Spatiotemporal Variability and Trends in Rainfall and Temperature in Alwero Watershed, Western Ethiopia

CURRENT STATUS: Under Revision

Environmental Systems Research 🏤 Springer

ARRAGAW ALEMAYEHU, Molla Maru, Woldeamlak Bewket, Mohammed Assen

ARRAGAW ALEMAYEHU
Debre Berhan University
✉ arragawalex@gmail.com Corresponding Author

Molla Maru
Addis Ababa University

Woldeamlak Bewket
Addis Ababa University

Mohammed Assen
Addis Ababa University

Prescreen

10.21203/rs.3.rs-26669/v1

Subject Areas

Environmental Policy

Keywords
rainfall and temperature trends, climate variability, Alwero watershed, Ethiopia
Abstract

Background Climate analysis at relevant time scales is important for water resources management, agricultural planning, flood risk assessment, ecological modeling and climate change adaptation. This study analyses spatiotemporal variability and trends in rainfall and temperature in Alwero watershed, western Ethiopia. The study is based on gridded monthly rainfall and maximum and minimum temperature data series at a resolution of 4 × 4 km which were obtained from the National Meteorological Agency of Ethiopia for the period 1983–2016. The study area is represented by 558 points (each point representing 4 × 4 km area).

Results Mean annual rainfall of the watershed is > 1600 mm. Annual, June–September (Kiremt), March–May (Belg) rainfall totals exhibit low inter-annual variability. Annual and October–February (Bega) rainfall show statistically significant increasing trends at p = 0.01 level. May and November rainfall show statistically significant increasing trends at p = 0.01 level. March shows statistically significant decreasing trend at p = 0.1 level. The mean annual temperature of the watershed is 25 °C with standard deviation of 0.31 °C and coefficient of variation of 0.01 °C. Mean annual minimum and maximum temperatures show statistically non-significant decreasing trends. Bega season experienced statistically significant deceasing trend in the maximum temperature at p = 0.01 level. The year-to-year variability in the mean annual minimum and maximum temperatures showed that the 2000s is cooler than the preceding decades. Unlike our expectations, annual and seasonal rainfall totals showed increasing trends while maximum and minimum temperatures showed decreasing trends.

Conclusions Our results suggest that local level investigations such as this one is important in developing context-specific climate change adaptation and agricultural planning, instead of coarse-scale national level analysis guiding local level decisions.

1. **Background**

Climate change is increasing the occurrence and magnitude of rainfall extremes that cause increased drought and flood risks (Chen et al. 2013). In countries like Ethiopia where agriculture is dependent on rainfall, the influence of climate variability on crop production is generally large (Alemayehu and Bewket 2016). Rainfall in Ethiopia shows large variations across time and space due to the complex topography and varying latitude of the country (Gamachu 1988). Understanding the seasonality of rainfall is important for policy makers and development planners to tackle its adverse economic and social consequences including on agriculture (Koricha 2013) and for local level adaptation planning (Alemayehu and Bewket 2017a). The rainfall pattern in Ethiopia is strongly seasonal; long dry and short rainy seasons on the one hand and wet and long rainy seasons on the other (Koricha 2013). The low and high rainfall phenomena can give rise respectively to drought and flood situations, both with disastrous economic and humanitarian consequences (Washington et al. 2006). The performance of the agricultural sector shows strong associations with the rainfall pattern (Alemayehu and Bewket 2016). Rainfall shortages or changes in seasonal pattern often lead to food shortages and in the worst cases to famines (Alemayehu and Bewket 2017b).

In Ethiopia, three seasons exist: (i) the main rainy season (June – September, called Kiremt); (ii) the short rainy season (March – May, called Belg); and the dry season (October - February, known as Bega) (Seleshi and Zanke 2004). Understanding the characteristics of Kiremt and Belg season rainfall is useful for improving agricultural productivity and water resource development of the country (Suryabhagavan 2017). Kiremt rainfall which is the largest in terms of its amount and geographical coverage is less variable in most parts of the country compared to Belg and Bega season rainfall (Shankoa and Camberlin 1998). It supports the main cropping season production, locally known as Meher. The Belg season rainfall is characterized by high temporal and spatial variability, which has implications on Belg season crops and food security of households (Alemayehu and Bewket 2016; Bekele-Biratu et al. 2018). The change and shift in Belg season rainfall leads to devastating droughts affecting socioeconomic welfare and environmental resources (Haile et al. 2019).
Alemayehu and Bewket (2017a) summarized previous studies on rainfall and temperature variability and trends in Ethiopia covering different temporal and spatial scales. They showed that studies on rainfall did not show clear trends for the country as a whole; the patterns of change being highly mixed. The logical conclusion from those previous studies is thus trends in annual and seasonal rainfalls are largely sensitive to local scale climatic controls such as topography. In addition quality of data, the choice of study periods and stations considered by the different studies influence the results of trend analysis in the country (Seleshi and Zanke 2004; Bewket and Conway 2007; Mengistu et al. 2013).

Despite the discrepancies observed, a growing number of studies in Ethiopia reported downward trend in seasonal and annual rainfall totals (e.g., Shanko and Camberlin 1998; NMA 2001, 2007; Osman and Sauerborn 2002; Seleshi and Zanke 2004; Verdin et al. 2005; Cheung et al. 2008; Viste et al. 2012; Jury and Funk 2013; Urgessa 2013; Wagesho et al. 2013; Addisu et al. 2015; Alemayehu and Bewket 2017a; Asaminew et al. 2017; Haile et al. 2019). Available studies on temperature reported warming trend in the maximum and minimum temperatures (e.g., NMA 2007; McSweeney et al. 2008; Taye and Zewdu 2012; Ayalew et al. 2012; Mengistu et al. 2013; Measha et al. 2014; Addisu et al. 2015; Alemayehu and Bewket 2017a; Asaminew et al. 2017; Suryabhagavan 2017; Haile et al. 2019). Climate analysis at relevant time scales is important for water resources management, agricultural planning, flood risk assessment, ecological modeling and climate change adaptation (Engida and Esteves 2011; Sun et al. 2018).

The focus of this study is to investigate the spatiotemporal variability and trends in rainfall and temperature in Alwero watershed in the western part of Ethiopia using a dense network of 4 × 4 km gridded data (558 points) reconstructed from weather stations and meteorological satellite records which spatially covers the watershed. In countries like Ethiopia where a major underlying vulnerability factor is the heavy dependence of the economy on rain-fed smallholder agriculture, timely and accurate availability of climate information is useful for sustainable climate risk management. The study area in particular is the largest agricultural investment hub in the country where a detailed previous study does not exist. In the following section, we present a brief description of materials and methods of the study, and this is followed by the results and discussion section. Conclusions are presented in Sect. 4.

2. Materials And Methods

2.1 Description of the study area

Alwero watershed is found in the Abobo district of the Gambella National Regional State, western Ethiopia (Figure. 1). The Gambella Region lies within the hot to warm humid lowland agro-ecological zone. Altitude ranges from 500 to 2200 m asl. Mean annual rainfall is about 1200 mm. Mean annual temperature is 26.7 °C. The level of natural resource use is low due to sparse population density. The soil, topography and climate conditions have made the Region to be one of the most fertile parts of the country and highly suitable for growing various types of tropical crops. Since 2008, more than 3.5 million hectares of land were transferred to both domestic and foreign investors (Rahimato 2011).

The altitude of Alwero watershed ranges from 385 to 2531 m asl (Fig. 1). About 58% and 40% of the watershed lies in altitude ranges of 385-500 m asl and 500-1837 m asl, respectively. Only about 2% of the watershed contains hills and escarpments located in the eastern edge of the watershed with an altitude range of 1837 to 2531 m asl. The eastern edge of the watershed is characterized by steep and very steep slopes whereas the central part is dominated by a mix of flat, gently sloping and sloping terrain. Alwero watershed has two sub-watersheds; upper (eastern) and lower (western). The altitude of the upper (eastern) sub-watershed ranges from 619 to 2531 m asl. The altitude of the lower (western) sub-watershed ranges from 385 to 619 m asl.

The geology is characterized by undifferentiated Pleistocene-Holocene deposits. Granite, gneisses, schist, sandstone and basalt are the rock types that dominate the region (Davidson, 1983). The major soils of Abobo district include Dystric and Eutric Plinthosols, Dystric and Chromic Cambisols, Eutric Vertisols and Planosols, where Cambisols occur at the upper slope north of Abobo while Plinthosols and Vertisols exist at the middle and lower slopes, respectively (Zabel, 2014). The major land use land cover types are forest (143,086 ha), woodland...
(75,227 ha), shrub (5,793 ha), grass (62,997 ha) and cultivated lands (19,854 ha). The major crops grown include maize (Zea mays L.), sorghum (Sorghum bicolor), groundnut (Arachis hypogae), sesame (Sesamum astivum), cotton (Gossypium sp.) and rice (Oryza sativa L.) (Yitbarek et al. 2017).

According to the Central Statistical Authority (CSA) (2013), the total population of Abobo district is 22,420 out of which 11,531 are males and 10,889 are females. Of the total, about 35% resides in urban area (Abobo town) and the remaining 65% lives in rural areas. The livelihood of the population in the watershed is largely dependent on small-scale farming, fishery, retailing and casual jobs in large-scale farms, construction and government and non-government offices.

2.2 Data and methods

2.2.1 The data

The study is based on gridded monthly rainfall and maximum and minimum temperature data series at a resolution of 4 × 4 km for the period 1983–2016. The gridded data are reconstructions from records of weather stations and meteorological satellite observations, which was done by the National Meteorological Agency (NMA) of Ethiopia and the International Research Institute for Climate and Society of Columbia University, USA. This is the best available dataset for the country which is homogeneous and recommended for climate analysis (Dinku et al. 2014). In recent years, gridded rainfall and temperature datasets have been used in Ethiopia with different data sources and spatial resolutions (Mengistu et al. 2013; Dinku et al. 2014; Alemayehu and Bewket 2017a; Gebrechorkos et al. 2020) in view of the fact that weather stations are limited in number, unevenly distributed and located only in towns, leaving the vast rural areas of the country underserved. On the other hand, meteorological satellite observations suffer from heterogeneous time series, short period of observation, and poor accuracy particularly at higher temporal and spatial resolutions (Alemayehu and Bewket 2017a). The study area is covered by 558 points (each representing 4 × 4 km area).

2.2.2 Analysis

Precipitation concentration index (PCI), standardized rainfall anomaly (SRA) and coefficient of variation (CV) are used to examine inter-annual and intra-annual variability of rainfall. The precipitation concentration index (PCI) was applied as indicated in De Luis et al. (2000);

\[PCI = 100 \times \left(\frac{\sum P_i^2}{(\sum P_i)^2} \right) \]

where: \(P_i \) = the rainfall amount of the \(i \)th month; and \(\sum P_i^2 \) = summation over the 12 months. PCI values of less than 10 indicate uniform monthly distribution of rainfall, values between 11 and 20 indicate high concentration, and values above 21 indicate very high concentration.

SRA values are computed based on Agnew and Chappel (1999);

\[SRA = \frac{(P_t - P_m)}{\sigma} \]

where SRA = standardized rainfall anomaly, \(P_t \) = annual rainfall in year t, \(P_m \) = is long-term mean annual rainfall over a period of observation and \(\sigma \) = standard deviation of annual rainfall over the period of observation. The drought severity classes based on SRA are extreme drought (SRA < -1.65), severe drought (-1.28 > SRA > -1.65), moderate drought (-0.84 > SRA > -1.28), and no drought (SRA > -0.84).

Coefficient of variation (CV) was calculated to evaluate the variability of rainfall. It is given as;

\[CV = \frac{S}{\mu} \]

where \(CV \) is the coefficient of variation; \(S \) is the standard deviation, and \(\mu \) is the mean rainfall. The CV measures year-to-year variation in the data series, and according to NMA’s (1996) classification CV less than 0.20 is less variable, CV between 0.20 and 0.30 is moderately variable and CV greater than 0.30 is highly variable.

Linear regression was used to detect changes or trends in rainfall. Trends were calculated from slopes of
regression lines using the least squares method and the statistical significance of the trends were determined by the F-distribution test. It is given as;

\[Y = mx + b \] \hspace{1cm} (4)

where \(y \) is dependent variable, \(m \) is the slope, \(x \) is independent variable and \(b \) is the intercept. The above techniques are also used to analyze the minimum and maximum temperatures. Surface data were generated from the gridded monthly rainfall and temperature data using kriging interpolation technique with the help of ArcGIS 10.1. Viste et al. (2012), Mengistu et al. (2013), Omondi et al. (2013) and Alemayehu and Bewket (2017a) used the same methodology in their analyses of rainfall and temperature data.

3. Results And Discussion

3.1. Rainfall variability and trends in Alwero watershed

3.1.1. Annual and seasonal rainfall patterns

Mean annual rainfall of Alwero watershed is 1665.5 mm (Table 1), and its inter-annual variability is low with a CV of 8.7%. The Kiremt and Belg rainfall also show low inter-annual variability (CV, 9.2% and 19.7%, respectively). Bega rainfall shows moderate variability (CV, 24%). As indicated by the PCI values, rainfall shows moderate concentration in few months of the year (11.8). It can be observed that above average mean monthly rainfall is recorded from May to October. These months have recorded above 130 mm rainfall (Fig. 2). About 80% of annual rainfall is concentrated in these six months which ranges from 11% (October) to 14.4% (August). August supplies the largest amount of rainfall in the watershed. July and September also represent high contributions to the annual totals.

As elsewhere in Ethiopia, Kiremt rainfall contributes the largest to the annual rainfall (56%), followed by Belg rainfall (25%). Unlike other parts of the country, the contribution of Bega rainfall is high (19%) as well. The highest monthly rainfall is 395.9 mm which contributed 22% of annual and 89% of Belg rainfall totals, respectively (Table 1). Unlike other areas of the country where high concentration of rainfall is recorded in the month of August followed by July, the highest monthly rainfall is recorded in May which is the dry month in most parts of the country.

Annual and Bega rainfalls show statistically significant increasing trends at \(p = 0.01 \) level. Kiremt and Belg rainfalls show no significant trends. These results contradict the findings of Shanko and Camberlin (1998), NMA (2001; 2007), Osman and Sauerborn (2002), Seleshi and Zanke (2004), Verdin et al. (2005), Cheung et al. (2008), Jury and Funk (2013), Urgessa (2013), Viste et al. (2012), Wagesho et al. (2013), Addisu et al. (2015), Alemayehu and Bewket (2017a), Asaminew et al. (2017) and Haile et al. (2019) who reported declining trends of annual and seasonal rainfall totals in their respective study areas in different parts of the country.

Regarding monthly rainfall trends, November and May showed statistically significant increasing trends at \(p = 0.05 \) level. October shows significant increasing trend at \(p = 0.1 \) level, and March shows significant decreasing trend at \(p = 0.1 \) level. June to September show non-significant increasing trends. December, January and February showed statistically non-significant increasing trends. March contributes the highest to the overall declining trend of annual rainfall while November makes considerable contribution to the overall increasing trend of annual rainfall.
Table 1
Trends of annual and seasonal rainfall in Alwero watershed.

Parameter	Amount (mm)	Contribution (%)	CV	LT	Wettest year	Driest year	HMR	PCI
Annual	1665.5		0.087	66*	2011	1986	365.9	10.8
Kiremt	932.9	56	0.092	0.63	2003	1995		
Belg	410.8	25	0.197	20.27	2014	1987		
Bega	321.9	19	0.241	45.09**	2008	1984		

* = Significant at 0.05 level; ** = Significant at 0.01 level; LT = linear trend (mm/10 year)

In Ethiopia the driest year is 1984, which is the well-known drought year. The wettest year is 2006, which is the major flood year. The country has witnessed large scale losses of life and property during those periods. However, the driest and wettest years for Alwero watershed are 1986 and 2011, respectively. The wettest year for Kiremt is 2003, which is a recovery period from the second major drought period affecting large parts of the country. The years 2008 and 2014 are wettest periods for Bega and Belg seasons, respectively, while the dry years for Bega and Belg respectively are 1984 and 1987 (Table 1).

Figure 3 shows standardized annual and seasonal rainfall anomalies. Since 1983, annual rainfall showed declining trend up to 1990 except for the year 1988. Conversely, standardized rainfall anomalies are positive from 1990–1999 except the years 1994 and 1995. Annual rainfall shows considerable inter-annual variations between 2000 and 2009. From 2010 to 2016 standardized rainfall anomalies are positive except the year 2013. In the watershed, positive and negative anomalies account for 53% and 47% of the total observations, respectively. About 29% of the total number of observations is under the different drought categories. The 1990s is wet compared with the 1980s and 2000s. The results of this study are consistent with Bewket and Conway (2007) and McSweeney et al. (2008) who concluded the 1980s was drier than its preceding decade and the decades following.

Negative anomalies in Bega rainfall were observed from 1983–1995 except the years 1988 and 1992. Similarly, negative anomalies are observed from 2002–2007 except the year 2006, which is the major flood year in the country. Positive anomalies are observed from 1996–2001 and 2008–2016 except the year 2013. The proportion of positive and negative anomalies is equal and represents 50% of the total observations. The 2000s is wetter than the preceding decades for Bega.

Kiremt rainfall shows considerable inter-annual variations throughout the period of observation. Large proportion of negative anomalies is observed in Kiremt rainfall (56% of the total observations). Relatively, the 1990s is wet compared with the 1980s and 2000s. Drier conditions for Belg rainfall were experienced for the period 1986–1992 except the years 1989 and 1991. Wetter conditions for Belg were experienced for the period 1993–2000 except the year 1995 and 1998. Since 2007, positive anomalies are observed except the years 2010 and 2012. Positive and negative anomalies account for 56% and 44% of the total observations, respectively. The 1980s is the driest decade for Belg.

Standardized monthly rainfall anomalies were also computed for the wettest and driest periods to assess the abnormality of wetness and dryness in the watershed. As shown in Table 1, the driest and wettest years over the period of observation are 1986 and 2011, respectively. In the driest period the highest and the lowest SRA values are 1.45 and −1.25, respectively, while the highest and the lowest SRA values during the wettest period are 1.26 and −1.19, respectively. The highest and the lowest SRA during driest years are observed during June and
January, respectively. May and February observed the highest and the lowest SRA values during the wettest years. About 67% of observations showed below average rainfall during the driest period, but only 25% of the observations fall under the different drought categories. About 50% of the observations showed below average rainfall during the wettest period. From these, nearly 33% fall under the different drought categories. This shows that rainfall concentration is not uniform and few months remain dry even in years of good rain conditions.

Figure 4 and Table 2 show the spatial distribution of annual rainfall over the period of analysis. East and southeast part of the watershed receive high amount of annual rainfall. More than half of the watershed receives annual rainfall of 1550-1700 mm. Another large proportion of the watershed (26%) receives annual rainfall of between 1411 and 1550 mm. More than 20% of the watershed receives annual rainfall of between 1700 and 1850 mm. About 1% of the watershed receives annual rainfall of > 2000 mm. The spatial distribution of Belg and Bega seasons revealed similar pattern in which rainfall increases from west to east. Almost all parts of the lower sub watershed receives Kiremt rainfall > 950 mm over the period of observation. The northern part of the upper sub watershed receives Kiremt rainfall of 768-850 mm.

Rainfall Class	Upper (eastern) sub-watershed	Lower (western) subwatershed	Alwero watershed			
	Area (ha)	%	Area (ha)	%	Area (ha)	%
1411-1550 mm	77962.5	28.6	54650.0	22.7	132612.5	25.8
1550-1700 mm	87243.8	32.0	180487.5	75.0	267731.3	52.2
1700-1850 mm	68800.0	25.3	5431.3	2.3	74231.3	14.5
1850-2000 mm	32131.3	11.8	0.0	0.0	32131.3	6.3
2000-2104 mm	6318.8	2.3	0.0	0.0	6318.8	1.2
Total	272456.3	100.0	240568.8	100.0	513025.0	100.0

3.1.2 Trends in annual and seasonal rainfall in the upper (eastern) sub-watershed

Mean annual rainfall of upper sub-watershed is 1686.2 mm with coefficient of variation of 8.9% which shows low inter-annual variability. Kiremt and Belg rainfalls show low inter-annual variability of 9% and 19%, respectively. Only Bega rainfall shows moderate inter-annual variability with coefficient of variation of 24%. Kiremt rainfall contributes the largest to the annual rainfall (55%), which are followed by Belg (26%) and Bega (19%), respectively. The driest and wettest periods over the period of observation are 1986 (1419.3 mm) and 2016 (1987 mm), respectively. Annual rainfall shows statistically significant increasing trend at p = 0.05 level, while Bega rainfall also shows statistically significant increasing trend at p = 0.01 level. Belg and Kiremt rainfall show statistically non-significant increasing and decreasing tendencies, respectively.

More than 85% of the upper sub-watershed receives annual rainfall of between 1411 and 1850 mm. The other 12% of the upper sub-watershed receives annual rainfall of between 1850 and 2000 mm. The remaining 2% of the upper sub-watershed receives annual rainfall of > 2000 mm (Fig. 4 and Table 2).
3.1.3 Trends in annual and seasonal rainfall in the lower (western) sub-watershed

Mean annual rainfall of the lower sub-watershed is 1600.6 mm. Annual rainfall shows low inter-annual variability (10.9%). Kiremt rainfall also shows low inter-annual variability (12.5%). Belg and Bega rainfalls show moderate inter-annual variability with coefficient of variation of 29% and 32%, respectively. Kiremt rainfall contributes the largest to the annual rainfall (67%). Belg and Bega contribute the remaining 19% and 14% of annual rainfall, respectively. The driest and wettest periods over the period of observation are 1995 (1179 mm) and 1991 (1857 mm), respectively. Annual and Kiremt rainfalls show statistically non-significant increasing trend, while Bega rainfall shows statistically significant increasing trend at p = 0.01 level.

Large part of the lower sub-watershed (75%) receives annual rainfall of between 1411 and 1550 mm, and about 23% receives annual rainfall of between 1550 and 1700 mm. A small portion of the lower sub-watershed receives annual rainfall of between 1700 and 1850 mm (Fig. 4 and Table 2).

Annual rainfall shows considerable inter-annual variations from 1983–2009 Positive annual rainfall anomalies accounts for 59% of observations. The 2000s is the wettest decade. Positive anomalies are observed since 2007 except the year 2009. The 2000s is the driest decade for Belg and Bega rainfall. The proportion of positive and negative anomalies for Belg and Bega rainfalls are 44% and 56% of the observations, respectively. Positive anomalies for Kiremt rainfall account for 53% of observations. The 1990s is the wettest decade.

3.2 Temperature trends in Alwero watershed

In the watershed, the mean annual temperature is 25.0°C. Over the study period, the lowest and highest mean annual temperatures are experienced in 2016. The lowest temperature is 14.5°C (January) with standard deviation of 0.096 and coefficient of variation of 0.05. The highest temperature is 39.3°C (March) with standard deviation of 0.1 and coefficient of variation of 0.03. Mean annual minimum temperature ranges from 16.7°C (2001) to 18.5°C (1984), and the long term mean is 17.5°C with standard deviation of 0.4 and coefficient of variation of 0.03. Mean annual maximum temperature ranges from 31.4°C (2008) to 33.2°C (1999), and the long term mean is 32.5°C with standard deviation of 0.46 and coefficient of variation of 0.01.

Unexpectedly, the mean annual minimum and maximum temperatures show statistically non-significant declining trends. Statistically non-significant but decreasing trends in all seasons are also observed in the minimum temperature. Bega season experienced statistically significant deceasing trend in the maximum temperature at p = 0.01 level. Belg season experienced statistically non-significant but decreasing trend in the maximum temperature. Statistically non-significant but increasing trend is also observed for the Kiremt (Table 3).

Temperature (°C)	Annual LT	Belg LT	Bega LT	Kiremt LT				
Minimum	17.51	-0.06	18.50	-0.17	17.05	-0.014	17.3	-0.04
Maximum	32.46	-0.01	34.45	-0.09	33.17	-0.24**	30.07	0.06

** = Significant at 0.01 level; LT = linear trend (°C/10 year)

Our finding of declining trends in the mean maximum and minimum temperatures contradicts the results reported by NMA (2007), McSweeney et al. (2008), Taye and Zewdu (2012), Ayalew et al. (2012), Mengistu et al. (2013), Mekasha et al. (2014), Addisu et al. (2015), Alemayehu and Bewket (2017a), Asaminew et al. (2017),...
Suryabhagavan (2017), Haile et al. (2019) who reported warming trends in the minimum and maximum temperatures in different parts of the country. Our research is unable to explain this result.

Figure 5 shows the year-to-year variability in the mean annual minimum temperature. The 1980s was the warmest decade compared to the 1990s and 2000s. Positive and negative anomalies account for 38% and 62% of the total observations, respectively. Seasonal anomalies in the minimum temperature have similar patterns to anomalies in the annual minimum temperature. *Kiremt* season anomalies are positive since 2005 except the years 2008 and 2011. The maximum number of negative anomalies is observed in *Bega* season (59%).

The year-to-year variability in the mean annual maximum temperature is shown in Fig. 6. From 1998–2005 standardized anomalies are positive, and then negative since 2006 except 2016. Positive and negative anomalies account for 44% and 56% of the total observations, respectively. The 2000s are cooler than the preceding decade. Seasonal anomalies in the maximum temperatures have similar patterns to mean annual maximum temperatures. Seasonal negative temperature anomalies range from 44% (*Belg*) to 53% (*Bega*). Cooling conditions are observed for *Bega* season from 2006–2015.

3.2.1. Spatial patterns of temperature

Figure 7 shows the spatial distribution of mean maximum and minimum temperatures. The mean maximum and minimum temperatures decrease from west to east. Large proportion of Alwero watershed (44.5%) experiences mean minimum temperature of 18.1 to 20.5°C. About 39.4% of the area experiences mean minimum temperature of 16.1 to 18°C. A small proportion of the watershed (2.4%) experiences mean minimum temperature of 11.1 to 12°C. About 47% of the watershed experiences mean maximum temperature of 33.1 to 36°C. Another large proportion of the watershed (38%) experiences mean maximum temperature of 30.1 to 33°C. Less than 3% of the watershed experiences maximum temperature of 22.7 to 24°C.

4. Conclusions

This study presents analysis of spatiotemporal variability and trends in rainfall and temperature in Alwero watershed, western Ethiopia. The key findings and conclusions are the following;

1. **Mean annual rainfall of Alwero watershed is 1665.5 mm.** More than half of the watershed receives annual rainfall of 1550–1700 mm. Annual and seasonal rainfall show low inter-annual variability except for *Bega* which shows moderate coefficient of variation. Annual and *Bega* rainfall shows statistically significant increasing trend at \(p = 0.01 \) level. *Belg* rainfall shows statistically non-significant increasing trend. There is no clear trend in *Kiremt* rainfall. Regarding monthly rainfall trends, May, November and October showed statistically significant increasing trends while March showed statistically significant decreasing trend. Positive and negative anomalies in annual rainfall account for 53% and 47% of the total observations, respectively. About 29% of the total observations is under the different drought categories. The 1990s is wet compared to the 1980s and 2000s.
2. **The mean annual temperature of the watershed is 25°C with a standard deviation of 0.31 and coefficient of variation of 0.01.** In the watershed, mean annual minimum and maximum temperatures show statistically non-significant decreasing trends. The year-to-year variability in the mean annual minimum and maximum temperatures showed that the 2000s is cooler than the preceding decades. Seasonal anomalies in the mean minimum and maximum temperatures have similar patterns to mean annual minimum and maximum temperatures. The mean maximum and minimum temperatures decrease from west to east. Large proportion of Alwero watershed (44.5%) experiences mean minimum temperature of 18.1 to 20.5°C. Another large proportion of the watershed (38%) experiences mean maximum temperature of 30.1 to 33°C.
3. **Overall, it is shown that climatic variability and trends are highly localized in the country; hence local level**
studies such as this are important for practical decision making in agriculture, water management, and climate change adaptation planning.

Abbreviations

NMA

National Meteorological Agency

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

No potential conflict of interest was reported by the authors.

Funding

This study received no external funding

Availability of data and materials

- The datasets used in the study are available in the National Meteorological Agency (NMA) of Ethiopia. Access to NMA data can be allowed based on justifiable request. However, the datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

MM has made substantial contributions in conception of the research, acquisition of data and preparation of maps. AA interpreted the results and writes the manuscript. WB and MA reviewed and edited the manuscript.

Acknowledgements

The authors would like to thank the National Meteorological Agency of Ethiopia for providing the climate data.

Authors’ information

1Department of Geography & Environmental Studies, Debre Berhan University. 2Department of Geography & Environmental Studies, Addis Ababa University.

References

1. Addisu S, Selassie GY, Fissha G, Gedif B (2015) Time series trend analysis of temperature and rainfall in
Lake Tana Sub-basin, Ethiopia. Environ Syst Res 4(25):1–12
2. Agnew CT, Chappel A (1999) Drought in the Sahel. GeoJournal 48(4):299–311
3. Alemayehu A, Bewket W (2016) Local climate variability and crop production in the central highlands of Ethiopia. Environmental Development 19:36–48
4. Alemayehu A, Bewket W (2017a) Local spatiotemporal variability and trends in rainfall and temperature in the central highlands of Ethiopia. Geografiska Annaler: Series A Physical Geography 99(2):85–101
5. Alemayehu A, Bewket W (2017b) Determinants of smallholder farmers’ choice of coping and adaptation strategies to climate change and variability in the central highlands of Ethiopia. Environmental Development 24:77–85
6. Asaminew TG, Araya A, Atkilt G, Solomon H (2017) Modelling the potential impact of climate change on cotton (Gossypium hirsutum) production in northeastern semi-arid Afar and western Tigray regions of Ethiopia. J Earth Sci Clim Change 8:390
7. Ayalew D, Tesfaye K, Mamo G, Yitaferu B, Bayu W (2012) Variability of rainfall and its current trend in Amhara region, Ethiopia. Afr J Agric Res 7(10):475–1486
8. Bekele-Biratu E, Thiaw WM, Korecha D (2018) Sub-seasonal variability of the Belg rains in Ethiopia. Int J Climatol 38(7):2940–2953
9. Bewket W, Conway D (2007) A note on the temporal and spatial variability of rainfall in the drought-prone Amhara region of Ethiopia. International Journal of Climatology: A Journal of the Royal Meteorological Society 27(11):1467–1477
10. Chen H, Sun J, Chen X (2014) Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models. International journal of climatology 34(8):2730–2748
11. Cheung WH, Senay GB, Singh A (2008) Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. International Journal of Climatology: A Journal of the Royal Meteorological Society 28(13):1723–1734
12. CSA (Central Statistical Agency) (2013) “Population Projection of Ethiopia for All Regions at Woreda Level from 2014–2017”. The Federal Democratic Republic of Ethiopia, Addis Ababa
13. Davidson A (1983) Reconnaissance geology and geochemistry of Southwest Ethiopia. Ethiopian Institute of Geological Surveys, Addis Ababa, Ethiopia
14. De Luis M, Raventós J, González-Hidalgo JC, Sánchez JR, Cortina J (2000) Spatial analysis of rainfall trends in the region of Valencia (East Spain). International Journal of Climatology: A Journal of the Royal Meteorological Society 20(12):1451–1469
15. Dinku T, Hailemariam K, Maimdent R, Tarnavsky E, Connor S (2014) Combined use of satellite estimates and rain gauge observations to generate high-quality historical rainfall time series over Ethiopia. Int J Climatol 34(7):2489–2504
16. Engida AN, Esteves M (2011) Characterization and disaggregation of daily rainfall in the Upper Blue Nile Basin in Ethiopia. Journal of Hydrology: 399(3–4):226–234
17. Gamachu D (1988) Some patterns of altitudinal variation of climatic elements in the mountainous regions of Ethiopia. Mountain Research and Development: 131–138
18. Gebrechorkos SH, Hülsmann S, Bernhofer C (2020) Analysis of climate variability and droughts in East Africa using high-resolution climate data products. Global Planet Change 186:103130
19. Haile GG, Tang Q, Sun S, Huang Z, Zhange Z, Liu X (2019) Droughts in East Africa: causes, impacts and resilience. Earth-Sci Rev 193:146–161
20. Jury MR, Funk C (2013) Climatic trends over Ethiopia: regional signals and drivers. Int J Climatol 33(8):1924–1935
21. Urgessa GK (2013) Spatial and temporal uncertainty of rainfall in arid and semi-arid areas of Ethiopia. Science Technology Arts Research Journal 2(4):106–113
22. Korecha D (2013) Characterizing the predictability of seasonal climate in Ethiopia. PhD thesis, University of Bergen, Norway
23. McSweeney C, New M, Lizcano G (2008) UNDP climate change country profiles: Ethiopia. Profiles for 52 countries
24. Mekasha A, Tesfaye K, Duncan AJ (2014) Trends in daily observed temperature and precipitation extremes over three Ethiopian eco-environments. Int J Climatol 34:1990–1999
25. Mengistu D, Bewket W, Lal R (2013) Recent spatiotemporal temperature and rainfall variability and trends over the Upper Blue Nile River Basin, Ethiopia. Int J Climatol 34(7):2278–2292
26. NMA (National Meteorological Agency) (1996) Climate & agroclimate resources of Ethiopia. NMA Meteorological Research Report Series, Vol.1, No.1, Addis Ababa
27. NMA (National Meteorological Agency) (2001) Initial National Communication of Ethiopia to the United Nations Framework Convention on Climate Change (UNFCCC). Addis Ababa, Ethiopia
28. NMA (National Meteorological Agency) (2007) Climate change: National Adaptation Program of Action (NAPA) of Ethiopia. Ministry of Water Resources, Addis Ababa
29. Omondi PAO, Awange JL, Forootan E, Ogallo LA, Barakiza R, Girmaw GB, ... Kilavi M (2013) Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int J Climatol 34(4):1262–1277
30. Osman M, Sauerborn P (2002) A preliminary assessment of characteristics and long term variability of rainfall in Ethiopia—Basis for sustainable land use and resource management. Challenges to organic farming and sustainable land use in the tropics and subtropics, Deutscher Tropentag
31. Rahmato D (2011) Land to investors: Large-scale land transfers in Ethiopia (No. 1). African Books Collective
32. Seleshi Y, Zanke U (2004) Recent changes in rainfall and rainy days in Ethiopia. International Journal of Climatology: A Journal of the Royal Meteorological Society 24(8):973–983
33. Shanko D, Camberlin P (1998) The effects of the Southwest Indian Ocean tropical cyclones on Ethiopian drought. International Journal of Climatology: A Journal of the Royal Meteorological Society 18(12):1373–1388
34. Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu KL (2018) A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev Geophys 56(1):79–107
35. Suryabhagavan KV (2017) GIS-based climate variability and drought characterization in Ethiopia over three decades. Weather climate extremes 15:11–23
36. Taye M, Zewdu F (2012) Spatio-temporal variability and trend of rainfall and temperature in Western Amhara, Ethiopia: a GIS approach. Glob Adv Res J Geogr Reg Plan 1(4):65–82
37. Verdin J, Funk C, Senay G, Choularton R (2005) Climate science and famine early warning. Philosophical Transactions of the Royal Society B: Biological Sciences 360(1463):2155–2168
38. Viste E, Korecha D, Sorteberg A (2013) Recent drought and precipitation tendencies in Ethiopia. Theoret Appl Climatol 112(3–4):535–551
39. Wagesho N, Goel NK, Jain MK (2013) Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrol Sci J 58(2):354–373
40. Yitbarek T, Kibret K, Beyene S (2017) Physical Land Suitability Evaluation for Irrigation in the Lower Alwero River Area of Abobo, Western Ethiopia. American Journal of Agriculture Forestry 5(3):60–64
41. Zabel F, Putzenlechner B, Mauser W (2014) Global agricultural land resources a high resolution suitability, evaluation and its perspectives until 2100 under climate change conditions. PloS One 9(9):e107522
Figure 1

Location of the study area.

![Figure 1](image)

Figure 2

Monthly rainfall (in cm), contribution to the annual total (in %), Monthly rainfall trends (mm/10yr), and contribution to the annual rainfall trend (in %) left in Alwero watershed.

![Figure 2](image)
Figure 3
Temporal variations in the seasonal and annual rainfall anomalies in Alwero watershed.
Figure 4
Spatial distribution of annual seasonal and rainfall in Alwero watershed.
Figure 5
Anomalies in the mean minimum temperature in Alwero watershed.
Figure 6

Anomalies in the mean maximum temperature in Alwero watershed.
Figure 7. Spatial distribution of maximum (left) and minimum (right) temperatures in Alwero watershed.