Efficacy of bone marrow stem cells combined with core decompression in the treatment of osteonecrosis of the femoral head
A PRISMA-compliant meta-analysis

Shao-lei Wang, MDa, Yuan-bin Hu, PhDb, Hao Chen, MDc, Bo Tao, MDb, Guo-yun Bu, MDa, Yong-qiang Zhang, BDf, Jin-song Zhang, BDg,⁎

Abstract
Background: This study used the meta-analytic approach to assess the safety and treatment efficacy of bone marrow stem cells (BMSCs) with core decompression (CD) for osteonecrosis of the femoral head (ONFH) based on randomized controlled trials (RCTs).
Methods: Electronic database of PubMed, Embase, Google Scholar, China National Knowledge Infrastructure (CNKI), and Wanfang database was searched up to December 26, 2019 for relevant RCTs about combined utilization of BMSCs and CD versus CD alone for ONFH. Gray literature sources were also searched. We conducted a meta-analysis following the guidelines of the Cochrane Reviewer’s Handbook. Two independent reviewers performed the data extraction and assessed study quality. Our outcomes included the Harris hip scores (HHS) at 12 months, HHS at 24 months, necrotic area of femoral head, conversion to total hip arthroplasty (THA), visual analog pain scale at final follow-up, and adverse effects. The meta-analysis was performed with Stata 12.0.
Results: A total of 15 published studies with 688 patients fulfilled the requirements of inclusion criteria. Across all populations, participants in combined utilization of BMSCs group showed a statistical significance with higher HHS scores at 12 months (standard mean difference [SMD] 0.53, 95% confidence interval [CI] 0.29–0.77) and 24 months (SMD 0.57, 95% CI 0.36–0.77). Similarly, participants in combined utilization of BMSCs group had more advantages in reducing necrotic area of femoral head (SMD –1.05, 95% CI –1.73 to –0.38) and the rate of conversion to THA (risk ratio [RR] 0.53, 95% CI 0.38–0.74, P = .000). No significant differences were identified regarding postoperative adverse effects postoperatively (RR = 1.03, 95% CI 0.64–1.67, P = .893).
Conclusion: Compared with CD treated alone in the treatment of ONFH, combined utilization of CD and autologous BMSCs implantation has a better pain relief and clinical outcomes and can delay the collapse of the femoral head more effectively.

Abbreviations: AEs = adverse effects, ARCO = Association Research Circulation Osseous, BMSCs = bone marrow stem cells, CD = core decompression, CI = confidence interval, CNKI = China National Knowledge Infrastructure, HHS = Harris hip scores, ONFH = osteonecrosis of the femoral head, PRISMA = preferred reporting items for systematic review and meta-analyses, RCTs = randomized controlled trials, RR = risk ratio, SMD = standard mean difference, THA = total hip arthroplasty, VAS = visual analog pain scale.

Keywords: bone marrow cells implantation, core decompression, meta-analysis, osteonecrosis of femoral head
1. Introduction
Osteonecrosis of the femoral head (ONFH) is progressive and debilitating disease that characterized by the progressive necrosis of bone cells and the bone marrow.\cite{1,2} The incidence of newly diagnosed cases of ONFH has remained stable at approximately 20,000 to 30,000 per year.\cite{3} ONFH results from the rise in intraosseous pressure and blood supply decrease to the femoral head.\cite{4,5} The pathogenesis of ONFH is still unclear but it can be seen as a vascular and bone disease.

Effective treatment of early ONFH is still a difficult and urgent problem in the field of orthopedics. Core decompression (CD) is the most common procedure used to treat early stage of ONFH. CD could significantly reduce the pressure in the bone, opens up the hardening zone that hinders the repair of osteonecrosis. Finally, this operation could stimulate the formation of blood vessels around the decompression tunnel and delays the progression of osteonecrosis. Although CD has already been employed for > 5 decades, its efficacy remains controversial.\cite{6,7}

The levels of the number and activity of mesenchymal stem cells in both the hematopoietic and the stromal compartments of the bone marrow have been shown to be depressed in patients with ONFH.\cite{8} Thus, the implantation of bone marrow containing various stem cells with the ability to differentiate into multiple cell lineages into the necrotic lesion of the femoral head was considered as a promising therapy for ONFH.\cite{9} CD combining with autologous BMSCs implantation is supposed to be more effective than CD alone. Some clinical trials confirmed the superiority of the combined utilization of BMSCs and CD.\cite{10,11} Although other studies\cite{12,13} could not detect a benefit from the additional implantation of autologous BMSCs.

However, there exists a little consensus as to which method is the more efficacious treatment for ONFH. It is therefore meaningful to draw a direct comparison between additional implantation of autologous BMSCs for patients with ONFH. This study compares the therapeutic effects of these 2 therapies on reducing pain intensity, clinical outcomes, and safety.

2. Materials and methods
This work was done according to the preferred reporting items for systematic review and meta-analyses (PRISMA) guidelines.\cite{14} And this work did not involve straight contact with individuals; therefore, ethical approval is not necessary.

2.1. Search strategy
Two authors independently explored the electronic literature databases of PubMed, Embase, Google Scholar, China National Knowledge Infrastructure (CNKI), and Wanfang from the inception dates to December 26, 2019 to identify studies comparing combined utilization of BMSCs and CD versus CD alone for ONFH alone. The search keywords included “bone marrow stromal stem cells,” “stromal cells, mesenchymal,” “mesenchymal stromal cells,” “bone marrow stromal cell,” “Mesenchymal Stem Cells[Mesh],” “core decompression” and “osteonecrosis of the femoral head,” “ONFH.” Related articles and reference lists of all selected studies were reviewed to avoid original miss. Moreover, the reference reports of previous systematic reviews, meta-analysis, and randomized controlled trials (RCTs) were manually reviewed to avoid initial miss. Gray literature sources were also searched.

2.2. Inclusion and exclusion criteria
Studies were included if: patients were diagnosed with ONFH (ARCO stage 1 to 3); trials comparing combined utilization of BMSCs and CD group to CD alone group; outcomes including: HHS at 12 months, HHS at 24 months, necrotic area of femoral head, conversion to total hip arthroplasty (THA), visual analog pain scale (VAS) at final follow-up, and adverse effects (AEs).

The exclusion criteria were as follows: the study shared the same data set; the evaluation methods did not address the major outcome; the participants included in the study had co-morbidities and/or other joint diseases such as hypertension and rheumatoid arthritis.

2.3. Data extraction
Data of included trials were extracted by 2 investigators independently using a standardized form including lead author, publication year, sample size, age, diagnostic criteria, disease stages, etiological factors, intervention, outcomes, follow-up. Moreover, we collected BMSCs isolated method, number of BMSCs delivered, and collecting or administering BMSCs methods. Clinical outcomes containing HHS at 12 months, HHS at 24 months, necrotic area of femoral head, conversion to THA, VAS at final follow-up, and AEs. Differences and disagreements were resolved by consensus. If the trials had > 2 groups, we only extracted the interest reported information and data.

2.4. Risk of bias and quality assessment
The quality of the included RCTs was assessed independently by the 2 reviewers, based on the Cochrane Collaboration tool for assessing risk of bias. The tool included the following items: randomization sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias. All disagreements were resolved by the third reviewer.

2.5. Statistical analysis
Analysis was conducted using Stata 12.0 (Stata Corp., College Station, TX). For continuous outcome data, a standard mean difference (SMD) and 95% confidence interval (CI) were calculated by means and SDs. For dichotomous outcomes, risk ratio or relative risk (RR) and 95% CI were calculated as the summary statistics. The statistical heterogeneity was determined by the $\chi^2$ test and $I^2$. The value of $I^2 < 25\%$ indicated low statistical heterogeneity; 25% $\leq I^2 < 50\%$ indicated moderate statistical heterogeneity; 50% $\leq I^2 < 75\%$ indicated high statistical heterogeneity.\cite{15}$P < .05$ was considered to be statistically significant. A random-effects analysis was used to synthesize data when heterogeneity was existing; a fixed-effects analysis was used to synthesize data when heterogeneity was absent.

3. Results
3.1. Search results
By retrieving electronic database comprehensively, a total of 535 articles were identified initially. Of these, 142 articles were from PubMed, 598 articles were from Embase, 512 articles were from Google Scholar, 203 articles were from CNKI, 28 articles were
from the Wanfang, 123 articles were excluded for duplicates. Four hundred eleven articles were excluded by scanning the titles and the abstracts. Finally, a total of 15 articles including 688 patients were included in this meta-analysis. There were 351 patients in the combined utilization of BMSCs and CD group, and 337 patients in the CD alone group. A flowchart of articles selection is shown in Figure 1.

### 3.2. General characteristic of the included studies

The basic characteristics of the included articles are shown in Table 1. Included studies were published from 2004 to 2019. Sample size of the included studies ranged from 8 to 51. Mean age of the OFNH cases ranged from 26.8 to 49.7. Thirteen studies used Association Research Circulation Osseous (ARCO) diagnostic criteria, 1 study used Steinberg diagnostic criteria, and the rest 1 study used Ficat diagnostic criteria. Follow-up duration ranged from 12 to 60 months. BMSCs isolated, number, and collecting methods can be seen in Table 2. All of the included studies placed BMSCs into gelatin sponge and pushed through the trephine to close the hole.

### 3.3. Risk of bias of included researches

Details about the risk of bias graph and bias summary can be obtained in Figure 2 and Figure 3 separately. Table 3 lists the reasons accounting for these biases. To assess the random sequence generation, the risk of bias was ambiguous in 8 of 15
| Study                  | Sample size (E/C, hips) | Age, y         | Diagnostic criteria | Disease stages (hips) | Etiological factors | Intervention        | Outcomes   | Follow-up, mo |
|------------------------|-------------------------|----------------|--------------------|-----------------------|---------------------|---------------------|------------|--------------|
| Gangji et al, 2011[16] | 13/11                   | 42.2/45.7      | ARCO               | I/II                  | NS                  | E: CD + BMSCs; C: CD | 3, 4, 5, 6 | 60           |
| Gangji et al, 2004[10] | 10/8                    | 40.9/48.8      | ARCO               | NS                    | NS                  | E: CD + BMSCs; C: CD | 4, 5, 6    | 24           |
| Hauzeur et al, 2018[12]| 19/19                   | 48.0/49.7      | ARCO               | NS                    | NS                  | E: CD + BMSCs; C: CD | 4, 5, 6    | 24           |
| Pepke et al, 2016[17]  | 11/14                   | 44.3/44.5      | NS                 | I/II                  | NS                  | E: CD + BMSCs; C: CD | 1, 2, 5    | 24           |
| Sen et al, 2012[18]    | 26/25                   | 44.3/44.5      | ARCO               | I/II                  | NS                  | E: CD + BMSCs; C: CD | 1, 2      | 24           |
| Tabatabaei et al, 2015[19] | 14/14                | 37.0/26.8      | ARCO               | I (3), II (9), III (2); C: I (2), II (7), III (5) | NS                  | E: CD + BMSCs; C: CD | 4, 5, 6    | 24           |
| Zhao et al, 2012[20]   | 53/51                   | 32.7/33.8      | ARCO               | I (2), II (15), III (24); IIC (2); IIB (2); IIA (1); IIA (1) | NS                  | E: CD + BMSCs; C: CD | 1, 2, 3, 4 | 60           |
| Chang et al, 2013[21]  | 8/8                     | NS             | ARCO               | I (8), II (24)        | Tr (7), S (9), A (10), U (2) | E: CD + BMSCs; C: CD | 2, 3, 5   | 18           |
| Sun et al, 2009[22]    | 17/15                   | NS             | ARCO               | I (16), II (28); C: I (16), II (22) | Tr (6), S (30), A (38), U (2) | E: CD + BMSCs; C: CD | 1, 4, 6   | 18           |
| Yang et al, 2015[23]   | 44/38                   | 35.3/37.6      | ARCO               | I (2), II (28); C: I (16), II (22) | Tr (6), S (30), A (38), U (2) | E: CD + BMSCs; C: CD | 1, 2, 3, 5, 6 | 24         |
| Zhao et al, 2016[24]   | 18/18                   | NS             | Steinberg          | NS                    | NS                  | E: CD + BMSCs; C: CD | 3, 4, 6    | 12           |
| Ma et al, 2014[25]     | 25/24                   | 35.6/34.8      | Ficat              | I (2), II (17), III (5); C: I (4), II (15), II (5) | S (7), A (4), Tr (3), U (8) | E: CD + BMSCs; C: CD | 1, 2, 4, 5 | 24           |
| Rastogi et al, 2013[26]| 30/30                   | 33.0/34.7      | ARCO               | I (2), IIA (3), IIB (8); IIC (2); IIB (8); IIC (7); C: I (2), II (5), IIA (3), IIA (3), IIC (7); C: I (2), II (5), IIA (3), IIA (3), IIC (7); C: I (2), II (5), IIA (3), IIA (3), IIC (7) | NS                  | E: CD + BMSCs; C: CD | 4, 6      | 24           |
| Liu, 2019[27]          | 51/50                   | 44.9/41.6      | ARCO               | NS                    | NS                  | E: CD + BMSCs; C: CD | 1, 2, 3, 4, 5, 6 | 24         |

1 = HHS at 12 months, 2 = HHS at 24 months, 3 = necrotic area of femoral head, 4 = conversion to THA, 5 = visual analog pain scale at final follow-up, 6 = adverse effects, A = alcohol abuse, Cd = caisson disease, Cs = Cushing, I = idiopathic, P = pregnancy, S = steroids, Sm = smoking, Tr = trauma, U = unknown aetiology.
## Table 2
Detailed information about the BMSCs administration and CD performed.

| Author                  | MSC isolated | No. of MSC delivered | Collecting or administering MSCs | CD                                                                 |
|-------------------------|--------------|----------------------|-----------------------------------|--------------------------------------------------------------------|
| Gangji et al, 2011[16]  | NS           | 22.4 x 10⁷           | NS                                | 3 mm Trephine through the femoral neck into the necrotic region in the femoral head, 2–3 mm away from the cartilage |
| Gangji et al, 2004[10]  | Concentrated | 92 x 10⁷             | Spectra cell separator            | 3 mm Trephine, till 2 or 3 mm from joint cartilage                  |
| Hauzeur et al, 2018[12] | Concentrated | 19.45 x 10⁶          | sorted on a Spectra cell separator | Hungerford technique                                               |
| Pepke et al, 2016[13]   | Sepax centrifugation device | 118 x 10⁶             | bone marrow biopsy device         | Steinberg technique (1984) using a 9.5 mm trephine, the proximal deep part of tunnel was filled with the distal part of the core |
| Sen et al, 2012[17]     | Ficoll interface separator | 5 x 10⁶               | Ficoll interface separator        | A 10 mm diameter trephine was placed into the mid-line of the trochanter and driven toward the necrotic site |
| Tabatabaei et al, 2015[18]| Centrifuged | 2 x 10⁶              | NS                                | 8 mm Michele trephine, to remove 2 cores of bone; the first was put aside to be used as a graft |
| Zhao et al, 2012[19]    | Centrifuged  | 2 x 10⁶              | Stryker's Navigation System       | Decompression and grafting procedure; the patients wore capacitive coupling units |
| Chang et al, 2010[25]   | Centrifuged  | 2.9 x 10⁶            | NS                                | Drilling of the femoral head after intraosseus venography           |
| Sun et al, 2006[26]     | Centrifuged  | 5 x 10⁶              | NS                                | 10 mm Channel; cancellous bone grafts were harvested from the anterior iliac crest and cancellous bone chips were packed into the defect |
| Yang et al, 2015[23]    | Sepax centrifugation device | 2.9 x 10⁶           | NS                                | Curettage, autologous bone grafting (autograft) from the greater trochanter and proximal femur using a 8-mm hollow—core drill |
| Zhao et al, 2016[24]    | Centrifuged  | 5 x 10⁶              | Ficoll interface separator        | A decompression tunnel was made using a trephine through the trochanter and femoral neck into the necrotic region in the femoral head, 2–3 mm away from the cartilage |
| Guo et al, 2006[22]     | NS           | 5 x 10⁶              | NS                                | 3 mm Trephine through the femoral neck into the necrotic region in the femoral head, 2–3 mm away from the cartilage |
| Ma et al, 2014[21]      | Centrifuged  | 2 x 10⁶              | NS                                | 10 mm Channel; cancellous bone grafts were harvested from the anterior iliac crest and cancellous bone chips were packed into the defect |
| Rastogi et al, 2012[20] | Ficoll density separation method | 2.9 x 10⁶           | NS                                | 3 mm Trephine, till 2 or 3 mm from joint cartilage                  |
| Liu, 2019[27]           | Concentrated | 118 x 10⁶            | NS                                |                                                                   |

BMSCs = bone marrow stem cells, CD = core decompression, MSC = mesenchymal stem cells, NS = not stated.

---

**Figure 2.** Risk of bias graph review authors' judgements about each risk of bias item presented as percentages across all included studies.
studies. To assess the allocation concealment, the risk of bias was ambiguous and large in 8 and 2 of 15 studies separately.

For the blinding of participants and personnel assessment, the risk of bias of 9 trials was ambiguous and 6 of 15 trials had a high risk of bias. In terms of the blinding of outcomes assessment, the risk of bias was ambiguous in 14 of 15 researches. For not complete outcome data, the risk of bias of 1 of 15 trials was ambiguous. In the selective reporting assessment, the risk of bias was ambiguous in 1 of 15 studies. There were 2 studies with ambiguous risk of bias in other items.

4. Results of meta-analysis

4.1. HHS at 12 and 24 months

The forest plot for meta-analysis of HHS at 12 and 24 months is presented in Figure 4. The overall results indicated that the HHS in the combined utilization of BMSCs and CD group was higher than that of the CD alone group at 12 months (SMD = 0.53, 95% CI 0.29–0.77, \( P = .000; P \) for heterogeneity = .228, \( I^2 = 26.4\% \)) and 24 months (SMD = 0.57, 95% CI 0.36–0.77, \( P = .000; P \) for heterogeneity = .581, \( I^2 = 0.0\% \)).

4.2. Necrotic Area of Femoral Head

The necrotic area of femoral head was available in 6 trials. A significantly reduction in the necrotic area of femoral head after the treatments was seen in combined utilization of BMSCs and CD group than CD alone group (WMD = −1.05, 95% CI −1.73 to −0.38, \( P = .002, I^2 = 84.8\% \)) (Fig. 5). These data together suggest that the combined utilization of BMSCs and CD has a superior efficacy in eliminating necrotic area of femoral head than CD alone.

4.3. Conversion to THA

The forest plot for meta-analysis of conversion to THA is presented in Figure 5. The results demonstrated that the rate of conversion to THA was significantly less in combined utilization of BMSCs and CD group than CD alone group (RR = 0.53, 95% CI 0.38–0.74, \( P = .000; P \) for heterogeneity = .229, \( I^2 = 22.5\% \), Fig. 6).

4.4. VAS at final follow-up

The forest plot for meta-analysis of VAS at final follow-up is presented in Figure 7. The results demonstrated that the VAS at final follow-up was significantly less in combined utilization of BMSCs and CD group than CD alone group (SMD = −0.93, 95% CI −1.59 to −0.28, \( P = .005; P \) for heterogeneity = .000, \( I^2 = 86.2\% \)).

---

**Table 3**

Summary of risk of bias.

| Risk of bias          | No. of RCTs and why                                                                 |
|-----------------------|-------------------------------------------------------------------------------------|
| Selection bias        | Six studies did not describe the method of randomization and allocation concealment |
| Performance bias      | Five studies had patients who were aware of the interventions.                      |
| Detection bias        | One Four RCTs did not mention the personnel responsible for outcome measures, and 1 study employed the physician aware of the intervention details for follow-up measures, |
| Attrition bias        | In 1 RCT, >20% of patients were lost to follow-up                                    |
| Reporting bias        | One RCT did not report results of all predefined measures                            |
| Other bias            | Two RCTs did not have sample size calculations before interventions, and did not recruit enough patients per the calculated sample size |

RCT = randomized controlled trial.
4.5. AEs

The forest plot for adverse events of all the included studies is shown in Figure 8. The overall results indicated that there were no significant differences in the combined utilization of BMSCs and CD group and CD alone group at final follow-up (RR = 1.03, 95% CI 0.64–1.67, P = .893; P for heterogeneity = .977, I² = 0.0%).

4.6. Subgroup analysis, sensitivity study, and publication bias

Table 4 presents the results of subgroup analyses. The findings of increased HHS at 24 months were consistent in all subgroup analyses except for the included stage III ONFH (not included stage III was superior than included stage III).

Figure 9 presents sensitivity study for HHS at 24 months. The HHS at 24 months remained consistent through sensitivity analyses.

For the meta-analysis of combined utilization of BMSCs and CD on HHS at 24 months, there was no evidence of publication bias by inspection of the funnel plot (Fig. 10) and formal statistical tests (Egger test, P = .56; Begg test, P = .49).

5. Discussion

Our meta-analysis comprehensively and systematically reviewed the current available literature and found that: combined utilization of BMSCs and CD compared with CD alone significantly increased HHS at 12 and 24 months, reduced necrotic area of femoral head and the rate of conversion to THA; combined utilization of BMSCs and CD significantly reduced VAS at final follow-up; combined utilization of BMSCs and CD has no influence on the occurrence of adverse effects. Moreover, subgroup analysis found that combined utilization of BMSCs and CD was superior than CD alone in stage 1 to 2 ONFH, otherwise stage 3 ONFH.

Only 2 related meta-analyses were released. Although the main finding of our meta-analysis was consistent with previous meta-analyses, differences between ours and the previous ones should be noted. First, these previous meta-analyses included no
Figure 5. A forest plot diagram showing necrotic area of femoral head postoperatively. CI = confidence interval, SMD = standard mean difference.

Figure 6. A forest plot diagram showing the rate conversion to THA postoperatively. CI = confidence interval, RR = risk ratio.
Figure 7. A forest plot diagram showing visual analog pain scale at final follow-up postoperatively. CI = confidence interval, SMD = standard mean difference.

Figure 8. A forest plot diagram showing adverse effects postoperatively. CI = confidence interval, RR = risk ratio.
more than 5 trials and 359 patients. In comparison, our current meta-analysis included 15 trials totaling 688 patients. Li et al[29] conducted a related meta-analysis on the fusion of CD and BMSCs for OFNH cases. Nevertheless, this meta-analysis included non-RCTs and RCTs to achieve analysis and thus selection bias could not be avoided.

We selected HHS at 12 and 24 months as primary outcomes. Results found that, compared to CD alone, combined utilization of BMSCs and CD could significantly increase HHS at 12 and 24 months. HHS is a comprehensive tool that used to assess the clinical outcome of ONFH patients. Moreover, 6 studies assess the necrotic area of femoral head; result found that combined utilization of BMSCs and CD could significantly reduce the necrotic area of femoral head (P < .05). Therefore, the rate of conversion to THA was corresponding reduced in combined utilization of BMSCs and CD group. A meta-analysis comparing CD with conservative treatment showed that performing CD for ONFH is effective for preventing a femoral collapse in short term.[30] Hua et al[31] conducted a meta-analysis and revealed that CD is an effective and safe method of treating ONFH. Based on subgroup analysis, we found that combined utilization of BMSCs and CD was associated an increase in HHS in stage 1 to 2

| Subgroup | SMD (95% CI) | P   |  \( \hat{I} \) (%) | Test of interaction, P |
|----------|-------------|-----|---------------------|------------------------|
| Risk of bias |             |     |                     |                        |
| Low      | 0.46 (0.19-0.73) | .001 | 0.0 | .102 |
| Unclear/high | 0.68 (0.37-1.00) | .000 | 0.0 |
| Sample   |             |     |                     |                        |
| n <40 | 0.85 (0.41-1.28) | .000 | 0.0 | .136 |
| n >40 | 0.47 (0.24-0.71) | .000 | 0.0 |
| Effect model |             |     |                     |                        |
| Fixed-effects model | 0.88 (0.39-1.09) | .000 | 0.0 | .006 |
| Random-effects model | 0.55 (0.31-0.89) | .000 | 0.0 |
| Included stage III |             |     |                     |                        |
| Yes | 0.52 (0.28-0.76) | .000 | 0.1 | .024 |
| No | 0.66 (0.26-1.03) | .000 | 0.0 |
| Centrifuge |             |     |                     |                        |
| Yes | 0.54 (0.29-0.80) | .001 | 0.0 | .134 |
| No | 0.58 (0.22-0.94) | .000 | 0.0 |
| No. of BMSCs |             |     |                     |                        |
| <2 \( \times 10^7 \) | 0.53 (0.28-0.77) | .000 | 0.0 | .263 |
| >2 \( \times 10^7 \) | 0.62 (0.25-1.00) | .001 | 0.0 |

BMSCs = bone marrow stem cells, CI = confidence interval, HHS = Harris hip scores, SMD = standard mean difference.
than stage 3 ONFH. Kang et al\[32\] revealed that implantation of BMSCs into the femoral head at an early stage of ONFH lowers the THA conversion rate.

The present study has several strengths. Firstly, to our knowledge, it is the most comprehensive systematic review and meta-analysis and up to date assessment of the combined utilization of BMSCs and CD versus CD alone in ONFH patients. Also, we concluded data results by subanalysis and sensitivity analysis to ensure the accuracy of the outcomes.

There are still some limitations of our meta-analysis. The total number of participants was not large enough so that bigger-scale clinical trials were needed to be practised. Meanwhile, The BMSCs isolated, collecting and number administrated in each study were differed from each other, which will made bias of the results. Finally, due to the lack of primary studies with a relative long follow-up, it is difficult to determine the status of the ONFH treated by these 2 strategies at a time point >2 years. Hence, some other trials with longer follow-up should be performed in the future.

6. Conclusion

This systematic review and meta-analysis found that combined utilization of BMSCs and CD appeared to be more efficacious in the treatment of ONFH than CD only, delayed ONFH progression, reduced necrotic area of femoral head, decreased the need for THA, and improved Harris hip score. However, more rigorously designed and higher RCTs with larger sample size are necessary for better confirming the effectiveness of combined utilization of BMSCs and CD on ONFH.

Author contributions

Conceptualization: Shao-lei Wang.
Data curation: Shao-lei Wang.

Investigation: Guo-yun Bu.
Methodology: Yong-qiang Zhang.
Resources: Bo Tao, Guo-yun Bu, Jin-song Zhang.
Software: Bo Tao, Jin-song Zhang.
Visualization: Hao Chen.
Writing – review & editing: Yuan-bin Hu, Jin-song Zhang.

References

[1] Mont MA, Carbone JJ, Fairbank AC. Core decompression versus nonoperative management for osteonecrosis of the hip. Clin Orthop Relat Res 1996;169–78.
[2] Li Z, Wei J, Xiao H, et al. Bone-strengthening supplement (BSP) promotes bone and cartilage repair, for the treatment of osteonecrosis of femoral head: an MRI-based study. Am J Transl Res 2019;11:7449–55.
[3] Wu X, Sun W. Noncoding RNAs in steroid-induced osteonecrosis of the femoral head. BioMed Res Int 2019;2019:8140595.
[4] Papakostidis C, Tosounidis TH, Jones E, et al. The role of “cell therapy” in osteonecrosis of the femoral head. A systematic review of the literature and meta-analysis of 7 studies. Acta Orthop 2016;87:72–8.
[5] Saito S, Ohzono K, Ono K. Joint-preserving operations for idiopathic avascular necrosis of the femoral head. Results of core decompression, grafting and osteotomy. J Bone Joint Surg Br 1988;70:78–84.
[6] Koo KH, Kim R, Ko GH, et al. Preventing collapse in early osteonecrosis of the femoral head. A randomised clinical trial of core decompression. J Bone Joint Surg Br 1995;77:870–4.
[7] Stulberg BN, Davis AW, Bauer TW, et al. Osteonecrosis of the femoral head. A prospective randomized treatment protocol. Clin Orthop Relat Res 1991;140–51.
[8] Emadedin M, Karimi S, Karimi A, et al. Autologous bone marrow-derived CD133 cells with core decompression as a novel treatment method for femoral head osteonecrosis: a pilot study. Cytotherapy 2019;21:107–12.
[9] Oryan A, Kamali A, Moshiri A, et al. Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence? Cells Tissues Organs 2017;204:59–83.
[10] Gangji V, Hauzeur JP, Matos C, et al. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am 2004;86:1153–60.
[11] Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 2002;14-23.

[12] Hauzeur JP, De Maertelaer V, Baudoux E, et al. Inefficacy of autologous bone marrow concentrate in stage three osteonecrosis: a randomized controlled double-blind trial. Int Orthop 2018;42:1429-35.

[13] Pepke W, Kasten P, Beckmann NA, et al. Core decompression and autologous bone marrow concentrate for treatment of femoral head osteonecrosis: a randomized prospective study. Orthop Rev 2016;8:6162.

[14] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009;62:1006–12.

[15] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed) 2003;327:557–60.

[16] Gangji V, De Maertelaer V, Hauzeur JP. Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: five year follow-up of a prospective controlled study. Bone 2011;49:1005-9.

[17] Sen RK, Tripathy SK, Aggarwal S, et al. Early results of core decompression and autologous bone marrow mononuclear cells instillation in femoral head osteonecrosis: a randomized control study. J Arthroplasty 2012;27:679-86.

[18] Tabatabaei RM, Saberi S, Parvizi J, et al. Combining concentrated autologous bone marrow stem cells injection with core decompression improves outcome for patients with early-stage osteonecrosis of the femoral head: a comparative study. J Arthroplasty 2013;28(9 suppl):11–5.

[19] Zhao D, Cui D, Wang B, et al. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone 2012;50:325–30.

[20] Rastogi S, Sankineani SR, Nag HL, et al. Intraliteral autologous mesenchymal stem cells in management of osteonecrosis of femur: a preliminary study. Musculoskelet Surg 2013;97:223-8.

[21] Ma Y, Wang T, Liao J, et al. Efficacy of autologous bone marrow buffy coat grafting combined with core decompression in patients with avascular necrosis of femoral head: a prospective, double-blinded, randomized, controlled study. Stem Cell Res Ther 2014;5:115.

[22] Guo X-W, Wu W-X, Hong Y-F, et al. Study of core decompression and transplant of autologous bone marrow stem cells for treatment of avascular necrosis of femoral head. Journal of Medical Forum 2008;29:19–21.

[23] Yang L, Yang Y, Cai L-X, et al. Core decompression combined with autologous concentrated bone marrow cell transplantation for treatment of early osteonecrosis of femoral head. Chongqing Medicine 2015;44:343–4.

[24] Zhao R-G, Liu H-B, Han B. Efficacy of core decompression and transplant of autologous bone marrow stem cells for treatment of early stage avascular necrosis of femoral head. Peoples Military Surge 2016;59:372–3.

[25] Chung T, Tang K, Tao X, et al. Treatment of early avascular necrosis of femoral head by core decompression combined with autologous bone marrow mesenchymal stem cells transplantation. Jhongguo Xiu Fu Chong Jian Wai Ke Zha zhi 2010;24:739–43.

[26] Sun Y, Zhang W-H, Yao Y-M. Treatment of osteonecrosis of femoral head by combination of center decompression and implantation of autogenous bone and mesenchymal stem cells. Medical Journal of National Defending Forces in Southwest China 2008;18:800–2.

[27] Liu J. Core decompression combined with bone marrow mesenchymal stem cell transplantation for treating osteonecrosis of the femoral head. Chinese Journal of Tissue Engineering Research 2019;23:4599.

[28] Xu SZL, Jin H, Shan L, et al. Autologous stem cells combined core decompression for treatment of avascular necrosis of the femoral head: a systematic meta-analysis. BioMed Res Int 2017;2017:6136205.

[29] Li X, Xu X, Wu W. Comparison of bone marrow mesenchymal stem cells and core decompression in treatment of osteonecrosis of the femoral head: a meta-analysis. Int J Clin Exp Pathol 2014;7:5024–30.

[30] Hong YC, Zhong HM, Lin T, et al. Comparison of core decompression and conservative treatment for avascular necrosis of femoral head at early stage: a meta-analysis. Int J Clin Exp Med 2015;8:5207–16.

[31] Hua KC, Yang XG, Feng JT, et al. The efficacy and safety of core decompression for the treatment of femoral head necrosis: a systematic review and meta-analysis. J Orthop Surg Res 2019;14:306.

[32] Kang JS, Suh YJ, Moon KH, et al. Clinical efficiency of bone marrow mesenchymal stem cell implantation for osteonecrosis of the femoral head: a matched pair control study with simple core decompression. Stem Cell Res Ther 2018;9:274.