Data Article

Data on hydrogen isotopes yield from Pd under thermal, electric current, radiation and UV stimulations

Yu.I. Tyurin, V.S. Sypchenko, N.N. Nikitenkov*, Hongru Zhang, I.P. Chernov

Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634004, Russia

A R T I C L E I N F O

Article history:
Received 30 May 2019
Received in revised form 17 September 2019
Accepted 14 November 2019
Available online 21 November 2019

Keywords:
Hydrogen isotopes
Surface
Non-equilibrium processes
Atomic migration
Palladium
Radiation-and thermo-stimulated hydrogen release

A B S T R A C T

Data on the hydrogen isotopes (H, D) yield of Pd with linear heating: a) by the accelerated electrons beam with energy up to 35 KeV, b) by joule heat of AC (50 Hz) through samples, c) by external coaxial metal furnace (stainless steel), d) in quartz vacuum cell are presented and e) UV stimulation during thermal heating (the research article [2]).

The highest temperature position of the maximum hydrogen isotopes intensity release corresponds to the samples heating in a metal vacuum cell by external coaxial furnace. The lowest temperature position of the maximum intensity hydrogen isotopes release corresponds to the heating by accelerated electrons beam. The difference in these positions of the maximum is $\Delta T \approx 300^\circ C$.

Shift of maxima position in the hydrogen and deuterium release into the low-temperature region is significant ($\Delta T = 50–100^\circ C$) for the Pd sample when metal are heated by electric current or in a quartz vacuum cell compared to their heating in a metal vacuum cell and under UV stimulation during thermal heating.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
This brief article describes the data upon the stimulation hydrogen isotopes (H,D) yield from Pd at equilibrium and non-equilibrium heating of the samples with help: a) external coaxial furnace, b) the Joule's heat of electric current, c) accelerated electrons beam, d) weak electromagnetic fields and e) UV stimulation during thermal heating.

Fig. 1a and b (curves 1–3) shows the dependences of the hydrogen and deuterium yield from palladium in the linear heating modes of sample, during the heating in stainless steel and quartz vacuum cells. Fig. 1a and b (curve 4) shows the dependences of the intensity hydrogen release from palladium in the linear heating mode of the sample and in the sample radiative heating with an accelerated electron beam. Fig. 1c shows the dependences of the hydrogen and deuterium intensity
yield from palladium strongly saturated by deuterium in the linear heating modes of sample, during heating in quartz vacuum cell.

Three peaks are observed when a closed coil of Pd-D,H is heated in a coaxial quartz furnace in a quartz cell, Fig. 2. The additional maximum at (155 ± 50°C) (Fig. 2) correlates with the position of the AC-maximum (curve 3, Fig. 1a and b).

Fig. 3 shows the temperature dependence of the intensities of the hydrogen and deuterium yields from Pd at linear heating of the sample and UV stimulation.

Analytical approximations indicate possible mechanisms for stimulating radiation, UV and dynamic electromagnetic processes (curve 4', Fig. 1a) [2].

Fig. 1. The hydrogen isotopes release ((a) − H2, (b) − (D2)) from Pd at the linear heating: in stainless steel vacuum cell $T_{\text{max}}(\text{H}_2) = 355$ °C, $T_{\text{max}}(\text{D}_2) = 360$ °C (curves 1 a, 6); in quartz vacuum cell $T_{\text{max}}(\text{H}_2) = 220$ °C (peak 2a), $T_{\text{max}}(\text{H}_2) = 312$ °C (peak 2''a), $T_{\text{max}}(\text{D}_2) = 217$ °C (peak 26), $T_{\text{max}}(\text{D}_2) = 311$ °C (peak 2'6); $T_{\text{max}}(\text{D}_2) = 207$ °C (peak 2c), $T_{\text{max}}(\text{D}_2) = 270$ °C (peak 2'c) (curves 2 a,b,c); heating by AC: $T_{\text{max}}(\text{H}_2) = 150$ °C, $T_{\text{max}}(\text{D}_2) = 165$ °C (curves 3 a,6); radiation-stimulated hydrogen release (curves 4 a,b); analytical approximation of the experimental curve 4a (кривая 4а).

Fig. 2. Hydrogen isotopes release: H (1′−3′) and D (1−3) from the closed loop of Pd-D,H at the linear heating mode (heating rate = 1°C·s⁻¹) by a quartz coaxial furnace ($j = (30−70)$ A cm⁻²) in a quartz vacuum cell: 1, 1′ peaks are the thermal stimulation contribution: $T_{\text{max}}(\text{D}_2), T_{\text{max}}(\text{H}_2) = 300$ °C; 2, 2′ peaks are the electromagnetic field contribution: $T_{\text{max}}(\text{D}_2) = 246$ °C, $T_{\text{max}}(\text{H}_2) = 262$ °C; 3, 3′ peaks are the induced electric current contribution: $T_{\text{max}}(\text{D}_2), T_{\text{max}}(\text{H}_2) = 16$ °C. Electrolytic saturation of Pd: D₂SO₄ (0.5 M), t = 90min, I = 100mA, 02.15.2018.
2. Experimental design, materials and methods

2.1. Experimental installation

The data were received in a high-vacuum installation with oil-free pumping (Pres \(< 10^{-6}\) Torr), the gases emitted from the materials were recorded by a mass spectrometer \([3]\). The data of thermally stimulated gas release (TSGR) carried out using external linear heating of samples by coaxial quartz furnace. Samples placed in evacuated quartz or metal cells. To heat the filament of furnace wound on a quartz tubes as solenoid 50 Hz (AC, Joule’s heat), current density \(120–420\) A cm\(^{-2}\), the solenoid turns is \(10\) cm\(^{-1}\), the length of the furnace are \(10\) cm. The sample temperature controlled by chromel-alumel thermocouple. The error in determining the temperature positions of the peaks (\(T_{\text{max}}\)) in the H and D isotopes thermal spectra was \(\pm 5\) °C. The heating regimes is set by the “Project” computer program and allows heating of samples from 20 to 1000°C with a linear velocity from 0.1 to 5°C s\(^{-1}\). The system is able to track the intensities of up to six lines of mass spectra of gases released from the sample during heating and (or) irradiation.

For radiation-stimulated heating of the samples by an electron beam, an electron gun with a hot cathode and a system of magnetic focusing of the accelerated beam was used. The energy of 10–30 KeV, the beam varies from 1 to 100 \(\mu\)A cm\(^{-2}\) The electron beam current was determined directly from the sample. The heating element allows to maintain a constant temperature on the sample or to perform additional linear heating of the sample during irradiation.

For the photoactivation of the samples, the UVT-125-1 mercury lamp was used, 100 <\(\lambda\) < 400 nm, \(W = 1.5\) W/m\(^2\), 1600 lm.

In addition, heating was performed by passing an electric current (AC 50 Hz) directly through the sample – Joule’s heat – also carried out by a programmable heating device. The hydrogen concentration in the samples measured with the RHEN 602 hydrogen analyzer from LECO Corporation.

2.2. Selection of sample

The Pd has not chemical bonds “metal–hydrogen” formation, but forming solid solutions with hydrogen isotopes. Gas emission from pre-saturated with hydrogen and deuterium palladium (0.9999) investigated in the linear heating mode. The geometry of the Pd samples was chosen in the form of plane-parallel plates of \(0.05 \times 3 \times 25\) (thermal, thermal + UV and Joule’s heating), \(0.2 \times 10 \times 10\) mm (radiation heating) sizes. The thermal and Joule’s heating rate was 1°C s\(^{-1}\), the radiation heating rate reached \(10 \div 15\)°C·s\(^{-1}\).

2.3. Saturation of samples with hydrogen and deuterium

For saturating samples of Pd with hydrogen and deuterium were used: a) the Siverts’s method in the PCI installation of the Gas Reaction Controller; b) the electrolytic (cathodic) saturation in a 0.1–1 M solution of \(\text{H}_2\text{SO}_4 + \text{H}_2\text{O}\) or \(\text{D}_2\text{SO}_4 + \text{D}_2\text{O}\) from 2 to 72 hours at current density of 2–200 mA cm\(^{-2}\) under normal conditions.

This also ensures a relatively uniform distribution of hydrogen in the samples volume at low electrolysis current densities (2 mA cm\(^{-2}\)) and long time (\(\approx 10^5\) s) saturation.

2.4. Data study

We found that the positions of the peaks of thermal and gas release of hydrogen and deuterium from palladium during heating of samples in a metal cell, in a quartz cell, electric current (Figs. 1 and 2), UV, UV + heating in a quartz cell (Fig. 3) and a beam of accelerated electrons (Fig. 1) differ significantly.

We found that the positions of the peaks of thermal and gas release of hydrogen and deuterium from palladium during heating of samples in a metal cell, in a quartz cell, electric current (Fig.1 and 2), heating with a stimulating effect of ultraviolet mercury lamp (Fig. 3) and a beam of accelerated electrons (Fig. 1a and b, curves 4,4’) differ significantly.
The conditions under which the data presented in Fig. 1 were follows. The area of AC density change during heating in the quartz furnace spiral was \((120 \div 420) \text{ A cm}^{-2}\) and AC through a sample Pd-D,H was \((40 \div 120) \text{ A} \cdot \text{ cm}^{-2}\). AC voltage used to heat the sample of 3a, b, c was \((1 \div 15) \text{ V}\). Conditions of cathode saturation for curves 1–3, Fig. 1a and b was \(0.5 \text{ M}, t = 0.5 \text{ h}, j = 100 \text{ mA cm}^{-2}\), for curve 4, Fig. 1b it was \(0.1 \text{ M}, t = 20 \text{ h}, j = 70 \text{ mA cm}^{-2}\). Sizes of samples were \(0.05 \times 3 \times 25 \text{ mm}\) (Fig. 1a–c, curves 1–3) and \(0.2 \times 10 \times 10 \text{ mm}\) (Fig. 1a and b, curve 4).

Electron beam energy was \(E = 35 \text{ keV}\) (Fig. 1a, curve 4), \(20 \text{ keV}\) (Fig. 1b, curve 4). Electron beam current density was \(j = 75 \text{ mA cm}^{-2}\) (Fig. 1a, curve 4) and \(j = 20 \text{ mA}\) (Fig. 1b, curve 4). Heating rate were \(1 \degree \text{C} \cdot \text{s}^{-1}\) (Fig. 1a–c, curves 1–3), \(15 \degree \text{C} \cdot \text{s}^{-1}\) (Fig. 1a, curve 4), \(0.4 \degree \text{C} \cdot \text{s}^{-1}\) (Fig. 1b, curve 4).

The shift of the maxima position temperature of the releasing hydrogen isotopes flux density during thermal heating in metallic stainless steel and heating with alternating electric current (AC, 50 Hz) for palladium is \(\Delta T = (198 \pm 5) \degree \text{C}\). The shift in the maxima position when heated by electric current and heated in a quartz cell by an external coaxial furnace is for the first maximum \(\Delta T_{\text{max}1} = (63 \pm 5) \degree \text{C}\). The position of the low-temperature maximum of hydrogen release and deuterium when heated palladium in quartz cell at \((217 \pm 5) \degree \text{C}\) correlates with the position of the peak \((157 \pm 7) \degree \text{C}\) when palladium heated by Joule heat. Nevertheless, the high-temperature peak \((311 \pm 5) \degree \text{C}\) correlates with the peak \((355 \pm 5) \degree \text{C}\) when the palladium is heated in the metal cell (see Fig. 1a and b). This correlation is associated with the effect of electromagnetic fields on diffusion processes in metals, where hydrogen is not fixed by a strong chemical bond, but is located in the internodes in the H\(^+\), D\(^+\) states close to ionic.

When palladium is heated by a beam of accelerated electrons, the shift in position with respect the maximum of the equilibrium yield of hydrogen isotopes (cf. curves 1 and 4, Fig. 1a and b) reaches 300 C.

An increase of the hydrogen isotopes concentration in samples increases the contribution in the low-temperature \((210 \degree \text{C})\) non-equilibrium component of the hydrogen isotopes release (Fig. 1c). Really, the intensity ratio of the lines is \(K_1 = J(210 \degree \text{C})/J(275 \degree \text{C}) \approx 3.6\) (Fig. 1c), \(K_2 = J(217 \degree \text{C})/J(311 \degree \text{C}) \approx 0.9\), (Fig. 1b), so \(K_1/K_2 = 4\) vol ratio of introduced hydrogen is H (Fig. 1c)/H (Fig. 1b) = 5.6.

Three peaks are observed when a closed coil of Pd-D,H is heated in a coaxial quartz furnace in quartz cell (Fig. 2). The additional maximum at \((155 \pm 50 \degree \text{C})\) (Fig. 2) correlates with the position of the AC-maximum (curv.3, Fig. 1a and b).

Heating samples of Pd-D,H in the form of a closed turn in a vacuum quartz cell combines the effects of thermal heating in a quartz cell and heating with electric current (Fig. 2). This allows you to implement a fairly simple method of detecting the stimulating effect of electric current on the hydrogen release from metals.
The acceleration of the hydrogen and deuterium release from saturated palladium is also observed with linear heating to 65 °C (at a rate of 0.1 °C/s⁻¹) with simultaneous irradiation of the surface with UV-light of a mercury lamp (Fig. 3a and b).

The temperature position in the maximum hydrogen and deuterium release rates at comparable heating rates for Ni similar to Pd samples and decrease in the following order: heating by external electric furnace in metal cell → in quartz cell → by Joule’s heat (displacement reached of ΔT = 100–200 °C). However, for heating by the accelerated electrons beam one has ΔT ≈ 350 °C [2].

Titanium, like zirconium, belongs to the IVB group, V period of the periodic table. For zirconium, as for titanium, there is no significant difference in the position of the temperature maxima of the intensity of the hydrogen isotopes yield with 3 methods of heating the samples by joule heat of AC (50 Hz) through samples, external coaxial furnace samples in metal (stainless steel) and quartz vacuum cells [2].

For linear heating of titanium and zirconium with simultaneous irradiation with an electron beam, there is a noticeable shift (ΔT = (365 ± 5) °C) in the position of maximum yield during the electron beam stimulation in the low-temperature region, compared with the maximum in the equilibrium thermal heating in the metal vacuum cell [2].

Was determined that the isotope effect (differences in the H and D releases at different ways to stimulate the release of hydrogen isotopes) is relatively weak, but there is a tendency to an increase in temperature displacements for H-isotope when there is a non-equilibrium component in the input energy (material depending) [2–5].

Acknowledgments

The research is carried out within the framework of Tomsk Polytechnic University Program for Promoting the Competitiveness.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] I.E. Gabis, A.P. Baraban, V.G. Kuznetsov, D.J. Elets, M.A. Dobrotvorski, A.P. Voyt, A mechanism of ultraviolet activation of the α-AlH3 decomposition, Int. J. Hydrogen Energy 39 (2014) 15844–15850, https://doi.org/10.1016/j.ijhydene.2014.07.154.
[2] Yu.I. Tyurin, V.S. Sypchenko, N.N. Nikitenkov, I.P. Hongru Zhang, Chernov Comparative study of the hydrogen isotopes yield from Ti, Zr, Ni, Pd, Pt at thermal, electric current and radiation heating of these metals, Int. J. Hydrogen Energy 44 (36) (2019) 20223–20238.
[3] N.N. Nikitenkov, A.M. Hashhash, I.A. Shulepov, V.D. Khoruzhii, Y.I. Tyurin, I.P. Chernov, et al., A plant for studying radiation and thermal desorption of gases from inorganic materials, Instrum. Exp. Tech. 52 (2009) 865–870, https://doi.org/10.1134/ S0020441209060207.
[4] Yu.I. Tyurin, N.N. Nikitenkov, I.T. Sigfusson, A. Hashhash, V. Yaomin, A.S. Dolgov, et al., Diffusion and release of hydrogen from metals under the effect of ionizing radiation, Vacuum 131 (2016) 73–80, https://doi.org/10.1016/j.vacuum.2016.06.001.
[5] V.I. Karas, V.I. Sokolenko, Nonequilibrium kinetics of the electron–phonon subsystem can give rise to electric- and magnetic-plasticity effects in crystals in alternating electric and/or magnetic fields, Phys. Uspekhi 61 (2018), https://doi.org/10.3367/UFNe.2018.06.038350.