Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Marking vertebrates langerhans cells, from fish to mammals

Alessio Alesci a, Eugenia Rita Lauriano a, Marialuisa Aragona b, Gioele Capillo b,∗, Simona Pergolizzi a

a Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, I-98166, Messina, Italy
b Department of Veterinary Sciences, University of Messina, Viale dell’Annunziata, I-98168, Messina, Italy

ARTICLE INFO

Keywords:
Dendritic cells
Markers
Immunohistochemistry
Mammals
Fish

ABSTRACT

Langerhans cells (LCs) are specialized dendritic cells (DCs) that play a defense role in recognizing foreign antigens, in tissue where antigenic exposures occur, as in the skin and mucous membranes. LCs are able to continuously move within the tissues thanks to dendritic contraction and distension performing their surveillance and/or phagocytosis role. These cells are characterized by the presence of Birbeck granules in their cytoplasm, involved in endocytosis. LCs have been characterized in several classes of vertebrates, from fish to mammals using different histological and molecular techniques. The aim of the present review is to define the state of art and the need of information about immunohistochemical markers of LCs in different classes of vertebrates. The most used immunohistochemical (IHC) markers are Langerin/CD207, CD1a, S-100 and TLR. These IHC markers are described in relation to their finding in different vertebrate classes with phylogenetical considerations. Among the four markers, Langerin/CD207 and TLR have the widest spectrum of cross reactivity in LCs.

1. Introduction

Dendritic cells (DCs) have been described in all lymphoid organs as in the liver, intestine and lungs (Vermaelen and Pauwels, 2005). Due to their ability to recognize and bind foreign antigens, DCs localize wherever there is an antigenic exposure, such as in the skin and mucous membranes. At this stage, the DCs are still immature, showing a high affinity in intercepting and binding the antigen, but a lower ability to stimulate T lymphocytes (Gallucci and Matzinger, 2001). If the detected antigen shows molecular traces of pathogens or tissue destruction, DCs change becoming mature. Once activated, DCs migrate to the lymph nodes, triggering the immune response and presenting antigenic peptides to specific T cells. There is a division within the family of DCs into myeloid DC (mDC) and plasmacytoid DC (pDC) (Spits et al., 2000). The pDCs, when exposed to viral antigens, release high doses of Interferon 1, and upon maturing, trigger an adaptive immune response. Langerhans cells belong to the myeloid line and are found in basal and suprabasal layers of the epidermis and in oral, nasal, pulmonary, corneal, vaginal, rectal mucosal epithelia (Romani et al., 2012). They can be characterized for the presence of Birbeck granules in their cytoplasm, which can play a role in endocytosis. Langerhans cells are in continuous movement, elongating the dendrites between the keratinocytes in the skin, playing their role as overseers (Nishibu et al., 2006). By means of these movements of contraction and dendritic distension, they can control even the most external layers of the skin, managing to infiltrate through the cellular junctions, up to the stratum corneum and also migrate to the underlying connective tissue (Lauriano et al., 2019). In a state of quiescence, LCs help to regulate the cell populations of the skin, while, in alert conditions and together with keratinocytes, trigger an immune response which aims to activate T lymphocytes (Klechevsky et al., 2008; Polak et al., 2012). Keratinocytes, through the release of cytokines, can modulate the functionality of LCs, modifying the type of induced response such as TNF alpha which is a powerful activator (Groves et al., 1995). Several studies report the presence of cells morphologically and functionally similar to the LCs of mammals, also in the other vertebrate classes (Kordon et al., 2016; Lauriano et al., 2014, 2018, 2019, 2020; Lovy et al., 2006, 2009; Zaghoul et al., 2017). These cells do not present only long dendrites but are characterized from cytoplasmic granules similar to the Birbeck ones and have been highlighted with LCs typical markers, such as CD207 and S-100, and for this reason they are called Langerhans–like cells.

Inflammation is an animal defense mechanism, which aims to sanitize organs and tissues, eliminating any pathogens (Loynes et al., 2018) and starting the repair process (Ferrero-Miliani et al., 2007; Medzhitov,
Acta Histochemica 122 (2020) 151622

2. Langerin/CD207

Langerin is a C-type lectin detectable in many cell types such as Langerhans cells (LCs) and dendritic cells (DCs), in most epithelial and connective tissues, which plays a role in the recognition of foreign antigens such as pathogens and bacteria (Mayer et al., 2007). Langerin acts as an inducer of Birbeck granule formation in human (Valladeau et al., 2000). In the study of Valladeau et al. (2002), Langerin/CD207 was used to mark the LCs, in mice. The results showed that CD207, like the human one, also leads to the formation of pentalamellar membranes typical of Birbeck granules (Birbeck et al., 1961; Wolff, 1967), emphasizing the conservation of its function.

Several studies have shown the presence of similar LCs in zebrafish (He et al., 2017; Lin et al., 2019). It is still unclear whether these cells are actually LCs, as the ontogenesis of Langerin/CD207 in zebrafish is not known. Identifier markers such as Birbeck granules have been found in zebrafish. Lugo-Villarino et al. (2010) identified cells which were morphologically similar to DCs of mammals in Danio rerio, showing that the cellular constituents of the antigen presentation process seem to be well preserved from teleosts to higher vertebrates. The presence of DCs-like cells in teleosts has been demonstrated in salmonids (Puglem et al., 2010; Haugavoll et al., 2006; Ohta et al., 2004) and in the turbot (Psettta maxima) (Hu et al., 2010). Further studies have shown the expression of markers such as MHC II (Koppang et al., 2004; Morrison et al., 2006; Olsen et al., 2011) and Langerin/CD207, highly conserved among vertebrates (Lovy et al., 2009). CD/207 antibody is considered one of the most efficient markers of Langerhans and dendritic cells.

2.1. Human

Pagliari et al. (2011) conducted research on LCs in paracoccidiomycosis (PCM). This fungal infection is caused by Paracoccidioides brasilensis and occurs with evident skin and mucous membrane lesions. LCs were found in the skin of the control group specimens by immunoreaction with CD207 (Fig. 1). Furthermore, in the group with PCM lesions, the LCs were localized in the inflammatory infiltrates, in the dermis and in the corium of the lesions. Powell et al. (2017) showed that Langerin/CD207 is a marker to confirm LCs histiocytosis (LCH). By immunohistochemistry, the proliferation of positive CD1a and CD207 cells was noted, which, and, together with S-100, confirms that these are the most effective markers for the diagnosis of histiocytosis. Hattori et al. (2011) characterized the expression of CD207 in the cornea by confocal immunohistochemistry. LCs CD207 positive were localized in the epithelium and corneal stroma. Morphologically the LCs in the stroma showed a more rounded soma while those present in the epithelium were characterized by long dendrites and a smaller soma. These data allow to distinguish two different LCs resident populations in the stroma and epithelium.

2.2. Mammals

Dauch et al. (2013) studied the role of LCs in diabetic mice with mechanical allodynia. By immunoreaction with CD207, an increase in the number of LCs in the skin of the paw was found in this model. This increase could be caused by a proliferation of LCs in response to the diabetic pathological condition, or an increased recall of immature LCs towards the epidermis. The data collected demonstrate an increase of CD207 positive cells in the subepidermal plexus under conditions of mechanical allodynia (Dauch et al., 2013; Pergolizzi et al., 2020a) testing the biological effects of green coffee beans in rat paw edema, demonstrated positive LCs in inflamed skin after carrageenan administration through immunohistochemical analysis with CD207 and S-100. In an ex vivo rabbit corneal keratitis model, Pergolizzi et al. (2020b) demonstrated the presence of Langerin/CD207 positive dendritic cells in basal epithelial layer and in the stroma. Lauriano et al. (2020), carried out a study on the expression of Langerin/CD207 in the respiratory...
system of *Stenella coeruleoalba*. Immunohistochemistry with CD207 has shown dendritic cells like LCs in the lung and associated lymph nodes. Dendritic cells strongly positive for CD207 have been found in the epithelium and in the connective tissue of the airways (Fig. 2). These results were confirmed by the presence of langerin positive cells in dolphin skin.

2.3. Fishes

Lovy et al. (2009) characterized LCs in the hematopoietic organs of salmonids. Specimens of Atlantic salmon (*Salmo salar*) and rainbow trout (*Oncorhyncus mykiss*) were used for the research. Spleen incubation with CD207 revealed the presence of positive langerin cells. The Atlantic salmon cephalic kidney also showed positivity to the reaction with CD207. These data suggest the possibility to characterize with Langerin/CD207, Langerhans-like cells in primitive vertebrates. Kordon et al. (2016) carried out research on LCs in *Ictalurus punctatus*, channel catfish. Using antibodies to CD207, LCs-like cells have been labeled in the spleen and cephalic kidney of the catfish (Fig. 2). Since these cells have been identified in the organs proper to the catfish’s immune system, they could also have functional competences, as well as morphological similarities, with those of mammals. Electron microscopy also describes granules in the cytoplasm of these cells, like to Birbeck granules in mammalian Langerhans cells. CD207 has been proposed as a potential marker of DCs in the dogfish *Scyliorhinus canicula* (Lauriano et al., 2019). In the study, the authors highlighted the presence of DC-like cells in the gut associated lymphoid tissue (GALT) using a panel of antibodies composed by Langerin/CD207, TLR2 and S-100.

3. CD1a

CD1a (Cluster of Differentiation 1a) is a human protein related to the Major Histocompatibility Complex (MHC), which play the role of mediators in antigen presentation to T lymphocytes. Phylogenetically, CD1 genes have not been found in basal vertebrates as fish (Reinink and Van Rhijn, 2016), despite an immunohistochemical study reported Langerhans-like cells in the spleen of African catfish (*Clarias gariepinus*) (Zaghloul et al., 2017). Other studies revealed CD1 genes in reptiles (Yang et al., 2015), birds (Miller et al., 2005; Salomonsen et al., 2005), and marsupials (Baker and Miller, 2007; Cheng and Belov, 2014). It is probable that CD1 proteins arose in a common ancestor of placental mammals from a primordial form of CD1.

3.1. Human

CD1a is often used in diagnostics, associated with CD207, to confirm the presence of full-blown pathology, as shown by the data obtained by

Fig. 1. Immunohistochemical detection of langerin positive in Human normal skin and in cutaneous lesions. Positive langerin cells with long and short dendrites in the epidermis of normal skin (A, B); langerin positive cells with short dendrites slightly distributed in PCM skin lesions (C, D); positive Langerin cells distributed in the inflammatory infiltrate in the epidermis / dermis interface (E) and dermis (F). Streptavidin-biotin peroxidase method - x200 (C) and x400 (A, B, D, E, F). Reproduction from Pagliari et al., 2011. ELSEVIER LICENSE N° 4881280962191.
da Silva (2020) and Fernandes (2020), da Silva et al. (2020), studied how immature DCs, plasmacytoid DCs and LCs, were distributed in oral submucosal fibrosis (OSMF), associated squamous cell carcinoma (OSMF-OSCC), oral leukoplakia (OL) and OSCC. The study was conducted by immunohistochemistry with CD207, CD1a and CD303. The data obtained show a reduction of CD207$^+$ and CD1a$^+$ cells in all groups, except in oral leukoplakia for CD1a in OL, claiming that such reductions could be associated with the development of these pathologies, as an indicator of malignant neoplastic transformation. Further more, this study showed that CD1a and CD207 are effective in identifying immature DC and Langerhans cells. CD1a is also frequently associated with S-100, as highlighted by Chang et al. (2017b) in a study carried out on LCs in odontogenic keratocysts (OKS). Anti-CD1a and anti-S100 antibodies have been used to mark LCs. The presence of LCs is closely related to the inflammatory stage with an increasing trend from mild to severe inflammatory state (Chang et al., 2017a). Ungari et al. (2020) carried out a research on LCs histiocytosis (LCH) of a mammary lymph node in an 18-year-old woman. The biopsy showed CD1a$^-$, CD207$^-$ and S-100-positive LCs. Xu et al. (2018) carried out a study on the effect of a topical ointment with 0.03 % of tacrolimus in the treatment of UVB irradiation. The results showed a strong reversal of irradiation damage with an increase in CD1-positive LCs (Xu et al., 2018). Abd Elazim et al. (2020) carried out a research on cryopeeling in the treatment of solar freckles, in comparison with peeling with trichloroacetic acid (TCA). CD1a positive LCs were found only in cryopeeling treatment. An immunohistochemical study on CD1a positive LCs and CD57 positive Natural Killer (NK) was conducted by Talwar et al. (2009) on gingivitis. The results showed an increase in Natural Killer cells against a decrease in LCs. They concluded that the reduction of LCs is probably related to the regulation of NK cells. Kulkarni et al. (2016) used
CD1a to characterize immature LCs in Oral Lichen Planus. The results obtained showed a significant increase in the expression of CD1a in LCs under pathological conditions both in the epithelium and in the connective tissue. In a recent study, Kumar et al. (2019) on OLP confirm the presence of positive CD1a LCs in the suprabasal and spinous layers of OLP lesions.

3.2. Fishes

A study by Zaghloul et al. (2017), conducted on the African catfish, allowed to characterize Langerhans-Like cells in the spleen of this fish. The spleen consisted of a white pulp and a red pulp, rich in blood vessels. The immunohistochemical reaction with S-100 and CD1a showed the presence of LCs in the red pulp around the vessels. Three types of granules, similar to Birbeck granules were found in the cytoplasm of these cells. Nevertheless, as already said in the section 3., CD1a genes have never been found in fishes; this gives rise a question about the immunoreactivity of CD1a in LCs-like in the study by Zaghloul et al. (2017). Is it possible that African catfish possess CD1a in LCs-like? Future molecular and immunohistochemical combined studies are needed to answer the question.

4. S-100

S-100s are a family of heterodimeric proteins that bind calcium. To these belongs calprotectin, which binds calcium and zinc and is present in the cytoplasm of monocytes, neutrophils, and macrophages. Calprotectin also shows a bacteriostatic activity, suggesting an important role.
in the body’s defense systems (Alesci et al., 2014). S-100 s have been characterized in many vertebrates as mammals, birds, reptiles, amphibians, and fishes and it is well conserved in the different groups. These proteins are absent in non-vertebrate organisms. It seems that S-100 s arose 460 million years ago before vertebrates move to land (Morgan et al., 2006; Ravasi et al., 2004). S-100 s differentiated then in two different lineages in fishes and tetrapod (Bohe and Goetz, 2000; Fonseca et al., 2011; Hsiao et al., 2003; Kraemer et al., 2008). Then S-100 genes remained intact during the last 165 million years. S-100 is used marker for melanocytes, Schwann cells, neumorast hair cells, nerve, and myoepithelial cells (Kahn et al., 1983; Montalbano et al., 2018), but it is often used to study Langerhans cells (Chang et al., 2017a). S-100 antibody has been used as marker for DCs in fish as described in the above section (2.3).

4. TLR

Inflammation triggers a cascade of signals that regulate chemical mediators and blood cells (Lawrence, 2009). During an inflammatory stage, the Pattern Recognition Receptor (PRRs) are activated (Mahla et al., 2013). They are proteins expressed by cells of the innate immune system such as Langerhans cells, macrophages, monocytes, and neutrophils (Alberts et al., 2002; Schroder and Tschopp, 2010). PRRs recognize Molecular Patterns associated with pathogens (PAMPs) (10) and associated with damage (DAMPs) (Seong and Matzinger, 2004). PRRs can be associated with the membrane (Toll-like receptor TLRs) (Janeway and Medzhitov, 2002; Takeda and Yamamoto, 2010) or immersed in the cytoplasm (Nod-like receptor NLRs and RIG-I-like receptor RLRs) (Takeuchi and Akira, 2010). TLRs are membrane receptors located on sentinel cells such as Langerhans cells and macrophages (Lauriano et al., 2016). For instance, toll-like receptor 2 (TLR2) recognize virus envelope glycoprotein B (gB1) inducing the secretion of interleukin-8 (IL8), involved in inflammatory states (Marino et al., 2019). Toll-like receptors (TLRs) are recognition molecules with key functions in the body’s defense system. Since their structure is highly preserved over time, it has been hypothesized that they perform the same function in all vertebrate classes. In fact, 20 types of TLR have been isolated in many teleosts, such as rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Six types were found in all vertebrate taxa: TLR1, TLR3, TLR4, TLR5, TLR7 and TLR11 (Lauriano et al., 2016). Despite numerous types of TLRs have been characterized in the different classes of vertebrates, these receptors are structurally and genotypically high conserved (Marino et al., 2019) (Palpi, 2011). For example, comparison between profiles of TLRs from two fish species (Danio rerio and Takifugu rubripes) revealed a core set of orthologous genes with high sequence conservation to human TLRs (Jault et al., 2004; Meijer et al., 2004; Oshiumi et al., 2003). In addition to these considerations, Purcell et al. (2006) demonstrated that the TLR-signaling molecules is conserved among vertebrates. The authors of this study, in order to validate their hypothesis, stimulated Oncorhynchus mykiss leukocytes with well-known mammalian TLR agonists. Stimulated rainbow trout’s leukocytes reacted showing different patterns of cytokine expression correspondent to mammalian responses. This allowed the authors to conclude that TLR-signaling genes are conserved among different vertebrate classes and they are able to recognize TLR ligands inducing a cascade of events. The above cited features of TLRs could be at the basis of the usefulness of TLR antibody to characterize LCs.

5.1. Humans

Tang et al. (2020), in a study on the verruca vulgaris lesion, highlighted LCs and plasmacytoid dendritic cells (pDCs) and their role in the cutaneous response to the virus. Verruca vulgaris is a chronic skin infection caused by the human papilloma virus (HPV). In this study CD1a, CD2AP, CD123, TLR7/9 were used. By immunohistochemistry, positive TLR9 cells, such as mononuclear cells with positive reaction cytoplasm, were detected in the dermis. In cases of skin lesion, they were present for 60 % compared to 7.7 % of cases without lesion. Furthermore, TLR9 was also present in the spinous layer keratinocytes, with a less marked reaction. The TLR7 positive cells were localized only in the dermis, without positivity in the epidermis. In contrast, pDCs showed high levels of TLR7/9 triggering the regulation of cytokines and IFN 1, determining the antiviral response.

5.2. Mammals

In a study carried out striped dolphin, Lauriano et al. (2014) marked whit TLR2 and S100 numerous Langerhans like cells in the skin. By means of anti-S100, several dendritic cells in the dolphin epidermis were labeled, which showed correspondence with LCs. These cells were multifaceted with long dendritic processes that infiltrated the keratinocytes, even reaching the stratum corneum. Dendritic cells have also been found in the dermis, but with a smaller body and less extensive processes.

5.3. Fishes

In the study on the mudskipper Periophthalmus schlosseri skin, Lauriano et al. (2018) marked dendritic cells similar to LCs, using TLR2, in addition to S-100, by immunohistochemistry and counterstain with H/E. TLR2 positive dendritic cells were similar to LCs in mammalian skin. It was noted that TLR2 was more present in cell bodies than in dendrites. TLR2 has also been reported to be an efficient marker for DCs in the GALT of the lesser spotted catshark Scyliorhinus canicula (Lauriano et al., 2019).

6. Conclusion

The use of specific markers for LCs is certainly useful not only to improve knowledge on phylogensis and function of these cells in the different vertebrate classes, but also shows a diagnostic tool, allowing the identification of LCs in their different stages (immature and mature). In addition, the combined use of two or more of these markers allows a more effective characterization of the cell or an efficient diagnosis of a clinical picture. In order to summarize the markers for LCs, schematic representations are given in Figs. 4–7. Among the others Langerin/ CD207 and TLR antibodies resulted to have the widest spectrum of cross reactivity in LCs of: mammals (human, mouse, rat, dolphin, rabbit) and fish (Atlantic salmon, rainbow trout, channel catfish, giant mudskipper, small spotted catshark). S-100 is an immunohistochemical marker useful for the detection of several cell types including LCs in both mammals and other vertebrate classes; despite this, S-100 marker is too generic and needs other immunoreaction experiments, in order to confirm the characterization of LCs. CD1a, on the contrary, is a good
Immunohistochemical Marker: Langerin / CD207

- **Human**: Pagliari et al., 2011
- **Human**: Powell et al., 2017
- **Human**: Hattori et al., 2011

Organism	Study
Mouse	Dauch et al., 2013
Rat	Pergolizzi et al., 2018
Dolphin	Lauriano et al., 2020
Rabbit	Pergolizzi et al., 2020
Atlantic salmon	Lovy et al., 2009
Rainbow trout	
Channel catfish	Kordon et al., 2016
Giant mudskipper	Lauriano et al., 2018
Small spotted catshark	Lauriano et al., 2019

Fig. 4. Schematic representation of Langerin CD/207 cross reactivity on different vertebrate classes DCs.

Immunohistochemical Marker: CD1a

Organism	Study
Human	Silva and Fernandes, 2020
Human	Silva et al., 2020
Human	Chang et al., 2017a
Human	Chang et al., 2017b
Human	Ungar et al., 2020
Human	Elazim et al., 2020
Human	Steln et al., 2019
Human	Kulkarni et al., 2016
Human	Kumar et al., 2019
African Catfish	Doaa M Zaghoul, 2017

Fig. 5. Schematic representation of CD1a cross reactivity on vertebrate classes DCs.

Immunohistochemical Marker: S100

Organism	Study
Human	Chang et al., 2017a
Human	Maloth et al., 2015
Human	Allen et al., 2019

Organism	Study
Giant mudskipper	Lauriano et al., 2018
Small spotted catshark	Lauriano et al., 2019

Fig. 6. Schematic representation of S100 cross reactivity on different vertebrate classes DCs.
immunohistochemical marker of LCs, but is limited to mammalian species. Future studies on both immunoreactivity and gene conservation/evolution are necessary to state how LCs can be localized in all vertebrate classes using a single biological marker/target. For sure, Langerin/CD207 and TLR remain the main candidates to play this role. Furthermore, future studies on other Langerhans cells markers could be useful in the diagnosis of some pathologies. For example, IL-6 is a cytokine that serve as an important costimulatory factor of T lymphocyte activation; production of this cytokine has been suggested as a potential prognostic marker of COVID-19 disease severity (Russell et al., 2020). Langerhans Cells and lymph node dendritic cells express interleukin-6 (Cumberbatch, 1996). More studies on different molecules related with the IL-6 pathway in vertebrate models, could lead to perfection in future, diagnostic techniques applied human research.

Declaration of Competing Interest

The authors have no conflict of interest to declare.

References

Abdelazim, N.E., Makboul, R., Botros, S.N., Awad, S.M., 2020. Cryopeeling versus Declaration of Competing Interest

Alessio Alesci: Writing - original draft. Eugenia Rita Lauriano: Conceptualization, Writing - review & editing, Supervision. Marialuisa Aragona: Writing - review & editing, Data curation, Software. Gioele Capillo: Writing - review & editing, Software. Simona Pergolizzi: Conceptualization, Writing - review & editing, Supervision.

CRediT authorship contribution statement

Alessio Alesci

Eugenia Rita Lauriano

Marialuisa Aragona

Gioele Capillo

Simona Pergolizzi

Disclosure of Competing Interests

The authors have no conflict of interest to declare.

Fig. 7. Schematic representation of TLR cross reactivity on different vertebrate classes DCs.

A. Alesci et al.
Acta Histochemica 122 (2020) 151622
Polak, M.E., Newell, L., Taraban, V.V., Pickard, C., Healy, E., Friedmann, P.S., Al-Shamkhani, A., Ardern-Jones, M.R., 2012. CD70-CD27 interaction augments CD8 T-cell activation by human epidermal langerhans cells. J. Invest. Dermatol. 132, 1636–1644. https://doi.org/10.1038/jid.2012.26.

Powell, P., Vitug, G., Castro-Silva, F., Ray, A., 2017. A rare case of CD1a-negative Langerhans cell histiocytosis of the central nervous system in a child. Clin. Case Reports 5, 1664–1667.

Purcell, M.K., Smith, K.D., Aderem, A., Hood, L., Winton, J.R., Roach, J.C., 2006. Conservation of Toll-like receptor signaling pathways in teleost fish. Comp. Biochem. Physiol. - Part D Genomics Proteonics 1, 77–88. https://doi.org/10.1016/j.chd.2005.07.003.

Ravasi, T., Hsu, K., Goyette, J., Schroder, K., Yang, Z., Rahimi, F., Miranda, L.P., Russell, B., Moss, C., George, G., Santaolalla, A., Cope, A., Papa, S., Van Hemelrijck, M., Ravasi, T., Hsu, K., Goyette, J., Schroder, K., Yang, Z., Rahimi, F., Miranda, L.P., Russell, B., Moss, C., George, G., Santaolalla, A., Cope, A., Papa, S., Van Hemelrijck, M., 2004. Probing the S100 protein family through genomic and functional analysis. Genomics 84, 10–22. https://doi.org/10.1016/j.ygeno.2004.02.002.

Reinink, P., Van Rijn, L., 2016. Mammalian CD1 and MR1 genes. Immunogenetics 68, 515–523. https://doi.org/10.1007/s00251-016-0926-x.

Romani, N., Brunner, P.M., Stingl, G., 2012. Changing views of the role of langerhans cells. J. Invest. Dermatol. 132, 872–881. https://doi.org/10.1038/jid.2011.437.

Russell, B., Moss, C., George, G., Santanaalla, A., Cope, A., Papa, S., Van Hemelrijck, M., 2020. Associations between immune-suppressive and stimulating drugs and novel COVID-19 - A systematic review of current evidence. Eancermedicalscience 14, 1022. https://doi.org/10.3332/ecancer.2020.1022.

Salomonsen, J., Sørensen, M.R., Marston, D.A., Rogen, S.L., Collen, T., Van Hateren, A., Smith, A.L., Beal, R.K., Skjold, K., Kaufman, J., 2005. Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc. Natl. Acad. Sci. U. S. A. 102, 8668–8673. https://doi.org/10.1073/pnas.0409213102.

Schroder, K., Tschopp, J., 2010. The inflammsomes. Cell 140, 821–820. https://doi.org/10.1016/j.cell.2010.01.022.

Talwar, A., Arun, K., Kumar, T., Stelin, S., Ramakrishnan, H., 2009. Immunohistological analysis of CD1a + langerhans cells and CD57 + natural killer cells in healthy and diseased human gingival tissue: a comparative study. J. Indian Soc. Periodontol. 13, 150–154. https://doi.org/10.4103/0972-124x.60228.

Tang, Y., Zhu, X., Han, R., Zhou, Q., Cheng, H., Garchovich, S., 2020. Expression of langerhans cell and plasmacytoid dendritic cell markers, and toll-like receptor 7/9 signaling pathway proteins in verruca vulgaris lesions. Med. (United States) 99, e19214. https://doi.org/10.1007/MD.000000000019214.

Uhlen, M., Bandrowski, A., Carr, S., Edwards, A., Ellenberg, J., Lundberg, E., Rimm, D.L., Rodríguez, H., Hilte, T., Snyder, M., Yamamoto, T., 2016. A proposal for validation of antibodies. Nat. Methods 13, 823–827. https://doi.org/10.1038/nmeth.3995.

Ungari, M., Ferrero, G., Varotti, E., Gusolfino, M.D., Manotti, L., Tanzi, G., Trombatore, M., Bertoni, R. 2020. Langerhans cell histiocytosis of an intra-mammary lymph node in an 18-year-old woman. Pathologica 112, 50–55. https://doi.org/10.23736/S0031-3025.19.05310-X.

Valladeau, J., Ravel, O., Dezutter-Dambuyant, C., Moore, K., Kleijmeer, M., Liu, Y., Duvert-Frances, V., Vincent, C., Schmitt, D., Davoust, J., Caux, C., Lebecque, S., Saeland, S., 2000. Langerin, a novel C-type lectin specific to langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71–81. https://doi.org/10.1016/S1074-7613(00)8160-6.

Valladeau, J., Clair-Moninot, V., Dezutter-Dambuyant, C., Pin, J.-J., Kisselenberg, A., Mattei, M.-G., Alt-Yahia, S., Bates, E.E.M., Malissen, B., Koch, F., Fossiez, F., Romani, N., Lebecque, S., Saeland, S., 2002. Identification of mouse Langerin/CD207 in langerhans cells and some dendritic cells of lymphoid tissues. J. Immunol. 168, 782–792. https://doi.org/10.4049/jimmunol.168.2.782.

Vernauden, K., Fauvels, R., 2005. Pulmonary dendritic cells. Am. J. Respir. Crit. Care Med. 61A, 170–177. https://doi.org/10.1164/rccm.200410-13840O.

Wolff, K., 1967. The fine structure of the Langerhans cell granule. J. Cell Biol. 35, 468–473. https://doi.org/10.1083/jcb.35.2.468.

Xu, J.L., Feng, Y.D., Song, G.X., Gong, Q.X., Yin, L., Hu, Y.Y., Luo, D., Yin, Z.Q., 2018. Tacrolimus reverses UVB irradiation-induced epidermal langerhans cell reduction by inhibiting TNF-α secretion in keratinocytes via regulation of NF-κB/p65. Front. Pharmacol. 9, 67. https://doi.org/10.3389/fphar.2018.00067.

Yang, Z., Wang, C., Wang, T., Bai, J., Zhao, Y., Liu, X., Ma, Q., Wu, X., Gao, Y., Zhao, Yaofeng, Ren, L., 2015. Analysis of the reptile CD1 genes: evolutionary implications. Immunogenetics 67, 337–346. https://doi.org/10.1007/s00221-015-0857-2.

Zaphiroylou, D., Derbalah, A., Rutland, C., 2017. Unique characterization of Langerhans cells in the spleen of the African catfish (Clarias gariepinus). Matters Sel. https://doi.org/10.19185/matters.20170300005.