THE ARAUCARIA PROJECT. OGLE-LMC-CEP-1718: AN EXOTIC ECLIPSING Binary SYSTEM COMPOSED OF TWO CLASSICAL overtONE CEPHEIDS IN A 413 DAY ORBIT*

WOLFGANG GIEREN1, BOGUMIL PILECKI1,2, GRZEGORZ PIETRZYSKI1,2, DARIUSZ GRACZYK1, IAN B. THOMPSON3, IGOR SOSZYSKI2, PIOTR KONORSKI2, RADOSŁAW SMOLEC4, ANDRZEJ UDALSKI2, NICOLAS NARDETTO5, GIUSEPPE BONO6,7, PIER GIORGIO PRADA MORONI8,9, JESPER STORM10, and ALEXANDRE GALLENNE1

1 Departamento de Astronomia, Universidad de Concepción, Casilla 160-C, Concepción, Chile; wgieren@astro-udec.cl, pietrzyn@astrouw.edu.pl, darek@astro-udec.cl, dgallenne@astro-udec.cl
2 Warsaw University Observatory, Al. Ujazdowskie 4, 00-478, Warsaw, Poland; bpilecki@astro-udec.cl, soszynski@astrouw.edu.pl, piokon@astrouw.edu.pl, udalski@astrouw.edu.pl
3 Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101-1292, USA; jan@obs.carnegiescience.edu
4 Copernicus Astronomical Centre, Polish Academy of Sciences. Bartycka 18, 00-716 Warsaw, Poland; smolec@camk.edu.pl
5 Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, Nice, France; nicolas.nardetto@oca.eu
6 Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy; Giuseppe.Bono@roma2.infn.it
7 INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy
8 Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy; prada@df.unipi.it
9 INFN, Sezione di Pisa, Largo B. Pontecorvo 3, I-56127, Italy
10 Leibniz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany; jstorm@aip.de

Received 2014 February 12; accepted 2014 March 14; published 2014 April 17

ABSTRACT

We have obtained extensive high-quality spectroscopic observations of the OGLE-LMC-CEP-1718 eclipsing binary system in the Large Magellanic Cloud that Soszyński et al. had identified as a candidate system for containing two classical Cepheids in orbit. Our spectroscopic data clearly demonstrate binary motion of the Cepheids in a 413 day orbit, rendering this eclipsing binary system the first ever known to consist of 2 classical Cepheid variables. After disentangling the four different radial velocity variations in the system, we present the orbital solution and the individual pulsational radial velocity curves of the Cepheids. We show that both Cepheids are extremely likely to be first overtone pulsators and determine their respective dynamical masses, which turn out to be equal to within 1.5%. Since the secondary eclipse is not observed in the orbital light curve, we cannot derive the individual radii of the Cepheids, but the sum of their radii derived from the photometry is consistent with overtone pulsation for both variables. The existence of two equal-mass Cepheids in a binary system having different pulsation periods (1.96 and 2.48 days, respectively) may pose an interesting challenge to stellar evolution and pulsation theories, and a more detailed study of this system using additional data sets should yield deeper insight about the physics of stellar evolution of Cepheid variables. Future analysis of the system using additional near-infrared photometry might also lead to a better understanding of the systematic uncertainties in current Baade–Wesselink techniques of distance determinations to Cepheid variables.

Key words: binaries: eclipsing – distance scale – galaxies: individual (LMC) – stars: oscillations – stars: variables: Cepheids

1. INTRODUCTION

Classical Cepheids are distance indicators par excellence and a fundamental rung on the cosmic distance ladder, connecting our Milky Way galaxy to galaxies in the Local Group and beyond (Freedman et al. 2001; Gieren et al. 2005a, 2006; Pietrzyński et al. 2006; Riess et al. 2011). In order to render Cepheids even more robust and reliable distance indicators, it is imperative to understand their physical and evolutionary properties with the highest possible accuracy. In that context, it has been a breakthrough to find classical Cepheids in detached, double-lined eclipsing binary systems, which permit a determination of their basic physical parameters much more accurately than what is possible for any single Cepheid star. In particular, the analysis of the OGLE-LMC-CEP-0227 system located in the Large Magellanic Cloud (LMC), containing a classical Cepheid pulsating with a period of 3.8 days together with a stable red giant in a 310 day orbit, has yielded for the first time a Cepheid mass and radius determination accurate to 1% and valuable independent insight on the p factor needed for Baade–Wesselink-type analyses (Pietrzyński et al. 2010; Pilecki et al. 2013). A second eclipsing binary system in the LMC containing an even shorter-period classical Cepheid, OGLE-LMC-CEP-1812, was analyzed by Pietrzyński et al. (2011) and again yielded a very accurate measurement of the dynamical mass of the Cepheid. These two Cepheid mass determinations have gone a long way to solve the famous Cepheid mass discrepancy problem, leading to improved predictions of Cepheid masses from stellar pulsation and evolution theories (Marconi et al. 2013; Prada Moroni et al. 2012).

Here we report on the confirmation of an even more exotic, and so far unique, eclipsing binary system in the LMC consisting of a pair of classical Cepheids in a 413 day orbit. The system, herein named OGLE-LMC-CEP-1718, was discovered and identified as a double Cepheid by Alcock et al. (1995). Later, Soszyński et al. (2008) found that it also exhibits eclipsing variability, but it was not yet clear if the two Cepheids were indeed gravitationally bound. Our spectroscopic observations of this double-lined system over the past years clearly show that the two Cepheids orbit each other, with the additional radial velocity

* Based in part on observations obtained with the ESO 3.6 m telescope for Programme 091.D-0469(A). This paper includes data gathered with the 6.5 m Magellan Clay Telescope at Las Campanas Observatory, Chile.
variability of the Cepheids due to their pulsations superimposed on their orbital radial velocity curves. Evidently, the analysis of this system and the characterization of the physical properties of its coeval Cepheids holds great promise for deepening our understanding of Cepheid physics and evolution.

In this paper, we present spectroscopic observations of OGLE-LMC-CEP-1718 and extract the orbital radial velocity curves of the two components of the system and the individual pulsational radial velocity curves of the Cepheids. We add new photometric data from the OGLE III and OGLE IV surveys to that presented by Soszyński et al. (2008) to the radial velocity data to obtain the orbital solution as well as a determination of several physical parameters of the Cepheids, particularly their masses and pulsation modes.

2. OBSERVATIONS AND ANALYSIS

Using the MIKE spectrograph at the 6.5 m Clay Telescope at Las Campanas Observatory and the HARPS spectrograph attached to the 3.6 m telescope at the ESO La Silla Observatory, we obtained 38 high-resolution spectra of OGLE-LMC-CEP-1718 (mean magnitudes $I = 14.511$, $V = 15.190$; Soszyński et al. 2008) between 2011 September 29 and 2013 December 12. Radial velocity determinations from these spectra were made using the Broadening Function Method (Rucinski 1992, 1999) implemented in the RaveSpan code (Pilecki et al. 2012). We analyzed the spectra in the range of 4125–6800 Å using the theoretical spectra taken from the library of Coelho et al. (2005) as templates. The radial velocities determined in this way were typically accurate to 0.3 km s$^{-1}$ and we have never seen any systematic difference between data obtained with the MIKE and HARPS spectrographs. The measured radial velocities of both components are presented in Table 1.

In addition to these radial velocity data, we were able to use 1535 I-band measurements of the system collected by the OGLE Project (Udalski 2003) over many years, including data from the most recent OGLE III and IV surveys. The previous photometric analysis performed by Soszyński et al. (2008) had detected three periods—one describing the orbital motion of the two stars, and two additional magnitude variations due to the pulsations of two Cepheids with periods of 1.96 and 2.48 days. This was a promising indication that the Cepheids might be gravitationally bound, but it could also be a blend.

The analysis of the radial velocity data set confirms the genuine spectroscopic binary nature of the system, with orbital motion of the two stars superimposed on the intrinsic radial velocity variations due to their pulsations. Knowing the pulsation periods from the photometry, we were able to fit a complex model of orbital motion together with a pulsation variability for each object (see also Pilecki et al. 2013). This analysis clearly shows that the orbital period of the system is only half of the one originally assumed by Soszyński et al. (2008). This is a consequence of the fact that with the inclination and orbit orientation of the system, presented in Table 2 along with other orbital parameters derived in our orbital solution, only the primary eclipse is visible in the photometry whereas a possible secondary eclipse remains elusive and cannot be detected in the data. The absence of a secondary eclipse is fully consistent with the eccentricity and the other orbital parameters obtained in our analysis.

We were able to determine the four individual radial velocity curves that are superimposed in the data—the orbital radial velocities of the components of the system, and the pulsational radial velocity curves of the primary ($P = 1.96$ days) and secondary ($P = 2.48$ days) Cepheid components in the system. The orbital radial velocity curve of OGLE-LMC-CEP-1718 and the pulsational radial velocity curves of its two Cepheids are shown in Figures 1–3. The disentangling of the four different radial velocity curves is not yet perfect, but the small residuals from the fitted curves that are only slightly larger than the typical precision of the individual radial measurements demonstrate that the disentangling has been achieved with a high degree of accuracy with our code.

The pulsational radial velocity curves are both low amplitude and approximately sinusoidal, as are the corresponding I-band light curves of the Cepheids that are shown in Figures 4 and 5.

HJD	RV1	RV2	HJD	RV1	RV2	HJD	RV1	RV2
5833.7700	227.2	256.7	5965.7124	282.4	214.1	6573.8505	218.8	269.7
5833.7701	226.7	255.3	6309.7243	278.5	225.7	6577.7424	217.8	264.8
5833.8898	229.7	257.4	6314.7440	268.2	220.1	6637.5343	233.3	261.4
5833.8898	229.6	258.1	6314.7440	268.4	219.7	6637.5343	232.7	262.0
5836.7729	238.6	262.9	6529.9196	239.4	273.2	6637.7779	234.2	264.0
5836.7729	238.6	263.1	6554.8613	230.2	279.3	6637.7779	233.9	263.4
5951.5845	278.4	222.5	6558.8792	234.0	267.7	6637.8685	233.6	265.2
5951.5845	278.7	222.8	6560.7652	234.3	261.1	6637.8685	234.4	265.9
5952.5329	289.1	209.3	6571.7000	216.9	275.3	6638.5298	216.3	274.6
5952.5329	289.5	210.3	6572.6830	231.7	265.5	6638.5298	217.2	274.8
5964.5759	279.2	226.8	6572.8131	233.7	262.0	6638.8675	223.3	280.7
5964.5759	279.8	227.4	6573.6746	217.1	267.6	6638.8675	223.1	281.3
5965.7124	282.0	212.8	6573.7767	217.5	269.2	6638.8675	223.1	281.3

Note. * Obtained using HARPS data (all the rest use MIKE data). The radial velocities are in km s$^{-1}$.

Parameter	Value
y (km s$^{-1}$)	248.97 ± 0.15
T_0 (days)	2450697.3 ± 0.9
$a \sin i$ (R_\odot)	452.8 ± 3.5
$q = M_2/M_1$	0.993 ± 0.013
e	0.276 ± 0.013
ω (deg)	308.6 ± 1.8
K_1 (km s$^{-1}$)	28.76 ± 0.25
K_2 (km s$^{-1}$)	28.96 ± 0.30
The Astrophysical Journal, 786:80 (7pp), 2014 May 10
Gieren et al.

Figure 1. Orbital radial velocity curve of the OGLE-LMC-CEP-1718 system. Filled circles denote the primary component (the \(P = 1.96 \) day Cepheid) and open circles denote the secondary component (the \(P = 2.48 \) day Cepheid). The pulsations of both Cepheids were removed from the observed radial velocities, yielding the pure orbital motion of the stars. The plot is based on the 38 individual radial velocity observations of the system reported in Table 1.

Figure 2. Pulsational radial velocity curve of the primary component of the OGLE-LMC-CEP-1718 system. The pulsational phases of the Cepheid are well covered by the observations. The solid curve is a Fourier series fit to the data. The two horizontal dotted lines indicate the radial velocity amplitude of the secondary, longer-period Cepheid in the system.

In Figure 6, we show the orbital \(I \)-band light curve based on the full data set, folded on the orbital period of 412.807 days.

3. RESULTS AND DISCUSSION

From our orbital solution, we find that the masses of the Cepheids are 3.3 and 3.28 \(M_\odot \), respectively, individually determined with an accuracy of 3% (see Table 3). Because the high-eccentricity error does not contribute to the evaluation of the mass ratio, it is determined with a much better accuracy. The analysis indicates that the two Cepheids in the OGLE-LMC-CEP-1718 system have equal masses to within \(\pm 1.5\% \).

The very short pulsation periods suggest pulsation in non-fundamental modes. In Figure 7, we have plotted the positions of the two Cepheids on the \(I \)-band light curve Fourier decomposition diagrams of Soszyński et al. (2008). The loci of both stars on these diagrams, particularly on the \(R_{21} - \log P \) diagram,

Parameter	Primary	Secondary
Pulsation period (days)	1.9636625	2.480917
Pulsation mode	FO	FO
Mass \((M_\odot) \)	3.3 \(\pm 0.11 \)	3.28 \(\pm 0.11 \)
Radius \((R_\odot) \)	24.0 \(\pm 1.2 \)	28.5\(_{+2.9}^{-1.1}\)
Orbital period (days)	412.807 \(\pm 0.008 \)	
\(T_{pe} \) (days)	2455050.5 \(\pm 0.1 \)	
Semimajor axis \((R_\odot) \)	454.9 \(\pm 3.6 \)	
Inclination (deg)	84.5\(_{+0.15}^{-0.4}\)	

Note. The values were calculated using the sum of the radii from our light curve analysis, and the ratio obtained from the period–radius relation for first-overtone Cepheids from Sachkov (2002). The errors were estimated independently.
strongly suggest that both Cepheids in OGLE-LMC-CEP-1718 are pulsating in the first overtone mode.

This result can be checked in a different way. Since we cannot observe the secondary eclipse in the light curve, we cannot determine the individual radii of the Cepheids. However, the analysis of the light curve does return the sum of the radii, in this case $52.5 \pm 1.5 \, R_\odot$. Assuming first overtone pulsation for the two Cepheids in OGLE-LMC-CEP-1718, we can calculate their expected radii from a period–radius relation calibrated for first overtone Cepheids. Using the observational relation given by Sachkov (2002), we obtain radii of $R_1 = (26.1 \pm 2.5) \, R_\odot$ for the primary and $R_2 = (31.0 \pm 2.6) \, R_\odot$ for the secondary (longer-period) Cepheid, with the radii ratio of 1.19. These predictions are in excellent agreement with the predictions from the theoretical period–radius relation for first overtone Galactic Cepheids of Bono et al. (2001; 27 and 32 R_\odot, respectively). As the ratio is much better constrained than the radii themselves, we have used it to calculate the individual radii of the Cepheids (using the known sum), obtaining $R_1 = 24 \, R_\odot$ and $R_2 = 28.5 \, R_\odot$, which is clearly consistent with the values from the given relation. If we assume fundamental mode pulsation for both Cepheids and use the fundamental mode Cepheid period–radius relation from Sachkov (2002), which is very similar to other calibrations of that relation, e.g., Gieren et al. (1998), the expected sum of the radii is $44.0 \pm 0.3 \, R_\odot$, indicating that fundamental mode pulsation is much more unlikely. We have to note, however, that in this case the calculations are based on the extrapolation as the periods of our stars are shorter than the shortest one among the stars used to obtain the relation.

Yet another argument supporting the first overtone pulsation hypothesis comes from the observed brightness of OGLE-LMC-CEP-1718. Using the fitted PL relations for first overtone
Figure 5. Pulsational I-band light curve of the secondary component of the OGLE-LMC-CEP-1718 system. As with the primary component, the light curve amplitude and symmetry suggest that the secondary Cepheid is a first-overtone pulsator as well.

Figure 6. Orbital I-band light curve of the OGLE-LMC-CEP-1718 system with the pulsational variabilities of its two Cepheid components removed. Only the primary eclipse is visible. The bar below the light curve indicates the expected position of the secondary eclipse as estimated from the orbital solution given in Table 2.

Cepheids in the LMC from the OGLE project (Soszyński et al. 2008), the expected apparent magnitudes for the primary Cepheid are 15.439 and 16.110 in I and V bands, respectively, whereas for the secondary Cepheid, the corresponding values are 15.104 and 15.786. This leads to expected total apparent magnitudes of both components of $I_{\text{tot}} = 14.506$ and $V_{\text{tot}} = 15.183$, respectively. The observed apparent magnitudes of the system are $I_{\text{obs}} = 14.511$ and $V_{\text{obs}} = 15.190$, in excellent agreement with the expected magnitudes if both Cepheids pulsate in the first overtone mode.

One possibility to reconcile the fact that both Cepheids in the system have the same masses but different pulsation periods would be the assumption that the primary, shorter-period Cepheid is actually pulsating in the second overtone mode. The observed period ratio of $1.96/2.48 = 0.79$ would be consistent with the hypothesis that the primary Cepheid is pulsating in the second overtone while the secondary Cepheid is a first-overtone pulsator—a period ratio of about 0.8 is indeed commonly observed for double-mode $1O/2O$ Cepheids. However, in the OGLE database of Cepheids in the Magellanic Clouds (Soszyński et al. 2008), which contains the largest samples of Cepheids, among others approximately 100 single-mode second-overtone Cepheids and approximately 420 double-mode $1O/2O$ Cepheids, the largest-known period of a second-overtone Cepheid is 1.32 days (in the double-mode Cepheid OGLE-SMC-CEP-0305 in the Small Magellanic Cloud). This is very much shorter than the period of 1.96 days observed for the primary Cepheid in our OGLE-LMC-CEP-1718 system.

The largest-known amplitude of the I-band light curve of a second-overtone Cepheid is 0.138 mag (in the single-mode Cepheid OGLE-SMC-CEP-3509). Our object has a smaller amplitude of 0.097 mag (see Figure 4), but the amplitude is
Figure 7. Fourier decomposition parameters from the pulsational I-band light curves of the two Cepheids in the OGLE-LMC-CEP-1718 system plotted against the log of the observed pulsation periods (in days). Both Cepheids clearly lie on the sequence for first-overtone pulsators (yellow points; data from Soszyński et al. 2008) in the amplitude–period plot (upper panel). In the lower panel phase–period plane, the mode identification for the secondary ($P = 2.48$ days) Cepheid is complicated because it lies in the overlapping part of the first overtone and fundamental mode sequences in this diagram. Its position in the upper panel diagram, however, allows a very secure identification of its first-overtone pulsation mode.

decreased by the light from the secondary component through blending. Transforming the magnitudes to fluxes, removing the contribution of the secondary Cepheid, and transforming the flux back to magnitudes now yields an I-band amplitude of 0.231 mag for the short-period primary Cepheid in the OGLE-LMC-CEP-1718 system. This is much larger than any known amplitude of a second-overtone oscillation.

The shapes of the light curves cannot be directly compared because there are no second-overtone Cepheids with periods of around two days. However, it can be stated that all second-overtone Cepheid light curves are more symmetrical than the one of the primary in our system—indeed, they are nearly sinusoidal. Finally, the total luminosity of the OGLE-LMC-CEP-1718 system perfectly agrees with the assumption that the system consists of two first-overtone Cepheids, as already mentioned above. In conclusion, if the 1.96 day Cepheid in our system would indeed be a second-overtone pulsator, it would be the longest-period and the largest-amplitude second-overtone Cepheid known in any galaxy. Given the large number of second-overtone Cepheids known to date, it seems extremely unlikely that we found such an extreme object in the only eclipsing binary system consisting of two classical Cepheids that has been discovered so far.

Our conclusion then is that we have found a system composed of two classical Cepheids that have, within a 1.5% uncertainty, identical masses. Both stars are almost certainly pulsating in the first-overtone mode, presumably have the same ages, but have substantially different periods and luminosities. It will be challenging for stellar evolutionary theory to explain the observed properties of these Cepheids, which will be the topic of a forthcoming study of our group.

4. SUMMARY

We have presented the first confirmed eclipsing binary system with both components identified as classical Cepheids. These two variables orbit each other in an eccentric orbit with a period of 413 days. Strong evidence is presented that both variables are pulsating in the first-overtone mode. The dynamical masses of both Cepheids are identical to within 2% and the absolute masses
are determined with an accuracy of 3%. Both orbital light and radial velocity curves of the system and the pulsational light and radial velocity curves of the two Cepheids are very well determined from our data, although improvement is possible and desirable.

The OGLE-LMC-CEP-1718 system, as the first confirmed eclipsing binary system containing two classical Cepheids, might well turn out to be a Rosetta Stone for our deeper understanding of the pulsational and evolutionary properties of Cepheids. In response to this opportunity and the challenges presented by the system, we plan to improve the existing radial velocity data and obtain observations of near- and mid-IR photometry, which should help to better understand the physics of these variables. In particular, near-infrared light curves for the two Cepheids in the system will provide a unique opportunity to test the basic assumptions made in the near-infrared surface brightness technique (Fouqué & Gieren 1997; Gieren et al. 2005b; Storm et al. 2011) of the distance determination to Cepheids by taking advantage of the knowledge that both Cepheids are at the same distance.

We gratefully acknowledge financial support for this work from the BASAL Centro de Astrofísica y Tecnologías Afines (CATA) PFB-06/2007, and from the Millenium Institute of Astrophysics (MAS) of the Iniciativa Científica Milenio del Ministerio de Economía, Fomento y Turismo de Chile, project IC120009. Support from the Polish National Science Center grant MAESTRO 2012/06/A/ST9/00269 and the TEAM subsidy of the Foundation for Polish Science (PNP) is also acknowledged. The OGLE project has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) and ERC grant agreement no. 246678 to A.U. A.G. acknowledges support from FONDECYT grant No. 3130361. We greatly appreciate the expert support of the staff members at the Las Campanas and ESO La Silla Observatories, where the data for this project were obtained. The research in this paper was partially supported by the Polish Ministry of Science and Higher Education through the program Ideas Plus award No. Id P2012000162. We also thank the referee, Laszlo Szabados, for constructive remarks that helped to improve this paper.

REFERENCES

Alcock, C., Allsman, R. A., Axelrod, T. S., et al. 1995, AJ, 109, 1653
Bono, G., Gieren, W., Marconi, M., et al. 2001, ApJL, 552, L141
Coelho, P., Barbay, B., Meléndez, et al. 2005, A&A, 443, 735
Fouqué, P., & Gieren, W. 1997, A&A, 320, 799
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47
Gieren, W., Fouqué, P., & Gómez, M. 1998, ApJ, 496, 17
Gieren, W., Pietrzyński, G., Nalewajko, K., et al. 2006, ApJ, 647, 1056
Gieren, W., Pietrzyński, G., Soszyński, I., et al. 2005a, ApJ, 628, 695
Gieren, W., Storm, J., Barnes, T. G., et al. 2005b, ApJ, 627, 224
Marconi, M., Bono, G., Molinaro, R., et al. 2013, ApJL, 768, L6
Pietrzyński, G., Gieren, W., Soszyński, I., et al. 2006, ApJ, 642, 216
Pietrzyński, G., Thompson, I. B., Gieren, W., et al. 2010, Natur, 468, 542
Pietrzyński, G., Thompson, I. B., Grażyń, D., et al. 2011, ApJL, 742, L20
Pilecki, B., Grażyń, D., Pietrzyński, G., et al. 2013, MNras, 436, 953
Pilecki, B., Konorski, P., & Gorski, M. 2012, in IAU Symp. 282, From Interacting Binaries to Exoplanets: Essential Modeling Tools, ed. M. T. Richards & I. Hubeny (Cambridge: Cambridge Univ. Press), 301
Prada Moroni, P. G., Gennaro, M., Bono, G., et al. 2012, ApJ, 749, 108
Riess, A., Macri, L., Casertano, S., et al. 2011, ApJ, 730, 119
Rucinski, S. M. 1992, AJ, 104, 1968
Rucinski, S. M. 1999, in ASP Conf. Ser. 185, Precise Stellar Radial Velocities, ed. J. B. Hearnshaw & C. D. Scarfe (San Francisco, CA: ASP), 82
Sachkov, M. E. 2002, AstL, 28, 589
Soszyński, I., Poleski, R., Udalski, A., et al. 2008, AcA, 58, 163
Storm, J., Gieren, W., Fouqué, P., et al. 2011, A&A, 534, A94
Udalski, A. 2003, AcA, 53, 291