Research Article

Some New Bounds of Weighted Graph Entropies with GA and Gaurava Indices Edge Weights

Tiejun Wu, 1 Hafiz Mutee Ur Rehman 2,3 Yu-Ming Chu 4,5 Deeba Afzal, 2 and Jianfeng Yu 1

1College of Mechanical and Electronics Engineering, Dongguan Polytechnic, Dongguan 523808, Guangdong, China
2Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
3Department of Mathematics, Division of Science and Technology, University of Education, Lahore, Pakistan
4Department of Mathematics, Huzhou University, Huzhou 313000, China
5Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, China

Correspondence should be addressed to Yu-Ming Chu; chuyuming@zjhu.edu.cn

Received 27 April 2020; Accepted 17 August 2020; Published 30 September 2020

Academic Editor: Alessandro Gasparetto

Copyright © 2020 Tiejun Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Motivated by the concept of Shannon’s entropy, the degree-dependent weighted graph entropy was defined which is now become a tool for measurement of structural information of complex graph networks. The aim of this paper is to study weighted graph entropy. We used GA and Gaurava indices as edge weights to define weighted graph entropy and establish some bounds for different families of graphs. Moreover, we compute the defined weighted entropies for molecular graphs of some dendrimer structures.

1. Introduction

The branch of mathematics known as graph theory provides tools for solving problems of information theory, computer sciences, physics, and chemistry [1–3]. Among them, special places are reserved for so-called topological descriptors, which play an important role in mathematical chemistry, especially in QSPR/QSAR surveys. Many topological descriptors are introduced and studied in the literature, such as the Zagreb index [4–6], the Randić connectivity index [7], and the modified Zagreb index [8, 9].

In the year 2009, Vukičević and Furtula [10] introduced the geometrical arithmetic (GA) index as a molecular descriptor, and mathematical formula for this index is,

$$GA_1 = \sum_{uv \in E(G)} \frac{2\sqrt{d_u d_v}}{d_u + d_v}.$$ (1)

There are many interesting attributes on topological indices, and different physicochemical properties of hydrocarbons can be obtained from this index [11–16]. The predictive power of the GA index is compared with others such as the famous Randić index [17]. Due to this reason, different versions of the GA index are now investigated and introduced in the literature [18–20]. The other famous indices are given in [21]. The mathematical formulae for first and second Gaurava indices are

$$GO_1 = \sum_{uv \in E(G)} [(d_u + d_v) + (d_u \cdot d_v)],$$ (2)

$$GO_2 = \sum_{uv \in E(G)} [(d_u + d_v) \cdot (d_u \cdot d_v)],$$ (3)

respectively.

Many problems of information theory, biology, computer sciences, chemistry, and discrete mathematics are directly solved by utilizing different kinds of graph measures and the graph entropy is one of the powerful tools [22–26] that help to understand the structural
Lemma 4. Consider G be a simple connected graph having m edges and let Δ and δ be the maximum degree and minimum degree of a vertex, respectively; then,

$$\frac{2\sqrt{\Delta}}{\Delta + 1} + \sqrt{\mu^2 - \frac{\mu^2}{4\delta_1^2} \left[\sum_i d_i^3 - 2M_2(G) - \nu(\delta_1 - 1)^2 \right] - \frac{\mu^2}{4} \left(1 - 2\sqrt{\Delta} \delta_1 \right)^2} \leq \text{GA}_1 \leq \frac{2\sqrt{\delta_1}}{\delta_1 + 1} + \sqrt{\mu^2 - \frac{\mu^2}{4\Delta^2} \left[\sum_i d_i^3 - 2M_2(G) - \nu(\Delta - 1)^2 \right]},$$

with equality if and only if G is a regular graph or G is a bipartite graph.

Lemma 2. Consider G be a simple connected graph having m edges. Then, we have

$$\text{GA}_1 \leq \frac{2\sqrt{\Delta}}{\Delta + 1} + \frac{1}{\Delta} \sqrt{M_2(G) - \nu \Delta + (m - \nu)\delta_1^2},$$

with equality if and only if G is isomorphic to a regular graph or G is isomorphic to $(\Delta, 1)$ semiregular graph.

Moreover, the equality holds if and only if G is isomorphic to a regular graph or G is isomorphic to $(\Delta, 1)$ semiregular graph.

Lemma 4. Consider G be a simple connected graph having m edges. Then, we have

where $w(v_iv_j)$ is the weight v_iv_j and $w(v_iv_j) > 0$.

Now, the weighted graph entropy can be defined by

$$H(v_i) = - \sum p_{ij} \log(p_{ij}).$$

Definition 1. For the graph G, the weighted entropy can be defined as follows \([28, 30]\):

$$I(G, w) = - \sum_{i \in V(G)} p_{uv} \log(p_{uv}).$$

Here, p_{uv} is same as that given in (4).

2. Main Results

In this section, we are going to present our main results.

Lemma 1. Let G be a simple graph having n vertices and m edges and let Δ and δ be the maximum degree and minimum degree of a vertex, respectively; then,
\[
\text{GA}_1 \leq \left[\frac{m - 1}{n - 1}\right] + \left\lfloor \frac{m - 1}{2} \right\rfloor + \frac{\Delta(G)}{n - 1}. \tag{11}\]

Theorem 1. Consider \(G\) is a connected graph having \(n\) vertices with \(n \geq 3\). Then, we have
\[
\log(\text{GA}_1) + \log\left(\frac{2}{n}\right) \leq I(G, \text{GA}_1) \leq \log(\text{GA}_1)
+
\log\left(\frac{n^2}{4}\right); \tag{12}\]
\[
\log(\text{GO}_1) + \log(4(n - 1)) \leq I(G, \text{GO}_1) \leq \log(\text{GO}_1)
-
\log(3(n - 1)^2). \tag{13}\]

Proof. We prove the result for \(\text{GO}_1\), the other results can be proved in the same manner.

Since \(G\) is a connected graph with \(n\) number of vertices, for any vertex, the maximum possible degree can be \(n - 1\) and the minimum possible degree can be one. Hence, for any edge \(uv\), the minimum degree for \(u\) and \(v\) can be \(1\) and \(2\) and maximum possible degrees for \(u\) and \(v\) can be \(n - 1\) and \(n - 1\), and hence, we have
\[
I(G, \text{GO}_1) = \log(\text{GO}_1) - \frac{1}{\text{GO}_1} \sum_{u,v \in E(G)} [(d_u + d_v) + (d_u \cdot d_v)] \cdot \log\left[\sum_{u,v \in E(G)} (d_u + d_v) + (d_u \cdot d_v) \right]
\leq \log(\text{GO}_1) - \left[\log(3) + \log(n - 1)^2 \right]
= \log(\text{GO}_1) - \log(3(n - 1)^2)
\geq \log(\text{GO}_1) - \frac{1}{\text{GO}_1} \sum_{u,v \in E(G)} [(d_u + d_v) + (d_u \cdot d_v)] \cdot \log\left[\sum_{u,v \in E(G)} (d_u + d_v) + (d_u \cdot d_v) \right]
\geq \log(\text{GO}_1) - \left[\log(2(n - 2) + \log(2) \right]
= \log(\text{GO}_1) + \log(4n - 1).
\]

Therefore,
\[
\log(\text{GO}_1) + \log(4(n - 1)) \leq I(G, \text{GO}_1) \leq \log(\text{GO}_1)
-
\log(3(n - 1)^2). \tag{14}\]

Theorem 2. Let \(G\) be a graph with \(n\) vertices. Let \(\delta\) and \(\Delta\) be the minimum and maximum degrees of \(G\), respectively. Then, we have
\[
\log(\text{GA}_1) + \log\left(\frac{\delta}{\Delta}\right) \leq I(G, \text{GA}_1)
\geq \log(\text{GO}_1) - \log(2\Delta^2) \geq I(G, \text{ReZ}_1)
\geq \log(\text{GO}_1) - \log(2\Delta^2). \tag{15}\]

Proof. Since \(G\) is the connected graph with \(n\) number of vertices, for any vertex, the maximum possible degree can be \(n - 1\) and the minimum possible degree can be one. Hence, for any edge \(uv\), the minimum degree for \(u\) and \(v\) can be \(1\)
\[
I(G, \text{GO}_1) \geq \log(\text{GO}_1) - \log(2\Delta^2). \tag{16}\]

Also,
\[
I(G, \text{GO}_1) \geq \log(\text{GO}_1) - \log(2\Delta^2). \tag{17}\]
Theorem 3. Consider G is a regular graph having n vertices with $n \geq 3$. Then, we have
\[
\log(n) \leq I(G, GA_1) \leq \log\left(\frac{n(n-1)}{2}\right). \tag{18}
\]
Note that left inequality turns into equality if G is a cyclic graph, and the right inequality turns into equality if G is a complete graph.

Theorem 4. Consider G is a complete bipartite graph having n vertices. Then, we have
\[
\log(n-1) \leq I(G, GA_1) \leq \log\left(\frac{n^2}{2}\right). \tag{19}
\]
Note that the left inequality turns into equality if G is a star graph, and $\log(n-1) = \log((n/2)(n/2))$ if and only if G is a complete bipartite graph (balanced).

Theorem 5. Let T be a tree of order $n (n > 2)$ with maximum degree vertex Δ; then, we have
\[
\log(GA_1) \leq \log\left(\frac{2p\sqrt{\Delta}}{\Delta + 1}\right). \tag{20}
\]

Theorem 6. Let G be a simple graph having n vertices and m edges and let Δ and δ be the maximum degree and minimum degree of a vertex, respectively; then,
\[
\log\left(\frac{2m\sqrt{\delta \cdot \Delta}}{\delta + \Delta}\right) \leq I(G, GA_1), \tag{21}
\]
with equality if and only if G is either a regular graph or a bipartite graph.

In graph theory, the molecular graph is obtained by taking atoms as vertices and bounds as edges. It can be noted that the maximum possible degree for a vertex in a molecular graph is four. Following theorem is about the bounds of weighted entropy for the molecular graph.

Theorem 7. Consider a molecular graph G having n vertices. Then, we have
\[
\log(GA_1) - \log 4 \leq I(G, GA_1) \leq \log(GA_1) + \log\sqrt{2}. \tag{22}
\]

2.1. Relation of Entropy with Zagreb Indices

Theorem 8. Consider G is a simple connected graph. Then, we have
\[
\log\left(\frac{2M_1(G)}{n(n-1)}\right) \leq I(G, GA_1) \leq \log\left(M_1(G)\right)^2. \tag{23}
\]
The equality holds if and only if G is a union of K_2.

Theorem 9. Consider G is any graph, then we have
\[
I(G, GA_1) \geq \log\left(\frac{2\sqrt{mM_2(G)}}{(n-1)}\right). \tag{24}
\]
Equality holds if and only if G is isomorphic to the regular graph.

Theorem 10. Consider G is any graph, then we have
\[
\log\left(\frac{2\sqrt{mM_2(G)} + m(m-1)}{(n-1)}\right) \leq I(G, GA_1). \tag{25}
\]
Equality holds if and only if G is isomorphic to the regular graph.

Theorem 11. Consider G is any graph, then we have
\[
I(G, GA_1) \leq \log\left(\frac{4(n-1)^3\sqrt{\Delta}}{\Delta + 1} + \frac{2(n-1)}{\Delta} \right)
\cdot \sqrt{M_2(G) - n\Delta + (m - n)\delta^2}. \tag{26}
\]
Equality holds if and only if G is isomorphic to the regular graph.

2.2. Numerical Examples. Here, we compute the weighted entropies introduced in this paper for some chemical structures.

Example 1. Consider the porphyrin dendrimers shown in Figure 1. We denote the graph of porphyrin dendrimers by G, and the edge partition of G is given in Table 1. Using Table 1 and definition of entropy,
we have the following entropies for porphyrin dendrimers:

\[
I(G, GA_1) = \log (GA_1) - \frac{1}{GA_1} \sum_{uv \in E(G)} 2 \sqrt{\frac{d_u d_v}{d'_u d'_v}} \cdot \log \left(2 \sqrt{\frac{d_u d_v}{d'_u d'_v}} \right) \\
= \log(98.88020n - 10.87877) - \frac{1}{98.88020n - 10.87877} \left[|E_1| \left(2 \frac{\sqrt{3}}{4} \cdot \log \left(2 \frac{\sqrt{3}}{4} \right) \right) \\
+ |E_2| \left(2 \frac{\sqrt{4}}{5} \cdot \log \left(2 \frac{\sqrt{4}}{5} \right) \right) + |E_3| \left(2 \frac{\sqrt{4}}{4} \cdot \log \left(2 \frac{\sqrt{4}}{4} \right) \right) + |E_4| \left(2 \frac{\sqrt{6}}{4} \cdot \log \left(2 \frac{\sqrt{6}}{4} \right) \right) \\
+ |E_5| \left(2 \frac{\sqrt{6}}{6} \cdot \log \left(2 \frac{\sqrt{6}}{6} \right) \right) + |E_7| \left(2 \frac{\sqrt{12}}{7} \cdot \log \left(2 \frac{\sqrt{12}}{7} \right) \right) \right] \\
= \log(98.88020n - 10.87877) - \frac{1}{98.88020n - 10.87877} \left[(2n) \left(2 \frac{\sqrt{3}}{4} \cdot \log \left(2 \frac{\sqrt{3}}{4} \right) \right) \\
+ (24n) \left(2 \frac{\sqrt{4}}{5} \cdot \log \left(2 \frac{\sqrt{4}}{5} \right) \right) + (10n - 5) \left(2 \frac{\sqrt{4}}{4} \cdot \log \left(2 \frac{\sqrt{4}}{4} \right) \right) + (48n - 6) \left(2 \frac{\sqrt{6}}{5} \cdot \log \left(2 \frac{\sqrt{6}}{5} \right) \right) \\
+ (13n) \left(2 \frac{\sqrt{6}}{6} \cdot \log \left(2 \frac{\sqrt{6}}{6} \right) \right) + (8n) \left(2 \frac{\sqrt{12}}{7} \cdot \log \left(2 \frac{\sqrt{12}}{7} \right) \right) \right],
\]

\(I(G, GA_1) = \log (GA_1) - \frac{1}{GA_1} (-23.308n - 2.695), \)
\[I(G, GO_1) = \log(\text{GO}_1) - \frac{1}{\text{GO}_1} \sum_{uv \in E(G)} [(d_u + d_v) + (d_u \cdot d_v)] \cdot \log \left[\sum_{uv \in E(G)} (d_u + d_v) + (d_u \cdot d_v) \right] \]

\[= \log(1169n - 106) - \frac{1}{1169n - 106} \left\{ E_1 \left[(1 + 3) \cdot \log((1 + 3) + (1 + 3)) \right] \right. \]

\[+ |E_2| \left[(1 + 4) \cdot \log((1 + 4) + (1 + 4)) \right] + |E_3| \left[(2 + 2) \cdot \log((2 + 2) + (2 + 2)) \right] \]

\[+ |E_4| \left[(2 + 3) \cdot \log((2 + 3) + (2 + 3)) \right] + |E_5| \left[(3 + 3) \cdot \log((3 + 3) + (3 + 3)) \right] \]

\[+ |E_6| \left[(3 + 4) \cdot \log((3 + 4) + (3 + 4)) \right] \]

\[= \log(1169n - 106) - \frac{1}{1169n - 106} \left\{ (14n) \cdot \log[7] \right. \]

\[+ |E_2| \left[(1 + 4) \cdot \log((1 + 4) + (1 + 4)) \right] + |E_3| \left[(2 + 2) \cdot \log((2 + 2) + (2 + 2)) \right] \]

\[+ |E_4| \left[(2 + 3) \cdot \log((2 + 3) + (2 + 3)) \right] + |E_5| \left[(3 + 3) \cdot \log((3 + 3) + (3 + 3)) \right] \]

\[+ |E_6| \left[(3 + 4) \cdot \log((3 + 4) + (3 + 4)) \right], \]

\[I(G, \text{GA}_1) = \log(\text{GA}_1) - \frac{1}{\text{GA}_1} \cdot (2.308n - 2.695), \]

is given in Table 2. We have the following computations for the entropies of zinc-porphyrin dendrimer.

Example 2. The graph G of zinc-porphyrin dendrimer is shown in Figure 2, and the edge partition for this dendrimer

\[I(G, \text{GA}_1) = \log(\text{GA}_1) - \frac{1}{\text{GA}_1} \sum_{uv \in E(G)} 2 \frac{\sqrt{d_u d_v}}{d_u \cdot d_v} \cdot \log \left(2 \frac{\sqrt{d_u d_v}}{d_u \cdot d_v} \right) \]

\[= \log(44.9312^n - 22.226) - \frac{1}{2(44.9312^n - 22.226)} \left\{ E_1 \left[\left(\frac{\sqrt{2}}{2} \right) \cdot \log \left(\frac{\sqrt{2}}{2} \right) \right] \right. \]

\[+ |E_2| \left[\left(\frac{\sqrt{2}}{2} \right) \cdot \log \left(\frac{\sqrt{2}}{2} \right) + |E_3| \left(\frac{\sqrt{3}}{3} \right) \cdot \log \left(\frac{\sqrt{3}}{3} \right) \right] \]

\[+ |E_4| \left[\left(\frac{\sqrt{5}}{6} \right) \cdot \log \left(\frac{\sqrt{5}}{6} \right) \right] \]

\[= \log(44.9312^n - 22.226) - \frac{1}{2(44.9312^n - 22.226)} \left\{ (16.2^n - 4) \left(\frac{\sqrt{2}}{2} \right) \cdot \log \left(\frac{\sqrt{2}}{2} \right) \right. \]

\[+ (40.2^n - 16) \left(\frac{\sqrt{2}}{2} \right) \cdot \log \left(\frac{\sqrt{2}}{2} \right) + (8.2^n - 16) \left(\frac{\sqrt{3}}{3} \right) \cdot \log \left(\frac{\sqrt{3}}{3} \right) \]

\[+ (8.2^n - 16) \left(\frac{\sqrt{5}}{6} \right) \cdot \log \left(\frac{\sqrt{5}}{6} \right) \right\}. \]
Figure 2: Zinc-porphyrin dendrimer.

Table 2: Edge partition of zinc-porphyrin dendrimers.

d_u, d_v	$(2, 2)$	$(2, 3)$	$(3, 3)$	$(3, 4)$
Number of edges	$16 \cdot 2^n - 4$	$40 \cdot 2^n - 16$	$8 \cdot 2^n - 16$	4

Figure 3: Poly(ethylene amidoamine) dendrimer.

Table 3: Edge partition of the poly(ethylene amidoamine) dendrimer.

d_u, d_v	$(1, 2)$	$(1, 3)$	$(2, 2)$	$(2, 3)$
Number of edges	$4 \cdot 2^n$	$4 \cdot 2^n - 2$	$16 \cdot 2^n$	$20 \cdot 2^n - 9$
Example 3. Let G be the graph of poly(ethylene amidoamine) dendrimers as shown in Figure 3. Then, the edge partition of this dendrimer is given in Table 3 and we have the following results.

$$I(G, GA_1) = \log(GA_1) - \frac{1}{GA_1} \sum_{uv \in E(G)} 2\sqrt{d_u d_v} \cdot \log \left(2 \frac{\sqrt{d_u d_v}}{d_u \cdot d_v} \right)$$

$$= \log(31.5502^n - 16.3653) - \frac{1}{2(31.5502^n - 16.3653)} \left[|E_1| \left(\frac{\sqrt{2}}{2} \right) \cdot \log \left(\frac{\sqrt{2}}{2} \right) \right]$$

$$+ |E_2| \left(\frac{\sqrt{6}}{3} \right) \cdot \log \left(\frac{\sqrt{6}}{3} \right) + |E_3| \left(\frac{2}{2} \right) \cdot \log \left(\frac{2}{2} \right) + |E_4| \left(\frac{\sqrt{2}}{2} \right) \cdot \log \left(\frac{\sqrt{2}}{2} \right)$$

$$= \log(31.5502^n - 16.3653) - \frac{1}{2(31.5502^n - 16.3653)} \left(4.2^n \left(\frac{\sqrt{2}}{2} \right) \cdot \log \left(\frac{\sqrt{2}}{2} \right) \right)$$

$$+(4.2^n - 2) \left(\frac{\sqrt{6}}{3} \right) \cdot \log \left(\frac{\sqrt{6}}{3} \right) + (16.2^n) \left(\frac{2}{2} \right) \cdot \log \left(\frac{2}{2} \right) + (20.2^n - 9) \left(\frac{\sqrt{2}}{2} \right) \cdot \log \left(\frac{\sqrt{2}}{2} \right) \right].$$

3. Conclusion

In information theory, the graph entropy is a measure of the information rate achievable by communicating symbols over a channel in which certain pairs of values may be confused. This measure, first introduced by Körner in the 1970s, has since also proven itself useful in other settings, including combinatorics. In this paper, we have studied graph entropy with GA and Gaurava indices and justified it by some numerical examples. It would be interesting to work on entropy of weighted graphs with some other degree- and distance-based topological indices. The bounds of degree-based network entropy can also be used in national security, Internet networks, social networks, structural chemistry, ecological networks, computational systems biology, etc. They will play an important role in analyzing structural symmetry and asymmetry in real networks in the future.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they do not have any conflicts of interest.

Authors’ Contributions

Tiejun Wu enhanced the introduction section and improved the reference list. Hafiz Mutee Ur Rehman wrote the original paper. Yu-Ming Chu gave the equality conditions for Theorems 1, 2, and 7 and verified all results. Deeba Afzal supervised the work and Jianfeng Yu prepared the revision and arranged funding for the paper.

Acknowledgments

The research was supported by the National Natural Science Foundation of China (Grant nos. 11971142, 11871202, 61673169, 11701176, 11626101, and 11601485). This work was also supported by the Scientific Research Project of Department of Education of Guangdong Province (natural science) (no. 2017GKTSCX102), Scientific Research Project of Department of Education of Guangdong Province (innovation) (No. 2017GGXJK095), Teaching Reform Project of Guangdong Higher Vocational Education Machinery Manufacturing Major Teaching Steering Committee (JZ201907), and Curriculum Ideological and Political Demonstration Curriculum Construction Project of Dongguan Polytechnic (KCSZ202002).

References

[1] A. Tabassum, M. A. Umar, M. Perveen, and A. Raheem, “Antimagicness of subdivided fans,” Open Journal of Mathematical Sciences, vol. 4, no. 1, pp. 18–22, 2020.
[2] H. Fadhil, H. F. M. Salih, and S. M. Mershkhan, “Generalized the Liouville’s and Möbius functions of graph,” Open Journal of Mathematical Sciences, vol. 4, no. 1, pp. 186–194, 2020.
[3] U. Ali, Y. Ahmad, and M. S. Sardar, “On 3-total edge product cordial labeling of tadpole, book and flower graphs,” Open Journal of Mathematical Sciences, vol. 4, no. 1, pp. 48–55, 2020.
[4] M. Munir, W. Nazeer, S. Rafique, and S. Kang, “M-polynomial and degree-based topological indices of polyhex nanotubes,” Symmetry, vol. 8, no. 12, p. 149, 2016.
[5] W. Gao, M. Asif, and W. Nazeer, “The study of honey comb derived network via topological indices,” Open Journal of Mathematical Analysis, vol. 2, no. 2, pp. 10–26, 2018.
[6] A. Aslam, M. K. Jamil, W. Gao, and W. Nazeer, “Topological aspects of some dendrimer structures,” Nanotechnology Reviews, vol. 7, no. 2, pp. 123–129, 2018.
[7] X. Li and Y. Shi, “A survey on the Randic index,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 59, no. 1, pp. 127–156, 2008.

[8] K. C. Das, K. Das, and I. Gutman, “Some properties of the second Zagreb index,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 52, no. 52, pp. 3–1, 2004.

[9] F. Asif, Z. Zahid, and S. Zafar, “Leap Zagreb and leap hyper-Zagreb indices of Jahangir and Jahangir derived graphs,” Engineering and Applied Science Letter, vol. 3, no. 2, pp. 1–8, 2020.

[10] D. Vukčević and B. Furtula, “Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges,” Journal of Mathematical Chemistry, vol. 46, no. 4, pp. 1369–1376, 2009.

[11] A. Iranmanesh and M. Zeraatkar, “Computing Ga index of HAC5C7[p,q] and HAC5C6C7[p,q] nanotubes,” Optoelectronics and Advanced Materials—Rapid Communications, vol. 5, no. 7, pp. 790–792, 2011.

[12] M. Ghorbani and M. Ghazi, “Computing some topological indices of triangular Benzenoid,” Digest Journal of Nanostructures and Biostructures, vol. 5, no. 4, pp. 1107–1111, 2010.

[13] W. Gao, M. Younas, A. Farooq, A. Virk, and W. Nazeer, “Some reverse degree-based topological indices and polynomials of dendrimers,” Mathematics, vol. 6, no. 10, p. 214, 2018.

[14] Y. Kwun, A. Virk, W. Nazeer, M. Rehman, and S. Kang, “On the multiplicative degree-based topological indices of silicon-carbon Si_2C_3-[p.q] and Si_2C_3-[p.q],” Symmetry, vol. 10, no. 8, p. 320, 2018.

[15] M. S. Ahmad, W. Nazeer, S. M. Kang, M. Imran, and W. Gao, “Calculating degree-based topological indices of dominating David derived networks,” Open Physics, vol. 15, no. 1, pp. 1015–1021, 2017.

[16] Y. C. Kwun, M. A. Zahid, W. Nazeer, A. Ali, M. Ahmad, and S. M. Kang, “On the zagreb polynomials of benzenoid systems,” Open Physics, vol. 16, no. 1, pp. 734–740, 2018.

[17] M. Mogharrab and G. H. Fath-Tabar, “Some bounds on G_{A_1} index of graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 65, pp. 33–38, 2011.

[18] M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran, “Computing topological indices of certain networks,” Journal of Optoelectronics and Advanced Materials, vol. 18, pp. 884–892, 2016.

[19] S. Deng, W. Su, and L. Zhao, “A neural network for predicting normal boiling point of pure refrigerants using molecular groups and a topological index,” International Journal of Refrigeration, vol. 63, pp. 63–71, 2016.

[20] S. M. Kang, M. Yousaf, M. A. Zahid, M. Younas, and W. Nazeer, “Zagreb Polynomials and redefined Zagreb indices of nanostar dendrimers,” Open Physics, vol. 17, no. 1, pp. 31–40, 2019.

[21] A. Farooq, M. Habib, A. Mahboob, W. Nazeer, and S. M. Kang, “Zagreb polynomials and redefined zagreb indices of dendrimers and polyomino chains,” Open Chemistry, vol. 17, no. 1, pp. 1374–1381, 2019.

[22] M. Dehmer and A. Mowshowitz, “A history of graph entropy measures,” Information Sciences, vol. 181, no. 1, pp. 57–78, 2011.

[23] G. Simonyi, “Graph entropy: a survey,” DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 20, pp. 399–441, 1995.

[24] J. Shetty and J. Adibi, “Discovering important nodes through graph entropy the case of enron email database,” in Proceedings of the 3rd International Workshop on Link Discovery—LinkKDD ’05, pp. 74–81, Chicago, IL, USA, August 2005.