Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
An evidence-based guide to SARS-CoV-2 vaccination of patients on immunotherapies in dermatology

Louise M. Gresham, MD, a Barbara Marzario, MD, b Jan Dutz, MD, FRCPC, b and Mark G. Kirchhof, MD, PhD, FRCPC a
Ottawa and Vancouver, Canada

Immune-mediated diseases and immunotherapeutics can negatively affect normal immune functioning and, consequently, vaccine safety and response. The COVID-19 pandemic has incited research aimed at developing a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. As SARS-CoV-2 vaccines are developed and made available, the assessment of anticipated safety and efficacy in patients with immune-mediated dermatologic diseases and requiring immunosuppressive and/or immunomodulatory therapy is particularly important. A review of the literature was conducted by a multidisciplinary committee to provide guidance on the safety and efficacy of SARS-CoV-2 vaccination for dermatologists and other clinicians when prescribing immunotherapeutics. The vaccine platforms being used to develop SARS-CoV-2 vaccines are expected to be safe and potentially effective for dermatology patients on immunotherapeutics. Current guidelines for the vaccination of an immunocompromised host remain appropriate when considering future administration of SARS-CoV-2 vaccines. (J Am Acad Dermatol 2021;84:1652-66.)

Key words: COVID-19; immunomodulatory therapy; immunosuppressive therapy; SARS-CoV-2; vaccine.

Patients with immune-mediated dermatologic diseases can require treatment with short-term and long-term immunosuppressive and/or immunomodulatory therapy. Immune-mediated diseases and immunotherapeutics can negatively affect normal immune functioning, placing these patients at increased risk of infection.1-3 However, patients on immunotherapies for dermatologic and rheumatologic disease do not appear to be more susceptible to COVID-19.4 Vaccines protect against infection by provoking a protective humoral and cellular immune response.5,6 Assessment of vaccine safety is largely derived from observational studies, whereas the efficacy of vaccination is commonly investigated by using post-immunization antibody titers as correlates of protection.6,8-10 For patients on immunotherapeutics, clinical decision making regarding vaccination must weigh the anticipated disease protection achieved by immunization against the risk of vaccine-induced adverse events. Meanwhile, the risk of discontinuation or temporary withdrawal of therapy must also be considered because some immunotherapies can carry the risk of increased disease activity, relapse, or loss of response.3,11

The COVID-19 pandemic has included a rapid increase in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research around the globe, particularly research aimed at developing a SARS-CoV-2 vaccine. SARS-CoV-2 vaccination research has resulted in the development of novel vaccine platforms (ie, RNA, DNA, nonreplicating viral vectors, etc).12,13 Furthermore, SARS-CoV-2 is a novel vaccine target. As SARS-CoV-2 vaccines are developed and made available, the assessment of potential safety and efficacy in this population is particularly important. The launch of SARS-CoV-2 vaccines creates a unique clinical challenge for dermatologists and other clinicians when prescribing immunotherapeutics. We aim to provide guidance on the safety and efficacy of SARS-CoV-2 vaccination for dermatology patients on immunotherapeutics as...
an adjunct to existing guidelines, including the Infectious Diseases Society of America “Clinical Practice Guideline for Vaccination of the Immunocompromised Host.” Specifically, this review is intended to serve as a point of reference to assist dermatologists and clinicians when approaching SARS-CoV-2 vaccination and their patients receiving immunotherapeutics through (1) a review of the SARS-CoV-2 vaccines now authorized for distribution (Moderna messenger RNA [mRNA] and Pfizer-BioNTech mRNA) as well as those under development and an outline of the potential risks to patients receiving immunotherapeutics, (2) a summary of current evidence pertaining to the safety and efficacy of nonviral vaccines in patients receiving immunotherapeutics, and (3) an extrapolation of these data to comment on the anticipated safety and efficacy outcomes with the novel SARS-CoV-2 vaccines.

METHODS

A review of the literature was conducted by a multidisciplinary committee comprising dermatologists (MGK, JD), immunologists (MGK, JD), a rheumatologist (JD), dermatology residents (LMG, BM) and a specialist in virology and vaccination (MS). Studies were identified by performing a search across electronic databases (MEDLINE, Embase, PubMed) and divided into 3 areas of focus based on major search terms in addition to advanced searching within these databases using the following Medical Subject Headings terms: (1) “SARS-CoV-2” or “COVID-19” and “vaccine” or “vaccination”; (2) “vaccine” or “vaccination” and “glucocorticoid” or “prednisone” or “corticosteroid,” as well as “vaccine” or “vaccination” and specific systemic immunotherapy (“apremilast,” “azathioprine,” “cyclosporine,” “methotrexate,” “mycophenolate mofetil,” and “JAK inhibitors”); (3) “vaccine” or “vaccination” and specific biologic agent (“adalimumab,” “certolizumab,” “etanercept,” “infliximab,” “ustekinumab,” “brodalumab,” “ixekizumab,” “secukinumab,” “guselkumab,” “risankizumab,” “tildrakizumab,” “rituximab,” “anakinra,” “dupilumab,” “omalizumab,” and “IVIG”). Additional relevant studies were identified from the reference lists of primary studies and reviews and included based on relevance to these major search terms. Published studies including clinical trials, meta-analyses, systematic reviews, case series, and case reports were reviewed and assessed for content and grading of quality of evidence adapted from Robinson et al to support recommendations. Data were extracted from individual studies and synthesized into tables.

RESULTS AND DISCUSSION

Review of SARS-CoV-2 vaccines under development

To properly assess risks of vaccines against SARS-CoV-2 to patients on immunotherapeutics, it is important to understand the basic mechanisms of the vaccines’ platforms. There are more than 90 vaccines against SARS-CoV-2 in development; the wide range of strategies used to stimulate the immune system to develop protective antibodies is summarized in Table 1. Live attenuated vaccines are weakened wild-type viruses that have accumulated mutations to diminish their ability to cause disease and therefore pose the highest risk to dermatology patients on immunotherapeutics because of the rare risk of reversion to the original pathogenic infectious agent. However, currently, there are no live attenuated SARS-CoV-2 vaccines in phase 2 or phase 3 trials.

Otherwise, there are 3 principal vaccine platforms that have been used to develop already approved vaccines and are considered safe for patients on immunotherapeutics: inactivated vaccines, protein subunit vaccines, and virus-like particle vaccines. These platforms have been used to develop pertussis vaccines, hepatitis B vaccines, and human papilloma virus vaccines. With regard to developmental SARS-CoV-2 vaccines, there is currently 1 protein subunit vaccine in phase 3 trials (NVX-CoV2373, Novavax), which, based on phase 1 and 2 data, appears to be safe, and elicits a strong antibody response. Nonreplicating viral vectors and RNA/DNA vaccines are in phase 3 trials or have completed phase 3 trials and represent novel methods of vaccination. Results suggest that these vaccines are safe and have the ability to produce protective antibody responses. The data from phase 2 and 3 trials of ChAdOx1/AZD1222 (Oxford-AstraZeneca) (nonreplicating viral vector) and phase 3 trials of mRNA-1273
above convalescent serum controls. The US and the development of antibody responses that are cines are safe, with mild to moderate adverse events BioNTech) (mRNA vaccine) indicate that these vac- (Moderna) (mRNA vaccine) and BNT162 (Pfizer- Gresham et al 1654 and/or solid organ transplant recipients, in whom primarily conducted in kidney transplant recipients phenolate mofetil and cyclosporine have been evaluated vaccination in patients receiving thalido- temic corticosteroids, and JAK inhibitors. No studies immunologic regimens result in severely disturbed primary and secondary humoral responses and, therefore, an impaired ability to mount a protective immune response. This may not be general- ized to patients with dermatology immune disease on dermatologic doses of immunotherapies. The efficacy of inactivated, attenuated, and recombinant vaccines (ie, trivalent [A/H1N1, H3N2, B strain] and pandemic [A/H1N1 influenza vaccine] has been evaluated in patients receiving methotrexate. A significant reduction of inactivated and subunit vaccine antibody titers and inadequate sustained response or nonprotective titers on follow-up (at 4 to 12 weeks) has been reported in patients treated with methotrexate. On the other hand, the response appears to improve with second vaccination in studies evaluating influenza and hepatitis A vaccines in patients receiving methotrexate (15-20 mg per week), azathioprine, or cyclo- sporine. Satisfactory immune responses to influenza vaccine and nonviral vaccine (PPSV23, tetanus toxoid) in JAK inhibitor—treated patients with rheumatoid arthritis and inflammatory bowel disease have been observed when vaccines were administered either before the initiation of therapy or after temporary withdrawal of JAK inhibitors 2 to 3 weeks before vaccination, which is consistent with most consensus guideline recommendations. Overall, vaccine efficacy may be reduced in patients receiving systemic immune-targeting therapies because of the impaired immune response in these patients; however, temporary withdrawal and/or additional vaccinations may be considered to achieve adequate protection.

Vaccines and biologics

The majority of primary data on the safety and efficacy of vaccines in patients exposed to biologics focuses on tumor necrosis factor (TNF) alpha inhibitors (primarily infliximab and etanercept) and the anti-CD20 monoclonal antibody rituximab. Patients with rheuma- tid arthritis and inflammatory bowel disease were the most frequently studied populations. No studies on the safety or efficacy of vaccination in patients exposed to the following biologics were identified: brodalumab, anakinra, omalizumab, guselkumab, risankizumab, or tildrakizumab (Table III). Vaccination safety in patients on biologics. There have been few serious adverse events reported with vaccination and patients on biologic therapies, and the majority of reported adverse events were unrelated to

Abbreviations used:
IL: interleukin
mRNA: messenger RNA
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2
TNF: tumor necrosis factor
VAERD: vaccine-associated enhanced respiratory disease

Systemic immunotherapies and vaccines

The following dermatology-relevant immune-targeting therapies were reviewed in the setting of studies evaluating the safety and efficacy of nonviral and live vaccines: apremilast, azathioprine, cyclosporine, methotrexate, mycophenolate mofetil, systemic corticosteroids, and JAK inhibitors. No studies evaluated vaccination in patients receiving thalidomide or apremilast; safety has been addressed in the literature on the basis of expert opinion only.

Safety of vaccines in patients receiving nonbiologic systemic immunotherapy. Based on available studies, detailed in Table II, the majority of vaccines are safe in patients receiving nonbiologic immunotherapy. There is ultimately good evidence for the safety of nonviral vaccines in patients with dermatologic, autoimmune, or inflammatory disease treated with standard dermatologic doses of immuno-suppressive agents, and these are generally well tolerated (Table II). These findings are aligned with current guideline recommendations.

Efficacy of vaccines in patients receiving systemic immunotherapies. There is a trend toward a decreased immune response and vaccine immunogenicity in patients on systemic immunotherapies, particularly patients receiving azathioprine, cyclosporine, methotrexate, mycophenolate mofetil, or JAK inhibitors (Table II). Studies evaluating vaccine efficacy in patients receiving mycophenolate mofetil and cyclosporine have been primarily conducted in kidney transplant recipients and/or solid organ transplant recipients, in whom
Aikawa et al96 reported 1 serious adverse event in a patient on TNF inhibitor therapy who developed invasive pneumococcal disease with bacterial pneumonia 5 months after vaccination, despite seroconverting 6 out of 7 polysaccharide serotypes analyzed. Blauvelt et al153 reported 1 treatment-related serious event in their dupilumab treatment group: a serum sickness-like reaction that resolved without sequelae.

Vaccine efficacy in patients on biologics. Data pertaining to vaccine efficacy are heterogeneous. Good antibody levels are observed after vaccination for patients on interleukin (IL) 17 (brodalumab, ixekizumab, secukinumab) and IL-4/13 inhibitors (dupilumab).

Anti-TNF (adalimumab, certolizumab, etanercept) and anti–IL-12/23 (ustekinumab) biologics have been associated with a significant decrease in antibody levels. Variable data are observed for rituximab. Exposure to TNF inhibitors did not have a significant effect on humoral responses to pneumococcal (PPS23 and PCV13) or influenza vaccination in patients with rheumatoid arthritis.76,79,83,96,109,115,120,121,125,134,137,143,154 Curiously, TNF inhibitor exposure was associated with a reduced humoral response to pneumococcal and influenza vaccination in patients with inflammatory bowel disease.103,105,110,113,123,124 Belle et al100 found that treatment with immunomodulators and TNF inhibitors in patients with

Table I. Review of COVID-19 vaccines in development

Type of vaccine (approved examples)	Description	Example companies and phase of development	Anticipated risk to patients on immunomodulators
Inactivated virus	SARS-CoV-2 is allowed to replicate in cells and then killed by using chemicals, heat, or radiation	• Sinovac: approved (not in United States) • Sinopharm: approved (not in United States)	None
Live, attenuated virus	SARS-CoV-2 is genetically engineered to limit infection and reproduction	• Serum Institute and Codagenix: phase 1	Low
Protein subunit	SARS-CoV-2 protein is engineered and produced to stimulate antiviral antibodies	• Novavax (NVX-CoV2373): phase 3	None
Virus-like particles	Virus-like structures enter cells like virus to deliver SARS-CoV-2 protein subunit to stimulate immune response	• Medicago/GlaxoSmithKline: phase 3	None
Nonreplicating viral vectors	Nonreplicating engineered viruses, such as adenovirus or vaccinia, that carry genetic code for proteins of the SARS-CoV-2 virus to stimulate an immune response	• University of Oxford/AstraZeneca (ChAdOx1/AZD1222): approved (expected in United States) • Johnson & Johnson (JNJ-78436735): approved in United States	None to minimal
Replicating viral vectors	Weakened versions of carrier viruses, like influenza or measles, that can replicate in the body and carry genetic code for a protein of SARS-CoV-2. Do not usually cause symptoms.	• University of Pittsburgh/Themis Biosciences/Institut Pasteur/Merck: phase 2	Minimal
RNA	RNA is injected into the body that codes for a SARS-CoV-2 protein that is then produced and leads to antibody development.	• Moderna/National Institute of Allergy and Infectious Diseases (mRNA-1273): approved in United States • BioNTech/Fosun Pharma/Pfizer (BNT162): approved in United States	None
DNA	DNA is injected into the body, often in the form of a plasmid, that codes for a SARS-CoV-2 protein that is then produced and leads to antibody development.	• Inovio/International Vaccine Institute: phase 3 • Cadila Healthcare: phase 2 • Osaka University/AnGes/Takara Bio: phase 2	None

SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2.

vaccination.96,117,121,153
Table II. Review of data on systemic immune targeting therapies and vaccines (see Table 2 in van Riel and de Wit12)

Drug	Type of vaccination	Adverse events	Effects on immunity	Level of evidence
Systemic corticosteroids			Variable effect on immunity: adequate seroprotection and/or no significant suppression of response in several studies and associated with doses up to \(<10-20\) mg/day.37,38 Reduced seroconversion rates and/or impaired immune response/humoral response noted in a number of studies and, in particular, associated with a high-dose regimen of \(>20\) mg/day.27,29,35,116 In VZV, long-term seroprotection for VZV at the 2-year follow-up was also observed.45,145	A-B
(prednisone)				
	Influenza26-34,73,75,82,113,116,121	Safe, generally well tolerated. Increased frequency of moderate/severe local reactions compared to healthy control individuals have been observed; as well as a few reports of increased incidence of clinical and/or biochemical parameters of disease flare30 or increased herpes zoster risk observed in patients on immune-suppressive therapy39	Variable effect on immunity: adequate seroprotection and/or no significant suppression of response in several studies and associated with doses up to \(<10-20\) mg/day.37,38 Reduced seroconversion rates and/or impaired immune response/humoral response noted in a number of studies and, in particular, associated with a high-dose regimen of \(>20\) mg/day.27,29,35,116 In VZV, long-term seroprotection for VZV at the 2-year follow-up was also observed.45,145	A-B
	PPSV2335,36,101,117,119,120			
	Hepatitis B37			
	HPV38			
	Herpes/varicella zoster (LZV)39,40,145			
	Yellow fever41			
Methotrexate	Influenza: trivalent,42,43,79,80,146	Safe, generally well tolerated. With both nonviral and live-attenuated/live vaccines56,57,4 Rare risk of systemic rash and fever with live-attenuated/live vaccine (ie, MMR40,19 and HZV39,145)	Variable effect on immunity: adequate seroprotection and/or no significant suppression of response in several studies and associated with doses up to \(<10-20\) mg/day.37,38 Reduced seroconversion rates and/or impaired immune response/humoral response noted in a number of studies and, in particular, associated with a high-dose regimen of \(>20\) mg/day.27,29,35,116 In VZV, long-term seroprotection for VZV at the 2-year follow-up was also observed.45,145	A-B
	Pandemic (A/H1N1)1,4,45,73,76,82-84			
	PPSV235,111			
	PCV7/131,46,120,143			
	HAV86			
	HBV100			
	Tetanus/diphtheria102			
	MMR247,49,74			
	Herpes/varicella zoster (LZV)39,50-52,85,93,145			
	Yellow fever53-56,129			
Azathioprine	Influenza: trivalent,32,58-60 (A/H1N1)51,62,82,84	Safe, consistently well tolerated with nonviral vaccines and live-attenuated/live vaccines	Variable effects on immune response for nonviral and live-attenuated/live vaccines described. Most studies report blunted to impaired immunogenicity for nonviral and live vaccines (eg, reduced humoral response). Comparable response to healthy control individuals also has been observed in pandemic influenza strains61,82 and HAV131	B
	Pandemic (A/H1N1)1,4,45,73,76,82-84			
	PPSV231,118			
	PCV131,118			
	HAV131			
	HBV97,100			
	Tetanus, pertussis107			
	Herpes/varicella zoster (LZV)9,64-66,102			
	Yellow fever51			

Continued
inflammatory bowel disease did not influence humoral response to hepatitis B vaccination compared to healthy control individuals. Patients with moderate to severe psoriasis treated with ustekinumab did not experience a change in humoral response to PPSV23 and tetanus toxoid vaccination. This is further supported by a recent study showing decreased efficacy of influenza vaccination in patients treated with adalimumab but not ustekinumab. In patients exposed to rituximab, most studies found a reduced humoral response to pneumococcal, hepatitis B, and influenza vaccination. Rituximab exposure did not significantly affect humoral response to seasonal influenza vaccination in patients with autoimmune blistering disease. Blauvelt et al found that patients with moderate to severe atopic dermatitis treated with dupilumab did not have a decreased humoral response to meningococcal and tetanus/diphtheria/pertussis vaccination.

Table II. Cont’d

Drug	Type of vaccination	Adverse events	Effects on immunity	Level of evidence
Cyclosporine	Influenza: trivalent	Safe, consistently well tolerated with nonviral vaccines and live-attenuated/live vaccines.	Consistent findings describing overall negative effect on immune response with nonviral and live-attenuated/live vaccines (ie, reduced recall humoral response, reduced rates of seroconversion, in vitro cellular immune response).	A-B
	Pandemic (A/H1N1)			
	Herpes/varicella zoster			
	(LZV)			
	Yellow fever			
	PPSV23			
	HAV			
	Tetanus toxoid			
	Yellow fever			
Mycophenolate mofetil	Influenza: trivalent	Safe, generally well tolerated (few reports of mild adverse effects)	Variable effects on immune response described in the literature. Most studies describe reduced immunogenicity/reduced humoral response with nonviral vaccines and worse with doses >2 g/day. Some support for antibody response comparable to healthy control individuals or nonsignificantly reduced/improved response with second dose. No studies evaluating immunogenicity in live-attenuated or live vaccines.	A-B
	Pandemic (A/H1N1)			
	PPSV23			
	Tetanus toxoid			
	Yellow fever			
JAK inhibitors	Influenza (trivalent)	No reports of clinically significant adverse effects	Evidence is limited. Overall consistently preserved immunogenicity with nonviral and live-attenuated/live vaccine (ie, LZV'); sustained/long-term seroprotection may be inadequate.	B
	PPSV23			
	Tetanus toxoid			
	Herpes/varicella zoster			

HAV, Hepatitis A vaccine; LZV, live zoster vaccine; MMR, measles, mumps, rubella; PPSV, pneumococcal polysaccharide vaccine; RZV, recombinant zoster vaccine; VZV, Varicella zoster virus.

*No significant adverse effects and no reports of increased clinical or laboratory index of disease activity. No exacerbation of disease activity in a number for autoimmune/inflammatory diseases. No adverse effects in function or graft failure in solid organ transplant recipients. One case report of fatal vaccine-associated viscerotropic disease.

†In a cohort of patients vaccinated 2 to 3 weeks before starting tofacitinib treatment.

‡Diminished humoral response to tetanus toxoid vaccine at week 12 and only 60% mounting 4-fold response to tetanus toxoid vaccine in patients with psoriasis on JAK inhibitors.
Drug	Type of vaccination	Adverse events	Effects on immunity	Level of evidence
Adalimumab (TNF inhibitor)	PPSV23	Safe, generally well tolerated	Variable; some studies show no significant effect on humoral response, while others show reduced humoral response.	A-B
	Influenza			
	HBV			
Certolizumab (TNF inhibitor)	PPSV23	Safe, generally well tolerated	No significant effect on humoral response	A
Etanercept (TNF inhibitor)	MMR	Safe, generally well tolerated	Variable; most studies showed no significant effect on humoral response, while some showed reduced humoral response.	A-B
	PPSV23	No increase in disease activity		
	PCV13			
	Influenza			
	HBV			
Infliximab (TNF inhibitor)	Influenza	Safe, generally well tolerated	Variable efficacy for trivalent influenza and PPSV23 vaccination. Some studies show no significant effect on humoral response, while others show reduced humoral response.	A-B
	HBV	No increase in disease activity	Adequate humoral response to yellow fever vaccination.	C*
	PPSV23			
TNF inhibitors grouped	HBV	Safe, well tolerated	No increase in disease activity	A-B
	HAV			
	HZ			
	PPSV23			
	PCV13			
	Tdap			
	Influenza			
	Pandemic (A/H1N1)			
Ustekinumab (IL-12/23 inhibitor)	Influenza	N/A	Nonimpaired immune response and efficacy of inactivated influenza vaccine. No significant effect on humoral response to PPSV23 and tetanus vaccination. Possible reduced humoral response to HBV vaccination.	A-B
	PPSV23			
	Tetanus toxoid			
	HBV			
Ixekizumab (IL-17 inhibitor)	PPSV23	Well tolerated	No significant effect to humoral response	A
	Tetanus toxoid			
Sekukinumab (IL-17 inhibitor)	Meningococcal C Conjugate	Well tolerated	No significant effect to humoral response	A-B
Rituximab (anti-CD-20)	Influenza	Well tolerated	The majority of studies found a reduced humoral response to influenza, pneumococcal, HBV, and Tdap vaccine. Possible reduced humoral response to HBV vaccination.	A-B
	PPSV23	Well tolerated	No significant effect to humoral response	C*
	PCV13	No increase in disease activity	Vaccination possibly associated with significantly lower HZ incidence 2 years after vaccination.	
	PCV7			
	Tdap			
	Yellow fever			
	HBV			
	HZ			
SARS-CoV-2 candidate vaccines and immunotherapeutics: estimating risk and response

It is not possible to determine the true risk associated with any potential SARS-CoV-2 vaccine until it has gone through all phases of clinical trials and real-world evidence has been gathered from a widely distributed and adopted vaccination program. Nonetheless, we are able to estimate risk from the limited trial data for the SARS-CoV-2 vaccines and from a review of the literature for patients on immunotherapeutics and established vaccines (Fig 1). Considering the immunologic basis of the SARS-CoV-2 vaccine platforms in late-stage development, the estimated risk to patients on immunotherapies is low. From the review of the literature, patients on biologics have no abnormal immune responses leading to detrimental outcomes (Table III). The safety of a potential SARS-CoV-2 vaccine can be estimated based on the mechanism of action of the biologic or on inferences from the limited data on other biologics. For instance, there are no safety or efficacy data for vaccination of patients on anti-IL-23 biologics, but we can infer the safety profile from vaccination of patients on anti-IL-17 biologics and anti-IL-12/23 biologics. Omalizumab, which blocks immunoglobulin E, is also regarded as safe based on the mechanism of action. For the systemic immunotherapeutics, systemic corticosteroids, methotrexate, and JAK inhibitors appear to have the highest risk of reduced antibody production. However, it should be noted that in previous reviews, methotrexate and JAK inhibitors were considered safe therapies during the COVID-19 pandemic and, in fact, are being studied as potential treatments for COVID-19.158,159

With regard to vaccine-generated antibody response, data generally support a possible decrease in antibody titers with the TNF-α biologics, rituximab, ustekinumab, and many of the oral immunotherapies.5 Given the possibility of decreased antibody titers to vaccination with some of these treatments, there have been suggestions for withholding immunotherapeutics at the time of vaccination to promote a better vaccine response.157 For instance, a 2-week temporary withdrawal of methotrexate after vaccination for influenza has been shown to result in higher antibody titers in patients with rheumatoid arthritis.160 It would thus be prudent to check the titers after vaccination for any patients on a immunotherapeutic because they might require a booster to establish or maintain protective antibody titers. If protective antibody titers are inadequate and skewed to a T helper type 2 phenotype, vaccine-associated enhanced

Biologic	Systemic immunotherapeutics	Safety profile	Notes					
Dupilumab (IL-4/13 inhibitor)	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
MPSV	Safe, well tolerated	No significant effect on humoral response						
Tdap	Safe, well tolerated	No significant effect on humoral response						
MMR 151	Safe, well tolerated	No significant effect on humoral response						
Influenza	Safe, well tolerated	No significant effect on humoral response						
IVIG	Safe, well tolerated	No significant effect on humoral response						
MMR	Safe, well tolerated	No significant effect on humoral response						
Immunotherapeutics	Inactivated virus	Live, attenuated virus	Protein subunit	Virus-like particles	Nonreplicating viral vectors	Replicating viral vectors	RNA	DNA
--------------------	------------------	----------------------	----------------	---------------------	-----------------------------	---------------------------	-----	-----
Apremilast*	Likely ++	Likely ++	Likely ++	Likely ++	Likely ++	Likely ++	Likely ++	Likely ++
Azathioprine	+/-	++	+/-	++	+++	+++	+++	+++
Cyclosporine	+/-	++	+/-	++	+++	+++	+++	+++
Methotrexate	+/-	+	+/-	++	+/+	+++	+++	+++
Mycophenolate mofetil	+/-	++	+/-	++	+++	+++	+++	+++
Thalidomide	Likely +	Likely +	Likely +	Likely +	Likely +	Likely +	Likely +	Likely +
JAK inhibitors	+/-	+	+/-	++	+++	+++	+++	+++
Systemic corticosteroids	+/-	+	+/-	++	+++	+++	+++	+++
Anti–TNF (adalimumab, certolizumab, etanercept)	+/-	+	+/-	++	+++	+++	+++	+++
Anti–IL-17 (brodalhumab, ixekizumab, secukinumab)	Likely ++							
Anti–IL-12/23 (ustekinumab)	+/-	+	+/-	++	+++	+++	+++	+++
Anti–IL-23 (guselkumab, risankizumab, tildrakizumab)	Likely ++							
Rituximab (anti-CD20)	+/-	+	+/-	++	+++	+++	+++	+++
Anakinra (IL-1 inhibitor)	Likely ++							
Dupilumab (IL-4/13 inhibitor)	Likely ++							
Omalizumab	Likely ++							
IVIg	Likely ++							

IL, interleukin; IVIG, intravenous immunoglobulin; TNF, tumor necrosis factor.

Legend: ++, good antibody levels; +, fair antibody levels with some reports of decreased antibody levels; +/-, variable antibody levels.

Fig 1. Summary of the safety and efficacy for potential SARS-CoV-2 vaccines for patients on immunotherapeutics. *Insufficient data. There were no studies evaluating the safety and/or efficacy of vaccination in patients receiving thalidomide, apremilast, IVIg, or the following biologics: brodalumab, anakinra, omalizumab, guselkumab, risankizumab, or tildrakizumab. Data on apremilast has been addressed in the literature on the basis of expert opinion only.
respiratory disease (VAERD) can develop.161 VAERD is a condition in which vaccination makes subsequent infections with the same virus worse. VAERD has been noted with vaccines to respiratory syncytial virus162 and measles,163 as well as vaccination in animal models of Middle East respiratory syndrome coronavirus (MERS-CoV).164 Based on the data from the current SARS-CoV-2 vaccines, the risk of VAERD appears to be low in the absence of immune modulatory therapy,22-24,165 but the possibility of T helper type 2 deviation may need to be considered. Otherwise, general considerations of vaccine safety need to be considered, such as allergic or anaphylactic reactions and exuberant inflammatory responses with fever and systemic symptoms. The benefit-to-risk ratio for vaccinating patients for SARS-CoV-2 is ultimately a discussion that needs to involve informed clinicians and patients.

Study limitations

This article provides an overview of current evidence on the administration of existing approved vaccines in patients receiving immunotherapy. Consequently, information is subject to process bias secondary to the methodology of the review. Existing evidence is frequently of low/limited quality with a lack of control groups, insufficient sample size and therefore limited power, and/or inconsistent findings. There is a paucity of data pertaining to vaccination in patient populations on immunosuppressive and immunomodulatory therapies, especially patients with dermatologic disease. Moreover, there is variability of underlying disease or treatment in study populations, which reflects the current diversity of immunosuppressive and immunomodulatory medications and the range of combinations in treatment regimens.

RECOMMENDATIONS AND CONCLUSIONS

The data reviewed in this article support the safety and potential efficacy of SARS-CoV-2 vaccines for our dermatology patients on immunotherapies (Box 1). The SARS-CoV-2 vaccines currently approved (Moderna/NIAID mRNA-1273, Pfizer/BioNTech/ Fosun Pharma BNT162) and most likely to be approved (Astra-Zeneca/University of Oxford ChAdOx1/AZD1222, Johnson & Johnson JNJ-78436735, Novavax NVX-CoV2373) in North America are vaccine platforms (ie, RNA, protein subunit, and nonreplicating viral vectors) that are expected to be safe for patients on immunotherapeutics. The anticipated efficacy is variable in the setting of systemic immunotherapies. Although most biologics are associated with good (anti-IL-17, anti-IL-4/13) to fair (anti-TNF, anti-IL-12/23) antibody response to all vaccine subtypes, there is paucity in data for a number of agents. The current Infectious Diseases Society of America “Clinical Practice Guideline for Vaccination of the Immunocompromised Host” remains appropriate when considering future administration of a SARS-CoV-2 vaccine,14 although additional vaccinations and monitoring antibody titers can be considered.

We would like to acknowledge the help of Dr Manish Sadarangani, director, Vaccine Evaluation Center, BC Children’s Hospital, Sauder Family Chair in Pediatric Infectious Diseases, University of British Columbia. He reviewed the manuscript and provided helpful comments and suggestions.
Conflicts of interest
None disclosed.

REFERENCES
1. Huber F, Ehrensperger B, Hatz C, Chappuis F, Bühler S, Eperon G. Safety of live vaccines on immunosuppressive or immunomodulatory therapy—a retrospective study in three Swiss travel clinics. J Travel Med. 2018;25(1):1-8.
2. McKinnon JE, Maksimowicz-McKinnon K. Autoimmune disease and vaccination: impact on infectious disease prevention and a look at future applications. Transl. Res. 2016;167(1):46-60.
3. Papp KA, Harauzi B, Kumar D, et al. Vaccination guidelines for patients with immune-mediated disorders on immunosuppressive therapies. J Cutan Med Surg. 2020;12:1115-1119.
4. Jessica Chang TY, Pope JE. How COVID-19 affects patients receiving anticytokine and JAK inhibitors in rheumatology therapy? J Rheumatol. 2020;57(9):839-846.
5. Robinson JK, Dellavalle RP, Bigby M, Callen JP. Systematic review of herpes zoster incidence and consensus recommendations on vaccination in adult patients on systemic therapy for psoriasis or psoriatic arthritis: from the Medical Board of the National Psoriasis Foundation. J Am Acad Dermatol. 2019;81(1):102-110.
6. Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol. 2010;17(7):1055-1065.
7. Croce E, Hatz C, Jonker EF, Visser LG, Jaeger VK, Bühler S. Safety of live vaccinations on immunosuppressive therapy in patients with immune-mediated inflammatory diseases, solid organ transplantation or after bone-marrow transplantation—a systematic review of randomized trials, observational studies and case reports. Vaccine. 2017;35(9):1216-1226.
8. Amanna U, Messaoudi I, Slifka MK. Protective immunity following vaccination: how is it defined? Hum Vaccin. 2008;4(4):316-319.
9. Chalmers A, Scheifele D, Patterson C, et al. Immunization of patients with rheumatoid arthritis against influenza: a study of vaccine safety and immunogenicity. J Rheumatol. 1994;21(7):1203-1206.
10. Crowe SR, Merrill JT, Vista ES, et al. Influenza vaccine responses in human systemic lupus erythematosus: impact of clinical and demographic features. Arthritis Rheum. 2011;63(8):2396-2406.
11. Del Porto F, Lagana B, Biselli R, et al. Influenza vaccine administration in patients with systemic lupus erythematosus and rheumatoid arthritis. Safety and immunogenicity. Vaccine. 2006;24(16):3217-3223.
12. Herron A, Dettleff G, Hixon B, et al. Influenza Vaccination in patients with rheumatic diseases. Safety and efficacy. JAMA. 1979;242(1):53-56.
13. Holvast A, Stegeman CA, Benne CA, et al. Wegener’s granulomatosis patients show an adequate antibody response to influenza vaccination. Ann Rheum Dis. 2009;68(6):873-878.
14. Louie JS, Nies KM, Shoji KT, et al. Clinical and antibody responses after influenza immunization in systemic lupus erythematosus. Ann Intern Med. 1978;88(6):790-792.
15. Williams GW, Steinberg AD, Reinertsen JL, Klassen LW, Decker JL, Dolin R. Influenza immunization in systemic lupus erythematosus. A double-blind trial. Ann Intern Med. 1978;88(6):729-734.
16. Fischer L, Gerstel PF, Poncet A, et al. Pneumococcal polysaccharide vaccination in adults undergoing immunosuppressive treatment for inflammatory diseases—a longitudinal study. Arthritis Res Ther. 2015;17(1):1-151.
17. Ullrich T, Leroy S, Dubrel M, Danon S, Bensman A. High serological response to pneumococcal vaccine in nephrotic children at disease onset on high-dose prednisone. Pediatr Nephrol. 2008;23(7):1107-1113.
18. Sempere L, Almanta I, Barrenengoa J, et al. Factors predicting response to hepatitis B vaccination in patients with inflammatory bowel disease. Vaccine. 2013;31(30):3065-3071.
with systemic lupus erythematosus: a case-control study. *Ann Rheum Dis.* 2013;72(5):659-664.

39. Cheetham TC, Marcy SM, Tseng HF, et al. Risk of herpes zoster and disseminated varicella zoster in patients taking immunosuppressant drugs at the time of zoster vaccination. *Mayo Clin Proc.* 2015;90(7):865-873.

40. Russell AF, Parrino J, Fisher CL Jr, et al. Safety, tolerability, and immunogenicity of zoster vaccine in subjects on chronic/maintenance corticosteroids. *Vaccine.* 2015;33(27):3129-3134.

41. Kernéis S, Launay O, Ancelle T, et al. Safety and immunogenicity of yellow fever 17D vaccine in adults receiving systemic corticosteroid therapy: an observational cohort study. *Arthritis Care Res (Hoboken).* 2013;65(9):1522-1528.

42. Park JK, Lee YJ, Shin K, et al. Impact of temporary methotrexate discontinuation for 2 weeks on immunogenicity of seasonal influenza vaccination in patients with rheumatoid arthritis: a randomised clinical trial. *Ann Rheum Dis.* 2018;77(6):890-904.

43. Mori S, Ueki Y, Akeda Y, et al. Pneumococcal polysaccharide vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients. *J Infect.* 2016;72(6):713-722.

44. Wieten RW, Jonker EF, Pieren DK, et al. Comparison of the PRNT and an immune fluorescence assay in yellow fever vaccinees receiving immunosuppressive medication. *Vaccine.* 2016;34(10):1247-1251.

45. Wieten RW, Goorhuis A, Jonker EFF, et al. 17D yellow fever vaccine elicits comparable long-term immune responses in patients treated with methotrexate: a case report. *Acta Dermato-Venereol Alp Pannonica Adriat.* 2014;23(3):63-64.

46. Whitembury A, Ramírez G, Hernández H, et al. Viscerotropic disease following yellow fever vaccination in Peru. *Vaccine.* 2009;27(43):5974-5981.

47. Winthrop KL, Yamanaka H, Valdez H, et al. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. *Arthritis Rheumatol.* 2016;66(10):2675-2684.

48. Holvast A, Huckriede A, Wilschut J, et al. Safety and efficacy of influenza vaccination in systemic lupus erythematosus patients with quiescent disease. *Ann Rheum Dis.* 2006;65(7):913-918.

49. Keshkar-Jahromi M, Argani H, Rahnavardi M, et al. Antibody response to influenza immunization in kidney transplant recipients receiving either azathioprine or mycophenolate: a controlled trial. *Am J Nephrol.* 2008;28(4):654-660.

50. Salles MJ, Sens YA, Boas LS, Machado CM. Influenza virus vaccination in kidney transplant recipients: serum antibody response to different immunosuppressive drugs. *Clin Transplant.* 2010;24(1):E17-E23.

51. Azevedo LS, Gerhard J, Miraglia JL, et al. Seroconversion of 2009 pandemic influenza A (H1N1) vaccination in kidney transplant patients and the influence of different risk factors. *Transpl Infect Dis.* 2013;15(6):612-618.

52. Versluis DJ, Beyer WE, Masurel N, Wenting GJ, Weimar W. Impairment of the immune response to influenza vaccination in renal transplant recipients by cyclosporine, but not azathioprine. *Transplantation.* 1986;42(4):376-379.

53. Dotan I, Werner L, Vigodman S, et al. Normal response to vaccines in inflammatory bowel disease patients treated with thiopurines. *Inflamm Bowel Dis.* 2012;18(2):261-268.

54. Wasan SK, Zullow S, Berg A, Cheifetz AS, Ganley-Leal L, Farraye FA. Herpes zoster vaccine response in inflammatory bowel disease patients on low-dose immunosuppression. *Inflamm Bowel Dis.* 2016;22(6):1391-1396.

55. Winthrop KL, Baddley JW, Chen L, et al. Association between the initiation of anti-tumor necrosis factor therapy and the risk of herpes zoster. *JAMA.* 2013;309(23):2449-2456.

56. Guthridge JM, Cogman A, Merrill JT, et al. Herpes zoster vaccine in patients with quiescent disease. *Ann Rheum Dis.* 2007;66(10):1384-1387.

57. Uziel Y, Moshe V, Onozo B, et al. Live attenuated MMR/V booster vaccines in children with rheumatic diseases on immunosuppressive therapy: results of a multicenter, retrospective data collection. *Vaccine.* 2020;38(9):2198-2201.

58. Grooth S, Pileggi G, Sandovol CB, et al. Varicella vaccination elicits a humoral and cellular response in children with rheumatic diseases using immune suppressive treatment. *Vaccine.* 2017;35(21):2818-2822.

59. El-Darouti MA, Hegazy RA, Abdel Hay RM, Abdel Halim DM. Live attenuated varicella vaccine: a new effective adjuvant weapon in the battlefield against severe resistant psoriasis, a pilot randomized controlled trial. *J Am Acad Dermatol.* 2012;66(3):511-513.

60. El-Darouti MA, Hegazy RA, Abdel Hay RM, Rashed LA. Study of T helper (17) and T regulatory cells in psoriatic patients receiving live attenuated varicella vaccine therapy in a randomized controlled trial. *Eur J Dermatol.* 2014;24(4):464-469.

61. Wieten RW, Jonker EF, Pieren DK, et al. Comparison of the PRNT and an immune fluorescence assay in yellow fever vaccinees receiving immunosuppressive medication. *Vaccine.* 2016;34(10):1247-1251.

62. Wieten RW, Goorhuis A, Jonker EFF, et al. 17D yellow fever vaccine therapy with everolimus preserves humoral immune responses. *Kidney Int.* 2010;78(9):934-940.
73. Adler S, Krivine A, Weix J, et al. Protective effect of A/H1N1 vaccination in immune-mediated disease—a prospectively controlled vaccination study. *Rheumatology (Oxford).* 2012; 51(4):695-700.

74. Borte S, Liebert UG, Borte M, Sack U. Efficacy of measles, mumps and rubella revaccination in children with juvenile idiopathic arthritis treated with methotrexate and etanercept. *Rheumatology (Oxford).* 2009;48(2):144-148.

75. Elkayam O, Amir S, Mendelson E, et al. Efficacy and safety of vaccination against pandemic 2009 influenza A (H1N1) virus among patients with rheumatic diseases. *Arthritis Care Res (Hoboken).* 2011;63(7):1062-1067.

76. Fomin I, Caspi D, Levy V, et al. Vaccination against influenza in rheumatoid arthritis: the effect of disease modifying drugs, including TNF alpha blockers. *Ann Rheum Dis.* 2006;65(2):191-194.

77. França IL, Ribeiro AC, Aikawa NE, et al. TNF blockers show distinct patterns of immune response to the pandemic influenza A H1N1 vaccine in inflammatory arthritis patients. *Rheumatology (Oxford).* 2012;51(11):2091-2098.

78. Iwamoto M, Homma S, Onishi S, et al. Low level of seroconversion after a novel influenza A/H1N1/2009 vaccination in Japanese patients with rheumatoid arthritis in the 2009 season. *Rheumatol Int.* 2012;32(11):3691-3694.

79. Kapetanovic MC, Saxne T, Nilsson JA, Geborek P. Influenza vaccination as model for testing immune modulation induced by anti-TNF and methotrexate therapy in rheumatoid arthritis patients. *Rheumatology (Oxford).* 2007;46(4):608-611.

80. Kobie JJ, Zheng B, Bryk P, et al. Decreased influenza-specific B cell responses in rheumatoid arthritis patients treated with anti-tumor necrosis factor. *Arthritis Res Ther.* 2011;13(6):R209.

81. Mori S, Ueki Y, Hirakata N, Orie M, Hidaka T, Oishi K. Impact of tocilizumab therapy on antibody response to influenza vaccine in patients with rheumatoid arthritis. *Ann Rheum Dis.* 2012;71(12):2066-2010.

82. Pasoto SG, Ribeiro AC, Viana VS, et al. Short and long-term effects of pandemic unadjuvanted influenza A(H1N1)pdm09 vaccine on clinical manifestations and autoantibody profile in primary Sjögren’s syndrome. *Vaccine.* 2013;31(14):1793-1798.

83. Ribeiro AC, Guedes LX, Moraes JC, et al. Reduced seroprotection after pandemic H1N1 influenza adjuvant-free vaccination in patients with rheumatoid arthritis: implications for clinical practice. *Ann Rheum Dis.* 2011;70(12):2144-2147.

84. Gabay C, Bel M, Combscure C, et al. Impact of synthetic and biologic disease-modifying antirheumatic drugs on antibody responses to the AS03-adjuvanted pandemic influenza vaccine: a prospective, open-label, parallel-cohort, single-center study. *Arthritis Rheum.* 2011;63(6):1486-1496.

85. Pileggi GS, de Souza CB, Ferriani VP. Safety and immunogenicity of varicella vaccine in patients with juvenile rheumatic diseases receiving methotrexate and corticosteroids. *Arthritis Care Res (Hoboken).* 2010;62(7):1034-1039.

86. Rosdahl A, Herzog C, Frösner G, Noren T, Romlo L, Askling HH. An extra priming dose of hepatitis A vaccine to adult patients with rheumatoid arthritis and drug induced immunosuppression—a prospective, open-label, multicenter study. *Trav Med Infect Dis.* 2018;21:43-50.

87. Baluch A, Humar A, Eichich D, et al. Randomized controlled trial of high-dose intraderal versus standard-dose intra-muscular influenza vaccine in organ transplant recipients. *Am J Transplant.* 2013;13(4):1026-1033.

88. Siegrist CA, Ambrosiani J, Bel M, et al. Responses of solid organ transplant recipients to the AS03-adjuvanted pandemic influenza vaccine. *Antivir Ther.* 2012;17(5):893-903.

89. Winthrop KL, Bingham CO 3rd, Komocar WJ, et al. Evaluation of pneumococcal and tetanus vaccine responses in patients with rheumatoid arthritis receiving baricitinib: results from a long-term extension trial substudy. *Arthritis Res Ther.* 2019; 21(1):102.

90. Measles pneumonitis following measles-mumps-rubella vaccination of a patient with HIV infection, 1993. *MMWR Morb Mortal Wkly Rep.* 1996;45(28):603-606.

91. Calabrese LH, Abud-Mendoza C, Lindsey SM, et al. Live zoster vaccine in patients with rheumatoid arthritis treated with tocitakinib with or without methotrexate, or adalimumab with methotrexate: a post hoc analysis of data from a phase IIIb/IV randomized study. *Arthritis Care Res.* 2020;72(3):353-359.

92. Satyam VR, Li PH, Reich J, et al. Safety of recombinant zoster vaccine in patients with inflammatory bowel disease. *Dig Dis Sci.* 2020;65:2986-2991.

93. Winthrop KL, Wouters AG, Choy EH, et al. The safety and immunogenicity of live zoster vaccination in patients with rheumatoid arthritis before starting tocitakinib: a randomized phase II trial. *Arthritis Rheumatol.* 2017;69(10):1969-1977.

94. Winthrop KL, Korman N, Abramovits W, et al. T-cell-mediated immune response to pneumococcal conjugate vaccine (PCV-13) and tetanus toxoid vaccine in patients with moderate-to-severe psoriasis during tocitakinib treatment. *J Am Acad Dermatol.* 2018;78(6):1149-1155.e1.

95. Winthrop KL, Silverfield J, Racewicz A, et al. The effect of tocitakinib on pneumococcal and influenza vaccine responses in rheumatoid arthritis. *Ann Rheum Dis.* 2016;75(4):687-695.

96. Aikawa NE, França IL, Ribeiro AC, Sallum AM, Bonfa E, Silva CA. Short and long-term immunogenicity and safety following the 23-valent polysaccharide pneumococcal vaccine in juvenile idiopathic arthritis patients under conventional DMARDs with or without anti-TNF therapy. *Vaccine.* 2015;33(5):604-609.

97. Andrade P, Santos-Antunes J, Rodrigues S, Lopes S, Macedo G. Treatment with infliximab or azathioprine negatively impact the efficacy of hepatitis B vaccine in inflammatory bowel disease patients. *J Gastroenterol Hepatol.* 2015; 30(11):1591-1595.

98. Arad U, Tzadok S, Amir S, et al. The cellular immune response to influenza vaccination is preserved in rheumatoid arthritis patients treated with rituximab. *Vaccine.* 2011;29(8):1643-1648.

99. Askling HH, Rombo L, van Vollenhoven R, et al. Hepatitis A vaccine for immunosuppressed patients with rheumatoid arthritis: a prospective, open-label, multi-centre study. *Travel Med Infect Dis.* 2014;12(2):134-142.

100. Belle A, Baumann C, Bigard MA, et al. Impact of immunosuppressive therapy on hepatitis B vaccination in inflammatory bowel diseases. *Eur J Gastroenterol Hepatol.* 2015;27(8):877-881.

101. Bingham CO 3rd, Looney RJ, Deodhar A, et al. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. *Arthritis Rheum.* 2010;62(1):64-74.

102. Bühler S, Jaeger VK, Adler S, et al. Safety and immunogenicity of tetanus/diphtheria vaccination in patients with rheumatic diseases—a prospective multi-centre cohort study. *Rheumato-logy (Oxford).* 2019;58(9):1585-1596.

103. Cao Y, Zhao D, Xu AT, Shen J, Ran ZH. Effects of immunosuppressants on immune response to vaccine in inflammatory bowel disease. *Chin Med J (Engl).* 2015;128(6):835-838.

104. Cho A, Bradley B, Kauffman R, et al. Robust memory responses to influenza vaccination as model for testing immune modulation induced by anti-TNF therapy in rheumatoid arthritis. *Arthritis Care Res (Hoboken).* 2012;64(10):2591-2600.
106. Dell’Era L, Esposito S, Corona F, Principi N. Vaccination of children and adolescents with rheumatic diseases. Rheumatology (Oxford). 2011;50(8):1358-1365.

107. Dezfoli S, Horton HA, Thepaysawun N, et al. Combined immunosuppression impairs immunogenicity to tetanus and pertussis vaccination among patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(8):1754-1760.

108. Eisenberg RA, Jawad AF, Boyer J, et al. Rituximab-treated patients have a poor response to influenza vaccination. J Clin Immunol. 2013;33(2):388-396.

109. Elkayam O, Bashkin A, Mandelboim M, et al. The effect of infliximab and timing of vaccination on the humoral response to influenza vaccination in patients with rheumatoid arthritis and ankylosing spondylitis. Semin Arthritis Rheum. 2010;39(6):442-447.

110. Fiorino G, Peyrin-Biroulet L, Naccarato P, et al. Effects of immunosuppression on immune response to pneumococcal vaccine in inflammatory bowel disease: a prospective study. Inflamm Bowel Dis. 2012;18(6):1042-1047.

111. Gelinck LB, van der Bijl AE, Visser LG, et al. Synergistic immunosuppressive effect of anti-TNF combined with methotrexate on antibody responses to the 23 valent pneumococcal polysaccharide vaccine. Vaccine. 2008;26(27-28):3528-3533.

112. Gorelik M, Elizalde A, Wong Williams K, Gonzalez E, Cole JL. Infliximab and/or immunosuppressants inhibit immune responses to trivalent influenza vaccination in adults with inflammatory bowel disease. J Crohn's Colitis. 2014;8(3):223-233.

113. Hagihara Y, Ohfuji S, Watanabe K, et al. Infliximab and/or immunomodulators impair antibody responses to the 23-valent pneumococcal polysaccharide vaccine. Vaccine. 2015;34(2):272-279.

114. Kantsø B, Halkjær SI, Thomsen O, et al. Immunosuppressive effect of anti-TNF combined with methotrexate on antibody responses to the 23 valent pneumococcal polysaccharide vaccine. Vaccine. 2008;26(27-28):3528-3533.

115. H Prince SD, Martin RW, et al. Vaccination of patients with rheumatoid arthritis treated with certolizumab pegol: results from a single-blind randomized phase IV trial. J Rheumatol. 2014;41(4):648-657.

116. Lee CK, Kim HS, Ye BD, et al. Patients with Crohn's disease on anti-tumor necrosis factor therapy are at significant risk of inadequate response to the 23-valent pneumococcal polysaccharide vaccine. J Crohn's Colitis. 2014;48(5):384-391.

117. Lee CK, Kim HS, Ye BD, et al. Patients with Crohn's disease on anti-tumor necrosis factor therapy are at significant risk of inadequate response to the 23-valent pneumococcal polysaccharide vaccine. J Crohn's Colitis. 2014;48(5):384-391.

118. Lakota K, Perdan-Pirkmajer K, Sodin-Semr S, et al. The immunogenicity of seasonal and pandemic influenza vaccines in autoimmune inflammatory rheumatic patients—a 6-month follow-up prospective study. Clin Rheumatol. 2019;38(5):1277-1292.

119. Lakota K, Perdan-Pirkmajer K, Sodin-Semr S, et al. The immunogenicity of seasonal and pandemic influenza vaccine in autoimmune inflammatory rheumatic patients—a 6-month follow-up prospective study. Clin Rheumatol. 2019;38(5):1277-1292.

120. Lee CK, Kim HS, Ye BD, et al. Patients with Crohn's disease on anti-tumor necrosis factor therapy are at significant risk of inadequate response to the 23-valent pneumococcal polysaccharide vaccine. J Crohn's Colitis. 2014;48(5):384-391.

121. Lee CK, Kim HS, Ye BD, et al. Patients with Crohn's disease on anti-tumor necrosis factor therapy are at significant risk of inadequate response to the 23-valent pneumococcal polysaccharide vaccine. J Crohn's Colitis. 2014;48(5):384-391.

122. Lee CK, Kim HS, Ye BD, et al. Patients with Crohn's disease on anti-tumor necrosis factor therapy are at significant risk of inadequate response to the 23-valent pneumococcal polysaccharide vaccine. J Crohn's Colitis. 2014;48(5):384-391.

123. Lee CK, Kim HS, Ye BD, et al. Patients with Crohn's disease on anti-tumor necrosis factor therapy are at significant risk of inadequate response to the 23-valent pneumococcal polysaccharide vaccine. J Crohn's Colitis. 2014;48(5):384-391.
137. Salemi S, Picchianti-Diamanti A, Germano V, et al. Influenza vaccine administration in rheumatoid arthritis patients under treatment with TNFα blockers: safety and immunogenicity. Clin Immunol. 2010;134(2):113-120.

138. Salinas GF, De Rycke L, Barendregt B, et al. Anti-TNF treatment blocks the induction of T cell-dependent humoral responses. Ann Rheum Dis. 2013;72(6):1037-1043.

139. Scheinberg M, Guedes-Barbosa LS, Mangeurea C, et al. Yellow fever vaccination during infliximab therapy. Arthritis Care Res (Hoboken). 2010;62(6):896-898.

140. Shirai S, Hara M, Sakata Y, et al. Immunogenicity of quadrivalent influenza vaccine for patients with inflammatory bowel disease undergoing immunosuppressive therapy. Inflamm Bowel Dis. 2018;24(5):1082-1091.

141. van Aalst M, Löttsch F, Spijker R, et al. Incidence of invasive pneumococcal disease in immunocompromised patients: a systematic review and meta-analysis. Travel Med Infect Dis. 2018;24:89-100.

142. van Assen S, Holvast A, Benne CA, et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum. 2010;62(1):75-81.

143. Visvanathan S, Keenan GF, Baker DG, Levinson AI, Wagner CL. Response to pneumococcal vaccine in patients with early rheumatoid arthritis receiving infliximab plus methotrexate or methotrexate alone. J Rheumatol. 2007;34(5):952-957.

144. Westra J, van Assen S, Wilting KR, et al. Rituximab impairs immunoglobulin (Ig)M and IgG (subclass) responses after influenza vaccination in rheumatoid arthritis patients. Clin Exp Immunol. 2014;178(1):40-47.

145. Zhang J, Xie F, Delzell E, et al. Association between treatment with TNFα blockers: safety and immunogenicity of pneumococcal vaccination: a systematic review and meta-analysis. Vaccine. 2018;36(39):5832-5845.

146. Gomez EV, Bishop JL, Jackson K, Muram TM, Phillips D. Response to tetanus and pneumococcal vaccination following administration of ixekizumab in healthy participants. BioDrugs. 2017;31(6):545-554.

147. Chioato A, Noseda E, Stevens M, Gaitatzis N, Klein schmidt A, Picaud H. Treatment with the interleukin-17A-blocking antibody secukinumab does not interfere with the efficacy of influenza and meningococcal vaccinations in healthy subjects: results of an open-label, parallel-group, randomized single-center study. Clin Vaccine Immunol. 2012;19(10):1597-1602.

148. Furur V, Zisman D, Kaufman I, et al. Immunogenicity and safety of vaccination against seasonal influenza vaccine in patients with psoriatic arthritis treated with secukinumab. Vaccine. 2020;38(4):847-851.

149. Tacke CE, Smits GP, van der Klis FR, Kuipers IM, Zaaijer HL, Kuijpers TW. Reduced serologic response to mumps, measles, and rubella vaccination in patients treated with intravenous immunoglobulin for Kawasaki disease. J Allergy Clin Immunol. 2013;131(6):1701-1703.

150. Tamez RL, Tan WV, O’Malley JT, et al. Influenza B virus infection and Stevens-Johnson syndrome. Pediatr Dermatol. 2018;35(1):e45-e48.

151. Blauvelt A, Simpson EL, Tyng SK, et al. Dupilumab does not affect correlates of vaccine-induced immunity: a randomized, placebo-controlled trial in adults with moderate-to-severe atopic dermatitis. J Am Acad Dermatol. 2019;80(1):158-167.

152. Kubota T, Nii T, Nanki T, et al. Anti-tumor necrosis factor therapy does not diminish the immune response to influenza vaccine in Japanese patients with rheumatoid arthritis. Mod Rheumatol. 2007;17(6):531-533.

153. Brodmerkel C, Zhu Y, Jiao Q, et al. Effects of ustekinumab administration on primate/human antigen-recall and humor al immune response functions. J Drugs Dermatol. 2010;9(6):677-683.

154. Doornenkamp L, Goetgebuer RL, Schmitz KS, et al. High immunogenicity to influenza vaccination in Crohn’s disease patients treated with ustekinumab. Vaccines (Basel). 2020;8(3):455.

155. Cnkic Kapetanovic M, Saxne T, Jönsson G, Truedsson L, Geborek P. Rituximab and abatacept but not tocilizumab impair antibody response to pneumococcal conjugate vaccine in patients with rheumatoid arthritis. Arthritis Res Ther. 2013;15(5):R171.

156. Ghazawi FM, Lim M, Dust JP, Kirchhof MG. Infection risk of dermatologic therapeutics during the COVID-19 pandemic: an evidence-based recalibration. Int J Dermatol. 2020;59:1043-1056.

157. Zahedi Niaki O, Anadkat MJ, Chen ST, et al. Navigating immunosuppression in a pandemic: a guide for the dermatologist from the COVID Task Force of the Medical Dermatology Society and Society of Dermatology Hospitalists. J Am Acad Dermatol. 2020;83:1150-1159.

158. Park JK, Choi Y, Winthrop KL, Song YW, Lee EB. Optimal time between the last methotrexate administration and seasonal influenza vaccination in rheumatoid arthritis: post hoc analysis of a randomised clinical trial. Ann Rheum Dis. 2019;78(9):1283-1284.

159. Polack FP. Atypical measles and enhanced respiratory syncytial virus disease (ERSD) made simple. Pediatr Res. 2007;62(1):111-115.

160. Kim HW, Canchola JG, Brandt CD, et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969;89(4):422-434.

161. Fulginiti VA, Eller JJ, Downie AW, Kempe CH. Altered reactivity to measles virus. Atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA. 1967;202(12):1075-1080.

162. Scokey T, Yount BL, Sims AC, et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2013;110(40):16157-16162.

163. Xia S, Duan K, Zhang Y, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA. 2020;324(10):951-960.