Impact of Spectral Severity of Alcoholism on Visual-Evoked Potentials:
A Neuropsychiatric Perspective

Ruchi Kothari, Praveen Khairkar¹, Sneh Babhulkar¹, Pradeep Bokariya²

Abstract

Background: The deleterious effects of alcohol on the brain are replete in literature. Only a few neurophysiologic measures can pick up the neuronal dysfunctions, one of them being visual-evoked potential (VEP). A very limited amount of data exists on the progression of neural abnormalities related to the spectral severity of alcoholism. Aim of the Study: To evaluate the impact of spectral severity of alcoholism through VEP and to understand the emergence of any specific pattern or morphometric abnormalities related to alcohol-induced neuropsychiatric presentations. Methodology: A total of 90 cases were recruited in addition to 180 age- and sex-matched controls using purposive and random sampling. The Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version and Campbell Neuropsychiatric Inventory were used to evaluate alcohol disorders and its neuropsychiatric complications apart from the mandatory consultant-specific clinical evaluations of all the cases. Of 90 cases of alcohol dependence, 15 patients were currently abstinent for >6 months, 15 had alcohol intoxication, 15 had signs of alcohol withdrawal, 15 had physical complications, 15 had psychiatric comorbidity, and 15 had neurological complications such as epilepsy. VEP recordings were taken using an Evoked Potential Recorder (RMS EMG. EP MARK II) where the stimulus configuration consisted of transient pattern-reversal method in which a black and white checkerboard was generated full field. Results: Mean age of cases was 37.71 ± 11.49 years compared to 39.43 ± 10.67 years in controls (range 18–65 years). VEP abnormalities comprising of prolonged latencies (62.5%) with a statistically significant difference (P < 0.001) from the healthy controls was observed in cases of alcohol withdrawal syndrome. Predominant amplitude reduction with normal latency was obtained in 37.5% cases of withdrawal. Severe VEP abnormalities, i.e., both latency delay and amplitude reduction, were found in 75% patients with psychiatric comorbidity, 66.67% patients with neurological complications, i.e., epilepsy, and 33.34% patients with physical complications. An explicit finding of prominent interocular differences was a prominent feature present in 25% of patients with complications.

Keywords: Alcohol dependence, amplitude, latency, neuropsychiatric, psychiatric complications, visual-evoked potential, withdrawal

Introduction

Alcohol (ethanol) is one of the most widely misused drugs in both developed and developing countries. Neural functional pathologies may exist in alcohol addicts even when no obvious clinical manifestations are apparent. Neural functional pathologies may also exist where fatal complications are evident. In the National Comorbidity Study, 29.2% of respondents with

Address for correspondence: Dr. Ruchi Kothari, Department of Physiology, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Wardha - 442 102, Maharashtra, India. E-mail: ruchi@mgims.ac.in

How to cite this article: Kothari R, Khairkar P, Babhulkar S, Bokariya P. Impact of spectral severity of alcoholism on visual-evoked potentials: A neuropsychiatric perspective. J Neurosci Rural Pract 2018;9:381-90.
alcohol dependence experienced either an independent or a substance-induced mood disorder within the past 12 months of their assessment, a rate that was 3.9 times higher than those who were not alcohol dependent. Bipolar disorder over the previous year was seen in 1.9% of the respondents with alcohol dependence, a rate 6.3 times greater than nonalcoholics.\(^\text{[1-3]}\) Thus, factors leading to these observed/induced changes are poorly understood, and there are hardly any ways or means to predict who would develop neural insults and who would not. The question that remains is – If alcohol itself causes insult to the brain and to what extent it can be picked up early? Can we detect or measure the continuity or progressive involvement in any way? The best models used in understanding alcohol-induced brain damage have been retrieved from the studies related to alcohol-induced optic neuropathy, encephalopathy, or seizures. For example, patients with alcohol-related optic neuropathy present with a bilateral, progressive, painless loss of visual acuity, dyschromatopsia, and subsequent disc changes including marked temporal disc pallor and retinal nerve fiber layer loss mainly in the papillomacular bundle. Early detection and prompt management may decrease visual impairment and aid in reversing the optic nerve damage and revival in visual status.\(^\text{[4]}\) It has been achieved clinically with the use of visual-evoked potential (VEP), which serves as an important means of obtaining reproducible, qualitative, and quantitative data on the function of the visual pathways and the visual cortex.\(^\text{[5]}\)

A few studies have reported changes in VEP following alcohol consumption. A study in Spain found that the amplitude of VEP increases with pattern reversal, at a blood alcohol level (BAL) of 0.8 g/kg.\(^\text{[6]}\) In the USA, Krull \textit{et al.}\(^\text{[7]}\) found that alcohol increases the latency of a 250-ms negative component (N2) only in the absence of sleep deprivation. Other studies found no correlation between the level of alcohol consumption and VEP parameters for the first deflection.\(^\text{[8]}\) Quintyn \textit{et al.}\(^\text{[9]}\) studied changes in the vision of 16 people after consumption of a small quantity of alcohol. Their results indicated that alcohol consumption caused no significant difference in performance. Further, VEP has also been shown to identify how its specific morphological pattern depending on BAL can help us know the severity of the brain involvement. Visual target detection in a treatment-naïve alcohol-dependent (TNAD) sample versus age and gender comparable nonalcoholic controls was investigated by Fein and Andrew.\(^\text{[10]}\) The significant reduction in P3b amplitude in TNAD reflected the effects of active alcohol abuse.

Petit \textit{et al.}\(^\text{[11]}\) have concluded that elevated alcohol cue reactivity may lead to poorer inhibitory performance in heavy social drinkers and may be considered as an important vulnerability factor in developing alcohol misuse when assessing event-related potentials (ERPs) in them.

Another ERP study by Petit \textit{et al.}\(^\text{[12]}\) showed that reduced processing of alcohol cues predicts abstinence in recently detoxified alcoholic patients in a 3-month follow-up period. Abstainers presented with decreased P3 amplitude in this study.

While alcohol dependence is associated with augmented automatic attentional biases early in processing, escape drinking was found to be related with more controlled attentional biases to active alcohol cues during a relatively later stage in processing. This was reported in a recent study by Dickter \textit{et al.}\(^\text{[13]}\)

Recently, occipital ERPs to addiction-related stimuli in detoxified patients with alcohol dependence and their association with 3-month relapse were studied by Matheus-Roth \textit{et al.}\(^\text{[14]}\). Their results indicated a sensitivity of occipital ERPs to addiction-related stimuli.

However, scanty data exist for the utility of VEP on the progression of neural abnormalities related to spectral severity of alcoholism when it comes to neuropsychiatric implications.

There is a dire need for a study which can explore comprehensively or conceptually empirical evidence or a neurophysiological biomarker which could help us develop preventive vigilance for identifying those who could develop such neuropsychiatric complications. In this context, the present study aimed at evaluating the impact of spectral severity of alcoholism through VEP to understand the emergence of any specific pattern or morphometric abnormalities related to alcohol-induced neuropsychiatric presentation.

\textbf{Objectives}

1. To screen the patients by both clinical and neurophysiological evaluations for the spectral severity of alcoholism
2. To identify specific patterns emerged between spectral severity and to determine temporal association of VEP abnormalities in patients on spectral severity of alcoholism.

\textbf{Methodology}

\textbf{Setting}

Outpatient and inpatient services of the Department of Psychiatry, Department of Medicine, and Department of Surgery in our tertiary care rural hospital were the study setting.
Inclusion criteria
The men aged 18–60 years were included in the study. The patients who were diagnosed as chronic alcoholics according to the strict Diagnostic and Statistical Manual-IV (DSM-IV-TR)[15] criteria developed by the American Psychiatric Association for the clinical diagnosis of abuse and dependence were included. The presence of family history of alcoholism in the first- or second-degree relative and those patients who are physically stable enough to undergo VEP and competent and willing to give informed consent were also included in the study.

Exclusion criteria
The patients with lens/corneal opacities, miotic pupil, and recent eye medications (mydriatics or cycloplegics in the past 12 h); patients with serious systemic illness affecting the performance of VEP, history of other neurological disorder, or heart disease; patients with subnormal intelligence, history of comorbid diagnosed neurological disorders such as epilepsy or neurodegenerative disorders, comorbid substance abuse, except minimal nicotine use; patients with history of head injury or patients having undergone recent neurosurgery, Suicidal/homicidal/catatonic patients, presence of tardive dyskinesia/antipsychotic-induced movement disorders, those not willing for study participation or whosoever refused to be a part of our study; patients with any history of visual impairment beyond corrected-to-normal vision; patients with any uncooperative or febrile patient were not included in the study.

Recruitment/assessment of participants
This was done under two heads namely clinical analysis and neuroevalulational study.

Clinical analysis
Sociodemographic profile sheet was filled for each subject, and psychiatric status of alcoholic patients was assessed using Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version[16] and Campbell Neuropsychiatric Inventory for additional neuropsychiatric complications apart from consultant-specific clinical evaluation for all cases were done by a consultant psychiatrist.

Neurophysiological evaluation
All the participants were evaluated for transient pattern-reversal VEP by a neurophysiologist.

Procedure of visual-evoked potential recordings
Transient-pattern reversal VEP (PRVEP) recordings were done in accordance with standardized methodology of the International Federation of Clinical Neurophysiology Committee Recommendations[17] and International...
Society for Clinical Electrophysiology of Vision Guidelines[18] and montages are kept as per 10–20 International System of Electroencephalography electrode placements keeping the reference electrode (Fz) placed 12 cm above the nasion, the ground electrode (Cz) at the vertex, and the active electrode (Oz) at approximately 2 cm above the inion.

The electrode impedance was kept below 5 KΩ. The stimulus configuration consisted of the transient pattern-reversal method in which a black and white checkerboard is generated (full field) on a VEP Monitor by an electronic pattern regenerator inbuilt in an Evoked Potential Recorder (RMS EMG. EP MARK II manufactured by Recorders and Medicare Systems, Chandigarh). The rate of pattern reversal (1.7 Hz), the size of the checks (8 × 8), the luminance (59 cd/m²), and contrast level (80%) were kept constant for all the recordings in all the cases. The recording was done monocularly for the left and right eyes separately with the participant wearing corrective glasses if any during the test. If the cooperation of the participant or fixation stability was poor, the VEP recording was repeated after 5 min break. If the recorded signal was suboptimal, the VEP recording was repeated until a satisfactory recording was achieved.

Ethics consideration

The research protocol for the present study was submitted to the Institutional Ethics Committee, and we received ethical clearance before the commencement of the study. Informed consent was submitted by all participants before the investigation. All research and data collection protocols complied with the Declaration of Helsinki.

Statistical analysis

SPSS 23.0 Version, (IBM, USA) was used to enroll sociodemographic and clinical variables for both case (s) and control and to carry out descriptive and inferential statistics. One-way ANOVA was used to test significant differences between the six groups. Significant differences between each paired groups were then evaluated by post hoc Tukey’s test.

RESULTS

A total of 668 sample subjects were screened for obtaining 15 patients each in six subgroups of alcohol spectral severity for studying VEP abnormalities. The mean age of 90 cases of alcohol dependence was 37.71 ± 11.49 years while that of 180 healthy age- and sex-matched volunteers was 39.43 ± 10.67 years while their mean age did not differ significantly and both groups were comparable for age and gender as seen from Table 1. Among six different subgroups of alcohol use disorder/related complications, participants who had physical complications were found to be the oldest among six subgroups with mean age of 47.67 ± 15.53 years while those who have been abstinent for more than 6 months were the youngest (31.20 ± 4.55 years). Mean age of onset for psychiatric comorbidity was far earlier (33.75 ± 13.45 years) than both central nervous system (CNS)-induced complications (42.67 ± 4.04 years) and physical complications.

Tables 2 and 3 show quantitative analysis of VEP using one-way ANOVA for six subgroups so as to identify which of them (N70 latency, P100 latency, N155 latency, and P100 amplitude) might have significant impact on differentiating six subgroups of alcohol spectral severity. We found N70 latency getting significant and distinctive findings in the subgroups of physical complications and psychiatric comorbidities. However, P100 latencies were found to be significantly prolonged in alcohol intoxication, alcohol withdrawal, alcohol-induced physical, psychiatric and neurological complications; therefore, P100 latency delay could be a common, but indistinguishable pathway for alcohol-induced neural insults as observed in our study. When we further compared N155 latencies among these six subgroups, only those with hepatic encephalopathy (physical complications) were found to have highest delay and could be significantly differentiated from the other subgroups. Going a step further, P100 amplitude was significantly lower in patients of alcohol withdrawal and patients of hepatic encephalopathy and alcohol-induced epilepsy, providing us another matrix of association wherein dual associations could be formed. Thus, P100 latency delay and P100 amplitude reduction both are found to be significant only in the subgroup of alcohol-induced epilepsy which can be differentiated from the subgroup of intoxicated patients where

Table 1: Mean±standard deviation of age and duration of abuse in all the study groups

Group	Category	Age (years)	Mean±SD	Duration of abuse (years)
I	Abstinent	31.20±4.55	2.40±0.55	
II	Intoxicated	38.14±12.52	4.57±1.72	
III	Withdrawal	36.29±12.53	6.21±2.61	
IV	Physical complications	47.67±15.53	15.67±2.08	
V	Psychiatric comorbidity	33.75±13.45	17.50±4.04	
VI	Epilepsy (CNS complication)	42.67±4.04	18.67±1.15	

CNS: Central nervous system, SD: Standard deviation
P100 amplitude reduction is insignificant, and alcohol withdrawal patient can be differentiated from the patient of alcohol-induced epilepsy when N70 latency parameter has been used.

All these quantitative results are also depicted in Figure 1.

Nevertheless, as shown in Table 4, not all patients necessarily resulted in such observations. The relative percentage of abnormal waveform morphology, latency delay, and amplitude reduction could be segregated with variable quantum of patients, for example, predominantly extended latencies (62.5%) with a statistically highly significant difference (P < 0.001) as compared to healthy controls were observed in cases of alcohol withdrawal syndrome while severe VEP abnormality as in both latency delay and amplitude reduction was found in 75% patients with psychiatric comorbidity and 66.67% patients with neurological complications. Interestingly, an explicit finding of prominent interocular differences was a feature present in 25% of patients with complications. Finally, abnormal waveform morphology, poorer reproducibility, and differentiation ability of the evoked complex which frequently had an atypical shape were obtained in 33.34%. A composite view of representative waveforms obtained in each group is illustrated in Figure 2.

Table 2: Integration of quantitative results of visual-evoked potential latencies (ANOVA)

Group	Category	N70 Latency (m)	F	P	P100 Latency (m)	F	P	N155 Latency (m)	F	P					
	Mean±SD	95% CI for mean			Mean±SD			Mean±SD							
	Lower	Upper			Lower	Upper		Lower	Upper						
I	Abstinent	72.72±3.56	70.17	75.27	2.49	0.042 (S)	102.66±4.32	99.56	105.75	5.359	0.001 (S)	142.79±5.82	138.62	146.95	1.58
II	Intoxicated	75.80±4.56	71.00	80.59	0.042 (S)	107.63±2.033	105.50	109.77	146.34±3.90	142.24	150.44	0.18			
III	Withdrawal	76.85±6.07	73.34	80.36	110.52±5.73	118.22±7.22	110.64	125.79	154.38±14.35	139.32	169.44	(NS)			
IV	Physical	81.49±7.49	73.62	89.36	80.20±6.52	81.49±7.49	5.359	0.042 (S)	109.91±5.158	105.61	114.22	152.10±12.51	141.64	162.56	
V	Complication	Psychiatric	80.20±6.52	74.74	85.66	109.91±5.158	105.61	114.22	152.10±12.51	141.64	162.56				
VI	Epilepsy	72.66±9.63	67.10	78.23	103.81±10.42	97.79	109.83	143.76±16.42	134.27	153.24					

SD: Standard deviation, CI: Confidence interval, S=Significant, NS=Not significant

Table 3: Integration of quantitative results of visual-evoked potential amplitude (ANOVA)

Group	Category	Mean±SD	F	P	P100 amplitude (µvolts)	F	P
	Mean±SD	95% CI for mean			Upper bound		
I	Abstinent	6.47±3.09	4.2672	8.6908	2.429		
II	Intoxicated	4.71±3.68	0.8448	8.5852	0.047 (S)		
III	Withdrawal	4.04±1.61	3.1130	4.9784			
IV	Physical complication	3.45±0.17	3.2649	3.6417			
V	Psychiatric comorbidity	4.62±2.23	2.7591	6.4934			
VI	Epilepsy	3.68±1.42	2.8670	4.5073			

SD: Standard deviation, CI: Confidence interval, S=Significant

DISCUSSION

Alcohol-induced physical/neuropsychiatric complications are etiologically and phenotypically complex. It is evident that a chronic alcohol exposure typically leads to Vitamin B12 or folate deficiency, and over a time, these deficiencies cause accumulations of formic acid and its derivatives, which further inhibit(s) the electron transport chain and mitochondrial function, resulting in the disruption of Adenosine Triphosphate (ATP) production and ultimately impairing the ATP-dependent axonal transport system. Clinicians often need to detect early complications or ideally pick up vulnerable patients for whom such complications are likely to happen in the near future; however, unfortunately, there are hardly any biologically identifiable ways/markers to discern such disposing states. The acute effects of alcohol on the visual cortical/ neural system have previously been evaluated with VEP;[6,8,19,22] some of them validated VEP to help in differentiating from normal or alcoholic withdrawal patients, but none of them ever thought for spectral severity or set of specific emerging VEP patterns that might predict the endophenotypic state of the alcohol-induced neuropsychiatric complications. The N75, P100, and N135 components are found to be generated from the striate cortex (V1) or the extrastriate cortex. Alcohol-induced
CNS suppression and nerve conduction delay have been reported to be mediated by gamma-aminobutyric acid (GABA), glycine, and adenosine.[22] GABA and glycine are the main inhibitory neurotransmitters in the CNS. Alcohol also increases the level of adenosine, which contributes to the sedative actions of alcohol. Furthermore, interactions of alcohol with myelin or the Ca-ATPase pump at the synapses also may explain these neurophysiological changes.[24] Thus, our study is the first one documented to evaluate and putatively search for optimal neurophysiological biomarkers for differentiating alcohol spectral severity by empirically identifying specific set of patterns obviously discernable (if any) on VEP in six divided set of subgroups of patients. The previous data from >20 studies[9,25-35] [Table 5] showed few robust pointers for usefulness of VEPs in relation to alcohol use disorder (s) not only in in vivo animal experimentations but also in humans helping to differentiate subgroup of patients who had been abstinent for more than 3 months to those who are either intoxicated or having withdrawal. To our surprise, we noted couple of critical studies by Urban et al. and Nazliel et al., who reported that only 28% and 15% of alcoholics had abnormal findings on VEP, which is in contrast to most studies including ours with 75% patients with psychiatric comorbidity and 66.67% patients with neurological complications. Certainly, this is very unique way of neurophysiological differentiation on spectral severity of alcoholism as observed and conceptually derived for the first time ever in the literature [Table 4] from our study. Nevertheless, such relative percentage of abnormal waveform morphology, latency delay, and amplitude reductions in VEP as biomarker clearly holds us back in reaching to unified consolidative neurobiological markers until our understanding and technological advances get widen in the future. An ultimate and implicit goal of the work described in this article is to develop more effective prevention techniques. Increased understanding of the biological mechanisms and genetic impact associated with a specific type of increased vulnerability to alcoholism could enhance prevention

Table 4: Relationship of visual-evoked potential responses with spectral severity of alcoholism

Group	Category	n	Percentage of cases with predominant latency delay (amplitude WNL)	Percentage of cases with predominant amplitude reduction (latency WNL)	Percentage of cases with both latency delay and amplitude reduction	Percentage of cases with abnormal waveform morphology	Percentage of cases with normal waveform
I	Abstinent	15	0	0	0	0	100
II	Intoxicated	15	100	0	0	0	0
III	Withdrawal	15	60	40	0	0	0
IV	Physical complications	15	13.33	20	66.67	0	0
V	Psychiatric comorbidity	15	13.33	6.66	73.34	6.66	0
VI	Epilepsy	15	26.66	6.66	33.33	33.33	0

WNL: Within Normal Limits
efforts in several ways. For instance, PRVEP abnormalities obtained in asymptomatic chronic alcoholics of our study suggest that they may be useful in the detection of early changes and in following the progress of cases with the chronic addiction. This study adds further evidence and emphasis to the sparse literature of usefulness of VEP in a wide spectrum of alcohol abuse seen in young adults. This also helps to establish the importance of a visual electrophysiological evaluation as a valuable adjunct to detailed psychiatric assessment of alcoholics and provides a decent recommendation for VEP to be a part of their routine examination as it might be a useful marker which may help to clearly classify the spectral severity of alcoholism and help in early rehabilitation of addicts.

Given the multiplicity of experimentally driven and empirical clinical findings of VEP in spectrum of alcoholism, we could elucidate the ingredient of progressively more profound and consistent observable patterns of association that might potentially differentiate the kind of variety of alcohol-related spectra. The importance of a neurophysiological marker’s (VEP) precision, accuracy, sensitivity, and specificity cannot be overemphasized. Although it is unlikely that researchers will find a single marker to satisfy all clinical needs, they may eventually develop combinations of markers for specific clinical purposes, from unselective screening (i.e., drinking versus not drinking) to confirming a suspicion of alcohol induced. The conceptual overview espoused here is ripe for both further preclinical experimental testing and exploratory therapeutic interventions. Should this prove to be true, our findings we believe would contribute to a stronger basis for clinical care and a more objective assessment of alcohol-related complications or help in identifying that might relapse or would have neuropsychiatric

Figure 2: Visual-evoked potential waveforms in the spectral severity of alcoholism
The biological sons of male alcoholics, deemed to be at HR for the development of alcoholism, were compared to control males, aged 18 to 21 years, using measures of the VEPs elicited by checkerboard pattern reversal

Amplitude of N2-P3 (120-170 m after the stimuli) was depressed in all. The latencies of N2 and P3 were increased concurrently. The latency of P3 was increased by 10.7%

Prolongation of the latency of all components with rising concentration of ethanol in the blood. VEPs showed three types of individual reactions to ethanol: Type I - Increasing reduction of amplitude of components with rising blood alcohol concentration; Type II - Rising amplitude, mainly of the late components; Type III - amplitude rise in the 30th min followed by amplitude fall in the 60th min without reaching, however, the initial level

Alcohol significantly reduced the amplitude and prolonged the latency of the N2-P2 components of the flash-evoked potential

Out of 38 responses recorded in the 19 patients, 13% were found to be abnormal (5 responses). In 3 patients, major positive peaks returned to normal after treatment

Increase in latencies after alcohol intake, but only in one stimulus modality (2 shifts per s, 14’ check size) was the deviation statistically significant. No correlation between the level of alcohol consumption and VEP parameters for the first deflection

N76 latency was longer in the alcoholic patient in the withdrawal phase than in the normal subjects. The latency returned to normal range after detoxification in younger alcoholic patients but did not in the older alcoholics

P2 latencies and inter-eye differences were found above the 98% confidence limit in 30%, and above the 99.9% confidence limit in 10% cases. An abnormal waveform was observed in 12.5% and 7.5% of the patients

Residual effects of alcohol abuse were not detected in VEP amplitude, latency, and amplitude/intensity slope measures

Constant involvement of the VEP especially of the earliest component N70 and of the amplitude of the response. For the visual damage to withdrawal seems to determine a regression, only partial in nature. Optic nerve damage is a very rare event in alcoholism

HR subjects showed more symmetry in a positive component with approximate latency of 242 m compared with control subjects

Abnormal finding of VEP was recorded in 28% of the alcoholics. The mean amplitude of VEP in the two groups did not differ significantly
Changes in the vision of 16 people (P < 0.001) as compared to VEP (0.25 pattern sizes) were measured.

Effects of two levels of alcohol intoxication on visual the event-related potential (ERP) waveforms in 54 normal male subjects

Interactions of alcohol and caffeine were studied in 8 healthy subjects

In the first experiment, 48 adult volunteers (33 females) responded to either the onset or offset of one of the five potential targets without alcohol to determine the relative demands on attention of stimulus onset and offset. The spatial extent of the five-target display was also varied. In the second experiment, the effect of alcohol was determined for both the onset and the offset tasks in 12 adult volunteers (9 females)

Changes in the vision of 16 people after consumption of a small quantity of alcohol was studied

40 study patients who had histories of alcohol abuse for at least 6 years

VEP (0.25 pattern sizes) were performed on 15 healthy before ethanol administration Ethanol (0.75 g/kg) was administered orally over the course of 30 min. VEP and blood alcohol concentration were evaluated 1 h after ethanol administration

A total of 90 cases of patients on spectral severity of alcohol use disorder with physical/neuropsychiatric complications and 180 age- and sex-matched controls were recruited using purposive and random sampling after duly obtaining their consent. A total of 668 sample subjects were screened for obtaining 15 patients each in six subgroups of alcohol spectral severity for studying VEP abnormalities

Changes in VEP following alcohol consumption, depending on blood alcohol level. Latencies of the P1 and P2 components of the VEP were unaffected. Latencies of N2 and P3 displayed significant dose-related increases with increasing blood alcohol levels. RMS power of the P3 complex was reduced by higher alcohol doses, as was the N2-P3 amplitude difference at central and parietal sites

Alcohol increases the latency of a 250 m negative component (N2) at 0.8 g/kg BAL but only in the absence of sleep deprivation

Decreased amplitude and increased latency in the VEP pattern (BAC, 0-20 mM/L; 0-0.09 vol%)

A statistically significant increase in the latencies of P2

The results indicate that alcohol impairs performance on tasks that place greater demands on visual spatial attention and likely disrupts the ability to shift attention from one spatial locus to another during serial search

Visual performance is less affected by the visual changes than by alteration in brain functions for a low blood alcohol level

15% of the patients demonstrated abnormal VEP results at least in one tested eye

The latency and amplitude of N75, P100, and N135 were measured. VEP revealed a P100 latency delay (109.4±5.3; 113.1±8.2; P=0.008) after alcohol administration

Predominantly extended latencies (62.5%) with a statistically highly significant difference (P<0.001) as compared to healthy controls was observed in cases of alcohol withdrawal syndrome. Predominant Amplitude reduction with normal latency was obtained in 37.5% cases of withdrawal. Severe VEP abnormality as in both latency delay and amplitude reduction was found in 75% patients with psychiatric comorbidity and 66.67% patients with neurological complications, i.e., epilepsy, 33.34% patients with physical complications

Abnormal waveform morphology, poorer reproducibility, and differentiation ability of the evoked complex which frequently had an atypical shape were obtained in 33.34%

There are no conflicts of interest.

Conflicts of interest

REFERENCES

1. Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL,
et al. Comorbidity of mental disorders with alcohol and other drug abuse. Results from the epidemiologic catchment area (ECA) study. JAMA 1990;264:2511-8.

2. Feinman JA, Dunner DL. The effect of alcohol and substance abuse on the course of bipolar affective disorder. J Affect Disord 1996;37:43-9.

3. Cornelius JR, Bukstein O, Salloum J, Clark D. Alcohol and psychiatric comorbidity. Recent Dev Alcohol 2003;16:361-74.

4. Danesh-Meyer H, Kubis KC, Wolf MA. Chiasmopathy? Surv Ophthalmol 2000;44:329-35.

5. Aminoff MJ, Goodin DS. Visual evoked potentials. J Clin Neurophysiol 1994;11:493-9.

6. Azcona O, Barbanoj MJ, Torrent J, Jané F. Evaluation of the central effects of alcohol and caffeine interaction. Br J Clin Pharmacol 1995;40:393-400.

7. Krull KR, Smith LT, Sinha R, Parsons OA. Simple reaction time event-related potentials: Effects of alcohol and sleep deprivation. Alcohol Clin Exp Res 1993;17:771-7.

8. Jensen OL, Krogh E. Visual evoked response and alcohol intoxication. Acta Ophthalmol (Copenh) 1984;62:651-7.

9. Quintyn JC, Massy J, Quillard M, Brasseur G. Effects of low alcohol consumption on visual evoked potential, visual field and visual contrast sensitivity. Acta Ophthalmol Scand 1999;77:23-6.

10. Fein G, Andrew C. Event-related potentials during visual target detection in treatment-naïve active alcoholics. Alcohol Clin Exp Res 2011;35:1171-9.

11. Petit G, Kornreich C, Noël X, Verbanck P, Campanella S. Alcohol-related context modulates performance of social drinkers in a visual Go/No-Go task: A preliminary assessment of event-related potentials. PLoS One 2012;7:e37466.

12. Petit G, Cimochnowska A, Cevallos C, Cheron G, Kornreich C, Hanak C, et al. Reduced processing of alcohol cues predicts abstinence in recently detoxified alcoholic patients in a three-month follow up period: An ERP study. Behav Brain Res 2015;282:84-94.

13. Matheus-Roth C, Schenk I, Wiltfang J, Scherbaum N, Müller BW. Occipital event-related potentials to addiction-related stimuli in detoxified patients with alcohol dependence, and their association with three-month relapse. BMC Psychiatry 2016;16:74.

14. Dickter CL, Forestell CA, Hammett PJ, Young CM. Relationship between alcohol dependence, escape drinking, and early neural attention to alcohol-related cues. Psychopharmacology (Berlin) 2014;231:2031-40.

15. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, D.C.: American Psychiatric Publishing, Arlington, VA 2000.

16. First MB, Spitzer RL, Miriam G, Williams JB. Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version (SCID-CV). Washington, D.C.: American Psychiatric Press, Inc.; 1996.

17. Celesia GG, Bodis-Wollner I, Chatrian GE, Harding GF, Sokol S, Spekreijse H, et al. Recommended standards for electoretinograms and visual evoked potentials. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 1993;87:421-36.

18. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, et al. ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 2010;120:111-9.

19. Urban P, Dolezalová E, Valíhrach J. Visual evoked potentials in chronic alcoholics. Cesk Neurol Neurochir 1989;52:271-6.

20. Meink HM, Adler L, Räder K, Conrad B. Delayed visual evoked potentials in chronic alcoholism. J Neurol 1986;233:161-3.

21. Nazziel B, Arkian Z, Irkec C. Visual evoked potentials in chronic alcoholism. Addict Behav 2007;32:1470-3.

22. Colrain IM, Taylor J, McLean S, Buttery R, Wise G, Montgomery I, et al. Dose dependent effects of alcohol on visual evoked potentials. Psychopharmacology (Berl) 1993;112:383-8.

23. Valenzuela CF. Alcohol and neurotransmitter interactions. Alcohol Health Res World 1997;21:144-8.

24. Sepulveda MR, Mata AM. The interaction of ethanol with reconstituted synaptosomal plasma membrane Ca2+ -ATPase. Biochim Biophys Acta 2004;1665:75-80.

25. Coger RW, Dymond AM, Serafetinides EA, Lowenstam I, Pearson D. Alcoholism: Averaged visual evoked response amplitude-intensity slope and symmetry in withdrawal. Biol Psychiatry 1976;11:435-43.

26. Taghavy A, Penning J, Hoh E. Simultaneous recording of visually evoked potentials (VEP) and registration of simple visual reaction times (RT) in the maximum range of ethanol influence (author’s transl). Arzneimittel Forschung 1976;26:1125-6.

27. Zuzewicz W. Ethyl alcohol effect on the visual evoked potential. Acta Physiol Pol 1981;32:93-8.

28. Simpson D, Erwin CW, Limnola M. Ethanol and menstrual cycle interactions in the visual evoked response. Electroencephalogr Clin Neurophysiol 1981;52:28-35.

29. Ahmed I, Hines KS. Visual evoked potentials in alcoholics. Clin Electroencephalogr 1983;14:17-9.

30. Kelley JT, Pena Y, Reilly EL, Overall JE, Colton GS. Effects of age and alcohol abuse on pattern reversal visual evoked potentials. Clin Electroencephalogr 1984;15:102-9.

31. Emmerson RV, Dustman RE, Shearer DE, Chamberlin HM. EEG, visually evoked and event related potentials in young abstinent alcoholics. Alcohol 1987;4:241-8.

32. Devetag F. Evaluation of peripheral nerve conduction and central visual conduction in chronic alcoholics and in chronic alcoholics after prolonged abstention. Ital J Neurol Sci 1988;9:583-92.

33. Pollock VE, Volavka J, Gabrielli WF, Mednick SA, Knop J, Goodwin DW, et al. Pattern reversal visual evoked potential among men at risk for alcoholism. Acta Psychiatr Scand 1988;78:276-82.

34. Post RB, Lott LA, Maddock RJ, Beede J. An effect of alcohol on the distribution of spatial attention. J Stud Alcohol 1996;57:260-6.

35. Kim JT, Yun CM, Kim SW, Oh J, Huh K. The effects of alcohol on visual evoked potential and multifocal electroretinography. J Korean Med Sci 2016;31:783-9.