Multiple nonradial solutions for a nonlinear elliptic radial problem: an improved result

Sergio Rolando

Dipartimento di Matematica e Applicazioni
Università degli Studi di Milano bicocca, Via Cozzi 53, 20125 Milano, Italy
e-mail: sergio.rolando@unito.it

Abstract

We obtain an improved version of a recent result concerning the existence of nonnegative nonradial solutions \(u \in D^{1,2}(\mathbb{R}^N) \cap L^2(\mathbb{R}^N, |x|^{-\alpha} \, dx) \) to the equation

\[
-\triangle u + \frac{A}{|x|^\alpha} u = f(u) \quad \text{in } \mathbb{R}^N, \quad N \geq 3, \quad A, \alpha > 0,
\]

where \(f \) is a continuous nonlinearity satisfying \(f(0) = 0 \).

MSC (2010): Primary 35J60; Secondary 35Q55, 35J20

Keywords: Semilinear elliptic PDE, singular vanishing potential, symmetry breaking

1 Introduction and main result

In this paper we consider the following semilinear elliptic problem:

\[
\begin{cases}
-\triangle u + \frac{A}{|x|^\alpha} u = f(u) & \text{in } \mathbb{R}^N, \quad N \geq 3 \\
u \in H^1_\alpha \setminus \{0\}, & u \geq 0
\end{cases} \quad (P)
\]

where \(A, \alpha > 0 \) are real constants, \(f : \mathbb{R} \to \mathbb{R} \) is continuous and satisfies \(0 < f(s) \leq (\text{const.}) s^{p-1} \) for some \(p > 2 \) and all \(s > 0 \) (hence \(f(0) = 0 \)), and \(H^1_\alpha \) is the natural energy space related to the equation, i.e.,

\[
H^1_\alpha := \left\{ u \in D^{1,2}(\mathbb{R}^N) : \int_{\mathbb{R}^N} \frac{u^2}{|x|^\alpha} \, dx < \infty \right\}.
\]

Here and in the rest of the paper, \(D^{1,2}(\mathbb{R}^N) \) is the usual Sobolev space, which identifies with the completion of \(C_c^\infty(\mathbb{R}^N) \) with respect to the \(L^2 \) norm of the gradient.
We are interested in *weak solutions* to (\(P\)), i.e., functions \(u \in H^1_\alpha \setminus \{0\}\) such that \(u \geq 0\) almost everywhere in \(\mathbb{R}^N\) and
\[
\int_{\mathbb{R}^N} \nabla u \cdot \nabla v \, dx + \int_{\mathbb{R}^N} \frac{A}{|x|^\alpha} uv \, dx = \int_{\mathbb{R}^N} f(u) v \, dx \quad \text{for all } v \in H^1_\alpha.
\] (1)

As is well known, problems like (\(P\)) arise in many branches of mathematical physics, such as population dynamics, nonlinear optics, plasma physics, condensed matter physics and cosmology (see e.g. [12, 9, 22]). In this context, (\(P\)) is a prototype for problems exhibiting radial potentials which are singular at the origin and/or vanishing at infinity (sometimes called the *zero mass case*; see e.g. [16, 3]).

Although it can be considered as a quite recent investigation, the study of problem (\(P\)) has already some history and, currently, the problem of existence and nonexistence of *radial solutions* has been essentially solved, through various subsequent contributions, in the *pure-power case* \(f(u) = |u|^{p-2}u\), where the results obtained rest upon compatibility conditions between \(\alpha\) and \(p\). The first results in this direction are probably due to Terracini [21], who proved that (\(P\)) has no solution if
\[
\begin{align*}
\alpha &= 2 \\
p &\neq 2^* \quad \text{or} \quad \begin{cases}
\alpha \neq 2 \\
p = 2^* ,
\end{cases} \\
2^* &:= \frac{2N}{N-2},
\end{align*}
\]
and explicitly found all the radial solutions of (\(P\)) for \((\alpha, p) = (2, 2^*)\). As usual, \(2^*\) denotes the critical exponent for the Sobolev embedding in dimension \(N \geq 3\). The problem was then considered again in [11], where the authors proved that (\(P\)) has at least a radial solution if
\[
\begin{align*}
0 < \alpha < 2 \\
2^* + \frac{\alpha - 2}{N-2} < p < 2^* \quad \text{or} \quad \begin{cases}
\alpha > 2 \\
2^* < p < 2^* + \frac{\alpha - 2}{N-2},
\end{cases}
\end{align*}
\]
while it has no solution if
\[
\begin{align*}
0 < \alpha < 2 \\
p > 2^* \quad \text{or} \quad \begin{cases}
\alpha > 2 \\
2 < p < 2^* ,
\end{cases}
\end{align*}
\]
The existence and nonexistence results of [11] were subsequently extended in [7], by showing that (\(P\)) has no solution also if
\[
\begin{align*}
0 < \alpha < 2 \\
2 < p \leq 2\alpha \quad \text{or} \quad \begin{cases}
2 < \alpha < N \\
p \geq 2\alpha ,
\end{cases} \\
2\alpha &:= \frac{2N}{N-\alpha},
\end{align*}
\]
and obtaining at least a radial solution for every pair \((\alpha, p)\) such that
\[
\begin{align*}
0 < \alpha < 2 \\
2^* + \frac{\alpha - 2}{N-2} < p < 2^* \quad \text{or} \quad \begin{cases}
\alpha > 2 \\
2^* < p < 2^* + \frac{\alpha - 2}{N-2},
\end{cases}
\end{align*}
\]
Figure 1: Regions of nonexistence of solutions (light gray), and existence (white with $p > 2$) and nonexistence (dark gray) of radial solutions.

A further extension of this existence condition was found in [19, 20], where the authors proved that (P) has at least a radial solution for all the pairs (α, p) satisfying

$$
\begin{align*}
0 < \alpha < 2, \quad 2_{\alpha}^* < p < 2^* \\
2_{\alpha} < p < 2^* \\
\alpha \geq 2N - 2, \quad p > 2^* \\
\end{align*}
$$

or

$$
\begin{align*}
\alpha \geq 2N - 2, \quad p > 2^* , \quad 2^*_{\alpha} := \frac{2N - 2 + \alpha}{2N - 2 - \alpha}.
\end{align*}
$$

Finally, the problem of radial solutions in the left open cases was solved in [3] and [10], where, respectively, it was proved that the problem has no radial solutions for both

$$
\begin{align*}
0 < \alpha < 2, \quad 2_{\alpha} < p \leq 2_{\alpha}^* \\
2_{\alpha} < p \leq 2^*_{\alpha} \\
\alpha \geq 2N - 2, \quad 2^*_{\alpha} \leq p < 2_{\alpha} \\
\end{align*}
$$

All these results are portrayed in the picture of the αp-plane given in Fig.1, where nonexistence regions are shaded in gray (nonexistence of radial solutions) and light gray (nonexistence of solutions at all, which includes both the lines $p = 2^*$ and $p = 2_{\alpha}$ except for the pair $(\alpha, p) = (2, 2^*)$), whereas white color (of course above the line $p = 2$) means existence of radial solutions.

All the above results on the existence of radial solutions are obtained by variational techniques which can be extended in a standard way (see [7, 20]) to general continuous nonlinearities $f : \mathbb{R} \to \mathbb{R}$ satisfying the so-called Ambrosetti-Rabinowitz condition (i.e., assumption (h2) below) and

$$
0 < f(s) \leq (\text{const.}) s^{p-1} \quad \text{for all } s > 0 \quad \text{and for some } p > 2 \quad \text{such that the pair } (\alpha, p) \text{ satisfies (2)}.
$$
Concerning nonradial solutions, Terracini proved in [21] that problem (P) with \(N \geq 4, \alpha = 2 \) and \(f(u) = |u|^{2^* - 2} u \) has at least a nonradial solution for every \(A \) large enough. This just concerns the point \((\alpha, p) = (2, 2^*)\) in Fig[1] which brings Catrina to say, in the introduction of his paper [10]: “Two questions still remain: whether one can find non-radial solutions in the references therein). It obviously implies the single-power growth condition 0 for all \(p \in [1, 2, 10, 18, 18] \) and the function \(f(u) \) is increasing on \(\alpha \). Then there exists \(p_\alpha^* = 2^* \) if \(\alpha = 2/(N - 1) \).

Theorem 1.1. Let \(N \geq 4 \) and \(\alpha \in (2/(N - 1), 2N - 2), \alpha \neq 2 \). Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function satisfying assumption \((h_0)\) with \(2 < p_1 < p_\alpha^* \) and \(p_2 > 2^* \) if \(\alpha \in (2/(N - 1), 2) \), or \(2 < p_1 < 2^* \) and \(p_2 > p_\alpha^* \) if \(\alpha \in (2N - 2) \). Assume furthermore that:

\((h_1)\) the function \(f(s)/s \) is strictly increasing on \((0, +\infty)\)

\((h_2)\) \(\exists \mu > 2 \) such that the function \(F(s)/s^\mu \) is decreasing on \((0, +\infty)\)

\((h_3)\) \(\exists \eta > 2 \) such that the function \(F(s)/s^\eta \) is increasing on \((0, +\infty)\)

where \(F(s) := \int_0^s f(t) \, dt \). Then there exists \(A_* > 0 \) such that for every \(A > A_* \) problem (P) has both a radial solution and \(\nu \) different nonradial solutions.
Under the assumptions of Theorem 1.1, ν turns out to be strictly positive (see [18, Lemma 5.2]), so that at least one nonradial solution actually exists. Unfortunately, the theorem does not encompass the case of pure-power nonlinearities, since it always requires $p_1 < p_2$ in assumption (h_0). Observe that assumption (h_3) is the well known Ambrosetti-Rabinowitz condition, as the increasingness of $F(s)/s^\eta$ on $(0, +\infty)$ amounts to $\eta F(s) \leq f(s) s$ for all $s > 0$.

The aim of this paper is to improve Theorem 1.1, by proving the following result.

Theorem 1.2. Let $N \geq 4$ and $\alpha \in (2/(N-1), 2N-2)$, $\alpha \neq 2$. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying (h_0) with p_1, p_2 as in Theorem 1.1. Assume furthermore that:

- (h_1') the function $f(s)/s$ is increasing on $(0, +\infty)$
- (h_2') $\exists \mu > 2$ and $\exists s_* > 0$ such that the function $F(s)/s^\mu$ is decreasing on $(0, s_*)$.

Then the same conclusion of Theorem 1.1 holds true.

As for Theorem 1.1, Theorem 1.2 does not concern pure-power nonlinearities (owing to assumption (h_0) with $p_1 < p_2$), and we have $\nu \geq 1$ and $\lim_{N \to \infty} \nu = +\infty$ (for α, p_1, p_2 fixed).

Clearly Theorem 1.2 includes Theorem 1.1 and in particular it removes the Ambrosetti-Rabinowitz condition from the assumptions. Such inclusion is actually strict, for instance because Theorem 1.2 applies to the nonlinearities

$$f(s) = \min\{|s|, |s|^{p_2-1}\} \quad \text{and} \quad f(s) = \frac{|s|^{p_2-1}}{1 + |s|^{p_2-2}}$$
for any p_2 (and p_1) as in the theorem, while Theorem 1.1 does not.

Theorem 1.2 will be proved in Section 4. Our proof is variational, since the weak solutions to problem (P) are (at least formally) the critical points of the Euler functional associated to the equation of (P), i.e.,

$$I (u) := \frac{1}{2} \| u \|_A^2 - \int_{\mathbb{R}^N} F (u) \, dx$$

where

$$\| u \|_A^2 := (u, u)_A \quad \text{and} \quad (u, v)_A := \int_{\mathbb{R}^N} \left(\nabla u \cdot \nabla v + \frac{A}{|x|} uv \right) \, dx$$

define the norm and the scalar product of the Hilbert space H^1_A. More precisely, our argument is the following. We modify the function f by setting $f(s) = 0$ for all $s < 0$, still denoting by f the modified function. This modification is not restrictive in proving Theorem 1.2 and will always be assumed in the rest of the paper. Then by (h0) there exists $M' > 0$ such that

$$|f(s)| \leq M \min\{|s|^{p_1-1}, |s|^{p_2-1}\} \quad \text{and} \quad |F(s)| \leq M' \min\{|s|^{p_1}, |s|^{p_2}\} \quad \text{for all} \quad s \in \mathbb{R},$$

which yields in particular

$$|f(s)| \leq M |s|^{p-1} \quad \text{and} \quad |F(s)| \leq M' |s|^p \quad \text{for all} \quad p \in [p_1, p_2] \quad \text{and} \quad s \in \mathbb{R}. \quad (4)$$

By the continuous embeddings $H^1_A \hookrightarrow D^{1,2}(\mathbb{R}^N) \hookrightarrow L^2(\mathbb{R}^N)$, condition (4) with $p = 2^*$ implies that I is of class C^1 on H^1_A and has Fréchet derivative $I'(u)$ at any $u \in H^1_A$ given by

$$I'(u) v = (u, v)_A - \int_{\mathbb{R}^N} f(u) v \, dx \quad \text{for all} \quad v \in H^1_A.$$

This yields that critical points of $I : H^1_A \to \mathbb{R}$ satisfy (1). A standard argument shows that such critical points are nonnegative (cf. the proof of Theorem 1.2 below) and therefore nonzero critical points of I are weak solutions to problem (P).

Then our proof proceeds essentially as follows. Given any integer K such that $1 \leq K \leq N-1$, we write $x \in \mathbb{R}^N$ as $x = (y, z) \in \mathbb{R}^K \times \mathbb{R}^{N-K}$ and in the space H^1_A we define the following closed subspaces of symmetric functions:

$$H_t := \{ u \in H : u(x) = u(|x|) \} \quad \text{and} \quad H_K := \{ u \in H : u(x) = u(y, z) = u(|y|, |z|) \}.$$

Considering the restrictions $I|_{H_t}$ and $I|_{H_K}$ with $2 \leq K \leq N-2$, we prove that each of them has a nonzero mountain-pass critical point (Section 4), which is a weak solution to (P), since H_t and H_K are natural constraints for I thanks to the classical Palais' Principle of Symmetric Criticality [17]. So the proof of Theorem 1.2 is accomplished by estimating the mountain-pass critical levels we find for $I|_{H_K}$ and the nonzero critical levels of $I|_{H_t}$ (Sections 2 and 3 respectively), in order to show that their sets are disjoint. This clearly implies that the mountain-pass critical points
The above argument is essentially the same of [18]. The main differences here are due to the removal of the Ambrosetti-Rabinowitz condition \((h_3)\), which gives rise to the problem of the boundedness of the Palais-Smale of the functionals \(I_{|H_r}\) and \(I_{|H_K}\). This will be overcome in Section 4 by applying an abstract results from [13] about the existence of bounded Palais-Smale sequences for \(C^1\) functionals on Banach spaces. The weakening of assumptions \((h_1)\) and \((h_2)\) will be tackled, instead, by slightly modifying the arguments in estimating the radial critical levels of \(I\) (Section 2) and the cylindrical mountain-pass levels \(I(u_K)\) (Section 3).

2 Estimate of radial critical levels

Let \(N \geq 3\) and \(\alpha, A > 0\). Let \(f : \mathbb{R} \rightarrow \mathbb{R}\) be continuous and satisfying \((h_0)\) and \((h'_1)\).

This section is devoted to deriving an estimate from below for the nonzero critical levels of \(I_{|H_r}\), namely for the value

\[
m_A := \inf \{ I(u) : u \in H_r \setminus \{0\} , I'(u) = 0 \}.
\]

Lemma 2.1. Let \(u \in H_r \setminus \{0\}\) is a critical point for \(I\). Then \(I(u) = \max_{t \geq 0} I(tu)\).

Proof. As already observed, \(u\) is nonnegative. For \(t \geq 0\) define

\[
g(t) := I(tu) = \frac{1}{2} t^2 \|u\|^2_A - \int_{\mathbb{R}^N} F(tu) \, dx.
\]

Then

\[
g'(t) = I'(tu) u = t \|u\|^2_A - \int_{\mathbb{R}^N} f(tu) u \, dx = t \|u\|^2_A - \int_{\{u > 0\}} f(tu) u \, dx
\]

for all \(t \geq 0\) and \(g'(1) = I'(u) u = 0\). If \(t \leq 1\), then \(0 \leq tu \leq u\) and assumption \((h'_1)\) gives

\[
g'(t) = t \left(\|u\|^2_A - \int_{\{u > 0\}} \frac{f(tu)}{tu} u^2 \, dx \right) \geq t \left(\|u\|^2_A - \int_{\{u > 0\}} \frac{f(u)}{u} u^2 \, dx \right) = I'(u) u = 0.
\]

Similarly we get \(g'(t) \geq 0\) for \(t \geq 1\), so that we conclude \(g(1) = \max_{t \geq 0} g(t)\), which is the claim. \(\square\)

Proposition 2.2. Assume \(0 < \alpha < 2N - 2\), \(\alpha \neq 2\), and let \(p = \max\{2^*_\alpha, p_1\}\) or \(p = \min\{2^*_\alpha, p_2\}\) if \(0 < \alpha < 2\) or \(2 < \alpha < 2N - 2\), respectively. Then there exists a constant \(C_0 > 0\), independent from \(A\), such that

\[
m_A \geq C_0 A^{\frac{\alpha - 2}{p - 2}}.
\]
Proof. The argument is similar to the one of [18, Proposition 3.2], except for the conclusion, so we omit most computations. Let \(u \in H_r \setminus \{0\} \). Here \(C \) will denote any positive constant independent from \(A \) and \(u \). By the radial lemma [18, Lemma 3.1], we have

\[
|u(x)| \leq \frac{C}{A^{1/4}} \frac{\|u\|_A}{|x|^{2N/4 - \alpha}} \quad \text{almost everywhere in } \mathbb{R}^N
\]

and therefore

\[
\int_{\mathbb{R}^N} |u|^{2^*} \, dx = \int_{\mathbb{R}^N} |u|^{2^*-2} \, u^2 \, dx \leq C \frac{\|u\|_A^{2^*-2}}{A^{(2^*-2)/4}} \int_{\mathbb{R}^N} \frac{u^2}{|x|^{2N/4 - \alpha} (2^*-2)} \, dx \leq \frac{C}{A^{2N/2 - \alpha}} \|u\|_A^{2^*}.
\]

Then, both for \(p = \max\{2^*_\alpha, p_1\} < 2^* \) and \(p = \min\{2^*_\alpha, p_2\} > 2^* \), we can use Sobolev inequality and argue by interpolation. We get that there exists \(\lambda \in [0,1) \) such that

\[
\int_{\mathbb{R}^N} |u|^p \, dx \leq \left(\int_{\mathbb{R}^N} |u|^{2^*} \, dx \right)^\lambda \left(\int_{\mathbb{R}^N} |u|^{2^*_\alpha} \, dx \right)^{1-\lambda} \leq C \frac{\|u\|_A^p}{A^{(2N/2)[1-\lambda]}}.
\]

Recalling condition (4), this implies

\[
\left| \int_{\mathbb{R}^N} F(u) \, dx \right| \leq M_2 \int_{\mathbb{R}^N} |u|^p \, dx \leq C \frac{\|u\|_A^p}{A^{(2N/2)[1-\lambda]}}
\]

and therefore \(I(u) \geq \frac{\|u\|^2_A}{2} - C A^{\frac{(2N/2)[1-\lambda]}{2N/2 - \alpha}} \|u\|_A^p \). Then for every \(t \geq 0 \) we have

\[
I(tu) \geq \frac{1}{2} t^2 \|u\|^2_A - C A^{\frac{(2N-2)[1-\lambda]}{2N-2 - \alpha}} t^p \|u\|_A^p
\]

where the function of the variable \(t \) on the r.h.s. has a maximum which can be easily computed and it is given by \(C A^{\frac{N-2}{2} \frac{p-2^*}{p-2}} \). Hence, if \(u \) is a critical point of \(I \), Lemma 2.1 gives

\[
I(u) = \max_{t \geq 0} I(tu) \geq C A^{\frac{N-2}{2} \frac{p-2^*}{p-2}}.
\]

This yields the conclusion, since \(u \in H_r \setminus \{0\} \) is an arbitrary critical point and \(C \) does not depend on \(u \). \(\square \)

Remark 2.3. If \(p \) is as in Proposition 2.2, it is easy to check that

\[
\frac{N - 2}{\alpha - 2} - 2^* = \begin{cases}
\min \left\{ \frac{N-1}{\alpha}, \frac{N-2}{2} - \frac{p_1}{p_1-2} \right\} & \text{if } 0 < \alpha < 2 \\
\min \left\{ \frac{N-1}{\alpha}, \frac{N-2}{2} - \frac{p_2}{p_2-2} \right\} & \text{if } 2 < \alpha < 2N - 2.
\end{cases}
\]

8
3 Estimate of cylindrical mountain-pass levels

Let $N \geq 3$, $2 \leq K \leq N-2$ and $\alpha > 0$, $\alpha \neq 2$. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying (h_0) and (h_2).

In this section we show that the functional I_{H_K} has a mountain-pass geometry and provide an estimate from above for the corresponding mountain-pass level.

The mountain-pass geometry of I_{H_K} near the origin is straightforward, since condition (1) with $p = 2^*$ and the continuous embedding $H_K \hookrightarrow L^{2^*} (\mathbb{R}^N)$ imply that $\exists C > 0$ such that $I (u) \geq \|u\|_A^2 / 2 - C \|u\|_{2^*}^2$ for all $u \in H_K$. Hence $\exists R > 0$ such that

$$\inf_{u \in H_K, \|u\|_A \leq R} I (u) = 0 \quad \text{and} \quad \inf_{u \in H_K, \|u\|_A = R} I (u) > 0. \quad (5)$$

Now we define a suitable $\varpi_K \in H_K$ such that $I (\varpi_K) < 0$. Then one has $\|\varpi_K\|_A > R$ by (5), so that I_{H_K} has the mountain-pass geometry and we can define the mountain-pass level

$$c_{A,K} := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I (\gamma (t)) > 0 \quad \text{where} \quad \Gamma := \{ \gamma \in C ([0,1] ; H_K) : \gamma (0) = 0, \gamma (1) = \varpi_K \}. \quad (6)$$

The definition of ϖ_K is inspired by some arguments of [8]. Denote by $\phi : D \to \mathbb{R}^2 \setminus \{0\}$ the change to polar coordinates in $\mathbb{R}^2 \setminus \{0\}$, namely $\phi (\rho, \theta) = (\rho \cos \theta, \rho \sin \theta)$ for all $(\rho, \theta) \in D := (0, +\infty) \times [0,2\pi)$. Define $E := (1/4,3/4) \times (\pi/6, \pi/3)$ and take any $\psi : \mathbb{R}^2 \to \mathbb{R}$ such that $\psi \in C_c^\infty (E)$, $\psi \neq 0$ and $0 \leq \psi < s_*$, where s_* is given in assumption (h_2'). For every $A > 1$, define

$$E_A := \left\{ (\rho, \theta) \in \mathbb{R}^2 : \left(\frac{1}{4} \right)^{1/\sqrt{A}} < \rho < \left(\frac{3}{4} \right)^{1/\sqrt{A}}, \frac{\pi}{6\sqrt{A}} < \theta < \frac{\pi}{3\sqrt{A}} \right\}$$

and a function $\psi_A \in C_c^\infty (E_A)$ by setting

$$\psi_A (\rho, \theta) := \psi \left(\rho^{\sqrt{A}}, \theta\sqrt{A} \right).$$

Finally define

$$v_A (y, z) := \psi_A (\phi^{-1} (|y|, |z|)) \quad \text{for} \quad x = (y, z) \in (\mathbb{R}^K \times \mathbb{R}^{N-K}) \setminus \{0\}, \quad v_A (0) := 0.$$

Then $v_A \in C_c^\infty (\Omega_A) \cap H_K$, where $\Omega_A := \{(y, z) \in \mathbb{R}^K \times \mathbb{R}^{N-K} : (|y|, |z|) \in \phi (E_A)\}$. Notice that $v_A \neq 0$ and $0 \leq v_A < s_*$. By using spherical coordinates in \mathbb{R}^K and \mathbb{R}^{N-K}, and then making the change of variables $(r, \varphi) = (\rho^{\sqrt{A}}, \theta\sqrt{A})$, one computes

$$\int_{\mathbb{R}^N} \frac{v_A^2}{|x|^\alpha} \, dx = \sigma_K \sigma_{N-K} \int_{E_A} \frac{\psi (\rho^{\sqrt{A}}, \theta\sqrt{A})^2}{\rho^{\alpha-N+1}} H (\theta) \, d\rho d\theta$$

$${} = \frac{\sigma_K \sigma_{N-K}}{A} \int_{E} \frac{\psi (r, \varphi)^2}{r^{(\alpha-N)/A^2+1}} H (A^{-1/2} \varphi) \, dr \, d\varphi \quad (7)$$
where \(H(\theta) := (\cos \theta)^{K-1}(\sin \theta)^{N-K-1} \) (see \[18\] for more detailed computation). Here and in the following \(\sigma_d \) denotes the \((d-1)\)-dimensional measure of the unit sphere of \(\mathbb{R}^d \). Similarly one obtains
\[
\int_{\mathbb{R}^N} F(v_A) \, dx = \frac{\sigma_K \sigma_{N-K}}{A} \int_E F(\psi(r, \varphi)) r^{N/A^{1/2}-1} H(A^{-1/2} \varphi) \, dr \, d\varphi
\]
(8)
and
\[
\int_{\mathbb{R}^N} |\nabla v_A|^2 \, dx = \sigma_K \sigma_{N-K} \int_E \left(\psi_r(r, \varphi)^2 + \frac{1}{r^2} \psi_\varphi(r, \varphi)^2 \right) r^{(N-2)/A^{1/2}+1} H(A^{-1/2} \varphi) \, dr \, d\varphi
\]
(9)
where we denote \(\psi_r = \frac{\partial \psi}{\partial r} \) and \(\psi_\varphi = \frac{\partial \psi}{\partial \varphi} \) for brevity.

Then we have
\[
\frac{\|v_A\|^2_A}{\int_{\mathbb{R}^N} F(v_A) \, dx} = A \frac{\int_E \left((\psi_r^2 + \frac{1}{r^2} \psi_\varphi^2) r^{(N-2)/A^{1/2}+1} + \psi^2 r^{(N-\alpha)/A^{1/2}-1} \right) H(A^{-1/2} \varphi) \, dr \, d\varphi}{\int_E F(\psi) r^{N/A^{1/2}-1} H(A^{-1/2} \varphi) \, dr \, d\varphi}.
\]
As in the integration set \(E \) one has \(A^{-1/2} \pi/6 < A^{-1/2} \varphi < A^{-1/2} \pi/3 \), for \(A > 1 \) large enough we have that \(A^{-1/2} \varphi/2 < \sin(A^{-1/2} \varphi) < A^{-1/2} \varphi \) and \(1/2 < (\cos A^{-1/2} \varphi) < 1 \), and thus there exist two constants \(\overline{C}_1, \overline{C}_2 > 0 \) such that
\[
\overline{C}_1 A^{-\frac{N-K-1}{2}} < H(A^{-1/2} \varphi) < \overline{C}_2 A^{-\frac{N-K-1}{2}}.
\]
Similarly, since \(1/4 < r < 3/4 \) in \(E \), the terms \(r^{(N-2)/A^{1/2}+1} \), \(r^{(N-\alpha)/A^{1/2}-1} \) and \(r^{N/A^{1/2}-1} \) are bounded and bounded away from zero by positive constants independent of \(A > 1 \), say \(\overline{C}_3 \) and \(\overline{C}_4 \) respectively, so that we conclude
\[
\frac{\|v_A\|^2_A}{\int_{\mathbb{R}^N} F(v_A) \, dx} \geq A \frac{\overline{C}_1 \overline{C}_4 \int_E (\psi_r^2 + \frac{1}{r^2} \psi_\varphi^2 + \psi^2) \, dr \, d\varphi}{\overline{C}_2 \overline{C}_3 \int_E F(\psi) \, dr \, d\varphi} \rightarrow +\infty \quad \text{as } A \rightarrow +\infty.
\]
This allows us to fix, hereafter, a threshold \(A_K > 0 \) such that
\[
\frac{\|v_A\|^2_A}{\int_{\mathbb{R}^N} F(v_A) \, dx} > 1 \quad \text{for every } A > A_K. \quad (10)
\]

Proposition 3.1. Assume \(0 < \alpha < 2 \) and let \(A > A_K \). Define \(\overline{\nu}_K \in H_K \) by setting
\[
\overline{\nu}_K(x) := v_A \left(\frac{x}{\lambda} \right) \quad \text{with} \quad \lambda = \frac{\|v_A\|^2/\alpha}{(\int_{\mathbb{R}^N} F(v_A) \, dx)^{1/\alpha}}.
\]
Then \(I(\overline{\nu}_K) < 0 \) and the corresponding mountain-pass level \(\overline{\theta}_K \) satisfies
\[
c_{A,K} \leq C_1 A^{\frac{K-1}{2} + N(\frac{1}{\alpha} - \frac{1}{2})}
\]
where the constant \(C_1 > 0 \) does not depend on \(A \).
Proof. As \(\lambda > 1 \), an obvious change of variables yields

\[
I (\mathbf{\pi}_K) = \frac{\lambda^{N-2}}{2} \int_{\mathbb{R}^N} |\nabla v_A|^2 \, dx + \frac{\lambda^{N-\alpha}}{2} \int_{\mathbb{R}^N} \frac{A}{|x|^\alpha} v_A^2 \, dx - \lambda^N \int_{\mathbb{R}^N} F (v_A) \, dx
\]

\[
\leq \frac{\lambda^{N-\alpha}}{2} \left(\int_{\mathbb{R}^N} |\nabla v_A|^2 \, dx + \int_{\mathbb{R}^N} \frac{A}{|x|^\alpha} v_A^2 \, dx \right) - \lambda^N \int_{\mathbb{R}^N} F (v_A) \, dx
\]

\[
= \frac{\lambda^N}{2} \left(\lambda^{-\alpha} \|v_A\|^2_A - 2 \int_{\mathbb{R}^N} F (v_A) \, dx \right) = -\frac{\lambda^N}{2} \int_{\mathbb{R}^N} F (v_A) \, dx < 0.
\]

In order to estimate \(c_{A,K} \), observe that hypothesis (h)' implies \(F (ts) \geq t^\mu F (s) \) for all \(0 \leq s < s_* \) and \(t \in [0, 1] \). Then consider the straight path \(\gamma (t) := t\mathbf{\pi}_K, \ t \in [0, 1] \). Since \(0 \leq \mathbf{\pi}_K < s_* \) (recall that \(0 \leq v_A < s_* \)), we have

\[
I (\gamma (t)) = \frac{1}{2} t^2 \|\mathbf{\pi}_K\|^2_A - \int_{\mathbb{R}^N} F (t\mathbf{\pi}_K) \, dx \leq \frac{1}{2} t^2 \|\mathbf{\pi}_K\|^2_A - t^\mu \int_{\mathbb{R}^N} F (\mathbf{\pi}_K) \, dx.
\] \hspace{1cm} (11)

Note that \(F (\mathbf{\pi}_K) \neq 0 \) since \(\mathbf{\pi}_K \neq 0 \). The function of the variable \(t \) on the r.h.s of (11) has maximum

\[
m \|\mathbf{\pi}_K\|^2_A \left(\int_{\mathbb{R}^N} F (\mathbf{\pi}_K) \, dx \right)^{2/(\mu-2)}
\]

where \(m := (1/\mu)^{2/(\mu-2)} (1/2 - 1/\mu) \) for brevity. Therefore, recalling that \(\lambda > 1 \), we obtain

\[
c_{A,K} \leq \max_{t \in [0,1]} I (\gamma (t)) \leq m \frac{\|\mathbf{\pi}_K\|^{2\mu/(\mu-2)}_A}{\left(\int_{\mathbb{R}^N} F (\mathbf{\pi}_K) \, dx \right)^{2/(\mu-2)}}
\]

\[
\leq m \frac{\lambda^{\mu(N-\alpha)/(\mu-2)} \left(\int_{\mathbb{R}^N} |\nabla v_A|^2 \, dx + \int_{\mathbb{R}^N} A |x|^{-\alpha} v_A^2 \, dx \right)^{\mu/(\mu-2)}}{\lambda^{2N/(\mu-2)} \left(\int_{\mathbb{R}^N} F (v_A) \, dx \right)^{2/(\mu-2)}}
\]

\[
= m \lambda^{\frac{\mu(N-\alpha)-2N}{\mu-2}} \frac{\|v_A\|^{2\mu/(\mu-2)}_A}{\left(\int_{\mathbb{R}^N} F (v_A) \, dx \right)^{2/(\mu-2)}}.
\]

Inserting the definition of \(\lambda \) and using computations (7)-(9), we get

\[
c_{A,K} \leq m \frac{\|v_A\|^{2N}_A}{\left(\int_{\mathbb{R}^N} F (v_A) \, dx \right)^{\frac{N-\alpha}{\alpha}}}
\]

\[
= m \sigma_K \sigma^{N-K} \frac{\left(\int_E \left(\psi^2 + \frac{1}{r^2} \psi^2 \right) r^{(N-2)A-1/2+1} + \psi^2 r^{(N-\alpha)A-1/2-1} \right) H (A^{-1/2} \varphi) \, dr \, d\varphi}{A^{\frac{N-\alpha}{\alpha}} \left(\int_E F (\psi) r^{NA-1/2-1} H (A^{-1/2} \varphi) \, dr \, d\varphi \right)^{\frac{N-\alpha}{\alpha}}}.
\]
Finally, taking as above the four constants $C_1, \ldots, C_4 > 0$ independent of A, we conclude
\[
c_{A,K} \leq m\sigma_K \sigma_{N-K} \left(\frac{C_2 C_3 \int_E \left(\left(\psi_r^2 + \frac{1}{r^2} \psi_{\varphi}^2 \right) + \psi^2 r \right) A^{-\frac{N-K-1}{2}} dr d\varphi \right)^{\frac{N}{N-K-1}}}{A^{-\frac{N-\alpha}{2}} \left(C_1 C_4 \int_E F(\psi) A^{-\frac{N-K-1}{2}} dr d\varphi \right)^{\frac{N}{N-\alpha}}} = C A^{\frac{K-1}{2} + N(\frac{\alpha}{2} - \frac{1}{2})} \left(\int_E \left(\left(\psi_r^2 + \frac{1}{r^2} \psi_{\varphi}^2 \right) + \psi^2 r \right) dr d\varphi \right)^{\frac{N}{N-\alpha}} \left(\int_E F(\psi) dr d\varphi \right)^{\frac{N}{N-\alpha}}
\]
with obvious definition of the constant C. As the last ratio does not depend on A, the conclusion ensues.

\[\square\]

Proposition 3.2. Assume $\alpha > 2$ and let $A > A_K$. Define $\overline{u} \in H_K$ by setting
\[
\overline{u}_K(x) := w_A \left(\frac{x}{\lambda} \right) \quad \text{with} \quad \lambda = \frac{\|v_A\|_A}{(\int_{\mathbb{R}^N} F(v_A) dx)^{1/2}}.
\]

Then $I(\overline{u}_K) < 0$ and the corresponding mountain-pass level (6) satisfies
\[
c_{A,K} \leq C_2 A^{\frac{K-1}{2}}
\]
where the constant $C_2 > 0$ does not depend on A.

Proof. The proof is very similar to the one of Proposition 3.1 above (see also [18, Proposition 4.3]), so we leave it to the reader for brevity. \[\square\]

4 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1 so assume all the hypotheses of the theorem.

Let K be any integer such that $2 \leq K \leq N - 2$. Assume $A > A_K$ (where A_K is defined by (10)) and consider the mountain-pass level $c_{A,K}$ defined by (6), with $\overline{u}_K \in H_K$ given by Proposition 3.1 or 3.2 if $\alpha \in (2/(N-1), 2)$ or $\alpha \in (2, 2(N-2))$, respectively.

We first show that $c_{A,K}$ is a critical level for the energy functional I. To do this, we will make use of the sum space
\[
L^{p_1} + L^{p_2} := \left\{ u_1 + u_2 : u_1 \in L^{p_1}(\mathbb{R}^N), u_2 \in L^{p_2}(\mathbb{R}^N) \right\}.
\]

We recall that it is a Banach space with respect to the norm
\[
\|u\|_{L^{p_1} + L^{p_2}} := \inf_{u_1 + u_2 = u} \max \left\{ \|u_1\|_{L^{p_1}(\mathbb{R}^N)}, \|u_2\|_{L^{p_2}(\mathbb{R}^N)} \right\}
\]

12
(see [6 Corollary 2.11]) and that the continuous embedding \(L^p(\mathbb{R}^N) \hookrightarrow L^{p_1} + L^{p_2} \) holds for all \(p \in [p_1, p_2] \) (see [6 Proposition 2.17]), in particular for \(p = 2^* \). Moreover, for every \(u \in L^{p_1} + L^{p_2} \) and every \(\varphi \in L^{p_1}(\mathbb{R}^N) \cap L^{p_2}(\mathbb{R}^N) \) one has

\[
\int_{\mathbb{R}^N} |u\varphi| \, dx \leq \|u\|_{L^{p_1} + L^{p_2}} \left(\|\varphi\|_{L^{p_1'(\mathbb{R}^N)}} + \|\varphi\|_{L^{p_2'(\mathbb{R}^N)}} \right)
\]

(12)

where \(p_i' = p_i/(p_i - 1) \) is the H"older conjugate exponent of \(p_i \) (see [6 Lemma 2.9]).

We will also need the following abstract result from [13], concerning the existence of bounded Palais-Smale sequences for \(C^1 \) functionals on Banach spaces.

Lemma 4.1. Let \(J : X \to \mathbb{R} \) be a \(C^1 \) functional on a Banach space \((X, \| \cdot \|)\), having the form

\[J(u) = \frac{1}{q} \|u\|^q - B(u) \]

for some \(q > 0 \) and some continuous functional \(B : X \to \mathbb{R} \). Assume that there exists a sequence of continuous mappings \(\psi_n : X \to X \) such that \(\forall n \) there exist \(\alpha_n > \beta_n > 0 \) satisfying

\[\|u\|^q \geq \alpha_n \|\psi_n(u)\|^q \quad \text{and} \quad B(u) \leq \beta_n B(\psi_n(u)) \quad \text{for all} \ u \in X \]

and

\[\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = 1, \quad \liminf_{n \to \infty} \frac{1 - \beta_n}{\alpha_n - \beta_n} < \infty. \]

If there exist \(r > 0 \) and \(\pi \in X \) with \(\|\pi\| > r \) such that

\[\inf_{\|\pi\|=r} J(u) > J(0) \geq J(\pi) \quad \text{and} \quad \lim_{n \to \infty} \|\psi_n(0)\| = \lim_{n \to \infty} \|\psi_n(\pi) - \pi\| = 0, \]

then \(J \) has a bounded Palais-Smale sequence \(\{u_n\} \subset X \) at level

\[c_{J,\bar{u}} = \inf_{\gamma \in \Gamma} \max_{u \in \gamma([0,1])} J(u), \quad \Gamma = \{ \gamma \in C([0,1], X) : \gamma(0) = 0, \gamma(1) = \bar{u} \}. \]

Proof. It is a particular case of [13 Theorem 1.1]. \(\square \)

Lemma 4.2. \(c_{A,K} \) is a critical level for the functional \(I_{H_K} \).

Proof. We want to apply Lemma 4.1 to the functional \(I_{H_K} \) with \(\bar{u} = \overline{u}_K \) (and of course \(q = 2 \) and \(B(u) = \int_{\mathbb{R}^N} F(u) \, dx \)). Take any real sequence \(\{t_n\} \) such that \(t_n \to 1 \) and \(t_n > 1 \), and for every \(u \in H_K \) define \(\psi_n(u) \in H_K \) by setting \(\psi_n(u)(x) := u(x/t_n) \). We have

\[
\|\psi_n(u)\|_A^2 = t_n^{N-2} \int_{\mathbb{R}^N} |\nabla u|^2 \, dx + t_n^{N-\alpha} \int_{\mathbb{R}^N} \frac{A}{|x|^\alpha} u^2 \, dx \leq t_n^{\max\{N-2,N-\alpha\}} \|u\|_A^2
\]

(14)
and
\[\int_{\mathbb{R}^N} F(\psi_n(u)) \, dx = t_n^N \int_{\mathbb{R}^N} F(u) \, dx, \]
so that (13) holds with \(\alpha_n = t_n^{-\max\{N-2, N-\alpha\}} \) and \(\beta_n = t_n^{-N} \). Note that (14) also ensures that the linear mapping \(\psi_n : H_K \to H_K \) is continuous. Since \(t_n > 1 \) and \(\max\{N-2, N-\alpha\} < N \), we have \(\alpha_n > \beta_n \). Moreover \(\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = 1 \) and
\[\lim_{n \to \infty} \frac{1 - \beta_n}{\alpha_n - \beta_n} = \lim_{n \to \infty} \frac{1 - t_n^{-N}}{t_n^{-\max\{N-2, N-\alpha\}} - t_n^{-N}} = \frac{N}{N - \max\{N-2, N-\alpha\}} < \infty. \]

Recalling (5) and the fact that \(I(\overline{w}_K) < 0 \), it remains to check that \(\lim_{n \to \infty} \|\psi_n(\overline{w}_K) - \overline{w}_K\|_A = 0 \).

By definition of \(\overline{w}_K \), there exist \(l_1, l_2 > 0 \) such that both \(\overline{w}_K \in C_c^\infty(\Omega_{l_1,l_2}) \) where \(\Omega_{l_1,l_2} := \{ x \in \mathbb{R}^N : l_1 < |x| < l_2 \} \). Then both \(\overline{w}_K \) and \(\psi_n(\overline{w}_K) \) belong to \(C_c^\infty(\Omega_{1/2,2l_2}) \) for \(n \) sufficiently large, and thus we get
\[\int_{\mathbb{R}^N} \frac{(\psi_n(\overline{w}_K) - \overline{w}_K)^2}{|x|^{\alpha}} \, dx = \int_{\Omega_{1/2,2l_2}} \frac{(\psi_n(\overline{w}_K) - \overline{w}_K)^2}{|x|^{\alpha}} \, dx \leq \frac{2\alpha}{l_1^\alpha} \int_{\Omega_{1/2,2l_2}} (\psi_n(\overline{w}_K) - \overline{w}_K)^2 \, dx \to 0 \]
and
\[\int_{\mathbb{R}^N} |\nabla \psi_n(\overline{w}_K) - \nabla \overline{w}_K|^2 \, dx = \int_{\Omega_{1/2,2l_2}} |\nabla \psi_n(\overline{w}_K) - \nabla \overline{w}_K|^2 \, dx \to 0 \]
as \(n \to \infty \), since \(\psi_n(\overline{w}_K) = \overline{w}_K (t_n^{-1}) \to \overline{w}_K \) and \(\nabla (\psi_n(\overline{w}_K)) = t_n^{-1} \nabla \overline{w}_K (t_n^{-1}) \to \nabla \overline{w}_K \) in \(L^\infty(\mathbb{R}^N) \). So we can apply Lemma 4.1 and deduce that there exists \(\{u_n\} \subset H_K \) such that \(\{\|u_n\|_A\} \) is bounded, \(I(u_n) \to c_{A,K} \) and \(I'(u_n) \to 0 \) in the dual space of \(H_K \). Now we exploit the fact that the space \(H_K \) is compactly embedded into \(L^{p_1} + L^{p_2} \), since \(p_1 < 2^* < p_2 \) and so is the subspace of \(D^{1,2}(\mathbb{R}^N) \) made up of the mappings with the same symmetries of \(H_K \) (see [1] Theorem A.1). Hence there exists \(u \in H_K \) such that (up to a subsequence) \(u_n \to u \) in \(H_K \) and \(u_n \to u \) in \(L^{p_1} + L^{p_2} \). This implies that \(\{f(u_n)\} \) is bounded in both \(L^{p_1'}(\mathbb{R}^N) \) and \(L^{p_2'}(\mathbb{R}^N) \), since assumption (h0) ensures that the Nemyskii operator \(v \mapsto f(v) \) is continuous from \(L^{p_1} + L^{p_2} \) into \(L^{p_1'}(\mathbb{R}^N) \cap L^{p_2'}(\mathbb{R}^N) \) (see [6] Corollary 3.7). Then by (12) we get
\[\left| \int_{\mathbb{R}^N} f(u_n)(u_n - u) \, dx \right| \leq \|u_n - u\|_{L^{p_1} + L^{p_2}} \left(\|f(u_n)\|_{L^{p_1'}(\mathbb{R}^N)} + \|f(u_n)\|_{L^{p_2'}(\mathbb{R}^N)} \right) \]
and therefore
\[\|u_n - u\|^2_A = (u_n, u_n - u)_A - (u, u_n - u)_A \]
\[= I'(u_n)(u_n - u) + \int_{\mathbb{R}^N} f(u_n)(u_n - u) \, dx - (u, u_n - u)_A \to 0, \]
where \((u, u_n - u)_A \to 0\) since \(u_n \to u\) in \(H_K\), and \(I'(u_n) (u_n - u) \to 0\) because \(I'(u_n) \to 0\) in the dual space of \(H_K\) and \(\{u_n - u\}\) is bounded in \(H_K\). This implies that \(u_n \to u\) in \(H_K\) and thus concludes the proof.

Now, using again Lemma 4.1 and the compactness results of [20], we show that \(I\) also has a radial critical point.

Lemma 4.3. The functional \(I|_{H_t}\) has at least a nonzero critical point.

Proof. The arguments are absolutely similar to the ones used in proving Lemma 4.2 so we will be very sketchy. By condition (1) with \(p = 2^*\) and the continuous embedding \(H_t \hookrightarrow L^{2^*}(\mathbb{R}^N)\), we readily have that \(\exists R > 0\) such that \(\inf_{\|u\|_A = R} I|_{H_t}(u) > 0\) and \(I|_{H_t}(u) \geq 0\) for \(\|u\|_A \leq R\). For every \(u \in H_t\) and \(t > 1\) define \(\psi_t(u)(x) := u(x/t)\). Take \(u_0 \in C^\infty_c(\mathbb{R}^N \setminus \{0\}) \cap H_t\) such that \(u_0 \geq 0\) and \(u_0 \neq 0\). We have

\[
I(\psi_t(u_0)) \leq \frac{1}{2} t^{\max\{N-2,N-\alpha\}} \|u_0\|_A^2 - t^N \int_{\mathbb{R}^N} F(u) \, dx
\]

and therefore \(I(\overline{t}) < 0\) for \(\overline{t} := \psi_t(u_0)\) with \(t\) large enough. Then, letting \(\{t_n\}\) be any real sequence such that \(t_n \to 1\) and \(t_n > 1\), as in the proof of Lemma 4.2 one checks that Lemma 4.1 applies with \(\psi_n = \psi_{t_n}\), \(\alpha_n = t_n^{-\max\{N-2,N-\alpha\}}\) and \(\beta_n = t_n^{-N}\). So \(I|_{H_t}\) has a Palais-Smale sequence \(\{u_n\}\) at a nonzero level. Now observe that assumption (h0) with \(p_1, p_2\) as in the theorem ensures that one can find \(p \in [p_1, p_2]\) such that \(|f(u)| \leq (\text{const.}) u^{p-1}\) (recall (1)) and (2) holds, in such a way that the embedding \(H_t \hookrightarrow L^p(\mathbb{R}^N)\) is compact by the compactness results of [20]. Hence it is a standard exercise to conclude that, up to a subsequence, \(u_n\) converges to a nonzero critical point of \(I|_{H_t}\).

Proof of Theorem 1.1 The proof is essentially the same of Theorem 1.1 of [18]; we repeat it here just for the sake of completeness. On the one hand, the restriction \(I|_{H_t}\) has a critical point \(u_t \neq 0\) by Lemma 4.3. On the other hand, one checks that for \(\alpha \in \left(\frac{2}{N-1}, 2N-2\right) \setminus \{2\}\) the integer \(\nu\) defined in (3) is at least 1 (see [18] Lemma 5.2), so that there are \(\nu\) integers \(K\) (precisely \(K = 2, \ldots, \nu + 1\)) such that

\[
\frac{K - 1}{2} + N \left(\frac{1}{\alpha} - \frac{1}{2}\right) < \min \left\{ \frac{N - 1}{\alpha}, \frac{N - 2}{2 - \alpha} \right\} \quad \text{if} \quad \frac{2}{N - 1} < \alpha < 2
\]

and

\[
\frac{K - 1}{2} < \min \left\{ \frac{N - 1}{\alpha}, \frac{N - 2}{\alpha} \right\} \quad \text{if} \quad 2 < \alpha < 2N - 2.
\]

Let \(K\) be any of such integers. By Lemma 4.2 there exists \(u_K \in H_K \setminus \{0\}\) such that \(I(u_K) = c_{A,K} > 0\) and \(I'|_{H_K}(u_K) = 0\). Both \(u_t\) and \(u_K\) are also critical points for the functional \(I : H_\alpha^1 \to \mathbb{R}\), by the Palais’ Principle of Symmetric Criticality [17]. Moreover, it easy to check that they are
nonnegative: test $I'(u_K)$ with the negative part $u_K^- \in H_\alpha^1$ of u_K and use the fact that $f(s) = 0$ for $s < 0$ to get $I'(u_K) u_K^- = -\|u_K^-\|_A^2 = 0$; the same for u_r. Therefore u_r and u_K are weak solutions to problem (P). By Remark 2.3 and Propositions 2.2, 3.1 and 3.2 there exists $\tilde{A}_K > A_K$ such that $c_{A,K} < m_A$ for every $A > \tilde{A}_K$. Now, setting $A_* := \max\left\{\tilde{A}_K : 2 \leq K \leq \nu + 1\right\}$, we have $c_{A,K} < m_A$ for every $A > A_*$ and $K = 2, ..., \nu + 1$, so that all the ν weak solutions u_K with $K = 2, ..., \nu + 1$ are nonradial, since otherwise Lemma 2.1 would yield the contradiction $c_{A,K} = I(u_K) \geq m_A$. This also implies $u_{K_1} \neq u_{K_2}$ for $K_1 \neq K_2$, since $H_{K_1} \cap H_{K_2} = \emptyset$ (see [18 Lemma 2.1]).

References

[1] Azzollini A., Pomponio A., Compactness results and applications to some “zero-mass” elliptic problems, Nonlinear Anal. TMA 69 (2008), 602-617.

[2] Badiale M., Benci V., Rolando S., A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc. 9 (2007), 355-381.

[3] Badiale M., Guida M., Rolando S., A nonexistence result for a nonlinear elliptic equation with singular and decaying potential, Commun. Contemp. Math. 17 (2015), 1450024, 21 pp.

[4] Badiale M., Guida M., Rolando S., Compactness and existence results in weighted Sobolev spaces of radial functions. Part II: Existence, NoDEA, Nonlinear Differ. Equ. Appl. 23 (2016), Art. 67, 34 pp.

[5] Badiale M., Guida M., Rolando S., Compactness and existence results for the p-laplace equations, J. Math. Anal. Appl. 451 (2017), 345-370.

[6] Badiale M., Pisani L., Rolando S., Sum of weighted Lebesgue spaces and nonlinear elliptic equations, NoDEA, Nonlinear Differ. Equ. Appl. 18 (2011), 369-405.

[7] Badiale M., Rolando S., A note on nonlinear elliptic problems with singular potentials, Rend. Lincei Mat. Appl. 16 (2006), 1-13.

[8] Badiale M., Serra E., Multiplicity results for the supercritical Hénon equation, Adv. Nonlinear Stud. 4 (2004), 453-467.

[9] Benci V., Fortunato D., Variational methods in nonlinear field equations. Solitary waves, hylomorphic solitons and vortices, Springer Monographs in Mathematics, Springer, Cham, 2014.
[10] Catrina F., Nonexistence of positive radial solutions for a problem with singular potential, Adv. Nonlinear Anal. 3 (2014), 1-13.

[11] Conti M., Crotti S., Pardo D., On the existence of positive solutions for a class of singular elliptic equations, Adv. Differential Equations 3 (1998), 111-132.

[12] Fife P.C., Asymptotic states for equations of reaction and diffusion, Bull. Amer. Math. Soc. 84 (1978), 693-728.

[13] M. Guida, S. Rolando, Some abstract results on the existence of bounded Palais-Smale sequences, arXiv:1410.4851.

[14] Guida M., Rolando S., Nonlinear Schrödinger equations without compatibility conditions on the potentials, J. Math. Anal. Appl. 439 (2016), 347-363.

[15] Li Y.Y., Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differential Equations 83 (1990), 348-367.

[16] Mederski J., Ground states of time-harmonic semilinear Maxwell equations in \mathbb{R}^3 with vanishing permittivity, Arch. Ration. Mech. Anal. 218 (2015), 825-861.

[17] Palais R.S., The Principle of Symmetric Criticality, Comm. Math. Phys. 69 (1979), 19-30.

[18] Rolando S., Multiple nonradial solutions for a nonlinear elliptic problem with singular and decaying radial potential, Adv. Nonlinear Anal., in press.

[19] Su J., Wang Z.Q., Willem M., Nonlinear Schrödinger equations with unbounded and decaying potentials, Commun. Contemp. Math. 9 (2007), 571-583.

[20] Su J., Wang Z.Q., Willem M., Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differential Equations 238 (2007), 201-219.

[21] Terracini S., On positive entire solutions to a class of equations with singular coefficient and critical exponent, Adv. Differential Equations 1 (1996), 241-264.

[22] Yang Y., Solitons in field theory and nonlinear analysis, Springer, 2001.