High Circulating Leptin Receptors with Normal Leptin Sensitivity in Liver-Specific Insulin Receptor Knockout (LIRKO) Mice

Shmuel E. Cohen1*, Efi Kokkotou1,2*, Sudha B. Biddinger1, Tatsuya Kondo1, Rolf Gebhardt3, Juergen Kratzsch4, Christos S. Mantzoros2, C. Ronald Kahn1§

Joslin Diabetes Center1, Beth Israel–Deaconess Medical Center2, and Harvard Medical School, Boston, MA1,2, Institute of Biochemistry, University of Leipzig3, Institute of Laboratory Medicine4, Clinical Chemistry and Molecular Diagnostics, University Hospital, Leipzig, Germany.

*These authors contributed equally to the work

Address Correspondence to: §C. Ronald Kahn, M.D., Joslin Diabetes Center, One Joslin Place, Boston, MA 02215; Tel. (617) 732-2635; Fax. (617) 732-2487; Email: c.ronald.kahn@joslin.harvard.edu

Liver-specific insulin receptor knockout (LIRKO) mice display hyperinsulinemia, abnormal glucose metabolism and progressive liver dysfunction. In addition, circulation leptin levels appear to be increased more than 50-fold. However, food intake, body weight and adipose mass are not significantly altered in LIRKO mice compared to wild-type littermates. Using a ligand immunofunctional assay, we found that the apparent increase in circulating leptin in LIRKO mice is due to an 80-fold increased serum levels of soluble leptin receptor. Gene expression analysis by microarray and real-time PCR reveals the liver as the source of soluble leptin receptor. Direct control of leptin receptor expression by insulin could also be demonstrated in isolated hepatocytes from normal mice. Despite the markedly increased levels of leptin receptor in their circulation, LIRKO mice exhibit normal or even enhanced leptin sensitivity, as assessed by their physiological and molecular responses to exogenous leptin administration and their lower baseline hypothalamic levels of SOCS3 mRNA. Thus, insulin signaling in the liver plays an important role in leptin homeostasis and fine modulation of leptin action.

Leptin is a major sensor of body fat stores. Normally, as fat mass increases, circulating leptin levels rise and act at the hypothalamus to decrease appetite and increase energy expenditure thus limiting further weight gain (1). Although some rare forms of obesity are due to leptin or leptin receptor mutations (2,3), in most humans and rodents with obesity, there is leptin resistance, and thus leptin is unable to normally suppress overeating or enhance energy expenditure (4). In obese states, leptin resistance is accompanied by hyperinsulinemia and insulin resistance.

Cross-talk exists between leptin and insulin-regulated pathways at multiple levels. In the brain, both insulin and leptin act to inhibit appetite (1). In pancreatic islets, leptin has a direct inhibitory effect on insulin secretion (5). Additionally, various mechanisms of cross-talk between leptin and insulin signaling in the liver have been recently described (6). At the cellular level, Cohen, el al (7) found that leptin attenuated insulin-induced tyrosine phosphorylation of the insulin receptor substrate-1 (IRS-1) in human hepatoma cells. On the other hand, in rodent hepatoma cells, our laboratory found that insulin-induced association of phosphatidylinositol (PI) 3-kinase with IRS-1 was increased after leptin...
preincubation, whereas association of the p85α regulatory subunit of PI 3-kinase with IRS-2 was diminished significantly (8), suggesting differential effects of leptin on individual insulin pathways.

We have previously developed a mouse model of hepatic insulin resistance using the Cre-Lox system to inactivate the insulin receptor gene specifically in liver (LIRKO) (9). These mice develop secondary hyperinsulinemia from a combination of increased β cell mass and decreased insulin clearance by the liver. They also display focal dysplasia and hyperplastic nodules in their livers and a 50% reduction in albumin levels, as well as a similar reduction in serum triglycerides and free fatty acids (9,10), which could be explained, at least in part, by the inability of insulin to promote triglyceride synthesis in liver and by reduced lipolysis in adipose tissue. However, despite their pronounced hyperinsulinemia and insulin resistance, LIRKO mice are not obese, thus providing a unique model to study the effect of insulin on leptin homeostasis.

Leptin production, mainly from the adipose tissue, leptin bioavailability, and leptin sensitivity of its target cells represent the main regulators of leptin’s actions under physiological conditions, the last two being mediated by leptin receptors. Leptin receptors (Ob-R) occur in several forms as a result of alternative splicing (11). The long form of receptor (Ob-Rb) serves in leptin signaling and its functional inhibition by molecules such as SOCS3 represents the major source of leptin resistance during obesity (12,13). In addition, there are at least four forms of leptin receptor with transmembrane and short intracellular domains (Ob-Ra, Ob- Rc, Ob- Rd, Ob- Rf). All isoforms share the ligand-binding domain, but only the long form has the full cytoplasmic domain containing all signal transduction motifs (14). Both the long and the short forms of receptor can also be shed into the circulation by the action of surface proteases (15). Furthermore, alternative splicing creates a secretory (soluble) form of receptor (Ob-Re, also known as sOb-R), which lacks a transmembrane domain, and is directly released into the circulation whereas by binding leptin, it controls the amount of free-leptin and the rate of leptin clearance (16).

In the present study using the LIRKO mouse, we demonstrate an important role of insulin signaling in liver in control of hepatic expression of the various isoforms of the leptin receptor gene, leading to increasing secretion and shedding of leptin receptors. This produces high apparent circulating levels of leptin, but does not inhibit leptin action and may actually sensitize to these effects. Thus, the liver may modulate leptin homeostasis and function in insulin resistant states.

**EXPERIMENTAL PROCEDURES**

*Mice*—LIRKO mice were generated using the Cre/loxP system for site-specific excisional DNA recombination (17) by crossing mice carrying a floxed insulin receptor [IR lox/lox] and albumin-Cre transgenic mice heterozygous for the floxed allele IR lox/+ as previously described (9). The MIRKO (17) and FIRKO (18) mice were generated in a similar fashion using tissue specific Cre-transgenics. Other animals described in the present study were obtained from Jackson Laboratories. All protocols for animal care and use were approved by the Animal Care Committee of the Joslin Diabetes Center and were in accordance with NIH guidelines. The body composition of 16-week old LIRKO and control (IR lox/lox) mice was measured by Dual-Energy X-ray Absorbiometry (DEXA) using a Lunar PIXImus densitometer (GE Medical Systems).

*Leptin Treatment*—Recombinant mouse leptin was obtained from Dr. A.F. Parlow, Scientific Director, National Hormone and Peptide Program, Harbor-UCLA Medical Center. For the prolonged leptin treatment experiment, two-month old male LIRKO and their lox littermates mice (n=4-6/group) were treated i.p. at 0700 and 1900 daily for four days, with leptin (4 µg/g body weight) or PBS and sacrificed 14 hours after their last leptin injection at 0900 in a randomly fed state. A similar cohort of mice (n=4/group) was used likewise for the short-term experiment, with the difference that mice were sacrificed 30 minutes after their first injection.
Biochemical measurements--Serum insulin was measured by ELISA (Crystal Chem Inc). Total serum leptin was measured by ELISA (R&D Systems). sOb-R levels were determined by a ligand immunofunctional assay (LIFA), as previously described (19). Briefly, the wells of a microtiter plate were coated with the anti sOb-R IgG and blocked against potentially unspecific binding with 1% bovine serum albumin in PBS. Twenty microliters of murine rsOb-R (R&D Systems) standards ranging between 10 pM and 1000 nM or serum samples were added to the wells and incubated with an excess of biotinylated leptin in assay buffer (1% goat gamma globulin, 0.1% BSA and 0.05% Tween 20 in PBS) over night at 4°C. The complex consisting of sOb-R and biotinylated leptin was detected by Europium-labelled streptavidin (PerkinElmer) and the Victor-system (PerkinElmer). The resulting signal is based on both, leptin binding and immunological recognition of the sOb-R. The assay detected sOb-R in a range between 20.7 pM and 769 nM and spiking of 3.1 µM leptin yielded a mean recovery of 90.1%. Intra-assay as well as inter-assay coefficients of variation were below 10.7% (n=12) and 12.4% (n=10), respectively. Results of dilution and sOb-R spiking experiments demonstrated a recovery of 103.0±10.7% (n=4) and 94.2±11.9% (n=3), respectively, which is within the expected range for immunoassays. Free leptin index was calculated by dividing the total serum leptin (nM) by the circulating sOb-R (nM) concentration. Western blot analysis of sOb-R in sera of control and LIRKO mice was performed as described previously (20). Five microliters of serum was fractionated under reducing conditions by 6 % SDS-PAGE, transferred to nitrocellulose membrane and detected by the polyclonal antiserum against sOb-R (R&D Systems).

Gene expression analysis--Tissues were immediately collected from animals, snap frozen in liquid nitrogen and stored at -80°C. Total RNA was isolated using RNeasy columns (Qiagen) and cDNA was synthesized using the Superscript TM Choice System (Gibco BRL/Life Technologies) or the Advantage RT for PCR kit (BD Biosciences) and oligo(dT)18 for priming. Biotinylated cRNA was prepared using the Bioarray High Yield RNA Transcript Labeling Kit (Enzo Biochem). Murine 74Av2 chips (Affymetrix) were hybridized in triplicate with RNA pooled from 3-4 animals in the Affymetrix Core Lab at the Joslin Diabetes Center. The Affymetrix microarray analysis was facilitated by the Affymetrix 5.0 software and the filters of significance applied have been described elsewhere (21). Ob-Ra, Ob-Rb, or Ob-Re cDNA was amplified in duplicate in a 40 µl Real-time PCR reaction (SYBRGreen, PE Biosystems), in an ABI Prism 7700 Sequence Detection System (PE Biosystems). The primer sets were specific for each receptor isoform and sense and antisense primers were aligned to different exons to avoid genomic DNA amplification. Primer3 software facilitated primer design. The following primer sets were used and presented from 5’ to 3’:Ob-Ra and Ob-Rb (common) sense: aatgacgcagggctgtatgtg; Ob-Ra antisense (specific): atggactgtgggaagttgg; Ob-Rb antisense (specific):tcaagctcagaagaagg; Ob-Re sense: tgaagatggaatatggtg; Ob-Re antisense: aagctgtctcattttgaggt; Leptin sense: caagcagcggctgtatgtg; Leptin antisense: aagcagcagcagctgccca; SOCS3 sense: gggagcccctttgtagactt; SOCS3 antisense: ctggtactctgggagg; TBP (TATA Binding Protein) sense: acccttcaccaatgactcctatg; TBP antisense: tgaagctcttacggagtt; Amplification of NPY, POMC and AgRP has been previously described (22). Results are expressed as arbitrary mRNA units normalized by TBP expression.

Isolation and treatment of primary hepatocytes--Hepatocytes from livers of male C57BL/6 mice were prepared by collagenase perfusion as previously described for rat hepatocytes (23). Viability of cells, assessed by Trypan blue exclusion, was >90%. Hepatocytes were cultured on collagen coated 6-well Petri dishes (Costar) in 1ml of Williams medium E supplemented with 10% bovine calf serum at a density of 125,000 cells/cm², as previously described (24). After an initial period of 4 hours, medium and unattached cells were removed, and the cells transferred to serum-free Williams medium E and incubated for 20hrs with or without hormones (0.1 µM insulin, 160 ng/ml leptin). Thereafter, cells were harvested and total RNA was prepared as
described above. Each experimental condition was run three times.

Statistical Analysis—Statistical analysis of the data was performed with SigmaPlot 2000 for Windows Version 6.00 (SPSS) and StatView (Abacus Concepts) using a two-tailed unpaired t-test and ANOVA factorial with Bonferroni/Dunn correction for multiple comparisons. A probability value p < 0.05 was considered significant. Results are expressed as mean ± SE unless otherwise indicated.

RESULTS

LIRKO mice are characterized by hyperleptinemia in the absence of obesity—As previously noted, LIRKO mice are of normal body weight (30.2 ± 0.9 g vs. 33.2 ± 2.3 g) and have similar levels of total body fat as assessed by DEXA (7.1 ± 0.5 g vs. 8.4 ± 1.9 g) and food intake (3.64 ± 0.6 g/day vs. 3.86 ± 0.6 g/day) as their 16 week-old male controls (Figure 1). Despite this, total serum leptin levels as determined by ELISA were more than 10-fold elevated in LIRKO mice compared to controls (1.6 ± 0.2 nM vs. 0.15 ± 0.03 nM, respectively, p<0.001) (Fig. 2A), and this was true in both males and females and at ages from one to four months (data not shown).

The presence of high circulating leptin levels with normal weight in LIRKO mice suggested the possibility of some factor(s) that might modify leptin’s action, and one consideration in this regard would be increased levels of circulating sOb-R. Indeed, measurement of circulating sOb-R by ligand immunofunctional assay (LIFA) revealed a >80-fold increase in the serum of LIRKO mice compared to controls (8.3 ± 0.9 nM vs. 0.1 ± 0.01 nM, p < 0.001) (Fig. 2B). As a result, calculated free serum leptin index, normalized by body fat, was 6-fold lower in LIRKO mice than in controls (3.0± 0.3 vs. 18.8 ± 4.2, respectively, p <0.01) (Fig. 2C). Indeed, even after acute IP leptin injection, although levels of total circulating leptin markedly increased in both LIRKO and control mice (187 ± 37 nM vs. 373 ± 175 nM, respectively) (Fig. 2D), and sOb-R levels remained unaffected by leptin treatment (6.7 ± 1.0 nM vs. 0.04 ± 0 nM) (Fig. 2E), the high level of circulating receptor resulted in markedly lower free leptin levels in LIRKO mice than in control (30.4 ±8.5 vs.12,297±6,213 respectively, p<0.05) (Fig. 2F), confirming the vast excess of sOb-R in this mouse model of hepatic insulin resistance (Figs. 2B and 2E).

LIRKO mice have increased liver production of leptin receptors—The source of the increased circulating sOb-R in LIRKO mice was the liver. Thus, on Affymetrix microarray analysis, Ob-Ra mRNA expression was >400-fold higher in the LIRKO liver than in controls (p < 0.05) (Fig. 3A). The upregulation of leptin receptor in liver of LIRKO mice was confirmed by real-time RT-PCR using isoform specific primers for Ob-Ra, Ob-Rb, and Ob-Re. Indeed, there was a marked upregulation of all three leptin receptor isoforms in the liver of LIRKO mice (Ob-Ra 467.6 ± 31.9 fold, p < 0.001; Ob-Rb 31.5 ± 6.3 fold, p < 0.01; Ob-Re 69.1 ± 11.9 fold, p < 0.001) (Fig. 3B). The increase in leptin receptor expression appeared to be a unique feature of the liver of the LIRKO mouse, since there was no alteration in leptin receptor expression in epididymal fat, skeletal muscle, and kidney of LIRKO mice (data not shown), or in epididymal fat of fat-specific insulin receptor knockout (FIRKO) mice (18) (Fig. 3C) or skeletal muscle of muscle-specific insulin receptor knockout mice (MIRKO) (25) (Fig. 3D), as assessed by real-time PCR (LIRKO and FIRKO) or Affymetrix microarray analysis (MIRKO).

Insulin treatment downregulates Ob-Ra expression in isolated hepatocytes—The increased Ob-Ra expression in the liver of the LIRKO mice could be due to a direct effect of tissue-specific loss of insulin signaling, or secondary to other changes in the liver previously described in these mice (9). In order to gain some insight to the mechanism, we treated normal isolated mouse hepatocytes with insulin and leptin, as a positive control (26). We found that 20 hr of insulin treatment resulted in ~75% down-regulation of Ob-Ra mRNA expression (2.1± 0.7 arbitrary units) compared to control (9.2± 2.9 arbitrary units, p<0.05) (Fig. 4).
Leptin sensitivity is not compromised in LIRKO mice—While there is some debate, it has been suggested that high levels of circulating leptin receptor or high levels of circulating leptin might lead to leptin resistance. To determine whether the LIRKO mice were leptin resistant, we injected two-month old male LIRKO and control mice twice a day i.p. with 4 µg/g body weight of recombinant mouse leptin for four days. Following leptin treatment, body weight of both LIRKO and control mice decreased significantly over the four days, with the fall being slightly, but not significantly, greater on day one in the LIRKO mice vs. the controls (Fig. 5A). Assessment of food intake revealed that LIRKO mice actually had a more dramatic and rapid response to exogenous leptin than controls. Thus, in LIRKO mice there was a 50% reduction in food intake on day one of treatment that persisted throughout the four days of leptin injections, while leptin treated control mice decreased food intake slowly over four days to eventually approach the same reduction on day four that the LIRKO mice achieved on day one (Fig. 5B). Moreover, serum insulin levels, which were initially 18-fold increased (p<0.001) in the LIRKO mice, were decreased by 75% with leptin treatment (p<0.01), while there was no effect in control mice (Fig. 5C). Likewise, the ~2.5-fold elevated leptin gene expression in WAT of LIRKO mice compared to control mice (p<0.05) was also suppressed following leptin treatment more in LIRKO mice than controls (p<0.05) (Fig. 5D). This is consistent with a previous study from our group in which we administered continuous leptin infusion via an osmotic pump (24 µg/day) in 12-week old male LIRKO and control mice for 4 days, which also resulted in similar weight loss, reduction in food intake and drop in serum insulin levels in the two genotypes (10).

Hypothalamic Leptin sensitivity in LIRKO mice -- SOCS3 mRNA expression in the hypothalamus has been regarded an another potential indicator and mechanism of central leptin resistance (27). Interestingly, SOCS3 levels were ~50% lower in LIRKO mice than in controls (p<0.05) (Fig. 6). We also measured mRNA expression of several neuropeptides known to be targets of leptin in the hypothalamus both in the basal state and after 4 days of leptin (or PBS) treatment. This study revealed that both genotypes had similar neuropeptide levels at baseline and both responded with appropriate down-regulation of the orexigenic peptides NPY (Fig. 7A) and AgRP (Fig. 7B) and appropriate upregulation of the anorexigenic peptide precursor POMC (Fig. 7C). Taken together, these data indicate an increase, rather than a decrease, in leptin sensitivity in the LIRKO mice and are compatible with the suppression of food intake in response to exogenous leptin administration presented in Fig. 5B.

DISCUSSION

Leptin resistance is a common component of obesity in humans and rodents (28), but the role of circulating leptin receptor as a regulator of leptin action has just started to emerge. The current study of a mouse model with high levels of soluble leptin receptor resulting from genetic ablation of insulin signaling in the liver (9) has allowed us to demonstrate that even in the presence of markedly elevated levels of circulating leptin receptor both from shed and secreted isoforms, sensitivity to both endogenous and exogenous leptin appears to be completely normal. This conclusion is based on reduction of food intake and significant weight loss in LIRKO mice treated with leptin, to a degree similar to that observed in similarly treated wild type mice (current study and ref. (10)). In addition, several physiological targets of leptin action (29), such as ob gene expression, insulin, and other appetite-regulating neuropeptides in the hypothalamus also respond appropriately to exogenous leptin administration in LIRKO mice. Moreover, hypothalamic SOCS3 expression, a well accepted marker of central leptin resistance (13,27) is also lower in LIRKO mice. Thus, high levels circulating leptin receptors (and the associated hyperleptinemia) do not cause leptin resistance; rather it appears that free circulating leptin may be the better determinant of leptin sensitivity. Such a statement is further corroborated by in vitro experiments showing that increased sOb-R does not directly interfere with leptin signaling at the cellular level, but can regulate the availability of free leptin and its clearance (16,30). Thus, when cells bearing Ob-Rb are incubated with leptin in the presence of high levels of sOb-R,
leptin signaling can be inhibited, but this can be easily reversed by increasing the concentration of free leptin, despite the high levels of sOb-R in the media. Interestingly, and in further support of increased leptin sensitivity associated with high sOb-R levels, overexpression of sOb-R in ob/ob mice actually enhances, rather than suppresses, the effects of leptin treatment (31). In analogy to the LIRKO mice, humans that carry a mutant allele of the leptin receptor gene, that results in enhanced shedding of the extracellular leptin binding domain of the receptor, exhibit very high levels of total leptin, but normal levels of free leptin, and are not obese (32,33). Typically, in lean subjects the majority of circulating leptin is in its bound form, whereas during obesity serum levels of soluble leptin receptor decrease resulting in more free leptin available to signal in its target cells, while on the other hand, weight loss has been associated with an increase in circulating leptin receptors in both humans and rodents (34-37).

The study of the LIRKO mouse also revealed important aspects of the role of liver in leptin physiology. First, our study demonstrates that the liver may be a site of significant sOb-R production, at least in some pathological states. Indeed, serum leptin levels are higher in patients with liver cirrhosis, as are the levels of leptin receptor mRNA expression in liver, although the levels of circulating sOb-R in these studies has not been directly assessed (38). Secondly, in liver, leptin receptor expression is clearly under the control of insulin, as evidenced by its markedly elevated levels in the LIRKO mouse, as well as by the significant insulin-mediated downregulation of Ob-Ra in isolated hepatocytes as presented here (Fig. 4). In fact, in states of low insulin levels, as in men subjected to a 72-h fast (39), in women with anorexia nervosa (40,41), and in children with type 1 diabetes (42), serum levels of sOb-R are increased.

Our finding of leptin receptor mRNA upregulation in the liver as a result of lack of insulin signaling in this organ has been recently recapitulated in mice lacking IRS signaling in liver (43). Although the transcriptional regulators of leptin receptor expression and of specific splice products are largely unknown, a preliminary sequence analysis of the 5' untranslated region of the leptin receptor gene using the consensus insulin response elements (IRE) core sequence (44-46) T(G/A)TTT(T/G)(G/T) revealed multiple putative IREs, including one located within the first 2 kb. In addition to leptin receptor, hepatic expression of many genes that regulate metabolism or growth is under the control of insulin signaling (45,47). In the LIRKO mouse in particular, the inability of insulin to signal through functional IREs in the promoter of PPAR-γ coactivator (PGC)-1, phosphoenol-pyruvate carboxykinase (PEPCK) and tyrosine aminotransferase, glucose-6-phosphatase (G6Pase) results in significant liver upregulation of these genes, which might account, at least in part, for their hyperglycemia, hyperlipidemia, and insulin resistance (9,48).

In aggregate, the current and previous studies clearly indicate that in states of increased sOb-R levels associated with increased free leptin, there is improved, rather than decreased, leptin sensitivity. Moreover, the study of the LIRKO mouse revealed the importance of the liver in the regulation of leptin bioavailability.

Acknowledgments

We appreciate the excellent technical assistance of Laureen Mazzola and John Bullen. This work was supported by NIH grant DK31036 and DK33201, the Joslin DERC, and the Iacocca Foundation (CRK) and by RO158785 (CSM). EK was supported by the Harvard Clinical Nutrition Research Center Pilot and Feasibility Project (P30-DK040561).

Abbreviations

LIRKO: Liver insulin receptor knockout; Ob-R: leptin receptor; IRS: Insulin Receptor Substrate; POMC: proopiomelanocortin; AgRP: agouti-related protein; NPY: neuropeptide Y; SOCS-3: suppressor of cytokine signaling-3.
References

1. Spiegelman, B. M., and Flier, J. S. (2001) *Cell* **104**, 531-543

2. Clement, K., Vaisse, C., Lahlou, N., Cabrol, S., Pelloux, V., Cassuto, D., Gourmelen, M., Dina, C., Chambaz, J., Lacorte, J. M., Basdevant, A., Bougneres, P., Lebouc, Y., Froguel, P., and Guy-Grand, B. (1998) *Nature* **392**, 398-401

3. Montague, C. T., Farooqi, I. S., Whitehead, J. P., Soos, M. A., Rau, H., Wareham, N. J., Sewter, C. P., Digby, J. E., Mohammed, S. N., Hurst, J. A., Cheetham, C. H., Earley, A. R., Barnett, A. H., Prins, J. B., and O'Rahilly, S. (1997) *Nature* **387**, 903-908

4. Frederich, R. C., Hamann, A., Anderson, S., Lollmann, B., Lowell, B. B., and Flier, J. S. (1995) *Nat Med* **1**, 1311-1314

5. Kulkarni, R. N., Wang, Z. L., Wang, R. M., Hurley, J. D., Smith, D. M., Ghatei, M. A., Withers, D. J., Gardiner, J. V., Bailey, C. J., and Bloom, S. R. (1997) *J Clin Invest* **100**, 2729-2736

6. Ceddia, R. B., Koistinen, H. A., Zierath, J. R., and Sweeney, G. (2002) *Faseb J* **16**, 1163-1176

7. Cohen, B., Novick, D., and Rubinstein, M. (1996) *Science* **274**, 1185-1188

8. Szanto, I., and Kahn, C. R. (2000) *Proc Natl Acad Sci U S A* **97**, 2355-2360

9. Michael, M. D., Kulkarni, R. N., Postie, C., Previs, S. F., Shulman, G. I., Magnuson, M. A., and Kahn, C. R. (2000) *Mol Cell* **6**, 87-97

10. Biddinger, S. B., Miyazaki, M., Boucher, J., Ntambi, J. M., and Kahn, C. R. (2006) *Diabetes* **55**, 2032-2041

11. Ge, H., Huang, L., Pourbahrami, T., and Li, C. (2002) *J Biol Chem* **277**, 45898-45903

12. Howard, J. K., and Flier, J. S. (2006) *Trends Endocrinol Metab* **17**, 365-371

13. Munzberg, H., and Myers, M. G., Jr. (2005) *Nat Neurosci* **8**, 566-570

14. Tartaglia, L. A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Richards, G. J., Campfield, L. A., Clark, F. T., Deeds, J., Muir, C., Sanker, S., Moriarty, A., Moore, K. J., Smutko, J. S., Mays, G. G., Wool, E. A., Monroe, C. A., and Tepper, R. I. (1995) *Cell* **83**, 1263-1271

15. Maamra, M., Bidlingmaier, M., Postel-Vinay, M. C., Wu, Z., Strasburger, C. J., and Ross, R. J. (2001) *Endocrinology* **142**, 4389-4393

16. Zastrow, O., Seidel, B., Kiess, W., Thiery, J., Keller, E., Bottner, A., and Kratzsch, J. (2003) *Int J Obes Relat Metab Disord* **27**, 1472-1478
17. Bruning, J. C., Michael, M. D., Winnay, J. N., Hayashi, T., Horsch, D., Accili, D., Goodyear, L. J., and Kahn, C. R. (1998) *Mol Cell* **2**, 559-569

18. Bluher, M., Michael, M. D., Peroni, O. D., Ueki, K., Carter, N., Kahn, B. B., and Kahn, C. R. (2002) *Dev Cell* **3**, 25-38

19. Lammert, A., Kiess, W., Bottner, A., Glasow, A., and Kratzsch, J. (2001) *Biochem Biophys Res Commun* **283**, 982-988

20. Lammert, A., Brockmann, G., Renne, U., Kiess, W., Bottner, A., Thiery, J., and Kratzsch, J. (2002) *Biochem Biophys Res Commun* **298**, 798-804

21. Yechoor, V. K., Patti, M. E., Ueki, K., Laustsen, P. G., Saccone, R., Rauniyar, R., and Kahn, C. R. (2004) *Proc Natl Acad Sci U S A* **101**, 16525-16530

22. Bates, S. H., Stearns, W. H., Dundon, T. A., Schubert, M., Tso, A. W., Wang, Y., Banks, A. S., Lavery, H. J., Haq, A. K., Maratos-Flier, E., Neel, B. G., Schwartz, M. W., and Myers, M. G., Jr. (2003) *Nature* **421**, 856-859

23. Mewes, K., Blanz, J., Ehninger, G., Gebhardt, R., and Zeller, K. P. (1993) *Cancer Res* **53**, 5135-5142

24. Gebhardt, R. (1990) *Cancer Res* **50**, 4407-4410

25. Kim, J. K., Michael, M. D., Previs, S. F., Peroni, O. D., Mauvais-Jarvis, F., Neschen, S., Kahn, B. B., Kahn, C. R., and Shulman, G. I. (2000) *J Clin Invest* **105**, 1791-1797

26. Brabant, G., Nave, H., Horn, R., Anderwald, C., Muller, G., and Roden, M. (2004) *Eur J Clin Invest* **34**, 831-837

27. Bjorbaek, C., Elmquist, J. K., Frantz, J. D., Shoelson, S. E., and Flier, J. S. (1998) *Mol Cell* **1**, 619-625

28. Ahima, R. S., and Flier, J. S. (2000) *Annu Rev Physiol* **62**, 413-437

29. Ahima, R. S. (2006) *Obesity (Silver Spring)* **14 Suppl 5**, 242S-249S

30. Yang, G., Ge, H., Boucher, A., Yu, X., and Li, C. (2004) *Mol Endocrinol* **18**, 1354-1362

31. Huang, L., Wang, Z., and Li, C. (2001) *J Biol Chem* **276**, 6343-6349

32. Lahlou, N., Clement, K., Carel, J. C., Vaisse, C., Lotton, C., Le Bihan, Y., Basdevant, A., Lebouc, Y., Froguel, P., Roger, M., and Guy-Grand, B. (2000) *Diabetes* **49**, 1347-1352

33. Lahlou, N., Issad, T., Lebouc, Y., Carel, J. C., Camoin, L., Roger, M., and Girard, J. (2002) *Diabetes* **51**, 1980-1985

34. van Dielen, F. M., van 't Veer, C., Buurman, W. A., and Greve, J. W. (2002) *J Clin Endocrinol Metab* **87**, 1708-1716

35. Ogawa, T., Hirose, H., Yamamoto, Y., Nishikai, K., Miyashita, K., Nakamura, H., Saito, I., and Saruta, T. (2004) *Metabolism* **53**, 879-885
36. Sinha, M. K., Opentanova, I., Ohannesian, J. P., Kolaczynski, J. W., Heiman, M. L., Hale, J., Becker, G. W., Bowsher, R. R., Stephens, T. W., and Caro, J. F. (1996) *J Clin Invest* **98**, 1277-1282

37. Wilsey, J., and Scarpace, P. J. (2004) *J Endocrinol* **181**, 297-306

38. Otte, C., Otte, J. M., Strothoff, D., Bornstein, S. R., Folsch, U. R., Monig, H., and Kloehn, S. (2004) *Exp Clin Endocrinol Diabetes* **112**, 10-17

39. Chan, J. L., Bluher, S., Yiannakouris, N., Suchard, M. A., Kratzsch, J., and Mantzoros, C. S. (2002) *Diabetes* **51**, 2105-2112

40. Kratzsch, J., Lammert, A., Bottner, A., Seidel, B., Mueller, G., Thiery, J., Hebebrand, J., and Kiess, W. (2002) *J Clin Endocrinol Metab* **87**, 4587-4594

41. Monteleone, P., Fabrazzo, M., Tortorella, A., Fuschino, A., and Maj, M. (2002) *Mol Psychiatry* **7**, 641-646

42. Kratzsch, J., Knerr, I., Galler, A., Kapellen, T., Raile, K., Korner, A., Thiery, J., Dotsch, J., and Kiess, W. (2006) *Eur J Endocrinol* **155**, 609-614

43. Dong, X., Park, S., Lin, X., Copps, K., Yi, X., and White, M. F. (2006) *J Clin Invest* **116**, 101-114

44. Moustaid, N., Beyer, R. S., and Sul, H. S. (1994) *J Biol Chem* **269**, 5629-5634

45. O'Brien, R. M., and Granner, D. K. (1996) *Physiol Rev* **76**, 1109-1161

46. Lindell, K., Bennett, P. A., Itoh, Y., Robinson, I. C., Carlsson, L. M., and Carlsson, B. (2001) *Mol Cell Endocrinol* **172**, 37-45

47. Hall, R. K., Yamasaki, T., Kucera, T., Waltner-Law, M., O'Brien, R., and Granner, D. K. (2000) *J Biol Chem* **275**, 30169-30175

48. Puigserver, P., Rhee, J., Donovan, J., Walkay, C. J., Yoon, J. C., Oriente, F., Kitamura, Y., Altomonte, J., Dong, H., Accili, D., and Spiegelman, B. M. (2003) *Nature* **423**, 550-555
Figure 1. **LIRKO mice are not obese.** (A) Daily food intake, (B) body weight and (C) fat mass in 16-week old male LIRKO and control mice.

Figure 2. **Apparent hyperleptinemia and increased circulating levels of soluble leptin receptor in LIRKO mice.** LIRKO mice are represented by dark bars and their controls by clear bars (n = 15-17/group). (A) Serum total leptin was measured using an ELISA assay. (B) sOb-R was measured by a ligand immunofunctional assay, and (C) the free leptin index was calculated from the above and normalized by grams of total body fat. LIRKO mice had ~ 10 fold increase (**p<0.001**) in serum total leptin and a ~ 60-fold increase in circulating sOb-R (**p<0.001**), resulting in a ~6-fold decrease in their free serum leptin (**p<0.01**). Panels D-F show the same parameters as the above, in PBS (gray bars) or leptin treated (dark bars) control or LIRKO mice. Serum was collected 30 min after the leptin injection. Leptin treatment resulted in a ~3000 fold increase in total serum leptin levels in control mice and ~300 fold in LIRKO mice (D) but had no effect on the sOb-R levels (E). Still, free leptin after leptin injection (F) was significantly lower in LIRKO mice (compared to control mice (*p<0.05)). (G) Western blot for sOb-R in sera of control (mouse # 1, 5, 4) and LIRKO mice (mouse # 18, 14, 13). Serum proteins were fractionated in an SDS-PAGE gel, transferred to a solid support and incubated with an antibody against sOb-R.

Figure 3. **Leptin receptor mRNA expression is dramatically upregulated in the liver of LIRKO mice.** (A) Affymetrix microarray analysis of liver samples shows that LIRKO mice express higher (*p<0.05) levels of Ob-Ra than their controls (WT and lox/lox), or other insulin resistant (ob/ob) mouse models. Data are expressed as the mean of 3 microarray chips (representing 3-4 mice) ± the standard deviation. (B) Real time PCR analysis of various leptin receptor isoforms in liver of control and LIRKO mice, treated with either PBS (gray bars) or leptin (dark bars) for 4 days. LIRKO mice had significantly (**p<0.01**) up-regulated levels of all there leptin receptor isoforms that did not changed by leptin treatment. (C) White adipose tissue expression of the three leptin receptor isoforms was not upregulated in FIKKO mice (dark bars) compared to their controls (clears bars), as evaluated by quantitative real time PCR. D) Ob-Ra mRNA expression is not upregulated in the muscle of MIRKO mice, as evaluated by Affymetrix microarray analysis.

Figure 4. **Insulin treatment inhibits Ob-Ra mRNA expression in vitro.** Hepatocytes were isolated from C57BL/6J mice and placed in culture. Cells were treated with 0.1 µM of insulin, 160 ng/ml leptin, or combination for 20 hrs and Ob-Ra mRNA expression was evaluated by real-time RT-PCR. *p<0.05

Figure 5. **LIRKO mice respond appropriately to exogenous leptin.** Control (round symbol) or LIRKO mice (square symbol) (n=4-6/group) were treated with either leptin (4µg/g body weight) (filled symbols) or PBS (clear symbols) twice a day for 4 days and their weight was monitored daily. A) In the graph presented, the percentage change in body weight due to leptin treatment was similar among LIRKO and control mice. (B) Daily food intake was monitored in parallel in the same mice. LIRKO mice reached their maximum reduction in food intake within the first day of leptin treatment while the control mice on the third day. (C) LIRKO mice were found to be severely hyperinsulinemic (+++p < 0.001) when compared to control mice. Leptin treatment (dark bars) compared to PBS treatment (gray bars) resulted in a significant drop in the serum insulin levels only in LIRKO mice (**p < 0.01**). (D) White adipose tissue ob gene expression, as evaluated by real-time RT-PCR, is higher in LIRKO mice compared to control mice (+ p < 0.05), but it decreased more (*p < 0.05) in absolute value with leptin treatment in LIRKO mice than in
control mice (n=4-6/group). Gray bars = mice treated with PBS; black bars = mice treated with leptin.

Figure 6. **Hypothalamic SOCS3 expression in LIRKO mice.** Baseline SOCS3 mRNA expression in the hypothalamus, as evaluated by real-time RT-PCR, was found to be lower in LIRKO mice (dark bars) compared to wild type mice (clear bars) (*p<0.05), indicating increased hypothalamic leptin sensitivity in the LIRKO mice.

Figure 7. **Hypothalamic appetite regulating neuropeptide responses in LIRKO mice are not compromised.** After four days of leptin (dark bars) or PBS (gray bars) treatment, hypothalamic expression of NPY, AgRP and POMC was evaluated in LIRKO and control mice by real-time RT-PCR. Compared to PBS treatment, leptin treatment resulted in a significant down-regulation of NPY (A) and AgRP (B) and up-regulation of POMC (C) (*p<0.05) to a similar degree in both genotypes.
Figure 7
High circulating leptin receptors with normal leptin sensitivity in liver-specific insulin receptor knockout (LIRKO) mice

Shmuel E. Cohen, Efi Kokkotou, Sudha B. Biddinger, Tatsuya Kondo, Rolf Gebhardt, Juergen Kratzsch, Christos S. Mantzoros and C. Ronald Kahn

*J. Biol. Chem.* published online June 7, 2007

Access the most updated version of this article at doi: [10.1074/jbc.M704053200](http://doi.org/10.1074/jbc.M704053200)

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts