New infrared radiation temperature measurement system applied to the Laser Flash Method

D M Camarano¹, F F Alves², I Finelli², F L Migliorini¹, O Miranda¹ and P A Grossi¹
¹ Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)/ Comissão Nacional de Energia Nuclear (CNEN), Av. Presidente Antônio Carlos 6627, Campus da UFMG – Pampulha, Caixa Postal 941, CEP 30.161-970, Belo Horizonte, MG, Brasil
² Universidade Federal de Minas Gerais, Departamento de Engenharia Elétrica, Campus Pampulha, CEP 31.270-901, Belo Horizonte, MG, Brasil

E-mail: dmc@cdtn.br

Abstract. The laser flash method is based on measuring the temperature transient. The effect of the thermal inertia of the temperature measurement system is not negligible and cannot be ignored due to the fast dynamics of the measured thermal transient. This paper presents the new infrared radiation temperature measurement system applied to the thermal diffusivity measurements based on the laser flash method. The developed system consists in a detector cooled in liquid nitrogen, collimating lenses and a mathematical modeling developed in LabView. As a result, the generated electrical signal is converted into temperature. A detailed description of this new temperature measurement system is presented, as well as its mathematical model, computational implementation and calibration. For validate the new system, reference samples of homogeneous materials (Pyroceram 9606 and Inconel 600) were tested and the results of thermal diffusivities were compared with its reference certificates. The thermal diffusivity values measured by using the new system are in agreement with reference values, with less than 2% of relative deviation.

1. Introduction
The determination of thermal diffusivity by laser flash method [1–4] is based on the variation of temperature on the opposite side of a thin cylindrical sample resulting from a short pulse of radiant energy received on its front side. This thermogram is measured and the thermal diffusivity is calculated as a function of sample thickness and the time required to reach half of the maximum rate of temperature on the opposite side. The Laboratório de Medição de Propriedades termofísicas (LMPT) of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN) is expanding the measurement capabilities of its metrological platform devoted to the determination of the main thermophysical properties of materials. Then, the development of new temperature measurement system with a response time of nanoseconds is a priority to improve the quality of the thermal diffusivity measurement of materials. The new temperature measurement system was designed and built to improve experimental apparatus used to determined thermal diffusivity. The mathematical modelling of this system is also presented on this paper as well as its computational implementation and calibration. Reference samples of homogeneous materials (Pyroceram 9606 and Inconel 600) were
used during the validation process and the results of thermal diffusivities were compared with its reference certificates.

2. Experimental apparatus and procedure

2.1. Physical design and construction

The design of the temperature measurement system has been divided into two phases. The first phase is related to the design and construction of the system. The HgCdTe detector is the photoconductive element which undergoes a change in resistance proportional to the incident infrared radiation. It is mounted in the metal dewar with ZnSe window offering optimum performance in the 8 to 12 μm. It was used the J15D series HgCdTe detector and the preamplifier model PA-101 supplied by Teledyne Judson Technologies. The ZnSe lens are the optical system used to collect the infrared radiation emitted by the sample. The system is equipped with an LED pilot light for accurate alignment of the sensor with the object to be measured. The signal is digitized using a 16 bits A/D converter of an NI PCI-6052 data acquisition device. The second phase is related with the signal processing using LabVIEW. Table 1 summarizes technical data of HgCdTe and the preamplifier used in the system. Figure 1 shows an overview of the new temperature measurement system.

Item	Technical data
HgCdTe Detector	
Active area size:	4 mm²
Cutoff wavelength (20 %)	> 12 μm
Peak wavelength	(11 ± 1)μm
Peak detectivity @ 10 kHz	min 1 x 10⁻¹⁰ cm Hz⁻¹/₂.W⁻¹
	typical 1.5 x 10⁻¹⁰ cm Hz⁻¹/₂.W⁻¹
Responsivity @peak	100 V/W
Time constant	0.5 μs
PA 101 Preamplifier	
Bandwith	1st stage 10 Hz to 1 MHz 2nd stage 10 Hz to 200 kHz
Gain	1st stage 100x 2nd stage 10x
Input impedance	10 kΩ through 100 μF capacitor
Input noise	1.5 nV Hz
Maximum Output level (high impedanceload)	10 V p-p

Figure 1. Structure of the new temperature measurement system.
2.2. Mathematical model

The electrical signal corresponding to the radiation emitted from a blackbody, \(S_{bb} (T_{bb}) \) is described by [5]:

\[
S_{bb}(T_{bb}) = g \cdot \frac{R^* \cdot A_d \cdot \tau_0}{4 \cdot F^2 + 1} \int_{\lambda_1}^{\lambda_2} M(T_{bb}, \lambda) \cdot s(\lambda) \cdot d\lambda.
\]

Where \(g \) is the amplification of the electronic block, \(R^* \) is the peak detector spectral sensitivity given in \(\text{V} \cdot \text{W}^{-1} \), \(A_d \) is the detector area in \(\text{cm}^2 \), \(F \) represents the ratio of focal length of the lens and diameter of the objective, \(\lambda_1 \) and \(\lambda_2 \) are the limits of the spectral band of the detector in nm, \(M (T, \lambda) \) is the spectral exitance at the temperature \(T \) and wavelength \(\lambda \) (\(\text{W} \cdot \text{m}^{-2} \cdot \text{um}^{-1} \)), \(\tau_0 \) is the transmittance of the lens used and \(s (\lambda) \) is the detector relative spectral detectivity function. The measuring signal, \(S_r (T) \) related to the temperature of any object is be expressed by [5,6]:

\[
S_r = \varepsilon \varepsilon' S_{obj}(T) + (1 - \varepsilon) \tau S_{refl}(T_{refl}) + (1 - \tau) S_{env}(T_{env}) - (1 - \tau) S_{opt}(T_{opt}) - S_{det}(T_{det})
\]

Where \(S_{obj} (T) \), \(\varepsilon, \tau \) is the electrical signal corresponding to the radiation emitted by the object, the effective emissivity of the real target and the effective transmissivity of the atmosphere, respectively. \(S_{refl} (T_{refl}) \) is the electrical signal corresponding to the radiation reflected from the surrounding objects, \(S_{env} (T_{env}) \) is the signal corresponding to the radiation emitted (or absorbed) by the environment between the object and the detector. \(S_{opt} (T_{opt}) \) is the electrical signal corresponding to the radiation emitted by the optical components and \(S_{det} (T_{det}) \) is the electrical signal caused by the by the detector itself. The temperature \(T_{out} \) of the object is calculated based on the value determined from the corrected signal \(S_r (T) \) converted to temperature using the calibration data (figure 2).

![Figure 2. Calibration curve.](image)

The mathematical model developed was implemented using the LabVIEW platform. The signal data are acquired and processed and the corrections are performed according to the equations described above. The corrected electrical signal is converted to temperature signal, considering the calibration of the system (figure 3). The program generates a screen containing the signal graph in temperature over time (figure 4).
Figure 3. Typical signals obtained from laser flash measurements: S_{obj} and S_r.

Figure 4. Typical temperature signal obtained from laser flash measurements.

2.3. Thermal diffusivity measurement

To verify the validity and desired features of the new temperature measurement system, it was used to measure the thermal diffusivity of two reference samples (Pure Inconel 600 and Pyroceram 9606) using the laser flash method [1-4]. The system was coupled to the apparatus [4] developed by the staff of the Laboratório de Medição de Propriedades Termofísicas of Centro de Desenvolvimento da Tecnologia Nuclear (figure 5). This apparatus is composed of sample holding device, heating furnace, laser CO$_2$ (of 100 W total power) working at 10.6 μm wavelength, vacuum pump, measuring control and data processing system. The thermal radiance signal is digitized using a 16 bits A/D converter of an NI PCI-6052 data acquisition device and a LabView programming is used to acquire data. A thin carbon layer was applied over the front surfaces of the samples (8 mm in diameter and about 2.5 mm thickness). The rear surfaces of the samples were also coated to ensure an uniform emissivity.

Figure 5. Schematic of the experimental apparatus for thermophysical properties measurements.
3. Results
All thermal diffusivity values presented hereafter result from the average of successive measurements carried out on repeatability conditions. The results obtained for the thermal diffusivity of Inconel 600 and Pyroceram 9606 standard samples are shown in Table 2. The results show good agreement with the reference values of both samples. The maximum deviation of obtained values for thermal diffusivity using the new temperature measurement system from the certified value is in less than 2%, which is within the uncertainty of the value estimated in 7.5%. The uncertainty assessment of the experimental apparatus [7] is performed in accordance with the ISO Guide to the Uncertainty in Measurement (GUM) [8]. The uncertainty of the certified thermal diffusivity values are 7.5% at the 95% confidence level [9].

Table 2. Thermal diffusivity of reference samples at room temperature.

Reference sample	Mean value	Reference value [9]
Pyroceram 9606	2.02	2.02
Inconel 600	3.42	3.44

4. Conclusions
In this paper was presented a new system for measuring temperature with low response time coupled to the system for determination of thermal diffusivity using the flash method. The mathematical model was developed and implemented in LabVIEW platform for signal processing, correction and conversion of electrical signal to temperature signal. The results show great potential for use in thermal imaging systems with relatively low cost and adequate accuracy, with low thermal inertia and wide measurement range. Experiments carried out with reference samples demonstrated good agreement between the reference and obtained values, with a relative deviation of less than 2%. A more detailed investigation becomes necessary to for a better evaluation of the reproducibility of the system using others reference samples.

Acknowledgments
This work has been supported by the Fundação de Amparo a Pesquisa de Minas Gerais – FAPEMIG and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq.

References
[1] Parker W J, Jenkins R J, Butler C P and Abbott, G L 1961 J. Appl. Phys. 32 1679
[2] ASTM-E-1461 2011 Standard test method for thermal diffusivity of solids by the flash method, vol 14.01 (Annual book of ASTM standards)
[3] Hay B P, Filtz J R, Hameury J and Rongione L 2005 Int. J. Thermophys. 26 6
[4] Migliorini F L, Silva E H C, Grossi P A, Ferreira R A N and Camarano D M 2009 Proceedings of the XIX IMEKO World Congress 2009, Fundamental and Applied Metrology, Lisbon, Portugal, p 2000
[5] Chrzanowski K 2001 Non-Contact Thermometry - Measurement Errors vol 7 Research & Development Treatises (Warsaw: Polish Chapter of SPIE)
[6] Vendt R, Juurma M, Jaanson P, Vabson V, Kübaresepp T and Noorma, M 2011 Int. J. Thermophys. 32 247
[7] Camarano D M, Migliorini F L, Silva E H C, Grossi P A, Ferraz W B and de Paula J B 2010 Int. J. Thermophys. 26 6
[8] JCGM 100:2008 Evaluation of measurement data - Guide to the Expression of Uncertainty in Measurement (JCGM Joint Committee for Guides in Metrology)
[9] INMETRO Test Report DIMCI 1588 2013 - Pyroceram 9606 and Inconel 600 samples (INMETRO Instituto Nacional de Metrologia, Qualidade e Tecnologia)