Research Article

Evaluation Model Construction of Competitiveness of Sports Tourism Characteristic Towns through IoT Applications

Yong Shi

School of Physical Education, Qujing Normal University, Qujing 655011, China

Correspondence should be addressed to Yong Shi; 19402240@masu.edu.cn

Received 14 July 2022; Revised 30 July 2022; Accepted 11 August 2022; Published 31 August 2022

Academic Editor: Hamurabi Gamboa Rosales

Copyright © 2022 Yong Shi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As the development of sports industry, new business type is also a breakthrough in the development of new urbanization, and it will become a new economic point to promote economic development in the future. In this paper, the "Jewel" model is utilized to dissect the records that influence the center competitiveness of humble communities with sports characteristics, and the loads of the files are examined, and the principal component analysis (PAC) is utilized to build the evaluation model of the center competitiveness of unassuming communities. Finally, a "factor model" is constructed for evaluation. Through the quantitative analysis of the influencing factors, the index system is formed, which is composed of 6 first-level indicators, 23 second-level indicators, and 45 third-level indicators, including environmental resources, characteristic industry competitiveness, infrastructure competitiveness, overall layout, government support, and funding sources. Furthermore, this carries on the weight examination to the list, as per the investigation result advances the idea for the future improvement of the games trademark town, and gives the premise to the improvement of the games trademark town.

1. Introduction

After computers, the Internet, and mobile communication networks, the Internet of Things is the next big advancement in science and technology. It blends virtual information and reality to make some real-life behaviors and activities more intelligent, efficient, and convenient. As the Internet of Things age approaches, sports tourist service development should grab the chance for innovation in the use of Internet of Things technology, expedite the process of upgrading informatization and intelligence, and achieve leapfrog development [1].

In recent years, with the implementation of the strategy of "healthy China," the concept of great health is becoming more and more popular, sports shows the development of all people, normalization, and leisure, and small towns with sports characteristics are the embodiment of the combination of great health and sports industry. It has received a high degree of attention from the sports and financial circles. In July 2016, the notice on carrying out the cultivation of small towns with characteristics was issued. It clearly stipulates 13 principles for the cultivation and construction of characteristic towns in order to guide national sports and leisure towns to achieve standardized, healthy, and high-quality development. On August 10 of the same year, the General Office of the State Council pointed out that it is important to consistently advance the construction of modest communities with sports and relaxation characteristics, routinely assess the towns, and make dynamic acclimations to make ten praiseworthy towns [2, 3].

The foundation of a sports characteristic town is of extraordinary importance to the reinforcement of the improvement capacity of the characteristic town and the speed increase of the urbanization interaction and to the mix of the favorable assets of the characteristic town and the enhancement of the modern design. It is of incredible importance to the legacy of sports culture and the upgrade of characteristic delicate power and is of extraordinary importance to the advancement of general wellbeing and the improvement of individuals’ life fulfillment and prosperity [4–6]. The construction experience of national sports and leisure towns in Jiangsu Province has high guidance and reference value for the long-term development of provincial sports health towns. Under the work Guide of the State
General Administration of Sports, how can the national sports and leisure characteristic towns in Jiangsu Province improve their competitiveness, enhance their development vitality, and achieve healthy, high-quality, and sustainable development? This is an issue worthy of in-depth discussion.

2. Research Methods and Concepts of Core Competitiveness

2.1. The Concept of Core Competence. The term “core competence” first appeared in the 1990s. The concept of core competence first appeared in the book “Corporate Core Competence.” There are different views on the definition of core competence in various fields. Domestic and foreign scholars generally define it from the aspects of technology, culture, resources, strategy, ability, and so on. (1) The theory of “technology” is analyzed and studied from the technical level of the product, and they think that the product R&D capability is the embodiment of the core competitiveness of an enterprise. (2) The theory of “culture” holds that the core competence is the soul of an enterprise and the key factor for the success or failure of an enterprise. (3) The theory of “resources” is based on the view that the resources of enterprises are unique, proprietary, and irreplaceable, and this unique resource competitiveness is the expression of the core competitiveness of enterprises. (4) The theory of “strategy” holds that the size of the core competitiveness of an enterprise depends on whether the strategic layout of the company is appropriate, and whether the strategic layout is successful or not is the embodiment of the core competitiveness of the enterprise. (5) The theory of “capability” evaluates whether an enterprise can have unique capabilities in a certain field, such as resource development, product innovation, and market share, from the perspective of the enterprise as a whole [7–9]. Whether it has long-term and effective competitiveness, the author believes that core competence is a complex concept, which is not determined by a single factor, but the embodiment of the comprehensive ability of an enterprise or individual. The core competitiveness of a small town with sports characteristics is the reallocation and integration of competitive advantage resources and characteristic industries in the town, and it is a brand-new competitive advantage industry.

2.2. Research Methods of Core Competitiveness. The GEM model proposed by Michael Porter, a professor at Harvard Business School in the United States, is improved on the basis of the diamond model, which is mainly used to evaluate the competitiveness of regional industrial clusters. This model is the most commonly used method for modern scholars to study the core competitiveness. The GEM model points out that competitiveness depends on three elements and six factors, and the three elements refer to “basic,” “enterprise,” and “market,” respectively. The above three elements can be divided into six factors: “assets,” “offices,” “providers and related helper ventures,” “endeavor structure procedure and rivalry,” “neighborhood market,” and “outside market” [10, 11].

3. Analysis and Research on the Core Competitiveness of Small Communities with Sporting Qualities

3.1. Index Analysis. Joined with the ongoing characteristics of the improvement of sports characteristic towns in China and the construction instances of astounding unfamiliar sports characteristic towns, it is important to develop the center competitiveness record arrangement of sports characteristic towns based on the first level [12]. Above all else, the competitiveness of the characteristic business is a significant element influencing the center competitiveness of the sports characteristic town, and the modern coordination and foundation design are likewise one of the variables influencing the improvement of the town [3]. The construction of the sports characteristic town ought to be founded on the important arrangements of the public authority; on this premise, the undertaking construction can be done [13, 14]. The general format of the town will influence the future advancement of the town [4]. The wellspring of assets for the construction of unassuming community projects is likewise a strong record that influences the center competitiveness of modest communities. The center competitiveness of modest communities with sports characteristics at last reduces to the advancement of industry, which drives the improvement of significant economy and market [15]. Market is the method for testing the improvement of industry, and market advancement power is the maintainable assurance of the advancement of unassuming communities with sports characteristics. Taking the ocean side sports characteristic town in Haiyang for instance and joined with master examination, the center competitiveness list arrangement of the characteristic town is as per the following [16]:

(i) Sports industry affection with web and IoT facilities worldwide

The Internet of Things (IoT) refers to a network of goods, such as automobiles, mobile devices, and buildings, that include electronic components, software, and network connectivity, allowing them to collect data, fulfill commands, and be controlled via the Internet. Physical item control over the Internet enhances efficiency and saves time. The expanding number of devices in use by individuals boosts the marketability of IoT devices. The Internet of Things also allows for the development of goods that save money and time and improve labor efficiency [3].

(ii) Chronological overview in the Chinese sector

China’s sports sector has grown steadily since the 29th Summer Olympic Games in Beijing in 2008, with the share of output value increasing year after year. The Chinese sports business is becoming a major factor in the growth of the national economy, but it also confronts several issues and hurdles.

Some issues are vexing, such as low overall strength, internal structural imbalance, a lack of demand-based policy instruments, a lack of supply-oriented policy tools, and an
excess of environmental policy tools. The transformation and upgrading of the sports manufacturing industry face challenges in the context of "Made in China 2025," including the low-end monopoly of developed countries on China's sporting goods manufacturing industry, a lack of innovative talents in this field, a low cultural influence of brands and innovation, and product similarity and malicious competition [17].

(iii) Wireless and mobile and governmental provisions relating IoT with the Chinese sports industry

Wireless mobile data services (WMDs) include all types of digital data services that are supplied via wireless networks and accessible through any sort of mobile device. China had the world's largest mobile communication network in December 2006, with 461.082 million mobile communication consumers and 35.3 percent ownership of mobile phones. Because wireless communication infrastructure is currently more established than fixed-line infrastructure and mobile phones are more affordable, Internet data services delivered via mobile phones are a key current trend [18].

3.1.1. Environmental Resources. The environmental resources of small towns with sports characteristics are composed of ecological environment, cultural heritage, tourism resources, and sports resources. As a new carrier of converging industry and sports industry, the small town with sports characteristics is also a comprehensive and new form of sports industry, which integrates the "four-in-one" of sports, tourism, leisure and entertainment, and health preservation and the three-life concept of production, life, and ecology. According to the constituent elements of environmental resources, we can know that the ecological environment of a small town can be quantified by the local vegetation coverage, air quality, and water resources; the cultural heritage can be quantified by the development, inheritance, and preservation of local traditional culture; tourism resources can be quantified by the number of local tourists, tourism advertising, and scenic spots. Sports resources are quantified by the development of local sports, the number of young people participating in sports competitions, and the number of sports competitions held by young people [19].

3.1.2. Industrial Competitiveness. The characteristic industry is the foundation of the development of the town, and the characteristic of the town is to radiate and develop other industries around with the characteristic industry as the origin. The index of industrial competitiveness is mainly composed of special force of characteristic industry, industrial agglomeration, driving force of characteristic industry, industrial market power, industrial innovation, and so on [12]. (1) Industrial agglomeration. The so-called industrial clustering power refers to the degree of concentration of industrial elements in a particular region, and the main factors that affect industrial agglomeration are the concentration of industries and the scale of related industries. (2) Characteristic industrial belt power. The driving force of industry refers to the radiation power, influence, and the ability to promote the development of surrounding industries shown by characteristic industries in the development of small towns. Its performance is the continuous integration with the surrounding industries and local traditional industries. (3) Industrial market power. The market is the carrier of the development of any industry, and the industrial market power is used as an index to measure whether an industry has market competitiveness or not [20]. The value of the index represents the competitiveness of the industry in the market. The greater the competitiveness, the stronger the core competitiveness of the industry. In addition, market demand and industrial contribution rate are also indicators of market competitiveness. The greater the market demand, the greater the contribution rate of the industry, the higher the market power of the industry, and the more competitive the industry will be [21–25]. The ability of independent innovation is the core of the development of a small town, and the so-called innovation ability is the combination of science and technology and industry in the process of development of the town. Industrial innovation is the basis of industrial development in the future. Only by constantly innovating and breaking the original rules can we occupy an important position in the cruel market competition. The application of patent, the number of innovative products, and the application of patented products are all quantitative indicators of industrial innovation.

3.1.3. Infrastructure Force. Infrastructure is the guarantee of the development of the town, and the infrastructure mainly includes transportation, sports facility construction, leisure and entertainment places, sports talent reserve, and so on. Traffic development is the basic force of town development, whether the traffic is convenient, and to what extent is the quantitative standard of infrastructure capacity; the quality of public sports infrastructure construction has a direct impact on the future industrial development of the town; leisure and entertainment places are the guarantee of the livable environment of the town; the cultivation and reserve of relevant sports talents are the follow-up guarantee and evidence for the development of characteristic industries in the town [26, 27].

3.1.4. Overall Layout. The overall layout of the town with sports characteristics is an important factor affecting the development of the town, and its quantitative index is composed of town planning, town industrial positioning, town development strategy, and industrial chain. Town planning is the direction of town development; development strategy is the source of town development; industrial positioning determines the core of town development; industrial chain is the driving force of town development. The success of the overall layout of the town is also one of the indicators that affect the core competitiveness of the town industry [28–30].

3.1.5. Government Support. The construction and development of the town is not only guided by the market but also affected by the relevant policies issued by the government.
The supervision of the project by government departments can ensure the smooth completion of the project to a great extent. The risk prediction of the project by government departments in advance can ensure whether investors can get enough benefits when investing in the project [31].

3.1.6. Source of Funds. While the construction of the town is affected by external factors, the source of funds also restricts the future construction and development of the town. There are generally three sources of funds for the construction of small town projects, namely, government investment, capital combination of social groups, and individual investment. Among them, the combination of government investment and social groups occupies the leading position of project investment and financing [20].

3.2. Index Weight Analysis. On the basis of the principle of market economy, in line with the comprehensive principle of the reliability and authenticity of data and the combination of market demand and overall layout, the selected indicators are screened by SPSS and mathematical statistics. After discussion by experts, six first-level indicators are selected, such as environmental resource capacity, industrial competitiveness, infrastructure capacity, overall layout, government support, and sources of funds. On the basis of the first-level index, 23 second-level indicators and 45 3-level indicators are divided [16]. The weight of the index system is analyzed by factor analysis and SPSS software: in the first step, according to the indexes of influencing factors, using the analytic hierarchy process in higher mathematics, the indexes of influencing factors are divided into three grade indexes (1, 2, and 3), and all the index factor matrices are input into SPSS software, and the questionnaire is output. In step 2, select experts, economists, market analysts, financial investment experts, and all the people involved in the construction of small towns with sports characteristics to conduct problem research. In step 3, input the questionnaire into the SPSS software, and use the group decision data aggregation method in higher mathematics to sort and weighted arithmetic average of the questionnaires of each expert. The error should be controlled at 0.001 when inputting the data, and the minimum change algorithm should be automatically corrected if the error is greater than 0.001. Finally, the weight value shown in Table 1 can be obtained.

3.3. Results and Analysis. Through the weight analysis of the impacting factors, we can realize that later on construction of sports characteristic towns, we ought to initially zero in on the advancement of modern competitiveness (0.3302) and fully tap the local characteristic industries, so that the characteristic industry and other industries for integration, development, and innovation create a more innovative sunrise industry, so that the industry has more market competitiveness. Secondly, the source of funds (0.1457) is the key to the success of the construction of small towns with sports characteristics. There are many sources of funds, such as financial support from the government, investment from large state-owned enterprises, private investment, and bank loans. Funds can be raised, and funds are the basic guarantee of construction. Thirdly, the environmental resource power (0.1432) is also an important basis for whether the town has the core competitiveness, so in the process of developing the characteristic industry, the town should pay attention to the protection of environmental resources. Only with a good environment can we build a small town with life-oriented and commercial sports characteristics. Thirdly, the talent reserve in the infrastructure capacity (0.1378) is also an important factor affecting the core competitiveness of the town. The town should find ways to introduce more human capital and technical capital for the construction and management of towns with sports characteristics. The town can cooperate with the local government to formulate a series of preferential policies to attract talents. Finally, the overall layout is slightly larger than the support of the government, but both are key factors. The support of government policies is the auxiliary force of town construction, and the overall layout is planned with the support of government policies. Through the weight analysis, we can know that there are four indicators that affect the core competitiveness of the sports characteristic town, in which the industrial competitiveness occupies the leading position, which is an important factor affecting whether the sports characteristic town has the core competitiveness. The four indicators are index system of environmental resource strength (Table 1), industrial competitiveness index system (Table 2), infrastructure strength index system (Table 3), and other index systems (Table 4).

4. Evaluation Construction Model of Small Town Core Competitiveness with Sports Characteristics

4.1. Construction Principle of Evaluation Model. As of now, there are relatively few evaluation models for the center competitiveness of unassuming communities with sports characteristics, for the most part utilizing line outline model. These strategies cannot be utilized as a precise and bound together norm to give a premise to the evaluation of the center competitiveness of towns with sports characteristics, since there are many elements that influence the center competitiveness of towns with sports characteristics, and subjective and quantitative markers are combined as one. There is likewise a direct connection among the variables, so dissecting them with a solitary method is troublesome. What is more, the impact of each element on the center competitiveness of humble communities with sports characteristics is likewise unique. In this manner, the center of the model is to fabricate a complete evaluation file framework, to combine the evaluation record arrangement of the center competitiveness of humble communities with sports characteristics into a model that can be broke down and assessed straightforwardly, the principal component analysis technique is utilized to build a “factor model” for extensive analysis. To exhaustively and methodically dissect the impact factors on the model construction of the center competitiveness of unassuming communities with sports characteristics, we should consider many affecting variables, which are by and large called...
markers, which are broken down and determined by principal component analysis. Find the relationship between the relevant variables, reduce the complex variables to several principal component factors, get more scientific and accurate information at the same time, and arrange the information. Establish the most basic and concise system.

4.2. Evaluation Model Construction

This paper builds the “factor model” of the center competitiveness of unassuming communities with sports characteristics based on principal component analysis, to give a reference premise to the construction of humble communities with sports characteristics. The moves toward fabricate a “factor model” are as follows:

First-level indicator (weight)	Secondary indicator (weight)	Third-level index	Weight
Environmental resource capacity (0.1432)	Ecological environment (0.0372)	Vegetation coverage	0.0147
		Air quality	0.0153
		Water resource situation	0.0072
	Cultural background (0.0241)	The development of traditional culture	0.0138
		Cultural propaganda	0.0103
		Number of tourists	0.0047
	Tourism resources (0.0285)	Tourism publicity	0.0035
		How many scenic spots	0.0203
		The development of sports	0.0145
	Sports resources (0.0534)	Number of competitions held	0.0302
		Competitions for teenagers	0.0054

Table 2: Weight analysis of industrial competitiveness index system of small towns with sports characteristics.

First-level indicator (weight)	Secondary indicator (weight)	Third-level index	Weight
Industrial competitiveness (0.3302)	Characteristic industry (0.1305)	Types of characteristic industries	0.0745
		Competitiveness of characteristic industries	0.056
		Industrial concentration	0.0178
	Industrial agglomeration (0.0392)	The scale of related industries	0.0214
	Industrial driving force (0.0328)	Related industries drive the development of the surrounding economy	0.0328
	Industrial market (0.0532)	Effective market share	0.0147
		Market demand	0.024
		Industry contribution rate	0.0145
	Industrial innovation (0.0745)	Number of patent applications and innovative products	0.0332
		Application rate of patented products	0.0413
	Traffic (0.0342)	Transportation convenience	0.0342

Table 3: Weight analysis of infrastructure strength index system of small towns with sports characteristics.

First-level indicator (weight)	Secondary indicator (weight)	Third-level index	Weight
Infrastructure (0.1378)	Construction of sports facilities (0.0535)	Construction of gymnasium venues	0.0278
		Public infrastructure construction	0.0147
		Construction of related clubs	0.011
	Places of leisure and entertainment (0.0256)	The construction of large shopping malls	0.0148
		The construction of the hotel	0.0108
		Talent training in colleges and universities	0.0098
	Talent reserve (0.0245)	The introduction of club talents	0.0075
		Talent selection of sports team	0.0072
	Overall positioning of the town (0.0248)	Characteristic industry with sports competition as the core	0.0228
Determination of evaluation index system

This paper takes Haiyang beach sports characteristic town as an example to construct the core competitiveness model. First of all, if the estimated sample number is \(n \) and the selected index number is \(p \), then the matrix \(X = (x_{ij})_{n \times p} \) can be obtained from the analysis of the original data of the sample, in which \(x_{ij} \) represents the \(i \) core competitiveness index data of the \(j \) sports characteristic town.

Standardize transformation of the original data values of each variable due to the different measurement units of the variables and the existence of calculation errors; there are slight differences among the indicators. In order to eliminate this difference, it is necessary to standardize the indicators:

\[
(x_{rk} - x_{k}) / t_{k} = x_{rk}
\]

(1)

In the formula, \(x_{rk} \) is the standard value of the \(x_{k} \) observation value \(x_{k} \) in the variable \(r \); \(x \) is the average value of the observation value in the variable \(x_{k} \); \(t_{k} \) is the standard deviation of the variable \(x_{k} \); \(r \) is the third sports characteristic town of the evaluated sample; \(k \) is the variable (or evaluation factor).

Calculate the correlation coefficient between the observed values of each variable

The covariance framework laid out by the record after normalization handling is a file that mirrors the nearby level of relationship between the information after normalization handling, and the two are emphatically corresponded. In the event that the bigger the worth got, it is important to complete principal component analysis of the information got. There is a connection coefficient between the first factors. Its estimation equation is as per the following:

\[
R_{ij} = \frac{\sum_{k=1}^{p} (X_{kj} - X_{i}) (X_{kj} - X_{j})}{\sqrt{\sum_{k=1}^{p} (X_{kj} - X_{i})^2 (X_{kj} - X_{j})^2}}.
\]

(2)

Determine the contribution rate of principal components

From the connection coefficient acquired in (3), the eigenvalue condition can be tackled and the eigenvalue can decide the quantity of principal components as per the quantity of eigenvalues. Since the covariance grid is a positive distinct lattice, its eigenvalues are positive, and they are organized arranged by size; that is to say, the size of this worth mirrors the impact of every principal component. Commitment pace of principal component is

\[
\frac{\lambda_{j}}{\sum_{i=1}^{p} \lambda_{i}} = W_{1}.
\]

(3)

The cumulative contribution rate is as follows:

\[
\frac{\sum_{i=1}^{m} \lambda_{i}}{\sum_{i=1}^{p} \lambda_{i}} = W_{2}.
\]

(4)

Lay out the underlying variable burden network

The variable burden network is utilized to make sense of the connection coefficient between the principal component and the first record, which uncovers the relationship degree.

Table 4: Weight analysis of other index systems in towns with sports characteristics.

First-level indicator (weight)	Secondary indicator (weight)	Third-level index	Weight
Town planning (0.0357)	The land of comfort, the city of competition (0.0357)	0.0357	
The strategic layout of the town (0.0472)	Talent training	0.0147	
Industrial chain (0.0219)	The development of characteristic industry as the core industry (0.0235)	0.0235	
The introduction of policies (0.0378)	Rely on leisure and entertainment (0.009)	0.009	
Overall layout (0.1296)	Project supervisor (0.0452)	Establish a supervision mechanism (0.0278)	0.0278
Risk forecast (0.0325)	Supervision by government departments (0.0174)	0.0174	
Government capital (0.0548)	Establish a risk forecasting platform (0.0325)	0.0325	
Social organizations (0.0542)	Central government investment (0.0289)	0.0289	
Personal capital (0.0347)	Local government investment (0.0259)	0.0259	
	State-owned enterprise (0.0378)	0.0378	
	Social organization (0.0164)	0.0164	
	Individual enterprise (0.0347)	0.0347	
between the principal component and each monetary proportion somewhat. The element load is determined by the eigenvector and the eigenvalue $\sqrt{\lambda}$:

$$A_{ij} = \mu_{ij} \sqrt{\lambda}_j. \quad (5)$$

The coefficient A_{ij} of each factor is the factor load coefficient, that is, the correlation coefficient R.

(6) Rotation of factor load matrix in principal component analysis

Because the principal factor can fully reflect the internal dependency of the original variable index, it is often necessary to express the m principal factor in turn as a linear combination of p and the original variable index, that is, using

$$\begin{align*}
Z_1 &= \mu_{11}X_1 + \mu_{12}X_2 + \cdots + \mu_{1p}X_p, \\
Z_2 &= \mu_{21}X_1 + \mu_{22}X_2 + \cdots + \mu_{2p}X_p, \\
&\quad \vdots \\
Z_p &= \mu_{p1}X_1 + \mu_{p2}X_2 + \cdots + \mu_{pp}X_p.
\end{align*} \quad (6)$$

The principal factor score of each sample is calculated by the above formula. According to the size of the value obtained, we can express the impact index of the core competence on the factor score chart, and we can clearly find the index of the core competence.

(7) The construction of “factor model”

Because the influence of the above main factors on the sample is different, then their contribution to the analysis of the core competitiveness index of small towns with sports characteristics is also different. Therefore, it synthesizes a comprehensive scoring function model, that is, the “factor model,” which can reflect the core competitiveness of each sample.

$$F_m = W_1Z_1 + W_2Z_2 + \cdots + W_pZ_p. \quad (7)$$

The “factor model” can analyze whether the factors in the sample can form the core competitiveness and can also rank the core competitiveness of sports characteristic towns according to the data obtained from the model. At the same time, it can also be used to compare the core competitiveness of sports towns all over the country. The significance of using principal component analysis to construct a “factor model” is that when the national or local government wants to build a sports town, the core competitiveness can be tested in advance. If the value obtained is positive and the value is OK, then it shows that the market competitiveness of this project is strong. If the value obtained is negative or relatively small, it means that the core competitiveness of the project has not yet been formed, and we can consider repositioning and planning the project. In theory, the “factor model” can evaluate the core competitiveness of a sports town, enterprise, or a certain project, but it still needs to be used more in practice to find the best point.

5. Conclusion

The development and construction of characteristic towns will encounter a variety of problems, but the key problem is how to accurately grasp the integration of the town’s core industries and traditional industries. The positioning of the industry should be accurate, the planning should be reasonable, the layout should be characteristic, and the strategy should be accurate and cannot be separated from the characteristics of regional advantage development. Simultaneously, as far as the evaluation and determination of the center competitiveness of modest communities with sports characteristics, this paper makes a quantitative analysis of the pointers that influence the improvement of modest communities, in light of the fact that the town is in its earliest stages and many designs for humble communities are as yet being arranged. In this way, a bunch of explicit quantitative measures cannot be given, and explicit experimental exploration is ought to be done simultaneously, as per the improvement of humble communities with sports characteristics. Combined with excellent town construction cases, the evaluation system and construction model are supplemented and optimized on the basis of the original.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was funded by the Yunnan Provincial Philosophy and Social Science Innovation Team Project (No. 2021tdxmy24).

References

[1] B. Zheng, Z. Mei, L. Hou, and S. Qiu, “Application of internet of things and edge computing technology in sports tourism services,” Security and Communication Networks, vol. 2021, Article ID 9980375, 10 pages, 2021.

[2] Y. Zhao, Q. Wang, X. Wang, and Z. Zhang, Evaluation of Competitiveness of Coastal Cities Based on Global Factor Analysis Model, Springer, Singapore, 2020.

[3] X. Zhang and M. Qu, “Impact of environmental regulation on scientific and technological competitiveness of resource-based cities in China—based on panel data of 33 resource-based cities,” International Journal of Environmental Research and Public Health, vol. 17, no. 24, p. 9187, 2020.

[4] H. Khanzadeh, F. Rahnavard, N. Bamdad, and S. M. Mahmoudzadeh, “Explanation model of tourism competitiveness in Iran touristic cities,” New Marketing Research Journal, vol. 11, no. 2, pp. 45–68, 2021.

[5] F. Eddyono, D. Darusman, U. Sumarwan, and T. Sunarminto, “The tourism competitiveness of districts and cities possessing a national park in Indonesia,” Journal of Scientific Research and Reports, vol. 26, no. 3) (JSRR.55677, pp. 25–41, 2020.
[6] M. B. Alazzam, F. Allassery, and A. Almulih, “A novel smart healthcare monitoring system using machine learning and the Internet of Things,” *Wireless Communications and Mobile Computing*, vol. 2021, Article ID 5078799, 7 pages, 2021.

[7] J. N. Perea-Balbuena, V. J. Carrasco-Romero, M. de Lourdes López-Palacios, and J. Á. Maldonado-Reséndiz, “The Culinary Poblana: tourism competitiveness strategy for the city of Puebla,” *Journal of Administration and Finance*, vol. 7, pp. 1–9, 2020.

[8] Z. Li-Yun, W. Cheng-Ke, and Z. Qiang, “The construction of folk sports featured towns based on intelligent building technology based on the Internet of Things,” *Applied Bionics and Biomechanics*, vol. 2022, Article ID 4541533, 8 pages, 2022.

[9] A. Aguiar-Barbosa, A. F. Chim-Miki, and M. Kozak, “Two decades of evolution in tourism competitiveness: a co-word analysis,” *Cities*, vol. 7, no. 2, pp. 435–462, 2021.

[10] F. Eddyono, D. Darusman, U. Sumarwan, and T. Sunarminto, “Correlation of tourism competitiveness towards tourist visit and non-tax revenue in national parks in Indonesia,” *Journal of Critical Reviews*, vol. 7, no. 16, pp. 1155–1171, 2020.

[11] R. Martín-González, K. Swart, and A. M. Luque-Gil, “Tourism competitiveness and sustainability indicators in the context of surf tourism: the case of Cape Town,” *Sustainability*, vol. 13, no. 13, p. 7238, 2021.

[12] G. Kyriakopoulos, S. Ntanos, T. Anagnostopoulos, N. Tsotsolas, I. Salmon, and K. Ntalantis, “Internet of Things (IoT)-enabled elderly fall verification, exploiting temporal inference models in smart homes,” *International Journal of Environmental Research and Public Health*, vol. 17, no. 2, p. 408, 2020.

[13] R. R. Ahmed, G. L. Kyriakopoulos, D. Streimiki, and J. Streimikis, “Drivers of proactive environmental strategies: evidence from the pharmaceutical industry of Asian economics,” *Sustainability*, vol. 13, no. 16, p. 9479, 2021.

[14] M. Bhatia, “IoT-inspired framework for athlete performance assessment in smart sport industry,” *IEEE Internet of Things Journal*, vol. 8, no. 12, pp. 9523–9530, 2021.

[15] E. Conti, L. Grassini, and C. Monicolori, “Tourism competitiveness of Italian municipalities,” *Quality & Quantity*, vol. 54, no. 5-6, pp. 1745–1767, 2020.

[16] L. Zhang and Y. Xu, “Research on the development and resource development of sports industry in coastal cities based on 5G network processor and IoT system,” *Microprocessors and Microsystems*, vol. 83, article 104000, 2021.

[17] Y. Wang and W. Fang, “Innovation and development strategy of China’s sports industry under the new economic ecology,” in *In 2nd international conference on social science, public health and education (SSPHE 2018)*, pp. 382–388, 2019.

[18] J. Lu, C. Liu, C. S. Yu, and K. Wang, “Determinants of accepting wireless mobile data services in China,” *Information & Management*, vol. 45, no. 1, pp. 52–64, 2008.

[19] M. B. Alazzam, F. Allassery, and A. Almulih, “Diagnosis of melanoma using deep learning,” *Mathematical Problems in Engineering*, vol. 2021, Article ID 1423605, 9 pages, 2021.

[20] R. Bazargani and H. Kili, “Tourism competitiveness and tourism sector performance: empirical insights from new data,” *Journal of Hospitality and Tourism Management*, vol. 46, pp. 73–82, 2021.

[21] M. Roman, M. Roman, P. Prus, and M. Szczepanek, “Tourism competitiveness of rural areas: evidence from a region in Poland,” *Agriculture*, vol. 10, no. 11, p. 569, 2020.