Vladimirova, Anna, Patskovsky, Yury, Fedorov, Alexander A., Bonanno, Jeffrey B., Fedorov, Elena V., Toro, Rafael, Hillerich, Brandon, Seidel, Ronald D., Richards, Nigel G. J. ORCID: https://orcid.org/0000-0002-0375-0881, Almo, Steven C. and Rauschel, Frank M. 2016. Substrate distortion and the catalytic reaction mechanism of 5-carboxyvanillate decarboxylase. Journal of the American Chemical Society 138 (3), pp. 826-836. 10.1021/jacs.5b08251

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Substrate Distortion and the Catalytic Reaction Mechanism of 5-Carboxyvanillate Decarboxylase

Anna Vladimirova,† Yury Patskovsky,‡ Alexander A. Fedorov,‡ Jeffrey B. Bonanno,‡ Elena V. Fedorov,‡ Rafael Toro,‡ Brandan Hillerich,‡ Ronald D. Seidel,§ Nigel G. J. Richards,§ Steven C. Almo,*‡† and Frank M. Raushel‡*‡†

†Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
‡Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
§Department of Chemistry and Chemical Biology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States

Supporting Information

ABSTRACT: 5-Carboxyvanillate decarboxylase (LigW) catalyzes the conversion of 5-carboxyvanillate to vanillate in the biochemical pathway for the degradation of lignin. This enzyme was shown to require Mn2+ for catalytic activity and the kinetic constants for the decarboxylation of 5-carboxyvanillate by the enzymes from Sphingomonas paucimobilis SYK-6 ($k_{cat} = 2.2 \text{ s}^{-1}$ and $k_{cat}/K_m = 4.0 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$) and Novosphingobium aromaticivorans ($k_{cat} = 27 \text{ s}^{-1}$ and $k_{cat}/K_m = 1.1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$) were determined. The three-dimensional structures of both enzymes were determined in the presence and absence of ligands bound in the active site. The structure of LigW from N. aromaticivorans, bound with the substrate analogue, 5-nitrovanillate ($K_d = 5.0 \text{ nM}$), was determined to a resolution of 1.07 Å. The structure of this complex shows a remarkable enzyme-induced distortion of the nitro-substituent out of the plane of the phenyl ring by approximately 23°. A chemical reaction mechanism for the decarboxylation of 5-carboxyvanillate by LigW was proposed on the basis of the high resolution X-ray structures determined in the presence ligands bound in the active site, mutation of active site residues, and the magnitude of the product isotope effect determined in a mixture of H2O and D2O. In the proposed reaction mechanism the enzyme facilitates the transfer of a proton to CS of the substrate prior to the decarboxylation step.

INTRODUCTION

Microbial lignin degradation is of particular commercial and biotechnological interest, due to the ready availability of plant biomass for the production of renewable aromatic chemicals and biofuels.1 Lignocellulose is the primary structural material of terrestrial plant cell walls and is composed of the biopolymers cellulose, lignin, and hemicellulose.2 Lignin is an essential aromatic heteropolymer of phenylpropanoids produced by the oxidative polymerization of monolignols.3 The degradation of lignin is initiated by various oxidoreductases secreted by white rot fungi and further metabolized by specialized bacterial enzymes that are of importance for the terrestrial life cycle. However, the catalytic reaction mechanisms and three-dimensional structures for most of these enzymes remain to be elucidated, and there is a significant need for understanding and deciphering the microbial catabolic pathways that process oxidized lignin fragments.4

5-Carboxyvanillate decarboxylase (LigW) is a member of the amidohydrolase superfamily (AHS) and this enzyme catalyzes the nonoxidative C–C bond cleavage of 5-carboxyvanillate (5-CV) to vanillate (VAN) as illustrated in Scheme 1a. The vast majority of the experimentally characterized enzymes from the AHS catalyze the hydrolytic cleavage of ester and amide bonds at carboxylate or phosphate centers contained within amino acids, sugars, and nucleic acids.5–7 However, LigW is associated with proteins from cog2159 and these enzymes catalyze decarboxylation and hydration reactions. Therefore, it is of considerable biochemical interest to understand how the active site of a superfamily of enzymes, that predominantly functions to catalyze the hydrolysis of phosphate and carboxylate esters, has evolved to catalyze the decarboxylation of substituted benzoic acids.

LigW may catalyze the decarboxylation of 5-CV using a variety of potential reaction mechanisms and examples of these transformations are illustrated in Scheme 2. The formation of vanillate requires the cleavage of the carbon-carboxylate bond at CS of 5-CV and formation of a new carbon–hydrogen bond. The primary issues are whether C–H bond formation precedes or follows the cleavage of the carbon-carboxylate bond, and...
Scheme 1

Scheme 2

whether the initial reaction product is CO$_3^-$ or HCO$_3^-$.

In mechanism a, the reaction is initiated by the addition of water to the substrate. The hydrated intermediate subsequently collapses via cleavage of the carbon-carboxylate bond at C5 and the newly formed carbon-hydroxyl bond at C4 to generate the product VAN. In mechanism b, the C5-carboxylate bond is broken to form CO$_2$ and an unstable carbanion intermediate at C5 that is subsequently protonated by an active site acid. Alternatively, the lone pair of electrons from the ionized hydroxyl group at C4 can delocalize to the C5 carbon and be protonated. Decarboxylation of this intermediate leads directly to VAN (mechanism c). For each of these mechanisms alternative transformations can be envisioned by postulating the initial attack of water or an active site base on the C5-carboxylate group to ultimately result in the direct formation of bicarbonate rather than CO$_2$ as the initial product. Here we propose a chemical reaction mechanism for the decarboxylation of 5-carboxyvanilllate by LigW based on multiple high-resolution three-dimensional X-ray structures and the catalytic properties of this enzyme determined using heavy atom isotope effects and mutation of active site residues.

RESULTS

Catalytic and Molecular Properties of LigW. LigW from *Spingomonas paucimobilis* and *Novosphingobium aromaticivorans* was purified to homogeneity. The molecular mass of LigW from *S. paucimobilis* was determined to be ~1090 kDa by size exclusion chromatography, indicating that the enzyme (monomer = 38 kDa) associates in solution as a 32-mer. When the gene for this enzyme was expressed in the presence of 1.0 mM MnCl$_2$, the purified enzyme contained 0.5 eq of Mn$^{2+}$ per monomer. Dialysis of the Mn$^{2+}$-substituted LigW against a solution containing 1.0 mM MnCl$_2$ yielded protein with an average of 1.0 eq of Mn$^{2+}$ per subunit. Decarboxylation of 5-carboxyvanilllate (MCB, Scheme 1b) by LigW was less than 1.0×10^{-3} s$^{-1}$. The kinetic constants for the decarboxylation of 5-CV by LigW from *S. paucimobilis* were determined as a function of pH (Figure S1). For k_{cat}, the pH-rate profile is bell-shaped with pK_a and pK_b values of 4.3 ± 0.1 and 8.3 ± 0.1, respectively. Similarly, for the k_{cat}/K_m profile the values of pK_a and pK_b are 4.7 ± 0.2 and 7.6 ± 0.1, respectively.

The gene for LigW from *N. aromaticivorans* was chemically synthesized and expressed in *E. coli*. The molecular mass of the purified enzyme determined by gel-filtration was ~166 kDa. Since the molecular mass of an individual subunit of LigW from this organism is 40 kDa, this result is consistent with the formation of a tetramer. All catalytic activity was abolished after incubation of LigW from this organism with o-phenanthroline, thus confirming that this enzyme is also metal-dependent. The kinetic constants for decarboxylation of 5-CV catalyzed by LigW were measured at pH 7.1 in the presence of 1.0 mM of MnCl$_2$ and are provided in Table S1.

Inhibition of Catalytic Activity. VAN, MCB, and 5-nitrovanilllate (5-NV) were tested as inhibitors of the reaction catalyzed by LigW from *S. paucimobilis*. The nitro-analogue of the substrate (Scheme 1b) is a very potent inhibitor of LigW with an apparent inhibition constant, $K_{i,app}$, of 17 ± 7 nM (Figure S2). The product vanilllate and the analogue of the substrate that lacks the hydroxyl substituent at C4 (MCB) are much poorer inhibitors with apparent K_i values of 157 ± 11 μM and 960 ± 92 μM, respectively. The dissociation constants for the LigW-inhibitor complexes, after correcting for the concentration of substrate used in the inhibition experiments, are 64 ± 6 μM, 390 ± 60 μM, and 1.4 ± 0.6 nM for VAN, MCB, and 5-NV, respectively. 5-NV is also a potent inhibitor of the reaction catalyzed by LigW from *N. aromaticivorans* with a $K_{i,app}$ of 17 ± 4 nM and a dissociation constant of 5.0 ± 1.0 nM. The reversibility of the complex formed between LigW from *S. paucimobilis* and 5-NV was determined by mixing 88 μM 5-NV and 77 μM LigW at pH 7.0. In the absence of LigW, the solution of 5-NV is yellow with an absorbance maximum at 430 nm and an extinction coefficient of 4100 M$^{-1}$ cm$^{-1}$. In the presence of LigW, the absorbance maximum increases to 470 nm and the extinction coefficient changes to 5210 M$^{-1}$ cm$^{-1}$. If the LigW/5-NV complex is heated to 80 °C for 15 min to denature the protein, the visible absorbance spectrum of the

DOI: 10.1021/jacs.0b08251

J. Am. Chem. Soc. 2016, 138, 826–836
Solvent Isotope Effects. The solvent isotope effects for the reaction catalyzed by LigW were determined at pH(D) 7.0 by direct comparison of the initial rates in H₂O and D₂O. The measured solvent isotope effects on k_{cat} and k_{cat}/K_{m} at pH(D) 7.0 are 2.9 and 2.0, respectively. The product isotope effect (PIE) was determined by measuring the ratio of deuterium to hydrogen at C5, relative to the nonexchangeable hydrogens at C2 and C6. From these measurements the PIE for the decarboxylation of 5-carboxyvanillate is 4.6.

Deuterium Exchange Experiments. The enzyme-catalyzed exchange of deuterium from solvent with the hydrogen at C5 of the product vanillate was determined by ¹H NMR spectroscopy (Scheme 1c). The initial reaction mixture contained 2.0 mM vanillate and 65 μM LigW in D₂O at pH 9.0. The solvent exchange reaction at C5 of vanillate resulted in the diminution of the NMR signal for the C5 hydrogen at 6.78 ppm and a loss of coupling to the C6 hydrogen at 7.33 ppm (Figure 1). The observed first-order rate constant (k_{obs}) for the solvent exchange reaction at pD 9.0 is 2.0 ± 0.1 × 10⁻⁴ s⁻¹. The rate constant for the reaction exchange (k_{eq}), corrected for the concentration of enzyme and product used in this experiment, is 7.9 × 10⁻³ s⁻¹. No exchange (<10%) was catalyzed by LigW with 3-methoxybenzoate after an incubation period of 7 days. No exchange (<10%) was observed for control experiments with vanillate at pH 9.0 in the absence of LigW after an incubation period of 7 days.

Three-Dimensional Structure of LigW from S. paucimobilis. The crystal structure of LigW with Mn²⁺ was determined to a resolution of 1.83 Å (PDB id: 4ICM). Each protein subunit consists of a central distorted (β/α)₁₀-barrel domain, where the active site and divalent cation are localized at the C-terminal end of the β-barrel. An insertion domain is observed in this structure consisting of three helices α₁, α₂', and α₃' (residues 23–70) between β-strand 1 and α-helix 1. Additional helices are found before and after α-helix 5 (α₄' and α₅') and after α-helices 6 (α₆') and 8 (α₇'). Two 3₁₀ helices, η₁' and η₂', appear after β-strand 6 and α-helix 7, respectively (Figure S3). A single divalent cation is bound in the active site of LigW. The residues important for binding Mn²⁺ include Glu-7, His-173, Tyr-197, Glu-229, and Asp-296 from β-strand 8. In addition to these residues, there are three bound water molecules that complete an octahedral coordination geometry. Asp-296 from β-strand 8 also forms a hydrogen-bonded network with His-226 and Glu-229. The structure of the metal binding site in LigW from S. paucimobilis is illustrated in Figure 2a.

Structures of LigW Inhibitor Complexes from S. paucimobilis. Crystal structures of LigW complexed with 5-NV (PDB id: 4NG3), MCB (PDB id: 4N18), and VAN (PDB id: 4L6D) were obtained at resolutions of 1.75, 1.64, and 1.45 Å, respectively. In the structure of LigW with 5-NV, two of the metal-bound waters (Wat-1 and Wat-2 of Figure 2a) are displaced by one of the oxygens from the nitro group at C5 and the hydroxyl group at C4, respectively. The octahedral geometry of the metal complex is retained (Figure 2b). The nitro-substituent further interacts with Arg-237 from the adjacent subunit. The carboxylate at C1 interacts electrostatically with Arg-45, and the methoxy group at C3 hydrogen bonds with the side chain hydroxyl from Thr-76. The phenyl group of the inhibitor is α-stacked with the side chain of Tyr-299 at a distance of 3.7 Å. The structure of LigW complexed with MCB is identical to that of the complex with 5-NV except that the missing hydroxyl group from the inhibitor MCB is replaced by a water molecule that is coordinated to the divalent cation (Figure 2c). The rest of the molecular interactions with MCB are the same as found with 5-NV and VAN (Figure 2d).

Mutation of Active Site Residues. Ten residues localized in the active site of LigW from S. paucimobilis (Glu-7, Ala-9, Arg-45, His-173, Tyr-197, His-226, Glu-229, Arg-237, Asp-296, Tyr-299) were mutated and the purified proteins tested for changes in catalytic activity. Modification of any of the three residues that bind the divalent cation in the active site (Glu-7, His-173, or Asp-296) diminished the value of k_{cat}/K_{m} by at least three-orders of magnitude. His-226 and Glu-229 form an apparent hydrogen bonded network to the invariant aspartate (Asp-296) at the end of β-strand 8. Mutation of these residues to asparagine and glutamine, respectively, lowers the values of k_{cat} and k_{cat}/K_{m} by ~3 orders of magnitude. The mutation of Ala-9 to histidine resulted in a relatively modest reduction in the catalytic activity of LigW. In most members of the AHS, this residue position is occupied by a histidine residue, which coordinates the active site metal ion. In the structure of LigW, Wat-3 is ligated to the metal ion at this location. Mutation of the tyrosine residues (Tyr-197 and Tyr-299) that interact with the phenyl ring of the substrate diminished the activity of LigW significantly. The two arginine residues (Arg-237 and Arg-45) that ion-pair with the two carboxylate groups of the substrate cannot be mutated to alanine without significant loss of catalytic activity. The kinetic constants for the decarboxylation of 5-CV by the LigW mutants are presented in Table S1.
The active site architecture of LigW from S. paucimobilis in the presence of VAN, MCB, and 5-NV. (a) In the absence of added ligands, the manganese in the active site is coordinated to Glu-7, His-173, Asp-296 and three water molecules. (b) Active site structure of LigW in the presence of 5-NV. The inhibitor is presented with gray-colored bonds. (c) Active site structure of LigW in the presence of the MCB (presented in gray-colored bonds). (d) Active site structure of LigW in the presence of the hydrolysis product, vanillate as shown in gray-colored bonds. In all panels manganese is shown as a purple-colored sphere. The arginine residue (Arg-237) from the adjacent subunit is colored green. The coordinate and hydrogen bonds are shown as black dotted lines with distances in Ångstroms.

Molecular Structure of LigW from N. aromaticivorans. The three-dimensional structure of wild-type LigW from N. aromaticivorans was determined in the presence and absence of 5-NV to resolutions of 1.07 and 1.47 Å, respectively (PDB ids: 4QRN and 4QTG). The minimal functional unit is a homodimer (Figure S5a), where each monomeric subunit folds as a distorted (β/α)8-barrel with an insertion domain of three helices between β-strand 1 and α-helix 1, which is important for substrate binding and specificity (Figure S5b). The active site is located at the dimer interface with an α helix of the opposite chain closing one side of the entrance to the active site. In the structure of LigW with 5-NV, two metal-bound water molecules are displaced from the active site by the ligand (Figure 3a). Manganese coordinates 5-NV in a bidentate fashion via direct interactions with the hydroxyl group at C4 and the nitro-substituent at C5. The nitro group is also hydrogen-bonded to the side chains of His-241 from one subunit and Arg-252 from the adjacent subunit (Figure 3a). The carboxylate group at C1 of 5-NV maintains strong polar contacts with the side chains of Tyr-51 (helix 2) and Arg-58 (helix 3). The phenyl ring of the ligand is sandwiched between Phe-212 (helix 10) and Tyr-317. The orientation of Tyr-317 is, in part, determined by a hydrogen bond between its phenolic group and the hydroxyl group of Thr-90. The overall structure of LigW appears relatively rigid. The arrangement of residues in and around the metal-binding site remains essentially the same in the presence and absence of 5-NV, except for the side chain of Asp-314 that adopts two alternate conformations when 5-NV is bound (Figure 3a and 3b). It is noteworthy that one of the two conformations of Asp-314 places the side chain carboxylate group 3.1 Å away from C5 of the ligand (Figure 3b), whereas an alternate conformation maintains the hydrogen bond between the same carboxyl oxygen and His-241 (2.9 Å, Figure 3b).

In the process of structure refinement, we observed that the geometry of 5-NV deviates significantly from the theoretically expected planar conformation. The nitro substituent of 5-NV is tilted out of a distorted aromatic ring plane (Figure 3c). The overall shape of the ligand reflects the shape of the binding pocket (Figure 3c). Since 5-NV and the substrate 5-CV have similar geometries, the overall distortion of the substrate is also likely to occur upon binding to the enzyme.

Geometric Distortion of 5-NV Upon Binding to LigW from N. aromaticivorans. A comparison of the structures for free and enzyme-bound 5-NV confirmed that geometric distortions of 5-NV occur only upon binding to LigW. The high resolution structure of free 5-NV is planar, with the hydroxyl and nitro substituents being in the same plane with the phenyl ring (Figure S6). By contrast, the planarity of 5-NV in the complex with LigW is distorted (Figure 4). The hydroxyl group and the C3, C4 and C5 carbons from the phenyl group all belong to one planar group (plane 1) that is tilted off the “main” ring plane 2 (C1, C2, C6, plus the carbonyl carbon) by approximately 13°. C5 and the nitro group make up another planar group (plane 3) that is about 23° off of ring plane 2.

Structure of the LigW D314N Mutant from N. aromaticivorans. The mutation of Asp-314 to asparagine causes more than a 1000-fold reduction in the value of kcat relative to the wild-type enzyme (Table S1). Two structures of this mutant were determined; one with Mn2+ and 5-NV in the active site at a resolution of 1.80 Å (PDB id: 4Q5S) and one with only 5-NV at a resolution of 1.76 Å (PDB id: 4QS6). The overall conformation of LigW is unaffected by the D314N mutation as the RMSD values between atomic coordinates of individual subunits of the structures did not exceed 0.3 Å. Moreover, the distorted conformation of 5-NV in the active site looks very similar in these structures. In the structure of D314N without a metal ion in the active site, a loosely coordinated water molecule replaces the manganese. The inhibitor 5-NV, however, is present in the active site and it adopts a similar distorted conformation as described for the other structures of LigW from N. aromaticivorans (Figure S7).
DISCUSSION

The decarboxylation of 5-carboxyvanillate catalyzed by LigW requires the cleavage of the carbon-carboxylate bond at C5 of the substrate and protonation of the aromatic ring. Potential reaction mechanisms for this transformation are illustrated in Scheme 2. These mechanisms differ with respect to whether C–H bond formation precedes or follows C–C bond cleavage, and whether a water molecule is activated for nucleophilic attack with the substrate. Our results are most consistent with a reaction mechanism that requires the initial protonation of C5 of the substrate, which is facilitated by a remarkable out-of-plane bending or distortion of the substrate by the enzyme.

Three-dimensional structures of LigW were determined from S. paucimobilis and N. aromaticivorans in the presence and absence of ligands bound in the active site. In general, the LigW structures obtained from these two sources are quite similar to one another but the structure of LigW complexed with 5-NV from N. aromaticivorans was determined to a resolution of 1.07 Å and thus this structure will serve as the foundation for the subsequent discussion about the reaction mechanism and activation of the substrate. The structure of LigW, with the tight-binding inhibitor 5-NV in the active site, diminishes the likelihood that a metal-activated water molecule is involved in the decarboxylation of 5-CV (PDB id: 4QRN). When 5-NV binds to the active site of LigW, two of the three water molecules that are initially bound to the manganese in the active site are displaced. The remaining water molecule is 4.4 Å from C4 and 5.0 Å from the nitro-group of the inhibitor and is ill-positioned to attack either the aromatic ring or the C5-carboxylate group of the substrate. Therefore, mechanism a, as depicted in Scheme 2, is unlikely to be catalyzed by LigW. These considerations support a mechanism where protonation at C5 either precedes or follows the decarboxylation step (mechanisms b and c).

All of the X-ray structures of LigW support the proposal that the hydrogen at C5 of the product vanillate is donated from either Asp-314 (Asp-296 in LigW from S. paucimobilis) or the hydroxyl group at C4 of the substrate. In the structure of LigW with 5-NV there are two alternate conformations for the carboxylate side chain of Asp-314. In these two conformations, one of the two carboxylate oxygens from the side chain of Asp-314 is 3.1 Å from C5 of the inhibitor. The closest alternative entity that could function as the proton donor is the hydroxyl substituent at C4. Asp-314 is conserved in all of the enzymes that have been functionally characterized in the amidohydrolase superfamily, and in those enzymes that catalyze hydrolytic
reactions, this residue has been demonstrated to function as a general acid during protonation of the leaving group.\(^5\) Mutation of this residue to an asparagine results in the reduction of catalytic activity by more than 3 orders of magnitude and thus this residue is critical for the catalytic activity of LigW.

The most remarkable finding from the structure of LigW from \textit{N. aromaticivorans}, determined with 5-NV in the active site, is the significant out-of-plane distortion of the substituent attached to C5 of the bound ligand. Similar distortions are also observed in the structures of LigW from \textit{S. paucimobilis} determined with 5-NV, VAN, or MCB in the active site. The out-of-plane bending of the carboxylate substituent at C5 will facilitate the protonation of this carbon to the si-face of the substrate from either the adjacent hydroxyl group at C4 or Asp-314. The very tight binding of the nitro-analogue (5-NV) of the substrate to LigW ($K_i \approx 1.5$–5.0 nM) most likely reflects the resemblance of this compound to a reaction intermediate for the decarboxylation of S-CV. We therefore propose that the distorted out-of-plane bending observed for the nitro-substituent in 5-NV bound in the active site of LigW resembles the reaction intermediate (or the corresponding anion) depicted in Scheme 2c. This intermediate is formed by the delocalization of the electron pair from the ionized hydroxyl group at C4 to C5.

In reaction mechanisms b and c (Scheme 2), the proton that is ultimately found at C5 of the product vanillate is transferred either after the carboxylate group has been cleaved or before. For the reaction catalyzed by LigW it is apparent that protonation of C5 prior to the decarboxylation step will require the delocalization of the electron pair from the neighboring phenolic oxygen at C4 (Scheme 2c). In LigW, the critical participation of the hydroxyl group at C4 for the decarboxylation reaction is experimentally supported by the fact that we were unable to demonstrate that the substrate analogue that is missing the hydroxyl group at C4 (MCB) can be decarboxylated by LigW at a measurable rate. In the mechanism depicted in Scheme 2b, however, the hydroxyl group at C4 does not facilitate the decarboxylation reaction in any obvious manner. The X-ray structure of LigW from \textit{S. paucimobilis}, determined in the presence of MCB (PDB id: 4NL8, Figure 2c), clearly demonstrates that the substrate analogue that is missing the hydroxyl group at C4 can bind to the active site of LigW in a manner that is nearly identical to that of the tight binding inhibitor 5-NV (Figure 2b) and the product vanillate (Figure 2d). Therefore, MCB is not a substrate because it is unable to bind to the active site of LigW.

We have also demonstrated that LigW can catalyze the exchange of the proton at C5 of the product vanillate with a rate constant of 7.9×10^{-3} s\(^{-1}\) at pH 9.0. We were unable to observe any exchange with solvent over an incubation time of 7 days using 3-methoxybenzoate as a probe substrate with LigW. This observation further supports the proposal that the proton exchange reaction requires the participation of the hydroxyl group at C4 via the delocalization of the lone pair of electrons from the phenolate anion to C5.

The results from the product isotope effect (PIE) experiment conducted in an equal mixture of H\(_2\)O and D\(_2\)O also support the mechanism depicted in Scheme 2c. The PIE experiment provides a direct measurement of the partitioning of the anionic intermediate at C5 toward product formation.\(^7\) For the highly unstable anionic intermediate depicted in Scheme 2b, irreversible protonation is the only possible outcome after the loss of CO\(_2\). Protonation of the anionic intermediate by Asp-314 will be more rapid than proton exchange with bulk solvent. Therefore, the PIE for the mechanism depicted in Scheme 2b is expected to be close to unity because there would effectively be no discrimination between the transfer of a proton and a deuteron to the highly unstable anionic intermediate. In contrast, the mechanism depicted in Scheme 2c can lead to a substantial PIE. In this mechanism, protonation of C5 occurs prior to the irreversible decarboxylation step. Therefore, the inherent kinetic discrimination between protonation and deuteration of the anionic intermediate at C5 in Scheme 2c will be fixed in the product vanillate after the subsequent irreversible decarboxylation step. The PIE of 4.6 for LigW therefore supports a mechanism where protonation at C5 occurs prior to the decarboxylation step.

The proposed mechanism of action for the decarboxylation of 5-carboxyvanillate by LigW is presented in Scheme 3. In this mechanism the binding of substrate to the active site of LigW results in the displacement of two water molecules from the mononuclear metal center in the active site of the enzyme. The hydroxyl group at C4 and the carboxylate group at C5 are directly coordinated to the divalent cation. The formation of this complex is fully supported by the X-ray structures of complexes of LigW crystallized in the presence of 5-NV, VAN, and MCB. The binding of the substrate in the active site is accompanied by an out-of-plane bending of the substituent at C5 of the substrate and a reduction in the pK_a for the ionization of the hydroxyl group at C4. The proton from the hydroxyl group is subsequently transferred to the side chain carboxylate from Asp-314 or directly to C5 after delocalization of the lone pair of electrons from the ionized hydroxyl group to C5. Decarboxylation follows the protonation of C5 but it is uncertain whether or not the phenolate substituent is protonated before, or after, the product leaves the active site. Similar reaction mechanisms can be proposed for the other known decarboxylases from \textit{cog2159}, including γ-resorcylic decarboxylase,\(^10\) isorotate decarboxylase,\(^12\) and aminocarboxymuconate semialdehyde decarboxylase.\(^11\)

The reaction catalyzed by orotidine 5'-monophosphate decarboxylase (OMPDC) is superficially similar to that of LigW. However, OMPDC does not utilize a metal ion in the active site and the structure of orotidine precludes the protonation of the substrate prior to the decarboxylation step. In the decarboxylation reaction catalyzed by OMPDC, the product isotope effect was determined to be 1.0 and the reaction mechanism has been proposed to occur via formation of an unstable vinyl carbonyl intermediate where carbon–carbon bond cleavage precedes carbon–hydrogen bond formation.\(^7\) OMPDC can also catalyze the exchange of the proton at C6 of the product UMP.\(^7\) Recent high-resolution structures of OMPDC determined in the presence of substrate
analogs have shown that this enzyme may facilitate the decarboxylation of orotidine 5′-phosphate by distortion of the carbonylate group attached to C6 of the substrate.9

In this paper we have not addressed whether the initial reaction product of the LigW catalyzed reaction is either CO2 or HCO−. Kluger has argued for the preferential cleavage of bicarbonate over carbon dioxide, in some cases, based upon the high reactivity of CO2 and the probability of internal return back to substrate, relative to product dissociation.10 In the structure of LigW from *N. aromaticivorans* there is a single water molecule that is positioned to potentially attack the C5 carbonylate of the substrate (Figure 3b). This water molecule is 3.8 Å from the carbonylate carbon and positioned at an angle of ~44° above the plane of the carbonylate. It is also in hydrogen bonding distance to the side chain of Asp-314. Recently, Xu et al. have proposed that the reaction mechanism catalyzed by isoorotate decarboxylase (a structurally related decarboxylase from the amidohydrolase superfamily) is initiated by either the attack of a water molecule on the carbonylate group that is to be cleaved or by the side chain of the aspartate that is structurally equivalent to Asp-314 in LigW.11 However, the mechanisms proposed by Xu et al. are deficient since they do not address how C5 of the product uracil is ultimately protonated. With LigW, experiments are in progress to directly measure the rate of formation of CO2 by membrane inlet mass spectrometry.12

Most of the residues contained within the active site of LigW are critical for catalytic activity of the enzyme. Mutation of either of the two arginine residues that ion-pair with the carbonylates at C1 and C5 diminishes the value of *k*cat/*K*_m significantly by approximately 3 orders of magnitude. Mutation of the tyrosine that is π-stacked against the aromatic ring of the substrate results in the loss of activity of nearly 4 orders of magnitude. Mutation of the putative proton transfer residue, Asp-314 (Asp-296 in LigW from *S. paucimobilis*), diminishes the catalytic activity by more than 3 orders of magnitude. The X-ray structure of LigW has revealed a hydrogen-bonded network from Asp-314 to His-242 and Glu-245 (His-226 and Glu-229 in the *S. paucimobilis* LigW). These two residues are also conserved in other decarboxylases from cog2159 and mutation of these residues diminishes the value of *k*cat/*K*_m significantly. The specific catalytic function of this hydrogen-bonded network is unclear, but these residues may be involved in the activation of the water molecule observed in Figure 3b. These residues may modulate the pK_a of Asp-314, function as a conduit for protons to and from the active site, or aid in maintaining the active site architecture. The pH-rate profiles of LigW are bell-shaped where one residue must be ionized for optimal catalytic activity and another residue protonated. The loss of activity at low pH likely reflects the protonation of Asp-314 and the ionization at high pH likely reflects the ionization of His-241, since this is the only other residue within the active site that can be protonated in this range of pH values.

Since the introduction of a transition-state theory to enzyme-catalyzed reactions, it has generally been acknowledged that intermediates and transition states bind more strongly to the enzyme than does the substrate.13 During catalysis, the Michaelis complex can undergo a series of conformational reorganizations that facilitate the transformation from substrate to product. These conformational transitions are challenging to observe due to the very short life times of the intermediates involved and the high resolution that is required to detect the frequently small changes in bond distances and dihedral angles.14,15 However, lysozyme16 and other glycoside hydro-

MATERIALS AND METHODS

Materials. 5-nitrovanillate (5-NV) was synthesized according to published procedures.17 Pfu Turbo DNA polymerase and the *Escherichia coli* strains BL21(DE3) and XL1-blue cells were obtained from Stratagene. The restriction enzyme DpnI was purchased from New England Biolabs and oligonucleotides were obtained from Integrated Data Technology through the Gene Technology Laboratory at Texas A&M University. Kanamycin, isopropyl β-D-thiogalactopyranoside (IPTG), and LB broth were acquired from Research Products International Corp. Protamine sulfate, Wizard Plus SV Miniprep DNA purification system, and Vivasin centrifugal concentrating (10,000 MWCO) were obtained from MP Biomedicalss LLC, Promega, and Fisher Scientific, respectively.

Expression and Purification of LigW from *S. paucimobilis*. The recombinant plasmid SpCD00297569 (NYSGXRC clone ID: 9453b1Bct3p1) bearing the gene for LigW (gll1910430) from *S. paucimobilis* was obtained through the PSI Material Repository (<https://www.psmsr.org>). The NYSGXRC clone encoded codon-optimized LigW with an N-terminal Met-Ser-Leu insertion and a C-terminal Glu-Gly-His tag. The nucleotides coding for the His-tag were removed by Native HD and coded for the His-tag. The nucleotides coding for the His-tag were removed by site-directed mutagenesis techniques with the complementary primer pair 5′-CGCATCACCCTAATGACATCATCACCATCACCATACCATGC-3′ and 5′-CAGTGGTTAGG-GTGATGAGTATTAGTGGATGCGG-3′. The QuickChange reaction product was transformed into *E. coli* XL1-blue cells and the plasmid was isolated using the Wizard Plus SV Miniprep DNA purification system. After verifying the DNA sequence, the expression plasmid was transformed into *E. coli* BL21(DE3) cells by electroporation and then grown on LB-agar plates containing 50 μg/mL kanamycin for 14 h at 37 °C. A single colony was grown overnight in 7 mL of LB medium containing 100 μg/mL kanamycin at 37 °C. The culture was used to inoculate 1 L of the same medium, which was further allowed to incubate by agitation at 37 °C. The temperature was lowered to 25 °C after the optical density at 600 nm reached 0.6, at which point protein expression was induced with 0.5 mM IPTG in the presence of 1.0 mM MnCl2. The cells were harvested by centrifugation (12,000 rpm for 10 min) after 14 h of incubation. The cell pellet was resuspended in 20 mM HEPES at pH 7.3 and then lysed by sonication using 3 s pulses for 20 min at 0 °C in the presence of 0.2 mg/mL phenyl-methanesulfonyl fluoride (PMSF). The cellular debris was separated by centrifugation and the supernatant fluid treated with 10 mL 2% (w/v) protamine sulfate for 30 min to precipitate the nucleic acids. The protein was precipitated with 45% saturation of ammonium sulfate, resuspended in a minimal amount of 20 mM HEPES (pH 7.3), filtered with a 0.2 μm cellulose acetate syringe filter, and loaded onto a Hilo 26/60 Superdex 200 prep grade gel filtration column (Amersham Biosciences). The purity of the protein was confirmed by SDS-PAGE. The fractions were pooled and concentrated to 17 mg/mL using a Vivasin centrifugal concentrating (10,000 MWCO) at 4500 rpm.

Crystallization of LigW from *S. paucimobilis*. Crystals of LigW from *S. paucimobilis* liganded with Mn2+ were grown using the sitting drop method at room temperature. The protein solution contained enzyme (17 mg/mL) in 20 mM HEPES (pH 7.3), and 1.0 mM...
MnCl$_2$: the precipitant contained 20% PEG 10000, 0.10 M HEPES (pH 7.5), and 1.0 mM MnCl$_2$. Crystals appeared in 3 days and exhibited diffraction consistent with the space group P1, with eight subunits per asymmetric unit. The crystals of LigW liganded with Mn$^{2+}$ and vanillic acid were grown by the sitting drop method at room temperature. The protein solution contained enzyme (17 mg/ml) in 20 mM HEPES (pH 7.3), 1.0 mM MnCl$_2$, and 160 mM vanillic acid. The precipitant contained 20% PEG 10000, 0.10 M HEPES (pH 7.5), and 1.0 mM MnCl$_2$. Crystals appeared in 1 week and exhibited diffraction consistent with the space group P1, with eight polypeptides per asymmetric unit. The crystals of LigW liganded with Mn$^{2+}$ and 5-nitrovanillate were grown by the sitting drop method at room temperature. The protein solution contained enzyme (17 mg/ml) in 20 mM HEPES (pH 7.5), 1.0 mM MnCl$_2$, and 2.0 mM HMN. The precipitant contained 20% PEG 10000, 0.1 M HEPES (pH 7.5), and 1.0 mM MnCl$_2$. Crystals appeared in 3 days and exhibited diffraction consistent with the space group P1, with eight polypeptides per asymmetric unit. The crystals of LigW liganded with Mn$^{2+}$ and 3-methoxy-5-carboxybenzoate were grown by the sitting drop method at room temperature. The protein solution contained enzyme (17 mg/ml) in 20 mM HEPES (pH 7.3), 1.0 mM MnCl$_2$, and 80 mM MCB. The precipitant contained 20% PEG 10000, 0.10 M HEPES (pH 7.5), and 1.0 mM MnCl$_2$. Crystals appeared in 10 days and exhibited diffraction consistent with the space group P1, with eight polypeptides per asymmetric unit. Prior to data collection, the crystals of the four LigW complexes were transferred to cryoprotectant solutions composed of their mother liquids and 20% glycerol and flash-cooled in a nitrogen stream. Four X-ray diffraction data sets (Table S2) were collected at the NSLS X29A beamline (Brookhaven National Laboratory) on the 315Q CCD detector. Diffraction intensities were integrated and scaled with programs DENZO and SCALEPACK. The data collection statistics are given in Table S2.

Structure Determination and Model Refinement of LigW from* S. paucimobilis. Four LigW structures were solved by molecular replacement with fully automated molecular replacement pipeline BALBES, using only input diffraction and sequence data. BALBES used the structure of γ-resorcylic decarboxylase (γ-RSD) with the PDB id: 2DVT as the search model. Partially refined structures of the four LigW crystal forms were the outputs from pipeline BALBES, molecular replacement with fully automated molecular replacement with PHENIX, and superposition. Structure determination and model refinement statistics for all determined LigW structures are provided in Table S2.

Cloning, Expression, and Purification of LigW from* N. aromatica. A nNIC28-Bsa4 vector containing the gene for LigW (UNIP ID: Q2GA79, locus tag: Saro_0799) was transformed into BL21(DE3). E. coli containing the pRIL plasmid (Stratagene) and then used to inoculate an overnight culture containing 25 μg/mL kanamycin and 34 μg/mL chloramphenicol. The culture was allowed to grow overnight at 37 °C in a shaking incubator. One mL of the overnight culture was used to inoculate 1 L of PASM-5052 autoinduction medium containing 100 μg/mL kanamycin and 34 μg/mL chloramphenicol. The culture was placed in a LEX48 airlift fermenter and incubated at 37 °C for 4 h and then at 22 °C overnight. The culture was harvested and pelleted by centrifugation and stored at −80 °C until needed. The cells were resuspended in lysis buffer (20 mM HEPES, pH 7.5, 500 mM NaCl, 20 mM imidazole, and 10% glycerol) and lysed by sonication. The lysate was clarified by centrifugation at 35,000g for 30 min. The clarified lysate was loaded onto a 1 mL HisTrap FF column, washed with 10 column volumes of lysis buffer, and eluted in buffer containing 20 mM HEPES, pH 7.5, 500 mM NaCl, 500 mM imidazole, and 10% glycerol. The purified sample was loaded onto a HiLoad 26/60 PR gel filtration column, which was equilibrated with SEC buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 10% glycerol, and 5 mM DTT). Peak fractions were collected, concentrated by centrifugation, analyzed by SDS-PAGE, snap frozen in liquid nitrogen, and stored at −80 °C.

Crystallization and Structure Determination of LigW from* N. aromatica. Wild-type LigW was crystallized by the sitting-drop vapor diffusion method. The protein (0.4–1.0 μL of a 12–30 mg/mL solution) was mixed with an equal volume of a precipitant solution and equilibrated at 21 °C against the same precipitant solution in clear tape-sealed 96-well INTELLI-plates (Art Robbins Instruments, Sunnyvale, CA). Crystallization was performed using a PHENIX crystallization robot (Art Robbins Instruments) and four types of MCGS commercial crystallization screens (Microlytic North America, Burlington, MA, USA). The appearance of protein crystals was monitored either by manual inspection or using a RockImager 1000 (Formulatrix, Waltham, MA) starting within 24 h of incubation. The protein crystals were obtained using two sets of precipitants. The first set was 0.17 M ammonium acetate, 0.085 M sodium citrate-HCl (pH 5.6), 25.5% (v/v) PEG 4000, and 15% (v/v) glycerol, and the second set was 0.085 M Tris-HCl, pH 8.5, 0.17 M sodium acetate, 25% (v/v) PEG 4000, and 15% (v/v) glycerol. The crystal structures produced with both sets of precipitants were nearly the same and the final choice of the structure was based on quality and resolution of X-ray diffraction data. To produce crystals of protein–ligand complexes, we have used the cocryocystalization method (the ligands were added to protein solutions before crystallization, for instance, 1.0 mM MnCl$_2$ and/or 10 mM S-NV), and the soaking method (the protein crystals were soaked in the precipitant-based ligand solutions for 1–24 h) to produce the structures of LigW complexes with manganese and S-NV. There were no significant differences between the structures produced by both methods. However, the crystal quality (based on higher resolution and lower mosaicity of the X-ray diffraction data) was better when the cocryocystalization method was used. All the structures reported here were the results of cocryocystalization experiments. The crystals of the wild-type LigW-Mn complex were obtained using the precipitant set-1, and the crystals of the wild-type LigW-Mn-S-NV complex were grown using the precipitant set-2. The crystals of the D314N LigW-Mn-S-NV mutant complex were obtained using the precipitant set-1 supplemented with 1 mM MnCl$_2$, and 10 mM S-NV, and the crystals of the D314N mutant complex with S-NV only were obtained using the precipitant set-1, supplemented with 10 mM S-NV only. The rod- or plate-shaped protein crystals grew in 24–48 h and the crystals with S-NV were light-brown colored. All crystals were directly flash-frozen and stored in liquid nitrogen until use.

X-ray diffraction data were collected from the frozen crystals at 93 K on the beamline X29A (National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, Upton, NY) at a wavelength of 0.92 or 1.075 Å. All data were processed and scaled with HKL2000. The first crystal structure of LigW was determined by molecular replacement using coordinates of γ-resorcylic decarboxylase (PDB id: 2DVT) as a search model and a PHASER software embedded in the CCP4 program package suite. All subsequent structures were solved using coordinates of a solved LigW structure as a search model. The initial model was built and refined by ARP/WARP. Each structure, except one, was further refined using the program REFMAC using the diffraction data as structure factor amplitudes.

The 1.07 Å structure of the LigW-Mn-SNV complex was refined using a PHENIX automated structure solution and refinement platform and the diffraction data as structure factor intensities, not amplitudes. The initial set of geometric restraints for refinement of S-NV was created on the basis of the 0.96 Å S-NV crystal structure (Table S4) including corrections for C–O distances in carboxyl groups based on pH differences in crystallization conditions. In the last refinement cycle the coordinates of S-NV were refined without any geometric restraints. Noncrystallographic symmetry restraints (NCS) were not used in refinement. All atom occupancies, where applicable, were refined in groups, the occupancies for Mn$^{2+}$ ions were refined.
individually. All hydrogen atoms were refined as riding hydrogens. We have found it useful to disallow zero occupancy values assigned by PHENIX for (hydroxyl group) hydrogen atoms of serine and threonine—all hydrogen were given occupancies of either 1.0 (or 0.99) and refined in groups with all other atoms of the same amino acid residue. All the models were verified and fixed manually using COOT visualization and refinement program. Metal coordination bonds were refined without geometric restraints.

The data collection and final refinement statistics of the protein crystal structures are presented in Table S3. The coordinates and structure factors were deposited to the Protein Database: PDB id: 4QRN for the Mn-S-NV complex; PDB id: 4QTG for the Mn

complex; PDB id: 4QS5 for the D314N mutant, Mn-S-NV complex; and PDB id: 4QS6 for the D314N mutant, Mn-complex. The figures were generated by Pymol.

Structure Determination of 5-CV and 5-NV. The substrate 5-CV and the inhibitor 5-NV alone were crystallized and their three-dimensional structures determined. Each compound (2–4 mg) was dissolved in 50 μL of water supplemented with 5% (v/v) glycerol and then warmed to 80 °C for 3–4 min. The solutions were cleared from insoluble material by centrifugation (1 min at 16,000 rpm), sitting-drop crystallization was performed using 24-well Linbro plates (Hampton Research). Each ligand solution (2–5 μL) was equilibrated against a precipitant, consisting of 80% (v/v) glycerol and 20% water for a few hours. The thin (~20–30 μm) and very long (up to a few mm) colorless crystals of 5-CV grew over a period of 10–120 min depending on the crystallization drop size. The faster appearing crystals (in smaller drops) tended to stick together and grow as large clusters, which were difficult to separate. The crystals in larger drops, however, grew slower and were less clustered. Single crystals were flash frozen and stored in liquid nitrogen until data collection. 5-NV was crystallized in a similar fashion; however, the very small plate-like crystals in larger drops, crystallized in a similar fashion; however, the very small plate-like crystals that appeared after 10–40 min of incubation diffracted poorly. The large (0.2 × 0.2 × 0.3 mm) yellow crystals grew in a few hours. These crystals were also frozen and kept in liquid nitrogen until use. The X-ray data collection from the frozen crystals was collected at 93 K on the beamline X29A (National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY) at a wavelength of 0.92 Å using a CBASS software. A total of 72 frames were collected for each data set using a 5° oscillation range (a total of 360° rotation). The crystals of 5-CV and 5-NV diffracted to a resolution of 0.96 and 0.90 Å, respectively. The data were processed and scaled using XDS. The structure factor files were converted into a SHELX format using the program XPREP. The structures were solved by SHELXS and then refined using SHELXL with the help of the WinGX program package and visualization software. Geometry was analyzed using the program MERCURY 3.3. All figures for small molecules were generated by MERCURY. The crystal and data collection, and refinement statistics and geometric parameters for 5-CV and 5-NV are listed in Tables S4 and S5, respectively.

Molecular Weight Determinations. The oligomeric state of LigW was determined using a 10/300 GL Superdex 200 column from GE Healthcare calibrated with gel filtration standards (Bio-Rad Laboratories, Inc.) containing a lyophilized mixture of thyroglobulin (MW 670 000), bovine γ-globulin (MW 158 000), chicken ovalbumin (MW 44 000), equine myoglobin (MW 17 000), and vitamin B12 (MW 1350) in 50 mM HEPES, pH 7.3. Various concentrations of LigW ranging from 0.5 mg/mL to 2.0 mg/mL were utilized at a flow rate of 0.5 mL/min with a pressure of 1.5 MPa.

Metal Analysis. The metal content of LigW was determined by inductively coupled plasma mass spectrometry (ICP-MS) with an Elan DRC II ICP-MS instrument from PerkinElmer. Prior to ICP-MS analysis, loosely bound metals were removed by passage through a PD-10 desalting column equilibrated with 50 mM HEPES (pH 7.5) previously treated with Chelex 100 ion-exchange resin. The protein sample was treated with concentrated HNO3 for 15 min at 100 °C and then diluted with distilled water to a final protein concentration of 1.0 μM and 1% (v/v) HNO3. The activation of LigW by Mn2+, Zn2+, Co2+, or Fe2+ was analyzed by the addition of these metal ions directly to buffered solutions of the enzyme at pH 7.3 and the catalytic activity was monitored after 12 h of incubation at 4 °C. Iron was incubated anaerobically under argon prior to measurement of catalytic activity. Metal-free LigW was prepared by dialysis against 10 mM o-phenanthroline at 4 °C in 50 mM HEPES, pH 6.5. A PD-10 column, previously equilibrated with 50 mM HEPES at pH 7.3, was used to remove the o-phenanthroline prior to analysis by ICP-MS.

Site-Directed Mutagenesis. All single site mutations to LigW were constructed following the QuikChange site-directed mutagenesis instruction manual of the manufacturer. The reaction product was transformed into E. coli XLI-1 blue cells and the plasmid isolated using the Wizard Plus SV Miniprep DNA purification system. After verifying the DNA sequence, all mutants underwent standard protein expression and purification as described previously for wild-type LigW.

Kinetic Parameters. The decarboxylation of 5-carboxyvanillate was determined by monitoring the decrease in absorbance upon formation of vanillate at 312 nm using a differential molar extinction coefficient (Δε312) of 2.040 M−1 cm−1. All assays were conducted using a SpectraMax Plus 340 UV–vis spectrophotometer and the steady-state kinetic parameters were obtained using SoftMax Pro 5.0. Standard assay conditions for the decarboxylation of 5-CV included 50 mM HEPES (pH 7.3), 1.0 mM MnCl2 and 0.1 μM LigW in a final volume of 250 μL at 30 °C. The kinetic constants were obtained using eq 1, where v is the initial velocity, Ei is the total enzyme concentration, [A] is the substrate concentration, kcatt is the turnover number, and Kii is the Michaelis constant.

\[\frac{v}{E_i} = \frac{k_{cat}}{[A]}(K_{m} + [A]) \] (1)

Measurement of pH-Rate Profiles. The kinetic constants for wild-type LigW were determined as a function of pH from 5.0 to 9.0. The pH dependence of Kii and Kii, Kii was determined in 50 mM MES (pH 5.5–6.75), HEPES (pH 7.0–8.25), and CHES (pH 8.5–9.0) buffers. The assays were conducted at approximately 0.25 pH unit intervals and the final pH was recorded after completion of the reaction. Differential molar extinction coefficients for the conversion of substrate to product were determined at each pH value; these ranged from (Δε312 = 2.109 M−1 cm−1) at pH 5.5 to (Δε312 = 205 M−1 cm−1) at pH 9.0. The kinetic data were fit to eq 2 using SigmaPlot 11.0, where y is either kcat or kcat/Kii, c is the pH-independent value of y, [H] is the proton concentration, and Kii and Kii are the acid dissociation constants for the ionizing group at low and high pH, respectively.

\[\log y = \log c/1 + (([H]/K_{m} + [K_{m}/[H]])) \] (2)

Inhibition Studies. Vanillate, 3-methoxy-5-carboxybenzoate, and 5-nitrovanillate were utilized as inhibitors for the reaction catalyzed by LigW. The data for the tight-binding inhibition the enzyme by 5-NV were fit to eq 3, where Ei is the total enzyme concentration, [I] is the inhibitor concentration, vij is initial enzyme activity in the absence of inhibitor, vi is the activity of the enzyme in the presence of inhibitor and Kii is the apparent inhibition constant. The dissociation constant, Kfi, for the binding of 5-CV to LigW was obtained using eq 4, where A is the substrate concentration used in the inhibition experiment and Kii is the Michaelis constant for the substrate 5-carboxyvanillate. The inhibition experiments for 5-NV contained 600 μM 5-carboxyvanillate, 50 mM HEPES (pH 7.3), 1.0 mM MnCl2 and 0.1 μM LigW in a total volume of 250 μL at 30 °C. The apparent inhibition constants (Kii) for vanillate and 3-methoxy-5-carboxybenzoate were obtained from a fit of the data to eq 5 and the Kii was obtained from eq 4. These experiments were conducted at a concentration of 5-carboxyvanillate of 80 μM.

\[v/v_i = ([E_i] - K_{i}^{\text{app}} - [I]) + (([1 + K_{i}^{\text{app}}/[E_i]]) + (4K_{i}^{\text{app}}/[E_i]))^{1/2}/(2[E_i]) \] (3)

\[K_{i}^{\text{app}} = K_{i}(1 + [A]/K_{m}) \] (4)

\[v/v_i = K_{i}^{\text{app}}/(I + K_{i}^{\text{app}}) \] (5)
Supporting Information

10.1021/jacs.5b08251

Article

Deuterium Exchange Experiments. The enzyme-catalyzed exchange of the hydrogen at C5 of the product vanillate with deuterium from solvent was measured as a function of pH. Vanillate (1.9 mM) was incubated in 95%/5% D2O at pH 9.0 (19 mM NaH2PO4) for up to 7 days at 25 °C after the addition of 48 μM LigW. The reactions were quenched by the removal of enzyme with a 10 kDa molecular weight cutoff filter and the solvent removed by rotary evaporation. The dried samples were reconstituted with 99% D2O containing 1.2 mM EDTA to coordinate any paramagnetic metal ions. The fractional exchange of deuterium for hydrogen at C5 of vanillate was determined by 1H NMR spectroscopy. Similarly, the exchange of the hydrogen at C5 of 3-methoxybenzoic acid (1.9 mM) with deuterium from solvent was measured at pH 9.0 in the presence of 48 μM LigW. The apparent first-order rate constants for the exchange of deuterium from solvent at C-5 of vanillate were obtained from a fit of the data to eq 6, where \(A_r / A_0 \) is the ratio of vanillate that is protonated at time \(t \) and \(k_{\text{ex}} \) is the apparent first-order rate constant for the exchange reaction. Control reactions were conducted for both vanillate and 3-methoxybenzoic acid in the absence of added enzyme.

\[
\ln \left(\frac{A_r}{A_0} \right) = -k_{\text{ex}} t
\]

Product Isotope Effect. The product isotope effect (PIE) was measured in a 50:50 mixture of H2O and D2O after the addition of 65 μM LigW to a solution containing 2.0 mM 5-CV at pH/pD values of 7.0 (20 mM potassium phosphate) and 9.0 (20 mM NaH2PO4). The reactions were allowed to continue for 1 h, the enzyme was removed by filtration and then the solvent removed by evaporation. The dried samples were reconstituted with 99% D2O to determine the effects on the values of \(k_{\text{ex}} \) and \(k_{\text{ex}}/k_{\text{ex}} \) after the addition of 48 μM LigW.

ASSOCIATED CONTENT

 Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b08251.

Tables S1–S5, Figures S1–S8. (PDF)
Structure determination of S-carboxyvanillate. (CIF)
Structure determination of S-nitrovanillate. (CIF)

AUTHOR INFORMATION

Corresponding Authors
*steve.almo@einstein.yu.edu
*raushel@tamu.edu

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was supported in part by the NIH (GM 71790) and the Robert A. Welch Foundation (A-840). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy.

REFERENCES

(1) Sainsbury, P. D.; Hardiman, E. M.; Ahmad, M.; Otani, H.; Seghezzi, N.; Eltis, L. D.; Bugg, T. D. H. ACS Chem. Biol. 2013, 8, 2151–2156.
(2) Bugg, T. D. H.; Ahmad, M.; Hardiman, E. M.; Rahmanpour, R. Nat. Prod. Rep. 2011, 28, 1883–1896.
(3) Tobinatsu, Y.; Chen, F.; Nakashima, J.; Escamilla-Treviño, L. L.; Jackson, L.; Dixon, R. A.; Ralph, J. Plant Cell 2013, 25, 2587–2600.
(4) Masai, E.; Katayama, Y.; Fukuda, M. Biosci., Biotechnol., Biochem. 2007, 71, 1–15.
(5) Seibert, C. M.; Rauschel, F. M. Biochemistry 2005, 44, 6583–6591.
(6) Holm, L.; Sander, C. Proteins: Struct., Funct., Genet. 1997, 28, 72–82.
(7) Toth, K.; Amyes, T. L.; Wood, B. M.; Chan, K.; Gerlt, J. A.; Richard, J. P. J. Am. Chem. Soc. 2010, 132, 7018–7024.
(8) Amyes, T. L.; Wood, B. M.; Chan, K.; Gerlt, J. A.; Richard, J. P. J. Am. Chem. Soc. 2008, 130, 1574–1575.
(9) Funahashi, M.; Ishida, T.; Kuroda, S.; Kotra, L. P.; Pai, E. F.; Miki, K. J. J. Am. Chem. Soc. 2013, 135, 17432–17443.
(10) Gato, M.; Hayashi, H.; Miyahara, H.; Hirotsu, K.; Yoshida, M.; Okawa, T. J. Biol. Chem. 2006, 281, 34365–34373.
(11) Xu, S.; Li, W.; Zhu, J.; Wang, R.; Li, Z.; Xu, G.; Ding, J. Cell Res. 2013, 23, 1296–1309.
(12) Martynowski, D.; Eyobo, Y.; Li, T.; Yang, K.; Liu, A.; Zhang, H. Biochemistry 2006, 45, 10412–10421.
(13) Kluger, R.; Howe, G. W.; Mundle, S. O. C. Adv. Phys. Org. Chem. 2013, 47, 85–128.
(14) Moral, M. E.; Yu, C.; Richards, N. G. J.; Silverman, D. N. Anal. Biochem. 2014, 418, 73–77.
(15) Radzicka, A.; Wolfenden, R. Science 1995, 267, 90–93.
(16) Neumann, P.; Tittmann, K. Curr. Opin. Struct. Biol. 2014, 29, 122–133.
(17) Petsko, G. A.; Ringe, D. Curr. Opin. Chem. Biol. 2000, 4, 89–94.
(18) Vocadlo, D. J.; Davies, G. J.; Laine, R.; Withers, S. G. Nature 2001, 412, 835–838.
(19) Back, J. P.; Whitworth, G. E.; Stubbs, K. A.; Vocadlo, D. J.; Mark, B. L. Chem. Biol. 2012, 19, 1471–1482.
(20) Azatals, P.; Parthier, C.; Golbik, R.; Kleinschmidt, M.; Hübner, G.; Weiss, M. S.; Friedemann, R.; Wille, G.; Tittmann, K. Biochemistry 2007, 46, 12037–12052.
(21) Lodtke, S.; Neumann, P.; Erxion, K. M.; Leeper, F. J.; Kluger, R.; Ficner, R.; Tittmann, K. Nat. Chem. 2013, 5, 762–767.
(22) Lehewes-Litzmann, A.; Neumann, P.; Pathier, C.; Lodtke, S.; Golbik, R.; Ficner, R.; Tittmann, K. Nat. Chem. Biol. 2011, 7, 678–684.
(23) Milic, D.; Demidkina, T. V.; Faleev, N. G.; Phillips, R. S.; Matkovic-Calogovic, D.; Anstson, A. A. J. Am. Chem. Soc. 2011, 133, 16468–16476.
(24) Kiss, L. E.; Ferreira, H. S.; Torrao, L.; Bonifacio, M. J.; Palma, P. N.; Soares-da-Silva, P.; Learnmonth, D. A. J. Med. Chem. 2010, 53, 3396–3411.
(25) Ortwosinski, Z.; Minor, W. In Methods in Enzymology; Carter, C. W. J., Sweet, R. M., Abelson, J. N., Simon, M. I., Eds.; Academic Press: New York, 1997; pp 307–326.
(26) Long, F.; Vagin, A.; Young, P.; Murshudov, G. N. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2008, D64, 125–132.
(27) Emsley, P.; Cowtan, K. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, D60, 2126–2132.
(28) Adams, P. D.; Afonine, P. V.; Bunkóczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. Acta Crystallogr, Sect. D: Biol. Crystallogr. 2011, D66, 213–221.
(29) Lamzin, V. S.; Wilson, K. S. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1993, D49, 129–147.
(30) Hooff, R. F.; Vriend, G.; Sander, C.; Abola, F. Nature 1996, 381, 272–273.
(31) Chen, V. B.; Arrendall, W. B.; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, D66, 12–21.
(32) Collaborative Computational Project Number 4 The CCP4 Suit: Programs for Protein Crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1994, 50, 760–763.
(33) Delano, W. L. The PyMOL Molecular Graphics System; Delano Scientific: San Carlos, CA, 2002.
(34) Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1997, D53, 240–255.
(35) Kabsch, W. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, D66, 125–132.
(36) Bruker APEX2, SADABS, XPREP and SAINT-Plus; Bruker AXS Inc.: Madison, WI, 2004. WinGX.
(37) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112–122.
(38) Farrugia, L. J. J. Appl. Crystallogr. 2012, 45, 849–854.
(39) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466–470.
(40) Williams, J. W.; Morrison, J. F. Methods Enzymol. 1979, 63, 437–467.
(41) Cook, P. F.; Cleland, W. W. In Enzyme Kinetics and Mechanism; Garland Science, 2007; p 203.
(42) Krężel, A.; Bal, W. J. Inorg. Biochem. 2004, 98, 161–166.