Intracellular zinc-dependent TAS2R8 gene expression through CTCF activation

Tsuyoshi Kojima1, Toyonobu Maeda1,2, Atsuko Suzuki2, Tetsuo Yamamori1,3, and Yasumasa Kato2,4
Departments of 1 Oral Rehabilitation and 4 Oral Physiology and Biochemistry, Ohu University Graduate School of Dentistry, Koriyama 963-8611, Japan; Departments of 2 Oral Function and Molecular Biology and 3 Prosthetic Dentistry, Ohu University School of Dentistry, Koriyama 963-8611, Japan

(Received 21 April 2020; and accepted 7 June 2020)

ABSTRACT
Taste-2 receptors (TAS2Rs), which belong to the G-protein coupled receptor (GPCR) family, are receptors for bitter taste perception. The aim of this study was to investigate whether zinc deficiency affects the expression of TAS2R genes. The promoter activity of the TAS2R7, TAS2R8, and TAS2R42 genes were determined in Ca9-22 oral squamous cell carcinoma cells cultured in the presence or absence of zinc. Luciferase reporter assays showed that zinc deprivation inhibited TAS2R8 promoter activity, but not the promoter activity of the other two genes. Treatment of the cells with N,N,N’,N’-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN), an intracellular chelator of Zn2+, in the presence of 10% fetal bovine serum reduced TAS2R8 promoter activity. Truncation/deletion mutants of TAS2R8 promoter-luciferase constructs showed that the region from nucleotide −1152 to nucleotide −925 was critical for intracellular zinc dependency and contained a CCCTC-binding factor (CTCF) binding motif. A chromatin immunoprecipitation (ChiP) assay showed that CTCF bound specifically to this region, a binding abrogated by zinc deficiency, suggesting that CTCF plays a critical role in zinc-dependent bitter taste perception through TAS2R8.

INTRODUCTION
Basic taste signals are categorized into five groups, salt, sour, sweet, bitter, and umami, with these sensory systems evolving to allow nutrition and avoid potentially noxious and/or poisonous chemicals (Chandrashekar et al. 2006). In humans, taste is an important sensory system for enjoyment of food and drink. Taste perceptions are associated with different receptor molecules, including sodium channels for salt, polycystic kidney disease 2-like 1 (PKD2L1) for sour, and taste receptors (TASRs) for sweet, bitter and umami (Martin and Dupré 2016). TASRs can be categorized into two groups, TAS1R and TAS2R, which belong to the G-protein coupled receptor (GPCR) family. TAS1R and TAS2R each has isotypes, with various monomers and heterodimers functioning as different types of taste receptors. For example, the heterodimers TAS1R1/TAS1R3 and TAS1R2/TAS1R3 act as taste receptors for umami and sweet, respectively (Li et al. 2002; Nelson et al. 2002), and all TAS2R monomers, comprised of ≥30 subtypes, are utilized for bitter taste perception (Martin and Dupré 2016). A comparison of TAS2R8 and TAS2R39 showed that they differ in recognizing specific bitter tastes, with each TAS2R subtype having high ligand specificity (Ueno et al. 2011).

Because zinc is an important co-factor for matrix metalloproteinases (MMPs) and zinc finger proteins, its deprivation for long periods of time reduces the

Address correspondence to: Yasumasa Kato, Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama 963-8611, Japan
Tel: +81-24-932-8978
E-mail: yasumasa-kato@umin.ac.jp

The work is part of the Ph.D. thesis of Tsuyoshi Kojima at Ohu University Graduate School of Dentistry, Koriyama, Japan.
activity of these proteins. Zinc finger is a protein motif that stabilizes protein folding by coordination with one or more Zn^{2+} ions. The nuclear protein CCCTC-binding factor (CTCF), an 11-zinc finger protein, functions as an insulator (Ong and Corces 2014). Insulators mediate intra- and inter-chromosomal interactions and play a role in allowing or preventing three-dimensional folding between enhancers and promoters in distal regions, thereby inducing or repressing gene transcription. CTCF null mice are embryonically lethal (Moore et al. 2012), suggesting that CTCF-target molecules have played important roles in morphogenesis during evolution. CTCF promotes alternative splicing by RNA polymerase II through a process of exon inclusion (Shukla et al. 2011) and also contributes to genomic imprinting (Fedoriw et al. 2004). In breast cancer, a CTCF binding motif was found in the 3’ flanking region of the MMP7 gene, and a single nucleotide polymorphism (SNP) in this motif was shown to be associated with reduced breast cancer susceptibility and MMP7 promoter activity (Beeghly-Fadiel et al. 2008). CTCF bound to several molecules, including transcription factor II-I (TFII-I) (Peña-Hermández et al. 2015), the TATA-binding protein associated factor 3 (TAF3) (Liu et al. 2011), cohesin (Phillips-Cremins et al. 2013), and Smad2 (Van Bortle et al. 2015), was shown to function as a transcriptional activator. Thus, CTCF functions as an architectural protein in response to intracellular signal transduction.

Although zinc deprivation disrupts taste perception, the association of zinc deprivation with TAS2R expression has not been determined. Although transcription factors involving TAS2R gene regulation by in silico analysis using cardiac gene expression data, were investigated, regulation of promoter activity of the bitter taste TAS2R7, TAS2R8, TAS2R42 genes is not analyzed in-depth due to its low expression level in the heart (Foster et al. 2015). Because they are major molecules expressed in the taste buds (Hevezí et al. 2009), we focused to examine their involvement in bitter taste disorder associated with zinc deficiency. This study reports that TAS2R8 expression is upregulated by CTCF finger protein.

MATERIALS AND METHODS

Reagents. Dulbecco’s Eagle Medium (DMEM) was purchased from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany); fetal bovine serum (FBS) was from Hyclone (South Logan, UT, USA); and the dual-luciferase® reporter assay system was from Promega (Madison, WI, USA). The intracellular membrane-permeable ion chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) and the insoluble formazan form of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyldimethylazolium bromide (MTT) were from Dojindo (Kumamoto, Japan). Xfect transfection reagent, PrimeSTAR GXL and In-Fusion® HD Cloning Kit were from Takara (Tokyo, Japan).

Antibodies. Anti-CTCF rabbit monoclonal antibody (mAb) was purchased from abcam (Cambridge, UK) and mouse IgG1 (isotype control) was from MBL (Nagoya, Japan).

Cells and cell culture. HEK293 cells, which were derived from human embryonic kidney, were purchased from the Japanese Collection of Research Bioresources (JCRB) Cell Bank (Osaka, Japan), and human gingival squamous carcinoma (Ca9-22) cells were the kind gift of Dr. Kimiharu Hirose (Ohu University School of Dentistry, Koriyama, Japan). Both cell lines were grown in DMEM (high glucose) supplemented with 10% fetal bovine serum (FBS) and subcultured by treatment with 0.25% trypsin/0.02% EDTA. After reaching confluency, the cells were washed twice with Mg$^{2+}$ and Ca$^{2+}$-free phosphate buffered saline (PBS(−)) and maintained in serum-free DMEM (zinc-deprived medium) or in serum-free DMEM supplemented with 15.3 μM ZnSO$_4$ to yield a final concentration of 100 μg/dL, the serum concentration of zinc in healthy males (zinc-adequate medium) (Buxaderas and Farre-Rovira 1985), whose dose was confirmed to be within previous reports (Deters et al. 2003; Sharif et al. 2012; Takeda et al. 2018). To chelate intracellular zinc, TPEN, a cell-permeable Zn^{2+} chelator (Treves et al. 1994; Kolenko et al. 2001), was added to a final concentration of 20 μM; as a vehicle control, ethanol was added to a final concentration <0.1%.

Cloning, vector construction, transfection. Genome DNA was extracted from CA9-22 cells using a Wizard genomic DNA purification kit (Promega). The DNA sequences of TAS promoter regions were amplified by polymerase chain reaction (PCR) using PrimeSTAR GXL with the primer sets shown in Table 1 and cloned into pGL4.20 vector (Promega) using an In-Fusion® HD Cloning Kit with the primer sets shown in Table 2. Mutant expression vector was constructed similarly using the primer sets in Table 3.
Table 1 PCR primer sets for amplifying gene promoter region

Genes	Sequences
TAS2R7	F: 5'- TAG CAA ACT GAA TAC TTT TCT ATC -3'
	R: 5'- TTC TTA GAT TTT GAT GTA GTG TTT ACC -3'
TAS2R8	F: 5'- CAT TTI CTC TTA TAT GCT ATT GGA AGT CAT -3'
	R: 5'- GTT TGTA AGA GAG AAC AAT CTG ATT TCA AAT -3'
TAS2R42	F: 5'- CTC CAG AGA AAA AAT CCA AGT TTT TAA -3'
	R: 5'- CTC CAG AGA AAA AAT CCA AGT TTT TAA -3'

F, forward; R, reverse.

Table 2 In-Fusion primer sets for cloning the amplified promoter region of TAS2R8 into pGL4.20 vector

Genes (Region, size)	Sequences
TAS2R7 (−3285 – +1, 3.3 kb)	F: 5'- ATC AAA ATC TAA GAA ATG GAA GAT GCC AAA -3'
	R: 5'- TTC AGT AGT TTG CTA AGG CCA GGA TTT TAA -3'
TAS2R8 (−2080 – +1, 2.1 kb)	F: 5'- GCT CTC TCT ACA AAC ATG GAA GAT GCC AAA -3'
	R: 5'- ATA TAA GAG AAA ATG AGG TAC CGC CCA GGA -3'
TAS2R8 (−1572 – +1, 1.6 kb)	F: 5'- CCT TGA CAG AGA GAG GGA GCA CAG TTA TAA -3'
	R: 5'- CTC TCT TGA TCA AGG TAC CGC CCA GGA TTT TAA -3'
TAS2R42 (−4873 – +1, 4.9 kb)	F: 5'- TTT TTC TCT TGA TCA AGG TAA GAT GCC AAA -3'
	R: 5'- TTT CCA TAA GAC ATT TCC TCG AGT CTA GAG -3'

F, forward; R, reverse.

Table 3 In-Fusion primer sets for cloning the deletion mutant of TAS2R8 promoter into pGL4.20 vector

Deleted region	Sequences
Δ−1572 − −1065	F: 5'- AAG TTT ATT TTG AGA CAG AGT TCT ACT -3'
	R: 5'- CAA AAT AAT AAA CTG TCA TAC TTG AGA TTA -3'
Δ−1064 − −558	F: 5'- TTT ATG GAA GAT GCC AAA AAC ATG AAG -3'
	R: 5'- GGC ATC TCG CAT TTA GTC AGA GGA TAA TAA -3'
Δ−557 − +1	F: 5'- TTA TAT GGT AAA TAT CTG TTA TAA TAA TAA -3'
	R: 5'- GGC ATC TCG CAT TTA GTC AGA GGA TAA TAA -3'
Δ−1572 − −1446	F: 5'- TTT TTA AAT ACA AGA AGC CCT AGG GTA TTG -3'
	R: 5'- TCT TGT ATT TAA AAA GAA ATG GAT GCA GAG -3'
Δ−1250 − −1115	F: 5'- TTT ATT AAT AAG GGT AGG GAG TAC AAC -3'
	R: 5'- ACA TCG TCG TGG TGG TGG TGG TGG TGG TGG -3'
Δ−1146 − −1068	F: 5'- TTT TTA AAT ACA AGA AGC CCT AGG GTA TTG -3'
	R: 5'- TCT TGT ATT TAA AAA GAA ATG GAT GCA GAG -3'
Δ−1066 − −1229	F: 5'- TTT ATT AAT ACA AGA AGC CCT AGG GTA TTG -3'
	R: 5'- TCT TGT ATT TAA AAA GAA ATG GAT GCA GAG -3'
Δ−1250 − −1115	F: 5'- TTT ATT AAT AAG GGT AGG GAG TAC AAC -3'
	R: 5'- ACA TCG TCG TGG TGG TGG TGG TGG TGG TGG -3'
Δ−1146 − −1068	F: 5'- TTT TTA AAT ACA AGA AGC CCT AGG GTA TTG -3'
	R: 5'- TCT TGT ATT TAA AAA GAA ATG GAT GCA GAG -3'
Δ−1086 − −925	F: 5'- TTT ATT AAT AAG GGT AGG GAG TAC AAC -3'
	R: 5'- ACA TCG TCG TGG TGG TGG TGG TGG TGG TGG -3'
Δ−941 − −808	F: 5'- TTT ATT AAT AAG GGT AGG GAG TAC AAC -3'
	R: 5'- ACA TCG TCG TGG TGG TGG TGG TGG TGG TGG -3'
Δ−836 − −682	F: 5'- TTT ATT AAT AAG GGT AGG GAG TAC AAC -3'
	R: 5'- ACA TCG TCG TGG TGG TGG TGG TGG TGG TGG -3'
Δ−716 − −572	F: 5'- TTT ATT AAT AAG GGT AGG GAG TAC AAC -3'
	R: 5'- ACA TCG TCG TGG TGG TGG TGG TGG TGG TGG -3'

F, forward; R, reverse.
Promoter activity. Cells were transfected with plasmid using Xfect transfection reagent according to the manufacturer’s instructions. After transfection, the cells were cultured in serum-free medium without zinc for 24 h (HEK293 cells) or 7 days (Ca9-22 cells). The cells were also co-transfected with CMV-driven Renilla luciferase (pGL4.75, Promega) vector to correct for transfection efficiency. At the end of incubation, cells were subjected to evaluation of luciferase activity.

Reverse-transcription quantitative PCR (RT-qPCR). Total RNA was extracted according to the acid-guanidinium-thiocyanate-phenol-chloroform (AGPC) method and reverse transcribed to cDNA using a High-Capacity cDNA Reverse Transcription Kit. TAS2R8 gene expression level was quantified by SYBR® Premix Ex Taq™ II. Primer sequence that was used listed in Table 4.

Chromation immunoprecipitation (ChIP) assays. Specific CTCFs that bound to the promoter region of TAS2R8 was determined by ChIP assays as described, with some modifications (Agata et al. 2001; Maeda et al. 2015). Briefly, cells were suspended in 1% formaldehyde and sonicated. Glycine was added to stop cross-linking reactions, and the lysates were washed with PBS supplemented with 2% BSA and 0.05% NaN₃, and resuspended in a solution containing 10 mM Tris-HCl, 300 mM NaCl, 5 mM EDTA, and 0.5% sodium dodecyl sulfate (SDS). Antibodies were added and the solutions were incubated overnight at 4°C. Using magnetic agarose (ThermoFisher), the protein-DNA complex was purified and the DNA was extracted by the phenol-chloroform method. Immunoprecipitated DNA was amplified by PCR with PrimeSTAR GXL DNA Polymerase and the primer sets in Table 5. The PCR products were separated by 8% polyacrylamide gel electrophoresis and visualized ethidium bromide staining.

Statistics. Triplicate samples were included in each experiment, and each was performed at least three times. Results were reported as mean ± SE and compared by two-tailed Student’s t-tests. For comparison among more than 2 groups, ANOVA with Bonferroni correction was used. P values less than 0.05 indicated statistical significance.

RESULTS
Zinc depletion represses TAS2R8 promoter activity
The present study assessed the effects of zinc depletion on the bitter taste receptor, TAS2R8, as well as on the receptors TAS2R7 and TAS2R42. Cells were transfected with promoter constructs of TAS2R7 (nucleotide (nt) −3285 to nt +1, 3.3 kb), TAS2R8 (nt −2080 to nt +1, 2.1 kb), and TAS2R42 (nt −4873 to nt +1, 1.6 kb) and the effects of zinc deprivation on promoter activity were determined. Incubation of HEK293 cells in zinc-deprived medium for 24 h after transfection had no effect on promoter activity, nor did zinc supplementation (Fig. 1A), suggesting that incubation for 24 h in serum-free condition may not be sufficient for intracellular zinc deprivation. Because HEK293 cells are unable to survive longer in serum-free culture, as apoptosis is induced in normal cells by zinc deprivation (Treves et al. 1994; Chai et al. 1999; Kolenko et al. 2001), the effect of zinc deprivation was further tested in Ca9-22 oral
expression via CTCF. We also confirmed whether intrinsic expression of TAS2R8 was affected by TPEN treatment. Expectedly, TAS2R8 mRNA expression was inhibited by Zn$^{2+}$ deprivation (Fig. 1C).

To assess whether the reduction in TAS2R8 promoter activity was due to zinc deprivation, the effects of TPEN, an intracellular zinc chelator, were assessed. Culture of Ca9-22 cells transfected with a TAS2R8 promoter-luciferase construct and incubated with or without 20 μM TPEN in 10% FBS containing adequate zinc concentration. The cells were subsequently lysed and their luciferase activity assayed. (C) Ca9-22 cells were incubated in the presence or absence of 10% FBS for 12 h. Total RNA was extracted, reverse-transcribed, and subjected to qPCR. ***P < 0.001; NS, not significant.

Fig. 2 Zinc supplementation increases TAS2R8 promoter activity in serum-deprived Ca9-22 cells. Ca9-22 cells were transfected with reporter vector and cultured in serum-free medium without zinc for 7 days (day zero for luciferase assay). The cells were further cultured with or without 15.3 μM ZnSO$_4$ for the indicated time. The cells were subsequently lysed and their luciferase activity assayed. ***P < 0.001.

carcinoma cells, which can be maintained longer under serum-free conditions. Culture of Ca9-22 cells for 7 days after transfection under serum-free conditions reduced promoter activity of TAS2R8, but not of TAS2R7 and TAS2R42 genes (Fig. 1B). Although incubation of transient transfectants for 7 days is generally considered long, Renilla luciferase activity was maintained at about 4–6 million relative luminescence units (RLU) (background, 1–2 thousand RLU), a level high enough to detect changes in activity, including changes in response to zinc deprivation. We also confirmed whether intrinsic expression TAS2R8 was affected by TPEN treatment. Expectedly, TAS2R8 mRNA expression was inhibited by Zn$^{2+}$ deprivation (Fig. 1C).

To assess whether the reduction in TAS2R8 promoter activity was due to zinc deprivation, the effects of TPEN, an intracellular zinc chelator, were assessed. Culture of Ca9-22 cells transfected with a TAS2R8 promoter construct in DMEM containing 10% FBS (adequate zinc concentration) and TPEN for 24 h significantly reduced TAS2R8 promoter activity. To assess whether zinc supplementation restored promoter activity, cells cultured without serum for 7 days were treated with zinc sulfate, increasing promoter activity within 3 h and for at least 24 h (Fig. 2). These findings strongly suggested that intracellular zinc deprivation reduced TAS2R8 promoter activity.

Zinc-responding maximal region of the TAS2R8 promoter is at nt −1572 to nt −1344 and from nt −1146 to nt −925.

To determine the region of the TAS2R8 promoter associated with the response to intracellular zinc, truncation and deletion mutants of the TAS2R8 promoter were constructed (Fig. 3A). Truncation of 0.5 kb at the 5’-end of the TAS2R8 promoter (1.6 kb) did not significantly affect promoter activity. However, the
T. Kojima et al.

We tested the regions from nt −1572 to nt −558 and from nt −1146 to nt −925, finding that the regions nt −1572 to nt −1344 and from nt −1146 to nt −925, were responsible (Fig. 3).

CTCF is responsible for zinc-dependent TAS2R8 promoter activity

Using in silico analysis and the open-access databases JASPR (Fornes et al. 2020) and melina II (Okumura et al. 2007), we searched for transcription factor binding motifs in these two zinc dependent regions. Zinc finger transcription factor binding motifs are frequently present in the regions from nt −1572 to nt −1344 and from nt −1146 to nt −925 (Fig. 3B) but are absent from other region. The in silico analyses showed candidate binding motifs for CTCF (from nt −1535 to nt −1526 and from nt −997 to nt −983), EGR1 (from nt −1570 to nt −1465, and from nt −1366 to nt −1229).

0.5 kb-deletion mutant of the promoter construct (from nt −1572 to nt −1065 and from nt −1064 to −558 regions) showed about 30% promoter activity in the presence of 10% FBS. Interestingly, the deletion mutant from nt −557 to nt +1 showed significantly higher promoter activity. Because both regions, nt −1572 to nt −1065 and nt −1064 to nt −558, are responsible for TAS2R8 promoter activity in the presence of 10% FBS, their zinc dependency required confirmation. After transfection with the promoter construct, cells were cultured for 7 days in serum-free medium with or without 15.3 μM ZnSO₄. As expected, deletion of these regions not only markedly reduced promoter activities, but these activities were not affected by the addition of zinc, strongly suggesting that these regions were responsible for zinc dependency. To identify more specific regions responsible for the zinc dependency of TAS2R8 promoter, we tested the regions from nt −1572 to nt −558 and from nt −1146 to nt −925, finding that the regions nt −1572 to nt −1344 and from nt −1146 to nt −925, were responsible (Fig. 3).

CTCF is responsible for zinc-dependent TAS2R8 promoter activity

Using in silico analysis and the open-access databases JASPR (Fornes et al. 2020) and melina II (Okumura et al. 2007), we searched for transcription factor binding motifs in these two zinc dependent regions. Zinc finger transcription factor binding motifs are frequently present in the regions from nt −1572 to nt −1344 and from nt −1146 to nt −925 (Fig. 3B) but are absent from other region. The in silico analyses showed candidate binding motifs for CTCF (from nt −1535 to nt −1526 and from nt −997 to nt −983), EGR1 (from nt −1570 to nt −1465, and from nt −1366 to nt −1229).

Fig. 3 Identification of the zinc dependent region of TAS2R8 promoter. Ca9-22 cells were transfected with truncated or deleted mutants of TAS2R8 promoter-luciferase reporter constructs, and the cells were cultured for 24 h in the presence of 10% FBS (A) or for 7 days in serum-free medium with or without 15.3 μM ZnSO₄ (B). At the end of incubation, the cells were lysed and their luciferase activity assayed. The region in which the promoter activity was not changed by the addition of zinc was regarded as zinc dependent. ***P < 0.001.
TAS2R8 expression via CTCF

To our knowledge, this is the first study to investigate the association between CTCF and bitter taste perception through TAS2R8. By in silico screening, Foster et al. (2015) showed that TAS2R7, TAS2R8, and TAS2R42 did not ubiquitously express in human tissues, suggesting that these expressions were relatively specific to taste bud. In their report, transcription factor binding motifs in the promoter region of TAS genes were screened by JASPR. TAS2R7, TAS2R8, and TAS2R42

Fig. 4 CTCF binds TAS2R8 promoter. Based on JASPR analysis, mutations were introduced into possible CTCF-binding regions. (A) Ca9-22 cells were transfected with promoter constructs (wild type and mutant), incubated for an additional 24 h in the presence of 10% FBS (a zinc-containing condition). They were lysed to be obtained to luciferase assay. HEK293 cells were transfected with promoter constructs (wild type and mutant) were treated with or without 15.6 μM TPEN in the presence of 10% FBS for 3 h. They were lysed lysed to be obtained to luciferase assay. ***P < 0.001. (B) Cells were incubated in serum-free condition for 7 days, further incubated in the presence or absence of zinc, and subjected to ChiP assays. Input, whole DNA as the reference.
were excluded due to their low expression levels in the heart (Foster et al. 2015), although these gene expressions were major in the taste bud (Hevezi et al. 2009). Our in silico analysis showed the absence of CTCF binding motifs from the promoter sequences of TAS2R7 and TAS2R42, perhaps explaining why the promoter activities of TAS2R7 and TAS2R42 were not affected by zinc deprivation. A zinc-deficient diet was found to reduce TAS2R40 and TAS2R107 expression on rat tongue but had no effect on the expression of TAS2R105, TAS2R118, and TAS2R121 mRNAs (Sekine et al. 2012). Although that study did not assess TAS2R8, TAS2R7 or TAS2R42 expression, our JASPR analysis showed that CTCF or a CTCF-like motif was present in the TAS2R40 and TAS2R107 promoters, which were reported to be zinc-dependent. These findings strongly suggested that CTCF plays a critical role in the zinc dependency of bitter taste perception.

DNA methylation is a type of epigenetic transcriptional regulation that down-regulates gene expression, with CpG islands being typical target sequences (Soozangar et al. 2018). A linear regression analysis at 6707 CTCF binding sites showed an association between methylation and CTCF occupancy at 1677 (41%) sites (Wang et al. 2012). However, DNA methylation may not be involved in the regulation of TAS2R8 gene expression, as we were unable to find typical CpG islands within 2.1 kb of the TAS2R8 promoter. Rather, TAS2R8 gene expression may be regulated by a CTCF-associated balance between promoter enhancing and blockage; e.g., the nt −1572 to nt −1344 and nt −1146 to nt −925 regions may be responsible for enhancing promoter activity whereas the region from nt −557 to +1 may be responsible for enhancer blocking as an insulator function or by interacting with as yet unidentified repressor(s). Although further analysis is required to understand the critical role of CTCF in TAS2R8 gene expression, the exon skip function of CTCF (Shukla et al. 2011) is likely uninvolved because the TAS2R8 gene contains no introns (Andres-Barquin and Conte 2004).

SNPs have been reported in TAS2Rs (Kim et al. 2005), suggesting inter-individual differences in bitter taste perception. Interestingly, an SNP of the TAS2R8 gene was reported associated with glioma susceptibility (Lee and Song 2015). In contrast, constitutive expression of TAS2R8 reduced the expression of vascular endothelial growth factor (VEGF) and glucose transporter-1, as well as cancer stem cell markers such as DLK1, CD133, Notch1 and Sox2 in neuroblastoma (Seo et al. 2017). Thus, bitter taste receptors in the tissues function differently from taste bud.

Radiation therapy for head and neck cancer causes taste disorder as a side effect. These patients are frequently treated with zinc sulfate to rescue the disorder. An evaluation of 169 patients with head and neck cancer who experienced taste alteration assessed the effects of zinc sulfate (Halyard et al. 2007), finding that taste alterations included the absence of bitter (8%), salty (5%), sour (4%), and sweet (5%) taste, as well as the absence of any taste (16%) and the presence of a metallic taste (10%), suggesting that zinc sulfate did not affect the time to taste recovery. UV-irradiation of cutaneous squamous cell carcinoma resulted in a high mutational frequency in the CTCF binding motif (Mueller et al. 2019), suggesting that DNA damage-based taste disorder and lack of a response to zinc may be caused by a mutation in the CTCF binding motif.

In conclusion, this study found that the expression of TAS2R8, a bitter taste receptor, was driven by CTCF. Because this regulation was zinc dependent, CTCF might play an important role in the positive effect of zinc in patients with taste perception disorder.

Acknowledgement

This work was partly supported by JSPS KAKENHI Grant Numbers JP16K11517 and 19K10074 (to YK), and 15K11400 (to TM).

CONFLICT OF INTEREST

None of the authors has any conflicts of interest associated with this manuscript.

REFERENCES

Agata Y, Katakai T, Ye SK, Sugai M, Gonda H, et al. (2001) Histone acetylation determines the developmentally regulated accessibility for T cell receptor g gene recombination. J Exp Med 193, 873–880.
Andres-Barquin PJ and Conte C (2004) Molecular basis of bitter taste: the T2R family of G protein-coupled receptors. Cell Biochem Biophys 41, 99–112.
Atkin-Thor E, Goddard BW, O’Nion J, Stephen RL and Kolff WJ (1978) Hypogeusia and zinc depletion in chronic dialysis patients. Am J Clin Nutr 31, 1948–1951.
Beechly-Fadiel A, Long JR, Gao YT, Li C, Qu S, et al. (2008) Common MMP-7 polymorphisms and breast cancer susceptibility: a multistage study of association and functionality. Cancer Res 68, 6453–6459.
Buxaderas SC and Farre-Rovira R (1985) Whole blood and serum zinc levels in relation to sex and age. Rev Esp Fisiol 41, 463–470.
Catalanotto FA, Slavik M, Danilson D, Keiser HR and Henkin RI (1975) Changes in preference for NaCl following administration of 6-azauridine and 6-azauridine triacetate. PharmacoI Ther Dent 2, 25–32.

Chai F, Truong-Tran AQ, Ho LH and Zalewski PD (1999) Regulation of capase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol Cell Biol 77, 272–278.

Chandrashekar J, Hoon MA, Ryba NJ and Zuker CS (2006) The role of aryl hydrocarbon receptor in mammalian taste. Nature 444, 288–294.

Deters A, Schnetz E, Schmidt M and Hensel A (2003) Effects of zinc histidine and zinc sulfate on natural human keratinocytes. Forsch Komplementarmed Klass Naturheilkd 10, 19–25.

Fedoriw AM, Stein P, Schultz RM and Bartolomei MS (2004) Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303, 238–240.

Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, et al. (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48, D87–D92.

Foster SR, Porrello ER, Stefani M, Smith NJ, Molenaar P, et al. (2015) Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation. Naunyn Schmiedebergs Arch Pharmacol 388, 1009–1027.

Halayrd MY, Jatoi A, Sloan JA, Bearden III JD, Vora SA, et al. (2007) Does zinc sulfate prevent therapy-induced taste alterations in head and neck cancer patients? Results of phase III double-blind, placebo-controlled trial from the North Central Cancer Treatment Group (N01C4). Int J Radiat Oncol Biol Phys 67, 1318–1322.

Henkin RI, Patten BM, Re PK and Bronzert DA (1975) A syndrome of acute zinc loss. Cerebellar dysfunction, mental changes, anorexia, and taste and smell dysfunction. Arch Neurol 32, 745–751.

Hevezi P, Moyer BD, Lu M, Gao N, White E, et al. (2009) Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes. PLoS One 4, e6395.

Kim U, Wooding S, Ricci D, Jorde LB and Drayna D (2005) Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat 26, 199–204.

Kolenko VM, Uzzo RG, Dulin N, Hauzman E, Bukowski R, et al. (2001) Mechanism of apoptosis induced by zinc deficiency in peripheral blood T lymphocytes. Apoptosis 6, 419–429.

Lee YH and Song GG (2015) Genome-wide pathway analysis in glioma. Neoplasma 62, 230–238.

Li X, Staszewski L, Xu H, Durick K, Zoller M, et al. (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99, 4692–4696.

Liu Z, Scannell DR, Eisen MB and Tjian R (2011) Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell 146, 720–731.

Maeda T, Suzuki A, Yuzawa S, Baba Y, Kimura Y, et al. (2015) Mineral trioxide aggregate induces osteoblastogenesis via Atf6. Bone Rep 2, 36–43.

Martin LTP and Dupré DJ (2016) Bitter taste receptors. In: Encyclopedia of Signaling Molecules (Choi S, ed) pp1–6, Springer New York.

Moore JM, Rabaia NA, Smith LE, Fagerlie S, Gurley K, et al. (2012) Loss of maternal CTCF is associated with perimplantation lethality of Ccf null embryos. PLoS One 7, e34915.

Mueller SA, Gauthier MA, Ashford B, Gupta R, Gayevskiy V, et al. (2019) Mutational patterns in metastatic cutaneous squamous cell carcinoma. J Invest Dermatol 139, 1449–1458 e1441.

Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, et al. (2002) An amino-acid taste receptor. Nature 416, 199–202.

Okumura T, Makiguchi H, Makita Y, Yamashita R and Nakai K (2007) Melina II: a web tool for comparisons among several predictive algorithms to find potential motifs from promoter regions. Nucleic Acids Res 35, W227–231.

Ong CT and Corces VG (2014) CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15, 234–246.

Peña-Hernández R, Marques M, Hilmi K, Zhao T, Saad A, et al. (2015) Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I. Proc Natl Acad Sci USA 112, E677–686.

Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, et al. (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295.

Sekine H, Takao K, Yoshinaga K, Kubun S and Ikeda M (2012) Effects of zinc deficiency and supplementation on gene expression of bitter taste receptors (TAS2Rs) on the tongue in rats. Laryngoscope 122, 2411–2417.

Seo Y, Kim YS, Lee KE, Park TH and Kim Y (2017) Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells. PLoS One 12, e0176851.

Sharir R, Thomas P, Zalewski P and Fenech M (2012) Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells. Genes Nutr 7, 139–154.

Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, et al. (2011) CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79.

Solomons NW, Rosenberg IH and Sandstead HH (1976) Zinc nutrition in celiac sprue. Am J Clin Nutr 29, 371–375.

Soozangar N, Sadeghi MR, Jiddi F, Somi MH, Shirimohamadi M, et al. (2018) Comparison of genome-wide analysis techniques to DNA methylation analysis in human cancer. J Cell Physiol 233, 3968–3981.

Takeda TA, Miyazaki S, Kobayashi M, Nishino K, Goto T, et al. (2018) Zinc deficiency causes delayed ATP clearance and adenosine generation in rats and cell culture models. Commun Biol 1, 113.

Treves S, Trentini PL, Ascainelli M, Bucci G and Di Virgilio F (1994) Apoptosis is dependent on intracellular zinc and independent of intracellular calcium in lymphocytes. Exp Cell Res 211, 339–343.

Ueno Y, Sakurai T, Okada S, Abe K and Misaka T (2011) Human bitter taste receptors hTAS2R8 and hTAS2R9 with differential functions to recognize bitter peptides. Biosci Biotechnol Biochem 75, 1188–1190.

Van Bortle K, Peterson AJ, Takenaka N, O’Connor MB and Corces VG (2015) CTCF-dependent co-localization of canonical Smad signaling factors at architectural protein binding sites in D. melanogaster. Cell Cycle 14, 2677–2687.

Wang H, Maurano MT, Qu H, Varley KE, Gertz J, et al. (2012) Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res 22, 1680–1688.

Weismann K, Christensen E and Dreyer V (1979) Zinc supplementation in alcoholic cirrhosis. A double-blind clinical trial. Acta Med Scand 205, 361–366.