Acute inflammatory demyelinating polyneuropathy associated with pegylated interferon α 2a therapy for chronic hepatitis C virus infection

Vijay Khiani, Thomas Kelly, Adeel Shibli, Donald Jensen, Smruti R Mohanty

Abstract
The combination of pegylated interferon (Peg-IFN) and ribavirin is the standard of care for chronic hepatitis C virus (HCV) infection treatment. In general, common side effects related to this combination therapy are mild and are very well tolerated. However, peripheral neuropathy including demyelinating polyneuropathy related to Peg-IFN is extremely rare. We present the first case of an acute inflammatory demyelinating polyneuropathy (AIDP) associated with Peg-IFN-α 2a (Pegasys) after 16 wk of a combination therapy with Pegasys and ribavirin in a 65-year-old woman with chronic HCV infection. She developed tingling, numbness, and weakness of her upper and lower extremities and was hospitalized for acute neurological deficits. Her clinical course, neurological findings, an electromyogram (EMG), nerve conductions studies (NCS), muscle biopsy, and a sural nerve biopsy were all consistent with AIDP likely related to Pegasys use. The patient recovered completely with discontinuation of therapy including an immediate referral to a neurologist for the confirmation of diagnosis, management, and the prevention of long-term neurological deficits.

© 2008 WJG. All rights reserved.
total bilirubin 0.6 mg/dL, alkaline phosphatase 77 IU/mL, albumin 4.8 g/dL, and prothrombin time (PT) 13.1 s. Serum viral load was estimated to 2414896 IU/mL with a genotype 1a. A liver biopsy examination revealed a grade I and stage III liver disease with a focal bridging fibrosis. The patient participated in a clinical trial for chronic hepatitis C and received Pegasys 180 µg subcutaneously per week and ribavirin 1000 mg/d in divided doses orally. HCV RNA levels decreased to 416 IU/mL after 12 wk of therapy, indicating an early viral response (EVR).

Approximately 13 wk after start of the treatment, the patient presented to the University of Chicago hospital with a 24 h onset of fever, chills, nausea, vomiting, headache, and fatigue. Her chest X-ray and CT scan of chest demonstrated a right upper lobe pneumonia. A cerebrospinal fluid (CSF) analysis revealed the presence of single WBC (monocyte), glucose levels of 74 mg/dL within the normal range, and a protein level of 15 mg/dL. However, her sputum culture grew pneumococci requiring treatment with vancomycin, ceftriaxone, and moxifloxacin for pneumonia. Pegasys and ribavirin treatment thus was temporarily discontinued. The patient was discharged home with oral moxifloxacin medication and recovered from pneumonia. However, shortly after discharge, the patient developed a macular rash on the anterior and posterior chest wall with an extension of rash into the anterior abdominal wall, which was attributed to the use of antibiotics. Two weeks after the onset of pneumonia (wk 15), the patient was restarted with Pegasys and ribavirin. Unfortunately, she reported tingling, numbness, and weakness of her lower extremities 3 wk later (wk 16). Her neurological symptoms progressed rapidly over the course of 1 wk to the point of losing the ability to ambulate, and she became wheelchair bound. In addition, the patient also complained of tingling and numbness in the upper extremities involving the fingers and wrists bilaterally. Pegasys and ribavirin were discontinued due to an acute onset of weakness of upper and lower extremities. The patient was hospitalized again. The neurological examination revealed normal cranial nerves with normal bulk of muscles and tone; but a weak muscle strength (4/5) in the upper extremities as well as in hips, knees, and ankle dorsiflexion and ankle plantarflexion bilaterally. Other muscle groups were even weaker (3/5) including ankles and toes. Tendon reflexes were diminished significantly. Sensory examination revealed decreased light touch, pinprick, and temperature sensation from the feet to mid-calves as well as hands except vibratory sense. A clinical diagnosis of acquired, acute demyelinating sensorimotor polyneuropathy was made. Other laboratory tests included a normal complete blood count, chemistry profile, erythrocyte sedimentation rate, and C-reactive protein. Antinuclear antibodies, rheumatoid factor, human immunodeficiency virus (HIV) test, anti-GMI (ganglioside) antibodies, serum cryoglobulin level, Epstein-Barr virus serology, and cytomegalovirus serology were tested negative. A second CSF analysis was acellular again with protein (29 mg/dL) and glucose (60 mg/dL) levels within the normal range. In addition, myelin associated glycoprotein antibody was tested negative, and immunoglobulin A level was normal including negative immunoelectrophoresis for monoclonal antibodies in CSF.

An EMG, NCS, and Sural nerve biopsy were consistent with an AIDP (Table 1). The patient was treated with a course of IVIG at a dose of 0.4 g/kg per day. Unfortunately, she was only able to complete 4 d of treatment due to the development of a rash and leukopenia from IVIG. The patient was subsequently discharged for physical therapy and neurological rehabilitation where she had some improvement in her ability to write, to use utensils, and to ambulate with a walker.

Even though her neurological symptoms somewhat improved after a short course of IVIG, the patient developed bilateral foot drop, loss of finger grips, and a progressive weakness and numbness in both her hands and feet four weeks later. A neurological examination revealed decreased muscle bulks in the upper and lower extremities distally. Muscle strength was weaker (3/5) in finger abduction, plantar flexion and dorsiflexion bilaterally with bilateral foot drops. Tendon reflexes were 2/4 in the upper extremities but diminished significantly in the lower extremities, including absent reflexes at patella and achilles bilaterally. Remainders of motor examinations were normal. Sensory examination revealed normal sensation in the upper and lower extremities except absence of all modalities of sensation at her toes excluding sense of vibration and decreased pinprick sensation below the knees. Laboratory findings were again negative including anti-Sjogren’s syndrome A (SSA) and Sjogren’s syndrome B (SSB). Subsequently, a sural nerve biopsy and a gastrocnemius muscle biopsy were obtained and findings were consistent with an AIDP without showing any vasculitic features (Table 1). The patient was treated with 5 d of 2nd course of IVIG and the symptoms of weakness and bilateral legs numbness markedly improved over two months. Six months after the completion of the 2nd course of IVIG, the patient felt very well and neurological symptoms and signs resolved completely without having any residual neuromuscular deficits.

DISCUSSION

Peripheral neuropathy is a rare and uncommon side effect

Table 1 EMG/Nerve conduction studies
Distal latency (m/s)
Sensory
Right sural
Left sural
Motor
Right peroneal
Right tibial
Left tibial
Right ulnar
Right median
Left median
F wave
Right tibial
Right ulnar
Right median
Left median

NR: No response obtainable.
seen in patients treated with IFN-α. In recent years, a variety of peripheral neuropathies have been reported in patients treated with IFN including sensory neuropathy, autonomic neuropathy, Bell’s palsy, and more recently, CIDP[6-12]. As an example, one patient who received multiple cycles of IFN-α developed parathesias of both legs and was diagnosed with sensorimotor polyneuropathy due to high cumulative effect of IFN-α[8]. IFN-α 2a has also been shown to have caused peripheral sensory neuropathy given for a period of twenty months[7]. In this case, when IFN-α 2a was discontinued for 4 wk, peripheral neuropathy resolved. However, upon reinitiating the IFN-α 2a, the peripheral neuropathy re-appeared suggesting IFN-related neuropathy. Furthermore, Lapinski et al reported a case of peripheral polyneuropathy in a patient who received Pegasis for 1 mo followed by pegylated IFN α-2b (Pegintron) for 3 mo that resulted in paresis of hands and legs leading to a CIDP confirmed by an EMG[9].

The more probable etiologies in our patient included infectious processes, toxins and/or drugs, and immune-mediated processes leading to demyelinating neuropathies[13]. Viral infections such as HIV and CMV have been described to cause demyelinating neuropathy[14,15]. HIV infection can lead to peripheral neuropathy that can rapidly progress to either acute or chronic demyelinating neuropathy due to macrophage-mediated immune attachment within the endoneurial parenchyma[16]. Since HIV test was negative in our patient this was not the cause of her neuropathy. A CMV infection in a patient with chronic HCv can present as an acute Guillain-Barre syndrome (GBS)[13]. It has been hypothesized that host immune system mistakenly attacks own nerve cells that expressed similar epitope as of HCV or CMV antigen. Our patient had multiple CSF analysis that failed to detect CMV DNA. Therefore, our patient also did not have CMV-related demyelinating neuropathy.

Toxins and/or drugs are also common etiologies for demyelinating neuropathies, which can be acute or chronic in nature. Common toxins/drugs are barbital, sulfonamides, phenytoin, nitrofurantoin, heavy metals, carbon monoxide, industrial poisons, and certain AIDS drugs (e.g., zalcitabine, didanosine)[13]. Our patient had no exposure to any of these above toxins or drugs other than Pegasis, ribavirin, and moxifloxacin. There are several reported cases of moxifloxacin induced peripheral sensory neuropathy including an evidence of a tendon rupture without showing demyelinating neuropathy[17]. Similarly, ribavirin also has not been associated with any type of reported neuropathy. But Pegasis including IFN-α has been implicated to cause immune mediated CIDP during chronic hepatitis C treatment[18,19] due to cytokine-induced apoptosis in the myelin-producing oligodendrocyte resulting in inhibition of central nervous system remyelination thus causing demyelinating neuropathy[13,18,19]. To the contrary, IFN-α has also been shown to be a successful treatment in patients with CIDP[8]. However, if a patient develops demyelinating neuropathy secondary to IFN use, it should be discontinued immediately since it may cause irreversible nerve damage due to inhibition of remyelination process. Two cases of CIDP have been described either with Pegasis or IFN-α use[13,8]. In both cases, parasthesia and muscle weakness developed 6 wk after therapy and lasted more than 8 wk suggesting CIDP. It has been shown that patients with CIDP respond to prednisone, plasma exchange, and IVIG[13,20,21]. The time course for our patient’s symptoms was not long enough to meet the criteria for a CIDP. The criteria for CIDP usually include the clinical deterioration of neurological symptoms for a period of greater than 8 wk as opposed to AIDP and/or GBS, which usually has deterioration over a period of approximately 4 wk or less[21]. Furthermore, immune-mediated AIDP of GBS type has been reported after infection, post-vaccination, or surgery and also accounts for a significant portion of demyelinating polyneuropathies[13]. In our patient, there was an initial high suspicion for AIDP of GBS type due to a pneumonia prior to neurological symptoms and signs. Her time course fit an acute demyelinating neuropathy given that it developed approximately 3 wk later. A typical presentation of GBS includes a significant motor weakness along with mild to moderate paresthesias. The muscle weakness typically starts in the distal muscles of the lower extremities and weakness ascends rapidly involving upper extremities. In addition, CSF analysis usually reveals an elevated protein level with normal white blood cell count. Even though our patient’s presentation was suggestive of a GBS due to a preceding pneumonia, CSF analysis on multiple occasions revealed a normal CSF protein. Furthermore, our patient had significant painful paresthesias that are not commonly seen in GBS. Thus, the clinical course including normal CSF protein and painful paresthesias was not suggestive of a typical GBS, but rather suggestive of an acute immune mediated process related to Pegasis use as AIDP. The pathogenesis of AIDP related to Pegasis use is thought to be an acute immune-mediated process similar to GBS. The precise and exact immune regulatory function of IFN-α including Peg-IFN is not well understood and it is likely similar to mechanism associated with IFN induced CIDP described above[3,18,19]. In addition, IFN-α has been reported to enhance in vivo and in vitro autoantibody production and may upregulate transcription of genes associated with class I major histocompatibility complex (MHC) antigens[22]. It is likely that the levels of proinflammatory cytokines may trigger autoimmune phenomena in immunologically predisposed individuals when IFN is administered. Therefore, the immune system mistakenly attacks the host’s nerve tissue after recognizing a molecular epitope similar to a foreign antigen and may result in acute inflammatory neuropathy[23]. Immunomodulation with plasma exchange or IVIG usually shortens the disease process and provides the best outcome[23]. Our patient fit this clinical picture of an acute inflammatory neuropathy and showed a quick response to IVIG therapy.

One other possible immune-related process as the etiology of the demyelinating neuropathy would be IgM binding to Myelin-Associated Glycoprotein (MAG). Demyelinating polyneuropathy with monoclonal IgM is often associated with anti-MAG autoantibodies[24]. Our patient was negative for this antibody including negative immuneelectrophoresis suggesting this is not the case.

Vasculitic neuropathy, an autoimmune process may
also occur in association with chronic HCV infection. Generally, patients may develop a chronic symmetrical axonal sensorimotor peripheral polyneuropathy due to a necrotizing vasculitis. Subsequent treatment with IFN-α can worsen vasculitic neuropathy. In addition, there have been multiple reported cases of GBS associated with HCV related to cryoglobulinemia. However, our patient had an undetectable cryoglobulin level on multiple occasions, which rules out a possibility of cryoglobulin induced demyelinating neuropathy.

In conclusion, the treatment of chronic HCV infection has come a long way in recent years. Physicians and other medical providers must be aware of possible side effects, including demyelinating neuropathy in patients who are treated with IFN and/or pegylated IFN in addition to HCV/cryoglobulin related neuropathy. As we learned from our case, Pegasys may cause neurological symptoms including AIDP. In addition, it is imperative on the part of the health care providers recognize AIDP very early for the diagnosis and treatment including the prevention of a long-term neurological complication by obtaining a neurology consultation.

REFERENCES

1. Russo MW, Fried MW. Side effects of therapy for chronic hepatitis C. Gastroenterology 2003; 124: 1711-1719
2. Tosti A, Misciali C, Bardazzi F, Fanti PA, Varotti C. Telogen effluvium due to recombinant interferon alpha-2b. Dermatology 1992; 184: 124-125
3. Formann E, Stauber R, Denk DM, Jessner W, Zollner G, Munda-Steindl P, Gangl A, Ferenci P. Sudden hearing loss in patients with chronic hepatitis C treated with pegylated interferon/ribavirin. Am J Gastroenterol 2004; 99: 873-877
4. Kawano T, Shigeheira M, Uto H, Nakama T, Kato J, Hayashi K, Maruyama T, Kuribayashi T, Chuman T, Futami T, Tsuobuchi H. Retinal complications during interferon therapy for chronic hepatitis C. Am J Gastroenterol 1996; 91: 309-313
5. Meriglioli MN, Rowin J. Chronic inflammatory demyelinating polyneuropathy after treatment with interferon-alpha. Muscle Nerve 2000; 23: 433-435
6. Tellez-Zenteno JF, Negrete-Pulido O, Nunez M, Estanol-Vidal B, Garcia-Ramos G. Peripheral neuropathy during a second cycle of treatment with high doses of interferon-alpha in a patient with hepatitis C, and a review of the literature. Rev Neurol 2002; 35: 644-646
7. Emir S, Kutlu & T, Chan KW, Yalcin B, Varli K, Buyukpmukcu M. Peripheral neuropathy after alpha-interferon therapy in a child with Hodgkin’s disease. Pediatr Hematol Oncol 1999; 16: 557-560
8. Marzo M, Tintore M, Fabregues O, Montalban X, Codina A. Chronic inflammatory demyelinating polyneuropathy during treatment with interferon-alpha. J Neurol Neurosurg Psychiatry 1998; 65: 604-615
9. Lapinski TW, Novacka B, Michalewicz M. The peripheral polyneuropathy in patients with chronic HCV infection treated with peginterferon alfa with ribavirin. Pol Merkur Lekarski 2005; 18: 431-432
10. Marey-Lopez J, Sousa CP. Trigeminal sensory neuropathy related to interferon-alpha treatment. Muscle Nerve 2006; 33: 581-582
11. Irioka T, Yamada M, Yamawaki M, Saito Y, Mizusawa H, Yamada M, Miura H. Acute autonomic and sensory neuropathy after interferon alpha-2b therapy for chronic hepatitis C. J Neurol Neurosurg Psychiatry 2001; 70: 408-410
12. Hoare M, Woodall T, Alexander GJ. Bell’s palsy associated with IFN-alpha and ribavirin therapy for hepatitis C virus infection. J Interferon Cytokine Res 2005; 25: 174-176
13. Beers M, Berkow R. Disorders of the Peripheral Nervous System. The Merck Manual of Diagnosis and Therapy. 18th edition. Whitehouse Station, NJ: Merck & Co., Inc. 2006: 1887-1891
14. Wulf EA, Wang AK, Simpson DM. HIV-associated peripheral neuropathy: epidemiology, pathophysiology and treatment. Drugs 2000; 59: 1251-1260
15. Hernandez-Boluda JC, Lis MJ, Goterris R, Arbona C, Terol MJ, Tormo M, Solano C. Guillain-Barre syndrome associated with cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2005; 7: 93-96
16. Dalakas MC, Cupler EJ. Neuropathies in HIV infection. Baillieres Clin Neurol 1996; 5: 199-218
17. Bayer Corporation. Avelox homepage on the Internet. West Haven, CT: Serial online, 2006-05-22, cited 2006-07-13. Available from: URL: http://www.avelox.pharma.bayer.com/en/physicians/tablets_prodnfo/safety_profile.html
18. Lin W, Harding HP, Ron D, Popko B. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. J Cell Biol 2005; 169: 603-612
19. Lin W, Kemper A, Dupree JL, Harding HP, Ron D, Popko B. Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain 2006; 129: 1306-1318
20. Hughes RA. Management of chronic inflammatory demyelinating polyradiculoneuropathy. Drugs 2003; 63: 275-287
21. van Doorn PA, Ruts L. Treatment of chronic inflammatory demyelinating polyneuropathy. Curr Opin Neurol 2004; 17: 607-613
22. Chung YH, Shong YK. Development of thyroid autoimmunity after administration of recombinant human interferon-alpha 2b for chronic viral hepatitis. Am J Gastroenterol 1993; 88: 244-247
23. Avila-Funes JA, Mariona-Montero VA, Melano-Carranza E. Guillain-Barre syndrome: etiology and pathogenesis. Rev Invest Clin 2002; 54: 357-363
24. Ritz MF, Erne B, Ferracin F, Vital A, Vital C, Steck AJ. Anti-MAG IgM penetration into myelinated fibers correlates with the extent of myelin widening. Muscle Nerve 1999; 22: 1030-1037
25. Boonyapisit K, Kattirj B. Severe exacerbation of hepatitis C-associated vasculitic neuropathy following treatment with interferon alpha: a case report and literature review. Muscle Nerve 2002; 25: 909-913
26. Lacliere F, Zylberberg H, Hagehe H, Roualbes D, Mevrignac C, Chousterman M, Girot R. Hepatitis C associated with Guillain-Barre syndrome. Liver 1998; 18: 49-51
27. Vigani AG, Macedo-de-Oliveira A, Pavan MH, Pedro MN, Goncales Jr FL. Hepatitis C virus infection, cryoglobulinemia, and peripheral neuropathy: a case report. Braz J Med Biol Res 2005; 38: 1729-1734

S-Editor Zhu LH I-Editor Mihm S E-Editor Yin DH