ON APPROXIMABILITY BY EMBEDDINGS OF CYCLES IN THE PLANE

Mikhail Skopenkov

Abstract. We obtain a criterion for approximability of piecewise linear maps $S^1 \to \mathbb{R}^2$ by embeddings, analogous to the one proved by Minc for piecewise linear maps $I \to \mathbb{R}^2$.

Theorem. Let $\varphi : S^1 \to \mathbb{R}^2$ be a piecewise linear map, which is simplicial for some triangulation of S^1 with k vertices. The map φ is approximable by embeddings if and only if for each $i = 0, \ldots, k$ the i-th derivative $\varphi^{(i)}$ (defined by Minc) never contains transversal self-intersections nor is the standard winding of degree $\not\in \{-1, 0, 1\}$.

We deduce from the Minc result the completeness of the van Kampen obstruction to approximability by embeddings of piecewise linear maps $I \to \mathbb{R}^2$. We also generalize these criteria to simplicial maps $T \to S^1 \subset \mathbb{R}^2$, where T is a graph without vertices of degree > 3.

1. Introduction

A PL map $\varphi : K \to \mathbb{R}^2$ of a graph K is approximable by embeddings in the plane, if for each $\varepsilon > 0$ there is an ε-close to φ map $f : K \to \mathbb{R}^2$ without self-intersections. In the major part of this paper we consider the case when φ is either a path or a cycle, i.e. either $K \cong I$ or $K \cong S^1$.

Example 1.1. [12] The standard d-winding $S^1 \to S^1 \subset \mathbb{R}^2$ is approximable by embeddings in the plane if and only if $d \in \{-1, 0, 1\}$.

It can be also proved that a simplicial map $S^1 \to S^1$ is approximable by embeddings if and only if its degree $d \in \{-1, 0, 1\}$ (see Theorem 1.3). A transversal self-intersection of a PL map $\varphi : K \to \mathbb{R}^2$ is a pair of disjoint arcs $i, j \subseteq K$ such that φi and φj intersect transversally in the plane.

Example 1.2. An Euler path or cycle in a graph in the plane is approximable by embeddings if and only if it does not have transversal self-intersections (hence any Euler graph in the plane has an Euler cycle, approximable by embeddings).

The notion of approximability by embeddings appeared in studies of embeddability of compacta into \mathbb{R}^2 (see [12] [14] [11], for recent surveys see [2] §9], [2] §4], [8] §1]), we return to this topic in the end of §1.) There exists an algorithm of checking whether a given simplicial map is approximable by embeddings (see [13], or else Simple-minded Criterion 4.1 below). A more convenient to apply criterion for approximability by embeddings of a simplicial path in the plane was proved in [6] (Theorem 1.3.I below, generalizing Example 1.2). The main result of this paper is an analogous criterion for approximability by embeddings of a cycle in the plane (Theorem 1.3.S below, also generalizing Example 1.2). These criteria assert that, in some sense, transversal self-intersections are the only obstructions to approximability by embeddings. Clearly, this is not true literally [12], and there is no Kuratowski-type criterion.

We state our criterion (Theorem 1.3) in terms of the derivative of a path [5], [6] “the operation d^*”. Let us give the definition (Fig. 1). First let us define the derivative G' of a graph G (it is a synonym for line graph and dual graph). The vertex set of the graph G' is in 1-1 correspondence with the edge set of G. For an edge $a \subseteq G$ denote by $a' \subseteq G'$ the corresponding vertex. Vertices a' and b' of G' are joined by an edge if and only if the edges a and b are adjacent in G. Note that the derivatives G' and H' of homeomorphic but not isomorphic graphs G and H are not necessarily homeomorphic.

Now let φ be a path in the graph G given by the sequence of vertices $x_1, \ldots, x_k \in G$, where x_i and x_{i+1} are joined by an edge. Then $(x_1x_2', \ldots, x_{k-1}x_k')$ is a sequence of vertices of G'. In this sequence replace each segment (x_ix_{i+1}), $(x_{i+1}x_{i+2})$, \ldots, $(x_{j-1}x_j)$ such that $(x_i', x_{i+1}', \ldots, x_j')$ by a single vertex. The obtained sequence of vertices determines a path in the graph G'. This path φ' is called the derivative of the path φ.

A 5-od (the cone over 5 points) is a planar graph whose derivative is the Kuratowski graph, which is not planar. But if $G \subset \mathbb{R}^2$ and the path φ does not have transversal self-intersections, then the image of the

1991 Mathematics Subject Classification. Primary: 57Q35; Secondary 54C25, 57M20.

Key words and phrases. approximability by embeddings, the van Kampen obstruction, line graph, derivative of a graph, derivative of a simplicial map, operation d, transversal self-intersection, standard d-winding, simplicial map, thickening.

The author was supported in part by INTAS grant 06-1000014-6277, Russian Foundation of Basic Research grants 05-01-00934-a, 06-01-72551-NCNIL-a, 07-01-00648-a, President of the Russian Federation grant NSh-4578.2006.1, Agency for Education and Science grant RNP-2.1.1.7988, and Moebius Contest Foundation for Young Scientists.
map \(\varphi' \) is a planar subgraph \(G'_\varphi \subset G' \) (we give the construction of a natural embedding \(G'_\varphi \to \mathbb{R}^2 \) in §2, Definition of \(N' \)). Change \(G' \) to the image \(G'_\varphi \) and \(\varphi' \) to its onto restriction \(\varphi' : I \to G'_\varphi \). Define the \(k \)-th derivative \(\varphi^{(k)} \) inductively. For a cycle \(\varphi \) the definition of the derivative cycle \(\varphi' \) is analogous.

An example to be used in the sequel is that \(\varphi' = \varphi \) for a standard \(d \)-winding \(\varphi : S^1 \to S^1 \) with \(d \neq 0 \). Clearly, \(\varphi' \) is an embedding for any Euler path or cycle \(\varphi \). Thus Example 1.2 is indeed a specific case of the following theorem.

Theorem 1.3. Let \(\varphi : I \to \mathbb{R}^2 \) be a PL map, which is simplicial for some triangulation of \(I \) with \(k \) vertices. The map \(\varphi \) is approximable by embeddings if and only if for each \(i = 0, \ldots, k \) the \(i \)-th derivative \(\varphi^{(i)} \) does not contain transversal self-intersections.

S) Let \(\varphi : S^1 \to \mathbb{R}^2 \) be a PL map, which is simplicial for some triangulation of \(S^1 \) with \(k \) vertices. The map \(\varphi \) is approximable by embeddings if and only if for each \(i = 0, \ldots, k \) the \(i \)-th derivative \(\varphi^{(i)} \) neither contains transversal self-intersections nor is the standard winding of degree \(d \not\in \{-1, 0, 1\} \).

We prove both 1.3.I and 1.3.S in §2. Our proof of 1.3.I is simpler than the one given in [6].

In §3 we apply Theorem 1.3 to prove the following criterion.

Corollary 1.4. A PL map \(\varphi : I \to \mathbb{R}^2 \) is approximable by embeddings if and only if one of the following equivalent conditions holds:

- D) (the deleted product property) There is a map \(\{(x, y) \in I \times I \mid x \neq y\} \to S^1 \) such that its restriction to the set \(\{(x, y) \in I \times I : \varphi x \neq \varphi y\} \) is homotopic to the map given by the formula \(\varphi(x, y) = \frac{x y - \varphi y}{\|x y - \varphi y\|} \);

- V) the van Kampen obstruction (defined in §3) \(v(\varphi) = 0 \).

The criterion 1.4.V, although more difficult to state, is more easy to apply than 1.3.I and 1.4.D. In Corollary 1.4 the arc \(I \) cannot be replaced by \(S^1 \): the standard 3-winding is a counterexample [8]. Obstructions like 1.4.D and 1.4.V appear in the related theory of approximability by link maps, i. e. by maps with disjoint images, but the criteria analogous to 1.3.I and 1.4.DV are not true (Example 3.3 below). In §3 we show that the \(n \)-dimensional generalizations of conditions 1.4.D and 1.4.V are equivalent for any PL maps \(\varphi : K^n \to \mathbb{R}^{2n} \) (Proposition 3.2 below).

In §4 we generalize criteria 1.3 and 1.4 to PL maps \(\varphi : K \to \mathbb{R}^2 \), where \(K \) is an arbitrary graph [16]. We prove the following theorem (see Definition of the derivative in §2).

Theorem 1.5. Let \(T \) be a graph without vertices of degree \(> 3 \). Suppose that \(T \) has \(k \) vertices. A simplicial map \(\varphi : T \to S^1 \subset \mathbb{R}^2 \) is approximable by embeddings if and only if the van Kampen obstruction \(v(\varphi) = 0 \) and \(\varphi^{(k)} \) does not contain standard windings of degree \(d \neq \pm 1, d \) odd.

Conjecture 1.6. Theorem 1.5 is true for a simplicial map \(\varphi : K \to G \subset \mathbb{R}^2 \), where \(K \) and \(G \) are arbitrary graphs.

If Conjecture 1.6 is true, then a simplicial map \(\varphi : T \to \mathbb{R}^2 \) of a tree \(T \) is approximable by embeddings if and only if \(v(\varphi) = 0 \) [2, Problem 4.5].

Conjecture 1.7. A piecewise linear path \(\varphi : I \to \mathbb{R}^2 \) is approximable by embeddings if and only if for each pair of arcs \(I_1, I_2 \subset I \) such that \(I_1 \cap I_2 = \emptyset \) the pair of restrictions \(\varphi : I_1 \to \mathbb{R}^2 \) and \(\varphi : I_2 \to \mathbb{R}^2 \) is approximable by link maps (i. e. maps with disjoint images).

We conclude §1 by some words on the history of the notion of approximability by embeddings. We define the decomposition of a 1-dimensional compactum into an inverse limit and show how the notion of approximability...
If is approximable by embeddings and inverse limit shows that any 1-dimensional compactum can be embedded into axis of T. Analogously, take T_3 ⊂ T_2 going twice along the axis of T_2. Continuing in the similar way, we obtain an infinite sequence of solid tori T_1 ∋ T_2 ∋ T_3 ⊃ ... The intersection of all tori T_i is a 1-dimensional compactum and is called the 2-adic van Danzig solenoid. By the inverse limit of an infinite sequence of graphs and simplicial maps between them K_1 + \varphi_1^- \leftarrow K_2 + \varphi_2^- \leftarrow K_3 + \varphi_3^- \ldots we mean the compactum

$$C = \{(x_1, x_2, \ldots) \in l_2 : x_i \in K_i \text{ and } \varphi_i x_{i+1} = x_i \}.$$

One can see from our construction that for the van Danzig solenoid all K_i ⊂ S^1 and all \varphi_i are 2-windings. It can be proved that any 1-dimensional compactum can be represented as an inverse limit. Such representation shows that any 1-dimensional compactum can be embedded into R^3. It also gives an easy sufficient condition to planarity: for each positive integer i there should exist an embedding f_i : K_i → R^2 such that the map f_i ∘ \varphi_i is approximable by embeddings and f_{i+1} is 2^{-i}-close to f_i ∘ \varphi_i.

2. Proofs

Theorem 1.3 follows from Example 1.1 and Lemmas 2.1, 2.2, A (for K ⊆ I, S^1) and 2.3, which are interesting results in themselves.

Lemma 2.1. (for K ⊆ I see [6]) Suppose that a simplicial map ϕ : K → G ⊂ R^2 of a graph K ⊆ S^1 or K ⊆ I does not have transversal self-intersections. If \varphi is approximable by embeddings, then \varphi is approximable by embeddings.

Lemma 2.2. A) [6] If a simplicial map ϕ : K → G ⊂ R^2 is approximable by embeddings, then the map \varphi is approximable by embeddings.

V) If a simplicial map ϕ : K → G ⊂ R^2 is approximable by mod 2-embeddings, then the map \varphi is approximable by mod 2-embeddings.

Here a mod 2-embedding is a general position map f : K → R^2 such that for each pair a, b of disjoint edges of K the set fa ∩ fb consists of an even number of points. Definition of the derivative \varphi' needed for Lemma 2.2 is presented below

Lemma 2.3. Let ϕ : S^1 → G be a PL map, which is simplicial for some triangulation of S^1 with k vertices. Then either the domain of \varphi^{(k)} is empty or \varphi^{(k)} is a standard winding of degree d ≠ 0.

This number d can be considered as the generalization of the degree of any simplicial map S^1 → G. So it is interesting to get the solution of the following problem (it may also make criteria 1.3 and 1.5 more easy to apply).

Problem 2.4. Find an easy algorithm for calculation of the degree of the winding \varphi^{(∞)} for a given PL map ϕ : S^1 → G.

Futher we use the following generalization of the definition of the derivative of a path stated in §1.

Definition (Definition of the derivative [6], see Fig. 1 and a part of Fig. 4). First let us construct the graph K'\varphi, which is the domain of the derivative \varphi'. By a \varphi-component of the graph K we mean any connected component \alpha of \varphi^{-1}a mapped onto a, for some edge a ⊂ G. The vertex set of K'\varphi is in 1-1 correspondence with the set of all \varphi-components. For a component of K denote by \alpha' ∈ K'\varphi the corresponding vertex. Vertices \alpha' and \beta' are joined by an edge in K'\varphi if and only if \alpha ∩ \beta ≠ ∅. The derivative \varphi' : K'\varphi → G' is a simplicial map defined on the vertices K'\varphi by the formula \varphi'\alpha' = (\varphi\alpha)'. Change \varphi' to its onto restriction \varphi' : K'\varphi → \varphi'K'\varphi. (In the original definition G' is denoted by D(G), \varphi' by d(\varphi) and K'\varphi by D(\varphi, K).)

Proof of 2.3. We say that a simplicial map ϕ : K → G is ultra-nondegenerate, if for each edge a ⊂ K the image \varphi(a) is an edge of G and for each pair a, b ⊂ K of adjacent edges we have \varphi(a) ≠ \varphi(b). Denote by |K| the number of vertices in a graph K. Clearly, if K ⊆ S^1, then |K'\varphi| ≤ |K|, and |K'\varphi| = |K| only if ϕ is ultra-nondegenerate. Therefore it suffices to prove the lemma for this latter case (because the cases K'\varphi ⊆ I or K'\varphi is a point are trivial). In this case the lemma is obvious, but we give the proof.

Let us prove that if an ultra-light simplicial onto map ϕ : K → G of the graph K ⊆ S^1 is not a standard winding of a nonzero degree, then |G'| > |G|. Note that for ultra-nondegenerate ϕ : S^1 → G the graph G does not contain hanging vertices. If the degree of each vertex of G is two, then ϕ is an ultra-nondegenerate simplicial map S^1 → S^1, consequently ϕ is a standard winding, that contradicts to our assumption. So G contains a vertex of degree at least 3. Then by the above the number of edges of G is greater than the number of vertices, hence |G'| > |G|. Since for a simplicial onto map ϕ : K → G we have 1 ≤ |G| ≤ |K|, it follows that |G|, |G'|, ..., |G^{(k)}| ≤ k (recall that we define \varphi' to be an onto map). This yields that one (and then
Figure 2. Derivative of a thickening

\(k \)-th) of the derivatives \(\varphi, \ldots, \varphi^{(k)} \) is a standard winding of a nonzero degree, because otherwise we obtain \(1 + k \leq |G| + k \leq |G^{(k)}| \leq k \).

Now let us give the proposed construction of the embedding \(G'_{\varphi} \to \mathbb{R}^2 \). It is more convenient for us to consider "thickenings" of the graphs rather than embeddings of the graphs into the plane. Then the proposed construction is equivalent to the construction of the derivative of a thickening (Definition of \(N' \) below). Further we assume that a thickening \(N \) of the graph \(G \) in the plane (i.e., a regular neighbourhood of \(G \subset \mathbb{R}^2 \)) is fixed. We also assume that a handle decomposition (denoted by \(\phi \)) of \(\mathbb{R}^2 \) and strips \(\mathbb{R}^2 \) is transversal. Let us state the definition of the derivative \(N' \) of a thickening \(N \). This thickening \(N' \) depends on the simplicial map \(\varphi : K \to G \subset N \) and is well-defined only if \(\varphi \) does not contain transversal self-intersections. Moreover, for an arbitrary \(K \) we must also assume that there are no pairs of arcs \(i, j \subset K \) (not necessarily disjoint!) such that the intersection \(\varphi i \cap \varphi j \) is transversal.

Definition (Definition of \(N' \), see Fig. 2). Let \(\varphi : K \to G \subset N \) be a simplicial map such that for any pair of arcs \(i, j \subset K \) the intersection \(\varphi i \cap \varphi j \) (maybe empty) is not transversal. Let us construct discs \(N'_{a'} \) for each vertex \(a' \in G' \) and strips \(N'_{a'b'} \) for each edge \(a'b' \subset G' \). Then \(N' \) together with its handle decomposition \(S' \) is defined by the formula \(N' = \bigcup_{a \in V} N'_{a} \cup \bigcup_{a \in E} N'_{a'b'} \). Here we take \(N'_{a} = N(a) \) for each edge \(a \subset G \). For each pair \(a, b \subset G \) of adjacent edges such that \((\varphi')^{-1}(a'b') \neq \emptyset \) we join the two discs \(N'_{a} \) and \(N'_{b} \) by a narrow strip \(N'_{a'b'} \) in \(N_{a'b'} \). Since the intersection of arcs \(a \cup b \) or \(c \cup d \) is not transversal for any pair of adjacent edges \(a, d \subset K \), it follows that we can choose the strips \(N'_{a'b'} \) so that they do not intersect for distinct \(a'b' \).

This definition can also be considered as a construction of an embedding \(N' \to N \), and also \(G'_{\varphi} \to \mathbb{R}^2 \). Note that \(S' \) and the topological type of \(N' \) do not depend on the choice of the strips \(N'_{a'b'} \) in our definition. The alternative definition of the derivative thickening \(D(N) \) in [3] does not depend also on the map \(\varphi \). The thickening \(N' \) of our paper means the subthickening of \(D(N) \) of [6], corresponding to the subgraph \(G'_{\varphi} \subset G' \).

Clearly, for investigation of approximability by embeddings of simplicial maps \(K \to G \subset \mathbb{R}^2 \) it suffices to consider only the approximations \(f : K \to N \). Now we are going to reduce the problem of approximability by embeddings of a given map to the problem of existence of an embedding close to it in some sense (\(S \)-close to it).

Definition (Definition of an \(S \)-approximation, cf. [3]). A map \(f : K \to N \) is an \(S \)-approximation of the map \(\varphi \), or \(f \) is \(S \)-close to \(\varphi \), if the following conditions hold:

1. \(fx \subset N_{\varphi(x)} \) for each vertex or edge \(x \) of \(K \).
2. \(x \cap f^{-1}N(\varphi x) \) is connected for each edge \(x \) of \(K \) with nondegenerate \(\varphi x \).

Proposition 2.9 in [3] asserts that the map \(\varphi : K \to G \) is approximable by embeddings if and only if there is an embedding \(f : K \to N \), \(S \)-close to \(\varphi \).

A PL map \(\varphi : K \to N \) is degenerate, if \(\varphi c \) is a point for some edge \(c \subset K \). Now let us prove the following easy Contracting Edge Proposition 2.5 that in some sense allows us to assume that in 2.1 and 2.2 the map \(\varphi \) is nondegenerate.
Proposition 2.5 (Contracting Edge Proposition). Let $\varphi : K \to G$ be a simplicial map such that φc is a point for some edge $c \subset K$. Let K/c be the graph obtained from K by contracting the edge c, and let $\varphi/c : K/c \to G$ be the corresponding map. Then

D) $K'_{\varphi/c} = K'_{\varphi}, G'_{\varphi} = G'_{\varphi/c}$ and $(\varphi/c)' = \varphi'$.

A) for $K \cong S^1$ or $K \cong I$ the map φ/c is approximable by embeddings if and only if φ is approximable by embeddings.

K) for an arbitrary K if φ is approximable by embeddings, then φ/c is approximable by embeddings.

V) If φ is approximable by $\mod 2$-embeddings, then φ/c is approximable by $\mod 2$-embeddings.

Proof of 2.5. D) is obvious.

A) Let us prove the direct implication. Let $f : K/c \to N$ be an embedding, S-close to φ/c. Let $a \subset K$ be an edge adjacent to c (if c is a connected component of K, then the proposition is obvious). Add a new vertex to the edge a of the graph K/c (Fig. 3.a). Since $K \cong S^1$ or $K \cong I$, it follows that the obtained graph is isomorphic to K and the embedding $f : K \to N$ is the required. The reverse implication is a specific case of statement K).

K) Let $f : K \to N$ be an embedding, S-close to φ. Make the move shown in Fig. 3.b. We obtain an embedding $f : K/c \to N, S$-close to φ/c.

V) Let f be a $\mod 2$-embedding, S-close to φ. Make the move shown in Fig. 3.b. We obtain an S-close to φ/c map $\bar{f} : K/c \to N$. It suffices to prove that $|fa \cap fb| = 0 \pmod{2}$ for each pair of disjoint edges $a, b \subset (K/c)$. Indeed, both a and b are also edges of K, and at least one of them is not adjacent to c (because a and b are disjoint in K/c). If neither a nor b is adjacent to c, then $|fa \cap fb| = |fa \cap fb| = 0 \pmod{2}$. If, for example, $b \in K$ is adjacent to c and a is not adjacent to c, then $|fa \cap fb| = |fa \cap fb| + |fa \cap fc| = 0 \pmod{2}$, that proves the proposition.

Degenerate maps appear in our proof of 2.1 and 2.2 even if the map $\varphi : K \to G$ is nondegenerate. We are going to construct a graph \bar{K}'_{φ} and a pair of (degenerate) simplicial maps $G \xrightarrow{\bar{\varphi}} \bar{K}'_{\varphi} \xrightarrow{\bar{\varphi}'} G'$ that can be obtained from φ and φ' respectively by the operation from Contracting Edge Proposition 2.5 (this is true under some assumptions on φ, we present the details below). Together with the construction of the embedding $N' \to N$ (see Definition of N' above) this immediately proves 2.1 (Fig. 4, 5, 6).

Definition (Definition of $\bar{\varphi}$ and $\bar{\varphi}'$, see Fig. 4). Suppose that the map φ is nondegenerate and K does not have vertices of degree 0. Take the disjoint union of all φ-components of K (see Definition of φ'). Join by an edge any two vertices belonging to distinct φ-components and corresponding to the same vertex of K. Denote the obtained semi-derivative graph by \bar{K}'_{φ}. Thus a φ-component $\alpha \subset K$ is also a subgraph of \bar{K}'_{φ} denoted by $\bar{\alpha}'$. Further we identify the points of α and α'. Let the simplicial maps $\bar{\varphi}$ and $\bar{\varphi}'$ be the evident projections $\bar{K}'_{\varphi} \to G$ and $\bar{K}'_{\varphi} \to G'$ respectively, defined on the vertex sets by $\bar{\varphi}x = \varphi x$ and $\bar{\varphi}' x = (\varphi a)'$, where the vertex $x \in \bar{K}'_{\varphi}$ belongs to the φ-component $\bar{\alpha}'$.

Proof of 2.1. By Contracting Edge Proposition 2.5.D.A the map φ can be assumed to be nondegenerate. We also may assume that K does not have vertices of degree 0. It can be easily checked that φ and φ' can be obtained from $\bar{\varphi}$ and certain restriction of $\bar{\varphi}'$ respectively by the operation from Contracting Edge Proposition 2.5. If any two φ-components have at most one common point, then φ' can be obtained from $\bar{\varphi}$ itself in this way. But for $K \cong S^1$ this assumption is not satisfied only if K has two φ-components. Evidently, the map φ is approximable by embeddings in this case. So it suffices to prove that

(*) if $\bar{\varphi}'$ is approximable by embeddings, then $\bar{\varphi}$ is approximable by embeddings.
We prove (\(\ast\)) for an arbitrary graph \(K\). If \(\varphi'\) is approximable by embeddings, then there is an \(S'-\)close to \(\varphi'\) embedding \(\bar{K}_\varphi' \rightarrow N'\). Define the embedding \(f : \bar{K}_\varphi' \rightarrow N\) to be the composition of this embedding and the embedding \(N' \rightarrow N\) constructed in Definition of \(N'\) (Fig. 4). Clearly, there exists a new handle decomposition \(N = \bigcup \bar{N}_a \cup \bigcup \bar{N}_{(ab)}\), denoted by \(\bar{S}\), such that \(f\) is an \(\bar{S}\)-approximation of \(\bar{\varphi}\) (Fig. 5, cf. [6, Proposition 4.9], or see some generalization of the decomposition, constructed in the proof of Lemma 4.5.D.) Then \(f : \bar{K}_\varphi' \rightarrow \bar{N}\) (where \(\bar{N}\) is \(N\) with the new handle decomposition \(\bar{S}\)) is an embedding, \(\bar{S}\)-close to \(\bar{\varphi}\), that proves the lemma.

The same idea is used in the proof of Lemma 2.2.A.V. We take a general position map \(f : \bar{K}_\varphi' \rightarrow N\), \(S\)-close to \(\varphi\), and construct its semi-derivative \(\bar{f}' : \bar{K}_\varphi' \rightarrow N'\), \(S\)-close to \(\varphi'\) (Fig. 7). Then we prove that if \(f\) is an embedding, then \(\bar{f}'\) is also an embedding (Fig. 8).

Definition (Definition of \(\bar{f}'\), see Fig. 7, where this construction is applied to the map \(\varphi\) from Fig. 4). Let \(K\) be a graph without vertices of degree 0. Let \(\varphi : K \rightarrow G \subset N\) be a nondegenerate simplicial map without transversal self-intersections. Let \(f : K \rightarrow N\) be an \(S\)-approximation of \(\varphi\). Then the semi-derivative \(S'\)-approximation \(\bar{f}' : \bar{K}_\varphi \rightarrow N'\) is constructed as follows. For each edge \(a \subset G\) fix a homeomorphism \(h_a : \bar{N}_a \rightarrow \bar{N}'_a\), such that...
for each edge b adjacent to a we have $h_a(N_a \cap N(b)) \subset N_{a'b'}$.

Consider a pair of distinct edges xy, zt of $K'_{\varphi'}$. Denote the set $\bar{f}(xy) \cap \bar{f}(zt)$ by i. It suffices to show that $i = f(xyt)$. Denote by $a' = \varphi'x, b' = \varphi'y, c' = \varphi'z$ and $d' = \varphi't$. Without loss of generality we have the following 3 cases.

1) a', b', c' and d' are pairwise distinct. Since \bar{f} is an S'-approximation, it follows that $\bar{f}xy \subset N_{a'b'}$ and $\bar{f}zt \subset N_{c'd'}$, hence $i = \emptyset$.

2) $(a' = c' and b' \neq d')$. Then $i \subset N_{a'}$, hence $i = h_a(f \xi \cap f \xi)$ (see the definition of h_a and \bar{x} in Definition of \bar{f}, define \bar{z} analogously to \bar{x}..) If $y \neq \bar{t}$, then \bar{x} and \bar{z} are disjoint, so $f \bar{x} \cap f \bar{z} = \emptyset$ and $i = \emptyset$. If $y = \bar{t}$, then $i = h_a(fy) = \bar{f}(xy \cap zt)$.

3) $a' = c', b' = d'$ and $a' \neq b'$. In this case both xy and zt join the vertices of distinct φ-components. Let us prove that xy and zt are disjoint. For example, assume that $y = \bar{t}$. Then all the vertices x, y, z and t of K'_{φ} correspond to the same vertex of K denoted by w. Denote by X and Z the φ-components of $\varphi^{-1}a = \varphi^{-1}c$ such that $x \in X'$ and $z \in Z'$. So the φ-components X and Z have a common point w, hence $X = Z$. So
any pair of disjoint edges \(a,b\) correspond to the same vertex \(w\), hence \(x = z\). We obtain \(y = t\) and \(x = z\), then by the construction of \(\tilde{K}'_\varphi\) we get \(xy = zt\), that contradicts to the choice of these edges. So \(xy\) and \(zt\) are disjoint.

Let us show that in case (3) \(|i| = 0 \pmod{2}\). Omit \(f'\) from the notation of \(f'\)-images. Note that the homeomorphism \(h_a \circ h_b^{-1}\) maps \(y_1 y\) and \(t_1 t\) onto \(\tilde{x}\) and \(\tilde{z}\) respectively (Fig. 8). First this implies that \(|i| = |I \cap J|\), where \(I = \tilde{x} \cup x y_{11}\) and \(J = \tilde{z} \cup z t_1\). Secondly this implies that the two pairs of points \(\partial I\) and \(\partial J\) are not linked in \(\partial(h_a N_{a'b} \cup N_{a'b}^\prime)\). Since \(I, J \subset h_a N_{a'b} \cup N_{a'b}^\prime\), it follows that \(|i| = |I \cap J| = 0 \pmod{2}\). So it remains to prove that \(|I \cap J| \leq 1\), then \(I \cap J = \emptyset\). This follows from

\[
\tilde{x} \cap \tilde{z} = h_a(f \tilde{x} \cap f \tilde{z}) = 0 \quad \text{and} \quad \tilde{x}_1 \cap \tilde{z}_1 = h_a(f \tilde{y} \cap f \tilde{t}) = 0
\]

because \(x_1 y_{11}\) and \(z_1 t_1\) are rectilinear segments in \(N_{a'b}^\prime\). This completes the proof of the lemma. \(\square\)

Proof of 2.2.V. By Contracting Edge Proposition 2.5.V it suffices to prove that if \(f : \tilde{K}'_\varphi \to N\) is a \(\mod{2}\)-embedding, \(S\)-close to \(\varphi\), then the semi-derivative \(f'\) is also a \(\mod{2}\)-embedding.

Take a pair of disjoint edges \(x y, z t\), of \(f'\) and consider the three cases from the proof of Lemma 2.2.A. Case 1) is trivial. In case 2) we get \(f(xy) \cap f(zt) \subset N_a\), hence \(|i| = |h_a(f \tilde{x} \cap f \tilde{z})| = |h_a(f \tilde{x} \cap f \tilde{z})| = 0 \pmod{2}\). In the proof of 2.2.A it is shown that in case 3) \(|i| = 0 \pmod{2}\), thus Lemma 2.2.V is proved. \(\square\)

3. The Van Kampen obstruction

The van Kampen obstruction was invented by van Kampen in studies of embeddability of polyhedra in \(\mathbb{R}^{2n}\). Let us give the definition of the van Kampen obstruction to approximability by embeddings of simplicial paths. Our construction is more visual than that in the problem of embeddability. Let \(\varphi : I \to \mathbb{R}^2\) be a simplicial path (in Fig. 9 the construction below is applied to the path from Fig. 1). Denote by \(x_1, \ldots, x_k\) the vertices of \(I\) in the order along \(I\), and denote the edge \(x_i x_{i+1}\) by \(i\). Let \(I^* = \bigcup_{i < j - 1} i \times j\), be the deleted product of \(I\).

Paint red the edges \(x_i \times j, j \times x_i\), and the cells \(i \times j\) of \(I^*\) such that \(\varphi x_i \cap \varphi j = \emptyset\), \(\varphi i \cap \varphi j = \emptyset\), and denote by \(I^{*\varphi}\) the red set. Take a general position map \(f : I \to \mathbb{R}^2\), sufficiently close to \(\varphi\). To each cell \(i \times j\) of the "table" \(I^*\) put the number \(v_f(i \times j) = |f(i) \cap f(j)|\) (mod 2). Decompose \(I^*\) along the red edges, let \(C_1, C_2, \ldots, C_n\) be all the obtained components such that \(\partial C_i \cap \partial I^{*\varphi} = \partial I^*\). Denote \(v_f(C_k) = \sum_{i \times j \subset C_k} v_f(i \times j)\). The van Kampen obstruction (with \(\mathbb{Z}_2\)-coefficients) for approximability by embeddings is the vector \(v(\varphi) = (v_f(C_1), v_f(C_2), \ldots, v_f(C_n))\).

It can be shown easily that \(v(\varphi)\) does not depend on the choice of \(f\), thus \(v(\varphi) = 0\) is a necessary condition for approximability by embeddings. It is easy to check that \(v(\varphi) \neq 0\) for a PL path \(\varphi : I \to \mathbb{R}^2\) containing a transversal self-intersection. Thus Corollary 1.4.V follows from 1.3, 2.2.V and 3.1.

Proposition 3.1. The van Kampen obstruction \(v(\varphi) = 0\) if and only if there is an \(S\)-close to \(\varphi\) general position mod 2-embedding.

Proof of 3.1. The inverse implication of the proposition is obvious. The proof of the direct implication follows the idea of [4]. We are going to use the cohomological formulation of the van Kampen obstruction (see the paragraph before Proposition 3.2 below for details). Let \(f : K \to N\) be any general position \(S\)-approximation of \(\varphi\). The 'Reidemeister move' shown in Fig. 10.a adds to \(v_f\) the coboundary \(\delta[x \times a]\) of the elementary cochain from \(B^2(K)\). Since \(v(\varphi) = 0\), it follows that using some such 'moves' we can obtain a map \(f : K \to N\) such that \(v_f = 0\). Then \(f\) is the required mod 2-embedding, because \(v_f = 0\) yields that \(|f(a) \cap f(b)| = 0 \pmod{2}\) for any pair of disjoint edges \(a, b\) of \(K\). \(\square\)

Now we are going to prove that the conditions 1.4.V and 1.4.D are equivalent (Proposition 3.2). We are going to replace \(\mathbb{Z}_2\)-coefficients in the van Kampen obstruction by \(\mathbb{Z}\)-coefficients, so Proposition 3.2 implies only that...
Let K be an n-polyhedron with a fixed triangulation. Let $\varphi : K \to G \subset \mathbb{R}^{2n}$ be a simplicial map. Denote by σ and τ any n-dimensional simplices of this triangulation of K. By the deleted product of K we mean the set $\bar{K} = \bigcup \{ \sigma \times \tau : \sigma \cap \tau = \emptyset \}$. Fix the natural orientation of each cell $\sigma \times \tau$ (a positive basis of $\sigma \times \tau$ consists of the vectors e_1, \ldots, e_n, where e_1, \ldots, e_n form a positive basis of σ and e_{n+1}, \ldots, e_{2n} form a positive basis of τ). Let $K^* = \bar{K}/\mathbb{Z}_2$ be the factor under antipodal \mathbb{Z}_2-action. Let $\bar{K}^\varphi \subset \bar{K}$ be the subset $\bar{K}^\varphi = \{ \sigma \times \tau : \varphi \sigma \cap \varphi \tau = \emptyset \}$ and let $K^*\varphi = \bar{K}^\varphi/\mathbb{Z}_2$. For a general position map $f : K \to \mathbb{R}^2$ close to φ define a cochain $v_f \in C^n(K^*, K^*\varphi; \mathbb{Z})$ by the formula $v_f(\sigma \times \tau) = f \sigma \cap f \tau$. This cochain is well-defined, because $f \sigma \cap f \tau = (-1)^n f \tau \cap f \sigma$ and our \mathbb{Z}_2-action maps $\sigma \times \tau$ to $(-1)^n \sigma \times \tau$. The class $v(\varphi) = \{ v_f \} \in H^n(K^*, K^*\varphi; \mathbb{Z})$ of this cochain does not depend on the map f and is called the van Kampen obstruction to approximability of φ by embeddings. We say that the map $\varphi : K \to G \subset \mathbb{R}^{2n}$ satisfies the deleted product property if the map $\bar{\varphi} : \bar{K}^\varphi \to S^{2n-1}$ given by the formula $\bar{\varphi}(x, y) = \frac{x - y}{\|x - y\|}$ extends to an equivariant map $\bar{K} \to S^{2n-1}$. Evidently, this definition of the deleted product property is equivalent to 1.4.D for $n = 1$ and $K \cong I$.

Proposition 3.2. A PL map $\varphi : K^n \to \mathbb{R}^{2n}$ satisfies the deleted product property if and only if the van Kampen obstruction (with \mathbb{Z}-coefficients) $v(\varphi) = 0$.

Proof of 3.2. We are going to show that the van Kampen obstruction is a complete obstruction to an equivariant extension of $\bar{\varphi} : \bar{K}^\varphi \to S^{2n-1}$ to a map $\bar{K} \to S^{2n-1}$.

Take a general position map $f : K \to \mathbb{R}^2$ close to φ and define the equivariant map $\tilde{f} : \bar{K}^\varphi \sqcup \mathbb{R}^{2n-1} \to S^{2n-1}$ by the formula $\tilde{f}(x, y) = \frac{f \sigma \cap f \tau}{\|f \sigma \cap f \tau\|}$. By general position it follows that \tilde{f} is well-defined. Since f is close to φ, it follows that $\tilde{f}|_{\bar{K}^\varphi}$ is homotopic to $\bar{\varphi}$. Evidently, then $\bar{\varphi}$ extends to an equivariant map $\bar{K} \to S^{2n-1}$ if and only if $\tilde{f}|_{\bar{K}^\varphi}$ extends to an equivariant map $\bar{K} \to S^{2n-1}$.

Consider a cell $\sigma \times \tau \subset \bar{K} - \bar{K}^\varphi$, where $\sigma, \tau \subset K$ are n-dimensional cells. The map \tilde{f} extends to $\sigma \times \tau$ if and only if $\deg \tilde{f} | \partial(\sigma \times \tau) = 0$. Hence \tilde{f} extends to $\sigma \times \tau$ if and only if $v_f|_{\partial(\sigma \times \tau)} = 0$. Let $\sigma' \subset K$ be a cell of dimension $2n - 1$. Take a disjoint union $\sigma \cup \sigma'$ of two copies of σ and paste σ to σ' by $\partial \sigma = \partial \sigma'$. Define the map d_σ of the obtained $(2n - 1)$-sphere to S^{2n-1} given by the formula $d_\sigma x = f x$ for $x \in \sigma$. Then, clearly $v_{d_\sigma} = 0$. The obtained formula implies that the cohomological class $[v_f]$ does not depend on the choice of an equivariant map $g : \bar{K}^\varphi \sqcup \mathbb{R}^{2n-1} \to S^{2n-1}$ and coincides with the van Kampen obstruction $v(\varphi)$ (with \mathbb{Z}-coefficients). This proves that the condition $v(\varphi) = 0$ in the proposition is necessary. The obtained formula and the construction of v_f above shows that if $v(\varphi) = 0$ then $v_f = 0$ for some $g : \bar{K}^\varphi \sqcup \mathbb{R}^{2n-1} \to S^{2n-1}$, hence $\tilde{f}|_{\bar{K}^\varphi}$ extends to an equivariant map $\bar{K} \to S^{2n-1}$. So the proposition is proved.

Example 3.3. (cf. [15, 31]) There exists a pair of PL paths $\varphi : I \to \mathbb{R}^2$, $\psi : I \to \mathbb{R}^2$ (Fig. 10, where a pair of paths f, g, close to them, is shown), not approximable by link maps (i. e., maps with disjoint images) and such that:

V) The van Kampen obstruction $v(\varphi, \psi) = 0$.

D) The map $\Phi : \{ (x, y) \in I \times I : |x - y| \neq 0 \} \to S^1$ given by $\Phi(x, y) = \frac{x - y}{\|x - y\|}$ homotopically extends to a map $I \times I \to S^1$.

I) The pair φ', ψ' is approximable by link maps.
Figure 11. A pair of maps not approximable by link maps

Proof of 3.3. Let $K, L \cong I$ are the graphs with the vertices k_1, \ldots, k_5 and l_1, \ldots, l_7, let G be the graph with vertices a_1, \ldots, a_6 and edges $a_1a_2, a_1a_4, a_1a_5, a_2a_3, a_2a_4$ and a_2a_6. The required simplicial maps φ, ψ are given by the formula $\varphi k_1 = a_1, \varphi k_2 = a_2, \varphi k_3 = a_3, \varphi k_4 = a_1, \varphi k_5 = a_2$ and $\psi l_1 = a_5, \psi l_2 = a_1, \psi l_3 = a_2, \psi l_4 = a_4, \psi l_5 = a_1, \psi l_6 = a_2, \psi l_7 = a_6$. Consider the pair of S-approximations f and g of φ and ψ respectively shown in Fig. 11. One can see that $|f_i \cap g_j| = 0 \pmod 2$ for any pair of edges $i \in K, j \in L$. This implies both 3.3.V and 3.3.D (it is shown analogously to the proof of 1.4, see also Proposition 3.1). The proof of 3.3.I is a direct calculation. Let us prove that the pair φ, ψ is not approximable by link maps. Assume the converse. Let $K_{13}, K_{35} \subset K$ and $L_{14}, L_{47} \subset L$ be the arcs between the points k_1 and k_3, k_3 and k_5, l_1 and l_4, l_4 and l_7 respectively. Take a small neighbourhood of $\varphi K \cup \psi L$ in the plane and fix its handle decomposition S. Denote by A_1, A_2 and A the discs of S corresponding to the vertices a_1, a_2 and to the edge a_1a_2 respectively. By the analogue of the Minc Proposition (see the paragraph after Definition of an S-approximation in §2) there are two S-approximations f, g of φ and ψ respectively, having disjoint images. Since $f K_{13} \cap g L = \emptyset$, it follows that the pairs of points $gL_{14} \cap \partial(A_1 \cup A)$ and $gL_{47} \cap \partial(A_1 \cup A)$ are not linked in $\partial(A_1 \cup A)$. Analogously, $gL_{14} \cap \partial A_2$ and $gL_{47} \cap \partial A_2$ are not linked in ∂A_2. So $gL_{14} \cap \partial(A_1 \cup A_2 \cup A)$ and $gL_{47} \cap \partial(A_1 \cup A_2 \cup A)$ are not linked in $\partial(A_1 \cup A_2 \cup A)$. Then g cannot be an S-approximation of ψ. This contradiction proves that φ and ψ are not approximable by link maps. □

4. Variations

The following Simple-minded Criterion 4.1 for approximability by embeddings gives an algorithm of checking whether a given nondegenerate map is approximable by embeddings (another algorithm is given in [13]).

Proposition 4.1. Simple-minded Criterion 4.1 Let $\varphi : K \to G \subset \mathbb{R}^2$ be a nondegenerate simplicial map of a graph K, i.e., for each edge a of K the image φa is not a vertex. Replace each edge $a \subset G$ by i close multiple edges in \mathbb{R}^2, if $\varphi^{-1}a$ consists of i edges. Denote by $G \subset \mathbb{R}^2$ the obtained graph and by $\pi : G \to G$ the evidently defined projection. The map φ is approximable by embeddings if and only if there exists an onto map $\tilde{\varphi} : K \to G$ without transversal self-intersections and such that $\pi \circ \tilde{\varphi} = \varphi$.

The proof is trivial (we do not present the details since we do not use this criterion). There exists a purely combinatorial proof of Theorem 1.3, based on Criterion 4.1. Criterion 4.1 and all the other our previous results remain true, if we replace \mathbb{R}^2 by an arbitrary orientable 2-manifold N.

There exist an infinite number of PL maps $\varphi : T \to T \subset \mathbb{R}^2$, where T is letter "T" (a simple triod), not approximable by embeddings and such that φ' and any simplicial restriction of φ are approximable by embeddings (for the only embedding $T' \to \mathbb{R}^2$). So there are no criteria like 1.3.I, S for $K \not\cong I, S^1$.

In the rest of the paper we prove Theorem 1.5, generalizing both 1.3 and 1.4. For the proof we need the following Lemma 4.2.T, Lemma 4.5 and Lemma 4.6, analogous to Lemmas 2.3, 2.1 and 2.2 respectively.

To state Lemma 4.2 we need the following definitions. We shall say that φ contains a simple triod, if there is a triod $T \subset K$ with the edges t_1, t_2, t_3 such that the arcs $\varphi t_1, \varphi t_2, \varphi t_3$ have a unique common point. We shall say that φ identifies triods, if it contains two disjoint simple triods $T_1, T_2 \subset K$ such that $\varphi T_1 = \varphi T_2$. Note that $\psi(\varphi) \neq 0$ for a map φ identifying triods. We shall say that an onto map $\varphi : K \to G$ is a standard winding, if both K and G are homeomorphic to disjoint unions of circles (may be, $K = G = \emptyset$) and $|\varphi|_S$ is a standard winding of a nonzero degree for each circle $S \subset K$. Denote by $\Sigma(\varphi) = \{x \in K : |\varphi^{-1}x| \geq 2\}$ the singular set of the map φ.

\[\begin{array}{c}
\varphi k_1 = a_1, \varphi k_2 = a_2, \varphi k_3 = a_3, \varphi k_4 = a_4, \varphi k_5 = a_2 \\
\psi l_1 = a_5, \psi l_2 = a_1, \psi l_3 = a_2, \psi l_4 = a_4, \psi l_5 = a_1, \psi l_6 = a_2, \psi l_7 = a_6
\end{array} \]
Lemma 4.2. (cf. Lemma 2.3) Let \(\varphi : K \to G \) be a simplicial map of a graph \(K \) with \(k \) vertices.

T) Suppose that for each \(i = 0, \ldots, k \) the derivative \(\varphi^{(i)} \) does not contain simple triods; then \(\varphi^{(k)} \) is a standard winding.

I) Suppose that for each \(i = 0, \ldots, k \) the derivative \(\varphi^{(i)} \) does not identify triods; then \(\Sigma(\varphi^{(k)}) \) is a disjoint union of circles and \(\varphi^{(k)} \big|_{\Sigma(\varphi^{(k)})} \) is a standard winding.

Proof of 4.2.T. We are going to use the notation from the proof of Lemma 2.3. Let us show that \(|K| \geq |K'| \) for a simplicial map \(\varphi : K \to G \) containing no simple triods. We also prove that \(|K| = |K'| \) only if \(K \) is homeomorphic to a disjoint (maybe empty) union of circles and \(\varphi \) is ultra-nondegenerate. Then it suffices to prove the lemma for this latter specific case. Indeed, since \(\varphi \) does not contain simple triods, it follows that each vertex of the graph \(K \) belongs to at most two \(\varphi \)-components of the graph. On the other hand, each \(\varphi \)-component contains an edge, and hence it contains at least two vertices. This yields that the number of vertices of \(K \) is greater or equals to the number of \(\varphi \)-components, i. e. \(|K| \geq |K'| \). We have the equation here if and only if (1) each vertex of \(K \) belongs to two \(\varphi \)-components and (2) each \(\varphi \)-component contains exactly two vertices. The condition (2) means that \(\varphi \) is ultra-nondegenerate. But for an ultra-nondegenerate map the condition (1) yields that the degree of each vertex of \(K \) is 2, so \(K \) is a disjoint union of circles. Now note that for any two components \(A, B \subset K \) we have \(\varphi' A \cap \varphi' B = (\varphi A \cap \varphi B)' \). Since \(A, B \cong S^1 \) and \(\varphi \) is ultra-nondegenerate, it follows that \(\varphi A \cap \varphi B \) is a circle if and only if \(\varphi A = \varphi B \). If \(\varphi A \cap \varphi B \) is either empty or a disjoint union of arcs and points. Moreover, \(\varphi A \cap \varphi B \) is a circle if and only if \(\varphi A = \varphi B \). So the images \(\varphi^{(k)}A \) and \(\varphi^{(k)}B \) are disjoint or coincide. By Lemma 2.3 this yields that \(\varphi^{(k)} \) is a standard winding. \(\square \)

We do not use Lemma 4.2.I and prove it after the proof of Theorem 1.5. Lemma 4.2.I may be helpful in the proof of Conjecture 1.6.

In order to prove Theorem 1.5 we need the following extension of the techniques from §2. In §2, we fix an orientable thickening \(N \) of the graph \(G \cong S^1 \). We also assume that some orientable thickening \(M \) of the graph \(K \) is fixed. Note that a thickening of a graph is uniquely defined by a local ordering of edges around each vertex \(\varphi \). We assume that \(K \) may contain loops and multiple edges. In this case by a simplicial map \(\varphi : K \to G \) we mean a continuous map that is linear on each edge of \(K \) and such that \(\varphi x \) is a vertex of \(G \) for each vertex \(x \in K \). We assume that the handle decompositions \(M = \bigcup M_x \cup \bigcup M_{(a)} \) and \(N = \bigcup N_x \cup \bigcup N_{(a)} \) are fixed (in both formulae the first union is over all vertices \(x \) and the second — over all edges \(a \)). By \(M_x \) and \(N_x \) we denote the restriction of the thickenings \(M \) and \(N \) to subgraphs \(a \subset K \) and \(\beta \subset G \) respectively. By an \(S \)-approximation of \(\varphi \) (or \(S \)-close to \(\varphi \) map) we mean a general position map \(f : M \to N \) such that for any vertex \(x \in K \) or edge \(x \in K \) we have \(f M_x \subset N_{\varphi x} \) and for any edge \(x \in K \) with nondegenerate \(\varphi x \) the set \(M_x \cap f^{-1} N_{\varphi x} \) is connected (cf. Definition of \(S \)-approximation in §2). If there is an \(S \)-close to \(\varphi \) embedding \(M \to N \) then we shall say that \(\varphi \) is \(\textit{approximable by embeddings} \) \(M \to N \). By a \(\textit{mod 2-embedding} \) we mean a general position map \(f : M \to N \) such that \(f \big|_{M_x} \) is an embedding for each vertex \(x \in K \), \(f \big|_{M_{(a)}} \) is an immersion for each edge \(a \subset K \) and \(|f a \cap f b - f(a \cap b)| = 0 \) (mod 2) for any pair of distinct edges \(a, b \subset K \subset M \). The last notion appears in the following generalization of Proposition 3.1.

Lemma 4.3. Let \(K \) be a graph such that the degree of each vertex of \(K \) is at most 3. Let \(\varphi : K \to G \subset \mathbb{R}^2 \) be a simplicial map such that \(v(\varphi) = 0 \). Then there exist a \(\textit{mod 2-embedding} \) \(M \to N \), \(S \)-close to \(\varphi \), for some thickenings \(M \) and \(N \subset \mathbb{R}^2 \) of the graphs \(K \) and \(G \) respectively.

Proof of 4.3. [10] Let \(N \) be a regular neighbourhood of \(G \) in \(\mathbb{R}^2 \). Let \(f : K \to N \) be the map given by Proposition 3.1. Since the degree of each vertex of \(K \) is at most 3, it follows that we can remove intersections of adjacent edges, using the moves shown in Fig. 10.b. The obtained general position map \(K \to N \) uniquely defines a thickening \(M \) of \(K \) and extends to the required \(\textit{mod 2-embedding} \), \(S \)-close to \(\varphi \). \(\square \)

In [10] the move shown in Fig. 10.b is assumed to work for vertices of any degree, that is not right. The degree restriction in Theorem 1.5 is used only in this step of the proof.

Now we are going to construct the \(\textit{derivative} \) \(M' \) of the thickening \(M \). This derivative is well-defined only under the following conditions on \(\varphi \), \(M \) and \(N \). We shall say that \(\varphi : K \to G \) is \(\textit{locally approximable by embeddings} \), if for each vertex \(x \in G \) there exists an \(S \)-approximation \(f : M \to N \) of \(\varphi \) such that \(f \big|_{f^{-1} N_x} \) is an embedding. The following lemma asserts that the thickenings \(M \) and \(N \) given by Lemma 4.3 satisfy these conditions.

Lemma 4.4 (Local Approximation Lemma). If there is a \(\textit{mod 2-embedding} \) \(M \to N \) which is \(S \)-close to the map \(\varphi : K \to G \), then \(\varphi \) is \(\textit{locally approximable by embeddings} \) \(M \to N \).

Proof of 4.4. Let \(f : M \to N \) be an \(S \)-close to \(\varphi \) \(\textit{mod 2-embedding} \) and let \(x \) be a vertex of the graph \(G \). Modify \(f \) in a small neighbourhood of \(\partial N_x \) to obtain a map \(f \) such that for each edge \(a \ni x \) the set \(f^{-1}(N_{(a)} \cap N_x) \) is a single point \(P_a \). Attach a ring \(R \) to the disc \(N_x \) along the circle \(\partial N_x \). Let \(Q \) be the 2-polyhedron obtained...
from $M_{\varphi^{-1}x} \cup (K \cap f^{-1}N_x)$ by identifying the points $f^{-1}P_a$ for each $a \ni x$. Identify each point $f^{-1}P_a \in Q$ with P_a. Attach the ring R to Q by the inclusions $P_a \subset R$. Let $g : Q \cup R \rightarrow N_x \cup R$ be the map given by the formula $gy = fy$ for $y \in Q$ and $gy = y$ for $y \in R$. Clearly, g is a mod 2-embedding, i.e. there exists a triangulation of $Q \cup R$ such that $|ga \cap gb| = 0$ (mod 2) for each pair of disjoint edges a, b of this triangulation. This yields that $Q \cup R$ contains neither Kuratowski graph K_5 nor $K_{3,3}$. Clearly, $Q \cup R$ contains neither S^2 nor the cone over $S^1 \cup D^0$. By the well-known 2-polyhedron planarity criterion $Q \cup R$ is planar. So the embedding $R \subset N_x \cup R$ extends to an embedding $h : Q \cup R \rightarrow N_x \cup R$. Clearly, $h|_Q : Q \rightarrow N_x$ can be modified to an embedding $f^{-1}N_x \rightarrow N_x$, that extends to the required S-approximation of φ. So φ is locally approximable by embeddings.

The next step in the construction of M'_φ is like Contracting Edge Proposition 2.5. We use a reduction to the case of a nondegenerate map φ and then define the semi-derivative thickening.

Definition (Definition of φ^c). First let us define the graph K^c_φ, which is the domain of φ^c. A 0-component of K is any connected component of $\varphi^{-1}x$ for a vertex $x \in G$. The vertex set of the graph K^c_φ is in 1-1 correspondence with the set of all 0-components. Denote by α^c the vertex corresponding to a 0-component $\alpha \subset K$. The vertices α^c and β^c are joined by an edge in K^c_φ if and only if K contains an edge with two ends belonging to α and β respectively. The map $\varphi^c : K^c_\varphi \rightarrow G$ is a simplicial map given by the formula $\varphi^c\alpha^c = \varphi\alpha$.

Definition (Definition of M^c). Let the map $\varphi : K \rightarrow G$ be locally approximable by embeddings. The thickening M^c_φ and its handle decomposition are defined as follows. For each 0-component $\alpha \subset K$ choose a maximal tree $T \subset \alpha$. The thickening M^c_φ is the restriction of M to the subgraph $(K - \bigcup \alpha) \cup T$. The discs of the handle decomposition of M^c_φ are defined as the subthickenings M_T and the strips are defined as the strips of M not contained in the subthickenings M_α.

Definition (Definition of M', cf. Definition of φ^c in §2). Let the map $\varphi : K \rightarrow G$ be nondegenerate and locally approximable by embeddings. The thickening M^c_φ and its handle decomposition are defined as follows. Take a disjoint union of M_α for all φ-components $\alpha \subset K$. If φ-components α and β have a common vertex x, then join M_α and M_β by a strip attached to M_a and M_b along the arcs $M_x \cap M_\alpha$ and $M_x \cap M_\beta$ respectively, where $a \subset \alpha$ and $b \subset \beta$ are any edges containing x. The handle decomposition of M'_φ is obtained from those of M_α by adding the attached strips to the decomposition.

We omit φ from the notation of M^c_φ, M'_φ and M'_φ. We denote the derivative of the thickening M by $M' = (M^c)^c$. Note that M' is a thickening of a graph which may be different from K^c_φ only in multiplicity of some edges. Now we are going to prove the following Lemma 4.5.C,D and Lemma 4.6.C,D, analogous to 2.5.A, 2.1, 2.5.V and 2.2.V respectively.

Lemma 4.5. Let $\varphi : K \rightarrow G$ be locally approximable by embeddings. Then:

C) φ^c is approximable by embeddings $M^c \rightarrow N$ if and only if φ is approximable by embeddings $M \rightarrow N$;

D) if $G \cong I$ or $G \cong S^1$ and φ^c is approximable by embeddings $M' \rightarrow N'$, then φ is approximable by embeddings $M' \rightarrow N$.

Proof of 4.5.C. The sufficiency is obvious because $M^c \subset M$ (without handle decompositions). Let us prove the necessity. Let $f : M^c \rightarrow N$ be an embedding, S-close to φ^c. Identify M^c and the subthickening $M_{\bar{K}}$, where \bar{K} is the union where $\bar{K} = (K - \bigcup \alpha) \cup T$ (see the notation in Definition of M^c). Let us add to \bar{K} the edges $a - T$ one by one and extend the map f to the corresponding strips M_α in an arbitrary way. We assert that an embedding $M \rightarrow N$, S-close to φ, can be constructed in this way. Indeed, assume that algorithm does not work, i.e. at some point the obtained S-close to φ embedding $M_{\bar{K}} \rightarrow N$ cannot be extended to M_α. Then the two arcs $f\partial M_\alpha$ are contained in distinct connected components of $\Cl(N_\alpha - fM_{\bar{K}})$. Since the arcs $f\partial M_\alpha$ belong to one connected component of $N_\alpha \cap fM_{\bar{K}}$, it follows that there are only two possibilities: 1) \bar{K} contains a cycle γ such that $g\gamma = g\alpha$ and M_α joins the two components of ∂M_α (Fig. 12.a); 2) \bar{K} contains an arc γ such that $\varphi_\alpha \notin \varphi_\beta$ and M_α joins the two components of ∂M_α (Fig. 12.b). Clearly, in both cases 1 and 2 the map φ is not locally approximable by embeddings. This contradicts the assumption of the lemma, so the algorithm above gives us the required embedding $M \rightarrow N$, S-close to φ.

Proof of Lemma 4.5.D. Note that N' is well-defined because $G \cong S^1$ and hence $\varphi i \cap \varphi j$ is not transversal for any pair of arcs $i, j \subset K$. Take an S-close to φ^c embedding $M' \rightarrow N'$. Let $f : M' \rightarrow N$ be the composition of this embedding with the embedding $N' \rightarrow N$ (see Definition of N'). It remains to construct a new handle decomposition S of N such that f is an S-approximation of φ.

Denote by $m = M'$. For each vertex $x \in G$ let N_x be a small neighbourhood in N of the set $fm_{\varphi^c}^{-1}x \cup N_x$. Since $G \cong S^1$, it follows that $\varphi^c^{-1}x$ is a disjoint union of arcs and hence N_x is a disjoint union of discs. For each edge $xy \in G$ the set $fm_{\varphi^c}^{-1}x - N_x$ is also a disjoint union of discs, because for each edge a such that $\varphi a = xy$ the strip $fm_{\varphi^c} a$ joins N_y and some disc of N_x. Hence $fm_{\varphi^c}^{-1}xy - N_x$ does not decompose N, and since N_x is a
disjoint union of discs, it follows that $\hat{N}_y \cup (fm - \hat{N}_x)$ does not decompose $N_{(xy)}$. So if \hat{N}_x is not connected, one can join any of its connected components $C \subset N_{(xy)}$ with another connected component of \hat{N}_x by a strip in $N_{(xy)}$ not intersecting fm and \hat{N}_y. Clearly, \hat{N}_x remains to be a disjoint union of discs after this operation. Let us add to each \hat{N}_x such strips until all \hat{N}_x become connected. Then the obtained discs \hat{N}_x and the strips $\hat{N}_{(xy)} = \text{Cl}(N_{(xy)} - \hat{N}_x - N_y)$ form the required handle decomposition \hat{S}.

\textbf{Lemma 4.6.} \textit{If there is a } mod 2-embedding $M \to N$ S-close to φ, then there is a } mod 2-embedding, S-close to φ; (D) φ'.

\textit{Proof of 4.6.C.} Take an S-close to φ mod 2-embedding $M \to N$. Denote by $f : K \to N$ the restriction of the embedding. Make the move from Contracting Edge Proposition 2.5.K (Fig. 3(b)) for each edge of the tree $T \subset K$ (see Definition of M^c). Let $f : K^c_\varphi \to N$ be the restriction of the constructed map. By the construction the local ordering of the edges of K^c_φ in M^c and the local ordering of their f-images coincide. So the map $f : K^c_\varphi \to N$ extends to the required mod 2-embedding $M^c \to N$.

We prove Lemma 4.6.D only in case when K does not contain pairs of arcs i, j with $\varphi(i) \cap \varphi(j)$ transversal (this assumption for $G \cong S^1$ is satisfied automatically.) The lemma is proved analogously for an arbitrary graph K, if we use the definition of N' from [6].

\textit{Proof of 4.6.D.} Take an S-close to φ mod 2-embedding $M \to N$. Denote by $f : K \to N$ the restriction of the embedding. Let $f' : K'_{\varphi} \to N'$ be the map from Definition of f' in §2. By the construction Definition of f' and Definition of M' the local ordering of the edges of K'_{φ} in M' and the local ordering of their f'-images coincide. So the map f' extends to the required mod 2-embedding $M' \to N'$.

\textit{Proof of 1.5.} The necessity follows from the necessity of the condition $v(\varphi) = 0$ for approximability by embeddings [3], Example 1.1 [12] and Lemma 2.2.A [6]. Let us prove the sufficiency. Suppose that $v(\varphi) = 0$. By Lemma 4.3 there exist a thickening M of K and a mod 2-embedding $f : M \to N$, S-close to φ. Local Approximation Lemma 4.4 implies that φ is locally approximable by embeddings. Note that the graphs K^c_φ and $((K^c_\varphi)'$ are the same modulo multiplicity of some edges, φ' and $(\varphi')'$ coincide modulo this difference. Change φ' to this \textit{quasi-derivative} $((\varphi')')'$. By Lemma 4.6.C.D it follows that for each natural i the derivative thickening $M^{(i)}$ is well-defined and there exists an S-close to the map $\varphi^{(i)}$ mod 2-embedding, and the map $\varphi^{(i)}$ is locally approximable by embeddings. By Lemma 4.2.T the \textit{derivative} $\varphi^{(i)}$ is either "empty" or the standard d-winding for some $d \neq 0$, hence the \textit{quasi-derivative} $\varphi^{(k+1)}$ is either "empty" or the standard d-winding with the same d. By the assumption of the theorem d is either even or ± 1. Since for the standard winding of an even degree $d \neq 0$ the van Kampen obstruction is nonzero and $\varphi^{(k+1)}$ is approximable by mod 2-embeddings, it follows that d is not even. Hence either $d = \pm 1$ or $\varphi^{(k+1)}$ has an empty domain. In both cases there exists an S-close to the map $\varphi^{(k+1)}$ embedding $K^{(k+1)} \to N^{(k+1)}$, where the \textit{quasi-derivatives} $K^{(i)}$ are defined analogously to $\varphi^{(i)}$. Since $K^{(k+1)} = \emptyset$ or $K^{(k+1)} \cong S^1$, it follows that this embedding extends to an embedding
Applying Lemma 4.5.C,D \(k+1\) times, we get an embedding \(M \to N\), which is \(S\)-close to \(\varphi\). The restriction \(K \to N\) of the embedding is \(S\)-close to \(\varphi\), and hence \(\varphi\) is approximable by embeddings.

For the proof of Lemma 4.2.I we need the following definition.

Definition (Definition of \(\varphi^s\)). For a nondegenerate simplicial map \(\varphi: K \to G\) denote by \(\Delta(\varphi) = \{ (x,y) \in K \mid \varphi x = \varphi y \}\) the \(\text{sing}\)\(\text{ular}\) graph, where \(\tilde{K}\) is the deleted product of the graph \(K\). The vertices of \(\Delta(\varphi)\) are the pairs \((x,y)\) of \(K\) such that \(\varphi x = \varphi y\). For an arbitrary simplicial map \(\varphi: K \to G\) define the simplicial singular map \(\varphi^s : \Delta(\varphi^s) \to G\) by \(\varphi^s(x,y) = \varphi^s x\) for each vertex \((x,y) \in \Delta(\varphi^s)\).

Proof of 4.2.I. First note that if \(\varphi\) does not identify triods then \(\varphi^s\) does not contain a simple triod. Secondly note that \((\varphi^s)^s = (\varphi^s)^s\)' for any simplicial map \(\varphi\) (formally, it follows from [5, Proposition 2.11] for the pair of maps \(\varphi, \psi\), where \(\psi\) is the projection \(\tilde{K} \to K\)). Thirdly note that \(|\Delta(\varphi^s)| \leq k\) and \(\varphi^s\) is a standard winding for a standard winding \(\varphi\). Therefore, by Lemma 4.2.T, \((\varphi^{(k)})^s\) is a standard winding, and hence \(\varphi^{(k)}\Sigma(\varphi^{(k)})\) is a disjoint union of circles. Now note that \(\varphi^{(k)}\big|_{\Sigma(\varphi^{(k)})}\) is ultra-nondegenerate (because \((\varphi^{(k)})^s\) is not ultra-nondegenerate in the opposite case) and \(\Sigma(\varphi^{(k)})\) has no hanging vertices (because \(\Delta(\varphi)\) has a hanging vertex in the opposite case). So \(\varphi^{(k)}\big|_{\Sigma(\varphi^{(k)})}\) is an ultra-nondegenerate map of a disjoint union of circles \(\varphi \Sigma(\varphi)\), consequently \(\varphi^{(k)}\big|_{\Sigma(\varphi^{(k)})}\) is a standard winding.

Acknowledgements. The author is grateful to Arkady Skopenkov for permanent attention to this work.

References

[1] P. Akhmetiev, D. Repovš and A. Skopenkov, *Obstructions to approximating maps of \(n\)-surfaces to \(\mathbb{R}^{2n}\) by embeddings*, Topol. Appl. **123**:1 (2002), p. 3–14.

[2] A. Cavicchioli, D. Repovš and A. B. Skopenkov, *Open problems on graphs, arising from geometric topology*, Topol. Appl. **84** (1998), p. 207–226.

[3] M. H. Freedman, V. S. Krushkal and P. Teichner, *Van Kampen’s embedding obstruction is incomplete for 2-complexes in \(\mathbb{R}^4\)*, Math. Res. Letters **1** (1994), p. 167–176.

[4] E. R. van Kampen, *Komplexe in Euklidische Räumen*, Abh. Math. Sem. Hamburg **9** (1932), p.72–78; berichtigung dazu, 152–153.

[5] P. Minc, *On simplicial maps and chainable continua*, Topol. Appl. **57** (1994), p. 1–21.

[6] P. Minc, *Embedding simplicial arcs into the plane*, Topol. Proc. **22** (1997), p. 305–340.

[7] D. Repovš and A. B. Skopenkov, *Embeddability and isotopy of polyhedra in Euclidean spaces*, Proc. Steklov Math. Inst. **212** (1996), p. 163–178.

[8] D. Repovš and A. B. Skopenkov, *A deleted product criterion for approximability of maps by embeddings*, Topol. Appl. **87** (1998), p. 1–19.

[9] D. Repovš and A. B. Skopenkov, *The obstruction theory for beginners*, Mat. Prosv. **4** (2000), p. 154–180 (in Russian).

[10] K. S. Sarkaria, *A one-dimensional Whitney trick and Kuratowski’s graph planarity criterion*, Israel J. Math. **73** (1991), p. 79–89.

[11] J. Segal and S. Spiež, *On transversely trivial maps*, Questions and Answers in General Topology **8** (1990), p. 91–100.

[12] K. Sieklucki, *Realization of mappings*, Fund. Math. **65** (1969), p. 325–343.

[13] A. Skopenkov, *A geometric proof of the Neuwirth theorem on thickenings of 2-polyhedra*, Mat. Zametki **56**:2 (1994), p. 94–98 (in Russian). English transl.: Math. Notes **58**:5 (1995), p. 1244–1247.

[14] E. V. Ščepin and M. A. Stanko, *A spectral criterion for embeddability of compacta in Euclidean space*, Proc. Leningrad Int. Topol. Conf., Nauka, Leningrad (1983), p. 135–142 (in Russian).

[15] S. Spiež and H. Toruńczyk, *Moving compacta in \(R^n\) apart*, Topol. Appl. **41** (1991), p. 193–204.

[16] O. Skryabin, *Realization of graphs above an arc*, preprint.

DEPT. OF DIFF. GEOMETRY, FACULTY OF MECHANICS AND MATHEMATICS, MOSCOW STATE UNIVERSITY, MOSCOW, 119992, RUSSIA, AND INDEPENDENT UNIVERSITY OF MOSCOW, B. VLASYEVSKY, 11, 119002, MOSCOW, RUSSIA.

E-mail address: skopenkov@rambler.ru
Введение

Кусочно линейное отображение $\varphi : K \to \mathbb{R}^2$ графа K в плоскость аппроксимируется вложениями, если для каждого $\varepsilon > 0$ существует отображение $f : K \to \mathbb{R}^2$ без самопересечений, ε-ближкое к φ. В большей части статьи мы рассматриваем случай, когда φ является путем или циклом, то есть, $K \cong I$ или $K \cong S^1$.

Пример 1.1. [12] Стандартная d-намотка $S^1 \to S^1 \subset \mathbb{R}^2$ аппроксимируется вложениями в плоскость, если и только если $d \in \{-1, 0, 1\}$.

Можно доказать также, что, симплексное отображение $S^1 \to S^1$ аппроксимируется вложениями, если и только если его степень $d \in \{-1, 0, 1\}$ (см. Теорему [13]). Трансверсальным самопересечением кусочно линейного отображения $\varphi : K \to \mathbb{R}^2$ называется пара непересекающихся путей $i, j \subset K$, таких что φ_i и φ_j пересекаются на плоскости трансверсально.

Пример 1.2. Эйлеров путь или цикл в графе на плоскости аппроксимируется вложениями, если и только если он не имеет трансверсальных самопересечений (следовательно, у любого эйлерова графа на плоскости есть эйлеров цикл, аппроксимируемый вложениями).

Понятие аппроксимируемости вложениями появилось в исследованиях сложности компактов в \mathbb{R}^2 (см. [12], [13]), актуальные обзоры можно найти в статьях [7], [9], [2], [4], [8], [1]. Мы вернемся к этому вопросу еще раз в конце §1. Существует алгоритм проверки того, является ли данное симплексное отображение аппроксимируемым путем (см. [13]). Более удобным для применения критериев аппроксимируемости вложениями симплексного пути на плоскости был алгоритм в статье [9] (Теорема [13]) ниже, обобщающий Пример 1.2.

Главный результат этой статьи — аналогичный критерий для аппроксимируемости вложениями цикла на плоскости (Теорема [13]) ниже, обобщающий Пример 1.2. Эти критерии утверждают, что, в некотором смысле, трансверсальное самопересечение — единственное препятствие к аппроксимируемости вложениями. Ясно, что буквально это не верно [12], и нет никакого критерия для рассматриваемой проблемы, аналогичного критерию Куратовского.

Мы формулируем наш критерий (Теорему [13]) в терминах произвольной пути [3], [6] ("операция d"). Дадим определение этого понятия (см. иллюстрацию 1). Сначала определим произвольную G' графа G (это — синим для реберного графа и двойственного графа). Множество вершин графа G' находится в 1-1 соответствии с множеством вершин графа G. Для ребра $a \subset G$ обозначим через $a' \subset G'$ соответствующую вершину. Вершины a' и b' в графе G' соединены ребром, если и только если ребра a и b являются смежными в графе G. Отметим, что производные G' и H' гомеоморфных, но не изоморфных графов G и H не обязательно геометрически.

Теперь пусть φ — путь в графе G, заданный последовательностью своих вершин $x_1, \ldots, x_k \subset G$, где вершины x_i и x_{i+1} соединены ребром. Тогда $(x_1, x_2), \ldots, (x_{k-1}, x_k)$ является последовательностью вершин графа G'. В этой последовательности заменим каждый отрезок вида (x_i, x_{i+1}), (x_{i+1}, x_{i+2}), \ldots, (x_{j-1}, x_j), (x_{j}, x_{j+1}).

1991 Mathematics Subject Classification. 57Q35 (Primary); 54C25, 57M20 (Secondary).

Key words and phrases. Аппроксимируемость вложениями, предложение Ван Кампена, реберный граф, производная графа, произведение симплексного отображения, операция d, трансверсальное самопересечение, стандартная d-намотка, симплексное отображение, уточнение графа.

Аннотация. Мы получаем критерий аппроксимируемости вложениями кусочно линейных отображений $S^1 \to \mathbb{R}^2$, аналогичный доказанному Минцем для кусочно линейных отображений $I \to \mathbb{R}^2$.
где \((x, x_{i+1})' = (x_{i+1} x_{i+2})' = \cdots = (x_{j-1} x_{j}),\) едина вершиной (то есть заменить несколько идущих подряд одинаковых вершин на одну вершину). Полученная последовательность вершин определяет путь в графе \(G'.\) Этот путь \(\varphi'\) называют произвольной пути \(\varphi.\)

Любой \(5-\Omega\) (то есть кусок на 5 точках) является планированным графом, что произвольная является графом Куртакова, то есть непланированным графом. Но если \(G \subset \mathbb{R}^2,\) и путь \(\varphi\) не имеет трансверсальных самопересячений, то образ отображения \(\varphi'\) является планированным подграфом \(G' \subset G'\) (мы приходим построение естественного вложения \(G' \rightarrow \mathbb{R}^2\) в \(\mathbb{R}\) см. Определение произвольной углования). Заменим граф \(G'\) на образ \(G'\), и отображение \(\varphi'\) — на ограничение \(\varphi': I \rightarrow G'\). Определем \(k\)-е произвольную \(\varphi^{(k)}\) индуктивно. Для цикла \(\varphi\) отображение произвольной \(\varphi'\) аналогично, и это будет снова некоторый цикл в графе на плоскости (который может выродиться в точку).

Приведем пример, который будет использоваться в дальнейшем: \(\varphi' = \varphi\) для стандартной \(d\)-намотки \(\varphi: S^1 \rightarrow S^1\) с \(d \neq 0\). Ясно, что \(\varphi'\) — вложение для любого эллиптического пути или цикла \(\varphi.\) Таким образом, Пример 1.2 — действительно частный случай следующей теоремы.

Теорема 1.3. 1) Пусть \(\varphi: I \rightarrow \mathbb{R}^2\) — кусочно линейное отображение, имеющееся симплексальным для некоторой триангуляции отрезка \(I\) с \(k\) вершинами. Отображение \(\varphi\) акохисимируется вложениями, если и только если для каждого \(i = 0, \ldots, k\) его \(i\)-я производная \(\varphi^{(i)}\) не содержит трансверсальных самопересячений.

2) Пусть \(\varphi: I \rightarrow \mathbb{R}^2\) — кусочно линейное отображение, имеющееся симплексальным для некоторой триангуляции окружности \(S^1\) с \(k\) вершинами. Отображение \(\varphi\) акохисимируется вложениями, если и только если для каждого \(i = 0, \ldots, k\) его \(i\)-я производная \(\varphi^{(i)}\) не содержит трансверсальных самопересячений, и при этом не является стандартной намоткой степени \(d \notin \{-1, 0, 1\}.

Мы доказываем обе теоремы 1.3 и 1.3 в [2]. Наше доказательство результатов 1.3 является более простым, чем приведенное в [2].

В [2] мы приведем Теорему 1.3 для получения следующего критерия.

Следствие 1.4. Кусочно линейное отображение \(\varphi: I \rightarrow \mathbb{R}^2\) акохисимируется вложениями, если и только если выполнено любое из следующих эквивалентных условий:

1) (Свойство вложенного произведения) Существует отображение
\[
\{(x, y) \in I \times I \mid x \neq y\} \rightarrow S^1,
\]
такое что его ограничение на множество \(\{(x, y) \in I \times I \mid x = y\}\) гомотопно отображению, заданному формулой \(\tilde{\varphi}(x, y) = \frac{\varphi(x, y)}{\|\varphi(x, y)\|},\)

2) \(\varphi\) преобразует ван Кампена (определенное в [3]) \(v(\varphi) = 0.\)

Хотя Критерий 1.4 V труднее сформулировать, но его легко привести, чем 1.3 и 1.3 D. В Следствии 1.3 отрезок \(I\) нельзя заменить на окружность \(S^1\): стандартная 3-намотка является контрапузыником [2]. Пропетания, подобные 1.3 D и 1.3 V, существуют и в близкой теории акохисимируемости сингулярными зацеплениями (то есть, отображениями с непересекающимися образами связных компонент), но критерии, аналогичные 1.4 и 1.4 D, для них не верны (Пример 3.3 ниже).

Надежды. Кусочно-линейный путь \(\varphi: I \rightarrow \mathbb{R}^2\) акохисимируется вложениями, если и только если для любой пары дуг \(I_1, I_2 \subset I,\) такой что \(I_1 \cap I_2 = \emptyset,\) пара ограничений \(\varphi: I_1 \rightarrow \mathbb{R}^2\) и \(\varphi: I_2 \rightarrow \mathbb{R}^2\) акохисимируется сингулярными зацеплениями.

Интересно обобщить критерии 1.3 и 1.4 на кусочно линейные отображения \(\varphi: K \rightarrow G \subset \mathbb{R}^2,\) где \(K\) — произвольный граф (см. частный случай в 1.4).
Гипотеза. Пусть \(\varphi : K \to G \subset \mathbb{R}^2 \) — кусочно линейное отображение, являющееся симплексным относительно некоторой триангуляции \(K \) с \(k \)-вершинами. Тогда отображение \(\varphi \) аппроксимируется вложениями, если и только если \(v(\varphi) = 0 \) и для каждого \(i = 0, \ldots, k \) его \(i \)-я производная \(\varphi^{(i)} \) (определенная в [2]) не содержит стандартных намиоток степени \(d \notin \{-1, 0, 1\} \).

Если данная гипотеза верна, то кусочно-линейное отображение \(\varphi : K \to \mathbb{R}^2 \) дерева \(K \) аппроксимируется вложениями, если и только если \(v(\varphi) = 0 \) [2, Problem 4.5].

Завершаем несколько замечаний по поводу истории возникновения понятия аппроксимируемости вложениями. Для определения разложения 1-мерного компакта в обратный предел и показем, как понятие аппроксимируемости вложениями появляется при исследовании планирности этого компакта. (Мы не будем использовать это определение в настоящей статье.) В качестве примера посмотрим 2-адический сополнение Ван Данцига. Возьмем полиномиальные \(T_1 \subset \mathbb{R}^3 \). Пусть \(T_2 \subset T_1 \) — полиномиальное, обходящее дважды вдоль оси полиномиалы \(T_1 \). Аналогично, возьмем полиномиальные \(T_3 \subset T_2 \), обходящие дважды вдоль оси полиномиалы \(T_2 \). Продолжая далее подобным образом, мы получаем бесконечную последовательность полиномиалов \(T_1 \supset T_2 \supset T_3 \supset \ldots \) Пересечение всех полиномиалов \(T \) является 1-мерным компактом и называется 2-адическим сополнением Ван Данцига. Обратным пределом бесконечной последовательности графов и симплексных отображений между ними \(K_1 \leftarrow K_2 \leftarrow K_3 \leftarrow \ldots \) мы называем компакт

\[
C = \left\{ (x_1, x_2, \ldots) \in l_2 : x_i \in K_i \text{ и } \varphi(x_{i+1}) = x_i \right\}.
\]

Можно видеть из нашего построения, что для сополнения Ван Данцига все \(K_i \cong S^1 \) и все \(\varphi \) суть 2-намотки. Можно доказать, что любой 1-мерный компакт может быть представлен в виде обратного предела. Такое представление показывает, что любой 1-мерный компакт может быть вложен в \(\mathbb{R}^3 \). Оно также предоставляет простое достаточное условие планирности данного компакта: для каждого положительного целого числа \(i \) должно существовать вложение \(f_i : K \to \mathbb{R}^2 \), такое отображение \(f_i \circ \varphi \) аппроксимируется вложениями и \(f_{i+1} \) является 2-намотками к \(f_i \circ \varphi \).

2. Доказательство критерия аппроксимируемости вложениями.

Теорема [3] следует из Примеров [1] и Леммы [2.1, 2.2] для \(K \cong I, S^1 \) и [2.3], которые интересны и сами по себе.

Лемма 2.1. (для \(K \cong I \) [3]) Предположим, что симплексное отображение \(\varphi : K \to G \subset \mathbb{R}^2 \) графа \(K \cong S^1 \) или \(K \cong I \) не имеет трансверсальных самопересечений. Тогда если \(\varphi' \) аппроксимируется вложениями, то \(\varphi \) аппроксимируется вложениями.

Лемма 2.2. A) [3] Если симплексное отображение \(\varphi : K \to G \subset \mathbb{R}^2 \) аппроксимируется вложениями, то и отображение \(\varphi' \) аппроксимируется вложениями.

B) Если симплексное отображение \(\varphi : K \to G \subset \mathbb{R}^2 \) аппроксимируется мод 2-вложениями, то отображение \(\varphi' \) аппроксимируется мод 2-вложениями.

Здесь мод 2-вложение — это отображение общего положения \(f : K \to \mathbb{R}^2 \), такое что для каждой пары \(a, b \) пересекающихся ребер графа \(K \) множество \(fa \cap \beta \) состоит из четного числа точек. Определение производной для симплексного отображения произвольного графа \(K \) приводится ниже.

Лемма 2.3. Пусть \(\varphi : S^1 \to G \) — кусочно линейное отображение, которое является симплексным для некоторой триангуляции окружности \(S^1 \) с \(k \) вершинами. Тогда либо область определения отображения \(\varphi^{(k)} \) пуста, либо \(\varphi^{(k)} \) является стандартной намиоткой степени \(d \neq 0 \).

Это число \(d \) можно рассмотреть как обобщение степени для любого симплексного отображения \(S^1 \to G \). Таким образом, интересно получить решение следующей задачи (она может также сделать применение Критериев [3] более удобным): найти простой алгоритм для вычисления степени намиоток \(\varphi^{(\infty)} \) для данного кусочно линейного отображения \(\varphi : S^1 \to G \).

Далее мы используем следующее обобщение определения производной (для пути), данного в [1]

Определение 2.4 (Производная симплексного отображения). [3] (см. иллюстрацию [1] а также иллюстрации [3] ниже) Пусть дано симплексное отображение \(\varphi : K \to G \). Сначала пострим граф \(K' \), который будет областью определения производной \(\varphi' \). Под \(\varphi \)-компонентой графа \(K \) мы подразумеваем любую связную компоненту \(a \) множества \(\varphi^{-1}a \), отображаемую на \(a \), для некоторого ребра \(a \subset G \). Множество вершин графа \(K' \) находится в 1-1 соответствии с множеством всех \(\varphi \)-компонент. Для \(\varphi \)-компоненты \(a \subset K \) обозначим через \(\alpha' \in K' \) соответствующую вершину. Две вершины \(\alpha' \) и \(\beta' \) соединены ребром в графе \(K' \), если и только если \(\alpha \cap \beta \neq \emptyset \). Производная \(\varphi' : K' \to G' \) — это симплексное отображение, определенное на вершинах графа \(K' \) формулой \(\varphi'\alpha' = (\varphi\beta')' \). В дальнейшем заменим \(\varphi' \) на сюръективное ограничение \(\varphi' : K' \to \varphi'K' \). (В оригинальном определении статьи [3] граф \(G' \) обозначается как \(D(G) \), производная \(\varphi' = d[\varphi] \), и граф \(K' \) как \(D(\varphi, K) \).)
Доказательство Леммы 23. Будем говорить, что симплексное отображение $\varphi : K \to G$ является сильно невырожденным, если для каждого ребра $a \in K$ образ φa является ребром G (не вершиной) и для каждой пары $a, b \in K$ смежных вершин мы имеем $\varphi a \neq \varphi b$. Обозначим через $|K|$ число вершин в графе K. Ясно, что если $K \cong S^1$, то $|K'| = |K|$, причем $|K'| = |K|$, только если φ является сильно невырожденным. Поэтому лемму достаточно доказать только в последнем случае (которого случаи, когда $K' \cong I$ или граф K' является точкой), тривиальным. В случае сильно невырожденного отображения лемма очевидна, но мы приводим доказательство для полноты.

Докажем, что если сильно невырожденное сюръективное симплексное отображение $\varphi : K \to G$ графа $K \cong S^1$ не является стандартной натомкой степени, отличной от нуля, то $|G'| > |G|$. Заметим, что для сильно невырожденного отображения $\varphi : S^1 \to G$ граф G не содержит нисходящей вершин. Если степень каждой вершины графа G равна двум, то φ является сильно невырожденным симплексным отображением $S^1 \to S^1$, следовательно, φ является стандартной натомкой, вопреки нашему предположению. Значит, граф G содержит вершину степени по крайней мере 3. Тогда по доказанному выше, число ребер графа G больше числа вершин, следовательно, $|G'| > |G|$. Поскольку для симплексного отображения $\varphi : K \to G$ мы имеем $1 \leq |G| \leq |K|$, то $|G'| \geq |G|$. Несмотря на отображение φ, граф S^1 является симплексным, и по определению отображение φ' сюръективно. Таким образом, есть только две возможности: любой один (а значит, и K'-тоже) из производных φ, ..., $\varphi(k)$ — стандартной натомкой непустой степени, либо $|G(k)| = 0$, то есть область определения отображения $\varphi(k)$ пуста.

Теперь приведем обобщенное в [4] построение вложения $G_x \to \mathbb{R}^2$. Нам будет удобнее рассматривать упоминание графов, а не вложения графов в плоскость. В этом смысле обобщенное построение эквивалентно построению в произвольной упаковке \mathbb{R}^2. Далее мы предполагаем, что фиксировано упаковка N графа G на плоскости (то есть, регулярная окрестность графа $G \subset \mathbb{R}^2$). Мы также предполагаем, что также фиксировано разложение на ручки (обозначаемое через S)

$$N = \bigcup_{x \in \text{множество вершин графа } G} N_x \cup \bigcup_{a \in \text{множество ребер графа } G} N(a),$$

соответствующее графу G, где N_x обозначают 2-мерные диски, а $N(a)$ — присоединенные к ним ленточки. Обозначим через N_0 ограничение $N_x \cup N(a) \cup N_0$ упаковки на ребро $a = xy$. Фактически, мы не используем планируемость N в последующих рассуждениях. Можно сказать, что упаковка N является всего лишь ориентируемым (ориентируемому для утверждения Премера [4]). Давим определение произвольной N' упаковки N. Это упаковка N' зависит от симплексного отображения $\varphi : K \to G \subset N$ и определено корректно, только если φ не содержит трансверсальных самопересечений. Кроме того, в случае произвольного графа K мы должны также предположить, что не существует пары дуг $i, j \subset K$ (не обязательно непересекающихся!), таких что пересечение $\varphi i \cap \varphi j$ трансверсально.

Определение 2.5 (Произвольная упаковка графа). (см. иллюстрацию 2) Пусть $\varphi : K \to G \subset N$ — симплексное отображение, такое что для любой пары дуг $i, j \subset K$ пересечение $\varphi i \cap \varphi j$ (поскольку пустое) не трансверсально. Возьмем по диску $N(a)$ для каждой вершины $a' \in G'$ и по ленточке $N'(a,b')$, для каждого ребра $a'b' \subset G$. Тогда N' вместе с его разложением ручки S' определяется формулой $N' = \bigcup N'_a \cup \bigcup N'(a,b')$. Здесь мы полагаем $N'(a,b') = N(a)$ для каждого ребра $a \in G$. Для каждой пары $a, b \subset G$ смежных рёбер, для которых $(\varphi')^{-1}(a'b') \neq 0$, мы соединяем два диска N'_a и N'_b узкой ленточкой $N'(a,b')$ в $N'(a,b')$. Поскольку пересечение дуг $a \cup b$ и $c \cup d$ не трансверсально ни для какой пары смежных рёбер $c, d \subset G$, то мы можем выбрать ленточки $N'(a,b')$, такие что они не пересекались для различных рёбер $a'b'$.

Это определение можно рассматривать как построение вложения $N' \to N$, а также вложения $G_x' \to \mathbb{R}^2$. Заметим, что разбиение на ручки S' и топологический тип упаковки N' не зависит от выбора ленточек $N'(a,b')$.
Рис. 3. Перестройки вырожденных отображений

в нашем определении. Альтернативное определение производной \(D(N) \) утолщения \(N \) из статьи [6] не зависит также от выбора отображения \(\varphi \). Утолщение \(N' \) в нашей статье является подутолщением утолщения \(D(N) \) (определение которого приводится в статье [3]), соответствующим подграфу \(G'_\varphi \subset G' \).

Ясно, что для исследования аппроксимируемости вложениями симплексиальных отображений \(K \to G \subset \mathbb{R}^2 \) достаточно рассматривать только приближение \(f : K \to N \). Теперь мы собираемся свести задачу аппроксимируемости вложениями данного отображения к задаче существования вложения, близкого к нему в некотором смысле (S-блуждания).

Определение 2.6 (S-аппроксимация). [3] Отображение \(f : K \to N \) называется S-аппроксимируемым отображением \(\varphi \), или, отображение \(f \) S-блуждание к \(\varphi \), если выполняются следующие условия:

1. \(f(x) \in N_{\delta(x)} \) для каждой вершины \(x \) графа \(K \);
2. \(f(x) \in f^{-1}N(\delta(x)) \) для каждого ребра \(x \) графа \(K \) с невырожденным образом \(\varphi x \).

Согласно Утверждению 2.9 статьи [3], отображение \(\varphi : K \to G \) аппроксимируется вложениями, если и только если существует вложение \(f : K \to N, S \)-блуждание к \(\varphi \).

Кусочно линейное отображение \(\varphi : K \to N \) называется вырожденным, если \(\varphi c \) является точкой для некоторого ребра \(c \subset K \). Докажем следующее несложное Утверждение о стягивании ребра [2,4] которое в некотором смысле позволяет считать, что в Леммах [2,4] отображение \(\varphi \) является вырожденным.

Утверждение 2.7 (О стягивании ребра). Пусть \(\varphi : K \to G \) — симплексиальное отображение, такое что \(\varphi c \) является точкой для некоторого ребра \(c \subset K \). Пусть \(K/c = \text{граф} \), полученный из графа \(K \) стягиванием ребра \(c, \) и пусть \(\varphi/c : K/c \to G - \text{соответствующее отображение}. \)

1. \(K'_\varphi/c = K'_\varphi, G'_\varphi = G'_\varphi/c \) и \((\varphi/c)' = \varphi' \).

А) для \(K \cong S^1 \) или \(K \cong I \) отображение \(\varphi/c \) аппроксимируется вложениями, если и только если \(\varphi \) аппроксимируется вложениями.

Б) для произвольного графа \(K \), если \(\varphi \) аппроксимируется вложениями, то \(\varphi/c \) аппроксимируется вложениями.

В) Если \(\varphi \) аппроксимируется мод 2-вложениями, то \(\varphi/c \) аппроксимируется мод 2-вложениями.

Доказательство Утверждения 2.7. Доказывается.

А) Докажем прямую импликацию. Пусть \(f : K/c \to N \to \varphi/c \). Пусть \(a \subset K \) — ребро, смежное с \(c \) (если \(c \) — связная компонента графа \(K \), то требуется утверждение очевидно). Добавим новую вершину к ребру \(a \) графа \(K/c \) (иллюстрация [3]). Так как \(K \cong S^1 \) или \(K \cong I \), полученный граф изоморфен графу \(K \) вложение \(f : K \to N \) — искомое. Обратная импликация — частный случай утверждения \(K \).

Б) Пусть \(f : K \to N \to \varphi/c \). Сделаем перестройку, показанную на иллюстрации [3]. Получим вложение \(f : K/c \to N, S \)-блуждание к \(\varphi/c \).

В) Пусть \(f \to \mod 2 \)-вложение, \(S \)-блуждание к \(\varphi/c \). Сделаем перестройку, показанную на иллюстрации [3]. Получим \(S \)-блуждание к \(\varphi/c \) отображение \(f : K/c \to N \). Достаточно доказать, что \(|fa \cap fb| = 0 \mod 2 \) для каждой пары непересекающихся ребер \(a, b \subset (K/c) \).

Причем по крайней мере одно из них не смежно с \(c \) (потому что \(a \) и \(b \) являются непересекающимися в \(K/c \)). Если ни \(a \), ни \(b \) не смежны с \(c \), то \(|fa \cap fb| = |fa \cap fb| = 0 \mod 2 \). Если, например, \(b \subset K \) смежно с \(c \) и \(a \) не смежно с \(c \), то \(|fa \cap fb| = |fa \cap fb| = 0 \mod 2 \). Доказано утверждение.

Вырожденные отображения появляются в нашем доказательстве Леммы [2,4] даже если исходное отображение \(\varphi : K \to G \) является вырожденным. Мы собираемся построить граф \(K'_\varphi \) и пару (вырожденных) симплексиальных отображений \(G \underset{\varphi}{\overset{K'_\varphi}{\to}} G' \), которые могут быть получены из отображений \(\varphi \) и \(\varphi' \).
Рис. 4. Полупроизводные симплиционального отображения

соответственно, операцией из Утверждения о стягивании ребра [24] (при некоторых дополнительных предположениях относительно \(\varphi \), детали представлены ниже). Вместе с построением вложении \(N' \to N \) (см. определение утолщения \(N' \) выше), это немедленно влечет утверждение Леммы [24] (см. иллюстрации [4] [5] [6]).

Определение 2.8 (Полупроизводная симплиционального отображения). (см. иллюстрацию [4]) Предположим, что отображение \(\varphi \) является невырожденным, и \(K \) не имеет вершин степени 0. Возьмем несвязное объединение всех \(\varphi \)-компонент графа \(K \) (см. Определение производной \(\varphi' \) выше). Соединим ребром любые две вершины, принадлежащие различным \(\varphi \)-компонентам и отечающие одной и той же вершине графа \(K \). Обозначим полученную полупроизводную граф \(K \) через \(\bar{K}_\varphi \). Таким образом, \(\varphi \)-компонента \(\alpha \subset K \) является также подграфом графа \(\bar{K}_\varphi \), обозначаемым через \(\bar{\alpha} \). Определим симплициональные отображения \(\bar{\varphi} \) и \(\varphi' \) (полупроизводные отображения \(\varphi \)) как очевидные проекции \(\bar{K}_\varphi \to G \) и \(\bar{K}_\varphi \to G' \), соответственно, заданные на вершинах формулами \(\bar{\varphi}x = \varphi x \) и \(\bar{\varphi}'x = (\varphi\alpha)' \), где вершина \(x \in \bar{K}_\varphi \) принадлежит \(\varphi \)-компоненте \(\bar{\alpha} \).

Доказательство Леммы [24] Согласно Утверждению о стягивании ребра [24], отображение \(\varphi \) может считаться невырожденным. Мы также можем считать, что граф \(K \) не имеет вершин степени 0. Легко видеть, что \(\varphi \) и \(\varphi' \) могут быть получены из \(\bar{\varphi} \) и некоторого сужения \(\varphi' \), соответственно, операцией из Утверждения о стягивании ребра [24]. Если любые две \(\varphi \)-компоненты имеют не более одной общей точки, то \(\varphi' \) может быть получен таким образом непосредственно из \(\bar{\varphi} \). Но для \(K \simeq S^3 \) последнее условие выполнено всегда, кроме случая, когда граф \(K \) состоит из ровно двух \(\varphi \)-компонент. Очевидно, отображение \(\varphi \) аппроксимируется вложениями в указанном случае. Таким образом, достаточно доказать следующее утверждение:

(*) Если \(\varphi' \) аппроксимируется вложениями, то \(\bar{\varphi} \) аппроксимируется вложениями.

Докажем утверждение (**) для произвольного графа \(K \). Если \(\bar{\varphi} \) аппроксимируется вложениями, то найдется вложение \(K_\varphi \to N' \), \(S' \)-близкое к \(\varphi' \). Определим вложение \(f : K_\varphi \to N \) как композицию этого вложения и вложения \(N' \to N \), построенного в определении утолщения \(N' \) (см. иллюстрацию [4]), где это построение применяется к отображению \(\varphi \) в иллюстрации [4]). Ясно, что существует новое разложение на ручки \(N = \bigcup N_a \cup \bigcup N_{(ab)} \) утолщения \(N \), обозначаемое \(\bar{S} \), такое что \(f \) будет \(S \)-аппроксимацией отображения \(\varphi \) (см. иллюстрацию [5]), сравните с [4], Утверждение 4.9). Тогда \(f : K_\varphi \to N \) (рав \(N \) обозначает утолщение \(N \) с новым разложением ручки \(S \)) — вложение, \(S \)-близкое к отображению \(\varphi \). Лемма доказана.

Та же самая идея используется в доказательстве Леммы [22] A.V. Рассматривается отображение \(f : K_\varphi \to N \) общего положения, \(S \)-близкое к \(\varphi \) и строится полупроизводная \(f' : K_\varphi \to N' \), \(S' \)-близкая к \(\varphi' \) (см. иллюстрацию [6]). Потом проверяется, что если \(f \) — вложение, то \(f' \) также вложение (см. иллюстрацию [8]).

Определение 2.9 (Полупроизводные S-аппроксимации). (см. иллюстрацию [4]) где приведенное ниже построение применяется к отображению \(\varphi \) на изображении [4]. Пусть \(K \) — граф без вершин степени 0. Пусть \(\varphi : K \to G \subset N \) — невырожденное симплициональное отображение без трансверсальных самовершинений. Пусть \(f : K \to N \) — \(S \)-аппроксимация отображения \(\varphi \). Тогда полупроизводная отображения \(f \) есть \(S' \)-аппроксимация \(f' : K_\varphi \to N' \) отображения \(\varphi' \), и строится следующим образом. Для каждого ребра \(a \subset G \) выберем гомеоморфизм \(h_a : N_a \to N'_a \) таким образом, что для каждого любого ребра \(b \), смежного с \(a \), мы имеем \(h_a(N_a \cap N(b)) \subset N'_a((x,y)) \). Определите \(f' \) на каждой \(\varphi \)-компоненте \(\bar{\alpha} \subset K_\varphi \) формулой \(f'|_{\bar{\alpha}} = h_{\varphi a} f|_a \). Теперь
определим \bar{f}' на каждом ребре $xy \subset K''$, соединяющем две различные φ-компоненты \bar{X}' и \bar{Y}'. Возьмем ребро $a \subset \bar{X}'$, содержащее вершину x. Отождествим \bar{X}' с X (см. Определение полупроизводной симплексиального отображения φ'). Тогда a будет отождествлено с некоторым ребром графа K, а x — с некоторой вершиной графа K. Обозначим через \bar{x} дугу $a \cap f^{-1} N_{\varphi x}$. Определям дугу \bar{y} аналогично. Разрежем ребро xy в три отрезка xx_1, x_1y_1 и y_1y. Пусть \bar{f}' гомеоморфно отображает отрезок xx_1 на $h_{\varphi X} \bar{f} \bar{y}$, отрезок y_1y на $h_{\varphi Y} \bar{f} \bar{x}$, а отрезок x_1y_1 — на прямолинейный отрезок в диске $N'_{(\varphi_X \varphi_Y)}$, соединяющий точки $\bar{f}'x_1$ и $\bar{f}'y_1$. Таким образом, отображение $\bar{f}' : K' \to N'$ построено.

Заметим, что если f — вложение, то есть более простое альтернативное построение отображения \bar{f}', в некотором смысле обратное к построению из доказательства Леммы 2.1. Но это альтернативное построение неприемимо к доказательству Леммы 2.2, поэтому мы не пользуемся им в данной статье. Мы собираемся доказать Лемму 2.2 A, V только в случае, когда производная N' определена корректно, то есть K не содержит пар дуг i, j, для которых пересечение $\varphi_i \cap \varphi_j$ трансверсально. Этого достаточно для доказательства Теоремы 1.3. В общем случае доказательство аналогично, но необходимо всюду вместо N' пользоваться производной $D(N)$, определенной в статье [6].

Доказательство Леммы 2.2 A. Согласно Утверждению 2.2 K можно считать, что φ неявно заряжен. Возьмем некоторое вложение $f : K \to N$, S-ближное к φ. Тогда достаточно показать, что отображение \bar{f} (см. Определение полупроизводной S-аппроксимации \bar{f}) является вложением.
Рис. 8. Подсчет количества точек пересечения

Рассмотрим пару различных ребер xy, zt графа K'_n. Обозначим множество $\bar{f}(xy) \cap \bar{f}(zt)$ через i. Достаточно показать, что $i = \bar{f}(xy \cap zt)$. Обозначим $a' = \bar{φ}x$, $b' = \bar{φ}y$, $c' = \bar{φ}z$ и $d' = \bar{φ}t$. Без ограничения общности возможны следующие 3 случая.

1) a', b', c' и d' попарно различны. Так как \bar{f} является S'-аппроксимацией $\bar{f}(xy) \subset N_{a'b'}$ и $\bar{f}(zt) \subset N_{c'd'}$, следовательно $i = \emptyset$.

2) $(a' = c'$ и $b' \neq d')$ или $(a' = b' = c' = d')$. Тогда $i \subset N_{a'}$, следовательно, $i = h_{a}(f\bar{x} \cap f\bar{z})$ (см. определение h_{a} и \bar{z} в Определении полупроизводной S'-аппроксимации \bar{f}, дуга \bar{z} определяется аналогично \bar{x}). Если $y \neq t$, то \bar{x} и \bar{z} не пересекаются, так что $f\bar{x} \cap f\bar{z} = \emptyset$ и $i = \emptyset$. Если же $y = t$, то $i = h_{a}(f\bar{y} = f\bar{x} \cap zt)$.

3) $a' = c'$, $b' = d'$ и $a' \neq b'$. В этом случае как xy, так и zt преобразуют вершины из различных $φ$-компонент. Докажем, что xy и zt не пересекаются. Например, пусть $y = t$. Тогда все вершины x, y, z и t графа K'_n отвечают одной и той же вершине графа K. Обозначим через w. Обозначим через X и Z те $φ$-компоненты множества $φ^{-1}a = φ^{-1}c$, для которых $x \in X$ и $z \in Z$. Таким образом, у $φ$-компоненты X и Z есть общая точка w, следовательно $X = Z$. Значит, $x, z \in X = Z$ отвечают одной и той же вершине w, следовательно, $x = z$. Мы получаем, что $y = t$ и $x = z$, тогда по производству графа K'_n мы получаем $xy = zt$, что противоречит выбору этих ребер. Значит, xy и zt не пересекаются.

Покажем, что в случае (3) $|i| = 0$ (mod 2). В дальнейшем будем опускать \bar{f} в обозначениях всех образов при отображении \bar{f}. Заметим, что гомеоморфизм $h_{a}h_{a}^{-1}$ отображает $y_{1}y_{1}'$ и $t_{1}t_{1}'$ на \bar{x} и \bar{z}, соответственно (иллюстрация 8). Из этого следует, что $|i| = |I \cap J|$, где $I = \bar{x} \cup x_{1}y_{1}$ и $J = \bar{z} \cup z_{1}t_{1}$. Из этого также следует, что две пары точек ∂I и ∂J не пересекаются на окружности $\partial(h_{a}N_{a'b'} \cup N_{(a'b')})$. Так как $I, J \subset h_{a}N_{a'b'} \cup N_{(a'b')}$, то $|i| = |I \cap J| = 0$ (mod 2). Таким образом, остается доказать, что $|I \cap J| \leq 1$, тогда $I \cap J = \emptyset$. Последнее утверждение следует из равенства

$$\bar{x} \cap \bar{z} = h_{a}(f\bar{x} \cap f\bar{z}) = \emptyset \quad xx_{1}z_{1}z_{1} = h_{a}(f\bar{y} \cap f\bar{t}) = \emptyset \quad |x_{1}y_{1}z_{1}t_{1}| = 1,$$

поскольку $x_{1}y_{1}$ и $z_{1}t_{1}$ — прямолинейные отрезки в диксе $N_{(a'b')}$. Лемма доказана.

Доказательство Леммы 2.8. В соответствии с теоремой о стягивании ребра 2.7 В нам достаточно доказать, что если $f : K'_n \to N$ является мод 2-вложением, S-ближним к $φ$, то его полупроизводная \bar{f} также является мод 2-вложением.

Возьмем пару непересякающихся ребер xy, zt графа K'_n и рассмотрим те же три случая, что и в доказательстве Леммы 2.8А. Случай 1) тривиален. В случае 2) мы имеем $f(xy) \cap f(zt) \subset N_{a}$, следовательно, $|i| = |h_{a}(f\bar{x} \cap f\bar{z})| = |h_{a}(f(xy) \cap f(zt))| = |f(xy) \cap f(zt)| = 0$ (mod 2). В доказательстве Леммы 2.8А мы уже показали, что в случае 3) выполнено равенство $|i| = 0$ (mod 2). Таким образом, Лемма 2.8 В доказана.

3. Препятствие Ван Кампена

Препятствие Ван Кампена было придумано Ван Кампеном при исследовании вложимости полигонов в \mathbb{R}^{2n} [2, 3, 4, 7, 8]. Дадим определение препятствия ван Кампена в аппроксимируемости вложениями гиперплоскостей путем. Наше построение более наглядно, чем построение препятствия Ван Кампена в вложимости. Пусть $φ : I \to \mathbb{R}^{2}$ — гиперплоскостный путь (на языке [2] приведенная ниже конструкция применяется к пути, показанному на иллюстрации 11). Обозначим через x_{1}, \ldots, x_{k} вершины графа I в порядке их расположения на дуге I, и обозначим ребро $x_{i}x_{i+1}$ через i. Пусть $I^{*} = \bigcup_{i \neq j} i \times j$ — врезаный квадрат графа I. Раскрасим в красный цвет ребра $x_{i}x_{j}$, $x_{j}x_{i}$ и клетки $i \times j$ врезаного квадрата I^{*}, так что $φx_{i} \cap φj = ∅, φi \cap φj = ∅$. Обозначим через $I^{∗}φ$ красное множество. Возьмем отображение общего положения $f : I \to \mathbb{R}^{2}$, достаточно близкое к $φ$. В каждую клетку $i \times j$ "таблицы" $I^{∗}$ поставим число $v_{f}(i \times j) = |fi \cap fj|$ (mod 2). Разрезем $I^{∗}$ вдоль красных ребер. Пусть $C_{1}, C_{2}, \ldots, C_{n}$ — все компоненты связности полученной фигуры, для которых
Рис. 9. Препятствие Ван Кампена

Рис. 10. "Движение Райхемайстера"

\[\partial C_k \cap \partial I^s \subset I^{s}. \] Обозначим \(v_f(C_k) = \sum_{i \times j \in C_k} v_f(i \times j). \) Препятствие Ван Кампена (с \(\mathbb{Z}_2 \)-коэффициентами) для аппроксимируемости вложениями — это вектор \(v(\varphi) = (v_f(C_1), v_f(C_2), \ldots, v_f(C_n)). \)

Несложно проверить, что \(v(\varphi) \) не зависит от выбора отображения \(f, \) таким образом, \(v(\varphi) = 0 \) является необходимым условием для аппроксимируемости вложениями. Легко проверить, что \(v(\varphi) \neq 0 \) для кусочно линейного пути \(\varphi : I \to \mathbb{R}^2, \) содержащего трансверсальное самопересечение. Таким образом, Следствие 1.4.3 следует из \(|\mathbb{C}_4| \cdot |\mathbb{C}_1| \) и \(\mathbb{C}_1. \)

Утверждение 3.1. Препятствие \(v(\varphi) = 0, \) если и только если существует \(S \)-близкое к отображению \(\varphi \) мод \(2 \)-вложение общего положения.

Доказательство **Утверждения 3.1**. Обратная импликация очевидна. Доказательство прямой импликации следует из теоремы \(\mathbb{H} \). Мы собираемся использовать когомологическую формулировку препятствия Ван Кампена (детали можно найти в абзаце перед Утверждением 3.2 ниже). Пусть \(f : K \to N \) — любая \(S \)-аппроксимация отображения \(\varphi \) общего положения. 'Движение Райхемайстера', показанное на иллюстрации 10а, добавляет к концу \(v_f(x) \) граничную \(\delta[x \times y] \) элементарной конечной группы \(B^2(K). \) Так как \(v(\varphi) = 0, \) то с помощью нескольких таких 'шагов' мы можем получить отображение \(f : K \to N, \) для которого \(v_f = 0. \) Тогда отображение \(f \) необходимо является мод \(2 \)-вложением, потому что \(v_f = 0 \) означает, что \(|fa \cap f| = 0 \) (mod 2) для любой пары непересекающихся ребер \(a, b \) графа \(K. \)

Теперь мы собираемся доказать, что условия \(|\mathbb{C}_4| \cdot |\mathbb{C}_1| \) и \(|\mathbb{C}_4| \cdot |\mathbb{C}_1| \) эквивалентны (Утверждение 3.2). Утверждение 3.2 означает только, что \(|\mathbb{C}_4| \cdot |\mathbb{C}_1| \) и \(|\mathbb{C}_4| \cdot |\mathbb{C}_1| \) эквивалентны, но это достаточно для доказательства Следствия 1.4.3. Мы доказываем Утверждение 3.2 в более общей формулировке, поэтому нам потребуется еще несколько определений.

Пусть \(K \) — произвольный граф. Пусть \(\varphi : K \to G \subset \mathbb{R}^2 \) — симплексное отображение. Обозначим через \(\sigma \) и \(\tau \) любые ребра графа \(K. \) Взрезанным квадратом графа \(K \) мы называем множество \(K = \bigcup \{ \sigma \times \tau : \sigma \cap \tau = \emptyset \}. \)

Пусть \(K^* = K/\mathbb{Z}_2 \) — фактор построенного полиморфа относительно антиподального \(\mathbb{Z}_2 \)-действия. Пусть \(K^* \subset K \) — подмножество, определяемое формулой \(K^* = \{ \sigma \times \tau : \sigma \cap \tau = \emptyset \}. \) Пусть \(K^{s*} = K^*/\mathbb{Z}_2 \). Денотация отображения \(f: K \to \mathbb{R}^2, \) близкого к отображению \(\varphi, \) определяем коопцет \(v_f \in C^1(K^*, K^{s*}; \mathbb{Z}_2) \) формулой \(v_f(\sigma \times \tau) = f_\sigma \cap f_\tau \) (mod 2). Класс \(v(\varphi) = [v_f] \in H^1(K^*, K^{s*}; \mathbb{Z}_2) \) этой коопцет в зависимости от отображения \(f \) называется препятствием Ван Кампена к аппроксимируемости вложениями отображения \(\varphi. \) Мы говорим, что отображение \(\varphi: K \to G \subset \mathbb{R}^2 \) удовлетворяет свойству взрезанного квадрата, если отображение \(\tilde{\varphi}: K^* \to S^1, \) заданное формулой \(\tilde{\varphi}(x, y) = f_\sigma \cap f_\tau, \) продолжается до эквивалентного отображения \(K \to S^1. \) Очевидно, данное определение свойства взрезанного квадрата эквивалентно \(|\mathbb{C}_4| \cdot |\mathbb{C}_1| \) в случае \(K \cong I. \)

Утверждение 3.2. Если кусочно линейное отображение \(\varphi: K \to \mathbb{R}^2 \) удовлетворяет свойству взрезанного квадрата, то препятствие Ван Кампена \(v(\varphi) = 0. \)
Рис. 11. Пара отображений, не аппроксимируемая сингулярными зацеплениями.

Доказательство Утверждения 3.2. Возьмем отображение общего положения \(f : K \rightarrow \mathbb{R}^2 \), близкое к \(\varphi \), и определим эквивARIANTное отображение \(\hat{f} : \hat{K} \cup \mathbb{S}^1 \hat{K} \rightarrow \mathbb{S}^1 \) формулой \(\hat{f}(x,y) = \frac{f(x,y)}{f(x,y) - y} \). По общему положению получаем, что \(\hat{f} \) определено корректно. Так как отображение \(\hat{f} \) близко к отображению \(\varphi \), то \(\hat{f} \) гомотопично \(\varphi \). Очевидно, если \(\hat{f} \) продолжается до эквивariantного отображения \(\hat{K} \rightarrow \mathbb{S}^1 \), то \(\hat{f} \) продолжается до эквивariantного отображения \(K \rightarrow \mathbb{S}^1 \).

Рассмотрим клетку \(\sigma \times \tau \subset K - \hat{K} \), где \(\sigma, \tau \subset K \) являются 1-мерными клетками. Если отображение \(\hat{f} \) продолжается на клетку \(\sigma \times \tau \), то \(\deg \hat{f}|_{\partial(\sigma \times \tau)} = 0 \). Можно показать, что

\[
\deg \hat{f}|_{\partial(\sigma \times \tau)} = f\sigma \cap f\tau = v_f(\sigma \times \tau) \quad (\text{mod } 2).
\]

Получаем, что когомологический класс \([v_f]\) не зависит от выбора эквивariantного отображения \(g : \hat{K} \cup \mathbb{S}^1 \hat{K} \rightarrow \mathbb{S}^1 \) и совпадает с препятствием Ван Кампена \(v(\varphi) \). Это доказывает наше утверждение.

Пример 3.3. (сравните с [1]) [1] Существует пара кусочно линейных путей \(\varphi : I \rightarrow \mathbb{R}^2, \psi : I \rightarrow \mathbb{R}^2 \) (см. иллюстрацию [1]), где изображена пара путей \(f, g \), близких к \(\varphi \), не аппроксимируемых сингулярными зацеплениями (то есть, отображениями с непересекающимися образами), удовлетворяющими следующим условиям:

1) Пусть \(K, L \cong I \) — графы с вершинами \(k_1, \ldots, k_5 \) и ребрами \(a_1a_2, a_1a_3, a_1a_4, a_1a_5, a_2a_3, a_2a_4 \) и \(a_3a_6 \). Требуемые симплетические отображения \(\varphi, \psi \) задаются формулами \(\varphi k_1 = a_1, \varphi k_2 = a_2, \varphi k_3 = a_3, \varphi k_4 = a_4, \varphi k_5 = a_5 \) и \(\psi l_1 = a_5, \psi l_2 = a_1, \psi l_3 = a_2, \psi l_4 = a_4, \psi l_5 = a_1, \psi l_6 = a_2, \psi l_7 = a_6 \).

2) Пусть \(K_1, K_2 \cong I \) — графы с вершинами \(k_1, \ldots, k_5, l_1, \ldots, l_7 \) и ребрами \(a_1a_2, a_1a_3, a_1a_4, a_1a_5, a_2a_3, a_2a_4 \) и \(a_3a_6 \). Требуемые симплетические отображения \(\varphi, \psi \) задаются формулами \(\varphi k_1 = a_1, \varphi k_2 = a_2, \varphi k_3 = a_3, \varphi k_4 = a_4, \varphi k_5 = a_5 \) и \(\psi l_1 = a_5, \psi l_2 = a_1, \psi l_3 = a_2, \psi l_4 = a_4, \psi l_5 = a_1, \psi l_6 = a_2, \psi l_7 = a_6 \).

Докажем, что пара \(\varphi, \psi \) не аппроксимируема сингулярными зацеплениями. Предположим противоположное утверждение. Пусть \(K_1, K_2 \subset K \) и \(L_1, L_2 \subset L \) — дуги через точки \(k_1 \), \(k_2 \), \(k_3 \), \(k_4 \), \(k_5 \), \(l_1 \), \(l_2 \), \(l_3 \), \(l_4 \), \(l_5 \), \(l_6 \), \(l_7 \), соответственно. Возьмем малую окрестность графа \(\varphi K \cup \psi L \) на плоскости и выберем ее разложение ручки \(S \). Обозначим через \(A_1, A_2 \) и \(A \) диски разложения на ручки \(S \), соответствующие вершинам \(a_1, a_2 \) и ребру \(a_1a_2 \).
Список литературы

1. P. Akhmetiev, D. Repovš and A. Skopenkov, Obstructions to approximating maps of n-surfaces to \mathbb{R}^{2n} by embeddings, Topol. Appl. 123:1 (2002), p. 3-14.
2. A. Cavicchioli, D. Repovš and A. B. Skopenkov, Open problems on graphs, arising from geometric topology, Topol. Appl. 84 (1998), p. 207-225.
3. M. H. Freedman, V. S. Krushkal and P. Teichner, Van Kampen's embedding obstruction is incomplete for 2-complexes in \mathbb{R}^4, Math. Res. Letters 1 (1994), p. 167-176.
4. E. R. van Kampen, Komplexe in Euklidische Räumen, Abh. Math. Sem. Hamburg 9 (1932), p. 72-78; berichtigung dazu, 152-153.
5. P. Minc, On simplicial maps and chainable continua, Topol. Appl. 57 (1994), p. 1-21.
6. P. Minc, Embedding simplicial arcs into the plane, Topol. Proc. 22 (1997), p. 305-340.
7. D. Repovš and A. B. Skopenkov, Embeddability and isotopy of polyhedra in Euclidean spaces, Proc. Steklov Math. Inst. 212 (1996), p. 163-178.
8. D. Repovš and A. B. Skopenkov, A deleted product criterion for approximability of maps by embeddings, Topol. Appl. 87 (1998), p. 1-19.
9. D. Repovš and A. B. Skopenkov, The obstruction theory for beginners, Mat. Proc. 4 (2000), p. 154-180 (in Russian).
10. K. S. Sarkaria, A one-dimensional Whitney trick and Kuratowski's graph planarity criterion, Israel J. Math. 73 (1991), p. 79-89.
11. J. Segal and S. Spież, On transversely trivial maps, Questions and Answers in General Topology 8 (1990), p. 91-100.
12. K. Sieklucki, Realization of mappings, Fund. Math. 55 (1965), p. 325-343.
13. A. Skopenkov, A geometric proof of the Neuwirth theorem on thickenings of 2-polyhedra, Mat. Zametki 56:2 (1994), p. 94-98 (in Russian). English transl.: Math. Notes 58:5 (1995), p. 1244-1247.
14. M. Skopenkov, On approximability by embeddings of cycles in the plane, Topology and Its Applications 134:1 (2003), p. 1-22.
15. E. V. Ščepin and M. A. Stanko, A spectral criterion for embeddability of compacta in Euclidean space, Proc. Leningrad Int. Topol. Conf., Nauka, Leningrad (1983), p. 135-142 (in Russian).
16. S. Spież and H. Toruńczyk, Moving compacta in \mathbb{R}^n apart, Topol. Appl. 41 (1991), p. 193-204.

Department of Differential Geometry, Faculty of Mechanics and Mathematics, Moscow State University, 119992, Moscow, Russia, and Independent University of Moscow, B. Vlasyevsky, 11, 119002, Moscow, Russia.

E-mail address: skopenkov@rambler.ru