The cassava starch wastewater contains organic materials (as BOD, COD) in high concentrations so it has the potential to cause pollution in the aquatic environment. Several methods of cassava starch wastewater treatment have been used to reduce the concentration of organic matter (pollutants) in cassava starch wastewater, including Activated Sludge, Stabilization Pond, Anaerobic-Aerobic filter process. However, various studies continue to be carried out to get higher processing efficiency on the factors that influence it. Several factors influence the efficiency of wastewater treatment processes, including the type and origin of decomposing microorganisms, hydraulic residence time (HRT), organic load rate (OLR), process design, pH, and temperature. The research aimed to evaluate the performance of the AnF2B reactor in treating cassava starch wastewater, in which the reactor performance is shown by changes in organic matter removal (COD removal) and biogas production. The research conducted using 3 types of AnF2B reactors wherein each AnF2B reactor contains a bee nest-shaped bio-filter as a growth medium for the consortium of indigenous bacteria. The AnF2B reactor operates in anaerobic conditions with a set temperature of 29–30 °C and a pH of 4.5–7. In each AnF2B reactor, cassava starch wastewater is fed with different OLR so that each reactor has an HRT of 5, 6, and 7 days. The concentration of COD at the influent and effluent of the reactor was measured and the biogas was produced using the APHA standard method. The results showed that the AnF2B reactor had a satisfactory performance in COD removal and biogas production, which at HRT 6 days and OLR of 1.72 g/L-day found that the maximum COD removal was 98 % and the volume of biogas of 4.8 L/L-day was produced on the 12th day.

Keywords: biogas, bee nest, cassava starch, HRT, indigenous bacterial consortium, OLR.

References

1. Kolawole, P. (2014). Cassava Processing and the Environmental Effect. Proceedings of The 4th World Sustainability Forum. doi: https://doi.org/10.3390/wsf-4-a004
2. Setyawaty, R., Katayama-Hirayama, K., Kaneko, H., Hirayama, K. (2011). Current tapioca starch wastewater (TSW) management in Indonesia. World Applied Sciences Journal, 14 (5), 658–665. Available at: https://www.cabdirect.org/cabdirect/abstract/20113340837
3. Rachio, P., Pongampornnara, A. (2020). Enhanced biogas production from modified tapioca starch wastewater. Energy Reports, 6, 744–750. doi: https://doi.org/10.1016/j.egyr.2019.09.058
4. Annachhatre, A. P., Amatya, P. L. (2000). UASB Treatment of Tapioca Starch Wastewater. Journal of Environmental Engineering, 126 (12) doi: https://doi.org/10.1061/(ASCE)0733-9372(2000)126:12(1149)
5. Ferraz, F. M., Bruni, A. T., Del Bianchi, V. L. (2009). Performance of an Anaerobic Baffled Reactor (ABR) in treatment of cassava wastewater. Brazilian Journal of Microbiology, 40 (1), 48–53. doi: https://doi.org/10.1590/S1517-83822009000100007
6. Araujo, I. R. C., Gomes, S. D., Tonello, T. U., Lucas, S. D., Mari, A. G., Vargas, R. J. de. (2018). Methane production from cassava starch wastewater in packed-bed reactor and continuous flow. Engenharia Agrícola, 38 (2), 270–276. doi: https://doi.org/10.1590/1809-4430-eng.agric.v38n2p270-276/2018
7. Kuczman, O., Tavares, M. H. F., Gomes, S. D., Guedes, L. P. C., Grotti, G. (2017). Effects of stirring on cassava effluent treatment in an anaerobic horizontal tubular pilot reactor with support medium – A Review. Renewable and Sustainable Energy Reviews, 77, 984–989. doi: https://doi.org/10.1016/j.rser.2016.11.238
8. Izh, S. C., Enaregoh, E. B., Epidi, J. O. (2019). Changes in in-situ water characteristics of cassava wastewater due to the activities of indigenous microorganisms. MOJ Toxicology, 5 (5), 78–81. Available at: https://www.medcrave.org/index.php/MOJ/article/view/20373/39754
9. Liu, X., Khalid, H., Amin, F. R., Ma, X., Li, X., Chen, C., Liu, G. (2018). Effects of hydraulic retention time on anaerobic digestion performance of food waste to produce methane as a biofuel. Environmental Technology & Innovation, 11, 348–357. doi: https://doi.org/10.1016/j.eti.2018.06.004
10. Fleek, L., Tavares, M. H. F., Eyng, E., Andrade, M. A. de M. de, Frare, L. M. (2017). Optimization of anaerobic treatment of cassava processing wastewater. Engenharia Agrícola, 37 (3), 574–590. doi: https://doi.org/10.1590/1809-4430-eng.agric.v37n3p574-590/2017
11. Hidayat, N., Suhartini, S., Indriana, D. (2012). Horizontal biofilter system in tapioca starch wastewater treatment: The Influence of Filter Media on the Effluent Quality. Agroindustrial Journal, 1 (1), 1–6.
12. Kunzler, K. R., Gomes, S. D., Piana, P. A., Torres, D. G. B., Vilas Boas, M. A., Tavares, M. H. F. (2013). Anaerobic reactors with biofilter and different diameter-length ratios in cassava starch industry wastewater treatment. Engenharia Agrícola, 33 (4), 612–624. doi: https://doi.org/10.5935/s1010-69162013000400005
13. Von Sperling, M. (2005). Biological Wastewater Treatment Series. Vol. 5. Activated Sludge and Aerobic Biofilms Reactors. IWA Publishing, 322.
14. Prayitno, Rulianah, S. (2018). The Effect of Load BOD and Hydraulic Time on Hospital Wastewater Treatment. Using AF2B Reactor. International conference on science, engineering & technology (ICSET).
15. Prayitno, Rulianah, S., Saroso, H., Mellany, D. (2017). Biodegradation of BOD and ammonia-free using bacterial consortium in aerated fixed film bioreactor (AF2B). AIP Conference Proceedings, 1855, 050001. doi: https://doi.org/10.1063/1.4985515
16. Jirapratertwong, A., Maiprattwong, K., Chavadej, S. (2019). Production of biogas from cassava wastewater using a three-stage upflow anaerobic sludge blanket (UASB) reactor. Renewable Energy, 130, 191–205. doi: https://doi.org/10.1016/j.renene.2018.06.034
17. Govindarajadane, S., Sundarakarajan, T. (2013). Influence of Organic Loading Rate (OLR) And Hydraulic Retention Time (HRT) On The Performance Of HUASB And UASB Reactors For Treating Tapioca-Based Starch Industrial Waste Stream: A Comparison. International Journal of Engineering Research & Technology (IJERT), 2 (3).
Based on the modern ideas about environmental protection, this paper reports a study into the utilization of water-treated waste from heavy metals (using copper(II) compounds as an example) for the manufacture of ceramic building materials. The examined clay minerals from local deposits and the optimal conditions for their heat treatment (at 1,100 °C) have been proposed for the sorption removal of pollutants of inorganic origin from wastewater. The use of wastewater after its treatment makes it possible to address several tasks at the same time: to protect the environment from pollution by technological wastewater, as well as to reuse wastewater in order to resolve the issue of water scarcity. Ceramic building materials were manufactured based on water purification waste (in the amount of 5 %) and clay raw materials. Their structural-mechanical and physicochemical characteristics have been comprehensively studied. Sintering processes begin at lower temperatures, which is why, with an increase in the annealing temperature to 1,000 °C and higher, their strength rapidly decreases. In the temperature range of 600–1,100 °C, there are possibilities to apply ceramic technology to immobilize heavy metals in ceramic matrices. The prospect of utilizing water purification waste in the technological process of manufacturing inorganic ceramic materials has been shown. The safety of the building materials, manufactured by leaching pollutants from the ceramic samples using various aggressive environments (leaching to 6.4 %; 0.063 mg/cm²/day) has been investigated. The high strength and degree of the copper ion fixation in the structure of polymineral clay have been confirmed while secondary environmental pollution is almost absent.

Keywords: water purification waste, copper compounds, heavy metals, sorption, natural minerals, heat treatment, immobilization, building materials.

References

1. Rehionalni dopovidi pro stan navkolyshnoho pyryodnoho seredovyschha u 2017 rotsi. Kyivska oblast (2018). Kyiv, 258. Available at: https://menz.gov.ua/news/32893.html?fbclid=IwAR3iAgY_0rbRsWl8XxYj00Pem1lum0PR8
2. biosolids generation, use, and disposal in the united states: environmental protection agency municipal and industrial solid waste division office of solid waste. Available at: https://www.epa.gov/sites/production/files/2018-12/documents/biosolids-generation-use-disposal-us.pdf
3. Lu, Q., He, Z. L., Stoffella, P. J. (2012). A Review. Applied and Environmental Soil Science, 2012, 1–11. doi: https://doi.org/10.1155/2012/201462
4. Kelessidis, A., Stasinakis, A. S. (2012). Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Management, 32 (6), 1186–1195. doi: https://doi.org/10.1016/j.wasman.2012.01.012
5. Vasudevan, S., Oturan, M. A. (2013). Electrochemistry: as cause and cure in water pollution – an overview. Environmental Chemistry Letters, 12 (1), 97–108. doi: https://doi.org/10.1007/s10311-013-0434-2
6. Vareda, J. P., Valiente, A. J. M., Dürães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 248, 101–118. doi: https://doi.org/10.1016/j.jenvman.2019.03.126
7. Koltjar, V. D., Zemljanskaja, A. G., Koltjar, A. V., Terekhina, J. V., Mirina, V. A., Cherenkova, I. A. (2014). Pat. No. 2560014 RU. Ceramic Mixtures, No. 2014142840/03, declared: 23.10.2014. published: 20.08.2015.
8. Sutcu, M., Akkurt, S. (2009). The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceramics International, 35 (7), 2625–2631. doi: https://doi.org/10.1016/j.ceramint.2009.02.027
9. Pishch, I. V., Biryuk, V. A., Klimosh, Y. A., Popov, R. Y., Shidlovski, A. V. (2015). Properties of Ceramic Wall Materials with Different Burnable Components. Glass and Ceramics, 72 (1-2), 57–60. doi: https://doi.org/10.1017/s07171-015-9723-5
10. Svatošková, L., Maslennikova, L. L., Babák, N. A. (2012). Pat. No. 2497777 RU. Ceramic mass of light color for facing brick. No. 201218133/03, declared: 03.10.2012. published: 10.11.2013.
11. Shakhov, S. A., Nikolayev, N. Y. (2016). Pat. No. 2653688 RU. Mixture for making ceramic articles. No. 2016139828, declared: 10.10.2016. published: 29.05.2018.
carried out. The quality indicators of the developed paste are as follows: effective viscosity at 20–22 °C – 32.0 Pa·s; foaming capacity – 23 mm, foam stability – 62.0 %; washing ability – 92.0 %. It was determined that these quality indicators do not differ significantly in the developed detergent and commercial analogue. The data obtained indicate the prospects of processing ethanol-containing soapstock into the hand cleaning paste based on natural surfactants. The developed detergent due to the content of ethanol, glycerin and hydrogen peroxide has antisepctic properties, which is a competitive advantage among analogues. Such utilization of ethanol-containing soapstock makes the process of oil neutralization environmentally safe and economically viable.

Keywords: waste of oil and fat industry, alkaline neutralization of oils, water – glycerin – ethanol system, soapstock, hand cleaning paste, washing ability.

References

1. Boukerrouri, A., Bellhocine, L., Ferroudj, S. (2017). Regeneration and reuse waste from an edible oil refinery. Environmental Science and Pollution Research, 25 (19), 18278–18283. doi: https://doi.org/10.1007/s11356-017-7921-8
2. Sytnik, N., Kunitsia, E., Mazueva, V., Chernukha, A., Kovalov, P., Grigorenko, N. et. al. (2020). Rational parameters of waxes obtaining from oil winterization waste. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 29–35. doi: https://doi.org/10.15587/1729-4061.2020.219602
3. Pappenchen, V., Matveeva, T., Bochkarev, S., Belinska, A., Kunitsia, E., Chernukha, A. et. al. (2020). Development of amino acid balanced food systems based on wheat flour and olive oil meal. Eastern-European Journal of Enterprise Technologies, 3 (11 (105)), 66–76. https://doi.org/10.15587/1729-4061.2020.203664
4. Pal, U. S., Patra, R. K., Sahoo, N. R., Bakhara, C. K., Panda, M. K. (2011). Effect of refining on quality and composition of sunflower oil. Journal of Food Science and Technology, 52 (7), 4613–4618. doi: https://doi.org/10.1007/s13197-014-1461-0
5. Chew, S.-C., Tan, C.-P., Nyam, K.-L. (2017). Optimization of neutralization parameters in chemical refining of kenaf seed oil by response surface methodology. Industrial Crops and Products, 95, 742–750. doi: https://doi.org/10.1016/j.indcrop.2016.11.043
6. Petik, I. P., Hladkyi, F. F., Fediaikina, Z. P., Bielinska, A. P., Filenko, L. M. (2011). Vplyv komponentnoho skladu osnovy neitra-lizuvchoho rozchynu na yoho kharakterystyku. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI», 58, 31–35. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/15589
7. Shepy, I. A., Slapeneva, L. M., Kratskaya, O. F., Zyk, N. V., Luk’yanova, R. S. (2011). Sposoby utilizatsii soapstoka – tekhnogennoho othoda zhiropererabatyvayushchey promysliblennosti. Vestnik Beloruskogo natsional’noho tekhnicheskogo universiteta, 2, 68–71. Available at: http://rep.bntu.by/handle/data/1079
8. Zhang, H., Miller, C. A., Garrett, P. R., Raney, K. H. (2003). Mechanism for defoaming by oils and calcium soap in aqueous systems. Journal of Colloid and Interface Science, 263 (2), 633–644. doi: https://doi.org/10.1016/S0021-9797(03)00367-9
9. Sakai, K., Sangawa, Y., Takamatsu, Y., Kawai, T., Matsumoto, M., Sakai, H., Abe, M. (2010). Sulphonic-Hydroxyl-Type Heterogemini Surfactants Synthesized from Unsaturated Fatty Acids. Journal of Oleo Science, 59 (10), 541–548. doi: https://doi.org/10.5650/jos.59.541
10. Bhardwaj, G., Camestra, S., Chopra, H. (2013). Utilization of oleochemical industry by-products for biosurfactant production. AMB Express, 3 (1), 68. doi: https://doi.org/10.1186/2191-0855-3-68
11. Pinzi, S., Pilar dorado, M. (2012). Feedstocks for advanced biodiesel production. Advances in Biodiesel Production, 69–90. doi: https://doi.org/10.1523/9780857053862.1.69
12. Shakvat, S. M., Demidov, I. N. (2012). Obtaining fatty acid esters of low molecular weight alcohols with using soapstock. Eastern-European Journal of Enterprise Technologies, 6 (6 (60)), 53–56. Available at: http://journals.uran.ua/ejet/article/view/5568/3009
13. Su, E., Wei, D. (2014). Improvement in biodiesel production from soapstock oil by one-stage lipase catalyzed methanolysis. Energy Conversion and Management, 88, 60–65. doi: https://doi.org/10.1016/j.enconman.2014.08.041
14. Hilten, R., Speir, R., Kastner, J., Das, K. C. (2011). Production of aromatic green gasoline additives via catalytic pyrolysis of acidulated peanut oil soap stock. Bioresource Technology, 102 (17), 8288–8294. doi: https://doi.org/10.1016/j.biortech.2011.06.049
15. Shabtai, Y. (1990). Production of exopolysaccharides by Acinetobacter strains in a controlled fed-batch fermentation process using soapstock oil (SSO) as carbon source. International Journal of Biological Macromolecules, 12 (2), 145–152. doi: https://doi.org/10.1016/S1050-6046(90)80066-j
16. Daunik, P., Shotipruck, A. (2020). Recovery of γ-oryzanol from rice bran oil soapstock derived calcium soap: Consideration of Hansen solubility parameters and preferential extractability in various solvents. LWT, 134, 110238. doi: https://doi.org/10.1016/j.lwt.2020.110238
17. Petik, P. F., Petik, I. P., Fediaikina, Z. P., Filenko, L. M. (2015). Development of technological scheme of production of neutralized fat in a polar solvent system and processing soapstock. Visnyk Natsionałnoho tekhnichnoho universytetu «KhPI», 44 (1153), 11–14. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/20920
18. Kowatzki, E. (2003). Hand hygiene and skin health. Journal of Hospital Infection, 55 (4), 239–245. doi: https://doi.org/10.1016/j.jhin.2003.08.018
19. Goldman, M., Horev, B., Saguy, I. (1983). Decolorization of β-Carotene in Model Systems Simulating Dehydrated Foods. Mechanism and Kinetic Principles. Journal of Food Science, 48 (3), 751–754. doi: https://doi.org/10.1111/j.1365-2621.1983.tb14890.x
20. Menegueti, M. G., Laus, A. M., Ciol, M. A., Auxilidora-Martins, M., Basile-Filho, A., Gir, E. et. al. (2019). Glycerol content within the WHO ethanol-based handrub formulation: balance tolerability with antimicrobial efficacy. Antimicrobial Resistance & Infection Control, 8 (1). doi: https://doi.org/10.1186/s13756-019-0553-z

DOI: 10.15587/1729-4061.2021.225310

ESTABLISHING REGULARITIES IN THE PROPAGATION OF PHASE TRANSFORMATION FRONT DURING TIMBER THERMAL MODIFICATION (p. 30–36)

Yuriy Tsapko
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine

Kyiv National University of Construction and Architecture, Kyiv, Ukraine

ORCID: http://orcid.org/0000-0003-0625-0783

Oleksandra Horbachova
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine

ORCID: http://orcid.org/0000-0002-7533-5028

Aleksii Tsapko
Ukrainian State Research Institute "Resurs", Kyiv, Ukraine

ORCID: http://orcid.org/0000-0003-2298-068X

Serhiy Mazurchuk
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine

ORCID: http://orcid.org/0000-0002-6008-9591
The creation of environmentally friendly protective materials for building structures made of wood could make it possible to influence the processes of stability and the physical-chemical properties at the thermal modification of hornbeam wood over a certain time. That necessitates studying the conditions for investigating phase transformations when the timber is exposed to high temperature, as well as establishing the mechanism of hornbeam wood thermal modification. Given this, a mathematical model of the phase transformation process during the transfer of heat flux to a sample was built. Based on the derived dependences, it was established that when hornbeam wood is exposed to temperature treatment, it undergoes endothermic phase transformations characterized by the heat absorption and change in the color of hornbeam wood. In particular, at a temperature of 200 °C, the temperature in the wood decreases by 5 % due to the chemical changes in the structure of cell wall components (lignin, cellulose, and hemicellulose). It was found that the process of thermal modification is accompanied by the decomposition of hemicellulose and the amorphous part of cellulose, a decrease in moisture absorption, as well as a decrease in the volume of substances that are a medium for the development of fungi. In addition, lignin and the resulting pseudo lignin undergo a process of polymerization and redistribution throughout the cell volume. At the same time, they give the cell organisms an opportunity to perform the process of distortion and redistribution of the wood. It was established that the most effective parameter of phase transformations is the temperature and aging duration. The results of moisture absorption have been given; it has been found that over 6 hours of modified timber exposure, its moisture absorption decreases by more than 10 times, which allows its application at facilities with high humidity.

Keywords: thermally modified timber, modification efficiency, moisture absorption, diffusion, timber moisture resistance.

References

1. Tsapko, Y., Tsapko, A., Bondarenko, O. (2019). Effect of a flame-retardant coating on the burning parameters of wood samples. Eastern-European Journal of Enterprise Technologies, 2 (10 (98)), 49–54. doi: http://doi.org/10.15587/1729-4061.2019.163591

2. Tsapko, Y., Lomaha, V., Bondarenko, O. P., Sukhaneyvych, M. (2020). Research of Mechanism of Fire Protection with Wood Lacquer. Materials Science Forum, 1006, 32–40. doi: http://doi.org/10.4028/www.scientific.net/MSF.1006.32

3. Tsapko, Y., Lomaha, V., Tsapko, A., Mazurchuk, S., Horbachova, O., Zavialov, D. (2020). Determination of regularities of heat resistance under flame action on wood wall with fire-retardant varnish. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 55–60. doi: http://doi.org/10.15587/1729-4061.2020.210009

4. Esteves, B. M., Pereira, H. M. (2008). Wood modification by heat treatment: A review. BioResources, 4 (1), 370–404. doi: http://doi.org/10.15376/biores.4.1.370-404

5. Humar, M., Lesar, B., Kržišnik, D. (2020). Moisture Performance of Façade Elements Made of Thermally Modified Norway Spruce Wood. Forests, 11 (3), 348. doi: http://doi.org/10.3390/f11030348

6. Humar, M., Repič, R., Kržišnik, D., Lesar, B., Cerc Korošec, R., Brischke, C. et. al. (2020). Quality Control of Thermally Modified Timber Using Dynamic Vapor Sorption (DVS) Analysis. Forests, 11 (6), 666. doi: http://doi.org/10.3390/f11100666

7. Sandberg, D., Kutnar, A., Mantanis, G. (2017). Wood modification technologies – a review. iForest – Biogeosciences and Forestry, 10 (6), 895–908. doi: http://doi.org/10.3832/ifor2380-010

8. Aytin, A., Korkut, S. (2015). Effect of thermal treatment on the swelling and surface roughness of common alder and wych elm wood. Journal of Forestry Research, 27 (1), 225–229. doi: http://doi.org/10.1007/s11676-015-0136-7

9. Pelosi, C., Agresti, G., Lanteri, L., Picchio, R., Gennari, E., Lo Monaco, A. (2020). Artificial Weathering Effect on Surface of Heat-Treated Wood of Ayous (Triplochiton scleroxylon K. Shum). The 1st International Electronic Conference on Forests (IECF). Available at: https://www.researchgate.net/publication/345761222_Artificial_Weathering_Effect_on_Surface_of_Heat-Treated_Wood_of_Ayous_Triplochiton_scleroxylon_K_Shum

10. Ugovšek, A., Šubic, B., Rep, G., Humar, M., Lesar, B., Thaler, N., Birschke, C. et. al. (2016). Performance of Windows and façade elements made of thermally modified Norway spruce (Picea abies) in different climatic conditions. Proceedings of the WCTE 2016-World Conference on Timber Engineering, Vienna, 9.

11. Ugovšek, A., Šubic, B., Starman, J., Rep, G., Humar, M., Lesar, B. et al. (2018). Short-term performance of wooden windows and façade elements made of thermally modified and non-modified Norway spruce in different natural environments. Wood Material Science & Engineering, 14 (1), 42–47. doi: http://doi.org/10.1080/17480272.2018.1494627

12. Bonifazi, G., Serranti, S., Capobianco, G., Agresti, G., Calienno, L., Picchio, R. et al. (2016). Hyperspectral imaging as a technique for investigating the effect of consolidating materials on wood. Journal of Electronic Imaging, 26 (1), 011003. doi: http://doi.org/10.1117/1.jei.26.1.011003

13. Jones, D., Sandberg, D., Goli, O., Tidar, L. (2019). Wood Modification in Europe: a state-of-the-art about processes, products and applications. Firenze University Press, 123. doi: http://doi.org/10.36253/978-88-6453-970-6

14. Janna, W. S. (2010). Engineering Heat Transfer. Boca Raton: CRC Press, 692.

15. Potter, M. C. (2018). Engineering analysis. New York: Springer, 444.

16. Tenne, N. M. (1996). Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Mathematics & Statistics. Applied Mathematics, 392. doi: http://doi.org/10.1002/9781118032572

DOI: 10.15587/1729-4061.2021.225216

REDUCING THE INTENSITY OF THERMAL RADIATION AT THE SUBLAYER EXTINGUISHING OF ALCOHOLS BY ECOLOGICALLY ACCEPTABLE AEROSOLS

Volodymyr Balanyuk
Liw State University of Life Safety, Lviv, Ukraine
ORCID: http://orcid.org/0000-0003-8853-4229

Anton Kravchenko
State Emergency Service of Ukraine in the Lviv Region, Lviv, Ukraine
ORCID: http://orcid.org/0000-0002-0009-7469

Oleksandr Harasymyuk
Lviv State University of Life Safety, Lviv, Ukraine
ORCID: http://orcid.org/0000-0001-9708-9862

This paper has theoretically substantiated and experimentally established the intensity of thermal radiation at burning and sublayer extinguishing of alcohols with environmentally acceptable aerosols. An installation has been improved that determines the effectiveness of sublayer extinguishing with fire-extinguishing aerosols; a procedure that has been devised for determining the intensity of...
thermal radiation implies equipping it with an additional heat flow meter HFM–01 at a distance of 60 and 30 mm from the surface of an alcohol flame with an area of 234 cm² ranges from 0.8 to 4.7 kW/m²; the intensity of burning and, accordingly, radiation, maximizes on seconds 30–40 of burning.

It has been found that the intensity of thermal radiation for ethanol decreases with the addition of an aerosol with an intensity of up to 0.2 g/s, and decreases even more at the intensity of supply from 1.2 g/s. With a further increase in the intensity of aerosol supply, the radiation intensity begins to decrease, probably due to a decrease in the rate of combustion. In this case, the flame first decreases in size up to 2 times, and then, after 2–3 seconds, it goes out. The use of fire-extinguishing aerosol for the sublayer extinguishing of alcohols ensures the effect of several factors that synergize and reduce the intensity of evaporation, burning, and, accordingly, thermal radiation.

Keywords: fire-extinguishing aerosol, ethyl alcohol, ethanol, n-butanol, alcohol, isobutanol, sublayer fire extinguishing.

References

1. Mashtabtina pozhezha. U Zbarazhi zahorilasia spyrtova baza. Available at: https://tv4.te.ua/mashtabtina-pozhezha-u-zbarazhi-zahorilaz-ya-spyrtova-baza/
2. Tanker truck burns in Baltimore. Available at: https://www.press-reader.com/usa/baltimore-sun/20070514/28196451851985
3. Hannins, A., Klassen, M., Gore, J., Kashwagi, T. (1991). 3. Experimental study of flame radiance via a single location measurement in liquid pool fires. Combustion and Flame, 86 (3), 223–228. doi: https://doi.org/10.1016/0010-2180(91)90102-h
4. Zhi, H., Bao, Y., Wang, L., Mi, Y. (2019). Extinguishing performance of alcohol-resistant firefighting foams on polar flammable liquid fires. Journal of Fire Sciences, 38 (1), 53–74. doi: https://doi.org/10.1177/0734904119893732
5. Kiriev, A., Tregubov, D., Savchenko, A., Vasilchenko, A. (2019). Experimental study of the effect of the thickness of a layer of granulated foam glass on the burning of alcohols. Problemy pezharmon bezopasnosti, 46, 71–79. Available at: https://mnczu.edu.ua/images/topmenu/science/zbirky-naukovych-prats-ppb/ppb46/Kireev.pdf
6. Balanyuk, V., Kozyar, N., Garasyumyck, O. (2016). Study of fire-extinguishing efficiency of environmentally friendly binary aerosol-nitrogen mixtures. Eastern-European Journal of Enterprise Technologies, 3 (10 (81)), 4–12. doi: https://doi.org/10.15587/1729-4061.2016.72390
7. Balanyuk, V., Kovalishin, V., Kozyr, N. (2017). Ecological effectiveness of safe gas-aerosol mixtures on the velocity of explosive combustion of n-heptane. Eastern-European Journal of Enterprise Technologies, 4 (10 (88)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.108427
8. Balanyuk, V. (2015). The effectiveness of open space fire extinguishing with flammable liquid burning aerosols. Eastern-European Journal of Enterprise Technologies, 5 (10 (77)), 4–11. doi: https://doi.org/10.15587/1729-4061.2015.51399
9. Persson, H. (2011). Fighting an Ethanol Tank Fire Presents Unique Challenges. Ethanol. Available at: http://www.ethanolproducer.com/articles/7788/fighting-an-ethanol-tank-fire-presents-unique-challenge
10. Fischer, S. J., Harlouin-Duparc, B., Grosshandler, W. L. (1987). The structure and radiation of an ethanol pool fire. Combustion and Flame, 70 (3), 291–306. doi: https://doi.org/10.1016/0010-2180(87)90110-6
11. Sjöström, J., Anon, E., Appel, G., Persson, H. (2015). Thermal exposure from large scale ethanol fuel pool fires. Fire Safety Journal, 78, 229–237. doi: https://doi.org/10.1016/j.firesaf.2015.09.003
12. Ma toqip, D., Koniau, A. (2009). This article discuss how foam extinguishing agents impacts the environment, especially water organisms. Bezpieczenstwo i Technika Pożarnicza, 2, 117–138. Available at: http://www.shawda.icem.edu.pl/haztech/element/bwmeta1.element.haztech-article-BGPK-2914-1624
13. Rakowska, J. (2020). Remediation of diesel-contaminated soil enhanced with firefighting foam application. Scientific Reports, 10, 8824. doi: https://doi.org/10.1038/s41598-020-63660-3
14. Balanyuk, V., Kozyar, N., Kravchenko, A. (2019). Method of sublayer fire extinguishing of alcohols by fire extinguishing aerosol. Science-Rise, 1, 11–15. doi: https://doi.org/10.15387/2313-8416.2019.156097
15. Markov, I., Lanko, J., Makovička Ovalidová, L., Mózer, V., Svetlík, J., Monósi, M., Orinčák, M. (2020). Fire Size of Gasoline Pool Fires. International Journal of Environmental Research and Public Health, 17 (2), 411. doi: https://doi.org/10.3390/ijerph17020411
16. Bleyer, C. L. (2016). Fire Hazard Calculations for Large, Open Hydrocarbon Fires. SFPE Handbook of Fire Protection Engineering, 2591–2663. doi: https://doi.org/10.1007/978-1-4939-2563-9_66
17. Fleming, J. W., Williams, B. A., Shenon, R. S. (2002). Suppression effectiveness of aerosols: the effect of size and flame type. National Institute of Standards and Technology. doi: https://doi.org/10.6028/NIST.SP.984.4
18. Zheng, L., Wang, Y., Yu, S., Li, G., Zhu, X., Yu, M., Wang, Y. (2019). The premixed methane/air explosion inhibited by sodium bicarbonate with different particle size distributions. Powder Technology, 334, 630–640. doi: https://doi.org/10.1016/j.powtec.2019.06.034
19. Haipeng, J., Mingchiu, B., Bei, L., Dapinga, M., Wei, G. (2019). Flame inhibition of aluminum dust explosion by NaHCO3 and NH4H2PO4. Combustion and Flame, 200, 97–114. doi: http://doi.org/10.1016/j.jcombustflame.2018.11.016
20. Lott, J. L., Christian, S. D., Slepcevich, C. M., Tucker, E. E. (1996). Synergism between chemical and physical fire-suppressant agents. Fire Technology, 32, 260–271. doi: https://doi.org/10.1007/BF01040218
21. Babushok, V. I., Gubernov, V. V., Minev, S. S., Miroshnichenko, T. P. (2017). Simple model of inhibition of chain-branching combustion processes. Combustion Theory and Modelling, 21 (6), 1066–1079. doi: https://doi.org/10.1080/13647830.2017.1338758

DOI: 10.15587/1729-4061.2021.235221

PROCEDURE FOR CONSTRUCTING A MATHEMATICAL MODEL TO DETERMINE THE TIME OF THE INITIAL STAGE OF FIRE EVOLUTION (p. 45–52)

Sergii Zhartovskyi
Institute of Public Administration and Research in Civil Protection, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0001-7512-0988

Olexander Titenko
Institute of Public Administration and Research in Civil Protection, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-4950-8580

Oksana Kryuchenko
Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Protection of Ukraine, Cherkasy, Ukraine
ORCID: http://orcid.org/0000-0002-0240-1807

Ievgen Tyschenko
Educational and Methodological Centre of Civil Protection and Life Safety of Cherkasy Region, Cherkasy, Ukraine
ORCID: http://orcid.org/0000-0003-3911-3291
To develop appropriate measures and means of fire protection at facilities, it is relevant to form an idea of the phenomenology of the processes of the occurrence, evolution, and termination of combustion. This paper proposes procedures for building mathematical models of the energy component of those physicochemical processes that occur in wood under the influence of fire, which make it possible to determine the time from the beginning of such an impact to the onset of the phase of flame combustion. The adequacy of mathematical modeling was tested experimentally at a standardized installation for studying flame propagation over the surface of wood. The samples used for the reported theoretical and experimental studies were the specimens of unprotected wood made from 20-mm-thick pine sapwood with a density of 400–550 kg/m³. The samples of fireproof wood (of the same variety, thickness, and density) were impregnated with a fire retardant based on diammonium phosphate and ammonium sulfate (at consumption of 168.2 g/m² of dry wood). The modeling employed the results from the experimental determining of the ignition temperature of unprotected wood, 410 °C – for unprotected wood, 351 °C – for fireproof wood, respectively.

The results of mathematical modeling and experimental studies confirm the possibility of significant lengthening of time from the onset of fire exposure to the ignition of fire load from wood when nitrogen-phosphorus impregnating agents are used for fire protection. Procedures of mathematical modeling have been proposed to build models for determining the cooling effect from the use of impregnating fire retardants to protect the wood on the prolongation of the stage of a fire start.

Mathematical modeling data could be applied when making impregnating fire retardants.

Keywords: fireproof wood, fire retardant, impregnating substance, ignition temperature, fire impact.

References

1. Coen, J. L., Riggan, P. J. (2014). Simulation and thermal imaging of the 2006 Esperanza wildfire in southern California: application of a coupled weather-wildland fire model. International Journal of Wildland Fire, 23 (6), 755–770. doi: https://doi.org/10.1071/WF12194.

2. United and strengthening America by providing appropriate tools required to interrupt and obstruct terrorism (2001). Available at: https://www.congress.gov/107/plaws/publ56/PLAW-107publ56.pdf

3. Special underground facilities (UGF-s) serving for the critical infrastructure (2006). New challenges in the field of military science international scientific conference. Available at: http://haidemrok.hu/kulonoszamok/newchallenges/szalai.html#12

4. Lowden, L. A., Hull, T. R. (2013). Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews, 2, 4. doi: https://doi.org/10.1186/2193-0414-2-4.

5. Baratov, A. N., Andrianov, R. A., Korol'chenko, A. Ya. et. al. (1988). Pozharnaya opasnost’ stroitel’nykh materialov. Moscow, 380.

6. Zhartovskyi, S. V. (2013). A systematic approach to fire protection of objects using water fire retardant and fire extinguishing means. Pozharovyyrozobezopasnost’, 22 (9), 25–32. doi: https://doi.org/10.18322/pvb.2018.22.9.25-32

7. Baratov, A. N., Molchadskiy, I. S. (2011). Gorenie na pozhare. Moscow, 503.

8. Lopes, A. M. G., Ribeiro, L. M., Viegas, D. X., Raposo, J. R. (2017). Effect of two-way coupling on the calculation of forest fire spread model development. International Journal of Wildland Fire, 26 (9), 829–843. doi: https://doi.org/10.1071/WF16045.

9. Kutateladze, S. S. (1979). Osnovy teorii teploobmena. Moscow, 416.

10. Yeh, G. H., Yuen, K. K. (Eds.) (2008). Computational fluid dynamics in fire engineering theory, modelling and practice. Butterworth-Heinemann, 544. doi: https://doi.org/10.18798-0-7506-8589-4.x0001-4

11. Melihov, A. S. (2017). Issledovanie protsessa rasprostraneniya tleniya ya i usloviy ego prekrashcheniya vnutri massiva gazpromitsaemogo melkodispersnogo materiala. Pozhnaraya bezopasnost’, 4, 74–89.

12. Markus, E., Snegirev, A., Kuznetsov, E., Tanklevskyi, L. (2018). Application of a simplified pyrolysis model to predict fire development in rack storage facilities. Journal of Physics: Conference Series, 1107, 042012. doi: https://doi.org/10.1088/1742-6596/1107/4/042012.

13. Bartlett, A. I., Hadden, R. M., Bibly, L. A. (2018). A Review of Factors Affecting the Burning Behaviour of Wood for Application to Tall Timber Construction. Fire Technology, 55 (1), 1–49. doi: https://doi.org/10.1007/s10694-018-0757-y.

14. Liu, Q., Shen, D., Xiao, R., Zhang, H., Fang, M. (2013). A mathematicaL description of thermal decomposition and spontaneous ignition of wood slab under a truncated-cone heater. Korean Journal of Chemical Engineering, 30 (3), 613–619. doi: https://doi.org/10.1007/s11814-012-0181-2.

15. Gregco, E., Baldi, G. (2011). Analysis and modelling of wood pyrolysis. Chemical Engineering Science, 66 (4), 650–660. doi: https://doi.org/10.1016/j.ces.2010.11.018.

16. Nizhnyi, V., Sichipets, S., Tarasenko, O., Kropyvnytskyi, V., Medvid, B. (2018). A Method of Experimental Studies of Heat Transfer Processes between Adjacent Facilities. International Journal of Engineering & Technology, 7 (4.3), 288. doi: https://doi.org/10.14419/ijet.v7i4.3.19806.

17. Molchadskiy, I. S. (2005). Pozh v pomeshchenii. Moscow, 456.

18. Chumachenko, S. N., Zhartovskyi, S. V., Titenko, A. N. (2016). Methods of creating a mathematical model of an energy component of chemical and physical processes that occur in wood when it is heated prior to the flaming phase. BiTP, 44 (4), 131–137. doi: https://doi.org/10.12845/http.44.4.2016.10.

19. Chumachenko, S. M., Zhartovskyi, S. V., Titenko, O. M. (2016). The Methodology of Creating the Mathematical Model of Cooling Effect during Heating of Wood Sample Impregnated by Water Based Flameproofing Matter. Scientific Bulletin of UNFE, 26 (8), 357–374. doi: https://doi.org/10.15421/48260851.

20. Baratov, A. N., Korol’chenko, A. Ya., Krachevskii, G. N. et al. (1990). Pozharovzyrozovospasnost’ veshchestv i materialov sredstva ih tusheniya. Moscow, 496.

21. Zhartovskyi, V. M., Tsapko, Yu. V. (2006). Proizvodstvo zashchitnykh sredstv. Moscow, 648.

22. Rodzhers, D., Adams, Dzh. (2001). Matematicheskie osnovy mashinostroeniya i usloviy ego prekrashcheniya vnutri massiva gazopronitsaemogo materiala. Pozhnaraya bezopasnost’, 503.

23. Kutateladze, S. S. (1979). Osnovy teorii teploobmena. Moscow, 416.

24. Bolgarskiy, A. V., Muhachev, G. A., Shchukin, V. K. (1975). Termogo dika i teploperedacha. Moscow, 496.

25. Solodov, A. P. (2015). Teplomassoobmen v energeticheskikh ustanovkakh. Inzhenerny grafiki. Moscow, 604.

26. Chumachenko, S. M., Zhartovskyi, S. V., Titenko, O. M. (2016). The Methodology of Creating the Mathematical Model of Cooling Effect during Heating of Wood Sample Impregnated by Water Based Flameproofing Matter. Scientific Bulletin of UNFE, 26 (8), 357–374. doi: https://doi.org/10.15421/48260851.

27. DSTU 8829:2019. Fire and explosion hazard of substances and materials. Requirements and methods of their determination. Classification.
АНАЛІЗ ПРОДУКТИВНОСТІ РЕАКТОРА З АНАЕРОБНИМ БІОФІЛЬТРОМ З НЕРУХОМОЮ ПЛІВКОЮ (АнБНП) ПРИ ОЧИЩЕННІ СТІЧНИХ ВОД ОБРОБКИ МАНІОКИ (с. 6–13)

Prayitno Prayitno, Sri Rulianah, Windi Zamrudy, Sugeng Hadi Susilo

Стічні води виробництва маніокового крохмалю містять високі концентрації органічних речовин (БПК, ХПК), що потенційно може призвести до забруднення водного середовища. Для зниження концентрації органічних речовин (забруднюючих речовин) в стічних водах виробництва маніокового крохмалю було використано кілька методів очищення, включаючи процеси очищення активним мулом, стабілізаційним ставком, анаеробно-аеробним фільтром. Тим не менше, продовжується проведення різних досліджень, спрямованих на підвищення ефективності обробки за відповідними факторами. На ефективність процесів очищення стічних вод впливають декілька факторів, в тому числі тип і походження руйнувально-мікроорганізмів, час перебування води (ЧПВ), навантаження по органічним речовинам (НОР), технологічна схема, рН і температура. Дослідження було спрямоване на оцінку ефективності реактора АнБНП при очищенні стічних вод виробництва маніокового крохмалю, при якій продуктивність реактора показана змінами у видаленні органічних речовин (видалення ХПК) і виробництві біогазу. Дослідження проводилось з використанням 3 типів реакторів АнБНП, кожен реактор АнБНП містить біофільтр у формі бджолиного гнізда в якості живильного середовища для консорціуму аборигенних мікроорганізмів. Реактор АнБНП працює в анаеробних умовах при заданій температурі 29–30 °C і рН 4,3–7. У кожен реактор АнБНП подаються стічні води виробництва маніокового крохмалю з різним НОР , таким чином ЧПВ кожного реактора становить 5, 6 і 7 днів. Вимірювали концентрацію ХПК на вході і виході реактора і отримували біогаз з використанням стандартного методу ААОЗ. Результати показали задовільні показники реактора АнБНП з видаленням ХПК і виробництвом біогазу, які при ЧПВ: 6 днів і НОР 1,72 г/л·добу показали максимальне видалення ХПК 98 %, а обсяг біогазу 4,8 л/л·добу був отриманий на 12-й день.

Ключові слова: біогаз, бджолине гніздо, маніоковий крохмаль, ЧПВ, консорціум аборигенних мікроорганізмів, НОР.

РОЗРОБКА ТЕХНОЛОГІЇ ВИКОРИСТАННЯ ВІДХОДІВ ВОДООЧИЩЕННЯ У ВИРОБНИЦТВІ КЕРАМІЧНИХ БУДІВЕЛЬНИХ МАТЕРІАЛІВ (с. 14–22)

Л. М. Спасьонова, І. С. Суббота, А. Є. Шолом

На основі сучасних уявлень про охорону довкілля проведено дослідження використання відходів водоочищення від важких металів (на прикладі сполук міді(ІІ)) для виготовлення керамічних будівельних матеріалів. Для сорбційного видалення забруднювачів неорганічного походження зі стічних вод пропонуються досліджені глинисті мінерали місцевих родовищ та оптимальні умови їх термообробки (при 1100 °С). Використання стічних вод після їх очищення дає змогу вирішити одночасно декілька задач – здійснити захист навколишнього середовища від технологічних стоків, а також повторно використовувати відпрацьовану воду, для виробництва керамічних матеріалів. Керамічні будівельні матеріали виготовлені з відходів водоочищення (вмістом 5 %) та глинистої сировини. Всебічно досліджені їх структурно-механічні та фізико-хімічні характеристики. Процеси спікання починаються при більш низьких температурах, тому при підвищенні температури випалу до 1000 °С і вищої міцність їх зменшується. В інтервалі температур 600–1100 °С існують можливості застосування керамічної технології для іммобілізації важких металів в керамічних матрицях. Показана перспективність використання відходів водоочищення в технологічному процесі виготовлення неорганічних керамічних матеріалів.

Ключові слова: відходи водоочищення, сполуки міді, ваги металів, сорбція, природні мінерали, термообробка, іммобілізація, будівельні матеріали.

ПЕРЕРОБКА ЕТАНОЛВМІСНОГО ВІДХОДУ НЕЙТРАЛІЗАЦІЇ ОЛІЙ В ТЕХНОЛОГІЇ ПАСТИ ДЛЯ ОЧИЩЕННЯ РУК (с. 23–29)

І. П. Петік, А. П. Бєлінська, К. В. Куниця, С. В. Бочкарев, Т. О. Овсяннікова, В. С. Калина, А. А. Чернуха, К. М. Остапов, Н. В. Григоренко, О. А. Петухова

Визначено графічну залежність миючої здатності етанолвмісного соапстоку від концентрації у водному розчині і температури взаємодії з забрудненим матеріалом. Запропоновано використовувати 40 %-ний водний розчин етанолвмісного соапстоку в технології пасті для очищення рук. Такий розчин соапстоку має миючу здатність 92–98 % за умови температури взаємодії з забрудненням матеріалом 25–40 °C.
Досліджено закономірність впливу на консистенцію пасти для обробки рук вмісту структурутворювачів з використанням апроксимаційного поліному. Це дозволило обґрунтувати ефективну концентрацію в рецептурі карбоксиметилцелюлози (0,4...0,6 %) і цетил-треалівого спирту (18...20,0 %). Отримане рівняння регресії є корисним для корегування вмісту структурутворювачів в рецептурі в залежності від вимог споживача до в’язкості даного мийного засобу.

Порівняння показників якості розробленої пасти для очищення рук на основі етанолвмісного соапстоку зі зразком аналогічної комерційної пасти для очищення рук «Primatera Автомобільна». Показники якості розробленої пасти є наступними: ефективна в’язкість за 20±22 °С – 32,0 Па·с; піноутворююча здатність – 23 мм, стабільність піни – 62,0 %; миюча здатність – 92,0 %. Отримані дані свідчать про перспективність переробки етанолвмісного соапстоку в пасту для очищення рук на основі природних поверхнево активних речовин. Розроблений мийний засіб за рахунок вмісту етанолу, гліцерину і пероксиду водню має антисептичні властивості, що є конкурентною перевагою серед аналогів.

Для вирішення проблеми при використанні етанолвмісного соапстоку в пасту для очищення рук на основі природних поверхнево активних речовин, була розроблена математична модель процесу фазових перетворень при термічному модифікуванні деревини граба.

У результаті досліджень встановлено, що інтенсивність теплового випромінювання для етанолу зменшується при добавлянні аерозолю з інтенсивністю подавання від 0,2 г/с, та ще більше зменшується при інтенсивності подавання від 1,2 г/с. При подальшому збільшенні інтенсивності подавання випромінювання кількість вогню зменшується на 30–40 секунд, та ще більше зменшується при інтенсивності подавання від 1,2 г/с.

Створення екологічно безпечних захисних матеріалів для будівельних конструкцій з деревини граба дозволить впливати на процеси стійкості і фізико-хімічні властивості термічно модифікованої деревини граба протягом певного часу до усунення останньої.

Встановлено, що інтенсивність теплового випромінювання на відстані 60 та 30 мм від поверхні спиртової пожежі спочатку зменшується в розмірах до 2-х разів, а потім через 2–3 секунди гасне. Використання вогнегасного аерозолю для підшарового гасіння спиртів забезпечує реалізацію декількох чинників, які синергічно взаємодіють та забезпечують зменшення інтенсивності випаровування, горіння та відповідно теплового випромінювання.

Ключові слова: вогнегасний аерозоль, етиловий спирт, етанол, н-бутанол, спирт, ізобутанол.

DOI: 10.15587/1729-4061.2021.225216

ЗМІНЕННЯ ІНТЕНСИВНОСТІ ТЕПЛОВОГО ВИПРОМІНЮВАННЯ ПРИ ПІДШАРОВОМУ ГАСІННІ КІСЛЯТІВ (с. 37–44)

Вмістовна інтенсивність теплового випромінювання при підшаровому гасінні спиртів аерозолями. Залежність ефективності підшарового гасіння від теплового випромінювання полягає в тому, що вогнегасний аерозоль повністю екранує поверхню горючої рідини від його дії.

В результаті досліджень встановлено, що інтенсивність теплового випромінювання при підшаровому гасінні спиртів аерозолями залежить від температури та часу витримки. Наведено результати вологопоглинання та встановлено, що протягом 6 годин модифікації вологопоглинання знижується понад 10 разів, що дозволяє використовувати ааб'єкти з підвищеною вологою.

Тому постає необхідність дослідження умов для дослідження фазових перетворень при високотемпературній дії на деревину та встановлення закономірностей впливу на консистенцію пасти для обробки рук вмісту структуроутворювачів з використанням апроксимаційного поліному. Це дозволило обґрунтувати ефективну концентрацію в рецептурі карбоксиметилцелюлози (0,4...0,6 %) і цетил-треалівого спирту (18...20,0 %). Отримане рівняння регресії є корисним для корегування вмісту структуроутворювачів в рецептую для обробки рук, миюча в’язкість.

Досліджено закономірність впливу на консистенцію пасти для обробки рук вмісту структурутворювачів з використанням апроксимаційного поліному. Це дозволило обґрунтувати ефективну концентрацію в рецептурі карбоксиметилцелюлози (0,4...0,6 %) і цетил-треалівого спирту (18...20,0 %). Отримане рівняння регресії є корисним для корегування вмісту структуроутворювачів в рецептую для обробки рук, миюча в’язкість.

Ключові слова: термічна модифікація деревини, ефективність модифікації, вологопоглинання, дифузія вологи, вологостійкість деревини.

DOI: 10.15587/1729-4061.2021.225216
Для розроблення відповідних заходів і засобів вогнезахисту на об’єктах актуальним є формування уявлення про феноменологію процесів виникнення, розвитку та припинення горіння. Запропоновані методики створення математичних моделей енергетичної складової фізико-хімічних процесів, які відбуваються в деревині в умовах вогняного впливу, що дозволяє визначити час від початку такого впливу до настання фази полум’яння горіння. Адекватність математичного моделювання перевірялася експериментально на стандартизованій установці дослідження поширення полум’я по поверхні деревини. В якості зразків для теоретичних та експериментальних досліджень використовували зразки незахищеної деревини, виготовлені із заболоні сосни товщиною 20 мм, щільністю 400–550 кг/м³. Зразки вогнезахищеної деревини (тієї ж породи, товщини та щільності) були просоченої вогнезахисним засобом на основі диамонійфосфату і сульфату амонію (за витрати 168,2 г/м² сухих компонентів антипіренів). При моделюванні використано результати експериментального визначення температури займання незахищеної та вогнезахищеної деревини, які становили: 235 °C – для незахищеної, 410 °C – для вогнезахищеної, відповідно.

Результати математичного моделювання та експериментальних досліджень підтверджують можливість суттєвого подовження часу від початку вогняного впливу до займання пожежного навантаження із деревини при використанні для вогнезахисту азото-фосфорних просочувальних засобів.

Запропоновано методику математичного моделювання для створення моделей з визначення впливу охолоджувального ефекту від використання просочувальних вогнезахисних засобів захисту деревини в подовження часу стадії початку пожежі.

Дані математичного моделювання придатні для використання при створенні просочувальних вогнезахисних засобів.

Ключові слова: вогнезахищена деревина, вогнезахисний засіб, просочувальна речовина, температура займання, вогневий вплив.