Search for Anomalous Production of Multi-lepton Events in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

A. Abulencia, J. Adelman, T. Affolder, T. Akimoto, M.G. Albrow, D. Ambrose, S. Amerio, D. Amidei, A. Anastassov, K. Anikeev, A. Annovi, J. Antos, M. Aoki, G. Apollinari, J.-F. Arguin, T. Arisawa, A. Artikov, W. Ashmanal, A. Attal, F. Azfar, P. Azizi-Bacchetta, P. Azzurri, N. Bacchetta, W. Badgett, A. Barbaro-Galtieri, V.E. Barnes, B.A. Barnett, S. Baroiant, V. Bartsch, G. Bauer, B. Bedeschi, S. Behari, S. Belforte, M. Bellitti, J. Bellinger, A. Belloni, D. Benjamin, A. Beretvas, J. Beringer, T. Berry, A. Bhatti, M. Blinkley, D. Bisello, R.E. Blair, C. Blocker, B. Blumenfeld, A. Bocci, A. Bodek, V. Boisvert, G. Bolla, A. Bolshov, D. Bortoletto, J. Boudreau, A. Boveia, B. Braun, L. Brigliadori, C. Bromberg, E. Bruksher, J. Budagov, H.S. Budd, S. Budd, S. Budroni, K. Burkett, G. Busetto, P. Bussey, K.L. Byrum, S. Cabrera, M. Campanelli, M. Campbell, F. Canepa, S. Carillo, D. Carlsmith, R. Carosi, G. Casarsa, A. Castro, P. Castaniti, D. Cauz, M. Cavalli-Sforza, A. Cerri, L. Cerrito, S.H. Chang, Y.C. Chen, M. Chertok, G. Chiarelli, F. Chlebana, I. Cho, K. Cho, D. Chokheli, J.P. Chou, G. Choudalakis, S.H. Chuang, K. Chung, W.H. Chung, Y.S. Chung, M. Ciljak, C.I. Ciobanu, M.A. Ciocchi, A. Clark, D. Clark, M. Coca, G. Compostella, M.E. Convery, J. Conway, B. Cooper, K. Copic, M. Cordelli, G. Cortiana, F. Crescioli, C. Cuesta Almenar, J. Cuevas, R. Culbertson, J.C. Cuilly, D. Cyt, S. DaRonco, F. Datta, S. D’Auria, T. Davison, D. Dagenhart, P. De Barba, S. De Cecco, A. Deisher, G. De Lentdecker, M. Dell’Orso, F. Delli Paoli, L. Demortier, J. Deng, M. Deninno, D. De Pedis, P.F. Derwent, G.P. Dittman, B. Di Ruzza, J.R. Dittmann, P. DiTuro, C. Dörre, S. Donati, M. Donega, P. Dong, J. Donini, T. Dorigo, S. Dube, J. Efron, R. Erbacher, D. Errede, R. Eserbe, R. Eusebi, H.C. Fang, S. Farrington, I. Fedorko, W.T. Fedorko, R.G. Feld, M. Feindt, J.P. Fernandez, R. Field, G. Flanagan, A. Folan, S. Forrester, G.W. Foster, M. Franklin, J.C. Freeman, I. Furic, M. Gallinaro, J. Gaylard, J.E. Garcia, F. Garberson, A.F. Garfinkel, C. Gay, H. Gerberich, D. Gerdes, S. Giagu, P. Giannetti, A. Gibson, K. Gibson, J.G. Gimmel, C. Ginsburg, N. Giokaris, M. Giordani, P. Giromini, M. Giunta, G. Giorgiu, V. Glagolev, D. Glenzinski, M. Gold, N. Goldsmith, J. Goldstein, A. Golossanov, G. Gomez, G. Gomez-Ceballos, M. Goncharov, O. Gonzalez, I. Gorelov, A.T. Goshaw, K. Goulianos, A. Gresele, M. Griffiths, S. Grimmel, C. Gross-Picher, R.C. Group, U. Grundler, J. Guimaraes da Costa, Z. Gunay-Unalan, C. Haber, K. Hahn, S.R. Hahn, E. Halkiadakis, A. Hamilton, B.-Y. Han, J.Y. Han, R. Handler, F. Happacher, K. Hara, M. Hare, S. Harper, R.F. Harr, R.M. Harris, M. Hartz, K. Hatakeyama, J. Hauser, A. Heijboer, G. Heinemann, J. Heinrich, C. Henderson, M. Herndon, J. Heusser, D. Hidas, C.S. Hill, D. Hirschbuehl, A. Hocker, A. Holloway, S. Hou, M. Houlden, S.C. Hsu, B.T. Huffman, R.E. Hughes, U. Husemann, J. Huston, M. Incandela, G. Introzi, M. Iori, Y. Ishizawa, B. Ivanov, B. Iyyum, E. James, D. Jang, B. Jayatilaka, D. Jeans, H. Jensen, E.J. Jeon, S. Jindariani, M. Jones, K.K. Joo, S.Y. Jun, J.E. Jung, T.R. Junk, T. Kamon, P.E. Karchin, Y. Kato, Y. Kemp, R. Kephart, U. Kerzel, V. Khitlovich, B. Kilminster, D.H. Kim, H.S. Kim, J.E. Kim, S.M. Kim, S.B. Kim, S.H. Kim, Y.K. Kim, N. Kimura, L. Kirsch, S. Klimenko, B. Klute, B. Knuteson, B.R. Ko, K. Kondo, D.J. Kong, J. Konigsberg, A. Korty, A.V. Kotwal, A. Kovalov, A.C. Kraan, J. Kraus, I. Krawchenko, M. Kreps, J. Kroll, N. Krumsack, M. Kruse, V. Krutelyov, T. Kubo, S.E. Kuhlmann, T. Kuhn, Y. Kusakabe, W. Kwang, A.T. Laasanen, S. Lai, S. Lami, S.L. Lammel, M. Lancaster, M.L. Landy, K. Lannon, A. Lath, G. Latino, I. Lazzizzera, T. LeCompte, J. Lee, J. Lee, J.Y. Lee, S.W. Lee, R. Lefèvre, N. Leonardi, S. Leone, J.D. Lewis, C. Lin, C.S. Lin, M. Lindgren, L. Lipeles, A. Lister, D.O. Litvintsev, T. Liu, N.S. Lockyer, A. Logino, M. Loreti, P. Loverre, R.-S. Lu, D. Lucchesi, P. Lujan, P. Lukens, G. Lungu, L. Lyons, J. Lys, R. Lysak, E. Lytken, G.P. Mack, D. MacQueen, M. Madrak, K. Maeshima, K. Makihal, T. Maki, P. Maksimovic, S. Malde, G. Manca, F. Margaroli, R. Marginean, C. Marino, C.P. Marino, A. Martin, M. Martin, V. Martini, M. Martinez, T. Maruyama, P. Mastrandro, T. Masubuchi, M.E. Mattsson, R. Mazini, P. Mazzanti, K.S. McFarland, P. McIntyre, R. McNulty, A. Mehta, P. Mehtala, S. Menenço, P. Merkel, C. Mesropian, A. Messina, T. Miao, N. Miladinovic, J. Miles, R. Miller, C. Mills, M. Milnik, A. Mitra, G. Mitselmakher, A. Miyamoto, S. Moed, N. Moggi, B. Mohr, R. Moore,
We report a search for the anomalous production of events with multiple charged leptons in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV using a data sample corresponding to an integrated luminosity of 346 pb$^{-1}$ collected by the CDF II detector at the Fermilab Tevatron. The search is divided into three-lepton and four-or-more-lepton data samples. We observe six events in the three-lepton sample and zero events in the ≥ 4-lepton sample. Both numbers of events are consistent with standard model background expectations. Within the framework of an R-parity violating supergravity model, the results are interpreted as mass limits on the lightest neutralino ($\tilde{\chi}^0_1$) and chargino ($\tilde{\chi}^{\pm}_1$) particles. For one particular choice of model parameters, the limits are $M(\tilde{\chi}^0_1) > 110$ GeV/c2 and $M(\tilde{\chi}^{\pm}_1) > 203$ GeV/c2 at 95% confidence level; the variation of these mass limits with model parameters is presented.

PACS numbers: 13.85.Qk 12.60.Jv 13.85.Rm 14.80.Ly 13.85-t
Numerous attempts to resolve theoretical problems with the standard model of elementary particle physics (SM) require the existence of new particles with masses at the electroweak scale, \(\sim 100 \text{ GeV}/c^2 \). At the Tevatron and LHC hadron colliders, the production cross sections for these particles are predicted to be orders of magnitude smaller than for SM processes. Analysis methods for reducing background levels while preserving new physics signals include searching for leptons (\(\ell \)) with large momentum transverse to the beam axis (\(p_T \)), like-sign leptons, or signatures with transverse energy imbalance (\(E_T \)). Requiring several leptons effectively reduces the SM backgrounds while maintaining sensitivity to low \(E_T \) regions. In this Letter, we present a search for an excess of events containing three or more leptons above the SM prediction. We use a data sample with an integrated luminosity of 346 pb\(^{-1}\) of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \text{ TeV} \) collected by the CDF II detector from March 2002 to August 2004.

Several new physics models predict final states with four or more leptons that can be produced in \(p\bar{p} \) collisions, including R-parity violating supersymmetry (\(R_p \) SUSY) \(^6 \), non-minimal supersymmetric models (nMSSM) \(^7 \), and production of doubly-charged Higgs pairs \(^8 \). In \(R_p \) SUSY, the lightest supersymmetric particle (LSP) may decay directly into two leptons and a neutrino. With a pair of LSPs in each event, there could be at least four leptons plus \(E_T \). Another possibility is the nMSSM, which includes an expanded Higgs sector and their supersymmetric partners. “Cascade” decays of these particles may result in multiple leptons, jets, and less \(E_T \) than in other SUSY models. Alternatively, doubly-charged Higgs (\(H^{\pm \pm} \)) may be produced in pairs in left-right symmetric models \(^9 \). Under certain conditions, the \(H^{\pm \pm} \) primarily decays into two leptons, producing a final state of four leptons without \(E_T \) or jets. In order to be sensitive to multiple new physics models, no \(E_T \) or jet cuts are applied. The results of this search are interpreted using an \(R_p \) SUSY model within an mSUGRA framework only. A brief introduction to mSUGRA and \(R_p \) SUSY phenomenology is included below.

In the minimal supersymmetric model \(^4 \), there are two Higgs doublets, as well as supersymmetric partners for every SM particle that differ by 1/2 unit of spin. The superpartners of the electroweak gauge bosons and Higgs bosons mix to produce four neutral mass states (\(\chi_1^0 \)) and four charged states (\(\chi_{1,2}^\pm \)). The supergravity framework (mSUGRA) \(^3 \) has five free parameters: the universal gaugino mass (\(M_{1/2} \)), the universal scalar mass (\(M_0 \)), the ratio of the Higgs vacuum expectation values (\(\tan\beta \)), the trilinear coupling (\(A_0 \)), and the sign of the higgsino mass parameter (\(\mu \)).

R-parity \((R_p) \) is a quantum number defined such that all SM particles have value +1 and all superpartners have value −1. Many searches assume that \(R_p \) is conserved so that the LSP is stable, although there are viable SUSY models with \(R_p \) violation. One scenario includes a single \(R_p \) term in the renormalizable superpotential, \(\lambda_{ijk} L_i L_j E_k \), where \(\lambda_{ijk} \) are lepton number violating coupling strengths; \(i, j, \) and \(k \) are family indices ranging from 1-3; \(L_i \) is the left-handed lepton doublet superfield; and \(E_k \) is the right-handed charged lepton singlet superfield. In this scenario, superpartners are produced in pairs at hadron colliders. Muon decay measurements \(^6 \) constrain \(\lambda_{12k} \lesssim 0.14 \) so that heavier superpartners will cascade decay into the LSP with nearly 100% branching ratio, producing at least two LSPs per event. The LSP, which is the \(\chi_1^0 \) in mSUGRA for the values of \(M_{1/2} \) pertinent to this study, will then decay into two leptons plus a neutrino, as shown in Fig. 1 resulting in a final state of four or more leptons. The detector acceptance limits our sensitivity to \(\lambda_{12k} \gtrsim 3 \cdot 10^{-3} \), since a smaller value will result in the LSP decaying far from the interaction region \(^10 \). At least two of the four leptons will be electrons (muons) for LSP decays governed by the \(\lambda_{121} (\lambda_{122}) \) coupling. Final states with taus are not used since they are less efficiently identified. Recently, lower mass limits have been set by the DØ Collaboration on the \(\chi_1^0 \) ranging from 115-119 GeV/c\(^2\) and on the \(\chi_1^\pm \) from 229-234 GeV/c\(^2\) in this type of \(R_p \) SUSY model, by searching for three leptons plus \(E_T \) \(^11 \). Previously, the limits from LEP were \(\sim 53 \text{ GeV}/c^2 \) on the \(\chi_1^0 \) and 103 GeV/c\(^2\) on the \(\chi_1^\pm \) \(^12 \).

The components of the CDF II detector relevant to this analysis are briefly described here; a more complete description can be found elsewhere \(^{13} \). The \(p_T \) and \(\eta \) \(^{14} \) of charged particles are measured by a silicon strip detector \(^{15} \) and a 96-layer drift chamber (COT) \(^{16} \) inside a 1.4 T solenoidal magnetic field. The COT provides coverage with high efficiency for \(|\eta| < 1 \). For \(1 < |\eta| < 2 \), the silicon detector is mainly used. Electromagnetic (EM) and hadronic calorimeters surround the tracking system. They are segmented in a projective tower geometry and...
measure energies of charged and neutral particles in the central ($|\eta| < 1$) and end-plug ($1.1 < |\eta| < 3.6$) regions. Each calorimeter has an EM shower profile detector positioned at the shower maximum. Four layers of planar drift chambers located outside the central hadron calorimeters and another set behind a 60 cm thick steel absorber detect muons with $|\eta| < 0.6$. Additional drift chambers and scintillation counters detect muons in the region $0.6 < |\eta| < 1.0$. Gas Cherenkov counters measure the average number of inelastic $p\bar{p}$ collisions per bunch crossing and thereby determine the luminosity.

Electron identification criteria include a reconstructed track associated with a cluster of energy in the EM calorimeter for $|\eta| < 2.0$. “Tight” central electrons and end-plug electrons are required to have high track quality, calorimeter cluster E_T that is consistent with the track p_T, a high fraction (usually 95%) of the total calorimeter energy deposition in the EM section, and an EM lateral shower profile consistent with test beam measurements. A “loose” central electron sample is also collected by removing the shower profile requirements. Muons are identified for $|\eta| < 1$ by a charged track consistent with being minimum ionizing in the calorimeters matched to a reconstructed track segment (“stub”) in one of the muon drift chambers. Stubless muons are also accepted for $|\eta| < 1$ if all other criteria are satisfied except for the stub requirement and the track does not point to any of the muon drift chambers. All tracks associated with electrons or muons must be consistent with being produced at the $p\bar{p}$ collision point. Leptons are required to be separated from each other by $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.4$ and to have $|z| < 60 \text{ cm}$ at the point of closest approach to the primary vertex. Leptons are required to be isolated such that E_T^{iso} divided by the E_T of the electron or p_T of the muon is less than 0.1, where E_T^{iso} is the transverse energy within a cone of $\Delta R < 0.4$ that is unassociated with the lepton.

The data were collected with lepton triggers requiring at least one central electron (muon) candidate with $E_T > 18 \text{ GeV}$ ($p_T > 18 \text{ GeV}/c$). We select events with two or more leptons that have $E_T (p_T) > 20, 8$, and $5 \text{ GeV (GeV}/c)$ for the first, second, and additional leptons, respectively. At least one identified lepton must pass the trigger requirements. From this sample, trilepton and ≥ 4-lepton events that pass additional cuts (described below) are used as signal candidates, while dilepton events are used to validate the background prediction. Several SM processes result in final states with three or more isolated leptons. The dominant contributions include dileptons from the Drell-Yan $Z/\gamma^* \to l^+l^-$ process (DY) with additional leptons from photon conversions or misidentified jets, and secondary contributions from diboson (WZ, ZZ) production. Except for those due to misidentified jets, the backgrounds are estimated using Monte Carlo (MC) simulation. The simulated detector acceptances are not a 100% accurate representation of the data and therefore are corrected by $\epsilon_{\text{data}}/\epsilon_{\text{MC}}$, where ϵ_{data} (ϵ_{MC}) is the efficiency for lepton reconstruction, lepton identification, and photon conversion removal requirements measured in data (MC). This correction varies from 0.6-1.0 per event, depending on the number and types of identified leptons. Lepton reconstruction and identification efficiencies are measured from DY and J/ψ dilepton events in data and MC simulation. Trigger efficiencies are determined from $W \to e\nu$ events for electrons and from $Z \to \mu\mu$ events for muons. The probability for a jet to be mis-identified as a lepton is determined as a function of E_T for electrons and p_T for muons from jet data samples, by counting the numbers of jets that remain after applying the lepton identification requirements. A similar procedure is described in more detail in [18].

Samples of R_μ SUSY simulated events are generated using PYTHIA [19] within the mSUGRA framework with input of the supersymmetric couplings and particle masses from ISAJET [20]. For each point in the SUSY parameter space, the next-to-leading-order cross section is calculated with PROSPINO2 [21]. In all cases $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ and $\tilde{\nu}^0 \tilde{\nu}^0$ production dominate and are the only processes generated. The $\tilde{\chi}_1^0$ mass, which is roughly proportional to $M_{1/2}$, has the largest impact on the signal acceptance. The $\tilde{\chi}_1^0$ mass is also affected by the sign(μ), but has little dependence on M_0, $\tan\beta$, and A_0. Therefore, three of the five mSUGRA parameters are held constant: $M_0 = 250 \text{ GeV}/c^2$, $\tan\beta = 5$, and $A_0 = 0$; while sign(μ) and $M_{1/2}$ are allowed to vary. Since the $\tilde{\chi}_1^0$ mass decreases with larger values of M_0 and $\tan\beta$, the chosen values are expected to produce conservative results.

To reduce SM background contamination, an event is removed if any of the following conditions are met for opposite-sign, same-flavor lepton pairs: invariant mass between 76-106 GeV/c^2 (“Z veto”), invariant mass below 15 GeV/c^2, or $160^\circ < \Delta \phi < 200^\circ$. Identified cosmic ray events are removed. Electrons are removed if there is a partner track identified as coming from a photon conversion. An event is also rejected if the invariant mass of the two highest transverse energy leptons is below 20 GeV/c^2 to reduce heavy flavor and radiative photon conversion backgrounds. In order to improve signal-to-background in the 3-lepton data sample only, we require that one of the two leading leptons be an electron when evaluating the λ_{121} scenario, and a muon for the λ_{122} scenario. This definition leads to a 22% overlap for the background and $\sim 15\%$ overlap for the signal (depending on model parameters) between the trilepton event samples. After all selection criteria, the signal acceptances are $\sim 11\%$ and $\sim 4\%$ for the trilepton and ≥ 4-lepton data samples, respectively.

Uncertainties are determined separately for SM background and R_μ SUSY expectations, in each data sample. The sources of systematic uncertainty on the trilepton background prediction include jets misidentified as leptons (12-13%), lepton identification efficiency (5-6%), luminosity measurement (6%), choice of parton distribution functions (2%), cross section (5-6%), photon con-
version identification (3%), and initial state radiation (4%). For events with ≥4-leptons, the uncertainty on the background is dominated by jets misidentified as leptons (41%) and \(Z/\gamma^* + \gamma\) MC statistics (38%). The total systematic uncertainty on the signal acceptance ranges from 12-15%, based on the number and types of leptons, where the largest contribution is due to the uncertainty on the low-\(p_T\) (< 20 GeV/c) lepton identification efficiency.

The background prediction is validated through the use of control regions in which one or more of the event selection criteria are inverted. For each control region, the SM prediction is compared to the data, as shown in Table I. In the ee and \(\mu\mu\) dilepton control regions, the background is dominated by DY. In the case of \(e\mu\) control regions, the largest background is \(Z/\gamma^* \rightarrow \tau\tau\); however, there are also significant contributions from WW, \(t\bar{t}\), and jets misidentified as leptons. For trilepton control regions, the largest backgrounds originate from DY events where the third lepton is due to either a photon conversion or a misidentified jet. The agreement between predicted and observed events in the control regions indicates that the backgrounds are validated, and we proceed to examine the signal data samples.

In the trilepton data samples, a total of 6 events are observed: 5 events with an expected background of 3.1 ± 0.7 (stat.) ± 0.4 (syst.) events for the \(\lambda_{121}\) scenario, and one event with an expected background of 1.9 ± 1.0 (stat.) ± 0.3 (syst.) events for the \(\lambda_{122}\) scenario. The \(E_T\) distribution of the observed events are consistent with the background prediction, as shown in Fig. 2. No events are observed in the ≥4-lepton data sample, with an expected background of 0.008 ± 0.003 (stat.) ± 0.003 (syst.) events. We interpret the results as being consistent with the hypothesis of no signal and therefore set mass limits on the \(\tilde{\chi}^0_1\) and \(\tilde{\chi}^\pm_1\) particles. The cross section limits are calculated by combining the 3-lepton and ≥4-lepton signal samples using a multi-channel Bayesian method similar to [22], shown for one \(R_p\) SUSY scenario in Fig. 3. The limit calculation takes into account correlations between the 3-lepton and ≥4-lepton samples. The resulting mass limits, at 95% confidence level (C.L.), are presented in Table II.

In conclusion, we have performed a search for anomalous production of events with three or more leptons us-

![Figure 2](image-url)
depending on the choice of model parameters. These results significantly improve upon the LEP limits [12] and are comparable to the DØ limits [11]. While no evidence for new physics was found, the ≥4-lepton data sample is virtually background free and provides an excellent technique for detecting new physics with more luminosity in the future.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; in part by the European Community’s Human Potential Programme under contract HPRN-CT-2002-00292; and the Academy of Finland.

[1] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).
[2] R. D. Peccei and H.R. Quinn, Phys. Rev. Lett. 38, 1410 (1977); S. Weinberg, ibid. 40, 223 (1978).
[3] H. P. Nilles, Phys. Rep. 110, 1 (1984).
[4] H. E. Haber and G. I. Kane, Phys. Rep. 117, 75 (1985).
[5] In this paper, the word “lepton” refers to electrons and muons.
[6] R. Barbier et al., Phys. Rep. 420, 1 (2005).
[7] V. Barger, P. Langacker, and H.-S. Lee, hep-ph/0508027.
[8] M. Mühleitner and M. Spira, Phys. Rev. D 68, 117701 (2003).
[9] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 11, 566 (1975); 12, 1502, (1975); 23, 165, (1981).
[10] A. Attal, FERMILAB-THESIS-2006-25 (2006).
[11] V. M. Abazov et al. (DØ Collaboration), Phys. Lett. B 638, 441 (2006).
[12] A. Heister et al. (ALEPH Collaboration), Eur. Phys. J. C 31, 1 (2003); P. Achard et al. (L3 Collaboration), Phys. Lett. B 524, 65 (2002); R. Barbier et al. (DELPHI Collaboration) DELPHI 2002-036 CONF 570 (2002); OPAL Collaboration, OPAL Physics Note PN470 (2001).
[13] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 32001 (2005).
[14] In the CDF geometry, θ is the polar angle with respect to the proton beam axis (positive z direction), and φ is the azimuthal angle. The pseudorapidity is η = −ln[tan(θ/2)]. The transverse energy, E_T, of a shower or calorimeter tower is E sin θ, where E is the energy deposited. The missing transverse energy is defined by E_T = |∑ E_T n_i|, where n_i is the transverse component of the unit vector pointing from the interaction point to calorimeter tower i.
[15] A. Sill et al., Nucl. Instrum. Methods A 447, 1 (2000).
[16] T. Affolder et al., Nucl. Instrum. Methods A 526, 249 (2004).
[17] D. Acosta et al., Nucl. Instrum. Methods A 461, 540 (2001).
[18] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 091105 (2005).
[19] T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001). Version 6.216.
[20] H. Baer et al., hep-ph/0312045. Version 7.51.
[21] W. Beenakker et al., Phys. Rev. Lett. 83, 3780 (1999).
[22] J. Heinrich et al., physics/0409129 (2004).