Robust matrices in the interval max-plus algebra

Siswanto, Pangadi, and S B Wiyono

Department of Mathematics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta 57126, Indonesia.

Corresponding author: sis.mipa@staff.uns.ac.id

Abstract. With $\varepsilon = -\infty$, the set $\mathbb{R}_\varepsilon = \mathbb{R} \cup \{\varepsilon\}$ where \mathbb{R} denotes the set of all real numbers, is called max-plus algebra when it is equipped with the operations of maximum and addition. The matrices in the size of $m \times n$ whose elements belong to \mathbb{R}_ε can be formed and so called matrices over max-plus algebra. Robust matrices in the max-plus algebra have been discussed. Suppose $I(\mathbb{R})_\varepsilon = \{x = \begin{bmatrix} x & \varepsilon \end{bmatrix} | x, \varepsilon \in \mathbb{R}, \varepsilon < x \leq \varepsilon \} \cup \{\varepsilon\}$ and $\varepsilon = [\varepsilon, \varepsilon]$. The set $I(\mathbb{R})_\varepsilon$ which is equipped with maximum and addition operations is called interval max-plus algebra. Matrices of size $m \times n$, whose entries belong to $I(\mathbb{R})_\varepsilon$ are called matrices over interval max-plus algebra. In this paper, we discuss robust matrices in the interval max-plus algebra and obtain some of its properties.

1. Introduction

Suppose \mathbb{R} is the set of all real numbers. Max-plus algebra is the set $\mathbb{R}_\varepsilon = \mathbb{R} \cup \{\varepsilon\}$, $\varepsilon = -\infty$, that is equipped with two operations \oplus (maximum) and \otimes (addition). Max-plus algebra has been used to model and analyze problems in planning, communication, production system, queueing system with finite capacity, parallel computation, and traffic ([1]). From the set \mathbb{R}_ε, the set of matrices in the size $m \times n$ with the elements in \mathbb{R}_ε can be formed, and so called the set of matrices over max-plus algebra and denoted by $\mathbb{R}_\varepsilon^{m \times n}$ ([2], [3]). [4] has discussed about the applications of max-plus algebra in the production system.

Let $A = (A_{ij}) \in \mathbb{R}_\varepsilon^{n \times n}$ be a production matrix where A_{ij} is the time of production process from machine j to machine i, while vector $x(k) = (x_i(k)) \in \mathbb{R}_\varepsilon^n$ where $x_i(k)$ is the starting time of machine i at the k^{th} stage. In this production process is obtained the equation $x(k + 1) = A \otimes x(k)$. One of the criteria is used by the manufacturers is that the production process is expected to take place periodically with fixed period λ such that the equation $x(k + 1) = \lambda \otimes x(k)$ is obtained. From $x(k + 1) = A \otimes x(k)$ and $x(k + 1) = \lambda \otimes x(k)$, we get $A \otimes x(k) = \lambda \otimes x(k)$ which is known as the problem of eigenvalues and eigenvectors or the problem of eigen (eigen problem). In the eigen problem, we can determine the value of λ and vector $x(k)$ which are called eigenvalue and eigenvector of matrix A respectively. [2], [4] and [5] have discussed about the eigen problem. Furthermore, [6] have discussed the eigen problem for powers of irreducible matrices and robust matrices in the max-plus algebra.

To solve the network problems with scheduling activity time as fuzzy numbers such as fuzzy scheduling system and fuzzy queuing system, max-plus algebra has been generalized into the interval max-plus algebra and fuzzy numbers max-plus algebra. Interval max-plus algebra, is the set $I(\mathbb{R})_\varepsilon$ equipped with operations \oplus and \otimes, while fuzzy number max-plus algebra is the set $F(\mathbb{R})_\varepsilon$ equipped with operations \oplus and \otimes. Let $A = (A_{ij}) \in F(\mathbb{R})_\varepsilon^{n \times n}$ be a fuzzy production matrix where A_{ij} is the time of production process from machine j to machine i, while vector $x(k) = (x_i(k)) \in F(\mathbb{R})_\varepsilon^n$ where $x_i(k)$ is the starting time of machine i at the k^{th} stage. In this fuzzy production process is obtained the equation $x(k + 1) = A \otimes x(k)$.
with operations \oplus dan \otimes ([7]). [8] have discussed about the eigen spaces matrix over interval max-plus algebra. In addition, [9] has discussed the problem of eigenvalues for powers of irreducible matrices in the interval max-plus algebra. Based on [8] and [9] as well as in line with [5], in this research will be discussed about the robust matrices in the interval max-plus algebra and its properties.

2. Preliminaries

We present the concepts needed in the paper. The definitions and theorems about interval max-plus algebra, matrices over interval max-plus algebra, and graph can be found in [7]. The closed interval x in \mathbb{R}_e is a subset of \mathbb{R}_e which has form $x = [\overline{x}, \overline{x}] = \{ x \in \mathbb{R}_e | \overline{x} \leq x \leq \overline{x} \}$. Interval x in \mathbb{R}_e is called interval max-plus. A number $x \in \mathbb{R}_e$ can be expressed as the interval $[x, x]$.

Definition 2.1. Let $I(R)_e = \{ x = [\overline{x}, \overline{x}] | \overline{x}, \overline{x} \in \mathbb{R}, \overline{x} \leq x \leq \overline{x} \} \cup \{ \varepsilon \}$ where $\varepsilon = [\varepsilon, \varepsilon]$. For any $x, y \in I(R)_e$, the maximum (\oplus) and plus (\otimes) operations are defined,

1. $x \oplus y = [\overline{x} \oplus \overline{y}, \overline{x} \oplus \overline{y}]$.
2. $x \otimes y = [\overline{x} \otimes \overline{y}, \overline{x} \otimes \overline{y}]$.

The set $I(R)_e$ equipped with two operations \oplus and \otimes are commutative idempotent semiring with neutral element $\varepsilon = [\varepsilon, \varepsilon]$ and unit element $\overline{0} = [0, 0]$. Furthermore, it is called the interval max-plus algebra and is denoted by $I(\mathbb{R})_{max} = (I(\mathbb{R})_e; \oplus, \otimes)$.

Definition 2.2. The set of matrices in the size $m \times n$ elements in $I(R)_e$ is denoted by $I(R)_{e}^{m \times n}$ and is defined by $I(R)_{e}^{m \times n} = \{ A = (A_{ij}) | A_{ij} \in I(R)_e ; i = 1, 2, ..., m, j = 1, 2, ..., n \}$. The element of $I(R)_{e}^{m \times n}$ is called max-plus interval matrix. Max-plus interval matrix is called the interval matrix.

Definition 2.3. For $A \in I(R)_{e}^{m \times n}$, two matrices defined $\underline{A} = (A_{ij}) \in \mathbb{R}^{m \times n}_e$ and $\overline{A} = (A_{ij}) \in \mathbb{R}^{m \times n}_e$ are called lower bound and upper bound of A, respectively.

Definition 2.4. Given the interval matrix $A \in I(R)_{e}^{m \times n}$ where \underline{A} is the lower bound and \overline{A} is the upper bound of matrix A. Matrix interval of A is defined by $[\underline{A}, \overline{A}] = \{ A = (A_{ij}) | \underline{A} \leq A \leq \overline{A} \}$ and the set of matrix intervals of A is defined by $I(R)_{e}^{m \times n}_b = \{ [\underline{A}, \overline{A}] : A \in I(R)_{e}^{m \times n} \}$.

Definition 2.5.

1. For $\alpha \in I(R)_e$, $[\underline{A}, \overline{A}], [\underline{B}, \overline{B}] \in I(R)_{e}^{m \times n}_b$ is defined
 i. $\alpha \otimes [\underline{A}, \overline{A}] = [\underline{A} \otimes \alpha, \alpha \otimes \overline{A}]$.
 ii. $[\underline{A}, \overline{A}] \oplus [\underline{B}, \overline{B}] = [\underline{A} \oplus \underline{B}, \overline{A} \oplus \overline{B}]$.

2. For $[\underline{A}, \overline{A}] \in I(R)_{e}^{m \times n}_b$, $[\underline{B}, \overline{B}] \in I(R)_{e}^{n \times k}_b$ is defined $[\underline{A}, \overline{A}] \otimes [\underline{B}, \overline{B}] = [\underline{A} \otimes \underline{B}, \alpha \otimes \overline{B}]$.

Theorem 2.6. The algebraic structure of $I(R)_{e}^{n \times n}_b$ that is equipped with two operations \oplus and \otimes is denoted by $I(R)_{e}^{n \times n}_{\oplus, \otimes}$ is dioid (idempotent semiring), while $I(R)_{e}^{n \times n}_b$ is semimodule over $I(R)_e$. Semimodule $I(R)_{e}^{n \times n}_b$ over $I(R)_e$ is isomorphic with semimodule $I(R)_{e}^{n \times n}_b$ over $I(R)_e$, with mapping $f : I(R)_{e}^{n \times n}_b \rightarrow I(R)_{e}^{n \times n}_b$.

The interval of matrix $[\underline{A}, \overline{A}] \in I(R)_{e}^{n \times n}_b$ is called corresponding to matrix of interval $A \in I(R)_{e}^{n \times n}$ and denoted by $A \approx [\underline{A}, \overline{A}]$.

Definition 2.7. Defined $I(R)_{e}^{n} = \{ x = [x_1, x_2, ..., x_n]^T | x_i \in I(R)_e ; i = 1, 2, ..., n \}$. The set $I(R)_{e}^{n}$ can be considered as the set of $I(R)_{e}^{1 \times n}$. The element of $I(R)_{e}^{n}$ are called vector of interval over $I(R)_e$. Vector of interval x corresponding to interval of vector $[\underline{x}, \overline{x}]$ that is $x \approx [\underline{x}, \overline{x}]$.

Furthermore, the concept of interval weighted directed graph is presented. Suppose a directed graph $D = (N, E)$ where $N = \{1, 2, ..., n\}$ is called interval weighted if every edge (j, i) in E assigned to an closed interval of real $A_{ij} \in I(R)_e - \{[\varepsilon, \varepsilon] \}$.

The interval of real number A_j is called interval weighted of edge (j, i), is denoted by $w(i, j)$. A precedence graph (communication graph) of the matrix $A \in I(\mathbb{R})_A^{n \times n}$ is defined as an interval weighted directed graph $D_A = (N, E)$ with $N = \{1, 2, ..., n\}$ and $E = \{(j, i) | w(i, j) = A_{ij} \neq [\epsilon, \epsilon]\}$. Conversely, for every the interval weighted directed graph $D_A = (N, E)$ always can be defined a matrix $A \in I(\mathbb{R})_A^{n \times n}$ and so called interval weighted directed graph D, that is

$$A_{ij} = \begin{cases} w(j, i), & \text{ jika } (i, j) \in E \\ [\epsilon, \epsilon], & \text{ jika } (i, j) \notin E \end{cases}$$

Some of the results of previous research which support this research are maximum path interval, the weighted average cycle interval ([7]), eigenvector space and basis of a eigenvector space and its dimension which is called the dimension of matrix over interval max-plus algebra ([8]).

Definition 2.8. Given $A \in I(\mathbb{R})_A^{n \times n}$ and communication graph D_A for A. Suppose $\pi = (i_1, i_2, ..., i_p)$ is a path in D_A, weighted π is $||A, \pi|| = A_{i_1i_2} + A_{i_2i_3} + ... + A_{i_{p-1}i_p}$, if $p \neq 1$ and $||A, \pi|| = \epsilon$ if $p = 1$.

Definition 2.9. Given $A \in I(\mathbb{R})_A^{n \times n}$ and graph communication D_A for A. Suppose $\sigma = (i_1, i_2, ..., i_k, i_1)$ a cycle in D_A, cycle average (mean cycle) for σ is denoted by $\mu(A, \sigma)$ and defined by $\mu(A, \sigma) = \frac{|\sigma(A, \sigma)|}{k}$. Maximum cycle average σ of all cycle is denoted by $\lambda(A)$ and defined by $\lambda(A) = \max_k \mu(A, \sigma)$.

Definition 2.10. Given $A \in I(\mathbb{R})_A^{n \times n}$ with $A \approx [\tilde{A}, \bar{A}] \in I(\mathbb{R})_b^{n \times n}$, $E \approx [\tilde{E}, \bar{E}] \in I(\mathbb{R})_b^{n \times n}$. $\lambda = [\tilde{\lambda}, \bar{\lambda}] \in I(\mathbb{R})_b$, defined

1. $\Lambda(A) = \{ \tilde{\lambda} \in I(\mathbb{R})_b | V(A, \tilde{\lambda}) \neq \{\epsilon\}; V(\bar{A}, \tilde{\lambda}) \neq \{\epsilon\} \},$
2. $V(A) = \bigcup_{\lambda \in \Lambda(A)} V(A, \lambda),$
3. $V^+(A, \lambda) = V(A, \lambda) \cap I(\mathbb{R})^n,$
4. $V^+(A) = V(A) \cap I(\mathbb{R})^n.$

Definition 2.11. Given $A \in I(\mathbb{R})_A^{n \times n}$ with $A \approx [\tilde{A}, \bar{A}] \in I(\mathbb{R})_b^{n \times n}$ and $N = \{1, 2, ..., n\}$ defined $E(A) = E(\tilde{A}) \cap E(\bar{A})$ are eigen points or critical points of weighted interval directed graf corresponding to A.

The elements of $E(A)$ are called eigen points or critical points of weighted directed graf corresponding to \tilde{A}, the elements of $E(\bar{A})$ are called eigen points or critical points of weighted directed graf corresponding to \bar{A}. Cycle σ is called as critical cycle if $\mu(A, \sigma) = \lambda(A)$. From the critical points and edge all cycle critical, the directed graph $C(A)$ can be made and so called the critical directed graph for A.

Lemma 2.12. Suppose $A \in I(\mathbb{R})_A^{n \times n}$. If $C(A)$ is critical directed graph for A then all cycle in $C(A)$ are critical cycle.

Two points i and j in $C(A)$ are said to be equivalent if both i and j are contained in the same critical cycle from A and denoted by $i \sim j$. It can be proved that \sim is the equivalence relation in $E(A)$. The number of maximum set of equivalent eigen vector basis or the number of strongly connected components in $C(A)$ is called the dimension of the eigen space and denoted by $\dim(A)$.

Definition 2.13. Suppose \bar{g}_k and \tilde{g}_k, $k = 1, 2, ..., n$ each are the columns of the matrix $I(\tilde{A}_k)$ and $I(\bar{A}_k)$. Formed matrix $\Gamma(A_k)$ where its columns is determined as follows:

1. If pair \bar{g}_k and \tilde{g}_k such that $\bar{g}_k \leq \tilde{g}_k$, $\forall k=1,2,3, ..., n$ then obtained one column i.e.

$$\text{interval vector } \bar{g}_k \approx [\bar{g}_k, \tilde{g}_k].$$
2. If pair g_k and \overline{g}_k does not satisfy $g_k \leq \overline{g}_k$, $\forall k = 1, 2, 3, \ldots, n$ then can be formed $\overline{g}_k^* = \delta \otimes \overline{g}_k$, where $\delta = \max_i ((g_k^i) - (\overline{g}_k^i))$, $i = 1, 2, 3, ..., n$ and $g_k \approx \begin{bmatrix} g_k \vline \overline{g}_k \end{bmatrix}$.

3. Results and Discussion

In this section, the research results of robust matrices properties in the interval max-plus algebra will be discussed. The following definition of the orbit of a matrix and the set whose elements are the x where the intersection of the orbit matrix A with initial vector x and its set of eigen vector is not empty.

Definition 3.1. Suppose $A = (A_{ij}) \in I(\mathbb{R})_{\mathbb{R}}^{n \times n}$, $x \in I(\mathbb{R})_\mathbb{R}^n$. The orbit of A with initial vector x is $O(A, x) = \{A^r \otimes x | r = 0, 1, 2, \ldots \}$.

Let $T(A) = \{x \in I(\mathbb{R})_\mathbb{R}^n | O(A, x) \cap V(A) \neq \emptyset \}$. The theorem which discuss about the necessary and sufficient conditions of the irreducible matrix so that $T(A) = V(A)$ is given.

Theorem 3.2. Suppose $A = (A_{ij}) \in I(\mathbb{R})_{\mathbb{R}}^{n \times n}$ irreducible matrix. $T(A) = V(A)$ if only if for every $x \in I(\mathbb{R})_{\mathbb{R}}^n - \{\varepsilon\}$, $A \otimes x \in V(A) \iff x \in V(A)$.

Proof. Suppose $A = (A_{ij}) \in I(\mathbb{R})_{\mathbb{R}}^{n \times n}$ irreducible $T(A) = V(A)$. Let $A \approx \begin{bmatrix} A & \overline{A} \end{bmatrix}$ where $A = (A_{ij}) \in \mathbb{R}_{\mathbb{R}}^{n \times n}$ and $\overline{A} = (\overline{A}_{ij}) \in \mathbb{R}_{\mathbb{R}}^{n \times n}$ irreducible. According to the theorem holds in the max-plus algebra, $T(A) = V(A)$ and $T(\overline{A}) = V(\overline{A})$. Let $x \in I(\mathbb{R})_{\mathbb{R}}^n - \{\varepsilon\}$, suppose $x \approx \{x, \overline{x}\}$ that is $x \in \mathbb{R}_{\mathbb{R}}^n - \{\varepsilon\}$ and $\overline{x} \in \mathbb{R}_{\mathbb{R}}^n - \{\varepsilon\}$. According to the theorem holds in the max-plus algebra, $A \otimes x \in V(A) \iff x \in V(A)$ and $\overline{A} \otimes \overline{x} \in V(\overline{A})$. Therefore $T(A) = V(A)$ and $T(\overline{A}) = V(\overline{A})$. As a result, $T(A) = V(A)$.

Furthermore, the definition of robust matrix and its characteristics are presented in the following definition and theorem.

Definition 3.3. Suppose $A \in I(\mathbb{R})_{\mathbb{R}}^{n \times n}$. If $T(A) = I(\mathbb{R})_\mathbb{R}^n - \{\varepsilon\}$ then A is called robust.

Theorem 3.4. Suppose $A \in I(\mathbb{R})_{\mathbb{R}}^{n \times n}$ where $A \approx \begin{bmatrix} A & \overline{A} \end{bmatrix}$. Matrix A is robust if only if A and \overline{A} robust.

Proof. If it is known that a robust matrix, so that $T(A) = I(\mathbb{R})_\mathbb{R}^n - \{\varepsilon\}$. Suppose $x \in T(A)$ implies $x \in I(\mathbb{R})_\mathbb{R}^n$ so that $O(A, x) \cap V(A) \neq \emptyset$. Suppose $x \approx \{x, \overline{x}\}$, implies $\overline{x} \in \mathbb{R}_{\mathbb{R}}^n$ so that $O(A, \overline{x}) \cap V(A) \neq \emptyset$. Since $T(A) = I(\mathbb{R})_\mathbb{R}^n - \{\varepsilon\}$ implies $x \neq \varepsilon$. Thus $x \neq \varepsilon$ and $x \neq \varepsilon$. As a result $x \in T(A)$ and $\overline{x} \in T(\overline{A})$ so that $T(A) = I(\mathbb{R})_\mathbb{R}^n - \{\varepsilon\}$ and $T(\overline{A}) = I(\mathbb{R})_\mathbb{R}^n - \{\varepsilon\}$. Therefore both A and \overline{A} robust. Conversely, A and \overline{A} robust implies $T(A) = I(\mathbb{R})_\mathbb{R}^n - \{\varepsilon\}$ and $T(\overline{A}) = I(\mathbb{R})_\mathbb{R}^n - \{\varepsilon\}$ implies $T(A) = I(\mathbb{R})_\mathbb{R}^n - \{\varepsilon\}$.

The definition of ultimately periodic matrix and its relation to robust matrix are presented in the following definition and theorem.

Definition 3.5. Matrix $A \in I(\mathbb{R})_{\mathbb{R}}^{n \times n}$ is called ultimately periodic if there are positif integer p and positif integer k_0 for some $\lambda \in I(\mathbb{R})$ such that $A^{k+p} = \lambda \otimes A^k$ for every $k \geq k_0$.

The smallest positif integer p so that $A^{k+p} = \lambda \otimes A^k$ for every $k \geq k_0$ is called period of A and is denoted by $\text{per}(A)$. If A is not ultimately periodic then $\text{per}(A) = \infty$.

Theorem 3.6. If $A \in I(\mathbb{R})_{\mathbb{R}}^{n \times n}$ irreducible then A is robust if only if $\text{per}(A) = 1$.

Proof. Suppose $A \in I(\mathbb{R})_{\mathbb{R}}^{n \times n}$ robust irreducible matrix and $A \approx \begin{bmatrix} A & \overline{A} \end{bmatrix}$, where $A = (A_{ij}) \in \mathbb{R}_{\mathbb{R}}^{n \times n}$ and $\overline{A} = (\overline{A}_{ij}) \in \mathbb{R}_{\mathbb{R}}^{n \times n}$ irreducible. Likewise A and \overline{A} robust. According to the theorem that applies in the max-plus algebra, $\text{per}(A) = \text{per}(\overline{A}) = 1$. As a result, $\text{per}(A) = 1$. Conversely, it is known that $\text{per}(A) = 1$ then $\overline{A} = \overline{A} = 1$. As a result, \overline{A} and \overline{A} robust matrices implies that A robust matrix.

By using the definition of a robust matrix, ultimately periodic matrix, and Theorem 3.6, following results are obtained.
Corollary 3.7. If \(A \in I(\mathbb{R})_{e}^{n \times n} \) irreducible, per(\(A \)) = 1 and \(x \in I(\mathbb{R})_{e}^{n} - \{\varepsilon\} \) then there is positive integer \(k_{0} \) such that \(A^{k} \otimes x \) finite for any \(k \geq k_{0} \).

Proof. Suppose \(A \in I(\mathbb{R})_{e}^{n \times n} \) irreducible. Suppose \(A \approx [A, \bar{A}] \) where \(A = (A_{ij}) \in \mathbb{R}^{n \times n}_{e} \) and \(\bar{A} = (\bar{A}_{ij}) \in \mathbb{R}^{n \times n}_{e} \) irreducible. Since per(\(A \)) = 1 then per(\(A \)) = per(\(\bar{A} \)) = 1. Let \(x \in I(\mathbb{R})_{e}^{n} - \{\varepsilon\} \). Suppose \(x \approx [\bar{x}, \bar{x}] \) implies \(x \in \mathbb{R}^{n}_{e} - \{\varepsilon\} \) and \(\bar{x} \in \mathbb{R}^{n}_{e} - \{\varepsilon\} \). According to the theorem that applies in the max-plus algebra there are positive integer \(k_{0} \) and \(\bar{k}_{0} \) such that \(A^{k} \otimes x \) finite for any \(k \geq k_{0} \) and \(\bar{A}^{\bar{k}} \otimes \bar{x} \) finite for some \(\bar{k} \geq \bar{k}_{0} \). Therefore, there is positive integer \(k_{0} \) such that \(A^{k} \otimes x \) finite for any \(k \geq k_{0} \).

Furthermore, the theorem about period of an irreducible matrix is presented.

Theorem 3.8. Suppose \(A = (A_{ij}) \in I(\mathbb{R})_{e}^{n \times n} \) irreducible matrix and \(g_{s} = \left[g_{s1}, g_{s2} \right] \) be called the greatest common divisor (gcd) of the lengths of critical cycles in the \(s^{th} \) strongly connected component of \(C(A) \) where \(g_{s1} \) and \(g_{s2} \) are gcd of the lengths of critical cycles in the \(s^{th} \) strongly connected component of \(C(A) \) and \(C(\bar{A}) \) respectively, then per(\(A \)) = \(\left[\text{per}(A), \text{per}(\bar{A}) \right] \) is called the least common multiple (lcm) of \((g_{1}, g_{2}, \ldots) \).

Proof. Suppose \(A \in I(\mathbb{R})_{e}^{n \times n} \) irreducible matrix and \(A \approx [A, \bar{A}] \) where \(A = (A_{ij}) \in \mathbb{R}^{n \times n}_{e} \) and \(\bar{A} = (\bar{A}_{ij}) \in \mathbb{R}^{n \times n}_{e} \) irreducible. Suppose \(g_{s} = \left[g_{s1}, g_{s2} \right] \) be the greatest common divisor (gcd) of the lengths of critical cycles in the \(s^{th} \) strongly connected component of \(C(A) \) where \(g_{s1} \) and \(g_{s2} \) are gcd of the lengths of critical cycles in the \(s^{th} \) strongly connected component of \(C(A) \) and \(C(\bar{A}) \) respectively. According to the theorem that applies in the max-plus algebra, per(\(A \)) = lcm(\(g_{1}, g_{2}, \ldots \)) and per(\(\bar{A} \)) = lcm(\(g_{3}, g_{4}, \ldots \)). Therefore, per(\(A \)) = \(\left[\text{per}(A), \text{per}(\bar{A}) \right] \) is called the least common multiple of \((g_{1}, g_{2}, \ldots) \).

By using the definition Theorem 3.4 and 3.6, the following theorem is obtained.

Theorem 3.9. The irreducible matrix \(A \in I(\mathbb{R})_{e}^{n \times n} \) robust if only if in every strongly connected component of \(C(A) \) the lengths of all critical cycles are co-prime.

Proof. Suppose \(A \in I(\mathbb{R})_{e}^{n \times n} \) irreducible and \(A \approx [A, \bar{A}] \), where \(A = (A_{ij}) \in \mathbb{R}^{n \times n}_{e} \) and \(\bar{A} = (\bar{A}_{ij}) \in \mathbb{R}^{n \times n}_{e} \) irreducible. Suppose \(A \) robust implies that \(A \) and \(\bar{A} \) robust. According to the theorem holds in the max-plus algebra every strongly connected component of \(C(A) \) and \(C(\bar{A}) \) the lengths of all critical cycles are co-prime. As result in strongly connected component of \(C(A) \) are co-prime. Conversely every strongly connected component of \(C(A) \) the lengths of all critical cycles are co-prime. Since \(A \approx [A, \bar{A}] \) so every strongly connected component of \(C(A) \) and \(C(\bar{A}) \) the lengths of all critical cycles are co-prime. According to the theorem that applies in the max-plus algebra than \(A \) and \(\bar{A} \) robust. As a result, \(A \) robust.

The characteristic of robust matrix concerns with eigen space of \(A, A^{2}, \ldots, A^{n} \). Previously definition strongly irreducible matrix is given.

Definition 3.10. The matrix \(A = (A_{ij}) \in I(\mathbb{R})_{e}^{n \times n} \) is called strongly irreducible if \(A^{k} \) is irreducible for every \(k = 1, 2, \ldots \).

Theorem 3.11. The strongly irreducible matrix \(A = (A_{ij}) \in I(\mathbb{R})_{e}^{n \times n} \) robust if only if eigen space of \(A, A^{2}, \ldots, A^{n} \) have same dimension.

Proof. Suppose \(A \in I(\mathbb{R})_{e}^{n \times n} \) strongly irreducible and robust. Suppose \(A \approx [A, \bar{A}] \) where \(A = (A_{ij}) \in \mathbb{R}^{n \times n}_{e} \) and \(\bar{A} = (\bar{A}_{ij}) \in \mathbb{R}^{n \times n}_{e} \) strongly irreducible and implies that both \(A \) and \(\bar{A} \) robust. According to the theorem that implies in the max-plus algebra, eigen space of \(A, A^{2}, \ldots, A^{n} \) and eigen space \(\bar{A}, \bar{A}^{2}, \ldots, \bar{A}^{n} \) have same dimension. Therefore, eigen space of \(A, A^{2}, \ldots, A^{n} \) have same dimension. Conversely eigen space of \(A, A^{2}, \ldots, A^{n} \) have same dimension. Since \(A \approx [A, \bar{A}] \) so eigen space of...
\(A, A^2, \ldots, A^n \) and eigen space \(\overline{A}, \overline{A^2}, \ldots, \overline{A^n} \) have same dimension. According to the theorem that applies in the max-plus algebra, \(A \) and \(\overline{A} \) robust, so \(A \) robust. ■

Theorem 3.12. For every strongly irreducible matrix \(A = (A_{ij}) \in I(\mathbb{R})_e^{n \times n} \) robust if only if eigen space of \(A, A^2, \ldots, A^n \) are coincide.

Proof. Suppose \(A \in I(\mathbb{R})_e^{n \times n} \) strongly irreducible and robust. Suppose \(A \approx [A, \overline{A}] \) where \(A = (A_{ij}) \in \mathbb{R}_e^{n \times n} \) and \(\overline{A} = (\overline{A}_{ij}) \in \mathbb{R}_e^{n \times n} \) strongly irreducible, and \(A, \overline{A} \) robust. According to the theorem that applies in the max-plus algebra such that eigen space of \(A, A^2, \ldots, A^n \) coincide and also eigen space of \(\overline{A}, \overline{A^2}, \ldots, \overline{A^n} \) similar. As a result, eigen space of \(A, A^2, \ldots, A^n \) coincide. Conversely if every eigen space of \(A, A^2, \ldots, A^n \) coincide implies that eigen space of \(A, A^2, \ldots, \overline{A^n} \) coincide and also eigen space of \(\overline{A}, \overline{A^2}, \ldots, \overline{A^n} \) coincide. According to the theorem that applies in the max-plus algebra, both \(A \) and \(\overline{A} \) robust. As a result, \(A \) robust. ■

By using Theorems 3.11 and 3.12, the following corollaries are obtained.

Corollary 3.13. Every strongly irreducible matrix \(A = (A_{ij}) \in I(\mathbb{R})_e^{n \times n} \) robust if only if eigen space of all power matrices of \(A \) coincide.

Proof. Suppose \(A \in I(\mathbb{R})_e^{n \times n} \) strongly irreducible and robust. Suppose \(A \approx [A, \overline{A}] \) where \(A = (A_{ij}) \in \mathbb{R}_e^{n \times n} \) and \(\overline{A} = (\overline{A}_{ij}) \in \mathbb{R}_e^{n \times n} \) irreducible. Similarly \(A \) and \(\overline{A} \) robust. According to the theorem that applies in the max-plus algebra, eigen space all power matrices of \(A \) dan \(\overline{A} \). As a result eigen space of all power matrices \(A \) coincide. Conversely, eigen space of all power matrices \(A \) coincide, therefore eigen space of all powers matrices \(A \) dan \(\overline{A} \) coincide. According to the theorem that applies in the max-plus algebra, \(A \) and \(\overline{A} \) robust. As a result, \(A \) robust. ■

Corollary 3.14. Every irreducible matrix \(A = (A_{ij}) \in I(\mathbb{R})_e^{n \times n} \) robust if only if \(A_{ii} = \lambda(A) \) for every \(i \in E(A) \).

Proof. Let \(A \in I(\mathbb{R})_e^{n \times n} \) irreducible and robust matrix. Suppose \(A \approx [A, \overline{A}] \) where \(A = (A_{ij}) \in \mathbb{R}_e^{n \times n} \) and \(\overline{A} = (\overline{A}_{ij}) \in \mathbb{R}_e^{n \times n} \) irreducible and robust. According to the theorem that applies in the max-plus algebra, \(A_{ii} = \lambda(A) \) and \(\overline{A}_{ii} = \lambda(\overline{A}) \) for every \(i \in E(A) \) and \(i \in E(\overline{A}) \). As a result, \(A_{ii} = \lambda(A) \) for every \(i \in E(A) \). Conversely \(A_{ii} = \lambda(A) \) for every \(i \in E(A) \). Therefore, \(A_{ii} = \lambda(A) \) and \(\overline{A}_{ii} = \lambda(\overline{A}) \) for every \(i \in E(A) \) and \(i \in E(\overline{A}) \). According to the theorem that applies max-plus algebra \(A = (A_{ij}) \in \mathbb{R}_e^{n \times n} \) and \(\overline{A} = (\overline{A}_{ij}) \in \mathbb{R}_e^{n \times n} \) robust. As a result, \(A \) robust. ■

4. Conclusion

In this paper, we obtain some results concerning to characteristic of robust matrix in interval max-plus algebra, namely lower bound and upper bound, period, strongly connected component of all critical cycle and dimension of eigenspace for powers of matrices and its eigenvalue.

References
[1] Bacelli, F., Cohen, G., Older, J. G., and Quadrat, J. P. 2001. Synchronization and Linearity (New York: John Wiley & Sons).
[2] Butkovic, P., Simple image set of (max,+) linear mappings, Discrete Applied Mathematics, (495) (2000), pp. 73 – 86.
[3] Butkovic, P., Max-Algebra: The linear algebra of combinatorics ?, Linear Algebra and Its Application, (421) (2003), pp. 313 – 335.
[4] Tam, K. P., Optimizing and Approximating Eigenvectors in Max Algebra, A Thesis Submitted to The University of Birmingham for The Degree of Doctor of Philosophy (Ph.D), 2010.
[5] Butkovic, P. 2010. Max Linear Systems : Theory and Algorithm (London: Springer).
[6] Butkovic, P., Cuninghame-Green, R.A., *On matrix powers in max-algebra*, Linear Algebra and Its Application, (367) (2006), pp. 370 – 381.

[7] M. A. Rudhito, *Fuzzy Number Max-Plus Algebra and Its Application to Fuzzy Scheduling and Queuing Network Problems*, The Study Program S3 Mathematics Faculty of Mathematics and Natural Sciences : Gadjah Mada University, (2011). (Indonesian).

[8] Siswanto, A. Suparwanto, and M. A. Rudhito, *Vector eigen space of matrix over interval max-plus algebra*, Journal Mathematical & Sciences (JMS). Faculty of Mathematics and Natural Science : Bandung Institute of Technology, 19 (1) (2014), pp. 8 – 15. (Indonesian).

[9] Siswanto, *Eigen problem of irreducible matrix powered over interval max-plus Algebra*, Proceeding of National Seminar of Matematics & Education Mathematics, Study Program of Mathematics dan Education Mathematics, Faculty of Teacher Training and Education, Muhammadiyah University Surakarta, ISBN : 978.602.361.002.0, (2015), pp. 925 – 934. (Indonesian).