THE \(L_p \) MINKOWSKI PROBLEM FOR POLYTOPES FOR NEGATIVE \(p \)

GUANGXIAN ZHU

ABSTRACT. Existence of solutions to the \(L_p \) Minkowski problem is proved for all \(p < 0 \).

For the critical case of \(p = -n \), which is known as the centro-affine Minkowski problem,
this paper contains the main result in \[72\] as a special case.

1. Introduction

A convex body in \(n \)-dimensional Euclidean space, \(\mathbb{R}^n \), is a compact convex set that has non-empty interior. If \(p \in \mathbb{R} \) and \(K \) is a convex body in \(\mathbb{R}^n \) that contains the origin in its interior, then the \(L_p \) surface area measure, \(S_p(K, \cdot) \), of \(K \) is a Borel measure on the unit sphere, \(S^{n-1} \), defined for each Borel \(\omega \subset S^{n-1} \) by

\[
S_p(K, \omega) = \int_{x \in \nu_K^{-1}(\omega)} (x \cdot \nu_K(x))^{1-p} d\mathcal{H}^{n-1}(x),
\]

where \(\nu_K : \partial' K \to S^{n-1} \) is the Gauss map of \(K \), defined on \(\partial' K \), the set of boundary points of \(K \) that have a unique outer unit normal, and \(\mathcal{H}^{n-1} \) is \((n-1) \)-dimensional Hausdorff measure.

The \(L_p \) surface area measure was introduced by Lutwak [41]. The \(L_p \) surface area measure contains three important measures as special cases: the \(L_1 \) surface area measure is the classic surface area measure; the \(L_0 \) surface area measure is the cone-volume measure; the \(L_{-n} \) surface area measure is the centro-affine surface area measure. Today, the \(L_p \) surface area measure is a central notation in convex geometry analysis, and appeared in, e.g., [3, 8, 21, 28, 37, 52, 54, 56, 60, 65, 67].

The following \(L_p \) Minkowski problem that posed by Lutwak [41] is considered as one of the most important problems in modern convex geometry analysis.

\(L_p \) Minkowski problem: Find necessary and sufficient conditions on a finite Borel measure \(\mu \) on \(S^{n-1} \) so that \(\mu \) is the \(L_p \) surface area measure of a convex body in \(\mathbb{R}^n \).

The associated partial differential equation for the \(L_p \) Minkowski problem is the following Mong-Ampère type equation: For a given positive function \(f \) on the unit sphere, solve

\[
(1.1) \quad h^{1-p} \det(h_{ij} + h\delta_{ij}) = f,
\]

where \(h_{ij} \) is the covariant derivative of \(h \) with respect to an orthonormal frame on \(S^{n-1} \) and \(\delta_{ij} \) is the Kronecker delta.

The solutions of the \(L_p \) Minkowski problem have important applications to affine isoperimetric inequalities, see, e.g., Zhang [70], Lutwak, Yang and Zhang [46], Ciachi, Lutwak,

2010 Mathematics Subject Classification: 52A40.

Key Words: polytope, \(L_p \) surface area measure, \(L_p \) Minkowski problem, centro-affine Minkowski problem.
The solutions to the L_p Minkowski problem are also related with some important flows (see, e.g., [12], [25–27]). The solutions to the L_p Minkowski problem are related with some important flows (see, e.g., [1, 2, 61, 62]).

When $p = 1$, the L_p Minkowski problem is the classical Minkowski problem. The existence and uniqueness for the solution of this problem was solved by Minkowski, Aleksandrov, and Fenchel and Jessen (see Schneider [57] for references). Regularity of the Minkowski problem was studied by e.g., Caffarelli [7], Cheng and Yau [10], Nirenberg [53] and Pogorelov [55].

For $p \neq 1$, the L_p Minkowski problem was studied by, e.g., Lutwak [41], Lutwak and Oliker [12], Lutwak, Yang and Zhang [47], Chou and Wang [11], Guan and Lin [19], Hug, Lutwak, Yang and Zhang [22], Böröczky, Hug, Zhang, and Zhu [4], Böröczky, Lutwak, Yang and Zhang [5, 6], Chen [9], Dou and Zhu [14], Haberl, Lutwak, Yang and Zhang [22], Huang, Liu and Xu [30], Jian, Lu and Wang [32], Jian and Wang [34], Jiang, Wang and Wei [35], Lu and Wang [36], Stancu [61, 62], Sun and Long [63] and Zhu [71–73]. Analogous of the Minkowski problems were studied in, e.g., [13, 15, 16, 18, 20, 29, 68].

The uniqueness of solutions to the L_p Minkowski for $p > 1$ can be shown by applying the L_p Minkowski inequality established by Lutwak [41]. However, little is known about the L_p Minkowski inequality for the case where $p < 1$. This is one of the main reasons that most of the previous work on the L_p Minkowski problem was limited to the case where $p > 1$.

The critical case where $p = -n$ of the L_p Minkowski problem is called the centro-affine Minkowski problem, which describes the centro-affine surface area measure. This problem is especially important due to the affine invariant of the partial differential equation (1.1). It is known that the centro-affine Minkowski problem has connections with several important geometric problems (see, e.g., Jian and Wang [34] for reference). The centro-affine Minkowski problem was explicitly posed by Chow and Wang [11]. Recently, the centro-affine Minkowski problem was studied by Lu and Wang [36] for rotationally symmetric case and was studied by Zhu [72] for discrete measures.

When $p < -n$, very few results are known for the L_p Minkowski problem. So far as the author knows, in \mathbb{R}^2, the L_p Minkowski problem for all $p < 0$ was studied by Dou and Zhu [14], Sun and Long [63]. It is the aim of this paper to study the L_p Minkowski problem for all $p < 0$ and $n \geq 2$.

It is known that the Minkowski problem and the L_p Minkowski problem (for $p > 1$) for arbitrary measures can be solved by an approximation argument by first solving the polytopal case (see, e.g., [31] or [57] pp. 392-393). This is one of the reasons why the Minkowski problem and the L_p Minkowski problem for polytopes are of great importance.

A polytope in \mathbb{R}^n is the convex hull of a finite set of points in \mathbb{R}^n provided that it has positive n-dimensional volume. The convex hull of a subset of these points is called a facet of the polytope if it lies entirely on the boundary of the polytope and has positive $(n-1)$-dimensional volume. Let P be a polytope which contains the origin in its interior with N facets whose outer unit normals are $u_1, ..., u_N$, and such that the facet with outer unit normal u_k has area a_k and distance h_k from the origin for all $k \in \{1, ..., N\}$. Then,

$$S_p(P, \cdot) = \sum_{k=1}^{N} h_k^{1-p} a_k \delta_{u_k}(\cdot).$$

where δ_{u_k} denotes the delta measure that is concentrated at the point u_k.
A finite subset U of S^{n-1} is said to be in general position if any k elements of U, $1 \leq k \leq n$, are linearly independent.

In [72], the author solved the centro-affine Minkowski problem for polytopes whose outer unit normals are in general position:

Theorem A. Let μ be a discrete measure on the unit sphere S^{n-1}. Then μ is the centro-affine surface area measure of a polytope whose outer unit normals are in general position if and only if the support of μ is in general position and not concentrated on a closed hemisphere.

A linear subspace X $(0 < \dim X < n)$ of \mathbb{R}^n is said to be essential with respect to a Borel measure μ on S^{n-1} if $X \cap \text{supp}(\mu)$ is not concentrated on any closed hemisphere of $X \cap S^{n-1}$.

Obviously, if the support of a discrete measure μ is in general position, then the set of essential subspaces of μ is empty. On the other hand, in \mathbb{R}^n $(n \geq 3)$, one can easily construct a discrete measure μ such that μ does not have essential subspace but the support of μ is not in general position. Therefore, the set of discrete measures whose supports are in general position is a subset of the set of discrete measures that do not have essential subspaces.

It is the aim of this paper to solve the L_p Minkowski problem for discrete measures that do not have essential subspaces. Obviously, the following main theorem of this paper contains Theorem A as a special case.

Theorem 1.1. Let $p < 0$ and μ be a discrete measure on the unit sphere S^{n-1}. Then μ is the L_p surface area measure of a polytope whose L_p surface area measure does not have essential subspace if and only if μ does not have essential subspace and not concentrated on a closed hemisphere.

2. Preliminaries

In this section, we standardize some notations and list some basic facts about convex bodies. For general references regarding convex bodies, see, e.g., [17, 57, 64].

The sets in this paper are subsets of the n-dimensional Euclidean space \mathbb{R}^n. For $x, y \in \mathbb{R}^n$, we write $x \cdot y$ for the standard inner product of x and y, $|x|$ for the Euclidean norm of x, and S^{n-1} for the unit sphere of \mathbb{R}^n.

Suppose S is a subset of \mathbb{R}^n, then the positive hull, $\text{pos}(S)$, of S is the set of all positive combinations of any finitely many elements of S. Let $\text{lin}(S)$ be the smallest linear subspace of \mathbb{R}^n containing S. The diameter of a subset, S, of \mathbb{R}^n is defined by

$$d(S) = \max\{|x - y| : x, y \in S\}.$$

The convex hull of a subset, S, of \mathbb{R}^n is defined by

$$\text{Conv} (S) = \{\lambda x + (1 - \lambda) y : 0 \leq \lambda \leq 1 \text{ and } x, y \in S\}.$$

For convex bodies K_1, K_2 in \mathbb{R}^n and $s_1, s_2 \geq 0$, the Minkowski combination is defined by

$$s_1K_1 + s_2K_2 = \{s_1x_1 + s_2x_2 : x_1 \in K_1, x_2 \in K_2\}.$$

The support function $h_K : \mathbb{R}^n \to \mathbb{R}$ of a convex body K is defined, for $x \in \mathbb{R}^n$, by

$$h(K, x) = \max\{x \cdot y : y \in K\}.$$
Obviously, for \(s \geq 0 \) and \(x \in \mathbb{R}^n \),
\[
h(sK, x) = h(K, sx) = sh(K, x).
\]

If \(K \) is a convex body in \(\mathbb{R}^n \) and \(u \in S^{n-1} \), then the support set \(F(K, u) \) of \(K \) in direction \(u \) is defined by
\[
F(K, u) = K \cap \{ x \in \mathbb{R}^n : x \cdot u = h(K, u) \}.
\]

The Hausdorff distance of two convex bodies \(K_1, K_2 \) in \(\mathbb{R}^n \) is defined by
\[
\delta(K_1, K_2) = \inf \{ t \geq 0 : K_1 \subset K_2 + tB^n, K_2 \subset K_1 + tB^n \},
\]

where \(B^n \) is the unit ball.

Let \(\mathcal{P} \) be the set of polytopes in \(\mathbb{R}^n \). If the unit vectors \(u_1, \ldots, u_N \) are not concentrated on a closed hemisphere, let \(\mathcal{P}(u_1, \ldots, u_N) \) be the subset of \(\mathcal{P} \) such that a polytope \(P \in \mathcal{P}(u_1, \ldots, u_N) \) if the the set of the outer unit normals of \(P \) is a subset of \(\{ u_1, \ldots, u_N \} \). Let \(\mathcal{P}_N(u_1, \ldots, u_N) \) be the subset of \(\mathcal{P}(u_1, \ldots, u_N) \) such that a polytope \(P \in \mathcal{P}_N(u_1, \ldots, u_N) \) if, \(P \in \mathcal{P}(u_1, \ldots, u_N) \), and \(P \) has exactly \(N \) facets.

3. An extremal problem related to the \(L_p \) Minkowski problem

Suppose \(p < 0 \), \(\alpha_1, \ldots, \alpha_N > 0 \), the unit vectors \(u_1, \ldots, u_N \) are not concentrated on a closed hemisphere, and \(P \in \mathcal{P}(u_1, \ldots, u_N) \). Define the function, \(\Phi_P : \text{Int} \,(P) \to \mathbb{R} \), by
\[
\Phi_P(\xi) = \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi \cdot u_k)^p.
\]

In this section, we study the extremal problem
\[
(3.1) \quad \sup \{ \inf_{\xi \in \text{Int} \,(Q)} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, \ldots, u_N) \text{ and } V(Q) = 1 \}.
\]

The main purpose of this section is to prove that a dilation of the solution to problem (3.1) solves the corresponding \(L_p \) Minkowski problem.

Lemma 3.1. If \(p < 0 \), \(\alpha_1, \ldots, \alpha_N > 0 \), the unit vectors \(u_1, \ldots, u_N \) are not concentrated on a closed hemisphere and \(P \in \mathcal{P}(u_1, \ldots, u_N) \), then there exists a unique \(\xi(P) \in \text{Int} \,(P) \) such that
\[
\Phi_P(\xi(P)) = \inf_{\xi \in \text{Int} \,(P)} \Phi_P(\xi).
\]

Proof. Since \(p < 0 \), the function \(f(t) = t^p \) is strictly convex on \((0, +\infty)\). Hence, for \(0 < \lambda < 1 \) and \(\xi_1, \xi_2 \in \text{Int} \,(P) \),
\[
\lambda \Phi_P(\xi_1) + (1 - \lambda) \Phi_P(\xi_2) = \lambda \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi_1 \cdot u_k)^p + (1 - \lambda) \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi_2 \cdot u_k)^p
\]
\[
= \sum_{k=1}^{N} \alpha_k [\lambda (h(P, u_k) - \xi_1 \cdot u_k)^p + (1 - \lambda)(h(P, u_k) - \xi_2 \cdot u_k)^p]
\]
\[
\geq \sum_{k=1}^{N} \alpha_k [h(P, u_k) - (\lambda \xi_1 + (1 - \lambda) \xi_2) \cdot u_k]^p
\]
\[
= \Phi_P(\lambda \xi_1 + (1 - \lambda) \xi_2).
\]
Equality hold if and only if $\xi_1 \cdot u_k = \xi_2 \cdot u_k$ for all $k = 1, \ldots, N$. Since u_1, \ldots, u_N are not concentrated on a closed hemisphere, $\mathbb{R}^n = \text{lin}\{u_1, \ldots, u_N\}$. Thus, $\xi_1 = \xi_2$. Hence, Φ_P is strictly convex on $\text{Int}(P)$.

From the fact that $P \in \mathcal{P}(u_1, \ldots, u_N)$, we have, for any $x \in \partial P$, there exists a $u_{i_0} \in \{u_1, \ldots, u_N\}$ such that

$$h(P, u_{i_0}) = x \cdot u_{i_0}.$$

Thus, $\Phi_P(\xi) \to \infty$ whenever $\xi \in \text{Int}(P)$ and $\xi \to x$. Therefore, there exists a unique interior point $\xi(P)$ of P such that

$$\Phi_P(\xi(P)) = \inf_{\xi \in \text{Int}(P)} \Phi_P(\xi).$$

\[\square\]

Obviously, for $\lambda > 0$ and $P \in \mathcal{P}(u_1, \ldots, u_N)$,

$$\xi(\lambda P) = \lambda \xi(P),$$

and if $P_i \in \mathcal{P}(u_1, \ldots, u_N)$ and P_i converges to a polytope P, then $P \in \mathcal{P}(u_1, \ldots, u_N)$.

Lemma 3.2. If $p < 0$, $\alpha_1, \ldots, \alpha_N > 0$, the unit vectors u_1, \ldots, u_N are not contained in a closed hemisphere, $P_i \in \mathcal{P}(u_1, \ldots, u_N)$, and P_i converges to a polytope P, then $\lim_{i \to \infty} \xi(P_i) = \xi(P)$ and

$$\lim_{i \to \infty} \Phi_{P_i}(\xi(P_i)) = \Phi_P(\xi(P)).$$

Proof. Since P_i converges to P and $\xi(P_i) \in \text{Int}(P_i), \xi(P_i)$ is bounded. Let ξ_0 be the limit point of a subsequence, $\xi(P_{i_j})$, of $\xi(P_i)$. We claim that $\xi_0 \in \text{Int}(P)$. Otherwise, ξ_0 is a boundary point of P with $\lim_{j \to \infty} \Phi_{P_{i_j}}(\xi(P_{i_j})) = \infty$, which contradicts the fact that

$$\lim_{j \to \infty} \Phi_{P_{i_j}}(\xi(P_{i_j})) \leq \lim_{j \to \infty} \Phi_{P_{i_j}}(\xi(P)) = \Phi(\xi(P)) < \infty.$$

We claim that $\xi_0 = \xi(P)$. Otherwise,

$$\lim_{j \to \infty} \Phi_{P_{i_j}}(\xi(P_{i_j})) = \Phi_P(\xi_0)$$

$$> \Phi_P(\xi(P))$$

$$= \lim_{j \to \infty} \Phi_{P_{i_j}}(\xi(P)).$$

This contradicts the fact that

$$\Phi_{P_{i_j}}(\xi(P_{i_j})) \leq \Phi_{P_{i_j}}(\xi(P)).$$

Hence, $\lim_{i \to \infty} \xi(P_i) = \xi(P)$ and

$$\lim_{i \to \infty} \Phi_{P_i}(\xi(P_i)) = \Phi_P(\xi(P)).$$

\[\square\]

Lemma 3.3. If $p < 0$, $\alpha_1, \ldots, \alpha_N > 0$, the unit vectors u_1, \ldots, u_N are not concentrated on a closed hemisphere and $P \in \mathcal{P}(u_1, \ldots, u_N)$, then

$$\sum_{k=1}^{N} \alpha_k \left[\frac{u_k}{h(P, u_k) - \xi(P) \cdot u_k}\right]^{1-p} = 0.$$
Proof. Define \(f : \text{Int}(P) \to \mathbb{R}^n \) by
\[
f(x) = \sum_{k=1}^{N} \alpha_k (h(P, u_k) - x \cdot u_k)^p.
\]

By conditions,
\[
f(\xi(P)) = \inf_{x \in \text{Int}(P)} f(x).
\]
Thus,
\[
\sum_{k=1}^{N} \alpha_k \frac{u_{k,i}}{[h(P, u_k) - \xi(P) \cdot u_k]^{1-p}} = 0,
\]
for all \(i = 1, \ldots, n \), where \(u_k = (u_{k,1}, \ldots, u_{k,n})^T \). Therefore,
\[
\sum_{k=1}^{N} \alpha_k \frac{u_k}{[h(P, u_k) - \xi(P) \cdot u_k]^{1-p}} = 0.
\]
\[\square\]

Lemma 3.4. Suppose \(p < 0 \), \(\alpha_1, \ldots, \alpha_N > 0 \), the unit vectors \(u_1, \ldots, u_N \) are not concentrated on a closed hemisphere, and there exists a \(P \in \mathcal{P}_N(u_1, \ldots, u_N) \) with \(\xi(P) = o \), \(V(P) = 1 \) such that
\[
\Phi_P(o) = \sup \left\{ \inf_{\xi \in \text{Int}(Q)} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, \ldots, u_N) \text{ and } V(Q) = 1 \right\}.
\]
Then,
\[
S_p(P_0, \cdot) = \sum_{k=1}^{N} \alpha_k \delta_{u_k}(\cdot),
\]
where \(P_0 = \left(\sum_{j=1}^{N} \alpha_j h(P, u_j)^p/n \right)^{\frac{1}{p}} P \).

Proof. By conditions, there exists a polytope \(P \in \mathcal{P}_N(u_1, \ldots, u_N) \) with \(\xi(P) = o \) and \(V(P) = 1 \) such that
\[
\Phi_P(o) = \sup \left\{ \inf_{\xi \in \text{Int}(Q)} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, \ldots, u_N) \text{ and } V(Q) = 1 \right\},
\]
where \(\Phi_Q(\xi) = \sum_{k=1}^{N} \alpha_k (h(Q, u_k) - \xi \cdot u_k)^p \).

For \(\tau_1, \ldots, \tau_N \in \mathbb{R} \), choose \(|t|\) small enough so that the polytope \(P_t \) defined by
\[
P_t = \bigcap_{i=1}^{N} \{ x : x \cdot u_i \leq h(P, u_i) + t\tau_i \}
\]
has exactly \(N \) facets. By \(\text{[57]} \) (Lemma 7.5.3),
\[
\frac{\partial V(P_t)}{\partial t} = \sum_{i=1}^{N} \tau_i a_i,
\]
where \(a_i \) is the area of \(F(P, u_i) \). Let \(\lambda(t) = V(P_t)^{-\frac{1}{n}} \), then \(\lambda(t)P_t \in \mathcal{P}_n^n(u_1, ..., u_N) \), \(V(\lambda(t)P_t) = 1 \) and

\[
\lambda'(0) = -\frac{1}{n} \sum_{i=1}^{N} \tau_i S_i.
\]

(3.4)

Define \(\xi(t) := \xi(\lambda(t)P_t) \), and

\[
\Phi(t) := \min_{\xi \in \lambda(t)P_t} \sum_{k=1}^{N} \alpha_k (\lambda(t)h(P_t, u_k) - \xi \cdot u_k)^p
\]

(3.5)

\[
= \sum_{k=1}^{N} \alpha_k (\lambda(t)h(P_t, u_k) - \xi(t) \cdot u_k)^p.
\]

It follows from Lemma 3.3 that

\[
\sum_{k=1}^{N} \alpha_k \frac{u_{k,i}}{[\lambda(t)h(P_t, u_k) - \xi(t) \cdot u_k]^{1-p}} = 0,
\]

for \(i = 1, ..., n \), where \(u_k = (u_{k,1}, ..., u_{k,n})^T \). In addition, since \(\xi(P) \) is the origin,

\[
\sum_{k=1}^{N} \alpha_k \frac{u_k}{h(P, u_k)^{1-p}} = 0.
\]

(3.6)

Let \(F = (F_1, ..., F_n) \) be a function from an open neighbourhood of the origin in \(\mathbb{R}^{n+1} \) to \(\mathbb{R}^n \) such that

\[
F_i(t, \xi_1, ..., \xi_n) = \sum_{k=1}^{N} \alpha_k \frac{u_{k,i}}{[\lambda(t)h(P_t, u_k) - (\xi_1 u_{k,1} + ... + \xi_n u_{k,n})]^{1-p}}
\]

for \(i = 1, ..., n \). Then,

\[
\left. \frac{\partial F_i}{\partial t} \right|_{(t, \xi_1, ..., \xi_n)} = \sum_{k=1}^{N} \frac{(p-1)\alpha_k u_{k,i} [\lambda(t)h(P_t, u_k) + \lambda(t)\tau_k]}{[\lambda(t)h(P_t, u_k) - (\xi_1 u_{k,1} + ... + \xi_n u_{k,n})]^{2-p}},
\]

\[
\left. \frac{\partial F_i}{\partial \xi_j} \right|_{(t, \xi_1, ..., \xi_n)} = \sum_{k=1}^{N} \frac{(1-p)\alpha_k u_{k,i} u_{k,j}}{[\lambda(t)h(P_t, u_k) - (\xi_1 u_{k,1} + ... + \xi_n u_{k,n})]^{2-p}},
\]

are continuous on a small neighbourhood of \((0, 0, ..., 0)\) with

\[
\left(\frac{\partial F}{\partial \xi} \right)_{(0, ..., 0)} \bigg|_{0 \times n} = \sum_{k=1}^{N} \frac{(1-p)\alpha_k}{h(P, u_k)^{2-p}} u_k^T u_k^T,
\]

where \(u_k u_k^T \) is an \(n \times n \) matrix.
Since \(u_1, \ldots, u_N \) are not contained in a closed hemisphere, \(\mathbb{R}^n = \text{lin}\{u_1, \ldots, u_N\} \). Thus, for any \(x \in \mathbb{R}^n \) with \(x \neq 0 \), there exists a \(u_{i_0} \in \{u_1, \ldots, u_N\} \) such that \(u_{i_0} \cdot x \neq 0 \). Then,

\[
x^T \left(\sum_{k=1}^{N} \frac{(1-p)\alpha_k}{h(P, u_k)^{2-p}} u_k u_k^T \right) x = \sum_{k=1}^{N} \frac{(1-p)\alpha_k}{h(P, u_k)^{2-p}} (x \cdot u_k)^2 \\
\geq \frac{(1-p)\alpha_{i_0}}{h(P, u_{i_0})^{2-p}} (x \cdot u_{i_0})^2 > 0.
\]

Therefore, \(\left. \frac{\partial F}{\partial \xi} \right|_{(0, \ldots, 0)} \) is positive defined. By this, the fact that \(F_i(0, \ldots, 0) = 0 \) for all \(i = 1, \ldots, n \), the fact that \(\frac{\partial F}{\partial \xi} \) is continuous on a neighbourhood of \((0, 0, \ldots, 0) \) for all \(0 \leq i, j \leq n \) and the implicit function theorem, we have

\[
\xi'(0) = (\xi'_1(0), \ldots, \xi'_n(0))
\]

exists.

From the fact that \(\Phi(0) \) is an extreme value of \(\Phi(t) \) (in Equation (3.5)), Equation (3.4) and Equation (3.6), we have

\[
0 = \Phi'(0)/p \\
= \sum_{k=1}^{N} \alpha_k h(P, u_k)^{p-1} (\lambda'(0) h(P, u_k) + \tau_k - \xi'(0) \cdot u_k)
\]

\[
= \sum_{k=1}^{N} \alpha_k h(P, u_k)^{p-1} \left[-\frac{1}{n} \left(\sum_{i=1}^{N} a_i \tau_i \right) h(P, u_k) + \tau_k \right] - \xi'(0) \cdot \left[\sum_{k=1}^{N} \frac{\alpha_k}{h(P, u_k)^{1-p}} \frac{u_k}{h(P, u_k)^{1-p}} \right]
\]

\[
= \sum_{k=1}^{N} \alpha_k h(P, u_k)^{p-1} \tau_k - \left(\sum_{i=1}^{N} a_i \tau_i \right) \frac{\sum_{k=1}^{N} \alpha_k h(P, u_k)^p}{n}
\]

\[
= \sum_{k=1}^{N} \left(\alpha_k h(P, u_k)^{p-1} - \frac{\sum_{j=1}^{N} \alpha_j h(P, u_j)^p}{n} a_k \right) \tau_k.
\]

Since \(\tau_1, \ldots, \tau_N \) are arbitrary,

\[
\sum_{j=1}^{N} \alpha_j h(P, u_j)^p \frac{n}{h(P, u_k)^{1-p}} a_k = \alpha_k,
\]

for all \(k = 1, \ldots, N \). By letting

\[
P_0 = \left(\frac{\sum_{j=1}^{N} \alpha_j h(P, u_j)^p}{n} \right)^{\frac{1}{p}} P,
\]

we have

\[
S_p(P_0, \cdot) = \sum_{k=1}^{N} \alpha_k \delta_{u_k}(\cdot).
\]

□
4. The proof of the main theorem

In this section, we prove the main theorem of this paper.

The following lemmas will be needed.

Lemma 4.1. Let \(\{h_{1j}\}_{j=1}^{\infty}, \ldots, \{h_{Nj}\}_{j=1}^{\infty} \) be \(N \) (\(N \geq 2 \)) sequences of real numbers. Then, there exists a subsequence, \(\{j_n\}_{n=1}^{\infty} \), of \(\mathbb{N} \) and a rearrangement, \(i_1, \ldots, i_N \), of \(1, \ldots, N \) such that

\[
h_{i_1j_n} \leq h_{i_2j_n} \leq \ldots \leq h_{i_Nj_n},
\]
for all \(n \in \mathbb{N} \).

Proof. For each fixed \(j \), the number of the possible order (from small to big) of \(h_{1j}, \ldots, h_{Nj} \) is \(N! \). Therefore, there exists a subsequence, \(\{j_n\}_{n=1}^{\infty} \), and a rearrangement, \(i_1, \ldots, i_N \), of \(1, \ldots, N \) such that

\[
h_{i_1j_n} \leq h_{i_2j_n} \leq \ldots \leq h_{i_Nj_n},
\]
for all \(n \in \mathbb{N} \). \(\square \)

Lemma 4.2. Suppose the unit vectors \(u_1, \ldots, u_N \) are not concentrated on a closed hemisphere, and for any subspace, \(X \), of \(\mathbb{R}^n \) with \(1 \leq \dim X \leq n - 1 \), \(\{u_1, \ldots, u_N\} \cap X \) is concentrated on a closed hemisphere of \(S^{n-1} \cap X \). If \(P_m \) is a sequence of polytopes with \(V(P_m) = 1 \), \(o \in \text{Int}(P_m) \) and \(P_m \in \mathcal{P}(u_1, \ldots, u_N) \), then \(P_m \) is bounded.

Proof. We only need to prove that if the diameter, \(d(P) \), of \(P \) is not bounded, then there exists a subspace, \(X \), of \(\mathbb{R}^n \) with \(1 \leq \dim(X) \leq n - 1 \) and \(\{u_1, \ldots, u_N\} \cap X \) is not concentrated on a closed hemisphere of \(S^{n-1} \cap X \).

Let \(\mu \) be a discrete measure on the unit sphere such that \(\text{supp}(\mu) = \{u_1, \ldots, u_N\} \), \(\mu(u_i) = \alpha_i > 0 \) for \(1 \leq i \leq N \). Obviously, we only need to prove the lemma under the condition that \(\xi(P_m) = o \) for all \(m \in \mathbb{N} \).

By Lemma 4.1, we may assume that

\[
h(P_m, u_1) \leq \ldots \leq h(P_m, u_N).
\]

By this and the condition that \(V(P_m) = 1 \) and \(\lim_{m \to \infty} d(P_m) = \infty \),

\[
\lim_{m \to \infty} h(P_m, u_1) = 0 \quad \text{and} \quad \lim_{m \to \infty} h(P_m, u_N) = \infty.
\]

By this and (4.0), there exists an \(i_0 \) (\(1 \leq i_0 \leq N \)) such that

\[
\lim_{m \to \infty} \frac{h(P_m, u_{i_0})}{h(P_m, u_1)} = \infty,
\]
and for \(1 \leq i \leq i_0 - 1 \)

\[
\lim_{m \to \infty} \frac{h(P_m, u_i)}{h(P_m, u_1)}
\]
exists and equals to a positive number.

Let

\[
\Sigma = \text{pos}\{u_1, \ldots, u_{i_0-1}\}
\]
and

\[
\Sigma^* = \{x \in \mathbb{R}^n : x \cdot u_i \leq 0 \text{ for all } 1 \leq i \leq i_0 - 1\}.
\]
Let \(1 \leq j \leq i_0 - 1 \) and \(x \in \Sigma^* \cap S^{n-1} \). From the condition that \(\xi(P_m) \) is the origin and Lemma 3.3, we have
\[
\sum_{i=0}^{N} \frac{\alpha_i (x \cdot u_i)}{[h(P_m, u_i)]^{1-p}} = 0.
\]
By this and the fact that \(x \in \Sigma^* \cap S^{n-1} \),
\[
0 \geq \alpha_j (x \cdot u_j)
\]
\[
= - \sum_{i \neq j} \left[\frac{h(P_m, u_j)}{h(P_m, u_i)} \right]^{1-p} \alpha_i (x \cdot u_i)
\]
\[
\geq - \sum_{i \geq i_0} \left[\frac{h(P_m, u_j)}{h(P_m, u_i)} \right]^{1-p} \alpha_i (x \cdot u_i)
\]
By this, (4.0), (4.1) and (4.2), \(\alpha_j (x \cdot u_j) \) is no bigger than 0 and no less than any negative number. Hence,
\[
x \cdot u_j = 0
\]
for all \(j = 1, \ldots, i_0 - 1 \) and \(x \in \Sigma^* \cap S^{n-1} \). Thus,
\[
\Sigma^* \cap \text{lin}\{u_1, \ldots, u_{i_0-1}\} = \{0\}.
\]
Obviously, \(\{u_1, \ldots, u_{i_0-1}\} \) is not concentrated on a closed hemisphere of \(S^{n-1} \cap \text{lin}\{u_1, \ldots, u_{i_0-1}\} \). Otherwise, there exists an \(x_0 \in \text{lin}\{u_1, \ldots, u_{i_0-1}\} \) with \(x_0 \neq 0 \) such that \(x_0 \cdot u_i \leq 0 \) for all \(1 \leq i \leq i_0 - 1 \). This contradicts with (4.3).

We next prove that
\[
\text{lin}\{u_1, \ldots, u_{i_0-1}\} \neq \mathbb{R}^n.
\]
Otherwise, from the fact that \(u_1, \ldots, u_{i_0-1} \) are not concentrated on a closed hemisphere of
\[
\text{lin}\{u_1, \ldots, u_{i_0-1}\} \cap S^{n-1},
\]
we have, the convex hull of \(\{u_1, \ldots, u_{i_0-1}\} \) (denoted by \(Q \)) is a polytope in \(\mathbb{R}^n \) and contains the origin as an interior. Let \(F \) be a facet of \(Q \) such that \(\{su_{i_0} : s > 0\} \cap F \neq \emptyset \). Since \(F \) is the union of finite \((n-1)\)-dimensional simplexes and the vertexes of these simplexes are subsets of \(\{u_1, \ldots, u_{i_0-1}\} \), there exists a subset, \(\{u_{i_1}, \ldots, u_{i_n}\} \), of \(\{u_1, \ldots, u_{i_0-1}\} \) such that
\[
u_{i_0} \in \text{pos}\{u_{i_1}, \ldots, u_{i_n}\}.
\]
Since \(o \in \text{Int} (Q) \), there exists \(r > 0 \) such that \(rB^n \subset Q \). Choose \(t > 0 \) such that \(tu \in F \cap \text{pos}\{u_{i_1}, \ldots, u_{i_n}\} \). Then,
\[
tu = \beta_{i_1} u_{i_1} + \ldots + \beta_{i_n} u_{i_n},
\]
where \(\beta_{i_1}, \ldots, \beta_{i_n} \geq 0 \) with \(\beta_{i_1} + \ldots + \beta_{i_n} = 1 \). If we let \(a_{ij} = \beta_{ij} / t \) for \(j = 1, \ldots, n \), we have
\[
u = a_{i_1} u_{i_1} + \ldots + a_{i_n} u_{i_n}.
\]
Obviously, \(a_{ij} \geq 0 \) with
\[
a_{ij} = \beta_{ij} / t \leq 1 / r
\]
for all $j = 1, ..., n$. Hence,
\[
 h(P_m, u_i) = h(P_m, a_i u_i + ... + a_n u_n) \\
 \leq a_i h(P_m, u_i) + ... + a_n h(P_m, u_n) \\
 \leq \frac{1}{r} [h(P_m, u_i) + ... + h(P_m, u_n)],
\]
for all $m \in \mathbb{N}$. This contradicts (4.1) and (4.2). Therefore,
\[
 \text{lin}\{u_1, ..., u_{i_0-1}\} \neq \mathbb{R}^n.
\]

Let $X = \text{lin}\{u_1, ..., u_{i_0-1}\}$. Then, $1 \leq \dim X \leq n-1$ but $\{u_1, ..., u_N\} \cap X = \{u_1, ..., u_{i_0-1}\}$ is not concentrated on a closed hemisphere of $S^{n-1} \cap X$, which contradicts the conditions of this lemma. Therefore, $d(P_m)$ is bounded. \hfill \Box

The following lemmas will be needed (see, e.g., [73]).

Lemma 4.3. If P is a polytope in \mathbb{R}^n and $v_0 \in S^{n-1}$ with $V_{n-1}(F(P, v_0)) = 0$, then there exists a $\delta_0 > 0$ such that for $0 \leq \delta < \delta_0$
\[
 V(P \cap \{x : x \cdot v_0 \geq h(P, v_0) - \delta\}) = c_n \delta^n + ... + c_2 \delta^2,
\]
where $c_n, ..., c_2$ are constants that depend on P and v_0.

Lemma 4.4. Suppose $p < 0$, $\alpha_1, ..., \alpha_N > 0$, and the unit vectors $u_1, ..., u_N$ are not concentrated on a hemisphere. If for any subspace X with $1 \leq \dim X \leq n-1$, $\{u_1, ..., u_N\} \cap X$ is always concentrated on a closed hemisphere of $S^{n-1} \cap X$, then there exists a $P \in \mathcal{P}(u_1, ..., u_N)$ such that $\xi(P) = o$, $V(P) = 1$, and
\[
 \Phi_P(o) = \sup \{ \inf_{Q \in \mathcal{P}(u_1, ..., u_N)} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, ..., u_N) \text{ and } V(Q) = 1 \},
\]
where $\Phi_Q(\xi) = \sum_{k=1}^N \alpha_k (h(Q, u_k) - \xi \cdot u_k)^p$.

Proof. Obviously, for $P, Q \in \mathcal{P}(u_1, ..., u_N)$, if there exists a $x \in \mathbb{R}^n$ such that $P = Q + x$, then
\[
 \Phi_P(\xi(P)) = \Phi_Q(\xi(Q)).
\]
Thus, we can choose a sequence of polytopes $P_i \in \mathcal{P}(u_1, ..., u_N)$ with $\xi(P_i) = o$ and $V(P_i) = 1$ such that $\Phi_{P_i}(o)$ converges to
\[
 \sup \{ \inf_{Q \in \mathcal{P}(u_1, ..., u_N)} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, ..., u_N) \text{ and } V(Q) = 1 \}.
\]

By the conditions of this lemma and Lemma 4.2, P_i is bounded. From the Blaschke selection theorem, there exists a subsequence of P_i that converges to a polytope P such that $P \in \mathcal{P}(u_1, ..., u_N)$, $V(P) = 1$, $\xi(P) = o$ and
\[
 \Phi_P(o) = \sup \{ \inf_{Q \in \mathcal{P}(u_1, ..., u_N)} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, ..., u_N) \text{ and } V(Q) = 1 \}.
\]
We claim that $F(P, u_i)$ are facets for all $i = 1, ..., N$. Otherwise, there exists an $i_0 \in \{1, ..., N\}$ such that
\[
 F(P, u_{i_0})
\]
is not a facet of P.

Choose $\delta > 0$ small enough so that the polytope
\[
 P_\delta = P \cap \{x : x \cdot u_{i_0} \leq h(P, u_{i_0}) - \delta\} \in \mathcal{P}(u_1, ..., u_N),
\]
and (by Lemma 4.3)

\[V(P_\delta) = 1 - (c_n \delta^n + \ldots + c_2 \delta^2), \]

where \(c_n, \ldots, c_2\) are constants that depend on \(P\) and direction \(u_{i_0}\).

From Lemma 3.2, for any \(\delta_i \to 0\) it always true that \(\xi(P_\delta) \to o\). We have,

\[\lim_{\delta \to 0} \xi(P_\delta) = o. \]

Let \(\delta\) be small enough so that \(h(P, u_k) > \xi(P_\delta) \cdot u_k + \delta\) for all \(k \in \{1, \ldots, N\},\) and let

\[\lambda = V(P_\delta)^{-\frac{1}{\pi}} = (1 - (c_n \delta^n + \ldots + c_2 \delta^2))^{-\frac{1}{\pi}}. \]

From this and Equation (3.2), we have

\[(4.5) \]

\[\Phi_{\lambda P_\delta}(\xi(\lambda P_\delta)) = \sum_{k=1}^{N} \alpha_k \left(h(\lambda P_\delta, u_k) - \xi(\lambda P_\delta) \cdot u_k \right)^p \]

\[= \lambda^p \sum_{k=1}^{N} \alpha_k \left(h(P_\delta, u_k) - \xi(P_\delta) \cdot u_k \right)^p \]

\[= \lambda^p \sum_{k=1}^{N} \alpha_k \left(h(P, u_k) - \xi(P_\delta) \cdot u_k \right)^p - \alpha_{i_0} \lambda^p \left(h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} \right)^p \]

\[+ \alpha_{i_0} \lambda^p \left(h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} - \delta \right)^p \]

\[= \sum_{k=1}^{N} \alpha_k \left(h(P, u_k) - \xi(P_\delta) \cdot u_k \right)^p + (\lambda^p - 1) \sum_{k=1}^{N} \alpha_k \left(h(P, u_k) - \xi(P_\delta) \cdot u_k \right)^p \]

\[+ \alpha_{i_0} \lambda^p \left[\left(h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} - \delta \right)^p - \left(h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} \right)^p \right] \]

\[= \Phi_P(\xi(P_\delta)) + B(\delta), \]

where

\[B(\delta) = (\lambda^p - 1) \left(\sum_{k=1}^{N} \alpha_k \left(h(P, u_k) - \xi(P_\delta) \cdot u_k \right)^p \right) \]

\[+ \alpha_{i_0} \lambda^p \left[\left(h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} - \delta \right)^p - \left(h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} \right)^p \right] \]

\[= \left[1 - (c_n \delta^n + \ldots + c_2 \delta^2) \right]^{-\frac{p}{\pi}} - 1 \left(\sum_{k=1}^{N} \alpha_k \left(h(P, u_k) - \xi(P_\delta) \cdot u_k \right)^p \right) \]

\[+ \alpha_{i_0} \lambda^p \left[\left(h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} - \delta \right)^p - \left(h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} \right)^p \right]. \]

From the facts that \(d_0 = d(P) > h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} > h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} - \delta > 0,\)

\(p < 0\) and the fact that \(f(t) = t^p\) is convex on \((0, \infty)\), we have

\[\left(h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} - \delta \right)^p - \left(h(P, u_{i_0}) - \xi(P_\delta) \cdot u_{i_0} \right)^p > (d_0 - \delta)^p - d_0^p > 0. \]
Theorem 4.5 can be directly got by Lemma 3.4 and Lemma 4.4.

Proof. Theorem 4.5 can be directly got by Lemma 3.4 and Lemma 4.4. \qed
References

[1] B. Andrews, Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc. 16 (2003) 443-459.
[2] B. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999) 151-161.
[3] F. Barthe, O. Guédon, S. Mendelson, A. Naor, A probabilistic approach to the geometry of the l_p^n-ball, Ann. Probab. 33 (2005) 480-513.
[4] J. Böröczky, P. Hug, D. Yang, G. Zhang, The discrete logarithmic Minkowski problem, Int. Math. Res. Not. (in press).
[5] J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012) 1974–1997.
[6] J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26 (2013) 831-852.
[7] L. Caffarelli, Interior $W^{2,p}$-estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2) 131 (1990) 135-150.
[8] S. Campi, P. Gronchi, The L^p-Busemann-Petty centroid inequality, Adv. Math. 167 (2002) 128-141.
[9] W. Chen, L_p Minkowski problem with not necessarily positive data, Adv. Math. 201 (2006) 77-89.
[10] S.-Y. Cheng, S.-T. Yau, On the regularity of the solution of the n-dimensional Minkowski problem. Comm. Pure Appl. Math. 29 (1976) 495-561.
[11] K.-S. Chou, X.-J. Wang, The L_p-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006) 33-83.
[12] A. Cianchi, E. Lutwak, D. Yang, G. Zhang, Affine Moser-Trudinger and Morrey-Sobolev inequalities, Calc. Var. Partial Differential Equations. 36 (2009) 419436.
[13] A. Colesanti, M. Fimiani, The Minkowski problem for torsional rigidity, Indiana Univ. Math. J. 59 (2010) 1013-1039.
[14] J. Dou, M. Zhu, The two dimensional L_p Minkowski problem and nonlinear equation with negative exponents, Adv. Math. 230 (2012) 1209-1221.
[15] M. Gage, Evolving plane curves by curvature in relative geometries, Duke Math. J. 72 (1993) 441-466.
[16] M. Gage, R. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986) 99-96.
[17] R.J. Gardner, Geometric Tomography, 2nd edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2006.
[18] B. Guan, P. Guan, Convex hypersurfaces of prescribed curvatures, Ann. of Math. 156 (2002) 655-673.
[19] P. Guan, C.-S. Lin, On equation $det(u_{ij} + \delta_{ij} u) = u^p f$ on S^n, (preprint).
[20] P. Guan, X. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation, Invent. Math. 151 (2003) 553-577.
[21] C. Haberl, Star body valued valuations, Indiana Univ. Math. J. 58 (2009) 2253-2276.
[22] C. Haberl, E. Lutwak, D. Yang, G. Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010) 2485-2510.
[23] C. Haberl, L. Parapatits, Valuations and surface area measures, J. Reine Angew. Math. 687 (2014) 225-245.
[24] C. Haberl, L. Parapatits, The centro-affine Hadwiger theorem, J. Amer. Math. Soc. 27 (2014) 685-705.
[25] C. Haberl, F. Schuster, General L_p affine isoperimetric inequalities, J. Differential Geom. 83 (2009) 1-26.
[26] C. Haberl, F. Schuster, Asymmetric affine L_p sobolev inequalities, J. Funct. Anal. 256 (2009) 641-658.
[27] C. Haberl, F. Schuster, J. Xiao, An asymmetric affine Pólya-szegő principle, Math. Ann. 352 517-542.
[28] M. Henk, E. Linke, Cone-volume measures of polytopes, Adv. Math. 253 (2014) 50-62.
THE L_p MINKOWSKI PROBLEM FOR POLYTOPES FOR NEGATIVE p

[29] C. Hu, X. Ma, C. Shen, On the Christoffel-Minkowski problem of Firey’s p-sum, Calc. Var. Partial Differential Equations. 21 (2004) 137-155.

[30] Y. Huang, J. Liu, L. Xu, On the uniqueness of L_p-Minkowski problem: The constant p-curvature case in \mathbb{R}^3, Adv. Math. 281 (2015) 906-927.

[31] D. Hug, E. Lutwak, D. Yang, G. Zhang, On the L_p Minkowski problem for polytopes, Discrete Comput. Geom. 33 (2005) 699-715.

[32] H. Jian, J. Lu, X.-J. Wang, Nonuniqueness of solutions to the L^p-Minkowski problem, Adv. Math. 281 (2015) 845-856.

[33] H. Jian, J. Lu, G. Zhu, Mirror symmetric solutions to the centro-affine Minkowski problem, Calculus of Variations and Partial Differential Equations 55 (2016) 1-22.

[34] H. Jian, X.-J. Wang, Bernstein theorem and regularity for a class of Monge-Ampère equations, J. Differential Geom. 93 (2013) 431-469.

[35] M. Kiderlen, Stability results for convex bodies in geometric tomography, Indiana Univ. Math. J. 57 (2008) 1999-2038.

[36] J. Lu, X.-J. Wang, Rotationally symmetric solution to the L_p-Minkowski problem, J. Differential Equations. 254 (2013) 983-1005.

[37] M. Ludwig, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003) 159-188.

[38] M. Ludwig, General affine surface areas, Adv. Math. 224 (2010) 2346-2360.

[39] M. Ludwig, J. Xiao, G. Zhang, Sharp convex Lorentz-Sobolev inequalities, Math. Ann. 350 (2011) 169-197.

[40] M. Ludwig, M. Reitzner, A classification of $SL(n)$ invariant valuations, Ann. of Math. 172 (2010) 1219-1267.

[41] E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993) 131-150.

[42] E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995) 227-246.

[43] E. Lutwak, D. Yang, G. Zhang, L_p affine isoperimetric inequalities, J. Differential Geom. 56 (2000) 111-132.

[44] E. Lutwak, D. Yang, G. Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000) 375-390.

[45] E. Lutwak, D. Yang, G. Zhang, The Cramer-Rao inequality for star bodies, Duke Math. J. 112 (2002) 59-81.

[46] E. Lutwak, D. Yang, G. Zhang, Sharp affine L_p Sobolev inequalities, J. Differential Geom. 62 (2002) 17-38.

[47] E. Lutwak, D. Yang, G. Zhang, On the L_p-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004) 4359-4370.

[48] E. Lutwak, D. Yang, G. Zhang, Volume inequalities for subspaces of L_p, J. Differential Geom. 68 (2004) 159-184.

[49] E. Lutwak, G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997) 1-16.

[50] H. Minkowski, Allgemeine Lehrrsätze über die konvexen Polyeder. Gött, Nachr. 1897 (1897) 198-219.

[51] A. Naor, The surface measure and cone measure on the sphere of l_p^n, Trans. Amer. Math. Soc. 359 (2007) 1045-1079.

[52] A. Naor, D. Romik, Projecting the surface measure of the sphere of l_p^n, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 241-261.

[53] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large. Comm. Pure and Appl. Math. 6 (1953) 337-394.

[54] G. Paouris, E. Werner, On the approximation of a polytope by its dual L_p-centroid bodies, Indiana Univ. Math. J. 62 (2013) 235-248.

[55] A.V. Pogorelov, The Minkowski multidimensional problem. V.H. Winston & Sons, Washington, D.C, 1978.

[56] D. Ryabogin, A. Zvavitch, The Fourier transform and Firey projections of convex bodies, Indiana Univ. Math. J. 53 (2004) 667-682.
[57] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications (Second Expanded Edition), Cambridge University Press, Cambridge, 2014.
[58] F.E. Schuster, Convolutions and multiplier transformations of convex bodies, Trans. Amer. Math. Soc. 359 (2007) 5567-5591.
[59] F.E. Schuster, Crofton measures and Minkowski valuations, Duke Math. J. 154 (2010) 1-30.
[60] F.E. Schuster, T. Wannerer, GL(n)contravariant Minkowski valuations, Trans. Amer. Math. Soc. 364 (2012) 815-826.
[61] A. Stancu, The discrete planar L_0-Minkowski problem, Adv. Math. 167 (2002), 160-174.
[62] A. Stancu, On the number of solutions to the discrete two-dimensional L_p-Minkowski problem, Adv. Math. 180 (2003) 290-323.
[63] Y. Sun, Y. Long, The planar orlicz Minkowski problem in the L^1-sense, Adv. Math. 281 (2015) 1364-1384.
[64] A. C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1996.
[65] T. Wannerer, $GL(n)$ equivariant Minkowski valuations, Indiana Univ. Math. J. 60 (2011) 1655-1672.
[66] E. Werner, On L_p-affine surface area, Indiana Univ. Math. J. 56 (2007) 2305-2323.
[67] E. Werner, D. Ye, On the homothety conjecture, Indiana Univ. Math. J. 60 (2011) 1-20.
[68] C. Xia, On an anisotropic Minkowski problem, Indiana Univ. Math. J. 62 (2013) 1399-1430.
[69] D. Ye, On the monotone properties of general affine surface areas under the Steiner symmetrization, Indiana Univ. Math. J. 63 (2014) 1-19.
[70] G. Zhang, The affine Sobolev inequality, J. Differential Geom. 53 (1999) 183-202.
[71] G. Zhu, The logarithmic Minkowski problem for polytopes, Adv. Math. 262 (2014) 909-931.
[72] G. Zhu, The centro-affine Minkowski problem for polytopes, J. Differential Geom. 101 (2015) 159-174.
[73] G. Zhu, The L_p Minkowski problem for polytopes for $0 < p < 1$, J. Funct. Anal. 269 (2015) 1070-1094.
[74] G. Zhu, The Orlicz centroid inequality for star bodies, Adv. Appl. Math. 48 (2012), 432-445.

Department of Mathematics, Polytechnic School of Engineering, New York University, Brooklyn, NY 11201.

E-mail address: gz342@nyu.edu