Hardness of Vertex Deletion and Project Scheduling*

Ola Svensson
EPFL, Switzerland
ola.svensson@epfl.ch

May 1, 2014

Abstract

Assuming the Unique Games Conjecture, we show strong inapproximability results for two natural vertex deletion problems on directed graphs: for any integer $k \geq 2$ and arbitrary small $\epsilon > 0$, the Feedback Vertex Set problem and the DAG Vertex Deletion problem are inapproximable within a factor $k - \epsilon$ even on graphs where the vertices can be almost partitioned into k solutions. This gives a more structured and therefore stronger UGC-based hardness result for the Feedback Vertex Set problem that is also simpler (albeit using the “It Ain’t Over Till It’s Over” theorem) than the previous hardness result.

In comparison to the classical Feedback Vertex Set problem, the DAG Vertex Deletion problem has received little attention and, although we think it is a natural and interesting problem, the main motivation for our inapproximability result stems from its relationship with the classical Discrete Time-Cost Tradeoff Problem. More specifically, our results imply that the deadline version is NP-hard to approximate within any constant assuming the Unique Games Conjecture. This explains the difficulty in obtaining good approximation algorithms for that problem and further motivates previous alternative approaches such as bicriteria approximations.

1 Introduction

Many interesting problems can be formulated as that of finding a large induced subgraph satisfying a desired property of a given (directed) graph. One of the most well studied such problems is the Feedback Vertex Set (FVS) problem where the property is acyclicity, i.e., given a directed graph $G = (V, E)$ we wish to delete the minimum number of vertices so that the resulting graph is acyclic. Another example is the DAG Vertex Deletion (DVD) problem, where we are given an integer k and a directed acyclic graph and we wish to delete the minimum number of vertices so that the resulting graph has no path of length k.

The FVS problem and the related Feedback Arc Set problem was shown to be NP-complete already in Karp’s seminal paper [9] and there is a long history of approximation algorithms for these problems. Leighton and Rao [13] first gave a $O(\log^2 |V|)$-approximation algorithm. Seymour [16] improved the approximation guarantee by showing that a certain linear program approximates the value within a factor $O(\log |V| \log \log |V|)$. Seymour’s arguments were then generalized by Even et al. [5] to obtain the best known approximation algorithms achieving a factor $O(\log |V| \log \log |V|)$ even in weighted graphs.

*This research was supported by Grant 228021-ECCSciEng of the European Research Council.

1For notational convenience, we shall measure the length of a path in terms of the number of vertices it contains instead of the number of edges.
Motivated by certain VLSI design and communication problems, Paik et al. [15] considered the DVD problem and showed it to be NP-complete on general graphs and polynomial time solvable on series-parallel graphs. One can also see that DVD for a fixed k is a special case of the Vertex Cover problem on k-uniform hypergraphs and has a fairly straightforward k-approximation algorithm.

In comparison to FVS, the DVD problem has received little attention and, although we think it is a natural problem, our main motivation for studying its approximability comes from its relationship (that we prove in Section 5) with the classical deadline version of the project scheduling problem known as the Discrete Time-Cost Tradeoff problem. Informally (see Section 5 for a formal definition of the Deadline problem), this is the problem where we are given a deadline and a project consisting of tasks related by precedence constraints, and the time it takes to execute each task depends, by a given cost function, on how much we pay for it. The objective is to minimize the cost of executing all the tasks in compliance with the precedence constraints so that they all finish within the given deadline. Due to its obvious practical relevance, the problem has been studied in various contexts over the last 50 years (see the paper [11] by Kelly and Walker for an early reference). Fulkerson [6] and Kelley [10] obtained polynomial time algorithms if all cost functions are linear. In contrast, the problem becomes NP-hard for arbitrary cost functions [3] and there is even no known constant factor approximation algorithm in the general case. However, better (approximation) algorithms have been obtained for special cases. For example, Grigoriev and Woeginger [7] gave polynomial time algorithms for special classes of precedence constraints and one of several algorithms by Skutella [17] is a bicriteria approximation that, for any $\mu \in (0, 1)$, approximates the Deadline problem within a factor $1/(1 - \mu)$ if the deadline is allowed to be violated by a factor $1/\mu$.

In summary, there are no known constant approximation algorithms for FVS, DVD, and the Deadline problem although few strong inapproximability results are known. The best known NP-hardness of approximation results follow from the fact that they are all as hard to approximate as Vertex Cover which is NP-hard to approximate within a factor 1.3606 [4]. It is indeed easy to see that Vertex Cover is a special case of FVS and DVD, and Grigoriev and Woeginger [7] gave an approximation-preserving reduction from Vertex Cover to the Deadline problem. If we assume the Unique Games Conjecture (UGC) [12], our understanding of the approximability of FVS becomes significantly better: the hardness of approximation result for Maximum Acyclic Subgraph by Guruswami et al. [8] implies that it is NP-hard to approximate FVS within any constant factor assuming the UGC. However, the results in [8] use very sophisticated techniques that are not known to imply a similar hardness for DVD and the Deadline problem.

Even though the starting motivation of this work was to better understand the approximability of the Deadline problem (and DVD), the techniques that we develop also lead to a stronger UGC-based hardness result for FVS: similar to the recent results for Vertex Cover on k-uniform hypergraphs by Bansal and Khot [1, 2], we show that, for any integer $k \geq 2$ and arbitrarily small $\epsilon > 0$, there is no $k - \epsilon$-approximation algorithm for FVS even on graphs where the vertices can be almost partitioned into k feedback vertex sets. Our reduction is also much simpler than the one in [8] (albeit using the “It Ain’t Over Till It’s Over” theorem) but is tailored for FVS and does not yield any inapproximability result for the Maximum Acyclic Subgraph problem. More importantly, our techniques also lead to an analogous result for the DVD problem (and thereby the Deadline problem). Formally, our results for the considered vertex deletion problems can be stated as follows.
Theorem 1.1 Assuming the Unique Games Conjecture, for any integer \(k \geq 2 \) and arbitrary constant \(\epsilon > 0 \), the following problems are \(\text{NP} \)-hard:

FVS: Given a graph \(G(V,E) \), distinguish between the following cases:

- **(Completeness):** there exist disjoint subsets \(V_1, \ldots, V_k \subset V \) satisfying \(|V_i| \geq \frac{1-\epsilon}{k} |V| \) and such that a subgraph induced by all but one of these subsets is acyclic.
- **(Soundness):** every feedback vertex set has size at least \((1-\epsilon)|V| \).

DVD: Given a DAG \(G(V,E) \), distinguish between the following cases:

- **(Completeness):** there exist disjoint subsets \(V_1, \ldots, V_k \subset V \) satisfying \(|V_i| \geq \frac{1-\epsilon}{k} |V| \) and such that a subgraph induced by all but one of these subsets has no path of length \(k \).
- **(Soundness):** every induced subgraph of \(\epsilon |V| \) vertices has a path of length \(|V|^{1-\epsilon} \).

Note that in the completeness cases, letting \(V' = V \setminus (V_1 \cup \cdots \cup V_k) \), the sets \(V'_i \cup V_i \) for \(i = 1, \ldots, k \) are almost disjoint solutions of size at most \((\frac{1}{k} + \epsilon)|V| \) each. In contrast, any solution basically needs to delete all vertices in the soundness case (even to avoid paths of length \(|V|^{1-\epsilon} \) for DVD).

When proving UGC-based inapproximability results, the main task is usually to design “gadgets” of the considered problems that simulate a so-called dictatorship test. Once we have such “dictatorship gadgets”, the process of obtaining UGC-based hardness results often follows from (by now) fairly standard arguments. In particular, the main ideas needed for our reductions leading to Theorem 1.1 are already present in the design of the gadgets. We have therefore chosen to present those gadget constructions with less cumbersome notation in Section 3 and the reductions from Unique Games can be found in Section 4.

As alluded to above, our main interest in DVD stems from its relationship with the Deadline problem. More specifically, in Section 5 we give an approximation-preserving reduction from DVD to the Deadline problem that combined with Theorem 1.1 yields:

Theorem 1.2 Conditioned on the Unique Games Conjecture, for every \(C > 0 \), it is \(\text{NP} \)-hard to find a \(C \)-approximation to the Deadline problem.

This explains the difficulty in obtaining good approximation algorithms for the Deadline problem and also further motivates alternative approaches such as the bicriteria approach by Skutella [17] that approximates the Deadline problem within a constant if the deadline is allowed to be violated by a constant factor.

2 Preliminaries

2.1 Low Degree Influence and “It Ain’t Over Till It’s Over” Theorem

Let \(|k| = \{0, 1, \ldots, k-1\} \). When analyzing our hardness reductions, we shall use known properties regarding the behavior of functions of the form \(f : [k]^R \to \{0, 1\} \) depending on whether they have influential co-ordinates. Similar to [14 Section 3], we define the influence of the \(i \)-th co-ordinate by

\[
\text{Infl}_i(f) = \mathbb{E}_x[\text{Var}(f)|x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_R].
\]

We note that if \(f : \{-1,1\}^R \to \{-1,1\} \) then this definition coincides with the intuitive expression \(\text{Pr}_x[f(x_1, \ldots, x_i, \ldots, x_R) \neq f(x_1, \ldots, -x_i, \ldots, x_R)] \).
It is well known that if we let \(f = \sum_\phi \hat{f}(\phi) X_\phi \) be the multi-linear representation of \(f \) (where, analogous of the standard Fourier representation, the characters \((X_\phi)_{\phi \in [k]^R} \) define an orthonormal basis of the vector space of all functions \([k]^n \rightarrow \mathbb{R}\)) then the influence can also be expressed as

\[
\text{Infl}_i(f) = \sum_{\phi: \phi_i \neq 0} \hat{f}^2(\phi),
\]

which motivates the following definition of the degree \(d \)-influence of the \(i \)-th co-ordinate:

\[
\text{Infl}_i^d(f) = \sum_{\phi: \phi_i \neq 0, |\phi| \leq d} \hat{f}^2(\phi).
\]

As we shall not work directly with these definitions or with the multi-linear representation, we refer the reader to [14] for the precise definitions and cut the discussion short by mentioning the property of low degree influence that shall be crucial to us (which follows from that \(\sum_\phi \hat{f}^2(\phi) = \mathbb{E}_x[f(x)^2] \leq 1 \)).

Observation 2.1 For a boolean function \(f : \{0, 1\}^R \rightarrow \{0, 1\} \), the sum of all degree \(d \)-influences is at most \(d \).

We shall now introduce a simplified version of the “It Ain’t Over Till It’s Over” theorem that is sufficient for the applications in this paper. The first proof was given by Mossel et al. [14] and a more combinatorial proof of a simplified version (very similar to the one used here) was given by Bansal and Khot [1] who used it to prove tight inapproximability results for Vertex Cover and a classical single machine scheduling problem. In fact many of our ideas are inspired from [1]. For \(x \in [k]^R \) and a subsequence \(S_\epsilon = (i_1, \ldots, i_\epsilon R) \) of \(\epsilon R \) not necessarily distinct indexes in \([R]\), let

\[
C_{x,S_\epsilon} = \{ z \in [k]^R : z_j = x_j \ \forall j \notin S_\epsilon \}
\]

denote the sub-cube defined by fixing the co-ordinates not in \(S_\epsilon \) according to \(x \). Let also \(f(C_{x,S_\epsilon}) \equiv 0 \) denote the expression that \(f \) is identical to 0 on the sub-cube \(C_{x,S_\epsilon} \).

Theorem 2.2 For every \(\epsilon, \delta > 0 \) and integer \(k \), there exists \(\eta > 0 \) and integer \(d \) such that any \(f : [k]^R \rightarrow \{0, 1\} \) that satisfies

\[
\mathbb{E}[f] \geq \delta \quad \text{and} \quad \forall i \in [R], \text{Infl}_i^d(f) \leq \eta,
\]

has

\[
\Pr_{x,S_\epsilon} [f(C_{x,S_\epsilon}) \equiv 0] \leq \delta.
\]

Here and throughout the paper, the probability over \(x, S_\epsilon \) is such that \(x \) and \(S_\epsilon \) are taken independently and uniformly at random. When \(\epsilon \) is clear from the context we often also abbreviate \(S_\epsilon \) by \(S \). Note that the theorem says that a reasonably balanced function with no low degree influential co-ordinates has very low probability to be identical to 0 over the random choice of sub-cubes. In contrast, it is easy to see that a dictatorship function (on the boolean domain) \(f(x) = x_s \), for some \(s \), has \(\Pr_{x,S_\epsilon} [f(C_{x,S_\epsilon}) \equiv 0] = \Pr_{x,S_\epsilon} [f(C_{x,S_\epsilon}) \equiv 1] \geq 1/2 - \epsilon \). It is this drastic difference that we will exploit in our hardness reductions.
2.2 Unique Games Conjecture

An instance of Unique Games \(\mathcal{L} = (G(V,W,E), [R], \{\pi_{v,w}\}) \) consists of a regular bipartite graph \(G(V,W,E) \) and a set \([R]\) of labels. For each edge \((v,w) \in E\) there is a constraint specified by a permutation \(\pi_{v,w} : [R] \mapsto [R] \). The goal is to find a labeling \(\rho : (V \cup W) \mapsto [R] \) so as to maximize \(\text{val}(\rho) := \Pr_{e \in E}[\rho \text{ satisfies } e] \), where a labeling \(\rho \) is said to satisfy an edge \(e = (v,w) \) if \(\rho(v) = \pi_{v,w}(\rho(w)) \). For a Unique Games instance \(\mathcal{L} \), we let \(\text{OPT}(\mathcal{L}) = \max_{\rho : (V \cup W) \mapsto [R]} \text{val}(\rho) \). The now famous Unique Games Conjecture that has been extensively used to prove strong hardness of approximation results can be stated as follows.

Conjecture 2.3 ([12]) For any constants \(\zeta, \gamma > 0 \), there is a sufficiently large integer \(R = R(\zeta, \gamma) \) such that, for Unique Games instances \(\mathcal{L} \) with label set \([R]\) it is NP-hard to distinguish between:

- (Completeness): \(\text{OPT}(\mathcal{L}) \geq 1 - \zeta \).
- (Soundness): \(\text{OPT}(\mathcal{L}) \leq \gamma \).

3 Dictatorship Gadgets for Vertex Deletion Problems

We give fairly simple gadgets of the considered vertex deletion problems that informally corresponds to a dictatorship test in the following sense: (Completeness:) any dictatorship function \(f : [k]^R \mapsto [k] \) (defined by \(f(x) = x_s \) for some \(s \in [R] \)) corresponds to a good solution whereas (Soundness:) any non-trivial solution corresponds to a function \(f : [k]^R \mapsto \{0,1\} \) with a high influence co-ordinate. By fairly standard arguments, these gadgets are then used in Section 4 to obtain analogous hardness results assuming the Unique Games Conjecture.

Throughout this section, we fix \(k \) to be an integer, \(\epsilon, \delta > 0 \) to be arbitrarily small constants, and let \(\eta \) and \(d \) be as in Theorem 2.2 (depending on \(k, \epsilon \) and \(\delta \)).

3.1 Feedback Vertex Set

We shall here describe a graph \(G = (V,E) \) that naturally corresponds to a dictatorship test in the following sense:

- (Completeness:) A dictatorship function partitions the vertex set into subsets \(V', V_0, \ldots, V_{k-1} \) satisfying \(V_j \geq \frac{1-\epsilon}{k}|V|, |V'| \leq \epsilon|V| \), and for \(j \in [k] \) the graph obtained by deleting \(V' \cup V_j \) is acyclic.
- (Soundness:) Any feedback vertex set that deletes less than \((1-2\delta)|V| \) vertices corresponds to a function \(f : [k]^R \mapsto \{0,1\} \) with a co-ordinate \(i \) so that \(\text{Infl}_i(f) > \eta \).

3.1.1 Dictatorship Gadget

To make the analysis more intuitive, it will be convenient to first present a gadget that consists of two types of vertices that we refer to as bit-vertices and test-vertices and all arcs are between bit- and test-vertices:

- There is a bit-vertex \(b_x \) of weight \(\infty \) for every \(x \in [k]^R \).
- There is a test-vertex \(t_{x,S} \) of weight 1 for every \(x \in [k]^R \) and every sequence \(S = (i_1, \ldots, i_{\epsilon R}) \in [R]^{\epsilon R} \) of \(\epsilon R \) not necessarily distinct indices.
\begin{itemize}
 \item The arc incident to a test-vertex \(t_{x,S} \) are the following. There is an arc \((b_z, t_{x,S})\) if \(z \in C_{x,S} \) and an arc \((t_{x,S}, b_z)\) if \(z \in C_{x,S}^\oplus \), where

\[C_{x,S}^\oplus = \{ z \oplus 1 : z \in C_{x,S} \} \]

(here \(\oplus \) denotes addition mod \(k \)).

As the bit-vertices have weight \(\infty \), they will never be deleted in an optimal solution. We can therefore obtain an unweighted graph \(G \) of same optimal value by omitting the bit-vertices and having an arc \((t_{x,S}, t_{x',S'})\) between two test vertices if there exists a bit-vertex \(b_z \) so that \((t_{x,S}, b_z)\) and \((b_z, t_{x',S'})\). The vertex set of \(G \) will therefore correspond to the set \(T \) of test-vertices. The analysis of \(G \) therefore follows from proving that (completeness:) any dictatorship function partitions the test-vertices as required (Section 3.1.2) and (soundness:) that any solution that deletes less than a fraction \(1 - 2\delta \) of the test-vertices corresponds to a function with a co-ordinate of high influence (Section 3.1.3).

3.1.2 Completeness

We show that a dictatorship function \(f : [k]^R \mapsto [k] \) of index \(s \) naturally partitions the test-vertices into subsets \(T'_1, T'_0, \ldots, T'_{k-1} \) satisfying \(T'_j \geq \frac{1 - \epsilon}{k} |T|, |T'_1| \leq \epsilon |T| \), and such that the sets \(T'_j \cup T'_j \) for \(j \in [k] \) are almost disjoint feedback vertex sets of size at most \((\frac{1}{k} + \epsilon)|T| \) each.

As \(f(x) = x_s \), it partitions the bit-vertices in \(k \) equal sized sets

\[B_j = \{ b_x : f(x) = j \} \quad \text{for} \quad j \in [k]. \]

We say that a test-vertex \(t_{x,S} \) is good if \(s \not\in S \) and partition the good test-vertices into \(k \) equal sized sets

\[T_j = \{ t_{x,S} : s \not\in S \text{ and } f(x) = j \} \quad \text{for} \quad j \in [k]. \]

The sets are of equal size since they are partitioned according to \(x \) and whether a test-vertex is good only depends on \(S \). Furthermore, as at least a fraction \(1 - \epsilon \) of the test-vertices are good we have that \(|T'_j| \geq \frac{1 - \epsilon}{k} |T| \) for \(j \in [k] \) and therefore the remaining test-vertices in \(T' \) are at most \(\epsilon |T| \) many.

It remains to show that \(T'_j \cup T' \) defines a feedback vertex set for any \(j \in [k] \). The key observation is that \(T_j \) only have incoming edges from bit-vertices in \(B_j \) and outgoing edges to bit-vertices in \(B_j^\oplus \). Indeed, consider a test-vertex \(t_{x,S} \in T_j \) and an arc \((b_z, t_{x,S})\). By definition we have that \(z \in C_{x,S} \) and as \(S \) is good we have that \(f(z) = f(x) = j \), which implies that \(z \in B_j \). The exact same argument implies that \(t_{x,S} \) only has outgoing edges to \(B_j^\oplus \).

The graph obtained by deleting all bad test-vertices and one of the sets \(T_0, T_1, \ldots, T_{Q-1} \) is therefore acyclic as required.

3.1.3 Soundness

Let \(A \) be the last \(1/2 \) fraction of the bit-vertices according to a topological sort of the graph. Let \(f_A \) be the indicator function of \(A \). Note that a test-vertex \(t_{x,S} \) has incoming arcs from all bit-vertices in \(C_{x,S} \) and outgoing arcs to all bit-vertices in \(C_{x,S}^\oplus \). Therefore, if a test-vertex \(t_{x,S} \) is not deleted then we must have that either \(f_A \) is identical to 0 on \(C_{x,S} \) (if \(t_{x,S} \) is placed before the last bit-vertex for which \(f_A \) evaluates to 0) or identical to 1 on \(C_{x,S}^\oplus \) (if \(t_{x,S} \) is placed after the last bit-vertex for which \(f_A \) evaluates to 0) depending on where \(t_{x,S} \) is placed according to the topological sort.
As \(\mathbb{E}[f_A] = 1/2\), we have by Theorem 2.2 that if \(\text{Infl}_{i}^{A}(f_A) \leq \eta\) for all \(i \in [R]\) then
\[
\Pr_{x,S}[f(C_{x,S}) \equiv 0] \leq \delta
\]
and
\[
\Pr_{x,S}[f(C_{x,S}) \equiv 1] = \Pr_{x,S}[f(C_{x,S}) \equiv 1] = \Pr_{x,S}[(1 - f)(C_{x,S}) \equiv 0] \leq \delta.
\]

Therefore, if the solution does not correspond to a function with a co-ordinate of high low-degree influence it must have deleted at least a fraction \(1 - 2\delta\) of the test-vertices.

3.2 Dag Vertex Deletion Problem

We shall describe a directed acyclic graph (DAG) \(G = (V, E)\) that naturally corresponds to dictatorship test in the following sense:

- **(Completeness:)** A dictatorship function partitions the vertex set into subsets \(V', V_0, \ldots, V_{k-1}\) satisfying \(V_j \geq \frac{1-k^j}{k^j}|V|\), \(|V'| \leq \epsilon|V|\), and such that for \(j \in [k]\) the graph obtained by deleting \(V' \cup V_j\) has no path of length \(k\).

- **(Soundness:)** Any graph obtained by deleting less than \((1 - 6\delta)|V|\) vertices either has a path of length \(|V|^{1-\delta}\) or corresponds to a function \(f : [k]^R \mapsto \{0, 1\}\) with a co-ordinate \(i\) such that \(\text{Infl}_{i}^{A}(f) > \eta\).

3.2.1 Dictatorship Gadget

As in Section 3.1, it will be convenient to first present a gadget that consists of two types of vertices that we refer to as bit-vertices and test-vertices, and all edges will be between bit- and test-vertices:

- The bit-vertices are partitioned into \(L + 1\) bit-layers (\(L\) is selected below). Each bit-layer \(\ell = 0, \ldots, L\) contains a bit-vertex \(b_{x}^{\ell}\) of weight \(\infty\) for every \(x \in [k]^R\).

- Similarly, the test-vertices are partitioned into \(L\) test-layers. Each test-layer \(\ell = 0, \ldots, L - 1\) has a test-vertex \(t_{x,S}^{\ell}\) of weight 1 for every \(x \in [k]^R\) and every sequence of indices \(S = (i_1, \ldots, i_{eR}) \in [R]^eR\).

- The arcs are the following: there is an arc \((b_{x}^{\ell}, t_{x,S}^{\ell'})\) if \(\ell \leq \ell'\) and \(z \in C_{x,S}\), and there is an arc \((t_{x,S}^{\ell'}, b_{z}^{\ell})\) if \(\ell > \ell'\) and \(z \in C_{x,S}\).

- Finally, \(L\) is selected so as \(\delta L \geq |T|^{1-\delta}\), where \(T\) is the set of test-vertices.

Note that, as there are only arcs from a bit-layer \(\ell\) to a test-layer \(\ell'\) if \(\ell' \geq \ell\) and only arcs from a test-layer \(\ell'\) to a bit-layer \(\ell\) if \(\ell > \ell'\), the constructed graph is acyclic. Similar to the gadget for FVS, the bit-vertices can be omitted to obtain an unweighted graph \(G\) (with the set \(T\) of test-vertices as vertices) with the same optimal value by having an arc between two test-vertices if there was a path between them through one bit-vertex. Note that a path in \(G\) of length \(k\) is a path in the gadget that consists of \(k\) test-vertices. When arguing about the gadget, we will therefore say that a path has length \(k\) if it consists of \(k\) test-vertices.

Similarly to Section 3.1, the analysis of \(G\) follows from proving that (completeness:) any dictatorship function partitions the test-vertices as required (Section 3.1.2) and (soundness:) that any solution that deletes less than a fraction \(1 - 6\delta\) of the test-vertices either has a path of length \(|T|^{1-\delta}\) or corresponds to a function with a co-ordinate of high influence (Section 3.1.3).
3.2.2 Completeness

We show that a dictatorship function \(f : [k]^R \mapsto [k] \) of index \(s \) naturally partitions the test-vertices into subsets \(T'_1, T'_2, \ldots, T'_{k-1} \) satisfying \(T'_j \geq \frac{1-\delta}{k} |T|, |T'_j| \leq \epsilon |T| \), and such that for \(j \in [k] \) the graph obtained by deleting \(T'_j \cup T_j \) has no path of length \(k \).

This can be seen by the same arguments as in Section 3.1.2. Indeed if we “collapse” the different layers by identifying the different copies of bit- and test-vertices then the gadget constructed here is identical to the gadget in that section. We can therefore (by the arguments of Section 3.1.2), partition the bit-vertices into \(k \) equal sized sets \(B_0, B_1, \ldots, B_{k-1} \) and all but an \(\epsilon \) fraction of the test-vertices into \(k \) equal sized sets \(T_0, T_1, \ldots, T_{k-1} \) so that any test-vertex in \(T_j \) has only incoming arcs from bit-vertices in \(B_j \) and outgoing arcs to bit-vertices in \(B_{j+1} \).

Any \(j \in [k] \) therefore corresponds to a solution by removing an \(\epsilon \) fraction of the test-vertices (i.e., the set \(T'_j \)) and those test-vertices in \(T_j \).

3.2.3 Soundness

Before proceeding to the analysis it will be convenient to consider a different but equivalent formulation of the problem.

First, note that in any solution to DVD, i.e., a subgraph so that each path contains less than \(k \) test-vertices, we can find a coloring \(\chi \) (using for example depth-first search) that assigns a color in \(\{1, 2, \ldots, k\} \) to the bit-vertices with the property that, for each remaining test-vertex, the maximum color assigned to its predecessors is strictly less than the minimum color assigned to its successors. Similarly, any such coloring \(\chi \) can be turned into a solution to DVD by deleting those test-vertices, for which not all predecessors are assigned lower colors than all its successors. Furthermore, from the construction of the arcs, we can assume w.l.o.g that the coloring satisfies \(\chi(b^\ell_x) \leq \chi(b^\ell_x) \) if \(\ell \leq \ell' \).

From the above discussion, an equivalent formulation of DVD on the constructed instances is as follows: find a coloring \(\chi \) that assigns a color in \(\{1, 2, \ldots, k\} \) to each bit-vertex satisfying \(\chi(b^\ell_x) \leq \chi(b^\ell_x) \) if \(\ell \leq \ell' \) so as to minimize the number of unsatisfied test-vertices where a test-vertex \(t^\ell_x,S \) is said to be satisfied if

\[
\max_{z \in C^S_x, S} \chi(b^\ell_x) < \min_{z \in C^\oplus_x, S} \chi(b^{\ell+1}_x),
\]

that is all its predecessors are assigned lower colors than its successors.

It will also be convenient to consider the following lower bound on the colors assigned to most bit-vertices in each layer: define the color \(\chi(\ell) \) of a bit-layer \(\ell = 0, 1, \ldots, L \) as the maximum color that satisfies \(\Pr_x[\chi(b^\ell_x) \geq \chi(\ell)] \geq 1 - \delta \).

Now, with each test-layer \(\ell = 0, 1, \ldots, L-1 \) we associate the indicator function \(f^\ell : [k]^R \mapsto \{0, 1\} \) defined as follows

\[
f^\ell(x) = \begin{cases} 0 & \text{if } \chi(b^\ell_x) > \chi(\ell), \\ 1 & \text{otherwise}. \end{cases}
\]

The key observation for the soundness analysis is the following.

Claim 3.1 For \(\ell = 0, \ldots, L-1 \), assuming that \(\text{Infl}^d_f(f^\ell) \leq \eta \) for all \(i \in [R] \): if a fraction \(3\delta \) of the test-vertices of test-layer \(\ell \) are satisfied, then \(\chi(\ell) < \chi(\ell + 1) \).

Proof. As at least a fraction \(3\delta \) of the test-vertices of test-layer \(\ell \) are satisfied,

\[
\Pr_{x,S} \left[\max_{z \in C^S_x, S} \chi(b^\ell_x) < \min_{z \in C^\oplus_x, S} \chi(b^{\ell+1}_x) \right] \geq 3\delta.
\]
By the definition of $\chi(\ell)$ we have $\Pr_{x,S}[\chi(b^\ell_x) \geq \chi(\ell)] \geq 1 - \delta$ and therefore

$$\Pr_{x,S} \left[\chi(\ell) < \min_{z \in C_{x,S}} \chi(b^{\ell+1}_z) \right] = \Pr_{x,S} \left[f^\ell(C_{x,S}) \equiv 0 \right] \geq 2\delta.$$

As $\text{Infl}^i(f^\ell) \leq \eta$ for all $i \in [R]$, Theorem 2.2 implies that $E[f^\ell] < \delta$ and hence $\chi(\ell + 1) > \chi(\ell)$. \hfill \square

If a coloring satisfies more than a fraction 6δ of the test-vertices then at least a 3δ fraction of the test-layers are such that at least a fraction 3δ of the test-vertices of that layer are satisfied, which in turn by the preceding claim implies that either one of them corresponds to a function with a co-ordinate of high influence or $3\delta L$ many colors are needed (or equivalently the graph contains a path consisting of at least $3\delta L - 1 \geq \delta L \geq |T|^{1-\delta}$ test-vertices).

4 Hardness Assuming the Unique Games Conjecture

In order to turn our dictatorship gadgets into hardness proofs (assuming the Unique Games Conjecture), we need a more general "It Ain’t Over Till It’s Over" theorem that not only verifies that a given number of functions all are dictatorships but ideally they should also be dictators of the same co-ordinate. Again an even more general variant of the theorem follows from [14] and an easier proof of a very similar version to the case presented here can be found in [1].

Theorem 4.1 For every $\epsilon, \delta > 0$ and integer k, there exists $\eta > 0$ and integers t, d such that any collection of functions $f_1, \ldots, f_t : [k]^R \mapsto \{0,1\}$ that satisfies

$$\forall j, \mathbb{E}[f_j] \geq \delta \quad \text{and} \quad \forall i \in [R], \forall 1 \leq \ell_1 \neq \ell_2 \leq t, \min \left\{ \text{Infl}^i(f_{\ell_1}), \text{Infl}^i(f_{\ell_2}) \right\} \leq \eta,$$

has

$$\Pr_{x,S_t} \left[\bigwedge_{j=1}^t f_j(C_{x,S_t}) \equiv 0 \right] \leq \delta.$$

For the applications of this paper, the interesting implication of the above theorem can be formulated as follows: if $\Pr_{x,S_t} \left[\bigwedge_{j=1}^t f_j(C_{x,S_t}) \equiv 0 \right] > \delta$ for t fairly balanced functions then at least two of them must have a common influential co-ordinate.

In our (soundness) analyses, we associate a boolean function $f_w : \{0,1\}^R \mapsto \{0,1\}$ with each $w \in W$ of the considered Unique Games instance (in fact we shall, as in the dictatorship gadgets, use the domain $[k]^R$ but for simplicity we restrict this discussion to the binary case). We then use the preceding theorem to test whether t (or more) neighbors w_1, \ldots, w_t of a vertex $v \in V$ are "close to" consistent, i.e., f_{w_1}, \ldots, f_{w_t} are dictatorships on co-ordinates $\rho(w_1), \ldots, \rho(w_t)$ such that $\pi_{v,w_1}(\rho(w_1)) = \pi_{v,w_2}(\rho(w_2)) = \cdots = \pi_{v,w_t}(\rho(w_t))$. Indeed, on the one hand, if they are consistent then it is easy to see that

$$\Pr_{x,S_t} \left[\bigwedge_{j=1}^t f_{w_j} \circ \pi_{v,w_j}(C_{x,S_t}) \equiv 0 \right] \geq 1/2 - \epsilon,$$

and on the other hand (assuming f_{w_1}, \ldots, f_{w_t} are fairly balanced) if no two of them are "close to" consistent then Theorem 4.1 implies that

$$\Pr_{x,S_t} \left[\bigwedge_{j=1}^t f_{w_j} \circ \pi_{v,w_j}(C_{x,S_t}) \equiv 0 \right] \leq \delta,$$
where \(f_{w_j} \circ \pi_{v,w_j} (x) = f_{w_j}(x_{\pi_{v,w_j}(1)}, x_{\pi_{v,w_j}(2)}, \ldots, x_{\pi_{v,w_j}(R)}) \). Similar to the gadget reductions, it is this drastic difference that we exploit to obtain our hardness results.

For the reductions, it shall be convenient to let \(C_{x,S,v,w} \) denote the sub-cube \(C_{x,S,v,w} = \{ z : z_j = x_{\pi_{v,w}(j)} \forall j : \pi_{v,w}(j) \notin S \} \), i.e., the image of the sub-cube \(C_{x,S} \) via \(\pi_{v,w} \). Note that with this notation we have that

\[
\Pr_{x,S} \left[\bigwedge_{j=1}^{t} f_{w_j} \circ \pi_{v,w_j} (C_{x,S}) \equiv 0 \right] = \Pr_{x,S} \left[\bigwedge_{j=1}^{t} f_{w_j} (C_{x,S,v,w_j}) \equiv 0 \right]
\]

We now present the adaptations of the dictatorship gadgets for FVS and DVDP to obtain reductions from Unique Games in Sections 4.1 and 4.2, respectively. Throughout this section (as in Section 3), we fix \(k \) to be an integer, \(\epsilon, \delta > 0 \) to be arbitrarily small constants and let \(\eta, d, \) and \(t \) be as in Theorem 4.1 (depending on \(k, \epsilon \) and \(\delta \)).

4.1 Feedback Vertex Set

We prove the following theorem which clearly implies the FVS hardness stated in Theorem 1.1.

Theorem 4.2 Assuming the Unique Games Conjecture, for any integer \(k \geq 2 \) and arbitrary constants \(\epsilon, \delta > 0 \), given a directed graph \(G(V,E) \), distinguishing between the following cases is \(\text{NP-hard} \):

- **(Completeness):** there exist disjoint subsets \(V_1, \ldots, V_k \subset V \) satisfying \(\left| V_i \right| \geq 1 - 2 \epsilon k \left| V \right| \) and such that a subgraph induced by all but one of these subsets is acyclic.

- **(Soundness):** every induced subgraph of \(8 \delta \left| V \right| \) vertices contains a cycle.

We first present the reduction in the following subsection followed by the completeness (Lemma 4.3) and soundness (Lemma 4.4) analyses.

4.1.1 Reduction

We describe a reduction from Unique Games to FVS. Let \(L(G(V,W,E), [R], \{\pi_{v,w}\}_{(v,w) \in E} \) be a Unique Games instance. As in Section 3, the FVS instance consists of two types of vertices that we refer to as *bit-vertices* and *test-vertices* and all edges are between bit- and test-vertices.

- For every \(w \in W \) and \(x \in [k]^R \), there is a bit-vertex \(b_{w,x} \) of weight \(\infty \).

 In other words, each \(w \in W \) is replaced by a \(k \)-ary hypercube \([k]^R\) where each vertex has weight \(\infty \) so that none of them will ever be deleted in an optimal solution.

- For every \(v \in V \), \((w_1, \ldots, w_{2t}) \in N(v)^{2t}, x \in [k]^R \) and \(S = (i_1, i_2, \ldots, i_{tR}) \in [R]^{tR} \), we have a test vertex \(t_{x,S,v,w_1,\ldots,w_{2t}} \).

 - The arcs incident to a test-vertex \(t_{x,S,v,w_1,\ldots,w_{2t}} \) are the following. For \(j = 1, \ldots, 2t \),
 - there is an arc \((b_{w_j}z, t_{v,x,S,v,w_1,\ldots,w_{2t}}) \) if \(z \in C_{x,S,v,w_j} \),
 - and an arc \((t_{v,x,S,v,w_1,\ldots,w_{2t}}, b_{w_j,z}) \) if \(z \in C_{x,S,v,w_j}^\oplus = \{ z \oplus 1 : z \in C_{x,S,v,w_j} \} \).
As the bit-vertices have weight ∞, they are never deleted in an optimal solution and we can obtain an unweighted graph G (with the set T of test-vertices as vertices) with the same optimal value by having an arc between two test-vertices if there is a path between them through one bit-vertex. Theorem 4.2 therefore follows from proving that (i) we can partition the test-vertices as required in the completeness case (Lemma 4.3) and (ii) that we have to delete almost all test-vertices in the soundness case (Lemma 4.4).

4.1.2 Completeness

We prove the following.

Lemma 4.3 If there is a labeling ρ of the Unique Games instance L satisfying a $1 - \zeta$ fraction of the constraints then we can partition the test-vertices into subsets T', T_0, \ldots, T_k satisfying $T_j \geq \frac{1 - 2\epsilon}{k} |T|$, $|T'| \leq 2\epsilon |T|$, and for $j \in [k]$ the graph obtained by deleting $T' \cup T_j$ is acyclic.

Proof. Let ρ be such a labeling of the Unique Games instance. We now use ρ to partition the bit-vertices in k equal sized sets:

$$B_j = \{ b_w, x : w \in W \text{ and } x_{\rho(w)} = j \} \quad \text{for} \quad j \in [k].$$

We say that a test-vertex $t_{x, s, v, w_1, \ldots, w_2t}$ is good if (i) $\rho(v) \notin S$ and (ii) ρ satisfies all the edges $(v, w_1), (v, w_2), \ldots, (v, w_{2t})$. Note that property (i) holds with probability at least $1 - \epsilon$ and property (ii) holds with probability at least $1 - \zeta 2t$. Therefore, at least a fraction of $1 - 2\epsilon$ (for ζ small enough) of the test-vertices are good. As we did for the bit-vertices, we partition the test-vertices into k equal sized sets:

$$T_j = \{ t_{x, s, v, w_1, \ldots, w_2t} : t_{x, s, v, w_1, \ldots, w_2t} \text{ is good and } x_{\rho(v)} = j \} \quad \text{for} \quad j \in [k].$$

The sets are of equal size since they are partitioned according to x and whether a test-vertex is good only depends on S and v, w_1, \ldots, w_{2t}. Furthermore, since at least $(1 - 2\epsilon) |T|$ test-vertices are good we have that $|T_j| \geq \frac{1 - 2\epsilon}{k} |T|$ for $j \in [k]$ and the remaining test-vertices in T' are therefore at most $2\epsilon |T|$ many.

It remains to show that $T_j \cup T'$ defines a feedback vertex set for any $j \in [k]$. The key observation is that T_j only have incoming arcs from bit-vertices in B_j and outgoing arcs to bit-vertices in $B_{j\oplus 1}$. To see this, consider a test-vertex $t_{x, s, v, w_1, \ldots, w_2t}$ in T_j and let $(b_{w_1, z}, t_{x, s, v, w_1, \ldots, w_2t})$ be an arc. Then, by definition we have that $z \in C_{x, s, v, w_1}$. As $\pi_{v, w_1}(\rho(w_1)) = \rho(v) \notin S$,

$$x_{\rho(w_1)} = x_{\pi_{v, w_1}(\rho(w_1))} = x_{\rho(v)} = j,$$

and hence $b_{w_1, z} \in B_j$. The exact same argument also shows that all outgoing arcs from $t_{x, s, v, w_1, \ldots, w_2t}$ go to bit-vertices in $B_{j\oplus 1}$. We can therefore conclude that test-vertices in T_j have only incoming arcs from bit-vertices in B_j and outgoing arcs to bit-vertices in $B_{j\oplus 1}$.

By the key observation, we can obtain an acyclic graph by deleting all bad test-vertices and one of the sets T_0, \ldots, T_{k-1} which proves the lemma. \hfill \Box

4.1.3 Soundness

As we can choose the soundness parameter γ of the Unique Games Conjecture to be arbitrarily small the following lemma says that, in the soundness case, there is no feedback vertex set containing less than a $(1 - 8\delta)$ fraction of the test-vertices (or equivalently, any induced subgraph containing a 8δ fraction of the test-vertices contains a cycle).
Lemma 4.4 If the graph has a FVS containing less than a \((1 - 8\delta)\) fraction of the test-vertices, then the Unique Game instance has a labeling that satisfies at least a fraction \(\frac{\delta \eta}{\ell k^2}\) of the constraints.

Proof. Consider a topological sort \(\sigma : V \mapsto [n]\) of the graph obtained by deleting a FVS and assume that it contains at least a \(8\delta\) fraction of the test-vertices, i.e., if we let \(T\) be the set of remaining test-vertices then

\[
\Pr_{x,S,v,w_1,\ldots,w_{2t}}[t_x,S,v,w_1,\ldots,w_{2t} \in T] \geq 8\delta.
\]

We shall show that this implies that there is a labeling of \(L\) that satisfies at least a \(\frac{\delta \eta}{\ell k^2}\) fraction of the constraints.

With each \(w \in W\), we associate the indicator function \(f_w : [k]^R \mapsto \{0,1\}\) that takes value 0 for the first half of the bit-vertices corresponding to \(w\) (according to \(\sigma\)) and value 1 for the remaining half. We then define the set \(L[w]\) of candidate labels for every \(w \in W\) as:

\[
L[w] := \{i \in [R] : \text{Infl}_i^d(f_w) \geq \eta\}.
\]

By Observation 2.1 we have \(|L[w]| \leq d/\eta\).

Now, for every \(w \in W\), we define \(\rho(w)\) to be a random label from \(L[w]\) (if \(L[w]\) is empty we assign any label to \(w\)) and, for every \(v \in V\) we pick a random neighbor \(w \in N(v)\) and define \(\rho(v) = \pi_{v,w}(\rho(w))\). We shall now calculate a lower bound on the expected number of edges the labeling \(\rho\) satisfies.

We call a tuple \((v,w_1,\ldots,w_{2t})\) good if

\[
\Pr_{x,S}[t_x,S,v,w_1,\ldots,w_{2t} \in T] \geq 4\delta.
\]

Since \(|T|\) contains a \(8\delta\) fraction of the test-vertices we have that at least \(4\delta\) of the tuples are good. Consider such a good tuple \((v,w_1,\ldots,w_{2t})\) and let \(T_{v,w_1,\ldots,w_{2t}} = \{t_x,S,v,w_1,\ldots,w_{2t} \in T\}\). Suppose w.l.o.g. that

\[
\max_{f_{w_i}(x)=0} \sigma(b_{w_i,x}) < \max_{f_{w_i+1}(x)=0} \sigma(b_{w_i+1,x}) \quad \text{for } i = 1, 2, \ldots, 2t - 1.
\]

Then for a test-vertex \(t_x,S,v,w_1,\ldots,w_{2t}\) to be in \(T_{v,w_1,\ldots,w_{2t}}\) we must because of the arcs have

\[
f_{w_{i+1}}(C_{x,S,v,w_{i+1}}) \equiv \cdots \equiv f_{w_{2t}}(C_{x,S,v,w_{2t}}) \equiv 0
\]

if \(\sigma(t_x,S) \leq \max_{f_{w_i}(x)=0} \sigma(b_{w_i,x})\) and otherwise, if \(\sigma(t_x,S) > \max_{f_{w_i}(x)=0} \sigma(b_{w_i,x})\),

\[
f_{w_1}(C_{x,S,v,w_1}) \equiv \cdots \equiv f_{w_t}(C_{x,S,v,w_t}) \equiv 1.
\]

Therefore, one of these conditions must be satisfied by at least half of the test-vertices in \(T_{x,S,v,w_1,\ldots,w_{2t}}\), i.e., either

\[
\Pr_{x,S} \left[\bigwedge_{j=t+1}^{2t} f_{w_j}(C_{x,S,v,w_j}) \equiv 0 \right] \geq 2\delta
\]

or

\[
\Pr_{x,S} \left[\bigwedge_{j=1}^{t} f_{w_j}(C_{x,S,v,w_j}) \equiv 1 \right] = \Pr_{x,S} \left[\bigwedge_{j=1}^{t} (1 - f_{w_j})(C_{x,S,v,w_j}) \equiv 1 \right] \geq 2\delta.
\]

In either case, Theorem 4.1 implies that there exist \(j \in L[w_{\ell_1}]\) and \(j' \in L[w_{\ell_2}]\) for some \(1 \leq \ell_1 \neq \ell_2 \leq 2t\) such that \(\pi_{v,w_{\ell_1}}(j) = \pi_{v,w_{\ell_2}}(j')\).
We now follow the same argumentations as used in [1]. Overall, if we pick the tuple \((v, w_1, w_2, \ldots, w_{2t})\) at random and then \(w, w'\) at random from the set \(\{w_1, \ldots, w_{2t}\}\), then with probability at least \(4\delta\) the tuple is good, with probability \(1/(4t^2)\) we have \(w = w_{\ell_1}\) and \(w' = w_{\ell_2}\), and with probability \(1/(k^2/\eta^2)\), the labeling procedure defines \(j = \rho(w)\), \(j' = \rho(w')\). Hence

\[
\Pr_{v,w,w'}\left[\pi_{v,w}(\rho(w)) = \pi_{v,w'}(\rho(w'))\right] \geq \frac{4\delta\eta^2}{4t^2k^2},
\]

and (expected over the randomness of the labeling procedure)

\[
\Pr_{(v,w)}\left[\rho(v) = \pi_{v,w}(\rho(w))\right] \geq \frac{\delta\eta^2}{tk^2}.
\]

This shows that there exists a \(\rho\) that satisfies a fraction \(\delta\eta^2/2k^2\) of the constraints. \(\square\)

4.2 Dag Vertex Deletion Problem

We prove the following theorem which clearly implies the DVD hardness stated in Theorem 1.1.

Theorem 4.5 Assuming the Unique Games Conjecture, for any integer \(k \geq 2\) and arbitrary constants \(\epsilon, \delta > 0\), given a directed graph \(G(V, E)\), distinguishing between the following cases is \(\mathsf{NP}\)-hard:

- **(Completeness):** there exist disjoint subsets \(V_1, \ldots, V_k \subset V\) satisfying \(|V_i| \geq \frac{1-2\epsilon}{k}|V|\) and such that a subgraph induced by all but one of these subsets has no path of length \(k\).

- **(Soundness):** every induced subgraph of \(32\delta|V|\) vertices contain a path of length \(|V|^{1-\delta}\).

We first present the reduction in the following subsection followed by the completeness (Lemma 4.6) and soundness (Lemma 4.7) analyses.

4.2.1 Reduction

We describe a reduction from Unique Games to DVD. Let \(L(G(V, W, E), [R], \{\pi_{v,w}\}_{(v,w) \in E}\) be a Unique Games instance. As before, it will be convenient to present the DVD instance as it consists of two types of vertices that we refer to as **bit-vertices** and **test-vertices** and all edges are between bit- and test-vertices.

- The bit-vertices are partitioned into \(L + 1\) bit-layers (\(L\) is selected below). Each bit-layer \(\ell = 0, \ldots, L\) contains a bit-vertex \(b^{\ell}_{w,x}\) of weight \(\infty\) for every \(w \in W\) and \(x \in [k]^R\).

 In other words, each \(w \in W\) is replaced by a \(k\)-ary hypercube \([k]^R\) in each layer.

- Similarly, the test-vertices are partitioned into \(L\) test-layers. Each test-layer \(\ell = 0, \ldots, L - 1\) has a test-vertex \(t^{\ell}_{x,S,v,w_1,\ldots,w_{2t}}\) of weight 1 for every \(x \in [k]^R\), every sequence of indices \(S = (i_1, \ldots, i_R) \in [R]^R\), every \(v \in V\) and every sequence \((w_1, \ldots, w_{2t}) \in N(v)^{2t}\) of (not necessarily distinct) \(2t\) neighbors of \(v\).

- The arcs incident to a test-vertex \(t^{\ell}_{x,S,v,w_1,\ldots,w_{2t}}\) are the following. For \(j = 1, \ldots, 2t\),

 - there is an arc \((b^{\ell}_{w,j,z}, t^{\ell}_{x,S,v,w_1,\ldots,w_{2t}})\) if \(\ell \leq \ell'\) and \(z \in C_{x,S,v,w,j}\),

 - and an arc \((t^{\ell}_{x,S,v,w_1,\ldots,w_{2t}}, b^{\ell}_{w,j,z})\) if \(\ell > \ell'\) and \(z \in C_{x,S,v,w,j}^{\oplus}\).
• Finally, \(L \) is selected so as \(\delta^2 L \geq |T|^{1-\delta} \) where \(T \) is the set of test-vertices.

Similar to before, we can obtain an unweighted graph \(G \) (with the set \(T \) of test-vertices as vertices) with the same optimal value by having an arc between two test-vertices if there is a path between them through one bit-vertex. Theorem 4.5 therefore follows from proving that (i) we can partition the test-vertices as required in the completeness case (Lemma 4.6) and (ii) that we have to delete almost all test-vertices in the soundness case (Lemma 4.7) in order to avoid long paths.

4.2.2 Completeness

We show the following.

Lemma 4.6 If there is a labeling \(\rho \) of the Unique Games instance \(L \) satisfying a \(1 - \zeta \) fraction of the constraints then we can partition the test-vertices into subsets \(T', T_0, \ldots, T_k \) satisfying \(T_j \geq \frac{1-2\epsilon}{k}|T|, |T'| \leq 2\epsilon|T| \), and for \(j \in [k] \) the graph obtained by deleting \(T' \cup T_j \) has no path of length \(k \).

Proof. Note that if we collapse all layers by identifying the different copies of a bit-vertex and test-vertex in different layers then the DVD instance is equivalent to the FVS instance constructed in Section 4.1. We can therefore (by the arguments of Section 4.1.2), partition the bit-vertices into \(k \) equal sized sets \(B_0, B_1, \ldots, B_{k-1} \) and all but an \(2\epsilon \) fraction of the test-vertices into \(k \) equal sized sets \(T_0, T_1, \ldots, T_{k-1} \) so that any test-vertex in \(T_j \) has only incoming arcs from bit-vertices in \(B_j \) and outgoing arcs to bit-vertices in \(B_{j+1} \).

Any \(j \in [k] \) therefore corresponds to a solution by removing an \(2\epsilon \) fraction of the test-vertices (i.e., the set \(T' \)) and those test-vertices in \(T_j \). \(\square \)

4.2.3 Soundness

As we can choose the soundness parameter \(\gamma \) of the Unique Games Conjecture to be arbitrarily small and \(\delta^2 L \geq |T|^{1-\delta} \), the following lemma implies the soundness case of Theorem 4.5.

Lemma 4.7 If the Unique Game instance has no labeling that satisfies a fraction \(\frac{\delta^2}{k^2} \) of the constraints then every induced subgraph of the bit-vertices and \(32\delta|T| \) test-vertices has a path of length \(\delta^2|L| \).

Proof. As in Section 3.2.3, it shall be convenient to look at the equivalent formulation of the problem where we wish to find a coloring \(\chi \) that assigns a color in \(\{1, 2, \ldots, k\} \) to each bit-vertex satisfying \(\chi(b_{w,x}^\ell) \leq \chi(b_{w,x}^{\ell+1}) \) if \(\ell \leq \ell' \) so as to minimize the number of unsatisfied test-vertices where a test-vertex \(t_{x,S,v,w_1,\ldots,w_{2t}}^\ell \) is said to be satisfied if

\[
\max_{1 \leq j \leq 2t} \chi(b_{w,j,z}^\ell) < \min_{1 \leq j \leq 2t} \chi(b_{w,j,z}^{\ell+1}),
\]

that is, all its predecessors are assigned lower colors than its successors.

We also generalize the concept of a lower bound on the colors assigned to most bit-vertices corresponding to \(w \in W \) in each layer: define the color \(\chi(w, \ell) \) of \(w \in W \) and a bit-layer \(\ell = 0, 1, \ldots, L \) as the maximum color that satisfies \(\Pr_x[\chi(b_{w,x}^\ell) \geq \chi(w, \ell)] \geq 1 - \delta \).

Now, with \(w \in W \) and each test-layer \(\ell = 0, 1, \ldots, L - 1 \) we associate the indicator function \(f_w^\ell : [k]^L \rightarrow \{0, 1\} \) defined as follows

\[
f_w^\ell(x) = \begin{cases}
0 & \text{if } \chi(b_{w,x}^{\ell+1}) > \chi(w, \ell), \\
1 & \text{otherwise.}
\end{cases}
\]
Analogous to Claim 4.1, the key statement for the soundness analysis is the following.

Claim 4.8 Assuming that the Unique Games instance \(\mathcal{L} \) has no labeling satisfying a fraction \(\frac{\delta n^2}{4k^2} \) of the constraints: if a fraction \(16\delta \) of the test-vertices of test-layer \(\ell \) are satisfied, then \(\chi(w, \ell) \leq \chi(w, \ell + 1) \) for at least a fraction \(2\delta \) of the vertices in \(W \).

Proof. If we let \(T \) be the set of satisfied test-vertices of test-layer \(\ell \) then (as \(T \) contains at least a fraction \(16\delta \) of the test-vertices in that layer)

\[
\Pr_{x,S,v,w_1,\ldots,w_{2t}} \left[\max_{1 \leq j \leq 2t} \chi(b^j_{w_j,z}) < \min_{1 \leq j \leq 2t} \chi(b^{j+1}_{w_j,z}) \right] \geq 16\delta.
\]

Similar to Section 4.1.3 we call a tuple \((v, w_1, \ldots, w_{2t})\) good if

\[
\Pr_{x,S} \left[\max_{1 \leq j \leq 2t} \chi(b^j_{w_j,z}) < \min_{1 \leq j \leq 2t} \chi(b^{j+1}_{w_j,z}) \right] \geq 8\delta
\]

and note that at least a \(8\delta \) fraction of the tuples are good.

By the definition of \(\chi(w, \ell) \) we have \(\Pr_x[\chi(b^j_{w,x}) \geq \chi(w, \ell)] \geq 1 - \delta \) and therefore for a good tuple \((v, w_1, \ldots, w_{2t})\),

\[
7\delta \leq \Pr_{x,S} \left[\max_{1 \leq j \leq 2t} \chi(w_j, \ell) < \min_{1 \leq j \leq 2t} \chi(b^{j+1}_{w_j,z}) \right] \leq \Pr_{x,S} \left[\bigwedge_{j=1}^{2t} f^j_{w_j}(C_{x,S,v,w_j}) \equiv 0 \right],
\]

which, by Theorem 4.1 implies that either

(i) more than \(t \) of the functions are such that \(\mathbb{E}[f^j_{w_j}] < \delta \) and hence \(\chi(w_j, \ell + 1) > \chi(w_j, \ell) \); or

(ii) there exists \(1 \leq \ell_1 \neq \ell_2 \leq t \) and \(j \in L[w_{\ell_1}], j' \in L[w_{\ell_2}] \) such that \(\pi_{v,w_{\ell_1}}(j) = \pi_{v,w_{\ell_2}}(j') \), where (similar to Section 4.1.3)

\[
L[w] = \{ i \in [R] : \text{Infl}^d_i(f^j_w) \geq \eta \}.
\]

If condition (i) holds for half the good tuples, i.e., a fraction \(4\delta \) of all tuples, then the statement follows because we can pick a vertex \(w \) in \(W \) uniformly at random by first picking a tuple \((v, w_1, \ldots, w_{2t})\) at random and then picking one of the vertices \(w_1, \ldots, w_{2t} \) at random. With probability \(4\delta \) the picked vertex \(w_j \) will be such that \(\chi(w_j, \ell + 1) > \chi(w_j, \ell) \). Therefore, we have that if condition (i) holds for half the good tuples then \(\Pr_w[\chi(w, \ell + 1) > \chi(w, \ell)] \geq 8\delta \) as required.

On the other hand, we shall show that the assumption of the claim (that no labeling of the Unique Games instance satisfies a fraction \(\frac{\delta n^2}{4k^2} \) of the constraints) is violated if condition (ii) holds for more than half the good tuples. This follows from very similar arguments as in Section 4.1.3 (and in [1]). Indeed, for every \(w \in W \), define \(\rho(w) \) to be a random label from \(L[w] \) and, for every \(v \in V \) pick a random neighbor \(w \in N(v) \) and define \(\rho(v) = \pi_{v,w}(\rho(w)) \). If condition (ii) holds for half the good tuples, then with probability \(4\delta \) a random tuple \((v, w_1, \ldots, w_{2t})\) is such a tuple, with
probability $1/(4t^2)$ we have we have $w = w_{\ell_1}$ and $w' = w_{\ell_2}$ for w, w' randomly picked in the set \{w_1, \ldots, w_{2t}\}, and with probability $1/(k^2/\eta^2)$, the labeling procedure defines $j = \rho(w), j' = \rho(w')$. Hence (if condition (ii) holds for half the good tuples)

$$\Pr_{v,w,w'}[\pi_{v,w}(\rho(w)) = \pi_{v,w'}(\rho(w'))] \geq \frac{4\delta \eta^2}{4t^2k^2},$$

and (expected over the randomness of the labeling procedure)

$$\Pr_{(v,w)}[\rho(v) = \pi_{v,w}(\rho(w))] \geq \frac{\delta \eta^2}{t^2k^2}.$$

This shows that condition (ii) cannot hold for half the good tuples as this would imply that there is a labeling of \mathcal{L} that satisfies a fraction $\frac{\delta \eta^2}{t^2k^2}$ of the constraints.

\[\square\]

To see how the above claim implies the lemma consider a subgraph induced by all bit-vertices and a fraction 32δ of the test-vertices and consider the smallest number of colors needed for a coloring χ to satisfy all those test-vertices.

Note that at least a fraction 16δ of the test-layers are such that at least a fraction 16δ of the test-vertices of that layer are satisfied by χ. This in turn, by the preceding claim, implies that

$$\Pr_{\ell \in [L], w \in W}[\chi(w, \ell + 1) > \chi(w, \ell)] \geq 16\delta \cdot 2\delta = 32\delta^2$$

and hence there exists a $w \in W$ such that $\Pr_{\ell \in [L], w \in W}[\chi(w, \ell + 1) > \chi(w, \ell)] \geq 32\delta^2$. Therefore, the coloring χ needs to use at least $32\delta^2L$ colors to satisfy a fraction 32δ of the test-vertices or, in other words, any subgraph induced by the bit-vertices and a fraction 32δ of the test-vertices has a path of length $32\delta^2L - 1 \geq \delta^2L$.

\[\square\]

5 Discrete Time-Cost Tradeoff Problem

In the discrete time-cost tradeoff problem we are given a set J of activities together with a partial order $(J, <)$. Any execution of the activities must comply with the partial order, that is, if $j < k$ activity k may not be started until j is completed. The duration of an activity depends on how much resources that are spent on it. This tradeoff between time and cost for each job is described by a nonnegative cost function $c_j : \mathbb{R}_+ \mapsto \mathbb{R}_+ \cup \{\infty\}$, where $c_j(x_j)$ denotes the cost to run j with duration x_j. The project duration $t(x)$ of the realization x is the makespan (length) of the schedule which starts each activity at the earliest point in time obeying the precedence constraints and durations x_j. Given a deadline $T > 0$, the Deadline problem is that of finding the cheapest realization x that obeys the deadline, i.e., $t(x) \leq T$.

Theorem 5.1 The Deadline problem is as hard to approximate as DVD.

Proof. We reduce (in polynomial time) the problem of approximating DVD to that of approximating the Deadline problem. Given an instance of DVD, i.e., an integer k and a DAG $G(V, A)$ with the vertices ordered $0, 1, \ldots, n - 1$ according to a topological sort, consider the instance of the Deadline problem defined as follows:

- The deadline T is set to n.

16
The set J of activities contains three activities l_i, m_i, r_i for each vertex $i \in V = \{0, 1, \ldots, n-1\}$ with precedence constraints $l_i < c_i < r_i$ and cost functions

$$c_l(x) = \begin{cases} 0, & \text{if } x \geq i \\ \infty, & \text{otherwise} \end{cases} \quad c_m(x) = \begin{cases} 0, & \text{if } x \geq 9/10 \\ 1, & \text{otherwise} \end{cases} \quad c_r(x) = \begin{cases} 0, & \text{if } x > n-1-i \\ \infty, & \text{otherwise} \end{cases}.$$

In addition, there is an activity $a_{(i,j)}$ for each arc $(i, j) \in A$ with precedence constraints $m_i < a_{(i,j)} < m_j$ and cost function

$$c_{a_{(i,j)}}(x) = \begin{cases} 0, & \text{if } x \geq j - i - \frac{9}{10} + \frac{1}{10(k-1)} \\ \infty, & \text{otherwise} \end{cases}.$$

See Figure 1 for an example of the Deadline problem corresponding to a DVD instance G with $k = 3$. Note that the cost functions of l_i, m_i, r_i enforce that activity m_i has to be executed in the interval $[i, i+1)$ and that it will require time $9/10$ unless we pay a cost of 1 which allows us to run the activity in 0 time. Furthermore, as an activity $a_{(i,j)}$ always has duration (at least) $j - i - \frac{9}{10} + \frac{1}{10(k-1)}$, the start time s_j of activity m_j must be such that $s_j - j \geq s_i - i + \frac{1}{10(k-1)}$, where s_i is the start time of activity i. Using the fact that an activity m_i must run in the interval $[i, i+1)$ in order to obey the deadline, it follows that we have to pay a cost of 1 for at least one activity corresponding to each path of length k. By similar arguments, it also follows that this is also sufficient for having a realization respecting the deadline. Therefore, any solution to the Deadline problem naturally corresponds to a solution to DVD (and vice versa) by deleting those vertices corresponding to activities with a cost of 1.

References

[1] Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’09, pages 453–462, Washington, DC, USA, 2009. IEEE Computer Society.

[2] Nikhil Bansal and Subhash Khot. Inapproximability of hypergraph vertex cover and applications to scheduling problems. In Proceedings of the 37th international colloquium conference on Automata, languages and programming, ICALP’10, pages 250–261, Berlin, Heidelberg, 2010. Springer-Verlag.
[3] Prabuddha De, E. James Dunne, Jay B. Ghosh, and Charles E. Wells. The discrete time-cost tradeoff problem revisited. *European Journal of Operational Research*, 81(2):225–238, 1995.

[4] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover. *Annals of Mathematics*, 162:2005, 2004.

[5] Guy Even, Joseph (Seffi) Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum feedback sets and multi-cuts in directed graphs. *Algorithmica*, 20:151–174, 1998.

[6] D. R. Fulkerson. A network flow computation for project cost curves. *Management Science*, 7(2):167–178, 1961.

[7] Alexander Grigoriev and Gerhard J. Woeginger. Project scheduling with irregular costs: complexity, approximability, and algorithms. *Acta Inf.*, 41(2-3):83–97, 2004.

[8] Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and Moses Charikar. Beating the random ordering is hard: Every ordering csp is approximation resistant. *SIAM J. Comput.*, 40(3):878–914, 2011.

[9] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors, *Complexity of Computer Computations*, pages 85–103. Plenum Press, 1972.

[10] James E. Kelley. Critical-path planning and scheduling: Mathematical basis. *Operations Research*, 9(3):296–320, May/June 1961.

[11] James E. Kelley, Jr and Morgan R. Walker. Critical-path planning and scheduling. In *Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference*, IRE-AIEE-ACM ’59 (Eastern), pages 160–173, New York, NY, USA, 1959. ACM.

[12] Subhash Khot. On the power of unique 2-prover 1-round games. In John H. Reif, editor, *STOC*, pages 767–775. ACM, 2002.

[13] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In *Proceedings of the 29th Annual Symposium on Foundations of Computer Science*, SFCS ’88, pages 422–431, Washington, DC, USA, 1988. IEEE Computer Society.

[14] Elchanan Mossel, Ryan ODonnell, and Krzysztof Oleszkiewicz. Noise stability of functions with low influences: Invariance and optimality. *Annals of Mathematics*, 171(1), 2010.

[15] D. Paik, S. Reddy, and S. Sahni. Deleting vertices to bound path length. *IEEE Trans. Comput.*, 43(9):1091–1096, September 1994.

[16] Paul D. Seymour. Packing directed circuits fractionally. *Combinatorica*, 15(2):281–288, 1995.

[17] Martin Skutella. Approximation algorithms for the discrete time-cost tradeoff problem. *Mathematics of Operations Research*, 23(4):909–929, 1998.