Oriented Edge Forests for Boundary Detection

Sam Hallman Charless C. Fowlkes
Department of Computer Science
University of California, Irvine
{shallman,fowlkes}@ics.uci.edu

Abstract

We present a simple, efficient model for learning boundary detection based on a random forest classifier. Our approach combines (1) efficient clustering of training examples based on simple partitioning of the space of local edge orientations and (2) scale-dependent calibration of individual tree output probabilities prior to multiscale combination. The resulting model outperforms published results on the challenging BSDS500 boundary detection benchmark. Further, on large datasets our model requires substantially less memory for training and speeds up training time by a factor of 10 over the structured forest model.

1. Introduction

Accurately detecting boundaries between objects and other regions in images has been a long standing goal since the early days of computer vision. Accurate boundary estimation is an important first step for segmentation and detection of objects in a scene and boundaries provide useful information about the shape and identity of those objects. Early work such as the Canny edge detector [6] focused on detecting brightness edges, estimating their orientation [11] and analyzing the theoretical limits of detection in the presence of image noise. However, simple brightness or color gradients are insufficient for handling many natural scenes where local gradients are dominated by fine scale clutter and texture arising from surface roughness and varying albedo.

Modern boundary detectors, such as [18], have emphasized the importance of suppressing such responses by explicit oriented analysis of higher order statistics which are robust to such local variation. These statistics can be captured in a variety of ways, e.g. via textons [15], sparse coding [22], or measures of self-similarity [14]. Such boundary detectors also generally benefit from global normalization provided by graph-spectral analysis [2] or ultra-metric consistency [1] which enforce closure, boosting the contrast of contours that completely enclose salient regions.

Recently, focus has turned to methods that learn appropriate feature representations from training data rather than relying on carefully hand-designed texture and brightness contrast measures. For example, [22] learns weightings for each sparse code channel and hypothesized edge orientation while [8, 16] predict the probability of a boundary at an image location using a cascade or randomized decision forest built over simple image features. Taking this one step further, the work of [17] and [9] learn not only input features but also the output space using sparse coding or structured-output decision forests respectively. While these approaches haven’t yielded huge gains in boundary detection accuracy, they are appealing in that they can adapt to other domains (e.g., learning input features for boundary detection in RGB-D images [22, 9] or predicting semantic segmentation outputs [17]). On the other hand, a key difficulty with these highly non-parametric approaches is that it is difficult to control what is going on “under the hood” and to understand why they fail or succeed where they do. Like a fancy new car, great when it works but if ever stranded on a remote roadside, one suddenly discovers there are very few user serviceable parts inside.

\footnote{This work was supported by NSF DBI-1053036 and IIS-1253538}
In this paper we take a step back from non-parametric outputs and instead apply the robust machinery of randomized decision forests to the simple task of accurately detecting straight-line boundaries at different candidate orientations and positions within a small image patch. Although this ignores a large number of interesting possibilities such as curved edges and junctions, it should certainly suffice for most small patches of images containing big, smooth objects. We show that such a model, appropriately calibrated and averaged across a small number of scales, along with local sharpening of edge predictions outperforms the best reported results on the BSDS500 boundary detection benchmark.

The rest of the paper is structured as follows. In Section 2, we describe the method by which we partition the space of possible oriented edge patterns within a patch. This leads to a simple, discrete labeling over local edge structure. In Section 3, we discuss how to use this discrete labeling to train a random forest to predict edge structure within a patch, and describe a calibration procedure for improving the posterior distributions emitted by the forest. Section 4 then describes how to map the distributions computed over the image into a final, high-quality edge map. Finally, in Section 5 we show experimental results on the BSDS500 boundary detection benchmark.

2. Clustering Edges

From a ground-truth boundary image, we categorize a $p \times p$ patch either as background or as belonging to one of a fixed number of fundamental edge categories. A patch is considered background if its center is more than $p/2$ pixels away from an edge, in which case the patch contains little to no edge pixels.

Non-background patches are distinguished according to the distance d and orientation θ of the edge pixel closest to the patch center. Thus, patches with $d = 0$ have an edge running through the center, and by definition d is never greater than $p/2$. We choose a canonical orientation for each edge so that θ lies in the interval $(-\pi/2, \pi/2]$. To distinguish between patches on different sides of an edge with the same orientation, we utilized signed distances $d \in (-p/2, p/2)$. This yields a parameter pair (d, θ) for each non-background patch.

Figure 1 shows this two dimensional space of patches. It is worth noting that this space can be given an interesting topology. Since orientation is periodic, a straight edge with parameter (d, θ) appears identical to one with parameter $(-d, \theta + \pi)$. One can thus identify the top and bottom edges of the space in Figure 1, introducing a half-twist to yield a Möbius strip whose boundary is $\{(d, \theta) : |d| = p/2\}$.

From a ground-truth edge map, computing the distance between a patch center and the nearest edge pixel q is straightforward. To be useful, the estimate of θ should reflect the dominant edge direction around q, and be robust to small directional changes at q. To accomplish this, we first link all edge pixels in a ground-truth boundary map into edge lists, breaking lists into sublists where junctions occur. We then measure the angle at q by fitting a polynomial to the points around q that are in the same list. In our experiments we use a fitting window of ± 6 pixels.

Because annotators sometimes attempt to trace out extremely fine detail around an object, boundary annotations will occasionally include very short, isolated “spur” edges protruding from longer contours. Where these occur, estimates of θ can suffer. We remove all such edges provided that they are shorter than 7 pixels in length. Using standard morphological operations we also fill holes if they exist and thin the result to ensure that all lines are a single pixel thick.

Collecting Training Data We binned the space of distances d and angles θ into n and m bins, respectively. Thus every non-background patch was assigned to a discrete label k out of $K = nm$ possible labels. This discrete label space allows for easy application of a variety of off-the-shelf supervised learning algorithms.

In our experiments we used a patch size of 16×16 pixels, so that distances satisfy $|d| < p/2 = 8$. It is natural to set the distance bins one pixel apart, so that d falls into one of $n = 15$ bins. Assigning angles θ to one of $m = 8$ bins, leaves $K = 120$ edge classes plus background. We chose the orientation binning so that bins 1 and 5 are centered at 90 and 0 degrees respectively, as these orientations are especially common in natural images [21]. Figure 1(a) shows the average ground-truth edge map for all image patches assigned to each of these clusters.

In our experiments we sampled patches uniformly over image locations and over labelings derived from multiple ground-truth segmentations of that image. Since our approach ultimately predicts a (d, θ) parameter for each non-background image patch, it does not explicitly model patches containing junctions or thin structures involving more than two segments. In practice, such events are relatively rare. In the BSDS500 training dataset, patches containing more than two segments constitute less than 8% of image patches and only 27% of all non-background patches. To simplify the learning problem faced by the local classifier, we only utilize patches that contain one or two segments for training.

patches $(0, \theta)$ and $(0, \theta + \pi)$ are indistinguishable to an edge detector but have different angle parameters. The signed distance parameterization is convenient since it assigns unique coordinates to each line and is smooth everywhere.
which appears to match the empirical distribution well. We use this estimated function (one scalar parameter β per scale) to calibrate the distribution of scores over different edges (d, θ) predicted by the forest. Performing this calibration prior to combining and compositing predictions across scales improves final performance.

3. Oriented Edge Forest

Using the labeling procedure outlined in Section 2, we can build a training dataset comprised of patches x with corresponding labels y. In this section we show how this data is used to train an edge detector, and describe the detection pipeline for using the trained model to produce high-quality edge probability maps. We have described a procedure for discretizing the space of edge patches to a set of class labels. These edge categories may then serve as as target labels for a multi-class classifier which makes predictions about the presence of local boundaries in an image.

Randomized Decision Forests Inspired by the recent success of random decision forests for edge detection [16, 9], we build a random forest classifier to learn a mapping from patches to labels. Random forests are a popular ensemble method in which randomized decision trees are combined to produce a strong classifier. Trees are made random through bagging and/or randomized node optimization [7], in which the binary splits at the nodes of the tree are limited to using only a random subset of features.

Because the output labels predicted by the forest is a small discrete set (edge orientations and locations relative to the center of the patch) this may be treated simply as a k-way classification problem. Let K denote the number of cluster labels, so that every training example is assigned a discrete label k in $\{0, 1, ..., K\}$, with $k = 0$ representing the background class. When training a given decision tree, features are selected and split thresholds are chosen to optimize the Gini impurity measure [5]. In practice we find that the particular choice of class purity metric does not have a noticeable impact on performance. We did find it important to have balanced training data across classes and used an equal number training examples per class.

Image Features We adopt the same feature extraction process used in [9]. In this approach, images are transformed into a set of feature channels, and the descriptor for a patch is computed simply by cropping from the corresponding window in the array of feature channels. These features are comprised of color and gradient channels, and are downsampled by a factor of 2. Binary splits performed at the tree nodes are accomplished by thresholding either a pixel read from a channel or the difference between two pixels from the same channel. See [9] for full details.

Ensemble Averaging Equipped with a forest trained to recognize oriented edge patterns, the next step is to apply the forest over the input image. We have found that the details of how we fuse the predictions of different trees can have a significant effect on performance. Two standard approaches to combining the output of a ensemble of classifiers are averaging and voting.

For a given test image patch x, each individual tree produces an estimate $p_t(k|x)$ of the posterior distribution over the $K + 1$ class labels based on the empirical distribution observed during training. We would like to combine these individual estimates into a final predicted score vector $w(k|x)$. The most obvious way to combine the tree outputs
is averaging
\[w(k|x) = \frac{1}{T} \sum_{t=1}^{T} p_t(k|x), \quad k = 1, ..., K \]
(1)

An alternative, often used for ensembles of classifiers which only output class labels instead of posteriors is voting
\[w(k|x) = \frac{1}{T} \sum_{t=1}^{T} 1_{k = \arg\max_{k'} p_t(k|x)} \]
(2)

where 1 is the indicator function.

In general, we find that averaging provides somewhat better detection accuracy than voting, presumably because the votes carry less information than the full posterior distribution (see Section 5). One disadvantage of averaging is that it requires one to maintain in memory all of the empirical distributions \(p \) at every leaf of every tree. Voting not only requires less storage for the forest but also reduces runtime. Constructing \(w \) via averaging requires \(O(KT) \) while voting only requires \(O(T) \). The resulting \(w \) is also sparse which can lead to substantial speed improvements in the edge fusion steps described below (Section 4). Voting may thus be an efficient alternative for time-critical applications.

Calibration In order to fuse edge predictions across different scales within an image and provide boundary maps whose values can be meaningfully compared between images, we would like the scores \(w \) to be accurately calibrated. Ideally the scores \(w \) output for a given patch would be the true posterior probability over edge types for that patch. Let \(x \) be a patch sampled from the dataset and \(y \) the true edge label for that patch. If the scores \(w(k|x) \) output by the classifier are calibrated then we would expect that
\[P(y = k \mid w(k|x) = s) = s \]
(3)

To evaluate calibration, we extracted a ground-truth label indicator vector for every labeled image patch in held out set of validation patches \(\{(x_i, y_i)\} \). We then compute the empirical expectation of how often a particular label \(k \) is correct for those patches that received a particular score \(s \).
\[P(y = k \mid w(k|x) = s) \approx \frac{1}{|B(k, s)|} \sum_{i \in B(k, s)} 1_{[y_i = k]} \]
(4)

where
\[B(k, s) = \{i : w(k|x) \in [s \pm \epsilon]\} \]

is a bin of width \(2\epsilon \) centered at \(s \).

Figure 2 shows the resulting reliability plot, aggregated over non-background patches. Results were very similar for individual edge labels. While one might expect that a forest trained to minimize entropy of the leaf posterior predictions would tend to be overconfident, we found that the forest average scores for non-background patches actually tended to underestimate the true posterior! This remained true regardless of whether we used voting or averaging.

 Previous work has used logistic regression in order to calibrate classifier output scores [19]. For the oriented edge forest, we found that this miscalibration for non-background labels is much better fit by an exponential
\[\hat{w}(k|x) = f_\beta(w(k|x)) = 1 - \exp(-\beta w(k|x)) \]
(5)

where \(\beta \) is a scalar. We fit this function directly to the binary indicator vectors \(1_{[y_i=k]} \) rather than binned averages in order to give equal weight to each training example.

We also explored a wide variety of other calibration models including sigmoid-shaped functions such as tanh.
as well as much richer models which fit an independent parameter \(\beta_k \) per class label, models which perform joint calibration across all class labels. We even considered a non-parametric approach in which we treated the 120-D ground truth label vectors as structured labels and trained an additional structured random forest [10]. We found that using a single scalar \(\beta \) for all non-background scores is highly efficient\(^4\) and performed as well as any calibration scheme we tried. When performing multiscale fusion (Section 4), we fit a distinct \(\beta \) for each scale, the values of which typically ranged from 6 to 10.

4For a sparse voting implementation, one can do nearly as well using the fast approximation \(f(w) = \min\{1, w\} \)

4. Edge Fusion

Having applied the forest over the input image, we are left with a collection of calibrated probability estimates \(\hat{w} \) at every spatial position. Because these distributions express the likelihood of both centered \((d = 0)\) as well as distant, off-center \((d \neq 0)\) edges, the probability of boundary at a given location is necessarily determined by the tree predictions over an entire neighborhood around that location. In this section, we describe how to resolve these probabilities into a single, coherent image of boundary strengths. The end result will be an oriented signal \(E(x, y, \theta) \) that specifies the probability of boundary at location \((x, y)\) in the binned direction \(\theta \).

Edge sharpening By focusing on oriented lines, our detector is trained to recognize coarse edge statistics but cannot predict more detailed structure, e.g. local curvature or wiggles of a few pixels in a contour. As the size of the analyzed patch increases relative to the size of an object, the straight line assumption becomes a less accurate representation of the shape. In order to provide a more detailed prediction of the contour shape, we utilize a local segmentation procedure similar to the sharpening method introduced by Dollár and Zitnick [10]. This is similar in spirit to the notion of “Edge Focusing” [3] in which coarse-to-fine tracking utilizes edge contrast measured at a coarse scale but contour shape derived from fine scale measurements.

Consider a hypothesized (straight) edge predicted by the forest at a given location. We compute the mean RGB color of the pixels on each side of the hypothesized edge inside a \(16 \times 16\) pixel patch centered at the location. We then resegment pixels inside the patch by assigning them to one of these two cluster means. To prevent the local segmentation from differing wildly with the original oriented line predicted by the forest, we only reassign pixels which are within 1 or 2 pixels distance from the hypothesized segment boundary. We will use the notation \(M(x, y, k)(i, j) \) to denote the sharpened binary edge mask of type \(k = (d, \theta) \) computed for a patch centered at location \((x, y)\) in an input image. Figure 3 shows examples of individual patches along with the resulting mask \(M \) for more and less aggressive sharpening.

Compositing Given local estimates of the likelihood (given by \(\hat{w} \)) and precise shape (given by sharpening) of the dominant edge in each image patch, we would like to fuse these results into a prediction \(E(x, y, \theta) \). To predict whether a pixel at location \((x, y)\) is a boundary, we average over the predictions for all patches that overlap the given pixel. Using the convention that \(M(x, y, k)(0, 0) \) is the center of a given edge mask and indexing \(w \) by the coordinates of each patch in the image, we can write this formally as

\[
E(x, y, \theta) = \sum_{k \in \{(d, \theta) \forall d \}} \sum_{(i, j) \in O_{xy}} \hat{w}(i, j, k) M(i, j, k)(x-i, y-j)
\]

where \(O_{xy} \) are the coordinates of patches overlapping \(x, y\) and \(k \) ranges over all predicted labels which are compatible with orientation \(\theta \).

Combining multiple scales The compositing procedure in the previous section can easily be repeated to produce an \(E(x, y, \theta, s) \) for different scaled versions of an input image. In general, combining results at different scales is known to improve performance [20]. We apply the detector at four scales. To detect large-scale edge structure we run at scales \(s = 1/4, 1/2 \). We find that at these resolutions heavy sharpening is less desirable (see Figure 4). Finer edge structure is discovered at scales \(s = 1, 2 \), and at these scales more aggressive sharpening is preferred. The results are averaged to produce a final output, as in [9]. The strengths of each scale can be seen in Figure 7, where the curves tend toward higher precision and lower recall as \(s \) decreases. It is interesting to note that including \(s = 2 \) is beneficial despite being dominated everywhere by \(s = 1 \). As lower scales are added, precision increases but asymptotic recall suffers. Including scale 2 allows us to maintain the benefits of low scales without the loss in recall.

5. Experiments

In this section, we present our results on the BSDS500 edge detection benchmark, and perform a variety of diagnostic experiments to highlight the contribution of different components of our system.

Figure 5 shows the performance of our model on the BSDS500 test set over the full range of operating thresholds. Our system outperforms all existing methods in the

\[^{\text{5Note that if we do not perform any sharpening on the edge masks, then}}\]
Figure 5: Results on BSDS500. Our system outperforms all existing methods in the high precision regime, and is virtually identical to SE at high recall.

high precision regime, and is virtually identical to SE [10] at high recall. Table 1 lists quantitative benchmark results and compares them to recent published methods. Qualitative results on a selection of test images are shown in Figures 8 and 9.

The performance benefits of calibration are shown in Table 2. Calibration results in a clear improvement below 50% recall, boosting average precision from 0.81 to 0.82. In the same table we also report benchmark scores for our model when predictions from the ensemble are combined by voting (Eqn 2) rather than averaging. Voting appears to match averaging up to roughly 20% recall, beyond which it falls behind.

We find that our model benefits significantly from large amounts of training data. In Figure 6, we show how performance on BSDS500 varies as the amount of patches used for training is increased. Important for utilizing large datasets is efficient training. We discuss timing details in the next section.

5.1. Computational Costs

A key advantage of our simplified approach relative to SE [10] is significantly reduced resources required at training time. We report training times for both systems assuming each tree is trained on its own bootstrap sample of 4×10^6 patches.

Training For both models, the data sampling stage takes ~20 minutes per tree. Because we expose the trees to smaller random feature sets, this takes approximately 15 gigabytes (GB) of memory, compared to 33 GB for SE. To train on this much data, SE takes over 3.25 hours per tree and requires about 54 GB of memory. This is due to the per-node discretization step, where at every tree node PCA is applied to descriptors derived from the training examples at that node. In contrast, our approach is almost 40× faster, taking about 5 minutes per tree, with memory usage at roughly 19 GB.

Detection Although our system trains quickly, it is not as fast as SE at test time, taking roughly 6.5 seconds per image on a 12-core machine, or 1.4 seconds if run only at a single scale. The primary reason for this is that we spend more time on edge sharpening, since the predicted score vectors are not sparse. Fortunately, there are simple techniques to add sparsity with little to no drop in performance. We discuss these optimizations next.

Adjacent components of w corresponding to classes (d, θ) and $(d + 1, \theta)$ hypothesize edges a distance of one pixel apart. But because the channel features are downsampled by a factor of 2, this distance maps to a half pixel in the image. This is small enough that we can safely skip every other distance bin, which corresponds to zeroing out 64 of the 120 components of w. This reduces runtime to 4 seconds per image.

Detection time can also be reduced by evaluating the forest over the channel features with a stride of 2. Because the channel features are half size, this works out to a stride of 4 pixels over the image. That this technique does not reduce performance is presumably due to the large number of masks that are composited per location (Eqn 6).

Because the forest simultaneously predicts the likelihood of all patterns (d, θ) in a window, the same oriented edge can appear at different offsets d in different windows. Weights corresponding to the same edge can be brought into alignment and summed, so that we are left only with terms for $d = 0$. Thus the collection of 120-dimensional predictions computed over the image are “collapsed” down to 8 dimensions.

6. Discussion

In many ways our oriented edge forest is similar to SCG in that we train a classifier which predicts the boundary con-

Method	ODS	OIS	AP
Human	.80	.80	
gPb [2]	.71	.74	.65
gPb-owt-ucm [2]	.73	.76	.73
Sketch tokens [16]	.73	.75	.78
SCG [22]	.74	.76	.77
DeepNet [13]	.74	.76	.76
SE (2013) [9]	.74	.77	.78
PMI [12]	.75	.78	.76
MCG [3]	.75	.78	.76
SE (2014) [10]	.75	.77	.80
OEF	.75	.77	.82

Table 1: Benchmark scores on BSDS500.
Figure 6: Performance on BSDS500 as a function of the number of training examples, before calibration (blue) and after calibration (red). The smallest model was trained on 5×10^4 examples and the largest on 4×10^6 examples. Training times vary from less than one minute (40 seconds data collection + 6 seconds tree training) per tree for the smallest model to under 30 minutes (15-20 minutes data collection + 5 minutes tree training) per tree for the largest model.

Table 2: We analyze different variants of our system on BSDS. We use the notation “sharp=a,b,c,d” to indicate the sharpening levels used for scales 1/4, 1/2, 1, 2, respectively. All algorithms use sharpen=1,1,2,2 unless otherwise stated. Rows 1-2 compare voting (Eqn 2) and averaging (Eqn 1) prior to calibration, showing that having trees emit full distributions over labels is more powerful than casting single votes. Rows 2-3 show that calibration improves performance. The last four rows correspond to the calibrated model with different sharpening levels, and show that it helps to do less sharpening at lower scales.

ODS	OIS	AP	
vote	.74	.77	.80
average	.75	.77	.81
average+cal	.75	.77	.82
+ sharp=2,2,2,2	.75	.77	.81
+ sharp=1,1,1,1	.75	.77	.81
+ sharp=0,0,0,0	.74	.77	.78

Figure 7: Results on BSDS showing the performance of our algorithm when run at a particular scale, compared to the results after multiscale combination. No calibration is performed here. Consistent with the findings of [20], the combined model greatly outperforms any fixed-scale model.

Our proposed system is also quite similar to SE and Sketch Tokens (it uses the same features, etc.). We find it interesting that the inclusion of other types of output, such as junctions or parallel edges, is not necessary. Such events are quite rare, so there is probably not enough training data to really learn the appearance of more complicated local segmentations. In fact we found that training SE without complex patches (>2 segments) worked just as well.

A final observation is that having the classifier output patches (structured output) may not be necessary. It is certainly computationally advantageous since a given pixel receives votes from many more trees, but given enough trees the Sketch Tokens system performs essentially as well when only predicting the probability at the center pixel. This suggests that the real value of partitioning the data by edge orientation is that it greatly simplifies the task of the decision tree. Breaking boundary patches into different clusters allows the tree to learn the features for each cluster separately rather than having to discover the structure of edges by mining through large quantities of data. The orientation thus constitutes an extra supervisory signal for the classifier. We hypothesize that other types of detailed supervisory information e.g. curvature, depth of a surface from the camera,
change in depth across an edge, figure-ground orientation of a contour, material or object category of a surface, may further simplify the job of the decision forest and allow it to better fit the data more readily than simply training on a larger set of undistinguished patches.

References

[1] P. Arbelaez. Boundary extraction in natural images using ultrametric contour maps. In Computer Vision and Pattern Recognition Workshop, 2006. CVPRW’06. Conference on, pages 182–182. IEEE, 2006. 1

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. IEEE PAMI, 33(5), 2011. 1, 6, 11, 12

[3] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping. CVPR, 2014. 6, 10, 12

[4] F. Bergholm. Edge focusing. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):726–741, 1987. 5

[5] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression trees. CRC press, 1984. 3

[6] J. Canny. A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):679–698, 1986. 1

[7] A. Criminisi and J. Shotton. Decision forests for computer vision and medical image analysis. Springer, 2013. 3

[8] P. Dollar, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 1964–1971. IEEE, 2006. 1

[9] P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In Computer Vision (ICCV), 2013 IEEE International Conference on, pages 1841–1848. IEEE, 2013. 1, 3, 5, 6

[10] P. Dollár and C. L. Zitnick. Fast edge detection using structured forests. arXiv preprint arXiv:1406.5549, 2014. 5, 6, 9, 10, 11

[11] W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Transactions on Pattern analysis and machine intelligence, 13(9):891–906, 1991. 1

[12] P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson. Crisp boundary detection using pointwise mutual information. In Computer Vision–ECCV 2014, pages 799–814. Springer, 2014. 6

[13] J. J. Kivinen, C. K. Williams, N. Heess, and D. Technologies. Visual boundary prediction: A deep neural prediction network and quality dissection. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, pages 512–521, 2014. 6

[14] M. Leordeanu, R. Sukthankar, and C. Sminchisescu. Generalized boundaries from multiple image interpretations. 2012. 1

[15] T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using three-dimensional tex- tons. International Journal of Computer Vision, 43(1):29–44, 2001. 1

[16] J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-level representation for contour and object detection. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3158–3165. IEEE, 2013. 1, 3, 6, 11

[17] M. Maire, S. X. Yu, and P. Perona. Reconstructive sparse code transfer for contour detection and semantic labeling. In Asian Conference on Computer Vision (ACCV), 2014. 1

[18] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(5):530–549, 2004. 1

[19] J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in large margin classifiers. Citeseer, 1999. 4

[20] X. Ren. Multi-scale improves boundary detection in natural images. In Computer Vision–ECCV 2008, pages 533–545. Springer, 2008. 5, 7

[21] A. Torralba and A. Oliva. Statistics of natural image categories. Network: computation in neural systems, 14(3):391–412, 2003. 2

[22] R. Xiaofeng and L. Bo. Discriminatively trained sparse code gradients for contour detection. In Advances in neural information processing systems, pages 584–592, 2012. 1, 6, 9, 11
Figure 8: Example results on the BSDS test set after non-maximal suppression. Rows 1, 4 demonstrate our model correctly suppressing edges belonging to background texture, such as on the scales on the statue and the dots around the woman’s face. Also note that in row 2 our results show significantly less weight on the false edges along the surface of the water. To allow for meaningful visual comparisons, we derive a global monotonic transformation for each algorithm that attempts to make the distributions of output values the same across all algorithms similar. This post-processing step preserves the relative ordering of the edges, so benchmark results are unaffected but some irrelevant differences are eliminated from the boundary map visualization (see Appendix A for details).
Figure 9: Example results on the BSDS test set after non-maximal suppression. Results are visualized according to the procedure described in Appendix A.
Appendix A: Visualizing Detector Response Images

One difficulty in visualizing boundary detector outputs is that monotonic transformations of the output images do not affect benchmark performance but can dramatically affect the qualitative perception of boundary quality. A consequence of this is that qualitative comparisons of different algorithms can be misleading, as the most salient differences tend not to be relevant to actual performance. An example of this can be seen in Figure 10(c), which shows the raw output of SCG [22] on a test image. Comparing this against the results of other algorithms, the output appears overly dim and gives the impression that SCG is relatively insensitive to all but the most obvious edges. However, a quick glimpse at its precision-recall curve reveals that this impression is false.

To visualize boundary detector outputs in a way that highlights relevant differences but removes these nuisance factors without affecting benchmark results, we determine a global monotonic transformation for each boundary detector which attempts to make the average histogram of response values across all images match a standard distribution. This global monotonic transformation is equivalent to constructing a custom color palette for visualizing the output of each algorithm.

To do this, we choose a reference algorithm (we use SE) and compute its histogram of responses over the test set to arrive at a target distribution. For every boundary map produced by another algorithm we compute a monotonic transformation for that boundary map that approximately matches its histogram to the target distribution. Averaging these mappings produces a single monotonic transformation specific to that algorithm which we use when displaying outputs. Note that for a specific image the reference algorithm will emit a distribution of response values that will differ slightly from the target distribution computed over all images, and hence the transformed images look different even for the reference algorithm.

We show results of this process in Figure 10. These visualizations make it clear that side-by-side comparisons of raw detector output can obscure important detail.

Appendix B: Producing Regions with OEF-UCM

A notable distinction between our method and [10, 16] is that our method produces oriented output $E(x, y, \theta)$. One consequence of this is that it fits naturally into the OWT-UCM pipeline described in [2], which transforms an oriented signal from any contour detector into a hierarchy of regions, represented by an ultrametric contour map (UCM).

One difficulty with this process is that the orientation channels produced by our model are much less correlated than those of gPb, and hence OWT results suffer when orientation estimates of the watershed arcs are even slightly off. Thus we perform a small amount of smoothing across orientations prior to running OWT. Sample results of this process are shown in Figure 12. Example segmentations obtained from the UCM at different thresholds are shown in Figure 11.
Figure 11: Example segmentations obtained by thresholding the ultrametric contour maps (second column) built from the images in the first column. Regions are displayed with their mean color. Fine-scale segmentations are shown in the third column, and the last column displays the segmentations obtained by thresholding at the optimal image scale (OIS).

Figure 12: Example results of the OWT-UCM [2] procedure applied to our oriented boundary output.