Intraoperative Blood Collection Without Fluid Replacement for Cardiac Surgery – A Retrospective Analysis

Jennifer L. Vance, Lisa Irwin, Elizabeth S. Jewell, Milo Engoren
Department of Anesthesiology, University of Michigan, USA

INTRODUCTION

Blood transfusion with cardiac surgery accounts for 20% of transfusions in the United States. While restrictive transfusion thresholds have been shown to produce equivalent outcomes as liberal thresholds, the overall transfusion rate remains high. Transfusions are not benign. They are associated with increased morbidity and mortality. The hemodilution resulting from crystalloid priming of the cardiopulmonary bypass (CPB) circuit represents a major risk factor for blood transfusions. While several techniques are available to limit hemodilution, such as retrograde autologous priming and high-volume ultrafiltration, these may be insufficient to prevent transfusions. Additionally, the abnormal conditions

Access this article online

Quick Response Code:

Website: www.annals.in

DOI: 10.4103/aca.aca_30_21

How to cite this article: Vance JL, Irwin L, Jewell ES, Engoren M. Intraoperative blood collection without fluid replacement for cardiac surgery – A retrospective analysis. Ann Card Anaesth 2022;25:399-407.
of blood subjected to the various components of the CPB circuit can lead to platelet dysfunction and destruction.\[4\] The resulting thrombocytopenia or functional thrombocytopenia contributes to postoperative coagulopathy and hemorrhage, with frequent need for erythrocyte (RBC) and platelet transfusions. To minimize the need for transfusions and their associated risk of infection, acute lung injury, and immunomodulation, some physicians use intraoperative blood collection.\[6-13\] After induction of general anesthesia, blood is sterilely removed from the patient and stored in bags containing CPDA as a preservative and anticoagulant.\[8,9,12\]

When RBC are removed for intraoperative blood collection, platelets and clotting factors are also captured for reinfusion after discontinuation of CPB. Putatively, this technique conserves blood by decreasing postoperative coagulopathy and the need for transfusions by providing a sufficient quantity of fresh platelets and clotting factors to replace the ones activated or consumed during CPB.\[14\] However, platelet function was adversely affected by storage in CPDA\[15\] and did not improve thromboelastography values after CPB.\[16\] Studies of autologous blood removal primarily used crystalloid or colloids to replace the blood volume [acute normovolemic hemodilution (ANH)].\[9,15,17\]

This can lead to hemodilution of platelets, clotting factors, and RBC and increase the risk of homologous RBC transfusion to prevent or treat low oxygen delivery or hemodynamic instability. Instead of crystalloid or colloid infusions to maintain intravascular volume and hemodynamics, hemodynamics can also be maintained with vasopressors. The use of vasopressors and minimizing volume administration [autologous blood removal without fluid replacement (AWOF)] is designed to limit hemodilution and the need to transfuse homologous RBC.

We hypothesized that AWOF would be associated with decreased blood transfusion requirements in a dose-dependent manner. We further hypothesized, as secondary outcomes, that AWOF would be associated with increased vasopressor requirements, no differences in metabolic (acid–base) parameters, no difference in rate of acute kidney injury (AKI), and higher hematocrit and platelet levels on arrival in the intensive care unit.

METHODS

Ethics

This study was approved by the institutional review board, which waived informed consent as it was a retrospective analysis and it was conducted in accordance with the ethical standards of the Helsinki Declaration of 1975 as revised in 2000. STROBE guidelines were used. All adult patients (age ≥18 years) undergoing cardiac surgery between Jan 31, 2007 and Nov 6, 2013 were included in the study. Patients undergoing ventricular assist device surgery, heart transplants, or cardiac surgery without cardiopulmonary bypass were excluded.

Patient management

Fluids (including infusions and cardioplegia, but excluding piggyback and push medicines), blood products, and vasopressors administered by the anesthesiologist or the perfusionist are recorded in the shared electronic anesthetic record (Centricity, GE Healthcare, Chicago, IL) and were abstracted from it. Laboratory values were extracted from the institutional data warehouse. AKI was defined using Kidney Disease: Improving Global Outcomes (KDIGO) stages: creatinine increase >0.3 mg/dL over 48 hours or to 150% of baseline by day 7 was stage 1; creatinine to >200% of baseline was stage 2, and >300% of baseline was stage 3. Urine output was not included in our outcome definition. Hematocrit levels were determined preoperatively, postinduction before blood was removed, postblood removal but prebypass, and 30 minutes after arrival in the ICU. The lowest intraoperative arterial pH and bicarbonate and highest lactic acid level were used as measures of worst metabolic derangement.

Patients routinely received general anesthesia with midazolam, fentanyl, propofol, and a neuromuscular blocker for induction. Etomidate was rarely used. In addition to routine EKG and pulse oximetry, patients had an arterial line and either a central venous catheter or pulmonary artery catheter. Mechanical ventilation with $V_T = 6–8 \text{ mL/kg}$ of predicted body weight, with rate adjusted to achieve normocarbia was used. PreCPB, intravenous fluids, usually lactated ringer’s solution, were minimized. Hetastarch was not used. Vasopressors were used as necessary to maintain mean arterial pressure >65 mmHg. Bolus ephedrine and phenylephrine and phenylephrine and norepinephrine infusions were used to support hemodynamics. As needed, vasopressin or epinephrine was used. After establishment of central venous access, an antifibrinolytic infusion was started and continued until shortly before leaving the operating room. Initially, aprotinin (2,000,000 KIU load, followed by infusion at 500,000 KIU/hour for the duration of the operation and a pump prime of 2,000,000 KIU) was used. After its removal from the market, we used aminocaproic acid (70 mg/kg load followed by infusion at 30 mg/kg/hr for the duration of the operation). Tranexamic acid was used when aminocaproic acid was in shortage (8 mg/kg load followed by infusion at 4 mg/kg/hr for the duration
of the operation. If creatinine was 1.6-3.3 mg/dL, the tranexamic acid infusion was 3 mg/kg/hour. If creatinine was 3.4-6.6 mg/dL, the infusion was 2 mg/kg/hr. For creatinine >6.6. mg/dL or receipt of dialysis, the infusion was 1 mg/kg/hr. Additionally, 0.6 mg/kg load was added to the bypass circuit.) The decision for removal and amount of autologous blood removal was decided jointly by the surgeon and anesthesiologist. After preparation with chlorhexidine or povidone-iodine, autologous blood was aseptically removed via the central venous access and stored in bags prefilled with CPDA anticoagulant. Bags were not routinely weighed but filled based on visual inspection. Blood was stored at room temperature and gently agitated before being transfused. Prior to cardiopulmonary bypass, heparin 300 U/kg was administered intravenously. The CPB circuit was primed with 900 – 1100 mL of fluid, usually PlasmaLyte. If autologous priming was not used, an additional 300 – 500 mL of fluid was added to the bypass circuit. These volumes were recorded on the anesthetic record and included in the fluid analyses. Mild (32-35°C) or moderate (28-31°C) hypothermia was employed on bypass, with sweeps adjusted to maintain PaCO₂ = 40 mmHg[18]. Deep (≤25°C) hypothermia was used with circulatory arrest.[18] Additional heparin doses were given to keep the activated clotting time >400 sec. After separation from CPB, heparin was reversed with protamine (1-1.3 mg per 100 units of initial heparin dose) and confirmed by ACT returning to baseline values. Additional doses of protamine could be given if the ACT was elevated. Heparin concentration assays were not used. After reversal of heparin, the autologous blood was transfused. Physical measures of thrombosis, such as thromboelastography, were not employed. RBC transfusions were based on hematocrit levels (over the study period, the transfusion trigger for RBC decreased from 22-24% to ~18%) and clinical judgment, which included hemodynamics. Plasma, platelet, and cryoprecipitate transfusions were based on clinical judgment, inspection of the surgical field, and, when available, laboratory tests.

Power analysis
Based on current practice, we assumed that 20% of patients have no autologous blood removed and that intraoperative transfusion rate is 20%, then to find a 3% change, an amount for which we would consider changing our practice, in the transfusion rate to 17 or 23% in patients who have any autologous blood removed, with alpha = 0.05 and power = 0.8, would require 4000 subjects.

Statistical analysis
Baseline characteristics were described with means (standard deviations), medians (interquartile range), frequency, and percentages. Differences in categories were tested using one-way ANOVA, the Kruskal–Wallis test, or the Chi-square test. To determine the independent associations of autologous blood removal with outcomes, we used Akaike Information Criteria based linear and logistic regressions. We further analyzed the data using propensity matching. Here, nonparsimonious binary logistic regression using sex, age, ASA class, emergency status, surgery type, type of surgery, type of antifibrinolytic used, height, weight, body mass index, body surface area, platelet count, INR, creatinine, and postinduction hematocrit value was used to calculate a propensity to be in the AWOF group. AWOF patients were matched to Control patients by similar propensity scores using a nearest neighbor greedy algorithm. The match was considered successful if all variables had standardized differences <10%. All analyses were performed with R version 2.14.2 (R Foundation for Computing, Vienna, Austria). Linear regression results are presented as estimate B (95% confidence interval) and logistic regressions as adjusted odds ratio (aOR) (95% confidence interval). As the dose-response (outcome associated with the number of autologous blood units removed) might be nonlinear or have a threshold, we analyzed number of autologous units as a categorical variable in all regressions.

Sensitivity analysis
The main analyses were done adjusting for albumin volume in a 3:1 ratio for 5% and 15:1 ratio for 25% as is traditionally considered.[9] As more recent research has suggested that equal volumes of albumin and crystalloid produce equal expansions of blood volume,[20] we did sensitivity analyses of all regressions using unadjusted volumes.

RESULTS
We studied 2809 patients, 61 ± 15 years old, 1874 (67%) male, with body mass index 29.5 ± 6.3 kg/m². The preoperative hematocrit was 39.0 ± 5.4%. Five hundred ninety-six patients (21%) had no blood removed (Control group), whereas 482 (17%), 1257 (45%), and 474 (17%) AWOF patients had 1, 2, or 3 units of blood removed, respectively. AWOF patients had higher preoperative hematocrits, but lower creatinine levels and platelet counts [Table 1]. After anesthesia induction and before blood removal, AWOF patients had higher hematocrits than the Control group, but the postinduction hematocrit did not differ within the AWOF group by number of units removed [Table 1].

Processes of care
Intravenous fluid administration was less in AWOF group with one unit removed compared to Control
patients. Only when three units were removed, was intravenous fluid administration greater [Table 1]. The number of boluses of vasopressor doses was statistically, but not clinically, significantly higher in the AWOF group, 10.5 (5,17), 10 (5,16), and 13 (8,19) for AWOF = 1, 2, and 3, respectively, \(P < 0.001 \). Total phenylephrine dose was greater, but epinephrine and norepinephrine doses were less in the AWOF groups [Table 2]. While there were slight differences in nadir intraoperative pH and bicarbonate among the four groups, overall, there was no trend between pH, bicarbonate, and groups \(P = .744 \) and. 128, respectively). Similarly, while lactic acid levels were lower in AWOF patients with one \(2.6 \pm 1.4 \text{ mmol/L} \) and two \(3.0 \pm 1.8 \text{ mmol/L} \) units removed compared to Control \(3.6 \pm 2.6 \text{ mmol/L} \), \(P < .001 \) and. 005, respectively, there was no overall trend in lactic acid levels with the number of blood units removed \(P = .410 \) [Table 3].

By multivariable linear regression, AWOF patients had similar or slightly better nadir pH, nadir bicarbonate, and peak lactic acid levels then Control patients [Table 4]. Using multiple linear regression to adjust for other demographics, preoperative laboratory values, types of surgery, and antifibrinolytics, AWOF was associated with slightly greater amounts of ephedrine and phenylephrine but lesser amounts of epinephrine, norepinephrine, or vasopressin [Table 4]. There was no difference in the amounts of intravenous or CPB fluids [Table 4].
Table 2: Vasoactive medications

Tool	Control 0 units (n=596)	1 unit (n=482)	2 units (n=1257)	3 units (n=474)	P
	n (%)	n (%)	n (%)	n (%)	
Ephedrine	104 (17)	112^a (23)	341^b (27)	128^a (27)	<0.001
Epinephrine	96 (16)	45^a (9)	117^a (9)	38^a (8)	<0.001
Norepinephrine	1 (0.2)	0 (0)	3 (0.2)	0 (0)	0.530
Phenylephrine	552 (93)	453 (94)	1194 (95)	464^a^b^c (98)	0.001
Vasopressin	88 (15)	75 (16)	147^b (12)	70 (15)	0.082
Vasoactive bolus total dose					
Ephedrine (mg)	0 (0, 0)	0^a (0, 0)	0^a^b (0, 5)	0^b^c (0, 5)	<0.001
Epinephrine (mcg)	0 (0, 0)	0^a (0, 0)	0^a^b (0, 0)	0^b^c (0, 0)	<0.001
Norepinephrine (mcg)	0 (0, 0)	0^a (0, 0)	0^a^b (0, 0)	0^b^c (0, 0)	0.530
Phenylephrine (mcg)	900 (388, 1700)	1100^a (500, 2100)	1190^b^c (550, 2000)	1500^b^c (900, 2300)	<0.001
Vasopressin (units)	0 (0, 0)	0^a (0, 0)	0^a^b (0, 0)	0^b^c (0, 0)	0.094
Vasoactive infusion dose					
Ephedrine (mg)	32 (10, 120)	20^a (10, 40)	20^a^b (10, 50)	19^b^c (10, 24)	0.011
Norepinephrine (mcg)	196 (0, 694)	163^a (0, 448)	117^b^c (0, 431)	118^b^c (0, 416)	0.003
Phenylephrine (mcg)	3.3 (0.6, 7.5)	4.3^a (1.7, 7.7)	4.3^a^b (1.6, 7.7)	5.0^b^c (2.4, 8.9)	<0.001
Vasopressin (units)	0 (0, 0)	0^a (0, 0)	0^a^b (0, 0)	0^b^c (0, 0)	0.001

A < 0.01, a < 0.05 compared to Control Group, B < 0.01, b < 0.05 compared to autologous blood removal without fluid replacement group with 1 unit removed, C < 0.01, c < 0.05 compared to autologous blood removal without fluid replacement group with 2 units removed. IQR = interquartile range.

Transfusions

Overall, 1322 (47%) of patients were transfused RBC intraoperatively and 1425 (51%) at any time. We found that there was a decrease in the proportion of patients given intraoperative RBC transfusions as the number of autologous units increased: 75% (0 units) to 48% (1 unit), 40% (2 units), and 30% (≥3 units), P < 0.001. We also found similar decreases in plasma and platelet transfusions from 53% to 19%, P < 0.001 and from 57% to 23%, P < .001, respectively, but not in cryoprecipitate [Table 3]. After we adjusted for other factors associated with RBC transfusion, patients with AWOF were less likely to be given RBC, plasma, and platelets and AWOF was associated with fewer units of RBC, plasma, and platelets transfused [Table 5]. However, the number of cryoprecipitate units transfused was decreased only for patients with three units removed. Any (intraoperative + postoperative) homologous transfusions were similarly decreased by AWOF [Tables 3 and 5].

Postoperatively, first ICU hematocrits were slightly lower in Control Group and AWOF = 1 compared to AWOF Groups 2 and 3: (Control) 27.5 ± 4.4% versus (Group 1) 27.1 ± 4.3%, versus (Group 2) 28.1 ± 4.0%, versus (Group 3) 28.3 ± 3.9%, respectively, P < .001. After adjusting for other factors, AWOF was associated with slightly lower or similar hematocrit levels on ICU arrival [B = -0.9 (-1.4,-0.4), P < .001; B = -0.3 (-0.8,0.1), P = 0.120; and B = -0.2 (-0.8,0.4) P = 0.480]. Platelet counts at ICU arrival were lower in the AWOF groups [Table 2] but after adjustment, only AWOF of three units was associated with lower counts (B = -20 (-27,-13), P < 0.001 [Table 4].

Other outcomes

AWOF patients with two or three units removed had slightly lower rates of KDIGO stage 1 or 3 AKI [Table 3]. However, after using logistic regression, AWOF was not associated with AKI [Table 5]. Reexplanation for hemorrhage did not differ among groups [Table 3].

Sensitivity analyses

When we repeated the regressions using actual intravenous and cardiopulmonary fluids instead of adjusting for the putative greater volume expansion attributed to albumin, we had similar results [Supplementary Tables 1 and 2]. In particular, AWOF was still associated with lower odds of transfusion and fewer units when transfused. Compared to Control Group, AWOF of 1, 2, or 3 units was associated with lower counts (B = -20 (-27,-13), P < 0.001 [Table 4].

Propensity score matching

When we used propensity scores to match patients with AWOF to Control patients, we had 488 well-matched patients.
Table 3: Transfusions and other outcomes

	Control n=596	Number of units of blood removed						
	0 units	1 unit n=482	2 units n=1257	3 units n=474				
	1376	1494	1614	1734				
	n=1257	n=1257	n=1257	n=1257				
	%	%	%	%				
Intraoperative transfusion								
Blood units removed								
Red cells	449	75	229	48	504	80	40	30
Plasma	313	53	132	27	37	1	30	19
Platelet	341	57	143	30	42	34	108	23
Cryoprecipitate	82	14	27	6	155	12	37	8
Postoperative transfusion								
Blood units removed								
Red cells	139	23	68	14	110	9	33	7
Plasma	30	5	8	2	26	2	5	1
Platelets	39	7	14	3	33	3	9	2
Any transfusions	2	0.3	0	0.2	0	0.2	0	0.399

	Median	IQR	Median	IQR	Median	IQR	Median	IQR	P
Intraoperative transfusions									
Red cells (units)	3	(1, 6)	0	(0, 2)	0	(0, 2)	0	(0, 1)	<.001
Plasma (units)	1	(0, 4)	0	(0, 1)	0	(0, 2)	0	(0, 0)	<.001
Platelets (units)	1	(0, 4)	0	(0, 1)	0	(0, 2)	0	(0, 0)	<.001
Cryoprecipitate (units)	0	(0, 0)	0	(0, 0)	0	(0, 0)	0	(0, 0)	0.009
Postoperative transfusions									
Red cells (units)	0	(0, 0)	0	(0, 0)	0	(0, 0)	0	(0, 0)	<.001
Plasma (units)	0	(0, 0)	0	(0, 0)	0	(0, 0)	0	(0, 0)	<.001
Platelets (units)	0	(0, 0)	0	(0, 0)	0	(0, 0)	0	(0, 0)	<.001
Cryoprecipitate (units)	0	(0, 0)	0	(0, 0)	0	(0, 0)	0	(0, 0)	0.400
Any transfusions	3	(1, 6)	0	(0, 2)	0	(0, 2)	0	(0, 1)	<.001
Plasma (units)	1	(0, 4)	0	(0, 1)	0	(0, 2)	0	(0, 0)	<.001
Platelets (units)	1	(0, 4)	0	(0, 1)	0	(0, 2)	0	(0, 0)	<.001
Cryoprecipitate (units)	0	(0, 0)	0	(0, 0)	0	(0, 0)	0	(0, 0)	<.001
Other Outcomes									
Mean	7.32	0.09	7.34	0.06	7.33	0.06	7.32	0.05	0.744
Standard deviation	3.6	2.8	3.6	2.8	3.6	2.8	3.6	2.8	0.410
Minimum arterial pH	22.0	4.4	22.0	4.4	22.0	4.4	22.0	4.4	0.128
Maximum lactic acid (mmol/L)	12.6	4.4	12.6	4.4	12.6	4.4	12.6	4.4	0.001
Minimum bicarbonate (mEq/L)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.001
First ICU hematocrit (%)	156	58	145	52	144	50	127	39	<.001
Reexploration	23	4	14	3	32	3	12	3	0.432
KDIGO stage 1	165	28	141	29	301	24	107	23	0.097
KDIGO stage 2	24	3	15	3	43	3	18	4	0.917
KDIGO stage 3	39	7	16	3	25	2	8	2	<.001

A < .01, a < .05 compared to Control Group, B < .01, b < .05 compared to autologous blood removal without fluid replacement group with 1 unit removed, C < .01, c < .05 compared to autologous blood removal without fluid replacement group with 2 units removed. Any transfusion is intraoperative + postoperative transfusion. KDIGO – Kidney Disease: Improving Global Outcomes. SD – standard deviation. IQR – interquartile range.

In these paired patients, AWOF patients were more likely to receive vasopressor boluses, more phenylephrine but less norepinephrine, and slightly more fluid adjusted for albumin dose [Supplementary Table 3]. In this paired analysis, AWOF patients were less likely to receive intraproductive homologous blood transfusions (75 vs. 53%, P < .001 for RBC; 53 vs. 34%, P < .001 for plasma; 57 vs. 39%, P < .001 for platelets), but had similar rates of cryoprecipitate [Supplementary Table 3]. These differences persisted through the postoperative period. Despite this higher transfusion amount, Control patients did not have higher postoperative hematocrits [Supplementary Table 3].

DISCUSSION

We found that we were successful at removing 1 – 3 units of blood for later transfusion with minimal, if any, increase in intravenous fluids and only small increases in vasopressor requirements. This amount of intraproductive blood collection was associated with fewer transfusions and was well tolerated with no increase in lactic acid,
Intraoperative transfusions

Factor	1 unit	2 units	3 units						
	B	95% CI	P	B	95% CI	P	B	95% CI	P
Vasopressor boluses (#)	2	(1, 3)	0.001	2	(1, 3)	<.0001	4	(3, 6)	<.0001
Ephedrine dose (mg)	1	(0, 2)	0.118	2	(1, 3)	<.0001	2	(1, 4)	<.0001
Phenylephrine bolus dose (mcg)	97	(-117, 311)	0.373	62	(-109, 233)	0.480	425	(212, 639)	<.0001
Phenylephrine total dose (mcg)	340	(-680, 1360)	0.513	383	(-432, 1999)	0.357	1844	(812, 2876)	<.0001
Epinephrine total dose (mg)	-116	(-181, -52)	<.001	-125	(-176, -73)	<.0001	-154	(-219, -89)	<.0001
Norepinephrine total dose (mg)	-145	(-261, -28)	0.015	-238	(-331, -145)	<.0001	-254	(-372, -136)	<.0001
Vasopressin total dose (units)	-0.2	(-1.1, 0.7)	0.652	-0.7	(-1.4, 0.1)	0.073	-1.4	(-2.4, -0.4)	0.005
CPB fluids adjusted (mL)	3	(-71, 77)	0.937	104	(45, 164)	<.0001	182	(106, 257)	<.0001
Intravenous fluids adjusted (mL)	-38	(-139, 64)	0.470	89	(8, 170)	0.032	101	(-4, 205)	0.059
Minimal arterial pH	0.01	(0.001, 0.2)	0.022	0.01	(0.00, 0.02)	0.005	0.01	(0.00, 0.02)	0.058
Maximum lactate (mmol/L)	-0.6	(-0.8, -0.4)	<.0001	-0.3	(-0.5, -0.1)	<.0001	-0.5	(-0.7, -0.3)	<.0001
Minimum bicarbonate (mEq/L)	0.2	(-0.1, 0.5)	0.298	0.5	(0.2, 0.7)	<.0001	0.6	(0.3, 0.9)	<.0001

Intraoperative transfusions

Factor	1 unit	2 units	3 units						
	B	95% CI	P	B	95% CI	P	B	95% CI	P
Red cell (units)	-2	(-3, -1)	<.0001	-2	(-3, -2)	<.0001	-4	(-5, -3)	<.0001
Plasma (units)	-1	(-2, -1)	<.0001	-1	(-2, -1)	<.0001	-3	(-3, -2)	<.0001
Platelets (units)	-1	(-1, -0.3)	0.002	-1	(-1, -0.4)	0.002	-2	(-3, -2)	<.0001
Cryoprecipitate (units)	-0.1	(-0.3, 0)	0.163	-0.1	(-0.2, 0)	0.202	-0.5	(-0.7, -0.3)	<.0001
First postoperative hematocrit (%)	-0.9	(-1.4, 0.4)	<.0001	-0.3	(-0.8, 0.1)	0.120	-0.2	(-0.8, 0.4)	0.480
First ICU platelet count (1000/µL)	-4	(-10, 1)	0.139	-4	(-9, 1)	0.141	-20	(-26, -13)	<.0001

Any transfusions

Factor	1 unit	2 units	3 units						
	B	95% CI	P	B	95% CI	P	B	95% CI	P
Red cell (units)	-3	(-4, -3)	<.0001	-3	(-4, -3)	<.0001	-5	(-6, -4)	<.0001
Plasma (units)	-2	(-3, -1)	<.0001	-2	(-2, -1)	<.0001	-4	(-4, -3)	<.0001
Platelets (units)	-1	(-2, -1)	<.0001	-1	(-2, -1)	<.0001	-3	(-3, -2)	<.0001
Cryoprecipitate (units)	-0.3	(-0.4, 0.1)	0.004	-0.1	(-0.3, 0)	0.117	-0.3	(-0.5, -0.1)	0.001

CPB – cardiopulmonary bypass. B – linear regression coefficient. Compared to no autologous blood removed, B is the change in the amount of the factor when autologous blood was removed and then transfused. 95% CI – 95% confidence interval

Importantly, we found that AWOF was not associated with AKI, which is similar to one study of ANH, but different than another ANH study, which found lower (28.2% v 24.1%, P < .001) rate of AKI in patients with autologous blood transfusions.[6,7] While transfusion in cardiac surgery has been associated with AKI,[21] unlike Goldberg et al’s study,[7] we did not find autologous blood to be associated with a lower AKI rate. Our study differs by removing blood without replacing the lost volume, which may contribute to a fall in cardiac output and renal blood flow. However, compared to ANH, it maintains hematocrit and thus may produce similar oxygen delivery.

We also found that despite fewer RBC transfusions, the change in hematocrit from postinduction to ICU was similar in the propensity matched groups. Our findings of fewer RBC, plasma, and platelet transfusions are similar to studies that used ANH.[6,8-11] Given the small numbers of patients who received cryoprecipitate, we may have been underpowered to find a benefit. Platelet count on ICU arrival was lower in the third unit AWOF group [Table 3]; but this was not associated with increased rate of reexploration for hemorrhage [Table 3].

AWOF was associated with a 33-36% lower odds ratio of receiving homologous blood transfusions per unit of blood removed [Table 5]. Our findings of decreased autologous transfusions in AWOF is similar to both prospective randomized and retrospective observational studies and one meta-analysis that found that ANH reduces transfusions.[6-8,10-11] Its similarity is obvious that larger amounts of autologous transfusions were associated with lesser transfusion rates. Our results differ from two studies that found no benefit from ANH.[12,13] While the volume of autologous blood removed in one study was relatively smaller (1 unit),[13] the volume in the other study was larger [1,099 ± 333 ml (range, 430–1900 ml)].[12] It is possible that large volume removal with fluid replacement leads to excessive hemodilution such that subsequent transfusion is necessary. Other studies of autologous transfusion did not provide information on vasopressors, making comparisons difficult.[22-24]

AWOF attempts to balance the benefits of autologous blood transfusion with the risks of hypovolemia. Larger volumes of autologous blood result in a higher...
hematocrit and may proportionally decrease platelet and plasma transfusions by providing fresh platelets and clotting factors postbypass when they are needed. However, larger volumes of autologous blood removal increase the risk of hypovolemia, need for vasopressors, and organ hypoperfusion and injury. Administration of intravenous fluids to maintain normovolemia (ANH) leads to hemodilution, anemia, and the potential for organ dysfunction. In particular, anemia on CBP is associated with AKI and mortality—probably from the decreased oxygen carrying capacity of the resultant anemic blood.[21,25] AWOF by minimizing hemodilution should lead to a higher oxygen carrying capacity, but its effects on oxygen delivery need further study.

Our study extends those findings to the use of AWOF and shows that AWOF is achievable and has no evidence of perfusion deficits as measured by acid–base balance or AKI. Future studies should compare AWOF to ANH, as AWOF should produce less hemodilution and may lead to fewer transfusions. Additionally, the lesser blood volume may contribute to decreased hemorrhage.[24]

There are several limitations to this study. First, this is a single center study and individual transfusion practices may not be generalizable to other institutions. Multi-center study is needed to confirm our finding. Second, as this was not a blinded study and there was no transfusion protocol, decisions to order homologous blood may have been based, at least in part, on the lack of autologous blood. This bias would create an apparent benefit to transfusion based, at least in part, on the lack of autologous blood.

In conclusion, we found that AWOF of 1-3 units for later autologous transfusion is associated with decreased homologous transfusions without acidosis or AKI.
Financial support and sponsorship
Supported by departmental and university funds.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Whitson BA, Huddleston SJ, Savik K, Shumway SJ. Bloodless cardiac surgery is associated with decreased morbidity and mortality. J Card Surg 2007;22:373-8.
2. Mazer CD, Whitlock RP, Fergusson DA, Hall J, Belley-Cote E, Connolly K, et al. Restrictive or liberal red-cell transfusion for cardiac surgery. N Engl J Med 2017;377:2133-44.
3. Engoren MC, Habib RH, Zacharias A, Schwann TA, Riordan CJ, Durham SJ. Effect of blood transfusion on long-term survival after cardiac operation. Ann Thorac Surg 2002;74:1180-6.
4. Koch CG, Li L, Sessler DI, Figueroa P, Hoeltge GA, Mihaljevic T, et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med 2008;358:1229-39.
5. Wahba A, Black G, Koksch M, Rothe F, Preuner J, Schmitz G, et al. Cardiopulmonary bypass leads to preferential loss of activated platelets. A flow cytometric assay of platelet surface antigens. Eur J Cardiothorac Surg 1996;10:768-73.
6. Zhou Z-F, Jia X-P, Sun K, Zhang F-J, Yu L-N, Xing T, et al. Mild volume acute normovolemic hemodilution is associated with lower intraoperative transfusion and postoperative pulmonary infection in patients undergoing cardiac surgery — A retrospective, propensity matching study. BMC Anesthesiol 2017;17:13.
7. Goldberg J, Paugh TA, Dickinson TA, Fuller J, Paone G, Theurer PF, et al. Greater volume of acute normovolemic hemodilution may aid in reducing blood transfusions after cardiac surgery. Ann Thorac Surg. 2015;100:1581‑7.
8. Kochamba GS, Pfeffer TA, Sintek CF, Khonsari S. Intraoperative autotransfusion reduces blood loss after cardiopulmonary bypass. Ann Thorac Surg 1996;61:900–3.
9. Helm RE, Klemperer JD, Rosengart TK, Gold JP, Peterson P, DeBois W, et al. Intraoperative autologous blood donation preserves red cell mass but does not decrease postoperative bleeding. Ann Thorac Surg 1996;62:1431–41.
10. Bryson GL, Laupacis A, Wells GA. Does acute normovolemic hemodilution reduce perioperative allogeneic transfusion? A meta-analysis. The international study of perioperative transfusion. Anesth Analg 1998;86:9–15.
11. Barile I, Fominsky E, DiTomaso N, Alpizar Castro LE, Landoni G, De Luca M, et al. Acute normovolemic hemodilution reduces allogeneic red blood cell transfusion in cardiac surgery: A systematic review and meta-analysis of randomized trials. Anesth Analg 2017;124:743-52.
12. Höhn L, Schweizer A, Läcker M, Morel DR. Absence of beneficial effect of acute normovolemic hemodilution combined with aprotinin on allogeneic blood transfusion requirements in cardiac surgery. Anesthesiology 2002;96:276–82.
13. Casati V, Specziali G, D’Alessandro C, Gianoli C, Grasso MA, Spagolo S, et al. Intraoperative low-volume acute normovolemic hemodilution in adult open-heart surgery. Anesthesiology 2002;97:367–73.
14. Hyde JA, Chinn JA, Graham TR. Platelets and cardiopulmonary bypass. Perfusion 1998;3:389-407.
15. Rammarine Jr, Higgins MJ, McGarrity A, Mahmood Z, Wheatley DJ, Belcher PR. Autologous blood transfusion for cardiopulmonary bypass: Effects of storage conditions on platelet function. J Cardiothorac Vase Anesth 2006;20:541-7.
16. Zisman E, Eden A, Shenderay E, Meyer G, Balagula M, Ammar R, et al. The effect of acute autologous blood transfusion on coagulation dysfunction after cardiopulmonary bypass. Eur J Anaesthesiol 2009;26:868-73.
17. Flom-Halvorsen HI, Ovrum E, Oystese R, Brosstad F. Quality of intraoperative autologous blood withdrawal used for retransfusion after cardiopulmonary bypass. Ann Thorac Surg 2003;76:744-8.
18. Saad H, Aladawy M. Temperature management in cardiac surgery. Glob Cardiol Sci Pract 2013;2013:44-62.
19. Lamke LO, Liljedahl SO. Plasma volume changes after infusion of various plasma expanders. Resuscitation 1976;5:93-102.
20. SAFE Study Investigators; Finfer S, McEvoy S, Bellomo R, McArthur G, Myburgh J, et al. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med 2011;37:86-96.
21. Rasmussen SR, Kandler K, Nielsen RV, Jakobsen PC, Ranucci M, Ravn HB. Association between transfusion of blood products and acute kidney injury following cardiac surgery. Acta Anaesthesiol Scand 2020;64:1397-404.
22. Zimmermann E, Zhu R, Ogami T, Lamonica A, Petrie JA 3rd, Mack C, et al. Intraoperative autologous blood donation leads to fewer transfusions in cardiac surgery. Ann Thorac Surg 2019;108:1738-44.
23. van der Wal MT, Boks RH, Wijers-Hille MJ, Hofland J, Takkenberg JJ, Bogers AJ. The effect of pre-operative blood withdrawal, with or without sequestration, on allogeneic blood product requirements. Perfusion 2015;30:643-9.
24. Ramnath AN, Naber HR, de Boer A, Leusink JA. No benefit of intraoperative whole blood sequestration and autotransfusion during coronary artery bypass grafting: Results of a randomized clinical trial. J Thorac Cardiovasc Surg 2003;125:1432-7.
25. Mehta RH, Castelvecchio S, Ballotta A, Frigiola A, Bossone E, Ranucci M. Association of gender and lowest hematocrit on intraoperative autologous blood bypass used for retransfusion after cardiopulmonary bypass. Ann Thorac Surg 2019;108:1738-44.
26. Wyeth PC, Studer UE, Thalmann GN, Burkhard FC. Intraoperative continuous norepinephrine infusion combined with restrictive deferred hydration significantly reduces the need for blood transfusion in patients undergoing open radical cystectomy: Results of a prospective randomised trial. Eur Urol 2014;66:352-60.
Supplementary Table 1. Linear regression showing the association between processes of care, intermediate outcomes and the number of autologous blood units removed to patients with no autologous blood removed (Control group). Regressions used the unadjusted intravenous fluids and cardiopulmonary bypass volume. Any transfusion is sum of intraoperative and postoperative. CPB – cardiopulmonary bypass. B – linear regression coefficient. Compared to no autologous blood removed, B is the change in the amount of the factor when autologous blood was removed and then transfused. 95% CI – 95% confidence interval.

Factor	1 unit		2 units		3 units				
Number of units of blood removed									
Factor	B	95% CI	p-value	B	95% CI	p-value	B	95% CI	p-value
Vasopressor boluses (#)	1	(0, 2)	0.017	2	(1, 3)	<0.001	4	(3, 6)	<0.001
Ephedrine dose (mg)	0	(-1, 2)	0.492	2	(1, 3)	<0.001	2	(0, 3)	0.036
Phenylephrine bolus dose (mcg)	97	(-117, 311)	0.373	62	(-109, 233)	0.480	425	(212, 639)	<0.001
Phenylephrine total dose (mcg)	590	(-422, 1602)	0.253	408	(-447, 1262)	0.350	1453	(274, 2632)	0.016
Epinephrine total dose (mcg)	-97	(-163, -33)	0.003	-132	(-187, -78)	<0.001	-194	(-270, -119)	<0.001
Norepinephrine total dose (mcg)	-71	(-186, 44)	0.229	-184	(-281, -87)	0.546	-230	(-364, -96)	<0.001
Vasopressin total dose (units)	-0.2	(-1.1, 0.6)	0.595	-0.7	(-1.4, 0.1)	0.077	-1.4	(-2.4, -0.4)	0.006
CPB fluids (mL)	-75	(-337, 187)	0.575	-59	(-280, 163)	0.603	216	(-89, 521)	0.116
CPB fluids adjusted (mL)	-124	(-402, 154)	0.382	-90	(-325, 145)	0.454	147	(177, 471)	0.374
Intravenous fluids (mL)	-211	(-492, 70)	0.141	-117	(-354, 121)	0.336	69	(-258, 397)	0.678
Intravenous fluids adjusted (mL)	-274	(-593, 45)	0.093	-42	(-312, 228)	0.759	171	(-201, 543)	0.369
Minimal arterial pH	0.01	(0.01, 0.2)	0.002	0.01	(0.00, 0.01)	0.084	0.017	(0.00, 0.02)	0.038
Maximum lactate (mmol/L)	-0.7	(-0.9, -0.4)	<0.001	-0.4	(-0.6, -0.2)	<0.001	-0.7	(-0.9, -0.4)	<0.001
Minimum bicarbonate (mEq/L)	0.2	(-0.1, 0.5)	0.266	0.4	(0.1, 0.6)	0.004	0.5	(0.1, 0.9)	0.011
Intraoperative transfusions									
Red cell (units)	-2	(-3, -1)	<0.001	-2	(-3, -2)	<0.001	-4	(-5, -3)	<0.001
Plasma (units)	-1	(-2, -1)	<0.001	-1	(-2, -1)	<0.001	-3	(-3, -2)	<0.001
Platelets (units)	-1	(-1, -0.3)	0.002	-1	(-1, -0.4)	<0.001	-2	(-3, -2)	<0.001
Cryoprecipitate (units)	-0.1	(-0.3, 0)	0.163	-0.1	(-0.2, 0)	0.202	-0.5	(-0.7, -0.3)	<0.001
First ICU hematocrit (%)	-0.7	(-1.3, -0.2)	0.005	-0.4	(-0.8, 0.1)	0.100	-0.2	(-0.8, 0.4)	0.217
First ICU platelet count (1000/µL)	-5	(-10, 1)	0.115	-4	(-9, 1)	0.106	-20	(-27, -13)	<0.001
Any transfusions									
Red cell (units)	-2	(-3, -1)	<0.001	-3	(-3, -2)	<0.001	-5	(-6, -3)	<0.001
Plasma (units)	-1	(-2, -1)	<0.001	-1	(-2, -1)	<0.001	-3	(-4, -3)	<0.001
Platelets (units)	-1	(-1, -0.3)	0.001	-1	(-1, -0.5)	<0.001	-3	(-3, -2)	<0.001
Cryoprecipitate (units)	-0.1	(-0.3, 0)	0.108	-0.1	(-0.2, 0)	0.070	-0.6	(-0.8, -0.4)	<0.001
Supplementary Table 2. Adjusted odds ratio in patients with 1, 2, or 3 units of autologous blood removed compared to patients who had no autologous blood removed (Control group). Regressions used the unadjusted intravenous fluids and cardiopulmonary bypass volume. Any transfusion is sum of intraoperative and postoperative. KDIGO – Kidney disease improving global outcome, within the first 3 postoperative days. Undefined.

Number of units of blood removed	1 unit	2 units	3 units			
Factor	Odds ratio 95% CI	p-value	Odds ratio 95% CI	p-value	Odds ratio 95% CI	p-value
Calcium administration	2.26 (0.61, 8.41)	0.223	2.28 (0.88, 5.95)	0.091	undef (0, ∞)	0.986
Any vasopressor infusion	1.69 (0.90, 3.15)	0.101	1.62 (1.01, 2.59)	0.044	1.87 (0.97, 3.61)	0.061
Ephedrine administration	1.14 (0.81, 1.60)	0.461	1.73 (1.32, 2.26)	<0.001	1.90 (1.37, 2.64)	<0.001
Intraoperative transfusion						
Red cell	0.35 (0.25, 0.50)	<0.001	0.24 (0.17, 0.32)	<0.001	0.09 (0.06, 0.13)	<0.001
Plasma	0.50 (0.36, 0.70)	<0.001	0.37 (0.28, 0.48)	<0.001	0.09 (0.06, 0.13)	<0.001
Platelet	0.48 (0.35, 0.66)	0.001	0.39 (0.29, 0.51)	<0.001	0.10 (0.07, 0.16)	<0.001
Cryoprecipitate	0.58 (0.34, 1.01)	0.053	0.81 (0.56, 1.16)	0.248	0.22 (0.13, 0.37)	<0.001
Any transfusions						
Red cells (units)	0.41 (0.28, 0.60)	<0.001	0.25 (0.18, 0.34)	<0.001	0.09 (0.06, 0.15)	<0.001
Plasma (units)	0.48 (0.34, 0.67)	<0.001	0.36 (0.26, 0.48)	<0.001	0.08 (0.05, 0.12)	<0.001
Platelets (units)	0.43 (0.31, 0.60)	<0.001	0.39 (0.29, 0.52)	<0.001	0.11 (0.07, 0.17)	<0.001
Cryoprecipitate (units)	0.47 (0.26, 0.88)	0.017	0.81 (0.53, 1.23)	0.315	0.18 (0.09, 0.33)	<0.001
KDIGO stage 1 or worse	1.15 (0.85, 1.55)	0.378	0.98 (0.76, 1.27)	0.888	0.91 (0.64, 1.28)	0.572
KDIGO stage 2 or worse	0.64 (0.33, 1.23)	0.181	0.85 (0.51, 1.41)	0.516	0.71 (0.34, 1.48)	0.361
Supplementary Table 3. Propensity score matched no autologous blood removed with autologous blood removed patients with processes of care and outcomes. Any transfusion is intraoperative + postoperative transfusion. KDIGO – Kidney disease improving global outcome. CPB – cardiopulmonary bypass.

Factor	No Autologous		Yes Autologous		p-value	
	N = 488	n	%	N = 488	n	%
Received vasopressor infusion	455 93	476	98	0.023		
Received ephedrine	86 18	128	26	0.002		
Intraoperative transfusion						
Red cells	364 75	260	53	<0.001		
Plasma	259 53	166	34	<0.001		
Platelets	280 57	189	39	<0.001		
Cryoprecipitate	66 14	61	12	0.704		
Postoperative transfusion						
Red cells	105 22	68	14	0.003		
Plasma	23 5	14	3	0.180		
Platelets	30 6	11	2	0.004		
Cryoprecipitate	2 0.4	1	0.2	0.999		
Any transfusion						
Red cells	379 78	283	58	<0.001		
Plasma	261 53	167	34	<0.001		
Platelets	283 58	190	39	<0.001		
Cryoprecipitate	68 14	61	12	0.571		
KDIGO stage 1	131 27	138	28	0.635		
KDIGO stage 2	18 4	13	3	0.711		
KDIGO stage 3	27 6	18	4	0.217		
Reexploration for hemorrhage	19 4	17	3	0.865		
Postinduction hematocrit (%)						
Vasopressor boluses (#)	9 (4, 14)	11 (6, 17)	<0.001			
Ephedrine (mg)	0 (0, 0)	0 (0, 5)	<0.001			
Phenylephrine (mcg)	4284 (1600, 8843)	5634 (2732, 9184)	<0.001			
Epinephrine (mcg)	0 (0, 0)	0 (0, 0)	0.008			
Metric	Value 1	Value 2	p-value			
--------------------------------------	----------------------------------	----------------------------------	---------			
Norepinephrine (mcg)	164 (0, 650)	108 (0, 477)	0.126			
Vasopressin (Units)	0 (0, 0)	0 (0, 0)	0.094			
Intravenous fluids (mL)	1000 (1000, 1500)	1000 (1000, 1700)	0.099			
Intravenous fluids adjusted (mL)	1000 (1000, 2000)	1300 (1000, 2000)	0.003			
CPB volume (mL)	1700 (988, 3100)	2000 (1000, 3463)	0.033			
CPB volume adjusted (mL)	1800 (1000, 3500)	2100 (1000, 3525)	0.046			
Minimal arterial pH	7.32 ± 0.09	7.33 ± 0.06	0.096			
Maximum lactic acid (mmol/L)	3.6 ± 2.5	2.9 ± 1.8	<0.001			
Minimum bicarbonate (mEq/L)	22.1 ± 2.8	22.0 ± 2.3	0.780			
Nadir hematocrit (%)	22.8 ± 4.2	22.0 ± 4.0	0.002			
First ICU hematocrit (%)	29.8 ± 4.5	29.9 ± 4.0	0.739			
First ICU platelet count (1000/µL)	154 ± 57	144 ± 51	0.004			

Intraoperative transfusion

Metric	Value 1	Value 2	p-value
Red cells (units)	3 (0, 6)	1 (0, 3)	<0.001
Plasma (units)	1 (0, 4)	0 (0, 2)	<0.001
Platelets (units)	1 (0, 4)	0 (0, 2)	<0.001
Cryoprecipitate (units)	0 (0, 0)	0 (0, 0)	0.551

Postoperative transfusion

Metric	Value 1	Value 2	p-value
Red cells (units)	0 (0, 0)	0 (0, 0)	0.002
Plasma (units)	0 (0, 0)	0 (0, 0)	0.139
Platelets (units)	0 (0, 0)	0 (0, 0)	0.003
Cryoprecipitate (units)	0 (0, 0)	0 (0, 0)	0.566

Any transfusion

Metric	Value 1	Value 2	p-value
Red cells (units)	3 (1, 6)	1 (0, 4)	<.001
Plasma (units)	1 (0, 4)	0 (0, 2)	<.001
Platelets (units)	1 (0, 4)	0 (0, 2)	<.001
Cryoprecipitate (units)	0 (0, 0)	0 (0, 0)	0.452