ABSTRACT

Considering the significance of visible light-promoted reactions in complex biological media, the photo-oxidation of the amino acids (AAs) tyrosine (tyr) and tryptophan (trp) was studied in the presence of the naturally occurring oxidative scavenger uracil (ur). The involved photoprocesses, studied at pH 7 and 9, are driven through the reactive oxygen species (ROS) singlet molecular oxygen (O$_2$(1Δg)), superoxide radical anion (O$_2$•⁻) and hydrogen peroxide (H$_2$O$_2$). The effect on the effectiveness of the overall photo-oxidation process due to the presence of an added electron-donating substrate such as ur is not straightforwardly predictable. The addition of the pyrimidine compound, a much lesser photo-oxidizable substrate than the AAs themselves, produced different results: (1) antioxidative for tyr at pH 9, decreasing the overall rate of oxygen uptake; (2) synergistic for tyr at pH 7, increasing the oxidation rate more than the corresponding addition value of the respective individual rates and (3) no effect for trp at both pH values. The final result depends on the respective abilities of the substrates as quenchers of both the long-lived riboflavin triplet excited state and the generated ROS and the pH of the medium. An interpretation for the different cases is attempted through a kinetic and mechanistic analysis.

INTRODUCTION

Reactions between biologically significant compounds are being increasingly investigated in relation to relevant chemical/biochemical events in several fields, such as biology, pharmacology and medicine (1–3). This is the case of thermal and photocatalytic processes between amino acids (AA) and nucleic bases, which strongly attracted scientific attention (4–6). The addition of AAs to uracil (ur), upon photoirradiation with ultraviolet light is known and has been investigated for several decades (4). The relevance of these reactions was related to the mechanism by which DNA and proteins are cross-linked in vivo, stimulated by ultraviolet light. Similarly, the formation of cross-links between ur-substituted nucleic acids and tryptophan-containing (trp) proteins was detected and studied by the characteristic fluorescence of the ur-trp fluorophore (5). In addition, energetic aspects of charge- and proton-transfer reactions between nucleobases and AAs, that can produce DNA and RNA damage, have been recently studied by means of computational calculations for several nucleoside models including ur (6).

Turning to potential light-induced processes involving ur derivatives and AAs, and in the frame of naturally driven photoreactions, a first observation arises: both families of compounds are transparent to daylight. Nevertheless it is well known that ur and AAs can be affected by visible light irradiation if some compound, namely a photosensitizer, able to absorb visible light and to generate reactive species, is present in the same environment (7). A daylight-absorbing pigment of particular interest is the naturally occurring vitamin B$_2$, riboflavin (RF). The vitamin is endogenously present in living organisms, and has been postulated as a possible sensitizer for the in vivo photo-oxidative degradation of proteins, puric bases and fatty acids, among other biologically relevant substrates (8–13).

Riboflavin was found to generate reactive oxygen species (ROS) upon photoexposure. Studies with puric bases showed that RF-photosensitized processes could be responsible for photodamaging of DNA (14). Recently we reported kinetic studies on the RF-sensitized photo-oxidation of ur, uric acid, xanthine and hypoxanthine in aqueous solution, mediated by ROS (9,15). The aerobic light-induced interaction of RF with proteins is well known to occur through ROS-mediated oxidation of one or several of the five photo-oxidizable AAs: tyr, trp, methionine, histidine and cysteine (16–19). A typical example is the photo-oxidation of milk proteins, sensitized by the vitamin (20–22). Also, it is well established that photopromoted reactions can occur in the human body, especially in regions directly exposed or transparent to environmental light, in the presence of RF (23,24).

Recently, the photolysis of several flavins was studied in airsaturated aqueous solution in the presence of appropriate electron donors, including aromatic AAs (25). The overall reaction observed was conversion of oxygen via the hydroperoxy/superoxide radical.

As RF, ur-containing biomolecules and proteins can occupy common locations in complex biological systems, elucidating the kinetics of tyr and trp photo-oxidation, in the presence of the vitamin and ur, will allow: (1) a greater understanding of the chemical and physical behavior of ROS involved; (2) the
interpretation of the actual photochemical reactions of ur and AAs; and (3) a greater insight into the influence of different substrates on tyr and trp oxidation.

This was the goal of the present study, driven through the evaluation of the rates of oxygen uptake by the AAs and uracil, in the simultaneous presence of visible light and vitamin B2 as dye-sensitizer. The relative values of oxygen uptake rates were taken as a measure of overall photo-oxidability by the substrates. The AAs trp and tyr were chosen as typical protein oxidizable targets, under visible light photolysis in the presence of ROS generators.

MATERIALS AND METHODS

Materials. Uracil, L-tryptophan, L-tyrosine, Rf, superoxide dismutase (SOD) from bovine erythrocytes and catalase from bovine liver, were purchased from Sigma Chem. Co. (St. Louis, MO). Rose bengal (RB) and sodium azide (NaN3) were from Aldrich (Milwaukee, WI). All these chemicals were used as received. Water was triple distilled. All the measurements were carried out at room temperature and with freshly prepared solutions. Buffered aqueous solutions were prepared, with 0.025 M KH2PO4/0.025 M Na2HPO4 (pH 7), and 0.01 M Na2B4O7·10H2O (pH 9) (26).

Methods. Absorption spectra were registered with a Hewlett Packard 5452A or an Agilent 8453 diode-array spectrophotometer. Continuous photolysis was performed in a home-made photolyzer with a 300 W quartz-halogen lamp and a cutoff filter at 360 nm, using RB (A530 = 0.5) or Rf (0.04–0.05 mM) as sensitizer. The relative rate of Rf- and RB-sensitized photo-oxidation of each system (AAs, ur and their mixtures) was determined by evaluation of the initial slope of oxygen uptake for each sensitizer and for each pH level.

RESULTS

The visible light irradiation of air-equilibrated pH 7 and pH 9 aqueous solutions of individual 0.15 mM trp, 0.22 mM tyr and 0.16 mM ur, all in the presence of 0.04 mM Rf as a dye sensitizer, modified the absorption spectra of the substrates. See Fig. 1 as an example for the case of trp at pH 7. It shows typical absorbance decrease in the absorption band centered at 270 nm, already described in the literature (19), due to the dye-sensitized photo-oxidation of the amino acid. The same was observed for the case of tyr with spectral changes at 275 nm at pH 7 and at 240 and 290 nm at pH 9.

In separate experiments, oxygen consumption was observed upon Rf (0.05 mM)-sensitized photolysis of similar solutions containing individually trp, tyr and ur, all at a concentration of 0.5 mM, and mixtures trp–ur and tyr–ur, both 0.5 mM, again at pH 7 and 9. The relative rates of oxygen uptake are presented in Table 1. Typical modifications and oxygen uptake are due to a Rf-sensitized photo-oxidation mediated by ROS (7,9,15). The respective rates of oxygen uptake can be considered as a relative measure of the overall photo-oxidability of the substrates. Prolonged photolysis of Rf alone produced a slight oxygen consumption that can be considered negligible in relative terms within the typical irradiation times employed in the presence of ur and/or the AAs (Fig. 2).

Rate values of oxygen uptake for each system in Table 1 represent the mean value of a set of six runs under identical conditions. All rate values of the set did not differ by more than 3% of the mean value. Standard deviation values for the individual runs gave values lower than 1%. Nevertheless, we included ±3% as the error bar for the rates of Table 1, a more realistic estimation that assists in the interpretation of the actual magnitude of the observed effects.

It is well known that under aerobic photolysis, and in the presence of adequate electron donors, such as aromatic AAs (25) or ur (9), Rf generates the ROS O2(1\(D_a\)), O2** and H2O2. As RB exclusively generates O2(1\(D_a\)) under visible light photolysis (7,27), photolysis experiments similar to those performed with Rf were made for comparative purposes, replacing the vitamin by the xanthene dye sensitizer (A549 = 0.52 for RB), and keeping constant the remaining experimental conditions. For tyr, trp and ur both typical photo-oxidative-spectral modifications and oxygen consumption (Table 1) were observed at pH 9 whereas this behavior was only detected for trp at pH 7 (Fig. 2, inset). In other words, O2(1\(D_a\)) was practically unreactive toward tyr and ur at pH 7, confirming that the nonionized form of these compounds is only a physical quencher of the oxidative species (16). The pK\(a\) values of 9.5 (26,28,29) and 10.1 (26) for the ionization of the OH group in ur and tyr respectively indicate that a considerable proportion of their ionized species is present at pH 9. Regarding trp, it is known that the kinetics of O2(1\(D_a\))-photo-oxidation of this AA is not significantly affected by pH changes (16).

The photolysis of RB alone did not produce oxygen consumption. Besides, the absorption spectrum of the sensitizer remained within the irradiation time employed in typical runs. Spectral changes for trp at pH 7 are shown in Fig. 1, inset. It can be seen that these changes are practically the same as
those observed in the Rf-sensitized process at the same pH value (Fig. 1, main). This fact indicates the presence of structurally similar photoproducts in both cases, being formylkynurenine (30,31) and pyrroloindole-like compounds (32) the reported oxidation products.

The available literature data on k_t and k_r rate constants and the corresponding k_r/k_t values are included in Table 1. The rate constants k_t and k_r account for the respective reactive and physical quenching processes of $O_2(1\Delta g)$ by the substrates, being $k_t = k_r + k_q$. The quotient k_r/k_t can be envisaged as the fraction of the overall interaction $O_2(1\Delta g)$ substrate that leads to effective chemical transformation (18).

The presumable unreactivity of the nonoxidizable AA gly (16) was confirmed by means of an oxygen uptake experiment, under identical conditions employed for tyr and trp, in the individual presence of RB or Rf as dye sensitizers. No oxygen consumption was observed at any pH value, as stated in Table 1. This result can be considered as a blank for the common AA moiety of the aromatic AAs.

The data in Table 1 suggest that the relative rates of oxygen uptake by RB-sensitization for the mixtures AA + ur represent the simple addition of the respective rates of the individual AAs and ur. In this case the interaction was driven by an exclusive $O_2(1\Delta g)$ mechanism. In contrast, the presence of ur in the Rf-sensitized runs of the AAs affected the rates of oxygen consumption by the AAs in a different fashion: a delay in the rate of oxygen uptake can be observed for tyr in the presence of ur at pH 9, whereas an increase can be observed for this AA at pH 7. In the case of trp at both pH values the rate of oxygen consumption by trp was increased by ur at pH 7, whereas no effect was observed at pH 9.}

Table 1. Rates of oxygen uptake (Rel. rate ($\Delta[O_2]/\Delta t$)) in visible light photoirradiated pH 7 and pH 9 Rf ($A(446) = 0.4$) or pH 9 RB ($A(549) = 0.52$) aqueous solutions plus different combinations of the substrates ur and/or tyr and trp, all at a concentration of 0.5 mm; literature data: rate constants for the quenching of 3Rf* (k_{q3}) by ur and AAs; reactive (k_r) and overall rate constants (k_t) for the quenching of $O_2(1\Delta g)$ by ur and AAs and k_r/k_t ratios.

Substrates	Rel. rate ($\Delta[O_2]/\Delta t$) in RB—pH 9	Rel. rate ($\Delta[O_2]/\Delta t$) in Rf—pH 7	Rel. rate ($\Delta[O_2]/\Delta t$) in Rf—pH 9	$k_{q3} \times 10^9$ (M$^{-1}$ s$^{-1}$) in H$_2$O	$k_r \times 10^7$ (M$^{-1}$ s$^{-1}$)	$k_t \times 10^7$ (M$^{-1}$ s$^{-1}$)	k_r/k_t
ur	1.00 ± 0.03	1.00 ± 0.03	1.00 ± 0.03	0.025*	0.003* (pH 7)	0.05* (pH 9)	0.06 (pH 7)
trp	34 ± 1	36.1 ± 1	2.0 ± 0.06	1.80†	4.70† (pH 7)	7.2† (pH 7)	0.65 (pH 7)
tyr	14.1 ± 0.4	13.0 ± 0.4	1.7 ± 0.05	1.30†	<10$^{-4}$ (pH 7)	1.5 (pH 7)†	~0
gly	NC**	~0.05	~0.05	~0.05	3.8 (pH 10)†	~20$^{-4}$	~0.2
tyr + ur	34.7 ± 1	36.6 ± 1	2.3 ± 0.07	2.00†	4.70† (pH 7)	7.2† (pH 7)	0.65 (pH 7)
gly + ur	1.02 ± 0.03	1.00 ± 0.03	1.00 ± 0.03	1.00 ± 0.03	1.00 ± 0.03	1.00 ± 0.03	1.00 ± 0.03

*Haggi et al. (9), † Görner (25), k_{q3} is pH-independent in the range 3–12. ‡ Bertolotti et al. (19). § García (18). || Wilkinson et al. (7). ** Wilkinson et al. (7) in alkaline medium. **No oxygen consumption was observed.
Table 2. Ratio of the rate of oxygen uptake by visible light photirradiated aqueous solutions of Rf (Δ(446) = 0.52) plus individual ur, tyr or trp all at a concentration of 0.5 mM, at pH values 7 and 9, in the presence (R) of 2 mM sodium azide (NaN₃), or 1 mg 100 mL⁻¹ superoxide dismutase (SOD) or 1 mg 100 mL⁻¹ catalase and in the absence (R₀) of the additives. Estimated error in the individual rates ± 3%.

Compound	ROS quencher	pH 7	pH 9
ur	NaN₃	1	0.12
	SOD	1	0.17
tyr	NaN₃	1.4	0.33
	SOD	1	1.1
trp	NaN₃	0.18	0.14
	SOD	1	0.19
	Catalase	0.46	1

Results in Table 2, expressed as the ratio between the respective rates of oxygen uptake in the presence (R) and in the absence (R₀) of the additives, individualize the ROS that are involved in the overall oxygen uptake process observed in the Rf-sensitized photoirradiation of ur, tyr and trp. A value R/R₀ = 1 indicates that a given additive does not affect the oxygen uptake rate. A decrease in the rate of oxygen uptake in the presence of the additive (R/R₀ < 1) indicates that a given ROS is involved in the photo-oxidation of the substrate.

DISCUSSION

The accepted general mechanism for a RB- or Rf-sensitized photo-oxidation of a given substrate can be depicted by Scheme 1 (9,15):

The initially generated excited singlet state of the sensitizer (S*, process 1) can decay to ground state S (step 2), can be quenched by Q (step 3) or can produce excited triplet S (S*) (reaction 4). S* can yield products through quenching by step 3 or through decomposition of process 5. Also it can decay to ground state S (process 7), can be quenched by ground state oxygen, S (S₃P), generating O₂(D₆) by energy transfer (reaction 8), or can accept an electron from Q yielding semireduced S (S₃D) (process 10). On the other hand, O₂(D₆) can react with Q (reaction 9) or with S (reaction 11), can be physically quenched by Q (process 10) or can be deactivated by the medium (step 12). Reaction (9) is the main pathway of disappearance of Q in O₂(D₆)-mediated processes. When the dye RB is employed as a sensitizer (S = RB in Scheme 1), the photogeneration of O₂(D₆) through processes (4) and (8) is usually very efficient, with quantum yields of 0.8-0.9 (27). On the other hand, when Rf is employed instead, both O₂(D₆) (process 8) and O₂(D₆) (reaction IV), are photogenerated, with reported quantum yields in water of 0.49 (38) and 0.009 (39) respectively.

Hence, the generation of the species Rf⁺ and O₂⁻ is negligible in kinetic terms. Rf is also a moderate quencher of O₂(D₆), with an overall rate constant, k₉RF = k₉RF + k₉RF = 6 × 10⁷ M⁻¹ s⁻¹ (13). Nevertheless, in the presence of an adequate substrate Q, Rf⁺ can give rise to O₂⁻ (process 14), via Rf⁰⁻ (process 13). At pH 7, in the presence of proton-donating species, the generation of Rf neutral radical (RfH⁺, step 17) should occur, with a pKₐ value of 8.4 (25,40,41).

It is known that the reaction of ground state oxygen with RH⁺ is much slower than the corresponding one with Rf⁺ (process 14). Besides, the bimolecular decay of RH⁺ through a disproportionation reaction can yield Rf⁺ and fully reduced Rf (RfH₂) (process 18). The reduced flavin can be reoxidized in the presence of O₂(D₆) producing Rf⁺ and H₂O₂ (step 19) (40).
As an overall result, reactions (14) and (18) constitute pathways for O_2-•• and H_2O_2 production and RF regeneration, as the oxygenated species are good candidates for reacting with compounds Q.

Given the pK_a value for process (17), the study carried out also at pH 9 illustrates the hypothetical case of a prevailing concentration of the species O_2-•• that could be achieved if the reaction would occur in a less-proton-donating environment than pH 7 water.

According to the respective lifetimes of RF electronically excited states (42), and to the values for the rate constants k_{IQ} shown in Table 1, $3Rf^*$ can be intercepted by substrates in the sub-mm concentration range. This is the case of ur, tryt and tyr, all three at a concentration of 0.5 mM under work conditions and $O_3(\Sigma_u)$ with a concentration of ca 0.4 mM in aerated aqueous solutions (43). In principle, the dominant mechanism, either energy transfer (reaction 8) or electron transfer (step 13), will depend on the respective reaction rates of the substrates with $3Rf^*$. It is known that reaction (8) occurs with a rate constant k_{ET} in water of $7 \times 10^8 \text{ m}^{-1} \text{ s}^{-1}$, equivalent to 1/9 of the diffusional flux (44). On this basis, and according to literature values for reaction (13) (Table 1), the kinetic balance indicates that processes (8) and (13) are competitive for tyr and tryt whereas process (8) highly prevails in the case of ur. Hence, $O_3(\Delta_g)$ is always produced. Besides, in the presence of tyr or tryt, relatively efficient interceptors of $3Rf^*$ (Table 1), and according to the pK_a value for process (17) (25,40), the concentration of the species RfH^*, at pH 7, is ca 25-fold higher than that of RF. At pH 9 this proportion is inverted, being the concentration of Rf^* ca four times greater than that of RfH^*. As a consequence in neutral solution H_2O_2 is highly prevalent, formed through process (19) and at pH 9 the predominating ROS is O_2-•• generated through process (14). This observation agrees with experimental results recently published, where the respective transient absorption spectra of the neat species RfH^* at pH 5, and Rf^* at pH 11, are shown (25).

On these grounds, results of oxygen uptake in Tables 1 and 2 and the kinetic data on $O_2(\Delta_g)$-oxidation and quenching of $3Rf^*$, collected in Table 1 can be conjunctively analyzed.

For the RF-sensitized experiments at pH 7, the overall photo-oxidation rate of tyr + ur is higher than that expected for the simple addition of both individual rates, reflecting a sort of synergistic effect. According to the results shown in Table 2, at this pH both tyr and ur react exclusively through H_2O_2 mechanism (step 20). The O_2-•• component, due to the pK_a value for step (17), constitutes only a minor contribution to the overall oxygen consumption. The rate constant for the quenching of $3Rf^*$, the process responsible for H_2O_2 generation, is much higher for tyr than for ur. This fact could indicate that the efficiency of H_2O_2 generation and hence the stationary concentration of the oxidative species available for ur oxidation in the mixture ur + tyr will be also higher than that available for ur alone. As a result, an increase in the overall rate of oxygen consumption by the mixture should be expected.

For the case of tyr at pH 7, oxygen uptake occurs through processes (9) and (20). The contribution of the $O_2(\Delta_g)$-mediated step to the overall oxygen consumption is apparently high, as indicated by the reported oxidative efficiency, with a k_r/k_i ratio of 0.65 (19) (Table 1). The rate for the mixture tyr + ur is practically the same as the corresponding one for the AA alone. In this case oxygen uptake by trp is ca 40-fold faster than that exerted by ur, and the rate for the mixture only reflects the massive $O_2(\Delta_g)$-mediated contribution of the AA.

The relative rate values of oxygen uptake for tyr, trp, and ur and their mixtures at pH 9 are very close. Nevertheless, the respective behaviors of the photo-oxidation rates for the mixtures AA + ur do not parallel. Again for trp, as occurred at pH 7, the photo-oxidation of the mixture ur + AA seems to be the addition of the individual rates, possibly dominated by a $O_2(\Delta_g)$ process.

Regarding the case of tyr at pH 9, it can be seen that the rate of oxygen consumption by tyr + ur is much lower than the addition of the respective individual rates. It is known that tyr, in the alkaline pH range, is easily oxidized by $O_2(\Delta_g)$ producing unstable endoperoxides via [1,4]-cycloaddition (7). The endoperoxides could generate radical intermediates, strong reactants that could favorably interact via ur, without additional oxygen consumption, in a competitive pathway with the O_2-•• route (process 16), possibly the prevailing source of oxygen consumption by ur at this pH. This argument for the additional radical mechanism has been already employed to explain a similar situation in the photo-oxidation of ascorbic acid in the presence of AAs (45).

CONCLUSIONS

The effect of the electron-donating substrate ur on the effectiveness of the overall RF-sensitized-photo-oxidation process of the AAs trp and tyr is not straightforwardly predictable. In the presence of ur, much lesser photo-oxidizable than the AAs, the observed effect was either antioxidative, synergistic or even null. It depends on several connected factors, such as the respective abilities of the substrates as quenchers of both the long-lived RF triplet excited state and the generated ROS. The pH of the medium constitutes an important factor, as it regulates the nature and reactivity of the ROS. An interpretation of the different cases may be attempted through a kinetic and mechanistic analysis.

Acknowledgements—Financial support from the following institutions is gratefully acknowledged: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Secretarías de Ciencia y Técnica de the Universidad Nacional de Rio Cuarto (UNRC), Universidad Nacional de la Patagonia Austral (UNPA) and Universidad Nacional de San Luis (UNSL).

REFERENCES

1. Trehan, M. and C. R. Taylor (2001) Cutaneous photosensitivity and photoprotection for photodynamic therapy patients. Compr. Ser. Photociti. 2, 321–337.
2. Merwald, H., G. Klosner, C. Kokesch, M. Der-Petrossian, H. Höngießmann and F. Trautinger (2005) UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure. J. Photochem. Photobiol. B, Biol. 79, 197–207.
3. Albini A. and E. Fasani (eds.) (1998) Drugs. Photochemistry and Photostability, Chapter 1, pp 1–2. The Royal Society of Chemistry, Cambridge.
4. Smith, K. C. (1969) Photochemical addition of amino acids to ^{14}C-uracil. Biochem. Biophys. Res. Commun. 34, 354–357.
5. Czelewicz, L. (1998) Photochemical reactions of 5-fluorouracil and 5-fluoro-2'-deoxyuridine with N^2-acetyl-L-tryptophan N-ethylamide.
in aqueous solution. *J. Photochem. Photobiol. B*, **43**, 66–72.

6. Aphaisizhev, R. (2007) Computational studies of radicals relevant to nucleic acid damage. *Adv. Quantum Chem.* **52**, 89–120.

7. Wilkinson, F., W. P. Helman and A. B. Ross (1995) Rate constants for the decay of the lowest electronically excited singlet state molecular oxygen in solution. An expanded and revised compilation. *J. Phys. Chem. Ref. Data* **24**, 663–1021.

8. Joshi, P. C. (1985) Comparison of the DNA-damaging property of photosensitized riboflavin via singlet oxygen (\(\text{O}_2^*\)) and superoxide radical (\(\text{O}_2^-\)) mechanisms. *Toxicol. Lett.* **26**, 211–217.

9. Haggi, E., N. Blash, J. Diaz, M. Diaz, W. Massad, F. Amat-Guerrí and N. A. García (2007) Kinetics and mechanism of the sensitized photodegradation of uracil. Modeling the fate of related herbicides in aqueous environments. *Photochem. Photobiol.* **83**, 520–525.

10. Criado, S., A. T. Soltermann and N. A. García (1995) Influence of the nuclear and extranuclear substitution on the singlet molecular oxygen \(\text{O}_2^*(S_g^*)\)-mediated photo-oxidation of tyrosine derivatives. A kinetic study. *Amino Acids* **8**, 367–377.

11. Soltermann, A. T., A. M. Biasutti, A. Senz and N. A. García (1995) Influence of the pH on the photodynamic effect in lysisozyme. A comparison of the riboflavin. *Int. Dairy J.* **5**, 635–664.

12. Neumann, M., S. Fusero and N. A. García (1991) Inhibitory effect on the sensitized photo-oxidation of soybean oil by amino acids and dipeptides. *Fats Sci. Technol.* **93**, 453–456.

13. Chacon, J. N., J. McLearie and R. S. Sinclair (1988) Singlet oxygen yields and radical contributions in the dye-sensitized photo-oxidation in methanol of esters of polyunsaturated fatty acids (oleic, linoleic, linolenic and arachidonic). *Photochem. Photobiol.* **47**, 647–656.

14. Lu, Ch.-Y., W.-F. Wang, W.-Z. Lin, Z.-H. Han, S.-D. Yao and N.-Y. Lin (1999) Generation and photosensitization properties of oxidized radical of riboflavin: A laser flash photolysis study. *J. Photochem. Photobiol. B*, **58**, 1–11.

15. Montaña, M. P., W. A. Massad, F. Amat-Guerrí and N. A. García (2008) Scavenging of riboflavin-photogenerated oxidative species by uric acid, xanthine or hypoxanthine. A kinetic study. *J. Photochem. Photobiol. A*, **193**, 103–109.

16. Straight, R. C. and J. D. Spikes (1985) Photosensitized oxidation of biomolecules. In *Singlet Oxygen*, Chapter 2, Vol. IV (Edited by A. A. Frimer), pp. 91–143. CRC Press, Boca Raton.

17. Posadaz, A., A. Biasutti, C. Casale, J. Sanz, F. Amat-Guerrí and N. A. García (2004) Rose benzal-sensitized photo-oxidation of the dipeptides Trp-Phe, Trp-Tyr and Trp-Trp. *Kinetics, mechanisms and photoproducts. Photochem. Photobiol.* **80**, 132–136.

18. García, N. A. (1994) Singlet molecular oxygen-mediated photodegradation of aquatic phenolic pollutants. A kinetic and mechanismic overview. *J. Photochem. Photobiol. B*, **22**, 185–196.

19. Bertolotti, S. G., G. A. Argüello and N. A. García (1991) Effect of the peptide bond on the singlet molecular oxygen mediated photo-oxidation of tyrosine and tryptophan dipeptides. A kinetic study. *J. Photochem. Photobiol. B*, **10**, 57–70.

20. Saidi, B. and J. J. Warthesen (1995) Effect of heat and homogenization on riboflavin photolysis in milk. *Int. Dairy J.* **5**, 635–664.

21. Trang, V. T., Y. Kurogi, S. Katsuno, T. Shimamura and H. Ukeda (2008) Protective effect of aminoreductone on photosensitized photodegradation of the fungicide carbendazim and related benzimidazoles. *Chemosphere* **65**, 237–244.

22. Silva, E., L. Herrera, A. M. Edwards, J. De La Fuente and E. Lissi (2005) Enhancement of riboflavin-mediated photo-oxidation of glucose 6-phosphate dehydrogenase by uric acid. *Photochem. Photobiol.* **81**, 206–211.

23. Cohen, G. and R. E. Heikkila (1974) The generation of hydrogen peroxide, superoxide radical and hydroxyl radical by 6-hydroxydopamine, diacilar acid and related cytotoxic agents. *J. Photochem. Photobiol. B*, **66**, 77–80.

24. Lu, C.-Y., W. Z. Lin, W. F. Wang, Z. H. Han, S. D. Yao and N. Y. Lin (2000) Riboflavin (VB2) photosensitized oxidation of 2’-deoxyguanosine-5’-monophosphate (dGMP) in aqueous solution: a transient intermediates study. *Photochem. Photobiol.* **73**, 773–781.

25. Wilkinson, F., W. P. Helman and A. B. Ross (1993) Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. *J. Phys. Chem. Ref. Data* **22**, 133–262.

26. Brown, J. D. (1984) Pyrimidines and their benzo derivatives. In *Comprehensive Heterocyclic Chemistry*, Vol. 1 (Edited by A. R. Katritzky, C. W. Rees, A. J. Boulton and A. McKillop), pp. 57–142. Pergamon Press, Oxford.

27. Yoshida, Z. and M. Kato (1974) On the photo-oxidation products of tryptophan. *J. Am. Chem. Soc.* **76**, 311–312.

28. Silva, E., R. Ugarte, A. Andrade and A. M. Edwards (1994) Riboflavin-sensitized photo-oxidation of tryptophan. *J. Photochem. Photobiol. B*, **23**, 43–48.

29. Nakagawa, M., H. Watanabe, S. Yodota, H. Okajima, T. Hino, J. L. Flippen and B. Wikop (1977) Biogenic aminooxionophore interactions: structure and dynamics of l-asalolid (X537A) complexes with phenethylamines and catecholamines in nonpolar solution. *Proc. Natl Acad. Sci.* **USA**, **74**, 4730–4733.

30. Escalada, J. P., A. Pujares, J. Gianotti, W. A. Massad, S. Bertolotti, F. Amat-Guerrí and N. A. García (2006) Dye-sensitized photodegradation of the fungicide carbendazim and related benzimidazoles. *Chemosphere* **65**, 237–244.

31. Silva, E., L. Herrera, A. M. Edwards, J. De La Fuente and E. Lissi (2005) Enhancement of riboflavin-mediated photo-oxidation of glucose 6-phosphate dehydrogenase by uric acid. *Photochem. Photobiol.* **81**, 206–211.

32. Friedman, I. (1978) Superoxide radicals, superoxide dismutases and the aerobic lifestyle. *Photochem. Photobiol.* **28**, 733–741.

33. Lu, C.-Y., W. Z. Lin, W. F. Wang, Z. H. Han, S. D. Yao and N. Y. Lin (2000) Riboflavin (VB2) photosensitized oxidation of 2′-deoxyguanosine-5′-monophosphate (dGMP) in aqueous solution: a transient intermediates study. *Photochem. Photobiol.* **28**, 329–334.

34. Lu, C., G. Bucher and W. Sander (2004) Photoinduced interactions between oxidized and reduced lipidic acid and riboflavin (vitamin B2). *Chem. Phys. Chem.* **5**, 47–56.

35. Heeles, P. F. (1982) The photophysical and photochemical properties of flavins (isoalloxazines). *Chem. Soc. Rev.* **11**, 15–39.

36. Murov, S. L., I. Carmichael and G. L. Hug (1993) *Handbook of Photochemistry*, 2nd edn. M. Dekker, New York.

37. Koizumi, M., S. Kato, N. Mataga, T. Matsuura and I. Imai (1978) *Photoinduced Reactions*. Kagakudōkin Publishing Co., Kyoto.

38. Jung, M. Y., S. K. Kim and S. Y. Kim (1995) Riboflavin-sensitized photo-oxidation of ascorbic acid: Kinetics and amino acid effects. *Food Chem.* **53**, 397–403.