Serum Dioxin Concentrations and Age at Menopause

Brenda Eskenazi,1 Marcella Warner,1 Amy R. Marks,1 Steven Samuels,1,2 Pier Mario Gerthoux,3 Paolo Vercellini,4 David L. Olive,5 Larry Needham,6 Donald G. Patterson Jr.,6 and Paolo Mocarelli3

1School of Public Health, University of California at Berkeley, Berkeley, California, USA; 2School of Public Health, University at Albany, Albany, New York, USA; 3Department of Laboratory Medicine, University of Milano-Bicocca, School of Medicine, Hospital of Desio, Desio-Milano, Italy; 4Department of Obstetrics and Gynecology, Mangiagalli Hospital, University of Milan, Milan, Italy; 5Department of Obestetrics and Gynecology, University of Wisconsin Medical School, Madison, Wisconsin, USA; 6Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

2,3,7,8-Tetrachlorobenzo-p-dioxin (TCDD), a halogenated compound that binds the aryl hydrocarbon receptor, is a by-product of numerous industrial processes including waste incineration. Studies in rats and monkeys suggest that TCDD may affect ovarian function. We examined the relationship of TCDD and age at menopause in a population of women residing near Seveso, Italy, in 1976, at the time of a chemical plant explosion. We included 616 of the women who participated 20 years later in the Seveso Women’s Health Study. All women were premenopausal at the time of the explosion, had TCDD levels measured in serum collected soon after the explosion, and were 23 years of age at interview. Using proportional hazards modeling, we found a 6% nonsignificant increase in risk of early menopause with a 10-fold increase in serum TCDD. When TCDD levels were categorized, compared with women in the lowest quintile (<20.4 ppt), women in quintile 2 (20.4–54.2 ppt) had a hazard ratio (HR) of 1.1 (p = 0.77), quintile 3 (34.3–54.1 ppt) had an HR of 1.4 (p = 0.14), quintile 4 (54.2–118 ppt) had an HR of 1.6 (p = 0.10), and quintile 5 (>118 ppt) had an HR of 1.1 (p = 0.82) for risk of earlier menopause. The trend toward earlier menopause across the first four quintiles is statistically significant (p = 0.04). These results suggest a nonmonotonic dose-related association with increasing risk of earlier menopause up to about 100 ppt TCDD, but not above. Key words: 2,3,7,8-tetrachlorodibenzo-p-dioxin, Cox proportional hazards, dioxin, endocrine disruptors, menopause, Seveso, TCDD. Environ Health Perspect 113:858–862 (2005). doi:10.1289/ehp.7820 available via http://dx.doi.org [Online 24 March 2005]

Materials and Methods

Study population. The Seveso Women’s Health Study (SWHS) is the first comprehensive epidemiologic study of the reproductive health of a female population exposed to TCDD. Women eligible for SWHS were 1 month to 40 years of age in 1976, had resided in one of the most highly contaminated areas (zone A or B), and had adequate stored

Address correspondence to B. Eskenazi, School of Public Health, University of California, 140 Warren Hall, Berkeley, CA 94720-7360 USA. Telephone: (510) 642-3496. Fax: (510) 642-9083. E-mail: eskenazi@berkeley.edu

We thank S. Casalini for coordinating data collection at the Hospital of Desio and W. Turner from the Centers for Disease Control and Prevention for serum TCDD measurements.

This work was supported by the following grants: P01 ES07171 and F06 TW02075-01 from the National Institutes of Health, RR2471 from the U.S. Environmental Protection Agency, EA-M1977 from the Endometriosis Association, 2P30-ES001896-17 from the National Institute of Environmental Health Sciences, and 2896 from Regione Lombardia and Fondazione Lombarda Ambiente, Milan, Italy.

The authors declare they have no competing financial interests.

Received 2 December 2004; accepted 24 March 2005.
Serum TCDD laboratory analyses. Details of serum sample selection are presented elsewhere (Eskenazi et al. 2000). The TCDD concentration in these samples was measured by high-resolution mass spectrometry methods (Patterson et al. 1987). Values are reported on a lipid-weight basis in parts per trillion by dividing TCDD on a whole-weight basis by total serum lipid content, estimated from measurements of triglycerides and cholesterol (Akins et al. 1989).

We measured TCDD in sera collected between 1976 and 1977 for 564 women, between 1978 and 1982 for 28 women, and between 1996 and 1997 for 24 women whose earlier samples had insufficient volume. For nondetectable values (n = 71), a serum TCDD level equal to one-half the detection limit was assigned (Hornung and Reed 1990). For women with detectable post-1977 TCDD measurements (≥ 10 ppt), the TCDD exposure level was back-extrapolated to 1976 using the first-order kinetic model (Pirkle et al. 1989) for women who were > 16 years of age in 1976 (n = 40) or the Filler model (Kreuzer et al. 1997) otherwise (n = 1). For the 7 women with post-1977 measures whose TCDD levels were < 10 ppt, measured values were used. The study median serum sample weight was 0.65 g, and the median limit of detection was 18.8 ppt, lipid-adjusted.

Definitions of menopause. Each woman was categorized by menopausal status using the following definitions: premenopause, if the woman had not menstruated within the last 2 months before interview or exam; natural menopause, if the woman had ≥ 12 months of amenorrhea not due to other obvious causes such as pregnancy, lactation, and medical conditions; perimenopause, if the woman had a medical-record–confirmed hysterectomy and/or a unilateral or bilateral oophorectomy; impending menopause, if the woman menstruated within 12 months, but not in the 2 months before interview or exam, whichever was most recent, and if her amenorrhea could not be explained by pregnancy, lactation, or other medical conditions; perimenopause, if the woman did not menstruate within the last 2 months before interview or exam but either gave evidence of subsequent menstruation in her menstrual diary or on ultrasound exam her endometrial lining was classified as secretory, indicating ovulation and impending menses, or if the woman reported cycles becoming less predictable (either irregular or longer) in the previous 2–5 years (a woman was not classified as perimenopausal if she reported a return to a regular cycle, if there was evidence only for a single irregular cycle, or if the irregularity was attributable to another cause); and other menopausal status, if the woman’s menopausal status could not be determined because of current oral contraceptive (OC) or other hormone use (including hormone replacement therapy) or previous chemotherapy for cancer.

Statistical analyses. We considered serum TCDD levels both a continuous (log_{10} TCDD) and a categorical variable based on quintiles of serum levels near the time of the explosion (1, < 20.4 ppt; 2, 20.4–34.2 ppt; 3, 34.3–54.1 ppt; 4, 54.2–118.0 ppt; 5, > 118.0 ppt). To evaluate the relationship between serum TCDD and age at natural menopause, we performed Cox proportional hazards analyses with the robust method of calculating the variance-covariance matrix (Lin and Wei 1989). The Cox model assesses effects on age-specific probabilities of reaching natural menopause by the relative hazard, or HR, the ratio of probabilities computed for each categorized level of exposure versus the reference group (< 20.4 ppt) or for the effect of a 10-fold increase in TCDD (log_{10} TCDD). Scaled Schoenfeld residuals were generated for the final multivariate model and used to test the proportional hazard assumption (i.e., that the HR is proportional over time) (Grambsch and Therneau 1994). Analyses were performed using STATA (release 8.0; Stata Corp., College Station, TX, USA). All p-values are two-tailed.

Covariates were considered for the multivariate Cox proportional hazards analysis if they had been reported in previous literature to be related to age at menopause. Covariates were kept in the multivariate model if they were statistically significant (p < 0.10) or if they changed the regression coefficient for TCDD exposure by > 10%. We considered the following as potential covariates: current body mass index (BMI), premenopausal smoking history, education, marital status, current physical activity, age at menarche, parity, OC use, and history of heart disease. We also created a variable for menopausal history of medical conditions that could potentially be related to age at menopause, including type 1 diabetes (n = 1), rheumatoid arthritis (n = 4), radiation for cancer (n = 4), epilepsy (n = 2), hyperthyroid (n = 10), and untreated hypothyroid (n = 2) (Dorman et al. 2001; Klein et al. 2001; Steinkampf 1990). In addition to controlling for these conditions with an indicator variable, we repeated our models excluding women with these conditions (n = 23). The results were similar; therefore, we present only the results including the women with other medical conditions. One covariate (education) was found to violate the proportional hazards assumption (p = 0.06); therefore, estimates stratified by education were obtained.

For women who met the definition of natural menopause, age (in years) at last menstrual period was assigned as their age at menopause. Surgically menopausal women were censored at the age at which they had surgery. Premenopausal and perimenopausal women were censored at their age at interview. Women using OCs or other hormones and those with a history of chemotherapy were censored at the age at which they began use or treatment. Each woman was entered into the analysis at 35 years of age, before which natural menopause was unlikely to occur. Twenty-seven women (4%) were censored before 35 years of age because of surgical menopause (n = 7), OC use (n = 19), or other hormone use (n = 1).

We reran the final models including as menopausal the 13 women in the impending menopause group who may have been menopausal but had not yet reached the definition of natural menopause (12 months of amenorrhea). To assess the possibility that TCDD exposure is associated with conditions that would lead to surgical menopause or that it is associated with a longer menopausal transition, we also reran the final models with a redefined outcome including surgical menopause, perimenopause, impending menopause, and natural menopause.

The final models were also rerun considering alternative TCDD exposure scenarios including cumulative exposure dose (area under the curve measured in parts per trillion-years) and estimated exposure dose at time of failure or censorship (parts per trillion). These doses were estimated for each year of exposure (time dependent) following the first-order kinetic model assuming a half-life of 9 years for TCDD (Pirkle et al. 1989). Ages at risk before the explosion were assigned to the “unexposed” category. We also reran the final models excluding the 24 women for whom it
was necessary to estimate TCDD exposure by back-extrapolation from TCDD levels measured in serum collected in 1996.

Results
Characteristics of the 616 women in the analysis are presented in Table 1 for all women and by menopausal category. The mean (± SD) age at interview of the 616 women was 47.8 ± 8.1 years and ranged from 35 to 63 years. A total of 260 women (42.2%) were in premenopause, 169 women (27.4%) were in natural menopause, 83 women (13.5%) were in surgical menopause, 13 women (2.1%) were in impending menopause, 33 (5.4%) were in perimenopause, and 58 (9.4%) were assigned other status [current OC use (n = 39), other hormone use (n = 17), chemotherapy (n = 2)]. The mean (± SD) age at menopause for those in natural menopause (n = 169) was 49.2 ± 3.7 years (median, 49; range, 39–57), which was older than those in surgical menopause (42.7 ± 6.2 years; median, 43; range, 22–52).

All women were Caucasian, about half had less than the required amount of education, about 40% were overweight or obese (≥ 25 kg/m²), two-thirds had never smoked, about half had ever used OCs, and nearly all had been married and were parous (Table 1). Compared with premenopausal women, natural menopausal women were less educated and more likely to be overweight or obese, to be nonsmokers, to have used OCs for a shorter period of time, and to have had more pregnancies.

For each menopausal category, the median lipid-adjusted serum TCDD level and interquartile range (IQR) are presented in Table 2. Overall, the median lipid-adjusted serum TCDD level for the 616 women was 43.7 ppt (IQR, 24–95 ppt; range, 2.5–6,320 ppt). For premenopausal women, the median serum TCDD level was 43.6 ppt (IQR, 21–91 ppt), and for naturally menopausal women the median was 45.8 ppt (IQR, 28–100 ppt). Serum TCDD levels did not vary significantly across the menopausal categories (analysis of variance for log₁₀ TCDD, p = 0.87).

In Cox proportional hazards modeling, the unadjusted HR associated with a 10-fold increase in TCDD (log₁₀ TCDD) was 1.02 [95% confidence interval (CI), 0.8–1.3; test for trend, p = 0.89] (Table 3). That is, there was a 2% nonsignificant increase in risk of onset of menopause with a 10-fold increase in TCDD (e.g., from 10 to 100 ppt). After controlling for education, parity, duration of OC use, and "other medical conditions," the association with log₁₀ TCDD remained nonsignificant (HR = 1.06; 95% CI, 0.8–1.4). However, when a square term in log₁₀ TCDD was added to the continuous variable model, it was statistically significant, suggesting a curvature in the dose–response curve (results not shown).

When serum TCDD levels were categorized into quintiles, risk of earlier menopause trended upward in the first four quintiles but not in the highest quintile in the unadjusted (Table 3) and adjusted models (Figure 1). After adjusting for covariates, relative to women with TCDD levels in the lowest quintile (< 20.4 ppt), women with TCDD levels in quintile 4 (20.4–34.2 ppt) had a 10% increase in hazard of earlier natural menopause (adjusted HR = 1.1; 95% CI, 0.7–1.8; p = 0.77), women with TCDD levels in quintile 3 (34.3–54.1 ppt) had a 40% increase in hazard of natural menopause (adjusted HR = 1.4; 95% CI, 0.9–2.3; p = 0.14), and women with TCDD levels in quintile 4 (54.2–118 ppt) had a 60% increase in hazard of natural menopause (adjusted HR = 1.6; 95% CI, 0.9–2.6; p = 0.10). Women in the highest quintile (5, > 118 ppt), however, had only a 10% increase in hazard of earlier natural menopause (adjusted HR = 1.1; 95% CI, 0.6–1.9; p = 0.82). Although no increasing trend of earlier natural menopause was observed across the five quintiles (p = 0.44), a significant trend to earlier natural menopause across the first four quintiles was found (p = 0.04). Furthermore, when we excluded the 24 women who had back-extrapolated TCDD levels from 1996, the association is strengthened.

Compared with women in the lowest quintile (< 20.4 ppt), women in quintile 2 (20.4–34.2 ppt) had an HR of 1.2 (p = 0.5); quintile 3 (34.3–54.1 ppt) had an HR of 1.6 (p = 0.08); quintile 4 (54.2–118 ppt) had an HR of 1.7 (p = 0.05); and quintile 5 (> 118 ppt) had an HR of 1.2 (p = 0.5) for risk of earlier menopause. The trend toward earlier menopause across the first four quintiles is statistically significant (p = 0.02).

The results did not change when women in the impending menopause category were classified as menopausal in the analysis (data not shown). Similar results were found when women in surgical menopause and perimenopause were also combined with natural and impending menopause as one outcome (data not shown).

When TCDD exposure was extrapolated to the time of failure or censorship, the results remained statistically significant (p = 0.08). Similar results were found when women in surgical menopause and perimenopause were also combined with natural and impending menopause as one outcome (data not shown).

Table 1. Distribution of select characteristics [n (%)] by menopausal status, SWHS, Italy, 1996–1998 (n = 616).

Characteristic	All women	Premenopausal	Natural menopause	Surgical menopause	Impending menopause	Perimenopause	Other
Menopausal status	616 (100)	260 (42.2)	169 (27.4)	83 (13.5)	13 (2.1)	33 (5.4)	58 (9.4)
Age at interview (years)	47.8 ± 8.1	41.9 ± 4.7	56.6 ± 3.7	52.1 ± 6.4	51.5 ± 2.8	47.1 ± 3.2	41.8 ± 6.6
Education	341 (55)	85 (25)	339 (41)	59 (17)	24 (8)	9 (5)	13 (13)
Current BMI (kg/m²)	275 (45)	175 (64)	30 (11)	24 (9)	2 (1)	7 (3)	37 (13)
Cigarette smoking							
Never	419 (68)	155 (37)	130 (31)	66 (16)	10 (2)	25 (6)	33 (8)
Former	88 (14)	47 (53)	16 (18)	9 (10)	0 (0)	3 (3)	13 (15)
Current	108 (18)	58 (53)	23 (21)	8 (7)	3 (3)	5 (5)	12 (11)
Total OC use (years)							
0	332 (54)	111 (33)	132 (40)	53 (16)	6 (2)	18 (5)	12 (4)
< 1–5	184 (30)	106 (58)	30 (16)	21 (11)	2 (1)	11 (6)	14 (8)
≥ 5	100 (16)	43 (43)	7 (7)	9 (9)	5 (5)	4 (4)	32 (32)
Ever married							
No	16 (3)	11 (69)	2 (13)	1 (6)	0 (0)	1 (6)	1 (6)
Yes	600 (97)	249 (42)	167 (28)	82 (14)	13 (2)	32 (5)	57 (10)
Parous							
No	49 (8)	32 (65)	8 (16)	5 (10)	0 (0)	1 (2)	3 (6)
Yes	567 (92)	228 (40)	161 (29)	76 (14)	13 (2)	32 (6)	55 (10)

*p No. (%) of row. No. (%) of column.
were no different. Cumulative TCDD exposure (parts per trillion-years), however, was not related to age at onset of menopause (adjusted HR = 1.02; 95% CI, 0.8–1.3).

In the final models described above, nulliparity was associated with earlier natural menopause (adjusted HR = 1.9; 95% CI, 1.1–3.4), and history of OCs for at least 5 years was associated with later natural menopause (adjusted HR = 0.5; 95% CI, 0.3–1.1). We observed a nonsignificant earlier natural menopause for women who were current smokers (adjusted HR = 1.2; 95% CI, 0.8–1.7). BMI, however, was not associated with age at natural menopause.

Discussion

The results of this study of women residing in Seveso, Italy, in 1976, at the time of a chemical plant explosion that resulted in very high levels of TCDD exposure, suggest a nonmonotonic dose-related association of TCDD levels in sera collected near the time of exposure with earlier onset of natural menopause; the trend for increasing risk is observed with TCDD levels up to about 100 ppt, but not above. Our finding is supported by the earlier mean age of menopause observed in our study (49.2 ± 3.7 years) relative to that (mean = 50.9 years) reported in an Italian clinic-based study of > 4,300 menopausal women during the same time period (1995–1997) (Meschia et al. 2000). It is also earlier than the mean age of 49.9 years reported contemporaneously for menopausal women from another unexposed province in the Lombardia region (Celentano et al. 2003).

To our knowledge, no previous epidemiologic studies have examined the relation of TCDD exposure and age at menopause. However, amenorrhea was observed in a case report of an Austrian woman with extremely high levels of serum TCDD (144,000 ppt) (Geusa et al. 2001). Our findings are also consistent with findings from a case–control study of breast cancer in women residing in North Carolina (Cooper et al. 2002). In that study, investigators did not find a relationship between age at menopause with serum levels of total PCBs (including dioxin-like and non-dioxin-like PCBs) but did find an elevated risk (HR = 1.4) for earlier menopause in women with serum levels in the top decile of DDE compared with women with levels below the median. However, the mechanism of action for TCDD is not the same as for DDE (Mizuyachi et al. 2002), and the effects of TCDD may differ depending on the estrogen-target material (Chaffin et al. 1996).

The potential impact of TCDD exposure on age at menopause is biologically plausible, as animal studies indicate (Kociba et al. 1976; Li et al. 1995a, 1995b; Roby 2000; Son et al. 1999). In a rat model, a serum estradiol concentration 8–10 times higher than normal was needed to overcome TCDD-blocked ovulation, including restoration of the luteinizing hormone and FSH surges. This suggests that the hypothalamic–pituitary axis may be less sensitive to estrogen in TCDD-treated animals (Gao et al. 2001).

If TCDD exposure induces earlier menopause, it is unlikely to occur via oocyte apoptosis. Recent data in mice suggest that TCDD does not induce Bax gene expression in oocytes, which is necessary for the oocyte loss related to premature ovarian failure (Matikainen et al. 2001). Although this relation remains to be examined in human cells, the findings on Bax activation would suggest that TCDD exposure may not cause premature ovarian failure (J. Tilly, personal communication).

We observed an inverted U-shaped relationship between TCDD serum levels and earlier menopause. An inverted U-shaped dose response has been hypothesized by Kohn and Melnick (2002) as a plausible outcome with endocrine-disrupting chemicals. Myers et al. (2003) hypothesized that at lower “physiologic” doses a chemical may mimic a hormone, but at higher doses the toxic effect of the chemical may overwhelm the stimulatory or inhibitory effects. Empirical data from animals exposed to a variety of estrogenic xenobiotics (Rubin et al. 2001; vom Saal et al. 1995) support this theory, although only one prior study of TCDD (Markowski et al. 2001) has demonstrated nonmonotonic effects (i.e., of in utero exposure on adult weight of offspring). The present results as well as those in animals suggest a reevaluation of the presumed monotonic dose–response relationships with exposure to endocrine-disrupting chemicals that are typically tested in statistical modeling of epidemiologic data.

This study has some limitations. One limitation is the retrospective recall of age of natural menopause. However, previous studies have reported moderately high reliability and accuracy based on interview (Colditz et al. 1987). Further, in the women with surgical menopause, the reported age at menopause was similar to the age recorded in the medical record. In addition, we augmented our classification using ultrasound, menstrual diary and medical record information. We also counted women who had evidence of impending menopause as menopausal, and saw a similar pattern of results.

Although smoking has been associated with earlier menopause in a number of studies (Brambilla and McKinlay 1989; Brett and Cooper 2003; Bromberger et al. 1997; Cooper et al. 2002; Gold et al. 2001; Meschia et al. 2000; Palmer et al. 2003; Sowers and La Pietra 1995; van Noord et al. 1997; Willett et al. 1983), we did not observe a significant relationship in the present study of a TCDD-exposed population. This lack of association may be due to the paucity of heavy smokers, or possibly related to an interaction between different ligand-activated receptor pathways (Klinge et al. 2000). Another reason for the lack of association may be that we defined smoking status as that at interview. Smoking status at the time of the outcome (if it occurred before the interview) may have been different.

Another limitation of the study is that the lowest TCDD exposure group (≤ 20.4 ppt) experienced relatively high serum levels compared with the contemporary levels we have reported for this area (~ 2 ppt) (Warner et al. 2004). Also, although the exposure resulted in exposure specifically to TCDD, pooled serum samples collected in 1976 from females who resided in the unexposed area showed substantial background exposure to other polychlorinated dibenzo-p-dioxins and PCBs during this time period (90 ppt dioxin toxic equivalents (TEQ), on average, for this age group) (Eskenazi et al. 2004). Therefore, individuals with TCDD levels < 20 ppt might...
still have had substantial dioxin TEQ exposure. Because we could consider only TCDD between 1996 and 1997. If we exclude these women, the relation is strengthened. We have examined multiple exposure scenarios including exposure soon after the explosion as well as exposure extrapolated to each age at risk. In summary, we observed a nonmonotonic dose-response relationship between serum TCDD levels and age of onset of natural menopause. The women in this study experienced substantial TCDD exposure during the postpubertaladult development period. Animal evidence suggests that in utero and lactational TCDD exposure may have significant effects on ovarian follicles (Heimler et al. 1998); therefore, continued follow-up of the younger women in the SWHS cohort as well as the female offspring of the SWHS cohort is essential.

References

Akins J, Waldrep K, Bernett J. 1989. The estimation of total serum lipids by a completely enzymic summation method. Clin Chim Acta 184(3):219–226.

Allen J, Barlow WH, Melnick RL. 2002. Biochemical origins of the latency of TCDD-intoxication: clinical and laboratory effects. Environ Health Perspect 109:621–627.

Bonsignore L, et al. 2004. Dioxin-like TEQ of women from the Seveso, Italy, area by ID-HRGC/HRMS and CALUX. J Expo Anal Environ Epidemiol doi:10.1038/sj.jea.7500407.[Online 22 September 2004].

Bosma H, et al. 1997. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and reproductive effects on ovarian follicles in MCF-7 cells and effects of exposure during lactation. Toxicol Appl Pharmacol 133:321–327.

Budtz-Jorgensen E, et al. 1999. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) modulation of the estrogen signal. Biol Reprod 62(suppl 1):284.

Dimitrakoulakis K, Psachoula A, Vlahou A. 2006. Distribution of the hypothalamic-pituitary-gonadal axis: role of gonadal steroids and implications for the menopause. In: Menopause Biology and Pathobiology (Lobo RA, Kelsey JL, Marcus R, eds). San Diego, CA:Academic Press, 33–60.

Eskenazi B, Mocarelli P, Warner M, Samuels S, Needham L, Patterson D, Samuels S, et al. 2004. Relationship of serum TCDD concentrations and age at exposure of female residents of Seveso, Italy, by ID-HRGC/HRMS. Toxicol Appl Pharmacol 197(1):1–12.

Eskenazi B, Mocarelli P, Warner M, Samuels S, Vercellini P, Olive D, et al. 2000. Seveso Women’s Health Study: a study of the effects of TCDD exposure on reproductive health. Chemosphere 40(9):1247–1253.

Eskenazi B, Warner M, Mocarelli P, Samuels S, Needham LL, Patterson DG Jr, et al. 2002. Serum dioxin concentrations and menstrual cycle characteristics. Am J Epidemiol 156(4):383–392.

Gao X, Mocarelli K, Terranova PF, Rozman KK. 2001. 2,3,7,8-Tetrachlorodibenzo-p-dioxin decreases responsiveness of the hypothalamic-pituitary to estradiol as a feedback inducer of preovulatory gonadotropin secretion in the immature gonadotropin primed-rat. Toxicol Appl Pharmacol 170(3):181–190.

Gao X, Petroff BK, Rozman KK, Terranova PF. 2000. Gonadotropin-releasing hormone (GnRH) partially reverses the inhibitory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on ovulation in the immature gonadotropin-treated rat. Toxicology 143(1):12.

Gao X, Son DS, Terranova PF, Rozman KK. 1999. Toxic equivalence factors of polychlorinated dibenzo-p-dioxins in an ovulation model: validation of the toxic equivalency concept for the emerging science of endocrine disruption. Toxicol Appl Pharmacol 157(2):107–116.

Geausu A, Abraham K, Geiseler K, Sator MO, Shing T, Tschachter E, et al. 2001. Seren taxonomical relation (TCDD). Toxicol Lett 111(3):155–159.

Gold EB, Bromerger J, Oxford F, Samuels S, Greensdale GA, Harlow SD, et al. 2001. Factors associated with age at natural menopause in a multiracial sample of middle-aged women. Am J Epidemiol 153(12):1267–1277.

Grambsch PM, Therneau TM. 1994. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526.

Heimler I, Trewin AL, Chaffin CL, Rawlins RG, Hutz RJ. 1989. Modulation of ovulation follicle maturation and effects on apoptotic cell death in Holtzman rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero and lactation. Reprod Toxicol 12:619–71.

Homung R, Reed L. 1990. Estimation of average concentration in the present-their detectable values. Appl Occup Environ Hyg 5:84–51.

IARC. 1997. Polychlorinated Dibenzo-paraoxins and Polychlorinated Dibenzofurans. IARC Monogr Eval Carcinog Risks Hum 69:33–382.

Karagas MR, Kelsey JL, McGuire V. 2000. Cancers of the female reproductive system. In: Menopause Biology and Pathobiology (Lobo RA, Kelsey JL, Marcus R, eds). San Diego, CA:Academic Press, 203–211.

Klein P, Serje A, Pezzullo JC. 2001. Premature ovarian failure in women with exposure to TCDD. Environ Health Perspect 109:675–680.

Klinge CM, Kaur K, Swanson HI. 2000. The aryl hydrocarbon receptor acts as a receptor partner alpha and orphan receptors COUP-T1 and ERI-PHAP. Arch Biochem Biophys 373(1):163–174.

Kolicca R, Keeler P, Carstens C, Hering P. 1976. 2,3,7,8-Tetra- chlorodibenzo-p-dioxin and ovulation of a 13-week-old rat ovulatory toxicity study in rats. Toxicol Appl Pharmacol 35:553–557.

Kohn MC, Melnick RL. 2002. Biochemical origins of the nonmonotonic receptor-mediated dose response. J Mol Endocrinol 29(1):113–123.

Kreuzer PE, Csandy AI, Baer C, Kessler W, Pipke O, Greim H, et al. 1997. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and conegers in infants. A toxicokinetic model of human life-time body burden by TCDD with special emphasis on its uptake by nutrition. Arch Toxicol 71(8):390–400.

Li X, Johnson D, Rozman K. 1995a. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on estrus cyclicity and ovulation in female Sprague-Dawley rats. Toxicol Lett 219:213–219.

Li X, Johnson D, Rozman K. 1995b. Reproductive effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in female rats: ovulation, hormonal regulation, and possible mechanisms. Toxicol Appl Pharmacol 133:321–327.

Lin DY, Wei LJ. 1989. The robust inference for the Cox proportional hazards model. J Am Stat Assoc 84:1074–1078.

Loffe FP, Finn PD, DeMeo LM, Occupational Exposure in the 1970s. J Expo Anal Environ Epidemiol doi:10.1038/sj.jea.7500407.[Online 22 September 2004].

WHO Scientific Group. 1996. Research on the Menopause in the 1990s. WHO Technical Services Department Series No. 866. Geneva:World Health Organization.

Wilmott W, Stampfer MJ, Bain C, Lipnick R, Speizer FE, Rosner B, et al. 1983. Cigarette smoking, relative weight, and menopausal age. Menopause and lifestyle in women: effects of exposure during fetal life on subsequent terrestrial behavior in male mice. Toxicol Lett 71(3):343–350.

Wright DM, Kelsey JL, Marcus R, Wild D, Rossner B, et al. 2001. Dioxin-like TEQ of women from the Seveso, Italy, area by ID-HRGC/HRMS and CALUX. J Expo Anal Environ Epidemiol doi:10.1038/sj.jea.7500407.[Online 22 September 2004].

Yu ML, Guo YL, Hsu CC, Rogan WJ. 2000. Menstruation and ovulation in women with polychlorinated biphenyl (PCB) exposure: the Hualien study. Environ Health Perspect 108:677–680.

Zock JP, Eskenazi B. 1994. Environmental sources, distribution, and fate. In: Dioxins and Health (Schechter A, ed). New York:Plenum Press, 79–113.