Simultaneous Degradation of αII- and βII-Spectrin by Caspase 3 (CPP32) in Apoptotic Cells*

(Received for publication, December 2, 1997, and in revised form, May 19, 1998)

Kevin K. W. Wang‡§§, Rand Posmantur³, Rathna Nath³, Kim McGinnis‡, Margaret Whitton**, Robert V. Talanian‡‡, Susan B. Glantz§§, and Jon S. Morrow§§

From the ³Laboratory of Neuro-biochemistry, Department of Neuroscience Therapeutics and the Departments of Immunopathology and **Chemistry, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, Michigan 48105, the ‡Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48106, the ¶BASF Bioresearch Corporation, Worcester, Massachusetts 01605, and the §§Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510

The degradation of αII- and βII-spectrin during apoptosis in cultured human neuroblastoma SH-SY5Y cells was investigated. Immunofluorescent staining showed that the collapse of the cortical spectrin cytoskeleton is an early event following staurosporine challenge. This collapse correlated with the generation of a series of prominent spectrin breakdown products (BDPs) derived from both αII- and βII-subunits. Major C-terminal αII-spectrin BDPs were detected at ∼150, 145, and 120 kDa (αII-BDP150, αII-BDP145, and αII-BDP120, respectively); major C-terminal βII-spectrin BDPs were at ∼110 and 85 kDa (βII-BDP110 and βII-BDP85, respectively). N-terminal sequencing of the major fragments produced in vitro by caspase 3 revealed that αII-BDP150 and αII-BDP120 were generated by cleavages at DEDT1185S1186 and DSDL1478S1479, respectively. For βII-spectrin, a major caspase site was detected at DEVID1457S1458, and both βII-BDP110 and βII-BDP85 shared a common N-terminal sequence starting with Ser1458. An additional cleavage site near the C terminus, at ETVD2146S2147, was found to account for βII-BDP85. Studies using specific caspase or calpain inhibitors indicate that the pattern of spectrin breakdown during apoptosis differs from that during non-apoptotic cell death. We postulate that in concert with calpain, caspase rapidly targets critical sites in both αII- and βII-spectrin and thereby initiates a rapid dissolution of the spectrin-actin cortical cytoskeleton with apoptosis.

The importance of proteases in the expression of mammalian apoptosis has been the subject of many recent studies. The mammalian interleukin-1β-converting enzyme (ICE)1-like pro-
tease family (renamed caspase (1)) is perhaps the best charac-
terized. Overexpression of ICE in fibroblasts can lead to apo-
potis (2). While at least eight other caspases have been iden-
tified (Ich-1 (Nedd2), ICE-LAP6, Ich-2, ICErelIII, Mch-2, Mch-3, Mch-4, and Mch-5/FLICE (for reviews, see Refs. 3 and 4)), human caspase 3 (CPP32) is perhaps the most universal apoptosis mediator. It is present in most mammalian cells (5), and its deletion by gene knockout blocks neuronal death during brain development with consequential lethality (6). Besides the caspases, a second family of proteases implicated in the initi-
ation and control of apoptosis are the calpains (7, 8), especially in several hematopoietic and neuronal cells (9–12). The relationship between these two protease families, the consequences of each on their respective substrates and on cellular physiology, or the conditions under which each is activated remain poorly understood.

While many proteins are cleaved during apoptosis, a prominent target of both calpain and caspase action is αII-spectrin, the major component of the cortical membrane skeleton. In neurons, calcium-activated calpain cleavage of αII-spectrin (non-erythroid α-spectrin or α-fodrin) accompanies N-methyl-D-aspartic acid receptor activation (13),2 does not directly cause neuronal toxicity (7, 15), and is postulated to be necessary for synaptic and neuronal plasticity (16–18). Indeed, αII-spectrin cleavage by calpain appears to be a molecular mechanism by which skeletal plasticity can be enhanced without complete dissolution of the spectrin skeleton since calpain-mediated cleavage of αII-spectrin bestows calmodulin regulation on oligo-
gmeric spectrin-actin complexes, but does not dissociate them (unless βII-spectrin is also cleaved) (19, 20). In addition to the action of calpain, αII-spectrin is also targeted by caspase 3 during apoptosis in lymphocytes, hematopoietic cells, and neu-
rons (12, 21–25). A central question is to understand the mo-
olecular consequences of each protease’s action, both singly and in concert, on spectrin’s many functions and on the integrity of the cortical spectrin skeleton, a structure required for the maintenance of membrane order and integrity (reviewed in Ref. 26).

In other work, we have demonstrated that beyond the spe-
cific and preferred site of calpain action at the Tyr1172–Gly1177 bond (VY*GMMPR) in αII-spectrin (27), calpain also targets several additional sites in both αII- and βII-spectrin (27).3 In the present report, we demonstrate the specific sites of caspase 3 cleavage within both αII- and βII-spectrin and show that during apoptotic induction in neuroblastoma SH-SY5Y cells, it is caspase 3 that most rapidly cleaves not only αII-spectrin, but

2 S. P. Glantz, C. D. Cianci, K. K. W. Wang, and J. S. Morrow, submitted for publication.
also βII-spectrin, and that this process is accompanied by skeletal dissolution. Together, these results define the molecular targets of these two important protease systems on the spectrin skeleton and suggest a mechanism by which different proteases, acting at slightly different sites within spectrin, might alternatively induce either enhanced skeletal plasticity or membrane skeletal dissolution.

MATERIALS AND METHODS

MTX and Staurosporine Treatment of SH-SY5Y Cells—Human neuronal SH-SY5Y cells (SY5Y) were grown to confluency on 12-well plates (1–2 × 10^5 cells/well) in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum, 100 units/ml penicillin, 100 μg/ml streptomycin, and 2.5 μg/ml Fungizone (amphotericin B). Cultures were washed three times with serum-free minimum essential medium. After 1 h of preincubation with calpain inhibitor 1 (acetyl-Leu-Leu-Nle-CHO, Calbiochem) or Z-D-DCB (a caspase inhibitor), cultures were challenged either with 0.1 mM concentration of the calcium channel activator maitotoxin (28) or with 0.5 mM EGTA for 90 min. Digestion was halted by the addition of an equal volume of SDS-PAGE sample buffer. Triplicate samples were subjected to electrophoresis. One gel was stained with Coomassie Blue, whereas the other two were transferred to Immobilon® membranes and probed by Western blotting with anti-GST antibody (Amersham Pharmacia Biotech). GST-containing fusion peptides were also detected by Western blotting using anti-GST antibody (Chemicon International, Inc.), pAb RAF-A, or pAb RAF-B (34).

RESULTS

Both αII- and βII-Spectrin Are Degraded in Apoptotic SY5Y Cells—Our previous studies have established that SY5Y cells subjected to staurosporine (0.5 μM) undergo apoptosis, with chromatin condensation and other stigmata of apoptosis appearing within 5–6 h. The number of cells dying in culture plateaued within 16–24 h (12, 35). In the current study, loss of intact αII- and βII-spectrin in staurosporine-treated cells was detected by I h and continued progressively for 24 h (Fig. 1A). This loss was mirrored by increased levels of αII-spectrin BDPs at ~150, 145, and 120 kDa (αII-BDP150, αII-BDP145, and αII-BDP120, respectively). βII-Spectrin was also simultaneously degraded into two major immunoreactive fragments at ~110 and 85 kDa (βII-BDP110 and βII-BDP85, respectively). A minor βII-BDP was also evident at ~55 kDa (βII-BDP55) (Fig. 1B).

The time course of the breakdown of both αII- and βII-spectrins into their major cleavage fragments could be roughly modeled as a three-step kinetic process, in which each intact subunit (A) broke down to an intermediate product (B) and then was further degraded to a smaller major product (C), with two corresponding rate constants, k_A and k_B (Equation 1).

\[k_A \rightarrow k_B \rightarrow \text{Product} \]

Scaling data to unit maximum value for B (the starting value of αII- or βII-spectrin) and solving the resulting kinetic equation as a function of time (t) yield the relative amount of B or C (Equations 2 and 3).

\[B = \frac{k_A (e^{-kt} - e^{-kBt})}{(k_B - k_A)} \]

\[C = (1 - e^{-kt}) - \frac{k_A (e^{-kt} - e^{-kBt})}{(k_B - k_A)} \]

Fitting the observed breakdown patterns using Equations 2 and 3 indicated that \(k_A \approx 0.17 \) h^{-1} (for generation of αII-BDP150) and that \(k_B \approx 0.12 \) h^{-1} (for generation of αII-BDP145) (Fig. 1B). For βII-spectrin, the corresponding values were \(k_A \approx 0.16 \) h^{-1} (for generation of βII-BDP110) and \(k_B \approx 0.03 \) h^{-1} (for generation of βII-BDP85). These rates correspond to half-lives \((t_1/2)\) for intact αII-spectrin of ~2.9 h and for βII-spectrin of ~3.1 h. The half-lives of the intermediates derived from these fits were ~1.2 h for I-BDP150 and ~19.2 h for I-BDP110. Although these \(t_1/2 \) values tended to vary (±0.8 h) from experiment to experiment (data not shown), it was clear that unlike for calpain cleavage (19), the time course of βII-spectrin breakdown by caspase 3 essentially paralleled that of αII-spectrin.

Except for the transient generation of αII-BDP150, which can arise from proteolysis by several different proteases at a...
Spectrin Subunit Fragmentation by Human Caspase 3

hypersensitive region within αII-spectrin repeat unit 11 (27, 36), the pattern of BDPs generated by staurosporine action in the SY5Y cells appeared to be distinct from those produced by calpain. To further define the nature of the protease cascade operating in these experiments, the effects of specific calpain and caspase inhibitors on staurosporine-induced breakdown were compared (Fig. 2). Calpain inhibitor I specifically blocked the generation of αII-BDP145, but did not affect the generation of the major product, αII-BDP120 (Fig. 2A). Conversely, Z-D-DCB, a caspase inhibitor, blocked the appearance of αII-BDP120. Both inhibitors slowed the overall generation of αII-BDPs, and thus, it appeared that both proteases contributed in some measure to the generation of αII-spectrin BDPs. With respect to βII-spectrin, calpain inhibitor I had little effect on βII-spectrin degradation compared with Z-D-DCB, which blocked the cleavage of βII-spectrin almost completely (Fig. 2B). These patterns of cleavage were distinct from those induced in SY5Y cells by treatment with MTX (0.01 nM), a highly potent marine toxin that activates both voltage-sensitive and receptor-operated calcium channels in the plasma membrane (Fig. 2). Presumably, the intracellular calcium load induced by such treatment activates cell death pathways similar to those operating during necrosis (7, 28). With MTX treatment, there was dramatic loss of both αII- and βII-spectrin coupled with the generation of αII-BDP150, βII-BDP110, and βII-BDP55. On the other hand, the αII-BDP120 and βII-BDP85 products, characteristic of caspase 3 activity, were not formed. Z-D-DCB provided minimal protection, whereas calpain inhibitor I almost completely blocked both αII- and βII-spectrin breakdown in MTX-treated cells (Fig. 2). A βII-spectrin cleavage product of ~110 kDa observed with MTX is similar in size to the caspase-generated βII-BDP110; based on the lack of βII-BDP85 as well as the inhibition of this cleavage by calpain inhibitor I, it appears that this band is a calpain product. These data, together with our earlier studies (12, 28), indicate that staurosporine and MTX activate in large measure distinct pathways of spectrin proteolytic cleavage in SY5Y cells. These pathways appear to be characteristic of apoptotic and non-apoptotic (necrotic) cell death, respectively, and both involve cleavage of βII-spectrin as part of the cell death event.

αII/βII-Spectrin Is Digested Most Readily by Caspase 3—The pattern of spectrin degradation during staurosporine-induced apoptosis in SY5Y cells and the response of these cells to Z-D-DCB strongly implicated a caspase in the apoptotic breakdown of spectrin. Since several related caspases may be active during apoptosis (37), it was of interest to determine their relative activity against spectrin in the milieu of SY5Y cells. Cell lysates were thus digested for 1 h with comparable amounts of recombinant human caspases 1–4, 6, and 7, and the breakdown patterns were analyzed after Western blotting (Fig. 3). As expected, all caspases generated αII-BDP150, presum-
ably due to cleavage within αII-spectrin’s hypersensitive site. In contrast, only caspase 3 produced significant levels of αII-BDP120. All caspases also readily digested βII-spectrin, but differed significantly in the ratio of the major βII-spectrin fragments generated (Fig. 3). For example, the dominant products generated by caspasas 2, 3, 6, and 7 were βII-BDP70, βII-BDP85, βII-BDP55, and βII-BDP110, respectively. Again, only caspase 3 produced significant levels of both βII-BDP110 and βII-BDP85. While additional βII-spectrin BDPs no doubt existed in these experiments that were not visualized by pAb 10D (which is directed to the C-terminal third of βII-spectrin), these findings establish that caspases display characteristic differences in their relative specificity and activity vis-à-vis spectrin. Variations in the amount of active enzyme or in the enzyme/substrate ratios are unlikely to be a factor in these experiments since even in the very same experiment (e.g. with caspase 2; Fig. 3), a protease that displayed minimal activity against αII-spectrin often showed the greatest activity against βII-spectrin. Interestingly, αII-BDP120, βII-BDP110, and βIIBDP85, the spectrin fragments most prominent in apoptotic SY5Y cells (cf. Fig. 1), are characteristic of caspase 3 action (Fig. 3). Conversely, neither μ-calpain nor m-calpain, even when added to the SY5Y lysates, generated these fragments. Taken together, these data indicate that caspase 3 is the dominant protease mediating spectrin cleavage in staurosporine-induced apoptosis in neuroblastoma SY5Y cells.

Caspase 3 Cleaves Both αI- and βII-Spectrin at Multiple Consensus Recognition Sites—The sites of cleavage in both αII- and βII-spectrin have been identified (27). To identify the precise sites at which caspase 3 cleaves spectrin, purified bovine brain αII/βII-spectrin was digested in vitro, and the resulting digestion products were analyzed by Western blotting and N-terminal microsequencing. Caspase 3 generated multiple spectrin fragments ranging from ~165 to ~85 kDa on Coomassie Blue-stained gels (Fig. 4). Two of these products (αII-BDP150 and αII-BDP120) reacted with monoclonal antibody 1822, indicating their origin from the αII-subunit. Conversely, pAb 10D detected βII-fragments at ~110, ~100, ~85, and ~55 kDa. Only the Coomassie Blue-stained fragment at ~165 kDa was unaccounted for on the Western blots; presumably this represents a βII-spectrin N-terminal fragment that was not detected by pAb 10D. Collectively, the in vitro caspase 3 digestion products were almost identical to those observed in staurosporine-induced SY5Y cells (except for the αII-BDP145 generated by calpain).

N-terminal sequencing identified the origin of several major caspase 3-generated fragments. Due to the presence of multiple bands of very similar molecular mass, the identity of some fragments proved difficult to obtain. These results (in which at least six terminal residues could be determined with confidence) are summarized in Table I and in Fig. 8. The αII-BDP150 fragment mapped to the sequence DETD1185S1189KTASP in repeat 11 (with * representing the site of cleavage and the beginning point of the determined sequences). This site is just distal to the major calpain cleavage site (VY1178G1177MMP) and immediately proximal to the calmodulin-binding domain (residues 1187–1206) (27). It is also likely that the N-terminal half of αII-spectrin was present within the αII-BDP150 band, based on analogy with the cleavage of αII-spectrin by calpain (7, 36). However, given the blocked N terminus of αII-spectrin, this fragment did not appear in the microsequencing results. The αII-BDP120 fragment mapped to a second caspase 3 cleavage site (DSL1475S1478ELAKKHE) in repeat 14 of αII-spectrin. The fragment liberated from αII-BDP150 to yield αII-BDP120 appeared in αII-BDP35 (Table I). Both the βI-BDP110 and βII-BDP85 fragments shared a common N-terminal sequence, placing this site of cleavage in repeat 11 of βII-spectrin (DEVD1407S1409KRLTVQ). Reliable sequence information was not obtained from βII-BDP55 due to its low abundance. Additional studies were carried out on a series of recombinant GST-spectrin fusion polypeptides to validate the above assignments and to assess whether the quaternary structure of the spectrin heterodimer modifies its susceptibility to caspase 3 (as it does with calpain) (19). GST fusion proteins encompassing three overlapping segments of αII-spectrin (from repeat 9 through the C terminus) were digested with caspase 3 (Fig. 5). The GST-αII45–120 polypeptide was cleaved by caspase 3 into fragments of 75 and 20 kDa. Autolytic fragments of caspase 3 were also evident in these gels (Fig. 5A, arrows). The anti-GST antibodies reacted with the 75-kDa fragment, indicating its origin from the N-terminal half of the fusion peptide (Fig. 5B). End sequencing of the 20-kDa fragment yielded -SKTASFWK-SAR, identical to the cleavage site generating αII-BDP150 from caspase treatment of the intact heterotetramer (Table I). Similarly, digestion of GST-αII13–18 generated two fragments of ~50 and ~45 kDa (Fig. 5A). Antibodies against GST and αII-spectrin (monoclonal antibody 1622) reacted with the 45- and 50-kDa fragments, respectively, indicating that they represented the respective N- and C-terminal halves of the fusion polypeptide (Fig. 5, B and C). The N-terminal sequence of the 50-kDa fragment was -SVEALIKKH, identical to the αII-BDP120 cleavage site (Table I). Finally, the GST-αII18–C polypeptide resisted digestion with caspase 3.

Two GST fusion polypeptides representing regions of βII-spectrin were also subjected to caspase 3 digestion (Fig. 6). GST-βIII8–18 extended from repeat 8 through repeat 13, and GST-βIII13–C4 extended from repeat 13 to residue 2204 within the C-terminal domain III (32).
TABLE I

Major caspase 3-generated spectrin fragments

Fragment	N-terminal sequence	Predicted cleavage site	Assumed end	Calculated M₀
GST-II₈₋₁₈	(MDPSGVKVaLE)	(Start of αII-spectrin, assumed)	Asp₁₁₆₅	136,833
GST-II₁₈₋₃₅	(SKTAXPWSKAX)	DETD¹⁵₈₅S¹⁵₈₆TSASPWSKAS	Asp²₄⁷₇	148,278
GST-II₅₀	(SVEALIKKH)	DSDL¹⁴⁷₈S¹⁴⁷₉VEALIKKHED	Asp²₄⁷₇	144,602
GST-II₁₅₀	(SKTAXPWKSARK)	DETD¹₄₈₅S¹₄₈₆TSASPWSKAS	Asp⁴₄⁷₈	33,693
GST-II₇₅	(MLTMTVATD)	(Start of αII-spectrin, assumed)	Asp¹₂₄⁷	170,061
GST-II₉₀	(SKRTLVTQXKF)	DEVD¹⁴⁵₇S¹⁴⁵₈KRTLVTQTKFM	Lys³₀₀₄	104,614
GST-II₁₀₀	(SKRTLVTQXKF)	DEVD¹⁴⁵₇S¹⁴⁵₈KRTLVTQTKFM	Asp²₁₄⁶	80,404

* It is likely that a second cleavage product also is present in the αII-BDP150 band, representing αII-spectrin residues 1–1185; this product (αII-BDP150) cannot be detected by end sequencing since the N terminus of spectrin is methylated.

ND, not determined.

DISCUSSION

Beginning with the observation that αII-spectrin cleavage is tightly coupled to the process of apoptosis in lymphocytes (21), several studies have noted the generation of an ~150-kDa BDP of αII-spectrin (12, 22–25). This is perhaps not a surprising observation given the extreme sensitivity of αII-spectrin to a variety of proteases that cleave at or near the junction of repeat units 10–11 (27, 36). Other cleavages have also been occasion-ally noted, without definitive identification of their origin. The present report significantly extends these observations by establishing (i) that βIII-spectrin is cleaved as rapidly as αII-spectrin during staurosporine-induced apoptosis; (ii) that the primary protease acting on spectrin under these conditions is even in the absence of added caspase 3. Nevertheless, two cleavage products at ~77 and ~8 kDa were identified as caspase-specific (Fig. 6C). The intact fusion polypeptide and the 77-kDa fragment immunoreacted with anti-GST and 10D antibodies, and both shared an intact GST N-terminal sequence (Table I). The sequence of the 8-kDa fragment, which did not react with either antibody, resulted from cleavage at ETVD¹⁴⁵₇S¹⁴⁵₈KRTLVTQTKFM (Table I). The integrity of the spectrin-based cytoskeleton in apoptotic SY5Y cells was evaluated by indirect immunofluorescence using αII-spectrin-specific (pAb RFA-A) and βIII-spectrin-specific (pAb 10D) antibodies. Control cells demonstrated a subplasmalemma distribution of αII–βIII-spectrin, extending to the cell processes (Fig. 7, D and G), consonant with its localization in more than one cell. In 5 h of staurosporine treatment, significant αII- and βIII-spectrin breakdown occurred (Fig. 1), and αII-spectrin collapsed into localized cytosolic aggregates coincident with cell shrinkage and fragmentation of the cell processes (Fig. 7E). Cytosolic spectrin was also prominent in dissociated apoptotic bodies. The changes in βIII-spectrin paralleled those in αII-spectrin (Fig. 7H). These changes were blocked partially by Z-D-DCB cotreatment (Fig. 7, F and I).

Differential digestion of αII- and βIII-spectrin by human caspase 3

Fig. 5. Digestion of GST-αII-spectrin fusion proteins by caspase 3. GST fusion proteins αII₈₋₁₅₀, αII₁₃₋₁₈₀, and αII₁₈₋₃₅ (15 μg each) were either left untreated (lane 1) or digested with 0.8 μg of caspase 3 for 1 h at 25 °C (lane 2). The samples were analyzed by SDS-PAGE followed by staining with Coomassie Blue (A) or probed with antibodies against either GST (B) or αII-spectrin (C). The intact fusion proteins (*) and the apparent sizes (in kDa) of their major digestion fragments are shown. The positions of major autolytic fragments of caspase 3 are indicated by arrows. Results shown are representative of two experiments.
The positions of major autolytic fragments of caspase 3 are indicated by apparent sizes (in kDa) of their major digestion fragments are shown. Epitopes upstream of repeat 13. The intact fusion proteins (*) and the spectrin antibody (pAb 10D) since this antibody does not recognize reactivity of the b between D1478*S1479, a site positioned between helices A and B in the proteolytic cascade initiated by caspase are summarized in Fig. 5. The first cleavage in proteolytic cascade initiated by caspase 3. However, the heterodimeric unit of spectrin contains several other caspase substrates (e.g. SERBP-2, D4-GDI, and hunington) (39–41). It thus appears that the P4-P1 consensus for caspase 3 (38). The serine position is also found in three sites, as it is in several other caspase substrates (e.g. SERBP-2, D4-GDI, and huntingtin) (39–41). It thus appears that the P4-P1’ sequence DXXD*S is strongly preferred as an endogenous substrate for caspase 3. However, the heterodimeric unit of spectrin contains 36 DXXD sequence motifs, yet caspase 3 efficiently cleaves αII-spectrin at only two sites and βII-spectrin at three (or possibly four or five) sites (Fig. 8). The time course of these cleavages also suggests that there is a hierarchy in the proteolytic cascade, such that not all potential cleavage sites are simultaneously exposed. The result is that all possible combinations of BDPs do not appear (such as the lack of an αII-spectrin cleavage product representing residues 1–1478, calculated M_r of 170,530). The approximate steps in the spectrin breakdown in the apoptotic process. These findings place on a firm structural basis our understanding of caspase action on spectrin and, together with data on the distinct actions of calpain (19, 20, 27), suggest a key and perhaps mechanistic role for βII-spectrin breakdown in the apoptotic process.

The cleavage of spectrin by caspase 3 is interesting in several respects. Four of five cleavage sequences found in native αII- and βII-spectrins (DETD*S, DSLD*S, DEVD*S, and DSID*D) fit the preferred P4–P1 consensus for caspase 3 (38). The serine residue in the P1’ position is also found in three sites, as it is in several other caspase substrates (e.g. SERBP-2, D4-GDI, and huntingtin) (39–41). It thus appears that the P4–P1’ sequence DXXD*S is strongly preferred as an endogenous substrate for caspase 3. However, the heterodimeric unit of spectrin contains 36 DXXD sequence motifs, yet caspase 3 efficiently cleaves αII-spectrin at only two sites and βII-spectrin at three (or possibly four or five) sites (Fig. 8). The time course of these cleavages also suggests that there is a hierarchy in the proteolytic cascade, such that not all potential cleavage sites are simultaneously exposed. The result is that all possible combinations of BDPs do not appear (such as the lack of an αII-spectrin cleavage product representing residues 1–1478, calculated M_r of 170,530). The approximate steps in the spectrin proteolytic cascade initiated by caspase are summarized in Fig. 8. The first cleavage in αII-spectrin occurs between Asp1185 and Ser1186. This site is just nine residues C-terminal to the initial site of cleavage by calpain and still proximal to the calmodulin-binding domain (27). This cleavage divides αII-spectrin approximately in half. Subsequently, caspase cuts αII-spectrin between D1478S1479, a site positioned between helices A and B in structural repeat unit 14, generating the immunoreactive C-terminal fragment αII-BDP120 (12). This cleavage also appears to liberate the αII-BDP35 fragment from αII-BDP150. No other caspase-induced cleavages in αII-spectrin were detected.

The proteolytic cascade of βII-spectrin is more complex. Unlike the case for calpain (19), caspase 3 cleavage of βII-spectrin proceeds rapidly and in parallel with its action on αII-spectrin. The initial cleavage at is DEVD1457S1458 generating βII-BDP110. This site is adjacent to the prominent calpain cleavage site in βII-spectrin. Although inaccessible to sequencing and lacking immunoreactivity to pAb 10D, this cleavage also appears to liberate an intact ~165-kDa amino-terminal fragment (βII-BDP165, presumably residues 1–1457, calculated M_r of 170,061). This fragment is visible by Coomassie Blue staining (Fig. 4). The D1457S1458 site appears to be an especially favorable one for cleavage, and indeed, the cognate DEVD sequence is recognized by some calpains (19, 20, 27), albeit more slowly. βII-BDP85 arises by a second C-terminal cleavage, probably at ETVD2146T (based on the cleavage pattern of the βII$^{13–13}$ fusion peptide) (Table I). The conservative substitution of Glu for Asp at the P4 position may account for the lower sensitivity of this site to caspase 3. Curiously, caspase 7 reportedly accepts a P4 Asp more readily than does caspase 3 (43), yet less βII-BDP85 (versus αII-BDP110) is generated by caspase 7 (Fig. 3), possibly highlighting the influence of complex conformational determinants in ultimately determining substrate specificity (44). Other βII-spectrin cleavage sites were also identified (Table I), and additional βII-spectrin cleavages may exist. However, our ability to detect such cleavages is

Fig. 6. Digestion of GST-βII-spectrin fusion proteins by caspase 3. GST fusion proteins βII$^{1–13}$ and βII$^{1–13}$-CoA (15 µg each) were either left untreated (lane I) or digested with 0.8 µg of caspase 3 for 1 h at 25 °C (lane 2). The samples were analyzed by SDS-PAGE followed by staining with Coomassie Blue (A) or probed with antibody against either GST (B) or βII-spectrin (C). As expected, there was no immunoreactivity of the βII$^{1–13}$ peptide or its fragments with the anti-βII-spectrin antibody (pAb 10D) since this antibody does not recognize epitopes upstream of repeat 13. The intact fusion proteins (*) and the apparent sizes (in kDa) of their major digestion fragments are shown. The positions of major autolytic fragments of caspase 3 are indicated by arrows. Results shown are representative of two experiments.

Fig. 7. Immunofluorescence of αII- and βII-spectrins in apoptotic SH-SY5Y cells. SH-SY5Y cells were either untreated (A, D, and G) or challenged with 0.5 µm staurosporine for 5 h in the absence (B, E, and H) or presence (C, F, and I) of 100 µM Z-D-DCB. The cells were then fixed and examined by phase microscopy (A–C) or subjected to immunofluorescence analysis with antibodies to αII-spectrin (pAb RAFT-A; D–F) and βII-spectrin (pAb 10D; G–I). Note the uniform labeling of the cortical spectrin network in untreated cells and the collapse of the αII/βII-spectrin-based cytoskeleton into condensed foci in cells undergoing apoptosis (arrows). These changes are largely blocked by caspase inhibitor. Results shown are representative of four experiments. Scale bar = 10 µm.
A central challenge in apoptosis research is understanding the mechanisms by which apoptotic cascades are initiated and effected. The results presented here offer potentially important insights into this process. Caspase inhibitors block not only the proteolytic actions of the enzyme, but also the cell death process itself (10, 11, 45). The action of caspase must therefore be linked directly or indirectly to the phenotypic manifestation of apoptosis. Given the fundamental role of the cortical spectrin skeleton in maintaining membrane organization and integrity, we propose that the cleavage of spectrin, and particularly βII-spectrin, constitutes a critical, necessary, and sufficient step linking caspase activation to cell death. Several observations support this notion. (i) Only upon cleavage of βII-spectrin (versus αII-spectrin) are oligomeric spectrin-actin complexes disso-

Figure 8. Caspase digestion cascade for αII- and βII-spectrins. Depicted are the caspase 3 cleavages in αII-spectrin (A) and βII-spectrin (B) and their relative sequence of appearance based on the kinetics of digestion in SY5Y cells (see Fig. 1). Also depicted is the position of the cleavage fragments in relation to the tripartite domain structure of each spectrin subunit and the ~106-residue repeat structure characteristic of domain II (26). For definitively identified cleavages, the sequence flanking the cleavage site is given. Fragments without sequence verification but confirmed on the basis of their immunoreactivity are marked only by their apparent size in kDa. Other cleavages expected, but not identified, are marked with a question mark. Note that caspase cleavage site DETD*SK in αII-spectrin is located just proximal to the calmodulin (CaM)-binding domain in repeat 11. The PEST sequence (solid box) is located in repeat 12. The second caspase cleavage site in αII-spectrin is located in repeat 14 (DSLD*SV). For βII-spectrin, the favored caspase cleavage is at DEVD*SK within repeat 11. This cleavage liberates an ~165-kDa fragment from the N-terminal portion of the molecule; further characterization of this fragment or subsequent cleavages has been hampered by the lack of immunoreactivity of pAb 10D with this portion of βII-spectrin. The second caspase cleavage site in βII-spectrin (ETVD*TS) is in the C-terminal region (hatched box). A minor cleavage (DSID*DR) was also identified in repeat 9 (dashed lines), based on studies with the GST fusion proteins. Also shown is a schematic illustration of the probable relationship of the major digestion sites in the αII-spectrin heterodimer (C). The structural depiction of the spectrin dimer and the alignment of the two subunits with respect to each other are adapted from Speicher et al. (14). Mab, monoclonal antibody.
cated in vitro (20). (ii) Protease cleavage of βII-spectrin leads to loss of its ankyrin-independent membrane binding activity (46). (iii) βII-Spectrin harbors almost all recognized functional domains in the molecule (26). (iv) Mutations or modifications that disrupt the spectrin membrane skeleton universally lead to membrane disorder and disruption (26). (v) Gene knockouts of αII- or βII-spectrin are uniformly lethal (47, 48). (vi) The spectrin-actin skeleton links to several classes of intercellular adhesion molecules and may be required for their cell-cell adhesive activity (47, 49–52). (vii) Proteolytic cleavage of αII-spectrin alone, such as by calpain under conditions of physiologic stimulation, does not lead to cell death (15). Thus, one can envision a process whereby limited cleavage of αII-spectrin alone, such as by calpain after N-methyl-D-aspartic acid receptor stimulation, is a physiologic process associated with skeletal plasticity, but is not per se lethal to cells. However, under pathologic conditions, either excessive stimulation of calpain (19) or the activation of caspase degrades βII-spectrin, with consequent and rapid lethality. It is also worth noting that this hypothesis predicts that cells activated by limited proteolysis of αII-spectrin, such as by calpain, may be more susceptible to subsequent βII-spectrin degradation (and therefore apoptosis). This putative two-step process (αII-spectrin followed conditionally by βII-spectrin cleavage) would not be expected in cells directly triggered to apoptosis (e.g. Jurkat T-cells challenged with anti-Fas antibody), under which conditions caspase is activated exclusively (23, 24). Conversely, when apoptosis only conditionally follows other processes, such as in neuronal remodeling or tumor necrosis factor α-mediated T-cell apoptosis, calpain may begin the process, to be followed conditionally by caspase (or sustained calpain activity) (22, 24).

Acknowledgments—We are in debt to John Gilmore, Bradley Caprathe, and Dr. Sheryl Hays (Department of Chemistry, Parke-Davis Pharmaceutical Research) for synthesizing Z-D-DCB and to Dr. Hamish Allen (BASF Bioresearch Corp.) for helpful discussion. We thank Drs. Depeet Pradun and Carol Gianfi and Paul Stabach for assistance with the recombinant spectrin constructs and protein purification.

REFERENCES

1. Almener, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W., and Yuan, J. (1996) Cell 78, 739–750
2. Wang, L., Miura, M., Bergeron, L., Zhu, H., and Yuan, J. (1994) Cell 78, 719–731
3. Fraser, A., and Evan, G. (1996) Cell 85, 781–784
4. Vaux, D. L., and Strasser, A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 2239–2244
5. Nicholos, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Grönich, P. B., Labelle, M., Lasekina, Y. A., Monday, N. A., Raju, S. M., Smulson, M. E., Yamim, T.-Y., Vu, V. L., and Miller, D. K. (1995) Nature 376, 37–43
6. Kuida, K., Zheng, T. S., Na, S., Kuan, C., Yang, D., Karasuyama, H., Rakic, P., and Flavell, R. A. (1996) Nature 376, 368–372
7. Glantz, S. B., and Morrow, J. S. (1996) in Tissue Oxygen Deprivation: Developmental, Molecular and Integrated Function (Haddad, G. G., and Lister, H. B., eds) Vol. 95, pp. 153–192, Marcel Dekker, Inc., New York
8. Murachi, T. (1989) Biochem. Biophys. Res. Commun. 168, 1239–1243
9. Squier, M. K., Miller, A. C., Malkinson, A. M., and Cohen, J. J. (1994) J. Neurosci. 14, 5127–5134
10. Sarin, A., Adams, D. H., and Henkart, P. A. (1993) J. Exp. Med. 178, 1693–1700
11. Sarin, A., Clerici, M., Blatt, S. P., Henderson, C. W., Shearer, G. M., and Henkart, P. A. (1994) J. Immunol. 153, 862–872
12. Nath, R., Raser, K. J., Stafford, D., Hajimoto, A., Posner, A., Allen, H., Talianian, R. V., Yuen, P., Gilbertsen, R. B., and Wang, K. K. W. (1996) Biochem. J. 319, 683–690
13. del Cerro, S., Araki, A., Kessler, M., Bahr, B. A., Vanderklish, P., Rivera, S., and Lynch, G. (1994) Neuronci. Lett. 167, 149–152
14. Speicher, D., DeSilva, T. M., Speicher, K. D., Ursitti, J. A., Hembach, P., and Weglarz, L. (1993) J. Biol. Chem. 268, 4227–4235
15. Di Stasi, A. M., Gallo, V., Cecchinari, M., and Petruzzi, T. C. (1991) J. Biol. Chem. 266, 1545–1549
16. Lynch, G., Kessler, M., Araki, A., and Larson, J. (1990) Proc. Brain Res. 83, 233–250
17. Lynch, G., and Boutaud, B. (1987) Brain Res. Bull. 18, 809–815
18. Armstrong, R. C., Aja, T., Xiang, J., Gaur, S., Krebs, J. F., Hoang, K., Bai, X., Korzeme, S. J., Karamansky, D. S., Fritz, L. C., and Tomasselli, K. J. (1996) J. Cell Biol. 133, 8813–8817
19. Rimm, D. L., Koslov, E. R., Kebriaei, P., Gianfi, C. D., and Morro, J. S. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8813–8817
20. Devarajan, P., and Morro, J. S. (1996) in Membrane Protein-Celluloskeleton Complexes: Protein Interactions, Distributions and Functions (Wilson, W. J., ed) Vol. 43, pp. 97–128, Academic Press, New York
21. Hu, R.-J., Watanabe, M., and Bennett, V. (1992) J. Biol. Chem. 267, 18715–18722

Spectrin Subunit Fragmentation by Human Caspase 3

22497