Improving the estimation of mesophyll conductance to CO₂: on the role of electron transport rate correction and respiration

Samuel C.V. Martins¹, Jeroni Galmés², Arántzazu Molins² and Fábio M. DaMatta¹,*

¹ Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
² Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07071, Palma, Balearic Islands, Spain

*To whom correspondence should be addressed. E-mail: fdamatta@ufv.br

Received 8 February 2013; Revised 15 April 2013; Accepted 14 May 2013

Abstract

Mesophyll conductance (g_m) can markedly limit photosynthetic CO₂ assimilation and is required to estimate the parameters of the Farquhar–von Caemmerer–Berry (FvCB) model properly. The variable J (electron transport rate) is the most frequently used method for estimating g_m, and the correct determination of J is one of its requirements. Recent evidence has shown that calibrating J can lead to some errors in estimating g_m, but to what extent the parameterization of the FvCB model is affected by calibrations is not well known. In addition to determining the FvCB parameters, variants of the J calibration method were tested to address whether varying CO₂ or light levels, possible alternative electron sinks, or contrasting leaf structural properties might play a role in determining differences in $aβ$, the product of the leaf absorptance ($α$) and the photosystem II optical cross-section ($β$). It was shown that differences in $aβ$ were mainly attributed to the use of A/C_i or $A/PPFD$ curves to calibrate J. The different $aβ$ values greatly influenced g_m, leading to a high number of unrealistic values in addition to affecting the estimates of the FvCB model parameters. A new approach was devised to retrieve leaf respiration in the light from combined A/C_i and A/C_c curves and a framework to understand the high variation in observed g_m values. Overall, a background is provided to decrease the noise in g_m, facilitating data reporting and allowing better retrieval of the information presented in A/C_i and A/C_c curves.

Key words: A/C_i, curve fitting, chlorophyll fluorescence, Coffea arabica, Limonium gibertii, Nicotiana tabacum, variable J method.

Introduction

Photosynthesis is a major process that affects plant growth and crop productivity. In addition to stomatal and biochemical factors, the photosynthetic capacity of leaves is also determined by the mesophyll conductance (g_m), which regulates the CO₂ flux from the intercellular airspaces to the sites of carboxylation in the chloroplastic stroma (Flexas et al., 2012). Early gas exchange studies assumed infinite and constant g_m, implying that the CO₂ concentrations in the substomatal cavities (C_i) and chloroplasts (C_c) would be the same (Farquhar et al., 1980). However, the role of finite g_m limiting photosynthesis in response to several biotic and abiotic stresses (Flexas et al., 2008), as well as its importance in constraining maximum photosynthetic rates, particularly in evergreen sclerophylls (Warren et al., 2004; Niinemets et al., 2011), is now well established. Actually, there is a general consensus that g_m must be incorporated into the Farquhar–von Caemmerer–Berry (FvCB) model of leaf photosynthesis (Farquhar et al., 1980) because this model underestimates the maximum Rubisco carboxylation rate (V_{max}) when g_m is considered to be infinite (Ethier and Livingston, 2004; Niinemets et al., 2009a).

Several methods to estimate g_m have been reported (Warren, 2006; Pons et al., 2009). Among them, those based
on gas exchange coupled with the chlorophyll fluorescence technique have been extensively used. In particular, the variable J method (where J stands for electron transport rate, usually measured using chlorophyll fluorescence analysis) is the most widespread method because it allows the point-specific estimation of \(g_m \) as well as tracking how \(g_m \) supposedly changes in response to varying light or \(\text{CO}_2 \) (Pons et al., 2009). However, the variable J method is highly sensitive to errors in some parameters, especially the \(\text{CO}_2 \) compensation point in the absence of photorespiration (\(\Gamma^* \)) and J (Harley et al., 1992). Importantly, J needs to be calibrated due to the uncertainties in both the leaf absorbance (\(\alpha \)) and photosystem II (PSII) optical cross-section (\(\beta \)).

The J calibration is based on the analysis of response curves of photosynthetic rates to light ([\(\alpha \)/photosynthetic photon flux density (PPFD)] or \(\text{CO}_2 / (\alpha/C) \)) under non-photorespiratory conditions, typically under low (1-2%) oxygen conditions. Under these circumstances, the relationship between J calculated through gas exchange (\(J_A \)) and chlorophyll fluorescence (\(J_F \)) is expected to be linear because electron transport flow is primarily associated with Rubisco carboxylation. Consequently, \(J_A \) can be calculated as \(J_A = 4(A + R_L) \) (Warren, 2006). Other assumptions are that \(\alpha \beta \) or light respiration \((R_L) \) values do not change in response to varying \(C_i \) or PPFD. To date, three different approaches have been used to calibrate J: the relationship between the quantum yield of PSII \((\Phi_{\text{PSII}}) \) and \(\text{CO}_2 \) \((\Phi_{\text{CO}_2}) \) (Valentini et al., 1995), the relationship between \(J_A \) and \(J_F \) (Pons et al., 2009), and the plot of \(A \) versus PPFD \(\Phi_{\text{PSII}}/4 \), which is also used to estimate \(R_L \) (Yin et al., 2009). Another point deserving attention is the use of \(A/\text{PPFD} \) or \(A/C_i \) curves under low \(\text{O}_2 \) to perform the calibration; ideally, both curves should give the same results.

However, as observed by Yin et al. (2009), fundamental differences exist when choosing \(A/\text{PPFD} \) or \(A/C_i \) curves to calibrate J. First, when using the full \(A/C_i \) curve, photorespiration can still occur at low \(\text{CO}_2 \) levels. Alternatively, the excess of energy can increase the rate of alternative electron flow. Both cases can compromise the linearity of the relationship between \(J_A \) and \(J_F \). The same problem occurs in \(A/\text{PPFD} \) curves, where higher PPFD intensities can induce alternative electron flow (depending on \(g_m \), low \(C_i \) can occur as well). To overcome this problem, Yin et al. (2009) recommended using the electron transport-limited regions of both curves, namely the combination of low light levels from \(A/\text{PPFD} \) and high \(C_i \) levels from \(A/C_i \), which would ultimately minimize the risk of photorespiration and alternative electron flow.

More recently, Gilbert et al. (2012) examined the use of \(A/\text{PPFD} \) or \(A/C_i \) curves to calibrate J and demonstrated dramatic changes in \(g_m \) values estimated using either the \(A/\text{PPFD} \) or \(A/C_i \) curves. However, to what extent these calibrations affect estimates of photosynthetic parameters such as \(V_{\text{max}} \) or \(J_{\text{max}} \), and whether this effect is dependent on the species studied, remain unresolved. Flexas et al. (2007) found no differences using both calibrations for tobacco, and extrapolated this result to other species where only the \(A/\text{PPFD} \) calibration was used. Hassiotou et al. (2009), using the calibration based on \(A/C_i \) curves performed under two light levels, concluded that calibration is light dependent.

Other studies did not use the \(A/\text{PPFD} \) or \(A/C_i \) calibration, but estimated \(\alpha \) using integrating spheres and assumed a \(\beta \) value of 0.5 (e.g. Galmés et al., 2007; Tosens et al., 2012), even though \(\beta \) has been reported to vary (Laisk and Loreto, 1996). Collectively, these results reveal no consensus on how to calibrate J, even though \(g_m \) estimated by the variable J method is mainly dependent on J. In addition, because the fluorescence signal primarily emanates from the upper mesophyll layers, but gas exchange parameters are volume based (Warren et al., 2006), measured \(J \) and estimated \(g_m \) are most probably less representative of the whole leaf in species with lower specific leaf area (SLA; leaf area per unit dry mass).

The main questions asked in this study were as follows. (i) How do the J calibrations affect \(g_m \)? (ii) How might these calibrations be translated into the Fv/CB parameters? (iii) Would the calibrations be dependent on species? To answer these questions, measurements were carried out using three species with contrasting SLA and photosynthetic capacities. The results highlight how \(g_m, V_{\text{max}}, \) and \(J_{\text{max}} \) may be affected by using \(A/C_i \) or \(A/\text{PPFD} \) curves under low \(\text{O}_2 \), to calibrate J. The results are discussed in the context of current models of \(g_m \) estimations.

Materials and methods

Plant material and growth conditions

Limonium giberitii (Senn.) Senn. and *Nicotiana tabacum* L. seeds were germinated, and plants were grown outdoors under typical Mediterranean climate conditions (Balearic Islands, Spain, 39°38’ N, 2°38’ E, 85 m a.s.l.) in 4 litre pots with a commercial substrate (horticultural peat) and perlite at a proportion of 4:1. Seedlings of *Coffea arabica* L. obtained from seeds were grown outdoors under subtropical conditions in Viçosa (20°45’S, 42°15’W, 650 m a.s.l.), southeastern Brazil, using 12 litre pots containing a mixture of soil, sand, and composted manure (4:1:1, v/v/v). Plants were irrigated and fertilized as required. Measurements were performed during the summer (growing season) on ~1-year-old plants in the case of *C. arabica* and *L. giberitii*, and 1-month-old plants in the case of *N. tabacum*, on 4–6 plants per species.

Gas exchange and fluorescence measurements

Leaf gas exchange and chlorophyll \(a \) fluorescence were measured simultaneously with an open-flow infrared gas-exchange analyser system equipped with a leaf chamber fluorometer (LI-6400XT, Li-Cor, Lincoln, NE, USA). Environmental conditions in the leaf chamber consisted of a leaf-to-air vapour pressure deficit of 1.2–2.0 kPa and a leaf temperature of 25 °C.

In light-adapted leaves, the actual \(\Phi_{\text{PSII}} \) was determined by measuring steady-state fluorescence (\(F_s \)) and maximum fluorescence during a light-saturating pulse of \(\approx 8000 \mu\text{mol m}^{-2} \text{s}^{-1} (F_m') \), following the procedures of Genty et al. (1989):

\[
\Phi_{\text{PSII}} = (F_m' - F_s)/F_m'
\]

The electron transport rate (\(J_E \)) was then calculated as:

\[
J_E = \alpha \cdot \beta \cdot \text{PPFD} \cdot \Phi_{\text{PSII}}
\]

where PPFD is the photosynthetically active photon flux density, \(\alpha \) is the leaf absorbance, and \(\beta \) is the PSII optical cross-section. The product \(\alpha \beta \) was determined from the relationship between \(\Phi_{\text{PSII}} \) and \(\Phi_{\text{CO}_2} \) or \(A \) and PPFD \(\Phi_{\text{PSII}}/4 \), obtained by varying either the light
intensity or the CO₂ concentration under non-photorespiratory conditions in an atmosphere containing <1% O₂ (Valentini et al., 1995; Yin et al., 2009).

Four to six A/CI and A/PPFD curves under <1% O₂ (A/PPFD and A/CI) or 21% O₂ (only A/CI) were obtained from different plants for each species. In light-adapted leaves, A/CI curves were initiated at an ambient CO₂ concentration (Cₐ) of 400 μmol mol⁻¹ under a saturating PPFD of 1500 μmol m⁻² s⁻¹. Once steady state was reached, Cₐ was decreased stepwise down to 50 μmol mol⁻¹ air. Upon completion of the measurements at low Cₐ, it was returned to 400 μmol mol⁻¹ air to restore the original A. Next, Cₐ was increased stepwise to 2000 μmol mol⁻¹ air. For the A/PPFD curves, Cₐ was held at 400 μmol mol⁻¹, and the curve was initiated at a PPFD of 1500 μmol m⁻² s⁻¹; then, PPFD levels were decreased to 0 μmol m⁻² s⁻¹. Both the A/CI and A/PPFD curves consisted of 11–13 different Cₐ values or PPFD intensities.

Cₐ was calculated after Harley et al. (1992) as:

\[Cₐ = \frac{\Gamma^* J_f + 8(A + R_L)}{J_f - 4(A + R_L)} \]

where \(\Gamma^* \) was determined from the in vitro Rubisco specificity factor (Sᵢₒ) (see below) as:

\[\Gamma^* = O/Sᵢₒ \]

A was taken from gas-exchange measurements, and the Jᵢ values were obtained from chlorophyll a fluorescence yield. The rate of mitochondrial respiration at darkness (R₉ₐₜ) was measured early in the morning in dark-adapted leaves, and it was divided by two (R₉ₐₜ/2) to serve as a proxy for Rₘ.

After estimating Cₐ, gₘ was calculated as follows (Harley et al., 1992):

\[gₘ = A(Cₐ - Cₐ) \]

From the A/CI and A/Cₐ curves, the maximum carboxylation capacity (Vₖₚₐₜ) and maximum capacity for electron transport rate (Jₚₐₜ) were calculated on a Cₐ and Cₐ basis using the kinetic parameters of Rubisco described below and, for comparative purposes, those described in Bernacchi et al. (2002). The FvCB model was fitted to the data by applying iterative curve fitting (minimum least square difference) using the Microsoft Excel Solver tool (Microsoft Corporation, Redmond, WA, USA). Additionally, gₘ, Vₖₚₐₜ, and Jₚₐₜ were estimated using the Ether and Livingston (2004) method, which is based on fitting A/CI curves with a non-rectangular hyperbola version of the FvCB model, relying on the hypothesis that gₘ reduces the curvature of the Rubisco-limited portion of an A/CI response curve. For the method based on fitting A/CI curves, species-specific Sᵢₒ values were used as in the Harley method. Corrections for the leakage of CO₂ and water vapour into and out of the leaf chamber of the Li-6400–40 have been applied to all gas-exchange data, as described by Rodeghiero et al. (2007). The percentage corrections applied to CO₂ and water vapour flux rates are shown in Supplementary Table S1 available at JXB online for the different species.

Calibration relationships

The relationship between J₀ and Jᵢ was calibrated using the linear plot of \(\Phi_{PSII} \) and \(\Phi_{CO₂} \), based on Valentini et al. (1995):

\[\Phi_{PSII} = k \Phi_{CO₂} + b \]

\[J₀ = 4(\Phi_{PSII} - b)PPFD/k \]

where \(4/k = \alpha \beta \). k and b were obtained through the linear fit of \(\Phi_{PSII} \) versus \(\Phi_{CO₂} \).

In addition, the method based on Yin's approach was also used (Yin et al., 2009), which presents a straightforward way to derive \(\Phi_{PSII} \) and Rₘ, as follows:

\[J₀ = 4(A + R_L) \]

\[J₀ = \alpha \beta PPFD \Phi_{PSII} \]

\[J₀ = \alpha \beta PPFD \Phi_{PSII}/4 - R_L \]

As Equation 11 has the form of \(y = \alpha x + b \), through the linear fit of \(A \) versus PPFD \(\Phi_{PSII}/4 \), \(R_L \) can be retrieved as the y-intercept, and \(\alpha \beta \) can be retrieved as the slope of the regression. Notably, this equation presented by Yin et al. (2009) has an extension of the FvCB model to account for alternative electron fluxes in the form of pseudocyclic (Jₚₐₜ) and cyclic (Jₚₐₜ) electron flow (see further details in Yin et al., 2004):

\[J₀ = \alpha \beta PPFD \Phi_{PSII} \{1 - [Jₚₐₜ/(1 - Jₚₐₜ)]\}/4 - R_L \]

According to the updated model, to accomplish Equation 8, not only are non-photorespiratory conditions required but also the down-regulation of alternative electron fluxes so that low values of Jₚₐₜ and Jₚₐₜ allow Equation 12 to be as close as possible to Equation 11, thus reliably estimating \(\alpha \beta \).

Four types of calibration were devised based on the approaches of Valentini and Yin described above. The first and second calibration methods were based on the \(\Phi_{PSII}/\Phi_{CO₂} \) relationship, and the third and fourth methods were based on Yin et al. (2009) as follows:

(i) \(\Phi_{PSII}/\Phi_{CO₂} \) (A/CI): this calibration is performed using the entire A/CI curve under low O₂, and the PPFD level is that used in the normal A/CI curve (i.e. 1500 μmol m⁻² s⁻¹). The Rₘ value must be assumed. In this variant, the initial part of the A/CI curve is the most susceptible region for the occurrence of alternative electron sinks due to a high reductant (ATP and NADPH) supply associated with high PPFD and a limitation on reductant use (low CO₂ and O₂). Conversely, this variant most resembles the conditions used in the normal A/CI curve.

(ii) \(\Phi_{PSII}/\Phi_{CO₂} \) (PPFD >400 μmol m⁻² s⁻¹): this is the variant more often reported in the literature and consists of using A/PPFD curves under low O₂ and ambient CO₂. A disadvantage of this variant is that a loss of linearity occurs at low PPFD, as \(\Phi_{CO₂} \) is affected disproportionately by errors in respiration estimations or by the increase in mitochondrial respiration at low light (the Kok-effect; Brooks and Farquhar, 1985). Thus, it is recommended to exclude \(\Phi_{CO₂} \) values >0.05 to keep the relationship as linear as possible (Seaton and Walker, 1990; Edwards and Baker, 1993). To meet this criterion, PPFD levels below 400 μmol m⁻² s⁻¹ had to be excluded, making this method prone to a high reductant supply (high PPFD) and intermediate reductant use (moderate CO₂ and low O₂).

(iii) Yin (PPFD <400 μmol m⁻² s⁻¹): this variant was originally described by Yin et al. (2009), and it can also be used to estimate Rₘ. As this method is not based on quantum efficiency plots, there is the disadvantage of having to exclude the points at low PPFD or assume a given Rₘ value. Actually, it is recommended to use only the points at the linear phase of the Δ/PPFD (corresponding to PPFD levels <400 μmol m⁻² s⁻¹ for the species grown outdoors), which is in the range of a
lower reductant supply and where only the basal components of alternative electron sinks exist.

(iv) Yin (PPFD <400 μmol m⁻² s⁻¹/AC >500 μmol mol⁻¹ air): this method has the same advantages and assumptions of method (iii). A particularity of this approach resides in the incorporation of data from the A/AC curve with Cᵢ above 500 μmol mol⁻¹ air.

Retrieving the respiration value from combined A/AC, and A/AC curves

The FvCB model predicts that A/AC curves and their A/AC counterparts share the same CO₂ compensation point (Γ), as this parameter is independent of gₑ:

\[Γ=[I^*+K_c(1+O/K_c)R_l/V_{c,max}]/(1-R_l/V_{c,max}) \]

Evans and von Caemmerer (1996) proposed that an averaged gₑ can be estimated as the slope of the plot of A versus Cᵢ-Cₑ. Because the plot goes through the origin, both A and Cᵢ-Cₑ must be zero, which is what occurs when Γ is shared by both A/AC and A/AC curves, as predicted by the FvCB model.

It was realized that for some data sets, when Rᵢ was set in advance as required to obtain Cᵢ, the plot of A versus Cᵢ-Cₑ in the region which was Rubisco limited showed good linearity, although with an intercept differing from zero. Given the predictions of the FvCB model, this difference should be attributed to a biased Rᵢ used to calculate Cᵢ, which in turn leads to different Γ values, as obtained from the A/AC and A/AC curves. Given this fact and that the Γ* values in this study were reliably estimated from Rubisco kinetics in purified preparations, it is proposed here that Rᵢ can be obtained as the value that makes the intercept of the plot of A versus Cᵢ-Cₑ equal zero. The approach was tested using ideal data sets where the respiration values used as inputs were successfully retrieved from the combined A/AC and A/AC curves. Consequently, for each curve, Rᵢ was estimated as described below. First, Rᵢ was set to be equal to Rᵢ(αβ), as set in previous studies (Ninemets et al., 2005, 2009b). To maintain the plot A versus Cᵢ-Cₑ as linear as possible, only points in the Cᵢ range strictly limited by Rubisco (Cᵢ <200 μmol mol⁻¹ air) were considered. Secondly, the new Rᵢ was obtained as the value that forces the intercept of the plot A versus Cᵢ-Cₑ to be zero using the Goal Seek function available in Microsoft Excel (see Fig. 1 for an example). The new respiration value obtained in this way is hereafter referred to as Rᵢ(Γ/C). An Excel spreadsheet (with modelled and real data) is available (see Supplementary Spreadsheet S1 at JXB online) that shows how this method was performed.

Rubisco kinetic parameters

The Rubisco kinetic parameters used in this study were measured in vitro, except the S₀ values for N. tabacum and L. gibertii, which were taken from Galmés et al. (2006) and Galmés et al. (2005), respectively. All measurements for the determination of Rubisco kinetic parameters were conducted at 25 °C. The Rubisco specificity factor was measured in highly purified extracts and using wheat Rubisco as a reference normalized to 100, following the procedures described in Galmés et al. (2005). The Michaelis–Menten constants for CO₂ (Kᵣ) and O₂ (Kₒ) and the maximum rate for the carboxylation reaction (V_{c,max}) were measured in rapidly isolated leaf protein extracts (Sharwood et al., 2008). Briefly, ~0.5 g fresh weight of leaves were ground in a mortar with 2 ml of ice-cold extraction buffer containing 100 mM Bicine (pH 8.2), 6% (w/v) polyethylene glycol (PEG) 4000, 2 mM MgCl₂, 0.1 mM EDTA, 1 mM benzamidine, 1 mM ɛ-aminocaproic acid, 50 mM 2-mercaptopethanol, 10 mM dithiothreitol (DTT), 2 μM pepstatin A, 10 μM E64, 10 μM chymostatin, 2 mM phenylmethylsulphonyl fluoride (PMSF), and 2.5% (w/v) polyvinylpolypyrrolidone (PVPP). The liquidized sample was clarified by centrifugation at 12,842 g for 4 min. A 1 ml aliquot of clarified extract was eluted using a Sephadex PD-10 column (GE Healthcare, UK) pre-equilibrated with desalt buffer containing 100 mM Bicine (pH 8.2), 20 mM MgCl₂, 10 mM DTT, 1 mM KH₂PO₄, 0.5 mM EDTA, 1 mM benzamidine, 1 mM ɛ-aminocaproic acid, and 10 mM NaHCO₃. The protein peak (in 1 ml) was supplemented with protease inhibitors (4 μM pepstatin A, 20 μM E64, and 20 μM chymostatin). Of this extract, 250 μl was supplemented with 2.542 μM NaH¹⁴CO₃ and activated for 15 min before carboxylase measurements. The remainder was used to assay Rubisco catalytic sites. Measurements of Kᵣ and V_{c,max} for the carboxylation activity in nitrogen or air were determined in two sets of eight vials from the amount of ¹⁴C incorporated into PGA, as described elsewhere (Bird et al., 1982). Each set of vials used eight different concentrations of bicarbonate chosen to provide CO₂ (aq) between 0.7 μM and 75 μM, each with a specific radioactivity of 3.7×10¹⁰ Bq mol⁻¹ and containing 375 nmol RubP. Kᵣ was calculated from the relationship Kᵣ (air)=Kᵣ (N₂)×[I+O₂]/[Kᵣ]. The concentration of Rubisco catalytic sites in the extract was measured from the stoichiometric binding of the inhibitor [¹⁴C]CABP to CO₂-Mg²⁺-activated Rubisco active sites (Butz and Sharkey, 1989). Thereafter, the carboxylase catalytic turnover rate Kᵣ was obtained as Kᵣ=V_{c,max}/[catalytic sites]. The Rubisco kinetic constants are summarized in Table 1.

Statistical analyses

Data are expressed as the means ±standard error. Student’s t-tests were used to compare the photosynthetic parameters calculated with the different sets of Rubisco kinetic constants and to examine whether the intercepts of the regression were significantly different from zero. Linear regression and statistical analyses were carried out using Microsoft Excel.

Results

The effect of the different calibration methods on αβ

The four calibration methods tested here comprised scenarios ranging from a low (Yin PPFD <400 μmol m⁻² s⁻¹) to a high reductant supply (ΦPSII/ΦCO₂ PPFD >400 μmol m⁻² s⁻¹), all performed under non-photorespiratory conditions, although potentially affected by the occurrence of an alternative electron flow. Additionally, three species covering a large range in SLA (33±1.4, 14±2.7, and 9.0±1.3 m² kg⁻¹ for N. tabacum, C. arabica, and L. gibertii, respectively) were selected to assess the extent to which structural changes might play a role in determining the αβ product.

High regression coefficients were obtained for all of the relationships based on the four calibration methods \(r^2=0.91−0.98\) (Fig. 2). In contrast to expectations, no major differences in the estimation of αβ were found between the methods Yin (PPFD <400 μmol m⁻² s⁻¹) and ΦPSII/ΦCO₂ (PPFD >400 μmol m⁻² s⁻¹) (Fig. 2B, C) and between ΦPSII/ΦCO₂ (A/AC) and Yin (PPFD <400/AC >500 μmol mol⁻¹ air) (Fig. 2A, D). Thus, the inclusion of data at high PPFD or low Cᵢ conditions that favour the prevalence of alternative electron fluxes, had slight effects on the estimated αβ. Instead, the major differences among the calibration methods were dependent on the type of data used to perform the calibration [i.e. A/PPFD or A/AC curves (Table 2)]. Regardless of the studied species, the calibrations using only A/PPFD data gave lower αβ values, ranging from 0.37 to 0.50, whereas those using A/AC data produced higher αβ values, ranging from 0.46 to 0.62 (Table 2). Notably, the species displaying the most contrasting SLA values (N. tabacum and L. gibertii) showed...
similar values for \(\alpha \), suggesting that leaf structure does not play a major role in determining \(\alpha \beta \).

Mesophyll conductance as affected by the J calibration methods and respiration estimations

Given that no major differences were found between the \(\Phi_{\text{PSII}}/\Phi_{\text{CO}_2} \) relationship and the Yin method, \(g_m \) was estimated using the methods covering the extremes of \(\alpha \beta \) values, namely \(\Phi_{\text{PSII}}/\Phi_{\text{CO}_2} (A/C_i) \) and \(\Phi_{\text{PSII}}/\Phi_{\text{CO}_2} (\text{PPFD} > 400 \ \text{µmol} \ \text{m}^{-2} \ \text{s}^{-1}) \). Because these methods consider only \(A/\text{PPFD} (\Phi_{\text{PSII}}/\Phi_{\text{CO}_2}; \text{PPFD} > 400 \ \text{µmol} \ \text{m}^{-2} \ \text{s}^{-1}) \) or \(A/C_i \) data [\(\Phi_{\text{PSII}}/\Phi_{\text{CO}_2} (A/C_i) \)], the \(g_m \) estimated using either method is hereafter referred to as the \(g_m \) obtained with the \(A/\text{PPFD} \) or \(A/C_i \) J calibration. Once the two J calibrations to be used were defined, an \(R_L \) value next had to be chosen to calculate \(C_c \). Because there was no consistency in the \(R_L \) estimated via the Yin approach using \(A/\text{PPFD} (\text{PPFD} < 400 \ \text{µmol} \ \text{m}^{-2} \ \text{s}^{-1}) \) or \(A/C_i \) (PPFD < 400 \ \text{µmol} \ \text{m}^{-2} \ \text{s}^{-1} \) or \(C_i > 500 \ \text{µmol} \ \text{mol}^{-1} \ \text{air} \) (Table 2), \(R_{\text{dark}/2} \) was preferred because it is the unique respiration value actually measured in planta. To check the consistency of the respiration value used, a new approach was also tested to find an alternative proxy for \(R_L \) (\(R_{AC/AIC} \)) as the value forcing the \(\text{CO}_2 \) compensation point \((\Gamma) \) to be equal.

Fig. 1. Graphical representation of the method utilized to retrieve the respiration value from the combined \(A/C_i \) and \(A/C_c \) curves \((R_{AC/AIC})\). The example is based on values measured in an \(N. \) tabacum leaf. (A) The initial part of an \(A/C_i \) (filled circles) and the respective \(A/C_c \) (open circles) curve considering \(R_L = R_{\text{dark}/2} (1.1 \ \text{µmol} \ \text{CO}_2 \ \text{m}^{-2} \ \text{s}^{-1}) \). (B) \(C_i - C_c \) from the curves presented in (A) plotted against \(A \). The \(y \)-axis positive intercept \((2.4) \) when \(x = 0 \) (see the dotted lines) means negative \(g_m \) for \(A \) lower than the intercept because \(C_i > C_c \). The slope of the linear regression \((0.276) \) is an estimation of averaged \(g_m \) over the range of \(C_i \) used in the linear fit. (C) By adjusting to zero the intercept in the relationship \(A \) versus \(C_i - C_c \), a new respiration value, \(R_{AC/AIC} \), is obtained \((0.4 \ \text{µmol} \ \text{CO}_2 \ \text{m}^{-2} \ \text{s}^{-1}) \), and the same \(\text{CO}_2 \) compensation point is now shared by both curves \((C_i - C_c = 0 \) at \(A = 0) \). The influence of the new respiration on \(g_m \) can be observed as the modified slope \((0.259) \). (D) The modified initial part of the \(A/C_i \) and \(A/C_c \) curves calculated with \(R_{AC/AIC} \).
when calculated from \(\frac{A}{C_i} \) and \(\frac{A}{C_c} \) curves. The estimated \(\frac{R_{AC_i}}{AC} \) values were always lower than their corresponding \(\frac{R_{AC_i}}{AC} \) counterparts (Table 3).

Due to the high amount of negative and extremely high \(g_m \) values at low or high \(C_i \), respectively (Table 4), a filter was next applied to keep the valid \(g_m \) estimates, here defined as those values in the range of 0 < \(g_m \) < 1 mol CO\(_2\) m\(^{-2}\) s\(^{-1}\). As expected, the use of \(\frac{R_{AC_i}}{AC} \) significantly reduced the amount of negative \(g_m \) values at low \(C_i \) (Table 4), as the rationale for this method works at this \(C_i \) range (Fig. 1). Conversely, the use of \(\frac{A}{C_i} \) \(J \) calibration improved the \(g_m \) estimation at high \(C_i \) (Table 4) due to a lowering of \(C_c \) values (Fig. 3A). Thus, the

Table 1. Rubisco kinetic constants measured for the species studied: specificity factor \((S_{CO2}) \), CO\(_2\) compensation point in the absence of respiration \((\Gamma^*) \), Michaelis–Menten kinetics for CO\(_2\) \((K_c) \) and O\(_2\) \((K_o) \), and catalytic turnover rate for the carboxylase reaction \((K_{cat}) \)

Species	\(S_{CO2} \)	\(\Gamma^* \) (µbar)	\(K_c \) (µM)	\(K_o \) (µM)	\(K_{cat} \) (s\(^{-1}\))
N. tabacum	98.1 ± 2.6 ²	39.7 ± 1.1	12.4 ± 0.7	274 ± 42	3.2 ± 0.3
C. arabica	98.4 ± 4.3	39.6 ± 1.7	10.3 ± 1.5	479 ± 113	3.2 ± 0.1
L. giberti	110.5 ± 1.6 ²	35.2 ± 0.5	8.9 ± 0.5	593 ± 75	2.7 ± 0.8

Values are the means ± standard error of 3–4 replicates per species. ¹ Taken from Galmés et al. (2006); ² Taken from Galmés et al. (2005).

Table 2. Rubisco kinetic constants measured for the species studied: specificity factor \((S_{CO2}) \), CO\(_2\) compensation point in the absence of respiration \((\Gamma^*) \), Michaelis–Menten kinetics for CO\(_2\) \((K_c) \) and O\(_2\) \((K_o) \), and catalytic turnover rate for the carboxylase reaction \((K_{cat}) \)

Species	\(S_{CO2} \)	\(\Gamma^* \) (µbar)	\(K_c \) (µM)	\(K_o \) (µM)	\(K_{cat} \) (s\(^{-1}\))
N. tabacum	98.1 ± 2.6 ²	39.7 ± 1.1	12.4 ± 0.7	274 ± 42	3.2 ± 0.3
C. arabica	98.4 ± 4.3	39.6 ± 1.7	10.3 ± 1.5	479 ± 113	3.2 ± 0.1
L. giberti	110.5 ± 1.6 ²	35.2 ± 0.5	8.9 ± 0.5	593 ± 75	2.7 ± 0.8

Values are the means ± standard error of 3–4 replicates per species. ¹ Taken from Galmés et al. (2006); ² Taken from Galmés et al. (2005).
Table 2. Slopes (α_β) and light respiration following the method of Yin et al. (2011) (R_{LYN}, μmol CO$_2$ m$^{-2}$ s$^{-1}$) or intercept values (Φ_{PSII}/Φ_{CO2}) obtained under non-photorespiratory conditions according to different approaches, consisting of higher (Φ_{PSII}/Φ_{CO2}, A/C or PPFD >400 μmol m$^{-2}$ s$^{-1}$) or lower (Yin PPFD <400 or PPFD <400 μmol m$^{-2}$ s$^{-1}$ and C$_i$ >500 μmol mol$^{-1}$ air) susceptibilities to alternative electron sinks for comparison, the original slopes (k) obtained when using the Φ_{PSII}/Φ_{CO2} relationship were already converted to α_β (α_β=4/k); the intercept refers to the parameter b in the equation: $\Phi_{PSII} = k \cdot \Phi_{CO2} + b$.

Species	Slope (α_β)	Intercept (Φ_{PSII}/Φ_{CO2})	R_{LYN}
N. tabacum	0.52 ± 0.013	0.005 ± 0.002	
	0.36 ± 0.011	-0.02 ± 0.008*	
Φ_{PSII}/Φ_{CO2} (PPFD >400)	0.39 ± 0.017	0.87 ± 0.47	
Φ_{PSII}/Φ_{CO2} (PPFD >400)	0.46 ± 0.026	0.87 ± 0.87	
Yn (PPFD <400)	0.50 ± 0.025	0.84 ± 0.41	
Yn (PPFD <400 C_i >500)	0.63 ± 0.015	2.55 ± 0.45*	
C. arabica	0.56 ± 0.019	0.014 ± 0.004*	
	0.37 ± 0.011	-0.03 ± 0.009*	
Φ_{PSII}/Φ_{CO2} (PPFD >400)	0.41 ± 0.013	2.04 ± 0.25*	
Φ_{PSII}/Φ_{CO2} (PPFD >400)	0.50 ± 0.018	3.14 ± 1.02*	

Values are the means ±standard error of four replicates per species. An asterisk denotes respiration or intercepts significantly different from zero ($P < 0.05$).

Table 3. Dark respiration measured at pre-dawn (R_{dark}) and light respiration estimated from combined A/C_i and A/C_c curves (R_{AC_i/AC_c}).

Species	R_{dark}	R_{AC_i/AC_c} a
N. tabacum	2.2 ± 0.1	0.3 ± 0.1
C. arabica	0.9 ± 0.1	0.2 ± 0.1
L. gibertii	4.0 ± 0.3	1.7 ± 0.4

Values are the means ±standard error of four replicates per species. a For R_{AC_i/AC_c}, the values are averages from the A/C_i curves calibrated using the $A/PPFD$ or A/C_i curves.

The highest percentage of data excluded (i.e. unrealistic g_m values) was found when combining the $A/PPFD$ J calibration with R_{dark_2} (88, 56, and 42% for N. tabacum, C. arabica, and L. gibertii, respectively), whereas the lowest percentage of data excluded was obtained with the A/C_i J calibration and R_{AC_i/AC_c} (17% for N. tabacum and 0% for the other species) (Table 4).

The different calibrations also affected the magnitude of g_m in response to C_i. There was no general trend at C_i <100 μmol mol$^{-1}$ air, whereas at C_i >100 μmol mol$^{-1}$ air, lower g_m values (up to 50%) were observed using the A/C_i J calibration (Table 4). In addition, when plotting g_m versus C_i, a high amplitude in g_m depending on the calibration used, was revealed (Fig. 3B). Such amplitude led to a reasonable disagreement between the averaged g_m at C_i of 100–350 μmol mol$^{-1}$ air and the single point g_m at CO$_2$ ambient (400 μmol mol$^{-1}$) (Supplementary Tables S2, S3 at JXB online), which suggests that care must be exercised when reporting single point g_m data. In Supplementary Table S4, in addition to the filter keeping the values in the range of 0 < g_m < 1 mol CO$_2$ m$^{-2}$ s$^{-1}$, the Harley et al. (1992) criteria were also applied, considering the g_m data in the range of 10 <C_i/dA <50 as reliable to see whether they corresponded to the data presented in Table 4. Overall, the g_m values presented in Table 4 and those obtained after applying the Harley criteria varied accordingly, but some exceptions were noticed such as the g_m values estimated at C_i >350 μmol mol$^{-1}$ air for L. gibertii which were substantially higher than the g_m data shown in Supplementary Table S4. Most importantly and irrespectively of this difference, the amount of data excluded using the Harley criteria was always higher (up to 100%) even when the same estimates presented in Table 4 had 0% of data excluded together with small standard errors. Additionally, the Harley criteria worked differently depending on the species, J calibration, and C_i range, given that some species were more affected than others.

To obtain an independent estimate of g_m that was not affected by the need for calibrating J, g_m was also estimated using an alternative approach, namely the A–C_i curve analysis method suggested by Ethier and Livingston (2004). The g_m values obtained following this approach are given in Table 5.

Maximum Rubisco carboxylation and electron transport rate as affected by α_β

In contrast to the g_m estimates that could be greatly affected by the use of either R_{dark_2} or R_{AC_i/AC_c} (Table 4, Fig. 3B), the V_{max} and J_{max} estimates were minimally affected by the use of different respiration values (~6% at most; Table 5; Supplementary Table S5 at JXB online).

Irrespective of species, V_{max} and J_{max} on a C_c basis were always higher for the A/C_i J calibration than for its $A/PPFD$ J.
counterpart (Table 5). These higher \(V_{\text{max}} \) and \(J_{\text{max}} \) values are in agreement with the lower \(g_m \) values found, in general, with the \(A/C_i \) and \(J \) calibration (Table 4). The \(V_{\text{max}} \) obtained using the Ethier and Livingston method was closer to the \(V_{\text{max}} \) on a \(C_i \) basis calculated using the \(A/C_i \) and \(J \) calibration for \(L. \ gibertii \) and \(C. arabica \), whereas for \(N. \ tabacum \) an intermediate value between those obtained with the \(A/\text{PPFD} \) or \(A/C_i \) and \(J \) calibration was found (Table 5). Apart from the \(J_{\text{max}} \) calculated with the \(A/C_i \) and \(J \) calibration, which had the higher values for all species and reflected the higher \(\alpha \theta \) found (Table 3), there were no major differences among the other calculated values of \(J_{\text{max}} \).

The use of the standard Rubisco kinetics (\(K_c, K_m, \) and \(\Gamma^* \)) originally obtained for \(N. \ tabacum \) by Bernacchi et al. (2002) would lead to an overestimation of \(V_{\text{max}} \) by \(\sim30\% \) and \(20\% \) for \(L. \ gibertii \) and \(C. arabica \), respectively. The other photosynthetic parameters for these two species were unaffected by the use of different Rubisco kinetic constants (Table 5). No significant differences were observed for \(N. \ tabacum \) when using the different set of Rubisco kinetics, with the exception of \(g_m \) (Ethier and Livingston method), which was \(28\% \) lower when using the Rubisco kinetics of Bernacchi et al. (2002).

Discussion

To the best of the authors’ knowledge, this study is the first to address the idea that the use of \(A/C_i \) or \(A/\text{PPFD} \) curves under low \(O_2 \) to calibrate \(J \) can significantly affect the estimations of \(g_m, V_{\text{max}}, \) and \(J_{\text{max}} \) as demonstrated in species with contrasting leaf structural properties and photosynthetic capacities. A background is also provided to understand potential factors that could be translated into unrealistic \(g_m \) values at low and high \(C_i \), and recommendations to improve \(g_m \) estimations accordingly.

Sensitivity of the variable \(J \) method to \(\alpha \beta \)

The high sensitivity of the variable \(J \) method has been known since its introduction by Harley et al. (1992). However, among the several sources of error, more attention has been given to an accurate determination of \(\Gamma^* \) (Warren et al., 2006; Pons et al., 2009) than to \(J \) per se, given the variety of ways in which \(J \) can be calibrated. Despite the \(J \) calibration based on \(A/\text{PPFD} \) curves being the most common method in the literature, here it is shown that this calibration produced a higher number of unrealistic \(g_m \) estimates than its counterpart based on \(A/C_i \) curves (Table 4). Additionally, it was demonstrated that \(g_m \) misestimations could be directly associated with the \(J \) calibration method at high \(C_i \) on the one hand, and the proper choice of \(\Gamma^* \) and \(R_L \) at low \(C_i \) on the other hand. Notably, the need to develop useful criteria to improve \(g_m \) estimations and to understand the high \(g_m \) variability is crucial considering that the only existing indicator, the Harley et al. (1992) criteria consider that reliable \(g_m \) estimations are those situated in the range of \(dC_i/dA \) (10–50), performed poorly in retrieving acceptable data in addition to being dependent on the species, applied \(C_i \) range, and \(J \) calibration (Supplementary Table S4 at JXB online).

It can be deduced from the relationship between \(C_i \) and \(J/(A+R_L) \) (Fig. 3A) that \(C_i \) approaches infinity as \(J/(A+R_L) \) approaches four (number of electrons per \(CO_2 \) molecule fixed). In contrast, \(C_i \) is negative when the ratio is less than four [the lower \(C_i \) threshold for positive \(J/(A+R_L) \) is defined by the parameter \(\Gamma^* \)]. Therefore, as \(J/(A+R_L) \) approaches four as photospiration and other alternative electron sinks tend to decrease (at high \(C_i \), for example), extremely high \(C_i \) values are to be expected, leading to a greater probability of...

Table 4. Mesophyll conductance (\(g_m, \text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1} \)) for several intervals of \(C_i \) and percentage of data excluded (DE) after applying a restriction (\(g_m \) restricted to the range of \(0 < g_m < 1 \text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1} \))

\(A/C_i \), \(J \) calibration	\(A/\text{PPFD} \), \(J \) calibration							
\(R_{AC/AC_i} \)	\(R_{AC/AC_i} \)							
\(R_{AK/2} \)	\(R_{AK/2} \)							
\(g_m \)	DE (\%)							
\(N. \ tabacum \)								
\(C_i < 100 \)	0.290 ± 0.065	17	0.243 ± 0.033	58	0.345 ± 0.132	17	0.203 ± 0.031	67
\(C_i 100–350 \)	0.213 ± 0.021	0	0.287 ± 0.037	6	0.468 ± 0.064	50	0.504 ± 0.262	88
\(C_i > 350 \)	0.038 ± 0.005	0	0.045 ± 0.007	0	0.262 ± 0.024	65	0.132 ± 0.130	70
\(C. arabica \)								
\(C_i < 100 \)	0.131 ± 0.018	0	0.202 ± 0.042	10	0.164 ± 0.028	0	0.202 ± 0.035	20
\(C_i 100–350 \)	0.117 ± 0.006	0	0.124 ± 0.007	0	0.186 ± 0.029	0	0.191 ± 0.029	6
\(C_i > 350 \)	0.052 ± 0.004	0	0.053 ± 0.004	0	0.219 ± 0.039	41	0.194 ± 0.039	56
\(L. \ gibertii \)								
\(C_i < 100 \)	0.235 ± 0.027	0	0.270 ± 0.050	7	0.310 ± 0.041	7	0.275 ± 0.079	27
\(C_i 100–350 \)	0.214 ± 0.014	0	0.228 ± 0.020	0	0.371 ± 0.044	7	0.406 ± 0.083	21
\(C_i > 350 \)	0.071 ± 0.011	0	0.073 ± 0.012	0	0.226 ± 0.063	32	0.162 ± 0.044	42

Values are the means ±standard error of 4–6 \(A/C_i \) curves per species. The SE was calculated according to the points that remained in each \(C_i \) interval after applying the restriction.

The \(A/C_i \) or \(A/\text{PPFD} \) J calibration refers to the \(\Phi_{\text{real}}/\Phi_{\text{CO}_2} \) (\(A/C_i \)) or \(A/\text{PPFD} \) methods, respectively. \(R_{AC/AC_i} \) is the light respiration estimate from the combined \(A/C_i \) and \(A/C_i \) curves proposed in this study, and \(R_{AK/2} \) is the dark respiration divided per two to account for the observed reduction in \(R_{\text{dark}} \) under light (Ninemets et al., 2005). Note the high DE at low \(C_i \) for \(R_{AK/2} \) and at high \(C_i \) for the \(A/\text{PPFD} \) J calibration.
Fig. 3. (A) Relationship between C_c and $J/(A+R_L)$, as affected by the J calibration using the $A/PPFD$ (open circles) or A/C_i curves (filled circles). As $J/(A+R_L)$ approaches four (likely to occur at high C_i), C_c tends to infinity, thus increasing the probability of being higher than C_i and resulting in negative g_m values. The arrow indicates the C_c upper limit (~600 μmol mol$^{-1}$) observed for the A/C_i J calibration, being much lower than its $A/PPFD$ counterpart which can reach C_c values >1600 μmol mol$^{-1}$. (B) g_m response to C_i as affected by the A/C_i (filled symbols) or $A/PPFD$ (open symbols) J calibration method and the light respiration estimations [$R_{dark/2}$ (triangles) or R_{AC/AC_i} (circles)]. It is remarkable how there are ‘spikes’ in g_m at low C_i when using $R_{dark/2}$ and how these are alleviated when using R_{AC/AC_i}. The curves are from $L. giberti$, and the points are averages from four plants for g_m between 0 and 1 mol CO$_2$ m$^{-2}$ s$^{-1}$. The A/C_i or $A/PPFD$ J calibration refers to the $\alpha\beta$ obtained from the curves shown in Fig. 2A and 2B, respectively.
estimating negative values of \(g_m \). Thus, for the same (\(A + R_i \)), the higher the \(\alpha \), the higher the \(J \), ultimately resulting in a greater probability of obtaining positive \(g_m \) values due to a lowering of \(C_i \), whereas the opposite holds true for a lower \(\alpha \).

At low \(C_i \) (<100 \(\mu \text{mol mol}^{-1} \text{air} \)), misestimations of \(g_m \) are unlikely to be affected by \(J/(A + R_i) \), as this ratio tends to achieve higher values with decreasing \(C_i \). In any case, reliable estimations of \(g_m \) at low \(C_i \) are extremely challenging given that the estimations are highly dependent on the proper choice of values of \(\Gamma^* \) or \(R_i \), which can ultimately affect \(C_i \).

In the present study, the authors are quite confident about their \(\Gamma^* \) values because they were estimated from Rubisco kinetics in purified preparations. Given this, it was possible to retrieve a respiration estimate (\(R_{AC_{i}}/AC_{i} \)) as the value forcing the intercept of the linear relationship of \(A \) versus \(C_i - C_o \) to zero, which is equivalent to forcing the \(\Gamma \) to be the same. It is believed that \(R_{AC_{i}}/AC_{i} \) obtained in this way is a valid estimate, as its magnitude was lower than that of \(R_{dark} \) (Table 3), in agreement with the general consensus that respiration is inhibited in the light (Tcherkez et al., 2005). In addition, the use of \(R_{AC_{i}}/AC_{i} \) significantly improved the number of valid \(g_m \) estimates (Table 4), highlighting the importance of respiration in estimating \(g_m \) at low \(C_i \), with the advantage of better matching a biochemical prediction of the FvCB model, namely \(A/\Gamma C_i \) and \(A/C_i \) sharing the same \(\Gamma \).

An a priori weakness regarding \(R_{AC_{i}}/AC_{i} \) resides in whether \(g_m \) is kept constant at a low \(C_i \) range. However, the authors argue in favour of a constant \(g_m \) where a high linearity can be observed when plotting \(A \) versus \(C_i - C_o \), in the region strictly limited by Rubisco (Fig. 1C). Furthermore, it can also be noted that \(g_m \) estimated using the variable \(J \) method is closer to the constant \(g_m \), as the individual points are close to the regression line in the plot of \(A \) versus \(C_i - C_o \). The apparent variability of \(g_m \) that might be identified using the variable \(J \) method could simply be a result of the high sensitivity of \(A \), \(C_i \), or \(C_o \) to random errors at this low \(C_i \) range. This conclusion is supported when comparing the data of Flexas et al. (2007), who showed a high variability of \(g_m \) at low \(C_i \) using the variable \(J \) method, with those recorded by Tazoe et al. (2011), who found almost constant values of \(g_m \) using the isotopic method.

Why do \(A/C_i \) and \(A/\text{PPFD} \) curves result in different \(\alpha \)?

Given that \(\alpha \) can be measured and that large changes in this parameter during the execution of \(A/\text{PPFD} \) or \(A/C_i \) curves are unlikely to occur, the uncertainty in \(J \) is particularly related to \(\beta \). Eichelmann and Laisk (2000) found \(\beta \) varying from 0.38 to 0.51 in \(N. \text{tabacum} \) under varying light and temperature conditions. Similar results were reported by Loreto et al. (2009) while studying the effect of blue light on \(g_m \). Hassiotou et al. (2009) also concluded that \(J \) calibration is light dependent. Collectively, all of this information highlights the importance of irradiance in determining the \(\beta \) value and helps explain the apparently better suitability of the \(A/C_i \)-based \(J \) calibration: it is performed under the same irradiance used in the normal \(A/C_i \) curves. In fact, another advantage of keeping a fixed irradiance during the calibration is to avoid changes in the profiles of light absorption through the leaf that may occur under changing irradiance (Evans, 2009; Oguchi et al., 2011); this can be especially important for...
the Li-Cor LED-based fluorescence/light source which consists of blue and red light with narrow bandwidths. However, to what extent changes in spectral light could be responsible for differences in β is unclear (Evans, 2009). Further explanations for this statement might be linked to the engagement of alternative electron sinks and the fluorescence signals that might not be representative of the whole leaf, in contrast to the gas-exchange signals (Hassiotou et al., 2009). Even if the uncertainty about the fluorescence signal could be resolved using calibration curves, as in this study, conflicting information on the possible effects of alternative electron sinks on g_m measurements has been reported. Whereas several authors (e.g. Loreto et al., 1994; Ruuska et al., 2000; Flexas and Medrano, 2002) showed circumstantial evidence suggesting that alternative electron sinks play no major role in g_m estimations, other investigators reported that up to 24% of the total electron flux can be associated with alternative sinks (see Gilbert et al., 2012, and references therein). In any case, the present results argue against the relevance of alternative electron sinks as potential bias for proper g_m estimations, given that the calibration methods most likely to be affected by these sinks (calibrations performed at high PPFD and low C_i) did not differ from others which used a range of data under strictly limited electron transport (low PPFD and high C_i).

Mesophyll conductance, maximum velocity of Rubisco carboxylation, and electron transport rate

The choice of the method to calibrate J can significantly affect the estimation of photosynthetic parameters and even alter their interpretation in the context of the diffusive versus biochemical limitations to photosynthesis. In *N. tabacum*, the use of A/PPFD calibration would lead to the conclusion that the assumption of infinite g_m is plausible because no difference in V_{max} on a C_i or C_c basis was observed (Table 5). In sharp contrast, the use of A/C_i calibration points to a finite g_m and a higher V_{max} value (33%) in relation to the V_{max} on a C_i basis. For *C. arabica* and *L. gibertii*, higher V_{max} values were observed using both A/C_i and A/PPFD J calibrations compared with V_{max} on a C_i basis, but the degree of underestimation varied considerably (Table 5). It is important to bear in mind that such alterations also imply changes in biochemical aspects of the leaf because V_{max} is related to the amount of activated Rubisco, whereas J_{\max} is associated with components of the electron transport chain, and both parameters can affect the leaf nitrogen economy (Niinemets and Tenhunen, 1997). Thus, it is highly unlikely that both calibrations can hold true, as they can considerably change the leaf biochemical signature and hence ultimately pose uncertainties on how to decide which calibration to use. To address this issue, a first cut-off point is to check if the minimum requirement of four electrons per carboxylation is attained, which can be achieved by dividing J by A. If this ratio is less than four, the calibration is, on a theoretical basis, inadequate. This criterion allowed the exclusion of the standard q_β for *C. arabica* (Supplementary Table S2 at JXB online) and the A/PPFD calibration for *N. tabacum*. In addition, g_m and the FvCB photosynthetic parameters were estimated using the J-independent Ethier and Livingston method. Interestingly, the values of V_{max} and g_m obtained with this method reasonably matched those obtained with the A/C_i J calibration for *L. gibertii* and *C. arabica*. In *N. tabacum*, the V_{max} calculated from the Ethier approach presented intermediate values between the V_{max} from the A/PPFD or A/C_i J calibration, and, given the high standard errors in its g_m estimate, it is believed that, even in this species, the A/C_i J calibration might be a better option to recommend, as it allows the retrieval of a greater number of realistic g_m estimations regardless of the respiration value (Tables 4, 5). Therefore, it is proposed that the A/C_i J calibration seems to be more reliable than its A/PPFD counterpart in terms of producing acceptable data, in accordance with the results of Gilbert et al. (2012).

Regarding the use of Rubisco kinetic constants, a considerable overestimation of V_{max} (~30%) would occur in *L. gibertii* if standard values of those constants (Bernacchi et al., 2002) were used (Table 5). Importantly, even if good fits could be obtained irrespective of the kinetic constants, the relationship between V_{max} and leaf nitrogen might be compromised. Thus, if the main goal is to use the FvCB model to characterize photosynthetic capacities and relate them to nitrogen partitioning (e.g. Xu et al., 2012), species-specific kinetic constants for Rubisco should be implicitly used.

Further recommendations to improve g_m estimation

Given the uncertainties in g_m estimations, criteria were provided to assess the consistency of Γ^* and R_i through the determination of Γ (by definition, Γ must be higher than Γ^*) or by plotting A versus $C_i - C_c$ and analysing the intercept of the linear relationship. In addition, provided that the estimates of Γ and Γ^* are reliable, it is possible to retrieve a respiration estimate from A/C_i and A/C_c curves. The respiration value was the focus here because of the availability of the current methods to estimate R_i using gas exchange and/or chlorophyll fluorescence (see Yin et al., 2011), all of which were performed under low irradiance conditions that do not match those used in A/C_i curves, which ultimately makes the choice of a proper respiration value a very complicated task.

If an inconsistency between Γ for the A/C_i curve and Γ^* (Γ lower than Γ^*) is found, or if the value of respiration retrieved by forcing the intercept of A versus $C_i - C_c$ to zero is negative, four potential sources of error need to be checked: (i) correction for CO$_2$ and water vapour leakage through the chamber gaskets is crucial to the determination of Γ and very important for species with low photosynthetic potential (see Rodeghiero et al., 2007); (ii) the influence of lateral diffusion which can become significant (especially for homobaric leaves) with large gradients of CO$_2$ inside and outside the chamber in addition to the lower fluxes of CO$_2$ near the compensation point (Morison and Lawson, 2007); (iii) Γ^* determination; and (iv) Rubisco deactivation. The first two sources of error are particularly dependent on the leaf chamber size and, given the magnitude of the corrections in A at low C_i (Supplementary Table S1 at JXB online), the need to use larger leaf chambers to obtain more reliable g_m, Γ, and $R_{A/C_i}/A/C_c$ estimates is emphasized. For species displaying low
respiration rates, it is possible to obtain an estimate of Γ^* by fixing R_L, inputting a test Γ^*, and changing this parameter to obtain the intercept of A versus $C_i - C_c$ closest to zero. All of these hints provide a good framework to extract as much information as possible from the A/C_i and A/C_c curves. Nevertheless, because all of these adjustments rely on fitting processes, proper judgement about the biological meaning of the obtained estimates is obviously required.

Regarding the J calibration, independent of it being based on A/C_i, $A/PPFD$, or both, one should first check whether all of the positive J/A values are higher than four. If not, there is an inconsistency with the calibration because this implies that fewer than four electrons would be used per carboxylation event. If yes, the next step is to verify the suitability of the respiration value by checking if all of the positive $J/(A + R_L)$ values are still higher than four. If not, there is an inconsistency for the same reason stated previously. Another checkpoint is to verify that the maximum observed C_c is at least equal to the maximum C_i that would implicate infinite g_m. If C_c values higher than the maximum C_i are present for positive A, there is again an inconsistency with the calibration, as Fick’s first law of diffusion predicts a drawdown of CO$_2$ between C_i and C_c. In fact, it is theoretically possible to define an upper limit for $\alpha\beta$ which would be the value making the A/C_i and A/C_c curves identical, implicating infinite g_m.

Conclusion

This work brings new information to the growing amount of published papers trying to improve g_m estimation. Criteria are provided to examine the amount of unrealistic g_m data and identify inconsistencies with the biochemical model utilized, leading to a higher amount of acceptable data. In addition, the need for additional measurements to validate the J calibration to improve the estimation of photosynthetic parameters is emphasized. Moreover, given the observed high variability in g_m, it is important that comparisons among studies reporting data consider the variability due to the J calibration method, and, if necessary, normalize data according to the reported $\alpha\beta$ values.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. Graphical representation of the A/C_i and their respective A/C_c curves calibrated with the A/C_i or $A/PPFD$ J calibration.

Table S1. Leakage correction for CO$_2$ and water vapour.

Table S2. Averaged mesophyll conductance (g_m) for the interval of C_i ranging from 100 to 350 μmol mol$^{-1}$ air and the single point g_m at ambient CO$_2$ concentration (400 μmol mol$^{-1}$ air) using R_{dark}/2 in the g_m estimation.

Table S3. The same as in Table S1, using $R_{dark}/A/C_i$ rather than $R_{dark}/2$ to estimate g_m.

Table S4. Mesophyll conductance (g_m, mol CO$_2$ m$^{-2}$ s$^{-1}$) for several intervals of C_i and percentage of data excluded (DE) after applying two restrictions (g_m restricted to the range of 0 < g_m<1 mol CO$_2$ m$^{-2}$ s$^{-1}$ and dC/dA of 10–50 [the Harley et al. (1992) criteria].

Table S5. Maximum carboxylation rate of Rubisco (V_{max}^c) and maximum electron transport rate from gas exchange (J_{max}) as affected by the different J calibrations and calculated with R_{dark}/2.

Spreadsheet S1. An Excel spreadsheet is provided that allows the user to retrieve the leaf respiration from combined A/C_i and A/C_c curves.

Acknowledgements

This research was supported by the National Council for Scientific and Technological Development (CNPq) (grant 302605/2010-0) to FMD and Plan Nacional (Spain) (grant AGL2009-07999) to JG. A PhD scholarship granted by CNPq to SCVM is also gratefully acknowledged.

References

Bernacchi CJ, Portis AR, Nakano H, Von Caemmerer S, Long SP. 2002. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. *Plant Physiology* 130, 1992–1998.

Bird IF, Cornelius MJ, Keys AJ. 1982. Affinity of RuBP carboxylases for carbon dioxide and inhibition of the enzymes by oxygen. *Journal of Experimental Botany* 33, 1004–1013.

Brooks A, Farquhar GD. 1985. Effect of temperature on the CO$_2$/O$_2$ specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. *Planta* 165, 397–406.

Butz ND, Sharkey TD. 1989. Activity ratios of ribulose-1,5-bisphosphate carboxylase accurately reflect carboxylation ratios. *Plant Physiology* 89, 735–739.

Eichelmann H, Laisk A. 2000. Cooperation of photosystems II and I in leaves as analyzed by simultaneous measurements of chlorophyll fluorescence and transmittance at 800 nm. *Plant and Cell Physiology* 41, 138–147.

Edwards GE, Baker NR. 1993. Can CO$_2$ assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? *Photosynthesis Research* 37, 89–102.

Ethier GJ, Livingston NJ. 2004. On the need to incorporate sensitivity to CO$_2$ transfer conductance into the Farquhar–von Caemmerer–Berry leaf photosynthesis model. *Plant, Cell and Environment* 27, 137–153.

Evans JR. 2009. Potential errors in electron transport rates calculated from chlorophyll fluorescence as revealed by a multilayer leaf model. *Plant and Cell Physiology* 50, 698–706.

Evans JR, von Caemmerer S. 1996. Carbon dioxide diffusion inside leaves. *Plant Physiology* 110, 339–346.

Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO$_2$ assimilation in leaves of C3 species. *Planta* 149, 78–90.

Flexas J, Barbour MM, Brendel O, et al. 2012. Mesophyll diffusion conductance to CO$_2$: an unappreciated central player in photosynthesis. *Plant Science* 193–194, 70–84.
Flexas J, Díaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M. 2007. Rapid variations of mesophyll conductance in response to changes in CO$_2$ concentration around leaves. *Plant, Cell and Environment* 30, 1284–1298.

Flexas J, Medrano H. 2002. Energy dissipation in C3 plants under drought. *Functional Plant Biology* 29, 1209–1215.

Flexas J, Ribas-Carbó M, Díaz-Espejo A, Galmés J, Medrano H. 2008. Mesophyll conductance to CO$_2$: current knowledge and future prospects. *Plant, Cell and Environment* 31, 602–621.

Harley PC, Loreto F, Di Marco G, Sharkey TD. 1992. Theoretical considerations when estimating the mesophyll conductance to CO$_2$ flux by analysis of the response of photosynthesis to CO$_2$. *Plant Physiology* 98, 1429–1436.

Hussirotou F, Ludwig M, Renton M, Veneklaas EJ, Evans JR. 2009. Influence of leaf dry mass per area, CO$_2$, and irradiance on mesophyll conductance in sclerophylls. *Journal of Experimental Botany* 60, 2303–2314.

Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, Medrano H, Parry MAJ. 2005. Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. *Plant, Cell and Environment* 28, 571–579.

Galmés J, Medrano H, Flexas J. 2006. Acclimation of Rubisco specificity factor to drought in tobacco: discrepancies between in vitro and in vivo estimations. *Journal of Experimental Botany* 57, 3659–3667.

Galmés J, Medrano H, Flexas J. 2007. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. *New Phytologist* 175, 81–93.

Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. *Biochimica et Biophysica Acta* 990, 87–92.

Gilbert ME, Pou A, Zwieniecki MA, Holbrook NM. 2012. On measuring the response of mesophyll conductance to carbon dioxide with the variable J method. *Journal of Experimental Botany* 63, 413–425.

Laisk A, Loreto F. 1996. Determining photosynthetic parameters from leaf CO$_2$ exchange and chlorophyll fluorescence. *Plant Physiology* 110, 903–912.

Loreto F, Marco G, Tricoli D, Sharkey T. 1994. Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron sinks of field grown wheat leaves. *Photosynthesis Research* 41, 397–403.

Loreto F, Tsonev T, Centritto M. 2009. The impact of blue light on leaf mesophyll conductance. *Journal of Experimental Botany* 60, 2283–2290.

Morison JIL, Lawson T. 2007. Does lateral gas diffusion in leaves matter? *Plant, Cell and Environment* 30, 1072–1085.

Niinemets U, Cescatti A, Rodeghiero M, Tosens T. 2005. Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. *Plant, Cell and Environment* 28, 1552–1566.

Niinemets U, Cescatti A, Rodeghiero M, Tosens T. 2006. Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. *Plant, Cell and Environment* 29, 1159–1178.

Niinemets U, Díaz-Espejo A, Flexas J, Galmés J, Warren CR. 2009a. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. *Journal of Experimental Botany* 60, 2249–2270.

Niinemets U, Flexas J, Peñuelas J. 2011. Evergreens favored by higher responsiveness to increased CO$_2$. *Trends in Ecology and Evolution* 26, 136–142.

Niinemets U, Tenhunen JD. 1997. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. *Plant, Cell and Environment* 20, 845–866.

Niinemets U, Wright IJ, Evans JR. 2009b. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. *Journal of Experimental Botany* 60, 2433–2449.

Oguchi R, Douwstra P, Fujita T, Chow WS, Terashima I. 2011. Intra-leaf gradients of photo inhibition induced by different color lights: implications for the dual mechanisms of photo inhibition and for the application of conventional chlorophyll fluorometers. *New Phytologist* 191, 146–159.

Pons TL, Flexas J, Von Caemmerer S, Evans JR, Genty B, Ribas-Carbó M, Brugnoli E. 2009. Estimating mesophyll conductance to CO$_2$: methodology, potential errors, and recommendations. *Journal of Experimental Botany* 60, 2217–2234.

Rodeghiero M, Niinemets U, Cescatti A. 2007. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters? *Plant, Cell and Environment* 30, 1006–1022.

Ruuska SA, Badger MR, Andrews TJ, von Caemmerer S. 2000. Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. *Journal of Experimental Botany* 51, 357–368.

Seaton GGR, Walker DA. 1990. Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. *Proceedings of the Royal Society B: Biological Sciences* 242, 29–35.

Sharwood RE, von Caemmerer S, Maliga P, Whitney SM. 2008. The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. *Plant Physiology* 146, 83–96.

Tazoe Y, von Caemmerer S, Estavillo GM, Evans JR. 2011. Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO$_2$ diffusion dynamically at different CO$_2$ concentrations. *Plant, Cell and Environment* 34, 580–91.

Tcherkez G, Cornic G, Bligny R, Gout E, Ghoshhaie J. 2005. *In vivo* respiratory metabolism of illuminated leaves. *Plant Physiology* 138, 1596–1606.

Tosens T, Niinemets Ü, Westoby M, Wright IJ. 2012. Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. *Journal of Experimental Botany* 63, 5105–5119.
Valentini R, Epron D, Angelis P, Matteucci G, Dreyer E. 1995.
In situ estimation of net CO$_2$ assimilation, photosynthetic electron
flow and photorespiration in Turkey oak (Q. cerris L.) leaves:
diurnal cycles under different levels of water supply. *Plant, Cell and
Environment* 18, 631–640.

Warren CR, Adams MA. 2004. Evergreen trees do not maximize
instantaneous photosynthesis. *Trends in Plant Science* 9,
270–274.

Warren CR. 2006. Estimating the internal conductance to CO$_2$
movement. *Functional Plant Biology* 33, 431–442.

Xu C, Fisher R, Wullschleger SD, Wilson CJ, Cai M, McDowell
NG. 2012. Toward a mechanistic modeling of nitrogen limitation on
vegetation dynamics. *PLoS One* 7, e37914

Yin X, Struik PC, Romero P, Harbinson J, Evers JB, van der
Putten PEL, Vos J. 2009. Using combined measurements of gas
exchange and chlorophyll fluorescence to estimate parameters of a
biochemical C$_3$ photosynthesis model: a critical appraisal and a new
integrated approach applied to leaves in a wheat (Triticum aestivum)
canopy. *Plant, Cell and Environment* 32, 448–464.

Yin X, Sun Z, Struik PC, Gu J. 2011. Evaluating a new method to
estimate the rate of leaf respiration in the light by analysis of combined
gas exchange and chlorophyll fluorescence measurements. *Journal of
Experimental Botany* 62, 3489–3499.

Yin X, van Oijen M, Schapendonk AHCM. 2004. Extension of a
biochemical model for the generalized stoichiometry of electron transport
limited C3 photosynthesis. *Plant, Cell and Environment* 27, 1211–1222.