RooHammerModel: interfacing the HAMMER software tool with the HistFactory package

J. García Pardiñas¹,* , S. Meloni²,³,†, L. Grillo⁴, P. Owen¹, M. Calvi²,³, and N. Serra¹

¹ Physik-Institut, Universität Zürich, Zürich, Switzerland
² Università di Milano Bicocca, Milano, Italy
³ INFN Sezione di Milano-Bicocca, Milano, Italy
⁴ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

Abstract. Recent B-physics results have sparked great interest in the search for beyond-the-Standard-Model (BSM) physics in $b \to c\ell\bar{\nu}$ transitions. The need to analyse in a consistent manner big datasets for these searches, using high-statistics Monte-Carlo (MC) samples, led to the development of HAMMER, a software tool which enables to perform a fast morphing of MC-derived templates to include BSM effects and/or alternative parameterisations of long-distance effects, avoiding the need to regenerate simulated samples. This note describes the development of RooHammerModel, an interface between this tool and the commonly-used data-fitting framework HistFactory. The code is written in C++ and admits an alternative usage in standalone RooFit analyses. In this document, the structure and functionality of the user interface are explained. Information of a public repository where it can be accessed is provided, as well as validation and performance studies of the interface. The methods developed in the construction of RooHammerModel can provide specific information for alternative future attempts to interface HAMMER with other data-fitting frameworks.

Contact authors:

* julian.garcia.pardinas@cern.ch
† simone.meloni@cern.ch
1 Introduction

The recent B-physics anomalies found in $b \rightarrow c\ell\bar{\nu}$ transitions \cite{1,2,3,4,5,6,7,8} have generated great interest in the study of beyond-the-Standard-Model (BSM) effects in charged-current semileptonic decays, and both the LHCb and Belle II experiments have planned intensive physics programs \cite{9,10} to investigate the nature of these anomalies. The analysed decay modes are characterised by large branching ratios and consequently large signal yields, which requires the production of enormous Monte Carlo (MC) samples to study them with high precision. In order to perform self-consistent and up-to-date measurements, the simulation models should include an adequate description of BSM effects and a state-of-the-art parameterisation of soft QCD effects \cite{5}. However, the high resource consumption of the simulation prevents the generation of devoted samples for every possible configuration of decay parameters.

The recently-developed HAMMER \cite{11} software tool allows to perform a fast re-weighting of a given MC sample to effectively change the decay matrix element into a new desired one, without the need to regenerate the MC events. The transformation can be done for any possible values of the parameters governing the decay amplitude, which opens the possibility of using HAMMER to measure those parameters in fits to collision-data. To enable the necessary dynamic re-weight of the MC distributions, an interface must be implemented between HAMMER and the used fitting framework.

Semileptonic charged-current decays are typically studied via binned template fits, and one of the most extended and user friendly frameworks that allows to do so in High-Energy Physics (HEP) is HistFactory \cite{12}. This tool has a limited functionality for template morphing, only being able to provide interpolations between fixed-shape histograms that have to be provided as input. In order to use a generic shape parameterisation in HistFactory (and in particular the functional forms provided by HAMMER), new structures have to be developed.

This note presents the construction of RooHammerModel, an interface between the HAMMER tool and the HistFactory fitting framework. The interface is designed to be user-friendly. It has been optimised in terms of speed and memory consumption and has been tested on a typical use case. As the core of the HAMMER software and the baseline implementation of HistFactory, the presented interface is also coded in C++, and is constructed in a way that makes it also compatible with standalone RooFit \cite{13} fitting frameworks. This interface therefore requires solely a working installation of the HAMMER and RooFit/HistFactory packages.

The structure of the paper is as follows. Sec. 2 describes the overall structure of the interface. Sec. 3 explains the user configuration. Sec. 5 points to a public repository where the code can be found and gives instructions on how to compile and execute it. Sec. 4 explains several aspects of the particular implementation and the designed solutions to some challenges that arose in the process. Sec. 6 presents the studies done to test the fitting interface. Sec. 7 shows some performance benchmarks in terms of timing and memory consumption. Finally, some final remarks are given in Sec. 8.

5 When studying differential decay-rate distributions, a common experimental approach to circumvent this problem consists on using the MC samples only to model the detection efficiency and resolution functions. That information is then used to provide the unfolded collision-data distributions, that can be externally studied by the theory community with particular decay models. However, this approach comes with some difficulties, especially linked to the unfolding procedure, and can lead to inconsistencies in the result of the measurement, as demonstrated in Ref. \cite{11}.
2 Structure of the framework

The usage of the interface assumes that the desired simulation samples have been previously preprocessed with the HAMMER tool (as explained in detail in Ref. [11]) and that the corresponding results, collected in binary files, are available. The overall structure of the interface is similar to a standard HistFactory fitting script, but incorporating a new class, RooHammerModel, to model the desired decay components using HAMMER histograms. This class takes full care internally of the technical interaction with HAMMER, such that the user only needs to specify the desired model configuration and parameters. The general features of both the new class and the fitter structure are discussed in the following.

The RooHammerModel class inherits from RooAbsPdf and implements a normalised piecewise function of arbitrary shape (binned probability density function, PDF). It can be used both in HistFactory and in plain RooFit. As previously stated, this class takes care internally of interfacing with HAMMER. The PDF represented by the class is currently defined in a three-dimensional variable space, although this functionality can be extended in the future to perform fits in a different number of dimensions. Since the shapes are obtained from the HAMMER tool, any arbitrary set of three variables in the decay can be adequately modelled by the class. The class presents some additional methods that allow the extension of typical HistFactory features to variable-shape histograms, as explained in Sec. 4.

The typical structure of a HistFactory fitting script can be maintained, with some additions needed to implement the full functionality of the RooHammerModel class.

– As a first step, the set of templates needed to describe the physics model under consideration are loaded, as well as the data histograms to be fitted. The desired instances of the RooHammerModel class are created, and they are used to obtain associated initial templates, which are passed to the HistFactory model (as explained in Sec. 4).
– Afterwards, the HistFactory model is internally transformed into a RooFit probability density function (PDF), as usually done in this framework.
– The next key point is the substitution in the model of the relevant initial templates by the corresponding RooHammerModel objects, which enables the dynamical variation of the templates’ shape.
– Finally, the fit to data is done as usual.

3 User interface

The decay-rate amplitudes contained in HAMMER make use of the Effective Field Theory, that encodes all the short-distance effects (including the BSM contributions) in the so called Wilson coefficients, and the soft-QCD effects in kinematic-dependent form factors. The functional form of the form factors depends on the chosen phenomenological parameterisation.

The main idea behind HAMMER is that the differential decay rate can be expressed as a linear combination of terms that depend on the Wilson coefficients. Consequently, the transformation between distribution shapes that corresponds to a change in Wilson coefficients’ values can be obtained via linear algebra operations. Furthermore, some of the form factor parameterisation classes implemented in HAMMER provide the functionality to reweight the distributions changing the value of the form factor parameters inside the model. These classes are denoted with “Var” in their name [11]. In these classes, the form factors are linearised in the parameters’ space around

\[6\] If used in plain RooFi, the user needs to pay attention and consider the particular implementation of the class, as described in the following.
the chosen initial values. With this approximation, the decay rate for the process, as a function of
any observable, takes a linear form also in the form factor parameters. More complete information
can be found in [11].

In the interface described in this document, the handling of Wilson coefficients and form-factor
parameters is done by the RooHammerModel class.

3.1 RooHammerModel class

The user can include in the model as many HAMMER-derived decay templates as desired, by
creating one instance of the RooHammerModel class for each of them. The class is configured for a
particular decay via its constructor, shown below. The user has to provide the information of the
decay process and the chosen form-factor parameterisation (matching the information that should
have been passed to HAMMER at the MC pre-processing step). The user can also specify which
of the Wilson coefficients and/or form-factor parameters are to be varied during fitting, by passing
lists of arguments to the constructor.

Constructor of the class. The default constructor of RooHammerModel is shown below, together
with a description of the arguments to be provided.

```cpp
RooHammerModel(const char *name, const char *title,
    std::string WCprocessname,
    std::vector<std::string>* _WCparamnames,
    const RooArgSet& _reWCparamlist,
    const RooArgSet& _imWCparamlist,
    std::string FFprocessname,
    std::string FFmodelname,
    std::vector<std::string>* _FFparamnames,
    const RooArgSet& _FFparamlist,
    std::vector<std::string>* filenames,
    std::string histoname_noerrors,
    std::string histoname_witherrors,
    std::string schemename);
```

- `name` and `title` denote the usual name and description attributes of a RooAbsPdf.
- `WCprocessname` denotes the quark-level weak-decay process, following the HAMMER naming
 convention. For example, “BtoCTauNu”.
- `_WCparamnames` is a vector containing the names of the (subset of) Wilson coefficients to be
 floated in the fit, without any particular ordering. The naming convention is the same as in
 HAMMER.
- `_reWCparamlist` and `_imWCparamlist` contain, respectively, the lists of real and imaginary
 parts of the Wilson Coefficients whose names are given in `_WCparamnames` (the ordering of the
 three lists has to match). The parameters can be either RooRealVar or RooFormulaVar.
- `FFprocessname` denotes the hadronic decay process, following the HAMMER naming conven-
 tion. For example “BtoD*”.
- `FFmodelname` denotes the chosen form-factor parameterisation, using the HAMMER naming
 convention. For example, “BGL”.

Note that the `name` and the `value` fields, used to instantiate these RooFit variables, are not in any way related to
the internal interaction with HAMMER and its naming conventions. This choice was assumed to give full freedom
to the user in naming the observables.
- `_FFparamnames` is a vector containing the names of the (subset of) form-factor parameters to be floated in the fit, without any particular ordering. The naming convention is the same as in HAMMER.
- `_FFparamlist` contains the list of form-factor parameters matching the names in `_FFparamnames`. The parameters can be either `RooRealVar` or `RooFormulaVar`.
- `filenames` is a vector of names for the HAMMER buffer files to be used. If the vector contains more than one element, the files will be combined inside the class. This behaviour is aimed at combining the sub-files obtained from the separate (and possibly parallel) pre-processing of different sub-samples of the MC dataset for a given specie.
- `histoname_noerrors` denotes a user-defined name (chosen at HAMMER pre-processing time) given to the HAMMER histogram object that constitutes the core of the PDF. This histogram does not have errors associated to the bins, only central values. The motivation for using two versions of the histogram, with and without bin errors, is explained in Sec. 4.
- `histoname_witherrors` denotes a user-defined name (chosen at HAMMER pre-processing time) given to a HAMMER histogram object that contains both bin errors and central values. The usage of this histogram is explained in Sec. 4.
- `schemename` denotes a user name given to the form-factor scheme, chosen at HAMMER pre-processing time.

Note that the constructor above is generic to any decay channel and decay-amplitude parameterisation. The possibility to pass `RooFormulaVar`s as observables to the model is particularly interesting in an analysis. A specific use-case scenario, for example, could be the need to include some relationship between Wilson coefficients to perform a model dependent fit, in which the relationship between some Wilson coefficients is imposed by the model being studied.

3.2 Fitting script

The `RooHammerModel` interface can be used as a standalone `RooFit` object, and is therefore usable in any program developed with the `RooFit` package. However, it has been developed with particular focus on the `HistFactory` package and an example script is provided as a guideline to perform a standard fit. The repository in which the script can be found is described in Sec. 5.

In this script, a model with two decay channels are configured. The shape of one of the two decay channels can vary according to the `CLNVar` HAMMER form factor parameterisation. The construction of the part of the fitting model that does not depend on HAMMER and the overall manipulation of the likelihood can be done as usual in `HistFactory`.

A particularly interesting feature that has been extended to the new scheme is the treatment of model-template uncertainties, using the Barlow-Beeston Lite method [14]. Both the fitting script and the `RooHammerModel` have been adapted to be able to use the bin errors computed by HAMMER, as explained in Sec. 4. The inclusion of template-uncertainties in the model can be activated as usual, via `RooStats::HistFactory::Sample::ActivateStatError`.

4 Technical implementation

This section describes the strategy and techniques adopted to overcome several challenges originated when interfacing HAMMER and `HistFactory`. These methods can also be of interest to future alternative efforts aimed at interfacing HAMMER with other fitting frameworks.
4.1 Handling of the HAMMER objects

In order to reduce the number of HAMMER::HAMMER instances loaded in memory while fitting (and hence reduce the memory consumption), only one instance of HAMMER::HAMMER is created (at construction time) for each of the channels to be modelled using HAMMER. That instance is kept as a data member of the associated RooHammerModel, that retrieves the needed information from it when requested. Any copy of a particular RooHammerModel object attempted in the fitting framework will not result in the creation of a new HAMMER::HAMMER instance, but on the creation of a pointer to the instance stored in the original RooHammerModel object.

4.2 Histogram caching

To avoid unnecessary computations during fitting and speed-up the process, the three-dimensional histogram that represents the model obtained from HAMMER for a given decay channel is only updated if any of the Wilson coefficients or form-factor parameter values is changed at the current minimisation step. Otherwise, no reweight is performed and a cached version of the previous histogram is used instead.

4.3 Treatment of empty bins

If the number of events in the MC sample used to model a component in HAMMER is low (under a given binning scheme), it may happen that some bins are empty, even if the underlying model for those bins is not zero. This would be problematic in a fit using HistFactory if the data sample to be fitted happens to have some events in the affected bins. To prevent this potential situation, every histogram retrieved from HAMMER is automatically corrected for empty bins inside RooHammerModel. The way this correction is implemented, from a technical viewpoint, consists on adding to the nominal histogram a constant flat histogram where the bin content value is an arbitrarily small number \(10^{-10}\). Note that this approach avoids an iteration over the bins to check whether or not they are empty, and the effect on the non-empty bins is negligible. This correction is applied whenever the model is reweighted.

4.4 Model normalisation

To preserve the statistical definition of PDF, the histogram that represents the physical distribution in RooHammerModel is always re-normalised after any change in shape, such that its integral on the defined phase space is always equal to one. The re-normalisation is done after correcting for empty bins. Note that this normalisation makes the RooHammerModel distribution insensitive to any change in a HAMMER parameter that represents an overall multiplicative factor to the total amplitude. If such a parameter exists in the desired model, the associated object passed to RooHammerModel must be constant. Apart from the automatic model normalisation, the RooHammerModel class provides all needed analytical integrals (à la RooFit) in any region of the phase space and for any desired dimensionality up to 3D.

\[\text{footnote}{\text{8}}: \text{If relevant, the parameter representing an overall multiplicative factor can be dealt with externally in the fitting framework, forming part of a yield parameter that multiplies the RooHammerModel PDF.}\]
4.5 Template uncertainties in the fit

The limited size of the MC samples used to describe the model in the fit intruduces a source of systematic uncertainty on the fit parameters. One way to include this uncertainty automatically in the fit is the so-called Barlow-Beeston method \cite{14}. In this approach, the logarithmic likelihood used for the fit is supplemented with constraints that depend on values and statistical errors for each bin in each of the MC samples.

A faster and simpler version of the previous method, called Barlow-Beeston lite, is implemented and commonly used in HistFactory fits. In this version, only one constraint is added per bin, accounting for the total bin content and uncertainty associated to the combination of all the MC samples. On a technical level, the method involves a single-step computation of the relative errors for each bin before the fit, and the computation at every minimisation step of the total constraint parameters per bin, using the previously-obtained relative errors and the updated component fractions. It should be emphasised that, within this method, neither the change in fractions nor in component shapes is taken into account in the determination of the relative bin errors.

The RooHammerModel class has been constructed to be used in combination with the Barlow-Beeston lite method and it takes advantage of the previously-introduced simplification. The pre-processing of histograms with bin uncertainties in HAMMER is much more resource consuming than that of the same histograms without uncertainties. The pre-processing time also increases with the number of Wilson coefficients and form-factor parameters whose variation is included in the HAMMER histograms. With the previous considerations in mind, the technique that we conceived and that RooHammerModel assumes consists on a double pre-processing of each decay component with HAMMER, producing two separate histograms: a histogram including bin uncertainties but fixed Wilson coefficients and form-factor parameters, and another histogram without bin uncertainties but with the desired parameters set to be variable. Both histograms should be stored in the same HAMMER buffer files to be read by RooHammerModel. The histogram without uncertainties will constitute the core of the PDF model, while the histogram with uncertainties will be accessible through a dedicated method of the class called getHistogramWithErrors.

This can be used in a fit configured with HistFactory in the following way: firstly the desired RooHammerModel objects are instantiated and the proxy histogram for each of them is retrieved via getHistogramWithErrors. These histograms are passed to the HistFactory model as standard templates. Then, the HistFactory model is compiled, using the dedicated HistFactory methods (to obtain the RooFit model to be used in the fit). This triggers the computation of the relative bin errors used in the Barlow-Beeston lite method, and the associated nuisance parameters and constraints to be correctly included in the model. Therefore, the relative error parameters are evaluated at the starting point of the fit\cite{10}. Finally, the RooCustomizer class allows to substitute the proxy templates in the model with the corresponding RooHammerModel objects, to profit from the shape variation during fitting.

\textbf{NOTE: uncertainty of the yield parameters.} If the discussed implementation of the Barlow-Beeston method is used and some of the fit observables are to be interpreted as component yields, an extra consideration should be taken into account, concerning the uncertainty on those parameters.

In HistFactory, any MC-template-based model that describes the histogram of a particular component can be mathematically expressed as:

\[n(x_b) = \xi \cdot h(x_b), \]

9 The usage of the two histograms together gives all the information needed for fitting, and the required pre-processing time is considerably smaller than that of an alternative single histogram with full features enabled.

10 This implies that the initial values of the parameters should not be too far from those at the best-fit point.
where \(n(x_b) \) is the expected number of events in a bin of coordinates \(x_b \), \(\xi \) is a fit parameter and \(h(x_b) \) is the MC template, that contains the number of events in the associated MC sample for the considered bin. When performing the fit using the Barlow-Beeston method, the uncertainty on \(\xi \) will account for both the statistical fluctuations of the data and the MC sample. It should be noted that \(\xi \) does not represent a yield, but a scaling factor to the MC template.

To obtain the associated yield parameter, we can sum Eq. 1 over all the bins, leading to

\[
N_{\text{obs}} = \xi \cdot N_{\text{MC}},
\]

where \(N_{\text{obs}} \) and \(N_{\text{MC}} \) are, respectively, the total number of events in the data sample and in the MC sample. Consequently, the measured value for the component yield can be obtained by multiplying \(\xi \) and \(N_{\text{MC}} \). However, the uncertainty of the yield can not be computed as \(\sigma(\xi) \cdot N_{\text{MC}} \), since \(N_{\text{MC}} \) has an uncertainty on its own (of statistical nature). Additionally, the uncertainties of \(\xi \) and \(N_{\text{MC}} \) are correlated, since the effect of a statistical fluctuation in \(N_{\text{MC}} \) is implicitly included in the \(\xi \) uncertainty, as part of the fluctuations done by the Barlow-Beeston procedure. As a solution, it is possible to obtain a relation among the uncertainties of the quantities in Eq. 2 by expressing \(\sigma(\xi) \) in terms of \(\sigma(N_{\text{obs}}) \) and \(\sigma(N_{\text{MC}}) \), noticing that \(N_{\text{obs}} \) and \(N_{\text{MC}} \) are fully uncorrelated:

\[
\sigma(\xi) = \frac{1}{N_{\text{MC}}} \sqrt{\frac{\sigma(N_{\text{obs}})^2}{N_{\text{obs}}^2} + \frac{\sigma(N_{\text{MC}})^2}{N_{\text{MC}}^2} \xi^2}.
\]

Re-ordering terms in the previous expression and making use of Eq. 2 we obtain:

\[
\sigma(N_{\text{obs}}) = \sigma(\xi) N_{\text{MC}} \sqrt{1 - \frac{\sigma(N_{\text{MC}})^2}{N_{\text{MC}}^2} \frac{\xi^2}{\sigma(\xi)^2}}
\]

The previous expression can then be used to compute the uncertainty on the yield parameter \(N_{\text{obs}} \) when using the presented implementation of the Barlow-Beeston method, combining the information from the fit parameter \(\xi \) and the information from the total number of events in the MC sample (with its uncertainty).

4.6 Passing fit variables to RooHammerModel

In a typical HistFactory fit, the collection of RooRealVar objects representing the fit variables is automatically constructed when the model is converted into a RooFit one, and can be accessed by the user from that moment onward. These RooRealVar objects have to be passed to the RooHammerModel instances. If this was done in the constructor, as in a typical RooAbsPdf, the RooHammerModel objects would have to be created after the HistFactory-model compilation point. However, in such a scenario the RooHammerModel would not be available at the beginning of the process, to provide the proxy histograms with bin uncertainties (see Sec. 4.5). With the aim of economising the memory consumption, avoiding duplicated objects, the solution adopted for the RooHammerModel class is to have a constructor where the fit variables are not passed (the one shown in Sec. 3.1), and then use a devoted method of the class, called `SetObservables`, to set the variables at the point in the code where they are available. Apart from this default scheme, the RooHammerModel class has an additional constructor, where the fit variables are also passed, in order to operate as usual if used standalone in a generic RooFit fitting framework.

11 This is typically done in HistFactory by adding multiplicative normalisation factors \((1/N_{\text{MC}})\) in the model, that allow to redefine the scaling factor such that its central value corresponds to that of the yield. This is automatically done in RooHammerModel, where the MC-derived PDF is always normalised to one (so the normalisation is done internally by the class).
4.7 Parallelisation

A generic HAMMER amplitude-reweighting process is divided in two steps: the pre-processing of MC files (not discussed in this document) and the the readout of the histograms (which happens inside the RooHammerModel class).

The first step can be parallelised in terms of MC events, running the HAMMER pre-processing in several CPU processes over separate simulated-data sub-samples, to produce separate HAMMER binary files. The implementation of the RooHammerModel class considers this possibility, by allowing the users to pass a list of binary file names in the constructor of the class (see Sec. 3.1). The information from the different files will be combined by summing the histograms, using the corresponding HAMMER functionality [11].

Concerning the parallelisation at histogram-readout time, the most relevant possibility is the parallelisation of the likelihood evaluation over different sets of bins. This can be done using the pre-existent method `RooFit::NumCPU` in the fit, that allows the users to specify the number of processes to be run in parallel. It should be noted that the parallelisation done with this method relies on multi-processing, not on multi-threading. This implies that the parallel workers load internally independent instances of the likelihood objects (including the HAMMER objects). On one side, this guarantees code safety under parallelisation, since there is no cross-talk between the different processes. On the other side, the multiple loading of the objects implies a higher memory consumption for a parallel fit, which should be considered by the users.

5 Software repository

The code needed to compile, set up and run the fit described in this paper can be found in https://gitlab.cern.ch/InterfacingHammer/roohammermodel. The repository is open-source and can also be used to modify the code, require or propose features. In the following sections some instructions to compile the code contained in the repository are reported: further information on how to link the RooHammerModel class in any executable can be found in the repository.

5.1 Compiling the new class

The RooHammerModel class has to be compiled in order to be used in any executable. The compilation assumes ROOT, RooFit and HAMMER have been installed in the system.

The environment variables needed to correctly link the libraries needed during compilation are set using the following commands

```
source <path to ROOT installation>/bin/thisroot.sh;
source <path to HAMMER installation>/bin/activate;
export CPATH=<path to HAMMER installation>/include:$CPATH
```

All the files needed for the compilation are included in the src and include directories in the repository. Also provided is the `CMakeLists.txt` file needed for the compiler configuration. The compilation is out of source and it can be executed by making a new directory and calling `cmake` within it. Therefore, after having downloaded the repository directory, the following commands have to be issued

12 The HAMMER tool provides a set of thread-safe specific methods that are useful for multi-threading parallelisation schemes.
cd <path to RooHammerModel directory>;
mkdir build;
 cd build;
cmake ..;
 make;

5.2 Running an example fit

After having successfully compiled the code provided in the repository, an executable will be generated to run the example fit provided. This can be run with the following command:

 ./Fitter

The executable assumes the existence of the following files:

- *Templates.root*: this is the ROOT file that contains the two three-dimensional histograms that represent the templates of the two samples configured in the measurement and the three-dimensional histogram that contains the data being fitted. The name of the histograms should follow the conventions assumed in the source file. The histogram of one of the two samples will be used as a proxy object (fixed-shape template) for configuring the model before being substituted with the RooHammerModel object.

- *Hammer_Tensors.root*: this is the root file in output to the HAMMER preprocessing step. The code in this example assumes the events have been reweighted with the CLNVar model.

6 Testing the framework

This section presents a set of generate-and-fit pseudo-experiments, called “toy” experiments, aimed at checking the fitting procedure using the new RooHammerModel class and the techniques explained in the previous section in a typical fit configured with HistFactory. The experiments are designed to test a realistic fitting situation from a technical viewpoint, with a simple physics scenario.

6.1 Technical setup of the experiments

For each pseudo-experiment, the event generation of all the needed samples is done using RapidSim [15], with a LHCb configuration, and EvtGen [16], although the conclusions of the checks are general to any experimental setup. The samples whose decay amplitude is to be re-weighted are pre-processed with HAMMER, to produce the corresponding HAMMER binary files. A fit is done using a set of the samples (see the next sub-section) to construct the physics dataset and another set to construct the fitting model, making use of RooHammerModel when relevant. The previously discussed implementation of the Barlow-Beeston lite method is used, to account for the uncertainty on the templates.

The fit results are collected for a large number of pseudo-experiments, and their statistical agreement with the generated parameter values and uncertainties is used to check the validity of the framework.
6.2 Benchmark physics scenario

As a particular physics scenario, a combination of two decay channels is chosen \[^{13}\] \(B^0 \rightarrow D^{*+} \mu^- \bar{\nu}_\mu \) and \(\bar{B}^0 \rightarrow D^{*+} \tau^- \bar{\nu}_\tau \), with \(D^{*+} \rightarrow D^+ \pi^0 \) and \(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau \). It is assumed for this scenario that neither the neutrinos nor the \(\pi^0 \) are reconstructed experimentally, so the visible final state, common to both the muonic and tauonic decays, is \(D^+ \mu^- \).

To investigate this combination of decays, three variables are used in the fit: the muon energy in the \(B^0 \) rest frame, \(q^2 = (p(B^0) - p(D^+))^2 \) and \(M^2_{\text{miss}} = (p(B^0) - p(D^+) - p(\mu^-))^2 \), where \(p(P) \) denotes the four-momentum of particle \(P \). No experimental resolution effects are considered in these studies, although the usage of the \(D^+ \) to compute the previous variables instead of the \(D^{*+} \) (because of the non-reconstructed \(\pi^0 \)) leads to a broadening of the distributions.

For each experiment, four samples with the previous decays are generated: muonic data and tauonic data, combined to represent the physics dataset, and muonic model and tauonic model, that provide the templates for the fit model. The muonic data sample is generated using the CLN parameterisation \[^{17}\], while the muonic model sample is generated with a pure phase-space model. Both the tauonic data and tauonic model samples are generated with a pure phase-space model. In the experiments, HAMMER is used to reweight muonic model from phase space to CLN. Apart from generating different events for each experiment, the total number of events in each sample, \(\nu \text{total} = 10^6 \) events, \(R(D^+) = N_{\text{data}}^{\text{muonic}}/N_{\text{data}}^{\text{tauonic}} \) and three form-factor parameters of the CLN parameterisation, \(\rho^2, R_1 \) and \(R_2 \). Since the functional form of the CLN form factors \[^{17}\] is not linear on the corresponding parameters, the presented toy study also tests the validity of the linear approximations done by HAMMER (see Sec. \[^3\]) in the considered scenario. As a technical note, since the form-factor parameters in HAMMER are constructed as differences with respect to central values set by the user at pre-processing step, the three parameters that are actually measured in the fit correspond to those differences, denoted by \(\Delta \rho^2, \Delta R_1 \) and \(\Delta R_2 \).

Generation values. In each experiment, the muonic and tauonic samples constituting the physics dataset are produced using the generation values \(\nu \text{total} = 10^6 \) events, \(R(D^+) = 0.3 \) and \(\Delta \rho^2 = \Delta R_1 = \Delta R_2 = 0 \) (with central form-factor parameter values \(\rho^2 = 1.207, R_1 = 1.401 \) and \(R_2 = 0.854 \)). The respective yields of the muonic and tauonic samples used to construct the fitting model are generated with the same values as their physics-dataset counter-parts (so the parameter uncertainties originating from both the physics dataset and the model templates are of similar size).

6.3 Results of the validation

A set of 1000 toy experiments have been performed with the previous setup, leading to 995 successful fits. For each fit, the pull variable for each parameter \(\theta \) is evaluated as follows:

\[
\theta_{\text{pull}} = \frac{\hat{\theta} - \theta_{\text{true}}}{\sigma_\theta},
\]

where \(\theta_{\text{true}} \) is the value used for generation, and \(\hat{\theta} \) and \(\sigma_\theta \) are the fit estimates for the value and uncertainty, respectively. An exception is done for the yield-like parameters \(\nu \text{total} \) and \(R(D^+) \), for which \(\sigma_\theta \) is computed as explained at the end of Sec. \[^{4.5}\].

\[^{13}\] Charge conjugation is implied in what follows.
The obtained pull distributions for the successful fits are shown in Fig. 1. For all the distributions, the parameters of a Gaussian fit are consistent with those of a standard Gaussian within three standard deviations. This demonstrates that, in the studied configuration, the fit provides unbiased estimators for the parameters, with the correct coverage properties.

7 Performance assessment

In order to assess the computing performance of the framework, a dedicated HistFactory three-dimensional fit is used. In this fit, the model is constructed with a single sample, which is in-
stantiated with the usage of RooHammerModel. The total number of bins in the 3D space is 3600.

The only floating parameters in the fit are 8 form factor parameters of the BGLVar HAMMER form-factor model. The minimisation of the likelihood function required by the fit is performed by the Minuit program, which is configured through the RooMinuit class in RooFit. The fit is run on a 64bit multi-core machine and is performed using a single core. The time and the memory consumption of this fit are inspected.

7.1 Timing

The average CPU time per minimization step is used to assess the performance. Having form factor parameters as the only fit variables ensures that the internal reweighting performed by the RooHammerModel class occurs at every step (since caching of the histogram shape is not possible in those conditions). The average CPU time per call is found to be around 40 ms.

7.2 Memory consumption

The memory consumption is assessed by looking at the total RAM allocated at the end of the fit program. This gives a rough estimate of 300 MB. When removing the Hammer interface from the study, keeping the same fit configuration, the memory consumption drops by 40%, so the memory allocated by the Hammer interface can be estimated, in this configuration, to be around 120 MB.

8 Conclusions

This article describes an interface of the HAMMER tool with the well known data-analysis framework, HistFactory. The interface, based on C++, is generic for any decay channel, has a user-friendly interaction and can be integrated in plain RooFit if desired. It has been optimised in terms of speed and memory, and has been tested in detail. The particular solutions to data analysis and computational challenges encountered when developing the interface are carefully described. We hope that they might serve as an inspiration to other groups trying to interface HAMMER with other fitting frameworks. The code of the interface is provided in an open-access Gitlab repository. Here we welcome and encourage merge requests, feature requests and suggestions, via GitLab

https://gitlab.cern.ch/InterfacingHammer/roohammermodel/-/blob/master/CONTRIBUTING.md.

Acknowledgements

The RooHammerModel interface has been developed in continuous symbiosis and interaction with the developers of the HAMMER tool. We would especially like to thank Michele Papucci and Dean Robinson, for all the constructive discussions, the detailed guidance on the usage of their tool and for the implementation of extra features in HAMMER that allowed this interface to work as needed. We would also like to thank Phoebe Hamilton, for the useful advice on technical aspects of the HistFactory framework. Finally, we want to express our gratitude to the other members of the Semileptonic Working Group of the LHCb Collaboration, for the discussions that helped to improve this interface.
References

1. **BaBar** Collaboration, J. P. Lees et al., “Evidence for an excess of $B \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}$ decays,” *Phys. Rev. Lett.* **109** (2012) 101802 [arXiv:1205.5442 [hep-ex]]

2. **BaBar** Collaboration, J. P. Lees et al., “Measurement of an Excess of $B \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}$ Decays and Implications for Charged Higgs Bosons,” *Phys. Rev. D** **88** no. 7, (2013) 072012 [arXiv:1303.0571 [hep-ex]]

3. **Belle** Collaboration, M. Huschle et al., “Measurement of the branching ratio of $B \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}$ relative to $B \rightarrow D^{(*)} \ell^{-} \bar{\nu}_{\ell}$ decays with hadronic tagging at Belle,” *Phys. Rev. D** **92** no. 7, (2015) 072014 [arXiv:1507.0233 [hep-ex]]

4. **Belle** Collaboration, Y. Sato et al., “Measurement of the branching ratio of $B^0 \rightarrow D^{*-} \tau^{-} \bar{\nu}_{\tau}$ relative to $B^0 \rightarrow D^{*-} \ell^{-} \bar{\nu}_{\ell}$ decays with a semileptonic tagging method,” *Phys. Rev. D** **94** no. 7, (2016) 072007 [arXiv:1607.07923 [hep-ex]]

5. **Belle** Collaboration, S. Hirose et al., “Measurement of the τ lepton polarization and $R(D^*)$ in the decay $B \rightarrow D^* \tau^{-} \bar{\nu}_{\tau}$,” *Phys. Rev. Lett.* **118** no. 21, (2017) 211801 [arXiv:1612.00529 [hep-ex]]

6. **LHCb** Collaboration, R. Aaij et al., “Measurement of the ratio of branching fractions $B(B^0 \rightarrow D^{*-} \tau^{-} \bar{\nu}_{\tau})/B(B^0 \rightarrow D^{*-} \mu^{-} \bar{\nu}_{\mu})$,” *Phys. Rev. Lett.* **115** no. 11, (2015) 111803 [arXiv:1506.08614 [hep-ex]]; [Erratum: Phys. Rev. Lett.115,no.15,159901(2015)].

7. **LHCb** Collaboration, R. Aaij et al., “Measurement of the ratio of the $B^0 \rightarrow D^{*-} \tau^{-} \nu_{\tau}$ and $B^0 \rightarrow D^{*-} \mu^{-} \nu_{\mu}$ branching fractions using three-prong τ-lepton decays,” *Phys. Rev. Lett.* **120** no. 17, (2018) 171802 [arXiv:1708.08856 [hep-ex]]

8. **Belle** Collaboration, A. Abdesselam et al., “Measurement of $R(D)$ and $R(D^*)$ with a semileptonic tagging method,” [arXiv:1904.08794 [hep-ex]]

9. **LHCb** Collaboration, R. Aaij et al., “Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era,” [arXiv:1808.08865 [hep-ex]]

10. **Belle-II** Collaboration, W. Altmannshofer et al., “The Belle II Physics Book,” *PTEP 2019* no. 12, (2019) [arXiv:1808.10567 [hep-ex]]

11. F. U. Bernlochner, S. Duell, Z. Ligeti, M. Papucci, and D. J. Robinson, “Das ist der HAMMER: Consistent new physics interpretations of semileptonic decays,” [arXiv:2002.00020 [hep-ph]]

12. **ROOT Collaboration** Collaboration, K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke, "HistFactory: A tool for creating statistical models for use with RooFit and RooStats," Tech. Rep. CERN-OPEN-2012-016, New York U., New York, Jan, 2012. [https://cds.cern.ch/record/1456844]

13. W. Verkerke and D. Kirkby, “The rootkit toolkit for data modelling,” [arXiv:physics/0306116 [physics.data-an]]

14. R. J. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples,” *Comput. Phys. Commun.* **77** (1993) 219–228

15. G. Cowan, D. Craik, and M. Needham, “Rapidsim: An application for the fast simulation of heavy-quark hadron decays,” *Computer Physics Communications* **214** (May, 2017) 239–246 [http://dx.doi.org/10.1016/j.cpc.2017.01.029]

16. D. J. Lange, “The EvtGen particle decay simulation package,” *Nucl. Instrum. Meth.* **A462** (2001) 152–155

17. I. Caprini, L. Lellouch, and M. Neubert, “Dispersive bounds on the shape of form factors,” *Nuclear Physics B* **530** no. 1-2, (Oct, 1998) 153–181 [http://dx.doi.org/10.1016/S0550-3213(98)00350-2]

18. C. G. Boyd, B. Grinstein, and R. F. Lebed, “Precision corrections to dispersive bounds on form factors,” *Physical Review D* **56** no. 11, (Dec, 1997) 6895–6911 [http://dx.doi.org/10.1103/PhysRevD.56.6895]

19. F. James, “MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1”