Seasonal occurrence of larval trombiculid mites by Tullgren’s funnel method in Kagoshima Prefecture for three years, with a few references to morphological variations

Shinichi Noda* 1), Susumu Yamamoto2) and Mamoru Takahashi3), 4)

*Corresponding author: Research Center for the Pacific Islands, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–8580 Japan (E-mail: snoda@cpi.kagoshima-u.ac.jp)

1) Research Center for the Pacific Islands, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–8580 Japan

2) Department of Hygiene, Faculty of Medicine, Kagoshima University, 8–35–1, Sakuragaoka, Kagoshima, 890–8520 Japan

3) Matsuyama High School, 1–6–10, Matsuyama-cho, Higashimatsuyama, Saitama, 353–0018 Japan

4) Department of Anesthesiology, Saitama Medical School, Moroyama-machi, Ituma-gun, Saitama, 350–0451 Japan

(Received: 5 October 2012; Accepted: 12 February 2013)

Abstract: Seasonal occurrence of larval trombiculid mites was surveyed at two adjacent areas using Tullgren’s funnel method for three years. Larval trombiculid mites were collected every month from April 2004 to March 2007 at two Aira City, Kagoshima Prefecture. Twenty trombiculid species were collected from soil samples: Leptotrombidium scutellare, L. kuroshio, L. murotoense, L. kitasaitoi, L. himitsu, L. fuji, L. miyajimai, L. kansai, Neotrombicula mitamuraui, Eltonella ichikawai, Miyatrombicula kochiensis, Cheladonta ikaoensis, Doloisia uchikawai, Helenicula miyagawai, Mackiena todai, Neoschoengastia shiraii, Schoutedenichia nagasakiensis, Walchia koshikiensis, W. ogatai and Gahrerpia saduski. Almost all species were collected in February and March, and only seven species were collected in June and July. L. scutellare was the most abundant in number, followed by L. fuji. Therefore, L. scutellare and L. fuji seemed to be the dominant species in the survey areas. The morphological variation of C. ikaoensis was also observed. The scutum of C. ikaoensis was very wide, especially PW much wider than AW, and variable in the number of first post humeral row of dorsal setae.

Key words: Leptotrombidium scutellare, Cheladonta ikaoensis, trombiculid mites, seasonal occurrence, Kagoshima Prefecture

Introduction

The seasonal occurrence is one of the important ecological features. In many investigations, the seasonal occurrence of larval trombiculid mites is examined by collecting them from captured small mammals, especially small rodents (Yamamoto, 1961; Tamiya et al., 1962; Nakata, 1976; Uchikawa et al, 1984; Yamasaki, 1987; Kitazawa, 1993; Nakajima et al, 1998). The unfed larval trombiculid mites are collected directly from the soil by the Tullgren’s funnel method. Suzuki (1973) pointed out that the method of collecting larval trombiculid mites directly from the soil can reveal more species than collecting from animal hosts. Uchikawa et al. (1984) looked for the presence of trombiculid mites by using the modified Tullgren’s funnel method. Larval trombiculid mites obtained from the soil by using Tullgren’s funnel method differed to some extent in the species composition from those found on the large Japanese field mouse, Apodemus speciosus (Temminck). The number of larval trombiculid mites collected from the soil is usually smaller than those from animal hosts. However, in a collection by using the Tullgren’s funnel method, the influence of the seasonal variation of host animals and the exceptional large number parasitism can be eliminated. It was pointed out that soil samples seem to give better epidemiological information.

We examined the distribution of Leptotrombidium scutellare (Nagayo, Miyagawa, Mitamura, Tamiya et Tenjin) larvae using the black cloth method (Suzuki, 1986; Uchikawa et al., 1993) along roads passing through hilly and mountainous areas of Kagoshima Prefecture, and found out several L. scutellare larvae abundant areas (Noda et al., 2002). We visited such areas for several years to collect L. scutellare larvae for further study, and sometimes only a few larvae were collected. The occurrence of larval trombiculid mites may differ from year to year. The seasonal occurrence of unfed larvae of trombiculid mites was surveyed using Tullgren’s funnel method in Nagano Prefecture and Kagoshima Prefecture (Uchikawa and Kumada, 1987; Noda et al., 1996), but few investigations were carried for over one year.

In the present study, the fauna and seasonal occurrence of trombiculid mites was examined using Tullgren’s funnel method in endemic areas of tsutsugamu-
shi disease for three years.

Materials and Methods

Seasonal occurrence of larval trombiculid mites was surveyed at two adjacent areas using Tullgren’s funnel method for three years. Larval trombiculid mites were collected every month from April 2004 to March 2007 at seven points of Shirakanesaka (N 31°42′04″, E 130°36′42″, 20 m above sea level) and four points of Nuno-bikinotaki (N 31°42′08″, E 130°36′35″, 50 m above sea level), Kamihazeyama, Aira City, Kagoshima Prefecture. These sites were situated in a narrow place surrounded by sharp mountains. The study area was predominantly covered with Japanese willow leaf oak (Japanese name: urajirogashi), Phyllostachys (Japanese name: hatakobashi), Quercus dominantly covered with Japanese willow leaf oak rounded by sharp mountains. The study area was persecuted for three years.

Larval trombiculid mites were collected from soil samples at four points of Nuno-bikinotaki: L. scutellare, L. kuroshio, L. murotoense, L. kitasatoi, L. himizu, L. fuji, L. miyajima, L. kansai, N. mitamurai, M. kochiensis, C. ikaoensis, M. todai, N. shiraii, S. nagasakiensis, W. ogatai, W. koshihikien and G. saduski (Table 1).

Seventeen trombiculid species were collected from soil toromoniculid mites studied over three years are shown in Table 3. Almost all species were collected in February and March, and only seven species were collected in the summer season (June and July). Leptotrombidium scutellare was the most abundant in number, followed by L. fuji. Therefore, L. scutellare seemed to be the dominant species in the survey areas. Leptotrombidium scutellare occurred from October to April with a peak in January. Leptotrombidium fuji was collected throughout the year, though it was collected mostly in April. Leptotrombidium kitasatoi, C. ikaoensis, W. ogatai and G. saduski were relatively abundant in number, though these species were not often collected in the summer season (June-August).

2. Annual occurrence of larval trombiculid mites

The collected number of larval trombiculid mites changed over the three years. The number of mites in the second year was 79.7% (969 individuals) of the first year (1,216), and the number in the third year was 52.8% (624) of the first year. Six species (L. murotoense, L. kitasatoi, L. fuji, L. miyajima, C. ikaoensis and G. saduski) out of nine species which were collected more than 50 for over three years were most abundant in the first year, and three other species (L. scutellare, L. himizu and W. ogatai) were abundant in the second year (Table 4).

Of the trombiculid species collected, morphological variations of C. ikaoensis were noticeable. Scutal measurements are shown in Table 5. Scutum was very wide, and PW (66.0±1.4 μm) was much wider than AW (53.0±1.9 μm). The number of first line dorsal setae is shown in Table 6. There was variation in the number of first post humeral row of dorsal setae, the range of which was 10 to 17, and the most frequent was 12 (Fig. 1).

Discussion

Tamiya et al. (1962) grouped the types of seasonal occurrence of larval trombiculid mites into three groups: the first group could be collected throughout the year, the second found only in summer, and the
Table 1. Seasonal occurrence of larval trombiculid mites from soil samples in Shirakanezaka.

Species	2004	2005	2006	2007																				
	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Leptotrombidium scutellare	2	48	53	79	38	11	1	9	73	177	96	14	1	36	70	60	63	28						
L. kuroshio	1	2	1	1	1	1	1	1	1	2														
L. murotoense	2	3	2	2	2	3	2	1	1	4	2													
L. kitsatari	3	1	6	2	1	20	3	2	8	2	2	1	1											
L. himizu	1	1	2	1	2	3	4	1	1	1	7	3	8	8	9	4	9	1						
L. fujii	155	21	3	11	10	3	2	1	11	15	13	6	5	1	11	19	10	6	1	8	1	17	1	
L. miyajima	1	2	8	2																				
L. kansai																								
Neotrombicula mitamurai																								
Eltonella ichikawai																								
Miyatrombiculaka kohiensis	1	6	8	1	4	3	1																	
Cheladonta ikaoensis	2	2	1	3	3	8	6	1	3	1	1	57	3	18	8	1								
Dolostia uchikawai	1	2	1	1	1	2	1	1	3															
Helentricula miyagawai																								
Mackienatodai																								
Neoschoengastia shirai																								
Schoutedenichia nagasakensis																								
Walchia koshikiensis	3	1	5	4	5	2	3	1	1	2	1	1	2	1	1	1	1	1	2	1				
W. ogatai	2	1	1	2	1	3	3	2	1	11	13	4	3	3	2	3	2	1	3	4	1	1		
Gahrliepia saduski	22	1	1	2	1	3	7	16	11	14	3													

Table 2. Seasonal occurrence of larval trombiculid mites from soil samples in Nunobikinotaki.

Species	2004	2005	2006	2007																					
	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	
Leptotrombidium scutellare	3	2	6	20	13	3	1	1	1	1	2														
L. kuroshio	1	1	3																						
L. murotoense	2	2	2	2	2	1	4	5	2	3															
L. kitsatari	7	5	10	6	4	21	6	2	18	6															
L. himizu	1	1																							
L. fujii	34	1	1	7	9	4	9	13	6	16	20	20	4	6	2	1	8	2	2	4	1	3	3	19	2
L. miyajima	1		9	22	4	1																			
L. kansai																									
Neotrombicula mitamurai																									
Miyatrombiculaka kohiensis	2																								
Cheladonta ikaoensis	2																								
Mackienatodai																									
Neoschoengastia shirai																									
Schoutedenichia nagasakensis																									
Walchia koshikiensis																									
W. ogatai	2																								
Gahrliepia saduski	7																								
Table 3. Monthly occurrence of larval trombiculid mites (total number in Shirakanezaka and Nunobikinotaki) from soil samples.

Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Leptotrombidium scutellare	411	234	69	3		55	314	1,185					
L. kuroshio	2	7	4	1	1	1	149	32	7	5	9	59	
L. murotoense	9	6	2	8		3	5	9	7	5	9		
L. kitasatoi	31	9	21	18	2	5	20	10	6	32	154		
L. hinizu	11	16	5	11	1	3	11	5	12	82			
L. fuji	50	34	39	227	29	4	18	24	52	15	28	521	
L. miyajimai	16	45	15	4								2	82
L. kansai	3	1	2	2									11
Neotrombicula mitamurai	3	9											20
Eltonella ichikawai													2
Miyatrombicula kochiensis	10	14	2									27	
Cheladonta ikaoensis	11	10	135	10	22	13	1	1	12	216			
Dolosisa uchikawai	5	1	1	1	2	1	2	1	2	14			
Helenicula miyagewa													3
Mackiena todai	3	1											4
Neoschoengastia shirai	5	7	4	8	2	3	2	1	32				
Schoutedenichia nagasaksiensis	1	2											11
Walchia koshikiensis	2	2	6	2	3	1	5	2	7	5	8	44	
W. ogatai	16	9	19	10	1	7	6	17	10	7	15	122	
Gahrliepia saduski	54	17	32	40	3	2	1	5	2	38	198		
Number of species	14	18	19	14	10	7	7	11	13	15	13	20	

Table 4. Annual number of larval trombiculid mites (total number in Shirakanezaka and Nunobikinotaki) from soil samples.

Species	April 2004–March 2005	April 2005–March 2006	April 2006–March 2007
Leptotrombidium scutellare	278	521	386
L. kuroshio	17	5	2
L. murotoense	38	12	9
L. kitasatoi	115	31	8
L. hinizu	17	42	23
L. fuji	365	97	59
L. miyajimai	50	22	10
L. kansai	1	6	4
Neotrombicula mitamurai	9	8	3
Eltonella ichikawai	1	1	1
Miyatrombicula kochiensis	18	8	1
Cheladonta ikaoensis	95	84	37
Dolosisa uchikawai	5	4	5
Helenicula miyagewa	2	1	1
Mackiena todai	1	3	3
Neoschoengastia shirai	9	17	6
Schoutedenichia nagasaksiensis	5	6	6
Walchia koshikiensis	24	8	12
W. ogatai	39	46	35
Gahrliepia saduski	134	50	14
Total number	1,216	969	624

Table 5. Measurements of scutum of *Cheladonta ikaoensis* (*N* = 20, μm).

Measurements	AW	PW	AP	SB	ASB	PSB	SD
Maximum size	49.7	64.7	19.0	19.6	12.4	13.7	26.8
Minimum size	55.6	69.3	22.9	24.8	15.0	16.3	30.7
Average size	53.0	66.0	20.9	22.2	14.1	15.0	29.1
Standard deviation	1.9	1.4	1.0	0.7	1.0	1.0	1.0

Table 6. The number of first post humeral row of doral setae of *Cheladonta ikaoensis*.

Number of *C. ikaoensis* (*N* = 50)	10	11	12	13	14	15	16	17	1
Number of first humeral row	10	11	12	13	14	15	16	17	1

Table 7. Monthly average temperature and precipitation (from web site of Japan Metrological Agency).

Month	Temperature (°C)	Precipitation (mm)		
	2004	2005	2006	2007
	2004	2005	2006	2007
Jan	8.0	9.1	9.5	59.5
Feb	9.2	11.1	11.6	250.0
Mar	10.9	11.8	13.3	143.5
Apr	17.7	17.5	16.5	140.5
May	21.4	21.0	21.1	352.0
Jun	25.0	24.7	24.2	197.0
Jul	28.8	28.4	28.9	107.0
Aug	29.3	28.8	29.3	92.0
Sep	26.6	27.3	26.1	332.5
Oct	21.2	22.3	23.2	112.0
Nov	16.6	15.9	17.0	169.5
Dec	12.9	7.5	11.6	154.5
third disappearing completely in the middle of summer.

In the present study, nine out of 20 species seemed to belong to the first group: \textit{L. kuroshio}, \textit{L. murotoense}, \textit{L. fuji}, \textit{C. ikaoensis}, \textit{D. uchikawai}, \textit{L. kitasatoi}, \textit{L. miyajimai}, \textit{C. ikaoensis} and \textit{G. saduski}. Eight species seemed to belong to the third group: \textit{L. scutellare}, \textit{L. kitasatoi}, \textit{L. himizu}, \textit{L. miyajimai}, \textit{L. kansai}, \textit{N. mitamura}, \textit{M. kochiensis} and \textit{S. nagasakiensis}. And seasonal occurrence of three species was not clear because of the low numbers collected: \textit{E. ichikawai}, \textit{H. miyagawai} and \textit{M. todai}.

Takada (1990) summarized the morphological and ecological findings of 119 species, however three species (\textit{D. uchikawai}, \textit{S. nagasakiensis} and \textit{W. koshikienensis}) collected in this study were not listed because of a new description of species provided after publication, or for other reasons. The seasonal occurrence of these species also became clear according to the present study.

The total number of collected larval trombiculid mites was reduced during the study period and also changed over the three years. Six species (\textit{L. murotoense}, \textit{L. kitasatoi}, \textit{L. fuji}, \textit{L. miyajimai}, \textit{C. ikaoensis} and \textit{G. saduski}) out of nine species which were collected more than 50 over three years were most abundant in the first year, and three other species (\textit{L. scutellare}, \textit{L. himizu} and \textit{W. ogatai}) were abundant in the second year. Environmental factors such as vegetation and topography are important in addition to the geographic location of the study area (Uchikawa et al., 1984; Kitazawa, 1999). Annual occurrence of larval trombiculid mites may relate the climatic factors such as the temperature and precipitation, and the activity of host animals also may be an important factor. In the present study, there was no big change of vegetation and topography in the study area. One of the main factors which affected the annual occurrence of larval trombiculid mites is considered to be the precipitation. The temperature and precipitation in Kagoshima City is shown in Table 7 (Web site of Japan Metrological Agency). The total precipitation between September and December in the first, second and third year is 1,004.5 mm, 572.5 mm and 342.5 mm, respectively. However, more information is needed when considering the relationship between annual occurrence and precipitation.

In our survey, the scutum of \textit{C. ikaoensis} was very wide, and PW was much wider than AW (PW/AW = 1.26). \textit{Cheladonta ikaoensis} is described by Sasa et al. (1951). In the type specimen isolated from \textit{A. speciosus} captured at Ikaho, Gunma Prefecture, PW and AW are 67.0 \(\mu\text{m}\) and 61.5 \(\mu\text{m}\) (PW/AW = 1.09), respectively. In the same paper, scutal measurements of two other \textit{C. ikaoensis} larvae isolated from \textit{A. speciosus} captured at Lake Yamanaka, Yamanashi Prefecture were also shown; PW/AW = 1.20 and PW/AW = 1.26. In Sasa (1956), a different figure for scutum was used, and the PW/AW was 1.30. Therefore, a standard ratio of PW/AW is considered to be 1.2–1.3.

In our survey, the number of first post humeral row of dorsal setae was 12 by Sasa et al. (1951) and Sasa (1956). In our survey, there was variation in the number of first line dorsal setae. Only 36% of \textit{C. ikaoensis} larvae isolated from \textit{A. speciosus} captured at Lake Yamanaka, Yamanashi Prefecture were also shown; PW/AW = 1.20 and PW/AW = 1.26. In Sasa (1956), a different figure for scutum was used, and the PW/AW was 1.30. Therefore, a standard ratio of PW/AW is considered to be 1.2–1.3.

The number of first post humeral row of dorsal setae was 12 by Sasa et al. (1951) and Sasa (1956). In our survey, there was variation in the number of first line dorsal setae. Only 36% of \textit{C. ikaoensis} larvae had 12 dorsal setae on the first post humeral row. Fourteen percent of larvae had less than 12, and 50% of larvae had more than 12.
References

Kitazawa, T. 1993. Fauna and seasonal fluctuation of larval trombiculid mites in northern Kyushu, Japan. *Ipn. J. Sanit. Zool.*, 44: 327–334.

Kitazawa, T. 1999. Fauna and distribution of trombiculid mites in relation to the vegetational and geographical environment in northern Kyushu, Japan. *Ipn. J. Sanit. Zool.*, 50: 105–127.

Nakajima, T., Adachi, M. and Furui, S. 1998. Seasonal occurrence of larval trombiculid mites found on wild rodents in Nodagawa River basin, Kyoto Prefecture. *J. Acarol. Soc. Jpn.*, 7: 39–45 (in Japanese with English summary).

Nakata, K. 1976. Seasonal fluctuation of larvae of trombiculid mites on small rodents in the wind-shelterbelt at Tonden, Sapporo. *Ipn. J. Sanit. Zool.*, 27: 189–194 (in Japanese with English summary).

Noda, S., Yamamoto, S. and Uchikawa, K. 1996. Seasonal occurrence of larval trombiculid mites and distribution of *Leptotrombidium scutellare* in residential area and farmland in Kagoshima Prefecture. *Ipn. J. Sanit. Zool.*, 47: 339–346.

Noda, S., Yamamoto, S., Yoshiie, K., Oda, H. and Suzuki, H. 2002. Occurrence of *Leptotrombidium scutellare* larvae in Kagoshima and Nagasaki Prefectures. *Ipn. J. Sanit. Zool.*, 53: 169–175.

Sasa, M. 1956. Tsutsugamushi and Tsutsugamushi disease. 497 pp. Igakushoin Ltd., Tokyo (in Japanese).

Sasa, M., Sawada, T., Kano, R., Hayashi, S. and Kumada, N. 1951. Studies on tsutsugamushi. 7. Two new species of tsutsugamushi from Gunma. *Tokyo Med. J.*, 68: 7–8 (in Japanese).

Suzuki, H. 1986. Geographical and topographical differences in population densities of *Leptotrombidium scutellare*. *Ipn. J. Sanit. Zool.*, 37: 282.

Suzuki, H., Yamamoto, S. and Noda, S. 2003. A new trombiculid mite of the Genus *Doloisia* from Kagoshima and Oita Prefecture, Japan (Prostigmata: Trombiculidae). *J. Acarol. Soc. Jpn.*, 12: 103–106.

Takada, N. 1990. A Pictorial Review of Medical Acarology in Japan, 216 pp., Kinpodo, Kyoto (in Japanese).

Takahashi, M., Urakami, H., Mitsui, H., Noda, S., Yamamoto, S., Suzuki, H. and Matsumoto, I. 2002. Detection and serotyping of *Orientia tsutsugamushi* from the unfed larval trombiculid mite *Leptotrombidium scutellare* (Nagayo, Miyagawa, Mitamura, Tamiya et Tenjin, 1921) (Acari: Trombiculidae). *Ipn. J. Sanit. Zool.*, 53: 63–72.

Tamiya, T. (ed) 1962. Recent advance in Studies on Tsutsugamushi Disease in Japan, 309 pp., Medical Culture Inc., Tokyo (in Japanese).

Uchikawa, K. and Kumada. 1987. Studies on tsutsugamushi by Tullgren’s funnel method. 2. Dependence on environment and seasonal fluctuation of tsutsugamushi. *Ipn. J. Sanit. Zool.*, 38: 323–332 (in Japanese with English summary).

Uchikawa, K., Yamada, Y., Sato, K. and Kumada, N. 1984. A basic study on chigger mites in Nagano Prefecture, Japan. *Ipn. J. Sanit. Zool.*, 35: 233–243 (in Japanese with English summary).

Uchikawa, K., Kumada, N., Taguchi, A. Nakatsuka, T. and Fukuda, A. 1986. Studies on tsutsugamushi by Tullgren’s funnel method. 1. Evaluation of the method and distribution of *Leptotrombidium palladium* in the residential areas. *Ipn. J. Sanit. Zool.*, 37: 363–370 (in Japanese with English summary).

Uchikawa, K., Kawamori, F., Kawai, S. and Kumada, N. 1993. Suzuki’s method (MITORI-HO), a recommended method for the visual sampling of questing *Leptotrombidium scutellare* larvae in the field (Trombidiformes, Trombiculidae). *Ipn. J. Acarol. Soc. Jpn.*, 2: 91–98.

Yamamoto, S. 1961. An investigation on trombiculid mites in the Tojinwara area of Kaseda City, Kagoshima Prefecture. *Ipn. J. Sanit. Zool.*, 12: 169–173 (in Japanese with English summary).

Yamasaki, M. 1987. Epidemiological investigation on tsutsugamushi disease in Fukuoka Prefecture. I. Fauna and seasonal fluctuation of trombiculid mites on wild rodents. *Clin. Virol.*, 15: 373–382 (in Japanese with English summary).