Original Research Article

Comparative study of intraocular pressure measured by non-contact, rebound and goldmann applanation tonometer and their correlation with corneal thickness and true IOP in a general population

Santanu Das1*, Kiran Kumar L1

1Dept. of Ophthalmology, Kempegowda Institute of Medical Sciences, Bengaluru, Karnataka, India

A B S T R A C T

Aim: To compare the Intraocular Pressure (IOP) measured by Non-contact tonometer (NCT), Rebound tonometer (RBT) and Goldmann Applanation tonometer (GAT) and their correlation with central corneal thickness (CCT) and true IOP.

Materials and Methods: 500 random patients aged 18 years and above were taken up for the study. Patients with anterior and posterior segment pathologies like corneal ulcer, leukoma, staphyloma, corneal lacerations, ectatic corneal conditions, corneal dystrophies, oedema, perforations, acute angle closure glaucoma, retinal detachments, vitreous haemorrhage and unwilling patients were excluded from the study. IOP was recorded using NCT, RBT and GAT after assessing the patient’s visual acuity. Following IOP measurement, central corneal thickness (CCT) of each patient was measured using pachymetry. All the data were collected and tabulated for statistical analysis to obtain results.

Results: The mean CCT in males was 0.5350 mm and in females 0.5340 mm respectively. The mean IOP measured by NCT is 16.43 mm hg whereas the mean IOP measured by GAT is 15.43 mm hg. IOP measured by NCT is significantly higher than the IOP measured by GAT (p < 0.001). When NCT and RBT are compared NCT values are significantly higher than that of RBT (p < 0.001). Although the mean RBT IOP 15.83 mm hg is higher than the mean GAT IOP of 15.42 mm hg the values are not statistically significant. When correlated with CCT all the tonometers showed significant correlation with GAT showing the strongest correlation. NCT overestimates IOP in normal, thin and thicker corneas when compared to GAT and are statistically significant. RBT also overestimates in the normal and thick corneas when compared to GAT but their values are much closer to GAT values in thinner corneas. The IOP measured by all the 3 tonometers correlated with corrected IOP with NCT showing the best correlation followed by GAT.

Conclusion: From the present study we can conclude that IOP measured by NCT and RBT is higher than GAT. NCT values are significantly higher than GAT values in thin and normal corneas whereas it overestimates more in thicker corneas. RBT values are significantly higher than that of GAT in normal and thick corneas. So, it is always advisable to measure the corrected IOP for each patient after considering the CCT.

1. Introduction

Glaucoma has been established as the second leading cause of blindness. The treatment of glaucoma focuses mainly on lowering intraocular pressure (IOP). The target IOP is often set to a level 20% to 30% of IOP reduction, and consequent large IOP reduction beyond 30% or even 40% in cases of advanced glaucoma.

Intraocular pressure represents a fundamental factor of ocular health and disease. Intraocular pressure is not only important in the diagnosis and management of glaucoma...
but also in the assessment of postoperative course of all intraocular surgical interventions.

For almost 50 years GAT has been the gold standard for intraocular pressure measurement but its values are affected by central corneal thickness, corneal curvature and axial length, previous corneal surgeries like lasik, keratoplasty, astigmatism and corneal irregularities.

Goldmann applanation tonometer gives correct readings when corneal thickness is 500 to 525-micron metre.

Non-contact, rebound tonometer have been found to be reasonable options for screening but their values should always be correlated with corneal thickness in clinical practice.

Several studies recently have found that thinner than average corneas underestimate, while thicker than average corneas overestimate the true intraocular pressure. This effect has been found to be in the effect of 1mmhg correction for every 25-micron metre deviation from a central corneal thickness of 550-micron metre.

Tonometry or the measurement of IOP, the pressure of the fluid inside the eye is usually the only modifiable factor in management of all types of glaucoma.

2. Aims and Objectives of the Study

1. To compare the intraocular pressure readings of Non-contact, Rebound and Goldmann applanation tonometer.
2. To correlate IOP readings with corrected IOP (true IOP).
3. To correlate intraocular pressure readings with central corneal thickness in a general population.

3. Materials and Methods

500 random patients (1000 eyes) attending the ophthalmology outpatient department above the age of 18 years from december 2017 to July 2019 were included in this study.

After taking a proper informed consent a brief history of the purpose of their visit was taken for all patients. Following history taking the distant visual acuity was checked using the Snellen’s chart and the near vision was checked using the Jaeger’s chart. Once the vision testing was done if the patient had any refractive error an Autorefractometer was used to find out the amount of refractive error followed by an appropriate correction was given for all patients. Next slit lamp examination was done to rule out any anterior segment pathology. This was followed by measurement of the keratometric value using the Autorefractometer.

Then the patient’s IOP was recorded first using the non-contact tonometer followed by rebound tonometer and Goldmann applanation tonometer and all the values were recorded in a proforma. The central corneal thickness and the corrected IOP of each patient was recorded using pachymetry.

Following these dilated fundoscopy was done using the indirect ophthalmoscope. The posterior segment was evaluated using an ultrasound (B-Scan) if the patient had any significant cataract or any other media opacities which obscured the view of the retina.

3.1. Inclusion criteria

People aged 18 years to 90 years with no sex predilection.

3.2. Exclusion criteria

1. Patients with corneal opacities, corneal dystrophies, corneal perforations, infective pathologies like ulcers, leukoma, staphyloma, acute uveitis, corneal oedema, acute congestive glaucoma, corneal ectatic conditions, patients who have undergone Keratoplasty and Refractive surgeries.
2. Patients with posterior segment pathologies like retinal detachment, vitreous haemorrhages.
3. Patients not willing to be part of study.

4. Results

Table 1: Number of male and female patients

Sex	Number	Percentages
Male	256	51.2
Female	244	48.8
Total	500	100.0

Fig. 1: Percentage of male and female

In this study 1000 eyes of 500 patients were taken up. Out of 500 patients 256 were male and 244 patients were female that is 51% were male and 49% were female participants.

The mean central corneal thickness (CCT) in males is 0.5350mm whereas in females it is 0.5340mm, which shows that in a general population female have slightly thinner
CCTs when compared to males but are not statistically significant as shown in Table 2.

Table 2: Mean CCT in men and women

	Male	Female	P value
Mean	0.5350mm	0.5340mm	0.041
SD	0.02829	0.02604	

When the corneal thickness was between 520 – 560 micron metre, mean IOP measured by RBT and GAT were 15.20 mm hg and 14.91 mm hg. The RBT values were higher than GAT and were statistically significant as shown in Table 7.

Table 6: Correlation between RBT IOP and GAT IOP when CCT is <= 520 micron

Central Corneal Thickness <= 520-micron metre	RBT	GAT	P value
IOP in mm hg	17.02	16.90	< 0.15
SD	3.01	2.76	
Sample size	270	270	

When CCT was more than 560-micron metre mean NCT IOP was 20.41 mm hg which is higher than mean GAT value of 15.41 mm hg and are statistically significant as depicted in Table 8.

Table 8: Correlation between RBT and GAT IOP when CCT is > 560 micron

Central Corneal Thickness > 560-micron metre	RBT	GAT	P value
IOP in mm hg	16.56	15.41	< 0.05
SD	3.06	3.16	
Sample size	79	79	

When the corneal thickness was between 520 – 560 micron metre, mean IOP measured by RBT and GAT were 15.20 mm hg and 14.91 mm hg. The RBT values were higher than GAT and were statistically significant as shown in Table 7.

Table 3: Correlation between NCT IOP and RBT IOP

NCT (mm hg)	Rebound Tonometry (mm hg)	p-value	
Mean	16.43	15.83	
Std. Deviation	3.851	2.70	P < 0.001

Table 4: Correlation between NCT IOP and GAT IOP

NCT (mm hg)	Goldmann Applanation Tonometry (mm hg)	p-value	
Mean	16.43	15.42	p < 0.001
Std. Deviation	3.851	2.290	

Table 5: Correlation between RBT IOP and GAT IOP

Rebound Tonometry (mm hg)	Goldmann Applanation Tonometry (mm hg)	p-value	
Mean	15.83	15.42	0.40
Std. Deviation	7.866	2.290	

From this intercomparability study we can say IOP values obtained using Rebound tonometer are much closer to GAT values which is the gold standard than that obtained using NCT.

When CCT was less than 520-micron metre the mean IOP measured using RBT and GAT were 17.02 mm hg and 16.90 mm hg. Although RBT values were higher than GAT values but were not statistically significant as shown in Table 6.

Table 7: Correlation between RBT and GAT IOP when CCT is 520-560 micron

Central Corneal Thickness 520-560micron metre	RBT	GAT	P value
IOP in mm hg	15.20	14.91	< 0.001
SD	2.49	1.67	
Sample size	498	498	

When CCT was more than 560-micron metre the mean NCT IOP was 20.41 mm hg which is higher than mean GAT value of 15.41 mm hg and are statistically significant as depicted in Table 8.

Table 8: Correlation between RBT and GAT IOP when CCT is > 560 micron

Central Corneal Thickness > 560-micron metre	RBT	GAT	P value
IOP in mm hg	16.56	15.41	< 0.05
SD	3.06	3.16	
Sample size	79	79	

When the corneal thickness was between 520 – 560 micron metre, mean IOP measured by RBT and GAT were 15.20 mm hg and 14.91 mm hg. The RBT values were higher than GAT and were statistically significant as shown in Table 7.

Table 7: Correlation between RBT and GAT IOP when CCT is 520-560 micron

Central Corneal Thickness 520-560micron metre	RBT	GAT	P value
IOP in mm hg	15.20	14.91	< 0.001
SD	2.49	1.67	
Sample size	498	498	

When CCT was more than 560-micron metre mean NCT IOP was 20.41 mm hg which is higher than mean GAT value of 15.41 mm hg and are statistically significant as depicted in Table 8.

Table 8: Correlation between RBT and GAT IOP when CCT is > 560 micron

Central Corneal Thickness > 560-micron metre	RBT	GAT	P value
IOP in mm hg	16.56	15.41	< 0.05
SD	3.06	3.16	
Sample size	79	79	

When the corneal thickness was between 520 – 560 micron metre, mean IOP measured by RBT and GAT were 15.20 mm hg and 14.91 mm hg. The RBT values were higher than GAT and were statistically significant as shown in Table 7.

Table 7: Correlation between RBT and GAT IOP when CCT is 520-560 micron

Central Corneal Thickness 520-560micron metre	RBT	GAT	P value
IOP in mm hg	15.20	14.91	< 0.001
SD	2.49	1.67	
Sample size	498	498	

When CCT was more than 560-micron metre mean NCT IOP was 20.41 mm hg which is higher than mean GAT value of 15.41 mm hg and are statistically significant as depicted in Table 8.

Table 8: Correlation between RBT and GAT IOP when CCT is > 560 micron

Central Corneal Thickness > 560-micron metre	RBT	GAT	P value
IOP in mm hg	16.56	15.41	< 0.05
SD	3.06	3.16	
Sample size	79	79	
Table 9: Correlation between NCT and GAT IOP when CCT is <= 520micron metre

Central Corneal Thickness	NCT (IOP in mm hg)	GAT (IOP in mm hg)	P value
<= 520-micron metre	16.12	16.90	< 0.001
SD	3.98	2.76	
Sample size	270	270	

Table 10: Correlation between GAT and NCT IOP when CCT is 521-560 micron metre

Central Corneal Thickness	NCT (IOP in mm hg)	GAT (IOP in mm hg)	P value
521-560 micron metre	16.23	14.91	< 0.001
SD	3.33	1.67	
Sample size	498	498	

Table 11: Correlation between NCT and GAT IOP when CCT is >560micron metre

Central Corneal Thickness	NCT (IOP in mm hg)	GAT (IOP in mm hg)	P value
>560-micron metre	20.41	15.41	< 0.001
SD	5.35	3.16	
Sample size	79	79	

NCT IOP values increase as the CCT increases whereas GAT IOP is highest when the CCT is less than 520-micron metre. RBT and GAT over estimates the IOP values more when CCT is less than 520-micron metre whereas NCT values were less than that of RBT and GAT when CCT is less than 520-micron metre.

Figure 2 is a scatter diagram showing the correlation between NCT and CCT. NCT values are correlating with CCT and is statistically significant.

In this study since we intend to find out which one is the most reliable tonometer amongst NCT, RBT and
Table 12: Correlation of mean NCT IOP with true IOP

True IOP (mm hg)	NCT (mm hg)	p-value
Mean	17.05	16.43
Std. Deviation	3.651	3.851

GAT in a general population. We measured the true IOP after considering the corneal thickness of each patient using pachymetry. The mean true IOP measured is 17.05 mm hg. The mean IOP measured by NCT correlates with the mean true IOP and is statistically significant in this study (p < 0.001).

Table 13: Correlation between true IOP and RBT IOP

True IOP (mm hg)	Rebound Tonometry (mm hg)	p-value
Mean	17.05	15.83
Std. Deviation	3.651	7.866

In this study there is also correlation between True IOP and the IOP measured using Rebound Tonometer and are statistically significant as shown in Table 13.

Table 14: Correlation between true IOP and Goldmann IOP

True IOP (mm hg)	Goldmann applanation Tonometry (mm hg)	p-value
Mean	17.05	15.42
Std. Deviation	3.651	2.290

True IOP measured was also found to be correlating with the mean IOP measured using Goldmann Tonometer and is statistically significant in this prospective study as depicted in Table 14.

Table 15: Correlation between true IOP and NCT, RBT and GAT IOP with Pearson Correlation Values

True IOP	Pearson Correlation value	P value
NCT	.664*	< 0.001
Rebound Tonometry	.377**	< 0.001
Goldmann applanation Tonometry	.452**	< 0.001

Table 15 shows the correlation between IOP measured by NCT, RBT and GAT with the true IOP. In the present study it is found that IOP measured by all the three tonometers correlate with the true IOP. A detailed analysis of that table shows that IOP measured by NCT correlates the best with true IOP followed by GAT and RBT and all are statistically significant. From this we can conclude that all the 3 tonometers can be reliably used to measure IOP in a general population with NCT and Goldmann being more reliable than Rebound tonometer when compared with the corrected IOP. Table 15 has been depicted in the form of scatter diagram in Figures 5, 6 and 7.

Figure 5 is a scatter diagram showing the significant positive correlation between the IOP measured by NCT and the true IOP.

Figure 6 is a scatter diagram showing the statistically significant correlation between the IOP measured by Goldmann and the true IOP.
Figure 7 shows the correlation between true IOP and the IOP measured by Rebound tonometer. The IOP measured using Rebound tonometer correlates with the true IOP and is statistically significant.

In this study the difference between true IOP and NCT IOP is 0.62mmhg that is true IOP is 0.62mmhg more than the IOP measured by NCT. On the other hand, true IOP is 1.22mmhg more than RBT IOP and 1.63mmhg more than GAT IOP. NCT IOP shows the strongest correlation with true IOP followed by GAT and RBT.

5. Discussion

Salim et al reported that 2.45 mm Hg overestimation of IOP by RT compared with GAT in glaucoma patients which is like what we found in our prospective study. RBT records higher IOP than GAT but the values were not statistically significant in our study. Between NCT and RBT, RBT correlates better with GAT than NCT is what we found in our study.1

Kim et al reported that RT and GAT have good correlation and RT measurements 1.92 mm Hg higher than GAT measurements in patients with glaucoma. The difference between mean RBT values and GAT values were less than the difference between mean NCT and GAT in a general population is what we infer from our prospective study.2

RT and GAT have good clinical agreement is demonstrated in the study conducted by Ozcura F et al and RT measurements were 1.75 mm Hg higher than GAT measurements in normal eyes and 0.37mmHg higher than GAT measurements in glaucomatous eyes.3

Gunvant et al reported that an increase of 1 mm of mean corneal thickness was accompanied by a rise in IOP of 1.14 mmHg measured by GAT, but this effect was weak and not statistically significant.4 It is now known that GAT values are affected by CCT. In our prospective study we found that all the tonometers that is NCT, RBT and GAT are significantly affected by the CCT of that person with GAT showing the strongest correlation followed by RBT and NCT. So, from this we can infer that GAT values are affected more than RBT and NCT if there is variation of CCT from the normal values in a general population.

Mark suggested that a flatter cornea might lead to lower GAT measurements.5

Chakrabarty L et al concluded that, NCT and GAT measurements showed good agreements proving that both are reliable methods of measuring IOP. In this study, slight overestimation of IOP measurement was found by NCT in lower IOP ranges (<12mmHg). Contrary to some studies, good correlation between GAT and NCT in higher IOP ranges was found.6

In our study we found that NCT values are higher compared to GAT values. NCT overestimates IOP more when CCT values are more than 560-micron metre.

Shih et al. had an objective to ascertain whether CCT affected patient management. Their study, although set within a specialist glaucoma service, showed that half their study population required an adjustment of IOP ± 1.5 mmHg. What is interesting is that 8–10% of their cohort had a change in their medication.7

In a study by Ehlers et al, a manometric, controlled closed system was used to examine the correlation between CCT and IOP measured by applanation tonometry in 29 patients. Ehlers et al reported an error of ±0.71mmHg between real IOP and IOP measured by applanation tonometry per 10-μm difference in CCT. Corneal curvature affected IOP readings in the study by Ehlers et al.8

In the present study CCT correlates with NCT, RBT and GAT with GAT showing the strongest correlation which shows that CCT affects IOP measured by all the 3 tonometers with GAT being affected the most. Therefore, it is important to measure the corrected IOP after considering the CCT of that person. True IOP is 1.63mmhg more than the mean GAT IOP in our study whereas it is 0.62mmhg and 1.22mmhg more than NCT and RBT IOP respectively.

Ismail et al reported that in eyes that had undergone penetrating keratoplasty (PK), GAT measurements may be less precise than non-applanation tonometry because all these patients will not have normal CCT post-surgery. Although we didn’t include PK patients or post refractive surgery patients in our study these findings are indicative of the fact that CCT variations affect the IOP measured by GAT and therefore true IOP should be recorded in all patients so that the CCT of that particular person is also into account.9

Kirwan et al, found that the mean GAT IOP decreased by 3.74+/2.3 mm Hg following LASIK, and a similar decrease was observed following LASEK.10
Milla et al. found an optimal agreement between DCT and GAT when the CCT was between 540 and 545 μm. As the CCT and the IOP increase, the difference between both tonometers also increases. 11

Iliev, Goldblum, Katsoulis et al concluded that agreement of IOP readings between rebound and GAT was moderate to good. There was a systemic trend of RBT to higher readings +/- 3 mm hg from GAT. CCT seems to influence IOP readings in rebound tonometry as it does in GAT. 12

In our study RBT values although higher than that recorded with GAT are not statistically significant and values are closer to GAT measured IOP values when compared with NCT.

S. Nagarajan et al concluded that both Schiotz and NCT showed significant correlation with the gold standard technique over a range of IOP and CCT with the Schiotz tonometer performing better than NCT. 13

In two studies in which the Reichert NCT was used (Jorge et al. 2002; Jorge et al. 2003) in normal subjects and patients with glaucoma, excellent agreement with GAT measurements was observed which is contrary to what we found in our study where there was significant difference between NCT and GAT readings with NCT readings being significantly higher than GAT readings in a general population as CCT increases. NCT overestimates more in thicker corneas than GAT. 14

In our study NCT IOP shows good correlation with the corrected IOP followed by GAT and RBT.

However, Domke et al. 2006 noted that measurements of Reichert NCT are conditioned by CCT, which is similar to our findings where NCT readings were influenced by CCT. 15

NCT values were higher as CCT increases (for thicker CCTs) whereas RBT and GAT overestimates or shows higher IOP values when CCT is less than 520-micron metre which is what we found in our study.

It is well known that GAT is affected by CCT (Whitacre et al. 1993), and some recent studies have shown similar results for I-Care (Brusini et al. 2006; Iliev et al. 2006; Nakamura et al. 2006) which is in accordance to what we found in our study. 12,16–19

Tamcelik et al reported an overestimation of I-Care analysis in the low GAT-measured IOPs, whereas I-Care underestimated IOPs in high pressure ranges. 20

A higher IOP with I-Care than with GAT has generally been found in most previous studies (Iliev et al. 2006; Nakamura et al.2006), although inconsistent results exist (Brusini et al. 2006). 12,16,19

In another study, Tonnu et al. compared NCT, TPXL, and GAT and reported that all three devices showed homologous results. 21

Parker et al. compared NCT and GAT and found results were concordant between the two devices which is different from what we found in our large prospective study where NCT values were significantly higher than GAT values. 22

Farhood showed that NCT and GAT were not well correlated, and NCT measurements gave higher IOP results regardless of the patient’s age or sex. When the GAT measurement exceeded 24 mmHg, the difference in readings between the two instruments increased. Farhood reported that lower the IOP measured by GAT, the more reliable the corresponding NCT readings. 23 This is in accordance to what we reported in our study.

The NCT and TPXL are easier and faster to use than GAT, but suspicions about their results still exist. Yilmaz et al. found no significant differences between these three devices in normotensive patients which is contrary to what we found in this study. 24

Feng et al. also found the rebound and non-contact tonometry to overestimate IOP relative to GAT for thicker CCT. 25

We also found that NCT overestimates IOP when compared with GAT for CCT values greater than 560-micron metre.

There was a significant agreement between the RT and the GAT measurements. RT can be considered as a reliable alternative when IOP measurement with GAT is not feasible has been stated by Kyung Sik Lee et al. 26

Ozcuka F et al found a weak and statistically insignificant correlation between CCT and IOP measurements in all types of tonometers in all group. 4

Lee SY et al said in their study central corneal thickness (CCT), corneal curvature (CC), and axial length (AXL) demonstrated significant correlation with GAT fluctuation in the high IOP fluctuation group, and AXL showed significant correlation with DCT fluctuation in the low IOP fluctuation group. We only found CCT to significantly affect IOP readings in all 3 tonometers used by us namely NCT, RBT and GAT. 27

Cook et al. conducted a meta-analytical study comparing 8 tonometers and concluded that GAT continues to be the gold standard. It was observed that NCT was having least disagreement with GAT which is again contrary to what we found in the present study. 28

Munkwitz et al. observed that there was a moderate agreement between RT and GAT in normal to moderate elevated IOP, and a poor agreement in the higher IOP range. 29

Although NCT is also widely used the correlation observed between measurements obtained using this type of tonometry and conventional applanation tonometry has never been particularly good (Vernon 1995; Tonnu et al. 2005; Lafaut et al. 2007; Ogbuehi & Almubrad 2008). 21,30–33

Several studies have evaluated the RBT and most of these have detected slight overestimation with respect to GAT and a similar influence of corneal thickness on its
measures (Lopez Caballero et al. 2007; Pakrou et al. 2008; Johannesson et al. 2008; Abraham et al. 2008). Studies conducted by (Grieshaber MC et al, Kampaetter BA et al, Kaufmann C et al) have reported a significant positive correlation between GAT and CCT which is similar to our findings.38–40

On the other hand, studies conducted by Schneider E et al, Kniesedt C et al, Ku JY et al found no correlation between GAT values and central corneal thickness which is contrary to what we found.41–43

Y. Harada et al found central corneal thickness significantly correlated with IOP measured by NCT and that measured by GAT which is in accordance with our study.44

Punit Singh et al concluded that IOP measured by both NCT and GAT was significantly correlated with CCT. NCT readings were significantly higher in the thicker group (CCT>or=530 micron) than in the thinner group (CCT<530 micron). GAT readings had no difference between the thicker and thinner groups.45

In our study NCT overestimates IOP when CCT is more than 560-micron metre whereas GAT overestimates IOP when CCT is less than 520-micron metre.

Babolola et al and Tonnu et al also showed that changes in IOP measured with NCT are more dependent on CCT than IOP measured by Goldmann tonometer.21,46

In our study IOP measured by GAT was found to be more affected by changes in CCT than NCT and RBT.

Behrooz Kouchaki et al found a linear relationship between IOP and CCT.47

6. Conclusion

IOP measurement is one of the most important investigation that an ophthalmologist will do in his daily practise. It has got immense importance as it is one of the risk factors of glaucoma and is also the only modifiable risk factor in glaucoma. So, an accurate measurement of the IOP is of paramount importance in the general population in order to say whether the person is at risk of developing glaucoma.

Goldmann applanation tonometer has been the gold standard for measuring IOP since it was discovered. Although it has been the gold standard it has its own advantage and disadvantages. Many other tonometers are there which work on the applanation principle as well as on other principles but has not been able to replace Goldmann as the goldstandard.

It has been well documented in literature that Goldmann values are affected by CCT and there are disadvantages like chances of infection and there is a learning curve to mention a few.

We conclude that NCT values were higher than that of GAT and RBT and were statistically significant. NCT values were higher for thicker CCT whereas RBT and GAT values were higher for thinner CCT. RBT values were also higher than that of GAT but the values were not statistically significant. Also, the mean RBT IOP value was closer to the mean GAT IOP value. Also, CCT significantly correlates with all the three tonometer values with GAT showing the strongest correlation. When compared with the true IOP all the tonometers showed good correlation with NCT showing the best correlation followed by GAT. So, from the present study we can conclude that all the 3 tonometers are reliable and can be used in the daily practice of an ophthalmologist. When CCT was considered we found it affected GAT readings the most followed by RBT and NCT. So, it is always advisable to calculate the corrected IOP in all patients so that we can get the exact IOP for a person.

7. Source of Funding

None.

8. Conflict of Interest

None.

References

1. Salim S, Du H, Wan J. Comparison of Intraocular Pressure Measurements and Assessment of Intraobserver and Interobserver Reproducibility With the Portable ICare Rebound Tonometer and Goldmann Application Tonometer in Glaucoma Patients. J Glaucoma. 2013;22(4):325–329.

2. Kim KN, Jeoung JW, Park KH, Yang MK, Kim DM. Comparison of the new rebound tonometer with Goldmann application tonometer in a clinical setting. Acta Ophthalmol. 2013;91(5):392–396.

3. Ozcura F, Yildirim N, Sahin A, Colak E. Comparison of Goldmann application tonometry, rebound tonometry and dynamic contour tonometry in normal and glaucomatous eyes. Int J Ophthalmol. 2015;8(2):299–304.

4. Gunvant P, Baskaran M, Vijaya L, Joseph IS, Watkins RJ, et al. Effect of corneal parameters on measurements using the pulsatile ocular blood flow tonograph and Goldmann application tonometer. Br J Ophthalmol. 2004;88(4):518–522.

5. Mark HH. Corneal curvature in application tonometry. Am J Ophthalmol. 1973;76(2):223–224.

6. Chakrabarty L. Goldmann application tonometry versus non-contact tonometry: a comparative study. Int J Res Med Sci. 2016;4:4683–4687.

7. Shih CY, Graff-Zivin JS, Trokel SL, Tsai JC. Clinical significance of central corneal thickness in the management of glaucoma. Arch Ophthalmol. 2004;122:1270–1275.

8. Ehlers N, Bramsen T, Sperling S. Application tonometry and central corneal thickness. Acta Ophthalmol (Copen). 1975;53:34–43.

9. Ismail AR, Lanont M, Perera S, Khan-Lim D, Mehta R, et al. Comparison of IOP measurement using GAT and DCT in patients with penetrating keratoplasties. Br J Ophthalmol. 2007;91(7):980–981.

10. Kirwan C, Keeoe O, M. Measurement of intraocular pressure LASIK and LASEK patients using the Reichert Ocular Response Analyzer and Goldmann application tonometry. J Refract Surg. 2008;24:366–370.

11. Milla E, Duchs S, Buchaca O, Masuet C. Poor agreement between Goldmann and Pascal tonometry in eyes with extreme pachymetry. Eye. 2009;23(3):536–542.

12. Iliiev DME, Goldblum, Katsoulis C, Amstutz B, Frueh. Comparison of rebound tonometry with GAT and correlation with CCT. Br J Ophthalmol. 2006;90:833–835.

13. Nagarajan S, Velayutham V, Ezhumalai G. Comparative evaluation of applanation and indentation tonometers in a community
ophthalmology setting in Southern India. *Saudi J Ophthalmol.* 2016;30(2):83–87.

14. Jorge J, Diaz-Rey JA, Gonzalez-Mejome JM, Almeida JB, Parafita MA. Clinical performance of the Reichert AT550: a new non-contact tonometer. *Ophthalmic Physiol Opt.* 2002;22(6):560–564.

15. Donke N, Hager A, Wiegand W. Intraocular pressure and corneal thickness. A comparison between non-contact tonometry and applanation tonometry. *Ophthalmologe.* 2006;103(7):583–587.

16. Brusini P, Saltvet ML, Zeppieri M, Tosoni C, Parisi L. Comparison of ICare Tonometer with Goldmann Applanation Tonometer in Glaucoma Patients. *J Glaucoma.* 2006;15(3):213–217.

17. Nakamura M, Darhad U, Tatsuni Y, Fujioka M, Kusuhara A, et al. Agreement of Rebound Tonometer in Measuring Intraocular Pressure With Three Types of Applanation Tonometers. *Am J Ophthalmol.* 2006;142(2):352–334.

18. Whitacre MM, Stein RA, Hassanein K. The Effect of Corneal Thickness on Applanation Tonometry. *Am J Ophthalmol.* 1993;115(5):592–596.

19. Whitacre MM, Stein R. Sources of error with use of Goldmann-type tonometers. *Survey Ophthalmol.* 1993;38(1):1–30.

20. Tamecik N, Atalay E, Cicik E, Ozkok A. Comparability of I-care with Goldmann and noncontact tonometer in a wide range of IOP and central corneal thickness. *Ophthalmic Res.* 2015;54:18–25.

21. Tonon PA, Ho T, Newson T, Sheikh AE, Sharma K, et al. The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometer, non-contact tonometry, the Tono-Pen, and Goldmann applanation tonometry. *Br J Ophthalmol.* 2005;89(7):851–854.

22. Parker VA, Hertridge J, Sarkies NJ. Clinical comparison of Keeler Pulsair 3000 with Goldmann applanation tonometer. *Br J Ophthalmol.* 2001;85:1301–1304.

23. Farhood Q. Comparative evaluation of intraocular pressure with an air-puff tonometer versus a Goldmann applanation tonometer. *Clin Ophthalmol.* 2012;7:23–27.

24. Yilmaz I, Altan C, Aygıt ED, Alagöz C, Baş O, et al. Comparison of three methods of tonometry in normal subjects: Goldmann applanation tonometer, non-contact air-puff tonometer, and Tono-Pen XL. *Clin Ophthalmol.* 2014;8:1069–1074.

25. Feng C, Shian. Comparison of Intraocular Pressure Measurements Obtained by Rebound, Non-contact, and Goldmann Applanation Tonometry in Children. *Am J Ophthalmol.* 1990;99:337–343.

26. Lee KS, Kim SK, Kim EK, Kim TI. Comparison of Intraocular Pressure Measured by Non-Contact Tonometer, Rebound Tonometer, Tono-Pen, and Goldmann Applanation Tonometer. *J Korean Ophthalmol Soc.* 2014;55(1):47–53.

27. Lee SY, Bae HW, Kwon HJ, Seong GJ, Kim CY. Utility of Goldmann applanation tonometry for monitoring intraocular pressure in glaucoma patients with a history of laser refractive surgery. *PLoS ONE.* 2018;13(2):e0192344.

28. Cook IA, Botello AP, Elders A, Ali AF, Azaaera-Blanco A, et al. Systematic Review of the Agreement of Tonometers with Goldmann Applanation Tonometer. *Ophthalmol Physiol Opt.* 2012;119(8):1552–1557.

29. Munkwitz S, Elkmortoy A, Hoffmann EM, Pfeiffer N, Thiene H. Comparison of the Icare rebound tonometer and the Goldmann applanation tonometer at a wide IOP range. *Graefes Arch Clin Exp Ophthalmol.* 2008;246(6):875–879.

30. Vernon SA. Reproducibility of Keeler Pulsair 2000 non-contact tonometer. *Br J Ophthalmol.* 1995;79:554–557.

31. Lafast AS, malderen LV, Zeyen T. Is Pulse Synchronized Pneumotonometer More Reproducible than Routine Pneumotonometer and More in Agreement with Goldmann Applanation Tonometry? *Eur J Ophthalmol.* 2007;17(2):178–182.

32. Ogbrué KC, Almubrad TM. Accuracy and Reliability of the Keeler Pulsair EasyEye Non-Contact Tonometer. *Optom Vis Sci.* 2008;85(1):61–66.

33. Ogbrué KC. Assessment of the accuracy and reliability of the Topcon CT80 non-contact tonometer. *Clin Exp Optom.* 2008;89:310–314.

34. Lopez-Caballero C, Contreras I, Munoz-Negrete FJ, Rebolloda G, Carbajales L, Marcelo P. Rebound tonometry in a clinical setting. Comparison with applanation tonometry. *Arch Soc Esp Oftalmol.* 2007;82:273–278.

35. Jøhannesson G, Hallberg P, Eklund A, Lindén C. Pascal, ICare and Goldmann applanation tonometry - a comparative study. *Acta Ophthalmol.* 2008;86(6):614–621.

36. Pakrou N, Gray T, Mills R, Landers J, Craig J. Clinical Comparison of the Icare Tonometer and Goldmann Applanation Tonometer. *J Glaucoma.* 2008;17(1):43–47.

37. Abraham LM, Epasinghe NC, Selva D, Casson R. Comparison of the Icare rebound tonometer with the Goldmann applanation tonometry by experienced and inexperienced tonomетrists. *Eye.* 2008;22:503–506.

38. Grieshaber MC. Effect of Central Corneal Thickness on Dynamic Contour Tonometry and Goldmann Applanation Tonometer in Primary Open-angle Glaucoma. *Arch Ophthalmol.* 2007;125(6):740–740.

39. Kampapecter BA, Jonas JB. Dynamic Contour Tonometry for Intraocular Pressure Measurement. *Am J Ophthalmol.* 2005;140(2):318–320.

40. Kaufmann C, Bachmann LM, Thiel MA. Comparison of Dynamic Contour Tonometry with Goldmann Applanation Tonometry. *Invest Ophthalmol Vis Sci.* 2004;45(9):3118–3121.

41. Schneider E, Grehn F. Intraocular Pressure Measurement-Comparison of Dynamic Contour Tonometry and Goldmann Applanation Tonometer. *J Glaucoma.* 2006;15(1):2–6.

42. Kniestedt C, Lin S, Choe J. Clinical Comparison of Contour and Applanation Tonometer and Their Relationship to Pachymetry. *Arch Ophthalmol.* 2005;123(11):1532–1537.

43. Ku JYF, Danesh-Meyer HV, Craig JP, Gamble GD, McGhee CNJ. Comparison of intraocular pressure measured by Pascal dynamic contour tonometry and Goldmann applanation tonometry. *Eye.* 2006;20(2):191–198.

44. Harada Y, Hirose N, Kubota T, Tawara A. The Influence of Central Corneal Thickness and Corneal Curvature on Intraocular Pressure Measured by Different Tonometers: Non-Contact and Goldmann Applanation Tonometers. *Invest Ophthalmol Vis Sci.* 2006;47(13):4457.

45. Singh P, Kothari R, Patel H. The influence of central corneal thickness on intraocular pressure, measured by different tonometers: Non-contact and Goldmann applanation tonometers. *Nat J Med Res.* 2017;7(1).

46. Babalola OE, Kehinde AV, Iloegbumun AC, Akinbunmu A, Moghalu C, Onuoha I. A comparison of the Goldmann applanation and non-contact (Keeler Pulsair EasyEye) tonometers and the effect of central corneal thickness in indigenous African eyes. *Physiol Opt.* 2009;29(2):182–188.

47. Kouchaki B, Hashemi H, Yekta A, khabazkhoob M. Comparison of current tonometry techniques in measurement of intraocular pressure. *J Curr Ophthalmol.* 2017;29(2):92–97.

Author biography

Santanu Das Final Year Post Graduate

Kiran Kumar L Associate Professor

Cite this article: Das S, Kumar L K. Comparative study of intraocular pressure measured by non-contact, rebound and goldmann applanation tonometer and their correlation with corneal thickness and true IOP in a general population. *Indian J Clin Exp Ophthalmol.* 2020;6(1):41–49.