Italian Language and Dialect Identification and Regional French Variety Detection using Adaptive Naive Bayes

Tommi Jauhiainen, Heidi Jauhiainen, Krister Lindén
Department of Digital Humanities, University of Helsinki, Finland
tommi.jauhiainen@helsinki.fi

Abstract

This article describes the language identification approach used by the SUKI team in the Identification of Languages and Dialects of Italy and the French Cross-Domain Dialect Identification shared tasks organized as part of the VarDial workshop 2022. We describe some experiments and the preprocessing techniques we used for the training data in preparation for the shared task submissions, which are also discussed. Our Naive Bayes-based adaptive system reached the first position in Italian language identification and came second in the French variety identification task.

1 Introduction

Language identification (LI) of digital text still poses difficulties for text classification methods when performed in more complex situations (Jauhiainen et al., 2019d). One of the problematic contexts is the closeness of the languages to be identified. In this article, we tackle the problem of close language identification for languages or dialects traditionally used in Italy and distinguishing between regional French varieties used in Europe and Canada. The research and experiments were conducted while participating in the language identification shared tasks organized in connection with the ninth edition of the VarDial workshop for NLP for similar languages, varieties, and dialects (Aepli et al., 2022). The French Cross-Domain Dialect Identification (FDI) and the Identification of Languages and Dialects of Italy (ITDI) shared tasks were organized for the first time.

The ITDI shared task focused on 11 living Romance languages or dialects: Emiliano-Romagnolo (eml), Friulian (fur), Ladin (lld), Ligurian (lij), Lombard (lmo), Neapolitan (nap), Piemontese (pms), Sardinian (srd), Sicilian (scn), Tarantino (considered a dialect of Neapolitan by ISO 639-3), and Venetian (vec). The shared task was a closed one; hence, no other data besides that indicated and provided by the organizers were to be used. The organizers also stated that the test set would contain only a subset of the 11 languages.

The FDI shared task featured four regional varieties of written French from news sites in France, Belgium, Switzerland, and Canada. The organizers of the task provided all the data.

In Section 2, we present previous work on language identification of the languages that are the targets of these two shared tasks. In Section 3, we describe the data provided and allowed in the tasks, and, in Section 4, we present our method. Our experiments and the preprocessing done to the training data are explained in Section 5. In Section 6, we present and discuss the results of the submitted runs.

2 Previous Work

To our knowledge, there is no previous LI research focusing specifically on the languages of Italy. However, previous language identification-related research has featured the rare Romance languages that make up the ITDI repertoire. Emiliano-Romagnolo, Friulian, and Sardinian were part of the 372 languages featured in the research by Rodrigues (2012). Benedetto et al. (2002) automatically created a phylogenetic-like tree for languages based on more than 50 versions of the Universal Declaration of Human Rights, including the Friulian and the Sardinian editions. Lombard, Piemontese, Sicilian, and Venetian were featured in the ex-
periments leading to the development of the HeLI-method (Jauhiainen, 2010; Jauhiainen et al., 2016). Lombard, Neapolitan, Piemontese, Sicilian, and Venetian were included in the LI experiments conducted by Majliš (2011). King and Abney (2013) and King (2015) investigated word-level language identification in multilingual documents, including mixed Lombard - English, among other combinations. Bernier-Colborne et al. (2021) mention the Lombard - Italian pair as one of the top 10 most frequently confused pairs in the ULI-178 track of the Uralic Language Identification shared task. The ULI-178 track was a general language identification task between 178 languages, among them Lombard, Piemontese, Sardinian, Sicilian, and Venetian (Jauhiainen et al., 2020b). Neapolitan, Piemontese, and Sicilian were part of the ALTW 2010 multilingual language identification shared task dataset (Baldwin and Lui, 2010). Caswell et al. (2020) investigated language identification in the context of web crawling and mention Neapolitan, Sicilian, and Venetian as part of the lowest-resource languages in their research. All the languages of the task except Lombard were included in the language identifier featuring more than 900 languages developed by Brown (2012, 2013). Also, Lombard was added to his version with more than 1300 languages (Brown, 2014).\footnote{https://sourceforge.net/projects/la-strings/files/} Emiliano-Romagnolo, Lombard, Neapolitan, Piemontese, Sicilian, and Venetian are part of the repertoire of the FastText off-the-shelf language identifier\footnote{https://fasttext.cc/docs/en/language-identification.html} and Lombard, Piemontese, Sardinian, and Sicilian are included in the HeLI-OTS off-the-shelf language identifier (Jauhiainen et al., 2022).\footnote{https://doi.org/10.5281/zenodo.4780897}

Distinguishing between French regional varieties from France and Canada was part of the overall aims in the 2016 and 2017 editions of the Discriminating between Similar Languages (DSL) shared tasks (Malmasi et al., 2016; Zampieri et al., 2017).\footnote{http://ttg.uni-saarland.de/resources/DSLCC/} The 2016 edition of the DSL was won by the tubasfs team using SVM with character n-grams from one to seven (Çöltekin and Rama, 2016). They managed to achieve 95.8% recall for the Canadian variety and 94.0% recall for the French variety. In 2016, we came second with a HeLI method-based identifier using words and character n-grams from one to six (Jauhiainen et al., 2016). The DSL 2017, the last one of its kind, was won by the CECL team using SVM with character n-grams from one to four in the first stage to detect the language group and another SVM with a variety of features in addition to character n-grams such as POS tag n-grams, the proportion of capitalized letters and punctuation marks to detect the language within the group (Bestgen, 2017).

3 Data

3.1 ITDI

In the ITDI, the participants were allowed to train their systems using the Wikipedia dumps for the 11 languages or dialects featured in the shared task. Additionally, it was possible to use the dump of the Italian language Wikipedia. All featured languages or dialects have their version of the Wikipedia online encyclopedia written in their respective language or dialect. The ISO 639-3 identifier eml for Emilian-Romagnol is considered deprecated as the language has been split into separate Emilian (egl) and Romagnol (rgn) languages, but Wikipedia is still shared between both languages.\footnote{https://eml.wikipedia.org/wiki/Längua_emiglièna-rumagnôla} The Sardinian, srd, is considered a macrolanguage in ISO 639-3, containing four separate Sardinian languages. It is possible that the Wikipedias for the eml and srd contain articles written in those separate languages. However, we did not investigate this possibility further. We did not utilize the Italian Wikipedia in any way in the experiments. The list of languages and dialects, their ISO 639-3 codes, tags used in the shared task, and the identities of their Wikipedia dumps can be seen in Table 1.

In contrast to the training data, the material for system development was provided directly by the shared task organizers. It came in one text file containing 6,799 lines which seemed to be single sentences preceded by the shared task tags. The development set included only a subset of seven of the 11 languages. The shared task participants had been informed that the test set would also be a subset of the 11 languages, but the number and identity of the missing languages were not indicated. The languages and the amount of development data for each of them can be seen in Table 2. The test set contained 11,090 lines in unknown languages or dialects.
Language/Dialect	ISO 639-3	ST tag	Dump name with date	.bz2 size
Emiliano-Romagnolo	eml	EML	emlwiki-20220301	9.3 MB
Friulian	fur	FUR	furwiki-20220301	2.5 MB
Ladin	lld	LLD	lldwiki-20220301	2.8 MB
Ligurian	lij	LIJ	lijwiki-20220301	6.6 MB
Lombard	lmo	LMO	lmowiki-20220301	25 MB
Neapolitan	nap	NAP	napwiki-20220301	5.4 MB
Piemontese	pms	PMS	pmswiki-20220301	14 MB
Sardinian	srd	SC	scwikipedia-20220301	7.2 MB
Sicilian	scn	SCN	scwikipedia-20220301	12 MB
Tarantino	nap	ROA_TARA	roatawaiki-20220301	6.4 MB
Venetian	vec	VEC	vecwikipedia-20220301	27 MB

Table 1: The Wikipedia dumps used in the ITDI shared task.

ST tag	Lines
EML	0
FUR	676
LLD	0
LIJ	617
LMO	1,231
NAP	0
PMS	1,191
SC	477
SCN	1,371
ROA_TARA	0
VEC	1,236

Table 2: The number of lines of each language in the development set of the ITDI shared task.

3.2 FDI

In the FDI, the participants were provided with training and development data for four regional varieties of French from France, Belgium, Switzerland, and Canada (Gaman et al., 2022). The data had been extracted from news websites in these countries using country-independent query words. A named entity recognizer (NER) Spacy had been run on the data, and all the detected entities had been changed to $\$NE\$ in order to remove country-specific bias. The data is divided into paragraphs of three sentences or less. The amount of data for the different varieties is not balanced, as seen in Table 3. According to the data compilers, it was not easy to get Canadian material as most news sites in the country are subscription-based (Gaman et al., 2022).

In both the training and the development sets, the lines seem not to have been randomized. When we tested combining consecutive lines, they seemed to make up complete news articles or web pages. However, we expected the test set not to repeat this pattern.

4 Method

We used the same system we had developed for and used in the winning submission of the 2021 edition of Romanian Dialect Identification (Jauhiainen et al., 2021), The system uses a Naive Bayes-based method using the observed relative frequencies of multiple-size character n-grams as probabilities. We first used the method as a baseline for the Cuneiform Language Identification (CLI) shared task (Jauhiainen et al., 2019a) and later with adaptive language models (Jauhiainen et al., 2019c) to win the Discriminating between the Mainland and Taiwan variation of Mandarin Chinese (DMT) (Jauhiainen et al., 2019b) and the RDI 2021 (Jauhiainen et al., 2021) shared tasks. The Naive Bayes type method adds together logarithms of the relative frequencies, $v_{C_g}(f_i)$, in the training data C_g as defined in Equation 1:

$$R(g, M) = -\sum_{i=1}^{\ell_{MF}} \ell_{MF} - \sum_{i=1}^{\ell_{MF}} \log(v_{C_g}(f_i))$$

where ℓ_{MF} is the number of individual features in the mystery text M to be identified and f_i is M's ith feature. The relative frequency, $v_{C_g}(f_i)$, is calculated as in Equation 2:

$$v_{C_g}(f) = \begin{cases} \frac{c(C_g, f)}{c(C_g)}, & \text{if } c(C_g, f) > 0 \\ \frac{c(C_g)}{c(g)^{pm}}, & \text{otherwise} \end{cases}$$

6The implementation of the language identifier used to produce the best results for the ITDI shared task is available from GitHub at https://github.com/tosaja/TunPRF.
Table 3: The training and development datasets sizes for the FDI shared task.

Variety	Code	#lines	#tokens	Tokens per line	#NE
France	FR	61,777	4,224,301	68	587,138
Belgium	BE	121,746	7,241,609	59	1,104,562
Switzerland	CH	141,261	8,494,657	60	1,112,525
Canada	CA	34,003	1,694,760	50	184,083

where \(c(C_g, f)\) is the count of feature \(f\) in the training corpus \(C_g\) of the language \(g\). \(\ell_{CgF}\) is the length of the corpus \(C_g\) when it has been transformed into a collection of features \(F\), e.g., features of the same type as \(f\). The pm is the penalty modifier, which is optimized using the development data.

The system uses an adaptation technique to learn from the test data (Jauhiainen et al., 2019c). There is also a possibility to perform iterative adaptation, in which the test data is processed several times from the beginning of the adaptation process.

The exact range of the used character n-grams is optimized using the development data. After optimizing the basic method, the parameters for the adaptive version are determined. In the adaptation technique, the test data is first identified with the basic method, and a confidence score is calculated for each identified instance. The confidence score is the difference between the scores of the best and the second-best language. The test instances are sorted according to the confidence scores and then divided into a certain number of splits. The number of splits is determined using the development data. The character n-gram frequency information from the most confident split is added to the respective language models, and the rest of the material is re-identified with the adapted models. Then the rest of the material is again sorted and divided into equally sized splits, and the information from the most confident split is added to the models and the rest re-identified. The previous process is repeated until all the material is added to the language models.

In the iterative version, the adaptation process is restarted from the beginning. The number of possible iterations is also determined using the development set.

5 Experiments

This section presents the details of the experiments and various preprocessing techniques we used when participating in the shared tasks.

5.1 ITDI

The organizers of the Identification of Languages and Dialects of Italy shared task provided a script that could be used to generate a .json file from the .bz2 files downloaded from Wikipedia. Instead of using the script, we created plain text versions of the dumps using the command:

```
-m wikiextractor.WikiExtractor xxxwiki-20220301- ... .bz2 -o xxx_texts
```

The training data extracted this way contained 1.91 million lines, some extended text passages, and some just short headings, names, or even empty lines. The first thing we did was to remove duplicate lines within each language or dialect. This deduplication procedure reduced the size of the training data to 0.93 million lines.

As the next step, we removed the lines containing wiki markup, which we found by using the following regular expressions:

```
<comment>.*</comment>
<contributor>
<format>.*</format>
<ip>.*</ip>
<minor />
<model>&gt;.*&lt;/model&gt;
<ns.*
<parentid>.*
<revision>
<timestamp>.*
<username>
```

We also removed all lines with a tab character followed by a lowercase letter and unified the numbers so that all number characters were changed to “1”. Then, we again removed duplicate lines which left us with 880,000 lines. At this point, we took an inventory of the number of lines for each language and dialect (Table 4).

At each stage, we had tested the performance of our Naive Bayes-based system on the development data. At this stage, the Lombard language had the worst precision with 83.2%, and we decided to try and clean its training data to improve its precision. As it seemed that, in general, shorter lines were of lower quality than longer ones, we removed all Lombard lines with less than 14 characters from...
Table 4: The number of lines for each language or dialect in the ITDI training data after unifying the number characters.

ST tag	# lines
EML	16,425
FUR	18,040
LLD	31,524
LIJ	38,645
LMO	185,116
NAP	34,327
PMS	208,485
SC	41,169
SCN	95,693
ROA_TARA	36,818
VEC	173,452

The recall of Venetian increased from 79.1% to 84.0%, and at the same time, the precision of Lombard rose from 85.6% to 88.2%.

Venetian still had the lowest individual F1 score, 89.9. We aimed to increase further the quality of the training set by first removing all lines which did not have a word beginning with a lowercase ASCII letter and then removing all the 2,983 lines explaining roman numerals such as:

```
El 11 (LXIII en numeri romani) el xe ...
```

Additionally, in a similar manner to the French towns, we removed the municipalities of Italy listed in the Venetian Wikipedia. These cleaning operations resulted in a slight increase of the F1 to 90.3. The overall micro F1 had by now risen from 93.3 to 94.2.

Further cleaning, e.g., removing lines describing the Spanish towns in the Venetian Wikipedia and removing all lines containing specific additional wiki markup, did not improve the overall F1 score. As further preprocessing seemed less fruitful, we started experimenting with the adaptive version of the Naive Bayes identifier, with which evaluating new versions of the training corpora would take much longer.

We tested the adaptive version with 128, 256, and 512 splits. Additionally, we tested with 128 splits and two iterations. They all returned the same micro F1 of 96.2, which was higher than the score of 94.2, which was attained without adaptation.\(^7\)

If time allowed, one would begin finding the optimal number of splits from two and then double the number of splits every iteration as we did with FDI (see Table 6). Due to time constraints, for ITDI, we skipped the first ones. If 128 splits had produced better results than 256 splits, we would...
In the end, we opted to continue using 512 splits with only one adaptation round.

Afterward, we still decided to continue training corpora cleaning and removed additional template-generated text from Lombard training data. Additionally, we removed from all languages those lines that did not include a space character followed by a lowercase ASCII alphabetical character, e.g., those that did not have a word starting with a lowercase letter. These modifications did not improve the results, but we still decided to use them as we considered the training data to be in better shape.

As stated by the organizers and indicated by the languages missing from the development set, the test data would not include all the languages in the training data. Furthermore, we were unsure what measure would be used to evaluate the submissions. These facts led us to prepare one submission in preparation for the measure being macro F1. Also, we hoped that leaving out unnecessary languages might help to boost the performance of the remaining languages. We have previously developed a method for language set identification (Jauhiainen et al., 2015) and used it while collecting rare Uralic languages from the internet (Jauhiainen et al., 2020a). However, instead of using our language set identification method, we devised a simple thresholding method to leave out the most probable unnecessary languages using the development set as a guideline. Based on the development set, we surmised that it would be safe to remove from the repertoire those languages that, after all lines had been identified once, had been assigned fewer lines than 10% of the average number of lines for each language.

5.2 FDI

In the French Cross-Domain Dialect Identification shared task, the training data seemed to be of better quality than in the ITDI, and when perusing it, we did not notice any need for extensive preprocessing. We started with optimizing the parameters for the Naive Bayes identifier. Our first optimization run gave the best result, a micro F1 of 0.646, with just character six-grams, which were the maximum size for n-grams on that run.

We noticed that the training data for some language varieties contained a large amount of repetition, as seen in Table 5. Especially the Canadian variety training corpus consisted of identical lines repeated hundreds of times. Even the rarest lines in that corpus are repeated 55 times.

We did the same initial optimization run with the deduplicated training data and ended up with a micro F1 of 0.634. The score was slightly worse than before deduplication, so we continued experimenting with the original training set. We also tested lowercasing the training data and the mystery texts, which gave lower micro F1 scores with both original and deduplicated datasets. Further optimization with higher order n-grams led us to use only character eight-grams and the penalty modifier of 1.26, which gave a micro F1 score of 0.675 on the development data. We then optimized with the deduplicated training data, which resulted in eight grams and a penalty modifier of 1.73, giving a micro F1 of 0.659, which was again lower than without deduplication. Next, we experimented with removing the named entity tags from the training and the development data, which again resulted in a slightly lower micro F1 of 0.659.

So far, we had used the micro F1 as our guideline when optimizing the system even though we were aware that the macro F1 would be used to rank the official submissions. The reason for using micro F1 was that our optimization system did not produce correct macro F1 scores, which we fixed at this stage. The macro F1 corresponding to micro F1 of 0.675 was 0.495. We then proceeded to experiment with the adaptive version of the identifier.

We evaluated several combinations of the number of splits and iteration rounds as seen in Table 6. In the end, we used the character eight-grams, the penalty modifier of 1.26, 128 splits, and three iterations, giving us a macro F1 of 0.553 and a micro F1 of 0.745 on the development set.

As a last experiment, we decided to try to unify the numbers in a similar way we did with the ITDI data using the non-adaptive version of the system. Unifying the numbers increased the macro F1 from 0.495 to 0.498 and the micro F1 from 0.675 to 0.681. Due to limited time, we could not run the

Code	#lines	#unique lines
FR	61,777	55,927
BE	121,746	113,487
CH	141,261	107,982
CA	34,003	169

Table 5: The number of lines in the FDI training data before and after removing duplicates.
Table 6: Optimizing adaptation parameters with the FDI training and development data. The best scores are bolded.

# splits	# iterations	Macro F1	Micro F1
2	4	0.510	0.698
4	4	0.523	0.713
8	4	0.537	0.729
16	4	0.550	0.742
32	3	0.552	0.744
64	3-4	0.5526	0.7450
128	3-4	0.5529	0.7454
256	3-4	0.5527	0.7451
512	3-4	0.5525	0.7449
1024	3-4	0.5524	0.7447

6 Results

In this section, we describe the results of the submitted runs and the conclusions we can derive from them.

6.1 ITDI

We submitted three sets of predictions for the ITDI task. The main difference between the submissions was the data used to train the identifier. All the submissions used character n-grams from three to eight with a penalty modifier of 2.1. The number of splits in adaptation was set to 512, and iterative adaptation was not used. We added a space character to the beginning and the end of the text to be identified so that our identifier would recognize the beginning of the first word and the end of the last word.

The first submission used combined training and development data, and the second just the training data. All the submissions used character n-grams from three to eight with a penalty modifier of 2.1. The number of splits in adaptation was set to 512, and iterative adaptation was not used. We added a space character to the beginning and the end of the text to be identified so that our identifier would recognize the beginning of the first word and the end of the last word.

The first submission used combined training and development data, and the second just the training data. The third system combined the training and development data but without the data for Piemontese and Sardinian, which were discarded in the language set identification phase due to having less than the threshold amount of instances. The weighted average F1 score for all of our three submissions was quite similar and on a completely different level from the results of the best submissions of the two other participating teams, as seen in Table 7. The best baseline provided by the organizers was closer to our results than those of the other teams but still substantially behind them.

Without further experiments, it is difficult to say whether the distance to the other teams is due to differences in preprocessing Wikipedia or to using adaptive language models. The results on the language/dialect level can be seen in Table 8. The worst performing language of the languages present in the test set was the Neapolitan dialect Tarantino.

6.2 FDI

All our submissions to the FDI shared task used character eight grams with a penalty modifier of 1.26. The number of splits in adaptation was set to 128, and three iterations of adaptation to the test data were used. As in the ITDI task, the difference between the submissions comes from the data used for training. The first submission uses the training data, the second uses the development data, and the third uses a combination of both.

In contrast to the ITDI, the FDI shared task was ranked using the macro F1 score. The macro F1 score of our best submission, 0.266, was far behind the 0.344 of the winning NRC team. However, the results of the NRC team were still clearly lower than that of the best baseline, CamemBERT (Gaman et al., 2022), as seen in Table 9.

Table 10 is a confusion matrix for our third and best run. The contrast to our second run in Table 11 is dramatic. In the third run, only 28 lines were identified as the Canadian variety as opposed to the 15,518 lines identified as the Swiss variety. In the second run, 6,188 lines were identified as the Canadian variety and only 28 as the Swiss variety. It seems that the choice of training data is mostly responsible for these great differences.

The difference between our results on the development data vs. the test data is quite significant compared to similar results reported by the organizers (Gaman et al., 2022). Table 12 shows how our Macro F1 drops over 50% from development...
Language	Precision	Recall	F1 score	Lines in test
EML	0.8916	0.9273	0.9091	825
FUR	0.9969	0.9781	0.9874	1,323
LIJ	0.9831	0.9947	0.9889	2,282
LLD	0.9971	0.9268	0.9607	2,200
LMO	0.8991	0.9826	0.9390	689
NAP	0.8927	0.887	0.8898	2,026
ROA_TARA	0.7532	0.0962	0.1706	603
SC	0	0	0	0
SCN	0	0	0	0
VEC	0.7929	0.9982	0.8838	1,139

Table 8: Per language results for our best submission on the ITDI shared task.

Team	Submission	Macro F1	Weighted F1	Micro F1
CamemBERT	baseline	0.3967	-	0.5584
NRC	2	0.3437	0.4581	0.4936
SUKI	3	0.2661	0.3422	0.3918
DontClassify	1	0.2627	0.3236	0.3914
SUKI 1	1	0.2603	0.3439	0.3984
SUKI 2	2	0.1383	0.1958	0.2339

Table 9: The results of the FDI shared task.

BE	CA	CH	FR	Recall	Precision	F1 score
7,252	1	7,119	863	47.6%	39.4%	43.1
97	16	574	257	1.7%	57.1%	3.3
2,148	1	6,570	1,105	66.9%	42.3%	51.9
8,912	10	1,255	553	5.2%	19.9%	8.2

Table 10: The confusion matrix for our third and best submission at the FDI shared task, with the recall, precision, and the F1 score for each variety.

BE	CA	CH	FR	Recall	Precision	F1 score
7,262	5,220	5	2,748	47.7%	31.3%	37.8
717	162	2	63	17.2%	2.6%	4.5
5,940	568	7	3,309	0.1%	25.0%	0.1
9,317	238	14	1,161	10.8%	15.9%	12.9

Table 11: The confusion matrix for our second submission at the FDI shared task, with the recall, precision, and the F1 score for each variety.
to testing, whereas the drop for the best baseline is less than 20%. After the shared tasks, we created a version of our Naive Bayes system, which automatically determines the best parameters using the development set. Using the new implementation, we conducted some further experiments with the language annotated test data, and now it is clear that the optimal character n-gram range for the test data differs significantly from that of the development data. The optimal character range for the test data seems to be from four to seven characters, whereas it is from eight to eight for the development data. With the optimal character n-gram range, the NB identifier gets a macro F1 score of 0.3539 without language model adaptation. This score would be more comparable with the scores of the winning NRC submission. However, the real issue was the language model adaptation which lowered the results considerably. On the one hand, even using just the character eight-grams without adaptation gives the macro F1 score of 0.3306 on the test data, and on the other hand, using character n-grams from four to seven, the optimal range, with adaptation results in macro F1 score of 0.2628.

Acknowledgements

The research was conducted within the Language Identification of Speech and Text project funded by the Finnish Research Impact Foundation from its Tandem Industry Academia funding in cooperation with Lingsoft.

References

Noëmi Aepli, Antonios Anastasopoulos, Adrian Chifu, William Domingues, Fahim Faisal, Mihaela Gaman, Radu Tudor Ionescu, and Yves Scherrer. 2022. Findings of the VarDial evaluation campaign 2022. In Proceedings of the Ninth Workshop on NLP for Similar Languages, Varieties and Dialects, Gyeongju, Republic of Korea.

Timothy Baldwin and Marco Lui. 2010. Multilingual language identification: ALTW 2010 shared task data. In Proceedings of the Australasian Language Technology Association Workshop 2010, pages 4–7, Melbourne, Australia.

Dario Benedetto, Emanuele Caglioti, and Vittorio Loreto. 2002. Language Trees and Zipping. Physical Review Letters, 88(4).

Gabriel Bernier-Colborne, Serge Leger, and Cyril Goutte. 2021. N-gram and Neural Models for Uralic Language Identification: NRC at VarDial 2021. In Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 128–134, Kyiv, Ukraine. Association for Computational Linguistics.

Yves Bestgen. 2017. Improving the character ngram model for the DSL task with BM25 weighting and less frequently used feature sets. In Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial), pages 115–123, Valencia, Spain. Association for Computational Linguistics.

Ralf Brown. 2014. Non-linear Mapping for Improved Identification of 1300+ Languages. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 627–632, Doha, Qatar. Association for Computational Linguistics.

Ralf D. Brown. 2012. Finding and Identifying Text in 900+ Languages. Digital Investigation, 9:S34–S43.

Ralf D. Brown. 2013. Selecting and Weighting N-grams to Identify 1100 Languages. In Proceedings of the 16th International Conference on Text, Speech and Dialogue (TSD 2013), pages 475–483, Plzeh, Czech Republic.

Isaac Caswell, Theresa Breiner, Daan van Esch, and Ankur Bapna. 2020. Language ID in the wild: Unexpected challenges on the path to a thousand-language web text corpus. In Proceedings of the 28th International Conference on Computational Linguistics, pages 6588–6608, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Bharathi Raja Chakravarthi, Mihaela Gaman, Radu Tudor Ionescu, Heidi Jauhiainen, Tommi Jauhiainen, Krister Lindén, Nikola Ljubešić, Niko Partanen, Ruba Priyadharshini, Christoph Purschke, Eswari Rajagopal, Yves Scherrer, and Marcos Zampieri. 2021. Findings of the VarDial evaluation campaign 2021. In Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 1–11, Kyiv, Ukraine. Association for Computational Linguistics.

Çağrı Çöltekin and Taraka Rama. 2016. Discriminating Similar Languages: Experiments with Linear SVMs and Neural Networks. In Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects, pages 15–24, Osaka, Japan.

Mihaela Gaman, Adrian Gabriel Chifu, William Domingues, and Radu Tudor Ionescu. 2022. FreCDo: A New Corpus for Large-Scale French Cross-Domain Dialect Identification. (under review).

Mihaela Gaman, Dirk Hovy, Radu Tudor Ionescu, Heidi Jauhiainen, Tommi Jauhiainen, Krister Lindén, Nikola Ljubešić, Niko Partanen, Christoph Purschke, Yves Scherrer, and Marcos Zampieri. 2020. A Report on the VarDial Evaluation Campaign 2020. In Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects, pages 1–14, 2020.
Table 12: Comparison between the baseline results and our best submission.

System	Source data	Target data	Macro F1	Micro F1
CamemBERT	Training	Development	0.4784	0.7352
CamemBERT	Training	Testing	0.3967	0.5584
Adaptive NB	Training	Development	0.5529	0.7454
Adaptive NB	Training	Testing	0.2661	0.3918
Adaptive NB	Training + Development	Testing	0.2603	0.3984

Barcelona, Spain (Online). International Committee on Computational Linguistics (ICCL).

Heidi Jauhiainen, Tommi Jauhiainen, and Krister Lindén. 2020a. Building Web Corpora for Minority Languages. In Proceedings of the 12th Web as Corpus Workshop, pages 23–32, Marseille, France. European Language Resources Association.

Tommi Jauhiainen. 2010. Tekstin kielen automaattinen tunnistaminen. Master’s thesis, University of Helsinki, Helsinki.

Tommi Jauhiainen, Heidi Jauhiainen, Tero Alstola, and Krister Lindén. 2019a. Language and Dialect Identification of Cuneiform Texts. In Proceedings of the Sixth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 89–98, Ann Arbor, Michigan. Association for Computational Linguistics.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister Lindén. 2019b. Discriminating between Mandarin Chinese and Swiss-German varieties using adaptive language models. In Proceedings of the Sixth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 178–187, Ann Arbor, Michigan. Association for Computational Linguistics.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister Lindén. 2021. Naïve Bayes-based experiments in Romanian dialect identification. In Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 76–83, Kyiv, Ukraine. Association for Computational Linguistics.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister Lindén. 2022. HeLI-OTS, off-the-shelf language identifier for text. In Proceedings of the 13th Conference on Language Resources and Evaluation, pages 3912–3922, Marseille, France. European Language Resources Association.

Tommi Jauhiainen, Heidi Jauhiainen, Niko Partanen, and Krister Lindén. 2020b. Uralic language identification (ULI) 2020 shared task dataset and the wanca 2017 corpora. In Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects, pages 173–185, Barcelona, Spain (Online). International Committee on Computational Linguistics (ICCL).

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhiainen. 2015. Language Set Identification in Noisy Synthetic Multilingual Documents. In Proceedings of the Computational Linguistics and Intelligent Text Processing 16th International Conference (CICLing 2015), pages 633–643, Cairo, Egypt.

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhiainen. 2016. HeLI, a word-based backoff method for language identification. In Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3), pages 153–162, Osaka, Japan. The COLING 2016 Organizing Committee.

Ben King and Steven Abney. 2013. Labeling the Languages of Words in Mixed-Language Documents using Weakly Supervised Methods. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1110–1119, Atlanta, USA.

Benjamin Philip King. 2015. Practical Natural Language Processing for Low-Resource Languages. Ph.D. thesis.

Martin Majliš. 2011. Large Multilingual Corpus. Master’s thesis, Charles University in Prague, Prague.

Tommi Jauhiainen, Marco Lui, Marcos Zampieri, Timothy Baldwin, and Krister Lindén. 2019a. Discriminating between similar languages and Arabic dialect identification: A report on the third DSL shared task. In Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3), pages 1–14, Osaka, Japan. The COLING 2016 Organizing Committee.

Paul Rodrigues. 2012. Processing Highly Variant Language Using Incremental Model Selection. Ph.D. thesis, Indiana University.

Marcos Zampieri, Shervin Malmasi, Nikola Ljubešić, Preslav Nakov, Ahmed Ali, and Jörg Tiedemann. 2017. Findings of the VarDial evaluation campaign 2017. In proceedings...
of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial), pages 1–15, Valencia, Spain. Association for Computational Linguistics.

Marcos Zampieri, Liling Tan, Nikola Ljubešić, and Jörg Tiedemann. 2014. A report on the DSL shared task 2014. In Proceedings of the First Workshop on Applying NLP Tools to Similar Languages, Varieties and Dialects, pages 58–67, Dublin, Ireland. Association for Computational Linguistics and Dublin City University.

Marcos Zampieri, Liling Tan, Nikola Ljubešić, Jörg Tiedemann, and Preslav Nakov. 2015. Overview of the DSL shared task 2015. In Proceedings of the Joint Workshop on Language Technology for Closely Related Languages, Varieties and Dialects, pages 1–9, Hissar, Bulgaria. Association for Computational Linguistics.