STELLAR EVOLUTION AND NUCLEOSYNTHESIS OF POST-AGB STARS

Falk Herwig
Institut für Physik, Abteilung Astrophysik, Universität Potsdam, Potsdam, Germany
Institute for Physics and Astronomy, University of Victoria, Victoria BC, Canada
fherwig@uvastro.phys.uvic.ca

Abstract
I discuss recent new models of post-Asymptotic Giant Branch stellar evolution. These models aim to clarify the evolutionary origin and status of a variety of hydrogen-deficient post-AGB stars such as central stars of planetary nebulae of Wolf-Rayet spectral type, PG1159 stars or Sakurai’s object. Starting with AGB models with overshoots such stars can evolve through one of four distinct channels. Each of these channels has typical abundance patterns depending on the relative timing of the departure from the AGB and the occurrence of the last thermal pulse. I discuss the responsible mechanisms and observational counterparts.

1. INTRODUCTION
Nuclear burning and mixing processes in post-Asymptotic Giant Branch (pAGB) stars are closely related to the final thermal pulse (Iben et al., 1983; Iben, 1995). The pAGB stage will proceed undisturbed if the final thermal pulse (TP) occurs well before the departure from the AGB. However, if the final TP occurs immediately before the departure from the AGB (AFTP case) or during the early (LTP case) or the late post-AGB phase (VLTP case), then internal mixing and possibly as well nuclear burning processes will lead to distinctive alterations of the surface abundances (Herwig, 2000b; Blöcker, 2000). For example, the hydrogen-deficiency of central stars of planetary nebulae of Wolf-Rayet spectral type ([WC]-CSPN) is the result of such an abundance alteration as concluded from their large helium, carbon and oxygen abundance and the lack of hydrogen in their spectra (e.g. Koesterke and Hamann, 1997).

The final TP affects other elements as well. This is supported by the weird abundance pattern of Sakurai’s object which apparently is a born-again AGB object (Asplund et al., 1999). It shows a real-time evolution of lithium, hydrogen, s-process elements and others. Hybrid
2 objects - with an intermediate hydrogen abundance between [WC]-CSPN and H-normal stars - are as well associated with a non-standard pAGB evolution (Napiwotzki et al., 1991).

The TP is a thermonuclear instability of the He-shell and accordingly a TP can occur until He-burning ends at the latest at the pre-WD stage of pAGB evolution. On the AGB TPs are recurring mainly independently of mass loss on a timescale of a 10^4 to 10^5 yr. The AGB evolution is ended randomly by mass loss which strips the envelope off the core. If the envelope mass decreases below a critical value of about $0.001 \, M_\odot$ contraction sets in and the star will begin its evolution along the horizontal part of pAGB evolution in the HRD. The last TP which occurs in the lifetime of a star may be past a few thousand years when the AGB star starts contraction to evolve into a central star. In that case this last TP does not interfere with an undisturbed and hydrogen-rich pAGB evolution finally leading to a white dwarf of spectral type DA.

However, if by coincidence the last TP occurs either immediately before or within a certain time interval after the transition towards the central star phase then a severely different evolution must be expected. In the following sections I will discuss in turn the three channels of evolution in which the final TP interferes with an undisturbed pAGB evolution.

2. THE AGB FINAL THERMAL PULSE

We found in our calculations of AGB models with overshoot that dredge-up is much more efficient if overshoot is not only applied to the bottom of the envelope convection zone but as well to the He-flash convection zone in the intershell during the TP (Herwig et al., 1997; Herwig, 2000a). While the third dredge-up is usually difficult to find in stellar models of low core mass and low envelope mass we did find dredge-up after the last TP still on the AGB at a surprisingly low envelope mass of $4 \cdot 10^{-3} \, M_\odot$. This dredge-up was found under the assumption of an increased efficiency of convective mixing ($\alpha_{MLT} = 3.0$) and overshoot with an efficiency parameter of $f = 0.016$. The amount of dredged-up material was of the order of $3 \cdot 10^{-3} \, M_\odot$.

In the AFTP case the final TP coincidently occurs when the envelope mass is already very close to the critical envelope mass which marks the departure of the star from the AGB regime. The remaining envelope mass and the amount of dredged-up mass are of comparable quantity and therefore the surface abundance change due to dredge-up is considerable. If the star is O-rich ($C/O > 1$) before the final TP it will turn into a carbon star during the following final dredge-up episode, just at
the onset of the proto-planetary transition phase. This carbon star is different from the C-stars known on the AGB in that its C abundance is much larger. In fact, after an AFTP dredge-up episode as described above the emerging central star is hydrogen-deficient. The extent of H-deficiency depends on the amount of envelope mass at the final TP and the efficiency of following dredge-up. As an example, the two AFTP calculations by Herwig (2000b) produced central stars with mass fractions of (H/He/C/O) of (0.55,0.31,0.07,0.04) and (0.17,0.33,0.32,0.15).

Although the current models of the AFTP have systematically larger H-abundances than found in the majority of [WC] CSPN or PG1159 stars this evolutionary scenario has otherwise observational support. Planetary nebulae (PNe) of [WC]-type central stars are on average not older than PNe surrounding chemically normal central stars (Gorny and Stasinska, 1995). This indicates that these objects are on their first evolutionary departure from the AGB. The alternative evolutionary scenario described below, in particular the very late TP, would rather require H-deficient central stars to have old PNe since they are supposed to be on their second departure from the AGB following a born-again evolution which might last more than 10^4 yr. Thus, the AFTP scenario naturally resolves the time scale problem of PNe around H-deficient CSPN.

Recent ISO observations support the AFTP scenario as well (Waters et al., 1998; Cohen et al., 1999). Surprisingly, both oxygen and carbon rich dust has been found around [WC]-late ([WC-L]) CSPN (called here the C+O dust feature). C-rich dust (PAH = Polycyclic Aromatic Hydrocarbon) and O-rich dust (crystalline silicates) usually exclude each other because of the initial formation of CO molecules. Consequently the simultaneous presence of O- and C-rich dust must be the result of a recent change of surface abundance pattern in the mass losing star.

The AFTP scenario does provide such a sudden abundance change immediately before the onset of the pAGB phase. In this picture the O-rich AGB star evolves towards the final TP with presumably high mass loss and experiences efficient dredge-up of intershell material which has a C/O ratio of about 3.4. Instantly the star will become C-rich. Possibly the now C-rich surface composition will once more enhance mass loss and accelerate the evolution towards the pAGB phase. The timescale of the abundance change and the following transition evolution off the AGB are around 1000 yr, in agreement with the timescale inferred for the abundance change from the ISO observations of the circumstellar dustshells.

If all [WC-L] CSPN show the signature of simultaneous presence of O- and C-rich dust (see the contribution by Hony et al., these proceedings) we may assume that all [WC-L] CSPN are originating from an AFTP
because this is currently the only scenario we know for the C+O dust phenomenon. This raises the question why there are no [WC-L] type descendants of the LTP or VLTP evolution (see below) in their second departure from the AGB. This would imply that a star like Sakurai’s object does not show up as a [WC-L] type CSPN, possibly because these objects camouflage themself by ejecting puffs of dust as suggested by another born-again candidate V 605 Aql (Clayton and de Marco, 1997). However, there is at least one [WC-L] star, V 348 Sgr, which is likely to be a born-again object because of its old PNe (Pollacco et al., 1990) and thus, no O-rich dust signatures should be detected for this object.

There might be as well another clue for the progenitors of [WC-L] CSPN. If all or at least the overwhelming majority of [WC-L] show the C+O dust feature then an AFTP predominantly occurs in O-rich AGB stars (S- and M-giants). An AFTP event occurring in a C-giant could not host crystalline silicates in its dustshell. Possibly, the mass loss of S- and M-giants depends more strongly than that of C-giants on the stellar parameter variation during a TP and thereby correlates the occurrence of the final TP with the immediately following departure from the AGB. Maybe the C-giants have a low fraction of immediate departures from the AGB after a final TP because their mass loss is more evenly distributed over the TP.

3. THE LATE THERMAL PULSE

While in the AFTP case the final TP on the AGB is immediately followed by the transition of the star towards the pAGB phase the order of events is reversed in the LTP case. The departure from the AGB begins up to about 5000 yr before the last TP. Accordingly the star will be disturbed by a TP during the pAGB evolution which leads to a born-again evolution back to the AGB. This evolutionary scenario is closely related to the VLTP described below with one main distinction. In the LTP case hydrogen burning has not yet ceased at the time of the TP. As a consequence the star will not experience the violent nuclear processes induced by the ingestion of the H-rich envelope material into the He-flash convection zone as found for VLTP models (see below). Instead, Blöcker (2000) and Herwig (2000b) found that dredge-up during the born-again AGB stage after the LTP can lead to abundance alterations which are in accordance with abundances of [WC]-CSPN as well. If the time interval between the departure from the AGB and the TP is small this scenario could even account for the normal ages of PNe around [WC]-CSPN. Moreover this evolutionary channel more naturally leads to the very low H-abundances actually observed in the
[WC]-CSPN. The envelope mass is by definition of the order of $10^{-4} \, M_\odot$ when the star has entered the CSPN stage and the TP occurs. In the LTP calculation by Herwig (2000b) the amount of dredged-up material is of the order of a few $10^{-3} \, M_\odot$ and the resulting surface mass fractions are $(H/He/C/O) = (0.02, 0.37, 0.40, 0.18)$.

Taking into account the comparatively large mass loss of [WC]-CSPN of $\dot{M} \sim 10^{-6} \, M_\odot$ (Koesterke and Hamann, 1997), it is conceivable that a pAGB star after a LTP born-again event loses its entire top layer during the second pAGB evolution. This top layer represents the region well mixed during the dredge-up after the LTP and consists of the just mentioned amount of a few $10^{-3} \, M_\odot$. If this stripping of the outer dredge-up layer is possible for a LTP descendant star then the LTP evolution could even yield non-DA WDs which do not contain any hydrogen at all.

One of the unsolved problems with this scenario is the description of mass loss during the second, born-again AGB phase when the abundance suddenly and dramatically changes due to dredge-up. The large amounts of C and O brought to the surface could initiate a rapid increase in dust formation and thereby mass loss.

4. THE VERY LATE THERMAL PULSE

As in the LTP case the final TP occurs after the departure from the AGB. However, here the time interval between the AGB departure and the TP is longer, typically exceeding ~ 5000 yr. At this time hydrogen burning has already stopped and the entire envelope material will be included in the convective He-burning region (see Herwig et al. (1999) and Herwig (2000b) for details and references). The star takes a deep loop through the HRD in order to return to the AGB again, similar to the LTP case. While the VLTP model abundances agree with the observations of [WC]-CSPN, the PNe timescale problem is most severe for this case. Before the potential of the LTP and the AFTP to provide scenarios for the origin of the H-deficient [WC]-CSPN and PG1159 was realized the VLTP was thought to be the only possible evolutionary origin of these objects (Iben and MacDonald, 1995).

The VLTP provides unique conditions of convective nucleosynthesis originating from the ingestion of protons from the unprocessed envelope into the He-flash convection zone. The nuclear burning and mixing occur both on the time scale of about one hour once the protons have reached sufficient temperature while being transported inward by convection. Temporarily and locally the luminosity of hydrogen burning exceeds the peak-flash He-burning luminosity and the He-flash convection zone is fragmented. (Asplund et al., 1999).
The nucleosynthesis during the VLTP is highly dependent on the details of convective mixing because here both processes are closely related. While the protons from the envelope enter a hotter environment on their way down into the He-flash convection zone their nuclear burning time scale diminishes. At the position where it matches the convective turnover time scale the greatest part of the hydrogen-burning luminosity will be created. Therefore the position in the star where the peak H-burning luminosity can be found will depend both on the assumptions of convective mixing efficiency and the numerical treatment of the simultaneous burning and mixing.

For the calculation by Herwig et al. (1999) we developed a fully coupled numerical scheme for convective nucleosynthesis. The equations of material transport (one diffusion-like equation for each isotope) and the nuclear network equations at each depth mass grid are solved altogether fully implicit in one scheme (Herwig, 2000b). This treatment returns consistent abundance profiles within the convective region. Thus, the energy generation rates calculated as a function of position in the stellar
burning region reflect the rapid consumption and simultaneous convective mixing of protons.

The evolution of the pulse-driven convection zone during a VLTP model sequence is sketched in Fig. 1. It shows the sequence of events found in the models of Herwig et al. (1999). The convective instability can be divided into four different regions. Zone 1 represents the onset of the He-flash. During this first phase the He-burning luminosity increases by several orders of magnitude. It is essentially the same evolution as during the onset of any AGB TP or the LTP. The difference occurs when the upper boundary of the He-flash convection zone approaches the H-rich envelope (second horizontal line from top in Fig. 1). In the VLTP case the convective instability reaches out of the intershell and spreads into the H-rich envelope as represented by zone 3 in Fig. 1. This is not possible in the LTP case or during typical AGB TP because there the H-burning shell is still active at the time of the TP (Iben, 1976). The fresh nuclear fuel which is ingested into the deeper and hotter region burns on ever shorter timescales while at the bottom of zone 2 the unstable He-burning continues mainly undisturbed.

Due to the locally large energy generation of up to $10^8 \, L_\odot$ by H-burning a small radiative layer between zone 2 and 3 establishes. This radiative layer affects the permeability for particle transport from zone 2 to 3. If overshoot is very efficient a considerable fraction of freshly produced particles, e.g. 13C will be burned at the bottom of zone 3 instead of the bottom of zone 2. Thus, the assumed overshoot efficiency has an important influence on the model predictions. Moreover the position of the split between zone 2 and 3 depends on the assumption of convective efficiency. For a larger convective efficiency the mass coordinate of peak H-burning luminosity and thereby of the split shifts inwards and accordingly the maximum temperature ruling the nucleosynthesis in zone 2 increases.

The additional energy supply by proton captures causes zone 2 to stretch out and engulf the entire envelope. The moment of abundance change at the surface due to the mixing of zone 2 depends on the initial conditions of the VLTP. On one extreme is the immediate abundance change after the VLTP while the star still resides in the blue and faint part of the born-again loop in the HRD. This will only occur for the most vigorous cases of proton burning during the VLTP. In other cases a tiny layer of original envelope material of less than $10^{-6} \, M_\odot$ may cover the changed abundances close to the surface until during the evolution back to the AGB either mass loss or the onset of convection will reveal the H-poor abundance.
In any case, zone 3 is only short-lived due to the restricted amount of hydrogen available in the envelope. If that amount is consumed the related convective region will die away. After some cooling of that layer the original He-flash convection zone resumes control (zone 4). Note, that the most outward reach of zone 4 is smaller than that of zone 3. In the layer M1 swept over by zone 3 but not by zone 4 an element distribution formed only in zone 3 can be preserved close enough to the stellar surface in order to show up later on. It is here where we suspect lithium to form according to the mechanism of hot hydrogen-deficient 3He burning (Herwig and Langer, 2000). This lithium could explain the observed abundance in Sakurai’s object (Asplund et al., 1999) which is believed to be a VLTP star caught in its born-again evolution.

The VLTP does also provide a rich neutron capture nucleosynthesis initiated by the production of 13C in zone 3 (Malaney, 1986). The neutrons are partly released immediately by the well known 13C(α, n)16O reaction. Alternatively 13C is stored in the region covered by zone 3 until the He-flash convection zone recovers from the disturbance of H-burning. Then 13C burns at higher temperatures in zone 4. Future models of the s-process during the VLTP should predict a distinctive heavy-element signature to be compared with that of Sakurai’s object.

Acknowledgments

This work has been supported by the Deutsche Forschungsgemeinschaft, DFG (La 587/16). I would like to thank T. Blöcker, W.-R. Hamann, L. Koesterke, N. Langer, D. Schönberner and K. Werner for very useful discussions.

References

Asplund, M., Lambert, D. L., Kipper, T., Pollacco, D., and Shetrone, M. D., 1999, A&A 343, 507
Blöcker, T., 2000, in T. Blöcker, R. Waters, and B. Zijlstra (eds.), Low mass Wolf-Rayet Stars: origin and evolution, Ap&SS, in press
Clayton, G. C. and de Marco, O., 1997, AJ 114, 2679
Cohen, M., Barlow, M. J., Sylvester, R. J., Liu, X. ., Cox, P., Lim, T., Schmitt, B., and Speck, A. K., 1999, ApJ Lett. 513, L135
Gorny, S. K. and Stasinska, G., 1995, A&A 303, 893
Herwig, F., 2000a, A&A 360, 952
Herwig, F., 2000b, in T. Blöcker, R. Waters, and B. Zijlstra (eds.), Low mass Wolf-Rayet Stars: origin and evolution, Ap&SS, in press, astro-ph/9912353
Herwig, F., Blöcker, T., Langer, N., and Driebe, T., 1999, A&A 349, L5
Herwig, F., Blöcker, T., Schönberner, D., and El Eid, M. F., 1997, A&A 324, L81
Herwig, F. and Langer, N., 2000, Nucl. Phys. A, in press, astro-ph/0010120
Iben, Jr., I., 1976, ApJ 208, 165
Iben, Jr., I., 1995, Physics Reports 250, 1
Iben, Jr., I., Kaler, J. B., Truran, J. W., and Renzini, A., 1983, ApJ 264, 605
Iben, Jr., I. and MacDonald, J., 1995, in D. Koester and K. Werner (eds.), White Dwarfs, No. 443 in LNP, p. 48, Springer, Heidelberg
Koesterke, L. and Hamann, W. R., 1997, A&A 320, 91
Malaney, R. A., 1986, MNRAS 223, 683
Napiwotzki, R., Schönberner, D., and Weidemann, V., 1991, A&A 243, L5
Pollacco, D. L., Hill, P. W., and Tadhunter, C. N., 1990, MNRAS 245, 204
Waters, L. B. F. M., Beintema, D. A., Zijlstra, A. A., and et al., 1998, A&A 331, L61