Unusual penetration of plastic biliary stent in a large ampullary carcinoma: A case report

H Kerem Tolan, Tassanee Sriprayoon, Thawatchai Akaraviputh

Abstract
Endoscopic biliary stenting is a well-established treatment of choice for many obstructive biliary disorders. Commonly used plastic endoprostheses have a higher risk of clogging and dislocation. Distal stent migration is an infrequent complication. Duodenum is the most common site of migrated biliary stent. Intestinal perforation can occur during the initial insertion or endoscopic or percutaneous manipulation, or as a late consequence of stent placement. A 52-year-old male who presented with obstructive jaundice underwent endoscopic retrograde cholangiopancreatography (ERCP) with plastic stent placement. However, jaundice did not improve and he then underwent ERCP which revealed the plastic stent penetrating the ampullary tumor into the duodenal wall causing malfunction of the stent. A new plastic stent was inserted and the patient underwent Whipple’s operation. He is currently doing well after the operation.
biliary stent[11-14]. However, complications such as perforations and fistulisations in the rest of the small intestine[15] and colon are also seen.

In the recent literature, most (92\%) cases of intestinal perforation were in the duodenum after endoscopic or percutaneous placement of a biliary stent[16-19]. These were due to various mechanisms; firstly, the stent may have been placed incorrectly, and the mechanical force exerted by the tip of the plastic stent against the duodenal mucosa can lead to necrosis of the wall over time. Secondly, inflexibility or a stent of incorrect length may lead to pressure necrosis[20].

CASE REPORT

We report here on a 52-year-old male who presented with fever and jaundice. His liver function tests were TB/DB: 7.3/6.2, Albumin/Globulin: 3.6/3.6, SGOT/SGPT: 119/214, Alkaline phosphatase: 621. An abdominal computed tomography scan showed marked dilatation of the common bile duct (CBD) with gallstone. He underwent endoscopic retrograde cholangiopancreatography (ERCP) which revealed a large ulceroproliferative mass at the ampulla. A plastic stent (7 Fr, 10 cm: Amsterdam type) was placed over the guidewire. Multiple biopsies were performed at the ampulla and histopathological results showed adenocarcinoma. Two weeks later, his jaundice had not improved. ERCP was performed again. After the duodenal scope was introduced, penetration of the previous stent in the ampullary mass into the duodenum was seen. Cannulation of the CBD through the ampulla opening where the tip of the previous plastic stent was found was attempted, but failed. Precut sphincterotomy using a needle knife at the duodenal wall (fistulotomy technique) was performed. Finally the guidewire could be passed into the CBD over the sphincterotome catheter. A new plastic stent (10 Fr, 10 cm: Amsterdam type) was placed into the CBD (Figure 1). Good run off of infected bile and contrast media was seen. One month later, the patient underwent Robotic-assisted Whipple’s operation (Figure 2). There were no post-operative complications. He was discharged from the hospital two weeks after surgery. He is currently doing well.

DISCUSSION

Plastic stent occlusion due to tumor overgrowth or bile clogging the lumen is the most common (54\%) problem seen with endoprostheses following ERCP[18]. Although it is seen in about 6\% of cases; migration of the stent is one of the most important problems[21-22]. When distal migration occurs, the majority of stents pass through the intestinal system without any problem. However, if a stent gets stuck in the bowel then it should be removed. Generally, removal is done endoscopically and surgical intervention is rarely necessary[23].

Intestinal perforation can occur during initial insertion, manipulation or as a late consequence of biliary stent placement. In the recent literature, most cases of intestinal perforation (92\%) were in the duodenum after endoscopic or percutaneous placement of a biliary stent[16,15-17]. The incidence of small bowel perforation following ERCP is 0.08\%-0.57\%[4,15-17]. In 1999, Howard et al[21] classified perforations after ERCP into 3 groups; guidewire-related, periampullary- or postsphincterotomy-related and scope-induced perforations in which periampullary-related were the most common. In 2000, Stapfer et al[22] classified ERCP-related perforations, in descending order of severity, into four types: Type I: lateral or medial wall duodenal perforation, Type II: peri-Vaterian injuries, Type III: distal bile duct injuries related to wire/basket instrumentation and Type IV: retroperitoneal air alone.

In our patient, following insertion of the first plastic stent into the CBD there was lateral penetration of the stent just proximal to the ampulla; which was due, in our opinion, to the tumor mass effect on the stent pushing it into the second part of the duodenum. During the second ERCP after accessing the first portion of the duodenum we noted the previous stent, and thought that distal migration had occurred. When we proceeded...
towards the ampulla we observed the distal part of the stent coming out of the ampulla. We failed to cannulate the CBD using a standard technique. Therefore, using the precut fistulotomy technique a new 10 Fr. plastic stent was placed and good bile flow was observed. In this case report we wanted to share this atypical complication of ERCP and plastic stent placement.

REFERENCES

1. Soehendra N, Reynders-Frederix V. Palliative bile duct drainage - a new endoscopic method of introducing a transpapillary drain. *Endoscopy* 1980; 12: 8-11
2. Johanson JF, Schmalz MJ, Geenen JE. Incidence and risk factors for biliary and pancreatic stent migration. *Gastrointest Endosc* 1992; 38: 341-346
3. Moesch C, Sautereau D, Cessot F, Berry P, Mounier M, Gaintain A, Pillegand B. Physicochemical and bacteriological analysis of the contents of occluded biliary endoprostheses. *Hepatology* 1991; 14: 1142-1146
4. Levy MJ, Baron TH, Gostout CJ, Petersen BT, Farnell MB. Palliation of malignant extrabiliary biliary obstruction with plastic versus expandable metal stents: An evidence-based approach. *Clin Gastroenterol Hepatol* 2004; 2: 273-285
5. Smith AC, Dowsett JF, Russell RC, Hatfield AR, Cotton PB. Randomised trial of endoscopic stenting versus surgical bypass in malignant low bileduct obstruction. *Lancet* 1994; 344: 1655-1660
6. Pedersen FM, Lassen AT, Schaffalitzky de Muckadell OB. Randomized trial of stent placed above and across the sphincter of Oddi in malignant bile duct obstruction. *Gastrointest Endosc* 1998; 48: 574-579
7. Mueller PR, Ferrucci JT, Teplick SK, vanSonnenberg E, Haskin PH, Butch RJ, Papanicolaou N. Biliary stent endoprosthesis: analysis of complications in 113 patients. *Radiology* 1985; 156: 637-639
8. Jendresen MB, Svendsen LB. Proximal displacement of biliary stent with distal perforation and impaction in the pancreas. *Endoscopy* 2001; 33: 195
9. Liebich-Bartholain L, Kleinau U, Elsbernd H, Büchel R. Biliary pneumonitis after proximal stent migration. *Gastrointest Endosc* 2001; 54: 382-384
10. Miller G, Yim D, Macari M, Harris M, Shamamian P. Retropitoneal perforation of the duodenum from biliary stent erosion. *Curr Surg* 2005; 62: 512-515
11. Bui BT, Oliva VL, Ghattas G, Daloze P, Bourdon F, Carignan L. Percutaneous removal of a biliary stent after acute spontaneous duodenal perforation. *Cardiovasc Intervent Radiol* 1995; 18: 200-202
12. Elder J, Stevenson G. Delayed perforation of a duodenal diverticulum by a biliary endoprosthesis. *Can Assoc Radiol J* 1993; 44: 45-48
13. Gould J, Train JS, Dan SJ, Mitty HA. Duodenal perforation as a delayed complication of placement of a biliary endoprosthesis. *Radiology* 1988; 167: 467-469
14. Diller R, Senninger N, Kautz G, Tübergen D. Stent migration necessitating surgical intervention. *Surg Endosc* 2003; 17: 1803-1807
15. Frakes JT, Johanson JF, Stake JJ. Optimal timing for stent replacement in malignant biliary tract obstruction. *Gastrointest Endosc* 1993; 39: 164-167
16. Klein U, Weiss F, Wittkugel O. [Migration of a biliary Tannenbaum stent with perforation of sigmoid diverticulum]. *Refo* 2001; 173: 1057
17. Blake AM, Monga N, Dunn EM. Biliary stent causing colovaginal fistula: case report. *JSLS* 2004; 8: 73-75
18. Akimboye F, Lloyd T, Hobson S, Garcea G. Migration of endoscopic biliary stent and small bowel perforation within an incisional hernia. *Surg Laparosc Endosc Percutan Tech* 2006; 16: 39-40
19. Vandervoort J, Soetikno RM, Tham TC, Wong RC, Ferrari AP, Montes H, Roston AD, Slivka A, Lichtenstein DR, Ryumann FW, Van Dam J, Hughes M, Carr-Locke DL. Risk factors for complications after performance of ERCP. *Gastrointest Endosc* 2002; 56: 652-656
20. Masci E, Totti G, Mariani A, Curioni S, Lomazzi A, Dinelli M, Minoli G, Crosta C, Comin U, Fertitta A, Prada A, Passoni GR, Testoni PA. Complications of diagnostic and therapeutic ERCP: a prospective multicenter study. *Am J Gastroenterol* 2001; 96: 417-423
21. Howard TJ, Tan T, Lehman GA, Sherman S, Madura JA, Fogel E, Swack ML, Kopecky KK. Classification and management of perforations complicating endoscopic sphincterotomy. *Surgery* 1999; 126: 658-63; discussion 664-5
22. Stapfer M, Selby RR, Stain SC, Katkhouda N, Parekh D, Jabbour N, Garry D. Management of duodenal perforation after endoscopic retrograde cholangiopancreatography and sphincterotomy. *Ann Surg* 2000; 232: 191-198

S- Editor Yang XC L- Editor Webster JR E- Editor Yang XC