Acoustical studies of some derivatives of 1,5-benzodiazepines at 298.15 K

Shipra Baluja*, Nilesh Godvani
Department of Chemistry, Saurashtra University, Rajkot - 360005, Gujarat, India
*E-mail address: shipra_baluja@rediffmail.com

ABSTRACT

Some new derivatives of 1,5-Benzodiazepines have been synthesized and their structural characterizations are done by IR, NMR and Mass Spectral data. The ultrasonic velocity, density and viscosity of these synthesized compounds have been measured in dimethyl formamide and tetrahydrofuran at 298.15 K. From these experimental data, some acoustical parameters such as isentropic compressibility, intermolecular free path length, Rao’s molar sound function, relaxation strength, solvation number etc., have been calculated which helps in understanding the molecular interactions occurring in these solutions.

*Keywords: Benzodiazepine derivatives; ultrasonic Study; acoustical parameters; DMF; THF

1. INTRODUCTION

In recent years, much effort has been made to study ultrasonic properties of liquid mixtures. However, scanty work has been done for solutions of organic compounds. Over the last few years, our research group is actively engaged in studying different types of organic compounds in various solvents. In continuation of these investigations, the present paper reports acoustical properties of some Benzodiazepine derivatives in DMF and THF over entire concentration range at 298.15 K. The results are interpreted in terms of molecular interaction occurring in the solution.

2. EXPERIMENTAL

Five new Benzodiazepine derivatives have been synthesized. The reaction scheme is given in Figure 1. The compounds were recrystalized before use. The physical properties of synthesized compounds are given in Table 1 along with different substitutions. The DMF and THF used in the present work were of AR grade and were purified according to the standard procedure. For all the compounds, solutions were prepared in DMF and THF over a wide range of concentrations and were stored in air tight bottles.

The computation of ultrasonic and thermodynamic properties requires the measurements of ultrasonic velocity viscosity and density. The densities (ρ) of pure solvents and their solutions were measured by using a single capillary pycnometer, made of borosil glass having a bulb capacity of 10 ml.
The ultrasonic velocity \((U)\) of pure solvents and their solutions were measured by using single crystal variable path ultrasonic interferometer operating at 2 MHz. The accuracy of density and velocity are \(\pm 0.0001 \text{ g/cm}^3\) and \(\pm 0.1 \% \text{ cm/sec}\) respectively.

The viscosity \((\eta)\) of pure solvents and solutions were measured by an Ubbelohde viscometer with an accuracy of 0.05 %. All the measurements were carried out at 298.15 K. The uncertainty of temperature is \(\pm 0.1 \text{ K}\) and that of concentration is 0.0001 moles /dm\(^3\).

3. RESULTS AND DISCUSSION

Table 2 shows the experimental data of density \((\rho)\), viscosity \((\eta)\) and ultrasonic velocity \((U)\) of solutions of benzodiazepine derivatives at 298.15 K. The variation of ultrasound velocity \((U)\) with concentration is shown in Figure 2. It is observed that in DMF and THF solutions, density, ultrasonic velocity and viscosity values increases with concentration for all the compounds.

From these experimental data of density, viscosity and ultrasound velocity of pure solvent and solutions, various acoustical parameters were calculated using the reported standard equations\(^8\). Figure 3 shows the variation of isentropic compressibility \((\kappa_s)\) with concentration, which is reverse in nature than that of velocity \((U)\). Further, Table 3 shows that intermolecular free length \((L_f)\) and relaxation strength \((r)\) also decreases with increase in concentration for all the compounds.

The increase of \(U\) and decrease of \(\kappa_s\), \(L_f\) and \(r\) suggest aggregation of solvent molecules around solute molecules indicating thereby the presence of solute-solvent interactions.

Properties like molar sound function \((R_m)\), molar compressibility \((W)\) and Vander Waals constant \((b)\) are observed to increase linearly with concentration for all the systems in both solvents. The linear variation of these acoustical properties indicates the absence of complex formation in these systems, as shown in Table 3 and Figure 4.

Figure 5 shows the variation of solvation number \((S_n)\) with concentration. The solvation number \((S_n)\) is a measure of structure forming or structure breaking tendency of a solute in solutions. In all the systems, \(S_n\) values are positive and increases with increase in concentration in both the solvents. The positive solvation number is due to structure forming tendency of these compounds in both the solvents.

Further, the apparent molar compressibilities \((\phi_k)\) of the solutions are fitted to Gucker’s relation\(^10\)

\[
\phi_k = \phi^0_k + S_k \sqrt{C}
\]

From the plot of \(\phi_k\) verses \(\sqrt{C}\), \(\phi^0_k\) and \(S_k\) values are evaluated from the intercept and slope. The isentropic compressibility of all the solutions were also fitted to the following Bachem’s relation\(^11\):

\[
\kappa_s = \kappa^0_s + AC + BC^{3/2}
\]

and values of \(A\) and \(B\) were evaluated from the intercept and slope respectively. All these values of intercept and slopes are given in Table 4.

It is evident from Table 4 that in both DMF and THF solutions, \(A\) and \(\phi^0_k\) values are negative whereas \(B\) and \(S_k\) values are positive for all the compounds. The negative \(A\) and \(\phi^0_k\)
and higher B values indicates solute-solvent interactions. The higher S_k values are also the indication of predominance of solute-solvent interactions.

Table 1. Physical constants of 1,5-benzodiazepines.

Sr. No.	Code	R	M.F.	M. Wt. (g/mol)	R_f Value	M.P. °C	Yield %
1	NKG-A	4-OH	C$_{24}$H$_{15}$ClF$_3$N$_3$O	415.8	0.74	248	61
2	NKG-B	4-CH$_3$	C$_{25}$H$_{15}$ClF$_3$N$_3$	413.9	0.82	186	55
3	NKG-C	4-Cl	C$_{24}$H$_{14}$ClF$_3$N$_3$	434.4	0.59	232	52
4	NKG-D	2-OH	C$_{24}$H$_{15}$ClF$_3$N$_3$	415.8	0.63	177	58
5	NKG-E	H	C$_{24}$H$_{15}$ClF$_3$N$_3$	399.8	0.70	182	62

Table 2. The density (ρ), ultrasonic velocity (U) and viscosity (η) of 1,5-benzodiazepine derivatives in DMF and THF at 298.15 K.

Conc. (M)	Density g·cm$^{-3}$	Velocity x 105 cm·s$^{-1}$	Viscosity x 103 poise	Density g·cm$^{-3}$	Velocity x 105 cm·s$^{-1}$	Viscosity x 103 poise		
NKG-A								
0.00	0.9449	1.4616	8.1418	0.8815	1.2780	4.6005		
0.01	0.9472	1.4628	8.4259	0.8822	1.2796	4.7869		
0.02	0.9503	1.4636	8.5980	0.8845	1.2804	4.9152		
0.04	0.9546	1.4648	8.7095	0.8866	1.2812	5.1107		
0.06	0.9559	1.4664	8.8547	0.8922	1.2820	5.2144		
0.08	0.9576	1.4672	8.9514	0.8947	1.2828	5.3538		
0.10	0.9587	1.4680	9.1318	0.8998	1.2844	5.4794		
NKG-B								
0.01	0.9463	1.4640	8.3899	0.8828	1.2792	4.7752		
0.02	0.9490	1.4648	8.5501	0.8845	1.2792	4.8816		
0.04	0.9510	1.4664	8.6646	0.8863	1.2792	5.0001		
0.06	0.9545	1.4668	8.7772	0.8884	1.2796	5.0983		
0.08	0.9581	1.4676	8.8872	0.8915	1.2800	5.2442		
0.10	0.9622	1.4700	9.0676	0.8957	1.2808	5.4317		
NKG-C								
0.01	0.9508	1.4636	8.2449	0.8845	1.2796	4.7470		
0.02	0.9520	1.4648	8.3881	0.8882	1.2804	4.8344		
0.04	0.9551	1.4664	8.5244	0.8897	1.2828	4.9366		
0.06	0.9575	1.4676	8.7484	0.8917	1.2844	5.0344		
0.08	0.9604	1.4684	8.8680	0.8929	1.2860	5.1506		
0.10	0.9660	1.4700	9.1156	0.8956	1.2888	5.2494		
Conc. (M)	L_f (Å³)	R	R_m 10^{-3} cm^{-3} s^{-1/3}	b cm^{-3} mol^{-1}	L_f (Å³)	r	R_m 10^{-3} cm^{-3} s^{-1/3}	b cm^{-3} mol^{-1}
----------	----------	---	-----------------------------	-------------------	----------	---	-----------------------------	-------------------
NKG-D								
0.01	0.9482	1.4632	8.2665	0.8837	1.2784	4.7502		
0.02	0.9529	1.4648	8.4121	0.8864	1.2792	4.8996		
0.04	0.9546	1.4664	8.5320	0.8892	1.2796	5.0353		
0.06	0.9578	1.4676	8.7306	0.8930	1.2812	5.1285		
0.08	0.9603	1.4696	8.8589	0.8946	1.2828	5.2095		
0.10	0.9642	1.4712	9.0131	0.8973	1.2836	5.3314		
NKG-E								
0.01	0.9464	1.4628	8.3267	0.8829	1.2780	4.6825		
0.02	0.9489	1.4636	8.4690	0.8832	1.2792	4.7550		
0.04	0.9523	1.4656	8.6362	0.8858	1.2800	4.8364		
0.06	0.9563	1.4676	8.7614	0.8882	1.2816	4.9320		
0.08	0.9591	1.4688	8.8478	0.8905	1.2836	5.0163		
0.10	0.9612	1.4700	8.9972	0.8942	1.2852	5.1089		

Table 3. Variation of some acoustical parameters with concentration of 1,5-benzodiazepine derivatives in DMF and THF at 298.15 K.

Conc. (M)	L_f (Å³)	R	R_m 10^{-3} cm^{-3} s^{-1/3}	b cm^{-3} mol^{-1}	L_f (Å³)	r	R_m 10^{-3} cm^{-3} s^{-1/3}	b cm^{-3} mol^{-1}
NKG-A								
0.00	0.1476	0.1655	4.0746	77.3503	0.1747	0.3620	4.1205	81.8016
0.01	0.1473	0.1641	4.1496	78.7525	0.1754	0.3676	4.2097	83.6946
0.02	0.1469	0.1632	4.2198	80.0700	0.1762	0.3743	4.2943	85.5290
0.04	0.1465	0.1619	4.3662	82.8259	0.1759	0.3731	4.4853	89.3044
0.06	0.1462	0.1600	4.5260	85.8271	0.1742	0.3616	4.6896	93.0893
0.08	0.1460	0.1591	4.6820	88.7694	0.1733	0.3572	4.8771	96.7016
0.10	0.1459	0.1582	4.8405	91.7573	0.1723	0.3528	5.0482	99.9793
NKG-B								
0.01	0.1472	0.1628	4.1538	78.8120	0.1743	0.3600	4.2067	83.4684
0.02	0.1469	0.1619	4.2251	80.1504	0.1739	0.3588	4.2908	85.1117
0.04	0.1466	0.1600	4.3820	83.0963	0.1737	0.3576	4.4721	88.6803
0.06	0.1463	0.1596	4.5286	85.8671	0.1731	0.3556	4.6394	91.9492
0.08	0.1459	0.1587	4.6727	88.5846	0.1726	0.3540	4.7989	95.0724
0.10	0.1454	0.1559	4.8135	91.2038	0.1718	0.3508	4.9624	98.2285
NKG-C								
0.01	0.1469	0.1632	4.1424	78.6030	0.1746	0.3616	4.2448	84.2606
0.02	0.1467	0.1619	4.2293	80.2300	0.1744	0.3608	4.3672	86.6724
0.04	0.1463	0.1600	4.3977	83.3925	0.1742	0.3600	4.6120	91.5119
0.06	0.1460	0.1587	4.5672	86.5832	0.1737	0.3588	4.8420	96.0450
0.08	0.1457	0.1577	4.7317	89.6873	0.1734	0.3576	5.0860	100.8535
0.10	0.1451	0.1559	4.8791	92.4461	0.1727	0.3568	5.2882	104.8410
Table 4. Bachem’s constants A, B, ϕ_v, S_v, ϕ_k and S_k of 1,5-benzodiazepine derivatives in DMF and THF at 298.15 K.

COMPOUNDS	A · 10^{11} dyn$^{-1}$·cm3·mol$^{-1}$	B · 10^{11} dyn$^{-1}$·cm$^{-1/2}$·mol$^{-3/2}$	ϕ_k · 10^8 dyn$^{-1}$·mol$^{-1}$	S_k · 10^8 dyn$^{-1}$·cm$^{-3/2}$·mol$^{-3/2}$
	DMF	THF		
NKG-A	-2.82	5.33	-1.57	5.28
NKG-B	-2.90	5.36	-0.70	2.40
NKG-C	-4.20	12.05	-3.50	11.33
NKG-D	-2.33	2.00	-3.40	10.27
NKG-E	-1.97	1.85	-1.07	3.00
	THF			
NKG-A	-2.79	2.30	-0.49	0.83
NKG-B	-3.16	5.46	-0.94	8.80
NKG-C	-2.83	1.97	-2.15	0.75
NKG-D	-0.72	3.33	-1.00	3.90
NKG-E	-2.91	3.50	-1.68	3.75
Figure 1. Reaction Scheme.

\[
\text{F} \quad \text{NH}_2
\]

\[(\text{CH}_3\text{CO})_2\text{O} \quad + \quad \text{H}_2\text{SO}_4
\]

\[\text{F} \quad \text{NH} \quad \text{O}
\]

\[\text{Vilsmeier - Haack Formylation}\]

\[\text{POCl}_3 + \text{DMF}
\]

\[\text{F} \quad \text{Cl} \quad \text{R} \quad \text{O} \quad \text{H}_2\text{SO}_4
\]

\[\text{NH}_2 \quad \text{NH}_2 \quad + \quad \text{Cl}
\]

\[\text{R} \quad \text{COCl}_3 \quad 40\% \text{NaOH}
\]

\[\text{F} \quad \text{Cl} \quad \text{R} \quad \text{O}
\]

\[\text{H}^+ \quad \text{NH}_2 \quad \text{NH}_2
\]

\[\text{F} \quad \text{R} \quad \text{N} \quad \text{H} \quad \text{N} \quad \text{H} \quad \text{R} = \text{Aryl}
\]
Figure 2. Variation of Ultrasonic velocity (U) with concentration of 1,5-benzodiazepine in (A) DMF and (B) THF at 298.15 K.
Figure 3. Variation of Isentropic compressibility (κ_s) with concentration of 1,5-benzodiazepine in (A) DMF and (B) THF at 298.15 K.
Figure 4. Variation of molar compressibility (W) with concentration of 1,5-benzodiazepine in (A) DMF and (B) THF at 298.15 K.
Figure 5. Variation of Solvation Number (S_n) with concentration of 1,5-benzodiazepine in (A) DMF and (B) THF at 298.15 K.

4. CONCLUSION

All the studied compounds exhibited solute-solvent interactions in DMF and THF solutions.

Acknowledgement

Authors are thankful to Head of Chemistry Department for providing facilities.
References

[1] G. Douhéret, M. I. Davis, J. C. R. Reis, M. J. Blandamer, ChemPhysChem 2 (2008) 148-161.

[2] S. Nithiyanantham, L. Palaniappan, Arabian Journal of Chemistry 7 (2014) 272-276.

[3] A. Ali, A. Yasmin, A. K. Nain, Indian Journal of Pure and Applied Physics 40 (2002) 315-322.

[4] M. M. Lomboy, S. K. Khanal, J. (Hans) van Leeuwen, D. R. Raman, L. Dunn, D. Grewell, Ultrasonics Sonochemistry 17 (2010) 93-946.

[5] S. Baluja, S. Oza, Fluid Phase Equilibria 200 (2002) 11-18.

[6] S. Baluja, N. Pandaya, N. Kachhadia, A. Solanki, P. Inamdar, Physics Chemistry of Liquids 43 (2005) 309-316.

[7] N. Godvani, J. Javiya, J. Movaliya, S. Baluja, Asian Journal of Biochemistry and Pharmaceutical Research 2 (2012) 131-139.

[8] K. Bhesaniya, S. Baluja, Journal of Molecular Liquids 191 (2014) 116-123.

[9] J. A. Riddick, W. B. Bunger, T. Sakano, Organic Solvents-Physical Properties and methods of purification, Fourth Edition., Techniques of Chemistry, II, A Wiley-Interscience Publication, John Wiley.

[10] F.T. Gucker (Jr.), Chemical Review 64 (1993) 111-130.

[11] H. H. Falkenhagen, C. Bachem, Zeitschrift für Elektrochemie und angewandte physikalische Chemie 41 (1935) 570-575.

(Received 20 August 2014; accepted 28 August 2014)