Supporting Information

Anion Sensing by Novel Triarylboranes Containing Boraanthracene: DFT Functional Assessment, Selective Interactions, and Mechanism Demonstration

Haamid Rasool Bhata, Parth Sarthi Sen Guptaa, Satyaranjan Biswala, and Malay Kumar Rana *a

aDepartment of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Government ITI Campus, Engineering School Road, Berhampur, Ganjam, Odisha, India-760010

E-mail: mrana@iiserbpr.ac.in; Tel. No.: +916802227753

Table S1: Calculated geometrical parameters: bond lengths (in Å) and bond angles (in °) for the fully optimized structures of 1CN at CAM-B3LYP/6-31G(d) level; the corresponding X-ray data1 (in parentheses).

Parameter	1CNa	1CNb
B1 – C2	1.650 (1.647)	1.646
B1 – C41	1.637 (1.627)	1.617
B1 – C31	1.638 (1.625)	1.616
N18 – C7	1.502	1.501
C2 – B1 – C41	111.3 (111.7)	110.7
C2 – B1 – C31	110.6 (109.1)	110.2
C31 – B1 – C41	112.3 (112.7)	115.4
C7 – N18 – C19	112.7	112.7
C7 – N18 – C23	109.8	109.8
C7 – N18 – C27	109.5	109.6
C4 – C2 – B1	117.9	117.7
C3 – C2 – B1	125.8	125.8
C32 – C31 – B1	121.9	121.4
Table S2: Calculated geometrical parameters: bond lengths (in Å) and bond angles (in °) for the fully optimized structures of 2 and 2F at CAM-B3LYP/6-31G(d) level

Parameter	2^a	2^b	2F^a	2F^b
B1 – C2	1.584	1.588	1.680	1.656
B1 – C41	1.541	1.542	1.639	1.615
B1 – C31	1.541	1.542	1.626	1.612
P18 – C7	1.795	1.791	1.785	1.733
C2 – B1 – C41	119.7	119.8	112.1	102.5
C2 – B1 – C31	119.7	119.8	116.8	113.3
C31 – B1 – C41	120.6	120.5	104.4	114.1
C7 – P18 – C19	110.1	110.1	110.9	111.6
C7 – P18 – C23	110.5	110.8	110.5	111.2

^aImplies ground state (S₀); ^bImplies excited state (S₁)
Bond	2CN^a	2CN^b
B1 – C2	1.675	1.645
B1 – C41	1.635	1.621
B1 – C31	1.630	1.634
P18 – C7	1.785	1.730
C2 – B1 – C41	113.2	110.8
C2 – B1 – C31	114.6	106.6
C31 – B1 – C41	103.2	104.3
C7 – P18 – C19	110.8	111.1

^a Implies ground state (S₀); ^b Implies excited state (S₁)

Table S3: Calculated geometrical parameters: bond lengths (in Å) and bond angles (in °) for the fully optimized structures of 2CN at CAM-B3LYP/6-31G(d) level.
C7 – P18 – C23 110.4 116.0
C7 – P18 – C27 110.4 112.1
C4 – C2 – B1 120.7 124.8
C3 – C2 – B1 122.9 120.5
C32 – C31 – B1 125.0 128.1
C33 – C31 – B1 118.7 116.2
C42 – C41 – B1 118.7 116.9
C43 – C41 – B1 125.2 127.2
C14 – C4 – C2 123.5 121.9
C10 – C3 – C2 123.9 121.0
C31 – C33 – S51 119.5 118.2
C41 – C42 – S51 119.4 118.0
C36 – C33 – S51 118.2 118.0
C44 – C42 – S51 118.2 118.4
C5 – C7 – P18 119.8 121.6
C6 – C7 – P18 121.7 122.4
C2 – B1 – C52 105.7 113.1
C31 – B1 – C52 110.1 111.0
C41 – B1 – C52 110.1 110.5
B1 – C52 1.603 1.600
C52 – N53 1.161 1.161

a Implies ground state (S₀); b Implies excited state (S₁)

Table S4: Calculated geometrical parameters: bond lengths (in Å) and bond angles (in °) for the fully optimized structures of 3 and 3F at CAM-B3LYP/6-31G(d) level

Parameter	3ᵃ	3ᵇ	3Fᵃ	3Fᵇ
B1 – C2	1.579	1.579	1.650	1.658
B1 – C41	1.531	1.538	1.621	1.589
B1 – C31	1.531	1.538	1.621	1.605
N18 – C7	1.501	1.502	1.503	1.492
C2 – B1 – C41	122.6	122.8	112.8	119.1
C2 – B1 – C31	122.5	122.7	112.8	86.0
Parameter	3CN^a	3CN^b		
-----------	----------------	----------------		
B1 – C2	1.651	1.654		
B1 – C41	1.626	1.609		
B1 – C31	1.626	1.602		
N18 – C7	1.501	1.494		
C2 – B1 – C41	112.6	114.6		

aImplies ground state (S_0); bImplies excited state (S_1)
Parameter	4a	4b	4F^a	4F^b
B1 – C2	1.579	1.578	1.651	1.725
B1 – C41	1.531	1.539	1.621	1.606
B1 – C31	1.531	1.539	1.620	1.584
P18 – C7	1.795	1.790	1.784	1.732

^a Implies ground state (S₀); ^b Implies excited state (S₁)

Table S6: Calculated geometrical parameters: bond lengths (in Å) and bond angles (in °) for the fully optimized structures of 4 and 4F at CAM-B3LYP/6-31G(d) level
Bond	"\(\text{C2-B1-C41}\)"	"\(\text{C2-B1-C31}\)"	"\(\text{C31-B1-C41}\)"	"\(\text{C7-P18-C19}\)"	"\(\text{C7-P18-C23}\)"	"\(\text{C7-P18-C27}\)"	"\(\text{C4-C2-B1}\)"	"\(\text{C3-C2-B1}\)"	"\(\text{C32-C31-B1}\)"	"\(\text{C33-C31-B1}\)"	"\(\text{C42-C41-B1}\)"	"\(\text{C43-C41-B1}\)"	"\(\text{C14-C4-C2}\)"	"\(\text{C10-C3-C2}\)"	"\(\text{C31-C33-O51}\)"	"\(\text{C41-C42-O51}\)"	"\(\text{C36-C33-O51}\)"	"\(\text{C44-C42-O51}\)"	"\(\text{C5-C7-P18}\)"	"\(\text{C6-C7-P18}\)"	"\(\text{C31-C33-O52}\)"	"\(\text{C41-C42-O52}\)"	"\(\text{C36-C33-O52}\)"	"\(\text{C44-C42-O52}\)"	"\(\text{C2-B1-F51}\)"	"\(\text{C31-B1-F51}\)"	"\(\text{C41-B1-F51}\)"	"\(\text{B1-F51}\)"	
	122.5	122.7	112.3	94.29			120.3	120.2	124.7	118.5	118.5	124.7	120.4	120.4	122.8	121.4	114.9	114.3	114.9	114.3	120.5	121.3	119.6	120.4	119.8	119.3	121.6	121.6	122.8
																											123.3	122.2	
																												123.3	123.4
																											113.9	114.7	
																											114.0	113.9	
																											109.7	110.0	
																											106.8	110.3	
																											106.9	115.6	
																											1.450	1.405	

* Implies ground state (\(S_0\)); * Implies excited state (\(S_1\))

Table S7: Calculated geometrical parameters: bond lengths (in Å) and bond angles
(in °) for the fully optimized structures of 4CN at CAM-B3LYP/6-31G(d) level

Parameter	4CN\(^a\)	4CN\(^b\)
B1 – C2	1.650	1.653
B1 – C41	1.626	1.609
B1 – C31	1.626	1.607
P18 – C7	1.786	1.729
C2 – B1 – C41	111.5	105.1
C2 – B1 – C31	112.7	113.9
C31 – B1 – C41	108.1	109.5
C7 – P18 – C19	110.8	111.4
C7 – P18 – C23	110.6	114.1
C7 – P18 – C27	110.2	113.3
C4 – C2 – B1	125.2	122.6
C3 – C2 – B1	118.0	121.3
C32 – C31 – B1	123.3	123.7
C33 – C31 – B1	120.5	120.7
C42 – C41 – B1	120.5	120.2
C43 – C41 – B1	123.3	124.9
C14 – C4 – C2	123.7	123.5
C10 – C3 – C2	123.1	122.9
C31 – C33 – O53	123.3	122.1
C41 – C42 – O53	123.3	122.0
C36 – C33 – O53	114.2	114.3
C44 – C42 – O53	114.2	114.2
C5 – C7 – P18	119.8	120.7
C6 – C7 – N18	121.6	123.1
C2 – B1 – C51	116.1	116.1
C31 – B1 – C51	102.7	102.7
C41 – B1 – C51	104.9	109.5
B1 – C51	1.614	1.605
C51 – N52	1.161	1.160

\(^a\) Implies ground state (S\(_0\)); \(^b\) Implies excited state (S\(_1\))
Table S8: Calculated geometrical parameters: bond lengths (in Å) and bond angles (in °) for the fully optimized structures of 1F at CAM-B3LYP/6-31G(d) level; available corresponding X-ray data1 are given in parentheses along with the values of CAM-B3LYP.

Parameter	B3PW 91	M06-2X	CAMB3LYP	HCTH	LSDA	PBEPBE
B1 – C2	1.691	1.693	1.678 (1.640)	1.910	1.699	1.687
B1 – C41	1.656	1.641	1.625 (1.617)	1.637	1.652	1.644
B1 – C31	1.653	1.651	1.639 (1.630)	1.611	1.647	1.655
C2 – B1 – C41	116.9	117.1	116.7 (114.5)	117.0	118.2	117.6
C2 – B1 – C31	114.8	115.3	112.0 (113.1)	111.3	115.0	115.2
C31 – B1 – C41	101.2	102.9	104.4 (111.1)	102.1	101.7	103.0
C2 – B1 – F52	104.1	104.5	106.8 (109.6)	105.2	103.7	103.8
C31 – B1 – F52	110.1	111.3	109.1 (105.2)	112.4	109.9	110.7
C41 – B1 – F52	108.3	109.2	107.6 (102.4)	109.7	108.7	108.9
B1 – F52	1.529	1.531	1.448 (1.479)	1.585	1.601	1.623
S51 – C43	1.871	1.886	1.791 (1.765)	1.901	1.972	1.986
S51 – C33	1.889	1.902	1.790 (1.768)	1.961	1.972	1.872

Table S9: Calculated electronic excitation energies and corresponding oscillator strengths of singlet excited states of 1-4, 1F-4F and 1CN-4CN at DFT/CAM-B3LYP/6-31G(d) level of theory.

Receptor /complex	Electronic transitiona	Energy (nm/eV)	fb	Contrib.c	CId
S\textsubscript{0} → S\textsubscript{1}	371 (3.34)	0.1657	HOMO→LUMO	0.692	
S\textsubscript{0} → S\textsubscript{2}	323 (3.83)	0.0047	HOMO-1→LUMO	0.517	
S\textsubscript{0} → S\textsubscript{3}	262 (4.73)	0.0007	HOMO-2→LUMO	0.581	
S\textsubscript{0} → S\textsubscript{4}	249 (4.97)	0.0093	HOMO-4→LUMO	0.463	
S\textsubscript{0} → S\textsubscript{5}	248 (4.99)	0.0090	HOMO-3→LUMO+1	0.482	
S\textsubscript{0} → S\textsubscript{6}	230 (5.39)	0.0081	HOMO→LUMO+2	0.519	
S\textsubscript{0} → S\textsubscript{7}	229 (5.41)	0.0029	HOMO-3→LUMO	0.578	
S\textsubscript{0} → S\textsubscript{8}	224 (5.53)	0.0018	HOMO-5→LUMO	0.491	
S\textsubscript{0} → S\textsubscript{9}	215 (5.76)	0.0003	HOMO→LUMO+1	0.674	
S\textsubscript{0} → S\textsubscript{10}	211 (5.85)	0.0038	HOMO→LUMO+4	0.507	
S\textsubscript{0} → S\textsubscript{11}	209 (5.93)	0.0004	HOMO→LUMO+5	0.527	
S\textsubscript{0} → S\textsubscript{12}	208 (5.96)	0.0001	HOMO→LUMO+6	0.645	
S\textsubscript{0} → S\textsubscript{13}	206 (6.02)	0.0043	HOMO-6→LUMO	0.640	
S\textsubscript{0} → S\textsubscript{14}	204 (6.08)	0.0031	HOMO-2→LUMO+1	0.434	
S\textsubscript{0} → S\textsubscript{15}	199 (6.23)	0.0001	HOMO-7→LUMO	0.658	
Transition	Energy (eV)	Oscillator Strength	Orbital Change	Energy Gap (eV)	
------------	-------------	---------------------	----------------	----------------	
$S_0 \rightarrow S_1$	245 (5.06)	0.0018	HOMO→LUMO	0.473	
$S_0 \rightarrow S_2$	238 (5.20)	0.0184	HOMO→LUMO+4	0.497	
$S_0 \rightarrow S_3$	233 (5.32)	0.0022	HOMO-1→LUMO+3	0.341	
$S_0 \rightarrow S_4$	232 (5.33)	0.0041	HOMO-4→LUMO	0.435	
$S_0 \rightarrow S_5$	227 (5.46)	0.0029	HOMO→LUMO+3	0.449	
$S_0 \rightarrow S_6$	222 (5.58)	0.0023	HOMO→LUMO+3	0.406	
$S_0 \rightarrow S_7$	219 (5.66)	0.0051	HOMO-1→LUMO	0.409	
$S_0 \rightarrow S_8$	215 (5.76)	0.0024	HOMO-3→LUMO	0.330	
$S_0 \rightarrow S_9$	212 (5.84)	0.0048	HOMO→LUMO+1	0.548	
$S_0 \rightarrow S_{10}$	208 (5.96)	0.0016	HOMO-2→LUMO	0.356	
$S_0 \rightarrow S_{11}$	205 (6.04)	0.0006	HOMO-1→LUMO	0.322	
$S_0 \rightarrow S_{12}$	202 (6.14)	0.0001	HOMO→LUMO+7	0.367	
$S_0 \rightarrow S_{13}$	201 (6.17)	0.0014	HOMO→LUMO+2	0.275	
$S_0 \rightarrow S_{14}$	198 (6.26)	0.0004	HOMO-1→LUMO+3	0.306	
$S_0 \rightarrow S_{15}$	195 (6.36)	0.0011	HOMO-1→LUMO+4	0.281	

Transition	Energy (eV)	Oscillator Strength	Orbital Change	Energy Gap (eV)
$S_0 \rightarrow S_1$	253 (4.90)	0.0014	HOMO→LUMO+3	0.475
$S_0 \rightarrow S_2$	248 (4.99)	0.0011	HOMO→LUMO+2	0.576
$S_0 \rightarrow S_3$	242 (5.12)	0.0294	HOMO→LUMO+4	0.521
$S_0 \rightarrow S_4$	232 (5.34)	0.0012	HOMO-5→LUMO	0.497
$S_0 \rightarrow S_5$	226 (5.47)	0.0028	HOMO→LUMO	0.635
$S_0 \rightarrow S_6$	218 (5.69)	0.0017	HOMO→LUMO+5	0.637
$S_0 \rightarrow S_7$	214 (5.79)	0.0010	HOMO-3→LUMO	0.431
$S_0 \rightarrow S_8$	213 (5.82)	0.0031	HOMO→LUMO+7	0.557
$S_0 \rightarrow S_9$	208 (5.96)	0.0016	HOMO→LUMO+1	0.436
$S_0 \rightarrow S_{10}$	202 (6.14)	0.0025	HOMO→LUMO+4	0.423
$S_0 \rightarrow S_{11}$	201 (6.17)	0.0010	HOMO-1→LUMO+1	0.285
$S_0 \rightarrow S_{12}$	196 (6.32)	0.0002	HOMO-1→LUMO+2	0.406
$S_0 \rightarrow S_{13}$	195 (6.36)	0.0001	HOMO-2→LUMO+2	0.254
$S_0 \rightarrow S_{14}$	194 (6.39)	0.0011	HOMO-2→LUMO	0.379
$S_0 \rightarrow S_{15}$	192 (6.46)	0.0013	HOMO-3→LUMO+1	0.327

Transition	Energy (eV)	Oscillator Strength	Orbital Change	Energy Gap (eV)
$S_0 \rightarrow S_1$	410 (3.02)	0.1750	HOMO→LUMO	0.691
$S_0 \rightarrow S_2$	351 (3.53)	0.0037	HOMO-1→LUMO	0.508
$S_0 \rightarrow S_3$	303 (4.09)	0.0021	HOMO-4→LUMO	0.462
$S_0 \rightarrow S_4$	248 (4.99)	0.0002	HOMO-3→LUMO	0.665
$S_0 \rightarrow S_5$	239 (5.19)	0.0003	HOMO-2→LUMO+1	0.583
$S_0 \rightarrow S_6$	229 (5.41)	0.0005	HOMO→LUMO+1	0.687
$S_0 \rightarrow S_7$	228 (5.44)	0.0021	HOMO→LUMO+2	0.514
$S_0 \rightarrow S_8$	226 (5.48)	0.0016	HOMO-2→LUMO	0.680
$S_0 \rightarrow S_9$	224 (5.53)	0.0023	HOMO-5→LUMO	0.481
$S_0 \rightarrow S_i$	Energy (eV)	ΔE (eV)	$\Delta E_{HOMO\rightarrow LUMO}$ (eV)	$\Delta E_{HOMO\rightarrow LUMO+1}$ (eV)
---------------------	-------------	----------------	----------------------------------	----------------------------------
$S_0 \rightarrow S_{10}$	218 (5.69)	0.0007	HOMO-3→LUMO+1	0.530
$S_0 \rightarrow S_{11}$	210 (5.90)	0.0017	HOMO-5→LUMO	0.463
$S_0 \rightarrow S_{12}$	209 (5.93)	0.0006	HOMO→LUMO+5	0.529
$S_0 \rightarrow S_{13}$	207 (5.99)	0.0001	HOMO→LUMO+6	0.673
$S_0 \rightarrow S_{14}$	205 (6.05)	0.0009	HOMO-6→LUMO+3	0.664
$S_0 \rightarrow S_{15}$	203 (6.11)	0.0001	HOMO-7→LUMO	0.657
$S_0 \rightarrow S_1$	254 (4.88)	0.0016	HOMO→LUMO	0.589
$S_0 \rightarrow S_2$	244 (5.08)	0.0021	HOMO-4→LUMO	0.518
$S_0 \rightarrow S_3$	240 (5.17)	0.0006	HOMO→LUMO+2	0.420
$S_0 \rightarrow S_4$	237 (5.23)	0.0211	HOMO→LUMO+4	0.434
$S_0 \rightarrow S_5$	233 (5.32)	0.0020	HOMO→LUMO+5	0.298
$S_0 \rightarrow S_6$	230 (5.39)	0.0004	HOMO-3→LUMO	0.446
$S_0 \rightarrow S_7$	225 (5.51)	0.0025	HOMO→LUMO+3	0.456
$S_0 \rightarrow S_8$	223 (5.56)	0.0005	HOMO-1→LUMO	0.472
$S_0 \rightarrow S_9$	221 (5.61)	0.0013	HOMO→LUMO+3	0.371
$S_0 \rightarrow S_{10}$	211 (5.87)	0.0023	HOMO-1→LUMO+2	0.410
$S_0 \rightarrow S_{11}$	210 (5.90)	0.0013	HOMO→LUMO+1	0.455
$S_0 \rightarrow S_{12}$	203 (6.11)	0.0016	HOMO-1→LUMO+4	0.384
$S_0 \rightarrow S_{13}$	202 (6.14)	0.0021	HOMO→LUMO+9	0.458
$S_0 \rightarrow S_{14}$	200 (6.20)	0.0012	HOMO-1→LUMO+3	0.371
$S_0 \rightarrow S_{15}$	197 (6.29)	0.0032	HOMO-2→LUMO+3	0.325

2F

$S_0 \rightarrow S_1$	256 (4.84)	0.0005	HOMO-4→LUMO	0.621
$S_0 \rightarrow S_2$	244 (5.08)	0.0002	HOMO-4→LUMO	0.491
$S_0 \rightarrow S_3$	238 (5.20)	0.0020	HOMO→LUMO+2	0.360
$S_0 \rightarrow S_4$	237 (5.23)	0.0003	HOMO→LUMO+4	0.500
$S_0 \rightarrow S_5$	232 (5.34)	0.0198	HOMO→LUMO+3	0.350
$S_0 \rightarrow S_6$	228 (5.44)	0.0003	HOMO-1→LUMO+3	0.422
$S_0 \rightarrow S_7$	225 (5.51)	0.0008	HOMO→LUMO+3	0.313
$S_0 \rightarrow S_8$	222 (5.58)	0.0011	HOMO-1→LUMO	0.573
$S_0 \rightarrow S_9$	219 (5.66)	0.0005	HOMO-2→LUMO	0.461
$S_0 \rightarrow S_{10}$	212 (5.84)	0.0002	HOMO-1→LUMO+2	0.406
$S_0 \rightarrow S_{11}$	209 (5.93)	0.0006	HOMO→LUMO+1	0.528
$S_0 \rightarrow S_{12}$	203 (6.11)	0.0004	HOMO-1→LUMO+4	0.353
$S_0 \rightarrow S_{13}$	202 (6.14)	0.0009	HOMO→LUMO+7	0.420
$S_0 \rightarrow S_{14}$	197 (6.29)	0.0005	HOMO-1→LUMO+3	0.409
$S_0 \rightarrow S_{15}$	194 (6.39)	0.0006	HOMO-1→LUMO+5	0.324
Transition	E (eV)	Oscillator Strength	Type of Transition	Emissions (eV)
$S_0 \rightarrow S_1$	0.1561	0.682	HOMO\rightarrowLUMO$+1$	24.5
$S_0 \rightarrow S_2$	0.0001	0.597	HOMO$-1$$\rightarrow$LUMO	25.8
$S_0 \rightarrow S_3$	0.0003	0.585	HOMO$-2$$\rightarrow$LUMO	26.0
$S_0 \rightarrow S_4$	0.0005	0.549	HOMO$-4$$\rightarrow$LUMO	26.2
$S_0 \rightarrow S_5$	0.0032	0.487	HOMO$-3$$\rightarrow$LUMO$+1$	26.5
$S_0 \rightarrow S_6$	0.0007	0.598	HOMO$-2$$\rightarrow$LUMO	26.8
$S_0 \rightarrow S_7$	0.0018	0.601	HOMO$-5$$\rightarrow$LUMO	27.1
$S_0 \rightarrow S_8$	0.0012	0.535	HOMO\rightarrowLUMO$+3$	27.4
$S_0 \rightarrow S_9$	0.0029	0.439	HOMO$-2$$\rightarrow$LUMO$+1$	27.7
$S_0 \rightarrow S_{10}$	0.0013	0.586	HOMO$-6$$\rightarrow$LUMO	28.0
$S_0 \rightarrow S_{11}$	0.0004	0.696	HOMO$-4$$\rightarrow$LUMO$+1$	28.3
$S_0 \rightarrow S_{12}$	0.0036	0.541	HOMO$-6$$\rightarrow$LUMO$+4$	28.6
$S_0 \rightarrow S_{13}$	0.0021	0.332	HOMO$-1$$\rightarrow$LUMO$+3$	28.9
$S_0 \rightarrow S_{14}$	0.0001	0.661	HOMO$-7$$\rightarrow$LUMO	29.2
$S_0 \rightarrow S_{15}$	0.0016	0.538	HOMO\rightarrowLUMO$+5$	29.5

3F

Transition	E (eV)	Oscillator Strength	Type of Transition	Emissions (eV)
$S_0 \rightarrow S_1$	0.0001	0.616	HOMO\rightarrowLUMO$+2$	29.8
$S_0 \rightarrow S_2$	0.0015	0.445	HOMO\rightarrowLUMO$+3$	30.1
$S_0 \rightarrow S_3$	0.0161	0.452	HOMO\rightarrowLUMO$+4$	30.4
$S_0 \rightarrow S_4$	0.0002	0.447	HOMO\rightarrowLUMO$+5$	30.7
$S_0 \rightarrow S_5$	0.0013	0.410	HOMO\rightarrowLUMO$+2$	31.0
$S_0 \rightarrow S_6$	0.0011	0.467	HOMO$-2$$\rightarrow$LUMO	31.3
$S_0 \rightarrow S_7$	0.0017	0.464	HOMO$-6$$\rightarrow$LUMO$+2$	31.6
$S_0 \rightarrow S_8$	0.0009	0.476	HOMO$-2$$\rightarrow$LUMO$+3$	31.9
$S_0 \rightarrow S_9$	0.0024	0.477	HOMO$-2$$\rightarrow$LUMO$+5$	32.2
$S_0 \rightarrow S_{10}$	0.0014	0.406	HOMO$-1$$\rightarrow$LUMO$+3$	32.5
$S_0 \rightarrow S_{11}$	0.0012	0.258	HOMO$-1$$\rightarrow$LUMO$+5$	32.8
$S_0 \rightarrow S_{12}$	0.0003	0.540	HOMO$-2$$\rightarrow$LUMO$+1$	33.1
$S_0 \rightarrow S_{13}$	0.0025	0.324	HOMO$-2$$\rightarrow$LUMO$+1$	33.4
$S_0 \rightarrow S_{14}$	0.0011	0.470	HOMO$-1$$\rightarrow$LUMO$+2$	33.7
$S_0 \rightarrow S_{15}$	0.0013	0.293	HOMO$-6$$\rightarrow$LUMO$+2$	34.0
State Transition	E (eV)	ΔE (eV)	Excitation Type	Transition Energy (eV)
------------------	--------	---------	-----------------	-----------------------
$S_0 \rightarrow S_1$	247 (5.02)	0.0001	HOMO→LUMO+2	0.616
$S_0 \rightarrow S_2$	241 (5.15)	0.0005	HOMO→LUMO	0.417
$S_0 \rightarrow S_3$	234 (5.29)	0.0151	HOMO→LUMO+3	0.512
$S_0 \rightarrow S_4$	232 (5.34)	0.0001	HOMO→LUMO	0.478
$S_0 \rightarrow S_5$	229 (5.41)	0.0006	HOMO→LUMO	0.521
$S_0 \rightarrow S_6$	217 (5.71)	0.0003	HOMO→LUMO	0.463
$S_0 \rightarrow S_7$	211 (5.87)	0.0011	HOMO→LUMO+1	0.512
$S_0 \rightarrow S_8$	201 (6.17)	0.0007	HOMO→LUMO+2	0.439
$S_0 \rightarrow S_9$	198 (6.26)	0.0001	HOMO→LUMO	0.507
$S_0 \rightarrow S_{10}$	196 (6.32)	0.0003	HOMO→LUMO+2	0.511
$S_0 \rightarrow S_{11}$	195 (6.36)	0.0001	HOMO→LUMO+1	0.261
$S_0 \rightarrow S_{12}$	192 (6.46)	0.0002	HOMO→LUMO+1	0.317
$S_0 \rightarrow S_{13}$	191 (6.49)	0.0007	HOMO→LUMO	0.336
$S_0 \rightarrow S_{14}$	190 (6.52)	0.0003	HOMO→LUMO+2	0.357
$S_0 \rightarrow S_{15}$	189 (6.56)	0.0017	HOMO→LUMO	0.287
$S_0 \rightarrow S_{1}$	316 (3.92)	0.1674	HOMO→LUMO	0.681
$S_0 \rightarrow S_{2}$	255 (4.86)	0.0002	HOMO→LUMO+2	0.591
$S_0 \rightarrow S_{3}$	241 (5.14)	0.0008	HOMO→LUMO+3	0.661
$S_0 \rightarrow S_{4}$	240 (5.17)	0.0003	HOMO→LUMO+1	0.582
$S_0 \rightarrow S_{5}$	239 (5.19)	0.0011	HOMO→LUMO+1	0.539
$S_0 \rightarrow S_{6}$	221 (5.61)	0.0005	HOMO→LUMO+2	0.608
$S_0 \rightarrow S_{7}$	220 (5.63)	0.0007	HOMO→LUMO+1	0.679
$S_0 \rightarrow S_{8}$	217 (5.71)	0.0002	HOMO→LUMO+1	0.696
$S_0 \rightarrow S_{9}$	212 (5.84)	0.0021	HOMO→LUMO+2	0.514
$S_0 \rightarrow S_{10}$	211 (5.85)	0.0006	HOMO→LUMO+3	0.601
$S_0 \rightarrow S_{11}$	208 (5.96)	0.0004	HOMO→LUMO+4	0.669
$S_0 \rightarrow S_{12}$	199 (6.23)	0.0006	HOMO→LUMO+4	0.542
$S_0 \rightarrow S_{13}$	197 (6.29)	0.0012	HOMO→LUMO+2	0.308
$S_0 \rightarrow S_{14}$	194 (6.39)	0.0003	HOMO→LUMO+1	0.658
$S_0 \rightarrow S_{15}$	193 (6.42)	0.0006	HOMO→LUMO+2	0.676
Excited State Transition	Energy (eV)	Oscillator Strength	Configuration	Oscillator Strength
--------------------------	------------	---------------------	---------------	---------------------
$S_0 \rightarrow S_1$	248 (4.99)	0.0001	HOMO→LUMO	0.616
$S_0 \rightarrow S_2$	245 (5.06)	0.0002	HOMO→LUMO+2	0.600
$S_0 \rightarrow S_3$	241 (5.14)	0.0001	HOMO→LUMO	0.467
$S_0 \rightarrow S_4$	234 (5.29)	0.0162	HOMO→LUMO+4	0.491
$S_0 \rightarrow S_5$	231 (5.37)	0.0001	HOMO→LUMO	0.456
$S_0 \rightarrow S_6$	224 (5.53)	0.0002	HOMO→LUMO+3	0.466
$S_0 \rightarrow S_7$	221 (5.61)	0.0004	HOMO→LUMO	0.451
$S_0 \rightarrow S_8$	207 (5.99)	0.0008	HOMO→LUMO+1	0.527
$S_0 \rightarrow S_9$	206 (6.02)	0.0011	HOMO→LUMO	0.505
$S_0 \rightarrow S_{10}$	202 (6.14)	0.0006	HOMO→LUMO+2	0.517
$S_0 \rightarrow S_{11}$	199 (6.23)	0.0023	HOMO→LUMO+2	0.387
$S_0 \rightarrow S_{12}$	196 (6.33)	0.0012	HOMO→LUMO	0.576
$S_0 \rightarrow S_{13}$	195 (6.36)	0.0003	HOMO→LUMO+2	0.383
$S_0 \rightarrow S_{14}$	194 (6.39)	0.0001	HOMO→LUMO+2	0.303
$S_0 \rightarrow S_{15}$	192 (6.46)	0.0011	HOMO→LUMO+1	0.514

Excited State Transition	Energy (eV)	Oscillator Strength	Configuration	Oscillator Strength
$S_0 \rightarrow S_1$	253 (4.90)	0.0001	HOMO→LUMO	0.638
$S_0 \rightarrow S_2$	247 (5.02)	0.0003	HOMO→LUMO+2	0.610
$S_0 \rightarrow S_3$	242 (5.12)	0.0002	HOMO→LUMO+3	0.424
$S_0 \rightarrow S_4$	236 (5.25)	0.0003	HOMO→LUMO	0.534
$S_0 \rightarrow S_5$	234 (5.29)	0.0161	HOMO→LUMO+4	0.371
$S_0 \rightarrow S_6$	231 (5.37)	0.0003	HOMO→LUMO+5	0.474
$S_0 \rightarrow S_7$	211 (5.87)	0.0005	HOMO→LUMO+2	0.513
$S_0 \rightarrow S_8$	209 (5.93)	0.0001	HOMO→LUMO+1	0.525
$S_0 \rightarrow S_9$	203 (6.11)	0.0002	HOMO→LUMO+3	0.444
$S_0 \rightarrow S_{10}$	201 (6.17)	0.0004	HOMO→LUMO	0.412
$S_0 \rightarrow S_{11}$	197 (6.29)	0.0006	HOMO→LUMO+4	0.495
$S_0 \rightarrow S_{12}$	195 (6.36)	0.0011	HOMO→LUMO+2	0.491
$S_0 \rightarrow S_{13}$	194 (6.39)	0.0002	HOMO→LUMO+1	0.390
$S_0 \rightarrow S_{14}$	193 (6.42)	0.0003	HOMO→LUMO	0.303
$S_0 \rightarrow S_{15}$	192 (6.46)	0.0006	HOMO→LUMO+3	0.345

\(^{a}\) Only the selected low-lying excited states are presented. \(^{b}\) Oscillator strengths. \(^{c}\) Only the main configurations are presented. \(^{d}\) The CI coefficients are in absolute values.

Table S10: Calculated electronic excitation energies and corresponding oscillator strengths of the singlet excited state transitions of 1, 1F and 1CN by employing different functionals.
Functional	Receptor/complex	Electronic transition^a	Energy (nm/eV)	^b	Contrib.^c	CI^d
M06-2X	1	$S_0 \rightarrow S_1$	327 (3.79)	0.1684	HOMO→LUMO	0.694
		$S_0 \rightarrow S_2$	260 (4.76)	0.0109	HOMO-1→LUMO	0.479
		$S_0 \rightarrow S_3$	253 (4.90)	0.0004	HOMO-2→LUMO	0.603
		$S_0 \rightarrow S_4$	246 (5.04)	0.0038	HOMO-4→LUMO	0.429
		$S_0 \rightarrow S_5$	231 (5.36)	0.0063	HOMO→LUMO+2	0.491
		$S_0 \rightarrow S_6$	228 (5.44)	0.0092	HOMO-3→LUMO+1	0.489
M06-2X	1F	$S_0 \rightarrow S_1$	290 (4.28)	0.0021	HOMO→LUMO	0.544
		$S_0 \rightarrow S_2$	271 (4.57)	0.0107	HOMO→LUMO+4	0.516
		$S_0 \rightarrow S_3$	234 (5.29)	0.0026	HOMO-1→LUMO+3	0.325
		$S_0 \rightarrow S_4$	232 (5.34)	0.0035	HOMO-4→LUMO	0.371
		$S_0 \rightarrow S_5$	230 (5.39)	0.0021	HOMO-2→LUMO	0.317
		$S_0 \rightarrow S_6$	226 (5.48)	0.0013	HOMO→LUMO+3	0.530
M06-2X	1CN	$S_0 \rightarrow S_1$	275 (4.51)	0.0033	HOMO→LUMO+3	0.493
		$S_0 \rightarrow S_2$	268 (4.63)	0.0012	HOMO→LUMO+2	0.603
		$S_0 \rightarrow S_3$	263 (4.71)	0.0151	HOMO→LUMO+4	0.507
		$S_0 \rightarrow S_4$	233 (5.32)	0.0005	HOMO→LUMO	0.605
		$S_0 \rightarrow S_5$	231 (5.37)	0.0002	HOMO-5→LUMO	0.480
		$S_0 \rightarrow S_6$	220 (5.63)	0.0023	HOMO→LUMO+5	0.633
B3PW91	1	$S_0 \rightarrow S_1$	355 (3.49)	0.1210	HOMO→LUMO	0.698
		$S_0 \rightarrow S_2$	290 (4.27)	0.0002	HOMO-2→LUMO	0.621
		$S_0 \rightarrow S_3$	285 (4.35)	0.0021	HOMO-1→LUMO	0.544
		$S_0 \rightarrow S_4$	278 (4.46)	0.0006	HOMO-3→LUMO	0.584
		$S_0 \rightarrow S_5$	277 (4.47)	0.0012	HOMO→LUMO+1	0.648
		$S_0 \rightarrow S_6$	267 (4.64)	0.0029	HOMO-4→LUMO	0.619
Method	State	E (eV)	δ (eV)	Transition	Envelope (eV)	
---------	--------	---------	---------	---------------------	---------------	
B3PW91 1F	$S_0 \rightarrow S_1$	296 (4.19)	0.0016	HOMO→LUMO	0.699	
	$S_0 \rightarrow S_2$	270 (4.59)	0.0134	HOMO→LUMO+4	0.697	
	$S_0 \rightarrow S_3$	264 (4.69)	0.0032	HOMO→LUMO+2	0.525	
	$S_0 \rightarrow S_4$	261 (4.75)	0.0013	HOMO-1→LUMO	0.544	
	$S_0 \rightarrow S_5$	257 (4.82)	0.0019	HOMO→LUMO+4	0.629	
	$S_0 \rightarrow S_6$	252 (4.92)	0.0025	HOMO→LUMO+3	0.620	
B3PW91 1CN	$S_0 \rightarrow S_1$	302 (4.10)	0.0027	HOMO→LUMO	0.703	
	$S_0 \rightarrow S_2$	288 (4.30)	0.0011	HOMO→LUMO+1	0.667	
	$S_0 \rightarrow S_3$	278 (4.46)	0.0147	HOMO→LUMO+4	0.681	
	$S_0 \rightarrow S_4$	271 (4.57)	0.0004	HOMO→LUMO+3	0.649	
	$S_0 \rightarrow S_5$	260 (4.77)	0.0006	HOMO→LUMO+4	0.652	
	$S_0 \rightarrow S_6$	244 (5.08)	0.0013	HOMO→LUMO+5	0.660	
HCTH 1	$S_0 \rightarrow S_1$	404 (3.07)	0.1613	HOMO→LUMO	0.695	
	$S_0 \rightarrow S_2$	340 (3.64)	0.0001	HOMO→LUMO+1	0.706	
	$S_0 \rightarrow S_3$	330 (3.76)	0.0003	HOMO-1→LUMO	0.592	
	$S_0 \rightarrow S_4$	325 (3.81)	0.0006	HOMO-3→LUMO	0.594	
	$S_0 \rightarrow S_5$	314 (3.94)	0.0001	HOMO→LUMO+2	0.468	
	$S_0 \rightarrow S_6$	311 (3.98)	0.0026	HOMO→LUMO+3	0.594	
HCTH 1F	$S_0 \rightarrow S_1$	310 (3.99)	0.0023	HOMO→LUMO	0.704	
	$S_0 \rightarrow S_2$	301 (4.12)	0.0157	HOMO→LUMO+4	0.705	
	$S_0 \rightarrow S_3$	295 (4.20)	0.0001	HOMO-1→LUMO	0.701	
	$S_0 \rightarrow S_4$	288 (4.30)	0.0014	HOMO→LUMO+2	0.668	
	$S_0 \rightarrow S_5$	275 (4.51)	0.0019	HOMO-1→LUMO+1	0.693	
	$S_0 \rightarrow S_6$	267 (4.64)	0.0011	HOMO-2→LUMO	0.637	
Method	1CN					
--------	-----	--				
S0 → S1	393 (3.15)	0.0015	HOMO→LUMO	0.704		
S0 → S2	382 (3.26)	0.0002	HOMO→LUMO+1	0.686		
S0 → S3	375 (3.31)	0.0158	HOMO→LUMO+4	0.683		
S0 → S4	371 (3.34)	0.0016	HOMO→LUMO+3	0.661		
S0 → S5	365 (3.39)	0.0021	HOMO→LUMO+4	0.645		
S0 → S6	332 (3.73)	0.0002	HOMO-1→LUMO	0.676		
S0 → S1	420 (2.95)	0.1883	HOMO→LUMO	0.694		
S0 → S2	346 (3.58)	0.0048	HOMO-1→LUMO	0.690		
S0 → S3	340 (3.64)	0.0015	HOMO-2→LUMO	0.625		
S0 → S4	338 (3.66)	0.0004	HOMO→LUMO+1	0.702		
S0 → S5	318 (3.89)	0.0033	HOMO-3→LUMO	0.460		
S0 → S6	314 (3.95)	0.0019	HOMO→LUMO+3	0.658		
S0 → S1	375 (3.31)	0.0029	HOMO→LUMO	0.704		
S0 → S2	341 (3.64)	0.0146	HOMO→LUMO+4	0.705		
S0 → S3	324 (3.82)	0.0006	HOMO-1→LUMO	0.696		
S0 → S4	307 (4.03)	0.0017	HOMO→LUMO+2	0.675		
S0 → S5	300 (4.13)	0.0027	HOMO-1→LUMO+1	0.690		
S0 → S6	299 (4.15)	0.0002	HOMO-2→LUMO	0.567		
S0 → S1	393 (3.15)	0.0004	HOMO→LUMO	0.706		
S0 → S2	360 (3.44)	0.0018	HOMO→LUMO+1	0.692		
S0 → S3	323 (3.84)	0.0166	HOMO→LUMO+4	0.672		
S0 → S4	316 (3.92)	0.0009	HOMO→LUMO+3	0.653		
S0 → S5	299 (4.15)	0.0003	HOMO→LUMO+4	0.662		
S0 → S6	293 (4.23)	0.0029	HOMO-1→LUMO	0.517		
Table S11: Calculated electronic de-excitation energies and corresponding oscillator strengths of the low-lying singlet excited states of 1, 1F and 1CN by Employing Different Functionals

Function	Receptor/complex	Electronic de-excitation	Energy (nm/eV)	ƒ	Contrib.	CI
PBEPBE	1	S₀ → S₁	380 (3.26)	0.1635	HOMO↔LUMO	0.695
		S₀ → S₂	351 (3.53)	0.0004	HOMO↔LUMO	0.658
		S₀ → S₃	297 (4.17)	0.0003	HOMO↔LUMO	0.601
		S₀ → S₄	398 (3.11)	0.1177	HOMO↔LUMO	0.701
M06-2X	1F	S₀ → S₁	346 (3.58)	0.0002	HOMO↔LUMO	0.705
	1CN	S₀ → S₁	359 (3.46)	0.0001	HOMO↔LUMO	0.705

S18
Table S12: Calculated electronic de-excitation energies and corresponding oscillator strengths of the higher singlet excited states of $1F$-$4F$ and $1CN$-$4CN$ at DFT/CAM-B3LYP/631G(d) level of theory

Receptor/complex	Electronic de-excitation a	Energy (eV)	f^b	Contrib. c	CI d
$1F$	$S_1 \leftarrow S_2$	1.44	0.0001	HOMO\rightarrowLUMO	0.667
	$S_2 \leftarrow S_3$	0.38	0.0002	HOMO\rightarrowLUMO	0.682
	$S_3 \leftarrow S_4$	0.44	0.0004	HOMO-2\rightarrowLUMO	0.494
	$S_4 \leftarrow S_5$	0.32	0.0001	HOMO-5\rightarrowLUMO	0.468
$1CN$	$S_1 \leftarrow S_2$	0.41	0.0001	HOMO\rightarrowLUMO+1	0.492
	$S_2 \leftarrow S_3$	0.34	0.0003	HOMO\rightarrowLUMO+2	0.643
	$S_3 \leftarrow S_4$	0.55	0.0001	HOMO\rightarrowLUMO	0.684
	$S_4 \leftarrow S_5$	0.33	0.0005	HOMO-2\rightarrowLUMO	0.517
	$S_5 \leftarrow S_6$	0.41	0.0003	HOMO-1\rightarrowLUMO	0.527
	$S_6 \leftarrow S_7$	0.22	0.0002	HOMO\rightarrowLUMO+1	0.411

a Only the selected low-lying excited states are presented. b Oscillator strength. c Only the main configurations are presented. d The CI coefficients are in absolute values.
	$S_1 \leftarrow S_2$	$S_2 \leftarrow S_3$	$S_3 \leftarrow S_4$	$S_4 \leftarrow S_5$	$S_5 \leftarrow S_6$	$S_6 \leftarrow S_7$
3F	0.79	0.0001	HOMO\leftarrowLUMO+1	0.632		
	0.62	0.0002	HOMO-1\leftarrowLUMO	0.403		
3CN	0.79	0.0003	HOMO\leftarrowLUMO+2	0.629		
	0.66	0.0001	HOMO\leftarrowLUMO	0.393		
4F	0.49	0.0005	HOMO\leftarrowLUMO	0.637		
	0.55	0.0001	HOMO\leftarrowLUMO+1	0.484		
	0.33	0.0004	HOMO\leftarrowLUMO+2	0.453		
4CN	0.22	0.0001	HOMO\leftarrowLUMO	0.547		
	0.54	0.0004	HOMO\leftarrowLUMO+3	0.454		
	0.11	0.0002	HOMO\leftarrowLUMO+4	0.551		
	0.20	0.0001	HOMO-5\leftarrowLUMO	0.601		

\(^a\) Only the selected low-lying excited states are presented. \(^b\) Oscillator strength. \(^c\) Only the main configurations are presented. \(^d\) The CI coefficients are in absolute values.
Figure S1: Ground state (S₀) optimized structures of 1F-4F and 1CN-4CN calculated at CAM-B3LYP/6-31G(d) level with the CPCM solvation model. Hydrogen atoms are omitted for clarity. Geometry at the boron center (B1) in 1F-4F and 1CN-4CN is tetrahedral.
Figure S2: Potential energy curves of corresponding S_0 states of (I) 1F and (III) 2CN; and corresponding S_1 states of (II) 1F and (IV) 2CN calculated at the CAM-B3LYP/6-31G(d) level with the CPCM solvation model as functions of the angles mentioned.
Figure S3: Molecular orbital diagrams of (I) 1 and (II) CN−

Figure S4: Calculated FMO energies for (I) 2 in the ground state and excited state (2^*) (II) 2F in ground state and excited state (2F^*) and (III) 2CN in ground state and excited state (2CN^−) at CAM-B3LYP/6-31G(d) level using CPCM solvation model.
Figure S5: Calculated FMO energies for (I) 3 in the ground state and excited state (3^*) (II) 3F in ground state and excited state ($3F^*$) and (III) 3CN in ground state and excited state ($3CN^*$) at CAM-B3LYP/6-31G(d) level using CPCM solvation model.
Figure S6: Calculated FMO energies for (I) 4 in the ground state and excited state (4^*) (II) 4F in ground state and excited state ($4F^*$) and (III) 4CN in ground state and excited state ($4CN^*$) at CAM-B3LYP/6-31G(d) level using CPCM solvation model.

Figure S7: Excited state (S_1) optimized structures of 1-4, 1F-4F, and 1CN-4CN calculated at CAM-B3LYP/6-31G(d) level with the CPCM solvation model. Hydrogen atoms are omitted for
clarity. Geometry at boron centers in 1-4 is trigonal planar while as geometry at boron centers in 1F-4F and 1CN-4CN is tetrahedral.

Figure S8: Excited state optimized structures of 1F (S₂), 1CN (S₃), 2F (fourth excited state, S₄), 2CN (S₅), 3F (S₃), 3CN (S₃), 4F (S₄) and 4CN (S₅) calculated at CAM-B3LYP/6-31G(d) level with the CPCM solvation model. Hydrogen atoms are omitted for clarity.
Figure S9: Scheme of the different mechanisms of fluorescence emission for 2, 2F and 2CN.
Figure S10: Scheme of the different mechanisms of fluorescence emission for 3, 3F and 3CN
Figure S11: Scheme of the different mechanisms of fluorescence emission for 4, 4F and 4CN

References

(1) Matsumoto, T.; Wade, C. R.; Gabbaï, F. P. Synthesis and Lewis Acidic Behavior of a Cationic 9-Thia-10-Boraanthracene. *Organometallics* **2010**, *29*, 5490–5495.