The Kondo Box: A Magnetic Impurity in an Ultrasmall Metallic Grain

Wolfgang B. Thimm, Johann Kroha, and Jan von Delft

1 Institut für Theoretische Festkörperphysik, 2 Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, Postfach 6980, 76128 Karlsruhe, Germany

(Submitted to Phys. Rev. Lett. on September 30, 1998)

We study the Kondo effect generated by a single magnetic impurity embedded in an ultrasmall metallic grain, to be called a “Kondo box”. We find that the Kondo resonance is strongly affected when the mean level spacing in the grain becomes larger than the Kondo temperature, in a way that depends on the parity of the number of electrons on the grain. We show that the single-electron tunneling conductance through such a grain features Kondo-induced Fano-type resonances of measurable size, with an anomalous dependence on temperature and level spacing.

PACS numbers: 72.15.Qm, 73.20.Dx, 73.23.Hk, 71.27.+a

What happens to the Kondo effect when a metal sample containing magnetic impurities is made so small that its conduction electron spectrum becomes discrete with a non-zero mean level spacing Δ? More specifically, when will the Kondo resonance at the Fermi energy ε_F that characterizes bulk Kondo physics begin to be affected? This will occur on a scale $\Delta \simeq T_K$, the bulk Kondo temperature, since a fully-developed resonance requires a finite density of states (DOS) near ε_F, and Δ will act as low-energy cut-off for the spin scattering amplitude.

To achieve $\Delta \gtrsim T_K$, the sample would have to be an ultrasmall metallic grain containing magnetic impurities, to be called a “Kondo box”: for example, for a metallic grain of volume $(15\text{nm})^3$ with $k_F \simeq 1\text{Å}^{-1}$, the free-electron estimate $\Delta = 1/N_0 \simeq 2\pi^2\hbar^2/(mk_F\text{Vol})$, with N_0 the bulk DOS near ε_F, gives $\Delta \simeq 0.5 - 60\text{K}$, which sweeps a range including many typical Kondo temperatures. The discrete DOS of an individual grain of this size can be measured directly using single-electron tunneling (SET) spectroscopy [1], as shown by Ralph, Black and Tinkham [2] in their studies of how a large level spacing affects superconductivity. Analogous experiments on a Kondo box should be able to probe how a large $\Delta \simeq T_K$ affects Kondo physics.

In this Letter we study this question theoretically. We find (1) that the Kondo resonance splits up into a series of sub-peaks corresponding to the discrete box levels; (2) that its signature in the SET conductance through the grain consists of Fano–like line shapes with an anomalous temperature dependence, estimated to be of measurable size; (3) an even/odd effect: if the total number of electrons on the grain (i.e. delocalized conduction electrons plus one localized impurity electron) is odd, the weight of the Kondo resonance decreases more strongly with increasing Δ and T than if it is even.

The model:— For the impurity concentrations of 0.01% to 0.001% that yield a detectable Kondo effect in bulk alloys, an ultrasmall grain of typically $10^4 - 10^5$ atoms will contain only a single impurity, so that inter-impurity interactions need not be considered. We thus begin by studying the local dynamics of a single impurity in an isolated Kondo box, for which we adopt the (infinite U) Anderson model with a discrete conduction spectrum, in the slave-boson representation:

$$H = H_0 + \varepsilon_d \sum_\sigma f_\sigma^\dagger f_\sigma + v \sum_{j,\sigma} \langle c_{j\sigma}^\dagger b^\dagger c_{j\sigma} + h.c. \rangle, \quad (1)$$

where $H_0 = \sum_{j,\sigma} \varepsilon_j c_{j\sigma}^\dagger c_{j\sigma}$. Here ε_j denotes spin and the $c_{j\sigma}^\dagger$ create conduction electrons in the discrete, delocalized eigenstates $| j\sigma \rangle$ of the “free” system (i.e. without impurity). Their energies, measured relative to the chemical potential μ, are taken uniformly spaced for simplicity: $\varepsilon_j = j\Delta + \bar{\varepsilon}_0 - \mu$. As in [3], we follow the so-called orthodox model and assume that the ε_j’s include all effects of Coulomb interactions involving delocalized electrons, up to an overall constant, the charging energy E_C. The localized level of the magnetic impurity has bare energy ε_d far below ε_F, and is represented in terms of auxiliary fermion and boson operators as $d_\sigma^\dagger = f_\sigma^\dagger b$, supplemented by the constraint $\sum_\sigma f_\sigma^\dagger f_\sigma + b^\dagger b = 1$ [4], which implements the limit $U \to \infty$ for the Coulomb repulsion U between two electrons on the d-level. Its hybridization matrix element v with the conduction band is an overlap integral between a localized and a delocalized wave-function, and, due to the normalization of the latter, scales as $(\text{Vol})^{-1/2}$. Thus the effective width of the d-level, $\Gamma = \pi v^2/\Delta$, is volume-independent, as is the bulk Kondo temperature, $T_K = \sqrt{2\Gamma D/\pi} \exp(-\pi \varepsilon_d/2\Gamma)$, where D is a high energy band cutoff. To distinguish, within the grand canonical formalism, grains for which the total number of electrons is even or odd, we choose μ either on $(\mu = \bar{\varepsilon}_0)$ or halfway between two $(\mu = \bar{\varepsilon}_0 + \Delta/2)$ single-particle levels, respectively [5].

NCA approach:— We calculated the spectral density $A_{d\sigma}(\omega)$ of the impurity Green’s function $G_{d\sigma}(t) = -i\theta(t)\langle d_{\sigma}(t)d_{\sigma}^\dagger(0)\rangle$ using the noncrossing approximation (NCA) [6]. For a continuous conduction band, the NCA is known to be reliably down to energies of $0.1T_K$ or less, producing spurious singularities only for T below...
this scale. Since these are cut off by the level spacing Δ in the present case, we expect the NCA to be semi-quantitatively accurate over the entire parameter range studied here (T and Δ between 0.1 and 5T_K). Denoting the retardation auxiliary fermion and boson propagators by $G_{f\sigma}(\omega) = (\omega - \epsilon_f - \Sigma_{f\sigma}(\omega))^{-1}$, $G_{b}(\omega) = (\omega - \Sigma_b(\omega))^{-1}$, respectively, the selfconsistent NCA equations read

$$\Sigma_{f\sigma}(\omega) = \Gamma \int \frac{d\epsilon}{\pi}[1 - f(\epsilon)]A^{(0)}_{f\sigma}(\epsilon)G_{f}(\omega - \epsilon),$$

$$\Sigma_b(\omega) = \Gamma \sum_j \int \frac{d\epsilon}{\pi}f(\epsilon)A^{(0)}_{c\sigma}(\epsilon)G_{f\sigma}(\omega + \epsilon),$$

where $f(\omega) = 1/[\exp(\omega/T) + 1]$. The finite grain size enters through the discreteness of the (dimensionless) single-particle spectral density of the box without impurity, $A^{(0)}_{c\sigma}(\omega) = \Delta \sum_j \delta(\omega - \epsilon_j)$. (We checked that all our results are essentially unchanged if the Dirac δ’s are slightly broadened by a width $\gamma \lesssim 0.1T_K$.) In terms of the auxiliary particle spectral functions $A_{f,b} = \frac{1}{\pi}\text{Im} G_{f,b}$, $A_{d\sigma}(\omega)$ is given by (for details see [3])

$$A_{d\sigma}(\omega) = \int d\epsilon [e^{-\beta\epsilon} + e^{-\beta(\epsilon - \omega)}]A_{f\sigma}(\epsilon)A_b(\epsilon - \omega).$$

Numerical results: — The results obtained for $A_{d\sigma}(\omega)$ by numerically solving the NCA equations (2) to (4) for various T and Δ are summarized in Figs. 1 and 2. (We have checked that the equation-of-motion method [8] yields qualitatively similar results for all quantities discussed below.) For $\Delta \ll T$, the shape of the Kondo resonance is indistinguishable from the bulk case ($\Delta \to 0$): when Δ is increased well beyond T, however, it splits up into a set of individual sub-peaks. With decreasing temperature (at fixed Δ), each sub-peak becomes higher and narrower; its width was found to decrease without saturation down to the lowest temperatures for which our numerics were stable ($T \simeq 0.2\Delta$). This agrees with the expectation following from the Lehmann representation at $T = 0$, $A_{d\sigma}(\omega) = \sum_n \left|\langle n|d_\uparrow|0\rangle\right|^2\delta(\omega - \Delta_n) + \left|\langle n|d_\downarrow|0\rangle\right|^2\delta(\omega + \Delta_n)$, namely that the sub-peaks should reduce to δ-functions with zero width, located at the exact excitation energies $\Delta_n = E_n - E_0$ of the full Hamiltonian (whose spectrum will be discrete too, with mean level spacing of the same order as Δ, as follows from the exact finite-size solutions of the Kondo model [3]).

Despite developing sub-peaks, the Kondo resonance retains its main feature, namely significant spectral weight within a few T_K around the Fermi energy, up to the largest ratios of $\Delta/\max(T, T_K)$ ($\simeq 5$) we considered. This implies that the Kondo correlations induced by the spin-flip transitions between the d-level and the lowest-lying unoccupied j-levels persist up to remarkably large values of $\Delta/\max(T, T_K)$ [6]. However, they do weaken systematically with increasing Δ, as can be seen in the inset of Fig. 2, which shows the average peak height of the Kondo resonance (which quantifies the “strength” of the Kondo correlations) as function of Δ at fixed T: the peak height drops logarithmically with increasing Δ once Δ becomes larger than about T. Conversely, at fixed Δ, it drops logarithmically with increasing T once T becomes larger than about 0.5Δ (main part of Fig. 2), thus reproducing the familiar bulk behavior. Qualitatively, these features are readily understood in perturbation theory, where the logarithmic divergence of the spin flip amplitude, $t(\omega) \propto \sum_{j \neq \omega} \frac{f(\epsilon_j)}{\omega - \epsilon_j}$, is cut off by either T or Δ, whichever is largest.

Parity Effects: — For $\Delta \gg T$, the even and odd spectral functions $A_{d\sigma}$ in Fig. 1 differ strikingly: the former has a single central main peak, whereas the latter has two main peaks of roughly equal weight. This can be understood as follows: For an even grain, spin-flip transitions lower the energy by roughly T_K and the conduction electrons into a Kondo singlet, in which the topmost, singly-occupied j level of the free Fermi sea carries the dominant weight, hence the single dominant peak in $A_{d\sigma}$. For an odd grain, in contrast, the
free Fermi sea’s topmost j level is doubly occupied, blocking such energy-lowering spin-flip transitions. To allow the latter to occur, these topmost two electrons are redistributed with roughly equal weights between this and the next-higher-lying level, causing two main peaks in $A_{d\sigma}$ and reducing the net energy gain from T_K by an amount of order Δ. This energy penalty intrinsically weakens Kondo correlations in odd relative to even grains; indeed, the average $A_{d\sigma}$ peak heights in Fig. 2 are systematically lower in odd than in even grains, and more so the larger Δ and the smaller T.

SET conductance: The above physics should show up in SET spectroscopy experiments: When an ultrasmall grain is connected via tunnel junctions to left (L) and right (R) leads [1] and if the tunneling current through the grain is sufficiently small (so that it only probes but does not disturb the physics on the grain), the tunneling conductance $G(V)$ as function of the transport voltage V has been demonstrated [1] to reflect the grain’s discrete, equilibrium conduction electron DOS. Such measurements are parity-sensitive [1] even though a non-zero current requires parity-fluctuations, since these can be minimized by exploiting the huge charging energies ($E_c > 50k$) of the ultrasmall grain. To calculate the SET current, we describe tunneling between grain and leads by $H_T = \sum_{k\sigma\alpha} (w_{k\sigma\alpha} c^\dagger_{k\sigma\alpha} c_{\sigma\alpha} + h.c.)$, where $c^\dagger_{k\sigma\alpha}$ creates a spin σ electron in channel k of lead $\alpha \in \{L,R\}$. Neglecting non-equilibrium effects in the grain, the tunneling current has the Landauer–Büttiker form [12]

$$I(V) = \frac{e}{h} \int d\omega F_V(\omega) \sum_{j\sigma} \left[\frac{\gamma^L \gamma^R}{\gamma^L + \gamma^R} \right] A_{c,j\sigma}(\omega), \quad (5)$$

where $F_V(\omega) = f(\omega - eV/2) - f(\omega + eV/2)$, $A_{c,j\sigma}$ is the spectral density of $G_{\epsilon_{j\sigma}} = -\nu(t)(\{c_{\epsilon_{j\sigma}}(t), c^\dagger_{\epsilon_{j\sigma}}(0))\}$, and $\gamma_{\alpha}^\sigma = 2\pi \sum_k |w_{k\alpha\sigma}|^2$ [3]. Neglecting the $\alpha\sigma$ dependence of γ, the current thus is governed by the conduction electron DOS, $A_c(\omega) = \sum_{j\sigma} A_{c,j\sigma}(\omega)$. Exploiting a Dyson equation for $G_{c,j\sigma}$, it has the form

$$A_c(\omega) = -\frac{1}{\pi} \sum_{\alpha\sigma} \text{Im} \left[G_{0,j\sigma}(\omega) + v^2[G_{c,j\sigma}(\omega)]^2 G_{\sigma\sigma}(\omega) \right],$$

where $G_{c,j\sigma}(\omega) = f(\omega - \epsilon_{j\sigma}) + 0^+$ is the free conduction electron Green’s function [14], and the corresponding Kondo contribution to the conductance $G(V) = dI(V)/dV = G_0(V) + \delta G(V)$ is

$$\delta G(V) = -\frac{e^2}{h} \frac{\Gamma}{\pi} \sum_{j\sigma} \int d\omega A_{d\sigma}(\omega) \times \left[\frac{\tilde{F}_V(\omega) - \tilde{F}_V(\epsilon_j)}{(\omega - \epsilon_j)^2} - \frac{d \tilde{F}_V(\omega)/d\omega}{\omega - \epsilon_j} \right], \quad (6)$$

with $\tilde{F}_V(\omega) = -\nu(t)(f(\omega - eV/2) + f(\omega + eV/2))/2$. Even though Kondo physics appears only in the subleading contributions to $A_c(\omega)$ and $G(V)$, these are proportional to $\nu^2 = \Gamma \Delta/\pi$ and thus grow with decreasing grain size.

$\delta G(V)$ is shown in Fig. 3 and have rather irregular structures and line-shapes. The reason for this lies in the interference between $G_{d\sigma}$ and $[G^{(0)}_{c,j\sigma}]^2$ in A_c, and correspondingly between $A_{d\sigma}$ and the bracketed factor in (6) for $\delta G(V)$. This interference is reminiscent of a Fano resonance [13], which likewise arises from the interference between a resonance and the conduction electron DOS. Incidentally, Fano-like interference has been observed in STM spectroscopy of a single Kondo ion on a metal surface [13], for which the conduction electron DOS is flat. In contrast, for an ultrasmall grain it consists of discrete peaks, reflected in the last factor in Eq. (6). This leads to a much more complex interference pattern, which does not directly mirror the specific peak structure of $A_{d\sigma}(\omega)$ discussed above.

Nevertheless, $G(V)$ does bear observable traces of the Kondo effect, in that the interference pattern shows a distinct, anomalous T-dependence, due to that of the Kondo resonance. In particular, the weights W_j under the individual peaks of $G(V)$ become T-dependent. (In contrast, the weight W_0 under an individual peak of the bare conductance $G_0(V)$ is T independent, since the T dependence of the peak shapes of G_0 are determined solely by $d f(\omega)/d\omega$.) This is illustrated in Fig. 3, which shows the T dependence of the weights W_1 and W_2 of the first and second conductance peaks (counted relative to $V = 0$ and labelled 1,2 in Fig. 3). When T decreases at fixed $\Delta = T_K$, both W_1 and W_2 decrease, while at fixed $\Delta = 3T_K$, W_1 decreases whereas W_2 increases. The fact that the weights can either increase or decrease with decreasing T results from the constructive or destructive Fano-like interference effects discussed above. Moreover, at the larger value for Δ, both W_1 and W_2 develop a
parity effect in the strength of their T dependence. Since the peak weights in Fig. 3 change by up to \(10\%\) as the grain is cooled below \(T_K\), it should be possible to experimentally \[1\] detect their Kondo-induced anomalous \(T\)-dependence.

Coherence length:— The condition \(\Delta > T_K\) implies a relation between sample volume and the much-discussed spin coherence length \(\xi_K = 2\pi\alpha V/T_K\), namely (in 3D) \(\text{Vol} \ll \xi_K^2/\alpha^2\). Note that this relation involves both the small length scale \(1/\alpha\) and the sample’s volume, and not the smallest of its linear dimensions, say \(L\). This implies that the length scale below which purely finite-size induced modifications of Kondo physics can be expected is not set by \(\xi_K\) alone \[7\], and indeed may be considerably smaller than \(\xi_K\). This is why such modifications were not found in the numerous recent experiments having \(L \lesssim \xi_K\) for one or two sample dimensions \[8\, 11\].

In conclusion, we have analysed the Kondo effect in an ultrasmall metallic grain containing a single magnetic ion. The presence of a new energy scale in the system, the mean level spacing \(\Delta\), leads to rich physical behavior when \(\Delta \sim T_K\), including a distinct even/odd effect. Our NCA calculations, which give a semi-quantitatively reliable estimate of the size of the effects to be expected in future experiments, predict that the SET conductance of the grain acquire a width \(\gamma \approx 0.05\). We assume this to be negligible relative to \(T_K\), and \(T\), since realistic values \[7\] yield \(\gamma \lesssim 0.05\).

[1] C. T. Black, D. C. Ralph, and M. Tinkham, Phys. Rev. Lett. 74, 3241 (1995); 78, 4087 (1997).
[2] A. Bezryadin, C. Dekker, and G. Schmid, Appl. Phys. Lett. 71, 1273 (1997); D. L. Klein et al., Nature 389, 699 (1997).
[3] J. von Delft et al., Phys. Rev. Lett. 77, 3189 (1996); F. Braun et al., Phys. Rev. Lett. 79, 921 (1997).
[4] S. E. Barnes, J. Phys. F6, 1375 (1976).
[5] N. Grewe and H. Keiter, Phys. Rev. B 24, 4420 (1981); Y. Kuramoto, Z. Phys. B53, 37 (1983).
[6] N. E. Bickers, Rev. Mod. Phys. 59, 845 (1987).
[7] T. A. Costi, J. Kroha, and P. Wölfle, Phys. Rev. B 53, 1850 (1996).
[8] C. Lacroix, J. Appl. Phys. 53, 2131 (1982); Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 70, 2601 (1993); W. B. Thimm, J. v. Delft, and J. Kroha, unpublished (1998).
[9] I. Affleck and A. W. W. Ludwig, Nucl. Phys. B360, 641 (1991); J. von Delft, G. Zaránd, and M. Fabrizio, Phys. Rev. Lett. 81, 196 (1998).
[10] Note that even in extremely small systems such as certain molecules, remnants of Kondo correlations have been demonstrated via quantum chemical calculations; M. Dolg et al. J. Chem. Phys. 94, 3011 (1991); Chem. Phys. 195, 71 (1995).
[11] Coupling a quantum dot to leads may generate a different, “lead–dot” Kondo effect via hybridization between the top–most dot electron and the leads [D. Goldhaber-Gordon et al., Nature, 391, 156 (1998)]. For an ultrasmall grain, however, the corresponding “lead–dot” Kondo temperature will be much smaller than our \(\Delta, T, T_K\), since lead-to-grain tunneling rates \[1\] are typically very small.
[12] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992). A. P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528 (1994); see also S. Hershfield et al., Phys. Rev. Lett. 67, 3270 (1991).
[13] We neglect non-diagonal contributions to \(\gamma^{\alpha}\) of the form \(2\pi \sum_{h} u_{k,h}^u u_{k,h'}^\ast\), owing to the cancellations resulting from the random phases of the matrix elements.
[14] When coupled to leads, the conduction band levels of the grain acquire a width \(\gamma \approx 0.05\). We assume this to be negligible relative to \(\Delta, T, T_K\), since realistic values \[7\] yield \(\gamma \lesssim 0.05\).
[15] U. Fano, Phys. Rev. 124, 1866 (1961).
[16] V. Madhavan, W. Chen, T. Jameala, M. F. Crommie, and N. S. Wingreen, Science 280, 567 (1998).
[17] G. Bergmann, Phys. Rev. Lett. 67, 2545 (1991).
[18] M. A. Blachly and N. Giordano, Phys. Rev. B 51, 12537 (1995).
[19] The finite-size effects that were seen have been explained in terms of an interplay of spin-orbit scattering and surface effects, see O. Ujvághy, A. Zawadowski, and B. L. Gyorffy, Phys. Rev. Lett. 76, 2378 (1996); for an alternative explanation, see I. Martin, Y. Wan, and P. Phillips, Phys. Rev. Lett. 78, 114 (1997).