The complex multi-component outflow of the Seyfert galaxy NGC 7130
(Corrigendum)

S. Comerón1,2,3, J. H. Knapen2,1, C. Ramos Almeida2,1, and A. E. Watkins4

1 Departamento de Astrofísica, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
e-mail: seb.comeron@gmail.com
2 Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain
3 Space Science and Astronomy, University of Oulu, PO Box 3000, 90014 Oulu, Finland
4 Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK

A&A 649, A130 (2021), https://doi.org/10.1051/0004-6361/202039382

Key words. galaxies: active – galaxies: individual: NGC 7130 – galaxies: ISM – galaxies: nuclei – galaxies: Seyfert – errata, addenda

This is a corrigendum to Comerón et al. (2021). Due to a mistake in our codes, all line fluxes were multiplied by a factor of 1.25. This affects the colour scales in two figures and the physical magnitudes derived from the flux in H\textbeta, namely the gas mass outflow rate, the kinetic power of the outflow, and the fraction of the active galactic nucleus (AGN) power that is emitted in the form of kinetic energy. The conclusions of the paper remain unchanged. The corrected figures, tables, and relevant portions of the text are given below.

4.8. The mass outflow rate and the kinetic power

The mass-loss rates and kinetic power estimates for each of the outflow components are shown in Table 6. We find a total mass loss rate of $M = 0.44 \pm 0.27 M_\odot \text{yr}^{-1}$ and a total kinetic power of $E_{\text{kin}} = (7.0 \pm 4.8) \times 10^{40} \text{erg s}^{-1}$ for the blueshifted components. If we also account for the more poorly constrained redshifted components, these values are $M = 1.2 \pm 0.7 M_\odot \text{yr}^{-1}$ and $E_{\text{kin}} = (2.7 \pm 2.0) \times 10^{41} \text{erg s}^{-1}$, respectively. The latter values have to be considered with caution because a third of the mass-loss rate and two-thirds of the kinetic power come from the redshifted broad component that is hard to characterise. Indeed, we might only be detecting it over a small fraction of its true extent, which can cause a large overestimate in its associated mass-loss rate and kinetic power (through Eq. (9)). Assuming a bolometric AGN luminosity of $L_{\text{bol}} = 2.2 \times 10^{44} \text{erg s}^{-1}$ (Esquej et al. 2014, we corrected the luminosity for the different distance estimates), the fraction of power emitted in kinetic energy is $F_{\text{kin}} = 0.032 \pm 0.022\%$ for the blueshifted components.

Table 6. Average physical properties of kinematic components of the ionised gas.

Component	BPT classification	n_e (cm$^{-3}$)	$E(B-V)$	[S III]/[S II]	$L(\text{H}_\beta)_{\text{corr}}$ (10$^{39} \text{erg s}^{-1}$)	M ($M_\odot \text{yr}^{-1}$)	E_{kin} (10$^{39} \text{erg s}^{-1}$)
Disc	SF	90 \pm 20	0.60 \pm 0.01	0.385 \pm 0.008	235 \pm 5	–	–
Bluesshifted narrow	Seyfert	500 \pm 100	0.34 \pm 0.04	1.20 \pm 0.08	27 \pm 1.9	0.05 \pm 0.03	1.2 \pm 1.1
Zero-velocity narrow	Seyfert	500 \pm 100	0.53 \pm 0.11	0.68 \pm 0.15	15 \pm 3	–	–
Crescent narrow	LINER	180 \pm 20	0.78 \pm 0.01	0.134 \pm 0.003	3.9 \pm 0.1	0.09 \pm 0.04	3.0 \pm 2.1
Redshifted narrow 1	Seyfert	500 \pm 100(*)	0.56 \pm 0.13	2.7 \pm 0.7	8 \pm 2	0.09 \pm 0.05	2.9 \pm 3.0
Redshifted narrow 2	Seyfert	500 \pm 100(*)	0.57 \pm 0.11	0.9 \pm 0.3	6.2 \pm 1.4	0.16 \pm 0.10	25 \pm 19
Bluesshifted broad	Seyfert	300 \pm 100	0.46 \pm 0.03	1.27 \pm 0.07	57 \pm 3	0.39 \pm 0.24	69 \pm 47
Zero-velocity broad	Seyfert	300 \pm 100(*)	0.80 \pm 0.28	0.9 \pm 0.5	23 \pm 13	–	–
Redshifted broad	Seyfert	300 \pm 100(*)	0.57 \pm 0.11(*)	1.27 \pm 0.07(*)	1.8 \pm 0.4	0.41 \pm 0.26	170 \pm 130

Notes. Error estimates are calculated by propagating the uncertainties quoted in Table 6 and Sects. 4.7 and 4.8 in quadrature. Values indicated by asterisks (*) do not come from measurements, but are instead educated guesses used for our calculations (see Sects. 4.7 and 4.8).
components and \(F_{\text{kin}} = 0.12 \pm 0.09\% \) if accounting for all components.

C3, page 2 of 3
be $\dot{M} = 1.2 \pm 0.7 M_\odot \, \text{yr}^{-1}$ ($\dot{M} = 0.44 \pm 0.27 M_\odot \, \text{yr}^{-1}$) and $\dot{E}_{\text{kin}} = (2.7 \pm 2.0) \times 10^{41} \, \text{erg s}^{-1}$ ($\dot{E}_{\text{kin}} = (7.0 \pm 4.8) \times 10^{40} \, \text{erg s}^{-1}$), respectively. The kinetic power is $F_{\text{kin}} = 0.12 \pm 0.09\%$ ($F_{\text{kin}} = 0.032 \pm 0.022\%$) of the bolometric AGN output. These values are comparable to those of other AGN (Villar-Martín et al. 2016; Rose et al. 2018) and are roughly a factor of ten lower than the star formation rate. They are probably too low for the outflow to have a galaxy-wide effect. The broad outflow components are responsible for $\sim 2/3$ ($\sim 90\%$) of the mass outflow rate and about 90% (98%) of the kinetic power output.

References

Comerón, S., Knapen, J. H., Ramos Almeida, C., & Watkins, A. E. 2021, A&A, 645, A130
Diamond-Stanic, A. M., & Rieke, G. H. 2012, ApJ, 746, 168
Esquej, P., Alonso-Herrero, A., González-Martín, O., et al. 2014, ApJ, 780, 86
Gruppioni, C., Berta, S., Spinoglio, L., et al. 2016, MNRAS, 458, 4297
Rose, M., Tadhunter, C., Ramos Almeida, C., et al. 2018, MNRAS, 474, 128
Thean, A., Pedlar, A., Kukula, M. J., Baum, S. A., & O’Dea, C. P. 2000, MNRAS, 314, 573
Villar-Martín, M., Arribas, S., Emonts, B., et al. 2016, MNRAS, 460, 130
Zhao, Y., Lu, N., Xu, C. K., et al. 2016, ApJ, 820, 118