A NOTE ON TWISTOR INTEGRALS

SPENCER BLOCH

1. INTRODUCTION

This paper is a brief introduction to twistor integrals from a mathematical point of view. It was inspired by a paper of Hodges [H] which we studied in a seminar at Cal Tech directed by Matilde Marcoli. The idea is to write the amplitude for a graph with \(n\) loops and \(2n + 2\) propagators using the geometry of pfaffians for sums of rank 2 alternating matrices. (Hodges considers the case of 1 loop and 4 edges).

Why is this of interest to a mathematician? The Feynman amplitude is a period in the sense of arithmetic algebraic geometry. In parametric form, the amplitude integral associated to a graph \(\Gamma\) with \(N\) edges and \(n\) loops has the form

\[
(1.1) \quad c(N, n) \int_\delta \frac{S_1^{N-2n-2} \Omega}{S_2^{N-2n}}.
\]

Here \(S_1\) and \(S_2\) are the first and second Symanzik polynomials [BK, BEK, IZ], and \(\Omega = \sum \pm A_i dA_1 \wedge \cdots \wedge \hat{dA}_i \wedge \cdots \wedge dA_N\) is the integration form on \(\mathbb{P}^{N-1}\), the projective space with homogeneous coordinates indexed by edges of \(\Gamma\). The chain of integration \(\delta\) is the locus of points on \(\mathbb{P}^{N-1}\) where all the \(A_i \geq 0\). Note \(\Omega, S_1, S_2\) are homogeneous of degrees \(N, n, n + 1\) in the \(A_i\), so the integrand is homogeneous of degree 0 and represents a rational differential form. Finally, \(c(N, n)\) is some elementary constant depending only on \(N\) and \(n\).

Two special cases suggest themselves. In the log divergent case when \(N = 2n\), the integrand is simply \(\Omega/S_1^2\). The first Symanzik polynomial depends only on the edge variables \(A_i\), so the result in this case is a constant. (If the graph is non-primitive, i.e. has log divergent subgraphs, the integral will diverge. We do not discuss this case.) Inspired by the conjectures of Broadhurst and Kreimer [BrK], there has been a great deal of work done on the primitive log divergent amplitudes.

The polynomial \(S_1\) itself is the determinant of an \(n \times n\)-symmetric matrix with entries linear forms in the \(A_i\). The linear geometry of this determinant throws an interesting light on the motive of the hypersurface \(X(\Gamma) : S_1 = 0\). For example, one has a “Riemann-Kempf” style
theorem that the dimension of the null space of the matrix at a point is equal to the multiplicity of the point on $X(\Gamma)$, $[P]$, $[K]$. Furthermore, the projectivized fibre space $Y(\Gamma)$ of these null lines maps birationally onto $X(\Gamma)$ and in some sense “resolves” the motive. Whereas the motive of $X(\Gamma)$ can be quite subtle, the motive of $Y(\Gamma)$ is quite elementary. In particular, it is mixed Tate $[B]$. (The Riemann-Kempf theorem refers to the map $\pi : Sym^{g-1}C \rightarrow \Theta \subset J_{g-1}(C)$ where C is a Riemann surface and Θ is the theta divisor. The dimension of the fibre of π at a point of Θ equals the multiplicity of the divisor Θ at the point.)

The second case is $N = 2n + 2$, e.g. one loop and 4 edges. The amplitude is $\int_\delta \Omega / S^2_2$ and is a function of external momenta and masses. The second Symanzik has the form

$$S_2 = S^0_2(A, q) - \left(\sum_{i=1}^N m_i^2 A_i \right) S_1(A)$$

Here q denotes the external momenta, and $S^0_2(A, q)$ is homogeneous of degree 2 in q and of degree $n+1$ in the A. Moreover, S^0_2 is a quaternionic pfaffian associated to a quaternionic hermitian matrix, $[BK]$, so in the case of zero masses there is again the possibility of linking the motive to the geometry of a linear map. In this note we go further and show for the case $N = 2n + 2$ that S_2 is itself a pfaffian via the calculus of twistors.

To avoid issues with convergence for the usual propagator integral, I assume in what follows that the masses are positive and the propagators are euclidean. Note that in (1.4) the pfaffian can vanish where some of the $a_i = 0$. The issues which arise are analogous to issues of divergence already familiar to physicists. They will not be discussed here.

Theorem 1.1. Let Γ be a graph with n loops and $2n + 2$ edges as above. We fix masses $m_i > 0$ and external momenta q and consider the amplitude

$$A(\Gamma, q, m) = \int_{\mathbb{R}^{4n}} \frac{d^{4n}x}{\prod_{i=1}^{2n+2} P_i(x, q, m_i)}$$

where the P_i are euclidean. Then there exist alternating bilinear forms Q_i on \mathbb{R}^{2n+2} where Q_i depends on P_i, $1 \leq i \leq 2n + 2$, and a universal constant $C(n)$ depending only on n such that

$$A(\Gamma, q, m) = C(n) \int_\delta Pfaffian(\sum_{i=1}^{2n+2} a_i Q_i)^2$$
Here $\Omega_{2n+1} = \sum \pm a_i da_1 \wedge \cdots \wedge da_i \cdots da_{2n+2}$ and δ is the locus on \mathbb{P}^{2n+1} with coordinate functions a_i where all the $a_i \geq 0$.

By way of analogy, the first Symanzik polynomial is given by
\begin{equation}
S_1(\Gamma)(a_1, \ldots, a_N) = \det(\sum_{\text{edge}} a_\epsilon M_\epsilon)
\end{equation}
where M_ϵ is a rank 1 symmetric $n \times n$-matrix associated to $(e^\vee)^2$, where $e^\vee : H_1(\Gamma, \mathbb{R}) \to \mathbb{R}$ is the functional which associates to a loop the coefficient of e in that loop. Thus, the amplitude in the case of n loops and $2n$ edges is given by
\begin{equation}
A(\Gamma) = C'(n) \int_{\delta} \Omega_{2n-1} \det(\sum a_i M_i)^2
\end{equation}
where $C'(n)$ is another constant depending only on n.

I want to acknowledge help from S. Agarwala, M. Marcolli, and O. Ceyhan. Much of this work was done during June, 2012 when I was visiting Cal Tech.

2. Linear Algebra

Fix $n \geq 1$ and consider a vector space $V = k^{2n+2} = ke_1 \oplus \cdots \oplus ke_{2n+2}$. (Here k is a field of characteristic 0.) We write $O = ke_1 \oplus ke_2$ and $I = ke_3 \oplus \cdots \oplus ke_{2n+2}$, so $V = O \oplus I$. $G(2, V)$ will be the Grassmann of 2-planes in V.

We have
\begin{equation}
\text{Hom}_k(O, I) \hookrightarrow G(2, V) \to \mathbb{P}(\text{\bigwedge}^2 V).
\end{equation}

Here $i(\psi) = k(e_1 + \psi(e_1)) \oplus k(e_2 + \psi(e_2))$ and $j(W) = \text{\bigwedge}^2 W \hookrightarrow \text{\bigwedge}^2 V$.

Write V^* for the dual vector space with dual basis e_i^*. We identify $\text{\bigwedge}^2 V^*$ with the dual of $\text{\bigwedge}^2 V$ in the evident way, so $\langle e_i^* \wedge e_j^*, e_i \wedge e_j \rangle = 1$.

For $\alpha \in \text{\bigwedge}^2 V^*$, the assignment
\begin{equation}
\psi \mapsto \langle (e_1 + \psi(e_1)) \wedge (e_2 + \psi(e_2)), a \rangle
\end{equation}
defines a quadratic map $q_\alpha : \text{Hom}(O, I) \to k$.

Lemma 2.1. Assume $0 \neq \alpha = v \wedge w$ with $v, w \in V^*$. Then the quadratic map q_α has rank 4.

Proof. It suffices to show $\langle (\sum x_i e_i) \wedge (\sum y_j e_j), v \wedge w \rangle$, viewed as a quadric in the x_i and y_j variables, has rank 4. By assumption v, w are
linearly independent. We can change coordinates so \(v = \varepsilon^*_i, w = \varepsilon^*_j \), and \(\sum x_i e_i = \sum x'_i e_i, \sum y_j e_j = \sum y'_j e_j \). The polynomial is then
\[
\langle \left(\sum x'_i e_i \right) \wedge \left(\sum y'_j e_j \right), \varepsilon^*_i \wedge \varepsilon^*_j \rangle = x'_i y'_j - x'_j y'_i.
\]
This is a quadratic form of rank 4.

Returning to the notation in (2.1), we can write \(I = \bigoplus_{i=1}^n I_i \) with \(I_i = ke_{2i+1} \oplus ke_{2i+2} \). We can think of \(\text{Hom}(O, I) = \bigoplus \text{Hom}(O, I_i) \) as the decomposition of momentum space into a direct sum of Minkowski spaces. We identify \(\text{Hom}(O, I_i) \) with the space of \(2 \times 2 \)-matrices, and the propagator with the determinant. With these coordinates, an element in \(\text{Hom}(O, I) \) can be written as a direct sum \(A_1 \oplus \cdots \oplus A_n \) of \(2 \times 2 \)-matrices. The propagators have the form \(\det(a_1 A_1 + \cdots + a_n A_n) \) with \(a_i \in k \). The map \(\psi : O \to I \) given by \(\psi(e_1) = x_3 e_3 + \cdots + x_{2n+2} e_{2n+2} \) and \(\psi(e_2) = y_3 e_3 + \cdots + y_{2n+2} e_{2n+2} \) corresponds to the matrices
\[
A_i = \begin{pmatrix} x_{2i+1} & x_{2i+2} \\ y_{2i+1} & y_{2i+2} \end{pmatrix}.
\]

Lemma 2.2. Let \(A_i \) be as in (2.4). Let
\[
\alpha = \left(\sum_{i=1}^n a_i e^*_{2i+1} \right) \wedge \left(\sum_{i=1}^n a_i e^*_{2i+2} \right) \in \bigwedge^2 V^*.
\]
Then the quadratic map \(q_\alpha \) in lemma 2.1 is given by
\[
q_\alpha(A_1 \oplus \cdots \oplus A_n) = \det(a_1 A_1 + \cdots + a_n A_n).
\]
Proof. This amounts to the identity
\[
\det \left(\sum_{i=1}^n a_i x_{2i+1} y_{2i+2} - \sum_{i=1}^n a_i y_{2i+1} x_{2i+2} \right) =
\langle \left(\sum_{i \geq 3} x_i e_i \right) \wedge \left(\sum_{i \geq 3} y_i e_i \right), \left(\sum_{i=1}^n a_i e^*_{2i+1} \right) \wedge \left(\sum_{i=1}^n a_i e^*_{2i+2} \right) \rangle.
\]
For \(i = j \) (resp. \(i \neq j \)) the coefficient of \(a_i a_j \) in this expression is
\[
x_{2i+1} y_{2i+2} - x_{2i+2} y_{2i+1}
\]
resp. \(x_{2i+1} y_{2j+2} - x_{2i+2} y_{2j+1} + x_{2j+1} y_{2j+2} - x_{2j+2} y_{2i+1} \).

The full inhomogeneous propagator, which in physics notation would be written \((p_1, \ldots, p_n) \mapsto (\sum a_i p_i + s)^2 \) with the \(p_i \) and \(s \) 4-vectors,
becomes in the twistor setup
\begin{equation}
(c_1e_1^* + c_2e_2^* + \sum_{i \geq 3} a_i e_{2i+1}^*) \land (d_1e_1^* + d_2e_2^* + \sum_{i \geq 1} a_i e_{2i+2}^*)) =
\end{equation}
\begin{align*}
\det \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \end{pmatrix} + c_1 \sum a_i y_{2i+2} - c_2 \sum a_i x_{2i+2} - d_1 \sum a_i y_{2i+1} + \\
& d_2 \sum a_i x_{2i+1} + \det \left(\sum a_i x_{2i+1} \sum a_i y_{2i+1} \sum a_i y_{2i+2} \sum a_i x_{2i+2} + d_1 \right) \\
& \det \left(\sum a_i x_{2i+1} + c_1 \sum a_i x_{2i+2} + d_1 \right).
\end{align*}

Remark 2.3. In (2.9), our $\alpha \in \wedge^2 V^*$ is of rank 2, i.e. it is decomposable as a tensor and corresponds to an element in $G(2, V) \subset \mathbb{P}(\wedge^2 V^*)$, (2.1). If we want to add mass to our propagator, we simply replace α by $\alpha + m^2 e_1^* \land e_2^*$, yielding $(\sum a_i p_i + m)^2 + m^2$. The massive α represents a point in $\mathbb{P}(\wedge^2 V^*)$ but not necessarily in $G(2, V^*)$.

3. The Twistor Integral

In this section we take $k = \mathbb{C}$. Consider the maps
\begin{equation}
V \times V - S \xrightarrow{\rho} G(2, V) \xrightarrow{\varphi} \mathbb{P}(\wedge^2 V).
\end{equation}
Here $S = \{(v, w) \mid v \land w = 0 \}$ and $\rho(v, w)$ is 2-plane spanned by v, w.

Lemma 3.1. $V \times V - S/G(2, V)$ is the principal $GL_2(\mathbb{C})$-bundle (frame bundle) associated to the rank 2 vector bundle W on $G(2, V)$ which associates to $g \in G(2, V)$ the corresponding rank 2 subspace of V.

Proof. With notation as in (2.1), let $U = \text{Hom}_\mathbb{C}(O, I) \subset G(2, V)$. We have
\begin{equation}
\rho^{-1}(U) = \{(z_1, \ldots, z_{2n+2}, v_1, \ldots, v_{2n+2}) \mid \det \begin{pmatrix} z_1 & z_2 \\ v_1 & v_2 \end{pmatrix} \neq 0 \}.
\end{equation}
We can define a section $s_U : U \to \rho^{-1}(U)$ by associating to $a : O \to I$ its graph
\begin{equation}
s_U(a) := (1, 0, a_1^1, \ldots, a_{2n}^1; 0, 1, a_1^2, \ldots, a_{2n}^2).
\end{equation}
Using this section and the evident action of $GL_2(\mathbb{C})$ on the fibres of ρ, we can identify $\rho^{-1}(U) = GL_2(\mathbb{C}) \times U$. The fibre $\rho^{-1}(u)$ for $u \in U$ is precisely the set of framings $w = \mathbb{C}z \oplus \mathbb{C}v$ as claimed. \square
Lemma 3.2. The canonical bundle $\omega_{G(2,V)} = \mathcal{O}(-2n-2)$ where $\mathcal{O}(-1)$ is the pullback $j^*\mathcal{O}_{\mathbb{P}(\Lambda^2 V)}(-1)$.

Proof. The tautological sequence on $G(2,V)$ reads
\[0 \rightarrow \mathcal{W} \rightarrow V_{G(2,V)} \rightarrow V_{G(2,V)}/\mathcal{W} \rightarrow 0. \]
Here \mathcal{W} is the rank 2 sheaf with fibre over a point of $G(2,V)$ being the corresponding 2-plane in V. One has
\[\Omega^1_{G(2,V)} = \text{Hom}(V_{G(2,V)}/\mathcal{W}, \mathcal{W}) = (V_{G(2,V)}/\mathcal{W})^\vee \otimes \mathcal{W}. \]
By definition of the Plucker embedding j above we have $\mathcal{O}_{G}(-1) = \Lambda^2 \mathcal{W}$. The formula for calculating chern classes of a tensor product yields
\[c_1(\Omega^1_{G}) = c_1((V_{G(2,V)}/\mathcal{W})^\vee) \otimes c_1(\mathcal{W}) \otimes 2n = \mathcal{O}_{G}(-2n-2). \]
\[\square \]

We now fix a point $a \in \mathbb{P}(\Lambda^2 V)$. Upto scale, a determines a non-zero alternating bilinear form on V which we denote by $Q: (x,y) \mapsto \sum_{\mu,\nu} x^\mu Q_{\mu\nu} y^\nu$. By restriction we may view $Q \in \Gamma(G(2,V),\mathcal{O}(1))$. By the lemma $\omega_G \otimes \mathcal{O}(2n+2) \cong \mathcal{O}_G$, so upto scale there is a canonical meromorphic form ξ on $G(2,V)$ of top degree $4n$ with exactly a pole of order $2n+2$ along $Q = 0$. We write
\[\xi = \frac{\Xi}{Q^{2n+2}}; \quad 0 \neq \Xi \in \Gamma(G,\omega_G(2n+2)) = \mathbb{C}. \]

Lemma 3.3. We have
\[H^i(V \times V - S, \mathbb{Q}) = \begin{cases} \mathbb{Q} & i = 0, 4n+1, 4n+3, 8n+4 \\ (0) & \text{else} \end{cases}. \]

Proof. We compute the dual groups $H^*_c(V \times V - S, \mathbb{Q})$. Note a complex vector space has compactly supported cohomology only in degree twice the dimension. Also, $H^1_c(V - \{0\}) \cong H^0_c(\{0\}) = \mathbb{Q}$. Let $p: S \rightarrow V$ be projection onto the first factor. The fibre $p^{-1}(v) \cong \mathbb{C}$ for $v \neq 0$ and $p^{-1}(0) = V$. It follows that
\[H^i_c(S - \{0\} \times V) \cong H^{i-2}_c(V - \{0\}) = (0); \quad i \neq 3, 4n+6. \]
Now the exact sequence
\[H^i_c(S - \{0\} \times V) \rightarrow H^i_c(S, \mathbb{Q}) \rightarrow H^i_c(V, \mathbb{Q}) \]
yields $H^i_c(S) = \mathbb{Q}$, $i = 3, 4n+4, 4n+6$ and vanishes otherwise. Thus, $H^j_c(V \times V - S) = \mathbb{Q}$; $j = 4, 4n+5, 4n+7, 8n+8$ and vanishes otherwise. Dualizing, we get the lemma. \[\square \]
Let \(R \subset V \times V \) be the zero locus of the alternating form \(Q \) on \(V \) defined above. Clearly \(S \subset R \).

Lemma 3.4. Assume the alternating form \(Q \) is non-degenerate. Then we have

\[
H^i(V \times V - R, \mathbb{Q}) = \begin{cases}
\mathbb{Q} & i = 0, 1, 4n + 3, 4n + 4 \\
(0) & \text{else}
\end{cases}
\]

Proof. Again let \(p : R \to V \) be projection onto the first factor. We have \(p^{-1}(0) = V \) and \(p^{-1}(v) \cong \mathbb{C}^{2n+1} \) for \(v \neq 0 \). It follows that \(H^i_c(R - \{0\} \times V) = (0), i \neq 4n + 3, 8n + 6 \). As before, this yields \(H^j_c(V \times V - R) = \mathbb{Q}, j = 4n + 4, 4n + 5, 8n + 7, 8n + 8 \) and the lemma follows by duality. \(\square \)

Note that in the case \(n = 0 \), \(\text{dim} \, V = 2 \) we have \(S = R \) and the two lemmas give the same information, which also describes the cohomology of the fibres of the map \(\rho \). Namely, \(H^i(\rho^{-1}(pt)) = \mathbb{Q}, i = 0, 1, 3, 4 \) and \(H^1 = (0) \) otherwise.

The form \(Q \) induces a quadratic map on \(V \times V \) given by \((v, v') \mapsto vQv' \).

Lemma 3.5. Choose a basis for \(V \) and write \(dv \) for the evident holomorphic form of degree \(4n + 4 \) on \(V \times V \). Then \(\mu := dv/Q^{2n+2} \) is homogeneous of degree 0 and represents a non-trivial class in \(H^{4n+4}_{\text{DR}}(V \times V - R) \).

Proof. \(V \times V - R \) is affine, so we can calculate de Rham cohomology using algebraic forms. There is an evident \(\mathbb{G}_m \)-action which is trivial on cohomology. Writing a form \(\nu \) as a sum of eigenforms for this action, we can assume the \(\mathbb{G}_m \)-action is trivial on \(\nu \), which therefore is written \(\nu = Fdv/Q^{2n+2+N} \) for some \(N \geq 0 \) and \(\deg F = 2N \). Since \(Q \) is non-degenerate, we can write \(F = \sum_i F_i \partial Q/\partial v_i \). Let \((dv)_i \) be the form obtained by contracting \(dv \) against \(\partial/\partial v_i \). Then

\[
(3.12) \quad \nu + d\left(\frac{1}{2n+1+N} \sum F_i (dv)_i/Q^{2n+1+N} \right) = Gdv/Q^{2n+1+N}.
\]

where \(G \) is homogeneous of degree \(2(N-1) \). Continuing in this way, we conclude that \(\nu \) is cohomologous to a constant times \(dv/Q^{2n+2} \). Since by the lemma \(H^{4n+4}(V \times V - R) = \mathbb{Q} \), we conclude that \(\mu := dv/Q^{2n+2} \) is not exact. \(\square \)

If one keeps track of the Hodge structure, lemma 3.4 can be made more precise. One gets e.g. \(H^{4n+4}(V \times V - R, \mathbb{Q}) \cong \mathbb{Q}(-2n-3) \). For a
suitable choice of coordinatizations for the two copies of V and a suitable rational scaling for the chain σ representing a class in $H_{4n+4}(V \times V - R, \mathbb{Q})$ we can write the corresponding period as

\[(3.13) \quad \int_{\sigma} d^{2n+2}z \wedge d^{2n+2}v/(\sum z_{\mu}v_{\mu})^{2n+2} = (2\pi i)^{2n+3}.\]

Now we make the change of coordinates $v_{\mu} = \sum_{p} Q_{\mu p}w_{p}$ and deduce

\[(3.14) \quad \int_{\sigma} d^{2n+2}z \wedge d^{2n+2}w/(\sum z_{\mu}Q_{\mu p}w_{p})^{2n+2} = \frac{(2\pi i)^{2n+3}}{\det Q}.\]

Here Q is alternating in our case, so $\det Q = \text{Pfaffian}(Q)^2$.

The “Feynman trick” in this context is the integral identity

\[(3.15) \quad \prod_{i=1}^{2n+2} \frac{1}{A_{i}} = (2n + 1)! \int_{0}^{\infty} \frac{da_{1} \cdots da_{2n+2}\delta(1 - \sum a_{i})}{(\sum a_{i}A_{i})^{2n+2}}.\]

We apply the Feynman trick with $A_{i} = \sum_{\mu, p} z_{\mu}Q_{\mu p}w_{p}$ and integrate over σ

\[(3.16) \quad \int_{\sigma} \frac{d^{2n+2}z \wedge d^{2n+2}w}{\prod_{i=1}^{2n+2}(\sum_{\mu, p} z_{\mu}Q_{\mu p}w_{p})} = (2n + 1)! \int_{0}^{\infty} \frac{da_{1} \cdots da_{2n+2}\delta(1 - \sum a_{i})}{(\sum a_{i}(\sum_{\mu, p} z_{\mu}Q_{\mu p}w_{p}))^{2n+2}} \int_{0}^{\infty} \frac{d^{2n+2}z \wedge d^{2n+2}w}{(\sum_{\mu, p} z_{\mu}(\sum a_{i}Q_{\mu p}w_{p})^{2n+2}} = (2n + 1)!(2\pi i)^{2n+3} \int_{0}^{\infty} \frac{da_{1} \cdots da_{2n+2}\delta(1 - \sum a_{i})}{\text{Pfaffian}(\sum a_{i}Q_{i})^{2}}.\]

The integral on the right in (3.16) can be rewritten as a projective integral as on the right in (1.4):

\[(3.17) \quad \int_{0}^{\infty} \frac{da_{1} \cdots da_{2n+2}\delta(1 - \sum a_{i})}{\text{Pfaffian}(\sum a_{i}Q_{i})^{2}} = \int \frac{\Omega_{2n+1}}{\text{Pfaffian}(\sum_{i=1}^{2n+2} a_{i}Q_{i})^{2}}.\]

4. PROOF OF THEOREM 1.1

To finish the proof of theorem 1.1 we need to understand the chain of integration σ in (3.16). We also need to choose the alternating forms Q_{i} on the left side of (3.16) so the resulting integral coincides up to a constant with the Feynman integral in the statement of the theorem (1.3).
Put an hermitian metric $|| \cdot ||$ on V. The induced metric on the bundle of 2-planes defines a submanifold $M \subset V \times V - S$ where M is the set of pairs $(z, v) \in V \times V - S$ such that $||z|| = ||v|| = 1$ and $\langle z, v \rangle = 0$. M is a \mathbb{U}_2-bundle which is a reduction of structure of the $GL_2(\mathbb{C})$ bundle $V \times V - S$. The inclusion $M \subset V \times V - S$ is a homotopy equivalence. In particular, the fibre

$$
(\mathbb{R}^4 \rho_\ast \mathbb{Z})_w \cong H^4(M_w) = H^4(\mathbb{U}_2) = \mathbb{Z} \cdot [\mathbb{U}_2].
$$

(\mathbb{U}_2 is a compact orientable 4-manifold, so this follows by Poincaré duality.)

For the base, write $G^0 := G(2, V) - \{ Q = 0 \}$ where $Q \in \bigwedge^2 V^\vee$ is of rank $2n + 2$. G^0 is affine (and hence Stein) of dimension $4n$, so $H^i(G^0, \mathbb{Z}) = (0)$ for $i > 4n$. Let $\rho^0 : V \times V - R \to G^0$ be the GL_2 principal bundle obtained by restriction from ρ. We are interested in the class in $H^{4n+4}(V \times V - R, \mathbb{Q})$ (cf. lemma [3.4]) dual to σ. The grassmann is simply connected, so by (1.1), necessarily $R^4 \rho_\ast \mathbb{Z} \cong \mathbb{Z}_G$. Since the fibres of ρ have cohomological dimension 4, we have also

$$
Q = H^{4n+4}(V \times V - R, \mathbb{Q}) \cong H^{4n}(G^0, R^4 \rho_\ast \mathbb{Q}) \cong H^{4n}(G^0, \mathbb{Q}).
$$

It is not hard to show in fact that $H^{4n}(G^0, \mathbb{Q}) = \mathbb{Q} \cdot c_2(\mathcal{W})^n$ where \mathcal{W} is the tautological rank 2 bundle on $G(2, V)$ as in (3.4). The interesting question is what if anything this class has to do with the topological closure of real Minkowski space in $G(2, V)$ which is classically the chain of integration for the Feynman integral.

Recall we have Γ a graph with no self-loops and no multiple edges. External edges will play no role in our discussion, so assume Γ has none. The chain of integration for the Feynman integral is \mathbb{R}^{4n} where n is the loop number of Γ. This vector space is canonically identified with $H := H_1(\Gamma, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{R}^4$. In particular, an edge $e \in \text{Edge}(\Gamma)$ yields a functional $e^\vee : H_1(\Gamma, \mathbb{R}) \to \mathbb{R}$ associating to a loop ℓ the coefficient of e in ℓ.

To avoid divergences, the theorem is formulated for euclidean propagators. Let $q : \mathbb{R}^4 \to \mathbb{R}$ be $q(x_1, \ldots, x_4) = x_1^2 + \cdots + x_4^2$. The propagators which appear in the denominator of the integral have the form

$$
H = H_1(\Gamma, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{R}^4 \xrightarrow{e^\vee \otimes \text{id}_4} \mathbb{R}^4 \xrightarrow{q} \mathbb{R}.
$$

We take complex coordinates in $\mathbb{C}^4 = \mathbb{R}^4 \otimes \mathbb{C}$ of the form

$$
z_1 = x_1 + ix_2, \quad z_2 = ix_3 + x_4, \quad w_1 = ix_3 - x_4, \quad w_2 = x_1 - ix_2;
$$

$$
x_1 = \frac{z_1 + w_2}{2}, \quad x_2 = \frac{z_1 - w_2}{2}, \quad x_3 = \frac{z_2 + w_1}{2}, \quad x_4 = \frac{z_2 - w_1}{2}.
$$
In these coordinates \(q = z_1 w_2 - z_2 w_1 \) and the real structure is \(\mathbb{R}^4 = \{ (z_1, z_2, -\pi^2, \pi_1) \mid z_j \in \mathbb{C} \} \).

Now take real coordinates for \(H_1(\Gamma, \mathbb{R}) \) and let \((z^k_1, z^k_2, w^k_1, w^k_2) \), \(k \geq 1 \) be the resulting coordinates on \(H_\mathbb{C} \). It is then the case that for each edge \(e \) there are real constants \(\alpha_k = \alpha_k(e) \in \mathbb{R} \) not all zero, and the propagator for \(e \) is

\[
(4.6) \quad \det \left(\sum_{k \geq 1} \alpha_k z^k_1 \sum_{k \geq 1} \alpha_k z^k_2 \sum_{k \geq 1} \alpha_k z^k_1 \sum_{k \geq 1} \alpha_k z^k_2 \right) = | \sum_{k} \alpha_k z^k_1 |^2 + | \sum_{k} \alpha_k z^k_2 |^2.
\]

Since the linear functionals associated to the various edges \(e \) span the dual space to \(H_1(\Gamma, \mathbb{R}) \), we see that a positive linear combination of the propagators is necessarily positive definite on \(H_\mathbb{R} \) (i.e. \(> 0 \) except at 0.) Using the coordinates \(z^k_1, w^k_1 \) we can identify \(H_\mathbb{C} \) with an open set in \(G = G(2, 2n + 2) \); namely the point with coordinates \(z, w \) is identified with the 2-plane of row vectors

\[
(4.7) \quad \begin{pmatrix} 1 & 0 & z^1_1 & z^1_2 & z^1_3 & \cdots \\ 0 & 1 & w^1_1 & w^1_2 & w^1_3 & \cdots \end{pmatrix}.
\]

We throw in two more coordinates \(z^0_1, z^0_2 \) (resp. \(w^0_1, w^0_2 \)) and view the \(z^k_j \) (resp. \(w^k_j \)) as coordinates of points in \(V_\mathbb{C} = \mathbb{C}^{2n+2} \). The fact that the set of non-zero matrices of the form \(\begin{pmatrix} z^1_1 & z^1_2 & \cdots \\ -z^0_2 & z^0_2 & \cdots \end{pmatrix} \) is a group under multiplication means that the set of non-zero \(2 \times (2n + 2) \)-matrices

\[
(4.8) \quad \begin{pmatrix} z^1_0 & z^0_1 & z^1_2 & \cdots & z^0_1 & z^0_2 \\ -z^0_2 & z^0_1 & -z^1_2 & \cdots & -z^0_1 & -z^0_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ z^{2n}_0 & z^{0n}_1 & \cdots & z^{2n}_0 & z^{0n}_1 & \cdots \\
\end{pmatrix}
\]

is closed in \(G \). It is clearly the closure in \(G \) of the real Minkowski space whose complex points are given in (1.7). It will be convenient to scale the rows by a positive real scalar and assume \(\sum_{j,k} |z^k_j|^2 = 1 \), so the resulting locus is compact in \(V \times V - R \). We also scale the bottom row by a constant \(e^{i\theta} \) of norm 1. The resulting locus

\[
(4.9) \quad \sigma := \left\{ \begin{pmatrix} z^0_1 & z^0_2 & z^1_1 & z^1_2 & \cdots & z^0_1 & z^0_2 \\ -e^{i\theta} z^0_2 & e^{i\theta} z^0_1 & -e^{i\theta} z^1_2 & e^{i\theta} z^1_1 & \cdots & -e^{i\theta} z^0_1 & e^{i\theta} z^0_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ z^{2n}_0 & z^{0n}_1 & \cdots & z^{2n}_0 & z^{0n}_1 & \cdots \\
\end{pmatrix} \mid \sum_{j,k} |z^k_j|^2 = 1 \right\}
\]

is compact and depends on \(4n + 4 \) real parameters.

Let \(Q_\epsilon \in \bigwedge^2 V^\vee \) be the form which associates to (1.7) the determinant

\[
\det \left(\sum_{k \geq 1} \alpha_k(e) z^k_1 \sum_{k \geq 1} \alpha_k(e) z^k_2 \sum_{k \geq 1} \alpha_k(e) w^k_1 \sum_{k \geq 1} \alpha_k(e) w^k_2 \right).
\]
Let $a_e > 0$ be constants, and let $\tilde{Q} = \sum_e a_e Q_e \in \bigwedge^2 V^\vee$. Finally, let $Q_0 \in \bigwedge^2 V^\vee$ associate to the matrix \(4.8\) the minor $z_1^0 z_1^0 + z_2^0 z_2^0$. It is clear that $Q := Q_0 + \tilde{Q}$ doesn’t vanish on any non-zero matrix of the form \(4.8\). We conclude:

Proposition 4.1. Let $G(\mathbb{R}) \subset G$ be the set of points \(4.8\). Then with Q as above, we have $G(\mathbb{R}) \subset G^0 = G - \{Q = 0\}$.

The locus σ, \(4.9\), projects down to $G(\mathbb{R})$ with fibre the group U_2.

Proposition 4.2. With this choice of σ we have

\[
\int_{\sigma} d^{2n+2}z \wedge d^{2n+2}w \neq 0.
\]

Proof. Let $v_j^{k,\vee}$ be the basis of V^\vee which is dual to the coordinate system z_j^k introduced above. Then one checks that Q as described above is associated to an element

\[
Q = \sum_{k=0}^{n} b_k v_1^{k,\vee} \wedge v_2^{k,\vee} \in \bigwedge^2 V^\vee, \quad b_k > 0.
\]

Applied to the matrix on the right in \(4.9\),

\[
Q(\cdots) = e^{i\theta} \sum_{k=0}^{n} b_k (|z_1^k|^2 + |z_2^k|^2)
\]

Computing $d^{2n+2}z \wedge d^{2n+2}w$ on the right hand side of \(4.9\) yields

\[
e^{(2n+2)i\theta} d\theta \wedge \\
\wedge d z_1^0 \wedge \cdots \wedge d z_2^n \wedge \sum_k \left(\bar{z}_2^k dz_1^k - \bar{z}_1^k dz_2^k \right) \wedge \bigwedge_{j \neq k} (dz_1^j \wedge dz_2^j).
\]

The crucial point is that the $e^{i\theta}$ factor in the integrand \(4.10\) cancels. Rescaling we can reduce to the case where all the $b_k = 1$. Integrating over σ yields a $2\pi i$ from the $id\theta$ and then an integral over the volume form of the $4n + 3$ sphere $\sum_{k=0}^{n} (|z_1^k|^2 + |z_2^k|^2) = 1$. This is non-zero. □

The proof of theorem \(1.1\) is now complete. To summarize, given Γ, one uses the change of coordinates \(4.4\) in order to rewrite the euclidean propagators P_i as determinants of alternating matrices Q_i. One uses the discussion in section \(2\) particularly formula \(2.9\) and remark \(2.3\) to interpret these propagators with external momenta and masses as elements in $\bigwedge^2 V^\vee$, where $V \cong \mathbb{C}^{\text{Edge}(\Gamma)} \cong \mathbb{C}^{2n+2}$. Using \(4.6\), one sees that a positive linear combination of the Q_i does not vanish on the locus σ defined in \(4.9\). This means that the integrand
on the right in (3.16) has poles only on the boundary of the chain of integration where some of the $a_i = 0$. The integral on the left, given our definition of σ, is a constant (depending only on n) times the euclidean amplitude integral.

References

[B] Bloch, S., Unpublished manuscript on the motive of null vectors for the graph matrix, http://math.uchicago.edu/~bloch/publications.html
[BEK] Bloch, S., Esnault, H., Kreimer, D., On motives associated to graph polynomials, Comm. Math. Phys. 267 (2006), no. 1, 181-225.
[BK] Bloch, S., Kreimer, D., Feynman amplitudes and Landau singularities for 1-loop graphs, Comm. Number Theory and Physics 4 (2010), no. 4, 709-753.
[BrK] Broadhurst, D., Kreimer, D., Knots and Numbers in varphi4 Theory to 7 Loops and Beyond, International Journal of Modern Physics C - IJMPC, vol. 6, pp. 519-524, (1995).
[H] Hodges, A., The box integrals in momentum-twistor geometry, arXiv:1004.3323v1 [hep-th].
[IZ] Itzykson, C., Zuber, J.-B., Quantum Field Theory, Dover Publ. (2005).
[K] Kempf, G., On the geometry of a theorem of Riemann, Ann. Math. v. 98, no. 1 (1973), pp. 178-185.
[P] Patterson, E., On the singular structure of graph hypersurfaces, Comm. Number Theory and Physics 4 (2010), no. 4, 659-708.
[T] Todorov, I., Analytic properties of Feynman diagrams in quantum field theory, monographs in natural philosophy 38, Pergamon Press (1971).