Let p be a prime number. We define the notion of F-finiteness of homomorphisms of \mathbb{F}_p-algebras, and discuss some basic properties. In particular, we prove a sort of descent theorem on F-finiteness of homomorphisms of \mathbb{F}_p-algebras. As a corollary, we prove the following.

Let $g : B \to C$ be a homomorphism of Noetherian \mathbb{F}_p-algebras. If g is faithfully flat reduced and C is F-finite, then B is F-finite. This is a generalization of Seydi’s result on excellent local rings of characteristic p.

1. Introduction

Throughout this paper, p denotes a prime number, and \mathbb{F}_p denotes the finite field with p elements. In commutative algebra of characteristic p, F-finiteness of rings are commonly used for a general assumption which guarantees the “tameness” of the theory, as well as excellence. Although F-finiteness for a Noetherian \mathbb{F}_p-algebra is stronger than excellence [Kun], F-finiteness is not so restrictive for practical use. A perfect field is F-finite. An algebra essentially of finite type over an F-finite ring is F-finite. An ideal-adic completion of a Noetherian F-finite ring is again F-finite. See Example 3 and Example 9.

In this paper, replacing the absolute Frobenius map by the relative one, we...
define the F-finiteness of homomorphism between rings of characteristic p. We say that an \mathbb{F}_p-algebra map $A \to B$ is F-finite (or B is F-finite over A) if the relative Frobenius map (Radu–André homomorphism) $\Phi_1(A, B) : B^{(1)} \otimes_{A^{(1)}} A \to B$ is finite (Definition 1, see section 2 for the notation). Thus a ring B of characteristic p is F-finite if and only if it is F-finite over \mathbb{F}_p. Replacing absolute Frobenius by relative Frobenius, we get definitions and results on homomorphisms instead of rings. This is a common idea in [Rad], [And], [And2], [Dum], [Dum2], [Ene], [Has], and [Has2].

In section 2, we discuss basic properties of F-finiteness of homomorphisms and rings. Some of well-known properties of F-finiteness of rings are naturally generalized to those for F-finiteness of homomorphisms. F-finiteness of homomorphisms has connections with that for rings. For example, if $A \to B$ is F-finite and A is F-finite, then B is F-finite (Lemma 2).

In section 3, we prove the main theorem (Theorem 19). This is a sort of descent of F-finiteness. As a corollary, we prove that for a faithfully flat reduced homomorphism of Noetherian rings $g : B \to C$, if C is F-finite, then B is F-finite. Considering the case that f is a completion of a Noetherian local ring, we recover Seydi’s result on excellent local rings of characteristic p [Sey].

Acknowledgement: The author is grateful to Professor K. Fujiwara, Professor J.-i. Nishimura, Professor C. Rotthaus, Dr. A. Sannai, Professor S. Takagi, and Professor H. Tanimoto for valuable advice.

2. F-finiteness of homomorphisms

Let k be a perfect field of characteristic p, and $r \in \mathbb{Z}$. For a k-space V, the additive group V with the new k-space structure $\alpha \cdot v = \alpha^{p^r}v$ is denoted by $V^{(r)}$. An element v of V, viewed as an element of $V^{(r)}$ is (sometimes) denoted by $v^{(r)}$. If A is a k-algebra, then $A^{(r)}$ is a k-algebra with the product $a^{(r)} \cdot b^{(r)} = (ab)^{(r)}$. We denote the Frobenius map $A \to A (a \mapsto a^p)$ by F or F_A. Note that $F^e : A^{(r+e)} \to A^{(r)}$ is a k-algebra map. Throughout the article, we regard $A^{(r)}$ as an $A^{(r+e)}$-algebra through $F^e (A$ is viewed as $A^{(0)}$).

For an A-module M, the action $a^{(r)} \cdot m^{(r)} = (am)^{(r)}$ makes $M^{(r)}$ an $A^{(r)}$ module. If I is an ideal of A, then $I^{(r)}$ is an ideal of $A^{(r)}$. If $e \geq 0$, then $I^{(e)}A = I^{[p^e]}$, where $I^{[p^e]}$ is the ideal of A generated by $\{a^{p^e} \mid a \in I\}$. In commutative algebra, $A^{(r)}$ is also denoted by ^{-r}A. We employ the notation more consistent with that in representation theory — the eth Frobenius twist
of V is denoted by $V^{(e)}$, see [Jan]. We use this notation for $k = \mathbb{F}_p$.

Let $A \to B$ be an \mathbb{F}_p-algebra map, and $e \geq 0$. Then the relative Frobenius map (or Radu–André homomorphism) $\Phi_e(A, B) : B^{(e)} \otimes_{A^{(e)}} A \to B$ is defined by $\Phi_e(A, B)(b^{(e)} \otimes a) = b^p \cdot a$.

Definition 1. An \mathbb{F}_p-algebra map $A \to B$ is said to be F-finite if $\Phi_1(A, B) : B^{(1)} \otimes_{A^{(1)}} A \to B$ is finite. That is, B is a finitely generated $B^{(1)} \otimes_{A^{(1)}} A$-module through $\Phi_1(A, B)$. We also say that B is F-finite over A.

Lemma 2. Let $f : A \to B$, $g : B \to C$, and $h : A \to \tilde{A}$ be \mathbb{F}_p-algebra maps, and $\tilde{B} := \tilde{A} \otimes_A B$.

1. The following are equivalent.
 a. f is F-finite. That is, $\Phi_1(A, B)$ is finite.
 b. For any $e > 0$, $\Phi_e(A, B)$ is finite.
 c. For some $e > 0$, $\Phi_e(A, B)$ is finite.

2. If f and g are F-finite, then so is gf.

3. If gf is F-finite, then so is g.

4. The ring A is F-finite (that is, the Frobenius map $F_A : A^{(1)} \to A$ is finite) if and only if the unique homomorphism $\mathbb{F}_p \to A$ is F-finite.

5. If $f : A \to B$ is F-finite, then the base change $\tilde{f} : \tilde{A} \to \tilde{B}$ is F-finite.

6. If B is F-finite, then f is F-finite.

7. If A and f are F-finite, then B is F-finite.

Proof. 1 This is immediate, using [Has, Lemma 4.1, 2]. 2 and 3 follow from [Has, Lemma 4.1, 1]. 4 follows from [Has, Lemma 4.1, 5]. 5 follows from [Has, Lemma 4.1, 4]. 6 follows from 3 and 4. 7 follows from 2 and 4. \qed

Example 3. Let $e \geq 1$, and $f : A \to B$ be an \mathbb{F}_p-algebra map.

1. If $B = A[x]$ is a polynomial ring, then it is F-finite over A.

2. If $B = A_S$ is a localization of A by a multiplicatively closed subset S of A, then $\Phi_e(A, B)$ is an isomorphism. In particular, B is F-finite over A.
3 If $B = A/I$ with I an ideal of A, then

$$B^{(e)} \otimes_{A^{(e)}} A \cong (A^{(e)}/I^{(e)}) \otimes_{A^{(e)}} A \cong A/I^{(e)}A = A/I^{[p^e]}.$$

Under this identification, $\Phi_e(A, B)$ is identified with the projection $A/I^{[p^e]} \to A/I$. In particular, B is F-finite over A.

4 If B is essentially of finite type over A, then B is F-finite over A.

Proof. 1 The image of $\Phi_1(A, B)$ is $A[x^p]$, and hence B is generated by $1, x, \ldots, x^{p-1}$ over it. 2 Note that $B^{(e)}$ is identified with $(A^{(e)})_{S^{(e)}}$, where $S^{(e)} = \{ s^{(e)} \mid s \in S \}$. So $B^{(e)} \otimes_{A^{(e)}} A$ is identified with $(A^{(e)})_{S^{(e)}} \otimes_{A^{(e)}} A \cong A_{S^{(e)}}$, and $\Phi_e(A, B)$ is identified with the isomorphism $A_{S^{(e)}} \cong A_S$. 3 is obvious. 4 This is a consequence of 1, 2, 3, and Lemma 2. □

Lemma 4. Let $A \xrightarrow{f} B \xrightarrow{g} C$ be a sequence of \mathbb{F}_p-algebra maps. Then for $e > 0$, the diagram

$$
\begin{array}{ccc}
B^{(e)} \otimes_{A^{(e)}} A & \xrightarrow{\Phi_e(A, B)} & B \\
\downarrow{g^{(e)} \otimes 1} & & \downarrow{g} \\
C^{(e)} \otimes_{A^{(e)}} A & \xrightarrow{\Phi_e(A, C)} & C
\end{array}
$$

is commutative.

Proof. This is straightforward. □

Lemma 5. Let $A \xrightarrow{f} B \xrightarrow{g} C$ be a sequence of \mathbb{F}_p-algebra maps, and assume that C is F-finite over A. If g is finite and injective, and $B^{(e)} \otimes_{A^{(e)}} A$ is Noetherian for some $e > 0$, then B is F-finite over A.

Proof. By assumption, $C^{(e)} \otimes_{A^{(e)}} A$ is finite over $B^{(e)} \otimes_{A^{(e)}} A$, and C is finite over $C^{(e)} \otimes_{A^{(e)}} A$. So C is finite over $B^{(e)} \otimes_{A^{(e)}} A$. As B is a $B^{(e)} \otimes_{A^{(e)}} A$-submodule of C and $B^{(e)} \otimes_{A^{(e)}} A$ is Noetherian, B is finite over $B^{(e)} \otimes_{A^{(e)}} A$. □

Lemma 6. Let $A \to B$ be a ring homomorphism, and I a finitely generated nilpotent ideal of B. If B/I is A-finite, then B is A-finite.

Proof. As I/I^{i+1} is B/I-finite for each i, it is also A-finite. So B/I^r is A-finite for each r. Taking r large, B is A-finite. □

Lemma 7. Let $f : A \to B$ be an \mathbb{F}_p-algebra map, and I a finitely generated nilpotent ideal of B. If B/I is F-finite over A, then B is F-finite over A.
Proof. As B/I is F-finite over A, B/I is $(B^{(1)}/I^{(1)}) \otimes_{A^{(1)}} A$-finite. So B/I is also $B^{(1)} \otimes_{A^{(1)}} A$-finite. By Lemma 6, B is $B^{(1)} \otimes_{A^{(1)}} A$-finite.

For the absolute F-finiteness, we have a better result.

Lemma 8. Let B be an \mathbb{F}_p-algebra, and I a finitely generated ideal of B. If B is I-adically complete and B/I is F-finite, then B is F-finite.

Proof. B/I is $B^{(1)}/I^{(1)}$-finite. So $B/I^{(1)}$ is $B^{(1)}$-finite by Lemma 6. As $\bigcap_i I^i = 0$, we have $\bigcap_i (I^{(1)})^i B = 0$. Moreover, $B^{(1)}$ is $I^{(1)}$-adically complete. Hence B is $B^{(1)}$-finite by [Mat, Theorem 8.4].

Example 9. Let A be an \mathbb{F}_p-algebra.

1 If A is F-finite, then the formal power series ring $A[[x]]$ is so.

2 Let J be an ideal of A. If A is Noetherian and A/J is F-finite, then the J-adic completion A^* of A is F-finite.

3 If (A, \mathfrak{m}) is complete local and A/\mathfrak{m} is F-finite, then A is F-finite.

Proof. For each of 1–3, we use Lemma 8. 1 Set $B = A[[x]]$ and $I = Bx$. Then $B/I \cong A$ is F-finite. 2 Set $B = A^*$ and $I = JB$. Then $B/I \cong A/J$ is F-finite. 3 is immediate.

Let A be a Noetherian ring and I its ideal. If A is I-adically complete and A/I is Nagata, then A is Nagata [Mar]. If A is semi-local, I-adically complete, and A/I is quasi-excellent, then A is quasi-excellent [Rot2]. See also [Nis].

Lemma 10. Let A be an \mathbb{F}_p-algebra, and B and C be A-algebras. If B and C are F-finite over A, then

1 $B \otimes_A C$ is F-finite over A.

2 $B \times C$ is F-finite over A.

Proof. 1 B is F-finite over A, and $B \otimes_A C$ is F-finite over B by Lemma 2. 5. By Lemma 2, $B \otimes_A C$ is F-finite over A. 2 Both B and C are finite over $(B \times C)^{(1)} \otimes_{A^{(1)}} A$, and so is $B \times C$.

Lemma 11. Let $A \to B$ be an \mathbb{F}_p-algebra map, and assume that B and $B^{(e)} \otimes_{A^{(e)}} A$ are Noetherian for some $e > 0$. Then B is F-finite over A if and only if B/P is F-finite over A for every minimal prime P of B.

5
Proof. The ‘only if’ part is obvious by Example 3. We prove the converse. Let $\text{Min} B$ be the set of minimal primes of B. Then $\prod_{P \in \text{Min} B} B/P$ is F-finite over A by Lemma 10. As $B_{\text{red}} \rightarrow \prod_{P \in \text{Min} B} B/P$ is finite injective, and $B_{\text{red}} \otimes_{A(e)} A$ is Noetherian, B_{red} is F-finite over A by Lemma 5. As B is Noetherian, B is F-finite over A by Lemma 7.

Remark 12. Fogarty asserted that an \mathbb{F}_p-algebra map $A \rightarrow B$ with B Noetherian is F-finite if and only if the module of Kähler differentials $\Omega_{B/A}$ is a finite B-module [Fog, Proposition 1]. The ‘only if’ part is true and easy. The proof of ‘if’ part therein has a gap. Although R_1 in step (iii) is assumed to be Noetherian, it is not proved that R' in step (iv) is Noetherian. The author does not know if this direction is true or not.

3. Descent of F-finiteness

In this section, we prove a sort of descent theorem on F-finiteness of homomorphisms.

Lemma 13. Let R be a commutative ring, $\varphi : M \rightarrow N$ and $h : F \rightarrow G$ be R-linear maps. If φ is R-pure and $1_N \otimes h : N \otimes F \rightarrow N \otimes G$ is surjective, then $1_M \otimes h : M \otimes F \rightarrow M \otimes G$ is surjective.

Proof. Let $C := \text{Coker} h$. Then by assumption, $N \otimes C = 0$. By the injectivity of $\varphi \otimes 1_C : M \otimes C \rightarrow N \otimes C$, we have that $M \otimes C = 0$.

Corollary 14. Let $A \rightarrow B$ be a pure ring homomorphism, and $h : F \rightarrow G$ an A-linear map. If $1_B \otimes h : B \otimes_A F \rightarrow B \otimes_A G$ is surjective, then h is surjective.

Lemma 15. Let $A \rightarrow B$ be a pure ring homomorphism, and G an A-module. If $B \otimes_A G$ is a finitely generated B-module, then G is finitely generated as an A-module.

Proof. Let $\theta_1, \ldots, \theta_r$ be generators of $B \otimes_A G$. Then we can write $\theta_j = \sum_{i=1}^s b_{ij} \otimes g_{ij}$ for some $s > 0$, $b_{ij} \in B$, and $g_{ij} \in G$. Let F be the A-free module with the basis $\{f_{ij} | 1 \leq i \leq s, 1 \leq j \leq r\}$, and $h : F \rightarrow G$ be the A-linear map given by $f_{ij} \mapsto g_{ij}$. Then by construction, $1_B \otimes h$ is surjective. By Corollary 14, h is surjective, and hence G is finitely generated.
Definition 16 (cf. [Has2 (2.7)]). An \mathbb{F}_p-algebra map $A \to B$ is said to be e-Dumitrescu if there exists some $e > 0$ such that $\Phi_e(A, B)$ is A-pure (i.e., pure as an A-linear map).

Lemma 17. Let $e, e' > 0$. If $A \to B$ is both e-Dumitrescu and e'-Dumitrescu, then it is $(e + e')$-Dumitrescu. In particular, an e-Dumitrescu map is er-Dumitrescu map for $r > 0$.

Proof. This follows from [Has, Lemma 4.1, 2].

So a 1-Dumitrescu map is Dumitrescu (that is, e-Dumitrescu for all $e > 0$), see [Has2, Lemma 2.9].

Lemma 18. Let $e > 0$.

1 [Has2 Lemma 2.8],

2 [Has2 Lemma 2.12], and

3 [Has2 Corollary 2.13]

hold true when we replace all the ‘Dumitrescu’ therein by ‘e-Dumitrescu’.

The proof is straightforward, and is left to the reader.

Theorem 19. Let $f : A \to B$ and $g : B \to C$ be \mathbb{F}_p-algebra maps, and $e > 0$. Assume that g is e-Dumitrescu, and the image of the associated map $a g : \text{Spec } C \to \text{Spec } B$ contains the set of maximal ideals $\text{Max } B$ of B. If gf is F-finite, and B and $C^{(e)} \otimes_{A^{(e)}} A$ are Noetherian, then f is F-finite.

Proof. Note that $\Phi_e(A, C) : C^{(e)} \otimes_{A^{(e)}} A \to C$ is a finite map. Note also that $C^{(e)} \otimes_{B^{(e)}} B$ is a $C^{(e)} \otimes_{A^{(e)}} A$-submodule of C through $\Phi_e(B, C)$, since $\Phi_e(B, C)$ is B-pure and hence is injective. As $C^{(e)} \otimes_{A^{(e)}} A$ is Noetherian, $C^{(e)} \otimes_{B^{(e)}} B$, which is a submodule of the finite module C, is a finite $C^{(e)} \otimes_{A^{(e)}} A$-module. Since $g^{(e)} : B^{(e)} \to C^{(e)}$ is pure by Lemma 15, $B^{(e)} \otimes_{A^{(e)}} A \to C^{(e)} \otimes_{A^{(e)}} A$ is also pure. Since

$$C^{(e)} \otimes_{B^{(e)}} B \cong (C^{(e)} \otimes_{A^{(e)}} A) \otimes_{B^{(e)}} A B$$

is a finite $C^{(e)} \otimes_{A^{(e)}} A$-module, B is a finite $B^{(e)} \otimes_{A^{(e)}} A$-module by Lemma 15.

\[\square \]
A homomorphism $f : A \to B$ between Noetherian rings is said to be reduced if f is flat with geometrically reduced fibers.

Corollary 20. Let $g : B \to C$ be a faithfully flat reduced homomorphism between Noetherian \mathbb{F}_p-algebras. If C is F-finite, then B is F-finite.

Proof. By [Dum2, Theorem 3], g is Dumitrescu. As g is faithfully flat, $g : \text{Spec } C \to \text{Spec } B$ is surjective. Letting $A = \mathbb{F}_p$ and $f : A \to B$ be the unique map, the assumptions of Theorem [19] are satisfied, and hence f is F-finite. That is, B is F-finite.

Corollary 21 (Seydi [Sey]). Let (B, m) be a Nagata local ring with the F-finite residue field $k = B/m$. Then B is F-finite. In particular, B is excellent, and is a homomorphic image of a regular local ring.

Proof. Let $g : B \to C = \hat{B}$ be the completion of B. Then C is a complete local ring with the residue field k. By Example [9], C is F-finite. As g is reduced by [Gro, (7.6.4), (7.7.2)], B is F-finite by Corollary 20.

The last assertions follow from [Kun, Theorem 2.5] and [Gab, Remark 13.6].

Even if $A \to B$ is a faithfully flat reduced homomorphism and B is excellent, A need not be quasi-excellent. There is a Nagata local ring A which is not quasi-excellent [Rot, Nis2], and its completion $A \to \hat{A} = B$ is an example.

References

-[And] M. André, Homomorphismes réguliers en caractéristique p, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 643–646.

-[And2] M. André, Autre démonstration de théorème liant régularité et platitude en caractéristique p, Manuscripta Math. 82 (1994), 363–379.

-[Dum] T. Dumitrescu, On a theorem of N. Radu and M. André, Stud. Cerc. Mat. 46 (1994), 445–447.

-[Dum2] T. Dumitrescu, Reducedness, formal smoothness and approximation in characteristic p, Comm. Algebra 23 (1995), 1787–1795.
[Ene] F. Enescu, On the behavior of F-rational rings under flat base change, *J. Algebra* **233** (2000), 543–566.

[Fog] J. Fogarty, Kähler differentials and Hilbert’s fourteenth problem for finite groups, *Amer. J. Math.* **102** (1980), 1159–1175.

[Gab] O. Gabber, Notes on some t-structures, *Geometric Aspects of Dwork Theory. Vol. II*, Walter de Gruyter GmbH & Co. KG (2004), 711–734.

[Gro] A. Grothendieck, *Éléments de Géométrie Algébrique, IV (seconde partie)*, *Publ. IHES* **24** (1965).

[Has] M. Hashimoto, Cohen–Macaulay F-injective homomorphisms, *Geometric and Combinatorial Aspects of Commutative algebra* (Messina, 1999), J. Herzog and G. Restuccia (eds.), Dekker (2001), 231–244.

[Has2] M. Hashimoto, F-pure homomorphisms, strong F-regularity, and F-injectivity, *Comm. Algebra* **38** (2010), 4569–4596.

[Jan] J. C. Jantzen, *Representations of Algebraic Groups*, 2nd ed., AMS (2003).

[Kun] E. Kunz, On Noetherian rings of characteristic p, *Amer. J. Math.* **98** (1976), 999–1013.

[Mar] J. Marot, Sur les anneaux universellement japonais, *Bull. Soc. Math. France* **103** (1975), 103–111.

[Mat] H. Matsumura, *Commutative Ring Theory*, First paperback edition, Cambridge (1989).

[Nis] J.-i. Nishimura, On ideal-adic completion of noetherian rings, *J. Math. Kyoto Univ.* **21** (1981), 153–169.

[Nis2] J.-i. Nishimura, A few examples of local rings, I, *Kyoto J. Math.* **52** (2012), 51–87.

[Rad] N. Radu, Une classe d’anneaux noethériens, *Rev. Roumanie Math. Pures Appl.* **37** (1992), 79–82.
[Rot] C. Rotthaus, Nicht ausgezeichnete, universell japanische Ringe,
Math. Z. **152** (1977), 107–125.

[Rot2] C. Rotthaus, Komplettierung semilokaler quasiausgezeichneter
Ringe, *Nagoya Math. J.* **76** (1979), 173–180.

[Sey] H. Seydi, Sur la théorie des anneaux excellents en caractéristique
p, *Bull. Sci. Math.* **96** (1972), 193–198.