Streaming for large scale NLP: Language Modeling

Amit Goyal, Hal Daumé III and Suresh Venkatasubramanian
School of Computing
University of Utah

e-mail: {amitg,hal,suresh}@cs.utah.edu
web: http://www.cs.utah.edu/~amitg/

NAACL HLT 2009

3rd June 2009
Overview

Problem

- Large amounts of data in many NLP problems
- Many such problems require relative frequency estimation
- Computationally expensive on huge corpora
Overview

Problem
- Large amounts of data in many NLP problems
- Many such problems require relative frequency estimation
- Computationally expensive on huge corpora

Canonical Task
- Language Modeling: large-scale frequency estimation

Proposed Solution
- Trades off memory usage with accuracy of counts using Streaming
- Employs small memory-footprint to approximate n-gram counts
Overview

Problem
- Large amounts of data in many NLP problems
- Many such problems require relative frequency estimation
- Computationally expensive on huge corpora

Canonical Task
- Language Modeling: large-scale frequency estimation

Proposed Solution
- Trades off memory usage with accuracy of counts using Streaming
- Employs small memory-footprint to approximate n-gram counts

Findings
- Scales to billion-word corpora using conventional 8 GB machine
- SMT experiments show that these counts are effective
Large Scale Language Modeling

Goal: Building higher order language models (LMs) on huge data sets

Difficulties:
- Increase in $n \rightarrow$ Increase in number of unique n-grams
- Increase in memory usage

Example

- 1500 machines got used for a day to compute 300 million unique n-grams from tera bytes of web data [Brants et al. (2007)]
Related Work

- Prefix trees to store LM probabilities efficiently
 [Federico and Bertoldi, SMT workshop at ACL 2006]

- Bloom and Bloomier filters: Compressed n-gram representation
 [Talbot and Osborne; ACL 2007] [Talbot and Brants; 2008]

- Distributed word clustering for class-based LMs
 [Uszkoreit and Brants; ACL 2008]
Zipf’s law Phenomena

- Number of unique n-grams is large
- Low frequency count n-grams contribute most towards LM size

![Graph showing the frequency of n-grams as a function of rank. The y-axis represents frequency of n-grams (log-scale) and the x-axis represents rank of sorted n-grams (log-scale). The graph includes data for 1-grams, 2-grams, 3-grams, 4-grams, and 5-grams, with each n-gram type represented by different markers and line styles. The data points are scattered along the graph, indicating a decay in frequency as rank increases.]
Zipf’s law Phenomena

- Number of unique n-grams is large
- Low frequency count n-grams contribute most towards LM size

Key Idea: Throw away rare n-grams
Count pruning
- Discards all n-grams whose count < pre-defined threshold

Entropy pruning
- Discards n-grams that change perplexity by less than a threshold
n-gram Pruning Methods

Count pruning
- Discards all \(n \)-grams whose count \(<\) pre-defined threshold

Entropy pruning
- Discards \(n \)-grams that change perplexity by less than a threshold

SMT experiments with 5-gram LM on large data:

Model	Size	BLEU
Exact	367.6m	28.7
100 count cutoff	1.1m	28.0
5e-7 \(\epsilon \) entropy	28.5m	28.1

- Pruning method loses 0.7 BLEU points compared to exact model
- Decrease \(\Rightarrow \) 300 times smaller model
Difficulties with scaling pruning methods for large-scale LM:

- Computation time and memory usage to compute all counts is tremendous
- Requires enormous initial disk storage for n-grams
Proposed Solution

- Assume that multiple-GB models are infeasible
- **Goal:** Directly estimate a small model instead of first estimate a large model and then compress it
- Employ deterministic streaming algorithm [Manku and Motwani, 2002]
Streaming

Given: Stream of \(n \)-grams of length \(N \).
Running Example: \(n=5 \) and \(N=10^6 \)

- Algorithm can only read from left to right without going backwards
- Store only parts of input or other intermediate values
- Typical working storage space size \(O(\log^k N) \)
Algorithm: Lossy Counting [Manku and Motwani, 2002]

Step 1: Divide the stream into windows using $\epsilon \in (0, 1)$
Window size $= \frac{1}{\epsilon}$; Total ϵN windows

Running Example: Set $\epsilon = 0.001$; $N = 10^6$
Window size $= 10^3$; Total 10^3 windows
At window boundary, decrement all counters by 1
At window boundary, all counters are decremented by 1.
At window boundary, decrement all counters by 1
Algorithm continued

At window boundary, all counters are decremented by 1
$s \in (0, 1)$ is support. In practice, $s = 10\epsilon$

Running Example: $\epsilon=0.001$, $s = 0.01$
Algorithm Guarantees

$s \in (0, 1)$ is support. In practice, $s = 10\epsilon$

Running Example: $\epsilon=0.001$, $s = 0.01$

- All n-grams with actual counts $> sN \times 10^4$ are output
- Returns no n-grams with actual counts $< (s\epsilon)N \times 9000$
- All reported counts \leq actual counts by at most $\epsilon N \times 1000$
- Space used by the algorithm: $O\left(\frac{1}{\epsilon} \log(\epsilon N)\right)$
$s \in (0, 1)$ is support. In practice, $s = 10\varepsilon$

Running Example: $\varepsilon=0.001$, $s = 0.01$

- All n-grams with actual counts $> sN (10^4)$ are output
- Returns no n-grams with actual counts $< (s\varepsilon)N (9000)$
- All reported counts \leq actual counts by at most $\varepsilon N (1000)$
- Space used by the algorithm: $O\left(\frac{1}{\varepsilon} \log(\varepsilon N)\right)$

- In practice, set $s = \varepsilon$ to retain all generated counts
- n-grams appearance more valuable than their counts
Evaluating stream n-gram counts

Data: English side of Europarl (EP): *38 million* words
Portions of Gigaword i.e. afe and nyt + EP (EAN): *1.4 billion* words

Accuracy: Ratio of # of sorted Top K stream n-grams found in # of Top K sorted true n-grams (Higher is better)
Evaluating stream n-gram counts

Data: English side of Europarl (EP): *38 million* words
Portions of Gigaword i.e. afe and nyt + EP (EAN): *1.4 billion* words

Accuracy: Ratio of # of sorted Top K stream n-grams found in # of Top K sorted true n-grams (Higher is better)

ϵ	5-gram produced	Acc
50e-8	245k	0.29
20e-8	726k	0.33
10e-8	1655k	0.35
5e-8	4018k	0.36

Table: Evaluating quality of 5-gram stream counts for different settings of ϵ on EAN corpus
Evaluating stream \(n \)-gram counts

Data: English side of Europarl (EP): 38\textit{million} words
Portions of Gigaword i.e. afe and nyt + EP (EAN): 1.4\textit{billion} words

Accuracy: Ratio of \# of sorted Top \(K \) stream \(n \)-grams found in \# of Top \(K \) sorted true \(n \)-grams (Higher is better)

\(\epsilon \)	5-gram produced	Acc	Top \(K \)	Accuracy
50e-8	245k	0.29	100k	0.99
20e-8	726k	0.33	500k	0.93
10e-8	1655k	0.35	1000k	0.72
5e-8	4018k	0.36	2000k	0.50
			4018k	0.36

\textbf{Table:} Evaluating quality of 5-gram stream counts for different settings of \(\epsilon \) on EAN corpus

\textbf{Table:} Evaluating top \(K \) sorted 5-gram stream counts for \(\epsilon=5e-8 \) on EAN corpus
SMT Experimental Setup

- Training set: Europarl (EP) French-English parallel corpus: Million sentences
- Language Model data: EP and afe + nyt + EP (EAN)
- Development and Test set: News corpus of 1057 and 3071 sentences
- Evaluation on uncased test-set using BLEU metric (Higher is better)
Training set: Europarl (EP) French-English parallel corpus: Million sentences

Language Model data: EP and afe + nyt + EP (EAN)

Development and Test set: News corpus of 1057 and 3071 sentences

Evaluation on uncased test-set using BLEU metric (Higher is better)

Models Compared:
- 4 baseline LMs (3, 5-gram on EP and EAN)
- Count and Entropy pruning 5-gram LMs
- Stream count LMs computed with two values of $5e^{-8}$ and $10e^{-8}$ on EAN corpus
SMT Experiment Results

\(n\text{-gram}(\varepsilon) \)	BLEU	Mem GB
3 EP	25.6	2.7
5 EP	25.8	2.9
3 EAN	27.0	4.6
5 EAN	28.7	20.5

100 count cutoff	BLEU	Mem GB
28.0	2.8	

5e-7 \(\varepsilon \) entropy	BLEU	Mem GB
28.1	3.0	

\(5(10e^{-8}) \)	BLEU	Mem GB
28.0	2.8	
\(5(5e^{-8}) \)	28.0	2.8
\(7(10e^{-8}) \)	28.0	2.9
\(9(10e^{-8}) \)	28.2	2.9

Baselines: **Large LMs effective**

Stream counts findings:

- **Effective as pruning methods**
- **0.7 Bleu worse to exact**
- **Memory Efficient**
- **7 and 9-gram are also possible**
Take Home Message:

- Directly estimate small model
- Memory efficient
- Counts are effective
Discussion

Take Home Message:

- Directly estimate small model
- Memory efficient
- Counts are effective

Future Directions:

- Use these LMs for speech recognition, information extraction etc.
- Streaming in other NLP applications
- Build streaming class-based and skip n-gram LMs
Take Home Message:

- Directly estimate small model
- Memory efficient
- Counts are effective

Future Directions:

- Use these LMs for speech recognition, information extraction etc.
- Streaming in other NLP applications
- Build streaming class-based and skip n-gram LMs

Thanks! Questions?