EFFECT OF TRANSITIONS ON CONDUCTIVITY OF POLYANILINE SYNTHESIZED USING DIFFERENT DOPANTS BY CHEMICAL OXIDATION

O. A Nunoo, Joseph Asare Awuah, Eric K.K. Abavare and K. Singh
Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (West Africa)

ABSTRACT

The present work reports the chemical oxidation synthesis of polyaniline using ammonium persulphate (APS) as an oxidizing agent and H₂SO₄, HCl and CH₃COOH as dopants. The samples were characterized by FTIR, UV-Vis, and their conductivity determined by four-point probe method. Quinoid and benzenoid bands at 1553–1596 cm⁻¹ and 1437–1496 cm⁻¹ respectively were observed in all the samples. Different transitions present in the bulk samples of PANI were determined by UV-VIS spectroscopy. It was found that the transition π - π⁺ for PANI-H₂SO₄ occurs earlier than in PANI-HCl sample. This can only be as a results of the H₂SO₄ acid been a stronger acid than the HCl and as a results the transition from π - π⁺ required lower wavelength for PANI-H₂SO₄ sample as compared to the PANI-HCl sample. By comparing the four samples the π - π⁺ transition then can be arranged from the strongest to the weakest as PANI-H₂SO₄ followed by PANI-HCl then PANI-HNO₃ and the weakest been PANI-CH₃COOH that also show the trend of observed conductivities in these samples.

Key words: Polyaniline, Chemical Oxidation, Transition, APS, Polymer

Cite this Article: O. A Nunoo, Joseph Asare Awuah, Eric K.K. Abavare and K. Singh, Effect of Transitions on Conductivity of Polyaniline Synthesized using Different Dopants by Chemical Oxidation, International Journal of Advanced Research in Engineering and Technology, 11(9), 2020, pp. 664-672.

http://www.iaeme.com/IJARET/issues.asp?JType=IJARET&VType=11&IType=9

1. INTRODUCTION

Polymers are a class of materials that are important to our everyday life. Cabinets, plastic cutlery and latex paints are examples of polymers that are used every day. They are giant molecules of high molecular weight which are built up by linking together large numbers of smaller molecules called monomers. The reaction by which the monomers combine to form a
huge polymer is known as polymerization (Gowariker et al., 1986). Traditionally polymers were thought of as insulators when it comes to its applications in electronics. In the mid-19th century scientist conducted research into some organic based polymers for their application in electronics (Inzelt, 2008). In the case of polypyrrole it was observed that it had resistivity as low as 1 ohm/cm (Bolto et al., 1963). (Songxi, 2012) cites multiple reports of similar high conductivity oxidized polyacetylenes. DeSurville and coworkers reported high conductivity in polyaniline (De Surville et al., 1968). Hideki Shirikawa, Alan MacDiarmid and Alan J. Heeger in 1977 published a paper on the high conductivity in oxidized iondine-doped polyacetylene (Shirikawa et al., 1977). They were awarded the 2000 Nobel Prize in Chemistry for the discovery and development of conductive polymers (Natarajah, 2012).

Lightfoot’s studies on the oxidation of aniline in 1860s led to the discovery of polyaniline (MacDiarmid, 2001). The first definitive report of polyaniline did not occur until 1862, which included an electrochemical method for the determination of small quantities of aniline (Letheby, 1862). Only since the early 1980s has polyaniline captured the intense attention of the scientific community. This interest is due to the rediscovery of high electrical conductivity. Amongst the family of conducting polymers and organic semiconductors, polyaniline has many attractive processing properties (Pandya, 2016). Polyaniline (PANI) is one of the most studied conjugated polymers due to its widely tunable electrical conductivity (Cao et al., 1992) and environmental stability (Rannou and Nechtschein, 1997, DeLongchamp and Hammond, 2001). PANI can be readily synthesized from commercially available starting materials under mild conditions by oxidation methods (Masters et al., 1991), (Wei et al., 1989). Polyaniline remains one of the most interesting materials due to its unique conduction mechanism and good environmental stability in the presence of oxygen and water (Kumar et. al., 1997).

2. METHODOLOGY
2.1. Synthesis of Polyaniline (PANI)
12.03 g of \((\text{NH}_2)_2\text{S}_2\text{O}_8\) was measured and put in 600 ml beaker. 5.00 g of the aniline monomer was measured into a 500 ml beaker. Ammonium persulphate solution (APS) was formed by adding 70 ml of \(\text{H}_2\text{SO}_4\) to it. 75 ml of \(\text{H}_2\text{SO}_4\) was poured into the aniline monomer. Drop-wise addition of aniline to the APS solution was done. Change in the colour of the solution was observed after 10 minutes. The colour of the solution changed from brown-whitish to pale green then green (emeraldine salt). The solution was left for 12 hours for complete polymerization to occur.

Similarly, samples of polyaniline doped with Nitric acid (HNO_3), Hydrochloric acid (HCl), and Acetic acid (CH_3COOH) were prepared. Each of the Emeraldine salt formed was filtered by continuously washing with the acid until the filtrate was clear. The samples were dried at 70 °C in an oven and crushed into powder form. For each sample, some of the powder washard pressed into pellet using a metallic mold.

2.2. Characterization
FTIR Spectra
Perkin Elmer Spectrum Version 10.08.09 was used to carry out the FTIR for the samples dried at 700 °C. Below is the table for the absorption observed for each sample.
Table 1 Fourier Transformation Infrared Spectroscopy of the Bulk Samples

SAMPLE	N-H stretching	C-H stretching	C = N stretching	Quinoid Bond	Benzenoid Bond	C-H out of plane
HCl	3750	3053	1644	1596	1496	800
H₂SO₄	3787	-	1650	1559	1473	800
HNO₃	3787	3060	1647	1544	1437	824
CH₃COOH	-	-	-	1559	1473	877

Figure 1 FTIR of PANI-HNO₃ Bulk sample

The Fig. 1 above shows the FTIR for the PANI-HNO₃ sample. The most significant bands for a protonated sample were observed in the bands at 1574.17 cm⁻¹ and 1488 cm⁻¹. The ring-stretching vibrations of the quinonoid and benzenoid rings of aniline can be attributed to the 1574.17 cm⁻¹ and 1488 cm⁻¹ bands respectively. The band at 3060 cm⁻¹ is due to the C-H stretching aromatics which is very strong. There was a weak C=N stretching band at the 2217.82 cm⁻¹. The mono substituted benzene is a clear characteristic observed in the absorption peak at 1041.59 cm⁻¹. The band at 824.77 cm⁻¹ was attributed to the out of plane C-H bending.
Effect of Transitions on Conductivity of Polyaniline Synthesized using Different Dopants by Chemical Oxidation

Figure 2 FTIR of PANI-H$_2$SO$_4$ Bulk sample

The bands at 3742.7 cm$^{-1}$ and 3787.75 cm$^{-1}$ are attributed to hydrogen-bonded N-H stretching. The wavenumbers 2660.56 cm$^{-1}$, 2165.14 cm$^{-1}$ and 2050.62 cm$^{-1}$ are due to absorption of free charge-carriers in the protonated polymer. The quinonoid and benzenoid ring-stretching vibrations were at the 1544.84. A blue shift can be observed for the quinonoid caused by the vibrations at the previous frequency to 1599.36 cm$^{-1}$ the band at 863.50 cm$^{-1}$ in the spectrum of the protonated sample represents the H$_2$SO$_4$ – counterion.

Figure 3 FTIR of PANI-HCl Bulk sample

http://www.iaeme.com/IJARET/index.asp 667 editor@iaeme.com
The figure above shows the IR of PANI-HCl sample. The bands at 3212.94 cm\(^{-1}\) and 3053.50 cm\(^{-1}\) are attributed to hydrogen-bonded N-H stretching and the aromatic C-H stretching. The bands at 1596.19 cm\(^{-1}\) and 1496 cm\(^{-1}\) can be attributed to the quinonoid and benzenoid structure of PANI cm\(^{-1}\) in the spectrum of the sample corresponds to the \(\pi\)-electron delocalized induced in the polymer by protonation. The band observed at 1206.48 cm\(^{-1}\) is a characteristic of the conducting protonated form of PANI.

Name	Description
CHCOOH	PANI CH\(_3\)COOH

Figure 4 FTIR of PANI-CH\(_3\)COOH Bulk sample

The quinoid and benzenoid ring-stretching were found at the 1559.62 cm\(^{-1}\) and 1473.67 cm\(^{-1}\) respectively. The band characteristic of conducting protonated form was observed at 1242.62 cm\(^{-1}\). The 877.04 cm\(^{-1}\) band can be attributed to the C-H out of plane bending vibrations of hydrogen atoms.

Bands at 1559 cm\(^{-1}\) and 1473 cm\(^{-1}\) are assigned to quinoid and benzenoid respectively for PANI-CH\(_3\)COOH. The same bands were observed for PANI-H\(_2\)SO\(_4\). The ratio of IQ/IB can be used to estimate the degree of oxidation state. The similarities observed in these two samples point to the fact that the oxidation degree in the two dopants is the same. The IQ/IB ratio for PANI-HCl and PANI-HNO\(_3\) samples were not the same in comparison to any of the samples. This indicates that these samples had different degrees of oxidation (Melad et al., 2016). According to (Atassi et al., 2008) band characteristics of protonated form of PANI is observed at 1246 cm\(^{-1}\) and this has been interpreted as originating from bi-polaron structures related to C-N stretching vibration. In this work bands at 1288 cm\(^{-1}\), 1206 cm\(^{-1}\), 1242 cm\(^{-1}\) and 1206 cm\(^{-1}\) were observed for PANI-HNO\(_3\), PANI-H\(_2\)SO\(_4\), PANI-CH\(_3\)COOH and PANI-HCl respectively. Also peaks at 1580 cm\(^{-1}\) have been reported to confirm the presence of a protonated imine function (Rao et al., 2000). PANI-HNO\(_3\), PANI-H\(_2\)SO\(_4\), PANI-CH\(_3\)COOH and PANI-HCl the peaks recording around this band were 1574 cm\(^{-1}\), 1544 cm\(^{-1}\), 1559 cm\(^{-1}\) and 1598 cm\(^{-1}\) respectively.
Effect of Transitions on Conductivity of Polyaniline Synthesized using Different Dopants by Chemical Oxidation

UV-Vis Spectra
The absorption bands observed were usually within the ranges of 290-324, 402-430 and 828-835nm for a pure PANI (Owusu-Sekyere et al., 2017). For the weak acids PANI-CH$_3$COOH, the bands observed are in the range of 350-365, 430-440 and 770-800 nm. The polaron and bipolaron bands which are clear characteristics of PANI can be seen in the range for the acetic acid. Similarly, the bands in PANI-HNO$_3$ appears in the ranges of 335-360 nm which is attributed to the $\pi - \pi^*$ electron transition, polaron is observed in the 410-440 nm band and 700-800 nm been the band for transition between benzenoid-quinoid rings. Among the two weak acids it was observed that for HNO$_3$ the bands stretched further as compared to that of the acetic acid.

The bands that appear in the PANI-HCl sample were 310-400 nm, 420-440 nm which show the presence of polarons and bipolarons transitions and the 700-810 nm band which can be attributed to charge transfers from the benzenoid and quinoid rings. In the same way these bands appeared in the PANI-H$_2$SO$_4$ sample. The absorption bands that have been obtained from the UV-Visible spectra are in good agreement with that reported in the literature.

Although the samples synthesized using different aqueous acids did show the various bands characteristic of PANI. Some comparisons can be made in terms of the bands and how they appeared via the spectral lines for each sample. To begin with are PANICH$_3$COOH and PANI-HNO$_3$, Although the transition in both occurs within the same band the difference in the wavelength could possibly be as results of the electron making a bigger jump from the π bonding to π anti-bonding state in PANI-HNO$_3$. This scenario runs throughout the entire bands when comparing PANI-HNO$_3$ to PANI-CH$_3$COOH.

The transition of the π bonding to the π anti-bonding in PANI-H$_2$SO$_4$ occurs earlier than in PANI-HCl sample. This can only be as a results of the H$_2$SO$_4$ acid been a stronger acid than the HCl and as a results the transition from $\pi - \pi^*$ required lower wavelength for PANI-H$_2$SO$_4$ sample as compared to the PANI-HCl sample. By comparing the four samples the $\pi - \pi^*$ transition then can be arranged from the strongest to the weakest as PANI-H$_2$SO$_4$ followed by PANI-HCl then PANI-HNO$_3$ and the weakest been PANI-CH$_3$COOH.

3. DETERMINATION OF THE BAND GAP OF BULK SAMPLES
Using the Stern relation below (Stern, 1963), the energy band gaps (Eg) of the thin films were established by the absorbance spectra.

$$A = \frac{K(hv-Eg)^{2n}}{hv}$$ (1)

Where hv is the photon energy, A is the absorbance; K equals a constant while n carries the value of either 1 or 4. In a direct transition n is equal to 1 and 4 for allowed and forbidden transitions respectively. The band gap, Eg, were obtained from a straight line plot of $(Ahv)^2$ as a function of hv. Extrapolation of the line to intersect the horizontal axis at $(Ahv)^2 = 0$, gave the energy band gap as shown in the figures below. The Eg obtained were 3.30 eV, 3.75 eV, 3.83 eV and 3.89 eV for PANI-HCl, PANI-H$_2$SO$_4$, PANI-HNO$_3$ and PANI-CH$_3$COOH respectively.
Figure 5 Band Gap of Bulk samples

Table 2 Band gap of Bulk samples.

SAMPLE	Bulk sample (Eg/eV)
HCl	3.30
H₂SO₄	3.75
HNO₃	3.83
CH₃COOH	3.89

4. CONDUCTIVITY OF SAMPLES

The DC electrical conductivity \((\sigma = 1/\rho) \) was carried out by four probe method using the following formula:

\[
\rho = 4.5324\frac{V}{I} \quad \text{(2)}
\]

Where: \(\rho \) = resistivity of the material, \(I \) = Average current supplied to the entire set-up, \(V \) = Average voltage drop measured across the sample; \(t \) = thickness of the sample.

Table 3 Resistivity and Conductivity of Bulk Samples.

DOPANT	AVERAGE CURRENT I/mA	AVERAGE VOLTAGE V/mV	\(\rho \)/Ω.cm	\(\sigma \)/S.cm⁻¹	\(\sigma \)/S.cm⁻¹ from literature Reference
HCl	1.95	2.00	1.956	0.669	0.16 (Sinha et al., 2016)
H₂SO₄	2.35	1.00	0.578	1.183	1.09 (Alesary et al., 2018)
HNO₃	0.35	0.70	2.719	0.300	0.04 (Manaf et al., 2017)
CH₃COOH	0.25	1.00	5.438	0.148	0.04 (Kulkarni et al., 2004).
5. CONCLUSION

Chemical oxidation synthesis of polyaniline was done using ammonium persulphate (APS) as an oxidizing agent and H$_2$SO$_4$, HCl and CH$_3$COOH as dopants. UV-Vis spectroscopy was carried out on the samples prepared by the method stated. Absorption peak was observed between the range 300-350 nm which depicts the π – π^* electron transition. Another peak between 450 – 540 nm was also noticed for in all the samples and can be attributed to the polaron and bipolaron transition in polyaniline. A conductivity of 1.183 S/cm was observed for polyaniline doped with H$_2$SO$_4$ and it can be ascribed to the electron transfer in the structure as obtained from the UV-Vis analysis. HCl and HNO$_3$ acid doped samples resulted in moderate conductivity while the CH$_3$COOH doped sample had the least conductivity which might be due to the decrease in localized defect states in the polaron band as observed from π - π^* transitions.

REFERENCES

[1] B. A. Bolto, R. McNeill, and D. Weiss. Electronic conduction in polymers. iii. electronic properties of polypyrrole. *Australian Journal of Chemistry*, 16(6):1090–1103, 1963.
[2] Y. Cao, P. Smith, and A. J. Heeger. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. *Synthetic Metals*, 48(1):91–97, 1992.
[3] Atassi, Yomen and Tally, Mohammad and Ismail, Mazen, Synthesis and characterization of chloride doped polyaniline by bulk oxidative chemical polymerization. Doping effect on electrical conductivity, arXiv preprint arXiv: 0809.3552, 2008.
[4] Alesary, Hasan Fisal and Ismail, Hani Khalil and Khudhair, Ahmed Fadhil and Mohammed, Mohammed Qasim, Effects of dopant ions on the properties of polyaniline conducting polymer, Oriental Scientific Publishing Company, 2525, 2018
[5] R. De Surville, M. Jozeffowicz, L. Yu, J. Pepichon, and R. Buvet. Electrochemical chains using protolytic organic semiconductors. *Electrochimica Acta*, 13(6):1451–1458, 1968.
[6] D. DeLongchamp and P. T. Hammond. Layer-by-layer assembly of peptide/polyaniline electrochromic devices. *Advanced Materials*, 13(19):1455–1459, 2001.
[7] W. W. Focke, G. E. Wnek, and Y. Wei. Influence of oxidation state, ph, and counterion on the conductivity of polyaniline. *Journal of Physical Chemistry*, 91(22):5813–5818, 1987.
[8] V. R. Gowariker, N. Viswanathan, and J. Sreedhar. *Polymer science*. New Age International, 1986.
[9] G. Inzelt. Historical background (or: There is nothing new under the sun). *Conducting Polymers: A New Era in Electrochemistry*, pages 265–269, 2008.
[10] T. Kahl, K.-W. Schroder, F. Lawrence, W. Marshall, H. H’ oke, and R. J’ ackh.” Aniline. *Ullmann’s Encyclopedia of Industrial Chemistry*, 2000.
[11] Letheby. Xxix.—on the production of a blue substance by the electrolysis of sulphate of aniline. *Journal of the Chemical Society*, 15:161–163, 1862.
[12] A. G. MacDiarmid. “synthetic metals”: A novel role for organic polymers (nobel lecture). *Angewandte Chemie International Edition*, 40(14):2581–2590, 2001.
[13] J. Masters, Y. Sun, A. MacDiarmid, and A. Epstein. Polyaniline: allowed oxidation states. *Synthetic Metals*, 41(1-2):715–718, 1991.
[14] T. Natarajah. Functional nanofibers in microelectronics applications. *Functional Nanofibers and their Applications*, page 371, 2012.
[15] Melad, Omar and Jarur, Mariam, Studies on the effect of doping agent on the structure of polyaniline, Chemistry & Chemical Technology, Lviv Polytechnic National University, pages 41-44, 2016.

[16] V. Pandya. Study of the comparison of conducting behavior of doped macromolecules and semiconductors. Imperial Journal of Interdisciplinary Research, 2(12), 2016.

[17] Azwar Manaf, Yoga Julian Prasutiyo, Mas Ayuelitahafizah, Andreas, Synthesis and microwave characterization of conductive polyaniline prepared by continuous polymerization process, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 012051, 2017.

[18] P. Rannou and M. Nechtschein. Aging studies on polyaniline: conductivity and thermal stability. Synthetic Metals, 84(1):755–756, 1997.

[19] L. Songxi. Electropolymerization 3, 4-study on ethylene dioxythiophene. 2012.

[20] Kulkarni, Milind V and Viswanath, Annamraju Kasi and Marimuthu, R and Seth, Tanay, Synthesis and characterization of polyaniline doped with organic acids, Journal of Polymer Science, Part A: Polymer Chemistry, Wiley Online Library, pages 2043—2049, 2004s.