THE SL(2, C)-CHARACTER VARIETIES OF TORUS KNOTS

VICENTE MUÑOZ

Abstract. Let G be the fundamental group of the complement of the torus knot of type (m, n). This has a presentation $G = \langle x, y \mid x^m = y^n \rangle$. We find the geometric description of the character variety $X(G)$ of characters of representations of G into $\text{SL}(2, \mathbb{C})$.

Since the foundational work of Culler and Shalen [1], the varieties of $\text{SL}(2, \mathbb{C})$-characters have been extensively studied. Given a manifold M, the variety of representations of $\pi_1(M)$ into $\text{SL}(2, \mathbb{C})$ and the variety of characters of such representations both contain information of the topology of M. This is specially interesting for 3-dimensional manifolds, where the fundamental group and the geometrical properties of the manifold are strongly related.

This can be used to study knots $K \subset S^3$, by analysing the $\text{SL}(2, \mathbb{C})$-character variety of the fundamental group of the knot complement $S^3 - K$. In this paper, we study the case of the torus knots $K_{m,n}$ of any type (m, n). The case $(m, n) = (m, 2)$ was analysed in [3] and the general case was recently determined in [2] by a method different from ours.

Acknowledgements. The author wishes to thank the referee for useful comments, specially for pointing out the reference [2].

1. Character varieties

A representation of a group G in $\text{SL}(2, \mathbb{C})$ is a homomorphism $\rho : G \to \text{SL}(2, \mathbb{C})$. Consider a finitely presented group $G = \langle x_1, \ldots, x_k \mid r_1, \ldots, r_s \rangle$, and let $\rho : G \to \text{SL}(2, \mathbb{C})$ be a representation. Then ρ is completely determined by the k-tuple $(A_1, \ldots, A_k) = (\rho(x_1), \ldots, \rho(x_k))$ subject to the relations $r_j(A_1, \ldots, A_k) = 0$, $1 \leq j \leq s$. Using the natural embedding $\text{SL}(2, \mathbb{C}) \subset \mathbb{C}^4$, we can identify the space of representations as

$$R(G) = \text{Hom}(G, \text{SL}(2, \mathbb{C}))$$

$$= \{(A_1, \ldots, A_k) \in \text{SL}(2, \mathbb{C})^k \mid r_j(A_1, \ldots, A_k) = 0, \ 1 \leq j \leq s \} \subset \mathbb{C}^{4k}.$$

Therefore $R(G)$ is an affine algebraic set.

We say that two representations ρ and ρ' are equivalent if there exists $P \in \text{SL}(2, \mathbb{C})$ such that $\rho'(g) = P^{-1}\rho(g)P$, for every $g \in G$. This produces an action of $\text{SL}(2, \mathbb{C})$ in
The purpose of this paper is to describe the character variety \(S \) shall denote as \(K \) character, and the converse is also true if \(\rho \) is irreducible [1, Prop. 1.5.2].

There is a character map \(\chi : R(G) \rightarrow \mathbb{C}^G \), \(\rho \mapsto \chi_{\rho} \), whose image

\[
X(G) = \chi(R(G))
\]

is called the character variety of \(G \). Let us give \(X(G) \) the structure of an algebraic variety. By the results of [1], there exists a collection \(g_1, \ldots, g_m \) of elements of \(G \) such that \(\chi_{\rho} \) is determined by \(\chi_{\rho}(g_1), \ldots, \chi_{\rho}(g_m) \), for any \(\rho \). Such collection gives a map

\[
\Psi : R(G) \rightarrow \mathbb{C}^g, \quad \Psi(\rho) = (\chi_{\rho}(g_1), \ldots, \chi_{\rho}(g_m)).
\]

We have a bijection \(X(G) \cong \Psi(R(G)) \). This endows \(X(G) \) with the structure of an algebraic variety. Moreover, this is independent of the chosen collection as proved in [1].

Lemma 1.1. The natural algebraic map \(M(G) \rightarrow X(G) \) is a bijection.

Proof. The map \(R(G) \rightarrow X(G) \) is algebraic and \(SL(2, \mathbb{C}) \)-invariant, hence it descends to an algebraic map \(\varphi : M(G) \rightarrow X(G) \). Let us see that \(\varphi \) is a bijection.

For \(\rho \) an irreducible representation, if \(\varphi(\rho) = \varphi(\rho') \) then \(\rho \) and \(\rho' \) are equivalent representations; so they represent the same point in \(M(G) \).

Now suppose that \(\rho \) is reducible. Consider \(e_1 \in \mathbb{C}^2 \) the common eigenvector of all \(\rho(g) \). This gives a sub-representation \(\rho' : G \rightarrow \mathbb{C}^* \) of \(\rho \). We have a quotient representation \(\rho'' = \rho / \rho' : G \rightarrow \mathbb{C}^* \), defined as the representation induced by \(\rho \) in the quotient space \(\mathbb{C}^2 / \langle e_1 \rangle \).

As characters, \(\rho'' = \rho^{-1} \). The representation \(\rho' \oplus \rho'' \) is the semisimplification of \(\rho \). It is in the closure of the \(SL(2, \mathbb{C}) \)-orbit through \(\rho \). Clearly, \(\chi_{\rho}(g) = \rho'(g) + \rho''(g)^{-1} \). Now if \(\rho \) and \(\tilde{\rho} \) are two reducible representations and \(\varphi(\rho) = \varphi(\tilde{\rho}) \), then their semisimplifications have the same character, that is

\[
\chi_{\rho}(g) = \chi_{\tilde{\rho}}(g) \Rightarrow \rho'(g) + \rho'(g)^{-1} = \tilde{\rho}'(g) + \tilde{\rho}'(g)^{-1}.
\]

Therefore \(\rho' = \tilde{\rho}' \) or \(\rho' = \tilde{\rho}'^{-1} \). In either case \(\rho \) and \(\tilde{\rho} \) represent the same point in \(M(G) \), which is actually the point represented by \(\rho' \oplus \rho'^{-1} \). \(\square \)

2. Character varieties of torus knots

Let \(T^2 = S^1 \times S^1 \) be the 2-torus and consider the standard embedding \(T^2 \subset S^3 \). Let \(m, n \) be a pair of coprime positive integers. Identifying \(T^2 \) with the quotient \(\mathbb{R}^2 / \mathbb{Z}^2 \), the image of the straight line \(y = \frac{m}{n} x \) in \(T^2 \) defines the torus knot of type \((m, n) \), which we shall denote as \(K_{m,n} \subset S^3 \) (see [4, Chapter 3]).

For any knot \(K \subset S^3 \), we denote by \(G(K) \) the fundamental group of the exterior \(S^3 - K \) of the knot. It is known that

\[
G_{m,n} = G(K_{m,n}) \cong \langle x, y \mid x^m = y^n \rangle.
\]

The purpose of this paper is to describe the character variety \(X(G_{m,n}) \).
In [3], the character variety $X(G_{m,2})$ is computed. We want to extend the result to arbitrary m,n, and give an argument simpler than that of [3].

After the completion of this work, we became aware of the paper [2] where the character varieties of $X(G_{m,n})$ are determined (even without the assumption of m,n being coprime). However, our method is more direct than the one presented in [2].

To start with, note that
\[R(G_{m,n}) = \{(A, B) \in \text{SL}(2, \mathbb{C}) \mid A^m = B^n\}. \quad (2.1) \]

Therefore we shall identify a representation ρ with a pair of matrices (A, B) satisfying the required relation $A^m = B^n$.

We decompose the character variety
\[X(G_{m,n}) = X_{\text{red}} \cup X_{\text{irr}}, \]
where X_{red} is the subset consisting of the characters of reducible representations (which is a closed subset by [1]), and X_{irr} is the closure of the subset consisting of the characters of irreducible representations.

Proposition 2.1. There is an isomorphism $X_{\text{red}} \cong \mathbb{C}$. The correspondence is defined by
\[\rho = \left(A = \begin{pmatrix} t^n & 0 \\ 0 & t^{-n} \end{pmatrix}, \quad B = \begin{pmatrix} t^m & 0 \\ 0 & t^{-m} \end{pmatrix} \right) \mapsto s = t + t^{-1} \in \mathbb{C}. \]

Proof. By the discussion in Lemma 1.1 an element in X_{red} is described as the character of a split representations $\rho = \rho' \oplus \rho''$. This means that in a suitable basis,
\[A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, \quad B = \begin{pmatrix} \mu & 0 \\ 0 & \mu^{-1} \end{pmatrix}. \quad (2.2) \]
The equality $A^m = B^n$ implies $\lambda^m = \mu^n$. Therefore there is a unique $t \in \mathbb{C}$ with $t \neq 0$ such that
\[\begin{cases} \lambda = t^n; \\ \mu = t^m. \end{cases} \]
(Here we use the coprimality of (m,n).) Note that the pair (A, B) is well-defined up to permuting the two vectors in the basis. This corresponds to the change $(\lambda, \mu) \mapsto (\lambda^{-1}, \mu^{-1})$, which in turn corresponds to $t \mapsto t^{-1}$. So (A, B) is parametrized by $s = t + t^{-1} \in \mathbb{C}$. \qed

Lemma 2.2. Suppose that $\rho = (A, B) \in R(G_{m,n})$. In any of the following cases:

(a) $A^m = B^n \neq \pm \text{Id}$,
(b) $A = \pm \text{Id}$ or $B = \pm \text{Id}$,
(c) A or B is non-diagonalizable,
the representation ρ is reducible.

Proof. First suppose that A is diagonalizable with eigenvalues λ, λ^{-1}, and suppose that $\lambda^n \neq \pm 1$. Then there is a basis e_1, e_2 in which $A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$, which is well-determined up to multiplication of the basis vectors by non-zero scalars. Then
\[B^n = A^m = \begin{pmatrix} \lambda^m & 0 \\ 0 & \lambda^{-m} \end{pmatrix} \]
is a diagonal matrix, different from $\pm \text{Id}$. Therefore B must be diagonal in the same basis, $B = \begin{pmatrix} \mu & 0 \\ 0 & \mu^{-1} \end{pmatrix}$, with $\lambda^m = \mu^n$. This proves the reducibility in case (a).

Now suppose that $A = \lambda \text{Id}, \lambda = \pm 1$. Then $B^n = \lambda^m \text{Id}$, so it must be that B is diagonalizable. Using a basis in which B is diagonal, we get the reducibility in case (b).

Finally, suppose that A is not diagonalizable. Then there is a suitable basis on which A takes the form $A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$, with $\lambda = \pm 1$. Clearly

$$B^n = A^m = \begin{pmatrix} 1 & m\lambda \\ 0 & 1 \end{pmatrix}$$

and so

$$B = \begin{pmatrix} \mu & x \\ 0 & \mu \end{pmatrix}$$

with $\mu = \pm 1$, $\mu^n = \lambda^m$ and $\mu nx = \lambda m$. In this basis, the vector e_1 is an eigenvector for both A and B. Hence the representation (A, B) is reducible, completing the case (c). □

Proposition 2.3. Let X_{irr}^o be the set of irreducible characters, and X_{irr} its closure. Then

$$X_{irr}^o = \{ (\lambda, \mu, r) \mid \lambda^m = \mu^n = \pm 1, \lambda \neq \pm 1, \mu \neq \pm 1, r \in \mathbb{C} - \{0,1\} \}/\mathbb{Z}_2 \times \mathbb{Z}_2,$$

$$X_{irr} = \{ (\lambda, \mu, r) \mid \lambda^m = \mu^n = \pm 1, \lambda \neq \pm 1, \mu \neq \pm 1, r \in \mathbb{C} \}/\mathbb{Z}_2 \times \mathbb{Z}_2.$$

where $\mathbb{Z}_2 \times \mathbb{Z}_2$ acts as $(\lambda, \mu, r) \sim (\lambda^{-1}, \mu, 1 - r) \sim (\lambda, \mu^{-1}, 1 - r) \sim (\lambda^{-1}, \mu^{-1}, r)$.

Proof. Let $\rho = (A, B)$ be an element of $R(G_{m,n})$ which is an irreducible representation. By Lemma 2.2 A is diagonalizable but not equal to $\pm \text{Id}$, and $A^m = \pm \text{Id}$. So the eigenvalues λ, λ^{-1} of A satisfy $\lambda^m = \pm 1$ and $\lambda \neq \pm 1$. Analogously, B is diagonalizable but not equal to $\pm \text{Id}$, with eigenvalues μ, μ^{-1}, with $\mu^n = \pm 1, \mu \neq \pm 1$. Moreover,

$$\lambda^m = \mu^n.$$

We may choose a basis $\{e_1, e_2\}$ under which A diagonalizes. This is well-defined up to multiplication of e_1 and e_2 by two non-zero scalars. Let $\{f_1, f_2\}$ be a basis under which B diagonalizes, which is well-defined up to multiplication of f_1, f_2 by non-zero scalars. Then $\{[e_1], [e_2], [f_1], [f_2]\}$ are four points of the projective line $\mathbb{P}^1 = \mathbb{P}(\mathbb{C}^2)$. Note that the pair (A, B) is irreducible if and only if the four points are different.

The only invariant of four points in \mathbb{P}^1 is the double ratio

$$r = ([e_1] : [e_2] : [f_1] : [f_2]) \in \mathbb{P}^1 - \{0,1, \infty\} = \mathbb{C} - \{0,1\}. \quad (2.3)$$

So (A, B) is parametrized, up to the action of $\text{SL}(2, \mathbb{C})$, by (λ, μ, r). Permuting the two basis vectors e_1, e_2 corresponds to $(\lambda, \mu, r) \mapsto (\lambda^{-1}, \mu, 1 - r)$, since

$$(\lambda, \mu) \mapsto (\lambda, \mu^{-1}, 1 - r).$$

Analogously, permuting the two basis vectors f_1, f_2 corresponds to $(\lambda, \mu) \mapsto (\lambda, \mu^{-1}, 1 - r)$. Note that this gives an action of $\mathbb{Z}_2 \times \mathbb{Z}_2$ and X_{irr}^o is the quotient of the set of (λ, μ, r) as above by this action.

To describe the closure of X_{irr}^o, we have to allow f_1 to coincide with e_1. This corresponds to $r = 1$ (the same happens if f_2 coincides with e_2). In this case, e_1 is an
eigenvector of both A and B, so the representation (A, B) has the same character as its semisimplification (A', B') given by

$$A' = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, \quad B' = \begin{pmatrix} \mu & 0 \\ 0 & \mu^{-1} \end{pmatrix}.$$

This means that the point $(\lambda, \mu, 1)$ corresponds under the identification $X_{red} \cong \mathbb{C}$ given by Proposition 2.1 to $s_1 = t_1 + t_1^{-1}$, where $t_1 \in \mathbb{C}$ satisfies

$$\begin{cases}
\lambda = t_1^n, \\
\mu = t_1^m.
\end{cases} \quad (2.4)$$

Also, we have to allow f_1 to coincide with e_2 (or f_2 to coincide with e_1). This corresponds to $r = 0$. The representation (A, B) has semisimplification (A', B') where

$$A' = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, \quad B' = \begin{pmatrix} \mu^{-1} & 0 \\ 0 & \mu \end{pmatrix}.$$

So the point $(\lambda, \mu, 1)$ corresponds to $s_0 = t_0 + t_0^{-1} \in X_{red} \cong \mathbb{C}$, where $t_0 \in \mathbb{C}$ satisfies

$$\begin{cases}
\lambda = t_0^n, \\
\mu^{-1} = t_0^m.
\end{cases} \quad (2.5)$$

Proposition 2.3 says that X_{irr} is a collection of $\frac{(m-1)(n-1)}{2}$ lines. A pair (λ, μ) with $\lambda^m = \pm 1$ and $\mu^n = \pm 1$ is given as

$$\lambda = e^{\pi ik/m}, \quad \mu = e^{\pi ik'/n}, \quad (2.6)$$

where $0 \leq k < 2m$, $0 \leq k' < 2n$. The condition $\lambda \neq \pm 1, \mu \neq \pm 1$ gives $k \neq 0, m, k' \neq 0, n$. Finally, the $\mathbb{Z}_2 \times \mathbb{Z}_2$-action allows us to restrict to $0 < k < m$, $0 < k' < n$. The condition $\lambda^m = \mu^n$ means that

$$k \equiv k' \pmod{2}.$$

Denote by $X_{irr}^{k,k'}$ the line of X_{irr} corresponding to the values of k, k'. Then

$$X_{irr} = \bigsqcup_{0 < k < m, 0 < k' < n \atop k \equiv k' \pmod{2}} X_{irr}^{k,k'}.$$

The line $X_{irr}^{k,k'}$ intersects X_{red} in two points. This gives a collection of $(m-1)(n-1)$ points in X_{red}, which are defined as follows: under the identification $X_{red} \cong \mathbb{C}$, these are the points $s_l = t_l + t_l^{-1}$, where

$$t_l = e^{\pi il/mn},$$

and $0 < l < mn$, $m \nmid l$, $n \nmid l$. Assume that n is odd (note that either m or n should be odd). Then from (2.4) and (2.5), the line $X_{irr}^{k,k'}$ intersects at the points $s_{l_0}, s_{l_1} \in X_{red}$ where

$$nl_0 \equiv k \pmod{m}, \quad ml_0 \equiv n - k' \pmod{n}, \quad nl_1 \equiv k \pmod{m}, \quad ml_1 \equiv k' \pmod{n}.$$

These two points are different since $k' \neq n - k' \pmod{n}$, as n is odd.

The following is a picture of $X(G_{m,n})$.

Figure 1

In the case $(m, n) = (m, 2)$, this result coincides with [3, Corollary 4.2].
3. The algebraic structure of $X(G_{m,n})$

We want to give a geometric realization of $X(G_{m,n})$ which shows that the algebraic structure of this variety is that of a collection of rational lines as in Figure 1 intersecting with nodal curve singularities.

The map $R(G_{m,n}) \to \mathbb{C}^3$, $\rho = (A,B) \mapsto (\text{tr}(A), \text{tr}(B), \text{tr}(AB))$, defines a map

$$\Psi : X(G_{m,n}) \to \mathbb{C}^3.$$

Theorem 3.1. The map Ψ is an isomorphism with its image $C = \Psi(X(G_{m,n}))$. C is a curve consisting of $\binom{n-1}{m-1} + 1$ irreducible components, all of them smooth and isomorphic to \mathbb{C}. They intersect with nodal normal crossing singularities following the pattern in Figure 1.

Proof. Let us look first at $\Psi_0 = \Psi|_{X_{\text{red}}} : X_{\text{red}} \to \mathbb{C}^3$. For a given $\rho = (A,B) \in X_{\text{red}}$, with the shape given in Proposition 2.1, we have that

$$\Psi_0 : s = t + t^{-1} \mapsto (t^n + t^{-n}, t^m + t^{-m}, t^{n+m} + t^{-(n+m)}).$$

This map is clearly injective: the image recovers $\{(t^n, t^{-n}), (t^m, t^{-m}), (t^{n+m}, t^{-(n+m)})\}$. From this, we recover $\{(t^n, t^m), (t^{-n}, t^{-m})\}$ and hence the pair t, t^{-1} (since n,m are coprime).

Let us see that Ψ_0 is an immersion. The differential is

$$\frac{d\Psi_0}{dt} = (nt^{-n-1}(t^{2n} - 1), mt^{-m-1}(t^{2m} - 1), (n + m)t^{-n-m-1}(t^{2n+2m} - 1)).$$ (3.1)

This is non-zero at all $t \neq \pm 1$. As $\frac{ds}{dt} \neq 0$, we have $\frac{d\Psi_0}{ds} \neq (0, 0, 0)$. For $t = \pm 1$, we note that $\frac{ds}{dt} = t^{-2}(t^2 - 1)$, so

$$\frac{d\Psi_0}{ds} = \left(nt^{-n+1}\frac{t^{2n} - 1}{t^2 - 1}, mt^{-m+1}\frac{t^{2m} - 1}{t^2 - 1}, (n + m)t^{-n-m+1}\frac{t^{2n+2m} - 1}{t^2 - 1} \right),$$

which is non-zero again.

Now, consider a component of X_{irr} corresponding to a pair (λ, μ). Take $r \in \mathbb{C}$. Fix the basis $\{e_1, e_2\}$ of \mathbb{C}^2 which is given as the eigenbasis of A. Let $\{f_1, f_2\}$ be the eigenbasis of B. As the double ratio $(0 : \infty : 1 : r/(r - 1)) = r$, we can take $f_1 = (1,1)$ and
\[f_2 = (r - 1, r). \] This corresponds to the matrices:

\[
A = \begin{pmatrix}
\lambda & 0 \\
0 & \lambda^{-1}
\end{pmatrix},
\]

\[
B = \begin{pmatrix}
1 & r - 1 \\
0 & \mu^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & r - 1 \\
0 & 1
\end{pmatrix}^{-1}
= \begin{pmatrix}
\frac{r(\mu - \mu^{-1}) + \mu^{-1}}{r(\mu - \mu^{-1})} & (1 - r)(\mu - \mu^{-1}) \\
\mu - r(\mu - \mu^{-1}) & \frac{1}{r(\mu - \mu^{-1})}
\end{pmatrix}.
\]

Therefore:

\[
\Psi(A, B) = (\text{tr}(A), \text{tr}(B), \text{tr}(AB)) = (\lambda + \lambda^{-1}, \mu + \mu^{-1}, (\lambda \mu^{-1} + \lambda^{-1} \mu) + r(\lambda - \lambda^{-1})(\mu - \mu^{-1})).
\]

The image of this component is a line in \(\mathbb{C}^3 \). Its direction vector is \((0, 0, 1)\). At an intersection point with \(\Psi_0(X_{\text{red}}) \), the tangent vector to \(\Psi_0(X_{\text{red}}) \), given in (3.1), has non-zero first and second component, since \(\lambda = t^n, \mu = t^m \) and \(t \neq 0, \lambda^2 \neq 1, \mu^2 \neq 1 \).

So the intersection of these components is a transverse nodal singularity.

Finally, note that the map \(\Psi : X(G_{m,n}) \to C \) is an algebraic map, it is a bijection, and \(C \) is a nodal curve (the mildest possible type of singularities). Therefore \(\Psi \) must be an isomorphism. \(\square \)

Corollary 3.2. \(M(G) \cong X(G) \), for \(G = G_{m,n} \).

Proof. By Lemma 1.1, \(\varphi : M(G) \to X(G) \) is an algebraic map which is a bijection. As the singularities of \(X(G) \) are just transverse nodes, \(\varphi \) must be an isomorphism. \(\square \)

References

[1] Culler, M.; Shalen, P.: Varieties of group representations and splitting of 3-manifolds. *Annals of Math.* **117** (1983) 109–146.

[2] Martín-Morales, J.; Oller-Marcén, A-M.: On the varieties of representations and characters of a family of one-relator subgroups. *arXiv:0805.4716*.

[3] Oller-Marcén, A-M.: The SL(2, C) character variety of a class of torus knots. *Extracta Math.* To appear.

[4] Rolfsen, D.: *Knots and links*. Publish or Perish, Houston 1990.

Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas, Serrano 113 bis, 28006 Madrid, Spain

Facultad de Matemáticas, Universidad Complutense de Madrid, Plaza Ciencias 3, 28040 Madrid, Spain

E-mail address: vicente.munoz@imaff.cfmac.csic.es