TubeDETR: Spatio-Temporal Video Grounding with Transformers

Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid

Project page: https://antoyang.github.io/tubedetr.html
Paper: https://arxiv.org/abs/2203.16434
Spatio-Temporal Video Grounding

• **Input text query:** What does the adult ride in the playground?
• **Output spatio-temporal tube:**

![Image of a playground with a man riding a ramp]
TubeDETR Architecture Overview

Sentence s
“What does the adult ride in the playground?”

Video \(\{v_t\}_{t=1}^T\)

Text Encoder

Text features \(y_0(s)\)

Frames features \(x_0(v)\)

Video Text Encoder

Video-text features \(F(v, s)\)

MLPs

Predicted start \(t_s\)

Predicted end \(t_e\)

Predicted spatio-temporal tube

MLPs

Video Text Encoder

Clip 1

Clip M

Video Text Encoder

MLPs

Space-Time Decoder

Time queries \(\{q_t\}_{t=1}^T\)
Video-Text Encoder

$k \times HW$ Frames features $x_0(v)$

HW Pooled Features x_p m

L Text features $y_0(s)$

Temporal sampling

Concat

Transformer Encoder

Temporal replication

Multi-modal slow features $h^p(v, s)$

Visual-only fast features $f(v)$

$k \times (HW + L)$ Final features $F(v, s)$

$F(v)$

g

$mk+1$

$mk+k$

time

Fast visual-only branch

$F(v)$

g

$mk+1$

$mk+k$

time

慢多模态分支

Fast visual-only branch

时间
Space-Time Decoder

Video-Text Features $F(v, s)$

Temporal Self-Attention

Add & Norm

Time-Aligned Cross-Attention

Add & Norm

Feed-Forward

Add & Norm

Predicted boxes, start and end probabilities

Predicted spatio-temporal tube

Object query

Time queries $\{q_t\}_{t=1}^T$

Time encoding

Video-Text Features $F(v, s)$

Time-Aligned Cross-Attention Mask

MLPs

MLPs

MLPs

MLPs

$\{Q_t\}_{t=1}^T$

$\{\hat{t}_e\}_{t=1}^{T}$

$\{\hat{t}_{s}^t, \hat{t}_{e}^t\}$

$\{\hat{b}_t\}_{t=1}^{T}$

${\hat{b}}_t$, \hat{t}_s, \hat{t}_e

$N \times T$
Training

- **Loss:** Combination of spatial localization (\mathcal{L}_1, $gIoU$) and temporal localization (KL, att) objectives

$$\mathcal{L} = \lambda_{\mathcal{L}_1} \mathcal{L}_{\mathcal{L}_1}(\hat{b}, b) + \lambda_{gIoU} \mathcal{L}_{gIoU}(\hat{b}, b) + \lambda_{KL} \mathcal{L}_{KL}(\hat{r}_s, \hat{r}_e, r_s, r_e) + \lambda_{att} \mathcal{L}_{att}(\hat{A})$$

λ_i : scalar weights of the individual losses
\hat{b} and b : predicted and ground truth boxes
\hat{r}_s and r_s : predicted and ground truth start probability distribution
\hat{r}_e and r_e : predicted and ground truth end probability distribution
\hat{A} : temporal self-attention matrix

- **Initialization:** from MDETR weights pretrained on Visual Genome, COCO and Flickr
Ablations: Space-Time Decoder

Time Encoding	Self Attention	m_tIoU	m_vIoU	vIoU@0.3	vIoU@0.5	m_sIoU
1.	X	23.9	12.2	15.3	6.1	47.0
2.	X	25.2	13.0	16.9	6.5	47.3
3.	✓	41.7	21.3	28.7	17.4	46.5
4.	✓	45.9	24.3	33.2	22.0	47.7

Table 1. Effect of the time encoding and the temporal self-attention in our space-time decoder on the VidSTG validation set.

- Time encoding matters.
- Temporal self-attention helps.
Ablations: Weights initialization

MDETR pretraining matters.

Transferring spatial self-attention to temporal self-attention helps.

Table 2. Effect of the weight initialization for our model on the VidSTG validation set.

Pre-Training	Decoder Self-Attention Transfer	m_tIoU	m_vIoU	vIoU @0.3	vIoU @0.5	m_sIoU
1.	X	42.8	18.8	25.1	15.6	38.5
2.	✓	43.8	22.4	29.9	19.1	46.5
3.	✓ Temporal	**45.9**	**24.3**	**33.2**	**22.0**	**47.7**
Ablations: Video-Text Encoder

- Our encoder is memory-efficient.
- Fast branch matters.

Fast Res.	Temp. Stride	VidSTG m.tIoU	VidSTG m.vIoU	VidSTG vIoU@0.3	VidSTG vIoU@0.5	HC-STV2.0 m.tIoU	HC-STV2.0 m.vIoU	HC-STV2.0 vIoU@0.3	HC-STV2.0 vIoU@0.5	HC-STV2.0 m.sIoU	Mem. (GB)
1. —	224 1	46.5	25.2	34.1	23.0	23.9	52.8	35.0	55.3	28.3	14.3
2. ✓	224 2	46.0	25.0	34.3	22.9	49.0	53.7	35.8	56.7	29.6	10.2
3. ✓	224 5	45.9	24.3	33.2	22.0	47.7	53.2	35.0	54.5	29.0	8.0
4. ✓	288 2	46.4	25.9	35.0	23.9	50.5	53.9	36.4	58.1	30.7	13.9
5. ✓	320 3	46.4	25.9	35.7	23.7	50.7	53.6	36.2	57.5	30.4	13.8

Table 3. Comparison of performance-memory trade-off with various temporal strides k, spatial resolutions (Res.), with or without the fast branch in our video-text encoder, on the VidSTG validation set (left, Table 3a) and the HC-STV2.0 validation set (right, Table 3b).
Comparison with state of the art

- State-of-the-art results on: VidSTG and HC-STVG.

Method	Pretraining Data	Declarative Sentences	Interrogative Sentences	HC-STVG1
1. STGRN [102]	Visual Genome	48.5	19.8 25.8 14.6	
2. STGVT [72]	Visual Genome + Conceptual Captions	21.6 29.8 18.9	— — —	18.2 26.8 9.5
3. STVGBert [68]	ImageNet + Visual Genome + Conceptual Captions	24.0 30.9 18.4	— 22.5 26.0 16.0	20.4 29.4 11.3
4. TubeDETR (Ours)	ImageNet	43.1	22.0 29.7 18.1	21.2 31.6 12.2
5. TubeDETR (Ours)	ImageNet + Visual Genome + Flickr + COCO	48.1 30.4 42.5 28.2	46.9 25.7 35.7 23.2	32.4 49.8 23.5

Table 4. Comparison to the state of the art on the VidSTG test set and the HC-STVG1 test set.
Qualitative results

- **Interactive Demo:** http://stvg.paris.inria.fr/
- **Query:** What is beneath the adult in the snow?

TubeDETR

Ground Truth