ОЦЕНКА И ПРОГНОЗИРОВАНИЕ ИЗМЕНЕНИЙ ТКАНЕЙ ВНУТРЕННИХ ОРГАНОВ ПРИ ВЗАИМОДЕЙСТВИИ НАНОЧАСТИЦ С МЕТАЛЛСОДЕРЖАЩИМИ НАНОЧАСТИЦАМИ

Оценка и прогнозирование изменений тканей внутренних органов при воздействии металло-содержащих наночастиц является актуальной задачей, поскольку наночастицы могут вызывать негативные эффекты на здоровье человека, в том числе и через рот (по-русски: "пей-ка") через полость рта.

Исследование проводилось на примере нанодисперсного оксида меди (CuO) с использованием методов, представленных на рис. 1.

В ходе эксперимента были проведены исследования на крысах, разделенных на группы: 1 группа (однократный вдых оксида меди), 2 группа (пероральный ввод оксида меди), 3 группа (ингаляционное введение оксида меди), 4 группа (пять ингаляционных введений оксида меди) и 5 группа (однократное вдыхание оксида меди в условиях критических уровней).

В результате проделанного исследования было обнаружено, что:

- **Однократное вдыхание** оксида меди **воздействует на органы**, вызывая изменение в виде... (полный текст чередуется с русским языком)
Широкое применение наноматериалов в большом спектре технологий и отраслей промышленности мирового и национального производства оказывает значительное влияние на различные сферы хозяйственной деятельности человека, способствующее их развитию и совершенствованию [1]. Значительная востребованность наноматериалов, в состав которых входят в том числе металлы, связана с уникальными физико-химическими свойствами частиц, обусловленными малым размером, высокой площадью поверхности, формой, поверхностным зарядом и др. В то же время присущие наноматериалам свойства обусловливают их высокую проникающую способность, следствием чего может являться увеличение токсических свойств при поступлении в организм человека на всех этапах производства и потребления продукции [2]. Возрастающее применение металлсодержащих наночастиц обусловливает их активное поступление в объекты окружающей среды и, следовательно, приводит к увеличению риска здоровья населения.

Одним из таких распространенных металлсодержащих наноматериалов является наноразмерный оксид меди (наноCuO), широко используемый в производстве продукции различных отраслей народного хозяйства: в качестве компонентов сенсоров (49 %), катализаторов (20 %), поверхностно-активных веществ (6 %), антимикробных средств (4 %), специальных красок (21 %) и других видов продукции [3–8]. В исследованиях [9] доказано, что наноразмерные частицы оксида меди поступают в организм человека преимущественно ингаляционным и пероральным (с питьевой водой) путями. Негативные эффекты со стороны критических органов и систем, вызванные воздействием частиц оксида меди ультрамалых размеров, описаны в исследованиях [10–14]. Представленные данные содержат результаты, которые свидетельствуют, что воздействие наноразмерных частиц оксида меди приводит к токсическому и генотоксическому эффектам как при острой однократной, так и при многократной экспозиции. При этом значительные изменения наблюдаются в тканях легких как при ингаляционном, так и пероральном путях поступления [15]. По степени опасности для человека [13] микrorазмерные частицы оксида меди относятся к умеренно токсическим веществам (3-й класс опасности), что обеспечивает представление о максимально допустимых недействующих значениях концентрации при экспозиции, но этого недостаточно для прогнозирования риска морфофункциональных нарушений со стороны критических органов и систем, в первую очередь легких.

Оценка риска развития морфофункциональных изменений со стороны критических органов в условиях экспозиции металлсодержащих наночастиц проводилась в экспериментах с лабораторными животными, используемыми в качестве биологических моделей. Изменения со стороны тканей при гистологическом препаратах классическими методиками в таких экспериментах сопровождаются субъективностью и отсутствием количественных параметров оценки, что осложняет прогнозирование и классификацию уровней риска развития патоморфологических нарушений. Группа методов, позволяющих наиболее объективно количественно оценить изменения тканей с использованием компьютерного зрения, носит общее название «анализ изображений».

В связи с этим разработка подходов к количественной оценке риска развития негативных эффектов, возникающих со стороны тканей органов-мишеней, в частности легких, при различных путях поступления и кратности воздействия наноразмерных частиц с обоснованием наиболее эффективных методов анализа изображений является актуальной.

Цель исследования заключается в выявлении и количественной оценке риска развития заболеваний легких крыс при экспозиции металлсодержащих наночастиц (на примере наноразмерного CuO) с использованием методов анализа изображений.

Материалы и методы. Исследования по выявлению и количественной оценке риска морфофункциональных изменений тканей легких при ингаляционной и пероральной экспозиции металлсодержащими наночастицами выполнены на примере нанодисперсного оксида меди (наноCuO). Использовали порошок нанодисперсного оксида меди П (CAS 1317-38-0) со средним размером частиц 45,86 нм и коэффициентом округлости (сферичности) частиц 0,59 (Sigma-Aldrich, США). Состав и морфометрические характеристики частиц установлены методами растровой электронной микроскопии на сканирующем микроскопе высокого разрешения S-3400N (Hitachi, Япония) и рентгеноспектрального микроанализа (Bruker, Германия).

Исследование токсического действия наноразмерного оксида меди проводили в условиях ингаляционной (однократно и в течение 14 дней) и пероральной (в течение 20 дней) экспозиции в соответствии с методическими рекомендациями и указаниями1. Доказано, что при экспозиции использованные водные суспензии, приготовленные на основе биодистилированной воды (ТУ 6-09-2502-77). Перед проведением экспозиции осуществляли предварительную гомогенизацию на ультразвуковой установке

1 МР 1.2.2522-09. Методические рекомендации по выявлению наноматериалов, представляющих потенциальную опасность для здоровья человека / утв. Главным государственным санитарным врачом РФ 1 июля 2009 г. // Бюллетень нормативных и методических документов Госсанэпиднадзора. – 2010. – № 1. – С. 25–45; МУ 1.2.2520-09. Токсикологическая оценка безопасности наноматериалов: методические указания. – М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. – 35 с.
Sonopuls Hd 3200 (Bandelin, Германия) при комнатной температуре в течение 2 мин в режиме непрерывной пульсации с частотой 20 кГц.

Экспериментальной экспозиции подвергали крысы-самцов линии Wistar (всего 60 особей) в возрасте восьми недель массой 180–250 г с соблюдением требований Европейской конвенции по защите позвоночных животных, используемых для экспериментальных или в иных научных целях (ЕТС № 123) и этического комитета ФБУН «ФНЦ медико-профилактических технологий управления рисками здоровью населения».

Между экспозициями животных содержали в соответствии с требованиями СП 2.2.1.3218-14 в полиэтиленовых кетках при температуре 22 °C, относительной влажности воздуха 55 % с 12/12-часовым циклом свет/темнота в виварном помещении. На протяжении эксперимента крыс обеспечили стандартным полноценным кормом в виде твердых экструдированных гранул и чистой водой.

Для проведения экспериментальных исследований животные были разделены на пять групп по 12 особей в каждой: опытная группа № 1 – экспозиция наноразмерным оксидом меди ингаляционно однократно; опытная группа № 2 – экспозиция наноразмерным оксидом меди ингаляционно многократно; опытная группа № 3 – экспозиция наноразмерным оксидом меди перорально многократно; группы контроля № 4 и № 5 – экспозиция бидистилированной водой ингаляционно и перорально соответственно.

Однократное и многократное ингаляционное воздействие тестируемым материалом проводили в затравочной камере для всего тела (TSE Systems GmbH, Германия) в соответствии с ГОСТ 32646-2014. Объем затравочной камеры составлял 0,1 м³. Подачу суспензии в концентрации 1,25 мг/м³ в форме аэрозоля в камеру осуществляли в обоих случаях методом механической инжециии при помощи форсунки. На протяжении каждой экспозиции в ингаляционной камере поддерживали постоянный приток воздуха со скоростью 10 дм³/мин (концентрация кислорода не менее 19 %, углекислого газа не менее 1 %); частоту патоморфологических изменений, не имеющих явных специфических размерных признаков ли не изчисляемых параметров, оценивали количественно с использованием методов математического анализа изображений на основе компьютерного зрения с использованием универсального программного обеспечения ImageJ-Fiji (ПО с открытым кодом, разработчик Wayne Rasband, National Institutes of Health, USA).

Частоту патоморфологических изменений, не изменение тканевой составляющей, позволяющее оценить размеры и морфологию альвеолярных пространств; морфологические параметры альвеолярных пространств могут длительно не изменяться, а при налочном развитии патоморфологических изменений альвеолярные пространства только сокращаются в размере с сохранением признаков геометрического рисунка [17, 18];

– элементы второго порядка: тканевая масса, которую описывали через прозрачные фигуры, формирующие альвеолярный рисунок, оцениваемые с помощью следующей:

© ООО "ЦНИИТрансポート", 2018

1 Иванов А. И., Ляляев В. Ф., Панин С. Х. и др. Экспериментальное исследование облачного образования в атмосфере. Новосибирск, НГУ, 2001. 276 с.

2 СП 2.2.1.3218-14. Санитарно-эпидемиологические требования к устройству, оборудованию и содержанию экспериментально-биологических клеток (виварий) [Электронный ресурс] // КОДЕКС: электронный фонд правовых и нормативно-технических документов. – URL: https://docs.cntd.ru/document/420219460 (дата обращения 16.06.2021).

3 ГОСТ 32646-2014. Методы испытания по воздействию химической продукции на организм человека Острая ингаляционная токсичность – метод определения класса острой токсичности (метод АТС)OECD guidelines for the testing of chemicals. Acute Inhalation toxicity – acute toxic class (ATC) method [Электронный ресурс] // КОДЕКС: электронный фонд правовых и нормативно-технических документов. – URL: https://docs.cntd.ru/document/1200116047 (дата обращения 16.06.2021).

116

Анализ риска здоровью. 2021. № 2
Металлсодержащие наночастицы как факторы риска патоморфологических изменений в тканиях…

щих показателей: отношение средней длины ветви к длине наиболее протяженной ветви, отношение количества пересечений к количеству ветвей и процентная доля тройных и четвертных пересечений по отношению к общему количеству пересечений. Предварительно изображения обрабатывали методами бинаризации и скелетонизации [19, 20];

– элементы третьего порядка: ядра клеток, расположенные относительно друг друга можно судить о том, насколько равномерно клетки располагаются в структуре ткани, то есть чем больше патологических изменений, тем больше участков флуктуации, в которых ядра клеток расположены максимально близко друг к другу.

Оценку статистической значимости различий между групповыми показателями проводили методом определения \(U \)-критерия Манна – Уитни при заданном уровне значимости 0,05, поскольку полученные при использовании обозначенных методов анализа изображений, не соответствуют нормальному распределению и могут быть интерпретированы только методами непараметрической статистики. Для проведения статистической оценки применяли программу BioStat 7.0 (Analyst Soft Inc.).

Количественную оценку риска (\(R \)) проводили с учетом вероятности (\(p \)) и тяжести (\(q \)) развития патоморфологических нарушений в ткани по формуле: \(R = p \cdot q \). Тяжесть нарушений оценивали по средневзвешенному показателю в диапазоне от 0 до 1. Полученные значения риска на уровне до 1·10^{-6} оценивали как пренебрежимо малый риск, от 1·10^{-6} до 1·10^{-4} – низкий риск, от 1·10^{-4} до 1·10^{-3} – средний риск, более 1·10^{-3} – высокий риск. Оценку проводили по элементам всех перечисленных порядков для всех групп. Риск характеризовали по наибольшему показателю, установленному для каждой экспериментальной группы по анализируемым элементам первого, второго и третьего порядка.

Результаты и их обсуждение. В результате выполненных экспериментальных исследований ингаляционной и пероральной экспозиции наноCuO получены гистологические изображения тканей легких крыс. Примеры изображений легких крыс опытной и контрольной групп представлены на рисунке.

Согласно классической патоморфологической оценке (табл. 1) образцы тканей легких животных из групп контроля № 4 и 5 патологических изменений не имеют. Патоморфологические изменения тканей легких установлены у животных из групп однократного и многократного ингаляционного воздействия (группы № 1 и 2) и группы при пероральном поступлении (группа № 3). В тканях легких животных всех опытных групп, кроме контрольных (№ 4 и 5),

Рис. Ткани легких крыс при экспозиции наноразмерных частиц оксида меди, ×100: a – группа № 1 (ингаляционно однократно); b – группа № 2 (ингаляционно многократно); в – группа № 3 (перорально многократно), г – группа № 4 и 5 (контроль)

4 Р2.1.10.-1920-04. Руководство по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих окружающую среду. – М.: Федеральный центр Госсанэпиднадзора Минздрава России, 2004. – 143 с.
Результаты патоморфологического анализа состояния тканей легких крыс линии Wistar в экспериментах по исследованию воздействия наноCuO

Таблица 1

Группа животных	Состояние тканей легких
Группа № 1 (ингаляционное, однократно)	Гиперплазия лимфоидной ткани, ассоциированная со стенкой бронхов с присутствием большого количества эозинофилов. В группах № 2 и № 3 отмечено дополнительно накопление пигмента в макрофагальных клетках, воспаление сосудов. Кроме этого, обнаружены особенности изменения тканей легких в группе № 2 в виде очагового интерстициального воспаления и альвеолита, а в группе № 3 – в виде абсцесса. Результаты использования анализа изображений тканей легких при оценке элементов изображений первого порядка представлены в табл. 2.
Группа № 2 (ингаляционное, многократно)	Гиперплазия лимфоидной ткани, ассоциированная со стенкой бронхов с присутствием большого количества эозинофилов. Рассеянный васкулит. Скопления коричневого пигмента в цитоплазме большого количества макрофагов. Очаговое интерстициальное воспаление, альвеолит
Группа № 3 (пероральное многократно)	Гиперплазия лимфоидной ткани, ассоциированная со стенкой бронхов с присутствием большого количества эозинофилов. Рассеянные васкулиты. Скопления коричневого пигмента в цитоплазме макрофагов. Очаговый гнойно-деструктивный процесс.
Группа № 4 и 5 (контрольные)	Бездыхимных морфологических изменений

Присутствует гиперплазия лимфоидной ткани, ассоциированная со стенкой бронхов с присутствием большого количества эозинофилов. В группах № 2 и № 3 отмечено дополнительно накопление пигмента в макрофагальных клетках, воспаление сосудов. Кроме этого, обнаружены особенности изменения тканей легких в группе № 2 в виде очагового интерстициального воспаления и альвеолита, а в группе № 3 – в виде абсцесса. Результаты использования анализа изображений тканей легких при оценке элементов изображений первого порядка представлены в табл. 2.

Результаты исследований наличия в ткани легких элементов изображения первого порядка позволяли установить, что показатели группы № 2 отличаются от показателей контрольных групп № 4 и 5. При этом показатели у животных группы № 1 не отличаются от параметров групп контроля.

Суммарный коэффициент элементов первого порядка (интегральный показатель) в группах многократного ингаляционного и перорального воздействия составил 0,47 ± 0,08 и 0,50 ± 0,04 соответственно, что ниже контрольного показателя в 3,3–9,2 раза. Выявленная тенденция указывает, что частота регистрации и степень выраженности повреждения тканей легких при пероральном поступлении данного вещества выше в 2,0 и 2,8 раз соответственно, чем при ингаляционном воздействии. Риск развития заболеваний при нарушениях в ткани легких, установившихся методом анализа изображений, при ингаляционном воздействии составил в группах 8·10–5 и 2,5·10–4, что характеризуется как низкий и средний риск соответственно, при пероральном воздействии – 5·10–4 (средний уровень риска).

Результаты использования анализа изображений тканей легких при оценке элементов изображений второго порядка представлены в табл. 3.

Использование компьютерного зрения в анализе тканей легких и регистрация элементов изображения второго порядка позволили установить, что показатели отношения общего количества пересечений к общему количеству ветвей и отношение средней длины ветви к длине максимальной в группах № 1, 2 и 3 отличаются от показателей контрольных групп № 4 и 5, не отличаются между собой. Доли тройных и четвертных пересечений ветвей в 1,8 раза ниже показателей контроля только в группах ингаляционного воздействия.

Таблица 2

Оцениваемый показатель	Группа животных	1	2	3	4 и 5
Площадь негативного пространства \((S_{ ext{NS}})\), %	49,97 ± 7,55	27,62 ± 7,86	15,54 ± 2,48	56 ± 5,33	
Площадь тканевой составляющей \((100 - S_{ ext{NS}})\), %	50,03 ± 12,3	72,38 ± 5,59	85,46 ± 5,55	63,06 ± 10,93	
Суммарный коэффициент элементов первого порядка \((S_{ ext{S}})/(100 - S_{ ext{NS}})\)	1,39 ± 0,22	0,47 ± 0,04	0,17 ± 0,08	1,55 ± 0,13	
Вероятность развития патоморфологических нарушений в ткани \(p\)	0,08	0,25	0,50	–	
Риск развития заболевания \(R\)	8·10–5	2,5·10–4	5·10–4	–	

Примечание: * – достоверное отличие от показателей группы контроля; ** – достоверное отличие от группы № 1; *** – достоверное отличие от группы № 2; **** – достоверное отличие от группы № 3.
Результаты использования компьютерного зрения в анализе изображений ткани легких крыс линии Wistar при экспозиции наноCuO по элементам второго порядка (уровень значимости 0,05, сравнение по методу Манна – Уитни, $U_{cr} = 9$)

Таблица 3

Оцениваемый показатель	Группа животных	1	2	3	4 и 5
Отношение общего количества пересечений к общему количеству ветвей	$0,49 \pm 0,09$	$0,48 \pm 0,05$	$0,54 \pm 0,03$	$0,38 \pm 0,08$	
Отношение средней длины ветвей к максимальной длине	$0,19 \pm 0,08$	$0,25 \pm 0,09$	$0,16 \pm 0,04$	$0,54 \pm 0,01$	
Доля тройных пересечений ветвей, %	$25,56 \pm 5,23$	$23,42 \pm 6,27$	$61,60 \pm 5,74$	$48,92 \pm 3,47$	
Доля четвертных пересечений ветвей, %	$8,56 \pm 6,11$	$10,5 \pm 7,43$	$18,08 \pm 4,26$	$14,00 \pm 5,86$	
Вероятность развития патоморфологических нарушений в ткани p	0,08	0,66	–	–	
Риск развития заболевания R	$8,0 \cdot 10^{-4}$	$6,6 \cdot 10^{-3}$	–	–	

П р и м е ч а н и е : * – достоверное отличие от показателя группы контроля; ** – достоверное отличие от группы № 1; *** – достоверное отличие от группы № 2; **** – достоверное отличие от группы № 3.

Результаты использования компьютерного зрения в анализе изображений ткани легких при экспозиции наноCuO по элементам третьего порядка (уровень значимости 0,05, сравнение по методу Манна – Уитни, $U_{cr} \leq 236$)

Таблица 4

Оцениваемый показатель	Группа животных	1	2	3	4 и 5
Среднее количество соседствующих клеток, ед/клетка	$9,6 \pm 1,43$	$19,0 \pm 2,75$	$17,0 \pm 2,98$	$11,66 \pm 2,18$	
$U = 368; p = 0,11$	$U = 117; p = 0,099$	$U = 107,5; p = 0,087$	$U = 128; p = 0,088$		
Вероятность развития патоморфологических нарушений в ткани p	–	0,25	0,5	–	
Риск развития заболевания R	–	$1,2 \cdot 10^{-2}$	$2,5 \cdot 10^{-2}$	–	

П р и м е ч а н и е : * – достоверное отличие от показателя группы контроля; ** – достоверное отличие от группы № 1; *** – достоверное отличие от группы № 2; **** – достоверное отличие от группы № 3.

Воздействия № 1 и 2. При этом между собой значений этих показателей не отличаются, но частота регистрации измененных показателей в два раза выше при многократном воздействии относительно однократного ингаляционного воздействия. Риск развития заболеваний при нарушениях в ткани легких, установленных методом анализа изображений, при ингаляционном воздействии составил в группах № 1 и 2 от $8,0 \cdot 10^{-4}$ до $6,6 \cdot 10^{-3}$, что характеризуется как средний и высокий уровень риска соответственно.

Результаты исследования анализа изображений тканей легких при оценке элементов изображений третьего порядка представлены в табл. 4.

Использование компьютерного зрения для идентификации в ткани легких элементов изображения с учетом вероятности нарушений с учетом идентификации всех элементов изображений составила от 0,16 до 1,2. Суммарный уровень риска развития заболеваний...
легких с учетом тяжести идентифицируемых элементов изображения составил при однократном ингаляционном воздействии $1,0 \cdot 10^{-3}$ (средний риск), при многократном ингаляционном воздействии $8,1 \cdot 10^{-3}$ (высокий риск). При многократном пероральном воздействии $2,5 \cdot 10^{-2}$ (высокий риск).

Сопоставительный анализ результатов исследований морфофункциональных изменений в ткани легких и риска развития заболеваний, полученных при использовании методов анализа изображений и классической патоморфологической оценке тканей легких при воздействии наноCuO, показал, что однократное ингаляционное воздействие соответствует среднему уровню риска развития заболеваний легких, что соответствует патоморфологической характеристике изменений в ткани: гиперплазия лимфоидной ткани в стенке бронхов с эозинофилией. Многократное ингаляционное и пероральное воздействие обусловливает высокий уровень риска развития заболеваний, но уровень риска при пероральном воздействии в три раза выше, чем при ингаляционном. Это корреспондирует с патоморфологическими нарушениями в ткани, характеризующими при многократном ингаляционном воздействии очаговое интерстициальное воспаление и альвеолит, а при пероральном воздействии – очаговый гнойно-деструктивный процесс.

Выводы. В условиях воздействия металлосодержащих наночастиц применение методов анализа изображений позволяет по идентификации порядка элементов изображений морфофункциональных изменений в тканях выполнить количественную оценку риска развития заболеваний со стороны критических органов и систем. Количественная оценка риска развития заболеваний, осуществленная с применением методов анализа изображений легких при различной экспозиции как по длительности, так и путь поступления металлоодержащих наночастиц (на примере наноразмерного CuO) позволила установить, что однократное ингаляционное воздействие в концентрации 1,2 мг/м³ $(0,001\text{CL50})$ обусловливает средний риск развития заболеваний легких, а многократное ингаляционное воздействие в течение 14 дней в аналогичной концентрации – высокий риск. Пероральное воздействие в дозе 250 мг/кг веса тела $(0,1 \text{LD}_{50})$ в течение 20 дней обусловливает также высокий риск развития заболеваний легких, но уровень риска при этом в 3,1 раза выше, чем при многократном ингаляционном воздействии.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Список литературы

1. Benefits and Applications [Электронный ресурс] // Official website of the United States National Nanotechnology Initiative. – URL: https://www.nano.gov/you/nanotechnology-benefits (дата обращения: 21.05.2021).
2. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties / A. Sukhanova, S. Bozova, P. Sokolov, M. Beresniov, A. Karanul, I. Nabiye // Nanoscale Research Letters. – 2018. – Vol. 13, № 44. – P. 21. DOI: 10.1186/s11671-018-2457-x
3. An ecological perspective on nanomaterial impacts in the environment / E.S. Bernhardt, B.P. Colman, M.F. Hochella, B.J. Cardinale, R.M. Nisbet, C.J. Richardson, L. Yin // Journal of Environmental Quality. – 2010. – Vol. 39, № 6. – P. 54–65. DOI: 10.2134/jeq2009.0479
4. Effects of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana) / K.V. Brix, R.M. Gerdes, W.J. Adams, M. Grossel // Archives of Environmental Contamination and Toxicology. – 2006. – Vol. 51, № 4. – P. 580–583. DOI: 10.1007/s00244-005-0244-z
5. Failla M.L. Trace elements and host defense: recent advances and continuing challenges // Journal of Nutrition. – 2003. – Vol. 133, № 5 (1). – P. 1443S–1447S. DOI: 10.1093/jn/133.5.1443S
6. Ames T., Sayes C.M. The potential exposure and hazards of copper nanoparticles: A review // Environmental Toxicology and Pharmacology. – 2019. – № 77 (80). – C. 45–57. DOI: 10.1016/j.etap.2019.103220
7. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling / J.W. Park, I.-C. Lee, N.-R. Shin, C.-M. Jeon, O.-K. Kwon, J.-W. Ko, J.-C. Kim, S.-R. Oh // Nanotoxicology. – 2016. – № 10. – P. 445–452. DOI: 10.3109/17435390.2015.1078851
METAL-CONTAINING NANOPARTICLES AS RISK FACTORS CAUSING PATHOMORPHOLOGICAL CHANGES IN INTERNAL ORGANS TISSUES
IN AN EXPERIMENT

N.V. Zaitseva1, M.A. Zemlyanova1, A.M. Ignatova1,2, M.S. Stepankov1, Yu.V. Koldibekova1

1Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, 82 Monastyrskaya Str., Perm, 614045, Russian Federation
2Institute of Continuous Media Mechanics, the Ural Branch of the Russian Academy of Science, 1 Akademika Koroleva Str., Perm, 614013, Russian Federation

Given wide spread of nanomaterials, it seems vital to estimate and predict changes in internal organs tissues under exposure to metal-containing nanoparticles (exemplified by nano-sized CuO) using image analyzing procedures. We examined toxic effects produced by nano-disperse CuO (45.86 nm) under inhalation (a single and 14-day multiple) exposure and oral exposure (for 20 days); the experiment was performed on male Wistar rats (60 animals). Exposed animals were divided into 5 groups, 12 animals in each (group 1, a single inhalation exposure; group 2, multiple inhalation exposure and oral exposure (for 20 days); the experiment was performed on male Wistar rats (60 animals). Exposed animals were divided into 5 groups, 12 animals in each (group 1, a single inhalation exposure; group 2, multiple inhalation exposure; group 3, oral exposure; groups 4 and 5 were exposed to bi-distilled water in a similar way, via inhalation and orally). When analyzing tissue images, we estimated first-, second- and third-order elements. Statistical significance of differences was estimated with Mann-Whitney U-test. Quantitative risk assessment (R) was performed taking into account probability (p) and severity (q) of pathomorphological changes in tissues.
We established that pathomorphological disorders might occur in lung tissue taking into account identification of all elements in all images for all experimental groups; the probability varied from 0.16 to 1.2. The total risk of lung diseases amounted to 1.0·10⁻³ (average risk) under single inhalation exposure to a concentration equal to 0.001CL50; multiple inhalation exposure, 8·10⁻⁶ (high risk, oral exposure to a dose equal to 0.1LD₅₀, 2·5·10⁻³ (high risk).

Therefore, image analysis allows quantitatively assessing risks of diseases in critical organs and systems caused by exposure to metal-containing nanoparticles.

Key words: metal-containing nanoparticles, health risk factors, copper oxide, inhalation exposure, target organs, alveolar pattern, dendrite geometry, damage to lungs, microscopy, image analysis.

References

1. Benefits and Applications. Official website of the United States National Nanotechnology Initiative. Available at: https://www.nano.gov/you/nanotechnology-benefits (21.05.2021) (in Russian).
2. Sukhanova A., Bozrova S., Sokolov P., Berestovoy M., Karaulov A., Nabiev I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Research Letters, 2018, vol. 13, no. 44, 21 p. DOI: 10.1186/s11671-018-2457-x
3. Bernhardt E.S., Colman B.P., Hochella M.F., Cardinale B.J., Nisbet R.M., Richardson C.J., Yin L. An ecological perspective on nanomaterial impacts in the environment. Journal of Environmental Quality, 2010, vol. 39, no. 6, pp. 54–65. DOI: 10.2134/jeq2009.0479
4. Brix K.V., Gerdes R.M., Adams W.J., Grosell M. Effects of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana). Archives of Environmental Contamination and Toxicology, 2006, vol. 51, no. 4, pp. 580–583. DOI: 10.1007/s00244-005-0244-z
5. Failla M.L. Trace elements and host defense: recent advances and continuing challenges. Journal of Nutrition, 2003, vol. 133, no. 5 (1), pp. 1443S–1447S. DOI: 10.1093/jn/133.5.1443S
6. Amel T., Sayes C.M. The potential exposure and hazards of copper nanoparticles: A review. Environmental Toxicology and Pharmacology, 2019, no. 71, pp. 103220. DOI: 10.1016/j.etap.2019.103220
7. Sutunkova M.P. Experimental studies of toxic effects’ of metallic nanoparticles at iron and nonferrous industries and risk assessment for workers’ health. Gigiena i sanitariya, 2017, no. 12, pp. 1182–1187 (in Russian).
8. Zeinalov O.A., Kamborava S.P., Bagrov D.V., Petroyan M.A., Tolibova G.Kh., Feofanov A.V., Shaitan K.V. About the influence of metal oxide nanoparticles on living organisms physiology. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii, 2016, no. 3, pp. 24–33 (in Russian).
9. Chambers A., Krewski D., Birkett N., Plunkett L., Hertsgerg R., Danzeisen R., Aggett P.J., Starr T.B. [et al.]. An exposure-response curve for copper excess and deficiency. Journal of Toxicology and Environmental Health Part B, 2010, vol. 13, no. 7–8, pp. 546–578. DOI: 10.1080/109374304.2010.538657
10. Stern B.R., Soliz M., Krewski D., Aggett P., Aw T.-C., Baker S., Crump K., Dourson M. [et al.]. Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. Journal of Toxicology and Environmental Health Part B, 2007, no. 10, pp. 157–222. DOI: 10.1080/10937400600755911
11. Kopytenkova O.I., Levanchuk A.V., Tursunov Z.Sh. Health risk assessment for exposure to fine dust in production conditions. Meditsina truda i promyshlennaya ekologiya, 2019, vol. 59, no. 8, pp. 458–462 (in Russian).
12. Andreev G.B., Minashkin V.M., Nevsiki I.A., Putilov A.V. Materials based on nanotechnologies: potential risk at production and use. Rossiiiskii khimicheskii zhurnal, 2008, vol. 52, no. 5, pp. 32–38 (in Russian).
13. Karkishchenko N.N. Nanobezopasnost’: novye podkhody k otsenke riskov i toksichnosti nanomaterialov [Nanosafety: new approaches to assessing risks and toxicity of nanomaterials]. Biomeditsina, 2009, no. 1, pp. 5–27 (in Russian).
14. Tomilina I.I., Gremyachikh V.A., Grebenyuk L.P., Golovkina E.I., Klevleeva T.R. Toxicological study of metal and metal oxide nanoparticles. Trudy Instituta biologii vnutrennikh vod RAN, 2017, vol. 80, no. 77, pp. 45–57 (in Russian).
15. Park J.W., Lee I.C., Shin N.-R., Jeon C.-M., Kwon O.-K., Ko J.-W., Kim J.-C., Oh S.-R. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology, 2016, no. 10, pp. 445–452. DOI: 10.3109/17435390.2015.1078851
16. Kevin H., Stewart W. Acute, Sub-Acute, Sub-Chronic and Chronic General Toxicity Testing for Preclinical Drug Development. A Comprehensive Guide to Toxicology in Preclinical Drug Development, 2013, chapter 5, pp. 87–105.
17. Zaitseva N.V., Zemlyanova M.A., Ignatova A.M., Stepankov M.S. Morphological changes in lung tissues of mice caused by exposure to size-nanized particles of nickel oxide. Nanotechnologies in Russia, 2018, no. 7–8, pp. 393–399. DOI: 10.1134/S199507801804016X
18. Velikorodnaya Yu.I., Pocheptsov A.Ya. Nanoparticles as a potential threat to the environment. Meditsina ekstremal’nykh situatsii, 2015, vol. 53, no. 3, pp. 73–77 (in Russian).
19. Ashburner J. A fast-diffeomorphic image registration algorithm. Neuroimage, 2007, vol. 5, no. 38 (1), pp. 95–113. DOI: 10.1016/j.neuroimage.2007.07.007
20. Bekkers E.J., Lafarge M.W., Veta M., Eppenhof K.A., Pluim J.P., Duits R. Roto-translation covariant convolutional networks for medical image analysis. Medical Computing and Computer Assisted Intervention, 2018, no. 1, pp. 440–448 (in Russian).

Zaitseva N.V., Zemlyanova M.A., Ignatova A.M., Stepankov M.S., Koldibekova Yu.V. Metal-containing nanoparticles as risk factors causing pathomorphological changes in internal organs tissues in an experiment. Health Risk Analysis, 2021, no. 2, pp. 114–122. DOI: 10.21668/health.risk/2021.2.11.engl

Получена: 21.04.2021
Принята: 09.06.2021
Опубликована: 30.06.2021