Supplementary Materials

Alkaloids with Nitric Oxide Inhibitory Activities from the Roots *Isatis tinctoria*

Dongdong Zhang 1,#, Yanhong Shi 2,#, Kang Du 1, Deqing Ruan 1, Qi Jia 1, Kaixian Chen 1,3, Yiming Li 1, * and Rui Wang 1, *

Affiliation

1 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
2 Institute of TCM International Standardization of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
3 Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China

These authors contribute equally to this work.

Corresponding Author

* E-mail: wr@shutcm.edu.cn (Rui Wang), Tel: 86 21 51322181, Fax: 86 21 51322193.
E-mail: ymlius@163.com (Yiming Li), Tel: 86 21 51322191, Fax: 86 21 51322193.
General experimental procedures

The HR-ESI-MS was performed using a Q-TOF-Ultima mass spectrometer (Milford, MA, USA); ECD spectra were obtained on a Applied photophysics brighttime chirascan (AppliedPhotophysics, UK); IR spectra were recorded on a Nicolet iS10 instrument (Thermo Fisher Scientific, USA); 1D and 2D NMR spectra were recorded on a Bruker-Avance 600 or Bruker-Avance 400 instrument (Bruker, Germany); Optical rotation was measured using a Rudolph Autopol VI polarimeter (Rudolph, USA); Semipreparative HPLC was performed on an Agilent infinity II system equipped with a DAD detector (Agilent, USA) and a Capcell Pak C_{18} column (10 mm × 250 mm, 5μm particles, Shiseido, Japan); Sephadex LH-20 (GE Healthcare Bio-Sciences AB); Reversed-phase C_{18} silica gel 5μm, YMC Co., Ltd. Japan); MCI gel (CHP-20 P, Mitsubishi Chemical Industries Co., Ltd. Japan); Silica gel (100–200 mesh and 200–300 mesh; Qingdao Haiyang Chemical, China); All solvents used in CC were of analytical grade (Sinopharm Chemical Reagent Co., Ltd. China). Murine macrophage RAW 264.7 cells were purchased from the Cell Bank of Chinese Academy of Sciences (Shanghai, China); Multiskan go Microplate Reader (Thermo Fisher Scientific, USA); Thermo HERH Cell incubator (Thermo Fisher Scientific, USA); Heal Force bechtop (Thermo Fisher Scientific, USA); Pipettor (Eppendorf, German); p-aminobenzenesulfonylamide (Sigma-Alorich: #SLBC0284V); N-1-Naphthylethylenediamine Dihydrochloride (Sigma-Alorich: #SLBC1304V); aminoguanidine hydrochloride (AH, Sigma-Alorich).

Plant Material

The *Isatis tinctoria* roots (Ban Lan Gen) was collected on July, 2017 from the Daqing city, HeiLongJiang Province of China, and it was authenticated by one of our Co-authors Rui Wang professor (School of Pharmacy, Shanghai University of Traditional Chinese Medicine). A voucher specimen (herbarium No. 20170716SL) has been deposited in the Medicinal Plants Herbarium (MPH), School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Extraction and isolation

The air-dried and pulverized root of *I. tinctoria* (synonym *Isatis indigotica* Fort., 45 kg) was extracted with 80% EtOH under reflux three
times. After removing the solvent under reduced pressure, the concentrated residue was successively partitioned with petroleum ether (PE), dichloromethane (CH$_2$Cl$_2$) and n-BuOH. The CH$_2$Cl$_2$ extract (170 g) was subjected to column chromatography (CC) on silica gel, eluting with a gradient solvent system (CH$_2$Cl$_2$-MeOH, 100:0 − 100:20) to give eleven fractions (F1 − F11); F3 (16 g) was subjected to CC on silica gel, eluting with (CH$_2$Cl$_2$-MeOH, 100:1 − 100:5) to give six subfractions (F3-1 − F3-6). F3-1 (1.9 g) was subjected to CC on Sephadex LH-20 gel, eluting with (CH$_2$Cl$_2$-MeOH, 1:1) and then purified by HPLC with MeCN-H$_2$O (42:58) to afford 6 (3.7 mg; t_R = 26.8 min) and 7 (5.2 mg; t_R = 28.3 min); F3-2 (1.7 g) was subjected to CC on Sephadex LH-20 gel, eluting with (CH$_2$Cl$_2$-MeOH, 1:1) and then purified by HPLC with MeCN-H$_2$O (38:62) to afford 4 (4.1 mg; t_R = 20.7 min); F3-3 (0.9 g) was subjected to CC on Sephadex LH-20 gel, eluting with (CH$_2$Cl$_2$-MeOH, 1:1) and then purified by HPLC with MeCN-H$_2$O (25:75) to afford 16 (4.1 mg, t_R = 28.3 min) and 17 (6.2 mg, t_R = 21.1 min); F4-5 (2.3 g) was subjected to CC on Sephadex LH-20 gel, eluting with (CH$_2$Cl$_2$-MeOH, 1:1) and then purified by HPLC with MeCN-H$_2$O (30:70) to afford 3 (3.8 mg; t_R = 18.6 min), 5 (4.5 mg; t_R = 27.4 min) and 8 (3.9 mg; t_R = 20.9 min); F-4 (14 g) was subjected to CC on silica gel, eluting with (CH$_2$Cl$_2$-MeOH, 100:1 ~ 100:5) to give five subfractions (F4-1 − F4-5). F4-3 (1.9 g) was subjected to CC on Sephadex LH-20 gel, eluting with (CH$_2$Cl$_2$-MeOH, 1:1) and then purified by HPLC with MeCN-H$_2$O (32:68) to afford 16 (4.1 mg, t_R = 28.3 min) and 17 (6.2 mg, t_R = 21.1 min); F4-5 (2.3 g) was subjected to CC on Sephadex LH-20 gel, eluting with (CH$_2$Cl$_2$-MeOH, 1:1) and then purified by HPLC with MeCN-H$_2$O (20:80) to afford 14 (16.4 mg; t_R = 33.7 min); F5 (7 g) was subjected to CC on silica gel, eluting with (CH$_2$Cl$_2$-MeOH, 100:2 ~ 100:10) to give six subfractions (F5-1 − F5-6). F5-5 (0.5 g) was purified by HPLC with MeCN-H$_2$O (26:74) to afford 1 (3.4 mg, t_R = 18.2 min) and 20 (8.4 mg, t_R = 21.0 min); F5-6 (0.7 g) was purified by HPLC with MeCN-H$_2$O (23:77) to afford 11 (3.0 mg, t_R = 16.8 min) and 13 (13.2 mg, t_R = 15.1 min). F6 (8 g) was subjected to CC on silica gel, eluting with (CH$_2$Cl$_2$-MeOH, 100:2 ~ 100:10) to give seven subfractions (F6-1 − F6-7). F6-6 (0.6 g) was purified by HPLC with MeCN-H$_2$O (18:82) to afford 10 (2.8 mg, t_R = 19.2 min), 12 (3.8 mg, t_R = 23.6 min) and 23 (5.2 mg, t_R = 20.5 min); F6-7 (0.6 g) was purified by HPLC with MeCN-H$_2$O (20:80) to afford 15 (3.3 mg, t_R = 14.2 min), 18 (3.5 mg, t_R = 16.0 min) and 21 (5.5 mg, t_R = 17.4 min). F7 (5 g) was subjected to CC on silica gel, eluting with (CH$_2$Cl$_2$-MeOH, 100:5 ~ 100:10) to give four subfractions (F7-1 − F7-4). F7-1 (0.2 g) was purified by HPLC with
MeCN-H$_2$O (19:81) to afford 9 (11.2 mg, $t_R = 36.6$ min). F8 (4g) was subjected to CC on RP-C$_{18}$ eluting with MeCN-H$_2$O (10%, 30%, 60%) to give three subfractions (F8-1 − F8-3). F8-1 (0.4 g) was purified by HPLC with MeCN-H$_2$O (24:76) to afford 19 (3.4 mg, $t_R = 8.3$ min) and 22 (2.6 mg, $t_R = 9.6$ min).

Inhibitory Assay of NO Production

Cytotoxicity was examined using the Cell Counting Kit-8 (CCK-8). RAW264.7 cells were taken from logarithmic growth stage and the cell density reached above 80%. And then, the cells were inoculated on 96-well cell culture plates at 100 microns/well, with 3×10^4 cells per well, cultured overnight at 37 °C with 5% CO$_2$. After 24h, the culture medium in the 96-well plate was discarded, the solution was changed and different concentrations (25 μM, 50 μM and 100 μM) of drugs were added. The absorbance at 450 nm was measured using a microplate reader (Thermo Fisher Scientific). Viability was defined as the ratio (expressed as a percentage) of absorbance values of treated cells to untreated cells. The results were listed in Table 3.

Compounds 1−23 were dissolved in dimethyl sulfoxide (DMSO) and diluted with complete medium to 6 degrees of concentration (Compound 9: 0.1, 0.5, 1, 5, 10 and 25 μM, while the others: 0.1, 1, 5, 25, 50 and 100 μM) for inhibition rate determination. RAW 264.7 cells were maintained in Dulbecco’s modified Eagle’s medium (high-glucose condition) supplemented with 10% fetal calf serum, 100 U/mL penicillin, and 100 μg/mL streptomycin at 37 °C in 5% CO$_2$. RAW 264.7 cells were pretreated with each tested compound for 30 min, and then stimulated with lipopolysaccharide (LPS) (100 ng/mL) for 24 h. Aminoguanidine hydrochloride (100 μM) was used as a positive control. The NO production was measured using the Griess reagent. Briefly, the cell culture supernatant was reacted with equal volumes of Griess reagent in a 96-well plate for 10 min, and then the absorbance at 540 nm was measured by a plate reader. All experiments were performed in triplicate. All tested compounds were prepared as stock solutions with a concentration of 10 mM in DMSO. The IC$_{50}$ values of compounds 1−23 were calculated.

ECD calculation of compound 23
The conformers of compound 23 were obtained using the MM2 force field with ChemBio3D software. Gaussian 09 software was utilized for the semiempirical PM3 quantum mechanical geometry optimizations and the time-dependent density functional theory (TDDFT) ECD was calculated at the b3lyp/6-31g(d) level. The ECD spectra conformers of compound 23 were obtained using SpecDis 1.62 and compared with the experimental data.
No.	Content	page
1	**Figure S1.** The IR spectrum of **1** (in KBr)	S8
2	**Figure S2.** The HR-ESI-MS spectrum of **1** (in MeOH)	S9
3	**Figure S3.** The 1H NMR spectrum of **1** (in DMSO-d_6)	S10
4	**Figure S4.** The 13C NMR spectrum of **1** (in DMSO-d_6)	S11
5	**Figure S5.** The DEPT 135 spectrum of **1** (in DMSO-d_6)	S12
6	**Figure S6.** The HSQC spectrum of **1** (in DMSO-d_6)	S13
7	**Figure S7.** The HMBC spectrum of **1** (in DMSO-d_6)	S14
8	**Figure S8.** The 1H-1H COSY spectrum of **1** (in DMSO-d_6)	S15
9	**Figure S9.** The IR spectrum of **2** (in KBr)	S16
10	**Figure S10.** The HR-ESI-MS spectrum of **2** (in MeOH)	S17
11	**Figure S11.** The 1H NMR spectrum of **2** (in DMSO-d_6)	S18
12	**Figure S12.** The 13C NMR spectrum of **2** (in DMSO-d_6)	S19
13	**Figure S13.** The DEPT 135 spectrum of **2** (in DMSO-d_6)	S20
14	**Figure S14.** The HSQC spectrum of **2** (in DMSO-d_6)	S21
15	**Figure S15.** The HMBC spectrum of **2** (in DMSO-d_6)	S22
16	**Figure S16.** The 1H-1H COSY spectrum of **2** (in DMSO-d_6)	S23
17	**Figure S17.** The IR spectrum of **3** (in KBr)	S24
18	**Figure S18.** The HR-ESI-MS spectrum of **3** (in MeOH)	S25
19	**Figure S19.** The 1H NMR spectrum of **3** (in DMSO-d_6)	S26
20	**Figure S20.** The 13C NMR spectrum of **3** (in DMSO-d_6)	S27
21	**Figure S21.** The DEPT 135 spectrum of **3** (in DMSO-d_6)	S28
22	**Figure S22.** The HSQC spectrum of **3** (in DMSO-d_6)	S29
Figure	Description	Reference
--------	-------------	-----------
S23	Figure S23. The HMBC spectrum of 3 (in DMSO-d_6)	S30
S24	Figure S24. The 1H-1H COSY spectrum of 3 (in DMSO-d_6)	S31
S25	Figure S25. The ROESY spectrum of 3 (in DMSO-d_6)	S32
S26	Figure S26. The IR spectrum of 23 (in KBr)	S33
S27	Figure S27. The HR-ESI-MS spectrum of 23 (in MeOH)	S34
S28	Figure S28. The 1H NMR spectrum of 23 (in DMSO-d_6)	S35
S29	Figure S29. The 13C NMR spectrum of 23 (in DMSO-d_6)	S36
S30	Figure S30. The DEPT 135 spectrum of 23 (in DMSO-d_6)	S37
S31	Figure S31. The HSQC spectrum of 23 (in DMSO-d_6)	S38
S32	Figure S32. The HMBC spectrum of 23 (in DMSO-d_6)	S39
S33	Figure S33. b3lyp/6-31g(d) optimized lowest energy conformers for (2S)-23 and their equilibrium populations	S40
S34	Figure S34. b3lyp/6-31g(d) optimized lowest energy conformers for (2R)-23 and their equilibrium populations	S41
S35	Figure S35. Experimental and calculated ECD spectrum of 23	S42
Figure S1. The IR spectrum of 1 (in KBr)
Figure S2. The HR-ESI-MS spectrum of 1 (in MeOH)
Figure S3. The 1H NMR spectrum of 1 (in DMSO-d_6)
Figure S4. The 13C NMR spectrum of 1 (in DMSO-d_6)
Figure S5. The DEPT 135 spectrum of 1 (in DMSO-d_6)
Figure S6. The HSQC spectrum of 1 (in DMSO-\textit{d}_6)
Figure S7. The HMBC spectrum of 1 (in DMSO-d_6)
Figure S8. The 1H-1H COSY spectrum of 1 (in DMSO-d_6)
Figure S9. The IR spectrum of 2 (in KBr)
Figure S10. The HR-ESI-MS spectrum of 2 (in MeOH)
Figure S11. The 1H NMR spectrum of 2 (in DMSO-d_6)
Figure S12. The 13C NMR spectrum of 2 (in DMSO-d_6)
Figure S13. The DEPT 135 spectrum of 2 (in DMSO-d_6)
Figure S14. The HSQC spectrum of 2 (in DMSO-d₆)
Figure S15. The HMBC spectrum of 2 (in DMSO-d_6)
Figure S16. The 1H-1H COSY spectrum of 2 (in DMSO-d_6)
Figure S17. The IR spectrum of 3 (in KBr)
Figure S18. The HR-ESI-MS spectrum of 3 (in MeOH)
Figure S19. The 1H NMR spectrum of 3 (in DMSO-d_6)
Figure S20. The 13C NMR spectrum of 3 (in DMSO-d_6)
Figure S21. The DEPT 135 spectrum of 3 (in DMSO-d_6)
Figure S22. The HSQC spectrum of 3 (in DMSO-d_6)
Figure S23. The HMBC spectrum of 3 (in DMSO-d_6)
Figure S24. The 1H-1H COSY spectrum of 3 (in DMSO-d_6)
Figure S25. The IR spectrum of 23 (in KBr)
Figure S26. The HR-ESI-MS spectrum of 23 (in MeOH)
Figure S27. The 1H NMR spectrum of 23 (in DMSO-d_6)
Figure S28. The 13C NMR spectrum of 23 (in DMSO-d_6)
Figure S29. The DEPT 135° spectrum of 23 (in DMSO-d_6)
Figure S30. The HSQC spectrum of 23 (in DMSO-\textit{d}_6)
Figure S31. The HMBC spectrum of 23 (in DMSO-d_6)
Figure S32. The 1H-1H COSY spectrum of 23 (in DMSO-d_6)
Figure S33. b3lyp/6-31g(d) optimized lowest energy conformers for (2S)-23 and their equilibrium populations
Figure S34. b3lyp/6-31g(d) optimized lowest energy conformers for (2R)-23 and their equilibrium populations.
The experimental ECD spectrum of 23 (red line) and the calculated ECD spectrum of (2)-23 (red short dash) and (2R)-23 (blue short dash). The calculated ECD (excited states 30) spectrum were plotted as sums of Gaussians 09 with a 0.20 eV exponential half-width using the program Specdis 1.62, and the UV shifted was 11 nm.

Figure S35. Experimental and calculated ECD spectrum of 23