Toxicity and sublethal effects of two plant allelochemicals on the demographical traits of cotton aphid, *Aphis gossypii* Glover (Hemiptera: Aphididae)

Kangsheng Ma¹, Qiuling Tang¹, Pingzhuo Liang¹, Jin Xia¹, Baizhong Zhang², Xiwu Gao¹*

¹ Department of Entomology, China Agricultural University, Beijing, China, ² College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China

* gaoxiwu@263.net.cn

Abstract

Plant allelochemicals are a group of secondary metabolites produced by plants to defend against herbivore. The mortality of two plant allelochemicals (tannic acid and gossypol) on the cotton aphid, *Aphis gossypii* Glover (Hemiptera: Aphididae), were investigated using feeding assays and the sublethal effects were evaluated using the age-stage, two-sex life table approach. Tannic acid and gossypol have deleterious effects on *A. gossypii*, and as the concentrations increased, the mortality of cotton aphid increased. The life history traits of *A. gossypii* including the development duration of each nymph stage, the longevity, ovi-position days, total preadult survival rate and adult pre-oviposition period were not significantly affected by sublethal concentration of tannic acid (20 mg/L) and gossypol (50 mg/L), while the population parameters (*r*, *λ* and *R₀*) were significantly affected by these two plant allelochemicals. Furthermore, tannic acid can increase the pre-adult duration time and TPOP but reduce the fecundity of *A. gossypii* significantly compared to the control and gossypol treatment groups. These results are helpful for comprehensively understanding the effects of plant allelochemicals on *A. gossypii*.

Introduction

Plant allelochemicals, sometimes called secondary plant compounds because they are produced as by-products of intermediary metabolism by plant, which may play important roles in defense against insect herbivore [1–3]. Many kinds of plant allelochemicals were deleterious to herbivorous insects [4–7]. For example, isoflavonoids isolated from *Cicer arietinum* can affect the development of *Helicoverpa armigera* larvae [8]. Golawska et al. found that naringenin and quercetin have detrimental effects on the pea aphid, *Acyrthosiphon pisum* Harris [4]. Similarly, Zhang et al. found that the development of *H. armigera* was retarded significantly when the 6th instar larvae fed on a sublethal dosage of 2-tridecanone [9].
Tannic acid and gossypol from cotton plants participated in the cotton’s defense system against pathogens and herbivorous insects [10, 11]. Some studies showed that high-gossypol cultivars of cotton plant can negatively affect the development and reproduction of insects, such as *Aphis gossypii* and *Bemisia tabaci* [12, 13]. Moreover, feeding assays with gossypol mixed with artificial diet showed that gossypol has hormetic and detrimental effects on the growth of insects in different concentrations [14, 15]. For example, gossypol was found to have a hormetic effect on the larval growth of *H. armigera* at low concentrations, which has otherwise deleterious effect at higher concentrations [14]. Similarly, tannic acid was highly toxic to *Malacosoma disstria* larvae [16] and caused significantly inhibition in the development of herbivorous insects [10, 16, 17]. Although, the effects of tannic acid and gossypol on the growth of several insects have been reported, knowledge about the toxicity and impact of these two plant allelochemicals on *A. gossypii*, a destructive insect pest in the cotton fields [18], is still limited.

It is well known that exposure to sublethal concentrations of insecticides could affect insect population dynamics through changed biological and behavioral traits on individuals [19–21]. For plant allelochemicals, although most of these metabolites are highly toxic to phytophagous insect [3], the insect pests contact these chemicals with sublethal concentrations in natural environment. Therefore, in this study, we aimed at assessing the potential effects of tannic acid and gossypol on the main life history traits of *A. gossypii*.

Life tables is a reliable tool for the prediction of the stage structure and growth of pest populations [22], which can offer a comprehensive description of population dynamics and help illuminate multiple effects of insecticides on insects [23–26]. In our study, the age-stage, two-sex life table was employed for investigating the effects of tannic acid and gossypol on both the life history traits of *A. gossypii* individuals and their demographic parameters. The results should be meaningful for understanding the effects of plant allelochemicals on *A. gossypii*, and helpful for developing integrated pest management programs for cotton aphid control.

Materials and methods

Insects

The strain of *A. gossypii* used in this study was collected from cotton fields in the Xinjiang Uygur Autonomous Region of China, was maintained without any insecticide exposure. The aphids were reared on the cotton seedlings, *Gossypium hirsutum* (L.), in controlled conditions of 22 ± 1˚C, 65 ± 5% relative humidity, and a photoperiod of 16:8 h (L: D) as described previously [27].

Ethics approval No ethics approval was required for this research.

Chemicals

Tannic acid and gossypol were purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis, USA). Triton X-100 was obtained from Amresco Inc. (Solon, OH, USA). All other chemicals and solvents used were analytical reagent.

Feeding assays

The tests were conducted in controlled conditions of 22 ± 1˚C, 65 ± 5% relative humidity, and a photoperiod of 16:8 h (L: D). The 0.5 mol/L sterile sucrose solution was used as a liquid artificial diet for the oral delivery of studied plant allelochemicals to *A. gossypii* [28]. The tannic acid and gossypol were incorporated into the diet at five concentrations, which were 5, 10, 20, 40, 80 mg/L for tannic acid, and 12.5, 25, 50, 100, 200, 400 mg/L for gossypol. Control diets (without plant allelochemicals) were also included. Sterilized glass tubes that open at both ends were used for in vitro feeding assays, and the details were described in the previous publication.
One end of each tube was covered with two layers of parafilm, and 100 μL of the artificial diet containing either tannic acid or gossypol was sandwiched between the two parafilm layers. Thirty healthy apterous adults were gently placed into the tube with a brush and the tube was sealed with a piece of Chinese art paper using solid glue. The aphids were allowed feeding on artificial diet for 72 h and the mortality rate of the aphids was recorded. Each treatment had three replicates.

Sublethal effects of tannic acid and gossypol on the cotton aphids

To assess the effects of tannic acid and gossypol on the development of *A. gossypii*, the sublethal effects on various life history traits and demographic parameters of *A. gossypii* were evaluated in this study. Based on the results of preliminary bioassays, 20 mg/L tannic acid and 50 mg/L gossypol were used as a sublethal concentration, respectively. For sublethal assays, apterus adult aphids were placed on artificial diet that containing 20 mg/L of tannic acid or 50 mg/L of gossypol for 24 h. Adults were then removed, and the newborn nymphs were maintained on the diet for a further 24 h. And then, the survival nymphs were placed onto the 20 mm diameter leaf discs, which were placed upside down on agar beds (1.5 mL of 2% agar) in wells of 12-well cell-culture plates and covered with filter paper to prevent escape. At least 35 nymphs were observed individually in each group. The life history traits of aphids, including development time, fecundity, mortality, and longevity were monitored daily. During the reproductive period, the newborn nymphs were counted and removed daily. New cotton leaf discs were replaced every 4 days until the death of the adult.

Data analysis

For feeding assays, the LC25 and LC50 values were calculated using a log-probit model by PoLoPlus 2.0 software (LeOra Software, Petaluma, CA). The concentration-mortality relationship (data corrected for control mortality) was considered valid, when there was absence of significant deviation between the observed and the expected data (*P* > 0.05). Mortalities between the treatment and control were compared by χ² using SPSS 19.0 (IBM, Armonk, NY, USA). The life table data for all *A. gossypii* individuals in this study were analyzed according to the age-stage, two-sex life table theory [29, 30]. The population parameters, including the intrinsic rate of increase (*r*), finite rate of increase (*λ*), net reproductive rate (*R₀*), the mean generation time (*T*), age-stage specific survival rates (*sₓj* where *x* is age and *j* is stage), age-specific survival rate (*lₙ*), age-specific fecundity (*mₓ*), adult pre-oviposition period (APOP), total preoviposition period (TPOP), reproductive days (Rd) (i.e., the number of days that adult produced offspring), age-specific maternity (*lₓmₓ*), age-stage specific life expectancy (*eₓj*), reproductive value (*vₓj*), were calculated according to Chi and Liu [30] and Chi [29] by using the computer program TWOSEX-MSChart [31]. The variances and standard errors of the population parameters were estimated using the bootstrap procedure [32] with 100,000 random resampling and the difference of population parameters between control and plant allelochemical treatment groups were compared by using the paired bootstrap test based on the confidence intervals of differences implemented in TWOSEX-MSChart [31, 33, 34]. All graphics were constructed using SigmaPlot 12.0 (Systat Software Inc., San Jose, CA, USA).

Results

Toxicities of tannic acid and gossypol against *A. gossypii* adults

Acute toxicity of tannic acid and gossypol against the adult cotton aphids was determined via the liquid artificial diet incorporation method. Log-probit regression analysis of concentration-
mortality data after 72 h treatment revealed that LC\textsubscript{50} and LC\textsubscript{25} values for tannic acid were 41.04 mg/L (95% confidence interval: 27.91–50.69 mg/L) and 23.70 mg/L (95% confidence interval: 10.42–32.76 mg/L) with a regression equation of $Y = 0.436 + 2.829X$ ($\chi^2 = 7.54$, df = 13, $P = 0.872$) and for gossypol were 314.51 mg/L (95% confidence interval: 126.07–1007.96 mg/L) and 51.49 mg/L (95% confidence interval: 4.00–127.98 mg/L) with a regression equation of $Y = 2.875 + 0.858X$ ($\chi^2 = 12.38$, df = 16, $P = 0.718$), respectively.

To ensure low mortality, bioassays to examine sublethal effects of tannic acid and gossypol exposure were then conducted at a LC\textsubscript{25} value of 20 mg/L tannic acid and 50 mg/L gossypol in the artificial diet for 24 h. As expected, the mortalities of adults of the cotton aphid were 15.00% and 16.67% for tannic acid and gossypol at 24 h, respectively, and they were not significantly different to 11.67% and 13.33% of the controls (tannic acid: $\chi^2 = 0.130$, df = 1, $P = 0.718$; gossypol: $\chi^2 = 0.131$, df = 1, $P = 0.718$). The 20 mg/L tannic acid and 50 mg/L gossypol were classified as sublethal concentrations and fitted for subsequent sublethal assays.

Effects of sublethal concentration of tannic acid and gossypol on A. gossypii

The effects of both tannic acid and gossypol on the development time, longevity, oviposition days, total preadult survival rate and fecundity of cotton aphids were presented in Table 1. No significant differences among tannic acid treatment, gossypol treatment and the control groups were observed in the developmental duration of each nymph stage, the longevity, oviposition days, total preadult survival rate, and adult pre-oviposition period (APOP). Similarly, no significant differences of pre-adult duration time, total pre-oviposition period (TPOP) and fecundity were found between the control and gossypol treatment groups. However, tannic acid treatment significantly increased the pre-adult duration time ($P = 0.047$) and TPOP ($P = 0.011$) of A. gossypii compared to the control. When compared to the control, the fecundity of A. gossypii was significantly reduced after tannic acid treatment ($P = 0.003$), but not significantly affected by gossypol treatment ($P = 0.526$). In addition, a significant difference of fecundity was also observed between tannic acid and gossypol treatment groups ($P = 0.041$) (Table 1).

Life history parameters	Control	Tannic acid	Gossypol			
	N	Mean ± SE a,b	N	Mean ± SE a,b	N	Mean ± SE a,b
First instar nymph (d)	43	1.79 ± 0.08a	28	1.93 ± 0.09a	28	1.82 ± 0.09a
Second instar nymph (d)	39	1.41 ± 0.09a	27	1.59 ± 0.13a	23	1.30 ± 0.12a
Third instar nymph (d)	36	1.58 ± 0.08a	25	1.64 ± 0.11a	23	1.57 ± 0.12a
Forth instar nymph (d)	36	1.39 ± 0.08a	25	1.52 ± 0.12a	22	1.64 ± 0.10a
Pre-adult (d)	36	6.17 ± 0.16b	25	6.64 ± 0.18a	22	6.50 ± 0.16ab
Female adult longevity (d)	36	28.75 ± 1.96a	25	23.56 ± 2.67a	22	25.91 ± 2.33a
Female total longevity (d)	36	34.92 ± 1.95a	25	30.20 ± 2.66a	22	32.41 ± 2.41a
APOP (d)	36	0.36 ± 0.08a	23	0.48 ± 0.12a	22	0.27 ± 0.10a
TPOP (d)	36	6.53 ± 0.14b	23	7.13 ± 0.19a	22	6.77 ± 0.21ab
Oviposition days	36	17.31 ± 1.06a	23	15.57 ± 1.43a	22	17.50 ± 1.51a
Mean total longevity (d)	52	25.12 ± 2.46a	35	22.26 ± 2.87a	40	19.12 ± 2.70a
Total preadult survival	52	0.692 ± 0.064a	35	0.7142 ± 0.076a	40	0.550 ± 0.079a
Fecundity (offspring/individual)	36	36.17 ± 2.37a	25	25.16 ± 2.87b	22	33.73 ± 3.10a

\(a\) Standard errors (SE) were estimated by using the bootstrap technique with 100,000 re-samplings

\(b\) Difference between treatments were compared with paired bootstrap test. The means in same row followed by different lowercase letters indicate significant differences between treatments ($P < 0.05$).

https://doi.org/10.1371/journal.pone.0221646.t001
The effects of tannic acid and gossypol on the population growth parameters were estimated with bootstrap methods based on the life table, and the results are presented in Table 2. When compared to the control group, the intrinsic rate of increase (r), the finite rate of increase (λ) and the net reproductive rate (R_0) were significantly reduced by tannic acid ($P = 0.041, 0.042$ and 0.044 for r, λ and R_0, respectively) and gossypol ($P = 0.041, 0.049$ and 0.045 for r, λ and R_0, respectively) treatments, while no significant differences of r, λ and R_0 were found between tannic acid and gossypol treatments ($P = 0.955, 0.956$ and 0.887 for r, λ and R_0, respectively).

Among tannic acid treatment, gossypol treatment and control groups, no significant differences of mean generation time (T) were found ($P > 0.05$). Minimal value for the gross reproduction rate (GRR) of $A. gossypii$ was observed in tannic acid treatment (33.66 ± 2.01 offspring/individual), which was significantly different from the control (42.25 ± 1.45 offspring/individual; $P < 0.001$) and gossypol (41.38 ± 2.62 offspring/individual; $P = 0.020$), while no significant difference of GRR was found between the control and gossypol treatment ($P = 0.768$).

The age-stage specific survival rate (s_{xj}) is the probability a newborn individual will survive to age x and stage j (Fig 1). Owing to the variable developmental rates among individuals, significantly overlaps between different life stages were observed for both the control group and the plant allelochemicals treatment groups (Fig 1). The age-specific survival rate (l_x) is a simplification of s_{xj} without accounting for the stage differentiation. In this study, the curve of l_x significantly decreased in the plant allelochemicals-treated groups compared to the control group (Fig 2). The highest unique age-specific fecundity peak of the control group (3.007 offspring) occurred at the age of day 11 in the fecundity curve of m_x, while the highest fecundity peak of the gossypol (2.688 offspring) and tannic acid (2.431 offspring) treatment groups were observed at the age of day 12 (Fig 2). These results showed that the probability that a newborn nymph would survive to the adult stage decreased in plant allelochemicals treatment groups in comparison with the control group. In addition, we found that gossypol has a lower survival rate of l_1 than that of tannic acid (Fig 2), as contrary, tannic acid has a lower fecundity of cotton aphids than that of gossypol (Fig 2).

The reproductive value (v_{xj}) is the contribution an individual of age x and stage j will make to the future population of $A. gossypii$ (Fig 3). The maximum v_{xj} noted in tannic acid (8.74/ day) and gossypol (10.22/day) treatments both occurred at age 9 day, which were lower than that noted in the control occurred later at age 11 day (10.90/day) (Fig 3).

Discussion

Tannic acid and gossypol are two kinds of secondary metabolites (allelochemical) produced by cotton plants, which involve in the defense system of cotton plants against pathogens and

Table 2. Effects of tannic acid and gossypol on population parameters (mean ± SE) of $A. gossypii$.

Population parameters *	Mean ± SE b, c		
	Control	Tannic acid	Gossypol
r (d$^{-1}$)	0.243 ± 0.011a	0.212 ± 0.013b	0.210 ± 0.015b
λ (d$^{-1}$)	1.276 ± 0.014a	1.236 ± 0.016b	1.234 ± 0.019b
R_0 (offspring/individual)	25.050 ± 2.825a	17.967 ± 2.783b	18.546 ± 3.136b
T (d)	13.221 ± 0.265a	13.601 ± 0.361a	13.829 ± 0.516a
GRR (offspring/individual)	42.25 ± 1.45a	33.66 ± 2.01b	41.38 ± 2.62a

* r, intrinsic rate of increase; λ, finite rate of increase; R_0, net reproductive rate; T, mean generation time; GRR, gross reproduction rate.

b Standard errors between two treatments were estimated by using the bootstrap technique with 100,000 re-samplings.

c Difference between treatments was evaluated by using a paired bootstrap test. The means in same row followed by different lowercase letters indicate significant differences between treatments ($P < 0.05$).

https://doi.org/10.1371/journal.pone.0221646.t002
Fig 1. Age-stage survival rate (s_{xj}) of *A. gossypii* populations following 24 h treated with 20 mg/L tannic acid and 50 mg/L gossypol.

https://doi.org/10.1371/journal.pone.0221646.g001
insect herbivores [6, 11, 15, 35]. Both tannic acid and gossypol are toxic to many organisms and feeding of these two chemicals can adversely affect the development of insects [14–16, 36]. For example, when fed on gossypol contained diets the larval pupal weights and survival of

Fig 2. Effects of 20 mg/L tannic acid and 50 mg/L gossypol on the age-specific survival rates (l_x), the age-specific fecundity of total population (m_x), the age-specific maternity (l_xm_x), and the age-stage specific fecundity (f_{x5}) of the female adult stage of A. gossypii populations.

https://doi.org/10.1371/journal.pone.0221646.g002
Fig 3. Age-stage reproductive value (νᵢⱼ) of A. gossypii populations following 24 h treated with 20 mg/L tannic acid and 50 mg/L gossypol.

https://doi.org/10.1371/journal.pone.0221646.g003
Helicoverpa zea were significantly reduced compared with the control diets groups [6]. Furthermore, our previous study demonstrated that the developmental periods of A. gossypii were significantly prolonged and the mean relative growth rates were markedly reduced when cotton aphids fed on spider mites infested cotton plants that contained high levels gossypol and condensed tannins [37]. Therefore, the objective of this study was to evaluate the effects of these two plant allelochemicals on A. gossypii systemically.

Gossypol is a polyphenolic secondary metabolite and is toxic to many organisms [7, 11]. Stipanovic et al. found that gossypol can adversely affect the survival of H. zea [6]. In addition, high concentrations of all forms of gossypol reduced the survival and pupal weights for larvae of Helicoverpa virescens [35]. In this study, the results of toxicity tests demonstrated that gossypol are toxic to A. gossypii and fed on high concentration of gossypol led to a higher mortality, similar results were obtained by Peng et al. that the mortality of adults of cotton aphids increased with increasing gossypol concentrations [15]. Du et al found that the aphids fed on the high gossypol cultivar displayed significantly shorter adult longevity and lower fecundity than that of low and medium gossypol cultivars [12]. In the present study, although no significantly difference was observed, we also observed a reduction of longevity and fecundity in gossypol feeding group compared with the control (Table 1).

It is well known that tannins, including tannic acid, can defend plants against insect herbivores by deterrence and/or toxicity [38]. For example, as little as 0.5% tannic acid could cause a significantly reduction in relative growth rate of Malacosoma disstria [16]. Our results indicated that tannic acid could cause the death of cotton aphids, and high concentration of tannic acid resulted in significant increase of the mortality, this is in accordance with the fact that negative effects of tannins on both insect and vertebrate herbivores depend on high concentration [39].

The data in life table exhibited that both tannic acid and gossypol had negative effects on cotton aphids, the values of \(r, \lambda \) and \(R_0 \) were significantly reduced and the development time was prolonged at some extent in tannic acid and gossypol treatment groups compared to the control group (Table 1 and Table 2). Similar results were observed in pea aphid that high concentrations of flavonoids increased the developmental time and reduced the intrinsic rate (\(r \)) [4]. However, this is inconsistent with the results of Youaf et al. [40], which showed that exposure of \(F_0 \) generation of A. gossypii to 25 ppm cucurbitacin B only significantly decreased the net reproductive rate (\(R_0 \)) of \(F_1 \) generation, while other demographic traits of \(F_1 \) (\(r, T, \) and \(\lambda \)) were not significantly reduced. Moreover, from the life table we found that tannic acid had a greater effect on cotton aphids than gossypol (Table 1 and Table 2). For instance, the cotton aphid adults that fed on tannic acid exhibited a significantly reduction of fecundity than that of gossypol and control groups (Table 1). Combining the toxicity bioassay results that cotton aphids are more susceptible to tannic acid than gossypol, the cause of this difference may be due to the difference of the toxicity of these two plant allelochemicals to A. gossypii.

Cotton aphid is one of the most destructive sucking pests on cotton and numerous agriculture crops that causes damage through direct feeding and virus transmission [18, 41]. The control of this pest mainly relies on the application of chemical insecticides in China [42]. However, our previous studies demonstrated that A. gossypii has evolved very high levels resistance to many types of insecticides [43–48]. Therefore, it is necessary to develop more environmentally friendly control strategies, such as biological control [49–52], biopesticides [53–56], and plant resistance [57, 58]. Our results demonstrate that tannic acid and gossypol have detrimental effect on cotton aphids and these two plant allelochemicals have potential for this pest control. These results are meaningful for understanding the potential plant-aphid interactions, and helpful for developing integrated pest management programs of cotton aphids.
Acknowledgments
This work was supported by grants from the National Natural Science Foundation of China (No. 31330064, 31801760) and China Postdoctoral Science Foundation (No. 2018M630229).

Author Contributions
Conceptualization: Kangsheng Ma, Xiwu Gao.
Data curation: Kangsheng Ma, Qiuling Tang, Xiwu Gao.
Formal analysis: Kangsheng Ma, Qiuling Tang.
Funding acquisition: Xiwu Gao.
Investigation: Kangsheng Ma, Qiuling Tang.
Methodology: Kangsheng Ma, Pingzhuo Liang.
Project administration: Xiwu Gao.
Software: Kangsheng Ma.
Supervision: Xiwu Gao.
Validation: Kangsheng Ma, Qiuling Tang, Jin Xia.
Visualization: Kangsheng Ma, Xiwu Gao.
Writing – original draft: Kangsheng Ma, Qiuling Tang, Xiwu Gao.
Writing – review & editing: Baizhong Zhang.

References
1. Després L, David JP, Gallet C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol. 2007; 22(6): 298–307. https://doi.org/10.1016/j.tree.2007.02.010 PMID: 17324485
2. Li XC, Berenbaum MR, Schuler MA. Plant allelochemicals differentially regulate Helicoverpa zea cytochrome P450 genes. Insect Mol Biol. 2002; 11(4): 343–351. https://doi.org/10.1046/j.1365-2583.2002.00341.x PMID: 12144700
3. Nishida R. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites. Biosci Biotech Bioch. 2014; 78(1): 1–13.
4. Golawska S, Sprawka I, Lukasik I, Golawski A. Are naringenin and quercetin useful chemicals in pest-management strategies? J Pest Sci. 2014; 87: 173–180.
5. Selin-Rani S, Senthil-Nathan S, Thangajivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, et al. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Chemosphere. 2016; 165: 257–267. https://doi.org/10.1016/j.chemosphere.2016.08.136 PMID: 27657818
6. Stipanovic RD, Lopez JD Jr., Dowd MK, Puckhaber LS, Duke SE. Effect of racemic and (+)- and (-)-gosypol on the survival and development of Helicoverpa zea larvae. J Chem Ecol. 2006; 32(5): 959–968. https://doi.org/10.1007/s10886-006-9052-9 PMID: 16739016
7. Wang Q, Eneji AE, Kong X, Wang K, Dong H. Salt stress effects on secondary metabolites of cotton in relation to gene expression responsible for aphid development. PLoS One. 2015; 10(6): e0129541. https://doi.org/10.1371/journal.pone.0129541 PMID: 26061875
8. Simmonds MS, Stevenson PC. Effects of isoflavonoids from Cicer on larvae of Helicoverpa armigera. J Chem Ecol. 2001; 27(5): 965–977. https://doi.org/10.1023/a:1010339104206 PMID: 11471948
9. Zhang L, Lu Y, Xiang M, Shang QL, Gao XW. The retardant effect of 2-tridecanone, mediated by cytochrome P450, on the development of cotton bollworm, Helicoverpa armigera. BMC Genomics. 2016; 17(1): 954. https://doi.org/10.1186/s12864-016-3277-y PMID: 27875986
10. Klocke JA, Chan BG. Effects of cotton condensed tannin on feeding and digestion in the cotton pest, Heliothis zea. J Insect Physiol. 1982; 28: 911–915.
11. Kremp C, Heidel-Fischer HM, Jimenez-Alerman GH, Reichelt M, Menezes RC, Boland W, et al. Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens. Insect Biochem Mol Biol. 2016; 78: 69–77. https://doi.org/10.1016/j.ibmb.2016.09.003 PMID: 27687846

12. Du L, Ge F, Zhu S, Parajuee MN. Effect of cotton cultivar on development and reproduction of Aphis gossypii (Homoptera: Aphididae) and its predator Propylea japonica (Coleoptera: Coccinellidae). J Econ Entomol. 2004; 97: 1278–1283. https://doi.org/10.1093/jee/97.4.1278 PMID: 15384338

13. Guo JY, Wu G, Wan FH. Effects of high-gossypol cotton on the development and reproduction of Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1 cryptic species. J Econ Entomol. 2013; 106(3): 1379–1385. https://doi.org/10.1603/ec12401 PMID: 23865205

14. Celorio-Mancera MdP, Ahn SJ, Vogel H, Heckel DG. Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera. BMC Genomics. 2011; 12: 575. https://doi.org/10.1186/1471-2164-12-575 PMID: 22111916

15. Peng TF, Pan YO, Gao XW, Xi JH, Zhang L, Yang C, et al. Cytochrome P450 CYP6DA2 regulated by cap ’n’ collar isofrom C (CncC) is associated with gossypol tolerance in Aphis gossypii Glover. Insect Mol Biol. 2016; 25(4): 479–495. https://doi.org/10.1111/imb.12230 PMID: 27005728

16. Karowe DN. Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry. Oecologia. 1989; 80: 507–512. https://doi.org/10.1007/BF00380074 PMID: 28312836

17. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, et al. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 2012; 7(10): 1306–1320. https://doi.org/10.4161/psb.21663 PMID: 22895106

18. Blackman RL, Eastop VF. Aphids on the world’s crops: An identification guide. John Wiley and Sons, NY. 1984.

19. Qu YY, Xiao D, Li J, Chen Z, Biondi A, Desneux N, et al. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines. Ecotoxicology. 2015; 24(3): 479–487. https://doi.org/10.1007/ s10646-014-1396-2 PMID: 25492586

20. Desneux N, Decourtye A, Delpuech JM. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol. 2007; 52: 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440 PMID: 16842032

21. Stark JD, Banks JE. Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol. 2003; 48: 505–519. https://doi.org/10.1146/annurev.ento.48.091801.112621 PMID: 12221038

22. Akca I, Ayvaz T, Yazici E, Smith CL, Chi H. Demography and population projection of Aphis fabae (Hemiptera: Aphididae); with additional comments on life table research criteria. J Econ Entomol. 2015; 108(4): 1466–1478. https://doi.org/10.1093/jee/tov187 PMID: 26470285

23. Chi H, Getz WM. Mass rearing and harvesting based on an age-stage, wwo-sex life table: a potato tuberworm (Lepidoptera: Gelechiidae) case study. Environ Entomol. 1988; 17(1): 18–25.

24. Tang QL, Xiang M, Hu HM, An CJ, Gao XW. Evaluation of sublethal effects of sulfoxaflor on the green peach aphid (Hemiptera: Aphididae) using life table parameters. J Econ Entomol. 2015; 108(6): 2720–2728. https://doi.org/10.1093/jee/tov187 PMID: 26470367

25. Xiao D, Zhao J, Guo X, Chen H, Qu M, Zhai W, et al. Sublethal effects of imidacloprid on the predatory seven-spot ladybird beetle Coccinella septempunctata. Ecotoxicology. 2016; 25(10): 1782–1793. https://doi.org/10.1007/s10646-016-1721-z PMID: 27670666

26. Zhang P, Liu F, Mu W, Wang Q, Li H, Chen C. Life table study of the effects of sublethal concentrations of thiamethoxam on Brady's odoriphaga Yang and Zhang. Pestic Biochem Physiol. 2014; 111: 31–37. https://doi.org/10.1016/j.pestbp.2014.04.003 PMID: 24861931

27. Ma KS, Li F, Liang PZ, Chen XW, Liu Y, Gao XW. Identification and validation of reference genes for the normalization of gene expression data in qRT-PCR analysis in Aphis gossypii (Hemiptera: Aphididae). J Insect Sci. 2016; 16(1): 1–9.

28. Ma KS, Li F, Liang PZ, Chen XW, Liu Y, Tang QL, et al. RNA interference of Dicer-1 and Argonaute-1 increasing the sensitivity of Aphis gossypii Glover (Hemiptera: Aphididae) to plant allelochemical. Pestic Biochem Physiol. 2017; 138: 71–75. https://doi.org/10.1016/j.pestbp.2017.03.003 PMID: 28456307

29. Chi H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol. 1988; 17(1): 26–34.

30. Chi H, Liu H. Two new methods for the study of insect population ecology. Bull Inst Zool Academia Sinica. 1985; 24(2): 225–240.

31. Chi H. TWOSEX-MS: A simple computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/Download/Twosex-MSChart.exe-B200000.rar. (accessed on 30 June 2018).
32. Efron B, Tibshirani RJ. An introduction to the bootstrap. J Great Lakes Res. 1993; 20(1): 1–6.

33. Huang HW, Chi H, Smith CL. Linking demography and consumption of Henselipachna vigintioctopunctata (Coleoptera: Coccinellidae) fed on Solanum photoipurcarum (Solanaceae): with a new method to project the uncertainty of population growth and consumption. J Econ Entomol. 2018; 111(1): 1–9. https://doi.org/10.1093/jee/tox330 PMID: 29281063

34. Huang YB, Chi H. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife technique. J Appl Entomol. 2013; 137(5): 327–339.

35. Stipanovic RD, Lopez JD, Dowd MK, Puckhaber LS, Duke SE. Effect of racemic, (+)- and (−)-gossypol on survival and development of Heliotis virescens larvae. Environ Entomol. 2008; 37(5): 1081–1085. https://doi.org/10.1603/0464-225X(2008)37[1081:EORAGO]2.0.CO;2 PMID: 19036185

36. Martemyanov VV, Bakhvalov SA, Dubovsky IM, Glupovsky VL, Salakhutdinov NF, Tolstikov GA. Effect of tannic acid on the development and resistance of the gypsy moth Lymantria dispar to viral infection. Dokl Biochem Biophys. 2006; 409(1): 219–222.

37. Ma GM, Shi XY, Kang ZJ, Gao XW. The influence of Tetranychus cinnabarinus-induced plant defense responses on Aphis gossypii development. J Integr Agr. 2018; 17(1): 164–172.

38. Barbehn RV, Peter Constabel C. Tannins in plant-herbivore interactions. Phytochemistry. 2011; 72(13): 1551–1565. https://doi.org/10.1016/j.phytochem.2011.01.040 PMID: 21354580

39. Aerts RJ, Barry TN, McNabb WC. Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agr Ecosyst Environ. 1999; 72: 1–12.

40. Youssaf HK, Shan TS, Chen XW, Ma KS, Shi XY, Desneux N, et al. Impact of the secondary plant metabolite Cucurbitacin B on the demographical traits of the melon aphid, Aphis gossypii. Scientific reports. 2018; 8(1): 16473. https://doi.org/10.1038/s41598-018-34821-w PMID: 30405179

41. Ma KS, Li F, Liu Y, Liang PZ, Chen XW, Gao XW. Identification of microRNAs and their response to the stress of plant allelochemicals in Aphis gossypii (Hemiptera: Aphiidae). BMC Mol Biol. 2017; 18(1): 5. https://doi.org/10.1186/s12867-017-0080-5 PMID: 28202045

42. Wu KM, Guo YY. The evolution of cotton pest management practices in China. Annu Rev Entomol. 2005; 50: 31–52. https://doi.org/10.1146/annurev.ento.50.071803.130349 PMID: 15355239

43. Ma KS, Tang QL, Zhang BZ, Liang PZ, Wang BM, Gao XW. Overexpression of multiple cytochrome P450 genes associated with sulfoxallor resistance in Aphis gossypii Glover. Pest Biochem Physiol. 2019; 157: 204–210. https://doi.org/10.1016/j.pestbp.2019.03.021 PMID: 31153470

44. Chen XW, Tie MY, Chen AQ, Ma KS, Li F, Liang PZ, et al. Pyrethroid resistance associated with M918 L mutation and detoxifying metabolism in Aphis gossypii from Bt cotton growing regions of China. Pest Manag Sci. 2017; 73(11): 2353–2359. https://doi.org/10.1002/ps.4622 PMID: 28544677

45. Sun LJ, Zhou XG, Zhang J, Gao XW. Polymorphisms in a carboxylesterase gene between organophosphate-resistant and -susceptible Aphis gossypii (Homoptera: Aphiidae). J Econ Entomol. 2005; 98(4): 1325–1332. https://doi.org/10.1603/0322-0493-98.4.1325 PMID: 16156987

46. Wang KY, Liu TX, Yu CH, Jiang XY, Yi M. Resistance of Aphis gossypii (Homoptera: Aphiidae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber. J Econ Entomol. 2002; 95(2): 407–413. https://doi.org/10.1603/0046-225X(2002)95[407:RAGO]2.0.CO;2 PMID: 12002021

47. Zheng BZ, Gao XW, Wang ZG, Liang TT, Cao BJ, Gao H. Resistant mechanism of organophosphorous and carbamate insecticides in Aphis gossypii Glover. Acta Phytophytocolica Sinica. 1989; 16(2): 131–138.

48. Zheng BZ, Gao XW, Wang ZG, Cao BJ. Preliminary studies of pyrethroid resistance in melon-cotton aphid (Aphis gossypii Glov.) in Beijing suburbs and northern region of Hebei Province. Acta Phytophytocolica Sinica. 1988; 15(1): 55–61.

49. Desneux N, Barta RJ, Hoelmer KA, Hopper KR, Heimpel GE. Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia. 2009; 160(2): 387–398. https://doi.org/10.1007/s00442-009-1289-x PMID: 19219460

50. Desneux N, O’Neill RJ, Yoo HJS. Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator and the effects of prey dispersion, predator abundance, and temperature. Environ Entomol. 2006; 35(5): 1342–1348.

51. Shrestha RB, Parajulee MN. Potential cotton aphid, Aphis gossypii, population suppression by arthropod predators in upland cotton. Insect Sci. 2013; 20(6): 778–788. https://doi.org/10.1111/j.1744-7917.2012.01583.x PMID: 23956125

52. Madadi H, Mohajer Parizi E, Allahyar H, Enkegaard A. Assessment of the biological control capability of Hippodamia variegata (Col.: Coccinellidae) using functional response experiments. J Pest Sci. 2011; 84(4): 447–455.
gossypii (Hemiptera: Aphididae). J Econ Entomol. 2017; 110(3): 1025–1030. https://doi.org/10.1093/jee/tox065 PMID: 28334238

54. Wang D, Xie N, Yi S, Liu C, Jiang H, Ma Z, et al. Bioassay-guided isolation of potent aphicidal *Erythrina* alkaloids against *Aphis gossypii* from the seed of *Erythrina crista-galli* L. Pest Manag Sci. 2018; 74(1): 210–218. https://doi.org/10.1002/ps.4698 PMID: 28799721

55. Chaieb I, Zarrad K, Sellam R, Tayeb W, Hammouda AB, Laarif A, et al. Chemical composition and aphicidal potential of *Citrus aurantium* peel essential oils. Entomol Gen. 2017; 37(1): 63–75.

56. Roh HS, Kim J, Shin E-S, Lee DW, Choo HY, Park CG. Bioactivity of sandalwood oil (*Santalum austrocaledonicum*) and its main components against the cotton aphid, *Aphis gossypii*. J Pest Sci. 2014; 88(3): 621–627.

57. Boissot N, Schoeny A, Vanlerberghe-Masutti F. Vat, an amazing gene conferring resistance to aphids and viruses they carry: from molecular structure to field effects. Front Plant Sci. 2016; 7: 1420. https://doi.org/10.3389/fpls.2016.01420 PMID: 27725823

58. Garzo E, Soria C, Gomez-Guillamon ML, Fereres A. Feeding behavior of *Aphis gossypii* on resistant accessions of different melon genotypes (Cucumis melo). Phytoparasitica. 2002; 30(2): 129–140.