Quenched Mass Transport of Particles Toward a Target

Bruno Bouchard\(^1\) · Boualem Djehiche\(^2\) · Idris Kharroubi\(^3\)

Received: 23 May 2019 / Accepted: 12 June 2020 / Published online: 24 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We consider the stochastic target problem of finding the collection of initial laws of a mean-field stochastic differential equation such that we can control its evolution to ensure that it reaches a prescribed set of terminal probability distributions, at a fixed time horizon. Here, laws are considered conditionally to the path of the Brownian motion that drives the system. This kind of problems is motivated by limiting behavior of interacting particles systems with applications in, for example, agricultural crop management. We establish a version of the geometric dynamic programming principle for the associated reachability sets and prove that the corresponding value function is a viscosity solution of a geometric partial differential equation. This provides a characterization of the initial masses that can be almost surely transported toward a given target, along the paths of a stochastic differential equation. Our results extend those of Soner and Touzi, *Journal of the European Mathematical Society* (2002) to our setting.

Keywords McKean–Vlasov SDEs · Dynamic programming · Stochastic target · Mass transportation · Viscosity solutions

Mathematics Subject Classification 93E20 · 60K35 · 49L25

Communicated by Giuseppe Buttazzo.
1 Introduction

Stochastic target problems are optimization problems in which the controller looks for the collection of initial values of a state process such that it can reach some given set at a given terminal time, by choosing an appropriate control. Such optimization problems were first studied in [1,2] in which the indicator function of this reachability set is shown to solve a Hamilton–Jacobi–Bellman equation, in the viscosity solution sense. The main motivation of [1,2] is the so-called super-replication problem, in financial mathematics: The controller looks for possible initial endowments such that there exists an investment strategy allowing the terminal wealth to satisfy a super-hedging constraint, almost surely (see, e.g., [3]). But, the range of applications is obviously much wider.

Another important type of stochastic target problems concerns the case where the terminal constraint is imposed on the mean value of a function of the controlled process. This type of constraints is also common in financial applications. Indeed, the super-replication price is usually too high to be accepted by buyers. This is a motivation for relaxing the a.s. super-hedging criteria by only asking the target to be reached (equivalently, the option to be hedged), for instance, with a (high) probability $p < 1$. This approach was introduced in [4] and further developed in [5] where the authors take advantage of the martingale representation theorem to transform the constraint given in terms of the mean value into an almost sure constraint.

The constraint in the above stochastic target problem is a constraint on the marginal law of the controlled process at a terminal time, which can be embedded into a more general class of problems involving the conditional law given the Brownian path, as a consequence of the martingale representation theorem, see [5].

This suggests to study general constraints on the conditional law of the terminal value of the controlled state process, given the Brownian motion path: Define the initial conditions for which a control can be found such that this conditional law belongs (with probability one) to a given Borel subset of probability measures. Since we now consider only the conditional law, it makes sense to replace the initial value of the controlled process by a distribution and the problem consists in finding the collection of initial distributions such that the terminal conditional distribution satisfies a certain constraint. This initial distribution can, for instance, be interpreted as the initial probability distribution of a population.

This general formulation is of importance on its own right as it is related to the probabilistic analysis of large-scale particle systems, e.g., polymers in random media, in which one is interested in the behavior of particles conditionally on the environment. This is also known as ‘quenched’ behaviors/properties (quenched law of large numbers, quenched large deviations, etc.), which is in general different from the so-called annealed behaviors obtained by averaging over the underlying random environment (see e.g., [6–8] and the references therein). For diffusion processes, quenching boils down to making the drift and diffusion coefficients dependent on the conditional marginal law given the environment, while annealing corresponds to the case where the coefficients depend on the unconditional marginal law (see e.g., [8]). We therefore coin the term quenched diffusion instead of conditional diffusion to refer to such
SDEs. For our stochastic target problem, the constraint imposed on the conditional law of the diffusion process is a quenched property for the underlying process.

Our problem can also be interpreted as a transport problem. What is the collection of initial distributions of a population of particles, that all have the same dynamics, such that the terminal conditional law, given the environment modeled by the Brownian path, satisfies a certain constraint. This amounts to asking what kind of masses can be transported along the SDE so as to reach a certain set, almost surely, at a given terminal time.

This type of viability problems appears naturally in limits of particle systems. Indeed, consider i.i.d. random variables representing initial positions of particles following the same quenched SDE. If each particle is controlled by a closed loop control (depending only on the initial data and the common Brownian motion path), the terminal positions are i.i.d. given the Brownian motion. Therefore, a constraint on the empirical measure of the particles leads, by the law of large numbers, to a constraint on the conditional law of the representative SDE, as the number of particles tends to infinity, which may be more tractable to study. This applies to many risk control problems in which the number of controlled elements is large, e.g., agricultural crop management, as highlighted in Example 3.1.

The rest of the paper is organized as follows. In Sect. 2, we describe in detail the quenched controlled diffusion. We provide some (expected) existence and stability results, together with a conditioning property. Section 3 is devoted to the detailed presentation of the quenched stochastic target problem. We prove that it admits a geometric dynamic programming principle. This is the main result of the paper. Then, one can combine the technologies developed in [2,9,10] to derive in Sect. 4 the associated Hamilton–Jacobi–Bellman equation, which extends the main result of [2] to our context. In Sect. 5, we provide an alternative formulation which is more adapted to the case where the reachability set is a half space in one direction (see [11]); we also comment on the choice of the class of controls and provide an interpretation in terms of control of the law of a population of particles.

2 Quenched Mean-Field SDE

We first describe our probabilistic setting. The d-dimensional Brownian motion is constructed on the canonical space in a usual way. More precisely, given a fixed time horizon $T > 0$, we let Ω^o denote the space of continuous \mathbb{R}^d-valued functions on $[0, T]$, starting at 0, and let $\mathbb{F}^o = (\mathcal{F}_t^o)_{t \leq T}$ denote the filtration generated by the canonical process $B(\omega^o) := \omega^o$, $\omega^o \in \Omega^o$. We set $\mathcal{F}^o = \mathcal{F}_T^o$ and endow $(\Omega^o, \mathcal{F}^o)$ with the Wiener measure \mathbb{P}^o. Later on, $\mathbb{P}^o = (\mathcal{F}_t^o)_{t \leq T}$ will denote the \mathbb{P}^o-completion of \mathbb{F}^o.

In order to model the initial probability distribution of the population, we let $\Omega^1 := [0, 1]^d$ be endowed with its Borel σ-algebra $\mathcal{F}^1 := \mathcal{B}([0, 1]^d)$ and the Lebesgue measure \mathbb{P}^1. It supports the $[0, 1]^d$-uniformly distributed random variable $\xi(\omega^1) = \omega^1$, $\omega^1 \in \Omega^1$. We then define the product filtered space $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{P})$ by setting $\Omega := \Omega^o \times \Omega^1$, $\mathcal{F} = \mathcal{F}_T$ where $\mathbb{P} = (\mathcal{F}_t)_{t \leq T}$ is the $\mathbb{P}^0 \otimes \mathbb{P}^1$-augmentation of $(\mathcal{F}_t^0 \otimes \mathcal{F}_t^1)_{t \leq T}$.
and \mathbb{P} is the extension of $\mathbb{P}^0 \otimes \mathbb{P}^1$ to \mathcal{F}_T. From now on, any identity involving random variables has to be taken in \mathbb{P}-a.s. sense. We canonically extend the random variable ξ and the process B on Ω by setting $\xi(\omega) = \xi(\omega')$ as well as $B(\omega) = B(\omega')$ for any $\omega = (\omega^0, \omega') \in \Omega$. We still denote by \mathbb{F}^0 the filtration generated by the extended process B on Ω. Note that it follows from [12, Chapter 2, Theorem 6.15 and Proposition 7.7] applied to the stochastic process $(t, \omega) \in [0, T] \times \Omega \mapsto (\xi(\omega), B_t(\omega))$ that \mathbb{F} is right continuous.

Given a random variable $Y \in L_0(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$ (resp. $Y \in L_1(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$), we let \mathbb{P}^B_μ (resp. $\mathbb{E}_B[Y]$) denote a regular conditional law (resp. expectation) under \mathbb{P} of the random variable Y given $(B_t)_{t \leq T}$ on \mathbb{R}^d. In particular, we have the following identifications

$$\mathbb{P}^B_\mu(A, \omega) = \mathbb{P}^\mu_{Y(\omega^0, \cdot)}(A) \quad (1)$$

$$\mathbb{E}_B[Y](\omega) = \mathbb{E}^\mu[Y(\omega^0, \cdot)] \quad (2)$$

for any $\omega = (\omega^0, \omega') \in \Omega$ and any $A \in \mathcal{B}(\mathbb{R}^d)$. Here, \mathbb{E}^μ denotes the expectation under \mathbb{P}^0 and $\mathbb{P}^\mu_{Y(\omega^0, \cdot)}$ denotes the law under \mathbb{P}^1 of the random variable defined on Ω^1 by $Y(\omega^0, \cdot)(\omega') = Y(\omega^0, \omega')$. We let $\mathcal{P}(S)$ denote the space of probability measures on a Borel space $(S, \mathcal{B}(S))$, and define

$$\mathcal{P}_2 := \left\{ \mu \in \mathcal{P}(\mathbb{R}^d) \text{ s.t. } \int_{\mathbb{R}^d} |x|^2 \mu(dx) < +\infty \right\},$$

where $|x|$ is the Euclidean norm of x. This space is endowed with the 2-Wasserstein distance defined by

$$W_2(\mu, \mu') := \left(\inf \left\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 \pi(dx, dy) : \pi \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d, \mathcal{B}(\mathbb{R}^d \times \mathbb{R}^d)) \right\}^{\frac{1}{2}} \right.$$

$$\left. \text{ s.t. } \pi(\cdot \times \mathbb{R}^d) = \mu \text{ and } \pi(\mathbb{R}^d \times \cdot) = \mu' \right\},$$

for $\mu, \mu' \in \mathcal{P}_2$. For later use, we also define the collection $\mathcal{P}_2^{\tilde{F}^0}$ of \tilde{F}^0-adapted continuous \mathcal{P}_2-valued processes.

Let now U be a closed subset of \mathbb{R}^d for some $q \geq 1$ and denote by \mathcal{U} the collection of U-valued \tilde{F}-progressively measurable processes. This will be the set of controls. Let \tilde{T}^0 denote the set of $[0, T]$-valued \tilde{F}^0-stopping times. Given $\theta \in \tilde{T}^0$ and $\chi \in X_{\theta}^2 := L^2(\Omega, \mathcal{F}_\theta, \mathbb{P}; \mathbb{R}^d)$, $\nu \in \mathcal{U}$, and $(b, a) : [0, T] \times \mathbb{R}^d \times \mathcal{P}_2 \times U \rightarrow \mathbb{R}^d \times \mathbb{R}^{d \times d}$, we let $X_{\theta, \nu}$ denote the solution of

$$X_s = \mathbb{E}[\chi|\mathcal{F}_{\theta \wedge s}] + \int_\theta^{\theta \wedge s} b_s(X_s, \mathbb{P}^B_{X_s}, \nu_s)ds + \int_\theta^{\theta \wedge s} a_s(X_s, \mathbb{P}^B_{X_s}, \nu_s) dB_s, \quad (3)$$

in which (b, a) is assumed to be continuous, bounded and satisfies:

Springer
(H1) There exists a constant L such that

$$|b_t(x, \mu, \cdot) - b_t(x', \mu', \cdot)| + |a_t(x, \mu, \cdot) - a_t(x', \mu', \cdot)| \leq L \left(|x - x'| + \mathcal{W}_2(\mu, \mu')\right)$$

for all $t \in [0, T]$, $x, x' \in \mathbb{R}^d$ and $\mu, \mu' \in \mathcal{P}_2$.

The term $\mathbb{E}[\chi|\mathcal{F}_{\theta,T}]$ in (3) allows to define X as a continuous adapted process on $[0, T]$, which is done for convenience of notations. One could obviously only consider the process on $[\theta, T]$.

Remark 2.1 Note that the controls can depend on the initial value of χ. One could also restrict to $\bar{\mathbb{F}}^{-}$-progressively measurable processes; see Sect. 5 for a discussion.

The above condition ensures as usual that a unique strong solution to (3) can indeed be defined.

Proposition 2.1 For all $\theta \in \bar{T}^\circ$, $\nu \in \mathcal{U}$ and $\chi \in X^2_{\theta}, (3)$ admits a unique strong solution $X_{\theta,\chi,\nu}$, and it satisfies

$$\mathbb{E}\left[\sup_{s \in [0,T]} |X_{\theta,\chi,\nu}^s|^2 \right] < +\infty. \quad (4)$$

Moreover, for all $(t, \chi, \nu) \in [0, T] \times X^2_t \times \mathcal{U}$, if $t_n \to t$, $\chi_n \to \chi$ in L^2 with $\chi_n \in X^2_{t_n}$ for all n, and $(\nu^n)_n \subset \mathcal{U}$ converges to ν $dt \times d\mathbb{P}$-a.e., then

$$\lim_{n \to \infty} \mathbb{E}[\mathcal{W}_2(\mathbb{P}^{B}_{X^t_{\theta,\chi,\nu^n}X^t_{\theta,\chi,\nu}}, \mathbb{P}^{B}_{X^t_{\theta,\chi,\nu^n}})^2] = 0. \quad (5)$$

Proof 1. The estimate (4) is a consequence of the boundedness of (b, a).

2. Existence follows from a similar fixed point argument as in [13] (see also [14] and [15,16] for the martingale problem approach). Since we work in a slightly different context, we provide the proof for completeness.

2.a. Let \mathcal{C} denote the space of continuous \mathbb{R}^d-valued maps on $[0, T]$ endowed with the sup-norm topology and $\mathcal{P}_2(\mathcal{C}, \mathcal{B}(\mathcal{C}))$ denote the set of probability measures \hat{P} on $(\mathcal{C}, \mathcal{B}(\mathcal{C}))$ such that $\int_{\mathcal{C}} \sup_{0 \leq s \leq t} |f_s|^2 \hat{P}(df) < \infty$. For $\hat{Q}, \hat{P} \in \mathcal{P}_2(\mathcal{C}, \mathcal{B}(\mathcal{C}))$ and $t \leq T$, we define the Wasserstein metric:

$$D_t(\hat{P}, \hat{Q}) := \inf \left\{ \int_{\mathcal{C}^2} \sup_{0 \leq s \leq t} |f_s - g_s|^2 \hat{R}(df, dg) : \hat{R} \in \mathcal{P}(\mathcal{C}^2, \mathcal{B}(\mathcal{C}^2)) \right\}^{\frac{1}{2}}.$$

s.t. $\hat{R}(\cdot \times \mathcal{C}) = \hat{P}$ and $\hat{R}(\mathcal{C} \times \cdot) = \hat{Q}$.

If $\hat{Q} \in \mathcal{P}_2(\mathcal{C}, \mathcal{B}(\mathcal{C}))$ has time marginals $(\hat{Q}_s)_{s \leq T}$ then

$$\mathcal{W}_2(\hat{Q}_t, \hat{Q}_s)^2 \leq \int_{\mathcal{C}} |Y_t - Y_s|^2 \hat{Q}(dY)$$
so that \(W_2(\bar{Q}_t, \bar{Q}_s) \to 0 \) as \(s \to t \), by dominated convergence. Hence, \((\bar{Q}_t)_{t \leq T} \) is continuous.

2.b. Let \(S_2 \) denote the set of continuous adapted \(\mathbb{R}^d \)-valued processes \(Z \) such that

\[
\|Z\|_{S_2} := \mathbb{E}[\sup_{[0,T]} |Z(t)|^2]^{1/2} < \infty.
\]

Let \(\mathbb{L}_2(\Omega; \mathcal{F}_2(\mathbb{C})) \) be the collection of random variables defined on \(\Omega \) and with values in \(\mathcal{F}_2(\mathbb{C}) \), with finite norm \(\mathbb{E}[\| \cdot \|^2_{\mathcal{F}_2(\mathbb{C})}]^{1/2} \). Let \(\Phi \) be the map that to \(\bar{Q} \in \mathbb{L}_2(\Omega; \mathcal{F}_2(\mathbb{C})) \) associates \(\mathbb{P}^B_{\bar{Q}} \in \mathbb{L}_2(\Omega; \mathcal{F}_2(\mathbb{C})) \) in which \(\mathbb{P}^B_{\bar{Q}}(\omega) \) is a regular conditional law of \(\bar{Q} \) given \(\omega \in \Omega \) with \(\bar{Q} \) defined as the solution of

\[
\bar{Q}^\circ = \mathbb{E}[\mathcal{F}_\theta \wedge] + \int_\theta^\theta d\bar{Q}(X^\circ, \bar{Q}, v)ds + \int_\theta^\theta a_s(X^\circ, \bar{Q}, v_s)dB_s,
\]

and where \(\bar{Q}_s(\omega) \) is the \(s \)-marginal of \(\bar{Q}(\omega) \) for \(\omega \in \Omega \). It follows from 2.a. that \(\mathbb{P}^B_{\bar{Q}}(\omega) \) has continuous paths, for \(\mathbb{P}^\circ \text{-a.e.} \omega \in \Omega \). By repeating the arguments in [13, Proof of Proposition 2] (see also the following third point), we obtain that \(\Phi \) is contracting. Since \(\mathbb{L}_2(\Omega; \mathcal{F}_2(\mathbb{C})) \) is complete, it follows that \(\Phi \) admits a fixed point \(\hat{Q} \).

3. It remains to prove our last estimate. The Lipschitz continuity and boundedness of \((b, a) \) combined with Burkholder–Davis–Gundy inequality implies that one can find \(C > 0 \), that only depends on \((b, a) \), such that

\[
\mathbb{E}[\sup_{u \in [0,s]} |X^\circ_t, X^\circ_v - X^{max, X_n, v_n}|^2] \leq C(|t - s| + \mathbb{E}[|X - X_n|^2])
\]

\[
+ C\mathbb{E} \left[\int_0^s \left(\sup_{u \in [0,r]} |X^\circ_t, X^\circ_v - X^{max, X_n, v_n}|^2 + W_2^2(\mathbb{P}^B_{X^\circ_t, X^\circ_v}, \mathbb{P}^B_{X^{max, X_n, v_n}}) \right) dr \right]
\]

\[
+ C\mathbb{E} \left[\int_0^s |b_r(X^\circ_t, X^\circ_v, \mathbb{P}^B_{X^\circ_t, X^\circ_v, v_r}) - b_r(X^\circ_t, X^\circ_v, \mathbb{P}^B_{X^{max, X_n, v_n}})|^2 dr \right]
\]

\[
+ C\mathbb{E} \left[\int_0^s |a_r(X^\circ_t, X^\circ_v, \mathbb{P}^B_{X^\circ_t, X^\circ_v, v_r}) - a_r(X^\circ_t, X^\circ_v, \mathbb{P}^B_{X^{max, X_n, v_n}})|^2 dr \right].
\]

Since

\[
\mathbb{E}[W_2^2(\mathbb{P}^B_{X^\circ_t, X^\circ_v}, \mathbb{P}^B_{X^{max, X_n, v_n}})] \leq \mathbb{E}[D_2^2(\mathbb{P}^B_{X^\circ_t, X^\circ_v}, \mathbb{P}^B_{X^{max, X_n, v_n}})]
\]

\[
\leq \mathbb{E}[\sup_{u \in [0,s]} |X^\circ_t, X^\circ_v - X^{max, X_n, v_n}|^2],
\]

by Gronwall’s lemma we obtain (for a different constant \(C > 0 \))
\[
\mathbb{E}[\mathcal{W}_2^2(\mathbb{P}^B_{X^\ell_s, X^\nu_s}, \mathbb{P}^B_{X^{n\ell}_s, X^{n\nu}_s})] \\
\leq \mathbb{E}[\sup_{u \in [0, T]} |X^\ell_u - X^{t_n}_u|^2] \\
\leq C(|t - t_n| + \mathbb{E}[|X - X_n|^2]) \\
+ C \mathbb{E} \left[\int_0^T |b_r(X^\ell_{s}, X^\nu_{s}, P^B_{X^\ell_s, X^\nu_s, v_r}) - b_r(X^{t_n}_{s}, X^{n \nu}_s, P^B_{X^{t_n}_s, X^{n \nu}_s, v_r})|^2 dr \right] \\
+ C \mathbb{E} \left[\int_0^T |a_r(X^\ell_{s}, X^\nu_{s}, P^B_{X^\ell_s, X^\nu_s, v_r}) - a_r(X^{t_n}_{s}, X^{n \nu}_s, P^B_{X^{t_n}_s, X^{n \nu}_s, v_r})|^2 dr \right].
\]

The function \((b, a)\) being continuous and bounded, the required result follows. \(\square\)

Note that we can also construct a particle approximation of the SDE (3) as follows. We first note that, for \(t \in [0, T]\), \(\chi \in X_t\) and \(\nu \in \mathcal{U}\), there exist Borel maps \(x\) and \(u\) such that \(\chi = x((B_s)_{s \leq t}, \xi^1)\) \(\mathbb{P}\)-a.s. and \(\nu = u(\cdot, (B_s)_{s \leq t}, \xi^1)\), up to modification. We then consider a sequence \((\xi^\ell)_{\ell \geq 1}\) of \(i.i.d.\) random variables with uniform law on \([0, 1]^d\), and independent of \(B\), and we define \((\chi^\ell, \nu^\ell)\) as \((x((B_s)_{s \leq t}, \xi^\ell), u(\cdot, (B_s)_{s \leq t}, \xi^\ell))\), for \(\ell \geq 1\).

For \(n, \ell \geq 1\), we define \(X^{\ell}_n\) and \(X^{n, \ell}\) as the respective solutions to the SDEs:

\[
X^n = \chi^n + \int_t^s b_s(X^n_s, P^B_{X^n_s, X_s}, v_s^n) ds + \int_t^s a_s(X^n_s, P^B_{X^n_s, X_s}, v_s^n) dB_s,
\]

and

\[
X^{n, \ell} = \chi^n + \int_t^s b_s(X^{n, \ell}_s, \bar{\mu}_s^n, v_s^n) ds + \int_t^s a_s(X^{n, \ell}_s, \bar{\mu}_s^n, v_s^n) dB_s,
\]

where the measures \(\bar{\mu}^n_s, n \geq 1\), are defined by

\[
\bar{\mu}_s^n := \frac{1}{n} \sum_{\ell=1}^n \delta_{X^{n, \ell}_s}, \quad s \geq 0.
\]

Proposition 2.2 The following holds:

\[
\lim_{n \to +\infty} \sup_{\ell \leq n} \mathbb{E} \left[\sup_{u \in [0, T]} |X^{n, \ell}_u - X^\ell_u|^2 \right] = 0.
\]

In particular, this induces the convergence of the empirical measures:

\[
\lim_{n \to +\infty} \mathbb{E}[\mathcal{W}_2(\bar{\mu}_s^n, P^B_{X^\nu_s})] = 0, \quad s \in [0, T].
\]
The proof follows the same lines of arguments as in [13, Theorem 1.3]. We therefore only sketch it. Using standard computations involving Itô’s formula, Young’s and Burkholder–Davis–Gundy’s inequalities, as well as the Lipschitz continuity properties of b and a, we can find a constant C such that

$$
\mathbb{E}\left[\sup_{u \in [0,t]} |X_u^{n,\ell} - X_u^{\ell}|^2 \right] \leq C \int_0^t \left(\mathbb{E}\left[|X_s^{n,\ell} - X_s^{\ell}|^2 \right] + \mathbb{E}[\mathcal{W}^2_2(\mu^n_s, \mathbb{P}^{B}_{X_s})] \right) ds , \quad t \leq T.
$$

We now introduce the measure $\mu^n_s := \frac{1}{n} \sum_{\ell=1}^n \delta_{X_s^{\ell}}$ for $n \geq 1$ and $s \in [0, T]$. Since the couples $(X_s^{\ell}, X_s^{n,\ell})$, $\ell = 1, \ldots, n$, have the same law, we get by applying Gronwall’s lemma a constant C' such that

$$
\mathbb{E}\left[\sup_{u \in [0,t]} |X_u^{n,\ell} - X_u^{\ell}|^2 \right] \leq C' \int_0^t \mathbb{E}\left[\mathcal{W}^2_2(\mu^n_s, \mathbb{P}^{B}_{X_s}) \right] ds , \quad t \in [0, T].
$$

Then, applying [13, Lemma 1.4] to $(X_t^{\ell}(\omega^0, \cdot))_{\ell \geq 1}$, we get $\lim_{n \to \infty} \mathbb{E}\left[\mathcal{W}^2_2(\mu^n_s, \mathbb{P}^{B}_{X_s}) \right] = 0$. Finally, since b and a are bounded, we can apply the dominated convergence theorem and get the required result. \hfill \square

In the sequel, we denote by t^ω the element $(\omega^n_s)_{s \in [0,T]}$ for $\omega^0 \in \Omega^0$ and $t \in [0, T]$. We note that the solution can also be defined ω^1 by ω^1. More precisely, we have the following.

Proposition 2.3 Fix $\theta \in \tilde{\mathcal{F}}^\circ$, $\chi \in \mathbb{X}_0^2$ and $\nu \in \mathcal{U}$. Let X^Q be the solution of (3) with $Q = (Q_s)_{s \leq T} \in \mathcal{P}^\circ_2$ in place of $(\mathbb{P}^{B}_{X_s})_{s \leq T}$. Then, there exist Borel measurable maps $x : \Omega^0 \times \Omega^1 \to \mathbb{R}^d$ and $u : [0, T] \times \Omega^0 \times \Omega^1 \to \mathcal{U}$ such that $\chi = x(B, \xi)$ \mathbb{P}-a.s. and $\nu. = u.(B, \xi) dt \times \mathbb{P}$-a.e. on $[0, T] \times \Omega$, such that, for all stopping time τ, $X^Q_{\tau \vee \theta} = X^Q_{\tau \vee \theta}(\cdot, \omega^1)$ \mathbb{P}-a.s. for \mathbb{P}-a.e. $\omega^1 \in \Omega^1$, in which X^Q, ω^1 solves

$$
X^Q_{\tau \vee \theta} = \mathbb{E}[x(B, \omega^1)|\mathcal{F}_{\tau \vee \theta}] + \int_\theta^{\tau \vee \theta} b_s(X^Q_{\tau \vee \theta}, \omega^1, Q_s, u_s(\xi B, \omega^1)) ds + \int_\theta^{\tau \vee \theta} a_s(X^Q_{\tau \vee \theta}, \omega^1, Q_s, u_s(\xi B, \omega^1)) dB_s.
$$

Moreover, the map $\omega^1 \in \Omega^1 \mapsto X^Q_{\tau \vee \theta} \in \mathbb{L}^2(\Omega^1, \mathcal{F}^1; \mathbb{L}_2(\Omega^0, \mathcal{F}^0_T, \mathbb{P}^0; \mathbb{R}^d))$ is measurable.

Proof Since χ is \mathcal{F}_θ-measurable and ν is \mathbb{P}-progressive, we get the existence of the Borel maps x and u from Doob’s measurability theorem. Then, in the case where b and a do not depend on the unknown X^Q and are piecewise constant together with u, we get by a standard computation that $\omega^1 \in \Omega^1 \mapsto X^Q_{\tau \vee \theta} \in \mathbb{L}^2(\Omega^0, \mathcal{F}^0_T, \mathbb{P}^0; \mathbb{R}^d)$ is measurable and $\mathbb{E}[|X^Q_{\tau \vee \theta} - X^Q_{\tau \vee \theta}|^2 |\xi] = 0$. We then extend this result for a and b continuous and u progressive by approximation of progressive functions by step functions. Finally, we extend the result to b and a depending on the unknown by Picard iteration. \hfill \square
For later use, we now show that the law of \((X^t, \chi, \nu, B)\) actually only depends on the joint law of \((\chi, \nu, t B)\).

Proposition 2.4 Let \(x : \Omega \circ \times \Omega \mathcal{I} \rightarrow \mathbb{R}^d\) and \(u : [0, T] \times \Omega \circ \times \Omega \mathcal{I} \rightarrow \mathbb{U}\) be Borel maps such that \(\chi := x(t B, \xi) \in X^2_{t}\) and \(\nu := u(B, \xi) \in \mathbb{U}\). Let \(\tilde{\xi}\) and \(\tilde{\xi}'\) be \([0, 1]^d\)-valued \(\mathcal{F}_t\)-measurable and set \(\tilde{\chi} := x(B, \tilde{\xi})\) and \(\tilde{\nu} := u(B, \tilde{\xi}')\). Assume that \((\chi, \nu, \cdot \vee t B)\) and \((\tilde{\chi}, \tilde{\nu}, \cdot \vee t B)\) have the same law. Then, \((X^t, \chi, \nu, B)\) and \((X^t, \tilde{\chi}, \tilde{\nu}, B)\) have the same law.

Proof One can follow [17, Theorem 3.3]. In their case, the conditioning is made with respect to \(t B\); in our case, it has to be done with respect to \((t B, \xi)\), where \(\xi\) is independent of \(B\), so that the equation can actually be solved conditionally to \(\xi\); see Proposition 2.3. Given the fixed point procedure used in Step 2.b. of the proof of Proposition 2.1, one can then find a sequence \((\hat{P}^n)_{n \geq 1}\) in \(L^2(\Omega \circ, \mathcal{P}_2(\mathbb{C}, \mathcal{B}(\mathbb{C})))\) (of iterated conditional laws) such that both \(\hat{P}^n \rightarrow \mathbb{P}^B_{X^t, \chi, \nu}\) and \(\hat{P}^n \rightarrow \mathbb{P}^B_{X^t, \tilde{\chi}, \tilde{\nu}}\) as \(n \rightarrow \infty\).

\(\blacksquare\)

3 The Stochastic Target Problem: Alternative Formulations and Geometric Dynamic Programming Principle

Our aim is to provide a characterization of the set of initial measures for law of the initial condition \(\chi\) independent of \(B\) such that the conditional law of \((X^t, \chi, \nu, T)\) given \(B\) belongs to a fixed closed subset \(G\) of \(\mathcal{P}_2:\)

\[
\mathcal{V}(t) = \left\{ \mu \in \mathcal{P}_2 : \exists (\chi, \nu) \in X^2_t \times \mathcal{U} \text{ s.t. } \mathbb{P}^B_{\chi} = \mu \text{ and } \mathbb{P}^B_{X^t, \chi, \nu} \in G \right\}.
\]

In the above, and all over this paper, identities involving random variables must be taken in the a.s. sense. In particular, \(\mathbb{P}^B_{X^t, \chi, \nu} \in G\) means \(\mathbb{P}^B_{X^t, \chi, \nu} \in G\) \(\mathbb{P} – \text{a.s.}\).

Before we go on, let us first give an example of application inspired from agricultural crop management.

Example 3.1 Consider the problem of a farmer that controls his production of wheat by spreading nitrogen fertilizer or water on his field. The field is viewed as a collection of particles to which the farmer will bring additional fertilizer, water, etc. His aim is to maximize the dry mass level of the field, the quality of the wheat, etc., whose initial state can be viewed as a random variable \(\chi\) (assigning \(d\) characteristics of the production to each particle) over the two-dimensional state space \(\Omega \mathcal{I} := [0, 1]^2\) modeling the field surface. The fertilizing effort is modeled by the control \(\nu\). Then, we let \(X^t, \chi, \nu\) denote the current distribution of these characteristics. Its dynamics is of the form (3) in which the Brownian diffusion part is used to take into account several contingencies, e.g., climatic ones. In particular, the dependency of the coefficients on \(\mathbb{P}^B_{X^t, \chi, \nu}\) can model local interactions between particles (representing the points in the field), e.g., related to the local water resource, access to sunlight, etc. The aim is to know what kind of initial state of the field allows to reach some given production level (in terms of volume, quality, etc.) at the end of the farming season. We shall come back to this example in Sect. 5.1.
We now show that χ in the definition of $\mathcal{V}(t)$ can be replaced by any random variable $\chi' \in X^2$ such that $P_{\chi'} = \mu$. Apart from showing that only the distribution μ matters (which is a desirable property if we think in terms of mass transportation), this will be of important use later on to provide a geometric dynamic programming principle for \mathcal{V}.

Proposition 3.1 A measure $\mu \in \mathcal{P}_2$ belongs to $\mathcal{V}(t)$ if and only if for all $\chi \in X^2$ such that $P_{\chi} = \mu$ there exists $v \in \mathcal{U}$ for which $P^B_{\chi,\chi,v} \in G$.

Proof Let $\tilde{\mathcal{V}}(t)$ denote the collection of measures $\mu \in \mathcal{P}_2$ such that for all $\chi \in X^2$ satisfying $P_{\chi} = \mu$ there exists $v \in \mathcal{U}$ for which $P^B_{\chi,\chi,v} \in G$. Clearly, $\tilde{\mathcal{V}}(t) \subset \mathcal{V}(t)$.

We now prove the reverse inclusion. Let $\mu \in \mathcal{V}(t)$ and consider $(\chi, v) \in X^2 \times \mathcal{U}$ such that $P^B_{\chi} = \mu$ and $P^B_{\chi,\chi,v} \in G$. We fix $\tilde{\chi} \in X^2$ such that $P^B_{\tilde{\chi}} = \mu$, and we construct $\tilde{v} \in \mathcal{U}$ such that $(\tilde{\chi}, \tilde{v}, B)$ and (χ, v, B) have the same law. Since $P^B_{\tilde{\chi}}$ is deterministic, one can find a Borel map x such that $\chi = x(\tilde{x})$ a.e.

We first argue as in [18, Proof of Proposition 3.1] and note that we can suppose $x : [0, 1]^d \to \mathbb{R}^d$ to be surjective. Indeed, if this is not the case, it is enough to modify x on the set $\mathcal{K} \times \mathbb{R}^{d-1}$, where \mathcal{K} stands for the Cantor set, by the composition of a surjective map from $[0, 1]$ to \mathbb{R}^d and $x \in \mathbb{R}^d \mapsto c(x^1)$ where c is the Cantor function from \mathcal{K} to $[0, 1]$.

By [19, Corollary 18.23], it follows that x admits an analytically measurable right-inverse, denoted by $\zeta : \mathbb{R}^d \to [0, 1]^d$, which satisfies

(i) $x(\zeta(x)) = x$ for all $x \in \mathbb{R}^d$;
(ii) $x^{-1}(\zeta^{-1}(A)) = A$, for any subset A of $[0, 1]^d$;
(iii) $\zeta^{-1}(A)$ is analytically measurable in \mathbb{R}^d for each Borel subset A of $[0, 1]^d$.

Recalling that every analytic subset of \mathbb{R}^d is universally measurable (see e.g., Theorem 12.41 in [19]), it follows that one can find a Borel measurable map ζ such that $\chi = \tilde{\chi}$ Lebesgue almost everywhere.

We now define $\tilde{\xi}$ by $\tilde{\xi} = \zeta(\tilde{\chi})$, so that $\tilde{\xi} = \zeta(\tilde{\chi})$ a.e. Since \mathcal{F}_0 is \mathcal{P}-complete, $\tilde{\xi}$ is \mathcal{F}_0-measurable. Then, using (ii) and since χ and $\tilde{\chi}$ have the same law, we obtain

$$P(\tilde{\xi} \in A) = P(\tilde{\chi} \in \zeta^{-1}(A)) = P(\chi \in \zeta^{-1}(A)) = P(A),$$

for all Borel set A. This proves that $\tilde{\xi}$ has the same law as ξ. Moreover, we have from (i)

$$x(\tilde{\xi}) = \tilde{\chi} \text{ a.s.}$$

which shows that (ξ, χ, B) and $(\tilde{\xi}, \tilde{\chi}, B)$ have the same law:

$$P[\xi \in A_1, \chi \in A_2, B \in A_3] = P[\xi \in A_1, x(\xi) \in A_2]P[B \in A_3]$$

$$= P[\tilde{\xi} \in A_1, x(\tilde{\xi}) \in A_2]P[B \in A_3]$$

$$= P[\tilde{\xi} \in A_1, \tilde{\chi} \in A_2, B \in A_3]$$

for all Borel sets A_1, A_2, A_3.

\(\mathcal{Q}\) Springer
Since ν is \mathbb{F}-progressively measurable, it is, up to modification, of the form

\[\nu_s(\omega^o, \omega^t) = u(s, sB(\omega^o), \xi(\omega^t)), \quad s \in [t, T], \]

with u a Borel map. Set now $\tilde{\nu} := u \mathbb{I}_{[0,t]} + \mathbb{I}_{[t,T]} u(\cdot, \cdot B, \tilde{\xi}) \in \mathcal{U}$, for some $u \in U$.

Then, $(\tilde{\chi}, \tilde{\nu}_t)$ and (χ, ν_t) have the same law, and Proposition 2.4 implies that $\mathbb{P}_{\tilde{\chi},\tilde{\nu}_t}^{B} = \mathbb{P}_{\chi,\nu_t}^{B}$ so that the latter belongs to G, thus proving that $\mathcal{V}(t) \subset \tilde{\mathcal{V}}(t)$, by arbitrariness of $\tilde{\chi}$. \hfill \Box

Before stating the dynamic programming principle, let us provide the following measurable selection lemma. We define the subset G of $[0, T] \times \mathbb{L}_2(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$ by

\[G := \{(t, \chi) \in [0, T] \times \mathbb{L}_2(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d) : \exists v \in \mathcal{U} \text{ s.t. } \mathbb{P}_{\chi,\nu_t}^{B} \subset G\}. \]

From now on, we consider \mathcal{U} as a subset of $\mathbb{L}_2([0, T] \times \Omega, dt \times d\mathbb{P}; U)$ endowed with its strong topology. We also introduce the subset \mathcal{U}_t of \mathcal{U} defined by

\[\mathcal{U}_t = \{v \in \mathcal{U} : v \text{ is progressively measurable w.r.t } \mathbb{F}_{[t,T]}\} \]

where $\mathbb{F}_{[t,T]}$ is the completion of $((B_{r\vee t} - B_t)_{0 \leq r \leq s}, \xi)_{s \in [0,T]}$. We first rewrite the set G as follows.

Lemma 3.1 We have the following identification

\[G = \{(t, \chi) \in [0, T] \times \mathbb{L}_2(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d) : \exists v \in \mathcal{U}_t \text{ s.t. } \mathbb{P}_{\chi,\nu_t}^{B} \subset G\}. \]

Proof If $G = \emptyset$ the result is obvious. Suppose that $G \neq \emptyset$, and let $v \in \mathcal{U}$ be such that $\mathbb{P}_{\chi,\nu_t}^{B} \subset G$.

Then, there exists a progressively measurable map u such that $v_s(\omega) = u_s(\omega^o, \omega^t)$ for $s \in [0, T]$. For $s \in [0, T]$, $w, w' \in \Omega^o$, set $w \oplus s w' := w \wedge s + (w' \vee s - w')$. Define $v_s^{\omega^o}(\tilde{\omega}^o, \omega^t) := u_s(\omega^o \oplus t \tilde{\omega}^o, \omega^t)$. Then, one can find $\omega^o \in \Omega^o$ such that $\mathbb{P}_{\chi,\omega^o}^{B} \subset G$ for \mathbb{P}^{ω^o}-a.e. $\tilde{\omega}^o \in \Omega^o$, see [17, Theorem 5.4] and Proposition 2.3.

The control v^{ω^o} is progressively measurable w.r.t. $\mathbb{F}_{[t,T]}$. \hfill \Box

Lemma 3.2 Suppose that $G \neq \emptyset$. For any probability measure \mathfrak{P} on $[0, T] \times \mathbb{L}_2(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$, there exists a measurable map $\vartheta : G \rightarrow \mathcal{U}$ such that

\[\mathbb{P}_{\chi,\rho_t}^{B} \subset G \]

for \mathfrak{P}-a.e. $(t, \chi) \in G$. Moreover, for each $(t, \chi) \in G$, $\vartheta(t, \chi)$ can be chosen to be in \mathcal{U}_t.
Proof Since $G \neq \emptyset$, we get from Lemma 3.1 that the set

$$J := \{(t, \chi, \nu) \in [0, T] \times L^2(\Omega, \mathcal{F}^1, \mathbb{P}^1; \mathbb{R}^d) \times \mathcal{U} : \mathbb{P}_X^B \in G \text{ and } \nu \in \mathcal{U}_t\}$$

is not empty. The set J is also analytic. Indeed, denote by ι the map from \mathbb{N}^∞ to $[0, T]$ defined by

$$\iota((\sigma_n)_{n \in \mathbb{N}}) = T\left(10^{-\sigma_0} \sum_{n=1}^{+\infty} (\sigma_n \mod 10).10^{-n+1}\right).$$

Then, ι is surjective and we can write the set J as

$$J = \bigcup_{(\sigma_n)_{n \in \mathbb{N}}} \bigcap_{n=1}^\infty J(\sigma_1, \ldots, \sigma_n)$$

where

$$J(\sigma_1, \ldots, \sigma_n) = \left\{(t, \chi, \nu) \in [\iota((\sigma_1, \ldots, \sigma_n, 0, 0, \ldots)), \iota((\sigma_1, \ldots, \sigma_n, 0, 0, \ldots)) + \frac{1}{10^n}] \times L^2(\Omega, \mathcal{F}^1, \mathbb{P}^1; \mathbb{R}^d) \times \mathcal{U}_{(\sigma_1, \ldots, \sigma_n, 0, 0, \ldots)} : \mathbb{P}_X^B \in G\right\}$$

Then, from (5) of Proposition 2.1, each $J(\sigma_1, \ldots, \sigma_n)$ is closed and J is analytic (see e.g., [20, Definition 7.16]).

Moreover, the set $[0, T] \times L^2(\Omega, \mathcal{F}^1, \mathbb{P}^1; \mathbb{R}^d) \times \mathcal{U}$ is a Polish space. Then, the Jankov–von Neumann theorem (see [20, Proposition 7.49]) ensures the existence of an analytically measurable function

$$\tilde{\vartheta} : [0, T] \times L^2(\Omega, \mathcal{F}^1, \mathbb{P}^1; \mathbb{R}^d) \longrightarrow \mathcal{U}$$

such that

$$(t, \chi, \tilde{\vartheta}(t, \chi)) \in J \text{ for all } (t, \chi) \in G.$$

Since any analytically measurable map is also universally measurable, the existence of ϑ follows from [20, Lemma 7.27].

We can now state the dynamic programming principle. In the following, $\mathbb{P}_X^B \in \mathcal{V}(\theta)$ means

$$\mathbb{P}^\circ\left(\{\omega^\circ \in \Omega^\circ : \mathbb{P}_X^B(\omega^\circ) \in \mathcal{V}(\theta(\omega^\circ))\}\right) = 1.$$
Theorem 3.1 Fix $t \in [0, \tau)$ and $\theta \in \tilde{T}^\circ$ with values in $[t, \tau)$. Then,
\[\mathcal{V}(t) = \left\{ \mu \in \mathcal{P}_2 : \exists (\chi, \nu) \in X^2_t \times \mathcal{U} \text{ s.t. } \mathbb{P}_\chi^B = \mu \text{ and } \mathbb{P}^B_{X^t_{\chi,\nu}} \in \mathcal{V}(\theta) \right\}. \]

Proof Denote by $\hat{\mathcal{V}}(t)$ the right-hand side of the equality in Theorem 3.1.
1. We first prove the inclusion $\mathcal{V}(t) \subset \hat{\mathcal{V}}(t)$. If $\mathcal{V}(t) = \emptyset$, the result is obvious. Suppose then $\mathcal{V}(t) \neq \emptyset$ and fix $\mu \in \mathcal{V}(t)$. Then, there exists $(\chi, \nu) \in X^2_t \times \mathcal{U}$ and $\tilde{\Omega} \in \mathcal{F}^\circ$ such that $\mathbb{P}^\circ(\tilde{\Omega}^\circ) = 1$, $\mathbb{P}_\chi^B = \mu$ and $\mathbb{P}^B_{X^t_{\chi,\nu}} \in G$ on $\tilde{\Omega}^\circ$. For $\tilde{\omega} \in \tilde{\Omega}^\circ$, we define $(\chi^\tilde{\omega}_\circ, \nu^\tilde{\omega}_\circ)$ by
\[\chi^\tilde{\omega}_\circ(\omega) = X^t_{\theta((\tilde{\omega}^\circ))}^t(\tilde{\omega}^\circ, \omega^t), \quad \nu^\tilde{\omega}_\circ(\omega) = \nu_s(\tilde{\omega}^\circ \oplus_{\theta(\tilde{\omega}^\circ)} \omega^t, \omega^t), \quad s \in [0, \tau) \]
for all $\omega = (\omega^t, \omega^t) \in \Omega$. Note that $X^t_{\theta((\tilde{\omega}^\circ))}^t(\tilde{\omega}^\circ, \omega^t) \in \mathcal{F}^\circ$ has the same law as $X^t_{\theta(\omega^t)}(\omega^t, \omega^t)$ and $\nu^\tilde{\omega}_\circ \in \mathcal{U}$ for all $\tilde{\omega} \in \tilde{\Omega}^\circ$. Moreover, it follows from [17, Theorem 5.4] and Proposition 2.3 that $X^t_{\theta((\tilde{\omega}^\circ)), \nu^\tilde{\omega}_\circ}$ has the same law as $X^t_{\theta(\omega^t), \nu(\omega^t)}$, for \mathbb{P}°-a.e. $\tilde{\omega} \in \tilde{\Omega}^\circ$.

Since $\mathbb{P}^B_{X^t_{\theta, \nu}}(\omega^t) = \mathbb{P}^B_{X^t_{\theta, \nu}}(\tilde{\omega}^\circ)$, we can then conclude that $\mathbb{P}^B_{X^t_{\chi, \nu}}(\tilde{\omega}^\circ) = \mathbb{P}^B_{X^t_{\theta, \nu}}(\tilde{\omega}^\circ)$ for all $\tilde{\omega} \in \tilde{\Omega}^\circ$. Therefore $\mu \in \hat{\mathcal{V}}(t)$.

2. We now prove the inclusion $\hat{\mathcal{V}}(t) \subset \mathcal{V}(t)$. If $\hat{\mathcal{V}}(t) = \emptyset$, the result is obvious. Suppose then $\hat{\mathcal{V}}(t) \neq \emptyset$ and fix $\mu \in \hat{\mathcal{V}}(t)$ and $(\chi, \nu) \in X^2_t \times \mathcal{U}$ such that $\mathbb{P}_\chi^B = \mu$ and $\mathbb{P}^B_{X^t_{\chi, \nu}} \in \mathcal{V}(\theta)$. It follows from Proposition 3.1 that $(\theta(\omega^t), X^t_{\theta(\omega^t)}(\omega^t, \cdot)) \in \mathcal{G} \neq \emptyset$, for \mathbb{P}°-a.e. $\omega^t \in \tilde{\Omega}^\circ$. Let us now define \mathbb{P} as the probability measure induced by $\omega^t \mapsto (\theta(\omega^t), X^t_{\theta(\omega^t)}(\omega^t, \cdot))$ on $[0, \tau] \times L_2(\Omega^t, \mathcal{F}^t, \mathbb{P}^t, \mathbb{R}^d)$. By Lemma 3.2, there exists a measurable map ϑ such that $\mathbb{P}^B_{X^t_{\theta, \vartheta(\theta(\omega^t))}} \in G \mathbb{P}^\circ$-a.s. for \mathbb{P}°-a.e. $(\theta(\omega^t), \vartheta(\omega^t)) \in \mathcal{G}$. Since $\vartheta(\theta(\omega^t), \cdot)$ can be chosen in the filtration $\mathcal{F}[t, \tau]$ to which $\vartheta(\omega^t)$ is independent, $\mathbb{P}^B_{X^t_{\theta, \vartheta(\theta(\omega^t))}}$ is measurable with respect to $\sigma(B_{\forall t \neq t^t} - B_{t^t})$. Hence, there exist null sets N and \tilde{N} such that
\[\mathbb{P}^B_{X^t_{\theta, \vartheta(\theta(\omega^t))}}(\tilde{\omega}) \in G \quad \text{for } \omega^t \notin N \text{ and } \tilde{\omega}^\circ \notin \tilde{N}, \]
where
\[\alpha(\omega^t, \cdot) := (\theta(\omega^t), X^t_{\theta(\omega^t)}(\omega^t, \cdot), \vartheta(\theta(\omega^t), X^t_{\theta(\omega^t)}(\omega^t, \cdot))). \]

It remains to define the process $\tilde{\nu} \in \mathcal{U}$ by
\[\tilde{\nu}(\omega) = \nu(\omega) 1_{[0, \theta(\omega^t)]} + \vartheta(\theta(\omega^t), X^t_{\theta(\omega^t)}(\omega^t, \cdot))(\omega) 1_{[\theta(\omega^t), \tau]}, \quad (8) \]
and observe that $X^t_{\theta^t} = X^t_{\theta, \tilde{\nu}}$, to conclude that $\mu \in \mathcal{V}(t)$.

 Springer
4 The Dynamic Programming PDE

Let \(v: [0, T] \times \mathcal{P}_2 \to \mathbb{R}\) be the indicator function of the complement of the reachability set \(\mathcal{V}\):

\[
v(t, \mu) = 1 - \mathbb{1}_{\mathcal{V}(t)}(\mu), \quad (t, \mu) \in [0, T] \times \mathcal{P}_2.
\] (9)

The aim of this section is to provide a characterization of \(v\) as a (discontinuous) viscosity solution of a fully nonlinear second-order parabolic partial differential equation, in the spirit of [2]. Given Theorem 3.1, this follows from combining the technologies developed in [2,9,10]. We refer to Sect. 5.1 for the specific case where the reachability set is an half-space in one direction.

4.1 Derivatives on the Space of Probability Measures and Itō’s Lemma

We first recall here the notion of derivative with respect to a probability measure that has been introduced by Lions (see the lecture notes [9]) and further developed in [10], to our context.

We let \(\hat{\Omega}^1\) be a Polish space, \(\hat{\mathcal{F}}^1\) its Borel \(\sigma\)-algebra and \(\hat{\mathbb{P}}^1\) an atomless probability measure on \((\hat{\Omega}^1, \hat{\mathcal{F}}^1)\).

We recall that we have \(\mathcal{P}_2 = \{\hat{\mathbb{P}}^1_Y := \hat{\mathbb{P}}^1 \circ Y^{-1} : Y \in \mathbf{L}_2(\hat{\Omega}^1, \hat{\mathcal{F}}^1, \hat{\mathbb{P}}^1; \mathbb{R}^d)\}\).

For a function \(w : \mathcal{P}_2 \to \mathbb{R}\), we define its lifting as the function \(W\) from \(\mathbf{L}_2(\hat{\Omega}^1, \hat{\mathcal{F}}^1, \hat{\mathbb{P}}^1; \mathbb{R}^d)\) to \(\mathbb{R}\) such that

\[
W(X) = w((\hat{\mathbb{P}}^1_X)\), \quad \text{for all } X \in \mathbf{L}_2(\hat{\Omega}^1, \hat{\mathcal{F}}^1, \hat{\mathbb{P}}^1; \mathbb{R}^d).
\]

We then say that \(w\) is Fréchet differentiable (resp. \(C^1\)) on \(\mathcal{P}_2\) if its lift \(W\) is (resp. continuously) Fréchet differentiable on \(\mathbf{L}_2(\hat{\Omega}^1, \hat{\mathcal{F}}^1, \hat{\mathbb{P}}^1; \mathbb{R}^d)\). If it exists, the Fréchet derivative \(DW(X)\) of \(W\) at \(X \in \mathbf{L}_2(\hat{\Omega}^1, \hat{\mathcal{F}}^1, \hat{\mathbb{P}}^1; \mathbb{R}^d)\) can be identified by Riesz theorem to an element of \(\mathbf{L}_2(\hat{\Omega}^1, \hat{\mathcal{F}}^1, \hat{\mathbb{P}}^1; \mathbb{R}^d)\) and admits a representation of the form

\[
DW(X) = \partial_\mu w((\hat{\mathbb{P}}^1_X))(X)
\] (10)

for some measurable map \(\partial_\mu w((\hat{\mathbb{P}}^1_X)) : \mathbb{R}^d \to \mathbb{R}^d\), that we call the derivative of \(w\) at \((\hat{\mathbb{P}}^1_X)\) and we have \(\partial_\mu w(\mu) \in \mathbf{L}_2(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \mu; \mathbb{R}^d)\) for \(\mu \in \mathcal{P}_2\). In the case where \(x \in \mathbb{R}^d \mapsto \partial_\mu w(\mu)(x)\) is differentiable at \(x\), given \(\mu \in \mathcal{P}_2\), we denote by \(\partial_1, \partial_2, \partial_\mu w(\mu)(x)\) the corresponding gradient.

Following [10, Section 3.1], we say that \(w\) is fully \(C^2\) if it is \(C^1\) on \(\mathcal{P}_2\) and

- The map \((\mu, x) \mapsto \partial_\mu w(\mu)(x)\) is continuous at any \((\mu, x) \in \mathcal{P}_2 \times \mathbb{R}^d\),
- For any \(\mu \in \mathcal{P}_2\), the map \(x \mapsto \partial_\mu w(\mu)(x)\) is continuously differentiable and the map \((\mu, x) \mapsto \partial_1, \partial_2, \partial_\mu w(\mu)(x)\) is continuous at any \((\mu, x) \in \mathcal{P}_2 \times \mathbb{R}^d\),
- For any \(x \in \mathbb{R}^d\), the map \(\mu \mapsto \partial_\mu w(\mu)(x)\) is differentiable in the lifted sense and its derivative, regarded as the map \((\mu, x, x') \mapsto \partial^2_\mu w(\mu)(x, x')\), is continuous at any \((\mu, x, x') \in \mathcal{P}_2 \times \mathbb{R}^d \times \mathbb{R}^d\).
From now on, we define $C^{1,2}([0, T] \times \mathcal{P}_2)$ as the set of continuous functions $w : [0, T] \times \mathcal{P}_2 \to \mathbb{R}$ such that $w(t, \cdot)$ is fully C^2 for all $t \in [0, T]$, $\partial_t w$ exists and is continuous on $[0, T] \times \mathcal{P}_2$, $\partial_\mu w$, $\partial_x \partial_\mu w$ and $\partial_\mu^2 w$ are continuous, respectively, on $[0, T] \times \mathcal{P}_2 \times \mathbb{R}^d$, $[0, T] \times \mathcal{P}_2 \times \mathbb{R}^d$ and $[0, T] \times \mathcal{P}_2 \times \mathbb{R}^d \times \mathbb{R}^d$. We also define $C_b^{1,2}([0, T] \times \mathcal{P}_2)$ as the set of functions $w \in C^{1,2}([0, T] \times \mathcal{P}_2)$ such that

$$\sup_{t \in [0, T], \mu \in \mathcal{K}} \left\{ |\partial_t w(t, \mu)| + \int_{\mathbb{R}^d} |\partial_\mu w(t, \mu)(x)|^2 d\mu(x) + \int_{\mathbb{R}^d} |\partial_x \partial_\mu w(t, \mu)|^2 d\mu(x) + \int_{\mathbb{R}^d \times \mathbb{R}^d} |\partial_\mu^2 w(t, \mu)(x, x')|^2 d(\mu \otimes \mu)(x, x') \right\} < \infty$$

for any compact subset \mathcal{K} of \mathcal{P}_2.

We are now in position to derive a chain rule for the flow of conditional marginal laws of the controlled process. To this end, we introduce the probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ defined by

$$\tilde{\Omega} = \Omega^o \times \tilde{\Omega}^1, \quad \tilde{\mathcal{F}} = \mathcal{F}^o \otimes \tilde{\mathcal{F}}^1 \text{ and } \tilde{\mathbb{P}} = \mathbb{P}^o \otimes \tilde{\mathbb{P}}^1.$$

As for the space $(\Omega, \mathcal{F}, \mathbb{P})$, we denote by $\tilde{\mathbb{E}}_B$ the regular conditional expectation given B on $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$.

Proposition 4.1 Let $w \in C_b^{1,2}([0, T] \times \mathcal{P}_2)$. Given $(t, \chi, v) \in [0, T] \times X_t \times \mathcal{U}$, set $X = X^t \times \chi, v$, $a = a(X, \mathbb{P}^X_{X_t}, v)$ and $b = b(X, \mathbb{P}^X_{X_t}, v)$. Then,

$$w(s, \mathbb{P}^B_{X_t}) = w(t, \mathbb{P}^B_{X_t}) + \int_t^s \tilde{\mathbb{E}}_B \left[\partial_t w(r, \mathbb{P}^B_{X_t}) + \partial_\mu w(r, \mathbb{P}^B_{X_t})(X_r)br \right] dr + \frac{1}{2} \int_t^s \tilde{\mathbb{E}}_B \left[\text{Tr} \left(\partial_x \partial_\mu w(r, \mathbb{P}^B_{X_t})(X_r)ar a_r^\top \right) \right] dr + \int_t^s \tilde{\mathbb{E}}_B \left[\text{Tr} \left(\partial_\mu^2 w(r, \mathbb{P}^B_{X_t})(X_r, \tilde{X}_r)ar a_r^\top \right) \right] dr + \int_t^s \tilde{\mathbb{E}}_B \left[\partial_\mu w(r, \mathbb{P}^B_{X_t})(X_r)ar (X_r, \mathbb{P}^B_{X_t}, v_r) \right] dB_r$$

for all $s \in [t, T]$, where\(^1\) (\tilde{X}, \tilde{a}) is a copy of (X, a) on $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$.

Proof The proof follows from similar arguments as in [10], and we only mention the main ideas.

We first define on $\tilde{\Omega}^1$ a sequence of i.i.d. random variables $(\xi^t)_{t \geq 2}$ following the uniform law on $[0, 1]^d$ (such a sequence exists since $\tilde{\Omega}^1$ is Polish and \mathbb{P}^1 is atomless).

\(^1\) This means that $(\tilde{X}, \tilde{a})(\omega^o, \cdot)$, defined on $\tilde{\Omega}^1$, has the same law as $(X, a)(\omega^o, \cdot)$, defined on Ω^1, for a.e. $\omega^o \in \Omega^o$.

\(\square\) Springer
We then extend B, ξ and ξ^ℓ, $\ell \geq 2$, to the probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P})}$, with $\hat{\Omega} := \Omega^0 \times \Omega^1 \times \Omega^1$, $\hat{\mathcal{F}} := \mathcal{F}^0 \otimes \mathcal{F}^1 \otimes \mathcal{F}^1$ and $\hat{\mathbb{P}} = \mathbb{P}^0 \otimes \mathbb{P}^1 \otimes \mathbb{P}^1$, in a canonical way by setting

$$
\xi^1(\hat{\omega}) = \xi(\hat{\omega}) = \omega^1, \quad \xi^\ell(\hat{\omega}) = \xi^\ell(\hat{\omega}') \quad \text{and} \quad B(\hat{\omega}) = \omega^0,
$$

for all $\hat{\omega} = (\omega^0, \omega^1, \hat{\omega})$. Note that $(\xi^\ell)_{\ell \geq 1}$ is then an i.i.d. sequence, independent of B.

Since $\chi \in X$, and $v \in \mathcal{U}$, we can find two Borel maps x and u such that $\chi = x(B, \xi^1)$ \mathbb{P}-a.s. and $v = u(\cdot, B, \xi^1)$, up to modification. We then define (χ^ℓ, v^ℓ) as $(x(\xi^\ell), u(\cdot, B, \xi^\ell))$, for $\ell \geq 1$, and let X^ℓ be the solution on $[t, T]$ of

$$
X^\ell = \chi^\ell + \int_t^s b^\ell_s ds + \int_t^s a^\ell_s dB_s,
$$

in which $(b^\ell, a^\ell) = (b, a)(X^\ell, \mathbb{P}^B_{X^1}, v^\ell)$. It follows from Proposition 2.3 that $(X^\ell)_{\ell \geq 1}$ is a sequence of i.i.d. random variables given $(B_r)_{r' \leq T}$, for each $r \in [t, s]$. Set $\tilde{\mu}_r^N := \frac{1}{N} \sum_{\ell = 1}^N \delta_{X^\ell_r}$ for $t \leq r \leq s$.

1. We first assume that $w \in C_b^{1,2}([0, T] \times \mathcal{P}_2)$ is such that

$$
(\mu, x, x') \mapsto (\partial_\mu w(\mu)(x), \partial_x \partial_\mu w(\mu)(x), \partial^2_{\mu} w(\mu)(x, x'))
$$

is continuous and that $w, \partial_\mu w, \partial_x, \partial_\mu w$ and $\partial^2_{\mu} w$ are bounded and uniformly continuous. Then, it follows from [10, Proposition 3.1] combined with Itô’s lemma that

$$
w(s, \tilde{\mu}^N_s) = w(t, \tilde{\mu}^N_t) + \int_t^s \partial_\mu w(r, \tilde{\mu}^N_r) dr + \frac{1}{N} \sum_{\ell = 1}^N \int_t^s \partial_\mu w(r, \tilde{\mu}^N_r)(X^\ell_r)b^\ell_r dr + \frac{1}{N} \sum_{\ell = 1}^N \int_t^s \partial_\mu w(r, \tilde{\mu}^N_r)(X^\ell_r)a^\ell_r dB_r + \frac{1}{2N} \sum_{\ell = 1}^N \int_t^s \text{Tr} \left[\partial_x \partial_\mu w(r, \tilde{\mu}^N_r)(X^\ell_r)a^\ell_r (a^\ell_r)^T \right] dr
$$

$$
+ \frac{1}{2N^2} \sum_{\ell, n = 1}^N \int_t^s \text{Tr} \left[\partial^2_{\mu} w(r, \tilde{\mu}^N_r)(X^\ell_r, X^n_r)(a^\ell_r a^n_r)^T \right] dr.
$$

We now take the expectation given $(B_r)_{r' \leq T}$ on both sides and use [21, Corollaries 2 and 3 of Theorem 5.13] and [22, Lemma 14.2] together with the fact that the tuples $(\tilde{\mu}^N_r, X^\ell_r, X^n_r, b^\ell_r, b^n_r, a^\ell_r, a^n_r)$, $\ell, n \leq N$, have all the same law given $(B_r)_{r' \leq T}$, for $t \leq r \leq s$, to obtain

\(\square \) Springer
\[\hat{E}_B[w(s, \hat{\mu}_N^s)] = \hat{E}_B[w(t, \hat{\mu}_t^N)] + \int_t^s \hat{E}_B \left[\partial_t w(r, \hat{\mu}_r^N) + \partial_{\mu} w(r, \hat{\mu}_r^N)(X_r^1 b_r^1) \right] dr \\
+ \int_t^s \hat{E}_B \left[\partial_{\mu} w(r, \hat{\mu}_r^N)(X_r^1) a_r^1 \right] dB_r \\
+ \frac{1}{2} \int_t^s \hat{E}_B \left[\text{Tr} \left(\partial_x \partial_{\mu} w(r, \hat{\mu}_r^N)(X_r^1, X_r^2) a_r^1 (a_r^2)^\top \right) \right] dr \\
+ \frac{1}{2N} \int_t^s \hat{E}_B \left[\text{Tr} \left(\partial_{\mu}^2 w(r, \hat{\mu}_r^N)(X_r^1, X_r^2) a_r^1 (a_r^2)^\top \right) \right] dr, \]

where \(\hat{E}_B \) stands for the conditional expectation given \((B_r)_{r' \leq T} \) on \(\hat{\Omega} \). We then use the fact that \(\mathcal{W}_2(\hat{\mu}_N^N, \mathbb{P}_{X_1}^B) \to 0 \) a.s. as \(N \to \infty \) for all \(r \in [t, s] \). This is a consequence of \([13, \text{Lemma 4}] \) and the fact that \((X_r^1)_{r \geq 1} \) is a sequence of i.i.d. random variables given \((B_r)_{r' \leq T} \). Since all the involved maps are assumed to be bounded and continuous, one can take the limit as \(N \to \infty \) in the above to obtain

\[w(s, \mathbb{P}_1^B) = w(t, \mathbb{P}_1^B) + \int_t^s \mathbb{E}_B \left[\partial_t w(r, \mathbb{P}_1^B) + \partial_{\mu} w(r, \mathbb{P}_1^B)(X_r^1) b_r^1 \right] dr \\
+ \int_t^s \mathbb{E}_B \left[\partial_{\mu} w(r, \mathbb{P}_1^B)(X_r^1) (a_r^1) \right] dB_r \\
+ \frac{1}{2} \int_t^s \mathbb{E}_B \left[\text{Tr} \left(\partial_x \partial_{\mu} w(r, \mathbb{P}_1^B)(X_r^1) a_r^1 (a_r^2)^\top \right) \right] dr \\
+ \frac{1}{2} \int_t^s \mathbb{E}_B \left[\text{Tr} \left(\partial_{\mu}^2 w(r, \mathbb{P}_1^B)(X_r^1, X_r^2) a_r^1 (a_r^2)^\top \right) \right] dr. \quad (13) \]

2. The validity of \((13)\) can be extended to the case where \(w \) is just in the class \(\mathcal{C}_b^{1,2}([0, T] \times \mathcal{P}_2) \) by following the mollifying argument of \([10, \text{Proposition 3.4}] \) whenever the condition \((11)\) holds; recall that \((b, a)\) is bounded. \(\square \)

Later on, we shall need to use this Itô’s formula at the level of a map \(W \) defined on \(\mathcal{L}_2(\hat{\Omega}^1, \hat{\mathcal{F}}^1, \hat{\mathbb{P}}^1; \mathbb{R}^d) \). When \(W \) is the lift of a \(\mathcal{C}_b^{1,2} \) function \(w \), and under the additional assumption that \(W \) is twice continuously Fréchet differentiable\(^2\), \(D^2 W \) can be identified by Riesz theorem as a self-adjoint operator on the space \(\mathcal{L}_2(\hat{\Omega}^1, \hat{\mathcal{F}}^1, \hat{\mathbb{P}}^1; \mathbb{R}^d) \) and we have the following identification by \([24, \text{Remark 6.4}] \)

\[\hat{E}^1 \left[D^2 W(X)(Y)Y^\top \right] = \hat{E}^1 \left[\text{Tr} \left(\partial_x \partial_{\mu} w(\mu)(X)YY^\top \right) \right] \\
+ \hat{E}^1 \left[\hat{E}^n \left[\text{Tr} \left(\partial_{\mu}^2 w(\mu)(X, X')Y(Y')^\top \right) \right] \right] dr. \quad (14) \]

\(^2\) Being \(\mathcal{C}_b^{1,2} \) for the function \(w \) is not a sufficient condition for the lift \(W \) to be twice Fréchet differentiable as shown in \([23, \text{Example 2.3}] \).
for any random variables $X \in L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)$ with $\tilde{\mathbb{P}}_{X}^1 = \mu$ and Y belonging to $L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)$, where (X', Y') is a copy of (X, Y) on another Polish atomless probability space $(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1)$, and $\tilde{\mathbb{E}}^1$ is the expectation operator under $\tilde{\mathbb{P}}^1$.

Let us say that $W : [0, T] \times L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d) \to \mathbb{R}$ is $C_b^{1,2}$ if it is the lifting function of a map $w \in C_b^{1,2}([0, T] \times \mathcal{P}_2)$. Given a random variable $X \in L_2(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^d)$ (recall that $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ is defined in (12)), we define $W(t, X)$ as the random variable $\omega \mapsto W(t, X(\omega, \cdot))$ where $X(\omega, \cdot)$ is now a random variable on $L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)$. We use the same convention for $D W(t, X(\omega, \cdot))$ and for the second-order derivative $D^2 W(t, X(\omega, \cdot))$. For $(t, \chi, \nu) \in [0, T] \times \mathcal{X}_t \times \mathcal{U}$, we introduce $\tilde{\chi}, \tilde{\nu}$ copies of χ, ν defined on $\tilde{\Omega}$ and we define the process \tilde{X} on $\tilde{\Omega}$ solution to (3) with initial conditions $(t, \tilde{\chi})$ and control $\tilde{\nu}$. As an immediate corollary of Proposition 4.1 and (14), we then have the following:

\[
W(s, \tilde{X}_s) = W(t, \tilde{X}_t)
+ \int_t^s \tilde{\mathbb{E}}_B \left[\partial_t W(r, \tilde{X}_r) + D W(r, \tilde{X}_r)b_r(\tilde{X}_r, \tilde{\mathbb{P}}^B_{\tilde{X}_r}, \tilde{\nu}_r) \right] dr
+ \frac{1}{2} \int_t^s \tilde{\mathbb{E}}_B \left[D^2 W(r, \tilde{X}_r)(X)_r a_r a_r^\top(\tilde{X}_r, \tilde{\mathbb{P}}^B_{\tilde{X}_r}, \tilde{\nu}_r) \right] dr
+ \int_t^s \tilde{\mathbb{E}}_B \left[D W(r, \tilde{X}_r)a_r(\tilde{X}_r, \tilde{\mathbb{P}}^B_{\tilde{X}_r}, \tilde{\nu}_r) \right] dB_r,
\]

(15)

for all $s \in [0, T]$, whenever W is in $C_b^{1,2} \cap C^{1,2}([0, T] \times \mathcal{P}_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d))$.

This result is in fact true even when W is not necessarily the lift of a law-invariant map, but simply $C^{1,2}([0, T] \times L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d))$.

Proposition 4.2 Fix $W \in C^{1,2}([0, T] \times L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d))$, then (15) holds.

Proof This follows from the proof of [24, Proposition 6.3] up slight adaptations similar to the ones made in the Proposition 4.1.

4.2 Verification Argument

We recall that we aim at characterizing the function

\[
v : (t, \mu) \in [0, T] \times \mathcal{P}_2 \mapsto 1 - 1_{\mathcal{Y}(t)}(\mu) .
\]

Following [2,23], one can expect it to solve, in a certain sense, the PDE

\[
- \partial_t w(t, \mu) + H(t, \mu, \partial_\mu w(t, \mu), \partial_\mu \partial_\chi w(t, \mu), \partial_\mu^2 w(t, \mu)) = 0 ,
\]

(16)

in which

\[
H(t, \mu, \partial_\mu w(t, \mu), \partial_\mu \partial_\chi w(t, \mu), \partial_\mu^2 w(t, \mu)) := \sup_{u \in N(t, \mu, \partial_\mu w(t, \mu))} (-L_t^u[w](\mu))
\]
with
\[
N(t, \mu, \partial_\mu w(t, \mu)) := \left\{ u \in L_0(\mathbb{R}^d; U) : \int \partial_\mu w(t, \mu)(x)a_t(x, \mu, u(x))\mu(dx) = 0 \right\}
\]
where \(L_0(\mathbb{R}^d; U)\) stands for the collection of \(U\)-valued Borel maps on \(\mathbb{R}^d\), and
\[
L^\mu_t[w](\mu) := \int \int \left\{ b_t(x, \mu, u(x))^\top \partial_\mu w(t, \mu)(x) + \frac{1}{2} \text{Tr} \left[\partial^2_{\mu} w(t, \mu)(x, \mu) (a_t)^\top (x, \mu, u(x)) \right] \right\} \mu(dx)\mu(d\tilde{x}).
\]

There is, however, little chance that the above equation admits a smooth solution, and, as usual, we shall appeal to the notion of viscosity solutions; see Sect. 4.3. Still, one can check whether a measure \(\mu\) belongs to the set \(\mathcal{V}(t)\) by using a verification argument.3

Proposition 4.3 Let \(w \in C^{1,2}_b([0, T] \times \mathcal{P}_2)\) and \(u \) be a \(U\)-valued map on \([0, T] \times \Omega^o \times \mathbb{R}^d\) which is \(\mathbb{F}\)-progressive \(\otimes \mathcal{B}(\mathbb{R}^d)\)-measurable. Fix \(t \leq T\) and \(\mu \in \mathcal{P}_2\) and assume that existence holds for (3) with \(v := u(\cdot, X^t, X^v)\), for some \(X^t\) such that \(\mathbb{P}^X = \mu\). Assume further that

\[
- \partial_t w(\cdot, \mathbb{P}^X_{X^t, X^v}(\omega^o)) - L^\mu_{X^t, X^v}(\omega^o) \geq 0 \text{ a.e.}
\]

\[
u(\cdot, \omega^o, \cdot) \in N(\cdot, \mathbb{P}^X_{X^t, X^v}(\omega^o), \partial_\mu w(\cdot, \mathbb{P}^X_{X^t, X^v})(\omega^o)) \text{ dt a.e.}
\]

\[
w(T, \cdot) \geq 1 - \mathbb{1}_G \text{ on } \mathcal{P}_2,
\]

for \(\mathbb{P}^o\)-almost all \(\omega^o \in \Omega^o\). Then, \(\mu \in \mathcal{V}(t)\) whenever \(w(t, \mu) \leq 0\).

Proof Our conditions ensure that \(v \in \mathcal{U}\). Moreover, the chain rule of Proposition 4.1 combined with the above imply that \(w(T, \mathbb{P}^X_{X^t, X^v}) \leq 0\). Hence, \(1 - \mathbb{1}_G(\mathbb{P}^X_{X^t, X^v}) \leq 0\) so that \(\mathbb{P}^X_{X^t, X^v} \in G\).

4.3 Viscosity Solution Property

As already mentioned, we shall in general rely on the notion of viscosity solutions. For this, we need to work at the level of the lifting function \(V : [0, T] \times \mathcal{L}_2(\tilde{\Omega}^1, \tilde{J}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d) \rightarrow \mathbb{R}\) of \(v\). In view of (10)–(14), one expects that it solves on \([0, T] \times \mathcal{L}_2(\tilde{\Omega}^1, \tilde{J}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)\)

\[
- \partial_t W + \mathcal{H}(\cdot, DW, D^2W) = 0.
\]

3 We leave the study of more precise examples to future research.
where \mathcal{H} is defined as \mathcal{H}_0 with, for $\varepsilon \geq 0$,

$$
\mathcal{L}^\varepsilon_t(\chi, P, Q) := \tilde{\mathbb{E}}_B\left[b^T_t (\chi, \mathbb{P}_\chi, u) P + \frac{1}{2} Q(a_t(\chi, \mathbb{P}_\chi, u)Z) \right]
$$

$$
\mathcal{H}_\varepsilon(t, \chi, P, Q) := \sup_{u \in \mathcal{N}_\varepsilon(t, \chi, P)} \left\{ -\mathcal{L}^\varepsilon_t(\chi, P, Q) \right\}
$$

$$
\mathcal{N}_\varepsilon(t, \chi, P) := \left\{ u \in \mathbf{L}_0(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; U) : |\tilde{\mathbb{E}}_B[a_t(\chi, \mathbb{P}_\chi, u)P]| \leq \varepsilon \right\},
$$

for $t \in [0, T]$, $u \in \mathbf{L}_0(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; U)$, χ, $P \in \mathbf{L}_2(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^d)$ and $Q \in \mathbf{L}(\mathbf{L}_2(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^d))$, the set of self-adjoint operators on $\mathbf{L}_2(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^d)$.

Let us recall that $W : [0, T] \times \mathbf{L}_2(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^d)$ is extended to the product space $[0, T] \times \mathbf{L}_2(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^d)$ by defining $W(t, X)$ as the random variable that maps $\omega^0 \in \tilde{\Omega}^0$ to $W(t, X(\omega^0, \cdot))$.

Since neither V nor H is a priori continuous, we define V_* and V^* as the lower-semi-continuous and upper-semi-continuous envelopes of V, and let \mathcal{H}^* and \mathcal{H}_* be defined as the relaxed upper- and lower-semilimits as $\varepsilon \to 0$.

We say that V_* is a viscosity supersolution (resp. V^* is a subsolution) of (17) if for any $(t, \chi) \in [0, T] \times \mathbf{L}_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)$ and any function Φ belonging to $C^{1,2}([0, T] \times \mathbf{L}_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d))$ such that

$$
(V_* - \Phi)(t, \chi) = \min_{[0, T] \times \mathbf{L}_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)} (V_* - \Phi)
$$

(resp. $(V^* - \Phi)(t, \chi) = \max_{[0, T] \times \mathbf{L}_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)} (V^* - \Phi)$)

we have

$$
-\partial_t \Phi(t, \chi) + \mathcal{H}^*(t, \chi, D\Phi(t, \chi), D^2\Phi(t, \chi)) \geq 0
$$

(resp. $-\partial_t \Phi(t, \chi) + \mathcal{H}_*(t, \chi, D\Phi(t, \chi), D^2\Phi(t, \chi)) \leq 0$).

If V_* is a supersolution and V^* is a subsolution, we say that V is a discontinuous solution.

Remark 4.1 The presented definition of viscosity solution involves test functions that are asked to have a second-order regularity in the lifted space. In particular, a classical solution to the DPE might not satisfy this regularity and cannot be used as a test function.

To the best of our knowledge, there are two approaches to deal with viscosity solutions of second-order PDEs on the Wasserstein space: the intrinsic viscosity solution definition on \mathcal{P}_2 and the viscosity solution for the lifted function.

Unfortunately, none of these two approaches are satisfactory for the moment. Concerning the first approach, there is not any general theory covering all the cases. As far as we know, the most recent result in this direction is [25], where a definition is given and a comparison is proved. However, it requires that the drift and volatility functions depend only on the marginal law of the diffusion and not on the diffusion itself. As
for the second approach (the one we use), it has the weakness previously mentioned, that is, we do not know whether a classical solution is a viscosity solution.

We are now ready to state the viscosity property of the function \(V \). This requires the following continuity assumption on the set \(\mathcal{N}_0 \).

\((H2) \) Let \(\mathcal{O} \) be an open subset of \([0, T] \times L_2(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^d) \times L_2(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^d) \) such that \(\mathcal{N}_0(t, \chi, P) \neq \emptyset \) for all \((t, \chi, P) \in \mathcal{O} \). Then, for every \(\epsilon > 0 \), \((t_0, \chi_0, P_0) \in \mathcal{O} \) and \(u_0 \in \mathcal{N}_0(t_0, \chi_0, P_0) \), there exists an open neighborhood \(\mathcal{O}' \) of \((t_0, \chi_0, P_0) \) and a measurable map \(\tilde{u} : [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \times \tilde{\Omega}^1 \rightarrow \mathbb{U} \) such that:

(i) \(\tilde{E}_B[|\tilde{u}_{t_0}(\chi_0, P_0, \xi) - u_0|] \leq \epsilon \).

(ii) There exists \(C > 0 \) for which

\[
\tilde{E}[|\tilde{u}_t(\chi, P, \xi) - \tilde{u}_t(\chi', P', \xi)|^2] \leq C \tilde{E}[|\chi - \chi'|^2 + |P - P'|^2]
\]

for all \((t, \chi, P), (t', \chi', P') \in \mathcal{O}' \).

(iii) \(\tilde{u}_t(\chi, P, \xi) \in \mathcal{N}_0(t, \chi, P, \mathbb{P}^0) - a.e. \), for all \((t, \chi, P) \in \mathcal{O}' \).

This assumption is an extension to our framework of the classical continuity assumption used in the literature on stochastic target problems (see e.g., Assumption 4.1 in [2]). The typical example is the case of a fully controlled volatility in dimension 1, i.e., \(a_t(\chi, \mathbb{P}_\chi, u) = u \). Then, assumption \((H2) \) is satisfied in a neighborhood of \(\{P \neq 0\} \) by taking

\[
\tilde{u}_t(\chi, P, \xi) = u_0 - P \frac{\tilde{E}_B[u_0P]}{\tilde{E}_B[P^2]}.
\]

We also strengthen \((H1) \) by the following additional condition.

\((H1') \) There exist a constant \(C \) and a function \(m : \mathbb{R}_+ \rightarrow \mathbb{R} \) such that \(m(t) \rightarrow 0 \) as \(t \rightarrow 0 \) and

\[
|b_t(x, \mu, u) - b_{t'}(x, \mu, u')| + |a_t(x, \mu, u) - a_{t'}(x, \mu, u')| \leq m(t - t') + C|u - u'|.
\]

for all \(t, t' \in [0, T], x \in \mathbb{R}^d, \mu \in \mathcal{P}_2 \) and \(u, u' \in \mathbb{U} \).

Theorem 4.1 Under \((H1) \) and \((H1') \), the function \(V_* \) is a viscosity supersolution of (17). If in addition \((H2) \) holds, then \(V_* \) is a viscosity subsolution of (17).

Proof Part I. Supersolution property. Fix \((t_0, \chi_0) \in [0, T] \times L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d) \) and a test function \(\Phi \in C^{1,2}([0, T] \times L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)) \) such that

\[
(V_* - \Phi)(t_0, \chi_0) = \min_{[0,T] \times L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)} (V_* - \Phi) = 0.
\]

We prove that

\[
- \partial_t \Phi(t_0, \chi_0) + \mathcal{H}^*(t_0, \chi_0, D\Phi(t_0, \chi_0), D^2\Phi(t_0, \chi_0)) \geq 0.
\]

(18)
1. Suppose that the function \(V \) is constant in a neighborhood of \((t_0, \chi_0)\). Then, \(\Phi(t_0, \chi_0) \) is a local maximum of \(\Phi \) and therefore

\[
\partial_t \Phi(t_0, \chi_0) \leq 0, \quad D\Phi(t_0, \chi_0) = 0 \quad \text{and} \quad D^2\Phi(t_0, \chi_0) \leq 0.
\] (19)

Hence, \(N_0(t_0, \chi_0, D\Phi(t_0, \chi_0)) = L_0(\tilde{H}, \tilde{F}, \tilde{P}; U) \) and

\[-\partial_t \Phi(t_0, \chi_0) + \mathcal{H}_0(t_0, \chi_0, D\Phi(t_0, \chi_0), D^2\Phi(t_0, \chi_0)) \geq 0,
\] so that (18) is satisfied.

2. We now consider the complementary case: \(V^*(t_0, \chi_0) = 0 \). Let \((t_n, \chi_n)_{n \geq 1}\) be a sequence of \([0, T) \times L_2(\tilde{H}, \tilde{F}, \tilde{P}; \mathbb{R}^d)\) converging to \((t_0, \chi_0)\) and such that \(V(t_n, \chi_n) = 0 \), for all \(n \geq 1 \).

(20)

We argue by contradiction and suppose that

\[-\partial_t \Phi(t_0, \chi_0) + \mathcal{H}^*(t_0, \chi_0, D\Phi(t_0, \chi_0), D^2\Phi(t_0, \chi_0)) =: -2\eta
\]

for some \(\eta > 0 \). Define

\[\tilde{\Phi}(t, \chi) = \Phi(t, \chi) - \varphi(|t-t_0|^2 + \mathbb{E}[|\chi-\chi_0|^2]^2)\]

for \((t, \chi) \in [0, T] \times L_2(\tilde{H}, \tilde{F}, \tilde{P}; \mathbb{R}^d)\), where \(\varphi \in C^\infty(\mathbb{R}, \mathbb{R}) \) is such that \(\varphi(x) = x \) for \(x \in [0, 1] \) and \(\varphi(x) = 2 \) for \(x \geq 2 \). Then,

\[(\partial_t \tilde{\Phi}, D\tilde{\Phi}, D^2\tilde{\Phi})(t_0, \chi_0) = (\Phi, D\Phi, D^2\Phi)(t_0, \chi_0),\]

and we can find \(\varepsilon > 0 \) and an open ball \(B_\varepsilon(t_0, \chi_0) \) such that

\[-\eta \geq -\partial_t \tilde{\Phi}(t, \chi) - \mathcal{L}^u_\tau(\chi, D\tilde{\Phi}(t, \chi), D^2\tilde{\Phi}(t, \chi))
\]

for any \((t, \chi) \in B_\varepsilon(t_0, \chi_0)\) and any \(u \in N_\varepsilon_\tau(t, \chi, D\Phi(t, \chi))\). Let

\[\partial_p B_\varepsilon(t_0, \chi_0) := \{t_0 + \varepsilon\} \times cl(B_\varepsilon(\chi_0)) \cup [t_0, t_0 + \varepsilon] \times \partial B_\varepsilon(\chi_0)\]

denote the parabolic boundary of \(B_\varepsilon(t_0, \chi_0) \) and observe that

\[\zeta := \inf_{\partial_p B_\varepsilon(t_0, \chi_0)} (V^* - \tilde{\Phi}) > 0.\] (21)

In view of (20), we can find a control \(u^n \in \mathcal{U} \) such that

\[\tilde{P}^{B\chi}_n \in G.\]
where \(X^n = X^{\nu_n} \). We then define the stopping times

\[
\theta_n(\omega^\circ) = \inf \left\{ s \geq t_n : (s, X^n_s(\omega^\circ, .)) \notin B_\varepsilon(t_0, \chi_0) \right\}, \quad \omega^\circ \in \Omega^\circ.
\]

By Theorem 3.1, \(V(\cdot, X^n) = 0 \) on \([t_n, T]\), so that \(-\tilde{\Phi}(\cdot, X^n) > 0 \) on \([t_n, T]\) and \(-\tilde{\Phi}(\theta_n, X^n_{\theta_n}) \geq \zeta \) by (21). Let us set \(\beta_n := -\tilde{\Phi}(t_n, \chi_n) \) and define

\[
\alpha^n_{t} := \partial_t \tilde{\Phi}(t, X^n_t) + \mathcal{L}^{\nu_n}_t(X^n_t, D\tilde{\Phi}(t, X^n_t), D^2\tilde{\Phi}(t, X^n_t)),
\]

\[
\rho^n := -\tilde{E}_B[\alpha_n 1_{A_n}], \quad \psi^n := -\tilde{E}_B[a(X^n, \tilde{\Phi}^B_{X^n}, \nu^n)D\tilde{\Phi}(\cdot, X^n)]
\]

with

\[
A_n := \left\{ t \in [t_n, \theta_n] : -\alpha^n_t > -\eta \right\}.
\]

Applying Proposition 4.2 to \(\tilde{\Phi}(\cdot, X^n) \), we then get

\[
M^n := \beta_n - \zeta + \int_{t_n}^\infty \rho^n_s ds + \int_{t_n}^\infty \psi^n_s dB_s \geq \beta_n - \zeta \geq -\frac{1}{2} \zeta,
\]

on \([t_n, \theta_n]\) for \(n \) large. By (21),

\[
\left| \tilde{E}_B[a(X^n_t, \tilde{\Phi}^B_{X^n_t}, \nu^n_t)D\tilde{\Phi}(t, X^n_t)] \right| > \varepsilon, \quad \text{for } t \in A_n.
\]

and we can define the positive \(\tilde{\Phi}^\circ \)-local martingale \(L^n \) by

\[
L^n_t = 1 - \int_{t_n}^t L^n_s \rho^n_s |\psi^n_s|^2 \psi^n_s dB_s, \quad t \geq t_n.
\]

The coefficients \(a \) and \(b \) being bounded, \(L^n \) is a true martingale. In view of (22), \(L^n M^n \) is a local martingale that is bounded from below by a martingale. Therefore, it is a super-martingale and

\[
0 \leq \tilde{E}[L^n_{\theta_n} M^n_{\theta_n}] \leq L^n_{t_n} M^n_{t_n} = M^n_{t_n} = \beta_n - \zeta.
\]

Sending \(n \) to \(\infty \), we get a contradiction since \(\beta_n \to 0 \).

Part II. Subsolution property.

Fix \((t_0, \chi_0) \in [0, T) \times L_2(\tilde{\Omega}, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1, \mathbb{R}^d) \) and \(\Phi \in C^{1, 2}([0, T] \times L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1, \mathbb{R}^d)) \) such that

\[
(V^* - \Phi)(t_0, \chi_0) = \max_{[0, T] \times L_2(\tilde{\Omega}, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1, \mathbb{R}^d)} (V^* - \Phi).
\]

We have to prove that

\[
-\partial_t \Phi(t_0, \chi_0) + \mathcal{H}_x(t_0, \chi_0, D\Phi(t_0, \chi_0), D^2\Phi(t_0, \chi_0)) \leq 0.
\]
We distinguish two cases.

1. Suppose that $V^*(t_0, \chi_0) = 0$. Then, we deduce from (23) that

$$\partial_t \Phi(t_0, \chi_0) \geq 0, \quad D\Phi(t_0, \chi_0) = 0 \quad \text{and} \quad D^2\Phi(t_0, \chi_0) \geq 0. \tag{24}$$

Let us consider a sequence $(\varepsilon_n, t_n, \chi_n, P_n, Q_n)_{n \geq 1}$ with values in the product space $[0, 1] \times [0, T] \times L_2(\Omega^1, \mathcal{F}^1, \mathbb{P}^1; \mathbb{R}^d) \times L_2(\Omega^1, \mathcal{F}^1, \mathbb{P}^1; \mathbb{R}^d) \times S(L_2(\Omega^1, \mathcal{F}^1, \mathbb{P}^1; \mathbb{R}^d))$ converging to $(0, t_0, \chi_0, D\Phi(t_0, \chi_0), D^2\Phi(t_0, \chi_0))$ such that

$$\mathcal{H}_{\varepsilon_n}(t_n, \chi_n, P_n, Q_n) \to \mathcal{H}_*(t_0, \chi_0, D\Phi(t_0, \chi_0), D^2\Phi(t_0, \chi_0)). \tag{25}$$

It follows from (24) that

$$\lim_{n \to +\infty} \mathcal{H}_{\varepsilon_n}(t_n, \chi_n, P_n, Q_n) \leq \lim_{n \to +\infty} -\frac{1}{2} \inf_{u \in L_0(\Omega^1, \mathcal{F}^1, \mathbb{P}^1; U)} \mathbb{E}\left[Q_n(a_n(\chi_n, \mathbb{P}_{\chi_n}, u)Z)\right] - \frac{1}{2} \inf_{u \in L_0(\Omega^1, \mathcal{F}^1, \mathbb{P}^1; U)} \mathbb{E}\left[D^2\Phi(t_0, \chi_0)(a_0(\chi_0, \mathbb{P}_{\chi_0}, u)Z)\right].$$

Since a is continuous and bounded, the convergence of Q_n to $D\Phi(t_0, \chi_0)$ implies that

$$\lim_{n \to +\infty} \inf_{u \in L_0(\Omega^1, \mathcal{F}^1, \mathbb{P}^1; U)} \mathbb{E}\left[Q_n(a_n(\chi_n, \mathbb{P}_{\chi_n}, u)Z)\right] = \inf_{u \in L_0(\Omega^1, \mathcal{F}^1, \mathbb{P}^1; U)} \mathbb{E}\left[D^2\Phi(t_0, \chi_0)(a_0(\chi_0, \mathbb{P}_{\chi_0}, u)Z)\right].$$

Combining the above leads to

$$\lim_{n \to +\infty} \mathcal{H}_{\varepsilon_n}(t_n, \chi_n, P_n, Q_n) \leq -\frac{1}{2} \inf_{u \in L_0(\Omega^1, \mathcal{F}^1, \mathbb{P}^1; U)} \mathbb{E}\left[D^2\Phi(t_0, \chi_0)(a_0(\chi_0, \mathbb{P}_{\chi_0}, u)Z)\right],$$

so that (24) and (25) lead to

$$-\partial_t \Phi(t_0, \chi_0) + \mathcal{H}_*(t_0, \chi_0, D\Phi(t_0, \chi_0), D^2\Phi(t_0, \chi_0)) \leq 0.$$

2. Suppose now that $V^*(t_0, \chi_0) = 1$. We argue by contradiction and suppose that

$$-\partial_t \Phi(t_0, \chi_0) + \mathcal{H}_*(t_0, \chi_0, D\Phi(t_0, \chi_0), D^2\Phi(t_0, \chi_0)) :: 4\eta > 0.$$

Since the left-hand side is finite and $N_0 \subset N_\varepsilon$ for $\varepsilon \geq 0$, there exists an open neighborhood O of $(t_0, \chi_0, D\Phi(t_0, \chi_0))$ such that $N_0 \neq \emptyset$ on O and there exists $u_0 \in N_0(t_0, \chi_0, D\Phi(t_0, \chi_0))$ such that

$$-\partial_t \Phi(t_0, \chi_0) - \mathcal{L}_{t_0}^{u_0}(t_0, \chi_0, D\Phi(t_0, \chi_0), D^2\Phi(t_0, \chi_0)) \geq 2\eta.$$
Then, (H2) implies that for any \(\varepsilon > 0 \) there exists an open neighborhood \(O' \) of \((t_0, \chi_0, D\Phi(t_0, \chi_0))\) and a measurable map \(\hat{u} : [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \times \tilde{\Omega}^1 \to U \) such that:

(i) \(\mathbb{E}[|\hat{u}_{t_0}(\chi_0, P_0, \xi) - u_0|] \leq \varepsilon \)

(ii) There exists \(C > 0 \) for which

\[
\mathbb{E}[|\hat{u}_t(\chi, P, \xi) - \hat{u}_t(\chi', P', \xi)|^2] \leq C\mathbb{E}[|\chi - \chi'|^2 + |P - P'|^2]
\]

for all \((t, \chi, P), (t, \chi', P') \in O'\).

(iii) \(\hat{u}_t(\chi, P, \xi) \in N_0(t, \chi, P) \, \mathbb{P}^\circ - a.e., \) for all \((t, \chi, P) \in O'\).

Define

\[
\tilde{\Phi}(t, \chi) = \Phi(t, \chi) + |t - t_0|^2 + \mathbb{E}[|\chi - \chi_0|^2],
\]

for \((t, \chi) \in [0, T] \times L_2(\tilde{\Omega}, \tilde{F}, \tilde{P}; \mathbb{R}^d)\). Then,

\[
(\partial_t \tilde{\Phi}, D \tilde{\Phi}, D^2 \tilde{\Phi})(t_0, \chi_0) = (\partial_t \Phi, D \Phi, D^2 \Phi)(t_0, \chi_0).
\]

The above combined with (H1)–(H1*) shows that we can find some \(\varepsilon > 0 \) such that

\[
- \partial_t \tilde{\Phi}(t, \chi) - L^\hat{u}_t(\chi, D\tilde{\Phi}(t, \chi), \xi)(\chi, D\tilde{\Phi}(t, \chi), D^2\tilde{\Phi}(t, \chi)) \geq \eta \tag{26}
\]

for all \((t, \chi) \in B_\varepsilon(t_0, \chi_0)\).

Let now \((t_n, \chi_n)_{n \geq 1}\) be a sequence of \([0, T] \times L_2(\tilde{\Omega}^1, \tilde{F}^1, \tilde{P}^1; \mathbb{R}^d)\) such that

\[
(t_n, \chi_n, V(t_n, \chi_n)) \to (t_0, \chi_0, V^*(t_0, \chi_0)), \tag{27}
\]

and consider the solution \(X^n \) of (3) starting from \(\chi_n \) at \(t_n \) and associated with the feedback control \(\hat{v}^n := \hat{u}(X^n, D\tilde{\Phi}(., X^n), \xi) \). The fact that \(X^n \) is well defined is guaranteed by (ii) above; this is obtained by a straightforward extension of Proposition 2.1. We then define the stopping times \(\theta_n \) by

\[
\theta_n(\omega^\circ) = \inf \left\{ s \geq t_n : (s, X^n_s(\omega^\circ, .) \notin B_\varepsilon(t_n, \chi_n) \right\}, \quad \omega^\circ \in \Omega^\circ.
\]

Letting

\[
-\xi := \max_{\partial_p B_\varepsilon(t_0, \chi_0)} (V^* - \tilde{\Phi}) < 0 ,
\]

we have \((V - \Phi)(\theta_n, X^n_{\theta_n}) \leq -\xi\). We then apply Proposition 4.2, to deduce from (iii) and (26) that \(\tilde{\Phi}(\theta_n, X^n_{\theta_n}) \leq \tilde{\Phi}(t_n, \chi_n) \) which implies \(V(\theta_n, X^n_{\theta_n}) \leq \tilde{\Phi}(t_n, \chi_n) - \xi \).

Since \(\tilde{\Phi}(t_n, \chi_n) \to 1 \), we have \(V(\theta_n, X^n_{\theta_n}) < 1 \) for \(n \) large enough, which contradicts Theorem 3.1.

\(\square \)
We end this section with the derivation of the boundary condition at the terminal time T. To this end, let us define the function $g = 1 - \mathbb{1}_G$ where
\[
\tilde{G} = \{ \chi \in L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d) : \tilde{\mathbb{P}}_\chi \in G \}.
\]
Note that \tilde{G} is a closed subset of $L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)$ since G is closed for \mathcal{W}_2. Hence,
\[
g^* = 1 - \mathbb{1}_{\text{int}(\tilde{G})} \quad \text{and} \quad g_* = 1 - \mathbb{1}_{\tilde{G}},
\]
where g^* and g_* stand for the upper and lower semi-continuous envelopes of g, respectively.

Theorem 4.2 Under (H1), the function V satisfies
\[
V^*(T, .) = g^* \quad \text{and} \quad V_*(T, .) = g_*
\]
on $L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)$.

Proof (i) We first prove that $V^*(T, .) = g^*$. Since $V(T, .) = g$, we have $V^*(T, .) \geq g^*$. For the reverse inequality, we argue by contradiction and suppose that $1 = V^*(T, \chi) > g^*(\chi) = 0$ for some $\chi \in L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)$. Since $g^*(\chi) = 0$, we know that $\chi \in \text{int}(\tilde{G})$. Let $(t_n, \chi_n) \to (T, \chi, 1)$. Fix some $u_0 \in U$ and denote by X^{t_n, χ_n, u_0} the solution to (3) starting from χ_n at t_n and controlled by the constant processes $v = u_0$. Then, $X^{t_n, \chi_n, u_0} \in \tilde{G}$, after possibly considering a subsequence. Sending $n \to \infty$, we obtain that χ belongs to the closure of \tilde{G}, which is a contradiction.

(ii) We now prove that $V_*(T, .) = g_*$. Since $V(T, .) = g$ we have $V_*(T, .) \leq g_*$. Again, the reverse inequality is proved by contradiction. Suppose that we have $0 = V_*(T, \chi) < g_*(\chi) = 1$ for some $\chi \in L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)$. Since $g_* = g$, we know that $\chi \in \tilde{G}$. Let $(t_n, \chi_n) \to (T, \chi, 0)$. Then, up to taking a subsequence, there exists $v_n \in \mathcal{U}$ such that $X^{t_n, \chi_n, v_n}_T \in \tilde{G}$. Since a and b are continuous bounded and \tilde{G} is closed in $L_2(\tilde{\Omega}^1, \tilde{\mathcal{F}}^1, \tilde{\mathbb{P}}^1; \mathbb{R}^d)$, we deduce that $\chi \in \tilde{G}$ by sending $n \to \infty$, which is a contradiction. □

Remark 4.2 Note that the terminal condition in Theorem 4.2 is discontinuous, which prevents us from proving uniqueness of a solution to our PDE. This point will be further discussed in Sect. 5.1.

5 Additional Remarks

5.1 On the Formulation of the Target Problem

The formulation considered in this paper naturally leads to a PDE characterization with a discontinuous terminal condition (upper- and lower-semi-continuous envelopes of $1 - \mathbb{1}_G$). Even for PDEs stated on a subset of \mathbb{R}^d, this is problematic from a numerical
point of view, in particular because comparison does not hold. In some cases, an alternative formulation can be used in order to retrieve a regular terminal condition and open the door to the study of comparison and possibly of numerical methods by using already existing results on PDE’s on Hilbert spaces; see e.g., [26].

4 Let us discuss this in the context of Example 3.1.

We consider the same problem as in Example 3.1 but now take the cost induced by the fertilizing effort of each particle into account. Its dynamics is of the form:

$$C^{t,v} = \int_t^T b^C(v_s) ds,$$

in which b^C is nonnegative. The initial budget of the farmer at t is $y \in \mathbb{R}$, and we set $Y^{t,y,v} := y - C^{t,v}$, so that $\mathbb{E}[Y^{t,y,v}]$ denotes the remaining running budget: initial budget minus integral with respect to the Lebesgue measure of the costs associated with each particle. Letting $\hat{X}^{t,x,v} := (X^{t,x,v}, Y^{t,y,v})$, with $x = (\chi_X, y)$, we retrieve the dynamics (3) for $\hat{X}^{t,x,v}$. The aim of the farmer is to find the minimal initial budget y and a control v such that $\mathbb{P}^{B}_{X^T_t,\chi} \in G_X$ and $\mathbb{E}[Y^{t,y,v}] \geq 0 \mathbb{P}$-a.s. for some closed subset G_X of the collection of probability measures with second-order moment. Otherwise stated, he aims at computing at t how much money should be put aside to cover with certainty the costs of driving the field in a given set of acceptable states at time T.

In this context, let us define, for $t \in [0, T]$ and $\mu_X \in \mathcal{P}_2$,

$$\hat{v}(t, \mu_X) := \inf\{y \in \mathbb{R} : (\mu_X, \delta_y) \in \mathcal{V}(t)\}$$

where δ_y is the Dirac mass at y and \mathcal{V} is defined with respect to $G = G_X \times G_Y$ for G_Y defined as the collection of probability measures with support on \mathbb{R}, with finite second-order moments and nonnegative first-order moment. The dynamic programming principle of Theorem 3.1 reads as follows:

Theorem 5.1 Fix $t \in [0, T]$ and $\theta \in \tilde{T}$ with values in $[t, T]$. Then, the following holds:

- **(GDP1)** If $y > \hat{v}(t, \mu_X)$, then there exists $v \in \mathcal{U}$ and $\chi_X \in \mathbb{X}^2_t$ such that $\mathbb{E}[Y^{t,y,v}] \geq \hat{v}(\theta, \mathbb{P}^{B}_{X^T_t,\chi_X})$ and $\mathbb{P}^{B}_{X^T_t,\chi_X} = \mu_X \mathbb{P}$-a.s.

- **(GDP2)** If $v \in \mathcal{U}$ and $(\chi_X, y) \in \mathbb{X}^2_t \times \mathbb{R}$ are such that $\mathbb{E}[Y^{t,y,v}] > \hat{v}(\theta, \mathbb{P}^{B}_{X^T_t,\chi_X})$ and $\mathbb{P}^{B}_{X^T_t,\chi_X} = \mu_X \mathbb{P}$-a.s., then $y \geq \hat{v}(t, \mu_X)$.

Proof The fact that $y > \hat{v}(t, \mu_X)$ implies that $(\mu_X, \delta_y) \in \mathcal{V}(t)$, which by Theorem 3.1 induces that $(\mathbb{P}^{B}_{X^T_t,\chi_X}, \mathbb{P}^{B}_{X^T_t,\chi_X}) \in \mathcal{V}(\theta)$, for some $v \in \mathcal{U}$ and $\chi_X \in \mathbb{X}^2_t$ such

4 Note that, even for general stochastic target problems set on \mathbb{R}^d, no general comparison theorem has been established so far. This is done on a case-by-case basis, and we therefore do not enter into this issue in the abstract setting of this paper, but rather leave this to the future study of particular situations.

5 One could relax the constraint by just asking for $\mathbb{P}[\mathbb{E}[Y^{t,y,v}] \geq 0] \geq m$ for some $m \in [0, 1]$; see [5].

6 The state space being increased to \mathbb{R}^{d+1}.
that $\mathbb{P}^{B}_{XX} = \mu_{X}$. Since $\mathbb{E}[\mathcal{V}^{T}_{x,y,v}] \geq 0$ \mathbb{P}-a.s. for some $\mathcal{V}^{T}_{x,y} \in \mathcal{L}_{2}(\Omega_{x}, \mathcal{F}_{x}^{1}, \mathbb{P}; \mathbb{R})$ is equivalent to saying that $\mathbb{E}[\mathcal{V}^{T}_{x,y,v}] \geq 0$ \mathbb{P}-a.s. for $y := \mathbb{E}[\mathcal{V}^{T}_{x,y}]$, this implies that $(\mathbb{P}^{B}_{X_{0}^{t},x}, \delta_{\mathbb{E}[\mathcal{V}^{T}_{x,y,v}]}) \in \mathcal{V}(\theta)$. Conversely, $\mathbb{E}[\mathcal{V}^{T}_{x,y,v}] > \mathbb{E}[\mathcal{V}(\theta, \mathbb{P}^{B}_{X_{0}^{t},x},v)]$ combined with $\mathbb{P}^{B}_{X_{0}^{t},x} = \mu_{X} \mathbb{P}$-a.s. implies $\mathbb{E}[\mathcal{V}^{T}_{x,y,v}] \in \mathcal{V}(\theta)$.

From this version of the geometric dynamic programming principle, we get by adapting the arguments of Sect. 4.3 (see e.g., [1,5]) the following viscosity property.

Theorem 5.2 Suppose that the function b^{C} is continuous and bounded and that (H1), (H1’) and (H2) hold. Then, the lifting function \tilde{V} of \tilde{v} is a viscosity solution of (17) with \mathcal{L} given by

$$
\mathcal{L}_{t}^{u}(\chi, P, Q) := \mathbb{E}_{B}[\tilde{V}_{t}(\chi) + \frac{1}{2} Q(a_{t}(\chi, P, u)Z) - b^{C}(u)]
$$

for $t \in [0, T]$, $u \in \mathcal{L}_{0}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{U})$, $\chi, P \in \mathcal{L}_{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^{d})$ and $Q \in \mathcal{S}(\mathcal{L}_{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^{d}))$. The function \tilde{V} also satisfies the terminal conditions $\tilde{V}_{u}(T, \cdot) \geq 0 \geq \tilde{V}^{*}(T, \cdot)$.

We then get a continuous terminal condition, and we are able to prove uniqueness of \tilde{V} by using comparison theorems in infinite dimension as in [26, Theorem 3.50].

Another point concerning the formulation of the control problem is whether we can consider a dependence of the coefficient b and a in the laws $\mathbb{P}_{X_{t}}$ and $\mathbb{P}_{v_{t}}$. Unfortunately, our approach does not allow b and a to depend on $\mathbb{P}_{X_{t}}$ or $\mathbb{P}_{v_{t}}$ because we cannot apply Lemma 3.1 which allows to get the value set at an intermediary time t conditionally to the Brownian information until t and hence to prove the DPP given in Theorem 3.1. However, we can make b and a depend on the conditional law $\mathbb{P}^{B}_{v_{t}}$. In this case, we get the same PDE properties, but the operator \mathcal{L} is replaced by

$$
\mathcal{L}_{t}^{u}(\chi, P, Q) := \mathbb{E}_{B}[\tilde{V}_{t}(\chi) + \frac{1}{2} Q(a_{t}(\chi, P, u)Z) - b^{C}(u)]
$$

for $t \in [0, T]$, $u \in \mathcal{L}_{0}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{U})$, $\chi, P \in \mathcal{L}_{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^{d})$ and $Q \in \mathcal{S}(\mathcal{L}_{2}(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}; \mathbb{R}^{d}))$.

5.2 On the Particle Approximation of the Target Problem

We come back to the link of our problem with stochastic target of particle systems mentioned in the Introduction and in Sect. 2. Let us consider the framework of Proposition 2.2. We recall from Sect. 2 the construction of $X^{n,\ell}$ as the solution to the SDE (6) for n, ℓ given. We then define, for $n, m \geq 1$, the set $\mathcal{V}^{m}_{n}(t)$ by

$$
\mathcal{V}^{m}_{n}(t) = \left\{ \mu \in \mathcal{P}_{2} : \exists (\chi, v) \in \mathcal{X}_{T}^{2} \times \mathcal{U} \text{ s.t. } \mathbb{P}_{X}^{B} = \mu \text{ and } \inf_{\rho \in G} \mathbb{E}[W_{\rho}(\mu^{B}_{T}, \rho)] \leq \frac{1}{m} \right\}.
$$

(28)
In view of (7), we get the inclusion $V(t) \subset \cap_{m \geq 1} \cup_{N \geq 1} \cap_{n \geq N} V^m_n(t)$ for all $t \in [0, T]$. The question whether the reciprocal holds is left for future researches, compared with the classical control case in [27] among others.

5.3 On the Choice of Controls

In the above sections, the collection \mathcal{U} of controls permits to take into account the exact value of the initial random variable χ; it is \mathbb{F}-progressively measurable. If we think in terms of controlling a population of particles whose initial distribution is the law of χ, this means that we allow each of the particles to have its own control. One can also consider the case where the control belongs to the subclass \mathcal{U}° of controls in \mathcal{U} that are only $\bar{\mathbb{F}}^\circ$-progressively measurable. This would mean that the control of each particle does not depend on its position but only on the conditional law of the whole population of particles given B.

This can be treated in a similar way as the case we considered above. In particular, the result of Proposition 3.1 becomes trivial; see Proposition 2.4. In (8), the control ν will be $\bar{\mathbb{F}}^\circ$-progressively measurable and the map ϑ will take values in \mathcal{U}°, so that $\tilde{\nu}$ will actually be $\bar{\mathbb{F}}^\circ$-progressively measurable since the argument $X^{t, \chi, \nu}_{\tilde{\theta}}(\omega^\circ, \cdot)$ only enters as a random variable (not as the value of the random variable). As for the first part of the proof of Theorem 3.1, the construction will just be simpler. Then, Theorem 3.1 actually holds for the class \mathcal{U}° as well. We finally get the following viscosity property for the function V.

Theorem 5.3 Under $(H1)$, $(H1')$ and $(H2)$, the function V is a viscosity solution of (17) where N_ε is given by

$$N_\varepsilon(t, \chi, P) = \{ u \in \mathcal{U} : |\mathbb{E}_B[a_t(\chi, \mathbb{P}_\chi, u) P] | \leq \varepsilon \}$$

for all $t \in [0, T]$ and $\chi, P \in \mathbb{L}_2(\tilde{\Omega}, \tilde{\mathbb{F}}, \mathbb{P}; \mathbb{R}^d)$.

6 Conclusions

We present in this work a new kind of stochastic control problems for which we provide a dynamic programming principle, a verification result in the regular case, and a viscosity solution property under additional assumptions. This study also arises some new open questions that are left for future research. The first theoretical question is the characterization of the value function for the same problem with marginal laws \mathbb{P}_{X_s} instead of the conditional law $\mathbb{P}_{B X_s}$. A second question is the convergence of V^m_n defined in (28) to V, and how it could serve as a numerical scheme for identifying elements of \mathcal{V}.

Acknowledgements The research of the first author was partially supported by the ANR project CAESARS (ANR-15-CE05-0024). Financial support of the second author from the Swedish Research Council (VR) Grant no. 2016-04086 is also gratefully acknowledged.
References

1. Soner, H.M., Touzi, N.: Stochastic target problems, dynamic programming, and viscosity solutions. SIAM J. Control Optim. 41(2), 404–424 (2002)
2. Soner, H.M., Touzi, N.: Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. 4(3), 201–236 (2002)
3. El Karoui, N., Quenez, M.C.: Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33, 29–66 (1995)
4. Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3(3), 251–273 (1999)
5. Bouchard, B., Elie, R., Touzi, N.: Stochastic target problems with controlled loss. SIAM J. Control Optim. 48(5), 3123–3150 (2009)
6. Birkner, M., Sun, R.: Annealed vs quenched critical points for a random walk pinning model. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 46(2), 414–441 (2010)
7. Giacomin, G.: Random Polymer Models. Imperial College Press, London (2007)
8. Le Doussal, P., Machta, J.: Annealed versus quenched diffusion coefficient in random media. Phys. Rev. B 40(13), 9427–9430 (1989)
9. Cardaliaguet, P.: Notes on Mean Field Games (from P.-L. Lions’ lectures at Collège de France). https://www.ceremade.dauphine.fr/~cardalia/MFG20130420.pdf (2012)
10. Chassagneux, J.-F., Crisan, D., Delarue, F.: A probabilistic approach to classical solutions of the master equation for large population equilibria. arXiv preprint arXiv:1411.3009 (2014)
11. Soner, H.M., Touzi, N.: The dynamic programming equation for second order stochastic target problems. SIAM J. Control Optim. 48(4), 2344–2365 (2009)
12. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, Berlin (1991)
13. Jourdain, B., Méléard, S., Woyczynski, W.A.: Nonlinear sdes driven by lévy processes and related pdes. Latin Am. J. Probab. Math. Statist. 4, 1–29 (2008)
14. Sznitman, A.S.: Topics in Propagation of Chaos, pp. 165–251. Springer, Berlin (1991)
15. Vaillancourt, J.: On the existence of random McKean–Vlasov limits for triangular arrays of exchangeable diffusions. Stoch. Anal. Appl. 6(4), 431–446 (1988)
16. Dawson, D., Vaillancourt, J.: Stochastic McKean–Vlasov equations. NoDEA 2(2), 199–229 (1995)
17. Claisse, J., Talay, D., Tan, X.: A note on solutions to controlled martingale problems and their conditioning. SIAM J. Control Optim. 54(2), 1017–1029 (2016)
18. Pham, H., Cosso, A.: Zero-sum stochastic differential games of generalized mckean-vlasov type. arXiv:1803.07329 (2018)
19. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)
20. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control. The Discrete-Time Case. Academic Press, New York (1978)
21. Liptser, R., Shiryaev, A.N.: Statistics of Random Processes: I. General Theory, vol. 5. Springer, Berlin (2013)
22. Kurtz, T.G.: Lectures on stochastic analysis. Department of Mathematics and Statistics, University of Wisconsin, Madison, WI pp. 53,706–1388 (2001)
23. Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated pdes. Ann. Probab. 45(2), 824–878 (2017)
24. Carmona, R., Delarue, F.: The master equation for large population equilibriums. In: Stochastic Analysis and Applications 2014, pp. 77–128. Springer (2014)
25. Burzoni, M., Ignazio, V., Soner, H., Reppen, A.: Viscosity solutions for controlled mckean-vlasov jump-diffusions. Preprint (2019)
26. Fabbri, G., Gozzi, F., Swiech, A.: Stochastic Optimal Control in Infinite Dimension. Probability and Stochastic Modelling. Springer, Berlin (2017)
27. Lacker, D.: Limit theory for controlled mckean-vlasov dynamics. SIAM J Control Optim. 55(3), 1641–1672 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.