Toll-like receptors as modulators of mesenchymal stem cells

Olga DelaRosa1, Wilfried Dalemans2 and Eleuterio Lombardo1 *

1 Research and Development Department, TiGenix SA, Parque Tecnologico de Madrid, Madrid, Spain
2 Research and Development Department, TiGenix NV, Leuven, Belgium

Edited by:
Martin Johannes Hoogduijn, Erasmus Medical Center, Netherlands
Reviewed by:
Richard Verbeek, DeltaLife, Netherlands
Claudia Lange, University Medical Center Hamburg-Eppendorf, Germany
*Correspondence:
Eleuterio Lombardo, Research and Development Department, TiGenix SA, Parque Tecnologico de Madrid, C/Marconi 1, 28760 Tres Cantos, Madrid, Spain.
e-mail: eleuterio.lombardo@tigenix.com

Mesenchymal stem cells (MSCs) have differentiation and immunomodulatory properties that make them interesting tools for the treatment of degenerative disorders, allograft rejection, or inflammatory and autoimmune diseases. Biological properties of MSCs can be modulated by the inflammatory microenvironment they face at the sites of injury or inflammation. Indeed, MSCs do not constitutively exert their immunomodulating properties but have to be primed by inflammatory mediators released from immune cells and inflamed tissue. A polarization process, mediated by Toll-like receptors (TLRs), toward either an anti-inflammatory or a pro-inflammatory phenotype has been described for MSCs. TLRs have been linked to allograft rejection and the perpetuation of chronic inflammatory diseases (e.g., Crohn’s disease, rheumatoid arthritis) through the recognition of conserved pathogen-derived components or endogenous ligands (danger signals) produced upon injury. Interest in understanding the effects of TLR activation on MSCs has greatly increased in the last few years since MSCs will likely encounter TLR ligands at sites of injury, and it has been proven that the activation of TLRs in MSCs can modulate their function and therapeutic effect.

Keywords: toll-like receptor, mesenchymal stem cells, cell therapy

ADULT MESENCHYMAL STEM CELLS

Mesenchymal stem cells (MSCs) have emerged in recent years as therapeutic tools based on three important features: (i) differentiation potential, (ii) capacity to modulate immune responses, and (iii) low immunogenicity, which would allow allogeneic treatments.

Mesenchymal stem cells have been isolated from multiple tissues of mesodermal origin, such as bone marrow (Friedenstein et al., 1976), adipose tissue (Zuk et al., 2002), umbilical cord blood (Romanov et al., 2003), placenta (Fukuchi et al., 2004), synovium (De Bari et al., 2001), or dental pulp (Gronthos et al., 2000), among others. Despite significant efforts, no exclusive surface markers have been identified for MSCs. To date, MSCs are defined according to the three criteria of the International Society for Cellular Therapy (Dominici et al., 2006): (a) Adhesion to plastic: MSCs can be isolated by adhesion to plastic and expanded in vitro in serum containing media with no additional requirements for growth factors or cytokines; (b) Expression of a specific combination of surface markers: MSCs are negative for CD45, CD34, CD14, or CD11b, CD79a, or CD19 and HLA-DR, and positive for a variety of other markers, including CD73, CD90, and CD105; (c) Differentiation potential: MSCs can be identified in vitro by their ability to differentiate into mesenchymal-type cells (trilineage differentiation into adipocytes, osteoblasts, and chondrocytes; Pittenger et al., 1999). Although sharing these main characteristics, differences between MSCs from different sources can be found. The secretome differs between cell types, and bone marrow-derived MSCs (BM-MSCs) and adipose-derived MSCs (AD-MSCs), for instance, show specific RNA and protein expression profiles (De Ugarte et al., 2003; Noel et al., 2008; Skalnikova et al., 2011).

In homeostatic conditions, allogeneic cells are rejected by the immune system upon recognition of their foreign human leukocyte antigen (HLA). Allogeneic cells can also activate T cells through an indirect pathway where their HLA antigens are presented by professional antigen-presenting cells (APC). MSCs express low levels of cell surface HLA class I molecules whereas HLA class II, CD40, CD80, and CD86 are not detectable on the cell surface which theoretically opens the possibility of allogeneic treatments without the requirement of suppression of host immunity. Stimulation with interferon (IFNγ) has been shown to increase both class I and class II molecules. However, MSCs do not express classic co-stimulatory molecules such as CD40, CD80, CD86, even after stimulation in an inflammatory milieu. These features may allow MSCs to avoid or delay immune recognition (Le Blanc et al., 2003a,b; Majumdar et al., 2003; Rasmusson et al., 2003; McIntosh et al., 2006; Chamberlain et al., 2007), although this is a question that needs to be further investigated in both experimental animal models and clinical trials (Griffin et al., 2010).

Mesenchymal stem cells have immunomodulating properties and inhibit function of immune cells (Bartholomew et al., 2002; Krampera et al., 2003; Zhang et al., 2004; Beyth et al., 2005; Glennie et al., 2005; Puissant et al., 2005; Nauta et al., 2006; Yañez et al., 2006; Cui et al., 2007; Chiesa et al., 2011; DelaRosa et al., 2012). The specific molecular and cellular mechanisms involved in the immunoregulatory activity of MSCs are still under investigation and remain poorly understood. There is evidence that the capability to modulate immune responses rely on both cell
contact-dependent mechanisms (i.e., through Jagged1–Notch1 interactions; Liotta et al., 2008) and paracrine effects through the release of soluble factors (reviewed by Doorn et al., 2012). A broad panel of soluble factors have been involved including hepa-
tocyte growth factor (HGF), prostanglandin-E2 (PG2E2), trans-
forming growth factor (TGF)-β1, indoleamine 2,3-dioxygenase
(IDO), nitric oxide (NO), interleukin (IL)-10, heme oxygenase-1
(HO-1), and HLA-G5 (Kramerpa et al., 2003; Beryth et al., 2005;
Puisant et al., 2005; Yañez et al., 2006; Chabannes et al., 2007;
Cui et al., 2007; Oh et al., 2007; Selmani et al., 2008; DelaRosa
et al., 2009). Differences in the mechanisms of immunomodu-
lation employed by MSCs from different species have been reported.
Whereas IDO activity appears to be a key player in human MSC-
mediated immunomodulation, mouse MSCs do not express IDO
and seem to use NO as the main mediator (DelaRosa et al., 2009;
Ren et al., 2009; Meisel et al., 2011). Interestingly, MSCs may also
modulate immune responses through the generation of regulatory
T cells (Tregs; Kramerpa et al., 2003; Zhang et al., 2004; Maccario
et al., 2005; Nau et al., 2006; Gonzalez-Rey et al., 2010). Whether
this MSC-mediated Treg induction is due to an expansion of pre-
eexisting Tregs, to a de novo induction or to a combination of both
needs to be further explored.

Importantly, MSCs do not constitutively exert their
immunomodulating properties but have to be “primed” by inflam-
matory mediators released from activated immune cells, such as
IFNy, IL1β, and TNFa (Kramerpa et al., 2006; Prasanna et al.,
2010). Also, the functionality of MSCs can be modulated by other
inflammatory mediators such as APRIL and BAFF (Zonca et al.,
2012). The thinking that MSCs are only anti-proliferative and
immune-inhibitory on immune cells has been recently challenged
by Waterman et al. (2010) who reported a “licensing” process of
MSCs toward either anti-inflammatory or pro-inflammatory phe-
notypes, depending on the toll-like receptor (TLR) ligand used for
activation. For extensive review on the concept of MSC “licensing”
see the excellent review by Kramerpa (2011).

The biological characteristics mentioned above make MSCs
an interesting tool for cellular therapy. This is supported by
a number of studies in experimental models of inflammatory
diseases demonstrating an efficient protection against allograft
rejection, graft-versus-host disease, experimental autoimmune
encephalomyelitis, collagen-induced arthritis, sepsis, and autoim-
une myocarditis (Le Blanc et al., 2004; Zappia et al., 2005;
Ohnishi et al., 2007; González et al., 2009a,b; Gonzalez-Rey et al.,
2009; Németh et al., 2009). As indicated previously, TLRs have
been implicated in the pathology of graft transplantation and
inflammatory diseases (Ishihara et al., 2006; Yamamoto-Furusho
and Podolsky, 2007) and therefore may modulate MSC function
in vivo (DelaRosa and Lombardo, 2010; Kramerpa, 2011).

TOLL-LIKE RECEPTORS

Innate immunity relies on the existence of a mechanism of
recognition that identifies conserved molecular structures, known
as pathogen associated molecular patterns (PAMPs), broadly
expressed by different groups of microorganisms. These PAMPs
include lipids, lipoproteins, carbohydrates, and nucleic acids
(Akira et al., 2006). The recognition of these PAMPs is medi-
ated by a set of germ line-encoded receptors known as pattern
recognition receptors (PRRs). This recognition enables eukary-
otic hosts to reliably detect a microbial infection, activating a
number of signaling pathways that culminate in the induction of
pro-inflammatory cytokines, chemokines, and inflammatory
mediators. PRRs include TLRs, Retinoic acid-inducible gene I
(RIG-I)-like receptors (RLRs) and NOD-like receptors (NLRs).
PRRs, through their modulation of innate and adaptive immune
responses, are essential players in the battle for tolerance or rejec-
tion of transplanted organs (Methe et al., 2004; Penack et al.,
2010). The molecular and cellular mechanisms involved remain
poorly understood and represent an emerging field of research
with potential therapeutic implications.

Toll-like receptors are type I membrane proteins expressed by
immune and non-immune cells (i.e., monocytes, macrophages,
endothelial cells) either in the plasma membrane or intracellularly
(endosomes). To date, 11 human and 13 mouse TLRs have been
identified that recognize distinct microbial products from bacte-
ria, viruses, protozoa, and fungi (Moresco et al., 2011). In addition,
the recognition of endogenous ligands by TLRs is thought to
have an important role in the regulation of inflammation, both
in infectious and non-infectious diseases. A number of endoge-
nous ligands have been identified, including heat shock protein
(HSP) 60, HSP 70 (Asea et al., 2000; Oashi et al., 2000), heparan
sulfate (Johnson et al., 2002), hyaluronan (Termeer et al., 2002),
fibronectin extra domain A (Okamura et al., 2001), uric acid
(Liu-Bryan et al., 2005), oxidized LDL (Miller et al., 2003), intra-
cellular components of fragmented cells (Boule et al., 2004;
Barrat et al., 2005), myeloid-related proteins-8 and 14 (Vogl et al., 2007),
cosinophil-derived neurotoxin (Yang et al., 2008), and human
defensin-3 (Funderburg et al., 2007). As these ligands are acces-
sible to TLRs in the setting of injury or non-infectious threat, they
have been called “danger signals.”

Toll-like receptor activation triggers intracellular signaling
pathways that lead to the induction of inflammatory cytokines,
type I IFNs, and upregulation of co-stimulatory molecules lead-
ing to the activation of the adaptive immune response. Ligand
recognition results in the recruitment of intracellular adaptor pro-
tins, including myeloid-differentiation primary-response protein
88 (MyD88), shared by all TLRs except TLR3, and Toll/IL-1R
domain-containing adaptor-inducing IFNβ (TRIF), employed by
TLR3 and TLR4 (O’Neill and Bowie, 2007). Recruitment of
MyD88 leads to the activation of the mitogen-activated protein
(MAP)-kinases (MAPKs) and nuclear translocation of the
transcription factor nuclear factor-κB (NF-κB; MyD88-dependent
pathway; Hoebe et al., 2006; Meylan et al., 2006). The activation
of these signaling pathways is absent in MyD88-deficient mice
in response to all TLRs, except TLR4 and TLR3. This is due to the
activation of an alternative pathway triggered by TRIF (MyD88-
dependent pathway) that culminates in the activation of NF-κB,
MAPKs, and the transcription factors interferon-responsive fac-
tors (IRFs), whose are responsible for induction of type I IFNs,
in particular IFNβ (Honda et al., 2006; Stetson and Medzhitov,
2006). Besides MyD88 and TRIF, two other adaptor proteins have
been described: TIR-domain-containing adaptor protein (TIRAP,
required for MyD88-dependent signaling by TLR2 and TLR4),
and TRIF-related adaptor molecule (TRAM, required for TRIF-
dependent signaling through TLR4, but not TLR3; Takeda and
Adipogenic differentiation of human MSCs does not seem to affect differentiation rates compared to wild-type BM-MSCs (Wang et al., 2010). Nevertheless, TLR2-deficient mouse BM-MSCs failed to accumulate vacuoles in differentiated adipocytes, suggesting some impairment in the terminal differentiation process (Abarbanell et al., 2010). Therefore, the role of TLR signaling pathways in MSC multipotency needs to be further clarified.

MODULATION OF MSCs THROUGH TLRs

Expression of TLR 1, 2, 3, 4, 5, and 6 has been reported in human and mice AD-MSCs and BM-MSCs, human umbilical cord blood MSCs (UCB-MSCs), human Wharton jelly’s MSCs (WJ-MSCs), human dental pulp (DP), and dental follicle (DF)-MSCs (van den Berk et al., 2009; DelaRosa and Lombardo, 2010; Kim et al., 2010; Raicevic et al., 2011; Tomic et al., 2011). Expression and function of TLRs can be modulated in different ways in MSCs. Hypoxia significantly increased mRNA of TLR1, 2, 5, 9, and 10 (Hwa Cho et al., 2010). Infection of MSCs with baculoviral vectors upregulated expression of TLR3 and activated TLR3 signaling pathway (Chen et al., 2009). Interestingly, the inflammatory environment may also modulate the pattern and function of TLRs expressed by MSCs. When cultured in the presence of an “inflammatory cocktail” (made with IFNα, IFNγ, TNFα, and IL1β) expression of TLR2, 3, and 4 was increased, while TLR6 was downregulated (Raicevic et al., 2010). This modulatory effect seems to depend on the origin of MSCs as differences between BM, AD, and WJ-MSCs was found recently (Raicevic et al., 2011). Fatty acids may also modulate TLR signaling in ob/ob mouse AD-MSCs. Stearidonic and eicosapentaenoic acids inhibited LPS-mediated upregulation of TLR2 through a mechanism that involves NF-κB but not ERK signaling pathway (Hsueh et al., 2011).

EFFECT OF TLRs ON DIFFERENTIATION OF MSCs

Adipogenic differentiation of human MSCs does not seem to be affected by TLRs (Hwa Cho et al., 2006; Liotta et al., 2008; Lombardo et al., 2010; Kim et al., 2010; Raicevic et al., 2010). Chondrogenic differentiation of human BM-MSCs has not been reported to be altered by activation through LPS, PolyIC, or R848 (Liotta et al., 2008), but was increased by TLR2 activation on human UCB-MSCs (Kim et al., 2010). The osteogenic differentiation seems to be enhanced in human BM-MSCs, AD-MSCs, and UCB-MSCs after LPS, PGN, or Poly IC activation (Hwa Cho et al., 2006; Mo et al., 2008; Lombardo et al., 2009; Kim et al., 2010), while CpG oligodeoxynucleotides (CpG ODN), have been reported to inhibit it in human AD-MSCs and BM-MSCs (Hwa Cho et al., 2006; Pevsner-Fischer et al., 2007; Liotta et al., 2008; Lombardo et al., 2010; Norgaard et al., 2010). It has been reported recently that TNFα and TLRs activate osteogenic differentiation of AD-MSC via upregulation of transcriptional coactivator with PDZ-binding motif (TAZ; Hwa Cho et al., 2010).

On the other hand in mouse BM-MSCs, TLR2 was found to reduce differentiation into the three mesodermal lineages (Pevsner-Fischer et al., 2007). Interestingly, some reports link TLR signaling pathways with MSC multipotency. MyD88-deficient mouse BM-MSCs, when cultured in the appropriate differentiation media without additional stimulation with TLR ligands, effectively differentiated into adipocytes but failed to differentiate into osteocytes and chondrocytes (Pevsner-Fischer et al., 2007). However, TLR4-deficient mouse BM-MSCs showed higher differentiation rates compared to wild-type BM-MSCs (Wang et al., 2010). Nevertheless, TLR2-deficient mouse BM-MSCs failed to accumulate vacuoles in differentiated adipocytes, suggesting some impairment in the terminal differentiation process (Abarbanell et al., 2010). Therefore, the role of TLR signaling pathways in MSC multipotency needs to be further clarified.

EFFECT OF TLRs ON PROLIFERATION AND MIGRATION OF MSCs

So far, most of the studies have not found effects of TLR activation on human MSC proliferation. Only Hwa Cho et al. (2006) reported that TLR9 activation of AD-MSCs inhibited their proliferation. Interestingly, the use of TLR-deficient mouse BM-MSCs provided some insight on the role of TLRs on proliferation as TLR4-deficient BM-MSCs showed higher proliferation rates and TLR2-deficient showed reduced proliferation compared to wild-type MSCs (Abarbanell et al., 2010; Wang et al., 2010). In addition, TLR2 and TLR4 activation promoted proliferation of mouse BM-MSCs (Pevsner-Fischer et al., 2007; Wang et al., 2009).

Migration to the appropriate site of injury is believed to play a key role in the therapeutic efficacy of MSCs. Tomchuck et al. (2008) demonstrated that TLR3 activation drives the migration of human BM-MSCs in vitro. However, other reports found that TLR activation either impaired or had no effect on mouse BM-MSC migration (Pevsner-Fischer et al., 2007; Lei et al., 2011). In addition, TLR9 activation enhanced human BM-MSC invasion through a mechanism mediated, at least in part, by increased expression of MMP-13 (Nurmenniemi et al., 2010).

EFFECT OF TLRs ON INTERACTION OF MSCs WITH IMMUNE CELLS

Mesenchymal stem cells have been shown to possess the capacity to inhibit proliferation of immune cells upon mitogenic or allo-genic activation. In recent years, inconsistent results have been reported regarding the role of TLR ligands on MSCs capacity to modulate immune responses. We and others found no significant effect of TLR activation on human AD-MSC or mouse BM-MSC-mediated immunosuppression (Pevsner-Fischer et al., 2007; Lombardo et al., 2009). However, other groups have reported that TLR activation may modulate the immunosuppressive properties of human BM-MSCs, although in very different ways. Liotta et al. (2008) found that TLR3 and TLR4 activation reduce the inhibitory activity of human BM-MSCs on T cell proliferation without influencing IDO activity or PGE2 levels, but downregulated expression of Jagged1, suggesting that the Notch signaling pathway mediates cell contact-mediated immunosuppression by MSCs. In contrast, Opitz et al. (2009) reported that TLR3 and TLR4 engagement enhances the immunosuppressive properties of human BM-MSCs through the indirect induction of IDO1. Induction of IDO1 involved an autocrine IFNγ signaling loop, which was dependent on protein kinase R (PKR) and independent of IFNγ. The role of IDO seems to be species dependent as Lanz et al. (2010) reported recently that IDO activity is not required for mouse BM-MSC immunosuppressive capacity both in vitro and in vivo, using IDO-deficient MSCs. Interestingly, TLR2 activation has been reported to impair the capacity of mouse BM-MSCs to induce the generation of regulatory T cells (Lei et al., 2011). Adding more uncertainty, Raicevic et al. (2010) reported that pentaclination of human BM-MSCs with TLR3 or TLR4 ligands reduced production of HGF and PGE2 which impaired their capacity to...
inhibit lymphocyte proliferation. However, these authors found in a later report, that triggering of TLR3 or TLR4 on human MSCs from BM, AD, and Wharton jelly’s did not affect their immunosuppressive capacity (Raicevic et al., 2011). Dental pulp (DP) and Dental follicle (DF)-MSCs can also modulate lymphocyte proliferation in vitro, which is potentiated by TLR3 activation in both cell types, whereas TLR4 activation increased the suppressive role of DF-MSCs and reduced it in DP-MSCs (Tomic et al., 2011). Immunomodulating properties of human umbilical cord blood (UCB-MSCs) were not affected by pretimulation with TLR4 or TLR5 ligands (van den Berk et al., 2009).

Toll-like receptors may polarize MSCs toward pro-inflammatory and antigen-presenting-like phenotypes leading to release of pro-inflammatory cytokines and chemokines capable of enhancing recruitment of inflammatory immune cells (Romieu-Moureze et al., 2009). In line with this, a “licensing” process of MSCs toward either pro-inflammatory (MSC1) or anti-inflammatory (MSC2) phenotypes, which depends on the ligand concentration, timing, and kinetics of activation, has been proposed (Waterman et al., 2010). TLR4 priming results in upregulation of mostly pro-inflammatory cytokines such as IL6 or IL8 (MSC1 phenotype), while TLR3 priming results in production of anti-inflammatory molecules such as IL4, IDO, or PGE2 (MSC2 phenotype). TLR3-activated MSCs maintained the capacity to inhibit lymphocyte proliferation in vitro, while TLR4-primed MSCs activated T lymphocytes. As suggested by the authors, the polarizing effects of TLR priming may also explain the contradictory results obtained so far on the effects of TLRs on immunomodulation by MSCs.

There are other immune functions mediated by MSCs which have been found to be modulated by TLRs. BM-MSCs and parotid-derived MSCs have been shown to support neutrophil survival and chemotaxis in a ratio dependent manner through the release of soluble factors (Raffaghello et al., 2008; Brandau et al., 2010). Recently, Cassatella and colleagues found that TLR3 and TLR4 ligands enhanced the capacity of MSCs to delay neutrophil apoptosis through the induction of IL6, IFNγ, and GM-CSF. Moreover, TLR activation of BM-MSCs strongly increased respiratory burst of neutrophils. This supportive role on neutrophil function was confirmed using MSCs from thymus, spleen, or adipose tissue (Cassatella et al., 2011).

TLR2 and TLR4 mediate the capacity of human BM-MSCs to support short-term expansion of umbilical cord CD34+ cells, promoting myeloid-differentiation through the induction of hematopoietic growth factors (Wang et al., 2012). Moreover, it has been recently reported that resident mouse BM-MSCs, by producing MCP-1 in response to LPS, induce monocyte emigration from bone marrow into circulation to confront potential infections (Shi et al., 2011). These findings suggest an important role for TLRs in the modulation of the immune system by resident MSCs since BM-MSCs could function as sensors of circulating TLR ligands and determine, by expressing MCP-1, the frequency of circulating inflammatory Ly6Chigh, CCR2+ monocytes.

EFFECT OF TLRs ON THERAPEUTIC EFFECTS OF MSCs IN VIVO

Several studies have reported beneficial effects of MSC treatment in animal models of sepsis or LPS-induced lung injury (in which MSCs were administered within 1 h following LPS challenge; Mei et al., 2007, 2010; Xu et al., 2007; Gonzalez-Rey et al., 2009; Németh et al., 2009, 2010). Based on the therapeutic benefit observed in these experimental models, it can be interpreted that high concentrations of LPS did not polarize MSCs toward a pro-inflammatory phenotype, in apparent contradiction to the reported polarizing process observed in vitro (Waterman et al., 2010). However, Waterman et al. (2010) reported that MSC1 and MSC2 cells were used in mouse models of lung injury and MSC1 aggravated the inflammatory injury, whereas MSC2 improved it, when compared to unstimulated BM-MSCs.

Conflicting results have been reported regarding the modulation of MSC-mediated cardiac protection by TLRs. LPS preconditioning of mouse BM-MSCs can, when compared to unconditioned MSCs, improve their survival and engraftment and increases the release of vascular endothelial growth factor (VEGF) in a model of rat acute myocardial infarction leading to enhanced therapeutic effects (Yao et al., 2009). These effects can be mediated through a TLR4-mediated protection of MSCs from apoptosis induced by oxidative stress (Wang et al., 2009). In contrast, TLR4-deficient mouse BM-MSCs had increased cardiac protection which was mediated by activated STAT3 signaling, leading to expression of higher levels of angiogenic factors such as VEGF and HGF (Wang et al., 2010). TLR2 activity also seems to be involved in cardioprotective effects by mouse BM-MSCs after ischemia/reperfusion injury. TLR2-deficient mouse BM-MSC showed impaired capacity to recover heart function, which correlates with reduced production of VEGF in hearts treated with TLR2-deficient MSCs compared to wild-type controls (Abarbanell et al., 2010). Therefore, further investigation in experimental animal models is required to clarify the role of TLRs in the licensing process as well as in the therapeutic potential of MSCs in vivo.

CONCLUDING REMARKS

Despite discrepancies and inconsistencies reported by authors, some general conclusions can be made: (a) TLR expression: MSCs from different sources express TLRs at the mRNA level, although expression at a protein level seems to be low (i.e., compared to monocytes), and often makes difficult detection by flow cytometry, (b) MSC differentiation: in human MSCs, adipogenic differentiation does not seem to be affected by TLRs but osteogenic differentiation seems to be enhanced by TLR2, TLR3, or TLR4, while inhibited by TLR9. In mouse MSCs, TLR signaling might be linked to multipotency of MSCs as MyD88-deficient BM-MSCs failed to efficiently differentiate into chondrogenic and osteogenic lineage, (c) MSC proliferation: in human MSCs, only TLR9 activation has been reported to affect AD-MSC proliferation, (d) immunomodulatory capacity of MSCs: contradictory results have been reported that can be explained, at least in part, by the experimental conditions and the source of MSCs. The fact that differences in the experimental settings may lead MSCs to behave differently, suggests that MSCs can adjust their response in a dynamic way to the specific environmental conditions they face. In this regard, Waterman et al. (2010) challenged the concept of MSCs being always immunosuppressive and suggested that a polarizing process toward a pro-inflammatory or anti-inflammatory phenotype may occur depending on the TLR activated. However, the anti-inflammatory and therapeutic effects reported in mouse
models of sepsis and lung injury, where MSCs were exposed to high levels of LPS, seems to be in apparent contradiction to the polarizing process described in vitro. Therefore, the in vivo modulation of MSC biology by TLR ligands deserves to be further investigated and clarified.

The inflammatory conditions MSCs face when administered in vivo is now believed to play a fundamental role in their successful therapeutic use. Research on modulation of MSCs by TLRs can strongly contribute to better understand the immunomodulating properties of MSCs under different inflammatory environments and to characterize the features an inflammatory milieu should have for MSCs to best modulate immune reactions (i.e., composition, ratio or activity of immune cells, cytokines or other inflammatory mediators such as TLR ligands).

ACKNOWLEDGMENTS

We thank Debjani Roy for critical reading of the manuscript. This work was supported by funding from the Ministry of Science and Innovation of Spain (INNPACTO IPT-010000-2010-40) and a grant from the European Union Seventh Framework Programme: REGENER-AR, grant agreement no. 279174.

REFERENCES

Abarbanell, A. M., Wang, Y., Herrmann, J. L., Weil, B. R., Poynter, J. A., Manukyan, M. C., and Meldrum, D. R. (2010). Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 298, 1529–1536.

Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783–801.

Asea, A., Kraeft, S. K., Kurt-Jones, E. A., Akira, S., Marshak-Rothstein, A., and Uematsu, S. (2006). Toll-like receptor 2 induces mesenchymal stem cell unresponsiveness. J. Exp. Med. 202, 1131–1139.

Barrat, F. J., Meeker, T., Gregorio, J., Chan, J. H., Uematsu, S., Akira, S., Chang, B., Durazam, O., and Coffman, R. L. (2005). Nucleic acids of mammalian origin can act as endogenous ligands for toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139.

Bartholomeu, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., Hardy, W., Devine, S., Ucker, D., Deans, R., Mosley, A., and Hoffman, R. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30, 42–48.

Beyth, S., Bonovský, Z., Mevorach, D., Liebergall, M., Gazit, A., Aslan, H., Galun, E., and Rachmilewitz, J. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105, 2214–2219.

Boule, M. W., Broughton, C., Mackay, F., Akira, S., Marshak-Rothstein, A., and Ritkin, I. (2004). Toll-like Receptor 9-dependent and -independent dendritic cell activation by chomatn-immunoglobulin G complexes. J. Exp. Med. 199, 1631–1640.

Brandau, S., Jakob, M., Hemeda, H., Bruderck, K., Janeschik, S., Bootz, F., and Lang, S. (2010). Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J. Leukoc. Biol. 88, 1015–1015.

Casassatella, M. A., Molina, F., Micheletti, A., Lisi, V., Tamassia, N., Cont, C., Calzetta, F., Pelletier, M., Pizzolo, G., and Kramerpa, M. (2011). Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 29, 1001–1011.

Chabannes, D., Hill, M., Merieau, E., Rossignol, J., Brion, R., Soulilou, J. P., Angeon, I., and Cuturi, M. C. (2007). A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 110, 3691–3694.

Chamberlain, G., Fox, J., Ashton, B., and Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739.

Chen, G. Y., Shiah, H. C., Su, H. I., Chen, C. Y., Chuang, Y. J., Lo, W. H., Huang, J. L., Chuang, C. K., Huang, S. M., and Hu, Y. C. (2009). Baculovirus transduction of mesenchymal stem cells triggers the toll-like receptor 3 pathway. J. Virol. 83, 10548–10556.

Chiesa, S., Morbelli, S., Morando, S., Massolo, M., Marin, M., Bertoni, A., Frassoni, F., Bartolomei, S. T., Sambuceti, G., Traggiai, E., and Uccelli, A. (2011). Mesenchymal stem cells impair in vivo T-cell proliferation by dendritic cells. Proc. Natl. Acad. Sci. U.S.A. 108, 17384–17389.

Cui, L., Yin, S., Liu, W., Li, N., Zhang, W., and Cao, Y. (2007). Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng. 13, 1185–1195.

De Barhi, C., Dell’Accio, F., Tylzanowski, P., and Luyten, F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44, 1928–1942.

De Ugarte, D. A., Morizono, K., Elbar- bary, A., Alfonzo, Z., Zuk, P. A., Zhu, M., Dragoo, J. L., Ashjian, P., Thomas, B., Benhaim, P., Chen, I., Fraser, J., and Hedrick, M. H. (2003). Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs (Print) 174, 101–109.

Delaroza, O., and Lombardo, E. (2010). Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediators Inflamm. 2010, 865601.

Delaroza, O., Lombardo, E., Beraza, A., Mancheto-Corvo, P., Ramirez, C., Mentá, R., Rico, L., Camarillo, E., Garcia, L., Abad, J. L., Trigueros, C., Delgado, M., and Buscher, D. (2009). Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng. Part A. 15, 2795–2806.

Delaroza, O., Sánchez-Correa, B., Morgado, S., Ramírez, C., Del Rio, B., Menta, R., Lombardo, E., Tarrasón, R., and Casado, J. G. (2012). Human adipose-derived stem cells impair natural killer cell function and exhibit low susceptibility to natural killer-mediated lysis. Stem Cells Dev. 21, 1333–1343.

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marin, F., Krause, D., Deans, R., Keating, A., Slaper-Cortenbach, I., Marini, F., Thomas, B., Benhaim, P., Chen, I., Fraser, J., and Hedrick, M. H. (2003). Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs (Print) 174, 101–109.

Doorn, J., Moll, G., Le Blanc, K., van Blitterswijk, C., and De Boer, J. (2012). Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng. Part B Rev. 2012 18, 101–115.

Friedenstein, A. J., Gorska, J. F., and Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4, 267–274.

Fukushi, Y., Nakajima, H., Sugiyama, D., Hirose, L., Kitamura, T., and Tsui, K. (2004). Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22, 649–658.

Funderburk, N., Lederman, M. M., Feng, Z., Drage, M. G., Jadowsky, J., Harding, C. V., Weinberg, A., and Sieg, S. F. (2007). Human-defensin-3 activates professional antigen-presenting cells via toll-like receptors 1 and 2. Proc. Natl. Acad. Sci. U.S.A. 104, 18631–18635.

Glenie, S., Soeiro, L., Dyson, P. J., Lam, E. W., and Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105, 2821–2827.

González, M. A., González-Rey, E., Rico, L., Buscher, D., and Delgado, M. (2009a). Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 60, 1006–1019.

González, M. A., González-Rey, E., Rico, L., Buscher, D., and Delgado, M. (2009b). Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136, 978–989.

González-Rey, E., Anderson, P., Gonzalez, M. A., Rico, L., Buscher, D., and Delgado, M. (2009b). Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136, 978–989.

Doel, O. (2012). Pattern recognition receptors and MSCs. www.frontiersin.org July 2012 | Volume 3 | Article 182 | 5

Delaroza et al.
Pattern recognition receptors and MSCs

Mei, S. H., McCarter, S. D., Deng, Y., Parker, C. H., Liles, W. C., and Stewart, D. J. (2007). Prevention of LPN-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoi etin 1. PLoS Med. 4, 1525–1537. doi:10.1371/journal.pmed.0040269

Meisel, R., Brocker, S., Hessler, K., Destrogiuri, O., Bülle, H., Woste, C., Stuhlatis, S., Schwippert, W., Jäger, M., Sorg, R., Henschler, R., Seissler, J., Dilloo, D., and Daubener, W. (2011). Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by toll-like immunoreceptor 2. Leukemia 25, 648–654.

Methé, H., Zimmer, E., Grimm, C., Nabauer, M., and Koglin, J. (2004). Evidence for a role of toll-like receptor 4 in development of chronic allograft rejection after cardiac transplantation. Transplantation 78, 1324–1331.

Meylan, F., Tschopp, J., and Karin, M. (2006). Intracellular pattern recognition receptors in the host response. Nature 442, 39–44.

Miller, Y. L., Varvaykoos, S., Binder, C. J., Fermaiaco, J., Kirkland, T. N., and Witztum, J. (2003). Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD2, and inhibit phagocytosis of apoptotic cells. J. Biol. Chem. 278, 1561–1568.

Mo, I. F., Yip, K. H., Chan, W. K., Law, H. K., Lau, Y. L., and Chan, G. C. (2008). Prolonged exposure to bacterial toxins downregulated expression of toll-like receptors in mesenchymal stem-cell derived osteogenic progenitors. BMC Cell Biol. 9, 52. doi:10.1186/1471-2171-9-52

Moresco, E. M., LaVine, D., and Beutler, B. (2011). Toll-like receptors. Curr. Biol. 21, 488–493.

Nauta, A. I., Kraus Reinhart, A. B., Lurvink, E., Willemze, R., and Fibbe, W. E. (2006). Mesenchymal stem cells inhibit generation and function of both CD34+–derived and monocyte-derived dendritic cells. J. Immunol. 177, 2008–2087.

Németh, K., Leelahavanichkul, A., Yuen, P. S. M., Mayer, B., Parmelee, A., Doi, K., Robey, P. G., Leelahavanichkul, K., Koller, B. H., Brown, J. M., Hu, X., Jelinek, I., Star, R. A., and Mezei, E. (2009). Human mesenchymal stem cells attenuate sepsis via prosta glandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 15, 42–49. [Erratum in: Nat. Med. 2009 15, 462.]
Németh, K., Mayer, B., and Mezei, E. (2010). Modulation of bone marrow stromal cell functions in infectious diseases by toll-like receptor ligands. J. Mol. Med. (Berl.) 88, 5–10.

Noël, D., Caton, D., Roche, J., Bomy, C., Lehmann, S., Castella, L., Jorgensen, C., and Cousin, B. (2008). Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp. Cell Res. 314, 1575–1584.

Norgaard, N. N., Holien, T., Jøns- son, S., Hella, H., Espewik, T., Sun- dan, A., and Standal, T. (2010). CgP-oligo(deoxy) nucleotide inhibits Smad-dependent bone morpho- genetic protein signaling: effects on myeloma cell apoptosis and in vitro osteoblastogenesis. J. Immunol. 185, 3131–3139.

Nurminen, N., Kurjasa, P., Lehto- nen, S., Tiusanen, S., Alahuta, L., Mattila, R. K., Risteli, J., Salo, T., Selander, K. S., Nyberg, P., and Lehenkari, P. (2006). Toll-like recep- tor 9 ligands enhance mesenchymal stem cell invasion and expression of matrix metalloproteinase-13. Exp. Cell Res. 316, 2676–2682.

Oashi, K., Burkart, V., Fleho, S., and Kolb, H. (2000). Heat shock pro- tein 60 is a putative endogenous lig- and of toll-like receptor-4 complex. J. Immunol. 164, 558–561.

Oh, L., Ozaki, K., Sato, K., Meguro, A., Tatsara, T., Hatanaka, K., Nagai, T., Muroi, K., and Ozawa, K. (2007). Interferon-gamma and NF- kappaB mediate nitric oxide production by mesenchymal stromal cells. Biochem. Biophys. Res. Com- munications 355, 956–962.

Ohnishi, S., Yanagawa, B., Tanaka, K., Miyahara, Y., Obata, H., Kataoka, M., Kodama, M., Ishibashi-Ueda, H., Kangawa, K., Kitamura, S., and Nagaya, N. (2007). Transplantation of mesenchymal stem cells attenu- ates myocardial injury and dys- function in a rat model of acute myocarditis. J. Mol. Cell. Cardiol. 42, 88–97.

Okamura, Y., Watari, M., Jerud, E. S., Young, D. W., Ishizaka, S. T., Rose, J., Chow, J. C., and Straus, J. F. III. (2010). Extracellular matrix of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 286, 10229–10233.

O’Neill, L. A., and Bowie, A. G. (2007). The family of five: TIR- like receptor signalling. Nat. Rev. Immunol. 7, 353–364.

Oppitz, C. A., Litzenburger, U. M., Lutz, C., Lanz, T. V., Tritschler, I., Koppel, A., Tolosa, E., Hoberg, M., Anderl, I., Aicher, W. K., Weller, M., Wick, W., and Platten, M. (2009). Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mes- enchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells 27, 909–919.

Penack, O., Holler, E., and van den Brink, M. R. (2010). Graft- versus-host disease: regulation by microbe-associated molecules and innate immune receptors. Blood 115, 1865–1712.

Pevsner-Fischer, M., Morand, V., Cohen- Sfady, M., Roussos-Noori, L., Zanin- Zhorov, A., Cohen, S., Cohen, I. R., and Zipori, D. (2007). Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109, 1442–1432.

Pitinger, M. E., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R. Masica, J. D., Moorman, M. A., Simon- etti, D. W., Craig, S., and Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

Prasanna, S. J., Gopalakrishnan, D., Shankar, S. R., and Vasandan, A. B. (2010). Pro-inflammatory cytokines, IFN gamma and TNF alpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS ONE 5, e9016. doi:10.1371/journal.pone.0009016.

Puisant, B., Barreau, C., Bourin, P., Clavel, C., Corre, J., Bousquet, C., Taureau, C., Cousin, B., Abbàl, M., Laharrague, P., Penicaud, L., Castella, L., and Blanchet, A. (2005). Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 129, 118–129.

Rafaghello, L., Bianchi, G., Bertolotto, M., Montecucco, F., Busca, A., Dall’i, E., Ottonello, L., and Pistoia, V. (2008). Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26, 151–162.

Rajcevic, G., Najar, M., Stamepatou- los, B., De Bruyn, C., Meuleman, N., Bron, D., Toungouz, M., and Lagueux, L. (2011). The primary iso- lates of mammalian cells, stem cells and derived cell lines. Proteomics 11, 691–708.

Stetson, D. B., and Medzhitov, R. (2006). Type I interferons in host defense. Immunity 25, 373–381.

Takeda, K., and Akira, S. (2005). Toll- like receptors in innate immunity. Nat. Immunol. 7, 1–14.

Termeer, C., Benedix, F., Sleeman, J., Fieber, C., Voith, U., Ahrens, T., Miyake, K., Freudenberg, M., Galanos, C., and Simon, J. C. (2002). Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195, 99–111.

Tomchuck, S. L., Zwezdaryk, J. K., Cof- fels, S. B., Waterman, R. S., Danaka, E. S., and Scardurro, A. B. (2008). Toll- like receptors on human mesenchy- mal stem cells drive their migration and immunomodulating responses. Stem Cells 26, 99–107.

Tomic, S., Djokic, J., Vasilijic, S., Vuce- vic, D., Todorovic, V., Supic, G., and Colic, M. (2011). Immunomodu- latory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor ago- nists. Stem Cells Dev. 20, 695–708.

van den Berk, L. C., Jansen, B. J., Siebers- Vermeulen, K. G., Netea, M. G., Lutuhin, T., Bergevoet, S., Ray- makers, R. A., Kagler, G., Figot, C. C., Adema, G. J., and Toorenswa, R. (2009). Toll-like receptor trig- gering in cord blood mesenchymal stem cells. J. Cell. Mol. Med. 13, 3415–3426.

Vogl, T., Tenbrock, K., Ludwig, S., Leukert, E., Ihrhardt, van Zoe- len, M. A., Nacken, W., Foell, D., van der Poll, T., Sorg, C., and Roth, J. (2007). MRP8 and MRP14 are endogenous activators of Toll- like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049.

Wang, Y., Abarbanell, A. M., Herrmann, J. L., Wel, B. R., Matuyan, M. C., Poynter, J. A., and Meldrum, D. R. (2010). TLR4 inhibits mesenchy- mal stem cell (MSC) STAT3 activation and thereby exerts deleteri- ous effects on MSC-mediated car- dioprotection. PLoS ONE 5, e14206. doi:10.1371/journal.pone.0014206.

Wang, X., Cheng, Q., Li, L., Wang, J., Xia, L., Xu, X., and Sun, Z. (2012). Toll-like receptors 2 and 4 mediate the capacity of mesenchymal stromal cells to support the proliferation and differentiation of CD34+ cells. Exp. Cell Res. 318, 196–206.

Wang, Z., Zhang, F. M., Wang, L. S., Yao, Y. W., Zhao, Q., and Gao, J. (2007). Particu- lides can protect mesenchymal stem cells (MSCs) from oxidative stress- induced apoptosis and enhance pro- liferation of MSCs via Toll-like receptor (TLR)-4 and PI3K/Akt. J Biol. Int. 33, 665–764.

DeLaRosa et al.
Waterman, R. S., Tomchuck, S. L., Henkle, S. L., and Betancourt, A. M. (2010). A new mesenchymal stem cell (MSC) paradigm: polariza-
tion into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. *PLoS ONE* 5, e10088. doi:10.1371/journal.pone.0010088

Xu, J., Woods, C. R., Mora, A. L., Joodi, R., Brigham, K. L., Iyer, S., and Rojas, M. (2007). Prevention of endotoxin-
induced systemic response by bone marrow-derived mesenchymal stem cells in mice. *Am. J. Physiol. Lung Cell Mol. Physiol.* 293, 131–141.

Yamamoto-Furusho, J. K., and Podolsky, D. K. (2007). Innate immunity in inflammatory bowel disease. *World J. Gastroenterol.* 13, 5577–5580.

Yang, D., Chen, Q., Su, S. B., Zhang, P., Kurosaka, K., Caspi, R. R., Michalek, S. M., Rosenberg, H. F., Zhang, N., and Oppenheim, J. J. (2008). Eosinophil-derived neuro-
toxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. *J. Exp. Med.* 205, 79–90.

Yañez, R., Lamana, M. L., García-Castro, J., Colmenero, I., Ramírez, M., and Buñerens, J. A. (2006). Adipose tissue-
derived mesenchymal stem cells have in vivo immunosuppressive proper-
ties applicable for the control of the graft-versus-host disease. *Stem Cells* 24, 2582–2591.

Yao, Y., Zhang, F., Wang, L., Zhang, G., Wang, Z., Chen, J., and Gao, X. (2009). Lipopolysaccharide precon-
ditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocar-
dial infarction. *J. Biomed. Sci.* 16, 74.

Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerodini, E., Giunti, D., Ceravolo, A., Cazzanti, E., Frassoni, E., Mancardi, G., and Uccelli, A. (2005). Mesenchymal stem cells ameliorate experimen-
tal autoimmune encephalomyelitis inducing T-cell anergy. *Blood* 106, 1755–1761.

Conflict of Interest Statement: Authors are full time employees of TiGenix.

Received: 14 March 2012; accepted: 13 June 2012; published online: 02 July 2012.

Citation: DelaRosa O, Dalemans W and Lombardo E (2012) Toll-like recep-
tors as modulators of mesenchymal stem cells. *Front. Immun.* 3:182. doi: 10.3389/fimmu.2012.00182

This article was submitted to Frontiers in Alloimmunity and Transplantation, a specialty of Frontiers in Immunology. Copyright © 2012 DelaRosa, Dalemans and Lombardo. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-
commercial use, distribution, and repro-
duction in other forums, provided the original authors and source are credited.