Measurements of electric quadrupole transition frequencies in 226Ra$^+$

C. A. Holliman, M. Fan, and A. M. Jayich
Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA and California Institute for Quantum Entanglement, Santa Barbara, California 93106, USA
(Dated: January 3, 2020)

We report the first driving of the $7s^2 S_{1/2} \rightarrow 6d^2 D_{3/2}$ and $7s^2 S_{1/2} \rightarrow 6d^2 D_{5/2}$ electric quadrupole (E2) transitions in Ra$^+$. We measure the frequencies of both E2 transitions, and two other low-lying transitions in 226Ra$^+$ that are important for controlling the radium ion’s motional and internal states: $6d^2 D_{3/2} \rightarrow 7p^2 P_{3/2}$ and $6d^2 D_{5/2} \rightarrow 7p^2 P_{5/2}$.

I. INTRODUCTION

The radium ion has two subhertz-linewidth electric quadrupole (E2) transitions from the ground state: $7s^2 S_{1/2} \rightarrow 6d^2 D_{3/2}$ at 728 nm and $7s^2 S_{1/2} \rightarrow 6d^2 D_{5/2}$ at 828 nm. The E2 transition to the $D_{5/2}$ state, which has a lifetime of \sim300 ms, is useful for electron shelving, ground-state cooling, and controlling an optical qubit, and it could also serve as the clock transition for an optical clock. Measurement of these two quadrupole transitions across a chain of isotopes can be used to obtain information related to the nuclear structure of radium, such as the specific mass shift and the change in mean-square nuclear charge radii. The degree of nonlinearity in a King plot comparison of the two transitions could set bounds on new physics beyond the standard model. There are 11 radium isotopes between mass number 213 and mass number 234 with half-lives longer than 1 min that could be ionized, trapped, and compared with a high precision on a King plot. A precision King plot can also be made using one E2 transition in Ra$^+$ and the Ra $^1S_0 \rightarrow ^3P_0$ intercombination line at 765 nm, which has a $2\pi \times 5$ mHz linewidth.

In this work we measure the two $7s \rightarrow 6d$ electric quadrupole transition frequencies, as well as the frequencies of the $6d^2 D_{3/2} \rightarrow 7p^2 P_{3/2}$ (708-nm) and $6d^2 D_{5/2} \rightarrow 7p^2 P_{3/2}$ (802-nm) electric dipole transitions (see Fig. 1) in 226Ra$^+$ ($I = 0$, 1600 yr half-life). Previously the only optical frequency measurement in 226Ra$^+$ with an uncertainty of less than 4 GHz is that of the $7s^2 S_{1/2} \rightarrow 7p^2 P_{1/2}$ (468-nm) Doppler cooling transition. Combining that measurement with the measurements in this work, we calculate the $6d^2 D_{3/2} \rightarrow 7p^2 P_{1/2}$ (1079-nm) and $7s^2 S_{1/2} \rightarrow 7p^2 P_{3/2}$ (382-nm) frequencies, which are useful for laser-cooling Ra$^+$.

For our measurements we use a single laser-cooled radium ion, which is loaded by ablating a 10 μCi RaCl$_2$ target \sim15 mm from the trap. The radio-frequency trapping voltage is turned on 20 ms after ablation to enhance the loading efficiency. The radium ion trap and loading procedure used in this work have been described previously. We use a heated iodine vapor cell as a frequency reference. The Ra$^+$ spectroscopy transitions and the iodine reference are driven with a tunable Ti:sapphire laser, whose frequency is recorded with a wave meter (High Finesse WS-8) to determine the Ra$^+$ transition frequencies from the known iodine reference lines. We describe the Ra$^+$ transition measurements and fits in Sec. III and the iodine frequency reference spectroscopy in Sec. IV. From the combined iodine and Ra$^+$ data we determine the Ra$^+$ transition frequencies in Sec. IV and with these values we present an updated King plot that includes radium-226 in Sec. V.

II. RADIUM SPECTROSCOPY

The Ra$^+$ transitions are measured using state detection, where the ion is bright if the population is in the cooling cycle and dark otherwise. Bright-state fluorescence photons at 468 nm are collected onto a photomultiplier tube and the counts are then time-tagged with respect to the measurement pulse sequences. In 1 ms of state detection 35 photons are collected on average if the population is in the $S_{1/2}$ or $D_{3/2}$ “bright” state, and 1.5 photons of background scattered light if the population is shelved in the $D_{5/2}$ “dark” state. We set the bright-state detection threshold to 12 counts.

All Ra$^+$ spectroscopy pulse sequences begin with 0.5 ms of laser cooling and an initial state detection (see SD1 in Fig. 2). If the state detection finds the ion in the dark state, then the data point is excluded because the ion is not properly initialized. All pulse sequences finish with a second state detection step and then optical pumping to remove any remaining population from the $D_{5/2}$ state. We give a detailed description of the $7s^2 S_{1/2} \rightarrow 6d^2 D_{5/2}$ electric quadrupole “clock” transition measurement. The other measurements are similar, with brief descriptions provided.

A. $7s^2 S_{1/2} \rightarrow 6d^2 D_{3/2}$ (728 nm)

The pulse sequence for the clock transition measurement is shown in Fig. 2. Before each measurement we Doppler-cool the ion for 0.5 ms. The initial state detection determines whether the ion is cooled, and whether
the population is in a bright state (SD1). Any population in the $D_{3/2}$ state is then optically pumped with light at 1079 nm to the ground state (P1). The $7s \rightarrow 6d$ spectroscopy transition is then driven with light at 728 nm for 1 ms (P2), and if the light is on resonance, the population can be shelved to the $D_{5/2}$ state, and the shelving probability is measured with a second state detection (SD2). To prepare for the next measurement any shelved population is cleaned out with light at 802 nm, which drives the population to the $S_{1/2}$ and $D_{3/2}$ bright states (P3). Over many pulse sequences the 728-nm laser is swept over ~ 100 MHz to drive all possible transitions between Zeeman levels of the two states. The $7s \rightarrow 6d$ spectroscopy is shown in Fig. 3, along with an inset of the corresponding iodine absorption reference spectrum.

To resolve the $S_{1/2} \rightarrow D_{5/2}$ and $S_{1/2} \rightarrow D_{3/2}$ Zeeman sub-structure of the transitions, a 7.8-G magnetic field is applied parallel to the trap’s radio-frequency rods, which we define as the z axis. The magnetic field spreads the $S_{1/2} \rightarrow D_{5/2}$ transitions across ~ 60 MHz. The energy splitting due to the applied magnetic field is calculated from $\Delta E_j = g_j \mu_B B m$, where g_j is the Landé g-factor for state with total angular momentum j, μ_B is the Bohr magneton, B is the magnetic field, and m is the magnetic quantum number. The Rabi frequency for transitions between the $S_{1/2,m}$ and the $D_{5/2,m'}$ Zeeman levels is

$$\Omega = \left| \frac{e E_0}{2\hbar} \langle S_{1/2} | r^2 C^{(2)} | D_{5/2} \rangle \sum_{j=-2}^{2} \left(\frac{1}{2} \delta_{m,m'} \right) g^{(\Delta m)} \right|,$$

where $\langle S_{1/2} | r^2 C^{(2)} | D_{5/2} \rangle$ is the reduced matrix element, the summation is over Wigner 3-j symbols and a geometry-dependent factor, $g^{(\Delta m)}$. \[10\] [11], given by
FIG. 4. Two measurements of the $S_{1/2} \rightarrow D_{5/2}$ transition with angle $\phi = 45^\circ$ between the k-vector and the magnetic field: (a) angle $\gamma = 90^\circ$ between the laser polarization and the magnetic field, which suppresses $\Delta m = 0$; (b) $\gamma = 0^\circ$, which suppresses $\Delta m = \pm 1$. Dashed lines indicate transitions suppressed by the choice of ϕ and γ. Symmetric pairs of transitions are the same color. Error bars are the most likely 68% confidence interval of a binomial distribution.

$$g^{(0)} = \frac{1}{2} \left| \cos(\gamma) \sin(2\phi) \right|,$$

$$g^{(\pm 1)} = \frac{1}{\sqrt{6}} \left| \cos(\gamma) \cos(2\phi) + i \sin(\gamma) \cos(\phi) \right|,$$

$$g^{(\pm 2)} = \frac{1}{\sqrt{6}} \left| \frac{1}{2} \cos(\gamma) \sin(2\phi) + i \sin(\gamma) \sin(\phi) \right|,$$

where Δm is the change in magnetic quantum number, ϕ is the angle between the laser’s k vector and the magnetic field, and γ is the angle between the laser polarization and the magnetic field vector projected into the plane of incidence.

For E2 transitions $\Delta m = 0, \pm 1, \pm 2$ are allowed, which gives rise to 10 transitions between Zeeman levels for $S_{1/2} \rightarrow D_{5/2}$. We measure these transitions using $\phi = 45^\circ$, and two values of γ, 0° and 90°, which suppress certain $|\Delta m|$ transitions (see Fig. 4). We fit the spectroscopy data to a sum of 10 Lorentzians, from which we extract the applied magnetic field, ϕ, γ, and the $S_{1/2} \rightarrow D_{5/2}$ transition frequency. Due to the 468- and 1079-nm laser polarizations, during Doppler cooling the ground-state $m = -1/2$ level is preferentially populated, and so reduces the probability of transition occurring from the $m = 1/2$ level. The ground state population imbalance is one of the fitting parameters. The \sim0.5-Hz natural linewidth of the $S_{1/2} \rightarrow D_{5/2}$ transition is broadened by laser power and magnetic field fluctuations. There are small micromotion sidebands in the spectrum at our trap drive frequency, 1.8 MHz. We average the two center frequencies extracted from the two fits of the spectra at different values of γ to determine the $S_{1/2} \rightarrow D_{5/2}$ transition frequency.

B. 6d $^2D_{5/2} \rightarrow 7p \ ^2P_{3/2}$ (802 nm)

For measuring both the $^2D_{5/2} \rightarrow \ ^2P_{3/2}$ and the $^2D_{3/2} \rightarrow \ ^2P_{3/2}$ transitions a magnetic field of ~ 2.5 G is applied to prevent coherent dark states [12]. After initialization, the ion is optically pumped to the $D_{5/2}$ state with light at 468 and 708 nm for 60 µs. Any population in the $D_{5/2}$ state is then pumped with the spectroscopy light at 802 nm for 150 µs. If the light is on resonance, the population can be driven to the $P_{3/2}$ state, where decays will populate the bright states (see Fig. 4). After the second state detection the $D_{5/2}$ state is optically pumped with resonant 802-nm light from an external cavity diode laser.

To determine the line center for the $D_{5/2} \rightarrow P_{3/2}$ transition we fit the data to a Lorentzian (see Fig. 4). The full width at half-maximum (FWHM) of 41.5(9) MHz gives
a lower bound of 3.84(9) ns for the \(P_{3/2} \)-state lifetime, which agrees with the calculated value of 4.73 ns \cite{1}. The 802-nm laser light is incident on the ion along the trap’s \(z \) axis to minimize micromotion broadening \cite{12}. We measured the 802-nm laser’s beam waist to be 300(50) \(\mu \)m and our beam power to be 1.2(1) \(\mu \)W. We estimate that the transition is power broadened by \(\sim \)8 MHz from the 802-nm beam waist and power.

\subsection{C. 7s \(^2 \)S\(_{1/2} \) \(\rightarrow \) 6d \(^2 \)D\(_{5/2} \) (828 nm)}

After initialization, any population in the \(D_{1/2} \) state is optically pumped with light at 1079 nm for 100 \(\mu \)s to the ground state. The 7s \(^2 \)S\(_{1/2} \) \(\rightarrow \) 6d \(^2 \)D\(_{3/2} \) transition is driven with light at 828 nm for 10 ms, and if the light is on resonance, the ion can be shelved to the \(D_{3/2} \) state. Any population in the \(D_{3/2} \) state is then pumped with light at 708 nm for 60 \(\mu \)s, which drives the population to the \(P_{3/2} \) state whose decays populate the \(S_{1/2} \) and \(D_{5/2} \) states.

The population is shelved to the \(D_{5/2} \) state with a low fidelity due to the branching fraction from the \(P_{3/2} \) state. The shelved probability is determined from a binomial distribution of \(k \) shelved events (corresponding to fewer than 12 photons collected during the second state detection) in \(n \) trials (where the ion is properly initialized at the beginning of the pulse sequence). There are eight transitions between Zeeman levels for the \(S_{1/2} \) \(\rightarrow \) \(D_{3/2} \) transition. We fit the spectra in a similar fashion as the \(S_{1/2} \) \(\rightarrow \) \(D_{5/2} \) transition to extract the center frequency.

\subsection{D. 6d \(^2 \)D\(_{3/2} \) \(\rightarrow \) 7p \(^2 \)P\(_{3/2} \) (708 nm)}

After initialization, any population in the \(S_{1/2} \) state is optically pumped with light at 468 nm for 100 \(\mu \)s to the \(D_{3/2} \) state. The population is then pumped with light at 708 nm for 50 \(\mu \)s, and if the light is on resonance, the population can be driven to the \(P_{3/2} \) state whose decays populate the \(S_{1/2} \) and \(D_{5/2} \) bright states. The data are fit to a Lorentzian to determine the center frequency.

\section{III. IODINE FREQUENCY REFERENCE}

For iodine absorption spectroscopy the Ti:sapphire laser is scanned at 10 MHz per second across a frequency range that includes at least two iodine reference lines, as well as the target \(\text{Ra}^+ \) transition. To reduce drift in the wave meter measurement we measure the iodine spectra both before and after \(\text{Ra}^+ \) spectroscopy. We use one iodine line as the frequency reference, and we determine the line’s frequency by fitting the line’s absorption dip in both scans to a Voigt function and averaging the two centers. We then calibrate the iodine line frequency we measured with a wave meter to an absolute frequency using IodineSpec5 \cite{14,15}, which provides a comprehensive I\(_2\) reference data set based on iodine spectrum measurements including the original iodine atlas work \cite{9}. We fit the corresponding absorption dip in the IodineSpec5 data set to a Voigt function to determine the absolute frequency of the measured iodine line center.

The \(^{127}\text{I}_2 \) vapor cell frequency reference (75 mm long, with a 19-mm outer diameter and windows angled at 11\(^\circ \)) is heated in a tube furnace to \(\sim \)500\(^\circ \)C, the temperature at which the iodine atlas lines were measured \cite{9}. We scan the temperature of the I\(_2\) cell by \(\pm \)50\(^\circ \)C around 500\(^\circ \)C and vary an applied magnetic field by \(\pm \)4 G, and for both we find frequency shifts within the fitting uncertainty. To compensate for laser power drifts the power is recorded on a reference photodiode before the iodine cell.

\section{IV. RA TRANSITION FREQUENCIES}

The \(\text{Ra}^+ \) transition frequencies are calculated from the frequency difference between the radium and the iodine reference line centers that are recorded with a wave-meter. The fit iodine reference lines calculated in IodineSpec5 are used to calibrate the wave-meter frequencies.

The closest iodine reference line to the \(S_{1/2} \) \(\rightarrow \) \(D_{5/2} \) transition is line 908 from \cite{9}, which we calculate using IodineSpec5 to be 412 004(15) GHz. From the difference between radium and iodine spectroscopy center fits, 2 947 MHz, we determine a transition frequency of 412 007.701(18) GHz. We take the total uncertainty in our measurements to be \(\sigma_{\text{total}} = \sqrt{\sigma_{\text{Ra}^+}^2 + \sigma_{\text{I}_2}^2 + \sigma_{\text{spec}}^2 + \sigma_{\text{wm}}^2} \), where \(\sigma_{\text{Ra}^+} \) is the radium fitting uncertainty, \(\sigma_{\text{I}_2} \) is the measured iodine fitting uncertainty, \(\sigma_{\text{spec}} \) is the IodineSpec5 line uncertainty, and \(\sigma_{\text{wm}} \) is the wave-meter uncertainty, 10 MHz. The IodineSpec5 line uncertainties range from 2 to 45 MHz for the lines referenced in this work. The IodineSpec5 fitting uncertainties are on the kilohertz level and are negligible compared to the other uncertainties.

The reported value for the \(D_{3/2} \) \(\rightarrow \) \(P_{1/2} \) transition, 277 818.95(8) GHz, comes from the frequency difference between the \(S_{1/2} \) \(\rightarrow \) \(D_{3/2} \) E2 transition measured in this work and the measurement of the \(S_{1/2} \) \(\rightarrow \) \(P_{1/2} \) transition by Fan, et al. \cite{7}.
TABLE I. Summary of 226Ra$^+$ frequency measurements. All units are GHz. *Frequencies calculated from measurements. †Frequencies extrapolated from a King plot [16].

Transition	226Ra $^{1}/2 \rightarrow P_{3/2}$ (382-nm) transition frequency by summing either the 728- and 802-nm frequencies, 785.722.10(3)*	226Ra $^{1}/2 \rightarrow P_{3/2}$ (382-nm) transition frequency by summing either the 728- and 802-nm frequencies, 785.722.10(3)*	This work. †
$S_{1/2} \rightarrow P_{3/2}$	785.723(4)	785.721.670(70)*	785.722.10(3)*
$S_{1/2} \rightarrow P_{3/2}$	640.092(7)	640.096.647(23)*	640.096.63(6)
$D_{3/2} \rightarrow P_{1/2}$	423.438(6)	...	423.4414.39(3)
$S_{1/2} \rightarrow D_{5/2}$...	412.007.701(18)	...
$D_{3/2} \rightarrow P_{3/2}$	373.717(5)	...	373.714.40(2)
$S_{1/2} \rightarrow D_{5/2}$...	362.277.361(33)†	362.277.68(5)
$D_{3/2} \rightarrow P_{1/2}$...	277.819.285(18)†	277.818.95(8)†

From our measurements we can calculate the $S_{1/2} \rightarrow P_{3/2}$ (382-nm) transition frequency by summing either the 728- and 802-nm frequencies, 785.722.10(3) GHz, or the 828- and 708-nm frequencies, 785.722.07(5) GHz. Both pairs of transitions originate in the ground state and end in the $P_{3/2}$ state. The two calculated frequencies are in good agreement, and we report the value calculated from the 728- and 802-nm frequencies, as the uncertainty in the underlying measurements is smaller. The measured and calculated frequencies are summarized in Table I.

There are discrepancies between the transition frequencies measured in this work and those reported by Nunez, et al. [2] (see Table I). We are able to resolve some of the discrepancies by redoing the analysis in [2]. The $D_{3/2} \rightarrow P_{1/2}$ transition frequency reported in [2], 277.819.285(18) GHz, is extrapolated from a King plot with data from Giri et al. [16]. From the 1079 nm/482 nm King plot (Fig. 4 in [16]) we find a slope of $-0.342(7)$ and a y-intercept of $-2.2(5)$ THz amu, which gives the transformed isotope shift [see Eq. (4) below] of 54.5(1.3)THz amu and the $D_{3/2} \rightarrow P_{1/2}$ transition frequency in 226Ra$^+$ of 277.819.2(3) GHz. This value agrees with our measurement. The $S_{1/2} \rightarrow D_{3/2}$ transition frequency reported in [2] is calculated from the frequency difference between the $S_{1/2} \rightarrow P_{1/2}$ and the $D_{3/2} \rightarrow P_{1/2}$ transitions. With the recalculated value of the $D_{3/2} \rightarrow P_{1/2}$ frequency, the $S_{1/2} \rightarrow D_{3/2}$ transition frequency is 362.277.4(3) GHz, which is also in agreement with our measurement. There remains the discrepancy between the $S_{1/2} \rightarrow P_{3/2}$ frequency measured in this work and the value reported in [2]. This discrepancy could be resolved by direct spectroscopy of the $S_{1/2}$-to-$P_{3/2}$ transition in one of many radium isotopes, including isotope(s) 212, 214, or 221-226 [18].

V. KING PLOT

We determine isotope shifts for the 708- and 1079-nm transitions in 226Ra$^+$. The isotope shift between a target and a reference isotope is $\delta \nu_{MM'} = \nu_M - \nu_{M'}$, where M is the target isotope nuclear mass, M' is the reference isotope nuclear mass, and ν is the transition frequency. We use 214Ra$^+$, which has a closed neutron shell, as the reference isotope [19]. The 1079-nm 214Ra$^+$ reference frequency is 277.805.656 GHz [16] and the 708-nm 214Ra$^+$ reference frequency is 423.434.989 GHz [20]. Isotope shifts of 468, 708, and 1079 nm are listed in Table II. The isotope shift is parameterized as

$$\delta \nu_{MM'} = (K_{\text{NMS}} + K_{\text{SMS}}) \frac{M - M'}{M M'} + F_{\text{FS}} \lambda_{MM'},$$

where K_{NMS} and K_{SMS} are the normal and specific mass shifts, F_{FS} is the field shift, and $\lambda_{MM'}$ is the Seltzer moment, which to lowest order is the difference in mean square nuclear charge radii, $\lambda_{MM'} \approx \delta (r^2)_{MM'}$ [3]. The transformed isotope shift is

$$\Delta \nu_{MM'}^{\text{King}} = \delta \nu_{MM'} \frac{M - M'}{M - M'} - K_{\text{NMS}},$$

from which the ratio of field shifts between transitions and the difference in specific mass shifts can be determined [21]. King plot comparisons of the transformed isotope shifts give the Ra$^+$ field shift ratios, $F_{708}/F_{468} = -0.171(3)$ and $F_{1079}/F_{468} = -0.295(2)$, which are summarized in Table III. The 1079 nm/468 nm King plot is shown in Fig. 6.

TABLE II. Measured Ra$^+$ isotope shifts of the 468-, 708-, and 1079-nm transitions for $^{210-213}$Ra$^+$ and 226Ra$^+$ relative to 214Ra$^+$. All units are MHz. The 468 nm isotope shifts are from [19]. The 708- and 1079-nm isotope shifts for $^{210-213}$Ra$^+$ are from [22]. *An isotope shift calculated in this work.

Isotope	468 nm	708 nm	1079 nm
210	8449(6)	...	-1884(16)
211	7770(4)	...	-1755(14)
212	4583(3)	-701(20)	-1025(12)
213	3049(3)	-453(34)	-707(14)
214	0	0	0
226	-57 852(18)	9403(27)*	13 294(76)*
TABLE III. 226Ra$^+$ field shift ratios.

FS Ratio	Theory $^{[22]}$	Experiment $^{[22]}$	This work
F_{708}/F_{468}	-0.16(1)	-0.136(57)	-0.171(3)
F_{1079}/F_{468}	-0.23(2)	-0.244(11)	-0.235(2)

VI. CONCLUSION

The first driving of the 728- and 828-nm electric quadrupole transitions in Ra$^+$ lays the groundwork for quantum information science and precision measurement experiments with Ra$^+$. Isotope shift spectroscopy of Ra$^+$ dipole transitions has been done at the ISOLDE facility at CERN, and could be extended to a high precision by trapping Ra$^+$ and measuring the E2 transitions $^{[23]}$. Estimates for the nonlinearities of a King plot of radium’s two narrow linewidth transitions following $^{[24]}$ could guide searches to constrain new physics.

We thank A. Vutha and R. Ruiz for feedback on the manuscript and acknowledge support from NSF Grant No. PHY-1912665 and the Office of the President, University of California (Grant No. MRP-19-601445).

[1] R. Pal, D. Jiang, M. S. Safronova, and U. I. Safronova, Phys. Rev. A 79, 062505 (2009).
[2] M. Nuñez Portela, E. A. Dijck, A. Mohanty, H. Bekker, J. E. van den Berg, G. S. Giri, S. Hoekstra, C. J. G. Onderwater, S. Schlesser, R. G. E. Timmermans, O. O. Versolato, L. Willmann, H. W. Wilschut, and K. Jungmann, Applied Physics B 114, 173 (2014).
[3] K. Heilig and A. Steudel, Atomic Data and Nuclear Data Tables 14, 613 (1974).
[4] P. G. Reinhard, W. Nazarewicz, and R. F. G. Ruiz, arXiv:1911.00699.
[5] J. C. Berengut, D. Budker, C. Delaunay, V. V. Flambaum, C. Frugueule, E. Fuchs, C. Grojean, R. Harnik, R. Ozeri, G. Perez, and Y. Soreq, Phys. Rev. Lett. 120, 091801 (2018).
[6] J. Bieroń, P. Indelicato, and P. Jönsson, The European Physical Journal Special Topics 144, 75 (2007).
[7] M. Fan, C. A. Holliman, A. L. Wang, and A. M. Jayich, PRL 122, 223001 (2019).
[8] T. Pruttivarasin and H. Katori, Rev. Sci. Instrum. 86, 115106 (2015).
[9] V. J. C. J. Gerstenkorn, S., Atlas du spectre d’absorption de la molécule d’iode: 11000-14000 cm$^{-1}$ to the minus 1 (Laboratoire Aime-Cotton CNRS II, Paris, 1982); S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode: 14000-15600 cm$^{-1}$ to the minus 1 (Laboratoire Aime-Cotton CNRS II, Paris, 1982).
[10] D. F. V. James, Applied Physics B 66, 181 (1998).
[11] C. Roos, Ph.D. thesis, University of Innsbruck (2000).
[12] D. J. Berkeland and M. G. Boshier, Phys. Rev. A 65, 033413 (2002).
[13] D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, J. Appl. Phys. 83, 5025 (1998).
[14] H. Knöckel and E. Tiemann, IodineSpec5 (2011) (Universität Hannover, Hannover, 2011).
[15] H. Knöckel, B. Bodermann, and E. Tiemann, Eur. Phys. J. D 28, 199 (2004).
[16] G. S. Giri, O. O. Versolato, J. E. van den Berg, O. Böll, U. Dammalapati, D. J. van der Hoek, K. Jungmann, W. L. Kruitkof, S. Müller, M. Nuñez Portela, C. J. G. Onderwater, B. Santra, R. G. E. Timmermans, L. W. Wansbeek, L. Willmann, and H. W. Wilschut, PRA 84, 020503(R) (2011).
[17] E. Rasmussen, Zeitschrift für Physik B 86, 24 (1993).
[18] W. Neu, R. Neugart, E. W. Otten, G. Passler, K. Wendt, B. Fricke, E. Arnold, H. J. Kluge, and G. Ulm, Zeitschrift für Physik D Atoms, Molecules and Clusters 11, 105 (1989).
[19] K. Wendt, S. A. Ahmad, W. Klempt, R. Neugart, E. W. Otten, and H. H. Stroke, Zeitschrift für Physik D Atoms, Molecules and Clusters 4, 227 (1987).
[20] O. O. Versolato, G. S. Giri, L. W. Wansbeek, J. E. van den Berg, D. J. van der Hoek, K. Jungmann, W. L. Kruitkof, C. J. G. Onderwater, B. K. Sahoo, B. Santra, P. D. Shidling, R. G. E. Timmermans, L. Willmann, and H. W. Wilschut, Phys. Rev. A 82, 010501(R) (2010).
[21] W. H. King, J. Opt. Soc. Am. 53, 638 (1963).
[22] L. W. Wansbeek, S. Schlesser, B. K. Sahoo, A. E. L. Dieperink, C. J. G. Onderwater, and R. G. E. Timmermans, Phys. Rev. C 86, 015503 (2012).
[23] K. M. Lynch, S. G. Wilkins, J. Billowes, K. Chrysalidis, T. E. Cocolios, T. D. Goodacre, R. P. de Groote, G. J. Farooq-Smith, D. V. Fedorov, V. N. Fedosseev, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, W. Gins, R. Heinke, i Koszorús, B. A. Marsh, P. L. Mølkanov, P. Naubereit, G. Neyens, C. M. Ricketts, S. Rothe, C. Seiffert, M. D. Seliverstov, H. H. Stroke, D. Studer, A. R. Vernon, K. D. A. Wendt, and X. F. Yang, Phys. Rev. C 97, 024309 (2018).
[24] V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, PRA 97, 032510 (2018).