ANALYZING ATMOSPHERIC PRESSURE FOR FIXING PLANT CULTIVATION PERIOD

S.Adlin Jebakumari and A.Jayanthiladevi

1Assistant Professor – Department of CS and IT, Jain University, Bangalore, Research Scholar in Srinivas University, Karnataka, India.
2Professor-Computer Science & Information Science, Srinivas University,Karnataka, India

Corresponding author e-mail: adlin.jebekumari@gmail.com

Abstract. The efficiency and vitality of plant growth shows some limitations in developing application as bio-fertilizer. To enhance these kinds of limitations, potential fixation of pressure towards plant cultivation has to be improved. Motility and atmospheric pressure were monitored during this treatment process and protein level has to be monitored periodically. During plant cultivation process, there are no significant changes in germination however yield and growth of plants are drastically improved. The plants have to be tolerant for fungal infections and infected seeds should be handled more properly. The analysis shows the broaden area of treatment for plant cultivation than that of untreated bacteria. The outcomes demonstrate that the motility and plant growth can be improved with gene expression and improved with factors like colonization in roots and improve phyto-hormones and makes improved plant growth and tolerance towards disease.

Keywords. Plant cultivation, pressure, infection, motility, gene expression

1. Introduction
The plant disease is considered based on systematic resistance towards induction and to control. Thereby, it may reduce various diseases and pests. Rhizobia are measured as known nitrogen fixation in plant toots. Their bio-control ability is completely documented. This action mechanism is considered as bacteria colonization with fungal pathogens. It may produces antibiotics like bacteriocins that inhibit pathogens development. As well, it can limit fungal growth by effectually sequencing ions needed for pathogen growths. However, rhizobia presence may improve plant activity for systematic resistance.

Huge amount of pathogens are considered exclusively for soil living and represented by it. It may outcomes from root colonization of non-leguminous plants. The higher level control towards root organism may influences lower stems and roots. Specifically, higher species may be primarily provided for nodule formation and may not necessarily influence plant colonization. It may shows wider range of pathogens including bacteria, viruses and nematodes. For instances, roots were colonized, powdery mildew of crop leaves are diminished by 80%. As it is located in plants root, protection on leaves are consequences of resistance. Gene expression specifies up-regulation for defense and production of phenolic compounds. Plants whose roots are colonized are determined as lower level of plant with phytophthora and symptoms are constant. As well, higher disease pressure may reduce the symptoms of disease. This is not a usual outcome. With higher disease pressure, no
optimization of biological systems may show appropriate outcomes. Earlier application may infect disease or plants to occur.

Plant resistance towards viruses is induced by root endophytes. The symptoms are determined in the middle of leaf curls. The levels of virus DNS are reduced and ranges of pathogens are managed by symbionts to consider bacteria like organisms that may lack in cell walls with phytoplasma. There is a need of systematic resistance towards the ability to control pathogens that may influences ground stems and developing grain. This may not be appeared to generate antibiotic substances. However it may induces plants to offer certain enzymes and metabolites that affect reactive oxygen species. The molecules are provided with plants of biotic and abiotic stresses. These are measured as unstable molecules and extremely damaging that may leads to leaves browning. This also influences plants photosynthesis.

These are measured as primary method for productive fungi to attain biological control towards diseases. Moreover, it is considered as factors for chosen microbial strains to induce resistance in plant cultivation. For instance, graphs are measured as foliar application or soil drench with bio-chemicals with lesser concentrations for plant resistance and increased productivity.

2. Methodology

Plants colonized by symbionts may induce certain changes in gene expression. Plant based gene expression comprises of enhances gene expression that may detoxify oxygen species as in Fig 1. Plant stress may include excitation of photosynthesis pigments that may outcomes in production of toxic. The organism here may induce plants to resist stress of diverse kinds and methods, metabolites and proteins are induced with certain changes in symbionts. This detoxify may include some components that may directly damaging radical O$_2$ which is converted to lesser toxic factors. There are numerous plant enzymes to reduce states. The consequences may assist in providing influences to offer plants. The antioxidant in plants may work with recycling system. If enzymes for recycling are expressed over here, there are some microbes present with stressful condition and the levels are considered to be higher for scaling back cells internal factors in circumstances with complementarity and balance among chemical balances of reduction and oxidation summarized by potential factors. There are numerous factors based on plants ability to perform photosynthesis. To attain various outcomes, photosynthesis has been increases and accelerated. There is increase and it may attain both carbon and energy for all processes. The microbial activities may show crucial role in it. Diverse techniques with some measurements are used to assess symbionts affects over plants photosynthesis capabilities. They may include measurement level and other photosynthesis elements with direct measurements of leaves photosynthesis. These may show that photosynthesis is regulated with machinery.

This may be enhanced under stressful conditions. However, probably it may be significant for symbionts capability to diminish plant loss of photosynthesis under stressful conditions like salt and droughts. These impacts are drastically connected with increased production of enzymes included in ROS detoxification. The level is maintained with tolerance level and outcomes are more effectual in cellular functioning of photosynthesis. This colonized plants with symbiotic micro-organisms like chlorophyll or rubisco with superior photosynthesis levels.

The higher level of photosynthesis elements may show higher photosynthetic ability which may directly outcomes in symbiotic strains to regulate genetic expressions. In absence of stress, higher level of deactivating enzymes or photosynthetic elements and activities are not sensed. Under this condition, beneficial and protective changes are synthesized. This may provides higher level of photosynthesis while microbial symbionts are absent. Higher amount of photosynthesis is needed for plants to shows enhanced performance.
In general, plant has to offer resource portion to assist symbiotic organism and to respond stress. This may decrease the growth correspondingly. As well if plants may produce higher roots and growth considered to diminish owing to establish competition among shoots and roots for provided photosynthesis amount and other resources.

The dynamic outcomes from agents may induce resistance or biotic stress for all needed carbon and energy system it may drain plants system. As well, with least frequency of root and shoot growth in presence of endophytes. This makes plant growth and disease resistance in similar proposition. In some cases, photosynthesis is improved under stressful condition. However, it is more essential to reduce loss of photosynthesis under stressful condition. The consequences are frequently related with increased enzymes production involved in detoxification. In some stressful condition, it seems to be gene priming. The observations and studies may show enhanced performance that has to be notified. Intricate symbions are interactive and plants may influence the presence.

All these consequences are extremely outcomes in healthier and productive plants with increased yields, roots and shoots. Higher level of chlorophyll may influence the plant growth and may shows notable morphological changes. They may be frequently influenced by larger levels and some photosynthesis rate of individual leaves is alike of non-host plants. This may correlate with higher in soil and outcomes are confirmed with measurements and discussed in previous section.

3. Numerical results

The endophytic micro organisms are considered as essential instruments for enhancing agricultural sustainability and beneficial. The key objective to project effectiveness is to enhance plants levels and photosynthesis rate. Therefore, this may improve photosynthesis and attains no commercial significance. Some communities are beneficial for attaining more scientific reports on photosynthesis abilities as reported earlier. Various communities may be beneficial form operative abilities in plant cultivation. There are tremendous factors that may influence the effect of various factors. The following are the factors that have to be considered during plant cultivation. Reduction of nitrate and nitrous oxide pollution in air and water through fixation and with denser rooting of intercept and by improving plants nitrogen efficiency. Mitigate biotic effects and stresses on plant productivity and determined to improve owing to climatic changes and global warming. Then, methane gas production has to be reduced that may influences global warming and irritates irrigation by increased fungal and bacterial factors. Table I depicts inhibit plant pathogens.

Next, enhance carbon from air through photosynthesis and higher rooting process of storage. Therefore, CO\textsubscript{2} reduction in atmosphere may spurs climatic change and global warming. The significant contribution may increases carbon storage in soil via financial methods that offer carbon credits for trading farming concepts. Soil production sustainability for increasing SOM for supplying food and offer more secure and agricultural factors with more profitable and effectual manner.

The benefits of mitigating abiotic and biotic factors may be performed with symbiotic factors with changes in physiology. This is done by inducing resistivity towards pests and diseases. As well, the ability to mitigate the causes of oxygen species is to improve mechanical functionalities. They may
increases climatic changes and shows negative impacts as in Fig 2 and Fig 3. This is considered as a promising solution for commercial and academic development as in Fig 4 and Fig 5.
Fig 5. Disease severity

Table 1: Inhibition of plant pathogens

Disease	Symbiont	Plants	Response
Fusarium, Rhizoctonia, Sclerotinia, Macrophomina	rhizobia	soybean, chickpea, pea, lentil	Control of many pathogens
Phytophthora cinnamon	Bradyrhizobium japonicum	Soybean	bacteria colonized pathogen
Powdery mildew	AMF	Barley	Induced resistance gave a high degree of control
Tomato leaf curl virus	AMF	Tomato	Systemic resistance reduced disease severity
Phytophthora late blight	AMF	Potato	Symptoms reduced, but not under conditions of high disease pressure
Spiroplasma citri	AMF	Madagascar periwinkle	Control occurred, but another pathogen was not controlled

Another effect in deeper roots may increases soil organic matter. The ratio is considered as C:N which is about 10:1. The nitrogen is integrated with plants and decomposed in soil and it will be stored in soil. There will be lesser amount that is stored leached into water. There is some directed integration of atmospheric nitrogen in plants that may eliminate some problems and losses related to plant growth with inorganic fertilizers. Therefore, plants may gain crop resistance and reduced nitrate and oxide pollution. Thus, healthier plants are cultivated by the formers and with higher amount of soil based organic matters. To attain this goal, it is essential to consider the atmospheric factors.

4. Conclusion

In this investigation, efforts have been made to diminish atmospheric pressure with sequestration in soil with proof and verification. However, this system may represent various steps for validation purpose. Validation and testing has to be undertaken to known diverse plant combinations and to attain the goal. The objective of this system is to enhance the storage of carbon over soil. Therefore, measurements have to be considered for certain efficiency. Sampling is measured as a crucial term as shallow, medium and deep horizons that are needed for consideration. Photosynthesis with higher rate has to be validated. This measurement is already processed. This is connected with the calibration improvement with root growth and higher exudation. The total biomass validation level is needed to fulfill the goal. The major limitation is the root measurement of matured plants in soil. In future, the factors the helps to overcome this limitation will be examined.

References

[1] Calvo, P., Nelson, L. & Kloepper, J. W. Agricultural uses of plant biostimulants. Plant Soil 383(3-41), 0.1007/s11104-014-2131-8 (2014).
[2] Gouda, S. et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research 206, 131–140 (2018).
[3] Ashrafuzzaman, M. et al. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology 8, 1247–1252 (2009).
[4] Timmusk, S., Behers, L., Muthoni, J., Muraya, A. & Aronsson, A.-C. Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science 8, 49
(2017).

[5] Bharti, N., Pandey, S. S., Barnawal, D., Patel, V. K. & Kalra, A. Plant growth promoting rhizobacteria *Dietzia natronolimnaea* modulates the expression of stress responsive genes providing protection of wheat from salinity stress. *Scientific Reports* **6**, 34768 (2016).

[6] Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. & Nasrulhaq Boyce, A. Role of plant growth promoting rhizobacteria in agricultural sustainability - a review. *Molecules* **21**, 573 (2016).

[7] Delgadillo, J. *et al.* Improving legume nodulation and Cu rhizostabilization using a genetically modified rhizobia. *Environmental Technology* **36**, 1237–1245 (2015).

[8] Zhou, Z., Huang, Y., Yang, S. & Chen, W. Introduction of a new atmospheric pressure plasma device and application on tomato seeds. *Agricultural Sciences* **2**, 23–27 (2011).

[9] Sera, B., Gajdva, I., Serý, M. & Patenka, S. New physicochemical treatment method of poppy seeds for agriculture and food industries. *Plasma Science and Technology* **15**, 935 (2013).

[10] Tong, J. *et al.* Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of *Andrographis paniculata*. *Plasma Science and Technology* **16**, 260 (2014).

[11] Koga, K. *et al.* Simple method of improving harvest by nonthermal air plasma irradiation of seeds of *Arabidopsis thaliana* (L.). *Applied Physics Express* **9**, 016201 (2016).

[12] Ma, R. *et al.* Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. *Journal of Hazardous Materials* **300**, 643–651 (2015).

[13] Zhang, Q. *et al.* Sterilization efficiency of a novel electrochemical disinfectant against *Staphylococcus aureus*. *Environmental Science & Technology* **50**, 3184–3192 (2016).

[14] Ji, S.-H. *et al.* Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. *Archives of Biochemistry and Biophysics* **605**, 117–128 (2016).

[15] Frey, R. L. *et al.* Reaction of N-acylhomoserine lactones with hydroxyl radical: rates, products, and effects on signaling activity. *Environmental Science and Technology* **44**, 7465–7469 (2010).