Multigene phylogeny and morphology reveal
Ophiocordyceps hydrangea sp. nov. and *Ophiocordyceps bidoupensis* sp. nov. (Ophiocordycipitaceae)

Weiqiu Zou\(^1\), Dexiang Tang\(^1\), Zhihong Xu\(^1\), Ou Huang\(^1\),
Yuanbing Wang\(^1\), Ngoc-Lan Tran\(^3\), Hong Yu\(^1\)

\(^1\) Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming
650504, Yunnan, China
\(^2\) School of Life Science, Yunnan University, Kunming 650504, Yunnan, China
\(^3\) Institute of Regional Research and Development, Ministry of Science and Technology, Hanoi, Vietnam

Corresponding author: Hong Yu (hongyu@ynu.edu.cn, herbfish@163.com)

Academic editor: Cecile Gueidan | Received 5 May 2022 | Accepted 10 August 2022 | Published 30 August 2022

Citation: Zou W, Tang D, Xu Z, Huang O, Wang Y, Tran N-L, Yu H (2022) Multigene phylogeny and morphology
reveal *Ophiocordyceps hydrangea* sp. nov. and *Ophiocordyceps bidoupensis* sp. nov. (Ophiocordycipitaceae). MycoKeys 92:
109–130. https://doi.org/10.3897/mycokeys.92.86160

Abstract

Ophiocordyceps species have a wide range of insect hosts, from solitary beetle larva to social insects. However,
among the species of *Ophiocordyceps*, only a few attack cicada nymphs. These species are mainly clustered
in the *Ophiocordyceps sobolifera* clade in *Ophiocordyceps*. A new entomopathogenic fungus parasitic on
cicada nymphs, and another fungus parasitic on the larva of Coleoptera, are described in this study. The
two new species viz. *Ophiocordyceps hydrangea* and *Ophiocordyceps bidoupensis* were introduced based on
morphology and multigene phylogenetic evidence. The phylogenetic framework of *Ophiocordyceps* was
re-constructed using a multigene (\(nrsu\), \(nrLSU\), \(tef-1\), \(rpb1\), and \(rpb2\)) dataset. The phylogenetic analyses
results showed that *O. hydrangea* and *O. bidoupensis* were statistically well-supported in the *O. sobolifera*
clade, forming two separate subclades from other species of *Ophiocordyceps*. The distinctiveness of these
two new species was strongly supported by both molecular phylogeny and morphology.

Keywords

2 new taxa, entomopathogenic fungi, morphology, phylogenetic analyses

* Those authors contributed equally to this work.

Copyright Weiqiu Zou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Ophiocordyceps G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora is the largest genus in the Ophiocordycipitaceae, comprising approximately 290 species. It was originally established by Petch, with _Ophiocordyceps blattae_ Petch as the type species (Petch 1931). According to the arrangement of the perithecia, the size of asci, ascospores, and secondary ascospores, _Ophiocordyceps_ was transferred to _Cordyceps_ sensu lato by Kobayasi, as a subgenus of _Cordyceps_ s.l. (Kobayasi 1941, 1982). Sung et al. (2007) used five to seven loci combined molecular datasets to revise the _Cordyceps_ and the Clavicipitaceae. The species of _Cordyceps_ and Clavicipitaceae were divided into three families (Corycycipitaceae, Ophiocordycipitaceae, Clavicipitaceae sense stricto) and four genera (_Cordyceps_ sense stricto, _Ophiocordyceps_, _Elaphocordyceps_, and _Metacordyceps_). The research results of Sung et al. (2007) are currently the most widely accepted phylogenetic classification of _Cordyceps_ s.l. In 2015, _Ophiocordyceps_ was divided into _O. ravenelii_ clade, _O. unilateralis_ clade, _O. sobolifera_ clade, and _O. sphecocephala_ clade by Sanjuan et al. With the continuous revision of _Ophiocordyceps_, it has now been divided into four clades, including the _Hirsutella_ clade, _O. sobolifera_ clade, _O. sphecocephala_ clade, and _O. ravenelii_ clade (Mains 1958; Sung et al. 2007; Quandt et al. 2014; Sanjuan et al. 2015; Simmons et al. 2015; Wang et al. 2018). Many phylogenetic classifications for entomopathogenic fungi have been revised in recent studies (Wang et al. 2018; Fan et al. 2021; Wang et al. 2021a, 2021b).

There are fewer species in the _O. sobolifera_ clade than in the _Hirsutella_ clade and the _O. sphecocephala_ clade. The _O. sobolifera_ clade is statistically well-supported in most studies and 11 species have been described in the Index Fungorum (Kobayasi and Shimizu 1963; Hywel-Jones 1995b; Sung et al. 2007, 2011; Luangs-ard et al. 2008; Hyde et al. 2017; Crous et al. 2018, 2019; Lao et al. 2021; Wang et al. 2021a). Asexual morphs of _Ophiocordyceps_ were reported as _Hirsutella_ Pat., _Paraisaria_ Samson & B.L. Brady, _Sorosporella_ Sorokin, _Hymenostilbe_ Petch and _Syngliocladium_ Petch, etc. (Sung et al. 2007; Quandt et al. 2014). In most species of _Ophiocordyceps_, their dominant asexual morphs were _Hirsutella_, the conidiogenous cells basally swollen that taper to a narrow neck, producing a mucilaginous cluster of one or several conidia (Simmons et al. 2015; Wang et al. 2018).

Ophiocordyceps species have a wide range of insect hosts, from solitary beetle larvae to social insects. More than 10 insect orders were attacked, including Hemiptera, Coleoptera, Lepidoptera, Blattaria, Dermaptera, Diptera, Hymenoptera, Isoptera, Megaloptera, and Mantodea (Araújo et al. 2015; Araújo and Hughes 2016, 2019). Entomopathogenic fungi whose hosts are cicada nymphs have attractive stromata. The most typical representative of this group was _Cordyceps cicadae_ (Miquel) Massee (Massee 1895) in Cordycipitaceae, with the stroma like a flower (Sung et al. 2007). However, for species of _Ophiocordyceps_, with cicada nymph hosts including _O. khonkaenensis_ Tasanathai, Thanakitpipattana & Luangsa-ard (Crous et al. 2019), _O. sobolifera_ (Hill ex Watson) G.H. Sung, J.M. Sung,
Hywel-Jones & Spatafora (Kobayasi and Shimizu 1963; Sung et al. 2007), and *O. longissima* (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora (Kobayasi and Shimizu 1963; Sung et al. 2007, 2011) in *O. sobolifera* clade, their stromata were typically bright-colored and cylindrical. The hosts of the entomopathogenic fungi within the *O. sobolifera* clade were divided into two categories. One group with Hemiptera hosts was represented by *O. sobolifera*. These fungi had a hard texture stroma, which was cylindrical, and deep-colored, and had swollen fertile parts (Kobayasi and Shimizu 1963; Sung et al. 2011; Crous et al. 2019). Another group had Coleoptera hosts that were characterized by hard texture stromata, being cylindrical, bright-colored, and with a sterile apices cone at the top of the stroma (Hywel-Jones 1995b; Luangsa-ard et al. 2008; Crous et al. 2018; Lao et al. 2021; Wang et al. 2021a).

Cordyceps s.l. is globally distributed with the highest species diversity recorded in subtropical and tropical regions (Nguyen and Vo 2005; Ban et al. 2015; Doan et al. 2017; Luangsa-ard et al. 2018), especially in East and Southeast Asia (Sung et al. 2007; Fan et al. 2021; Wang et al. 2021a). To date, more than 800 species of *Cordyceps* and *Ophiocordyceps* have been named worldwide, and there are at least 200 species in China (Index Fungorum 2022). Yunnan Province, located in southwest China, has unique geographical and ecological features. Many species of *Ophiocordyceps* were reported from Yunnan, including *O. alboperitheciata* H. Yu, Q. Fan & Y.B. Wang (Fan et al. 2021), *O. furcatosubulata* H. Yu, Y. Wang & Y.B. Wang (Wang et al. 2021a), *O. highlandensis* Zhu L. Yang & J. Qin (Yang et al. 2015), *O. lanpingensis* H. Yu & Z.H. Chen (Chen et al. 2013), *O. laojunshanensis* J.Y. Chen, Y.Q. Cao & D.R. Yang (Chen et al. 2011), *O. liangshanensis* (M. Zang, D.Q. Liu & R.Y. Hu) H. Yu, Y. Wang, Y.D. Dai, Zhu L. Yang & Y.B. Wang (Wang et al. 2021b), and *O. pingbianensis* H. Yu, S.Q. Chen & Y.B. Wang (Chen et al. 2021). The unique geographical conditions of Yunnan have resulted in high *Cordyceps* s.l. species diversity. There is also a high species diversity of *Cordyceps* s.l. in Southeast Asia, where more than 500 species of entomopathogenic fungi have been reported. Approximately 400 species of entomopathogenic fungi are distributed in Thailand (Sung et al. 2007; Luangsa-ard et al. 2011, 2018; Ban et al. 2015; Tasanathai et al. 2019; Xiao et al. 2019). Vietnam is second to Thailand, in the number of entomopathogenic fungi species, with more than 100 species having been reported such as *Moelleriella pumatensis* T.T. Nguyen & N.L. Tran (Mongkolsamrit et al. 2011), *O. furcatosubulata* H. Yu, Y. Wang & Y.B. Wang (Wang et al. 2021a), and *O. puluongensis* H. Yu, Z.H. Xu, N.L. Tran & Y.B. Wang (Xu et al. 2022). These findings suggested that Vietnam should be abundant in species diversity of *Cordyceps* s.l. (Mongkolsamrit et al. 2011; Doan et al. 2017; Luyen et al. 2017).

Several studies have evaluated the taxonomy and biology of entomopathogenic fungi, especially species found in China and Southeast Asia. In this study, one unknown species of *Ophiocordyceps* attacking a cicada nymph was collected from Yunnan Province, Jinghong City, Nabanhe National Nature Reserve, in China. Another...
Table 1. Specimen information and GenBank accession numbers of the sequences used in this study.

Species	Host	Isolate no./specimen no.	GenBank accession no.						
			nrSSU						
Hirsutella citriformis	Cixiidae (Hemiptera)	ARSEF 1446	KM652065						
Hirsutella fusiformis	Brevicoryne incarnata	ARSEF 5474	KM652067						
Hirsutella gigantea	Pammulilidae (Hymenoptera)	ARSEF 30	--						
Hirsutella guajana	Empoasca kueneri	ARSEF 878	KM652068						
Hirsutella illatissir	Erisissa langenseri	ARSEF 5539	KM652069						
Hirsutella kirchneri	Allocaeus hystric	ARSEF 5551	KM652070						
Hirsutella lecaniicola	Parthenolecanium corni	ARSEF 8888	KM652071						
Hirsutella liboensis	Larva of Cossidae (Lepidoptera)	ARSEF 9603	KM652072						
Hirsutella necatrix	Acari	ARSEF 5549	KM652073						
Hirsutella nodulata	Dioryctria zimmermani	ARSEF 5473	KM652074						
Hirsutella radiata	Diptera	ARSEF 1369	KM652076						
Hirsutella rhosilensis	Menocerisoma xenuplae (Cocciidae, Hymenoptera)	ARSEF 3747	KM652080						
Hirsutella strigosa	Nephotettix virescens	ARSEF 2197	KM652085						
Hirsutella subulata	Microlepidoptra (Lepidoptera)	ARSEF 2227	KM652086						
Hirsutella thompsonii var.	Acrisia seldenii	ARSEF 2459	KM652099						
Hirsutella thompsonii var.	Pheriloptera alevrain	ARSEF 137	KM652087						
Hirsutella thompsonii var.	Acalauta succincta	ARSEF 254	KM652101						
Ophiocordyceps acicularis	Larva of Coleoptera	ARSEF 110987	EF468950						
Ophiocordyceps acicularis	Larva of Coleoptera	ARSEF 110988	EF468951						
Ophiocordyceps agristidii	Larva of Coleoptera	ARSEF 5602	DQ522540						
Ophiocordyceps annulata	Larva of Coleoptera	CEM 303	KJ878819						
Ophiocordyceps aphidii	Larva of Scarabaeidae	ARSEF 548	DQ522541						
Ophiocordyceps appendiculata	Larva of Coleoptera	NBRC 108060	JN941728						
Ophiocordyceps arborescens	Larva of Pueraria lobata (Lepidoptera)	NBRC 105891	AB968386						
Ophiocordyceps bidoupensis	Larva of Elateridae (Coleoptera)	YFCC 8793	OM304638						
Ophiocordyceps brunnatentata	Larva of Coleoptera	BDRC 18211	EF468952						
Ophiocordyceps brunnei	Hemiptera	TNS F1853	KJ878933						
Ophiocordyceps cochlioides	Cochlioididae papa (Lepidoptera)	HMAS 199612	KJ878917						
Ophiocordyceps cruciferum	Larva of Elateridae (Coleoptera)	OSC 128576	DQ522542						
Ophiocordyceps crevicornis	Coccinellidae (Hemiptera)	TBRC 8095	--						
Ophiocordyceps cinnabarinus	Larva of Coleoptera	TBRC 8100	--						
Ophiocordyceps cruciferum	Hemiptera	TNS F1857	--						
Ophiocordyceps cruciferum	Hemiptera	TNS F1857	--						
Ophiocordyceps formicarum	Larva of Coleoptera	TBRC 8095	--						
Ophiocordyceps furciferum	Larva of Coleoptera	TBRC 8100	--						
Species	Host	GenBank accession no.	mLSU	nrLSU	nrS	Su	tef-α	rpB1	rpB2
---------------------------------	---	-----------------------	-------------	--------------	------------	-----------	-----------	-----------	-----------
Ophiocordyceps forquignonii	Adult fly (Diptera)	KJ878912 – KJ878991	KJ878876	–	–	–	–	–	–
Ophiocordyceps furcatosubulata	Larva of Elateridae (Coleoptera)	MT774216 – MT774240	MT774223	MT774244	MT774230	MT774237	–	–	–
Ophiocordyceps furcatosubulata	Larva of Elateridae (Coleoptera)	YHH 17005	–	–	–	–	–	–	–
Ophiocordyceps geometricioida	Larva of Geometridae (Lepidoptera)	TBRC 8095	–	MF614648	MF614632	MF614663	MF614679	–	–
Ophiocordyceps houaynhangensis	Larva of Coleoptera	TBRC 8428	–	MH928992	–	–	–	–	–
Ophiocordyceps hydrangea	Nymph of cicada (Hemiptera)	YFCC 8832	–	–	–	–	–	–	–
Ophiocordyceps hydrangea	Nymph of cicada (Hemiptera)	YFCC 8833	–	–	–	–	–	–	–
Ophiocordyceps hydrangea	Nymph of cicada (Hemiptera)	YFCC 8834	–	–	–	–	–	–	–
Ophiocordyceps karstii	Heptadia jianchuansis (Lepidoptera)	MFLU:15-3884	KJ854952	–	–	KJ854945	KJ854943	–	–
Ophiocordyceps kimflemingiae	Camponotus castaneus (Hymenoptera)	SC09B	KX713631	KX713620	KX713724	–	–	–	–
Ophiocordyceps knipholosioides	Gephalotes attatus adult ant (Hymenoptera)	HUA 168614	KG610790	KG658679	KG610793	KG658667	KG610717	–	–
Ophiocordyceps houaynhangensis	Larva of Coleoptera	DL 0817	MT928355	MT928306	–	–	–	–	–
Ophiocordyceps longissima	Cicada nymph (Cicadidae, Hemiptera)	NBRC 100695	AB968392	AB968420	AB968584	–	AB968546	–	–
Ophiocordyceps macrocarunculata	Larva of Cossidae (Lepidoptera)	NBRC 100685	AB968388	AB968416	AB968574	–	AB968536	–	–
Ophiocordyceps multiperitheciata	Lepidoptera larva	BCC 69008	MF614657	MF614641	MF614682	–	MF614678	–	–
Ophiocordyceps myrmicarum	Hymenoptera (Formicidae)	HIRS 45	KJ80150	JX560665	JX560973	KJ80151	–	–	–
Ophiocordyceps nigella	Larva of Lepidoptera	EFCC 9247	EF68963	EF68818	EF68758	EF68866	EF68920	–	–
Ophiocordyceps pruinosa	Hemiptera	NHJ 12994	EU360916	EU360924	EU360963	EU360984	–	–	–
Ophiocordyceps pseudobaccalarii	Larva of Lepidoptera	TBRC 8102	MF614646	MF614630	MF614661	MF614677	–	–	–
Ophiocordyceps pulvinata	Camponotus adult ant	TNS-F 30044	GU930428	AB721305	GU930429	GU930420	–	–	–
Ophiocordyceps ramosissimum	Phasus nodus larva	GZUHNN8	KJ028012	KJ028014	KJ028017	–	–	–	–
Ophiocordyceps ravenelli	Beetle larva (Coleoptera)	OSC 110995	DQ522550	DQ518764	DQ522334	DQ522379	DQ522430	–	–
Ophiocordyceps robertsi	Larva of Heptidae (Lepidoptera)	KEW 27083	EF68826	EF688766	–	–	–	–	–
Ophiocordyceps rubiginosiperitheciata	Larva of Coleoptera	NBRC 100696	JN941704	JN941437	AB968582	JN992348	AB968544	–	–
Ophiocordyceps spataforae	Hemiptera (nymph)	NBRC 100697	AB968395	AB968422	AB968590	–	–	–	–
Ophiocordyceps sphecocephala	Larva of Hymenoptera (Lepidoptera)	TNS-F18521	KJ878933	KJ878989	KJ87979	KJ87903	–	–	–
Ophiocordyceps sobolifera	Cicada nymph (Cicadidae, Hemiptera)	TNS F18521	KJ878933	KJ878989	KJ87979	KJ87903	–	–	–
Ophiocordyceps sobolifera	Hemiptera (nymph)	NBRC 100697	AB968395	AB968422	AB968590	–	–	–	–
Ophiocordyceps spataforae	Hemiptera adult	NHJ 12525	EF690125	EF690078	EF69063	EF69092	EF69111	–	–
Ophiocordyceps spataforae	Hemiptera adult wap	NBRC 101753	JN941695	JN941446	AB968592	JN992429	AB968553	–	–
Ophiocordyceps stylophora	Larva of Elateridae (Coleoptera)	OSC 110999	EF690832	EF688777	EF68882	EF68931	–	–	–
Ophiocordyceps thanathonensis	Hymenoptera adult	MFLU 16-2910	MF882926	MF850377	MF872614	MF872616	–	–	–
unknown species of *Ophiocordyceps* attacking larvae of Elateridae was collected from Lintong Province, Bidoup Nuiba National Park, in Vietnam. The phylogeny and morphology of these two fungi were determined, and their systematic position was established in Ophiocordycipitaceae. The phylogenetic analyses results showed that the two new species belonged to *Ophiocordyceps*, and were named *Ophiocordyceps hydrangea* and *Ophiocordyceps bidoupensis* based on well-supported morphology and molecular data.

Materials and methods

Sample collection and isolation

The specimens were collected from China and Vietnam, and the collection site information was noted, including altitude, longitude, latitude, and habitat type. Samples were placed in sterilized tubes or plastic bags and boxes, returned to the laboratory, and stored at 4 °C. The specimens were photographed using a Canon 750D camera (Canon Inc., Tokyo, Japan). The size was measured, and characteristics were recorded including length of the stroma, single or multiple, length and width of stipe clavate and fertile parts, shape, texture, and color. To obtain axenic cultures, the segments were removed from insect bodies, and these segments were placed onto Potato Dextrose Agar (PDA) consisting of peptone and yeast powder (potato 100 g/500 mL, dextrose 10 g/500 mL, agar 10 g/500 mL, yeast powder 5 g/500 mL, peptone 2.5 g/500 mL) plates. The plates were placed in a culture room at 25 °C until isolated into pure cultures. The cultures were saved on a PDA slant (to grow slowly), and stored at 4 °C. All specimens were deposited in the Yunnan Herbal Herbarium (YHH) of Yunnan University. The extypes of the two species were deposited in the Yunnan Fungal Culture Collection (YFCC) of Yunnan University.
Morphological observations

To describe the sexual morphs of the two species, frozen sections or hand sections of the fruiting structures of the stroma were immersed in water and then dyed with lactophenol cotton blue solution for morphological observation and photomicrography (Wang et al. 2021a). For observations on asexual morphs, new colonies were established from old cultures and placed on new PDA plates. The plates were cultured in an incubator for 6 or 12 weeks at 25 °C, and then asexual morphs were observed and recorded (shape, texture, and color of the colonies). Microscope slide cultures were made using the methods of Wang et al. (2020). The morphological observations and measurements were made using Olympus CX40 and BX53 microscopes.

DNA extraction, PCR, and sequencing

Five-centimeter segments from the stroma of fresh specimens and the cultures were used for DNA extraction to ensure the cultures and specimens were the same. Total DNA was extracted using cetyltrimethyl ammonium bromide (CTAB) according to the procedure described by Liu et al. (2001). The DNA was used for PCR amplification. The primer pair, NS4 (5’-CTTCCGTCAATTCTTTAAG-3’) and NS1 (5’-GTAGTCATATGCTTGTCTC-3’) was used to amplify nrSSU (the nuclear ribosomal small subunit) (White et al. 1990). The primer pair, LR5 (5’-ATCCTGAGG-GAAACTTC-3’) and LR0R (5’-GTACCCGCTGAACCTTAAGC-3’) was used to amplify nrLSU (the nuclear ribosomal large subunit) (Vilgalys and Hester 1990; Rehner and Samuels 1994). The primer pair, 983F (5’-GCYCYGGHCAYCGTGAY -TTYAT-3’) and 2218R (5’-ATGACACCRACRGRARGTYYTG-3’) was used to amplify tef-1α (the translation elongation factor 1α) (Rehner and Buckley 2005). The primer pair, CRPB1A (5’-CAYCCWGGYTTYATCAAGAA-3’) and RPB1C (5’-CCNGCDATNTCRTTTRCTTAATRA-3’) were used to amplify rpb1 (the largest subunit of RNA polymerase II) (Castlebury et al. 2004; Bischoff et al. 2006). The primer pair, fRPB2-5F (5’-GAYGAYMGWGATCAYTTYGG-3’) and fRPB2-7cR (5’-CCC-ATRGCTTGYTRYTCCCAT-3’) was used to amplify rpb2 (the second largest subunit of RNA polymerase II) (Liu et al. 1999). The polymerase chain reaction (PCR) for amplification of the five genes and their sequencing were described by Wang et al. (2015).

Phylogenetic analyses

Sequences of the five genes (nrSSU, nrLSU, tef-1α, rpb1, and rpb2) were downloaded from GenBank, and combined with the newly generated sequences in this study. The taxa information of the species and GenBank accession numbers of the five genes are listed in Table1. Sequences of the five genes were aligned using the Clustal X (v.2.0) and MEGA6 (v.6.0) (Larkin et al. 2007; Tamura et al. 2013). Ambiguously aligned sites were eliminated, and the gaps were treated as missing data. The aligned sequences of the five genes (nrSSU, nrLSU, tef-1α, rpb1, and rpb2) were concatenated into a single
combined dataset using MEGA6 (v.6.0.). Conflicts between the five genes were tested using PAUP* (v.4.0b10) (Swofford 2002). The results of the phylogenetic signals in the five genes were not in conflict. The concatenated dataset containing all five genes consisted of 11 data partitions, including one each for nrSSU and nrLSU, and three for each of the three codon positions of tef-1α, rpb1, and rpb2. Phylogenetic analyses based on the five genes were made using BI and ML methods (Ronquist and Huelsenbeck 2003; Stamatakis et al. 2008). We used the optimal model GTR+I with 1,000 rapid bootstrap replicates on the five genes for ML analyses (Stamatakis 2006). We conducted BI analyses using a GTR+G+I model determined by jModelTest (v.2.1.4), conducted on MrBayes (v.3.1.2) for 5 million generations (Darriba et al. 2012). The phylogenetic tree constructed was viewed and edited using FigTree (v.1.4.2) and Adobe Illustrator CS6.

Results

Phylogenetic analyses

A total of 83 samples were used for the phylogenetic analyses. Five gene sequences of the two new species collected were used to reconstruct the phylogenetic framework of Ophiocordyceps. Two taxa of Tolypocladium were designated as the outgroup, and these were, respectively, Tolypocladium ophioglossoides CBS 100239 and Tolypocladium inflatum OSC 71235. The alignment lengths of the 83 samples were composed of 4,486 bp sequence data, 971 bp of nrSSU, 921 bp of nrLSU, 943 bp of tef-1α, 726 bp of rpb1, and 925 of rpb2. The phylogenetic tree showed that these were identical in overall topologies to previous studies. Four clades (Hirsutella clade, O. sobolifera clade, O. sphecocephala clade, and O. ravenelii clade) of Ophiocordyceps were well-supported by ML bootstrap proportions and BI posterior probabilities (Fig. 1). The two new species in the O. sobolifera clade, O. hydrangea and O. bidoupensis, formed two separate subclades. Three samples of O. hydrangea (BP = 98%, PP = 1) formed a separate subclade with O. longissima and O. yakusimensis, while O. bidoupensis (BP = 83%, PP = 0.99) formed a separate subclade with O. houaynhangensis.

Taxonomy

Ophiocordyceps hydrangea H. Yu, W.Q. Zou & D.X. Tang, sp. nov.
MycoBank No: 843203
Fig. 2

Etymology. Hydrangea, referred to the top of the stroma similar to hydrangea.

Holotype. CHINA, Yunnan Province, Jinghong City, Nabanhe National Nature Reserve, 22°8'21.32"N, 100°42'18.35"E, alt. 612 m, on cicada nymphs (Cicadidae, Hemiptera). The material was found in the soil of an evergreen broad-leaved forest, 18 August 2020, H. Yu (YHH 20081, holotype; YFCC 8834, ex-holotype culture).
Multigene phylogeny and morphology of two new species

Figure 1. Phylogenetic relationships of *Ophiocordyceps hydrangea* and related species from the five genes dataset (nrLSU, nrSSU, tef-1α, rpb1, and rpb2) based on ML and BI analyses. Statistical support values of BI posterior probabilities and ML bootstrap proportions (0.5/≥50%) are shown at the nodes.
Sexual morph. The stroma was grown from the head of the host cicada nymph, solitary, the top of the stroma similar to hydrangea, pale pink, 1.6–6.4 cm long. Sexual morph was not observed.

Asexual morph. The colony grew slowly on PDA medium. Cultured at 25 °C for about 12 weeks, the diameter of the colony was 25–28 mm, pale pink, the edge white, hard texture. The back of the colony was white to brown. Surface hyphae rough,

Figure 2. Ophiocordyceps hydrangea A, B fungus on a cicada nymph C, D colony on PDA medium E conidiophores, conidiogenous cells and conidia F–J conidiogenous cells and conidia K conidia. Scale bars: 1 cm (A, B); 2 cm (C, D); 10 μm (E, F, G, I, J); 5 μm (H, K).
hyaline, septate. Conidiophores were cylindrical. Conidiogenous cells were solitary or whorled, ampuliform, smooth-walled, forming on conidiophores or colonies, hyaline, with swollen base, and slender top, 10.6–17.6 µm long, 2.9–4.3 µm wide at the swollen base, and 1.1–2.2 µm wide at the slender top. Conidia hyaline, ovoid or long oval, solitary, 6.8–10.1 × 3.3–4.5 µm.

Host. Cicada nymph (Cicadidae, Hemiptera).

Habitat. In the soil of an evergreen broad-leaved forest.

Distribution. China.

Other material examined. China, Yunnan Province, Jinghong City, Nabanhe National Nature Reserve, 22°8′21.32″N, 100°42′18.35″E, alt. 612 m, on cicada nymphs (Cicadidae, Hemiptera) was found in the soil an evergreen broad-leaved forest, 18 August 2020, H. Yu (YFCC 8832, YFCC 8833).

Notes. Phylogenetic analyses showed that *O. hydrangea* clustered with *O. sobolifera*, *O. longissima*, and *O. yakusimensis* of the *O. sobolifera* clade (Fig. 1). Their hosts were cicada nymphs compared to other species of the *O. sobolifera* clade (Table 2). *Ophiocordyceps hydrangea* was well supported by BI and ML results, forming a separate subclade with *O. sobolifera*, *O. longissima*, and *O. yakusimensis*. The macro-morphology of *O. hydrangea* was clearly different from *O. sobolifera*, *O. longissima*, *O. khonkaenensis*, and *O. yakusimensis*. The stroma of *O. hydrangea* grew from the head of the host cicada nymph, solitary, and the top of the stroma was like a pale pink hydrangea.

Ophiocordyceps bidoupensis H. Yu, W.Q. Zou & D.X. Tang, sp. nov.
MycoBank No: 843204

Etymology. Bidoupensis, referred to the type species collected from Bidoup Nuiba National Park.

Holotype. VIETNAM, Lintong Province, Bidoup Nuiba National Park, 12°8′9.30″N, 108°31′51.38″E, alt. 1678 m, on larva of Elateridae (Coleoptera) buried in soil, emerging from the leaf litter on the forest floor, 16 October 2017, H. Yu (YHH 20036, holotype; YFCC 8793, ex-holotype culture).

Sexual morph. The stroma grew from the head of the host, solitary, solid, cylindrical, 11.8–22.5 cm long, yellow. Stipe clavate, yellow, curved, 10.7–21.2 cm long, 0.7–0.9 mm wide. Fertile parts cylindrical, yellow, slightly curved, 2.9–11.3 mm long, 0.9–1.6 mm wide. Sterile apices cone, yellow, 2.1–7.2 mm long, 0.2–0.7 mm wide. Perithecia immersed, pyriform to lanceolate, brown-yellow, 213.4–405.9 × 74.8–192.4 µm. Asci hyaline, slender, 116.1–192.7 × 4.8–7.5 µm. Asci cap prominent, capitulate, 4.7–6.1 × 3.3–5.4 µm. Ascospores hyaline, filiform, multi-septate.

Asexual morph. The colony grew slowly on PDA medium. Cultured at 25 °C for about 6 weeks, the diameter of the colony was 38–45 mm, white, aerial mycelium on the surface, slightly convex. The back of the colony was grayish-white, dark brown in the middle. Surface smooth of hyphae, hyaline, septate. Conidiogenous cells cone, hyaline, septate, smooth-walled, forming on hyphae, with a hypertrophic base,
tapering abruptly to a thin neck, 13.80–46.4 × 0.42–5.13 µm. Conidia hyaline, oval or briolette, smooth-walled, 2.24–3.61 × 1.49–2.70 µm.

Host. Larva of Elateridae (Coleoptera).

Habitat. The hosts were buried in soil, and the stroma were found in the leaf litter on the forest floor.

Distribution. Vietnam.

Figure 3. *Ophiocordyceps bidoupensis* A–C fungus on an Elateridae larva D, E cross-section of the ascoma showing the perithecial arrangement F–H asci I ascospores J, K colony on PDA medium L–N conidiogenous cells and conidia O conidiogenous cells P, Q conidia. Scale bars: 1 cm (A–C); 200 µm (D); 20 µm (E–H); 10 µm (I); 2 cm (J, K); 5 µm (L–Q).
Notes. Phylogenetic analyses showed that *O. bidoupensis* was clustered with *O. houaynhangensis*, *O. brunneipunctata*, *O. langbianensis*, *O. cossidarum*, and *O. furcatosubulata* of the *O. sobolifera* clade (Fig. 1). Their hosts were larvae of Elateridae compared to cicada nymph hosts of the other species of the *O. sobolifera* clade (Table 2). *Ophiocordyceps bidoupensis* was well-supported by bootstrap support and posterior probabilities, and formed a separate subclade with *O. houaynhangensis*, *O. brunneipunctata*, *O. langbianensis*, and *O. cossidarum*. The morphology of *O. bidoupensis* was clearly different in shape and size from other species of *O. sobolifera* clade (Table 2). The stroma of *O. bidoupensis* grew solitary from the head of the host; sterile apices of the stroma were different from the other species.

Discussion

Ophiocordyceps is the largest genus in the Ophiocordycipitaceae, with a wide range of hosts and various species. At present, more than 290 species of *Ophiocordyceps* have been reported (Index Fungorum 2022). However, only 11 species are described in the *O. sobolifera* clade and their hosts are mainly Coleoptera larvae and cicada nymphs (Hemiptera) (Table 2). We describe the new species *O. hydrangea* attacking cicada nymphs and the new species *O. bidoupensis* attacking Coleoptera larvae. Most species have diverse macro-morphological or micro-morphological characteristics due to the same entomopathogenic fungi having a different host, or different species of entomopathogenic fungi having the same host (Sung et al. 2007, 2011; Araújo et al. 2015; Araújo and Hughes 2016; Shrestha et al. 2016; Luangsa-ard et al. 2018; Crous et al. 2019; Fan et al. 2021; Wang et al. 2021a). Hemiptera hosts are widely present among the species of *Ophiocordyceps*, including species of the *Hirsutella* clade, *O. sobolifera* clade, *O. sphaecocephala* clade, and *O. raveneli* clade.

The entomopathogenic fungi whose host is Hemiptera have diverse morphological characteristics. For example, *O. mutans* (Patouillard) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora (Sung et al. 2007), its hosts were stink bugs (Hemiptera), stromata solitary or multiple, fertile parts was red (Hywel-Jones 1995a; Luangsa-ard et al. 2008), stromata of *O. brunneinigra* (Hemipteran host) were flexuous, arising from between the head and the thorax of the host (Luangsa-ard et al. 2018), stromata of *O. spataforae* Tasanathai, Thanakipipattana, Khonsanit & Luangsa-ard were cylindrical, cream to pale brown (Luangsa-ard et al. 2018). However, from previously reported Hemipteran hosts, only a few hosts of the *O. sobolifera* clade were cicada nymphs in *Ophiocordyceps* (Kobayasi and Shimizu 1963; Sung et al. 2011; Crous et al. 2019). In this study, the host of *O. hydrangea* was a cicada nymph. More interestingly, the *O. hydrangea* was significantly more beautiful than other species; the stroma grew from the head of the host cicada nymph, and the top of the stroma like a hydrangea (Sung et al 2007, 2011; Crous et al. 2019). Coleoptera hosts were common in species of *Ophiocordyceps*. More than 20 species of *Ophiocordyceps* were parasitic on Coleoptera larvae (Shrestha et al. 2016). These species included *O. acicularis* (Ravenel) Petch (Petch 1933), *O. annulata* (Kobayasi & Shimizu) Spatafora, Kepler & C.A. Quandt (Kobayasi and Shimizu 1982; Spatafora et al. 2015), *O. aphodii*
Species	Host	Stromata	Perithecia	Asci	Ascospores	Conidiogenous cells	Conidia	References
O. bidoupensis	Larva of Elateridae (Coleoptera)	Solitary, solid, cylindrical, yellow, 11.8–22.5 cm long.	Immersed, pyriform to lanceolate, brown-yellow, 213.4–405.9 × 74.8–192.4 μm.	Hyaline, slender, 116.1–192.7 × 4.8–7.5 μm.	Hyaline, filiform, multi-septate.	Cone, hyaline, septate, smooth-walled, forming on hyphae, with a hypertrophic base, tapering abruptly into a thin neck, smooth-walled, 13.8–46.4 × 0.42–5.13 μm.	Oval or briolette, hyaline, smooth-walled, 2.24–3.61 × 1.49–2.70 μm.	This study
O. brunneipunctata	Larva of Elateridae (Coleoptera)	Solitary, rarely up to 3, simple, 25–90 mm high.	Immersed, perithecioid, brown, ovate to pyriform, brown-walled, 355–454 × 136–171 μm.	Hyaline, cylindrical, 8-spored, 174–221 × 5.7–7 μm.	Hyaline, filiform, multi-septate; 131–153 × 1.8–2.2 μm, breaking into 32 part-spores.	–	–	Hywel-Jones 1995b; Luangsawad 2008
O. cossidarum	Larva of Cossidae (Lepidoptera)	Solitary, simple, 40–70 mm high.	Immersed, red, ovate to phialide, red-walled, 8–12 μm.	Hyaline, cylindrical, 138.8–202.5 × 4.3–6.0 μm.	Hyaline, filiform, multi-septate, finally breaking into secondary ascospores, 3.7–5.3 × 1.3–2.0 μm.	Polyphialidic, forming on conidiophores or side branches, hyaline, with a slender or subulate base, tapering gradually, smooth-walled or verruculose, 3.5–15.8 × 0.9–1.7 μm.	Solitary, asperate, smooth-walled, broadly ellipsoid or ellipsoid, 1.5–2.5 × 1.2–1.9 μm.	Wang et al. 2021a
O. ferratombulata	Larva of Elateridae (Coleoptera)	Single, solid, yellow to brown, 40–80 mm long, 1.5–2.2 mm wide.	Immersed, long ovoid or pyriform, 289.6–405.8 × 87.0–159.2 μm.	Hyaline, cylindrical, 200–250 × 5.0–6.0 μm.	Hyaline, filiform, multi-septate, finally breaking into secondary ascospores, 5.7–5.5 × 1.3–2.0 μm.	Monophialidic, philadés shaped with long necks, up to 30 μm long and 2–4 μm in breadth; philadés necks up to 18 μm long and 0.5 μm in breadth.	Hyaline, smooth, spherical, 2–3 μm.	Crous et al. 2018
O. houaynhangensis	Larva of Coleoptera	Solitary, cylindrical, cream, up to 11 cm long and 1.5–2.5 mm in width.	Completely immersed, obclavate, 300–450 × 80–170 μm.	Cylindrical, 100–250 × 4.7–5.5 μm.	Hyaline, cylindrical, breaking into 32 small truncate part-spores, 4–7 × 1–2 μm.	Monophialidic, phiadés flattened-shaped with long necks, up to 30 μm long and 2–4 μm in breadth; phiadés necks up to 18 μm long and 0.5 μm in breadth.	Hyaline, smooth, spherical, 2–3 μm.	Crous et al. 2018
O. langbianensis	Larva of Coleoptera	Solitary, rarely branched, 40–100 mm long.	Immersed, ovate or pyriform, 260–400 × 100–190 μm.	Cylindrical, with thickened cap, 200–250 × 5.0–6.0 μm.	Filiform, multi-septate, articulated in long-chain after discharging, sometimes breaking into 1-celled part-spores, 5–7.5 × 1.3–2 μm.	Divergent.	Chains, elliptical.	Lao et al. 2021
O. sobolifera	Cicada nymph (Cicadidae, Hemiptera)	Commonly single, rarely fasciculated by twos or threes, arising from head among polster, clavate or cylindrical 2–8 cm long, 2–6 mm thick, become hollow after maturity.	Rectangularly immersed, ampullaceous 500–600 × 220–260 μm, with somewhat long neck, ostiole somewhat prominent, walls hyaline 8–16 μm thick.	Cylindrical, 400–470 × 5.6–6.3 μm.	Finally breaking into secondary ascospores, truncate at both ends, 6–12 × 1.0–1.3 μm.	–	–	Kobayasi and Shimizu 1963
O. subaerimensis	Cicada nymph (Cicadidae, Hemiptera)	Very long attaining 14 cm, arising from the apical part between eyes.	Wholly embedded, narrow ovoid or almost naviculate, 740–800 × 170–230 μm, without protruding ostiole, neck almost destitute, wall 21–23 μm thick, composed of very thin cells.	Cylindrical, 270–310 × 5 μm.	Finally breaking into secondary ascospores, long cylindrical, somewhat attenuated on both sides, terminally truncate, 10–15 × 1 μm.	–	–	Kobayasi and Shimizu 1963
Species	Host	stromata	Perithecia	Asci	Ascospores	Conidiogenous cells	Conidia	References
--------------------	---------------------------	---------------------------------	------------	-----------------------	-----------------------	---------------------	-----------------------	-------------------
O. longissima	Cicada nymph (Cicadidae, Homoptera)	5–20 cm long, sometimes much longer.	Ovoid to long ovoid, with a short neck, 440–590 × 130–300 μm.	190–350 × 5–6 μm.	–	–	–	Sung et al. 2011
O. khonkaenensis	Cicada nymph (Hemiptera)	Variable in number, solitary to three, 20–30 mm long and 2–3 mm in breadth.	Immersed, flask shaped, 590–700 × 200–300 μm.	Cylindrical, 237.5–337.5 × 5–6 μm.	Filliform, 300–360 × 1–1.5 μm, readily breaking into 32 parts, 7–13 × 1–1.5 μm.	Phialidic, hirsutella-like, 5.5–11 × 2–3 μm.	Hyaline, fusiform, smooth-walled, 3–5.5 × 1–3 μm.	Crous et al. 2019
O. hydrangea	Cicada nymph (Cicadidae, Hemiptera)	Solitary, the top of the stroma similar to hydrangea, pale pink, 1.6–6.4 cm long.	–	–	–	–	–	This study

Multigene phylogeny and morphology of two new species.
G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora (Mathieson 1949; Sung et al. 2007), *O. brunneipunctata* (Hywel-Jones) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora (Hywel-Jones 1995b; Sung et al. 2007; Luangsa-ard et al. 2008), *O. furcatusubulata* H. Yu, Y. Wang & Y.B. Wang (Wang et al. 2021a), *O. houaynhangensis* Keochanpheng, Thanakitp., Mongkol., & Luangsa-ard (Crous et al. 2018), *O. langbianensis* T.D. Lao, T.A.H. Le & N.B. Truong (Lao et al. 2021), *O. melolonthae* (Tulasne & C. Tulasne) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora (Sung et al. 2007), and *O. ravenelii* (Berkeley & M.A. Curtis) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora (Sung et al. 2007). Most species with Coleopteran host occur in soil and have solid, cylindrical, and yellow stromata. This is consistent with the results of this study.

Phylogenetic analyses based on the data from five genes showed that our phylogenetic framework of *Ophiocordyceps* was consistent with previous studies (Sung et al. 2007, 2011; Quandt et al. 2014; Simmons et al. 2015; Crous et al. 2018, 2019; Wang et al. 2018, 2021a; Lao et al. 2021). The genus of *Ophiocordyceps* consists of four clades, including the *Hirsutella* clade, *O. sobolifera* clade, *O. sphecocephala* clade, and *O. ravenelii* clade. Phylogenetic analyses showed that *O. hydrangea* clustered with *O. sobolifera, O. longissima,* and *O. yakusimensis* in the *O. sobolifera* clade, and *O. bidoupensis* clustered with *O. houaynhangensis, O. brunneipunctata, O. langbianensis, O. cossidarum,* and *O. furcatusubulata* in the same clade. Species within the *O. sobolifera* clade had different hosts, and morphological characteristics. These two new species clustered in two separate subclades within the *O. sobolifera* clade. The hosts of one subclade were cicada nymphs with stromata cylindrical or sarciniform, bright-colored, conidia were macro (Kobayasi and Shimizu 1963; Crous et al. 2019), and the hosts of another subclade were Coleoptera, with stromata cylindrical, conidia small, and a sterile apex on top of the stroma (Hywel-Jones 1995b; Luangsa-ard et al. 2008; Crous et al. 2018; Lao et al. 2021; Wang et al. 2021a). Therefore, the species of the *O. sobolifera* clade could be divided into two separate subclades when more materials were collected.

The species of *O. sobolifera* clade had diverse morphological characteristics (Table 2). The entomopathogenic fungi with cicada nymph hosts shared similar characteristics, stromata solitary or multiple, cylindrical, and bright-colored. However, they also differed in morphology. For example, *O. sobolifera* lacked a protruding ostiole with immersed perithecia (Kobayasi and Shimizu 1963), and this seems to be contrary to *O. yakusimensis* (Kobayasi and Shimizu 1963). Stromata of *O. longissima* were longer than other species, and had a short neck in perithecia (Sung et al. 2011). Compared to the ovoid perithecia of *O. longissima* and *O. yakusimensis, O. khonkaenensis* was flask-shaped (Crous et al. 2019). The top of the stroma of *O. hydrangea* was similar to hydrangea, the size and shape of conidiogenous cells and conidia were different from *O. khonkaenensis* (Table 2). The entomopathogenic fungi using Coleoptera hosts shared similar characteristics, such as stromata solitary, cylindrical, sterile apices on top, bright-colored. However, they had different shape and size of perithecia, asci, ascospores, conidiogenous cells, and conidia. The perithecia of *O. bidoupensis* was pyriform to lanceolate and brown-yellow. It was similar to *O. brunneipunctata, O. furcatusubulata,* and *O. langbianensis,* and only *O. houaynhangensis* was clavate.
Multigene phylogeny and morphology of two new species

(Hywel-Jones 1995b; Luangsa-ard et al. 2008; Crous et al. 2018; Lao et al. 2021; Wang et al. 2021a). Conidiogenous cells of *O. bidoupensis* were cone-shaped, forming on hyphae, with a hypertrophic base, tapering abruptly into a thin neck, smooth-walled, with a smaller thin neck (0.42 µm wide) than *O. brunneipunctata* (0.5 µm), *O. furcatosubulata* (0.9 µm), and *O. bouaynhangensis* (0.5 µm).

Due to the unique geographical locations and climate conditions in China and Vietnam, these areas contain a rich species diversity of *Cordyceps* s.l. However, our survey of *Cordyceps* s.l. in China and Vietnam only represented a small portion of the total. More samples of *Cordyceps* s.l. will continue to be collected in China and South-east Asia in order to uncover additional undescribed taxa, and revise species with the incorrect classification position of this group.

Acknowledgements

This work was funded by the National Natural Science Foundation of China (31870017, 32060007).

References

Araújo JPM, Evans HC, Geiser DM, Mackay WP, Hughes DP (2015) Unravelling the diversity behind the *Ophiocordyceps unilateralis* (Ophiocordycipitaceae) complex: Three new species of zombie-ant fungi from the Brazilian Amazon. Phytotaxa 220(3): 224–238. https://doi.org/10.11646/phytotaxa.220.3.2

Araújo JPM, Hughes DP (2016) Diversity of Entomopathogenic Fungi: Which Groups Conquered the Insect Body? Advances in Genetics 94: 1–39. https://doi.org/10.1016/bs.adgen.2016.01.001

Araújo JPM, Hughes DP (2019) Zombie-Ant Fungi Emerged from Non-manipulating, Beetle-Infecting Ancestors. Current Biology 29(21): 1–4. https://doi.org/10.1016/j.cub.2019.09.004

Ban S, Sakane T, Nakagiri A (2015) Three new species of *Ophiocordyceps* and overview of anamorph types in the genus and the family Ophiocordycipitaceae. Mycological Progress 14(1): e1017. https://doi.org/10.1007/s11557-014-1017-8

Bischoff JF, Rehner SA, Humber RA (2006) *Metarhizium frigidum* sp. nov.: A Cryptic Species of *M. anisopliae* and a Member of the *M. flavoviride* Complex. Mycologia 98(5): 737–745. https://doi.org/10.1080/15572536.2006.11832645

Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004) Multigene phylogeny reveals new lineage for *Stachybotrys chartarum*, the indoor air fungus. Mycological Research 108(8): 864–872. https://doi.org/10.1017/S0953756204000607

Chen JY, Cao YQ, Yang DR, Li MH (2011) A new species of *Ophiocordyceps* (Clavicipitaceae, Ascomycota) from southwestern China. Mycotaxon 115(1): 1–4. https://doi.org/10.5248/115.1
Chen SQ, Wang YB, Zhu KF, Yu H (2021) Mitogenomics, Phylogeny and Morphology Reveal Ophiocordyceps pingbianensis sp. nov., an Entomopathogenic Fungus from China. Life (Chicago, Ill.) 11(7): e686. [16 pp] https://doi.org/10.3390/life11070686

Chen ZH, Dai YD, Yu H, Yang K, Yang ZL, Yuan F, Zeng WB (2013) Systematic analyses of Ophiocordyceps lanpingensis sp. nov. a new species of Ophiocordyceps in China. Microbiological Research 168(8): 525–532. https://doi.org/10.1016/j.micres.2013.02.010

Crous PW, Luangsa-ard JJ, Wingfield MJ, Carnegie AJ, Hernández-Restrepo M, Lombard L, Roux J, Barreto RW, Baseia IG, Cano-Lira JF, Martin MP, Morozova OV, Stchigel AM, Summerell BA, Brandrud TE, Dimar B, García D, Giraldino A, Guzjar J, Gussman LFP, Khamsuntorn P, Noordeloos ME, Nuankaew S, Pinruan U, Rodríguez-Andrade E, Souza-Motta CM, Thangavel R, van Iperen AL, Abreu VP, Accioly T, Alves JL, Andrade JP, Bahram M, Baral HO, Barbier E, Barnes CW, Bendiksen E, Bernard E, Bezerra JDP, Bezerra JL, Bizio E, Blair JE, Bulyonkova TM, Cabral TS, Caiafa MV, Cantillo T, Colmán AA, Conceição LB, Cruz S, Cunha AOB, Darveaux BA, da Silva AL, da Silva GA, da Silva GM, da Silva RMF, de Oliveira RJV, Oliveira RL, De Souza JT, Dueñas M, Evans HC, Epifani F, Felipe MTC, Fernández-López J, Ferreira BW, Figueiredo CN, Filippova NV, Flores JA, Gené J, Ghorbani G, Gibertoni TB, Glushakova AM, Healy R, Huhndorf SM, Iturrieta-González I, Javan-Nikkhah M, Juciano RF, Jurjević Ž, Khamsuntorn P, Krista-Greilhuber I, Li YC, Lima AA, Machado AR, Madrid H, Magalhães OMC, Marbach PAS, Melando GCS, Miller AN, Mongkolamsrit S, Nascimento RP, Oliveira TGL, Ordoñez ME, Orzes R, Palma MA, Pearce CJ, Pereira OL, Perrone G, Peterson SW, Pham THG, Piontelli E, Pordel A, Quijada L, Raja HA, Rosas de Paz E, Ryvarden L, Saitta A, Salcedo SS, Sandoval-Denis M, Santos TAB, Seifert KA, Silva BDB, Smith ME, Soares AM, Sommai S, Sousa JO, Sueteron S, Susca A, Tedersoo L, Telleria MT, Thanakitpipattana D, Valenzuela-Lopez N, Visagie CM, Zapata M, Groenewald JZ (2018) Fungal Planet description sheets: 785–867. Persoonia 41(1): 238–417. https://doi.org/10.3767/persoonia.2018.41.12

Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P, Carnegie AJ, Moreno G, Luangsa-ard J, Thangavel R, Alexandrova AV, Baseia IG, Bellanger JM, Bessette AE, Bessette AR, De la Peña-Lastra S, García D, Gené J, Pham THG, Heykoop M, Malysheva E, Malysheva V, Martín MP, Morozova OV, Noisripoom W, Overton BE, Rea AE, Sewall BJ, Smith ME, Smyth CW, Tawanathai K, Visagie CM, Adamčík S, Alves A, Andrade JP, Aninat MJ, Araújo RVB, Bordallo J, Boufleur T, Baronecchi R, Barreto RW, Bolin J, Cabero J, Caboñ M, Cañeta G, Caffot MLH, Cai L, Carlavilla JR, Chávez R, de Castro RRL, Delgat L, Deschuyteneer D, Dios MM, Domínguez LS, Evans HC, Eyssartier G, Ferreira BW, Figueiredo CN, Liu F, Fournier J, Galli-Terasawa LV, Gil-Durán C, Glinke C, Gonçalves MFM, Gryta H, Guzjar J, Himaman W, Hywel-Jones N, Iturrieta-González I, Ivanushkina NE, Jargeat P, Khalid AN, Khan J, Kiran M, Kiss L, Kochkina GA, Kolářík M, Kubátová A, Lodge DJ, Loizides M, Luque D, Manjón JL, Marbach PAS, Massola Jr NS, Mata M, Miller AN, Mongkolamsrit S, Moreau PA, Morte A, Mujic A, Navarro-Ródenas A, Németh MZ, Nógráda TF, Nováková A, Olariaga I, Ozerskaya SM, Palma MA, Petters-Vandresen DAL, Piontelli E, Popov ES, Rodríguez A, Requejo Ó, Rodrigues ACM, Rong IH, Roux J, Seifert KA, Silva BDB, Sklenár F, Smith JA, Sousa JO, Souza HG, De Souza JT, Švec K, Tanchaud P, Tanney JB, Terasawa F, Thanakitpipattana D, Torres-García D, Vaca I, Vaghefi N, van Iperen AL, Vasilenko OV, Verbeken A, Yilmaz N, Zamora JC,
Zapata M, Jurjević Ž, Groenewald JZ (2019) Fungal Planet description sheets: 951–1041. Persoonia 43(1): 223–425. https://doi.org/10.3767/persoonia.2019.43.06
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): 772–772. https://doi.org/10.1038/nmeth.2109
Doan UV, Rojas BM, Kirby R (2017) Unintentional ingestion of *Cordyceps* fungus-infected cicada nymphs causing ibotenic acid poisoning in Southern Vietnam. Clinical Toxicology 1–4(8): 893–896. https://doi.org/10.1080/15563650.2017.1319066
Fan Q, Wang YB, Zhang GD, Tang DX, Yu H (2021) Multigene Phylogeny and Morphology of *Ophiocordyceps alboperitheciata* sp. nov., A New Entomopathogenic Fungus Attacking Lepidopteran Larva from Yunnan, China. Mycobiology 49(2): 133–141. https://doi.org/10.1080/12298093.2019.1903130
Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A, Thilini Chethana KW, Clericuzio M, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, He MQ, Hongsanan S, Huang SK, Jayasiri SC, Jayawardena RS, Karunarathna A, Konta S, Kušan I, Lee H, Li JF, Lin CG, Liu NG, Lu YZ, Luo ZL, Manawasinghe IS, Mapook A, Perera RH, Phookamsak R, Phukhamsakda C, Siedlecki I, Soares AM, Tennakoon DS, Tian Q, Tibpromma S, Wanasinghe DN, Xiao YP, Yang J, Zeng XY, Abdel-Aziz FA, Li WJ, Senanayake IC, Shang QJ, Daranagama DA, de Silva NI, Thambugala KM, Abdel-Wahab MA, Bahkali AH, Berbee ML, Boonmee S, Bhat DJ, Bulgakov TS, Buyck B, Camporesi E, Castañeda-Ruiz RF, Chomnunti P, Doilom M, Dovana F, Gibertoni TB, Jadan M, Jeewon R, Jones EBG, Kang JC, Karunarathna SC, Lim YW, Liu JK, Liu ZY, Plautz Jr HL, Lumyong S, Maharachchikumbura SSN, Matočec N, McKenzie EHC, Mešić A, Miller D, Pawłowska J, Pereira OL, Promputtha I, Romero AI, Ryvarden L, Su HY, Suetrong S, Tkalčec Z, Vizzini A, Wen TC, Wrisstra-sameewong K, Wrzosek M, Xu JC, Zhao Q, Zhao RL, Mortimer PE (2017) Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87(1): 1–235. https://doi.org/10.1007/s13225-017-0391-3
Hywel-Jones NL (1995a) *Cordyceps nutans* and its anamorph, a pathogen of Hemipteran bugs in Thailand. Mycological Research 99(6): 724–726. https://doi.org/10.1016/S0953-7562(09)80536-4
Hywel-Jones NL (1995b) *Cordyceps brunnea-punctata* sp. nov. infecting beetle larvae in Thailand. Mycological Research 99(10): 1195–1198. https://doi.org/10.1016/S0953-7562(09)80277-3

Index Fungorum (2022) Index Fungorum. http://www.indexfungorum.org/names/Names.asp [Accessed on 26.04.2022]
Kobayasi Y (1941) The genus *Cordyceps* and its allies. Science Reports of the Tokyo Bunrika Daigaku. Section B 5: 53–260.
Kobayasi Y (1982) Keys to the taxa of the genera *Cordyceps* and *Torrubiella*. Nippon Kingakkai Kaiho 23: 329–364.
Kobayasi Y, Shimizu D (1963) Monographic studies of *Cordyceps* 2. Group parasitic on Cicadae. Bulletin of the National Science Museum, Tokyo 6: 286–314.
Kobayasi Y, Shimizu D (1982) *Cordyceps* species from Japan. 4. Bulletin of the National Science Museum, Tokyo 8(3): 79–91.
Lao TD, Le TAH, Truong NB (2021) Morphological and genetic characteristics of the novel entomopathogenic fungus *Ophiocordyceps langbianensis* (Ophiocordycipitaceae, Hypocreales)
from Lang Biang Biosphere Reserve, Vietnam. Scientific Reports 11(1): e1412. https://doi.org/10.1038/s41598-020-78265-7
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 23(21): 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 1799(12): 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
Liu ZY, Liang ZQ, Whalley AJS, Yao YJ, Liu AY (2001) Cordyceps brittlebankisoides, a new pathogen of grubs and its anamorph, Metarhizium anisopliae var. majus. Journal of Invertebrate Pathology 78(3): 178–182. https://doi.org/10.1006/jipa.2001.5039
Luangsa-ard JJ, Ridaew R, Tisanathai K, Thanakitpipattana D, Hywel-Jones N (2011) Ophiocordyceps halabalatensis: A new species of Ophiocordyceps pathogenic to Camponotus gigas in Hala Bala Wildlife Sanctuary, Southern Thailand. Fungal Biology 115(7): 608–614. https://doi.org/10.1016/j.funbio.2011.03.002
Luangsa-ard JJ, Tisanathai K, Mongkolsamrit S, Hywel-Jones N (2008) Atlas of Invertebrate-Pathogenic Fungi of Thailand (Volume 2). National Center for Genetic Engineering and Biotechnology 2: 75
Luangsa-ard JJ, Tisanathai K, Thanakitpipattana D, Khonsanit A, Stadler M (2018) Novel and interesting Ophiocordyceps spp. (Ophiocordycipitaceae, Hypocreales) with superficial perithecia from Thailand. Studies in Mycology 89(1): 125–142. https://doi.org/10.1016/j.simyco.2018.02.001
Luyen VT, Hanh TV, Luan TH, Thao NTB, Hiep DM, Nguyen TB, Thuan LD (2017) Discovery of entomopathogenic fungi Cordyceps takaomontana at Langbian mountain, Lam Dong, Vietnam. Journal of Science Ho Chi Minh City Open University 1(13). https://doi.org/10.15625/2525-2518/55/1A/12378
Mains EB (1958) North American entomogenous species of Cordyceps. Mycologia 50(2): 169–222. https://doi.org/10.1080/00275514.1958.12024722
Massée G (1895) A revision of the genus Cordyceps. Annals of Botany 9(1): 1–44. https://doi.org/10.1007/s10393-007-0001-5
Mathieson J (1949) Cordyceps aphodii, a new species, on pasture cockchafer grubs. Transactions of the British Mycological Society 32(2): 113–136. https://doi.org/10.1016/S0007-1536(49)80001-5
Mongkolsamrit S, Nguyen TT, Tran NL, Luangsa-ard JJ (2011) Moelleriella pumatensis, a new entomogenous species from Vietnam. Mycotaxon 117(1): 45–51. https://doi.org/10.5248/117.45
Nguyen TL, Vo TBC (2005) Efficacy of some new isolates of Metarhizium anisopliae and Beauveria bassiana against rice earheadbug, Leptocorisa acuta. Omonrice 13: 69–75.
Petch T (1931) Notes on entomogenous fungi. Transactions of the British Mycological Society 16(1): 55–75. https://doi.org/10.1016/S0007-1536(31)80006-3
Petch T (1933) Notes on entomogenous fungi. Transactions of the British Mycological Society 18(1): 48–75. https://doi.org/10.1016/S0007-1536(33)80026-X
Quandt CA, Kepler RM, Gams W, Araújo JPM, Ban S, Evans HC, Hughes D, Humber R, Hywel-Jones N, Li ZZ, Luangsa-ard JJ, Rehner SA, Sanjuan T, Sato H, Shrestha B, Sung GH, Yao YJ, Zare R, Spatafora JW (2014) Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in *Tolypocladium*. IMA Fungus 5(1): 121–134. https://doi.org/10.5598/imafungus.2014.05.01.12

Rehner SA, Buckley E (2005) A *Beauveria* phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to *Cordyceps* teleomorphs. Mycologia 97(1): 84–98. https://doi.org/10.3852/mycologia.97.1.84

Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98(6): 625–634. https://doi.org/10.1016/S0953-7562(09)80409-7

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19(12): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Sanjuan TI, Franco-Molano AE, Kepler RM, Spatafora JW, Tabima J, Vasco-Palacios AM, Restrepo S (2015) Five new species of entomopathogenic fungi from the Amazon and evolution of neotropical *Ophiocordyceps*. Fungal Biology 119(10): 901–916. https://doi.org/10.1016/j.funbio.2015.06.010

Shrestha B, Tanaka E, Hyun MW, Han JG, Kim CS, Jo JW, Han SK, Oh J, Sung GH (2016) Coleotropical and lepidopteran hosts of the entomopathogenic genus *Cordyceps* sensu lato. Journal of Mycology 2016: 1–14. https://doi.org/10.1155/2016/7648219

Simmons DR, Kepler RM, Rehner SA, Groden E (2015) Phylogeny of *Hirsutella* species (Ophiocordycipitaceae) from the USA: Remediating the paucity of *Hirsutella* sequence data. IMA Fungus 6(2): 345–356. https://doi.org/10.5598/imafungus.2015.06.02.06

Spatafora JW, Quandt CA, Kepler RM, Sung GH, Shrestha B, Hywel-Jones NL, Luangsa-ard JJ (2015) New 1F1N Species Combinations in Ophiocordycipitaceae (Hypocreales). IMA Fungus 6(2): 357–362. https://doi.org/10.5598/imafungus.2015.06.02.07

Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics (Oxford, England) 22(21): 2688–2690. https://doi.org/10.1093/bioinformatics/btl446

Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the raxml web servers. Systematic Biology 57(5): 758–771. https://doi.org/10.1080/10635150802429642

Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi. Studies in Mycology 57: 5–59. https://doi.org/10.3114/sim.2007.57.01

Sung GH, Shrestha B, Han SK, Sung JM (2011) Growth and Cultural Characteristics of *Ophiocordyceps longissima* Collected in Korea. Mycobiology 39(2): 85–91. https://doi.org/10.4489/MYCO.2011.39.2.085

Swofford DL (2002) PAUP*, phylogenetic analysis using parsimony (*and other methods). version 4.0b10. Sunderland, MA, Sinauer. https://doi.org/10.1111/j.0014-3820.2002.tb00191.x

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30(12): 2725–2729. https://doi.org/10.1093/molbev/mst197
Tasanathai K, Noisripoom W, Chaitika T, Khonsanit A, Hasin S, Luangsa-ard J (2019) Phylogenetic and morphological classification of Ophiocordyceps species on termites from Thailand. MycoKeys 56: 101–129. https://doi.org/10.3897/mycokeys.56.37636

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Wang Y, Dai YD, Yang ZL, Guo R, Yu H (2021b) Morphological and Molecular Phylogenetic Data of the Chinese Medicinal Fungus Cordyceps liangshaniensis Reveal Its New Systematic Position in the Family Ophiocordycipitaceae. Mycobiology 49(9): 1–11. https://doi.org/10.1080/12298093.2021.1923388

Wang Y, Wu HJ, Tran NL, Zhang GD, Souvanhnachit S, Wang YB, Yu H (2021a) Ophiocordyceps furcatosubulata, a new entomopathogenic fungus parasitizing beetle larvae (coleoptera: Elateridae). Phytotaxa 482(3): 268–278. https://doi.org/10.11646/phytotaxa.482.3.5

Wang YB, Nguyen TT, Dai YD, Yu H, Zeng WB, Wu CK (2018) Molecular phylogeny and morphology of Ophiocordyceps unituberculata sp. nov. (Ophiocordycipitaceae), a pathogen of caterpillars (Noctuidae, Lepidoptera) from Yunnan, China. Mycological Progress 17(6): 745–753. https://doi.org/10.1007/s11557-017-1370-5

Wang YB, Wang Y, Fan Q, Duan DE, Zhang GD, Dai RQ, Dai YD, Zeng WB, Chen ZH, Li DD, Tang DX, Xu ZH, Sun T, Nguyen TT, Tran NL, Dao VM, Zhang CM, Huang LD, Liu YJ, Zhang XM, Yang DR, Sanjuan T, Liu XZ, Yang ZL, Yu H (2020) Multigene phylogeny of the family Cordycipitaceae (Hypocreales): New taxa and the new systematic position of the Chinese cordycipitoid fungus Paecilomyces hepiali. Fungal Diversity 103(1): 1–46. https://doi.org/10.1007/s13225-020-00457-3

Wang YB, Yu H, Dai YD, Chen ZH, Zeng WB, Yuan F, Liang ZQ (2015) Polycephalomyces yunnanensis (Hypocreales), a new species of Polycephalomyces parasitizing Ophiocordyceps nutans and stink bugs (hemipteran adults). Phytotaxa 208: 34–44. https://doi.org/10.11646/phytotaxa.208.1.3

White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Application, Academic Press, New York, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Xiao YP, Hongsanan S, Hyde KD, Brooks S, Xie N, Long FY, Wen TC (2019) Two new entomopathogenic species of Ophiocordyceps in Thailand. MycoKeys 47: 53–74. https://doi.org/10.3897/mycokeys.47.29898

Xu ZL, Tran NL, Wang Y, Zhang GD, Dao VM, Nguyen TT, Wang YB, Yu H (2022) Phylogeny and morphology of Ophiocordyceps puluongensis sp. nov. (Ophiocordycipitaceae, Hypocreales), a new fungal pathogen on termites from Vietnam. Journal of Invertebrate Pathology 192: 107771. https://doi.org/10.1016/j.jip.2022.107771

Yang ZL, Qin J, Xia C, Hu Q, Li QQ (2015) Ophiocordyceps highlandensis, a new entomopathogenic fungus from Yunnan, China. Phytotaxa 204(4): 287–295. https://doi.org/10.11646/phytotaxa.204.4.5