Stalled developmental programs at the root of pediatric brain tumors

Selin Jessa1,2, Alexis Blanchet-Cohen2,3, Brian Krug3, Maria Vladoiu4,5, Marie Coutelier2,3, Damien Faury6,7, Brice Poreau6,7,8, Nicolas De Jay2,3, Steven Hébert2,3, Jean Monlong2,3,9, W. Todd Farmer10,11, Laura K. Donovan4,5, Yixing Hu2,3, Melissa K. McConney3, Florence M. G. Cavalli4,5, Leonie G. Mkael6,7, Benjamin Ellezam6,7, Maxime Richer13, Andréa Allaire13, Alexander G. Weil14, Jeffrey Atkinson15, Jean-Pierre Farmer15, Roy W. R. Dudley15, Valerie Larouche16, Louis Crevier17, Steffen Albrecht18, Mariella G. Filbin19, Hervé Sartelet20, Pierre-Eric Lutz21,22,23, Corina Nagy22,23, Gustavo Turecki22,24, Santiago Costantino24,25, Peter B. Dirks26,27, Keith K. Murai10,11, Guillaume Bourque3,28,29, Jiannis Ragoussis3,28, Livia Garzia30,31, Michael D. Taylor3,4,5,26,32,33,34, Nada Jabado3,4,5,6,7,* and Claudia L. Kleinman1,2,3,*

Childhood brain tumors have suspected prenatal origins. To identify vulnerable developmental states, we generated a single-cell transcriptome atlas of >65,000 cells from embryonal pons and forebrain, two major tumor locations. We derived signatures for 191 distinct cell populations and defined the regional cellular diversity and differentiation dynamics. Projection of bulk tumor transcriptomes onto this dataset shows that WNT medulloblastomas match the rhombic lip-derived mossy fiber neuronal lineage and embryonal tumors with multilayered rosettes fully recapitulate a neuronal lineage, while group 2a/b atypical teratoid/rhabdoid tumors may originate outside the neuroectoderm. Importantly, single-cell tumor profiles reveal highly defined cell hierarchies that mirror transcriptional programs of the corresponding normal lineages. Our findings identify impaired differentiation of specific neural progenitors as a common mechanism underlying these pediatric cancers and provide a rational framework for future modeling and therapeutic interventions.

Brain tumors are the leading cause of cancer-related morbidity and mortality in children. Despite intensive multimodal therapies, cure remains a rare exception for several subtypes, while, for most, the long-lasting effects of life-saving therapies on the developing brain are devastating. Childhood brain tumors and their driver mutations show a specific spatiotemporal distribution...
Articles

and are presumed to be tightly linked with development\(^{11-15}\). Embryonal tumors with multilayered rosettes (ETMRs), a lethal brain tumor of younger children\(^7\), are mostly supratentorial and largely driven by a fusion of the brain-specific TTYH1 promoter with the primate-specific C19MC microRNA cluster\(^8\), linked to the expression of a fetal neurodevelopmental program\(^9\). WNT-subtype medulloblastomas (WNT MB) mostly occur in children between 7 and 10 years of age\(^4,11\) and, despite being considered cerebellar tumors, they are located in the midline, adherent to the posterior part of the brainstem from which they are thought to derive\(^1\). Pediatric high-grade gliomas (pHGGs) also show a specific age and mutation distribution\(^11,14\). Midline gliomas are largely characterized by lysine-to-methionine substitution at position 34 in H3F3A (H3.3G34R/V)\(^11,13,14\) and localize in the pons of younger children (3–7 years) and upward in the thalamus in older children (7–12 years). HGGs occurring in patients 12–35 years of age are mostly located in the cerebral hemispheres (pialateral lobes), and a portion uniquely harbor the driver-initiating events glycine to arginine or valine mutations at position 34 in H3F3A (H3.3G34R/V)\(^11,13,14\). In contrast, atypical teratoid/rhabdoid tumors (ATRTs) are a rare pediatric brain tumor of younger children\(^8\), are mostly supratentorial and found in the brainstem of two human specimens aged 17–19 PCW, as well as the pons/hindbrain and the forebrain from mice at five time points (E12.5–P6, Extended Data Fig. 1). In total, we profiled >65,000 cells (61,595 mouse, 3,945 cryopreserved human cells). The extent of the mouse data permitted a three-tiered analysis: per sample, per brain region for progenitors, astrocytes and neurons in general. In contrast, other glial and mesodermal cell types showed more convergent transcriptional states between the two structures. Pontine progenitors and neurons were clearly distinct, segregating into separate subtypes. They also displayed low correlations with previously reported neural types and a dual match with neuroblasts and progenitor populations (Extended Data Fig. 2e), indicating an extensive cell diversity unique to the pons. Reconstruction of gene regulatory networks\(^16\) allowed us to identify transcription factors and their direct gene targets (regulons) underlying this molecular taxonomy (Fig. 1a and Supplementary Table 3).

To understand the relationships between cell populations, we constructed a dendrogram of mouse cell types on the basis of gene expression distance (Fig. 1a). Cells split first by developmental compartment of origin (neuroectoderm or mesoderm/others), and then by broad cell class, resulting in a molecularly defined cell taxonomy. Overall, we observed striking differences between the pons and forebrain for progenitors, astrocytes and neurons in general. In contrast, other glial and mesodermal cell types showed more convergent transcriptional states between the two structures. Pontine progenitors and neurons were clearly distinct, segregating into separate subtypes. They also displayed low correlations with previously reported neural types and a dual match with neuroblasts and progenitor populations (Extended Data Fig. 2e), indicating an extensive cell diversity unique to the pons. Reconstruction of gene regulatory networks\(^16\) allowed us to identify transcription factors and their direct gene targets (regulons) underlying this molecular taxonomy (Fig. 1a and Supplementary Table 3).

Temperally, we captured rich cellular dynamics reflecting differentiation. Early embryonic time points in both structures contained a substantial proportion of progenitors (Fig. 1b,c and Extended Data Fig. 1e,f), which were progressively depleted over time and, in the mouse, transitioned to gliogenesis by P0, when a gliarial expansion was evident. To identify the transcriptional networks induced in the pons during early differentiation, particularly during the switch from radial glial cells (RGCs) to gliogenic/neurogenic programs, we re-embedded the embryonic RGCs and progenitors. Principal component analysis (PCA) showed that the first two components, explaining 33% of the variance, were directly related to proliferation and a neurogenic/gliogenic differentiation path (Fig. 2a,b). We reconstructed this path using trajectory analysis\(^16,22\) (Fig. 2c), retrieving cells at various stages of lineage commitment. This allowed us to uncover the transcription factors associated with fate decision using branched expression analysis modeling\(^20\) and to characterize transitional states (Fig. 2d), identifying not only known, but also new markers of these states (Supplementary Table 3).

Overall, the sampling of glial populations was quite extensive across species, developmental stages and brain structures. We report gene signatures for 8 oligodendrocyte precursor cells (OPC), 8 oligodendrocytes and 18 distinct astrocyte populations (Supplementary Table 2a). Of most relevance to the biology of several tumors of focus, we detected transitional cell types along the full pontine oligodendrocyte path and the astro-ependymal lineage (Fig. 2e–g).

Neurogenesis was the dominant process in the forebrain. Isolation and re-embedding of the forebrain RGCs, combined with a random forest approach, identified discriminant gene markers and revealed dorsal–ventral patterning in these populations (Extended Data Fig. 3a–e). This defined the RGCs that give rise to cortical intermediate progenitor cells (IPC), the progenitors of the excitatory neurons (dorsal, Pax6\(^{11}\), Emx2\(^{25}\)) and those that yield the migratory interneuron neuroblasts that eventually populate the cortex (ventrally derived, Nkx2.1\(^{11}\), Olig2\(^{28}\)). We also identified thalamic progenitors

Results

A census of the developing pons and forebrain. To define the normal developmental state of brain regions where a large proportion of high-grade embryonal and pediatric brain tumors arise, we isolated the brainstem of two human specimens aged 17–19 PCW, as well as the pons/hindbrain and the forebrain from mice at five time points (E12.5–P6, Extended Data Fig. 1). In total, we profiled >65,000 cells (61,595 mouse, 3,945 cryopreserved human cells). The extent of the mouse data permitted a three-tiered analysis: per sample, per brain structure or a combined full dataset, to achieve different degrees of granularity and complementary analysis of transcriptional dynamics. We first defined cell populations using a shared nearest-neighbor clustering algorithm\(^{11,12}\). We verified that common sources of variation in single-cell data (mitochondrial gene content, library size and cell cycle) did not drive this clustering (Extended Data Fig. 2a and Supplementary Note), and then defined the identity of the cell populations using a combination of computational and manual methods. These included mapping previously reported gene sets specific to the main neural cell classes\(^2\) (Supplementary Table 1a and Extended Data Fig. 2b) and individual canonical markers (Supplementary Table 1b and Extended Data Fig. 2c,d). We identified cluster-specific marker genes (Supplementary Table 2), which in many cases unambiguously defined known cell types. We then evaluated the effect of cryopreservation on cell populations and found that neuronal types were extremely sensitive to the procedure, while glial cells were mainly unaffected (Supplementary Note). Therefore, neurons and small clusters from the human brainstem were removed from the analyses. Finally, to validate our cell-type identification strategies, we assessed the agreement of our cluster labels with a comprehensive atlas of the juvenile mouse nervous system\(^28\) (Extended Data Fig. 2e). Altogether, our transcriptomic atlas contains 191 cell populations defined at the sample level and 54 populations defined at the brain region level (Supplementary Table 2).

To understand the relationships between cell populations, we constructed a dendrogram of mouse cell types on the basis of gene expression distance (Fig. 1a). Cells split first by developmental compartment of origin (neuroectoderm or mesoderm/others), and then by broad cell class, resulting in a molecularly defined cell taxonomy. Overall, we observed striking differences between the pons and forebrain for progenitors, astrocytes and neurons in general. In contrast, other glial and mesodermal cell types showed more convergent transcriptional states between the two structures. Pontine progenitors and neurons were clearly distinct, segregating into separate subtypes. They also displayed low correlations with previously reported neural types and a dual match with neuroblasts and progenitor populations (Extended Data Fig. 2e), indicating an extensive cell diversity unique to the pons. Reconstruction of gene regulatory networks\(^16\) allowed us to identify transcription factors and their direct gene targets (regulons) underlying this molecular taxonomy (Fig. 1a and Supplementary Table 3).

Temperally, we captured rich cellular dynamics reflecting differentiation. Early embryonic time points in both structures contained a substantial proportion of progenitors (Fig. 1b,c and Extended Data Fig. 1e,f), which were progressively depleted over time and, in the mouse, transitioned to gliogenesis by P0, when a gliarial expansion was evident. To identify the transcriptional networks induced in the pons during early differentiation, particularly during the switch from radial glial cells (RGCs) to gliogenic/neurogenic programs, we re-embedded the embryonic RGCs and progenitors. Principal component analysis (PCA) showed that the first two components, explaining 33% of the variance, were directly related to proliferation and a neurogenic/gliogenic differentiation path (Fig. 2a,b). We reconstructed this path using trajectory analysis\(^16,22\) (Fig. 2c), retrieving cells at various stages of lineage commitment. This allowed us to uncover the transcription factors associated with fate decision using branched expression analysis modeling\(^20\) and to characterize transitional states (Fig. 2d), identifying not only known, but also new markers of these states (Supplementary Table 3).

Overall, the sampling of glial populations was quite extensive across species, developmental stages and brain structures. We report gene signatures for 8 oligodendrocyte precursor cells (OPC), 8 oligodendrocytes and 18 distinct astrocyte populations (Supplementary Table 2a). Of most relevance to the biology of several tumors of focus, we detected transitional cell types along the full pontine oligodendrocyte path and the astro-ependymal lineage (Fig. 2e–g).

Neurogenesis was the dominant process in the forebrain. Isolation and re-embedding of the forebrain RGCs, combined with a random forest approach, identified discriminant gene markers and revealed dorsal–ventral patterning in these populations (Extended Data Fig. 3a–e). This defined the RGCs that give rise to cortical intermediate progenitor cells (IPC), the progenitors of the excitatory neurons (dorsal, Pax6\(^{11}\), Emx2\(^{25}\)) and those that yield the migratory interneuron neuroblasts that eventually populate the cortex (ventrally derived, Nkx2.1\(^{11}\), Olig2\(^{28}\)). We also identified thalamic progenitors
(Barhl2+, Otx2+, Olig3+) and small subpopulations from the cortical hem (Wnt8b+, Dkk3+), the organizing region in the medial forebrain neuroepithelium, which has not been profiled before. Altogether, this transcriptomic survey of the developing pons, combined with a high-resolution profile of the forebrain, provides a molecular definition of 191 distinct cell populations (Supplementary Table 2), as well as an extensive reference of cellular transitions occurring during differentiation of the main neural cell lineages (Supplementary Table 3).

Developmental signatures stratify tumor types. To identify developmental programs that are abnormally persistent in pediatric brain tumors, we first extracted gene signatures from each of the 191 cell populations (human and mouse) and projected them across 240 human bulk RNA-sequencing (RNA-seq) samples (186 samples derived from patients, 43 from normal adult brain and 11 from normal fetal brain, Supplementary Table 4) using single-sample gene-set enrichment analysis (ssGSEA). In all cases, ssGSEA scores for human populations were extremely close to their mouse counterparts, indicating no major cross-species differences at this level of analysis. Dimensionality reduction based on this projection demonstrates that similarities to distinct developmental cell populations are sufficient to segregate tumors by type (Fig. 3a), indicating a specific developmental context at the core of each of these tumors. Notably, ETMRs clustered with the early fetal brain (13–18 PCW) in all comparisons. We next asked which of the normal cell populations best matched a specific tumor type (Fig. 3b and Extended Data Fig. 4). Overall, each tumor type presented a distinct signature, indicating that ETMRs, WNT medulloblastomas, ATRTs and H3K27M HGGs have spatially and temporally distinct developmental origins.

WNT medulloblastomas match the rhombic lip-derived mossy fiber neuron lineage. Lower rhombic lip (LRL) progenitors in the embryonic dorsal brainstem (Zic1+, Pax6+, Olig3+) have been implicated as the potential cellular origin of WNT medulloblastoma. However, the precise cell lineage has not yet been defined due to shared expression of markers between auditory LRL and pre-cerebellar LRL-derived lineages (including mossy fiber neurons and climbing fiber neurons).

In our developmental atlas, coexpression of Zic1, Pax6 and Olig3 is restricted to a pontine mossy fiber neuron (MFN) population and to a subset of cells within the pontine LRL precursor cluster at E12.5 (see Extended Data Fig. 5 for a detailed characterization of these populations). Bulk transcriptomic mapping using ssGSEA
confirmed by deconvolution analysis (Fig. 4a), selected the MFN lineage as the best match for WNT medulloblastoma. This match, specific to WNT medulloblastoma, was not observed in any other tumor type, including group 4 medulloblastoma, which predominantly mapped to unipolar brush cells (Extended Data Fig. 4), as previously reported. We next identified the most discriminant MFN gene markers by two alternative methods (differential expression analysis and a machine-learning approach; Fig. 4b,c). MFN-specific genes, such as Nkd1, which permitted classification of MFN with nearly 80% accuracy, were among the top 20 genes driving the tumor match (Fig. 4d). They were also significantly upregulated in WNT medulloblastoma bulk tumors (Fig. 4e). Importantly, a recent study of active medulloblastoma enhancers reports NKD1 as the top superenhancer active in WNT medulloblastoma. In addition to NKD1, a negative regulator of the WNT signaling pathway, several enhancers of MFN markers were active in this tumor type, including ZIC1, PAX6, BARHL1, PDE1C, PCSK9 and OLG3. Based on the lack of enhancer activity for markers of the climbing fiber neurons (PTF1A, NEUROG1, ASCL1, FOXD3 and BRN3A), this study also allowed us to exclude this lineage as the one at the origin of WNT medulloblastoma. Altogether, these results indicate that WNT medulloblastoma tumors transcriptionally mirror cells within the

(a) PCA of pontine progenitors from embryonic time points (n = 976 cells). Cells are colored by cluster assignment. (b) Pontine progenitors colored by expression of selected canonical gene markers for progenitor-like (Vim), proliferating (Top2a), neurogenic (Hes6) or astrocytic (Aldoc) programs, in the PCA space as in a. c. Inferred differentiation trajectory of pontine progenitors. d. Expression of transcription factors associated with fate decisions along the pontine progenitor differentiation trajectory (Supplementary Table 3). e,f, t-SNE plot of the mouse pons as in Fig. 1b, with cells in oligodendrocyte (n = 3,800 cells) and astro-ependymal lineages (n = 6,276 cells) indicated (e) or colored by inferred pseudotime for those lineages (f). g. Expression of canonical genes marking oligodendrocyte (top), astrocytic (bottom, Fabp7, Gfap, Aqp4) or ependymal (bottom, Foxj1) differentiation, shown in cells from the respective lineages in t-SNE embedding as in e and f.
LRL-derived mossy fiber neuron lineage, thus confirming the postulated progenitor source\(^{12}\) and resolving their specific cellular lineage (Fig. 4f).

To further delineate the differentiation state of tumors, and to investigate intratumor heterogeneity and cellular hierarchy, we performed single-cell RNA-seq (scRNA-seq) on three patient samples (Fig. 4g–h and Extended Data Fig. 5g–j). We first distinguished malignant and normal cells on the basis of copy number aberration (CNA) analysis (Fig. 5a–d, monosomy 6, documented in WNT medulloblastoma\(^{10}\)). Expression of ZIC1, OTX2 and C1NBN1 broadly marked the malignant cells (Extended Data Fig. 5g). Cell-type-specific gene sets, on the other hand, unambiguously identified small clusters of microglia, OPCs, astrocytes and mesodermal cells. Among malignant cells, we found a consistent cellular structure across patient samples. Three major cell populations formed a continuous transcriptional gradient that could be reconstructed using trajectory analysis (Extended Data Fig. 5h). A first, nonproliferating subpopulation expressed WNT16. A second, nonproliferating population expressed the WNT signaling inhibitors Dkkopf proteins (\(\text{DKK}1/2/4\)). DKK3, on the other hand, was absent, consistent with its frequent downregulation in WNT medulloblastoma\(^{10}\). These observations indicate that the WNT signaling pathway, which molecularly characterizes this tumor, exhibits a gradient of activation at the single-cell level. A third cellular population displayed an early neuronal-committed phenotype: nonmigrating (\(\text{DCX}^+\)), immature (\(\text{RBFOX3}^+\)), and expressing \(\text{NEUROD1}\) at high levels. The best match to normal developmental cell populations, using ssGSEA scores, remained the MFN. Moreover, malignant cells expressed MFN marker genes and lacked expression of climbing fiber neuron marker genes (Extended Data Fig. 5g). Altogether, these results indicate that WNT medulloblastomas share a common cellular origin in the pre-cerebellar LRL, and specifically in the MFN lineage. The recurrent cellular structure at the single-cell level and the persistent match to this specific brainstem population are consistent with a model of stalled differentiation, with oncogenic mutations entrapping tumor cells in a progenitor-like phenotype that retains features of the lineage of origin.

ETMRs recapitulate a neuronal lineage. ETMRs, driven by a fusion between the brain-specific \(\text{TTYH1}\) gene and the oncopgenic microRNA cluster C19MC\(^{12}\), have low intertumoral genetic heterogeneity. High \(\text{LIN28A}\) and low \(\text{OLIG2}\) levels, gain of chromosome 2 (ref. 4\(^{3}\)) and a very distinctive DNA methylation profile are hallmarks of ETMRs\(^{4}\). The cell of origin is unknown, although a \(\text{Sox2}^+\text{Pax6}^+\) apical radial glia of the cortic ventricular zone has been postulated as a potential source of ETMRs\(^{4}\).

To define the cell of origin of ETMRs, we profiled expression of \(\text{TTYH1}\) across the developmental atlas that we generated, as well as across three human fetal brain reference datasets\(^{46,46,46}\). \(\text{TTYH1}\) followed a cell-type-specific, temporally regulated expression pattern that was consistent across species and brain regions. Expressed prenatally in RGCs, postnatally \(\text{TTYH1}\) switched mainly to the astroependymal lineage in both human and mouse (Fig. 6a and Extended Data Fig. 6a,b). Cell populations expressing \(\text{TTYH1}\) uniquely have the potential for C19MC overexpression when harboring the \(\text{TTYH1}\)-C19MC fusion. Therefore, the precise expression pattern of \(\text{TTYH1}\) throughout the brain nominates prenatal radial glia cells as the cell of origin of ETMRs.

Unexpectedly, ETMR bulk tumors mapped to a range of populations from the neuronal lineage when using ssGSEA projection (Fig. 3b) and deconvolution analysis (Extended Data Fig. 6c). Profiling three human tumor samples at the single cell/single nuclei level revealed the source of this heterogeneity (Fig. 6b–d and Extended Data Fig. 6d–h). Malignant cells (marked by a gain of chromosome 2; Fig. 5c,d) displayed a very defined cellular hierarchy across the neuronal lineage, with a small proportion of cells committing to the glial lineage, although maintaining a progenitor phenotype (cluster 9, \(\text{VIM}^+\), high ssGSEA score for RGC signatures). Pseudotime reconstruction delineated a transcriptional gradient (Extended Data Fig. 6d) confirmed by the expression of canonical markers (Fig. 6b) and by ssGSEA projections (Extended Data Fig. 6e). On one end of this gradient, tumor cells displayed a progenitor-like phenotype (\(\text{VIM}^+\), \(\text{NES}^+\)), which progressed towards a migrating (\(\text{DCX}^+\), cluster 3) and then to a more mature (\(\text{GAD2}^+\), \(\text{GRIA2}^+\), clusters 4, 8, 12) neuronal phenotype. We next reconstructed active gene regulatory networks\(^{15}\). In agreement with a complete recapitulation of the neuronal lineage within each tumor sample, RGC-specific regulators were active in the progenitor-like tumor compartment, while the neuron-like compartment shared regulatory modules with normal differentiated neurons (Fig. 6c,d).

The RGC-like tumor compartment expressed C19MC, driven by the promoter of the fused copy of \(\text{TTYH1}\), which was silenced in the
Fig. 4 | WNT medulloblastomas mirror the lower rhombic lip-derived mossy fiber neurons.

a. Deconvolution analysis (CIBERSORT) of bulk WNT MB patient samples (n=10), using a panel of signatures comprising pontine neurons and refined progenitors from the mouse embryonic pons. b. Volcano plot for differential gene expression analysis between mossy fiber neurons (n=198 cells) and all other postnatal pontine neuron clusters (n=939 cells). P values (two-sided Wilcoxon rank-sum test) were adjusted for multiple testing using the Benjamini–Hochberg correction. c. Genes discriminant of mossy fiber neurons, identified using a random forest-based approach (Supplementary Note), are ranked by their classification score.

d, e, f. Model of WNT medulloblastoma lineage of origin. mb, midbrain; cb, cerebellum; RL, rhombic lip; 4v, fourth ventricle; hb, hindbrain.

g. h. scRNA-seq profiling of a WNT medulloblastoma patient sample (n=3,875 cells). g. t-SNE and clustering, with nonmalignant clusters labeled by cell type and malignant clusters labeled with numbers. h. Expression of marker genes of malignant tumor clusters. Complementary analysis for additional scRNA-seq samples is shown in Extended Data Fig. 5.
minority of malignant cells that were able to escape and progress in differentiation (Extended Data Fig. 6f). This compartment also displayed signatures related to the oncogenic process, with increased activation of proliferation-related pathways and high MYC signal (Fig. 6e). In sum, these findings support a model in which prenatal, neurogenic RGCs undergo oncogenic transformation, resulting in their abnormal persistence in the developing brain. In this tumor type, the progenitor-like cells are only able to progress to a limited extent along their programmed differentiation path (Fig. 6f), explaining the histology of these tumors, which resemble undifferentiated neural tubes.

Group 2a/b ATRTs originate outside the neuroectoderm. In contrast to ETMRs, WNT medulloblastomas and pHGGs, ATRT bulk tumors mapped with low scores to a range of RGCs and mesodermal cell types (Fig. 3b and Extended Data Fig. 7a). The RGC match was driven by genes that were not lineage specific (Extended Data Fig. 7b,c), suggesting that these tumors do not mirror any particular lineage within our atlas. Given the occurrence of some ATRTs in the cerebellum, we also mapped bulk tumors to developing cerebellar cell populations (E10–P14) (Extended Data Fig. 4). This analysis yielded similar results: ATRTs did not collectively resemble any specific cerebellar cell type. We thus expanded our reference beyond the developing neuroectoderm. We obtained a single-cell atlas of mouse gastrulation and early embryogenesis (E6.5–E8.5) covering the developmental window where inactivation of Smarcb1 led to intracranial tumors in ATRT mouse models (Fig. 7a). Gene signatures for the three ATRT subgroups (group 1/SHH, group 2a/TYR and group 2b/MYC) had very distinct expression patterns in this dataset, with group 2b genes (and, to a lesser extent, group 2a) clearly silent in the neuroectodermal-related structures, supporting our hypothesis of a nonneuroectodermal origin (Fig. 7b). Group 1 genes, in contrast, while highly enriched in mesodermal populations, were also detected in the neuroectoderm, spinal cord and forebrain/midbrain, and thus a neuroectodermal origin cannot be ruled out for this subtype.

To eliminate the confounding effects of tissue composition, we profiled five patient samples by scRNA-seq or single-nuclei RNA-seq (snRNA-seq) (Fig. 7c,d and Extended Data Fig. 7d–g). Tumors were composed of a VIM+ malignant population expressing genes
Once again, malignant cells did not match any specific cell type in our atlas. Importantly, we detected a major vascular and immune infiltration component in tumors, corroborating the match to pericyte and mesoderm signatures observed for some bulk tumors (Extended Data Fig. 4). We observed distinct populations of microglia and immune cells, including cytotoxic T cells (CD8A+/CD8B+), natural killer cells (CD161/KLRB1+) and a small cluster of B cells (CD79A+), consistent with data indicating high immune infiltration in ATRTs. Our results suggest that group 1 ATRTs may arise from...
an earlier progenitor (prior to E12.5). In turn, group 2a/b ATRTs, two genetically homogeneous but molecularly diverse subtypes, likely originate outside the neuroectodermal populations surveyed here. These data potentially explain why mouse models using neuronal drivers did not lead to ATRT formation, and only the inducible loss of Smarcb1 during a narrow embryonal window using a ubiquitous driver generated central nervous system (CNS) and also extra-CNS tumors.

A glial-committed progenitor in pontine H3K27M HGG. Neural precursor cells can be transformed by the driver H3K27M when combined with other mutations in vitro, and in vivo only when introduced prenatally. H3K27M HGGs have been proposed to consist of proliferating OPC-like cells that eventually progress towards an astrocyte-like or oligodendrocyte-like state. We recently reported the superenhancer landscape and core transcription factor (TF) circuitry of H3K27M pHGG. In our atlas, the top two core TFs detected in H3K27M HGGs, IRX2 and PAX3, are specifically expressed in the pons (Fig. 8a), which is consistent with the spatial occurrence of this mutation. By ssGSEA projections, bulk H3K27M pontine HGG transcriptomes predominantly matched neural progenitor is at the root of H3.3K27M-mutant HGG and that this mutation prevents complete differentiation along glial lineages. Knockout lines, in turn, expressed low GFAP amounts in stem cell media and greatly upregulated expression in differentiation media, in which GFAP formed the stereotypical cytoskeletal filaments found in mature astrocytes (Extended Data Fig. 8h). In total, these results, together with data obtained on chromatin marks affected by this mutation, indicate that a pontine glial-committed neural progenitor is at the root of H3.3K27M-mutant HGG and that this mutation prevents complete differentiation along glial lineages.

Discussion

Childhood brain tumors have a spatiotemporal distribution that mirrors cellular waves of brain development, and several of their known drivers have developmental roles. A major challenge in understanding, modeling and treating these tumors has been the
Fig. 8 | Differentiation potential is impaired in H3K27M cells. a. Heat map of expression of \(\text{Inx2} \) and \(\text{Pax3} \), core transcription factors in H3K27M HGG, in the mouse atlas. Expression was normalized to a \([0, 1]\) scale for visualization. b–c, RNA-seq from H3.3K27M pontine HGG primary tumor-derived cell lines and isogenic K27M-KO lines maintained in stem cell media (SCM) or subjected to a differentiation protocol (DM). Experiment was performed for \(n = 2 \) biologically independent replicates per condition. b, PCA based on ssGSEA projections of bulk transcriptomes onto developmental cell populations. c, Change in ssGSEA score after differentiation protocol for each individual replicate, for select signatures. All neuroectodermal signatures are shown in Extended Data Fig. 8.

absence of a comprehensive blueprint for normal brain development and lack of knowledge regarding their cell of origin. Modeling studies often involve labor-intensive scanning of developmental windows and cell types permissive to the driver mutations. These limitations severely impact accurate modeling and the development of rational frameworks for therapeutic interventions, since the molecular dependencies of specific progenitor states are unknown or under-appreciated. Our work addresses these gaps. We provide a comprehensive blueprint for the developing pons and expand recent data on forebrain development. Our census uncovers progenitors and differentiation pathways that are unique to the pons and distinct from previously surveyed neural cell types. Importantly, focusing our reference atlas on two main regions where pediatric tumors arise has enabled us to characterize putative cells of origin and identify impaired development as a common mechanism at the origin of several brain tumor types.

Indeed, in WNT medulloblastoma, the absence of bona fide, fully differentiated cells in the scRNA-seq tumor data, together with the unequivocal match to a pontine pre-cerebellar cell population of the LRL-derived MFN lineage, suggest a strong differentiation block in this medulloblastoma subgroup. In ETMRs, the very young age at diagnosis, exquisite similarities with the fetal brain and activation of pathways that can be precisely timed (TTYH1, DNMT3B) argue for a prenatal oncogenic event. Profiling cortical neurogenesis allowed us to capture how ETMRs arise in early neural progenitors and a large proportion of cells remain in this state, unable to fully differentiate. Tumor samples recapitulate the complete neuronal lineage, but C19MC expression specifically persists in the progenitor-like
cells, which maintain the tumor supply (Extended Data Fig. 6f). In H3K27M pontine PHGG, our data support an origin within a glial-committed neural progenitor. Last, we show that group 2a/b ATRTs likely originate from cells outside the neuroectoderm. This may explain the extra-CNS occurrence of rhabdoid tumors, including in mouse models. Further studies of additional time points and developmental compartments not profiled here will be needed to elucidate the cell of origin of this entity.

Understanding the molecular mechanism underlying impaired differentiation and the timing of the oncogenic event, which in many cases seems to be prenatal, can provide important clues for reversing oncogenic effects. Indeed, we show that removal of the oncogenic H3K27M mutation in PHGG tumor-derived cell lines directly promotes progression of differentiation along the glial lineage, despite the many associated genetic alterations (including TP53 mutations and/or MYC amplification) identified in these lines. This underlines the direct effect of H3K27M on the differentiation potential of pontine neural progenitors. It also shows that the effects of a differentiation blockade may be reversed, which can apply beyond PHGGs. The dependencies of each tumor cell of origin, which are necessary during development but not required after birth, could be targeted if they were better understood. To this end, we provide a framework for modeling tumors and a more accurate read-out for therapeutic efficacy, since proliferation rates or migration potential, which have been generally used in the design of therapeutic interventions, are less relevant in these brain tumors. In summary, our data reveal a common theme across subtypes of pediatric brain tumors where genetic alterations impact restricted developmental windows during the differentiation of neural lineages, retaining cells in a self-renewing, progenitor-like phenotype. The possibility that tumors arise in more terminal cell types and undergo dedifferentiation is remote and will require additional in vivo lineage-tracing experiments to be formally excluded. A deep understanding of the biology, timing and transitional states of the developmental hierarchies at the root of childhood brain tumors may allow the rational design of preclinical models, an essential step towards improved tumor diagnostics and new therapeutics.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41588-019-0531-7.

Received: 31 January 2019; Accepted: 18 October 2019; Published online: 25 November 2019

References
1. Kieran, M. W., Walker, D., Frappaz, D. & Prados, M. Brain tumors from childhood through adolescence into adulthood. J. Clin. Oncol. 28, 4783–4789 (2010).
2. Fontebasso, A. M. et al. Epigenetic dysregulation: a novel pathway of oncogenesis in pediatric brain tumors. Acta Neuropathol. 128, 615–627 (2014).
3. Joch, K. et al. Genetic aberrations leading to MAPK activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin. Cancer Res. 17, 4650–4660 (2011).
4. Johann, P. D. et al. Atyypical teratoid/rhabdoid tumors are comprised of three epidemiologic subgroups with distinct enhancer landscapes. Cancer Cell 29, 379–393 (2016).
5. Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–317 (2017).
6. Sturm, D. et al. Paediatric and adult glioblastoma: multifocal (epi)genomic culprits emerge. Nat. Rev. Cancer 14, 92–107 (2014).
7. Sturm, D. et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164, 1060–1072 (2016).
8. Li, M. et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16, 533–546 (2009).
9. Kleinman, C. L. et al. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DMNT3B isoform in the embryonal brain tumor EMTM. Nat. Genet. 46, 39–44 (2014).
10. Kool, M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123, 473–484 (2012).
11. Northcott, P. A., Korshunov, A., Pfister, S. M. & Taylor, M. D. The clinical implications of medulloblastoma subgroups. Nat. Rev. Neurol. 8, 340–351 (2012).
12. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).
13. Fontebasso, A. M. et al. Recurrent somatic mutations in A2721 in pediatric midline high-grade astrocytoma. Nat. Genet. 46, 462–466 (2014).
14. Khong-Quang, D. A. et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2014, 439–447 (2012).
15. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).
16. Mackay, A. et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32, 520–537 (2017).
17. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).
18. Wu, G. et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet. 46, 444–450 (2014).
19. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).
20. Versteegen, I. et al. Truncating mutations of KLSN5/IN11 in aggressive paediatric cancer. Nature 394, 203–206 (1998).
21. Torcha, J. et al. Integrated (epi)-genomic analyses identify subgroup-specific therapeutic targets in CNS rhabdoid tumors. Cancer Cell 30, 891–908 (2016).
22. Chun, H. E. et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29, 394–406 (2016).
23. Fan, X. et al. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell Rep. 28, 730–745 (2018).
24. Nowakowski, T. J. et al. Spatial-temporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).
25. Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).
26. Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555, 524–528 (2018).
27. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).
28. Mi, D. et al. Early emergence of cortical interneuron diversity in the mouse embryo. Science 360, 81–85 (2018).
29. Yuzwa, S. A. et al. Developmental emergence of adult neural stem cells as revealed by single-cell transcriptional profiling. Cell Rep. 21, 3970–3986 (2017).
30. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
31. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
32. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11192–11147 (2014).
33. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).
34. Albar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
35. Qu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).
36. Qu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–992 (2017).
37. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).
38. Vladou, M. C. et al. Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature 572, 67–73 (2019).
39. Lin, C. Y. et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530, 567–572 (2016).
40. Clifford, S. C. et al. Wnt/ Wingless pathway activation and chromosome 6 loss characterise a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5, 2666–2670 (2006).
41. Valdora, F. et al. Epigenetic silencing of DKK3 in medulloblastoma. Int. J. Mol. Sci. 14, 7492–7505 (2013).
42. Korshunov, A. et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol. 128, 279–289 (2014).
43. Neumann, J. E. et al. A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nat. Med. 23, 1191–1202 (2017).
44. Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl Acad. Sci. USA 112, 15672–15677 (2015).
45. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).
46. Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).
47. Han, Z. Y. et al. The occurrence of intracranial rhabdoid tumours in mice depends on temporal control of Smarcb1 inactivation. Nat. Commun. 7, 10421 (2016).
48. Lu, J. Q., Wilson, B. A., Yong, V. W., Pugh, J. & Mehta, V. Immune cell infiltrates in atypical teratoid/rhabdoid tumors. Can. J. Neurol. Sci. 39, 605–612 (2012).
49. Funato, K., Major, T., Lewis, P. W., Allison, C. D. & Tabar, V. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346, 1529–1533 (2014).
50. Pathania, M. et al. H3.3K27M cooperates with Trp53 loss and PDGFRα gain in mouse embryonic neural progenitor cells to induce invasive high-grade gliomas. Cancer Cell 32, 684–700.e9 (2017).
51. Monje, M. et al. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc. Natl Acad. Sci. USA 108, 4453–4458 (2011).
52. Filbin, M. G. et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360, 331–335 (2018).
53. Krug, B. et al. Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas. Cancer Cell 35, 782–797.e8 (2019).
54. Harutyunyan, A. S. et al. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nature Commun. 10, 1262 (2019).
55. Vitte, J., Gao, F., Coppola, G., Judkins, A. R. & Giovannini, M. Timing of Smarcb1 and Nf2 inactivation determines schwannoma versus rhabdoid tumor development. Nat. Commun. 8, 300 (2017).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
Methods
Tissue handling and dissociation. Protocols for this study involving human samples were approved by the following: Research Ethics Board, McGill University and Affiliated Hospitals Research Institutes; Research Ethics Board, Hospital for Sick Children; Ethics Review Board, Douglas Mental Health University Institute; Comité d’éthique de la recherche du CIUSSS de l’Estrie—CHUS, Université de Sherbrooke. Animal protocols were approved by the following: Animal Compliance Office, McGill University and Affiliated Hospitals Research Institutes; Animal Care Committee of The Centre for Phenogenomics, Joseph and Wolf Lebovic Centre. We have complied with all relevant ethical regulations. Informed consent was obtained from human research participants.

Mouse embryonic and postnatal brain structures were dissected from the gestational time points E12.5 and E15.5 and from postnatal time points P0, P3 and P6. In the case of the brainstem, an incision was made between the midbrain and hindbrain boundary, as well as between the mediulary hindbrain and spinal cord, to isolate the brainstem from C1 to C6 with the exception of the cerebellar structure that was removed. The mouse forebrain was isolated by a coronal slice as illustrated in Extended Data Fig. 1b, generated using embryonic forces. All mouse dissections were performed under a Leica stereoscope with a pair of Moria ultra fine forceps (Fine Science Tools) in a PBS solution. The tissue was transferred into ice-cold Leibovitz’s medium, followed by single-cell dissociation with the Papain Dissociation System (Worthington Biochemical Corporation).

Fresh human brainstem tissue was obtained from two elective, nonmedically motivated pregnancy terminations at 17 and 19 PCW, with no evidence of developmental abnormalities. Brain cells were individualized using the Worthington Papain Dissociation System (Worthington Biochemical Corporation) and cryopreserved for later use. See Supplementary Note, Section 1 for an analysis of cell-type-specific biases introduced by cryopreservation.

Fresh tumors collected after surgery were enzymatically digested and mechanically dissociated using the papain version of the Brain Tumor Dissociation kit (Miltenyi Biotech) or a collagenase-based dissociation method, as previously reported29 (Supplementary Table 6). PBS used to wash and resuspend the cell pellets was supplemented with 1% BSA (0.05% BSA in the case of collagenase-based dissociation). Red blood cells were lysed by ammonium chloride treatment for 5 min on ice. After counting the cells and verifying their viability with Trypan blue (>60%), dissociated cells (10,000) were processed for library preparation or cryopreserved in CystroY CS10 (StemCell Technologies) for later use (Supplementary Table 6). For samples with low viability (<60%), dissociated cells were first enriched for live cells using the Dead Cell Removal kit (Miltenyi Biotech).

scRNA-seq library preparation. The concentration of the single-cell suspension was assessed with a Trypan blue count. Approximately 10,000 cells per sample were loaded on the Chromium Single Cell 3’ system (10X Genomics). GEM-RT, DynaBeads cleanup, PCR amplification and SPRIselect beads cleanup were performed using Chromium Single Cell 3’ Gel Bead kit. Indexed single-cell libraries were generated using the Chromium Single Cell 3’ Library kit and the Chromium I7 Multiplex Kit. Size, quality, concentration and purity of the complementary DNAs and the following 10X library were evaluated by the Agilent 2100 Bioanalyzer system. The 10X libraries were sequenced in the Illumina 2500 sequencing platform.

snRNA-seq library preparation. Nuclei were prepared as previously described32. Frozen tissue (5–50 mg) was dounced in lysis buffer (10 mM Tris–HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.05% NP-40). Wash and resuspension buffer (PBS, 5% BSA, 1 U ml−1 RNase inhibitor, 0.25% glycerol) was then added and nuclei were passed through a 30-µm cell strainer to remove clumps, centrifuged and resuspended in 1 ml of wash buffer. A 25% iodixanol solution was prepared by mixing 1 ml of Optiprep 50% (Optiprep + solution B: 150 mM KCl, 5 mM MgCl2, 20 mM Tricine, pH 7.8, v/v) layered on 29% Optiprep cushion and centrifuged at 10,000g for 30 min at 4°C. The nuclei pellet was carefully resuspended in wash buffer to reach a concentration of 1,500 nuclei µl−1. As nuclei capture appears to be about 30% less efficient than cell capture33, we aimed to capture 14,000 nuclei per sample. The Chromium Single Cell 3’ (10X Genomics) protocol was strictly followed to prepare libraries.

RNA-seq library preparation. The RNeasy mini kit (Qiagen) was used to extract total RNA from cell pellets according to instructions from the manufacturer. Library preparation was performed with ribosomal RNA depletion according to instructions from the manufacturer (Epicentre or Ribo-Zero Gold Kit; Illumina), with the exception of WNT medulloblastoma samples, where a stranded, poly(A)+-enriched library preparation protocol was followed as described34. Paired-end sequencing was performed on the Illumina HiSeq 2000, 2500 and 4000 platforms.

Cell culture. Tumor-derived cell lines cultured as glioma stem cells were maintained in Neuclnt NS-A proliferation media (StemCell Technologies) supplemented with bFGF (10 ng ml−1) (StemCell Technologies), rhEGF (20 ng ml−1) (StemCell Technologies) and heparin (0.0002%) (StemCell Technologies) on plates coated in poly-l-ornithine (0.01%) (Sigma) and laminin (0.01 mg ml−1) (Sigma).

Lines were cultured to become differentiated glioma cells by adaptation to media of DMEM (4.5 g l−1 glucose, with l-glutamine, sodium pyruvate and phenol red) (Wisent) supplemented with 10% FBS (Wisent) for 2 weeks, while maintained on poly-l-ornithine and laminin-coated plates. All lines tested negative for mycoplasma contamination, checked monthly using the MycoAlert Mycoplasma Detection kit (Lonza). Tumor-derived cell lines were confirmed to match original samples by STR fingerprinting. We thank M. Monje for kindly sharing primary tumor cell lines established from patients with high-grade glioma.

Immunofluorescence. Cells were plated in a Nunc Lab-Tek II Chamber slide system (eight-well) (ThermoFisher Scientific). Slides were fixed with 4% paraformaldehyde in 2% BSA for 15 min at room temperature, followed by washing three times with PBS. Cells were permeabilized with 0.05% Triton X-100, 2% BSA, 5% normal goat serum (NGS) in PBS followed by three PBS washes. Slides were blocked with 2% BSA, 5% NGS in PBS for 1 h, followed by overnight incubation with anti-GEFAP rabbit monoclonal antibody (Cell Signalling, catalog no. 12389) at 1:200 dilution in blocking solution. Cells were washed three times with PBS and incubated for 1 h with 1:500 dilution of goat-anti-rabbit IgG cross-adsorbed secondary antibody, Alexa Fluor 488 (ThermoFisher Scientific) in blocking solution. Slides were washed three times in PBS and Prolong Gold antifade reagent with DAPI (Invitrogen) was applied. Slides were photographed with a Zeiss LSM780 Laser Scanning Confocal Microscope at ×20 and ×63 magnification.

Western blotting. Histone lysates were extracted using the Histone Extraction kit (Millipore). Lysate protein concentration was determined with the Bradford assay reagent (Bio-Rad). Three micrograms of histone was separated on NuPAGE Biss–Tris 10% gels (ThermoFisher Scientific) and wet-transferred to a PVDF membrane (GE Healthcare). Membrane blocking was performed with 5% skimmed milk in Tris-buffered saline (50 mM Tris, 150 mM NaCl, 0.1% Tween-20, pH 7.4) (TBST) for 1 h. Membranes were incubated overnight with primary antibodies in 1% skimmed milk in TBST. Membrane washes were performed three times in TBST, and the secondary antibody (ECL anti-rabbit IgG horseradish peroxidase linked whole antibody) (GE Healthcare) was applied for 1 h in 1% skimmed milk in TBST. Membranes were washed three times and the signal was resolved with Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare) and imaged on a Chemidoc MP Imaging System (Bio-Rad). The antibodies and their concentrations are listed in the Nature Research Reporting Summary.

Bulk RNA-seq data analysis. Initial processing and quality control. Adapter sequences and the first four nucleotides of each read were removed from the read sets using Trimmomatic59 (v.0.32). Reads were scanned from the 5’ end, and truncated when the average quality of a four-nucleotide sliding window fell below a threshold (phred33 < 30). Short reads after trimming (<30 base pairs) were discarded. Quality-control metrics were obtained using FASTQC (v.0.11.2), samtools (v.0.1.19) and BEDTools (v.2.17.0). High-quality reads were aligned to the reference genome hg19 (GRCh37) with STAR (v.2.5.3e) using default parameters. Multimapping reads (MAPQ<1) were discarded from downstream analyses.

Gene expression analysis. Gene expression levels were estimated by quantifying reads uniquely mapped to exonic regions defined by the enGene annotation set from Ensembl (GRCh37; n = 60,234 genes) using featureCounts (v.1.4.4). Nucleosome occupancy (mean-of-ratios) across the genome was calculated with the Ensembl-nucleosome segmentation tool. For all analyses as well as differential expression analysis, were performed using DESeq2 (ref. 60). Unless otherwise stated, all reported P values have been adjusted for multiple testing using the Benjamini–Hochberg procedure. Global changes in expression levels were evaluated by hierarchical clustering of samples and PCA using normalized expression data coupled with variance-stabilized transformation42.

Analysis of scRNA-seq. Initial processing and quality control of sequencing data. Cell Ranger (10X Genomics) was used with default parameters to demultiplex and align sequencing reads, to distinguish cells from background and to obtain gene read counts per cell. Alignment was performed using the hg19 reference genome build, compatible with the Ensembl genome build. In all cases, a genomic annotation for the C19MC cluster (chr19:54161588–54269814), absent as well as differential expression analysis, were performed using DESeq2 (ref. 60). Without otherwise stated, all reported P values have been adjusted for multiple testing using the Benjamini–Hochberg procedure. Global changes in expression levels were evaluated by hierarchical clustering of samples and PCA using normalized expression data coupled with variance-stabilized transformation42.
cell and natural log-normalized. These scaled, log-transformed counts were used for differential expression analyses, computing correlations of gene expression and assessing expression of specific genes and gene sets.

Identification of cell populations and their gene signatures. To allow for different degrees of granularity in our study, cells that passed quality control were analyzed at different levels, by pooling cells (1) from each brain structure (forebrain orpons), (2) from each individual sample or (3) from defined subsets of cells. Human samples (fetal brainstems and tumors) were analyzed individually and never combined. Briefly, for each level, data were subjected to the following steps: normalization, selection of variant genes, regression of unwanted sources of variation, dimensionality reduction, clustering, assignment of cluster labels, extraction of gene signatures and postclustering quality control. Low-quality clusters were filtered out. Clusters that showed internal structure unresolved by the initial clustering approach (for example, embryonic progenitor populations) were extracted, re-embedded and re-clustered. Each one of these steps is detailed in the Supplementary Note, Section 2.

For clusters not robustly defined (that is, not robust to changing algorithm parameters, showing poor cluster validity metrics and not showing clear separation in the t-distributed stochastic neighbor embedding (t-SNE) representation), a discrete clustering approach may not be optimal to represent the underlying cell population structure, which is better modeled as a mixture of cells linked by transitions along a continuum. In these cases, we isolated these cells and performed trajectory analysis to delineate differentiation states (see below).

Identification of active TFs and their regulatory modules. Active TFs and their gene targets in the dataset were inferred using SCENIC41. The SCENIC workflow implements the following steps. First, sets of genes (modules) coexpressed with TFs are identified. Second, modules for each TF are pruned based on motif support near the transcription start sites. Specifically, modules are retained if the TF motif is enriched among its targets, and target genes with motif support are removed. Third, the activity of the regulators is scored and binarized with AUCCell14, which effectively determines whether the genes in each regulon are enriched in each cell using the distribution of regulon activity across all cells in the dataset. Finally, to compute regulon activity in clusters, we averaged the regulon activity across cells in each cluster. The input list of TFs was downloaded from the AnimalTFDB3.0 (ref. 65) database. Inferred regulons and their activity across cells in each cluster are reported in Supplementary Table 3a,b.

Dimensionality reduction was performed using the Discriminative Dimensionality Reduction with Trees algorithm66, with the effect of the number of genes expressed and the mitochondrial percentage removed. The most variant genes were used to order cells along the tree. Cells were assigned a pseudotime according to their distance from the root state, which was manually selected. To display the relationship between cells in pseudotime, a minimum spanning tree was generated.

Identification of TFs differentially expressed across pseudotime. Genes differentially expressed across pseudotime were identified with Monocle, which models gene expression as a smooth, nonlinear function of pseudotime and tests gene expression changes along this pseudotime. For branched lineages (astroependymal; pontine embryonic progenitors), genes differentially expressed between branches of a trajectory were identified using the branched expression analysis modeling algorithm55. This algorithm uses vector generalized linear models with splines to fit the nonlinear gene expression dynamics as a function of pseudotime. The models for two branches are then compared with a likelihood ratio test for branch-dependent expression. TFs among the differentially expressed genes were identified using the AnimalTFDB3.0 (ref. 41) database. Transcription factors with a q value <0.01 are represented in heat maps and reported in Supplementary Table 3. Heat maps were constructed on the basis of expression levels of differentially expressed transcription factors across pseudotime (binning 100 equal units of pseudotime), clustered by unsupervised hierarchical clustering using the Ward2 algorithm. Columns in heat maps correspond to units of pseudotime.

Analysis of single-cell and single-nuclei tumor profiles. Analyses for characterization of CNA, pathway activation, cell cycle stage and expression of tumor-specific gene sets are described in detail in the Supplementary Note.

Integration of tumor data with the single-cell developmental atlas. Projection of bulk and single-cell transcriptomes onto the scRNA-seq atlas. Human bulk RNA-seq transcriptomes were projected across the developmental populations using ssGSEA30. Briefly, the ssGSEA score represents the degree of enrichment of a given gene signature in a sample: gene expression estimates for each sample are rank-normalized and empirical cumulative distribution functions (ECDF) of genes are computed. The final score integrates the difference between a weighted ECDF of genes in the signature and the ECDF of the remaining genes. The GSEA implementation from Bioconductor, v.1.27.0 (ref. 38) provides this functionality with parameter method = “ssgsea”. The following additional parameters were used: mx.diff = FALSE, rnaseq = TRUE, ssgsea.norm = FALSE, tau = 0.75. For mouse signatures, human gene orthologs were used, identified using the Ensembl Biomart database, v.75 (ref. 38).

To identify the specific genes driving the enrichment of a signature in a given tumor type, we derived and implemented a ‘leading-edge’ analysis, similar to the one developed for standard gene-set enrichment analysis30. Briefly, for one signature and sample, we defined the leading-edge gene set as the genes occurring in the rank-normalized gene list at or before the point at which the difference between the two ECDFs reaches its maximum. For each tumor type, we then extracted genes that were in the leading edge of all samples belonging to that type. For each gene, the median rank of expression across samples was computed, and we report the 20–25 genes with the smallest median rank, that is, the highest rank-normalized expression.

The ssGSEA scores for each signature (Supplementary Table 2a) for each bulk sample were computed and used as input for PCA, unsupervised clustering or t-SNE visualizations. t-SNE was performed on the top 50 PCs of the score matrix, with theta = 0.5, 1,000 iterations and perplexity = 15. We performed clustering analysis based on these projections for a range of datasets to verify that the scores were able to segregate distinct sample types. As expected, the scores distinguished fetal from adult brain, tumors from cell lines, normal brain from tumor-adjacent brain and different bulk samples from cell lines of diverse origin.

Human tumor scRNA-seq data were projected onto the developmental dataset at the level of clusters or single cells. At the cluster level, the mean expression of all detected genes was computed for each malignant cluster. The ssGSEA scores were then computed for each cluster as described above.

Deconvolution analysis. CIBERSORT13 was used to perform deconvolution of bulk RNA-seq transcriptomes. The input signature matrix consisted of mean gene expression profiles for clusters in our developmental atlas. Genes appearing in any cluster’s gene signature were used as features. Quantile normalization was disabled, and CIBERSORT was run on relative mode with 100 permutations. We tested CIBERSORT in our setting using synthetic mixtures of mouse populations at varying proportions, representing different degrees of dataset imbalance, and verified that the expected relative ratios were correctly predicted.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
Bulk and single-cell RNA-sequencing data for normal human and patient tumor samples have been deposited in the European Genome-phenome Archive under accession number EGAS00001003363. Single-cell RNA-sequencing data for normal mouse samples have been deposited in NCBI GEO under accession number GSE133531. Bulk RNA-sequencing data for human tumor-derived cell lines have been previously deposited in NCBI GEO and are available under accession number GSE117446.

Code availability
Our R package for analysis and visualization of single-cell RNA-seq data, cytobox, which was used to generate the figures presented here, is available on GitHub at https://github.com/fugenomics/cytobox under a GPL v.3.0 license.

References
56. Nguyen, Q. H. et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat. Commun. 9, 2028 (2018).
57. Nagy, C. et al. Single-nucleus RNA sequencing shows convergent evidence from different cell types for altered synaptic plasticity in major depressive disorder. Preprint at bioRxiv https://doi.org/10.1101/384479 (2019).
58. Morrissy, A. S. et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529, 351–357 (2016).
59. Bolger, A. M., Lohse, M. & Usadel, B. Trimmmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2141–2142 (2014).
60. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
61. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
62. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
63. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 2078–2079 (2014).
64. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Nucleic Acids Res. 47, D42–D47 (2019).
65. Wei, et al. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 47, D33–D38 (2019).
66. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. *Nat. Biotechnol.* 32, 381–386 (2014).

67. Hanzelmann, S., Castelo, R. & Guinney, J. GSEA: gene set variation analysis for microarray and RNA-seq data. *BMC Bioinformatics* 14, 7 (2013).

68. Kinsella, R. J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. *Database (Oxford)* 2011, bat030 (2011).

69. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl Acad. Sci. USA* 102, 15545–15550 (2005).

70. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. *Nat. Methods* 12, 453 (2015).

71. Storm, R. et al. The bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. *Development* 136, 295–305 (2009).

72. Ray, R. S. & Dymecki, S. M. Rautenlippe Redux—toward a unified view of the precerebellar rhombic lip. *Curr. Opin. Cell Biol.* 21, 741–747 (2009).

73. Landsberg, R. L. et al. Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. *Neuron* 48, 933–947 (2005).

74. Wang, V. Y., Rose, M. F. & Zoghbi, H. Y. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. *Neuron* 48, 31–43 (2005).

75. Dipietrantonio, H. J. & Dymecki, S. M. Zic1 levels regulate mossy fiber neuron position and axon laterality choice in the ventral brain stem. *Neuroscience* 162, 560–573 (2009).

76. Morales, D. & Hatten, M. E. Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. *J. Neurosci.* 26, 12226–12236 (2006).

77. Li, S., Qiu, F., Xu, A., Price, S. M. & Xiang, M. Barhl1 regulates migration and survival of cerebellar granule cells by controlling expression of the neurotrophin-3 gene. *J. Neurosci.* 24, 3104–3114 (2004).

78. Hidalgo-Sanchez, M., Backer, S., Puuelles, L. & Bloch-Gallego, E. Origin and plasticity of the subdivisions of the inferior olivary complex. *Dev. Biol.* 371, 215–226 (2012).

Acknowledgements

This work was supported by funding from: a Large-Scale Applied Research Project grant from Genome Quebec, Genome Canada, the Government of Canada and the Ministère de l’Économie, de la Science et de l’Innovation du Québec, with the support of the Ontario Research Fund through funding provided by the Government of Ontario to N.J., M.D.T., C.L.K., P.D.B., G.R. and L.G.; the Canadian Institutes for Health Research (CIHR grant nos. PJT-156086, to C.L.K., and MOP-286756 and FDN-154307, to N.J.); the US National Institutes of Health (NIH grant nos. P01-CA196539, to N.J., R01CA14699 and R01-CA159859, to M.D.T.); the Canadian Cancer Society (CCGSR grant no. 705182), NSERC (grant no. RGPIN-2016-04911) and the Fonds de Recherche du Québec en Santé (FRQS) salary award to C.L.K.; National Sciences and Engineering Research Council (grant no. NSERC-44816-2013) and FRQS (grant no. 25348) to G.B.; CFI Leaders Opportunity Fund (grant nos. 32557, to J.R., and 33902, to C.L.K.), Genome Canada Science Technology Innovation Centre, Compute Canada Resource Allocation Project (grant no. PST-164-AB) and Genome Canada Genome Innovation Node (grant no. 244819) to J.R.; and the Fondation Charles-Bruneau. Data analyses were enabled by computer and storage resources provided by Compute Canada and Calcul Québec. N.J. is a member of the Penny Cole Laboratory and the recipient of a Chercheur Boursier, Chaire de Recherche Award from the FRQS. This work was performed within the context of the International Childhood Astrocortoma Integrated Genomic and Epigenomic (ICHANGE) consortium, and the Stand Up to Cancer (SU2C) Cancer Stem Cell Dream Team Research Funding (grant no. SU2C-AACR-DT-19-15, to M.D.T. and N.J.) and SU2C-Baldrick's Pediatric Dreams Team Translational Research Grant (no. SU2C-AACR-DT1113, to M.D.T.), with funding from Genome Canada and Genome Quebec. Stand Up to Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research. M.D.T. is supported by The Pediatric Brain Tumour Foundation, The Canadian Institutes of Health Research, The Cure Search Foundation, b.r.a.i.n.child, Meagan’s Walk, SWIFTY Foundation, Genome Canada, Genome BC, Genome Quebec, the Ontario Research Fund, Worldwide Cancer Research, V-Foundation for Cancer Research, Cancer Research UK Brain Tumour Award, Canadian Cancer Society Research Institute Impact grant and the Garron Family Chair in Childhood Cancer Research at the Hospital for Sick Children and the University of Toronto. S.J. is supported by a fellowship from CIHR. A.B.-C. is supported by a fellowship from FRQS and TDF/ELD. N.D.J. is a recipient of a fellowship from FRQS and RMGA. M.K.M. is funded by a CIHR Banting postdoctoral fellowship. We thank K. Mann, S. Spira and J. Di Noia for critical reading of the manuscript, and S. Krumholtz for graphical editing of figures. We are especially grateful for the generous philanthropic donations of the Fondation Charles-Bruneau, and the Kat D-DIPG, Poppies for Irina and We Love You Connie Foundations.

Author contributions

S.J. and C.L.K. designed and coordinated analysis of single-cell data. S.J. and A.B.-C. performed the majority of the scRNA-seq data analyses and visualizations. J.M. and G.B. contributed to the CNA analysis. Y.H. contributed to the algorithm for marker gene discovery. E.M.G.C., M.C., A.B.-C. and S.J. analyzed transcription factor activity in the scRNA-seq data. N.D.J., S.H. and S.J. contributed to the analysis of the bulk RNA-seq data and the data availability submission. M.V. contributed to timed mating and tissue isolation in developing mouse embryos. D.F., M.V. and L.K.D. contributed to primary tissue isolation, preparation and production of scRNA-seq libraries. B.K. performed all experiments in cellular models. L.G., S.J., W.T.F. and K.K.M. contributed to literature review and cell cluster annotations. L.G. provided expert advice on identification of developing pre-cerebellar populations. M.K.M. and L.G.M. contributed to the clinical annotation of tumor samples. P.-E.L. and G.T. provided bulk adult human brain RNA-seq samples. M.R., B.P. and A.A. provided human fetal brain samples. B.E., A.G.W, J.A., J.-P.F., R.W.R.D., V.L., L.C., S.A., M.G.E., H.S. and P.B.D. contributed to the collection and processing of tumor samples. J.R. contributed to optimizing the scRNA-seq protocol and provided equipment and expert advice. D.E., C.N. and G.T. contributed to the optimization of snRNA-seq protocols. S.C. helped design computational analyses. S.J., C.L.K. and N.J. wrote the manuscript with input from M.D.T., W.T.F., L.G. and K.K.M. C.L.K., N.J. and M.D.T. supervised the project.

Competing interests

The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41588-019-0531-7.

Supplementary information is available for this paper at https://doi.org/10.1038/s41588-019-0531-7.

Correspondence and requests for materials should be addressed to M.D.T., N.J. or C.L.K.

Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | Overview of the single-cell transcriptomic atlas of the developing brain. a, Overview of the approach. PCW, post-conception weeks. WNT MB, WNT-subtype medulloblastoma; ETMR, embryonal tumors with multilayered rosettes; ATRT, atypical teratoid/rhabdoid tumors; pHGG, pediatric high-grade gliomas; HGNET, high-grade neuroepithelial tumor; LGG, low-grade gliomas. b, Schematics of mouse brain regions included in dissections; figures adapted from the Allen Brain Atlas. At E12.5 and E15.5, the hindbrain (E12.5) and pons (E15.5) dissections included all of the rhombomere 1 structures with the exception of the cerebellar hemisphere, and all of the structures in rhombomeres 2-11. The forebrain dissections included parts of the dorsal pallium, central subpallium, subpallium, and septopallidal transition area. At P0, P3, and P6, the pons dissections included all of the rhombomere 1 structures with the exception of the preoptic hindbrain, and all of rhombomeres 2-11 with the exception of the roof plate structures in rhombomeres 1 to 6. The forebrain dissections included parts of the alar and roof plates of the telencephalon (including the dorsal pallium and medial pallium), and parts of the thalamus in prosomere 2, the prethalamus in prosomere 3, the preoptic alar plate, and the alar parts of the peduncular and terminal hypothalamus (original figures: © 2008 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas. Available from: developingmouse.brain-map.org). c, t-SNE embeddings of individual mouse hindbrain/pons samples, colored by cluster. Number of cells in each sample is indicated in parentheses at bottom left; see Supplementary Table 2a for description of clusters. d, t-SNE embeddings for mouse forebrain samples, as in (c). e, Labeled t-SNE embedding of the joint mouse forebrain (n = 33,641 cells; Supplementary Table 2b). f, Proportion of cells from each major cell class in the forebrain over the timecourse. g-h, Overview of single-cell human fetal brainstem dataset. g, Labeled t-SNE plots for each sample. Number of cells in each sample is indicated in parentheses at bottom left; see Supplementary Table 2a for description of clusters. h, Proportion of cells from each major cell class in human samples.
Extended Data Fig. 2 | See next page for caption.
Extended Data Fig. 2 | Quality control and cell type labeling strategies in scRNA-seq atlas of the developing brain. a, Distribution of quality control statistics for the E12.5 mouse forebrain. UMIs, unique molecular identifiers. Number of cells in each cluster is indicated in parentheses; clusters with >100 cells are shown. Violins are colored by cluster identity, and generated as in Fig. 7. b, Illustration of quantification of cell-type specific gene sets (Supplementary Table 1a) to assign broad cell class. E12.5 mouse forebrain is shown. Number of cells in each cluster is indicated in parentheses. c-d, Gene expression distribution for selected cell type-specific canonical markers (Supplementary Table 1b) in clusters of the joint mouse pons (c) and forebrain (d). Number of cells in each cluster is indicated in Supplementary Table 2b, c. Violins are colored by cluster identity and generated as in Fig. 7, with all violins scaled to the same width. e, Heat maps of Spearman correlations of gene expression between clusters in the mouse dataset in this study (columns), and representative populations from a published atlas of the mouse central nervous system by Zeisel et al, 2018, Cell33 (rows). For populations within the Zeisel et al dataset, a representative cluster was selected from each developmental compartment (see Supplementary Note for details). Color annotation on columns corresponds to cluster identity. Number of cells in each cluster is indicated in Supplementary Table 2a.
Extended Data Fig. 3 | See next page for caption.
Extended Data Fig. 3 | Patterning and differentiation dynamics during forebrain development. a, Re-embedding of mouse forebrain progenitor populations from embryonic time points (n = 7,673 cells). Cells are colored by cluster assignment in the re-embedded t-SNE space. b, t-SNE embedding colored by expression of top discriminant gene markers for each cluster, identified using a random forest-based approach (Supplementary Note). c, In situ hybridization of selected discriminant marker genes, from the Allen Brain Atlas (© 2008 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas. Available from: developingmouse.brain-map.org) d, Visualization of forebrain cells from E12-P0 by t-SNE (n = 25,668 cells). Top row, cell clusters are highlighted by age (left panels), or inferred pseudotime for the cortical excitatory neuron trajectory (right). Bottom row: expression of representative gene markers. Expression of each gene was normalized to a [0, 1] scale for visualization. e, Transcription factor activity along the inferred cortical excitatory neuron trajectory (Supplementary Table 3). f-g, Differentiation dynamics in the ventral forebrain inhibitory lineage as in (d-e). h, Cells in the joint forebrain atlas, as in Extended Data Fig. 1e, colored by inferred pseudotime of astro-ependymal and oligodendrocyte (n = 1,354 cells) lineages (n = 4,496 cells). i, Expression of gene markers representative of astro-ependymal (top) and oligodendrocyte (bottom) differentiation, shown in cells from the respective lineages.
Extended Data Fig. 4 | Mapping of bulk transcriptomes onto developmental populations. Best matching signatures using ssGSEA for all samples within each tumor type. For ATRT tumors, populations from a recently published timecourse of the developing mouse cerebellum spanning E10-P14 were also included in the projections; cerebellar signatures are denoted by ‘CB’. HGNET-BCOR, high-grade neuroepithelial tumor with BCOR alteration; EBT, embryonal brain tumor; HGG-IDH, IDH-mutant high-grade gliomas; HGG-WT, High-grade gliomas wild-type for histone and IDH1/2 mutations; HF, signature from published scRNA-seq human fetal brain dataset containing human cerebral cortex specimens spanning 5-37 PCW. Bars are colored by cluster from which signatures were derived.
Extended Data Fig. 5 | See next page for caption.
Extended Data Fig. 5 | Identification of pontine mossy fiber neurons and lower rhombic lip precursors, and analysis of WNT medulloblastoma scRNA-seq. a, Mossy fiber neuron cluster (n = 198 cells) highlighted in the t-SNE embedding of the PO mouse pons. b, Left: expression of Olig3, a molecular marker of the lower rhombic lip (LRL), the progenitor domain that gives rise to pre-cerebellar neuron populations including mossy fiber (MF) and climbing fiber (CF) neurons12,72. Right: expression of Atoh1, which identifies the MF lineage in the LRL12,73, and is required for their development74. c, Violin plots quantifying expression of genes used to determine cluster identity in the MF neuron population (n = 198 cells). Left: Pax6, Zic1 and Olig3, markers of LRL progenitors that give rise to MF neurons, identified by lineage tracing and loss of function experiments12,72,73. Pax6 regulates cell fate allocation in the LRL73, and Zic1 regulates MF neuron positioning and projections in the developing pons75. Right: Genes marking the MF lineage in the LRL72–74. Barhl1 is required for the formation of MF nuclei, and is expressed in RL-derivatives except for the inferior olivary nucleus (ION, the structure formed by CF neurons, and the source of climbing fibers to the cerebellum)12. d-e, PCA of re-clustered pontine progenitors as in Fig. 2a, with cluster containing LRL precursors highlighted (d) (n = 393 cells), or cells colored by expression of selected gene markers for LRL precursors (e). Expression of each gene was normalized to a [0,1] scale for visualization. f, In situ hybridization of selected markers in the E13.5 mouse from the Allen Brain Atlas illustrating expression patterns in the LRL. g, Expression of Zic1, CTNNB1 and OTX2, mossy fiber neuron marker genes (BARHL1, PCSK9), and climbing fiber neuron marker genes (BRN3A, ASCL1) in the t-SNE embedding of the WNT-MB-1 patient tumor sample (n = 3,975 cells). Expression of each gene was normalized to a [0,1] scale for visualization. Similar expression patterns were observed in the other two patient samples. h, Inferred pseudotime reconstruction from the malignant cells, represented in the t-SNE embedding of the WNT-MB-1 patient tumor sample. i-j, Characterization of two patient WNT medulloblastoma scRNA-seq samples as in Fig. 4. Top left: t-SNE and clustering, with non-malignant clusters labeled, and number of cells indicated in parentheses. Top right: expression of marker genes of malignant tumor clusters. Bottom: cells in malignant tumor clusters colored by pseudotime inferred through trajectory analysis.
Extended Data Fig. 6 | See next page for caption.
Extended Data Fig. 6 | Profiling of TTYH1 expression and characterization of patient ETMR scRNA-seq and snRNA-seq samples. a, Heat maps of TTYH1 expression across developing mouse and human brain samples in this study. Expression was normalized to a [0, 1] scale within each sample for visualization. Number of cells in each cluster is indicated in Supplementary Table 2a. b, Expression of TTYH1 in the developing human brain in datasets from three published scRNA-seq studies which profiled 11 human cerebral cortex specimens spanning 5-37 PCW (left, n = 4,261 cells); progenitor and neuron cell populations from 12 and 13 PCW human neocortex specimens (top right, n = 226 cells); and human pluripotent stem-cell derived forebrain organoids \(^4\) (bottom right, n = 11,838 cells). RG, radial glia; oRG, outer radial glia; vRG, ventricular radial glia; IPC, intermediate progenitor cells; IN, inhibitory neuron; EN, excitatory neuron. Boxplots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. c, Deconvolution (CIBERSORT) analysis of bulk ETMR samples (n = 14), using a panel of signatures from the cortical neuronal lineage. d-f, t-SNE embedding of ETM1 tumor sample (n = 5,427 cells), with cells colored by inferred pseudotime trajectory (d), by best matching cell type when tumor cells were projected onto the developmental atlas using ssGSEA (e), or by expression of selected marker and diagnostic genes (f). Expression of each gene was normalized to a [0, 1] scale for visualization. g-h, Characterization of two additional patient ETMR samples profiled using single-nuclei RNA-sequencing as in Fig. 6. Top left: t-SNE embedding with cells colored by clustering, and number of cells indicated in parentheses. Bottom left: inferred pseudotime. Right: bubble plots of neuronal lineage markers in tumor clusters.
Extended Data Fig. 7 | See next page for caption.
Extended Data Fig. 7 | Characterization and mapping of ATRT patient samples. a, Deconvolution analysis (CIBERSORT) of bulk ATRT patient samples (n = 11), using mouse developmental populations. b, Top 25 leading edge genes driving ssGSEA enrichment of F-e15 Dorsal RGC signature in bulk ATRT samples (n = 11), and other tumor types of focus (ETMR: n = 14, WNT-MB: n = 10, HGG: n = 12). Genes which are specific to the leading edge of ATRT are indicated with boxes; all other genes appear in the leading edge for this signature in other tumors. Boxplots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. c, Best matching developmental populations for bulk tumors by ssGSEA, when the true lineage of origin (glial populations for HGG, and neuronal populations for WNT MB and ETMR) is removed, indicating that most tumors map non-specifically to RGCs in the absence of the lineage of origin. d-e, scRNA-seq profiling of two additional patient ATRT samples as in Fig. 7. Left: t-SNE visualization and clustering, with non-malignant clusters labeled, and number of cells indicated in parentheses. Right panels: mean expression of inferred ATRT subtype, microglia, and cytotoxic T-cell gene signatures, and expression of VIM, represented in t-SNE embedding (top) and violin plots generated as in Fig. 7 (bottom). Expression of each gene set was normalized to a [0, 1] scale for visualization in t-SNE embeddings. f-g, snRNA-seq profiling of two additional patient ATRT samples as in (d-e).
Extended Data Fig. 8 | See next page for caption.
Extended Data Fig. 8 | Differentiation potential is impaired in H3K27M cells. **a-b,** Characterization of the 19 PCW human brainstem astrocytes (n = 258 cells), a predominant best match to H3K27M HGG. **a,** By PCA, the first principal component separates the two populations. **b,** Heat map of expression of genes most strongly positively and negatively correlated with PC1. **c,** Western blot of K27M-mutant H3 protein and total H3 protein confirms presence of mutation and knock-out in each replicate of K27M and KO lines respectively. **d-g,** Analysis of bulk RNA-seq data for DIPG cell lines (n = 2 independent experiments per condition, biological replicates). **d,** PCA plot. SCM, stem cell media; DM, differentiation media. **e,** Volcano plots of differential expression analysis between cells in DM vs. SCM for K27M lines (top) and KO lines (bottom). Red color highlights differentially expressed genes present in the human brainstem astrocyte 2 gene signature (left), and any brainstem or pontine astrocyte gene signature (right). P-values (two-sided Wald test) were adjusted using the Benjamini-Hochberg correction. **f,** Boxplots of log2 fold change of expression for genes in selected developmental signatures, between cells in DM vs. SCM for K27M lines (red) and KO (blue). Statistical significance was assessed using a two-tailed Student’s t-test (p-values: Hindbrain astrocyte: 1.46x10⁻¹⁵; Human astrocyte: 6.85x10⁻⁸; OPC/Oligodendrocyte: 0.14; Excit. Neuron: 0.12; ns: not significant). Boxplots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. **g,** Volcano plot of differential expression analysis between K27M and K27M-KO cell lines in DM; differential expression analysis was performed as described above. **h,** Representative morphology of GFAP⁺ cells among cell lines at 60X magnification. Experiment was repeated, and images are shown, for n = 2 biologically independent replicates per condition. **i,** Bubbleplot of projection of K27M-KO cell lines onto developmental atlas using ssGSEA, shown for the neuroectodermal cell types. The color of the bubbles indicates the change in ssGSEA score for each signature between cell lines in SCM and DM, while the size of the bubbles indicates the ssGSEA score in DM. Cell types are stratified into two rows based on direction of change of the score upon differentiation. No bubbles are shown for clusters with non-specific gene signatures.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a
- Confirmed

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

- Data collection: No software was used in the data collection.
- Data analysis:
 - 10x CellRanger (versions 1.2.1, 1.3.1, 2.0.1, 2.1.1, 2.2.0)
 - Seurat (versions 2.0.0, 2.1.0, 2.3.4)
 - Monocle (version 2.8.0)
 - SCENIC (version 1.1.1-10)
 - Trimmmomatic (version 0.32)
 - FASTQC (version 0.11.2)
 - samtools (version 0.1.19)
 - BEDtools (version 2.17.0)
 - STAR (version 2.3.0e)
 - featureCounts (version 1.4.4)
 - DESeq2 (version 1.18.1)
 - RcisTarget (version 1.2.1)
 - AUCell (version 1.4.1)
 - GSVA (version 1.27.0)
 - Custom R package for single-cell analysis, with code provided with the manuscript, available at https://github.com/fungenomics/cytobox

Statistical analyses were performed using the R computing environment.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Bulk and single-cell RNA sequencing data for normal human and patient tumor samples have been deposited in the European Genome-Phenome Archive under accession number EGAS00001003368. Single-cell RNA sequencing data for normal mouse samples have been deposited in NCBI GEO under accession number GSE133531. Bulk RNA sequencing data for human tumor derived cell lines have been previously deposited in NCBI GEO and are available under accession number GSE117446.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size
For human samples, sample size was determined by the availability of donor and patient-derived material. For the healthy mouse timecourse, sample size was determined based on developmental events in the pons and forebrain relevant to tumor types of focus.

Data exclusions
All of the data acquired was utilized for analysis, and filtering of single-cell clusters not retained for downstream analysis is specified in the Methods.

Replication
We replicated our tumor findings on several patient samples for each tumor type.

Randomization
There was no allocation of samples into random groups.

Blinding
Blinding was not applicable to this study as no effect of treatment or perturbations to the system were assessed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
	Antibodies
✗	Eukaryotic cell lines
✗	Palaeontology
✗	Animals and other organisms
✗	Human research participants
	Clinical data

Methods

n/a	Involved in the study
	ChIP-seq
	Flow cytometry
	MRI-based neuroimaging

Antibodies

Antibodies used
Amersham ECL Rabbit IgG, HRP-linked whole Ab (from donkey) - Company: GE Lifesciences, Catalog number: Cat# NA934, RRID: AB_772206, Clone: NA, Lot number: 16938431, Dilution: 1 in 1000
Anti-Histone H3 antibody - Company: Abcam, Catalog number: Cat# ab1791, RRID: AB_302613, Clone: NA, Lot number: GR300978-2, Dilution: 1 in 2000
Anti-Histone H3.3 Antibody, K27M mutant - Company: Millipore, Catalog number: Cat# ABE419, RRID: AB_2728728, Clone: NA, Lot number: 2738997, Dilution: 1 in 200
GFAP (D1F4Q) XP® Rabbit mAb - Company: Cell Signaling Technology, Catalog number: Cat# 12389, RRID: AB_2631098, Clone: D1F4Q, Lot number: 5, Dilution: 1 in 200
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 - Company: ThermoFischer Scientific, Catalog number: Cat# A-11008, RRID: AB_143165, Clone: NA, Lot number: 2018309, Dilution: 1 in 500
Validation

Anti-GFAP rabbit monoclonal antibody (Cell Signalling #12389) "recognizes endogenous levels of total GFAP protein." (https://www.cellsignal.com/products/primary-antibodies/gfap-d1f4q-xp-rabbit-mab/12389). Our lab determined specificity by testing against negative control cell line (HEK-293T) and observed no non-specific signal by immunofluorescence (data not shown).

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)
Primary tumor cell lines provided by Michelle Monje were established from patients with high-grade glioma. Tumor-derived cell lines cultured as glioma stem cells were maintained in Neuicult NS-A proliferation media (StemCell Technologies) supplemented with bFGF (10ng/mL) (StemCell Technologies), rhEGF (20 ng/mL) (StemCell Technologies) and heparin (0.0002%) (StemCell Technologies) on plates coated in poly-L-ornithine (0.01%) (Sigma) and laminin (0.01 mg/mL) (Sigma). Lines were cultured to become differentiated glioma cells by adaptation to media of DMEM (4.5g/L glucose, with L-glutamine, sodium pyruvate and phenol red) (Wisent) supplemented with 10% fetal bovine serum (Wisent) for two weeks, while maintained on poly-L-ornithine and laminin coated plates.

Authentication
Tumor-derived cell lines were confirmed to match original samples by STR fingerprinting.

Mycoplasma contamination
All lines tested negative for mycoplasma contamination, checked monthly using the MycoAlert Mycoplasma Detection Kit (Lonza).

Commonly misidentified lines
No commonly misidentified cell lines were used.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals
For obtaining samples of healthy mice along the developmental timecourse, C57BL6 mice were used at the following time points: E12.5 and E15.5 and postnatal days P0, P3 and P6. Both male and female mice were used.

Wild animals
The study did not involve wild animals.

Field-collected samples
The study did not involve samples collected from the wild.

Ethics oversight
Animal protocols for this study were approved by the following:
Animal Compliance Office, McGill University and Affiliated Hospitals Research Institutes
Animal Care Committee of The Centre for Phenogenomics, Joseph and Wolf Lebovic Centre

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics
Patients diagnosed with pediatric brain tumors (of the subtypes ETMR, ATRT, or WNT medulloblastoma) were recruited from McGill University Health Centre and the Hospital for Sick Children/The Arthur and Sonia Labatt Brain Tumour Research Centre Biobank

Recruitment
NA

Ethics oversight
Protocols for this study involving human samples were approved by the following:
Research Ethics Board, McGill University and Affiliated Hospitals Research Institutes
Research Ethics Board, Hospital for Sick Children
Ethics Review Board, Douglas Mental Health University Institute
Comité d’éthique de la recherche du CIUSSS de l’Estrie - CHUS, Université de Sherbrooke

Note that full information on the approval of the study protocol must also be provided in the manuscript.