A π-electron deficient diaminotriazine functionalized MOF for selective sorption of benzene over cyclohexane

Manna, B.; Mukherjee, S.; Desai, A.V.; Sharma, S.; Krishna, R.; Ghosh, S.K.

DOI
10.1039/c5cc06128h

Publication date
2015

Document Version
Final published version

Published in
Chemical Communications

Citation for published version (APA):
Manna, B., Mukherjee, S., Desai, A. V., Sharma, S., Krishna, R., & Ghosh, S. K. (2015). A π-electron deficient diaminotriazine functionalized MOF for selective sorption of benzene over cyclohexane. Chemical Communications, 51(84), 15386-15389. https://doi.org/10.1039/c5cc06128h
Supporting Information

A \(\pi \)-electron Deficient Diaminotriazine Functionalized MOF For Selective Sorption of Benzene Over Cyclohexane

Biplab Manna,\(^1,\!*\) Soumya Mukherjee, \(^1,\!*\) Aamod V.Desai, \(^1\) Shivani Sharma, \(^1\) Rajamani Krishna, \(^2\) and Sujit K.Ghosh\(^1\)*

\(^1\)Indian Institute of Science Education and Research (IISER), Pashan, Pune, Maharashtra 411008, India

\(^2\)Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

*E-mail: sghosh@iiserpune.ac.in Fax: +91-20-25898022 Tel: +91-20-25908076

Table of Contents

Fig. S1: Conformations of benzene and Cyclohexane S2
Fig. S2: Electrostatic Surface Potential (ESP) plot of linker LH S2
Table S1: Physical Properties for Bz and Cy S3
Table S2: Dual-site Langmuir-Freundlich parameters for Bz and Cy S3
Experimental section (Figures S3-S8) S4-S8
Fig. S9-16: Crystal Structures S9-S12
Fig. S17: TGA data S13
Fig. S18-19: PXRD data S14-S15
Fig. S20-21: Gas Adsorption data S16-S17
Fig. S22: Solvent sorption data S18
Fig. S23: \(^{13}\)C NMR data S19
Crystallographic data (Tables S3-S6) and notations S20-S29
References S30
Figure S1: General conformations of planar aromatic Benzene (Bz) (left) and non-planar aliphatic Cyclohexane (Cy) (right).

Figure S2: Electrostatic potential surface for the ligand (LH) representative of the electron density map.
Table S1. Physical Properties of C₆ adsorptive species.

Dimensions of Adsorptive molecules (Å)	Boiling and Freezing Points	Conformers						
(each atom surrounded by a van der Waals sphere)	B.P.	F.P.	Type(s)					
x	y	z	MIN-1	MIN-2				
Bz	6.628	7.337	3.277	3.277	6.628	353.3 K	278.7 K	Planar
Cy	7.168	6.580	4.982	4.982	6.580	353.9 K	279.6 K	Non-planar: Boat and Chair

MIN-1: Size of the adsorptive in the minimum dimension.

MIN-2: Second minimum dimension for molecular orientations that enable a molecule to enter the channel.

Table S2. Dual-site Langmuir-Freundlich parameters for aromatic hydrocarbons at 298 K in DAT-MOF-1.

	Site A	Site B				
	qᵢ,A,sat	bᵢ,A	νᵢ,A	qᵢ,B,sat	bᵢ,B	νᵢ,B
	mol kg⁻¹	Pa⁻νᵢ	dimensionless	mol kg⁻¹	Pa⁻νᵢ	dimensionless
Bz	0.85	3.1×10⁻²	0.7	3	3.7×10⁻¹⁶	3.6
Cy	0.5	9.55×10⁻⁵	0.8	0.5	2.01×10⁻²⁵	6
Experimental Section:

Materials: All the reagents and solvents were commercially available and used without further purification.

Synthesis of Ligand (LH): 4-cyano benzoic acid (5g, 33.98 mmol) and dicyanamide (4.1619 g, 49.49 mmol) were added to a stirring solution of potassium hydroxide (2.772, 49.5 mmol) in 2- methoxy ethanol (100 ml) in a round bottomed flask. Resulting mixture was refluxed at 423K for 30 h. This mixture was subsequently cooled down to room temperature. The solution was neutralized using dilute HCl until the pH of reaction mixture was ~7 to get white precipitate. Then the resulting solution was filtered off, dried under vacuum to get white powder. The compound was characterized using 1H NMR, 13C NMR and HRMS. 1H NMR (400 MHz, DMSO-d$_6$): δ 8.3 (td, $J = 1.6$, 8.8 Hz, 2H); 8.0 (td, $J = 2.0$, 8.8 Hz, 2H), 6.8 (S, 4H); 13C NMR (100 MHz, CDCl$_3$): δ 169.4, 167.4, 167.1, 141.0, 133.1, 129.2, 127.7; HRMS (ESI): Calc. for C$_{10}$H$_{10}$N$_5$O$_2$ [M+H]$^+$: 232.083; Found: 232.083.

![Diagram of ligand synthesis](image)

Figure S3: Ligand (LH) synthesis protocol.
Figure S4: HRMS of ligand (LH).

Figure S5: 1H NMR of ligand (LH).
Synthesis of DAT-MOF-1a: Single crystals of DAT-MOF-1a were synthesized by reacting Cu(NO$_3$)$_2$.3H$_2$O (0.012 g, 0.05 mmol), LH (0.0231 g, 0.1 mmol) in DMF (2 mL) and MeOH (1mL) in a 5 ml screw-capped vial. The vial was heated to 90 °C for 48h under autogenous pressure and then cooled to RT over 12 h. The green block shaped single crystals of DAT-MOF-1a were obtained with ~50% yield. Anal. found (elemental analysis) for DAT-MOF-1a (%): C, 46.92; H, 5.23; N, 22.88.

Physical measurements: Powder X-ray diffraction (PXRD) patterns were measured on Bruker D8 Advanced X-Ray diffractometer at room temperature using Cu-Kα radiation ($\lambda=1.5406$ Å) with a scan speed of 0.5° min$^{-1}$ and a step size of 0.01° in 2theta. Thermogravimetric analysis was recorded on Perkin-Elmer STA 6000, TGA analyser under N$_2$ atmosphere with heating rate of 10° C/min. The IR-spectra were recorded on a Thermoscientific–Nicolet-6700 FT-IR spectrometer. FT-IR spectra were recorded on NICOLET 6700 FT-IR Spectrophotometer using KBr Pellets.
Figure S7: Synthetic scheme of DAT-MOF-1a.

X-ray Structural Studies: Single-crystal X-ray data of DAT-MOF-1a was collected at 150 K on a Bruker KAPPA APEX II CCD Duo diffractometer (operated at 1500 W power: 50 kV, 30 mA) using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Crystal was on nylon CryoLoops (Hampton Research) with Paraton-N (Hampton Research). The data integration and reduction were processed with SAINTS1 software. A multi-scan absorption correction was applied to the collected reflections. The structure was solved by the direct method using SHELXTLS2 and was refined on \(F^2 \) by full-matrix least-squares technique using the SHELXL-97S3 program package within the WINGXS4 programme. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were located in successive difference Fourier maps and they were treated as riding atoms using SHELXL default parameters. The structures were examined using the Adsym subroutine of PLATONS5 to assure that no additional symmetry could be applied to the models.
Electron density plot for Ligand (LH): Electrostatic potential surface calculation was performed with the Gaussian09 Rev D program suite using Density functional theory (DFT) with Becke’s three-parameter hybrid exchange functional and the Lee-Yang-Parr correlation functional (B3LYP) and 6-31G(d,p) basis set.

Low-Pressure Gas and Solvent Sorption Measurements. Low-pressure solvent (Benzene and Cyclohexane) sorption measurements were performed using BelAqua (Bel Japan). Low pressure gas adsorption measurements were performed using BelSorpmax (Bel Japan). All the gases used were of 99.999% purity. As-synthesized crystals of compound DAT-MOF-1a were exchanged thrice each day over a period of five days with fresh batches of lower-boiling solvent acetone, before heating it under vacuum to end up with guest-free crystalline phase DAT-MOF-1.

![IR spectra of DAT-MOF-1a and the monocarboxylic acid ligand (LH)](image)

Figure S8: IR spectra of DAT-MOF-1a and the monocarboxylic acid ligand (LH), wherein the labelled peaks refer to the presence of N,N,-dimethyl formamide (DMF) molecules within DAT-MOF-1a, present in addition to the coordinated monocarboxylate dianinotriazine linker L. a: N-H stretching (also in DMF); b: C-O stretching (also in DMF); c: C-H stretching (also in DMF); d: C-N stretching (DMF); e: C-H rocking (in DMF, –CH₃).
Figure S9: Asymmetric unit of DAT-MOF-1a (Color code: Carbon: grey, oxygen: red, nitrogen: blue, copper: deep green).

Figure S10: Coordination environment around the metal centre of DAT-MOF-1a (Color code: Carbon: grey, oxygen: red, nitrogen: blue, copper: green).
Figure S11: Perspective view of overall packing of DAT-MOF-1a along a axis (free guests have been omitted for clarity) (Color code; Carbon: grey, oxygen: red, nitrogen: blue, copper: green).

Figure S12: Perspective view of a single pore of DAT-MOF-1a along a axis (free guests have been omitted for clarity) (Color code; Carbon: grey, oxygen: red, nitrogen: blue, copper: green).
Figure S13: Single 2D net of DAT-MOF-1a a axis (Color code; Carbon: grey, oxygen: pale orange, nitrogen: blue, copper: dark yellow).

Figure S14: Pore surface of DAT-MOF-1a along a axis (Color code; Carbon: grey, oxygen: pale orange, nitrogen: blue, copper: green polyhedral).
Figure S15: Overall packing along b axis of DAT-MOF-1a (free guests have been omitted for clarity) (Color code; Carbon: grey, oxygen: pale orange, nitrogen: blue, copper: green ball).

Figure S16: Overall packing along b axis of DAT-MOF-1a (free guests have been omitted for clarity) (Color code; Carbon: grey, oxygen: pale orange, nitrogen: blue, copper: green ball).
Figure S17: TGA plot of as-made and desolvated phases of DAT-MOF-1a.
Figure S18: PXRD patterns of simulated, as-made and desolvated phases of DAT-MOF-1a.
Figure S19: PXRD patterns for the Bz and Cy-vapor exposed phases of DAT-MOF-1, when compared together with the simulated and as-made patterns for DAT-MOF-1a.
Figure S20: Low-temperature gas adsorption isotherms for DAT-MOF-1.
Figure S21: Room temperature CO\textsubscript{2} adsorption isotherms for DAT-MOF-1.
Figure S22: Benzene and Cyclohexane sorption isotherms for the desolvated phase DAT-MOF-1 recorded at 298K and 1atm.
Figure S23: 13C NMR spectra for Bz and Cy vapor-exposed phases of compound DAT-MOF-1, as compared to the desolvated phase itself. Vapor of each of these two solvents were exposed for 48h to the phase DAT-MOF-1 before digesting in DCI/DMSO-d_6. a) Extended 13C NMR view showing no Cy peak at the characteristic cyclohexane region ($\delta = 27$ ppm); while b) zoomed 13C NMR view presenting Bz peaks for the Bz and Bz/Cy (1:1) vapor exposed phases observed at Bz characteristic region ($\delta = 128.3$ ppm).
Table S3. Crystal data and structure refinement for DAT-MOF-1a.

Property	Value
Identification code	DAT-MOF-1a
Empirical formula	C_{20}H_{16}CuN_{10}O_{4}
Formula weight	523.97
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P b n b
Unit cell dimensions	
\(a\)	17.7157(6) Å \(\alpha= 90^\circ\).
\(b\)	22.1231(8) Å \(\beta= 90^\circ\).
\(c\)	25.3814(9) Å \(\gamma= 90^\circ\).
Volume	9947.6(6) Å
\(Z\)	8
Density (calculated)	0.700 Mg/m³
Absorption coefficient	0.462 mm\(^{-1}\)
F(000)	2136
Crystal size	0.15 x 0.11 x 0.10 mm\(^3\)
Theta range for data collection	1.40 to 25.41\(^\circ\)
Index ranges	-21\(\leq\)h\(\leq\)21, -23\(\leq\)k\(\leq\)26, -30\(\leq\)l\(\leq\)30
Reflections collected	163610
Independent reflections	9132 [R(int) = 0.0919]
Completeness to theta = 25.41\(^\circ\)	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9552 and 0.9339
Refinement method	Full-matrix least-squares on F\(^2\)
Data / restraints / parameters	9132 / 0 / 316
Goodness-of-fit on F\(^2\)	0.963
Final R indices [I>2\sigma(I)]	R\(_1\) = 0.0656, wR\(_2\) = 0.1540
R indices (all data)	R\(_1\) = 0.0814, wR\(_2\) = 0.1646
Largest diff. peak and hole	1.273 and -0.315 e.Å\(^{-3}\)
Table S4. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters ($\text{Å}^2 x 10^3$) for DAT-MOF-1a. $U(eq)$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U(eq)
Cu(01)	9438(1)	362(1)	144(1)	34(1)
O(4)	10190(1)	994(1)	35(1)	42(1)
O(2)	8845(1)	-396(1)	189(1)	33(1)
O(1)	9855(1)	210(1)	847(1)	39(1)
O(3)	9201(1)	408(1)	-615(1)	40(1)
N(7)	8561(1)	980(1)	424(1)	25(1)
N(9)	7650(1)	481(1)	-47(1)	34(1)
N(6)	8291(1)	1992(1)	694(1)	32(1)
N(8)	7436(1)	1469(1)	127(1)	29(1)
N(2)	11406(2)	-536(1)	4180(1)	44(1)
C(18)	7681(2)	1961(1)	387(1)	28(1)
N(10)	9310(1)	1482(1)	1017(1)	43(1)
N(3)	11490(2)	-914(1)	3294(1)	48(1)
C(19)	8709(2)	1489(1)	706(1)	29(1)
C(13)	7094(2)	3603(1)	341(1)	33(1)
C(20)	7881(1)	979(1)	174(1)	25(1)
C(16)	6480(2)	2469(1)	142(1)	39(1)
N(4)	11972(2)	-1430(1)	3986(1)	53(1)
C(14)	7524(2)	3090(1)	411(1)	38(1)
C(1)	10405(2)	-132(1)	946(1)	34(1)
C(15)	7228(2)	2512(1)	309(1)	30(1)
C(7)	11223(2)	-551(1)	1662(1)	43(1)
N(1)	10886(2)	27(2)	3459(1)	59(1)
C(12)	6350(2)	3552(1)	166(1)	33(1)
C(2)	10620(2)	-205(2)	1514(1)	42(1)
C(8)	11114(2)	-411(2)	3151(1)	51(1)
C(11)	5866(2)	4104(1)	104(1)	29(1)
C(9)	11036(2)	-47(2)	3983(1)	53(1)
C(10)	11612(2)	-948(1)	3814(1)	41(1)
C(6)	11399(2)	-624(2)	2200(1)	44(1)
C(17)	6048(2)	2985(1)	57(1)	37(1)
C(3)	10173(2)	66(2)	1897(1)	71(1)
N(5)	10832(2)	371(2)	4316(1)	72(1)
---	---	---	---	---
C(5)	10955(2)	-351(2)	2572(1)	53(1)
C(4)	10340(2)	10(2)	2423(2)	70(1)
Bond Lengths (Å)	Bond Angles (°)			
------------------	-----------------			
Cu(01)-O(4)	1.9522(19)			
Cu(01)-O(1)	1.9585(19)			
Cu(01)-O(3)	1.975(2)			
Cu(01)-O(2)	1.9824(18)			
Cu(01)-N(7)	2.190(2)			
Cu(01)-Cu(01)#1	2.6563(7)			
O(4)-C(11)#2	1.267(3)			
O(2)-C(11)#3	1.238(3)			
O(1)-C(1)	1.258(3)			
O(3)-C(1)#1	1.252(4)			
N(7)-C(19)	1.358(3)			
N(7)-C(20)	1.362(3)			
N(9)-C(20)	1.303(3)			
N(6)-C(18)	1.332(3)			
N(6)-C(19)	1.338(3)			
N(8)-C(20)	1.345(3)			
N(8)-C(18)	1.345(3)			
N(2)-C(10)	1.351(4)			
N(2)-C(9)	1.359(4)			
C(18)-C(15)	1.472(3)			
N(10)-C(19)	1.325(4)			
N(3)-C(10)	1.340(4)			
N(3)-C(8)	1.346(4)			
C(13)-C(14)	1.378(4)			
C(13)-C(12)	1.395(4)			
C(16)-C(17)	1.391(4)			
C(16)-C(15)	1.395(4)			
N(4)-C(10)	1.316(4)			
C(14)-C(15)	1.407(4)			
C(1)-O(3)#1	1.252(4)			
C(1)-C(2)	1.500(4)			
C(7)-C(2)	1.367(4)			
C(7)-C(6)	1.409(5)			
N(1)-C(8)	1.310(5)			
N(1)-C(9)	1.367(5)			
C(12)-C(17)	1.392(4)			
C(12)-C(11) 1.501(3)
C(2)-C(3) 1.390(5)
C(8)-C(5) 1.502(4)
C(11)-O(2)#4 1.238(3)
C(11)-O(4)#5 1.267(3)
C(9)-N(5) 1.305(5)
C(6)-C(5) 1.369(5)
C(3)-C(4) 1.372(5)
C(5)-C(4) 1.404(5)

O(4)-Cu(01)-O(1) 89.72(10)
O(4)-Cu(01)-O(3) 88.21(10)
O(1)-Cu(01)-O(3) 167.78(9)
O(4)-Cu(01)-O(2) 167.58(8)
O(1)-Cu(01)-O(2) 90.14(9)
O(3)-Cu(01)-O(2) 89.30(9)
O(4)-Cu(01)-N(7) 94.72(8)
O(1)-Cu(01)-N(7) 94.53(8)
O(3)-Cu(01)-N(7) 97.64(8)
O(2)-Cu(01)-N(7) 97.67(8)

O(4)-Cu(01)-Cu(01)#1 83.18(6)
O(1)-Cu(01)-Cu(01)#1 82.25(6)
O(3)-Cu(01)-Cu(01)#1 85.54(6)
O(2)-Cu(01)-Cu(01)#1 84.49(6)
N(7)-Cu(01)-Cu(01)#1 176.15(6)
C(11)#2-O(4)-Cu(01) 124.18(16)
C(11)#3-O(2)-Cu(01) 121.74(17)
C(1)-O(1)-Cu(01) 125.23(19)
C(1)#1-O(3)-Cu(01) 120.64(17)
C(19)-N(7)-C(20) 114.7(2)
C(19)-N(7)-Cu(01) 123.44(17)
C(20)-N(7)-Cu(01) 118.36(16)
C(18)-N(6)-C(19) 114.8(2)
C(20)-N(8)-C(18) 114.8(2)
C(10)-N(2)-C(9) 114.6(3)
N(6)-C(18)-N(8) 126.2(2)
N(6)-C(18)-C(15) 118.6(2)
N(8)-C(18)-C(15) 115.3(2)
C(10)-N(3)-C(8) 113.1(3)
N(10)-C(19)-N(6) 117.9(2)
N(10)-C(19)-N(7) 117.3(2)
N(6)-C(19)-N(7) 124.7(2)
C(14)-C(13)-C(12) 119.7(2)
N(9)-C(20)-N(8) 117.4(2)
N(9)-C(20)-N(7) 118.7(2)
N(8)-C(20)-N(7) 123.9(2)
C(17)-C(16)-C(15) 120.9(3)
C(13)-C(14)-C(15) 121.3(3)
O(3)#1-C(1)-O(1) 126.3(3)
O(3)#1-C(1)-C(2) 116.8(2)
O(1)-C(1)-C(2) 117.0(3)
C(16)-C(15)-C(14) 118.2(2)
C(16)-C(15)-C(18) 120.2(2)
C(14)-C(15)-C(18) 121.6(2)
C(2)-C(7)-C(6) 120.2(3)
C(8)-N(1)-C(9) 115.6(3)
C(17)-C(12)-C(13) 120.0(2)
C(17)-C(12)-C(11) 119.5(2)
C(13)-C(12)-C(11) 120.5(2)
C(7)-C(2)-C(3) 119.6(3)
C(7)-C(2)-C(1) 121.5(3)
C(3)-C(2)-C(1) 118.8(3)
N(1)-C(8)-N(3) 127.1(3)
N(1)-C(8)-C(5) 117.5(3)
N(3)-C(8)-C(5) 115.4(3)
O(2)#4-C(11)-O(4)#5 126.3(2)
O(2)#4-C(11)-C(12) 118.2(2)
O(4)#5-C(11)-C(12) 115.5(2)
N(5)-C(9)-N(2) 117.5(3)
N(5)-C(9)-N(1) 119.4(3)
N(2)-C(9)-N(1) 123.1(3)
N(4)-C(10)-N(3) 116.8(3)
N(4)-C(10)-N(2) 116.7(3)
N(3)-C(10)-N(2) 126.5(3)
C(5)-C(6)-C(7) 119.4(3)
C(16)-C(17)-C(12) 119.8(3)
Bond	Angle (°) (ESD)
C(4)-C(3)-C(2)	121.3(3)
C(6)-C(5)-C(4)	120.7(3)
C(6)-C(5)-C(8)	122.0(3)
C(4)-C(5)-C(8)	117.3(3)
C(3)-C(4)-C(5)	118.7(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y,-z
#2 x+1/2,-y+1/2,-z
#3 -x+3/2,y-1/2,z
#4 -x+3/2,y+1/2,z
#5 x-1/2,-y+1/2,-z
Table S6. Anisotropic displacement parameters (Å²x 10³) for DAT-MOF-1a. The anisotropic displacement factor exponent takes the form: -2\pi²[h²a²U_{11} + ... + 2hka*b*U_{12}]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Cu(01)	33(1)	23(1)	47(1)	2(1)	-5(1)	-2(1)
O(4)	27(1)	18(1)	81(2)	-6(1)	12(1)	-7(1)
O(2)	24(1)	17(1)	59(1)	-2(1)	-1(1)	-1(1)
O(1)	47(1)	36(1)	33(1)	-2(1)	-16(1)	18(1)
O(3)	39(1)	46(1)	34(1)	7(1)	-11(1)	16(1)
N(7)	25(1)	12(1)	39(1)	-3(1)	-10(1)	2(1)
N(9)	30(1)	17(1)	55(2)	-10(1)	-18(1)	11(1)
N(6)	29(1)	21(1)	46(1)	-7(1)	-12(1)	7(1)
N(8)	31(1)	15(1)	41(1)	-9(1)	-6(1)	3(1)
N(2)	45(2)	44(2)	43(2)	8(1)	-16(1)	-7(1)
C(18)	28(1)	19(1)	38(2)	-5(1)	-5(1)	1(1)
N(10)	41(1)	28(1)	60(2)	-16(1)	-25(1)	13(1)
N(3)	57(2)	44(2)	43(2)	2(1)	-19(1)	6(1)
C(19)	23(1)	25(1)	40(2)	-2(1)	-6(1)	-2(1)
C(13)	25(1)	18(1)	57(2)	2(1)	-10(1)	-3(1)
C(20)	20(1)	23(1)	32(1)	2(1)	-6(1)	5(1)
C(16)	31(2)	17(1)	68(2)	-10(1)	-7(1)	3(1)
N(4)	82(2)	39(2)	39(2)	3(1)	-21(2)	5(2)
C(14)	25(1)	20(1)	69(2)	-10(1)	-12(1)	1(1)
C(1)	37(2)	24(1)	40(2)	1(1)	-10(1)	7(1)
C(15)	31(1)	18(1)	40(2)	-4(1)	-9(1)	7(1)
C(7)	46(2)	38(2)	45(2)	-2(1)	-4(2)	7(1)
N(1)	27(1)	58(2)	44(2)	0(2)	-20(1)	28(2)
C(12)	27(1)	56(2)	56(2)	-1(1)	0(1)	5(1)
C(2)	39(2)	42(2)	44(2)	6(1)	-11(1)	9(1)
C(8)	62(2)	57(2)	35(2)	0(2)	-12(2)	19(2)
C(11)	24(1)	45(2)	45(2)	-1(1)	2(1)	2(1)
C(9)	45(2)	68(2)	47(2)	3(2)	-6(2)	13(2)
C(10)	42(2)	36(2)	46(2)	1(1)	-16(1)	-5(1)
C(6)	44(2)	45(2)	43(2)	4(1)	-9(1)	10(2)
C(17)	25(1)	24(1)	61(2)	-8(1)	-12(1)	5(1)
C(3)	68(3)	104(3)	43(2)	-16(2)	-16(2)	57(3)
N(5)	76(2)	95(3)	44(2)	6(2)	-14(2)	39(2)
-------	-----	-----	-----	-----	-----	-----
C(5)	61(2)	64(2)	34(2)	5(2)	-14(2)	15(2)
C(4)	65(2)	101(3)	45(2)	-6(2)	-11(2)	45(2)

Notation

\(b_A \) dual-Langmuir-Freundlich constant for species \(i \) at adsorption site A, \(\text{Pa}^{\nu} \)

\(b_B \) dual-Langmuir-Freundlich constant for species \(i \) at adsorption site B, \(\text{Pa}^{\nu} \)

\(c_i \) molar concentration of species \(i \) in fluid mixture, \(\text{mol m}^{-3} \)

\(c_{i0} \) molar concentration of species \(i \) in fluid mixture at inlet to adsorber, \(\text{mol m}^{-3} \)

\(L \) length of packed bed adsorber, m

\(n \) number of species in the mixture, dimensionless

\(p_i \) partial pressure of species \(i \) in mixture, Pa

\(p_t \) total system pressure, Pa

\(q_i \) component molar loading of species \(i \), \(\text{mol kg}^{-1} \)

\(q_{i, \text{sat}} \) molar loading of species \(i \) at saturation, \(\text{mol kg}^{-1} \)

\(q_t \) total molar loading in mixture, \(\text{mol kg}^{-1} \)

\(q_{\text{sat}, A} \) saturation loading of site A, \(\text{mol kg}^{-1} \)

\(q_{\text{sat}, B} \) saturation loading of site B, \(\text{mol kg}^{-1} \)

\(t \) time, s

\(T \) absolute temperature, K

\(u \) superficial gas velocity in packed bed, \(\text{m s}^{-1} \)

\(v \) interstitial gas velocity in packed bed, \(\text{m s}^{-1} \)

Greek letters

\(\varepsilon \) voidage of packed bed, dimensionless

\(\nu \) exponent in dual-Langmuir-Freundlich isotherm, dimensionless

\(\theta_i \) fractional occupancy within the pores, dimensionless

\(\rho \) framework density, \(\text{kg m}^{-3} \)

\(\tau \) time, dimensionless
\textit{Subscripts}

\begin{itemize}
\item[i] referring to component i
\item[A] referring to site A
\item[B] referring to site B
\item[t] referring to total mixture
\end{itemize}
References:

(S1) SAINT Plus, (Version 7.03); Bruker AXS Inc.: Madison, WI, 2004.

(S2) G. M. Sheldrick, SHELXTL, Reference Manual: version 5.1: Bruker AXS; Madison, WI, 1997.

(S3) G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 112 –122.

(S4) WINGX version 1.80.05 Louis Farrugia, University of Glasgow.

(S5) A. L. Spek, (2005) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.

(S6) C. E. Webster, R. S. Drago, M. C. Zerner, J. Am. Chem. Soc. 1998, 120, 5509-5516.

N.B. ‡ B.M. and S.M. have contributed equally.