Endocytoscopic visualization of squamous cell islands within Barrett’s epithelium

Nicholas Eleftheriadis, Haruhiro Inoue, Haruo Ikeda, Manabu Onimaru, Akira Yoshida, Toshihisa Hosoya, Roberta Maselli, Shin-ei Kudo

AIM: To study the endocytoscopic visualization of squamous cell islands within Barrett’s epithelium.

METHODS: Endocytoscopy (ECS) has been studied in the surveillance of Barrett’s esophagus, with controversial results. In initial studies, however, a soft catheter type endocytoscope was used, while only methylene blue dye was used for the staining of Barrett’s mucosa. Integrated type endocytoscopes (GIF-Q260 EC, Olympus Corp, Tokyo, Japan) have been recently developed, with the incorporation of a high-power magnifying endocytoscope into a standard endoscope together with narrow-band imaging (NBI). Moreover, double staining with a mixture of 0.05% crystal violet and 0.1% of methylene blue (CM) during ECS enables higher quality images comparable to conventional hematoxylin eosin histopathological images.

RESULTS: In vivo endocytoscopic visualization of papillary squamous cell islands within glandular Barrett’s epithelium in a patient with long-segment Barrett’s esophagus is reported. Conventional white light endoscopy showed typical long-segment Barrett’s esophagus, with small squamous cell islands within normal Barrett’s mucosa, which were better visualized by NBI endoscopy. ECS after double CM staining showed regular Barrett’s esophagus, while higher magnification (× 480) revealed the orifices of glandular structures better. Furthermore, typical squamous cell papillary protrusion, classified as endocytoscopic atypia classification (ECA) 2 according to ECA, was identified within regular glandular Barrett’s mucosa. Histological examination of biopsies taken from the same area showed squamous epithelium within glandular Barrett’s mucosa, corresponding well to endocytoscopic findings.

CONCLUSION: To our knowledge, this is the first report of in vivo visualization of esophageal papillary squamous cell islands surrounded by glandular Barrett’s epithelium.

© 2013 Baishideng. All rights reserved.

Key words: Endocytoscopy; Barrett’s esophagus; Surveillance; Endocytoscopic atypia classification; Crystal violet; Methylene blue; Hematoxylin eosin stain

Core tip: Endocytoscopy has been also studied in surveillance of Barrett’s esophagus, with controversial results. In initial studies, however, a soft catheter type endocytoscope was used, while only methylene blue dye was used for staining of Barrett’s mucosa. In the present study, in vivo endocytoscopic visualization of papillary squamous cell islands within glandular Barrett’s epithelium in a patient with long-segment Barrett’s esophagus is reported.
Endocytoscopy (ECS) with ultra-high magnification (√400-1100) represents the most recent innovation in endoscopic imaging, permitting in vivo cellular imaging of gastrointestinal (GI) mucosa and visualization of nuclear atypia in neoplastic lesions during routine endoscopic examination[1-3]. Not only structural atypia, but also cellular atypia, with observation of lumens and nuclei, is achieved by recent advances in ECS[4-9].

Two different integrated type endoscopes (GIF-Q260, Olympus Medical Systems Corp, Tokyo, Japan) have been recently developed[6,10,11]. The first is a dual charged couple device (CCD) integrated type (CIF-Y0001, EC1 Olympus, Tokyo, Japan) and the other is a single CCD integrated type (CIF-Y0002, EC2 Olympus).

The dual CCD prototype carries both conventional magnification (√80) and ultra-high magnification (√480) abilities, which can be easily interchanged by pressing a button on the endocytoscope[2,6].

The single CCD prototype endocytoscope (CIF-Y0002, EC2 Olympus) has only one lens that can consecutively increase the magnification power from the conventional magnification power to √380 using a hand lever. The video processor (prototype, Olympus CV-260X) with a light source (Olympus CLV-260) allows narrow-band imaging (NBI)[2].

Methylene blue or toluidine blue single staining was initially used for endocytoscopic evaluation of esophageal lesions[4,6,10,11]. Recently, however double staining with a mixture of 0.05% crystal violet and 0.1% methylene blue (CM) has been also proposed during ECS[2,3]. Crystal violet alone effectively stains the cytoplasm, while methylene blue single staining dyes both nuclei and cytoplasm, revealing details of cell structure[1,13]. Double CM staining enables well balanced staining of both cytoplasm and nuclei, resulting in improved endocytoscopic visualization of GI lesions, comparable to conventional hematoxylin and eosin histopathological images[4].

Minami et al[15] has recently described a five type endocytoscopic atypia classification (ECA) of esophageal squamous cell lesions based on size and uniformity of nuclei, number of cells and regularity of cellular arrangement. ECA-1 to ECA-3 lesions correspond to histological categories 1 to 3, according to the revised Vienna[14] histological classification of gastrointestinal epithelial neoplasia, while ECA-4 to ECA-5 lesions correspond to Vienna categories 4 to 5 (Table 1). According to the results of Minami et al[15], overall accuracy of ECS in evaluation of esophageal squamous cell lesions was 91.3%, providing images similar to conventional hematoxylin and eosin staining[2]. Other endocytoscopic atypia classification systems of esophageal lesions based on “nuclear density” and “nuclear abnormality” have also been studied, with promising results[16].

Endocytoscopy has also been studied in surveillance of Barrett’s esophagus, with controversial results[16,17]. In initial studies, however, a soft catheter type endocytoscope was used, while only methylene blue dye was used for staining of Barrett’s mucosa[16,17]. Although a standardized endocytoscopic atypia classification system for Barrett’s esophageal glandular lesions has not been yet described, endocytoscopically, dysplasia was diagnosed on the basis of polarity of cells and nuclei (spacing, orientation); size, shape and uniformity of nuclei; chromatin; nucleoli; and nucleus to cytoplasm ratio[16].

In the present study, in vivo endocytoscopic visualization of papillary squamous cell islands within glandular Barrett's epithelium in a patient with long-segment Barrett’s esophagus is reported.

Materials and Methods

The dual CCD integrated prototype endocytoscope (CIF-Y0001, EC1 Olympus, Tokyo, Japan) was used for evaluation of long-segment Barrett’s esophagus in the present study. In order to compare endocytoscopic images to histological images, biopsies were taken from the same area of ECS by an experienced endoscopist.

Conventional magnifying endoscopy and ECS was performed under conscious sedation with intravenous pethidine hydrochloride (35 mg; Opystan, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan), supplemented with diazepam (5-10 mg, Takeda Pharmaceutical Co., Osaka, Japan). In order to suppress esophageal peristalsis, scopolamine butylbromide (20 mg; Buscopan, Boehringer Ingelhein, GmbH, Ingelheim, Germany) was also administered intravenously. Conventional and ultra-high magnification examination was performed simultaneously. Flushing with water containing a small amount of simethicone was carried out to eliminate gas and foamy mucus from the esophagus before the procedure.

Conventional white light endoscopy (WLE) showed typical long-segment Barrett’s esophagus, without visible lesions (Figure 1A). NBI clearly visualized small squamous cell islands within normal Barrett’s mucosa, which were also identified by WLE with difficulty (Figure 1B).

After double CM staining, ECS with gradual magnification followed. A total amount of 10 mL CM mixture was directly injected through the working channel with a 5 mL syringe to esophageal Barrett’s mucosa. No catheter spray was necessary. The CM mixture is routinely prepared for ECS use, from 0.05% crystal violet and 0.1% methylene blue dye solutions. After waiting 60 s to stain nuclei and cytoplasm, ECS followed.

Results

Initially, detailed endocytoscopic observation on the back-
The Endoscopic Atypia (ECA) Classification[10] for superficial esophageal squamous cell lesions is as follow: ECA 1: Large, cytoplasm-rich cells with a rhomboid shape are found in a regular arrangement. Small nuclei are located at their center. This appearance corresponds to healthy squamous epithelium in the esophagus; ECA 2: The cell margin often becomes round. Different-sized small nuclei are observed. The image often shows inflammatory or reactive changes; ECA 3: The cell becomes smaller in size but the nuclei are still compact. This appearance is often observed in borderline lesions; ECA 4: The number of cells increases with an increased nucleus-cytoplasm ratio. This appearance strongly suggests a malignant lesion; ECA 5: Cells of various sizes are arranged irregularly with a high nucleus-cytoplasm ratio. This appearance is recognized endoscopically as a definitely malignant lesion. All images were categorized according to size and uniformity of nuclei, number of cells and regularity of cellular arrangement. Higher ECA category is associated with stronger atypia.[11,12].

By convention, there are four broad categories used by pathologists to describe the dysplastic process in Barrett’s esophagus (Figure 1C), while with higher magnification the adenomatous Barrett’s glandular otiffes were better visualized (Figure 1D). Particularly, high quality endocytoscopic images revealed normal cellular structures, with cells similar in size and shape, without crowding or overlapping and an equal uptake of methylene blue, uniformly oriented in a glandular structure. Furthermore, nuclei were uniform, regular in shape, small in size with normal nucleus/cytoplasm ratio.

Subsequently, ECS focused on the largest squamous cell island surrounded by regular Barrett’s epithelium, which was previous identified by NBI. A typical squamous papillary protrusion was clearly identified within regular glandular Barrett’s mucosa (Figure 2A). Endocytoscopic findings revealed combined round-shaped cytoplasm-rich cells in an almost regular arrangement, while different sized small nuclei were observed, corresponding to ECA2 according to endocytoscopic atypia classification[5] (Figure 2A). These findings were suggestive of mild inflammatory changes of esophageal squamous epithelium (DWD).

After detailed observation, biopsies were taken from the same area in order to obtain a pathological diagnosis. The location of endocytoscopic images were matched to histological images and complete correspondence of endocytoscopic images with histopathological images was obtained (Figure 2) based on the records of endocytoscopic examination (DVD).

Histological examination showed squamous epithelium within non-dysplastic columnar Barrett’s epithelium (Figure 2B). No dysplasia or atypia was found in histopathology of both squamous cell islands and adenomatous Barrett’s epithelium, which was in accordance with endocytoscopic images.

DISCUSSION

Barrett’s esophagus is the transformation of the normal squamous esophageal mucosa into columnar epithelium and is considered a premalignant condition with high risk of esophageal adenocarcinoma[19-21]. Traditionally, the diagnosis of Barrett’s esophagus is based on histology of biopsy specimens and hematoxylin eosin stain, revealing glandular structures combined with goblet cells[22,23]. The presence of goblet cells is the sine qua non of Barrett’s esophagus[24].

Long-term endoscopic surveillance with multiple and repeated sets of biopsies are the standard recommended practice in Barrett’s esophagus in an attempt to detect dysplasia or carcinoma at an early and potentially curable stage[24-29]. The Seattle multiple biopsy protocol (4 quadrant jumbo biopsies every 1 cm with additional biopsies of mucosal abnormalities), is considered to be the optimal method for surveillance of Barrett’s esophagus, although it has never been validated[27,30]. However, even the most intensive biopsy protocols are associated with significant sampling errors.[31,32]

By convention, there are four broad categories used by pathologists to describe the dysplastic process in Barrett’s: (1) no dysplasia; (2) indefinite for dysplasia; (3) low-grade dysplasia; and (4) high-grade dysplasia; which corresponds to groups 1 to 4 according to the revised Vienna[10] classification for gastrointestinal epithelial neoplasia. The most significant category, high-grade dysplasia, is characterized by carcinoma in situ with malignant cells that do not invade the lamina propria. Category (5) corresponds to submucosal invasion by carcinoma[13,18].

However, the ability to grade dysplasia remains a subjective endeavor, particularly outside specialized centers with expert gastrointestinal pathologists[33]. Even among focused gastrointestinal pathologists there is discordance, particularly with regard to the presence of low-grade dysplasia[34]. This lack of precision inherent in histopathological grading has stimulated efforts to identify alternative methods of surveillance in patients with Barrett’s esophagus, including more objective molecular and biochemical indicators of an increased risk for progression[35].

ECS is a revolutionized endoscopic imaging technique aiming to replace the histological examination of biopsy specimens, making “optical biopsy” possible while facilitating real time decision-making[6].

ECS after double CM staining using modern integrated type endocytoscopes enables in vivo visualization of living cells and evaluation of tissue atypia by approximating the tip of the endoscope onto the mucosal surface[10].
Cytoscope was used, endocytoscopic evaluation of long-segment Barrett’s esophagus in the present study was performed by a dual CCD integrated endocytoscope [2]. This scope has the advantage of gradual magnification at the center of the monitor, ensuring biopsies from the same area of ECS. This is important to compare endocytoscopic images to histological images. Standard endoscopy, supplemented by NBI and conventional magnification endoscopy was also performed by the same endoscope [2].

Another interesting finding of the present study is the No serious complications of ECS have been reported yet [6].

At present, a standardized endocytoscopic atypia classification system has been described for esophageal squamous cell lesions [3] and colorectal adenomatous lesions. ECS has been also applied for Barrett’s esophagus [16,17,35,36], with controversial results, however, and without a standardized endocytoscopic classification system.

In contrast to previous endocytoscopic studies in Barrett’s esophagus [16,17], where a soft catheter type endocytoscope was used, endocytoscopic evaluation of long-segment Barrett’s esophagus in the present study was performed by a dual CCD integrated endocytoscope [2]. This scope has the advantage of gradual magnification at the center of the monitor, ensuring biopsies from the same area of ECS. This is important to compare endocytoscopic images to histological images. Standard endoscopy, supplemented by NBI and conventional magnification endoscopy was also performed by the same endoscope [2].

No serious complications of ECS have been reported yet [6].

Figure 1 White light endoscopy, narrow-band imaging and endocytoscopy examination of long segment Barrett’s esophagus. A: Long segment Barrett’s esophagus under white light endoscopy (WLE); B: Narrow-band imaging with low magnification clearly visualized small squamous cell islands within regular columnar Barrett’s epithelium, which are also identified by WLE with difficulty; C: Endocytoscopy (ECS) examination after crystal violet and methylene blue (CM) double staining; D: ECS examination under higher magnification (× 480) shows the glandular orifices of regular Barrett’s epithelium.

Figure 2 Endocytoscopy examination of histologically confirmed squamous cell islands within Barrett’s esophagus. A: Endocytoscopy (ECS) examination shows squamous cell islands, within regular glandular structures of Barrett’s esophagus. According to ECS examination, squamous papillary structure is classified as ECA2, (round-shaped cells with different-sized small nuclei, suggestive of inflammatory changes); B: Histological examination (hematoxylin and eosin stain magnification) of biopsies from the same area as in Figure (A) confirmed the presence of a squamous papillary structure surrounded by Barrett’s glandular epithelium.
use of the double CM staining technique, which provided higher quality endocytoscopic images of both Barrett’s metaplastic epithelium and esophageal squamous cell islands. Although double CM staining has been used in ECS of esophageal squamous cell lesions, to our knowledge, it has not been previously reported in endocytoscopic evaluation of Barrett’s esophagus.

ECS may further allow target biopsy, as in the presented case, which is extremely important in surveillance of Barrett’s esophagus where random biopsy protocols are currently in use. In the present case, ECS permitted in vivo high quality images of squamous cell islands within long-segment Barrett’s epithelium comparable to histology. To our knowledge, this is the first report of in vivo visualization of typical esophageal squamous cell islands surrounded by glandular Barrett’s epithelium. According to the positive results of the present study, although from only one case, endocytoscopic evaluation of Barrett’s mucosa is promising. However, further studies and expertise are necessary.

REFERENCES

1. Inoue H, Yokoyama A, Kudo SE. [Ultrahigh magnifying endoscopy: development of CM double staining for endocytoscopy and its safety]. Nihon Rinsho 2010; 68: 1247-1252 [PMID: 20662202]
2. Minami H, Inoue H, Yokoyama A, Ikeda H, Satohate D, Hamatani S, Haji A, Kudo S. Recent advancement of observing living cells in the esophagus using CM double staining: endocytoscopy atypia classification. Dis Esophagus 2012; 25: 235-241 [PMID: 21895852 DOI: 10.1111/j.1442-2050.2011.01241.x]
3. Kumagai Y, Kawada K, Yamanaka K, Iida M, Ochiai T, Matsumata S, Ochiai T, Momani S, Chiba Y, Wada S. Diagnosis of colorectal lesions with a novel endocytoscopic classification - a pilot study. Endoscopy 2011; 43: 869-875 [PMID: 21835856 DOI: 10.1055/s-0030-1256663]
4. Kumagai Y, Kawada K, Yamanaka K, Iida M, Ochiai T, Matsumata S, Chiba Y, Wada S. Diagnosis of colorectal lesions with a novel endocytoscopic classification - a pilot study. Endoscopy 2011; 43: 869-875 [PMID: 21835856 DOI: 10.1055/s-0030-1256663]
5. Inoue H, Yokoyama A, Kudo SE. [Ultrahigh magnifying endoscopy: development of CM double staining for endocytoscopy and its safety]. Nihon Rinsho 2010; 68: 1247-1252 [PMID: 20662202]
6. Minami H, Inoue H, Yokoyama A, Ikeda H, Satohate D, Hamatani S, Haji A, Kudo S. Recent advancement of observing living cells in the esophagus using CM double staining: endocytoscopy atypia classification. Dis Esophagus 2012; 25: 235-241 [PMID: 21895852 DOI: 10.1111/j.1442-2050.2011.01241.x]
7. Kumagai Y, Kawada K, Yamanaka K, Iida M, Ochiai T, Matsumata S, Chiba Y, Wada S. Diagnosis of colorectal lesions with a novel endocytoscopic classification - a pilot study. Endoscopy 2011; 43: 869-875 [PMID: 21835856 DOI: 10.1055/s-0030-1256663]
8. Neumann H, Fuchs FS, Vieth M, Atrey A, Schierenberg J, Kiesslich R, Neurath MF. Review article: in vivo imaging by endocytoscopy. Aliment Pharmacol Ther 2011; 33: 1183-1193 [PMID: 21457290 DOI: 10.1111/j.1365-2036.2011.04647.x]
9. Galloro G. High technology imaging in digestive endoscopy. World J Gastroenterol 2010; 16: 5016-5019 [PMID: 20976836 DOI: 10.3748/wjg.v16.i40.5016]
10. Neumann H, Fuchs FS, Vieth M, Atrey A, Schierenberg J, Kiesslich R, Neurath MF. Review article: in vivo imaging by endocytoscopy. Aliment Pharmacol Ther 2011; 33: 1183-1193 [PMID: 21457290 DOI: 10.1111/j.1365-2036.2011.04647.x]
11. Galloro G. High technology imaging in digestive endoscopy. World J Gastroenterol 2010; 16: 5016-5019 [PMID: 20976836 DOI: 10.3748/wjg.v16.i40.5016]
12. Neumann H, Fuchs FS, Vieth M, Atrey A, Schierenberg J, Kiesslich R, Neurath MF. Review article: in vivo imaging by endocytoscopy. Aliment Pharmacol Ther 2011; 33: 1183-1193 [PMID: 21457290 DOI: 10.1111/j.1365-2036.2011.04647.x]
13. Galloro G. High technology imaging in digestive endoscopy. World J Gastroenterol 2010; 16: 5016-5019 [PMID: 20976836 DOI: 10.3748/wjg.v16.i40.5016]
14. Inoue H, Yokoyama A, Ikeda H, Satohate D, Hamatani S, Haji A, Kudo S. Recent advancement of observing living cells in the esophagus using CM double staining: endocytoscopy atypia classification. Dis Esophagus 2012; 25: 235-241 [PMID: 21895852 DOI: 10.1111/j.1442-2050.2011.01241.x]
15. Kumagai Y, Kawada K, Yamanaka K, Iida M, Ochiai T, Matsumata S, Chiba Y, Wada S. Diagnosis of colorectal lesions with a novel endocytoscopic classification - a pilot study. Endoscopy 2011; 43: 869-875 [PMID: 21835856 DOI: 10.1055/s-0030-1256663]
16. Neumann H, Fuchs FS, Vieth M, Atrey A, Schierenberg J, Kiesslich R, Neurath MF. Review article: in vivo imaging by endocytoscopy. Aliment Pharmacol Ther 2011; 33: 1183-1193 [PMID: 21457290 DOI: 10.1111/j.1365-2036.2011.04647.x]
17. Galloro G. High technology imaging in digestive endoscopy. World J Gastroenterol 2010; 16: 5016-5019 [PMID: 20976836 DOI: 10.3748/wjg.v16.i40.5016]
groups and DNA-aldehyde molecules in cell nuclei. Micros. Acta 1982; 85: 361-368 [PMID: 6175883]

13 Dixon MF. Gastrointestinal epithelial neoplasia: Vienna revisited. Gut 2002; 51: 130-131 [PMID: 12077106 DOI: 10.1136/gut.51.1.130]

14 Stolte M. The new Vienna classification of epithelial neoplasia of the gastrointestinal tract: advantages and disadvantages. Virchows Arch 2003; 442: 99-106 [PMID: 12596058 DOI: 10.1007/s00428-002-0680-3]

15 Kumagai Y, Kawada K, Yamazaki S, Iida M, Momma K, Odajima J, Kawachi H, Nemoto T, Kawanoo T, Takubo K. Endoscopic observation for esophageal squamous cell carcinoma: can biopsy histology be omitted? Dis Esophagus 2009; 22: 505-512 [PMID: 19302209 DOI: 10.1111/j.1442-2050.2009.00952.x]

16 Eberl T, Jechart G, Probst A, Golczcyk M, Bittinger M, Scheuebl R, Arnholdt H, Knuechel R, Messmann H. Can an endocytoscopic system (ECS) predict histology in neoplastic lesions? Endoscopy 2007; 39: 497-501 [PMID: 17554643 DOI: 10.1055/s-2007-966446]

17 Pohl H, Koch M, Khalifa A, Papanikolaou JS, Scheiner K, Wiedenmann B, Rosch T. Evaluation of endocytoscopy in the surveillance of patients with Barrett’s esophagus. Endoscopy 2007; 39: 492-496 [PMID: 17554642 DOI: 10.1055/s-2007-966340]

18 Oh DS, Deemeister SR. Pathophysiology and treatment of Barrett’s esophagus. World J Gastroenterol 2010; 16: 3762-3772 [PMID: 20698138 DOI: 10.3748/wjg.v16.i30.3762]

19 Hameeteman W, Tytgat GN, Houthoff HJ, van den Tweel JG. Barrett’s esophagus: development of dysplasia and adenocarcinoma. Gastroenterology 1989; 96: 1249-1256 [PMID: 2703113]

20 Katona BW, Falk GW. Barrett’s esophagus surveillance: When, how often, does it work? Gastroint Endosc Clin N Am 2011; 21: 9-24 [PMID: 21124940 DOI: 10.1016/j.gie.2010.09.003]

21 Flejou JF. Barrett’s oesophagus: from metaplasia to dysplasia and cancer. Gut 2005; 54 Suppl 1: i6-i12 [PMID: 15711008 DOI: 10.1136/gut.2004.041525]

22 Wood NJ. Barrett esophagus: Need for ongoing surveillance called into question for patients with non-dysplastic Barrett esophagus. Nat Rev Gastroenterol Hepatol 2011; 8: 657 [PMID: 22138905 DOI: 10.1038/nrsgastro.2011.204]

23 Bergman JJ, Tytgat GN. New developments in the endoscopic surveillance of Barrett’s esophagus. Gut 2005; 54 Suppl 1: i8-i42 [PMID: 15711007 DOI: 10.1136/gut.2004.041590]

24 Odze RD. What the gastroenterologist needs to know about the histology of Barrett’s esophagus. Curr Opin Gastroenterol 2011; 27: 389-396 [PMID: 21543978 DOI: 10.1097/MOG.0b013e32834f5651]

25 Oberg S, DeMeester TR, Peters JH, Hagen JA, Nigro JJ, DeMeester SR, Theisen J, Campos GM, Crookes PF. The extent of Barrett’s esophagus depends on the status of the lower esophageal sphincter and the degree of esophageal acid exposure. J Thorac Cardiovasc Surg 1999; 117: 572-580 [PMID: 10047662 DOI: 10.1016/S0022-5223(99)70337-5]

26 Gupta N, Mathur SC, Dumot JA, Singh V, Gaddam S, Wani SB, Bansal A, Rastogi A, Goldblum JR, Sharma P. Adequacy of esophageal squamous mucosa specimens obtained during endoscopy; are standard biopsies sufficient for postablative surveillance in Barrett’s esophagus? Gastrointest Endosc 2012; 75: 11-18 [PMID: 21907985 DOI: 10.1016/j.gie.2011.06.040]

27 Abrams JA, Kapel RC, Lindberg GM, Saboorian MH, Genta RM, Neugut AI, Lichtblau CJ. Adherence to biopsy guidelines for Barrett’s esophagus surveillance in the community setting in the United States. Clin Gastroenterol Hepatol 2009; 7: 736-742 [PMID: 19288726 DOI: 10.1016/j.cgh.2008.12.027]

28 Seewald S, Ang TL, Groth S, Zhong Y, Bertschinger P, Altorfer J, Tonke F, Soehendra N. Detection and endoscopic therapy of early esophageal adenocarcinoma. Curr Opin Gastroenterol 2008; 24: 521-529 [PMID: 18622170 DOI: 10.1097/MOG.0b013e3282f4b1f]

29 Ramsu JR, Gatenby PA, Caygill CP, Winslet MC, Watson A. Surveillance of Barrett’s columnar-lined oesophagus in the UK: endoscopic intervals and frequency of detection of dysplasia. Eur J Gastroenterol Hepatol 2009; 21: 636-641 [PMID: 19177028 DOI: 10.1111/j.1442-2050.2008.00813.x]

30 Peters FP, Curvers WL, Rosmolen WD, de Vries CE, Ten Kate FJ, Krishnadath KK, Fockens P, Bergman J. Surveillance history of endoscopically treated patients with early Barrett’s neoplasia: nonadherence to the Seattle biopsy protocol leads to sampling error. Dis Esophagus 2008; 21: 475-479 [PMID: 18430166 DOI: 10.1111/j.1442-2050.2008.00813.x]

31 Karir R, Plessop TC, Goldblum JR, Bronner M, Oldenburgh M, Rice TW, Falk GW. The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less intensive surveillance protocol. Clin Gastroenterol Hepatol 2009; 7: 653-668, quiz 606 [PMID: 19264576 DOI: 10.1016/j.cgh.2008.11.024]

32 Mannath J, Ragunath K. Era of Barrett’s surveillance: does equipment matter? World J Gastroenterol 2010; 16: 4640-4645 [PMID: 20872963 DOI: 10.3748/wjg.v16.i15.4640]

33 Ali Khan M, Rex D, Khan A, Rahmani E, Cummings O, Ulbright TM. Variable pathologic interpretation of columnar lined esophagus by general pathologists in community practice. Gastroint Endosc 1999; 50: 23-26 [PMID: 10385717]

34 Skacel M, Petras RE, Gramlich TL, Sigel JE, Richter JE, Goldblum JR. The diagnosis of low-grade dysplasia in Barrett’s oesophagus and its implications for disease progression. Am J Gastroenterol 2000; 95: 3383-3387 [PMID: 11151865 DOI: 10.1111/j.1572-0241.2000.03348.x]

35 Thekkkek N, Anandasabapathy S, Richards-Kortum R. Optical molecular imaging for detection of Barrett’s-associated neoplasia. World J Gastroenterol 2011; 17: 53-62 [PMID: 21210804 DOI: 10.3748/wjg.v17.i1.53]

36 Shukla R, Abidi WM, Richards-Kortum R, Anandasabapathy S. Endoscopic imaging: How far are we from real-time histology? World J Gastrointest Endosc 2011; 3: 183-194 [PMID: 22015349 DOI: 10.4253/wjge.v3.i10.183]