Catastrophic costs among tuberculosis patients in Zimbabwe: a national health facility-based survey

Collins Timire
Ministry of Health and Child Care
https://orcid.org/0000-0003-0997-9799

Mkhokheli Ngwenya
World Health Organisation

Joconiah Chirenda
University of Zimbabwe College of Health Sciences

John Z Metcalfe
University of California San Fransisco

Katharina Kranzer
London School of Hygiene and Tropical Medicine

Debora Pedrazzoli
London School of Hygiene and Tropical Medicine

Kudakwashe Collin Takarinda
Union Internationale contre la Tuberculose et les Maladies Respiratoires

Peter Nguhiu
KEMRI Wellcome Trust Research Programme

Geshem Madzingaidzo
Ministry of Health and Child Care

Kwenzikweinkosi Ndlovu
Ministry of Health and Child Care

Tawanda Mapuranga
Ministry of Health and Care

Morna Cornell
University of Cape Town School of Public Health and Family Medicine

Charles Sandy
https://orcid.org/0000-0003-0264-7900

Research Article

Keywords: patient cost; tuberculosis; financial protection; Social protection; Zimbabwe; universal health coverage.

Posted Date: May 26th, 2020
Abstract

Background: Tuberculosis (TB) has biological and socio-economic dimensions. The socio-economic impact of TB may plunge households into financial catastrophes. The End TB strategy seeks to mitigate socio-economic factors which may act as barriers to accessing TB services. Countries have been encouraged to provide baseline estimates of catastrophic costs by 2020. We sought to determine the prevalence, risk factors and major drivers of catastrophic costs among TB patients in Zimbabwe.

Methods: We conducted a nationally representative, health facility-based survey with random cluster sampling among TB patients. We enrolled patients with drug susceptible (DS-TB) and drug resistant TB (DR-TB) consecutively. We administered a standardised questionnaire to capture the costs incurred as well as lost income due to TB illness. Catastrophic costs were measured at a threshold of 20%. We did a sensitivity analysis of indirect costs using the time lost by patients in each phase of treatment. We used multivariable logistic regression to determine the risk factors for experiencing catastrophic costs.

Results: A total of 841 patients were enrolled in the survey, weighted to 900 during data analysis. There were 500 (56%) males and 46 (6%) DR-TB patients. Thirty-five (72%) DR-TB patients were HIV co-infected. Overall, 80% (95% CI:77-82%) of TB patients and their households experienced catastrophic costs. The major cost drivers pre-TB diagnosis were direct medical costs. Nutritional supplements were the major cost driver post-TB diagnosis, (median cost US$360 (IQR: 240-600). Post-TB diagnosis costs were three-times higher among DR-TB [US$1,659 (653-2,787)] versus drug susceptible TB (DS-TB) affected households [US$537 (204-1,134)]. Income loss was five-times higher among DR-TB versus DS-TB patients. In multivariable analysis, household wealth was the only covariate that remained significantly associated with catastrophic costs: the poorest households had sixteen times the odds of incurring catastrophic costs compared to wealthiest households [adjusted odds ratio (aOR:15.7 95% CI:7.5-33.1)].

Conclusion: The majority of TB patients enrolled in care experienced catastrophic costs, with the highest burden on DR-TB patients. Since the major cost drivers fall outside the healthcare system, a multi-sectoral approach to TB control and linking TB patients to social protection schemes holds promise for reducing catastrophic costs in Zimbabwe.

Background

Tuberculosis (TB) is an archetypical poverty-related disease, with poverty both a cause and a consequence of TB. In any country (low, middle or high-income), TB affects the poorest and most marginalised groups of society. (1, 2) In 2018 approximately 10 million people developed TB disease globally and 1.6 million of them died, making TB one of the top ten killer diseases worldwide and the leading cause from a single infectious agent. (1) In sub Saharan Africa, TB has a powerful synergy with the human immune-deficiency virus (HIV) aggravating the clinical and economic impact of disease at the patient and household level. The economic impact of TB acts as a barrier to both access and adherence to TB treatment services.
Traditional biomedical approaches to TB control have not yielded substantial reductions in the global incidence of TB, and it was hypothesised that TB elimination would not be achievable until after the year 2182. (7) Biomedical approaches tend to confine the responsibility for TB treatment within the healthcare sector, ignoring the social determinants of TB disease, which lie outside the healthcare sector. The End TB Strategy has encouraged thinking beyond the biomedical model by including one target specifically relating to costs (no TB patients or households should experience catastrophic costs by 2020). (7) Total TB-related costs are defined as catastrophic if they exceed 20% of a household’s annual income.

Catastrophic costs are a public health challenge requiring urgent attention. (4) Such costs may plunge households into poverty and financial catastrophes. (5) For this reason, countries are encouraged to set baseline measurements of catastrophic costs by 2020. The measurements are based on three types of costs: direct medical, direct non-medical and indirect costs such as income loss. Direct medical costs include money spent on consultations, laboratory tests, and hospitalisation. Direct non-medical costs are money spent on transport and food during health seeking. Income loss is money foregone by the patient or carers during illness.

Global efforts to ameliorate catastrophic costs lie in i) provision of free TB treatment ii) decentralisation of TB services to ensure equity of access and iii) advocacy for social protection and universal health coverage by the United Nations, national and international stakeholders. Despite interventions aimed at cushioning TB patients against direct medical costs, surveys in Africa and Asia have shown high prevalence of catastrophic costs especially among i) drug resistant TB (DR-TB) patients, ii) poorest households, iii) cases where the patients were breadwinners and iv) those co-infected with HIV. (8, 9, 11–13)

In 2016, Zimbabwe embraced the End TB targets of eliminating catastrophic costs by 2020. The national TB control programme (NTP) has decentralised TB services, provided cash transfers to DR-TB patients and adopted active case finding to detect TB cases early. However, the country had no baseline measure of catastrophic costs or the major drivers of such costs. We therefore sought to determine the prevalence, risk factors and major drivers of catastrophic costs among patients on TB treatment in Zimbabwe.

Methods

Study design

A nationally representative, health facility-based survey with random cluster sampling among TB patients across Zimbabwe.

Setting

Zimbabwe is a southern African country with an estimated population of 14.7 million. (https://www.worldometers.info/world-population/zimbabwe-population/). Classified as a low income country, it has suffered from an economic and humanitarian crisis for much of the last decade.
Zimbabwe belongs to the 14 countries with a triple-burden of TB, TB/HIV and multi-drug resistant TB. (16)

Study population

Patients of all age groups who were on treatment for drug susceptible TB (DS-TB) or DR-TB, and who attended their scheduled appointments within the sampled health facilities from 23 July to 31 August 2018 were eligible for inclusion in the study.

Study procedures

Sample size calculation, sampling and patient enrolment

The sample was based on 26,677 TB patients notified in Zimbabwe in 2016. We assumed an absolute precision of 5% and a *priori* guess of 50% for the prevalence of households experiencing catastrophic costs. We used the standard formula for sample size calculation for a cluster sampled TB prevalence survey. (18) After factoring a design effect of 2.0, the sample size was 780 patients across 60 clusters, each contributing 13 patients. After factoring in an estimated non-response rate of 10%, the sample was adjusted to 900 patients.

Cluster sampling was used to select health facilities (clusters). First, a list of clusters and their corresponding 2016 notifications was compiled. The number of TB notifications per cluster was used as a proxy for the size of clusters. Clusters that notified < 10 patients were merged with adjacent clusters. Second, cumulative notifications were compiled and 60 clusters were selected by a probability proportional to size sampling method using a randomly defined starting point and sampling interval.

Patients were recruited consecutively when they attended their scheduled appointments. Interviews were postponed for patients who had not been on treatment for two weeks in their current treatment phase (intensive or continuation phase). All clinical and economic data were collected for the respective phase only.

The study questionnaire was adapted from the WHO generic instrument and created in CSPro® (Census Bureau, USA). Data collectors, one per facility, were trained by the NTP and partner organisations. They comprised TB focal nurses and Environmental Health Technicians. At the end of each day data from tablets were synchronised electronically with a central server at central level. Zimbabwe National Statistics Agency staff monitored the server and promptly highlighted errors for clarification. Periodic data quality checks and support visits were conducted by the steering committee. A WhatsApp group for data collectors and steering committee members was created to aid in addressing operational challenges, mostly related to patient recruitment and syncing electronic records in real-time.

Data Variables, Source Of Data And Data Collection
Socio-demographic and clinical data (age, HIV status, type of TB patient) were extracted from treatment registers and patient treatment booklets prior to the interview. Data on hospital visits, costs incurred, household assets and coping strategies were collected by trained data collectors during face-to-face interviews with patients. All the interviews were conducted in separate rooms within health facilities to ensure confidentiality.

Data analysis

Anonymised data were exported to Stata version 15.0 (StataCorp, College Station, TX, USA) for cleaning and analysis. Categorical variables were summarised using frequencies (proportions), while continuous variables were summarised using means [standard deviations (SD)] or medians [inter-quartile ranges (IQR)] as appropriate stratified by DR status. We summed up the direct medical costs (consultations fees, laboratory tests) and direct non-medical costs (transport, food). Costs that were in South African Rand were converted to USD using the prevailing conversion rate obtained from the Oanda currency converter (http://www.oanda.com). Productivity losses due to TB treatment were estimated using the output approach, where the difference in monthly income before and after TB diagnosis was extrapolated over the treatment period. A sensitivity analysis of indirect costs estimation was done using valuation of the time lost by the patient in each phase of treatment. To estimate patient costs for the entire TB episode, including costs for all phases of treatment, we extrapolated costs based on data from patients in other phases of illness. We used the approach recommended by WHO, whereby we replaced missing cost data with median costs of the phase of illness among those in that phase with available data. Comparisons between categorical variables were done using the chi-square test. Multivariable logistic regression was used to determine risk factors for patients experiencing catastrophic costs after adjusting for sex, age, DR status; treatment phase, HIV status, breadwinner status, household income and location of health facility. The level of significance was set at $P < 0.05$.

Results

A total of 860 patients (96% of the target sample size) were reached and consented (Fig. 1). Of these, 19 records were excluded from analysis for being on treatment for < 14 days (17) and for failure to complete the interview (two). Overall, the response rate was 841 (93%). The figure was 900 after factoring in non-response weights.

Of the 900 patients, 851 (94%) had DS-TB (Table 1). The mean age was 36.9 years and 500 (56%) were males. A greater proportion of DR-TB than DS-TB patients were in the continuation phase (66% vs 56%) and were HIV-positive (72% vs 61%). Almost all patients were new, rather than retreatment. DR-TB patients were more likely to live in urban locations than DS-TB patients (69% vs 59%).
Table 1
Socio-demographic and clinical profile of patients with DR-TB and DS-TB enrolled in the Zimbabwe patient cost survey, 2018

Characteristic	DR-TB	DS-TB	Total
	N (%)	n (%)	n (%)
Sex			
Male	28 (56)	472 (56)	500 (56)
Female	21 (44)	379 (44)	400 (44)
Age group (years)			
<15	0 (0)	52 (6)	52 (6)
15–24	4 (8)	99 (12)	103 (12)
25–34	21 (42)	209 (24)	230 (26)
35–44	15 (31)	277 (33)	292 (33)
45–54	7 (14)	124 (15)	131 (15)
55–64	0 (0)	53 (6)	53 (6)
≥65	2 (5)	37 (4)	39 (4)
Mean (SD)	36.4 (11.9)	36.9 (14.8)	36.9 (14.7)
Treatment phase			
Intensive	17 (34)	376 (44)	392 (44)
Continuation	32 (66)	475 (56)	508 (56)
HIV Status			
Positive	35 (72)	522 (61)	557 (62)
Negative	14 (28)	321 (38)	335 (37)
Unknown	0 (0)	8 (1)	8 (1)
Type of TB patient			
New	45 (91)	796 (94)	841 (94)
Retreatment	4 (9)	55 (6)	59 (6)
Facility location			

‡=weighted sample size; DR-TB = drug resistant TB; DS-TB = drug susceptible TB; SD = Standard deviation; HIV = Human Immunodeficiency Virus
Characteristic	DR-TB		DS-TB		Total	
	N	(%)	n	(%)	n	(%)
Urban	34	(69)	506	(59)	540	(60)
Rural	15	(31)	345	(41)	360	(40)

‡ = weighted sample size; DR-TB = drug resistant TB; DS-TB = drug susceptible TB; SD = Standard deviation; HIV = Human Immunodeficiency Virus

The proportion of patients/households who experienced catastrophic costs was 80% (95% CI: 77–82) (Fig. 2). The prevalence of catastrophic costs was 90% among DR-TB patients and 79% among DS-TB patients, p = 0.06 (Table 2). Overall, 95% of patients in the poorest income quintile experienced catastrophic costs. Income quintile was strongly associated with catastrophic costs in a dose-response relationship after adjusting for other variables. Compared to the wealthiest group, the poorest households had higher odds of incurring catastrophic costs, [adjusted odds ratio (aOR): 15.7 (7.5–33.1)]. Sex, age, type of TB, treatment phase, treatment delay (≥ four weeks), HIV status, being a breadwinner and location of health facility were not associated with catastrophic costs in either univariable or multivariable analysis.
Table 2
Factors associated with catastrophic costs among patients enrolled in the Zimbabwe tuberculosis patient cost survey, 2018

Characteristic	Total	Number (%) who incurred catastrophic costs	OR (95% CI)	aOR (95% CI)
	900	720 (80)		
Sex				
Male	499	392 (79)	0.8 (0.6–1.1)	1.0 (0.7–1.5)
Female	401	328 (82)	Reference	Reference
Age group				
<15	52	47 (90)	Reference	Reference
15–24	103	79 (77)	0.4 (0.1–1.1)	0.5 (0.2–1.4)
25–34	230	171 (74)	0.3 (0.1–0.9)	0.4 (0.1–1.2)
35–44	292	240 (82)	0.5 (0.2–1.3)	0.6 (0.2–1.8)
45–54	131	102 (78)	0.4 (0.1–1.1)	0.4 (0.1–1.2)
55–64	53	45 (85)	0.6 (0.2–2.0)	0.6 (0.2–2.0)
≥65	39	37 (95)	2.0 (0.3–11.9)	1.7 (0.3–10.7)
Type of TB				
DR-TB	49	44 (90)	2.2 (0.7–6.7)	0.3 (0.1–1.0)
DS-TB	851	676 (79)	Reference	Reference
Treatment phase				
Intensive	392	313 (80)	1.0 (0.7–1.4)	0.9 (0.6–1.3)
Continuation	508	407 (80)	Reference	Reference
Treatment delay (> 4 weeks)				

DR-TB = drug resistant TB; DS-TB = drug susceptible TB; OR = Odds ratio; aOR = adjusted odds ratio; CI = confidence interval; HIV = Human Immunodeficiency Virus
Characteristic	Total	Number (%) who incurred catastrophic costs	OR (95% CI)	aOR (95% CI)
Yes	232	192 (83)	1.3 (0.8–1.9)	1.3 (0.9–1.9)
No	668	528 (79)	Reference	Reference
HIV status				
Positive	557	450 (81)	1.1 (0.8–1.7)	1.4 (0.8–2.2)
Negative	343	270 (79)	Reference	Reference
Bread winner				
Yes	457	364 (80)	1.1 (0.8–1.5)	1.1 (0.7–1.9)
No	443	356 (80)	Reference	Reference
Income quintile				
Poorest	191	181 (95)	14.5 (7.1–29.6)	15.7 (7.5–33.1)
Less poor	199	180 (90)	7.0 (3.9–12.4)	7.2 (3.9–13.1)
Average	159	125 (79)	2.8 (1.6–4.7)	2.8 (1.6–4.8)
Less wealthy	174	133 (76)	2.4 (1.5–3.9)	2.5 (1.5–4.2)
Wealthiest	177	101 (57)	Reference	Reference
Location of health facility				
Rural	360	295 (82)	1.2 (0.6–2.5)	0.9 (0.4–1.8)
Urban	540	425 (79)	Reference	Reference

DR-TB = drug resistant TB; DS-TB = drug susceptible TB; OR = Odds ratio; aOR = adjusted odds ratio; CI = confidence interval; HIV = Human Immunodeficiency Virus

The major cost drivers in the pre-diagnosis phase were direct medical with a median of US$25 (IQR:6–58) followed by food (US$18 (IQR:2.2–27) (Table 3). During the pre-diagnostic phase, DS-TB patients incurred higher direct costs than DR-TB patients (US$54 vs. US$35). The median direct costs post-TB diagnosis were US$555 (IQR:220–600), and three times higher among DR-TB [US$1659 (IQR:653–2787)] vs DS-TB patients US$537 (IQR:204–1134). The major cost drivers post-TB diagnosis were nutritional supplements [US$360 (IQR:240–528) vs 960 (IQR:640–1680), for DR-TB vs DS-TB patients respectively],
medical and travel costs. Median travel costs were five times higher among DR-TB compared to DS-TB patients.

Table 3
Median costs (US$) incurred by TB patients enrolled in Zimbabwe patient cost survey (2018)

Phase	Type of cost	DR-TB	DS-TB	Total	
		Median (IQR)	Median (IQR)	Median (IQR)	
Pre-diagnosis	Medical	13 (4–39)	25 (6.5–60)	25 (6–58)	
	Travel	5 (2–15)	5 (2-10.4)	5 (2-10.7)	
	Accommodation	0 (0–0)	0 (0–0)	0 (0–0)	
	Food	9 (0–18)	18 (3.6–36)	18 (2.2–27)	
	Nutritional supplements	2 (0–5)	0 (0–2)	0 (0–2)	
	Total direct costs pre-diagnosis	**35 (22–70)**	**54 (23–116)**	**52 (23–111)**	
Post-diagnosis	Medical	207 (129–295)	91 (61.8–134)	91.2 (63.4–151.2)	
	Travel	152 (11.3–552)	32 (3.1–178)	33.6 (3.3–193)	
	Accommodation	0 (0–0)	0 (0–0)	0 (0–0)	
	Food	100 (0–480)	25 (0–169.3)	28.1 (0–180)	
	Nutritional supplements	960 (640–1,680)	360 (240–528)	360 (240–600)	
	Total direct costs post-diagnosis	**1,659 (653–2,787)**	**537 (204–1,134)**	**555 (220–1,197)**	
	Medical costs	207 (136–295)	103 (62–173)	109 (63–194)	
	Non-medical costs	1545 (461–2,477)	411 (120–948)	434.6 (121–1,018)	
	Indirect costs*	1200 (100–3,000)	240 (0–1,080)	300 (0–1,200)	
	Total costs	**3,569.2 (1,692–5,859)**	**1185 (523–2,222)**	**1247 (543–2,405)**	

*=calculated based on the output approach;
Overall, the total median cost per TB episode was US$1,247 (IQR: 545–2405) (Table 3). The total costs incurred by DR-TB patients were three times higher than those of DS-TB patients. Costs as a proportion of total costs were: non-medical costs (51%); indirect costs (36%) and medical costs (13%). During treatment, patients lost productive time with a median value of US$249.1 (IQR: 128.3-486.1). The losses were greater for DR-TB patients with a median of US$1,827.2 (IQR: 432.6-3,819.6) as compared to DS-TB patients US$238.3 (IQR: 113.3–441). Only 1.2% of households reported that they had received social protection.

Discussion

We found a high prevalence of catastrophic costs among TB patients/households. The poorest households experienced the highest catastrophic costs. There were no differences in proportions of DR-TB and DS-TB households which incurred catastrophic costs. The major drivers of catastrophic costs were direct non-medical and indirect costs related to productivity loss. Indirect costs were five-times higher among DR-TB compared to DS-TB patients.

Previous surveys done in Africa and Asia have shown that TB patients incur huge catastrophic costs despite free TB treatment. (8, 9, 11, 12) Our study provided additional evidence to this finding. However, catastrophic costs were not homogeneous among the different groups as the poorest households were disproportionately affected and risk of catastrophic costs increased as wealth quintile decreased (5, 8, 11, 12) This makes intuitive sense, and may be attributed to reduced resilience to external shocks such as TB. Unlike studies done elsewhere, we did not find a difference in catastrophic costs by DR status. We had low numbers of DR-TB patients, and our study may not have been sufficiently powered to detect the difference. Also, in our context even DS-TB patients experienced higher catastrophic costs than overall costs reported from other low-and middle income countries. (8, 9, 12, 13) High catastrophic costs may negatively impact on both access and adherence to TB treatment.

The major drivers of catastrophic costs lay outside the healthcare sector, a consistent finding with studies wherein non-medical costs were reported to account for up to 80% of catastrophic costs. (7, 12, 18) Our study highlights an urgent need to address socio-economic cost drivers such as income loss due to loss of productivity time, travel costs and nutritional supplements. These social determinants of TB have a major impact on TB health outcomes. Future studies should unravel both the type and source of nutritional supplements that are purchased by TB patients in Zimbabwe.

Patients on DR-TB treatment experienced far higher income losses than DS-TB patients in this study. The reasons could be three-fold: lengthy treatment requiring frequent visits to health facilities; loss of productivity time since TB affects mostly the economically productive age groups (25–44 years); lack of income replacement due to the informal nature of businesses in Zimbabwe and lack of social protection. Even in contexts where social protection is available, income loss poses the greatest financial risk to TB patients. (5) Fuady et al observed that TB patients in Indonesia needed money for transport and food and
to protect themselves against income loss. (19) Social protection and income replacement are therefore key to protecting TB patients and their households against financial catastrophes.

Our results have significant policy implications regarding social protection for TB patients in Zimbabwe. DR-TB and DS-TB patients experienced comparable catastrophic costs and may resort to harmful coping strategies like selling productive household assets or taking children out of school. This may affect household economics for years. In Zimbabwe, social protection (conditional cash transfers) is provided for DR-TB patients only. The NTP needs to provide and facilitate the uptake of social protection for TB patients regardless of DR status. (20) Against the backdrop of a very low proportion of MDR-TB patients receiving social support, the NTP needs to evaluate the cash transfer programme for MDR-TB patients focussing on coverage, timeliness of disbursements and impact from the perspective of patients. The NTP has held a preliminary stakeholder consultation to identify priority actions to mitigate catastrophic costs. This was followed with a social protection mapping exercise which identified barriers to accessing social protection such as lack of knowledge about availability of services and cumbersome registration processes. (21)

This study is strengthened by the fact that we recruited patients consecutively to minimise selection bias. We minimised data entry errors through use of validated electronic questionnaires with check functions. However, there were limitations in that patients who sought TB care outside Zimbabwe were not represented in this survey. Moreover, we interviewed the patients once and had to estimate most of the costs. Recall bias could affect cost estimates for the pre-treatment period, leading to under- or overestimation of the costs. However, patients may not forget about the painful experiences they went through especially those related to selling productive assets. We minimised recall bias by interviewing persons in the intensive phase about diagnostic costs and the costs that were incurred prior to diagnosis. We could not capture both direct and indirect costs after treatment outcomes (including burial costs). These costs can extend well beyond the treatment period, even for people who are declared cured from TB.

Conclusion

TB patients and their households incur huge catastrophic costs in Zimbabwe despite free TB treatment. The major cost drivers could be ameliorated through social protection and universal health coverage. A multi-sectoral approach to TB control holds great promise to reducing catastrophic costs due to TB in Zimbabwe.

List Of Abbreviations

TB: Tuberculosis; HIV: human immune-deficiency versus; DR-TB: drug resistant TB; DS-TB: drug susceptible TB; MDR-TB: multi-drug resistant TB; OOP: out of pocket; IQR: inter-quartile range; aOR: adjusted odds ratio; WHO: World Health Organisation; NTP: National Tuberculosis Control Programme; SD: standard deviation; US$=United States Dollar;
Declarations

Ethics approval and consent to participate

Written informed consent and/or assent was obtained from patients and their guardians prior the interviews. Ethics approval was obtained from the Medical Research Council of Zimbabwe (MRCZ/A/2290).

Consent for publication

Not applicable

Availability of data and materials

The datasets are available from the corresponding author on reasonable request.

Competing interests

The authors declare they have no competing interests.

Funding

This study was funded by the US Agency for International Development (USAID) Challenge TB through the World Health Organisation, Zimbabwe Country Office (Grant number AID-OAA-A-14-00029. Publication costs for this article were supported by the U.S. National Institutes of Health’s National Institute of Allergy and Infectious Diseases, under award Number U01AI069924. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders.

Authors’ contributions

Drafted the study protocol: CT, MN, CS, KN, TM, JC, GM

Collected data: CT, MN, CS, KN, TM, GM

Analysed and interpreted data: CT, MN, CS, KN, TM, JC, PN, DP, KK, MC, KCT

Drafted the paper: CT, CS, MC

Critically reviewed the draft paper: KK, DP, JZM, JC, PN, MC, KCT

All authors read and approved the final version of the manuscript

Acknowledgements

We would like to thank the participants who took part in this survey, the survey steering committee members and staff who collected the data.
Authors’ information

CT (HBMLS, MPH); MN (MBChB, MPH); JC (MBChB, MPH); JZM (PhD); KK (PhD); DP (MSc); KCT (PhD); PN (MSc); GM (MSc); TM (MBChB); MC (PhD); CS (MBChB, MPH)

References

1. University Research Co. LLC. Providing Comprehensive Patient-Centred Care: A conceptual framework for social support for TB patients. Bethesda, MD, USA; 2014. www.urc-chs.com/sites/default/files/Providing Comprehensive Care.pdf

2. Shete PB, Reid M, Goosby E. Comment Message to world leaders: we cannot end tuberculosis without addressing the social and economic burden of the disease. Lancet Glob Heal. 2018;6(12):e1272–3.

3. World Health Organisation. Global Tuberculosis Report 2018. Geneva, Switzerland; 2018. WHO/CDS/TB/2018.20

4. Wingfield T, Tovar MA, Huff D, Boccia D, Montoya R, Ramos E, et al. The economic effects of supporting tuberculosis-affected households in Peru. 2016;1–15.

5. Tanimura T, Jaramillo E, Weil D, Raviglione M, Lönnroth K. Financial burden for tuberculosis patients in low- and middle-income countries: a systematic review. Eur Respir J. 2014;43(6).

6. Bond V, Chileshe M, Sullivan C, Magazi B. The Converging Impact of Tuberculosis, HIV/AIDS, and Food Insecurity in Zambia and South Africa. Lusaka, Zambia; 2009.

7. STOP TB Partnership. The paradigm shift 2016-2020: Global plan to End TB. Geneva, Switzerland; 2015.

8. Ministry of Health Kenya. The First Kenya Tuberculosis Patient Cost Survey, 2017. Nairobi, Kenya; 2017.

9. Nhung N V., Hoa NB, Anh NT, Anh LTN, Siroka A, Lönnroth K, et al. Measuring catastrophic costs due to tuberculosis in Viet Nam. Int J Tuberc Lung Dis. 2018;22(9):983–90.

10. Cuevas RMA De, Lawson L, Al-sonboli N, Al-aghbari N, Arbide I, Sherchand JB, et al. Patients direct costs to undergo TB diagnosis. Infect Dis Poverty. 2016;1–9.

11. Ukwaja KN, Alobu I, Abimbola S, Hopewell PC. Household catastrophic payments for tuberculosis care in Nigeria: incidence, determinants, and policy implications for universal health coverage. Infect Dis Poverty. 2013;2(21):1–9.

12. Fuady A, Houweling TAJ, Mansyur M, Richardus JH. Catastrophic total costs in tuberculosis-affected households and their determinants since Indonesia’s implementation of universal health coverage. Infect Dis Poverty. 2018;7(3):1–14.

13. Pedrazzoli D, Siroka A, Boccia D, Bonsu F, Narrey K, Houben R, et al. How affordable is TB care? Findings from a nationwide TB patient cost survey in Ghana. Trop Med Int Heal. 2018;23(8):870–8.
14. Zimbabwe National Statistics Agency (ZIMSTATS). Zimbabwe Population Census 2012. Harare, Zimbabwe; 2013.

15. World Bank. Domestic Product (GDP) per capita (current US$) | Data. (2018): http://data.worldbank.org/indicator/NY.GDP.PCAP.CD?view=chart. Accessed 10 November 2019

16. World Health Organisation. Global Tuberculosis Report 2019. Geneva, Switzerland; 2019.

17. Columbia University. Zimbabwe Population-based HIV Impact Assessment (ZIMPHIA) 2015-2016. Harare, Zimbabwe; 2016.

18. World Health Organization. Tuberculosis patient cost surveys: a handbook. Geneva, Switzerland; 2018.

19. Fuady A, Houweling TAJ, Mansyur M, Burhan E, Richardus JH. Effect of financial support on reducing the incidence of catastrophic costs among tuberculosis-affected households in Indonesia: eight simulated scenarios. Infect Dis Poverty. 2019;8(10):1–14.

20. Rudgard WE, das Chagas NS, Gayoso R, Barreto ML, Boccia D, Smeeth L, et al. Uptake of governmental social protection and financial hardship during drug-resistant tuberculosis treatment in Rio de Janeiro, Brazil. Eur Respir J. 2018;51(100274):1–5.

21. Ministry of Health and Child Care. Availability and coverage of social protection services for TB patients in Zimbabwe. Harare, Zimbabwe; 2019.

Figures
Figure 1

Flow of patients who were enrolled in the Zimbabwe patient cost survey, 2018
Figure 2

Proportion of patients who experienced catastrophic costs during the Zimbabwe tuberculosis patient cost survey 2018