Supporting Materials

Incorporation of ZnO nanoparticles into soy protein-based bioplastics to improve their functional properties

Mercedes Jiménez Rosado 1,*, Víctor Perez-Puyana 2, Pablo Sánchez-Cid 2, Antonio Guerrero 1 and Alberto Romero 2

1 Department of Chemical Engineering, Escuela Politécnica Superior 41011 Sevilla, Spain, mjimenez42@us.es, aguerrero@us.es
2 Department of Chemical Engineering, Facultad de Química 41012 Sevilla, Spain, vperez11@us.es, pabsanbue@alum.us.es, alromero@us.es
* Correspondence: e-mail: mjimenez42@us.es Tel.: +34 954 557 179

Figure S1. Yield (K, A) and crystal size (B) of nanoparticles processed at different ZnCl2 concentrations (0.2, 0.5 and 1.0 M) and ZnCl2:NaOH ratios (0.5, 1.0 and 2.0).

Figure S2. Temperature increment (A) and torque variation (B) of raw materials mixed at different nanoparticle concentrations (0, 1.0, 2.0 and 4.5 wt%).
Figure S3. Macro and micrographs of bioplastics processed with 2.0 and 4.5 wt% of ZnO nanoparticles at different mould temperatures (70, 90 and 110 °C).
Figure S4. EDXA analyses of the different coloured zones (black and white zones) in a bioplastic matrix with nanoparticles incorporated.

Figure S5. Biodegradability photographs of bioplastics with 1.0 wt% ZnO nanoparticles processed at 110 °C.