Clinical Importance of Hounsfield Unit in Computed Tomography of Sub-Axial Cervical Vertebral Body.

Seung Jin Choi, Youn-Kwan Park, Joo Han Kim, Hong Joo Moon, Woo-Keun Kwon, Chang Hwa Ham

Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea

Objective: Computed tomography (CT) is an often-used diagnostic imaging tool during the evaluation of the cervical spine pathology. CT scan can provide one's bone density by measuring Hounsfield's unit. In anterior cervical disectomy and fusion (ACDF) surgeries, bone density may play an important role as it may relate to non-union. Therefore, the evaluation and consideration of the Hounsfield's unit of sub-axial cervical vertebral body is important, especially during multi-level ACDF.

Methods: Patients who have taken cervical CT scan pre-operatively to multi-level (3 or 4 levels) anterior cervical disectomy and fusion with anterior plating between June 2010 and August 2018, at our department were retrospectively reviewed. The bone density was estimated by measuring Hounsfield Unit (HU) of sub-axial vertebrae – C3 to T1 – by using PiViewStar imaging software program. Radiological evaluation of fusion was done by assessing postoperative plain X-rays and CT scans of 4 months and 1-year follow-up. The difference in HU were evaluated between different segments of sub-axial vertebrae. Then the fusion rate of the ACDF ending at C6 were compared to C7. All grouped values were tested for normality using the Shapiro-Wilk test. Matched-ANOVA and Fisher’s exact test was used.

Results: A total of eighty patients were who underwent 3 or 4 level ACDF with anterior plate fixation were retrospectively reviewed. Bone density estimated from Hounsfield unit (HU) measurement of the sub-axial vertebral bodies ranges from 112.2 to 594.9 with the mean of 280.91. When comparing C5 with 6, 6 with 7, and 7 with T1 they showed significantly decreasing HU value with p- value < 0.01 with mean difference of 49.10, 30.98, and 31.25, respectively. ACDF ending at C7 showed significantly lower fusion rate than C6 at 4 months and 1-year follow-up, respectively.

Conclusion: The HU show a decreasing trend towards lower sub-axial cervical vertebral body. Furthermore, multi-level ACDF ending at C7 showed higher non-union rate than ending at C6. Although, there is no direct evidence that lower bone density at lower sub-axial cervical vertebrae is causative for non-union, it should be considered for pre-operative planning.

Key Words: Hounsfield unit; Anterior cervical disectomy and fusion; Non-union; Fusion rate

INTRODUCTION

Computed tomography (CT) is an often-used diagnostic imaging tool during the evaluation of the cervical spine pathology [1]. While magnetic resonance imaging has its advantage on
soft-tissue contrast, CT scan better depicts bony parts. In CT scan, the attenuation of x-ray beam is calculated for each voxel in Hounsfield unit (HU) to represent the radiodensity quantitatively [2]. The value of HU varies in different tissues as well as within bony parts, which usually ranges from 300 to 3,000 [3].

Bone density is an important aspect of pre-operative surgical planning. DEXA and QCT is frequently used tool to estimate the bone density of the spine, however, limited evidences are provided for the cervical spine [4]. The use of the HU value of the CT scan to estimate the bone density is gaining more acceptance in recent times among spine surgeons, as CT scan is often available pre-operatively and most commercially available image viewers can calculate the mean HU value at the region of interest (ROI) [5,6].

Anterior cervical discectomy and fusion (ACDF) with plating is a widely performed procedure for cervical disc diseases [7,8]. Although promising clinical results are widely reported, non-union related complications such as instrument failure and associated neurologic deficit or pain. In patients with osteoporosis, non-union is more likely to occur as fixated implants are more easily loosened [9]. Single or two level ACDFs infrequently result in non-union and numerous studies have reported fusion rate up to 100% [10,11]. However, multi-level ACDFs have higher complication rate [12,13]. Therefore, a careful pre-operative evaluation is needed regarding the bone density, and accordingly cautious surgical strategies may be necessary to reduce the non-union rate.

In this study, the authors aimed to evaluate the HU values in different level of sub-axial cervical vertebral bodies. Subsequently, non-union rate and affected segment level will be evaluated. The ultimate goal of this study is to reinforce the surgical strategies and reduce complications caused by non-union based on the characteristics of HU values in different levels of sub-axial vertebral bodies.

MATERIALS AND METHODS

1. Patient Population

This study was approved by the Institutional Review Board of Korea University Medicine (No. 2021GR1336). Patients who have taken cervical CT scan pre-operatively to multi-level (3 or 4 levels) anterior cervical discectomy and fusion with anterior plating between June 2010 and August 2018, at our department were retrospectively reviewed. Electronic medical records (EMR) and Picture Archiving and Communication System (PACS) used at the hospital were reviewed to collect clinical and radiologic data, respectively. Patients who underwent other surgical procedures besides ACDF, such as corpectomy or additional posterior fixations, were excluded from the study. Patients who could not be followed or who received early revision surgery were also excluded from the study.

2. Radiological Evaluations

The bone density was estimated by measuring Hounsfield Unit (HU) of sub-axial vertebrae - C3 to T1 - by using PiView-Star imaging software program. Region of interest (ROI) was drawn at cancellous bone of the body on a mid-sagittal view (Fig. 1). ROI was devoid of cortical bone, any osseous abnormalities, and density void caused by basivertebral foramen.

Radiological evaluation of fusion was done by assessing post-operative plain X-rays, and when the plain X-rays was ambiguous to judge, cervical CT scan was used to confirm. Anteroposterior (AP), lateral and flexion/extension lateral plain radiographs were taken prior to the surgery, and then followed at 4, 12, and 24 months after the operation. All X-rays and CT scans were evaluated by 2 neurosurgeons. Fusion was confirmed by:
(i) the absence of motion > 2 mm between the tips of spinous processes on flexion/extension lateral radiographs; (ii) the absence of a radiolucent gap between the graft and the endplate; and (iii) the presence of continuous bridging trabeculae at the graft and endplate junction. Assessment for fusion were done at each operated interbody (Fig. 2).

3. Statistical Analysis

All statistical analyses were performed using SPSS (version 20; SPSS, Chicago, IL, USA), and statistical significance was defined as p < 0.05. All grouped values were tested for normality using the Shapiro-Wilk test. Matched-ANOVA was used to test the differences in HU value in different level of sub-axial cervical spine. Post-hoc test was done using student's t-test or Mann-Whitney test depending on the normality of the data.

RESULTS

1. Demographics

A total of eighty patients were who underwent 3 or 4 level ACDF with anterior plate fixation were retrospectively reviewed.

Of those, 67 patients underwent 3 level ACDF (16 females, 51 males; mean age, 54.1 ± 9.85 years; age range, 32–72 years) and 13 patients underwent 4 levels (4 females, 9 males; mean age, 55.50 ± 9.12 years; age range, 41–70 years) with a total operated segment of 253 (Table 1). The mean post-operative follow-up period was 1.8 years. 9 patients were missed at 1-year follow-up - 8 patients did not present and one patient underwent revisional operation - and 19 patients were cumulatively missed at 2-year follow-up (Fig. 3).

2. Hounsfield Unit of Sub-Axial Vertebral Bodies

Six of eighty patients were excluded in Hounsfield unit (HU) measurement due to no CT evaluation at pre-operation. Bone density estimated from HU measurement of the sub-axial vertebral bodies ranges from 112.2 to 594.9 with the mean of 280.91. HU values are largely variable within each vertebral level with standard deviation ranging between 58.03 and 78.16 (Table 2). However, an obvious trend in HU values can be observed in sub-axial vertebrae. The trend analysis of the HU along decreasing order of vertebral level is significant for both linear, quadratic and cubic trend with p-value of <0.01. Pairwise comparisons of HU in sub-axial vertebrae show a similarity in HU value at C5 with C3 and C4 with p-value of 0.305 and

Table 1. Patient demographics
Age (yr)
Mean (SD)
Sex
Male (%)
Female (%)
OP segment*
C6 (%)
C7 (%)
T1 (%)

*Caudal most segment of the operated construct.
0.356, respectively. However, when comparing C5 with 6, 6 with 7, and 7 with T1 they showed significantly decreasing HU value with p-value < 0.01 with mean difference of 49.10, 30.98, and 31.25, respectively (Table 3, Fig. 4).

3. Fusion Rate
Overall fusion rate of the 80 patients in this study were 31.3% at 4 months, 54.9% at 1 year, and 75.4% by 2-year follow-up. All of non-union occurred at the most caudal segments of the construct (Table 4). At 4 months follow-up, 10 out of 16 patients (62.5%) with ACDF at C3-6, 11 out of 54 patients (20.4%) with ACDF caudally ending at C7 (mean of 3.2 operated segments) and 4 out of 10 patients with ACDF caudally ending at T1 (mean of 3.2 operated segments). During the follow-up, the fusion rate of ACDF caudally ending at C6, C7, and T1 gradually increased to 85.7, 46.8 and 50.0% by 1 year and 100, 64.1 and 88.9% by 2 years, respectively (Table 5, Fig. 5). Notably, fusion rate of ACDF caudally ending at C7 were poor compared to C6.

DISCUSSION
Hounsfield unit is frequently used to estimate bone density in the cervical vertebrae, which may give important information for surgical planning. The correlation between the value of HU values and the bone mineral density (BMD) of the spine were reported in the several previous papers [5,14]. A study regarding volumetric BMD (vBMD) on the cervical spine reported the gradually decreasing bone density below C4 [4,15]. In accordance to their study, we have measured the HU of C3 to T1 vertebral bodies from the cervical CT scans. The results are similar to their study as shown in the Table 2. Therefore, bone density estimation can be compatible with the measurement of HU value from the CT scan. Furthermore, assumption can be made regarding gradually decreasing BMD at the lower cervical vertebral bodies that it may relate to an increased rate of postoperative non-union. Conversely, the high fusion rate in the upper cervical vertebrae of C6 or upper may be explained.

Multi-level ACDF involving 3 or more levels, have been performed since late 90’s and fusion rate reported in literatures are 47% to 100% [8,16-19]. However, the criteria for fusion are arbitrary in current studies and poorer fusion rates had been re-

Table 2. Hounsfield Unit (HU) of sub-axial vertebrae. on computed tomography

Level	C3	C4	C5	C6	C7	T1
Minimum	171	162.9	190.8	134.8	115.5	112.2
Maximum	512.2	594.9	553.7	517.2	434.5	403.8
Mean (SD)	314.7 (68.68)	328.6 (78.07)	315.8 (78.16)	270.5 (75.01)	240.2 (60.06)	215.7 (58.03)

Table 3. Comparison of Hounsfield units in sub-axial vertebrae (Pairwise comparison)

Level	C4	C5	C6	C7	T1
C3	-12.210* (4.300)	-6.941 (6.700)	42.164* (6.702)	73.147* (6.410)	104.400* (7.600)
C4	5.270 (5.660)	54.375* (6.249)	85.357* (6.222)	116.610* (8.108)	
C5	49.105* (4.761)	62.236* (7.738)			
C6	30.983* (5.114)	62.236* (7.738)			
C7	31.253* (4.722)				

Based on estimated marginal means.*p-value<0.05.
Table 4. Non-union by location within the construct

Segments	Non-union frequency (%)	
	Initial f/u*	1-yr f/u
Proximal†	12/55 (21.8)	5/32 (15.6)
Middle	6/55 (10.9)	0/32 (0)
Distal‡	55/55 (100)	32/32 (100)

*Non-union frequency within 4 post-operative months.
†The most cranial segment of fusion.
‡The most caudal segment of fusion.

Table 5. Fusion rates of multi-level ACDF according to construct-ed segments

Segment*	Fusion rate (%)		
	Initial f/u†	1-yr f/u	2-yr f/u
C6	10/16 (62.5)	12/14 (85.7)	13/13 (100.0)
C7	11/54 (20.4)	22/47 (46.8)	25/39 (64.1)
T1	4/10 (40.0)	5/10 (50.0)	8/9 (88.9)
Total	25/80 (31.3)	39/71 (54.9)	46/61 (75.4)

*Caudal most segment of the operated construct.
†Fusion rate within 4 post-operative months.

Seung Jin Choi, et al. Hounsfield Unit in Cervical Vertebrae

Fig. 4. Hounsfield unit of sub-axial vertebrae.

Fig. 5. Comparison of fusion rate in the caudal most segment. *p<0.05.
tion due to instrument failure. The first case was minimal extrusion of distal screws in the plating system. The patient complained of axial pain in the neck. We decided a re-operation and performed posterior interspinous screw fixation at most distal segment, at C6/7, and the patient’s symptoms improved. In another case, revision was done at 6 post-operative months because the proximal screw at C3 was broken and movement occurred at the upper segments. Posterior screw augmentation resulted in a solid fusion in the segment. All of the two reoperation cases were performed in the early stages of the study; therefore, the authors were uncertain of the consequences that may result from instrument failure. However, since the upper cervical segments has a relatively high bone density, fusion is likely to occur. Therefore, the revision operation might have been unnecessary. On the other hand, non-unions in the distal segments may need more careful manipulations as it may cause persisting clinical symptoms. The distal non-unions may be prevented by using thicker screws at the distal end of the construct bi-cortically. Moreover, leaving space below the anterior plate with appropriate cortical bone preparation may induce bone growth around the plate, providing extra stability to the construct.

This study has some limitations. Because of the relatively rare cases of multi-level ACDFs, data from a single center were collected for 8 years, but relatively few cases were available to prove accurate statistical results. Furthermore, cases often lost during follow-up and there was additional loss of data compared to the total number of surgical cases performed at the final follow-up. An additional multicenter study including larger number of patients might be a solution to overcome this problem. Another issue is the determination of successful fusion. In spite of the criteria for fusion that is similar to the previously published paper, the difference in the final fusion rate compared to other previously published papers was significant. The difference in these results suggests that our study may have applied more strict judgment on successful fusion. Further discussion of the criteria for clear and more accurate bony fusion may be needed. Moreover, this study cannot give a direct correlation between the HU value and the fusion rate. Therefore, further studies are needed to conclude that there is a causal relationship.

CONCLUSION

The HU measurement in sub-axial vertebral bodies show a decreasing trend towards lower segments. Most non-union occur at caudal most segments of multi-level ACDF and constructs ending at C7 showed higher non-union rate than ending at C6. Although, direct relationship between HU and non-union rate cannot be determined from this study, given the information, constructs ending below C6 need more careful surgical strategies to prevent from non-union. Conversely, early interventions in asymptomatic non-unions in the middle or upper segments of the multi-level ACDF constructs can be delayed, as eventual fusion can be anticipated.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

1. Kalichman L, Kim DH, Li L, Guermazi A, Hunter DJ. Computed tomography-evaluated features of spinal degeneration: prevalence, intercorrelation, and association with self-reported low back pain. Spine J 2010;10:200–208
2. Ordway NR, Lu YM, Zhang X, Cheng CC, Fang H, Fayyazi AH. Correlation of cervical endplate strength with CT measured subchondral bone density. Eur Spine J 2007;16:2104–2109
3. DenOtter TD, Schubert J. Hounsfield Unit [Updated 2022 Mar 9]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing. 2022. [cited 2022 Aug 29] Available from: https://www.ncbi.nlm.nih.gov/books/NBK547721/
4. Lovecchio F, Ang B, Louie PK, Chaudary C, Shah SP, Punyala A, et al.. Bone density distribution in the cervical spine. Global Spine J 2022;doi: 10.1177/21925682221098965
5. Zou D, Li W, Deng C, Du G, Xu N. The use of CT Hounsfield unit values to identify the undiagnosed spinal osteoporosis in patients with lumbar degenerative diseases. Eur Spine J 2019;28:1758–1766
6. Choi MK, Kim SM, Lim JK. Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir (Wien) 2016;158:1421–1427
7. Laratta JL, Reddy HP, Bratcher KR, McGraw KE, Carreon LY, Owens RK 2nd. Outcomes and revision rates following multilevel anterior cervical discectomy and fusion. J Spine Surg 2018;4:496–500
8. Buttermann GR. Anterior cervical discectomy and fusion outcomes over 10 years: a prospective study. Spine (Phila Pa 1976) 2018;43:207–214
9. Pinter ZW, Monsef JB, Salmons HI, Sebastian AS, Freedman BA, Currier BL, et al. Does preoperative bone mineral density impact fusion success in anterior cervical spine surgery? A prospective cohort study. World Neurosurg 2022; 164:e830–e834
10. Ahn SS, Paik HK, Chin DK, Kim SH, Kim DW, Ku MG. The fate of adjacent segments after anterior cervical disectomy and fusion: the influence of an anterior plate system. World Neurosurg 2016;89:42–50
11. Fraser JF, Härtl R. Anterior approaches to fusion of the cervical spine: a metaanalysis of fusion rates. J Neurosurg Spine 2007;6:298–303
12. Leven D, Cho SK. Pseudarthrosis of the cervical spine: risk factors, diagnosis and management. Asian Spine J 2016;10:776–786
13. Wewel JT, Kasliwal MK, Adogwa O, Deutsch H, O'Toole JE, Traynelis VC. Fusion rate following three- and four-level ACDF using allograft and segmental instrumentation: a radiographic study. J Clin Neurosci 2019;62:142–146
14. Batawil N, Sabiq S. Hounsfield unit for the diagnosis of bone mineral density disease: a proof of concept study. Radiography 2016;22:e93–e98
15. Caprara S, Fasser MR, Spirig JM, Widmer J, Snedeker JG, Farshad M, et al. Bone density optimized pedicle screw instrumentation improves screw pull-out force in lumbar vertebrae. Comput Methods Biomech Biomed Engin 2022;25:464–474
16. Carreon L, Glassman SD, Campbell MJ. Treatment of anterior cervical pseudoarthrosis: posterior fusion versus anterior revision. Spine J 2006;6:154–156
17. Geisler FH, Casper W, Pitzen T, Johnson TA. Reoperation in patients after anterior cervical plate stabilization in degenerative disease. Spine (Phila Pa 1976) 1998;23:911–920
18. Bolesta MJ, Rechtine GR 2nd, Chrin AM. Three- and four-level anterior cervical disectomy and fusion with plate fixation: a prospective study. Spine (Phila Pa 1976) 2000;25:2040–2044; discussion 2045
19. Gore DR. The arthrodesis rate in multilevel anterior cervical fusions using autogenous fibula. Spine (Phila Pa 1976) 2001;26:1259–1263
20. McAnany SJ, Baird EO, Overley SC, Kim JS, Qureshi SA, Anderson PA. A meta-analysis of the clinical and fusion results following treatment of symptomatic cervical pseudoarthrosis. Global Spine J 2015;5:148–155
21. Pennington Z, Mehta VA, Lubelski D, Elliott C, Miller JA, Benzel EC, et al. Quality of life and cost implications of pseudarthrosis after anterior cervical discectomy and fusion and its subsequent revision surgery. World Neurosurg 2020;133:e592–e599
22. Cho SK, Riew KD. Adjacent segment disease following cervical spine surgery. J Am Acad Orthop Surg 2013;21:3–11
23. Yang JJ, Yu CH, Chang BS, Yeom JS, Lee JH, Lee CK. Subsidence and nonunion after anterior cervical interbody fusion using a stand-alone polyetheretherketone (PEEK) cage. Clin Orthop Surg 2011;3:16–23
24. Papadopoulos EC, Huang RC, Girardi FP, Suykott K, Cammisina FP Jr. Three-level anterior cervical discectomy and fusion with plate fixation: radiographic and clinical results. Spine (Phila Pa 1976) 2006;31:897–902
25. Song KJ, Taghavi CE, Hsu MS, Lee KB, Kim GH, Song JH. Plate augmentation in anterior cervical discectomy and fusion with cage for degenerative cervical spinal disorders. Eur Spine J 2010;19:1677–1683
26. Crawford CH, Carreon LY, Glassman SD. 88. Asymptomatic ACDF nonunions underestimate the true prevalence of radiographic pseudoarthrosis. Spine J 2019;19:S43
27. Ning X, Wen Y, Xiao-Jian Y, Bin N, De-Yu C, Jian-Ru X, et al. Anterior cervical locking plate-related complications; prevention and treatment recommendations. Int Orthop 2008;32:649–655
28. Chung JY, Kim SK, Jung ST, Lee KB. Clinical adjacent-segment pathology after anterior cervical discectomy and fusion: results after a minimum of 10-year follow-up. Spine J 2014;14:2290–2298
29. Yee TJ, Swong K, Park P. Complications of anterior cervical spine surgery: a systematic review of the literature. J Spine Surg 2020;6:302–322
30. Byvaltsev VA, Kalinin AA, Aliyev MA, Azhibekov NO, Shepelev VV, Riew KD. Poor fusion rates following cervical corpectomy reconstructed with an expandable cage: minimum 2-year radiographic and clinical outcomes. Neurosurgery 2021;89:617–625