SUB-DOPPLER HIGH-RESOLUTION SPECTROSCOPY OF 15V BAND OF CS₂ AND THE ZEEMAN EFFECT

ATSUSHI DOI, MASAYA OHTSUKA, KIYOSHI NISHIZAWA, MASAAKI BABA* and HAJIME KATÔ

Department of Chemistry, Faculty of Science, Kobe University, Nada-ku, Kobe 657, Japan

*Present address: Faculty of Integrated Human Studies, Kyoto University, Kyoto 606, Japan

(Received 13 March, 1994)

Excitation spectra and the Zeeman spectra of CS₂ in the region of 31320–31445 cm⁻¹ were measured with sub-Doppler resolution. Observed rotational lines were classified to 14 series of lines (vibronic bands) and were named by the wavenumbers of their band origins. The 31344.9 band is the strongest one and is assigned as the main band of the V¹B₂ 00,0(K = 0) – X¹Σ⁺ 000 zero transition. Most of the extra bands may be allowed by the vibronic interaction between the V¹B₂ 00,0(K = 0) level and singlet levels, which are mostly high vibrational levels of the 1A₁(X¹Σ⁺₂⁺) state. The Zeeman splittings are observed for several lines in almost all bands. These may be originating from the spin-orbit interaction between the rotational levels, which have accidentally nearly the same energy, of the 1A₁(X¹Σ⁺₂⁺) state and the 3A₂(3Δ_u) or/and 3B₂(3Δ_u) state.
than 0.0001 cm\(^{-1}\) crossed to a molecular beam of CS\(_2\), Nishizawa et al. [6] observed the rotationally resolved excitation spectra and the Zeeman spectra with sub-Doppler resolution for the 6\(V\), 10\(V\) and 13\(V\) band systems. Many more lines were identified with higher resolution, and the magnetic moments of the upper levels were obtained from the magnitude of the Zeeman splittings. We have extended the observation of the excitation spectra and the Zeeman spectra with sub-Doppler resolution to the 15\(V\) band system. The results and the analysis are reported in this article.

II. EXPERIMENTAL

The experimental setup is almost the same with the one in our previous report, [6] and the diagram is shown in Fig. 1. A single-frequency UV light was produced by installing an angle tuned frequency doubler (a LiIO\(_3\) crystal) within the cavity of a ring laser (CR699–29). When the frequency doubler is installed, the machine (CR699–29) loses its autoscan operation capability. The autoscan operation in the UV region was made possible by the same method as given in a previous report. [7] The laser power was about 1 mW and the linewidth was about 2 MHz. The frequency of the laser light was calibrated by using the fundamental light; the excitation spectrum of I\(_2\) and frequency marks of an etalon with 150 MHz free spectral range were recorded simultaneously. Some parts of the excitation spectrum and the Zeeman spectrum are shown in Figs. 2 and 3. We measured the excitation spectrum

![Figure 1](image-url) Experimental diagram of sub-Doppler excitation spectroscopy and the Zeeman spectroscopy.
Figure 2 A part of the fluorescence excitation spectrum and the Zeeman spectrum at $H = 210 \text{ G}$ around the P branches of the 31344.9 band. Lines without a notation are mostly those of $J' \geq 12$. Expanded Zeeman spectra of $P(8)$ lines are shown above the corresponding lines.

Figure 3 A part of fluorescence excitation spectrum and the Zeeman spectrum at $H = 210 \text{ G}$ around the R branches of the 31344.9 band. Lines without a notation are mostly those of $J' \geq 12$. Expanded Zeeman spectra of $R(6)$ lines are shown above the corresponding lines.
of a spectral range of 1 cm$^{-1}$ in a single scan, and then the Zeeman spectrum in the same energy region was measured by applying the magnetic field without changing the optical arrangement. By this procedure, we measured the spectra in a chosen energy region. The direction of an electric vector of laser light was perpendicular to the magnetic field. The linewidth (FWHM) of an unperturbed line was about 20 MHz, which was due to the residual Doppler width.

III. RESULTS AND DISCUSSION

CS$_2$ is linear in the ground state X$^1\Sigma_g^+(\pi\pi)^4$. [3] Let us express a vibrational angular momentum quantum number about the top axis originating from the degenerate bending vibration ν_2 by l: $l = \nu_2$, ν_2-2, ν_2-4, ..., 1 or 0, where ν_2 is the vibrational quantum number. We shall use the notations J, K, and M to specify the quantum numbers of, respectively, the total angular momentum J of a rotational level, the projection of the rotational angular momentum N along the molecule-fixed top axis, and the projection of J along the space-fixed Z axis. $K = l$ in the X$^1\Sigma_g^+$ state. Because of the zero nuclear spin of the 32S nuclei in 12C32S$_2$, only even J'' levels are allowed for $l = 0$ by the nuclear spin statistics. [8] Hence, absorption lines only from even J'' levels are observed for $\nu_2 = 0$.

The spectral lines whose band head positions are at 31339–31360 and 31424 cm$^{-1}$ are classified as 15V band system. [2] We measured the excitation spectra and the Zeeman spectra in the region of 31320–31445 cm$^{-1}$. By using the molecular constants of the ground state [9] and by referring the line intensities, we first searched for the P and R branch lines having a common upper rotational level from the combination difference. [8] The Zeeman splitting of the X$^1\Sigma_g^+$ state is small and can be neglected. Hence the Zeeman splitting of a spectral line is attributed to the one of the excited level. The Zeeman spectra are useful to confirm the assignments, because the Zeeman splittings of lines of a common upper level should be of the same magnitude, i.e. the splittings of $P(J''+1)$, $Q(J''$, and $R(J''-1)$ lines should be the same.

We identified 14 series of lines (14 vibronic bands) in this region, and we named these bands by the wavenumbers of the band origins. The line energies and the line intensities are listed in Table I. The accuracy of the intensity is low (about ±20%). The Forrat diagrams are shown in Fig. 4. All the bands except the 31392.3 band are composed of only the P and R branches of even J'' and are identified as the transitions from the X$^1\Sigma_g^+ 000'0$ level by the spacing between the $P(J''+1)$ and $R(J''-1)$ lines. These bands are assigned as $\Sigma(K = 0) - \Sigma(l = 0)$ transitions. The 31392.3 band is composed of the P, Q, and R lines of even and odd J'' and is identified as the transition from the X$^1\Sigma_g^+ 011'0$ level by the spacing between the $P(J''+1)$, $Q(J''$, and $R(J''-1)$ lines. The intensities of Q lines are smaller than those of the P and R lines. Hence, this band is assigned as a $\Pi(K = 1) - \Pi(l = 1)$ transition. All the observed bands are found to be transitions of $\Delta K = 0$, i.e. the transition moments are along the top axis (parallel band). [8]
The grouping of rotational lines to each band is simple and unique, but multiple lines are assigned for a given J' in several bands. The multiple lines can appear by intensity borrowing induced by perturbation between the levels close in energy. When only two lines were observed for a given J' in a band, the deperturbed term energies were calculated by the same way as our previous report. [6] When more than two lines were observed for a given J', the deperturbed term energy $E_o(v', J')$ was approximated by the center of gravity:

$$E_0(v', J') = \frac{\sum_i [I_i(v', J' - v'', J'') E_i(v', J')] \sum_i I_i(v', J' - v'', J'')}{\sum_i I_i(v', J' - v'', J'')},$$

where $I_i(v', J' - v'', J'')$ is the line intensity of the $V_i(v', J') - X^1 \Sigma_g(v'', J'')$ transition and $E_i(v', J')$ is the term energy of an excited level $V_i(v', J')$. The term energy is a sum of the line energy and the energy of the $X^1 \Sigma_g(v'', J'')$ level, which is calculated from the molecular constants in Ref. 9. The resulting term energies are listed in Table...
II. By expressing the term energy of the excited level approximately as \(G_v + B_v[J(J + 1) - K^2] \), we calculated the values of \(G_v \) and \(B_v \) for each band by a least-squares fitting to the term energies. The results are listed in Table II.

The Zeeman energy of a \(JM \) level is expressed by [10]

\[
E_{Z}(JM) = -g_J \mu_B MH,
\]

where \(g_J \) is a g-factor of a \(JM \) level, \(\mu_B \) is the Bohr magneton, and the magnetic field \(H \) is along the Z axis. The \(g_J \) values greater than 0.01 are listed in Table I. The magnetic moment \(\mu_J \) of a \(J \) level can be evaluated by \([J(J + 1)]^{1/2} g_J \), in units of Bohr magneton, and the values are listed in Table I.

Table I: Assigned rotational lines in the 15V band system. Transition energies of \(P(J' + 1) \), \(Q(J') \), and \(R(J' – 1) \) lines are in units of \(\text{cm}^{-1} \). \(I \) is the relative line intensity. \(g_J \) and \(\mu_J \) are, respectively, g-factor and the magnetic moment (in units of Bohr magneton) of upper level.

\(J' \)	\(P(J' + 1) \)	\(I \)	\(g_J \)	\(Q(J') \)	\(I \)	\(g_J \)	\(R(J' – 1) \)	\(I \)	\(g_J \)	\(\mu_J \)
31325.3 band										
1	31324.8317	94	0.02	31325.4858	61	0.02	0.07			
3	31324.4970	118	0.02	31326.0283	101	0.02	0.07			
5	31324.1310	85	0.02	31326.5307	35	0.02	0.13			
7	31323.8547	85	31327.1292	37	0.02	0.13				
9	31323.6332	67	31327.7819	46	0.02	0.13				
31329.9 band										
1	31329.4523	36	31330.1037	37	0.02	0.13				
3	31329.1598	42	31330.6814	68	0.02	0.13				
5	31328.8713	29	31331.2737	60	0.02	0.13				
31340.5 band										
1	31340.1399	8	0.51	31340.7938	7	0.51	0.72			
3	31339.6330	28	0.06	31341.1645	25	0.07	0.23			
5	31339.3067	49	0.05	31341.7096	60	0.05	0.27			
7	31339.0092	66	0.03	31342.2847	48	0.03	0.22			
9	31338.7374	58	0.02	31342.8834	57	0.02	0.19			
11	31338.5127	24	0.02	31343.5313	24	0.02	0.23			
31344.9 band										
1	31344.4968	196	31345.1511	151	0.02	0.13				
1	31344.5962	25	31345.2481	16	0.02	0.13				
3	31344.2462	413	31345.7723	275	0.02	0.13				
3	31344.3095	20	31345.8355	17	0.02	0.13				
5	31343.1988	89	31345.5988	93	0.02	0.13				
5	31343.5245	148	31345.9246	140	0.02	0.13				
5	31344.0394	281	31346.4396	329	0.02	0.13				
7	31342.9082	116	0.07	31346.1829	108	0.07	0.52			
7	31343.5830	318	0.01	31346.8531	212	0.01	0.07			
7	31344.0884	42	31347.3621	37	0.02	0.13				
9	31342.5184	141	31346.6664	180	0.02	0.13				
9	31343.3103	67	31347.4591	53	0.02	0.13				
9	31343.9875	58	0.01	31348.1378	73	0.01	0.09			
11	31342.1818	89	0.01	31347.2014	123	0.01	0.11			
31380.4 band										
1	31379.8539	19	31380.5123	14	0.02	0.13				
3	31379.4850	23	31381.0155	21	0.02	0.13				
5	31379.0241	41	0.02	31381.4258	45	0.02	0.13			
7	31378.7730	47	0.02	31382.0460	54	0.02	0.13			
9	31378.5521	19	0.01	31382.6939	25	0.02	0.14			
Table I (Cont’d)

\(J'\)	\(P(J' + 1)\)	\(l\)	\(\alpha_r\)	\(Q(J')\)	\(l\)	\(\alpha_r\)	\(R(J' - 1)\)	\(l\)	\(\alpha_r\)	\(\mu_r\)
11	31377.5831	13	31389.6 band	31382.5987	31					
5	31388.2615	22	31390.6632	25						
5	31388.3542	67	31390.7557	74						
7	31387.9828	46 0.01	31391.2630	56 0.01 0.07						
9	31387.3275	128	31391.4782	105						
9	31387.6318	23	31391.7811	15						
11	31386.9189	36	31391.9371	30						
11	31386.9361	32	31391.9542	37						
11	31386.9734	20	31391.9915	26						
13	31386.3820	58	31392.2770	70						
13	31386.5338	51	31392.4282	58						
15	31386.1836	71	31392.9507	71						
17	31385.7555	67 0.01	31393.3976	85 0.01 0.17						
19	31385.4142	29	31393.9308	33						
19	31385.4421	15	31393.9583	28						
21	31384.9268	40 0.01	31394.3068	47 0.01 0.21						
23	31384.4766	43	31394.7264	55						
23	31384.5294	20	31394.7828	37						
25	31384.2628	23 0.01	31395.3878	32 0.01 0.25						
1	31388.4243	43	31389.0754	30						
3	31387.9739	51 0.02	31389.5085	48 0.03 0.09						
5	31387.5619	79 0.02	31389.9651	61 0.02 0.11						
7	31387.2272	28 0.01	31390.4982	19 0.01 0.07						
7	31387.3400	25 0.03	31390.6137	27 0.03 0.22						
7	31387.4139	35 0.02	31390.6872	32 0.02 0.15						
9	31386.5953	26	31390.7426	22						
9	31386.6406	65	31390.7876	60						
1	31390.6073	24	31391.2658	12						
3	31390.0250	60	31391.5525	59						
5	31389.6740	60	31392.0715	89						
7	31389.1263	87 0.01	31392.4047	95 0.02 0.11						
9	31388.8886	150 0.02	31393.0396	140 0.01 0.14						
11	31388.3996	32	31393.4203	42						
11	31388.6773	36	31393.7011	44						
13	31388.0574	57	31393.9529	58						
17	31387.7365	34	31395.3725	52						
1	31391.8725	55 0.03	31392.3114	51 0.03 0.04						
2	31391.7348	57	31392.3868	18 31392.8252	39					
2	31391.8046	18	31392.4564	7 31392.8929	13					
3	31391.6813	113	31392.5547	16 31393.2088	84					
4	31391.5748	137	31392.6636	13 31393.5397	146					
5	31391.4597	62	31392.7727	5 31393.8627	35					
6	31391.3621	71 0.02	31392.8946	10 31394.2000	85 0.02 0.13					
7	31391.2601	15	31394.5358	16						
8	31391.1800	55 0.02	31394.8900	57 0.02 0.17						
10	31391.0493	17	31395.6388	26						
1	31410.3681	43	31411.0218	45						
3	31410.0072	57	31411.5378	60						
5	31409.4947	69	31411.8950	71						
\(J'\)	\(P(J' + 1)\)	\(I\)	\(\omega_r\)	\(Q(J')\)	\(I\)	\(\omega_r\)	\(R(J' - 1)\)	\(I\)	\(\omega_r\)	\(\mu_r\)
------	--------	------	--------	--------	------	--------	--------	------	--------	--------
7	31409.1099	37								
7	31409.0029	22	0.01							
7	31409.1515	21								
9	31408.6113	48								
11	31407.7547	49								
11	31408.5914	27								
15	31406.8666	24								
15	31407.0580	22								
	31420.2 band									
1	31419.6983	116	0.05							
3	31419.3787	179								
5	31418.8299	65	0.04							
5	31419.0294	211								
7	31418.5890	85								
9	31417.3896	81	0.01							
9	31418.2853	32	0.01							
11	31417.4611	171								
13	31416.9963	44								
13	31417.0566	53								
15	31416.3093	42								
15	31416.4899	28								
17	31416.0766	26								
	31422.2 band									
1	31421.8665	31								
3	31421.3078	40	0.02							
5	31421.0660	36	0.03							
7	31420.6700	28	0.03							
7	31420.8605	49	0.05							
9	31420.3687	30								
9	31420.5322	57	0.03							
11	31420.0774	58								
	31427.3 band									
1	31426.8380	47								
3	31426.3225	19								
3	31426.5621	52								
5	31426.4022	21	0.01							
7	31425.4493	89	0.02							
7	31425.7956	24	0.02							
9	31425.4089	45	0.01							
11	31424.4922	15								
11	31425.1986	46	0.01							
13	31424.5402	24								
	31440.3 band									
1	31439.9178	17	0.11							
3	31439.3425	25	0.03							
5	31439.0229	25	0.01							
7	31438.4132	30	0.01							
9	31438.0629	38								
11	31437.7330	34								
13	31437.2847	19	0.02							
Table II Term energy of upper level and the Molecular constants G_v and B_v in units of cm$^{-1}$.

J'	Term energy	G_v and B_v	J'	Term energy	G_v and B_v
1	31325.4861	$G_v = 31325.2709(142)$	1	31392.5172	$G_v = 31788.3945(361)$
3	31326.6813	$B_v = 0.1151(3)$	2	31789.0499	$B_v = 0.1194(7)$
5	31328.7137	3	3	31789.8546	4
7	31331.7120	4	7	31790.8398	5
9	31335.6378	5	6	31792.0397	7
71329.9 band	6	71329.31054	7	31793.4711	8
3	31788.3945	$G_v = 31329.8822(280)$	8	31797.0013	9
5	31331.3392	$B_v = 0.1194(15)$	10	31801.4636	10
31333.4554	11	31336.2947	12	31338.5172	12
31340.5 band	13	31338.5172	13	31341.0223	13
3	31340.7942	14	14	31341.2191	14
5	31341.8174	15	15	31341.0777	15
7	31343.8910	16	16	31341.9495	16
9	31346.8670	17	17	31342.6164	17
11	31350.7407	18	18	31342.5110	18
11	31355.5354	19	19	31342.1110	19
31344.9 band	20	31342.6426	20	31342.0358	20
1	31345.1616	21	21	31342.3212	21
3	31346.4312	22	22	31342.5621	22
5	31348.3429	23	23	31342.5732	23
7	31351.3032	24	24	31342.4470	24
9	31355.0267	25	25	31342.7548	25
11	31360.3437	26	26	31343.4859	26
11	31365.5244	27	27	31343.9363	27
31380.4 band	28	31344.0594	28	31343.5388	28
1	31380.5105	29	29	31342.0358	29
3	31381.6689	30	30	31342.5621	30
5	31383.6078	31	31	31342.5732	31
7	31386.6296	32	32	31342.4470	32
9	31390.5533	33	33	31342.7548	33
11	31394.6043	34	34	31343.4859	34
11	31398.1497	35	35	31343.9363	35
31389.6 band	36	31437.1005	36	31343.9363	36
5	31392.9147	37	37	31342.0358	37
7	31395.8430	38	38	31342.5621	38
9	31399.3753	39	39	31342.5732	39
11	31403.9617	40	40	31342.4470	40
13	31409.3686	41	41	31342.7548	41
15	31415.8655	42	42	31343.4859	42
17	31423.0767	43	43	31343.9363	43
19	31431.2583	44	44	31343.9363	44
21	31440.1389	45	45	31343.9363	45
23	31449.9635	46	46	31343.9363	46
25	31460.8604	47	47	31343.9363	47
31388.9 band	48	31440.5757	48	31344.02641(484)	48
1	31386.0772	$G_v = 31388.8829(662)$	3	31441.5265	$B_v = 0.1094(5)$
3	31390.1598	$B_v = 0.1085(17)$	5	31443.6086	5
5	31392.1464	7	7	31446.2699	7
The 31344.9 band is the strongest one in the 15V band system. Two or three lines with small random spacings are observed for each J'. The line intensity of an allowed $(\nu', J') - (\nu'', J' + 1)$ transition at a temperature T is proportional to [8]

$$C(J' + 1) \exp[-B_v(J' + 1)(J' + 2)hc/kT],$$

(3)

where C is a constant proportional to a square of the transition moment and k is the Boltzmann's constant. The sum of the line intensities of the multiple lines for a given J' is shown by a full bar in Fig. 5. The dependence of J' is similar to the one of an allowed transition (open bars in Fig. 5). Therefore, the lines of minor intensity for each J' may be allowed through the intensity borrowing, which is induced by the perturbation with nearby levels (the selection rule is $\Delta J = 0$). [8] The Zeeman splittings are observed to be small except $P(8)$ and $R(6)$ lines. Therefore, the 31344.9 band is confirmed as a transition to a singlet state. The lines of major intensity for each J' in the 31344.9 band are assigned as the $V^\dagger B_2 0\nu_20(K = 0) - X^\dagger \Sigma_g^+ 00000$ transition. Although the vibrational assignments are not conclusive, [4] Jungen et al. [2] assigned $\nu_3 = 1$ for the 15V band.

As we can see in Figs. 2 and 3, the magnitudes of Zeeman splittings of the $P(8)$ line at 31342.9082 cm$^{-1}$ and the $R(6)$ line at 31346.1829 cm$^{-1}$ are the same. In the same way, the ones of the $P(8)$ line at 31343.5830 cm$^{-1}$ and the $R(6)$ line at 31346.8531 cm$^{-1}$ are the same. The formers are weaker in the line intensity and larger in the Zeeman splitting than the latters. The upper level of the latters is therefore assigned to $V^\dagger B_2 0\nu_20(K = 0, J' = 7)$. The upper level of the formers is assigned to a triplet state, to which transition is allowed by the spin-orbit interaction with the $V^\dagger B_2 0\nu_20(K = 0, J' = 7)$ level. The other extra lines of the 31344.9 band can be identified as transitions to rovibronic levels of a singlet state. The perturbations are observed to increase with J. Hence most of the extra lines may be allowed by the Coriolis interaction between the $V^\dagger B_2 0\nu_20(K = 0)$ level and a variety of rovibronic levels of the $A_2(X^\dagger \Sigma_g^+)$ and/or $A_1(X^\dagger \Sigma_g^+)$ states, which are accidentally close in energy with the $V^\dagger B_2 0\nu_20(K = 0)$ level.
Figure 5 Sum of the observed intensities of the multiple $P(J' + 1)$ lines for a given J' of the 31344.9 band is shown by a filled bar. The line intensities of allowed $(\nu', J')-(\nu'', J' + 1)$ transitions at 15 K are calculated from Eq. (3), and are shown by open bars, where the constant C is fitted to the observed one of the $P(6)$ line.

Pique et al. [11] observed the dispersed fluorescence spectrum to the $\chi^1 \Sigma_g^+$ ground state by exciting the $15V R(4)$ line at 31346.45 cm$^{-1}$. They identified the fluorescence lines to $\nu_3 \neq 0$, and interpreted as it is originating from the Coriolis interaction between the excited vibronic levels $VIB_2 a_1(K = 0)$ and $VIB_2 b_2(K = 1)$. Coriolis interaction can take place only between levels of the same J. [8] Pique et al. used a laser of linewidth of 2 GHz. As we can see in Fig. 3, a few unassigned lines are observed within 2 GHz from the $R(4)$ line at 31346.4396 cm$^{-1}$. But those are not lines of $J' = 5$, because the corresponding $P(6)$ lines are not observed around the $P(6)$ line at 31344.0394 cm$^{-1}$ (see Fig. 2). We found two extra $R(4)$ lines at 31345.5988 and 31345.9246 cm$^{-1}$. If the dispersed fluorescence spectra with exciting the extra lines were observed, we would be able to confirm the interpretation by Pique et al. [11]

In the 31340.5 band, appreciable Zeeman splittings are observed for all the assigned lines. Hence, the band may be assigned to the transition to the triplet state $^3A_2(^3\Delta_o)$, which is allowed by the spin-orbit interaction with the $VIB_2 00_2 0(K = 0)$ level. In the other extra bands, the Zeeman splittings are observed to be small, and appreciable Zeeman splittings are observed only for several lines. Hence, most of
the excited states may be identified as singlet states. The Renner-Teller interaction can be neglected in the levels of \(K = 0 \). [8] Because the quantum number \(\nu_2 \) of the 31344.9 band is expected to be small, the number of levels which can interact by the Fermi resonance within the \(V^1B_2 \) state is estimated to be small. Most of the extra bands may be allowed by the vibronic interaction between the \(V^1B_2 \ 0\nu_2 \ 0 \ (K = 0) \) level and singlet states. \(\text{CS}_2 \) has normal vibrations of the symmetry \(A_i(\nu_1 \ \text{and} \ \nu_2) \) and \(B_2(\nu_3) \). Therefore, only \(1B_2 \) and \(1A_1 \) states can mix with the \(V^1B_2 \) state by the vibronic interaction. A number of extra bands can be allowed only by interactions with a state of high level density. The dissociation limit of the \(1A_1(X^1\Sigma_g^+) \) state is estimated to be 35970 ± 130 cm\(^{-1}\). [11] Therefore, most of the extra bands may be allowed by the vibronic interaction between the \(V^1B_2 \ 0\nu_2 \ 0 \ (K = 1) \) level and a high vibrational level of the \(1A_1(X^1\Sigma_g^+) \) state. The 31392.3 band, which is observed to be a transition from the \(X^1\Sigma_g^+ \) 01\(^1\) 0 level, may be allowed by the vibronic interaction between the \(V^1B_2 \ 0\nu_2 \ 0 \ (K = 1) \) level and a high vibrational level of the \(1A_1(X^1\Sigma_g^+) \) state.

It should be noted that the Zeeman splittings are observed for several lines in almost all bands. This may be originating from the spin-orbit interaction between a triplet state and a high vibrational level of the \(1A_1(X^1\Sigma_g^+) \) state. If the spin-orbit interaction between a triplet state and the \(V^1B_2 \ 0\nu_2 \ 0 \ (K = 0) \) level is responsible for the Zeeman splitting, the Zeeman splittings should be observed for all the lines of the same \(J \), but the observed results are different. Symmetry allowed perturbing triplet states are \(3A_2, 3B_1, \) and \(3B_2 \). Among the states which arise from the configuration (\(\pi_\gamma \pi_\mu \)) [3] \(3A_2(3\Sigma_u^+), 3A_2(3\Delta_u), 3B_2(3\Delta_u), \) and \(3B_2(3\Sigma_u^+) \) states can be candidates of the perturbing states. The level of the perturbing triplet state must be close in energy to the high vibrational level of the \(1A_1(X^1\Sigma_g^+) \) state, and the level density must be high because the Zeeman splittings are observed for several lines in almost all bands. Hence, the most probable perturbing triplet state is the \(3A_2(3\Delta_u) \) or/and \(3B_2(3\Delta_u) \) state.

The \(V \) system is strongly perturbed. Merer et al. [12] classified the long wavelength part as "shattered band" and the short wavelength part as "quantum chaos". By observing the excitation spectra and the Zeeman spectra with sub-Doppler resolution, 14 vibronic bands are classified in the energy range of the 15\(V \) band system. The 31344.9 band, which is the strongest band of the 15\(V \) band system, is found to be perturbed by nearby levels, and the deperturbation analysis is performed. The magnetic character of the excited states are made clear and the origins of the extra bands are estimated. However, the deperturbation analysis of the vibrational levels is not yet performed, and even the assignment of the vibrational quantum number of the main band is not yet conclusive. We do hope that we would be able to understand this complicated band system by extending these high-resolution spectroscopy to whole bands of the \(V \) system.
IV. ACKNOWLEDGMENTS

The authors are very grateful to Dr. K. Ishikawa, J. Nagayama, and S. Kubo for their help, and Dr. J. T. Hougen for valuable discussions. K. N. thanks to JSPS Fellowships for Japanese Junior Scientists. H. K. thanks to the Ministry of Education, Science and Culture of Japan for a Grant-in-Aid for Specially Promoted Research.

References

1. B. Kleman, Can. J. Phys. 41, 2034 (1963).
2. Ch. Jungen, D. N. Malm and A. J. Merer, Can. J. Phys. 51, 1471 (1973).
3. R. S. Mulliken, Can. J. Chem. 36, 10 (1958).
4. N. Ochi, H. Watanabe, S. Tsuchiya and S. Koda, Chem. Phys. 113, 271 (1987).
5. D. T. Cramb, S. C. Wallace and H. Bitto, Chem. Phys. Lett. 206, 515 (1993).
6. K. Nishizawa, S. Kubo, A. Doi and H. Katô, J. Chem. Phys. 100, 3394 (1994).
7. K. Ishikawa, S. Kubo and H. Katô, J. Chem. Phys. 95, 8803 (1991).
8. G. Herzberg, Electronic Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1966).
9. K. Jolma and J. Kauppinen, J. Mol. Spectrosc. 82, 214 (1980).
10. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, 1955, p. 286).
11. J. P. Pique, J. Manners, G. Sitja and M. Joyeux, J. Chem. Phys. 96, 6495 (1992).
12. A. J. Merer, S. A. Morris and Ch. Jungen, J. Mol. Spectrosc. 127, 425 (1988).