Equational theories of profinite structures

Michał Skrzypczak

University of Warsaw

August 23’rd 2011

http://www.mimuw.edu.pl/~mskrzypczak/docs/
Note

Things that I show are nothing remarkably new. This is rather a point of view than a new piece of theory.
Note
Things that I show are nothing remarkably *new*. This is rather a point of view than a new piece of theory.

Profinite structures
Add *virtual* objects to our world to make it more *complete* (e.g. compact).
Note
Things that I show are nothing remarkably new. This is rather a point of view than a new piece of theory.

Profinite structures
Add *virtual* objects to our world to make it more *complete* (e.g. compact).

Equational theories
What properties of languages can be expressed by (some) equations?
Definition

A framework is a pair \(\langle \Phi, W \rangle \) such that:

- \(\Phi \) is a countable set of recognisers \(\varphi \in \Phi \),
- \(W \) is a countable set of objects \(w \in W \),
- a recogniser \(\varphi \in \Phi \) is a function \(\varphi : W \to K_\varphi \) to a finite set \(K_\varphi \).
Definition

A framework is a pair \(\langle \Phi, \mathcal{W} \rangle \) such that:

- \(\Phi \) is a countable set of recognisers \(\varphi \in \Phi \),
- \(\mathcal{W} \) is a countable set of objects \(w \in \mathcal{W} \),
- a recogniser \(\varphi \in \Phi \) is a function \(\varphi : \mathcal{W} \to K_\varphi \) to a finite set \(K_\varphi \).

Running example

Let \(\mathcal{W} = A^* \) be a set of all finite words and let \(\Phi \) be the set of all homomorphisms into finite monoids: for every finite monoid \(M \) and any homomorphism \(\varphi : A^* \to M \) let \(\varphi \in \Phi \).
A set $L \subseteq \mathbb{W}$ is \textit{recognisable} if there exists a recogniser $\varphi \in \Phi$ and a set $V \subseteq K_\varphi$ such that

$$L = \varphi^{-1}(V).$$
Definition

A set $L \subseteq W$ is *recognisable* if there exists a recogniser $\varphi \in \Phi$ and a set $V \subseteq K_\varphi$ such that

$$L = \varphi^{-1}(V).$$

Assumptions

Additionally we assume:

a) Each object $w \in W$ is totally described by some recogniser (that is $\{w\}$ is recognisable).

b) Recognisable sets are closed under intersections.
Examples

- Let \mathcal{W} be the set of all finite models of a fixed relational signature Σ.
- Let Φ be the set of all first order formulas over Σ.
- A formula φ is a function $\varphi : \mathcal{W} \to \{\bot, \top\}$.

Examples

- Let \mathcal{W} be the set of all finite models of a fixed relational signature Σ.
- Let Φ be the set of all first order formulas over Σ.
- A formula φ is a function $\varphi : \mathcal{W} \rightarrow \{\bot, \top\}$.

- Let \mathcal{W} be the set of all finite labelled trees over a finite alphabet A.
- Let Φ be the set of all morphisms into finite tree algebras.

Every total Turing machine M can be treated as a function $M : \mathcal{W} \rightarrow \{\text{accept}, \text{reject}\}$.
Examples

- Let \mathcal{W} be the set of all finite models of a fixed relational signature Σ.
- Let Φ be the set of all first order formulas over Σ.
- A formula φ is a function $\varphi : \mathcal{W} \to \{\bot, \top\}$.

- Let \mathcal{W} be the set of all finite labelled trees over a finite alphabet A.
- Let Φ be the set of all morphisms into finite tree algebras.

- Let \mathcal{W} be the set of all finite words A^*.
- Let Φ be the set of all total (halting) Turing machines.
- Every total Turing machine M can be treated as a function $M : \mathcal{W} \to \\{\text{accept, reject}\}$.
Definition

Let

\[X = \prod_{\varphi \in \Phi} K_{\varphi}. \]

\(X \) is a compact topological space. Let

\[w \in W \mapsto \mu(w) = (\varphi_1(w), \varphi_2(w), \varphi_3(w), \ldots) \]

Since \(\mu \) is 1-1 we can identify \(w \) with \(\mu(w) \) and write \(W \subseteq X \).

Let

\[\hat{W} = cl(W) \subseteq X. \]
For an object $w \in \mathbb{W}$ the image

$$
\mu(w) = (\varphi_1(w), \varphi_2(w), \ldots) \in X
$$

is a list of values of all recognisers on w. It describes all important properties of w.
For an object \(w \in \mathbb{W} \) the image

\[
\mu(w) = (\varphi_1(w), \varphi_2(w), \ldots) \in X
\]

is a list of values of all recognisers on \(w \). It describes all important properties of \(w \).

The image \(\mu(\mathbb{W}) \subseteq X \) is a set of all possible (realisable) properties of objects.
For an object $w \in \mathbb{W}$ the image

$$\mu(w) = (\varphi_1(w), \varphi_2(w), \ldots) \in X$$

is a list of values of all recognisers on w. It describes all important properties of w.

The image $\mu(\mathbb{W}) \subseteq X$ is a set of all possible (realisable) properties of objects.

A virtual object $w' \in \hat{\mathbb{W}} \setminus \mathbb{W}$ is just a list of its properties (v_1, v_2, \ldots) that are finitely realisable by real objects.
Let \(\langle \Phi, \mathbb{W} \rangle \) be the framework of directed finite graphs and first order formulas.
Examples

- Let $\langle \Phi, \mathcal{W} \rangle$ be the framework of directed finite graphs and first order formulas.
- Let w_n be an empty n-vertex graph.
Examples

- Let $\langle \Phi, \mathbb{W} \rangle$ be the framework of directed finite graphs and first order formulas.
- Let w_n be an empty n-vertex graph.
- There is an *virtual* graph $w_\infty \in \widehat{\mathbb{W}}$ such that $w_n \rightarrow w_\infty$.

Observe that w_∞ is not so virtual — it can be seen as infinite empty graph. This is not a coincidence — Compactness Theorem.
Examples

- Let \(\langle \Phi, \mathbb{W} \rangle \) be the framework of directed finite graphs and first order formulas.
- Let \(w_n \) be an empty \(n \)-vertex graph.
- There is an \textit{virtual} graph \(w_\infty \in \hat{\mathbb{W}} \) such that \(w_n \rightarrow w_\infty \).
- Observe that \(w_\infty \) is not so \textit{virtual} — it can be seen as infinite empty graph.
Let $\langle \Phi, \mathbb{W} \rangle$ be the framework of directed finite graphs and first order formulas.

Let w_n be an empty n-vertex graph.

There is an *virtual* graph $w_\infty \in \hat{\mathbb{W}}$ such that $w_n \to w_\infty$.

Observe that w_∞ is not so virtual — it can be seen as infinite empty graph.

This is not a coincidence — Compactness Theorem.
Fact

All recognisers naturally extend to \hat{W} as projections.
Properties

Fact

All recognisers naturally extend to \hat{W} as projections.

Fact

Profinitely recognisable sets are exactly closures of normal recognisable sets.
Properties

Fact

All recognisers naturally extend to \(\hat{W} \) as projections.

Fact

Profinitely recognisable sets are exactly closures of normal recognisable sets.

Fact

A set \(L \subseteq \hat{W} \) is recognisable iff it is closed and open.
Definition

For $u, v \in \hat{W}$ we say that a recognisable language $L \subseteq \hat{W}$ satisfies equation $u \rightarrow v$ iff.

$$u \in L \Rightarrow v \in L.$$
Definition

For $u, v \in \widehat{W}$ we say that a recognisable language $L \subseteq \widehat{W}$ satisfies equation $u \rightarrow v$ iff.

$$u \in L \Rightarrow v \in L.$$

A set of equations \mathcal{E} defines the family of all recognisable languages that satisfy all those equations.
Definition

For $u, v \in \hat{W}$ we say that a recognisable language $L \subseteq \hat{W}$ satisfies equation $u \rightarrow v$ iff.

$$u \in L \Rightarrow v \in L.$$

A set of equations \mathcal{E} defines the family of all recognisable languages that satisfy all those equations.

Theorem

A family of recognisable languages \mathcal{L} is definable by some equations \mathcal{E} iff \mathcal{L} is a lattice.
A family of recognisable languages \mathcal{L} is definable by some equations \mathcal{E} iff \mathcal{L} is a lattice.
Theorem

A family of recognisable languages \mathcal{L} is definable by some equations \mathcal{E} iff \mathcal{L} is a lattice.

Lemma

If $I \subseteq \mathcal{L}$ and $K = \bigcup I$ is recognisable then $K \in \mathcal{L}$.
If $I \subseteq \mathcal{L}$ and $K = \bigcap I$ is recognisable then $K \in \mathcal{L}$.
Theorem

A family of recognisable languages \mathcal{L} is definable by some equations \mathcal{E} iff \mathcal{L} is a lattice.

Lemma

If $I \subseteq \mathcal{L}$ and $K = \bigcup I$ is recognisable then $K \in \mathcal{L}$.
If $I \subseteq \mathcal{L}$ and $K = \bigcap I$ is recognisable then $K \in \mathcal{L}$.

Sketch of the proof (\iff)

Take any lattice \mathcal{L} and let \mathcal{E} contain all equations satisfied by \mathcal{L}. Take any language L satisfying all \mathcal{E} and show that $L \in \mathcal{L}$. Use above Lemma to approximate L from inside and from outside. If it fails, then there is an equation $u \rightarrow v$ not satisfied by L — a contradiction.
Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. Duality and equational theory of regular languages. In ICALP, pages 246–257, 2008.

Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. A topological approach to recognition. In Automata, Languages and Programming, volume 6199 of LNCS, pages 151–162. Springer Berlin / Heidelberg, 2010.