Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Evolutionary Warning System for COVID-19 Severity: Colony Predation Algorithm Enhanced Extreme Learning Machine

Beibei Shi, Hua Ye, Long Zheng, Juncheng Lyu, Cheng Chen, Ali Asghar Heidari, Zhongyi Hu, Huiling Chen and Peiliang Wu

A Affiliated People’s Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
b Department of Pulmonary and Critical Care Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing 325600, China
c Weifang Medical University School of Public Health, China
d Center of Clinical Research, Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
e School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
f College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
g Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000

ARTICLE INFO

Keywords:
Coronavirus Disease 2019
Biochemical indexes
Colony predation algorithm
Kernel Extreme Learning Machine
Warning system
COVID-19

ABSTRACT

Coronavirus Disease 2019 (COVID-19) was distributed globally at the end of December 2019 due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early diagnosis and successful COVID-19 assessment are missing. Clinical care is ineffective, and deaths are high. In this study, we investigate whether the level of biochemical indicators helps to discriminate and classify the severity of COVID-19 using the machine learning method. This research creates an efficient intelligence method for the diagnosis of COVID-19 from the perspective of biochemical indexes. The framework is proposed by integrating an enhanced new stochastic called the colony predation algorithm (CPA) with a kernel extreme learning machine (KELM), abbreviated as ECPA-KELM. The core feature of the approach is the ECPA algorithm which incorporates the two main operators that have been abstained from the gray wolf optimizer and moth-flame optimizer to improve and restore the CPA research functions and are simultaneously used to optimize the parameters and to select features for KELM. The ECPA output is checked thoroughly using IEEE CEC2017 benchmark to verify the capacity of the proposed methodology. Finally, in the diagnosis of COVID-19 using biochemical indexes, the designed ECPA-KELM model and other competing KELM models based on other optimization are used. Checking statistical results will display improved predictive properties for all metrics and higher stability. ECPA-KELM can also be used to discriminate and classify the severity of the COVID-19 as a possible computer-aided method and provide effective early warning for the treatment and diagnosis of COVID-19.

1. Introduction

Coronavirus Disease 2019 (COVID-19) was found to have spread around the world in late December 2019 as a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1, 2]. COVID-19 has shown an intensive global spread, and thus the danger to human health is serious. As of 11 June 2020, COVID-19 was responsible for 7,273,958 confirmatory cases worldwide and 413,372 deaths [3]. COVID-19’s clinical features may echo other coronavirus diseases, including Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). Globally, the current human mortality rate for infection with SARS-CoV-2 is 3.4% [4]. However, the mortality rate of serious COVID-19 patients in Wuhan was as high as 10% - 40% [5]. Therefore, early and accurate identification of severe COVID-19 patients and rapid assessment of the severity of the disease are important for determining individualized treatment plans for COVID-19 patients and assisting e-healthcare systems [6]. To solve this problem, we have studied cheap and common hematologic markers as indicators of the severity of COVID-19 and poor clinical outcomes. However, it is hard to differentiate between severe COVID-19 patients based on a single indicator from non-severe COVID-19 patients. To do so, we integrate multiple indicators to develop a new prediction model for early recognition and classify the severity of COVID-19.

In recent years, artificial intelligence (AI) has been commonly used in different life sciences [7, 8, 9, 10, 11]. For instance, in the field of ophthalmology, the ability of AI to distinguish diseases has reached the level of an expert [12]. AI can assist radiologists to make the qualitative diagnosis of benign and malignant thyroid nodules in the field of radiology [13]. With the rapid development of AI, machine learning (ML) technology has been widely used for diagnosis of disease, developed predictive models assisting clinical decision-making in medical fields, and quickly identified the key factors associated with the diseases [14, 15, 16, 17]. Therefore, machine learning-based AI technology is becoming an increasingly indispensable computational tool in the
medical field. Similarly, machine learning-based technology has been applied to in disease diagnosis [18]. Computer tomography (CT) or x-ray image recognition[19, 20], disease epidemic, surveillance, and control[21, 22] in the course of the COVID-19 outbreak. Ebadi et al.[23] used multiple sources (PubMed and ArXiv) to define the scene of the current COVID-19 research with multiple learning machines by identifying latent subjects and analyzing the evolution, the similarities between publications, and sentiment of the research topics developed. Three NLP algorithms have been developed to trace positive CT imaging of typical SARS-CoV-2 viral inflammatory diseases [24]. A recent data collection of COVID-19 CT scans, known as COVID-CT-MD, consists not only of COVID-19 cases but also stable and community-acquired pneumonia (CAP) participants that can assist in developing advanced machine learning and DNN solutions [25]. Chowdhury et al.[26] developed an early warning method to predict mortality risk in machine learning COVID-19 patients. The random vulnerability model used by the forest machine for the creation of a novel COVID-19 Vulnerability Index (C19VI)[27]. In brief, machine learning can be extremely efficient in the analysis of COVID-19 before diagnosis and disease data.

This research is the first time an evolutionary kernel extreme learning machine is built to diagnose COVID-19 from a biochemical index perspective.

For the first time, a system to diagnose COVID-19 from a biochemical index point of view is designed for an evolutionary kernel extreme learning machine in this study. The two core operators use this proposed method (ECPA-KELM) to improve and re-establish the search capabilities for colony predation algorithm (CPA), abstracted from the Grey Wolf and Moth Flame Optimizers, which can provide for considerable convergence and the potential to spring from the stagnant local population, ECPA is designed to simultaneously perform diagnosis of COVID-19 parameter optimization and selection features of KELM. The ECPA output is first thoroughly verified through IEEE CEC2017 benchmark test cases [28] to verify the capacity of the proposed methodology. Lastly, COVID-19 clinical data was used with biochemical indexes to develop the ECPA-KELM and other competitor KELM models based on other optimization algorithms. By analyzing the experimental findings, the ECPA core compensation is verified, and a solid ECPA-KELM in terms of various performance assessment indexes to determine the COVID-19 status can be achieved. The results of the test showed that the ECPA-KELM proposed was seemingly beneficial.

The key contribution in this analysis is as follows:

- To improve and restore the CPA search capability (ECPA), both core operators have taken away the gray wolf optimizer and moth-flame optimizer.

- The proposed hybrid ECPA has achieved a significant impact on CEC2017 optimization tasks.

- For the first time, the ECPA proposed successfully solved KELM's parameter optimization and feature selection simultaneously.

- An effective ECPA-KELM technique is used to help diagnose COVID-19 from the perspective of biochemical indicators.

The paper was organized accordingly—the materials and procedures described in paragraph 2. The proposed ECPA algorithm is presented in Section 3. Section 4 describes the proposed ECPA-KELM model. Section 5 describes the designs of the experiments. Section 6 displays the results of CEC2017 ECPA and the diagnosis of COVID-19 data set simulations and ECPA-KELM. Section 7 deals with the results. The conclusion and trajectory of the future are shown in Section 8.

2. Methods and materials

2.1. Collecting data

The study included COVID-19 patients at Wenzhou Medical University affiliated Yueqing Hospital, Wenzhou, China. The research was accepted by the Ethics Committee of affiliated Yueqing Hospital, Wenzhou Medical University (No. 202000002 Ethics), and by all COVID-19 patients, an informed consent document was signed. A total of 51 COVID-19 patients were included in the analysis in retrospect between January 21 and March 20, 2020. For each COVID-19 patient, information on gender, age, biochemical index, and blood electrolyte was collected. Biochemical indexes and blood electrolytes were determined using an automated biochemical analyzer (BS-190; Mindray, Shenzhen, China) in the laboratory of clinical biochemistry, the Affiliated Yueqing Hospital of Wenzhou Medical University.

In our research, COVID-19 was diagnosed based on criteria developed by the Peoples’ Republic of China National Health Commission. Once the diagnosis of COVID-19 was confirmed, we divided patients into four categories according to the clinical manifestations: mild, general, severe, and critically ill patients. Clinical characteristics of mild COVID-19 patients include no symptoms or mild symptoms, no lung involvement. Clinical characteristics of general COVID-19 patients include respiratory symptoms (fever, dry cough, fatigue, nose congestion, runny nose, sore throat), gastrointestinal symptoms (nausea, vomiting, diarrhea), and pulmonary disease SARS-CoV-2. Clinical criteria for severe COVID-19 patients include at least one of the following: a) patient exhibit dyspnea and respiratory rate ≥ 30 breaths/minute; b) the levels of blood oxygen saturation ≤ 93%; c) the oxygenation index (OI) ≤ 300 mmHg. Clinical criteria for critically ill COVID-19 patients include at least one of the following: a) patient develop acute respiratory failure requiring mechanical ventilation; b) patient develop shock; c) patient present with multiple organ failure requiring treatment in an intensive care unit (ICU). Mild, general COVID-19 patients were categorized into one group and named non-severe COVID-19 group, and severe, critically ill patients were categorized into one group and named severe COVID-19 group.
Table 1
List of characteristics and meanings used in this analysis

No.	Feature	Abbreviation
F1	Gender	Gender
F2	Age	Age
F3	Total bilirubin	TBIL
F4	Direct bilirubin	DBIL
F5	Alanine amino-	ALT
	transferase	
F6	Total protein	TP
F7	Albumin	ALB
F8	Globulin	GLB
F9	Albumin/Globulin	A/G
F10	Alkaline phos-	ALP
	phatase	
F11	Gamma-glutamyl-	GGT
	transferase	
F12	Aspartate amino-	AST
	transferase	
F13	Creatine kinase	CK
F14	Lactate dehydro-	LDH
	genase	
F15	Creatine kinase	CK-MB
F16	Potassium ion	K⁺
F17	Sodium ion	Na⁺
F18	Chloride ion	Cl⁻
F19	Blood urea nitrogen	BUN
F20	Creatinine	Cr
F21	Uric acid	UA
F22	Inorganic phos-	P⁺
	phorus	
F23	Blood magnesium	Mg²⁺
F24	Calcium ion	Ca²⁺
F25	Troponin I	Tnl

2.1.1. Statistical results

Statistical analysis using SPSS software was performed. Age, biochemical index, and blood electrolyte composition were tested using an independent-samples t-test between the non-severe COVID-19 and severe COVID-19 groups. Age, biochemical index, and blood electrolyte are presented as mean ± standard deviation (x ± SD) for continuous variables. The patient information, biochemical index, and blood electrolyte of COVID-19 patients have been listed in Table 1. The statistical results of age, biochemical index, and blood electrolyte were shown in Table 2.

2.2. Colony predation algorithm (CPA)

Optimization methods, in addition to other cases in healthcare systems, have found their value and obtained great attention in many fields such as scheduling problems [29, 30], image segmentation [31, 32], fault diagnosis of rolling bearings [33, 34], bankruptcy prediction [35, 36, 37], wind speed prediction [38], engineering design problems [39, 40, 41, 42]. Also, they have shown more variety of potentials in the hard maximum satisfiability problem [43, 44], parameter optimization [45, 46, 47, 48], PID optimization control [49, 50, 51], gate resource allocation [52, 53], feature selection [54, 55, 56, 57, 58], medical data classification [59, 60, 61, 62], detection of foreign fiber in cotton [63, 64], and prediction problems in educational field [65, 66, 67, 68, 69]. One of the recent methods is CPA. The dominant idea of CPA is the predation process and predation strategy of group of hunting animals. The algorithm mimics the supportive behavior of social animals and the characteristics of selective hunting. Thus this algorithm is based on the coexistence of social animals. The main steps are composed of communication and collaboration, disperse food, encourage food, supporting closest individual, and searching for the food. The following formulas represent individual cooperative communication and food searching behavior:

$$\vec{X}_j(t + 1) = r \cdot \vec{X}_j(t) + (1 - r) \cdot (\vec{X}_1(t) + \vec{X}_2(t))/2$$ \hspace{1cm} (1)

where r is in the range of $[0,1]$, $\vec{X}_j(t)$ is the individual looking for food, \vec{X}_1 and \vec{X}_2 are the two closest to prey in the j-th dimension, $j \in 1, 2, \ldots, \text{dim}$, $\vec{X}_j(t + 1)$ is the latest updated position of the individual. Here, the predation strategy displayed by individuals in search is simulated mathematically as $\vec{X}(t + 1) = \vec{X}_{\text{best}} - S \cdot (r_1(ab - \text{lb}) + \text{lb})$, where $\vec{X}(t + 1)$ is the position of a population and \vec{X}_{best} is the position of food, S represents the strength of prey, and its absolute value decreases from a to 0 with the number of evaluations, r_1 is the $[R_1; R_2; R_3; \ldots; R_j]$, $j = \text{dim}$ represents the dimension of the population, a, and lb represent the upper and lower bounds. It should be noted that S is as follows:

$$S_0 = a - t \cdot \left(\frac{a}{N} \right) \quad S = 2 \cdot S_0 - r_2 - S_0$$ \hspace{1cm} (2)

where N is the number of individuals, S_0 decreases from a to 0 with the number of evaluations and t represents the current number of evaluations, r_2 is a random number of $[0,1]$.

The hunting group will surround the single prey and keep approaching the prey. This stage can be represented by mathematical simulation as follows:

$$\vec{X}(t + 1) = \vec{X}_{\text{best}} - 2 \cdot S \cdot D \cdot e^j \cdot \tan \left(\frac{t \cdot \pi}{4} \right)$$ \hspace{1cm} (3)

where D is the distance between the current individual and the prey as $D = |\vec{X}_{\text{best}} - \vec{X}(t)|$. Mathematical formulae describe the probabilities of implementing these two predatory strategies as below:

$$\vec{X}(t + 1) = \begin{cases}
\vec{X}_{\text{best}} - S \cdot (r_1(ab - \text{lb}) + \text{lb}) & r_2 \geq 0.5 \\
\vec{X}_{\text{best}} - 2 \cdot S \cdot D \cdot e^j \cdot \tan \left(\frac{t \cdot \pi}{4} \right) & r_2 < 0.5
\end{cases}$$ \hspace{1cm} (4)

Since the group can experience problems in hunting beasts, the closest person calls for peer help. In mathematical formula, its policy can be expressed as $\vec{X}(t + 1) = \vec{P}_{\text{nearest}}$, where \vec{P}_{nearest} nearest is the location of the nearest predator.
in the support group, \bar{p} is the predator near the prey nearby. The searching for the food can be as:

$$D_1 = abs\left(2 \cdot r_a \cdot \bar{X}_{\text{rand}} - \bar{X}_i(t)\right)$$

$$\bar{X}(t + 1) = \bar{X}_{\text{rand}} - S \cdot D_i$$

(5)

where D_1 denotes the distance of random group movement, r_a is a random number of $[0, 1]$, and \bar{X}_{rand} is a new individual position formed randomly by individuals. See original paper for detailed details[70].

2.3. Two core operators to be introduced

One core operator is a grey wolf optimizer consisting of social hierarchy, surrounding beasts, hunting, attacking prey and searching for projection pieces. The key concept is the use of hierarchy. This is the core mathematical model:

$$\vec{D}_a = |\vec{C}_1 \cdot \vec{X}_a - \bar{X}_i|, \quad \vec{D}_b = |\vec{C}_2 \cdot \vec{X}_b - \bar{X}_i|, \quad \vec{D}_c = |\vec{C}_3 \cdot \vec{X}_c - \bar{X}_i|$$

(6)

where the \vec{D} means the distance from the prey to the grey wolves, \vec{A} and \vec{C} are vectors of the coefficient $\vec{A} = 2 \vec{a} \cdot \vec{r}_1 - \vec{a}$ and $\vec{C} = 2 \cdot \vec{r}_2$, \vec{X}_a, \vec{X}_b and \vec{X}_c are three wolves nearest to the current prey, the t represents the present version. You may refer to more info [71].

$$\bar{X}_1 = \bar{X}_a - \bar{A}_1 \cdot (\vec{D}_a), \quad \bar{X}_2 = \bar{X}_b - \bar{A}_2 \cdot (\vec{D}_b), \quad \bar{X}_3 = \bar{X}_c - \bar{A}_3 \cdot (\vec{D}_c)$$

(7)

Another core operator is a moth-flame

Another main operator is the moth-flames optimization (MFO) [72]. The location of each moth is changed to a flame with the following equation in order to mathematically model the conduct of moths: $M_i = S(M_i, F_j)$, where M_i is the ith moth, F_j means the jth flame, and S is the spiral function. For the MFO algorithm, a logarithmic spiral is described below:

$$S(M_i, F_j) = D_i \cdot e^{bt} \cdot \cos(2\pi t) + F_j$$

(9)

where D_i specifies the ith moth distance for the jth flame, b is a logarithmic spiral constant for determining the form, and t is a $[1,1]$ random number, D_i is obtained as $D_i = |F_j - M_i|$, where M_i indicates the ith moth, F_j indicates the jth flame, and D_i is the distance of the ith moth for the jth flame. More detailed information can be seen in [72].

2.4. Brief introduction of kernel extreme learn machine (KELM)

Extreme learning machine (ELM) [73] can learn fast and has very few adjustments parameters, and does not provide the option of input weights and secret preconditions as the latest learning algae to feedforward neural networks in a

Table 2

Index	Non-severe group (n = 30)	Severe group (n = 21)	p-value
Age (years)	42.30±11.53	61.43±17.64	0.000
TBIL (umol/l)	10.42±6.42	12.37±8.46	0.353
DBIL (umol/l)	4.76±1.63	7.68±4.93	0.015
ALT (u/l)	23.33±14.62	63.62±79.34	0.032
TP (g/l)	66.65±4.33	67.86±7.68	0.520
ALB (g/l)	41.53±2.57	35.90±4.65	0.000
GLB (g/l)	25.13±3.28	31.97±7.27	0.000
A/G	1.68±0.24	1.19±0.36	0.000
ALP(u/l)	61.17±15.57	71.24±27.63	0.142
GGT(u/l)	36.83±29.79	90.00±99.97	0.027
AST(u/l)	23.13±7.62	65.43±51.08	0.001
CK(u/l)	76.27±45.22	246.52±300.47	0.018
LDH(u/l)	244.37±61.07	382.95±152.78	0.001
CK-MB(u/l)	21.23±9.08	19.76±8.44	0.561
$K^+(\text{mmol/l})$	4.23±0.48	4.07±0.62	0.291
$Na^+(\text{mmol/l})$	139.26±1.96	133.84±4.02	0.000
$Cl^-(\text{mmol/l})$	100.19±2.92	95.55±3.39	0.000
BUN(mmol/l)	3.71±0.99	4.64±1.98	0.057
Cr(umol/l)	60.57±12.29	70.29±15.88	0.017
UA(umol/l)	264.83±69.15	210.33±87.73	0.017
$P^+(\text{mmol/l})$	1.01±0.17	0.95±0.25	0.393
$Mg^{2+}(\text{mmol/l})$	0.91±0.07	0.93±0.09	0.472
$Ca^{2+}(\text{mmol/l})$	2.19±0.07	2.08±0.09	0.000
TnI(ng/ml)	0.01±0.01	0.29±1.19	0.292
single hidden layer. The new theory for an extreme learning machine from the kernel has recently been extended (KELM)[74]. The following is a short overview of the KELM method:

Training set as \(A = \{(x_i, t_i)\} x_i \in \mathbb{R}^n, t_i \in \mathbb{R}^m, k = 1, 2, ..., N \) is given, where \(n \times 1 \) input feature vector of \(x_i \) and \(m \times 1 \) of \(t_i \) target vector. An activation function \(h(x) \) can be modeled as follows:

\[
\sum_{i=1}^{N} \beta_i h(w_i \cdot x_j + b_i) = o_j, j = 1, 2, ..., N \tag{10}
\]

The \(w_i \) is the weight vector between the hidden layer of the \(i \)th and the input layer, and the distinctiveness between the hidden layer of the \(i \)th is called \(b_i \). The weight vector between the \(i \)th and the output layer is \(\beta_i \): \(o_j \) is the target vector of the \(j \)th input data. \(w_i \cdot x_j \) is the outcome of the \(w_i \) and \(x_j \) internal product. The \(N \) means the number of the hidden layer nodes. To assess these samples correctly, \(\sum_{j=1}^{N} |o_j - t_j| = 0 \) is given and \(\sum_{i=1}^{N} \beta_i h(w_i \cdot x_j + b_i) = t_j, j = 1, 2, ..., N \) with \(\beta_i, w_i, b_i \), which can be given as \(H \beta = T \), where

\[
H(w_1, \ldots, w_N, b_1, \ldots, b_N, x_1, \ldots, x_N) = \begin{bmatrix}
 h(w \cdot x_1 + b) & \cdots & h(w \cdot x_1 + b_N) \\
 \vdots & \ddots & \vdots \\
 h(w \cdot x_N + b) & \cdots & h(w \cdot x_N + b_N)
\end{bmatrix}_{N \times N}
\]

\[
\beta = \begin{bmatrix}
 \beta_1 \\
 \beta_2 \\
 \vdots \\
 \beta_N
\end{bmatrix}_{N \times m}, T = \begin{bmatrix}
 t_1 \\
 \vdots \\
 t_N
\end{bmatrix}_{N \times m}
\]

\(H \) is the result matrix of the hidden layer neural network, with the \(i \)th column of \(H \) being the \(i \)th hidden output neuron with respect to \(x_1, x_2, \ldots, x_N \). Enter weights and vector secret layer bias need not be adjusted. On this basis, the output weight of the linear system \(H \beta = T \) can be given mathematically with the least square solution \(\beta \):

\[
\min_{\beta} \| H(w_1, \ldots, w_N, b_1, \ldots, b_N) \beta - T \| = \min_{\beta} \| H \beta - T \|
\]

According to the Moore–Penrose (MP) generalized inverse and the kernel learning theory, the output function of KELM is shown as follows:

\[
F(x) = h \beta = h(x)H^T \left(\frac{1}{C} + H H^T \right)^{-1} T
\]

The key part of this proposed method is the KELM, which uses the RBF kernel in terms of input space for mapping the aggregate data into a hidden layer space. The entire algorithm method covers the coefficient of penalty \(C \) and kernel width \(\gamma \), and the subset of \(n \) features, the first penalty parameter \(C \) sets the balance between minimizing fitting error and the complexity in the model, with the second kernel bandwidth \(\gamma \) defining nonlinear input spatial mapping into some high-dimensional space function.

The ECPA algorithm also develops these two parameters and synchronously converts the optimal feature subset, specifically, continuous space, into binary space utilizing the sigmoid function. The feature is considered to be se-
First Author et al.:

osis of COVID-19.

of biochemical indicators. The first step will be to study the efficiency of the

5. Experimental designs

The experimental section in this analysis consists of two parts. The first step will be to study the efficiency of the proposed ECPA-KELM algorithm for a biochemical indicator diagnosis of COVID-19.

6. Experimental findings and analyses

6.1. Results of benchmark functions

First of all, the efficiency of the proposed ECPA is extensively verified and carried out in comparison with other algorithms on IEEE CEC 2017 benchmark; these benchmarks are shown in Table 3, and also strictly perform the balance and diversity analysis of the improved ECPA and its original CPA. Several other algorithms, including CPA, CLPSO, DE, PSO, MFO, and GWO, were involved as competitors on the common benchmark. The algorithm parameters are specified concerning the original documents.

The following experimental examined extensively using the suggested ECPA algorithm to optimize a combination of the best parameter and KELM function subset, which is the result ECPA-KELM used for a biochemical indicator diagnosis of COVID-19 on data collection. In terms of ECPA-KELM, several common learning processes were also compared, including original KELM, GWO-KELM, MFO-KELM, PSO-KELM, SVM, and KNN. The two main parameters of $[-2^{15}, 2^{15}]$ and $[-2^{65}, 2^{65}]$, respectively, have been specified in the original KELM. The first parameter C can better off the minimization of fitting errors and the complexity of the model; the second parameter, γ, determines the nonlinear projection from the input area to a large space, and these two key parameters are particularly important to build the classification ability of KELM adapted to the current data set. In order to avoid the uncertainty in experiments caused by large data, before classification, data has been scaled to the range [-1, 1].

Notice that MATLAB simulation experiments were conducted on Windows Server 2018 R2 operator machine, the Xeon CPU E5-2660 v3 (2.60 GHz), and 16 GB of ram. We have charted our results based on fair comparison instructions and as per other works [85, 86, 87, 88]. A 10-fold Cross-Validation (CV) is used to evaluate classification results to provide unbiased and objective results. Furthermore, four standard assessment parameters, including Specificity, Sensitivity, classification accuracy (ACC), and Matthews correlation coefficient are included (MCC), have been used for assessing the performance of ECPA-KELM. The detailed definition of the formula can refer to [89].

Algorithm 1: The pseudo code of designed ECPA

Input:
- The number of population size N;
- The number of Maximum iteration T;

Output:
- Best position X_b;
- Best fitness value f_{value};

Initialize population randomly $X_i(i = 1, 2, ..., N)$;

begin

\begin{algorithm}[H]
\caption{The pseudo code of designed ECPA}
\begin{algorithmic}
\State \textbf{Input:} The number of population size N;
\State \textbf{Output:} Best position X_b;
\State \textbf{begin}
\State $g = 0$;
\While{$g < T$}
\For{$i = 1 : N$}
\State Ensure that any particle is within the search range;
\State Calculate the fitness of all Individuals;
\State Update the X_b;
\State Update the S:
\State $S_0 = a - t \cdot \left(\frac{a}{N} \right)$;
\State $S = 2 \cdot S_0 \cdot r_2 - S_0$;
\State Update a:
\State $a = e^{-2 - w \cdot \left(1 - \frac{t}{T} \right)}$;
\EndFor
\For{$j = 1 : \text{dim}$}
\State Update the X_j;
\EndFor
\For{$i = 1 : N$}
\State Calculate the X_i by equation (1);
\EndFor
\For{$i = 1 : N$}
\State Update the S;
\EndFor
\For{$i = 1 : N$}
\State Calculate the X_i by equation (6)-(8);
\State Calculate the fitness of all Individuals;
\State Update the X_b;
\EndFor
\For{$i = 1 : N$}
\State Calculate the X_i by equation (9);
\State Calculate the fitness of all Individuals;
\State Update the X_b;
\EndFor
\EndWhile
\State $g = g + 1$;
\EndAlgorithm
\end{algorithm}
\end{algorithm}

\end{algorithm}

End-Loop;

lected if less than 0.5; otherwise, the characteristics would be discarded. Finally, the evolved KELM by ECPA gives an accurate early diagnosis of COVID-19 from the perspective of biochemical indicators.

5. Experimental designs

The experimental section in this analysis consists of two parts. The first step will be to study the efficiency of the proposed ECPA, and the second part will use the proposed ECPA-KELM algorithm for a biochemical indicator diagnosis of COVID-19.

6. Experimental findings and analyses

6.1. Results of benchmark functions

6.1.1. The impact of GWO and MFO

In this part, to estimate the effect of diverse mechanisms in ECPA and gain the best strategy combination, we experimented on IEEE CEC2017 30D benchmark tests[90], in this test, each algorithm will be executed 30 times independently. In the algorithms, ECPA means both GWO and MFO are embedded in original CPA, GCPA indicates only GWO is introduced to basic CPA, MCPA shows only MFO is embedded into fundamental CPA. The results of Friedman’s test on 30 functions are exhibited in Table 4. From this table, it can be found that ECPA gains the lowest mean level value, 1.25235, is the best; it signifies the combination between GWO and MFO outperforms single operator GWO or MFO, so the ECPA selected in the subsequent ex-

First Author et al.: Preprint submitted to Elsevier

Page 6 of 19
6.1.2. analysis the results of ECPA compared to other algorithms

The benchmark of IEEE CEC2017 was used in this part to measure the property of the ECPA, and in several projects, these benchmarks have always been used [90, 91]. Furthermore, 30 separate experiments were carried out to mitigate the impact of random variables. In this analysis, the ECPA presented is contrasted with the CPA, CLPSO, DE, PSO, MFO, and GWO algorithms. Thirty individual executions carried out all these approaches to the CEC2017 standards.

In Table 5, the average and standard deviation of the STD is shown to demonstrate detailed experimental results. The average ECPA results shown are the lowest among the benchmarks. Table 6 presents Friedman’s ECPA test results against all other rivals. Following the average ranking of the algorithms concerned, the first best results of these benchmarks are disclosed in the ECPA, the worst findings being CPA, CLPSO, DE, PSO, MFO, and GWO. The main features of the current movement techniques abstracted from the grey wolf optimizer and moth-flame optimizer may be a reason for this. In this study, it can be obtained the original CPA between exploration and mining in this analysis.

The convergence curves of these involved algorithms on CEC2017 benchmarks to verify the performance of the designed ECPA are listed in Figure 3. It can be observed from this figure that the designed ECPA shows the fast convergence capabilities and obvious superiority to all other rivals in these CEC2017 benchmarks. In addition, it also is noted that the designed ECPA has fast convergence searches such as F4, F7, and F9, which guarantee it to quickly obtain a theoretical optimal value. Furthermore, in terms of other benchmarks, the same convergence pattern is also observed. In short, the processes involved can be inferred that the property of the original CPA can significantly enhance.
Table 3
Benchmark tests of IEEE CEC2017

ID	Name of the function	Class	Search Range	Optimum
F1	Shifted and Rotated Bent Cigar Function	Unimodal	[-100, 100]	100
F2	Shifted and Rotated Sum of Different Power Function	Unimodal	[-100, 100]	200
F3	Shifted and Rotated Zakharov Function	Unimodal	[-100, 100]	300
F4	Shifted and Rotated Rosenbrock’s Function	Multimodal	[-100, 100]	400
F5	Shifted and Rotated Rastrigin’s Function	Multimodal	[-100, 100]	500
F6	Shifted and Rotated Expanded Scaffer’s F6 Function	Multimodal	[-100, 100]	600
F7	Shifted and Rotated Lunacek Bi-Rastrigin Function	Multimodal	[-100, 100]	700
F8	Shifted and Rotated Non-Continuous Rastrigin’s Function	Multimodal	[-100, 100]	800
F9	Shifted and Rotated Lévy Function	Multimodal	[-100, 100]	900
F10	Shifted and Rotated Schwefel’s Function	Multimodal	[-100, 100]	1000
F11	Hybrid Function 1 (N=3)	Hybrid	[-100, 100]	1100
F12	Hybrid Function 2 (N=3)	Hybrid	[-100, 100]	1200
F13	Hybrid Function 3 (N=3)	Hybrid	[-100, 100]	1300
F14	Hybrid Function 4 (N=4)	Hybrid	[-100, 100]	1400
F15	Hybrid Function 5 (N=4)	Hybrid	[-100, 100]	1500
F16	Hybrid Function 6 (N=4)	Hybrid	[-100, 100]	1600
F17	Hybrid Function 6 (N=5)	Hybrid	[-100, 100]	1700
F18	Hybrid Function 6 (N=5)	Hybrid	[-100, 100]	1800
F19	Hybrid Function 6 (N=5)	Hybrid	[-100, 100]	1900
F20	Hybrid Function 6 (N=6)	Hybrid	[-100, 100]	2000
F21	Composition Function 1 (N=3)	Composition	[-100, 100]	2100
F22	Composition Function 2 (N=3)	Composition	[-100, 100]	2200
F23	Composition Function 3 (N=4)	Composition	[-100, 100]	2300
F24	Composition Function 4 (N=4)	Composition	[-100, 100]	2400
F25	Composition Function 5 (N=5)	Composition	[-100, 100]	2500
F26	Composition Function 6 (N=5)	Composition	[-100, 100]	2600
F27	Composition Function 7 (N=6)	Composition	[-100, 100]	2700
F28	Composition Function 8 (N=6)	Composition	[-100, 100]	2800
F29	Composition Function 9 (N=3)	Composition	[-100, 100]	2900
F30	Composition Function 10 (N=3)	Composition	[-100, 100]	3000

Table 4
The results of Friedman’s test for gaining the best strategy combination

Algorithm	ECPA	GCPA	MCPA	CPA
mean level	1.25235	3.65248	4.68547	5.68547

6.2. Application in the diagnosis of COVID-19 from the perspective of biochemical indicators

In this part, the proposed algorithm ECPA-KELM for diagnosing COVID-19 from the perspective of biochemical indicators is evaluated deeply. Table 7 shows the detailed results of ECPA-KELM on the collected COVID-19 data set. The 92.129% classification accuracy of the ECPA-KELM can be seen from this Table 7, 90.506% of Matthew correlation coefficient, 92.298% of sensitivity, 89.627% of specificity, and their variance is 0.04379, 0.04379, 0.05322, and 0.06536 respectively. Furthermore, we can observe that the proposed ECPA-KELM can automatically acquire the optimum KELM model settings, mainly due to the enhanced ECPA, which can efficiently identify optimum settings and functions.

In addition, the methodology proposed ECPA-KELM is compared to original KELM and other evolutionary computing-based KELM, including CPA-KELM, original KELM, GWO-KELM, MFO-KELM, PSO-KELM, and two common algorithms, SVM and KNN, to check further the property of the ECPA-KELM model presented. Comparisons with accuracy, Matthew coefficient for correlation, susceptibility, specificity, and standard deviation are reported in a detailed statistical experiment in Table 8 and the comparative histogram of each experiment is also shown in Figure 4 in order to more visually represent the immediate difference in values.

The findings show that the ECPA-KELM algorithm is
Table 5: The statistical experiment results and the comparison algorithms on the test benchmarks

Algorithm	F1	F2	F3	F4	F5					
mean	STD	mean	STD	mean	STD	mean	STD	mean	STD	
CPA	58067616.71	24351293.37	5.0331e+10	2.4825e+11	283553.801	22223.1676	951.999434	60.2705513	125.760241	196.764764
CLPSO	1.83393E+11	245091383.85	6.1024e+16	65335	700592.9828	47420.2586	50903.24199	7796.51168	2175.886699	82.3771516
DE	21590822.42	14295264.67	3.3748e+12	1.0077e+13	285471.1381	59737.3336	1025.661518	103.2197058	1580.943445	21.7505725
PSO	1991521282.2	172930232.2	8.0210e-18	65335	961441.4082	17985.8632	1363.84439	1788.753042	170.7635689	
MFO	1.26693E+11	332830429.98	4.364e+19	15.0680e+13	391370.297	40785.67888	8520.05261	1190.601048	116.2702424	
GWO	453492709.01	1338026368.6	3.4980e+13	1.5688e+13	285471.1381	59737.3336	1025.661518	103.2197058	1580.943445	21.7505725

Algorithm	F6	F7	F8	F9	F10	
mean	STD	mean	STD	mean	STD	
CPA	567200339	208015227	6515348.92	143412.53	29428.5607	
CLPSO	16329408.8	35002783.2	6515348.92	143412.53	29428.5607	
DE	214673318.1	332830429.98	4.364e+19	15.0680e+13	391370.297	40785.67888
PSO	1991521282.2	172930232.2	8.0210e-18	65335	961441.4082	17985.8632
MFO	1.26693E+11	332830429.98	4.364e+19	15.0680e+13	391370.297	40785.67888
GWO	453492709.01	1338026368.6	3.4980e+13	1.5688e+13	391370.297	40785.67888

First Author et al.: Preprint submitted to Elsevier
superior to other competitors and its corresponding standard deviation between all models is also less critical in four evaluation methods such as ACC, MCC, sensitivity, and specificity. In comparison to the original CPA-based KELM, the ECPA-KELM is more efficient and stable obviously. It should be noted that the original KELM, original SVM and KNN are all showing the worst performance for diagnosis of COVID-19 from the perspective of biochemical indicators, which can be preliminarily shown that KELM model selection capacity can be substantially improved by the algorithm proposed ECPA in this article and the ability to solve the accurate diagnosis of COVID-19 from the perspective of biochemical indicators. The second output of the KELM-based GWO-KELM is just under the ECPA-KELM, and the MFO-KELM and PSO-KELM perform very similar properties on this collected data. In this experiment, we can see that ECPA-KELM can automatically get the best property among all of these competing models, mostly because of the improved ECPA, where the optimal KELM parameters and the optimal subset of functions can be found automatically.

Furthermore, the designed ECPA is used to perform parameter optimization and feature selection simultaneously for KELM to diagnose COVID-19 from the perspective of biochemical indicators. In this analysis, during the feature selection, the 10-fold CV method is used. The detailed selected amount of individual features and statistical values in each 10-fold cycle is shown in Table 9. It can be observed that the ECPA-KELM proposed clearly exceeds others, and regarding the statistics, the features AGE, ALT, ALB, A/G, AST, and LDH were selected with values 9, 8, 9, 8, 9, and 8 respectively by the ECPA-KELM, while The other features have been comparatively picked with less. However, these features were not met by other rivals. Consequently, it can be inferred that such features, which often seem to be present, early recognition of COVID-19 and discrimination of other low-frequency features. Accordingly, due to the underlying details in these frequency features, further consideration should be provided in practice medical cases for these features of AGE, ALT, ALB, A/G, AST, and LDH.

In addition, the comparison results among these methods in terms of CPU time via 10-fold CV is recorded in Figure 5. It can be observed that the original KELM consumes the least time and its execution speed is the fastest among all these algorithms, the original SVM takes the second least time. An explainable reason is that without the assistance of search algorithms, it will save a lot of algorithm execution time compared to those models-based search algorithms and the incidental result is that the classification performance of the algorithm is greatly reduced. It can also be noted that the designed ECPA-KELM consumes only the fourth-least time, which is more time than the original CPA-KELM, and it shows that the addition operator does increase the execution time of the algorithm. It is also worth noting that the time consumed by KNN and GWO-KELM to deal with this problem is close to the same and among all the algorithms, this PSO-KELM consumes the most time on this problem. A preliminary conclusion can be drawn that although the ECPA-KELM is not the least in terms of CPU consumption time, the four measurement values of it are the best, which also points us to a future research direction through reasonable parallel programming technique to achieve the reduction of CPU consumption time for ECPA-KELM.

7. Discussion

In the present study, the diagnosis of COVID-19 from the perspective of biochemical indicators was investigated by using ECPA to perform KELM optimization parameters and feature selection simultaneously. Importantly, several key features were discovered, the features of AGE, ALT, ALB, A/G, AST, and LDH. Subsequently, an ECPA-KELM model is designed from the perspective of biochemical markers for an effective diagnosis of COVID-19. Thus, we think that the ECPA-KELM model will help to inform the decision-making process.

According to our observations, the proposed CPA-based method has shown enhanced exploratory and exploitative patterns to deal with more complex spaces can also, such as evaluation of human lower limb motions [92], Lunar impact crater identification and age estimation [93], shape registration [94], regression tasks [95], 3D deformable shape analysis [96, 97], active surveillance [98], service ecosystem [99, 100], and micro-expression spotting [101, 102]. Also,

Table 6
The results of Friedman’s test over these involved algorithms

Algorithm	ECPA	CPA	CLPSO	DE	PSO	MFO	GWO
mean level	1.35685	6.523696	3.6322222	3.65214	4.254141	4.012544	3.5624156

Table 7
The results of ECPA-KELM on collected data

Fold	ACC	MCC	Sensitivity	Specificity
#1	0.8859	0.8656	0.9695	0.82
#2	0.8932	0.8863	0.8956	0.8632
#3	0.9623	0.9575	0.9625	0.8852
#4	0.9773	0.8425	0.8857	0.8958
#5	0.9763	0.8895	0.9659	0.9623
#6	0.8968	0.9462	0.8352	0.9528
#7	0.8867	0.8754	0.9584	0.9782
#8	0.9732	0.8989	0.8758	0.8025
#9	0.8897	0.9325	0.9553	0.8369
#10	0.8778	0.9562	0.8859	0.9658
Mean	0.92192	0.90506	0.92298	0.89627
STD	0.04379	0.04054	0.05322	0.06536
Figure 3: Convergence curves of selected benchmark functions

we can test explorative features base on more classes of problems such as image editing [103, 104, 105], engineering optimization problems [106, 107], brain function prediction [108], epidemic prevention and control [109, 110], large scale network analysis [111], energy storage planning and scheduling [112], image dehazing [113, 114, 115], social recommendation and QOS-aware service composition [116, 117, 118], medical diagnosis [119, 120, 121, 122], covert communication system [123, 124], pedestrian dead reckoning [125], and feature selection [126, 127, 128].

Several studies have shown that age is one of the main risks of respiratory system diseases [129, 130]. In terms of SARS and MERS, older age was an independent predictor of SARS or MERS exacerbation risk and mortality [131, 132, 133]. Similarly, a large body of studies confirms that advanced age patients are more susceptible to COVID-
Table 8
The statistical experiment results of comparison in terms of the four metrics

Algorithms	ACC	MCC	Sensitivity	Specificity
ECPA-KELM	0.92192 ± 0.04379	0.90506 ± 0.04054	0.92298 ± 0.05322	0.89627 ± 0.06536
CPA-KELM	0.87523 ± 0.05621	0.85214 ± 0.07854	0.86521 ± 0.06352	0.84215 ± 0.08965
KELM	0.80215 ± 0.07851	0.79541 ± 0.09851	0.80251 ± 0.06325	0.78541 ± 0.15632
GWO-KELM	0.86325 ± 0.06852	0.8251 ± 0.07513	0.87854 ± 0.07852	0.85247 ± 0.10043
MFO-KELM	0.85264 ± 0.06528	0.83652 ± 0.0712	0.88635 ± 0.08521	0.86354 ± 0.09013
PSO-KELM	0.85684 ± 0.06892	0.86325 ± 0.0754	0.87169 ± 0.06323	0.87854 ± 0.10212
SVM	0.81256 ± 0.08751	0.78521 ± 0.0874	0.78693 ± 0.08521	0.80254 ± 0.16134
KNN	0.81365 ± 0.08411	0.81254 ± 0.1125	0.78655 ± 0.08874	0.8019 ± 0.12415

Table 9
The numbers of selected feature

Index	ECPA-KELM	CPA-KELM	GWO-KELM	MFO-KELM	PSO-KELM
F1	0	0	0	1	2
F2	9	7	8	8	7
F3	3	3	4	5	5
F4	4	5	3	3	5
F5	8	7	8	7	7
F6	2	4	5	5	4
F7	9	7	6	6	7
F8	2	3	4	5	4
F9	8	8	7	6	6
F10	5	4	4	6	4
F11	3	5	5	6	4
F12	9	8	7	7	8
F13	1	2	4	4	5
F14	8	7	7	6	6
F15	4	5	3	5	4
F16	6	5	2	4	3
F17	4	5	5	3	4
F18	2	5	5	3	6
F19	1	6	4	6	4
F20	4	4	5	4	3
F21	3	3	3	3	3
F22	2	3	5	3	6
F23	1	6	5	1	1
F24	2	4	4	2	6
F25	6	6	6	5	5

19 infections than young patients and older age patients are more susceptible to severe COVID-19 [134, 135]. Meanwhile, researchers have also shown that age is an independent pronouncing factor for COVID-19 [134, 136]. There are several possible reasons to explain this phenomenon. First, immune-senescence in aging is considered to be the leading cause of severe pneumonia mortality in older adults [129]. Second, with the increase of age, the cellular and humoral immune function of the body gradually declines [137, 138, 139]. For example, the level of immunoglobulin M and interferon decrease, the number of T- and B-lymphocyte decreases, resulting in an increased risk of infection [140]. Third, older COVID-19 patients tended to have more comorbidities, which was easier to acute respiratory failure and have a poor prognosis [141, 142]. Similar to their results, we found that the extreme COVID-19 group’s mean age was 1.45 times higher than that of a non-severe COVID-19 group (P=0.00), indicating that age could be considered a promising clinical outcome index in COVID-19 patients.

It was notified that approximately 60% of SARS patients have liver impairment [143]. Likewise, MERS patients also have liver damage [144]. Numerous retrospective studies have demonstrated that COVID-19 patients often have liver function damage. Based on the large retrospective data, increased levels of ALT and AST have been found in 14 to 53% of patients with COVID-19 [145, 146]. The most widely used parameters are ALT and AST liver functions. The permeability of the cell membrane will in-
increase if hepatocytes are affected. The blood circulation is freed by high levels of cytoplasmic transaminases such as alanine aminotransferase, aspartate aminotransferase, and complete bilirubin [147, 148]. Many studies confirm that in extreme COVID-19 patients, ALT and AST were substantially higher than in non-severe patients [149]. However, the mechanism of SARS-CoV-2-induced liver impairment is not as yet clear. First, the cytokine storm following SARS-CoV-2 infection is thought to be one of the key factors of liver impairment [150]. Second, SARS-CoV-2 may directly be infecting hepatocytes. Xu and colleagues confirmed that the main pathologies of the liver in COVID-19 patients were characterized by moderate microvascular steatosis, mild lobular and portal activity [150]. In this analysis, we also found, relative to the non-extreme COVID-19 group, that the levels of ALT and AST in the severe COVID-19 group were 2.73 and 2.83 times higher. In summary, the association between liver function damage and COVID-19, a major factor in COVID-19 progression closely linked to COVID-19 seriousness, was revealed in these results.

Another important biomarker, albumin (ALB), is one of the indexes of liver impairment [151]. ALB is synthesized by parenchymal cells in the liver, and the plasma half-life of albumin in the plasma is 15-19 days [152]. The level of ALB reflects the synthetic protein function of the liver, and ALB is a useful index for assessing nutritional status. He et al. found that plasma ALB levels are positively associated with the degree of community-acquired pneumonia (CAP) in pregnancy [153]. Recently, future analysis of over 400 CAP patients found a substantially higher plasma ALB level in the community of survivors than in the non-survivor group, indicating that ALB could be promising for CAP pronostics [154]. In line with these findings, Liu et al. found that plasma ALB levels in the group COVID-19 were considerably lower than in the group COVID-19 stabilization (36.62±6.60 g/L vs. 41.27±4.55 g/L), suggesting hypoalbuminemia was positively associated with advanced COVID-19 progression and ALB may be used as an independent predictor of severity of illness and outcome [155, 156]. Consistent with their findings, in the current study, we also revealed that plasma ALB levels in the severe COVID-19 group were significantly lower than the non-severe COVID-19 group (35.90±4.65 vs. 41.53±2.57, P=0.000). In addition, globulin is the main component of serum non-albumin protein, which is composed of various pro-inflammatory proteins, such as immunoglobulin, complement, and C-reactive protein. Serum globulin levels are an objective marker to reflect the systemic inflammation and the immune status of the body [157, 158]. Of note, in recent years, Albumin/Globulin ratio (A/G) was commonly used to detect infectious diseases such as the acute exacerbation of the chronic obstructive pulmonary disease, hepatitis C and human immunodeficiency virus infection as a quick and inexpensive biomarker [159, 160, 161]. Furthermore, A/G also can be used as a novel predictor of prognosis in patients with a malignant tumor, including hepatocellular carcinoma, laryngeal squamous cell carcinoma, and colorectal cancer [162, 162]. However, few studies have reported on the relationship between A/G and COVID-19 patients. Universal research used by Zhou et al. shows that A/G was substantially related to COVID-19 severity. However, as shown by the multivariate binary logistic regression model, A/G was not an independent risk element for patients with COVID-19 [4]. Our analysis showed that in non-serious COVID-19 groups, A/G was substantially higher with approximately 1.41 times the amount of extreme COVID-19 groups (1.68±0.24 vs. 1.19±0.36, P=0.000). This is the first time we realize that machine learning is being used to incorporate the A/G variable into COVID-19 research. All in all, the plasma ALB levels and The value for discrimination against COVID-19 patients A/G were shown to be significantly predictive and might predict COVID-19 progression.

Lactate dehydrogenase (LDH) is an essential energy-producing enzyme required for human physiology. LDH
is present in almost all tissues, including liver, lung, kidney, skeletal muscle, myocardium tissue. Many studies have shown that elevated LDH levels are associated with disease progression and poor clinical outcome [163, 164]. For instance, a population-based study of 238 cases of SARS from Singapore suggested that high LDH is positive for adverse outcomes and acute syndrome of air distress [165]. Chang and colleagues reported that elevated LDH levels were related to increased mortality in SARS cases [166]. Therefore, LDH is a potential risk prediction factor. Recent studies, including a meta-analysis with > 1900 COVID-19 patients, found that the increased LDH level has been substantially linked to COVID-19 severity [167]. Our study found that the average LDH of the severe COVID-19 group was 382.95±152.78, and that of the non-severe COVID-19 group was 244.37±61.07, suggesting that plasma LDH levels may be regarded as a promising biomarker of clinical outcome in COVID-19 patients.

So far, very few relevant studies describing biochemical index, blood electrolyte, and clinical parameters to joint predict the severity and prognosis of the COVID-19. This is the first effort to incorporate age, ALT, AST, ALB, A/G, and LDH for predicting and discriminating COVID-19 severity using the machine learning method. However, some limitations exist in our research. First, the number of COVID-19 cases was relatively small, and patient data came from a single center. The model constructed ECPA-KELM can provide early warning for the severity of COVID-19 and help clinicians in the diagnosis and treatment of this infectious disease. In the future, we hope to enlarge the sample size and to improve the accuracy of the ECPA-KELM model further. Second, independent/external datasets or prospective studies are needed to verify the accuracy of the ECPA-KELM model to make the model more reliable and stable.

8. Conclusion and future Work

The study uses clinical information from the Affiliated Yuqing Hospital of the Medical University of Wenzhou to develop an efficient ECPA-KELM early identification procedure and COVID-19 discrimination (Yueqing, China). The main innovation for the proposed methodology is for the current ECPA to include a new strategy to enhance and restore the original CPA search ability; the performance of the ECPA has been strictly regulated with the CEC2017 criteria compared with several other rivals. Experimental findings indicate that the ECPA proposed is much better suited than others to achieve this function optimization. In addition, ECPA has been proposed for the synchronized evolution of the optimum parameters and feature selection in KELM; the resulting ECPA-KELM was used successfully for early identification and discrimination against COVID-19. There has also been a rigorous analysis of the ECPA-KELM with other competitive algorithms. The findings also showed that the ECPA-KELM predicts the more stable properties more accurately and can be treated as a tool to provide early warning for the severity of COVID-19 and help clinicians in the diagnosis and treatment of this infectious disease.

For future work, a number of matters can be further investigated. More variables and coefficients are added, and parallel processing can also reduce the computing burden in the application phase; the following should be noted. We can also increase the number of data samples to create a safer and more effective prediction system. In addition, the proposed ECPA-KELM can also be employed to predict other variety of conditions such as clustering aspects and splitting the used image into CTs to expand the use of the developed system.

9. ACKNOWLEDGMENTS

Beibei Shi and Hua Ye contributed equally to this paper and are co-first authors. Huiing Chen, and Peiliang Wu also contributed equally to this work and are co-corresponding authors. This research was supported by the Key Project of Zhejiang Provincial Natural Science Foundation under Grant (LD21F020001) and the National Natural Science Foundation of China (62076185, U1809209).

References

[1] Qin Li, Xuhua Guan, Peng Wu, Xiaoye Wang, Lei Zhou, Yeqing Tong, Ruiqi Ren, Cathy SM Leung, Eric HY Lau, Jessica Y Wong, et al. Early transmission dynamics in wuhan, china, of novel coronavirus-infected pneumonia. New England journal of medicine, 2020.

[2] Dilbag Singh, Vijay Kumar, Manjit Kaur, et al. Classification of covid-19 patients from chest ct images using multi-objective differential evolution-based convolutional neural networks. European Journal of Clinical Microbiology & Infectious Diseases, 39(7):1379–1389, 2020.

[3] Aleksandra Klimczak. Perspectives on mesenchymal stem/progenitor cells and their derivatives as potential therapies for lung damage caused by covid-19. World journal of stem cells, 12(9):1013, 2020.

[4] Xiaohui Liu, Si Shi, Jinling Xiao, Hongwei Wang, Liyan Chen, Jianing Li, and Kaiyu Han. Prediction of the severity of corona virus disease 2019 and its adverse clinical outcomes. Japanese journal of infectious diseases, pages JJID–2020, 2020.

[5] Yafei Zhang, Xiaodan Zhang, Lan Liu, Hongling Wang, and Qiu Zhao. Suggestions for infection prevention and control in digestive endoscopy during current 2019-ncov pneumonia outbreak in wuhan, hubei province, china. Endoscopy, 52(4):312, 2020.

[6] Mingwu Zhang, Yu Chen, and Willy Susilo. Ppo-cpq: a privacy-preserving optimization of clinical pathway query for e-healthcare systems. IEEE Internet of Things Journal, 7(10):10660–10672, 2020.

[7] De-Kuang Hwang, Chih-Chien Hsu, Kao-Jung Chang, Daniel Chao, Chuan-Hu Sun, Ying-Chun Jheng, Aliaksandr A Yarmishyn, Jau-Ching Wu, Ching-Yao Tsai, Mong-Lien Wang, et al. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics, 9(1):232, 2019.

[8] Minhaj Alam, David Le, Jennifer I Lim, Robison VP Chan, and Chichong Lu. Controllable synthesis of exception-sized superparamagnetic magnetite nanoparticles for ul-
trasensitive mr imaging and angiography. *Journal of Materials Chemistry B*, 9(4):958–968, 2021.

[11] Zhijie Wang, Tingting Zhang, Lei Pi, Huijing Xiang, Pingli Dong, Chichong Lu, and Tian Jin. Large-scale one-pot synthesis of water-soluble and biocompatible upconversion nanoparticles for dual-modal imaging. *Colloids and Surfaces B: Biointerfaces*, 198:111480, 2021.

[12] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huijing Liang, Sally L Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. *Cell*, 172(5):1122–1131, 2018.

[13] Lei Wang, Shujian Yang, Shan Yang, Cheng Zhao, Guangye Tian, Yuxiu Guo, Xuefan Chen, and Yun Lu. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the yolov2 neural network. *World journal of surgical oncology*, 17(1):1–9, 2019.

[14] Ziad Obermeyer and Ezekiel J Emanuel. Predicting the future—big data, machine learning, and clinical medicine. *The New England journal of medicine*, 375(13):1216, 2016.

[15] Sheshadri Iyengar Raghavan Bhagyashree, Kiran Nagaraj, Martin Prince, Caroline HD Fall, and Murali Krishna. Diagnosis of dementia by machine learning methods in epidemiological studies: a pilot exploratory study from south india. *Social psychiatry and psychiatric epidemiology*, 59(1):77–86, 2016.

[16] Soo-Kyoung Lee, Youn-Jung Son, Jeongeun Kim, Hong-Gee Kim, Jae-II Lee, Bo-Yeong Kang, Hyeon-Sung Cho, and Sungin Lee. Prediction model for health-related quality of life of elderly with chronic diseases using machine learning techniques. *Healthcare informatics research*, 20(2):125, 2014.

[17] Kaiyang Qu, Leyi Wei, and Quan Zou. A review of dna-binding proteins prediction methods. *Current Bioinformatics*, 14(3):246–254, 2019.

[18] AS Albahi, Rula A Hamid, Jwan K Alwan, ZT Al-Qays, AA Zaidan, BB Zaidan, AOS Albahi, AH AlMoodi, Jamal Mawlood Khlaf, EM Almahdi, et al. Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (covid-19): a systematic review. *Journal of medical systems*, 44:1–11, 2020.

[19] Hengyuan Kang, Linbing Xia, Fuhua Yan, Zhibin Wan, Feng Shi, Huan Yuan, Haiting Jiang, Diju Wu, He Sui, Changjing Zhang, et al. Diagnosis of coronavirus disease 2019 (covid-19) with structured latent multi-view representation learning. *IEEE transactions on medical imaging*, 39(8):2606–2614, 2020.

[20] Saleh Albahi. A deep neural network to distinguish covid-19 from other chest diseases using x-ray images. *Current medical imaging*, 17(1):109–119, 2021.

[21] Zifeng Yang, Zhiqui Zeng, Ke Wang, Sook-San Wong, Wenhua Liang, Mark Zanin, Peng Liu, Xuodong Cao, Zhongqiang Gao, Zhitong Mai, et al. Modified sei and ai prediction of the epidemics trend of covid-19 in china under public health interventions. *Journal of thoracic disease*, 12(3):165, 2020.

[22] Nanning Zheng, Shaoyi Du, Jianji Wang, He Zhang, Wenting Cui, Zitian Kang, Tao Yang, Bin Lou, Yuting Chi, Hong Long, et al. Predicting covid-19 in china using hybrid ai model. *IEEE transactions on cybernetics*, 50(7):2891–2904, 2020.

[23] Ashkan Ebadi, Pengcheng Xi, Stéphane Tremblay, Bruce Spencer, Raman Pall, and Alexander Wong. Understanding the temporal evolution of covid-19 research through machine learning and natural language processing. *Senticometers*, 126(1):725–739, 2021.

[24] Ricardo C Cury, Istrvan Megyeri, Tony Lindsay, Robson Macedo, Juan Batlle, Shwan Kim, Brian Baker, Robert Harris, and Reese H Clark. Natural language processing and machine learning for detection of respiratory illness by chest ct imaging and tracking of covid-19 pandemic in the us. *Radiology: Cardiothoracic Imaging*, 3(1):e200596, 2021.

[25] Parnian Afshar, Shahin Heidarian, Nastaran Enshaei, Farnoosh Naderkhani, Moezedin Javad Rafiee, Anastasia Oitkonomou, Faranak Babaki Fard, Kaveh Samimi, Konstantinos N Plataniotis, and Arash Mohammadi. Covid-ct-md, covid-19 computed tomography scan dataset applicable in machine learning and deep learning. *Scientific Data*, 8(1):1–8, 2021.

[26] Muhammad EH Chowdhury, Tawsifur Rahman, Amith Khandakar, Somaya Al-Madeed, Susu M Zaghaier, Suhail AR Doi, Hanadi Hasen, and Mohammad T Islam. An early warning tool for predicting mortality risk of covid-19 patients using machine learning. *Cognitive Computation*, pages 1–16, 2021.

[27] Anuj Tiwari, Arya V Dadhania, Vijay Avin Balaji Raganathrao, and Edson RA Oliveira. Using machine learning to develop a novel covid-19 vulnerability index (c9vix). *Science of The Total Environment*, 773:145650, 2021.

[28] Guohua Wu, Ramon Teodoro Mallipeddi, and Ponnuharith Namagathan. Problem definitions and evaluation criteria for the cce 2017 competition on constrained real-parameter optimization. *National University of Defense Technology, Changsha, Hunan, PR China and Kungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore*, Technical Report, 2017.

[29] Jihong Pang, Hongming Zhou, Ya-Chih Tsai, and Fuh-Der Chou. A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing. *Computers & Industrial Engineering*, 123:54–66, 2018.

[30] Hongming Zhou, Jihong Pang, Ping-Kuo Chen, and Fuh-Der Chou. A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes. *Computers & Industrial Engineering*, 123:67–81, 2018.

[31] Dong Zhao, Lei Liu, Fanhua Yu, Ali Asghar Heidari, Minjing Wang, Diego Oliva, Khan Muhammad, and Huiling Chen. Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation. *Expert Systems with Applications*, page 114122 (https://doi.org/10.1016/j.eswa.2020.114122), 2020.

[32] Dong Zhao, Lei Liu, Fanhua Yu, Ali Asghar Heidari, Minjing Wang, Guoxi Liang, Khan Muhammad, and Huiling Chen. Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2d kapur entropy. *Knowledge-Based Systems*, page 106510 (https://doi.org/10.1016/j.knosys.2020.106510), 2020.

[33] Wu Deng, Hailong Liu, Junjie Xu, Haimin Zhao, Yingjie Chen, Jianning Zhao, Tingting Huang, and Xuefeng Wang. Novel coronavirus disease 2019 (covid-19) with structured latent multi-view representation learning. *IEEE transactions on medical imaging*, 39(8):2606–2614, 2020.

[34] Saleh Albahi. Deep learning for multi-class medical image recognition. *IEEE transactions on medical imaging*, 17(1):109–119, 2021.

[35] Zifeng Yang, Zhiqui Zeng, Ke Wang, Sook-San Wong, Wenhua Liang, Mark Zanin, Peng Liu, Xuodong Cao, Zhongqiang Gao, Zhitong Mai, et al. Modified sei and ai prediction of the epidemics trend of covid-19 in china under public health interventions. *Journal of thoracic disease*, 12(3):165, 2020.

[36] Nanning Zheng, Shaoyi Du, Jianji Wang, He Zhang, Wenting Cui, Zitian Kang, Tao Yang, Bin Lou, Yuting Chi, Hong Long, et al. Predicting covid-19 in china using hybrid ai model. *IEEE transactions on cybernetics*, 50(7):2891–2904, 2020.

[37] Ashkan Ebadi, Pengcheng Xi, Stéphane Tremblay, Bruce Spencer, Raman Pall, and Alexander Wong. Understanding the temporal evolution of covid-19 research through machine learning and natural language processing. *Senticometers*, 126(1):725–739, 2021.

[38] Ricardo C Cury, Istrvan Megyeri, Tony Lindsay, Robson Macedo, Juan Batlle, Shwan Kim, Brian Baker, Robert Harris, and Reese H Clark. Natural language processing and machine learning for detection of respiratory illness by chest ct imaging and tracking of covid-19 pandemic in the us. *Radiology: Cardiothoracic Imaging*, 3(1):e200596, 2021.
Zhiyang Gu, Huiling Chen, and Xueling Cai. Levy-based antlion-inspired optimizers with orthogonal learning scheme. *Engineering with Computers*, pages 1–22, 2020.

Shubham Gupta, Kusum Deep, Ali Asghar Heidari, Hossein Moayedi, and Huiling Chen. Harmonized salp chain-built optimization. *Engineering with Computers*, pages 1–31, 2019.

Xi Liang, Zhenhao Cai, Mingjing Wang, Xuehua Zhao, Huiling Chen, and Chengye Li. Chaotic oppositional sine–cosine method for solving global optimization problems. *Engineering with Computers*, pages 1–17, 2020.

Hongliang Zhang, Zhenmao Cai, Xiaojia Ye, Mingjing Wang, Fangjiao Kuang, Huiling Chen, Chengyi Li, and Yuping Li. A multi-strategy enhanced salp swarm algorithm for global optimization. *Engineering with Computers*, pages 1–27, 2020.

Guo-qian Zeng, Yong-zai Lu, and Wei-Jie Mao. Modified extremal optimization for the hard maximum satisfiability problem. *Journal of Zhejiang University SCIENCE C*, 12(7):589–596, 2011.

Guo-qian Zeng, Yongzai Lu, Xuying Dai, Zhengguang Wu, Weiji Mao, Zhengjiang Zhang, and Chongwei Backbone guided extremal optimization for the hard maximum satisfiability problem. *International Journal of Innovative Computing Information Control and Control*, 8(12):8355–8366, 2012.

Ali Aghar Heidari, Rahim Ali Abbaspour, and Huiling Chen. Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training. *Applied Soft Computing*, 81:105521, 2019.

Liming Shen, Huiling Chen, Zhe Yu, Wencheng Kang, Bingyu Zhang, Huazhong Li, Bo Yang, and Dayou Liu. Evolving support vector machines using fruit fly optimization for medical data classification. *Knowledge-Based Systems*, 96:61–75, 2016.

Mingjing Wang and Huiling Chen. Chaotic multi-swarm whale optimization boosted support vector machine for medical diagnosis. *Applied Soft Computing*, 88:105946, 2020.

Mingjing Wang, Huiling Chen, Bo Yang, Xuehua Zhao, LuFeng Hu, ZhenNao Cai, Hui Huang, and Changfei Tong. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. *Neurocomputing*, 267:69–84, 2017.

Guo-Qiang Zeng, Jie Chen, Yu-Xing Dai, Li-Min Li, Chong-Wei Zheng, and Min-Rong Chen. Design of fractional order pid controller for automatic regulator voltage system based on multi-objective extreme optimization. *Neurocomputing*, 160:173–184, 2015.

Guo-Qiang Zeng, Kang-Di Lu, Yu-Xing Dai, Zheng-Jiang Zhang, Min-Rong Chen, Chong-Wei Zheng, Di Wu, and Wen-Wen Binary-coded extremal optimization for the design of pid controllers. *Neurocomputing*, 138:180–188, 2014.

Guo-Qiang Zeng, Xiao-Qing Xie, Min-Rong Chen, and Jian Weng. Adaptive population extremal optimization-based pid neural network for multivariable nonlinear control systems. *Swarm and Evolutionary Computation*, 44:320–334, 2019.

W. Deng, J. Xu, H. Zhao, and Y. Song. A novel gate resource allocation method using improved pso-based sqa. *IEEE Transactions on Intelligent Transportation Systems*, page 1–10, (2019):1097176, 2019.

Deng W, Xu JI, Song YI, and Zhao HM. An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application. *International Journal of Bio-Inspired Computation*, page 16(3): 158–170, 2020.

Jiao Hu, Huiling Chen, Ali Asghar Heidari, Mingjing Wang, Xiaojin Zhang, Ying Chen, and Zhiyang Pan. Orthodoxal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. *Knowledge-Based Systems*, 213:106684, 2021.

Qiang Li, Huiling Chen, Hui Huang, Xuehua Zhao, ZhenNao Cai, Changfei Tong, Wenbin Liu, and Xin Tian. An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis. *Computational Intelligence and Mathematical Methods in Medicine*, 2017, 2017.

Tong Liu, Liang Hu, Chao Ma, Zhi-Yan Wang, and Hui-Ling Chen. A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minim redundancy feature selection. *International Journal of Systems Science*, 46(5):919–931, 2015.

Xiang Zhang, Yueting Xu, Caiyang Yu, Ali Asghar Heidari, Shimin Li, Huiling Chen, and Chengy Li. Gaussian mutational chaotic fruit fly built-optimization and feature selection. *Expert Systems with Applications*, 141:112976, 2020.

Yanan Zhang, Renjing Liu, Xin Wang, Huiling Chen, and Chengy Li. Boosted binary harrs hawk optimizer and feature selection. *Engineering with Computers*, pages 1–30, 2020.

Lufeng Hu, Huazhong Li, Zhenmao Cai, Feiyuan Lin, Guangliang Hong, Huiling Chen, and Zhongjiu Lu. A new machine-learning method to prognosticate paraquat poisoned patients by combining coagulation, liver, and kidney indices. *Plos One*, 12(10):e0186427, 2017.

Hui Huang, Suyong Zhou, Jonghui Jiang, Huiling Chen, Yuping Li, and Chengy Li. A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features. *BMC bioinformatics*, 20(8):1–14, 2019.

Chengyi Li, Lingxian Hou, Bishuntad Yanesh Sharma, Huazhong Li, ChengShui Chen, Yuping Li, Xuehua Zhao, Hui Huang, ZhenNao Cai, and Huiling Chen. Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. *Computer methods and programs in biomedicine*, 153:211–225, 2018.

Xuehua Zhao, Xiang Zhang, Zhenmao Cai, Xin Tian, Xiaoqin Wang, Ying Huang, Huiling Chen, and Lu Feng. Chaos enhanced grey wolf optimization wrapped elm for diagnosis of paraquat-poisoned patients. *Computational biology and chemistry*, 78:481–490, 2019.

Xuehua Zhao, Daoliang Li, Bo Yang, Huiling Chen, Xixin Yang, Chenglong Yu, and Shuangying Liu. A two-stage feature selection method with its application. *Computers & Electrical Engineering*, 47:114–125, 2015.

Xuehua Zhao, Daoliang Li, Bo Yang, Chao Ma, Yungang Zhu, and Huiling Chen. Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. *Applied Soft Computing*, 24:585–596, 2014.

Aiju Lin, Quanquan Wu, Ali Asghar Heidari, Yueeting Xu, Huiling Chen, Wujun Geng, and Chengyi Li. Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy k-nearest neighbor classifier. *IEEE Access*, 7:67235–67248, 2019.

Jixia Tu, Aiju Lin, Huiling Chen, Yuping Li, and Chengyi Li. Predict the entrepreneurial intention of fresh graduate students based on an adaptive support vector machine framework. *Mathematical Problems in Engineering*, 2019:1–16, 2019.

Yan Wei, Huijing Lv, Mengxiang Chen, Mingjing Wang, Ali Asghar Heidari, Huiling Chen, and Chengyi Li. Predicting entrepreneurial intention of students: An extreme learning machine with gaussian barebone hawks hawks optimizer. *IEEE Access*, 8:76841–76855, 2020.

Yan Wei, Ni Ni, Dayou Liu, Huiling Chen, Mingjing Wang, Qiang Qian, Xiaojin Cui, and Haipeng Ye. An improved grey wolf optimization strategy enhanced svm and its application in predicting the second major. *Mathematical Problems in Engineering*, 2017:1–12, 2017.

Wei Zhu, Chao Ma, Xuehua Zhao, Mingjing Wang, Ali Asghar Heidari, Huiling Chen, and Chengye Li. Evaluation of sino foreign cooperation intention of students: An extreme leaning machine with gaussian barebone hawks hawks optimizer. *IEEE Access*, 8:61107–61123, 2020.

Jiaze Tu Huiling Chen Mingjing Wang, Amir H. Gandomi. Colony predation algorithm. *Journal of Bionic Engineering*, Accepted.

Seyyedal Mirjalili, Ibrahim Aljarah, Majid Mafarja, Ali Asghar Heidari, and Hossam Faris. Grey wolf optimizer: theory, literature review, and application in computational fluid dynamics problems.
Nature-inspired optimizers, pages 87–105, 2020.

[72] Seyyedali Mirjalili. Moth–flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based systems, 89:228–249, 2015.

[73] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory and applications. Neurocomputing, 70(1-3):489–501, 2006.

[74] Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui Zhang. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2):513–529, 2011.

[75] Sudarshan K Dhall and Chung Laung Lai. On a real-time scheduling problem. Operations research, 26(1):127–140, 1978.

[76] Amir Mohammad Fathollahi-Fard, Fathollahi-Fard, Abbas Ahmadi, Fariba Goodarzian, and Naoufel Cheikhrouhou. A bi-objective home healthcare routing and scheduling problem considering patients’ satisfaction in a fuzzy environment. Applied soft computing, 93:106385, 2020.

[77] Jun-qing Li, Jia-wen Deng, Cheng-you Li, Yu-yan Han, Jie Tian, Biao Zhang, and Cun-gang Wang. An improved jaya algorithm for solving the flexible job shop scheduling problem with transportation and setup times. Knowledge-Based Systems, 200:106032, 2020.

[78] Khalid S Essa and Yves Géraud. Parameters estimation from the gravity anomaly caused by the two-dimensional horizontal thin sheet applying the global particle swarm algorithm. Journal of Petroleum Science and Engineering, 193:107421, 2020.

[79] G Tippa Reddy, M Praveen Kumar Reddy, Kuruva Lakshmannu, Dharmendra Singh Jajpur, Rajesh Kaluri, and Gautam Srivastava. Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis. Evolutionary Intelligence, 13(2):185–196, 2020.

[80] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks, volume 4, pages 1942–1948. IEEE, 1995.

[81] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.

[82] Seyyedeh Zahra Mirjalili, Seyyedali Mirjalili, Shahzad Saremi, Hosam Faris, and Ibrahim Aljara. Grasshopper optimization algorithm for multi-objective optimization problems. Applied Intelligence, 48(4):805–820, 2018.

[83] Ali Asghar Heidari, Seyyedali Mirjalili, Hassam Faris, Ibrahim Aljara, Majdi Mafarja, and Huiling Chen. Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97:849–872, 2019.

[84] Yutao Yang, Huiling Chen, Ali Asghar Heidari, and Amir H Gandomi. Hunger games search: Visions, conception, implementation, actions on Multimedia Computing Communications and Applications, 2021.

[85] Quan Zou, Pengwei Xing, Leyi Wei, and Bin Liu. Gene2vec: A convolutional neural network for spotting multi-scale micro-expression intervals in long videos. IEEE Transactions on Image Processing, 2021.

[86] Yue Yang, Hanli Zhao, Lihua You, Renlong Tu, Xueyi Wu, Xiaolan Fu. Mesnet: A convolutional neural network for spotting multi-scale micro-expression intervals in long videos. IEEE Transactions on Image Processing, 2021.

[87] Rohit Salgrotta, Urvidher Singh, and Sriparna Saha. Improved cuckoo search with better search capabilities for solving cec2017 benchmark problems. In 2018 IEEE Congress on Evolutionary Computation (CEC), pages 1–7. IEEE, 2018.

[88] Sen Qiu, Zhe longing Wang, Hongyu Zhao, and Huosheng Hu. Using distributed wearable sensors to measure and evaluate human lower limb motions. IEEE Transactions on Instrumentation and Measurement, 65(4):939–950, 2016.

[89] Chen Yang, Haishi Zhao, Lorenzo Bruzzone, Jon Afifi Benediktsson, Yanchun Liang, Bin Liu, Xingguo Zeng, Renchu Guan, Chunlai Li, and Ziyuan Ouyang. Lunar impact crater identifier and age estimation with chang’e data by deep and transfer learning. Nature Communications, 11(1):658, 2020.

[90] Lei Jin, Zhijie Wen, and Zongyi Hu. Topology-preserving nonlinear shape registration on the shape manifold. Multimedia Tools and Applications, pages 1–13, 2020.

[91] Xia Wu, Xueyuan Xu, Jianhong Liu, Hailing Wang, Bin Hu, Feiping Transcations on Neural Networks Nie, and Learning Systems. Supervised feature selection with orthogonal regression and feature weighting. IEEE Transactions on Neural Networks and Learning Systems, page DOI: 10.1109/TNNLS.2020.2991336, 2020.

[92] Xupeng Wang, Mohammed Bennamoun, Ferdous Sohel, and Hang Lei. Diffusion geometry derived keypoints and local descriptors for 3d deformable shape analysis. Journal of Circuits, Systems and Computers, 30(01):2150016, 2021.

[93] Xupeng Wang, Ferdous Sohel, Mohammed Bennamoun, Yulan Guo, and Hang Lei. Scale space clustering evolution for salient region detection on 3d deformable shapes. Pattern Recognition, 71:414–427, 2017.

[94] H. Pei, B. Yang, J. Liu, and K. Chang. Active surveillance via group sparse bayesian learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, page DOI: 10.1109/TPAMI.2020.3023902, 2020.

[95] X. Xue, Z. Chen, S. Wang, Z. Feng, Y. Duan, and Z. Zhou. Value entropy: A systematic evaluation model of service ecosystem evolution. IEEE Transactions on Services Computing, page DOI: 10.1109/TSC.2020.3016660, 2020.

[96] Xi Xue, S. F. Wang, L. J. Zhan, Z. Y. Feng, and Y. D. Guo. Social learning evolution (sle): Computational experiment-based modeling framework of social manufacturing. IEEE Transactions on Industrial Informatics, 15(6):3343–3355, 2019.

[97] Tingting Li, Catherine Soladie, and Renaud Seguela. Local temporal pattern and data augmentation for micro-expression spotting. IEEE Transactions on Affective Computing, page DOI: 10.1109/TAFFC.2020.3023821, 2020.

[98] Su-Jing Wang, Ying He, Jingting Li, and Xiaoluan Fu. Mesnet: A convolutional neural network for spotting multi-scale micro-expression intervals in long videos. IEEE Transactions on Image Processing, 2021.

[99] Hanli Zhao, Heyang Guo, Xiaogang Jin, Jianbing Shen, Xiaoyang Mao, and Junrui Parallel and efficient approximate nearest patch matching for image editing applications. Neurocomputing, 305:39–50, 2018.

[100] Yanqian Zhao, Xiaoanr Zhong, Yingqiang Xu, Hanli Zhao, Meng Ai, Kun Transcations on visualization Zhou, and computer graphics. Parallel style-aware image cloning for artworks. IEEE Transactions on Visualization and Computer Graphics, 21(2):229–240, 2014.

[101] Abdel Fatakhau Bou, Hui Huang, Mingjing Wang, Xiaoia Ye, Zhiyang Gu, Huiling Chen, and Xueding Cai. Levy-based ant lion-inspired optimizers with orthogonal learning scheme. Engineering with Computers, pages 10.1007/s00366–020–01042–7, 2020.

[102] Xi Liang, Zhennao Cai, Mingjing Wang, Xuehua Zhao, Huiling Chen, and Chengye Li. Chaotic oppositional sine–cosine method for solving global optimization problems. Engineering with Com-
putsers, pages 10.1007/s00366–020–01083–y, 2020.

[108] Chunliang Feng, Zhiyuian Zhu, Zaixu Cui, Vadim Ushakov, Jean-Claude Dreher, Wenbo Luo, Ruoei Gu, Xia Wu, and Frank Krueger. Prediction of trust propensity from intrinsic brain morphology and functional connectome. Human brain mapping, 42(1):175–191, 2021.

[109] Hecheng Chen, Bo Yang, Jiming Liu, Xiao-Nong Zhou, and S. Yu Philip. Mining spatiotemporal diffusion network: A new framework of active surveillance planning. IEEE Access, 7:108458–108473, 2019.

[110] Hecheng Chen, Bo Yang, Hongbin Pei, and Jiming Liu. Next generation technology for epidemic prevention and control: Data-driven contact tracking. IEEE Access, 7:2633–2642, 2018.

[111] Xueyan Liang, Bo Yang, Hecheng Chen, Katarzyna Musial, Hongxu Chen, Yang Li, and Wanli Zhu. A scalable redefined stochastic blockmodel. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(3):1–28, 2021.

[112] Xiaoyu Cao, Tianxiang Cao, Feng Gao, and Xiaohong Guan. Risk-averse storage planning for improving res hosting capacity under uncertain siting choice. IEEE Transactions on Sustainable Energy, page DOI: 10.1109/TSTE.2021.3075615, 2021.

[113] Pengcheng Huang, Li Zhao, Runhua Jiang, Tao Wang, and Xiaoqin Zhang. Self-filtering image dehazing with self-upgrading module. Neurocomputing, 432:57–69, 2021.

[114] Tao Wang, Li Zhao, Pengcheng Huang, Xiaoqin Zhang, and Jiawei Xu. Haze concentration adaptive network for image dehazing. Neurocomputing, 439:75–85, 2021.

[115] Xiaoqin Zhang, Tao Wang, Jinxin Wang, Gyueng Tang, and Li Zhao. Pyramid channel-based feature attention network for image dehazing. Computer Vision and Image Understanding, 197–198:103003, 2020.

[116] Jun Li, Chaochao Chen, Huiling Chen, and Changfei Tong. Towards context-aware social recommendation via individual trust. Knowledge-Based Systems, 127:58–66, 2017.

[117] Jun Li and Jian Lin. A probability distribution detection based hybrid ensemble qos prediction approach. Information Sciences, 519:289–305, 2020.

[118] Jun Li, Xiao-Lin Zheng, Song-Tao Chen, William-Wei Song, and De-ren Chen. An efficient and reliable approach for quality-of-service-aware service composition. Information Sciences, 269:238–254, 2014.

[119] C. Chen, Qi Wu, Z. Li, Lei Xiao, and Zhong Yi Hu. Diagnosis of alzheimer’s disease based on deeply-fused nets. Combinatorial Chemistry & High Throughput Screening, 2020.

[120] Xiaoyan Fei, Jun Wang, Shihui Ying, Zhongyi Hu, and Jun Shi. Projective parameter transfer based sparse multiple empirical kernel learning machine for diagnosis of brain disease. Neurocomputing, 413:271–283, 2020.

[121] Zhongyi Hu, Jun Wang, Chunxiang Zhang, Zhenzhun Luo, Xiaoqiu Luo, Lei Xiao, and Jun Shi. Uncertainty modeling for multi center autism spectrum disorder classification using takagi-sugeno-kang fuzzy systems. IEEE Transactions on Cognitive and Developmental Systems, 2021.

[122] A. Saber, M. Sakr, O. M. Abo-Seida, A. Keshk, and H. Chen. A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access, 9:71194–71209, 2021.

[123] L. Zhang, Z. Zhang, W. Wang, Z. Jin, Y. Su, and H. Chen. Research on a covert communication model realized by using smart contracts in blockchain environment. IEEE Systems Journal, page 10.1109/JSYST.2021.3057333, 2021.

[124] Lejun Zhang, Zhijie Zhang, Weizheng Wang, Rasheed Waqas, Chunhui Zhao, Seokhoon Kim, and Huiling Chen. A covert communication method using special bitcoin addresses generated by vanity.gen. Computers, Materials & Structures, 65(1):597–610, 2020.

[125] Sen Qiu, Zhelong Wang, Hongyu Zhao, Kaiqiong Qin, Zhenglin Li, and Huosheng Huang. Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion. Information Fusion, 39:108–119, 2018.

[126] Mingyu Fan, Xiaqin Zhang, Jie Hu, Nannan Gu, and Dacheng Tao. Adaptive data structure regularized multiclass discriminative feature selection. IEEE Transactions on Neural Networks and Learning Systems, 2021.

[127] Xiaqin Zhang, Mingyu Fan, Di Wang, Peng Zhou, and Dacheng Tao. Top-k feature selection framework using robust 0-1 integer programming. IEEE Transactions on Neural Networks and Learning Systems, 2020.

[128] Xiaqin Zhang, Wei Li, Xiuzi Ye, and Stephen Maybank. Robust hand tracking via novel multi-cue integration. Neurocomputing, 157:296–305, 2015.

[129] Carol P Chong and Philip R Street. Pneumonia in the elderly: a review of the epidemiology, pathogenesis, microbiology, and clinical features. Southern medical journal, 101(11):1141–5, 2008.

[130] Jun Shu. Pneumonia in the elderly: understanding the characteristics. Southern medical journal, 101(11):1086–1086, 2008.

[131] Maimuna S Majumder, Sheryl A Kluberg, Sumiko R Mekaru, and John S Brownstein. Mortality risk factors for middle east respiratory syndrome outbreak, south korea, 2015. Emerging infectious diseases, 21(11):2088, 2015.

[132] Ki-Ho Hong, Jae-Phil Choi, Seon-Hui Hong, Jeewon Lee, Ji-Soo Kwon, Sun-Mi Kim, Se Yoon Park, Ji-Young Rhee, Baek-Nam Kim, Hee Jung Choi, et al. Predictors of mortality in middle east respiratory syndrome (mers). Thorax, 73(5):286–289, 2018.

[133] Kin Wing Choi, Tai Nin Chau, Owen Tsang, Eugene Tso, Ming Chee Chiu, Wing Lok Tong, Po Oi Lee, Tai Keung Ng, Wai Fu Ng, Kam Cheong Lee, et al. Outcomes and prognostic factors in 267 patients with severe acute respiratory syndrome in hong kong. Annals of internal medicine, 139(9):715–723, 2003.

[134] Dawei Wang, Bo Hu, Chang Hu, Fangfang Zhu, Xing Liu, Jing Zhang, Binbin Wang, Hui Xian, Zhenhun Cheng, Yong Xiong, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in wuhan, china. Jama, 323(11):1061–1069, 2020.

[135] Fei Zhou, Ting Yu, Ronghui Du, Guohui Fan, Ying Liu, Zhibo Liu, Jie Xiang, Yeming Wang, Bin Song, Xiaoying Gu, et al. Clinical course and risk factors for mortality of adult inpatients with covid-19 in wuhan, china: a retrospective cohort study. The lancet, 395(10229):1054–1062, 2020.

[136] Joseph T Wu, Kathy Leung, Mary Bushman, Nishant Kshore, Rene Niehus, Pablo M de Salazar, Benjamin J Cowling, Marc Lipsitch, and Gabriel M Leung. Estimating clinical severity of covid-19 from the transmission dynamics in wuhan, china. Nature medicine, 26(4):506–510, 2020.

[137] Marc E Weksler. Changes in the b-cell repertoire with age. Vaccine, 18(16):1624–1628, 2000.

[138] Daniela Weiskopf, Birgit Weinberger, and Beatrix Gruber-Loebenstein. The aging of the immune system. Transplant international, 22(11):1041–1050, 2009.

[139] Steven M Opal, Timothy D Girard, and E Wesley Ely. The immunopathogenesis of sepsis in elderly patients. Clinical infectious diseases, 41(Supplement_7):S504–S512, 2005.

[140] Jung Yeon Heo, Joon Young Song, Ji Yun Noh, Min Joo Choi, Jie Gu Yoon, Saem Na Lee, HEE Jin Cheong, and WOO Joo Kim. Effects of influenza immunization on pneumonia in the elderly. Human vaccines & immunotherapeutics, 14(3):744–749, 2018.

[141] Kui Liu, Yuan-Yuan Fang, Yan Deng, Wei Liu, Mei-Fang Wang, Jing-Ping Ma, Wei Xiao, Ying-Nan Wang, Min-Hua Zhong, Cheng-Hong Li, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in hubei province. Chinese medical journal, 2020.

[142] I. Zhou and HG Liu. Early detection and disease assessment of patients with novel coronavirus pneumonia. Zhonghua jie he hui xi za zhi= Zhonghua Jiehe he Huxi Zazhi= Chinese Journal of Tuberculosis and Respiratory Diseases, 43:E003–E003, 2020.

[143] Tai-Nin Chau, Kam-Cheong Lee, Hung Yao, Tak-Yin Tsang, Tat-Chong Chow, Yiu-Cheong Yeung, Kin-Wing Choi, Yuk-Keung Tso, Terence Lau, Sik-To Lai, et al. Sars-associated viral hepatits.
caused by a novel coronavirus: report of three cases. *Hepatology*, 39(2):302–310, 2004.

[144] Khaled O Alsaad, Ali H Hajee, Mohammed Al Balwi, Mohammed Al Moaiqel, Nourah Al Oudah, Abdulaziz Al Ajan, Sameera AlJohani, Sami Alsalamy, Giamal E Gmati, Hanan Balkhy, et al. Histopathology of middle east respiratory syndrome coronavirus (mers-cov) infection–clinicopathological and ultrastructural study. *Histopathology*, 72(3):516–524, 2018.

[145] Heshui Shi, Xiaoyu Han, Nanshan Chen, Min Zhou, Xuan Dong, Jieming Qu, Fengyun Gong, Khaled O Alsaad, Ali H Hajeer, Mohammed Mustafa Ahmed Abdel-Reheim, Basim Anwar Shehata Messiha, Zhe Xu, Lei Shi, Yijin Wang, Jiyuan Zhang, Lei Huang, Chao Stef J Koppelman, Shyamali Jayasena, Dion Luykx, Erik Schep-Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Qing Zhou, Hailong Cao, Zhenjun Xu, Rongfang Lan, Xin Chen, Wei Liu, Zhao-Wu Tao, Lei Wang, Ming-Li Yuan, Kui Liu, Ling Yanjun He, Miaogen Li, Caiyuan Mai, Lujing Chen, Xiaoman Jixiang Zhang, Xiaoli Wang, Xuemei Jia, Jiao Li, Ke Hu, Guozhong Dongjin Wang, and Wei Xu. Baseline serum globulin as a predictor of the recurrence of lone atrial fibrillation after radiofrequency catheter ablation. *Anatolian journal of cardiology*, 17(5):381, 2017.

[156] Natalie M Zahr. Peripheral tnf elevations in abstinent alcoholics are associated with hepatitis c infection. *PloS one*, 13(2):e0191586, 2018.

[157] Hsiao-Ling Chang, Kow-Tong Chen, Shu-Kuan Lai, Hung-Wei Cai, et al. Anemia and low albumin levels are associated with se-

[158] Xiao-Jing Du, Ling-Long Tang, Yan-Ping Mao, Ying Sun, Mu-Sheng Zeng, Tie-Bang Kang, Wei-Hua Jia, Ai-Hua Lin, and Jun Ma. The pretreatment albumin to globulin ratio has predictive value for long-term mortality in nasopharyngeal carcinoma. *PloS one*, 9(4):e94473, 2014.

[159] Jose Serpa, Danish Haque, Josemon Velayam, Katharine Breaux, and Maria C Rodriguez-Barradas. Effect of combination antiretro-
viral treatment on total protein and calculated globulin levels among hiv-infected patients. *International Journal of Infectious Diseases*, 14:e41–e44, 2010.

[160] Zhu-Li Zhang, Yu-Lei Hou, De-Tao Li, and Feng-Zeng Li. Lab-

[161] Solicited comments on preprint submitted to Elsevier

[162] Hwang. Albumin and c-reactive protein have prognostic signifi-
cance in patients with community-acquired pneumonia. *The Tohoku journal of experimental medicine*, 268(6):767–772, 2020.

[163] Positive epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in wuhan, china: a descriptive study. *The Lancet infectious diseases*, 20(4):425–434, 2020.

[164] Hsiao-Ling Chang, Kow-Tong Chen, Shu-Kuan Lai, Hung-Wei Cai, et al. Anemia and low albumin levels are associated with se-

[165] Taliban tetrachloride in mice. *Biological and Pharmaceutical Bulletin*, 30(10):1898–1904, 2007.

[166] Jose Serpa, Danish Haque, Josemon Velayam, Katharine Breaux, and Maria C Rodriguez-Barradas. Effect of combination antiretro-
viral treatment on total protein and calculated globulin levels among hiv-infected patients. *International Journal of Infectious Diseases*, 14:e41–e44, 2010.

[167] Hoang Tuan, Duc-Dinh Dao, Tran Kim, and Vu Thanh Khanh. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice. *Biological and Pharmaceutical Bulletin*, 30(10):1898–1904, 2007.

[168] First Author et al.: Preprint submitted to Elsevier
(1) The ECPA-KELM is designed to diagnose COVID-19 from the perspective of biochemical indicators.

(2) Performance of the CPA is enhanced special operators from other algorithms.

(3) Property of the ECPA is verified on CEC2017 optimization tasks.

(4) ECPA can successfully solve KELM’s parameter optimization and feature selection simultaneously.

(5) ECPA-KELM may be treated as tool for diagnosing COVID-19 from the perspective of biochemical indicators.
AUTHOR DECLARATION TEMPLATE

We wish to draw the attention of the Editor to the following facts which may be considered as potential conflicts of interest and to significant financial contributions to this work.

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.

We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address which is accessible by the Corresponding Author and which has been configured to accept email from Huiling Chen(chenhuiling.jlu@gmail.com)

Signed by all authors as follows:

Beibei Shi: shibeibei1993zjph@163.com
Hua Ye: 154671045@qq.com
Long Zheng: 7270684@qq.com
Juncheng Lyu: cheng_china@163.com
Cheng Chen: chenchnjmu@163.com
Ali Asghar Heidari: as_heidari@ut.ac.ir
Zhongyi Hu: huzhongyi@wzu.edu.cn
Huiling Chen: chenhuiling.jlu@gmail.com
Peiliang Wu: pl_wu@163.com