilon rs)
\]

\[
[x_{-\alpha}(r), x_{\alpha + \beta}(s)] = x_\beta(\varepsilon rs)
\]

$\Phi_1 = B_2 :$

\[
[x_\alpha(r), x_\beta(s)] = x_{\alpha + \beta}(\varepsilon rs)x_{2\alpha + \beta}(\pm \varepsilon^2 s)
\]

\[
[x_\alpha(r), x_{\alpha + \beta}(s)] = x_{2\alpha + \beta}(\pm 2rs)
\]

\[
[x_{-\alpha}(r), x_{\alpha + \beta}(s)] = x_{\beta}(\pm 2rs)
\]

\[
[x_{-\alpha}(r), x_{2\alpha + \beta}(s)] = x_{\alpha + \beta}(\pm rs)x_\beta(\pm r^2 s)
\]

\[
[x_{\alpha + \beta}(r), x_{-\beta}(s)] = x_\alpha(\varepsilon rs)x_{2\alpha + \beta}(\pm r^2 s)
\]

$\Phi_1 = G_2 :$

\[
[x_\beta(r), x_\alpha(s)] = x_{\alpha + \beta}(\varepsilon rs)x_{2\alpha + \beta}(-\varepsilon rs^2)x_{3\alpha + \beta}(-rs^3)x_{3\alpha + 2\beta}(\pm r^4 s^3)
\]

\[
[x_{\alpha + \beta}(r), x_\alpha(s)] = x_{2\alpha + \beta}(\pm 2rs)x_{3\alpha + \beta}(-3\varepsilon rs^2)x_{3\alpha + 2\beta}(\pm 3r^2 s^2)
\]

\[
[x_{2\alpha + \beta}(r), x_\alpha(s)] = x_{3\alpha + \beta}(3\varepsilon rs)
\]

\[
[x_{\alpha + \beta}(r), x_{-\beta}(s)] = x_{\alpha}(\varepsilon rs)x_{2\alpha + \beta}(\pm r^2 s)x_{3\alpha + 2\beta}(\pm r^3 s)x_{3\alpha + 3\beta}(\pm r^4 s^2)
\]

(There are other possible combinations of signs, depending on the choice of Chevalley basis. We assume for convenience that the basis is chosen so as to obtain this particular form for the commutator formulae.)

References

[Ab] E. Abe, Chevalley groups over local rings. Tohoku Math. J. (2) 21 (1969), 474–494.

[ABS] H. Azad, M. Barry and G. Seitz, On the structure of parabolic subgroups. Comm. Algebra 18 (1990), no. 2, 551-562.

[AKNZ] M. Aschenbrenner, A. Khélif, E. Naziazeno and T. Scanlon, The Logical Complexity of Finitely Generated Commutative Rings. Int. Math. Research Notices, rny023, https://doi.org/10.1093/imrn/rny023.

[AL] H. Aslaksen and M. L. Lang, Extending π-systems to bases of root systems. J. Algebra 287 (2005), no. 2, 496–500.

[ALM] N. Avni, A. Lubotzky and C. Meiri, First order rigidity of non-uniform higher-rank arithmetic groups, Invent. Math. (2019), 219-240.

[Ax] J. Ax, On the undecidability of power series fields, Proc. Amer. Math. Soc. 16 (1965), p. 846.
[AZ] G. Ahlbrandt and M. Ziegler, Quasi-finitely axiomatizable totally categorical theories. Stability in model theory (Trento, 1984); Ann. Pure Appl. Logic 30 (1986), no. 1, 63–82.

[BT] A. Borel and J. Tits, Homomorphismes ‘abstraits’ de groupes algébriques simples, Annals of Math. 97 (3) (1973), 499–571.

[B] E. I. Bunina, Isomorphisms and elementary equivalence of Chevalley groups over commutative rings, Sb. Math. 210 (2019), 1067 - 1091.

[Be] H. Behr, Arithmetic groups over function fields, 1. J. reine angew. Math. 495 (1998), 79 - 118.

[BS] A. Borel and J.-P. Serre, Cohomologie d’immeubles et de groupes S-arithmétiques, Topology 15 (1976), 211 - 232.

[C] R. W. Carter, Simple groups of Lie type, Wiley, London (1972).

[CKPV] I. Capdeboscq, B. Kunyavskii, E. Plotkin and N. Vavilov, Commutator width of Kac-Moody groups over finite fields, to appear

[Co] B. Conrad, Reductive group schemes. Notes for the SGA 3 Summer School, Luminy 2011. http://math.stanford.edu/~conrad/papers/luminysga3.pdf

[DDMS] J. D. Dixon, M. Du Sautoy, A. Mann, and D. Segal. Analytic pro-p groups, 2d edn. Cambridge Studies in Advanced Math. 61, Cambridge Univ. Press, Cambridge, 2003.

[HMT] W. Hodges, Model Theory, Cambridge Univ. Press, Cambridge, 1993.

[HSVZ] R. Hazrat, A. Stepanov, N. A. Vavilov and Z. Zhang, Commutator width in Chevalley groups, Note Mat. 33 (2013), 139-170.

[KRT] L. Kramer, G. Röhrle and K. Tent, Defining k in G(k), J. Algebra 216 (1999), 77 - 85.

[LS] A. Lubotzky and A. Shalev, On some Λ-analytic pro-p groups, Israel J. Math. 85 (1994), 307-337.

[LT] R. Lawther and D. M. Testerman, Centres of centralizers of unipotent elements in simple algebraic groups, Memoirs Amer. Math. Soc. vol 210 no. 988 (2011), vi + 188pp.

[N] H. Nagao, On GL(2, K[ι]), J. Inst. Polytechn. Osaka City Univ., Ser. A. 10 (1959), 117–121

[NSG] A. Nies, Separating classes of groups by first-order formulas, Intern. J. Algebra Computation 13 (2003), 287-302.

[NST] A. Nies, D. Segal and K. Tent, Finite axiomatizability for profinite groups, to appear

[SAG] M. Demazure and A. Grothendieck, SGA3: Schémas en groupes. III: Lecture Notes Math 153. Springer, Berlin (1962/1964).

[S1] I. I. Simion, Double centralizers of unipotent elements in simple algebraic groups of type G2, F4 and E6, J. Algebra 302 (2013), 335-367.

[S2] I. I. Simion, Double centralizers of unipotent elements in simple algebraic groups of type E7 and E8, J. pure applied algebra 219 (2015), 930-977.

[ST] D. Segal and K. Tent, A note on centralizers in Chevalley groups, in preparation

[St] R. Steinberg, Lectures on Chevalley groups, A. M. S. University Lecture Series 66, 2016.

[T] O. I. Tavgen, Bounded generation of Chevalley groups over rings of S-integral algebraic numbers, Izv. Akad. Sci. USSR 54 (1990), 97-122.

[TW] Jacques Tits, Richard M. Weiss, Moufang polygons, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002.

[vdK] W. van der Kallen, SL2(C[z]) does not have bounded word length, Springer LNM 966 (1982), 357-461.

[VK] N. A. Vavilov and E. I. Kovach, SL2-factorizations of Chevalley groups, J. Math. Sci. 188 (2013), 483-488.

[VM] H. Van Maldeghem, Generalized polygons. Monographs in Mathematics, 93. Birkhäuser Verlag, Basel, 1998.

[W] A. Weil, Basic number theory, Springer-Verlag, Berlin Heidelberg NewYork, 1967.