Recent advances in diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms

Meng Dai, Christina S Mullins, Lili Lu, Guido Alsfasser, Michael Linnebacher

Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare group of tumors originating from neuroendocrine cells of the digestive system. Their incidence has increased over the last decades. The specific pathogenetic mechanisms underlying GEP-NEN development have not been completely revealed. Unfunctional GEP-NENs are usually asymptomatic; some grow slowly and thus impede early diagnosis, which ultimately results in a high rate of misdiagnosis. Therefore, many GEP-NEN patients present with later staged tumors. Motivated hereby, research attention for diagnosis and treatment for GEP-NENs increased in recent years. The result of which is great progress in clinical diagnosis and treatment. According to the most recent clinical guidelines, improved grading standards can accurately define poorly differentiated grade 3 neuroendocrine tumors and neuroendocrine carcinomas (NECs), which are subclassified into large and small cell NECs. Combining different functional imaging methods facilitates precise diagnosis. The expression of somatostatin receptors helps to predict prognosis. Genetic analyses of mutations affecting death domain associated protein (DAXX), multiple endocrine neoplasia type 1 (MEN 1), alpha thalassemia/intellectual disability syndrome X-linked (ATRX), retinoblastoma transcriptional corepressor 1 (RB 1), and mothers against decapentaplegic homolog 4 (SMAD 4) help distinguishing grade 3 NENs from poorly differentiated NECs. The aim of this review is to summarize the latest research progress on diagnosis and treatment of GEP-NENs.

Key Words: GEP-NENs; Functional imaging; Peptide receptor radionuclide therapy; Targeting agents; Immune checkpoint inhibitors; Genetic mutations
Core Tip: Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a group of heterogeneous tumors arising from neuroendocrine cells of the digestive system. Researchers have achieved great improvements in diagnosis and treatment. This includes improved grading, identification of specific genetic mutations, functional imaging, and broad application of peptide receptor radionuclide therapy. Here, we systematically summarized the latest progress in diagnosis and treatment of GEP-NENs, thereby providing guidance for clinicians active in this field.

Citation: Dai M, Mullins CS, Lu L, Alsfasser G, Linnebacher M. Recent advances in diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms. World J Gastrointest Surg 2022; 14(5): 383-396
URL: https://www.wjgnet.com/1948-9366/full/v14/i5/383.htm
DOI: https://dx.doi.org/10.4240/wjgs.v14.i5.383

INTRODUCTION
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) originate from neuroendocrine cells of the pancreas or the gastrointestinal tract. They represent the second most common cancer of the digestive system (Figure 1) [1]. The Surveillance, Epidemiology, and End Results (commonly known as SEER) 18 registry (2000-2012) revealed an increased incidence of GEP-NENs in the United States to 3.56/100000 inhabitants in the year 2012 [2]. In European countries, the incidence also increased and was reported to be in the range of 1.33 to 2.33/100000 inhabitants [3,4]. Improvements in the detection methods have been identified as the most probable explanation for the increased incidence of GEP-NENs over the last decades [5]. These neoplasms are classified into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Moreover, depending on the hormone and amine secretion activity, GEP-NENs can be classified into functional and non-functional neoplasms [1,6]. Functional GEP-NENs produce hormones and amines, which cause specific clinical manifestations, such as hypoglycemia, refractory gastric ulcer, flushing, diarrhea, etc. However, immunohistochemical hormone staining is not sufficient for diagnosis [7].

Due to the clinical manifestations, functional GEP-NENs can frequently be diagnosed in early stages, what translates into a relatively good prognosis. In contrast, non-functional GEP-NENs are asymptomatic until distant metastases or mass effect cause late symptoms, such as intestinal obstruction [8]. The 2019 World Health Organization (WHO) classification of GEP-NENs consisted of the following categories: Grade 1, Grade 2, Grade 3, and NEC. This grading is based on the mitotic rate and/or the Ki-67 proliferation index, as listed in Table 1 below. The mitotic rate is determined by an immunohistochemistry method, in which 50 fields of 0.2 mm² are counted. The Ki-67 proliferation index value is determined by counting more than 500 cells in the regions of highest labelling using scanning magnification. The NEC grade is assigned by the proliferation index of the two, which places the neoplasm in the higher-grade according to the classification. Mixed NENs consist of both neuroendocrine and non-neuroendocrine components and are poorly differentiated, and the neuroendocrine component has proliferation indexes in the same range as other NECs. This conceptual category however allows for respect of the fact that one or both components can also be well differentiated; if feasible, every component should be graded separately [9,10]. Surgery is still the mainstay of curative treatment for localized GEP-NENs [11]. Methods of clinical diagnosis and treatment have been continuously updated because of ongoing research and study activities. This review aims at systematically summarizing the latest research advances on diagnosis and treatment of GEP-NENs.

CLINICAL PRESENTATION
GEP-NENs present as very heterogeneous, both because of different organs of origin and because of different biological behavior; consequently, clinical symptoms are various. Especially functional GEP-NENs, which secrete specific hormones, cause characteristic clinical syndromes [12]. Insulinomas produce excessive amounts of insulin, thereby causing hypoglycemia. Excessive secretion of gastrin from functional gastrinomas often results in refractory and recurrent peptic ulcerations. Glucagonoma patients regularly present with recent diabetic mellitus as well as migratory necrolytic erythema caused by extremely high glucagon levels, whereas somatostatinoma patients will present with hyperglycemia and steatorrhea. Contrary to that, non-functional GEP-NENs do not cause specific clinical symptoms, and they are only often diagnosed during routine physical examinations [13].

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Table 1 The 5th classification system of World Health Organization for gastroenteropancreatic neuroendocrine neoplasms (2019)[10]

Classification	Differentiation status	Ki-67 index	Mitotic rate
Grade 1, NET	Well differentiated	< 3%	< 2
Grade 2, NET	Well differentiated	3% to 20%	2 to 20
Grade 3, NET	Well differentiated	> 20%	> 20
Small cell type, NEC	Poorly differentiated	> 20%	> 20
Large cell type, NEC	Poorly differentiated	> 20%	> 20
Mixed NEN	Well or poorly differentiated	Variable	Variable

NET: Neuroendocrine tumor; NEC: Neuroendocrine carcinoma; NEN: Neuroendocrine neoplasm.

Figure 1 Incidence in gastroenteropancreatic organs.

DIAGNOSIS OF GEP-NENS

Diagnostic improvements over time are shown in Figure 2.

Biomarkers for diagnosis of NENs

Chromogranin-A: Chromogranin-A (CgA) is a member of the chromogranin glycoprotein family and is physiologically secreted by neurons and neuroendocrine cells[14]. In clinical diagnosis, CgA is established as a universal routine diagnostic biomarker of neuroendocrine neoplasms. Sensitivity of CgA assays varies between 32% and 92%, depending on the NET type, secretory status, and tumor burden. The specificity can approach 100% if other diseases affecting serum CgA levels, such as kidney insufficiency and chronic atrophic gastritis, can be excluded[15].

Serotonin: Serotonin is assessed by measuring its degradation product, 5-hydroxyindoleacetic acid (5-HIAA), in 24-h urine of patients with carcinoid symptoms[16]. A meta-analysis demonstrated that 5-HIAA can be a predictive biomarker for 1-year mortality rate of NEN patients[17]. However, since specific nutritious substances (such as eggplants, bananas, tomatoes, etc) and medications (such as nicotine, ephedrine, diazepam, etc) can affect 5-HIAA measurement, patients need to be guided to omit these substances.

Gastrin: Gastrinomas can result in elevation of serum gastrin levels. With excessive secretion of gastrin, patients will suffer from refractory peptic ulcers. Therefore, serum levels of gastrin are routinely measured in patients suspected to have gastrinomas. Criteria for diagnosis of Zollinger-Ellison syndrome as a result of gastrinomas are: At least 10-fold elevated serum gastrin levels and a gastric pH below 2.1. However, proton pump inhibitors (PPIs) can elevate serum gastrin levels. Patients receiving PPIs need to wean this medication for at least 1 wk before gastrin measurement[18].
Insulin: Insulin is measured for diagnosis of insulinomas after a 72-h gastric fasting. If, during fasting-induced hypoglycemia, serum insulin levels reach more than 3 mcIU/mL, serum pro-insulin levels rise above 5 pmol/L, and C-peptide concentrations are at least 0.6 ng/mL, an insulinoma is a probable diagnosis; especially in patients with concurrent pancreatic mass[19].

Glucagon: Glucagon is measured in the blood of patients suspected to suffer from glucagonomas and meeting the following criteria: Recently diagnosed with diabetes mellitus, migratory necrolytic erythema, and a positive imaging confirmation of a gastroenteropancreatic mass[20].

In summary, although these serum molecular tests are in standard use for GEP-NEN differential diagnosis, a consensus conference of multinational experts repeated that a single biomarker to diagnose efficaciously and predict prognosis for patients with GEP-NENs would be beneficial[7].

Imaging for diagnosis of GEP-NENs

Computed tomography and magnetic resonance imaging: Computed tomography and magnetic resonance imaging are conventional techniques used to determine localization and to evaluate neoplasm burden of GEP-NENs. Multiphase computed tomography (CT) or magnetic resonance imaging (MRI) scans are recommended to diagnose distant metastatic lesions[21,22], because GEP-NENs are highly vascularized and thus show the same resolution as the liver in conventional CT scanning. They can, however, be detected by either of these advanced imaging techniques. Similarly, contrast CT chest scanning is recommended for the evaluation of lung metastases. Small peritoneal, liver, and lymphatic metastases < 1 cm cannot be detected by CT analyses[23].

Functional imaging: Nowadays, functional somatostatin receptor (SSR) imaging is widely used in clinical diagnosis of NENs. Beside localizing tumors and selecting SSR-positive patients for specific
therapies, it can be used to evaluate therapeutic responses[24]. Five subtypes of SSRs (SSR1 to SSR5) have been identified, and their molecular mechanisms of regulation and signaling have been elucidated [25]. The most prominent SSR subtype in GEP-NENs is SSR2, followed by SSR1 and SSR5; SSR3 and SSR4 are less frequently expressed [26]. Moreover, SSR2 and SSR5 are usually expressed in insulinomas [27].

The \(^{68}\)Ga-DOTA somatostatin analogues (SSA) imaging system consists of \(^{68}\)Ga-DOTA-Tyr3-octreotide (\(^{68}\)Ga-DOTA-TOC), \(^{68}\)Ga-DOTA-Nal3-octreotide (\(^{68}\)Ga-DOTA-NOC), and \(^{68}\)Ga-DOTA-Tyr3-octreotate (\(^{68}\)Ga-DOTA-TATE). These different imaging agents display distinct affinities to variable SSRs. Compared to \(^{111}\)In-pentetetotide functional imaging, \(^{68}\)Ga-DOTA-SSA imaging has been shown to improve diagnosis and staging for NENs [28] and has become the imaging method of choice. \(^{68}\)Ga-DOTA-TOC shows a higher affinity to SSR-2, \(^{68}\)Ga-DOTA-NOC towards SSR-2, SSR-3, and SSR-5, whereas \(^{68}\)Ga-DOTA-TATE towards SSR-2 and SSR-5 [29]. Clinicians are supposed to select appropriate imaging agents for specific NENs. \(^{18}\)Fluorodeoxyglucose (\(^{18}\)FDG), a tracer for glucose metabolism, can indirectly assess metabolic activity of GEP-NENs. The ability of tumor cells to take up glucose is positively correlated with the tumor growth rate [30], which is in turn related to aggressiveness. Combining \(^{18}\)FDG-PET/CT with \(^{68}\)Ga-DOTA-TATE imaging is another functional imaging method for NENs [31]. Even for GEP-NENs with low or negative SSR expression, positive \(^{18}\)FDG PET/CT imaging denotes worse prognosis [32]. For the detection of tumor site and activity, the combination of SSR imaging and \(^{18}\)FDG imaging has proven to be complementary [33,34].

Endoscopy, ultrasonography, and endoscopic ultrasonography

Endoscopy, ultrasonography, and endoscopic ultrasonography are also recommended for the diagnosis and treatment of GEP-NENs. For early-stage and smaller GEP-NENs, endoscopic resection should be taken into consideration when lymphatic metastases have been excluded by endoscopic ultrasonography (US) or imaging [35]. Endoscopic resection should be reserved for GEP-NENs with a diameter < 1 cm, superficial position, and low grading [35]. US can serve as the initial diagnostic approach for liver metastases. Moreover, it can guide the biopsy needle to collect tissues for histopathological assessment. Endoscopic US is currently the most sensitive diagnostic approach for pancreatic NENs and allows biopsy collection at the same time [36], whereas intraoperative US can detect tumors in liver and pancreas, otherwise not detected by imaging methods [37].

Histopathological examination

Histopathological examination is the gold standard for GEP-NEN diagnosis; both from biopsies and resected tissues. Hematoxylin and eosin staining is used to determine cytological and histomorphological indices, and immunohistochemical staining of CgA and synaptophysin are mandatory for differential diagnosis in pathological reports [38]. Immunohistochemical Ki-67 index determination and mitotic counts per mm\(^2\) are the basis of grade classification for GEP-NENs (see Table 1). According to the latest National Comprehensive Cancer Network (NCCN) guidelines, histological classification, the resection margin status, Tumor, Node, Metastasis (commonly known as TNM) stage, and the presence of vascular invasion are also mandatory in pathological reports, because these factors are significantly associated with patient prognosis [39].

Somatic mutations

For WHO grade 3 NENs, somatic mutations in the genes death domain associated protein (DAXX), multiple endocrine neoplasia type 1 (MEN1), and alpha thalassemia/intellectual disability syndrome X-linked (ATRX) are most frequent. Whereas, in NECs, mutations affect the genes retinoblastoma gene expression has been described as a negative prognostic factor in GEP-NENs [6,44]. Insulinoma-associated protein 1 (INSM1) has proven to be a specific and sensitive biomarker for diagnosing NECs [45,46].

TREATMENT APPROACHES FOR GEP-NENs

An overview of treatment developments is shown in Figure 3.

Surgery

Surgical resection remains the sole curative form of therapy for patients with GEP-NENs [47]. Patients with local or locoregional GEP-NENs should be recommended for curative resection of the primary and the locoregional lymph nodes [48]. For patients with asymptomatic pancreatic NENs < 2 cm, a cautious surveillance with yearly imaging is recommended [49]. Patients with pancreatic NENs > 2 cm should
receive pancreatectomy with regional lymphadenectomy.[50] Localized small intestinal NENs are resected radically, including removal of mesenteric lymph nodes.[51] This can also reduce the risk of associated comorbidities, such as intestinal obstruction. A clinical study including 581 patients operated on with metastatic NENs demonstrated that the median overall survival (OS) was 110.4 mo for curative resection. In comparison, resections resulting merely in debulking (OS: 89.2 mo) or performed in a palliative situation (OS: 50.0 mo) had significantly shorter OS rates ($P < 0.001$). Patients receiving cytoreductive surgery survived, in median, 89.2 mo, whereas when all metastatic lesions could be removed, the longest median survival of 112.5 mo could be reached ($P < 0.001$).[52] Another clinical retrospective analysis of grade 3 GEP-NENs reported a 2-year OS rate after radical surgery of 64.5%, a 2-year progression-free survival (PFS) rate of 44.9%, and a median PFS of 14 mo.[53] Therefore, the 2021 NCCN guidelines[6] recommended that, for small (< 2 cm) and low-grade NENs, surgery or close monitoring should be individualized. For large (> 2 cm) and higher-graded NENs, resection with negative margins and removal of regional lymph nodes should be conducted. Cytoreductive or debulking resection for distant metastases is recommended when more than 90% of the lesions can be removed safely, especially if patients present with serious hormonal symptoms.[54,55]

Systemic therapies

Somatostatin: Somatostatin is a general endocrine “off-switch” due to its not only endocrine but also, exocrine, autocrine, and paracrine inhibitory effects. In the digestive system, somatostatin can inhibit bowel movements, decrease the blood flow of mesenteric vessels, inhibit gastrointestinal absorption as well as gallbladder contraction, and suppress hormone secretion.[56] The half-life of somatostatin is only 3 min, thus preventing its pharmacological use. Hence, SSAs with longer half-lives were developed to treat patients with GEP-NENs.[57] SSAs can control hormonal symptoms induced by GEP-NENs[58] by binding to SSRs, thereby preventing the activation. Currently, the most commonly used SSAs for GEP-NENs are octreotide and lanreotide. In the placebo-controlled, double-blind, prospective, and randomized study on the “effect of octreotide long-acting repeatable (LAR) in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID)” clinical trial, it was
demonstrated that octreotide significantly delayed tumor progression time (LAR 14.3 mo vs placebo 6 mo) [59]. The controlled study of lanreotide anti-proliferative response in NEN (CLARINET) trial confirmed that lanreotide was associated with significantly higher 2-year PFS rates in patients with metastatic enteropancreatic NEN (65.1% in the lanreotide group vs 33.0% in the placebo group) [60]. In a phase III trial, pasireotide, a second generation SSA [61], was compared to octreotide. It prolonged the median PFS from 6.8 mo in the octreotide DAR control group to 11.8 mo in the pasireotide DAR group [62]. The guidelines of the European Neuroendocrine Tumor Society (ENETS) and the NCCN guidelines recommended SSAs as first-line therapeutic agents for GEP-NENs. For patients receiving LAR SSAs, cholecystectomy is recommended in case of cholecystitis and gallstones [63].

Interferon-α (IFNα) has been used to inhibit hormone secretion and proliferation in NENs in the past decades [64]. The phase III clinical study of the Southwest Oncology Group compared octreotide LAR plus IFNα with octreotide LAR plus bevacizumab. Antitumor effectiveness was similar with median PFS of 15.4 mo and 16.6 mo, respectively [65]. When other available therapeutic options failed, IFNα could thus be taken into cautious consideration as a rescue antiproliferative therapy [66].

Molecular targeted agents

Mammalian target of rapamycin inhibitors: When the phosphatase and tension homolog protein is phosphorylated, a negative feedback regulation via phosphatidylinositol 3-kinase (PI3K) is normally activated, which inhibits cell proliferation and promotes cell apoptosis. However, the reduction of phosphatase and tension homolog messenger RNA expression stimulates activation of the PI3K-AKT-mammalian target of rapamycin (mTOR) pathway and can trigger tumor formation [67]. The key role of this signaling pathway in GEP-NEN development inspired mechanistic research with the aim to develop drugs targeting PI3K-AKT-mTOR [68,69]. Phase III clinical studies of RAD001 application for patients with advanced NEN (RADIANT)-3 and -4, lead to the approval of everolimus. This targeted inhibitor of mTOR with the capacity to delay NEN progression attained approval for treatment of GEP-NENs [70,71]. Both ENETS and NCCN guidelines recommend everolimus as a second or third-line drug for advanced GEP-NENs. In patients with insulinomas, everolimus showed the positive side-effect of stabilizing glycemic levels [72]. However, low expression of SSR2 in patients with insulinomas results in hypoglycemia due to an inhibition of glucagon [56,74]. Therefore, everolimus should be prioritized for patients with insulinomas.

Vascular endothelial growth factor receptors inhibitors: Sunitinib, a broadly acting tyrosine kinase inhibitor targeting vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth factor receptors, has been affirmed to defer progression of pancreatic NENs in a phase III clinical trial [60]. Sunitinib was thus included for treatment of advanced pancreatic NENs in the ENETS and NCCN guidelines. However, there is a lack of clinical data for the effects of sunitinib on gastroenteric NENs. The Grupo Espanol de Tumores Neuroendocrinos (GETNE) 1509 phase II trial has proven that lenvatinib, another VEGFR inhibitor, achieved an overall response rate of 29.9% (44.2% in pancreatic and 16.4% in gastrointestinal NENs), a median response duration of 21.5 mo (19.9 mo in pancreatic and 33.9 mo in gastrointestinal NENs), a median PFS of 15.7 mo (15.6 mo and 15.7 mo respectively), and a median OS of 32 mo in the gastrointestinal NEN group. The median OS was not reached in the pancreatic NEN group. The phase III trial of surufatinib, a novel VEGFR inhibitor, in advanced extrapancreatic and pancreatic neuroendocrine tumors (SANET-ep and SANET-p) showed a meaningful improvement of PFS to 9.2 mo and 10.8 mo in the surufatinib groups vs 3.8 mo and 3.7 mo in the placebo groups for patients with advanced, progressive, well differentiated, extrapancreatic NENs, and advanced pancreatic NENs [76], respectively.

Immune checkpoint inhibitors

Immune checkpoint inhibitors, which target for example programmed death protein-1 (PD-1), its receptor programmed death-ligand 1 (PD-L1), or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), showed promising antitumor efficacy in various tumor types [77]. In a phase I B study of the anti-PD-1 antibody pembrolizumab in advanced solid tumors (KEYNOTE-028), pembrolizumab monotherapy proved antitumor efficacy in patients with PD-L1-positive carcinoid and pancreatic NENs with high stable disease rates of 60% and 88%, respectively; however, only a disappointing objective response rate (ORR) of 12% and 6.3%, respectively [78]. In a subsequent phase II (KEYNOTE-158) study, pembrolizumab monotherapy had an ORR of only 3.7%, a median PFS of 4.1 mo and a median OS of 24.2 mo in patients with previously treated advanced well-differentiated NENs [79]. Pembrolizumab is also proposed for patients with tumor progression after previous treatment, tumors with high tumor mutational burden and no adequate alternative treatment regimens [80,81]. A phase II clinical trial of dual anti-CTLA-4 (ipilimumab) and anti-PD-1 (nivolumab) inhibition in patients with nonpancreatic NENs reported an auspicious ORR of 44% (18 of 32 patients) with high-grade NENs. This trial demonstrated that dual immunotherapy preferentially plays a role in grade 3 NENs [82]. A similar phase II study (CA209-538) also verified the significant efficacy of combination immunotherapy with ipilimumab and nivolumab in high-grade NEN patients (the median PFS of 4.8 mo and the OS of 14.8...
mo in all the patients with NENs)\cite{83}.

Peptide receptor radionuclide therapy

Peptide receptor radionuclide therapy is actually a kind of systemic and targeted radiotherapy in one \cite{84}. SSAs are structured with a radioisotope [such as Yttrium-90 (\(^{90}\)Y) and Lutetium-177 (\(^{177}\)Lu)] via a chelating agent. The emitted radiation kills the cancer cells that express SSRs on the tumor cells’ surface \cite{85}. \(^{177}\)Lu-DOTA-TATE was approved by the European Medicines Agency for the treatment of patients with GEP-NENs in 2017 and a year later by the American Food and Drug Administration\cite{86,87}. In a comprehensive meta-analysis of 1920 patients with unresectable metastatic NENs receiving \(^{177}\)Lu-DOTATATE therapy from 18 studies, the ORR was between 29.1% and 30.6%, and the disease control rate was 74.1% to 81.1%\cite{88}.

Chemotherapies

For G1 and G2 pancreatic NENs, SSAs are recommended as first-line therapeutic regimen. When ineffective, however, both NCCN and ENETS guidelines recommend temozolomide combined with capecitabine or streptozotocin-based therapies. To date, there is no recommendation for systematic chemotherapy for G1 and G2 gastroenteric NENs from NCCN and ENETS. Similarly, no standard chemotherapeutic regimens are currently recommended for G3 NETs. The NORDIC NEC study demonstrated that NEC patients with Ki-67 < 55% were less sensitive to platinum-based chemotherapy than those with Ki-67 ≥ 55% (response rate: 15% vs 42%, respectively), yet survival times were better for patients with Ki-67 < 55% (14 mo vs 10 mo, respectively)\cite{89}. Thus, ENETS and NCCN guidelines do not suggest platinum- but temozolomide-based chemotherapies for patients with Ki-67 < 65%. For grade 3 NEN patients with Ki-67 < 55%, temozolomide-based chemotherapies are recommended; whereas, patients with Ki-67 ≥ 55% should receive platinum-based regimens, such as cisplatin or carboplatin, both in combination with etoposide\cite{90}. These regimens are also recommended for GEP-NEC patients in the 2021 NCCN guideline as first-line chemotherapy.

Related agents for controlling clinical manifestations

PPIs can control hypersecretion of gastric acid in patients with gastrinomas. However, related studies have proven that PPIs can lead to hypomagnesemia and vitamin B12 deficiency in patients with long-term use\cite{91}, suggesting a cautious use paired with regular control of magnesium and vitamin B12 levels.

Tryptophan hydroxylase is the rate-limiting enzyme for the conversion of tryptophan to serotonin. The tryptophan hydroxylase inhibitor telotristat can reduce the serotonin production. It is thus used in clinical practice to treat patients with refractory diarrhea resulting from a carcinoid syndrome\cite{92} and it has been validated to normalize bowel movements and urinary levels of 5-HIAA\cite{93}.

CONCLUSION

In summary, the pathogenesis of GEP-NENs is still largely unclear. Multiple classification systems and treatment schedules have been accurately (re)defined thanks to the efforts of GEP-NEN experts. Because of the great improvement of detection technologies, an increasing number of suspicious patients can be diagnosed with GEP-NENs already at an early stage. Novel treatment approaches, including small molecule inhibitors, SSAs, and peptide receptor radionuclide therapy targeting GEP-NENs, have evolved remarkably. However, prospective research still needs to be conducted to confirm their efficacy. Also, many controversies concerning the therapy regimens for specific GEP-NENs of different types remain. Beside identifying and developing novel molecular targeted drugs, the rational combination of targeted, chemo-, and immunotherapy seems to be the future research direction in the field of GEP-NEN therapy.

ACKNOWLEDGEMENTS

All authors appreciate the excellent help from Burmeister J for the figure designs.

FOOTNOTES

Author contributions: Dai M and Linnebacher M analyzed the literature and wrote the manuscript; Alsfasser G, Lu L and Mullins CS critically reviewed the manuscript; Mullins CS edited the language as a native speaker.

Supported by China Scholarship Council, No. 202108080085 to (Dai M) and No. 201908080127 to (Lu LL).
Conflict-of-interest statement: None to be declared.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Germany

ORCID number: Meng Dai 0000-0001-5919-7512; Christina S Mullins 0000-0003-2296-2027; Lili Lu 0000-0001-6638-624X; Guido Alsfasser 0000-0002-2637-8947; Michael Linnebacher 0000-0001-8054-1402.

Corresponding Author’s Membership in Professional Societies: European Association for Cancer Research, No. EACR30750.

S-Editor: Wu YXJ
L-Editor: Filopidia
P-Editor: Wu YXJ

REFERENCES

1. Cives M, Strosberg JR. Gastroenteropancreatic Neuroendocrine Tumors. CA Cancer J Clin 2018; 68: 471–487 [PMID: 30205930 DOI: 10.3322/caac.21493]
2. Dasari A, Shcn C, Halperin D, Zhao B, Zhou S, Xu Y, Shih T, Yao JC. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol 2017; 3: 1335–1342 [PMID: 28448665 DOI: 10.1001/jamaoncol.2017.0589]
3. Zhang H, Li R, Cao Y, Gu Y, Lin C, Liu X, Lv K, He X, Fang H, Jin K, Fei Y, Chen Y, Wang J, Liu H, Li H, Zhang H, He H, Zhang W. Poor Clinical Outcomes and Immuneospressive Contexture in Intraductal IL-10-Producing Macrophages Enriched Gastric Cancer Patients. Ann Surg 2022; 275: 626–635 [PMID: 28448665 DOI: 10.1097/sla.0000000000004037]
4. Huguet I, Grossman AB, O’Toole D. Changes in the Epidemiology of Neuroendocrine Tumours. Neuroendocrinology 2017; 104: 101–111 [PMID: 26505990 DOI: 10.1159/000441897]
5. Genus TSE, Bouvier C, Wong KS, Sirrajaskanthan R, Rous BA, Talbot DC, Valle JW, Khan M, Pearnce N, Elshafei M, Reed NS, Morgan E, Deas A, White C, Huws D, Ramage J. Impact of neuroendocrine morphology on cancer outcomes and stage at diagnosis: a UK nationwide cohort study 2013-2015. Br J Cancer 2019; 121: 966–972 [PMID: 31649320 DOI: 10.1038/s41416-019-0606-3]
6. Shaah MH, Goldner WS, Benson AB, Bergsland E, Blaszkowsky LS, Brock P, Chan J, Das S, Dickson PV, Fanta P, Giordano T, Halfdanarson TR, Halperin D, He J, Heaney A, Kandeel F, Kardan A, Khan SA, Kuvshinoff BW, Li R, Miller K, Pillarissetty VG, Reidy D, Salgado SA, Shaheen S, Soares HP, Soulen MC, Strosberg JR, Sussman CR, Trikalinos NA, Uboha NA, Vijayvergia N, Wong T, Lynn B, Hochsterter C. Neuroendocrine and Adrenal Tumors, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology.
7. Obeg K, Modlin IM, De Herder W, Pavel M, Klimstra D, Frilling A, Metz DC, Heaney A, Kwekkeboom D, Strosberg JR. Gastroenteropancreatic Neuroendocrine Tumors. Histopathology 2020; 76: 182–188 [PMID: 31433515 DOI: 10.1111/his.13975]
8. Assarzadegan N, Montgomery E. What is New in the 2019 World Health Organization (WHO) Classification of Tumors of the Digestive System: Review of Selected Updates on Neuroendocrine Neoplasms, Appendiceal Tumors, and Molecular Testing. Arch Pathol Lab Med 2021; 145: 664–677 [PMID: 32233993 DOI: 10.5858/arpa.2019-0665-RA]
9. Strosberg JR, Cheema A, Weber JM, Gohayouri M, Han G, Hodul PJ, Kuvshinoff BW. Relapse-free survival in patients with nonmetastatic, surgically resected pancreatic neuroendocrine tumors: an analysis of the AJCC and ENETS staging classifications. Ann Surg 2012; 256: 321–325 [PMID: 22415420 DOI: 10.1097/SLA.0b013e31824e1018]
10. Fottner C, Ferrata M, Weber MM. Hormone secreting gastro-entero-pancreatic neuroendocrine neoplasias (GEP-NEN): When to consider, how to diagnose? Rev Endor Metab Disord 2017; 18: 393–410 [PMID: 29256145 DOI: 10.1007/s11154-017-9438-8]
11. Bonds M, Rocha FG. Neuroendocrine Tumors of the Pancreatobiliary and Gastrointestinal Tracts. Surg Clin North Am 2020; 100: 635–648 [PMID: 32402306 DOI: 10.1016/j.suc.2020.02.010]
12. Kanakis G, Kaltas G. Biomarker practices for gastroenteropancreatic neuroendocrine tumours (GEP-NETs). Best Pract Res Clin Gastroenterol 2012; 26: 791–802 [PMID: 23582919 DOI: 10.1016/j.bpg.2012.06.006]
13. Marotta V, Zatelli MC, Sciammarella C, Ambrosio MR, Bandonelli M, Colao A, Faggiano A. Chromogranin A as
circulating marker for diagnosis and management of neuroendocrine neoplasms: more flaws than fame. *Endocr Relat Cancer* 2018; 25: R11-R29 [PMID: 29066503 DOI: 10.1530/ERC-17-0269]

16 **Obereg K**, Couvelard A, Delle Fave G, Gross D, Grossman A, Jensen RT, Pape UF, Perren A, Rindi G, Ruszniewski P, Scoazec JY, Velin S, Wiedermann B, Ferone D; Antibes Consensus Conference participants. ENETS Consensus Guidelines for Standard of Care in Neuroendocrine Tumours: Biochemical Markers. *Neuroendocrinology* 2017; **105**: 201-211 [PMID: 28391265 DOI: 10.1503/00472254]

17 **Joish VN**, Shah S, Tierec JC, Patel D, McKee C, Lapuerta P, Zacks J. Serotonin levels and 1-year mortality in patients with neuroendocrine tumors: a systematic review and meta-analysis. *Future Oncol* 2019; **15**: 1397-1406 [PMID: 30734573 DOI: 10.2217/fon-2018-0960]

18 **Osofo N**, Ito T, Jensen RT. Gastric acid hypersecretory states: recent insights and advances. *Curr Gastroenterol Rep* 2009; **11**: 433-441 [PMID: 19903418 DOI: 10.1007/s11894-009-0067-6]

19 **Cryer PE**, Axelrod L, Grossman AB, Heller SR, Montori VM, Seaguest ER, Service FJ; Endocrine Society. Evaluation and management of adult hypoglycemic disorders: an Endocrine Society Clinical Practice Guideline. *J Clin Endocrinol Metab* 2009; **94**: 709-728 [PMID: 19081855 DOI: 10.1210/jc.2008-1410]

20 **Sandru F**, Carsote M, Albu SE, Valea A, Petca A, Dumitrascu MC. Glucagonoma: From skin lesions to the neuroendocrine component (Review). *Exp Ther Med* 2020; **20**: 3389-3393 [PMID: 32905095 DOI: 10.3892/etm.2020.9866]

21 **Kaltas G**, Rockall A, Papadogias D, Reznek R, Grossman AB. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. *Eur J Endocrinol* 2004; **151**: 15-27 [PMID: 15248818 DOI: 10.1530/eje.0.1510015]

22 **Cwikla JB**, Buscombe JR, Caplin ME, Watkinson AF, Walecki J, Gorczyca-Wisniewska E, Hilson AJ. Diagnostic imaging of carcinoid metastases to the abdomen and pelvis. *Med Sci Monit* 2004; **10** Suppl 3: 9-16 [PMID: 16358192]

23 **Norden O**, Montan H, Hellman P, Stalberg P, Sundin A. Preoperative 68Ga-DOTA-Somatostatin Analog-PET/CT Hybrid Imaging Increases Detection Rate of Intra-abdominal Small Intestinal Neuroendocrine Tumor Lesions. *World J Surg* 2018; **42**: 498-505 [PMID: 2976214 DOI: 10.1007/s00268-017-4364-1]

24 **Hope TA**, Bergsland EK, Bozkurt MF, Graham M, Heaney AP, Herrmann K, Howe JR, Kulke MH, Kunz PL, Maillam J, May L, Metz DC, Millo C, O’Dorisio S, Reidy-Lagunes DL, Soulén MC, Strosberg JR. Appropriate Use Criteria for Somatostatin Receptor PET Imaging in Neuroendocrine Tumours. *J Nucl Med* 2018; **59**: 66-74 [PMID: 29025982 DOI: 10.2967/jnmd.117.202275]

25 **Reubi JC**, Schonbrunn A. Illuminating somatostatin analog action at neuroendocrine tumour receptors. *Trends Pharmacol Sci*; 2013: 34: 676-688 [PMID: 24183675 DOI: 10.1016/j.tips.2013.10.001]

26 **Reubi JC**, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. *Eur J Nucl Med Mol Imaging* 2003; **30**: 781-793 [PMID: 12707737 DOI: 10.1007/s00259-003-1184-3]

27 **Bertherat J**, Tenenbaum F, Perlemonke I, Videau C, Alberini J, Brandl B, Dousset B, Bertagna X, Elbellma J. Somatostatin receptors 2 and 5 are the major somatostatin receptors in insulinomas: an in vivo and in vitro study. *J Clin Endocrinol Metab* 2003; **88**: 5353-5360 [PMID: 14602773 DOI: 10.1210/jc.2002-021895]

28 **Deppen SA**, Blume J, Bobbey AJ, Shah C, Graham MM, Lee P, Delbeke D, Walker RC. 68Ga-DOTATATE Compared with 111In-DTPA-Octreotide and Conventional Imaging for Pulmonary and Gastroenteropancreatic Neuroendocrine Tumors: A Systematic Review and Meta-Analysis. *J Nucl Med* 2016; **57**: 872-878 [PMID: 26769861 DOI: 10.2967/jnmd.115.165803]

29 **Virgolini I**, Gabriel M, Kroiss A, von Guggenberg E, Prommegger R, Warnetz B, Niilica B, Roig LG, Rodrigues M, Uprimny C. Current knowledge on the sensitivity of the 68Ga-somatostatin receptor positron emission tomography and the SUVmax reference range for management of pancreatic neuroendocrine tumours. *Eur J Nucl Med Mol Imaging* 2016; **43**: 2072-2083 [PMID: 27174220 DOI: 10.1007/s00259-016-3395-4]

30 **Hofman MS**, Hicks RJ. Changing paradigms with molecular imaging of neuroendocrine tumors. *Discov Med* 2012; **14**: 71-81 [PMID: 22846204]

31 **Sorbye H**, Kong G, Grozinsky-Glasberg S. PRRT in high-grade gastroenteropancreatic neuroendocrine neoplasms (WHO G3). *Endocr Relat Cancer* 2020; **27**: R67-R77 [PMID: 31846429 DOI: 10.1530/ERC-19-0400]

32 **Binderup T**, Knigge U, Lofo A, Federspiel B, Kjaer A. 18F-fluoroexocytosine positron emission tomography predicts survival of patients with neuroendocrine tumours. *Clin Cancer Res* 2010; **16**: 978-985 [PMID: 20106666 DOI: 10.1158/1078-0432.CCR-09-1759]

33 **Has Simsek D**, Kayumcu S, Turkmen C, Sanih Y, Aykan F, Unal S, Adalet I. Can complementary 68Ga-DOTATATE and 18F-FDG PET/CT establish the missing link between histopathology and therapeutic approach in gastroenteropancreatic neuroendocrine tumours? *J Nucl Med* 2014; **55**: 1811-1817 [PMID: 25315243 DOI: 10.2967/jnumed.114.142224]

34 **Naowa N**, Shargha P, Gupta SK, Mitra RC, Patte C, Lata S, Kumar R, Malhotra A, Bal C. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumours using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary? *Clin Nucl Med* 2014; **39**: e27-e34 [PMID: 24217530 DOI: 10.1097/RLU.0b013e31827a2166]

35 **Saund MS**, Al Natour RH, Sharma AM, Huang Q, Boosalis VA, Gold JS. Tumor size and depth predict rate of lymph node metastasis and utilization of lymph node sampling in surgically managed gastric carcinoids. *Ann Surg Oncol* 2011; **18**: 2826-2832 [PMID: 21455598 DOI: 10.1245/s10434-011-1652-0]

36 **Anderson MA**, Carpenter S, Thompson NW, Nostrant TT, Elta GH, Scheiman JM. Endoscopic ultrasound is highly accurate and directs management in patients with neuroendocrine tumours of the pancreas. *Am J Gastroenterol* 2000; **95**: 2271-2277 [PMID: 11007228 DOI: 10.1111/j.1572-0241.2000.02480.x]

37 **Sundin A**, Arnold R, Bang M, Cwikla JB, Eriksson B, Fanti S, Fazio N, Giannarelli F, Hicks RJ, Kjaer A, Krenning E, Kwekkeboom D, Lombard-Bohas C, O’Connor JM, O’Toole D, Rockall A, Wiedermann B, Valle JW, Villierme MP; Antibes Consensus Conference participants. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Radiological, Nuclear Medicine & Hybrid Imaging. *Neuroendocrinology* 2017; **105**: 212-244 [PMID: 28355596]
Partelli S. Association of a Prophylactic Surgical Approach to Stage IV Small Intestinal Neuroendocrine Tumors With Non-Hormonal Symptoms. Journal of Gastrointestinal Surgery 2018; 23 [DOI: 10.1007/s11605-018-3986-4]

Singh AD. Insulinoma-associated protein 1 (INSM1) is a robust marker for identifying and grading pancreatic neuroendocrine tumours. Cancer Cytopathol 2020; 128: 269-277 [PMID: 31977134 DOI: 10.1002/cncr.22242]

Halfdanarson TR, Strosberg JR, Tang LH, Basturk O, Sue JJ, Klimstra DS. A Practical Approach to the Classification of WHO Grade 3 (G3) Well-differentiated Neuroendocrine Tumor (ND-TET) and Poorly Differentiated Neuroendocrine Carcinoma (PD-NEC) of the Pancreas. Am J Surg Pathol 2016; 40: 1192-1202 [PMID: 27259015 DOI: 10.1097/PAS.0000000000000662]

Kim HS, Lee HS, Nam KH, Choi J, Kim WH. p27 Loss Is Associated with Poor Prognosis in Gastroenteropancreatic Neuroendocrine Tumors. Cancer Res Treat 2014; 46: 383-392 [PMID: 25036575 DOI: 10.4143/crt.2013.102]

Kim D, Viswanathan K, Goyal A, Rao R. Insulinoma-associated protein 1 (INSM1) is a robust marker for identifying and grading pancreatic neuroendocrine tumours. Cancer Cytopathol 2020; 128: 269-277 [PMID: 31977134 DOI: 10.1002/cncr.22242]

Moran C, Moss SF, Oberg K, O'Toole D, Rindi G, Robert ME, Suster S, Tang LH, Tzen CY, Washington MK, Shivdasani R, Asa SL, Harris CR, Getz G, Kulke M, Meyerson M. Somatic mutation of CDKN1B in small intestine tumors. Cancer Cytopathol 2014; 122: 434-447 [PMID: 23988602 DOI: 10.1002/cncr.288191]

Coriat R, Walter T, Terris B, Couvelard A, Ruszniewski P. Gastroenteropancreatic Well-Differentiated Grade 3 Neuroendocrine Tumors: Review and Position Statement. Oncotarget 2016; 21: 1191-1199 [PMID: 27401895 DOI: 10.18632/oncotarget.10643]

Partelli S, Ciocchi R, Crippa S, Cardinali L, Fendrich V, Bartsh DK, Falconi M. Systematic review of active surveillance vs surgical management of asymptomatic small non-functioning pancreatic neuroendocrine neoplasms. Br J Surg 2017; 104: 34-41 [PMID: 27706803 DOI: 10.1002/bjs.10312]

Partelli S, Gajoux S, Bonninsegna L, Chierfi R, Crippa S, Couvelard A, Scarpa A, Ruszniewski P, Sauvanet A, Falconi M. Pattern and clinical predictors of lymph node involvement in nonfunctioning pancreatic neuroendocrine tumours (NF-PanNETs). JAMA Surg 2013; 148: 932-939 [PMID: 23986355 DOI: 10.1001/jama.surgery.2013.3376]

Lardiére-Deguelte S, de Mestier L, Appéré F, Vullierme MP, Zappa M, Hoeffel C, Noaves M, Brixi H, Hentic O, Tan LH, Oddo M, Bayard D, Boccaccini D, Charny G, Lechevallier A, Klauser R, Perren A, Christ E, Panzuto F, Pascher A, Jann H. Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and intestinal neuroendocrine tumors. Mod Pathol 2013; 26: 1483-1486 [PMID: 24185511 DOI: 10.1038/modpathol.2012.217]

Tang LH, Basturk O, Sue JJ, Klimstra DS. A Practical Approach to the Classification of WHO Grade 3 (G3) Well-differentiated Neuroendocrine Tumor (ND-TET) and Poorly Differentiated Neuroendocrine Carcinoma (PD-NEC) of the Pancreas. Am J Surg Pathol 2016; 40: 1192-1202 [PMID: 27259015 DOI: 10.1097/PAS.0000000000000662]

Klimstra DS, Modlin IR, A.dsay NV, Chetty R, Deshpande V, Gömen M, Jensen RT, Kidd M, Kulke MH, Lloyd RV, Moran C, Moss SF, Öberg K, O’Toole D, Rindi G, Robert ME, Suster S, Tang LH, Tzen CY, Washington MK, Wiedenmann B, Yao J. Pathology reporting of neuroendocrine tumors: application of the Delphi consensus process to the development of a minimum pathology data set. Am J Surg Pathol 2010; 34: 300-313 [PMID: 20118772 DOI: 10.1097/PAS.0b013e3181ce1447]
Analogues in the Treatment of Neuroendocrine Tumors: Past, Present and Future. *Int J Mol Sci* 2019; 20 [PMID: 31234481 DOI: 10.3390/ijms20132049]

58 Baldelli R, Barnabei A, Rizza L, Isidori AM, Rota F, Di Giacinto P, Paoloni A, Torino F, Corsello SM, Lenzi A, Appetreccia M. Somatostatin analogs therapy in gastroenteropancreatic neuroendocrine tumors: current aspects and new perspectives. *Front Endocrinol (Lausanne)* 2014; 5: 7 [PMID: 24570674 DOI: 10.3389/fendo.2014.00007]

59 Rinke A, Müller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, Mayer C, Aminossadati B, Pape UF, Bläker M, Harder J, Arnold C, Gress T, Arnold R. PROMID Study Group. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. *J Clin Oncol* 2009; 27: 4656-4663 [PMID: 19704057 DOI: 10.1200/JCO.2009.22.8510]

60 Caplin ME, Pavel M, Čwikla JB, Phan AT, Raderer M, Sedláčková E, Cadiot G, Wolin EM, Capdevila J, Wall L, Rindi G, Langley A, Martinez S, Blumberg J, Ruszniewski P; CLARINET Investigators. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. *N Engl J Med* 2014; 371: 224-233 [PMID: 25014687 DOI: 10.1056/NEJMoa1316158]

61 Gomes-Porras M, Cárdenas-Salas J, Álvarez-Escolá C. Somatostatin Analogs in Clinical Practice: a Review. *Int J Mol Sci* 2020; 21 [PMID: 32121432 DOI: 10.3390/ijms21051682]

62 Wolin EM, Jarzab B, Eriksson B, Tattersall T, Tounpanakis C, Morse MA, Tomassetti P, Weber MM, Fogelman DR, Ramage J, Poon D, Gadbaw B, Li J, Pasieka JL, Mahamat A, Swahn F, Newell-Price J, Mansoor W, Öberg K. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. *Drug Des Devel Ther* 2015; 9: 5075-5086 [PMID: 26366058 DOI: 10.2147/DDDT.S84177]

63 Oberg K, Kvols L, Caplin M, Delles Fave G, de Herder W, Rindi G, Ruszniewski P, Woltering EA, Wiedenmann B. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. *Ann Oncol* 2004; 15: 966-973 [PMID: 15151956 DOI: 10.1093/annonc/mdn216]

64 Rinke A, Krug S. Neuroendocrine tumours - Medical therapy: Biological. *Best Pract Res Clin Endocrinol Metab* 2016; 30: 79-91 [PMID: 26971845 DOI: 10.1016/j.beem.2015.09.004]

65 Yao JC, Guthrie KA, Moran C, Strosberg JR, Kulke MH, Chen JS, McWilliams RR, Wolin EM, Mattar B, McDonough S, Chen H, Blanke CD, Hochster HS. Phase III Prospective Randomized Comparison Trial of Depot Octreotide Plus Interferon Alfa-2b Versus Depot Octreotide Plus Bevacizumab in Patients With Advanced Carcinoid Tumors: SWOG S0518. *Ann Oncol* 2017; 35: 1695-1703 [PMID: 28384065 DOI: 10.1093/annonc/mdj047]

66 Pavil M, Öberg K, Falconi M, Krenning EP, Sundin A, Perren A, Berruti A; ESMO Guidelines Committee. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2020; 31: 844-860 [PMID: 32272208 DOI: 10.1016/annonc.2020.03.034]

67 Capozzi M, Von Arx C, De Divitis C, Ottalino A, Tatangelo F, Romano GM, Tafuto S; (On behalf of ENETS Center of Excellence Multidisciplinary Group for Neuroendocrine Tumors in Naples, Italy). Antiangiogenic Therapy in Pancreatic Neuroendocrine Tumors. *Anticancer Res* 2016; 36: 5025-5030 [PMID: 27798861 DOI: 10.21873/anticanres.11071]

68 Wolin EM. PI3K/Akt/mTOR pathway inhibitors in the therapy of pancreatic neuroendocrine tumors. *Cancer Lett* 2013; 335-34 [PMID: 23449523 DOI: 10.1016/j.canlet.2013.02.016]

69 Aristizábal Prada ET, Auernhammer CJ. Targeted therapy of gastroenteropancreatic neuroendocrine tumors: preclinical strategies and future targets. *Endocr Connect* 2018; 7: R1-R25 [PMID: 29146887 DOI: 10.1530/EC-17-0266]

70 Yao JC, Pavel M, Lombard-Bohas C, Van Cutsem E, Voi M, Brandt U, He W, Chen D, Capdevila I, de Vries EGE, Tomassetti P, Hobday T, Pomnier R, Öberg K. Everolimus for the Treatment of Advanced Pancreatic Neuroendocrine Tumors: Overall Survival and Circulating Biomarkers from the Randomized, Phase III RADIANT-3 Study. *J Clin Oncol* 2016; 34: 3906-3913 [PMID: 27621394 DOI: 10.1200/JCO.2016.68.0702]

71 Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin EM, Tomasek J, Raderer M, Lahner H, Voi M, Pacaud LB, Rouyrie N, Sachs C, Valle JW, Fave GD, Van Cutsem E, Tesselara M, Shimada Y, Oh DY, Strosberg J, Kulke MH, Pavel ME; RAD001 in Advanced Neuroendocrine Tumours, Fourth Trial (RADIANT-4) Study Group. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. *Lancet* 2016; 387: 968-977 [PMID: 26703889 DOI: 10.1016/S0140-6736(15)00817-X]

72 Agata, Matej, Hanna, Bujwid, Jakub, Wroński. Glycemic control in patients with insulinoma. Hormones (Athens, Greece) 2016 [DOI: 10.14310/horm.2002.1706]

73 Usukura M, Yoneda T, Oda N, Yamamoto Y, Takata H, Hasatani K, Takeda Y. Medical treatment of benign insulinoma: a case report. *Endocr J* 2007; 54: 95-101 [PMID: 17124362 DOI: 10.1507/endocrj.05-157]

74 Healy ML, Davison SJ, Murray RM, Zalcberg J, Jefford M. Severe hypoglycaemia after long-acting octreotide in a patient with an unrecognized malignant insulinoma. *Inter Med J* 2007; 37: 406-409 [PMID: 17535385 DOI: 10.1111/j.1445-5994.2007.01371.x]

75 Faivre S, Niccoli P, Castellano D, Valle JW, Hammel P, Raoul JL, Vinik A, Van Cutsem E, Bange YJ, Lee SH, Borbath I, Lombard-Bohas C, Metrakos P, Smith D, Chen JS, Ruszniewski P, Seitz JF, Patyna S, Lu DR, Ishak KJ, Raymond E. Sunitinib in pancreatic neuroendocrine tumours: updated progression-free survival and final overall survival from a phase III randomized study. *Ann Oncol* 2017; 28: 339-343 [PMID: 27836885 DOI: 10.1093/annonc/mdw561]

76 Xu J, Shen L, Bai C, Wang W, Li J, Yu X, Li Z, Li E, Yuan X, Chi Y, Yin Y, Lou W, Xu N, Bai Y, Zhang T, Xiu D, Wang X, Yuan Y, Chen J, Qin S, Jia R, Lu M, Cheng Y, Zhou Z, He J, Su W. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): a randomised, double-blind, placebo-controlled, phase 3 study. *Lancet Oncol* 2020; 21: 1489-1499 [PMID: 32966810 DOI: 10.1016/S1470-2045(20)30493-9]

77 Bagchi S, Yuan R, Engelman EG. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. *Ann Rev Pathol* 2021; 16: 223-249 [PMID: 33197221 DOI: 10.1146/annurev-pathol-042020-042471]
78 Mehner JM, Bergsland E, O'Neil BH, Santoro A, Schellens JHM, Cohen RB, Doi T, Ott PA, Pishvaian MJ, Puzanov I, Aung KL, Hsu C, Le Tourneau C, Hollebecque A, Êléz E, Tamura K, Gould M, Yang P, Stein K, Piha-Paul SA. Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: Results from the KEYNOTE-028 study. Cancer 2020; 126: 3021-3030 [PMID: 32320048 DOI: 10.1002/cncr.32883]

79 Strosberg J, Mizuno N, Doi T, Grande E, Delord JP, Shapira-Frommer R, Bergsland E, Shah M, Fakhim M, Takahashi S, Piha-Paul SA, O'Neil B, Thomas S, Loikema MP, Chen M, Ibrahim N, Norwood K, Hadjou X. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results From the Phase II KEYNOTE-158 Study. Clin Cancer Res 2020; 26: 2124-2130 [PMID: 31980466 DOI: 10.1158/1078-0432.CCR-19-3014]

80 Marabelle A, Fakhim M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin JA, Miller WH Jr, Italiano A, Kao S, Piha-Paul SA, Delord JP, McWilliams RR, Fabrizio DA, Aurora-Garg D, Xu J, Jin F, Norwood K, Bang YJ. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 2020; 21: 1353-1365 [PMID: 32919526 DOI: 10.1016/S1470-2045(20)30445-9]

81 Merino DM, McShane LM, Fabrizio D, Funari V, Chen SJ, White JC, Wenz P, Baden J, Barrett JC, Chaudhary R, Chen L, Chen WS, Cheng JH, Cyran D, Dickey JS, Gupta V, Hellmann M, Helman E, Li Y, Maas P, Papin A, Patidar R, Quinn KJ, Rizvi N, Tae H, Ward C, Xie M, Zhirai A, Zhao C, Dietel M, Stenzinger A, Stewart M, Allen J; TMB Harmonization Consortium. Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project. J Immunother Cancer 2020; 8 [PMID: 32217756 DOI: 10.1136/jitc-2019-000147]

82 Patel SP, Othus M, Chae YK, Giles FH, Hansel DE, Singh PP, Fontaine A, Shah M, Kasi A, Baghdaoui TA, Matrama N, Gatalica Z, Korn WM, Hayward J, McLeod C, Chen HX, Sharon E, Mayerson E, Ryan CW, Plets M, Blanke CD, Kurrrock R. A Phase II Basket Trial of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART SWOG 1609) in Patients with Nonpancreatic Neuroendocrine Tumors. Clin Cancer Res 2020; 26: 2299-2306 [PMID: 31969335 DOI: 10.1158/1078-0432.CCR-19-3356]

83 Klein O, Kee D, Markman B, Michael M, Underhill C, Carlino MS, Jackett L, Lunn C, Scott C, Nagrial A, Behren A, So JY, Palmer J, Cebron J. Immunotherapy of Ipiilimumab and Nivolumab in Patients with Advanced Neuroendocrine Tumors: A Subgroup Analysis of the CA209-538 Clinical Trial for Rare Cancers. Clin Cancer Res 2020; 26: 4454-4459 [PMID: 32532787 DOI: 10.1158/1078-0432.CCR-20-0621]

84 Kwekkeboom DJ, Krenning EP. Peptide Receptor Radionuclide Therapy in the Treatment of Neuroendocrine Tumors. Hematol Oncol Clin North Am 2016; 30: 179-191 [PMID: 26614376 DOI: 10.1016/j.hoc.2015.09.009]

85 Cives M, Strosberg J. Radionuclide Therapy for Neuroendocrine Tumors. Curr Oncol Rep 2017; 19: 9 [PMID: 28204466 DOI: 10.1007/s11991-017-0567-8]

86 Canuss B, Cotterea US, Palmier L, Dermin S, Tenenbaum F, Brezautz C, Coriat R. Indications of Peptide Receptor Radionuclide Therapy (PRRT) in Gastroenteropancreatic and Pulmonary Neuroendocrine Tumors: An Updated Review. J Clin Med 2021; 10 [PMID: 33803817 DOI: 10.3390/jcm10061267]

87 Salter NL, Blankenship B, Dunnack H, Niemann C, Bertsch H. Lutetium Lu-177 Dotatate Flare Reaction. Adv Radiat Oncol 2021; 6: 100623 [PMID: 33490736 DOI: 10.1016/j.adro.2020.11.008]

88 Saravanan-Bawan B, Bajwa A, Paterson J, McEwan AJB, McMullen TPW. Efficacy of 177Lu Peptide Receptor Radionuclide Therapy for the Treatment of Neuroendocrine Tumors: A Meta-analysis. Clin Nucl Med 2019; 44: 719-727 [PMID: 31205149 DOI: 10.1097/RLU.0000000000002645]

89 Sorbye H, Welin S, Langer SW, Vestermark LW, Holt N, Osterlund P, Dueland S, Hofsli E, Guren MG, Hursch K, Birkmeyeyer E, Thiss-Evensen E, Biagni M, Gronbaek H, Soveri LM, Olsen IH, Federsepbl N, Assmus J, Janson ET, Knige U. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 2013; 24: 152-160 [PMID: 22967994 DOI: 10.1093/annonc/mds276]

90 Sorbye H, Baudin E, Perren A. The Problem of High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms: Well-Differentiated Neuroendocrine Tumors, Neuroendocrine Carcinomas, and Beyond. Endocr Relat Cancer 2018; 47: 683-698 [PMID: 30098724 DOI: 10.1016/j.ecl.2018.05.001]

91 Corleto ED, Festa S, Di Giulio E, Annibale I. Proton pump inhibitor therapy and potential long-term harm. Curr Opin Endocr Diabetes Obes 2014; 21: 3-8 [PMID: 24310148 DOI: 10.1097/MED.0000000000000031]

92 Pavel M, Gross DJ, Benavent M, Perros P, Srirajaskanthan R, Baden JL. Radionuclide Therapy (PRRT) in Gastroenteropancreatic and Pulmonary Neuroendocrine Tumors: An Updated Review. J Clin Med 2021; 10 [PMID: 33803817 DOI: 10.3390/jcm10061267]

93 Kullke MH, Hörsch D, Caplin ME, Anthony LB, Kirkland MA, Pernenel K, Olander P, Takahashi S, Piha-Snavely E, Borden K, Sui S, Nederland L, Sones E, Southwick K, Wiesner R, Fleming R, Fleming D, Garcia-Carbonero R. Telotristat Ethyl in carcinoid syndrome: safety and efficacy in the TELECAST phase 3 trial. J Clin Oncol 2019; 37: 14-23 [PMID: 27018724 DOI: 10.1200/JCO.2018.80.2970]

94 Oberndorfer S, Karzinioide Tumoren des Dünndarms. Frankfurt Z Path 1907; 1: 426-432 [DOI: 10.1159/000190091]

95 Wilder RM, Allan FN, Power MH, Robertson HE. Carcinoma of the islands of the pancreas: hyperinsulinism and hypoglycemia. J Am Med Assoc 1927; 89: 349-355 [DOI: 10.1001/jama.1927.02690050014077]

96 Becker ER. THE IOWA ACADEMY OF SCIENCE. Science 1942; 95: 651-652 [PMID: 17819586 DOI: 10.1126/science.95.2478.651]

97 Zollinger RM, Ellison EH. Primary peptic ulcerations of the jejunum associated with islet cell tumors of the pancreas. Ann Surg 1955; 142: 709-23; discussion, 724 [PMID: 13259432]

98 Bloom SR, Bryant MG, Polak JM. Proceedings: Distribution of gut hormones. Gut 1975; 16: 821 [PMID: 8127790]

99 Ganda OP, Weir GC, Soeldner JS, Legg MA, Chick WL, Patel YC, Ebeid AM, Gabbay KH, Reichlin S. “Somatostatinoma”: a somatostatin-containing tumor of the endocrine pancreas. N Engl J Med 1977; 296: 963-967
Dai M et al. Diagnosis and treatment advances for GEP-NENs

Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonal antibody. Science 1983; 222: 628-630

Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20: 716-731

Solcia E, Rindi G, Capella C. Histochemistry in pathology. Edinburgh, London, New York: Churchill-Livingstone 1990: 397-409

Evans EB, Eggers GW. World Health Organization International Histological Classification of Tumours: Histological Typing of Endocrine Tumours: Second Edition. Clinical Endocrinology 2000; 53: 259-259

Reichlin S. Somatostatin. N Engl J Med 1983; 309: 1495-1501

Murray-Lyon IM, Eddleston AL, Williams R, Brown M, Hogbin BM, Bennett A, Edwards JC, Taylor KW. Treatment of multiple-hormone-producing malignant islet-cell tumour with streptozotocin. Lancet 1968; 2: 895-898

Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ, Piess. SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 1982; 31: 1133-1140

Oberg K, Akerström G, Rindi G, Jelic S; ESMO Guidelines Working Group. Neuroendocrine gastroenteropancreatic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21 Suppl 5: v223-v227

Raymond E, Daham L, Raouf JL, Bang YJ, Borbath I, Lombard-Bohas C, Vallee J, Metrakos P, Smith D, Vinik A, Chen JS, Hörsch D, Hammel P, Wiedenmann B, Van Cutsem E, Patyna S, Lu DR, Blanckmeister C, Chao R, Ruszniewski P. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 2011; 364: 501-513

100 Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonal antibody. Science 1983; 222: 628-630
101 Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20: 716-731
102 Solcia E, Rindi G, Capella C. Histochemistry in pathology. Edinburgh, London, New York: Churchill-Livingstone 1990: 397-409
103 Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonal antibody. Science 1983; 222: 628-630
104 Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20: 716-731
105 Solcia E, Rindi G, Capella C. Histochemistry in pathology. Edinburgh, London, New York: Churchill-Livingstone 1990: 397-409
106 Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonal antibody. Science 1983; 222: 628-630
107 Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20: 716-731
108 Solcia E, Rindi G, Capella C. Histochemistry in pathology. Edinburgh, London, New York: Churchill-Livingstone 1990: 397-409
109 Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonal antibody. Science 1983; 222: 628-630
110 Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20: 716-731
111 Solcia E, Rindi G, Capella C. Histochemistry in pathology. Edinburgh, London, New York: Churchill-Livingstone 1990: 397-409
112 Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonal antibody. Science 1983; 222: 628-630
113 Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20: 716-731
114 Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonal antibody. Science 1983; 222: 628-630
115 Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20: 716-731
116 Solcia E, Rindi G, Capella C. Histochemistry in pathology. Edinburgh, London, New York: Churchill-Livingstone 1990: 397-409
117 Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonal antibody. Science 1983; 222: 628-630
118 Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20: 716-731
119 Solcia E, Rindi G, Capella C. Histochemistry in pathology. Edinburgh, London, New York: Churchill-Livingstone 1990: 397-409
120 Lloyd RV, Wilson BS. Specific endocrine tissue marker defined by a monoclonal antibody. Science 1983; 222: 628-630
121 Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, van Hagen M, Postema PT, de Jong M, Reubi JC, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20: 716-731
122 Solcia E, Rindi G, Capella C. Histochemistry in pathology. Edinburgh, London, New York: Churchill-Livingstone 1990: 397-409
