Research Article

Feasibility on the Integrated Teaching Method of Machine Learning Algorithm inside and outside Physical Education Class

Rong Huang, 1 Lei Wang, 2,3 and Gaozhu Zhou 1

1 School of Physical Education, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
2 School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
3 School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China

Correspondence should be addressed to Rong Huang; huangrong@snut.edu.cn

Received 5 July 2022; Revised 27 July 2022; Accepted 25 August 2022; Published 7 September 2022

1. Introduction

The implementation of sports training standards is one of the most important sports systems in China. The 5th Party Congress identified the establishment of a relatively comprehensive national health care system as one of the goals of building a moderately prosperous society. The national health care system, the modern national education system, the scientific and technological innovation system, the cultural innovation system, and the medical and health system are called China’s five major cultural construction systems. The appearance and health of a country are an important part of its overall national potential and an important marker of civilization and social development. The physical condition and health of students are important not only for their own development, but also for the present and future of modern China. In the context of China’s comprehensive construction of a moderately prosperous society, in the era of striving for holistic development of individuals and emphasizing “health first,” school sports will undoubtedly continue to play a pivotal role. The goal has attracted more attention from the sports world and even the whole society.

In 2000, the results of a study on the physique of Chinese students jointly conducted by the State Sports General Administration, the Ministry of Education, Department of Health, National Ethnic Affairs Council and Technology showed that the physical health of Chinese students continued to deteriorate. In particular, physical qualities such as lung capacity, speed, strength, and endurance have declined for 15 consecutive years. This showed that the physical health of students in the 21st century is not optimistic. In order to change this unfavorable situation, the traditional physical education model should be specially reformed, and...
a new physical education model should be established to improve the physical quality of the students and their health level.

This study has conducted research on the integrated teaching of machine learning inside and outside the physical education class. Its data show that 69.7% of students think that the integration of college and social sports is important, 25.25% of students think that it is not important, and only 5.05% of students think that it is not important after improving the integration of internal and external teaching based on machine learning. Before the improvement, the share of students that consider it significant increased by 34.7%, compared with a 9.95% decrease in the rate of students considering it unimportant. The above data show that the integrated teaching of sports inside and outside based on machine learning provides a good theoretical and practical foundation for improving the level of physical education and physical activity in higher education. It will also better cultivate the creative, competitive, robust, and constructive talents needed in the new century.

2. Related Work

This study investigated some techniques of physical education teaching, which can be fully applied to research in this field. Sun et al. aimed to provide a review of the literature on physical education based on the self-determination theory (SDT) [1]. Liu et al. aimed to investigate the effect of CPE programs on the quality level of health-related fitness (HRF) of incoming university students [2]. Bekiari and Pylarinou examined the physical education teachers in their work argumentativeness, students’ perceived social communication style, and reasons for students’ discipline [3]. Badau was designed to assess the level of education implemented in EA disciplines in academic programs in physical education and exercise [4]. Ding and Sugiyama investigated the impact of Chinese college students’ sports experiences in physical education classes on social skills [5]. Roure and Pasco showed that an important method of stimulating students’ physical activity learning is to build incentive elements into the lesson content, particularly those that increase contextual appeal [6]. These methods have informed our approach to some extent but have not been recognized by a wide audience due to the relatively short time and small scale of the relevant research.

Based on machine learning, this study has reviewed the following relevant materials to optimize the teaching of physical education. Buczak and Guven described a key literature survey of machine learning (ML) and data mining (DM) support intrusion testing network profiling approach [7]. Jiang et al. briefly reviewed the basic concepts of machine learning and presented their application in compelling applications in 5G networks [8]. Voyant et al. aimed to provide an overview of methods for forecasting sun exposure by means of machine learning approaches [9]. Zhou et al. studied a machine learning platform for big data introduced to inform the debate on its possibilities and challenging aspects [10]. The purpose of Kavakiotis et al.’s study was to provide a structured overview of the uses of machine learning, data mining skills, and tasks in the domain of diabetes research [11]. These methods provide a sufficient literature basis for our research on the integration of machine learning inside and outside the physical education class.

3. Overview of Machine Learning and Integrated Teaching inside and outside Sports

College sports are an important part of social sports. Since the reform and open access, college physical education has developed a lot, but, at the same time, some problems have been exposed. This study solves these problems by studying the role of machine learning in physical education.

3.1. Overview of Machine Learning

Learning is a complex intellectual activity process, and learning strategies are the reasoning strategies used in learning. Learning usually includes the journey of study and a journey of thought. Therefore, the learning system is often composed of two parts: learning and environment. Based on the reasoning method used for training, machine learning is divided into machine learning, transfer-based learning, simulation learning, and instance-based learning. The general process of machine learning is shown in Figure 1.

Since the late 1950s, the machine learning methods have experienced periods of enthusiasm, lull, and renaissance. The field of machine learning has evolved from “uninformative” learning to “informative” learning, from learning a single concept to learning logical conclusions from multiple concepts [12].

One of the important research areas in artificial intelligence is machine learning [13, 14]. Its motivation is to enable computer systems to learn like humans to achieve artificial intelligence. The classic definition of machine learning is given by one of the founders of the field, an academician of the American Academy of Engineering, in his classic textbook, that is, “using experience to improve the performance of the computer system itself.” Generally speaking, experience corresponds to historical data (e.g., network data and scientific experimental data), system corresponds to data models [e.g., decision trees and support vector machines (SVMs)], and performance refers to the ability of the model to process new data (e.g., classification, prediction, and performance). Therefore, intelligent data analysis and modeling are the main tasks of machine learning. A typical machine learning process is shown in Figure 2.

In machine learning, a machine program is given some tasks from which the “machine” can learn. The more a computer program gains experience in performing the task, the better it executes it. This enables the machine to make changes and forecasts from data [15].

Machine learning is widely used in the following fields: computer vision, wireless communications, intelligent robotics, computer games, pattern recognition, natural language processing, data mining, and more. Machine learning typically applies optimization processing, which can also
lead to noisy gradients, leading to jumps in error rates rather than slow declines. An illustration of the use of stochastic gradient descent (SGD) is the assessment of three types based on the properties of the training data and the category availability. Machine learning algorithms must select among existing approaches, such as supervised, unsupervised, semisupervised, and augmented learning, and adjust their techniques differently.

Supervised learning is the application of learning to labeled data or desired results. Unsupervised learning is the application of learning to a set of unlabeled data [16, 17]. For example, NASA uses this learning method to create clusters of different celestial bodies that are all made up of similar natural objects. Semisupervised learning is a blend of monitored and unsupervised learning, where the training data consists of a small combination of labeled and unlabeled data. Reinforcement learning improves the frequency of cumulative reward or reward by effectively observing the continuous learning behavior and surrounding environment of the learning system, so it is also called a reward-based learning system.

The truth is that machine learning has a considerable impact on jobs and workers because part of many tasks may be “ML compliant.” It also raises the need for selected ML goods and the jobs, plants, and specialists required to manufacture those goods. The report defines the economic impact of machine learning as the automation of knowledge-based work “using computers to carry out missions grounded in complex analysis, precision assessment, and inventive storytelling.” The progress in machine learning skills, for example, deep learning and neural networks, is a critical element in making automated approaches to processing knowledge, the report states, whereas natural user interface, for example, voice and hand gesture identification, are other drivers that benefit hugely from ML skills [18].

Due to the wide range of applications of machine learning, many researchers are working on this topic. Machine learning has become an interdisciplinary and multidisciplinary topic that has arrived and is widely used in universities and companies. As a result, new machine learning algorithms are emerging and developing.

Today, the wave of big data has had a significant impact on all aspects of human society and scientific research. Previous machine learning research has shown that data have relatively simple attributes such as unified data source, clear concept and semantics, moderate data volume, and static and stable structure. If the data are so simple, the existing machine learning theories and techniques can be used to process the data efficiently and rationally. In the context of the era of big data, data are often heterogeneous, come from different sources, have complex semantics, are huge in quantity, and are dynamic, bringing new challenges to traditional machine learning techniques [19, 20]. In order to meet this challenge, technology giants around the world have established research institutions focusing on machine learning technology to fully tap the huge commercial and application value of big data. It is foreseeable that, for a long period of time in the future, research in the field of machine learning will be deeply coupled with the industry in a broader and tighter way, promoting the rapid development of information technology and industry.

Early machine learning algorithms were typically used on large servers with high computing power. However, in recent years, with the development of deep learning, many image and speech algorithms have been applied to low-power devices such as mobile phones and intranets. These algorithms often contain millions or even hundreds of millions of parameters and can only be used on high-performance GPU devices. Therefore, most of the research on model compression in recent years has focused on these deep learning models with large parameters. Hence, the research focuses on how to run these models efficiently on devices with limited computing power [21]. The topic architecture of model distillation is shown in Figure 3.

Before training a simplified network, a set of labeled data needs to be collected and a complex network can be used to predict a set of result vectors through the softmax function in the dataset for training a complex network. Model distillation is a method for building middle school mathematical models using large-scale synthetic models. It can be
Logistic regression is among the easiest and least useful models for supervised learning. It is extensively used due to its benefits of fast processing, simplicity of comprehension, and ease of execution. It is a type of continuous duality regressor, inherently based on linear regression, and is obtained by performing a logistic function (also known as Sigmoid function) conversion on the calculation results. The logistic function is as follows:

$$g(z) = \frac{1}{1 + e^{-z}}. \quad (1)$$

Convert the hyperplane equation:

$$z = \theta^T m. \quad (2)$$

Substituting into $g(z)$, the estimated function of logistic regression can be obtained:

$$h_\theta(m) = g(z) = g(\theta^T m) = \frac{1}{1 + e^{-\theta^T m}}. \quad (3)$$

Let x be the number of samples and y the feature dimension. Then, when the logistic regression is trained, the loss function that uses the logistic loss function as the loss value is

$$J(\theta) = -\frac{1}{x} \sum_{i=1}^{x} \left(n^{(i)} \log h_\theta(m^{(i)}) + (1 - n^{(i)}) \log(1 - h_\theta(m^{(i)})) \right) + \frac{y}{2x} \sum_{j=1}^{y} \theta_j^2. \quad (4)$$

The optimization objective is

$$\min J(\theta) \quad \theta. \quad (5)$$

The original form of logistic regression can only be applied to linear binary classification problems. It can be applied to nonlinear classification problems after transforming nonlinear features. The derived Softmax regression can solve multicategory problems [23]. The advantage of logistic regression is that it is simple to implement and widely used in industrial environments. The disadvantage is that it is easy to underfit, and the accuracy is not high.

The support vector machine (SVM) needs to be a linear binary classifier like logistic regression. When it finds a hyperplane that can divide samples of two categories, the hyperplane must have a maximum interval between the two categories. In other words, the reference vector machine is a linear classifier with the largest interval. The SVM directly predicts the result by judging that the sample is on a certain side of the hyperplane, and its estimation function is as follows:

$$h_\theta(m) = 10^T, \quad m \geq 0,$$

$$h_\theta(m) = 0^T, \quad m < 0. \quad (6)$$

When training the SVM, the loss function that uses the hinge loss function as the loss value is

$$A(\theta) = \sum_{i=1}^{x} \left(\max(0, 1 - n^{(i)}h_\theta(m^{(i)})) \right) + \frac{y}{2} \sum_{j=1}^{y} \theta_j^2. \quad (7)$$

The optimization objective is

$$\min A(\theta) \quad \theta. \quad (8)$$

When using reference vector machines to solve nonlinear problems, the data can be transposed into a linearly separable space by choosing an appropriate kernel function.

The most common pattern in unsupervised learning methods is the classification of data, called clustering, and the result of clustering is called a cluster. Let us analyze the principle of the most commonly used clustering algorithm K-means. The mathematical description of the K-means algorithm is

$$\arg \min_s \sum_{i=1}^{k} \sum_{m \in s_i} \|m - u_i\|^2. \quad (9)$$

The problem is usually solved by iterative optimization. Each sample needs to be assigned to the cluster corresponding to its nearest cluster center:

$$S_i = \left\{ m_p : \|m_p - u_i\|^2 \leq \|m_p - u_j\|^2 \forall j, 1 \leq j \leq k \right\}. \quad (10)$$

Data are updated, and the new mean for each cluster after the assignment is calculated as follows:
The two steps of assignment and update are repeated, and the algorithm converges when the assignment no longer changes [24].

Reinforcement learning is divided into model-dependent and model-independent methods. The following is a brief mathematical analysis of the Q-learning method among the model-independent methods of reinforcement learning. Its iteration rules are as follows:

$$u_i^{(t+1)} = \frac{1}{|e_i^{(t)}|} \sum_{m \in S_i^{(t)}} m_{ij}$$ \hspace{1cm} (11)

where R is the reward value matrix, γ is the learning parameter, and s_{t+1} is the next state.

After training the machine learning model, it is necessary to evaluate the prediction results of the model on the data. For the regressor, the loss function can usually be used directly to measure. For classifiers, there are some new evaluation metrics. Let AP and BP be the positive and negative of the true value and AN and BN the positive and negative of the predicted value. The definition of accuracy is as follows:

$$\text{ACC} = \frac{\text{AP} + \text{BN}}{\text{AP} + \text{BN} + \text{AN} + \text{BN}}$$ \hspace{1cm} (13)

The higher the accuracy is, the fewer false positives the classifier has. The definition of accuracy is as follows:

$$P = \frac{\text{AP}}{\text{AP} + \text{BP}}$$ \hspace{1cm} (14)

The higher the recall is, the fewer cases the classifier should report but not report is. The recall rate is defined as follows:

$$R = \frac{\text{AP}}{\text{AP} + \text{AN}}$$ \hspace{1cm} (15)

Since the precision and recall rates sometimes contradict, they need to be comprehensively investigated. A reasonable way is to take the harmonic average of the precision and recall rates as the comprehensive observation index, which is usually called the F1 value. The F1 value is defined as follows:

$$F1 = \frac{1}{P} + \frac{1}{R} = \frac{2\text{AP}}{2\text{AP} + \text{BP} + \text{AN}}$$ \hspace{1cm} (16)

In addition to the evaluation indicators introduced above, the ROC curve, AUC area, and kappa coefficient, among others, can also be used as the evaluation indicators of the classifier. However, for most application scenarios, the four basic evaluation indicators of accuracy, precision, recall, and F1 value are sufficient to meet the needs [25].

3.2. Overview of the Integrated Teaching of Sports inside and outside. In 2006, in response to the deterioration of students’ physical health, the Education Ministry, China General Bureau of Sports, and Communist Youth Federation Central Government jointly decided to implement “Sunshine Sports” among hundreds of millions of students in schools of all levels and types in China from 2007. The Ministry of Education adheres to the “Sunshine Action” to make full use of sports resources, strictly implement the national sports regulations, and fully open sports activities. At the same time, it is necessary to make full use of extracurricular sports resources, incorporate extracurricular sports into students’ educational plans, establish a system, actively encourage extracurricular sports activities, and constantly enrich and provide the content of extracurricular sports activities, so that students can exercise for an average of one hour a day.

Carrying out comprehensive extracurricular physical education is a good way to introduce sunshine sports and cultivate students’ lifelong physical skills. The integrated teaching mode of sports inside and outside is a school physical education teaching mode that takes sports as the center and gives full play to the auxiliary role of extracurricular sports activities. Physical education teachers play a leading role in stimulating students’ interest in sports, providing teaching methods, and improving students’ physical ability. Teachers of PE extracurricular activities are responsible for organizing, managing, and guiding the work, stimulating students’ subject consciousness, and improving students’ ability to use PE learning strategies. The comprehensive teaching method inside and outside the physical education class has a positive effect on improving students’ interest in sports, mastering sports technology, acquiring sports knowledge, and cultivating students’ sports culture habits [26].

With the continuous advancement of the primary school curriculum reform in China, sports have undergone profound changes in many aspects, including fundamental changes in the curriculum. Traditional physical education emphasizes learning and mastering the basic knowledge, technology, and skills of physical education; physical education emphasizes teaching, despising, or ignoring the role of students in the subject, resulting in a disconnect between teaching and learning. This is a new course on sports and health. Physical education and health is education in which physical education is the main educational means. It is an important part of the school curriculum system and an indispensable and important way to implement quality education and cultivate talents for the comprehensive development of morality, intelligence, physical fitness, and beauty. Guided by “health first,” the new curriculum concept aims to cultivate students’ lifelong sports awareness so that every student can benefit from it and enjoy equal opportunities. It needs to participate in sports activities, acquire one or more sports skills through physical education, fully experience the sense of achievement and satisfaction brought by physical education, and prepare for lifelong participation in sports to achieve the purpose of physical fitness.

In the context of the reform of physical education, classroom teaching is the basic teaching form of the curriculum, and the teaching concepts and methods are also
constant changing. Research shows that the reform of physical education has not substantially improved the physical quality of students. The external quality of students continues to improve, whereas the internal quality continues to decline. The contradiction between external and internal quality has become increasingly prominent. The research shows that the reform of the physical education curriculum cannot only rely on the reform of physical education teaching. At present, China’s teaching on integration inside and outside the classroom has been carried out in some colleges and universities. Compared with traditional teaching, it has certain intentions and has achieved good results. The integration of inside and outside physical education is a new teaching method that adapts to physical education courses in colleges and universities. Through the combination of intraschool physical education courses and out-of-school self-exercise, physical skills, theory, and practice are combined to form a complete physical education learning system.

Although the concept of integration inside and outside the classroom was first proposed in China, its theoretical basis is relatively weak, and a complete theoretical system has not yet been formed. The “Outline” is the main source of the thought of integration inside and outside the classroom and believes that sports should be carried out in an organized, focused, and planned way. Social and physical activities should be integrated into the physical education curriculum, creating a more comprehensive curriculum structure that creates organic links between the on-campus and off-campus curricula.

Research on integration inside and outside the classroom includes research on implementing integrated teaching inside and outside the classroom through various programs. Many experts and scholars believe that introducing an integrated learning model inside and outside the classroom can help determine the dominance of students in learning and create a good environment for students to participate in sports activities and build self-esteem. It helps stimulate students’ interest in learning and encourages them to actively participate in physical activities according to their interests. It is beneficial in enhancing students’ sports innovation ability, cultivating students’ personalities and ideological morality, and developing good physical exercise habits, thereby effectively enhancing students’ physical fitness. However, as far as the research on the integrated teaching mode of physical education is concerned, the current theoretical research in this area is relatively small, and the research aspects involved are also narrow, mostly limited to macrotheoretical research, lacking theoretical-practical research and long-term follow-up investigations.

In a word, integrated teaching inside and outside the classroom helps improve students’ physical quality, enhance students’ interest in learning and subject consciousness, improve students’ mental health, instill excellent sports skills, enhance students’ sports motivation, improve students’ physical education performance and performance, and deepen the emotional experience of students. The existing problems are that the extracurricular sports time is not fully utilized, the project setting is not comprehensive, and there is a lack of scientific and reasonable assessment methods. In addition, through extracurricular sports activities, the insufficiency of intracurricular physical education teaching is made up, which is conducive to cultivating students’ lifelong sports and health first thinking and is conducive to making students interested in sports activities and cultivating exercise habits. It is conducive to the development of students’ sports-specific skills and the improvement of students’ health. At the same time, it can also activate the campus sports culture atmosphere. Compared with the traditional teaching mode, this mode is more advanced and the teaching efficiency is more obvious.

4. Optimization of Sports Integrated Teaching Based on Machine Learning

4.1. Sports Integrated Teaching. In recent years, with more Chinese colleges and universities implementing the integrated teaching model of sports instruction in and beyond the classroom, its superior and outstanding teaching effect has basically been praised by all sectors of society. In this section, a questionnaire was distributed to 100 students in the school, and the recovery rate of the questionnaire was 100%.

Participation in sports is an important criterion to measure whether a student attaches importance to daily physical exercise. By maintaining a high frequency of exercise after study, students can gradually develop the habit of exercising, thereby improving their physical fitness. As more students participate in sports activities on campus, it can also cultivate their love and interest in sports. The participation of students inside and outside the classroom is shown in Table 1.

Table 1 shows that 25% of the population basically do not participate in intra- and extracurricular physical exercise, 61% of the population occasionally participate in physical exercise, and only 14% of the population often participates in and out of class physical exercise. Judging from these data, the sports participation performance of the students in this school is average.

According to the requirements of the school, the achievement of sports skills goals mainly includes the following aspects: first, master the basic skills of two or more sports; second, in ordinary sports, you can use the motor skills you have mastered for physical exercise and continuously improve your motor skills; third, if there is a sudden injury in the usual sports, the methods can be used that people have mastered for common sports injuries to deal with it in time; fourth, people can actively participate in outdoor activities and learn climbing, wading, and self-help skills. The completion of the learning motor skills goals is shown in Table 2.

Table 2 shows that 12% of the population could not complete the sports skill goals set by the school, and 59% of the population basically completed the sports skill goals set by the school. A further 29% were able to complete the goals set by the school. The students’ interest in physical exercise is shown in Table 3.
Table 1: Students’ participation in sports inside and outside the classroom.

Participation	Proportion (%)
Not participating	25
Occasionally	61
Frequent participation	14

Table 2: Completion of the goal of learning motor skills.

Completion	Proportion (%)
Cannot complete	12
Basically completed	59
Can complete	29

Table 3: Students’ interest in physical exercise.

Interest	Proportion (%)
Uninterested	28
Quite interested	58
Very interested	14

Table 3 shows that 28% of students are not interested in physical exercise, 58% are more interested, and 14% are very interested. The survey on whether it is important for college sports to integrate with social sports is shown in Figure 4.

Figure 4 shows that 35% of the students think that the integration of college sports and social sports is important, 50% of the students think it is average, and 15% of the students think it is not important. This shows that students do not know much about the importance of physical education in colleges and society. The student satisfaction survey on the integration of internal and external teaching is shown in Figure 5.

Figure 5 shows that 34% of students are satisfied with the integrated teaching internal and external, 36% of students are relatively satisfied, 10% of students feel average, and 20% of students are not satisfied.

By collecting the relevant documents on the school’s implementation of integrated physical education inside and outside the classroom, it is concluded that there are only two main measures for integrated physical education inside and outside the classroom. First, the reintegration of modules and the distribution of credits increase the credits and credits ratio of extracurricular physical education and improve students’ enthusiasm and investment in extracurricular physical education. Second, the redistribution of grade scale increases the percentage of credits for extracurricular independent physical activity and sports club activities, which encourages students to supplement traditional, classroom-based physical activity with extracurricular physical activity. The original intentions of the two measures are good, and they have basically completed the guidance of students’ physical exercise mode and improved students’ performance in the physical health assessment.

However, such a single and rough integration method lacks more abundant means and methods to develop the teaching mode of physical education, which creates a lack of a more organic combination of intracurricular and extracurricular sports. It also makes the advantages of integrated teaching inside and outside the classroom not maximized. Questionnaires are distributed to investigate students’ satisfaction with the current integrated teaching model inside and outside the classroom, and the results are worrying. This will undoubtedly lay hidden dangers for the next physical education teaching.

4.2. Integrated Teaching inside and outside Sports Improved by Machine Learning. As integrated teaching inside and outside the classroom in the previous part is too simplistic, in this section, based on the previous part, the integrated teaching inside and outside sports is added to the machine learning method for improvement. A questionnaire survey was conducted on 100 college students again, and the effective rate was 99%. After the improvement of the machine learning method, the investigation of whether the integration of college sports and social sports is important is shown in Figure 6.

Figure 6 shows that after improving integrated teaching inside and outside the classroom based on machine learning, 69.7% of students think that integration is important, 25.25% of students think that it is general, and only 5.05% of students think that it is not important. Compared to
students deemed significant prior to the change, the proportion of students who thought it was important increased by 34.7%, and the number of students who thought it was not important dropped by 9.95%. This shows that after the improvement of machine learning, pupils have an appreciation of the role of social aspects of college athletics and these perceptions can lead to a greater incentive to engage in sporting events. The students believe that the application of machine learning in the integrated teaching of sports inside and outside is promising and an inevitable trend of development and further expounds the entire imperative of implementing the physical education teaching model in colleges and universities. After the improvement, the survey on the purpose of students participating in sports activities is shown in Figure 7.

From the results in Figure 7, most students have a clear purpose for participating in physical activities. 42.43% of the students participated in sports activities to improve their physical condition, 31.31% to acquire physical skills, 5.05% to improve their social skills, 11.11% for leisure and entertainment, and 10.10% for disease prevention and treatment. The main purpose of college students participating in sports activities is to keep fit and master sports skills as a supplement. Their subjective participation is highly motivated, and their attention is also high. After the improvement, students’ satisfaction with the integration of sports inside and outside the teaching is shown in Figure 8.

Figure 8 shows that after improvement, 50.51% of the students were satisfied with teaching, 40.4% were relatively satisfied, 6.06% felt average, and only 3.03% were dissatisfied. Compared with the previous part, the satisfaction rate increased by 16.51%, the relatively satisfied increased by 4.4%, and the dissatisfied decreased by 16.97%. To a certain extent, it shows that after the improvement, students’ understanding of integrated teaching inside and outside the physical education class has changed from an attitude of ignorance and indifference to active attention, understanding, and even liking.
5. Conclusions

Classroom teaching is the main form for schools to realize teaching courses and complete teaching tasks. The classroom teaching activities of each subject have their own unique classroom teaching mode due to the different natures and essential characteristics of the subject. The classroom teaching activities of physical education focus on the teaching of physical education, the explanation of physical training methods, and the implementation of related training to enhance students’ interest in physical education, enhance physical skills, and improve students’ physical quality. With the continuous advancement and deepening of China’s education curriculum reform, the teaching mode of various disciplines has undergone fundamental changes. Looking at the current students’ physical fitness and sports performance, relying solely on the teaching of physical education courses in schools is far from being able to effectively improve the physical health of students; especially the physical health of high school students is worrying. Therefore, through the research of the machine learning algorithm, this study puts forward practical suggestions for developing physical education teaching methods, which was of significant conceptual and operational importance.

Data Availability

The data of this paper can be obtained upon request to the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this work.

Acknowledgments

This work was supported by the Western China project of National Natural Science Foundation of China (21XTY012).

References

[1] H. Sun, W. Li, and B. Shen, “Learning in physical education: a self-determination theory perspective,” Journal of Teaching in Physical Education, vol. 36, no. 3, pp. 277–291, 2017.
[2] J. Liu, R. Shangguan, X. D. Keating, J. Leitner, and Y. Wu, “A conceptual physical education course and college freshmen’s health-related fitness,” Health Education, vol. 117, no. 1, pp. 53–68, 2017.
[3] A. Bekiari and M. Pylarinou, “Instructor argumentativeness and socio-communicative style and student discipline: using physical education students’ class as an illustration,” Open Journal of Social Sciences, vol. 05, no. 03, pp. 122–136, 2017.
[4] D. Badou, “The educational impact of implementation the education through adventure discipline in physical education and sports academic curriculum,” Physical Education of Students, vol. 21, no. 3, pp. 108–115, 2017.
[5] J. Ding and Y. Sugiyama, “Exploring influences of sport experiences on social skills in physical education classes in college students,” Advances in Physical Education, vol. 07, no. 03, pp. 248–259, 2017.
[6] C. Roure and D. Pasco, “Exploring situational interest sources in the French physical education context,” European Physical Education Review, vol. 24, no. 1, pp. 3–20, 2018.
[7] A. L. Buczak and E. Guven, “A survey of data mining and machine learning methods for cyber security intrusion detection,” IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.
[8] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen, and L. Hanzo, “Machine learning paradigms for next-generation wireless networks,” IEEE Wireless Communications, vol. 24, no. 2, pp. 98–105, 2017.
[9] C. Voyant, G. Notton, S. Kalogirou et al., “Machine learning methods for solar radiation forecasting: a review,” Renewable Energy, vol. 105, pp. 569–582, 2017.
[10] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big data: opportunities and challenges,” Neurocomputing, vol. 237, pp. 350–361, 2017.
[11] I. Kavakiotis, O. Tsare, A. Salifoglou, N. Maglaveras, I. Vlahavas, and I. Chouvarda, “Machine learning and data mining methods in diabetes research,” Computational and
[12] N. Poret, R. R. Twilley, and R. M. Coronado-Molina, "Object-based correction of LiDAR DEMs using RTK-GPS data and machine learning modeling in the coastal Everglades[11]," *Environmental Modelling & Software*, vol. 112, no. 3, pp. 491–496, 2018.

[13] F. Meng, Y. Zheng, S. Bao, J. Wang, and S. Yang, "Formulaic language identification model based on GCN fusing associated information," *PeerJ Computer Science*, vol. 8, 2022.

[14] F. Meng, W. Cheng, and J. Wang, "Semi-supervised software defect prediction model based on tri-training," *KSII Transactions on Internet and Information Systems*, vol. 15, no. 11, pp. 4028–4042, 2021.

[15] S. Liu, X. Wang, M. Liu, and J. Zhu, "Towards better analysis of machine learning models: a visual analytics perspective," *Visual Informatics*, vol. 1, no. 1, pp. 48–56, 2017.

[16] Y. Zhao and Z. Wang, "Subset simulation with adaptable intermediate failure probability for robust reliability analysis: an unsupervised learning-based approach," *Structural and Multidisciplinary Optimization*, vol. 65, no. 6, p. 172, 2022.

[17] S. N. Alsubari, S. N. Deshmukh, A. A. Alqarni et al., "Data analytics for the identification of fake reviews using supervised learning," *Computers, Materials & Continua*, vol. 70, no. 2, pp. 3189–3204, 2022.

[18] C. W. Coley, R. Barzilay, T. S. Jaakkola, W. H. Green, and K. F. Jensen, "Prediction of organic reaction outcomes using machine learning," *ACS Central Science*, vol. 3, no. 5, pp. 434–443, 2017.

[19] M. J. Awan, M. S. Rahim, H. Nobanee, A. Yasin, O. I. Khalaf, and U. Ishfaq, "A big data approach to black Friday sales," *Intelligent Automation & Soft Computing*, vol. 27, no. 3, pp. 785–797, 2021.

[20] Q. He, P. Xia, B. O. Li, and J.-B. Liu, "Evaluating investors’ recognition abilities for risk and profit in online loan markets using nonlinear models and financial big data," *Journal of Function Spaces*, vol. 2021, Article ID 5178970, 15 pages, 2021.

[21] X. Hu, S. E. Li, and Y. Yang, "Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles," *IEEE Transactions on Transportation Electrification*, vol. 2, no. 2, pp. 140–149, 2016.

[22] M. Drton and M. Plummer, "A Bayesian information criterion for singular models," *Journal of the Royal Statistical Society: Series B*, vol. 79, no. 2, pp. 323–380, 2017.

[23] F. Lamperti, A. Roventini, and A. Sani, "Agent-based model calibration using machine learning surrogates," *Journal of Economic Dynamics and Control*, vol. 90, no. MAY, pp. 366–389, 2018.

[24] T. Zheng, W. Xie, L. Xu et al., "A machine learning-based framework to identify type 2 diabetes through electronic health records," *International Journal of Medical Informatics*, vol. 97, pp. 120–127, 2017.

[25] J. Zhang, Z. Wang, and N. Verma, "In-memory computation of a machine-learning classifier in a standard 6T SRAM array," *IEEE Journal of Solid-State Circuits*, vol. 52, no. 4, pp. 915–924, 2017.

[26] E. Brynjolfsson and T. Mitchell, "What can machine learning do? Workforce implications," *Science*, vol. 358, no. 6370, pp. 1530–1534, 2017.