ORBITS OF FINITE SOLVABLE GROUPS ON CHARACTERS

THOMAS MICHAEL KELLER AND YONG YANG

Abstract. We prove that if a solvable group A acts coprimely on a solvable group G, then A has a “large” orbit in its corresponding action on the set of ordinary complex irreducible characters of G. This extends (at the cost of a weaker bound) a 2005 result of A. Moretò who obtained such a bound in case that A is a p-group.

1. Introduction

The main purpose of this paper is to generalize a 2005 result of A. Moretò on orbits in a certain group action. While there are many results on the orbits in the action of a group acting via automorphisms on some other group (of which the action of linear groups on their natural modules is a particularly prominent example), Moretò’s result is noteworthy in that it is one of the very few dealing with the action of a group on the set of irreducible characters of another group.

More precisely, let the finite group A act (via automorphisms) on the finite group G. Such an action induces an action of A on the set $\text{Irr}(G)$ in an obvious way (where $\text{Irr}(G)$ denotes the set of complex irreducible characters of G). When G is elementary abelian, we are back to studying linear group actions and all the known results apply. But for nonabelian G not much is known about this interesting action. Note that when $(|A|, |G|) = 1$, then it is well-known that the orbit sizes of A on $\text{Irr}(G)$ are the same as the orbit sizes in the natural action of A on the conjugacy classes of G, and this latter action was of some importance in \[\text{[5]},\] where some specialized results on this action were obtained. But apart from these we are aware only of two major results on the action of A on $\text{Irr}(G)$.

The first such result is due to D. Gluck \[\text{[2]},\] He proved that when A is abelian and G is solvable, then there always exists an “arithmetically large” orbit on $\text{Irr}(G)$ (i.e., an orbit whose size is divisible by “many” different primes).

The second result is the 2005 result \[\text{[10]}\] by Moretò mentioned above. It proves the existence of a “large” orbit on $\text{Irr}(G)$ in case that A is a p-group for some prime p and G is solvable such that $(|A|, |G|) = 1$.

In this paper we take the second result to the next level and establish the existence of a large orbit on $\text{Irr}(G)$ in case that A is solvable and G is solvable such that $(|A|, |G|) = 1$. More precisely, our main result is the following.

2000 Mathematics Subject Classification. 20C20.

Part of this work was done while the first author was on sabbatical leave and was visiting the University of Wisconsin-Parkside. He thanks the Mathematics Department there for its hospitality.
Theorem A. Let A and G be finite solvable groups such that A that acts faithfully and coprimely on G. Let b be an integer such that $|A : C_A(\chi)| \leq b$ for all $\chi \in \text{Irr}(G)$. Then $|A| \leq b^{49}$.

We make a few observations. First, it has already been observed in [10] that the coprimeness assumption cannot be omitted.

Second, not surprisingly, our bound is weaker than the bound obtained in [10]. While in [10], when A is a p-group, the existence of an orbit of size roughly $|A|^{1/19}$ on $\text{Irr}(G)$ is proved, in the more general situation of Theorem A we only get an orbit of size about $|A|^{1/49}$. Both bounds, however, are far from best possible anyway and thus the results are more of a qualitative nature. The true bound is probably close to $|A|^{1/2}$ in both cases.

Third, if we assume $|AG|$ to contain no small primes, the bounds one can get tend to be much better. In [10] it is observed in passing that if odd order is assumed, then the bound will get much better. And here we will explicitly establish a better bound in case that $|G|$ is not divisible by 6 (see Theorem 3.3 below).

Our proof of Theorem A is largely based on the ideas introduced in [10] and extends them to the more general hypothesis of Theorem A. In particular, our proof does not use Moretó’s result, but rather reproves it (with a weaker bound) as a special case. To keep the bound from getting too large, we also make use of a recent strengthening in the solvable case of a result by M. Aschbacher and R. Guralnick [1] on the size of $|G/G'|$ of a linear solvable group; see [22].

2. The abelian quotient of linear groups

We first recall a result due to Aschbacher and Guralnick.

Proposition 2.1. Let G be a finite solvable group that acts faithfully and completely reducibly on a finite vector space V. Then $|G : G'| \leq |V|$.

Proof. This is a special case of the much more general [1, Theorem 3].

Next we provide a recent strengthening of Proposition 2.1 by the authors.

Theorem 2.2. Let G be a finite solvable group that acts faithfully and completely reducibly on a finite vector space V, and let B be the size of the largest orbit of G on V. Then $|G : G'| \leq B$.

Proof. This will appear in [6].

3. Main Theorem

The following result is an extension of [10, Lemma 2.1].

Theorem 3.1. Assume that a solvable π-group A acts faithfully on a solvable π'-group G. Let b be an integer such that $|A : C_A(\chi)| \leq b$ for all $\chi \in \text{Irr}(G)$. Let $\Gamma = AG$ be the semidirect product. Let $K_{i+1} = F_{i+1}(\Gamma)/F_i(\Gamma)$ and let $K_{i+1,\pi}$ be the Hall π-subgroup of K_{i+1} for all $i \geq 1$. Let $K_i/\Phi(\Gamma/F_i(\Gamma)) = V_{i1} + V_{i2}$ where V_{i1} is the π part of $K_i/\Phi(\Gamma/F_i(\Gamma))$
and V_2 is the π' part of $K_i/\Phi(\Gamma/F_{i-1}(\Gamma))$ for all $i \geq 1$. Let $K \triangleleft \Gamma$ such that $\Phi(\Gamma/F_{i-1}(\Gamma)) = K$. Let $L_{i+1,\pi} = K_{i+1,\pi} \cap K$. We have that $|C_{L_{i+1,\pi}}(V_{i1})| \leq b^2$, and $|C_{L_{i+1,\pi}}(V_{i1})| \leq b$ if $L_{i+1,\pi}$ is abelian. The order of the maximum abelian quotient of $C_{L_{i+1,\pi}}(V_{i1})$ is less than or equal to b for all $i \geq 1$.

Proof. We know that $L_{i+1,\pi}$ acts faithfully and completely reducibly on $V_{i1} + V_{i2}$. Clearly $C_{L_{i+1,\pi}}(V_{i1})$ acts faithfully and completely reducibly on V_{i2} and $L_{i+1,\pi}/C_{L_{i+1,\pi}}(V_{i1})$ acts faithfully and completely reducibly on V_{i1}.

Let L be the pre-image of $C_{L_{i+1,\pi}}(V_{i1})$ in $(\Gamma/F_{i-1}(\Gamma))/\Phi(\Gamma/F_{i-1}(\Gamma))/V_{i1}$. Write $L = QV_{i2}$, where $Q \in \text{Hall}_L(L)$. We have to prove that $|Q| \leq b^2$. Clearly $F(L) = V_{i2}$ and $\Phi(L) = 1$. We know by a theorem of Brauer that Q acts faithfully on V_{i2}. Replacing A by a conjugate, if necessary, we may assume that $Q \leq A$. It follows from our hypothesis that $|Q : C_Q(\chi)| \leq b$ for all $\chi \in \text{Irr}(G)$.

Now, let $\lambda \in \text{Irr}(V_{i2})$. By [3, Theorem 13.28], there exists $\chi \in \text{Irr}(G)$ lying over λ that is $C_Q(\lambda)$-invariant. We claim that $C_Q(\chi) = C_Q(\lambda)$. It is clear that $|Q : C_Q(\lambda)|$ divides the degree of any character of L lying over λ. Therefore, $|Q : C_Q(\lambda)|$ divides the degree of any character of QG lying over λ since the pre-image of L in Γ is normal in Γ. Now, [3, Corollary 8.16] and Clifford’s correspondence [3, Theorem 6.11] yield that there exist $\psi \in \text{Irr}(QG)$ lying over χ, whence over λ, such that $\psi(1) = |Q : C_Q(\chi)|$. It follows that $C_Q(\chi) = C_Q(\lambda)$, as desired. In particular, $|Q : C_Q(\lambda)| \leq b$. We deduce that for all $\lambda \in \text{Irr}(V_{i2})$, $|Q : C_Q(\lambda)| \leq b$. Now, [4], for instance, implies that $|Q| \leq b^2$. Also, if Q is abelian, then $|Q| \leq b$. The order of the maximum abelian quotient of Q is less than or equal to b by Theorem 2.2. This completes the proof of the theorem.

Now we are ready to prove Theorem A, which we restate.

Theorem 3.2. Let A be a solvable π'-group that acts faithfully on a solvable π'-group G. Let b be an integer such that $|A : C_A(\chi)| \leq b$ for all $\chi \in \text{Irr}(G)$. Then $|A| \leq b^{\#}$.

Proof. Let $\Gamma = AG$ be the semidirect product of A and G. By Gaschütz’s theorem, $\Gamma/F(\Gamma)$ acts faithfully and completely reducibly on $\text{Irr}(\Gamma/F(\Gamma))$. It follows from [3, Theorem 3.3] that there exists $\lambda \in \text{Irr}(\Gamma/F(\Gamma))$ such that $T = C_T(\lambda) \leq F(\Gamma)$.

Let $K_{i+1} = F_{i+1}(\Gamma)/F_i(\Gamma)$ and let $K_{i+1,\pi}$ be the Hall π'-subgroup of K_{i+1} for all $i \geq 1$. We know that $K_{i+1,\pi}$ acts faithfully and completely reducibly on $K_{i}/\Phi(F_{i-1}(\Gamma))$. It is clear that we may write $K_{i}/\Phi(F_{i-1}(\Gamma)) = V_{i1} + V_{i2}$ where V_{i1} is the π part of $K_{i}/\Phi(F_{i-1}(\Gamma))$ and V_{i2} is the π' part of $K_{i}/\Phi(F_{i-1}(\Gamma))$ for all $i \geq 1$. Clearly $C_{K_{i+1,\pi}}(V_{i1})$ acts faithfully and completely reducibly on V_{i2}. Thus $|C_{K_{i+1,\pi}}(V_{i1})| \leq b^2$ and the order of the maximum abelian quotient of $C_{K_{i+1,\pi}}(V_{i1})$ is less than or equal to b by Theorem 3.1. Also $K_{i+1,\pi}/C_{K_{i+1,\pi}}(V_{i1})$ acts faithfully and completely reducibly on V_{i1}. Since $K_{i+1,\pi}/C_{K_{i+1,\pi}}(V_{i1})$ is nilpotent, $|K_{i+1,\pi}/C_{K_{i+1,\pi}}(V_{i1})| \leq |V_{i1}|^{\beta}/2$ where $\beta = \log(32)/\log(9)$ by [7, Theorem 3.3]. Also the order of the maximum abelian quotient of $K_{i+1,\pi}/C_{K_{i+1,\pi}}(V_{i1})$ is bounded above by $|V_{i1}|$ by Proposition 2.1.

Thus we have the following, $|K_{2,\pi}| \leq b^2$ and the order of the maximum abelian quotient of $K_{2,\pi}$ is bounded above by b.

$|K_{3,\pi}| \leq |C_{K_3,\pi}(V_{21})| \cdot |K_{3,\pi}/C_{K_3,\pi}(V_{21})| \leq b^2 \cdot b^3$ and the order of the maximum abelian quotient of $K_{3,\pi}$ is bounded above by $b \cdot b = b^2$.

$$|K_{4,π}| \leq |C_{K_{4,π}}(V_{31})| \cdot |K_{4,π}/C_{K_{4,π}}(V_{31})| \leq b^2 \cdot b^{2β}$$ and the order of the maximum abelian quotient of $K_{4,π}$ is bounded above by $b \cdot b^2 = b^3$.

$$|K_{5,π}| \leq |C_{K_{5,π}}(V_{41})| \cdot |K_{5,π}/C_{K_{5,π}}(V_{41})| \leq b^2 \cdot b^{3β}$$ and the order of the maximum abelian quotient of $K_{5,π}$ is bounded above by $b \cdot b^3 = b^4$.

$$|K_{6,π}| \leq |C_{K_{6,π}}(V_{51})| \cdot |K_{6,π}/C_{K_{6,π}}(V_{51})| \leq b^2 \cdot b^{4β}$$ and the order of the maximum abelian quotient of $K_{6,π}$ is bounded above by $b \cdot b^4 = b^5$.

$$|K_{7,π}| \leq |C_{K_{7,π}}(V_{61})| \cdot |K_{7,π}/C_{K_{7,π}}(V_{61})| \leq b^2 \cdot b^{5β}$$ and the order of the maximum abelian quotient of $K_{7,π}$ is bounded above by $b \cdot b^5 = b^6$.

$$|K_{8,π}| \leq |C_{K_{8,π}}(V_{71})| \cdot |K_{8,π}/C_{K_{8,π}}(V_{71})| \leq b^2 \cdot b^{6β}.$$

Next, we show that $|Γ : T|_π \leq b$.

Let $χ$ be any irreducible character of G lying over $λ$. Then every irreducible character of $Γ$ that lies over $χ$ also lies over $λ$ and hence has degree divisible by $|Γ : T|$. But $χ$ extends to its stabilizer in $Γ$ and thus some irreducible character of $Γ$ lying over $λ$ has degree $χ(1)|A : C_{A}(χ)|$. The $π$-part of $|Γ : T|$, therefore, divides $|A : C_{A}(χ)|$, which is at most b.

This gives that $|A| \leq b^2 \cdot b^2 \cdot b^3 \cdot b^2 \cdot b^{2β} \cdot b^2 \cdot b^{3β} \cdot b^2 \cdot b^{4β} \cdot b^2 \cdot b^{5β} \cdot b^2 \cdot b^{6β} \cdot b = b^{15+21β} \leq b^{48.124}$.

Theorem 3.3. Let A be a solvable $π$-group that acts faithfully on a solvable $π'$-group G. Assume that $2, 3 ∉ π$. Let b be an integer such that $|A : C_{A}(χ)| \leq b$ for all $χ ∈ \text{Irr}(G)$. Then $|A| \leq b^4$.

Proof. Let $Γ = AG$ be the semidirect product of A and G. By Gaschütz’s theorem, $Γ/Φ(Γ)$ acts faithfully and completely reducibly on $\text{Irr}(Γ)$. It follows from [6] Theorem 3.2 that there exists $λ ∈ \text{Irr}(Γ)$ such that $T = C_Γ(λ) ⊆ K$, $Φ(Γ) ⊆ K ⊆ F_3(Γ)$. The $π$-subgroup of K acts faithfully and completely reducibly on V_{i+1}/V_i and $K_i/Φ(Γ)$ acts faithfully and completely reducibly on V_{i+1}/V_i.

Since the image of $K ∩ F_2(Γ)$ in $K_{2,π}$ is abelian. $|(K ∩ F_2(Γ))/F_2(Γ)| \leq b$ and the order of the maximum abelian quotient of $K_{2,π}$ is bounded above by b by Theorem 3.1.

Since $L_{3,π} = K/F_2(Γ)$ is abelian. $|L_{3,π}| \leq |C_{L_{3,π}}(V_{21})| \cdot |L_{3,π}/C_{L_{3,π}}(V_{21})| \leq b \cdot b$ by Theorem 3.1 and Proposition 2.1.

Next, we show that $|Γ : T|_π \leq b$.

Let $χ$ be any irreducible character of G lying over $λ$. Then every irreducible character of $Γ$ that lies over $χ$ also lies over $λ$ and hence has degree divisible by $|Γ : T|$. But $χ$ extends to its stabilizer in $Γ$ and thus some irreducible character of $Γ$ lying over $χ$ has degree $χ(1)|A : C_{A}(χ)|$. The $π$-part of $|Γ : T|$, therefore, divides $|A : C_{A}(χ)|$, which is at most b.

This gives that $|A| \leq b \cdot b \cdot b \cdot b \leq b^4$.

Since when $|A|, |G| = 1$, the orbit sizes of A on $\text{Irr}(G)$ are the same as the orbit sizes in the natural action of A on the conjugacy classes of G, the following results immediately follow from the previous ones.

Theorem 3.4. Let A be a solvable $π$-group that acts faithfully on a solvable $π'$-group G. Let b be an integer such that $|A : C_{A}(C)| \leq b$ for all $C ∈ cl(G)$. Then $|A| \leq b^{49}$.

4
Theorem 3.5. Let A be a solvable π-group that acts faithfully on a solvable π'-group G. Assume that $2, 3 \notin \pi$. Let b be an integer such that $|A : C_A(C)| \leq b$ for all $C \in \text{cl}(G)$. Then $|A| \leq b^4$.

References

[1] M. Aschbacher and R. Guralnick, ‘On abelian quotient of primitive groups’, Proc. Amer. Math. Soc. 107 (1989), 89-95.
[2] D. Gluck, ‘Primes dividing character degrees and character orbit sizes’, Proc. Amer. Math. Soc. 101 (1987), 219-225.
[3] I.M. Isaacs, Character theory of finite groups, Dover, New York, 1994.
[4] I.M. Isaacs, ‘Large orbits in actions of nilpotent groups’, Proc. Amer. Math. Soc. 127 (1999), 45-50.
[5] T. M. Keller, ‘Fixed conjugacy classes of normal subgroups and the $k(GV)$-problem’, Journal of Algebra 305 (2006), 457-486.
[6] T. M. Keller and Y. Yang, ‘On abelian quotient and orbit size of solvable linear groups’, Preprint (2012).
[7] O. Manz and T.R. Wolf, ‘Representations of Solvable Groups’, Cambridge University Press, 1993.
[8] Y. Yang, ‘Orbits of the actions of finite soluble groups’, Journal of Algebra 321 (2009), 2012-2021.
[9] Y. Yang, ‘Blocks of small defect’, submitted.
[10] A. Moretó, ‘Large orbits of p-groups on characters and applications to character degrees’, Israel J. of Math. 146 (2005), 243-251.

Department of Mathematics, Texas State University at San Marcos, 601 University Drive, San Marcos, TX 78666, USA.

Department of Mathematics, University of Wisconsin at Parkside, 900 Wood Road, Kenosha, WI 53144, USA.
E-mail address: keller@txstate.edu, yangy@uwp.edu