Lysophospholipid (LPL) has long been recognized as a membrane phospholipid metabolite. Recently, however, the LPL has emerged as a candidate for diagnostic and pharmacological interest. LPLs include lysophosphatidic acid (LPA), alkyl glycerol phosphate (AGP), cyclic phosphatidic acid (cPA), and sphingosine-1-phosphate (S1P). These biologically active lipid mediators serve to promote a variety of responses that include cell proliferation, migration, and survival. These LPL-related responses are mediated by cell surface G-protein-coupled receptors and also intracellular receptor peroxisome proliferator-activated receptor gamma (PPAR\(\gamma\)). In this paper, we focus mainly on the most recent findings regarding the biological function of nuclear receptor-mediated lysophospholipid signaling in mammalian systems, specifically as they relate to health and diseases. Also, we will briefly review the biology of PPAR\(\gamma\) and then provide an update of lysophospholipids PPAR\(\gamma\) ligands that are under investigation as a therapeutic compound and which are targets of PPAR\(\gamma\) relevant to diseases.

1. Introduction

Peroxisome proliferator-activated receptor gamma (PPAR\(\gamma\)) is a member of the nuclear hormone receptor superfamily, many of which function as ligand-activated transcription factors [1]. Synthetic agonists of PPAR\(\gamma\) include the thiazolidinedione (TZD) class of drugs, which are widely used to improve insulin sensitivity in type II diabetes. Despite the beneficial effects of PPAR\(\gamma\) on glucose and lipid homeostasis, excess PPAR\(\gamma\) activity can be deleterious. These classical PPAR\(\gamma\) agonists elicit a variety of side effects, including weight gain, edema, increased fat mass, and tumor formation in rodents [2]. In contrast, there have been many reports in which the putative physiological agonists of PPAR\(\gamma\) have been identified [3–5]. LPA is a naturally occurring phospholipid with growth-like effects in almost every mammalian cell type. LPas elicit their biological responses through eight plasma membrane receptors [6] and intracellularly through the PPAR\(\gamma\) [3, 4]. Although LPA derived from hydrolysis of plasma membrane phospholipids is established as a ligand for G-coupled cell surface LPA receptor, studies suggested that LPA might also enter cells to activate PPAR\(\gamma\). PPAR\(\gamma\) plays a role in regulating lipid and glucose homeostasis, cell proliferation, apoptosis, and inflammation [7, 8]. These pathways have a direct impact on human diseases in obesity, diabetes, atherosclerosis, and cancer [9–11]. On the other hand, cyclic phosphatidic acid (cPA), similar in structure to LPA, can be generated by phospholipase D2 (PLD2) and negatively regulate PPAR\(\gamma\) functions (Figure 1). cPA shows several unique actions compared to those of LPA. cPA inhibits cell proliferation, whereas LPA stimulates it [12–16]. It has been reported that cPA attenuates cancer cell invasion; moreover, metabolically stabilized derivative of cPA suppressed cancer cell metastasis [17, 18]. cPA is a second messenger and a physiological inhibitor of PPAR\(\gamma\), revealing that PPAR\(\gamma\) is regulated by agonists as well as by antagonists.

2. Receptors and Signaling

2.1. Intracellular Receptor of PPAR\(\gamma\). PPARs are members of the nuclear hormone receptor superfamily, many of which function as lipid-activated transcription factors [1]. There are three PPAR isoforms that include PPAR\(\alpha\), \(\beta/\delta\), and \(\gamma\) that differ in ligand specificity, tissue distribution, and
Figure 1: Regulation of PPARγ activity by cPA. cPA is generated intracellularly in a stimulus-coupled manner by the PLD2 enzyme. cPA stabilizes interactions with corepressor, such as SMRT, that act to repress gene transcription. This endogenous cPA regulates PPARγ function required for vascular wall pathologies, colorectal cancer cell growth, and metabolic diseases.

developmental expression [19]. PPARγ, the most extensively studied among the three PPAR subtypes, plays an important role in regulating lipid metabolism, glucose homeostasis, cell differentiation, and motility [10, 20]. There are 2 PPARγ isoforms, PPARγ₁ and PPARγ₂. PPARγ₂ has 30 additional amino acids at the N-terminus in human caused by differential promoter usage and alternative splicing [21]. Genetic deletion of PPARγ₁ causes embryonic mortality [9]. In contrast, deletion of PPARγ₂ causes minimal alterations in lipid metabolism [22]. PPARγ₁ is expressed in almost all tissues, whereas PPARγ₂ is highly expressed in only the adipose tissue [21]. PPARγ is comprised of four functional parts: the N-terminal A/B region bears a ligand-independent transcription-activating motif AF-1; C region binds response elements; D region binds to various transcription cofactors; and E/F region has an interface for dimerizing with retinoid X receptor α (RXRα), an AF-2 ligand-dependent transcription-activating motif, and a ligand binding domain (LBD) [23]. PPARγ heterodimerizes with the retinoid X receptor α (RXRα), and it is the ligand binding domain (LBD) of PPARγ that interacts with its agonists, including LPA [3]. The PPARγ-RXRα heterodimer binds to the peroxisome proliferator response element (PPRE) in the promoter region of the target genes. In the absence of ligands, the corepressors, nuclear receptor corepressor (NCoR) and silencing mediator of retinoid (SMRT) and thyroid hormone, bind to the heterodimer to suppress the target gene activation [24]. Upon ligand binding, PPARγ undergoes a conformational change that facilitates the dissociation of the corepressors and recruits coactivators. According to their mechanism of action, coactivators can be divided into two large families: the former includes steroid receptor coactivator (SRC-1) and CBP/p300, that act in part as molecular scaffolds and in the other part by acetylaing different substrates. The latter, including peroxisome proliferator-activated receptor 1α (PGC-1α), does not act by remodeling chromatin [25]. It has been reported that DNA methylation and histone modification serve as epigenetic markers for active or inactive chromatin [26]. A variety of putative physiological PPARγ agonists have been identified [5, 27]. Since then, we and other authors have reported that selected forms of lysophospholipids, such as unsaturated LPA and alkyl glycerophosphate (AGP, 1-alkyl-2-hydroxy-sn-glycerol-3-phosphate), are physiological agonists of PPARγ [3, 4]. The different molecular species of LPA contain either saturated or unsaturated fatty acids. Saturated LPA species including palmitoyl (16:0) and stearoyl (18:0)
LPA are inactive. Among these ligands, AGP stands out with an equilibrium binding constant of 60 nM [4] that is similar to that of thiazolidinedione (TZD) class of synthetic agonists. Interestingly, some of the residues required for PPAR activation by AGP are different from those required by TZD drug. H323 and 449 within the LBD of PPAR are required for the binding and activation by rosiglitazone but are not required by AGP. R288 is an important residue for the binding of the AGP but not the rosiglitazone. Y273 is required for activation by both agonists [4]. AGP is unique in that its potency far exceeds that of LPA in activating PPAR [4]. The reason why AGP and unsaturated acyl-LPA species are the best activators of PPAR may reflect the differential delivery of these LPA analogs to PPAR versus saturated LPA species, which are inactive. Together, these data help to explain why PPAR binds the unsaturated LPA and AGP but not saturated LPA. On the other hand, we showed that CPA negatively regulates PPAR functions by stabilizing the SMRT-PPAR complex [15] and blocks TZD-stimulated adiopogenesis and lipid accumulation. This ligand-dependent corepressor exchange results in transcriptional repression of genes involved in the control of insulin action as well as a diverse range of other functions.

3. Targets of PPARγ Relevant to Diseases

3.1. LPA-Mediated Activation of PPARγ and Vascular Wall Pathologies. It has been reported that unsaturated LPA-elicited neointima was not mediated by the LPA GPCRs LPA1 and LPA2, which are the major LPA receptor subtypes expressed in the vessel wall [28]. LPA has been identified as a bioactive lipid and is produced in serum after the activation of multiple biochemical pathways [6, 29, 30]. Some clinical studies have shown the correlation between plasma LPA and vascular diseases [31]. Neointima formation is a characteristic feature of common vascular pathologies, such as atherosclerosis [32]. Atherosclerosis is a complex disease to which many factors contribute. Neointima lesions are characterized by accumulation of cells within the arterial wall and are an early step in the pathogenesis of atherosclerosis [33]. It is caused by a buildup of plaque in the inner lining of artery and made up of deposits of fatty substances and cholesterol [34]. Topical application of unsaturated LPA species into the noninjured carotid artery of rodents induces arterial wall remodeling [35, 36], and this response requires PPARγ. PPARγ plays an important role in the cardiovascular system. PPARγ is expressed in all cell types of vessel wall, as well as monocytes and macrophages [37]. Macrophages play essential roles in immunity and lipid homeostasis [37]. PPARγ is induced during the differentiation of monocytes into macrophages and is highly expressed in activated macrophages including the foam cells in atherosclerotic lesions [36]. CD36 is a one of PPARγ response genes. PPARγ activation upregulates CD36 expression which results in increased lipid uptake in macrophages [3]. In macrophages, oxidized low-density lipoprotein (oxLDL) uptake through CD36 results in the development of foam cells. Accumulation of foam cells in the arterial wall is a key event of the early atherosclerotic lesion [38]. The initial steps of foam cell formation have been extensively studied. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Moore et al. reported that oxLDL uptake is decreased in PPARγ deficient macrophages due to the loss of CD36 [39]. CD36 is a member of the class B scavenger receptor family of cell surface protein [38, 40]. These receptors are a group of receptors that recognize modified LDL by oxidation or acetylation [41]. It has been reported that LPA and AGP are an agonist of the PPARγ and has been implicated in atherogenesis [36]. When AGP (18:1) was infused to an injured carotid artery, neointima thickening was augmented, although TZD drug, rosiglitazone- (Rosii-) attenuated neointima, induced by mechanical injury. However, noninjury model, Rosi, induces neointima when applied intraluminally into the carotid artery [15]. These results suggest that mechanisms underlying neointima formation in the chemically induced model are likely to be different from those in the injury-induced models. Coronary artery disease, the most common type of heart disease and leading cause of death among cardiovascular diseases, is almost always the result of atherosclerosis. Hence, the present results raise the possibility of utilizing this phospholipid scaffold as a lead for the development of new treatment acting on PPARγ.

3.2. PPARγ Ligand and Colorectal Cancer.

Colon cancer is a malignancy that develops in colon and rectal tissues. Colon cancer cells can also spread to other parts of body. The prognosis for metastatic colon cancer is associated with high mortality [42, 43]. It has been reported that prognosis for metastatic colon cancer remains poor; therefore, new therapeutic options are needed to reduce cancer mortality. It has been reported that PPARγ may provide a molecular link between a high-fat diet and increased risk of colon polyp formation during PPARγ activation [44]. Two studies have shown that administration of a synthetic PPARγ ligand to APCMin/+ mice resulted in these mice developing more frequent colon cancers than those animals which did not receive PPARγ ligand [45]. APCMin/+ mice have a mutation of APC, which is a major regulator of β-catenin activation and represent a model of adenomatous polyposis coli (APC) [46]. Mutations of PPARγ in colon cancer lead to the loss of ligand binding and suppression of cell growth. This may indicate that functional PPARγ is required for the normal growth properties of colon cells [47]. The PPARγ gene is expressed in many tissues, including high levels of expression in normal colonic mucosa, colorectal adenocarcinomas, and colon cancer cell lines [11, 48]. Recently, several studies reported that PPARγ agonists inhibit cancer cell proliferation, survival, and invasion [16, 49]. Although PPARγ is expressed at significant levels in human colon cancer cells and tissues, the role of PPARγ activation in colon cancer is still controversial. Furthermore, the role of PPARγ activation in cancer remains unclear. Some reports indicate that PPARγ is expressed at considerable levels in human colon cancer cells and tissues and that treatment with PPARγ agonists and antagonists reduces the cell growth rate [16, 50, 51]. Because PPARγ ligands have been shown to have a variety of PPARγ-dependent
and -independent effects [52]. Our recent reports suggest that endogenous LPA agonist, cPA, which is a bona fide second messenger and a physiological inhibitor of PPARγ [15] has emerged as a potential therapeutic target in the treatment of colon cancer [16]. cPA is a structural analog of LPA, which is one of the simplest phospholipids in cells. cPA is a generated by phospholipase D-catalyzed-transphosphatidylation of lysophosphatidylcholine (LPC) [15]. LPA is a PPARγ agonist that induces cell proliferation and invasion, but cPA exerts the opposite effects in cancer cells [16]. cPA suppresses PPARγ activation both by preventing binding of exogenous agonist to PPARγ and by inducing a specific conformational change that suppresses PPARγ activation [15, 16, 53]. cPA binding to and inhibition of PPARγ might be involved in cPA-induced inhibition of colon cancer cell growth [16]. This study demonstrates the potential applications of these methods for colon cancer treatment.

3.3. cPA in the Treatment of Metabolic Diseases. Obesity and its associated conditions such as insulin resistance, type II diabetes, termed as the metabolic syndrome, is a worldwide health problem and occurs as a result of adipose tissue enlargement caused by store excess energy intake [54]. Obesity is a condition in which adipocytes accumulate a large amount of body fat and became enlarged [55]. Adipose differentiation is a complex process by which fibroblast-like undifferentiated cells are converted into cells that accumulate lipid droplets [56]. PPARγ agonists are known to induce the differentiation of preadipocytes into mature adipocyte. TZD drugs are widely used in type II diabetes mellitus to improve insulin sensitivity by inducing the expression of genes involved in adipocyte differentiation, lipid and glucose uptake, and fatty acid storage [19]. Our recent observation suggests that PPARγ activation in adipogenesis that can be blocked by treatment with cPA participates in adipocyte function through inhibition of PDE3B expression [57]. cPA reduced intracellular triglyceride levels and inhibited the phosphodiesterase 3B (PDE3B) expression in 3T3-L1 adipocytes [57]. Treatment of 3T3-L1 cells with cPA significantly increased the amount of free glycerol. This suggests that triglyceride was hydrolyzed in adipocytes to free fatty acid and glycerol through the lipolysis. Adipose tissue lipolysis is dependent on the intracellular concentration of cAMP [58, 59], which is determined at the levels of both synthesis and degradation. Hydrolysis of cAMP is accomplished by PDEs [60]. Investigation on PDE has been focused on hormone-sensitive PDE3B activity and its expression. PDE3B is expressed in insulin-sensitive cells and has been shown to be important in regulating antilipolysis [61]. These findings contribute to the participation of cPA on the lipolytic activity in adipocytes. cPA might be a therapeutic compound in the treatment of obesity and obesity-related diseases including type II diabetes and high blood pressure.

4. Conclusion

Clearly, the genomic response to activation and inhibition of PPARγ is complex and will be highly dependent on cellular context. PPARγ agonists and antagonists participate in the regulation of lipid metabolism, they play an important role during atherosclerosis, diabetes, and they also have a critical role in the regulation of growth of cancer cells. It has been suggested that PPARγ ligands with agonistic and antagonistic effects may have useful role in the treatment of PPARγ-mediated diseases. We can expect many promising results in this area in the near future.

Acknowledgments

This work was supported by research grants from the Astellas Foundation for Research on Metabolic Disorders and Takeda Science Foundation and Grants-in-Aid for Scientific Research (C) (22591482) from the Japan Society for the Promotion of Science (JSPS) to T. Tsukahara.

References

[1] R. M. Evans, “The nuclear receptor superfamily: a Rosetta stone for physiology,” Molecular Endocrinology, vol. 19, no. 6, pp. 1429–1438, 2005.
[2] H. E. Lebovitz, “Differentiating members of the thiazolidinedione class: a focus on safety,” Diabetes/Metabolism Research and Reviews, vol. 18, supplement 2, pp. S23–S29, 2002.
[3] T. M. McIntyre, A. V. Pontsler, A. R. Silva et al., “Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARγ agonist,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 131–136, 2003.
[4] T. Tsukahara, R. Tsukahara, S. Yasuda et al., “Different residues mediate recognition of 1-O-oleyl-lysophosphatidic acid and rosiglitazone in the ligand binding domain of peroxisome proliferator-activated receptor,” Journal of Biological Chemistry, vol. 281, no. 6, pp. 3398–3407, 2006.
[5] F. J. Schopfer, Y. Lin, P. R. S. Baker et al., “Nitroinoleic acid: an endogenous peroxisome proliferator-activated receptor γ ligand,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 7, pp. 2340–2345, 2005.
[6] W. H. Moolenaar, “Lysophosphatidic acid, a multifunctional signalling lipid,” Biochimica et Biophysica Acta, vol. 77, no. 22, pp. 12949–12952, 1995.
[7] M. Ricote and C. K. Glass, “PPARs and molecular mechanisms of transrepression,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 926–935, 2007.
[8] P. Tontonoz and B. M. Spiegelman, “Fat and beyond: the diverse biology of PPARs,” Annual Review of Biochemistry, vol. 77, pp. 289–312, 2008.
[9] T. A. Cocker, S. M. Houten, and J. Auwerx, “Peroxisome proliferator-activated receptor-γ: too much of a good thing causes harm,” EMBO Reports, vol. 5, no. 2, pp. 142–147, 2004.
[10] C. Duval, G. Chinetti, F. Trottein, J. C. Fruchart, and B. Staels, “The role of PPARs in atherosclerosis,” Trends in Molecular Medicine, vol. 8, no. 9, pp. 422–430, 2002.
[11] W. L. Yang and H. Frucht, “Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells,” Carcinogenesis, vol. 22, no. 9, pp. 1379–1383, 2001.
[12] K. Murakami-Murofushi, A. Uchiyama, Y. Fujiwara et al., “Biological functions of a novel lipid mediator, cyclic phosphatidic acid,” Biochimica et Biophysica Acta, vol. 1582, no. 1–3, pp. 1–7, 2002.
B. Kieč-Wilk, A. Dembińska-Kieč, A. Olszanecka, M. Bodzioch, G. Tigyi and R. Miledi, “Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells,” Journal of Biological Chemistry, vol. 267, no. 30, pp. 21360–21367, 1992.

G. Tigyi and R. Miledi, “Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells,” Journal of Biological Chemistry, vol. 267, no. 30, pp. 21360–21367, 1992.

G. Tigyi and A. L. Parrill, ”Molecular mechanisms of lysophosphatidic acid action,” Progress in Lipid Research, vol. 42, no. 6, pp. 498–526, 2003.

A. Schober and W. Siess, “Lysophosphatidic acid in atherosclerotic diseases,” British Journal of Pharmacology, vol. 167, pp. 465–482, 2012.

G. A. Fishein and M. C. Fishein, “Arteriosclerosis: rethinking the current classification,” Archives of Pathology and Laboratory Medicine, vol. 133, no. 8, pp. 1309–1316, 2009.

N. Shibata and C. K. Glass, “Regulation of macrophage function in inflammation and atherosclerosis,” Journal of Lipid Research, vol. 50, supplement, pp. S277–S281, 2009.

R. G. Gerrity, “The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions,” American Journal of Pathology, vol. 103, no. 2, pp. 181–190, 1981.

K. Yoshida, W. Nishida, K. Hayashi et al., “Vascular remodeling induced by naturally occurring unsaturated lysophosphatidic acid in vivo,” Circulation, vol. 108, no. 14, pp. 1746–1752, 2003.

C. Zhang, D. L. Baker, S. Yasuda et al., “Lysophosphatidic acid induces neointima formation through PPARα activation,” Journal of Experimental Medicine, vol. 199, no. 6, pp. 763–774, 2004.

C. H. Lee and R. M. Evans, “Peroxisome proliferator-activated receptor-γ in macrophage lipid homeostasis,” Trends in Endocrinology and Metabolism, vol. 13, no. 8, pp. 331–335, 2002.

M. Febbraio, D. P. Hajjar, and R. L. Silverstein, “CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism,” Journal of Clinical Investigation, vol. 108, no. 6, pp. 785–791, 2001.

P. C. Moore, M. A. Ugás, D. K. Hageman, S. D. Parazzoli, and V. Poitout, “Evidence against the involvement of oxidative stress in fatty acid inhibition of insulin secretion,” Diabetes, vol. 53, no. 10, pp. 2610–2616, 2004.

N. Ohgami, R. Nagai, M. Ikemoto et al., “CD36, a member of the class B scavenger receptor family, as a receptor for advanced glycation end products,” Journal of Biological Chemistry, vol. 276, no. 5, pp. 3195–3202, 2001.

M. S. Brown, S. K. Basu, and J. R. Falck, “The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages,” Journal of Supramolecular and Cellular Biochemistry, vol. 13, no. 1, pp. 67–81, 1980.

D. J. Gallagher and N. Kemeny, “Metastatic colorectal cancer: from improved survival to potential cure,” Oncology, vol. 78, no. 3–4, pp. 237–248, 2010.

A. Manzano and P. Perez-Segura, “Colorectal cancer chemoprevention: is this the future of colorectal cancer prevention?” Scientific World Journal, vol. 2012, Article ID 327341, 8 pages, 2012.

E. Saez, P. Tontonoz, M. C. Nelson et al., “Activators of the nuclear receptor PPARγ enhance colon polyp formation,” Nature Medicine, vol. 4, no. 9, pp. 1058–1061, 1998.

H. P. Koehl, “Peroxisome proliferator-activated receptor y and cancers,” Clinical Cancer Research, vol. 9, no. 1, pp. 1–9, 2003.

G. D. Girnun, W. M. Smith, S. Drori et al., “APC-dependent suppression of colon carcinogenesis by PPARγ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13771–13776, 2002.
[47] P. Sarraf, E. Mueller, W. M. Smith et al., “Loss-of-function mutations in PPARy associated with human colon cancer,” *Molecular Cell*, vol. 3, no. 6, pp. 799–804, 1999.

[48] H. Sato, S. Ishihara, K. Kawashima et al., “Expression of peroxisome proliferator-activated receptor (PPAR)y in gastric cancer and inhibitory effects of PPARy agonists,” *British Journal of Cancer*, vol. 83, no. 10, pp. 1394–1400, 2000.

[49] D. Shen, C. Deng, and M. Zhang, “Peroxisome proliferator-activated receptor γ agonists inhibit the proliferation and invasion of human colon cancer cells,” *Postgraduate Medical Journal*, vol. 83, no. 980, pp. 414–419, 2007.

[50] T. Tsukahara and H. Haniu, “Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells,” *Biochemical and Biophysical Research Communications*, vol. 424, pp. 524–529, 2012.

[51] G. Lee, F. Elwood, J. McNally et al., “T0070907, a selective ligand for peroxisome proliferator-activated receptor γ, functions as an antagonist of biochemical and cellular activities,” *Journal of Biological Chemistry*, vol. 277, no. 22, pp. 19649–19657, 2002.

[52] T. Tsukahara, “The role of PPARgamma in the transcriptional control by agonists and antagonists,” *PPAR Research*, vol. 2012, Article ID 362361, 2012.

[53] T. Tsukahara and K. Murakami-Murofushi, “Release of cyclic phosphatidic acid from gelatin-based hydrogels inhibit colon cancer cell growth and migration,” *Scientific Reports*, vol. 2, p. 687, 2012.

[54] M. Kroftkiewski, P. Bjorntorp, L. Sjostrom, and U. Smith, “Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution,” *Journal of Clinical Investigation*, vol. 72, no. 3, pp. 1150–1162, 1983.

[55] P. Bjorntorp, “Abdominal obesity and the metabolic syndrome,” *Annals of Medicine*, vol. 24, no. 6, pp. 465–468, 1992.

[56] H. Green and M. Meuth, “An established pre adipose cell line and its differentiation in culture,” *Cell*, vol. 3, no. 2, pp. 127–133, 1974.

[57] T. Tsukahara, S. Hanazawa, and K. Murakami-Murofushi, “Cyclic phosphatidic acid influences the expression and regulation of cyclic nucleotide phosphodiesterase 3B and lipolysis in 3T3-L1 cells,” *Biochemical and Biophysical Research Communications*, vol. 404, no. 1, pp. 109–114, 2011.

[58] J. Ostman, P. Arner, P. Engfeldt, and L. Kager, “Regional differences in the control of lipolysis in human adipose tissue,” *Metabolism: Clinical and Experimental*, vol. 28, no. 12, pp. 1198–1205, 1979.

[59] G. Y. Carmen and S. M. Victor, “Signalling mechanisms regulating lipolysis,” *Cellular Signalling*, vol. 18, no. 4, pp. 401–408, 2006.

[60] Y. H. Jeon, Y. S. Heo, C. M. Kim et al., “Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development,” *Cellular and Molecular Life Sciences*, vol. 62, no. 11, pp. 1198–1220, 2005.

[61] E. Degerman, F. Ahmad, Y. W. Chung et al., “From PDE3B to the regulation of energy homeostasis,” *Current Opinion in Pharmacology*, vol. 11, pp. 676–682, 2011.