Transformation between polar and rectangular coordinates of stiffness and dampness parameters in hydrodynamic journal bearings

Zhuxin TIAN
School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China

Yu HUANG
School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Follow this and additional works at: https://tsinghuauniversitypress.researchcommons.org/friction

Part of the Engineering Mechanics Commons, Mechanics of Materials Commons, and the Tribology Commons

Recommended Citation
Zhuxin TIAN, Yu HUANG. Transformation between polar and rectangular coordinates of stiffness and dampness parameters in hydrodynamic journal bearings. Friction 2021, 9(1): 201-206.

This Research Article is brought to you for free and open access by Tsinghua University Press: Journals Publishing. It has been accepted for inclusion in Friction by an authorized editor of Tsinghua University Press: Journals Publishing.
Transformation between polar and rectangular coordinates of stiffness and dampness parameters in hydrodynamic journal bearings

Zhuxin TIAN¹, Yu HUANG¹,²,*

¹ School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
² State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received: 05 May 2019 / Revised: 26 August 2019 / Accepted: 11 September 2019

© The author(s) 2019.

Abstract: The stiffness and dampness parameters of journal bearings are required in rectangular coordinates for analyzing the stability boundary and threshold speed of oil film bearings. On solving the Reynolds equation, the oil film force is always obtained in polar coordinates; thus, the stiffness and dampness parameters can be easily obtained in polar coordinates. Therefore, the transformation between the polar and rectangular coordinates of journal bearing stiffness and dampness parameters is discussed in this study.

Keywords: coordinate transformation; stiffness parameters; dampness parameters; hydrodynamic journal bearings

1 Introduction

In modern industry, rotating parts of engineering equipment are supported by journal bearings in the vertical direction. The machine characteristics are significantly dependent on the performances of journal bearings. Due to the oil whip effect in a rotating hydrodynamic journal bearing, self-excited vibration occurs in the oil film, which increases with an increase in the rotation speed [1–4]. As a result of the self-excited vibration, threshold speed and stability boundary exist for the rotating bearings. When the rotating speed is larger than the threshold speed, the vibration results in large orbiting amplitudes of the journal and leads to the contact between the journal and bearing, causing bearing failure. Further, the bearing is stable at the journal bearing center in the stability boundary. Khonsari and Chang [5] analyzed the nonlinear stability of journal bearings, and obtained the stability boundary by tracking the journal center trajectory. To easily derive the linear threshold speed, Huang et al. [6] chose polar coordinates instead of Cartesian coordinates to signify the state vector. Lin et al. [7, 8] discussed the threshold speed and stability boundary of hydrodynamic journal bearings lubricated using non-Newtonian fluids. Kushare and Sharma [9] dealt with the threshold speed of two lobe symmetric hole entry worn hybrid journal bearing by theoretically considering the non-Newtonian behavior of the lubricants.

The threshold speed and stability boundary of the hydrodynamic journal bearing are determined based on the stiffness and damping coefficients. Lund and Thomsen [10] proposed a method to study these coefficients. The Reynolds equation is derived with respect to Cartesian coordinates and stiffness and damping coefficients are obtained by integrating the new equations. Based on this method, Jang and Kim [11] studied the dynamic characteristics of journal bearings with five degrees of freedom (DOF) and derived the perturbation equations. Crooijmans et al. [12] discussed the self-excited vibration of hydrodynamic journal bearings, and interpreted the dynamic performance

* Corresponding author: Yu HUANG, E-mail: yhuanghust@163.com
of rotor-bearing systems. Wang and Khonsari [13] proposed a method to calculate the dynamic coefficients to obtain an improved physical meaning. It is known that oil stiffness and damping characteristics are important for linear threshold speed and stability boundary of hydrodynamic bearings.

The coordinate system applied in the general Reynolds equation is polar coordinates. Thus, the oil film force is always obtained in polar coordinates and the stiffness and dampness parameters can be easily obtained in polar coordinates. While discussing linear threshold speed and stability boundary of hydrodynamic bearings, the stiffness and dampness parameters in rectangular coordinates are required. As per our understanding, the coordinate system applied in the previous study on linear threshold speed and stability boundary was either polar coordinates or rectangular coordinates for the complete calculation, which complicated the analysis. To address this complication, the transformation between polar and rectangular coordinates of journal bearing stiffness and dampness parameters is discussed in this study. The stiffness and dampness parameters are first calculated in polar coordinates, and then, converted into rectangular coordinates. Further, the stiffness and dampness parameters in rectangular coordinates can be applied to calculate linear threshold speed and stability boundary of hydrodynamic bearings.

2 Transformation between polar and rectangular coordinates

Figure 1 shows the journal bearing structure. The journal rotates in an anticlockwise direction with an angular speed ω and a radius R. The radial clearance is expressed as C, eccentricity is expressed as e, angular
coordinate of the bearing surface is expressed as θ, and film thickness is expressed as $h = C + e \cos \theta$. Further, ϕ is the attitude angle, f_ϕ is the fluid force component in the direction of attitude angle, and f_e is a component in the eccentric direction. The external load on the journal is W.

The non-dimensional parameters are as follows:

\[
x = R\theta, z = \frac{L}{2} z^*, \alpha = k \left(\frac{\mu R \omega}{C} \right)^2, h = C(1 + e \cos \theta),
\]
\[
e = C e, \rho = \frac{\mu \omega (R^2 / C)}{p^*}, \beta = \frac{D}{L},
\]
\[
\dot{e} = \frac{1}{\omega} \frac{d\epsilon}{dt}, \phi = \frac{1}{\omega} \frac{d\phi}{dt}, S = \frac{\mu \omega R^3 L}{WC^2}, f_e = \frac{\mu \omega R^3 L}{C^2 - f_e^*},
\]
\[
f_\phi = \frac{\mu \omega R^3 L}{C^2} f_\phi^*, F_x = F_x^* W, F_y = F_y^* W
\]

Threshold speed is an important parameter for the stability of the oil film bearing, and the non-dimensional linear threshold speed of the journal bearing ω_* is as follows [5, 8].

\[
\omega_* = \sqrt{\frac{C_{xx}^* C_{yy}^* - C_{xy}^* C_{yx}^*}{K_{xx}^* C_{yy}^* + K_{yy}^* C_{xx}^* - K_{xy}^* C_{yx}^* - K_{yx}^* C_{xy}^*} - \left(K_{xx}^* + K_{yy}^* \right) + \frac{K_{xx}^* C_{yy}^* + K_{yy}^* C_{xx}^* - K_{xy}^* C_{yx}^* - K_{yx}^* C_{xy}^*}{K_{xx}^* C_{yy}^* + K_{yy}^* C_{xx}^* - K_{xy}^* C_{yx}^* - K_{yx}^* C_{xy}^*}}}
\]

where K_j^* and C_j^* ($i, j = X, Y$) are the non-dimensional stiffness and dampness parameters of the bearing in rectangular coordinates, respectively.

Although the results of oil film forces in journal bearings have always been expressed in polar coordinates, in this study, the transformation between polar and rectangular coordinates of journal bearing stiffness and dampness parameters is discussed as follows:

The non-dimensional oil film forces are expended in the X and Y directions as a first-order Taylor series approximation, as shown in Eq. (3).

\[
\begin{bmatrix}
\frac{dF_x^*}{d\phi} \\
\frac{dF_y^*}{d\phi}
\end{bmatrix}
= -K_t \begin{bmatrix}
\frac{dX^*}{d\phi} \\
\frac{dY^*}{d\phi}
\end{bmatrix} - C_t \begin{bmatrix}
\frac{dX^*}{d\phi} \\
\frac{dY^*}{d\phi}
\end{bmatrix}
\]

where K_t and C_t are the non-dimensional stiffness and dampness matrixes in rectangular coordinates, respectively. The expressions for K_t and C_t are as follows:

\[
K_t = \begin{bmatrix}
K_{xx}^* & K_{xy}^* \\
K_{yx}^* & K_{yy}^*
\end{bmatrix},
\]
\[
C_t = \begin{bmatrix}
C_{xx}^* & C_{xy}^* \\
C_{yx}^* & C_{yy}^*
\end{bmatrix}
\]

In Fig. 1, the non-dimensional resultant forces in the X and Y directions are as follows:

\[
F_x^* = F_x^* \sin \phi + f_\phi^* \cos \phi
\]
\[
F_y^* = F_y^* \cos \phi - f_\phi^* \sin \phi + 1
\]

where S is the Sommerfeld number of the bearing. At the equilibration position, the expression of S is

\[
S = \frac{1}{\sqrt{f_e^* + f_\phi^*}}
\]

where the subscript s denotes the equilibrium position.

The differential of Eqs. (5) and (6) is calculated as

\[
\begin{bmatrix}
\frac{dF_x^*}{d\phi} \\
\frac{dF_y^*}{d\phi}
\end{bmatrix} = S A \begin{bmatrix}
\frac{df_e^*}{d\phi} - f_\phi^* \frac{df_e^*}{d\phi} \\
\frac{df_\phi^*}{d\phi} - f_e^* \frac{df_\phi^*}{d\phi}
\end{bmatrix}
\]

where A is a transformation matrix as follows:

\[
A = \begin{bmatrix}
\sin \phi & \cos \phi \\
\cos \phi & -\sin \phi
\end{bmatrix}
\]

The differential of non-dimensional oil film forces
in the ε and φ directions are

$$\begin{bmatrix} df_x^+ \\ df_y^+ \end{bmatrix} = K_\rho \begin{bmatrix} d\varepsilon \\ \varepsilon d\varphi \end{bmatrix} + C_\rho \begin{bmatrix} d\dot{\varepsilon} \\ \varepsilon d\dot{\varphi} \end{bmatrix}$$ \hspace{1cm} (10)$$

where K_ρ and C_ρ are the non-dimensional stiffness and dampness matrices in rectangular coordinates, respectively. The expressions of K_ρ and C_ρ are

$$K_\rho = \begin{bmatrix} \frac{\partial f_x^+}{\partial \varepsilon} & \frac{\partial f_x^+}{\partial \varphi} \\ \frac{\partial f_y^+}{\partial \varepsilon} & \frac{\partial f_y^+}{\partial \varphi} \end{bmatrix}, \quad C_\rho = \begin{bmatrix} \frac{\partial f_x^+}{\partial \varepsilon} & \frac{\partial f_x^+}{\partial \varphi} \\ \frac{\partial f_y^+}{\partial \varepsilon} & \frac{\partial f_y^+}{\partial \varphi} \end{bmatrix}$$ \hspace{1cm} (11)$$

By substituting Eq. (10) in Eq. (8), we get

$$\begin{bmatrix} df_x^+ \\ df_y^+ \end{bmatrix} = S \begin{bmatrix} \sin \varphi & \cos \varphi \\ \cos \varphi & -\sin \varphi \end{bmatrix} \left(K_\rho + K_{\rho_0} \right) \begin{bmatrix} d\varepsilon \\ \varepsilon d\varphi \end{bmatrix} + C_\rho \begin{bmatrix} d\dot{\varepsilon} \\ \varepsilon d\dot{\varphi} \end{bmatrix}$$

(12)

where K_{ρ_0} is the non-dimensional stiffness correction matrix as follows:

$$K_{\rho_0} = \begin{bmatrix} 0 & -\frac{f_\varphi^+}{\varepsilon} \\ 0 & \frac{f_\varepsilon^+}{\varepsilon} \end{bmatrix}$$ \hspace{1cm} (13)$$

The coordinate transformations between (X', Y') and (ε, φ) at the equilibrium position are

$$\begin{bmatrix} dX'^+ \\ dY'^+ \end{bmatrix} = A \begin{bmatrix} d\varepsilon \\ \varepsilon d\varphi \end{bmatrix}$$ \hspace{1cm} (14)$$

$$\begin{bmatrix} d\dot{X}'^+ \\ d\dot{Y}'^+ \end{bmatrix} = A \begin{bmatrix} d\dot{\varepsilon} \\ \varepsilon d\dot{\varphi} \end{bmatrix}$$ \hspace{1cm} (15)$$

When Eqs. (14) and (15) are substituted in Eq. (12), the expression obtained is

$$\begin{bmatrix} dF_x'^+ \\ dF_y'^+ \end{bmatrix} = S A \left(K_\rho + K_{\rho_0} \right) A \begin{bmatrix} dX'^+ \\ dY'^+ \end{bmatrix} + C_\rho A \begin{bmatrix} d\dot{X}'^+ \\ d\dot{Y}'^+ \end{bmatrix}$$

(16)

From Eqs. (3) and (16), the stiffness and dampness coefficients of the oil film on Cartesian coordinate system at the equilibrium position are derived as follows:

$$K_y = -SA \left(K_\rho + K_{\rho_0} \right) A$$ \hspace{1cm} (17)$$

Equations (17) and (18) are the general transformation of the hydrodynamic journal bearing stiffness and dampness coefficients between polar and rectangular coordinates, respectively. The transformation validity for short journal bearings is discussed in Section 3.

3 Verification and discussion

When the short-bearing approximate is applied with half-Sommerfeld boundary conditions, the non-dimensional oil film forces of the bearing are as follows [6, 13].

$$f_\varepsilon' = -\frac{\varepsilon^4 \left(1 - 2\varepsilon^2 \right)}{(1 - \varepsilon^2)^2} + \frac{\pi \left(1 + 2\varepsilon^2 \right) \varepsilon}{2 (1 - \varepsilon^2)^{3/2}}$$ \hspace{1cm} (19)$$

$$f_\varphi' = \frac{\pi \varepsilon^2 (1 - 2\varepsilon^2)}{4 (1 - \varepsilon^2)^2} + \frac{2\varepsilon^5}{(1 - \varepsilon^2)^2}$$ \hspace{1cm} (20)$$

At equilibrium position, the stiffness and dampness parameters of the bearing in polar coordinates are

$$K_{\varepsilon'} = \frac{\partial f_\varepsilon'}{\partial \varepsilon} = \frac{2\varepsilon (1 + \varepsilon^2)}{(1 - \varepsilon^2)^3}, \quad K_{\varphi'} = \frac{\partial f_\varphi'}{\partial \varphi} = \frac{-\pi}{4 (1 - \varepsilon^2)^{5/2}}$$ \hspace{1cm} (21)$$

$$K_{\varepsilon\varphi'} = \frac{\partial f_\varepsilon'}{\partial \varphi} = \frac{\pi (1 + 2\varepsilon^2)}{4 (1 - \varepsilon^2)^{5/2}}, \quad K_{\varphi\varepsilon'} = \frac{\partial f_\varphi'}{\partial \varepsilon} = \frac{-\varepsilon}{(1 - \varepsilon^2)^2}$$ \hspace{1cm} (21)$$

$$D_{\varepsilon'} = \frac{\partial f_\varepsilon'/\partial \varepsilon}{\partial \varepsilon} = -\frac{\pi (1 + 2\varepsilon^2)}{2 (1 - \varepsilon^2)^2}, \quad D_{\varphi'} = \frac{\partial f_\varphi'/\partial \varphi}{\partial \varphi} = \frac{2\varepsilon}{(1 - \varepsilon^2)^{5/2}}$$ \hspace{1cm} (22)$$

Further, the attitude angle at the equilibrium position is

$$\varphi = \tan^{-1} \left(\frac{f_\varphi'}{f_\varepsilon'} \right) = \tan^{-1} \left(\frac{\pi (1 - \varepsilon^2)}{4\varepsilon} \right)$$ \hspace{1cm} (23)$$
When Eqs. (7) and (21)–(23) are substituted in Eqs. (17)–(18), the stiffness and dampness parameters in rectangular coordinates are

\[
K_{xx} = -S \left(\sin^2 \varphi K_{xx} + \sin \varphi \cos \varphi (K_{xx} - K_{xx}) + \cos^2 \varphi K_{yy} \right) =
\frac{4 \left[2 \pi^2 + (16 - \pi^2) \varepsilon^2 \right]}{\left[\pi^2 + (16 - \pi^2) \varepsilon^2 \right]^3} \\
K_{xy} = -S \left(\cos^2 \varphi K_{xy} + \sin \varphi \cos \varphi (K_{xy} - K_{xy}) - \sin^2 \varphi K_{xy} \right) =
-\pi \left[-\pi^2 + 2 \pi \varepsilon^2 + (16 - \pi^2) \varepsilon^2 \right] \\
\varepsilon \left(1 - \varepsilon^2 \right)^2 \left[\pi^2 + (16 - \pi^2) \varepsilon^2 \right]^3 \\
K_{yx} = -S \left(\cos^2 \varphi K_{yx} + \sin \varphi \cos \varphi (K_{yx} - K_{yx}) - \sin^2 \varphi K_{yx} \right) =
-\pi \left[-\pi^2 + 32 + \pi^2 \varepsilon^2 + 2 (16 - \pi^2) \varepsilon^4 \right] \\
\varepsilon \left(1 - \varepsilon^2 \right)^2 \left[\pi^2 + (16 - \pi^2) \varepsilon^2 \right]^3 \\
K_{yy} = -S \left(\cos^2 \varphi K_{yy} - \sin \varphi \cos \varphi (K_{yy} - K_{yy}) - \sin^2 \varphi K_{yy} \right) =
-\pi \left[-\pi^2 + 2 \pi \varepsilon^2 + (16 - \pi^2) \varepsilon^2 \right] \\
\varepsilon \left(1 - \varepsilon^2 \right)^2 \left[\pi^2 + (16 - \pi^2) \varepsilon^2 \right]^3 \\
(24)
\]

Further, the obtained results are in accordance with Ref. [5]. Therefore, the general transformation of the hydrodynamic journal bearing stiffness and dampness coefficients between polar and rectangular coordinates, as expressed by Eqs. (17) and (18), are verified.

4 Conclusions

The derived expression denotes the general transformation between polar and rectangular coordinates of journal bearing stiffness and dampness parameters. The validity of this study is confirmed with the use of short journal bearings. Further, this transformation is also suitable for long journal and finite journal bearings.

Acknowledgements

This research is supported by science and technology research project of Hubei provincial department of education (No. Q20192603) and doctoral research fund of Hubei University of Arts and Science (No. 2059023).

Open Access: This article is licensed under a Creative Commons Attribution 4.0 International Licence, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] Holmes R. The vibration of a rigid shaft on short sleeve bearings. J Mech Eng Sci 2(4): 337–341 (1960)
[2] Hahn E J. The excitability of flexible rotors in short sleeve bearings. J Lubr Technol 97(1): 105–115 (1975)
[3] Hashimoto H, Wada S. Dynamic behavior of unbalanced rigid shaft supported on turbulent journal bearings—theory and experiment. *J Tribol* **112**(2): 404–408 (1990)

[4] Khonsari M M. On the self-excited whirl orbits of a journal in a sleeve bearing lubricated with micropolar fluids. *Acta Mech* **81**(3–4): 235–244 (1990)

[5] Khonsari M M, Chang Y J. Stability boundary of non-linear orbits within clearance circle of journal bearings. *J Vib Acoust* **115**(3): 303–307 (1993)

[6] Huang Y, Tian Z X, Chen R C, Cao H Y. A simpler method to calculate instability threshold speed of hydrodynamic journal bearings. *Mech Mach Theory* **108**: 209–216 (2017)

[7] Lin J R. Linear stability analysis of rotor-bearing system: Couple stress fluid model. *Comput Struct* **79**(8): 801–809 (2001)

[8] Lin J R, Li P J, Hung T C, Liang L J. Nonlinear stability boundary of journal bearing systems operating with non-Newtonian couple stress fluids. *Tribol Int* **71**: 114–119 (2014)

[9] Kushare P B, Sharma S C. Nonlinear transient stability study of two lobe symmetric hole entry worn hybrid journal bearing operating with non-Newtonian lubricant. *Tribol Int* **69**: 84–101 (2014)

[10] Lund J W, Thomsen K K. A calculation method and data for the dynamic coefficients of oil-lubricated journal bearings. In *Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization*. New York, 1978: 1–28.

[11] Jang G H, Kim Y J. Calculation of dynamic coefficients in a hydrodynamic bearing considering five degrees of freedom for a general rotor-bearing system. *J Tribol* **121**(3): 499–505 (1999)

[12] Crooijmans M T M, Brouwers H J H, Van Campen D H, De Kraker A. Limit cycle predictions of a nonlinear journal-bearing system. *J Eng Ind* **112**(2): 168–171 (1990)

[13] Wang J K, Khonsari M M. A new derivation for journal bearing stiffness and damping coefficients in polar coordinates. *J Sound Vib* **290**(1–2): 500–507 (2006)

Zhuxin TIAN. He received his bachelor degree in mechanical design manufacturing and automation in 2009 from Huazhong University of Science and Technology, Wuhan, China. He has obtained his Ph.D. degree in mechatronic engineering from Huazhong University of Science and Technology in 2018. After then, he joined Hubei University of Arts and Science as a lecturer. His research interests include hydrostatic and hydrodynamic bearings.

Yu HUANG. He received his bachelor degree in machinery manufacturing process and equipment in 1993 from Huazhong University of Science and Technology, Wuhan, China. He received his M.S. and Ph.D. degrees in automotive engineering and mechanical design manufacturing and automation from Huazhong University of Science and Technology in 2000 and 2004, respectively. After then, he joined Huazhong University of Science and Technology as a lecturer. His current position is a professor and the deputy director of the National engineering research center for digitalization of manufacturing equipment. And he joined Hubei University of Arts and Science as an adjunct professor in 2019. His research areas cover high performance hydrostatic bearing, laser fine processing technology and equipment and high-power laser cutting and welding equipment.