Detection of Toxic Shock Syndrome (tst) Gene Among Staphylococcus Aureus Isolated from Patients and Healthy Carriers
Reza Hakimi Alni,1 Abdolmajid Mohammadzadeh,1,* Pezhman Mahmoodi,1 and Mohammad Yousef Alikhani2
1Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
2Department of Microbiology, Faculty of Medicine, Hamadan University of medical sciences, Hamadan, Iran
*Corresponding author: Abdolmajid Mohammadzadeh, Bu-Ali Sina University, Hamedan, Iran. Tel: +98-8134227350, Fax: +98-8134227475, E-mail: mohammadzadeh4@gmail.com
Received 2017 May 30; Revised 2017 December 03; Accepted 2018 January 04.

Abstract
Background: Staphylococcus aureus is the major causative agent of hospital-acquired and community-acquired infections. These bacteria produce a wide variety of exotoxins, including Toxic Shock Syndrome Toxin (TSST) and virulence factors, which are thought to contribute to its pathogenic potential.

Objectives: The aim of this study was to identify tst gene in S. aureus isolated from patients and healthy carriers.

Methods: In this cross-sectional study, a total of 60 human S. aureus isolates were collected from individuals referred to Shahid Beheshti hospital (patients, n = 40) and healthy farm workers (n = 20) in Hamedan province of Iran. Thereafter, DNA samples were extracted using the phenol-chloroform method and the samples were investigated for tst gene using a specific PCR assay.

Results: The DNA fragment corresponding to the tst gene (326 bp) was observed in 45% (9 out of 20) of S. aureus isolated from healthy farm workers; while, 22.5% (9 out of 40) of patients’ isolates were found to be positive for tst gene, which indicated that in total 30% of the isolates possessed this gene.

Conclusions: The results of the present study showed the high prevalence of the tst gene among S. aureus isolated from healthy farm workers and patients. Therefore, appropriate precautions must be considered to decrease the risk of transmission of such isolates to other humans.

Keywords: Hamedan, Staphylococcus Aureus, tst Gene

1. Background

Staphylococcus aureus is the main etiological agent of various diseases, including skin and soft-tissue infections (SSTIs), endovascular infections, urinary tract infections (UTIs), bacteremia, and sepsis in both hospitalized and non-hospitalized humans, which is frequently reported from different parts of the world (1).

One of the important prerequisites of infections by these bacteria is its ability to establish a human commensal. Staphylococcus aureus is commonly resident in anterior nares of people. It has been reported that 10% to 40% of the population carries this organism (2). Nasal carriers are more susceptible to nosocomial infections than non-carrier individuals and increased risk of infection with these bacteria has been documented in patients with end-stage renal failure after surgery (3).

Staphylococcus aureus produces a wide variety of exoproteins that contribute to its pathogenicity. However, only a small number of its isolates produce additional exoproteins, such as Toxic Shock Syndrome Toxin (TSST), which belongs to pyrogenic toxin superantigens (PTSAgs) (4). Furthermore, TSST is a protein with 22-kD molecular weight, which is encoded by the tst gene (5). This protein affects cells of the immune system and stimulates release of interleukin-1, interleukin-2, tumor necrosis factor-alpha (TNF-a) and nonspecific T cell proliferation, which may lead to a severe and potentially fatal disease in humans, known as toxic shock syndrome (TSS) (6-8).

2. Objectives

The present study was conducted to investigate TSST-encoding gene (tst) in S. aureus isolated from both healthy carriers and patients in Hamedan.
3. Methods

3.1. Isolation of Staphylococcus Aureus

The present cross-sectional study was performed on S. aureus isolated from patients and healthy carriers. Also, useful data, including gender, age, and tobacco use were collected through a questionnaire from these people.

Patients: forty S. aureus isolates were obtained from different clinical samples (skin, tracheal tube, blood, urine, and sputum) of individuals referred to Shahid Beheshti hospital of Hamedan for a period of 9 months from January 2014 to September 2015. These isolates were identified based on common biochemical tests.

Healthy carriers: overall, 100 specimens were collected from nasal cavity of healthy carriers, who worked in dairy farms using sterile cotton swabs moistened in sterile normal saline. Age, gender, and previous tobacco usage among all of the sampled people were also recorded to see if these characteristics had a relationship with S. aureus carriage. The tips of the swabs were placed in a tube (containing 1 mL of phosphate-buffered saline) and 100 µL of this suspension was spread onto mannitol salt agar medium followed by incubation at 37°C for 48 hours (which resulted in the isolation of 20 S. aureus isolates).

Finally, all of the isolates (n = 60) were molecularly confirmed to be S. aureus, using a species-specific Polymerase Chain Reaction (PCR) (data are not shown).

3.2. Extraction of DNA Samples

Bacterial DNA was extracted from an overnight tryptic soy broth (TSB, Merck) culture of each isolate using the phenol-chloroform method (9).

3.3. Polymerase Chain Reaction Amplification of the tst Gene

The target sequence of tst gene was amplified by PCR using primers, which have been previously reported by Mehrrotra et al. (Table 1) (10). The total reaction volume (25 µL) contained 2.5 µL of 10X PCR buffer (500 mM, KCL and Tris HCL, pH 8.4), 0.5 µL (12.5 mM) MgCl2, 0.5 µL (200 mM) dNTPs, 0.5 µL (50 pmol) of each primer (SinaClon, Iran), 3.5 µL (120 ng) of extracted DNA, 17 µL distilled water, and 1 U of Taq DNA polymerase (SinaClon, Iran). The PCR amplification was performed under the following conditions: initial denaturation at 95°C for 6 minutes followed by denaturation at 95°C for 1 minute, annealing at 55°C for 35 seconds and extension at 72°C for 32 cycles (32 cycles) and a final extension at 72°C for 10 minutes. After amplification, the PCR products were analyzed by electrophoresis on 1.5% agarose gel containing ethidium bromide (0.5 µg/mL).

3.4. Cefoxitin Disk Diffusion Method to Detect Methicillin-Resistant Strains

In the author’s previous study, methicillin susceptible isolates were tested by the disk diffusion method using oxacillin disk (Merck, Germany), and the meCA gene (methicillin resistance gene) was identified (11). In the present study, sensitive strains to methicillin were confirmed by cefoxitin disk diffusion method (12).

3.5. Statistical Analysis

The results were compared by Chi-square test using the SPSS software, and P < 0.05 was considered statistically significant.

4. Results

Patients: a total of 40 S. aureus were isolated from the patients (30% from skin, 27.5% from trachea, 25% from urine, 10% from blood, and 7.5% from sputum). The number of S. aureus isolated from males (67.5%) was more than that from females, and this was statistically significant (P = 0.02). Besides, most of these isolates (67.5%) belonged to people aged over 50 years old and the statistical analysis showed that there was a significant difference in the isolation of S. aureus in various age groups (P = 0.02). However, no difference was observed between tobacco usage and isolation of these bacteria. In addition, the results of cefoxitin disk diffusion method, except in two cases, were the same as the results of oxacillin disk diffusion method, to detect methicillin-resistant isolates.

As shown in Figure 1, amplicon of the expected size (326 bp) was detected for some of the patients’ and carriers’ isolates. Altogether, 9 out of 40 S. aureus patients’ isolates (22.5%) were found to be positive for the tst gene. All of the tst positive isolates were methicillin-resistant Staphylococcus aureus (MRSA) strains except one that was a methicillin-sensitive Staphylococcus aureus (MSSA) isolate. Detailed data about isolated S. aureus from the patients and carriers are presented in Tables 2 and 3.

Carriers: twenty S. aureus were isolated from 100 collected nasal swabs. Unlike patients’ isolates, the majority of carriers’ isolates (60%) belonged to people aged between 30 and 50 years old. Moreover, 7 isolates (35%) belonged to smokers and Chi-square test revealed that this

Primer	Sequence 5’-3’	Product size, bp
tst-forward	ACCCGGTGTTCCCTATCATC	326
tst-reverse	TTTCAGATTTTTAAGGCC	

Table 1. Primers Used for Amplification of the tst Gene
Table 2. Number of Staphylococcus Aureus Isolated from Patients

Sample type	No. of Isolates	No. of MRSA	Gender	Age	Tobacco Usage	tst Positive		
	Note	Male	Female	30 >	30 - 50	50 <		
Skin	12	7	4	2	4	4	1	2
Trachea	11	8	3	4	1	0	2	2
Urine	11	7	4	3	1	0	1	2
Blood	10	4	5	0	0	0	7	1
Sputum	3	2	1	0	0	0	1	1
Total	40	34	27	13	4	9	27	4

Table 3. Number of Staphylococcus Aureus Isolated from Healthy Carriers

Gender	No. of Samples	No. of Isolates	No. of MRSA	Age (Positive Carriers)	Tobacco Usage	tst Positive		
	Note			30 >	30 - 50	50 <		
Male	90	20	1	3	12	5	7	9
Female	10	0	0	0	0	0	0	0
Total	100	20	1	3	12	5	7	9

5. Discussion

Staphylococcus aureus is a common cause of nosocomial and community-associated infections. Diseases with these bacteria increase length of hospital stay, antibiotic use, costs, and mortality. Besides, some of S. aureus strains are MRSA, which are known as the most prevalent antimicrobial resistant bacteria isolated in various continents, including Americas, North Africa, Europe, and the Middle and Far East (13). Fluit et al. reported that S. aureus was the most common causative agent of nosocomial pneumonia, and skin and soft tissue infections (1). In the present study, the percentages of isolated S. aureus from skin and trachea were higher than the other samples. However, a high percentage of the isolated bacteria also belonged to urine samples. Furthermore, 65% of patients’ isolates belonged to elderly suggesting that old people may be at higher risk of infection with these bacteria. In this case, Kang et al. indicated that nosocomial infections with S. aureus were more prevalent in the elderly group (14) and the current finding was in agreement with this result. However, some researchers found no significant difference between isolated bacteria and age of the patients (15).

On the other hand, nasal carriage is a risk factor for acquiring nosocomial infection. Von Eiff et al. reported that nosocomial S. aureus bacteremia in carriers was at-
tributable as an endogenous source (16). Therefore, elimination of S. aureus from nasal carriers is of great help in controlling such diseases. Kluytmans et al. showed that using mupirocin nasal ointment may lead to significant reduction in the rate of surgical-wound infections (17). Some researchers also reported that elimination of S. aureus nasal carriage with mupirocin may result in disappearance of these bacteria from the other areas of the body (18, 19). HU et al. indicated that many factors, including deformities of the nasal cavity, genetic influences, and bacterial interference, are involved in the colonization of S. aureus in the nasal cavity (2). In the current study, the rate of occurrence of S. aureus in the nasal cavity of healthy people was 20%, which is somewhat similar to that reported by other researchers, who indicated that carriage rates in the Netherlands was about 24% (3, 20). From another perspective, this is an important issue as the sampled carriers were those who worked in dairy farms and it was previously shown that S. aureus isolated from milk samples may also be tst positive indicating the possibility of the transfer of these bacteria between humans and animals (21).

Regarding the important role of TSS toxin in septic shock, the present study was performed to detect tst gene among S. aureus isolated from patients and healthy carriers. The results of the PCR assay demonstrated that 22.5% of patients’ isolates contained the tst gene. These tst-positive S. aureus were isolated from samples of different origins. However, the results also revealed that the percentage of tst-positive isolates in carrier individuals was almost 2 folds (45%) higher than that for patients, and this difference was statistically significant (P = 0.04).

Different numbers of tst-positive S. aureus have been reported in previous studies. Using the PCR method, El-Ghodban et al. recorded that only 3 out of 40 S. aureus isolated from clinical sources possessed the tst gene (22). Mehrotra et al. examined 107 S. aureus isolated from healthy carriers to determine tst positive samples and showed that 24.3% possessed this gene (10). Also many studies have been conducted on the presence of tst gene in S. aureus isolates from Iran. Kord and Amini analyzed 76 S. aureus strains isolated from clinical samples. Their results showed that only 8.95% of isolates were positive for the tst gene (23). In another study, performed on 100 MRSA and 100 MSSA isolates in Hamadan, the prevalence of TSST-1 was 11% (24). The current results showed that the frequency of tst gene (30%) in Hamadan was more than that in other areas of Iran. Meanwhile, the results of the present study were in agreement with previous findings, which indicated that many S. aureus isolated from carriers contained the tst gene (25).

Although several researchers have reported that tst gene was more prevalent in MRSA than MSSA strains (26, 27), this study indicated that tst gene was more prevalent in MSSA strains suggesting that MSSA strains must also be considered as potential risk of TSS in humans.

5.1. Conclusion
The results of the present study revealed that a high proportion of all S. aureus isolates (18 out of 60 isolates; 30%) possessed the tst gene. This should be considered as a
major health concern as such isolates may circulate among humans, animals, and environment. Hence, appropriate hygienic measures should be taken to control and prevent such infections.

Acknowledgments

This project was part of Hakimi’s PhD thesis and was financially supported by research grants from Bu-Ali Sina University of Hamedan.

References

1. Fluit AC, Schmitz FJ, Verhoef J. European SPG. Frequency of isolation of pathogens from bloodstream, nosocomial pneumonia, skin and soft tissue, and urinary tract infections occurring in European patients. *Eur J Clin Microbiol Infect Dis*. 2001;20(3):188–91. [PubMed: 1147669].

2. Hu L, Umeda A, Kondo S, Amako K. Typing of *Staphylococcus aureus* colonising human nasal carriers by pulsed-field gel electrophoresis. *J Med Microbiol*. 1995;42(2):227–32. doi: 10.1099/00222990-42-2-127. [PubMed: 7869348].

3. Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluymans JA, et al. Risk and outcome of nosocomial *Staphylococcus aureus* bacteraemia in nasal carriers versus non-carriers. *Lancet*. 2004;364(9435):703–5. doi: 10.1016/S0140-6736(04)16869-9. [PubMed: 15325835].

4. Marrack P, Kappler J. The *staphylococcal enterotoxins* and their relatives. *Science*. 1999;284(5416):705–11. [PubMed: 2185544].

5. Ruzin A, Lindsay J, Novick RP. Molecular genetics of SapI-a, a mobile pathogenicity island in *Staphylococcus aureus*. *Mol Microbiol*. 2001;41(2):365–77. [PubMed: 11489214].

6. Ikejima T, Okusawa S, van der Meer JW, Dinarello CA. Induction by interleukin-1 and interleukin-6 of human mononuclear cells and mouse fibroblasts by toxic shock syndrome toxin-1. *J Immunol*. 1988;139(3):918–26. [PubMed: 3701106].

7. Takeuchi S, Ishiguro K, Ikeyama M, Kaidoh T, Hayakawa Y. Production of toxic shock syndrome toxin-1 from Staphylococcus aureus isolated from bovine milk samples. *Vet Microbiol*. 1998;59(1-4):125–8. [PubMed: 9558687].

8. Crass BA, Bergdoll MS. Toxin involvement in toxic shock syndrome. *J Infect Dis*. 1986;153(5):1017–25. [PubMed: 3261446].

9. Wilson K. Preparation of genomic DNA from bacteria. *Curr Protoc Mol Biol*. 2007;Chapter 2.2.4. doi: 10.1002/4715427279.mb0204s56. [PubMed: 18269384].

10. Mehrotra M, Wang G, Johnson HM. Multiplex PCR for detection of genes for *Staphylococcus aureus* exfoliative toxins, exotoxin A, and enterotoxin B and methicillin resistance. *J Clin Microbiol*. 2000;38(9):3122–3. doi: 10.1128/JCM.38.9.3122-3.2000. [PubMed: 10968991].

11. Hakimi Alni R, Mohammadzadeh M, Mahmoodi P, Alikhani MY. RAPD-PCR analysis of *Staphylococcus aureus* strains isolated from different sources. *Comp Clin Path*. 2017;26(4):823–30.

12. Jain A, Agarwal A, Verma RK. Cefoxitin disc diffusion test for detection of metillin-resistant *Staphylococcus coagulase-negative staphylococci*. *J Med Microbiol*. 2008;57 Pt 1:139–41. doi: 10.1099/jmm.0.47512-0. [PubMed: 18628495].

13. Sadati H, Furger AS, Hanssen AM, Johannessen M. *Staphylococcus aureus*: determinants of human carriage. *Infect Genet Evol*. 2014;21:31–41. doi: 10.1016/j.meegid.2013.03.020. [PubMed: 23690907].

14. Kang CI, Song JH, Ko KS, Chung DR, Peck KR, Asian Network for Surveillance of Resistant Pathogens. Clinical features and outcome of *staphylococcus aureus* infection in elderly versus younger adult patients. *Int J Infect Dis*. 2015;19(4):58–62. doi: 10.1016/j.ijid.2010.09.012. [PubMed: 2011647].

15. Goudarzi M, Seyedjavadi SS, Goudarzi H, Boromandi S, Ghazi M, Azad M, et al. Characterization of coagulase negative *staphylococci* isolated from hospitalized patients in Tehran, Iran. *J Paramed Sci*. 2014;9(2):44–50. doi: 10.22037/jps.v12i2.5841.

16. von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of *Staphylococcus aureus* aureus. *Study Group, N Engl J Med*. 2001;344(1):11–6. doi: 10.1056/NEJM200004303441502. [PubMed: 1136954].

17. Kluymans JA, Mouton JW, IJzerman EP, Vandenesch-Fra吉ais-GM, Maat AW, Wagenvoort JH, et al. Nasal carriage of *Staphylococcus aureus* as a major risk factor for wound infections after cardiac surgery. *J Infect Dis*. 1995;171(1):216–9. [PubMed: 7798667].

18. Reagan DR, Doebbeling BN, Pfaffer MA, Sheeet CT, Houston AK, Hollis RJ, et al. Elimination of coincident *Staphylococcus aureus* nasal and hand carriage with intranasal application of mupirocin calcium ointment. *Ann Intern Med*. 1991;114(3):191–6. [PubMed: 1988585].

19. Holton DL, Nicolle LE, Diley D, Bernstein K. Efficacy of mupirocin nasal ointment in eradicating *Staphylococcus aureus* nasal carriage in chronically hemodialysis patients. *J Hosp Infect*. 1991;17(2):233–7. [PubMed: 1674255].

20. Lebon A, Moll HA, Tavakol M, Van Wamel WJ, Jaddoe VW, Hofman A, et al. Correlation of bacterial colonization status between mother and child: the Generation R Study. *J Clin Microbiol*. 2010;48(3):960–2. doi: 10.1128/JCM.01799-09. [PubMed: 19940045].

21. BanaeiFarsi S, Mohammadzadeh A, Pajohi Alamouti M, Mahmodi P, Sadeghian-Sadighi A. Detection of toxic shock toxin, (TST) gene in *Staphylococcus aureus* strains isolated from bovine milk samples. *Bulg J Vet Med*. 2017;20(1-2):3-41. doi: 10.15477/bjvm.1007.

22. El Ghobban A, Ghenghesh KS, Marialigeti K, Eshmill H, Tawil A. PCR detection of toxic shock syndrome toxin of *Staphylococcus aureus* from Tripoli, Libya. *J Med Microbiol*. 2006;5(2):179–82. doi: 10.1099/jmm.0.46162-0. [PubMed: 16434710].

23. Kord Z, Amini K. Determining genesseh, TSST-1, and antibiotic resistance in *staphylococcus aureus* strains isolated from clinical specimens. *J Iran Univ Med Sci*. 2016;24(2):33-9.

24. Arabzani MR, Rastiany S, Mousavi SF, Ghafel S, Alikhani MY. Identification of toxic shock syndrom and exfoliative toxin genes of *staphylococcus aureus* in carrier persons, resistant and susceptible methicillin. *Tehran Univ Med J*. 2015;73(8):554–60.

25. Chance TD. Toxic shock syndrome: role of the environment, the host and the microorganism. *Br J Biomed Sci*. 1996;53(4):284-9. [PubMed: 9069106].

26. Kimura A, Igarashi H, Ushioda H, Okuzumi K, Kobayashi H, Otsuka T. *Epidemiological study of Staphylococcus aureus isolated from the Japanese National University and Medical College Hospitals with coagulase typing, and production of enterotoxins and toxic shock syndrom toxin-1*. *Kansenshogaku Zasshi*. 1992;66(1):1543-9. [PubMed: 1294655].

27. Shimaoka M, Yoh M, Takarada Y, Yamamoto K, Honda T. Detection of the gene for toxic shock syndrome toxin 1 in *Staphylococcus aureus* by enzyme-labelled oligonucleotide probes. *J Med Microbiol*. 1996;44(4):315-8. doi: 10.1099/00222615-44-4-315. [PubMed: 8639490].