Supporting Information

Sn-doped 3D ATO Inverse Opal/Hematite Hierarchical Structures: Facile Fabrication and Efficient Photoelectrochemical performance

Junjie Zhang, Jing Li, Boxue Zhang, Jianfeng Ye, Yun Wang* and Xiaozhou Ye*

Department of Chemistry, College of Science, Huazhong Agricultural University,
Wuhan 430070, China

* To whom correspondence should be addressed. E-mail: xzye@mail.hzau.edu.cn, yunwang123@126.com

FigS1. (a) Diffuse reflectance UV-Vis absorption and (b) Tauc-Plots of Sn-doped and undoped ATO IO(330)/Fe₂O₃ sample and planar control sample.
Table S1 Comparison of PEC performances of reported Fe$_2$O$_3$ based nanostructured photoanodes

Fe$_2$O$_3$ based nanostructured photoanodes	Preparation of Fe$_2$O$_3$	$J_{1.23}$ [mA/cm2]a	Ref.
Sn-doped Fe$_2$O$_3$ Nanowires	hydrothermal	0.45	1
Sn-doped Fe$_2$O$_3$ films	nonpolar organic solution process approach	1.05	2
Sn-doped Fe$_2$O$_3$ nanorod arrays	hydrothermal	1.00	3
3D FTO IO @ Fe$_2$O$_3$	hydrothermal	0.46	4
Fe$_2$O$_3$/graphene IO	Chemical bath deposition	1.62 mA/cm2 at 1.5V vs. RHE	5
Fe$_2$O$_3$/ITO IO	ALD	1.60 mA/cm2 at 1.53 V vs. RHE	6
3D ATO/ Fe$_2$O$_3$ nanorods	hydrothermal	1.10	7

a): Unless otherwise specified, the photocurrent density is collected at 1.23V vs. RHE with AM 1.5G illumination(100 mW/cm2) in 1M NaOH.

Reference

1. M. Li, Y. Yang, Y. Ling, W. Qiu, F. Wang, T. Liu, Y. Song, X. Liu, P. Fang, Y. Tong and Y. Li, *Nano Lett.*, 2017, 17, 2490-2495.
2. J.-J. Wang, Y. Hu, R. Toth, G. Fortunato and A. Braun, *J. Mater. Chem. A*, 2016, 4, 2821-2825.
3. A. Subramanian, E. Gracia-Espin, A. Annamalai, H. H. Lee, S. Y. Lee, S. H. Choi and J. S. Jang, *Appl. Surf. Sci.*, 2018, 427, 1203-1212.
4. C. Xiaobo, Z. Haifeng and C. Chuanwei, *Semicond. Sci. Tech.*, 2017, 32, 114003.
5. K.-Y. Yoon, J.-S. Lee, K. Kim, C. H. Bak, S.-I. Kim, J.-B. Kim and J.-H. Jang, *ACS Appl. Mater. Inter.*, 2014, 6, 22634-22639.
6. S. C. Riha, M. J. DeVries Vermeer, M. J. Pellin, J. T. Hupp and A. B. F. Martinson, *ACS Appl. Mater. Inter.*, 2013, 5, 360-367.
7. X. Yang-Fan, R. Hua-Shang, C. Bai-Xue, L. Ying, C. Hong-Yan, K. Dai-Bin and S. Cheng-Yong, *Adv. Sci.*, 2015, 2, 1500049.