Ethnobotanical knowledge among the semi-pastoral Gujjar tribe in the high altitude (Adhwari’s) of Churah subdivision, district Chamba, Western Himalaya

Dipika Rana, Anupam Bhatt and Brij Lal*

Abstract

Background: The wild plants not only form an integral part of the culture and traditions of the Himalayan tribal communities but also contribute largely to the sustenance of these communities. The tribal people use large varieties of wild fruits, vegetables, fodder, medicinal plants, etc. for meeting their day-to-day requirements. The present study was conducted in Churah subdivision of district Chamba where large populations of Muslim Gujjars inhabit various remote villages. These tribal people are semi-pastoralists, and they seasonally (early summers) migrate to the upper altitudes (Adhwari’s) along with their cattle and return to permanent settlements before the onset of winters. A major source of subsistence of these tribal people is on natural resources to a wide extent, and thus, they have wide ethnobotanical knowledge. Therefore, the current study was aimed to report the ethnobotanical knowledge of plants among the Gujjar tribe in Churah subdivision of district Chamba, Himachal Pradesh.

Methods: Extensive field surveys were conducted in 15 remote villages dominant in Gujjar population from June 2016 to September 2017. The Gujjars of the area having ethnobotanical knowledge of the plants were interrogated especially during their stay at the higher altitudes (Adhwari’s) through well-structured questionnaires, interviews, and group meetings. The data generated was examined using quantitative tools such as use value, fidelity, and informant consensus factor (F_i).

(Continued on next page)
Introduction

In India, about 54 million tribal people inhabit about 5000 forest-dominated villages that constitute about 15% of the total geographic area [1]. Traditionally, these tribal groups are known to use a large number of wild plants for various purposes like medicine, food, fodder, fuel, essence, culture, and other miscellaneous purposes [2]. Thus, forests have maintained the very existence of numerous tribes and their culture for centuries, while fulfilling their social, economic, cultural, religious, nutritional, and medical needs [3–8]. Thus, these tribal communities are a rich depository of various ethnobotanical uses of plants and guardians of indigenous traditional knowledge associated with surrounding biological resources which they have used for generations in their day-to-day life [9, 10].

Among all the tribal groups, Gujjars are described as the largest pastoral community in India [11]. The tribe is described by varying names as ‘Goojar’ or ‘Gurjara’ and is believed to have originated in the times of Huns. The tribe migrated to northern India and settled in various regions of Himachal Pradesh mainly Chamba, Kangra, Una, and Bilaspur [12]. The Muslim Gujjars are known to have first set foot in the princely states of Chamba and Sirmour because of the growing inadequacy of grazing resources in the neighbouring states of Jammu and Kashmir and then gradually migrated to other localities of the state [13]. The Gujjars of Chamba and Kangra are called as the ‘Ban Gujjars’ as they are nomads/semi-nomads practicing a pastoral lifestyle and comprise primarily of the Muslim population. In Chamba, the total Gujjar population is 9784 out of which 97.12% are Muslims [14], while Gujjars of Una and Bilaspur are settled Gujjars called the ‘Heer Gujjars’ and comprise mainly of Hindu population. Despite leading diverse lifestyles, one thing common among all Gujjars is that they all rear large herds of buffaloes.

The semi-nomadic Gujjars have permanent places to stay at the lower elevations, but they temporarily leave for higher altitudes called ‘Adhwari’ to graze their cattle mainly comprising buffaloes from mid-May till mid-October. The temporary migration takes along a predetermined set route that is covered in about 2–3 days [15]. The pasture lands are well distributed to the various families of Gujjars through a permit by the forest department of the area, thus also witnessing the proper management of the forest area. The main source of income of the Gujjars is selling of milk and milk products in the local market.

There is no doubt that the various tribal sects like the Gujjars while living in the remote mountain regions depend largely on wild plant resources for sustenance. Their nomadic employment from the ancestry makes them a good knowledge holder as a way of obtaining...
food and finding pasture for livestock that makes them more dependent on the environment [16]. Thus, they have a wide knowledge of use and practices of plant resources which is passed on verbally from one generation to another [17, 18]. Thereby, documentation of ethnobotanical knowledge is essential for the conservation and utilisation of biological resources [19]. This will also ensure future research on medicinal plant safety and efficacy to validate traditional use and prevent destructive changes in knowledge transmissions between generations [20, 21].

Thereby, the present study was undertaken to investigate and document the ethnobotanical knowledge of the Gujjar community of Churah region, which they inherit based on the experiences and observations from their ancestors.

Methods

Study site
The present investigation was undertaken in Churah subdivision of district Chamba of Himachal Pradesh which is located in the Western Himalaya. The district lies between 32° 11’ to 33° 13’ N latitude and 75° 49’ to 77° 3’ E longitude with an altitudinal range varying between 800 and 5200 m amsl. Vegetation growth is mainly found in the Ravi basin, which is semi-tropical to Himalayan temperate and sub-Alpine to Alpine types. The maximum Gujjar population in the district consists of Muslims. These are a semi-pastoral tribe, and they seasonally (early summers) migrate to the upper altitudes along with their cattle and return back to permanent settlements before the onset of winters. They celebrate festivals like Eid-ul-Fitr, Id-ul-Zuha, and Shab-I-Qader. The social status of these tribal people is generally poor, and they live an isolated life only confined to their own community. The main occupation of the Gujjars is rearing buffaloes, and they sell milk and milk products for a plant signifying its importance, and approach to zero (0) when the use reports are low.

A comprehensive data analysis was done using different quantitative indices viz. use value, fidelity, and informant consensus factor (Fic).

Use value
The relative importance of the species was calculated using the use value which is a quantitative tool [27]:

\[
UV = \frac{\sum U}{n}
\]

where \(U \) is the number of plants cited by each informant for a given species and \(n \) is the total number of informants. Use values are high when there are many use reports for a plant signifying its importance, and approach to zero (0) when the use reports are low.

Data analysis
Validation of plant names, family, and plant authority was carried out using the database (http://www.theplantlist.org).

Informant consensus factor
Informant consensus factor was used to test the agreement on the use of plants in the various categories between the informants. \(F_{ic} \) was calculated using the formula [28, 29]:

\[
F_{ic} = \frac{(N_{ur} - N_i)}{(N_{ur} - 1)}
\]

where \(N_{ur} \) refers to the number of use reports for a particular use/ailment category and \(N_i \) is the number of
species used for a particular use/ailment category by all informants. The product of this factor ranges from 0 to 1. A high F_ic value (close to 1) indicates that relatively few plant species are used by a large proportion of the informants while a low value indicates the disagreement of the informants on the use of plant species in the different categories [30–32].

Fidelity level (Fl%)
It is used to determine the most preferred species in the same use category [33].

$$\text{Fl} (%) = \frac{N_p}{N} \times 100$$

where N_p refers to use reports cited for a given species for a particular category and N is the total number of use reports cited for any given species. High Fl value (near to 100%) is observed for plants in which use reports refer to its same way of use, whereas low Fl values are obtained from plants having multiple different uses [18, 34].

Scatter diagram
A scatter diagram was used to compare the flow of ethnobotanical information among the different age classes of the informants.
Family	Scientific name	Local name	Voucher no.	Used in (i)	Part(s) used (ii)	Mode of usage	Uses (no. of informants)	Total citations (UV)	Use value (UV)
Adoxaceae	*Viburnum mullaha* Buch.-Ham. ex D. Don	Tilhanj	PLP 17848	Hum	Fr	Fruit is edible	Edible (73)	73	0.54
Amaranthaceae	*Amaranthus paniculatus* L.	Seul	PLP 17851	Hum	Sd	Seeds are cracked and eaten and also used to prepare other recipes	Edible (115)	115	0.85
	Chenopodium album L.	Bathua	PLP 17990	Hum	Lf	Used as very common vegetable	Edible (99)	99	0.73
	Dysphania botrys Mosyakin & Clemants	Bathu	PLP 17829	Hum	Lf	Leaves are cooked and eaten	Edible (93)	93	0.69
Apiaceae	*Angelica glauca* Edgew.	Choru	PLP 17837	Hum/Cat	Rt	Root powder is used to cure a cold/fever both in humans and cattle. The root is kept in almost all houses to avoid the entry of snake inside the house	Medicinal (67), household (89)	156	1.16
	Pleurosernum brunonis Benth. ex C.B. Clarke	Hewan	PLP 17905	Hum	Lf, Wp	Crushed leaf juice mixed with mild hot mustard oil to prevent skin infection. The whole part is kept by local people to avoid the evil eye	Medicinal (19), household (89)	108	0.80
	Selinum vaginatum C.B. Clarke	Bhootkeshi	PLP 17911	Hum	Wp	The whole plant is dried and is used as an incense	Household (71)	71	0.53
Araceae	*Arisaema tortuosum* (Wall) Schott	Shaungal/ Leetu/ Gagal	PLP 17862	Hum	Tu	The tuber is cooked and eaten	Edible (90)	90	0.67
Asparagaceae	*Asparagus adscendens* Roxb.	Sansua	PLP 17917	Hum	Rt	**The outer layer of the roots is removed and immersed in mustard oil and applied on the scalp to control hair fall**	Medicinal (56)	56	0.41
Asteraceae	*Jurinea macrocephala* DC.	Dhoop	PLP 17968	Hum	Wp	The whole part is dried and used as incense	Household (103)	103	0.76
Athyraceae	*Diplazium maximum* (D. Don) C.Chr.	Khasrod	PLP 17805	Hum	Wp	A decoction of the whole plant is taken to cure body pain. Used as vegetable and pickle	Medicinal (43), Edible (121)	164	1.21
Balsaminaceae	*Impatiens spp.*	Nanteela	PLP 17923	Cat	Lf	Used as fodder	Fodder (67)	67	0.50
Berberidaceae	*Berberis aristata* DC.	Timri/Kashma/V Kemru	PLP 17998	Hum	Rt	**Roots are boiled in water and the residue is used to cure an eye infection**	Medicinal (63)	63	0.47
	Berberis lycium Royle	Kashmal/Kemru	PLP 17815	Hum	Fr	Ripen fruits are eaten	Edible (99)	99	0.73
	Sinopodophyllum	Khakdu	PLP 17928	Cat	Fr	Fruits are ground and paste is kept inside the wheat	Medicinal (61)	61	0.45
Table 1: Enumeration of plants used by the Gujjars of Churah subdivision of Chamba district (Continued)

Family	Scientific name	Local name	Voucher no.	Used in	Part(s) used	Mode of usage	Uses (no. of informants)	Total citations (ΣU)	Use value (UV)
Betulaceae	Hexandra tristis (Royle) T.S. Ying					flour dough and given to cattle to prevent bloatng			
	Alnus nitida (Spach) Endl. Koie	PLP 17864	Cat	Lf		The leaves of the plant are given as fodder to animals	Fodder (89)	89	0.66
	Betula utilis D.Don Bhojpatra	PLP 17901	Hum	Lf, Bk		The decoction of leaves is used to cure the urinary infection, The bark is used in thatching roofs as a waterproof medium	Medicinal (12), household (98)	110	0.81
	Carpinus viminea Wall. ex Lindl. Mandu	PLP 17833	Cat	Lf, Bk		Leaves are used as fodder The bark is used for making shoes	Fodder (69), household (6)	75	0.56
	Corylus jacquemontii Decne. Jamun	PLP 1796	Hum/Cat	Fr, Lf		Fruits are edible. Leaves are used as fodder	Edible (91), fodder (103)	194	1.44
Boraginaceae	Onosma hispida Wall. ex G. Don Ratanjot	PLP 17980	Hum	Rt		Dried roots are immersed in mustard oil and applied on hair scalp to control hair fall	Medicinal (59)	59	0.44
Buxaceae	Sarcococa saligna (D. Don) Müll. Arg. Rethali	PLP 17942	Hum	St		Used for making brooms	Household (76)	76	0.56
Cannabaceae	Cannabis sativa L. Bhang	PLP 17840	Hum	Sd		Roasted seeds are eaten as culinary by the local people	Edible (107)	107	0.79
Caprifoliaceae	Valeriana jatamansi Jones Mushkbal, Shamak	PLP 17927	Hum	Rt		Used as incense	Household (79)	79	0.59
Caryophyllaceae	Stellaria media (L) Vill. Khojua/ Koku	PLP 17922	Hum	Ap		Aerial part is cooked and eaten as a vegetable	Edible (94)	94	0.70
Commmelinaceae	Commelina benghalensis L. Chura	PLP 17871	Hum	Lf		Leaves are eaten as vegetable	Edible (110)	110	0.81
Compositae	Jurinea macrocephala DC. Dhoop	PLP 17968	Hum	Wp		The whole part is dried and used as incense	Household (103)	103	0.76
Dennstaedtiaceae	Pteridium aquilinum (L.) Kuhn	PLP 1791	Hum	Ap		Used as fixer between soil and timber beam for roof thatching in the construction of houses. Very often given	Fodder (115), household (117)	232	1.72
Table 1: Enumeration of plants used by the Gujjars of Churah subdivision of Chamba district (Continued)

Family	Scientific name	Local name	Voucher no.	Used in	Part(s)	Mode of usage	Uses (no. of informants)	Total citations (EU)	Use value (UV)
Elaeagnaceae	Elaeagnus parvifolia Wall. ex Royle	Ghyeen	PLP 17881	Hum Fr	Fruits are edible	Edible (78)	78	0.58	
Ericaceae	Rhododendron arboreum Sm.	Surang	PLP 18000	Hum Fl	Flower juice is used to make drink commonly called sherbat	Edible (90)	90	0.67	
	Rhododendron campanulatum D.Don	Inga	PLP 17913	Cat Lf	A small quantity of leaves are fed to buffalos in case of a cough	Medicinal (62)	62	0.46	
Fabaceae	Bauhinia variegata L. Kachnar	PLP 17997	Hum Fl	Fi	The flowers are used to make pakoras (fried snack) and chutneys (sauce)	Edible (79)	79	0.59	
	Desmodium elegans DC. Pree	PLP 17994	Cat Lf	Fi	The leaves of the plant are given as fodder to animals	Fodder (71)	71	0.53	
Fagaceae	Quercus semecarpifolia Sm.	Kharyu	PLP 17902	Cat Lf	The leaves are used as fodder	Fodder (95)	95	0.70	
Juglandaceae	Juglans regia L. Akhrot	PLP 17802	Hum Bk, Fr,	Fi	The bark is used to clean teeth, fruit is edible, the wood used for various purposes	Edible (111), household (105)	216	1.60	
				Wd					
Lamiaceae	Ajuga integrifolia Buch.-Ham.	Neelkanthi	PLP 17825	Hum Rt	Root paste is applied to the snake bite affected area	Medicinal (32)	32	0.24	
	Clinopodium vulgare L. Shyul	PLP 17817	Hum Sd	Fi	The seeds are cracked and used in various recipes	Edible (102)	102	0.76	
Lauraceae	Neolitsea pallens (D. Don) Momiy. & H. Hara	Jhunth	PLP 17855	Cat Lf	The leaves of the plant are given as fodder to animals	Fodder (78)	78	0.58	
Liliaceae	Gagea lutea (L.) Ker Gawl.	Butti	PLP 17953	Hum Tu	The dried form of tubers occasionally used as spices	Edible (76)	76	0.56	
Malvaceae	Malva neglecta Wallr.	Sochal	PLP 17977	Hum Lf	Cooked as vegetable	Edible (91)	91	0.67	
Melanthiaceae	Trillium govanianum Wall. ex D.Don	Nag Chatri	PLP 17987	Hum Rt	Dried root powder along with buttermilk used to cure arthritis	Medicinal (33)	33	0.24	
Moraceae	Ficus spp.	Dhura	PLP 17992	Cat Lf	The leaves of the plant are given as fodder to animals	Fodder (92)	92	0.68	
Table 1 Enumeration of plants used by the Gujjars of Churah subdivision of Chamba district (Continued)

Family	Scientific name	Local name	Voucher no.	Used in	Part(s) used	Mode of usage	Uses (no. of informants)	Total citations	Use value (UV)
Morchellaceae	Morchella esculenta (L.: Fr.) Pers.	Gucchi	PLP 17995	Hum	Wp	The dried whole part is boiled in milk and given to a person suffering from cold and cough. The whole part is cooked and eaten	Edible (91), medicinal (26)	117	0.87
Oleaceae	Jasminum humile L.	Peeli chameli	PLP 1793	Hum	Rt	Roots are used to cure ringworm	Medicinal (33)	33	0.24
Orchidaceae	Dactylorhiza hatagirea (D.Don) Soó	Salmanja	PLP 17969	Hum	Rt	The dried root powder is taken in a small amount (half tea spoon) with milk in case of weakness	Medicinal (60)	60	0.44
	Epipactis helleborine (L.) Crantz	Dhundali	PLP 17999	Cat	Lf	The leaves are dried and burnt in front of animals suffering from evil eye	Household (58)	58	0.43
Oxlidaceae	Oxalis corniculata L.	Khati Amli	PLP 17812	Hum	Lf	Root is used to treat dyspepsia	Medicinal (43)	43	0.32
Papaveraceae	Corydalis govaniana Wall.	Phuli	PLP 17950	Hum	Lf	Leaf used to cure joint pain	Medicinal (21)	21	0.16
Phytolaccaceae	Phytolacca acinosa Roxb.	Kafal	PLP 17944	Hum/Cat	Lf, Fr	Leaves are used as vegetable and fruits are used to feed the poultry	Edible (97)	97	0.72
Pinaceae	Cedrus deodara (Roxb. ex D.Don) GDon	Dyaar	PLP 17940	Cat	Wd	Oil is applied on the feet of cattle to control maggots	Medicinal (45)	45	0.33
Plantaginaceae	Picrorhiza kurrooa Royle	Karu	PLP 17895	Hum	Rt	Used to cure fever and jaundice	Medicinal (63)	63	0.47
Polygonaceae	Fagopyrum esculentum Moench	Helangala	PLP 17843	Hum	Sd, Lf	The seeds are roasted and eaten as culinary and leaf eaten as a vegetable	Edible (88)	88	0.65
	Oxyria digyna (L.) Hill	Chukru	PLP 17909	Hum	Lf	Leaves and young shoots are edible and used in chutney (sauce), pickles. Leaves are eaten to cure stomach disorders	Edible (87), medicinal (21)	108	0.80
	Persicaria amplexicaulis (D.Don) Ronse Decr.	Maslooon	PLP 17813	Hum	Rt	Root used in making tea	Edible (116)	116	0.86
	Polygonum aviculare L.	Nadi	PLP 17823	Hum	Ap	Aerial part is cooked and eaten as a vegetable and is also used to cure pneumonia	Edible (104), medicinal (21)	125	0.93
	Persicaria hydropiper (L.) Delarbre	Ganeri	PLP 17882	Hum	Lf	Leaves are cooked and eaten as a vegetable	Edible (83)	83	0.61
	Rheum austrole D. Don	Chukri	PLP 17899	Hum	Rt	It is used as tooth cleaning powder. An adequate amount of root powder is given to the buffalos to cure household disorders	Household (89), medicinal (52)	141	1.04
Family	Scientific name	Local name	Voucher no.	Used in	Part(s) used	Mode of usage	Uses (no. of informants)	Total citations (U)	Use value (UV)
----------------	----------------------------------	------------------	-------------	---------	--------------	---	--------------------------	---------------------	-------------------
Primulaceae	*Primula floribunda* Wall.	Phool	PLP 17941	Hum	Rt, Lf	Root and leaves are used to wash milk containers made up of mud or steel	Household (103)	103	0.76
Ranunculaceae	*Aconitum heterophyllum* Wall. ex Royle	Patish	PLP 17906	Hum	Rt	Used to cure a cough and fever	Medicinal (74)	74	0.55
Rosaceae	*Cotoneaster* spp. Leol/Loon	PLP 17938	Cat	Lf		Used as fodder	Fodder (83)	83	0.61
	Fragaria indica Andrews	Bada Mewa	PLP 17920	Hum	Fr	Ripen fruits are eaten	Edible (79)	79	0.59
	Fragaria rubicola (Lindl. ex Hook.) Lacaita	Mewa	PLP 17946	Hum	Fr	Ripen fruits are eaten	Edible (105)	105	0.78
	Fragaria vesca L. Butti	PLP 17850	Hum	Fr		Ripen fruits are eaten	Edible (121)	121	0.90
	Prunus ameriaca L. Khumani	PLP 17999	Hum	Fr		Fruit is edible and seed crushed and taken internally to cure diabetes	Edible (97), medicinal (33)	130	0.96
	Prunus cornota (Wall. ex Royle) Steud.	Jamu	PLP 17912	Hum	Fr, Sd	Fruit is edible and seed crushed and taken internally to cure diabetes	Edible (97), medicinal (33)	130	0.96
	Prunus persica (L.) Batsch	PLP 17947	Hum	Fr		Ripen fruits are eaten	Edible (99)	99	0.73
	Rosa macrophylla Lindl.	Jungli gulab	PLP 17958	Hum	F1	Flowers are used by local healers to cure stomachache	Medicinal (17)	17	0.13
	Rubus niveus Thunn.	Aakhne/Karer	PLP 17965	Hum	Fr	Ripen fruits are eaten	Edible (94)	94	0.70
	Sorbaria tomentosa (Lindl.) Rehder	Paddad	PLP 17926	Cat	Lf	Leaves are used as vermicide in case of animals	Medicinal (43)	43	0.32
	Spiea canescens D.Don.	Preud	PLP 17972	Hum	St	The stems are used to make brooms and baskets (kira)	Household (81)	81	0.60
Rutaceae	*Boenninghausenia albiflora* (Hook.) Rchb. ex Mein.	PLP 17809	Hum	Lf		Leaves are used to kill bed bug	Household (78)	78	0.58
Sapindaceae	*Acer caesium* Wall. ex Kajju’ Jawandali	PLP 17900	Cat	Lf		The leaves of the plant are given as fodder to animals	Fodder (99)	99	0.73
Table 1 Enumeration of plants used by the Gujjars of Churah subdivision of Chamba district (Continued)

Family	Scientific name	Local name\(^a\)	Voucher no.	Used in\(^b\) Part(s) used\(^c\)	Mode of usage	Uses (no. of informants)	Total citations \((\Sigma U)\)	Use value \((UV)\)
Brandis	*Aesculus indica* (Wall. ex Cambess.) Hook.	Goon	PLP 17858	Cat Lf	The leaves of the plant are given as fodder to animals	Fodder (56)	56	0.41
Saxifragaceae	*Bergenia stracheyi* (Hook.f. & Thomson) Engl.	Kapdolu	PLP 17952	Hum Rt	Used to cure kidney stone	Medicinal (49)	49	0.36
Scrophulariaceae	*Verbascum thapsus* L. Jungli tambaku	PLP 17975	Cat Sd	Seeds are ground and mixed with wheat flour and given to cattle suffering from indigestion	Medicinal (31)	31	0.23	
Simaroubaceae	*Brucea javanica* (L.) Merr	Hala	PLP 17854	Hum Fr	The fruit is used to make chutney (sauce)	Edible (111)	111	0.82
Ailanthus altissima (Mill.) Swingle	Ramban	PLP 17996	Cat Lf	The leaves of the plant are given as fodder to animals	Fodder (45)	45	0.33	
Solanaceae	*Solanum nigrum* L. Makoi	PLP 17831	Hum Lf Fr	The tender leaves are eaten to treat dysentery and fruits are edible	Edible (55), medicinal (49)	104	0.77	
Taxaceae	*Taxus wallichiana* Zucc. Nagdaun/Brahmi	PLP 17904	Hum Bk	The bark is very often used in flavouring tea	Edible (81)	81	0.60	
Thymelaeaceae	*Daphne papyracea* Wall. ex G. Don	Nera	PLP 17954	Cat Lf	Leaves are given to cattle in case of cough and cold	Medicinal (55)	55	0.41
Urticaceae	*Urtica dioica* L. Ain	PLP 17818	Hum/Cat Lf	The leaf paste is applied to injuries to reduce swelling. The leaves are cooked very often as a vegetable in anaemic condition.	Edible (113), medicinal (69)	182	1.35	

New or lesser known ethnobotanical uses are indicated in bold
\(^{a}\)Local name: in the local dialect; \(^{b}\)Used in: Cat cattle, Hum human
\(^{c}\)Part(s) used: Ap aerial parts, Bk bark, Fl flower, Fr fruits, Lf leaf, Rt roots, Sd seeds, St stem, Tu tuber, Wp whole part, Wd wood
Results
Attributes of the informants
The characteristics of the informants is given in Fig. 2. Maximum male and female informants who had extensive ethnobotanical knowledge belonged to the age group between 60 and 79 years. The informants below the age of 20 years also responded well depicting the obvious transfer of traditional knowledge among the younger generation (Fig. 2). The children accompany the elders to the higher altitudes and help them in collecting wild plants. They learn about the uses of various plants through observations and especially wild fruits. A similar trend has been shown in the previous studies [4, 35, 36].

The translator helped us in easy communications with the Gujjar informants and even helped in collecting plant specimens from the wild. The female Gujjar informants were more comfortable in providing information to the female researcher as they are quite reticent. The tribal people of the region have a close relationship with nature and the vast experience of resource utilisation [37].

Floristic characteristics of the plants used
The study area is floristically rich, and the local inhabitants use a large number of plant species for variable uses. A total of 83 plant species belonging to 75 genera and 49 families were recorded in the study area (Table 1). The majority of plants belonged to Rosaceae (12 species), Polygonaceae (7 species), Betulaceae (4 species), Amaranthaceae (3 species), Apiaceae (3 species), Berberidaceae (3 species), Lamiaceae (3 species), and Ranunculaceae (3 species) [38–40] (Fig. 3). The genera represented by the highest number of species are Fragaria (3 species), Prunus (3 species), Rubus (2 species), Persicaria (2 species), Rhododendron (2 species), and Berberis (2 species).
The most frequently used plant parts are leaves, fruits, roots, seeds, and whole part (Fig. 4). This result is similar to other investigations [41–48]. Easy availability of leaves with its higher metabolite content can be the reason for its preference [49, 50].

The use value of plants

Maximum plant species (32) were reported for ethnomedicinal uses followed by food (22 species), household uses (16 species), fruits (15 species), and fodder (14 species). Use value is an important tool for selecting the most valued plants of any region for its detailed pharmacological investigation [51]. Highest use value was reported for the plant species which had multiple uses in the area. On the basis of use value (UV), the most important plants in the study area were *Pteridium aquilinum* (1.72), *Juglans regia* (1.60), *Corylus jacquemontii* (1.44), *Urtica dioica* (1.4), *Diplazium maximum* (1.21), *Angelica glauca* (1.16), *Rumex hastatus* (1.09), and *Rheum australe* (1.04) (Table 1). More than one plant part is used for about 13% of the species. For example, the bark of *Juglans regia* is used in cleaning teeth, its fruit is edible, and the wood is used in various household purposes. Similarly, the fruits of *Phytolacca acinosa* are fed to poultry while its aerial parts are eaten as a vegetable. The fruits of *Solanum nigrum* are edible while the tender leaves are eaten to cure dysentery. The leaves of *Betula utilis* are used to cure the urinary infection, and the bark is used in thatching roofs as a waterproof medium.

Informant consensus factor

The highest informant consensus values were obtained for food and fruit plants ($F_{ic} = 0.99$), followed by fodder plants and household uses ($F_{ic} = 0.98$) while it was least for the plants used for ethnomedicine ($F_{ic} = 0.97$) (Table 2). Ethnobotanical uses of wild plants reported during the present investigation were found in agreement to previous studies [52, 53]. This reveals that wild plants play an important role in the sustenance of the people of the region. The various forest products not only fulfil their essential household requirements but wild vegetables and fruits provide essential vitamins and minerals for a healthy life [54].

Table 2 Use category and their factor informant consensus (F_{ic}).

Use category	Number of plant species	Use citations	F_{ic}
Food plants	22	2127	0.99
Fruit plants	15	1410	0.99
Fodder plants	14	1179	0.98
Household	16	1358	0.98
Ethnomedicinal plants	32	1349	0.97

Table 3 Fidelity level (Fl%) of some important plant species for various use categories.

Use category	Important plants	Fl (%)
Food plants	*Diplazium maximum*	73.78
	Marchella esculenta	77.78
	Polygonum aviculare	83.2
	Phytolacca acinosa	100
	Stellaria media	100
	Urtica dioica	100
Fruit plants	*Berberis lycium*	100
	Corylus jacquemontii	100
	Juglans regia	51.39
	Prunus armeniaca	100
	Prunus comuta	74.62
	Rubus ellipticus	100
	Solanum nigrum	52.88
Fodder plants	*Acer caesium*	100
	Aesculus indica	100
	Ailanthus altissima	100
	Carpinus viminea	92
	Corylus jacquemontii	53.09
	Pteridium aquinum	49.57
	Quercus serracarpifolia	100
	Aconitum heterophyllum	100
	Angelica glauca	100
	Ajuga integrifolia	100
	Betula utilis	10.51
	Diplazium maximum	26.22
	Marchella esculenta	22.22
	OxystegDA digyna	19.44
	Pleuraxopemum brurnonis	17.59
	Polygonum aviculare	16.80
	Prunus comuta	25.38
	Rheum austral	36.88
	Rumex hastatus	21.09
	Solanum nigrum	47.12
Ethnomedicinal plants	*Angelica glauca*	100
	Betula utilis	89.09
	Boenninghausenia albilora	100
	Carpinus viminea	8.00
	Juglans regia	48.61
	Pleuraxopemum brurnonis	82.41
	Rheum austral	50.43
	Rheum austral	63.12
	Rumex hastatus	78.91

Household (taboos, incense, basketry, brooms, etc.)

Use category	Important plants	
	Boenninghausenia albilora	100
	Carpinus viminea	8.00
	Juglans regia	48.61
	Pleuraxopemum brurnonis	82.41
	Rheum austral	50.43
	Rheum austral	63.12
	Rumex hastatus	78.91
higher number of plants used for ethnomedicine by the tribal people indicate their dependency on locally available plant resources for curing various human and cattle related ailments. The complex ailments are healed by the local healers. This also signifies the unavailability of appropriate health care facilities in these remote regions. *Aconitum heterophyllum*, *Bergenia stracheyi*, and *Verbasum thapsus* with similar ethnomedicinal uses have been mentioned in the previous studies [55]. Roots were mostly used for curing various ailments because of easy availability in the dried form throughout the year [56].

Fidelity level

The fidelity level varied from 8 to 100% in all the use categories (Table 3). *Phytolacca acinosa* (100%), *Stellaria media* (100%), and *Urtica dioica* (100%) were some of the species with high fidelity level used as food plants. The important species of wild fruits in the study area include *Berberis lycium* (100%), *Prunus armeniaca* (100%), and *Rubus ellipticus* (100%). Some of the important fodder plants with high fidelity values (100%) were *Acer caesium*, *Aesculus indica*, *Althana altissima*, and *Quercus semecarpifolia*. Only a few plants with 100% fidelity were observed for ethnomedicine which were *Aconitum heterophyllum*, *Angelica glauca*, and *Ajuga integrifolia* while maximum plants in this category showed lower percentages of fidelity values varying from 10.91 to 47.12%. For the household use, least fidelity percentage was observed for *Carpinus viminea* (8%) while *Angelica glauca* and *Boenninghausenia albiflora* showed 100% fidelity values (Table 3). The fidelity level (Fl) helps in identifying the most preferred species for a particular use category. The high value of fidelity level (100%) indicates the same method of use for a specific plant [57]. Seventy-one plant species had 100% fidelity level. The ethnomedicinal plant use category had the maximum of 22 species with 100% fidelity level followed by food plant category with 18 species with 100% fidelity level.

Plants used for commercial purposes

With the onset of summer, the Gujjars start migrating to the higher altitudes with their cattle and stay in the temporary settlements called ‘Adhwari’s’. During this period, they uproot commercially important medicinal plants from the wild which they sell to local traders for financial gains [58]. The common medicinal plants harvested by them include *Aconitum heterophyllum*, *Dactylorhiza hatagirea*, *Morchella esculenta*, and *Picrorhiza kurrooa* (Table 4). Such indiscriminate exploitation of plant materials from nature can stress the natural population of these medicinal plants [59, 60]. Many of the plant species are categorised as threatened in the state that includes *Aconitum heterophyllum*, *Angelica glauca*, *Berberis aristata*, *Betula utilis*, *Dactylorhiza hatagirea*, *Jurinea macrocephala*, *Sinopodophyllum hexandrum*, and *Taxus wallichiana* (Table 5). Though these plant resources play an important role in the subsistence of the people, it may not be sustainable in the near future [61].

Comparison with the previous ethnobotanical studies

The extensive literature review revealed the lesser known or new uses for 21 plant species from the study area (Table 5). Out of these, 13 plant species had ethnomedicinal uses, six household uses, and three edible uses. In the present study, leaf juice of *Pleurospermum brunonis* was used to cure skin infections while it was reported to cure jaundice and fever and used as an insect repellent in the previous studies [62, 63]. The root of *Asparagus adscendens* was used to control hair fall while previously it has been reported as carminative and demulcent [64]. The decoction of leaves of *Betula utilis* was used to treat a urinary infection while the dried root powder of *Trillium govanianum* was used to cure arthritis. *Morchella esculenta* besides eaten as a vegetable was also used to cure a cold and cough while in the previous reports it is known to protect the stomach, nourish the lungs, and strengthen immunity [65–67]. The root of *Oxalis corniculata* was used to treat dyspepsia.

Table 4 Plants used for commercial purposes and their local market value in Tissa

Scientific name	Common name	Family	Part used	Value
Aconitum heterophyllum	Patish	Ranunculaceae	Roots	3500 /kg
Dactylorhiza hatagirea	Salampanja	Orchidaceae	Roots	2000 /kg
Jurinea macrocephala	Dhoop	Leguminosae	Roots	117 /kg
Morchella esculenta	Guuchi	Morchellaceae	Whole plant	7500 /kg
Picrorhiza kurrooa	Karu	Plantaginaceae	Rhizome	500 /kg
Selinum vaginatum	Bhoottkeshi	Apiaceae	Roots	200 /kg
Valeriana jatamansi	Mushakbala	Caprifoliaceae	Roots	220 /kg

Scientific name	Uses in the present study	Earlier use reports	
Acer caesium Wall. ex Brandis	Fodder	The wood is used for making agricultural implements, fuelwood, soil binder, fodder [72, 73]	
Aconitum heterophyllum Wall. ex	Medicinal	It is used to treat a cough, cold, fever, and abdominal pain [22, 53, 55]	
Aesculus indica (Wall. ex Cambess.) Hook. Sapindaceae	Fodder	Fodder, treatment of joint pains, fruits are edible [59, 74, 53, 66]	
Allanthus altissima (Mill)	Fodder	Fodder, reduce body swelling, bark juice mixed with milk to cure dysentery and diarrhoea [75–77]	
Ajuga integrifolia Buch.-Ham.	Medicinal	Roots are used to treat snakebite, malaria, jaundice, mouth ulcers [22, 78]	
Ailanthus altissima (Mill.)	Fodder	Medicinal, construction, furniture, fencing, roofing, fuel wood, fodder, utensils [78]	
Amaranthus paniculatus L. Amaranthaceae	Edible	Eaten as a vegetable, the seed is edible [79, 55]	
Angelica glauca Edgew. #	Medicinal, household	Snake repellent, root powder used to cure flatulence, dyspepsia, oedema, arthritis [80, 60, 23]	
Arisaema tortuosum (Wall.) Schott Araceae	Edible	Tubers are boiled and eaten, aerial parts are eaten as vegetable [80, 60, 23]	
Asparagus adscendens Roxb.	Medicinal	Carminative and demulcent [64]	
Bauhinia variegata L. Fabaceae	Edible	Young shoots, leaves, and flowers are eaten as vegetable, used to make pickle [36, 55]	
Berberis aristata DC. #	Medicinal	Piles, eye infections, fruits edible [81, 23, 82, 55, 66]	
Berberis lycium Royle Berberidaceae	Edible	Whole plant part used to cure eye infections and diabetes, gum problems, kidney problems, fruits edible [23, 53, 66, 83]	
Bergenia stracheyi (Hook.f. & Thomson) Engl. Saxifragaceae	Medicinal	A decoction of the rhizome is taken twice a day while a paste is applied topically on eyelids, used as fuel wood, diuretic [63, 69]	
Betula utilis D.Don #	Medicinal, household	Bark, leaf, and resin are used in rheumatism, bone fracture, joint pain, swellings, asthma, blood purification, anti-cancerous, roof top and umbrella cover, fodder [84–86]	
Boenninghausenia albiflora (Hook.) Rchb. ex Meinis, Rutaceae	Household	Antimicrobial, repel lice, fleas, and other insects [62, 87]	
Cannabis sativa L. Cannabaceae	Edible	Fodder, seed decoction taken orally for diarrhoea, malaria, and chronic diarrhoea [88, 89]	
Caltha palustris L. Ranunculaceae	Medicinal	Diuretic, urinary infections, inflammation, used to clean the hands, gonorrhoea, kill maggots [68, 69]	
Corydalis govaniana Wall.	Medicinal	Joint pains, analgesic, sedative, antispasmodic, roasted seeds are eaten [23, 64, 83, 55]	
Carpinus viminea Wall. ex Lindl. Betulaceae	Fodder, household	Fodder, the wood is used for making agricultural implements, sports equipment, and construction of houses, used to heal bone fracture [90–92]	
Cedrus deodara (Roxb. ex D.Don) G.Don Pinaceae	Medicinal	Bitter, stomachic, anthelmintic, febrifuge, wounds, and cuts [78, 93]	
Chenopodium album L. Amaranthaceae	Edible	Used as vegetable, fodder, laxative, jaundice, and urinary diseases [94, 43, 82, 64, 81, 83]	
Clinopodium vulgare L. Lamiaceae	Edible	Antibacterial, antitumour, leaves are edible [95]	
Commelina benghalensis L. Commelinaceae	Edible	Used to cure epilepsy, vaginal infection, eaten as vegetable [43, 55, 96]	
Corydalis govaniana Wall. Papaveraceae	Medicinal	Muscular pain, headache, leprosy, and rheumatism [97, 69, 68]	
Table 5 Comparison with the previous ethnobotanical studies (Continued)

Scientific name	Uses in the present study	Earlier use reports
Corylus jacquemontii Decne. Betulaceae	Edible, fodder	Medicinal, nuts edible, leaves used as fodder [98, 99]
Cotoneaster spp. Rosaceae	Fodder	Fodder, walking sticks, baskets, fuel [100, 101]
Dactylorhiza hatagirea (D.Don) Soó # Orchidaceae	Medicinal	Given to person suffering from weakness [22]
Daphne papyracea Wall. ex G. Don Thymelaeaceae	Medicinal	To cure bone disorders, intestinal complaints, ripen fruits edible, bark used for making paper [72, 101, 54, 102]
Desmodium elegans DC. Fabaceae	Fodder	Fodder, leaf paste applied on cuts and wounds to avoid infection to stimulate healing, the bark is used to clean teeth [103, 38]
Diplazium maximum (D. Don) C. Chr. Athyriaceae	Medicinal, edible	Muscular pain, young shoots are eaten as a vegetable [23, 36, 66, 102]
Dysphania botrys (L.) Mosyakin & Clements Amaranthaceae	Edible	Popular flavouring for a soup of meat, cheese, and barley [104, 105]
Elaeagnus parvifolia Wall. ex Royle Elaeagnaceae	Edible	Fruits edible, medicinal [78, 54]
* Epipactis helleborine (L.) Crantz Orchidaceae	Household	Used to treat insanity, gouts, headache, and stomach ache [106]
Fagopyrum esculentum Moench Polygonaceae	Edible	Stomach ulcer, tumour, jaundice, vegetable [63, 66]
Ficus spp. Moraceae	Fodder, purgative, antiseptic [107, 78]	
Fragaria indica Andrews Rosaceae	Edible	Fruits are edible [99]
Fragaria rubicola (Lindl. ex Hook.f.) Lacaita Rosaceae	Edible	Fruits are edible [82, 55]
Fragaria vesca L. Rosaceae	Edible	Fruits are edible [52]
Gagea lutea (L.) Ker Gawl. Liliaceae	Edible	Dried tubers used as spice [108]
Impatiens spp. Balsaminaceae	Fodder	Fodder, the colour obtained is used as nail paint [100, 78]
Jasminum humile L. Oleaceae	Medicinal	Powdered roots used as anthelmintic, diuretic, skin diseases, headache, mouth rash, ringworm [109, 77, 110]
Juglans regia L. Juglandaceae	Edible, household	Fruit edible, fuel, timber, fruit tonic taken for back pain [103, 94, 89, 53]
Juninea macrocephala DC. # Asteraceae	Household	Roots are used during religious ceremonies for incense, root decoction is given once per day to treat cold and cough [111]
Malva neglecta Wallr. Malvaceae	Edible	A cough, cold, malaria, kidney disorders and cooked as a vegetable [23, 69, 112]
* Marchella esculenta* (L.: Fr.) Pers. Morchellaceae	Edible, medicinal	Cooked and eaten, protect the stomach, nourish the lungs, and strengthen immunity [65, 66, 67]
Neolissea pallens (D. Don) Mormly. & H. Harla Lauraceae	Fodder	Fodder, juice of fruits is used to treat scabies and eczema, seeds oil is used as an antidote [103, 44, 113]
* Onosma hispida Wall. ex G. Don Boraginaceae	Medicinal	Fever, pain relief, wounds, infectious diseases, hair colour [114, 115]
* Oxalis corniculata L. Oxalidaceae	Medicinal	Blood purifier, appetiser, cure piles, diarrhoea, toothache, cough cure scorpion stings and skin diseases, aerial part is eaten as a vegetable [116–118, 55, 119, 43, 64, 120]
Oxyria digyna (L.) Hill Polygonaceae	Edible, medicinal	Used to make chutney, digestive and purgative [66]
Scientific name	Uses in the present study	Earlier use reports
----------------	---------------------------	---------------------
Persicaria amplexicaulis (D.Don) Ronse Decr., Polygonaceae	Edible	Used to treat skin diseases, jaundice, dysentery, leukorrhoea, fever, headache, indigestion, stomach pain, and blood purifier, effective in flu, fever, and joints [121–124, 53]
Persicaria hydropiper (L.) Delarbre Polygonaceae	Edible	Eaten as vegetable, dye plant [119, 52]
Phytolacca acinosa Roxb. Phytolaccaceae	Edible	Used to treat acne, eaten as a vegetable, root decoction is taken for cervical erosion, digestibility ulcer, liver ascites, constipation, diuresis [23, 94, 89]
Picrothiza kurrooa Royle # Plantaginaceae	Medicinal	Fever, jaundice, improve appetite and skin infection [125, 22, 23]
Pleurospermum brunonis Benth. ex C.B. Clarke Apiaceae	Medicinal, household	Whole plant used to cure jaundice, fever, insect repellent, incense [62, 63]
Polygonum aviculare L. Polygonaceae	Edible, medicinal	Eaten as a vegetable, treat dysentery and diarrhoea [119, 43]
Primula floribunda Wall. Primulaceae	Household	Used to treat headache, rheumatism, flowers are believed to have supernatural power to ward off devils and people knowing witchcraft, flowers increase the beauty of hair of ladies [70, 71]
Prunus armeniaca L. Rosaceae	Edible	Heal constipation in cattle, fruits are edible [53, 66]
Prunus cornuta (Wall. ex Royle) Steud. Rosaceae	Edible, medicinal	Used to cure anaemia, fruits are edible [23, 66]
Prunus persica (L.) Batsch Rosaceae	Edible	Fruits are edible [66]
Pteridium aquilinum (L.) Kuhn Dennstaedtiaceae	Fodder, household	Tender fronds used as vegetables, green fronds as fodder, good soil binder, used to cure diabetes, abdominal oedema [126, 23]
Quercus semecarpifolia Sm. Fagaceae	Fodder	Fodder, timber, construction, furniture, fencing, roofing, fuel wood, medicinal [78, 127]
Ranunculus spp. Ranunculaceae	Fodder	Fodder plant, counter irritant swelling in testes, fever, stomach worms [78, 127]
Rhododendron arboreum Sm. Ericaceae	Edible	Used as local brew, used to make chutney [128, 66]
Rhododendron campanulatum D.Don, Ericaceae	Medicinal	Leaves are mixed with tobacco and used as snuff to cure a cold [68]
Rosa macrophylla Lindl. Rosaceae	Medicinal	Used in cold and cough, flowers are edible, fruits are edible, stomach ache [23, 82]
Rubus ellipticus Sm. Rosaceae	Edible	Fruits are eaten to cure indigestion [23]
Rubus niveus Thunb. Rosaceae	Edible	Fruits are edible [94, 36]
Rumex hastatus D. Don Polygonaceae	Medicinal, household	Used to cure foot disease in cattle, used to cure jaundice, leaves eaten as a vegetable [23, 43, 82]
Sarcococca saligna (D. Don) Müll. Arg. Buxaceae	Household	Timber, fodder, fuel, and leaves in the ceiling of a roof of houses as a waterproof medium [129, 130]
Selinum vaginatum C.B. Clarke Apiaceae	Household	Used in making brew and incense making [62, 66]
Sinopodophyllum hexandrum (Royle) T.S.Ying # Berberidaceae	Medicinal	Cancer curing, bloating and appetite loss in cattle, fruit is edible [23, 53, 94, 52]
Solanum nigrum L. Solanaceae	Edible, medicinal	Vegetable, headache, fruits edible [119, 55, 53]
and aerial part of Polygonum aviculare was used to cure pneumonia. Seed powder of Prunus cornuta was administered orally to cure diabetes while the same species was reported against anaemia [23]. The tender leaves of Solanum nigrum were reported to treat dysentery while it is known to cure a headache [55]. The animal ailments like a cough and a cold of buffalos were cured using leaves of Rhododendron campanulatum and Daphne papyracea. The worm-infected sores and wounds of cattle were healed using leaves of Caltha palustris while it has been reported to cure various other ailments like urinary infections and inflammation in the previous studies [68, 69]. A number of plants were used by people for household uses like leaves and roots of Primula floribunda for cleaning milk containers to remove the oiliness and odour of the utensils while it has been reported for its use to ward off devils and as a hair decorator by women [70, 71]. Very interesting information was provided by the Gujjars about the use of root of Persicaria amplexicaulis in tea making which they consume very often because of easy availability of the plant, good flavour, and a number of health benefits. Fruits of Brueca javanica were used in making chutney (sauce) while the cracked seeds of Clinopodium vulgare were used in various recipes. They make brooms from the stems of Sarcococca saligna and shoes from the bark of Carpinus viminea. The poor economic conditions of the Gujjars and remoteness of the area have made them adopt indigenous knowledge passed through their ancestry.

Conclusions

The Gujjars of Churah region constitute an important segment of the population in the region who have in-depth knowledge of diverse plant uses that can be linked back to their hereditary profession of pastoralism (Fig. 5). The infinite ethnobotanical knowledge of this tribe can also be related to their greater dependency on the wild plant resources for their sustenance because of poor living standards, illiteracy, and poverty. The younger generation is also actively involved in the seasonal activity of semi-nomadic pastoralism, and therefore, they had sound knowledge of the traditional knowledge though it was mostly concentrated in the older informants.

Table 5 Comparison with the previous ethnobotanical studies (Continued)

Scientific name	Uses in the present study	Earlier use reports
Sorbaria tomentosa (Lindl.) RehderRosaceae	Medicinal	The flowers are grinded in milk and the resulted paste is applied to burns and wounds; fruits smoked in the treatment of asthma [38, 39, 131]
Spiraea canescens D.Don. Rosaceae	Household	Basket making [69, 103]
Stellaria media (L.) Vill. Caryophyllaceae	Edible	Leaf paste applied to cure joint pains and swellings, seed powder is given to children with milk to cure skin infection and allergy and leaf paste is applied to heal wounds caused by burning or frost, eaten as a vegetable [132, 43, 133]
Taxus wallichiana Zucc. # Taxaceae	Edible	Refreshing tea, cancer curing, and thatching roofs [22, 23]
Trillium govanianum Wall. ex D.DonMelanthiaceae	Medicinal	Used to cure dysentery, reproductive disorder [125, 103, 23]
Urtica dioica L. Urticaceae	Edible, medicinal	Used to treat skin diseases, soup making, eaten as a vegetable [23, 82, 36]
Valeriana jatamansi Jones Caprifoliaceae	Household	Roots used to cure a stomachache, valerian root has been used for a century as a relaxing and sleep promoting plant [59, 23].
Verbascum thapsus L. Scrophulariaceae	Medicinal	Indigestion in cattle [55]
Viburnum mullaha Buch.-Ham. ex D. Don Adoxaceae	Edible	Used to cure a cold and cough, fruits eaten [23, 53]

*Plants with new or lesser known ethnobotanical uses reported in the present study

Threatened wild plants of Himachal Pradesh, India [134]
through the words of mouth is eroding exigently. Thus, there is an urgent need for the documentation of this traditional knowledge and in-depth phytochemical investigations to evaluate potentially active compounds of the plant species to prove their efficacy.

It is essentially required to develop agro technological tools for plant species for which the same is lacking to ensure plantation in the forests/community lands available in the villages to check unsustainable harvesting of wild edibles. Value addition and product development of wild fruit plants can provide an alternate source of livelihood to the rural people. Thus, bioprospection and phytochemical profiling and evaluation of economically viable products can lead to the optimum harnessing of Himalayan bioresources in this region.

Additional file

Additional file 1: Questionnaire for documentation of ethno-botanical related TKS in the IHR from local resource persons and traditional healers (DOCX 19 kb)

Acknowledgements

The authors are thankful to the Director, CSIR-IHBT, Palampur for providing facilities and encouragement. We are grateful to DST, Govt. of India for the financial assistance provided under a sponsored project entitled “Network programme on the convergence of traditional knowledge system for sustainable development in the Indian Himalayan Region” and Prof. S.C. Garkoti, JNU for his constant support and cooperation. We are highly grateful to the Gujjars of the Churah region for sharing valuable information without any hurdle and support of officials of various line departments is also duly acknowledged. We are grateful to the Editor and the Reviewers for their valuable suggestions which helped us in improving this manuscript.
Funding
Funds for the study were provided by DST, Govt. of India funded project GAP-0189.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Authors’ contributions
DR and AB carried out field surveys and data recording and prepared the manuscript. BL designed the study and edited the manuscript. Both authors read and approved the final manuscript.

Ethics approval and consent to participate
Prior consent of the informants was taken while conducting these studies. This was done to adhere to the ethical standards of human participation in scientific research.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 November 2018 Accepted: 16 January 2019
Published online: 11 February 2019

References
1. Nath V, Khatri PK. Traditional knowledge on ethnomedicinal uses prevailing in tribals pockets of Chhindwara and Betul districts, Madhya Pradesh, India. Afr J Pharm and Pharmacol. 2010;4(9):662–70.
2. Mishra S, Mishra MK. Ethno-botanical study of plants with edible underground parts of south Odisha, India. Int J Res Agri food sci. 2014;4(2):51–8.
3. Bitta OM, Tuyet HT, Duyet HN, Dung NX. Food, feed or medicine: the multiple functions of edible wild plants in Vietnam. Econ Bot. 2003;57:103–17.
4. Setalaphruck C, Price LL. Children’s traditional ecological knowledge of wild food resources: a case study in a rural village in Northeast Thailand. J Ethnobiol Ethnomed. 2007;3:33.
5. Sundriyal M, Sundriyal RC. Wild edible plants of the Sikkin Himalaya: nutritive values of selected species. Econ Bot. 2001;55:377–90.
6. Verma AK. Forest as the material basis of tribai society during colonial period in Chittaranjan Kumar Paty (ed) Forest Government And Tribe (New Delhi: concept publishing company). 2007; 113–122.
7. Singh A. Cultural significance and diversity of ethnic foods of North East India. Indian J Tradit Knowl. 2006;6:79–94.
8. Rashid A, Anand VC, Senvar J. Less known wild edible plants used by the Gujar tribe of district Rajouri. J& K state Int J Bot. 2008;4(2):219–24.
9. Khoshoo TN. Conservation of biodiversity in biophere. In: Khoshoo TN, Sharma M, editors. Indian geosphere biosphere programme some aspects. Allahabad, India: Nation Academy of Sciences; 1991. p. 178–233.
10. Sharma PK. Ethnobotanical studies of Gaddis- a tribal community in district Kangra, H.P. PhD Thesis submitted to Yawasun Singh Parmar University of Horticature and Forestry; 1998.
11. Tambs-Lyche H. Power, profit and poetry: traditional society in Kathiawar. Western India: Manohar Publishers, New Delhi; 1997.
12. Sahni B. Socio-religious dichotomy among the Gujjars of Himalachal Pradesh. Int J Management & Soc Sci. 2016;4(2):245–267.
13. Negi TS. The scheduled tribes of Himachal Pradesh: a profile. Meerut: Raj Publishers; 1982. p. 117.
14. Census of India. 2011. Data retrieved from http://www.censusindia.gov.in/ 2011census/population_enumeration.aspx
15. Crooke W. The tribes and castes of the North-Western India Vol.-II. Delhi: Cosmo Publiction; 1974. p. 440.
16. Farooquee NA, Saxena KG. Conservation and utilization of medicinal plants in high hills of the central Himalayas. Environ Conserv. 1996;23(1):75–80.
17. Ssegawa P, Kasenene JM. Medicinal plant diversity and uses in the Sango bay area, southern Uganda. J Ethnopharmacol. 2007;113:521–40.
18. Bhatia H, Sharma VP, Manhas RK, Kumar K. Ethnomedicinal plants used by the villagers of district Udhampur, J&K, India. J Ethnopharmacol. 2014;151(2): 1005–18.
19. FAO. The state of food insecurity in the world, Rome.2009.
20. KholshahiK, Hammer K, Savadkhou (Iran) – an evolutionary center for fruit trees and shrubs. Genet Resour Crop Evol. 2005;53:641–51.
21. Bunailema I, Obakiso S, Tabuti JRS, Waako P. Knowledge on plants used traditionally in the treatment of tuberculosis in Uganda. J Ethnopharmacol. 2014;151:999–1004.
22. Güleria V, Vasitha A. Ethnobotanical uses of wild medicinal plants by Guddi and Gujar tribes of Himachal Pradesh. Ethnobotanical Leafllets. 2009;13:1158–67.
23. Rani S, Rana JC, Rana PK. Ethnomedicinal plants of Chamba district, Himachal Pradesh, India. J Med Res. 2013;74(2):3147–57.
24. Chowdhery HJ, Wadhwia BM. Flora of Himachal Pradesh: analysis 1984;Vol.-I.
25. Singh H, Sharma M. Flora of Chamba District, Himachal Pradesh, vol. 16. Dehra Dun: Bishen Singh Mahendra Pal Singh; 2006. p. 881.
26. Polunin O, Stanton A. Flowers of the Himalaya. In: Seventh impression. New Delhi: Oxford University Press; 2005.
27. Phillips O, Gentry AH, Reynel C, Wilki P. Sazev-Durand CB. Quantitative ethno botany and Amazonian conservation. Conserv Biol. 1994;8:225–48.
28. Trottet R, Logan M. Informant consensus, a new approach for identifying potentially effective medicinal plants, in Plants in Indigenous Medicine and Diet, Bio-behavioural Approaches (ed. N.L. Etkin), Redgrave Publishers, Bedford Hills, New York; 1986; 91–112.
29. Heinrich M, Ankli A, Frei B, Weimann C, Sticher O. Medicinal plants in Mexico: healers’ consensus and cultural importance. Soc Sci Med. 1992;47:1863–75.
30. Gazzaneo LRS, Lucena RFF, Albuquerque UP. Knowledge and use of medicinal plants by local specialists in a region of Atlantic Forest in the state of Pernambuco (Northeastern Brazil). J Ethnobot Ethnomed. 2005;19.
31. Sharma R, Manhas RK, Magotta R. Ethnoveterinary remedies of diseases among milk yielding animals in Kathua, Jammu and Kashmir, India. J Ethnopharmacol. 2012;141(1):265–72.
32. Xavier TF, Kannan M, Lija L, Auxilla A, Rose AKF, Kumar SS. Ethnobotanical study of Kani tribes in Thodhulls of Kerala, South India. J Ethnopharmacol. 2014;152:78–90.
33. Friedman J, Yaniv Z, Dafni A, Palewatch D. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev desert, Israel. J Ethnopharmacol. 1986;16:275–87.
34. Musa MS, Abdelrasoul FE, Elsheikh EA, Ahmed LAMN, Mahmoud ALE, Yagi SM. Ethnobotanical study of medicinal plants in the Blue Nile State, South-eastern Sudan. Journal of Medicinal Plants Research. 2011;5:4287–97.
35. Luczaj T. Archival data on wild food plants used in Poland in 1948. J Ethnobiol Ethnomed. 2008;44.
36. Uprety Y, Poudel RC, Shrestha KK, Rajbhandary S, Tiwari NN, Shrestha UB, Arselin H. Diversity of use and local knowledge of wild edible plant resources in Nepal. J Ethnobot Ethnomed. 2012;8:16.
37. Sharma PK, Chauhan NS, Lal B. Observations on the traditional phytotherapy among the inhabitants of Parvati valley in western Himalaya, India. J Ethnopharmacol. 2004;92:167–76.
38. Kumar S, Harial IA. Wild edibles of Kishwar high altitude national park in northwest Himalaya, Jammu, and Kashmir (India). Ethnobotanical Leafllets. 2009;13:195–202.
39. Dangwal LR, Rana CS, Sharma A. Ethno-medicinal plants from the transitional zone of Nanda Devi Biosphere Reserve, district Chamoli, Uttarakhand (India). Indian J Nat Prod Resour. 2011;12(1):116–20.
40. Singh B, Bedi YS. Eating from raw wild plants in Himalaya: traditional knowledge documentary on Sheena tribe in Kashmir. Indian J Nat Prod Res. 2013;12:1–1.
41. Giday M, Asflaw Z, Woldu Z. Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study. J Ethnopharmacol. 2009;124:513–21.
42. Ugulu I, Baslar S, Yorek N, Dogan Y. The investigation and quantitative ethnobotanical evaluation of medicinal plants used around Izmir province. J Med Plant Res. 2005;9:345–67.
43. Abbasi AK, Khan MA, Shah MH, Shah MM, Pervez A, Ahmed M. Ethnobotanical appraisal and cultural values of medicinally important wild edible vegetables of Lesser Himalayas- Pakistan. J Ethnobiol Ethnomed. 2013;66.
44. Bhat JA, Kumar M, Bussmann RW. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. J Ethnobot Ethnomed. 2013;31.
45. Ullah M, Khan MU, Mahmood A, Malik R, Hussain M, Wazir SM, Daud M, Khan ZK. An ethnobotanical survey of indigenous medicinal plants in Wana district south Waziristan agency, Pakistan. J Ethnopharmacol. 2013;150:918–24.

46. Sadeghi Z, Mahmood A. Ethnogynaecological knowledge of medicinal plants used by Baluch tribes, southeast of Baluchistan, Iran, Brazilian. J Pharmacogn. 2014;24:706–15.

47. Aarya S, Abeer B, Giday M. Study of plants traditionally used in public and animal health management in Shehart Samre District, Southern Tigray, Ethiopia. J Ethnobiol Ethonomed. 2015;11:22.

48. Guler B, Manav E, Uglu E. Medicinal plants used by traditional healers in Bozuyuk (Bilecik–Turkey). J Ethnopharmacol. 2015;173:39–47.

49. Ghorbani A. Studies on pharmaceutical ethno botany in the region of Turkmen Sahra north of Iran (Part 1): general results. J Ethnobiol Ethonomed. 2005;102:58–68.

50. Weckerle CS, Huber FK, Yang YP, Sun WB. Plant knowledge of the Shuhi in the Hengduan Mountains, southwest China. Econ Bot. 2006;60:3–23.

51. Sadeghi Z, Kuhestani K, Abbodliahi V, Mahmood A. Ethnopharmacological studies of indigenous medicinal plants of Saravan region, Baluchistan, Iran. J Ethnopharmacol. 2014;152:111–8.

52. Li F, Zhuo J, Bo L, Jarvis D, Long C. Ethnobotanical study on wild plants used by the locals in Kishtwar, Jammu and Kashmir, India. J Ethnobiol Ethonomed. 2009;13:16:626–37.

53. Thakur M, Asrani RK, Thakur S, Sharma PK, Patil RD, Lal B, Parkash O. Observations on traditional usage of ethnomedicinal plants in humans and animals of Khag and Chamba districts of Himachal Pardesh in North-Western Himalaya, India. J Ethnopharmacol. 2016;191:280–300.

54. Singh A, Nautiyal MC, Kunwar RP, Bussmann RW. Ethnobotanical studies of indigenous medicinal plants used by local inhabitants of Jakhti block, Rudraprayag district, western Himalaya, India. J Ethnobiol Ethonomed. 2017;13:49.

55. Srithi K, Balslev H, Wangpakapattanawong P, Srisanga P, Trisonthi C. An ethnobotanical study on the wild edible plants used by the Korku tribe of Amravati district of Maharashtra, India. J Ethnopharmacol. 2006;107:463–9.

56. Ghorbani A. Studies on pharmaceutical ethno botany in the region of Turkmen Sahra north of Iran (Part 1): general results. J Ethnobiol Ethonomed. 2005;102:58–68.

57. McCabe S. Complementary herbal and alternative drugs in clinical practice. In: Khadka M, Verma R, editors. Gender and biodiversity management in the villages of Rawain valley, Uttarkashi, Uttarakhand, India. Ethnobotanical Research Applications. 2009;7:409–23.

58. Araya S, Abera B, Giday M. Study of plants traditionally used in public and animal health management in Shehart Samre District, Southern Tigray, Ethiopia. J Ethnobiol Ethnomed. 2011;7:16:22.

59. Ullah M, Khan MU, Mahmood A, Malik R, Hussain M, Wazir SM, Daud M, Khan ZK. An ethnobotanical survey of indigenous medicinal plants in Wana district south Waziristan agency, Pakistan. J Ethnopharmacol. 2013;150:918–24.

60. Gupta A. Ethnobotanical studies on Gaddi tribe of Bharmour area of Himachal Pradesh. Ph.D. Thesis submitted in forestry to Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh. 2011.

61. EMA (European Medicines Agency), Assessment report on Primulaveris L. and/or Primulae floris. EMA/HPHC/136583/2012, 2012.

62. Awon MR, Iqlbal Z, Shah SM, Jamal Z, Jan G, Afzal M, Majid A, Gul A. Studies on traditional knowledge of economically important plants of Kaghan valley, Mansehra district, Pakistan. J Med Plant Res. 2011;5(16):3958–67.

63. Nautiyal M, Tiwari JK, Rawat DS. Exploration of some important fodder plants of Joshimath area of Chamoli district of Garwhal, Uttarakhand. Current Botany. 2017;8:144–9.

64. Singh T, Singh A. Dangwal LR. Impact of overgrazing and documentation of wild fodder plants used by Gujjar and Bakwrel tribes of district Rajouri (U.K.), India. Journal of Applied and Natural Science. 2016;8(2):804–11.

65. Kumar VSK, Prospis cineraria and Alانthus excelsa- fodder trees of Rajasthan, India International Tree Crops Journal. 1999;10(79–86.

66. Tagjap SD, Deokule SS, Bhosle SV. Some unique ethnomedicinal uses of plants used by the Korku tribe of Amravati district of Maharashtra, India. J Ethnopharmacol. 2006;107:463–9.

67. Akhtar N, Rashid A, Murad W, Bergmeier E. Diversity and use of ethno- medicinal plants in the region of Swat, North Pakistan. J Ethnobiol Ethonomed. 2013;29:25.

68. Ahmad H, Khan AM, Ghafoor S, Ali N. Ethnobotanical study of upper Siran. Journal of Herbs, Spices & Medicinal Plants. 2009;15:86–97.

69. Martirosyan DM. Amaranth as a nutritional supplement for the modern diet. Amaranth Legacy, USA. 2001;14:2–4.

70. BihtKH, Bhatt A, Rawal KS, Dhar U. Prioritization and conservation of Himalayan medicinal plants: Angelica glauca Edgew. as a case study. Ethnobotany Research & Applications. 2006;11:2–3.

71. Mita MP, Saumya D, Sanjita D, Kumar TM. Phyto-pharmacology of a Berberis aristata DC. a review. J Drug Delivery Ther. 2011;1:46–50.

72. Boesi A. Traditional knowledge of wild food plants in a few Tibetan communities. J Ethnobiol Ethonomed. 2014;10:75.

73. Aszt MA, Adnan M, Khan AH, Shataat AA, Al-Said MS, Ullah R. Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand agency, FATA, Pakistan. J Ethnobiol Ethonomed. 2018;14:2.

74. Kala CP. The valley of flowers: myth and reality. Dehradun, India. International Book Distributor; 2004.

75. Phondani PC. A study on prioritization and categorization of specific ailments in different high altitude tribal and non-tribal communities and their traditional plant based treatments in Central Himalaya. Ph. D Thesis. GB Rau, Uttarakhand: H.N.B. Gharwal Central University, Srinagar; 2010.

76. Sharma N. Conservation and utilization of medicinal and aromatic plants in Dhauladhar mountain range of Himachal Pradesh. Ph.D. Thesis. Dehradun, India. Forest Research Institute (Deemed University); 2017.

77. Khulbe K, Sati SC. Antibacterial activity of Boehmninghausenia obiflora Rechb. (Rutaceae). Afr J Biotechnol. 2009;8(22):3846–8.

78. Rana MS, Rana SB, Samant SS. Extraction, utilization pattern and prioritization of fuel resources for conservation in Manali Wildlife Sanctuary, Northwestern Himalaya. Journal of Mountain Science. 2012;9:580–8.

79. Hong L, Guo Z, Huang K, Wei S, Bo L, Meng S, Long C. Ethnobotanical study on medicinal plants used by Maonan people in China. J Ethnobiol Ethonomed. 2015;11:32.

80. Samant SS, Singh M, Manohar L, Pant S. Diversity, distribution and prioritization of fodder species for conservation in Kullu District, Northwestern Himalaya, India. J Mt Sci. 2007;4(3):259–74.

81. Verma D, Singh G, Ram N. Carpus viminalis: a pioneer tree species of old landslide regions of Indian Himalaya. Cur Sci. 2009;97(9):1277–8.

82. Shah R, Pandey PC, Tiwari L. Traditional veterinary herbal medicines of western part of Almora district, Uttarkashi Himalaya. Indian J Tradit Knowl 2008;7(2):355–359.

83. Nevgi VA, Maikhuri RK, Vashishtha DP. Traditional healthcare practices among the villages of Rawain valley, Uttarkashi, Uttarakhand, India. Indian J Tradit Knowl. 2011;10(3):533–7.

84. Ju Y, Zhuo J, Liu B, Long C. Eating from the wild: diversity of wild edible plants used by the Tibetans in Shangri-la region, Yunnan, China. J Ethnobiol Ethonomed. 2013;9:28.
95. Carovič-Stankić K, Grdiča M, Pintar J, Bedeković D, Ćustić MH, Satovic Z. Medicinal plants of the family Lamiaceae as functional foods – a review. Czeck J Food Sci. 2016;34(5):377–90.
96. Tugume P, Kakudidi EK, Buyinza M, Namaalwa J, Kamatenesi M, Mucunguzi P, Kalera J. Ethnobotanical survey of medicinal plant species used by communities around Mabira central Forest reserve, Uganda. J Ethnobiol Ethnomed. 2016;12.5.
97. Khan M, Kumar S, Hamal IA. Medicinal plants of Sewa river catchment area in the Northwest Himalaya and its implication for conservation. Ethnobotanical Leaflets. 2009;13:113–39.
98. Sher H, Eyremeni M, Hussain K, Sher H. Ethnobotanical and economic observations of some plant resources from the northern parts of Pakistan. Ethnobot Res Appl. 2011:27–42.
99. PP Chauhan, Nigam A, K Santvan V. Ethnobotanical study of wild fruits in Parbat Valley, District Shimla, Himachal Pradesh. Journal of Medicinal Plant Studies 2016;4(2):216–20.
100. Rahim IU, Maselli D, Rueff H, Wiesmann U. Indigenous fodder trees can increase grazing accessibility for landless and mobile pastoralists in northern Pakistan. Pastoralism. 2011;1:2.
101. Sharma P, Patti P, Agnihotry A. Ethnobotanical and ethnomedicinal uses of floristic diversity in Murari Devi and surrounding areas of Mandi in Himachal Pradesh, India. Pakistan Journal of Biological Sciences. 2013;16(10):491–68.
102. Prakash V. Studies on the ethnobotany of Shikari Devi sanctuary and Kamrunag hills, district Shimla. Himachal Pradesh Sahay. Ph. D. thesis submitted to Himachal Pradesh University; 2014.
103. Sharma A. Studies on floristic diversity and prioritization of communities for conservation in Hirb and Shoba catchments district Kullu of Himachal Pradesh. Nainital: North Western Himalaya, Ph. D thesis submitted to Kumaun university; 2008.
104. Koelz WN. Notes on the ethnotobotany of Lahul, a province of Punjab. Quart J Crude Drug Res. 1975;17:1–56.
105. Ketter C, Krichbaum M. Tibetan medicinal plants. Medpharm Scientific Publishers; 2001:241–6.
106. Pant B. Medicinal orchids and their uses: tissue culture a potential alternative for conservation. African J Plant Sci. 2013;7(10):448–67.
107. Kunwar RM, Bussmann RW. Ficus (Fig) species in Nepal: a review of diversity and indigenous uses. Lyonia. 2006;11(1):85–97.
108. Khan MA, Khan MA, Hussain M, Murtaza G. An ethnobotanical inventory of Himalayan region Poonch valley Azad Kashmir (Pakistan). Ethnobot Res Appl. 2010;8:109–24.
109. Rana D, Masoodi D. Ethnobotanical survey for wild plants in fringe villages around Shimla Water Catchment Sanctuary, Himachal Pradesh, India. Journal of Herbs, Spices & Medicinal Plants. 2016;22(3):247–78.
110. Rana D, Masoodi D. Ethnobotanical survey for wild plants in fringe villages around Shimla Water Catchment Sanctuary, Himachal Pradesh, India. Journal of Applied and Natural Science. 2014;6(2):720–4.
111. Rani S, Rana JC. Ethnobotanical uses of some plants of Bhattiyati block in district Chamba, Himachal Pradesh (Western Himalaya). Ethnobot Res Appl. 2014;12:407–14.
112. Polat R, Cakilcioglu U, Ulusun MD, Paksoy MY. Survey of wild food plants for human consumption in Elazığ, Turkey. Indian J Tradit Knowl. 2015;14(1):69–75.
113. Mallá B, Gauchan DP, Chhetri RB. An ethnobotanical study of medicinal plants used by ethnic people in Parbat district of western Nepal. J Ethnopharmacol. 2015;165:103–17.
114. Gahreramannejad F, Jochari M, Vtek E. New plant records for Khosrow province, Iran. Arnelan des Naturhistorischen Museums in Wien B. 2005:108:255–93.
115. Khan SW, Khatoon S. Ethnobotanical studies on some useful herbs of Haraamosh and Bugrote valleys in Gilgit, northern area of Pakistan. Pak J Bot. 2008;40(4):43–58.
116. Kuttikar KR, Basu BD. Indian medicinal plants. 3rd ed. New Delhi: M.S. Periodical Exports; 1975.
117. Singh KK, Kumar K. Ethnobotanical wisdom of Gaddi Tribe in Western Himalaya. Bishen Singh and Mahendra Pal Singh; 2000.
118. Khand SK. Ethnobotanical study of medicinal plants and screening of plants for antibacterial activity from Similipal Biosphere Reserve, Odisha, India. J Ethnopharmacol. 2014;151:158–75.
119. Wujisguleng W, Khasbagen K. An integrated assessment of wild vegetable resources in Inner Mongolian Autonomous Region, China. J Ethnobiol Ethnomed. 2010;6:54.
120. Ahmad K, Pieroni A. Folk knowledge of wild food plants among the tribal communities of Thakhte-Sulaiman hills, North-West Pakistan. J Ethnobiol Ethnomed. 2016;12:17.
121. Matin A, Khan MA, Ashraf M, Qureshi RA. Traditional use of herbs, shrubs, and trees of Shogran valley, Mansehra, Pakistan. Pak J Biol Sci. 2001;4:1101–7.
122. Uniyal SK, Singh KN, Jamwal P, Lal B. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed. 2006;2:14.
123. Gairola S, Sharma J, Bedi YS. A cross-cultural analysis of Jammu, Kashmir, and Ladakh (India) medicinal plant use. J Ethnopharmacol. 2014;155:925–86.
124. Kayani S, Ahmad M, Sultan M, Shinhwar ZK, Zafar M, Yaseen G, Hussain M, Bibi T. Ethnobotany of medicinal plants among the communities of Alpina and Sub-alpine regions of Pakistan, J Ethnopharmacol. 2015;164:186–202.
125. Samant SS, Pant S, Singh M, Manohar L, Singh A, Sharma A, Bhandari S. Medicinal plants in Himachal Pradesh, north western Himalaya, India. International Journal of Biodiversity Science and Management. 2007;3:234–51.
126. Gaur RD, Bhatt BP. Folk utilization of some pteridophytes of Deorayap area in Ghawal Himalaya: India. Econ Bot. 1994;48(2):146–51.
127. Joshi AR, Joshi K. Plant diversity and ethnobotanical notes on tree species of Syabru Village, Langtang National Park, Nepal. Ethnobotanical Leaflets. 2009;13:651–64.
128. Bhattacharyya D. Rhododendron species and their uses with special reference to the Himalayas - a review. Assam University Journal of Science & Technology: Biological and Environmental Sciences. 2011;7(1):161–7.
129. Rana PK, Kumar P, Singhal V, Rana, J. C. Uses of local plant biodiversity among the tribal communities of Pangi Valley of district Chamba in cold desert Himalaya, India. In: The Scientific World Journal; 2014.
130. Sahi N, Arya KR. Ethnobotanical and ethnopharmacological activities of Artemisia nilagirica. Lyonia ovalifolia, Sarcococca saligna, and Taraxacum officinale. 2017;8(11):4818–25.
131. Akhtar N. Exploring patterns of phytodiversity, ethnobotany, plant geography and vegetation in the mountains of Mandam, Swat, Northern Pakistan. M. Phil dissertation submitted to the Georg-August-University school of science (GAUSS), Göttingen. 2014.
132. Malik AK, Khuroo AA, Dar GH, Khan ZS. Ethnomedicinal uses of some plants in the Kashmir Himalaya. Indian J Tradit Knowl. 2011;10(2):352–6.
133. Thorgam J, Korsam S, Handique AK. Assessment of wild leafy vegetables traditionally consumed by the ethnic communities of Manipur, northeast India. J Ethnobiol Ethnomed. 2016;12:9.
134. CAMP Report. Threatened medicinal plants of Himachal Pradesh, report of the ‘CAMP’ (Conservation Assessment & Management Prioritisation) workshop held at Shimla on 1-4 December 2010, sponsored by National Medicinal Plants Board, Government of India and organised by Himachal Pradesh Forest Department. 2010.