Hadron physics: a quark-model analysis

A. Valcarce, J. Vijande, P. González and H. Garcilazo

Dpto. de Física Fundamental, Universidad de Salamanca, Spain
†Dpto. de Física Teórica, Universidad de Valencia (UV) and IFIC (UV-CSIC), Spain
Dpto. de Física Teórica, Universidad de Valencia, Spain
‡Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Mexico

Abstract. We discuss recent results on heavy and light baryon spectroscopy.

Keywords: baryons, quark-model

PACS: 12.39.Jh, 12.39.Pn, 14.20.-c

INTRODUCTION

Hadron spectroscopy has undergone a great renaissance in recent years [1]. The new findings include: low-lying excitations of D and B mesons, long-awaited missing states and new states near 4 GeV/c² in the charmonium spectrum, charmed and bottom baryons, and evidence for doubly charmed baryons. The light hadron sector remains also restless reporting new scalar mesons or showing a deep theoretical interest in the high energy part of both the meson and baryon spectra. In this talk we center our attention in the heavy baryon spectroscopy as well as some anomalous states present in the light baryon spectra.

HEAVY BARYONS

Heavy baryons containing a single heavy quark are particularly interesting. The light degrees of freedom (quarks and gluons) circle around the nearly static heavy quark. Such a system behaves as the QCD analogue of the familiar hydrogen bounded by the electromagnetic interaction. When the heavy quark mass \(m_Q\) \(\to \infty\), the angular momentum of the light degrees of freedom is a good quantum number. Thus, heavy quark baryons belong to either SU(3) antisymmetric \(\bar{3}_F\) or symmetric \(6_F\) representations. The spin of the light diquark is 0 for \(\bar{3}_F\), while it is 1 for \(6_F\). Thus, the spin of the ground state baryons is 1=2 for \(\bar{3}_F\), representing the \(\Lambda_b\) and \(\Xi_b\) baryons, while it can be both 1=2 or 3=2 for \(6_F\), allocating \(\Sigma_b\), \(\Sigma'_b\), \(\Xi'_b\), \(\Omega_b\) and \(\Omega'_b\), where the star indicates spin 3=2 states. Therefore heavy hadrons form doublets. For example, \(\Sigma_b\) and \(\Sigma'_b\) will be degenerate in the heavy quark limit. Their mass splitting is caused by the chromomagnetic interaction at the order 1=\(m_Q\). These effects can be, for example, taken into account systematically in the framework of heavy quark effective field theory. The mass difference between states belonging to the \(\bar{3}_F\) and \(6_F\) representations do also contain the dynamics of the light diquark subsystem, hard to accommodate in any heavy quark mass expansion. Therefore, exact solutions of the three-body problem for
TABLE 1. Masses, in MeV, of charmed and bottom baryons.

State	J^P	Charm	Bottom								
		CQC	Exp. [3]	[4]	[5]	CQC	Exp. [3]	[4]	[5]		
Λ_1	1^-	2285	2286	2285	2268	2297	5624	5624	5638	5612	5622
Λ_1	1^-	2785	2765	2865	2791	2772	6106	6188	6107	6086	
Λ_1	1^-	2627	2595	2635	2625	2598	5947	5978	5939	5930	
Λ_1	1^-	2880	2880	2885	2816	3017	6245	6268	6180	6328	
Λ_3^+	3^-	3061	2930	2887	2874		6388	6248	6181	6189	
Λ_3^+	3^-	3308	3160	3073	3262		6637	6488	6401	6540	
Λ_5^+	5^-	2888	2880	2930	2887	2883					
Σ_1	1^-	2435	2454	2455	2455	2439	5807	5808	5845	5833	5805
Σ_1	1^-	2904	3025	2958	2864		6247	6370	6294	6202	
Σ_1	1^-	2772	2765	2805	2748	2795	6103	6155	6099	6108	
Σ_1	1^-	2893	2885		3176		6241	6245		6401	
Σ_1	3^-	2502	2518	2535	2519	2518	5829	5829	5875	5858	5834
Σ_1	3^-	2944	2940	3065	2995	2912	6260	6385	6308	6222	
Σ_1	3^-	2772	2800	2805	2763	2761					
Ξ_1	1^-	2471	2471	2467	2492	2481	5801	5793	5806	5844	5812
Ξ_1	1^-	3137	3123	2992	2923		6258	6306		6264	
Ξ_1	1^-	2574	2578	2567	2592	2578	5939	5941	5958	5937	
Ξ_1	1^-	3212	3087		2984		6360	6416		6327	
Ξ_1	1^-	2799	2792	2792	2763	2801	6109	6116	6108	6119	
Ξ_1	1^-	2902	2897	2859	2928		6223	6236	6192	6238	
Ξ_1	1^-	3004	2980	2993		3186					
Ξ_1	3^-	2642	2646	2647	2650	2654	5961	5971	5982	5963	
Ξ_1	3^-	3071	3076	3057	2984	3030	6373	6356	6294	6341	
Ξ_1	5^-	3049	3055	3057		3042					
Ξ_1	5^-	3132	3123	3167		3123					
Ω_1	1^-	2699	2698	2675	2718	2698	6056	6034	6081	6065	
Ω_1	1^-	3159	3195	3152	3065		6479	6504	6472	6440	
Ω_1	1^-	3035	3005	2977	3020		6340	6319	6301	6352	
Ω_1	1^-	3125	3075		3371		6458	6414		6624	
Ω_1	3^-	2767	2768	2750	2776	2768	6079	6069	6102	6088	
Ω_1	3^-	3202	3235	3190	3119		6493	6519	6478	6518	

Heavy hadrons are theoretically desirable because they will serve to test the reliability of approximate techniques: heavy quark mass expansions, variational calculations, or quark-diquark approximations.

We have solved the Schrödinger equation by the Faddeev method in momentum space with the constituent quark model (CQC) of Ref. [2]. The results are shown in Table 1 compared to experiment and other theoretical approaches. All known experimental data are nicely described. Such an agreement and the exact method used to solve the three-body problem make our predictions also valuable as a guideline to experimentalists.

As compared to other results in the literature we see an overall agreement for the low-lying states both with the quark-diquark approximation of Ref. [5] and the variational calculation in a harmonic oscillator basis of Ref. [4]. It is worth noticing that the relativistic quark-diquark approximation and the harmonic oscillator variational method predict a lower 3^=2^- excited state for the Λ_b baryon. Such result can be easily under-
TABLE 2. Masses, in MeV, of different bottom baryons with two-light quarks with (Full) and without ($V_\pi = 0$) the contribution of the one-pion exchange potential.

State	Full	$V_\pi = 0$	ΔE
$\Sigma_b (1=2^+)$	5807	5822	15
$\Sigma_b (3=2^+)$	5829	5844	15
$\Lambda_b (1=2^+)$	5624	5819	195
$\Lambda_b (3=2^+)$	6388	6387	1

stood by looking at Table 2 where it is made manifest the influence of the pseudoscalar interaction between the light quarks on the $\Lambda_b (1=2^+)$ ground state, diminishing its mass by 200 MeV. If this attraction were not present for the $\Lambda_b (1=2^+)$, the $\Lambda_b (3=2^+)$ it would be lower in mass as reported in Refs. [4, 5] (a similar effect will be observed in the charmed baryon spectra). Thus, the measurement and identification of the $\Lambda_b (3=2^+)$ is a relevant feature that will help to clarify the nature of the interaction between the light quarks in heavy baryon spectroscopy, determining the need of pseudoscalar forces consequence of the spontaneous chiral symmetry breaking in the light flavor sector.

In the case of charmed baryons, there are some excited states that it is not even known if they are excitations of the Λ_c or Σ_c. Besides, a number of new Ξ_c^+ and Ξ_c^+ states have been also discovered recently [2]. As can be seen all known experimental states fit nicely into the description of our model not leaving too many possibilities open for the assigned quantum numbers as we resume in Table 3.

Finally, we can make parameter free predictions for ground states as well as for spin, orbital and radial excitation of doubly charmed and bottom baryons. Our results are shown in Table 4. For doubly charmed baryons, the ground state is found to be at 3579 MeV, far below the result of Ref. [4] and in perfect agreement with lattice nonrelativistic QCD [6], but still a little bit higher than the non-confirmed SELEX result, 3519 MeV [7].

TABLE 3. Possible model states and spin-parity assignments for recently discovered charmed baryons. The 'star' indicates radial excitations.

Experimental resonance (MeV)	Model states
Λ_c or Σ_c	
2765	$\Sigma_c (1=2^+)$ or $\Lambda_c (1=2^+)$
2880	$\Lambda_c (1=2^+)$ or $\Lambda_c (5=2^+)$
2940	$\Sigma_c (3=2^+)$
2800	$\Sigma_c (3=2^+)$

Ξ_c or Ξ_c^+	
3055	$\Xi_c (5=2^+)$
3123	$\Xi_c (1=2^+)$ or $\Xi_c^+(5=2^+)$
2980	$\Xi_c (1=2^+)$
3076	$\Xi_c (3=2^+)$
TABLE 4. Ground state and excitation energies, ΔE, of doubly charmed and bottom baryons. The 'star' indicates radial excitations. Masses are in MeV.

State	J^P	CQC	[8]	[3]	[6]	[4]
Ξ_{bb}	1=2 $^+$	10189	10340	10194	10340	
ΔE	3=2 $^+$	29	30	41	20	27
Ξ_{bb}	3=2 $^+$	312	386	238		
ΔE	1=2 $^+$	293	355	236		
Ξ_{bb}	1=2	217	262	153		
Ω_{bb}	1=2	423	462	370		
Ξ_{cc}	1=2 $^+$	10293	10370	10267	10454	
ΔE	3=2 $^+$	28	30	38	19	32
Ξ_{cc}	3=2 $^+$	329	383	267		
ΔE	1=2 $^+$	311	359	239		
Ξ_{cc}	1=2	226	265	162		
Ω_{cc}	1=2	390	410	309		
Ω_{cc}	1=2	3579	3660	3587	3588	3676
ΔE	3=2 $^+$	77	80	93	70	77
Ω_{cc}	3=2 $^+$	446	486	366		
ΔE	1=2 $^+$	397	435	353		
Ω_{cc}	1=2	301	314	234		
ΔE	1=2	439	472	398		

It is therefore a challenge for experimentalists to confirm or to find the ground state of doubly charmed and bottom baryons.

The combined study of Qqq and QQq systems, where Q stands for a heavy c or b quark and q for a light u, d, or s quark, will also provide some hints to learn about the basic dynamics governing the interaction between light quarks. The interaction between pairs of quarks containing a heavy quark Q is driven by the perturbative one-gluon exchange. For the Qqq system the mass difference between members of the 6_F SU(3) representation comes determined only by the perturbative one-gluon exchange, whether between members of the 6_F and $\bar{3}_F$ representations it presents contributions from the one-gluon exchange and also possible pseudoscalar exchanges. If the latter mass difference is attributed only to the one-gluon exchange (this would be the case of models based only on the perturbative one-gluon exchange), it will be strengthened as compared to models considering pseudoscalar potentials at the level of quarks, where a weaker one-gluon exchange will play the role. When moving to the QQq systems
only one-gluon exchange interactions between the quarks will survive, with the strength determined in the Qqq sector, where we have experimental data. This will give rise to larger masses for the ground states, due to the more attractive one-gluon exchange potential in the Qqq sector, what requires larger constituent quark masses to reproduce the experimental data. This could be the reason for the larger masses of ground state doubly heavy baryons obtained with gluon-based interacting potentials \[4, 9\].

LIGHT BARYONS

In the Particle Data Group (PDG) book \[10\] the light-quark (u and d) baryon spectrum is composed of forty resonances rated from one () to four () stars. The PDG average–mass region below 1950 MeV contains mostly four–star (well established) resonances, fourteen out of twenty three, the same being true for the Λ strange sector, eight out of eleven. This makes this mass region the most suitable for testing any spectroscopic quark model. From the pioneering Isgur and Karl's non-relativistic quark model in the late 70's \[11\] more refined spectroscopic quark models for baryons, based on two-body interactions, have been developed \[12\]. We will refer to them as two-body quark models and we shall denote them generically as $3q^2_b$. As an overall result the masses of the fourteen four-star resonances, most times with the exception of N_{P11} (1440), are rather well predicted (100 MeV difference with the PDG average value) by these models. Regarding the five three-star (likely to certain existence) resonances, the situation is much less favorable since the masses of two of them, Δ_{P33} (1600) and Δ_{D35} (1930); are generally overpredicted, up to 250 MeV above the PDG average value. Let us note that a similar discrepancy is observed for Δ_{S31} (1900) (up to 100 MeV difference with the PDG average value) which can be related to Δ_{D35} (1930) as we shall show, and for Δ_{P31} (1750) (up to 200 MeV above the PDG average). In the strange Λ sector an outstanding overpredicted (by 80 150 MeV) state is the Λ_{S01} (1405). Henceforth we shall call anomalies these significantly overpredicted mass resonances.

We carry out a general analysis of the anomalies: we identify them and we propose a plausible physical mechanism to give correctly account of their masses. Among the anomalies we find large-energy-step anomalies, that correspond either to radial excitations as the Δ_{P33} (1600) and the N_{P21} (1440) or quark Pauli blocking induced states as the Δ_{D35} (1930) and the Δ_{P31} (1750) \[12\].

Given the large radial excitation energy and the large mass predicted for quark Pauli blocking induced states, one may wonder about the possibility that $4q\bar{q}$ components may be energetically competitive, despite the extra quark and antiquark masses. Thus, they could greatly contribute, altogether with $3q$ components, to the formation of the bound structures. In order to examine this possibility at a phenomenological level we look for $4q\bar{q}$ components in the form of inelastic meson-baryon channels in relative S wave (the lowest energy partial wave) with adequate quantum numbers to couple to the anomalies and with thresholds close above their PDG masses. We shall name these components meson-baryon threshold channels or mB channels.

Certainly meson-baryon channel coupling effects may be at work for other resonances not involving either large energy excitation steps or a large mass induced by quark Pauli blocking. The most prominent examples are the Λ_{S01} (1405) being mostly interpreted, at
the hadron level, as an S wave $\pi N K$ quasi-bound system, and the $\Delta F_{35}(2000)$, a bizarre state since its average mass is obtained from three different data analyses, two of them [13] reporting a mass about 1720 MeV and the other [14] giving a quite different value of 2200 MeV. Then by considering two differentiated resonances the $\Delta F_{35}(1720)$ would be a clear candidate for an anomaly.

To go beyond the qualitative analysis of the anomalies we shall consider a system of one confined channel, the $3q^{2b}$, in interaction with one free-channel, a meson-baryon threshold channel mB, with a hamiltonian matrix:

$$[H]^* = \begin{pmatrix} M_m + M_B & a \\ a & M_{3q^{2b}} \end{pmatrix}$$

where $M_{3q^{2b}}$ stands for the mass of the $3q^{2b}$ state, M_m and M_B for the masses of the meson and baryon respectively and a for a fitting parameter giving account of the interaction.

In order to proceed to calculate the eigenvalues we have to choose a particular $3q^{2b}$ model and establish a criterion for the choice of the mB channel for each anomaly. We shall use as $M_{3q^{2b}}$ the values calculated in Ref. [9]. As mB we shall take for granted the πK channel for $\Delta_{S_{01}}(1405)$ and the σN channel for $N_{P_{11}}(1440)$. For $\Delta_{D_{33}}(1930)$; $\Delta_{D_{33}}(1940)$ and $\Delta_{S_{31}}(1900)$ we shall select $\rho \Delta$ (equivalently we could have preferred the almost degenerate $\omega \Delta$) as suggested by our phenomenological analysis. For the same reason $\pi N_{D_{15}}(1675)$ will be employed for $\Delta F_{35}(1720)$: For $\Delta_{P_{31}}(1750)$ we shall use $\pi N_{S_{11}}(1650)$ and for $\Delta_{P_{33}}(1600)$ we shall take $\pi N_{P_{33}}(1520)$.

Although the value of $\hat{\mu}$ might vary depending on the configurations involved in each $(mB)\ 3q$ coupling we shall use for the sake of simplicity the same value in all cases. The M results for $\hat{\mu}$= 85 MeV are numerically detailed in Table [5] where the values for $M_{3q^{2b}}$ and for $(M_m + M_B)$ in the chosen mB channel as well as their probabilities to give M are also displayed. As can be checked the improvement of the description with respect to $3q^{2b}$ is astonishing. All the predicted M masses lye very close to the PDG average masses for the anomalies. In Fig. 1 the M values for $\hat{\mu}$= 85 MeV are drawn as compared to the experimental mass intervals.

PDG Resonance	mB threshold	Prob.	$3q^{2b}$ Prob.	M	Experiment	
$\Delta_{P_{31}}(1600)$	$[\pi N_{S_{11}}(1520)] (1660)$	81.1%	1795	18.9%	1619	1550–1700
$N_{P_{11}}(1440)$	$[\sigma N](1540)$	50.0%	1540	50.0%	1455	1420–1470
$\Delta_{D_{33}}(1930)$	$[\rho \Delta](2002)$	83.4%	2155	16.6%	1960	1900–2020
$\Delta_{S_{31}}(1900)$	$[\rho \Delta](2002)$	82.2%	2145	17.8%	1962	1840–2040
$\Delta_{P_{31}}(1750)$	$[\pi N_{S_{11}}(1650)] (1790)$	62.8%	1835	37.2%	1725	1710–1780
$\Delta_{F_{35}}(1720)$	$[\pi N_{D_{13}}(1675)] (1815)$	74.4%	1910	25.6%	1765	1660–1785
$\Delta_{S_{01}}(1405)$	$K N$	78.2%	1550	21.8%	1389	1400–1410
We interpret these results as providing strong quantitative support to our former qualitative description of the anomalies. Regarding their nature a look at the probabilities reveal they are mostly meson-baryon states. Actually a meson-baryon probability greater or equal than 50% can serve as a criterion to identify an anomaly. Nonetheless the coupling to the $3q$ component is essential to lower their masses making them more stable against decay into $m + B$.

It should be emphasized that similar results could be obtained for any other spectroscopic $3q^2b$ model through a fine tuning of the value of \mathcal{g}_j (note that the small value of \mathcal{g}_j as compared to M_{3q^2b} and $(M_m + M_B)$ provides an a posteriori validation of our method): This comes from the expression of the eigenvalues where it is clear that even for $\mathcal{g}_j = 0$ one gets $M = M_m + M_B$ which according to our mB choice is much closer to the PDG mass of the anomaly than M_{3q^2b}. This means that concerning the mass of the anomalies the coupling of meson-baryon to $3q$ components may play the role of a general healing mechanism for spectroscopic models.

SUMMARY

We have studied the heavy baryon spectra by means of the Faddeev method in momentum space. These results should be highly valuable both from the theoretical and experimental points of view. Theoretically, it should be a powerful tool for testing different
approximate methods to solve the three-body problem. Experimentally, the remarkable agreement with known experimental data make our predictions highly valuable as a guideline to experimentalists.

Heavy baryons constitute an extremely interesting problem joining the dynamics of light-light and heavy-light subsystems in an amazing manner. While the mass difference between members of the same SU(3) configuration, either $\bar{3}_F$ or 6_F, is determined by the perturbative one-gluon exchange, the mass difference between members of different representations comes mainly determined by the dynamics of the light diquark, and should therefore be determined in consistency with the light baryon spectra. There is therefore a remnant effect of pseudoscalar forces in the two-light quark subsystem.

For light baryons we propose that $4q1\bar{q}$ components, in the form of S wave meson-baryon channels which we identify, play an essential role in the description of the anomalies, say baryon resonances very significantly overpredicted by three-quark models based on two-body interactions. As a matter of fact by considering a simplified description of the anomalies as systems composed of a free meson-baryon channel interacting with a three-quark confined component we have shown they could correspond mostly to meson-baryon states but with a non-negligible $3q$ state probability which makes their masses to be below the meson-baryon threshold. The remarkable agreement of our results with data in all cases suggests the implementation of meson-baryon threshold effects as an essential physical mechanism to give account of spectral states poorly described by constituent quark models.

ACKNOWLEDGMENTS

This work has been partially funded by the Spanish MEC and EU FEDER under Contract No. FPA2007-65748, by EIII 506078, by JCyL under Contract No. SA016A17, and by COFAA-IPN (México).

REFERENCES

1. J. L. Rosner, J. Phys. Conf. Ser. 69, 012002 (2007).
2. A. Valcarce, H. Garcilazo, and J. Vijande Eur. Phys. J. A, in print (2008) and references therein.
3. B. Silvestre-Brac, Few-Body Systems 20, 1 (1996).
4. W. Roberts and M. Pervin, arXiv:0711.2492.
5. D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Lett. B 659, 612 (2008).
6. N. Mathur, R. Lewis, and R. M. Woloshyn, Phys. Rev. D 66, 014502 (2002).
7. SELEX Collaboration, A. Ocherashvili et al., Phys. Lett. B 628, 18 (2005).
8. R. Roncaglia, D. B. Lichtenberg, and E. Predazzi, Phys. Rev. D 52, 1722 (1995).
9. S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
10. W. -M. Yao et al., J. Phys. G 33, 1 (2006).
11. N. Isgur and G. Karl, Phys. Lett. 72B, 109 (1977); Phys. Rev. D 19, 2653 (1979).
12. P. González, J. Vijande, and A. Valcarce, Phys. Rev. C 77, 065213 (2008) and references therein.
13. T. P. Vrana, S. A. Dytman, and T. -S. H. Lee, Phys Rep. 328, 181 (2000).
14. R. E. Cutkosky, C. P. Forsyth, J. B. Babcock, R. L. Kelly, and R. E. Hendrick, Proceedings of the IV International Conference on Baryon Resonances (Baryon 1980), edited by N. Isgur, Toronto 1980.