Research Article

Picroside II Improves Severe Acute Pancreatitis-Induced Hepatocellular Injury in Rats by Affecting JAK2/STAT3 Phosphorylation Signaling

Xuehua Piao,1 Xiaodan Sui,2 Baohai Liu3, Tingfang Cui3, and Zinan Qi3

1Department of Traditional Chinese Medicine, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121001, China
2Department of Hepatology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
3Department of Gastroenterology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121001, China

Correspondence should be addressed to Baohai Liu; liubaoh627@163.com

Received 23 March 2021; Revised 3 June 2021; Accepted 4 July 2021; Published 28 July 2021

Academic Editor: Ying Peng

Copyright © 2021 Xuehua Piao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Picroside II is an important ingredient agent in Traditional Chinese medicine and hoped to reduce hepatocellular injury caused by severe acute pancreatitis (SAP). An SAP-induced hepatocellular injury model was established in rats by using pentobarbital sodium. 27 rats were divided into 3 groups: the sham group (SG), model group (MG), and Picroside groups (PG). SAP-induced hepatocellular injury was assessed using hematoxylin and eosin staining. We measured hepatocellular enzymes (amylase (AMY), alanine aminotransferase (ALT), and aspartate aminotransferase (AST)), oxidative stress factors (superoxide dismutase (SOD) and malondialdehyde (MDA)), and inflammatory factors (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and IL-10), apoptotic factors (BAX and cleaved caspase 3), and inflammatory signaling (Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3), p-JAK2, and p-STAT3) in hepatocellular tissues. The SAP-induced hepatocellular injury model was successfully established. Picroside II treatment repaired hepatocellular injury by reducing the activities of AMY, ALT, and AST; reducing the levels of MDA, TNF-α, IL-1, IL-6, p-JAK2, and p-STAT3 in hepatocellular tissues. The SAP-induced hepatocellular injury model was successfully established. Picroside II treatment repaired hepatocellular injury by reducing the activities of AMY, ALT, and AST; reducing the levels of MDA, TNF-α, IL-1, IL-6, p-JAK2, and p-STAT3 in hepatocellular tissues. The SAP-induced hepatocellular injury model was successfully established. Picroside II exerted protective function for the SAP-induced hepatocellular injury model. Picroside II improved SAP-induced hepatocellular injury and antioxidant and anti-inflammatory properties by affecting JAK2/STAT3 phosphorylation signaling.

1. Introduction

Severe acute pancreatitis (SAP) is a remarkably serious illness in the pancreas, which is associated with numerous tissue failures and high risk of morbidity and mortality [1, 2]. SAP development can straightforwardly induce hepatocellular injury [3, 4]. Furthermore, the hepatic injury cannot only worsen pancreatitis state but also develop into hepatic failure and trigger mortality of SAP patients [5].

Although diagnosis and therapy technology for SAP have improved considerably, no medication is used to treat SAP specifically and an efficient curative drug is still hard to be accessible. Rapid antibiotic treatment is suggested once inflammatory indicators are elevated in severe pancreatitis, to stop the pancreatic infection. Unluckily, there are still persistent controversial questions for antibiotic administration and the subjects who benefit from antibiotic therapy in pancreatitis [6]. Natural products have been considered for the therapy of SPA and its induced organ failures with few side effects. For instance, emodin, a natural anthraquinone compound isolated from the herb Rheum officinale Baill, exerts significant anti-inflammatory activities and has been found to be beneficial for the recovery of SAP by affecting the P2X ligand-gated ion channel 7/NOD-like receptor protein 3 signaling pathway [7]. Picroside II, an active essential obtained from Picrohiza kurrooa [8], Pseudolysimachion rotundum var. subintegrum [9], and Picrohiza scrophulariiflora [10], is undergoing the preclinical study and exhibits...
dose-dependent protection of the hepatocellular injury [10] and has significant antioxidant and anti-inflammatory properties [11].

In our previous work, we found that Picroside II improved SAP by preventing NF-κB-dependent autophagy [12] or SAP-induced intestinal barrier injury by affecting toll-like receptor 4- (TLR4-) dependent the phosphatidylinositol 3-kinase/-protein kinase B/nuclear factor-κB (JAK2/STAT3) signaling and gut microbiota [13]. However, the effects of Picroside II on SAP-induced hepatocellular injury remain widely unknown. Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is one of the main signaling for cytokine signal transduction in hepatocellular injury during SAP [3]. Therefore, in this study, we aimed to explore the related molecular mechanisms by investigating the effects of Picroside II on the related molecules of JAK2/STAT3 signaling in the SAP-induced hepatocellular injury model.

2. Materials and Methods

2.1. Chemicals. Picroside II (purity > 98%, CAS Number: 39012-20-9) and sodium taurocholate (CAS Number: 145-42-6) were purchased from Aladdin and dissolved in saline solution to a final concentration of 1 mg/mL and 4 mg/mL, respectively. AMS detection kit was purchased from Regen (CAS Number: TE0203). Chemical agents, all other ELISA kits, and antibodies were purchased from Wanleibio (Shenyang, China).

2.2. Establishment of the SAP-Induced Hepatocellular Injury Model. All experimental steps were approved by the Animal Research Ethics Committee of Jinzhou Medical University and consistent with Guidelines for the Ethical Review of Laboratory Animal Welfare, People’s Republic of China National Standard GB/T 35892-2018 [14]. Twenty-seven male Sprague-Dawley (SD) rats (8 weeks old; weighing 200–220 g) were purchased from the animal center of Jinzhou Medical University according to a previous report [15]. The rats were kept under a Light (L) phase–Dark (D) phase (12:12) cycle. Oral administration of 50 mg/kg of metronidazole was performed to reduce the postsurgery pain. All rats were fasted for 12 h before the detection of the live enzymes. The enzymes, amylase (AMY) [16], alanine aminotransferase (ALT) [17, 18], and aspartate aminotransferase (AST) [18] are widely reported biomarkers in liver disease or injury. After 12-hour SAP modelling, one mL blood samples were taken from the post cava of rats via the catheter using sterile syringes, and serum was isolated via centrifugation. After 12-hour SAP modelling, one mL blood samples were taken from the post cava of rats via the catheter using sterile syringes, and serum was isolated via centrifugation.

2.3. Measurement of Liver Enzyme Activities. The rats were fasted for 12 h before the detection of the live enzymes. After 12-hour SAP modelling, one mL blood samples were taken from the post cava of rats via the catheter using sterile syringes, and serum was isolated via centrifugation. After 12-hour SAP modelling, one mL blood samples were taken from the post cava of rats via the catheter using sterile syringes, and serum was isolated via centrifugation.

2.4. Animal Grouping. After the SAP-induced hepatocellular injury model was established, 27 animals were thus evenly divided into 3 groups according to different treatments, the sham group (SG), the model group (MG), and Picroside II group (PG). After 6-hour, 12-hour, and 24-hour model establishment, three rats from each group were sacrificed. The serum, liver, and pancreas of rats in each group were sampled. After 12-hour SAP modelling, one mL blood samples were taken from the post cava of rats via the catheter using sterile syringes, and serum was isolated via centrifugation. After 12-hour SAP modelling, one mL blood samples were taken from the post cava of rats via the catheter using sterile syringes, and serum was isolated via centrifugation.
point. Among them, some of the liver tissues and pancreas tissues need to be cryopreserved, and some tissues were paraffin-embedded for subsequent testing.

2.5. Measurement of Cholestasis. Sodium taurocholate was injected in the common duct, and bile acids would be mediated by sodium taurocholate [19]. Accumulation of bile acids in cholestasis will result in liver inflammation and injury [20]. The levels of total bile acids (TBA) in the serum and liver were measured using the kit from Wuhan Huamei Bi-engineering Institute.

2.6. Measurement of Serum Biochemical Indexes. Serum was prepared via centrifugation at 3,000 × g for 10 min according to the above method and used for ELISA measurement. The serum levels of tumor necrosis factor α (TNF-α), interleukin (IL-6), IL-10, superoxide dismutase (SOD), and malondialdehyde (MDA) were measured by using corresponding ELISA kits (a detection range of 2 to 250 pg/mL for TNF-α, 1 to 200 pg/mL for IL-6, 5 to 400 pg/mL for IL-10, 0.78-50 ng/mL for SOD, and 30-2000 ng/mL) from Wanleibio.

2.7. Histological Analysis of the Pancreas and Liver Tissues. The pancreas and liver tissues were extracted at 6 h, 12 h, and 24 h after the establishment of the SAP-induced hepato-cellular injury model. The tissues were fixed in 5% paraformaldehyde and embedded in paraffin. The embedded tissues were cut into 4 μm slices, respectively, for staining with hematoxylin and eosin (H&E). The severity of liver tissue injury was evaluated by using the formula pathological score = edema + number of inflammatory cells + number of necrotic cells + bleeding. The severity of liver tissue injury was evaluated by using the formula pathological score = neutrophil infiltration and edema + swelling of liver cells and stenosis of liver sinusoids + eosinophilic changes/eosinophilic necrosis of liver cells + focal necrosis + hepatocytes having dual nuclei + Kupffer cell hyperplasia and hypertrophy [21]. Five different fields were examined in each group.

2.8. Immunohistochemistry Analysis. Immunohistochemistry analysis was performed to assess the in situ expressed level of apoptotic factors (BAX and cleaved caspase 3), JAK2, p-JAK2, STAT3, and p-STAT3 in hepatocellular tissues. The embedded slices were deparaffinized and treated with hydrogen peroxide for 10 min. The expression levels of JAK2, p-JAK2, STAT3, and p-STAT3 in hepatocellular tissues need to be cryopreserved, and some tissues were paraffin-embedded for subsequent testing.

2.9. Reverse Transcription-Quantitative PCR (RT-qPCR). RNA was isolated from 10-mg hepatocellular tissues using TRIzol reagent. cDNA was synthesized using a reverse transcription kit. The following primers were used: forward primer 5′-GGGACGAACTGAGCAGTAAACT-CAT-3′ and reverse primer 5′-GGAGTCACCAGCACCACCTCT-3′ [23]; caspase 3, forward primer 5′-ACGGTACGGA AGAAA-AGTGAC-3′ and reverse primer 5′-TCCTGA CTTCGATATTCAGGCC-3′ [24]; JAK2 forward, primer 5′-GCCAGCCCTAAGGACTTCAAC-3′ and reverse primer 5′-CCGCGAGGTGTATTTCCTCC-3′ [25]; STAT3, forward primer 5′-TGGAGAGGGCCGCAGCATGC-3′ and reverse primer 5′-CAGGCCCCCATTCCACAT-3′ [26]; and β-actin, forward primer 5′-TCTGCATCCTG-3′ and reverse primer 5′-GACCAGATGTC GAAGGAGAT-3′ [27]. Relative mRNA levels were standardized to β-actin via a ΔΔCt method.

2.10. Western Blot. 10 mg hepatocellular tissues were pulverized in liquid nitrogen, and protein was obtained using RIPA lysis. Protein concentration quantified using the BCA kit. About 5.32-9.55 μg of protein in 20 μL for each sample was separated using SDS-PAGE and moved to the PVDF membrane. The membrane was blocked for 1 h at 22°C in 5% non-fat milk and probed with primary antibodies for 4 h at 37°C, rinsed four times with PBTB, incubated with secondary antibody for 2 h at 37°C, and washed in PBS. Target protein bands were obtained on Gel image processing system (Beijing Liuyi). Relative protein levels were evaluated using Gel-Pro-Analyzer and β-actin.

2.11. Terminal Deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) Assay. 4 μm sections of tissues were exposed to an apoptosis-specific staining kit (TUNEL assay) (Wanleibio, Shenyang, China) based on the manufacturer’s instructions. Quantitative analysis was carried out by measuring TUNEL-positive (apoptotic) cells, which were quantified by counting amber-colored cells in five fields.

2.12. Statistical Analyses. Data are presented as the means ± standard error of the mean (SEM) and analyzed using the SPSS 21.0 software (SPSS, Inc., Chicago, IL, USA). Student’s t-test and one-way analysis of variance (ANOVA) with post hoc Tukey’s tests were used to evaluate the variables between groups. Paenonilinor and baikalin occupy the main proportion of Picroside II, and the Pearson correlation coefficient test was used to explore the relationship between serum levels and oxidative and/or inflammatory factors. The statistical difference was significant if the value of P < 0.05.

3. Results

3.1. Picroside II Treatment Reduced the Levels of Liver Enzymes. AMY activity increased in the MG group when compared with the SG group while Picroside II treatment
3.2. Picroside II Treatment Reduced the Severity of SAP. The establishment of the SAP caused edema, the appearance of inflammatory cells, necrotic cells, and bleeding in pancreatic tissues at 6 hours (Figure 1(e)), 12 hours (Figure 1(f)), and 24 hours (Figure 1(g), P < 0.05) when compared with those in the SG group. By contrast, Picroside II treatment reduced the severity of SAP at 6 hours (Figure 1(e)), 12 hours (Figure 1(f)), and 24 hours (Figure 1(g), P < 0.05) when compared with those in the MG group. The results suggest that Picroside II treatment reduces the severity of SAP.

3.3. Picroside II Treatment Reduced SAP-Induced Hepatocellular Injury. The establishment of the SAP-induced hepatocellular injury model increased neutrophil infiltration and edema, swelling of liver cells and stenosis of liver sinusoids, eosinophilic changes/eosinophilic necrosis of liver cells, focal necrosis, dual nuclei in hepatocytes, Kupffer cell hyperplasia, and hypertrophy at 6 hours (Figure 1(h)), 12 hours (Figure 1(i)), and 24 hours (Figure 1(j), P < 0.05) when compared with those in the SG group. By contrast, Picroside II treatment reduced the SAP-

Figure 1: The effects of Picroside II on the liver injury. (a) The time flowchart on the biochemical analysis. (b) Amylase (AMY). (c) ALT. (d) AST. (e) Hematoxylin and Eosin (H&E) staining analysis of the effects of Picroside II on serious acute pancreatitis (SAP) and disease scores at 6 hours. (f) Disease scores at 12 hours. (g) Disease scores at 24 hours. (h) Hematoxylin and Eosin (H&E) staining analysis of the effects of Picroside II on serious acute pancreatitis- (SAP-) induced hepatocellular injury. Disease scores at 6 hours. (i) Disease scores at 12 hours. (j) Disease scores at 24 hours. All rats were divided into 3 groups, the sham group (SG), the model group (MG), and the Picroside II group (PG). The arrows show the inflammatory cells. n = 3 for each group. Scale bar = 30 μm. ∗P < 0.05 vs. the MG group.
induced hepatocellular injury at 6 hours (Figure 1(h)), 12 hours (Figure 1(i)), and 24 hours (Figure 1(j), $P < 0.05$) when compared with those in the MG group. The results suggest that Picroside II treatment reduces SAP-induced hepatocellular injury.

3.4. SAP Did Not Induce Cholestasis

The results showed that the statistical differences for TBA levels in the serum and liver were insignificant (Figures 2(a) and 2(b)), suggesting that the SAP model did not induce cholestasis.

3.5. Picroside II Treatment Increased Antioxidant Properties in the SAP-Induced Hepatocellular Injury Model

SOD activity is commonly known as a marker of antioxidant properties. After the establishment of the SAP-induced hepatocellular injury model, the activities of SOD reduced at 6 hours (Figure 3(a)), 12 hours (Fig. S1A), and 24 hours (Supporting material; Fig. S1B, $P < 0.05$) when compared with those in the SG group. By contrast, Picroside II treatment increased the activities of SOD at 6 hours (Figure 3(a)), 12 hours (Fig. S1A), and 24 hours (Fig. S1B, $P < 0.05$) when compared with those in the MG group. The results suggest that Picroside II treatment increases antioxidant properties in the SAP-induced hepatocellular injury.

3.6. Picroside II Treatment Increased Anti-Inflammatory Properties in the SAP-Induced Hepatocellular Injury

TNF-α and IL-6 are widely reported proinflammatory cytokines [28], and IL-10 is a potent anti-inflammatory immunosuppressive cytokine [29]. After the establishment of the SAP-induced hepatocellular injury, the levels of TNF-α increased at 6 hours (Figure 4(a)), 12 hours (Fig. S2A), and 24 hours (Fig. S2B, $P < 0.05$) when compared with those in the SG group. By contrast, Picroside II treatment reduced the levels of TNF-α at 6 hours (Figure 4(a)), 12 hours (Fig. S2A), and 24 hours (Fig. S2B, $P < 0.05$) when compared with those in the MG group. After the establishment of the SAP-induced hepatocellular injury, the levels of IL-6 increased at 6 hours (Figure 4(b)), 12 hours (Fig. S2C), and 24 hours (Fig. S2D, $P < 0.05$) when compared with those in the SG group. By contrast, Picroside II treatment reduced the levels of IL-6 at 6 hours (Figure 4(b)), 12 hours (Fig. S2C), and 24 hours (Fig. S2E, $P < 0.05$) when compared with those in the MG group.
group. By contrast, after the establishment of the SAP-induced hepatocellular injury, the levels of IL-10 reduced at 6 hours (Figure 4(c)), 12 hours (Fig. S2E), and 24 hours (Fig. S2F, \(P < 0.05\)) when compared with those in the SG group. By contrast, Picroside II treatment increased the levels of IL-10 at 6 hours (Figure 4(c)), 12 hours (Fig. S2E), and 24 hours (Fig. S2F, \(P < 0.05\)) when compared with those in the MG group. After the establishment of the SAP-induced hepatocellular injury model, relative mRNA levels of cleaved caspase 3 increased at 6 hours, 12 hours, and 24 hours (Figure 6(b), \(P < 0.05\)) when compared with those in the MG group. The results suggest that Picroside II treatment increased anti-inflammatory properties in the SAP-induced hepatocellular injury.

3.7. Picroside II Treatment Reduced Relative mRNA Levels of Apoptotic Factors and JAK2/STAT3 in Hepatocellular Tissues. BAX and cleaved caspase 3 are widely reported apoptotic factors, and JAK2/STAT3 is a potent pathway mediating inflammatory responses in the SAP-induced hepatocellular injury model [31]. For apoptotic factors, after the establishment of the SAP-induced hepatocellular injury model, relative mRNA levels of BAX increased at 6 hours, 12 hours, and 24 hours (Figure 6(d), \(P < 0.05\)) when compared with those in the SG group. By contrast, Picroside II treatment reduced relative mRNA levels of BAX at 6 hours, 12 hours, and 24 hours (Figure 6(d), \(P < 0.05\)) when compared with those in the MG group. After the establishment of the SAP-induced hepatocellular injury model, relative protein levels of cleaved caspase 3 increased at 6 hours, 12 hours, and 24 hours (Figure 6(f), \(P < 0.05\)) when compared with those in the MG group. For JAK2/STAT3 signaling, after the establishment of the SAP-induced hepatocellular injury model, relative protein levels of JAK2 changed less at 6 hours, 12 hours, and 24 hours (Figure 6(f), \(P < 0.05\)) when compared with those in the MG group. Picroside II treatment did not change relative mRNA levels of STAT3 at 6 hours, 12 hours, and 24 hours (Figure 6(d), \(P > 0.05\)) when compared with those in the MG group.

3.8. Picroside II Treatment Reduced Relative Protein Levels of Apoptotic Factors and JAK2/STAT3 in Hepatocellular Tissues. BAX and cleaved caspase 3 are widely reported apoptotic factors, and JAK2/STAT3 is a potent pathway mediating inflammatory responses in the SAP-induced hepatocellular injury model. For apoptotic factors, after the establishment of the SAP-induced hepatocellular injury model, relative protein levels of BAX increased at 6 hours, 12 hours, and 24 hours (Figure 6(e), \(P < 0.05\)) when compared with those in the SG group. By contrast, Picroside II treatment reduced relative protein levels of BAX at 6 hours, 12 hours, and 24 hours (Figure 6(e), \(P < 0.05\)) when compared with those in the MG group. After the establishment of the SAP-induced hepatocellular injury model, relative protein levels of JAK2 changed less at 6 hours, 12 hours, and 24 hours (Figure 6(f), \(P < 0.05\)) when compared with those in the MG group. Picroside II treatment did not change relative protein levels of JAK2 at 6 hours, 12 hours, and 24 hours (Figure 6(e), \(P < 0.05\)) when compared with those in the MG group. Picroside II treatment did not change relative protein levels of JAK2 at 6 hours, 12 hours, and 24 hours (Figure 6(e), \(P < 0.05\)) when compared with those in the MG group. After the establishment of the SAP-induced hepatocellular injury model, relative protein levels of STAT3 changed less at 6 hours, 12 hours, and 24 hours (Figure 6(i), \(P > 0.05\)) when compared with those in the SG group. Picroside II treatment did not change relative protein levels of STAT3 at 6 hours, 12 hours, and 24 hours (Figure 6(i), \(P > 0.05\)) when compared with those in the MG group.

Figure 4: The effects of Picroside II on the serum levels of inflammatory cytokines. (a) Tumor nuclear factor- (TNF-) α level at 6 hours. (b) Interleukin-6 (IL-6) level at 6 hours. (c) Interleukin-10 (IL-10) level at 6 hours. *\(P < 0.05\) vs. the MG group. \(n = 3\) for each group.
STAT3 at 6 hours, 12 hours, and 24 hours (Figure 6(i), \(P > 0.05 \)) when compared with those in the MG group. In contrast, after the establishment of the SAP-induced hepato-cellular injury model, relative protein levels of p-STAT3 increased at 6 hours, 12 hours, and 24 hours (Figure 6(j), \(P < 0.05 \)) when compared with those in the SG group. Picroside II treatment reduced relative protein levels of p-STAT3 at 6 hours, 12 hours, and 24 hours (Figure 6(j), \(P < 0.05 \)) when compared with those in the MG group. The results suggest that Picroside II treatment increases antiapoptosis and anti-inflammatory activities by reducing relative protein levels of apoptotic factors and JAK2/STAT3 signaling in hepatocellular tissues.

3.9. Picroside II Treatment Reduced the Expression of Apoptotic Factors and JAK2/STAT3 in Hepatocellular Tissues. For apoptotic factors, after the establishment of the SAP-induced hepato-cellular injury model, the expression of BAX increased at 6 hours, 12 hours, and 24 hours (Figure 6(k), \(P < 0.05 \)) when compared with those in the SG group. By contrast, Picroside II treatment reduced the expression of cleaved caspase 3 at 6 hours, 12 hours, and 24 hours (Figure 6(l), \(P < 0.05 \)) when compared with those in the MG group. After the establishment of the SAP-induced hepato-cellular injury model, the expression of STAT3 changed less at 6 hours, 12 hours, and 24 hours (Figure 6(o), \(P > 0.05 \)) when compared with those in the SG group. Picroside II treatment did not change the expression of STAT3 at 6 hours, 12 hours, and 24 hours.

Figure 5: The functional mechanism of Picroside II. Picroside II may exert its function by affecting JAK2/STAT3 phosphorylation signaling, which results in the increase in antioxidant, anti-inflammatory, and antiapoptotic activities.
Relative mRNA levels of BAX

Relative mRNA levels of cleaved caspase-3

Relative mRNA levels of JAK2

Relative mRNA levels of STAT3

Relative protein levels of BAX

Relative protein levels of cleaved caspase-3

Relative protein levels of JAK2

Relative protein levels of p-JAK2

Relative protein levels of p-STAT3

Relative protein levels of STAT3

Figure 6: Continued.
When compared with those in the MG group. In contrast, after the establishment of the SAP-induced hepatocellular injury model, the expression of p-STAT3 increased at 6 hours, 12 hours, and 24 hours (Figure 6(p), P < 0.05) when compared with those in the SG group. Picroside II treatment reduced the expression of p-STAT3.
infiltration and edema, swelling of liver cells and stenosis of liver sinusoids, eosinophilic changes/eosinophilic necrosis of liver cells, focal necrosis, dual nuclei in one cell, Kupffer cell hyperplasia, and hypertrophy (Figure 1). All results suggest that the SAP-induced hepatocellular injury model was successfully established. The model establishment affected the levels of oxidative stress biomarkers (Figure 3) and increased the levels inflammatory factors (Figure 4), apoptotic factors and inflammatory signaling JAK2/STAT3 (Figure 6), and pancreas tissue apoptosis (Figure 7). Picroside II treatment repaired the hepatocellular injury caused by the SAP-induced hepatocellular injury model (Figure 1) by affecting the levels of oxidative stress biomarkers (Figure 3), inflammatory factors (Figure 4), apoptotic factors and inflammatory signaling JAK2/STAT3 (Figure 6), and tissue apoptosis (Figure 7).

SAP contributes to hepatocyte injury during acute pancreatitis, and SAP-induced hepatocellular injury is consistent with the previous reports [3]; the JAK2/STAT3 signaling pathway plays an important role on liver injury associated with SAP in the rat model. However, there is still partial difference with the report, which is not involved with the study on the changes of p-JAK2 and p-STAT3. Conversely, the present study did not show the changes of JAK2 and STAT3 for the SAP-induced hepatocellular injury model. Other mechanisms for SAP-induced hepatocellular injury also existed. For an example, pancreatitis-induced ascitic fluid (PAF) may cause liver injury and hepatocyte apoptosis by affecting p38-MAPK and cleaved caspase 3 [32].

Picroside II exerted protective function in the SAP-induced hepatocellular injury model. Picroside II treatment increased the levels of SOD and reduced the MAD level. The treatment resulted in the reduction in the levels of proinflammatory cytokines TNF-α and IL-6 and the increase in IL-10 level. Picroside II intervention reduced the levels of BAX and cleaved caspase 3. Therefore, Picroside II treatment increased antioxidant, anti-inflammatory, and antiapoptosis capacities in the model. Picroside II also had been reported to have inhibitory function on oxidative signaling pathway [11] and reduce inflammatory and apoptotic cells [33]. A previous work also showed its antioxidant and anti-inflammatory properties in a kidney ischemia/reperfusion injury model by affecting TLR4/NF-κB signaling [34]. Present findings demonstrated that Picroside II showed significant inhibitory functions on the apoptosis of the model by affecting the levels of BAX, cleaved caspase 3 (Figure 6), and TUNEL scores of hepatocellular tissues (Figure 7), which is also consistent with a previous report that Picroside II had a protective function for hepatocyte and exerted an inhibitory impact on hepatocyte apoptosis [35].

The present findings show that Picroside II treatment increases antioxidant, anti-inflammatory, and antiapoptotic activities in the SAP model. The possible mechanisms may be explained as follows: Picroside II displays protective function for liver injury possibly through activation of farnesoid X receptor [36], which reduces oxidative, inflammatory, and apoptotic activities by affecting JAK2/STAT3 signaling (Figure 5) [37]. The levels of serum AMY, ALT, AST, IL-6, TNF-α, MDA, and SOD are closely associated with the SAP model.
progression in the patients with liver function damage, and effective therapy can reduce the levels of AMY, ALT, AST, IL-6, TNF-α, and MDA and increase the levels of SOD. A previous study showed that the IL-10 polymorphism can affect SAP and IL-10-1082A allele exerts a protective factor in SAP patients [38]. Comparatively, the levels of p-JAK2, p-STAT3, BAX, and caspase 3 were widely reported in animal models and seldom reported in the study on the prognosis of the SAP human patients.

There were some limitations in the present study. Although Picroside II treatment changed the levels of apoptotic factors and inflammatory signaling Jak2/Stat3, the association between the signaling molecules and inflammatory cytokines, or oxidative biomarkers, and/or apoptotic factors was not explored in the present study. The exact mechanism for SAP-induced hepatocellular injury remained unclear. The exact association between the signaling molecules and inflammatory cytokines, or oxidative biomarkers, and/or apoptotic factors may be explored by using target gene overexpression or knockout in the animal models. The important issue will be considered in our future work. The direct function of Picroside II on oxidative stress was performed in this study, such as the effect of Picroside II on ROS contents. A further work is needed to be performed to address these issues in the future.

Data Availability

The original data of the experiment can be obtained by email from the corresponding author.

Conflicts of Interest

The authors declare there are no conflicts of interest.

Authors’ Contributions

XP, XS, and BL designed and performed the experiment. TC and ZQ analyzed the related data. BL and ZQ wrote the paper. All authors read and revised the full text and approved the final submission.

Acknowledgments

The project was supported by “Nurturing Seedlings” Project of Young Science and Technology Talents of Liaoning Education Department (JYTQN20200026).

Supplementary Materials

Fig. S1: the effects of Picroside II on the levels of oxidative stress markers. A, SOD activity at 12 hours. B, SOD activity at 24 hours. C, MDA concentration at 12 hours. D, MDA concentration at 24 hours. *P < 0.05 vs. the MG group. n = 3 for each group. Fig. S2: the effects of Picroside II on the serum levels of inflammatory cytokines. A, TNF-α level at 12 hours. B, TNF-α level at 24 hours. C, IL-6 level at 12 hours. D, IL-6 level at 24 hours. E, IL-10 level at 12 hours. F, IL-10 level at 24 hours. *P < 0.05 vs. the MG group. n = 3 for each group. (Supplementary Materials)

References

[1] H. Yasuda, M. Horibe, M. Sanui et al., “Etiology and mortality in severe acute pancreatitis: a multicenter study in Japan,” Pancreatology, vol. 20, no. 3, pp. 307–317, 2020.
[2] T. Yamashita, M. Horibe, M. Sanui et al., “Large volume fluid resuscitation for severe acute pancreatitis is associated with reduced Mortality,” Journal of clinical gastroenterology, vol. 53, no. 5, pp. 385–391, 2019.
[3] M. Li, X. Zhang, B. Wang et al., “Effect of JAK2/STAT3 signaling pathway on liver injury associated with severe acute pancreatitis in rats,” Experimental and therapeutic medicine, vol. 16, no. 3, pp. 2013–2021, 2018.
[4] Z.-B. Ou, C.-M. Miao, M.-X. Ye et al., “Investigation for role of tissue factor and blood coagulation system in severe acute pancreatitis and associated liver injury,” Biomedicine & pharmacotherapy, vol. 85, pp. 380–388, 2017.
[5] X. P. Zhang, L. Wang, and J. Zhang, “Study progress on mechanism of severe acute pancreatitis complicated with hepatic injury,” Journal of Zhejiang University SCIENCE B, vol. 8, no. 4, pp. 228–236, 2007.
[6] M. Mourad, R. Evans, V. Kalidindi, R. Navaratnam, L. Dvorkin, and S. Bramhall, “Propylphycotic antibiotics in acute pancreatitis: endless debate,” The Annals of The Royal College of Surgeons of England, vol. 99, no. 2, pp. 107–112, 2017.
[7] Q. Zhang, X. Tao, S. Xia et al., “Emodin attenuated severe acute pancreatitis via the P2X ligand-gated ion channel 7/NOD-like receptor protein 3 signaling pathway,” Oncology reports, vol. 41, no. 1, pp. 270–278, 2019.
[8] M. Katoh, I. Fazli, K. Suri, A. Ahuja, and G. Qazi, “Effect of altitude on picroside content in core collections of Picrorhiza kurrooa from the north western Himalayas,” Journal of natural medicines, vol. 65, no. 3–4, pp. 578–582, 2011.
[9] K. Lee, J. Choi, B. K. Choi et al., “Picroside II Isolated from Pseudolysimachion rotundum var. subintegrum Inhibits Glucocorticoid Refractory Serum Amyloid A (SAA) Expression and SAA-induced IL-33 Secretion,” Molecules, vol. 24, no. 10, p. 2020, 2019.
[10] F. C. Yang, S. L. Yang, and L. Z. Xu, “Determination of picroside II in dog plasma by HPLC and its application in a pharmacokinetics study,” Biomedical Chromatography, vol. 19, no. 4, pp. 279–284, 2005.
[11] L. Zhai, M. Liu, T. Wang, H. Zhang, S. Li, and Y. Guo, “Picroside II protects the blood-brain barrier by inhibiting the oxidative signaling pathway in cerebral ischemia-reperfusion injury,” PLoS One, vol. 12, no. 4, article e0174414, 2017.
[12] X. Piao, B. Liu, L. Guo, F. Meng, and L. Gao, “Picroside II shows protective functions for severe acute pancreatitis in rats by preventing NF-kB-dependent autophagy,” Oxidative medicine and cellular longevity, vol. 2017, Article ID 7085709, 14 pages, 2017.
[13] X. Piao, B. Liu, X. Sui et al., “Picroside II Improves Severe Acute Pancreatitis-Induced Intestinal Barrier Injury by Inactivating Oxidative and Inflammatory TLR4-Dependent PI3K/AKT/NF-κB Signaling and Improving Gut Microbiota,” Oxidative Medicine and Cellular Longevity, vol. 2020, Article ID 3589497, 12 pages, 2020.
[14] J. A. MacArthur Clark and D. Sun, “Guidelines for the ethical review of laboratory animal welfare People’s Republic of China National Standard GB/T 35892-2018 [Issued 6 February 2018 Effective from 1 September 2018],” Animal models and experimental medicine, vol. 3, no. 1, pp. 103–113, 2020.
[15] Q. Liu, C.-Y. Ko, C. Zheng et al., “Decreased glutamatergic synaptic strength in the periaqueductal gray contributes to maintenance of visceral pain in male rats with experimental pancreatitis,” *Neuroscience*, vol. 428, pp. 60–69, 2020.

[16] M. Mojabafan, Z. Afsaratala, M. M. Amoli et al., “Liver alphamyase gene expression as an early obesity biomarker,” *Pharmacological Reports*, vol. 69, no. 2, pp. 229–234, 2017.

[17] L. Wang, M. Chen, M. Xu et al., “Ratio of creatine kinase to alanine aminotransferase as a biomarker of acute liver injury in dystrophinopathy,” *Disease markers*, vol. 2018, Article ID 6484610, 11 pages, 2018.

[18] J. L. Martin-Rodriguez, J. Gonzalez-Cantero, A. Gonzalez-Cantero, J. P. Arrebola, and J. L. Gonzalez-Calvin, “Diagnostic accuracy of serum alanine aminotransferase as biomarker for nonalcoholic fatty liver disease and insulin resistance in healthy subjects, using 3T MR spectroscopy,” *Medicine*, vol. 96, no. 17, article e6770, 2017.

[19] D. Slijepcevic, R. L. Roscam Abbing, T. Katafuchi et al., “Decreased glutamatergic synaptic strength in the periaqueductal gray contributes to maintenance of visceral pain in male rats with experimental pancreatitis,” *Inflammation Research*, vol. 67, no. 4, pp. 339–350, 2018.

[20] J. Y. Chiang, “Bile acid metabolism and signaling in liver disease and therapy,” *Liver research*, vol. 1, no. 1, pp. 3–9, 2017.

[21] H.-B. Meng, J. Gong, B. Zhou, J. Hua, L. Yao, and Z.-S. Song, “Therapeutic effect of adenoviral umbilical cord-derived mesenchymal stem cells in rat severe acute pancreatitis,” *International journal of clinical and experimental pathology*, vol. 6, no. 12, pp. 2703–2712, 2013.

[22] L. Piao, H. Li, Y. Feng, X. Li, Y. Cui, and X. Yuan, “Leucine zipper EF-hand containing transmembrane protein 1 is a potential prognostic biomarker and promotes cell progression in prostate cancer,” *Cancer management and research*, vol. 12, pp. 1649–1660, 2020.

[23] M. A. Kandeil, K. M. Hassanin, E. T. Mohammed, G. M. Safwat, and D. S. Mohamed, “Wheat germ and vitamin E decrease BAX/BCL-2 ratio in rat kidney treated with gentamicin,” *Beni Suef University journal of basic and applied sciences*, vol. 7, no. 3, pp. 257–262, 2018.

[24] L. C. Patten, N. S. Belaguli, M.-J. Baek, S. P. Fagan, S. S. Awad, and D. H. Berger, “Serum response factor is alternatively spliced in human colon cancer,” *Journal of Surgical Research*, vol. 121, no. 1, pp. 92–100, 2004.

[25] T. Sugiyama, T. Yoshimoto, K. Tsuchiya et al., “Aldosterone induces angiotensin converting enzyme gene expression via a JAK2-dependent pathway in rat endothelial cells,” *Endocrinology*, vol. 146, no. 9, pp. 3900–3906, 2005.

[26] W. R. Mohamed, A. S. Kotb, O. M. Abd El-Raouf, and E. Mohammad Fikry, “Apigenin alleviated acetaminophen-induced hepatotoxicity in low protein-fed rats: targeting oxidative stress, STAT3, and apoptosis signals,” *Journal of biochemical and molecular toxicology*, vol. 34, no. 5, article e22472, 2020.

[27] N. Nanda, S. Mahmood, A. Bhattia, A. Mahmood, and D. K. Dhawan, “Chemopreventive role of olive oil in colon carcinogenesis by targeting noncoding RNAs and methylation machinery,” *International journal of cancer*, vol. 144, no. 5, pp. 1180–1194, 2019.

[28] S. A. Penderkhar, R. G. Singh, S. K. Chand, A. Cervantes, and M. S. Petrov, “Pro-inflammatory cytokines after an episode of acute pancreatitis: associations with fasting gut hormone profile,” *Inflammation Research*, vol. 67, no. 4, pp. 339–350, 2018.

[29] D. Sharma, A. Jakkampudi, R. Reddy et al., “Association of systemic inflammatory and anti-inflammatory responses with adverse outcomes in acute pancreatitis: preliminary results of an ongoing study,” *Digestive diseases and sciences*, vol. 62, no. 12, pp. 3468–3478, 2017.

[30] R. Wang, F. Song, S. Li, B. Wu, Y. Gu, and Y. Yuan, “Salvianolic acid A attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways,” *Drug design, development and therapy*, vol. 13, pp. 1889–1900, 2019.

[31] C.-L. Li, Y.-K. Lin, H.-A. Chen, C.-Y. Huang, M.-T. Huang, and Y.-J. Chang, “Smoking as an independent risk factor for hepatocellular carcinoma due to the a7-nachr modulating the JAK2/STAT3 signaling axis,” *Journal of clinical medicine*, vol. 8, no. 9, p. 1391, 2019.

[32] J. Yang, A. Fier, Y. Carter et al., “Liver injury during acute pancreatitis: the role of pancreatitis-associated ascitic fluid (PAAF), p38-MAPK, and caspase-3 in inducing hepatocyte apoptosis,” *Journal of gastrointestinalsurgery*, vol. 7, no. 2, pp. 200–208, 2003.

[33] Y. Wang, Y. Hong, C. Zhang et al., “Picroside II attenuates hyperhomocysteinemia-induced endothelial injury by reducing inflammation, oxidative stress and cell apoptosis,” *Journal of cellular and molecular medicine*, vol. 23, no. 1, pp. 464–475, 2019.

[34] L. Wang, X. H. Liu, H. Chen et al., “Picroside II protects rat kidney against ischemia/reperfusion-induced oxidative stress and inflammation by the TLR4/NF-κB pathway,” *Experimental and therapeutic medicine*, vol. 9, no. 4, pp. 1253–1258, 2015.

[35] H. Gao and Y.-W. Zhou, “Inhibitory effect of picroside II on hepatocyte apoptosis,” *Acta Pharmacologica Sinica*, vol. 26, no. 6, pp. 729–736, 2005.

[36] T. Li, L. Xu, R. Zheng et al., “Picroside II protects against cholesterol liver injury possibly through activation of farnesoid X receptor,” *Phytotherapy*, vol. 68, article 153153, 2020.

[37] S. Li, Z. Xu, J. Guo, J. Zheng, X. Sun, and J. Yu, “Farnesoid X receptor activation induces antitumour activity in colorectal cancer by suppressing JAK2/STAT3 signalling via transactivation of SOCS3 gene,” *Journal of cellular and molecular medicine*, vol. 24, no. 24, pp. 14549–14560, 2020.

[38] S. Matic, I. Radosavljevic, S. Jankovic, and D. Natasa, “A polymorphism, use of opioids and age affect the course of acute pancreatitis,” *European journal of gastroenterology & hepatology*, vol. 32, no. 2, pp. 178–185, 2021.