Space-efficient RLZ-to-LZ77 conversion

Travis Gagie

December 6, 2022

Abstract
Consider a text $T[1..n]$ prefixed by a reference sequence $R = T[1..\ell]$. We show how, given R and the z'-phrase relative Lempel-Ziv parse of $T[\ell + 1..n]$ with respect to R, we can build the LZ77 parse of T in $n \text{polylog}(n)$ time and $O(\ell + z')$ total space.

1 Introduction

Ziv and Lempel’s [8] LZ77 is a classic compression scheme still widely used today, achieving excellent compression particularly on highly repetitive datasets such as massive genomic databases. Building the LZ77 parse for such a database in a reasonable amount of workspace is challenging, however, so researchers have developed easy-to-build variants that achieve comparable compression in practice. As an implementation of Ziv-Merhav cross parsing [9] that supports fast random access, relative Lempel-Ziv [4] (RLZ) is one of the most theoretically interesting of those variants.

The LZ77 parse of a text $T[1..n]$ is a partition of T into z phrases such that, for each phrase $T[i..j]$, the phrase itself does not occur in $T[1..j-1]$ but its (possibly empty) longest proper prefix $T[i..j-1]$ does. (For simplicity, it is common to assume that $T[n]$ is a unique end-of-file symbol, so the last phrase also fits this definition.) We store each LZ77 phrase as a triple indicating that phrase’s length minus 1, the position in T of the leftmost occurrence of its longest proper prefix, and its last character. The LZ77 parse can be built in $O(n)$ time by building first a suffix tree for T, but this takes $O(n)$ workspace as well. In the past few years researchers have shown how we can build the LZ77 parse with one pass over T and slightly super-linear time and compressed workspace, by building incrementally a compressed self-index of T while simultaneously using that index to parse T [7, 6].

If T is a concatenation of genomes from many individuals of the same or closely-related species, then it is natural to store the first genome or first few genomes uncompressed as a reference with which to compress the other genomes. This is the main idea behind RLZ: given T and ℓ, we store $R = T[1..\ell]$ uncompressed as a reference and greedily parse $T[\ell + 1..n]$ into z' phrases that each occur in R. (For simplicity, it is common to assume the reference contains all the characters in the alphabet.) We store each RLZ phrase as a pair indicating that phrase’s length and the position in R of its leftmost occurrence. If we start by building an FM-index for R, then we can build the RLZ parse of $T[\ell + 1..n]$ with respect to R with one pass over T and slightly super-linear time (or even linear time if the alphabet is polylogarithm in n) and $O(\ell + z')$ workspace.

Kosolobov et al. [3] proposed computing the LZ77 parse of the RLZ parse and then converting it into an LZ77-like parse of T, but this produces only an approximation of the LZ77 parse of T. In this paper we show how, given R and the RLZ parse of $T[\ell + 1..n]$ with respect to R, we can build the exact LZ77 parse of T in $n \text{polylog}(n)$ time and $O(\ell + z')$ total space.
2 Data structures

Suppose we are given $R = T[1..\ell]$ and the RLZ parse of $T[\ell+1..n]$ with respect to R, which together take $O(\ell + z')$ space. Farach and Thorup [1] observed that, by the definition of LZ77, the first occurrence of any substring in T touches an LZ77 phrase boundary. Although this is not generally true of the RLZ parse of $T[\ell+1..n]$ with respect to R, it is if we build the LZ77 parse of R and consider its phrases as the leading phrases of the RLZ parse of $T[\ell+1..n]$ with respect to R. For brevity, from now on we will refer to this combined parse simply as the RLZ parse (of T). Notice it has $O(\ell + z')$ phrases and we can build and store it in $(\ell + z')$ polylog(n) time and $O(\ell + z')$ space.

To support polylog(n)-time random access to T, we store in an $O(\ell + z')$-space predecessor data structure the starting position i in T of each RLZ phrase $T[i..j]$, with the starting position i' in R of that phrase’s leftmost occurrence as satellite data. Given $k \leq n$, if $k \leq \ell$ then we can return $T[k] = R[k]$ immediately; otherwise, we find the largest starting position $i \leq k$ of an RLZ phrase, look up the starting position i' in R of that phrase’s leftmost occurrence, and return $T[k] = R[i' + k - i]$ in polylog(n) time.

It takes $O(\ell)$ time to compute and store the Karp-Rabin hash of each prefix of R, and then it takes $O(z'\text{ polylog}(n))$ time to compute and store the hash of each prefix of T ending at an RLZ phrase boundary. Storing all these hashes takes $O(\ell + z')$ space and allows us to compute the hash of any substring of T in polylog(n) time (by breaking it into the suffix of an RLZ phrase, a sequence of complete RLZ phrases, and a prefix of an RLZ phrase, and combining the appropriate hashes). Once we can do this, we can find the length of the longest common prefix of suffixes of T in polylog(n) time, using binary search and checking substring equality by comparing hashes; we can then lexicographically or co-lexicographically compare substrings of T in polylog(n) time, by checking the first characters after the longest common prefix; so we can co-lexicographically sort the RLZ phrases and lexicographically sort the suffixes of T starting at RLZ phrase boundaries, all in $(\ell + z')\text{ polylog}(n) \in n\text{ polylog}(n)$ time with high probability. (With Karp-Rabin hashing our results are Monte-Carlo randomized, but with more sophisticated techniques [2] we can make them Las-Vegas randomized.)

In $(\ell + z')\text{ polylog}(n)$ time we build an $(\ell + z') \times (\ell + z')$ grid on which there is a point at (x, y) with weight w if the co-lexicographically xth RLZ phrase ends at x and is immediately followed by the lexicographically yth suffix of T starting at an RLZ phrase boundary. We store this grid in $O(\ell + z')$ space such that it supports polylog(n)-time 2-dimensional range-minimum queries [5]. Given a pattern $P[1..m]$ split into $P[1..i]$ and $P[i + 1..m]$ and the Karp-Rabin hashes of $P[1..i]$ and $P[i + 1..m]$, in polylog(n) time we can find the co-lexicographic range of RLZ phrases ending with $P[1..i]$ and the lexicographic range of suffixes of T starting with $P[i + 1..m]$ at RLZ phrase boundaries, and then report the leftmost starting position of an occurrence of P in T that is split by an RLZ phrase boundary into $P[1..i]$ and $P[i + 1..m]$ (if such an occurrence exists).

Lemma 1 Given $R = T[1..\ell]$ and the RLZ parse of $T[\ell+1..n]$ with respect to R, in $(\ell + z')\text{ polylog}(n)$ time and $O(\ell + z')$ workspace we can build an $(\ell + z')$-space index with which, given a pattern $P[1..m]$ split into $P[1..i]$ and $P[i + 1..m]$ and the Karp-Rabin hashes of $P[1..i]$ and $P[i + 1..m]$, in polylog(n) time we can report the leftmost starting position of an occurrence of P in T that is split by an RLZ phrase boundary into $P[1..i]$ and $P[i + 1..m]$ (if such an occurrence exists).
We note as an aside that, although our index is static, our use of a range-minimum data structure effectively endows it with a kind of partial persistence: if we want to know if an occurrence of \(P[1..m]\) starting in \(T[1..j]\) is split by an RLZ phrase boundary into \(P[1..i]\) and \(P[i+1..m]\), then we can query our index and ignore the answer if it is larger than \(j\). In this way, we are following the approach of researchers who build the LZ77 parse by building compressed self-indexes incrementally.

3 Algorithm

To see how we build the LZ77 parse of \(P\) with our index, suppose we have already computed some number of LZ77 phrases and the next LZ77 phrase is \(T[i+1..k]\), although we do not yet know \(k\). This means that, for \(k' < k\), the substring \(T[i+1..k']\) occurs in \(T[1..k' - 1]\) — so there is some way to split \(T[i+1..k']\) into \(T[i+1..j]\) and \(T[j+1..k']\) such that an occurrence of \(T[i+1..k']\) in \(T[1..k' - 1]\) is split by an RLZ phrase boundary into \(T[i+1..j]\) and \(T[j+1..k']\). (We allow the possibility that \(k_j = j\), so \(T[j+1..k']\) is empty.) On the other hand, for \(k' \geq k\), the substring \(T[i+1..k']\) does not occur in \(T[1..k' - 1]\).

Our idea is to use our index and binary search to find, for each value \(j\) from \(i + 1\) to \(k - 1\) in turn, the largest \(k_j\) such that \(T[1..k_j]\) occurs in \(T[1..k_j - 1]\) split by an RLZ phrase boundary into \(T[i+1..j]\) and \(T[j+1..k_j]\) and, if such a \(k_j\) exists, the starting position of the leftmost such occurrence in \(T\) of \(T[i+1..k_j]\). This takes \(\text{polylog}(n)\) time for each value of \(j\). We do not store all these \(k_j\) values and starting positions, since that might take more than \(\mathcal{O}(\ell + z')\) space; instead, we store only the largest \(k_j\) value we have seen so far, which we call \(k_{\text{max}}\), and the starting position of the leftmost occurrence of \(T[i+1..k_{\text{max}}]\) in \(T[1..k_{\text{max}} - 1]\) that we have found so far, which we call \(s_{\text{max}}\).

Suppose that, first, when we query our index to find the largest \(k_j\) such that \(T[1..k_j]\) occurs in \(T[1..k_j - 1]\) split by an RLZ phrase boundary into \(T[i+1..j]\) and \(T[j+1..k_j]\), we learn there is no occurrence of \(T[i+1..j]\) immediately preceding an RLZ phrase boundary; second, when we reach this point, \(k_{\text{max}} = j - 1\). It follows that \(j = k\), so we can report the triple \((k_{\text{max}} - i, s_{\text{max}}, T[k_{\text{max}} + 1])\) that encodes the next phrase. Figure 1 shows pseudo-code for this procedure. We spend a total of \((k-i)\text{polylog}(n)\) finding the triple that encodes the next phrase, which has length \(k - i\), so we use \(n\text{polylog}(n)\) total time and \(\mathcal{O}(\ell + z')\) space building the LZ77 parse.

Theorem 2 Consider a text \(T[1..n]\) prefixed by a reference sequence \(R = T[1..\ell]\). Given \(R\) and the \(z'\)-phrase relative Lempel-Ziv parse of \(T[\ell+1..n]\) with respect to \(R\), we can build the LZ77 parse of \(T\) in \(n \text{polylog}(n)\) time and \(\mathcal{O}(\ell + z')\) total space.

References

[1] Martin Farach and Mikkel Thorup. String matching in Lempel-Ziv compressed strings. *Algorithmica*, 4(20):388–404, 1998.

[2] Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Łącki, and Piotr Sankowski. Optimal dynamic strings. In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1509–1528. SIAM, 2018.

[3] Dmitry Kosolobov, Daniel Valenzuela, Gonzalo Navarro, and Simon J Puglisi. Lempel–Ziv-like parsing in small space. *Algorithmica*, 82(11):3195–3215, 2020.
kmax = i
smax = n + 1
for j from i + 1 to n
 let kj be the largest value such that T[i + 1..kj] occurs in T[1..kj - 1]
 split by an RLZ phrase boundary into T[i + 1..j] and T[j + 1..kj]
 let sj be the leftmost starting position in T of such an occurrence of
 T[i + 1..kj]
 if kj > kmax then
 kmax = kj
 smax = sj
 end if
 if kj == kmax and smax > sj then
 smax = sj
 end if
 if kmax == j - 1 then
 break
 end if
end for
return (kmax - i, smax, T[kmax + 1])

Figure 1: Pseudo-code for computing an LZ77 phrase starting at T[i + 1], in time polylog(n) times
the length of the phrase and O(ℓ + z’) space.

[4] Shanika Kuruppu, Simon J Puglisi, and Justin Zobel. Relative Lempel-Ziv compression of
genomes for large-scale storage and retrieval. In International Symposium on String Processing
and Information Retrieval, pages 201–206. Springer, 2010.

[5] Gonzalo Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20, 2014.

[6] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Dy-
namic index and LZ factorization in compressed space. Discrete Applied Mathematics, 274:116–
129, 2020.

[7] Alberto Policriti and Nicola Prezza. LZ77 computation based on the run-length encoded bwt.
Algorithmica, 80(7):1986–2011, 2018.

[8] Jacob Ziv and Abrahm Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on information theory, 23(3):337–343, 1977.

[9] Jacob Ziv and Neri Merhav. A measure of relative entropy between individual sequences with
application to universal classification. IEEE transactions on information theory, 39(4):1270–
1279, 1993.