The purpose of this note is to show that unlike for set forcing, an inner model of a class-generic extension need not itself be a class-generic extension. Our counterexample is of the form $L[R]$, where R is a real both generic over L and constructible from $O^\#$.

Definition (M, A), M transitive is a **ground model** if $A \subseteq M$, $M \models ZFC + A$ Replacement and M is the smallest model with this property of ordinal height $ORD(M)$. G is **literally generic** over (M, A) if for some partial-ordering P definable over (M, A), G is P-generic over (M, A) and $(M[H], A, H) \models ZFC + (A, H)$-Replacement for all P-generic H. S is **generic** over M if for some A, S is definable over $(M[G], A, G)$ for some G which is literally generic over (M, A), and S is **strictly generic** over M if we also require that G is definable over $(M[S], A, S)$.

The following is a classic application of Boolean-valued forcing and can be found in Jech [?], page ?.

Proposition 1. If G is P-generic over (M, A) where P is an element of M, S definable over $(M[G], A)$ then S is strictly generic over M.

Proof Sketch. We can assume that P is a complete Boolean algebra in M and that $S \subseteq \alpha$ for some ordinal $\alpha \in M$. Then $H = G \cap P_0$ is P_0-generic over M, where P_0 is complete subalgebra of P generated by the Boolean values of the sentences “$\hat{\beta} \in \sigma$”, where $\beta < \alpha$ and σ is a P-name for S. Then H witnesses the strict genericity of S. ⊥

Now we specialize to the ground model (L, ϕ), under the assumption that $O^\#$ exists.

1Research supported by NSF Contract # 92-05530.
Theorem 2. There is a real $R \in L[O^\#]$ which is generic but not strictly generic over L.

Our strategy for proving Theorem 2 comes from the following observation.

Proposition 3. If R is a real strictly generic over L then for some L-amenable A, $\text{Sat}(L[R])$ is definable from R, A, where Sat denotes the Satisfaction relation.

Proof. Suppose that A, G witness that R is strictly generic over L. Let G be P-generic over $\langle L, A \rangle$, P definable over $\langle L, A \rangle$, $R \in L[G]$, G definable over $\langle L[R], A \rangle$. Also assume that $\langle L[H], A, H \rangle \models ZFC + (A, H)$-replacement for all P-generic H. The latter implies that the Truth and Definability Lemmas hold for P-forcing, by a result of M. Stanley (See Stanley [?] or Friedman[??]). Then we have: $L[R] \models \varphi$ iff $\exists p \in G(p \models \varphi$ holds in $L[\sigma])$ where σ is a P-name for R and therefore $\text{Sat}(L[R])$ is definable from $R, \text{Sat}(L, A)$. As A is L-amenable and $O^\#$ exists, $\text{Sat}(L, A)$ is also L-amenable. \dashv

Remarks (a) $\text{Sat}(L[R])$ could be replaced by $\text{Sat}(\langle L[R], A \rangle)$ in Proposition 3, however we have no need here for this stronger conclusion. (b) A real violating the conclusion of Proposition 3 was constructed in Friedman [??], however the real constructed there was not generic over L.

Thus to prove Theorem 2 it will suffice to find a generic $R \in L[O^\#]$ such that for each L-amenable A, $\text{Sat}(L[R])$ is not definable (with parameters) over $\langle L[R], A \rangle$. First we do this not with a real R but with a generic class S, and afterwards indicate how to obtain R by coding S.

We produce S using the Reverse Easton iteration $P = \langle P_\alpha | \alpha \leq \omega \rangle$, defined as follows. $P_0 =$trivial forcing and for limit $\lambda \leq \omega$, Easton support is used to define P_λ (as a direct limit for λ regular, inverse limit otherwise). For singular α, $P_{\alpha+1} = P_\alpha \cdot Q(\alpha)$ where $Q(\alpha)$ is the trivial forcing and finally for regular α, $P_{\alpha+1} = P_\alpha \ast Q(\alpha)$ where $Q(\alpha)$ is defined as follows: let $\langle b_\gamma | \gamma < \alpha \rangle$ be the L-least partition of the odd ordinals $< \alpha$ into α-many disjoint pieces of size α and we take a condition in $Q(\alpha)$
to be $p = \langle p(0), p(1), \ldots \rangle$ where for some $\alpha(p) < \alpha$, $p(n) : \alpha(p) \rightarrow 2$ for each n.

Extension is defined by: $p \leq q$ iff $\alpha(p) \geq \alpha(q)$, $p(n)$ extends $q(n)$ for each n and $q(n+1)(\gamma) = 1$, $\delta \in b_\gamma \cap [\alpha(q), \alpha(p)) \rightarrow p(n)(\delta) = 0$. Thus if G is $Q(\alpha)$-generic and $S_n = \bigcup\{p(n)|p \in G\}$ then $S_{n+1}(\gamma) = 1$ iff $S_n(\delta) = 0$ for sufficiently large $\delta \in b_\gamma$.

Now we build a special P-generic $G(\leq \infty)$, definably over $L[O^\#]$. The desired generic but not strictly generic class is $S_0 = \bigcup\{p(0)|p \in G(\infty)\}$. We define $G(\leq i_\alpha)$ by induction on $A \in \text{ORD}$, where $\langle i_\alpha|\alpha \in \text{ORD} \rangle$ is the increasing enumeration of $I \cup \{0\}$, $I = \text{Silver Indiscernibles}$. $G(\leq i_0)$ is trivial and for limit $\lambda \leq \infty$, $G(< i_\lambda) = \bigcup\{G(< i_\alpha)|\alpha < \lambda\}$, $G(i_\lambda) = \bigcup\{G(i_2\alpha)|\alpha < \lambda\}$ (where $i_\infty = \infty$).

Suppose that $G(\leq i_\lambda)$ is defined, λ limit or 0, and we wish to define $G(\leq i_{\lambda+n})$ for $0 < n < \omega$. If n is even and $G(\leq i_{\lambda+n})$ has been defined then we define $G(\leq i_{\lambda+n+1})$ as follows: $G(< i_{\lambda+n+1})$ is the $L[O^\#]$-least generic extending $G(\leq i_{\lambda+n})$. To define $G(i_{\lambda+n+1})$ first form the condition $p \in Q(i_{\lambda+n+1})$ defined by: $\alpha(p) = i_{\lambda+n} + 1$, $p(m) \upharpoonright i_{\lambda+n} = G(i_{\lambda+n})(m) = \bigcup\{q(m)|q \in G(i_{\lambda+n})\}$ for all m, $p(m)(i_{\lambda+n}) = 1$ iff $m > n$. Then $G(i_{\lambda+n+1})$ is the $L[O^\#]$-least $Q(i_{\lambda+n+1})$-generic (over $L[G(< i_{\lambda+n+1})]$) containing the condition p. If n is odd and $G(\leq i_{\lambda+n})$ has been defined then we define $G(\leq i_{\lambda+n+1})$ as follows: $G(< i_{\lambda+n+1})$ is the $L[O^\#]$-least generic extending $G(\leq i_{\lambda+n})$. To define $G(i_{\lambda+n+1})$, first form the condition $p \in Q(i_{\lambda+n+1})$ by: $\alpha(p) = i_{\lambda+n}$, $p(m)(\gamma) = G(i_{\lambda+n})(m)(\gamma)$ for $\gamma \neq i_{\lambda+n-1}$ and $p(m)(i_{\lambda+n-1}) = 0$ for all m. Then $G(i_{\lambda+n+1})$ is the $L[O^\#]$-least $Q(i_{\lambda+n+1})$-generic (over $L[G(< i_{\lambda+n+1})]$) containing the condition p. This completes the definition of $G(\leq \infty)$.

Now for each $i \in I \cup \{\infty\}$ and $n \in \omega$ let $S_n(i) = \bigcup\{p(n)|p \in G(i)\}$ and $S(i) = S_0(i)$, $S = S(\infty)$. We now proceed to show that S is not strictly-generic over L.

Definition. For $X \subseteq \text{ORD}$, $\alpha \in \text{ORD}$ and $n \in \omega$ we say that α is $X - \Sigma_n$ stable if $\langle L_\alpha[X], X \cap \alpha \rangle$ is Σ_n-elementary in $\langle L[X], X \rangle$. α is X-stable if α is $X - \Sigma_n$ stable for all n.

Lemma 4. For λ limit or 0, n even, $I_{\lambda+n+1}$ is not S-stable.
Proof. Let \(i = i_{\lambda+n} \) and \(j = i_{\lambda+n+1} \). Note that \(S_m(j) \) is defined from \(S(j) \) just as \(S_m(\infty) \) is defined from \(S(\infty) = S \). But \(S(j) = S \cap j \) and for \(M > n \), \(S_m(j) \neq S_m(\infty) \) since \(i \in S_m(j), i \notin S_m(\infty) \). So \(j \) is not \(S \)-stable. \(\dashv \)

Lemma 5. For \(L \)-amenable \(A \subseteq \text{ORD} \), \(i_{\lambda+n+1} \) is \((S,A) - \Sigma_n \) stable for sufficiently large limit \(\lambda \), all \(n \in \omega \).

Proof. Let \(i = i_{\lambda+n+1} \) where \(\lambda \) is large enough to guarantee that \(i \) is \(A \)-stable. For \(p \in P_{i+1} = P_i \ast Q(i) \) and \(m \in \omega \), we let \((p)_m \) be obtained from \(p \) by redefining \(p(i)(\bar{m}) = \phi \) for \(\bar{m} > m \) and otherwise leaving \(p \) unchanged.

Claim. Suppose \(\varphi \) is \(\Pi_m \) relative to \(S(i), B \) where \(B \subseteq i, B \in L \). If \(p \in P_{i+1}, p \models \varphi \) then \((p)_m \models \varphi \).

Proof of Claim. By induction on \(m \geq 1 \). For \(m = 1 \), if the conclusion failed then we could choose \(q \leq (p)_1, q(<i) \models \sim \varphi \) holds of \(q(0), B \); then clearly \((q)_0 \models \sim \varphi \), \((q)_0 \) is compatible with \(p \), which contradicts the hypothesis that \(p \models \varphi \). Given the result for \(m \), if the conclusion failed for \(m+1 \) then we could choose \(q \leq (p)_{m+1}, q \models \sim \varphi \). Now write \(\sim \varphi \) as \(\exists x \psi, \psi \Pi_m \) and we see that by induction we may assume that \((q)_m \models \psi(\hat{x}) \) for some \(x \). But \((q)_m, p \) are compatible and \(p \models \sim \exists x \psi \), contradiction. \(\dashv \)

(Proof.)

Now we prove the lemma. Suppose \(\varphi \) is \(\Pi_n \) and true of \((S(i), A \cap i) \). Choose \(p \in G(\leq i), p \models \varphi \). Then by the Claim, \((p)_n \models \varphi \). As \(i \) is \(A \)-stable, \((p)_n \models \varphi \) in \(P(\leq \infty) \). By construction \((p)_n \) belongs to \(G(\leq \infty) \), in the sense that \((p)_n (<i) \in G(<i) \subseteq G(<\infty) \) and \((p)_n(i) \in G(\infty) \). So \(\varphi \) is true of \((S,A) \). \(\dashv \)

Theorem 6. \(S \) is generic, but not strictly generic, over \(L \).

Proof. By Proposition 3 (which also holds for classes), if \(S \) were strictly generic over \(L \) then for some \(L \)-amenable \(A \) we would have that \(\text{Sat}(L[S], S) \) would be definable over \((L[S], S, A) \). But then for some \(n \), all sufficiently large \((S,A) - \Sigma_n \) stables would
be S-stable, in contradiction to Lemmas 4, 5. \dashv

To prove Theorem 2 we must show that an S as in Theorem 6 can be coded by a real R in such a way as to preserve the properties stated in lemmas 4, 5. We must first refine the above construction:

Theorem 7. Let $\langle A(i) \mid i \in I \rangle$ be a sequence such that $A(i)$ is a constructible subset of i for each $i \in I$. Then there exists S obeying Lemmas 4, 5 such that in addition, $A(i)$ is definable over $\langle L_i[S], S \cap i \rangle$ for $i \in \text{Odd}(I) = \{i_{\lambda+n} \mid \lambda \text{ limit or 0, } n \text{ odd} \}$.

Proof. We use a slightly different Reverse Easton iteration: $Q(\alpha)$ specifies $n(\alpha) \leq \omega$ and if $n(\alpha) < \omega$, it also specifies a constructible $A(\alpha) \subseteq \alpha$; then conditions and extension are as before, except we now require that if $n(\alpha) < \omega$ then for p to extend q, we must have $p(n(\alpha))(2\beta + 2) = 1$ iff $\beta \in A(\alpha)$, for $2\beta + 2 \in [\alpha(q), \alpha(p)]$. Then if $n(\alpha) < \omega$, the $Q(\alpha)$-generic will code $A(\alpha)$ definably (though the complexity of the definition increases with $n(\alpha) < \omega$).

Now in the construction of $G(\leq \iota_\alpha), \alpha \leq \infty$ we proceed as before, with the following additional specifications: $n(i_{\lambda+n}) = n$ for odd n and $n(i_{\lambda+n}) = \omega$ for even n (λ limit or 0). And for odd n we specify $A(i_{\lambda+n})$ to be the $A(i), i = i_{\lambda+n}$ as given in the hypothesis of the Theorem.

Lemma 4 holds as before; we need a new argument for Lemma 5. Note that for $i \in \text{Odd}(I)$ it is no longer the case that $P(< i) \Vdash Q(i) = Q(\infty) \cap L_i[G(< i)]$. Let $Q^*(i)$ denote $Q(\infty) \cap L_i[G(< i)]$, i.e., the forcing $Q(i)$ where $n(i)$ has been specified as ω. Define $(p)_m$ as before for $p \in P(\leq i)$.

Claim. Suppose $m \leq n+1$, n is even, $i = i_{\lambda+n+1}$ (λ limit or 0) and φ is Π_m relative to $S(i)$, B with parameters, where $B \subseteq i$, $B \in L$. If $p \in P(\leq i)$ (where $n(i) = n + 1$) then $p \Vdash \varphi$ in $P(\leq i)$ iff $(p)_m \Vdash \varphi$ in $P^*(\leq i) = P(< i) * Q^*(i)$ iff $p \Vdash \varphi$ in $P^*(\leq i)$.

Proof. As in the proof of the corresponding Claim in the proof of Lemma 5. If $m = 1$ and $p \Vdash \varphi$ in $P(\leq i)$, then if the conclusion failed, we could choose $q \leq (p)_1$
in \(P^*(\leq i) \), \(q \Vdash \sim \varphi \); then (we can assume) \((q)_0 \Vdash \sim \varphi \) in \(P(\leq i) \), but \((q)_0 \) and \(p \) are compatible. The other implications are clear, as \(P(\leq i) \subseteq P^*(\leq i) \). Given the result for \(m \leq n, \varphi \ \Pi_{m+1} \) and \(p \Vdash \varphi \) in \(P(\leq i) \), if the conclusion failed we could choose \(q \leq (p)_{m+1} \) in \(P^*(\leq i) \), \(q \Vdash \sim \varphi \) (indeed, \(q \Vdash \sim \psi(x) \) some \(x \), where \(\varphi = \forall x \psi, \psi \Sigma_m \)); then \(q \Vdash \sim \varphi \) in \(P(\leq i) \), \((q)_m \Vdash \sim \varphi \) in \(P^*(\leq i) \), \((q)_m \Vdash \sim \varphi \) in \(P(\leq i) \) by induction. But \((q)_m, p \) are compatible in \(P(\leq i) \), using the fact that \(m \leq n \) and \(q \leq (p)_{m+1} \), contradiction. And again the other implications follow, as \(P(\leq i) \subseteq P^*(\leq i) \). \(\dashv \) (Claim.)

Now the proof of Lemma 5 proceeds as before, using the new version of the Claim.

The choice of \(\langle A(i) | i \in I \rangle \) that we have in mind comes from the next Proposition.

Proposition 8. For each \(n \) let \(A_n = \{ \alpha | \) For \(i < j_1 < \ldots < j_n \) in \(I, \alpha < i, (\alpha, j_1 \ldots j_n) \) and \((i, j_1 \ldots j_n) \) satisfy the same formulas in \(L \) with parameters \(< \alpha \} \). Then any \(L \)-amenaable \(A \) is \(\Delta_1 \)-definable over \(\langle L, A_n \rangle \) for some \(n \).

Proof. For each \(i \in I \), \(A \cap L_i \) belongs to \(L \) and hence is of the form \(t(i)(\vec{j}_0(i), i, \vec{x}(n(i))) \) where \(t(i) \) is a \(\Delta_0 \)-Skolem term for \(L \), \(\vec{j}_0(i) \) is a finite sequence of indiscernibles \(< i \) and \(\vec{x}(n(i)) \) is any sequence of indiscernibles \(> i \) of length \(n(i) \in \omega \). By Fodor’s Theorem and indiscernibility we can assume that \(t(i) = t, \vec{j}_0(i) = \vec{j}_0 \) and \(n(i) = n \) are independent of \(i \). To see that \(A \) is \(\Delta_1 \)-definable over \(\langle L, A_{n+1} \rangle \) it suffices to show that for \(\vec{i} < \vec{j} \) increasing sequences from \(A_{n+1} \) of length \(n + 1 \), \(\vec{i} \) and \(\vec{j} \) satisfy the same formulas in \(L \) with parameters \(< \min(\vec{i}) \). But by definition, for \(\alpha < \min(\vec{i}) \) and \(\vec{i} = \{i_0, \ldots, i_n\}, \vec{j} = \{j_0, \ldots, j_n\} \) we get: \(L \models \varphi(\alpha, j_0 \ldots j_n) \iff \varphi(\alpha, i_0, j_1 \ldots j_n) \iff \varphi(\alpha, i_0, i_1, j_2 \ldots j_n) \iff \cdots \iff \varphi(\alpha, i_0, \ldots, i_n) \). \(\dashv \)

Now for \(i \in I \) write \(i = i_{\lambda+i_n}, \lambda \) limit or 0, \(n \in \omega \) and let \(A(i) = A_n \cap i \). Thus by Theorem 7 there is \(S \) obeying Lemmas 4,5 such that \(A_n \cap i \) is definable over \(\langle L_i[S], S \cap i \rangle \) for \(i = i_{\lambda+n+1}, n \) even.
Proof of Theorem 2 First observe that as in Friedman [?], we may build $G(\leq \infty)$ to satisfy Theorem 7 for the preceding choice of $(A(i)|i \in I)$ and in addition preserve the indiscernibility of $\text{Lim} I$. Then by the technique of Beller-Jensen-Welch [82], Theorem 0.2 we may code $(G(< \infty), S)$ by a real R, where $S = G_0(\infty)$. The resulting R obeys Lemma 4 because S is definable from R; to obtain Lemma 5 for R we must modify the coding of $(G(< \infty), S)$ by R in the following way: for inaccessible κ we require that any coding condition with κ in its domain reduce any dense $D \subseteq P^{< \kappa} = \{ q| \alpha(q) < \kappa \}$ strictly below κ, when D is definable over $\langle L_\kappa[G(< \infty), S], G(< \kappa), S \cap \kappa \rangle$. This extra requirement does not interfere with the proofs of extendibility, distributivity for the coding conditions (see Friedman [??]).

Now to obtain Lemma 5 for R argue as follows: Given L-amenable A, choose n and λ large enough so that A is Δ_1-definable from A_n with parameters $< i_\lambda$. Then $i_{\lambda+n+1}$ is $(G(< \infty), S, A) - \Sigma_n$ stable. And also $A \cap i_{\lambda+n+1}$ is definable over $\langle L_i[G(< i), S \cap i], G(< i), S \cap i \rangle$ where $i = i_{\lambda+n+1}$. Thus if φ is Π_n and true of $G(< i), S \cap i, A \cap i$ then φ is forced by some coding condition $p \in P^{< i}$ (p in the generic determined by R) and hence by the $(G(< \infty), S, A) - \Sigma_n$ stability of i, we get that φ is true of $G(< \infty), S, A$.

We built R as in Theorem 2 by perturbing the indiscernibles. However with extra care we can in fact obtain indiscernible preservation.

Theorem 9. There is a real $R \in L[O^\#]$ such that R is generic but not strictly generic over L, L-cofinalities equal $L[R]$-cofinalities and $I^R = I$.

Proof. Instead of using the $i_{\lambda+n}, n \in \omega$ (\lambda limit or 0) use the $i^n_\alpha, n \in \omega$ where $i^n_\alpha = \text{least element of } A_n \text{ greater than } i_\alpha$. Thus $\bigcup \{ i^n_\alpha| n \in \omega \} = i_{\alpha+1}$ and as above we can construct S to preserve indiscernibles and L-cofinalities and satisfy that no i^n_α, n odd is S-stable, i^{n+1}_α is $(S, A) - \Sigma_n$ stable for large enough α, n (given any L-amenable A) and $A_n \cap i^{n+1}_\alpha$ is definable over $\langle L_i[S], S \cap i \rangle$ for $i = i^{n+1}_\alpha, n$ even. Then code $(G(< \infty), S)$ by a real, preserving indiscernibles and cofinalities, requiring as
before that for inaccessible κ, any coding condition with κ in its domain reduces dense $D \subseteq p^{<\kappa}$ strictly below κ, when D is definable over $\langle L_\kappa[G(<\kappa), S \cap \kappa], G(<\kappa), S \cap \kappa] \rangle$. Then for any L-amenable A, i_α^{n+1} will be $(R, A) - \Sigma_n$ stable for sufficiently large α, n. This implies as before that R is not strictly generic. \(\dashv\)

Remark 1. A similar argument shows: For any $n \in \omega$ there is a real $R \in L[O^\#]$ which is strictly generic over L, yet G is not $\Sigma_n(L[R], R, A)$ whenever $R \in L[G], G$ literally generic over (L, A). Thus there is a strict hierarchy within strict genericity, given by the level of definability of the literally generic G from the strictly generic real.

Remark 2. The nongeneric real R constructed in Friedman [??] is strictly generic over some $L[S]$ where $R \notin L[S]$. The same is true of the real R constructed here to satisfy Theorem 2. This leads to:

Questions (a) Is there a real $R \in L[O^\#], R$ not strictly generic over any $L[S], R \notin L[S]$? (b) Suppose R is strictly generic over $L[S], S$ generic over L. Then is R generic over L?

References

Beller-Jensen-Welch [82] *Coding the Universe*, Cambridge University Press.

Friedman [?] An Immune Partition of the Ordinals.

Friedman [??] The Genericity Conjecture, JSL.

Friedman [???] *Fine Structure and Class Forcing*, preliminary book draft.

Friedman [????] Coding without Fine Structure, to appear.

Jech [?] *Set Theory*, Academic Press.

Stanley, M. [?] Backwards Easton Forcing and $O^\#$.

Department of Mathematics M.I.T. Cambridge, MA 02139