Gene Section
Mini Review

POLE (DNA polymerase epsilon, catalytic subunit)

Enric Domingo
Department of Oncology, University of Oxford, Oxford, United Kingdom / enric.domingo@oncology.ox.ac.uk

Published in Atlas Database: May 2018
Online updated version: http://AtlasGeneticsOncology.org/Genes/POLEID41773ch12q24.html
Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/70021/05-2018-POLEID41773ch12q24.pdf
DOI: 10.4267/2042/70021

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2019 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract
Review on POLE, with data on DNA, on the protein encoded, and where the gene is implicated.

Keywords
POLE; DNA repair; DNA replication; DNA replicase

Identity
Other names: POLE1
HGNC (Hugo): POLE
Location: 12q24.33
Local order: 132,623,762-132,687,359

DNA/RNA
Description
POLE gene is 63.6 kb long and composed of 49 coding exons, where the first and last one also have a UTR region.

Transcription
The length of the transcript is 7840 bp and results in a protein of 2286 residues.

Protein
Description
The POLE gene encodes for one of the four subunits that form Polε (DNA polymerase epsilon) together with POLE2, POLE3 and POLE4 genes. This protein is one of the main DNA replicases in eukaryotes and is responsible of the replication of the leading strand. POLE contains both the catalytic active site and the proofreading exonuclease domain (residues 223-517). Accordingly, the POLE gene confers to Polε both replicative and 3’ to 5’ repair capabilities for the new strand.

Expression
Broadly expressed.

Localisation
Nuclear.

Function
Polε is responsible of the polymerization of the leading strand during DNA replication in yeast and humans. It also possesses 3’ to 5’ exonuclease capability to repair missincorporated nucleotides during DNA replication. Polε is also involved in DNA repair pathways such as mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER) or double-strand break repair.

Mutations
Germinal
A few missense germline mutations in the proofreading domain of POLE have been shown to be pathogenic such as W347C, N363K, D368V, L424V, P436S or Y458F. These are quite rare in the population although for unclear reasons they are more common than similar germline mutations in the polymerase gene POLD1. These mutations affect the exonuclease repair of Polε hence resulting in a mutation rate increase of about 100-fold.
Accordingly, these tumours are usually called ultramutated.

Somatic

Pathogenic somatic mutations in the proofreading domain of POLE have been found in some tumour types at moderate or rare frequencies. Some mutations in the polymerase domain have been suggested to be drivers but further research is required to validate these results.

Implicated in

Different human sporadic cancers

Somatic pathogenic mutations in the proofreading domain of POLE have been found in 8% of endometrial tumours and at lower frequencies in other tumour types such as colorectal, glioblastoma, ovary, prostate, breast or gastric cancer. These mutations seem to confer similar phenotypes regardless of the tumour tissue type. These are missense, heterozygous mutations where no second hit by either mutation or LOH seem to be required, and they are very early events, possibly initiating. Some mutations are hotspots such as P286R, S297F, V411L or S459F but other rarer mutations have also been identified (eg P286H/L, S297Y, F367S, L424V/I, P436R, M444K, A456P). These mutations affect the proofreading of the protein resulting in ultramutation with an overrepresentation of C>A. More specifically, POLE tumours have mutational signature 10 as reported by Alexandrov et al, with extremely prominent TCG>TAT and TCT>TAT substitutions and transcriptional strand bias. As a result, there is an overrepresentation of some specific missense mutations and nonsense mutations. In addition, it may explain why some cancer driver genes in POLE tumours tend to show mutations otherwise relatively uncommon such as R213X in TP53 or R88Q in PIK3CA. POLE tumours are hardly ever concomitant with microsatellite instability, although a few tumours with both phenotypes have been described, and do not seem to show chromosomal instability as their karyotype is nearly diploid.

Disease

Patients with somatic POLE driver mutations are younger on average, although they have a broad range of ages. For colorectal cancer, most mutations seem to confer similar phenotypes regardless of the tumour tissue type. These are missense, heterozygous mutations where no second hit by either mutation or LOH seem to be required, and they are very early events, possibly initiating. Some mutations are hotspots such as P286R, S297F, V411L or S459F but other rarer mutations have also been identified (eg P286H/L, S297Y, F367S, L424V/I, P436R, M444K, A456P). These mutations affect the proofreading of the protein resulting in ultramutation with an overrepresentation of C>A. More specifically, POLE tumours have mutational signature 10 as reported by Alexandrov et al, with extremely prominent TCG>TAT and TCT>TAT substitutions and transcriptional strand bias. As a result, there is an overrepresentation of some specific missense mutations and nonsense mutations. In addition, it may explain why some cancer driver genes in POLE tumours tend to show mutations otherwise relatively uncommon such as R213X in TP53 or R88Q in PIK3CA. POLE tumours are hardly ever concomitant with microsatellite instability, although a few tumours with both phenotypes have been described, and do not seem to show chromosomal instability as their karyotype is nearly diploid.

Prognosis

POLE tumours in endometrial cancer, colorectal cancer and glioblastoma show excellent prognosis in early disease. Similar patterns are expected in any other tumour type although it is not formally proven due to the low frequency of these mutations. Such good prognosis is because of very high immunogenicity with upregulation of immune checkpoint and other immunosuppressive genes. Accordingly, POLE proofreading pathogenic mutation is also a promising candidate biomarker for checkpoint blockade immunotherapy. They may also be sensitive to treatment with nucleoside analogs as they increase the mutation burden to a level where tumour cells are not viable.

Prophreading-associated polyposis (PPAP)

Disease

Autosomal dominant disease with high risk for endometrial and/or colorectal adenoma or carcinoma due to germline mutations in POLE or POLD1 genes.

Prognosis

Probably good prognosis in early disease as found with POLE somatic mutations, although not formally proven. Similarly, these patients are likely to respond to checkpoint blockade immunotherapy.

References

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Blankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Elyfjord JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Illicic T, Imbeaud S, Imieliński M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhan E, López-Ótin C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuili E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesinger M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R, van Buuren MM, van ’t Veer L, Vincent-Salomon A, Waddell N, Yates LR; Australian Pancreatic Cancer Genome Initiative; ICGC Breast Cancer Consortium; ICGC MMML-Seq Consortium; ICGC PedBrain, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature 2013 Aug 22;500(7463):415-21

Bellido F, Pineda M, Aiza G, Valdés-Mas R, Navarro M, Puente DA, Pons T, González S, Iglesias S, Dander E, Piñol V, Soto JL, Valencia A, Blanco I, Urioste M, Brunet J, Lázaro C, Capellá G, Puente XS, Valle L. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genet Med 2016 Apr;18(4):325-32

Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R, Davidson S, Edwards M, Elvin JA, Hodel KP, Zahurancik WU, Suo Z, Lipman T, Wimmer K, Kratz CP, Bowers DC, Laetsch TW, Dunn GP, Johanns TM, Grimm MR, Smirnov IV, Larouche V, Samuel D, Bronsma A, Osborn M, Stearns D, Raman P, Cole KA, Storm PB, Yalon M, Opochev E, Mason G, Thomas GA, Sabel M, George B, Ziegler DS, Lindhorst S, Issai VM, Constantini S, Toledano MA, Chung J, Ramaswamy V, Irwin MS, Aronson M, Durno C, Taylor MD, Rechavi G, Maris JM, Bouffet E, Hawkins C, Costello JF, Meyn MS, Pursell ZF, Malkin D, Taborsky M, Shlien A. Comprehensive Analysis of Hypermutation in Human Cancer. Cell 2017 Nov 16;171(5):1042-1056
POLE (DNA polymerase epsilon, catalytic subunit)

Domingo E

Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ, Grimes JM, Gorman M, Martin L, Howarth KM, Hodgson SV; NSECG Collaborators, Kaur K, Taylor J, Tomlinson IP. DNA polymerase and δ exonuclease domain mutations in endometrial cancer. Hum Mol Genet 2013 Jul 15;22(14):2820-8

Church DN, Stelloc M, Nout RA, Valtcheva N, Depreeuw J, ter Haar N, Noske A, Amant F, Tomlinson IP, Wild PJ, Lambrechts D, Jürgenlím-Schulz IM, Jobse JJ, Smit VT, Creutzberg CL, Bosse T. Prognostic significance of POLE proofreading mutations in endometrial cancer. J Natl Cancer Inst 2014 Dec 12;107(1):402

Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeulen L, Fessler E, Medema JP, Boot A, Moreau H, van Wezel T, Liefers GJ, Lothe RA, Danielsen SA, Sveen A, Nesbakken A, Zlobec I, Lugli A, Koelzer VH, Berger MD, Castellvi-Bel S, Muñoz J; Epic colon consortium, de Bruyn M, Nijman HW, Novelli M, Lawson K, Oukrif D, Frangou E, Dutton P, Teijpar S, Delorenzi M, Kerr R, Kerr D, Tomlinson I, Church DN. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol 2016 Nov;1(3):207-216

Eggink FA, Van Gool IC, Leary A, Pollock PM, Crosbie EJ, Milesklin L, Jordanova ES, Adam J, Freeman-Mills L, Church DN, Creutzberg CL, De Bruyn M, Nijman HW, Bosse T. Immunological profiling of molecularly classified high-risk endometrial cancers identifies POLE-mutant and microsatellite unstable cancers as candidates for checkpoint inhibition. Oncoimmunology 2016 Dec 9;5(2):e1264565

Erson-Omay EZ, alayan AO, Schultz N, Weinhold N, Omay SB, Ozdumак K, Koksal Y, Li J, Serin Harmanci A, Clark V, Carrón-Grant G, Baranowski J, alar C, Barak T, Coskun S, Baran B, Köse D, Sun J, Bakirciolu M, Moliterno Günel J, Pamir MN, Mishra-Gorur K, Bilguvar K, Yasuno K, Vortmeyer A, Huttner AJ, Sander C, Günel M. Somatic POLE proofreading domain mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis. Neuro Oncol 2015 Oct;17(10):1356-64

Heitzer E, Tomlinson I. Replicative DNA polymerase mutations in cancer. Curr Opin Genet Dev 2014 Feb;24:107-13

Johanns TM, Miller CA, Dorward IG, Tsien C, Chang E, Perry A, Uppaluri R, Ferguson C, Schmidt RE, Dahlya S, Anstiss G, Mardis ER, Dunn GP. Immunogenomics of Hypermutated Glioblastoma: A Patient with Germline POLE Deficiency Treated with Checkpoint Blockade Immunotherapy. Cancer Discov 2016 Nov;6(11):1230-1236

Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, Kemp Z, Spain SL, Guarinio E, Salguero I, Sherborne A, Chubb D, Carvaljal-Camona LG, Ma Y, Kaur K, Dobbs S, Barclay E, Gorman M, Martin L, Kovac MB, Humphry S; CORGI Consortium; WGS500 Consortium, Lucassen A, Holmes CC, Bentley D, Donnelly P, Taylor J, Petridis C, Roylançe R, Sawyer EJ, Kerr DJ, Clark S, Grimes J, Kearsey SE, Thomas HJ, McVeân G, Houlston RS, Tomlinson I. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 2013 Feb;45(2):136-44

Rayner E, van Gool IC, Palles C, Kearsey SE, Bosse T, Tomlinson I, Church DN. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat Rev Cancer 2016 Feb;16(2):71-81

Temko D, Van Gool IC, Rayner E, Glaire M, Makino S, Brown M, Chegwidden L, Palles C, Depreeuw J, Beggs A, Stathopoulos C, Mason J, Baker AM, Williams M, Cerundolo V, Rei M, Taylor JC, Schuh A, Ahmed A, Amant F, Lambrechts D, Smit VT, Bosse T, Graham TA, Church DN, Tomlinson I. Somatic POLE exonuclease domain mutations are early events in sporadic endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal neoantigen burden and immune response. J Pathol 2018 Mar 31

Valle L, Hernández-Illán E, Bellido F, Aiza G, Castillejo A, Castillejo MI, Navarro M, Segui N, Vargas G, Guarinos C, Juárez M, Sanjuán X, Iglesias S, Alenda C, Egoavil C, Juárez A, Cerundo A, Castillero MI, Soler M, Brunet J, González S, Rover J, Lázaro C, Capellá G, Pineda M, Soto JL, Blanco I. New insights into POLE and POLD1 germline mutations in familial colorectal cancer and polyposis. Hum Mol Genet 2014 Jul 12;23(13):3506-12

Van Gool IC, Rayner E, Osse EM, Nout RA, Creutzberg CL, Tomlinson IPM, Church DN, Smit VTHBM, de Wind N, Bosse T, Drost M. Adjuvant Treatment for POLE Proofreading Domain-Mutant Cancers: Sensitivity to Radiotherapy, Chemotherapy, and Nucleoside Analogues. Clin Cancer Res 2018 Mar 20

van Gool IC, Bosse T, Church DN. POLE proofreading mutation, immune response and prognosis in endometrial cancer. Oncoimmunology 2015 Aug 12;4(8):e2160387

This article should be referenced as such:

Domingo E. POLE (DNA polymerase epsilon, catalytic subunit). Atlas Genet Cytogenet Oncol Haematol. 2019; 23(3):53-55.