EEF1E1 (eukaryotic translation elongation factor 1 epsilon 1)

Luigi Cristiano

Aesthetic and medical biotechnologies research unit, Prestige, Terranuova Bracciolini, Italy; prestigefm@gmail.com - luigicristiano@libero.it

Published in Atlas Database: March 2020

Online updated version : http://AtlasGeneticsOncology.org/Genes/EEF1E1ID40409ch6p24.html
Printable original version : http://documents.revue.inist.fr/bitstream/handle/2042/70858/03-2020-EEF1E1ID40409ch6p24.pdf
DOI: 10.4267/2042/70858

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2020 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Eukaryotic translation elongation factor 1 epsilon 1, alias EEF1E1, is a protein-coding gene that plays a role in the elongation step of translation. In particular, it is an auxiliary component of the macromolecular aminoacyl-tRNA synthase complex (MARS). Its expression is found frequently altered in human cancer cells and it is considered a putative tumor suppressor gene. This review collects the data on DNA/RNA, the protein encoded and the diseases where EEF1E1 is involved.

Keywords

EEF1E1; eukaryotic translation elongation factor 1 epsilon 1; AIMP3; p18; Translation; Translation elongation factor; protein synthesis; cancer; oncogene; cancer marker

Identity

Other names: P18, AIMP3, ARS-interacting multifunctional protein 3, Multisynthase Complex Auxiliary Component P18, Elongation Factor P18

HGNC (Hugo): EEF1E1

Location: 6p24.3

Figure. 1. EEF1E1 gene and splicing variants/isoforms. The figure shows the locus on chromosome 6 of the EEF1E1 gene (reworked from https://www.ncbi.nlm.nih.gov/gene; http://grch37.ensembl.org; www.genecards.org)
DNA/RNA

Description

EEF1E1 (eukaryotic translation elongation factor 1 epsilon 1) was identified for the first time by Mao and colleagues in 1998 (Mao et al, 1998). EEF1E1 is a protein-coding gene that starts at 8,079,395 nt and ends at 8,102,595 nt from pter. It has a length of 23,201 bp, counts 5 exons, and the current reference sequence is NC_000006.12. It is proximal to BLOC1S5 (biogenesis of lysosomal organelles complex 1 subunit 5, alias MUTED) gene. Read-through transcription exists between BLOC1S5 gene and EEF1E1 gene with forming the read-through transcript EEF1E1-BLOC1S5 (alias EEF1E1-MUTED) that is a candidate for nonsense-mediated mRNA decay (NMD) and it is unlikely to produce a protein product (He et al, 2018). Near to the genomic sequence of EEF1E1 there is a strong promoter transcriptional element that is located at +1.0 kb. Enhancer transcriptional elements are located at +22.0 Kb and at +18.1 Kb respectively.

Transcription

Alternative splicing for EEF1E1 brings to multiple transcript variants. In addition, a read-through transcription is known between EEF1E1 and the neighboring downstream MUTED (muted homolog) gene.

Two main alternative splicing transcript variants for EEF1E1 were detected although several others were reported. In addition, it was speculated the presence of six protein isoforms, but only two are properly described, i.e. the isoform 1 of 174 residues and the isoform 2 that counts 139 residues.

Pseudogene

According to Entrez Gene, the analysis of the human genome revealed the presence of an EEF1E1-related pseudogene on chromosome 2. This pseudogene was appointed as eukaryotic translation elongation factor 1 epsilon 1 pseudogene 1, alias EEF1E1P1 and it is classified as a processed pseudogene (http://www.ensembl.org/index.html). Its gene ID is 100130388, its reference is NC_000002.12, and its location is 2q13. EEF1E1P1 starts at 111,887,890 nt and ends at 111,889,485 nt with a length of 1,596 nt.

Name	Varian t	RefSeq (1)	Transcript ID	Exons	Type	Length (bp)	Isomorph	Alias	RefSeq (2)	Length (aa)	MW (kDa)	pI
EEF1E1	-	-	ENST0000048826.2	2	protein coding	443	-	-	-	94	(?)	(?)
EEF1E1	Var.1	NM_004280.5	ENST00000379715.5	4	protein coding	1077	isoform 1	O43324	NP_004271.1	174	19.8	8.5
EEF1E1	-	-	ENST00000507463.1	3	protein coding	654	-	-	-	150	16.6	(?)
EEF1E1	Var.2	NM_001135650.2	ENST00000429723.2	4	protein coding	562	isoform 2	O43324	NP_001129122.1	139	15.5	7.9
EEF1E1	-	-	ENST00000502429.1	4	protein coding	591	-	-	-	136	(?)	(?)
EEF1E1	-	-	ENST00000515633.1	3	protein coding	460	-	-	-	56	5.89	(?)

Table 1: Alternative splicing variants and isoforms of EEF1E1. (reworked from http://grch37.ensembl.org; https://www.ncbi.nlm.nih.gov; https://web.expasy.org/protparam; https://www.uniprot.org). ncRNA = non-coding RNA; nonsense md = nonsense mediated decay; (?) = undetermined; MW = molecular weight; pl = theoretical pl.
It virtually encodes a non-coding transcript of 430 bp named EEF1E1P1-201 (Ensembl Ref: ENST00000446998.2). The real presence of this transcript and its possible role in the cell are totally unknown.

If EEF1E1P1 has any regulatory role in the expression of the respective gene as described for others (Hirotsune et al., 2003), is only speculation in the absence of experimental evidence. Currently, there is no evidence about the involvement of this pseudogene in human cancers or in other diseases.

Description

The eukaryotic translation elongation factor 1 epsilon 1 (alias eEF1E1, p18, AIMP3) is the smallest component of the Multiaminoacyl-tRNA Synthetase complex (alias MARS). The exact position of EEF1E1 in the MARS complex is still unknown. However, it seems to be localized on the surface of the MARS complex and it seems to interact with the eEF1H complex (Deineko V.V., 2008).

EEF1E1 is a small globular protein with a length of 174 amino acids and a molecular weight of 19.8 kDa. eEF1E1 shows strong sequence similarity with eukaryotic translation elongation factor 1 beta 2 (EEF1B2) and eukaryotic translation elongation factor 1 gamma (EEF1G) (Quevillon and Mirande, 1996) and with the N-terminal sequence of valyl-tRNA synthetase (Deineko V.V., 2008).

eEF1E1 shows many domains in both isoforms: the amino half terminal is unique for both isoforms and shows an N-terminal-like domain not well characterized followed by a linker domain, while the major differences between the two isoforms are in the carboxyl half terminal. In fact, in the carboxyl half terminal of isoform 1 there are reported two domain overlapping, i.e. a Glutathione S-transferase C-terminal-like domain (GST_C_AIMP3), folded in alpha-helical, and a more general and not well characterized C-terminal domain.

In isoform 2, there is a unique region called C-terminal domain of the Glutathione S-transferase family (GST_C_family). The fold of this domain is alpha-helical (see figure 2).

EEF1E1 interacts with other members of the MARS complex and one interactional model was proposed (Mirande, 2017) although its exact interactions need to be still clarified.

Post-translational modifications. Some post-translational modifications are observed, such as phosphorylation and acetylation (https://www.ncbi.nlm.nih.gov).

Expression

eEF1E1 is expressed widely in human tissues and normal cells (https://www.genecards.org; https://www.proteinatlas.org/ENSG00000124802-EEF1E1/tissue) while its expression is altered in many cancer types. Frequently it is downregulated in various cancer tissues (Park et al., 2005). Cells that show overexpression of eEF1E1 show an acceleration of senescence and also defects in nuclear morphology (Oh et al, 2010).

Localisation

EEF1E1 is located mostly in the cytoplasm but it was also found in the nucleus.
Function

It is well known that in eukaryotic cells the various components of translation machinery are properly organized into two main multienzyme structures: eEF1H (macromolecular eukaryotic translation elongation factor-1 complex), formed by the translation elongation factors (EEF1B2, EEF1D, EEF1G) and VARS (valyl-tRNA synthetase), and MARS (Multiaminoacyl-tRNA Synthetase complex or multi-tRNA synthetase complex, alias MSC), formed by nine aminoacyl- tRNA synthetases (AARSs) specific for amino acids Glu, Pro (EPRS1 (glutaminylprolyl-tRNA synthetase)), Ile (IARS1), Leu (LARS1), Met (MARS1, methionyl-tRNA synthetase), Gln (QARS1), Lys (KARS1), Arg (RARS1), and Asp (DARS1) and other auxiliary non-synthetase protein components, called also aminoacyl-tRNA synthetase (ARS)-interacting multifunctional proteins (AIMPs), i.e. AIMP1 (p43), AIMP2 (p38) and eEF1E1 (AIMP3, alias p18) (Cho et al., 2015; Shalak et al., 2007; Quevillon and Mirande, 1996).

It is well known that in eukaryotic cells the various components of translation machinery. Therefore, the main canonical function of eEF1E1 is to play a role as an auxiliary component of the macromolecular aminoacyl-tRNA synthetases complex in the elongation step of translation, in particular, it interacts with several aminoacyl-tRNA synthetases (Tao et al., 2017) and it could contribute to the anchorage of MARS complex to EF1H complex (Quevillon and Mirande, 1996).

Other functions (non-canonical roles): in addition to what has already been said, it seems to play a role in embryonic development of the mammalian face and other structures (Fowles et al., 2003). eEF1E1 has the ability to translocate into the nucleus in response to DNA damage where it has a role in the DNA damage response in association with serine/threonine kinases ATM / ATR and TP53. In fact, it was found a positive relationship between expression levels of eEF1E1 and TP53, i.e. high expression levels of eEF1E1 are correlated with elevated TP53 levels, while eEF1E1 depletion leads to the block of TP53 induction (Park et al., 2005). The eEF1E1 loss-of-function phenotype leads to various kinds of abnormalities: in particular, one allele inactivation increases the susceptibility to spontaneous tumors while the inactivation of both eEF1E1 alleles caused embryonic lethality (Park et al., 2005). The importance of eEF1E1 in embryogenesis is previously reported (Fowles et al., 2003) while in the context of the tumors, eEF1E1 could be a haploinsufficient tumor suppressor (Park et al., 2005) that can accelerate cellular senescence (Kang et al., 2012).

eEF1E1 in involved in the degradation of mature Lamin A (LMNA) which is a major component of the nuclear envelope matrix (Tao et al., 2017).

Homology

eEF1E1 is highly conserved and its homology between the species is reported in Table.2
Mutations

A great number of mutations in the genomic sequence and in the amino acid sequence for EEF1E1 were discovered in cancer cells that are obviously genetically more unstable respect normal ones. However, depletion of EEF1E1 causes itself genomic instability in cells (Kim et al, 2018) and makes the cells susceptible to transformation by single oncogenes (Park et al, 2006).

The genomic alterations observed include also the formation of novel fusion genes. However, there are no sufficient experimental data yet to understand the repercussions on cellular behavior and so the implications in cancer of these alterations.

Implicated in

Top note

A different expression level of EEF1E1 was observed in many cancer types compared to noncancerous control tissue. It is considered as a putative tumor suppressor, in particular for its downregulation in gastric and colorectal cancers (Kim et al, 2011). In fact, high EEF1E1 expression seems to be related to better survival in these two tumor types (Hassan et al, 2018).

However, Hassan et colleagues reported that EEF1E1 is overexpressed in many other cancer types such as breast, lung, gastric, prostate, colorectal and liver tumors and this fact could predict poor survival (breast, lung, liver)(Hassan et al, 2018).

Interesting is the role of inorganic arsenic (iAs) in the epigenetic alteration of DNA methylation in arsenic-induced diseases such as cancer of the bladder, kidney, lung, liver, and prostate. It was revealed that EEF1E1 is one of many genes silenced and involved in iAs related-hypermethylation in an arsenic-methylated tumor suppressorome (Smeester et al, 2011).

In addition, eEF1E1 is involved in some genomic translocations with the creation of numerous fusion genes (Table.3).
Ankylosing spondylitis

It is found that the expression levels of EEF1E1 are significantly upregulated in whole blood of ankylosing spondylitis (AS) patients respect control group and these findings could be attributed to genetic mutations on EEF1E1 gene. This may have an important significance in the pathogenesis of AS because eEF1E1 may be involved in AS-related inflammation by upregulating TP53 and pro-inflammatory cytokines. This may suggest the use of EEF1E1 as an underlying genetic biomarker for the diagnosis of AS but other research are needed to determine the exact role of eEF1E1 overexpression in AS (Fan et al, 2019).

Autism spectrum disorders

EEF1E1 appears in research on developmental delay and autism spectrum disorders focused on deletions in chromosome 6p22.3-p24.3 (Celestino-Soper et al, 2012). However, is still not clear its role in these diseases.

Bladder cancers

In general, eEF1E1 is found to be down-regulated in bladder cancers. eEF1E1 is expressed at moderate and high levels in all normal urothelium tissues while only a part of bladder cancers shows this expression's pattern. The loss of EEF1E1 expression is more evident in late-stage (≥ T2) bladder tumours and can be associated with survival in muscle-invasive bladder cancers (MIBC) patients following radiotherapy (Gurung et al, 2015).

Brain and central nervous system (CNS) cancers

EEF1E1 is upregulated in astrocytoma and oligodendroglioma while for glioblastoma and glioma no significant difference in expression levels was observed. High levels of EEF1E1 could be predicted better survival outcomes (Hassan et al, 2018). In addition, one genomic alteration was observed both in astrocytoma and glioblastoma, i.e. the fusion gene t(6;6)(p24;p24) RREB1 /EEF1E1 (Gao et al, 2018; Yoshihara et al, 2015). There are no data about the respective chimeric transcript or protein and so this genomic alteration is still poorly understood.

Breast cancer

Currently, for EEF1E1 there is no significant difference in expression, between breast cancer and normal breast tissues (Hassan et al, 2018; Guglielmi et al, 2015; Gao et al, 2018). There are no reference

Table 3 EEF1E1 rearrangements: translocations and fusion genes

Name	5’ end	3’ end	Loc1	Loc2	Description	Type	Disease	Organ	Code	Ref.
CDYL/EEF1E1	CDYL	EEF1E1	6p24.3	6p24.3	t(6;6)(p25;p24)	Translocation	Malignant melanoma	Skin	SKCM	1
EEF1E1/AEBP2	EEF1E1	AEBP2	6p24.3	12p12.3	t(6;12)(p24;p12)	Translocation	-	-	-	
EEF1E1-BLOC1S5	EEF1E1	BLOC1S5	6p24.3	6p24.3	Readthrough transcription	Fusion gene	-	-	-	
EEF1E1/CD2AP	EEF1E1	CD2AP	6p24.3	6p12.3	t(6;6)(p24;p12)	Translocation	-	-	-	
EEF1E1/DSC2	EEF1E1	DSC2	6p24.3	18q12.1	t(6;18)(p24;q12)	Translocation	-	-	-	
EEF1E1/EYS	EEF1E1	EYS	6p24.3	6q12	t(6;6)(p24;q12)	Translocation	Adenocarcinoma	Breast	BRCA	2
EEF1E1/KRTDAP	EEF1E1	KRTDAP	6p24.3	19q13.12	t(6;19)(p24;q13)	Translocation	-	-	-	
EEF1E1/NSMCE4A	EEF1E1	NSMCE4A	6p24.3	10q26.13	t(6;10)(p24;q26)	Translocation	-	-	-	
EEF1E1/RAB23	EEF1E1	RAB23	6p24.3	6p12.1	t(6;12)(p24;p12)	Translocation	-	-	-	
EEF1E1/REB1	EEF1E1	REB1	6p24.3	6p24.3	t(6;6)(p24;p24)	Fusion gene	-	-	-	
INPP4A/EEF1E1	INPP4A	EEF1E1	2q11	6p24.3	t(2;6)(q11;p24)	Translocation	Mesenchymal tumor, NOS	-	-	1
PSMG4/EEF1E1	PSMG4	EEF1E1	6p25	6p24.3	t(6;6)(p25;q24)	Translocation	Adenocarcinoma	Breast	BRCA	1
RREB1/EEF1E1	RREB1	EEF1E1	6p24.3	6p24.3	t(6;6)(p24;q24)	Fusion gene	Astrocytoma, grade III-IV/Glioblastoma	Central Nervous System	GBM	2.3
TG/EEF1E1	TG	EEF1E1	8q24.22	6p24.3	t(6;6)(p24;q24)	Translocation	-	-	-	

Atlas Genet Cytogenet Oncol Haematol. 2020; 24(11)
t(6;6)(p24;q12) EEF1E1/ EYS and t(6;6)(p25;p24) PSMG4/EEF1E1 (Hu et al., 2018). There are no data about the respective chimeric transcripts or proteins and so these genomic alterations are still poorly understood.

Colorectal cancer

EEF1E1 was found to be upregulated in rectal mucinous adenocarcinoma subtype and, in general in colorectal cancers compared to normal tissues. A reduction of its expression level correlates with a worst prognosis and poor survival (Hassan et al., 2018). Other studies found that normal colon mucosa expressed EEF1E1 in nearly all of the cases while EEF1E1 expression is significantly decreased in the majority of colorectal cancer (CRC) cases. This suggests that the downregulation of EEF1E1 may be related to inactivation of its tumour suppressor function and so might play a role in the development of CRC (Chen et al, 2018; Kim et al, 2011).

Gastric cancer

In gastric cancers is found an upregulation of EEF1E1 transcript and this predicts a better overall survival (OS) and first progression (FP)(Hassan et al., 2018). Other studies revealed that normal gastric mucosa expressed EEF1E1 in nearly all of the cases while EEF1E1 expression is significantly decreased in the majority of gastric cancer (GC) cases. This suggests that the downregulation of EEF1E1 may be related to the inactivation of its tumour suppressor function and so might play a role in the development of GC (Kim et al, 2011).

Head and neck squamous cell carcinoma (HNSC)

EEF1E1 is found to be overexpressed in head and neck cancers (Hassan et al, 2018). Wiest and colleagues (Wiest et al, 2002) have found an interesting feature in the HPV16 infection in some samples of head and neck cancer in relation to EEF1E1. In detail, the integration site of E6/E7 region of HPV16 falls on chromosome 6 in the proximity of some human genes included EEF1E1. This could contribute to explain the oncogene property of HPV16 or one of the oncogenesis mechanisms of head and neck cancer. However, it is still unclear if the viral integration can affect the regulation of expression of EEF1E1.

Kidney cancer

EEF1E1 was found to be downregulated in chromophobe renal cell carcinoma and in kidney clear cell carcinoma (Hassan et al, 2018).

Liver cancer

It was documented that EEF1E1 is down-regulated in hepatocellular carcinoma (HCC)(Yu et al, 2017; Du et al, 2012). In particular, there is a high relation between the expression levels of highly up-regulated in liver cancer (HULC) long non-coding RNA and eEF1E1 in HCC. In fact, if HULC is over-expressed the expression levels of eEF1E1 fall down and on the contrary if expression levels of HULC decrease, eEF1E1 is expressed normally. EEF1E1 gene is in close proximity to HULC gene and with high probability the second can mediate the expression levels of the first (Yu et al, 2017). Other authors reported that EEF1E1 expression levels are higher in liver cancer and that this could predict worse survival although they did not tell precisely the cancer type (Hassan et al, 2018).

Lung cancer

EEF1E1 expression levels were reported to be high in small cell lung carcinoma, in squamous cell lung carcinoma subtypes, and in large cell lung carcinoma. These high expression levels seem to be correlated with poor overall survival (OS) and first progression (FP) in lung cancers (Hassan et al, 2018). In addition, were reported some somatic mutations for EEF1E1 gene in lung cancer cell lines (Kim et al, 2011).

Lymphoma and other blood cancers

EEF1E1 is found to be overexpressed in Burkitt's lymphoma and in diffuse large B-Cell lymphoma. On the contrary, it is found to be downregulated in marginal zone B-Cell lymphoma (Hassan et al, 2018), acute promyelocytic leukemia and chronic myelogenous leukemia (Gurung et al, 2015). In chronic myelogenous leukemia was observed some somatic mutations for EEF1E1 (Kim et al, 2011). In addition, EEF1E1 shows an increased expression in pyothorax-associated lymphoma (PAL), a lymphoma developing in long-standing inflammation (Nishiu et al, 2004).

Ovarian cancer

It is detected that EEF1E1 is frequently upregulated in ovarian serous adenocarcinoma (Hassan et al, 2018).

Pancreatic cancer

EEF1E1 expression levels were found to be significantly downregulated in pancreatic cancers (Hassan et al, 2008).

Prostate cancer

EEF1E1 is significantly overexpressed in prostate cancer. Currently, there is not sufficient data about the prognostic significance of the upregulation of EEF1E1 in prostate cancer (Hassan et al, 2018).

To be noted
HIV-1 interactions: It is reported that HIV-1 MA protein interacts with EEF1E1 in human HEK293 and Jurkat cell lines (Jäger et al, 2011) and that EEF1E1 is subject to cleavage by the HIV-1 protease (Impens et al, 2012).

References

Celestino-Soper PB, Skinner C, Schroer R, Eng P, Shenai J, Nowaczyk MM, Terespolsky D, Cushing D, Patel GS, Immken L, Willis A, Wizniewska J, Matalon R, Rosenfeld JA, Stevenson RE, Kang SH, Cheung SW, Beaudet AL, Starkiewicz P. Deletions in chromosome 6p22.3-p24.3, including ATXN1, are associated with developmental delay and autism spectrum disorders. Mol Cytogenet. 2012 Apr 5;5:17

Chen J, Liu S, Hu X. Long non-coding RNAs: crucial regulators of gastrointestinal cancer cell proliferation. Cell Death Discov. 2018;4:150

Cho HY, Maeng SJ, Cho HJ, Choi YS, Chung JM, Lee S, Kim HK, Kim JH, Eom CY, Kim YG, Guo M, Jung HS, Kang BS, Kim S. Assembly of Multi-riRNA Synthetase Complex via Heterotetrameric Glutathione Transferase-homology Domains. J Biol Chem. 2015 Dec 4;290(49):29313-28

Cho DI, Oak MH, Yang HJ, Choi HK, Janssen G, Kim KM. Direct and biochemical interaction between dopamine D3 receptor and elongon on factor-1BiP Life Sci 2003; 73:2991-3004.

Deineko V.V.. On ARS-interacting multifunctional protein p18 Nat Prev 2008

Du Y, Kong G, You X, Zhang S, Zhang T, Gao Y, Ye L, Zhang X. Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18 J Biol Chem 2012; 287(31):26302-11

Fan X, Qi B, Ma L, Ma F. Screening of underlying genetic biomarkers for ankylosing spondylitis. Mol Med Rep 2019; 19(6):5263-5274.

Fowles LF, Bennett JS, Berkman JL, Williams E, Koopman RC, Wendl MC, Van Tine BA, Vij K, Colon-Lo. Genome Atlas Research Network, Chen K, Lazar AJ, Fields Yu L, Sun SQ; Fusion Analysis Working Group; Cancer Genome Eras of human craniofacial development Genesis 2003; 35(2):73-87

Gao O, Liang WW, Foltz SM, Mutharasan U, Jayasinghe RG, Cao S, Liao WW, Reynolds SM, Wyczalkowski MA, Yao L, Yu L, Sun SQ; Fusion Analysis Working Group; Cancer Genome Atlas Research Network, Chen K, Lazar AJ, Fields RC, Wendl MC, Van Tine BA, Vij R, Chen F, Nytker M, Shmulevich I, Ding L. Driver fusions and their implications in the development and treatment of human cancers Cell Rep 2018; 23(1):227-238.e3

Guglielmi C, Cerri I, Evangelista M, Collavoli A, Tancredi M, Areini P, Caligo MA. Identification of two novel BRCA1-partner genes in the DNA double-strand break repair pathway Breast Cancer Res Treat 2013; 141(3):515-22

Gurung PM, Veerakumarasivam A, Williamson M, Counsell N, Douglas J, Tan WS, Feber A, Crabb SJ, Short SC, Freeman A, Powles T, Hoskin PJ, West CM, Kelly JD. Loss of expression of the tumour suppressor gene AIMP3 predicts survival following radiotherapy in muscle-invasive bladder cancer Int J Cancer 2015; 136(3):709-20

Hassan MK, Kumar D, Naik M, Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers PLoS One 2018; 13(1):e0191377

He Y, Yuan C, Chen L, Lei M, Zellmer L, Huang H, Liao DJ. Transcriptional-Readthrough RNAs Reflect the Phenomenon of “A Gene Contains Gene(s)” or “Gene(s) within a Gene” in the Human Genome, and Thus Are Not Chimeric RNAs Genes (Basel) 2018; 9(1). pii: E40

Hu X, Yang L, Mo YY. Role of Pseudogenes in Tumorigenesis. Cancers (Basel) 2018; 10(8)

Impens F, Timmerman E, Staes A, Moens K, AriA-n KK, Verhasselt B, Vandekerckhove J, Gevaart K. A catalogue of putative HIV-1 protease host cell substrates Biol Chem 2012; 393(9):915-31

Iofrida C, Melissari E, Mariotti V, Guglielmi C, Guidugli L, Caligo MA, Pellegrini S. Effects on human transcriptome of mutated BRCA1 BRCT domain: a microarray study BMC Cancer 2012; 12:207

Jäger S, Cimermancic P, Guibahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, Hernandez H, Jang GM, Roth SL, Akiva E, Marlet J, Stephens M, D’Orso I, Fernandez J, Fahey M, Mahon C, O’Donoghue AJ, Todorovic A, Morris JH, Maltby DA, Abber T, Cagney G, Bushman FD, Young JA, Chanda SK, Sundquist W, Kortemme T, Hernandez RD, Craik CS, Burlingame A, Sali A, Frankel AD, Krogan NJ.. Global landscape of HIV-human protein complexes Nature 2011; 481(7381):365-70

Kang T, Kwon NH, Lee JY, Park MC, Kang E, Kim HH, Kang TJ, Kim S. AIMP3p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex J Mol Biol 2012; 423(4):475-81

Kim SM, Jeon Y, Kim D, Jang H, Bae JS, Park MK, Kim H, Kim S, Lee H. AIMP3 depletion causes genome instability and loss of stemness in mouse embryonic stem cells Cell Death Disc 2018; 9(10):972

Kim SS, Hur SY, Kim YR, Yoo NJ, Lee SH. Expression of AIMP1, 2 and 3, the scaffolds for the multi-riRNA synthetase complex, is downregulated in gastric and colorectal cancer Tumori 2011; 97(3):380-5

Mao M, Fu G, Wu JS, Zhang QH, Zhou J, Kan LX, Huang QH, He KL, Gu BW, Han ZG, Shen Y, Gu J, Yu YP, Xu SH, Wang YX, Chen SJ, Chen Z. Identification of genes expressed in human COX4(-) hematopoietic stem/progenitor cells by expression sequence tags and efficient full-length cDNA cloning. Proc Natl Acad Sci USA 1998; 95(14):8175-80

Mirande M. The Aminoacyl-riRNA Synthetase Complex Subcell Biochem 2017; 83:505-522

Nishii M, Tomita Y, Nakatsuka S, Takakuwa T, Iizuka N, Hoshida Y, Ikeda J, Iuchi K, Yanagawa R, Nakamura Y, Aozasa K.. Distinct pattern of gene expression in pyothorax-associated lymphoma (PAL), a lymphoma developing in long-standing inflammation. Cancer Sci 2004; 95(10):828-34

Oh YS, Kim DG, Kim G, Choi EC, Kennedy BK, Suh Y, Park BJ, Kim S. Downregulation of lamin A by tumor suppressor AIMP3p18 leads to a progeroid phenotype in mice Aging Cell 2010; 9(5):810-22

Park BJ, Oh YS, Park SY, Choi SJ, Rudolph C, Schlegelberger B, Kim S, AIMP3 haploinsufficiency disrupts oncogene-induced p53 activation and genomic stability Cancer Res 2006; 66(14):6913-8

Park BJ, Kang JW, Lee SW, Choi SJ, Shin YK, Ahn YH, Choi YH, Choi D, Lee KS, Kim S. The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR Cell 2005; 120(2):209-21
Pittman YR, Kandl K, Lewis M, Valente L, Kinzy TG. Coordination of eukaryotic translation elongation factor 1A (eEF1A) function in actin organization and translation elongation by the guanine nucleotide exchange factor eEF1Balpha. J Biol Chem 2009; 284(7):4739-47

Quevillon S, Mirande M.. The p18 component of the multisynthetase complex shares a protein motif with the beta and gamma subunits of eukaryotic elongation factor 1. FEBS Lett 1996; 395(1):63-7.

Shalak V, Guigou L, Kaminska M, Wautier MP, Wautier JL, Mirande M.. Characterization of p43(ARF), a derivative of the p43 component of multiaminoacyl-tRNA synthetase complex released during apoptosis. J Biol Chem 2007; 282(15):10935-43

Smeester L, Rager JE, Bailey KA, Guan X, Smith N, García-Vargas G, Del Razo LM, Drobná Z, Kelkar H, Stýblo M, Fry RC. Epigenetic changes in individuals with arsenicosis Chem Res Toxicol 2011; 24(2):165-7

Tao Y, Fang P, Kim S, Guo M, Young NL, Marshall AG.

Mapping the contact surfaces in the Lamin A:AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry PLoS One 2017; 12(8):e0181869

Wiest T, Schwarz E, Enders C, Flechtenmacher C, Bosch FX. Involvement of intact HPV16 E6/E7 gene expression in head and neck cancers with unaltered p53 status and perturbed pRb cell cycle control. Oncogene 2002; 21(10):1510-7

Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, Verhaak RG. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 2015; 34(37):4845-54

Yu X, Zheng H, Chen MT, Wu WK. HULC: an oncogenic long non-coding RNA in human cancer J Cell Mol Med 2017; 21(2):410-417

This article should be referenced as such:

Cristiano L. EEF1E1 (eukaryotic translation elongation factor 1 epsilon 1). Atlas Genet Cytogenet Oncol Haematol. 2020; 24(11):387-395.