The children's brain tumor network (CBTN) - Accelerating research in pediatric central nervous system tumors through collaboration and open science

Jena V. Lilly*, Jo Lynne Hokita†, Jennifer L. Mason‡, Tatiana Patton*, Stephanie Stefanikiewicz*, David Higgins*, Gerri Tooskin*, Carina A. Larouci*, Kammara Arya*, Elizabeth Appert*, Allison P. Heath*, Yuankun Zhu*, Miguel A. Brown*, Bo Zhang*, Bailey K. Farrar*, Shannon Robins‡, Allison M. Morgan*, Thinh Q. Nguyen*, Elizabeth Franken‡, Katlin Lehmann*, Emily Drake*, Catherine Sullivan*, Alexa Plisievsic*, Noel Coleman*, Luke Patterson†, Mateusz Kopyta*, Zeinab Heli‡, Nicholas Van Kuren*, Nathan Young‡, Meen Chul Kim*, Christopher Friedman*, Alex Lubneski*, Christopher Blackden‡, Marti Williams*, Valerie Baquett*, Lamiya Taudih*, Jamie Galanaugh*, Kate Boucher*, Hiba Ijaz*, Kristina A. Cole*, Namrata Choudhari*, Mariara Santi*, Robert W. Moulder*, Jonathan Waller*, Whitney Rife*, Sharon J. Diskin*, Marion Mateos*, Donald W. Parsons*, Ian F. Pollack*, Stewart Goldman*, Sarah Leary*, Chiara Caporalini*, Anna Maria Bucollerio*, Mirko Scagnetti*, David Hauser*, Derek Hason*, Ron Fierstein*, Jason Cain*, Joanna J. Phillips*, Nalin Gupta*, Sabine Mueller*, Gerald Grant*, Michelle Monje-Deisseroth*, Sonia Partap*, Jeffrey P. Greenfield*, Rintaro Hashizume*, Amy Smith*, Shida Zhu*, James M. Johnston*, Jason R. Fergusaro*, Matthew Miller*, Matthew D. Wood*, Sharon Gardner*, Claire L. Carter*, Laura M. Proia*, Jared Pisapia*, Katherine Pehlvani*, Andrea Franson*, Toba Niazi*, Josh Rubin*, Mohamed Abdelbaki*, David S. Ziegler*, Holly B. Lindsay*, Ana Guerreiro Stucklin*, Nicolas Gerber*, Olena M. Vaske*, Carolyn Quinsey*, Brian R. Roed*, Javad Nazarian*, Eric Reabe*, Eric M. Jackson*, Stacie Stapleton*, Robert M. Lober*, David E. Kram*, Carl Koschman*, Phillip B. Storm*, Rishi R. Lulla*, Michael Prados*, Adam C. Resnick*, Angela J. Waanders*

*Children’s Hospital of Philadelphia, Philadelphia, PA, USA
†Sydney Children's Hospital, Sydney, Australia
‡Texas Children's Hospital, Houston, TX, USA
§UPMC, The Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
¶Phoenix Children’s Hospital, Phoenix AZ, USA
§§University of Arizona College of Medicine, Phoenix AZ, USA
¶¶Seattle Children’s Hospital, Seattle, WA, USA
##Mayo Children’s Hospital, Florence, Italy
###University of California, San Francisco, CA, USA
####Joseph M. Sanzari Children's Hospital at Hackensack University Medical Center, Hackensack, NJ, USA
#####Hunter Institute of Medical Research, Victoria, Australia
######University of California San Francisco & Benioff Children’s Hospitals, San Francisco, CA, USA
******Duke University Medical Center, Durham, NC USA
*******Lucille Packard Children’s Hospital Stanford, Stanford, CA, USA
********Well Cornell Medicine Pediatric Brain and Spine Center, New York, NY, USA
*********Ann and Robert Lutz Children’s Hospital, Chicago, IL, USA
**********Orlando Health Arnold Palmer Hospital for Children, Orlando, FL, USA
***********China National GeneBank (Beijing Genomics Institutes), China
************University of Alabama at Birmingham, Children’s of Alabama, Birmingham, AL, USA
*************Children’s Healthcare of Atlanta, Atlanta, GA, USA
**************Dormbezehrer Children’s Hospital at Oregon Health & Science University (OHSU), Portland, OR, USA
***************Hausfeld Children’s Hospital at NYU Langone, New York, NY, USA
****************Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
*****************Martin Furer Children’s Hospital at Wakeforest Medical Centre, Valhalla, NY, USA
******************G.A. Mott Children’s Hospital, University of Michigan, Ann Arbor, MI, USA
*******************Nicholas Children’s Hospital, Miami, FL, USA
******************St. Louis Children’s Hospital, St. Louis, MO
******************Kool Cancer Centre, Sydney Children’s Hospital, High St, Randwick, NSW, Australia
******************Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
******************School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
******************Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, USA
******************University Children’s Zürich, Zürich, Switzerland
******************Children’s National Hospital, Washington, DC, USA
******************Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
******************The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
******************Johns Hopkins University School of Medicine, Baltimore, MD USA
******************Dayton Children’s Hospital, Dayton, OH, USA
******************UNC-Chapel Hill, Chapel Hill, NC, USA
******************North Carolina Children’s Hospital, Chapel Hill, NC, USA
******************Hasbro Children’s Hospital, Brown University
******************University of California San Francisco Benioff Children’s Hospital, San Francisco, CA, USA

* Corresponding author at: 225 E Chicago Ave Box 30, Chicago, IL 60611.
E-mail address: waanders@luriechildrens.org (A.J. Waanders).

1 Authors contributed equally.

Received 14 October 2022; accepted 17 October 2022

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.neo.2022.100846
Abstract

Pediatric brain tumors are the leading cause of cancer-related death in children in the United States and contribute a disproportionate number of potential years of life lost compared to adults. Moreover, survivors frequently suffer long-term side effects, including secondary cancers. The Children's Brain Tumor Network (CBTN) is a multi-institutional international clinical research consortium created to advance therapeutic development through the collection and rapid distribution of biospecimens and data via open-science research platforms for real-time access and use by the global research community. The CBTN's 32 member institutions utilize a shared regulatory governance architecture at the Children's Hospital of Philadelphia to accelerate and maximize the use of biospecimens and data. As of August 2022, CBTN has enrolled over 4700 subjects, over 1500 parents, and collected over 65,000 biospecimen aliquots for research. Additionally, over 80 preclinical models have been developed from collected tumors. Multi-omic data for over 1000 tumors and germline material are currently available with data generation for > 5000 samples underway. To our knowledge, CBTN provides the largest open-access pediatric brain tumor multi-omic dataset annotated with longitudinal clinical and outcome data, imaging, associated biospecimens, child-parent genomic pedigrees, and in vivo and in vitro preclinical models. Empowered by NIH-supported platforms such as the Kids First Data Resource and the Childhood Cancer Data Initiative, the CBTN continues to expand the resources needed for scientists to accelerate translational impact for improved outcomes and quality of life for children with brain and spinal cord tumors.

Neoplasia (2022) 35, 100846

Keywords: Collaborative international research infrastructure, Pediatric brain tumors, Multi-omic data, Longitudinal clinical data, Biospecimens, Molecular clinical trials

Introduction

Brain and other central nervous system (CNS) tumors are the leading cause of cancer-related death in children and frequently result in substantial long-term morbidity and disability [1]. Despite scientific advances in brain tumor biology across a large number of tumor types and histologies, improvements in long-term survival and quality of life for CNS tumors have remained elusive compared to other childhood cancers. Barriers to therapeutic advancement include lack of clinically-annotated biospecimens, insufficient preclinical models, and siloed, disconnected datasets [2].

The mission of the Children's Brain Tumor Network (CBTN, https://cbtn.org/), launched in 2011 as the Children's Brain Tumor Tissue Consortium (CBTTC), is to serve as a collaborative multi-institutional research consortium with a publicly-accessible biosample and data repository dedicated to the study and treatment of childhood brain tumors. CBTN seeks to address critical unmet needs for integrated, large-scale biospecimen, multi-omic, and longitudinally clinically-annotated resources. As of 2022, the CBTN comprises 32 member institutions within the United States, Italy, Switzerland, and Australia. To overcome the challenges of global, collaborative research and siloed resources, CBTN spearheaded the development of cloud-based informatics and data applications that allow researchers to access and collaboratively analyze datasets. As such, CBTN's foundation of “Innovation through Collaboration” is being realized through its creation of a state-of-the-art biorepository, innovative analytics platforms, and real-time sharing of data and specimens. By design, CBTN initiatives build upon the success of The Cancer Genome Atlas (TCGA) and Therapeutically Applicable Research To Generate Effective Treatments (TARGET) consortia by further developing standards for the collection of specimens and comprehensive longitudinal clinical data while addressing gaps in pediatric brain tumor representation in such resources. Recently, CBTN resources have contributed to the development of cross-disease resources such as the Gabriella Miller Kids First (GMKF) Data Resource and the NCI's Childhood Cancer Data Initiative (CCDI).

Collaborative biobanking with the CBTN

Patients are consented by one of 32 participating sites and enrolled on a local IRB-approved protocol which includes key language to enable prospective collection of, future research on, and sharing of, de-identified surgical specimens, patient demographics, medical history, diagnoses, treatments, and clinical imaging. CHOP reviews each site's regulatory documents prior to submission and maintains copies along with annual approvals. When possible, site-enabled workflows support the generation of cell lines, organoids, and/or patient-derived orthotopic xenografts from available tissue (Fig. 1A).

In addition, CBTN's cross-disease research platform supports the integration and management of partnered, disease-specific biospecimen and data resources including NF2 Biosolutions (https://nf2biosolutions.org/), the Embryonal Tumor with Multilayered Rosettes One Registry (https://hmh-cdi.org/etmr/), the Chordoma Foundation (https://www.chordomafoundation.org/), and OligoNation (https://www.oligonation.org/). These collaborative efforts advance disease-specific research while harnessing CBTN's operational and research infrastructure.

Creation of the Pediatric Brain Tumor Atlas (PBTA)

Created as a multi-center, multi-omic effort, the CBTN's Pediatric Brain Tumor Atlas (PBTA) includes matched tumor-normal whole genome sequencing (WGS), tumor RNA-Seq, methylation, and proteomics, as well as longitudinal clinical data, images (MRIs, histology slides images, radiology reports), and pathology reports [3]. The first PBTA dataset release of nearly 3000 specimens from 1074 tumors and germline sources occurred in 2018.
(Fig. 1B). A second dataset of nearly 5000 samples including tumor/normal
WGS and RNA-seq, as well as parental germline WGS, jointly sponsored
by GMKF and CCDI [4], along with methylation data for > 1700 tumors,
will be released with no embargo. Additionally, building upon an initial
proteogenomic PBTA dataset generated in partnership with the NCI’s
Clinical Proteomic Tumor Analysis Consortium (CPTAC) [5], a large > 400
sample proteogenomic cohort is underway.

In partnership with CHOP’s Center for Data Driven Discovery
and Biomedicine (D3b) and the NIH GMKF Data Resource Center,
the PBTA data has been integrated into cloud-based resources within
the GMKF portal (http://kidsfirstdrc.org/) enabling cross-disease analysis
with other GMKF datasets or those hosted by NCI’s cloud resources,
such as TCGA and TARGET. In 2019, Researchers at D3b and Alex’s
Lemonade Stand Foundation’s Childhood Cancer Data Lab launched the
Open Pediatric Brain Tumor Atlas (OpenPBTA). OpenPBTA is a first-in-
kind, open-science, collaborative analysis and manuscript-writing effort to
comprehensively analyze PBTA tumors [6]. OpenPBTA openly provides
reproducible workflows and processed data on GitHub, PedBiomarker,
and CAVITICA supporting multiple research publications as well as informing
clinical trial decision-making in molecular tumor boards [7]. OpenPBTA’s
success has paved the way for additional efforts such as OpenPedCan
[8] currently informing the new pediatric Molecular Targets Platform (https: //moleculartargets.ccdi.cancer.gov/) developed with the CCDo in support of
the Research to Accelerate Cures and Equity (RACE) for Children Act
[9] and the Schwannomatosis Open Research Collaborative led by SAGE
Bioworks [10]. CBTN promotes releasing data without embargo periods,
allowing near real-time integration, dissemination, processing, and sharing of
associated petabyte-scale harmonized data.

As of 2022, CBTN has supported 190 data projects and 111 biospecimen
projects (Fig. 1C-D) spanning > 25,000 biosamples. CBTN-collected
biospecimens are available for request via a common approval process by
both members and non-members. Such common workflows have led to the
publishation of >100 scientific articles and 25 abstracts in >30 peer-reviewed
journals.
Key Strategic Partner	Website	Collaborative Mission
Australia’s Zero Childhood Cancer	https://www.zerochildhoodcancer.org.au/	Collaborate and innovate around multi-omic data to personalize treatment for Australian children with cancer
Australian BioCommons	https://www.biocommons.org.au/	Collaboratively create a cloud-based computing infrastructure using CAVATICA
Childhood Cancer Data Initiative (CCDI)	https://www.cancer.gov/research/areas/childhood/childhood-cancer-data-initiative	Harmonize pediatric cancer data and develop platform(s) which will help accelerate cures
Clinical Proteomic Tumor Analysis Consortium (CPTAC)	https://proteomics.cancer.gov/programs/cptac	Layer proteogenomics into multi-omics analyses of pediatric brain tumors
Chordoma Foundation	https://www.pathology.med.umich.edu/	Invest in research to find better treatments, in patient services to create better services, and in healthcare improvement to drive better care
Common Fund Data Ecosystem (CFDE)	https://www.nih-cfde.org/	Enable broad use of common fund funded data
European Union’s Horizon 2020 Individualized Pediatric Cure (iPC) program	https://ipc-project.eu/	Collaborate and innovate around multi-omic data to personalize treatment for European children with cancer
Gift From a Child	https://giftfromachild.org/	Support families to empower research through end-of-life tissue donation from their child
Global Alliance for Genomics and Health (GA4GH)	https://www.ga4gh.org/	Develop standards for responsible sharing of genomic and health data
Human Tumor Atlas Network (HTAN)	https://humanumtumoratlas.org/	Create a pediatric tumor atlas characterizing cells from pre-cancer through various stages of tumor evolution
International Cancer Genome Consortium Accelerating Research in Genomic Oncology (ICGC-ARGO)	https://dcc.icgc.org/	Develop cloud computing solutions to harness cross-study sample integration
INvestigation of Co-occurring conditions across the Lifespan to Understand Down syndromeE (INCLUDE)	https://includedcc.org/	Enable cross-cohort study between Down syndrome and cancer patients
Mixhigan Center for Translational Pathology MI-ONCOSEQ Study	https://www.pathology.med.umich.edu/mctp/mi-oncoseq-study	Sequencing study to provide comprehensive landscape of genomic alterations in individual tumors; all brain tumor data deposited into PBTA
NF2 Biosolutions	https://nf2biosolutions.org/	Accelerating gene therapy research for Neurofibromatosis Type 2
NIH Cloud Platform Interoperability effort (NCPI)	https://anvilproject.org/ncpi	Establish and implement cloud-based interoperability across NIH and other platforms
NIH Gabriella Miller Kids First Pediatric Research Program (Kids First)	http://kidsfirstdrc.org/	Integrate PBTA data within Kids First without embargo
Oligo Nation	https://www.oligonation.org/	Develop new treatments for oligodendroglioma
Pacific Pediatric Neuro-Oncology Consortium (PNOC)	https://pnoc.us/	Develop new trials and inform clinical translation
Project HOPE (Pediatric and AYA High-grade glioma Omics Project)	https://brain肿瘤.org/research/workshops-meetings/projects-hope-gbm-care/	Study evolutionary dynamics of high-grade gliomas with single-cell resolution
UCSC Treehouse Childhood Cancer Initiative	https://treehousegenomics.ucsc.edu/	Integrate UCSC as an official data satellite site to enhance data integration
International DIPG/DMG Registry	https://www.dipregistry.org/	Centralize and standardize the collection of clinical data and tumor samples from DIPG and DMG patients
International Central Nervous System Pediatric Research Consortium (INSPIRE)	https://commons.cri.uchicago.edu/inspire/	Collaboratively centralize data resources from pediatric CNS tumor consortia worldwide in the Pediatric Cancer Data Commons (PCDC)

(continued on next page)
CBTN partners across the globe

Embedded in the mission and vision of CBTN is the notion that collaboration is key for accelerated discoveries required to improve clinical outcomes. CBTN has benefited from many academic, commercial, government, and advocacy partnerships (Table 1), empowering both molecularly-based therapeutic development and decision support as part of drug-repurposing initiatives [7] through institutional initiatives and clinical trials, such as the Pacific Pediatric Neuro-Oncology Consortium (PNOC, https://pnoc.us/).

Discussion

CBTN’s successes to date are empowered by its commitment to partnering with families and advocates supporting the sharing of biospecimens and data on behalf of accelerating clinical translation. CBTN, together with its partners, has developed a combination of open-science governance and platform resources that support the largest, accessible genomic and proteomic pediatric brain tumor data repository annotated with longitudinal clinical data, pathology reports and histologic images, MRI reports and images, and available biospecimens and preclinical models.

CBTN’s support of > 300 research projects generated reagents, models, data, and publications that have, in turn, enriched the CBTN’s offerings. Likewise, consortium-wide efforts towards foundational data generation like the OpenPRTA, in combination with cloud-based platforms, support a dynamic research ecosystem that continually increases the volume and rate of brain tumor research, accelerates the development of clinical trials, and provides decision support resources to improve the outcomes of children diagnosed with CNS tumors. Importantly, CBTN is also poised to help support enforcement of the RACE Act [9], which requires companies to test cancer drugs in children that are used in adults when there is a shared molecular target. The CBTN collaborative framework of governance and paired technology advances rapid data sharing and clinical translation, defining a new model for research that breaks the traditional mold of siloed, individual achievement. Together with the many institutions, patient families, foundations, and community stakeholders, CBTN will improve the outcomes for children affected with brain cancer.

Children’s Brain Tumor Network members

Past and present members of CBTN’s Executive Council and CHOP’s Brain Tumor Board of advisors who inspired the creation and ensured the sustainability of CBTN are Alan Stallng, Jr., Al Gustafson, Al Musella, Amanda Haddock, Amy Summy, Amy Weinstein, Amy Wood, Andrea Gorsegner, Anita Nirenberg, Ann Friedholm, Bob Budlou, Caroline Court, Carrie Ann Stallings, Charles Genuardi, Jr., Daniel Hare, Daniel Lipka, David Bovard, Dean Crowe, Deborah Eise, Eliza Greenbaum, Gerald Kilhefner, Geralyn Ryerson, Ginny McLean, Graham Cox, Heather Ward, Hank Summy, James Blauvelt, James Minnick, James Yeager, Jeanne Norris, Jessica Kilhefner, John Nilson, Kevin Eise, Kim Hare, Kim MacNeil, Kim Wark, Kristen Gillette, Laura Cooke, Leigh Anna Lang, Lisa Ward, Liz Dawes, Mario Lichtenstein, Mark Mosier, Meghan Gleeson, Meghan Gould, Nancy Minnick, Nicole Giroux, Patri Gustafson, Patricia Genuardi, Paul Olson, Paul Touhey, Peter Norris, Richard Haddock, Robert Martin, Sarah Lilly, Scott Perricelli, Stacia Wagner, Stephanie Strotbeck, Stephanie Marvel, Stephan Ward, Sue Perricelli, Susan Funck, Timothy Court, Toni HeadTrisha Danze, W. Craig Marvel, and Wendy Payton.

Past and present members of CBTN who contributed to the generation of biospecimens and/or genomic data are Adam A. Kraya, Adam C. Resnick, Alex Felmeister, Alexa Plisewicz, Allison M. Morgan, Allison P. Heath, Amanda Toke, Ammar S. Naqvi, Alv Kimel, Alex Felmeister, Alex Gonzalez, Alyssa Paul, Amanda Saratsis, Amy Smith, Ana Aguilar, Ana Guereiro Stäcklin, Anastasia Arachynycha, Andrea Franson, Angela J. Wäanders, Angela N. Viane, Anita Nirenberg, Anna Maria Buccoliero, Anna Yaffe, Anny Shai, Anthony Bet, Antoinette Price, Arlene Luther, Ashley Plant, Augustine Eze, Bailey K. Farrow, Baoli Hu, Beth Frenkel, Bo Zhang, Bonnie Cole, Brian M. Ennis, Brian R. Rood, Brittany Lebert, Caralyn Higginbottom, Carina A. Laronou, Carl Koschmann, Caroline Caudill, Caroline Drinkwater, Carrie Coleman-Campbell, Cassie N. Kline, Catherine Sullivan, Chanel Keoni, Chiara Caporalini, Christine Bobick-Butcher, Christopher Mason, Chunlei Li, Claire L. Carter, Ciana Anthony, Claudia Madurow Coroad, Clayton Miley, Colleen Rafferty, Cynthia Kong, Dan Kollman, David E. Sram, David Haussler, David Pisapia, David R. Beale, David Stokes, David S. Ziegler, Denise Morinigo, Derek Hanson, Donald W. Parsons, Elizabeth Appert, Emily Drake, Emily Golbeck, Emma Connell, Enna Agbodza, Eric H. Raafe, Eric M. Jackson, Erin Alexander, Esteban Uceda, Eugene Hwang, Fausto Rodriguez, Gabrielle S. Stone, Gary Kohnashan, Gabriella Silverman, George Rafidi, Gerald Grant, Gerri Trooskin, Gilad Evrony, Keye Keyses, Hagob Boyagian, Holly B. Lindsay, Holly C. Beale, Holly Sammartino, Ian Bilack, Ian F. Pollack, James Johnston, James Palmer, Jane Minton, Jared Donahue, Jared Pisapia, Jason C. Cain, Jason R. Fungusaro, Javad Nazarian, Jeanette Haugh, Jeff Stevens, Jeffrey P. Greenfield, Jeffrey Rubens, Jena V. Lilly, Jennifer L. Mason, Jessica B. Foster, Jessica Cubas, Jessica Legaspi, Jim Olson, Jo Lynne Rokita, Joanna J. Phillips, Jonathan Waller, Josh Rubin, Judy E. Palma, Justin McCroskey, Kristine Rizzio, Kristin A. Cole, Krutika S. Gaonker, Kudand Kunapareddy, Lamiya Tauhid, Laura Prolo, Leah Holloway, Leslie Brosig, Lina Lopez, Lionel Chow, Madhuri Kambhampati, Mahdi Sarmady, Madison L. Hollowell, Margaret Nevis, Mari Groves, Mariartia Santi-Vicini, Marilyn M. Li, Marion Mateos, Mateusz Kopytka, Matija Snuderl, Matthew Miller, Matthew Sklar, Matthew D. Wood, Meghan Connors, Melissa Williams, Meredith Egan, Michael D. Kelly, Michael Fisher, Michael Koldobskiy, Michelle Monje, Migdala Martinez, Miguel A. Brown, Mike Prados, Mike Wilder, Miriam Bornhorst, Mirko Scagnet, Mohamed AbdelBaki, Monique Carrero-Tage, Nadia Dahmane, Nalin Gupta, Namrata Choudhari, Natasha Singh, Nathan Young, Nicholas A. Vitanza, Nicholas Tassone, Nicholas Van Kuren, Nicolas Gerber, Nitin D. Adappa, Nitin Wadhvan, Noel Coleman, Obi Obayashi, Olena M. Vaske, Olivier Elemento, Oren Becher, Parimala Killada, Phanindra Kuncharapu, Philbert Oliveros, Phillip B. Storm, Pichai Ramam, Prajwal Rajappa, Remo Williams, Rintaro Hashizume, Rishi R. Lulla, Robert
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

David S. Ziegler is a consultant, or on the advisory board, of Bayer, AstraZeneca, Accendatech, Novartis, Day One, FivePhusion, Amgen, Alexion, and Norgine. Angela J. Wäanders is on the advisory board of Alexion and Day One.

CRediT authorship contribution statement

Jena V. Lilly: Writing – original draft, Conceptualization, Project administration, Supervision, Data curation, Resources. Jo Lynne Rokita: Writing – original draft, Formal analysis, Visualization, Writing – review & editing, Investigation, Data curation. Jennifer L. Mason: Writing – original draft, Project administration, Supervision, Data curation, Resources, Investigation. Tatiana Patton: Writing – review & editing, Project administration, Supervision, Data curation, Resources. Stephanie Stefankiewiz: Project administration, Methodology, Writing – original draft. David Higgins: Project administration, Methodology, Resources. Gerri Trooskin: Project administration, Methodology, Funding acquisition. Carina A. Larouci: Data curation, Resources. Kamnaa Arya: Project administration, Writing – original draft, Resources. Elizabeth Appert: Data curation, Resources, Writing – original draft. Allison P. Heath: Software, Validation, Visualization. Yuan-ku Zhu: Software, Validation, Visualization. Miguel A. Brown: Software, Validation, Visualization. Bo Zhang: Software, Validation, Visualization. Bailey K. Farrow: Project administration, Validation, Visualization. Shannon Robins: Data curation, Resources, Investigation. Allison M. Morgan: Data curation, Resources, Project administration. Thin Q. Nguyen: Data curation, Resources, Investigation. Elizabeth Frenkel: Data curation, Resources, Investigation. Kaitlin Lehm: Data curation, Resources, Project administration. Emily Drake: Data curation, Resources, Investigation. Catherine Sullivan: Data curation, Resources, Supervision, Alexa Plisiewicz: Data curation, Resources, Project administration. Noel Coleman: Data curation, Resources, Project administration. Luke Patterson: Data curation, Resources, Project administration. Mateusz Kopyra: Project administration, Supervision, Resources, Methodology. Zeinab Helli: Data curation, Resources, Supervision. Nicholas Van Kuren: Data curation, Validation, Visualization. Nathan Young: Data curation, Validation, Visualization. Meen Chul Kim: Data curation, Software, Validation. Christopher Friedman: Data curation, Validation, Software. Alex Lubneuski: Software, Validation, Visualization. Christopher Blackden: Software, Validation, Visualization. Marti Williams: Data curation, Resources, Project administration. Valerie Baubet: Resources, Methodology, Project administration. Lamiya Tahirid: Resources, Methodology. Jamie Galanaga: Data curation, Resources. Katie Boucher: Resources, Methodology. Heba Ijaz: Resources, Methodology. Kristina A. Cole: Resources, Methodology. Namrata Choudhari: Resources, Methodology. Mariarita Santi: Supervision, Resources, Project administration. Robert W. Mould: Project administration, Resources. Jonathan Waller: Project administration, Resources. Whitney Rife: Project administration, Resources. Sharon J. Diskin: Formal analysis. Marion Mateos: Project administration, Supervision, Data curation, Resources. Donald W. Parsons: Project administration, Supervision, Data curation, Resources. Ian E. Pollock: Project administration, Supervision, Data curation, Resources. Stewart Goldman: Project administration, Supervision, Data curation, Resources. Sarah Leary: Project administration, Supervision, Data curation, Resources. Chiara Caporalini: Data curation, Resources. Anna Maria Buccoliero: Project administration, Supervision, Data curation, Resources. Mirko Scagnot: Project administration, Supervision, Data curation, Resources. David Haussler: Project administration, Supervision, Formal analysis. Derek Hanson: Project administration, Supervision, Data curation, Resources. Ron Firestein: Project administration, Supervision, Data curation, Resources. Jason Cain: Project administration, Supervision, Data curation, Resources. Joanna J. Phillips: Project administration, Supervision, Data curation, Resources. Nalin Gupta: Project administration, Supervision, Data curation, Resources, Writing – review & editing. Sabine Mueller: Project administration, Supervision, Data curation, Resources. Gerald Grant: Project administration, Supervision, Data curation, Resources. Michelle Monje-Deisseroth: Project administration, Supervision, Data curation, Resources. Sonia Partap: Project administration, Supervision, Data curation, Resources. Jeffrey P. Greenfield: Project administration, Supervision, Data curation, Resources. Rintaro Hashizume: Project administration, Supervision, Data curation, Resources. Amy Smith: Project administration, Supervision, Data curation, Resources. Shida Zhu: Project administration, Supervision, Data curation, Resources. James M. Johnston: Project administration, Supervision, Data curation, Resources. Jason R. Fanguaro: Project administration, Supervision, Data curation, Resources. Matthew Miller: Project administration, Supervision, Data curation, Resources. Matthew D. Wood: Project administration, Supervision, Data curation, Resources, Writing – review & editing. Sharon Gardner: Project administration, Supervision, Data curation, Resources. Claire L. Carter: Project administration, Supervision, Data curation, Resources. Laura M. Prolo: Project administration, Supervision, Data curation, Resources. Jared Pisapia: Project administration, Supervision, Data curation, Resources. Katherine Pehlivan: Project administration, Supervision, Data curation, Resources. Andrea Franson: Project administration, Supervision, Data curation, Resources. Josh Rubin: Project administration, Supervision, Data curation, Resources. Mohamed Abdelbaki: Project administration, Supervision, Data curation, Resources. David S. Ziegler: Project administration, Supervision, Data curation, Resources. Holly B. Lindsay: Project administration, Supervision, Data curation, Resources. Ana Guerreiro Stucklin: Project administration, Supervision, Data curation, Resources. Nicolas Gerber: Project administration, Supervision, Data curation, Resources. Olena M. Vaske: Project administration, Supervision, Data curation, Resources. Carolyn Quinsey: Project administration, Supervision, Data curation, Resources. Brian R. Rood: Project administration, Supervision, Data curation, Resources, Writing – review & editing. Javad Nazarian: Project administration, Supervision, Data curation, Resources. Eric Raabe: Project administration, Supervision, Data curation, Resources. Stacie Stapleton: Project administration, Supervision, Data curation, Resources. Robert M. Lober: Project administration, Supervision, Data curation, Resources. David E. Kram: Project administration, Supervision, Data curation, Resources. Carl Koschmann: Project administration, Supervision, Data curation, Resources, Writing – review & editing. Phillip B. Storm: Project administration, Supervision, Data curation, Resources. Rishi R. Lulla: Writing – original draft, Project administration, Supervision, Data curation, Resources. Michael Prados: Project administration,
Supervision, Data curation, Resources, Writing — review & editing, Adam C. Resnick: Conceptualization, Project administration, Supervision, Data curation, Resources. Angela J. Waanders: Writing — original draft, Project administration, Supervision, Data curation, Resources, Writing — review & editing.

Acknowledgments

We would like to thank the patients and families participating in CBTN. CBTN is in large part, philanthropically-funded, and we thank each donor for their dedication and support in making the CBTN possible. The following donors have provided leadership level support: Children’s Brain Tumor Foundation, Eaise Family Foundation, Kortney Rose Foundation, Lilabean Foundation, Minnick Family Charitable Fund, Perricelli Family, Psalm 103 Foundation, and Swiftly Foundation. CBTN’s leadership would like to recognize and thank the early leadership and foundational contributions of Drs. Tom Curran, Ph.D., FRS (currently at Children’s Mercy Kansas City) and Peter Phillips, M.D. (formerly at CHOP, retired) to the creation of Children’s Brain Tumor Tissue Consortium (CBTTC) which has evolved into the Children’s Brain Tumor Network (CBTN).

References

[1] Curtin SC, Minino AM, Anderson RN. Declines in Cancer Death Rates Among Children and Adolescents in the United States, 1999-2014. *NCHS Data Brief* 2016(257):1–8.

[2] Learned K, Durbin A, Currie R, Kephart ET, Beale HC, Sanders LM, et al. Barriers to accessing public cancer genomic data. *Sci Data* 2019;6(1):98.

[3] Pediatric brain tumor atlas [Internet]. [cited 2022 Oct 2]. Available from: https://cbtn.org/pediatric-brain-tumor-atlas

[4] Gabriella miller kids first [Internet]. 2021 [cited 2022 Oct 2]. Available from: https://commonfund.nih.gov/kidsfirst/2021X01projects

[5] Petralia F, Tignor N, Reva B, Koppyra M, Chowdhury S, Rykunov D, et al. Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. *Cell* 2020;183(7):1962–85 e31.

[6] Shapiro JA, Gaonkar KS, Savonen CL, Spielman SJ, Bethell CJ, Jin R, et al. OpenPRTA: An Open Pediatric Brain Tumor Atlas [Internet]. bioRxiv; 2022. 2022 [cited 2022 Oct 1] 09.13.507832. Available from: https://www.biorxiv.org/content/10.1101/2022.09.13.507832v1.

[7] Kline C, Jain P, Kilburn L, Bonner ER, Gupta N, Crawford JR, et al. Upfront biology-guided therapy in diffuse intrinsic pontine glioma: therapeutic, molecular, and biomarker outcomes from PNOC003. *Clin Cancer Res [Internet]* 2022 Available from: doi:10.1158/1078-0432.CCR-22-0803.

[8] Jin R, Zhang Y, Gaonkar K, Rathk K, Rokita JL, Wafula E, et al. PediatricOpenTargets/OpenPedCan-analysis: Release v1.0.0 [Internet]. 2022. Available from: https://zenodo.org/record/6473913.

[9] RACE Act Poised to Advance Pediatric Cancer Research. *Cancer Discov* 2020;10(10):1434.

[10] SageBionetworks. Schwannomatosis Open Research Collaborative [Internet]. [cited 2022 Oct 2]. Available from: https://www.synapse.org/Synapse/syn28545963/wiki/617092