Exploratory Analysis of the Market Trend of Power Transformers in Mexico for Manufacturing Sector for Exportation

M Rivera-Anaya 1, J R Corona-Armenta 2, E Oliva-López 1, F A Domínguez-Pacheco 1, J V Bernal 1

1 Department of Systems Engineering, Instituto Politecnico Nacional, Mexico
2 Department of Organizational Systems, Universidad Autonoma del Estado de Hidalgo, Mexico

mayra_rivera10447@uaeh.edu.mx, m.r283@yahoo.com.mx

Abstract. The electric sector continues in constant development, the requirements that the market demands must be included in the design and manufacturing processes of the components that make up the grid, such as the Power Transformers. The objective of the research presented is to know the general characteristics that impact the design and manufacture of transformers in Mexico, for which, four stages were identified as part of the General Methodology, which includes the niche market, the companies that manufacture in Mexico, the volume of exported transformers, as well as the suppliers and raw materials that are necessary for their production. For which a literary research was carried out, also the consultation in secondary sources, field research in a manufacturing company, and analysis of statistical data through the Minitab program, and a comparison of the bill of materials (BOM) of the transformers with the highest export index. All this will allow us to know, influence and improve the design and manufacturing of transformers.

1. Introduction

The electricity sector is one of the fastest growing markets worldwide, factors such as population growth [1] and technological changes have influence the electricity networks [2].

Countries with the highest growth expectations such as China and the United States demand a future high investment in their infrastructure [3]. Are estimated the requirements of electric power in the United States at a consumption of 3,782,151 GWh, distributed in Residential 36.8%, followed by Commercial and Services 35.4%, Industry 22.4%, Farming 0.8%, Transportation 0.2% and Other Sectors 4.5% [4].

To guarantee efficiency in your electricity network and at the lowest possible cost, it is vitally important to include in the purchase and renovation of your infrastructure reliable components, among the most important is the transformer.

The transformer is considered by Hobday [5], as a complex product, among its most outstanding features are its high costs and customized production, which implies a small number of products manufactured with individual characteristics for each customer, which brings as consequently, the generic design requires a review during delivery to the final consumer [6].

The United States has global suppliers that contribute to meet its demand for Power Transformers (TP), among which companies established in Mexico such as GE / PROLEC, IEM, SIEMENS, WEG [3] stand out.
It is important to highlight the importance of this type of companies, given that 80.6% of the products manufactured in Mexico are sent to the United States, of this figure, 0.7% corresponds to the export of electrical transformers, which translates into 243,978 thousand dollars, according to figures reported by the National Institute of Statistics and Geography (INEGI Acronym in Spanish) [7].

Due to the importance of the TP, the general objective of this article is to present the results achieved in the research of the transformer market for the manufacturing sector in Mexico; to know the general and material characteristics of power transformers designed and manufactured for export; through the identification of macroeconomic indicators, microeconomic analysis of the product trend and the Bill of Materials (BOM).

The scope of this article is an exploratory type, carried out in Mexico City, considering the description of the general methodology of literary search, field research in a manufacturing company and the analysis of the findings found; given that, in articles related to the manufacture of transformers and official reports issued by the competent agencies, a characterization of the TP manufactured in Mexico for export has not been issued.

In the general search methodology, we consulted on pages such as: National Consortium for Scientific and Technological Information Resources (CONRiCyT), SPRINGER, IEEE Xplore Digital Library, Electric Power Research, Taylor and Francis, Scopus, ScienceDirect, as well as reports on Organizations like International Energy Agency, OECD, US Department of Energy, The World Economic Forum, and the Mexican Ministry of Energy and Federal Electricity Commission, National Chamber of Electrical Manufactures (CANAME acronym in Spanish), Directory of Transformer Factories in Mexico, and National Institute of Statistics and Geography (INEGI).

2. Research Development
The General research methodology, is supported by the systems approach, where a set of subjects, objects and concepts are conceptualized, which are related to fulfill a common mission, which allows us to identify a macro system with its different stages to the manufacture of a product, where it is located: Manufactured Niche, Manufactured Company, Manufactured Product, Manufacturing Supplier (NCPS) (See Figure 1)

![Figure 1. General Research Methodology](image)

This leads us to conceptualize four stages:
A. Identification of the niche market.
B. Identification of transformer manufacturing companies.
C. Identification of products manufactured for export.
D. Identification of manufacturing suppliers.
A. Identification of the market niche.

The identification of the market niche, we carry out through the literary search in official reports such as International Energy Agency, World Economic Forum, among others, this allowed us to generate an article, in which the main socioeconomic trends of the electricity markets were identified, energy sources, generation and consumption capacity of countries with the greatest growth potential worldwide such as China and the United States [14].

This allowed us to know the expectation of growth in future PT requirements for the United States [3], and consider it as the appropriate target market for exports of transformer manufacturing companies and their components.

B. Identification of manufacturing companies.

For the identification of manufacturing companies in Mexico, we consult reports on pages of organizations such as the National Institute of Statistics and Geography (INEGI) [8], National Chamber of Electrical Manufactures (CANAME) [9], Directory of Transformer Factories in Mexico [10], Federal Electricity Commission (CFE), during the period July 2018 to December 2018. The keywords used: Manufacturing, Manufacturer, Company, Transformers; which allowed identifying related criteria such as Place of establishment and Products Offered.

1. Place of Establishment: The results obtained indicate that 63% are located in the center of the country. (See Figure 2)

![Figure 2. Establishment of Transformer Manufacturers by State](image)

2. Products offered: The results found indicate that the products offered by the manufacturers are: 23 manufacture transformers type Distribution, 4 Distribution and Medium Power, 3 Maintenance Service (Workshops), 1 offers Distribution transformers, Medium Power and Power, and 1 company exports all its manufactured product. (See Figure 6). (The type of Transformer Distribution product, for the purposes of this study, refers to all those with a capacity of less than 10 MVA).
Figure 3. Products offered

C. Identification of products manufactured for export.

For the identification of manufactured products, the stages are required:
C.1 Analysis of sales order records.
C.2 Analysis of the sales trend.
C.3 Exploration of the list of materials, and identification of raw materials.

C.1 Analysis of sales order records.
For this stage, we conducted a field investigation, where we visited the manufacturing company “XYZ” located in the Center of Mexico, which has more than 500 employees, operating for more than 35 years in Mexico, offering products that range from Distribution type (Substation, encapsulated, dry, renewable, pole, with capacities less than 10 MVA), Medium Power and Power Transformers, ranging from 10 MVA to 350 MVA, to know the characteristics of the manufactured TP; for which, the registration of the orders executed during the period from the year 2000 to 2017 was carried out.

Due to the nature of this exploratory study, the collection and processing of the data, existing sources in the current market were considered, as well as some statistical analysis procedures described in the literature [11], considering the review of the orders Registered between 2000 and 2017, where Medium Power and Power Transformers are considered as objects of study, with a capacity of 10 MVA up to 230 MVA.

The total population is limited to 509 orders, where we considered the following seven variables:
1. Destination of the Transformer
2. Type of Client
3. Type of Industry
4. Transformer Capacity (MVA)
5. Transformer Type
6. Single phase - Three phase
7. Voltage Class in High Voltage (KV)

1. Destination of the Transformer: we found that the 95% are exported to United States, the remaining 5% to other countries. (See Figure 4)
2. Type of Client: we found that are five types of clients (See Table 1), of which 54% belong to orders from Municipalities, followed by EPC, and IOUs [13] with 15% each. (See Figure 5)

Table 1. Kind of Client

Code	Definition
C&I	Industrial Client
EPC	Engineering Product Client
IOUs	Investor Owner Utilities
Municipals	Public Power Utilities
Renewable	Renewable

Figure 4. Exports

Figure 5. Kind of Client
3. Type of Industry: we found that the record of 8 Types of Industries, in which 70% exceeds that required in Utility, followed by Oil-Gas with 13%. (See Figure 6)

![Figure 6. Kind of Industry](image)

4. Capacity (KVA): we found 99 types of capacities, from 10 to 224 MVA; of which, the largest number of orders is 20 MVA, followed by 30 and 25 MVA, which represents 45% of the requested orders. The representation of all types, we made consider a range of them, taking in account the ranges established in accordance with the Regulations established by IEEE for the Table of Preferred Ranges [12] (See Figure 7)

![Figure 7. Capacity MVA](image)

5. Transformer Type: we found that 86% are Substation Type and the rest of other Transformers type. (See Figure 8)
6. Single phase - Three phase: we found that 97% of orders are required with 3 phases and 3% with one. (See Figure 9)

7. Voltage Kind: In this category, kind 138 and 69 KV in High Voltage stand out. (See Figure 10)
C.2 Sales trend analysis.

In the second stage, the analysis of the sales trend is carried out; Table 2 shows the quantities of units sold from the year 2000 to 2017 of kind 138 and 69 KV. It can be seen that, in some years, exports are zero, however, there are other periods in which it increases, this provides an unpredictable variability in demand, so a linear and quadratic trend adjustment is made, which These are the adjustments that can be made with the available data, to observe the behavior over time, as well as a forecast for the next three annual periods.

Year	Model 69	Model 138
2000	0	0
2001	7	0
2002	0	0
2003	0	0
2004	9	4
2005	3	0
2006	0	0
2007	1	6
2008	0	6
2009	0	1
2010	0	4
2011	0	1
2012	0	1
2013	0	2
2014	0	1
2015	0	0
2016	1	0
We made adjustments to the sales of Model 138 through Minitab, it can be seen that sales are more adjusted to a linear trend, rather than the quadratic one, due to its average absolute percentage error (MAPE), also known as Deviation Percentage Absolute Average, which measures the accuracy of the method for the adjusted construction of time series values in statistics, is less, 59.7404 of the linear versus 71.7487, as shown in Figures 11 and 12, respectively. The forecasts for the following three periods, 1.75, 1.77 and 1.79, show a slight tendency to generate some export, although its slope, whose value is 0.025, is of minimum growth.

For Model 69, is presented the best fit in the quadratic, considering a lower MAPE value (61.7057) than the linear one (73.4477), which are presented in Figures 13 and 14 although the behavior in both is negative, that is to be considered for future planning. In this case, the forecasts do not indicate exports in the next 3 years, which leaves the propensity to manufacture in a position of extreme fragility. The MAD values, referring to the absolute deviation of the mean, and the MSD, the mean square deviation, in both cases, do not have a significant difference considering a 5% error.

![Linear Trend Function](image1)

Figure 11. Linear trend analysis graph with three-period forecasts for Class 138

![Quadratic Trend Function](image2)

Figure 12. Graph of quadratic trend analysis with three-period forecasts for Class 138
C3. Materials list exploration and identification of raw materials
The exploration of the list of materials and identification of raw materials consisted of comparing the list of materials of three types of medium power transformers, randomly chosen from a population of 26 with characteristics of 20 MVA, Class 138, three phases. We identify the description of the materials listed in each of the chosen models, (See Table 3, 4, 5), among which, we consider both the basic and raw materials; (oriented grain silicon steel, copper conductors, iron, oil, No Load Tap changer (NLTC), Load Tap changer (LTC) and insulations [3, 14]). This allowed us to count an average of 52 pieces or assemblies in each transformer model subdivided into 6 main parts, the Tank, Core Coil and Connections Assemblies (CCCA), Accessories, Nozzles and Connectors, Miscellaneous, and Shipping assemblies. (See Table 6)
Assembly	Model Standard IEEE 20 MVA Model 138 Kv
Tank	Steel A36
L1500 Straight Radiator	
Butterfly Valve PN10 3	
Stainless Steel Conservator Tank	
Assembly Core, Coils and Connections	Oriented Grain Silicon Steel Core M4
Low Voltage Cable CTC 0.48 4.9X1.6 90	
High Voltage Cable 0.72mm 6.8X1.9mm T 90	
Round Copper 3/8X3”	
Thermostabilizer Copper Cable 14 3/0 AWG	
Paperboard PHP 3mmX2100mmX3200mm	
Insulating Paper Thermostabilizer 0.254X12	
Densified Wood 60mm	
No Load Tap Charger 550kV/300	
Paperboard Coils Assembly	
Assembly Iron Core	
Accessories	Winding Thermometer
Thermal plate	
Oil Thermometer	
Oil Gauche 152mm	
Pressure Valve	
Manovacometer	
Inertair Team	
Fan 0.5cv 4.01m³/s	
Control Cabinet	
Wired Pipe List	
Current Transformer 1200/800/300/200:5	
Current Transformer 1000/5A C400 60hz	
Current Transformer 400/5 A C-400	
Bushing and Connectors	Bushing Driver 650kV 800A
Rigid Bushing Driver 15kV/900A/110kV	
Bushing Assembly	
Mho Connector	
Miscellaneous	-40° Naftenic Insulation Oil
Electronic Plug 1 and 2	
Transportation monitor	
Shipment	Treated Wood 2.5X25X250 - 3.8X7.6X250 - 7.6X7.6X250
1000 Liters Polyethylene Container	
Hard Plastic 1,200X1,050X1,500mm	
Gas Cylinder for High Pressure 9m³	
Assembly	Model 2
--------------------------------	---
Tank	Oriented Grain Silicon Steel Core M4-branched
	Assembly Core, Coils and Connections
	Low Voltage Regulation Cable CTC 0.6 6.2X1.6 90
	Low Voltage Cable CTC 0.6 4.4X1.6 90
	High Voltage Cable SRC 22HCC 0.84mm 6.1X2mm T 90
	Thermostabilizer Copper Cable TMA14 500 MCM
	Thermostabilizer Copper Cable TMA14 3/0 AWG
	Paperboard PHP 3mmX2100mmX3200mm
	Insulating Paper Thermostabilizer 0.254X12
	Densified Wood 60mm
	No Load Tap Charger 138kV/538A
	Load Tap Charger 33 26,4 K
	1.2 MVA Reactor
	Paperboard Coil Assembly
	Assembly Iron Core
	Accessories
	Windig Thermometer
	Thermal Plate
	Oil Thermometer
	Oil Gauche 152mm
	Fan 0.5cv 4.01m9/s
	Control Cabinet
	Current Transformer 1200/800/300/200:5
	Current Transformer 1200/800/300/200:5 A C-400
	Current Transformer 400/5A C400 60hz
	Tension Regulator
	Auxiliary Current Transformer
	Adapter Panel 311X317.5X3mm
	Wired Pipe List
	Transportation Monitor
	Miscellaneous
	-40° Naftenic Insulation Oil
	Electronic Plug 1 and 2
	Copper Terminal 375mm² 2 12.7mm
	Copper Terminal 380mm² 32.9X26mm
	Pipe Assembly 380mm²
	Shipment
	Treated Wood 2.5X25X250
	1000 Lts Polyethylene Container
	Hard Plastic 1,200x1,050x1,500mm
	7.6X7.6X250

Table 4. Model Standard IEEE 20 MVA Model 138Kv
Assembly	Model 3
Tank	
Tank	L2000 Radiator
Assembly, Coils, and Connections	
Oriented Grain Silicon Core 23ZDKH85	
Low Voltage Cable CTC 0.45 4.4X1.6 140	
High Voltage Cable CTC 0.72 7.2X1.8 90	
High Regulation Cable CTC 0.72 7.2X1.8 90	
Thermostabilizer Copper Cable TMA14 600 MCM	
Thermostabilizer Copper Cable TMA14 1000 MCM	
Paperboard PHP 3mmX2100mmX3200mm	
Insulating Paper Thermostabilizer 0.254X12	
Densified Wood WOOD 60mm	
Load Tap Charger LTC 72.5-10 19 W	
Paperboard TX 10mmX2100mmX3200mm	
Assembly Iron Core	
Steel Core M4 for Reactor	
Accessories	
Oil Thermometer	Relay Locker
Thermal Plate	Relay
Oil Thermometer	Rubber Bag 1X1140X2620mm
Scada Electronic Level	Dehydrator
Pressure Valve C-5M	Control Cabinet
Pressure Relay	Wired Pipe List
Current Transformer 1200/800/300/200:5	
Current Transformer 1500/5A C400 60hz	
Backup Control M-0329B BECK (1000400)	
Electric Regulator	
Current Loop Internal Beck	
Bushing Connectors and Mho Connector	
Bushing 1200 a	Bushing Assembly
Rigid Bushing Driver 15KV/3000A/110KV	
Rigid Bushing Driver 15KV/1315A/110KV, 119T	
Mho Connector	
Miscellaneous	
FR3 Envirotemp Insulation Oil	
Alarm Annunciator	
Transformer Control	
Transportation Monitor	
Copper Terminal 375mm² 2F12.7mm	
Pipe Assembly 380mm²	
Shipment	
Treated Wood 2.5X25X250	
1000 Lts Polyethylene Container	
Hard Plastic 1,200X1,050X1,500mm	
Table 5. Model Standard IEEE 20 MVA Model 138 Kv	
Table 6. Assembly number

Assembly	Assembly - Pieces Number		
	Model 1	Model 2	Model 3
Tank	4	4	4
Assembly Core, Coils and Connections	11	14	13
Accessories	13	17	23
Bushings and Connectors	4	4	5
Miscellaneous	4	7	10
Shipment	6	7	7
Total	**42**	**53**	**62**

After counting the assemblies in each model, those considered critical were identified, this led us to verify that the greatest amount of raw materials are in the CCCA with 50% in Model 1, 50% in Model 2 and 46% in Model 3. (See Table 7)

Table 7. Raw Material

Assembly	Raw Material		
	Model 1	Model 2	Model 3
Tank	3	3	3
Assembly Core, Coils and Connections	10	12	11
Accessories	1	1	0
Bushings and Connectors	3	3	4
Miscellaneous	1	3	3
Shipment	3	3	3
Total	**21**	**25**	**24**

The exploratory study carried out, allows us to observe that the CCCA, composed of critical materials such as oriented grain silicon steel, Insulations, Copper, No Load Tap changer (NLTC), Load Tap changer (LTC), represents the highest percentage in the structure of the materials within the list of materials of the transformer models revised.

D. Identification of manufacturing suppliers.

For the identification of the suppliers of raw materials, we carried out the literary review of official reports issued by government agencies, we found that the US Department of Energy considers as official suppliers of silicon steel countries such as China, Czech Republic, Germany, Japan, Korea, Poland and Russia. [3, 15]

Mexico imports Insulations and Load Tap Changers from the United States and Germany [14], which represents an approximate lead-time of 8 months.

The lack of suppliers in Mexico, of the critical materials for the manufacture of the PT, is a factor that also significantly affect the cost of its manufacture. Therefore, part of the suggestions of the exploratory research carried out is to contextualize the importance of manufacturing companies of this type of materials in Mexico, given the future growth in the US electricity market.

3. Conclusions and Future work

The electricity sector in the United States will continue to grow [14], the result obtained from exploratory research, allows us to infer that, in the coming years, it will increase the export of power transformers for generation and transmission, 20 MVA Class 138 KV for the United States, manufactured in Mexico.
The results obtained from the trend analysis of the time series, sales for Class 69 KV, observe a decrease, however, they could be considered for future sales, when the United States government would authorize investments in the Transmission sector.

The growth of the electricity sector and exports to the United States, offer the opportunity to open new distributors or manufacturers of critical materials in Mexico, and thereby reduce imports and manufacturing costs. The realization of a structured questionnaire or interview, to know the conditions by which the three models of transformers analyzed contain differences between their materials, is part of a future research that will allow a better analysis of the raw materials.

The exploratory research carried out, through the systems approach, allows generating a methodology that contributes to the identification of the most outstanding variables for the decision making of companies that intend to export different products manufactured in Mexico.

Acknowledgements
The authors are grateful for the support to the company “Transformers XYZ”, for the facilities provided for conducting the research.

References
[1] United Nations 2015, World Population Prospects, p. 1
[2] World Economic Forum 2017, The Future of Electricity New Technologies Transforming the Grid Edge, p. 4-5
[3] U.S. Department of Energy 2014, Infrastructure Security and Energy Restoration, Office of Electricity Delivery and Energy Reliability. Large Power Transformers and the U.S. Electric Grid. (United States), pp. 3-28
[4] Secretaría de Energía 2015, Prospectiva del Sector Eléctrico 2015-2029. (México), p. 36
[5] Hobday M 1998, *Product complexity, innovation and industrial organization*. (England: Research Policy), pp. 689-710
[6] Vedman J & Alblas A 2012, *Managing design variety, process variety and engineering change: a case study of two capital good firms*. (Netherlands: SPRINGER), p.2.
[7] INEGI 2015, Balanza Comercial de Mercancías de México, (México), p. 13
[8] INEGI 2009. “Micro, Pequeña, Mediana y Gran Empresa: Estratificación de los Establecimientos: Censos Económicos 2009”. (México)
[9] Cámaras Nacional de Manufacturas Eléctricas 2018, Catálogo de Empresas y Productos 2018, (56th Ed.) (México)
[10] Directorio de Fábricas de Transformadores ubicadas en México. Retrieved: https://www.directoriodefábricas.com/mexico/fabricantes-transformadores-mexico.html
[11] Anderson D, Sweeney D, and Williams T 2008, Statistics for Business and Economics, (United States)10th Ed. Cengage Learning), p. 5-15
[12] IEEE Power and Energy Society 2010, IEEE Standard for General Requirements for Liquid – Immersed Distribution, Power and Regulating Transformers, C57.12.00. (United States) p.11
[13] U.S. Department of Energy 2015, United States Electricity Industry Primer, (United States) pp. 13, 27-28
[14] Rivera M., et. 2018. *General Context of the International Electricity Market for Power Transformers*. 16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and Inclusion”, (Peru), Retrieved: http://dx.doi.org/10.18687/LACCEI2018.1.1.335. p. 3
[15] U.S. Department of Commerce 2016, Global Steel Repot, (United States), p.5.
[16] Zaheer H and Saeed S, *Power transformers–global market analysis: Capacity additions and aging infrastructure driving the growth*, Transformers Magazine 5(1) (2018), (United States) p. 62–68.