Ganglioside Changes Associated with Temporal Lobe Epilepsy in the Human Hippocampus

ROBERT K. YU, Ph.D.,* JOHN A. HOLLEY, Ph.D.,* LAWRENCE J. MACALA, B.S.,* AND DENNIS D. SPENCER, M.D.*

*Department of Neurology and *Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut

Received June 12, 1986

INTRODUCTION

Epilepsy is a major debilitating disease of the central nervous system (CNS) which is characterized by synchronized neuronal discharges [1]. Despite intensive research efforts, the cellular and molecular basis of epilepsy remains uncertain. We have begun a multifaceted analysis of human hippocampal tissue obtained from patients with electrically characterized temporal lobe epilepsy. By determining the biochemical and morphological features that characterize human epileptic tissue, we hope to identify the key factors that are responsible for promoting the hyperexcitable state. One possible factor is the glycolipid components of cell membranes.

Gangliosides are a family of sialic acid-containing glycolipids that are enriched in neuronal membranes [2–4]. These molecules participate in numerous cellular phenomena, e.g., growth, adhesion, membrane excitability, and functional interactions [5–7]. Numerous studies have shown that the relative amount of individual species of brain gangliosides is a direct indication of the structure, number, and types of neural membranes [8–10]. For example, GD1a is associated with synaptic membrane densities [11–13]. Likewise, changes in ganglioside composition accompany pathological altera-

107
tions in neural tissues. For example, G_{D3} is often found in high concentrations in traumatized CNS tissue and is considered a marker for reactive glia in many neurological diseases [10,12,14,15,16]. Hence, an examination of gangliosides can provide important information on the health and cellular composition of brain tissue.

Studies from our laboratory [17–19] and the laboratories of others [20,21] have revealed significant ganglioside changes in various animal models of experimentally induced seizures. These changes reflect, to some extent, the pathological changes that are associated with epileptic brain. In humans as well as in animals, these pathological changes frequently involve neuronal loss and gliosis. In the hippocampus of an epileptic, this is referred to as “hippocampal sclerosis,” which is characterized by gliosis and loss of neurons in the Sommer sector and end folium (Rose’s area H1 and H3-5) [22–25].

One principal aim of the present study was to examine changes in ganglioside G_{D3}. We have previously shown that G_{D3} is closely associated with reactive, but not resting, glial cells [10,16,26,27]. In addition, G_{D3} is associated with a number of cells, such as Müller glial cells [15], undifferentiated neurons [14,28], and malignant transformed cells [29], which share a common property in being metabolically active. We have hypothesized that the membranes of these cells must be highly permeable to ions and metabolites [10,27]. Hence, reactive glial cells may have fundamental significance in regulating the extracellular environment in epileptogenesis [30]. To test this hypothesis, our first objective in this study was to test for the presence of G_{D3}-positive glia and determine their tissue distribution. The availability of brain tissue from human patients offers a unique opportunity to correlate the biochemical and immunohistochemical changes in ganglioside distribution that are associated with electrophysiologically and clinically defined epileptic tissue.

MATERIALS AND METHODS

Brain Tissues

Hippocampal gyri from epileptic patients were removed en bloc during surgery, and quickly cut into transverse slabs 1–2 cm wide. Individual specimens were either frozen on dry ice or fixed by immersion in 0.1 M phosphate buffer containing 2 percent formaldehyde. Frozen tissue slabs were used for both quantitative ganglioside analysis and immunocytochemical localization of G_{D3} on immediately adjacent tissue. Since histological preservation in fresh-frozen tissue is relatively poor, quickly fixed tissue was also examined by immunocytochemistry.

A normal control hippocampus was obtained with permission from a 26-year-old male who died suddenly with no known neurological symptoms. Comparable slabs of hippocampal tissue were obtained after autopsy and frozen on dry ice within 16 hours of death. Since gangliosides are relatively stable after death, the results of quantitative analysis were considered reliable. Immunocytochemical study was limited to fresh-frozen tissue from the hippocampus and was used only for comparative localization.

Ganglioside Quantitation

The amount of major gangliosides within samples was determined by methods described in detail elsewhere [31]. Briefly, a ganglioside-enriched fraction was obtained from each sample after chloroform/methanol extraction and DEAE column chromatography. Individual gangliosides were separated by thin-layer chromatography (TLC) [32], visualized by resorcinol, and quantitated with a densitometer.
Immunocytochemical Localization

To correlate biochemical analysis with immunocytochemical localization, fresh-frozen samples were first sectioned and the remaining adjacent tissue processed for ganglioside quantitation. Frozen specimens were sectioned on a cryotome (10 μm), mounted on glass cover slips coated with poly-L-lysine, and allowed to air dry for one hour. Sections were fixed in 0.1 M phosphate buffered saline (PBS), containing 4 percent formaldehyde for five minutes, and rinsed with PBS containing 0.3 percent gelatin. All subsequent steps were performed in PBS with gelatin.

Monoclonal antibody R24 was provided by Dr. K.O. Lloyd, Sloan-Kettering Institute, New York, and has known specificity for GD3 [33]. Polyclonal rabbit antibody against purified human glial fibrillary acidic protein (GFAP) was provided and characterized by Dr. L.F. Eng, Stanford University, Palo Alto, California. These primary antibodies were diluted 1:75 for anti-GD3 and 1:300 for anti-GFAP and applied to sections for 20 minutes. After rinsing, sections were incubated for 20 minutes in peroxidase-conjugated secondary antibody. Anti-GD3 was localized with goat anti-mouse IgG (Sigma) diluted 1:40, and anti-GFAP was localized with goat anti-rabbit IgG (Cappel), diluted 1:300.

Formaldehyde-fixed tissues were postfixed by immersion in 5 percent acrolein in phosphate buffer (PB) for one hour and sectioned on a vibrotome (50 μm). Sections were incubated in PB with 0.03 percent Triton-X100 for one hour, rinsed, and treated to block nonspecific stain. Sections were reacted at room temperature in the following reagents in PB at room temperature and rinsed after each step: 1 percent borohydride for ten minutes, 0.2 percent lysine and 0.1 percent gelatin for one hour, and 4 percent goat serum for 2–24 hours. Sections were incubated for 48 hours at 4°C with anti-GD3 diluted 1:200 or anti-GFAP diluted 1:600. After rinsing, sections were incubated for 48 hours with the complementary secondary antibodies diluted threefold more than for frozen cryotome sections. Peroxidase activity was visualized with diaminobenzidine/H2O2.

The quantitative ganglioside analysis and immunocytochemical studies were performed and evaluated independently in order to prevent bias.

RESULTS

Ganglioside Quantitation

The study was divided into two phases. In the initial phase, full transverse slabs of fresh-frozen tissue containing the entire hippocampal formation were assayed for ganglioside distribution. Four specimens from epileptic patients were assayed. The pattern of gangliosides separated on a TLC plate and treated with resorcinol is shown in Fig. 1. Quantitative results shown in Table 1 reveal significant differences between patients in the percentage of GD3.

Immunocytochemical localization of GD3 in adjacent sections showed corresponding qualitative differences in the intensity of stain between specimens. The general pattern of stain, however, was similar in each case. Within the CA sub-regions, stain was most pronounced near the zones of pyramidal cell loss. The Sommer's sector region of CA1 showed at least partial loss of pyramidal cells in all cases (see Figs. 2, 4A, 6A), and typically was most heavily stained (see Figs. 3, 4). Within CA2 and CA3, relatively less pyramidal cell loss was evident, and stain was less dense. By comparison, no pyramidal
cell loss was apparent in the prosubiculum, and no stain was detected above background.

Based on these findings, hippocampal specimens from a second set of patients were prepared for ganglioside quantitation. As shown in Fig. 2, the CA1 region was dissected into two approximately equal areas. The area designated “A” coincides with the region associated with the most common pyramidal cell loss (Sommer’s sector). The area designated “B” was immediately adjacent and may include part of the prosubiculum where neuronal loss was less pronounced. Hippocampi from two patients and one normal autopsy were thus analyzed, and the results are shown in Table 2. The most striking differences were in the percentages of GD3. In A and B regions from the normal control, GD3 was 2.9 percent. By comparison, GD3 was significantly higher in region A than region B in the two patients. This difference corresponds to the location of the pyramidal cell loss which was distinct in region A of both patients, but not apparent in region B.

In addition to GD3, other consistent changes were evident in the ganglioside content

TABLE 1
Gangliosides from Hippocampus of Epilepsy Patients
Patient
1(P)
Total SA (µg/gdw)
GM1
GD3
GD1a
GD1b
GD2
GD1b

Gangliosides shown as percentage of total for each sample. Total sialic acid (SA) expressed as micrograms per gram dry weight. Samples from anterior (A) and posterior (P) regions of Patient 1 shown.
of hippocampal tissue from epileptic patients (refer to Tables 1 and 2). The level of GD4 was markedly lower in patient tissues and was inversely related to the level of GD3. GM1 appeared to decrease moderately. The percentages of GD2, GD2b, and GT1b were moderately elevated. Total ganglioside content within the tissue was markedly decreased in epileptic tissues. Most of these changes were noticeably evident in comparing sub-regions A and B from the two epileptic patients.

Immunocytochemical Localization

Based on immunocytochemical study of all patients' and control tissues, the distribution of GD3 associated with epilepsy was determined at the light microscopic level. In sections of patients' hippocampi, the overall intensity of GD3 immunoperoxidase stain varied from indistinct background levels to heavy localized deposits of reactivity. These qualitative variations correlated directly with the quantitative difference in GD3 levels determined by biochemical assay. No distinct stain was evident in hippocampus from normal tissue, and only moderate stain was present in sections

TABLE 2	Gangliosides from CA1 Region					
Tissue Region	Normal	Epilepsy Patient				
	A	B	A	B	A	B
Total SA (μg/gdw)	2,127	2,705	1,133	1,684	1,642	2,046
GM1	26.8	24.4	20.8	26.6	22.4	22.5
GD1	2.9	2.9	9.6	4.3	4.4	2.8
GD2a	41.2	43.2	26.9	28.7	29.1	34.6
GD2	2.1	2.2	4.2	4.8	2.1	2.4
GD2b	10.4	10.1	14.0	15.0	14.6	13.7
GT1b	11.6	11.8	15.7	12.8	17.2	15.9

Gangliosides shown as percentage of total for each sample. Location of regions "A" and "B" are illustrated in Fig. 2. Total sialic acid (SA) expressed as micrograms per gram dry weight.
from patients with low levels of GD3 increase. In cases of major increases of GD3, a distinct and characteristic immunostaining pattern was evident. Since the immunocytochemical localization and quantitative analyses were performed independently with blind controls, these results indicated that the immunocytochemical localization method reliably reflects the changes in GD3 associated with the epileptic tissue. Whether the endogenous GD3 present in normal hippocampus may be masked to immunodetection or distributed relatively uniformly was not determined.

Despite the variation in stain intensity, a consistent pattern of localization was observed. In most cases, dense immunoperoxidase stain was localized in the subgranular layer (SGL) of the dentate and in parts of the stratum radiatum (SR) (Figs. 3 and 4). Lighter stain was apparent in adjacent regions of the stratum moleculare (SM). Within these regions, immunodetectable GD3 appeared in small, broadly scattered, punctate structures and in stellate cells that were identified by location, shape, and size as astrocytes (Fig. 5).
Astrocytes stained by anti-GFAP were found throughout normal hippocampal tissue in patterns distinct for each area. For example, stellate astrocytes were located in the stratum moleculare (Fig. 6D). Within the dentate layer, cell bodies of large astrocytes were located in the subgranular layer, and many of their processes extended into the granule cell layer. In areas of neuronal loss, a massive increase in GFAP-positive processes was found (Fig. 6). The dense matrix of astrocytic processes in these sclerotic areas obscured the identification and morphology of individual astrocytes. Areas of astrocyte proliferation coincided in large part with the distribution of GD$_{3}$ associated with epilepsy (Fig. 6).

DISCUSSION

The present study shows that increased levels of GD$_{3}$ are present within localized regions of the hippocampal formation of epileptic patients. The amount of GD$_{3}$ varied widely between patients and is correlated in part with the degree of pyramidal cell death. Immunocytochemically detectable GD$_{3}$ is seen in dispersed punctate structures and associated with astrocytes. These findings support previous studies which indicate that GD$_{3}$ is associated with neural degeneration and accompanying gliosis [28].

One important question is whether the localized increase of GD$_{3}$ is a consequence or, rather, a causative factor of epilepsy. It is known that GD$_{3}$, as a divalent anionic glycolipid, binds calcium with high affinity [34,35]. An abnormal accumulation of GD$_{3}$ in neural membranes may increase the local concentration of extracellular calcium, thereby altering a variety of critical homeostatic balances, and promote a hyperexcitable state. Based on the present positive finding, further experiments are being conducted on kindled cats as an experimental model. Initial results show an accumulation of GD$_{3}$ in similar regions of the experimentally induced “epileptic” cat hippocampus [Holly JA, et al: unpublished results].

Other questions arising from this study include the ultrastructural distribution of GD$_{3}$ in normal and epileptic hippocampi. If GD$_{3}$ is involved in promoting neuronal hyperexcitability, then it should be distributed in association with neuronal membranes. The GD$_{3}$-positive punctate structures in epileptic tissue are similar in size to focal synapses and may represent astrocytic processes covering junctional contacts.

Also unknown is the distribution of GD$_{3}$ in the normal hippocampus. In the normal human hippocampus assayed, GD$_{3}$ was 2.9 percent of the gangliosides. Despite this
substantial level of GD3 in normal tissue, immunocytochemical localization revealed no distinct stain above background. Similarly, other immunocytochemical studies of GD3 localization have been unable to show distinct localization in the adult brain of mice, despite its known biochemical presence [28,36]. GD3 has been shown to accumulate in the plasma membrane of oligodendrocytes during development [37]. Perhaps endogenous GD3 in normal adult tissue is masked from immunodetection.

The majority of immunodetectable GD3 associated with epilepsy was localized in two zones: the stratum radiatum of CA1, and the subgranular layer of the dentate. Neuronal death accompanying epilepsy is most common in CA1 and was clearly associated with increased levels of GD3 in this region. However, in most cases of epilepsy, relatively little neuronal death is found in the dentate granule cell layer or in CA4, which border the subgranular layer [22–25]. And yet, without substantial local neuronal death, the subgranular layer had increased levels of GD3. Thus, GD3 accumulation within the hippocampus of epileptics may signify more than simply the presence of reactive astrocytes in zones of neuronal degeneration.

It is tempting to suggest that many forms of epilepsy are caused by an initial trauma leading to the generation of reactive astrocytes and accumulation of GD3. The high
affinity of G_{D3} for calcium results in excessive calcium-dependent neural activities, which may include increases in transmitter release and protein phosphorylation. A cycle of neuronal hyperactivity and death followed by proliferation of G_{D3}-positive reactive glia may perpetuate the cycle.

Although speculative, this scheme is consistent with several lines of morphological and physiological evidence regarding temporal lobe epilepsy. Special attention is directed to the subgranular layer of the dentate where G_{D3} increases have been found in both epileptic human and kindled cat hippocampi. The dentate granule cells supply a major excitatory input into the hippocampus, the Schaffer collaterals, which have long been considered a primary candidate in promoting hippocampal hyperexcitability [38]. A dense layer of astrocytic cell bodies is present in the subgranular layer, and many of their processes are in close proximity to granule cell bodies and axons [39,40]. It is known that the principal neural transmitter of granule cells is glutamate, and that pharmacological agents which block glutamate activity inhibit ictal activity [41,42]. In addition, the injection of glutamate has been shown to cause neuronal death and gliosis, which is typical of epileptic hippocampal sclerosis [43]. Calcium has been implicated in epileptogenesis [44,45], and certain anticonvulsant drugs inhibit calcium-dependent protein phosphorylation [46]. Notably, Ca/calmodulin-dependent protein kinase is localized preferentially in the hippocampus and appears particularly abundant in the dentate [47]. In vitro experiments have shown that gangliosides can enhance Ca$^{++}$/calmodulin protein phosphorylation [48]. In conjunction with this process, long-term changes occur in Ca$^{++}$/calmodulin phosphorylation activity of kindled rat hippocampi [49]. The present results support this scheme, although other interpretations are possible. Future experiments, such as localized injections of G_{D3}, are planned to test the proposed G_{D3} mechanisms of epilepsy directly.

ACKNOWLEDGEMENTS

We thank Drs. N. DeLanerolle, C. Greer, J. Kim, J. Partington, and R. Robins for their continued input in this project. In addition, Dr. Kim helped provide the autopsy specimens, and Dr. Partington is collaborating on the kindled cat studies.

This work was supported by USPHS Grants NS 06208, NS 11853 and NS 23102.

REFERENCES

1. Johnston D, Brown TH: The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons. Ann Neurol 16(Suppl):S65–S71, 1984
2. Ledeen RW: Biology of gangliosides: Neuirtogenie and neuronotropie properties. J Neurosci Res 12:147–159, 1984
3. Ledeen RW: Gangliosides. In Handbook of Neurochemistry, 2nd Edition. Edited by A Lajtha, New York, Plenum, 1983, pp 41–88
4. Ando S: Gangliosides in the nervous system. Neurochem Intern 5:507–537, 1983
5. Fishman PH: Role of membrane gangliosides in the binding and action of bacterial toxin. J Membrane Biol 69:85–97, 1982
6. Hakomori S-I: Glycosphingolipids in cellular interactions, differentiation and oncogenesis. Ann Rev Biochem 50:733–761, 1981
7. Ledeen RW, Yu RK, Rapport MM, Suzuki K: Ganglioside Structure, Function and Biomedical Potential. New York, Plenum 1984
8. Yu RK, Iqbal K: Sialosylgalactosylceramide as a specific marker for human myelin and oligodendroglia: Gangliosides of human myelin, oligodendroglia and neurons. J Neurochem 32:293–300, 1979
9. Ledeen RW, Yu RK, Eng LF: Gangliosides of human myelin: sialosylgalactosylceramide G7 as a major component. J Neurochem 21:829–839, 1973
10. Seyfried TN, Yu RK: Cellular localization of gangliosides in mouse cerebellum. Analysis using
neurological mutants. In Ganglioside Structure, Function and Biomedical Potential. Edited by RW Leeden, RK Yu, MM Rapport, K Suzuki, New York, Plenum, 1984, pp 169–181.

11. Irwin LN, Irwin CC: Developmental changes in ganglioside composition of hippocampus, retina and optic tectum. Dev Neurosci 2:129–138, 1979

12. Seyfried TN, Miyazawa N, Yu RK: Cellular localization of gangliosides in mouse cerebellum. Analysis using weaver mutant. J Neurochem 41:491–505, 1983

13. Yusuf HKM, Dickerson JW: Disialoiganglioside GD1a of rat brain subcellular particles during development. Biochem J 174:655–657, 1978

14. Seyfried TN, Bernard DJ, Yu RK: Cellular localization of gangliosides in the developing mouse cerebellum: Analysis using the staggerer mutant. J Neurochem 43:1152–1162, 1984

15. Seyfried TN, Miyazawa N, Yu RK, Lai YL: Retinal gangliosides in RCS mutant rats. J Neurochem 39:277–279, 1982.

16. Yu RK, Ueno K, Glaser GH, Tourtellotte WW: Lipid and protein alterations of spinal cord and cord myelin of multiple sclerosis. J Neurochem 39:464–477, 1982

17. Yohe HC, Ueno K, Chang N-C, Glaser GH, Yu RK: Incorporation of N-acetylmannosamine into rat brain subcellular gangliosides: effect of pentylenetetrazol-induced convulsions on brain gangliosides. J Neurochem 34:560–568, 1980

18. Yu RK, Glaser GH: Possible role of gangliosides in epilepsy: Effect of epileptic seizure on cerebral gangliosides. Trans Am Neurol Assoc 100:261–263, 1975

19. Seyfried TN, Glaser GH, Yu RK: Cerebral, cerebellar, and brain stem gangliosides in mice susceptible to audiogenic seizures. J Neurochem 31:21–27, 1978

20. Winter E, Bernheimer H: Brain gangliosides in drug-induced status epilepticus. J Neurochem 24:591–592, 1975

21. Wisler KE, Tews JK, Stone WE: Cerebral amino acids and lipids in drug-induced status epilepticus. J Neurochem 15:215–220, 1968

22. Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Crandall PH: Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation. Epilepsia 25:729–740, 1984.

23. Babb TL, Lieb JP, Brown WJ, Pretorius J, Crandall PH: Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 25:721–278, 1984

24. Dam AM: Hippocampal neuron loss in epilepsy and after experimental seizures. Acta Neurol Scand 66:601–642, 1982

25. Meldrum BS, Brierley JB: Neuronal loss and gliosis in the hippocampus following repetitive epileptic seizures induced in adolescent baboons by allylglycine. Brain Res 48:361–365, 1972

26. Yu RK, Maneulidis EE: Ganglioside alterations in guinea pig brains at the end stages of experimental Creutzfeldt-Jakob disease. J Neuro Sci 35:15–23, 1978

27. Seyfried TN, Yu RK: Ganglioside G\(_{\text{D3}}\): Structure, cellular distribution, and possible function. Molec Cell Biochem 68:3–10, 1985

28. Goldman JE, Hirano M, Yu RK, Seyfried TN: G\(_{\text{D3}}\) ganglioside is a glycolipid characteristic of immature neuroectodermal cells. J Neuroimmunol 7:179–192, 1984

29. Carubia JM, Yu RK, Macala LJ, Kirkwood JM, Varga JM: Gangliosides of normal and neoplastic human melanocytes. Biochem Biophys Res Commun 120:500–504, 1984

30. Pollen DA, Trachtenberg MC: Neuroglia: gliosis and focal epilepsy. Science 167:1252–1253, 1970

31. Ledeen RW, Yu RK: Ganglioside structure, isolation and analysis. Methods Enz 83:139–191, 1982

32. Ando S, Chang N-C, Yu RK: High-performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species. Anal Biochem 89:437–450, 1978

33. Pukel CJ, Lloyd KO, Travassos LR, Dippold WG, Oetggen HG, Old LJ: GD3, a prominent ganglioside of human melanoma. Detection and characterization by mouse monoclonal antibody. J Exp Med 155:1133–1147, 1982

34. Behr J-P, Lehn J-M: The binding of divalent cations by purified gangliosides. FEBS Lett 31:297–300, 1973

35. Abramson MB, Yu RK: Zaby V: Ionic reactions of brain gangliosides. Biochem Biophys Acta 280:365–372, 1972

36. LeVine SM, Seyfried TN, Yu RK, Goldman JE: Immunocytochemical localization of G\(_{\text{D3}}\) ganglioside to astrocytes in murine cerebellar mutants. Brain Res 374:260–269, 1986

37. Kim SU, Moretto G, Lee V, Yu RK: Neuroimmunology of gangliosides in human neurons and glial cells in culture. J Neurosci 15:303–321, 1986

38. Eccles JC: Calcium in long-term potentiation as a model for memory. Neurosci 10:1071–1081, 1983
39. Ramon y Cajal S: The Structure of Ammon’s Horn. Translated by LM Kraft. Springfield, IL, CC Thomas Publisher, 1958
40. Eckenhoff MF, Rakic P: Radial organization of the hippocampal dentate gyrus: A golgi, ultrastructural, and immunocytochemical analysis in the developing Rhesus monkey. J Comp Neurol 223:1–21, 1984
41. Chapman AG, Hart GP, Meldrum BS, Turski L, Watkins JC: Anticonvulsant activity of two novel piperazine derivatives with potent kainate antagonist activity. Neurosci Letters 55:325–330, 1985
42. Peterson DW, Collins JF, Brandford HF: The kindled amygdala model of epilepsy: anticonvulsant action of amino acid antagonists. Brain Res 275:169–172, 1983
43. Sloviter RS, Dempster DW: “Epileptic” brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine. Brain Res Bull 15:39–60, 1985
44. Kuhnt U, Mihaly A, Joo F: Increased binding of calcium in the hippocampal slice during long-term potentiation. Neurosci Letters 53:149–154, 1985
45. Wadman WJ, Heinemann U, Konnerth A, Neuhaus S: Hippocampal slices of kindled rats reveal calcium involvement in epileptogenesis. Exp Brain Res 57:404–407, 1985
46. DeLorenzo RJ: Calmodulin systems in neuronal excitability: A molecular approach to epilepsy. Ann Neurol 16(Suppl):S104-S114, 1984
47. Erondu NE, Kennedy MB: Regional distribution of type II Ca²⁺/calmodulin-dependent protein kinase in rat brain. J Neurosci 5:3270–3277, 1985
48. Goldenring JR, Otis LC, Yu RK, DeLorenzo RJ: Calcium/ganglioside-dependent protein kinase activity in rat brain membrane. J Neurochem 44:1229–1234, 1985
49. Wasterlain CG, Farber DB: Kindling alters the calcium/calmodulin-dependent phosphorylation of synaptic plasma membrane proteins in rat hippocampus. Proc Natl Acad Sci USA 81:1253–1257, 1984