Association between genetic variation of complement C3 and the susceptibility to advanced age-related macular degeneration: a meta-analysis

Jun Zhang†, Shuang Li†, Shuqiong Hu2, Jiguo Yu1 and Yi Xiang1*

Abstract
Background: The purpose of this study is to discuss whether genetic variants (rs2230199, rs1047286, rs2230205, and rs2250656) in the C3 gene account for a significant risk of advanced AMD.

Methods: We performed a meta-analysis using electronic databases to search relevant articles. A total of 40 case-control studies from 38 available articles (20,673 cases and 20,025 controls) were included in our study.

Results: In our meta-analysis, the pooled results showed that the carriage of G allele for rs2230199 and the T allele for rs1047286 had a tendency to the risk of advanced AMD (OR = 1.49, 95% CI = 1.39–1.59, P < 0.001; OR = 1.45, 95% CI = 1.37–1.54, P < 0.001). Moreover, in the subgroup analysis based on ethnicity, rs2230199 and rs1047286 polymorphisms were more likely to be a predictor of response for Caucasian region (OR = 1.48, 95% CI = 1.38–1.59, P < 0.001; OR = 1.45, 95% CI = 1.37–1.54, P < 0.001). Besides, pooled results suggested that the G allele of rs2230199 could confer susceptibility to advanced AMD in Middle East (OR = 1.62, 95% CI = 1.33–1.97, P < 0.001).

Conclusion: In our meta-analysis, C3 genetic polymorphisms unveiled a positive effect on the risk of advanced AMD, especially in Caucasians. Furthermore, numerous well-designed studies with large sample-size are required to validate this conclusion.

Keywords: Age-related macular degeneration, C3 gene, Polymorphism, Meta-analysis

Background
Age-related macular degeneration (AMD) is a complex and progressive retinal disorder influenced by family history, aging, race, smoking and diet, which caused irreversible visual impairment in a growing number of elderly persons [1, 2]. The early stage of AMD is characterized by pigmentary abnormalities of the retinal pigment epithelium (RPE) and extracellular deposits called drusen under the retina [3]. As the condition progresses, two advanced forms of this disease are developed: extensive pigment epithelium atrophy (geographic atrophy or dry AMD) or subretinal choroidal neovascular membrane (exudative or wet AMD). Although constituting only 10–15% of all AMD cases, advanced forms account for nearly 80% of AMD-related blindness in western countries [4]. It has been reported that the prevalence of advanced AMD is estimated at 3% in people aged > 65 years old, rising to 11% in those > 85 years old in developed world [5]. While, the pooled prevalence of advanced AMD is 0.56% among aged 40–79 years in Asian countries [6].

Advanced AMD has been implicated with important risk factors listed above, it is a multifactorial disease which influenced by a combination of environmental and genetic susceptibility [1, 3, 7, 8]. Although the well-defined pathogeny of advanced AMD remains to be unresolved, genetic association studies have provided consequential insights into the molecular basis of advanced AMD. Several genes at chromosomal loci 1q32 and 10q26, involving in inflammation and...
complement activation pathway, have been plausible candidate, as supported by the laboratory research in vitro and vivo that inflammation and immune response related proteins were found in drusen [9–11]. So far, the strongest genetic association has been identified on 1q32 with single nucleotide polymorphisms (SNPs) in complement factor H (CFH) gene by candidate region and whole genome association analyses [12, 13].

Apart from CFH, the central element of the complement cascade, complement component C3a has been interconnected with the vascular endothelial growth factor expression, geographic atrophy, retinal pigment epithelium deterioration, and progression to choroidal neovascularization [11, 14, 15]. These studies strongly indicated that aberrant regulation or activation of the complement pathway confer susceptibility to the main mechanism of advanced AMD. As the main regulator of the alternative complement pathway, several genetic variants in C3 gene have been investigated with advanced AMD in different ethnic groups, the pooled results are incompatible and ambiguous. According to the International HapMap Project database, the human C3 gene is located on chromosome 19 and exhibits nine common genetic SNPs (rs2230199, rs1047286, rs2241394, rs2250656, rs344542, rs2230205, rs339392, rs3745565, and rs11569536). Used for screening the electronic database and manual searching, the most widely candidate polymorphisms of the C3 gene which at least has been surveyed in three pertinent studies are rs2230199, rs1047286, rs2230205 and rs2250656. In order to better understand the genetic risk of C3 gene in the relationship with exudative AMD, we performed a meta-analysis to illuminate this association and determine whether the genetic variants of C3 gene conferred susceptibility to advanced AMD.

Materials and methods

Literature search
A systematic search of electronic database such as PubMed, Embase, CNKI, Cochrane library and Web of Science was conducted with the following keywords: (“AMD” or “maculopathy” or “macular degeneration” or “age-related maculopathy” or “age-related macular degeneration”) and (“complement 3” or “complement component C3” or “C3a” or “complement C3”) and (“variant” or “mutation” or “genetic” or “SNP” or “polymorphism” or “genetic polymorphism” or “genetic variant” or “single nucleotide polymorphism”). Each database was thoroughly scanned and was up to date as of September 1 2018. Our meta-analysis was mainly focused on case-control studies, without any language limitation imposed in the literature searching.

Study selection
Retrieved articles were considered eligible for our meta-analysis when they met the following inclusion criteria: (1) investigating the disease risk of C3 polymorphism with advanced AMD; (2) detailed genotyping data for each site could be acquired to estimate the odds ratio (OR) and 95% confidence interval (CI) based on genetic model contrast; (3) individual for all selected samples met the modified version of the age-related eye disease study (AREDS) grading system as described elsewhere. Major exclusion criteria were limited to several items as follow: (1) overlapping subjects in several articles for the same research group; (2) only focused on families’ individuals rather than sporadic advanced AMD patients; (3) abstract from conferences, letters, review articles and case reports. When several articles included some of the same samples, the one with largest individuals and thorough genotype information would be winnowed for our meta-analysis.

Data extraction
Data from the retrieved studies were extracted independently by two reviewers (J.Z. and S.L.). The following items obtained from each eligible articles included: the first author, the year of publication, country and ethnicity of subjects, information on study design, sample size, genotyping methods and distribution in case and control groups. Two authors carefully inspected the raw statistics and reached a consensus in all aspects. If any disagreement still existed, the third author (S.H.) would be invited to chew over current controversy and resolve the dispute.

Quality assessment
Quality assessment of the screened studies was also independently conducted by two reviewers (J.Z. and S.L.) in the basis of the HuGENet Handbook [16]. A total of six bias assessment items were refined to investigate the relationship between genes and diseases from this handbook, including bias in selection of cases, bias in selection of controls, bias in genotyping cases, bias in genotyping controls, bias in population stratification, confounding bias, multiple tests, and selective outcome reports. The quality evaluation of every items for extracted articles was defined as “Yes” or “No”. Separately, “Unclear” was designated if there was not enough information to make a decision. A series of corrections and judgements were performed independently by another coauthor (S.H.) if debate still lasted in the assessment. Consensus referring all items was achieved after discussion.

Statistical analysis
Allele and genotype frequency of each C3 polymorphic site were counted between cases and healthy controls. The genetic strength association including pooled ORs and 95% CIs was assessed using different genetic models, including allele model (A vs. a), homozygote model (AA vs. aa), heterozygote model (Aa vs. aa), dominant (AA+Aa...
vs. aa), recessive (AA vs. Aa+aa). The heterogeneity assumption between studies was estimated and evaluated by Cochran’s Q statistic as well as the I² statistic. The result that our P value of Q statistic was less than 0.05 or the I² value was greater than 50% suggested apparent heterogeneity, thus a random-effect model was utilized in our model analysis. Otherwise, the fixed-effect model was performed [17]. Sensitivity analyses was conducted to assess the effect of each study and the stability of the pooled ORs by removing included study in turn from the compiled list. Begg’s funnel plots [18] and Egger’s regression test [19] were furthered to detect the potential publication bias. All statistical analysis using two-sided P values was executed by STATA 12.0 software (StataCorp LP, College Station, Texas, USA). A significant difference was estimated under the level of 0.05. The final results needed to be tested and verified by two authors (J.Z. and S.L.) respectively.

Results
Overall characteristics of selected studies and quality assessment
The flow diagram for literature searching is summarized in Fig. 1. A total of 1201 articles from the five databases (Additional file 1) were filtered by our search method. Of which, 886 studies were excluded for the three aspects: (1) 711 duplicated articles; (2) 83 articles not related to the theme of this investigation; (3) 92 articles mainly referred to abstract, conference, review, and case report. Through our rigorous inspection, 269 ones in the rest of articles were stroke out. Of them, 172 articles were focused on the every stage of AMD but not advanced AMD, 97 articles were not concerned with the association between advanced AMD and C3 genetic polymorphism. The other 46 full-text articles were left in our meta-analysis. Seven of them did not have detailed genotype data after cautiously reading the included literatures. Besides, two papers were investigated by the same author and the same batch of patients from Iran [20, 21]. We decided to choose the one which had larger samples size and more comprehensive directions. Finally, 40 case-control studies regarding the association of C3 gene with advanced AMD from 38 available publications were generally contained in our current meta-analysis [4, 20, 22–57]. The common characteristics of each article are generally showed in Table 1. As listed in the table, 30 studies from Caucasian region, 7 studies from East Asian group and 3 studies from Middle East have been chosen in our meta-analysis. The genotyping methods for our whole sample are distinct and the results could be validated in different ways.

![Fig. 1 Flow diagram presenting the result of literature searching process in meta-analysis](image-url)
Refs	Year	Country	Ethnicity	Case/Control	Mean age of AMD	Mean age of control	Typing teaching	Study design
Yate et al.	2007	UK	Caucasian	603/350	79.4 ± 7.2	75.3 ± 7.8	SNaPshot	Sex-, age-, ethic-, matched
Yate et al.	2007	Scotland	Caucasian	244/351	77.8 ± 9.2	78.0 ± 8.5	TaqMan	Sex-, age-, ethic-, matched
Maller et al.	2007	America	Caucasian	1238/934	NA	NA	MALDI-TOF MS	Age-, ethic-, matched
Edwards et al.	2008	America	Caucasian	444/300	NA	NA	Illumina GoldenGate	Age-, ethic-, matched
Spencer et al.	2008	America	Caucasian	286/701	76.5 ± 7.7	66.9 ± 8.3	TaqMan	Sex-, age-, ethic-, matched
Scholl et al.	2009	Germany	Caucasian	99/612	71.8 ± 7.4	76.2 ± 5.3	MALDI-TOF MS	Sex-, age-, ethic-, matched
Francis et al.	2009	America	Caucasian	211/187	79	74	Sequencing	Age-, ethic-, matched
Park et al.	2009	America	Caucasian	898/599	80.6 ± 5.0	77.6 ± 4.3	Illumina GoldenGate	Sex-, age-, ethic-, matched
Despriet et al.	2009	Netherlands	Caucasian	268/173	78.7 ± 7.7	74.1 ± 6.3	TaqMan	Sex-, age-, ethic-, matched
Bergeron et al.	2009	America	Caucasian	421/215	64.8	67.5	TaqMan	Sex-, age-, ethic-, matched
Reynolds et al.	2009	America	Caucasian	120/60	82.0 ± 6.9	79.0 ± 4.4	MALDI-TOF MS	Sex-, age-, ethic-, matched
Pei et al.	2009	China	East Asian	123/130	70.6 ± 8.2	69.2 ± 10.1	MALDI-TOF MS	Sex-, age-, ethic-, matched
Cui et al.	2010	China	East Asian	150/161	66.6 ± 8.4	65.7 ± 7.8	PCR-RFLP/ Sequencing	Sex-, age-, ethic-, matched
Zerbib et al.	2010	France	Caucasian	1080/406	79.0 ± 7.4	67.8 ± 7.7	TaqMan	Sex-, age-, ethic-, matched
McKay et al.	2010	Northern Ireland	Caucasian	437/436	77.6	74.9	SNaPshot	Sex-, age-, ethic-, matched
Chen et al.	2010	America	Caucasian	2157/1150	78.6	74.1	Illumina GoldenGate	Sex-, age-, ethic-, matched
Kopplin et al.	2010	America	Caucasian	377/161	NA	NA	Affymetrix GeneChip	Age-, ethic-, matched
Liu et al.	2010	China	East Asian	158/220	64.0 ± 6.6	63.0 ± 7.8	SNaPshot	Sex-, age-, ethic-, matched
Yu et al.	2011	America	Caucasian	1082/221	79.5 ± 5.5	77.0 ± 4.6	MALDI-TOF MS	Sex-, age-, ethic-, matched
Chen et al.	2011	America	Caucasian	1335/509	70.2 ± 5.1	67.0 ± 4.3	SNaPshot	Sex-, age-, ethic-, matched
Hageman et al.	2011	America	Caucasian	1132/822	76.5 ± 7.1	76.4 ± 7.3	NA	Sex-, age-, ethic-, matched
Peter et al.	2011	America	Caucasian	48/1260	NA	NA	TaqMan	Age-, ethic-, matched
Yanagisawa et al.	2011	Japan	East Asian	420/197	74.0 ± 7.5	72.0 ± 6.0	TaqMan	Sex-, age-, ethic-, matched
Martinez et al.	2012	Spain	Caucasian	259/191	NA	NA	SNaPshot	Age-, ethic-, matched
Smailhodzic et al.	2012	Netherlands	Caucasian	197/150	NA	NA	Sequencing	Sex-, age-, ethic-, matched
Buentello et al.	2012	Mexico	Caucasian	159/152	76.4 ± 8.1	73.5 ± 6.8	PCR-RFLP	Sex-, age-, ethic-, matched
Bias assessment of the included studies

Overall results in Table 2 primarily expound the evaluation of potential sources of bias in our included studies. Overall, the quality of the included studies was consistently absolute. Of the studies, there was no obvious bias in the selection of cases and controls, genotyping controls, population stratification, confounding bias, multiple tests, or selective outcome reports.

Relationship of C3 gene polymorphisms with advanced AMD susceptibility

Several genetic models for C3 polymorphisms including rs2230199, rs1047286, rs2250656 were used in our meta-analysis and the combined results are presented in Table 3. Briefly, 36 studies discussed the association of rs2230199 with advanced AMD, 13 studies investigated the relationship between rs1047286 and advanced AMD, 5 studies referred to rs2250656, respectively.

Association between SNP rs2230199 of C3 gene and advanced AMD

As shown in Table 3, there was a significant association between the rs2230199 SNP and advanced AMD susceptibility in the overall populations (allelic model: OR = 1.49, 95% CI = 1.39–1.59, P < 0.001; homozygote model: OR = 2.33, 95% CI = 1.98–2.74, P < 0.001; heterozygote model: OR = 1.53, 95% CI = 1.41–1.64, P < 0.001; dominant model: OR = 1.62, 95% CI = 1.51–1.74, P < 0.001; recessive model: OR = 1.99, 95% CI = 1.70–2.34, P < 0.001). Moreover, the subgroup analysis stratified by ethnicity indicated that rs2230199 conferred obvious susceptibility to advanced AMD in the group of Caucasian in allelic (OR = 1.48, 95% CI = 1.38–1.59, P < 0.001) (Fig. 2), homozygote (OR = 2.20, 95% CI = 1.87–2.60, P < 0.001), heterozygote (OR = 1.55, 95% CI = 1.43–1.67, P < 0.001), dominant (OR = 1.63, 95% CI = 1.51–1.75, P < 0.001), recessive (OR = 1.88, 95% CI = 1.59–2.21, P < 0.001) models (Table 3). Besides, the allelic comparison yielded a positive correlation in Middle East group (OR = 1.62, 95% CI = 1.33–1.97, P < 0.001). However, this relationship was not significant in East Asian group for any genetic models (Table 3).

Association between SNP rs1047286 of C3 gene and advanced AMD

Significant association between this SNP and advanced AMD was confirmed in the overall populations (allelic

Table 1 The General Characteristics of All Studies Included in our Meta-Analysis (Continued)

Refs	Year	Country	Ethnicity	Case/Control	Mean age of AMD	Mean age of control	Typing teaching	Study design
Tian et al. [51]	2012	China	East Asian	535/469	NA	NA	MALDI-TOF MS	Age-,ethnic-,matched
Losonczy et al. [40]	2012	Hungary	Caucasian	275/106	76.0 ± 7.3	79.1 ± 6.1	PCR-RFLP	Sex-,age-,ethnic-,matched
Cipriani et al. [27]	2012	UK	Caucasian	893/2199	78.6 ± 7.5	NA	Illumina BeadChip	Sex-,age-,ethnic-,matched
Jaouni et al. [36]	2012	Israel	Middle East	317/159	78.1 ± 7.6	70.8 ± 8.2	PCR-RFLP	Sex-,age-,ethnic-,matched
Wu et al. [52]	2013	China	East Asian	165/216	69.4 ± 10	64.5 ± 8.0	TaqMan	Sex-,age-,ethnic-,matched
Helgason et al. [35]	2013	Iceland	Caucasian	1107/2869	NA	NA	Illumina BeadChip	Age-,ethnic-,matched
Helgason et al. [35]	2013	America	Caucasian	1525/1288	NA	NA	Illumina BeadChip	Age-,ethnic-,matched
Contreras et al. [28]	2014	Mexico	Caucasian	273/201	76.0 ± 8.0	65.5 ± 9.8	TaqMan	Sex-,age-,ethnic-,matched
Caire et al. [24]	2014	Spain	Caucasian	154/141	75.4 ± 7.2	78.5 ± 7.2	SNaPshot	Sex-,age-,ethnic-,matched
Liu et al. [38]	2014	China	East Asian	200/275	75.3 ± 7.7	74.3 ± 7.6	TaqMan	Sex-,age-,ethnic-,matched
Hautamaki et al. [34]	2015	Finland	Caucasian	301/119	NA	NA	Sequencing	Age-,ethnic-,matched
Saksens et al. [48]	2016	Netherlands	Caucasian	571/900	76.6 ± 8.5	71.3 ± 6.7	KASP	Sex-,age-,ethnic-,matched
Bonyadi et al. [20, 21]	2017	Iran	Middle East	266/228	76.4 ± 7.6	72.7 ± 6.8	PCR-RFLP	Sex-,age-,ethnic-,matched
Habibi et al. [57]	2017	Tunisia	Middle East	145/207	73.1 ± 8.1	NA	PCR-SSP	Age-,ethnic-,matched
model: OR = 1.45, 95% CI = 1.37–1.54, P < 0.001; homozygote model: OR = 2.06, 95% CI = 1.56–2.72, P < 0.001; heterozygote model: OR = 1.72, 95% CI = 1.51–1.96, P < 0.001; dominant model: OR = 1.76, 95% CI = 1.56–2.00, P < 0.001; recessive model: OR = 1.71, 95% CI = 1.30–2.24, P < 0.001). In subgroup analysis stratified by ethnicity, our meta-analysis indicated significant correlation of rs1047286 with advanced AMD in the five genetic models (allelic model: OR = 1.45, 95% CI = 1.37–1.54, P < 0.001 (Fig. 3); homozygote model: OR = 2.06, 95% CI = 1.56–2.72, P < 0.001; heterozygote model: OR = 1.72, 95% CI = 1.51–1.96, P < 0.001; dominant model: OR = 1.76, 95% CI = 1.56–2.00, P < 0.001; recessive model: OR = 1.71, 95% CI = 1.30–2.24, P < 0.001).
Table 3: Main Results of Pooled ORs and Analysis of C3 gene polymorphism with advanced AMD in our Meta-Analysis

Subgroup	No. of studies	No. of patients	Allele model	Homozygote model	Heterozygote model	Dominant model	Recessive model							
		Cases	Control	OR(95% CI)	P									
C3 rs2230199 (Associated allele vs. Reference allele: G vs. C)	Overall	36	34,805	29,499	1.49	<0.001	2.33	<0.001	1.53	<0.001	1.62	<0.001	1.99	<0.001
	Caucasian	28	31,372	26,130	1.48	<0.001	2.20	<0.001	1.55	<0.001	1.63	<0.001	1.88	<0.001
	East Asian	5	2122	2388	–	<0.001	–	–	1.32	<0.001	1.49	0.032	5.60	–
	Middle East	3	1311	981	<0.001	–	–	–	1.07	0.997	1.49	0.085	25.5	(3.35,194)
C3 rs1047286 (Associated allele vs. Reference allele: T vs. C)	Overall	13	16,232	16,222	1.45	<0.001	2.06	<0.001	1.72	<0.001	1.76	<0.001	1.71	<0.001
	Caucasian	10	14,688	14,548	1.46	<0.001	2.06	<0.001	1.72	<0.001	1.76	<0.001	1.71	<0.001
	East Asian	3	1544	1674	–	–	2.06	0.404	2.06	0.404	–	–	–	–
C3 rs2230205 (Associated allele vs. Reference allele: A vs. G)	Overall	5	3302	2732	0.99	0.003	1.04	0.780	1.00	0.967	1.00	0.992	1.06	0.687
	Caucasian	1	880	598	0.90	0.507	0.45	0.215	0.98	0.902	0.93	0.699	0.45	0.217
	East Asian	4	2422	2134	1.01	0.903	1.10	0.546	1.01	0.967	1.04	0.787	1.10	0.497
C3 rs2250656 (Associated allele vs. Reference allele: G vs. C)	Overall	5	3278	2632	0.99	0.257	0.76	0.207	0.78	0.014	0.78	0.010	0.83	0.391
	Caucasian	1	874	512	0.82	0.117	0.77	0.407	0.76	0.097	0.76	0.085	0.87	0.642
	East Asian	4	2404	2120	0.92	0.486	0.74	0.340	0.80	0.068	0.79	0.052	0.80	0.456

1.56–2.72, P < 0.001; heterozygote model: OR = 1.72, 95% CI = 1.50–1.96, P < 0.001; dominant model: OR = 1.76, 95% CI = 1.55–2.00, P < 0.001; recessive model: OR = 1.71, 95% CI = 1.30–2.24, P < 0.001 (Table 3). This association could not be found in East Asian group for any genetic model (Table 3).

Association between SNP rs2230205 of C3 gene and advanced AMD

No association between this SNP and advanced AMD was achieved in the overall populations (allelic model: OR = 0.99, 95% CI = 0.89–1.11, P = 0.903; homozygote model: OR = 1.04, 95% CI = 0.77–1.42, P = 0.780; heterozygote model: OR = 1.00, 95% CI = 0.80–1.23, P = 0.967; dominant model: OR = 1.00, 95% CI = 0.81–1.22, P = 0.992; recessive model: OR = 1.06, 95% CI = 0.81–1.37, P = 0.687). Subgroup analysis of Caucasian and East Asian group showed that there was a lack of relationship in any of the genetic models (Fig. 4, Table 3).

Association between SNP rs2250656 of C3 gene and advanced AMD

The results of meta-analysis showed that there was not a positive association between this SNP and advanced AMD in the overall populations (allelic model: OR = 0.90, 95% CI = 0.75–1.08, P = 0.257; homozygote model: OR = 0.76, 95% CI = 0.49–1.16, P = 0.207; recessive model: OR = 0.83, 95% CI = 0.55–1.27, P = 0.391). But a weakly protective risk between this SNP and advanced AMD was observed in heterozygote model and dominant model (OR = 0.78, 95% CI = 0.65–0.95, P = 0.014; OR = 0.78, 95% CI = 0.65–0.94, P = 0.010, respectively). In the stratified analysis by ethnicity, there was no association in any of the genetic models. (Fig. 5, Table 3).

Heterogeneity test and sensitivity analysis

Significant heterogeneity between these studies was observed among two SNPs (rs2230199 and rs2250656) (P < 0.1) (Figs. 2, 5). The results of our subgroup analysis confirmed that ethnicity was the primary sources of heterogeneity. Additionally, sensitivity analysis was conducted to evaluate the effect of individual study on the pooled ORs by sequentially omitting each study. The pooled ORs were not affected by removing any study (Fig. 6, the sensitivity analysis of rs2230199; others see Additional file 2: Figures S1-S3).

Publication bias

Publication bias is a potential problem, thus Begg’s funnel plots and Egger’s regression tests were applied to investigate the publication bias for C3 genetic polymorphism.
Four symmetrical funnel plots suggested that both tests had no evidence of significant bias (data not shown). Furthermore, as emerged in Table 4, the pooled P values for both tests are more than 0.05.

Discussion

AMD is a multifactorial disease, in which complement system mediated inflammation plays a pivotal role. Several pathways including the alternative complement component have been described to be implicated in the development of AMD [54]. As the central element of the complement cascade, $C3$ has been a plausible candidate gene since its cleavage product C3a was confirmed in drusen. In our current meta-analysis, 20,673 patients and 20,025 controls from 38 articles were combined to detect the association of $C3$ genetic polymorphisms with advanced AMD. We came to the conclusion that two nonsynonymous SNPs rs2230199 and rs1047286 were demonstrated an increased pathogenic effect on advanced AMD (rs2230199: allelic model: $OR = 1.49$, 95% CI = 1.39–1.59, $P < 0.001$; homozygote model: $OR = 2.33$, 95% CI = 1.98–2.74, $P < 0.001$; rs1047286: allelic model: $OR = 1.45$, 95% CI = 1.37–1.54, $P < 0.001$; homozygote model: $OR = 2.06$, 95% CI = 1.56–2.72, $P < 0.001$). Moreover, our meta-analysis discovered that SNP rs2250656 decreased the risk of advanced AMD susceptibility, which a protective association was acquired in heterozygote model and dominant model. Obviously, the results of SNP rs2250656 with advanced AMD needed to be validated with larger samples and studies in different ethnicity.

Being consistent with previous studies, the G allele of rs2230199 conferred susceptibility to advanced AMD in Caucasian group. In our meta-analysis, we first confirmed that the G allele of rs2230199 could be linked with AMD in Middle East but not East Asian region, though rather large population needed to be validated in the future. Besides, our meta-analysis found a novel association between the T allele of
Fig. 3
Assessment of the association between C3 genetic polymorphism (rs1047286) with advanced AMD

Study ID	OR (95% CI)	Weight
Caucasian		
Yates et al.2007	1.62 (1.22, 2.14)	4.09
Yates et al.2007	1.50 (1.20, 1.87)	6.94
Spencer et al.2008	1.40 (1.11, 1.76)	6.70
Edwards et al.2008	1.73 (1.34, 2.24)	4.89
Park et al.2009	1.59 (1.34, 1.88)	12.16
Despriet et al.2009	1.69 (1.20, 2.37)	2.89
Helgason et al.2013	1.31 (1.18, 1.47)	29.38
Helgason et al.2013	1.52 (1.33, 1.73)	19.33
Contreras et al.2014	2.07 (1.28, 3.41)	1.27
Sakai et al.2018	1.23 (1.03, 1.49)	11.36
Subtotal (I-squared = 31.4%, p = 0.157)	1.45 (1.37, 1.54)	98.5
East Asian		
Cui et al.2010	2.15 (0.19, 23.88)	0.05
Liu et al.2010	1.39 (0.29, 9.96)	0.09
Tian et al.2012	1.97 (0.18, 21.74)	0.05
Subtotal (I-squared = 0.0%, p = 0.956)	1.75 (0.49, 6.29)	0.20
Overall (I-squared = 97.7%, p = 0.349)	1.45 (1.37, 1.54)	100.00

Fig. 4
Estimation of the association between C3 genetic polymorphism (rs223020S) with advanced AMD

Study ID	OR (95% CI)	Weight
Caucasian		
Edwards et al.2008	0.90 (0.66, 1.23)	13.39
Subtotal (I-squared = 0%, p = 0)	0.90 (0.66, 1.23)	13.39
East Asian		
Pei et al.2009	1.15 (0.81, 1.63)	9.52
Yang et al.2011	1.03 (0.81, 1.31)	20.69
Tian et al.2012	1.02 (0.85, 1.23)	37.20
Liu et al.2014	0.88 (0.68, 1.15)	19.20
Subtotal (I-squared = 0.0%, p = 0.680)	1.01 (0.89, 1.14)	86.61
Overall (I-squared = 0.0%, p = 0.729)	0.99 (0.89, 1.11)	100.00
rs1047286 and advanced AMD in Caucasian but not East Asian group.

The common polymorphisms rs2230199 and rs1047286 in the C3 gene have been identified as genetic risk factors for advanced AMD in Caucasian populations. However, the allele frequencies of rs2230199 vary widely among different ethnicities. Frequencies of the risk G allele at rs2230199 were 25% to 31% in AMD cases and 19% to 21% in controls in Caucasians [29]. Besides, the frequencies of G allele was 14% to 25% in both cases and controls in Middle East region [20, 57]. While, the risk allele were absent in Japanese and rare (< 1%) in Chinese populations.

![Fig. 5 Evaluation of the association between C3 genetic polymorphism (rs225065) with advanced AMD](image)

![Fig. 6 Evaluation of the sensitivity analysis between C3 genetic polymorphism (rs2230199) with advanced AMD](image)
It has been noted that animal studies conducted by Bora et al. [60, 61] have suggested that local inflammation and activation of the complement cascade can contribute to the pathogenesis of AMD. C3 and its activation products was confirmed in the findings that sites for complement components and drusen including native C3 have indicated that cell membrane. Janssen et al. [59] argued that cleaved complementary response, resulting in the formation of lytic pores in the cell membrane. Janssen et al. [59] have suggested that cleaved native C3 undergoes important structural rearrangements which causes conformational changes exposing binding sites for complement components and drusen including C3 and its activation products was confirmed in the finding that local inflammation and activation of the complement cascade can contribute to the pathogenesis of AMD. Notably, animal studies conducted by Bora et al. [60, 61] have indicated that C3 deficiency in C3−/− mice prevented the formation of choroidal neovascularization in advanced AMD (wet AMD), indicating that C3 is a pivotal element of this activation process.

In our meta-analysis, four SNPs including rs2230199, rs1047286, rs2232025 and rs2250656 were analyzed in the pooled data. Among them, rs2230199 and rs1047286 are located in the first ring of macroglobulin domains, which conduct a prominent function for correct orientation of the thioester-containing domain. The amino acid changes induced by the genetic mutations may alter the configuration of the macroglobulin ring [62]. With evidence supporting a biologic functional effect through the formation of two electrophoretic allotypes in rs2230199 genetic site (C3F and C3S), the two alleles showed a differential capacity to bind monocyte-complement receptor. Helgason et al. [35] noted that the G allele in rs2230199 (C3F) was associated with the reduction of C3 gene binding to CFH, which leads to an increase in complement activation. Additionally, rs2230199 variant may alter the net charge of the molecule and influence the position of the thioester-containing domain. Except for advanced AMD, the risk variant of rs2230199 has been previously considered as associated with other immune-mediated conditions, such as IgA nephropathy, systemic vasculitis.

In the current meta-analysis, rs1047286 variant showed significant association with advanced AMD in Caucasian populations. Despriet et al. [30] argued that rs2230199 and rs1047286 variants were in high linkage disequilibrium (LD) (D' = 0.90, r2 = 0.80), which haplotype analyses suggested that the effect of the C3 alleles was independent from the established genetic and environmental risk factors. Furthermore, our pooled analysis of neighboring SNPs of rs2230199 indicated that the allele frequency of the variant rs2232025 and rs2250656 was not significantly different between the advanced AMD cases and controls. Pei et al. [45] confirmed that the G allele of rs2250656 variant may be a protective factor for the development of AMD in East Asian. Given that the site of rs2250656 lies near the junction of intron 2 and exon 3, which contain short sequences and regulate the expression of gene and neighboring genes, it may contribute to the low risk for advanced AMD. Obviously, our pooled results were inconsistent with Pei’s report, owing to the relative small sample size and distinct environmental elements.

In a previous meta-analysis where a total of 15 independent studies with 5593 cases and 5181 controls were included, Zhang et al. [63] indicated that rs2230199 C>G SNP increased the risk of AMD development and the G allele was a risk factor for AMD in Caucasian but not Asians. Moreover, Yu et al. [64] have implemented a systemic meta-analysis and the overall results suggested a positive association between rs2230199, rs1047286 and AMD susceptibility. Additionally, Despriet et al. [30] have clarified these positive associations for only four available studies. In comparison to previous meta-analyses, our analysis mainly focused on the major form of AMD (advanced AMD) and was involved with a greater number of studies and larger sample size. These would make our pooled ORs more believable, stable, and accurate than before, especially in the association with advanced AMD. Moreover, our present meta-analysis encompassed an acceptable quality evaluation system, minimizing the potential bias.

Considerable efforts have been paid to discuss the potential relationship between C3 genetic polymorphisms and advanced AMD, some limitations for our present meta-analysis need to be declared. First,
heterogeneity among the ethnic groups was discovered when investigating the association of C3 genetic variants with advanced AMD. However, based on the results of the sensitivity analysis, it is clear that the overall effect was not affected by heterogeneity. Additionally, there was no obvious publication bias detected in the contrast of C3 gene with advanced AMD. Second, the number of patients and controls was relatively small in each included study; therefore, a great number of samples from different ethnic regions are required for further analysis. Third, the effects of common confounding factors, including sex, age, body mass index, smoking, and diet were not evaluated in the present study because of insufficient data. Fourth limitation is that only three ethnic backgrounds with relatively few studies were taken into consideration, thus further efforts to reduce the incidence of ethnic bias will be needed once raw data become available. Finally, the electronic databases from which we selected eligible studies were listed in English and Chinese; therefore, a language bias may be existed in our meta-analysis.

Conclusion

The present meta-analysis provided a series of evidence-based pooled data for a significant association between rs2230199, rs1047286 and susceptibility to advanced AMD, especially in Caucasians. Additional well-designed work with a larger number of studies in which incorporate different ethnicities together with gene-gene and gene-environment is recommended to better confirm the functional role of the two nonsynonymous polymorphisms.

Additional files

- **Additional file 1:** The full details of databases searching terms. (DOC 38 kb)
- **Additional file 2:** Figures S1-S3. The sensitivity analysis of C3 genetic polymorphisms (rs1047286;rs2230205;rs2250656). (DOC 106 kb)

Acknowledgments

None.

Funding

This work was supported by National Natural Science Foundation Project (81300761) and Key Project of Health and Family Planning Commission of Wuhan Municipality (WX18A038).

Availability of data and materials

All data has been shared in the Figures and Tables.

Authors’ contributions

YX designed the study. JZ and SL collected and checked the available information from eligible articles in this meta-analysis. SH analyzed the data. JY prepared the manuscript. All authors censored and approved the manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1. Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, NO, 26 Shengli Street, Wuhan 430004, Hubei Province, China.

2. Department of Ophthalmology, the Jingzhou aier eye hospital, Jingzhou, Hubei Province, China.

Received: 4 December 2017 **Accepted:** 16 October 2018

Published online: 23 October 2018

References

1. Kokotas H, Grigoriadou M, Petersen MB. Age-related macular degeneration: genetic and clinical findings. Clin Chem Lab Med. 2011;49(4):601–16.
2. Klein R, Peto T, Bird A, Vannevik MR. The epidemiology of age-related macular degeneration. Am J Ophthalmol. 2004;137(3):486–95.
3. de Jong PT. Age-related macular degeneration. N Engl J Med. 2006;355(14):1474–85.
4. Scholl HP, Fieckenstein M, Fritsche LG, Schmitz-Valckenberg S, Gobel A, Adrion C, Herold C, Keilhauer CN, Mackensen F, Massner A, et al. CFH, C3 and ARMS2 are significant risk loci for susceptibility, but not for disease progression of geographic atrophy due to AMD. PLoS One. 2009(4):10.e7418.
5. Vingerling JR, Klaver CC, Hofman A, de Jong PT. Epidemiology of age-related maculopathy. Epidemiol Rev. 1995;17(2):347–60.
6. Kawasaki R, Yasuda M, Song SJ, Chen SJ, Jonas JB, Wang JJ, Mitchell P, Wong TY. The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology. 2010;117(3):921–7.
7. Haddad S, Chen CA, Santangelo SL, Seddon JM. The genetics of age-related macular degeneration: a review of progress to date. Surv Ophthalmol. 2006;51(4):316–63.
8. Cackett P, Wong TY, Auing T, Saw SM, Tay WT, Rrotchchina E, Mitchell P, Wang JJ. Smoking, cardiovascular risk factors, and age-related macular degeneration in Asians: the Singapore Malay eye study. Am J Ophthalmol. 2008;146(6):960–7 e961.
9. Hageman GS, Anderson DH, Johnson LV, Hancock LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A. 2005;102(20):7227–32.
10. Johnson PT, Betts KE, Radeke MJ, Hageman GS, Anderson DH, Johnson LV. Individuals homozygous for the age-related macular degeneration risk-conferring variant of complement factor H have elevated levels of CRP in the choroid. Proc Natl Acad Sci U S A. 2006;103(14):5720–27.
11. Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Wang Z, Ambati BK, Baffi JZ, et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A. 2006;103(7):2328–33.
12. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308(5720):419–21.
13. Klein RJ, Zeiss C, Chew EY, Tsai JT, Sackler RS, Haynes CN, Hennig AK, SanGiovanni JP, Mane SM, Mayne ST, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9.
14. Hageman GS, Luthert PJ, Victor Chung NH, Johnson LV, Anderson DH, Mullins RF. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in...
aging and age-related macular degeneration. Prog Retin Eye Res. 2001;20(6):705–32.

15. Johnson LV, Leitner WP, Staples MK, Anderson DH. Complement activation and inflammatory processes in Drusen formation and age-related macular degeneration. Exp Eye Res. 2001;73(6):887–96.

16. Little J, Higgins J, Bray M, Ioannidis J, Houry M, Manolioti L, Smeeth L, Sterne J. The HUGENet® HUGE Review Handbook, version 1.0, 2006.

17. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

18. Begb CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

19. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis of prevalence studies. BMJ. 1997;315(7109):655–6.

20. Bonyadi M, Mohammadian T, Jabbarpour Bonyadi MH, Fotouhi N, Soheilian N, Soheilian M, Javadzadeh A, Moen H, Yaseri M. Association of polymorphisms in complement component 3 with age-related macular degeneration in an Iranian population. Ophthalmic Genet. 2017;38(1):61–6.

21. Bonyadi M, Jabbarpour Bonyadi MH, Yaseri M, Mohammadian T, Fotouhi N, Javadzadeh A, Soheilian M. Joint association of complement component 3 and CCL-tyrosine Igand2 (CCL2) or complement component 3 and CFH polymorphisms in age-related macular degeneration. Ophthalmic Genet. 2017;38(1):6–10.

22. Bergeron-Sawickie J, Gold B, Olish A, Schlotterbeck S, Lemon K, Visvanathan A, Allikmets R, Dean M. Multilocus analysis of age-related macular degeneration. European journal of human genetics : EJHG. 2009;17(9):1190–9.

23. Buentello-Volante B, Rodriguez-Ruiz G, Miranda-Duarte A, Pompa-Mera EN, Buentello-Volante B, Rodriguez-Ruiz G, Miranda-Duarte A, Pompa-Mera EN. Susceptibility to advanced age-related macular degeneration and allelic of complement factor H, complement factor B, complement component 2, complement component 3, and age-related maculopathy susceptibility 2 genes in a Mexican population. Mol Vis. 2012;18:2518–25.

24. Caire J, Recalde S, Velazquez-Villoria A, Garcia-Garcia L, Reiter N, Anter J, Fernandez-Robredo P, Alfredo G. Growth of geographic atrophy on fundus autofluorescence and polymorphisms of CFH, CFB, C3, FHRI-3, and ARMS2 in age-related macular degeneration. JAMA ophthalmology. 2014;132(5):528–34.

25. Chen W, Stambolian D, Edwards AO, Branham KE, Othman M, Jakobsdottir J, Chen W, Stambolian D, Edwards AO, Branham KE, Othman M, Jakobsdottir J. Genetic association of the FKBPL-NOTCH4 region of chromosome 6p21.3. Hum Mol Genet. 2012;21(13):3395–405.

26. Chen Y, Zeng J, Zhao C, Wang K, Trood E, Buehler J, Weed M, Kasuga D, Chen Y, Zeng J, Zhao C, Wang K, Trood E, Buehler J, Weed M, Kasuga D. Association of a noncoding variant in the complement factor H gene and risk of age-related macular degeneration associated with visual loss. J Med Genet. 2009;46(5):300–7.

27. Hageman GS, Gehrs K, Lejine S, Bansal AT, Deangelis MM, Guymah RH, Baird PN, Allikmets R, Deciu C, Oeth P, et al. Clinical validation of a genetic model to estimate the risk of developing choroidal neovascular age-related macular degeneration. Human genomics. 2011;5(5):420–40.

28. Hauamzai A, Setzioni S, Holopainen JM, Mollanen IA, Kivioja J, Onkamo P, Janelva I, Imonnen I. The genetic variant rs6073 A→T of the Interleukin-8 promoter region is associated with the earlier onset of exudative age-related macular degeneration. Acta Ophthalmol. 2015;93(8):726–33.

29. Helgason H, Sulem P, Mardar A, Stefansson H, Jonsdottir I, Masson G, Guðbjartsson DF, Walters GB, et al. A rare nonsynonymous sequence variant in C3 is associated with high risk of age-related macular degeneration. Nat Genet. 2013;45(11):1371–4.

30. Jaouni T, Averbukh E, Bunstyn-Cohen T, Grunin M, Banin E, Sharon D, Chowers I. Association of pattern dystrophy with an HTRA1 single-nucleotide polymorphism. Arch Ophthalmol (Chicago, Ill : 1960). 1960;108(1):987–91.

31. Kopplin LJ, Igo RP, Jr, Wang Y, Sivakumaran TA, Hargstrom SA, Pechez NS, Francis PJ, Klein ML, SanGiovanni JP, Chew ET, et al. Genome-wide association identifies SKIV2L and MYRIP as protective factors for age-related macular degeneration. Genes Immun. 2010;11(18):609–21.

32. Liu K, Lai TY, Chiang SW, Chan VC, Young AL, Tam PO, Pang CP, Chen LJ. Gender specific association of a complement component 3 polymorphism with polyoidal choroidal vasculopathy. Sci Rep. 2014;4:7018.

33. Liu X, Zhao P, Tang S, Lu F, Hu J, Lei C, Yang X, Lin Y, Ma S, Yang J, et al. Association study of complement factor H, C2, CFB, and C3 and age-related macular degeneration in a Han Chinese population. Retina (Philadelphia, Pa). 2010;30(8):1177–84.

34. Losonczy G, Vajas A, Takacs L, Dzudzsak E, Fekete A, Marhoffer E, Kardos L, Apzner J, Hurtado B, de Frutos PG, et al. Effect of the Cas9 g.834+7G>A polymorphism and the interaction of known risk factors on AMD pathogenesis in Hungarian patients. PLoS One. 2012;7(11):e50181.

35. Mallor JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM. Variation in complement component 3 is associated with age-related macular degeneration. Nat Genet. 2007;39(10):1200–1.

36. Martinez-Barricarte R, Recalde S, Fernandez-Robredo P, Millan I, Olavarrieta L, Vinuela A, Perez-Perez J, Garcia-Layana A, Rodriguez de Cordoba S. Relevance of complement factor H-related 1 (CFHR1) genotypes in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012;53(3):1087–94.

37. McKay GJ, Dasari S, Patterson CC, Chakravarti U, Slivestri G. Complement component 3: an assessment of association with AMD and analysis of gene-gene and gene-environment interactions in a northern Irish cohort. Mol Vis. 2010;16:194–9.

38. Park KH, Friedley BL, Ryu E, Tosakulwong N, Edwards AO. Complement component 3 (C3) haplotypes and risk of advanced age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009;50(7):3386–93.

39. Pei XT, Li XX, Bao YZ, Yu WZ, Yan Z, Qi HJ, Qian T, Xiao HX. Association of c3 gene polymorphisms with neovascular age-related macular degeneration in a chinese population. Curr Eye Res. 2009;34(8):615–22.

40. Peter I, Huggins GS, Ordovas JM, Hain M, Seddon JM. Evaluation of new and established age-related macular degeneration susceptibility genes in the women's health initiative sight exam (WHI-SE) study. Am J Ophthalmol. 2011;152(6):1005–13 e1001.

41. Reynolds R, Hertnert ME, Atkinson JP, Gidcs PC, Rosner B, Seddon JM. Plasma complement components and activation fragments: associations with age-related macular degeneration genotypes and phenotypes. Invest Ophthalmol Vis Sci. 2005;45(7):2318–27.

42. Saksens NT, Lechanteur YT, Verbaak SK, Groenewoud JM, Daha MR, Schick WH, Kirchhof B, Daha MR, den Hollander AI, Hoyng CB. Risk alleles in CFH and ARMS2 are independently associated with systemic complement activation in age-related macular degeneration. Ophthalmology. 2012;119(2):339–46.

43. Spencer KL, Olsson LM, Anderson BM, Schnetz-Boutaud N, Scott WK, Gallis AF, ten Brink JB, Bakker A, de Jong PT, Vingerling JR, et al. Complement factor C3 and risk of age-related macular degeneration. PLoS One. 2016;11(6):e0154437.

44. Smallhodzic D, Klaver CC, Klevering BJ, Boon CJ, Groenewoud JM, Kirchhof B, Daha MR, den Hollander AI, Hoying CB. Risk alleles in CFH and ARMS2 are independently associated with systemic complement activation in age-related macular degeneration. Ophthalmology. 2012;119(2):339–46.

45. Kombrink K, Myllyla-Virtanen S, Salo T, Kallioniemi OP, de Groh P, Gallis AF, ten Brink JB, Bakker A, de Jong PT, Vingerling JR, et al. Gender specific association of a complement component 3 polymorphism with polyoidal choroidal vasculopathy. Sci Rep. 2014;4:7018.
52. Wu L, Tao Q, Chen W, Wang Z, Song Y, Sheng S, Li P, Zhou J. Association between polymorphisms of complement pathway genes and age-related macular degeneration in a Chinese population. Invest Ophthalmol Vis Sci. 2013;54(1):170–4.

53. Yanagisawa S, Kondo N, Miki A, Matsuyama W, Kusuhara S, Tsukahara Y, Honda S, Negi A. A common complement C3 variant is associated with protection against wet age-related macular degeneration in a Japanese population. PloS One. 2011;6(12):e28847.

54. Yates JR, Sepp T, Matharu BK, Khan JC, Thurilby DA, Shahid H, Clayton DG, Hayward C, Morgan J, Wright AF, et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007;357(6):553–61.

55. Yu Y, Reynolds R, Fagermeiss J, Rosner B, Dally MJ, Seddon JM. Association of variants in the LIPC and ABCA1 genes with intermediate and large drusen and advanced age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013;54(1):4663–70.

56. Zerbib J, Richard F, Puche N, Levezel N, Cohen SY, Korobelnik JF, Sahel J, Munnich A, Kaplan J, Rozet JM, et al. R102G polymorphism of the C3 gene associated with exudative age-related macular degeneration in a French population. Mol Vis. 2010;16:1324–30.

57. Habibi I, Sfar I, Kort F, Bouraoui R, Chebil A, Limaier R, Ayed S, Ben Abdallah T, El Matri L, Gorgi Y. Complement component C3 variant (R102G) and the risk of Neovascular age-related macular degeneration in a Tunisian population. Klin Monatsbl Augenheilkd. 2017;234(4):479–82.

58. Mullins RF, Russell SR, Anderson DH, Hageman GS. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J : official publication of the Federation of American Societies for Experimental Biology. 2000;14(7):835–46.

59. Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P. Structure of C3b reveals conformational changes that underlie complement activity. Nature. 2006;444(7116):213–6.

60. Bora PS, Hu Z, Tezel TH, Sohn JH, Kang SG, Cruz JM, Bora NS, Garen A, Kaplan HJ. Immunotherapy for choroidal neovascularization in a laser-induced mouse model simulating exudative (wet) macular degeneration. Proc Natl Acad Sci U S A. 2003;100(5):2679–84.

61. Bora PS, Sohn JH, Cruz JM, Jha P, Nishihori H, Wang Y, Kalappan S, Kaplan HJ, Bora NS. Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization. J Immunol (Baltimore, Md : 1950). 2005;174(1):491–7.

62. Nishida N, Walz T, Springer TA. Structural transitions of complement component C3 and its activation products. Proc Natl Acad Sci U S A. 2006;103(52):19737–42.

63. Zhang MX, Zhao XF, Ren YC, Geng TT, Yang H, Feng T, Jin TB, Chen C. Association between a functional genetic polymorphism (rs2230199) and age-related macular degeneration risk: a meta-analysis. Gen Mol Res : GMR. 2015;14(4):12567–76.

64. Qian-Qian Y, Yong Y, Jing Z, Xin B, Tian-Hua X, Chao S, Jia C. Nonsynonymous single nucleotide polymorphisms in the complement component 3 gene are associated with risk of age-related macular degeneration: a meta-analysis. Gene. 2015;561(2):249–55.