Liouville/Toda central charges from M5-branes

Luis F. Alday♥, Francesco Benini♦, Yuji Tachikawa♥

alday,yujitach@ias.edu, fbenini@princeton.edu
♥ School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA
♦ Department of Physics, Princeton University, Princeton, NJ 08544, USA

Abstract: We show that the central charge of the Liouville and ADE Toda theories can be reproduced by equivariantly integrating the anomaly eight-form of the corresponding six-dimensional $\mathcal{N} = (0,2)$ theories, which describe the low-energy dynamics of M5-branes.
1. Introduction

$\mathcal{N} = 2$ supersymmetric field theories in four dimensions are very rich, both from the physical and mathematical points of view. Recently, it was observed in [1] that many $\mathcal{N} = 2$ theories can be understood in a unified manner by realizing them as a compactification of six-dimensional $\mathcal{N} = (0, 2)$ theories on a Riemann surface. Furthermore, it was noted in [2] that Nekrasov’s partition function [3] of such theories (with SU(2) gauge groups) computes the conformal blocks of the Virasoro algebra. It was also noted that the partition function on S^4, as given by [4], coincides with the corresponding correlation function of the Liouville theory. Soon this 2d-4d correspondence was extended in [5, 6] to the case of SU(N) gauge groups where the Liouville theory generalizes to the A_{N-1} Toda theory.

Given that these 4d theories are engineered from theories on M5-branes, one would like to understand the above correspondence in terms of string/M-theory. A step in this direction was made in [7, 8]. Hinted at by the results of [5] and [9], in [8] an interesting observation was made, namely that the anomaly eight-form of the 6d $\mathcal{N} = (0, 2)$ theory of type A_{N-1} and the central charge of the Toda theory of the same type have similar structures:

$\mathcal{I}_8[A_{N-1}] = (N - 1)I_8(1) + N(N^2 - 1)\frac{p_2(N)}{24}$, \hspace{1cm} (1.1)

$c_{\text{Toda}}[A_{N-1}] = (N - 1) + N(N^2 - 1)Q^2$. \hspace{1cm} (1.2)

In this short note, we show that (1.2) with the correct value for Q, namely $Q = (\epsilon_1 + \epsilon_2)^2 / (\epsilon_1 \epsilon_2)$, arises from (1.1) if we consider the compactification of the 6d $\mathcal{N} = (0, 2)$ theory on \mathbb{R}^4 with equivariant parameters $\epsilon_{1,2}$. Furthermore, we will see that this relation works for arbitrary theories of type A, D and E.

2. Computation

The anomaly eight-form of one M5-brane [10] is

$\mathcal{I}_8(1) = \frac{1}{48} \left[p_2(NW) - p_2(TW) + \frac{1}{4}(p_1(TW) - p_1(NW))^2 \right]$, \hspace{1cm} (2.1)

where NW and TW stand for the normal and the tangent bundles of the worldvolume W, respectively and p_k denotes the k-th Pontryagin class. Using this, the anomaly of

\hspace{1cm}

\hspace{1cm}Note that the Liouville theory is equivalent to the A_1 Toda theory.
\[
\begin{array}{|c|ccc|}
\hline
G & r_G & d_G & h_G \\
\hline
A_{N-1} & N-1 & N^2-1 & N \\
D_N & N & N(2N-1) & 2N-2 \\
E_6 & 6 & 78 & 12 \\
E_7 & 7 & 133 & 18 \\
E_8 & 8 & 248 & 30 \\
\hline
\end{array}
\]

Table 1: Data of the Lie algebras of type A, D, E. Note that $r_G(h_G + 1) = d_G$.

The $\mathcal{N} = (0,2)$ theory of type G ($G = A_n, D_n, E_n$) can be written as \[11, 12, 13\]^2

\[
I_8[G] = r_G I_8(1) + d_G h_G \frac{p_2(NW)}{24}. \quad (2.2)
\]

Here r_G, d_G and h_G are the rank, the dimension, and the Coxeter number of the Lie algebra of type G, respectively. They are tabulated in Table 1.

Now, we wrap the $(0,2)$-theory of type G on a four-manifold X_4. The 11d theory lives on

\[
\Sigma \times X_4 \times \mathbb{R}^5, \quad (2.3)
\]

where Σ is the worldsheet of the resulting 2d theory. We take X_4 to be Euclidean and Σ to be Lorentzian. The supercharges decompose as:

\[
4_+ \times 4 \rightarrow \left(\frac{1}{2}, 2, 1, 2, \frac{1}{2}\right) + \left(\frac{1}{2}, 2, 1, 2, -\frac{1}{2}\right) + \left(-\frac{1}{2}, 1, 2, 2, \frac{1}{2}\right) + \left(-\frac{1}{2}, 1, 2, 2, -\frac{1}{2}\right), \quad (2.4)
\]

where we listed the representation contents under the decomposition

\[
SO(5, 1) \times SO(5) \rightarrow SO(1, 1) \times SU(2)_l \times SU(2)_r \times SO(3) \times SO(2). \quad (2.5)
\]

Here we have decomposed $SO(4) \simeq SU(2)_l \times SU(2)_r$ and $SO(5) \supset SO(3) \times SO(2)$. The symplectic Majorana condition acts on each factor separately.

Let us twist \mathbb{R}^5 over X_4 so that a fraction of the supersymmetry remains. We embed the spin connection of the $SU(2)_r$ factor into the $SO(3)$ factor, that is

\[
SU(2)_r \rightarrow \text{diagonal part of } [SU(2)_r \times SO(3)]. \quad (2.6)
\]

Note that the $SO(3)$ factor is the standard $SU(2)_R$ symmetry of the four-dimensional theory if we think of the setup as the compactification of the six-dimensional theory on Σ, giving an $\mathcal{N} = 2$ theory on X_4. Therefore this twist is the one used by \[14\].

\[\text{For } E\text{-type } \mathcal{N} = (0,2) \text{ theory, this formula is only conjectural and there has been no independent check, to our knowledge. We assume the correctness of the formula.}\]
After the twist, we get the symmetry group $\text{SO}(1, 1) \times \text{SU}(2)_l \times \text{SU}(2)_r \times \text{SO}(2)$ and supercharges
\[
\left(\frac{1}{2}, 2, 2, \frac{1}{2}\right) + \left(\frac{1}{2}, 2, 2, -\frac{1}{2}\right) + \left(-\frac{1}{2}, 1, 1 + 3, \frac{1}{2}\right) + \left(-\frac{1}{2}, 1, 1 + 3, -\frac{1}{2}\right).
\]
(2.7)
The preserved supercharges (scalars under $\text{SU}(2)_l \times \text{SU}(2)_r$) form a two-dimensional $\mathcal{N} = (0, 2)$ superalgebra, with $\text{U}(1)$ R-symmetry.\footnote{This twist is different from the one obtained by wrapping M5-branes on a holomorphic 4-cycle in a Calabi-Yau threefold \cite{15}.}

Let us exploit this 2d $\mathcal{N} = (0, 2)$ superalgebra. We take the right-movers to be the supersymmetric side. It is known that the anomaly polynomial and the central charges are related via
\[
I_4 = \frac{c_R}{6} c_1(F)^2 + \frac{c_L - c_R}{24} p_1(T\Sigma),
\]
(2.8)
where F is the external $\text{U}(1)$ bundle which couples to the $\text{U}(1)_R$ symmetry. Let us check this formula against free multiplets. The anomaly polynomial of a right-moving complex Weyl fermion with charge q is
\[
I_4 = \text{ch}(qF) \hat{A}(T\Sigma) \bigg|_4 = \frac{q^2}{2} c_1(F)^2 - \frac{p_1(T\Sigma)}{24}.
\]
(2.9)
The right-moving chiral multiplet has one complex boson, whose anomaly is the same as that of two neutral Weyl fermions and one Weyl fermion with charge 1. In total, $I_4 = c_1(F)^2/2 - p_1(T\Sigma)/8$ with $(c_L, c_R) = (0, 3)$. On the other hand, the left-moving free real boson has $I_4 = p_1(T\Sigma)/24$ with $(c_L, c_R) = (1, 0)$. Both cases agree with (2.8).

Now let us determine I_4 of the compactified theory by integrating I_8 over X_4. Let us assign the Chern roots as follows: $\pm t$ for the tangent bundle of Σ; $\pm \lambda_1$, $\pm \lambda_2$ for the tangent bundle of X_4; and $\pm n_1$, $\pm n_2$, 0 for the normal bundle. We include the $\text{U}(1)$ R-symmetry through
\[
n_1 \rightarrow 2c_1(F),
\]
(2.10)
and the twisting \cite{26} introduces
\[
n_2 \rightarrow \lambda_1 + \lambda_2.
\]
(2.11)
Note that the doublet of $\text{SU}(2)_r$ has the Chern roots $\pm (\lambda_1 + \lambda_2)/2$. $(n_2, 0, -n_2)$ should then be the Chern roots of the triplet, resulting in (2.11).

Then we evaluate the anomaly polynomial. Notice that λ_1 and λ_2 will be integrated over X_4. Since the 2d spacetime effectively behaves as four dimensional inside the
anomaly polynomial, forms whose degree along $T\Sigma$ is higher than four automatically vanish. We get:

$$I_4 = \left[\frac{r_G + 2d_G h_G}{12}\right] \int (\lambda_1^2 + \lambda_2^2) + \left[\frac{3r_G + 4d_G h_G}{12}\right] \int \lambda_1 \lambda_2 c_1(F)^2 - \left[\frac{r_G}{48}\right] \int (\lambda_1^2 + \lambda_2^2) + \frac{r_G}{48} \int \lambda_1 \lambda_2 \frac{p_1(T\Sigma)}{2}. \quad (2.12)$$

Translating to $c_{L,R}$ using (2.8), we find

$$c_L = \frac{1}{2} (P_1(X_4) + 3 \chi(X_4)) r_G + (P_1(X_4) + 2 \chi(X_4)) d_G h_G,$$

$$c_R = \chi(X_4) r_G + (P_1(X_4) + 2 \chi(X_4)) d_G h_G. \quad (2.13)$$

Here, $\chi(X_4) = \int_{X_4} e(X_4)$ is the Euler number of X_4, and $P_1(X_4) = \int_{X_4} p_1(X_4)$ is the integrated first Pontryagin class which is three times the signature of X_4.

For example, let us wrap one M5-brane on $X_4 = K3$, in which case there is effectively no twisting. We start from $I_8(1)$ instead of $I_8[G]$, which effectively means using $r_G = 1$ and $d_G h_G = 0$ in (2.13). Using $P_1(K3) = -48$ and $\chi(K3) = 24$, we obtain

$$c_L = 24, \quad c_R = 12 \quad (2.14)$$

which is the value for the heterotic string, as it should be.

The case we are most interested in is $X_4 = \mathbb{R}^4$, considering the characteristic classes in the equivariant sense\(^4\). We take the action of $U(1)^2$ to rotate two orthogonal two-planes in \mathbb{R}^4, and call the equivariant parameters $\epsilon_{1,2}$ respectively. The Chern classes of the two two-planes are $\epsilon_{1,2}$. Thus we have $p_1(T\mathbb{R}^4) = \epsilon_1^2 + \epsilon_2^2$ and $e(T\mathbb{R}^4) = \epsilon_1 \epsilon_2$. We then use the localization formula, in the case where the fixed points are isolated:

$$\int_M \alpha = \sum_p \frac{\alpha|_p}{e(N_p)}.$$\(^4\)

\(^4\)Equivariant cohomology is a cohomology theory which also captures the action of a group on a space. For simplicity we only consider the abelian case $U(1)^n$. Consider the space of differential forms on M valued in the polynomial of the formal parameters ϵ_a, ($a = 1, \ldots, n$), and consider the deformed differential $D_\epsilon = d + \epsilon_a \kappa^a$. Here κ is the interior product and κ^a is the Killing vector of the a-th $U(1)$. Then $D_\epsilon^2 = \epsilon_a \mathcal{L}_{k_a}$ where \mathcal{L}_{k_a} is the Lie derivative by k_a. We define the equivariant cohomology $H_{U(1)^n}(M)$ to be the cohomology of D_ϵ on the space of differential forms invariant under $U(1)^n$. Note that the formal parameters ϵ_a have degree 2. Equivariant characteristic classes are elements of the equivariant cohomology. For example, consider \mathbb{C} acted on by $U(1)$ which rotates the phase, and let the equivariant parameter be ϵ. The Chern class $c_1(T\mathbb{C})$ in the standard sense is of course trivial, but the equivariant Chern class is given by $c_1(T\mathbb{C}) = \epsilon$. For more details, see e.g. [10].
The summation is over the fixed points p, and $e(N_p)$ is the equivariant Euler class of the normal bundle of p inside M. In our case the only fixed point is the origin. Therefore we have

$$P_1(\mathbb{R}^4) = \frac{\epsilon_1^2 + \epsilon_2^2}{\epsilon_1 \epsilon_2}, \quad \chi(\mathbb{R}^4) = 1. \quad (2.15)$$

Applying (2.13), we find

$$c_R = \frac{\epsilon_1^2 + 3\epsilon_1 \epsilon_2 + \epsilon_2^2}{2\epsilon_1 \epsilon_2} r_G + \frac{(\epsilon_1 + \epsilon_2)^2}{\epsilon_1 \epsilon_2} d_G h_G,$$

$$c_L = r_G + \frac{(\epsilon_1 + \epsilon_2)^2}{\epsilon_1 \epsilon_2} d_G h_G. \quad (2.16)$$

Upon the identification $\epsilon_1/\epsilon_2 = b^2$ advocated in [2], c_L perfectly agrees with the central charge of the conformal Toda theory of type G [17]:

$$c_{\text{Toda}}[G] = r_G + \left(b + \frac{1}{b}\right)^2 d_G h_G. \quad (2.17)$$

3. Discussion

A couple of comments are in order. First, recall that in the construction of [1] the $\mathcal{N} = 2$ theories are obtained by wrapping M5-branes on $\mathbb{R}^4 \times \Sigma$, with a suitable twist on Σ which preserves one half of the supersymmetry. So far, we have not taken this twist into account. When we perform it, the right-moving sector, which was the supersymmetric part, becomes topological and so $c_R \to 0$, while c_L is untouched and agrees with the central charge of the Liouville/Toda theories. This is consistent with the fact that Nekrasov’s partition function computes the chiral half of the Liouville/Toda correlation functions.

Second, notice that Nekrasov’s partition function was computed after introducing an equivariant deformation of \mathbb{R}^4 by a $U(1)^2$ action with parameters $\epsilon_{1,2}$. More precisely, the symmetry of the 4d theory is

$$\text{SO}(4) \times \text{SU}(2)_R \simeq \text{SU}(2)_l \times \text{SU}(2)_r \times \text{SU}(2)_R. \quad (3.1)$$

The topological theory has a modified Lorentz group

$$\text{SO}(4)' \simeq \text{SU}(2)_l \times \text{SU}(2)_{r'}, \quad (3.2)$$

where $\text{SU}(2)_{r'}$ is the diagonal subgroup of $\text{SU}(2)_r \times \text{SU}(2)_R$. The $U(1)^2$ used in the equivariant deformation is the Cartan subgroup of this modified $\text{SO}(4)'$. This motivated
our choice in (2.6). In view of this, it is also reasonable to evaluate the anomaly polynomial in the same equivariant sense \(^5\). It would be nice to have a better understanding of this point.

Acknowledgments

It is a pleasure to thank G. Bonelli, J. Maldacena, N. Seiberg, A. Tanzini, H. Verlinde, B. Wecht and E. Witten for helpful discussions. LFA is supported in part by the DOE grant DE-FG02-90ER40542. FB is supported by the DOE grant DE-FG02-91ER40671. YT is supported in part by the NSF grant PHY-0503584, and by the Marvin L. Goldberger membership at the Institute for Advanced Study.

A. Central charges of Sicilian gauge theories of type A, D, E

In \(^2\) the central charges \(a\) and \(c\) of the 4d superconformal Sicilian theories of \(A\) type (obtained by wrapping M5-branes on a genus-\(g\) Riemann surface), both in the \(\mathcal{N} = 2\) and \(\mathcal{N} = 1\) case, were computed from the 6d anomaly polynomial. We observe that from (2.2) the computation can be performed for the whole ADE series.

Let us start with the \(\mathcal{N} = 2\) case. Using the same Chern roots as in section 2, the line bundle of the \(\mathcal{N} = 1\) R-symmetry is incorporated by:

\[
\begin{align*}
 n_1 &\to n_1 + \frac{4}{3}c_1(F), \\
 n_2 &\to n_2 + \frac{4}{3}c_1(F).
\end{align*}
\]

\(\mathcal{N} = 2\) SUSY requires \(n_1 + t = 0, n_2 = 0\). The integral over the Riemann surface is \(\int_{\Sigma} t = 2 - 2g\).

The 4d ‘t Hooft anomalies of \(U(1)_R\) are read from the formula:

\[
I_6 = \frac{\text{tr } R^3}{6} c_1(F)^3 - \frac{\text{tr } R}{24} c_1(F)p_1(T_4). \tag{A.1}
\]

Comparing this with the integral of \(I_8\), we get:

\[
\text{tr } R^3 = \frac{2}{27}(g-1)(13r_G + 16d_G h_G) \quad \text{tr } R = \frac{2}{3}(g-1)r_G. \tag{A.2}
\]

Using the standard relations between \(a\), \(c\) and \(\text{tr } R\), \(\text{tr } R^3\), we get:

\[
\begin{align*}
a &= (g-1) \frac{5r_G + 8d_G h_G}{24} \\
c &= (g-1) \frac{r_G + 2d_G h_G}{6}.
\end{align*} \tag{A.3}
\]

This agrees with \(^{18}\) for the \(A\) series, and with \(^{19}\) for the \(D\) series. Similar formulas can be obtained in the \(\mathcal{N} = 1\) case. The R-symmetry bundle is given by \(n_1 \to n_1 + c_1(F)\) and \(n_2 \to n_2 + c_1(F)\), while \(\mathcal{N} = 1\) SUSY requires \(n_1 + n_2 + t = 0\). We get:

\[
\begin{align*}
a &= (g-1) \frac{6r_G + 9d_G h_G}{32} \\
c &= (g-1) \frac{4r_G + 9d_G h_G}{32}. \tag{A.4}
\end{align*}
\]

\(^5\)Note that Nekrasov’s partition function itself can be computed as an equivariant integral over the instanton moduli space.
References

[1] D. Gaiotto, “$\mathcal{N}=2$ Dualities,” arXiv:0904.2715 [hep-th].

[2] L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville Correlation Functions from Four-Dimensional Gauge Theories,” arXiv:0906.3219 [hep-th].

[3] N. A. Nekrasov, “Seiberg-Witten Prepotential from Instanton Counting,” Adv. Theor. Math. Phys. 7 (2004) 831–864, arXiv:hep-th/0206161.

[4] V. Pestun, “Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops,” arXiv:0712.2824 [hep-th].

[5] N. Wyllard, “A_{N-1} Conformal Toda Field Theory Correlation Functions from Conformal $\mathcal{N}=2$ SU(N) Quiver Gauge Theories,” arXiv:0907.2189 [hep-th].

[6] A. Mironov and A. Morozov, “On AGT Relation in the Case of U(3),” arXiv:0908.2569 [hep-th].

[7] R. Dijkgraaf and C. Vafa, “Toda Theories, Matrix Models, Topological Strings, and $\mathcal{N}=2$ Gauge Systems,” arXiv:0909.2453 [hep-th].

[8] G. Bonelli and A. Tanzini, “Hitchin Systems, $\mathcal{N}=2$ Gauge Theories and W-Gravity,” arXiv:0909.4031 [hep-th].

[9] F. Benini, Y. Tachikawa, and B. Wecht, “Sicilian Gauge Theories and $\mathcal{N}=1$ Dualities,” arXiv:0909.1327 [hep-th].

[10] E. Witten, “Five-Brane Effective Action in M-Theory,” J. Geom. Phys. 22 (1997) 103–133, arXiv:hep-th/9610234.

[11] J. A. Harvey, R. Minasian, and G. W. Moore, “Non-Abelian Tensor-Multiplet Anomalies,” JHEP 09 (1998) 004, arXiv:hep-th/9808060.

[12] K. A. Intriligator, “Anomaly Matching and a Hopf-Wess-Zumino Term in 6D, $N=(2,0)$ Field Theories,” Nucl. Phys. B581 (2000) 257–273, arXiv:hep-th/0001205.

[13] P. Yi, “Anomaly of (2,0) Theories,” Phys. Rev. D64 (2001) 106006, arXiv:hep-th/0106165.

[14] E. Witten, “Topological Quantum Field Theory,” Commun. Math. Phys. 117 (1988) 353.

[15] J. M. Maldacena, A. Strominger, and E. Witten, “Black Hole Entropy in M-Theory,” JHEP 12 (1997) 002, arXiv:hep-th/9711053.

[16] M. Libnei, “Lecture notes on equivariant cohomology,” arXiv:0709.3615 [math].
[17] T. J. Hollowood and P. Mansfield, “Quantum Group Structure of Quantum Toda Conformal Field Theories. 1,” *Nucl. Phys. B330* (1990) 720.

[18] D. Gaiotto and J. Maldacena, “The Gravity Duals of \(\mathcal{N} = 2 \) Superconformal Field Theories,” arXiv:0904.4466 [hep-th].

[19] Y. Tachikawa, “Six-Dimensional \(D_N \) Theory and Four-Dimensional SO-USp Quivers,” arXiv:0905.4074 [hep-th].