SUPPLEMENTARY MATERIAL

Two benzaldehyde derivatives and their artifacts from a gorgonian-derived
Eurotium sp. fungus

Min Chena,b, Qing Zhaob,c, Jun-Di Haob,c, and Chang-Yun Wangb,c,*

a Marine Science & Technology Institute, College of Environmental Science &
Engineering, Yangzhou University, 196#, Huayang West Street, Yangzhou 225127,
People’s Republic of China
b Key Laboratory of Marine Drugs, the Ministry of Education of China, School of
Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s
Republic of China
c Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266071, People’s Republic of China

Correspondence:
Prof. Dr. Chang-Yun Wang
Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and
Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003 Shandong, P.
R. China
Tel: +86/532/82031536
Fax: +86/532/82031536
E-mail: changyun@ouc.edu.cn
Abstract:
Two new benzaldehyde derivatives, named 3’-OH-tetrahydroaurolaucin (1) and (3’S*, 4’R*)-6-(3’,5-epoxy-4’-hydroxy-1’-heptenyl)-2-hydroxy-3-(3”-methyl-2”-butenyl)benzaldehyde (2), were isolated from a gorgonian-derived Eurotium sp. fungus. Their structures were determined by extensive spectroscopic analysis including NMR and MS spectra. Dissolved 1 in CDCl₃ for several days could be detected its 2H-chromene skeleton derivatives (1a/1b), a pair of enantiomers with opposite configurations at C-3’. Compound 2 was also found to chemically convert to a pair of epimers non-enzymatically. The plausible mechanism to form the 2H-chromene artifacts with racemization at C-3’ undergoing nucleophilic substitution (SN1) was proposed.

Keywords: gorgonian-derived fungus; Eurotium sp.; benzaldehyde derivative; 2H-chromene; racemization
Table S1. 1H and 13C NMR Spectroscopic Data for 1 and 2 at 600 (1H) and 150 (13C) MHz

Figure S1. Selected 1H, 1H-COSY (bold line) and HMBC (arrow) correlations of 1

Figure S2. 1H NMR (600 MHz, CDCl$_3$) spectrum of compound 1

Figure S3. Partial 1H NMR (600 MHz, CDCl$_3$) spectrum of compound 1

Figure S4. 13C NMR (150 MHz, CDCl$_3$) spectrum of compound 1

Figure S5. HMQC (CDCl$_3$) spectrum of compound 1

Figure S6. 1H–1H COSY (CDCl$_3$) spectrum of compound 1

Figure S7. HMBC (CDCl$_3$) spectrum of compound 1

Figure S8. HRESIMS spectrum of compound 1

Figure S9. 1H NMR (600 MHz, CDCl$_3$) spectrum of compounds 1a/1b

Figure S10. Partial 1H NMR (600 MHz, CDCl$_3$) spectrum of compounds 1a/1b

Figure S11. HRESIMS spectrum of compounds 1a/1b

Figure S12. 1H NMR (600 MHz, CDCl$_3$) spectrum of compound 2

Figure S13. Partial 1H NMR (600 MHz, CDCl$_3$) spectrum of compound 2

Figure S14. 13C NMR (150 MHz, CDCl$_3$) spectrum of compound 2

Figure S15. 1H NMR (600 MHz, CDCl$_3$) spectrum of compounds 2/2a

Figure S16. HRESIMS spectrum of compounds 2/2a.
Table S1. 1H and 13C NMR Spectroscopic Data for 1 and 2 at 600 (1H) and 150 (13C) MHz

position	δ_c, type	δ_H, mult. (J in Hz)	δ_c, type	δ_H, mult. (J in Hz)
1	105.3, C		106.5, C	
2	154.4, C		159.2, C	
3	129.9, C		138.3, C	
4	124.6, CH	7.01, s	124.9, CH	6.95, s
5	144.9, C		146.8, C	
6	122.4, C		119.7, C	
7	195.1, CH	10.08, s	192.9, CH	10.29, s
1'	117.0, CH	6.76, d (16.2)	118.9, CH	7.06, dd (10.2, 1.8)
2'	128.2, CH	5.99, dd (16.2, 5.4)	123.8, CH	5.96, dd (10.2, 3.0)
3'	71.7, CH	4.39, dd (6.0, 5.4)	77.3, CH	4.73, dd (3.6, 3.0)
4'	26.8, CH$_2$	1.66, m	72.3, CH	3.93, ddd (7.8, 4.2, 3.6)
5'	36.3, CH$_2$	1.38, m	33.3, CH$_2$	1.59, m
6'	21.7, CH$_2$	1.38, m	18.3, CH$_2$	1.41, m
7'	13.2, CH$_3$	0.93, t (6.6)	13.3, CH$_3$	0.97, t (6.6)
1''	26.4, CH$_2$	3.32, d (7.2)	26.6, CH$_2$	3.30, d (7.2)
2''	120.6, CH	5.28, brt (7.2)	120.1, CH	5.27, brt (7.2)
3''	133.2, C		134.8, C	
4''	25.0, CH$_3$	1.75, s	25.1, CH$_3$	1.76, s
5''	16.9, CH$_3$	1.69, s	17.1, CH$_3$	1.69, s
2-OH	11.76, s		11.77, s	
5-OH	5.55, brs			
Figure S1. Selected 1H, 1H-COSY (bold line) and HMBC (arrow) correlations of 1
Figure S2. 1H NMR (600 MHz, CDCl$_3$) spectrum of compound 1

Figure S3. Partial 1H NMR (600 MHz, CDCl$_3$) spectrum of compound 1
Figure S4. 13C NMR (150 MHz, CDCl$_3$) spectrum of compound 1

Figure S5. HMQC (CDCl$_3$) spectrum of compound 1
Figure S6. 1H–1H COSY (CDCl$_3$) spectrum of compound 1

Figure S7. HMBC (CDCl$_3$) spectrum of compound 1
Figure S8. HRESIMS spectrum of compound 1

Figure S9. 1H NMR (600 MHz, CDCl$_3$) spectrum of compounds 1a/1b
Figure S10. Partial 1H NMR (600 MHz, CDCl$_3$) spectrum of compounds 1a/1b

Figure S11. HRESIMS spectrum of compounds 1a/1b
Figure S12. 1H NMR (600 MHz, CDCl$_3$) spectrum of compound 2

Figure S13. Partial 1H NMR (600 MHz, CDCl$_3$) spectrum of compound 2
Figure S14. 13C NMR (150 MHz, CDCl$_3$) spectrum of compound 2

Figure S15. 1H NMR (600 MHz, CDCl$_3$) spectrum of compounds 2/2a
Figure S16. HRESIMS spectrum of compounds 2/2a