Spanning Trees of Connected $K_{1,t}$-free Graphs Whose Stems Have a Few Leaves

Pham Hoang Ha¹ · Dang Dinh Hanh²

Received: 1 November 2018 / Revised: 23 June 2019 / Published online: 23 July 2019
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019

Abstract
Let T be a tree, a vertex of degree one is called a leaf. The set of leaves of T is denoted by Leaf(T). The subtree $T − \text{Leaf}(T)$ of T is called the stem of T and denoted by Stem(T). In this paper, we give a sharp sufficient condition to show that a $K_{1,t}$-free graph has a spanning tree whose stem has a few leaves. By applying the main result, we give improvements of previous related results.

Keywords Spanning tree · $K_{1,t}$-free · Stem · Leaf

Mathematics Subject Classification 05C05 · 05C07 · 05C69

1 Introduction

In this paper, we only consider finite simple graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For any vertex $v \in V(G)$, we use $N_G(v)$ and $\text{deg}_G(v)$ to denote the set of neighbors of v and the degree of v in G, respectively. For any $X \subseteq V(G)$, we denote by $|X|$ the cardinality of X. We define $G − uv$ to be the graph obtained from G by deleting the edge $uv \in E(G)$, and $G + uv$ to be the graph obtained from G by adding an edge uv between two non-adjacent vertices u and v of G. For two vertices u and v of G, the distance between u and v in G is denoted by $d_G(u, v)$.

Communicated by Rosihan M. Ali.

Pham Hoang Ha
ha.ph@hnue.edu.vn

Dang Dinh Hanh
ddhanhdhsphn@gmail.com

¹ Department of Mathematics, Hanoi National University of Education, 136 XuanThuy Street, Hanoi, Vietnam
² Department of Mathematics, Hanoi Architectural University, Km10 NguyenTrai Street, Hanoi, Vietnam
For an integer \(m \geq 2 \), let \(\alpha^m(G) \) denote the number defined by
\[
\alpha^m(G) = \max\{|S| : S \subseteq V(G), d_G(x, y) \geq m \text{ for all distinct vertices } x, y \in S\}.
\]

For an integer \(p \geq 2 \), we define
\[
\sigma^m_p(G) = \min \left\{ \sum_{a \in S} \deg_G(a) : S \subseteq V(G), |S| = p, \right. \\
\left. d_G(x, y) \geq m \text{ for all distinct vertices } x, y \in S \right\}.
\]

For convenience, we define \(\sigma^m_p(G) = +\infty \) if \(\alpha^m(G) < p \). We note that \(\alpha^2(G) \) is often written \(\alpha(G) \), which is the independence number of \(G \), and \(\sigma^2_p(G) \) is often written \(\sigma_p(G) \), which is the minimum degree sum of \(p \) independent vertices.

Let \(T \) be a tree, a vertex of degree one is called a leaf. The set of leaves of \(T \) is denoted by \(\text{Leaf}(T) \). The subtree \(T - \text{Leaf}(T) \) of \(T \) is called the stem of \(T \) and is denoted by \(\text{Stem}(T) \). A tree having at most \(l \) leaves is called an \(l \)-ended tree and a stem having at most \(l \) leaves is called an \(l \)-ended stem. There are several well-known conditions (such as the independence number conditions and the degree sum conditions) ensuring that a graph \(G \) contains a spanning tree with a bounded number of leaves or branch vertices (see the survey paper [5] and the references cited therein for details). Win [7] obtained a sufficient condition related to the independence number for \(k \)-connected graphs, which confirms a conjecture of Las Vergnas [4]. Broersma and Tuinstra [1] gave a degree sum condition for a connected graph to contain a spanning tree with at most \(l \) leaves.

Theorem 1.1 (Win [7]) Let \(k \geq 1 \) and \(l \geq 2 \) be integers and let \(G \) be a \(k \)-connected graph. If \(\alpha(G) \leq k + l - 1 \), then \(G \) has a spanning \(l \)-ended tree.

Theorem 1.2 (Broerma and Tuinstra [1]) Let \(G \) be a connected graph and let \(l \geq 2 \) be an integer. If \(\sigma^2(G) \geq |G| - l + 1 \), then \(G \) has a spanning \(l \)-ended tree.

Recently, many researches are studied on spanning trees in connected graphs whose stems have a bounded number of leaves or branch vertices (see [2,3,6,8] for more details). We introduce here some results on spanning trees whose stems have a few leaves.

Theorem 1.3 (Tsugaki and Zhang [6]) Let \(G \) be a connected graph and let \(l \geq 2 \) be an integer. If \(\sigma^3(G) \geq |G| - 2l + 1 \), then \(G \) has a spanning tree with \(l \)-ended stem.

Theorem 1.4 (Kano and Yan [2]) Let \(G \) be a connected graph and let \(l \geq 2 \) be an integer. If \(\sigma^{l+1}(G) \geq |G| - l - 1 \), then \(G \) has a spanning tree with \(l \)-ended stem.

Moreover, for a positive integer \(t \geq 3 \), a graph \(G \) is said to be \(K_{1,t} \)-free graph if it contains no \(K_{1,t} \) as an induced subgraph. If \(t = 3 \), the \(K_{1,3} \)-free graph is also called the claw-free graph. Kano and Yan also gave the following result.
Theorem 1.5 (Kano and Yan [2]) Let G be a connected claw-free graph and let $l \geq 2$ be an integer. If $\sigma_{l+1}(G) \geq |G| - 2l - 1$, then G has a spanning tree with l-ended stem.

On the other hand, if the maximum degree of a graph G is denoted by $\Delta(G)$, then G is nothing but a $K_{1,t}$-free graph for all $t \geq \Delta(G) + 1$. Then, we may generalize the above theorems by studying the $K_{1,t}$-free graph. In this paper, we would like to study on the spanning tree of a $K_{1,t}$-free graph whose stem has a bounded number of leaves. Firstly, we want to prove the following result.

Theorem 1.6 For a positive integer $t \geq 3$, let G be a connected $K_{1,t}$-free graph and let $l \geq 2$ ($l \neq t - 2$) be an integer. If

$$
\sigma_{l+1}^4(G) \geq |G| - \left\lfloor \frac{l(t - 1)}{t - 2} \right\rfloor - 1,
$$

then G has a spanning tree with l-ended stem. Here, the notation $\lfloor r \rfloor$ stands for the biggest integer not exceed the real number r.

We also note that the reason why we consider $\sigma_{l+1}^4(G)$ is based on the following theorem of Kano and Yan. They proved that if a connected graph G satisfies that $|S| \leq l$ for every $S \subseteq V(G)$ such that $d_G(x, y) \geq 4$ for all distinct vertices $x, y \in S$, then G has a spanning tree with l-ended stem.

Theorem 1.7 (Kano and Yan [2]) Let G be a connected graph and let $l \geq 2$ be an integer. If $\alpha^4(G) \leq l$, then G has a spanning tree with l-ended stem.

By using Theorem 1.6 when $t = 3$, we have Theorem 1.5. Moreover, Theorem 1.6 is an improvement of Theorem 1.4 when we consider the positive integer t big enough.

We now construct two examples to show that the conditions of Theorem 1.6 are sharp.

Let t, k, m be integers such that $t \geq 3, k \geq 2, m \geq 1$ and let $l = k(t - 2)$. Let D be a complete graph with $k + 1$ vertices $u_1, u_2, \ldots, u_{k+1}$. Let $D_1, D_2, \ldots, D_{k(t-2)+1}$ be copies of the graph K_m. Let $v_1, v_2, \ldots, v_{k(t-2)+1}$ be vertices which are not in $V(D) \cup V(D_1) \cup V(D_2) \cup \cdots \cup V(D_{k(t-2)+1})$. For each $i \in \{1, 2, \ldots, k\}$, join u_i to all vertices of the graphs $D_{i-1}(t-2)+1, D_{i-1}(t-2)+2, \ldots, D_{i(t-2)}$ and join u_{k+1} to all vertices of the graph $D_{k(t-2)+1}$. Join v_j to all vertices of D_j for all $j \in \{1, 2, \ldots, k(t-2) + 1\}$. Then, the resulting graph G is a $K_{1,t}$-free graph (see Fig. 1).

Moreover, we have $|G| = k + 1 + (k(t - 2) + 1)(m + 1)$ and

$$
\sigma_{l+1}^4(G) = \sigma_{k(t-2)+1}^4(G) = \sum_{i=1}^{k(t-2)+1} \deg_G(v_i)
$$

$$
= (k(t - 2) + 1)m = |G| - k(t - 1) - 2 = |G| - \left\lfloor \frac{l(t - 1)}{t - 2} \right\rfloor - 2.
$$

But G has no spanning tree with l-ended stem. Hence, the condition (1.1) is sharp.
On the other hand, when $l = t - 2$, let $E_i (1 \leq i \leq l + 1)$ be connected graphs. For each $i \in \{1, 2, \ldots, l + 1\}$, denote by K_i the set of vertex v in $V(E_i)$ such that $N_{E_i}(v) = V(E_i) - \{v\}$. Suppose that $K_i \neq \emptyset$ for all indices $1 \leq i \leq l + 1$. Let u be a vertex which is not in $V(E_1) \cup V(E_2) \cup \cdots \cup V(E_{l+1})$. For each $i \in \{1, 2, \ldots, l + 1\}$, join u to all vertices in $V(E_i) - K_i$ and some vertices in K_i excepting at least one vertex in K_i. The resulting graph is denoted by M. We only consider the case M is a $K_{1,t}$-free graph. By the definition of M, we may obtain that each subset $S \subseteq V(M)$ such that $|S| = l + 1$ and $d_M(x, y) \geq 4$ must contain one and only one vertex in K_i for all $1 \leq i \leq l + 1$. Hence,

$$
\sigma_{t+1}^4(M) = \sum_{i=1}^{l+1} \deg_M(\text{one vertex } v_i \in K_i \text{ such that } v_i u \notin E(M)) = \sum_{i=1}^{l+1} (|E_i| - 1) = |M| - (l + 2) = |M| - \left\lfloor \frac{l(t - 1)}{t - 2} \right\rfloor - 1.
$$

But M has no spanning tree with l-ended stem.

A natural question is whether we can find all graphs so that the claim of Theorem 1.6 is not correct in the case $l = t - 2$. We will give an answer for this question. In particular, we state the following theorem which is an improvement of Theorem 1.6.
Theorem 1.8 For a positive integer \(t \geq 3 \), let \(G \) be a connected \(K_{1,t} \)-free graph and let \(l \geq 2 \) be an integer. If

\[
\sigma_{l+1}^4(G) \geq |G| - \left\lfloor \frac{l(t-1)}{t-2} \right\rfloor - 1,
\]

then \(G \) has a spanning tree with \(l \)-ended stem except for the case \(l = t-2 \) and \(G \) is isomorphic to a graph \(M \).

Remark 1.9 Since \(\sigma_{l+1}^4(M) = |M| - \left\lfloor \frac{l(t-1)}{t-2} \right\rfloor - 1 \), it follows from Theorem 1.8 that if \(G \) is a connected \(K_{1,t} \)-free graph such that \(\sigma_{l+1}^4(G) \geq |G| - \left\lfloor \frac{l(t-1)}{t-2} \right\rfloor \), then \(G \) has a spanning tree with \(l \)-ended stem.

2 Proof of Theorem 1.8

We prove the theorem by contradiction. Suppose to the contrary that \(G \) contains no spanning tree with \(l \)-ended stem. Let \(T \) be a tree such that \(|\text{Leaf}(\text{Stem}(T))| \leq l \). Choose a tree \(T \) so that

\[(T1) \quad |T| \text{ is as large as possible, and}
(T2) \quad |\text{Leaf}(T)| \text{ is as large as possible, subject to (T1).}

By the maximality of \(T \), we have the following three claims. We note that their proofs are written in [2,8], but for the convenience of readers, we reintroduce them here.

Claim 2.1 For every \(v \in V(G) - V(T) \), \(N_G(v) \subseteq \text{Leaf}(T) \cup (V(G) - V(T)) \).

Because \(G \) is connected and \(T \) is not a spanning tree of \(G \) and by Claim 2.1, there exist two vertices \(v_1 \in V(G) - V(T) \) and \(v_2 \in \text{Leaf}(T) \) such that \(v_1 v_2 \in E(G) \). We may obtain that \(\text{Stem}(T) \) has exactly \(l \) leaves. Indeed, otherwise we consider the tree \(T' = T + v_1 v_2 \). Then, \(T' \) has \(l \)-ended stem and \(|T'| > |T| \), this implies a contradiction with the maximality of \(T \). Let \(\{x_1, x_2, \ldots, x_l\} \) be the leaf set of \(\text{Stem}(T) \).

Claim 2.2 For every \(x_i \) \((1 \leq i \leq l)\), there exists a vertex \(y_i \in \text{Leaf}(T) \) such that \(y_i \) is adjacent to \(x_i \) and \(N_G(y_i) \subseteq \text{Leaf}(T) \cup \{x_i\} \).

Proof By the definition of \(\text{Stem}(T) \), it is easy to see that for each leaf \(x \in \text{Leaf}(\text{Stem}(T)) \), there exists at least a vertex \(y \) in \(\text{Leaf}(T) \) such that \(y \) is adjacent to \(x \). Suppose that for some \(1 \leq i \leq l \), each leaf \(y_{ij} \) of \(T \) adjacent to \(x_i \), is also adjacent to a vertex \(z_{ij} \in (V(\text{Stem}(T)) - \{x_i\}) \). Then, we consider \(T' \) to be the tree obtained from \(T \) by removing the edge \(y_{ij} x_i \) and adding the edge \(y_{ij} z_{ij} \). Hence, \(T' \) is a tree with \(l \)-end stem such that \(|T'| = |T| \) and \(\text{Leaf}(T') = \text{Leaf}(T) \cup \{x_i\} \), which contradicts the condition (T2). Therefore, for each \(x_i \), there exists a leaf \(y_i \in N_G(x_i) \) such that \(N_G(y_i) \cap (V(\text{Stem}(T)) - \{x_i\}) = \emptyset \). By the maximality of \(T \) we also see that \(N_G(y_i) \cap (V(G) - V(T)) = \emptyset \). The claim holds. \(\square \)
Claim 2.3 For any two distinct vertices $y, z \in \{v_1, y_1, y_2, \ldots, y_l\}$, $d_G(y, z) \geq 4$.

Proof First, we show that $d_G(v_1, y_j) \geq 4$ for every $1 \leq i \leq l$. Let P_i be the shortest path connecting v_1 and y_i in G. If all the vertices of P_i between v_1 and y_i are contained in $\text{Leaf}(T) \cup (V(G) - V(T)) \cup \{x_i\}$, add P_i to T (if P_i passes through x_i, we just add the segment of P_i between v_1 and x_i and remove the edges of T joining $V(P_i) \cap \text{Leaf}(T)$ to $V(\text{Stem}(T))$ except the edge $y_i x_i$. The resulting tree is denoted by T'. Then, T' is a tree in G with l-ended stem and $|T'| > |T|$, which contradicts to the maximality of T. So we conclude that for each $1 \leq j \leq l$, if P is a shortest path connecting v_1 and y_j in G, then $V(P) \cap (V(\text{Stem}(T)) - \{x_j\}) \neq \emptyset$.

Hence, we may choose the vertex s in $V(\text{Stem}(T)) \cap V(P_i)$ such that it is nearest to v_1 in P_i. If $s = x_j$ for some $1 \leq j \leq l$, then we add the segment of P_i between v_1 and x_j (which is denoted by Q) to T and remove the edges of T joining $V(Q) \cap \text{Leaf}(T)$ to $V(\text{Stem}(T))$ except $x_j y_j$. Hence, the resulting tree has l-ended stem and its order is greater then $|T|$, contradicting the maximality of T. Thus, $s \in V(\text{Stem}(T)) - \{x_1, \ldots, x_l\}$. By Claims 2.1 and 2.2, we have $d_G(v_1, s) \geq 2, d_G(s, y_i) \geq 2$. Therefore, we conclude that $d_G(v_1, y_i) = |P_i| - 1 \geq d_G(v_1, s) + d_G(s, y_i) \geq 4$.

Next, we show that $d_G(y_i, y_j) \geq 4$ for all $1 \leq i < j \leq l$. Let P_{ij} be the shortest path connecting y_i and y_j in G. We note that if P_{ij} passes through x_i (or x_j), then $y_i x_i \in E(P_{ij})$ (or $y_j x_j \in E(P_{ij})$), respectively. We consider the following two cases.

Case 1. All vertices of P_{ij} between y_i and y_j are contained in $\text{Leaf}(T) \cup (V(G) - V(T)) \cup \{x_i, x_j\}$. Then, we add P_{ij} to T and remove the edges of T joining $V(P_{ij}) \cap \text{Leaf}(T)$ to $V(\text{Stem}(T))$ except the edges $y_i x_i$ and $y_j x_j$. Hence, the resulting graph has exactly a cycle, which contains an edge e of $\text{Stem}(T)$ incident with a branch vertex in $\text{Stem}(T)$. By removing the edge e and by adding an edge $v_1 v_2$, we have a resulting tree T' with l-ended stem of order greater than $|T|$, which contradicts the maximality of T. So we conclude that for every $1 \leq i < j \leq l$, if P is a shortest path connecting y_i and y_j in G, then $V(P) \cap (V(\text{Stem}(T)) - \{x_i, x_j\}) \neq \emptyset$.

Case 2. There exists a vertex $s \in V(P_{ij}) \cap (V(\text{Stem}(T)) - \{x_i, x_j\})$. Then, $d_G(y_i, s) \geq 2, d_G(s, y_j) \geq 2$ by Claim 2.2. This concludes that $d_G(y_i, y_j) = |P_{ij}| - 1 \geq d_G(y_i, s) + d_G(s, y_j) \geq 4$.

So the assertion of the claim holds. \hfill \Box

Denote $Y = \{y_1, y_2, \ldots, y_l\}$. By Claims 2.1–2.3, we have

$$N_G(v_1) \subseteq (V(G) - V(T) - \{v_1\}) \cup (N_G(v_1) \cap (\text{Leaf}(T) - Y)),$$

$$\bigcup_{i=1}^{l} N_G(y_i) \subseteq (\text{Leaf}(T) - Y - N_G(v_1)) \cup \{x_1, \ldots, x_l\}.$$

Hence by setting $q = |N_G(v_1) \cap (\text{Leaf}(T) - Y)|$, we obtain

$$\deg_G(v_1) + \sum_{i=1}^{l} \deg_G(y_i) \leq (|G| - |T| - 1 + q) + (|\text{Leaf}(T)| - l - q) + l$$

$$= |G| - |\text{Stem}(T)| - 1.$$
On the other hand, by the assumption of Theorem 1.8, and by Claim 2.3, we have

\[|G| - \left\lfloor \frac{l(t - 1)}{t - 2} \right\rfloor - 1 \leq \sigma_{l+1}^A(G) \leq \deg_G(v_1) + \sum_{i=1}^{l} \deg_G(y_i). \]

Therefore, we obtain \(|\text{Stem}(T)| \leq \left\lfloor \frac{l(t - 1)}{t - 2} \right\rfloor\). By combining with \(|\text{Leaf}(\text{Stem}(T))| = l\), we conclude that

\[|\text{Stem}(\text{Stem}(T))| \leq \left\lfloor \frac{l}{t - 2} \right\rfloor. \tag{2.1} \]

Claim 2.4 \(N_G(v_2) \cap \{x_1, x_2, \ldots, x_l\} = \emptyset\).

Proof Suppose the assertion of the claim is false. Then, there exists some \(i \in \{1, \ldots, l\}\) such that \(v_2x_i \in E(G)\). Combining with the fact that \(v_2v_1 \in E(G)\) and \(x_iy_i \in E(G)\) (by Claim 2.2), we obtain that \(d_G(v_1, y_i) \leq 3\). This contradicts Claim 2.3. Claim 2.4 is proved.

Now, we complete the Proof of Theorem 1.8 by considering the following two steps.

Step 1. \(|\text{Stem}(\text{Stem}(T))| = 1\).

We assume that \(\text{Stem}(\text{Stem}(T)) = \{u\}\). By \(t \geq 3\) and \(|\text{Stem}(\text{Stem}(T))| \leq \left\lfloor \frac{l}{t - 2} \right\rfloor\), we obtain \(l \geq t - 2\). We consider the following two cases.

Case 1. \(l \geq t - 1\).

By combining with Claims 2.3 and 2.4, \(G\) induced a \(K_{1,t}\) subgraph with the vertex set \(\{u, x_1, x_2, \ldots, x_{t-1}, v_2\}\), this gives a contradiction.

Case 2. \(l = t - 2\). In this case, we will show that \(G\) is isomorphic to a graph \(M\).

For each \(X \subseteq V(G)\), we denoted by \(G[X]\) the subgraph of \(G\) induced by \(X\). For each \(j \in \{1, 2, \ldots, l\}\), we set \(E_j = G[(N_G(x_j) - \{u\}) \cup N_G(y_j)]\) and \(E_{l+1} = G[(V(G) - \bigcup_{i=1}^{t-1} V(E_i)) - \{u\})\). For each \(1 \leq j \leq l\), by the maximality of \(T\), we obtain that \(N_G(x_j) \subseteq V(T)\). Moreover, since \(d_G(y_i, y_j) \geq 4\) for all \(1 \leq i \neq j \leq l\), we obtain \(x_i, x_j \notin E(G)\). Hence, \(N_G(x_j) \subseteq V(T) - \{x_1, x_2, \ldots, x_l\}\). Then, combining with Claim 2.2 and the definition of \(E_j\), we conclude \(V(E_j) \subseteq \text{Leaf}(T) \cup \{x_j\}\) for each \(j \in \{1, 2, \ldots, l\}\). Hence, \(V(G) - V(T) \subseteq V(E_{l+1})\). On the other hand, since \(d_G(v_1, y_j) \geq 4\), it implies that \(v_2 \notin V(E_j)\) for all \(1 \leq j \leq l\). Hence \(v_2 \in V(E_{l+1})\) (see Fig. 2).

By using the same arguments in the proofs of Claim 2.3, we conclude again the following fact.

Fact 1 For each \(1 \leq j \leq l\), if \(P\) is a shortest path connecting \(v_1\) and \(y_j\) in \(G\), then \(V(P) \cap (V(\text{Stem}(T)) - \{x_j\}) \neq \emptyset\), and for every \(1 \leq i < j \leq l\), if \(P\) is a shortest path connecting \(y_i\) and \(y_j\) in \(G\), then \(V(P) \cap (V(\text{Stem}(T)) - \{x_i, x_j\}) \neq \emptyset\).

We now give the following facts:

Fact 2 For every \(1 \leq i < j \leq l+1\), then \(V(E_i) \cap V(E_j) = \emptyset\).
Proof By the definition of E_{l+1} we obtain that $V(E_i) \cap V(E_{l+1}) = \emptyset$ for all $1 \leq i \leq l$.

Now, assume that there exists a vertex $x \in V(E_i) \cap V(E_j)$ for some $1 \leq i < j \leq l$. If $x \in N_G(x_i) \cap N_G(x_j)$, then $x \in \text{Leaf}(T)$. Consider the path P in G with its vertex set $\{y_i, x_i, x, x_j, y_j\}$. By combining with $d_G(y_i, y_j) \geq 4$, we obtain that P is a shortest path connecting y_i and y_j in G. But $V(P) \cap (V(\text{Stem}(T)) - \{x_i, x_j\}) = \emptyset$, which contradicts Fact 1. Otherwise, without loss of generality, we may assume that $x \in N_G(y_i) \cap N_G(x_j)$ (or $x \in N_G(y_i) \cap N_G(y_j)$). Then, $d_G(y_i, y_j) \leq 3$ (or $d_G(y_i, y_j) \leq 2$ respectively), this contradicts Claim 2.3. Fact 2 is proved. \qed

Fact 3 For each $1 \leq i < j \leq l + 1$, if $x \in V(E_i), y \in V(E_j), (1 \leq i < j \leq l + 1)$ such that $xy \notin E(G)$.

Proof Suppose to the contrary that there exist two vertices $x \in V(E_i), y \in V(E_j), (1 \leq i < j \leq l + 1)$ such that $xy \in E(G)$.

Subcase 1. $1 \leq i < j \leq l$.

If $x \in N_G(y_i)$ and $y \in N_G(y_j)$, then $d_G(y_i, y_j) \leq 3$. This contradicts Claim 2.3.

If $x \in N_G(y_i)$ and $y \in N_G(x_j)$, we consider the path P in G with its vertex set $\{y_i, x, y, x_j, y_j\}$. By combining with $d_G(y_i, y_j) \geq 4$, we obtain $y \neq y_j$, and then P is a shortest path connecting y_i and y_j in G. But $V(P) \cap (V(\text{Stem}(T)) - \{x_i, x_j\}) = \emptyset$, which contradicts Fact 1. By the same arguments, we also give a contradiction if $x \in N_G(x_i)$ and $y \in N_G(y_j)$.

If $x \in N_G(x_i)$ and $y \in N_G(x_j)$, remove the edges connecting x and y to $V(\text{Stem}(T))$ in T. After that add the edges $x_i x, xy, yx_j$ and $v_1 v_2$ and remove the edge $x_j u$. Then, the resulting tree T' has l-ended stem and $|T'| > |T|$, this contradicts the maximality of T.

The subcase 1 is proved.

Subcase 2. $1 \leq i < j = l + 1$.

 Springer
Firstly, we show that $N_G(v_1) \cap V(E_a) = \emptyset$ for all $1 \leq a \leq l$. Indeed, suppose to the contrary that there exists a vertex $z \in N_G(v_1) \cap V(E_a)$. If $z \in N_G(x_a)$, then we consider the path P in G with its vertex set $\{v_1, z, x_a, y_a\}$. This is a contradiction with $d_G(v_1, y_a) \geq 4$. Otherwise, $z \in N_G(y_a)$, then $d_G(v_1, y_a) \leq 2$. This also gives a contradiction with $d_G(v_1, y_a) \geq 4$. Therefore, we conclude that $N_G(v_1) \cap V(E_a) = \emptyset$ for all $1 \leq a \leq l$. In particular, we obtain $N_G(v_1) \subseteq V(E_{l+1}) - \{v_1\}$.

Secondly, we prove that $\text{deg}_G(y_a) = |E_a| - 1$ for all $1 \leq a \leq l$ and $\text{deg}_G(v_1) = |E_{l+1}| - 1$. Indeed, for each $1 \leq a \leq l$, by Claim 2.2 and the definition of E_a, we obtain $N_G(y_a) \subseteq V(E_a) - \{y_a\}$. By combining the assumptions of Theorem 1.8, Claim 2.3, Fact 2 and $N_G(v_1) \subseteq V(E_{l+1}) - \{v_1\}$, we have

$$|G| - \left\lceil \frac{l(t-1)}{t-2} \right\rceil - 1 \leq \sigma_{l+1}^4(G) \leq \sum_{a=1}^{l} \text{deg}_G(y_a) + \text{deg}_G(v_1)$$

$$\leq \sum_{a=1}^{l+1} (|E_a| - 1) = |G| - l - 2 = |G| - \left\lfloor \frac{l(t-1)}{t-2} \right\rfloor - 1.$$

Therefore, the equalities happen. Hence, $\text{deg}_G(y_a) = |E_a| - 1$ for every $1 \leq a \leq l$ and $\text{deg}_G(v_1) = |E_{l+1}| - 1$, in particular we obtain $N_G(v_1) = V(E_{l+1}) - \{v_1\}$.

Finally, since $x \in V(E_i)$ and $y \in V(E_{l+1})$ such that $xy \in E(G)$, then $y \neq v_1$ (by $N_G(v_1) \cap V(E_i) = \emptyset$) and $y v_1 \in E(G)$ (by $N_G(v_1) = V(E_{l+1}) - \{v_1\}$). If $x \in N_G(x_i)$, then we consider the path P in G with its vertex set $\{v_1, y, x, x_i, y_i\}$. Since $d_G(v_1, y_i) \geq 4$, this implies that P is a shortest path connecting v_1 and y_i in G. This is a contradiction with Fact 1. Otherwise, $x \in N_G(y_i)$, then $d_G(v_1, y_i) \leq 3$. This also gives a contradiction with $d_G(v_1, y_i) \geq 4$. Therefore, we obtain that $xy \notin E(G)$ for all $x \in V(E_i), y \in V(E_{l+1})$. This completes the proof of the subcase 2.

Therefore, Fact 3 holds. \qed

Fact 4 For each $j \in \{1, 2, \ldots, l+1\}$, E_j is connected. Moreover, for every $w \in V(E_j)$ such that $uw \notin E(G)$, then $N_G(w) = V(E_j) - \{w\}$ and $\text{deg}_G(w) = |E_j| - 1$.

Proof Set $y_{l+1} = v_1$. In the proof of subclaim 2 of Fact 3, we conclude that $\text{deg}_G(y_j) = |E_j| - 1$. This implies that $N_G(y_j) = V(E_j) - \{y_j\}$. Hence, E_j is connected.

Now, by Fact 2, Fact 3, the definition of E_a and E_a is connected for all $a \in \{1, 2, \ldots, l+1\}$, the graph $G[V(G) - \{u\}]$ is disconnected and has $l+1$ components E_1, \ldots, E_{l+1}. Then, for every $1 \leq a < b \leq l+1$, if P is a path connecting two vertices $x \in E_a$ and $y \in E_b$, then P must pass through u. So for every $x \in E_a$, $y \in E_b$ such that $xy \notin E(G)$ and $yu \notin E(G)$, then $d_G(x, y) \geq 4$. In particular, $d_G(w, y_a) \geq 4$ for all $1 \leq a \leq l+1, a \neq j$. Moreover, by Fact 3 and $wu \notin E(G)$, we have $N_G(w) \subseteq V(E_j) - \{w\}$. Hence, by Facts 2 and 3 and the assumptions of Theorem 1.8, we obtain

$$|G| - \left\lfloor \frac{l(t-1)}{t-2} \right\rfloor - 1 \leq \sigma_{l+1}^4(G) \leq \text{deg}_G(w) + \sum_{a=1, a \neq j}^{l+1} \text{deg}_G(y_a)$$

$$\leq \sum_{a=1}^{l+1} (|E_a| - 1) = |G| - l - 2 = |G| - \left\lfloor \frac{l(t-1)}{t-2} \right\rfloor - 1.$$
Therefore, the equalities happen. So $\deg_G(w) = |E_j| - 1$, and we thus also obtain $N_G(w) = V(E_j) - \{w\}$. These complete the proof of Fact 4. \hfill \Box

For each $1 \leq i \leq l + 1$, denote by K_i the set of vertex w in $V(E_i)$ such that $N_{E_j}(w) = V(E_i) - \{w\}$. Then, for every $1 \leq i \leq l + 1$, $y_i \in K_i$ and in particular $K_i \neq \emptyset$. On the other hand, by Facts 3 and 4, we can see that if $uw \notin E(G)$, then $N_{E_j}(w) = N_G(w) = V(E_i) - \{w\}$. Hence, $w \in K_i$ and u joins to all vertices in $V(E_i) - K_i$ for all $1 \leq i \leq l + 1$. Therefore, using the definitions of $E_j (1 \leq j \leq l + 1)$ and Facts 1–4, we obtain that G is isomorphic to a graph M.

Hence, we conclude that if $l = t - 2$, then G is isomorphic to a graph M.

Step 2. $|\text{Stem}(\text{Stem}(T))| \geq 2$.

By Claim 2.4, there exists a vertex $v_3 \in N_G(v_2) \cap V(\text{Stem}(\text{Stem}(T)))$.

Now, we conclude that $|N_T(v_3) \cap \{x_1, x_2, \ldots, x_l\}| < t - 2$. Indeed, otherwise, without loss of generality, we may assume $x_1, x_2, \ldots, x_{l-2} \in N_T(v_3)$. Since $|\text{Stem}(\text{Stem}(T))| \geq 2$, there exists $s \in V(\text{Stem}(\text{Stem}(T))) \cap N_T(v_3)$. We consider the subgraph with the vertex set $\{v_3, v_2, s, x_1, x_2, \ldots, x_{l-2}\}$ in G. By combining with Claim 2.4, the fact that G is $K_{1,t}$-free and since $\{x_1, \ldots, x_{l-2}\}$ is an independent set by Claim 2.3, we have the following two cases.

Case 1. $sv_2 \in E(G)$. This implies that the tree $T' = T + sv_2 + v_2v_1 - sv_3$ has l-ended stem and $|T'| > |T|$, this contradicts to the maximality of T.

Case 2. $x_is \in E(G)$ for some $j \in \{1, \ldots, t - 2\}$. Then, we consider the tree $T' = T + x_is + v_2v_1 - sv_3$. Hence, T' has l-ended stem and $|T'| > |T|$, this also contradicts to the maximality of T.

Therefore, $|N_T(v_3) \cap \{x_1, x_2, \ldots, x_l\}| < t - 2$.

Now, if $|N_T(u) \cap \{x_1, x_2, \ldots, x_l\}| \leq t - 2$ for all $u \in V(\text{Stem}(\text{Stem}(T))) - \{v_3\}$, then combining with $|N_T(v_3) \cap \{x_1, x_2, \ldots, x_l\}| < t - 2$, we have

$$l = |\text{Leaf}(\text{Stem}(T))| < (t - 2)|\text{Stem}(\text{Stem}(T))| + t - 2$$

$$= (t - 2)|\text{Stem}(\text{Stem}(T))|$$

$$\leq (t - 2)\left[\frac{l}{t - 2}\right] \leq l \text{ (by (2.1))}.$$

This is a contradiction. Hence, there exists a vertex $u \in V(\text{Stem}(\text{Stem}(T)))$ such that $|N_T(u) \cap \{x_1, x_2, \ldots, x_l\}| \geq t - 1$. Without loss of generality, we may assume $x_1, x_2, \ldots, x_{l-1} \in N_T(u)$. Set $s \in V(\text{Stem}(\text{Stem}(T))) \cap N_T(u)$. Now, if $x_is \in E(G)$ for some $j \in \{1, \ldots, t - 1\}$, then we consider the tree $T' = T + x_is + v_2v_1 - su$. Hence, T' has l-ended stem and $|T'| > |T|$, this also contradicts to the maximality of T. Hence, we obtain $x_is \notin E(G)$ for all $j \in \{1, \ldots, t - 1\}$. Then, G induces a $K_{1,t}$ subgraph with vertex set $\{u, s, x_1, x_2, \ldots, x_{l-1}\}$. This gives a contradiction with the assumption of Theorem 1.8.

Therefore, we complete the Proof of Theorem 1.8.

Acknowledgements This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.04–2018.03. We also would like to thank the referees for their valuable comments to help us improve this research, especially in Theorem 1.8.
References

1. Broersma, H., Tuinstra, H.: Independence trees and Hamilton cycles. J. Gr. Theory 29, 227–237 (1998)
2. Kano, M., Yan, Z.: Spanning trees whose stems have at most \(k \) leaves. Ars Comb. 117, 417–424 (2014)
3. Kano, M., Yan, Z.: Spanning trees whose stems are spiders. Gr. Comb. 31, 1883–1887 (2015)
4. Las Vergnas, M.: Sur une propriété des arbres maximaux dans un graphe. C. R. Acad. Sci. Paris Ser. A 272, 1297–1300 (1971)
5. Ozeki, K., Yamashita, T.: Spanning trees: a survey. Gr. Comb. 22, 1–26 (2011)
6. Tsugaki, M., Zhang, Y.: Spanning trees whose stems have a few leaves. Ars Comb. 114, 245–256 (2014)
7. Win, S.: On a conjecture of Las Vergnas concerning certain spanning trees in graphs. Result. Math. 2, 215–224 (1979)
8. Yan, Z.: Spanning trees whose stems have a bounded number of branch vertices. Discuss. Math. Gr. Theory 36, 773–778 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.