REFLECTION GROUPS ACTING ON THEIR HYPERPLANES

IVAN MARIN

Institut de Mathématiques de Jussieu
Université Paris 7
175 rue du Chevaleret
F-75013 Paris

Abstract. After having established elementary results on the relationship between a finite complex (pseudo-)reflection group $W \subset \text{GL}(V)$ and its reflection arrangement \mathcal{A}, we prove that the action of W on \mathcal{A} is canonically related with other natural representations of W, through a ‘periodic’ family of representations of its braid group. We also prove that, when W is irreducible, then the squares of defining linear forms for \mathcal{A} span the quadratic forms on V, which imply $|\mathcal{A}| \geq n(n+1)/2$ for $n = \dim V$, and relate the W-equivariance of the corresponding map with the period of our family.

Keywords. Reflection arrangements, reflection groups, quadratic forms.

MSC 2000. 20F55, 20C15, 52C35, 15A63.

1. Introduction

Let V be finite-dimensional \mathbb{C}-vector space, $W \subset \text{GL}(V)$ be a finite (pseudo-)reflection group with corresponding hyperplane arrangement \mathcal{A}. We assume that \mathcal{A} is essential, meaning that $\bigcap \mathcal{A} = \{0\}$ and denote $n = \dim V$ the rank of W. We recall that an arrangement \mathcal{A} is called irreducible if it cannot be written as $\mathcal{A}_1 \times \mathcal{A}_2$, and that W is called irreducible if it acts irreducibly on V. A basic result can be written as follows

(0) \mathcal{A} is irreducible iff W is irreducible.

Steinberg showed that the exterior powers of V are irreducible. His proof is based on the encryption of irreducibility in the connectedness of certain graphs. From this approach, the following is easily deduced

(1) If W is irreducible, then it contains an irreducible parabolic subgroup.

Although this result is probably well-known to experts and easily checked, it does not seem to appear in print, and is a key tool for the sequel.

We then consider the permutation W-module $\mathbb{C}\mathcal{A}$. A choice of linear maps $\alpha_H \in V^*$ with kernel $H \in \mathcal{A}$ defines a linear map $\Phi : \mathbb{C}\mathcal{A} \rightarrow S^2V^*$ through $\alpha_H \mapsto \alpha_H^2$. This map can be chosen to be a morphism of W-modules when W is a Coxeter group. We prove

Date: August 31st, 2008.
2. IVAN MARIN

(2) Φ is onto iff W is irreducible

meaning that each quadratic form on V is a linear combination of the quadratic forms α^2_H, as soon as W is irreducible. As a corollary, we get

(3) The cardinality of A is at least $n(n + 1)/2$.

This lower bound is better than the usual $|A| \geq n/2$ of [OT], cor. 6.98, and is sharp, as $|A| = n(n + 1)/2$ when W is a Coxeter group of type A_n.

We denote d_H the order of the (cyclic) fixer in W of $H \in A$, and define the distinguished reflection $s \in W$ to be the reflection in W with $H = \text{Ker}(s - 1)$ and additional eigenvalue $\zeta_H = \exp(2i\pi/d_H)$. We let $d : A \to \mathbb{Z}$ denote $H \mapsto d_H$. We did not find the following in the standard textbooks:

(4) The data (A, d) determines W.

Letting B denote the braid group associated to W, we show that $\mathbb{C}A$, considered as a linear representation of B, can be deformed through a path in $\text{Hom}(B, \text{GL}(V))$ which canonically connects $\mathbb{C}A$ to other representations of W. This turns out to provide a natural generalization of the action of Weyl groups on their positive roots to arbitrary reflection groups.

Finally, we prove that this path $h \mapsto R_h$ is periodic, namely that $R_{h + \kappa(W)} \simeq R_h$ for some integer $\kappa(W)$, with $\kappa(W) = 2$ when W is a Coxeter group. Moreover, $\kappa(W) = 2$ if and only if the morphism Φ above can be chosen to be a morphism of W-modules. In particular, we get

(5) If $\kappa(W) = 2$ then the W-module $S^2 V^*$ is a quotient of $\mathbb{C}A$.

We emphasize the fact that the proofs presented here are elementary in the sense that, except for one of the last results, no use is made either of the Shephard-Todd classification of pseudo-reflection groups, nor of the invariants theory of these groups.

2. REFLECTION GROUPS AND REFLECTION ARRANGEMENTS

We recall from [OT] the following basic notions about reflection groups and hyperplane arrangements. An endomorphism $s \in \text{GL}(V)$ is called a (pseudo-)reflection if it has finite order and $\text{Ker}(s - 1)$ is an hyperplane of V. A finite subgroup W of some $\text{GL}(V)$ which is generated by reflections is called a (complex) (pseudo-)reflection group. The hyperplane arrangement associated to it is the collection A of the reflecting hyperplanes $\text{Ker}(s - 1)$ for s a reflection of W. There is a natural function $d : A \to \mathbb{Z}$, $H \mapsto d_H$ which associates to each $H \in A$ the order of the subgroup of W fixing H. We let $\zeta_H = \exp(2i\pi/d_H)$, and call a reflection s distinguished if its nontrivial eigenvalue is ζ_H, with $\text{Ker}(s - 1) = H$.

A nontrivial subgroup W_0 of W is called parabolic if it is the fixer of some linear subspace of V. By a fundamental result of Steinberg, this linear subspace lies inside some intersection of reflecting hyperplanes, and W_0 is also a reflection group in $\text{GL}(V)$.

In general, a (central) hyperplane A arrangement is a finite collection of linear hyperplanes in V. When A originates from a reflection group W, then A is called a reflection arrangement. An arrangement A is called essential if $\bigcap A = \{0\}$; for two arrangements A_1, A_2 in V_1, V_2, the arrangement A in $V = V_1 \times V_2$ is defined as $\{H \oplus V_2; H \in A_1\} \cup \{V_1 \oplus H; H \in A_2\}$; two
arrangements in V are isomorphic if they are deduced one from the other by some element of $\text{GL}(V)$; an essential arrangement \mathcal{A} is called irreducible if it is not isomorphic to some nontrivial $\mathcal{A}_1 \times \mathcal{A}_2$.

The following lemma shows that, when \mathcal{A} is a reflection arrangement, the arrangement \mathcal{A} together with the order of the reflections determines the reflection group. In particular, there is at most one reflection group with reflections of order 2 admitting a given reflection arrangement. Notice that \mathcal{A} can be assumed to be essential, as the action of W on $\bigcap \mathcal{A}$ is necessarily trivial. Although basic, this fact does not appear in standard textbooks. The proof given here has been found in common with François Digne and Jean Michel.

Proposition 2.1. Let \mathcal{A} be an essential hyperplane arrangement in V.

1. If $P \in \text{GL}(V)$ satisfies $P(H) \subset H$ for all $H \in \mathcal{A}$, then P is semisimple.
2. If \mathcal{A} is a reflection arrangement associated to a complex reflection group $W \subset \text{GL}(V)$, then (\mathcal{A}, d) determines W.

Proof. To prove (1), we choose linear forms $\alpha_H \in V^*$ with kernel $H \in \mathcal{A}$. Since \mathcal{A} is essential, V^* is generated by the α_H, hence admits a basis made out some of them. The assumption then states that the α_H are eigenvectors for $tP \in \text{GL}(V^*)$, hence tP is semisimple and so is P. Now we prove (2), assuming that $W_1, W_2 \subset \text{GL}(V)$ are two reflection groups with the same data (\mathcal{A}, d). Let $H \in \mathcal{A}$ and $s_i \in W_i$ the distinguished reflection with $\text{Ker}(s_i - 1) = H$. Then $x = s_1s_2^{-1}$ fixes H and acts by 1 on V/H, hence is unipotent. The endomorphism $x \in \text{GL}(V)$ clearly permutes the hyperplanes. Since \mathcal{A} is finite, some power of x setwise stabilizes every $H \in \mathcal{A}$, hence is semisimple by (1). Since it is also unipotent this power of x is the identity, hence $x = \text{Id}$ because x is unipotent. It follows that $s_1 = s_2$ hence $W_1 = W_2$. □

3. A consequence of Steinberg lemma

Let $W \subset \text{GL}(V)$ be a reflection group and \mathcal{A} the corresponding reflection arrangement. A basic fact is that the notions of irreducibility for W and \mathcal{A} coincide and can be checked combinatorially on some graph. After recalling a proof of this, we notice a useful consequence.

We endow V with a W-invariant hermitian scalar product. Call $v \in V$ a **root** if it is an eigenvector of a reflection $s \in V$ such that $s.v \neq v$. For L a finite set of linearly independent roots we let V_L denote the subspace of V spanned by L, and Γ_L the graph on L connecting v_1 and v_2 if and only if v_1 and v_2 are not orthogonal. Notice that, if $s \in W$ is a reflection with root $v \in V$, the following properties hold: if $v \in V_L$ then $s(V_L) \subset V_L$, because $V_L = (\mathbb{C}v) \oplus (\text{Ker}(s - 1) \cap V_L)$; if $v \in V_L^\perp$ then $V_L \subset (\mathbb{C}v)^\perp$ is pointwise stabilized by s.

The following proposition is basic. We provide a proof of $(1) \iff (2)$ for the convenience of the reader, because of a lack of reference. $(1) \iff (3)$ is due to Steinberg.

Proposition 3.1. The following are equivalent, for an essential reflection arrangement \mathcal{A}.
(1) W acts irreducibly on V.
(2) \mathcal{A} is an irreducible hyperplane arrangement.
(3) V admits a basis L of roots such that Γ_L is connected.

Proof. In the direction (2) \Rightarrow (1), if $V = V_1 \oplus V_2$ with the V_i being W-stable subspaces, then we define $\mathcal{A}_i = \{ H \in \mathcal{A} \mid (s_H)_{|V_i} \neq \text{Id} \}$ with s_H the distinguished reflection w.r.t. $H \in \mathcal{A}$, and we have $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$. In the direction (1) \Rightarrow (2), we let $V = V_1 \oplus V_2$ be the decomposition of V corresponding to $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$. We choose a collection of roots for \mathcal{A}. Let s_1, s_2 be two distinguished reflections associated to $H_1 \in \mathcal{A}_1, H_2 \in \mathcal{A}_2$, respectively, and let $H = H_1 \oplus H_2 \subset V$. Consider some reflection $s \in W$ such that $\text{Ker}(s) \supset H$. If $\text{Ker}(s - 1)$ can be written as $H_0 \oplus V_2$ with H_0 some hyperplane of V_1, then $H_0 \oplus V_2 \supset H_1 \oplus H_2$ implies $H_0 \supset H_1$, hence $H_0 = H_1$ by equality of dimensions, meaning that s is some power of s_1. Similarly, if $\text{Ker}(s - 1)$ can be written as $V_1 \oplus H_0$ with H_0 some hyperplane of V_2, then s is a power of s_2. Considering the reflection $s_2 s_1 s_2^{-1}$, which fixes H and has reflecting hyperplane s_2. $\text{Ker}(s - 1)$, since $s_1 \neq s_2$ it follows that $s_2 s_1 s_2^{-1}$ is a power of s_1. Then $s_2 \text{Ker}(s - 1) = \text{Ker}(s - 1)$ hence s_1, s_2 commute and have orthogonal roots. The subspace V_1^0 spanned by all roots aring from \mathcal{A}_1 is thus setwise stabilized by all reflections of W, hence $V_1^0 = V$. On the other hand, the hermitian scalar product induces an isomorphism between V_1^0 and V_1^{*} (because A_1, like A, is essential), hence $V_2 \neq \{0\} \Rightarrow V_1^0 \neq V$, a contradiction.

We now prove (1) \iff (3). Let L_0 be of maximal size among the sets L of linearly independent roots with connected Γ_L. We prove that $|L| = \dim V$ if W is irreducible. Indeed, since W is irreducible generated by reflections and $V_{L_0} \subset V$, there would otherwise exist a reflection s such that $s(V_{L_0}) \not\subset V_{L_0}$. Letting $v \in V$ be a root of s, we have $v \not\in V_{L_0}$ and $v \not\in (V_{L_0})^\perp$. This proves that $L = L_0 \cup \{v\}$ is made out linearly independant roots and that Γ_L is connected, since $v \not\in (V_{L_0})^\perp$ cannot be orthogonal to all roots spanning L_0 and L_0 is already connected. From this contradiction it follows that L_0 has cardinality $\dim V$. Conversely, if V admits a basis L of roots such that Γ_L is connected, then W is irreducible, for otherwise $V = V_1 \oplus V_2$ with V_1, V_2 nontrivial orthogonal W-stable subspaces, and $L = L_1 \cup L_2$ with $L_i = \{ x \in L \mid x \in U_i \}$. Then $\Gamma_L = \Gamma_{L_1} \cup \Gamma_{L_2}$, contradicting the connectedness of Γ_L.

Corollary 3.2. If $W \subset \text{GL}(V)$ is an irreducible reflection group then it admits an irreducible parabolic subgroup of rank $\dim V - 1$.

Proof. Considering a set L of linearly independent roots such that Γ_L is connected, as given by the proposition, there exists $L_0 \subset L$ with $L = L_0 \cup \{v\}$ such that Γ_{L_0} is still connected. Then V_{L_0} has dimension $\dim V - 1$, and its orthogonal is spanned by some $v' \in V$. Letting W_0 denote the parabolic subgroup fixing v', it has rank $\dim V - 1$, admits for roots all elements of L_0, hence is irreducible since Γ_{L_0} is connected. □

4. Quadratic forms on V

Let \mathcal{A} be an essential hyperplane arrangement in V. The integer $n = \dim V$ is the rank $\text{rk}\mathcal{A}$ of \mathcal{A}. For each $H \in \mathcal{A}$ we let $\alpha_H \in V^*$ denote
some linear form with kernel H. For a field k, let kA denote a vector space with basis $v_H, H \in A$, and define a linear map $\Phi : C A \to S^2 V^*$ by $\Phi(v_H) = \alpha_2^2$.

For Φ to be onto, it is necessary that A is irreducible. Indeed, if $A = A_1 \times A_2$ corresponds to some direct sum decomposition $V = V_1 \oplus V_2$, then choosing two nonzero linear forms $\varphi_i \in V_i^*$ defines a quadratic form $\varphi_1 \varphi_2 \in S^2 V^*$ which does not belong to $\text{Im} \Phi$. This condition is also sufficient in rank 2.

Proposition 4.1. If A is essential of rank 2, then Φ is onto if and only if A is irreducible.

Proof. Since A is essential, A contains at least two hyperplanes H_1, H_2. We denote $\alpha_i = \alpha_{H_i}$ the corresponding (linearly independent) linear forms. If $A = \{H_1, H_2\}$, then A is obviously reducible, so we may assume that A contains at least another hyperplane. Let β denote the corresponding linear form. It can be written as $\beta = \lambda_1 \alpha_1 + \lambda_2 \alpha_2$ with $\lambda_1 \neq 0, \lambda_2 \neq 0$. Since $\beta^2 = \lambda_1^2 \alpha_1^2 + 2\lambda_1 \lambda_2 \alpha_1 \alpha_2 + \lambda_2^2 \alpha_2^2$, we get that $\alpha_1, \alpha_2, \beta^2 \in \text{Im} \Phi$.

This condition is not sufficient in rank 3, as shows the following example. Consider in C^3 the central arrangement of polynomial $xyz(x-y)(y-z)$. The morphism Φ is obviously not surjective, as $\dim C A = 5$ and $\dim S^2 V^* = 6$. However, A is irreducible, because its Poincaré polynomial is $P_A(t) = (1 + t)(1 + 4t + 4t^2)$, which is not divisible by $(1 + t)^2$ — recall from [OT] that $P_{A_1 \times A_2} = P_{A_1} P_{A_2}$ and that $P_A(t)$ is divisible by $1 + t$ whenever A is central.

It is however sufficient when A is a reflection arrangement.

Theorem 4.2. Let A be a (essential) reflection arrangement. Then Φ is surjective if and only if A is irreducible.

Proof. We assume that A is irreducible, and prove that Φ is surjective by induction on $\text{rk} A$. If $\text{rk} A \leq 2$, this is a consequence of the above proposition, so we can assume $\text{rk} A \geq 3$. We denote W the corresponding (pseudo-)reflection group, and endow V with a W-invariant hermitian scalar product. By corollary 3.2 there exists an irreducible maximal parabolic subgroup $W_0 \subset W$, defined by $W_0 = \{w \in W \mid w v = v\}$ for some $v \in V \setminus \{0\}$. We let $H_0 = (C v)^{^\perp}$. By Steinberg theorem W_0 is a reflection group, whose (pseudo-)reflections are the reflections of W contained in W_0. Let $A_0 \subset A$ denote the arrangement in V corresponding to W_0. Since $v \in H$ for all $H \in A_0$, by the induction hypothesis we have $Q = S^2 H_0^* \subset S^2 V^*$ is induced by $H^* \subset V^*$, letting $\gamma \in H_0^*$ act on H_0^* by 0. Let $\alpha \in V^* \setminus \{0\}$ such that $H_0 = \text{Ker} \alpha$. We have $S^2 V^* = S^2 H_0^* \oplus \alpha H_0^* \oplus \overline{\alpha} H_0^*$. Since A is irreducible, there exists $H \in A$ such that $\alpha_H \notin C \alpha$ and $\alpha_H \notin S^2 H_0^*$. Such a linear form can be written $\lambda(\alpha + \beta)$ with $\lambda \in C \setminus \{0\}$ and $\beta \in S^2 H_0^* \setminus \{0\}$. Then $(\alpha + \beta)^2 \in Q$ and $\beta^2 \in Q$, so we have $\alpha^2 + 2 \alpha \beta \beta \in Q$. We make W act on V^* by $w. \gamma(x) = \gamma(w \gamma(x))$, for $x \in V, \gamma \in V^*$. Of course this action can be restricted to a W_0-action on $H_0^* \subset V^*$. Then $w. (\alpha + \beta) \in Q$ for all $w \in W$, and since $w \alpha = \alpha$ whenever $w \in W_0$, we get $\alpha^2 + 2 \alpha (w \beta) \beta \in Q$ for all $w \in W_0$. Consider now the subspace U of H^* spanned by the $w_1, \beta - w_2, \beta$ for $w_1, w_2 \in W_0$. It is a W_0-stable
Corollary 4.3. If $Q \supset \mathbb{C} \beta$, both W_α and W_β are irreducible under the action of W_α. If $U = \{0\}$ then $w.\beta = \beta$ for all $w \in W_0$, hence $H_0 = \mathbb{C} \beta$ and $\dim V = 2$, which has been excluded. Thus $U \neq \{0\}$ hence $U = H_0^*$. By $2\alpha(w_1.\beta - w_2.\beta) = (\alpha^2 + 2\alpha(w_1.\beta)) - (\alpha^2 + 2\alpha(w_2.\beta))$ we thus get $\alpha H_0^* \subset Q$. Then $(\alpha + \beta)^2 \in \alpha^2 + \alpha H_0^* + S^2 H_0^* \subset \alpha^2 + Q$ implies $\alpha^2 \in Q$. It follows that $Q \supset S^2 V^*$ which concludes the proof. \hfill \Box

Corollary 4.3. If A is an irreducible reflection arrangement of rank n, then $|A| \geq n(n + 1)/2$.

Notice that the above lower bound is sharp, as it is reached for Coxeter type A_n.

When A is a reflection arrangement with corresponding reflection group W, both $\mathbb{C}A$ and $S^2 V^*$ can be endowed by natural W-actions, where the action on $\mathbb{C}A$ is defined by $w.\nu H = \nu w(H)$. It is thus natural to ask whether the linear forms α_H can be chosen such that Φ is a morphism of W-modules.

Proposition 4.4. If A is a complexified real reflection arrangement (in particular W is a finite Coxeter group), then the linear forms α_H can be chosen such that Φ is a morphism of W-modules.

Proof. We choose a W-invariant scalar product on the original real form V_0 of V and extend it to a W-invariant hermitian scalar product on V. For every $H \in A$ we choose $x_H \in V_0$ orthogonal to H with norm 1, and define $\alpha_H : y \mapsto (x_H|y)$, our notion on hermitian scalar products being that they are linear on the right. Then, for any $w \in W$, $w.x_H \in V_0$ is orthogonal to $w(H)$ of norm 1, hence $w.x_H = \pm x_{w(H)}$. Since $w.\alpha_H$ maps y to $(w.x_H|y)$ we have $(w.\alpha_H)^2 = \alpha^2_{w(H)}$, which shows that Φ is a morphism of W-modules. \hfill \Box

When W is not a Coxeter group, the W-modules $\mathbb{C}A$ and $S^2 V^*$ are generally unrelated. However, this property is not a characterization of Coxeter groups, as there is at least one example of a (non-Coxeter) complex reflection group for which Φ can be a morphism of W-module. This is the group labelled G_{12} in the Shephard-Todd classification. Notice that, in such a case, one must have $\sum \alpha_H^2 = 0$, otherwise this sum would provide a copy of the trivial representation inside $S^2 V^*$, forcing W to be a real reflection group.

We briefly describe this example. The group G_{12} can be described in $GL_2(\mathbb{C})$ by 3 generators a, b, c of order 2, satisfying the relation $abca = bcab = cabc$. We choose the following model:

$$a = \begin{pmatrix} 1 & 1 + \sqrt{-2} \\ 0 & -1 \end{pmatrix} \quad b = \begin{pmatrix} -1 & 0 \\ 1 - \sqrt{-2} & 1 \end{pmatrix} \quad c = \begin{pmatrix} \sqrt{-2} & -1 + \sqrt{-2} \\ -1 - \sqrt{-2} & -\sqrt{-2} \end{pmatrix}$$

We define a collection of vectors $e_H \in V$, such that $w.e_H = \pm e_{w(H)}$. Letting $\alpha_H : x \mapsto (e_H|x)$, the associated $\Phi : \mathbb{C}A \to S^2 V^*$ is then a morphism of W-modules. A W-invariant hermitian scalar product is given on this matrix model by $(X|Y) = ^t X A Y$ with

$$A = \begin{pmatrix} 2 & 1 + \sqrt{-2} \\ 1 - \sqrt{-2} & 2 \end{pmatrix}$$
We choose for e_H the 12 following vectors, which are fixed by the corresponding reflection s.

\[
\begin{array}{c|c|c|c}
 s & \text{babab} & a & b \\
 e_H & (1 + \sqrt{-2}, -2) & (1,0) & (0,1) \\
 s & \text{ababa} & \text{bcb} & c \\
 e_H & (-2, 1 - \sqrt{-2}) & (1, \sqrt{-2}) & (1, -1) \\
 s & \text{acaca} & \text{cbc} & \text{aba} \\
 e_H & (1 - \sqrt{-2}, 1 + \sqrt{-2}) & (-1 + \sqrt{-2}, -\sqrt{-2}) & (-1 - \sqrt{-2}, 1) \\
 s & \text{bab} & \text{cac} & \text{aca} \\
 e_H & (-1, 1 - \sqrt{-2}) & (-\sqrt{-2}, 1 + \sqrt{-2}) & (-\sqrt{-2}, 1)
\end{array}
\]

It can be checked that the reflections a, b, c act on these vectors by monomial matrices, with nonzero entries in $\{\pm 1\}$ (hence factors through the hyperoctahedral group of rank 12). On this example, S^2V^* is a selfdual W-module.

We make the following remark.

Proposition 4.5. For Φ to be a morphism of W-modules it is necessary that $\kappa(W) \leq 2$, where

\[
\kappa(W) = \min\{n \in \mathbb{Z}_{>0} \mid \forall w \in W \forall H \in \mathcal{A} \ w.\alpha_H = \zeta \alpha_H \Rightarrow \zeta^n = 1\}
\]

Using the Shephard-Todd classification, we will show in section 6 that this condition is actually sufficient when W is irreducible.

5. A path between representations

In this section we define a natural connection between the action of W on $\mathbb{C}^\mathcal{A}$ and more surprising representations of W. For this we need to introduce the space $X = V \setminus \bigcup \mathcal{A}$ of regular vectors, on which W acts freely, and its quotient (orbit) space X/W. We choose a base point $\underline{z} \in X$. The fundamental groups $B = \pi_1(X/W)$ and $P = \pi_1(X)$ are known as the braid group and pure braid group associated to W, respectively. There is a natural morphism $\pi : B \to W$ with kernel P. We first construct a deformation of $W \to \text{GL}(\mathbb{C}^\mathcal{A})$ as a linear representation of the braid group.

This deformation should not be confused with the one described in [Ma07] when W is a 2-reflection group.

5.1. A representation of the braid group

To each $H \in \mathcal{A}$ is canonically associated a differential form $\omega_H = \frac{d\alpha_H}{\alpha_H}$, using some arbitrary linear form α_H with kernel α_H. We introduce idempotents $p_H \in \text{End}(\mathcal{C}^\mathcal{A})$ defined by $p_{H_1.\nu H_2} = v_{H_2}$ if $H_1 = H_2$, $p_{H_1.\nu H_2} = 0$ otherwise. Choosing $h \in \mathbb{C}$, the 1-form

\[
\omega = h \sum_{H \in \mathcal{A}} p_H \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}(\mathcal{C}^\mathcal{A})
\]

satisfies $\omega \wedge \omega = 0$, hence defines a flat connection on the trivial vector bundle $X \times \mathbb{C}^\mathcal{A} \to X$, which is clearly W-equivariant for the diagonal action on $X \times \mathcal{C}^\mathcal{A}$. Dividing out by W, the corresponding flat bundle over X/W thus defines by monodromy a linear representation of B in $\mathcal{C}^\mathcal{A}$. Letting γ denote a representative loop of $\sigma \in B = \pi_1(X/W)$, we can lift it to a path $\tilde{\gamma}$ in X with endpoints \underline{z} and $\pi(\sigma).\underline{z}$, where \underline{z} is the chosen basepoint
in X. The 1-forms $\tilde{\gamma}^*\omega_H$ can be written as $\gamma_H(t)\,\text{d}t$ for some function γ_H on $[0,1]$, and the differential equation $\text{d}f = (\gamma^*\omega)f$ to consider is then $f'(t) = h(\sum_{H \in A} \gamma_H(t)p_H)f(t)$, with $f(0) = \text{Id} \in \text{End}(\mathbb{C}A)$. Since the p_H commute one to the other, the solution is easy to compute:

$$f(t) = \prod_{H \in A} \exp\left(\hbar p_H \int_0^t \gamma_H(u)\,\text{d}u\right)$$

and the monodromy representation is given by

$$\sigma \mapsto R_h(\sigma) = \pi(\sigma) \prod_{H \in A} \exp(h\hbar \int_\gamma \omega_H)$$

where we identified $w \in W$ with $R_0(w) \in \text{End}(\mathbb{C}A)$. In particular, the image of P is commutative. More precisely, if γ_0 is a loop in X around a single hyperplane H, the class $[\gamma_0] \in P$ is mapped to $\exp(2\pi h\hbar)$. Since P is generated by such classes, it follows that $R_n(P) = \{\text{Id}\}$ hence R_n factors through a representation of W whenever $n \in \mathbb{Z}$.

We recall that B is generated by so-called braided reflections (‘generators-of-the-monodromy’ in [BMR]), which are defined as follows. For a distinguished reflection $s \in W$, an element $\sigma \in B$ with $\pi(\sigma) = s$ is called a braided reflection if it admits as representative a path γ from z to $s.z$ which is a composite $(s.\gamma_0)^{-1} \ast \gamma_1 \ast \gamma_0$ of paths with the following properties. Here $\gamma_0 : z \rightsquigarrow z_0$, $\gamma_1 : z_0 \rightsquigarrow s.z_0$ and $(s.\gamma_0)^{-1} : s.z_0 \rightsquigarrow s.z$ is the reverse path of $s.\gamma_0$, and $\gamma_1(t) = \varepsilon \exp(2\pi i/t/d_H)z_0^{-} + z_0^{+}$ where z_0^{+} and z_0^{-} are the orthogonal projection on H and H^\perp, respectively, for $\varepsilon > 0$ small enough and z_0 sufficiently close to H so that the homotopy class of this path does not vary when ε decreases and $z_0^{+} \notin H'$ for $H' \in A \setminus \{H\}$.

Note that $\int_{s.\gamma_0} \omega_{H'} = \int_{\gamma_0} \omega_{s(H')} = 0$ for all $H' \in A$, hence $\int_\gamma \omega_H = \int_{\gamma_1} \omega_H = (2\pi)/d_H$. In particular, for such a braided reflection σ we get

$$R_h(\sigma).v_H = \pi(\sigma) \exp(h\hbar \int_\gamma \omega_H) v_H = \exp(2\pi h/d_H) v_H.$$

Moreover, if H and H' have orthogonal roots, then again $\int_\gamma \omega_{H'} = \int_{\gamma_1} \omega_{H'}$. But in this case $\alpha_{H'}(\gamma_1(t))$ is constant hence $\int_\gamma \omega_{H'} = 0$. An immediate consequence of this is that we can restrict ourselves to irreducible groups, namely

Proposition 5.1. If $W = W_1 \times \cdots \times W_r$ is a decomposition of W in irreducible components, with corresponding decompositions $B = B_1 \times \cdots \times B_k$ and $A = A^1 \times \cdots \times A^r$, then $R_h = R_h^{(1)} \times \cdots \times R_h^{(r)}$ with $R_h^{(k)} : W_k \rightarrow \text{GL}(\mathbb{C}A_k)$.

From the formulas above follows that, under the action of R_h, $\mathbb{C}A$ is the direct sum of the stable subspaces $\mathbb{C}A_k$, where $A = A^1 \sqcup \cdots \sqcup A^r$ is the decomposition of A in orbits under the action of W. We let $R_h^{(k)} : B \rightarrow \text{GL}(\mathbb{C}A_k)$, so that $R_h = R_h^{(1)} \oplus \cdots \oplus R_h^{(r)}$.

Proposition 5.2. If $h \notin \mathbb{Z}$, then $R_h^{(k)}$ is irreducible for each $1 \leq k \leq r$.

Proof. For each $H \in A_k$ we choose a loop γ_H based at z around the hyperplane H. We have $\int_{\gamma_H} \omega_H = 2\pi$ and $\int_{\gamma_H} \omega_{H'} = 0$ for $H \neq H'$. Letting Q_H
denote the class of γ_H in $P = \pi_1(X, z)$ we thus have $R_h^k(Q_H) = \exp(2i\pi h p_H)$, hence $R_h^k(Q_H) - \text{Id}$ is a nonzero multiple of p_H if $h \notin \mathbb{Z}$. It follows that the elements $R_h^k(Q_H)$ generate the commutative algebra of diagonal matrices in $\text{End}(C_k\mathbb{A}_k)$. Let G_k be the oriented graph on the $v_H, H \in \mathbb{A}_k$ with an edge (v_{H_1}, v_{H_2}) if there exists $x \in B$ such that the matrix $R_h^k(x)$ has nonzero entry at (v_{H_1}, v_{H_2}). If G_k is connected, then R_h^k is irreducible (see e.g. [Ma04] prop. 3 cor. 2). Choosing for each distinguished reflection $s \in W$ a braided reflection σ, $R_h^k(\sigma)$ has nonzero entries in $(v_{H}, v_{s(H)})$ and $(v_{s(H)}, v_H)$ for each $H \in \mathbb{A}$. Since \mathbb{A}_k is an orbit under W and W is generated by distinguished reflections, it follows that G_k is connected, concluding the proof.

Since R_h factors through W when $h \in \mathbb{Z}$, this has the following consequence.

Corollary 5.3. For all $h \in \mathbb{C}$, the representation R_h of B is semisimple.

We choose a collection of roots $e_H, H \in \mathbb{A}$. Notice that, for $w \in W$, $w(H) = H$ implies $w.e_H = e^i\theta e_H$ for some $\theta \in \mathbb{R}$.

Lemma 5.4. If $\gamma : z \sim w.z$ is a path in X with $w \in W$ such that $w.e_H = e^i\theta e_H$, then $\int_\gamma \omega \in i\theta + 2i\pi \mathbb{Z}$.

Proof. We can assume $-\pi < \theta \leq \pi$. Since $\int_\gamma \omega_H$ is independent of the choice of α_H, we can choose $\alpha_H : x \mapsto (e_H|x)$ with $(e_H|e_H) = 1$. We have $\alpha_H(w.x) = e^i\alpha(x)$. We write $\gamma(t) = \gamma_H(t) + \gamma_0(t)e_H$ with $\gamma_0 : [0, 1] \to \mathbb{C}$ and $\gamma_H : [0, 1] \to H$. Then $\alpha_H(\gamma(t)) = \gamma_0(t)$ and $\int_\gamma \omega_H = \int_{\gamma_0} \frac{d\gamma}{\gamma}$. Letting $x = \alpha_H(z) \in \mathbb{C}^X$, we have $\gamma_0 : x \sim e^i\theta x$. If $\gamma_1 : x \mapsto e^i\theta x$ is an arbitrary path in \mathbb{C}^X, then $\gamma_0 \ast \gamma_1^{-1}$ is a loop in \mathbb{C}^X, hence $\int_\gamma \frac{d\gamma}{\gamma} = \int_{\gamma_0} \frac{d\gamma}{\gamma}$ is a multiple of $2i\pi$. If $e^i\theta = 1$ this concludes the proof. If $e^i\theta = -1$ we consider $\gamma_1(t) = xe^{i\pi t}$, for which $\int_{\gamma_1} \frac{d\gamma}{\gamma} = i\pi t$. If $e^i\theta = \zeta \not\in \{1, -1\}$ we consider $\gamma_1(t) = (1 - t)x + te^i\theta x$ and $\int_{\gamma_1} \frac{d\gamma}{\gamma} = \log((1 + (e^i\theta - 1)t)^1_0)$, where log denotes the natural determination of the logarithm over $\mathbb{C} \setminus \mathbb{R}^-$. It follows that $\int_{\gamma_1} \frac{d\gamma}{\gamma} = log e^i\theta = i\theta$, and the conclusion follows.

We recall from section 4 the definition of $\kappa(W)$.

$$\kappa = \kappa(W) = \min\{n \in \mathbb{Z}_{>0} | \forall w \in W \forall H \in \mathbb{A} \text{ w.e}_H = \zeta e_H \Rightarrow \zeta^n = 1\}$$

Theorem 5.5. For all $h \in \mathbb{C}$, $R_{h+\kappa}$ is isomorphic to R_h. Moreover, κ is the smallest positive real number such that $R_{h} \simeq R_0$.

Proof. Recall from corollary 5.3 that, for all $h \in \mathbb{C}$, R_h is semisimple. Letting χ_h denote the character of R_h on B, it is thus sufficient to prove $\chi_h = \chi_{h+\kappa}$ for all $h \in \mathbb{C}$ in order to get $R_{h+\kappa} \simeq R_h$. Let $g \in B$ with $w = \pi(g)$, and $\gamma : z \sim w.z$ a representing path. By the explicit formulas above, we have

$$\chi_h(g) = \sum_{w(H) = H} \exp(h \int_\gamma \omega_H)$$

and $R_{h+\kappa} \simeq R_h$ follows by lemma 5.4. We now show that κ is minimal with this property. Assuming otherwise, we let $0 < h < \kappa$ such that $\chi_h = \chi_0$. By definition of κ there exists $w \in W$, $H \in \mathbb{A}$ such that $w.e_H = e^i\theta e_H$ with
\[e^{i\theta h} \neq 1. \] Letting \(g \in B \) with \(\pi(g) = w \) and \(\gamma : z \sim w, z \) a representing path, we have \(\int_{\gamma} \omega_H \in i\theta + 2i\pi\mathbb{Z} \), hence \(\exp(h \int_{\gamma} \omega_H) \neq 1 \). It follows that \(|\chi_0(g)| < \chi_0(g) \) hence a contradiction.

\[\Box \]

Proposition 5.6. For any \(H \in A \) and \(h \in \mathbb{C} \), if \(\sigma \) is a braided reflection around \(H \), then \(R_h(\sigma) \) is conjugated to \(R_0(\sigma) \exp(h(2\pi/d_H)p_H) \).

Proof. Let \(\sigma \) be a braided reflection with corresponding paths \(\gamma_0, \gamma_1 \) as above. Since \(\gamma_0 \) and \(s_0 \gamma_0 \) represent the same path in \(X/W \), \(R_h(\sigma) \) is conjugated to the monodromy along the loop \(\gamma_1 \) in \(X/W \), so that we can assume \(z = z_0, \gamma = \gamma_1 \). In view of the formulas above, we thus only need to show that \(\int_{\gamma_1} \omega_{H'} = 0 \) for \(H' \neq H \). This can be done by direct computation, as \(\alpha_{H'}(\gamma_1(t)) = \varepsilon \exp(2i\pi t/d_H)\alpha_{H'}(z_0^\pm) + \alpha_{H'}(z_0^-) \) with \(\alpha_{H'}(z_0^-) \neq 0 \), and \(\int_{\gamma_1} \omega_{H'} \) is constant when \(\varepsilon \to 0 \). Since \(\int_{\gamma_1} \omega_{H'} \to 0 \) when \(\varepsilon \to 0 \) we get \(\int_{\gamma_1} \omega_{H'} = 0 \) and the conclusion.

\[\Box \]

5.2. New representations of \(W \). When \(n \in \mathbb{Z} \), the representation \(R_n \) of \(B \) factorizes through \(W \). In case \(W \) is irreducible, the action of the center is easy to describe.

Lemma 5.7. If \(w \in W \) acts by \(\lambda \in \mathbb{C}^x \) on \(V \), then \(R_n(w) = \lambda^n \)\(\text{Id} \) if \(n \in \mathbb{Z} \).

More generally, if there exists \(v \in X \) such that \(w.v = \lambda v \) for some \(\lambda \in \mathbb{C}^x \), then \(R_n(w) \) is conjugated to \(\lambda^n R_0(w) \)

Proof. We first assume that \(w \) acts on \(V \) by \(\lambda \). We can write \(\lambda = \exp(i\theta) \) with \(0 < \theta \leq 2\pi \). We consider the loop \(\gamma(t) = e^{i\theta t} \zeta \) in \(X/W \), whose image in \(W \) is \(w \). By direct calculation we have \(\int_{\gamma} \omega_H = i\theta \) for all \(H \in A \) and the conclusion follows from the general formula for \(R_1 \). Now assume \(w.v = \lambda v \) for some \(\lambda = \exp(i\theta) \) with \(0 < \theta \leq 2\pi \). Up to conjugation, we can assume \(v = \zeta \), the loop \(\gamma(t) = e^{i\theta t} \zeta \) in \(X/W \) has image \(w \) in \(W \) and we conclude as before.

\[\Box \]

More involved tools prove the following.

Proposition 5.8. If \(W_0 \) is a parabolic subgroup of \(W \) with hyperplane arrangement \(A \) and \(n \in \mathbb{Z} \), then the restriction of \(R_n \) to \(W_0 \) is isomorphic to the direct sum of the representation \(R_n \) of \(W_0 \) and the permutation representation of \(W_0 \) on \(\mathbb{C}(A \setminus A_0) \).

Proof. We let \(R_h^0 \) denote the representation \(R_h \) for \(W_0 \) acting on \(\mathbb{C} A_0 \), and \(S_h \) the direct sum of \(R_h^0 \) and the permutation representation of \(W_0 \) on \(A \setminus A_0 \). We can embed the braid group \(B_0 \) of \(W_0 \) inside \(B \) such that, as representations over \(\mathbb{C}[[h]] \), the restriction to \(B_0 \) of \(R_h \) is isomorphic to \(S_h \) (see [Ma07], theorem 2.9). In particular, for all \(g \in B_0 \), the traces of \(R_h(g) \) and \(S_h(g) \) are equal, as formal series in \(h \). Since these traces are holomorphic functions in \(h \), it follows that they are equal for all \(h \in \mathbb{C} \). This means that the semisimple representations of \(B_0 \) associated to the restriction of \(R_h \) and to \(S_h \) are isomorphic. Since the restriction of \(R_n \) and \(S_n \) are semisimple for all \(n \in \mathbb{Z} \) the conclusion follows.

\[\Box \]

The determination of the action of the center enables us to prove that, contrary to \(R_0 \), \(R_1 \) is faithful in general.
Proposition 5.11.

(1) R_0 has kernel $Z(W)$.

(2) R_1 is faithful on W.

(3) $\text{Ker } R_n = \{w \in Z(W) \mid w^n = 1\}$

Proof. Without loss of generality (because of proposition 5.1) we may assume that W is irreducible. Obviously (3) \Rightarrow (2). Although (1) is also a special case of (3), we prove it separately. If $|A| = 1$ the statement is obvious, so we assume $|A| \geq 2$. Clearly $Z(W) \subset \text{Ker } R_0$, as $\text{Ker } (wgw^{-1} - 1) = w.\text{Ker } (g - 1)$ for all $g, w \in W$. Let $w \in W$ such that $R_0(w) = \text{Id}$, that is $w(H) = H$ for all $H \in A$. Let $s \in W$ be a distinguished reflection with reflection hyperplane H. Then wsw^{-1} is a reflection with $\text{Ker } (wsw^{-1} - 1) = H$ which has the same nontrivial eigenvalue as s, hence $wsw^{-1} = s$. It follows that w commutes to all distinguished reflections of W, hence $w \in Z(W)$ since W is generated by such elements.

We now prove (3). Let $w \in \text{Ker } R_n$. Since $R_1(w) = R_0(w)D$ for some diagonal matrix D, the nonzero entries of $R_n(w)$ determine the permutation matrix $R_0(w)$, hence $w \in Z(W)$. Since W is irreducible, w acts on V by some scalar $\lambda \in \mathbb{C}^\times$, hence $R_n(w) = \lambda^n = 1$ by lemma 5.7, hence $w^n = 1$. The converse inclusion is obvious by lemma 5.7.

Corollary 5.10. The exponent of $Z(W)$ divides $\kappa(W)$. If W is irreducible then $|Z(W)|$ divides $\kappa(W)$.

Proof. By the proposition, the period of the sequence $\text{Ker } R_n$ is the exponent of $Z(W)$. Since $\text{Ker } R_n$ is $\kappa(W)$-periodic the conclusion follows. If W is irreducible then $Z(W)$ is cyclic hence its order equals its exponent.

In the proof of theorem 5.5, we computed the character χ_n of R_n. We recall the result here:

Proposition 5.11. For any $w \in W$ and $n \in \mathbb{Z}$ we have

$$\chi_n(w) = \sum_{w.e_H = \zeta \in H} \zeta^n$$

If $\tilde{K} = \mathbb{Q}(\zeta_d)$ is a cyclotomic field containing all eigenvalues of $R_1(W)$, then letting $c_n \in \text{Gal}(\tilde{K}|\mathbb{Q})$ for n and $d = 1$ be defined by $c_n(\zeta_d) = \zeta_d^n$ we get from this proposition that $\chi_n = c_n \circ \chi_1$ for all n prime to d.

As an illustration of this section, we do the example of W of type G_4 generated by

$$s = \begin{pmatrix} 1 & 0 \\ 0 & j \end{pmatrix}, \quad t = \frac{1}{3} \begin{pmatrix} 1 + 2j & j - 1 \\ 2j - 2 & j + 2 \end{pmatrix}.$$

It is a reflection group of order 24, with two generators s, t of order 3 satisfying $sts = tst$, and center of order 2. It admits 3 one-dimensional (irreducible) representations $S_\alpha : s, t \mapsto \alpha$, 3 two-dimensional representations A_α with $\text{tr } A_\alpha(s) = -\alpha$ for $\alpha \in \{1, j, j^2\}$ with $j = \exp(2\pi i / 3)$ and a 3-dimensional one that we denote U. The reflection representation is A_{j_2}, and $\kappa(W) = 6$. From the character table of W one gets

$$
\begin{align*}
R_0 &= S_1 + U \\
R_1 &= A_1 + A_{j_2} \\
R_2 &= S_{j_2} + U \\
R_3 &= A_{j} + A_{j_2} \\
R_4 &= S_j + U' \\
R_5 &= A_1 + A_{j_2}
\end{align*}
$$
5.3. The case of Coxeter groups. If \(W \) is a Coxeter group, we get a simpler form of this representation. Recall that, in this case, \(\mathcal{A} \) is the complexification of some real arrangement \(\mathcal{A}_0 \) in \(V_0 \), where \(V_0 \) is a real form of \(V \); moreover, choosing some connected component \(C \) of \(V_0 \setminus \bigcup \mathcal{A}_0 \), called a Weyl chamber, determines \(n \) hyperplanes \(H_1, \ldots, H_n \) called the walls of \(C \), and the corresponding \(n \) reflections \(s_1, \ldots, s_n \) are called the simple reflections associated to \(C \). If \(z \in C \), there is also a special set of generators for \(B \), namely the braided reflections \(\sigma_i \) around \(H_i \) such that \(\gamma_0 \) is a straight (real) segment orthogonal to \(H_i \). These are called the Artin generators of \(B \) (associated to a choice of Weyl chamber).

Proposition 5.12. If \(W \) is a Coxeter group with simple reflections \(s_1, \ldots, s_n \), then \(\sigma_i \mapsto R_0(s_i) \exp(i \pi h p_{H_i}) \) defines a representation of \(B \) which is equivalent to \(\mathcal{R}_h \). In particular, \(R_1 \) is equivalent to a representation of \(W \) on \(\mathbb{C} \mathcal{A} \) for which \(s_iv_H = v_{s_i(H)} \) is \(H \neq H_i \), \(s_i.v_{H_i} = -v_{H_i} \), and \(R_h+2 \) is equivalent to \(R_h \) for any \(h \in \mathbb{C} \), while \(R_1 \neq R_0 \).

Proof. We introduce the Weyl chamber \(C \subset V_0 \) with respect to the simple reflections \(s_1, \ldots, s_n \), with walls \(H_i = \text{Ker}(s_i - 1) \), \(1 \leq i \leq n \). Up to conjugacy the base point \(z \) can be chosen inside the Weyl chamber, and we define roots \(e_H \in V_0 \) of norm 1 such that \(\mathbb{C} e_H = \text{Ker}(s - 1)^+ \) and \((e_H|z) > 0 \) for \(z \in C \). We choose for \(\alpha_H \) the linear form \(x \mapsto (e_H|x) \). Let us denote \(\log^+ \) the complex logarithm on \(\mathbb{C} \backslash i \mathbb{R} \), and define

\[
D_h = \prod_{H \in \mathcal{A}} \exp(i \pi p_H \log^+(e_H|z))
\]

We consider a simple reflection \(s_i \) around a wall \(H_i \). Then the path \(\gamma \) representing \(\sigma_i \) can be chosen with \(\varepsilon \) small enough so that \((e_H|\gamma(t)) \) has positive real part for each \(t \in [0,1] \) and \(H \neq H_i \). It follows that \(t \mapsto \log^+(e_H|\gamma(t)) \) has differential \(\gamma^* \omega_H \) and \(R_h(\sigma_i) \) equals

\[
R_0(s_i) \prod_{H \in \mathcal{A}} \exp(h p_H \int_{\gamma} \omega_H) = R_0(s_i) \prod_{H \in \mathcal{A}} \exp(h p_H(\log^+(e_{s_i}|z) - \log^+(e_H|z)))
\]

(see [Ma07], lemma 7.10). Moreover, \((e_H|s_i|z) = (s_i.e_{s_i}|z) = (e_{s_i(H)}|z) \) if \(H \neq H_i \) (see e.g. [Ma07], lemma 7.9) and \((e_{H_i}|s_i|z) = -(e_{H_i}|z) \). It follows that

\[
R_h(\sigma_i) = s_i \exp(i \pi h p_{H_i}) \prod_{H \in \mathcal{A}\setminus\{H_i\}} \exp(h p_H(\log^+(e_{s_0(H)}|z) - \log^+(e_H|z)))
\]

namely

\[
R_h(\sigma_i) = D_h s_i \exp(i \pi h p_{H_i}) D_h^{-1}
\]

for all \(i \in [1, n] \), which concludes the proof. \(R_1 \neq R_0 \) because \(\text{tr} R_1(s_1) = \text{tr} R_0(s_1) - 1 \). \(\square \)

The representation of \(W \) described in this proposition for \(h = 1 \) is natural in the realm of root systems. Indeed, if a set \(\mathcal{P} \) of roots for \(\mathcal{A}_0 \) is chosen, such that \(\mathcal{P} \) satisfies the axioms \((SR)_1 \) and \((SR)_2 \) of a root system (see [BG]), and \(\mathcal{P} \) is subdivided in positive and negative roots \(\mathcal{P}^+ \), \(\mathcal{P}^- \) according to the chosen Weyl chamber, where \(\mathcal{P}^+ = \{ e_H, H \in \mathcal{A} \} \), then the representation described here is isomorphic to one on \(\mathbb{C} \mathcal{P}^+ \) described by \(w.f_H = f_{w(H)} \) if
we have \(w.e_H \in \mathcal{P}^+ \) and \(w.f_H = -f_{w(H)} \) if \(w.e_H \in \mathcal{P}^- \), where \(f_H \) denotes the basis element of \(\mathbb{C}\mathcal{P}^+ \) corresponding to \(e_H \in \mathcal{P}^+ \).

Finally, we notice that, when \(W \) is a Coxeter group, then the representation \(R_h \) for arbitrary \(h \) factorizes through the extended Coxeter group \(B/(P,P) \) introduced by J. Tits in [Ti].

We give in the following table the decomposition in irreducibles of \(R_0 \) for the classical Coxeter groups of type \(A_n, B_n, D_n \). We label as usual irreducible representations of \(\mathfrak{S}_n \) by partitions of size \(n \) (with the convention that \([n] \) is the trivial representation), of \(W \) of type \(B_n \) by couples of partitions \((\lambda, \mu)\) of total size \(n \), and denote \(\{\lambda, \mu\} \) the restriction of \((\lambda, \mu)\) to the usual index-2 subgroup of \(W \) of type \(D_n \). Recall that \(\{\lambda, \mu\} = \{\mu, \lambda\} \) is irreducible if and only if \(\lambda \neq \mu \).

\	\(R_0 \)
\(A_n, n \geq 3 \)	\([n - 1, 1] + [n, 1] + [n + 1] \)
\(B_n, n \geq 4 \)	\((n - 2, 2], \emptyset) + ([n - 2, 2]) + 2([n - 1, 1], \emptyset) + 2([n], \emptyset) \)
\(B_3 \)	\((1], [2]) + 2([1, 1], \emptyset) + 2([3], \emptyset) \)
\(D_n, n \geq 4 \)	\{[n - 2, 2], \emptyset\} + {([n - 2], [2]}) + {([n - 1, 1], \emptyset) + ([n], \emptyset)\}

\(R_1 \)

\	\(R_1 \)
\(A_n, n \geq 3 \)	\([n - 1, 1, 1] + [n, 1] \)
\(B_n, n \geq 3 \)	\((n - 2, 1], [1]) + 2([n - 1], [1]) \)
\(D_n, n \geq 4 \)	\{([n - 2, 1], [1]) + {[n - 1, 1], [1]}\}

We sketch a justification of this table. For small values of \(n \), we prove this by using the character table. Then we use induction with respect to a natural parabolic subgroup \(W_0 \) in the same series, for which the branching rule is well-known. Restrictions of \(R_0 \) and \(R_1 \) to this parabolic subgroup are then isomorphic to the sum of the corresponding representation \(R_0 \) or \(R_1 \) of the subgroup, plus the permutation action of the reflections in \(W \) which do not belong to \(W_0 \) (this is clear for \(R_0 \), and a consequence of proposition 5.8 for \(R_1 \)). The decomposition in irreducibles of this permutation representation is easy, namely \([n - 1, 1] + [n]\) for \(A_n \), \((n - 2, 1] + ([n - 2, 1], \emptyset) + 2([n - 1], \emptyset)\) for \(B_n \) and \{([n - 2], [1]) + {([n - 2, 1], \emptyset) + {[n - 1, 1], \emptyset}\} for \(D_n \). This provides the restrictions of \(R_0 \) and \(R_1 \) to \(W_0 \). From the combinatorial branching rule it is easy to check that, for say \(n \geq 5 \), only the given decompositions admit these restrictions.

6. TABLES FOR \(\kappa(W) \)

We compute here the value of \(\kappa(W) \) for all irreducible reflection groups \(W \). More precisely, we compute all \(d \in \mathbb{Z} \) such that there exists \(w \in W \) and \(H \in \mathcal{A} \) with \(w.e_H = \zeta e_H \) and \(\zeta \) of order \(d \). We call these integers the \(\mathcal{A} \)-indices of \(W \).

Recall that the group \(G(de, e, r) \) for \(r \geq 2 \) is defined as the set of \(r \times r \) monomial matrices with nonzero entries in \(\mu_{de}(\mathbb{C}) \), such that the product of these nonzero entries lie in \(\mu_d(\mathbb{C}) \).
Proposition 6.1. The A-indices of $W = G(de, e, r)$ are exactly the divisors of $\kappa(W)$. Moreover, $\kappa(W) = de$ if $d \neq 1$ or $r \geq 3$. If $W = G(e, e, 2)$ then $\kappa(W) = 2$.

Proof. Since $G(e, e, 2)$ is a Coxeter (dihedral) group, we can assume $d \neq 1$ or $r \geq 3$. First note that the standard hermitian scalar product on \mathbb{C}^r is invariant under W. We introduce the hyperplane arrangement

$$A_{de,r}^0 = \{ z_i - \zeta z_j = 0 \mid \zeta \in \mu_{de}(\mathbb{C}) \}$$

We have $A_{de,r}^0 \subset A$, and the orthogonal to $H : z_i - \zeta z_j = 0$ is spanned by $e_H = e_i - \zeta^{-1} e_j$, if e_1, \ldots, e_n denotes the canonical basis of \mathbb{C}^r. Let $w \in W$. Since w is a monomial matrix, there exists $\lambda_1, \ldots, \lambda_r \in \mu_{de}(\mathbb{C})$ with $\lambda_i \in \mu_{de}(\mathbb{C})$, $\prod \lambda_i \in \mu_d(\mathbb{C})$, and $\sigma \in \Sigma_r$ such that $w.e_i = \lambda_i e_{\sigma(i)}$. Then $w.e_H = w.e_i - w.e_j$ iff $\lambda_1 e_{\sigma(i)} - \lambda_j e_{\sigma(j)} = \mu \lambda_i e_i + \mu \lambda_j e_j$. The two possibilities are $\mu = 1, \zeta = 1$ or $\mu \lambda_i = \lambda_j, \mu \lambda_i = \lambda_j \zeta^{-1}$, that is $\mu^2 = \zeta^{-1}, \mu = \lambda_i \lambda_j^{-1}$. It follows that $\mu \in \mu_{de}(\mathbb{C})$. Conversely, assume we choose $\mu \in \mu_{de}(\mathbb{C})$, and let $\zeta = \mu^{-1}$. If $r \geq 3$ we can define $w \in W$ by $\sigma = (1 2), \lambda_2 = 1, \lambda_1 = \mu$, $\lambda_3 = \mu^{-1}, \lambda_k = 1$ for $k \geq 4$, and $w.e_H = w.e_i$ for $H : z_1 - \zeta z_2 = 0$. We have $A = A_{de,r}^0$ when $d = 1$, so this settles this case and we can assume $d \neq 1$. In that case, $A = A_{de,r}^0 \cup A_{de,r}^+$, where $A_{de,r}^+$ is made out the hyperplanes $H_i : z_i = 0$, whose orthogonals are spanned by the e_i. If $w.e_i = \mu e_i$ for $w \in W$ we obviously have $\mu \in \mu_{de}(\mathbb{C})$, and conversely if $\mu \in \mu_{de}(\mathbb{C})$ we can define $w \in W$ by $w.e_1 = \mu e_1, w.e_2 = \mu^{-1} e_2$ and $w.e_i = e_i$ for $i \geq 3$. It follows that in this case too the set of A-indices is the set of divisors of de.

By noticing that $G(2,1,r), G(2,2,r)$ and $G(e, e, 2)$, are Coxeter groups, this gives the following.

Corollary 6.2. For $W = G(de, e, r)$, we have $\kappa(W) = 2$ iff W is Coxeter group, if and only if $de = 2$ or $(d, r) = (1, 2)$.

By checking out the 34 exceptional reflection groups, we prove case by case the following.

Proposition 6.3. Let W be an irreducible complex reflection group. The set of A-indices is exactly the set of divisors of $\kappa(W)$.

The following table gives the value of $\kappa(W)$, where W an complex reflection group labelled by its Shephard-Todd number (ST).

ST	κ												
4	6	6	10	12	16	10	22	4	28	2	34	6	4
5	6	11	14	20	23	30	30	30	2	36	2	7	13

We remark that the only non-Coxeter irreducible reflection groups with $\kappa(W) = 2$ are G_{12} and G_{24}. Like in the case of G_{12}, it is straightforward to check that it is possible to choose the 21 linear forms α_H such that the linear...
map \(\Phi : \mathbb{C}A \rightarrow S^2V^* \) is a morphism of \(W \)-modules. This phenomenon is reminiscent of the special properties of their “root systems” in the sense of \([Co]\). We refer to \([Sh]\) §2 and §4 for a detailed study of these special root systems of type \(G_{12} \) and \(G_{24} \). In particular, convenient linear forms for \(G_{24} \) are described in \([Sh]\), §4.1.

As a consequence of this case-by-case investigation, propositions 4.4 and 4.5 can be enhanced in the following

Theorem 6.4. Let \(W \) be an irreducible reflection group. The linear forms \(\alpha_H \) can be chosen such that \(\Phi \) is a morphism of \(W \)-modules if and only if \(\kappa(W) = 2 \). This is the case exactly when \(W \) is a Coxeter group or an exceptional reflection group of type \(G_{12} \) or \(G_{24} \).

References

[Bo] N. Bourbaki, *Groupes et algèbres de Lie, chapitres 4,5,6*, Hermann, Paris, 1968.

[BMR] M. Broué, G. Malle, R. Rouquier, *Complex reflection groups, braid groups, Hecke algebras*, J. Reine Angew. Math. 500, 127-190 (1998).

[Co] A.M. Cohen, *Finite complex reflection groups*, Ann. E.N.S. 9, 379-436 (1976).

[Ma04] I. Marin, *Irréductibilité générique des produits tensoriels de monodromies*, Bull. Soc. Math. Fr. 132, 201-232 (2004).

[Ma07] I. Marin, *Krammer representations for complex braid groups*, preprint [arXiv:0711.3096](v2).

[OT] P. Orlik, H. Terao, *Arrangements of hyperplanes*, Springer, Berlin, 1992.

[ST] G.C. Shephard, J.A. Todd, *Finite unitary reflection groups*, Canad. J. Math 6, 274-304 (1954).

[Sh] J.-Y. Shi, *Simple root systems and presentations for certain complex reflection groups*, Comm. Alg. 33, 1765-1783 (2005).

[Ti] J. Tits, *Normalisateurs de tores I : Groupes de Coxeter étendus*, J. Algebra 4, 96-116 (1966).