Excitation Dropout: Encouraging Plasticity in Deep Neural Networks

Andrea Zunino\(^1\) Sarah Adel Bargal\(^2\) Pietro Morerio\(^1\) Jianming Zhang\(^3\)

Stan Sclaroff\(^2\) Vittorio Murino\(^1,4\)

\(^1\)Pattern Analysis & Computer Vision (PAVIS), Istituto Italiano di Tecnologia
\(^2\)Department of Computer Science, Boston University \(^3\)Adobe Research
\(^4\)Department of Computer Science, University of Verona

{andrea.zunino,vittorio.murino}@iit.it, {sbargal,sclaroff}@bu.edu, jianmzha@adobe.com

Abstract

We propose a guided dropout regularizer for deep networks based on the evidence of a network prediction: the firing of neurons in specific paths. In this work, we utilize the evidence at each neuron to determine the probability of dropout, rather than dropping out neurons uniformly at random as in standard dropout. In essence, we dropout with higher probability those neurons which contribute more to decision making at training time. This approach penalizes high saliency neurons that are most relevant for model prediction, i.e. those having stronger evidence. By dropping such high-saliency neurons, the network is forced to learn alternative paths in order to maintain loss minimization, resulting in a plasticity-like behavior, a characteristic of human brains too. We demonstrate better generalization ability, an increased utilization of network neurons, and a higher resilience to network compression using several metrics over four image/video recognition benchmarks.

1 Introduction

Dropout \([7, 22]\) is a classical regularization technique that is used in many state-of-the-art deep neural networks, typically applied to fully-connected layers. Standard Dropout selects a fraction of neurons to randomly drop out by zeroing their forward signal. In this work, we propose a scheme for biasing this selection. Our scheme utilizes the contribution of neurons to the prediction made by the network at a certain training iteration stage.

Dropout can be interpreted as model averaging technique that avoids overfitting on training data, allowing for better generalization on unseen test data. A recent variant of dropout that targets improved generalization ability is Curriculum Dropout \([16]\). It targets adjusting the dropout rate by exponentially increasing the unit suppression rate during training, answering the question How many neurons to drop out over time? Like Standard Dropout \([7, 22]\), Curriculum Dropout selects the neurons to be dropped randomly. In this work, however, we target at determining how the dropped neurons are selected, answering the question Which neurons to drop out?

Our approach is inspired by brain plasticity \([5, 14, 15, 20]\). We deliberately, and temporarily, paralyze/injure neurons to enforce learning alternative paths in a deep network. At training time, neurons that are more relevant to the current prediction are given a higher dropout probability. The

\(^{*}\)Equal contribution
Figure 1: Training pipeline of Excitation Dropout. **Step 1:** A minibatch goes through the standard forward pass. **Step 2:** Backward EB is performed until the specified dropout layer; this gives a neuron saliency map at the dropout layer in the form of a probability distribution. **Step 3:** The probability distribution is used to generate a binary mask for each image of the batch based on a Bernoulli distribution determining whether each neuron will be dropped out or not. **Step 4:** A forward pass is performed from the specified dropout layer to the end of the network, zeroing the activations of the dropped out neurons. **Step 5:** The standard backward pass is performed to update model weights.

relevance of a neuron for making a certain prediction is quantified using Excitation Backprop, a top-down saliency approach proposed by Zhang et al. [28]. Excitation Backprop conveniently yields a probability distribution at each layer that reflects neuron saliency, or neuron contribution to the prediction being made. This is utilized in the pipeline of our approach, named Excitation Dropout, which is summarized in Fig. 1.

In particular, we study how this approach improves generalization through utilizing more network’s neurons for image classification. We report an increased recognition rate for both CNN models that are fine-tuned and trained from scratch. This improvement is validated on four image/video recognition datasets, and ranges from 1.1% - 6.3% over state-of-the-art Curriculum Dropout.

Next, we examine the effect of our approach on network utilization. Mittal et al. [15] and Ma et al. [13] introduce metrics that measure network utilization. We show a consistent increased network utilization using Excitation Dropout on four image/video recognition datasets. For example, averaged over all four benchmarks, we get 76.55% reduction in conservative filters, filters whose parameters do not change significantly during training, as compared to Standard Dropout.

Finally, we study network resilience to neuron dropping at test time. We observe that training with Excitation Dropout leads to models that are a lot more robust when layers are shrunk/compressed by removing units. We demonstrate this in the worst case when dropping the most relevant neurons and with a random dropping selection. This can be quite desirable for compressing/distilling a model, e.g. for deployment on mobile devices.

In summary, by encouraging plasticity-like behavior, our contributions are threefold:

1. Better generalization on test data.
2. Higher utilization of network neurons.
3. Resilience to network compression.

2 Related Work

Dropout was first introduced by Hinton et al. [7] and Srivastava et al. [22] as a way to prevent neural units from co-adapting too much on the training data by randomly omitting subsets of neurons at each iteration of the training phase.

Some follow-up works have explored different schemes for determining how much dropout is applied to neurons/weights. Wager et al. [23] described the dropout mechanism in terms of an adaptive
regularization, establishing a connection to the AdaGrad algorithm. Inspired by information theoretic principles, Achille and Soatto [11] propose Information Dropout, a generalization dropout which can be automatically adapted to the data. Kingma et al. [9] showed that a relationship between dropout and Bayesian inference can be extended when the dropout rates are directly learned from the data. Kang et al. [8] introduces Shakeout which instead of randomly discarding units as dropout does, it randomly enhances or reverses each unit’s contribution to the next layer. Wan et al. [24] introduced the DropConnect framework, adding dynamic sparsity on the weights of a deep model. DropConnect generalizes Standard Dropout by randomly dropping the weights rather than the neuron activations in the network. Rennie et al. [17] proposed a time scheduling for the retaining probability for the neurons in the network. The presented adaptive regularization scheme smoothly decreased in time the number of neurons turned off during training. Recently, Morerio et al. [16] proposed Curriculum Dropout to adjust the dropout rate in the opposite direction, exponentially increasing unit suppression rate during training, leading to a better generalization on unseen data.

Other works focus on which neurons to drop out. Dropout is usually applied to fully-connected layers of a deep network. Conversely, Wu and Gu [26] studied the effect of dropout in convolutional and pooling layers. The selection of neurons to drop depends on the layer where they reside. In contrast, we select neurons within a layer based on their contribution. Wang and Manning [25] demonstrate that sampling neurons from a Gaussian approximation gave an order of magnitude speedup and more stability during training. Li et al. [12] proposed to use multinomial sampling for dropout, i.e. keeping neurons according to a multinomial distribution with specific probabilities for different neurons. Ba and Frey [2] jointly trained a binary belief network with a neural network to regularize its hidden units by selectively setting activations to zero accordingly to their magnitude. While this takes into consideration the magnitude of the forward activations, it does not take into consideration the relationship of these activations to the ground-truth. In contrast, we drop neurons based on how they contribute to a network’s decision.

We compare our results against Morerio et al. [16], which is the current state-of-the-art. To the best of our knowledge, we are the first to probabilistically select neurons to dropout based on their task-relevance.

3 Method

3.1 Background

Saliency maps that quantify the importance of class-specific neurons for an input image are instrumental to our proposed scheme. Popular approaches include Class Activation Maps (CAM) [29], Gradient-weighted Class Activation Mapping (Grad-CAM) [18], and Excitation Backprop (EB) [27]. We choose to use EB since it produces a valid probability distribution for each network layer.

In a standard CNN, the forward activation of neuron a_j is computed by $\hat{a}_j = \phi(\sum_{i}w_{ij}\hat{a}_i + b_i)$, where \hat{a}_i is the activation coming from the previous layer, ϕ is a nonlinear activation function, w_{ij} and b_i are the weight from neuron i to neuron j and the added bias at layer i, respectively. EB devises a backpropagation formulation able to reconstruct the evidence used by a deep model to make decisions. It computes the probability of each neuron recursively using conditional probabilities $P(a_i|a_j)$ in a top-down order starting from a probability distribution over the output units, as follows:

$$P(a_i) = \sum_{a_j \in P_i} P(a_i|a_j)P(a_j)$$ \hspace{1cm} (1)

where P_i is the parent node set of a_i. EB passes top-down signals through excitatory connections having non-negative activations, excluding from the competition inhibitory ones. Assuming C_j the child node set of a_j, for each $a_i \in C_j$, the conditional winning probability $P(a_i|a_j)$ is defined as

$$P(a_i|a_j) = \begin{cases} Z_j \hat{a}_i w_{ij}, & \text{if } w_{ij} \geq 0, \\ 0, & \text{otherwise} \end{cases}$$ \hspace{1cm} (2)

where Z_j is a normalization factor such that $\sum_{a_i \in C_j} P(a_i|a_j) = 1$. Recursively propagating the top-down signal and preserving the sum of backpropagated probabilities, it is possible to highlight the salient neurons in each layer using Eqn. 1 i.e. neurons that mostly contribute to a specific task. We will refer to the distribution of $P(a_i)$ as $p_{EB}(a_i)$.

3.2 Excitation Dropout

In the standard formulation of dropout [7, 22], the suppression of a neuron in a given layer is modeled by a Bernoulli random variable $0 < p \leq 1$ where p is defined as the probability of retaining a neuron. Given a specific layer where dropout is applied, during the training phase, each neuron is turned off with a probability $1 - p$.

We argue for a different approach that is guided in the way it selects neurons to be dropped. In a training iteration, certain paths have high excitation contributing to the resulting classification, while other regions of the network have low response. We encourage learning alternative paths (plasticity) through the temporary damaging of the currently highly excited path. We re-define the probability of retaining a neuron as a function of its contribution in the currently highly excited path

$$p = 1 - \frac{(1 - P) \times (N - 1) \times p_{EB}}{((1 - P) \times N - 1) \times p_{EB} + P}$$ \hspace{1cm} (3)

where N is the number of neurons in layer l, p_{EB} is the probability backpropagated through the EB formulation (Eqn. (1)) in layer l, and P is the base probability of retaining a neuron when all neurons are equally contributing to the prediction. The retaining probability defined in Eqn. (3) drops neurons which contribute the most to the recognition of a specific class, with higher probability. Dropping out highly relevant neurons, we retain less relevant ones and thus encourage them to awaken.

Fig. 2 shows p as a function of p_{EB}. To gain some intuition for Eqn. (3), we can look more closely at the graph: 1) If neuron a_i has $p_{EB}(a_i) = 1$: This results in a retaining probability of $p = 0$. We do not want to keep a neuron which has a high contribution to the correct label. 2) If neuron a_i has $p_{EB}(a_i) = 0$: This results in a retaining probability of $p = 1$. We want to keep a neuron which has not contributed to the correct classification of an image. 3) If neuron a_i has $p_{EB}(a_i) = 1/N$, i.e. p_{EB} is a uniform probability distribution: This results in a retaining probability $p = P$. We want to keep a neuron with base probability P since all neurons contribute equally.

Eqn. (3) provides a dropout probability for each neuron, which is then used as the parameter of a Bernoulli distribution giving a binary dropout mask. During training, each image in a batch leads to different excitatory connections in the network and therefore has a different p_{EB} distribution, consequently leading to a different dropout mask. Fig. 1 presents the pipeline of Excitation Dropout at training time.

4 Experiments

In this section, we present how Excitation Dropout (ED) improves the generalization ability on four image/video recognition datasets on different architectures. We then present an analysis of how ED affects the utilization of network neurons on the same datasets. Finally, we examine the resilience of a model trained using Excitation Dropout to network compression.
Figure 3: We compare the test accuracy of different dropout training strategies on four image/video recognition datasets: Cifar10, Cifar100, Caltech256, UCF101. Excitation dropout performs best after convergence compared to the other strategies.

4.1 Datasets and Architectures

We present results on four image/video recognition datasets. Cifar10 and Cifar100 [10] are image recognition datasets, each consisting of 60,000 32×32 tiny RGB natural images. Cifar10 images are distributed over 10 classes with 6,000 images per class, and Cifar100 images are distributed over 100 classes with 600 images per class. Training and test splits contain 50K and 10K images, respectively. We feed the network with the original image dimensions. Caltech256 [4] is an image recognition dataset consisting of 31,000 RGB images divided into 256 classes. We consider 50 train images and 20 testing images for each class. Images were reshaped to 128×128 pixel to feed the network. UCF101 [21] is a video action recognition dataset based on 13,320 actions belonging to 101 action classes. For this dataset we consider a frame-based action recognition task. The images are resized to 224×224 and 227×227 to fit the input layers of the VGG and AlexNet architectures, respectively.

We present results on four architectures. Relatively shallow architectures are trained from scratch, and deeper popular architectures are fine-tuned after being pre-trained on ImageNet [3]. Models trained from scratch: We train the CNN-2 architecture used in [16], the state-of-the-art dropout variant, for comparison purposes. This architecture consists of three convolutional and two fully-connected layers. We train this network from scratch for 100K iterations on the datasets: Cifar-10, Cifar-100 and Caltech-256. We use mini-batches of 100 images and fix the learning rate to be 10^{-3}, decreasing to 10^{-4} after 25K iterations. Fine-tuned models: We fine-tune the commonly used architectures: AlexNet [11], VGG16 and VGG19 [19] pre-trained on ImageNet. We fine-tune the models for a frame by frame action recognition task on UCF101. The learning rate is fixed to 10^{-5} for all the processes. We fine-tune AlexNet for 5K while VGG16 and VGG19 for 30K iterations. We use a batch size of 128 and 50 images for AlexNet and VGG16/19, respectively.
Table 1: Test accuracy comparison between No, Standard, Curriculum and Excitation Dropout in the \(fc_6\) layer of three architectures: AlexNet [11], VGG16 and VGG19 [19], fine-tuned for the action recognition task on UCF101 [21]. The numbers reported are the final test accuracies together with the improvements (in parenthesis) with respect to No Dropout, averaged over five trained models.

Architecture	No Dropout (%)	Standard Dropout (%)	Curriculum Dropout (%)	Excitation Dropout (%)
VGG16	69.37	71.93 (+2.56%)	72.14 (+2.77%)	73.23 (+3.86%)
VGG19	71.32	72.52 (+1.29%)	73.18 (+1.86%)	74.34 (+3.02%)
AlexNet	62.89	64.50 (+1.61%)	64.55 (+1.66%)	67.56 (+4.67%)

Table 2: Different metrics to reflect the usage of network capacity in the first fully-connected layer of the CNN-2 architecture consisting of 2048 neurons and the VGG16 consisting of 4096 neurons. Results presented here are averaged over five trained models for each of the datasets: Cifar10, Cifar100, Caltech256 and UCF101. Excitation Dropout consistently produces more neurons with non-zero activations, has a more spread saliency map leading to a lower saliency peak, has a higher entropy of both activations and saliency, and has a lower number of conservative filters; all reflecting an improved utilization of the network neurons using Excitation Dropout.

Dataset	Metric	Standard Dropout	Curriculum Dropout	Excitation Dropout
Cifar10	# Neurons ON	1194	1169	1325
	Peak \(p_{EB}\)	0.011	0.009	0.003
	Entropy of Activations	3.55	3.50	4.29
	Entropy of \(p_{EB}\)	3.28	3.32	4.26
	Conservative Filters \((\Delta = 0.25)\)	1204	959	124
Cifar100	# Neurons ON	453	460	943
	Peak \(p_{EB}\)	0.011	0.012	0.005
	Entropy of Activations	1.67	1.70	3.21
	Entropy of \(p_{EB}\)	1.64	1.67	3.17
	Conservative Filters \((\Delta = 0.30)\)	2048	2038	14
Caltech256	# Neurons ON	412	471	702
	Peak \(p_{EB}\)	0.014	0.013	0.007
	Entropy of Activations	1.63	1.84	2.63
	Entropy of \(p_{EB}\)	1.58	1.77	2.59
	Conservative Filters \((\Delta = 1.25)\)	2048	2048	1671
UCF101	# Neurons ON	1120	1143	1404
	Peak \(p_{EB}\)	0.007	0.007	0.004
	Entropy of Activations	2.04	2.08	2.51
	Entropy of \(p_{EB}\)	1.92	1.95	2.42
	Conservative Filters \((\Delta = 0.15)\)	3599	3859	44

4.2 Setup and Results: Generalization

In this section we compare the performance of ED to that of No Dropout, Standard Dropout, and state-of-the-art Curriculum Dropout [16]. We train a CNN-2 model from scratch on the datasets: Cifar10, Cifar100, Caltech256. Fig. 3 depicts the test accuracies over training iterations for the three datasets averaged over five trained models. After convergence, ED demonstrates a significant improvement in performance compared to other methods. We hypothesize that ED takes longer to converge due to the additional loop (Steps 2-4 in Fig. 1) introduced in the learning process, and due to the learning of the alternative paths. We note that ED, during training, uses a different binary mask for each image in a minibatch, while in Standard Dropout, one random mask is employed per minibatch. To prove that the actual boost in accuracy with ED is not provided by the choice of specific masks, we add a comparison with Standard Dropout having a different random mask for each image. We refer to this accuracy as ‘Standard Dropout + Mask/Img’ in the plots. As expected, the latter approach is comparable to Standard Dropout in performance.
Excitation Dropout

Curriculum Dropout

Standard Dropout

No Dropout

Figure 4: Visualizations for a VGG16 network fine-tuned on UCF101. Every column displays the saliency map over the same video frame of the action HorseRiding while incrementally switching off the most \(k \) relevant/salient neurons \((k = 0, 100, 200, \ldots, 500) \) in the \(fc6 \) layer at test time. Excitation Dropout shows more robustness when more neurons are switched off. This is demonstrated through its ability to recover more of the saliency map even when a high percentage of the most salient neurons is dropped-out. This ability reflects the alternative learnt paths.

Next, we evaluate the effectiveness of ED on popular network architectures that employ dropout layers: AlexNet, VGG16, VGG19. This is done by fine-tuning on the video recognition test dataset UCF101. Fig. 3 shows superior ED performance on AlexNet fine-tuned on UCF101. Table 1 presents more comparative results on other deep architectures by reporting the accuracy after convergence. Again, ED demonstrates higher generalizability on the test data for all considered architectures.

For fair comparison, we set \(p = 0.5 \) for Standard Dropout and \(P = 0.5 \) for the base retaining probability of ED in all experiments. We perform dropout in the first fully-connected layer of the considered networks (\(fc1 \) for CNN-2 and \(fc6 \) for AlexNet and VGGs) for Standard, Curriculum, and Excitation Dropout. For Curriculum Dropout we fix the parameter \(\gamma \) to \(5 \times 10^{-4} \) as in [16].

4.3 Setup and Results: Utilization of Network Neurons

In this section we examine how ED expands the network’s utilization of neurons through the ability of re-wiring or having multiple paths for a certain task.

[15] introduced scoring functions to rank the filters in specific network layers including the average percentage of zero activations, a metric to count how many neurons have zero activations, and the entropy of activations, a metric to measure how much information is contained in the neurons of a layer. We analogously compute the entropy of \(p_{EB} \) which is higher when the probability distribution is spread out over more neurons in a layer. We also compute the peak \(p_{EB} \) which is expected to be lower on a more spread distribution. Moreover, Ma et al. [13] introduced conservative filters: filters whose parameters do not change significantly during training. Conservative filters reduce the effective number of parameters in a CNN and may limit the CNN’s modeling capacity for the target task. A conservative filter is a filter \(k \) in layer \(n \) whose weights have changed by \(\Delta_n^k = \| \hat{w}_n^k - w_n^k \| \), where \(\Delta_n^k \) is less than a threshold \(\Delta \).
Figure 5: Robustness of predicted ground-truth class probabilities as more neurons are dropped out for UCF101 test images. We fine-tune VGG16 with Excitation, Curriculum, Standard, and No Dropout at the f_{c6} layer, averaging results over five trained models. At test time, we switch off the most relevant neurons with respect to p_c (left), and k random neurons (right). In both scenarios, Excitation Dropout shows more robustness to network compression (dropping f_c neurons \equiv removing filters).

We evaluate the presented metrics for Excitation Dropout and compare against Standard and Curriculum Dropout in Table 2. This is done on the same datasets and architectures considered in Sec. 4.2. All metrics are computed for the first fully-connected layer of the CNN-2 and VGG16 nets consisting of 2048 and 4096 neurons, respectively. We compute each metric over the test set of each dataset. Excitation Dropout consistently outperforms Standard and Curriculum Dropout in all the metrics over all datasets. ED shows a higher number of active neurons, a higher entropy over activations, a probability distribution p_{EB} that is more spread (higher entropy over p_{EB}) among the neurons of the layer, leading to a lower peak probability of p_{EB}. We also observe a significantly smaller number of conservative filters when using ED. Fewer filters remain unchanged, i.e. do not sufficiently learn anything far from the random initialization. These results show that the models trained with ED were trained to be more informative, i.e. the contribution for the final classification task is provided by a higher number of neurons in the network, reflecting the alternative learnt paths.

4.4 Setup and Results: Resilience to Compression

In this section, we simulate ‘Brain Damage’ by dropping out neurons at test time. Fig. 4 demonstrates a network re-wiring itself in order to capture the evidence of the class HorseRiding in a video frame of the UCF101 dataset. Given a VGG16 model fine-tuned with Excitation, Curriculum, Standard, and No Dropout at the f_{c6} layer, we show the excitation saliency map obtained at the conv5-1 layer as we drop out a fixed number of the most relevant neurons from the same layer dropout is performed upon training. A neuron is considered to be more relevant if it has a higher p_{EB}. In the first column of Fig. 4, the original saliency maps for the different models are shown. As already highlighted in Table 2, the original saliency map obtained from the model trained with Excitation Dropout is more spread as compared to that of the other schemes, which present more pronounced red peaks. In the following columns (from 2nd to 6th) of Fig. 4, we present the saliency maps the model is able to restore when the $100, 200, 300, 400, 500$ most relevant neurons are dropped out. Despite the increasing number of relevant neurons being dropped out, ED is capable of restoring more of the saliency map contributing to HorseRiding. This means that the network with ED was trained to find alternative paths which belong to the same HorseRiding-relevant cues of the image. Despite the fact that we are considering the worst-case scenario, where we are switching off the most relevant neurons at test time, ED shows most robustness.

While Fig. 4 visualizes one example qualitatively, Fig. 5 presents a complete quantitative analysis on the entire test set after training is complete. We study how the predicted ground-truth (GT) probability changes as more neurons are dropped-out at test time. On the left we present the worst case when the neurons dropped are the most relevant to the prediction. The horizontal axis in the graph represents p_c, where $0 \leq p_c \leq 1$ is the cumulative sum of p_{EB} of the most ‘important’ neurons which will be switched off. The analysis is performed for $p_c = \{0, 0.05, \ldots, 0.90, 0.95\}$. On the right, we present the random case (more realistic) when k neurons ($k = 0, 128, 256, \ldots, 4096$) are randomly switched off. As we drop more neurons, ED (purple curves) is capable of maintaining a much less steep decline of GT probability, indicating more robustness against network compression.
5 Conclusion

We propose a new regularization scheme that encourages the learning of alternative paths (re-wiring) in a neural network by deliberately paralyzing high-saliency neurons that contribute more to a network’s prediction during training. In experiments on four image/video recognition datasets, and on different architectures, we demonstrate that our approach yields better generalization on unseen data, higher utilization of network neurons, and higher resilience to network compression.

Acknowledgments

This work was supported in part by an IBM PhD Fellowship, a Hariri Graduate Fellowship, and gifts from Adobe and NVidia.

References

[1] Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations through noisy computation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.
[2] Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural networks. In Advances in Neural Information Processing Systems, pages 3084–3092, 2013.
[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.
[4] G. Griffi, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology, 2007.
[5] Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychology Press, 2005.
[6] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. In NIPS Deep Learning and Representation Learning Workshop, 2015.
[7] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, 2012.
[8] Guoliang Kang, Jun Li, and Dacheng Tao. Shakeout: A new approach to regularized deep neural network training. IEEE transactions on pattern analysis and machine intelligence, 2017.
[9] Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization trick. In Advances in Neural Information Processing Systems, pages 2575–2583, 2015.
[10] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.
[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105, 2012.
[12] Zhe Li, Boqing Gong, and Tianbao Yang. Improved dropout for shallow and deep learning. In Advances in Neural Information Processing Systems, pages 2523–2531, 2016.
[13] Shugao Ma, Sarah Adel Bargal, Jianming Zhang, Leonid Sigal, and Stan Sclaroff. Do less and achieve more: Training CNNs for action recognition utilizing action images from the web. Pattern Recognition, 2017.
[14] Thomas Miconi, Jeff Clune, and Kenneth O Stanley. Differentiable plasticity: training plastic neural networks with backpropagation. arXiv preprint arXiv:1804.02464, 2018.
[15] Deepak Mittal, Shweta Bhardwaj, Mitesh M Khapra, and Balaraman Ravindran. Recovering from random pruning: On the plasticity of deep convolutional neural networks. Winter Conference on Applications of Computer Vision, 2018.
[16] Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, Rene Vidal, and Vittorio Murino. Curriculum dropout. In The IEEE International Conference on Computer Vision (ICCV), pages 3544–3552, 2017.
[17] Steven J Rennie, Vaibhava Goel, and Samuel Thomas. Annealed dropout training of deep networks. In Spoken Language Technology Workshop (SLT), 2014 IEEE, pages 159–164. IEEE, 2014.
[18] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. See https://arxiv.org/abs/1610.02391 v3, 2016.
[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.

[20] Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian learning through spike-timing-dependent synaptic plasticity. *Nature neuroscience*, 3(9):919, 2000.

[21] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101 human actions classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

[22] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. *The Journal of Machine Learning Research*, 15(1):1929–1958, 2014.

[23] Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as adaptive regularization. In *Advances in Neural Information Processing Systems*, pages 351–359, 2013.

[24] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural networks using dropconnect. In *International Conference on Machine Learning*, pages 1058–1066, 2013.

[25] Sida Wang and Christopher Manning. Fast dropout training. In *International Conference on Machine Learning*, pages 118–126, 2013.

[26] Haibing Wu and Xiaodong Gu. Towards dropout training for convolutional neural networks. *Neural Networks*, 71:1–10, 2015.

[27] Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff. Top-down neural attention by excitation backprop. *International Journal of Computer Vision*, pages 1–19.

[28] Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff. Top-down neural attention by excitation backprop. In *European Conference on Computer Vision (ECCV)*, pages 543–559. Springer, 2016.

[29] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for discriminative localization. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2921–2929, 2016.