Salinity-induced limits to Mangrove canopy height and diversity

Saverio Perri* | Matteo Detto1,2 | Amilcare Porporato1,3 | Annalisa Molini4*

1High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08544, USA
2Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08540, USA
3Civil & Environmental Engineering, Princeton University, Princeton, NJ, 08540, USA
4River-Coastal Science & Engineering, Tulane University, New Orleans, LA, 70118, USA

Correspondence
Saverio Perri, High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08544, USA
Annalisa Molini, River-Coastal Science & Engineering, Tulane University, New Orleans, LA, 70118, USA
Email: sperri@princeton.edu, amolini@tulane.edu

Funding information
This study was supported by the US Department of Energy Terrestrial Ecosystem Science Program under grant no. DE-SC0020116. S.P. and A.P. also acknowledge the support provided by the Princeton University’s Dean for Research, High Meadows Environmental Institute, Andlinger Center for Energy and the Environment, and the Office of the Provost International Fund.

Mangrove canopy height is a key metric to assess tidal forests’ resilience in the face of climate change. In terrestrial forests, tree height is primarily determined by water availability, plant hydraulic design, and disturbance regime. However, the role of water stress remains elusive in tidal environments, where saturated soils are prevalent, and salinity can substantially affect the soil water potential. Here, we use global observations of maximum canopy height, species richness, air temperature, and seawater salinity – a proxy of soil water salt concentration – to explain the causal link between salinity and Mangrove stature.

Our findings suggest that salt stress affects Mangrove height both directly, by reducing primary productivity and increasing the risk of xylem cavitation, and indirectly favoring more salt-tolerant species, narrowing the spectrum of viable traits, and reducing biodiversity. Yet, salt tolerance comes to a price. Highly salt-tolerant mangroves are less productive and generally shorter than more sensitive species, suggesting a causal nexus between salinity, biodiversity, and tree height. As sea-level rise enhances coastal salinization, failure to account for these effects can lead to incorrect estimates of future carbon stocks in Tropical coastal ecosys-
Canopy height is a critical variable in forest ecology. It regulates access to light, promotes diversity in plant functional types, and enhances ecosystem resilience to environmental disturbances (Walker et al., 1999; Falster and Westoby, 2003; Giardina et al., 2018; Detto et al., 2021). When interpreted through allometric relations, the height of trees also represents an essential parameter to estimate aboveground carbon stocks and design interventions to protect critically endangered ecosystems (Saenger and Snedaker, 1993; Moles et al., 2009; Worthington et al., 2020). In terrestrial forests, the height of trees is primarily controlled by water availability and biotic and abiotic factors, such as light competition, micro-climate, species allocation strategies, and the disturbance regime (Koch et al., 2004; Moles et al., 2009; Dybzinski et al., 2011; Klein et al., 2015; Tao et al., 2016; Giardina et al., 2018).

In contrast, in Mangrove forests thriving at the interface between the terrestrial and the marine environment, tidal inundation and river discharge maintain nearly saturated soil conditions, and physical water availability is far from being a limiting factor (Ball, 1988; Field et al., 1998). While alternative forms of water stress, like the limiting effects of pore water salinity on root water uptake and transpiration, could play a primary role in regulating Mangrove height, the broad mechanisms linking tidal drivers to canopy height remain largely unexplored.

Maximum canopy height, H_{max}, a parameter relatively easy to obtain from forest inventories, airborne LiDAR, or other remote sensing platforms (Lucas et al., 2002; Heumann, 2011; Fatoyinbo and Simard, 2013; Salum et al., 2020), has been extensively used to investigate the relation between Mangrove height and environmental drivers at the global scale (Friess, 2019; Simard et al., 2019b; Charrua et al., 2020). These studies have primarily focused on understanding how the latitudinal patterns of H_{max} are affected by both fundamental climatic factors like precipitation and temperature and sporadic ecological disturbances such as tropical storms (Feher et al., 2017; Simard et al., 2019b; Charrua et al., 2020). Still, major tidal stress factors as soil pore water salinity display a large regional variability (Rovai et al., 2021) and can hardly be typified through zonal averages. Therefore, their effects remain more challenging to pinpoint in global studies.

Salinity has been long-known as one of the dominant sources of abiotic stress in coastal wetlands, regulating local carbon allocation and production (Ball, 1988; Alongi, 1998; Perri et al., 2019). Gradients of salinity have been linked to tidal zonation, species succession and abundance at the ecosystem scale (Greiner La Peyre et al., 2001; Wendelberger and Richards, 2017; Perri et al., 2018b). Moderate salinity is generally associated with high species richness (Ball, 1998; Islam et al., 2016), which has been related to elevated productivity (Mittelbach et al., 2001; Bai et al., 2021). While the relationship between species diversity and productivity remains controversial and may depend on the spatial scale of interest (Whittaker and Heegaard, 2003; Mensah et al., 2018), biotic interactions (e.g., competition for light or ecological facilitation) promote tall canopies in highly diverse Mangrove forests (Wolf et al., 2012; Meyer et al., 2020). Affecting species richness, salinity may, therefore, exert an indirect control on canopy height.

At the same time, salinity is a primary hydrological driver, known to reduce soil water potential, limit root water uptake, increase the risk of xylem cavitation, and impair photosynthesis (Munns, 2002; Perri et al., 2018a, 2019, 2022). Recent studies on Mangrove biomass stocks and allometric relations have suggested that aridity and tidal
FIGURE 1 Hydrologically-driven versus salinity-driven hydraulic stress. Conceptual representation of water stress in terrestrial (A) and tidal (B) forests, as regulated by the total soil water potential ψ_{tot}, defined as the sum of matric potential ψ_s, osmotic potential ψ_π, and gravimetric potential ψ_h. In terrestrial forests (A), water movements in the soil are mainly controlled by ψ_s and soil moisture patterns (hydrologically-driven hydraulic stress). In contrast, in tidal environments (B), soils are primarily saturated ($\psi_s \approx 0$), and the contribution of ψ_π becomes dominant (salinity-driven hydraulic stress).

Inundation frequency – which are both strongly correlated with water salinity – are dominant limiting factors for coastal ecosystems’ carbon storage [Adame et al. 2020; Bathmann et al. 2021; Rovai et al. 2021]. These effects are analogous to those of water stress in terrestrial forests, and similarly to water stress, they could exert significant controls on species competition and canopy height [Koch et al. 2004; Klein et al. 2015]. While in terrestrial forests the soil water potential, ψ_{tot}, is governed by soil moisture availability (hydrologically-driven hydraulic stress; Figure 1A), in saturated tidal soils the matric potential, ψ_s, is close to zero, and osmotic effects largely regulate access to water (salinity-driven hydraulic stress; Figure 1B). Accordingly, salinity should be regarded as a form of tidal aridity, capable of imposing major constraints to Mangrove canopy dynamics and productivity.

Here we investigate the relation between pore water salinity and Mangrove height across scales ranging from regional to global. Our main hypothesis is that the interplay of salt stress and plant salt tolerance can be used to explain and generalize this relation across a large variety of coastal ecosystems worldwide – in analogy with the effects of water stress in terrestrial ecosystems. We also hint at the causal relation between salt-stress, species succession, and species richness as one of the primary mechanisms through which salinity can affect Mangrove height at regional and global scales.
2 | DATA AND METHODS

2.1 | Data Sources

Our analysis relies on the global Mangrove maximum canopy height (H_{max}) dataset generated by Simard et al. (2019a) by integrating the Shuttle Radar Topography Mission (SRTM) digital elevation model (Farr et al., 2007) with the LiDAR heights from the Geoscience Laser Altimeter System (GLAS) mission (Fatoyinbo et al., 2008). The dataset, which also provides global estimates of Mangrove distribution and aboveground biomass, is made publicly available from the Oak Ridge National Data Archive (ORNL DAAC) at a native 30-meter spatial resolution. Both SRTM and GLAS retrieval refers to the year 2000. To limit Mangroves’ misattribution away from coastal areas, we masked the raw Mangrove canopy height data with the spatial distribution of Mangroves reported in the World Atlas of Mangroves (Spalding, 2010).

The World Atlas of Mangroves was also used to infer global patterns of species richness, SR, by overlaying the spatial coverage at 30 meters resolution of the 60 Mangroves species listed in the Atlas. SR is estimated as the number of species with the same bio-geographical distribution, and represents a potential SR. The actual number of species per plot is expected to be lower, as fast-growing (and potentially taller) species out-compete the less productive ones.

Maximum canopy height was investigated as a function of historical mean air temperature (T_{air}; representing here climatic forcing) and sea-surface salinity (S_{sw}). While other environmental variables such as precipitation and evapotranspiration are expected to be correlated with pore water salinity (Kelble et al., 2007; Rovai et al., 2021), the salt mass balance of a Mangrove ecosystem depends not only on these local environmental conditions but also on large-scale ocean circulation and the quantity and quality of riverine inputs (Lane et al., 2007; Gomez et al., 2019). Given such complexity and the lack of direct measurements of soil salinity, S_{sw} represents the best available proxy for salinity in coastal ecosystems and was, therefore, selected for the analysis performed here. Air temperature, T_{air} across the Mangrove biogeographical range ($39^\circ \text{S} - 30^\circ \text{N}$) was obtained from the WorldClim dataset (Fick and Hijmans, 2017) over the period 1970–2000, while sea-surface salinity, S_{sw} was derived from the GLORYS12V1 reanalysis (Bourdalle, 2012) for the years 1993-2018. WorldClim and GLORYS12V1 products are provided as monthly averages at a 30 arc-seconds and 300 arc-seconds spatial native spatial resolution, respectively. Although S_{sw} and T_{air} time spans are not completely overlapping, their temporal extent is sufficient to derive long-term means that can be used as explanatory variables for H_{max}. All the data were aggregated at 10-minutes spatial resolution (600 arc-seconds, about 18.5 km at the equator), and average values were obtained for each pixel.

Mangrove canopy height was associated with mean salinity and air temperature based on a proximity analysis. This was obtained through the use of a focal statistic where, for each H_{max} pixel, the corresponding S_{sw} and T_{air} were calculated as average values among neighboring cells (up to 5×5 cells).

2.2 | Latitude-dependent and Site-dependent analyses

The relation between mangrove canopy height, salinity, air temperature and species richness was explored both zonally (latitude-dependent analysis) and locally (site-dependent analysis). In the latitude-dependent analysis, each variable was then averaged zonally over 1° of latitude, reducing the sample size to 70 averages corresponding to the observed geographical range of Mangrove ecosystems ($39^\circ \text{S} - 30^\circ \text{N}$). The zonal averages where calculated at the global scale and across the different bio-geographic regions: (a) Americas and West Africa (AWA: $120^\circ \text{W} - 13^\circ \text{E}$), (b) East Africa and Middle East (EAME: $30^\circ \text{E} - 77^\circ \text{E}$), and (c) Indo-Pacific Asia (IPA: $78^\circ \text{E} - 152^\circ \text{W}$; Figure 1E-G). The site-dependent analysis, in contrast, was performed comparing the local gridded H_{max}, S_{sw}, and T_{air} data to SR estimates.
We explored how the main statistical descriptors (i.e., median, 25th and 75th percentiles, min and max non-outlier values) of H_{max}, S_{sw}, and T_{air} vary as a function of SR.

Finally, to reduce the variability of H_{max} within the dataset and partially decouple the direct impact of salinity on canopy height from the indirect effect mediated by species richness, the relation between canopy height and environmental variables was investigated analyzing the mean values of H_{max} as a function of mean S_{sw}, and T_{air}, conditional to species richness ($\langle H_{\text{max}} | SR \rangle$). The $\langle H_{\text{max}} | SR \rangle$ was also related to the S_{sw} coefficient of variation, $CV_{S_{\text{sw}}}$, and a modified CV for air temperature, $CV_{T_{\text{air}}}^{*}$. The latter was calculated with respect to the optimal temperature value T_{opt}, identified around the mode of the global T_{air} distribution in Mangrove ecosystems ($\sim 27^\circ\text{C}$; see Section 3.2). We first computed the mean deviation (σ_{T}^{*}) around T_{opt}. The modified coefficient of variation was then estimated as $CV_{T_{\text{air}}}^{*} = \sigma_{T}^{*} / T_{\text{opt}}$, which reflects the seasonal variability of the mean air temperature around its optimal value.

2.3 | Analysis of variance

Previous studies have quantified the impact of T_{air}, S_{sw} and precipitation on Mangroves biomass stocks by performing ordinary least squares regression (OLSR) analyses (Rovai et al., 2018; Ribeiro et al., 2019; Simard et al., 2019b). However, OLSRs can yield ambiguous results in case of high multicollinearity (Naes and Martens, 1985) that is expected, for example, between T_{air} and SR. Here, the significance of the relations between H_{max} and the selected environmental drivers (S_{sw}, T_{air}, and SR) was tested through multivariate regression analysis. We opted for a partial least-squares regression (PLSR) model, which has the advantage of accounting for the possible multicollinearity among the predictor variables (Rosipal and Krämer, 2005).

The selection of environmental variables to include in the PLSR model was based on the results of previous studies (Simard et al., 2019b; Rovai et al., 2021) and on the observation that rainfall, tidal regime, and evapotranspiration, rather than directly affecting mangroves productivity, are all proxies of salinity (Fosberg, 1961; Field, 1995). Simard et al. (2019b), in particular, considered a wide range of bioclimatic variables and concluded that the latitudinal variation of maximum canopy height can be explained by just average temperature and average annual precipitation. Species richness was not included in their regression model. Rovai et al. (2021) suggested that Mangrove biomass stocks are controlled by local or regional forcings rather than latitude-dependent averages. They found that aridity, tidal amplitude, and duration, all proxies of salinity, explain most of the H_{max} variance when analyzed at the ecosystem (local or pixel) scale. Based on these previous findings, and to test our hypothesis that both salinity species richness could affect Mangrove canopy height, we selected S_{sw}, T_{air}, and SR as plausible explanatory variables for both the latitude-dependent and site-dependent analyses.

The PLSR, performed running the SIMPLS algorithm (De Jong, 1993), was used to explain the observed variance in both the latitude- and site-dependent patterns. We first used a univariate regression model to estimate the variance explained by each variable alone. We then combined the three variables through the multivariate PLSR. The best PLSR models (i.e., the ones that can explain most of the variance) were obtained by including all the variables in the latitudinal analysis. We excluded T_{air} from the site-specific model because of its high correlation with SR (see Section 3.3).
3 | RESULTS AND DISCUSSION

3.1 | Regional versus global salinity controls on Mangrove canopy height

In line with previous studies performed in terrestrial forests, many authors have focused on the relation between Mangrove height – as a proxy of above-ground biomass – and major climatic drivers, such as precipitation and air temperature (Pickens and Hester, 2011; Friess, 2019; Simard et al., 2019b; Charrua et al., 2020). These studies consistently show that the latitudinal variability of Mangrove height strongly correlates with air temperature and precipitation, concluding that these climatic factors alone can explain most of the observed spatial variability of H_{max}.

However, the analysis of global correlations is only one part of the tale. Rather than directly affecting canopy height, air temperature and precipitation might shape the latitudinal patterns of H_{max} indirectly through their control on aridity and species richness. There is a broad scientific consensus around the idea that the ecological role of air temperature is to determine the geographical range of Mangrove ecosystems, thus affecting biodiversity rather than directly influencing canopy height (Clough et al., 1982; Duke et al., 1998; Osland et al., 2016). Besides, temperature governs evapotranspiration, which with precipitation regulates the concentration of salts in the soil pore water and, more broadly, aridity (Osland et al., 2016; Rivera-Monroy et al., 2017).

In the same way, it is unlikely that freshwater inputs from precipitation can significantly influence soil water availability and plant status in tidal areas, where soils are predominantly saturated (Ball, 1988; Field et al., 1998). Although precipitation is related to river discharge and nutrient delivery (Twilley and Day, 1999; Reef et al., 2010), its primary role in coastal wetlands is to dilute soil water salinity (Fosberg, 1961; Rodriguez et al., 2016). As a result, it should be regarded as a proxy for salinity rather than a climatic factor affecting H_{max} directly (Fosberg, 1961; Field, 1995; Gilman et al., 2008).

At the same time, salinity controls on tidal ecosystems are local in nature, making it challenging to establish a clear nexus between salt stress and canopy height at the global scale (Ward et al., 2006). Contrary to climatic drivers like average air temperature, which displays distinct latitudinal patterns in response to irradiance distribution (Figure 2A), coastal seawater salinity can be affected by the local hydrological regime, coastal geomorphology, tidal controls and thermohaline circulation (Schmidt et al., 2004; Schmitt, 2008; Herbert et al., 2015) (Figure 2B). In addition, while mangroves are halophytes, their adaptations to salinity vary widely across the different species, resulting in a broad spectrum of physiological responses to salt stress (Parida and Jha, 2010; Reef and Lovelock, 2015).

To pinpoint these local effects, we disaggregated global patterns of maximum Mangrove height (H_{max}), sea surface salinity (S_{sw}; a proxy for pore water salinity in coastal ecosystems), mean air temperature (T_{air}; representing climatic forcing), and species richness (SR) to the regional scale (see Methods). Although consistent with previously observed latitudinal patterns, our latitude-dependent analysis suggests that SR is the primary covariate of the observed H_{max} distribution, with S_{sw} and T_{air} only weakly correlated to canopy height (Figure 2D-G). Due to its inhomogeneous latitudinal distribution, salinity appears to be a poor descriptor of H_{max} when analyzed at the global scale (Figure 2D). However, it shows different – and at times marked – regional impacts on the AWA, EAME, and IPA Mangroves (Figure 2F-E). In the AWA region (Figure 2E), characterized by a wide range of salinity conditions and intermediate biodiversity, S_{sw} appears to exert a clear influence on H_{max}. In contrast, this relation is more elusive in the EAME region (Figure 2F) – characterized by extreme salinity conditions and meagre to intermediate biodiversity – and in the IPA Mangroves (Figure 2G), where low to moderate salinity conditions and high biodiversity represent the norm. These results might suggest that the influence of S_{sw} on H_{max} is, to some extent, mediated by species richness.
Perri et al.

Figure 2: Global versus regional drivers of Mangrove canopy height: Global multi-year average of A) mean air temperature (T_{air}) from the WorldClim dataset (Fick and Hijmans, 2017) for the period 1970-2000, and B) surface seawater salinity (S_{sw}) from the GLORYS12V1 reanalysis over the period 1993-2018 (Bourdalle, 2012). Data are shown for the latitude range 39°S – 30°N, which spans the entire Mangrove biogeographical range as reported in the World Mangrove Atlas (Spalding, 2010). The dashed rectangle in B) highlights areas of high regional salinity variability. C) Global distribution Mangroves species richness (SR) derived from the World Mangrove Atlas (Spalding, 2010). D-G) Latitudinal distribution of H_{max} (green lines), T_{air} (red lines), S_{sw} (light blue lines), and SR (black lines) at a global scale, E) in the AWA, F) EAME, and G) IPA regions. The blue shaded area in F) indicates a range of EAME latitudes where data are too scarce to support the analysis.

3.2 | Biodiversity-mediated salinity controls

To better investigate the role of biodiversity in regulating Mangrove canopy height, we explore the regional dependence of H_{max}, S_{sw}, and T_{air} from SR. Consistently with results from terrestrial forests (Gatti et al., 2017; Marks et al., 2016), H_{max} shows a distinct dependence on species richness, sharply increasing with biodiversity (Figure 3A-C). Low diversity, in contrast, is associated with short canopies. Although the complexity of coastal ecosystems and the high number of confounding factors hinder our capability to disentangle some cause-effect relations, these findings seem
FIGURE 3 Structure of the empirical relations between canopy height, air temperature, salinity, and species richness: Box plots of (A-C) maximum Mangroves canopy height [m], (D-E) salinity [psu], and (G-I) air temperature [°C] or given species richness, SR, in the three considered sub-regions (AWA, EAME, and IPA). Red central marks indicate the median, and the bottom and top edges of the boxes indicate the 25th and 75th percentiles, respectively. The whiskers extend to twice the interquartile range, and the more extreme points are considered outliers (not shown). The optimal air temperature value corresponds to $T_{\text{air}} = 27^\circ \text{C}$ circa.

The analysis of the T_{air}–SR (Figure 3D-F) and S_{sw}–SR (Figure 3G-I) relations, at the same time, indicates that both T_{air} and S_{sw} are major abiotic co-factors in controlling species richness. While elevated salt-stress and low temperature are generally coupled with low species richness, high diversity is attained in ecosystems with moderate S_{sw} and elevated T_{air}, such as in the IPA Mangroves. While air temperature is often the dominant constraint for species diversity to support the hypothesis that high species diversity can promote competition for light and resources, resulting in taller Mangrove trees [MacArthur and Wilson 1967; Gatti et al. 2017].

Additionally, in ecotones characterized by low salinity, tall forests create opportunities for short shade-tolerant species to coexist with tall and light-demanding Mangroves [Lugo 1986]. It is also likely that the conditions that lead to high species richness promote high productivity and taller canopies [Lovelock 2008; North et al. 2017]. Moderate salinity typical of intertidal estuarine ecotones, for example, may result in both high productivity and elevated species richness [Spalding 2010; Simard et al. 2019b; Friess 2019]. To better unravel the direct effect of salinity on canopy height from the indirect effect due to species richness, we also analyzed the average H_{max} for given SR (see Section 3.3 and Figure 4).
To assess the relative impact of T_{air} on S_{sw} and H_{opt}, the emergences of this optimal value results from a) the reduction in light-saturated photosynthetic rates, stomatal conductance, and photosynthetic efficiency, known to occur in Mangroves at $T_{\text{air}} < T_{\text{opt}}$ (Davis, 1940; Ball, 1988; Saenger, 2002; Kao et al., 2004; Barr et al., 2009), and b) heat stress at $T_{\text{air}} > T_{\text{opt}}$ to which Mangroves adapt producing energetically-costly osmolytes such as proline (Liu and Wang, 2020). Ultimately, both extremely high and low temperatures reduce the biogeographical range of Mangroves, with very few species surviving in temperate or hot environments (Spalding, 2010; Alongi, 2012).

Whether elevated temperatures represent an additional source of stress and an ecological constraint for EAME H_{opt} (Medina, 1999; Zahed et al., 2010), salinity seems to be a dominant stress factor. Temperatures around an optimal value, T_{opt}, corresponding to about 27°C, in the IPA region harbour the highest richness (Duke et al., 1998). The emergence of this optimal value results from a) the reduction in light-saturated photosynthetic rates, stomatal conductance, and photosynthetic efficiency, known to occur in Mangroves at $T_{\text{air}} < T_{\text{opt}}$ (Davis, 1940; Ball, 1988; Saenger, 2002; Kao et al., 2004; Barr et al., 2009); and b) heat stress at $T_{\text{air}} > T_{\text{opt}}$ to which Mangroves adapt producing energetically-costly osmolytes such as proline (Liu and Wang, 2020). Ultimately, both extremely high and low temperatures reduce the biogeographical range of Mangroves, with very few species surviving in temperate or hot environments (Spalding, 2010; Alongi, 2012).

3.3 Quantifying the impact of climatic and ecological forcing on H_{opt}

To assess the relative impact of T_{air}, S_{sw}, and SR on Mangrove canopy height, the couplings observed across latitudes and at the local scales (Figures 2D-G and 3) were tested a) using a multivariate partial least-squares regression (PLSR; Tables 1 and 2). For the IPA region, the percentage of variance explained by the predictor variables, accounting for possible multicollinearity (Chong and Jun, 2005). The analysis revealed that SR is the main controlling factor for H_{opt} in the latitude-dependent framework, explaining alone up to about 80% of the global variability (Table 1). The percentage of variance explained by SR at the regional level is significantly lower (41.8%–57.4%) than the global one, suggesting that specific climatic factors become more important at the local scales. We find that, if partial correlations are taken into account, H_{opt} is only weakly related to H_{opt}, and it does not significantly improve the performance of the regression model. These results suggest that the previously-reported impact of T_{air} on Mangrove canopy height (Woodroffe and Grindrod, 1991; Duke et al., 1998; Spalding, 2010; Osland et al., 2017; Simard et al., 2019b) may be attributed to the temperature-dependent geographical distribution of SR.

Salinity is shown to be a crucial driver at the ecosystem scale controlling H_{opt} both directly, as a source of environmental stress, and indirectly, by limiting biodiversity. Although SR remains the most correlated variable also in the site-specific analysis explaining up to 34% of the variance in H_{opt}, S_{sw} becomes a significant predictor that explains up to 26% of the spatial variability (Table 2). The relation between H_{opt} and S_{sw} shown in Figure 3A further supports the hypothesis that salinity can exert significant controls on canopy height. On average, Mangrove height decreases with salinity following a power law ($R^2 = 0.52$). In turn, the variability of S_{sw}, quantified through its coefficient of variation CV_{sw} (see Methods), is not directly related to H_{opt} (Figure 4B), and displays a ‘threshold behavior’ similar to the control shown by mean temperature (Figure 4C). Protracted and spatially homogeneous
freshwater or hypersaline conditions result in low species richness (Ball, 1998). Yet, ecosystems with relatively low SR (smaller dots in Figure 4A) can attain elevated heights if salt concentration is low, as a consequence of the coexistence of a moderate number of highly productive species. Variability in salinity and mean air temperature seem to impose ecological thresholds that determine biodiversity and only indirectly affect biomass stocks. This threshold can be easily identified for T_{air} around the optimal value T_{opt}.

Interestingly, our results show that $\langle H_{\text{max}} \mid SR \rangle$ decreases as a function of the modified temperature coefficient of variation $CV_{T_{\text{air}}}^*$, calculated as the ratio between the mean deviation around T_{opt} and the average air temperature (Figure 4D). Low $CV_{T_{\text{air}}}^*$ thus indicates minimal temperature fluctuations around the optimal value. This finding is in agreement with previous studies, including Cavanaugh et al. (2019), who observed an expansion of Mangrove ecosystems in the Florida Everglades as a consequence of the reduction in temperature fluctuations and freezing events.
TABLE 1 PLSR results, latitudinal analysis. All values are averaged zonally over 1° of latitude across the globe, and for the AWA (120° W - 13° E), EAME (30° E - 77° E), and IPA (78° E - 152° W) region. The table displays the percentage of variance explained by the regression models at the global scale and for the different regions.

Predictor	Global	AWA	EAME	IPA
SR alone	80.4%	57.4%	41.8%	51.7%
S_{sw} alone	40.5%	51.7%	25.2%	0.2%
T_{air} alone	35%	28.7%	7.1%	28.6%
Total	85%	74.6%	42.8%	61.4%
SR, S_{sw}, T_{air}	(79.1,4.6,1.2)	(62.4,7.0,5.2)	(38.2,4.3,0.3)	(50.5,2.2,8.6)

TABLE 2 PLSR results, site-specific analysis. All variables refer to the local (pixel) scale. Being highly correlated with species richness, T_{air} is not included in the multivariate analysis.

Predictor	AWA	EAME	IPA
SR alone	33.8%	30.4%	16.4%
S_{sw} alone	26%	6.7%	0.35%
T_{air} alone	4.1%	7.1%	4.4%
Total	59.8%	37.1%	16.8%
SR, S_{sw}	(33.8,26.0)	(30.4,6.7)	(16.4,0.3)

4 | CONCLUSION

We hypothesize that the salinity-induced limitation of canopy height results from a combination of different underlying processes, which can be summarized as follows. Analogously to water stress, salinity reduces soil water potential because of osmotic effects [Munns, 2002; Perri et al., 2017, 2018a]. As canopy height increases, the osmotic stress intensifies the plant effort to sustain a leaf water potential that becomes more and more negative [Koch et al., 2004; Klein et al., 2015]. As a result, salinity may impose a species-specific upper limit on canopy height, and Mangrove ecosystems experiencing prolonged and severe salt stress may tend to maintain a short canopy to avoid xylem cavitation [Lovelock et al., 2006; Rossi et al., 2020].

Similarly, salinity limits carbon assimilation and biomass production [Munns and Tester, 2008; Perri et al., 2019]. Salt-stressed plants prefer to allocate carbon in the root system at the expense of canopy expansion to maximize water use efficiency [Clough et al., 1982; Barr et al., 2013]. Although the below-ground biomass of these ecosystems can become a significant carbon pool, above-ground carbon stocks and height are significantly limited [Komiyama et al., 2008]. We further argue that severe stress induced by salinity reduces the niche breadth by excluding less tolerant species and decreases competition for above-ground resources, limiting diversity and H_{max} [Ball, 1998]. Contrarily, more tolerable salinity conditions might boost competition for light, enhance forest structural complexity and frequency.
promote species coexistence, thus increasing canopy height and Mangrove productivity through complementary re-
source utilization (Tilman et al., 2012; Grace et al., 2016). The observed high H_{max} attained by tropical Mangrove
ecosystems is, therefore, the outcome of the evolutionary competition for light and above-ground resources under
favorable environmental conditions.

Given the sharp gradients of salt concentration in coastal environments, salinity-induced limitations of H_{max} can
have significant ecological implications under projected climate change and sea-level rise. A small increment in the
sea level can lead to large sea-water intrusions (Werner and Simmons, 2009), sizable soil salinisation (Fagherazzi et al.,
2019), and may reduce biodiversity and biomass stocks (Hayes et al., 2019; Bai et al., 2021). Failure in accounting for
salinity impacts and salinisation-induced ecosystems shifts may lead to inaccurate predictions of Mangrove carbon
stocks and species diversity, impairing our ability to design appropriate conservation measures to protect these vital
ecosystems.

Acknowledgements

This study was supported by the US Department of Energy Terrestrial Ecosystem Science Program under grant no. DE-
SC0020116. S.P. and A.P. also acknowledge the support provided by the Princeton University’s Dean for Research,
High Meadows Environmental Institute, Andlinger Center for Energy and the Environment, and the Office of the
Provost International Fund.

Conflict of interest

The authors declare that they have no competing financial interests.

Data availability

Mangrove canopy data were made available by the Oak Ridge National Data Archive (ORNL DAAC). Sea surface salinity
data in proximity of coastlines were obtained from the GLORYS12V1 reanalysis product, while the air temperature
data were extracted from the WorldClim global dataset. The global distribution of Mangrove species (60 species) was
made available by the authors of the World Atlas of Mangroves (Spalding, 2010).

Author contributions

S.P. and A.M. designed and performed research; S.P. analyzed data; M.D. and A.P. helped design the testing hypothesis
and develop the statistical analysis; S.P. and A.M. wrote the paper with inputs from all the authors.

references

Adame, M., Reef, R., Santini, N., Najera, E., Turschwell, M., Hayes, M., Masque, P. and Lovelock, C. (2020) Mangroves in arid
regions: Ecology, threats, and opportunities. Estuar. Coast. Shelf Sci., 248, 106796.

Al-Yamani, F., Yamamoto, T., Al-Said, T. and Alghunaim, A. (2017) Dynamic hydrographic variations in northwestern Arabian
Gulf over the past three decades: Temporal shifts and trends derived from long-term monitoring data. Mar. Pollut. Bull.,
122, 488–499.
Almahasheer, H., Aljowair, A., Duarte, C. M. and Irigoien, X. (2016) Decadal stability of Red Sea mangroves. Estuar. Coast. Shelf Sci., 169, 164–172.

Alongi, D. M. (1998) Coastal ecosystem processes. Boca Raton, FL: CRC Press.

— (2012) Carbon sequestration in mangrove forests. Carbon Manag., 3, 313–322.

Anton, A., Almahasheer, H., Delgado, A., García-Bonet, N., Carrillo-de Albornoz, P., Marbà, N., Hendriks, I. E., Krause-Jensen, D., Saderne, V., Baldry, K. and Duarte, C. M. (2020) Stunted mangrove trees in the oligotrophic central Red Sea relate to nitrogen limitation. Front. Mar. Sci., 7, 597.

Bai, J., Meng, Y., Gou, R., Lyu, J., Dai, Z., Diao, X., Zhang, H., Luo, Y., Zhu, X. and Lin, G. (2021) Mangrove diversity enhances plant biomass production and carbon storage in Hainan island, China. Funct. Ecol., 35, 774–786.

Ball, M. C. (1988) Ecophysiology of mangroves. Trees, 2, 129–142.

— (1998) Mangrove species richness in relation to salinity and waterlogging: A case study along the Adelaide River floodplain, northern Australia. Glob. Ecol. Biogeogr. Lett., 7, 73–82.

Barr, J. G., Engel, V., Fuentes, J. D., Fuller, D. O. and Kwon, H. (2013) Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance. Biogeosciences, 10, 2145–2158.

Barr, J. G., Fuentes, J. D., Engel, V. and Zieman, J. C. (2009) Physiological responses of red mangroves to the climate in the Florida Everglades. J. Geophys. Res. - Biogeoc., 114, G02008.

Bathmann, J., Peters, R., Reef, R., Berger, U., Walther, M. and Lovelock, C. E. (2021) Modelling mangrove forest structure and species composition over tidal inundation gradients: The feedback between plant water use and porewater salinity in an arid mangrove ecosystem. Agr. Forest Meteorol., 308-309, 108547.

Bourdalle, R. (2012) Global Ocean Physics Reanalysis. Retrieved from: https://sextant.ifremer.fr/record/c0635fc4-07d3-4309-9d55-cfd3e6aa788b/.

Cavanaugh, K. C., Dangremond, E. M., Doughty, C. L., Park Williams, A., Parker, J. D., Hayes, M. A., Rodriguez, W. and Feller, I. C. (2019) Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proc. Natl. Acad. Sci. USA, 116, 21602–21608.

Charrua, A. B., Bandeira, S. O., Catarino, S., Cabral, P. and Romeiras, M. M. (2020) Assessment of the vulnerability of coastal mangrove ecosystems in Mozambique. Ocean Coast. Manage., 189, 105145.

Chong, I.-G. and Jun, C.-H. (2005) Performance of some variable selection methods when multicollinearity is present. Chemometr. Intell. Lab., 78, 103–112.

Clough, B., Andrews, T. and Cowan, I. (1982) Physiological processes in mangroves. In Mangrove ecosystems in Australia: Structure, function and management, 193–210. Canberra, Australia: Australian National Univ. Press.

Davis, J. J. (1940) The ecology and geologic role of mangroves in Florida. Publ. - Carnegie Instit. Wash., 517, 303–412.

De Jong, S. (1993) SIMPLS: An alternative approach to partial least squares regression. Chemometr. Intell. Lab., 18, 251–263.

Detto, M., Levine, J. M. and Pacala, S. W. (2021) Maintenance of high diversity in mechanistic forest dynamics models of competition for light. Ecol. Monogr., e1500.

Duke, N. C., Ball, M. C. and Ellison, J. C. (1998) Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett., 7, 27–47.

Dybzsinski, R., Farrior, C., Wolf, A., Reich, P. B. and Pacala, S. W. (2011) Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: An analytically tractable, individual-based model and quantitative comparisons to data. Am. Nat., 177, 153–166.
Fagherazzi, S., Anisfeld, S. C., Blum, L. K., Long, E. V., Feagin, R. A., Fernandes, A., Kearney, W. S. and Williams, K. (2019) Sea level rise and the dynamics of the marsh-upland boundary. *Front. Environ. Sci.*, 7, 25.

Falster, D. S. and Westoby, M. (2003) Plant height and evolutionary games. *Trends Ecol. Evol.*, 18, 337–343.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. and Alsdorf, D. E. (2007) The shuttle radar topography mission. *Rev. Geophys.*, 45, RG2004.

Fatoyinbo, T. E. and Simard, M. (2013) Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM. *Int. J. Remote Sens.*, 34, 668–681.

Fatoyinbo, T. E., Simard, M., Washington-Allen, R. A. and Shugart, H. H. (2008) Landscape-scale extent, height, biomass, and carbon estimation of Mozambique's mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. *J. Geophys. Res. - Biogeogr.*, 113, G02S06.

Feher, L. C., Osland, M. J., Griffith, K. T., Grace, J. B., Howard, R. J., Stagg, C. L., Enwright, N. M., Krauss, K. W., Gabler, C. A., Day, R. H. et al. (2017) Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. *Ecosphere*, 8, e01956.

Fick, S. E. and Hijmans, R. J. (2017) WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. *Int. J. Climatol.*, 37, 4302–4315.

Field, C. B., Osborn, J. G., Hooper, L. L., Polsenberg, J. F., Ackerly, D. D., Berry, J. A., Björkman, O., Held, E. M., Matson, P. A. and Mooney, H. A. (1998) Mangrove biodiversity and ecosystem function. *Glob. Ecol. Biogeogr. Lett.*, 7, 3–14.

Field, C. D. (1995) Impact of expected climate change on mangroves. *Hydrobiologia*, 295, 75–81.

Fosberg, F. R. (1961) Vegetation-free zone on dry mangrove coasts. *Tech. rep.*, U.S. Geological Survey Professional Paper, Washington, D.C.

Friess, D. A. (2019) Where the tallest mangroves are. *Nat. Geosci.*, 12, 4–5.

Gatti, R. C., Di Paola, A., Bombelli, A., Noce, S. and Valentini, R. (2017) Exploring the relationship between canopy height and terrestrial plant diversity. *Plant Ecol.*, 218, 899–908.

Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira, R. S., Uriarte, M. and Gentine, P. (2018) Tall Amazonian forests are less sensitive to precipitation variability. *Nat. Geosci.*, 11, 405–409.

Gilman, E. L., Ellison, J., Duke, N. C. and Field, C. (2008) Threats to mangroves from climate change and adaptation options: A review. *Aquat. Bot.*, 89, 237–250.

Gomez, F. A., Lee, S.-K., Hernandez, F. J., Chiaverano, L. M., Muller-Karger, F. E., Liu, Y. and Lamkin, J. T. (2019) ENSO-induced co-variability of salinity, plankton biomass and coastal currents in the northern Gulf of Mexico. *Sci. Rep.*, 9, 1–10.

Grace, J. B., Anderson, T. M., Seabloom, E. W., Borer, E. T., Adler, P. B., Harpole, W. S., Hautier, Y., Hillebrand, H., Lind, E. M., Pärtel, M., Bakker, J. D., Buckley, Y. M., Crawley, M. J., Damschen, E. I., Davies, K. F., Fay, P. A., Firn, J., Gruner, D. S., Hector, A., Knops, J. M., MacDougall, A. S., Melbourne, B. A., Morgan, J. W., Orrock, J. L., Prober, S. M. and Smith, M. D. (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. *Nature*, 529, 390–393.

Greiner La Peyre, M. K., Grace, J. B., Hahn, E. and Mendelssohn, I. A. (2001) The importance of competition in regulating plant species abundance along a salinity gradient. *Ecology*, 82, 62–69.

Hayes, M. A., Jesse, A., Welti, N., Tabet, B., Lockington, D. and Lovelock, C. E. (2019) Groundwater enhances above-ground growth in mangroves. *J. Ecol.*, 107, 1120–1128.
Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardon, M., Hopfensperger, K. N., Lamers, L. P., Gell, P. and Langley, J. A. (2015) A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. *Ecosphere*, 6, 1–43.

Heumann, B. W. (2011) Satellite remote sensing of mangrove forests: Recent advances and future opportunities. *Prog. Phys. Geogr.*, 35, 87–108.

Islam, S., Feroz, S., Ahmed, Z. U., Chowdhury, A. H., Khan, R. I. and Al-Mamun, A. (2016) Species richness and diversity of the floristic composition of the Sundarbans mangrove reserve forest, Bangladesh in relation to spatial habitats and salinity. *Malays. For.*, 79, 7–38.

Kao, W. Y., Shih, C. N. and Tsai, T. T. (2004) Sensitivity to chilling temperatures and distribution differ in the mangrove species *Kandelia candel* and *Avicennia marina*. *Tree Physiol.*, 24, 859–864.

Kelble, C. R., Johns, E. M., Nuttle, W. K., Lee, T. N., Smith, R. H. and Ortner, P. B. (2007) Salinity patterns of Florida Bay. *Estuar. Coast. Shelf S.*, 71, 318–334.

Klein, T., Randin, C. and Körner, C. (2015) Water availability predicts forest canopy height at the global scale. *Ecol. Lett.*, 18, 1311–1320.

Koch, G. W., Stillet, S. C., Jennings, G. M. and Davis, S. D. (2004) The limits to tree height. *Nature*, 428, 851–854.

Komiyama, A., Ong, J. E. and Poungparn, S. (2008) Allometry, biomass, and productivity of mangrove forests: A review. *Aquat. Bot.*, 89, 128–137.

Lané, R. R., Day Jr, J. W., Marx, B. D., Reyes, E., Hyfield, E. and Day, J. N. (2007) The effects of riverine discharge on temperature, salinity, suspended sediment and chlorophyll a in a Mississippi delta estuary measured using a flow-through system. *Estuar. Coast. Shelf S.*, 74, 145–154.

Liu, J. and Wang, Y.-S. (2020) Proline metabolism and molecular cloning of AmP5CS in the mangrove *Avicennia marina* under heat stress. *Ecotoxicology*, 29, 698–706.

Lovelock, C. E. (2008) Soil respiration and belowground carbon allocation in mangrove forests. *Ecosystems*, 11, 342–354.

Lovelock, C. E., Ball, M. C., Feller, I. C., Engelbrecht, B. M. and Ling Ewe, M. (2006) Variation in hydraulic conductivity of mangroves: Influence of species, salinity, and nitrogen and phosphorus availability. *Physiol. Plant.*, 127, 457–464.

Lucas, R. M., Ellison, J. C., Mitchell, A., Donnelly, B., Finlayson, M. and Milne, A. K. (2002) Use of stereo aerial photography for quantifying changes in the extent and height of mangroves in tropical Australia. *Wetl. Ecol. Manag.*, 10, 159–173.

Lugo, A. E. (1986) Mangrove understory: An expensive luxury? *J. Trop. Ecol.*, 2, 287–288.

MacArthur, R. H. and Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.

Marks, C. O., Muller-Landau, H. C. and Tilman, D. (2016) Tree diversity, tree height and environmental harshness in eastern and western North America. *Ecol. Lett.*, 19, 743–751.

Medina, E. (1999) Mangrove physiology: The challenge of salt, heat, and light stress under recurrent flooding. In *Ecosistemas de manglar en América tropical*, 10–126. Veracruz, México and San Jose, Costa Rica and Silver Spring, MD: Instituto de Ecología AC and UICN/ORMA and NOAA/NMFS.

Mensah, S., du Toit, B. and Seifert, T. (2018) Diversity–biomass relationship across forest layers: Implications for niche complementarity and selection effects. *Oecologia*, 187, 783–795.

Meyer, L., Diniz-Filho, J. A. F., Lohmann, L. G., Hortal, J., Barreto, E., Rangel, T. and Kissling, W. D. (2020) Canopy height explains species richness in the largest clade of Neotropical lianas. *Global Ecol. Biogeogr.*, 29, 26–37.
Mittelbach, G. G., Steiner, C. F., Scheiner, S. M., Gross, K. L., Reynolds, H. L., Waide, R. B., Willig, M. R., Dodson, S. I. and Gough, L. (2001) What is the observed relationship between species richness and productivity? Ecology, 82, 2381–2396.

Moles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., Pitman, A., Hemmings, F. A. and Leishman, M. R. (2009) Global patterns in plant height. J. Ecol., 97, 923–932.

Munns, R. (2002) Comparative physiology of salt and water stress. Plant Cell Environ., 25, 239–250.

Munns, R. and Tester, M. (2008) Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651–681.

Naes, T. and Martens, H. (1985) Comparison of prediction methods for multicollinear data. Commun. Stat. - Simul. Comput., 14, 545–576.

North, M. P., Kane, J. T., Kane, V. R., Asner, G. P., Berigan, W., Churchill, D. J., Conway, S., Gutiérrez, R., Jeronimo, S., Keane, J. et al. (2017) Cover of tall trees best predicts California spotted owl habitat. Forest Ecol. Manag., 405, 166–178.

Osland, M. J., Enwright, N. M., Day, R. H., Gabler, C. A., Stagg, C. L. and Grace, J. B. (2016) Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Chang. Biol., 22, 1–11.

Osland, M. J., Feher, L. C., Griffith, K. T., Cavanaugh, K. C., Enwright, N. M., Day, R. H., Stagg, C. L., Krauss, K. W., Howard, R. J., Grace, J. B. and Rogers, K. (2017) Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr., 87, 341–359.

Parida, A. K. and Jha, B. (2010) Salt tolerance mechanisms in mangroves: A review. Trees, 24, 199–217.

Perri, S., Entekhabi, D. and Molini, A. (2018a) Plant osmoregulation as an emergent water-saving adaptation. Water Resour. Res., 54, 2781–2798.

Perri, S., Katul, G. G. and Molini, A. (2019) Xylem-phloem hydraulic coupling explains multiple osmoregulatory responses to salt-stress. New Phytol., 224, 644–662.

Perri, S., Molini, A., Hedin, O. L. and Porporato, A. (2022) Contrasting effects of aridity and seasonality on global salinization. Nat. Geosci., https://doi.org/10.1038/s41561-022-00931-4.

Perri, S., Suweis, S., Entekhabi, D. and Molini, A. (2018b) Vegetation controls on dryland salinity. Geophys. Res. Lett., 45, 669–682.

Perri, S., Viola, F., Noto, L. V. and Molini, A. (2017) Salinity and periodic inundation controls on the soil-plant-atmosphere continuum of gray mangroves. Hydrol. Process., 31, 1271–1282.

Pickens, C. N. and Hester, M. W. (2011) Temperature tolerance of early life history stages of black mangrove Avicennia germi-nans: Implications for range expansion. Estuar. Coast., 34, 824–830.

Reef, R., Feller, I. C. and Lovelock, C. E. (2010) Nutrition of mangroves. Tree Physiol., 30, 1148–1160.

Reef, R. and Lovelock, C. E. (2015) Regulation of water balance in Mangroves. Ann. Bot., 115, 385–395.

Ribeiro, R. d. A., Rovai, A. S., Twilley, R. R. and Castañeda-Moya, E. (2019) Spatial variability of mangrove primary productivity in the neotropics. Ecosphere, 10, e02841.

Rivera-Monroy, V. H., Osland, M. J., Day, J. W., Ray, S., Rovai, A., Day, R. H. and Mukherjee, J. (2017) Advancing mangrove macroecology. In Mangrove ecosystems: A global biogeographic perspective, 347–381. Cham, Switzerland: Springer.

Rodríguez, W., Feller, I. C. and Cavanaugh, K. C. (2016) Spatio-temporal changes of a mangrove–saltmarsh ecotone in the northeastern coast of Florida, USA. Glob. Ecol. Conserv., 7, 245–261.
Rosipal, R. and Krämer, N. (2005) Overview and recent advances in partial least squares. In Subspace, latent structure and feature selection, 34–51. Berlin, Germany: Springer.

Rossi, R. E., Archer, S. K., Giri, C. and Layman, C. A. (2020) The role of multiple stressors in a dwarf red mangrove (Rhizophora mangle) dieback. *Estuar. Coast. Shelf Sci.*, 237, 106660.

Rovai, A. S., Twilley, R. R., Castañeda-Moya, E., Midway, S. R., Friess, D. A., Trettin, C. C., Bukoski, J. J., Stovall, A. E., Pagliosa, P. R., Fonseca, A. L. et al. (2021) Macroecological patterns of forest structure and allometric scaling in mangrove forests. *Global Ecol. Biogeogr.*, 30, 1000–1013.

Rovai, A. S., Twilley, R. R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M., Horta, P. A., Simonassi, J. C., Fonseca, A. L. and Pagliosa, P. R. (2018) Global controls on carbon storage in mangrove soils. *Nat. Clim. Chang.*, 8, 534–538.

Saenger, P. (2002) Mangrove ecology, silviculture and conservation. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Saenger, P. and Snedaker, S. C. (1993) Pantropical trends in mangrove above-ground biomass and annual litterfall. *Oecologia*, 96, 293–299.

Salum, R. B., Souza-Filho, P. W. M., Simard, M., Silva, C. A., Fernandes, M. E., Cougo, M. F., do Nascimento, W. and Rogers, K. (2020) Improving mangrove above-ground biomass estimates using LiDAR. *Estuar. Coast. Shelf Sci.*, 236, 106585.

Schmidt, M. W., Spero, H. J. and Lea, D. W. (2004) Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. *Nature*, 428, 160–163.

Schmitt, R. W. (2008) Salinity and the Global Water Cycle. *Oceanography*, 21, 12–19.

Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N. and Van der Stocken, T. (2019a) Global mangrove distribution, aboveground biomass, and canopy height. Data retrieved from ORNL DAAC.

— (2019b) Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. *Nat. Geosci.*, 12, 40–48.

Spalding, M. (2010) World atlas of mangroves. London, UK: Earthscan.

Tao, S., Guo, Q., Li, C., Wang, Z. and Fang, J. (2016) Global patterns and determinants of forest canopy height. *Ecology*, 97, 3265–3270.

Tilman, D., Reich, P. B. and Isbell, F. (2012) Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. *Proc. Natl. Acad. Sci. USA*, 109, 10394–10397.

Twilley, R. R. and Day, J. (1999) The productivity and nutrient cycling of mangrove ecosystems. In *Ecosistemas de manglar en América Tropical*, 127–151. Veracruz, México and San Jose, Costa Rica and Silver Spring, MD: Instituto de Ecología AC and UICN/ORMA and NOAA/NMFS.

Walker, B., Kinzig, A. and Langridge, J. (1999) Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. *Ecosystems*, 2, 95–113.

Ward, G. A., Smith, T. J., Whelan, K. R. and Doyle, T. W. (2006) Regional processes in mangrove ecosystems: Spatial scaling relationships, biomass, and turnover rates following catastrophic disturbance. *Hydrobiologia*, 569, 517–527.

Wendelberger, K. S. and Richards, J. H. (2017) Halophytes can salinize soil when competing with glycophytes, intensifying effects of sea level rise in coastal communities. *Oecologia*, 184, 729–737.

Werner, A. D. and Simmons, C. T. (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. *Ground Water*, 47, 197–204.
Whittaker, R. J. and Heegaard, E. (2003) What is the observed relationship between species richness and productivity? Comment. *Ecology*, **84**, 3384–3390.

Wolf, J. A., Fricker, G. A., Meyer, V., Hubbell, S. P., Gillespie, T. W. and Saatchi, S. S. (2012) Plant species richness is associated with canopy height and topography in a neotropical forest. *Remote Sensing*, **4**, 4010–4021.

Woodroffe, C. D. and Grindrod, J. (1991) Mangrove biogeography: The role of quaternary environmental and sea-level change. *J. Biogeogr.*, **18**, 479–492.

Worthington, T. A., Andradi-Brown, D. A., Bhargava, R., Buelow, C., Bunting, P., Duncan, C., Fatoyinbo, L., Friess, D. A., Goldberg, L., Hilarides, L. et al. (2020) Harnessing big data to support the conservation and rehabilitation of mangrove forests globally. *One Earth*, **2**, 429–443.

Zahed, M. A., Ruhani, F. and Mohajeri, S. (2010) An overview of Iranian mangrove ecosystem, northern part of the Persian Gulf and Oman Sea. *Electron. J. Environ. Agric. Food Chem.*, **9**, 411–417.