n-Coherence Relative to a Hereditary Torsion Theory

Zhu Zhanmin

Department of Mathematics, Jiaxing University, Jiaxing, Zhejiang Province 314001, China

Correspondence should be addressed to Zhu Zhanmin; zhuzhanminzjxu@hotmail.com

Received 13 January 2020; Accepted 6 July 2020; Published 4 August 2020

1. Introduction

Throughout this paper, R is an associative ring with identity and all modules considered are unitary. For any R-module M, $M^+ = \text{Hom}(M, (\mathbb{Q}/\mathbb{Z}))$ will be the character module of M.

Recall that a torsion theory $\tau = (\mathcal{T}, \mathcal{F})$ for the category of all right R-modules consists of two subclasses \mathcal{T} and \mathcal{F} such that

1. $\text{Hom}(T, F) = 0$ for all $T \in \mathcal{T}$ and $F \in \mathcal{F}$
2. If $\text{Hom}(T, F) = 0$ for all $F \in \mathcal{F}$, then $T \in \mathcal{T}$
3. If $\text{Hom}(T, F) = 0$ for all $T \in \mathcal{T}$, then $F \in \mathcal{F}$

In this case, \mathcal{T} is called a torsion class and its objects are called τ-torsion, \mathcal{F} is called a torsion-free class, and its objects are called τ-torsion free. From, Proposition 2.1, Chap VI in [9], a class \mathcal{T} of right R-modules is a torsion class for some torsion theory if and only if \mathcal{T} is closed under quotient modules, direct sums, and extensions. From Proposition 2.2, Chap VI in [9], a class \mathcal{F} of right R-modules is a torsion-free class for some torsion theory if and only if \mathcal{F} is closed under submodules, direct products, and extensions. A torsion theory $\tau = (\mathcal{T}, \mathcal{F})$ is called hereditary if \mathcal{F} is closed under submodules.

We recall also that a right R-module M is called FP-injective [2] or absolutely pure [3] if $\text{Ext}^1_R(A, M) = 0$ for every finitely presented right R-module A; a left R-module M is flat if and only if $\text{Tor}_1^R(A, M) = 0$ for every finitely presented right R-module A; a ring R is right coherent [4] if every finitely generated right ideal of R is finitely presented, or equivalently, if every finitely generated submodule of a projective right R-module is finitely presented. FP-injective modules, flat modules, coherent rings, and their generalizations have been studied extensively by many authors. For example, in 1994, Costa introduced the concept of right n-coherent rings in [5]. Following [5], a ring R is called right n-coherent if every n-presented right R-module is $(n+1)$-presented, where a right R-module A is called n-presented in case there exists an exact sequence of right R-modules $F_n \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow A \rightarrow 0$, in which every F_i is finitely generated free. It is easy to see that a ring R is right coherent if and only if R is right 1-coherent. In 1996, Chen and Ding introduced the concepts of n-FP-injective modules and n-flat modules in [6], using the two concepts and characterized right n-coherent rings. Following [6], a right R-module M is called n-FP-injective in case $\text{Ext}^n_R(A, M) = 0$ for every n-presented right R-module A; a left R-module M is called n-flat in case $\text{Tor}_n^R(A, M) = 0$ for every n-presented right R-module A.

Let $\tau = (\mathcal{T}, \mathcal{F})$ be a (hereditary) torsion theory for the category of all right R-modules. Then, according to [7], a right R-module M is called right τ-finitely generated (or τ-FG for short) if there exists a finitely generated submodule N such that $(M/N) \in \mathcal{T}$; a right R-module A is called τ-finitely generated (or τ-FP for short) if there exists an exact sequence of right R-modules $0 \rightarrow K \rightarrow F \rightarrow A \rightarrow 0$ with F finitely generated free and K τ-finitely generated; R is called τ-coherent if every finitely generated right ideal of R is τ-FP. In 1993, Nieves introduced the concept of τ-n-presented (or τ-n-FP for short) modules in [8]. Let $\tau = (\mathcal{T}, \mathcal{F})$ be a torsion theory for the category of all right R-modules; then, according to [8], a right
2. Characterizations of τ-$\left(n+1\right)$-Presented Modules and Right τ-n-Coherent Rings

We recall that a nonempty subclass \mathcal{T} of right R-modules is called a weak torsion class [9] if \mathcal{T} is closed under homomorphic images and extensions. Following [9], if a class \mathcal{T} of right R-modules is a weak torsion class, then a right R-module M is called \mathcal{T}-finitely generated (or \mathcal{T}-FG for short) if there exists a finitely generated submodule N such that $(M/N) \in \mathcal{T}$; a right R-module A is called \mathcal{T}-finitely presented (or \mathcal{T}-FP for short) if there exists an exact sequence of right R-modules $0 \longrightarrow K \longrightarrow F \longrightarrow A \longrightarrow 0$ with F finitely generated free and $K\mathcal{T}$-finitely generated; a right R-module A is called (\mathcal{T},n)-presented if there exists an exact sequence of right R-modules:

$$0 \longrightarrow K_{n-1} \longrightarrow F_{n-1} \longrightarrow \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0,$$

such that F_0, \cdots, F_{n-1} are finitely generated free and K_{n-1} is \mathcal{T}-finitely generated, where n is a positive integer.

Theorem 1. Let τ be a torsion theory of mod-R, n a non-negative integer, and A an n-presented right R-module. Then, the following statements are equivalent for A:

1. A is τ-$\left(n+1\right)$-presented
2. The canonical map $\lim Ext^0_R(A,X) \longrightarrow Ext^0_R(A, X)$ is an isomorphism for each direct system $\{X_i\}_{i \in I}$ of τ-torsion-free modules
3. $\text{Tor}_1^R(A,X^+) \cong Ext^0_R(A,X^+)$ for each τ-torsion-free module X
4. $\text{Tor}_1^R(A,E^+) = 0$ for each τ-torsion-free injective module E

Proof

(1)\Rightarrow(2) Use induction on n. If $n = 0$, then the result holds by Proposition 2.5(3) in [4]. Assume that the result holds when $n = k$. Then, when $n = k + 1$, suppose A is a τ-$(k+2)$-presented module. Let $0 \longrightarrow N \longrightarrow F \longrightarrow A \longrightarrow 0$ be an exact sequence of right R-modules, where F is finitely generated free and N is τ-$(k+1)$-presented. Then, we have a commutative diagram:

$$\begin{array}{cccccc}
\lim Ext^0_R(F, X) & \longrightarrow & \lim Ext^0_R(N, X) & \longrightarrow & \lim Ext^0_R(A, X) & \longrightarrow 0 \\
\langle \phi_1 \rangle & & \langle \phi_2 \rangle & & \langle \phi_3 \rangle & \\
\lim Ext^0_R(F, limX_i) & \longrightarrow & Ext^0_R(N, limX_i) & \longrightarrow & Ext^0_R(A, limX_i) & \longrightarrow 0
\end{array}$$

with exact rows. Since ϕ_1 is an isomorphism and hence epic and ϕ_2 is an isomorphism by hypothesis, we have that ϕ_3 is also an isomorphism by the Five Lemma.

(2)\Rightarrow(1) Use induction on n. If $n = 0$, then the result holds by Proposition 2.5 (3) in [4]. Assume that the result holds when $n = k$. Then, when $n = k + 1$, suppose A is a $(k+1)$-presented right R-module. Let $0 \longrightarrow N \longrightarrow F \longrightarrow A \longrightarrow 0$ be an exact sequence of right R-modules, where F is finitely generated free and N is k-presented. Then, for any direct system $\{X_i\}_{i \in I}$ of τ-torsion-free modules. If $k > 0$, then we have a commutative diagram:
with exact rows. From 25.4 (d) in [10], \(\phi_0 \) is an isomorphism and hence epic, and \(\phi_i \) is an isomorphism by condition. Note that \(\phi_1 \) is an isomorphism, so, by the Five Lemma, we have that \(\phi_2 \) is also an isomorphism. So, \(N \) is \(\tau \)-FP by Proposition 2.5 in [4], and it shows that \(A \) is \(\tau \)-2-FP.

(1)\(\Rightarrow \) (3) In case, \(n = 0 \), then the result holds by Lemma 3.1 in [4]. In case, \(n = 1 \), then there is an exact sequence of right \(R \)-modules \(0 \rightarrow K \rightarrow F \rightarrow A \rightarrow 0 \), where \(F \) is finitely generated free and \(K \) is \(\tau \)-FP. And then we have a commutative diagram:

\[
\begin{array}{cccccc}
0 & \rightarrow & \text{Tor}^R_1(A, X^+) & \rightarrow & K \otimes X^+ & \rightarrow & F \otimes X^+ \\
\downarrow f & & \downarrow g & & \downarrow h & & \\
0 & \rightarrow & \text{Ext}^R_1(A, X^+) & \rightarrow & \text{Hom}(K, X^+) & \rightarrow & \text{Hom}(F, X^+) \\
\end{array}
\]

with exact rows. By Lemma 3.1 [4], \(g \) and \(h \) are isomorphisms. So, by the Five Lemma, \(f \) is also an isomorphism. In case, \(n > 1 \), then we have an exact sequence of right \(R \)-modules \(0 \rightarrow K_{n-2} \rightarrow F_{n-2} \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0 \), where each \(F_i \) is finitely generated free and \(K_{n-2} \) is \(\tau \)-2-FP, and hence we have \(\text{Tor}^R_1(K_{n-2}, X^+) \equiv \text{Tor}^R_1(K_{n-2}, X^+) \equiv \text{Ext}^R_0(A, X^+) \equiv \text{Ext}^R_0(A, X^+) \), as required.

(3)\(\Rightarrow \) (4) It is obvious.

(4)\(\Rightarrow \) (1) Since \(A \) is \(n \)-FP, there exists an exact sequence of right \(R \)-modules \(0 \rightarrow K_{n-2} \rightarrow F_{n-2} \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0 \), where each \(F_i \) is finitely generated free and \(K_{n-2} \) is finitely presented. Thus, \(\text{Tor}^R_1(K_{n-2}, E^+) \equiv \text{Tor}^R_1(A, E^+) = 0 \) for any \(\tau \)-torsion-free injective module \(E \) by (4). It follows from Proposition 2 in [6] that \(K_{n-2} \) is \(\tau \)-2-FP, and therefore \(A \) is \(\tau \)-\((n + 1)\)-presented.

\[
\begin{array}{cccccc}
0 & \rightarrow & \text{limExt}^R_1(A, X_i) & \rightarrow & \text{limExt}^R_{i+1}(A, X_i) & \rightarrow & 0 \\
\downarrow \phi_2 & & \downarrow \phi_1 & & \downarrow \phi_0 & & \\
0 & \rightarrow & \text{Ext}^R_1(A, \text{lim}X_i) & \rightarrow & \text{Ext}^R_{i+1}(A, \text{lim}X_i) & \rightarrow & 0 \\
\end{array}
\]

Corollary 1. Let \(n \) be a nonnegative integer and \(A \) an \(n \)-presented right \(R \)-module. Then, the following statements are equivalent:

1. \(A \) is \((n + 1)\)-presented
2. The canonical map \(\lim \text{Ext}^R_1(A, X_i) \rightarrow \text{Ext}^R_1(A, \text{lim}X_i) \) is an isomorphism for each direct system \(\{X_i\}_{i \in I} \) of right \(R \)-modules
3. \(\text{Tor}^R_1(A, X^+) \equiv \text{Ext}^R_1(A, X)^+ \) for each right \(R \)-module \(X^+ \)
4. \(\text{Tor}^R_1(A, E^+) = 0 \) for each injective right \(R \)-module \(E^+ \)

Definition 1. Let \(\tau \) be a torsion theory of \(\text{mod-} R \). Then, the ring \(R \) is called right \(\tau \)-\(n \)-coherent, if every \(n \)-presented right \(R \)-module is \((\tau, n + 1)\)-presented.

Let \(\tau = (\mathcal{T}, \mathcal{F}) \) be a torsion theory of \(\text{mod-} R \). Then, it is easy to see that \(R \) is right \(\tau \)-\(n \)-coherent if and only if every \(n \)-presented right \(R \)-module is \((\mathcal{T}, n + 1)\)-presented.

Example 1

1. Let \(\tau = (0, \text{mod-} R) \). Then, \(R \) is right \(\tau \)-\(n \)-coherent if and only if \(R \) is right \(n \)-coherent.
2. \(R \) is right \(\tau \)-coherent if and only if \(R \) is right \(\tau \)-1-coherent.
3. Let \(\tau = (\text{mod-} R, 0) \). Then, \(R \) is right \(\tau \)-\(n \)-coherent.

Proof. (1) and (3) are obvious. (2) follows from Theorem 3.3 (2) in [4].

Definition 2. Let \(\tau \) be a torsion theory of \(\text{mod-} R \) and \(n \) a positive integer. Then, a right \(R \)-module \(M \) is said to be \(\tau \)-\(n \)-FP-injective, if \(\text{Ext}^R_1(A, M) = 0 \) for each \(\tau \)-\((n + 1)\)-presented module \(M \); a right \(R \)-module \(M \) is said to be \(\tau \)-FP-injective if it is \(\tau \)-1-FP-injective.

Clearly, each \(n \)-FP-injective module is \(\tau \)-\(n \)-FP-injective. If \(\tau = (\text{mod-} R, 0) \), then it is easy to see that a right \(R \)-module \(M \) is \(\tau \)-\(n \)-FP-injective if and only if it is \(n \)-FP-injective. Now, we give our characterization of right \(\tau \)-coherent rings.
Theorem 2. Let τ be a hereditary torsion theory of mod-R and n a positive integer. Then, the following statements are equivalent for the ring R:

1. R is right τ-n-coherent
2. $\lim \text{Ext}^n_A(M, X_i) \cong \text{Ext}^n_A(M, \lim X_i)$ for any n-presented right R-module M and a directed system $\{X_i\}_{i \in I}$ of τ-torsion-free modules
3. $\text{Tor}^n_A(M, X^*) \cong \text{Tor}^n_A(M, X^*)$ for any n-presented right R-module M and a directed system $\{X^*\}_{i \in I}$ of τ-torsion-free injective modules
4. $\text{Tor}^n_A(M, X^*) = 0$ for any n-presented right R-module M and each τ-torsion-free injective module E
5. If X is a τ-n-FP-injective module, then X is n-FP-injective
6. Any direct limit of τ-torsion-free n-FP-injective modules is n-FP-injective
7. Any direct limit of τ-torsion-free FP-injective modules is n-FP-injective
8. Any direct limit of τ-torsion-free injective modules is n-FP-injective
9. A τ-torsion-free module X is n-FP-injective if and only if X^* is n-flat
10. If Y is a pure submodule of a τ-torsion-free n-FP-injective module X, then X/Y is n-FP-injective.

Proof

(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) follows from Theorem 1.
(1) \Rightarrow (5), (6) \Rightarrow (7) \Rightarrow (8), and (3) \Rightarrow (9) are obvious.
(5) \Rightarrow (6) Let $X = \lim X_i$, where each $\{X_i\}_{i \in I}$ is a τ-torsion-free n-FP-injective module. Then, for any τ-$(n + 1)$-FP module A, by Theorem 1, we have that $\text{Ext}^n_A(M, X) = \text{Ext}^n_A(M, \lim X_i) \cong \text{Ext}^n_A(M, X_i)$, so X is τ-n-FP-injective and thus it is n-FP-injective by (5).

(8) \Rightarrow (1). Let A be an n-presented right R-module with a finite n-presentation $F_n \longrightarrow F_{n-1} \longrightarrow F_{n-2} \longrightarrow \cdots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow d_0 A \longrightarrow 0$. Write $K_{n-1} = \text{Ker}(d_{n-1})$ and $K_{n-2} = \text{Ker}(d_{n-2})$. Then, K_{n-1} is finitely generated, and we get an exact sequence of right R-modules $0 \longrightarrow K_{n-1} \longrightarrow F_{n-1} \longrightarrow K_{n-2} \longrightarrow 0$. Let $\{E_i\}_{i \in I}$ be any direct system of τ-torsion-free injective right R-modules (with I directed). Then, $E_i^* = n$-FP-injective by (8), so $\text{Ext}^n_A(M, E_i^*) = 0$ and hence $\text{Ext}^n_A(K_{n-1}, E_i^*) = 0$. Thus, we have a commutative diagram:

\begin{equation}
\begin{array}{ccc}
\lim \text{Hom}(K_{n-2}, E_i) & \longrightarrow & \lim \text{Hom}(F_{n-1}, E_i) \\
\downarrow f & & \downarrow g \\
\text{Hom}(K_{n-2}, \lim E_i) & \longrightarrow & \text{Hom}(F_{n-1}, \lim E_i)
\end{array}
\end{equation}

with exact rows. Since f and g are isomorphisms by 25.4(d) in [10], h is an isomorphism by the Five Lemma. Now, let $\{X_i\}_{i \in I}$ be any direct system of τ-torsion-free modules (with I directed). Then, we have a commutative diagram with exact rows:

\begin{equation}
\begin{array}{cccc}
0 & \longrightarrow & \text{Hom}(K_{n-1}, X) & \stackrel{\phi_1}{\longrightarrow} & \text{Hom}(K_{n-1}, E(X_i)) & \longrightarrow & \text{Hom}(K_{n-1}, E(X_i)/X_i) \\
\downarrow 0 & & \downarrow 0 & & \downarrow \phi_2 & & \downarrow \phi_3 \\
0 & \longrightarrow & \text{Hom}(K_{n-1}, \lim X_i) & \longrightarrow & \text{Hom}(K_{n-1}, \lim E(X_i)) & \longrightarrow & \text{Hom}(K_{n-1}, \lim E(X_i)/X_i)
\end{array}
\end{equation}

where $E(X_i)$ is the injective hull of X_i. Since K_{n-1} is finitely generated by 24.9 in [10], the maps ϕ_1, ϕ_2, and ϕ_3 are monic. Since τ is a hereditary torsion theory and X_i is τ-torsion-free, by Proposition 3.2, Chap VI in [9], $E(X_i)$ is τ-torsion-free. And so, by the above proof, ϕ_2 is an isomorphism. Hence, ϕ_3 is also an isomorphism by the Five Lemma again, and then K_{n-1} is τ-finitely presented by Proposition 2.5 (3) in [4], and thus A is τ-n-coherent. Therefore, R is right τ-n-coherent.

(9) \Rightarrow (10) Since Y is a pure submodule, the pure exact sequence $0 \longrightarrow Y \longrightarrow X \longrightarrow (X/Y) \longrightarrow 0$ induces a split exact sequence $0 \longrightarrow (X/Y)^+ \longrightarrow X^+ \longrightarrow Y^+ \longrightarrow 0$. Since X is τ-torsion-free and n-FP-injective, by (9), X^+ is n-flat, so $(X/Y)^+$ is also n-flat, and thus (X/Y) is n-FP-injective by Corollary 2.8 in [2].

(10) \Rightarrow (6) Let $\{X_i\}_{i \in I}$ be a direct system of τ-torsion-free n-FP-injective modules. Then by Proposition 1 in [7], we have a map-pure, and hence pure exact sequence $0 \longrightarrow K \longrightarrow \oplus_{i \in I} X_i \longrightarrow \lim X_i \longrightarrow 0$. Observing that $\oplus_{i \in I} X_i$ is τ-torsion-free and n-FP-injective, by (10), we have that $\lim X_i$ is n-FP-injective. \square
We call a right R-module X weakly n-FP-injective if $\text{Ext}^i_R(A, X) = 0$ for any $(n+1)$-presented right R-module A. Let $\tau = (0, \text{mod} - R)$. Then, we have the following results.

Corollary 2. Let n be a positive integer. Then, the following statements are equivalent for a ring R:

1. R is right n-coherent
2. $\lim \text{Ext}^i_R(A, X_i) \equiv \text{Ext}^i_R(A, \lim X_i)$ for any n-presented right R-module A and direct system $\{X_i\}_{i \in I}$ of right R-modules
3. $\text{Tor}^R_n(A, X^+) \equiv \text{Ext}^i_R(A, X^+)$ for any n-presented right R-module A and each injective right R-module X
4. $\text{Tor}^R_n(A, E^+) = 0$ for any n-presented right R-module A and each injective right R-module E
5. If X is a weakly n-FP-injective module, then X is n-FP-injective
6. Any direct limit of n-FP-injective modules is n-FP-injective
7. Any direct limit of FP-injective modules is n-FP-injective
8. A right R-module X is n-FP-injective if and only if X^+ is n-flat
9. If Y is a pure submodule of an n-FP-injective right R-module X, then X/Y is n-FP-injective

We note that the equivalences of (1), (2), (6), and (9) in Corollary 2 appeared in Theorem 3.1 in [2].

Corollary 3. Let τ be a hereditary torsion theory of mod-R and n a positive integer. If R is right τ-n-coherent, then a τ-torsion-free module X is n-FP-injective if and only if X^+ is n-FP-injective.

Proof. \Rightarrow Let X be a τ-torsion-free n-FP-injective module. Since R is right τ-n-coherent, by Theorem 2 (9), X^+ is n-flat, and so X^+ is n-FP-injective by Proposition 2.3 in [2].

\Leftarrow Since X^+ is n-FP-injective and X is a pure submodule of X^+, so, by Proposition 2.6 in [2], X is n-FP-injective.

Let $n = 1$; then, by Theorem 2, we can obtained several results on right τ-coherent rings.

Corollary 4. Let τ be a hereditary torsion theory of mod-R. Then, the following statements are equivalent for the ring R:

1. R is right τ-coherent
2. $\lim \text{Ext}^i_R(A, X_i) \equiv \text{Ext}^i_R(A, \lim X_i)$ for any finitely presented right R-module A and direct system $\{X_i\}_{i \in I}$ of τ-torsion-free modules
3. $\text{Tor}^R_n(A, X^+) \equiv \text{Ext}^i_R(A, X^+)$ for any finitely presented right R-module A and each τ-torsion-free module X
4. $\text{Tor}^R_n(A, E^+) = 0$ for any finitely presented right R-module A and each τ-torsion-free module E
5. If X is a τ-1-FP-injective module, then X is F-injective
6. Any direct limit of τ-torsion-free FP-injective modules is τ-FP-injective
7. Any direct limit of τ-torsion-free injective modules is τ-FP-injective
8. A τ-torsion-free module X is FP-injective if and only if X^+ is flat
9. If Y is a pure submodule of a τ-torsion-free FP-injective module X, then X/Y is FP-injective

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the Natural Science Foundation of Zhejiang Province, China (LY18A010018).

References

[1] B. Stenström, *Rings of Quotients*, Springer-Verlag, Berlin, Germany, 1975.
[2] B. Stenström, "Coherent rings and fp -injective modules," *Journal of the London Mathematical Society*, vol. s2-2, no. 2, pp. 323–329, 1970.
[3] C. Megibben, "Absolutely pure modules," *Proceedings of the American Mathematical Society*, vol. 26, no. 4, p. 561, 1970.
[4] S. U. Chase, "Direct products of modules," *Transactions of the American Mathematical Society*, vol. 97, no. 3, p. 457, 1960.
[5] D. L. Costa, "Parameterizing families of non-noetherian rings," *Communications in Algebra*, vol. 22, no. 10, pp. 3997–4011, 1994.
[6] J. Chen and N. Ding, "On n-coherent rings," *Communications in Algebra*, vol. 24, no. 10, pp. 3211–3216, 1996.
[7] M. F. Jones, "Coherence relative to an hereditary torsion theory," *Communications in Algebra*, vol. 10, no. 7, pp. 719–739, 1982.
[8] N. R. González, "On relative coherence and applications," *Communications in Algebra*, vol. 21, no. 5, pp. 1529–1542, 1993.
[9] Z. M. Zhu, "Coherence relative to a weak torsion class," *Czechoslovak Mathematical Journal*, vol. 68, no. 143, pp. 455–474, 2018.
[10] R. T. Shannon, "The rank of a flat module," *Proceedings of the American Mathematical Society*, vol. 24, no. 3, p. 452, 1970.
[11] R. Wisbauer, *Foundations of Module and Ring Theory*, Gordon & Breach, Reading, UK, 1991.