THE CENTRAL NILRADICAL OF
NONNOETHERIAN DIMER ALGEBRAS

CHARLIE BEIL

Abstract. Let Z be the center of a nonnoetherian dimer algebra A on a torus. We show that the nilradical $\text{nil } Z$ of Z is prime, may be nonzero, and consists precisely of the central elements that vanish under a cyclic contraction of A. This implies that the nonnoetherian scheme $\text{Spec } Z$ is irreducible. We also show that the reduced center $\hat{Z} = Z/\text{nil } Z$ embeds into the center R of the corresponding ghor algebra, and that their normalizations are equal. Finally, we give three characterizations of the normality of R, and show that if \hat{Z} is normal, then it has the special form $k + J$ where J is an ideal of the cycle algebra of A.

1. Introduction

The main objective of this article is to establish certain key algebraic and geometric properties of the centers of nonnoetherian dimer algebras and ghor algebras on a torus. A dimer algebra is a type of quiver algebra whose quiver embeds into a compact surface with homotopy-like relations defined on its paths. Dimer algebras originated in string theory in 2005 [HK, F-K, F-W, HV], and since have found wide application to many areas of mathematics. Among these areas are noncommutative algebraic geometry [B5, B7, Br, CQ, D, IN, IU, MR], cluster algebras and categories [BKM, GK, K, MS, P, RW], mirror symmetry [F-V, FU, HN], and number theory [BGH, H]. The torus is special among other surfaces without boundary in that only on a torus do noetherian dimer algebras have exceptionally nice algebraic and homological properties as noncommutative crepant resolutions. Ghor algebras, in contrast, remain suitably nice on higher genus surfaces [BB1, BB2]. Throughout, we will restrict our attention to dimer and ghor algebras on a torus.

A dimer algebra is noetherian if and only if its center is noetherian [B4, Theorem 1.1]. Regardless of noetherianity, the Krull dimension of the center is three; if nonnoetherian, then the center is the coordinate ring for a three-dimensional affine toric variety with a single ‘positive dimensional’ point [B6, Theorem 1.1]. Recall that an integral domain is normal if it is integrally closed in its field of fractions. A well known property of noetherian dimer algebras—being noncommutative crepant resolutions—is that their centers are normal integral domains. In this article we
consider the questions: Is the center of a nonnoetherian dimer algebra necessarily normal, or necessarily a domain? If not, what can be said about its normalization, zero divisors, and nilradical?

We will use two fundamental tools to answer these questions, both introduced in [B2]: cyclic contractions and ghor algebras. A cyclic contraction $\psi : A \to A'$ of a dimer algebra $A = kQ/I$ is the contraction of a particular set of arrows of Q to vertices such that the cycles of Q are preserved and the resulting dimer algebra A' is noetherian (see (3)). Remarkably, every (nondegenerate) dimer algebra admits a cyclic contraction [B1, Theorem 1.1]. The ghor algebra of Q is the quotient
\[
\Lambda := A/(p - q \mid p, q \text{ a non-cancellative pair}),
\]
where a pair of distinct paths p, q is said to be non-cancellative if there is a path r such that $rp = rq \neq 0$ or $pr = qr \neq 0$. A dimer algebra equals its ghor algebra if and only if it is noetherian [B4, Theorem 1.1]. The center $R = Z(\Lambda)$ of Λ will play an essential role in deciphering the structure of the center Z of A. Our main theorem is the following.

Theorem 1.1. (3.5, 4.1, 4.2, 5.5, 5.8, 6.6, 6.7) Let $A = kQ/I$ be a nonnoetherian dimer algebra on a torus with center Z, let R be the center of its ghor algebra Λ, and let $\psi : A \to A'$ be any cyclic contraction of A.

1. The nilpotent central elements of A are precisely the central elements in the kernel of ψ,
\[
\text{nil } Z = Z \cap \ker \psi.
\]
2. The reduced center $\hat{Z} := Z/\text{nil } Z$ is an integral domain. The scheme $\text{Spec } Z$ is therefore irreducible.
3. \hat{Z} is a subalgebra of R, and their normalizations are equal and nonnoetherian.
4. R is normal if and only if $R = k + J$ for some ideal J of the center Z' of A'.

Consequently, if \hat{Z} is normal, then $\hat{Z} = k + J$.

We give examples of dimer algebras exhibiting various properties of the central nilradical. Notably, we show that $\text{nil } Z$ may be nonzero (Example 3.1); the containment $\hat{Z} \subseteq R$ may be proper (Example 4.3); and \hat{Z} may not be normal (Proposition 6.4).

2. Preliminaries

Throughout, k is an algebraically closed field of characteristic zero. Given a quiver Q, we denote by kQ the path algebra of Q, and by Q_ℓ the paths of length ℓ. The vertex idempotent at vertex $i \in Q_0$ is denoted e_i, and the head and tail maps are denoted $h, t : Q_1 \to Q_0$. By monomial, we mean a non-constant monomial.
Definition 2.1.

- A dimer quiver Q is a quiver whose underlying graph \overline{Q} embeds into a compact surface Σ such that each connected component of $\Sigma \setminus \overline{Q}$ is simply connected and bounded by an oriented cycle of length at least 2, called a unit cycle. The dimer algebra A of Q is the quotient kQ/I, where I is the ideal
 \[I := \langle p - q \mid \exists a \in Q_1 \text{ s.t. } pa \text{ and } qa \text{ are unit cycles} \rangle \subset kQ, \]
 and p, q are paths. Throughout, we will take Σ to be a real two-torus.
- A perfect matching x of Q is a set of arrows such that each unit cycle contains precisely one arrow in x. A perfect matching x is simple if there is an oriented path between any two vertices in $Q \setminus x$. In particular, x is a simple matching if $Q \setminus x$ supports a simple A-module of dimension 1.
- A dimer quiver is nondegenerate if each arrow is contained in a perfect matching. Throughout, we will take all dimer quivers to be nondegenerate.
- If p is a path in Q, then we refer to $p + I$ as a path in A since each representative of $p + I$ is a path. If p, q are paths in Q (resp. A) that are equal in A, then we will write $p \equiv q$ (resp. $p = q$).
- A and Q are non-cancellative if there are paths $p, q, r \in A$ for which $p \neq q$, and $pr = qr \neq 0$ or $rp = rq \neq 0$; in this case, p, q is called a non-cancellative pair. Otherwise, A and Q are cancellative; cancellativity was introduced in [D]. A (nondegenerate) dimer algebra is cancellative if and only if it is noetherian [B4, Theorem 1.1].

Notation 2.2. Let $\pi : \mathbb{R}^2 \to T^2$ be a covering map such that for some $i \in Q_0$,
 \[\pi(\mathbb{Z}^2) = i. \]
Denote by $Q^+ := \pi^{-1}(Q) \subset \mathbb{R}^2$ the covering quiver of Q. For each path p in Q, denote by p^+ the unique path in Q^+ with tail in the unit square $[0, 1) \times [0, 1) \subset \mathbb{R}^2$ satisfying $\pi(p^+) = p$.
For paths p, q satisfying
\begin{equation}
(2) \quad t(p^+) = t(q^+) \quad \text{and} \quad h(p^+) = h(q^+),
\end{equation}
denote by $R_{p,q}$ the compact region in $\mathbb{R}^2 \supset Q^+$ bounded by (representatives of) p^+ and q^+, and denote by $R_{p,q}^\circ$ the interior of $R_{p,q}$.

Notation 2.3. By a cyclic subpath of a path p, we mean a subpath of p that is a nontrivial cycle. Consider the following sets of cycles in A:

- Let C be the set of cycles in A (i.e., cycles in Q modulo I).

\[\text{The dual graph of a dimer quiver is called a dimer model or brane tiling, or, if on a disc, a plabic (}=\text{planar bicolored}) \text{ graph } [P]. \]
• For \(u \in \mathbb{Z}^2 \), let \(C^u \) be the set of cycles \(p \in C \) such that
\[h(p^+) = t(p^+) + u \in Q_0^+ \.
• For \(i \in Q_0 \), let \(C_i \) be the set of cycles in the vertex corner ring \(e_i Ae_i \).
• Let \(\hat{C} \) be the set of cycles \(p \in C \) such that \((p^2)^+\) does not have a cyclic subpath; or equivalently, the lift of each cyclic permutation of \(p \) does not have a cyclic subpath.

We denote the intersection \(\hat{C} \cap C^u \cap C_i \), for example, by \(\hat{C}^u_i \). Note that \(C_0 \) is the set of cycles whose lifts are cycles in \(Q^+ \). In particular, \(\hat{C}_0 = Q_0 \). Furthermore, the lift of any cycle \(p \) in \(\hat{C} \) has no cyclic subpaths, although \(p \) itself may have cyclic subpaths.

Lemma 2.4. \([B2, \text{Lemma 4.13.2}]\) Suppose paths \(p^+, q^+ \) have no cyclic subpaths modulo \(I \), satisfy (2), and bound a region \(R_{p,q} \) that contains no vertices in its interior. Then \(p \equiv q \).

Let \(A = kQ/I \) be a dimer algebra. For each perfect matching \(x \) of \(A \), consider the map
\[n_x : Q_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0} \]
defined by sending a path \(p \) to the number of arrow subpaths of \(p \) that are contained in \(x \). Observe that \(n_x \) is additive on concatenated paths. Furthermore, if \(p, p' \in Q_{\geq 0} \) are paths satisfying \(p + I = p' + I \), then \(n_x(p) = n_x(p') \), by \([B2, \text{Lemma 2.1}]\). In particular, \(n_x \) induces a well-defined map on the paths of \(A \).

Now consider dimer algebras \(A = kQ/I \) and \(A' = kQ'/I' \), and suppose \(Q' \) is obtained from \(Q \) by contracting a set of arrows \(Q_1^* \subset Q_1 \) to vertices. This contraction defines a \(k \)-linear map of path algebras
\[\psi : kQ \rightarrow kQ' \]
If \(\psi(I) \subseteq I' \), then \(\psi \) induces a \(k \)-linear map of dimer algebras \(\psi : A \rightarrow A' \), called a contraction.\(^2\)

To specify the structure we wish \(\psi \) to preserve, consider the polynomial ring \(k[S'] \) generated by the simple matchings \(S' \) of \(A' \). To each path \(p \in A' \), associate the monomial
\[\bar{\tau}(p) := \prod_{x \in S'} x^{n_x(p)} \in k[S'] \]
For each \(i, j \in Q_0' \), this association may be extended to a \(k \)-linear map \(\bar{\tau} : e_j A' e_i \rightarrow k[S'] \), and is an algebra homomorphism if \(i = j \). Given \(p \in e_j Ae_i \) and \(q \in e_i A' e_k \), we shall write
\[\bar{\tau}(p) := \tau(p) := \bar{\tau}(\psi(p)) \text{ and } \bar{q} := \bar{\tau}(q). \]
\(\psi \) is called a cyclic contraction if \(A' \) is cancellative and
\[S := k \left[\bigcup_{e_i \in Q_0} \bar{\tau}(e_i A e_i) \right] = k \left[\bigcup_{e_i \in Q_0'} \bar{\tau}(e_i A' e_i) \right] =: S'. \]
\(^2\)If, for example, \(\psi \) contracts a unit cycle to a vertex, then \(\psi(I) \not\subseteq I' \) by \([B2, \text{Lemma 3.5}]\).
The algebra S, called the cycle algebra, is independent of the choice of cyclic contraction ψ [B3, Theorem 3.14]. S is also isomorphic to the center of A', and is a depiction of both the reduced center of A and the center of Λ [B6, Theorem 1.1]. Surprisingly, every nondegenerate dimer algebra admits a cyclic contraction [B1, Theorem 1.1]. Cyclic contractions and the cycle algebra were introduced in [B2].

In addition to the cycle algebra S, we will also consider the ghor center of A', $R := k \left[\cap_{i \in Q_0} \tau_\psi(e_i A e_i) \right] = \bigcap_{i \in Q_0} \tau_\psi(e_i A e_i)$.

R is isomorphic to the center of the ghor algebra Λ, given in [1] [B2, Theorem 1.1].

For g, h in R or S, we shall write $g \mid h$ if g divides h in the polynomial ring $k[S']$.

The following lemmas will be useful.

Lemma 2.5. Let $\psi : A \to A'$ be a cyclic contraction.

1. If p and q are paths in A (or A') satisfying $qp \neq 0$, then $\overline{qp} = \overline{q} \overline{p}$.

2. For each $i, j \in Q'_0$, the k-linear map $\overline{\tau} : e_j A e_i \to k[S']$ is injective.

Proof. (1) holds since for each simple matching $x \in S$, the map n_x is additive on concatenated paths. (2) holds by [B2, Proposition 4.30].

Lemma 2.6. If σ_i, σ'_i are unit cycles at $i \in Q_0$, then $\sigma_i = \sigma'_i$ in A. Furthermore, the element $\sum_{i \in Q_0} \sigma_i \in A$ is central.

Proof. Clear.

We denote by σ_i the (unique) unit cycle at $i \in Q_0$ modulo I, and by σ the monomial

$$\sigma := \sigma_i = \prod_{x \in S'} x.$$

Lemma 2.7. [B2, Lemma 4.3.1] If $p, q \in e_j A e_i$ are paths satisfying (2), then there is an $m, n \geq 0$ such that $p \sigma^m = q \sigma^n$.

Lemma 2.8. Suppose Q admits a cyclic contraction. Let $u, v \in \mathbb{Z}^2$ and let $p \in C^u$, $q \in C^v$ be cycles.

1. $u = 0$ if and only if $p = \sigma^m$ for some $m \geq 1$.

2. $u = v$ if and only if $p = q \sigma^m$ for some $m \in \mathbb{Z}$.

3. $p \notin \hat{C}$ if and only if $\sigma \mid \overline{p}$.

Proof. (1, \Rightarrow): [B2, Lemma 5.2].

(2, \Rightarrow): [B2, Lemma 4.19].

(2, \Leftarrow): Suppose $\overline{p} = \overline{q} \sigma^m$ for some $m \in \mathbb{Z}$. Let r (resp. s) be a path whose lift r^+ (s^+) has tail (head) $h(p^+)$ and head (tail) $h(q^+)$. Since $\overline{p} = \overline{q} \sigma^m$, there is some $\ell \in \mathbb{Z}$ such that $\tau = \sigma^\ell$. In particular, $\tau(\psi(r)) = \sigma^\ell$. Thus, $\psi(r)$ is in C^0 since A' is cancellative [B2, Lemma 4.29]. Whence, ψ contracts s to a vertex. Furthermore, ψ does not contract any cycle to a vertex since ψ is a cyclic contraction [B2, Lemma...
Figure 1. Examples for Remarks 2.9 and Proposition 6.4. The quivers are drawn on a torus, the contracted arrows are drawn in green, and the 2-cycles have been removed from Q'. In each example, the cycle in Q formed from the red arrows is not equal to a product of unit cycles (modulo I). However, in example (i) this cycle is mapped to a unit cycle in Q' under ψ.

3.6.1. Therefore s is a vertex. But then r is in C^0 and $h(p^+) = h(q^+)$. Consequently, $u = v$.

$(1, \Leftarrow)$: Follows from $(2, \Leftarrow)$ with $q = e_{t(p)}$.

$(3, \Rightarrow)$: [B2, Lemma 5.2].

$(3, \Leftarrow)$: First recall that if $\psi(p)$ is not in \hat{C}', then the lift $(\psi(p)^2)^+$ has a cyclic subpath (by definition). Whence, the lift $(p^2)^+$ has a cyclic subpath (though the converse need not hold). Thus, p is not in \hat{C}. Equivalently, if p is in \hat{C}, then $\psi(p)$ is in \hat{C}'. But then $\sigma \not| \bar{\tau}(\psi(p)) = \bar{p}$ since A' is cancellative, by [B2, Proposition 4.21.1].

Remark 2.9. Let p^+ be a cycle in Q^+; then $\bar{p} = \sigma^m$ for some $m \geq 0$ by Lemma 2.8.1. However, p may not necessarily equal a power of the unit cycle $\sigma_{t(p)}$ (modulo I). Two examples are given by the red cycles in Figures (i) and (ii).

Furthermore, it is possible for two cycles in Q^+, distinct modulo I, and one of which is properly contained in the region bounded by the other, to have equal $\bar{\tau}_\psi$-images. Indeed, consider Figure (i): the red cycle and the unit cycle in its interior both have $\bar{\tau}_\psi$-image σ.

3. The central nilradical from cyclic contractions

Let $A = kQ/I$ be a dimer algebra with center Z. In this section we will show that the nilpotent elements in Z are precisely the central elements that vanish under
Figure 2. The nonnoetherian dimer algebra $A = kQ/I$ cyclically contracts to the noetherian dimer algebra $A' = kQ'/I'$. Both quivers are drawn on a torus and the contracted arrow is drawn in green. Here, the cycle algebra of A is $S = k[x^2, y^2, xy, z] \subset k[S'] = k[x, y, z]$, and the ghor center of A is $R = k + (x^2, y^2, xy)S$.

Noetherian dimer algebras are prime [B2, Theorem 4.31, Corollary 5.12], and therefore their centers are reduced. In the following two examples we show that nonnoetherian dimer algebras may have non-reduced centers, and consequently that dimer algebras need not be prime.

Example 3.1. Consider the nonnoetherian dimer algebra A with quiver Q given in Figure 3. (A cyclic contraction of A is given in Figure 2.) The paths p, q, a satisfy

$$z := (p - q)a + a(p - q) \in \text{nil } Z.$$

In particular, $\text{nil } Z \neq 0$. A is therefore not prime since

$$zAz = z^2A = 0.$$

We note that A also contains non-central elements a, b with the property that $aAb = 0$; for example, $(p - q)Ae_1 = 0$.

Example 3.2. Let Q be a dimer quiver containing the subquiver given in Figure 4. Given any cyclic contraction $\psi : A \to A'$, the ψ-image of the cycle st is a unit cycle in Q'. Set $p := cbtba$. Then

$$p + \sum_{j \in Q_0 \setminus \{i\}} \sigma_j^2 \quad \text{and} \quad z := p - \sigma_i^2$$

are nonzero central elements of A, by Lemma 2.6. Furthermore, $z^2 = 0$, and so z is in the central nilradical of A.

Lemma 3.3. Let $i \in Q_0$, and suppose $z \in A$ is a central element for which $ze_i = p - q$. Then

$$pq = qp.$$
Figure 3. The dimer algebra A given in Figure 2 has a non-vanishing central nilradical, $\text{nil } Z \neq 0$. A fundamental domain of Q is shown on the left and a larger region of Q^+ is shown on the right. The paths p, q, a are drawn in red, blue, and teal respectively. The element $(p - q)a + a(p - q)$ is central and squares to zero.

Figure 4. The subquiver of Q in Example 3.2. The paths a and c are arrows in Q, and all other paths are paths of positive length. Setting $p := cbtba$, the elements $p + \sum_{j \in Q_0 \setminus \{i\}} \sigma_j^2$ and $z := p - \sigma_i^2$ are in the center of A. Furthermore, $z^2 = 0$, and so A has a nonvanishing central nilradical.

Proof. Since z is central, we have

$$p^2 - pq = p(p - q) = pz = zp = (p - q)p = p^2 - qp.$$

Whence $pq = qp$.

Proposition 3.4. Let $z \in Z$ and $i \in Q_0$, and suppose there is a non-cancellative pair of cycles $p, q \in e_iAe_i$ such that $ze_i = p - q$. Then

$$p^2 = pq = qp = q^2.$$

Proof. In the following, by ‘path’ or ‘cycle’ we mean a path or cycle in Q (not modulo I). If a is an arrow and s, t are paths such that as, at are unit cycles, then s is called an ‘arc’ and t its ‘complementary arc’.
Let $p, q \in kQ$ be representative paths of $p + I, q + I \in A$. To prove the lemma, it suffices to show that $p^2 \equiv p q$, since $q p \equiv p q$ by Lemma 3.3. If $p = \alpha^n$ for some $n \geq 1$, then $p^2 \equiv p q$, by Lemma 2.6. (Such cases exist; see Example 3.2.) So suppose p is not a power of a unit cycle.

Since $q p \equiv p q$ by Lemma 3.3 we may assume that the representatives p, q factor into paths

$$p = \alpha' p' \alpha \quad \text{and} \quad q = \beta q' \beta',$$

where $\alpha, \alpha', \beta, \beta' \in Q_{\geq 1}$ are subpaths of unit cycles and $\alpha \beta$ and $\beta' \alpha'$ are arcs. Let γ, γ' be their complementary arcs:

$$\alpha \beta \equiv \gamma \quad \text{and} \quad \beta' \alpha' \equiv \gamma'.$$
There are two main cases to consider.

(a) First assume that p^{2^+} does not intersect itself.

(a.i) Consider the setup given in Figure 5, where p, q factor into paths

$$p = ap''r \quad \text{and} \quad q = q''br,$$

with $a, b \in Q_1$ and $r \in Q_{\geq 0}$.

If $rp \equiv rq$, then

$$p^2 = ap''rp \equiv ap''rq = pq,$$

which is what we wanted to show.

So suppose $p^2 \not\equiv pq$; then $rp \not\equiv rq$. Thus, by our choice of representatives p, q satisfying (4), bra must be a subpath of a unit cycle. However, it is clear from the figure that this is not possible.

(a.ii) Since case (i) is not possible and p, q factor into the paths (4), we have the setup shown in Figure 5. From (5) we have

$$qp \equiv \beta q'\gamma \alpha \quad \text{and} \quad pq \equiv \alpha' p' \gamma q' \beta'. $$

But $(\beta q'\gamma \alpha) ^+ \quad \text{and} \quad (\alpha' p' \gamma q' \beta') ^+$ have moved away from $(pq) ^+$ and $(qp) ^+$ respectively. Similarly, further applications of the dimer relations I only homotope $(pq) ^+$ and $(qp) ^+$ further away from each other. Consequently, it is not possible that $qp \equiv pq$ in this case, a contradiction.

(b) Now assume that p^{2^+} intersects itself.

(b.i) First suppose p, q share a common leftmost (or rightmost) nontrivial subpath $\beta \in Q_{\geq 1}$. Then there are paths $p', q' \in Q_{\geq 1}$ such that

$$p_1 := p = \beta p' \quad \text{and} \quad q_1 := q = \beta q'. $$

Set

$$p_2 := p' \beta \quad \text{and} \quad q_2 := q' \beta.$$

Let $z \in Z$ be such that $z e_{h(\beta)} = p_1 - q_1 + I$. Then, since $z \beta = \beta z$, we have $z e_{i(\beta)} = p_2 - q_2 + I$. Therefore, by Lemma 3.3,

$$p_1 q_1 \equiv q_1 p_1 \quad \text{and} \quad p_2 q_2 \equiv q_2 p_2.$$

It thus suffices to assume that p' factors into paths $p' = \alpha' p'' \alpha$, that is,

$$p_1 = \beta \alpha' p'' \alpha \quad \text{and} \quad p_2 = \alpha' p'' \alpha \beta,$$

where $\alpha \beta$ is an arc subpath of $p_1 q_1$ and $\beta \alpha'$ is an arc subpath of $q_2 p_2$.

Since $\alpha \beta$ and $\beta \alpha'$ are both arcs, $\alpha \beta \alpha'$ must be a unit cycle with α, α' arrows. We therefore have the setup shown in Figure 5.b.i. Here, $\gamma, \alpha \beta$ are complementary arcs, and $\gamma', \beta \alpha'$ are complementary arcs.

In order to homotope the path $p_1 q_1$ to $q_1 p_1$, we first use the relation $\alpha \beta \equiv \gamma$. Continuing, we obtain

$$p_1 q_1 = (\beta \alpha' p'' \alpha)(\beta q') \equiv \beta \alpha' p'' \gamma q' \equiv \beta \alpha' p'' p \alpha \sigma_{h(\beta)}$$
for some \(\ell \geq 0 \), by Lemma \(\ell \). But \(p_1 = q_1 \) since \(p_1, q_1 \) is a non-cancellative pair. Whence, \(\ell = 1 \). Therefore,

\[
pq = p_1q_1 \equiv \beta\alpha'p''p'^{\sigma_{h(\beta)}} \equiv \beta\alpha'p''p_{h(\beta)}p'^{\sigma_{h(\beta)}} = \beta\alpha'p''(\alpha\beta\alpha')p'' = p_1^2 = p^2,
\]

which is what we wanted to show. Similarly, \(p_2q_2 \equiv p_2^2 \).

(b.ii) Finally, suppose \(p, q \) do not share a common leftmost or rightmost nontrivial subpath. Then, since \(p, q \) factor into the paths \((4) \), we have the setup shown in Figure 5b.ii. (Although not drawn, \(p^{2+} \) and \(q^{2+} \) may intersect themselves multiple times.)

Factor \(p \) into arrow subpaths, \(p = a_n \cdots a_2a_1, a_j \in Q_1 \). Denote by

\[
p_j := a_{j-1} \cdots a_{j+1}a_j
\]

the cyclic permutation of \(p \) starting with arrow \(a_j \). Since \(z \in Z \) is central and the relations \(I \) are generated by binomials in paths of \(Q \), for each \(j \in [1, m] \) there are cycles \(p_j', q_j \) at \(h(a_{j-1}) \) for which

\[
(p'_j - q_j)(a_{j-1} \cdots a_2a_1) = z(a_{j-1} \cdots a_1) \\
= (a_{j-1} \cdots a_1)z = (a_{j-1} \cdots a_1)(p - q) = p_j(a_{j-1} \cdots a_1) - (a_{j-1} \cdots a_1)q.
\]

Upon setting \(p'_j(a_{j-1} \cdots a_1) = p_j(a_{j-1} \cdots a_1) \), we have

\[
(6) \quad q_j(a_{j-1} \cdots a_1) \equiv (a_{j-1} \cdots a_1)q.
\]

In particular, without loss of generality we may assume

\[
(7) \quad z_{e_t(p_j)} = p_j - q_j + I.
\]

Whence,

\[
(8) \quad q_{j+1}a_j \equiv a_jq_j
\]

since \(p_{j+1}a_j = a_j \cdots a_{j+1}a_j = a_jp_j \) and

\[
(p_{j+1} - q_{j+1})a_j = za_j \equiv a_jz = a_j(p_j - q_j).
\]

Suppose \(p_j \equiv q_j \) for some \(j \in [1, m] \). Then (6) implies

\[
pq = (a_m \cdots a_j)(a_{j-1} \cdots a_1)q \equiv (a_m \cdots a_j)q_j(a_{j-1} \cdots a_1) \\
\equiv (a_m \cdots a_j)p_j(a_{j-1} \cdots a_1) = p^2,
\]

which is what we wanted to show.

So suppose \(p_j \not\equiv q_j \) for each \(j \in [1, m] \). Then \(p_j, q_j \) is a non-cancellative pair: \(p, q \)

is a non-cancellative pair, so there is a path \(r \) such that \((p - q)r \equiv 0 \), and therefore

\[
(p_j - q_j)(a_{j-1} \cdots a_1)r \equiv (a_{j-1} \cdots a_1)(p - q)r \equiv 0.
\]

We may assume that \(q_j \) is a representative of \(q_j + I \) for which the region \(\mathcal{R}_{p_j,q_j} \) contains a minimal number of unit cycles.

By assumption, there are minimal indices \(1 \leq k < \ell \leq n \) such that \(t(a_k) = h(a_\ell) \).

Factor \(q_j \) into paths \(q_j = \beta_jq_j' \), where \(\beta_j \) is the maximal leftmost subpath of \(q_j \) that is a subpath of a unit cycle. Then, by the minimality of \(\mathcal{R}_{p_j,q_j} \) and the minimality
of the index k, (b.i) implies that $a_j \beta_j$ is an arc for $j \in [1, k-1]$. This is shown in Figure 6 where each $c_j \in Q_1$ is an arrow and $c_ja_j \beta_j$ is a unit cycle. Observe that the complementary arc to $(a_j \beta_j)^+$ lies in the region R_{p_j,q_j}.

Since a_j is a rightmost arrow subpath of p_j and $ze_{c(p_j)} = p_j - q_j + I$ by (7), we may assume that a_j is not a rightmost arrow subpath of any representative of $q_j + I$ since otherwise we have case (b.i) with p_j, q_j in place of p, q. In particular, q_j does not have a unit cycle subpath modulo I, by Lemma 2.6.

Now consider (8) with $j = k$:

$$a_kq_k \equiv q_{k+1}a_k.$$

As we have just shown, the arrow a_k is not a rightmost subpath of q_k modulo I. But it is clear from Figure 6 that $(a_k \beta_k)^+$ cannot be an arc whose complementary arc lies in R_{p_k,q_k}. Therefore, by the minimality of R_{p_k,q_k} we have $a_kq_k \not= sa_k$ for all paths s. Consequently $ze_{c(p_k)} \not= p_k - q_k + I$, contrary to (7). \hfill \square

Theorem 3.5. Let A be a nonnoetherian dimer algebra with center Z and $\psi : A \to A'$ a cyclic contraction. Then

$$Z \cap \ker \psi = \text{nil } Z.$$

Proof. (i) We first claim that if $z \in Z \cap \ker \psi$, then $z^2 = 0$, and in particular $z \in \text{nil } Z$. Consider a central element z in $\ker \psi$. Since z is central it commutes with the vertex idempotents, and so z is a k-linear combination of cycles. Therefore, since ψ sends paths to paths and I' is generated by certain differences of paths, it suffices to suppose that z is of the form

$$z = \sum_{i \in Q_0} (p_i - q_i),$$

Figure 6. Case (b.ii) in the proof of Proposition 3.4.
where p_i, q_i are cycles in $e_i Ae_i$ with equal ψ-images modulo I'. Note that there may be vertices $i \in Q_0$ for which $p_i = q_i = 0$.

By Proposition 3.4, we have

$$p_ip_i = p_iq_i = q_ip_i.$$

Therefore

$$z^2 = \left(\sum_{i \in Q_0} (p_i - q_i) \right)^2 = \sum_{i \in Q_0} (p_i - q_i)^2 = 0.$$

(ii) We now claim that if $z \in \text{nil } Z$, then $z \in \ker \psi$.

Suppose $z^n = 0$. Then for each $i \in Q_0$, we have

$${\bar{\tau}}(z^n e_i) = {\bar{\tau}}(z^n e_i) = 0,$$

where (i) holds since $\bar{\tau}$ is an algebra homomorphism on $e_i Ae_i$, and (ii) holds since z is central. But $\bar{\tau}(e_i Ae_i)$ is contained in the integral domain $k[S']$. Whence

$${\bar{\tau}}(\psi(z e_i)) = {\bar{\tau}}(z e_i) = 0.$$

Thus $\psi(z e_i) = 0$ since $\bar{\tau}$ is injective, by Lemma 2.5.2. Therefore

$$\psi(z) = \psi \left(z \sum_{i \in Q_0} e_i \right) = \sum_{i \in Q_0} \psi(z e_i) = 0,$$

where (i) holds since the vertex idempotents form a complete set and (ii) holds since ψ is a k-linear map.

\begin{proof}

\end{proof}

4. The central nilradical is prime

Let Z and S be the center and cycle algebra of a nonnoetherian dimer algebra $A = kQ/I$, let $\psi : A \to A'$ be a cyclic contraction, and let $R \subset S$ be the center of the ghor algebra Λ of Q. In this section we will show that the reduced center $\hat{Z} := Z/ \text{nil } Z$ of A is an integral domain.

Theorem 4.1. There is an exact sequence of Z-modules

\[
0 \longrightarrow \text{nil } Z \longrightarrow Z \xrightarrow{\tilde{\psi}} R,
\]

where $\tilde{\psi}$ is an algebra homomorphism. Therefore $\hat{Z} := Z/ \text{nil } Z$ is isomorphic to a subalgebra of R.

Proof. (i) We first claim that for each $i \in Q_0$, the map

\[
\tilde{\psi} : Z \to R, \quad z \mapsto \overline{z e_i},
\]

is a well-defined algebra homomorphism and independent of the choice of i.

\begin{proof}

\end{proof}
Consider a central element $z \in Z$ and vertices $j, k \in Q_0$. Since Q is a dimer quiver, there is a path p from j to k. For $i \in Q_0$, set $z_i := ze_i \in e_iAe_i$. Recall that $\bar{\tau}_\psi$ is an algebra homomorphism on each vertex corner ring e_iAe_i. Thus
\[pz_j = p\bar{\tau}_\psi(z) = \bar{\tau}_\psi(pz) = \bar{\tau}_\psi cz_kp \in k[S']. \]
But $\bar{p} = \bar{\tau}(\psi(p))$ is nonzero since $\bar{\tau}$ is injective by Lemma 2.5.2, and the ψ-image of any path is nonzero. Thus, since $k[S']$ is an integral domain,
\[z_j = z_k. \]
Therefore, since $j, k \in Q_0$ were arbitrary, $z_j \in k[\cap_{i \in Q_0} \bar{\tau}_\psi(e_iAe_i)] = R$.

(ii) Let $z \in Z$, $i \in Q_0$, and suppose $\psi(ze_i) = 0$. We claim that $\psi(z) = 0$.
For each $j \in Q'_0$, denote by
\[c_j := |\psi^{-1}(j) \cap Q_0| \]
the number of vertices in $\psi^{-1}(j)$. Since ψ maps Q_0 surjectively onto Q'_0, we have $c_j \geq 1$. Furthermore, if $k \in \psi^{-1}(j)$, then
\[\psi(z)e_j = c_j \psi(ze_k). \]
Set
\[z'_j := c_j^{-1} \psi(z)e_j. \]
Then
\[z' := \sum_{j \in Q'_0} z'_j \]
is in the center Z' of A' by [11] and [B2] (6) and Theorem 5.9.1[3]. Whence, for each $j \in Q_0$,
\[\bar{\tau}(z'_j) = \bar{\tau}(z'_{\psi(i)}) = \bar{\tau}(c_j^{-1} \psi(z)e_{\psi(i)}) = \bar{\tau}(\psi(ze_i)) = 0, \]
where (i) holds by [11] and (ii) holds by [12]. Thus, each z'_j vanishes since $\bar{\tau}$ is injective, by Lemma 2.5.2. Therefore
\[\psi(z) = \sum_{j \in Q'_0} \psi(z)e_j = \sum_{j \in Q'_0} c_j z'_j = 0. \]

(iii) We now claim that the homomorphism [10] can be extended to the exact sequence [9]. Let $z \in \ker \psi$. Then for each $i \in Q_0$,
\[\bar{\tau}(\psi(ze_i)) = ze_i = \bar{\psi}(z) = 0. \]
Whence $\psi(ze_i) = 0$ since $\bar{\tau}$ is injective. Thus $\psi(z) = 0$ by Claim (ii). Therefore, by Theorem 3.5
\[z \in \ker \psi \cap Z = \text{nil } Z. \]

[3] Note that $\psi(z)$ is not in Z' if there are vertices $i, j \in Q'_0$ for which $c_i \neq c_j$. Therefore, in general $\psi(Z)$ is not contained in Z'.
Corollary 4.2. The algebras \(\hat{Z} \) and \(R \) are integral domains. Therefore, the central nilradical \(\text{nil } Z \) of \(A \) is a prime ideal of \(Z \). In particular, the schemes \(\text{Spec } Z, \text{Spec } \hat{Z}, \) and \(\text{Spec } R \) are irreducible.

Proof. \(R \) and \(S \) are domains since they are subalgebras of the domain \(k[\mathcal{S}'] \). Therefore \(\hat{Z} \) is a domain since it isomorphic to a subalgebra of \(R \) by Theorem 4.1.

For brevity, we will identify \(\hat{Z} \) with its isomorphic \(\bar{\psi} \)-image in \(R \) (Theorem 4.1), and thus write \(\hat{Z} \subseteq R \).

The following example shows that it is possible for the reduced center \(\hat{Z} \) to be properly contained in the ghor center \(R \). However, they determine the same non-noetherian variety \([B6]\), and we will show below that their normalizations are equal (Theorem 5.5).

Example 4.3. Dimer algebras exist for which the containment \(\hat{Z} \hookrightarrow R \) is proper. Indeed, consider the contraction given in Figure 7. This contraction is cyclic since the cycle algebra is preserved:

\[
S = k[x^2, xy, y^2, z] = S'.
\]

We claim that the reduced center \(\hat{Z} \) of \(A = kQ/I \) is not isomorphic to \(R \). By the exact sequence (9), it suffices to show that the homomorphism \(\bar{\psi} : Z \rightarrow R \) is not surjective.

We claim that the monomial \(z\sigma \) is in \(R \), but is not in the image \(\bar{\psi}(Z) \). It is clear that \(z\sigma \) is in \(R \) from the \(\bar{\tau}_\psi \) labeling of arrows given in Figure 7.

Assume to the contrary that \(z\sigma \in \bar{\psi}(Z) \). Then, by (11), for each \(j \in Q_0 \) there is an element in \(Z e_j \) whose \(\bar{\tau}_\psi \)-image is \(z\sigma \). Consider the vertex \(i \in Q_0 \) shown in Figure 8. The set of cycles in \(e_i A e_i \) with \(\bar{\tau}_\psi \)-image \(z\sigma \) are drawn in red. As is shown in the figure, none of these cycles ‘commute’ with both of the arrows with tail at \(i \). Therefore \(\hat{Z} \not\cong R \).

Example 4.3 raises the following question.

Question 4.4. Are there necessary and sufficient conditions for the isomorphism \(\hat{Z} \cong R \) to hold?

5. Normalization of the reduced center

Let \(Z \) and \(S \) be the center and cycle algebra of a nonnoetherian dimer algebra \(A = kQ/I \), let \(\psi : A \rightarrow A' \) be a cyclic contraction, and let \(R \subseteq S \) be the center of the ghor algebra \(\Lambda \) of \(Q \). In this section we will show that the normalizations of \(\hat{Z} = Z/\text{nil } Z \) and \(R \) are equal, nonnoetherian, and properly contained in the cycle algebra \(S \). We denote by \(\bar{Z} \) and \(\bar{R} \) their respective normalizations. Recall that for \(g, h \in S \), we write \(g \mid h \) if \(g \) divides \(h \) in the polynomial ring \(k[\mathcal{S}'] \).
Figure 7. A cyclic contraction $\psi : A \to A'$ for which the containment $\hat{Z} \hookrightarrow R$ is proper. Q and Q' are drawn on a torus, and the contracted arrows are drawn in green. The arrows drawn in blue form removable 2-cycles under ψ. The arrows in Q are labeled by their $\bar{\tau}_\psi$-images, and the arrows in Q' are labeled by their $\bar{\tau}$-images.

Figure 8. There are six cycles p_1, \ldots, p_6 (or five distinct cycles modulo I) at i with $\bar{\tau}_\psi$-image $z\sigma = xyz^2$, drawn in red. There are two arrows with tail at i, labeled a and b. Observe that if the rightmost arrow subpath of p_j is a (resp. b), then bp_j (resp. ap_j) cannot homotope to a path whose rightmost arrow subpath is b (resp. a). Therefore there is no cycle q_j for which $bp_j \equiv q_j b$ (resp. $ap_j \equiv q_j a$). Consequently, $z\sigma$ is in $R \setminus \hat{Z}$.
Lemma 5.1. Let $u \in \mathbb{Z}^2 \setminus 0$. Suppose $a \in Q_1$, $p \in \hat{C}_t(a)$, and $q \in \hat{C}_h(a)$. If $R_{o,p,qa}$ contains no vertices, then $ap = qa$. Consequently, $p = q$.

Proof. Suppose that there are representatives of $(ap) +$ and $(qa) +$ that bound a compact region $R_{o,p,qa}$ with no vertices in its interior. If $(ap) +$ and $(qa) +$ have no cyclic subpaths (modulo I), then $ap = qa$ by Lemma 2.4.

So suppose $(qa) +$ contains a cyclic subpath. The path $q +$ has no cyclic subpaths since q is in \hat{C}. Thus q factors into paths $q = q_2q_1$, where $(q_1a) +$ is a cycle. In particular,

$$t(p^+) = t((q_1q_2)^+) \quad \text{and} \quad h(p^+) = h((q_1q_2)^+).$$

Whence p and q_1q_2 bound a compact region R_{p,q_1q_2}. Furthermore, its interior R_{o,p,q_1q_2} contains no vertices.

The path $(q_2^2)^+$ has no cyclic subpaths, again since q is in \hat{C}. Thus $(q_1q_2)^+$ also has no cyclic subpaths. Furthermore, p^+ has no cyclic subpaths since p is in \hat{C}. Therefore $p = q_1q_2$, again by Lemma 2.4.

Since there are no vertices in $R_{o,p,qa}$, there are also no vertices in the interior of the region bounded by the cycle $(aq_1)^+$. Thus, there is some $\ell \geq 1$ such that

$$aq_1 = \sigma_{h(a)}^\ell \quad \text{and} \quad q_1a = \sigma_{t(a)}^\ell.$$

Therefore,

$$ap = aq_1q_2 = \sigma_{h(a)}^\ell q_2 = q_2\sigma_{t(a)}^\ell = q_2q_1a = qa,$$

where (i) holds by Lemma 2.6.

Finally, $ap = qa$ and $\bar{a} \neq 0$ together imply $\bar{p} = \bar{q}$ by Lemma 2.5.1. \hfill \Box

Lemma 5.2. If g is a monomial in $k[S']$ and $g\sigma$ is in S, then g is also in S.

Proof. Suppose g is a monomial in $k[S']$ for which $g\sigma$ is in S. Then there is a cycle $p \in A'$ such that $\bar{p} = g\sigma$. Let $u \in \mathbb{Z}^2$ be such that $p \in C'_{nu}$. Since A' is cancellative, $C'_{nu} \neq \emptyset$ by [B2, Proposition 4.11]; fix $q \in C'_{nu}$. Then $\sigma \nmid \bar{q}$ by [B2, Proposition 4.21.1]. Thus, there is some $m \geq 1$ such that

$$\bar{q}\sigma^m \in R = g\sigma,$$

by [B2, Lemma 4.19]. Therefore,

$$g = (g\sigma)\sigma^{-1} = \bar{q}\sigma^{m-1} \in S' \overset{(1)}{=} S,$$

where (i) holds since ψ is cyclic. \hfill \Box

Lemma 5.3. There is some $n \geq 1$ for which

$$(13) \quad \sigma^{n-1}S \notin R \quad \text{and} \quad \sigma^nS \subset R.$$

Proof. Let $s \in S$. Since S is generated over k by a set of monomials in $k[S']$, we may assume that s is a monomial. In particular, there is a cycle p for which $\bar{p} = s$.

By Lemma 2.6, there is some \(n \geq 1 \) such that for each \(i \in Q_0 \), the unit cycle \(\sigma_i^n \) is equal (modulo \(I \)) to a cycle \(q_i \) that passes through each vertex of \(Q \). Thus, the concatenated cycle \(q_{(p)j} \) passes through each vertex of \(Q \). Whence \(\sigma^n p = \overline{t(p)j} \) is in \(R \). Therefore \(\sigma^n S \subset R \). Since \(S \not\subset R \), there is a minimal such \(n \geq 1 \). \(\square \)

Proposition 5.4.

(1) If \(r \in R \) and \(\sigma \nmid r \), then \(r \in \hat{Z} \).

(2) If \(s \in S \), then there is some \(n \geq 0 \) such that for each \(m \geq 1 \), \(s^m \sigma^n \in \hat{Z} \).

(3) If \(r \in R \), then there is some \(n \geq 1 \) such that \(r^n \in \hat{Z} \).

Proof. (1) Since \(R \) is generated over \(k \) by a set of monomials in \(k[S'] \), it suffices to consider a monomial \(r \in R \) for which \(\sigma \nmid r \). For each vertex \(i \in Q_0 \), then, there is a cycle \(c_i \in e_i \mathcal{A} c_i \) satisfying \(\overline{c_i} \). Fix \(a \in Q_1 \) and set

\[
p := c_{i(a)} \quad \text{and} \quad q := c_{b(a)}.
\]

See Figure 9. We claim that \(ap = qa \).

Let \(u, v \in \mathbb{Z}^2 \) be such that

\[
p \in C^u \quad \text{and} \quad q \in C^v.
\]

Then \(u = v \) since \(p = r = q \), by Lemma 2.8.2. Furthermore, \(u \neq 0 \) since \(\sigma \nmid r \), by Lemma 2.8.1. Therefore, \((ap)^+ \) and \((qa)^+ \) bound a compact region \(\mathcal{R}_{ap, qa}^0 \) in \(\mathbb{R}^2 \).

We proceed by induction on the number of vertices in the interior \(\mathcal{R}_{ap, qa}^0 \).

First suppose there are no vertices in \(\mathcal{R}_{ap, qa}^0 \). Since \(\sigma \nmid r = \overline{p} = \overline{q} \), the cycles \(p \) and \(q \) are in \(\hat{C} \), by Lemma 2.8.3. Therefore \(ap = qa \), by Lemma 5.1.

So suppose \(\mathcal{R}_{ap, qa}^0 \) contains at least one vertex \(i^+ \). Let \(w \in \mathbb{Z}^2 \) be such that \(c_i \in C^w \).

Then \(w = u = v \), again by Lemma 2.8.2. Therefore \(c_i \) intersects \(p \) at least twice or \(q \) at least twice. Suppose \(c_i \) intersects \(p \) at vertices \(j \) and \(k \).

Then \(p \) factors into paths

\[
p = p_2 e_k b c_{j} p_1 = p_2 b p_1.
\]

Let \(d^+ \) be the subpath of \((c_i^2)^+ \) from \(j^+ \) to \(k^+ \). Then

\[
t(d^+) = t(b^+) = j^+ \quad \text{and} \quad h(d^+) = h(b^+) = k^+.
\]

In particular, \(d^+ \) and \(b^+ \) bound a compact region \(\mathcal{R}_{d^+, b^+} \).

Since we are free to choose the vertex \(i^+ \) in \(\mathcal{R}_{ap, qa}^0 \), we may suppose \(\mathcal{R}_{d^+, b^+} \) contains no vertices. Furthermore, \(c_i^+ \) and \(p^+ \) have no cyclic subpaths since \(\sigma \nmid r \), by Lemma 2.8.1. Thus, their respective subpaths \(d^+ \) and \(b^+ \) have no cyclic subpaths. Whence \(d = b \), by Lemma 2.4.

Furthermore, since \(\mathcal{R}_{ap, qa}^0 \) contains less vertices than \(\mathcal{R}_{ap, qa}^0 \), it follows by induction that

\[
ap_2 d p_1 = qa.
\]

Therefore

\[
ap = a(p_2 b p_1) = a(p_2 d p_1) = qa,
\]

proving our claim.
Finally, since \(a \in Q_1 \) was arbitrary, the sum \(\sum_{i \in Q_0} c_i \) is central in \(A \).

(2) Let \(s \in S \) be a monomial. By Lemma 5.3, there is an \(N \geq 0 \) such that \(s^m \sigma^N \) is in \(R \) for each \(m \geq 1 \). Fix \(m \geq 1 \) and set \(r := s^m \sigma^N \). Then, for each \(i \in Q_0 \), there is a cycle \(c_i \in e_i A e_i \) for which \(c_i = r \).

Fix an arrow \(a \in Q_1 \). Set \(i := t(a) \) and \(j := h(a) \). Let \(t^+ \) be a path in \(Q^+ \) from \(h((ac_i)^+) \) to \(t((ac_i)^+) \). Then by Lemma 2.7, there is some \(\ell, m_i, m_j \geq 0 \) such that

\[
 tc_j a \sigma_i^\ell = \sigma_j^{m_i} \quad \text{and} \quad ac_i t \sigma_j^\ell = \sigma_j^{m_j}.
\]

Thus,

\[
 \sigma_j^{m_i} = \overline{\tau} \psi(tc_j a \sigma_i^\ell) = t c_j a \sigma_i^\ell = ac_i t \sigma_j^\ell = \overline{\tau} \psi(ac_i t \sigma_j^\ell) = \sigma_j^{m_j}.
\]

Furthermore, \(\sigma \neq 1 \) since \(\overline{\tau} \) is injective by Lemma 2.5.2. Whence \(m := m_i = m_j \) since \(k[S'] \) is an integral domain. Therefore,

\[
 \sigma_j^{m_i} = \overline{\tau} \psi(tc_j a \sigma_i^\ell) = t c_j a \sigma_i^\ell = ac_i t \sigma_j^\ell = \overline{\tau} \psi(ac_i t \sigma_j^\ell) = \sigma_j^{m_j}.
\]

For each \(a \in Q_1 \) there is an \(m = m(a) \) such that (14) holds. Set

\[
 n := \max \{ m(a) \mid a \in Q_1 \}.
\]

Then (14) implies that the element \(\sum_{i \in Q_0} c_i \sigma_i^n \) is central. Furthermore, for each \(k \in Q_0 \),

\[
 \overline{\tau} \psi(c_k \sigma_k^n) = r \sigma^n = s^m \sigma^{N+n}.
\]

The claim then follows since \(m \geq 1 \) was arbitrary.

(3) By Claim (1), it suffices to suppose \(\sigma \mid r \). Then there is a monomial or scalar \(g \in k[S'] \) such that \(r = g \sigma \). By Lemma 5.2, \(g \) is in \(S \) since \(g \sigma = r \in R \subset S \). Therefore, by Claim (2), there is some \(n \geq 1 \) such that

\[
 r^n = g^n \sigma^n \in \hat{Z}.
\]

\[\square\]

Theorem 5.5. The normalizations of the reduced and ghor centers are isomorphic,

\[
 \hat{Z} \cong \hat{R}.
\]

Proof. By [5, Theorem 1.1], the fraction fields of \(\hat{Z} \), \(R \), and \(S \) coincide,

\[
 \text{Frac} \hat{Z} = \text{Frac} R = \text{Frac} S.
\]

Thus the inclusion \(\hat{Z} \subseteq R \) implies

\[
 \hat{Z} \subseteq \hat{R}.
\]

To show \(\hat{Z} \supseteq \hat{R} \), consider \(r \in R \). Then there is some \(n \geq 1 \) such that \(r^n \in \hat{Z} \), by Proposition 5.4.3. Whence, \(r \) is a root of the monic polynomial

\[
 x^n - r^n \in \hat{Z}[x].
\]
Thus r is in \tilde{Z}. Therefore
\begin{equation}
R \subseteq \tilde{Z}.
\end{equation}
But then
\[
\bar{R} \subseteq \tilde{Z} \subseteq \bar{R},
\]
where (i) holds by (17) and (ii) holds by (16). Therefore $\bar{R} \cong \tilde{Z}$.

\begin{proposition}
If $s \in S \setminus R$ is a monomial and $\sigma \nmid s$, then s^n is not in R for each $n \geq 1$. Moreover, there exists such a monomial s.
\end{proposition}
\begin{proof}
Holds by [134, Proposition 3.14] since A is nonnoetherian.
\end{proof}

\begin{proposition}
Let $s \in S \setminus R$ be a monomial. Then $\sigma | s$ if and only if $s \in \bar{R}$.
\end{proposition}
\begin{proof}
First suppose $\sigma | s$. Then $s = gs$ for some monomial $g \in k[S']$. Whence g is in S, by Lemma 5.2. Thus for sufficiently large $n \geq 1$, $(gs)^n$ is in \bar{R}, by Lemma 5.3. But then $x^n - (gs)^n$ is in $\bar{R}[x]$. Furthermore,
\[
gs \in S \subseteq \text{Frac} S = \text{Frac} R,
\]
where the last equality holds by (15). Consequently, $s = gs$ is in the normalization \bar{R}.

Now suppose $\sigma \nmid s$. Then s^n is in not in R for each $n \geq 1$, by Proposition 5.6. Furthermore, since R is generated by monomials in a polynomial ring (in particular, R is toric), each monomial in \bar{R} is a root of a monic binomial $x^n - r \in R[x]$ for some $n \geq 1$ and $r \in R$. But then s is not in \bar{R} since s^n is not in R for each $n \geq 1$.
\end{proof}

\begin{theorem}
The normalizations $\bar{R} \cong \tilde{Z}$ are nonnoetherian and properly contained in the cycle algebra S.
\end{theorem}
\begin{proof}
Since A is nonnoetherian, there is a monomial $s \in S \setminus R$ for which $\sigma \nmid s$, by Proposition 5.6. Thus s is not in \bar{R}, by Proposition 5.7. Whence $\bar{R} \neq S$. But
$S = S' = R'$ is the center of the noetherian (equivalently, cancellative) dimer algebra A' and so is normal. Consequently, the inclusion $R \subset S$ implies $\bar{R} \subseteq \bar{S} = S$. Therefore \bar{R} is properly contained in S.

Moreover, since $\sigma = \prod_{x \in S'} x$, we also have $\sigma \nmid s^n$ for each $n \geq 1$. Thus, s^n is not in \bar{R} for each $n \geq 1$, again by Proposition 5.7. It follows that \bar{R} is nonnoetherian by [B4, Claims (i) and (iii) in the proof of Theorem 3.16].

Alternatively, recall that an element s of the fraction field $\text{Frac} \, T$ of an integral domain T is said to be ‘almost integral over T’ if there is some nonzero $t \in T$ such that $s^m t$ is in T for all $m \geq 0$. It is well known that if T is noetherian, then every almost integral element $s \in \text{Frac} \, T$ over T is integral over T [S, Lemma 10.37.4].

Now let $s \in S \setminus \bar{R}$ be as above with $\sigma \nmid s$. Then $s \in \text{Frac} S = \text{Frac} R = \text{Frac} \bar{R}$, by (15). Thus, for $n \geq 1$ sufficiently large, $s^m s^n \in R \subseteq \bar{R}$ for all $m \geq 0$, by Lemma 5.3. Whence, s is almost integral over both R and \bar{R}. But $s \notin \bar{R}$, so s is not integral over R or \bar{R}. Therefore both R and \bar{R} are nonnoetherian. \[\square\]

6. Three characterizations of normality

Let Z and S be the center and cycle algebra of a nonnoetherian dimer algebra $A = kQ/I$, let $\psi : A \rightarrow A'$ be a cyclic contraction, and let $R \subset S$ be the center of the ghor algebra Λ of Q. In this section we will introduce three equivalent conditions for R to be normal. These conditions provide an explicit description of the reduced center $\hat{Z} = Z/\text{nil} Z$ if it is normal.

Lemma 6.1. Suppose $r \in R$ and $s \in S$ are monomials. If $r \neq \sigma^n$ for any $n \geq 1$, then $rs \in R$.

Proof. Suppose the hypotheses hold. Fix $i \in Q_0$. Since r is a monomial in R and s is a monomial in S, there are $u, v \in \mathbb{Z}^2$ and cycles

$$p \in \mathcal{C}_i^u \quad \text{and} \quad q \in \mathcal{C}_i^v$$

such that

$$\bar{p} = r \quad \text{and} \quad \bar{q} = s.$$

The assumption $r \neq \sigma^n$ for $n \geq 1$ implies $u \neq 0$, by Lemma 2.8.1. Furthermore, if $v = 0$, then $\bar{q} = \sigma^m$ for some $m \geq 1$, again by Lemma 2.8.1. But then $s = \bar{q}$ is in R since σ is in R. Whence, rs is in R.

We may thus suppose that u, v are both nonzero.

(i) If $v = u$, then $\bar{p} = \bar{q} \sigma^m$ for some $m \in \mathbb{Z}$, by Lemma 2.8.2.

(i.a) If $m \leq 0$, then $s = r \sigma^{|m|}$ is in R since r and σ are both in \bar{R}. Whence, $rs = r^2 \sigma^{|m|}$ is in R.

(i.b) So suppose $m > 0$; then $r = s \sigma^{|m|}$. In particular, $\sigma \mid r = \bar{p}$. Thus, p is not in \hat{C}, by Lemma 2.8.3. Consequently, there is a cyclic subpath c^+ of the lift p^{2+}. It suffices to suppose that p factors into paths

$$p = d_2 p' d_1$$
with \(c = d_1d_2 \in C^0 \) and \(p' \in \hat{C} \); otherwise, if \(p' \) is not in \(\hat{C} \), then repeat the argument with \(p' \) in place of \(p \). Since \(p' \) is in \(\hat{C} \), we have \(\sigma \nmid \tilde{p}' \), by Lemma 2.8.3. Furthermore, since \(c \) is in \(C^0 \), we have \(\tilde{p}' \in C^u \). Thus \(\tilde{p} = \tilde{p}'\sigma^\ell \) for some \(\ell \in \mathbb{Z} \), by Lemma 2.8.2.

Whence, \(\tilde{p}'\sigma^\ell = \tilde{p} = r = s\sigma^m \).

Without loss of generality we may assume \(\sigma \nmid s \). Then, since \(\sigma \nmid \tilde{p}' \), we have \(\ell = m \) and \(\tilde{p}' = s \). Therefore the cycle \(d_2p'\sigma^2d_1 \) has tail at \(i \) and \(\tau_\psi \)-image \(s^2\sigma^m \). Since \(i \in Q_0 \) was arbitrary, it follows that \(rs = s^2\sigma^m \) is in \(R \).

(ii) Finally, suppose \(v \neq u \). Then, since \(u, v \neq 0 \) (and the surface is a torus), the lifts \(p^+ \) and \(q^+ \) intersect at some vertex \(j^+ \) in \(Q^+ \). Consequently, \(p \) and \(q \) factor into paths

\[
p = p_2e_jp_1 \quad \text{and} \quad q = q_2e_jq_1.
\]

We may thus form the cycle

\[
c = p_2q_1q_2p_1 \in e_iAe_i
\]

with \(\tau_\psi \)-image

\[
\tilde{c} = \tilde{p}\tilde{q} = rs.
\]

But \(i \in Q_0 \) was arbitrary, and so it again follows that \(\tilde{c} = rs \) is in \(R \).

\[\square\]

Proposition 6.2. A ghor center \(R \) is normal if and only if \(\sigma S \subset R \).

Proof. (1) First suppose \(\sigma S \subset R \).

It is well known that cancellative dimer algebras (on a torus) are noncommutative crepant resolutions, and in particular that their centers are normal domains (e.g., [Br, D]). Moreover, \(A' \) is cancellative and its center is isomorphic to \(S \) [B2, Theorem 1.1.3]. Thus, \(S \) is a normal domain. Therefore, since \(R \) is a subalgebra of \(S \), we have \(R \subseteq S \).

Now let \(s \in S \setminus R \). We claim that \(s \) is not in \(\tilde{R} \). Indeed, assume otherwise. Since \(S \) is generated by monomials in the polynomial ring \(k[S'] \), there are monomials \(s_1, \ldots, s_\ell \in S \) and scalars \(s_0, c_1, \ldots, c_\ell \in k \) such that

\[
s = s_0 + c_1s_1 + \cdots + c_\ell s_\ell.
\]

Since \(s \notin R \), there is some \(1 \leq k \leq \ell \) such that \(s_k \notin R \). Choose \(s_k \) to have maximal degree among the subset of monomials in \(\{s_1, \ldots, s_\ell\} \) which are not in \(\tilde{R} \).

If \(\sigma \mid s_k \) in \(k[S'] \), then there would be a monomial \(g \in k[S'] \) such that \(s_k = \sigma g \). Furthermore, \(g \) would be in \(S \) by Lemma 5.2. Whence, \(s_k = \sigma g \) would be in \(R \) by our assumption that \(\sigma S \subset R \). But this is not possible since \(s_k \) is not in \(\tilde{R} \). Therefore \(\sigma \nmid s_k \).

By assumption \(s \) is in \(\tilde{R} \), and so there is some \(n \geq 1 \) and \(r_0, \ldots, r_{n-1} \in R \) for which

\[
s^n + r_{n-1}s^{n-1} + \cdots + r_1s = -r_0 \in R.
\]
The summand s_k^n of s^n is not in R since $\sigma \nmid s_k$ [B4, Proposition 3.14]. Thus $-s_k^n$ is a summand of the left-hand side of (19). In particular, for some $1 \leq m \leq n$, there are monomial or scalar summands r' of r_m and $s' = s_{j_1} \cdots s_{j_m}$ of s^m, and a nonzero scalar $c \in k$, such that

$$r's' = cs_k^n.$$

Since $\sigma \nmid s_k$, we have $\sigma \nmid s_k^n$, and thus $\sigma \nmid r'$. Whence $r' \neq \sigma^m$ for any $m \geq 1$. Thus, r' is a nonzero scalar since $r' \in R$, $s' \in S$, and $s_k^n \notin R$, by Lemma 6.1. Therefore

$$s_{j_1} \cdots s_{j_m} = s' = (c/r')s_k^n.$$

Consequently, s_{j_1}, \ldots, s_{j_m} is not in R. But $m \leq n$ and the monomial s_k was chosen to have maximal degree, and so (20) is not possible. Hence,

$$\bar{R} \cap S \subseteq R.$$

Therefore $R = \bar{R}$ is normal.

(2) Now suppose $\sigma S \not\subseteq R$. Then there is a monomial $s \in S \setminus R$ for which $\sigma \mid s$. Furthermore, s is in \bar{R} by Proposition 5.7. Consequently, s is in $\bar{R} \setminus R$ and so $R \neq \bar{R}$.

Corollary 6.3.

(1) If the head or tail of each contracted arrow has indegree 1, then R is normal.

(2) If ψ contracts precisely one arrow, then R is normal.

Proof. In both cases (1) and (2), clearly $\sigma S \subseteq R$.

Proposition 6.4. For each $n \geq 1$, there exist ghor algebras for which (13) holds. Consequently, there are ghor algebras whose centers are not normal.

Proof. Recall the conifold quiver Q with one nested square given in Figure 11.i. Clearly $\sigma S \subseteq R$. More generally, the conifold quiver with $n \geq 1$ nested squares satisfies (13); see Figure 10. The corresponding ghor center R is therefore not normal for $n \geq 2$ by Proposition 6.2.

Let $m_0 \in \text{Max } R$ be the maximal ideal generated by all monomials in R. Let $\tilde{m}_0 \subseteq m_0$ be the ideal of R generated by all monomials in R which are not powers of σ. Then

$$m_0 = (\tilde{m}_0, \sigma)R.$$

Proposition 6.5.

(1) $m_0 = \tilde{m}_0S$, and thus \tilde{m}_0 is an ideal of both R and S.

(2) Let $n \geq 1$, and suppose $\sigma^nS \subseteq R$. Then

$$R = k[\sigma] + (\tilde{m}_0, \sigma^n)S.$$
Figure 10. Examples for Proposition 6.4. Each quiver is drawn on a torus. In each case, set \(p := ba \) and let \(n \geq 0 \) be the minimum for which \(\tilde{p}\sigma^n \) is in the ghor center \(R \). In (i) we have \(n = 1 \); (ii) \(n = 2 \); and (iii) \(n = 3 \). More generally, these values yield \(\sigma^n S \subset R \) and \(\sigma^{n-1} S \not\subset R \). Consequently, only the ghor center of (i) is normal; the ghor centers of (ii) and (iii) are not normal.

Proof. The equality \(\tilde{m}_0 = \tilde{m}_0 S \) follows from Lemma 6.1. Thus,

\[
R \subseteq k[\sigma] + \tilde{m}_0 \subseteq k[\sigma] + (\tilde{m}_0, \sigma^n) S \subseteq R,
\]

where (i) holds since \(R \) is generated by monomials and (ii) holds since \(\tilde{m}_0 S = \tilde{m}_0 \subset R \).

Theorem 6.6. Let \(R \) and \(S \) be the center and cycle algebra of a ghor algebra. The following are equivalent:

1. \(R \) is normal.
2. \(\sigma S \subset R \).
3. \(R = k + m_0 S \).
4. \(R = k + J \) for some ideal \(J \) in \(S \).
Proof. If the ghor algebra is noetherian, then the conditions trivially hold since in this case $R = S$ and R is normal. So suppose the ghor algebra is nonnoetherian.

(1) \iff (2) holds by Proposition 6.2.
(2) \Rightarrow (3): Suppose $\sigma S \subset R$. Then

$$R \overset{(i)}{=} k + m_0 \subseteq k + m_0 S \overset{(ii)}{\subseteq} R,$$

where (i) holds since R is generated over k by a set of monomials in $k[S']$, and $m_0 \subset R$ is generated over R by all monomials in R. To show (ii), let $r \in m_0$ and $s \in S$; we claim that $rs \in R$. Since m_0 is generated by the monomials in R, we may assume that r is a monomial. Thus, if $r \neq \sigma^m$ for all $m \geq 1$, then $rs \in R$ by Lemma 6.1. Otherwise $rs \in \sigma S$. But $\sigma S \subset R$ by assumption, and so $rs \in R$, proving our claim. Therefore $R = k + m_0 S$.

(3) \Rightarrow (2): Suppose $R = k + m_0 S$. Then, since $\sigma \in m_0$, we have $\sigma S \subset m_0 S \subset R$.

(3) \Rightarrow (4): Clear.

(4) \Rightarrow (2): Suppose $R = k + J$ for some ideal J of S. By Lemma 5.3, there is some $n \geq 1$ such that $\sigma^{n-1} S \not\subseteq R$ and $\sigma^n S \subset R$. Fix $g \in S$ for which $g \sigma^{n-1} \not\in R$.

Since $\sigma \in R = k + J$, there is some $c \in k$ such that $c + \sigma \in J$. Then

$$cg\sigma^{n-1} = (c + \sigma)g\sigma^{n-1} - g\sigma^n \in JS + R = J + R = R.$$

Whence $c = 0$ since $g\sigma^{n-1} \not\in R$. Thus $\sigma \in J$, and therefore $\sigma S \subset JS = J \subset R$. \square

Corollary 6.7. If the reduced center $\hat{Z} = Z/\text{nil} Z$ of a (noetherian or nonnoetherian) dimer algebra is normal, then $\hat{Z} = k + m_0 S$.

Proof. First observe that $\hat{Z} = k + m_0 S$ holds trivially if the dimer algebra is noetherian: in this case, $\hat{Z} = Z = S$ and $m_0 \subset Z$ is the maximal ideal generated by all monomials in Z.

So suppose the dimer algebra is nonnoetherian. If \hat{Z} is normal, then

$$R \subseteq R \overset{(i)}{=} Z = \hat{Z} \overset{(ii)}{\subseteq} R,$$

where (i) holds by Theorem 5.5 and (ii) holds by Theorem 4.1. Thus $R = \hat{Z}$, and so R is normal. But then

$$\hat{Z} = R \overset{(i)}{=} k + m_0 S,$$

where (i) holds by Theorem 6.6. \square

Acknowledgments. The author was supported by the Austrian Science Fund (FWF) grant P34854. Part of this article is based on work supported by the Heilbronn Institute for Mathematical Research.

References

[BB1] K. Baur, C. Beil, A generalization of cancellative dimer algebras to hyperbolic surfaces, arXiv:2101.11512.

[BB2] ______, Finitistic global dimensions of geodesic ghor algebras, in preparation.

[BKM] K. Baur, A. King, B. Marsh, Dimer models and cluster categories of Grassmannians, Proc. London Math. Soc., 2(113), 2016.

[B1] C. Beil, Cyclic contractions of dimer algebras always exist, Algebr. Represent. Th., 22:1083-1100, 2019.

[B2] ______, Dimer algebras, ghor algebras, and cyclic contractions, Algebr. Represent. Th., to appear, 2023.

[B3] ______, Morita equivalences and Azumaya loci from Higgsing dimer algebras, J. Algebra, 453:429-455, 2016.

[B4] ______, Noetherian criteria for dimer algebras, J. Algebra, 585:294-315, 2021.

[B5] ______, Nonnoetherian homotopy dimer algebras and noncommutative crepant resolutions, Glasgow Math. J., 60(2):447-479, 2018.

[B6] ______, On the central geometry of nonnoetherian dimer algebras, J. Pure Applied Algebra, 225(8), 2021.

[B7] ______, On the noncommutative geometry of square superpotential algebras, J. Algebra, 371:207-249, 2012.

[Bo] R. Bocklandt, Consistency conditions for dimer models, Glasgow Math. J., 54(2):429-447, 2012.

[BGH] S. Bose, J. Gundry, Y. He, Gauge Theories and Dessins d’Enfants: Beyond the Torus, J. High Energy Phys., 2015(135), 2015.

[Br] N. Broomhead, Dimer models and Calabi-Yau algebras, Memoirs AMS, vol 211, 2012.

[CQ] A. Craw and A. Quintero Velez, Cellular resolutions of noncommutative toric algebras from superpotentials, Adv. Math., 229:1516-1554, 2012.

[D] B. Davison, Consistency conditions for brane tilings, J. Algebra, 338:1-23, 2011.

[F-V] B. Feng, Y.-H. He, K. Kennaway, C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys., 12(3):489-545, 2008.

[F-W] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, B. Wecht, Gauge theories from toric geometry and brane tilings, J. High Energy Phys., 2006(128), 2006.

[F-K] S. Franco, A. Hanany, D. Vegh, B. Wecht, K. Kennaway, Brane dimers and quiver gauge theories, J. High Energy Phys., 2006(096), 2006.

[FU] M. Futaki, K. Ueda, Exact Lefschetz fibrations associated with dimer models, Math. Res. Lett., 17(6):1029-1040, 2010.

[GK] A. Goncharov, R. Kenyon, Dimers and cluster integrable systems, Annales scientifiques de l’ENS, 46(5):747-813, 2013.

[HK] A. Hanany, K. D. Kennaway, Dimer models and toric diagrams, arXiv:0503149.

[HV] A. Hanany, D. Vegh, Quivers tilings, branes and rhombi, J. High Energy Phys., 2007(029), 2007.

[H] Y.-H. He, Calabi-Yau Varieties: from Quiver Representations to Dessins d’Enfants, arXiv:1611.09398.

[HN] A. Higashitani, Y. Nakajima, Deformations of dimer models, SIGMA, 18(030), 2022.

[IU] A. Ishii, K. Ueda, Dimer models and the special McKay correspondence, Geom. Topol., 19:3405-3466, 2015.

[IN] O. Iyama, Y. Nakajima, On steady non-commutative crepant resolutions, J. Noncommut. Geom., 12:457-471, 2018.

[K] M. Kulkarni, Dimer models on cylinders over Dynkin diagrams and cluster algebras, Proc. Amer. Math. Soc., 147:921-932, 2019.
[MS] B. Marsh, J. Scott, Twists of Plücker coordinates as dimer partition functions, *Comm. Math. Phys.*, 341(3):821-884, 2016.

[MR] S. Mozgovoy, M. Reineke, On the noncommutative Donaldson-Thomas invariants arising from dimer models, *Adv. Math.*, 223:1521-1544, 2010.

[RW] K. Rietsch, L. Williams, Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, *Duke Math. J.*, 168:3437-3527, 2019.

[P] A. Postnikov, Total positivity, Grassmannians, and networks, available at http://math.mit.edu/~apost/papers/tpgrass.pdf.

[S] *The Stacks Project*, available at https://stacks.math.columbia.edu/tag/037B.

Institut für Mathematik und Wissenschaftliches Rechnen, Universität Graz, Heinrichstrasse 36, 8010 Graz, Austria.

Email address: charles.beil@uni-graz.at