The Notary in the Haystack – Countering Class Imbalance in Document Processing with CNNs

Martin Leipert¹, Georg Vogeler², Mathias Seuret¹, Andreas Maier¹, and Vincent Christlein¹

¹ Pattern Recognition Lab, FAU Erlangen-Nuremberg, Erlangen, Germany
² Austrian Centre for Digital Humanities, Universität Graz, Graz, Austria

{firstname.lastname}@fau.de
georg.vogeler@uni-graz.at

Abstract. Notarial instruments are a category of documents. A notarial instrument can be distinguished from other documents by its notary sign, a prominent symbol in the certificate, which also allows to identify the document’s issuer. Naturally, notarial instruments are underrepresented in regard to other documents. This makes a classification difficult because class imbalance in training data worsens the performance of Convolutional Neural Networks. In this work, we evaluate different countermeasures for this problem. They are applied to a binary classification and a segmentation task on a collection of medieval documents. In classification, notarial instruments are distinguished from other documents, while the notary sign is separated from the certificate in the segmentation task. We evaluate different techniques, such as data augmentation, under- and oversampling, as well as regularizing with focal loss. The combination of random minority oversampling and data augmentation leads to the best performance. In segmentation, we evaluate three loss-functions and their combinations, where only class-weighted dice loss was able to segment the notary sign sufficiently.

Keywords: convolutional neural networks · class imbalance · segmentation

1 Introduction

Notarial instruments, the subject of this work, originate from medieval Italy. The ones considered in this study are recognizable for the human eye by a characteristic notary sign, see for example Fig. 1a, which served as signature to identify the issuing commissioner. Around 1200 CE they appeared in today’s Germany and Austria. The analysis of their spread and development is an open problem in historic research [4,17,18]. Especially as they are one particular source to reconstruct the development of monasteries. Compared to the number of medieval documents with seals, notarial instruments are underrepresented. Automatic classification and segmentation of these documents, to automatically identify the commissioner, is beneficial. Notary signs cover typically a small area
Fig. 1: Examples of a notary sign (a) and a notary document (b).

of the document [16], see Fig. 1b, where the notary sign is visible in the bottom left. In classification tasks, the class notary document is severely underrepresented and the difference to other documents is only a small detail. In segmentation tasks, the area of the notary sign is much smaller compared to text. So both problems have to deal with severe class imbalance.

In this work, we conduct a comparative study for handwritten document classification and segmentation. These studies are sparse for the field of class imbalance [1], which is a major problem of the dataset at hand. Therefore, we evaluate different techniques to counter this issue: (1) augmentation, including a novel idea of data interpolation, which is easily integratable in the case of notarial instruments containing characteristic notary signs; (2) data oversampling and undersampling; (3) different losses, such as focal loss [11]; (4) lastly, we tried to enhance the performance of segmentation networks by feeding them entire regions of the layout more often to let them memorize their characteristics.

The work is structured as follows. After presenting the related work in Sec. 2, we introduce the used dataset in Sec. 3. The networks, tools and loss functions used for the study are presented in Sections 3.1 to 3.3. Afterwards, we give an overview of the used settings in Sec. 4.1. The results are described in Sec. 4.2 for classification and Sec. 4.3 for segmentation and discussed in Sec. 4.4. Finally, the paper is concluded in Sec. 5.

2 Related Work

Countering class imbalance: There exist two main strategies to counter class imbalance in neural network training [9]. Data level techniques – which modify the data fed to the model – and algorithmic methods which modify the training algorithm. Usually, data level methods try to achieve class balance. From those,
random minority class oversampling achieved the best performance in previous
studies [1]. In contrast to traditional machine learning, oversampling does not
lead to overfitting for convolutional neural networks (CNNs). Another technique
is SMOTE [19], a method to interpolate new samples from training data. Fur-
thermore, data augmentation can be used to virtually increase the amount of
training data, although the performance under augmentation is always worse
than with the equivalent amount of real data. Algorithmic level methods include
class-weighting – to increase the weight adaptation for miss-classifications – or
specific loss functions, such as focal loss [11]. The latter puts additional weight
on hard to classify examples. This technique (in combination with the RetinaNet
architecture) outperformed classical detectors significantly.

Document classification and segmentation with CNNs: Documents of the same
genre have a similar visual structure and region-specific features. This allows to
classify documents via CNNs. In a comparative study, Harley et al. [3] showed
that pretrained CNNs (on ImageNet) that took the entire document as input,
outperformed other approaches that used only document parts. Documents may
be processed based on simple, textural features. For example, Oyedotun et al. [13]
achieved a region identification rate (share of regions assigned to the correct
class) of 84\% for segmentation with a simple network taking six pixel-wise
textural features as input and producing a three-class output (image, text,
background). Therefore the input was fed to a single fully-connected hidden layer.
Also specifically developed deep CNNs for documents exist. For example, the
dhSegment CNN [12] consists of a contracting path and an expanding path similar
to the well-known U-Net [14]. The contracting path is based on the ResNet50
architecture [5]. The approach outperformed previous approaches in border and
ornament extraction of medieval documents.

3 Materials and Methods

The used document collection originates from the Monasterium project. This
collection of digitized medieval documents from different European archives offers
descriptions and images of more than 650,000 documents [6,15].

Subject of this study is a set of 31,836 documents, which contains 974 no-
tarial instruments and various other types. They originate from libraries of
Southern Germany and Austria. The notary signs in the documents are circum-
scribed by manually drawn polygons. The time range of the documents is from
800 CE to 1499 CE, where the first notarial instrument in the collection appears
shortly after 1200 CE. The distributions are not entirely separable, not every
notary certificate is clearly identifiable, e. g., due to a missing notary sign. The
documents are 3000 px wide, but vary in spatial resolution. Their real size is
between 15 cm × 20 cm and 40 cm × 50 cm with font sizes ranging from 15 px to
60 px, the majority around 30 px. The size of the notary sign ranges from about
200 px × 200 px to 500 px × 700 px. Other varying factors are yellowish paper, low
contrast, overexposure during scanning and faded ink. Stains with low contrast
are frequent due to water damage, see for example Fig. 2.
3.1 Networks

The classification task is binary, i.e., distinguish notarial instruments from non-notary ones. The networks used the full image as input, rescaled and cropped to a size of 224 px \times 224 px. ResNet50 [5] and DenseNet121 [7] networks are used for classification, both pretrained on ImageNet. Both networks reuse features within the network by skip-connections. While ResNet bypasses the concatenated results from previous layers, DenseNet uses the entire feature vectors of previous layers within a block. DenseNet outperforms ResNet in stability, parameter efficiency, and is less prone to overfitting [7].

The segmentation task is a four class problem: background, text, ornaments and notary signs. As in classification, images are reduced to 224 px \times 224 px. This size is sufficient to identify all foreground components (text, ornament and notary sign). The patch is segmented with a U-Net [14] using 5 layers. The U-Net consists of a contracting/encoder and expanding/decoder path. Blocks on the same level are interconnected, to reconstruct the output with the input features on the specific level. The U-Net achieves large patch segmentation by an overlap strategy. Batch normalization [8] is applied in every layer after the ReLU non-linear functions to stabilize training.

3.2 Tools

The networks in the classification settings are trained with different settings, i.e., different loss functions, data augmentation and sampling methods. Adam [10] with PyTorch’s default parameters ($\beta_1=0.9, \beta_2=0.999$) is used as optimizer for both the segmentation and the classification. For the classification task, training is performed for 1250 iterations and a batch size of 32. The initial learning rate is $1 \cdot 10^{-3}$, except for settings with focal loss, where it is $5 \cdot 10^{-4}$. To adapt the learning rate, a step decay learning rate scheduler with $\gamma=0.5$ is used. The step size is set to 250. In segmentation, training is performed for 60 epochs, where the initial learning rate is $3 \cdot 10^{-3}$, except for settings with focal loss as part of the loss function. In the latter cases, the initial learning rate is $1 \cdot 10^{-3}$. Again a step decay learning rate scheduler is applied for learning rate adaption. The decay parameter is set to $\gamma=0.3$ and the step size is 10. Additionally in classification, dropout with $p=0.2$ is used for the last fully connected layer of the respective networks, which empirically improves the recognition rates.
Table 1: Used groups of augmentation effects. Italic effects only occur for moderate
and/or heavy augmentation.

Group	Effects
Flip	Horizontal and vertical flip, 90°-rotation
Affine	
Transformation	Random rescale, shift & rotation
Blur & Noise	Ordinary & gaussian noise, ordinary, gaussian motion & ordinary blur, median filter
Distortion	Optical & grid distortion, elastic transformation
Brightness & contrast	Random brightness & contrast adaption.
Color	Histogram equalization (CLAHE), random HSV^3-shift, RGB-shift, channel shuffle and grey conversion
Special effect	Shadow, snow or jpg compression

Image Augmentation: The data augmentation strategies are derived from the previously examined dataset-intrinsic variations. Those are contrast, color, lighting, affine transformations, deformations and damages. Three dynamic image augmentation functions are built with the Albumentations framework [2]. The “weak” augmentation is designed to mimic the intrinsic variations of the dataset. The “moderate” augmentation uses higher parameter and probability values. The “heavy” augmentation also includes additional effects not being part of the intrinsic data variation. These functions are identical for both classification and segmentation.

They are all composed according to a certain pattern, i.e., they include a combination of up to seven groups of effects. These groups are a probabilistic combination of flip, an affine transformation, one of a group of blurs, one non-linear distortion, a special effect, a brightness-contrast variation and one of various color modifications as shown in Tab. 1.

The “flip” and “affine transformation” groups simulate different positions, scales and orientations of the document. The flips are used to force the network to learn the features independent of their absolute position. The “brightness & variance” and “Blur & noise” groups mimic aging paper and different acquisition qualities. The “Distortions” imitate acquisition variables, as the photography of the documents are not always plain. The “Color” shift simulates different font and paper colors. The “special effects” group mimics either darker (shadow) or missing areas (snow).

Each of these groups has an assigned occurrence probability. If the group is drawn, one effect out of the group is chosen – again according to a probability – to contribute to the augmentation. This concept is the same for all three augmentation functions. So in an edge case, exactly one effect per seven groups is applied. The occurrence probabilities of the groups and the intensity parameters of the effects are varied, resulting in different augmentation intensities. Each parameter and probability is set such that it doubles from “weak” to “heavy”. As consequence for “weak” augmentation in average 1.7 effects were applied, for “moderate” 3.4 and for “heavy” 4.0. e.g., the group affine transformation occurred
with a probability of 0.4 for “weak” augmentation and with a probability of 0.7 for “moderate” and “heavy”. The scale limit was 0.1 for “weak”, 0.15 for “moderate” and 0.2 for “heavy”.

Notary Symbol Swap: This was introduced to allow meaningful interpolation between data. The system should learn the notary sign as the decisive structural element of notarial instruments. Therefore, notary signs of other documents are either inserted at the original sign’s position, cf. Fig. 3 for an example, or added at an arbitrary location of the document.

Random Minority Oversampling: Used to balance the dataset, in which non-notary documents occur 32 times more frequent than notary ones. Hence, the latter ones are oversampled. This is done by random drawing, such that notary and non-notary signs occur with the same probability of 0.5. The variance within the notary set is smaller, which is combined with augmentation to compensate possible overfitting effects.

Random Majority Undersampling: In contrast to oversampling, a random subset of the non-notary documents is drawn to balance the number of samples of notary and non-notary document within the training data.

Meaningful Segment Training: In the segmentation task, background and text are largely over-represented in comparison to notary signs. To compensate this, the U-Net is trained with segments of an entire “meaningful” area of the image (text, ornaments or a notary sign) by randomly choosing one type of these segments occurring in the image, this is repeated to fill the image or resized to fill the patch. This is done with a probability of 0.5 alternating with normal notary certificates.

1. https://www.monasterium.net/mom/AT-AES/Urkunden/2854/charter
Table 2: Settings for the Training of the DenseNet and the ResNet

Setting	Augmentation	Swap/Add Sign	Loss	Under-/Oversampling
1	1	BCE		+
2	2	BCE	+	+
3	+	BCE	+	+
4	++	BCE	+	
5	+	BCE	-	
6	+	BCE	+	
7	+	BCE	+	+
8	+	BCE	+	+
9	+	Swap & Add BCE	+	+
10	+	Swap	BCE	+
11	+	Swap & Add	Focal	+
12	+	Swap	Focal	+

3.3 Loss Functions

Classification: For training, we use the binary cross entropy (BCE) loss. As alternative loss function and algorithmic imbalance compensation, focal loss [11] is used. It emphasizes examples with a high error in training. Due to this property, it achieves good performance for problems suffering from strong class imbalance. Focal loss is based on balanced cross entropy and consists of adding a weighting \((1 - p_t)^\gamma\) and (optionally) a class weighting factor \(\alpha_t\) to the BCE function.

\[
FL(p_t) = -\alpha_t (1 - p_t)^\gamma \log(p_t)
\]

where the probability \(p_t\) is defined as:

\[
p_t = \begin{cases} p & y = 1 \\ 1 - p & \text{otherwise} \end{cases}
\]

With a high \(\gamma \approx 2\), hard examples are weighted stronger and thus are focus of training. This setting is used for focal loss in classification. With a low \(\gamma \approx 0.5\) the weight of samples with a small deviation is increased. With \(\gamma = 0\) the function and its properties are equivalent to BCE loss. In the classification tasks \(\gamma = 2\) is used.

Segmentation: We evaluate training of a U-Net using different loss functions: (1) class-weighted dice loss (weighted by inverse class frequency), (2) BCE loss, and (3) a two dimensional version of focal loss \((\gamma = 1.5)\). Additionally, we combine different loss functions to evaluate if these combinations improve training behavior by compromising different optimization goals.
4 Evaluation

4.1 Evaluation Protocol

The set of 31,838 images for the classification was split into 21,227 training, 2,653 validation and 7,958 test images. For segmentation, the set of 887 images was split into 496 training, 98 validation and 293 test images.

For the classification task, we created twelve different evaluation settings, see Tab. 2. The settings test various augmentation intensities, namely “weak” (o), “moderate” (+) and “heavy” (++) augmentation, swapping of the notary sign and random adding/swapping of notary signs. Focal loss, undersampling (−) and oversampling (+) are compared under moderate augmentation. Each setting is executed and trained three times. We sum up all the results and compute common error metrics for a two class-problems: sensitivity, specificity and the F-value (a. k. a. F1-score).

The first setting serves as baseline where no imbalance counter measures are used. In the second setting, random minority oversampling as most effective counter-measure is introduced. This is further expanded in settings 3, 4, 5, where data augmentation is added to the previous setting and its intensity is steadily increased from “weak” to “heavy” to further boost the accuracy. The most effective “moderate” augmentation is used in setting 6, together with random majority undersampling as a comparison to oversampling. Settings 7 to 9 introduce notary symbol swapping/adding. This method is used as sole augmentation in setting 7. In setting 8, this technique serves as additional augmentation to “moderate” augmentation. Setting 9 uses “moderate” augmentation and symbol swapping only, to compare if it is more effective than adding. The underlying assumption is, that the correct arrangement of the sign is important for detection and the adding of a symbol at an arbitrary position could possibly reduce recognition accuracy. From setting 10 to 12, focal loss is introduced and combined with the best performing “moderate” augmentation in setting 10. In setting 11, this augmentation is further combined with swapping and adding of notary signs. Finally all successful techniques – random minority oversampling, moderate augmentation and symbol swap – are combined with focal loss, to examine, if focal loss performance could beat BCE.

For the segmentation experiments, the main variation in the settings (Tab. 3) is the use of segments and the combination of different loss functions. In the settings 1 to 4 with focal loss, it is tested if augmentation improves the result. In settings 5 to 10 the most effective combination of loss functions is tested. Settings 11 to 13 check if meaningful segments improve the result. The segmentation results are evaluated by means of the Intersection over Union (IoU)

\[
\text{IoU} = \frac{|A \cap B|}{|A \cup B|}
\]

(3)
of the labels in the ground truth \(A \) and in the networks’ prediction \(B \).
Table 3: Settings for the training of the U-Net in the segmentation task.

Setting	Augmentation	Focal Dice	BCE	Meaningful Segments
1	1.0			
2	o	1.0		
3	+	1.0		
4	++	1.0		
5	+	1.0		
6	+	1.0		
7	+	0.5	0.5	
8	+	0.5	0.5	
9	+	0.5	0.5	
10	+	0.33	0.33	0.33
11	+	1.0		
12	+	1.0		
13	+	1.0		

4.2 Classification Results

The classification results for the different settings are given in Tab. 4a and Tab. 4b for ResNet and DenseNet, respectively. Ignoring class imbalance (setting 1) leads to the worst results for both networks, the ResNet model even fails to correctly classify any notarial instrument. Using oversampling without data augmentation (setting 2) gives the second worst results. When combining oversampling with data augmentation (setting 3–6,8,9) the results increase significantly, but start to decrease with “heavy” augmentation (setting 5). The best results are achieved using the DenseNet with a “moderate” augmentation function (setting 3,9) and for the combination of moderate data augmentation, focal loss and oversampling (setting 12).

Swapping the notary sign (setting 7–9,11,12) does neither drastically improve nor worsens the results. When using only notary sign swapping & adding without data augmentation (setting 7), the results improve compared to pure oversampling (setting 2). For DenseNet, the combination of notary sign swapping with data augmentation and oversampling (setting 9) achieves the best F-measure. Notary sign swapping worsens the result slightly for ResNet when applied in combination with “moderate” data augmentation, i.e., comparing setting 8 with setting 4.

Comparing undersampling (setting 6) with oversampling (setting 4), the results are inconclusive, oversampling works slightly better for ResNet and the other way around for DenseNet. Focal loss (setting 10–12) is also able to compensate data imbalance, but does not achieve the same recognition rates when applied without oversampling (10,11). It performs significantly worse than oversampling on moderately augmented data (setting 10 vs. setting 4). When adding swapping to oversampling, the accuracy increases for ResNet but does not improve for DenseNet.
Table 4: Classification results for ResNet and DenseNet.

Setting	Sensitivity	Specificity	F-Value
1	100	0	0
2	92.2	82.4	87.0
3	97.4	93.4	95.3
4	96.5	94.8	95.7
5	95.4	94.5	94.9
6	94.9	94.7	94.8
7	96.9	84.0	89.9
8	97.1	92.6	94.8
9	96.4	93.7	95.0
10	94.5	51.2	66.4
11	94.4	89.6	91.9
12	97.8	94.0	95.9

(a) ResNet

Setting	Sensitivity	Specificity	F-Value
1	90.2	56.5	69.5
2	93.3	87.0	90.0
3	98.5	95.0	96.8
4	97.3	94.9	96.1
5	97.3	94.7	96.0
6	96.4	96.9	96.6
7	97.2	89.7	93.3
8	98.1	94.2	96.1
9	98.4	95.3	96.9
10	94.4	89.9	92.1
11	95.4	88.3	91.8
12	99.0	94.8	96.9

(b) DenseNet

In nearly all settings (apart from setting 11), DenseNet outperforms the corresponding ResNet setting. In particular, all DenseNet settings with over- or undersampling in combination with augmentation perform better than the best ResNet setting.

4.3 Results of the Segmentation

Tab. 5 gives the results for all settings which were tried in this study. See Tab. 3 for individual details about them.

Focal Loss with Different Augmentations (setting 1–4): Fig. 4 shows the results of focal loss for different augmentation levels as colored areas. At all augmentation levels, the network trained with focal loss is able to distinguish well text and background. However, it fails entirely to segment ornaments or notary signs, see also Tab. 5 setting 1–4. Additionally, the IoU declines slightly with stronger augmentation as the best result is achieved without augmentation.

Moderate Augmentation and Different Loss Functions (setting 3,5,6) A qualitative comparison of the different losses in combination with moderate augmentation can be found in Fig. 5, the color scheme is similar to the focal loss example. Dice loss is well able to segment notary signs, although it segments a larger area around the sign. Also the text is segmented mainly correctly, with comparable results to BCE and focal loss. Additionally, Dice loss delivers the most confident result. The only drawback are artifacts, such as the lower area of the notary sign in Fig. 5b that is classified as “text”. Also non-existing “notary signs” appear several times in the lower left corner of documents. BCE segments text and
Countering class imbalance in medieval document sets

Table 5: Intersection over Union (IoU) for different area types.

Setting	Background	Text	Ornament	Notary Sign	mean IoU
1	0.8820	0.8848	0.0000	0.0022	0.5896
2	0.8639	0.8711	0.0000	0.0000	0.5783
3	**0.8931**	0.8797	0.0000	0.0016	0.5915
4	0.8694	0.8544	0.0000	0.0041	0.5760
5	0.8791	0.8741	0.0000	0.0603	0.6045
6	0.8507	0.8503	**0.0049**	0.2902	0.6637
7	0.8857	**0.8833**	0.0000	**0.4101**	**0.7264**
8	0.8833	0.8622	0.0000	0.0000	0.5818
9	0.8818	0.8747	0.0000	0.0003	0.5856
10	0.8860	0.8705	0.0000	0.0001	0.5855
11	0.8235	0.7995	0.0000	0.0007	0.5419
12	0.7358	0.7977	0.0027	0.1942	0.5759
13	0.8494	0.8237	0.0000	0.0045	0.5592

Area [%] 63.95 34.28 0.07 1.70

background relatively accurately (setting 5), even better than Dice (setting 6), cf. Tab. 5. The segmentation for the text is especially tight. However it fails, similar to focal loss, to segment notary signs. Focal loss behaves comparable to BCE, with the only difference that BCE segments the notary signs slightly better, however, still insufficiently.

Combined Loss Functions (Setting 7–10): Fig. 6 shows the results of the combined loss functions. Dice and BCE (setting 7) are a good combination providing overall accurate boundaries and segmented the notary sign clearly and overall achieve the best results in Tab. 5. All combinations with focal loss perform significantly worse.

Training with meaningful region snippets (Setting 11–13) The region snippets deteriorate the result’s quality in terms of confidence and accuracy. This is valid for both repeating and scaling, where the first performs better in experiments than the latter. This is also demonstrated in Fig. 7. It leads to artifacts and area miss-classifications. For any used loss function, the prediction is worse than with the corresponding network trained without this training scheme.

4.4 Discussion

Classification Countering class imbalance is important, data augmentation, focal loss, under- and oversampling improve the results significantly in classification. However, focal loss performs worse as single countermeasure. In combination with over-/undersampling, focal loss performs slightly better than pure BCE and decreases missclassification rate of the majority class, with the price of a increased
Fig. 4: Comparison of the segmentation results with focal loss and different augmentations. In the plots a, b, c & d red color indicates class “background”, green “text” and blue “notary sign”. Source: BayHStA München KU Niederaltaich 951.

missclassification rate for the minority class. It outperforms other settings, when it is combined with data augmentation, notary sign swapping and oversampling.

Data interpolation with swapping and adding notary signs is a valid counter strategy for class imbalance. The boost is however weak in comparison to data augmentation. Nevertheless, when applied in combination with data augmentation, it works as best boost for accuracy.

Data augmentation clearly improves the prediction. Despite this, there is a limit for that effect when the data quality starts to diminish (shown with “heavy” augmentation). Improvements by augmenting data contribute up to a 6.3% increase (ResNet) and 6.7% increase (DenseNet) in F-value compared to plain oversampling.

Segmentation For segmentation, the best results are found with class-weighted Dice loss in combination with Binary Cross Entropy. Pure Dice loss performs also well. The results with focal loss and BCE are less confident and often fail to segment the notary sign. Focal loss is used with a focus on hard-to-classify examples. The notary sign is not recognized well by the network. One reason is probably that the manual segmentation lead to non-distinct boundaries, causing
areas assigned to the wrong class to be treated as hard examples. The BCE loss function does not add class-weighting, in contrast to the used class-weighted Dice loss. We assume that with accurately estimated examples and clearly separable distributions, focal loss would perform better in segmentation since focal loss would compensate the missing class weight. Another factor, which reduces the training success with focal loss, is that some documents have a very bad data quality, with a strongly faded text. The desired effect of an improved behavior for combined loss functions occurs with Dice and BCE loss. All other combinations – all including focal loss – deteriorate the results quality. The reasons are probably the same as for plain focal loss.

Feeding segments during training led to no improvements. When using scaled areas scaling to fill the image, the size of fed areas varies largely, as notary signs are usually much smaller than text area. This probably leads to inconsistency in the kernels, to decreased prediction quality and confidence, and to frequent artifacts. Repeating them probably conflicts with the overlap strategy of UNet and deteriorates region border recognition. An implementation where the areas

(a) BCE loss (b) Dice loss (c) Focal Loss

Fig. 5: Comparison of the segmentation results with moderate augmentation and different loss functions (color scheme is identical to Fig. 4). Source: Archiv der Erzdiözese Salzburg, D467.

(a) BCE and Dice (b) BCE and Focal (c) Dice and Focal (d) BCE, Dice and Focal Loss

Fig. 6: Comparison of the segmentation results with moderate augmentation and different loss function combinations (color scheme is identical to Fig. 4). Source: BayHStA München KU Aldersbach 877
would be of normal scale, but notary signs are fed more frequently without repeating, would probably lead to better results.

5 Conclusion

An optimal counter strategy for class-imbalance in two class classification problems is found with oversampling, notary sign swapping and moderate augmentation. Focal loss also works as imbalance counter. The results are comparable as with BCE when we use the same strategies as the best method, otherwise it performs worse. We identify the interpolation of data by swapping notary signs as a valid technique for data augmentation. However note that normal data augmentation is more efficient.

In segmentation, Dice loss with class weighting works well for data with high class imbalance. In combination with BCE its result even improves. This delivers clear segmentation results and sharp borders. Additionally, a good notary sign segmentation is achieved. Augmentation in case of class imbalance leads to an improvement for the focal loss function. Focal loss fails to segment the notary sign and is inappropriate for this application and data quality. Apparently, focal loss has problems with the deviations within the data, which are not always that clearly separable. Also feeding meaningful segments does not lead to improved behavior, presumably due to too large differences between segment sizes and conflicts with the UNet’s overlap strategy.

For future work, we would like to vary the imbalance to see the effect on the current strategies and also improve the notary sign swapping technique using noise and other transformations.

References

1. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks 106, 249 – 259 (2018). https://doi.org/10.1016/j.neunet.2018.07.011
2. Buslaev, A.V., Parinov, A., Khvedchenya, E., Iglovikov, V.I., Kalinin, A.A.: Albumentations: Fast and flexible image augmentations. arXiv (2018). https://doi.org/10.3390/info11020125

3. Harley, A.W., Ufkes, A., Derpanis, K.G.: Evaluation of deep convolutional nets for document image classification and retrieval. In: 13th International Conference on Document Analysis and Recognition (ICDAR). pp. 991–995 (2015)

4. Härtel, R.: Notarielle und kirchliche Urkunden im frühen und hohen Mittelalter, Historische Hilfswissenschaften, vol. 4. Böhlaun (2011). https://doi.org/10.1524/hzhz.2012.0384

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

6. Heinz, K.: Monasterium.net: Auf dem Weg zu einem mitteleuropäischen Urkundenportal. Digitale Diplomatik. Neue Technologien in der historischen Arbeit mit Urkunden pp. 70–77 (2009)

7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4700–4708 (2017). https://doi.org/10.1109/CVPR.2017.243

8. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning (ICML). pp. 448–456 (2015)

9. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. Journal of Big Data 6 (2019). https://doi.org/10.1186/s40537-019-0192-5

10. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: International Conference on Learning Representations (ICLR) (2015)

11. Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 42(2), 318–327 (2020). https://doi.org/10.1109/TPAMI.2018.2858826

12. Oliveira, S.A., Seguin, B., Kaplan, F.: dhsegment: A generic deep-learning approach for document segmentation. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) pp. 7–12 (2018). https://doi.org/10.1007/10.1109/ICFHR-2018.2018.00011

13. Oyedotun, O.K., Khashman, A.: Document segmentation using textural features summarization and feedforward neural network. Applied Intelligence 45, 198–212 (2016). https://doi.org/10.1007/s10489-015-0753-z

14. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). pp. 234–241 (2015). https://doi.org/10.1007/978-3-319-24574-4_28

15. Vogeler, G.: ‘Monasterium.net’ – eine Infrastruktur für diplomatische Forschung. Das Mittelalter 24(1), 247–252 (2019). https://doi.org/10.1515/mial-2019-0022

16. Weileder, M.: Das virtuelle deutsche Urkundennetzwerk : Ein Kooperationsprojekt zur Online-Bereitstellung von Urkunden im Kontext der Erschließung. Digitale Urkundenpräsentationen 6, 83–94 (2011)

17. Weileder, M.: Spätmittelalterliche Notarsurkunden aus virtuellen Archiven. In: Sonderveröffentlichung der Staatlichen Archive Bayerns, vol. 10, pp. 50–57. Bayerische Staatsbibliothek (2014)

18. Weileder, M.: Spätmittelalterliche Notarsurkunden: Prokuratorien, beglaubigte Abschriften und Delegatenurkunden aus bayerischen und österreichischen Beständen, Archiv für Diplomatik. Beihefte, vol. 18. Böhlaun (2019)
19. Wong, S.C., Gatt, A., Stamatescu, V., McDonnell, M.D.: Understanding data augmentation for classification: When to warp? 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) pp. 1–6 (2016). https://doi.org/10.1109/DICTA.2016.7797091