The 1st International Scientific Conference on Pure Science
IOP Conf. Series: Journal of Physics: Conf. Series 1234 (2019) 012098
doi:10.1088/1742-6596/1234/1/012098

Injective Modules

Akeel Ramadan Mehdi1
Dhuha Taima Abd Al-Kadhim2
1Mathematical Department / College of Education / University of Al-Qadisiyah / Al-Diwaniya City/ Iraq.
2Mathematical Department / College of Computer Science and Information Technology/University of Al-Qadisiyah /Al-Diwaniya City/ Iraq.

Abstract. In this article, we introduce the concept of (ρ, m)-N-injectivity (where ρ is a preradical, m is a positive integer and N is an R-module) as a generalization of both ρ-injectivity and ρ-N-injectivity. This concept unifies several definitions on generalizations of N-injectivity, such as nearly P-N-injective modules and special P-N-injective modules. Many characterizations and properties of (ρ, m)-N-injectivity are given. The results of this work unify and extend many results in the literature.

1. Introduction

Throughout this work, R stands a commutative ring with identity element 1 and a module means a unitary left R-modules. The class of all R-module will be denoted by R-Mod and the symbol ρ means a preradical on R-Mod (A preradical ρ is defined to be a subfunctor of the identity functor of R-Mod). For an R-module M, the notations $L(M), J(M), E(M)$ and $S = \text{End}_R(M)$ will respectively stand for the prime radical of M, the Jacobson radical of M, the injective envelope of M and the endomorphism ring of M. The notation $\text{Hom}_R(N, M)$ denoted to the set of all R-homomorphism from R-module N into R-module M. An R-module M is said to be ρ-N-injective, if for any R-monomorphism $\alpha: A \rightarrow N$ and any R-homomorphism $\beta: A \rightarrow M$, there exists an R-homomorphism $\gamma: N \rightarrow M$ with $\beta(a) = (\gamma \circ \alpha)(a) \in \rho(M)$, for all $a \in A$. An R-module M is said to be ρ-injective, if M is ρ-N-injective, for all R-modules N [9]. A module M is said to be nearly P-N-injective if for any R-homomorphism $\alpha: A \rightarrow M$ (where A is any cyclic submodule of N), there is an R-homomorphism $\beta: N \rightarrow M$ such that $\beta(a) - \alpha(a) \in J(M)$, for each $a \in A$. An R-module N is called nearly PQ-injective, if N is nearly P-N-injective [8]. An R-module M is said to be pointwise nearly-injective, if M is nearly P-N-injective, for every R-module N [2]. Also, in [1] M. S. Abbas and Sh. N. Abd-Alridha introduced the concept of special P-N-injective modules. A module M is said to be

The results of this paper were part of a MSc thesis of the second author, under the supervision of the first author at the College of Computer Science and Information Technology/ University of Al-Qadisiyah.
special \(P\)-\(N\)-injective if for any \(R\)-homomorphism \(f : A \to M\), where \(A\) is a cyclic submodule of \(N\), there is an \(R\)-homomorphism \(g : N \to M\) such that \(g(a) f(a) \in L(M)\), for each \(a \in A\). An \(R\)-module \(N\) called special \(PQ\)-injective, if \(N\) is special \(P\)-\(N\)-injective \([1]\). For a submodule \(N\) of an \(R\)-module \(M\) and \(a \in M\), \([N ; a] = \{r \in R \mid ra \in N\}\). For an \(R\)-module \(M\) and \(a \in M\). A submodule \(N\) of an \(R\)-module \(M\) is called essential and denoted by \(N \leq e\) \(M\) if every non zero submodule of \(M\) has nonzero intersection with \(N\).

2. \((\rho, m)\)-\(N\)-Injective Modules

Definition 2.1. Let \(\rho\) be any preradical, let \(m \in \mathbb{Z}^+\) and let \(M, N\) be two \(R\)-modules. An \(R\)-module \(M\) is said to be \((\rho, m)\)-\(N\)-injective, if for any \(m\)-generated submodule \(A\) of \(N\) and any \(R\)-homomorphism \(f : A \to M\), there exists an \(R\)-homomorphism \(g : N \to M\) with \(g(a) f(a) \in \rho(M)\), for any \(a \in A\). If \(M\) is \((\rho, m)\)-\(N\)-injective, for all \(R\)-module \(N\), then \(M\) is called \((\rho, m)\)-injective. If \(M\) is \((\rho, m)\)-\(M\)-injective, then \(M\) is called \((\rho, m)\)-quasi-injective.

Examples and Remarks 2.2.

(1) Nearly \(PQ\)-injectivity is a special case of \((\rho, m)\)-quasi-injectivity, if we take \(\rho = J\) and \(m = 1\).
(2) Special \(PQ\)-injectivity is a special case of \((\rho, m)\)-quasi-injectivity, if we take \(\rho = L\) and \(m = 1\).
(3) Every \(\rho\)-quasi-injective (and hence \(\rho\)-injective) \(R\)-modules are \((\rho, m)\)-quasi-injective, for any preradical \(\rho\) and \(m \in \mathbb{Z}^+\).
(4) The concept of \((\rho, m)\)-quasi-injective modules is a proper generalization of \(\rho\)-quasi-injectivity, for some preradical \(\rho\). For example, let \(R\) be the ring of all continuous functions from the set of rational numbers \(\mathbb{Q}\) to \(\mathbb{Z}_2\). By \([8, \text{p.2}]\) we have that \(R\) is nearly \(PQ\)-injective \(R\)-module, but it is not nearly quasi-injective \(R\)-module and hence \(R\) is a \((\rho, m)\)-quasi-injective \(R\)-module, but it is not \(\rho\)-quasi-injective \(R\)-module, where \(\rho = J\) and \(m = 1\).
(5) \((\rho, m)\)-\(N\)-injectivity is an algebraic property.

Let \(M\) be an \(R\)-module and let \(m \in \mathbb{Z}^+\). Let \(\bar{x} = (x_1, x_2, \ldots, x_m) \in M^m\). The annihilator of \(\bar{x}\) in \(R^m\) is denoted by \(\text{ann}_{R^m}(\bar{x})\) and defined as follows: \(\text{ann}_{R^m}(\bar{x}) = \{r = (r_1, r_2, \ldots, r_m) \in R^m \mid \sum_{i=1}^m r_i x_i = 0\}\).

The following theorem gives many characterizations of \((\rho, m)\)-\(N\)-injective modules.

Theorem 2.3. Let \(M\) and \(N\) be two \(R\)-modules, \(m \in \mathbb{Z}^+\) and \(S = \text{End}_R(M)\). Then the following statements are equivalent:
(1) \(M\) is \((\rho, m)\)-\(N\)-injective;
(2) If \(\bar{x} = (x_1, x_2, \ldots, x_m) \in M^m\) and \(\bar{y} = (y_1, y_2, \ldots, y_m) \in N^m\) such that \(\text{ann}_{R^m}(\bar{y}) \subseteq \text{ann}_{R^m}(\bar{x})\), then there is an \(R\)-homomorphism \(g : N \to M\) with \(g(y_i) - x_i \in \rho(M)\), for all \(i = 1, 2, \ldots, m\).
(3) For each \(\bar{x} = (x_1, x_2, \ldots, x_m) \in M^m\), \(\bar{y} = (y_1, y_2, \ldots, y_m) \in N^m\) such that \(\text{ann}_{R^m}(\bar{y}) \subseteq \text{ann}_{R^m}(\bar{x})\) and for each \(h \in S\), there exists an \(R\)-homomorphism \(\alpha \in \text{Hom}_R(N, M)\) such that \(\alpha(y_i) - \alpha(x_i) \in \rho(M)\), for all \(i = 1, 2, \ldots, m\).
For each \(R\)-homomorphism \(f: A \to M \) where \(A \) is any submodule of \(N \) and for each set \(\{a_1, a_2, ..., a_m\} \subseteq A \), there exists an \(R\)-homomorphism \(g: N \to M \) such that \(g(a_i) - f(a_i) \in \rho(M) \), for all \(i = 1,2, ..., m \).

Proof. (1) \(\Rightarrow \) (2). Let \(\vec{x} = (x_1, x_2, ..., x_m) \in M^m \) and \(\vec{y} = (y_1, y_2, ..., y_m) \in N^m \) such that \(\text{ann}_R^m(\vec{y}) \subseteq \text{ann}_R^m(\vec{x}) \). Define \(f: (y_1, y_2, ..., y_m) \to M \) by \(f(\sum_{i=1}^m r_i y_i) = \sum_{i=1}^m r_i x_i \), for all \(r_i \in R \) and \(i = 1,2, ..., m \). Clearly, \(f \) is a well-defined \(R\)-homomorphism. By \((\rho, m)\)-injectivity of \(M \), there exists an \(R\)-homomorphism \(g: N \to M \) such that \(g(z) - f(z) \in \rho(M) \), for all \(z \in (y_1, y_2, ..., y_m) \). Thus \(g(y_i) - f(y_i) \in \rho(M) \) and hence \(g(y_i) - x_i \in \rho(M) \), for all \(i = 1,2, ..., m \).

(2) \(\Rightarrow \) (3). Let \(\vec{x} = (x_1, x_2, ..., x_m) \in M^m \) and \(\vec{y} = (y_1, y_2, ..., y_m) \in N^m \) such that \(\text{ann}_R^m(\vec{y}) \subseteq \text{ann}_R^m(\vec{x}) \). By hypothesis, \(g(y_i) - x_i \in \rho(M) \), for all \(i = 1,2, ..., m \), for some an \(R\)-homomorphism \(g: N \to M \). Put \((y_i) - x_i = t_i \), where \(t_i \in \rho(M) \), for all \(i = 1,2, ..., m \). Let \(h \in S \); thus \(h(x_i) = h(g(y_i)) - t_i = (h \circ g)(y_i) - t_i \). Put \(\alpha = h \circ g \). Since \(\alpha \in \text{Hom}_R(N, M) \) and \(h(t_i) \in \rho(M) \) it follows that there is an \(R\)-homomorphism \(\alpha \in \text{Hom}_R(N, M) \) such that for all \(i = 1,2, ..., m \), we have \(h(x_i) = \alpha(\gamma_i) \in \rho(M) \).

(3) \(\Rightarrow \) (4). Let \(f: A \to M \) be a \(R\)-homomorphism, where \(A \) is any submodule of \(N \), and let \(\{a_1, a_2, ..., a_m\} \subseteq A \). Let \(\vec{y} = (a_1, a_2, ..., a_m) \in N^m \). Put \(x_i = f(a_i) \), for all \(i = 1,2, ..., m \). Now we will prove that \(\text{ann}_R^m(\vec{y}) \subseteq \text{ann}_R^m(\vec{x}) \), where \(\vec{x} = (x_1, x_2, ..., x_m) \in M^m \). Let \(\vec{r} = (r_1, r_2, ..., r_m) \in \text{ann}_R^m(\vec{y}) \), thus \(\sum_{i=1}^m r_i a_i = 0 \). Since \(f(\sum_{i=1}^m r_i a_i) = f(0) = 0 \) and \(f(\sum_{i=1}^m r_i a_i) = \sum_{i=1}^m r_i f(a_i) = \sum_{i=1}^m r_i x_i \), \(\sum_{i=1}^m r_i x_i = 0 \) and hence \(\vec{r} \in \text{ann}_R^m(\vec{x}) \). Thus \(\text{ann}_R^m(\vec{y}) \subseteq \text{ann}_R^m(\vec{x}) \). Let \(I_M: M \to M \) be the identity an homomorphism. Since \(I_M \in S \) it follows from (3) that there exists an \(R\)-homomorphism \(g \in \text{Hom}_R(N, M) \) such that \(I_M(x_i) - g(a_i) \in \rho(M) \), for all \(i = 1,2, ..., m \). Thus \(g(a_i) - x_i \in \rho(M) \) and hence for all \(i = 1,2, ..., m \), we have \(g(a_i) - f(a_i) \in \rho(M) \).

(4) \(\Rightarrow \) (1). Let \(f: A \to M \) be a left \(R\)-homomorphism, where \(A \) is a \(m\)-generated submodule of \(N \). Let \(A = (a_1, a_2, ..., a_m) \). Since \(\{a_1, a_2, ..., a_m\} \subseteq A \), there is an \(R\)-homomorphism \(g: N \to M \) with \(g(a_i) - f(a_i) \in \rho(M) \), for all \(i = 1,2, ..., m \). For each \(x = \sum_{i=1}^m r_i a_i \in A \), where \(r_i \in R \), then \(g(x) - f(x) = r_i (\sum_{i=1}^m g(a_i) - \sum_{i=1}^m f(a_i)) \in \rho(M) \), for all \(i = 1,2, ..., m \). Therefore, \(M \) is a \((\rho, m)\)-injective \(R\)-module.

Corollary 2.4. [8, Theorem 1.3, p.3] Let \(M \) and \(N \) be two \(R\)-modules and \(S = \text{End}_R(M) \), then the following conditions are equivalent:

(1) \(M \) is a nearly \(p\)-\(N\)-injective \(R\)-module.

(2) If \(a \in M \) and \(b \in N \) with \(\text{ann}_R(b) \subseteq \text{ann}_R(a) \), then there exists an \(R\)-homomorphism \(g: N \to M \) such that \(g(b) - a \in J(M) \).

(3) If \(a \in M \) and \(b \in N \) with \(\text{ann}_R(b) \subseteq \text{ann}_R(a) \), then for any \(h \in S \), there is an \(R\)-homomorphism \(\alpha \in \text{Hom}_R(N, M) \) with \(h(b) - \alpha(a) \in J(M) \).

(4) For each \(R\)-homomorphism \(f: A \to M \) (where \(A \) is any submodule of \(N \)) and each \(a \in A \), there exists an \(R\)-homomorphism \(g: N \to M \) such that \(g(a) - f(a) \in J(M) \).

Proof. By taking \(m = 1 \) and \(\rho = J \) (the Jacobson radical functor) and applying Theorem 2.3.

Corollary 2.5. [1, Theorem 10, p.99] Let \(M \) and \(N \) be two \(R\)-modules and \(S = \text{End}_R(M) \). Then the following statements are equivalent:

(1) \(M \) is a special \(P\)-\(N\)-injective \(R\)-module.

(2) If \(a \in M \) and \(b \in N \) with \(\text{ann}_R(b) \subseteq \text{ann}_R(a) \), then there exists an \(R\)-homomorphism \(g: N \to M \) such that \(g(b) - a \in J(M) \).

(3) If \(a \in M \) and \(b \in N \) with \(\text{ann}_R(b) \subseteq \text{ann}_R(a) \), then for any \(h \in S \), there is an \(R\)-homomorphism \(\alpha \in \text{Hom}_R(N, M) \) with \(h(b) - \alpha(a) \in J(M) \).

(4) For each \(R\)-homomorphism \(f: A \to M \) (where \(A \) is any submodule of \(N \)) and each \(a \in A \), there exists an \(R\)-homomorphism \(g: N \to M \) such that \(g(a) - f(a) \in J(M) \).
(2) If \(a \in M \) and \(b \in N \) with \(\text{ann}_R(b) \subseteq \text{ann}_R(a) \), then there exists an \(R \)-homomorphism \(g: N \to M \) such that \(g(b) = a \in L(M) \).

(3) For each \(a \in M, b \in N \) with \(\text{ann}_R(b) \subseteq \text{ann}_R(a) \) and for each \(h \in S \), there exists an \(R \)-homomorphism \(\alpha \in \text{Hom}_R(N, M) \) such that \(h(b) = \alpha(a) \in L(M) \).

(4) For each \(R \)-homomorphism \(f: A \to M \) (where \(A \) is any submodule of \(N \)) and each \(a \in A \), there exists an \(R \)-homomorphism \(g: N \to M \) such that \(g(a) = f(a) \in L(M) \).

Proof. By taking \(m = 1 \) and \(\rho = L \) (the prime radical functor) and applying Theorem 2.3.

The following corollary gives many characterizations of \((\rho, m)\)-quasi-injective modules, and its proof immediately from Theorem 2.3.

Corollary 2.6. The following statements are equivalent for an \(R \)-module \(M \), where \(m \in \mathbb{Z}^+ \) and \(S = \text{End}_R(M) \).

(1) \(M \) is \((\rho, m)\)-quasi-injective.

(2) If \(\bar{x} = (x_1, x_2, \ldots, x_m), \bar{y} = (y_1, y_2, \ldots, y_m) \in M^m \) such that \(\text{ann}_R(m)(\bar{y}) \subseteq \text{ann}_R(m)(\bar{x}) \), then there is an \(R \)-homomorphism \(g: M \to M \) such that \(g(y_i) = x_i \in \rho(M) \), for all \(i = 1, 2, \ldots, m \).

(3) If \(\bar{x} = (x_1, x_2, \ldots, x_m), \bar{y} = (y_1, y_2, \ldots, y_m) \in M^m \) such that \(\text{ann}_R(m)(\bar{y}) \subseteq \text{ann}_R(m)(\bar{x}) \) and for each \(h \in S \), then there is an \(R \)-homomorphism \(\alpha \in S \) with \(h(x_i) = \alpha(y_i) \in \rho(M) \), for all \(i = 1, 2, \ldots, m \).

(4) For each \(R \)-homomorphism \(f: A \to M \), where \(A \) is any submodule of \(M \) and for each set \(\{a_1, a_2, \ldots, a_m\} \subseteq A \), there is an \(R \)-homomorphism \(g: M \to M \) with \(g(a_i) = f(a_i) \in \rho(M) \), for all \(i = 1, 2, \ldots, m \).

(5) For each \(m \)-generated ideal \(I \) of \(R \) and each \(\text{ann}_R(R) \)-homomorphism \(f: I \to M \), there exists \(\alpha \in M \) such that \(f(r) = -ra \in \rho(M) \), for all \(r \in I \).

Proof. Clearly from Theorem 2.3, we can prove the equivalence of (1), (2), (3), and (4).

(1) \(\Rightarrow \) (5). Let \(I \) be a \(m \)-generated ideal of \(R \) and \(f: I \to M \) be any \(R \)-homomorphism. \((\rho, m)\)-injectivity of \(M \) implies existence of an \(R \)-homomorphism \(g: R \to M \) such that \(f(\bar{r}) - g(\bar{r}) \in \rho(M) \), for all \(r \in I \) and hence \(f(r) - rg(1) \in \rho(M) \). Put \(a = g(1) \), thus there exists \(\alpha \in M \) with \(f(r) = -ra \in \rho(M) \), for all \(r \in I \).

(5) \(\Rightarrow \) (1). Let \(f: I \to M \) be any \(R \)-homomorphism, where \(I \) is any \(m \)-generated ideal of \(R \). By (2), there is \(\alpha \in M \) such that \(f(r) - ra \in \rho(M) \), for all \(r \in I \). Define \(g: R \to M \) by \(g(x) = xa \), for all \(x \in R \). It
is clear that g is an R-homomorphism. For all $r \in I$, we have that $f(r) - g(r) = f(r) - ra \in \rho(M)$. Thus M is a (ρ, m)-R-injective R-module.

In the following proposition, we give a new characterization of (ρ, m)-R-injective modules.

Proposition 2.8. Let M be an R-module, $m \in \mathbb{Z}^+$ and $S = \text{End}_R(M)$. Then M is (ρ, m)-R-injective if and only if $\text{ann}_M^m(\text{ann}_R^m(\bar{y})) \subseteq \bar{y}M + (\rho(M))^m$, for any $\bar{y} \in R^m$.

Proof. (\Rightarrow) Let $\bar{y} = (y_1, y_2, ..., y_m) \in R^m$ and let $\bar{x} = (x_1, x_2, ..., x_m) \in \text{ann}_M^m(\text{ann}_R^m(\bar{y}))$, thus $\sum_{i=1}^m r_i x_i = 0$, for all $\bar{r} = (r_1, r_2, ..., r_m) \in \text{ann}_R^m(\bar{y})$. Let $\bar{k} = (k_1, k_2, ..., k_m) \in \text{ann}_R^m(\bar{y})$, thus $\sum_{i=1}^m k_i x_i = 0$ and hence $\bar{k} \in \text{ann}_R^m(\bar{x})$ and this implies that $\text{ann}_R^m(\bar{y}) \subseteq \text{ann}_R^m(\bar{x})$. Since M is (ρ, m)-R-injective R-module it follows from Proposition 2.7 that there exists an R-homomorphism $g: R \to M$ such that $g(y_i) - x_i \in \rho(M)$, for all $i = 1, ..., m$ and hence $y_ig(1) - x_i \in \rho(M)$. For all $i = 1, ..., m$. Put $y_i g(1) - x_i = t_i$, where $t_i \in \rho(M)$, thus $x_i = y_i g(1) - t_i$. Since $g(1) \in \rho(M)$, it follows that $\bar{x} = \bar{y} g(1) - \bar{t} \in \bar{y} M + (\rho(M))^m$, where $\bar{t} = (t_1, t_2, ..., t_m)$. Therefore, $\text{ann}_M^m(\text{ann}_R^m(\bar{y})) \subseteq \bar{y} M + (\rho(M))^m$, for any $\bar{y} \in R^m$.

(\Leftarrow) Suppose that $\text{ann}_M^m(\text{ann}_R^m(\bar{y})) \subseteq \bar{y} M + (\rho(M))^m$, for all $\bar{y} \in R^m$. Let I be any m-generated ideal of R, say $I = (x_1, x_2, ..., x_m)$ and let $f: I \to M$ by any R-homomorphism. Put $\bar{x} = (x_1, x_2, ..., x_m)$, thus $\bar{x} \in R^m$. Let $\bar{r} \in \text{ann}_R^m(\bar{x})$, thus $\sum_{i=1}^m r_i x_i = 0$. Since $\sum_{i=1}^m r_i f(x_i) = f(\sum_{i=1}^m r_i x_i) = f(0) = 0$ implies $(f(x_1), f(x_2), ..., f(x_m)) \in \text{ann}_M^m(\text{ann}_R^m(\bar{x}))$. By hypothesis, $\text{ann}_M^m(\text{ann}_R^m(\bar{x})) \subseteq \bar{x} M + (\rho(M))^m$ and hence $(f(x_1), f(x_2), ..., f(x_m)) \in \bar{x} M + (\rho(M))^m$. Thus $(f(x_1), f(x_2), ..., f(x_m)) = \bar{x} a + \bar{t}$, for some $a \in M$ and $\bar{t} \in (\rho(M))^m$ and hence $f(x_i) - x_i a \in \rho(M)$, for all $i = 1, ..., m$. Let $b \in I$, thus $b = \sum_{i=1}^m s_i x_i$, for some $s_i \in R$ ($i = 1, ..., m$). Thus $f(b) = f(\sum_{i=1}^m s_i x_i) = \sum_{i=1}^m s_i f(x_i) a = \sum_{i=1}^m s_i (f(x_i) - x_i a)$. Since $f(x_i) - x_i a \in \rho(M)$, for all $i = 1, ..., m$, $\sum_{i=1}^m s_i (f(x_i) - x_i a) \in \rho(M)$ and hence there is $a \in M$ with $f(r) - ra \in \rho(M)$, for all $r \in I$. By Proposition 2.7, M is a (ρ, m)-R-injective R-module.

Corollary 2.9. [7, Proposition 2.2.7, p.65] An R-module M is nearly P-injective if and only if $\text{ann}_M^m(\text{ann}_R^m(x)) \subseteq x M + J(M)$, for all $x \in R$.

Proof. By taking $m = 1$, $\rho = J$ and applying Theorem 2.8.

Corollary 2.10. An R-module M is special P-R-injective if and only if $\text{ann}_M(\text{ann}_R(x)) \subseteq x M + L(M)$, for all $x \in R$.

Proof. By taking $m = 1$, $\rho = L$ and applying Theorem 2.8.

Proposition 2.11. Let $m \in \mathbb{Z}^+$. For an R-module M, the following statements are equivalent.

1. M is (ρ, m)-injective.
2. M is (ρ, m)-E(M)-injective.
3. For each R-monomorphism $\alpha: M \to E(M)$ and for each $A = \{a_1, a_2, ..., a_m\} \subseteq M$, there exists an R-homomorphism $\beta: E(M) \to M$ such that $(\beta \alpha)(a_i) - a_i \in \rho(M)$, for all $i = 1, 2, ..., m$.

Proof. (1) \Rightarrow (2). This is clear.
Let \(\alpha: M \to E(M) \) be any \(R \)-monomorphism and let \(A = \{a_1, a_2, \ldots, a_m\} \subseteq M \). Define \(\beta: \alpha(M) \to M \) by \(\beta(\alpha(x)) = x \), for all \(x \in M \), thus \(\beta \) is a well-defined \(R \)-homomorphism. Let \(L = \langle \alpha(a_1), \alpha(a_2), \ldots, \alpha(a_m) \rangle \).

Clearly, \(L \) is an \(m \)-generated submodule of \(E(M) \). Define \(\lambda: L \to M \) by \(\lambda(a) = \beta(\alpha(a)) \), for all \(a \in L \).

Proposition 2.14. Let \(M \) and \(N \) be two \(R \)-modules. If \(M \) is \((\rho, m) \)-\(N \)-injective, then \(M \) is \((\rho, m) \)-\(A \)-injective for each submodule \(A \) of \(N \).

Proof. Let \(A \) be any submodule of \(N \), \(B \) be any \(m \)-generated submodule of \(A \) and \(f: B \to M \) be any \(R \)-homomorphism. Let \(i_B \) be the inclusion \(R \)-homomorphism from \(B \) into \(A \) and \(i_A \) be the inclusion \(R \)-homomorphism from \(A \) into \(N \). Since \(B \) is \(m \)-generated \(R \)-submodule of \(N \) and \(M \) is \((\rho, m) \)-\(N \)-injective, there is an \(R \)-homomorphism \(g: N \to M \) such that \((g \circ i_A) (i_B(b)) = f(b) \in \rho(M) \), for all \(b \in B \).

Directly from Proposition 2.14, we have:

Corollary 2.15. Let \(N \) be any submodule of an \(R \)-module \(M \). If \(N \) is \((\rho, m) \)-\(M \)-injective, then \(N \) is \((\rho, m) \)-quasi-injective.
Proposition 2.16. Any direct summand of \((\rho, m)\)-\(N\)-injective \(R\)-module is \((\rho, m)\)-\(N\)-injective.

Proof. Let \(M\) be any \((\rho, m)\)-\(N\)-injective \(R\)-module and \(A\) be any direct summand submodule of \(M\). Thus there exists submodule \(A_1\) of \(M\) such that \(M = A \oplus A_1\). Let \(B\) be any \(m\)-generated submodule of \(N\) and \(f: B \rightarrow A\) be any \(R\)-homomorphism. Define \(g: B \rightarrow M = A \oplus A_1\) by \(g(b) = (f(b), 0)\), for all \(b \in B\). It is clear that \(g\) is an \(R\)-homomorphism and since \(M\) is a \((\rho, m)\)-\(N\)-injective \(R\)-module, there exists an \(R\)-homomorphism \(h: N \rightarrow M\) such that \(h(b) - g(b) \in \rho(M)\) for all \(b \in B\). Let \(\pi_A\) be the natural projection \(R\)-homomorphism of \(M = A \oplus A_1\) into \(A\). Put \(h_1 = \pi_A \circ h: N \rightarrow A\). Thus \(h_1\) is an \(R\)-homomorphism and for any \(b \in B\) we get that \(h_1(b) - f(b) = (\pi_A \circ h)(b) - \pi_A ((f(b), 0)) = \pi_A (h(b)) - \pi_A (g(xb)) = \pi_A (h(b) - g(b)) \in \rho(A)\). Therefore, \(A\) is a \((\rho, m)\)-\(N\)-injective \(R\)-module.

The following corollary is immediate from Proposition 2.16.

Corollary 2.17. Any direct summand of \((\rho, m)\)-quasi-injective \(R\)-module is also \((\rho, m)\)-quasi-injective.

In the last part of this section, we will study the direct sum of \((\rho, m)\)-quasi-injective modules.

The following example shows that there is \(m \in \mathbb{Z}^+\) and a preradical \(\rho\) such that the direct sum of two \((\rho, m)\)-quasi-injective modules need not be \((\rho, m)\)-quasi-injective module.

Example 2.18. Let \(M = Q \oplus \mathbb{Z}_p\) as \(\mathbb{Z}\)-module. By [8, Example 2.2, p.5], \(M\) is not \((J, 1)\)-quasi-injective \(\mathbb{Z}\)-module, but \(Q\) and \(\mathbb{Z}_p\) are \((J, 1)\)-quasi-injective \(\mathbb{Z}\)-module. Therefore, \(M\) is not \((\rho, m)\)-quasi-injective \(\mathbb{Z}\)-module, but \(Q\) and \(\mathbb{Z}_p\) are \((\rho, m)\)-quasi-injective \(\mathbb{Z}\)-module, where \(m = 1\) and \(\rho = J\).

Proposition 2.19. Let \(m \in \mathbb{Z}^+\). If \(M\) and \(N\) are two \((\rho, m)\)-injective \(R\)-modules, then \(M \oplus N\) is a \((\rho, m)\)-injective \(R\)-module.

Proof. Let \(B\) be any \(R\)-module and let \(f: A \rightarrow M \oplus N\) be any \(R\)-homomorphism, where \(A\) is any submodule of \(B\). Let \(\{a_1, a_2, \ldots, a_m\} \subseteq A\) and let \(\pi_M\) be the canonical projection. By \((\rho, m)\)-\(B\)-injectivity of \(M\) and Theorem 2.3, there exists an \(R\)-homomorphism \(g_1: B \rightarrow M\) such that \(g_1 (a_i) - (\pi_M f)(a_i) \in \rho(M)\), for all \(i = 1, \ldots, m\). By the same way, there exists an \(R\)-homomorphism \(g_2: B \rightarrow N\) such that \(g_2 (a_i) - (\pi_N f)(a_i) \in \rho(N)\), for all \(i = 1, \ldots, m\), where \(\pi_N: M \oplus N \rightarrow N\) is the canonical projection. Define \(h: B \rightarrow M \oplus N\) by \(h(b) = (g_1 (b), g_2 (b))\), for all \(b \in B\). It is clear that \(h\) is an \(R\)-homomorphism. Thus for each \(i = 1, \ldots, m\), we have that \(h(a_i) - f (a_i) = (g_1 (a_i), g_2 (a_i)) - f (a_i) = (g_1 (a_i), g_2 (a_i)) - \left(\pi_M (f (a_i)), \pi_N (f (a_i))\right) = (g_1 (a_i) - \pi_M (f (a_i)), g_2 (a_i) - \pi_N (f (a_i))) \in \rho(M) \oplus \rho(N) = \rho(M \oplus N)\) (by [3, Proposition 2, p.76]). Therefore, \(M \oplus N\) is a \((\rho, m)\)-injective, by Theorem 2.3.

Theorem 2.20. Let \(m \in \mathbb{Z}^+\). Then an \(R\)-module \(M\) is \((\rho, m)\)-injective if and only if \(M \oplus E(M)\) is a \((\rho, m)\)-quasi-injective \(R\)-module.
Proof. (\Rightarrow) Let M be a (ρ, m)-injective R-module. By Proposition 2.19, $M \oplus E(M)$ is (ρ, m)-injective and hence $M \oplus E(M)$ is a (ρ, m)-quasi-injective R-module.

(\Leftarrow) Suppose that $M \oplus E(M)$ is a (ρ, m)-quasi-injective R-module. Thus $M \oplus E(M)$ is (ρ, m)-$(M \oplus E(M))$-injective. By Proposition 2.14, $M \oplus E(M)$ is (ρ, m)- $(M \oplus E(M))$-injective. By Proposition 2.16, M is (ρ, m)-$E(M)$-injective and hence Proposition 2.11 implies that M is (ρ, m)-N-injective, for all R-module N.

Corollary 2.21. Let $m \in \mathbb{Z}^+$ and let M be any m-generated R-module. Then M is (ρ, m)-injective if and only if $M \oplus E(M)$ is (ρ, m)-quasi-injective R-module.

Proof. By Theorem 2.20 and Corollary 2.12.

Theorem 2.22. The following statements are equivalent.

(1) Direct sum of any two (ρ, m)-quasi-injective R-modules is (ρ, m)-quasi-injective.

(2) Every (ρ, m)-quasi-injective R-module is (ρ, m)-injective.

Proof. (1) \Rightarrow (2) Let M be any (ρ, m)-quasi-injective R-module and let $E(M)$ be the injective envelope of M. By hypothesis, $M \oplus E(M)$ is a (ρ, m)-quasi-injective R-module and hence Theorem 2.20 implies that M is a (ρ, m)-injective R-module.

(2) \Rightarrow (1) Let M_1 and M_2 be any two (ρ, m)-quasi-injective R-modules. Hence the hypothesis implies that M_1 and M_2 are (ρ, m)-injective R-modules. Thus $M_1 \oplus M_2$ is a (ρ, m)-injective R-module (by Proposition 2.19). Hence $M_1 \oplus M_2$ is (ρ, m)-quasi-injective R-module.

Corollary 2.23. The following statements are equivalent.

(1) Direct sum of any two special PQ-injective R-modules is special PQ-injective.

(2) Every special PQ-injective R-module is special P-N-injective, for every R-module N.

Proof. By taking $m = 1$ and $\rho = L$ (the prime radical functor) and applying Theorem 2.22.

Corollary 2.24. [8, Proposition 2.5, p.7] Direct sum of any two nearly PQ-injective R-modules is nearly PQ-injective if and only if every nearly PQ-injective R-module is pointwise nearly injective.

Proof. By taking $m = 1$ and $\rho = J$ (the Jacobson radical functor) and applying Theorem 2.22.

We say that a preradical ρ on R-Mod is said to be a J-preradical if $\rho(M) \subseteq J(M)$, for all $M \in R$-Mod.

In the following theorem, we characterize rings over which every semisimple R-module is ρ-injective (where ρ is a J-preradical). Also, this theorem gives a characterization of semi-simple Artinian rings in terms of ρ-injective modules.

Theorem 2.25. Let ρ be a J-preradical. For a ring R, the following assertions are equivalent.

(1) R is a semi-simple Artinian ring.

(2) Any R-module is ρ-injective.

(3) Any cyclic R-module is ρ-injective.

(4) Any semi-simple R-module is ρ-injective.

Proof. (1) \Rightarrow (2). Since over semi-simple Artinian ring R we have that every R-module is injective [5], every R-module is ρ-injective.
(2) \implies (3) and (2) \implies (4) are obvious.

(3) \implies (1) Let \(M \) be any simple \(R \)-module. By hypothesis, \(M \) is a \(\rho \)-injective \(R \)-module. Since \(\text{J}(M) = 0 \) [6, p.218] and \(\rho \) is a \(\text{J} \)-preradical, implies \(\rho(M) \subseteq \text{J}(M) = 0 \) and hence \(M \) is an injective \(R \)-module. Thus, we have that every simple \(R \)-module is injective and hence [6, Exercise18, p.272] implies that \(R \) is a regular ring. Since the Jacobson radical of every cyclic module over a regular ring is zero by [6, p.272] and since \(\rho \) is a \(\text{J} \)-preradical, we have for any cyclic \(R \)-module \(N, \rho(N) = 0 \), and so every cyclic \(R \)-module is injective. Therefore, \(R \) is a semi-simple Artinian ring [10].

In terms of \((\rho, m)\)-quasi-injective \(R \)-modules, a new characterization of semi-simple Artinian ring is given in the following proposition, which is a generalization of Faith’s and Utumi’s result [4].

Theorem 2.26. Let \(\rho \) be a \(\text{J} \)-preradical. Then the following statements are equivalent for a ring \(R \).

1. \(R \) is a semi-simple Artinian ring.
2. Every \(R \)-module is \((\rho, 1)\)-quasi-injective.
3. Every cyclic \(R \)-module is \((\rho, 1)\)-quasi-injective and direct sum of any two \((\rho, 1)\)-quasi-injective \(R \)-modules is \((\rho, 1)\)-quasi-injective.

Proof. (1) \implies (2) and (2) \implies (3) are obvious.

(3) \implies (1) Let \(M \) be any cyclic \(R \)-module. By (3), \(M \) is \((\rho, 1)\)-quasi-injective \(R \)-module and \(M \oplus \text{E}(M) \) is \((\rho, 1)\)-quasi-injective. Hence Corollary 2.21 implies that \(M \) is \(\rho \)-injective. Therefore, \(R \) is a semi-simple Artinian ring, by Theorem 2.25.

Corollary 2.27.[8, Proposition 2.10, p.10] The following statements are equivalent for a ring \(R \).

1. \(R \) is a semi-simple Artinian ring.
2. Every \(R \)-module is nearly \(\text{PQ} \)-injective.
3. Every cyclic \(R \)-module is nearly \(\text{PQ} \)-injective and direct sum of any two nearly \(\text{PQ} \)-injective \(R \)-modules is nearly \(\text{PQ} \)-injective.

Proof. By taking \(\rho = \text{J} \) (the Jacobson radical functor) and applying Theorem 2.26.

Corollary 2.28. The following statements are equivalent for a ring \(R \).

1. \(R \) is a semi-simple Artinian ring.
2. All \(R \)-modules are special \(\text{PQ} \)-injective.
3. All cyclic \(R \)-modules are special \(\text{PQ} \)-injective and for any two special \(\text{PQ} \)-injective \(R \)-modules, the direct sum of them is special \(\text{PQ} \)-injective.

Proof. By taking \(\rho = \text{L} \) (the prime radical functor) and applying Theorem 2.26.

References

[1] Abbas M S and Abd-Alridha S N 2013 Special quasi-injective modules and special principally quasi-injective modules *Al-Mustansiriya J. Sci* 24(5) 93-108

[2] Abbas M S, Gataa S A and Mehdi A R 2001 Pointwise nearly-injective modules *Al-Mustansiriya J. Sci* 12(6) 93-107

[3] Bican L, Jambor P, Kepka T and Nemec P 1974 Preradicals *Comment. Math. Univ. Carolinae,*
[4] Faith C and Utumi Y 1964 Quasi-injective modules and their endomorphisms rings, *Archiv. Math.*, **15** 166-174

[5] Hungerford T W 1974 *Algebra* (New York: Springer-Verlag) p. 504

[6] Kasch F 1982 *Modules and Rings* (London: Academic Press) p. 372

[7] Mehdi A R 2000 *Nearly injective modules* MSc. thesis (Baghdad: Univ. of Al-Mustansiriya)

[8] Mehdi A R 2008 Nearly PQ-injective modules, *J. of Babylon Univ. for Pure and Applied Sciences*, **15(2)** 470-477

[9] Mehdi A R and Abd Al-Kadhim D T 2016 Injective modules relative to a preradical, *J. AL-Qadisiyah for pure science*, **21(3)** 1-15

[10] Osofsky B L 1964 Rings all whose finitely generated modules are injective, *Pac. J. Math.*, **14** 645-650