L_P SPECTRAL MULTIPLIERS ON THE FREE GROUP N_{3,2}

ALESSIO MARTINI AND DETLEF MÜLLER

Abstract. Let L be the homogeneous sublaplacian on the 6-dimensional free 2-step nilpotent Lie group $N_{3,2}$ on 3 generators. We prove a theorem of Mihlin-Hörmander type for the functional calculus of L, where the order of differentiability $s > 6/2$ is required on the multiplier.

1. Introduction

The free 2-step nilpotent Lie group $N_{3,2}$ on 3 generators is the simply connected, connected nilpotent Lie group defined by the relations

$$[X_1, X_2] = Y_3, \quad [X_2, X_3] = Y_1, \quad [X_3, X_1] = Y_2,$$

where $X_1, X_2, X_3, Y_1, Y_2, Y_3$ is a basis of its Lie algebra (that is, the Lie algebra of the left-invariant vector fields on $N_{3,2}$). In exponential coordinates, $N_{3,2}$ can be identified with $\mathbb{R}^3 \times \mathbb{R}^3$, where the group law is given by

$$(x, y) \cdot (x', y') = (x + x', y + y' + x \wedge x'/2)$$

and $x \wedge x'$ denotes the usual vector product of $x, x' \in \mathbb{R}^3$. The family $(\delta_t)_{t>0}$ of automorphic dilations of $N_{3,2}$, defined by

$$\delta_t(x, y) = (tx, t^2y),$$

turns $N_{3,2}$ into a stratified group of homogeneous dimension $Q = 9$.

Let $L = -(X_1^2 + X_2^2 + X_3^2)$ be the homogeneous sublaplacian on $N_{3,2}$. L is a self-adjoint operator on $L^2(N_{3,2})$, hence a functional calculus for L is defined via spectral integration and, for all Borel functions $F : \mathbb{R} \to \mathbb{C}$, the operator $F(L)$ is bounded on $L^2(N_{3,2})$ whenever the “spectral multiplier” F is a bounded function. Here we are interested in giving a sufficient condition for the L^p-boundedness (for $p \neq 2$) of the operator $F(L)$, in terms of smoothness properties of the multiplier F.

Let $W^s_2(\mathbb{R})$ denote the L^2 Sobolev space of (fractional) order s. Then our main result reads as follows.

Theorem 1. Suppose that a function $F : \mathbb{R} \to \mathbb{C}$ satisfies

$$\sup_{t>0} \|\eta F(t \cdot)\|_{W^s_2} < \infty$$

for some $s > 6/2$ and some nonzero $\eta \in C^\infty_c([0, \infty[)$. Then the operator $F(L)$ is of weak type $(1, 1)$ and bounded on $L^p(N_{3,2})$ for all $p \in [1, \infty[.$

Remark. Observe that the general multiplier theorem for homogeneous sublaplacians on stratified Lie groups by Christ [3] and Mauceri and Meda [16] requires the stronger regularity condition $s > Q/2 = 9/2$. To the best of our knowledge, in the case of $N_{3,2}$ none of the results and techniques known so far allowed one to go below the condition $s > Q/2$. Our result pushes the regularity assumption down to

2010 Mathematics Subject Classification. 43A85, 42B15.

Key words and phrases. nilpotent Lie groups, spectral multipliers, sublaplacians, Mihlin-Hörmander multipliers, singular integral operators.

The first-named author gratefully acknowledges the support of the Alexander von Humboldt Foundation.
s > d/2 = 6/2, where d = 6 is the topological dimension of N_{3,2}. We conjecture that this condition is sharp.

The problem of L^p-boundedness for spectral multipliers on nilpotent Lie groups has a long history, and the theorem by Christ and Mauceri and Meda is itself an improvement of a series of previous results (see, e.g., [4, 8, 5]). Nevertheless it is still an open question, whether the homogeneous dimension in the smoothness condition may always be replaced by the topological dimension.

It has been known for a long time [10, 17] that such an improvement of the multiplier theorem holds true in the case of the Heisenberg and related groups (more precisely, for direct products of Métivier and abelian groups; see also [11, 14]). This class of groups, however, does not include $N_{3,2}$, nor any free 2-step nilpotent group $N_{n,2}$ on n generators (see [20, §3] for a definition), except for the smallest one, $N_{2,2}$, which is the 3-dimensional Heisenberg group. The free groups $N_{n,2}$ have in a sense the maximal structural complexity among 2-step groups, since every 2-step nilpotent Lie group is a quotient of a free one. Our result should then hopefully shed some new light and contribute to the understanding of the problem for general 2-step nilpotent Lie groups.

2. Strategy of the proof

The sublaplacian L is a left-invariant operator on $N_{3,2}$, hence any operator of the form $F(L)$ is left-invariant too. Let $K_{F(L)}$ then denote the convolution kernel of $F(L)$. As shown, e.g., in [14, Theorem 4.6], the previous Theorem 1 is a consequence of the following L^1-estimate.

Proposition 2. For all $s > 6/2$, for all compact sets $K \subseteq [0, \infty]$, and for all functions $F : \mathbb{R} \to \mathbb{C}$ such that $\text{supp} \, F \subseteq K$,

$$\|K_{F(L)}\|_1 \leq C_{K,s}\|F\|_{W^{s,2}}.$$

Let $|\cdot|_\delta$ be any δ-homogeneous norm on $N_{3,2}$; take, e.g., $|(x, y)|_\delta = |x| + |y|^{1/2}$. The crucial estimate in the proof of [16] of the general theorem for stratified groups, that is,

$$\|(1 + |\cdot|_\delta)^\alpha K_{F(L)}\|_2 \leq C_{K,\alpha,\beta}\|F\|_{W^{\beta,2}}$$

for all $\alpha \geq 0$ and $\beta > \alpha$, implies (1) when $s > 9/2$, by Hölder’s inequality. In order to push the condition down to $s > 6/2$, here we prove an enhanced version of (2), that is,

$$\|(1 + |\cdot|_\delta)^\alpha w^r K_{F(L)}\|_2 \leq C_{K,\alpha,\beta,r}\|F\|_{W^{\beta,2}},$$

for some “extra weight” function w on $N_{3,2}$, and suitable constraints on the exponents α, β, r.

A similar approach is adopted in the mentioned works on the Heisenberg and related groups. However, in [17] the extra weight w is the full weight $1 + |\cdot|_\delta$, while [10] employs the weight $w(x, y) = 1 + |x|$. Here instead the weight $w(x, y) = 1 + |y|$ is used, and (3) is proved under the conditions $\alpha \geq 0, 0 \leq r < 3/2, \beta > \alpha + r$ (see Proposition 9 below).

The proof of (5) when $\alpha = 0$ is based on a careful analysis exploiting identities for Laguerre polynomials, somehow in the spirit of [4, 17, 19], but with additional complexity due, inter alia, to the simultaneous use of generalized Laguerre polynomials of different types. The estimate for arbitrary α is then recovered by interpolation with (2). An analogous strategy is followed in [15], where identities for Hermite polynomials are used in order to prove a sharp spectral multiplier theorem for Grushin operators.
3. A joint functional calculus

It is convenient for us to embed the functional calculus for the sublaplacian \(L \) in a larger functional calculus for a system of commuting left-invariant differential operators on \(N_{3,2} \). Specifically, the operators

\[
L_i = -iY_i, \quad i = 1, 2, 3
\]

are essentially self-adjoint and commute strongly, hence they admit a joint functional calculus (see, e.g., [13]).

If \(Y \) denotes the “vector of operators” \((-iY_1, -iY_2, -iY_3)\), then we can express the convolution kernel \(K_{G(L,Y)} \) of the operator \(G(L,Y) \) in terms of Laguerre functions (cf. [7]). Namely, for all \(n, k \in \mathbb{N} \), let

\[
L_n^{(k)}(u) = \frac{u^{-k}e^u}{n!} \left(\frac{d}{du} \right)^n (u^{k+n} e^{-u})
\]

be the \(n \)-th Laguerre polynomial of type \(k \), and define

\[
L_n^{(k)}(t) = 2^{(-1)^n} e^{-t} L_n^{(k)}(2t).
\]

Further, for all \(\eta \in \mathbb{R}^3 \setminus \{0\} \) and \(\xi \in \mathbb{R}^3 \), define \(\xi_0^\eta \) and \(\xi_1^\eta \) by

\[
\xi_0^\eta = \langle \xi, \eta/|\eta| \rangle, \quad \xi_1^\eta = \xi - \xi_0^\eta \eta/|\eta|.
\]

Proposition 3. Let \(G : \mathbb{R}^4 \to \mathbb{C} \) be in the Schwartz class, and set

\[
m(n, \mu, \eta) = G((2n+1)|\eta| + \mu^2, \eta),
\]

for all \(n \in \mathbb{N}, \mu \in \mathbb{R}, \xi, \eta \in \mathbb{R}^3 \) with \(\eta \neq 0 \). Then

\[
K_{G(L,Y)}(x,y) = \frac{1}{(2\pi)^6} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \sum_{n \in \mathbb{N}} m(n, \xi_0^\eta, \eta) L_n^{(0)}(|\xi_0^\eta / |\eta||) e^{i\langle \xi, x \rangle} e^{i\langle \eta, \mu \rangle} d\xi d\eta.
\]

Proof. For all \(\eta \in \mathbb{R}^3 \setminus \{0\} \), choose a unit vector \(E_\eta \in \eta^\perp \), and set \(\bar{E}_\eta = (\eta/|\eta|) \wedge E_\eta \); moreover, for all \(x \in \mathbb{R}^3 \), denote by \(x_0^\eta, x_1^\eta, x_\parallel^\eta \) the components of \(x \) with respect to the positive orthonormal basis \(E_\eta, \bar{E}_\eta, \eta/|\eta| \) of \(\mathbb{R}^3 \).

For all \(\eta \in \mathbb{R}^3 \setminus \{0\} \) and all \(\mu \in \mathbb{R} \), an irreducible unitary representation \(\pi_{\eta, \mu} \) of \(N_{3,2} \) on \(L^2(\mathbb{R}) \) is defined by

\[
\pi_{\eta, \mu}(x, y) \phi(u) = e^{i\langle y, \mu \rangle} e^{i\langle \eta(u+x_\parallel^\eta)/2, x_0^\eta \rangle} e^{i\eta/2} \phi(x_0^\eta + u)
\]

for all \((x, y) \in N_{3,2}, u \in \mathbb{R}, \phi \in L^2(\mathbb{R}) \). Following, e.g., [11] §2, one can see that these representations are sufficient to write the Plancherel formula for the group Fourier transform of \(N_{3,2} \), and the corresponding Fourier inversion formula:

\[
f(x,y) = (2\pi)^{-5} \int_{\mathbb{R}^3 \setminus \{0\}} \int_{\mathbb{R}} \text{tr}(\pi_{\eta, \mu}(x,y) \pi_{\eta, \mu}(f)) \langle \eta \rangle d\mu d\eta
\]

for all \(f : N_{3,2} \to \mathbb{C} \) in the Schwartz class and all \((x, y) \in N_{3,2} \), where

\[
\pi_{\eta, \mu}(f) = \int_{N_{3,2}} f(z) \pi_{\eta, \mu}(z^{-1}) dz.
\]

Fix \(\eta \in \mathbb{R}^3 \setminus \{0\} \) and \(\mu \in \mathbb{R} \). The operators \([11]\) are represented in \(\pi_{\eta, \mu} \) as

\[
d\pi_{\eta, \mu}(L) = -\partial_\mu^2 + |\eta|^2 u^2 + \mu^2, \quad d\pi_{\eta, \mu}(-iY_j) = \eta_j.
\]

If \(h_n \) is the \(n \)-th Hermite function, that is,

\[
h_n(t) = (-1)^n (2^n n! \sqrt{\pi})^{-1/2} e^{t^2/2} \left(\frac{d}{dt} \right)^n e^{-t^2},
\]

and \(\bar{h}_{\eta,n} \) is defined by

\[
\bar{h}_{\eta,n}(u) = |\eta|^{1/4} h_n(|\eta|^{1/2} u),
\]
then \(\{ \hat{h}_{n,n} \}_{n \in \mathbb{N}} \) is a complete orthonormal system for \(L^2(\mathbb{R}) \), made of joint eigenfunctions of the operators \(\Pi \); in fact,
\[
(8) \quad d\pi_{\eta,\mu}(L)\hat{h}_{n,n} = (|\eta|(2n + 1) + \mu^2)\hat{h}_{n,n},
\]
\[
d\pi_{\eta,\mu}(-iY)\hat{h}_{n,n} = \eta \hat{h}_{n,n}.
\]
Moreover the corresponding diagonal matrix coefficients \(\varphi_{\eta,\mu,n} \) of \(\pi_{\eta,\mu} \) are given by
\[
(9) \quad \varphi_{\eta,\mu,n}(x,y) = \langle \pi_{\eta,\mu}(x,y)\hat{h}_{n,n}, \hat{h}_{n,n} \rangle
\]
\[
= e^{i\langle \eta, y \rangle}e^{i\mu x_1^n}|\eta|^{1/2} \int_{\mathbb{R}} e^{i|\eta|u x_2^n} h_n(|\eta|^{1/2}(u + x_1^n/2)) h_n(|\eta|^{1/2}(u - x_1^n/2))\,du.
\]
The last integral is essentially the Fourier-Wigner transform of the pair \((h_n, h_n) \),
whose Fourier transform has a particularly simple expression (cf. [9, formula (1.90)]);
the parity of the Hermite functions then yields
\[
\varphi_{\eta,\mu,n}(x,y) = e^{i\langle \eta, y \rangle}e^{i\mu x_1^n} |\eta|^{1/2} \int_{\mathbb{R}} e^{iv_2 x_2^n} e^{iv_1 x_1^n} \times \int_{\mathbb{R}} e^{-it(2v_1/|\eta|^{1/2})} h_n(t + v_2/|\eta|^{1/2}) h_n(t - v_2/|\eta|^{1/2}) \, dt \, dv,
\]
that is,
\[
(10) \quad \varphi_{\eta,\mu,n}(x,y) = \frac{1}{2\pi|\eta|} e^{i\langle \eta, y \rangle}e^{i\mu x_1^n} \int_{\mathbb{R}} e^{iv_2 x_2^n} e^{iv_1 x_1^n} \mathcal{L}^0_n(|v|^2/|\eta|) \, dv
\]
(see [21, Theorem 1.3.4] or [9, Theorem 1.104]).

Note that \(K_{G(L,Y)} \in \mathcal{S}(N_{3,2}) \) since \(G \in \mathcal{S}(\mathbb{R}^4) \) (see [2, Theorem 5.2] or [12, §4.2]). Moreover
\[
\pi_{\eta,\mu}(K_{G(L,Y)})\hat{h}_{n,n} = G(|\eta|(2n + 1) + \mu^2, \eta)\hat{h}_{n,n}
\]
by \((8)\) and \([9, \text{Proposition 1.1}]\), hence
\[
\langle \pi_{\eta,\mu}(x,y)\pi_{\eta,\mu}(K_{G(L,Y)})\hat{h}_{n,n}, \hat{h}_{n,n} \rangle = m(n, \mu, \eta) \varphi_{\eta,\mu,n}(x,y).
\]

Therefore, by \((6)\) and \((9)\),
\[
K_{G(L,Y)}(x,y) = (2\pi)^{-5} \int_{\mathbb{R}^2 \setminus \{0\}} \int_{\mathbb{R}^2} m(n, \mu, \eta) \varphi_{\eta,\mu,n}(x,y) |\eta| \, d\mu \, d\eta
\]
\[
= (2\pi)^{-6} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} m(n, \xi_3, \eta) e^{i\langle \eta, y \rangle}e^{i\langle \xi, (x_1^n, x_2^n, x_3^n) \rangle} \mathcal{L}^0_n((\xi_1^2 + \xi_2^2)/|\eta|) \, d\xi \, d\eta.
\]
The conclusion follows by a change of variable in the inner integral. \(\square\)

4. Weighted estimates

For convenience, set \(\mathcal{L}_n^{(k)} = 0 \) for all \(n < 0 \). The following identities are easily obtained from the properties of Laguerre polynomials (see, e.g., [6, §10.12]).

Lemma 4. For all \(k, n, n' \in \mathbb{N} \) and \(t \in \mathbb{R} \),
\[
(10) \quad \mathcal{L}_n^{(k)}(t) = \mathcal{L}_{n-1}^{(k+1)}(t) + \mathcal{L}_n^{(k+1)}(t),
\]
\[
(11) \quad \frac{d}{dt} \mathcal{L}_n^{(k)}(t) = \mathcal{L}_{n-1}^{(k+1)}(t) - \mathcal{L}_n^{(k+1)}(t),
\]
\[
(12) \quad \int_0^\infty \mathcal{L}_n^{(k)}(t) \mathcal{L}_{n'}^{(k)}(t) \, t^k \, dt = \begin{cases}
\left(\frac{n+k}{2}\right)^k & \text{if } n = n', \\
0 & \text{otherwise}.
\end{cases}
\]
We introduce some operators on functions $f : \mathbb{N} \times \mathbb{R} \times \mathbb{R}^3 \to \mathbb{C}$:

\[
\tau f(n, \mu, \eta) = f(n + 1, \mu, \eta),
\delta f(n, \mu, \eta) = f(n + 1, \mu, \eta) - f(n, \mu, \eta),
\partial_\mu f(n, \mu, \eta) = \frac{\partial}{\partial \mu} f(n, \mu, \eta),
\partial_\eta^\alpha f(n, \mu, \eta) = \left(\frac{\partial}{\partial \eta}\right)^\alpha f(n, \mu, \eta),
\]

for all $\alpha \in \mathbb{N}^3$. For all multiindices $\alpha \in \mathbb{N}^3$, we denote by $|\alpha|$ its length $\alpha_1 + \alpha_2 + \alpha_3$.

We set moreover $\langle t \rangle = 2|t| + 1$ for all $t \in \mathbb{R}$.

Note that, for all compactly supported $f : \mathbb{N} \times \mathbb{R} \times \mathbb{R}^3 \to \mathbb{C}$, $\tau^l f$ is null for all sufficiently large $l \in \mathbb{N}$; hence the operator $1 + \tau$, when restricted to the set of compactly supported functions, is invertible, with inverse given by

\[
(1 + \tau)^{-1} f = \sum_{l \in \mathbb{N}} (-1)^l \tau^l f,
\]

and therefore the operator $(1 + \tau)^q$ is well-defined for all $q \in \mathbb{Z}$.

Proposition 5. Let $G : \mathbb{R}^4 \to \mathbb{C}$ be smooth and compactly supported in $\mathbb{R} \times (\mathbb{R}^3 \setminus \{0\})$, and let $m(n, \mu, \eta)$ be defined by [3]. For all $\alpha \in \mathbb{N}^3$,

\[
\int_{\mathbb{R}^3} |y^\alpha \mathcal{K}_G(x,y)|^2 \, dx \, dy \\
\leq C_\alpha \sum_{\ell \in I_\alpha} \sum_{n \in \mathbb{N}} \int_{\mathbb{R}^3} \int_{\mathbb{R}} |\partial_\eta^\gamma \partial_\mu^\delta (1 + \tau)^{|\beta| - k} m(n, \mu, \eta)|^2 \\
\times \mu^{2h_1} |\eta|^{2|\gamma| - 2|\alpha| - 2k_1 + |\beta| + 1} |n|^{3|\beta|} \, d\mu \, d\eta,
\]

where I_α is a finite set and, for all $\ell \in I_\alpha$,

- $\gamma_1 \in \mathbb{N}_0$, $l, k_1 \in \mathbb{N}$, $\gamma_1 \leq \alpha$, $\min\{1, |\alpha|\} \leq |\gamma_1| + l + k_2 \leq |\alpha|$, \\
- $b_1 \in \mathbb{N}$, $\beta_1 \in \mathbb{N}_0$, $b_1 + |\beta_1| = l_1 + 2k_1$, $|\gamma_1| + l + b_1 \leq |\alpha|$.

Proof. Proposition [3] and integration by parts allow us to write

\[
y^{\alpha} \mathcal{K}_G(x,y) = \frac{i^{|\alpha|}}{(2\pi)^6} \int_{\mathbb{R}^3} \left(\frac{\partial}{\partial \eta} \right)^\alpha \sum_{n \in \mathbb{N}} m(n, \xi_1^\eta, \eta) \mathcal{L}_n^{(0)} \left(|\xi_1^\eta|^2 / |\eta| \right) \right] e^{i\langle x, \eta \rangle} \, d\xi d\eta.
\]

From the definition of ξ_\parallel and ξ_\perp, the following identities are not difficult to obtain:

\[
\frac{\partial}{\partial n_1} \xi_\parallel = (\xi_1^\eta) \left(\frac{1}{|\eta|} \right), \quad \frac{\partial}{\partial n_2} (\xi_2^\eta) = -\xi_\parallel \frac{\partial}{\partial n_2} \frac{\eta_2}{|\eta|} - (\xi_2^\eta) \frac{\eta_2}{|\eta|^2},
\]

\[
\frac{\partial}{\partial n_2} \frac{\xi_2^\eta}{|\eta|} = -\xi_\parallel (\xi_2^\eta) \left(\frac{2}{|\eta|^2} - \frac{\eta_2^2}{|\eta|^5} \right).
\]

The multiindex notation will also be used as follows:

\[
(\xi_1^\eta)^{\beta_1} = (\xi_1^\eta_1)^{\beta_1} \cdot (\xi_1^\eta_2)^{\beta_2} \cdot (\xi_1^\eta_3)^{\beta_3}
\]

for all $\xi, \eta \in \mathbb{R}$, with $\eta \neq 0$, and all $\beta \in \mathbb{N}_0^3$; consequently

\[
|\xi_1^\eta|^2 = (\xi_1^\eta)^{(2,0,0)} + (\xi_1^\eta)^{(0,2,0)} + (\xi_1^\eta)^{(0,0,2)}.
\]
Via these identities, one can prove inductively that, for all $\alpha \in \mathbb{N}^3$,

$$\left(\frac{\partial}{\partial \eta} \right)^{\alpha} \sum_{n \in \mathbb{N}} m(n, \xi_\perp^n, \eta) \mathcal{L}_n^{(0)}(|\xi_\perp^n|^2/|\eta|)$$

$$= \sum_{\varsigma \in I_\alpha} \sum_{\eta \in \mathbb{N}} \partial_{\eta}^{\varsigma} \partial_{\mu}^{\varsigma} \delta^k \cdot m(n, \xi_\parallel^n, \eta) (\xi_\parallel^n)^{\varsigma} (\xi_\perp^n)^{\varsigma} \Theta_i(\eta) \mathcal{L}_n^{(k)}(|\xi_\perp^n|^2/|\eta|),$$

where I_α, γ, l, b, β are as in the statement above, while $\Theta_i : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}$ is smooth and homogeneous of degree $|\gamma| - |\alpha| - k$. For the inductive step, one employs Leibniz’ rule, and when a derivative hits a Laguerre function, the identity \((11)\) together with summation by parts is used.

Note that, for all compactly supported $f : \mathbb{N} \times \mathbb{R} \times \mathbb{R}^3 \to \mathbb{C}$,

$$\sum_{n \in \mathbb{N}} f(n, \mu, \eta) \mathcal{L}_n^{(k)}(t) = \sum_{n \in \mathbb{N}} (1 + \tau) f(n, \mu, \eta) \mathcal{L}_n^{(k+1)}(t),$$

by \((10)\). Since $1 + \tau$ is invertible, simple manipulations and iteration yield the more general identity

$$\sum_{n \in \mathbb{N}} f(n, \mu, \eta) \mathcal{L}_n^{(k)}(t) = \sum_{n \in \mathbb{N}} (1 + \tau)^{k-k'} f(n, \mu, \eta) \mathcal{L}_n^{(k')}(t),$$

for all $k, k' \in \mathbb{N}$. This formula allows us to adjust in \((16)\) the type of the Laguerre functions to the exponent of ξ_\perp, and to obtain that

$$\left(\frac{\partial}{\partial \eta} \right)^{\alpha} \sum_{n \in \mathbb{N}} m(n, \xi_\parallel^n, \eta) \mathcal{L}_n^{(0)}(|\xi_\perp^n|^2/|\eta|)$$

$$= \sum_{\varsigma \in I_\alpha} \sum_{\eta \in \mathbb{N}} \partial_{\eta}^{\varsigma} \partial_{\mu}^{\varsigma} \delta^k \cdot (1 + \tau)^{|\beta^\perp| - k} \cdot m(n, \xi_\parallel^n, \eta) (\xi_\parallel^n)^{\varsigma} (\xi_\perp^n)^{\varsigma} \Theta_i(\eta) \mathcal{L}_n^{(|\beta^\parallel|)}(|\xi_\perp^n|^2/|\eta|),$$

By plugging this identity into \((14)\) and exploiting Plancherel’s formula for the Fourier transform, the finiteness of I_α and the triangular inequality, we get that

$$\int_{N_{3,2}} |y^a K_{G(L, X)}(x, y)|^2 \, dx \, dy$$

$$\leq C_o \sum_{\varsigma \in I_\alpha} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{\mathbb{N}} \left| \partial_{\eta}^{\varsigma} \partial_{\mu}^{\varsigma} \delta^k \cdot (1 + \tau)^{|\beta^\perp| - k} \cdot m(n, \mu, \eta) \mathcal{L}_n^{(|\beta^\parallel|)}(\xi_\perp^n/|\eta|) \right|^2 \, m(\mu, \eta) \, d\mu \, d\eta \, \, d\zeta$$

A passage to polar coordinates in the ζ-integral and a rescaling then give that

$$\int_{N_{3,2}} |y^a K_{G(L, X)}(x, y)|^2 \, dx \, dy$$

$$\leq C_o \sum_{\varsigma \in I_\alpha} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{\mathbb{R}} \left| \partial_{\eta}^{\varsigma} \partial_{\mu}^{\varsigma} \delta^k \cdot (1 + \tau)^{|\beta^\perp| - k} \cdot m(n, \mu, \eta) \mathcal{L}_n^{(|\beta^\parallel|)}(s) \right|^2 \, s^{2|\beta^\perp|} \, ds \, d\mu \, d\eta,$$

and the conclusion follows by applying the orthogonality relations \((12)\) for the Laguerre functions to the inner integral. \hfill \Box

Note that $\tau f(\cdot, \mu, \eta)$, $\delta f(\cdot, \mu, \eta)$ depend only on $f(\cdot, \mu, \eta)$; in other words, τ and δ can be considered as operators on functions $\mathbb{N} \to \mathbb{C}$. The next lemma will be useful in converting finite differences into continuous derivatives.
Lemma 6. Let \(f : \mathbb{N} \to \mathbb{C} \) have a smooth extension \(\tilde{f} : [0, \infty] \to \mathbb{C} \), and let \(k \in \mathbb{N} \). Then

\[
\delta^k f(n) = \int_{J_k} \tilde{f}^{(k)}(n + s) \, d\nu_k(s)
\]

for all \(n \in \mathbb{N} \), where \(J_k = [0, k] \) and \(\nu_k \) is a Borel probability measure on \(J_k \). In particular

\[
|\delta^k f(n)|^2 \leq \int_{J_k} |\tilde{f}^{(k)}(n + s)|^2 \, d\nu_k(s)
\]

for all \(n \in \mathbb{N} \).

Proof. Iterated application of the fundamental theorem of integral calculus gives

\[
\delta^k f(n) = \int_{[0,1]^k} \tilde{f}^{(k)}(n + s_1 + \cdots + s_k) \, ds.
\]

The conclusion follows by taking as \(\nu_k \) the push-forward of the uniform distribution on \([0,1]^k\) via the map \((s_1, \ldots, s_k) \mapsto s_1 + \cdots + s_k\), and by Hölder’s inequality. \(\square \)

We give now a simplified version of the right-hand side of (13), in the case where we restrict to the functional calculus for the sublaplacian \(L \). In order to avoid divergent series, however, it is convenient at first to truncate the multiplier along the spectrum of \(Y \).

Lemma 7. Let \(\chi \in C^\infty_c(\mathbb{R}) \) be supported in \([1/2, 2]\), \(K \subseteq [0, \infty[\) be compact and \(M \in [0, \infty[\). If \(F : \mathbb{R} \to \mathbb{C} \) is smooth and supported in \(K \), and \(F_M : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{C} \) is given by

\[
F_M(\lambda, \eta) = F(\lambda) \chi(|\eta|/M),
\]

then, for all \(r \in [0, \infty[\),

\[
\int_{N_{3,2}} |y|^r K_{F_M(L,Y)}(x, y)|^2 \, dx \, dy \leq C_{K,\chi,r} M^{3-2r} \| F \|_{W^2_3}^2.
\]

Proof. We may restrict to the case \(r \in \mathbb{N} \), the other cases being recovered a posteriori by interpolation. Hence we need to prove that

\[
\int_{N_{3,2}} |y|^\alpha K_{F_M(L,Y)}(x, y)|^2 \, dx \, dy \leq C_{K,\chi,\alpha} M^{3-2\alpha} \| F \|_{W^2_3}^{2\alpha}
\]

for all \(\alpha \in \mathbb{N}^3 \). On the other hand, if

\[
m(n, \mu, \eta) = F(|\eta|/\mu) \chi(|\eta|/M),
\]

then the left-hand side of (17) can be majorized by (13), and we are reduced to proving

\[
\sum_{n \in \mathbb{N}} \int_{\mathbb{R}^3} \int_{\mathbb{R}} |\partial^\nu_\eta \partial^\mu_x \delta^{k_i} (1 + \tau)^{[\beta^i]-k_i} m(n+\mu, \eta) |^2 \mu^{2k_i} |\eta|^2 [\gamma^j-2\alpha_k-2\beta^i+1 + \beta^j] \times \langle \eta \rangle^{[\beta^j]} d\mu \, d\eta \leq C_{K,\chi,\alpha} M^{3-2\alpha} \| F \|_{W^2_3}^{2\alpha}
\]

for all \(\tau \in I_\alpha \).

Consider first the case \([\beta^i] \geq k_i \). A smooth extension \(\tilde{m} : \mathbb{R} \times \mathbb{R} \times \mathbb{R}^3 \to \mathbb{C} \) of \(m \) is defined by

\[
\tilde{m}(t, \mu, \eta) = F(|\eta|(2t+1) + \mu^2) \chi(|\eta|/M).
\]

Then, by Lemma 6

\[
\partial^\nu_\eta \partial^\mu_x \delta^{k_i} (1 + \tau)^{[\beta^i]-k_i} m(n+\mu, \eta)
\]

\[
= \sum_{j=0}^{[\beta^i]-k_i} \binom{[\beta^i]-k_i}{j} \int_{J_k} \partial^\nu_\eta \partial^\mu_x \delta^{k_i} \tilde{m}(n+j+s, \mu, \eta) \, dv_\alpha(s),
\]
where $J_t = [0, k_t]$ and r_t is a suitable probability measure on J_t; consequently (15) will be proved if we show that

$$
\sum_{n \in \mathbb{N}} \int_{\mathbb{R}} \int_{\mathbb{R}} |\partial^\alpha_\eta \partial^\beta_\mu \partial^\chi_\nu \tilde{m}(n + s, \mu, \eta)|^2 \mu^{2b_\mu} |\eta|^{2|\alpha| - 2k_t + |\beta| + 1} \times (n)^{\beta_\nu} d\mu d\eta \leq C_{K, \chi, \alpha} M^{3-2|\alpha|} \|F\|^2_{W_2^{\alpha}}
$$

for all $s \in [0, |\beta_\nu|]$. On the other hand, it is easily proved inductively that

$$
|\partial^\alpha_\eta \partial^\beta_\mu \partial^\chi_\nu \tilde{m}(t, \mu, \eta)|^2 \leq C_{\chi, \alpha} \sum_{n=1}^{t} \sum_{l=0}^{\lfloor \alpha \rfloor} \sum_{v=0}^{\lfloor \beta \rfloor} \sum_{s=0}^{\lfloor \chi \rfloor} |\langle t \rangle^\nu \mu^{2r-l} M^{-q} F(k_t, v + r) |\langle \eta \rangle (t) + \mu^2 \rangle \chi^{|\nu|} (\langle \eta \rangle / M),
$$

where $\tilde{\chi}$ is the characteristic function of $[1/2, 2]$, and we are using the fact that $|\eta| \sim M$ in the region where $\tilde{\chi}(|\eta| / M) \neq 0$. Consequently the left-hand side of (19) is majorized by

$$
C_{\chi, \alpha} \sum_{r=1}^{t} \sum_{l=0}^{\lfloor \alpha \rfloor} \sum_{v=0}^{\lfloor \beta \rfloor} \sum_{s=0}^{\lfloor \chi \rfloor} |\langle n \rangle^{\beta_\nu} |(n + s)^{2v} \times \int_{\mathbb{R}} \int_{\mathbb{R}} |F(k_t, v + r) (|\eta| + s + \mu^2)^{2} \mu^{2b_\mu + 4r - 2l} \tilde{\chi}(\langle \eta \rangle / M) d\mu d\eta
$$

$$
\leq C_{\chi, \alpha} \sum_{r=1}^{t} \sum_{l=0}^{\lfloor \alpha \rfloor} \sum_{v=0}^{\lfloor \beta \rfloor} \sum_{s=0}^{\lfloor \chi \rfloor} |\langle n \rangle^{\beta_\nu} |(n + s)^{2v} \times \int_{0}^{\infty} \int_{0}^{\infty} |F(k_t, v + r) (\rho(n + s + \mu^2)^{2} \mu^{2b_\mu + 4r - 2l} \tilde{\chi}(\rho / M) d\mu d\rho
$$

$$
\leq C_{\chi, \alpha} \sum_{r=1}^{t} \sum_{l=0}^{\lfloor \alpha \rfloor} \sum_{v=0}^{\lfloor \beta \rfloor} \sum_{s=0}^{\lfloor \chi \rfloor} |\langle n \rangle^{\beta_\nu} |(n + s)^{2v - 1} \chi(\rho (\langle n + s \rangle M)) d\mu d\rho.
$$

by passing to polar coordinates and rescaling. The last sum in ν is easily controlled by $(\rho / M)^{|\beta_\nu| + 2v}$, hence the left-hand side of (19) is majorized by

$$
C_{\chi, \alpha} M^{3-2|\alpha|} \sum_{r=1}^{t} \sum_{l=0}^{\lfloor \alpha \rfloor} \sum_{v=0}^{\lfloor \beta \rfloor} \sum_{s=0}^{\lfloor \chi \rfloor} |\langle n \rangle^{\beta_\nu} |(n + s)^{2v} \times \mu^{2b_\mu + 4r - 2l} \sup_{u \in [0, \max K]} |F(k_t, v + r) (\rho + u)^{2} d\mu d\rho
$$

because $2b_\mu + 4r - 2l \geq 0$ and $|\beta_\nu| + 2v \geq 0$ if r and v are in the range of summation, and $\text{sup} F \subseteq K$. Since moreover $k_t + v + r \leq k_t + \gamma_\nu + l_t \leq |\alpha|$, the last integral is dominated by $\|F\|^2_{W_2^{\alpha}}$ uniformly in ν, v, u, and (19) follows.
Consider now the case $|\beta'| < k_i$. Via the identity
\[(1 + \tau)^{-1} = (1 - \tau)(1 - \tau^2)^{-1} = -\delta(1 - \tau^2)^{-1} = -\delta \sum_{j=0}^{\infty} \tau^{2j},
\]

then together with Lemma 3 we obtain that
\[(21) \quad \partial_{\eta}^{k_i} \partial_{\mu}^{k_i} (1 + \tau)^{|\beta'| - k_i} m(n, \mu, \eta) \]
\[= (-1)^{k_i - |\beta'|} \sum_{j=0}^{\infty} \left(\sum_{k_i-|\beta'|}^{j+k_i-|\beta'|+1}\right) \partial_{\eta}^{k_i} \partial_{\mu}^{2k_i-|\beta'|} \bar{m}(n + 2j + s, \mu, \eta) \, dv_{\nu}(s),
\]

where $J_i = [0, 2k_i - |\beta'|]$ and ν_i is a suitable probability measure on J_i. Note that, because of the assumptions on the supports of F and χ, the sum on j in the right-hand side of (21) is a finite sum, that is, the j-th summand is nonzero only if $(n + 2j) \leq 2M^{-1} \max K$; consequently, by applying the Cauchy-Schwarz inequality to the sum in j, and by (20),
\[
|\partial_{\eta}^{k_i} \partial_{\mu}^{k_i} (1 + \tau)^{|\beta'| - k_i} m(n, \mu, \eta)|^2
\leq C_{K,\alpha} M^{1+2|\beta'|-2k_i} \sum_{j=0}^{\infty} \int_{J_i} |\partial_{\eta}^{k_i} \partial_{\mu}^{2k_i-|\beta'|} \bar{m}(n + 2j + s, \mu, \eta)|^2 \, dv_{\nu}(s)
\]
\[\leq C_{K,\alpha} \sum_{r \in [l_i/2]} \sum_{\nu \in 0} \sum_{n,j \in \mathbb{N}} (n + 2j + s)^{2v} (n)^{|\beta'|} \int_{\mathbb{R}^2} \int_{\mathbb{R}^3} M^{2+2v-2|\alpha|+|\beta'|}
\times \mu^{2b_i + 4r - 2l_i} \left| F(2k_i - |\beta'| + v + r)(\eta(n + 2j + s) + \mu^2)^2 \bar{\chi}(\eta/M) \right| \, d\eta \, dv_{\nu}(s)
\]
\[\leq C_{K,\alpha} \sum_{r \in [l_i/2]} \sum_{\nu \in 0} \sum_{n,j \in \mathbb{N}} (n + 2j + s)^{2v+|\beta'|} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} M^{4+2v-2|\alpha|+|\beta'|}
\times \mu^{2b_i + 4r - 2l_i} \left| F(2k_i - |\beta'| + v + r)(\rho(n + 2j + s) + \mu^2)^2 \bar{\chi}(\rho/M) \right| \, d\rho \, dv_{\nu}(s)
\]
\[\leq C_{K,\alpha} \sum_{r \in [l_i/2]} \sum_{\nu \in 0} \sum_{n,j \in \mathbb{N}} (n + 2j + s)^{2v+|\beta'|} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} |F(2k_i - |\beta'| + v + r)(\rho + \mu^2)|^2
\times \mu^{2b_i + 4r - 2l_i} \int_{J_i} \sum_{(n,j) \in \mathbb{N}^2} (n + 2j + s)|^{2v+|\beta'|+1} \bar{\chi}(\rho/(n + 2j + s)M) \, dv_{\nu}(s) \, d\mu \, d\rho.
\]

By passing to polar coordinates and rescaling, the sum in (n, j) is dominated by $(\rho/M)^{2v+|\beta'|+1}$, uniformly in $s \in J_i$, and moreover supp $F \subseteq K$. Therefore the left-hand side of (15) is majorized by
\[
C_{K,\alpha} M^{3-2|\alpha|} \sum_{r \in [l_i/2]} \sum_{\nu \in 0} \sup_{n \in [0, \max K]} \int_{\mathbb{R}^3} |F(2k_i - |\beta'| + v + r)(\rho + u)|^2 \, d\rho.
\]

On the other hand, $b_i + |\beta'| = l_i + 2k_i$, hence $2k_i - |\beta'| + v + r \leq 2k_i - |\beta'| + |\gamma'| + l_i = b_i + |\gamma'| \leq |\alpha|$ if r and v are in the range of summation, therefore the last integral is dominated by $\|F\|_{W_2^{\alpha}}$ uniformly in r, v, u, and (13) follows. \qed
Proposition 8. Let $F : \mathbb{R} \to \mathbb{C}$ be smooth and such that $\text{supp} F \subseteq K$ for some compact set $K \subseteq [0, \infty]$. For all $r \in [0, 3/2]$,
\[
\int_{N_{3,2}} \left| (1 + |y|)^r \mathcal{K}_{F(L)}(x, y) \right|^2 \, dx \, dy \leq C_{K,r} \|F\|^{2}_{W^{3}_{2}}.
\]

Proof. Take $\chi \in C_{c}^{\infty}(\mathbb{R})$ such that $\text{supp} \chi \subseteq [1/2, 2]$ and $\sum_{k \in \mathbb{Z}} \chi(2^{-k}t) = 1$ for all $t \in [0, \infty]$. Note that, if (λ, η) belongs to the joint spectrum of L, Y, then $|\eta| \leq \lambda$. Therefore, if $k_{K} \in \mathbb{Z}$ is sufficiently large so that $2^{k_{K} - 1} > \max K$, and if F_{M} is defined for all $M \in [0, \infty]$ as in Lemma 7, then
\[
F(L) = \sum_{k \in \mathbb{Z}, k \leq k_{K}} F_{2^{k}}(L, Y)
\]
(with convergence in the strong sense). Hence an estimate for $\mathcal{K}_{F(L)}$ can be obtained, via Minkowski’s inequality, by summing the corresponding estimates for $\mathcal{K}_{F_{2^{k}}}(L, Y)$ given by Lemma 7. If $r < 3/2$, then the series $\sum_{k \leq k_{K}} (2^{k})^{3/2 - r}$ converges, thus
\[
\int_{N_{3,2}} \left| (1 + |y|)^r \mathcal{K}_{F(L)}(x, y) \right|^2 \, dx \, dy \leq C_{K,r} \|F\|^{2}_{W^{3}_{2}}.
\]

The conclusion follows by combining the last inequality with the corresponding one for $r = 0$. \qed

Recall that $\cdot \cdot |_{\delta}$ denotes a δ-homogeneous norm on $N_{3,2}$, thus $||(x, y)|_{\delta} \sim |x| + |y|^{1/2}$. Interpolation then allows us to improve the standard weighed estimate for a homogeneous sublaplacian on a stratified group.

Proposition 9. Let $F : \mathbb{R} \to \mathbb{C}$ be smooth and such that $\text{supp} F \subseteq K$ for some compact set $K \subseteq [0, \infty]$. For all $r \in [0, 3/2]$, $\alpha \geq 0$ and $\beta > \alpha + r$,
\[
(22) \quad \int_{N_{3,2}} \left| (1 + |(x, y)|)^{\alpha} (1 + |y|)^{\beta} \mathcal{K}_{F(L)}(x, y) \right|^2 \, dx \, dy \leq C_{K,\alpha,\beta,r} \|F\|^{2}_{W^{3}_{2}}.
\]

Proof. Note that $1 + |y| \leq C(1 + |(x, y)|)^{2}$. Hence, in the case $\alpha > 0$, $\beta > \alpha + 2r$, the inequality (22) follows by the standard estimate [10] Lemma 1.2. On the other hand, if $\alpha = 0$ and $\beta \geq r$, then (22) is given by Proposition 8. The full range of α and β is then obtained by interpolation (cf. the proof of [10] Lemma 1.2). \qed

We can finally prove the fundamental L^{1}-estimate, and consequently Theorem 1.

Proof of Proposition 9. Take $r \in [9/2 - s, 3/2]$. Then $s - r > 3/2 + 3 - 2r$, hence we can find $\alpha_{1} > 3/2$ and $\alpha_{2} > 3 - 2r$ such that $s - r > \alpha_{1} + \alpha_{2}$. Therefore, by Proposition 9 and Hölder’s inequality,
\[
\|\mathcal{K}_{F(L)}\|_{1}^{2} \leq C_{K,s} \|F\|^{2}_{W^{3}_{2}} \int_{N_{3,2}} (1 + |(x, y)|)^{-2\alpha_{1} - 2\alpha_{2}} (1 + |y|)^{-2r} \, dx \, dy.
\]
The integral on the right-hand side is finite, because $2\alpha_{1} > 3$, $\alpha_{2} + 2r > 3$, and
\[
(1 + |(x, y)|)^{-2\alpha_{1} - 2\alpha_{2}} (1 + |y|)^{-2r} \leq C_{s}(1 + |x|)^{-2\alpha_{1}} (1 + |y|)^{-\alpha_{2} - 2r},
\]
and we are done. \qed

References

[1] F. Astengo, M. Cowling, B. Di Blasio, and M. Sundari, Hardy’s uncertainty principle on certain Lie groups, J. London Math. Soc. (2) 62 (2000), no. 2, 461–472.
[2] F. Astengo, B. Di Blasio, and F. Ricci, Gelfand pairs on the Heisenberg group and Schwartz functions, J. Funct. Anal. 256 (2009), no. 5, 1565–1587.
[3] M. Christ, L^{p} bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), no. 1, 73–81.
SPECTRAL MULTIPLIERS ON $\mathbb{N}^{3,2}$

[4] L. De Michele and G. Mauceri, L^p multipliers on the Heisenberg group, Michigan Math. J. 26 (1979), no. 3, 361–371.

[5] ______, H^p multipliers on stratified groups, Ann. Mat. Pura Appl. (4) 148 (1987), 353–366.

[6] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vol. II, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981.

[7] V. Fischer and F. Ricci, Gelfand transforms of $SO(3)$-invariant Schwartz functions on the free group $N_{3,2}$, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2143–2168.

[8] G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J., 1982.

[9] G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989.

[10] W. Hebisch, Multiplier theorem on generalized Heisenberg groups, Colloq. Math. 65 (1993), no. 2, 231–239.

[11] W. Hebisch and J. Zienkiewicz, Multiplier theorem on generalized Heisenberg groups. II, Colloq. Math. 69 (1995), no. 1, 29–36.

[12] A. Martini, Algebras of differential operators on Lie groups and spectral multipliers, Tesi di perfezionamento (PhD thesis), Scuola Normale Superiore, Pisa, 2010, arXiv:1007.1119.

[13] A. Martini, Spectral theory for commutative algebras of differential operators on Lie groups, J. Funct. Anal. 260 (2011), no. 9, 2767–2814.

[14] ______, Analysis of joint spectral multipliers on Lie groups of polynomial growth, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 4, 1215–1263.

[15] A. Martini and D. Müller, A sharp multiplier theorem for Grushin operators in arbitrary dimensions, (2012), arXiv:1210.3564.

[16] G. Mauceri and S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), no. 3-4, 141–154.

[17] D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl. (9) 73 (1994), no. 4, 413–440.

[18] D. Müller, A restriction theorem for the Heisenberg group, Ann. of Math. (2) 131 (1990), no. 3, 567–587.

[19] D. Müller, F. Ricci, and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II, Math. Z. 221 (1996), no. 2, 267–291.

[20] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320.

[21] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes, vol. 42, Princeton University Press, Princeton, NJ, 1993.

Alessio Martini, Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24118 Kiel, Germany
E-mail address: martini@math.uni-kiel.de

Detlef Müller, Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24118 Kiel, Germany
E-mail address: mueller@math.uni-kiel.de