ERRATUM: “CONSTRAINTS ON THE ORIGIN OF MANGANESE FROM THE COMPOSITION OF THE SAGITTARIUS DWARF SPHEROIDAL GALAXY AND THE GALACTIC BULGE” (ApJ, 592, L21 [2003])

Andrew McWilliam
The Observatories of the Carnegie Institute of Washington
R. Michael Rich
Department of Physics and Astronomy, University of California, Los Angeles
AND
Tammy A. Smecker-Hane
Department of Physics and Astronomy, University of California, Irvine

Because of an error during the production process, the figures in our recent Letter appeared in the wrong order. In the published paper, the plot shown in Figure 1 should appear as Figure 3. The plot shown in Figure 2 should appear as Figure 1. The plot shown in Figure 3 should appear as Figure 2. All figure legends are correct. The correct figures appear below. The Press sincerely regrets this error.

Fig. 1.—[Mn/Fe] from numerous studies. Dots: R03; mult crosses: PM00 and N00; plus signs: thick-disk stars from PM00 and N00; open circles: FG98; triangles: G89; open squares: P00; filled squares: Johnson (2002). Johnson (2002) analyzed red giants and G89 studied a mix of dwarfs and giants; all others employed dwarf or turnoff stars. Zero-point corrections have been applied to the PM00/N00, R03, and FG98 data: +0.02, +0.10, and −0.06 dex, respectively. General systematic errors in [Mn/Fe] are likely less than 0.10 dex and random uncertainty of individual points typically 0.06 dex; the [Fe/H] uncertainty is ≲0.10 dex. Johnson (2002) stars and G89 stars having [Fe/H] ≲ −1.2 are likely halo objects. G89 stars having −1 ≤ [Fe/H] ≲ −0.5 are likely thick-disk members.

Fig. 2.—Same as Fig. 1, but with bulge stars (filled circles) and Arcturus (open diamond) added. The error bar indicates 1σ scatter of [Mn/Fe] from Mn lines, not the error on the mean [Mn/Fe] value. Although α-elements and Eu are enhanced in bulge giants, Mn follows the Galactic disk relation. This would not be the case if Mn were overproduced in Type Ia SNe.

Fig. 3.—Same as Fig. 1, but with Sgr dSph stars (filled circles) and Arcturus (open diamond) added. The error bar indicates 1σ scatter of [Mn/Fe] from Mn lines, not the error on the mean [Mn/Fe] value. We propose that the low [Mn/Fe] ratios in Sgr dSph are a consequence of enrichment of the interstellar medium by metal-poor Type Ia SNe.