Supporting Information for:

Hydrophosphination of Boron-Boron Multiple Bonds

Tom E. Stennett, Arumugam Jayaraman, Tobias Brückner, Lea Schneider and Holger Braunschweig*

Contents
Synthetic Procedures .. 2
General Considerations ... 2
Synthesis of New Compounds .. 2
NMR spectra of new compounds ... 7
Computational details .. 17
 Optimized structures, Cartesian coordinates, and energies ... 17
 REACTION 1 ... 17
 Pathway 1 of reaction 1 .. 17
 Pathway 2 of reaction 1 .. 34
 Pathway 3 of reaction 1 .. 39
 REACTION 2 ... 47
 Pathway 1 of reaction 2 .. 47
 Bromide shift path for reaction 2 using a highly truncated system ... 59
 Pathway involving the bromide shift before PPh₂H coordination for the reaction 2 63
 Pathway 2 of reaction 2 .. 65
 Pathway 3 of reaction 2 .. 69
 Pathway for 1,2-hydrophosphination of diborene B1 .. 76
 REACTION 3 ... 80
 Pathway 1 of reaction 3 .. 80
 Pathway 2 of reaction 3 .. 91
 REACTION 4 ... 99
 Pathway 1 of reaction 4 .. 99
 Opposite 1,2-hydrophosphination path using borylborylene D1 ... 107
Crystallographic Details .. 111
References .. 112
Synthetic Procedures

General Considerations

All manipulations were performed either under an atmosphere of dry argon or in vacuo using standard Schlenk line or glovebox techniques. Deuterated solvents were dried over molecular sieves and degassed by three freeze-pump-thaw cycles prior to use. All other solvents were distilled and degassed from appropriate drying agents and stored under argon over activated 4 Å molecular sieves. NMR spectra were acquired on a Bruker Avance 500 NMR spectrometer (\(^{1}H\): 500.1 MHz, \(^{11}B\): 160.5 MHz, \(^{13}C\{^{1}H\}\): 125.8 MHz, \(^{31}P\): 202 MHz) or on a Bruker Avance 400 NMR spectrometer (\(^{1}H\): 400.1 MHz, \(^{11}B\): 128.4 MHz, \(^{13}C\{^{1}H\}\): 125.8 MHz, \(^{31}P\): 162 MHz) at 298 K unless otherwise stated. Chemical shifts (\(\delta\)) are given in ppm and internally referenced to the carbon nuclei (\(^{13}C\{^{1}H\}\)) or residual protons (\(^{1}H\)) of the solvent. \(^{11}B\) and \(^{31}P\) NMR spectra were referenced to external standards (BF\(_3\)·OEt\(_2\); 85% aq. H\(_3\)PO\(_4\)). High-resolution mass spectrometry data was obtained from a Thermo Scientific Exactive Plus spectrometer in ASAP or LiFDI mode. HPPh\(_2\) was purchased from Sigma-Aldrich and used without further purification. Diborenes \(1,1,2,2,3,3,4,4,5,5\) and \(B_2(\text{SiDep})_2\) (9)\(^3\) were synthesized following literature procedures.

Synthesis of New Compounds

Compound 5

![Diagram of Compound 5]

Diborene \(1\) (30 mg, 50 µmol) was dissolved in THF (1.3 ml), and HPPh\(_2\) (0.28 ml of a 0.18 M solution in THF, 51 µmol) was added. The mixture was heated to 60 °C for 1 h, resulting in a colour change from red to yellow. Volatiles were removed under reduced pressure and the residue washed with pentane (2 x 0.5 ml) with use of an ultrasound bath to reduce the particle size. The resulting colourless solid was washed with pentane and dried under vacuum. Yield 31 mg, 79%. Single crystals were obtained by slow evaporation of a diethyl ether solution of the compound.

\(^{1}H\)(\(^{11}B\)) NMR (500 MHz, C\(_6\)D\(_6\)): \(\delta/\text{ppm}\) 8.13 (d, 1H, \(^{3}J_{HH} = 7.5\) Hz, Ar\(H\)), 7.82 (d, 1H, \(^{3}J_{HH} = 6.1\) Hz, Ar\(H\)), 7.66 (br, 4H, Ar\(H\), o-PPh\(_2\)H), 7.36-7.31 (m, 1H, Ar\(H\)), 7.30-7.26 (m, 1H, Ar\(H\)), 7.20-7.15 (m, 1H, Ar\(H\)), 7.13-7.09 (m, 2H, Ar\(H\)), 7.06-7.01 (m, 4H, Ar\(H\), m-PPh\(_2\)H), 7.00-6.96 (m, 2H, Ar\(H\), p-PPh\(_2\)H), 6.89 (d, 1H, \(^{3}J_{HH} = 7.5\) Hz, Ar\(H\)), 3.23-3.14 (m, 1H, PCH\(_2\)), 3.12-3.00 (br, m, 1H, B\(H\)), 2.93-2.82 (m, 2H, PCH\(_2\)), 2.66-2.56 (m, 1H, C\(^{111}\)H), 2.41-2.34 (m, 1H, C\(^{111}\)H), 2.34-2.26 (m, 1H, PCH\(_2\)), 2.22 (d, 1H, \(^{2}J_{HH} = 12.6\) Hz, C\(^{111}\)H\(_2\)), 1.98-1.87 (m, 2H, C\(^{111}\)H\(_2\)), 1.87-0.74 (m, 40H, 38 C\(^{111}\)H\(_2\) und 2 C\(^{111}\)H\(_2\)), 0.62-0.41 (m, 2H, C\(^{111}\)H\(_2\)).

Note: The remaining cyclohexyl signals between 1.87 and 0.75 ppm could not be unambiguously assigned due to insufficient resolution.

\(^{11}B\) NMR (126 MHz, C\(_6\)D\(_6\)): \(\delta/\text{ppm}\) −15.9 (br, BPPh\(_2\)), −27.2 (br, BH).

\(^{31}P\) NMR (203 MHz, C\(_6\)D\(_6\)): \(\delta/\text{ppm}\) 10.4 (br), 6.1 (d, \(^{3}J_{PP} = 77.8\) Hz), −13.3 (br, PPh\(_2\)).
13C{1H} NMR (126 MHz, C$_6$D$_6$): δ/ppm 154.4 (br, C$_{ArB}$), 151.1 (br, C$_{ArB}$), 145.6-145.2 (m, 2C, i-PPh$_2$), 139.3-139.0 (m, C$_{ArCH_2}$), 138.5 (br, s, C$_{ArH}$, p-PPh$_2$), 137.7-137.4 (m, C$_{ArH}$), 136.6 (d, 3J$_{CP}$ = 13.5 Hz, C$_{OAr}$H, o-PPh$_2$), 135.2 (d, 3J$_{CP}$ = 6.3 Hz, C$_{ArH}$), 129.6 (d, 3J$_{CP}$ = 5.5 Hz, C$_{ArH}$), 127.1 (d, 3J$_{CP}$ = 4.5 Hz, C$_{ArH}$, m-PPh$_2$), 126.1 (s, C$_{ArH}$), 125.9 (s, C$_{ArH}$), 124.9 (s, 2C, C$_{ArH}$), 124.4 (d, 3J$_{CP}$ = 2.6 Hz, C$_{ArH}$), 34.9-34.7 (m, PCH), 33.8 (d, 1J$_{CP}$ = 25.4 Hz, PCH), 33.7-33.4 (m, PCH), 33.2 (d, 1J$_{CP}$ = 20.5 Hz, PCH), 29.5-26.2 (m, 20C*) 26.5 (dd, 1J$_{CP}$ = 35.8, 5.2 Hz PCH$_2$), 25.5 (dd, 1J$_{CP}$ = 36.2, 4.2 Hz, PCH$_2$).

Note: Despite the use of several 2D NMR techniques and 31P decoupling, the remaining cyclohexyl signals between 29.5 and 26.2 ppm could not be unambiguously identified due to insufficient resolution.

HRMS (LIFDI): m/z 781.4546 (calc’d for C$_{50}$H$_{66}$B$_2$P$_3$ (M – H) 781.4563).

Compound 6

![Diagram of Compound 6]

Diborene 2 (30 mg, 65 µmol) was dissolved in C$_6$D$_6$ (0.6 ml) and HPPh$_2$ (0.1 ml of a 0.65 M solution in benzene, 65 µmol) was added. After 3 h at room temperature, NMR showed full conversion to the product. After 16 h at room temperature, colourless crystals precipitated, which were washed with benzene and pentane and dried under vacuum (35 mg, 83%). Single crystals suitable for X-ray diffraction were obtained by diffusion of pentane into a dichloromethane solution of the product.

1H(11B) NMR (400 MHz, CD$_2$Cl$_2$): δ/ppm 8.09-8.01 (m, 2H, C$_6$H$_5$), 8.00-7.95 (m, 1H, ArH), 7.93-7.86 (m, 2H, C$_6$H$_5$), 7.73-7.59 (m, 4H, C$_6$H$_5$), 7.57-7.50 (m, 2H, C$_6$H$_5$), 7.37-7.31 (m, 1H, ArH), 7.26-7.19 (m, 1H, ArH), 7.18-7.13 (m, 1H, ArH), 3.19-3.06 (m, 1H, PC$_2$H$_2$), 2.83-2.71 (m, 1H, PC$_2$H$_2$), 2.27-2.07 (m, 1H, BH), 2.13-1.99 (m, 1H, C$_{CyH_2}$), 1.79-0.75 (m, 19H, CC$_{CyH_2}$ and CC$_{CyH_2}$), 1.39 (d, 3J$_{CP}$ = 10.8 Hz, P(CH$_3$)$_3$), 0.64-0.44 (m, 2H, CC$_{CyH_2}$).

11B NMR (126 MHz, CD$_2$Cl$_2$): δ/ppm ‒7.7 (br, BBr), ‒34.2 (br, BH).

31P{1H} NMR (203 MHz, CD$_2$Cl$_2$): δ/ppm 23.1 (br, PC$_2$H$_2$), 13.8 (br, PMe$_3$), –6.9 (br, PPh$_2$).

13C{1H} NMR (126 MHz, CD$_2$Cl$_2$): δ/ppm 144.0 (br, C$_{ArB}$), 136.3 (d, 3J$_{CP}$ = 9.9 Hz, o- or m-C$_{PhH}$), 134.5 (br d, 3J$_{CP}$ = 5.4 Hz, C$_{ArH}$), 134.2 (d, 3J$_{CP}$ = 9.0 Hz, o- or m-C$_{PhH}$), 134.0 (d, 4J$_{CP}$ = 2.7 Hz, p-C$_{PhH}$), 133.4 (pseudo t, 3J$_{CP}$ = 5.5 Hz, C$_{ArCH_2}$), 129.9 (d, 3J$_{CP}$ = 6.8, 4.2 Hz, C$_{ArH}$), 129.9 (d, 3J$_{CP}$ = 10.6 Hz, o- or m-C$_{PhH}$), 129.0 (d, 3J$_{CP}$ = 11.0 Hz, o- or m-C$_{PhH}$), 127.6 (d, 3J$_{CP}$ = 1.8 Hz, C$_{ArH}$), 127.5 (d, 3J$_{CP}$ = 4.8 Hz, C$_{ArH}$), 124.7 (d, 3J$_{CP}$ = 65.1 Hz, i-C$_{Ph}$), 121.0 (d, 3J$_{CP}$ = 61.7 Hz, i-C$_{Ph}$), 32.7 (d, 3J$_{CP}$ = 31.0 Hz, PCH), 32.3 (d, 3J$_{CP}$ = 28.7 Hz, PCH), 28.6 (d, 3J$_{CP}$ = 5.8 Hz, C$_{CyH_2}$), 27.7 (d, 3J$_{CP}$ = 2.3 Hz, C$_{CyH_2}$), 27.6 (d, 3J$_{CP}$ = 5.6 Hz, C$_{CyH_2}$), 27.3 (d, 3J$_{CP}$ = 10.0 Hz, C$_{CyH_2}$), 27.2 (s, C$_{CyH_2}$), 27.1 (d, 3J$_{CP}$ = 10.0 Hz, C$_{CyH_2}$), 26.9 (d, 3J$_{CP}$ = 11.8 Hz, C$_{CyH_2}$), 26.4 (d, 3J$_{CP}$ = 12.0 Hz, C$_{CyH_2}$), 25.8 (s, C$_{CyH_2}$), 25.6 (dd, 3J$_{CP}$ = 38.0, 10.5 Hz, PCH$_2$), 25.5 (s, C$_{CyH_2}$), 8.6 (d, 3J$_{CP}$ = 38.5 Hz, P(CH$_3$)$_3$).

HRMS (LIFDI): m/z 575.1957 (calc’d for C$_{30}$H$_{40}$B$_2$BrP$_3$ (M$^+$) 650.2338; calc’d for C$_{31}$H$_{40}$B$_2$BrP$_2$ (MH$^+$ – PMe$_3$) 575.1975).
Diborene 3 (20 mg, 37 µmol) was dissolved in C₆D₆ (0.6 mL) and HPPH₂ (57 µl of a 0.65 M solution in benzene) was added. After 1 h a crystalline solid precipitated from the reaction mixture, which was filtered off and dried under vacuum (22 mg, 82%). Single crystals suitable for X-ray diffraction were obtained by diffusion of pentane into a THF solution of the product.

¹H[¹¹B] NMR (400 MHz, CD₂Cl₂): δ/ppm 7.46 (br, 1H, CArH), 7.44-7.23 (br, m, 5H, PPh₂), 7.18-7.16 (br, m, 1H, CArH), 7.12-6.97 (br, m, 3H, PPh₂), 6.92-6.86 (br, m, 2H, CArH), 6.77-6.69 (br, m, 2H, PPh₂), 6.77-6.73 (m, 1H, imidazole CH), 6.42-6.38 (m, 1H, imidazole CH), 5.35-5.26 (br, m, 1H, C(CH₃)₂), 4.94-4.84 (br, m, 1H, C(CH₃)₂), 2.75-2.64 (m, 1H, PC₂H₂), 1.85-1.27 (m, 15H, 1 PC₂H₂ und CCyH), 1.49-1.42 (br m, 1H, BH), 1.43 (d, 3H, 3JHH = 6.9 Hz, CH(C₃H₃)₂), 1.31 (d, 3H, 3JHH = 6.5 Hz, CH(C₃H₃)₂), 1.20-0.66 (m, 8H, CCyH), 1.06 (d, 3H, 3JHH = 7.1 Hz, CH(CH₃)₂), 0.21 (d, 3H, 3JHH = 6.6 Hz, CH(CH₃)₂).

Note: The remaining cyclohexyl signals between 1.85 and 1.27 ppm and between 1.20 and 0.66 ppm could not be unambiguously assigned due to insufficient resolution.

¹¹B NMR (101 MHz, CD₂Cl₂): δ/ppm −21.6 (B(IiPr)), −37.6 (BH).

³¹P[¹H] NMR (121 MHz, CD₂Cl₂): δ/ppm 8.9 (br, m, PC₂H₂), −70.9 (d, JPP = 14.9 Hz, PPh₂).

¹³C[¹H] NMR (126 MHz, CDCl₃): δ/ppm 157.3 (br, Cₐrben), 143.1 (br, CₐrB), 135.9 (br, CₐrH), 135.0 (d, JCP = 5.1 Hz, CₐrH), 133.6-133.5 (m, CₐrCH₂P), 132.6 (br, CₐrH), 131.1 (dd, JCP = 3.7, 7.8 Hz, CₐrH), 130.5 (br, CₐrH), 130.1 (br, CₐrH), 129.3 (br, CₐrH), 129.1 (br, CₐrH), 126.7 (s, CₐrH), 126.5 (d, JCP = 4.0 Hz, CₐrH), 125.3 (br d, JCP = 34 Hz, CₐrP), 119.6 (s, HC=CH), 119.5 (s, HC=CH), 50.9 (d, JCP = 4.1 Hz, CH(CH₃)₂), 50.3 (d, JCP = 7.8 Hz, CH(CH₂)₂), 33.6 (dd, JCP = 13.5, 38.9 Hz, CₐrH), 32.8 (dd, JCP = 1.8, 35.9 Hz), 29.5 (d, JCP = 1.9 Hz, CₐrH), 28.3 (d, JCP = 1.7 Hz, CₐrH), 27.2 (d, JCP = 11.7 Hz, CₐrH), 27.1 (s, CₐrH), 27.0-26.8 (m, 4C, CₐrH), 26.6 (d, JCP = 10.9 Hz, CₐrH), 25.8 (s, 2C, CₐrH), 25.1 (s, CH(CH₃)₂), 25.0 (d, JCP = 40.6 Hz, PCH₂), 24.1 (s, CH(CH₃)₂), 22.5 (s, CH(CH₃)₂), 22.4 (s, CH(CH₃)₂).

HRMS (LIFDI): m/z 647.4016 (calc’d for C₄₀H₅₅B₂N₂P₂ (M − H⁻) 647.4027).

Compound 8

Borylborylene 4 (15 mg, 32 µmol) was suspended in C₆D₆ (0.6 ml), and HPPH₂ (50 µl of a 0.65 M solution in benzene, 32 µmol) was added. The mixture was placed in an ultrasound bath for 30 min and left to stand overnight. The resulting pale yellow solid was separated by filtration, washed with benzene (2 x 0.3 ml) and dried under vacuum (18 mg, 87%).
1H$^{[11}$B] NMR (400 MHz, THF-d$_8$): δ/ppm 8.20-7.44 (br m, 2H, p-C$_6$H$_5$), 7.94-7.83 (m, 1H, ArH), 7.25-6.53 (br m, 8H, o-C$_6$H$_5$ and m-C$_6$H$_5$), 6.93-6.78 (m, 3H, ArH), 3.71-3.57 (m, 1H, PCH$_2$), 3.01-2.88 (m, 1H, PCH$_2$), 2.09-1.96 (m, 1H, C CyH), 1.95-1.65 (m, 7H, 1 x C CyH and 6 x C′CyH), 1.62-0.89 (m, 14H, C CyH), 1.55 (d, 2J$_{PH} = 11.3$ Hz, P(C$_3$H$_3$)$_3$), 0.83-0.68 (m, 1H, CCyH). Note: The signal corresponding to the B-H moiety could not be unambiguously identified.

11B NMR (126 MHz, THF-d$_8$): δ/ppm -0.7 (B(PPh$_2$)), -34.5 (BH).

31P$^{[1]$H} NMR (151 MHz, THF-d$_8$): δ/ppm 16.4 (br m, P Cy$_2$), -4.7 (br m, P Me$_3$), -20.5 (m, P Ph$_2$).

13C$^{[1]$H} NMR (161 MHz, THF-d$_8$): δ/ppm 152.7 (br, C ArB), 144.8 (d, 2J$_{CP} = 19.8$ Hz, CaCH$_3$), 137.4 (dd, 2J$_{CP} = 2.2$, 4.6 Hz, CaH), 135.9 (br, CbH), 134.8-134.6 (m, CbH), 128.6 (dd, 2J$_{CP} = 7.6$, 1.6 Hz, CaH), 126.7 (d, 2J$_{CP} = 6.0$ Hz, CbH), 125.8 (s, CbH), 125.5 (br, CbH), 124.6 (d, 2J$_{CP} = 2.1$ Hz, CaH), 34.2 (d, 2J$_{CP} = 31.2$ Hz, PCH), 33.1 (d, 2J$_{CP} = 28.1$ Hz, PCH), 28.9 (d, 2J$_{CP} = 1.4$ Hz, CbCH$_2$), 28.1 (pseudo t, 2J$_{CP} = 2.4$ Hz, CbCH$_2$) 28.0 (d, 2J$_{CP} = 1.3$ Hz, CaCH$_2$), 26.7 (d, 2J$_{CP} = 1.2$ Hz, CaCH$_2$), 26.4 (dd, 2J$_{CP} = 1.1$ Hz, CaCH$_2$), 26.1 (dd, 2J$_{CP} = 14.0$, 9.0 Hz, PCH$_2$), 15.3 (ddd, 2J$_{CP} = 42.3$, 4.3, 3.4 Hz, P(CH$_3$)$_3$).

Note: The remaining cyclohexyl signals between 27.9 and 27.4 ppm could not be unambiguously assigned due to insufficient resolution. The compound was found to decompose upon application of dynamic vacuum for longer periods. We were therefore unable to remove residual benzene from the product. LIFDI mass spectrometry did not show any signals in the expected range of the product.

Compound 10

B_2(SidDep)$_2$ (20 mg, 29 µmol) was dissolved in toluene (0.5 ml) and cooled to -78 °C. To the precooled red solution was added an excess of HPPh$_2$ by syringe, causing an immediate colour change to purple. After 2 h at room temperature and screening by 11B and 31P NMR spectroscopy, all volatiles were removed under reduced pressure. The purple, oily residue was washed three times with 0.5 mL pentane and the product was extracted with 15 mL pentane. Removal of the solvent under reduced pressure gave the product as a red solid (16 mg, 63%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a saturated pentane solution.

1H$^{[11}$B] NMR (500 MHz, C$_6$D$_6$): δ/ppm 7.12-7.09 (m, 4H, C$_a$H$_4$), 7.03-6.95 (m, 12H, C$_a$H$_4$), 6.79-6.77 (m, 4H, C$_a$H$_4$), 4.19 (br. d, 3J$_{PH} = 46$ Hz, B$_2$H), 3.17 (s, 4H, NC$_2$H), 3.11 (s, 4H, NC$_2$H), 2.67-2.45 (m, 16H, C$_2$Et), 1.14 (t, 3J$_{HH} = 7.5$ Hz, C$_3$Et).

Note: The signals for the para protons of the NHC aryl groups are obscured by the solvent. The signals 1.23 (m) and 0.87 (t) can be assigned to residual pentane.

11B NMR (160.5 MHz, C$_6$D$_6$): δ/ppm 38.3 (BP), 18.0 (BH).

31P NMR (500 MHz, C$_6$D$_6$): δ/ppm -25.9 (d, 3J$_{PH} = 46$ Hz).

13C$^{[1]$H} NMR (125.8 MHz, C$_6$D$_6$): δ/ppm 191.5 (CaCarbene detected by HMBC), 187.9 (CbCarbene detected by HMBC), 147.4 (Ca), 147.2 (Cb), 141.7 (Ca), 141.1 (Cb), 140.8 (Ca), 138.6 (Cb), 133.2 (Cc), 133.1 (Cc), 128.6
(CHa), 127.6 (CHa), 127.3 (CHa), 126.7 (CHa), 126.7 (CHa), 126.1 (CHa), 125.7 (CHa), 122.9 (CHa), 52.1 (NCH\textsubscript{3}), 51.0 (NCH\textsubscript{3}), 24.7 (CH\textsubscript{2} t), 24.6 (CH\textsubscript{2} t), 24.6 (CH\textsubscript{2} t), 14.0 (CH\textsubscript{3} t), 13.9 (CH\textsubscript{3} t) ppm.

Note: The signals 34.5, 22.7 and 14.3 can be assigned to residual pentane.

HRMS (LIFDI): m/z 876.5578 (calc’d for C\textsubscript{58}H\textsubscript{71}B\textsubscript{2}N\textsubscript{4}P (M) 876.5597).
NMR spectra of new compounds

Figure S1. 1H(11B) NMR spectrum of 5

Figure S2. 11B NMR spectrum of 5
Figure S3. 31P$[\text{^1}H]$ NMR spectrum of 5

Figure S4. 13C$[\text{^1}H]$ NMR spectrum of 5
Figure S5. 1H NMR spectrum of 6

Figure S6. 11B NMR spectrum of 6
Figure S7. $^{31}P^{[1]H}$ NMR spectrum of 6

Figure S8. $^{13}C^{[1]H}$ NMR spectrum of 6
Figure S9. 1H NMR spectrum of 7

Figure S10. 11B NMR spectrum of 7
Figure S11. 31P[1H] NMR spectrum of 7

Figure S12. 13C[1H] NMR spectrum of 7
Figure S13. 1H NMR spectrum of 8

Figure S14. 11B NMR spectrum of 8
Figure S15. 31P{H} NMR spectrum of 8

Figure S16. 13C{H} NMR spectrum of 8

= residual benzene
Figure S17. 1H$^{[11B]}$ NMR spectrum of 10

Figure S18. 11B NMR spectrum of 10
Figure S19. 31P{H} NMR spectrum of 10

Figure S20. 13C{H} NMR spectrum of 10
Computational details.
All computations were performed using the Gaussian 09 (Revision E.01) software. Geometry optimizations and vibrational frequency calculations were performed using the hybrid DFT-D2 functional ωB97XD, which has been suggested to be a highly promising functional for obtaining reasonably accurate data for general main group thermochemistry, kinetics and non-covalent interactions. The basis set used for optimization and frequency calculations was 6-31G**. All geometry optimizations were performed without symmetry constraints. Transition state geometries were obtained using opt = (ts, noeigentest, calcfc) algorithms. All optimized transition state structures were confirmed as maxima with only one imaginary frequency, and the magnitudes of all frequencies were greater than the residual frequencies due to rotations and translations. Additionally, each transition state established was ensured to be on the preferred reaction path by performing “plus-and-minus-displacement” minimization calculations, which involves the displacement of transition state structures by ca. 0.05 Å or 5° along the imaginary frequency normal mode in both directions, and the displaced geometries were subsequently optimized to the nearest minimum. For ionic compounds, energies of van der Waals compounds were used. Zero-point vibrational energies and thermal corrections were computed from frequency calculations with a standard state of 298 K and 1 atm. Single-point energies were computed on the ωB97XD/6-31G(d,p) optimized geometries using the ωB97XD/6-311G++** level of theory combined with the SMD solvation model (SCRF = SMD) for inclusion of the THF or benzene solvent effect. The energies (ΔG) given are corrected for zero-point vibrational energies (ZPVEs). It must be noted here that the calculated barriers for the feasible pathways are seemingly high for the room temperature reactions, and we attribute these unanticipated high barriers to the use of methyl substitutes, instead of cyclohexyl substituents, on the chelating phosphines. As a result, the energy reduction due to the London dispersion effect, which establishes the attractive part of the van der Waals potential from the bulky cyclohexyl groups is lost. This effect is greater for the transition states than the starting diborenes, resulting in a slightly exaggerated energy barrier.

Optimized structures, Cartesian coordinates, and energies

REACTION 1
Pathway 1 of reaction 1
As shown in Figure S21, pathway 1 involves in an initial coordination of PPh₃H to diborene A₁, followed by a 1,3-proton shift and subsequent rearrangement to form the net 1,2-hydrophosphinated product.
A6 through phosphine dissociation/association. Compared to the other pathways computed (vide infra), this pathway was found to have an overall lower barrier.

Figure S21. Computed mechanism 1 for 1,2-hydrophosphination of symmetrical diborene A1. Transition states (TS) computed for phosphine association and dissociation steps are not included in the free energy profile as the barriers for these steps have energies just above the higher energy intermediate; for example, the TS between A1 and A2 possesses a ΔG^\ddagger of 21.9 kcal/mol and the TS between intermediates A3 and A4 has a ΔG^\ddagger of –10.7 kcal/mol.

1) Diborene A1

Number of imaginary frequencies = 0

$E_{\text{total}} = -1432.55628806$ a.u

$G_{\text{correction}} = 0.520448$ a.u

Cartesian coordinates:

Atom	X	Y	Z
P	-1.09316400	2.12005700	-0.08013200
B	-0.72334300	0.29759900	0.32628700
C	-3.19479900	0.49881800	-0.31347500
C	-4.50488300	0.04820700	-0.42774100
H	-5.26115000	0.68497700	-0.88144400
C	-2.18318100	-0.30094100	0.27031200
Element	X	Y	Z
---------	------------	------------	------------
C	-1.3352270	3.3393860	1.2683540
H	-1.7249760	4.2881960	0.8878600
C	-2.7591920	1.8635510	-0.8253250
H	-3.4645840	2.6606090	-0.5695130
H	-2.6488750	1.8580460	-1.9167200
C	-2.5734420	-1.5599870	0.7560680
H	-1.8371730	-2.1765800	1.2680940
C	-3.8804380	-2.0208110	0.6321570
H	-4.1498220	-2.9994880	1.0200530
C	-0.0438400	-2.9940270	-1.2896000
H	0.9711290	3.0679980	-0.8908350
C	-4.8522070	-1.2191290	0.0372520
H	-5.8755680	-1.5705240	-0.0509460
P	1.0924900	-2.1194910	-0.0803290
B	0.7237490	-0.2967700	0.3261670
C	3.1952140	-0.4994170	-0.3130120
C	4.5055600	-0.0495050	-0.4271430
H	5.2616240	-0.6868950	-0.8803170
C	2.1838380	0.3011070	0.2701370
C	0.0433270	-2.9940270	-1.2896000
H	0.4272990	-3.9943360	-1.5058910
C	2.7592340	-1.8642030	-0.8243720
H	2.6498340	-1.8593910	-1.9158540
H	3.4640090	-2.6614550	-0.5674480
C	2.5746020	1.5602330	0.7552980
H	1.8385090	2.1775070	1.2667440
C	3.8818550	2.0203430	0.6315280
H	4.1516120	2.9991000	1.0189660
C	1.3324520	-3.3393060	1.2680670
H	0.3788740	-3.5128530	1.7726930
C	4.8534020	1.2178710	0.0373180
H	5.8769710	1.5686930	-0.0507490
H	-0.4280400	3.9959890	-1.5043430
H	-0.0047020	2.4057250	-2.2058470
H	-2.0382740	2.9195440	1.9914820
H	-0.3822240	3.5135060	1.7738540
H	2.0351710	-2.9201640	1.9919210
H	1.7218240	-4.2883260	0.8877160
H	-0.9717920	-3.0662430	-0.8923430
H	0.0047500	-2.4034930	-2.2066300

2) **PPh$_2$H**
Number of imaginary frequencies = 0

\[E_{\text{total}} = -805.08056 \text{ a.u} \]

\[G_{\text{correction}} = 0.15333 \text{ a.u} \]

Cartesian coordinates:

\[
\begin{array}{ccc}
P & 0.05692000 & 1.70819700 & 0.28475900 \\
C & -1.41369600 & 0.62571400 & 0.07285000 \\
C & -2.17600700 & 0.15782800 & 1.14782100 \\
C & -1.79383100 & 0.26655800 & -1.22567300 \\
C & -3.28899400 & -0.65059200 & 0.93024400 \\
H & -1.89809600 & 0.42201700 & 2.16434500 \\
C & -2.89634700 & -0.55147800 & -1.44293500 \\
H & -1.21942800 & 0.62875900 & -2.07414900 \\
C & -3.64860600 & -1.01011400 & -0.36434500 \\
H & -3.87105500 & -1.00418900 & 1.77560200 \\
H & -3.17312300 & -0.82509800 & -2.45623000 \\
H & -4.51348200 & -1.64363700 & -0.53356300 \\
C & 1.43269800 & 0.48181900 & 0.14645200 \\
C & 2.63201400 & 0.90907300 & -0.42882000 \\
C & 1.32817300 & -0.84242700 & 0.58516500 \\
C & 3.71185900 & 0.03687000 & -0.55103800 \\
H & 2.72116700 & 1.93072100 & -0.78797200 \\
C & 2.40259400 & -1.71484800 & 0.45882000 \\
H & 0.39661500 & -1.19486400 & 1.01839500 \\
C & 3.59785400 & -1.27564200 & -0.10758400 \\
H & 4.63755100 & 0.38357500 & -0.99948400 \\
H & 2.30770500 & -2.74025000 & 0.80253500 \\
H & 4.43512800 & -1.95947400 & -0.20655000 \\
H & -0.00306800 & 1.78292400 & 1.69993900 \\
\end{array}
\]

3) TSA(1-2)

\[
\begin{array}{ccc}
P & 0.56920000 & 1.70819700 & 0.28475900 \\
C & -1.41369600 & 0.62571400 & 0.07285000 \\
C & -2.17600700 & 0.15782800 & 1.14782100 \\
C & -1.79383100 & 0.26655800 & -1.22567300 \\
C & -3.28899400 & -0.65059200 & 0.93024400 \\
H & -1.89809600 & 0.42201700 & 2.16434500 \\
C & -2.89634700 & -0.55147800 & -1.44293500 \\
H & -1.21942800 & 0.62875900 & -2.07414900 \\
C & -3.64860600 & -1.01011400 & -0.36434500 \\
H & -3.87105500 & -1.00418900 & 1.77560200 \\
H & -3.17312300 & -0.82509800 & -2.45623000 \\
H & -4.51348200 & -1.64363700 & -0.53356300 \\
C & 1.43269800 & 0.48181900 & 0.14645200 \\
C & 2.63201400 & 0.90907300 & -0.42882000 \\
C & 1.32817300 & -0.84242700 & 0.58516500 \\
C & 3.71185900 & 0.03687000 & -0.55103800 \\
H & 2.72116700 & 1.93072100 & -0.78797200 \\
C & 2.40259400 & -1.71484800 & 0.45882000 \\
H & 0.39661500 & -1.19486400 & 1.01839500 \\
C & 3.59785400 & -1.27564200 & -0.10758400 \\
H & 4.63755100 & 0.38357500 & -0.99948400 \\
H & 2.30770500 & -2.74025000 & 0.80253500 \\
H & 4.43512800 & -1.95947400 & -0.20655000 \\
H & -0.00306800 & 1.78292400 & 1.69993900 \\
\end{array}
\]

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 1 (i88.8)

\[E_{\text{total}} = -2237.63718033 \text{ a.u} \]
G_{\text{correction}} = 0.510621 \text{ a.u.}

Cartesian coordinates:

P
-0.08782500 -0.83173700 -0.39042700
B
0.36171400 -3.29563400 0.14462100
C
0.65489600 -4.37289000 0.97414900
H
0.62965500 -5.38658400 0.58153300
C
0.37906400 -1.97328300 0.62856500
C
-0.03838400 -3.45996000 1.30965000
B
1.00798000 -2.84976000 2.80880000
C
1.26155200 -2.67437700 3.85052500
H
1.20720500 -4.98865400 2.96216300
P
-2.68163000 -0.54062300 1.17979000
B
-1.56502700 -0.17410800 -0.26862000
C
-3.77722200 1.00522400 -0.72705800
C
-4.63314600 1.83694400 -1.42780300
H
-5.46865100 1.99206100 -1.06775700
C
-2.43936200 0.76523800 -1.15456200
H
-4.62470900 0.96613500 1.28608700
H
-4.97061500 -0.47553000 0.33123900
C
-2.03797100 1.44261500 -2.32608200
H
-1.02010600 1.31464900 -2.69239900
H
-2.90167300 2.27612400 -3.03383000
C
-2.54929300 2.77604200 -3.93301300
C
-4.20475000 2.48094700 -2.59455000
H
-4.87800300 3.13334000 -3.14136100
C
0.81524700 1.65032100 -1.36637100
H
1.30598500 0.85976900 -0.30930700
C
-0.91649800 -1.58812900 -3.44386300
H
-1.91856400 -1.42469600 -3.04211100
H
-0.63528300 -0.71258200 -4.03193700
H
-0.89589300 -2.47415900 -4.08346100
C
1.90178900 -1.83031300 -2.75999700
H
2.61420700 -2.04927300 -1.96044900
H
1.98997400 -2.58532100 -3.54566900
H
2.14883400 -0.84886200 -3.17346800
C
-2.40928000 0.11053700 2.88130500
C
-3.26821400 -0.08496700 3.53163600
H
-1.52344000 -0.37315200 3.30181100
H
-2.21824300 1.18387600 2.82810900
C
-3.08804400 -2.29342700 1.55456600
H
-3.44087800 -2.77442400 0.64006100
H
-2.17236200 -2.79652100 1.87958400
H
-3.84750300 -2.38222200 2.33749900
C
0.88995100 1.90698100 1.11389000
C
-0.31979800 2.61131700 1.11446000
C
1.70433900 1.93287900 2.25039500
C
-0.69737500 3.33906200 2.24303200
H
-0.95442900 2.60543300 0.23466100
4) Intermediate A2

(Number of imaginary frequencies = 0)

\[\text{Number of imaginary frequencies} = 0 \]

\[\text{E}_{\text{total}} = -2237.637022 \text{ a.u} \]

\[\text{G}_{\text{correction}} = 0.512811 \text{ a.u} \]

Cartesian coordinates:

P	0.20187200	-1.70309100	1.79588500
B	-0.06128800	-0.14697100	0.60342000
C	1.25161500	0.57089900	2.73494100
C	1.80172000	1.50516800	3.61205000
H	2.27102100	1.17098800	4.53427600
C	0.62398800	0.97311600	1.53985300
C	1.32568300	-0.91967000	3.02106400
H	1.05038300	-1.16756900	4.05141000
H	2.34006800	-1.30332730	0.70250400
C	0.59986100	2.34600200	1.23086800
H	0.34459930	1.38444100	1.23086800
5) TSA(2-3)

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 1 (ω955.3)

E_{total} = -2237.61822 a.u

G_{correction} = 0.509821 a.u

Cartesian coordinates:

Atom	X	Y	Z
C	5.03708900	-2.42860700	-0.89827400
H	4.39666500	-3.58879600	-2.59384900
H	5.39991100	-1.12750000	0.77850800
H	5.99278000	-2.93562600	-0.81291100

5.03708900 -2.42860700 -0.89827400
4.39666500 -3.58879600 -2.59384900
5.39991100 -1.12750000 0.77850800
5.99278000 -2.93562600 -0.81291100
6) Intermediate A3

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

\[E_{\text{total}} = -2237.727069 \text{ a.u} \]

\[G_{\text{correction}} = 0.516972 \text{ a.u} \]

Cartesian coordinates:

P	-0.40111800	-1.82038400	1.02809400
B	-0.08140700	-0.13427900	0.04062200
C	0.66016300	0.11386700	2.53620400
C	1.02885900	0.85005100	3.66076300
H	1.15119500	0.35329500	4.62046800
C	0.47821100	0.73063900	1.28302800
C	0.47511700	-1.39297500	2.58855200
H	-0.07016700	-1.73151200	3.47537900
H	1.44882600	-1.89836300	2.58374100
C	0.71941700	2.11125700	1.20221300
H	0.59890700	2.60945900	0.24358200
C	1.10232900	2.84796500	2.31924000
H	1.28546800	3.91475900	2.22669400
C	1.24665400	2.21039000	3.55644500
H	1.53427400	2.79414900	4.43252100
P	-2.67976500	1.59322900	0.52891600
B	-1.54792500	0.52220000	-0.67862800
C	-4.00194000	-0.38465500	-0.70803400
C	-4.97989000	-1.33624800	-0.99567500
H	-5.98973000	-1.21134200	-0.61098800
C	-2.68001300	-0.52546100	-1.16941200
C	-4.31796800	0.84451100	0.12883400
H	-4.91821500	1.56634100	-0.43775400
H	-4.88097500	0.60454300	1.03759400
C	-2.39550600	-1.64406200	-1.96807300
H	-1.38467300	-1.77064100	-2.35059100
C	-3.36848000	-2.59473900	-2.26294800
H	-3.11752000	-3.45473000	-2.87796000
C	-4.66382800	-2.44950600	-1.76327200
H	-5.42281100	-3.19417200	-1.98675400
H	-1.28580200	1.36159600	-1.52153800
P	1.19723600	-0.54611100	-1.45047900
7) TSA(3-4)
Number of imaginary frequencies = 1 (27.5)

$E_{\text{total}} = -2237.69481870 \text{ a.u}$

$G_{\text{correction}} = 0.510896 \text{ a.u}$

Cartesian coordinates:

P -1.55961500 -2.11053400 -1.84671800
B 0.17539100 0.10914900 0.40772200
C 0.41906600 -2.52427200 0.10117700
C 0.56672600 -3.77805400 0.69837300
H 0.55939200 -4.66418900 0.06803200
C 0.40494000 -1.36787400 0.90823500
C 0.22394700 -2.43018200 -1.39068400
H 0.57859900 -3.34130700 -1.88653700
H 0.80288900 -1.59690800 -1.80051900
C 0.58809300 -1.52836100 2.29079100
H 0.59921500 -0.64387400 2.92614000
C 0.73926800 -1.52836100 2.29079100
H 0.59921500 0.09060500 2.00938300
B -1.20130000 1.00436600 0.86797000
C -4.63397400 -1.89713500 -0.76896800
C -3.63207100 -1.52467400 0.12254400
H -5.66990600 1.92610000 -0.43968500
C -2.27866600 1.46156700 -0.26828100
C -3.93160600 1.14954900 1.56286000
H -3.91520100 2.03129700 2.21651300
H -4.89658500 0.65024900 1.69219000
C -1.98605500 1.77837100 -1.59933700
H -0.96101900 1.70533300 -1.95484900
C -2.98209000 2.16061500 -2.49454000
H -2.72222700 2.39658800 -3.52244800
C -4.30964900 2.22075000 -2.08258300
H -5.08881000 2.51029500 -2.78138900
H -0.88220500 1.95104900 1.57699900
P 1.47741300 0.84527100 -0.77570700
C -2.18670900 -3.85400300 -1.77271000
H -2.13462000 -4.20478800 -0.73733300
H -3.23264100 -3.89102100 -2.08947200
H -1.60179200 -4.53417800 -2.40189500
C -1.36279300 -1.89886100 -3.67324900
H -0.86916500 -0.94174200 -3.86374000
H -0.77493700 -2.70191400 -4.13084000
H -2.34759300 -1.86643500 -4.14695500
C -2.31541100 0.11019700 3.82301600
H -3.25352600 -0.15127700 4.31912200
H -1.54814000 -0.61225700 4.11012700
H -1.99982500 -1.10663200 4.13995300
C -2.99042000 -1.61395400 1.59184600
H -3.16686600 -1.65644000 0.51397300
H -2.17239900 -2.29623500 1.83546000
H -3.89376700 -1.90624700 2.13391000
8) Intermediate A4

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

\[E_{\text{total}} = -2237.69513 \text{ a.u} \]

\[G_{\text{correction}} = 0.51032 \text{ a.u} \]

Cartesian coordinates:

\[
\begin{align*}
\text{P} & : 3.60441600 \ -1.54615000 \ 1.50264500 \\
\text{B} & : -0.39732700 \ -0.08509300 \ -0.42848100 \\
\text{C} & : 1.21351000 \ -2.10039700 \ -0.04098500 \\
\text{C} & : 1.70687800 \ -3.34268100 \ -0.42848100 \\
\text{H} & : 2.56368300 \ -3.77586100 \ 0.06111800 \\
\text{C} & : 0.11798200 \ -1.54017900 \ -0.72703000
\end{align*}
\]
Intermediate A5

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

\[E_{total} = -2237.7004455 \text{ a.u} \]

\[G_{correction} = 0.513044 \text{ a.u} \]

Cartesian coordinates:

B	0.02537600	-0.36480900	0.84294300	
B	0.00834100	0.42676500	-0.66406400	
P	0.08479300	-1.04094800	-1.94031300	
C	-1.26558700	1.33428500	-1.12179000	
C	-1.15021600	2.14829100	-2.26128100	
H	-0.18407700	2.21135100	-2.75722600	
C	-2.20810900	2.89751500	-2.76441400	
H	-2.06871400	3.51157500	-3.64915900	
C	-3.43563500	2.85879600	-2.11731200	
H	-4.27527800	3.44020400	-2.48563400	
C	-3.58208300	2.07124400	-0.98111700	
H	-4.54084400	2.05721600	-0.46961500	
C	-2.73497400	0.47875000	0.77807100	
H	-2.14266700	-0.44394500	0.72036900	
C	-2.52630400	1.30975000	-0.47743800	
C	0.07451200	-1.92003500	1.09059800	
(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

$E_{\text{total}} = -2237.73555365 \text{ a.u}$

$G_{\text{correction}} = 0.51799 \text{ a.u}$

Cartesian coordinates:

B -0.28957600 -0.19569100 -0.70804200
H 0.33884800 0.11792600 1.68775300
B 0.48609900 -0.72378400 0.81537600
P 1.01289600 -0.84612600 -2.03354400
C 1.26394100 3.92082000 -1.14440600
H 0.54182400 4.28011800 -1.87273700
C 3.34774300 4.20457100 0.03595600
H 4.24685000 4.77931700 0.23698200
P -0.70031100 -2.00548600 1.60180700
C 2.40894100 4.66830000 -0.88029000
H 2.56970800 5.61071200 -1.39545100
C 3.12744200 2.99543100 0.68951200
H 3.85401900 2.61965200 1.40411100
C 1.97566600 2.58315000 0.43092500
H 1.82141100 1.31979300 0.94704900
C -1.65715500 2.12290800 0.41510200
C -1.23871300 2.43800400 1.71309400
H -0.18203900 2.57387200 1.91797600
C -2.16049700 2.57589200 2.74771200
H -1.81241900 2.82190000 3.74697200
C -3.51977600 2.39233700 2.50808500
H -4.23775300 2.49257100 3.31659300
C -3.95222700 2.09298200 1.21867300
H -5.00998700 1.95431900 1.01599900
C -3.03136200 1.97363200 0.18287500
H -3.38030900 1.74015200 -0.81894800
C 1.98220800 -1.33555100 0.87955200
C 2.80643000 -1.08753800 1.98874800
Pathway 2 of reaction 1

Figure S22 shows the computed free energy profile for the conceived mechanism 2 for the 1,2-hydrophosphination of diborene A1. This mechanism involves (i) an initial PPh\textsubscript{2}H coordination, (ii) dissociation of a chelating phosphine, (iii) 1,3-proton shift, and (iv) rearrangements via chelating phosphine dissociation/association. The overall barrier of this mechanism was found to be 8.3 kcal/mol higher in energy than that of mechanism 1.
Figure S22. Computed mechanism 2 for 1,2-hydrophosphination of symmetrical diborene A1.

Note: Details of species A1, A2, A5 and A6 are provided above in Pathway 1 of reaction 1.

11) **Intermediate A7**

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

\[E_{\text{total}} = -2237.65218133 \text{ a.u} \]

\[G_{\text{correction}} = 0.50961 \text{ a.u} \]

Cartesian coordinates:

	\(x\)	\(y\)	\(z\)
P	-2.29913300	-2.46549100	0.63396200
B	-1.81896300	-0.73847900	-0.02188700
C	-3.98132600	-1.47055600	-1.17238500
C	-5.12693000	-1.28826200	-1.93876700
H	-5.79667300	-2.12562100	-2.21675000
C	-3.08595000	-0.40413400	-0.90677400
C	-1.07960400	-3.82023100	0.63857900
12) TSA(7-4)

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 1 (i1055.0)

\(E_{\text{total}} = -2237.60511161 \text{ a.u} \)

\(G_{\text{correction}} = 0.50891 \text{ a.u} \)

Cartesian coordinates:

P	2.78876200	-2.09104400	0.20577600
B	1.78255000	-0.45087100	0.39218100
C	4.25191600	-0.02043800	0.91799900
C	5.38052000	0.76356900	1.11820200
H	6.32406400	0.29720300	1.39125400
C	3.00280600	0.54573000	0.55424000
C	4.29034700	-1.52970700	1.09317300
H	4.18875200	-1.80888800	2.14924000
H	5.20998500	-1.98353300	0.71156200
C	2.96822400	1.94100300	0.38705700
H	2.05624500	2.42134600	0.05378100
C	4.09465000	2.73020800	0.60568900
H	4.02965700	3.80543400	0.46791400
C	5.30315100	2.14739400	0.97005900
H	6.18578000	2.76051800	1.12333000
B	0.18940400	-0.38081000	0.40092400
P	-0.44145800	1.39188840	0.84121300
H	0.57011400	0.68148200	1.73583100
C	-0.89844400	-1.53158400	0.47822000
Pathway 3 of reaction 1

Figure S23 shows the computed free energy profile for the conceived mechanism 3 for the 1,2-hydrophosphination of diborene A1. This mechanism involves (i) starting with the stable isomer of diborene A1 (A8), (ii) dissociation of a chelating phosphine, (iii) PPh₂H coordination, (iv) 1,3-proton shift, and (v) association of the dangling phosphine. The overall barrier of this mechanism was found to be 10.8 kcal/mol higher in energy than that of mechanism 1.

Note: Details of species A1 and A6 are provided above in Pathway 1 of reaction 1.

13) Intermediate A8

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0
$$E_{\text{total}} = -1432.56900814 \text{ a.u}$$

$$G_{\text{correction}} = 0.33333 \text{ a.u}$$

Cartesian coordinates:

	X	Y	Z
B	-0.54578100	-0.57185400	-0.01483400
B	0.54577900	0.57184800	0.01485700
P	0.44919700	-2.18158500	-0.10297800
P	-0.44919500	2.18158200	0.10297200
C	2.11999600	0.51017300	0.05267200
C	2.94775600	1.59802200	-0.28267000
H	2.49026600	2.54040300	-0.56780100
C	4.33560900	1.51966600	-0.29247900
H	4.92463200	2.39146900	-0.56363200
C	4.96473100	0.32418400	0.03399700
H	6.04711400	0.24315700	0.02395600
C	4.18124400	-0.77565800	0.36844500
H	4.66182400	-1.71705100	0.62610900
C	2.00861800	-1.91609400	0.80865400
H	1.69981500	-1.81103000	1.85810300
H	2.62267100	-2.82030700	0.73315800
C	2.79023400	-0.69413500	0.38210700
C	0.96660000	-2.65829600	-1.79520900
H	1.50765900	-1.81513500	-2.22709000
C	-0.14947400	-3.76837300	0.60179900
H	-0.99536000	-4.14022400	0.01910200
C	-2.12000000	-5.10176000	-0.05265400
C	-2.94776500	-1.59801900	0.28269700
H	-2.49028000	-2.54039800	0.56783900
C	-4.33561800	-1.51965800	0.29250000
H	-4.92464500	-2.39145600	0.56366000
C	-4.96473500	-3.24177000	-0.03399100
H	-6.04711700	-2.43147000	-0.02395500
C	-4.18124300	0.77565800	-0.36844900
H	-4.66181800	1.71705000	-0.62612500
C	-2.79023300	0.69413100	-0.38210400
C	-2.00861200	1.91608200	-0.80865500
H	-2.62266300	2.82029700	-0.73318500
H	-1.69980400	1.81102000	-1.85811100
C	0.14948700	3.76835700	-0.60182600
H	0.99539800	4.14021200	-0.01913100
C	-0.96664000	2.65832000	1.79519400
H	-1.50766800	1.81516700	2.22708400
H	1.60491800	-3.54550400	-1.78818700
H	0.07689700	-2.85145700	-2.40192500
H	0.64516900	-4.51992100	0.58592800
H	-0.47687400	-3.61245700	1.63234100
H	0.47689100	3.61242400	-1.63236300
H	-0.64515300	4.51991000	-0.58596900
H	-0.07690300	2.85148700	2.40191100
H	-1.60491900	3.54553000	1.78815500
14) Intermediate A9

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

E_{total} = -1432.50633895 a.u

G_{correction} = 0.32797 a.u

Cartesian coordinates:

B 0.12993600 0.83977200 -0.20527900
B 0.94961600 -0.43513100 -0.19456100
P 1.69802600 1.90510700 -0.18315600
P -3.50055600 -2.21101900 0.23961900
C 2.21599800 -1.25860900 -0.06008600
C 2.35981100 -2.61981400 0.23760700
H 1.47729500 -3.24441900 0.33873600
C 3.62093600 -3.17677400 0.41657700
H 3.71564300 -4.23344500 0.64659200
C 4.76064500 -2.38477200 0.30922800
H 5.74416900 -2.81812900 0.45772600
C 4.63411200 -1.03039400 0.00597200
H 5.52328400 -0.41161000 -0.08769800
C 3.24267000 0.97796600 -0.62496000
H 3.26421300 1.01164900 -1.72201700
H 4.08604800 1.58253900 -0.27351200
C 3.37996800 -0.46429200 -0.18650300
C 2.01858300 2.71587900 1.42992200
H 2.23223700 1.93932200 2.16720400
C 1.81151800 3.30225200 -1.37100600
H 1.05100700 4.05060800 -1.13942300
C -1.31483500 1.37331700 -0.04037200
C -1.63346700 2.74026100 0.06508500
H -0.85198700 3.47409000 -0.11955200
C -2.92027000 3.20268500 0.31286300
H -3.12390600 4.26942500 0.32335600
C -3.93977700 2.28816500 0.54443000
H -4.95168200 2.62821000 0.74188400
C -3.65656600 0.92567100 0.52333500
H -4.45696300 0.21776600 0.72301400
C -2.36778100 0.45193800 0.27555200
C -2.06076200 -1.02984000 0.27716400
H	-1.46855400	-1.27160000	1.17176500
H	-1.41593100	-1.25891200	-0.58523000
H	2.85465000	3.41919000	1.37659200
H	1.11355300	3.24446800	1.73948700
H	2.79792800	3.77377900	-1.32735500
H	1.62845500	2.92428400	-2.37892600
C	-4.00507400	-1.99731300	-1.53106700
H	-4.76130500	-2.74156800	-1.79506400
H	-4.44409200	-1.00476100	-1.66249400
H	-3.15560300	-2.09465200	-2.21586200
C	-2.51928400	-3.77765100	0.09352500
H	-3.19270800	-4.61148400	-0.12287000
H	-1.76200200	-3.72355300	-0.69697700
H	-2.02211700	-3.98777900	1.04482600

15) Intermediate A10

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

$E_{\text{total}} = -2237.65942748$ a.u

$G_{\text{correction}} = 0.51065$ a.u

Cartesian coordinates:

B	-1.24565300	-0.67909800	-0.56130800
B	0.18502000	-0.81094700	0.08940500
P	-2.02351400	-2.40483300	-0.37945300
P	-3.37629700	2.38045900	1.63403700
C	0.85152900	-1.99842100	0.89097300
C	2.22207700	-2.03625100	1.21794300
H	2.85977100	-1.20016200	0.93828800
C	2.81372600	-3.09526100	1.89635200
H	3.87783400	-3.06926500	2.11294700
C	2.04251800	-4.18093900	2.29348200
H	2.48944400	-5.02182700	2.81407500
C	0.67859400	-4.16699400	2.01957600
H	0.05912300	-5.00039000	2.34445400
C	-1.42155600	-3.12367100	1.18202100
H	-1.88088100	-2.50492600	1.96632500
H	-1.81683900	-4.13933100	1.29259000
C	0.08466300	-3.10271300	1.34404900
16) **TSA(10-11)**

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 1 (1044.8)

\[E_{\text{total}} = -2237.60341178 \text{ a.u} \]

\[G_{\text{correction}} = 0.508412 \text{ a.u} \]

Cartesian coordinates:

B	-0.82391700	-0.13599600	-0.57550100
B	0.77135500	-0.15971600	-0.92889900
P	-1.26682100	-2.00189600	-0.40692400
P	-4.90583700	-0.07588400	1.12583900
C	1.68445100	-1.28949800	-1.50281800
C	2.76757900	-1.06112100	-2.36298300
H	3.02516200	-0.03849800	-2.62592900
C	3.51506700	-2.10891400	-2.89005400
H	4.34373000	-1.89982600	-3.56001000
C	3.19931200	-3.42297700	-2.55917400
H	3.77392200	-4.24739400	-2.96948500
C	2.14267400	-3.67523400	-1.68930900
H	1.90600600	-4.70020300	-1.41303500
C	0.30827000	-2.91489500	-0.14701700
H	0.64648400	-2.61612000	0.85474900
H	0.07755800	-3.98519400	-0.10731600
C	1.39317500	-2.62710900	-1.15816600
C	-1.82924000	1.04613800	-0.94415800
C	-1.55919200	1.74664400	-2.13537700
C	-2.23606100	2.90849900	-2.49660200
H	-1.98931600	3.41411300	-3.42540800
C	-3.20577500	3.42552500	-1.64956800
H	-3.72244700	4.34847800	-1.89493600
C	-3.50392600	2.75232500	-0.46941600
H	-4.23794600	3.17440100	0.21121200
C	-2.85800700	1.56421200	-0.11847200
C	-3.27586800	0.86784400	1.14879100
H	-3.38429700	1.58575800	1.97122300
H	-2.50248700	0.16097300	1.46462400
P	1.25055300	1.06984700	0.39735500
H	-0.26628900	1.01531800	0.66640000
H	-0.78672200	1.36109300	-2.79272000
C	2.82012900	2.05887500	0.28502600
Intermediate A11

(Selected hydrogens are omitted for clarity)
Number of imaginary frequencies = 0

$E_{\text{total}} = -2237.69875771 \text{ a.u}$

$G_{\text{correction}} = 0.511558 \text{ a.u}$

Cartesian coordinates:

B -0.53358900 -0.21536400 -0.10526700
H -0.27096100 1.27407000 1.70446700
B 0.45920500 0.50530400 1.08884900
C -2.35967100 3.41036200 -0.65597600
H -3.37284600 3.02444100 -0.60806100
C -0.83555100 5.27063100 -0.42981600
H -0.65599100 6.31808700 -0.20837600
P 0.66966600 -0.88337000 2.42046300
C -2.12652400 4.75473400 -0.37917600
H -2.96055400 5.40022000 -0.11984700
C 0.22247800 4.43464400 -0.77578800
H 1.23638400 4.81967200 -0.82003300
C -0.01207600 3.09606300 -1.06457900
H 0.82604500 2.46237800 -1.33749500
C -3.17056300 0.33133500 -0.73968100
C -3.51514400 0.60067500 0.59381700
H -2.83911100 1.18609000 1.21195000
C -4.71284700 0.13518500 1.12479500
H -4.96490400 0.35102000 2.15882700
C -5.58236200 -0.61419700 0.33496500
H -6.51378200 -0.98483200 0.75150300
C -5.25306000 -0.88395100 -0.98876100
H -5.92767300 -1.46451600 -1.61027900
C -4.05671800 -0.40983600 -1.52238800
H -3.80381700 -0.62352600 -2.55633000
C 1.89121300 1.17647500 0.76589300
C 2.32722600 2.25104000 1.55502100
H 1.67031100 2.61141300 2.34299100
C 3.54542800 2.88855700 1.34508500
H 3.84282000 3.72030200 1.97731100
C 4.37001500 2.45908300 0.31273600
H 5.32140600 2.94766200 0.12547100
C 3.96524400 1.39690100 -0.48929700
H 4.60646600 1.07673800 -1.30680800
C 2.30841300 -0.38103800 -1.19234100
H 1.76049100 -1.13680000 -0.62011200
C 2.74714400 0.74510800 -0.27436200
P -1.51944000 0.78974400 -1.43042600
C -1.30181700 2.55804600 -0.98697800
C -0.86052200 -1.76153800 -0.15247900
C -0.95031400 -2.44191900 -1.37760400
H -0.83871800 -1.87817100 -2.29977200
C -1.15592400 -3.81540300 -1.44549200
H -1.20629300 -4.31050000 -2.41006700
C -1.30664100 -4.54663400 -0.27276900
H -1.47634200 -5.61807800 -0.31165700
REACTION 2
Pathway 1 of reaction 2
As shown in Figure S24, pathway 1 involves (i) an initial coordination of PPh$_2$H to diborene B1, (ii) bromide shift from one boron to another through dissociation and association steps, and (iii) a 1,2-proton shift. Among other pathways computed (vide infra), this pathway was found to have an overall lower barrier. To understand the bromide shift step, we used a highly truncated model diborene B1’ to locate the transition state for a direct shift of the bromide (Figure S25). Calculations showed a very high barrier for this direct shift. Therefore, the stepwise association and dissociation pathway as shown in Figure S24 was proposed. To ascertain if the bromide shift occurs first before all other steps, including PPh$_2$H coordination, a direct bromide shift through a single transition state was located. However, this step has a very high barrier (Figure S26). This finding also supports a stepwise dissociation and association path, as shown in Figure S24, for the bromide shift.
Figure S24. Computed mechanism 1 for 1,1-hydrophosphination of the unsymmetrical diborene B1. The transition state computed for phosphine association step (B1 to B2) is not included in the free energy profile as the barrier for this step has an energy just above that of the higher energy intermediate (ΔG‡ = 23.9 kcal/mol).

18) Diborene B1

Number of imaginary frequencies = 0

E\text{total} = -3773.96205317 \text{ a.u}

G\text{correction} = 0.263219 \text{ a.u}

Cartesian coordinates:

Element	X	Y	Z
B	1.01247900	-0.32331100	-0.01240800
B	-0.25426500	0.59056700	-0.09926100
P	0.51677200	-2.14005200	-0.09807900
P	0.01035700	2.47347400	-0.16469300
C	-1.75230300	0.06412400	-0.02757300
C	-2.80786900	0.84616000	0.48115200
H	-2.60118700	1.85607100	0.82830400
C	-4.11419000	0.38511400	0.60219000
H	-4.88216900	1.03929900	1.00549900
C	-4.42843900	-0.91319200	0.22185100
H	-5.43995600	-1.29460200	0.31751100
C	-3.41332700	-1.72496000	-0.27457400
H	-3.64231500	-2.74621900	-0.57166700
C	-1.07287500	-2.19672800	-0.98669300
H	-0.82249800	-1.88882500	-2.01067500
H	-1.44592900	-3.22555300	-1.02448200
C	-2.10698900	-1.25826300	-0.40384800
Br	2.96613200	-0.08394800	0.27845800
(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 1 (i21.25)

$E_{\text{total}} = -4579.03978312 \, \text{a.u}$

$G_{\text{correction}} = 0.447368 \, \text{a.u}$

Cartesian coordinates:

19) TSB(1-2)

B -0.22749200 -0.48195600 0.69617000
P -0.44434700 -2.42031700 0.57896000
B 1.61261200 0.19811600 0.11916400
P 1.16405000 -0.01085200 -0.69018000
C -2.85862300 -1.99158400 -0.61178000
C -2.61093500 -0.59951700 -0.79863900
C -3.67780000 -2.72075200 -1.47184100
H -3.82920600 -3.78364200 -1.29074600
C -3.29219600 -0.02198600 -1.89832300
H -3.11677900 1.02922800 -2.11407900
C -4.13939000 -0.73932300 -2.73093800
H -4.63283100 -0.23625500 -3.55897700
C -4.33246400 -2.10610700 -2.53416900
20) Intermediate B2

Number of imaginary frequencies = 0

$E_{\text{total}} = -4579.04003855 \text{ a.u}$

$G_{\text{correction}} = 0.446838 \text{ a.u}$

Cartesian coordinates:

B
-0.22173200 -0.47796300 0.54990800
P -0.57520900 -2.37426900 0.29851300
B -1.55937500 0.32151600 -0.00906200
P 1.20681900 -0.01225400 -0.72725700
C -3.10158800 -1.76952200 -0.46983200
C -2.74904200 -0.41428900 -0.73931300
C -4.11421900 -2.42566200 -1.16788700
H -4.33518900 -3.46557000 -0.93280500
C -3.52937000 0.20621300 1.74617400
H -3.27947000 1.22539900 2.50685000
C -4.56574200 -0.43289800 -2.41131600
H -5.12788700 -0.10287100 -3.17227900
C -4.86457100 -1.76664200 -2.13558400
H -5.65904100 -2.28292100 -2.66492900
C -2.36056700 -2.51758300 0.61357200
H -2.66205000 -3.56803300 0.67655600
H -2.50816700 -2.03667300 1.59059000
Br 0.60801300 -0.26036400 2.48463900
P -1.98789200 1.89388400 0.86604100
H 0.75767800 -0.41840500 -1.99281700
C 2.89619500 -0.75622400 -0.76057400
C 3.47764500 -1.20880900 0.42840800
C 3.56586500 -0.95890200 -1.97263100
C 4.71973900 -1.83947900 0.40173200
H 2.95162300 -1.06863700 -1.36947700
C 4.80289100 -1.59154100 -1.99566800
H 3.11966900 -0.61423200 -2.90240700
C 5.38170800 -2.03159500 -0.80643100
H 5.16740500 -2.18434000 1.32847900
H 5.31670900 -1.74159100 -2.93994400
H 6.34723400 -2.52706300 -0.82483100
C 1.50070900 1.75963100 -0.93414900
C 0.67221500 2.50756000 -1.77651500
C 2.52196700 2.38717400 -0.21943700
C 0.87138800 3.88044300 -1.89861600
H -0.135355 2.015851 -2.307489
C 2.706694 3.761016 -0.334686
H 3.168296 1.804249 0.429807
C 1.883218 4.506504 -1.175530
H 0.231702 4.461824 -2.554761
H 3.495435 4.248350 0.228788
H 2.033827 5.577225 -1.270759
C -0.306804 -3.038838 -1.380651
H 0.754563 -2.999887 -1.639121
H -0.651936 -4.074559 -1.431092
H -0.885938 -2.438376 -2.085345
C 0.326674 -3.499547 1.410966
H 0.210325 -3.146915 2.437076
H -0.045175 -4.522080 1.312841
H 1.390358 -3.466910 1.159921
C -3.157614 3.065384 0.065617
H -3.409914 3.883876 0.746363
H -2.702457 3.471736 -0.840651
H -4.071136 2.533410 -0.210072
C -0.622878 2.985390 1.417750
H -0.199519 3.522184 0.568305
H -0.999510 3.704868 2.150440
H 0.155296 2.377439 1.882080
C -2.854159 1.592283 2.474428
H -3.118244 2.513595 3.005927
H -3.759021 1.011941 2.274075
H -2.182942 0.985646 3.088413

21) Bromide ion

\[E_{\text{total}} = -2571.78580790 \text{ a.u} \]
\[G_{\text{correction}} = -0.016176 \text{ a.u} \]

22) Intermediate B3

Number of imaginary frequencies = 0
\[E_{\text{total}} = -2007.13405071 \text{ a.u} \]
\[G_{\text{correction}} = 0.450444 \text{ a.u} \]
Cartesian coordinates:

	X	Y	Z
B	-0.16185900	-0.43967900	-0.47174000
B	-1.58140200	0.24709300	-0.36157900
P	-0.30577700	-2.28018700	-1.01366200
C	-2.89131000	-0.48063900	0.16283000
C	-3.91984100	0.21014000	0.82499300
H	-3.83383900	1.28339000	0.97434800
C	-5.04849800	-0.42161900	1.33494300
H	-5.81297800	0.15652800	1.84373700
C	-5.18811000	-1.79595100	1.19148000
H	-6.06193100	-2.30630800	1.57901200
C	-4.18221200	-2.51647200	0.55414300
H	-4.28484300	-3.59281700	0.44557300
C	-1.99351800	-2.72960000	-0.62723500
H	-2.01129400	-2.58188300	-1.71414500
C	-2.16002100	-3.79326500	-0.43076400
C	-3.04829700	-1.88250400	0.04996900
C	-0.19996500	-2.77676700	1.65322100
H	-0.43361300	-3.83792000	1.77545800
H	-0.80936900	-2.58714100	2.02522400
C	-0.91249800	-2.17937900	2.25902000
C	0.78392100	-3.45516000	-0.97225400
H	0.80045700	-3.22585900	-2.03962800
H	1.80054400	-3.38759100	-0.57972100
H	0.41476400	-4.47395600	-0.82809800
C	-0.63372200	2.65809900	-2.18138700
H	0.29363400	2.88391200	-1.65125900
H	-0.44669000	1.89727000	-2.94196300
H	-0.98677400	3.57218600	-2.66522900
C	-3.44637200	2.11504400	-1.97432000
H	-4.28212000	1.83242500	-1.34081800
H	-3.60898800	3.11503600	-2.38379600
H	-3.38033200	1.39446300	-2.79317700
C	-2.02129900	3.40540700	0.21432300
H	-2.80795000	3.19778900	0.94120100
H	-1.06854900	3.49271400	0.74173600
H	-2.24066600	4.35032900	-0.28976900
P	1.52327300	0.31916500	-0.71881400
H	1.87421200	0.75281700	-2.01743500
C	2.89025300	-0.81913900	-0.36329200
C	3.04632000	-1.18642500	0.96100600
C	3.62413800	-1.39245200	-1.40302500
C	4.12081100	-2.14051000	1.23786400
H	2.59779600	-0.72018000	1.77379000
C	4.59779000	-2.34648500	-1.12070000
H	3.43381800	-1.10680100	-2.43363900
C	4.84031700	-2.72499100	0.19669600
H	4.32409900	-2.42148500	2.26563900
H	5.16602800	-2.79274900	-1.92955300
H	5.59870400	-3.46906000	0.41513300
C	1.84221400	1.83340300	0.24039400
C 2.79977000 2.75194700 -0.20212700
C 1.16805000 2.05196500 1.44353800
C 3.07334200 3.88650300 0.55219200
H 3.32970900 2.58447500 -1.13618200
C 1.45390100 3.18538100 2.20118500
H 0.41357300 1.34002000 1.76776800
C 2.40180900 4.10175000 1.75448500
H 3.81050500 4.60229200 0.20510100
H 0.93628200 3.35166600 3.14017400
H 2.61976900 4.98650200 2.34328600

23) Intermediate B4

Number of imaginary frequencies = 0

\(E_{\text{total}} = -4579.07596733 \text{ a.u}\)

\(G_{\text{correction}} = 0.445525 \text{ a.u}\)

Cartesian coordinates:

Br	-1.35042100	-0.25860600	2.44454400
B	0.03595500	-0.24712700	-0.45549400
P	-0.05946000	0.91454500	-1.85806300
B	-1.47520100	-0.40512500	0.32211100
P	1.57925300	-0.22376100	0.50078100
P	-1.98182200	-2.31118200	0.21345900
C	-2.82747400	0.89689000	-1.57736100
C	-2.74185500	0.44373300	-0.23917400
C	-3.95397100	1.60042600	0.15204500
H	-3.99264300	1.94615200	-3.04696100
C	-3.83101000	0.74850700	0.59506900
H	-3.77817200	0.44732000	1.63665600
C	-4.95210000	1.43948100	0.15204500
H	-5.76434300	1.65109500	0.84141300
C	2.29804600	1.43508800	0.85807100
C	-5.01945000	1.86871900	-1.16787300
H	-5.88357600	2.41592600	-1.53206400
C	-1.72064300	0.67276900	-2.59058300
H	-1.84783600	1.34725200	-3.44013300
H	-1.73076900	-0.35174400	-2.97851500
C	3.03892800	-1.19351200	-0.06882000
C	0.01277700	2.73991700	-1.58943300
H	0.99502300	3.01038500	-1.19235900
C	1.11826600	0.70893600	-3.25068300
H	0.96094000	1.45958900	-4.03091200
	X	Y	Z
C	1.54346700	2.27258400	1.68992800
H	0.64762600	1.88255000	2.16867700
C	3.41128400	1.95131300	0.19312500
H	4.00454600	1.31209600	-0.45451200
C	2.93512800	-1.93442100	-1.24413100
H	1.98825200	-1.90338300	-1.78153000
C	-3.51248200	-2.81228000	1.07981200
H	-3.39926100	-2.55615300	2.13573500
H	-3.71601300	-3.88075600	0.97321600
H	-4.37382900	-2.23561500	0.67947800
C	-0.68543300	-3.41023000	0.86204300
H	-0.50415000	-3.14010100	1.90471200
C	-0.68543300	-3.39926100	-1.93442100
H	-1.31589300	-2.58606800	-2.61283000
H	-3.06237300	-2.25035300	-1.94072800
H	-4.50378000	-3.89167700	-1.59609600
C	4.22980600	-1.23068200	0.66431000
H	4.32112600	-0.65281900	1.58036300
C	3.76926800	3.28922200	0.35799200
H	4.63278500	3.68532900	-0.16759900
C	4.01215500	-2.69415700	-1.69531900
H	3.92617000	-3.26348200	-2.61579000
C	5.30205800	-1.99477300	0.21943300
H	6.22359600	-2.02169300	0.79257300
C	1.91566500	3.59788100	1.86788100
H	1.32918100	4.23814400	2.51914100
C	5.19493900	-2.72447700	-0.96402500
H	6.03443000	-3.31877600	-1.31147200
C	3.02499000	4.11181500	1.19599900
H	3.30359200	5.15301000	1.32503600
H	-0.74202200	2.99961300	-0.84386600
H	-0.17470100	3.29787000	-2.51255600
H	2.13728800	0.80671400	-2.86450300
H	1.00816700	-0.29253600	-3.67226400
H	1.36500800	-0.73731100	1.79177400

24) TSB(4-5)

![TSB(4-5)](image)

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 1 (809.69)
E_{\text{total}} = -4579.02417330 \text{ a.u}

G_{\text{correction}} = 0.444549 \text{ a.u}

Cartesian coordinates:

	x	y	z
B	0.01420700	0.18155600	0.00324700
B	1.62775600	-0.28687700	0.29932300
P	-0.04743000	0.99566800	-1.71271200
C	2.73771300	0.79321100	-0.16031100
C	3.74680300	1.27868300	0.68067200
H	3.85749200	0.87241600	1.68162800
C	4.63290200	2.28487000	0.30452100
H	5.39352600	2.62452100	1.00117900
C	5.53583200	2.84846800	-0.95908400
H	5.21687600	3.63940000	-1.27035000
C	3.54945000	2.38987100	-1.82618500
H	3.46552200	2.82377100	-2.81969000
C	1.62657000	0.92300400	-2.44884300
H	1.79598900	-0.12776200	-2.70736900
H	1.65835600	1.52269100	-3.36377000
C	2.66635100	1.37977500	-1.44896200
P	-1.55923200	-0.09851000	0.89901700
H	-0.65979000	0.43767300	1.96742200
C	-2.68198000	1.36171300	1.03183400
C	-3.61898500	1.65679500	0.03326400
H	-2.53989400	2.27281500	2.08413800
C	-4.38415000	2.81987400	0.08454200
H	-3.75957200	0.96460700	-0.79145500
C	-3.30370700	3.43245300	2.14132200
H	-1.80846800	2.07267800	2.86338300
C	-4.22911600	3.71354600	1.13843100
H	-5.10289400	3.02480100	-0.70306700
H	-3.17674700	4.12121400	2.97122500
H	-4.82270700	4.62132300	1.17989200
C	-2.69849300	-1.34356300	0.03624500
C	-4.06760200	-1.52572300	0.26778900
C	-2.02652300	-2.25678400	-0.78009800
C	-4.75553500	-2.56295700	-0.35244600
H	-4.60296000	-0.84128100	0.92104000
C	-2.71808400	-3.28391100	-1.41763200
H	-0.94492500	-2.16701800	-0.89403500
C	-4.08471800	-3.43891100	-1.20633100
H	-5.81994600	-2.68872200	-0.17556000
H	-2.18376700	-3.97566800	-2.06259300
H	-4.62377700	-4.24843900	-1.68911100
C	-1.19043100	0.29024200	-2.94960400
H	-0.89610600	-0.74102800	-3.15306900
H	-2.20028400	0.27463900	-2.53403000
H	-1.18019300	0.87317700	-3.87478000
C	-0.46072200	2.77405700	-1.64852800
H	-1.43496200	2.90033700	-1.17028400
H	0.29565000	3.27446400	-1.03976300
H	-0.47661200	3.21567600	-2.64906400
25) **Product B5**

Number of imaginary frequencies = 0

$E_{\text{total}} = -4579.14323545$ a.u

$G_{\text{correction}} = 0.448595$ a.u

Cartesian coordinates:

Atom	x	y	z
Br	1.9711200	-2.08294600	-0.89129100
P	1.94164800	-1.12919500	3.43205200
C	1.81143200	-0.02663100	3.52066900
H	1.97969800	-0.58944000	4.42368100
H	2.54355100	0.77963100	3.43205200
H	0.81429500	0.41711600	3.52066900
C	0.74646800	-2.46384900	2.36388000
H	1.02585200	-3.02153500	3.26140500
H	-0.25164000	-2.03636500	2.47889000
H	0.74476100	-2.59943800	1.36364300
C	3.57380000	-1.93283600	2.21798900
H	4.37079300	-1.18805100	2.20013300
H	3.62497800	-2.49606000	3.15104400
H	3.70567300	-2.59943800	1.36364300
	X	Y	Z
---	---------	---------	---------
C	0.04953900	2.58821400	1.22815200
H	-0.90313700	2.98431200	0.87120100
C	-1.51284200	0.85139400	2.92928300
H	-1.35523600	1.61723300	3.69358500
C	-1.39431100	2.13157300	-1.81341400
H	-0.55630300	1.73050600	-2.37415700
C	-3.21252600	1.83288000	-0.27460400
H	-3.83426100	1.19632200	0.34769900
C	-3.04653900	-1.85183800	1.22778400
H	-2.10230800	-1.89282700	1.75905100
C	3.66764000	-2.55375800	-1.27986200
H	3.58916300	-2.12940500	-2.22436100
H	4.45812200	-2.02584400	-0.68234000
C	0.87528600	-3.35069900	-1.20717000
H	-0.05419000	-3.36254600	-0.63408900
H	1.25848600	-4.36735800	-1.32099800
H	0.66613300	-2.90971900	-2.18463400
C	3.02744400	-2.33400800	1.84275000
H	2.72610000	-3.98825500	1.24585400
C	-4.34540400	-1.22143900	-0.68385800
H	-4.41896300	-0.75805300	-1.66438000
C	-3.49193800	3.19645400	-0.33947900
H	-4.31991300	3.60154700	0.25308000
C	-4.17657800	-2.43144400	1.80300000
H	-4.09785300	-2.91077900	2.77472800
C	-5.47832800	-1.78061000	-0.10693200
H	-6.42514100	-1.74887200	-0.63774700
C	-1.66868800	3.49345900	-1.87300300
H	-1.05689200	4.13391800	-2.50133900
C	-5.39862200	-2.39179900	1.14326300
H	-6.28043000	-2.83754300	1.59290500
C	-2.71792400	4.03573700	-1.13517400
H	-2.93354100	5.09849400	-1.18593600
H	0.78082200	2.64925900	0.42057200
H	0.40093700	3.17680700	2.08016300
H	-2.44904500	1.04853700	2.40242700
H	-1.58744700	-0.12910500	3.40408900
Bromide shift path for reaction 2 using a highly truncated system

Figure S25. Computed direct bromide shift route using the highly truncated unsymmetrical diborene B1’.

26) Diborene B1’

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

$E_{\text{total}} = -3577.35935509$ a.u

$G_{\text{correction}} = 0.126327$ a.u

Cartesian coordinates:

Atom	X	Y	Z
C	-3.8928700	1.17706500	-0.36114400
C	-2.5331300	1.43128000	-0.22686800
C	-1.5914720	0.42538700	0.05188600
C	-2.1076570	-0.88387500	0.20301000
C	-3.4696710	-1.14108500	0.06415300
C	-4.3708840	-0.11999300	-0.21951200
H	-4.5772390	1.99048700	-0.58332400
H	-2.1920180	2.45638800	-0.36418900
C	-1.2098660	-2.03691400	0.60350900
H	-3.8358650	-2.15810500	0.18568200
H	-5.4283180	-0.33700600	-0.32952000
H	-1.0070420	-1.98017300	1.68108900
B	-0.0439980	0.71184400	0.13563200
B	1.16431300	-0.27328000	0.01613200
H	-1.6873860	-3.00053000	0.40713200
P	0.45763100	-2.01802200	-0.14619200
Br	3.11589400	-0.09187000	-0.11966000
P	0.55941200	2.50468500	0.26207200
27) Phosphine PH_3

Number of imaginary frequencies = 0

$E_{\text{total}} = -343.12012242$ a.u

$G_{\text{correction}} = 0.004296$ a.u

Cartesian coordinates:

	X	Y	Z
P	0.000000000	0.000000000	0.12695900
H	0.000000000	1.195456000	-0.63479400
H	-1.035296000	-0.597728000	-0.63479400
H	1.035296000	-0.597728000	-0.63479400

28) Intermediate B_2'

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

$E_{\text{total}} = -3920.45078609$ a.u

$G_{\text{correction}} = 0.151508$ a.u

Cartesian coordinates:

	X	Y	Z
C	-3.823655000	0.905778000	1.22391300
C	-2.474853000	1.206735000	1.06821300
C	-1.662372000	0.489732000	0.17923800
C	-2.248544000	-0.566807000	-0.55761700
C	-3.604909000	-0.856992000	-0.39969800
C	-4.392323000	-0.131992000	0.489542000
H	-4.431481000	1.477729000	1.91906900
H	-2.043751000	2.012507000	1.65942500
C	-1.374438000	-1.299202000	-1.53273400
H	-4.049431000	-1.660630000	-0.98221200
H	-5.443984000	-0.374284000	0.60917000
H	-1.167693000	-2.335193000	-1.22705200
B -0.14483400 0.73215000 -0.12944100
B 1.05442500 -0.46411500 0.00478000
H -1.85578400 -1.37230900 -2.51558500
P 0.34778300 -0.40508200 -1.80440000
Br 2.97953800 -0.04569900 0.38938400
P 0.57672000 2.46165700 -0.28358600
P 0.54245000 -1.88139300 1.17719800
H 0.78509400 -1.58787100 2.52608800
H -0.82415400 -2.19461200 1.17429400
H -1.51696000 -3.14640500 1.34194800
H 1.33932800 3.05625000 0.74150300
H -0.32688800 3.49754900 -0.57949700

29) TSB(2'-3')

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 1 (70.0)

$E_{\text{total}} = -3920.38580015 \text{ a.u}$

$G_{\text{correction}} = 0.151778 \text{ a.u}$

Cartesian coordinates:

C -3.14540800 -2.40535400 -0.09640500
C -1.90718500 -1.96925200 0.35274000
C -1.54118700 -0.61528600 0.31702700
C -2.48545900 0.32443500 -0.18786200
C -3.73616500 -0.12922300 -0.61738700
C -4.06516800 1.47838600 -0.58102000
H -3.39502200 -3.46134500 -0.06875900
H -1.19072000 -2.69388500 0.72791000
H -2.23291400 1.83372200 -0.26980400
H -4.46364300 0.58686200 -0.99168800
H -5.03932300 -1.80582500 -0.93067200
H -2.72569000 2.16127400 -1.31625400
B -0.22776100 0.03551900 0.82493600
B 0.70819700 1.06472700 -0.01521100
H -3.02111500 2.38848500 0.25406400
P -0.54639300 2.34407700 0.36214900
Br 3.14838500 -0.73625100 -0.35733800
30) Intermediate B3'

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

\[E_{\text{total}} = -3920.47882293 \text{ a.u} \]

\[G_{\text{correction}} = 0.150963 \text{ a.u} \]

Cartesian coordinates:

	X	Y	Z
C	-3.40801400	-1.41952900	0.09752300
C	-2.02282400	-1.38993300	0.17849500
C	-1.27160700	-0.21924900	-0.01567800
C	-1.98706100	0.95425800	-0.33868700
C	-3.38482800	0.92336500	-0.40970300
C	-4.09784700	-0.24667700	-0.18946800
H	-3.94420600	-2.35053400	0.25399800
H	-1.48922300	-2.31596000	0.38191400
C	-1.32460400	2.27544400	-0.70444900
H	-3.92213400	1.83683400	-0.65323400
H	-5.18172700	-0.24247400	-0.25163500
H	-1.02540800	2.25242600	-1.75835600
B	0.32780600	-0.27737100	0.18116100
B	1.24463800	1.12675600	0.23594400
H	-2.03183900	3.10083600	-0.57394200
P	0.21735000	2.61422600	0.22728000
Br	1.22499800	-1.81262300	-0.86310900
P	0.66368300	-0.92335000	2.10730000
P	2.98368000	1.23230800	-0.25997900
H	3.40277700	0.58447600	-1.44725600
H	3.44298000	2.54812700	-0.46639800
H	4.05115900	0.76305200	0.56096000
H	0.75093900	3.78935000	-0.34846000
H	-0.32799300	3.20799200	1.40819700
H	0.22834100	0.00138500	3.07185700
Pathway involving the bromide shift before PPh$_2$H coordination for the reaction 2

Figure S26. Computed direct bromide shift step as a first step prior to coordination of PPh$_2$H and all other steps using diborene B1.

Note: Details of species B1 and B4 are provided above in pathway 1 of reaction 2.

31) TSB(1-6)

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 1 (i59.8)

$E_{\text{total}} = -3773.84461821$ a.u

$G_{\text{correction}} = 0.263401$ a.u

Cartesian coordinates:

Atom	x	y	z
C	-1.79176600	-3.42766400	-0.64886000
C	-0.77507700	-2.49635600	-0.47925100
C	-1.01419900	-1.11224800	-0.44508800
C	-2.35306900	-0.68884600	-0.63526100
C	-3.37309800	-1.62896800	-0.78938900
C	-3.10427800	-2.99260400	-0.78991300
H	-1.56067900	-4.48804300	-0.66935200
H	0.24561100	-2.85458100	-0.38552000
C -2.74215900 0.76781000 -0.78992600
H -4.39675300 -1.28795300 -0.92368800
H -3.91267000 -3.70657800 -0.90959000
H -2.62628800 1.05939000 -1.84071600
B 0.13368600 -0.07313100 -0.10452800
B -0.17094700 1.41051400 -0.49250100
H -3.79443400 0.92257700 -0.52578400
P -1.77173000 2.03171400 0.14685700
C -2.30966200 1.92732600 1.90349100
H -1.66280700 2.54563400 2.53080200
H -3.34478500 2.25985900 2.02688200
H -2.21760300 0.88471900 2.21542900
C -2.44636800 3.63856500 -0.40366800
H -1.93630000 4.45027700 0.12154500
H -2.25671600 3.74753200 -1.47301100
H -3.51945600 3.70809400 -0.20407300
Br 2.99638700 0.63003600 -1.38118300
P 1.46475100 -0.59041200 1.19288400
C 0.50228500 -1.27416900 2.60210500
H 1.16937600 -1.56276400 3.41855100
H -0.20086700 -0.52117700 2.96627200
H -0.06580200 -2.14661800 2.27184600
C 2.68900200 -1.90011000 0.86483900
H 3.31966800 -2.02130500 1.75026900
H 2.18281900 -2.84550400 0.65854100
H 3.27829100 -1.57749900 0.00370900
C 2.33718700 0.82096000 1.93843400
H 2.95752300 0.47175900 2.76845600
H 2.94659800 1.27177800 1.15181200
H 1.59990800 1.53572700 2.31298500

32) Intermediate B6

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

$E_{\text{total}} = -3773.87518544$ a.u

$G_{\text{correction}} = 0.262945$ a.u

Cartesian coordinates:

C 0.34128700 3.40297200 0.96560400
C -0.34947400 2.65221000 0.56302800
C 0.28417100 1.18590000 -0.06858600
C 1.65880600 1.32797000 -0.35299600
Pathway 2 of reaction 2

Figure S27 shows the computed free energy profile for the conceived mechanism 2 for 1,1-
hydrophosphination of diborene B1. This mechanism involves (i) an initial PPh$_2$H coordination, (ii)
dissociation of bromide (no bromide shift), (iii) 1,2-proton shift, and (iv) association of the dissociated
bromide to the other boron. The overall barrier of this mechanism was found to be 6.2 kcal/mol higher
in energy than that of mechanism 1.
Figure S27. Computed mechanism 2 for 1,1-hydrophosphination of the unsymmetrical diborene B1.

Note: Details of species B1-B3, B7 are provided above in pathway 1 of reaction 2.

33) TSB(3-7)

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 1 (i1174.8)

$E_{\text{total}} = -2007.07200715$ a.u

$G_{\text{correction}} = 0.444420$ a.u

Cartesian coordinates:

B	0.24525700	-0.13114800	0.09850300
B	1.65731300	0.54335300	-0.22593400
P	0.45641100	-1.70837300	1.13594400
P	1.79543500	2.31980700	-1.03822600
C	3.04492600	-0.14491700	0.12124100
C	4.20054600	0.09586100	-0.64185600
H	4.16152800	0.80166900	-1.46632700
C	5.40983800	-0.55005500	-0.41549000
H	6.27057700	-0.32903800	-1.03695200
C	5.50344000	-1.48097100	0.61078900
H	6.43808700	-1.99527600	0.80651800
C	4.38059200	-1.75453500	1.38428700
H	4.45157400	-2.48609300	2.18449100
C	2.00447000	-1.45751300	2.06412200
H	1.79724900	-0.63800400	2.76372800
H	2.22869200	-2.34845700	2.65867900
C	3.16718900	-1.10749000	1.15566100
P	-1.43360700	0.33508800	-0.65538700
Atom	x	y	z
------	-------	-------	-------
H	-0.16156000	0.21572100	-1.50486100
C	-2.35255100	-1.18264700	-1.04926900
C	-3.41305900	-1.61407400	-0.24553500
C	-1.95714800	-1.96642800	-2.13920400
C	-4.05537500	-2.81845000	-0.51990000
H	-3.74313400	-1.00667900	0.59213000
C	-2.59421700	-3.17431600	-2.40220000
H	-1.14753300	-1.63403400	-2.78302700
C	-3.64342800	-3.60800000	-1.59224800
H	-4.87953800	-3.14176100	0.10731300
H	-2.27986400	-3.77430100	-3.24978500
C	-4.14397800	-4.54259300	-1.80330300
C	-2.02042500	1.92294100	1.55050100
C	-4.55446500	2.65930500	0.65593000
C	-4.14866300	1.43446000	-1.06385000
H	-2.80832300	2.77416400	2.31946500
H	-1.02283900	1.63887400	1.88202000
C	-4.07459300	3.14156600	1.87274000
C	-5.54075200	2.94736000	0.30775600
H	-2.43384300	3.15234200	3.26513000
C	-4.68859300	3.80633300	2.47090300
C	0.28556500	3.32752100	-0.91503100
H	-0.51342300	2.87923500	-1.50956900
H	-0.04890800	3.38176200	0.12253800
C	0.48847400	4.33538800	-1.28694600
H	2.18776800	2.34199500	-2.82250700
H	3.13081200	1.83267700	-3.02480300
H	1.39177600	1.82626300	-3.36507900
C	2.25388400	3.37310500	-3.17923300
C	3.07742100	3.31918200	-0.21434200
H	3.14168500	4.30635500	-0.67851800
H	2.81579500	3.43438600	0.83999000
H	4.04556400	2.82087000	-0.27503600
C	-0.85714400	-1.99384200	2.36159200
H	-1.03685200	-1.07556200	2.92474000
H	-1.77584500	-2.26947600	1.83823300
H	-0.57939000	-2.79654700	3.04902000
C	0.63207500	-3.26186000	0.20580200
H	-0.28262600	-3.44422300	-0.36368400
H	1.47039700	-3.16187100	-0.48702200
H	0.81686500	-4.09942300	0.88320500

Intermediate B7
Number of imaginary frequencies = 0

E_{\text{total}} = -2007.15236130 \ a.u

G_{\text{correction}} = 0.450192 \ a.u

Cartesian coordinates:

B	-0.01548300	-0.39553300	-0.58741400
B	-1.55799600	0.09357600	-0.52196700
P	0.03562900	-2.25122200	-0.05615100
P	-2.03790700	1.88206700	-1.17526800
C	-2.75009000	-0.76919600	0.07741800
C	-3.82550600	-0.15647000	0.73820900
H	-3.87696400	0.92657800	0.80405300
C	-4.83846200	-0.88297600	1.35458300
H	-5.64818800	-0.36547300	1.85804200
C	-4.80605600	-2.27074800	1.32142100
H	-5.59118600	-2.85235700	1.79194600
C	-3.74621900	-2.91081000	0.68929900
H	-3.70900600	3.99656600	0.67247500
C	-1.58298700	-2.93352700	-0.56049100
H	-1.61345800	-2.85730600	-1.65567300
H	-1.61827700	-3.99752900	-0.30892400
C	-2.72640900	-2.18180800	0.08028900
C	0.15310500	-2.40731100	1.74868600
H	0.08319500	-3.45767200	2.04144000
H	1.11159200	-2.00348200	2.08101000
H	-0.66399700	-1.84719400	2.20778600
C	1.28677900	-3.36814800	-0.75621400
C	1.36289900	-3.22047400	-1.83487700
H	2.26063000	-3.16651300	-0.30644100
H	1.00046200	-4.40288800	-0.55003100
C	-2.13035300	3.13618500	0.13983900
H	-2.86419500	2.85777000	0.89746300
H	-1.14998700	3.22537900	0.61420000
H	-2.41319500	4.09728300	-0.29672000
C	-0.88480600	2.57146100	-2.40029400
H	-0.64101700	1.82679800	-3.16000500
H	-1.35543100	3.43608400	-2.87556800
H	0.03714500	2.88817400	-1.91127800
C	-3.65007300	1.87041800	-2.02439500
H	-3.57772800	1.23769800	-2.91232800
H	-4.42517800	1.46301300	-1.37435200
H	-3.92084600	2.88437900	-2.32855700
P	1.56069400	0.63607700	-1.02539500
C	2.95302800	-0.45546900	-0.50793000
C	3.29216800	-0.70534500	0.82728500
Pathway 3 of reaction 2

Figure S28 shows the computed free energy profile for the conceived mechanism 3 for 1,1-hydrophosphination of diborene B1. This mechanism involves (i) an initial PPh₂H coordination, (ii) dissociation of the chelating phosphine, (iii) 1,3-proton shift, (iv) 1,2-hydride shift from one boron to another, along with a bromide dissociation, and (v) association of the dissociated bromide to the other boron. The overall barrier of this mechanism was found to be 11.3 kcal/mol higher in energy than that of mechanism 1.

Figure S28. Computed mechanism 3 for 1,1-hydrophosphination of the unsymmetrical diborene B1.

Note: Details of species B1, B2, and B5 are provided above in pathway 1 of reaction 2.
35) Intermediate B8

Number of imaginary frequencies = 0

\(E_{\text{total}} = -4579.0603844 \text{ a.u} \)

\(G_{\text{correction}} = 0.441689 \text{ a.u} \)

Cartesian coordinates:

Element	X	Y	Z
B	-0.94622000	-1.19330300	-0.34208800
B	0.48336100	-1.04193100	0.25647900
P	-3.51091100	1.29336500	0.83937900
C	-1.60385100	-0.44945400	-1.58794000
C	-1.70966300	-1.11276400	-2.82169500
C	-2.25356500	-0.51355700	-3.95344500
H	-2.31132100	-1.06326400	-4.88850500
C	-2.70867300	0.79849000	-3.88145900
H	-3.12991200	1.28589600	-4.75559300
C	-2.61257200	1.48486500	-2.67670300
H	-2.96284400	2.51315800	-2.61559700
C	-2.07468800	0.88340800	-1.53365800
C	-2.04698600	1.67253500	-0.24797000
H	-2.01075400	2.75086200	-0.44736700
H	-1.16951500	1.40306700	0.34589500
P	1.54626800	0.29394600	-0.50823800
H	0.96362900	0.70122900	-1.71885600
H	-1.33082900	-2.13010900	-2.89544800
C	3.28401000	-0.09638400	-0.91620300
C	4.18102600	0.89325900	-1.32874200
C	3.71072500	-1.42296700	-0.82122000
C	5.48784400	0.55571400	-1.65973200
H	3.86265400	1.93054100	-1.38173500
C	5.02301000	-1.75447300	-1.14552300
H	3.02399700	-2.18360000	-0.46419400
C	5.90899700	-0.76914100	-1.56886100
H	6.18039700	1.32621000	-1.98287400
H	5.35315800	-2.78473500	-1.06079200
H	6.93248700	-1.02992300	-1.81979800
C	1.62360700	1.87010700	0.40832000
C	1.47630000	3.09792000	-0.23998400
C	1.75652500	1.83132300	1.80066000
C	1.48470300	4.28130400	0.49325800
H	1.33774800	3.13182200	-1.31760900
C	1.76922800	3.01582000	2.52729800
H	1.81906600	0.87188600	2.30698700
Number of imaginary frequencies = 1 (i1055.2)

$E_{\text{total}} = -4579.00029860 \text{ a.u}$

$G_{\text{correction}} = 0.436498 \text{ a.u}$

Cartesian coordinates:
Number of imaginary frequencies = 0

E_{total} = -4579.09720880 a.u

G_{correction} = 0.443561 a.u

Cartesian coordinates:

\[
\begin{align*}
\text{B} & : -0.97706900, -0.02924700, 0.46538800 \\
\text{B} & : 0.65173000, -0.45305100, 0.27467900 \\
\text{P} & : -4.05210600, 1.13726800, -1.38682900 \\
\text{C} & : -1.89015300, -1.31622600, 0.09060400 \\
\text{C} & : -1.80747000, -2.48474600, 0.86603200 \\
\text{C} & : -2.57900500, -3.61343000, 0.61073900 \\
\text{H} & : -2.48372900, -4.49286900, 1.24083700 \\
\text{C} & : -3.45534600, -3.61019000, -0.46743700 \\
\text{H} & : -4.06357500, -4.48170800, -0.68944200 \\
\text{C} & : -3.52330400, -2.48573600, -1.28149200 \\
\text{H} & : -4.18366100, -2.49241700, -2.14575400 \\
\text{C} & : -2.75316300, -1.34552600, -1.02790800 \\
\text{C} & : -2.87472400, -0.18287900, -1.98336600 \\
\text{H} & : -3.21762600, -0.54011700, -2.96218800 \\
\text{H} & : -1.90303100, 0.29612800, -2.13210400 \\
\text{P} & : 1.49300900, 0.08481000, -1.38134200 \\
\text{H} & : -1.22725800, 0.96338900, -0.18850500 \\
\text{H} & : -1.08492100, -2.52083800, 1.67803400 \\
\text{C} & : 3.19273900, -0.61874000, -1.42035400 \\
\text{C} & : 3.56038000, 0.15879600, -1.75862100 \\
\text{C} & : 3.37276500, -1.99400400, -1.23358400 \\
\text{C} & : 5.56571700, -0.41790400, -1.88339700 \\
\text{H} & : 4.18928300, 1.22649000, -1.91903500 \\
\text{C} & : 4.63217700, -2.57040000, -1.35919000
\end{align*}
\]
(Selected hydrogens are omitted for clarity)
Number of imaginary frequencies = 0

$E_{\text{total}} = -2007.15236130 \text{ a.u}$

$G_{\text{correction}} = 0.450192 \text{ a.u}$

Cartesian coordinates:

Atom	X	Y	Z
B	-0.01548300	-0.39553300	-0.58741400
B	-1.55799600	0.09357600	-0.52196700
P	0.03562900	-2.25122200	-0.05615100
P	-2.03790700	1.88206700	-1.17526800
C	-2.75009000	-0.76919600	0.07741800
C	-3.82550600	-0.15647000	0.73820900
H	-3.87696400	0.92657800	0.80405300
C	-4.83846200	-0.88297600	1.35458300
H	-5.64818800	-0.36547300	1.85804200
C	-4.80605600	-2.27074800	1.32142100
H	-5.59118600	-2.85235700	1.79194600
C	-3.74621900	-2.91081000	0.68929900
H	-3.70900600	-3.99656600	0.67247500
C	-1.58298700	-2.93352700	-0.56049100
H	-1.61345800	-2.85730600	-1.65567300
H	-1.61827700	-3.99752900	-0.30892400
C	-2.72640900	-2.18180800	0.08028900
C	0.15310500	-2.40731100	1.74868600
H	0.08319500	-3.45767200	2.04144000
H	1.11159200	-2.00348200	2.08101000
H	-0.66399700	-1.84719400	2.20778600
C	1.28677900	-3.36814800	-0.75621400
H	1.36289900	-3.22047400	-1.83487700
H	2.26063000	-3.16651300	-0.30644100
H	1.00046200	-4.40288800	-0.55003100
C	-2.13035300	3.13618500	0.13983900
H	-2.86419500	2.85777000	0.89746300
H	-1.14998700	3.22537900	0.61420000
H	-2.41319500	4.09728300	-0.29672000
C	-0.88480600	2.57146100	-2.40029400
H	-0.64101700	1.82679800	-3.16000500
H	-1.35543100	3.43608400	-2.87556800
H	0.03714500	2.88817400	-1.91127800
C	-3.65007300	1.87041800	-2.02439500
H	-3.57772800	1.23769800	-2.91232800
H	-4.42517800	1.46301300	-1.37453200
H	-3.92084600	2.88437900	-2.32855700
P	1.56069400	0.63607700	-1.02539500
C	2.95302800	-0.45546900	-0.50793000
C	3.29216800	-0.70534500	0.82728500
C	3.68200800	-1.09246400	-1.51731000
C	4.30726100	-1.60290000	1.14419400
H	2.77307800	-0.18096400	1.62496100
C	4.69689100	-1.99297400	-1.20160000
H	3.45437100	-0.88220200	-2.55857700
C	5.00439200	-2.25760300	0.12964500
Pathway for 1,2-hydrophosphination of diborene B1
Although the product obtained experimentally (6) was the result of a formal 1,1-hydrophosphination, it remained plausible that an initial 1,2-addition followed by rearrangement could lead to the observed compound. We therefore hoped to gain information on the overall barrier for 1,2-addition. Intriguingly, as shown in Figure S29, the overall barrier of 32.8 kcal/mol found for 1,2-hydrophosphination was only 0.9 kcal/mol higher in energy than that of 1,1-hydrophosphination. These results indicate that 1,2-hydrophosphination can compete with 1,1-hydrophosphination. However, the fact that we only observe the 1,1-hydrophosphinated product from experiments suggests that the bromide dissociation from adduct B2, leading to 1,1-hydrophosphination via pathway 1, occurs much faster.

![Computed mechanism for 1,2-hydrophosphination of the unsymmetrical diborene B1.](image)

Figure S29. Computed mechanism for 1,2-hydrophosphination of the unsymmetrical diborene B1.

Note: Details of species B1 and B2 are provided above in pathway 1 of reaction 2.
Number of imaginary frequencies = 1 (i970.2)

E_{total} = -4579.02463087 a.u

G_{correction} = 0.444323 a.u

Cartesian coordinates:

Atom	x	y	z
B	-0.17223	-0.42737	0.63870
P	-0.70924	-2.29907	0.66697
B	-1.40700	0.43368	-0.17761
P	1.05571	-0.80808	-0.80377
C	-3.09154	-1.59055	-0.43844
C	-2.59374	-0.33953	-0.89860
C	-4.09526	-2.27836	-1.12392
H	-4.43645	-3.23996	-0.74457
C	-3.21324	0.15688	-2.06912
H	-2.83706	1.08958	-2.48418
C	-4.24248	-0.50311	-2.72405
H	-4.68203	-0.06759	-3.61750
C	-4.68790	-1.74021	-2.25913
H	-5.47719	-2.27738	-2.77508
C	-2.52554	-2.20473	0.82310
H	-2.95615	-3.19036	1.02584
H	-2.70016	-1.55498	1.69148
Br	0.53909	0.04511	2.48583
P	-1.93680	2.03125	0.60939
H	-0.01164	0.01633	-1.78799
C	2.71455	-0.95533	-0.85050
C	3.11680	-1.68108	0.27821
C	3.46543	-1.05744	-2.02604
C	4.25292	-2.48521	0.23177
H	2.55796	-1.57965	1.20699
C	4.59555	-1.86599	-2.07315
H	3.16461	-0.49862	-2.90955
C	4.99022	-2.58400	-0.94506
H	4.56752	-3.02842	1.11819
H	5.17218	-1.93713	-2.99063
H	5.87218	-3.21567	0.98365
Number of imaginary frequencies = 0

$E_{\text{total}} = -4579.14869039$ a.u

$G_{\text{correction}} = 0.449884$ a.u

Cartesian coordinates:

B
-0.01081500 -0.34191200 0.07666000

P
-0.50923600 -2.19749900 0.27993000

B
-1.47639700 0.45236500 -0.54112200
Atom	X	Y	Z
P	1.39579700	-0.12709100	-1.26737700
C	-3.14846000	-1.60372400	-0.05783400
C	-2.80547400	-0.45510300	-0.80646100
C	-4.31946100	-2.31697100	-0.32793000
H	-4.55137800	-3.20368100	0.25785600
C	-3.68986100	-0.10165300	-1.83914400
H	-3.43486300	0.75307400	-2.46099300
C	-4.86300100	-0.80031900	-2.10251400
C	-5.51676400	-2.31697100	-0.32793000
C	-5.18822200	-1.91313000	-1.33417900
H	-6.09869900	-2.47199300	-1.52684200
C	-5.18822200	-1.91313000	-1.33417900
H	-6.09869900	-2.47199300	-1.52684200
Br	0.46987800	0.13075100	2.07854000
P	-2.09232400	1.92180700	0.58589400
H	-1.23240400	1.08983700	-1.55399500
C	2.95198900	-0.99212900	1.38899800
C	3.32074500	-1.30343800	0.56840200
C	3.80436400	-1.40533700	-1.78046700
C	4.49579500	-2.00100300	0.83831200
H	2.68426500	-0.99267800	1.38899800
C	4.98507800	-2.09177400	-1.51368800
H	3.53183800	-1.18546100	-2.80931100
C	5.33287100	-2.39539300	-0.20062700
H	4.75861400	-2.22850800	1.86736400
H	5.63089500	-2.39587900	-2.33201200
H	6.25130800	-2.93461800	0.01066200
C	1.81609400	1.65238200	-1.02003300
C	1.33683600	2.58077400	-1.95054000
C	2.54492400	2.12347200	0.07764100
C	1.56637000	3.94482400	-1.78422400
H	0.77941400	2.22553600	-2.81203700
C	2.77777600	3.48474400	0.24412900
H	2.92897500	1.42098200	0.80913700
C	2.28647000	4.40030800	-0.68344700
H	1.19075600	4.65032300	-2.51966900
H	3.34447000	3.83262700	1.10268000
H	2.47057300	5.46223200	-0.55177600
C	-0.62441700	-3.09399000	-1.29903400
H	0.38228300	-3.22634600	-1.70252600
H	-1.10065000	-4.06753500	-1.15812400
H	-1.20926400	-2.49926800	-2.00220300
C	0.49190000	-3.25584700	1.37321800
H	0.59875900	-2.75048900	2.33490200
H	0.01891300	-4.23182100	1.50692200
H	1.48613900	-3.38037300	0.93734700
C	-3.42702200	2.85799600	-0.23927700
H	-3.76824100	3.68405200	0.39027600
H	-3.04960200	3.25529100	-1.18449900
H	-4.26370200	2.18940800	-0.45258200
C	-0.84236100	3.19078700	0.95853400
H	-0.45542800	3.58945700	0.01738700
REACTION 3
Pathway 1 of reaction 3
As shown in Figure S30, pathway 1 involves an initial dissociation of bromide, followed by a 1,2-proton shift and subsequent association of bromide to the other boron center. Compared to another computed mechanism (vide infra), this pathway was found to have an overall lower barrier.

Figure S30. Computed mechanism 1 for 1,1-hydrophosphination of the unsymmetrical diborene C1.

41) Diborene C1

Note: Hydrogen atoms are omitted for clarity.
Number of imaginary frequencies = 0
$E_{\text{total}} = -3774.90368147$ a.u
$G_{\text{correction}} = 0.387920$ a.u
Cartesian coordinates:
Intermediate C2

Note: Hydrogen atoms are omitted for clarity.

Number of imaginary frequencies = 0
$E_{\text{total}} = -1202.87770276$ a.u
$G_{\text{correction}} = 0.388712$ a.u

Cartesian coordinates:

Atom	x	y	z
B	0.04592500	-0.44938700	-0.21314600
P	2.55660700	-1.62292400	0.74799000
N	-2.55282200	-0.79370000	-0.24871300
N	-1.88177300	0.85223100	0.97796500
C	2.99931600	1.64612400	-1.67911500
H	4.08305900	1.60161900	-1.74383000
C	3.65829100	-3.07028000	0.80428700
H	3.37394800	-3.71887200	1.63633400
C	2.95956300	-0.63569900	-0.71548900
H	4.15753600	-0.37242100	-0.53317500
H	3.10211100	-1.35956000	-1.54038700
C	-3.25509600	0.79914000	1.09328200
H	-3.81351700	1.48388300	1.70957100
C	0.24395600	1.75803070	-1.55336800
H	-0.84114200	1.81677400	-1.51353300
C	2.33408100	2.75736400	-2.18404200
H	2.89815400	3.57336200	-2.62256000
C	-0.94871500	1.39070900	3.18581200
H	-0.24758000	2.03928200	3.71651500
H	-0.62083200	0.35431800	3.30247400
H	-1.92905500	1.49937700	3.65938200
C	2.91782100	-0.67491900	2.26640300
H	2.46338300	0.31272300	2.16712900
C	-1.45457300	-0.13042300	0.15950500
C	-2.56727500	-1.90538100	-1.22441100
H	-1.51265900	-2.11677000	-1.41685900
C	0.94573800	2.80878700	-2.13010900
H	0.41404300	3.66419000	-2.53366100
C	-1.43257600	3.22360400	1.48093200
H	-1.47196300	3.45256700	0.41364000
Intermediate C3

Note: Selected hydrogen atoms are omitted for clarity.

Number of imaginary frequencies = 0

E$_{\text{total}}$ = -2008.08552408 a.u

G$_{\text{correction}}$ = 0.572409 a.u

Cartesian coordinates:

B 0.10622200 -0.68768000 -0.31323500
B -1.37687800 -0.15935300 -0.17477300
P 0.18958400 -2.29860500 -1.23066700
C -2.65257600 -0.85847800 -0.78820600
C -3.94438200 -0.51126400 -0.35827200
H -4.06028700 0.29054300 0.36822300
C -5.08794800 -1.15183300 -0.82256800
H -6.06678700 -0.85457100 -0.45998400
C -4.96502500 -2.17414500 -1.75471200
H -5.84430600 -2.68866400 -2.12767900
C -3.70161700 -2.53086400 -2.21788500
H	-3.61092300	-3.31937900	-2.96040400
C	-1.22753500	-2.27612100	-2.38019500
H	-0.95699700	-1.53802300	-3.14671600
H	-1.30212200	-3.24906800	-2.87646900
C	-2.55507400	-1.88881400	-1.75448900
P	1.57377500	0.11269300	0.46514900
H	1.27979700	0.73064700	1.70056800
C	-1.63231200	1.10526800	0.76038200
N	-1.48554300	2.40396000	0.43583500
N	-1.95972600	1.07694000	2.06663400
C	-1.24108600	2.87133000	1.54031200
C	-1.72962200	3.19686800	1.54031200
C	-2.01919800	2.36310100	2.56704400
C	-2.18453400	-0.15993900	2.83737200
H	-0.71583900	2.03757800	-1.41958900
C	-2.57606000	3.09421800	-1.64925100
C	-3.39847000	4.09817000	-0.95297800
H	-1.73280000	4.27175700	1.50730100
H	-2.25591900	2.57501000	3.59647300
C	-3.55615300	-0.13224000	3.50235200
C	-1.04385600	-0.37569100	3.82638300
H	-2.16180700	-0.95704100	2.09019400
H	-3.14591000	3.89230000	-1.16324000
H	-3.17400800	2.17872100	-1.64207600
H	-2.40247400	3.38315500	-2.68875100
H	-0.84409400	4.97967200	-0.54490100
H	-0.06879800	4.32800900	-1.98554900
H	0.58337400	3.92026300	-0.39521200
H	-3.73880400	-1.08954700	3.99558700
H	-4.34558400	0.02765700	2.76455600
H	-3.62154600	0.65079400	4.26390700
H	-0.08453700	-0.42057800	3.30401300
H	-1.19012500	-1.31902400	4.35788500
H	-1.00120800	0.42651000	4.56935600
C	2.94059600	-1.02732200	0.85093100
C	4.18381800	-0.92935200	0.22434500
C	2.69059700	-2.07885900	1.74081900
C	5.16691000	-1.88283800	0.48073900
H	4.38687600	-0.11587300	-0.46459100
C	3.67837900	-3.02078200	2.00126500
H	1.72008400	-2.16363700	2.22346200
C	4.91614400	-2.92498000	1.36713700
H	6.13092000	-1.80535400	-0.01032400
H	3.48502500	-3.82780900	2.70003600
C	5.68499200	-3.66351000	1.56755700
C	2.31521400	1.52038700	-0.42427200
C	3.08837400	2.46446200	0.25905000
C	2.10025000	1.65935400	-1.79555500
C	3.64275400	3.53768800	-0.42866500
H	3.25977500	2.36084500	1.32735300
C	2.66302700	2.73051200	-2.48375700
H	1.47144800	0.93603400	-2.30911300
C	3.43051600	3.66946000	-1.80054500
H 4.23986200 4.27085600 0.10264200
H 2.49653800 2.83732100 -3.55049200
H 3.86351100 4.50847900 -2.33489300
C -0.01532500 -3.81123700 -0.22629700
H 0.81469400 -3.89225100 0.47940300
H -0.95142000 -3.72807800 0.33031100
H -0.04378400 -4.70545900 -0.85503700
C 1.65380500 -2.65192200 -2.26147800
H 1.78948500 -1.85319000 -2.99401900
H 2.54006600 -2.69339400 -1.62216500
H 1.54448100 -3.60680400 -2.78193600

44) TSC(3-4)

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 1 (i1180.4)

\[E_{\text{total}} = -2008.02609942 \text{ a.u} \]

\[G_{\text{correction}} = 0.567465 \text{ a.u} \]

Cartesian coordinates:

B 0.15682500 -0.69458400 -0.35744800
B -1.34395500 -0.17895800 -0.16471100
P 0.25149500 -2.27842900 -1.36340500
C -2.60929300 -0.86840000 -0.81270900
C -3.90207400 -0.53155500 -0.37411600
H -4.01753400 0.26091600 0.36171000
C -5.04662000 -1.16797700 -0.83992900
H -5.80378400 -0.87728400 -0.46874600
C -4.92479800 -2.17799500 -1.78510900
H -5.80378400 -2.69118100 -2.16046900
C -3.66313900 -2.52195600 -2.26150200
H -3.57607300 -3.29834900 -3.01688800
C -1.20049400 -2.59350000 -2.46722600
H -0.96113200 -1.51669500 -3.23992500
H -1.28823600 -3.22775700 -2.97018500
C -2.51411300 -1.88221600 -1.79957400
P 1.60795000 0.16638000 0.48249700
H 0.43436700 -0.31698000 1.28291200
C -1.63810700 1.06148100 0.80005000
N -1.56157300 2.36786000 0.48680100
N -1.99089900 1.00352100 2.09912200
C -1.28918500 2.86850900 -0.87527400
C -1.87560300 3.13615400 1.58935900
C -2.13723900 2.79391000 2.60452600
C -2.14836400 -0.24428400 2.87021500
H -0.74367100 2.05226800 -1.35795500
C -2.60814700 3.09969900 -1.60744300
C -0.39486500 4.10039500 -0.83207100
H -1.88067200 4.21278000 1.56490700
H -2.40364000 2.46975400 3.63091500
C -3.55589200 -0.34529600 3.44738400
C -1.06017900 -0.34117500 3.93580200
H -2.00205500 -1.04056000 2.13526000
H -3.19465200 3.88329500 -1.11784700
H -3.20384000 2.18155700 -1.63551200
H -2.41156100 3.41445000 -2.63522600
H -0.91409600 4.96806900 -0.41349700
H -0.09879800 4.35757400 -1.85115400
H 0.51462600 3.91086100 -0.25619900
H -3.67135000 -1.30560000 3.95503900
H -4.31003500 0.22898600 2.65999300
H -3.74759100 0.44313000 4.18155600
H -0.06557600 -0.23624500 3.49366500
H -1.12087100 -1.31058400 4.43593400
H -1.17912000 0.43586000 4.69723700
C 2.92674700 -1.01218600 0.89430800
C 4.15689700 -0.97985200 0.23231700
C 2.68903500 -2.00992600 1.84794300
C 5.12953300 -1.93623900 0.51504300
H 4.35938400 -0.20788700 -0.50381800
C 3.65856400 -2.96788200 2.11875800
H 1.74001100 -2.03863700 2.37782300
C 4.88236800 -2.93327900 1.45248000
H 6.08326600 -1.89875700 -0.00083100
H 3.46499700 -3.73427500 2.86219100
H 5.64121600 -3.67675500 1.67098300
C 2.34215900 1.57867600 -0.41295700
C 3.17307900 2.49488000 0.23893000
C 2.03268000 1.75427600 -1.76203100
C 3.69910100 3.57245200 -0.46532500
H 3.41022900 2.36116300 1.29032600
C 2.56798900 2.82854700 -2.46535500
H 1.35993500 1.05055500 -2.24918500
C 3.39735500 3.73975900 -1.81584800
H 4.34505600 4.28305900 0.03937500
H 2.33699200 2.95884200 -3.51772900
H 3.80773800 4.58353400 -2.36036300
C 0.13365100 -3.79489200 -0.36094900
H 0.97798000 -3.83040500 0.33204200
H -0.79682200 -3.76000400 0.21014400
H 0.14018600 -4.68739300 -0.99204400
C 1.71844400 -2.50692200 -2.41650600
45) Intermediate C4

Note: Selected hydrogens are omitted for clarity

Number of imaginary frequencies = 0

$E_{\text{total}} = -2008.10793463 \text{ a.u}$

$G_{\text{correction}} = 0.572850 \text{ a.u}$

Cartesian coordinates:

	X	Y	Z
H	1.80428700	-1.67100400	-3.11417100
H	2.60749000	-2.52221200	-1.77986600
H	1.65926900	-3.44335700	-2.97665900

- **Note:** Selected hydrogens are omitted for clarity

$E_{\text{total}} = -2008.10793463 \text{ a.u}$

$G_{\text{correction}} = 0.572850 \text{ a.u}$

Cartesian coordinates:

	X	Y	Z
B	0.40045100	-0.86740400	0.36927400
B	-1.22139000	-0.54741100	0.05759900
P	1.03864300	-2.05900200	-1.02060700
C	-2.12284200	-1.29655300	-0.96377800
C	-3.51312800	-1.35571600	-0.74233500
H	-3.94053500	-0.78943800	0.08182000
C	-4.35788900	-2.12973900	-1.52594000
H	-5.42275500	-2.16210600	-1.32264900
C	-3.81935800	-2.86374700	-2.57666200
H	-4.46207300	-3.47440600	-3.20223200
C	-2.45163300	-2.81806500	-2.83237300
H	-2.04777100	-3.88514000	-3.66367300
C	-0.13261900	-2.00142700	-2.43339500
H	0.08075600	-1.07346500	-2.97780900
H	0.10788400	-2.81842000	-3.12084500
C	-1.59683500	-2.04866200	-2.04619800
P	1.48672700	0.64354100	0.98198100
H	0.33526600	-1.58862700	1.35104900
C	-1.94721100	0.51585700	1.00805500
N	-2.34404600	1.74991200	0.65321900
N	-2.21412900	0.38305900	2.31803100
C	-2.26342700	2.31459300	-0.71132300
C	-2.85699400	2.40581200	1.75274200
C	-2.77783300	1.54740900	2.79623700
C	-1.93424500	-0.81699600	3.13405000
H	-1.62124600	1.62742100	-1.26869600
C	-3.64869000	2.34057700	-1.34801600
C	-1.58915100	3.68056100	-0.68054600
H	-3.22835400	3.41554600	1.70234600
46) Product C5

Note: Hydrogen atoms are omitted for clarity.

Number of imaginary frequencies = 0

\[E_{\text{total}} = -2008.12061120 \text{ a.u} \]

\[G_{\text{correction}} = 0.574453 \text{ a.u} \]

Cartesian coordinates:

Atom	X	Y	Z
B	-0.01461500	-0.71085700	-0.02744500
P	2.22952500	-0.86497500	-1.94924600
P	0.22673300	1.17314700	-0.51589100
N	-2.44777800	-0.55000900	1.09542600
N	-2.17612200	-2.13224600	-0.34429700
C	3.22526800	-2.27621100	1.61928500
H	4.29893600	-2.30296800	1.45209900
C	1.93806100	1.99078000	1.50699000
H	1.41389900	1.26124100	2.11679200
C	3.23169800	0.09429400	-3.12706800
H	4.22961900	-0.33741300	-3.23789300
C	2.42184700	-1.52286000	0.75960000
C	1.01986800	-1.46754100	0.94571500
C	-1.23086600	2.19981200	-0.84026100
C	3.12931000	-0.79114700	-0.36416100
H	4.12902200	-1.20831900	-0.52239000
H	3.26509200	0.27088400	-0.13170900
C	-3.46039700	-2.24899100	0.13823700
H	-4.13900200	-3.01700100	-0.19360000
C	3.00303800	2.71336900	2.03644100
H	3.29697300	2.56143500	3.06939400
C	0.50900000	-2.22445800	2.01572200
H	-0.56454200	-2.25065900	2.18091000
C	2.25342700	3.09982900	-0.62363700
H	1.95761500	3.25212700	-1.65787100
C	2.68513200	-2.99377200	2.67816400
H	3.32908500	-3.57244700	3.33147900
C	-2.37132800	-3.18421600	-2.56331500
H	-1.84427400	-3.81885400	-3.27973600
H	-2.51339400	-2.19966900	-3.01589200
H	-3.35235100	-3.63571700	-2.38689200
C	2.30512700	-2.60213900	-2.48590100
H	1.87152400	-3.22403100	-1.69870100
C	-1.54793400	-1.08834000	0.23962600
C	-2.22477700	0.57693200	2.02694300
---------	-------------	------------	------------
H	-1.30283500	1.04688600	1.68552200
C	1.31010500	-2.97232800	2.87076400
H	0.85899100	-5.33767500	3.68004500
C	-1.32028700	-4.42059000	-0.59248700
H	-0.72496500	-4.28886900	0.31473300
H	-0.78213200	-5.09364500	-1.26472300
H	-2.26680300	-4.90109500	-0.32571200
C	-3.63204900	-1.25396900	1.03800800
H	-4.49121200	-0.98921000	1.63091600
C	-1.35874000	3.45968600	-0.24733000
C	-1.55000900	-3.08038500	-1.28390600
H	-0.88128000	-2.62509600	-1.52008900
C	3.31168600	3.82381200	-0.08702500
C	3.84518900	4.53962300	-0.70333000
C	-2.26121400	1.71017300	-1.64991300
H	-2.16598200	0.73913900	-2.12455200
C	3.68872800	3.62652700	1.24067700
H	4.52097900	4.18716100	1.65472400
C	-3.52642700	3.73041000	-1.27406600
H	-4.41622800	4.32629800	-1.44646900
C	-3.40441500	2.47291900	-1.86059800
H	-4.19662700	2.08883000	-2.49468100
C	-2.50144100	4.22144200	-0.47064800
H	-2.59054200	5.20094400	-0.01293100
C	-3.36792300	1.58172000	1.92542000
H	-4.28278000	1.19960100	2.38916800
H	-3.57667300	1.84129400	0.88599900
H	-3.09012500	2.49460200	2.45672400
C	-2.02552700	0.06136500	3.44977800
H	-2.90281900	-0.49459000	3.79487600
H	-1.88130000	0.90929700	4.12401400
H	-1.14817000	-0.58419200	3.52098800
B	0.44557100	-0.33123000	-1.67902400
H	-0.26226300	-0.39294600	-2.64638700
C	1.56321400	2.17694100	0.17245100
H	1.73285200	-2.73358500	-3.40680200
H	3.33944100	-2.91084200	-2.65530800
H	2.73543700	0.11511200	-4.09959500
H	3.32101700	1.11863400	-2.75692200
Pathway 2 of reaction 3

Figure S31 shows the computed free energy profile for the conceived mechanism 2 for 1,1-hydrophosphination of diborene C1. This mechanism involves (i) dissociation of the chelating phosphine, (ii) 1,3-proton shift, and (iii) subsequent rearrangements. The overall barrier of this mechanism was found to be 4.5 kcal/mol higher in energy than that of mechanism 1.

![Figure S31](image)

Note: Details of species C1, C5 are provided above in Pathway-1 of reaction-3.

47) Intermediate C6

![Intermediate C6](image)

Note: Hydrogens are omitted for clarity.

Number of imaginary frequencies = 0

$E_{\text{total}} = -3774.83868448$ a.u.
G_corrected = 0.381510 a.u

Cartesian coordinates:

C -2.19316100 0.78019100 -0.10391600
C -3.49534600 1.22345000 0.15128400
C -1.31950800 0.48754900 0.97005400
C -3.95565100 1.41104600 1.44920900
H -4.15238700 1.44006100 -0.68814100
C -1.81150100 0.69937300 2.26982200
C -3.10127200 1.15750500 2.51672600
H -3.43955200 1.30763400 3.53794900
B 0.16243300 -0.06590500 0.74896500
B 1.35995900 0.68488900 1.32468200
C -1.73906300 0.68907100 -1.54222500
H -0.77571700 0.17816500 -1.61306400
H -2.46032000 0.12661400 -2.14734100
C -1.39815100 1.68028100 -0.92220400
H -2.84529700 2.74311300 0.01797600
H -2.97479700 -1.80292700 -0.52163700
H -2.83937300 2.57080700 -0.69952000
H -3.70348300 2.87390600 0.68213700
C -1.36238800 1.96231800 1.69053800
H -2.16997600 -0.03271600 2.42355200
H -1.38079100 4.67694200 1.08865500
H -0.41202100 3.91734700 -2.22814300
C 2.69285700 -0.75662800 -2.80690700
H 3.37935500 0.05254300 -3.06794500
H 3.13697600 -1.69001100 -3.16867700
H 1.74954000 0.90555500 -3.33375200
C 3.75674900 -1.10354300 -0.52717600
H 4.52943600 -0.36050400 -0.74202700
H 3.57826900 -1.10318300 0.55066200
H 4.13703200 -2.08942300 -0.81591200
H -4.96974900 1.75820500 1.62246900
H -1.15511000 0.47737400 -3.10725300
P -1.57750200 2.38568000 -2.32673800
C -0.41828000 3.18352400 -1.12418100
H 0.41079300 2.52241600 -0.85190400
H -0.02868000 4.10740100 -1.56158600
H -0.96263700 3.43866600 -0.21172900
C -0.36105700 1.94927000 -3.66074300
H -0.81749900 1.24732700 -4.36510500
H -0.08014700 2.84757400 -4.21760000
H 0.54676000 1.49599500 -3.24595500

48) Intermediate C7

Note: Selected hydrogens are omitted for clarity.

Number of imaginary frequencies = 0

E_{total} = -4579.99480255 a.u
G_{correction} = 0.568984 a.u

Cartesian coordinates:
B 1.16566700 -0.29272000 0.44007800
B -0.13605900 -0.73989900 -0.30322100
P 0.16713000 4.33688300 0.61416400
C 1.42345900 0.62858000 1.71638100
C 2.34168400 0.16518300 2.68078800
H 2.83401900 0.79051100 2.51059600
C 2.64028000 0.85166000 3.84430200
H 3.34875300 0.44903300 4.55936000
C 2.02297900 2.08199500 4.08430200
H 2.23645600 2.64175200 4.99003200
C 1.13437800 2.58657300 3.14583200
H 0.66563400 3.55153100 3.32155200
C 0.82920700 1.89260100 1.96629200
H -0.13589390 2.53500000 0.99085200
H -1.16038600 2.50290500 1.38475500
H -0.14347200 1.96776600 0.05413000
C 1.52053000 4.17427400 -0.48348400
H 1.95350400 5.15599400 -0.85889800
H 2.48043000 3.76417200 0.10207200
H 1.45339100 3.51433900 -1.33566700
C -1.14927200 4.53502000 -0.67698900
H -1.04345600 5.50610600 -1.16946800
H -1.11338100 3.74363200 -1.43351500
H -2.13362100 4.50243400 -0.20184000
P -1.80347100 -0.36258000 0.43295200
H -1.61857000 0.21930200 1.69543900
C -2.86279500 0.86676300 -0.42096300
Atom	X	Y	Z
C	-3.75127500	1.68374500	0.28145100
C	-2.72906100	1.01641500	-1.80373800
C	-4.49799400	2.64586500	-0.39036400
H	-3.85670200	1.57681700	1.35802600
C	-3.48370700	1.97475400	-2.47348800
H	-2.03583600	0.37800000	-2.34426200
C	-4.36282800	2.79226200	-1.76869300
H	-5.17931400	3.28484300	0.16241600
C	-3.37715400	2.08809400	-3.54745600
H	-4.94160900	3.54628500	-2.29267000
C	-2.94149000	-1.74240800	0.80182200
C	-5.13511100	-2.67185800	3.02028600
H	-3.85899900	-4.77665600	-0.41549600
H	-3.94541000	-4.65297100	1.53078600
C	2.48970800	-0.90029200	-0.20995000
N	3.31506300	-0.27889900	-1.07630300
C	3.05397700	1.07209100	-1.56749100
C	4.31763500	1.92098700	-1.56749100
C	5.05395500	-0.85250000	-2.22311800
H	4.62429200	-3.25374100	-0.93809800
H	1.52028100	-2.69882900	1.23440000
C	1.75403900	-4.27674700	-0.19095800
C	3.33062300	-3.76706600	1.74586800
H	2.06160400	1.96689700	-3.28587800
H	3.11085200	0.60260200	-3.70932600
H	1.54332000	0.30083500	-2.92286200
H	5.06366900	1.55925500	-2.28318100
H	4.06544000	2.94767400	-1.84477700
H	4.76390900	1.93412800	-0.56990600
H	2.53926200	-4.82478200	-0.72377600
H	1.18004600	-4.99520400	0.40022900
H	1.08982300	-3.80344700	-0.91687900
H	2.82040500	-4.48942500	2.38795400
H	4.16408500	-4.28546900	1.25946100
H	3.73912900	-2.97424300	2.37792200
Br	-0.20681300	-1.71363500	-2.06587600
Number of imaginary frequencies = 1 (i991.3)

$E_{\text{total}} = -4579.95267941 \text{ a.u}$

$G_{\text{correction}} = 0.566407 \text{ a.u}$

Cartesian coordinates:

	x	y	z
B	0.60902800	0.55092000	0.20098600
B	-0.90581300	0.61877800	0.78268400
P	3.99679400	-1.00745000	-2.07015400
C	1.24278500	1.53759800	0.88806200
C	0.98717500	2.91291100	-0.74580600
C	1.43565800	3.85850000	-1.66381100
H	1.21376500	4.91073200	-1.51331400
C	2.14313500	3.44120400	-2.78237700
H	2.47931600	4.15882500	-3.52452100
C	2.39827700	2.08507300	-2.95951300
H	2.90424600	1.75562900	-3.86271100
C	1.98289900	1.31612600	-2.02616600
C	2.26337700	-0.32468700	-2.30798900
H	2.02440900	-0.55817000	-3.35298900
H	1.60389300	-0.95711100	-1.70649800
P	-1.95834200	0.41610500	-0.73199900
H	-0.50672100	0.20216100	-1.23958400
H	0.40504000	3.23846200	0.11133500
C	-3.65103100	1.17116400	-0.72375600
C	-4.63861600	0.85297200	-1.66058500
C	-3.90961500	2.15533800	0.23232900
C	-5.86711400	1.50439900	-1.63475500
H	-4.44993300	0.08351000	-2.40463000
C	-5.14341300	2.79733200	-2.66968000
H	-3.14497900	2.40337800	0.96506200
C	-6.12222200	2.47627900	-0.66946800
H	-6.62863700	1.25102700	-2.36607800
H	-5.34101900	3.54975400	1.02434000
H	-7.08277000	2.98169100	-0.64794700
C	-2.37305200	-1.35601500	-1.00156800
C	-1.67287400	-2.11793300	-1.94136300
C	-3.34762400	-1.98425200	-0.21827600
Atom	X	Y	Z
------	---------	---------	---------
C	-1.93329	-3.47662	-2.09512
H	-0.90964	-1.64143	-2.55219
C	-3.61508	-3.34035	-0.37577
H	-3.88987	-1.40590	0.52395
C	-2.90777	-4.09164	-1.31238
H	-1.38322	-4.05198	-2.83383
H	-4.37109	-3.81465	0.24210
H	-3.11619	-5.14951	-1.43410
Br	-1.54717	0.20642	2.59835
C	1.59151	-0.31306	1.12046
N	2.42214	0.16958	2.06910
N	1.64042	-1.65953	1.23614
C	2.80028	-0.86822	2.78681
C	2.49318	-2.01522	2.25839
H	3.67251	-0.70835	3.59518
H	2.67974	-3.04407	2.51705
C	0.79488	-2.59312	0.47794
H	0.28492	-1.96954	0.25549
C	2.59042	1.60084	2.37267
H	2.21497	2.12057	1.48930
C	-0.25963	-3.19942	1.39869
H	0.19582	-3.86433	2.14127
H	-0.80582	-2.40769	1.91586
H	-0.96786	-3.77958	0.80191
C	1.63996	-3.64005	0.23855
C	2.13640	-4.31254	0.46957
H	0.98455	-4.24716	0.86861
H	2.40326	-3.17963	0.87295
C	1.73707	1.97263	3.58277
H	2.12511	1.49657	4.48992
H	1.75763	3.05543	3.73212
C	0.70272	1.65160	3.43875
C	4.06364	1.94742	2.55743
H	4.16547	3.02984	2.66571
H	4.47847	1.48913	3.46118
H	4.65785	1.62887	1.69818
C	4.98083	0.01713	3.25960
H	4.63915	-0.16209	4.28310
H	4.91744	1.08774	3.04480
H	6.02774	-0.29340	2.19808
C	4.53993	-0.18489	0.50413
H	4.16801	0.84327	0.44272
H	4.19932	-0.75038	0.36529
H	5.63373	-0.16977	0.48138
Intermediate C8

Note: Selected hydrogens are omitted for clarity.

Number of imaginary frequencies = 0

\[E_{\text{total}} = -4580.03289392 \text{ a.u} \]

\[G_{\text{correction}} = 0.570456 \text{ a.u} \]

Cartesian coordinates:

\[
\begin{align*}
\text{B} & : -0.41646400 \ 0.09062000 \ -0.55710300 \\
\text{H} & : -0.40242500 \ 0.18352700 \ 1.76995100 \\
\text{B} & : 0.43005300 \ -0.09896000 \ 0.91622800 \\
\text{C} & : -3.20931500 \ 3.32049800 \ 0.21093900 \\
\text{H} & : -4.00832900 \ 3.06022400 \ -0.47827900 \\
\text{C} & : -2.39125400 \ 4.69272000 \ 2.01746600 \\
\text{H} & : -2.54408500 \ 5.49179600 \ 2.73625900 \\
\text{C} & : -3.40786200 \ 4.34177300 \ 1.13177100 \\
\text{H} & : -4.35704500 \ 4.86856700 \ 1.15353300 \\
\text{C} & : -1.17909400 \ 4.01438500 \ 1.96978700 \\
\text{H} & : -0.37623800 \ 4.27862200 \ 2.65103900 \\
\text{C} & : -0.98358300 \ 2.98287200 \ 1.05473700 \\
\text{H} & : -0.03174000 \ 2.46745200 \ 1.04680200 \\
\text{C} & : -3.22008100 \ 0.24758200 \ -0.94247000 \\
\text{C} & : -3.92966300 \ 0.15222000 \ 0.26077800 \\
\text{H} & : -3.62302900 \ 0.74975500 \ 1.11369300 \\
\text{C} & : -5.03666200 \ -0.68510400 \ 0.36706200 \\
\text{H} & : -5.58295600 \ -0.73481500 \ 1.30443000 \\
\text{C} & : -5.43597800 \ -1.46131000 \ -0.71795200 \\
\text{H} & : -6.29894800 \ -2.11467300 \ -0.63524600 \\
\text{C} & : -4.72063900 \ -1.39327900 \ -1.91029300 \\
\text{H} & : -5.02381500 \ -1.99466900 \ -2.76172300 \\
\text{C} & : -3.62909400 \ -0.53864200 \ -2.02548100 \\
\text{H} & : -3.08640200 \ -0.48065900 \ -2.96362100 \\
\text{C} & : 1.74239400 \ 0.81108500 \ 1.26939100 \\
\text{C} & : 2.22167000 \ 0.70470700 \ 2.58713500 \\
\text{H} & : 1.69497500 \ 0.04209200 \ 3.27075600 \\
\text{C} & : 3.32505800 \ 1.40635300 \ 3.05563800 \\
\text{H} & : 3.65364300 \ 1.28456600 \ 4.08383200
\end{align*}
\]
REACTION 4
Pathway 1 of reaction 4
As shown in Figure S32, the mechanistic pathway for this reaction can be described in straightforward terms. This pathway involves coordination of PPh$_2$H to the boryl boron atom, followed by a 1,3-proton shift.

![Diagram](image)

Figure 32. Computed mechanism 1 for a net 1,2-hydrophosphination of the borylborylene D1. The transition state computed for phosphine association step (D1 to D2) is not included in the free energy profile as the barrier for this step has an energy just above that of the higher energy intermediate ($\Delta G^\ddagger = 14.3$ kcal/mol).

51) Diborene D1

![Diborene D1](image)

Note: Hydrogens are omitted for clarity.

Number of imaginary frequencies = 0

$E_{\text{total}} = -3773.97767586$ a.u

$G_{\text{correction}} = 0.266486$ a.u

Cartesian coordinates:

Atom	X	Y	Z
Br	0.21442800	-2.62542200	-0.15424700
C	-1.87864800	-0.43614300	-0.10538400
P	0.08249900	2.09884800	-0.03588400
B	-0.31622600	-0.68851400	-0.16962800
52) TSD(1-2)

(Selected hydrogens are omitted for clarity)

Number of imaginary frequencies = 1 (i149.9)

$E_{\text{total}} = -4579.06905149$ a.u
\(G_{\text{correction}} = 0.446618 \text{ a.u.} \)

Cartesian Coordinates:

Atom	X	Y	Z
Br	0.25128100	0.14574100	2.36384600
P	1.31165700	-0.16118000	-0.73798200
C	-0.24727500	2.29379900	0.23122600
B	-0.51174500	0.74928800	-0.55002100
P	-2.73072300	0.89270600	-1.24190200
C	0.46141900	3.13256700	1.10184100
H	0.86528400	2.70519500	2.01363600
B	-1.81069700	-0.07832400	-0.00506400
C	0.65021300	4.48574800	0.84381100
H	0.22186100	-2.49340300	-1.84355900
C	-0.33301900	-1.82517000	-2.49359000
C	0.02127500	-3.86832000	-1.92982400
H	-0.68085300	-4.26547500	-2.65670600
C	0.72031000	-4.73049000	-1.08390000
H	0.56663000	-5.80264800	-1.15947500
C	1.13517600	-1.96639700	-0.92467500
C	0.22186100	-2.49340300	-1.84355900
H	-0.33301900	-1.82517000	-2.49359000
C	0.02127500	-3.86832000	-1.92982400
H	-0.68085300	-4.26547500	-2.65670600
C	0.72031000	-4.73049000	-1.08390000
H	0.56663000	-5.80264800	-1.15947500
C	1.62009800	-4.21136700	-0.16147200
H	2.16859300	-4.87748000	0.49686300
C	1.82615000	-2.83829800	-0.07857000
H	2.53440300	-2.44205300	0.64329600
C	3.12157100	0.07131300	-0.55196100
C	4.00508400	0.05214800	-1.63647600
H	3.62542200	-0.12277100	-2.63918900
C	5.36610900	0.25155600	-1.43815100
H	6.04478800	0.23791000	-2.28539500
C	5.85957100	0.46510300	-0.15256500
H	6.92292800	0.61943000	0.00176300
C	4.98804400	0.48604400	0.93122600
H	5.36873600	0.65781900	1.93306800
C	3.62254000	0.29846600	0.73424100
H	2.93332100	0.33018800	1.57370500
C	-3.28304200	-0.99705900	2.58468500
H	-2.47505700	-0.52856700	3.15194800
H	-3.67195900	-1.86367700	3.12850700
H	-4.07684000	-0.25874100	2.44529400
C	-1.49687200	-2.85163700	1.34221200
H	-1.24049800	-3.38481000	0.42506100
H	-1.97476500	-3.53275900	2.05201500
H	-0.58203900	-2.44336200	1.77559500
C	-4.02383700	-2.23433100	0.10428900
H	-3.69670800	-2.65253600	-0.85026200
H	-4.80507500	-1.49176200	-0.08073000
H	-4.44097900	-3.03218800	0.72420000
Note: Selected hydrogens are omitted for clarity.

Number of imaginary frequencies = 0

\[\text{Number of imaginary frequencies} = 0 \]

\[E_{\text{total}} = -4579.07244061 \text{ a.u} \]

\[G_{\text{correction}} = 0.447562 \text{ a.u} \]

Cartesian coordinates:

Element	X	Y	Z
Br	0.29176200	-0.21656400	2.27923500
P	1.11929500	-0.32546700	-0.75079100
C	0.08178200	2.17366500	0.33305400
B	-0.24857200	0.59641100	0.42221400
P	-2.53421900	1.24409100	-1.25197500
C	0.80056100	2.84959700	1.32859800
H	1.06391700	4.21331800	1.26360800
C	1.62158200	4.69465900	2.06176000
P	-2.76107900	-1.19291500	0.72434100
C	0.60478800	4.95608900	0.18299900
H	0.79810000	6.02256600	0.11882600
C	-0.38223600	2.94725400	-0.75646100
C	-0.12022500	4.31753700	-0.81607100
H	-0.49250800	4.89298800	-1.66061100
C	-1.19062300	2.32990100	-1.87730600
H	-0.56955000	1.69714400	-2.52187500
H	-1.62344800	3.10858600	-2.51399800
C	0.93268300	-2.12890100	-0.83235000
C	0.15767800	-2.71635200	-1.83439000
H	-0.31994900	-2.09103200	-2.58123400
C	-0.02050900	-4.09627200	-1.85991100
H	-0.61720400	-4.54881000	-2.64559000
C 0.55956400 -4.89191300 -0.87568900
H 0.41690200 -5.96783200 -0.89377900
C 1.32195000 -4.30706000 0.13205800
H 1.77079900 -4.92454900 0.90322100
C 1.51298800 -2.92984200 0.15348800
H 1.97129200 -2.47555000 0.94352800
C 3.17543000 -0.35174100 -0.61268500
C 4.18173000 -0.00720900 -1.75440000
H 3.28927800 -0.15333500 -2.73681000
C 5.09673700 0.22129200 -1.64086600
H 5.71536600 0.25416700 -2.53217700
C 5.66834100 0.40817500 -0.38474600
H 6.73515500 0.58704500 -0.29482400
C 4.87061400 0.37041500 0.75456700
H 5.31300400 0.52210700 1.73386100
C 3.50161300 0.14882800 0.64504700
H 2.87385700 0.12433600 1.53074400
C -3.36415300 -0.70434300 2.39804500
H -2.49150400 -0.40070200 2.98105000
H -3.89414400 -1.51414200 2.91059700
H -4.02441600 0.16084300 2.29410400
C -1.98057900 -2.81052500 1.07527800
H -1.77112800 -3.32547500 0.13603300
H -2.62222400 -3.42934000 1.70920400
H -1.03373200 -2.61920200 1.58396200
C -4.32594800 -1.64244700 -0.12241400
H -4.10291300 -2.08493800 -1.09539100
H -4.93861000 -0.74883800 -0.27125500
H -4.89615200 -2.35533600 0.47910800
C -3.75564800 2.47546300 -0.59936500
H -4.62840200 1.94835700 -0.20226800
C -3.39926300 0.70543600 -2.78695400
H -3.72050900 1.56194800 -3.38808300
H -4.08723400 3.19007900 -1.36033100
H -3.27550600 3.01239200 0.22229200
H -2.72473000 0.07501600 -3.36996300
H -4.27993300 0.11311200 -2.52435700
H 0.90716500 0.04360700 -2.08981500
Number of imaginary frequencies = 1 (ω1119.9)

\[E_{\text{total}} = -4579.04735622 \text{ a.u} \]

\[G_{\text{correction}} = 0.445249 \text{ a.u} \]

Cartesian coordinates:

Atom	X	Y	Z
Br	-0.11968600	-2.42220600	1.45914700
P	1.07144700	-0.37376200	-0.81148900
C	-0.17261000	0.61809900	1.79959500
B	-0.32265400	-0.49778600	0.64498400
P	-2.55151700	1.14826900	-0.33829300
C	0.56328600	0.34685400	2.96523400
H	0.99314300	-0.64265000	3.08200100
B	-1.55581100	-0.38746000	-0.55972900
C	0.75228100	1.28322600	3.97340300
H	1.33626800	1.02251900	4.85132200
P	-2.47671900	-1.89905700	-1.10643900
C	0.18130600	2.54555700	3.85850400
H	0.30759200	3.28760100	4.64108900
C	-0.73811200	1.91015200	1.69995500
C	-0.56318600	2.84414300	2.72635600
H	-1.01496800	3.82859700	2.62685700
C	-1.50020200	2.39351000	0.48220800
H	-0.80445600	2.74463200	-0.28683300
H	-2.13485900	3.24682900	0.74621100
C	2.86671100	-0.83586100	-0.71480100
C	3.86150600	-0.21295700	-1.47902100
H	3.60904500	0.63493100	-2.10919400
C	5.17579800	-0.66326200	-1.42570600
H	5.93968700	-0.17056900	-2.01982400
C	5.51428600	-1.73781800	-0.60601100
H	6.54210200	-2.08481900	-0.56058200
C	4.53133000	-2.36507500	0.15375300
H	4.79014600	-3.20167700	0.79559300
C	3.21278800	-1.92485100	0.09408300
Note: Selected hydrogens are omitted for clarity.

Number of imaginary frequencies = 0

$E_{total} = -4579.13418990 \text{ a.u.}$

$G_{correction} = 0.449264 \text{ a.u.}$
Cartesian coordinates:

Atom	X	Y	Z
Br	-0.54706200	-0.03685900	-2.03845400
P	-1.21157800	0.07884100	1.25002400
C	0.63259900	2.01392000	-0.13047200
B	0.19718400	0.43957600	-0.12834200
P	2.80649800	0.37002000	1.29788600
C	0.37613100	2.88981200	-1.19832200
H	-0.11300100	2.49213300	-2.08116800
B	1.50866000	-0.67655900	0.36407500
H	1.19733200	-1.47595500	1.22345100
C	0.72265900	4.23630000	-1.17254800
H	1.50866000	-0.67655900	0.36407500
C	0.37613100	2.88981200	-1.19832200
H	-0.11300100	2.49213300	-2.08116800
C	1.32705500	2.57842700	0.96673300
C	1.68379500	3.92806000	0.99302900
H	2.21512400	4.32115800	1.85702800
C	1.81970200	1.69022100	2.08599900
H	0.99774000	1.19112900	2.61341000
H	1.19733200	-1.47595500	1.22345100
C	-0.52171000	-2.31196900	2.75390600
H	-1.24857800	-4.02463800	1.67546700
H	-0.84638800	-4.73773800	2.38971000
C	-1.96572600	-4.47187800	0.56966800
H	-2.11920900	-5.53506200	0.40994600
C	-2.50177100	-3.54384600	-0.32107000
H	-3.07100800	-3.83393000	-1.18152100
C	-2.31097200	-2.18155400	-0.11703000
H	-2.71693700	-1.46729600	-0.82435700
H	-2.81407300	0.81092800	0.70746100
C	-4.00236800	0.33705900	1.28272000
H	-3.96090300	-0.48035600	1.99777200
C	-5.23353600	0.88697500	0.94813000
H	-6.13893800	0.49651200	1.40371800
C	-5.30567200	1.93674000	0.03512000
H	-6.26580300	2.37207000	-0.22494900
C	-4.13538900	2.42326300	-0.53566400
H	-4.17681200	3.23978500	-1.25067500
C	-2.90295600	1.86269400	-0.20865400
H	-2.00655800	2.25985200	-0.66622900
C	2.77626400	-1.04519500	-2.51516600
H	1.93513400	-0.45763900	-2.89046400
H	3.08038800	-1.78973900	-3.25484500
C	3.61677500	-0.37893100	-2.30360500
C	1.00422100	-3.11190300	-1.39524000
H	0.71579300	-3.63960000	-0.48181900
H	1.40840200	-3.81399200	-2.12877400
H	0.12069500	-2.60578400	-1.78788200
C	3.68851600	-2.78736900	-0.40367300
Opposite 1,2-hydrophosphination path using borylborylene D1
While the 1,2-hydrophosphinated product obtained experimentally complies with the computed partial charges argument and places the phosphinyl unit on the boryl boron atom and the hydride substituent on the borylene boron atom, we wanted to compare this to the inverse situation, with the phosphinyl unit ultimately bound to the borylene boron atom and the hydride substituent on the boryl boron atom. The computed free energy profile, as shown in Figure S33, shows a free energy barrier of 47.9 kcal/mol, which in comparison to the computed feasible pathway is 20.4 kcal/mol higher in energy. This strongly suggests that hydrophosphination outcomes are dictated by the partial charge distribution.

Figure S33. Computed pathway for the contrasting 1,2-hydrophosphination of borylborylene D1.

Note: Details of species C1 are provided above in Pathway 1 of reaction 4.
Number of imaginary frequencies = 1 (i/1119.9)

\[E_{\text{total}} = -4579.00598522 \text{ a.u} \]

\[G_{\text{correction}} = 0.443134 \text{ a.u} \]

Cartesian coordinates:

\[
\begin{align*}
\text{B} & \quad 0.99666300 & -0.49517700 & 0.79799300 \\
\text{P} & \quad 1.71820800 & 0.77148200 & 1.98885400 \\
\text{B} & \quad 1.27576300 & 0.02202300 & -0.74272700 \\
\text{P} & \quad -1.37292000 & 0.67532200 & 0.13629400 \\
\text{C} & \quad 2.84885000 & 2.08291600 & -0.15811900 \\
\text{C} & \quad 1.99312400 & 1.42468800 & -1.06453400 \\
\text{C} & \quad 3.40502700 & 3.32619500 & -0.47176500 \\
\text{H} & \quad 4.06046200 & 3.81638600 & 0.24463400 \\
\text{C} & \quad 1.75154800 & 2.07004300 & -2.28655200 \\
\text{H} & \quad 1.10357600 & 1.57781300 & -3.00693900 \\
\text{C} & \quad 2.30830700 & 3.30166300 & -2.60454700 \\
\text{H} & \quad 2.09244400 & 3.76643400 & -3.56191700 \\
\text{C} & \quad 3.14187700 & 3.93829200 & -1.68989100 \\
\text{H} & \quad 3.58268300 & 4.90331600 & -1.92025300 \\
\text{C} & \quad 3.20467600 & 1.46481900 & 1.18110300 \\
\text{H} & \quad 3.67812800 & 2.20217100 & 1.83899300 \\
\text{H} & \quad 3.90387400 & 0.62909200 & 1.05297500 \\
\text{H} & \quad -0.07492800 & 0.41943200 & -0.98975700 \\
\text{C} & \quad -3.07559200 & 1.48759500 & 0.21517700 \\
\text{C} & \quad -3.10817400 & 2.71249700 & 0.89746800 \\
\text{C} & \quad -4.25587700 & 1.05906100 & -0.41047300 \\
\text{C} & \quad -4.27168300 & 3.47077200 & 0.97781000 \\
\text{H} & \quad -2.19919900 & 3.07796900 & 1.37219700 \\
\text{C} & \quad -5.41885800 & 1.81961600 & -0.34660400 \\
\text{H} & \quad -4.26659100 & 0.11845100 & -0.95284700 \\
\text{H} & \quad -5.43286800 & 3.02383100 & 0.35369600 \\
\text{H} & \quad -4.27287300 & 4.41146500 & 1.52083000 \\
\text{H} & \quad -6.32028600 & 1.46952700 & -0.84124500 \\
\text{H} & \quad -6.34393200 & 3.61215700 & 0.40831300 \\
\text{C} & \quad -2.02250700 & -0.99308700 & -0.33532300 \\
\text{C} & \quad -1.84829100 & -1.54322300 & -1.60824400
\end{align*}
\]
C -2.81056700 -1.70007500 0.58714300
C -2.42860100 -2.76594200 -1.94324600
H -1.22400000 -1.03312500 -2.33371900
C -3.40246400 -2.91230000 0.25093600
H -2.97794500 -1.27907300 1.57525500
C -3.21030200 -3.45220400 -1.02071000
H -2.26913700 -3.17902900 -2.93454700
H -4.01440600 -3.43675100 0.97898500
P 1.17145500 -2.31832100 1.22196400
Br 1.68450900 -1.34187400 -2.21538300
C 0.23278600 -3.48288800 0.19185600
H -0.83021800 -3.40782500 0.42117200
H 0.39542500 -3.23597200 -0.85707900
H 0.58725900 -4.49598500 0.40148800
C -3.02304400 -2.86797700 1.01626900
H 3.02304400 -3.93947900 -0.02252700
H -2.29518300 -2.95032100 1.67542600
C 0.71349200 -2.82574800 2.90229000
H -3.90956500 3.02479400
H 1.35003200 -2.34472600 3.66390700
H -2.54013800 -3.10053000
C -2.24849000 -2.74775100 3.84493000
H 0.45712100 -2.74775100 1.45166400
H -0.19410000 -2.95032100 2.89395200
H -1.70007500 -1.03312500 -1.94324600
C 2.10895000 -0.21402000 -3.63076000
H -3.10599100 -0.61342800 -3.52072700
H -4.01440600 -3.43675100 0.97898500
Note: Selected hydrogens are omitted for clarity.

57) D4 (oppositely hydrophosphinated product)

Number of imaginary frequencies = 0

E_{total} = -4579.12623618 a.u

G_{correction} = 0.451955 a.u

Cartesian coordinates:
Crystallographic Details

The crystal data of **Compound 5** were collected on a **BRUKER X8-APEX II** diffractometer with a CCD area detector and multi-layer mirror monochromated MoKα radiation. The structure was solved using the intrinsic phasing method, refined with the SHELXL program and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms except H1 were assigned to idealised positions. The coordinates of H1 were refined freely.

The crystal data of **Compound 6** were collected on a **BRUKER X8-APEX II** diffractometer with a CCD area detector and multi-layer mirror monochromated MoKα radiation. The structure was solved using the intrinsic phasing method, refined with the SHELXL program and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms except H1 were assigned to idealised positions. The coordinates of H1 were refined freely.

The crystal data of **Compound 7** were collected on a **BRUKER D8 QUEST** diffractometer with a CMOS area detector and multi-layer mirror monochromated MoKα radiation. The structure was solved using the intrinsic phasing method, refined with the SHELXL program and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms except H1 were assigned to idealised positions. The coordinates of H1 were refined freely. The structure was refined using the TWIN keyword (matrix: TWIN). The BASF parameter was refined to 3%.

The crystal data of **Compound 8** were collected on a **BRUKER D8 QUEST** diffractometer with a CMOS area detector and multi-layer mirror monochromated MoKα radiation. The structure was solved using the intrinsic phasing method, refined with the SHELXL program and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms except H1 were assigned to idealised positions. The coordinates of H1 were refined freely.

The crystal data of **Compound 10** were collected on a **BRUKER D8 QUEST** diffractometer with a CMOS area detector and multi-layer mirror monochromated MoKα radiation. The structure was solved using the intrinsic phasing method, refined with the SHELXL program and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms except H1 were assigned to idealised positions. The coordinates of H1 were refined freely.

The unit cell contains one hexane molecule that was treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON.
References

1. T. E. Stennett, J. D. Mattock, L. Pentecost, A. Vargas and H. Braunschweig, Angew. Chem. Int. Ed., 2018, 57, 15276-15281.
2. T. E. Stennett, J. D. Mattock, I. Vollert, A. Vargas and H. Braunschweig, Angew. Chem. Int. Ed., 2018, 57, 4098-4102.
3. M. Arrowsmith, J. Böhnke, H. Braunschweig, M. A. Celik, T. Dellermann and K. Hammond, Chem. Eur. J., 2016, 22, 17169-17172.
4. G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Journal, 2015, Gaussian, Revision E.01.
5. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615-6620.
6. L. Goerigk and S. Grimme, Phys. Chem. Chem. Phys., 2011, 13, 6670-6688.
7. J. Baker, J. Comput. Chem., 1986, 7, 385-395.
8. A. Jayaraman, G. M. Berner, L. M. Mihichuk and A. L. L. East, *J. Mol. Catal. A - Chem.*, 2011, **351**, 143-153.

9. A. Jayaraman and A. L. L. East, *J. Org. Chem.*, 2012, **77**, 351-356.

10. A. Jayaraman, H. Powell-Davies and F. G. Fontaine, *Tetrahedron*, 2019, **75**, 2118-2127.

11. S. Nilewar, A. Jayaraman and B. T. Sterenberg, *Organometallics*, 2018, **37**, 4699-4710.

12. A. L. L. East, G. M. Berner, A. D. Morcom and L. Mihichuk, *J. Chem. Theory Comput.*, 2008, **4**, 1274-1282.

13. A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B*, 2009, **113**, 6378-6396.

14. J. P. Wagner and P. R. Schreiner, *Angew. Chem. Int. Ed.*, 2015, **54**, 12274-12296.

15. G. M. Sheldrick, *Acta Crystallogr. A*, 2015, **71**, 3-8.

16. G. M. Sheldrick, *Acta Crystallogr. A*, 2008, **64**, 112-122.

17. A. L. Spek, *Acta Crystallogr. C*, 2015, **C71**, 9-18.