Multidecadal declines in particulate mercury and sediment export from Russian rivers in the pan-Arctic basin

Scott Zolkos, Alexander V. Zhulidov, Tatiana Yu. Gurtovaya, Vyacheslav V. Gordeev, Sergey Berdnikov, Nadezhda Pavlova, Evgenia A. Kalko, Yana A. Kulikina, Danil A. Zhulidov, Lyudmila S. Kosmenko, Alexander I. Shiklomanov, Anya Suslova, Benjamin M. Geymann, Colin P. Thackray, Elsie M. Sunderland, Suzanne E. Tank, James W. McClelland, Robert G. M. Spencer, David P. Krabbenhoft, Richard Roberts, and Robert M. Holmes

High levels of methylmercury accumulation in marine biota are a concern throughout the Arctic, where coastal ocean ecosystems receive large riverine inputs of mercury (Hg) (40 Mg y⁻¹) and sediment (20 Tg y⁻¹) during the last decade, primarily from major Russian rivers. Hg concentrations in fish harvested from these rivers have declined since the late 20th century, but no temporal data on riverine Hg, which is often strongly associated with suspended sediments, were previously available. Here, we investigate temporal trends in Russian river particulate Hg (PHg) and total suspended solids (TSS) to better understand recent changes in the Arctic Hg cycle and its potential future trajectories. We used 1,300 measurements of Hg in TSS together with discharge observations made by Russian hydrochemistry and hydrology monitoring programs to examine changes in PHg and TSS concentrations and fluxes in eight major Russian rivers between ca. 1975 and 2010. Due to decreases in both PHg concentrations (micrograms per gram) and TSS loads, annual PHg export declined from 47 to 7 Mg y⁻¹ overall and up to 92% for individual rivers. Modeling of atmospheric Hg deposition together with published inventories on reservoir establishment and industrial Hg release point to decreased pollution and sedimentation within reservoirs as predominant drivers of declining PHg export. We estimate that Russian rivers were the primary source of Hg to the Arctic Ocean in the mid to late 20th century.

Significance

Russian rivers are the predominant source of riverine mercury to the Arctic Ocean, where methylmercury biomagnifies to high levels in food webs. Pollution controls are thought to have decreased late-20th-century mercury loading to Arctic watersheds, but there are no published long-term observations on mercury in Russian rivers. Here, we present a unique hydrochemistry dataset to determine trends in Russian river particulate mercury concentrations and fluxes in recent decades. Using hydrologic and mercury deposition modeling together with multivariate time series analysis, we determine that 70 to 90% declines in particulate mercury fluxes were driven by pollution reductions and sedimentation in reservoirs. Results suggest that Russian rivers likely dominated over all other sources of mercury to the Arctic Ocean until recently.

Author contributions: A.V.Z., T.Y.G., V.V.G., and S.B. designed research; S.Z., A.V.Z., T.Y.G., V.V.G., S.B., N.P., E.A.K., Y.A.K., D.A.Z., and L.S.K. performed research; S.Z., A.I.S., A.S., B.M.G., and C.P.T. analyzed data; and S.Z., A.V.Z., T.Y.G., V.V.G., S.B., N.P., A.I.S., A.S., B.M.G., C.P.T., E.M.S., S.E.T., J.W.M., R.G.M.S., D.P.K., R.R., and R.M.H. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. Copyright © 2022 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

To whom correspondence may be addressed. Email: sgzolkos@gmail.com.

This article contains supporting information online at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2119857119/-/DCSupplemental.

Published March 28, 2022.
(20), coal- and gas-fired heat and power generation (21), gold mining (22), and municipal waste processing (23). From the late 1980s to late 1990s, economic output in Russia declined by 44% as the former Union of Soviet Socialist Republics (USSR) collapsed (24). This decreased industrial activity may have reduced Hg emissions to the atmosphere and curbed direct releases into aquatic ecosystems. Finally, the onset of Hg emission controls in the mid-20th century (25) reduced atmospheric Hg deposition in the northern hemisphere (26). Atmospheric Hg deposited to soils may be mobilized into fluvial networks via leaching and runoff over decades to centuries (27). The scarcity of riverine Hg data available from watersheds in the Russian sector of the pan-Arctic basin hinders a more concrete understanding of controls on northern high-latitude Hg cycling in recent decades.

Here we present multidecadal observations on TSS and PHg concentrations for eight major Russian rivers which discharge into seas bordering the Arctic Ocean: the Onega, Northern Dvina, Mezen, Pechora, Ob', Yenisey, Lena, and Kolyma (Fig. 1). Using 1,300 paired measurements of TSS and PHg concentration and daily river discharge made from the 1970s to the late 2010s as part of a long-term Russian biological monitoring program, we investigate spatiotemporal trends in TSS and Hg concentration and export with the aim of better understanding recent changes in the Arctic Hg cycle. We then assess potential controls on changes in riverine Hg using observations on TSS, inventories of reservoir establishment (18), records of industrial Hg release (17), climate reanalysis data (28), and estimates of historical atmospheric Hg deposition simulated using a global atmospheric chemical transport model for Hg species (GEOS-Chem) (29). Our findings help to conceptualize future trajectories of Hg cycling at northern high latitudes, where rapid environmental change is expected to accelerate Hg release into ecosystems (13, 14, 30).

Results and Discussion

Multidecadal Declines in TSS and PHg Export. Our multidecadal hydrochemical observations, together with flux estimates using weighted regressions of concentrations on time, discharge, and season (WRTDS) software (31, 32), reveal large declines in TSS and PHg fluxes in major Russian rivers in the pan-Arctic basin between the 1970s and 2010s (Table 1). Our trend analyses leverage WRTDS flow normalization, which controls for the influence of variability in discharge to better understand potential effects from disturbance (e.g., pollution and reservoirs) on constituent concentration and flux. Trend significance results for flow-normalized concentration and flux from WRTDS are equivalent to two-sided P values and we report them following ref. 32: highly likely (≥0.95 and ≤1.0), very likely (≥0.90 and <0.95), likely (≥0.66 and <0.90), about as likely as not (>0.33 and <0.66), and unlikely (≤0.33). Declines in flow-normalized TSS flux were highly likely in the Ob' (19.2 Tg y⁻¹), Lena (17.4), Yenisey (5.6), Pechora (4.3),

![Fig. 1. The eight rivers examined in this study span the longitudinal breadth of Russia. Their watersheds encompass nearly 10,000,000 km² and contain varied histories of industrial pollution and reservoir establishment associated with dams. The Yukon and Mackenzie Rivers are shown here and referenced in the main text but were not sampled as part of this study.](https://doi.org/10.1073/pnas.2119857119)
Table 1. Absolute (total) and relative (percent) changes in mean annual flow-normalized PHg, TSS, and discharge, peak discharge magnitude, mean annual air temperature, and total annual precipitation.

Parameter	River	Start (t_1)	End (t_2)	Value at t_1	Value at t_2	Change (total)	Change, %	Trend
TSS concentration, mg L$^{-1}$	Onega 1980 1992	12.8 (11.2-14.4)	16.1 (12.4-22.2)	3.3	25.8	L		
PHg concentration, µg g$^{-1}$	Northern Dvina 1979 2001	0.97 (0.89-1.11)	0.41 (0.37-0.49)	0.57	57.7	L		
Discharge, km³ y$^{-1}$	Mezen 1980 2018	16.8 (13.1-22.4)	8.2 (7.0-10.5)	-8.7	51.2	HL		
	Pechora 1983 2018	22.7 (16.3-34.4)	6.8 (5.1-8.8)	-15.9	70.0	HL		
	Olb 1974 2008	53.3 (48.4-58.7)	22.2 (17.1-25.6)	-31.8	56.7	HL		
	Lena 2001	9.4 (7.2-10.5)	5.5 (4.2-7.9)	3.9	-51.5	L		
	Kolyma 1982 1987	19.8 (15.2-25.9)	39.7 (33.0-53.7)	19.8	100.5	L		
PHg flux, Mg y$^{-1}$	Onega 1980 1992	0.26 (0.20-0.31)	0.48 (0.29-0.93)	0.21	84.6	L		
	Northern Dvina 1979 2001	4.0 (2.5-4.8)	3.1 (2.1-3.8)	-0.85	22.5	L		
	Mezen 1980 2018	0.62 (0.44-0.99)	0.29 (0.20-0.40)	-0.34	53.2	L		
	Pechora 1983 2018	5.3 (3.3-6.8)	1.0 (0.7-1.2)	-4.3	81.1	HL		
	Olb 1980 2008	3.1 (28.3-34.7)	12.7 (10.2-108)	-19.2	80.4	L		
	Lena 2001	9.9 (7.0-11.8)	4.3 (1.7-7.5)	-5.6	56.9	L		
	Kolyma 1982 1987	5.6 (3.9-7.0)	12.2 (9.4-16.8)	6.6	117.9	L		
Mean annual air temperature, °C	Mezen 1980 2018	19.1	20.5	1.4	7.2	0.91		
	Pechora 1983 2018	38.5	30.7	-7.8	-20.2	0.32		
	Olb 1974 2008	390.2	408.2	18.1	4.6	0.55		
	Lena 2004 2018	639.3	629.7	-9.6	1.5	0.40		
	Kolyma 1982 1987	118.2	118.2	0.0	0.0	0.00		
Peak discharge magnitude, km³ y$^{-1}$	Onega 1980 1992	14.8	16.4	1.6	10.6	0.45		
	Northern Dvina 1979 2001	99.4	107.2	7.8	7.9	0.65		
	Mezen 1980 2018	19.1	20.5	1.4	7.2	0.91		
	Pechora 1983 2018	38.5	30.7	-7.8	-20.2	0.32		
	Olb 1974 2008	390.2	408.2	18.1	4.6	0.55		
	Lena 2004 2018	639.3	629.7	-9.6	1.5	0.40		
	Kolyma 1982 1987	118.2	118.2	0.0	0.0	0.00		
Total annual precipitation, mm	Northern Dvina 1980 2001	696	674	-22	3.2	0.38		
	Mezen 1980 2002	567	664	97	17.1	0.26		
	Pechora 1983 2002	893	893	0	0.0	0.00		
	Ob 1979 2008	680	572	-108	15.9	0.81		
	Lena 2004 2011	591	566	-25	4.2	0.56		
	Kolyma 1982 1987	185	159	-26	14.1	0.46		

Trends in TSS and PHg were evaluated using WRTDS and bootstrapped 90% confidence intervals are shown in parentheses. WRTDS modeling requires $n > 50$ and was not done for the Lena (PHg concentration and flux) or Kolyma (PHg flux). Trend significance for WRTDS results are equivalent to two-sided P values and are reported as highly likely (HL 0.95 and 0.90), likely (L 0.66 and 0.90), about as likely as not (n 0.33 and 0.66), or unlikely ($<$0.33). Trends in discharge and watershed climate were evaluated using the Mann-Kendall trend test (Significant $P < 0.05$). Decreases are preceded by minus signs.
and Mezen (0.3) and likely in the Northern Dvina (0.9). For these rivers, relative change in flow-normalized TSS flux ranged from −23% (Northern Dvina) to −81% (Pechora), whereas increased flow-normalized PHg flux was likely in the Lena and highly likely in the Kolyma. Declines in flow-normalized PHg flux were very or highly likely for the Yenisey (27.7 Mg·y⁻¹), Ob' (6.5), Northern Dvina (3.3), Pechora (1.9), and Mezen (0.3). For these five rivers, relative declines ranged from 68% (Ob') to 92% (Yenisey), while flow-normalized PHg flux in the Lena clearly did not change and flux could not be estimated for the Lena or Kolyma due to a more limited number of observations in these two rivers (Table 1 and SI Appendix, Fig. S1).

Underlying these trends in total annual fluxes, mean annual flow-normalized concentrations of TSS (milligrams per liter) and PHg (micrograms per gram) declined on average by 51% ([TSS]) and 53% ([PHg]) in all rivers except for the Lena (only PHg declined) and Kolyma (Fig. 2). Measurements of [PHg] from this study (mean = 0.7 μg·g⁻¹, range = 0.1 to 5.3, n = 1,484) overlapped with observations for global rivers (0.4 [0.01 to 3.7], n = 168) (SI Appendix, Fig. S2). All declines in flow-normalized [PHg] and most for flow-normalized [TSS] were highly likely (Table 1). Except for a 15% increase in annual discharge in the Yenisey and a 23% decrease in the Pechora, declines in flow-normalized [TSS] and [PHg] were not accompanied by significant changes in discharge or peak discharge magnitude in any other rivers, the latter representing a potential driver of fluvial erosion (33). Results derived for the Yenisei and Pechora using generalized flow normalization, which accounts for long-term change in discharge (see Materials and Methods), indicate that declines in flow-normalized TSS and PHg fluxes were mostly (91 to 93% and 91 to 96%, respectively) due to changes in concentration. Hence, declines in TSS and PHg flux in recent decades appear to be primarily linked to diminished inputs of sediment and Hg to these rivers and/or increased sedimentation within fluvial networks (see below).

These trends extend previous assessments of mid- to late-20th-century sediment fluxes in major Russian rivers, which showed decreased TSS flux in the Yenisey and variability in the Lena and Ob' (34–36). Our observation that flow-normalized TSS flux in the Kolyma increased within only 6 y from 1982 to 1987 may reflect interannual variability due to a shorter sampling duration but agrees with long-term observations (ca. 1940 to 1988) of increased TSS flux (34, 35). Although our estimates of PHg flux extend to ca. 2010, independent measurements of total Hg (PHg + dissolved Hg) and TSS flux made from 2012 to 2017 in the Ob', Yenisey, and Lena (3, 4) align with trajectories of declining flow-normalized PHg flux that we document in preceding decades (SI Appendix, Fig. S1). Our measurements bridge observations between the mid-20th century and 2010s, revealing large and previously undocumented declines in TSS and PHg concentration and flux that are indicative of striking changes in Arctic fluvial sediment regimes and Hg cycling during recent decades.

Spatial Variability in PHg and TSS Export and Drivers. Normalizing constituent fluxes by watershed area (i.e., yield) facilitates assessment of controls on constituent export from underlying terrain differences (e.g., surficial geology), hydrology, and anthropogenic impacts across diverse landscapes (37). We investigate TSS and PHg yields as a first step in characterizing potential drivers of declining Hg export among watersheds (continued in the next section). Fluxes we used to calculate yields were estimated by WRTDS Kalman filtering, which accounts for serial autocorrelation and provides non-flow-normalized flux estimates that better capture temporal variation and discharge-driven patterns of constituent export (38). Mean annual TSS yields ranged from 0.7 to 17.2 Mg·km⁻²·y⁻¹ and varied significantly among watersheds (ANOVA: F₁,7 = 135, P < 0.001). Higher TSS yields in the Kolyma (17.2 ± 4.4 Mg·km⁻²·y⁻¹, mean ± SE) and Lena (9.1 ± 0.8) than in the western watersheds (6.0 ± 1.4) have been attributed to relatively erodible Quaternary sediments bearing interstratified layers of ice in eastern Siberia (39). In the western Russian watersheds, sedimentation within expansive downstream lowlands is thought to sequester substrate derived from erosion in mountainous upper reaches, reducing TSS export to the coastal ocean (39). These trends highlight a broad longitudinal gradient in topography and surficial geology underlying regional variation in TSS yields across the Russian north. Superimposed on this gradient, large reservoirs constructed on the Ob', Yenisey, and their tributaries (Fig. 1) in the mid-20th century reduced TSS export in the decades following by trapping large amounts of sediment (34), consistent with global reductions in riverine sediment export due to reservoir establishment (19). Our observations of large reductions in late-20th-century TSS flux (Table 1) extend these earlier trends and implicate reservoirs as a primary sediment sink in Russian fluvial networks during the mid to late 20th century.

Mean annual PHg yields varied significantly among watersheds (F₁,5 = 56, P < 0.001) and overall were relatively low (0.4 to 6.4 g·km⁻²·y⁻¹), which is typical of watersheds at northern high latitudes (2), where a cold climate tempers fluvial erosion for much of the year. In comparison to TSS, PHg yields were highest in the Yenisey and Northern Dvina (5.1 ± 0.7 to 6.4 ± 0.7), lowest in the Mezen (0.4 ± 0.1), and intermediate in the other rivers (2.1 ± 0.2 to 4.5 ± 0.7) (there are no data for Lena and Kolyma due to shorter periods of record). While regional variability in TSS yields appeared to be driven by longitudinal variability in terrain conditions and the distribution of reservoirs, relatively high PHg yields in the Yenisey and Northern Dvina correspond with records of historical Hg contamination from regional industry. For instance, major pulp and paper mills along the lower Northern Dvina accumulated large amounts of Hg waste adjacent to their facilities (20) from manufacturing of bleaching agents for paper production. Chlor-alkali production in headwaters of the Yenisey released more than 1,200 Mg of Hg into the environment during operation from 1973 to 1998 (40) and soil Hg concentrations in contaminated regions reach 125 μg·g⁻¹ (41). In addition to likely proximate sources of Hg to the rivers in this study, rivers integrate biogeochemical effects of anthropogenic disturbance from across their watersheds. In 2010, an estimated 14 Mg of Hg was released to Russian freshwaters from anthropogenic sources (effluent released directly and indirectly via soil erosion and leaching from contaminated sites) and 7 Mg from background sources (soil erosion and runoff of natural and atmospherically deposited Hg) (17). From a mass budget perspective, these recent inventories together with our hydrochemical observations estimate comparable magnitudes of Hg input to aquatic environments from anthropogenic sources (14 Mg·y⁻¹ in 2010) and transported within Russian rivers (~19 Mg·y⁻¹ ca. 2000s; Table 1). The spatial patterns and overall large declines in PHg export we document surround a large decrease in industrial activity from the late 1980s to 1990s as the Soviet Union collapsed (24), which may have partly reduced Hg loading to rivers via declines in industrial effluent and emissions to the atmosphere.
Atmospheric Hg Deposition to Russian Watersheds. The onset of Hg emission controls during the mid-20th century and associated declines in deposition from primary anthropogenic emissions (42) are thought to have reduced Hg loading to Russian ecosystems and also riverine Hg export (16). To test this hypothesis, we modeled decadal trends in deposition of primary anthropogenic Hg emissions from regional (i.e., Europe and USSR) and global sources to the eight focal watersheds, using a global chemical transport model (GEOS-Chem v.12.7) (29) and published inventories of Hg emission magnitudes (25, 43, 44). Global primary anthropogenic Hg emissions declined from a peak of 3,020 Mg y\(^{-1}\) in 1970 to a minimum of 1,960 Mg y\(^{-1}\) in 1990, before rising to 2,390 Mg y\(^{-1}\) in 2015. Within Europe and the former Soviet Union, primary anthropogenic emissions declined by 1,070 Mg y\(^{-1}\) (from 1,230 to 160) between 1970 and 2015. During this time, mean annual Hg deposition from regional emissions to all focal watersheds declined by 85 Mg y\(^{-1}\). The decline in Hg deposition from global emissions, which includes regional sources, was smaller (79 Mg y\(^{-1}\)), largely due to increased emissions from eastern Asia. Declining primary anthropogenic emissions in recent decades are consistent with the trends we observed in Hg deposition to the focal watersheds (Fig. 3 and SI Appendix, Table S1).

Hg uptake within terrestrial ecosystems and eventual export of Hg from soils to freshwaters can occur over decades to centuries (27). This export lag may be accelerated in northern watersheds if winter and springtime Hg deposition is preserved on the surface and flushed into fluvial networks via the freshet snowmelt pulse. Thus, comparing deposition and riverine Hg mass fluxes among watersheds facilitates assessment of potential contributions from changing emissions to fluvial export. In the four smaller western watersheds and also in the Ob', declines in atmospheric Hg deposition (−15 to −17 Mg y\(^{-1}\)) exceeded changes in riverine PHg flux (−12 Mg y\(^{-1}\)) (Table 1). Normalized by watershed area, average peak deposition in the eastern watersheds (22 g km\(^{-2}\) y\(^{-1}\); Ob', Yenisey, Lena, Kolyma) was smaller than in the four western watersheds (46 g km\(^{-2}\) y\(^{-1}\)), where a larger proportion of Hg deposition originated from proximate regional urban and industrial centers rather than from global sources (Fig. 3). Together, these trends in mass fluxes and areal deposition indicate relatively greater effects from declines in regional primary anthropogenic Hg emissions on riverine Hg export in the smaller western watersheds. In the Ob' and Yenisey, large decreases in flow-normalized PHg flux relative to deposition implicate reservoirs and reductions in local industrial pollution as primary drivers of declines in riverine PHg export. Together, our findings indicate that multidecadal declines in riverine PHg export across Russia were driven by decreases in [PHg] associated with varied environmental and anthropogenic factors.

Potential Drivers of Trends in PHg Concentration. Dynamic regression models (DRMs) we developed for each river (see Materials and Methods for multivariate time series analysis)
provide evidence for potential drivers underlying the near-universal declines in flow-normalized [PHg]. Covariate coefficients indicated that changes in atmospheric Hg deposition from regional sources were most strongly associated with [PHg] in the four smaller western watersheds (Onega, Northern Dvina, Mezen, and Pechora) (Table 2). For these watersheds, deposition lagged at 10 to 15 y may reflect effects on aquatic Hg loading from both rapid (subdecadal) responses in direct deposition to surface waters and also delayed responses via runoff (45) and also capture the period from ∼1970 to 1990 of relatively rapid declines in deposition from regional sources which contributed more to Hg deposition (Fig. 3 and “yields” results). Global Hg deposition lagged at 5 y was most strongly associated with [PHg] trends in the Ob’ watershed, where deposition to surface waters in vast wetlands (46) may accelerate the response of aquatic Hg cycling to changes in declining atmospheric deposition. Climate covariates were included in the most parsimonious models for most of the five western rivers, despite showing negligible change over the study period (Table 1) and generally appearing less-associated with flow-normalized [PHg] than atmospheric Hg deposition and flow-normalized [TSS]. The association between flow-normalized [TSS] and [PHg], an indicator of sediment–Hg coupling, appeared to vary among rivers and was strongest in the Yenisey, where the top two DRMs included terms for flow-normalized [TSS] and lagged cumulative reservoir capacity, respectively. In the most parsimonious DRM, omission of reservoir capacity suggests the covariate for [TSS] captured reservoirs’ effects on sediment concentrations across the Yenisey watershed (Fig. 1). Although the short periods of record precluded assessment of [PHg] trends and drivers in the Lena and Kolyma, accelerating permafrost thaw is likely to emerge as a key driver of fluvial PHg export in these watersheds (47).

Other processes known to influence riverine PHg, such as local and regional industrial pollution, were not quantified well.
Table 2. Results from DRMs used to evaluate potential drivers underlying trends in flow-normalized PHg concentration

River	BIC	Covariate	Coefficient	SE
Onega	-122.8	Regional Hg	0.009	0.002
		dep (15-y lag)		
		[TSS]	0.007	0.003
		TAP	-0.001	0.002
		intercept	-0.011	0.001
		AR1	-0.393	0.304
		σ	0.001	
Northern	-144.6	Regional Hg	0.020	0.008
Dvina		dep (15-y lag)		
		[TSS]	-0.013	0.003
		MAAT	0.001	0.001
		AR1	0.985	0.020
		σ	0.006	
Mezen	-197.4	Regional Hg	-0.042	0.019
		dep (10-y lag)		
		[TSS]	0.009	0.002
		TAP	-0.006	0.003
		AR1	0.865	0.106
		σ	0.002	
Pechora	-171.4	Regional Hg	0.008	0.006
		dep (10-y lag)		
		[TSS]	0.008	0.002
		AR1	-0.008	0.245
		σ	0.002	
Ob'	-234.1	Global Hg dep	0.003	0.003
		(5-y lag)		
		[TSS]	-0.002	0.006
		TAP	-0.002	0.002
		AR1	0.960	0.035
		σ	0.003	
Yenisey	-157.4	[TSS]	0.047	0.016
		MAAT	0.003	0.002
		intercept	-0.041	0.005
		AR1	0.466	0.197
		σ	0.015	

For each river, a suite of preliminary models contained all possible combinations of covariates: atmospheric Hg deposition (dep) (global vs. local with 0-, 5-, 10-, and 15-y lags), the flow-normalized concentration of total suspended solids ([TSS]), watershed total annual precipitation (TAP), watershed mean annual air temperature (MAAT), and (for the Ob' and Yenisey only) cumulative reservoir capacity (20- and 25-y lags). The most parsimonious model was selected as the model with the lowest Bayesian information criterion (BIC) score that did not violate model assumptions. AR1 (regression residuals) and σ (model residuals, calculated as σ2) are components of the ARIMA error. The ARIMA structure was (1,2,0) for the Mezen and Pechora, and (1,1,0) for all other rivers (see Materials and Methods).

enough on a watershed basis to include as covariates in our models, but their effects are implicated by historical records and reflected by DRM residuals. Nevertheless, our modeling results suggest that reductions in atmospheric Hg deposition and likely also industrial polluting activities within watersheds drove declines in [PHg] which, together with sediment trapping by reservoirs (especially in the Yenisey), contributed to the large declines in Russian river Hg export in recent decades.

Implications for Northern High-Latitude Hg Cycling. Trajectories of declining PHg export together with estimates of flux magnitude enable a first assessment of historical riverine PHg fluxes. Summing the initial timepoint values from WRTDS results (Table 1) shows that riverine flow-normalized PHg fluxes from the Russian rivers (excluding the Lena and Kolyma) were ~47 Mg·y⁻¹ around 1980. This value is 7 to 27% higher than estimates of 37 to 44 Mg·y⁻¹ for contemporary (2012 to 2017) riverine total Hg flux upscaled to the entire pan-Arctic watershed (3, 4). Total Hg fluxes in the late 20th century were likely greater still, due to fluxes of dissolved Hg for which we are unable to account. Contemporary fluxes of dissolved Hg (<2.2 μm passing fraction) in these Russian rivers are considered significant relative to PHg (49% ± 2%) (3), suggesting that—under a potential scenario of limited historical changes in the proportion of the Hg pool in the dissolved versus particulate phase—total Hg flux by Russian rivers approached 100 Mg·y⁻¹ some four decades ago. Major sources of Hg to the Arctic Ocean and contemporary estimates of their inputs include ocean currents (21 to 48 Mg·y⁻¹), coastal erosion (15 to 47 Mg·y⁻¹), and atmospheric deposition and snowmelt (45 to 98 Mg·y⁻¹) (5, 6, 48). The latter may have declined since the onset of Hg controls in the 1970s (25). Therefore, we estimate that Russian rivers were potentially the single largest source of Hg to the Arctic Ocean in the mid-20th century. Further, contemporary total annual Hg flux from the Yukon and Mackenzie Rivers is ~10 Mg·y⁻¹ (4) and has potentially increased in recent decades (15). Thus, changes to Arctic fluvial Hg cycling during the last half century were driven by diminishing terrestrial Hg inputs within Russian rivers in the pan-Arctic basin.

Future permafrost thaw is expected to intensify Hg cycling (13, 30). Across the circumpolar north, diverse terrain conditions (e.g., relief, ground ice, and Hg content) are likely to drive regional variability in the effects of permafrost thaw on fluvial export and biogeochemical transformation of Hg (49). Particularly in watersheds with limited flow regulation and large stores of soil Hg, permafrost degradation and increased sediment transport associated with melting of regional glaciers (7, 50) are likely to emerge as prominent sources of fluvial Hg as the Arctic warms (30). In North America, the most severe trajectories of climate warming and associated permafrost thaw project a doubling of fluvial Hg flux to nearly 10 Mg·y⁻¹ in the Yukon River Basin by 2100 (30). In Canada, where large areas are susceptible to hillslope thermokarst activity (51), fluvial propagation of thawed substrate may redistribute Hg across watershed scales for centuries to millennia (14, 52). Permafrost degradation in western Siberia is predicted to double fluvial PHg flux in the coming decades (13). The degree to which these effects may counteract our observations of decreased riverine Hg export will likely be determined by anthropogenic activities (e.g., industrial activity and dam construction) that modify sediment transport and Hg loading to watersheds across the north.

In this study, we found significant declines in sediment and Hg concentration and export in major Russian rivers that were driven by pollution reductions and reservoir establishment, resolving a decades-long period of uncertainty in the magnitude and drivers of Hg cycling across a vast portion of the Arctic. As anthropogenic polluting activities continue to change and permafrost thaw intensifies land–freshwater linkages (13, 14, 30), hydrochemical and biological monitoring programs building on continuous, long-term data collection will be imperative to capture changes in Hg cycling at northern high latitudes (53). Future research should also prioritize 1) investigating the fate of PHg within northern reservoirs, lakes, and coastal regions, where large accumulations of Hg in sediments (54) may influence methylmercury dynamics and accumulation within food webs; 2) modeling of permafrost region Hg cycling (30) which incorporates potential effects from regional human activities on Hg mass budgets; and 3) tracing sources of fluvial Hg, to
discriminate between permafrost and nonpermafrost Hg sources and to elucidate Hg cycling (55).

Materials and Methods

Sampling and Analysis. River water samples for TSS and PHg concentration were collected approximately monthly and sampling duration varied across all rivers from 5 to 36 y (SI Appendix, Fig. S3 and Table S2). River water was collected at midchannel and at the left and right banks from near the surface (0–0.5-m depth) and from midchannel only in November, December, February, March, and April during frozen conditions. Samples were collected using a metal-free sampler, stored in precleaned 2–5-L borosilicate glass bottles (Teflon-coated bottles in the year 1980) following clean sampling techniques, sealed, and kept chilled until analysis. Laboratory methods for processing of TSS and PHg samples followed clean techniques from previous studies (15, 16, 56–59) and was consistent throughout the duration of this study. Within 2 h of collection, up to 2 L of water was filtered using acid-cleaned polycarbonate Nuclepore filters (0.45 μm). Filters were dried at 105 °C and weighed to obtain TSS (detection limit = 3 mg L–1) (60). For PHg, additional sediment was filtered, digested, reduced, and quantified using cold vapor atomic absorption spectrometry (PerkinElmer Coleman Mas-50 Mercury Analyzer or Spectrophotometer VARIAN AA-475) (61). Certified reference materials for total Hg were obtained from the National Research Council of Canada, the National Institute of Standards and Technology, and the International Atomic Energy Agency, Monaco (certified reference material range: 0.061 to 4.64 μg g–1). PHg (nanograms per liter) used in flux estimates was calculated as the product of PHg (micrograms per gram) and TSS (milligrams per liter). Additional details on quality assurance and control, along with watershed characteristics related to reservoirs and industrial pollution, are available in SI Appendix, Supplementary Text.

River Discharge and Watershed Climate. Observations of daily discharge were obtained from ref. 62. We calculated annual peak discharge magnitude (33) as the sum of daily discharge in the 95th percentile for each year, to assess annual trends in fluvial energy, implications for erosion and sediment transport, and potential effects from anthropogenic activity (e.g., river flow regulation) in the context of changing northern hydrology (9). We tested temporal trends in annual discharge, peak discharge magnitude, watershed mean annual air temperature, and watershed total annual precipitation using the nonparametric Mann–Kendall and trend prewhitening to account for serial correlation (63) using the zyp package (64) in R software v.3.6.2 (65). The model calculates the transport, chemistry, and deposition of atmospheric Hg species and has been extensively evaluated against all available observations (29). Atmospheric transport is driven by assimilated meteorological data from the NASA Global Modeling and Assimilation Office’s MERRA-2 reanalysis product (66). All simulations were conducted at the 2° × 2.5° horizontal resolution, with 47 vertical levels. The model is forced by primary anthropogenic emissions for the period 1960 to 2015 based on published inventories (25, 43, 44). These inventories account for the role of emission control technologies in changing the speciation of power plant emissions, allowing us to better estimate effects on regional deposition which is, to a large degree, determined by Hg(II) emissions. Emissions from terrestrial ecosystems, ocean evasion, and geogenic emissions were held constant at the modern value of 5,260 Mg y–1 in the GEOS-Chem benchmark budget. We used magnitudes of atmospheric Hg deposition together with inventories on industrial Hg release to assess potential contributions from pollution sources to riverine Hg export. Additional details on reconstructing historical deposition trends are available in SI Appendix, Supplementary Text.

Multivariate Time Series Analysis. To assess potential drivers underlying trends in PHg concentration in each river, we developed DRMs using the fable package (69) in R. We accounted for time series autocorrelation in each model by including an autoregressive integrated moving average (ARIMA) error structure, which contains the components (p,q,d). Components were determined using a Durbin-Watson test (for p, the autoregressive order) and a Kwiatkowski–Phillips–Schmidt–Shin test (for d, the degree of first-order differencing to achieve stationarity), q, the moving average component, is often used for modeling data with intra-annual (e.g., seasonal) trends (70) and was thus set to 0 for our time series of annual data. ARIMA error structures were either (1,1,0) or (1,2,0). We included predictor covariates for changes in atmospheric Hg deposition, suspended sediments, reservoirs, and climate. Potential delayed effects on PHg concentration from changes in Hg deposition (27) and reservoir establishment (19) were modeled by including lagged values of atmospheric Hg deposition (lags of 5, 10, and 15 y) and cumulative reservoir capacity (20 and 25 y). Lag spans were limited by data availability and reservoir effects were assessed only for the Ob’ and Yenisey, because datasets were not available to evaluate long-term (>10 y) trends in PHg for the Lena and Kolyma. Mean annual air temperature and total annual precipitation were derived from ERA5 monthly reanalysis data (0.25° × 0.25°) (28) available from 1979 to 2015 using Google Earth Engine (71). Reservoir locations, volumes, and dates of establishment were obtained from the Global Reservoir and Dam Database (18) and the literature (SI Appendix, Table S3). The preliminary suite of DRMs included all possible combinations of predictors, with one term each for deposition and reservoirs to differentiate between contemporary and lagged effects. The model with the lowest Bayesian information criterion was selected as the most parsimonious. A Ljung-Box test and plots of model residual autocorrelation and distribution were used to confirm that residuals were indistinguishable from white noise (i.e., uncorrelated, homoscedastic, and mean of zero), and models violating these conditions were not considered.

Additional Statistics. Mean annual yields of PHg and TSS among rivers were compared using a Welch’s heteroscedastic F test from the R package onewaytests (72). Bartlett’s test was used to first confirm that variances were not homogeneous.

Data Availability. Data are deposited online and publicly accessible via the Arctic Data Center (https://arcticdata.io/catalog/view?doi%3A10.18739%2FA2
ACKNOWLEDGMENTS. We are grateful to all colleagues who have been involved in this work over the years, and especially to the late professors Yu. N. Kurazhskovsky, V. V. Kovalsky, D. A. Knorlitschek, M. S. Chilyarov, A. D. Pokazhevskij, A. P. Listybin, A. M. Nikanorov, I. A. Shiklomanov, Yu. A. Izrael, and V. A. Kintsch, as well as Drs. N. I. Bazilevich and G. S. Kononov and Mr. V. V. Khlobystov. We thank Dr. Robert Hirsch for sharing insights on WRTDS and EGRET and Greg Fiske for assistance with Google Earth Engine. This work was completed in part under the Agreement between the Government of Canada and the Government of the Russian Federation Concerning Environmental Cooperation and the Russian Federation Environmental Management Project (North-Caucasus water management and protection sub-component under the World Bank loan to the Government of the Russian Federation). We acknowledge support from the NSF for the Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments (PARTNERS) Project (2003-2006, Grant 0229302), Student-PARTNERS Project (2006-2007, Grant 0519940), Arctic Great Rivers Observatory (2009-2018/2019, Grants 0732522, 1107774, 1602615, 1602680, 1603149, 1602679, and 1913888). The work was also supported by Russian Science Foundation Grant 19-17-00234: Biogeochemical accumulation and migration of organic compounds, heavy metals and radionuclides in the components of ecosystems of the Arctic seas, and by the state assignment research of Southern Scientific Center of the Russian Academy of Sciences Project No. 01201363188. The work was also partly supported by the Russian Science Foundation within the framework of Projects 18-05-06165 “Trends in long-term changes in the chemical composition of water and environmental risk in the river ecosystems of the Russian Arctic under the influence of climate change and economic activity within watersheds (Arctic)” and 18-45-140065 “Assessment of groundwater contribution to the Lena River streamflow using tritium and hydrological modelling.” Financial support for this work was also provided by the Association of Canadian Community Colleges; the Partnerships for Tomorrow Programme, the Kajima Foundation, Japan; and the South Russia Centre for Preparation and Implementation of International Projects (CPIPS Ltd.), Rostov-on-Don, Russia. The atmospheric deposition modeling for this paper was performed on the Harvard University Faculty of Arts and Sciences (FAS) Research Computing Canyon cluster supported by the FAS Division of Science Research Computing Group. This publication contains modified Copernicus Climate Change Service information (2021) and neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information or data it contains. We thank the anonymous reviewers for their helpful feedback, which greatly improved the manuscript.

Author affiliations: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; *Woodwell Climate Research Center, Falmouth, MA 02540; South Russia Centre for Preparation and Implementation of International Projects, Rostov-on-Don 344090, Russia; *Shinshiro Institute of Oceanography, Russian Academy of Sciences, Moscow 117979, Russia; *Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344000, Russia; *Meinikov Permafrost Institute, Siberian Branch of Russian Academy of Sciences, Yakutsk 677010, Russia; #Hydrochemical Institute of the Federal Service for Hydrometeorology and Environmental Monitoring, Ministry of Natural Resources and Environment of the Russian Federation, Rostov-on-Don 344040, Russia; $Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824; ‘Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115; **Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373; #Department of Earth, and Atmospheric Science, Florida State University, Tallahassee, FL 32306; ‘Upper Midwest Water Science Center, Mercury Research Laboratory, United States Geological Survey, Middleton, WI 53562; and “World Water and Climate Foundation, Courtenay, BC V9N 0E2, Canada.

1. R. Dietz et al., “What are the toxicological effects of mercury in Arctic biota?” Sci. Total Environ. 443, 775-790 (2013).
2. M. Liu et al., “Rivers as the largest source of mercury to coastal oceans worldwide.” Nat. Geosci. 14, 672-677 (2021).
3. J. E. Sonke et al., “Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean.” Proc. Natl. Acad. Sci. U.S.A. 115, E11586-E11594 (2018).
4. S. Zolko et al., “Mercury export from Arctic great rivers.” Environ. Sci. Technol. 54, 4140-4148 (2020).
5. AMP, AMP Assessment 2011: Mercury in the Arctic (Arctic Monitoring and Assessment Programme, 2011).
6. J. A. Fisher et al., “Riverine source of Arctic Ocean mercury inferred from atmospheric observations.” Nat. Geosci. 5, 494-497 (2012).
7. P. F. Schuster et al., “Mercury export from the Yukon River Basin and potential response to a changing climate.” Environ. Sci. Technol. 45, 9262-9267 (2011).
8. Y. Zhang et al., “Biogeochemical drivers of the rate of riverine mercury discharged to the global and Arctic oceans.” Geoderma Biogeochem. Cycles 29, 854-864 (2015).
9. M. A. Rawlings et al., “Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations.” J. Clim. 23, 5715-5737 (2010).
10. T. W. Drake et al., “Increasing alkalinity export from large Arctic rivers.” Environ. Sci. Technol. 52, 8302-8308 (2018).
11. S. E. Tank, R. G. Stiegl, J. W. McClelland, S. V. Koleky, Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean.” Environ. Res. Lett. 11, 054015 (2016).
12. R. C. Tooley, N. M. Herman-Mercer, P. F. Schuster, E. A. Mutter, J. C. Koch, Multi-decadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost. Geophys. Res. Lett. 43, 12,120-12,130 (2016).
13. A. G. Lim et al., “Enhanced particulate Hg export at the permafrost boundary, western Siberia.” Environ. Pollut. 254 (PB), 113083 (2019).
14. K. A. Pierre et al., “Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations.” J. Clim. 23, 5715-5737 (2010).
15. T. Castelli et al., “Low and declining mercury in Russian arctic rivers.” Environ. Sci. Technol. 48, 747-752 (2014).
16. A. R. Pelletier et al., “Temporal and longitudinal mercury trends in Burbot (Lota lota) in the Russian Arctic.” Environ. Sci. Technol. 51, 13436-13442 (2017).
17. D. Kocman et al., “Toward an assessment of the global inventory of present-day mercury releases to freshwater environments.” Int. J. Environ. Res. Public Health 14, 138 (2017).
18. B. Lehner et al., “High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management.” Front. Ecol. Environ. 9, 494-502 (2011).
19. J. P. M. Systīkä, J. C. Vörsnäs, J. A. Kettner, P. Green, Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376-380 (2005).
20. C. B. Gunderson et al., “Mercury Risk Evaluation, Risk Management and Risk Reduction Measures in the Arctic (ARCIRIS)” (Norwegian Institute for Water Research, 2020).
21. A. Romanov, L. Sloss, W. Joerencs, Mercury emissions from the coal-fired electric generation sector of the Russian Federation. Energy Fuel. 26, 4647-4654 (2012).
