Target DNA Structure Plays a Critical Role in RAG Transposition

Jennifer E. Posey1,2, Malgorzata J. Pytlos3*, Richard R. Sinden3*, David B. Roth2*

1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America, 2 Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, New York, New York, United States of America, 3 Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, Houston, Texas, United States of America

Antigen receptor gene rearrangements are initiated by the RAG1/2 protein complex, which recognizes specific DNA sequences termed RSS (recombination signal sequences). The RAG recombinase can also catalyze transposition: integration of a DNA segment bounded by RSS into an unrelated DNA target. For reasons that remain poorly understood, such events occur readily in vitro, but are rarely detected in vivo. Previous work showed that non-B DNA structures, particularly hairpins, stimulate transposition. Here we show that the sequence of the four nucleotides at a hairpin tip modulates transposition efficiency over a surprisingly wide (>100-fold) range. Some hairpin targets stimulate extraordinarily efficient transposition (up to 15%); one serves as a potent and specific transposition inhibitor, blocking capture of targets and destabilizing preformed target capture complexes. These findings suggest novel regulatory possibilities and may provide insight into the activities of other transposases.

Introduction

The normal gene-rearranging activities of V(D)J recombination bear a striking resemblance to transposition by certain “cut-and-paste” transposases, including members of the retroviral integrase superfamily [1–3] and the hAT family [4]. In both reactions, a segment of DNA bounded by specific recognition elements is excised from the chromosome [1,2]. The key difference is that in transposition, the transposase inserts the excised fragment elsewhere in the genome, whereas in V(D)J recombination, the excised segment is typically lost from the cell [1,2]. Purified RAG proteins can, however, transpose a DNA sequence flanked by two conserved sequence elements (recombination signal sequences or RSS) differing in length (i.e., a 12-RSS and a 23-RSS) into an unrelated DNA target [5,6]. This discovery led to new models for RAG involvement in many of the as-yet unexplained oncogenic translocations involving immunoglobulin and T cell receptor loci [2,6–8]. To date, however, few in vivo rearrangements have been unequivocally identified as RAG transposition events [9–11]. In light of this, investigators have proposed a variety of potential regulatory controls that might limit transposition, such as reversal of the reaction by disintegration [7] or inhibition of transposition by the C-terminus of RAG2 [12–14] or by GTP [13].

Given that some transposases show distinct preferences for certain targets, it was reasonable to hypothesize that target site selectivity could serve as a mechanism to curb RAG-mediated transposition without affecting RAG recombination activity [15]. Insertion into preferred target sites could steer transposition events to innocuous genomic locations [15,16] or into the formation of harmless alternative V(D)J recombination products termed “open-and-shut” and “hybrid” joints [16]. Early studies suggested that RAG transposition events, although detected throughout plasmid target sequences, favor GC-rich regions [5,6]. A subsequent study of intramolecular transposition reported a modest preference for a GC-rich hotspot sequence located near the center of a short (329 base pair [bp]) excised fragment [17], although the short length of the target and the limited flexibility of short duplex DNA fragments would restrict the range of other available target sequences in this situation. More recent experiments showed that transposition is stimulated by targets bearing hairpin ends; even in a relatively large (2,700 bp) plasmid target, the overwhelming majority of transposition events (84%) occurred within the terminal four nucleotides of the hairpin tips of a cruciform structure [16]. Subsequent work confirmed that cruciforms are preferred targets [11].

Given that the terminal four nucleotides of a hairpin strongly influence recognition by structure-specificendonucleases [18], we sought to determine how the sequence of the terminal nucleotides of a hairpin might influence the efficiency of transposition. We investigated the ability of oligonucleotide hairpin targets bearing each of 16 possible self-complementary four-nucleotide hairpin tip sequences to stimulate transposition, and we also analyzed several different cruciform tip sequences in the context of supercoiled plasmids. Our data show that certain hairpin sequences...

Citation: Posey JE, Pytlos MJ, Sinden RR, Roth DB (2006) Target DNA structure plays a critical role in RAG transposition. PLoS Biol 4(11): e350. DOI: 10.1371/journal.pbio.0040350
Figure 1. Hairpin Tip Sequence Modulates Transposition Efficiency

(A) The complete sequence of hairpin “AC,” one of the 16 oligonucleotide-encoded inverted repeat targets tested. All inverted repeats fold into hairpins sharing the same stem sequence (box). Hairpins differ only in the four nucleotides surrounding the dyad axis of the inverted repeat (arrowhead) and are named according to the first two nucleotides of this sequence (bold).

(B) Schematic of typical in vitro transposition reaction. Transposition products are formed from covalent attachment of P32-labeled (star [\(\star\)]) signal ends to hairpin targets by RAG complex.

(C) Hairpin sequence affects efficiency of transposition. Following a 30-min reaction, transposition products are separated on a 15% sequencing gel.

(D) and (E) Hairpin sequences are differentially targeted by the RAG transposase using both core RAG1/core RAG2 (D) and core RAG1/full-length RAG2 (E) preparations. Graphs depict efficiency of transposition into each hairpin target after a 30-min reaction, averaged over three experiments with two separate RAG protein preparations. Error bars represent standard error of the mean. “x” indicates the median value for the 16 hairpin tips.

(F) Disintegration does not explain the variation in hairpin targeting. Graph depicts time course of transposition into the GC (solid line) and TA (dotted line) targets. At time points earlier than 30 min, bands representing transposition products formed from the TA target were not substantial enough for quantification. Transposition products formed from the CT target were also prepared at the same time points; there was not sufficient product for quantification.

Data for (D), (E), and (F) obtained using PhosphoImager and quantified using ImageQuant software.

M, DR117TnRef, reference oligonucleotide used as a size marker for transposition products; No RAG, mock reaction lacking RAG proteins; SE, signal ends; TnP, transposition products; star (\(\star\)), P32 5’-end label.

DOI: 10.1371/journal.pbio.0040350.g001
stimulate extraordinarily efficient transposition (15% of substrate converted to product), revealing the RAG transposase to be far more active than previously suspected. We also discovered that one particular hairpin serves as a potent and specific inhibitor of transposition, impairing target capture and/or destabilizing already formed target capture complexes. This mechanism provides a potential regulatory control that acts at a specific step that is essential for transposition, but dispensable for normal V(D)J recombination.

Results

Hairpin Tip Sequence Modulates Transposition Efficiency

The hairpin structures previously examined bore the tip sequence 5' TA • TA 3' in a variety of different stem configurations [16]. To determine whether hairpins with other sequences at the tip might also act as preferred targets for RAG transposition, we designed a set of 16 self-complementary oligonucleotides with all possible four-nucleotide combinations surrounding the dyad axis of the inverted repeat. Each of these oligonucleotides bears the same stem sequence and should anneal into a double-stranded molecule bearing one hairpin end. The sequence of the stem is shown in Figure 1A, in this case terminating in the AC hairpin tip. We tested the ability of these hairpin oligonucleotides to serve as targets for in vitro transposition by incubating them with core RAG proteins and precleaved RSS (signal ends) in a standard transposition assay (in Mg²⁺) (Figure 1B), followed by denaturing gel electrophoresis. Most transposition events occurred at or very near the hairpin tips (Figure 1C), in agreement with previous work [16].

To quantify the effects of different hairpins, we calculated the transposition efficiency for each target as the percentage of signal ends transposed into that target. The sequence of the hairpin tip modulated the efficiency of transposition over a more than 50-fold range, from virtually undetectable (the CT hairpin) to quite robust (>6% for the GC hairpin) (Figure 1C, lanes 19 and 3, respectively; Figure 1D). The TA hairpin (Figure 1C, lane 6), corresponding to the tip sequence studied previously [16], yielded a transposition efficiency near the median (0.9%) calculated for all 16 hairpins. One hairpin sequence, CT, was an especially poor target, with values lower than non-hairpin targets (unpublished data; also see below). These results show that the nucleotide sequence, rather than the base composition of the tip, is critical: TC, for example, gave at least 10-fold more transposition than CT (Figure 1D). In light of earlier work, it is particularly interesting to note that GC was at least 7-fold more active than CG; this is one clear indication that features other than GC content are important for transposition (see below).

Since the C-terminus of full-length RAG2 (which is lacking from the core version of the protein) has been implicated in down-regulating transposition activity [12–14], we repeated our measurements of transposition into all 16 hairpin sequences using full-length RAG2 (Figure 1E). The data generally followed the trends established by core RAG2. Although a few hairpin sequences showed a decrease in transposition efficiency, reducing the median transposition efficiency across all sequences from 0.9% to 0.6%, the range of efficiencies was even greater than that observed with core RAG2, with a 140-fold difference between the most active (GC) and the least active (CT) target sequences. Note that the efficiency of transposition into the GC hairpin remained roughly 7.5-fold more than the median, as observed for core RAG2. We conclude that, with precleaved ends and hairpin targets, the C-terminus of RAG2 does not substantially suppress transposition activity and does not affect the choice of hairpin tip sequences used as transposition targets.

Transposition products can be “disintegrated” in vitro by a reversal of the transposition reaction: the RAG proteins can catalyze a nucleophilic attack on the phosphate backbone linking the signal end to target, either through hydrolysis or transsterification, using the 3' hydroxyl on the target created by the initial transposition event [7]. High levels of Mg²⁺ (25 mM) are optimal for disintegration in vitro [7]. Although all of our reactions were performed at more physiologic Mg²⁺ levels (3 mM), we considered the possibility that differences in apparent transposition efficiency might be influenced by sequence-specific effects on disintegration. To test this hypothesis, we performed time course experiments using several hairpin tip sequences: CT, TA, and GC. With TA and GC, we did not observe any decrease in the levels of products prior to the 2-h time point (Figure 1F), suggesting that disintegration did not play a major role in determining levels of transposition products during the 30-min incubation in Figure 1C–1E. (Transposition into CT was too low to be detected at any time points in this experiment.) We conclude that the hairpin tip sequence exerts its primary effect on the formation rather than the stability of transposition products.

Because self-complementary oligonucleotides can exist in two stable base-paired isoforms, hairpins (formed by intra-molecular annealing) or dimers (formed by inter-molecular annealing) (Figure S1A), additional control experiments were necessary. We examined three annealed targets (the least active target, CT, and two average targets, TA and TG) by native gel electrophoresis to resolve the hairpin and dimer isoforms, both before and after a transposition reaction. Both the CT and TA hairpin targets annealed to form hairpins and remained exclusively hairpins under our conditions; only TG showed a mild tendency to form dimers (Figure S1B and S1C). All three targets yielded the expected transposition products (Figure S1D). Based on these data as well as experiments using supercoiled plasmids bearing extruded cruciforms (see below), the variations in transposition efficiency observed in Figure 1 are not attributable to tip sequence effects on hairpin formation or stability.

We next tested how much influence the sequence distal to the four terminal nucleotides of the hairpin might have on the efficiency of transposition by altering either the entire stem sequence of the hairpin or simply the nucleotide in the third position (n-3) from the dyad axis of the inverted repeat (Figure S2A and S2B). Neither change had any significant effect on the RAG transposase's preferences (Figure S2C and S2D). These data confirm that the sequence of the four nucleotides around the hairpin tip is the primary determinant of the ability of the RAG transposase to employ the hairpin as a target.

Cruciform-Bearing Plasmid Targets Also Show Strong Sequence Effects

To evaluate the effects of hairpin tip sequence on transposition efficiency using more physiologic substrates, we constructed three plasmids encoding fully self-complemen-
Figure 2. Transposition Is Targeted to Structures, Not Sequences

(A) Depiction of two plasmids encoding inverted repeats, identical in sequence. One plasmid stably maintains a linear inverted repeat; the other forms a stable cruciform, with two extruded hairpin arms.

(B) Transposition is stimulated by cruciform structures. Single insertion (nicked plasmid) and double insertion (linearized plasmid) transposition products formed from three inverted repeat targets in linear or cruciform conformation were resolved on a 1% native agarose gel. Results shown here are representative of three independent experiments; similar data were obtained with a second RAG protein preparation.

(C) Scal digestion of plasmids after transposition yields two distinct products when transposition is targeted to a specific part of the plasmid. A plasmid lacking cruciforms is used for illustration.

(D) Plasmid-encoded inverted repeats target transposition only when a cruciform is extruded. After digestion with Scal, transposition products were separated on a 1% alkaline agarose gel.

C, cruciform; D, double insertion product; E, expected sizes of digested products if transposition was targeted to cruciform; L, linear inverted repeat; S, single insertion product; SE, signal ends; U, undigested transposition products.

DOI: 10.1371/journal.pbio.0040350.g002
Hairpins Modulate RAG Transposition

In order to compare several targets sharing the same plasmid backbone, we cloned the GC-rich sequence into the pUC8 plasmid (Figure 3C). We then compared a pUC8 plasmid containing an extruded GC cruciform (our best target), as well as one containing a TA cruciform, to an identical plasmid containing this 11-bp GC-rich sequence (Figure 3C). As expected, both cruciform structures strongly stimulated transposition (Figure 3D, compare lanes 5 and 7). In contrast, the GC-rich sequence did not noticeably affect the efficiency of transposition into the plasmid in comparison with an identical pUC8 plasmid lacking the GC-rich sequence (Figure 3D, compare lanes 1 and 3). Digestion of the transposition products with a single-cutting restriction enzyme revealed no evidence that transposition events were targeted specifically to the vicinity of the GC-rich sequence (Figure 3D, lane 4). This is in sharp contrast with the cruciforms (Figure 3D, lanes 6 and 8). Thus, even an average cruciform target can provide a significantly more attractive target for transposition than the previously reported GC-rich “hotspot” sequence.

A Novel Transposition Inhibitor

As shown in Figure 2, the RAG transposase targeted plasmids containing linear inverted repeats with low efficiency. This efficiency rose dramatically when inverted repeats were extruded as cruciforms, with one interesting exception. Upon extrusion of the CT cruciform, transposition efficiency actually decreased from already-low levels by approximately 90% (Figure 2B, compare lanes 5 and 6). This result suggested that the CT hairpin could be suppressing transposition events elsewhere in the plasmid.

To pursue this observation, we set up a competition experiment using equal masses of two plasmid targets of equivalent length: GC cruciform and either CT cruciform or CT linear inverted repeats. The CT cruciform substantially inhibited transposition (>90%) (Figure 4A; compare lanes 1 and 5). In contrast, the linear CT target had no effect on transposition into the GC cruciform (compare lanes 1 and 4). This result was confirmed and extended by a competition experiment using oligonucleotide targets (Figure 4B). In this experiment, transposition into a preferred GC hairpin (lane 4) was challenged by addition of a smaller GC target (lane 2 shows transposition products formed from this target alone) or a smaller CT target (lane 3 shows transposition products formed from this target alone). Addition of an equimolar amount of the CT hairpin oligonucleotide almost completely (>90%) suppressed the usually robust transposition targeted to a GC hairpin (compare lanes 4 and 6). This effect was in stark contrast to challenge of the GC target by a different (smaller) GC target (lane 5); in this case, the smaller target had little effect on transposition into the larger target. As expected, total transposition into the GC targets in lane 5 was quantitatively similar to that seen in lane 4. We conclude that inhibition of transposition is a specific effect of the CT hairpin. These findings were reproduced using full-length RAG2 preparations (Figure 4B, lanes 7–11). The CT hairpin...
Figure 3. The RAG Transposase Prefers Hairpin Structures to GC-Rich Target Sequences

(A) Diagram of plasmid targets.
(B) A plasmid-encoded cruciform structure with an average hairpin tip (TA) stimulates much greater levels of RAG-mediated transposition than a previously defined 11-bp GC-rich target sequence. Transposition products were subjected to Scal (Plasmid A) or AatII (Plasmid B) digestion before separation on a 1% alkaline agarose gel. Targeted transposition yields two distinct products (arrowhead), whereas non-targeted transposition yields a smear of labeled products.

(C) Diagram of three targets with identical plasmid backbones.
(D) TA and GC cruciforms stimulate much greater levels of RAG-mediated transposition than a GC-rich hotspot sequence in an identical plasmid backbone. Transposition products were subjected to Scal digestion before separation on a 1% alkaline agarose gel.

DOI: 10.1371/journal.pbio.0040350.g003
also inhibited transposition into an AC hairpin, indicating that this effect is not specific to the GC target (unpublished data). Furthermore, we note a 90% reduction of transposition into the 2,700-bp plasmid backbone in the presence of a 106-bp CT cruciform, suggesting that inhibition of transposition by a CT hairpin is not specific to hairpin targets (Figure 2B, compare lanes 5 and 6).

To assess the potency of the inhibitor, we examined the effect of decreasing amounts of inhibitor on transposition efficiency. At only one-fifth the concentration of the GC target, the inhibitor reduced transposition by approximately 50% (Figure 4C). We conclude that the CT cruciform is a strong inhibitor of transposition both in cis (in the same target molecule) and in trans.

The inhibitory effects described above could not be attributed to effects on cleavage, because the protocol used in these experiments employs precleaved donor RSS oligonucleotides. Since the RAG proteins catalyze transposition by...
an intermolecular transesterification mechanism, we next assessed the effect of the inhibitor sequence on the cleavage step, which involves intramolecular transesterification (hairpin formation). We added increasing amounts of the CT hairpin to a standard cleavage reaction using molar ratios of inhibitor:recombination substrate of up to 10:1. No inhibition of double-strand break formation was observed, indicating that the inhibitor sequence does not affect nicking or hairpin formation (Figure 4D). We also tested the ability of the RAG complex to make hairpins from a pre-nicked substrate in the presence of the inhibitor (Figure S3A). Neither the CT hairpin inhibitor sequence nor the GC control sequence affected hairpin formation (Figure S3B). These data demonstrate that the CT hairpin specifically inhibits transposition.

To probe the mechanism of inhibition, we assessed target capture of hairpin oligonucleotides by the RAG transposase. Previous work demonstrated that the RAG proteins form a target capture complex, containing target DNA and a 12/23-RSS pair, that is stable to polyacrylamide gel electrophoresis [16]. These results were recapitulated using a precleaved 12/23-RSS pair and a radiolabeled hairpin target in Figure 5A; the RAG–signal end complex exhibited robust binding to the GC hairpin (lane 4). In contrast, binding to a CT hairpin was less efficient (Figure 5A, lane 3). In spite of its weak interaction with the RAG–signal end complex, the CT hairpin substantially diminished target capture of the GC hairpin target when present in a 1:1 molar ratio (lane 5). This effect was not observed with control non-hairpin or with non-inhibitory hairpin sequences (GC, TA) present at 1:1 molar ratios (unpublished data). These findings suggest that the CT hairpin sequence is able to inhibit or destabilize target interactions with the RAG–signal end complex.

The DNA–protein complexes detected in electrophoretic mobility shift experiments such as those described above consist of two species: a target capture complex (RAG proteins, signal ends, and target) and a strand transfer complex containing the same components, but with a covalent linkage between the signal ends and the target DNA [16]. To distinguish between these species, we split reactions into two equal parts and subjected them to gel electrophoresis with and without deproteinization (in the former case, to determine what fraction of the DNA–protein complexes correspond to covalently linked transposition products). In agreement with the data shown in Figure 5A, the CT inhibitor decreased capture of the GC target (Figure 5B, compare lanes 3 and 5). Deproteinization revealed that about 20% of the DNA–protein complexes with the GC target consists of transposition products (Figure 5B, compare lanes 3 and 4). We detected no transposition products with the CT hairpin (lane 10). As expected, the CT hairpin also markedly decreased levels of transposition products formed from the GC target (compare lanes 4 and 6).

Could the inhibitor sequence destabilize preformed target capture complexes? We added unlabeled CT hairpin (at a 1:1 molar ratio with respect to labeled GC target) and assessed its effect on target capture complexes over time (Figure 5C). The amount of target capture complex diminished substantially over the observed period, with only one-fifth the original amount remaining after 2 h (Figure 5C); this decrease is similar to that observed in transposition products in experiments described earlier (Figure 4C). These data indicate that the CT hairpin sequence destabilizes preformed target capture complexes.

How might this destabilization take place? The CT hairpin might either destabilize target binding or disrupt the RAG–signal end complex. We therefore examined the effect of the CT hairpin on signal end complexes using an electrophoretic gel mobility shift assay that measures release of free signal ends. In this experiment, the RAG–signal end complexes generated by cleavage were not destabilized by the CT hairpin, even when it was present in a 10-fold molar excess over the signal ends (Figure 5D). These data, along with the failure of the inhibitor sequence to affect cleavage (see above), demonstrate that the effect of the CT hairpin is specific to target (and not RSS) binding.

Finally, we considered the possibility that the inhibitor sequence might stimulate removal of transposition products by disintegration. To test this, we generated oligonucleotide substrates corresponding to transposition products that would be derived from the GC hairpin and incubated these in the presence of RAG proteins and buffer, GC hairpin, or CT hairpin sequences. The results clearly show that neither of the hairpin sequences stimulated disintegration (Figure S3).

Discussion

Hairpins Can Stimulate Surprisingly Efficient RAG Transposition

Our data show that most hairpins are strongly attractive targets for RAG transposition and that the efficiency of target utilization is profoundly modulated by the sequence of the terminal nucleotides of the hairpin. Of the 16 possible tip sequences, the majority were strong targets for the RAG transposase in the context of self-complementary oligonucleotides. When we tested a subset of these sequences as both cruciforms (in supercoiled plasmids) and as linear inverted repeats (in relaxed plasmids), only the cruciform structures stimulated transposition. Finally, we found that even an average hairpin target sequence (TA) stimulated far more transposition activity than a previously reported GC-rich hotspot.

When RAG transposition was first discovered, it was noted that there was a preference for GC-rich sequences [5,6]. A subsequent analysis of intramolecular transposition reported a modest preference for a GC-rich hotspot sequence located near the center of a short (329 bp) excised fragment [17], although the range of other available target positions in this molecule was restricted by steric constraints (the short length of the linear DNA) in this setting. The most likely explanation for the reported GC-rich sequence preference is that these base pairs are more likely to form altered DNA structures. Nevertheless, our data show that the GC content alone is not the determining factor in targetability: the GC cruciform was a significantly better target than CG, CC, or GG. Tsai et al. also compared four self-complementary oligonucleotide sequences with three different tips (CT, TG, and two TA tips) and reported that only one TA tip was a preferred target for the RAG transposase, although no quantification was provided [17]. Our data agree that the CT tip is not a transposition target for the RAG proteins. It is not clear why the authors failed to detect transposition with the TG or second TA tip; it is possible that these two oligonucleotides...
Figure 5. The CT Hairpin Inhibits Target Capture

(A) CT hairpin is bound weakly by the RAG–signal end complex and inhibits target capture of a GC target. Using labeled CT or GC target, target complex formation was detected on a native 4%–20% gradient acrylamide gel (lanes 3 and 4). Unlabeled CT hairpin was mixed in a 1:1 molar ratio with labeled GC target prior to start of reaction (lane 5).

(B) GC target is bound by the RAG-signal end complex. CT hairpin is bound only weakly by the RAG–signal end complex and inhibits target capture of a GC target. Using labeled GC or CT target, complex formation was detected on a native 4%–20% gradient acrylamide gel. Proteinase K treatment indicates amount of RAG-bound transposition products present in DNA-protein complex. Unlabeled CT hairpin was mixed with labeled GC target prior to start of reaction (lanes 5 and 6).
did not form hairpins under the annealing conditions used in that study.

The Sequence of the Hairpin Tip Strongly Affects Its Utilization as a Target for Transposition

Transposition efficiency among the 16 oligonucleotide hairpins varied over a 50- to 140-fold range and was determined primarily by the sequence of the four nucleotides around the hairpin tip. This variation was not secondary to disintegration. The most attractive target, a hairpin with the terminal sequence GC, was surprisingly efficient, and even more so (15%) under our most physiologic in vitro transposition conditions (a plasmid target, in Mg$_2^{+}$). These results are especially striking in light of the fact that the in vitro cleavage efficiency of our RAG protein preparations under these conditions is generally 20%-30%. This provides the first evidence that a substantial fraction of post-cleavage signal end complexes is actually capable of transposition. This result is unexpected, given the prevailing opinion that RAG proteins are, in general, a rather inefficient transposase. The exception to the rule—the CT hairpin, which specifically inhibits transposition without affecting RSS cleavage—is no less surprising and is discussed in more detail below.

How Does Hairpin Tip Sequence Influence Transposition?

How does the sequence of the hairpin tip so strongly affect its use as a target? Since all hairpins tested remain largely folded as hairpins (and the cruciforms are very stable under our experimental conditions [19]), targeting to hairpin ends does not appear to be secondary to DNA melting, as was previously suggested [17]. Our data lead us to propose an alternative hypothesis: the strong effect of hairpin sequence on transposition efficiency is driven by sequence-induced structural differences at the various hairpin tips. Two lines of evidence support this model. First, hairpin sequence affects recognition by structure-specific nucleases [18,24]. Second, nuclear magnetic resonance (NMR) studies have shown that the sequence at a DNA hairpin tip significantly affects its three-dimensional structure [25,26]. Typically, stable self-complementary loops consist of either two or four nucleotides [25,26]. Some evidence suggests that many tips having a pyrimidine in the second nucleotide position 5’ of the dyad axis and a purine in the second nucleotide position 3’ of the axis (x — • — x) form loops of two, not four, nucleotides [27,28]. Indeed, our most poorly used hairpin targets, CT and TT, fit this description, suggesting a possible correlation between loop size and the ability of the RAG complex to target a given hairpin.

A Specific and Potent Inhibitor of Transposition

We were intrigued by the CT hairpin tip sequence that is refractory to transposition. We considered two potential explanations for this result: the RAG transposase may fail to bind to the CT tip structure(s), or it may bind in a nonproductive mode that impedes catalysis. A prediction of the second model is that the CT hairpin should inhibit transposition into other substrates, which is indeed what we observed. The CT sequence, when in hairpin form, inhibited transposition into the plasmid backbone and even into the most favorable target, the GC hairpin. It is interesting to note that the CT hairpin is a much more potent inhibitor than the only other previously reported inhibiting factor, GTP: with the hairpin, nearly complete inhibition is obtained at a 1:1 inhibitor to target ratio, as opposed to the greater than 10,000:1 ratio for GTP [13]. Our data suggest that the CT hairpin tip binds the transposase in some fashion that renders the complex refractory to transposition. That the RAG–signal end complex is able to bind the CT hairpin, albeit weakly, supports this possibility. The fact that the CT hairpin rather inefficiently forms a target capture complex indicates that this DNA structure may bind in a different mode. Investigation of the precise mode and site of such binding awaits the development of more sophisticated analytical techniques.

Mechanism of Inhibition

Since our data indicate that the inhibitor does not affect DNA cleavage (hydrolysis and intramolecular transesterification), the CT hairpin likely does not affect the catalytic step of transposition. We also found that it does not stimulate disintegration. This inhibitor does, however, impede the ability of the RAG proteins to efficiently capture target, and it destabilizes preformed target capture complexes without affecting the stability of signal end complexes. These findings suggest a plausible mechanism for inhibition: we propose that the inhibitor specifically prevents stable target capture, inhibiting transposition without affecting DNA cleavage (or, presumably, the subsequent steps in V(D)J recombination).

Given that hairpins are preferred targets, it is reasonable to hypothesize that the portion of the active site responsible for binding to the hairpin coding ends in the postcleavage complex could serve as the target binding site. It is not known when this binding pocket is formed during the course of the reaction. There are at least three distinct possibilities: (1) the target binding pocket is present before cleavage (and likely consists of the coding flank binding site); (2) it corresponds to a portion of the active site that stabilizes a “pre-hairpin” transition state that is present prior to completion of cleavage, but perhaps not at the beginning of the reaction; or (3) the target binding site is revealed only after cleavage, perhaps by a conformational change induced by strong binding of the RAG proteins to the signal ends forming the stable signal end complex. It is also, of course, perfectly conceivable that the target binding pocket is unrelated to the coding flank binding pocket.

Assuming that the hairpin inhibitor binds to the target binding pocket, our observation that it does not inhibit cleavage (hairpin formation) even when present at substantial molar excess is consistent with the third possibility, that the target binding site is revealed only after cleavage. Further
studies of this inhibitor should allow us to answer more detailed questions about the nature of target binding.

Implications for RAG-Mediated Transposition In Vivo

The initial discovery of RAG transposase activity prompted speculation that transposition could explain certain oncogenic translocations [2,5–8]. Thus far, however, there has been no direct evidence to implicate the transposition activity of the RAG proteins in any oncogenic chromosome rearrangements—nor has there been anything to guide our search for such evidence. We have now demonstrated that the RAG transposase exhibits striking target preferences, and that these preferences are largely modulated by target structure. Given that mammalian genomes contain a variety of structural elements, including palindromic sequences, triplet and tetra nucleotide repeat sequences capable of forming hairpin structures, and quadruplex structures that possess hairpin-type ends [29–33], there may be many preferred targets for the RAG transposase. In fact, many translocation breakpoints have been shown to lie at or near sites of DNA distortion [34–39]. The discovery of strong target preferences could serve as a useful guide to those searching for the footprint of RAG transposase in genomic rearrangements.

Materials and Methods

Proteins. All experiments were performed using recombinant mouse RAG1 and RAG2; core RAG1 (residues 384–1,008) and either core (residues 1–387) or full-length RAG2 were expressed from the pEBG vector [40]. RAG1 and RAG2 were co-purified as glutathione-S-transferase fusion proteins from Chinese hamster ovary (RPMI) cells [41]. Recombinant human HMGB1 was purified from Escherichia coli as previously described [42].

Oligonucleotide DNA substrates. Precleaved 12-RSS oligonucleotide was generated by annealing pGEX 61 (5'-CGAATTCCCTAGCTGAGG) to pUC8 (5'-AAGCTTACGACGCTGTCGTCCTAGTCATAGTCGATACG) to its complement. Precleaved 23-RSS oligonucleotide was generated by annealing precleaved GXL 61.1 (5'-CAGTTTAAATATTAGAAGATATATCACGTGATCGTGCAGCA) to its complement. Inverted repeat–encoding oligonucleotide sequences are as described in Figures 1A, S2A, and S2B. A double-stranded nonhairpin control identical in sequence to TA-2 was generated by annealing TA-2-top (5'-TTAATTCGAGACCTACGTAATAGCTGTCGTC) to TA-2-bottom (5'-TTAAGTCCTGGCA). DR117TnRef was used as a reference oligonucleotide identical to the expected sequence of the 12-RSS and 23-RSS hairpin. The 12-RSS hairpin target was preincubated for 20 min at 24 °C. MgCl2 was added to a final concentration of 3 mM, and reactions were incubated for 30 min (unless otherwise specified) at 37 °C. Reactions were stopped by addition of an equal volume of stop buffer containing 0.2% SDS and 0.35 M NaCl. The inactivated enzyme was then precipitated by adding acrylamide sequencing gels, and visualized by autoradiography (Figure S1).

Oligonucleotide target transposition reactions. Transposition reactions were carried out in vitro as described [15]. All reactions were performed using core RAG1 and either core RAG2 or full-length RAG2 as indicated. Briefly, 0.05 pmol of radiolabeled precleaved 12-RSS and 0.05 pmol of unlabeled precleaved 23-RSS were incubated with 100 ng each of RAG1 and RAG2, in addition to 25 ng of HMGB1, in buffer containing 5 mM CaCl2 at 37 °C for 20 min. A total of 0.5 pmol of target preparation was then added to reaction mix. In the case of inhibition reactions, 0.25 pmol (unless otherwise specified) oligonucleotide was then added to the 1 pmol of target prior to target addition to reaction mix. Reactions were then incubated for 20 min at 24 °C. MgCl2 was added to a final concentration of 3 mM, and reactions were incubated for 30 min (unless otherwise specified) at 24 °C. Reactions were stopped by addition of an equal volume of stop buffer containing 0.2% SDS and 0.35 M NaCl. The inactivated enzyme was then precipitated by adding acrylamide sequencing gels, and visualized by autoradiography (Figure 5D).

Physical analysis of target capture complexes. The cleavage substrate was generated by PCR amplification of pJH290 using primers DR99 and DR100 [48,49]. Briefly, 0.13–0.20 pmol of PCR substrate was incubated in reaction buffer containing 5 mM CaCl2 with 100 ng each of RAG1 and RAG2, and 80 ng of HMGB1 in 5.4 mM HEPES (pH 8.0) and 1 mM MgCl2 at a concentration of 0.5 pmol/µl and then transferred quickly to an ice water bath. Proper annealing of oligonucleotides into hairpins was determined by separating radiolabeled hairpins on a 16% native acrylamide gel and visualized by autoradiography (Figure 3). The cleavage substrate was generated by PCR amplification of pJH290 using primers DR99 and DR100 [48,49]. Briefly, 0.13–0.20 pmol of PCR substrate was incubated in reaction buffer containing 5 mM CaCl2 with 100 ng each of RAG1 and RAG2, and 200 ng of HMGB1. This mixture was incubated for 15 min at 37 °C. MgCl2 was added to a final concentration of 5 mM, and the reaction was incubated for 2 h at 37 °C. The reaction was then stopped by addition of an equal volume of stop buffer. Cleavage products were separated on a native 4%–20% Novex acrylamide gradient gel by electrophoresis and visualized by autoradiography (Figure S1).
the reaction such that the final concentration of Mg²⁺ was 4 mM. Reaction mixtures were incubated for 120 min at 37 °C and then placed on ice. Products were immediately resolved on a native 4%–20% Novex acrylamide gradient gel at 4 °C. Gels were then dried and visualized by autoradiography. When challenged with cold hairpin was performed, unlabelled hairpin (in an amount equimolar to radiolabeled target) was either mixed with radiolabeled target prior to addition to the reaction (Figure S4A and S4B), or added 120 min after addition of radiolabeled target/Mg²⁺ mix (Figure S4C).

The reaction conditions used to assess hairpin formation and transposition product disintegration are described in Protocol S1.

Supporting Information

Figure S1. All Oligonucleotide Targets Fold and Remain in Hairpin Form

(A) Oligonucleotide-encoded inverted repeats can engage in intrastrand annealing to form hairpins, or inter-strand annealing to form dimers.

(B) Oligonucleotide targets anneal intramolecularly. P⁵ 5'-end-labeled targets are folded into hairpins (see Materials and Methods) and then separated on a 16% native agarose gel at 4 °C.

(C) Hairpin oligonucleotides do not convert to dimeric species during the course of a transposition assay. At the end of a transposition assay using both labeled hairpin target and labeled signal ends, transposition products are separated on a 16% native agarose gel at 24 °C.

TG[hi], sample in which TG is prepared at a higher concentration (11.3 pmol/l), such that substantial dimerization occurs.

(D) CT is refractory to RAG transposition, even though it is properly folded as a hairpin. Transposition products from CT are separated on a 12% sequencing gel.

Oligonucleotides CT, TA, and TG are CT-2, TA-3, and TG-2 described in Figure S2A.

HP, hairpin; M1, M2, TA-2BE, a blunt-ended oligonucleotide identical in sequence to TA-2; TA-2BE, TG-2 prior to annealing reaction, with both hairpin and dimer species; M3, TA-2TnRef, a reference oligonucleotide representing expected size of transposition products; No RAG, mock reaction lacking RAG proteins; SE, signal ends; TnP, transposition products.

Found at DOI: 10.1371/journal.pbio.0040350.sg001 (1.6 MB PDF).

Figure S2. Transposition Efficiency Is Unaffected by Hairpin Stem Sequence

(A) Five oligonucleotide-encoded inverted repeats of different sequences are named according to the sequence of the two nucleotides just 5' of the dyad axis of the repeat; designation "-2" or "-3" for a particular hairpin indicates a different stem sequence from that tested in Figure 1.

References

1. van Gent DC, Mizuuchi K, Gellert M (1996) Similarities between initiation of V(D)J recombination and retroviral integration. Science 271: 1592–1594.

2. Roth DB, Craig NL (1998) VDJ recombination: A transposase goes to work. Cell 94: 411–414.

3. Brandt VL, Roth DB (2004) How to tame a transposase. Immunol Rev 200: 249–260.

4. Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, et al. (2004) Transposition of H^BA₁ elements links transposable elements and V(D)J recombination. Nature 432: 995–1001.

5. Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744–751.

6. Hoos K, Melek M, Gellert M (1998) DNA transposition by the RAG1 and RAG2 proteins: A possible source of oncogenic translocations. Cell 94: 463–470.

7. Melek M, Gellert M (2000) RAG12-mediated resolution of transposition intermediates: Two pathways and possible consequences. Cell 101: 625–635.

8. Shih IH, Melek M, Jayaratne ND, Gellert M (2002) Inverse transposition by the RAG1 and RAG2 proteins: Role reversal of donor and target DNA. EMBO J 21: 6625–6633.

9. Messori TL, O'Neill JP, Hou SM, Nicklas JA, Finette BA (2003) In vivo transposition mediated by V(D)J recombinase in human T lymphocytes. EMBO J 22: 1381–1388.

10. Chatterji M, Tsai CL, Schatz DG (2006) Mobilization of RAG-mediated signal ends by transposition and insertion in vivo. Mol Cell Biol 26: 1558–1568.

11. Reddy VV, Perkins EJ, Ramsden DA (2006) Genomic instability due to V(D)J recombination-associated transposition. Genes Dev 20: 1575–1582.

12. Elkin SK, Matthews AG, Oettinger MA (2003) The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J 22: 1931–1938.

13. Tsai CL, Schatz DG (2005) Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2. EMBO J 22: 1922–1930.

14. Swanson PC, Volkmann D, Wang I (2004) Full-length RAG-2, and not full-length RAG-1, specifically suppresses RAG-mediated transposition, but not hybrid joint formation or disintegration. J Biol Chem 270: 4034–4044.

15. Neiditch MB, Lee GS, Landree MA, Roth DB (2001) RAG transposase can capture and commit to target DNA before or after donor cleavage. Mol Cell Biol 21: 4392–4410.

16. Lee GS, Neiditch MB, Sendin RR, Roth DB (2002) Targeted transposition by the VDJ recombinase. Mol Cell Biol 22: 2068–2077.

17. Tsai CL, Chatterji M, Schatz DG (2003) DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase. Nucleic Acids Res 31: 6180–6190.

18. Kaboytanski EB, Zhu C, Kallick DA, Roth DB (1995) Hairpin opening by single-strand specific nuclease. Nucleic Acids Res 23: 3872–3881.

19. Sendin RR (1994) DNA structure and function. San Diego: Academic Press. 398 p.

20. Oussatcheva EA, Shlyakhtenko LS, Glass R, Sendin RR, Lyubchenko YL, et al. (1999) Structure of branched DNA molecules: Gel retardation and atomic force microscopy studies. J Mol Biol 292: 75–86.

21. Germond JE, Hirt B, Oudet P, Gross-Bellark M, Chambon P (1975) Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci U S A 72: 1843–1847.

22. Keller W, Wendel I (1975) Stepwise relaxation of supercoiled SV40 DNA. Cold Spring Harb Symp Quant Biol 39: 199–208.

Figure S3. The Inhibitor Does Not Affect Hairpin Formation

(A) Depiction of reaction: RAG proteins were mixed with a radio-labeled (star) oligonucleotide representing transposition product formed from a 12-RSS and a GC hairpin target, as well as a free, precleaved 23-RSS. Hairpin formation (transposition product disintegration) was assessed following addition of non-labeled inhibitor.

(B) Hairpin formation was not affected by addition of buffer only, CT hairpin, or GC hairpin. Hairpin products were separated on a 15% sequencing gel.

No RAG, mock reaction lacking RAG proteins.

Found at DOI: 10.1371/journal.pbio.0040350.sg003 (2.0 MB PDF).

Protocol S1. Supplemental Materials and Methods

Found at DOI: 10.1371/journal.pbio.0040350.sd001 (35 KB DOC).

Acknowledgments

We are grateful to Vicky Brandt and members of the Roth Lab for suggestions and stimulating discussion. We would also like to thank F. Gimble, M. Matzuk, D. Nelson, J. Lupski, J. Petrini, T. de Lange, and our anonymous reviewers for insightful comments. We thank S. Arnal for full-length RAG2 protein.

Author contributions. JEP and DBR conceived and designed the experiments. JEP performed the experiments. JEP and DBR analyzed the data. JEP, MJF, and RRS contributed reagents/materials/analysis tools. JEP and DBR wrote the paper.

Funding. DBR is supported by the Irene Diamond Foundation and a grant from the National Institutes of Health (NHI (AI)56420). This work was also supported by National Institutes of Environmental Health Sciences grant ES05/508 to RRS.

Competing interests. The authors have declared that no competing interests exist.
23. Sinden RR, Pettijohn DE (1984) Cruciform transitions in DNA. J Biol Chem 259: 6593–6600.
24. Xodo LE, Manzini G, Quadrifoglio F, van der Marel G, van Boom J (1991) DNA hairpin loops in solution: Correlation between primary structure, thermostability, and reactivity with single-strand-specific nuclease from mung bean. Nucleic Acids Res 19: 1505–1511.
25. Van de Ven FJM, Hilbers CW (1988) Nucleic acids and nuclear magnetic resonance. Eur J Biochem 178: 1–38.
26. Varani G (1995) Exceptionally stable nucleic acid hairpins. Annu Rev Biophys Biomol Struct 24: 379–404.
27. Blommers MJ, Walters JALI, Haasnoot CAG, Aelen JMA, van der Marel GA, et al. (1989) Effects of base sequence on loop folding in DNA hairpins. Biochemistry 28: 7491–7498.
28. Davison A, Leach DRF (1994) Two-base DNA hairpin-loop structures in vivo. Nucleic Acids Res 22: 4361–4363.
29. Mariappan SVS, Garcia AE, Gupta G (1996) Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy. Nucleic Acids Res 24: 784–792.
30. Darlow JM, Leach DR (1998) Secondary structures in d(CGG) and d(CCG) repeat tracts. J Mol Biol 275: 3–16.
31. Pearson CE, Sinden RR (1998) Trinucleotide repeat DNA structures: Dynamic mutations from dynamic DNA. Curr Opin Struct Biol 8: 321–330.
32. Dere R, Napierala M, Ranum LP, Wells RD (2004) Hairpin structure-forming propensity of the (CCTG.CAGG) tetranucleotide repeats contributes to the genetic instability associated with myotonic dystrophy type 2. J Biol Chem 279: 41715–41726.
33. Adachi M, Tsujiimoto Y (1990) Potential Z-DNA elements surround the breakpoints of chromosomal translocation within the 5' flanking region of bcl-2 gene. Oncogene 5: 1653–1657.
34. Aplan PD, Raimondi SC, Kirsch IR (1992) Disruption of the SCL gene by a t(1;3) translocation in a patient with T cell acute lymphoblastic leukemia. J Exp Med 176: 1903–1510.
35. Lu M, Zhang N, Raimondi S, Ho AD (1992) SL nuclease hypersensitive sites in an oligopurine/oligopyrimidine DNA from the t(10;14) breakpoint cluster region. Nucleic Acids Res 20: 263–266.
36. Seife P, Hillion J, Leroux D, Berger R, Larsen C (1993) Common sequence in chromosome translocations affecting B- and T-cell malignancies: a novel recombination site? Genes Chromosomes Cancer 6: 253–254.
37. Raghavan SC, Swanson PC, Wu X, Hsieh CL, Lieber MR (2004) A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 428: 88–93.
38. McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, et al. (1995) Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 85: 387–395.
39. Lewis SM, Hesse JE, Mizuuchi K, Gellert M (1988) Novel strand exchanges in V(D)J recombination. Cell 55: 1099–1107.
40. Hesse JE, Lieber MR, Mizuchi K, Gellert M (1989) V(D)J recombination: A functional definition of the joining signals. Genes Dev 3: 1053–1061.
41. Steen SB, Gomelsky L, Speidel SL, Roth DB (1997) Unpaired structures in SCA10 (ATTCT)n.(AGAAT)n repeats. J Mol Biol 326: 1095–1111.