30-Day Outcomes of Children and Adolescents With COVID-19: An International Experience

Talita Duarte-Salles, David Vizcaya, Andrea Pistillo, Paula Casajust, Anthony G. Sena, Lana Yin Hui Lai, Albert Prats-Uribe, Waheed-Ul-Rahman Ahmed, Thamir M Alshammar, Heba Alghoul, Osaid Alser, Edward Burn, Seng Chan You, Carlos Areia, Clair Blacketer, Scott DuVall, Thomas Falconer, Sergio Fernandez-Bertolin, Stephen Fortin, Asieh Golozar, Mengchun Gong, Eng Hooi Tan, Vojtech Huser, Pablo Iveli, Daniel R. Morales, Fredrik Nyberg, Jose D. Posada, Martina Recalde, Elena Roel, Lisa M. Schilling, Nigam H. Shah, Karishma Shah, Marc A. Suchard, Lin Zhang, Ying Zhang, Andrew E. Williams, Christian G. Reich, George Hripcsak, Peter Rijnbeek, Patrick Ryan, Kristin Kostka, Daniel Prieto-Alhambra

DOI: 10.1542/peds.2020-042929

Journal: Pediatrics

Article Type: Regular Article

Citation: Duarte-Salles T, Vizcaya D, Pistillo A, et al. 30-day outcomes of children and adolescents with COVID-19: an international experience. Pediatrics. 2021; doi: 10.1542/peds.2020-042929

This is a prepublication version of an article that has undergone peer review and been accepted for publication but is not the final version of record. This paper may be cited using the DOI and date of access. This paper may contain information that has errors in facts, figures, and statements, and will be corrected in the final published version. The journal is providing an early version of this article to expedite access to this information. The American Academy of Pediatrics, the editors, and authors are not responsible for inaccurate information and data described in this version.
30-Day Outcomes of Children and Adolescents With COVID-19: An International Experience

Talita Duarte-Salles1*, David Vizcaya2, Andrea Pistillo1, Paula Casajust3, Anthony G. Sena4,5, Lana Yin Hui Lai6, Albert Prats-Uribe7, Waheed-Ul-Rahman Ahmed7,8, Thamir M Alshammari9, Heba Alghoul10, Osaid Alser11, Edward Burn1,7, Seng Chan You12, Carlos Areia13, Clair Blacketer4,5, Scott DuVall14,15, Thomas Falconer16, Sergio Fernandez-Bertolin1, Stephen Fortin4, Asieh Golozar17,18, Mengchun Gong19, Eng Hooi Tan7, Vojtech Huser20, Pablo Iveli21, Daniel R. Morales22, Fredrik Nyberg23, Jose D. Posada24, Martina Recalde1,25, Elena Roel1, Lisa M. Schilling26, Nigam H. Shah24, Karishma Shah7, Marc A. Suchard27, Lin Zhang28,29, Ying Zhang19, Andrew E. Williams30, Christian G. Reich31, George Hripcsak16, Peter Rijnbeek5, Patrick Ryan4,16, Kristin Kostka31, Daniel Prieto-Alhambra7

AFFILIATIONS

1. Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
2. Bayer Pharmaceuticals, Sant Joan Despi, Spain
3. Real-World Evidence, Trial Form Support, Barcelona, Spain
4. Janssen Research & Development, Titusville, NJ, USA
5. Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
6. School of Medical Sciences, University of Manchester, UK
7. Centre for Statistics in Medicine (CSM), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDROMS), University of Oxford, UK
8. College of Medicine and Health, University of Exeter, St Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK
9. Medication Safety Research Chair, King Saud University, Saudi Arabia
10. Faculty of Medicine, Islamic University of Gaza, Palestine
11. Massachusetts General Hospital, Harvard Medical School, USA
12. Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea
13. Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
14. Department of Veterans Affairs, Salt Lake City, UT, US
15. University of Utah School of Medicine, Salt Lake City, UT, US
16. Department of Biomedical Informatics, Columbia University, New York, NY, US
17. Regeneron Pharmaceutical, NY USA
18. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, MD USA
19. DHC Technologies Co. Ltd. Beijing, China
20. Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
21. Bayer AG, Wuppertal, Germany
22. Division of Population Health and Genomics, University of Dundee, UK
23. School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
24. Department of Medicine, Stanford University, USA
25. Universitat Autònoma de Barcelona, Spain
26. Data Science to Patient Value Program, Department of Medicine, University of Colorado Anschutz Medical Campus, US
27. Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, USA
28. School of Population Medicine and Public Health, Peking Union Medical College and Chinese Academy of Medical Sciences, China
29. Melbourne School of Population and Global Health, The University of Melbourne, Australia
30. Tufts Institute for Clinical Research and Health Policy Studies, US
31. Real World Solutions, IQVIA, Cambridge, MA, USA

Corresponding author
Talita Duarte-Salles
Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol)
Gran Via Corts Catalanes, 587 àtic
08007 Barcelona - Spain
Tel: +34935824342
Email: tduarte@idiapjgol.org

Key words: COVID-19; pediatrics; hospital admission; symptoms; fatality

Conflict of Interest Disclosures: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: David Vizcaya reports personal fees from Bayer, outside the submitted work, and full-time employment at Bayer. Asieh Golozar reports personal fees from Regeneron Pharmaceuticals, outside the submitted work; and she a full-time employee at Regeneron Pharmaceuticals. George Hripcsak reports grants from US National Library of Medicine, during the conduct of the study; grants from Janssen Research, outside the submitted work. Anthony G. Sena reports personal fees from Janssen Research & Development, during the conduct of the study; personal fees from Janssen Research & Development, outside the submitted work. Stephen Fortin is an employee of Janssen, Research and Development, a subsidiary of Johnson & Johnson. Clair Blacketer is an employee of Janssen Research & Development and holds stock and stock option in the company. Patrick Ryan is an employee of Janssen Research and Development and shareholder of Johnson & Johnson. Kristin Kostka and Christian G. Reich report being employees of IQVIA. Marc A. Suchard reports grants from US National Institutes of Health, grants from Department of Veterans Affairs, during the conduct of the study; grants from IQVIA, personal fees from Janssen Research and Development, outside the submitted work. Daniel Prieto-Alhambra reports grants and other from AMGEN, grants, non-financial support and other from UCB Biopharma, grants from Les...
Laboratoires Servier, outside the submitted work; and Janssen, on behalf of IMI-funded EHDEN and EMIF consortia, and Synapse Management Partners have supported training programs organized by Daniel Prieto-Alhambra's department and open for external participants. Fredrik Nyberg was an employee of AstraZeneca until 2019 and holds some AstraZeneca shares. Scott DuVall received grants from Anolinx LLC, Astellas Pharma, AstraZeneca Pharmaceuticals LP, Boehringer Ingelheim International GmbH, Celgene Corporation, Eli Lilly and Company, Genentech Inc., Genomic Health, Inc., Gilead Sciences Inc., GlaxoSmithKline PLC, Innocrin Pharmaceuticals Inc., Janssen Pharmaceuticals, Inc., Kantar Health, Myriad Genetic Laboratories, Inc., Novartis International AG, Parexel International Corporation, outside the submitted work. The views expressed are those of the authors and do not necessarily represent the views or policy of the Department of Veterans Affairs or the United States Government. No other relationships or activities that could appear to have influenced the submitted work.

Funding: The European Health Data & Evidence Network has received funding from the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 806968. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA. This research received partial support from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, and IQVIA. The University of Oxford received funding related to this work from the Bill & Melinda Gates Foundation (Investment ID INV-016201 and INV-019257). The IDIAPJGol received funding from the Health Department from the Generalitat de Catalunya with a grant for research projects on SARS-CoV-2 and COVID-19 disease organized by the Direcció General de Recerca i Innovació en Salut. DPA received funding from the NIHR Academy in the form of an NIHR Senior Research Fellowship. WURA reports funding from the NIHR Oxford Biomedical Research Centre (BRC), Aziz Foundation, Wolfson Foundation, and the Royal College Surgeons of England. DRM is supported by a Wellcome Trust Clinical Research Development Fellowship (Grant 214588/Z/18/Z).

Role of Funder/Sponsor: No funders had a direct role in this study. The views and opinions expressed are those of the authors and do not necessarily reflect those of the NIHR Academy, NIHR, Department of Veterans Affairs or the United States Government, NHS, or the Department of Health, England.

Data sharing statement: Analyses were performed locally in compliance with all applicable data privacy laws. Although the underlying data is not readily available to be shared, authors contributing to this paper have direct access to the data sources used in this study. All results (e.g. aggregate statistics, not presented at a patient-level with redactions for minimum cell count) are available for public inquiry. These results are inclusive of site-identifiers by contributing data sources to enable interrogation of each contributing site. All analytic code and result sets are made available at: https://github.com/ohdsi-studies/Covid19CharacterizationCharybdis

Ethical approval: All the data partners received Institutional Review Board (IRB) approval or exemption. STARR-OMOP had approval from IRB Panel #8 (RB-53248) registered to Leland Stanford Junior University under the Stanford Human Research Protection Program (HRPP). The
use of VA data was reviewed by the Department of Veterans Affairs Central IRB, was determined to meet the criteria for exemption under Exemption Category 4(3), and approved for Waiver of HIPAA Authorization. The IRB number for use of HIRA data was AJIB-MED-EXP20-065. The research was approved by the Columbia University Institutional Review Board as an OHDSI network study. The use of SIDIAP was approved by the Clinical Research Ethics Committee of the IDIAPJGol (project code: 20/070-PCV). The use of CPRD was approved by the Independent Scientific Advisory Committee (ISAC) (protocol number 20_059RA2). The use of IQVIA-OpenClaims, IQVIA-LPD-France, and IQVIA-DA-Germany were exempted from IRB approval.

Acknowledgments: We would like to acknowledge the patients who suffered from or died of this devastating disease, and their families and carers. We would also like to thank the healthcare professionals involved in the management of COVID-19 during these challenging times, from primary care to intensive care units.

Abbreviations: acute respiratory disease syndrome (ARDS), Anatomical Therapeutic Chemical (ATC), Characterizing Health Associated Risks, and Your Baseline Disease In SARS-COV-2 (CHARYBDIS), Clinical Practice Research Datalink (CPRD), Colorado University Anschu Medical Campus Health Data Compass (CU-AMC HDC), Columbia University Irving Medical Center (CUIMC), Common Data Model (CDM), coronavirus disease 2019 (COVID-19), Daegu Catholic University Medical Center (DCMC), Data Analyzer (DA), electronic health records (EHRs), Health Insurance Review & Assessment Service (HIRA), Information System for Research in Primary Care (SIDIAP), Integrated Primary Care Information (IPCI), intensive care unit (ICU), Institutional Review Board (IRB), Longitudinal Patient Data (LPD), multi-system inflammatory syndrome in children (MIS-C), Nanfang Hospital COVID-19 Research Database (NFHCRD), Observational Medical Outcomes Partnership (OMOP), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Standardized mean differences (SMD), STAnford medicine Research data Repository (STARR-OMOP), Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT), Tufts Research Data Warehouse (TRDW), United States (US), Department of Veterans Affairs (VA-OMOP)

Article summary
This study comprehensively characterizes a large international cohort of pediatric and adolescent COVID-19 patients, and almost 2 million with previous seasonal influenza across 5 countries.

What’s known on this subject
Most COVID-19 studies were targeted at adults, and data concerning children and adolescents are limited. Clinical manifestations of COVID-19 are generally milder in the pediatric population compared with adults, and hospitalization for COVID-19 affects mostly children with pre-existing comorbidities.
What this study adds
Complications including hospitalization, hypoxemia and pneumonia were more frequent in children/adolescents with COVID-19 than with influenza. Dyspnea, anosmia and gastrointestinal symptoms could help differential diagnosis. A wide range of medications were used for the inpatient management of pediatric COVID-19.

Contributors’ statement
Talita Duarte-Salles, Albert Prats-Uribe, Patrick Ryan, Kristin Kostka, Daniel Prieto-Alhambra prepared the original protocol and conceived the study design, supervised data analyses, conducted the literature search, and led the writing of the manuscript; David Vizcaya, Paula Casajust drafted and reviewed and revised the manuscript; Andrea Pistillo produced the figures and tables and reviewed and revised the manuscript; Anthony G. Sena, Clair Blacketer, Seng Chan You; Scott DuVall, Thomas Falconer, Sergio Fernandez-Bertolin, Stephen Fortin, Jose D. Posada, Lisa M. Schilling, Andrew E. Williams, analyzed the data and reviewed and revised the manuscript; Edward Burn, Christian G. Reich, George Hripcsak, Peter Rijnbeek, Marc A. Suchard, prepared the original protocol and conceived the study design, and reviewed and revised the manuscript; Lana Yin Hui Lai, Waheed-Ul-Rahman Ahmed, Thamir M Alshammari, Heba Alghoul, Osaid Alser, Carlos Areia, Asieh Golozar, Mengchun Gong, Eng Hooi Tan, Vojtech Huser, Pablo Iveli, Daniel R. Morales, Fredrik Nyberg, Martina Recalde, Elena Roel, Nigam H. Shah, Karishma Shah, Lin Zhang, Ying Zhang, assisted with the literature review and writing of the manuscript and reviewed and revised the manuscript; and all authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.
ABSTRACT

Objectives: To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children/adolescents diagnosed or hospitalized with COVID-19, and to compare them in secondary analyses with patients diagnosed with previous seasonal influenza in 2017-2018.

Methods: International network cohort using real-world data from European primary care records (France/Germany/Spain), South Korean claims and US claims and hospital databases. We included children/adolescents diagnosed and/or hospitalized with COVID-19 at age <18 between January and June 2020. We described baseline demographics, comorbidities, symptoms, 30-day in-hospital treatments and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome (ARDS), multi-system inflammatory syndrome (MIS-C), and death.

Results: A total of 242,158 children/adolescents diagnosed and 9,769 hospitalized with COVID-19, and 2,084,180 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were more common among hospitalized vs diagnosed with COVID-19. Dyspnea, bronchiolitis, anosmia and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital prevalent treatments for COVID-19 included repurposed medications (<10%), and adjunctive therapies: systemic corticosteroids (6.8%-7.6%), famotidine (9.0%-28.1%), and antithrombotics such as aspirin (2.0%-21.4%), heparin (2.2%-18.1%), and enoxaparin (2.8%-14.8%). Hospitalization was observed in 0.3% to 1.3% of the COVID-19 diagnosed cohort, with undetectable (N<5 per database) 30-day fatality. Thirty-day outcomes including pneumonia and hypoxemia were more frequent in COVID-19 than influenza.

Conclusions: Despite negligible fatality, complications including hospitalization, hypoxemia and pneumonia were more frequent in children/adolescents with COVID-19 than with influenza. Dyspnea, anosmia and gastrointestinal symptoms could help differentiate diagnoses. A wide range of medications was used for the inpatient management of pediatric COVID-19.
INTRODUCTION

Since January 2020, a growing number of infections by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented pressure on healthcare systems worldwide. COVID-19 affects all age groups, with pediatric population representing 3.7% of reported cases.\(^1\)

Despite children/adolescents being more susceptible to certain infectious diseases due to their developing immune system,\(^2\) clinical manifestations of COVID-19 are generally milder in the pediatric population,\(^3,4\) with better outcomes and lower mortality rates than adults.\(^5\) Nevertheless, there is evidence of children/adolescents with COVID-19 requiring hospitalization and intensive care unit (ICU)-level care. Reports from the United States (US) or China revealed that a low number of pediatric COVID-19 cases were hospitalized (5.7%)\(^6\) or admitted to the ICU (1.8%)\(^7\), respectively. A study conducted in 25 European countries, on the other hand, found that in a sample of 582 children/adolescents, 63% were hospitalized.\(^8\) Since the data included in this last study was limited to April 2020, the high admission rate reported could reflect temporal trends in testing availability as only the most ill children might have been tested during this period.

To date, most clinical guidelines recommend supportive care as the mainstay of therapy in children,\(^9-11\) but there is little data to recommend or reject the use of specific immunomodulatory drugs or antivirals, particularly from clinical trials in the pediatric population.\(^12\) It also remains to be elucidated whether children/adolescents show a different clinical presentation.\(^13\) We conducted a literature review for articles published in PubMed and Medrxiv between December 2019 and June 2020 that reported on patients with a confirmed COVID-19 diagnosis. Of the 1320 studies that met the inclusion criteria, only 79 studies were on children/adolescents, most of which (63%) were local case reports or case series. This compellingly demonstrates a large
remaining gap in existing efforts to define the characteristics of the pediatric population in a real-world setting at a large scale.

In this study, we aimed to describe the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes of children/adolescents diagnosed or hospitalized with COVID-19 in the US, Europe and Asia. In addition, we compared these cohorts with children/adolescents diagnosed with seasonal influenza in 2017-2018 as a benchmark in a secondary analysis.

METHODS

Study design, setting and data sources

This study is part of the Characterizing Health Associated Risks, and Your Baseline Disease In SARS-COV-2 (CHARYBDIS) study, a large-scale multinational cohort study using routinely-collected primary care and hospital EHRs, hospital billing data and insurance claims data from the US, Europe (the Netherlands, Spain, the UK, Germany and France) and Asia (South Korea and China).

From the nineteen databases contributing data to CHARYBDIS, only those with data on patients below the age of 18 years with a clinical diagnosis of COVID-19 or a SARS-CoV-2 positive test between January and June 2020 were included. A cohort of children/adolescents diagnosed with seasonal influenza in 2017-2018 was included for comparison.

To be included in the study, databases had to have a minimum of 140 children/adolescents). This cut-off was deemed necessary to estimate with sufficient precision (confidence interval width of ±5%) the prevalence of a previous condition or 30-day risk of an outcome affecting 10% of the
study population. Data results for this paper were extracted from CHARYBDIS results on the 1st of October 2020. Figure 1 represents the selection process of the databases for this study. Eleven databases fulfilled the inclusion criteria: STARR-OMOP (US), CU-AMC HDC (US), HealthVerity (US), CUIMC (US), OPTUM-EHR (US), PREMIER (US), IQVIA-OpenClaims (US), IQVIA-LPD France (France), IQVIA-DA Germany (Germany), SIDIAP (Spain), HIRA (South Korea). Among these, five databases contributed to the hospitalized cohort: PREMIER, OPTUM-EHR, IQVIA-OpenClaims, CUIMC, HIRA; and three were national claims databases: HealthVerity, HIRA; and IQVIA-OpenClaims. A more detailed description of the included data sources is available in eTable 1.

Study participants and follow-up

Two non-mutually exclusive cohorts were included: 1) children/adolescents with COVID-19 diagnosis or a SARS-CoV-2 positive test (index date was the first of the two events), 2) children/adolescents hospitalized (index date was hospitalization date), with COVID-19 diagnosis or a SARS-CoV-2 positive test 21 days before or after hospitalization date. A similar diagnosed cohort of children/adolescents with seasonal influenza diagnosis or positive influenza test in 2017-2018 was also included. Study participants could contribute information to all cohorts (diagnosed or hospitalized with COVID-19, or diagnosed with influenza). Individuals diagnosed with COVID-19 could be part of the hospitalized cohort if COVID-19 was diagnosed during or at the time or 21 days before hospitalization. Cohort participants were followed in each cohort from the index date to the earliest of death, end of the observation period, or 30 days after. The codes used to identify COVID-19 are described in eTable 2. In order to describe history of comorbidities, only participants with at least 365 days of prior observation before index date
were included. Children below age one were excluded from the cohorts databases for which we requiring 365 days of prior observation.

Baseline characteristics, symptoms, drug use and outcomes of interest

Baseline information on age at index date and conditions up to 1 year before index date were identified. Conditions were ascertained based on the Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT) hierarchy, with all descendant codes included. Detailed definitions of each condition can be consulted in eTable 2.

Symptoms recorded at index date included fever, cough, dyspnea, malaise or fatigue, myalgia, anosmia or hyposmia or dysgeusia, gastrointestinal tract symptoms, diarrhea, vomits and nausea. All drugs prescribed/dispensed during the 30-days follow-up after the index date were ascertained. Individual medications were categorized using Anatomical Therapeutic Chemical (ATC) groupings. For the study of medications potentially used for COVID-19, we assessed all medications included in at least two randomized controlled trials. The list was further enriched with suggestions from key stakeholders including regulatory agencies, key opinion leaders, and pharma industry. Medicines of interest were grouped into: 1) repurposed medications- those with alternative indications but believed to be efficacious as antivirals, 2) adjuvant therapies - used allegedly for the treatment or prevention of COVID-19 complications. All conditions and medications and additional time windows (a month prior and on index date) are reported in full and are available in an interactive website:

https://data.ohdsi.org/Covid19CharacterizationCharybdis/.
The 30-day outcomes described in the diagnosed cohorts included hospitalization, death, pneumonia, and multi-system inflammatory syndrome in children (MIS-C, Kawasaki disease, or toxic shock syndrome). In the hospitalized cohorts, we additionally report sepsis, total cardiovascular disease events, acute respiratory disease syndrome (ARDS), cardiac arrhythmia, and bleeding. The definition of each outcome is provided in eTable 2.

We used the OHDSI Cohort Diagnostics to assess the fitness of use of each comorbidity per database. This tool represents the codes used for the definition of each condition and the prevalence of these conditions by sex, age groups and calendar year for each database. Results from cohort diagnostics of the definitions of COVID-19, seasonal influenza, and comorbidities are publicly available at: https://data.ohdsi.org/Covid19CharacterizationCharybdisDiagCovid/; https://data.ohdsi.org/Covid19CharacterizationCharybdisDiagInfluenza/; https://data.ohdsi.org/Covid19CharacterizationCharybdisDiagFeature/ and https://data.ohdsi.org/Covid19CharacterizationCharybdisDiagStrata/.

Statistical analyses

All data were standardized to the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). A common analytical code for the CHARYBDIS study was developed for the OHDSI Methods library which was run locally in each database. Only aggregate results from each database were publicly shared. The CHARYBDIS protocol and source code can be found at https://github.com/ohdsi-studies/Covid19CharacterizationCharybdis. Results were extracted from CHARYBDIS on October 1st 2020.
Demographics, history of comorbidities, symptoms and outcomes were summarized as proportions, calculated by dividing the number of people within a given category by the total number of people in each specific cohort. The proportion of users of each medication was determined for the hospitalized children/adolescents as the percentage of subjects who had >=1 day during the time window overlapping with a drug use period for each medication or drug class of interest. Utilization of repurposed and adjuvant drugs up to 30 days after admission was described.

The distribution of conditions a year prior to index, symptoms at index, outcomes and medications up to 30 days post-index date in COVID-19 diagnosed cohort were compared to the hospitalized COVID-19 or the diagnosed influenza cohorts. Standardized mean differences (SMD) were calculated when comparing the characteristics of study cohorts.

We performed a sensitivity analysis describing characteristics of cases with no prior observation time in order to understand the impact of lack of prior observation time in the results.

We used R version 3.6 (R Foundation for Statistical Computing, Vienna, Austria) for data visualization. All the data partners obtained Institutional Review Board (IRB) approval or exemption to conduct this study, as required.

All the data partners received Institutional Review Board (IRB) approval or exemption.

RESULTS

A total of 242,158 children/adolescents diagnosed (9,769 hospitalized) with COVID-19, and 2,084,180 diagnosed with seasonal influenza were included. Data were obtained from 5 US
hospital EHR databases (STARR-US [with the pediatric population representing 3.9% of all COVID-19 cases in this database], CU-AMC-HDC-US [2.6% of all COVID-19 cases], CUIMC-US [4.1% of all COVID-19 cases], OPTUM-EHR-US [5.7% of all COVID-19 cases] and PREMIER-US [5.1% of all COVID-19 cases]), 3 European primary care records databases (IQVIA-LPD-France [4.0% of all COVID-19 cases], IQVIA-DA-Germany [10.0% of all COVID-19 cases], SIDIAP-Spain [3.7% of all COVID-19 cases]), and 2 US (HealthVerity-US [4.6% of all COVID-19 cases], IQVIA-OpenClaims-US [6.8% of all COVID-19 cases]) and 1 Asian claims databases (HIRA South Korea [3.3% of all COVID-19 cases]). Up to at least 1 year of pre-index observation time was available only in CU-AMC-HDC-US, OPTUM-EHR-US, SIDIAP-Spain, and IQVIA-OpenClaims-US. Figure 1 shows a flowchart outlining the reasons for exclusion of additional 8 data sources available in CHARYBDIS.

Demographics

Age at diagnosis of COVID-19 varied across regions. In SIDIAP-Spain, CUIMC-US, OPTUM-EHR-US, PREMIER-US, and STARR-US the majority of children with COVID-19 were diagnosed at ages 0 to 4 years (around one third), while the proportion of children from 0 to 4 years was only 11.4% and 11.6% in IQVIA-LPD-France and CU-AMC-HDS-US, respectively. More consistently, most of the hospital admissions were seen in the younger groups (0-4 years), e.g. 57.1% of those hospitalized in CUIMC-US, and 54.2% in PREMIER-US. Male gender was more common in all databases except for IQVIA-LPD-France (46.6% male) and STARR-US (49.2%) (Table 1).
Comorbidities

In patients diagnosed with COVID-19, asthma was the most common baseline comorbidity assessed in the year before index date, affecting 10.1% (SIDIAP-Spain) to 28.1% (IQVIA-OpenClaims-US), followed by obesity (from 1.9% in IQVIA-LPD-France to 19.0% in OPTUM-EHR-US). Also in the cohort of diagnosed individuals with COVID-19, we observed a high prevalence of congenital malformation(s) (3.2% of those diagnosed in IQVIA-OpenClaims-US to 10.8% in SIDIAP-Spain), neurodevelopmental disorders (1.0% of those diagnosed in IQVIA-LPD-France to 8.2% in OPTUM-EHR-US), heart disease (1.2% in IQVIA-LPD-France to 6.9% in IQVIA-OpenClaims-US), type 1 diabetes mellitus (0.2% in SIDIAP-Spain to 0.4% in IQVIA-OpenClaims-US), cancer (0.3% in SIDIAP-Spain to 3.4% in OPTUM-EHR-US), and chromosomal disorder(s) (0.4% in SIDIAP-Spain to 0.5% in OPTUM-EHR-US). All of these were more common amongst hospitalized children/adolescents with COVID-19 as compared to the diagnosed with COVID-19 cohort (SMD>0.1; assessed in the year before index date): 34.1% asthma, 18.0% obesity, 29.7% heart disease (3.0% congenital heart disease), 9.3% cancer, 3.4% chromosomal disorder(s), 14.0% congenital malformation(s), and 2.0% prematurity in IQVIA-OpenClaims-US (Figure 2).

Symptoms

Figure 3 shows recorded symptoms at index date for diagnosed vs hospitalized COVID-19 patients. The most common reported symptom in COVID-19 was fever, seen in 4.8% (SIDIAP-Spain) to 26.4% (CUIMC-US) of diagnosed cases, and higher (up to 28.1% in CUIMC-US) among hospitalized cases. Second most common was cough, recorded in 4.7% (SIDIAP-Spain)
to 13.0% (PREMIER-US) amongst the diagnosed, and lower (e.g. 2.2% in PREMIER-US) in hospitalized children/adolescents. Bronchiolitis was recorded in 0.5% (SIDIAP-Spain) to 9.7% (STARR-US) of the diagnosed, and higher (up to 14.4% in PREMIER-US) in the hospitalized. Gastrointestinal tract symptoms were also common at index date, recorded in 0.5% (HealthVerity-US) to 12.5% (SIDIAP-Spain) in diagnosed, and up to 13.2% (IQVIA-OpenClaims-US and PREMIER-US) among hospitalized. Anosmia was <=1% in all participating databases, except for COVID-19 diagnosed patients in IQVIA-OpenClaims-US (1.1%) and PREMIER-US (1.5%). Compared to influenza (eFigure 1), COVID-19 diagnosed children/adolescents had less frequently recorded symptoms by healthcare professionals in most databases, with the only exceptions of: dyspnea (e.g. 8.6% in COVID-19 vs 1.1% in influenza in STARR-US), bronchiolitis (e.g. 9-7% in COVID-19 vs 1.1% in influenza in STARR-US), anosmia/hyposmia/dysgeusia (e.g. 0.8% in COVID-19 vs 0.0% in influenza in IQVIA-OpenClaims-US), and gastrointestinal tract symptoms (e.g. 10.3% in COVID-19 vs 4.5% in influenza in IQVIA-OpenClaims-US).

In-hospital treatments

Use of drugs during hospital admission for COVID-19 amongst children/adolescents is reported in Figures 4a (repurposed) and 4b (adjunctive therapies), based on data from CUIMC-US, OPTUM-EHR-US, PREMIER-US, and HIRA-South Korea. Repurposed treatments were not commonly used (<10% in all databases), with lopinavir-ritonavir used in 5.6% in HIRA-South Korea but not in US databases, azithromycin from 4.4% in HIRA-South Korea and OPTUM-EHR-US to 5.8% to 5.8% in PREMIER-US, hydroxychloroquine in 1.0% (PREMIER-US) to
3.6% (HIRA-South Korea), and oseltamivir only in the US, from 1.2% in OPTUM-EHR-US to 5.6% in CUIMC-US.

Adjunctive therapies were more common, with systemic corticosteroids used in 6.8% (HIRA-South Korea) to 48.6% (CUIMC-US). Famotidine was the second most common adjunctive treatment, used in 10.0% (OPTUM-EHR-US) to 28.1% (CUIMC-US). Concomitant antithrombotic therapy was also common in the US but not in HIRA-South Korea (no use reported), including aspirin (4.8% in PREMIER-US to 21.4% in CUIMC-US), heparin (2.2% in PREMIER-US to 18.1% in CUIMC-US), and enoxaparin (6.0% in OPTUM-EHR-US to 11.7% in PREMIER-US). Antibiotics (ceftriaxone, amoxicillin, fluoroquinolones), vitamin (D and C) supplements, and immunoglobulins were also used with high variability between the contributing databases.

Health outcomes

Outcomes in the 30-day period following the diagnosis of COVID-19 and hospitalization with COVID-19 are summarized in Table 1 and Figure 5. Hospitalization was observed in a low proportion (0.3% in HealthVerity-US, 1.4% in SIDIAP-Spain) in the ambulatory/claims databases with testing and testing results data available; in 3.5% in IQVIA-OpenClaims-US; and more frequent (7.6% in OPTUM-EHR-US to 33.2% in CUIMC-US) in hospital EHR databases. Hypoxemia and pneumonia were the most common complications. Hypoxemia was diagnosed in a wide range from 0.1% (HealthVerity-US) to 13.5% (STARR-US) of those diagnosed, and in 12.9% (CUIMC-US) to 23.6% (IQVIA-OpenClaims-US) of those hospitalized with COVID-19. Pneumonia was diagnosed in a range from 0.1% (HealthVerity-US) to 4.5% (CUIMC-US) of
those diagnosed, and in 6.8% (HIRA-South Korea) to 15.6% (IQVIA-OpenClaims-US) of those hospitalized with COVID-19. ARDS was the most common in-hospital outcome, affecting 6.2% (OPTUM-EHR-US) to 16.5% (PREMIER-US) of those hospitalized with COVID-19. Sepsis during admission was observed in <2% (N<5; HIRA-South Korea) to 10.1% in PREMIER-US. Other less common outcomes are reported in Table 1. MIS-C was seen in <0.1% (N<5; SIDIAP-Spain) to 3.1% (CUIMC-US) among diagnosed, and up to 7.6% (CUIMC-US) in hospitalized patients with COVID-19.

A comparison of outcomes in those diagnosed with COVID-19 vs those diagnosed with influenza in previous years is depicted in eFigure 2. Hospitalization rates were higher for COVID-19 vs influenza-diagnosed children/adolescents (e.g. 3.5% vs 0.9% in IQVIA-OpenClaims-US, 33.2% vs 7.4% in CUIMC-US, 30.8% vs 3.7% in STARR-US), except in OPTUM-EHR-US where hospitalization rates were 7.6% in COVID-19-diagnosed and 10.6% in influenza-diagnosed participants. Similarly, hypoxemia was more common in COVID-19-diagnosed participants (e.g. 13.5% vs 1.7% in STARR-OMOP-US, 23.6% vs 0.3% in IQVIA-OpenClaims-US), and so were pneumonia (e.g. 3.1% vs 0.1% in SIDIAP-Spain, 1.8% vs 0.8% in IQVIA-OpenClaims-US), and -despite rare- MIS-C (e.g. 0.2% vs 0.0% in IQVIA-OpenClaims-US, 3.1% vs <0.2% in CUIMC-US). Other outcomes had more similar risks in both viral infections (see eFigure 2 and eTable 3).

In a sensitivity analysis, we replicated the analyses including participants who had no prior history available in their EHRs (eTable 4). Differences in symptoms or outcomes were modest, however it demonstrated the expected incompleteness in prevalent comorbidity.
DISCUSSION

This study comprehensively reports on the largest cohort of children/adolescents with COVID-19 to date. Overall, most cases of COVID-19 diagnosis and related hospitalizations were seen amongst infants and toddlers aged <4 years old, predominantly of male sex. Children/adolescents hospitalized with COVID-19 had a higher prevalence of comorbidities than the overall cohort of those diagnosed with COVID-19, including asthma, obesity, heart disease, cancer, chromosomal disorder(s), and congenital malformation(s). The most commonly observed symptoms were fever and cough, while dyspnea, bronchiolitis, anosmia and gastrointestinal tract symptoms were more common in children/adolescents with COVID-19 than with seasonal influenza, and may aid on the differentiation of COVID-19 from other viral infections. The drug utilization analysis suggests little use of repurposed drugs and a substantial use of adjunctive therapies among children/adolescents.

Hospitalization rates were between 5- and 13-fold higher amongst those children/adolescents diagnosed with COVID-19 vs. those with seasonal influenza in previous years. Fortunately, 30-day fatality following a COVID-19 diagnosis or hospitalization was low. Respiratory complications were over-represented among children/adolescents diagnosed with COVID-19 compared with seasonal influenza.

The proportion of children/adolescents under 18 years of age from all observed COVID-19 cases in each database varied from 2.6% to 10.0%. These values are higher than what has been previously reported in other studies from China (2%), Spain (2%), the US (1.7%), or the UK (0.9%), but in line with the WHO dashboard which reported that children (>14 years) accounted for 3.7% of all COVID-19 cases, or the Australian Health Protection Agency which
has reported that children/adolescents (<19 year) accounted for 4% of confirmed COVID-19 cases in Australia.22

Asthma and obesity were the most common baseline comorbidities in children/adolescents with COVID-19; this is in keeping with disease prevalence among a general pediatric population.23 More strikingly, we observed a high prevalence of conditions that are relatively rare in children/adolescents, including congenital malformation/s, neurodevelopmental disorders, heart disease, type 1 diabetes mellitus, cancer, and chromosomal disorder/s. These conditions were more frequent amongst hospitalized children/adolescents with COVID-19 than those diagnosed with COVID-19. This is in line with previous studies suggesting that children with comorbidity history have higher risk of critical care admission.21,24

The frequency of reported symptoms in our study is generally lower than what has been previously reported in the pediatric literature,8,21,24 suggesting an underestimation in the register of symptoms in the form of structured data in busy actual care settings. An important finding is that COVID-19 diagnosed children/adolescents presented with higher rates of dyspnea, anosmia, and gastrointestinal symptoms than children with seasonal influenza. This information is clinically relevant for differential diagnosis between COVID-19 and influenza among children/adolescents.

We observed great heterogeneity across countries in the use of in-hospital treatments among children/adolescents with COVID-19, which is in line with previous studies in adults.25 Our analysis suggests little use of antiviral therapies overall, with about 5% of children/adolescents hospitalized with COVID-19 using lopinavir/ritonavir in South Korea (but none in the US); a variable proportion of use of oseltamivir (1% to 5%) in the US (but none in South Korea); a 4-6% of use of azithromycin, and limited use of hydroxychloroquine, ranging from 1% to around
4% in both countries. These values are lower than what we previously reported in adults (e.g. use of hydroxychloroquine was 57.9% in the overall population vs. 1% in children/adolescents in PREMIER-US), but in line with recent European cohort studies in hospitalized children/adolescents with COVID-19. A study in the UK reported that 6% (38/591) of hospitalized children/adolescents with COVID-19 received antiviral drugs (30 received acyclovir, 7 received remdesivir, and 3 received chloroquine or hydroxychloroquine), while a study in 25 European countries including 582 children/adolescents found that 7% were treated with hydroxychloroquine, 3% with remdesivir, 1% with lopinavir–ritonavir, 1% with oseltamivir. In contrast, we observed substantial use of different adjunctive therapies; corticosteroids were used in 25-35% in the US but 7% in South Korea. Famotidine (2 to 20%), aspirin (10 to 30%) and vitamin D (2 to 15%) were used in the US but not in South Korea. Antibiotics were also commonly used, with ceftriaxone and amoxicillin amongst the most commonly prescribed. This is consistent with the previous study in in UK where antibiotics were given to 69% (415/601) of hospitalized children with COVID-19.

It is reassuring that occurrence of severe outcomes during the 30 days after diagnosis of COVID-19 was rare in our study, which is in line with previous studies. MIS-C was relatively uncommon, affecting 0.5%-3.1% of all diagnosed cases, but up to 0.9%-7.6% of those hospitalized with COVID-19. These results are in line with previous studies from Europe and the US which have suggested that COVID-19 may be associated with MIS-C in children. A separate cohort study found recently that 11% of children with COVID-19 admitted to hospitals in the UK developed MIS-C. These findings are of special relevance given the severity of this condition. Overall, all outcomes were more frequent in children/adolescents with COVID-19 diagnosis than those with a diagnosis of seasonal influenza in 2017-2018, suggesting more
severe disease prognosis in children with COVID-19 than influenza. Future research is needed to characterize and determine the long-term outcomes of children/adolescents affected with COVID-19.

Strengths and limitations

This study has some limitations. First, this study is descriptive in nature. The observed differences between groups should therefore not be interpreted as causal effects. Second, our results are based on secondary data from electronic records collected for administrative and clinical management purposes and re-used for research which may affect the completeness of data recorded (e.g. lack of information on degree of prematurity or mortality) and may have erroneous entries, leading to potential misclassification. Such incompleteness could be differential in some instances (e.g. hospital vs primary care settings) and risk information bias for the proposed comparisons. The under-reporting of symptoms observed in these data is a key finding of this study, and should be taken into consideration in previous and future similar reports from 'real-world' cohorts. This could be due to the high workload in healthcare systems caused by the pandemic, coding practices, or difficulty of ascertainment of symptoms among preverbal children. Another limitation of this study is the inability to differentiate between children/adolescents tested for SARS-CoV-2 due to the presentation of symptoms versus those tested as part of surveillance campaigns. Finally, the currently available data is restricted to the first six months of 2020 coinciding with the peak of the COVID-19 pandemic in the studied countries, and therefore, we were not able to evaluate the possible changes in treatment and prognosis over time.
This study is unique as our approach to characterizing children with an international scope allows for a wide range of variation in healthcare systems and policies against the COVID-19 pandemic. This enables a more complete understanding of the implications of the pandemic for different countries and regions in scope of an international comparison. It also poses a layer of heterogeneity that needs to be considered in the interpretation of our findings, opening a window for new research questions that need to be addressed; particularly around the public health approach for controlling the pandemic spread and severity in children/adolescents and overall. This study represents, to our knowledge, the largest cohort study on pediatric COVID-19 to date, and the only study to provide a comparison with children/adolescents with seasonal influenza in 2017-2018. Our data confirm low rates of complications in children with COVID-19, with severe cases clustering amongst children with previous comorbidities. Despite the large sample size available, MIS-C appears rare.

Conclusions

COVID-19 affects children/adolescents of all ages but severe outcomes are reassuringly uncommon. There is variability across healthcare systems in different regions of America, Asia and Europe that may explain the observed differences in the epidemiology and clinical management of the disease as well as observed outcomes. Despite negligible fatality, complications including hospitalization, hypoxemia and pneumonia are more frequent in children/adolescents with COVID-19 than with influenza. Dyspnea, anosmia and gastrointestinal symptoms could help differential diagnosis.
REFERENCES

1. World Health Organization (WHO) [Internet]. WHO Coronavirus Disease (COVID-19) Dashboard [cited 2020 Sep 19]. Available from: https://covid19.who.int/

2. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282(1821):20143085.

3. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020;145(6):e20200702.

4. He J, Guo Y, Mao R, Zhang J. Proportion of asymptomatic coronavirus disease 2019: a systematic review and meta-analysis. J Med Virol. 2020;10.1002/jmv.26326.

5. Kim L, Whitaker M, O'Halloran A, et al. Hospitalization Rates and Characteristics of Children Aged <18 Years Hospitalized with Laboratory-Confirmed COVID-19 - COVID-NET, 14 States, March 1-July 25, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(32):1081-1088.

6. CDC COVID-19 Response Team. Coronavirus Disease 2019 in Children — United States, February 12–April 2, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(14):422-426.

7. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020;382(17):1663-1665.

8. Götzinger F, Santiago-García B, Noguera-Julián A et al. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health. 2020; 4(9): 653-661.

9. World Health Organization (WHO) [Internet]. Clinical management of COVID-19 [updated 2020 May 27; cited 2020 Sep 27]. Available from: https://www.who.int/publications/i/item/clinical-management-of-covid-19

10. Royal College of Paediatrics and Child Health (RCPCH) [Internet]. COVID-19 - guidance for paediatric services [updated 2020 Sep 24; cited 2020 Sep 27]. Available from: https://www.rcpch.ac.uk/resources/covid-19-guidance-paediatric-services

11. National Institutes of Health (NIH) [Internet]. COVID-19 Treatment Guidelines: Special Considerations in Children [updated 2020 Jun 11; cited 2020 Sep 27]. Available from: https://www.covid19treatmentguidelines.nih.gov/special-populations/children/

12. Campbell JI , Ocwieja KE, Nakamura MM. A Call for Pediatric COVID-19 Clinical Trials. Pediatrics. 2020;146(2):e20201081.

13. Mao LJ, Xu J, Xu ZH et al. A child with household transmitted COVID-19. BMC Infect Dis. 2020; 20: 329.

14. Datta S, Posada J, Olson G et al. A new paradigm for accelerating clinical data science at Stanford Medicine. arXiv 2020.

15. Del Mar Garcia-Gil M, Hermosilla E, Prieto-Alhambra D, et al. Construction and validation of a scoring system for the selection of high-quality data in a Spanish population primary care database (SIDIAP). Inform Prim Care. 2011; 19(3): 135–45.

16. Thorlund K, Dron L, Park J et al. A real-time dashboard of clinical trials for COVID-19. Lancet Digit Health. 2020; 2(6): e286-e287.

17. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA. 2020; 323(18):1824-1836.
18. Voss EA, Makadia R, Matcho A, et al. Feasibility and utility of applications of the common data model to multiple, disparate observational health databases. *J Am Med Inform Assoc.* 2015;22(3):553–64.

19. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. *JAMA.* 2020;323(13):1239-42.

20. Tagarro A, Epalza C, Santos M et al. Screening and Severity of Coronavirus Disease 2019 (COVID-19) in Children in Madrid, Spain. *JAMA Pediatr.* 2020 Apr 8:e201346.

21. Swann OV, Holden KA, Turtle L et al. Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study. *BMJ.* 2020;370:m3249

22. COVID-19 National Incident Room Surveillance Team. COVID-19, Australia: Epidemiology Report 12 (Reporting week to 23:59 AEST 19 April 2020). *Commun Dis Intell (2018).* 2020; 44. doi: 10.33321/cdi.2020.44.36.

23. Peters U, Dixon A, Forno E. Obesity and Asthma. *J Allergy Clin Immunol.* 2018; 141(4):1169–1179.

24. Parri N, Lenge M, Buonsenso D, Coronavirus Infection in Pediatric Emergency Departments (CONFIDENCE) Research Group. Children with Covid-19 in Pediatric Emergency Departments in Italy. *N Engl J Med.* 2020;383(2):187-90.

25. Prats-Uribe A, Sena AG, Lai LYH et al. Heterogeneity and temporal variation in the management of COVID-19: a multinational drug utilization study including 71,921 hospitalized patients from China, South Korea, Spain, and the United States of America. *medRxiv* 2020.09.15.20195545.

26. Verdoni L, Mazza A, Gervasoni A et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. *Lancet.* 2020;395(10239):1771-1778.

27. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. *Lancet.* 2020;395(10237):1607-1608.

28. Royal College of Paediatrics and Child Health (RCPCH) [Internet]. Guidance: Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 [updated 2020 May 1; cited 2020 Sep 30]. Available at: https://www.rcpch.ac.uk/sites/default/files/2020-05/COVID-19-Paediatric-multisystem-%20inflammatory%20syndrome-20200501.pdf
Table 1. Demographics, comorbidities, symptoms and outcomes among diagnosed and hospitalized COVID-19 children/adolescents (<18 years of age)*

	At least 1 year of prior observation available	No prior observation time available																		
	Diagnosed	Hospitalized	Diagnosed	Hospitalized																
	SIDIAP (Spain)	IQVIA LPD (France)	CU-AMC HDC (US)	IQVIA OpenClaims (US)	OPTUM EHR (US)	HIRA (South Korea)	IQVIA OpenClaims (US)	OPTUM EHR (US)	CUMC (US)	Premier (US)	IQVIA DATA (Germany)	HEALT HVERITY (US)	STARR-OMOP (US)	CUMC (US)	Premier (US)					
	n=4494	n=695	n=189	n=176668	n=10166	n=251	n=6499	n=752	n=425	n=21148	n=1150	n=27038	n=185	n=210	n=2057					
Age (years)																				
00-04	31.2	11.4	11.6	15.3	16.0	17.1	23.2	27.3	60.2	30.5	29.4	16.6	38.4	57.1	54.2					
05-09	28.7	23.2	23.8	23.5	21.0	16.3	24.8	19.4	15.5	18.5	28.2	20.5	16.8	15.2	12.1					
10-14	24.0	36.3	23.3	31.0	28.5	33.5	25.5	25.4	13.2	24.0	23.0	32.4	19.5	15.2	13.0					
15-19	16.1	29.2	41.3	30.3	34.5	33.1	26.4	27.9	11.1	26.9	19.5	30.4	25.4	12.4	20.7					
Gender																				
Female	47.2	53.2	48.1	50.2	50.1	49.4	48.8	50.0	44.7	50.3	47.7	49.2	50.8	44.8	48.5					
Male	52.8	46.6	51.9	49.8	49.9	50.6	51.2	50.0	55.3	49.7	52.3	50.8	49.2	55.2	51.5					
SARS-CoV-2 positive test	2.1	-	-	-	70.4	-	-	48.1	37.2	-	-	78.3	42.7	55.2						
Comorbidities**																				
Autistic disorder	0.9	-	-	1.0	1.2	-	2.9	2.5	-	-	-	-	-	-	-					
Neonatal disorder	2.3	-	-	0.4	0.5	-	2.4	2.4	-	-	-	-	-	-	-					
Neurodevelopmental disorder	7.4	1.0	7.4	7.1	8.2	2.4	15.4	16.5	-	-	-	-	-	-	-					
Asthma	10.1	18.7	16.4	28.1	20.6	35.1	34.1	29.3	-	-	-	-	-	-	-					
Obesity	9.5	1.9	-	9.5	19.0	-	18.0	19.9	-	-	-	-	-	-	-					
Heart disease	1.9	1.2	-	6.9	6.7	3.6	29.7	15.4	-	-	-	-	-	-	-					
Condition	Incidence	0.3	-	1.2	3.4	-	9.2	10.8	-	-	-	-	-	-	-	-	-	-	-	
--	------------	-----	----	-----	-----	---	-----	-----	---	---	---	---	---	---	---	---	---	---	---	---
Hypertension	0.3	0.3	-	3.2	1.5	-	21.0	4.9	-	-	-	-	-	-	-	-	-	-	-	
Type 1 diabetes mellitus	0.2	0.2	-	0.4	0.3	-	2.4	1.1	-	-	-	-	-	-	-	-	-	-	-	
Attention deficit hyperactivity disorder	2.2	2.2	-	4.9	5.7	-	5.8	9.7	-	-	-	-	-	-	-	-	-	-	-	
Chromosomal disorder	0.4	0.4	-	0.4	0.5	-	3.4	2.1	-	-	-	-	-	-	-	-	-	-	-	
Congenital malformation	10.8	10.8	-	3.2	4.0	4.4	14.0	11.4	-	-	-	-	-	-	-	-	-	-	-	
Congenital heart disease	0.2	0.2	-	0.4	0.5	-	3.0	2.4	-	-	-	-	-	-	-	-	-	-	-	
Prematurity of infant	1.0	1.0	-	0.3	0.6	-	2.0	1.6	-	-	-	-	-	-	-	-	-	-	-	
Symptoms at index date																				
Fever	4.8	4.8	10.1	7.9	8.4	7.8	10.0	10.7	14.1	26.4	21.8	4.2	6.2	17.8	28.1	17.3				
Cough	4.7	4.7	8.2	8.5	7.0	6.8	5.6	4.3	6.6	8.2	13.0	2.7	6.3	9.7	2.9	2.2				
Dyspnea	0.3	0.3	-	1.7	1.1	9.6	7.8	5.1	4.7	4.5	-	0.7	8.6	10.0	8.1					
Malaise or fatigue	-	-	1.9	-	1.1	0.9	-	1.2	1.1	-	1.2	-	1.0	-	-	1.1				
Myalgia	-	-	-	0.5	0.6	-	0.4	1.1	-	1.4	-	0.2	-	-	0.3					
Anosmia OR Hyposmia OR Dysgeusia	-	-	-	0.8	1.1	-	-	-	-	-	1.5	-	0.5	-	-	-				
Gastrointestinal tract symptoms	12.5	12.5	4.3	-	2.6	2.9	8.0	13.2	10.2	8.2	6.5	1.3	0.5	10.3	9.0	13.2				
Diarrhea	4.0	4.0	-	1.1	1.3	-	3.6	3.5	1.9	2.7	-	0.3	-	-	4.1					
Vomiting	1.8	1.8	1.9	-	1.4	1.4	2.4	8.7	4.8	4.5	3.4	0.8	0.2	7.0	5.7	4.9				
Nausea & 1.4 & 1.9 & - & 1.1 & 1.1 & 2.0 & 4.5 & 3.6 & - & 2.2 & 0.8 & 0.1 & - & - & 1.6 \\
Bronchiolitis & 0.5 & - & - & 0.3 & 0.3 & - & 3.9 & 3.7 & 8.9 & 2.1 & - & 0.1 & 9.7 & 11.4 & 14.4 \\

30-day outcomes following hospitalization

| & Sepsis & - & - & - & - & - & 9.4 & 3.9 & - & - & - & - & - & 3.3 & 10.1 \\
| Acute respiratory distress syndrome (ARDS) & - & - & - & - & - & - & 13.2 & 6.2 & - & - & - & - & - & 8.1 & 16.5 \\
| Cardiac arrhythmia & - & - & - & - & - & - & 8.2 & 3.1 & - & - & - & - & - & 9.0 & 5.9 \\
| Bleeding & - & - & - & - & - & - & 3.3 & 1.2 & - & - & - & - & - & 4.1 \\

30-day outcomes

| & Death & - & - & - & - & - & - & - & - & 0.0 & - & - & - & - & - \\
| Hospitalisation episodes & 1.4 & - & - & 3.5 & 7.6 & - & - & - & 33.2 & 10.2 & - & 0.3 & 30.8 & - & - \\
| Pneumonia & 3.1 & - & - & 1.8 & 1.0 & 6.8 & 15.6 & 7.6 & 4.5 & 0.0 & - & 0.1 & - & 7.6 & - \\
| Multi-system inflammatory syndrome in children (MIS-C) & - & - & - & 0.2 & 0.2 & - & 3.5 & 2.1 & 3.1 & 0.3 & - & 0.0 & - & 7.6 & 2.2 \\
| Hypoxemia & - & - & - & 1.1 & 0.8 & - & 23.6 & 9.3 & 6.8 & 2.6 & - & 0.1 & 13.5 & 12.9 & 22.3 \\

*Proportions presented among diagnosed or hospitalized patients by database (column percentage), please note that hospitalized children/adolescents could also be included in the diagnosed cohorts; - data not available or below the minimum cell count required (5 individuals); children aged <1 year were excluded when at least 1 year of prior observation time was required.

**Comorbidities are reported only in those databases with at least 1 year of prior observation time.

Abbreviations: Colorado University Anschutz Medical Campus Health Data Compass (CU-AMC HDC), Columbia University Irving Medical Center (CUIMC), Data Analyzer (DA), Health Insurance Review & Assessment Service (HIRA), Information System for Research in Primary Care (SIDIAP), STAnford medicine Research data Repository (STARR-OMOP), Longitudinal Patient Data (LPD).
Figure 1. Database selection process

Colorado University Anschutz Medical Campus Health Data Compass (CU-AMC HDC), Columbia University Irving Medical Center (CUIMC), Clinical Practice Research Datalink (CPRD), Data Analyzer (DA), Daegu Catholic University Medical Center (DCMC), Health Insurance Review & Assessment Service (HIRA), Integrated Primary Care Information (IPCI), Longitudinal Patient Data (LPD), Nanfang Hospital COVID-19 Research Database (NFHCRD), Information System for Research in Primary Care (SIDIAP), STAnford medicine Research data Repository (STARR-OMOP), Tufts Research Data Warehouse (TRDW), Department of Veterans Affairs (VA-OMOP)

*No prior observation time available and therefore excluded from description of comorbidities.
Figure 2. Prevalence of previous comorbidities among children/adolescents (<18 years of age) diagnosed (X axis) compared to hospitalized (Y axis) with COVID-19. Please note that hospitalized children/adolescents could also be included in the diagnosed cohorts. SMD = Standardized Mean Differences in prevalence between X and Y.
Figure 3. Symptoms recorded at index date among children/adolescents (<18 years of age) diagnosed compared to hospitalized with COVID-19. Please note that hospitalized children/adolescents could also be included in the diagnosed cohorts.
Figure 4. 30-day in-hospital use of treatments among children/adolescents (<18 years of age) with COVID-19

A. Repurposed drugs

- Lopinavir
- Ritonavir
- Azithromycin
- Hydroxychloroquine
- Oseltamivir
B. Adjunctive therapies

![Graph showing drug use for different therapies.](image)
Figure 5. Main 30-day outcomes among children/adolescents (<18 years of age) diagnosed compared to hospitalized with COVID-19. Please note that hospitalized children(adolescents could also be included in the diagnosed cohorts.
eTable 1. Overview of data sources contributing results.

Database Name	Country	Description	Contributed By
Columbia University Irving Medical Center (CUIMC)	United States	The clinical data warehouse of NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY, based on its current and previous electronic health record systems, with data spanning over 30 years and including over 6 million patients	Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
IQVIA Disease Analyser (DA) Germany	Germany	IQVIA DA Germany is collected from extracts of patient management software used by GPs and specialists practicing in ambulatory care settings. Data coverage includes more than 34M distinct person records out of a total population of 80M (42.5%) in the country and collected from 2,734 providers. Dates of service include from 1992 through March 2020.	Real World Solutions, IQVIA Inc, Cambridge, MA, USA
HealthVerity	United States	This HealthVerity derived data set contains de-identified patient information with an antibody and/or diagnostic test for COVID-19 linked to all available Medical Claims and Pharmacy Data from select private data providers participating in the HealthVerity marketplace.	Janssen Research & Development, Titusville, NJ, USA
Health Insurance Review & Assessment Service (HIRA)	South Korea	National claim data from a single insurance service from South Korea. It contains the observational medical records (including both inpatient and outpatient) of a patient while they are qualified to get the national medical insurance.	Health Insurance Review & Assessment Service, 60 Hyeoksin-Rho, Wonju-Si, Gangwon-Do(Bangkok-Dong), 26465, Korea
Prepublication Release			

IQVIA Open Claims	A United States database of open, pre-adjudicated claims from January 2013 to May 2020. Data are reported at anonymized patient level collected from office-based physicians and specialists via office management software and clearinghouse switch sources for the purpose of reimbursement. A subset of medical claims data have adjudicated claims.	Real World Solutions, IQVIA Inc, Cambridge, MA, USA	
IQVIA Longitudinal Patient Data (LPD) France	LPD France is a computerised network of physicians including GPs who contribute to a centralised database of anonymised patient EMR. Currently, >1200 GPs from 400 practices are contributing to the database covering 7.8M patients in France. The database covers a time period from 1994 through the present. Observation time is defined by the first and last consultation dates. Drug information is derived from GP prescriptions. Drugs obtained over the counter by the patient outside the prescription system are not reported.	Real World Solutions, IQVIA Inc, Cambridge, MA, USA	
OPTUM-EHR United States	Optum® de-identified COVID-19 Electronic Health Record dataset represents Optum’s Electronic Health Record data a medical records database for patients receiving a COVID-19 diagnosis record or lab test for SARS-CoV-2. The medical record data includes clinical information, inclusive of prescriptions as prescribed and administered, lab results, vital signs, body measurements, diagnoses, procedures, and information derived from clinical Notes using Natural Language Processing (NLP).	Janssen Research & Development, Titusville, NJ, USA	
Database	Location	Description	
---	---	---	---
Premier Healthcare Database	United States	The Premier Healthcare Database contains complete clinical coding, hospital cost, and patient billing data from approximately 700 hospitals throughout the United States representing 20% of inpatient hospital stays. Premier collects data from participating hospitals in its health care alliance. The Premier health care alliance was formed for hospitals to share knowledge, improve patient safety, and reduce risks. Participation in the Premier health care alliance is voluntary. Although the database excludes federally funded hospitals (e.g., Veterans Affairs), the hospitals included are nationally representative based on bed size, geographic region, location (urban/rural) and teaching hospital status. The database contains a date-stamped log of all billed items by cost-accounting department including medications; laboratory, diagnostic, and therapeutic services; and primary and secondary diagnoses for each patient’s hospitalization.	
Information System for Research in Primary Care (SIDIAP)	Spain	The Information System for Research in Primary Care (SIDIAP; www.sidiap.org) is a primary care records database that covers approximately 7 million people, equivalent to an 80% of the population of Catalonia, North-East Spain. Healthcare is universal and tax-payer funded in the region, and primary care physicians are gatekeepers for all care and responsible for repeat prescriptions.	
Institution	Country	Description	Department
---------------------------------	-------------	---	---
STAnford medicine Research data	United States	STAnford medicine Research data Repository, a clinical data warehouse containing live Epic data from Stanford Health Care, the Stanford Children’s Hospital, the University Healthcare Alliance and Packard Children's Health Alliance clinics and other auxiliary data from Hospital applications such as radiology PACS. STARR platform is developed and operated by Stanford Medicine Research IT team and is made possible by Stanford School of Medicine Research Office.	Department of Medicine, School of Medicine, Stanford University, Redwood City, CA USA
U of Colorado Anschuz Medical Campus Health Data Compass (CU-AMC-HDC)	United States	Health Data Compass (HDC) is a multi-institutional data warehouse. HDC contains inpatient and outpatient electronic medical data including patient, encounter, diagnosis, procedures, medications, laboratory results from two electronic medical record systems (UCHealth and Children's Hospital of Colorado), state-level all-payers claims data, and the Colorado death registry. Acknowledgement statement: Supported by the Health Data Compass Data Warehouse project (healthdatacompass.org).	Data Science to Patient Value Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
eTable 2. Cohort definitions and codes.

Name	Atlas Link
COVID-19	
Persons tested with a COVID-19 diagnosis record or a SARS-CoV-2 positive test with at least 365d prior observation	https://atlas.ohdsi.org/#/cohortdefinition/202
Persons hospitalized with a COVID-19 diagnosis record or a SARS-CoV-2 positive test with at least 365d prior observation	https://atlas.ohdsi.org/#/cohortdefinition/197
Persons tested with a COVID-19 diagnosis record or a SARS-CoV-2 positive test with no required prior observation	http://atlas-covid19.ohdsi.org/#/cohortdefinition/970
Persons hospitalized with a COVID-19 diagnosis record or a SARS-CoV-2 positive test with no required prior observation	http://atlas-covid19.ohdsi.org/#/cohortdefinition/974
Influenza	
Persons with Influenza diagnosis or positive test 2017-2018 with at least 365d prior observation	https://atlas.ohdsi.org/#/cohortdefinition/211
Persons hospitalized with influenza diagnosis or positive test 2017-2018 with at least 365d prior observation	https://atlas.ohdsi.org/#/cohortdefinition/212
Persons with Influenza diagnosis or positive test 2017-2018 with no required prior observation	http://atlas-covid19.ohdsi.org/#/cohortdefinition/958
Persons hospitalized with influenza diagnosis or positive test 2017-2018 with no required prior observation	http://atlas-covid19.ohdsi.org/#/cohortdefinition/961
Comorbidities	
Asthma	https://atlas.ohdsi.org/#/cohortdefinition/218
Heart disease	https://atlas.ohdsi.org/#/cohortdefinition/231
Hypertension	https://atlas.ohdsi.org/#/cohortdefinition/227
Malignant neoplasm excluding non-melanoma skin cancer	https://atlas.ohdsi.org/#/cohortdefinition/222
Obesity	https://atlas.ohdsi.org/#/cohortdefinition/224
Autistic disorder	https://atlas.ohdsi.org/#/concept/439780
Neonatal disorder	https://atlas.ohdsi.org/#/concept/4042220
-------------------	---
Neurodevelopmental disorder	https://atlas.ohdsi.org/#/concept/45771096
Type 1 diabetes mellitus	https://atlas.ohdsi.org/#/concept/201254
Attention deficit hyperactivity disorder	https://atlas.ohdsi.org/#/concept/438409
Chromosomal disorder	https://atlas.ohdsi.org/#/concept/4257441
Congenital malformation	https://atlas.ohdsi.org/#/concept/4079975
Congenital heart disease	https://atlas.ohdsi.org/#/concept/312723
Prematurity of infant	https://atlas.ohdsi.org/#/concept/36675035

Outcomes

During hospitalization

Sepsis during hospitalization	https://atlas.ohdsi.org/#/cohortdefinition/277
Acute Respiratory Distress syndrome (ARDS) during hospitalization	https://atlas.ohdsi.org/#/cohortdefinition/278
Cardiac arrhythmia	https://atlas.ohdsi.org/#/cohortdefinition/248
Bleeding	https://atlas.ohdsi.org/#/cohortdefinition/238

30-day outcomes

Death	http://atlas-covid19.ohdsi.org/#/cohortdefinition/166
Hospitalization episodes	http://atlas-covid19.ohdsi.org/#/cohortdefinition/917
Pneumonia	http://atlas-covid19.ohdsi.org/#/cohortdefinition/938
Multi-system inflammatory syndrome in children (MIS-C)	http://atlas-covid19.ohdsi.org/#/cohortdefinition/940
eTable 3. Demographics, comorbidities, symptoms and outcomes among diagnosed with seasonal influenza (2017-2018) among children/adolescents aged below 18 years*

Demographics	At least 1 year of prior observation	No prior observation time							
	SIDIAP (Spain)	IQVIA LPD (France)	CU-AMC HDC (US)	IQVIA OpenClaims (US)	OPTUM EHR (US)	CUIMC (US)	IQVIA DA (Germany)	HealthVerity (US)	STARR-OMOP (US)
n=26929	n=22425 n=3339	n=1874228	n=131950	n=2112	n=19864	n=502	n=2831		
Age (years)									
00-04	22.0	20.8	23.7	24.4	23.7	40.2	29.3	21.7	25.3
05-09	36.7	35.3	35.6	37.5	38.2	36.2	35.7	29.7	34.7
10-14	29.2	27.0	27.0	26.3	26.6	17.2	23.3	23.7	27.8
15-19	12.0	17.0	13.6	11.8	11.5	6.5	11.7	24.9	12.2
Gender									
Female	47.5	47.8	49.6	48.5	48.3	48.2	47.4	50.6	46.2
Male	52.5	51.9	50.4	51.5	51.7	51.8	52.6	49.4	53.8
Comorbidities**									
Autistic disorder	0.5	0.0	0.9	1.0	0.8	-	-	-	-
Neonatal disorder	2.4	0.0	0.9	0.3	0.4	-	-	-	-
Neurodevelopmental disorder	6.7	0.6	3.5	6.4	6.6	-	-	-	-
Asthma	8.6	16.4	15.9	27.5	23.0	-	-	-	-
Obesity	8.3	1.5	3.4	4.2	12.8	-	-	-	-
Heart disease	1.8	0.4	2.3	4.5	4.1	-	-	-	-
Malignant neoplasm excluding non-melanoma skin cancer	0.1	0.1	-	0.5	2.6	-	-	-	-
Hypertension	0.1	0.1	0.4	1.1	0.7	-	-	-	-
Type 1 diabetes mellitus	0.1	0.0	-	0.2	0.2	-	-	-	-
Attention deficit hyperactivity disorder	2.4	0.0	1.7	4.5	4.7	-	-	-	-
Chromosomal disorder	0.1	0.0	0.4	0.3	0.3	-	-	-	-
----------------------	-----	-----	-----	-----	-----	----	----	----	----
Congenital malformation	11.2	0.4	2.5	2.7	2.9	-	-	-	-
Congenital heart disease	0.2	0.0	0.3	0.3	0.2	-	-	-	-
Prematurity of infant	0.6	-	0.4	0.2	0.3	-	-	-	-

Symptoms at index date

Fever	1.7	15.9	42.1	27.9	37.9	51.8	9.3	31.3	40.6
Cough	0.2	10.4	21.9	11.4	13.5	16.0	4.1	16.9	11.8
Dyspnea	0.0	0.0	0.6	0.4	0.4	2.2	0.9	-	1.1
Malaise or fatigue	0.0	1.0	0.9	0.7	0.9	0.5	0.4	-	1.1
Myalgia	0.0	0.3	1.0	0.6	0.7	0.5	0.1	-	1.0
Anosmia OR Hyposmia OR Dysgeusia	-	-	-	-	0.0	-	-	-	-
Gastrointestinal tract symptoms	9.6	3.2	5.6	3.4	3.7	6.1	2.3	5.4	4.5
Diarrhea	0.6	0.0	1.3	0.5	0.6	0.9	-	-	0.8
Vomiting	1.1	2.0	3.9	2.8	2.9	4.9	1.9	4.4	3.4
Nausea	1.1	2.0	3.5	1.6	1.9	0.6	2.0	3.2	1.4
Bronchiolitis	0.2	0.2	1.0	0.5	0.3	0.8	0.0	-	1.1

30-day outcomes

Death	-	-	-	-	-	-	-	-	-
Hospitalization episodes	-	-	1.6	0.9	10.6	7.4	-	1.4	3.7
Pneumonia	0.7	0.4	2.2	2.4	1.8	3.1	2.0	-	2.4
Multi-system inflammatory syndrome in children (MIS-C)	-	0.0	-	0.0	0.0	-	0.0	-	-
Hypoxemia	-	-	1.7	0.3	0.3	1.5	-	-	1.7
*Proportions presented among diagnosed or hospitalized patients by database (column percentage); - data not available or below the minimum cell count required (5 individuals); children aged <1 year were excluded when at least 1 year of prior observation time was required.

**Comorbidities are reported only in those databases with at least 1 year of prior observation time.

Abbreviations: Colorado University Anschuz Medical Campus Health Data Compass (CU-AMC HDC), Columbia University Irving Medical Center (CUIMC), Data Analyzer (DA), Health Insurance Review & Assessment Service (HIRA), Information System for Research in Primary Care (SIDIAP), STAnford medicine Research data Repository (STARR-OMOP), Longitudinal Patient Data (LPD).

eTable 4. Characteristics of diagnosed and hospitalized COVID-19 children/adolescents with no prior observation time in those databases with available observation time*

Comorbidities**	Diagnosed	Hospitalized					
	SIDIAP	IQVIA	CU-AMC HDC	OPTUM EHR	HIRA (South Korea)	IQVIA OpenClaims (US)	OPTUM EHR
	(Spain)	(France)	(US)	(US)	(US)	(US)	(US)
n = 5037	n = 979	n = 286	n = 201986	n = 13245	n = 251	n = 9142	n = 1193
Comorbidities**							
Autistic disorder	0.7	-	-	0.3	0.3	-	1.3
Neonatal disorder	1.7	-	-	0.4	0.6	-	6.3
Neurodevelopmental disorder	6.1	-	-	1.3	1.4	-	4.4
Asthma	-	-	-	0.3	0.6	-	0.9
Obesity	-	-	-	0.1	0.4	-	0.6
Heart disease	-	-	-	0.3	0.3	-	3.7
Malignant neoplasm excluding non-melanoma skin cancer	-	-	-	0.0	0.1	-	0.4
Hypertension	-	-	-	0.1	0.1	-	0.7
Type 1 diabetes mellitus	0.2	-	-	0.2	0.1	-	1.7
Attention deficit hyperactivity disorder	1.8	-	-	0.7	0.9	-	1.5
Chromosomal disorder	0.3	-	-	0.2	0.2	-	1.8
Congenital malformation	9.2	-	-	0.7	1.2	-	7.7
Congenital heart disease	0.2	-	-	0.2	0.2	-	2.2
Prematurity of infant	0.8	-	-	0.1	0.3	-	1.9
Symptoms at index date							
Fever	5.2	9.6	8.7	9.2	8.9	10.0	11.9

©2021 American Academy of Pediatrics
Condition	4.5	7.5	9.1	7.1	6.9	5.6	4.4	7.7
Cough								
Dyspnea	0.3	-	4.5	1.8	1.3	9.6	7.9	5.4
Malaise or fatigue	-	1.6	-	1.0	0.9	-	1.1	1.3
Myalgia	-	-	-	0.4	0.5	-	0.3	1.0
Anosmia OR Hyposmia OR Dysgeusia	-	-	-	0.8	0.9	-	-	-
Gastrointestinal tract symptoms	11.8	3.7	-	2.9	3.3	8.0	12.2	11.2
Diarrhea	3.7	-	-	1.2	1.5	-	3.6	4.0
Vomiting	1.7	1.6	-	1.5	1.6	2.4	7.9	6.2
Nausea	1.4	1.6	-	1.0	1.1	2.0	3.5	3.4
Bronchiolitis	1.3	-	-	0.8	0.8	-	8.2	6.2

30-day outcomes following hospitalization
Sepsis
Acute respiratory distress syndrome (ARDS)
Cardiac arrhythmia
Bleeding

30-day outcomes
Death
Hospitalisation episodes
Pneumonia
Multi-system inflammatory syndrome in children (MIS-C)
Hypoxemia

*Proportions presented among diagnosed or hospitalized patients by database (column percentage); - data not available or below the minimum cell count required (5 individuals).

**Comorbidities are reported only in those databases with at least 1 year of prior observation time.

Abbreviations: Colorado University Anschuz Medical Campus Health Data Compass (CU-AMC HDC), Columbia University Irving Medical Center (CUIMC), Data Analyzer (DA), Health Insurance Review & Assessment Service (HIRA), Information System for Research in Primary Care (SIDIAP), STAnford medicine Research data Repository (STARR-OMOP), Longitudinal Patient Data (LPD).
eFigure 1. Symptoms recorded at index date among children/adolescents (<18 years of age) diagnosed with COVID-19 compared to diagnosed with seasonal influenza (2017-2018)

eFigure 2. Main 30-day outcomes among children/adolescents (<18 years of age) diagnosed with COVID-19 compared to those diagnosed with seasonal influenza (2017-2018)
30-Day Outcomes of Children and Adolescents With COVID-19: An International Experience
Duarte-Salles Talita, David Vizcaya, Andrea Pistillo, Paula Casajust, Anthony G. Sena, Lana Yin Hui Lai, Albert Prats-Uribe, Waheed-Ul-Rahman Ahmed, Thamir M Alshammari, Heba Alghoul, Osaied Alser, Edward Burn, Seng Chan You, Carlos Areia, Clair Blacketer, Scott DuVall, Thomas Falconer, Sergio Fernandez-Bertolin, Stephen Fortin, Asieh Golozar, Mengchun Gong, Eng Hooi Tan, Vojtech Huser, Pablo Iveli, Daniel R. Morales, Fredrik Nyberg, Jose D. Posada, Martina Recalde, Elena Roe, Lisa M. Schilling, Nigam H. Shah, Karishma Shah, Marc A. Suchard, Lin Zhang, Ying Zhang, Andrew E. Williams, Christian G. Reich, George Hripcsak, Peter Rijnbeek, Patrick Ryan, Kristin Kostka and Daniel Prieto-Alhambra

Pediatrics originally published online May 28, 2021;
30-Day Outcomes of Children and Adolescents With COVID-19: An International Experience
Duarte-Salles Talita, David Vizcaya, Andrea Pistillo, Paula Casajust, Anthony G. Sena, Lana Yin Hui Lai, Albert Prats-Uribe, Waheed-Ul-Rahman Ahmed, Thamir M Alshammari, Heba Alghoul, Osaid Alser, Edward Burn, Seng Chan You, Carlos Areia, Clair Blacketer, Scott DuVall, Thomas Falconer, Sergio Fernandez-Bertolin, Stephen Fortin, Asieh Golozar, Mengchun Gong, Eng Hooi Tan, Vojtech Huser, Pablo Iveli, Daniel R. Morales, Fredrik Nyberg, Jose D. Posada, Martina Recalde, Elena Roe, Lisa M. Schilling, Nigam H. Shah, Karishma Shah, Marc A. Suchard, Lin Zhang, Ying Zhang, Andrew E. Williams, Christian G. Reich, George Hripcsak, Peter Rijnbeek, Patrick Ryan, Kristin Kostka and Daniel Prieto-Alhambra

Pediatrics originally published online May 28, 2021;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/early/2021/05/27/peds.2020-042929.citation