CLASSIFICATION OF NEAR-NORMAL SEQUENCES

DRAGOMIR Ž. DOKOVIĆ

Abstract. We introduce a canonical form for near-normal sequences \(N N(n) \), and using it we enumerate the equivalence classes of such sequences for even \(n \leq 30 \).

2000 Mathematics Subject Classification 05B20, 05B30

1. Introduction

Near-normal sequences were introduced by C.H. Yang in [6]. They can be viewed as quadruples of binary sequences \((A; B; C; D)\) where \(A \) and \(B \) have length \(n + 1 \), while \(C \) and \(D \) have length \(n \), and \(n \) has to be even. By definition, the sequences \(A = a_1, a_2, \ldots, a_{n+1} \) and \(B = b_1, b_2, \ldots, b_{n+1} \) are related by the equalities \(b_i = (-1)^{i-1}a_i \) for \(1 \leq i \leq n \) and \(b_{n+1} = -a_{n+1} \). Moreover it is required that the sum of the non-periodic autocorrelation functions of the four sequences be a delta function.

Examples of near-normal sequences are known for all even \(n \leq 30 \). Due to the important role that these sequences play in various combinatorial constructions such as that for \(T \)-sequences, orthogonal designs, and Hadamard matrices [1, 5, 4], it is of interest to classify the near-normal sequences of small length. We shall give such classification for all even \(n \leq 30 \). We have recently constructed [3] near-normal sequences for \(n = 32 \) and \(n = 34 \).

In section 2 we recall from [2] the basic properties of base sequences. In section 3 we introduce two equivalence relations for near-normal sequences: \(BS\)-equivalence and \(NN\)-equivalence. The former is finer than the latter. We also introduce the canonical form for the \(BS\)-equivalence classes. By using this canonical form, we are able to compute the representatives of the \(BS\)-equivalence classes and then deduce the set of representatives for the \(NN\)-equivalence classes. In section 4 we tabulate our results giving the list of representatives of the \(NN\)-equivalence classes. The representatives are written in the encoded form used in our previous paper [2].

Key words and phrases. Base sequences, near-normal sequences, canonical form.

Supported in part by an NSERC Discovery Grant.
2. Base sequences

We denote finite sequences of integers by capital letters. If, say, A is such a sequence of length n then we denote its elements by the corresponding lower case letters. Thus

$$A = a_1, a_2, \ldots, a_n.$$

To this sequence we associate the polynomial

$$A(x) = a_1 + a_2x + \cdots + a_n x^{n-1},$$

which we view as an element of the Laurent polynomial ring $\mathbb{Z}[x, x^{-1}]$. (As usual, \mathbb{Z} denotes the ring of integers.) The non-periodic autocorrelation function N_A of A is defined by:

$$N_A(i) = \sum_{j \in \mathbb{Z}} a_j a_{i+j}, \quad i \in \mathbb{Z},$$

where $a_k = 0$ for $k < 1$ and for $k > n$. Note that $N_A(-i) = N_A(i)$ for all $i \in \mathbb{Z}$ and $N_A(i) = 0$ for $i \geq n$. The norm of A is the Laurent polynomial

$$N(A) = A(x)A(x^{-1}).$$

We have

$$N(A) = \sum_{i \in \mathbb{Z}} N_A(i)x^i.$$

The negation, $-A$, of A is the sequence

$$-A = -a_1, -a_2, \ldots, -a_n.$$

The reversed sequence A' and the alternated sequence A^* of the sequence A are defined by

$$A' = a_n, a_{n-1}, \ldots, a_1$$

$$A^* = a_1, -a_2, a_3, -a_4, \ldots, (-1)^{n-1}a_n.$$

Observe that $N(-A) = N(A') = N(A)$ and $N_{A^*}(i) = (-1)^i N_A(i)$ for all $i \in \mathbb{Z}$. By A, B we denote the concatenation of the sequences A and B.

A binary sequence is a sequence whose terms belong to the set $\{\pm 1\}$. When displaying such sequences, we shall often write $+$ for $+1$ and $-$ for -1. The base sequences consist of four binary sequences $(A; B; C; D)$, with A and B of length m and C and D of length n, such that

$$(2.1) \quad N(A) + N(B) + N(C) + N(D) = 2(m + n).$$

We denote by $BS(m, n)$ the set of such base sequences with m and n fixed.

We recall from [2] that two members of $BS(m, n)$ are said to be equivalent if one can be transformed to the other by applying a finite
sequence of elementary transformations. The elementary transformations of \((A; B; C; D) \in BS(m, n)\) are the following:

(i) Negate one of the four sequences \(A; B; C; D\).
(ii) Reverse one of the sequences \(A; B; C; D\).
(iii) Interchange two of the sequences \(A; B; C; D\) of the same length.
(iv) Alternate all four sequences \(A; B; C; D\).

One can view the equivalence classes in \(BS(m, n)\) as orbits of an abstract finite group \(G\). We shall assume that \(m \neq n\). In that case \(G\) has order \(|G| = 2^{11}\). To construct \(G\), we start with an elementary abelian group \(E\) of order \(2^8\) with generators \(\varepsilon_i, \varphi_i, i \in \{1, 2, 3, 4\}\), and an elementary abelian group \(V\) of order 4 with generators \(\sigma_1, \sigma_2\). Let \(H\) be the semidirect product of \(E\) and \(V\), with \(V\) acting on \(E\) so that \(\sigma_1\) commutes with \(\varepsilon_3, \varepsilon_4, \varphi_3, \varphi_4\), and \(\sigma_2\) commutes with \(\varepsilon_1, \varepsilon_2, \varphi_1, \varphi_2\), and

\[
\sigma_1 \varepsilon_1 = \varepsilon_2 \sigma_1, \quad \sigma_1 \varphi_1 = \varphi_2 \sigma_1, \quad \sigma_2 \varepsilon_3 = \varepsilon_4 \sigma_2, \quad \sigma_2 \varphi_3 = \varphi_4 \sigma_2.
\]

Finally, we define \(G\) as the semidirect product of \(H\) and the group \(Z_2\) of order 2 with generator \(\psi\). By definition, \(\psi\) commutes with each \(\varepsilon_i\) and we have

\[
\psi \varphi_i = \varepsilon_i^{m-1} \varphi_i \psi, \quad i = 1, 2; \quad \psi \varphi_j = \varepsilon_j^{n-1} \varphi_j \psi, \quad j = 3, 4.
\]

The group \(G\) acts on \(BS(m, n)\) as follows. If \(S = (A; B; C; D) \in BS(m, n)\) then

\[
\varepsilon_1 S = (-A; B; C; D), \quad \varphi_1 S = (A'; B; C; D),
\]

\[
\varepsilon_2 S = (A; -B; C; D), \quad \varphi_2 S = (A; B'; C; D),
\]

\[
\varepsilon_3 S = (A; B; -C; D), \quad \varphi_3 S = (A; B; C'; D),
\]

\[
\varepsilon_4 S = (A; B; C; -D), \quad \varphi_4 S = (A; B; C; D'),
\]

and \(\psi S = (A^*; B^*; C^*; D^*)\). It is easy to verify that the defining relations of \(G\) are satisfied by these transformations and so the action of \(G\) on \(BS(m, n)\) is well defined. Consequently, the following proposition holds.

Proposition 2.1. If \(m \neq n\), the orbits of \(G\) in \(BS(m, n)\) are the same as the equivalence classes in \(BS(m, n)\).

We need also the encoding scheme for the base sequences \((A; B; C; D)\) in \(BS(n + 1, n)\) introduced in [2]. We now recall that scheme. We decompose the pair \((A; B)\) into quads

\[
\begin{bmatrix}
 a_i & a_{n+2-i} \\
 b_i & b_{n+2-i}
\end{bmatrix}, \quad i = 1, 2, \ldots, \left\lfloor \frac{n + 1}{2} \right\rfloor,
\]
and, if $n = 2m$ is even, the central column $\begin{bmatrix} a_{m+1} \\ b_{m+1} \end{bmatrix}$. Up to equivalence of base sequences, we can assume that the first quad of $(A; B)$ is $\begin{bmatrix} + & + \\ + & - \end{bmatrix}$. We attach to this particular quad the label 0. The other quads in $(A; B)$ and all the quads of the pair $(B; C)$, shown with their labels, must be one of the following:

1 = $\begin{bmatrix} + & + \\ + & + \end{bmatrix}$, 2 = $\begin{bmatrix} + & + \\ - & + \end{bmatrix}$, 3 = $\begin{bmatrix} - & + \\ - & + \end{bmatrix}$, 4 = $\begin{bmatrix} + & - \\ - & + \end{bmatrix}$,

5 = $\begin{bmatrix} - & + \\ + & - \end{bmatrix}$, 6 = $\begin{bmatrix} + & - \\ + & - \end{bmatrix}$, 7 = $\begin{bmatrix} - & - \\ + & + \end{bmatrix}$, 8 = $\begin{bmatrix} - & - \\ - & - \end{bmatrix}$.

The central column is encoded as

$0 = \begin{bmatrix} + \\ + \end{bmatrix}$, 1 = $\begin{bmatrix} + \\ - \end{bmatrix}$, 2 = $\begin{bmatrix} - \\ + \end{bmatrix}$, 3 = $\begin{bmatrix} - \\ - \end{bmatrix}$.

If $n = 2m$ is even, the pair $(A; B)$ is encoded as the sequence of digits $q_1q_2 \ldots q_mq_{m+1}$, where q_i, $1 \leq i \leq m$, is the label of the ith quad and q_{m+1} is the label of the central column. If $n = 2m - 1$ is odd, then $(A; B)$ is encoded by $q_1q_2 \ldots q_m$, where q_i is the label of the ith quad for each i. We use the same recipe to encode the pair $(C; D)$.

As an example, the base sequences

\[A = +, +, +, +, - , - , +, - , +, +; \]
\[B = +, +, +, - , +, +, +, - , - , -; \]
\[C = +, +, - , - , +, - , - , +; \]
\[D = +, +, +, - , - , - , - , +; \]

are encoded as 06142; 1675.

3. Near-normal sequences

Near-normal sequences, originally defined by C.H. Yang [6], can be viewed as a special type of base sequences $(A; B; C; D) \in BS(n+1, n)$ (see [4, 2]) with n even, namely such that $b_i = (-1)^{i+1}a_i$ for $1 \leq i \leq n$. Note that we also must have $b_{n+1} = -a_{n+1}$. Hence, the sequence B is uniquely determined by A, and we define $\alpha A = B$. Note that also $\alpha B = A$.

We denote by $NN(n)$ the subset of $BS(n+1, n)$ consisting of near-normal sequences. It has been conjectured (Yang [6]) that $NN(n) \neq \emptyset$.
for all positive even n's. Yang's conjecture has been confirmed for all even $n \leq 34$ [3].

We shall introduce two equivalence relations in $NN(n)$: BS-equivalence and NN-equivalence. The former is stronger than the latter.

We say that two members of $NN(n)$ are BS-equivalent if they are equivalent as base sequences in $BS(n + 1, n)$. One can enumerate the BS-equivalence classes by finding suitable representatives of the classes. For that purpose we introduce the concept of canonical form for near-normal sequences.

For convenience we fix the following notation. Let $(A; B = \alpha A; C; D) \in NN(n), n = 2m$, and let

\[p_1p_2 \cdots p_mp_{m+1} \text{ resp. } q_1q_2 \cdots q_m \]

be the encoding of the pair $(A; B)$ resp. $(C; D)$.

Definition 3.1. We say that the near-normal sequences $(A; B; C; D)$ are in the canonical form if the following conditions hold:

(i) $p_1 = 0$, $q_1 = 1$.

(ii) If $q_j = 2$ for some j, then $q_i = 7$ for some index i with $1 < i < j$.

(iii) If $q_j \in \{3, 4, 5\}$ for some j, then $q_i = 6$ for some index i with $1 < i < j$.

(iv) If $q_k \neq 7$ for all k's and $q_j = 4$ for some j, then $q_i = 5$ for some index i with $1 < i < j$.

The following proposition shows how one can enumerate the BS-equivalence classes of $NN(n)$.

Proposition 3.2. For each BS-equivalence class $E \subseteq NN(n), n = 2m$, there is a unique $(A; B; C; D) \in E$ having the canonical form.

Proof. Let $(A; B; C; D) \in E$ be arbitrary and let $p_1p_2 \cdots p_mp_{m+1} \text{ resp. } q_1q_2 \cdots q_m$ be the encoding of the pair $(A; B)$ resp. $(C; D)$. By applying the first three types of elementary transformations we can assume that $p_1 = 0$ and $c_1 = d_1 = +1$. Then q_1 must be either 1 or 6. In the latter case we apply the elementary transformation (iv). Thus we may assume that $p_1 = 0$ and $q_1 = 1$, i.e., the condition (i) for the canonical form is satisfied.

Now assume that $q_j = 2$ for some j and that $q_i \neq 7$ for all $i < j$. After interchanging the sequences C and D, we obtain that $q_j = 7$ and $q_i \neq 2$ for $i < j$. Hence we may also assume that the condition (ii) is satisfied.

Next assume that $q_j \in \{3, 4, 5\}$ for some j. We may take j to be minimal with this property. Assume that $q_i \neq 6$ for $i < j$. Consequently, $q_i \in \{1, 2, 7, 8\}$ for all $i < j$. If $q_j = 3$ we replace $(C; D)$ with
(C'; D'). If \(q_j = 4\) we replace \(D\) with \(D'\). If \(q_j = 5\) we replace \(C\) with \(C'\). After this change, we obtain that in all three cases \(q_j = 6\) while the \(q_i\)’s for \(i < j\) remain unchanged. Hence the condition (iii) is also satisfied.

Finally, assume that \(q_k \neq 7\) for all \(k\)’s, \(q_j = 4\) for some \(j\), and \(q_i \neq 5\) for \(i < j\). Since the condition (ii) holds, we have \(q_i \in \{1, 3, 6, 8\}\) for all \(i < j\). After interchanging \(C\) and \(D\), we obtain that \(q_j = 5\) while the \(q_i\) with \(i < j\) remain unchanged. Hence now \((A; B; C; D)\) is in the canonical form.

It remains to prove the uniqueness assertion. Let

\[S^{(k)} = (A^{(k)}; B^{(k)}; C^{(k)}; D^{(k)}) \in \mathcal{E}, \quad (k = 1, 2) \]

be in the canonical form. By Proposition 2.1 there exists \(g \in G\) such that \(gS^{(1)} = S^{(2)}\). Let \(p_1^{(1)} p_2^{(1)} \cdots p_{m+1}^{(1)}\) resp. \(p_1^{(2)} p_2^{(2)} \cdots p_{m+1}^{(2)}\) be the encoding of the pair \((A^{(1)}; B^{(1)})\) resp. \((A^{(2)}; B^{(2)})\). Let \(q_1^{(1)} q_2^{(1)} \cdots q_m^{(1)}\) resp. \(q_1^{(2)} q_2^{(2)} \cdots q_m^{(2)}\) be the encoding of the pair \((C^{(1)}; D^{(1)})\) resp. \((C^{(2)}; D^{(2)})\). Since \(q_1^{(1)} = q_1^{(2)} = 1\), \(g\) must be in \(H\). Note that \(H = H_1 \times H_2\), where the subgroup \(H_1\) resp. \(H_2\) is generated by \(\{\varepsilon_1, \varepsilon_2, \varphi_1, \varphi_2, \sigma_1\}\) resp. \(\{\varepsilon_3, \varepsilon_4, \varphi_3, \varphi_4, \sigma_2\}\). Thus we have \(g = h_1 h_2\) with \(h_1 \in H_1\) and \(h_2 \in H_2\). Consequently, \(h_1 \cdot (A^{(1)}; B^{(1)}) = (A^{(2)}; B^{(2)})\) and \(h_2 \cdot (C^{(1)}; D^{(1)}) = (C^{(2)}; D^{(2)})\).

We also have the direct decomposition \(E = E_1 \times E_2\), where \(E_1 = E \cap H_1\) and \(E_2 = E \cap H_2\).

Since \(p_1^{(1)} = p_1^{(2)} = 0\), the equality \(h_1 \cdot (A^{(1)}; B^{(1)}) = (A^{(2)}; B^{(2)})\) implies that \(h_1 \in E_1\). Thus \(h_1 = e_1^{e_1} e_2^{e_2} \varphi_1^{f_1} \varphi_2^{f_2}\) with \(e_1, e_2, f_1, f_2 \in \{0, 1\}\).

Since the first and the last terms of the sequences \(A^{(1)}\) and \(A^{(2)}\) are +1, we have \(e_1 = 0\). It follows that the middle terms of these two sequences are the same. As \(S^{(1)}\) and \(S^{(2)}\) are near-normal sequences, the sequences \(B^{(1)}\) and \(B^{(2)}\) must also have the same middle terms. Consequently, \(e_2 = 0\). Since the sequences \(B^{(1)}\) and \(B^{(2)}\) have the same first term, +1, and the same last term, −1, we infer that \(f_2 = 0\). Consequently, \(B^{(1)} = B^{(2)}\).

As \(A^{(1)} = \alpha B^{(1)}\) and \(A^{(2)} = \alpha B^{(2)}\), we infer that also \(A^{(1)} = A^{(2)}\).

Since \(q_1^{(1)} = q_1^{(2)} = 1\), the equality \(h_2 \cdot (C^{(1)}; D^{(1)}) = (C^{(2)}; D^{(2)})\) implies that \(h_2\) belongs to the subgroup of \(H_2\) generated by \(\{\varphi_3, \varphi_4, \sigma_2\}\). Thus \(h_2 = \varphi_3^{f_3} \varphi_4^{f_4} \sigma_2^{s}\) with \(f_3, f_4, s \in \{0, 1\}\).

Assume that \(q_j^{(1)} = 7\) for some \(j\). Choose the smallest such \(j\). Then \(q_i^{(1)} \neq 2\) for \(1 < i < j\). The quads 1, 3, 6, 8 are fixed by \(\sigma_2\) and the quads 2, 4, 5, 7 are permuted via the involution \((2, 7)(4, 5)\). On the other hand, the generators \(\varphi_3\) and \(\varphi_4\) fix the quads 1, 2, 7, 8. Since \(S^{(1)}\) and \(S^{(2)}\) are in the canonical form it follows that \(s = 0\) and so \(q_j^{(2)} = 7\) and \(q_i^{(2)} \neq 2\).
for $1 < i < j$. The equality $\varphi_3^f \varphi_4^f \cdot (C^{(1)}; D^{(1)}) = (C^{(2)}; D^{(2)})$ now implies that $C^{(1)} = C^{(2)}$ and $D^{(1)} = D^{(2)}$. Hence $S^{(1)} = S^{(2)}$. The argument is similar if $q_j^{(1)} \neq 7$ for all j, which implies that also $q_j^{(1)} \neq 2$ for all j. \hfill \Box

We proceed to define the NN-equivalence relation in $NN(n)$. For this we need to introduce the NN-elementary transformations:

(i) Negate both sequences $A; B$ or one of $C; D$.
(ii) Reverse one of the sequences $C; D$.
(iii) Interchange the sequences $A; B$ or $C; D$.
(iv) Replace the sequences $(A; B = \alpha A)$ with $(\hat{A}; \hat{B} = \alpha \hat{A})$ where

$$\hat{A} = a_{n-1}, a_2, a_{n-3}, a_4, \ldots, a_1, a_n, a_{n+1}.$$

(v) Replace the sequences $(C; D)$ with the pair $(\tilde{C}; \tilde{D})$ which is defined by its encoding $\tilde{q}_1 \tilde{q}_2 \ldots \tilde{q}_m$ with

$$\tilde{q}_i = \begin{cases}
5, & \text{if } q_i = 4; \\
4, & \text{if } q_i = 5; \\
q_i & \text{otherwise.}
\end{cases}$$

(vi) Alternate all four sequences $A; B; C; D$.

Lemma 3.3. By using the above notation, we have $N(\hat{A}) + N(\hat{B}) = N(A) + N(B)$ and $N(\tilde{C}) + N(\tilde{D}) = N(C) + N(D)$. Consequently, the quadruples $(\hat{A}; \hat{B}; C; D)$ and $(A; B; \tilde{C}; \tilde{D})$ belong to $NN(n)$.

Proof. We sketch the proof only for the first quadruple. It suffices to show that for even i and odd $j < n$ we have

$$\hat{a}_i \hat{a}_j + \hat{b}_i \hat{b}_j = a_ia_j + b_ib_j.$$

This is indeed true since $\hat{b}_j = \hat{a}_j$ and $\hat{a}_i + \hat{b}_i = 0$. \hfill \Box

We say that two members of $NN(n)$ are NN-equivalent if one can be transformed to the other by applying a finite sequence of the NN-elementary transformations (i-vi).

Our main objective is to enumerate the NN-equivalence classes of $NN(n)$ for even integers $n \leq 30$.

4. Equivalence classes of near-normal sequences

In Table 1 we list the codes for the representatives of the NN-equivalence classes of $NN(n)$ for even $n \leq 30$. All representatives are chosen in the canonical form.
Table 1: \(NN\)-equivalence classes of \(NN(n)\)

\(A \times B\)	\(C \times D\)	\(a, b, c, d\)	\(a^*, b^*, c^*, d^*\)	
\(n = 2\)				
1	02	1	1, 1, 2, 2	3, -1, 0, 0
\(n = 4\)				
1	050	16	3, 1, 2, 2	3, 1, -2, -2
2	073	17	-1, 1, 0, 4	3, -3, 0, 0
\(n = 6\)				
1	0711	188	3, 3, -2, -2	5, 1, 0, 0
2	0512	172	3, 3, 2, 2	5, 1, 0, 0
\(n = 8\)				
1	07643	1651	-1, 1, 4, 4	3, -3, -4, 0
2	05850	1163	1, -1, 4, 4	1, -1, 4, 4
3	05323	1637	3, -3, 0, 4	-1, 1, -4, -4
\(n = 10\)				
1	076462	16712	-1, 3, 4, 4	5, -3, -2, -2
2	078211	16561	3, -1, 4, 4	1, 1, -6, -2
3	078412	16787	-1, 3, -4, 4	5, -3, -2, -2
4	076761	17621	-1, 3, 4, 4	5, -3, 2, 2
5	056732	11726	-1, 3, 4, 4	5, -3, 2, 2
6	058511	11635	3, -1, 4, 4	1, 1, 2, 6
7	053281	16355	3, -5, 2, 2	-3, 1, -4, -4
8	053781	17616	-1, -1, 2, 6	1, -3, 4, 4
\(n = 12\)				
1	0765373	161762	-3, 3, 4, 4	5, -5, 0, 0
2	0764373	165513	-3, 3, 4, 4	5, -5, 0, 0
3	0764320	165776	3, 1, -2, 6	3, 1, -6, -2
4	0764870	167162	-3, 3, 4, 4	5, -5, 0, 0
5	0784370	167867	-3, 3, -4, 4	5, -5, 0, 0
6	0765373	176738	-3, 3, -4, 4	5, -5, 0, 0
7	0715873	187766	-3, 3, -4, 4	5, -5, 0, 0
8	0737653	187222	-3, 3, -4, 4	5, -5, 0, 0
9	0585140	116754	3, 1, 2, 6	3, 1, -2, 6
10	0517820	161675	3, 1, 2, 6	3, 1, -2, -6
11	0512673	165714	3, 1, 2, 6	3, 1, -6, 2
12	0512870	167575	3, 1, -2, 6	3, 1, -2, -6
13	0515643	176153	3, 1, 2, 6	3, 1, 2, 6
14	0515343	176547	3, 1, -2, 6	3, 1, 6, -2
Classification of Near-Normal Sequences

Table 1 (continued)

	$A \& B$	$C \& D$	a, b, c, d	a^*, b^*, c^*, d^*
$n = 14$				
1	07623211	1637668	$7, -1, -2, 2$	$1, 5, -4, -4$
2	07621231	1651468	$7, -1, 2, 2$	$1, 5, -4, -4$
3	07643511	1675657	$3, 3, -2, 6$	$5, 1, 4, -4$
4	07676212	1763321	$1, 5, 4, 4$	$7, -1, 2, 2$
5	07176262	1868866	$1, 5, -4, -4$	$7, -1, 2, 2$
6	07378282	1865311	$-5, -1, 4, 4$	$1, -7, 2, -2$
7	05673512	1172663	$1, 5, 4, 4$	$7, -1, -2, -2$
8	05821712	1187763	$3, 3, -2, 6$	$5, 1, -4, -4$
9	05128712	1638177	$3, 3, -2, 6$	$5, 1, -4, -4$
10	05121562	1678524	$7, 3, 0, 0$	$5, 5, -2, -2$
11	05146762	1678376	$1, 5, -4, 4$	$7, -1, -2, -2$

$n = 16$				
1	076567350	16117872	$-1, 5, 2, 6$	$7, -3, -2, -2$
2	076215320	16333817	$7, 1, 0, 4$	$3, 5, -4, -4$
3	076212650	16373355	$7, 1, 0, 4$	$3, 5, -4, -4$
4	076214670	16377568	$3, 5, -4, 4$	$7, 1, 0, -4$
5	076487150	16716223	$-1, 5, 6, 2$	$7, -3, 2, 2$
6	076417643	16752321	$-1, 5, 6, 2$	$7, -3, 2, -2$
7	076417343	16756467	$-1, 5, -2, 6$	$7, -3, 2, 2$
8	076715643	17265377	$-1, 5, -2, 6$	$7, -3, -2, -2$
9	076517353	17661518	$-1, 5, 2, 6$	$7, -3, 2, -2$
10	076534120	17665214	$5, 3, 4, 4$	$5, 3, -4, 4$
11	076587150	17766813	$-1, 5, -2, 6$	$7, -3, 2, 2$
12	076487150	17816788	$-1, 5, -6, 2$	$7, -3, 2, 2$
13	071564320	18676557	$5, 3, -4, 4$	$5, 3, 4, 4$
14	071265620	18863557	$7, 1, -4, 0$	$3, 5, -4, -4$
15	051284823	16546732	$3, -7, 2, 2$	$-5, 1, -6, 2$
16	051235623	16637385	$7, -3, -2, 2$	$-1, 5, 6, 2$
17	051462323	16654553	$7, -3, 2, 2$	$-1, 5, 6, -2$
18	051267640	16753874	$5, 3, -4, 4$	$5, 3, -4, -4$
19	053467670	16537515	$-1, 5, 2, 6$	$7, -3, 2, -2$
20	053467873	16754414	$-5, 1, 2, 6$	$3, -7, -2, -2$
21	053462823	16758534	$3, -7, -2, 2$	$-5, 1, -2, -6$
22	051712820	17268876	$7, 1, -4, 0$	$3, 5, -4, -4$
23	051564173	17726215	$3, 5, 4, 4$	$7, 1, 4, 0$
24	051467373	17886836	$-1, 5, -6, -2$	$7, -3, -2, -2$
Table 1 (continued)

	$A \& B$	$C \& D$	a, b, c, d	a^*, b^*, c^*, d^*
$n = 18$				
1	0767653462	161544647	$-3, 5, 2, 6$	$7, -5, 0, 0$
2	0762328231	163544668	$5, -7, 0, 0$	$-5, 3, -2, -6$
3	0762328211	163554338	$7, -5, 0, 0$	$-3, 5, -6, -2$
4	0762328211	165138835	$7, -5, 0, 0$	$-3, 5, -6, -2$
5	0782156561	165413577	$3, -1, 0, 8$	$1, 1, -6, 6$
6	0782143782	165726177	$-3, 1, 0, 8$	$3, -5, -6, -2$
7	0767178262	172782221	$-3, 5, 6, -2$	$7, -5, 0, 0$
8	0767643462	176672155	$-3, 5, 2, 6$	$7, -5, 0, 0$
9	0765153782	177821181	$-3, 5, 2, 6$	$7, -5, 0, 0$
10	0785153762	172212188	$-3, 5, 6, -2$	$7, -5, 0, 0$
11	0737846761	186557167	$-5, 3, -2, 6$	$5, -7, 0, 0$
12	0567156482	117763815	$-1, 3, 0, 8$	$5, -3, 2, 6$
13	0512876462	165351136	$1, 1, 6, 6$	$3, -1, 0, 8$
14	0514846732	166751736	$-1, 3, 0, 8$	$5, -3, 2, 6$
15	0512846282	167654744	$3, -5, -2, 6$	$-3, 1, -8, 0$
16	0512846262	167655745	$5, -3, -2, 6$	$-1, 3, -8, 0$
17	0512848232	167655745	$3, -5, -2, 6$	$-3, 1, -8, 0$
18	0532376482	165351136	$-1, -1, 6, 6$	$1, -3, 0, 8$
19	0517846761	176567164	$-1, 3, 0, 8$	$5, -3, 6, -2$
20	0537346781	176567164	$-3, 1, 0, 8$	$3, -5, 6, -2$

$n = 20$

	$A \& B$	$C \& D$	a, b, c, d	a^*, b^*, c^*, d^*
1	07621517870	1633771868	$1, 7, -4, 4$	$9, -1, 0, 0$
2	07643282143	1657513537	$3, -3, 0, 8$	$-1, 1, -8, -4$
3	07643215823	1657761672	$3, -3, 0, 8$	$-1, 1, -8, -4$
4	07643285123	1676715655	$3, -3, 0, 8$	$-1, 1, -8, -4$
5	07821417670	1655337213	$1, 7, 4, 4$	$9, -1, 0, 0$
6	07821464623	1657367551	$3, -3, 0, 8$	$-1, 1, -8, -4$
7	07156514620	1876332551	$7, 5, 2, 2$	$7, 5, -2, -2$
8	07356484873	1871628611	$-7, -1, 4, 4$	$1, -9, 0, 0$
9	05673282320	1166536724	$5, -5, 4, 4$	$-3, 3, 0, 8$
10	05153467820	1616571625	$3, 1, 6, 6$	$3, 1, -6, -6$
11	05178262840	1616372252	$3, -3, 8, 0$	$-1, 1, -8, -4$
12	05146784840	1663611547	$-1, 1, 4, 8$	$3, -3, 8, 0$
13	05146214173	1665572814	$7, 5, 2, 2$	$7, 5, -2, -2$
14	05146515153	1678325325	$7, 5, 2, -2$	$7, 5, -2, -2$
15	05146265620	1678813524	$9, -1, 0, 0$	$1, 7, -4, -4$
16	05346265873	1661754125	$-1, -3, 6, 6$	$-1, -3, 6, -6$
17	05171564620	1726655445	$7, 5, 2, 2$	$7, 5, -2, -2$
18	05126532340	1786556323	$9, -1, 0, 0$	$1, 7, 4, 4$
Table 1 (continued)

n = 22	A & B	C & D	a, b, c, d	a*, b*, c*, d*
1	076537321212	16156871224	5, 5, 6, 2	7, 3, 4, −4
2	076212641431	1635377225	9, 1, 2, 2	3, 7, −4, −4
3	076487121512	16337381132	3, 7, 4, 4	9, 1, 2, 2
4	076414343562	1655178513	1, 5, 0, 8	7, −1, −6, −2
5	076414343562	16561764357	1, 5, 0, 8	7, −1, −6, −2
6	076414378212	16617767256	1, 5, 0, 8	7, −1, 6, 2
7	076435641411	16761544847	5, 5, −2, 6	7, 3, −4, −4
8	078212153261	16778255254	9, −3, 0, 0	−1, 7, 2, −6
9	078435173511	1678586863	1, 5, −8, 0	7, −1, −2, −6
10	076512676432	17633151578	1, 5, 0, 8	7, −1, −2, 6
11	076515671481	17675144618	1, 5, 0, 8	7, −1, 2, 6
12	076782121711	17652175378	5, 5, −2, 6	7, 3, 4, −4
13	071567356562	18767883255	−1, 7, −6, −2	9, −3, 0, 0
14	071584328782	18768533758	−5, −1, −8, 0	1, −7, 2, −6
15	056414173761	11868766736	3, 7, −4, 4	9, 1, 2, 2
16	058512141532	11635676523	7, 3, 4, 4	5, 5, −6, 2
17	058512328781	11637254662	1, −7, 6, 2	−5, −1, 0, 8
18	051715853212	16187155327	5, 5, 2, 6	7, 3, −4, −4
19	051265126462	16534782626	9, 1, 2, −2	3, 7, 4, 4
20	051265128432	16535712626	7, −1, 6, 2	1, 5, 0, 8
21	051284651712	16576127148	5, 5, 2, 6	7, 3, −4, 4
22	051234648212	16654867176	7, −1, −2, 6	1, 5, 8, 0
23	051464641232	16675487723	7, 3, −4, 4	5, 5, −6, 2
24	051265673412	16723155718	5, 5, 2, 6	7, 3, −4, −4
25	053482826781	16383573582	−1, −9, −2, −2	−7, −3, −4, −4
26	053465151281	16537353721	7, −1, 2, 6	1, 5, 0, 8
27	053265626512	16712758341	7, −1, 2, 6	1, 5, −8, 0
28	053464621711	16728657537	7, 3, −4, 4	5, 5, −6, 2
29	051515841782	17631554474	1, 5, 0, 8	7, −1, 6, 2
30	051512658432	17653363147	5, 1, 0, 8	3, 3, 6, 6
31	051762482211	17657861418	7, −1, −2, 6	1, 5, 8, 0
32	051567326261	17763546681	7, −1, −2, 6	1, 5, 0, −8
Table 1 (continued)

	A & B	C & D	a, b, c, d	a*, b*, c*, d*
n = 24				
1	0765321785873	161653745512	-5, 1, 6, 6	3, -7, -6, 2
2	0764156484370	165371478678	-1, 5, -6, 6	7, -3, -6, 2
3	0767621532650	176577612445	5, 3, 0, 8	5, 3, 8, 0
4	0767328512140	178833835874	5, 3, -8, 0	5, 3, 0, 8
5	0715653785350	187677653446	-1, 5, -6, 6	7, -3, -2, -6
6	0737626512340	186537753131	5, 3, 0, 8	5, 3, 0, 8
7	0734876235823	188663535787	-3, -5, -8, 0	-3, -5, 0, 8
8	0512653237623	16535436747	7, -3, -2, 6	-1, 5, 6, 6
9	0532651262673	167167854247	7, -3, -2, 6	-1, 5, 6, 6
10	0515178265340	176765741452	5, 3, 0, 8	5, 3, 0, 8
11	0517646732123	176654163667	5, 3, 0, 8	5, 3, -8, 0
12	0512158564370	178868726547	5, 3, -8, 0	5, 3, 8, 0

n = 26

	A & B	C & D	a, b, c, d	a*, b*, c*, d*
1	0764148784342	1654611475266	-3, 5, 6, 6	7, -5, -4, 4
2	0512826456262	165477652733	7, -5, -4, 4	-3, 5, -6, 6
3	0512625841481	1782657541321	7, -5, 4, 4	-3, 5, 6, -6

n = 28

	A & B	C & D	a, b, c, d	a*, b*, c*, d*
1	076534321432170	16178852836758	7, 5, -6, -2	7, 5, -2, 6
2	07623264878780	16354457772331	-7, -1, 0, 8	1, -9, -4, -4
3	078232123565140	1653873577542	9, -1, -4, 4	1, 7, 0, -8
4	078215348487673	16754388724478	-7, -1, -8, 0	1, -9, 4, -4
5	078214148264370	16767651613356	3, 1, 2, 10	3, 1, -10, -2
6	076512326587853	17635447785113	-1, -3, -2, 10	-1, -3, 2, 10
7	076514414635673	17655216547871	1, 7, 0, 8	9, 1, -4, -4
8	076537321737843	17661856774521	-5, 5, 0, 8	7, -7, 0, -4
9	076582151735173	17727186654441	1, 7, 0, 8	9, -1, 4, -4
10	078517356737323	17262157855212	-5, 5, 8, 0	7, -7, -4, 0
11	078235123464120	18683835255348	9, -1, -4, -4	1, 7, 0, -8
12	071564621714873	1863725548877	1, 7, -8, 0	9, -1, 4, 4
13	071564148764650	18667117672553	1, 7, 0, 8	9, -1, 4, 4
14	071287651232320	18876654763441	9, -1, -4, 4	1, 7, -8, 0
15	053465153484843	16754378876583	-1, -3, -10, 2	-1, -3, 10, -2
16	051765414647353	17631822512665	1, 7, 8, 0	9, -1, 4, 4
17	051762846767140	1765478116581	1, 7, 0, 8	9, -1, 4, -4
18	051784828462343	17656316516487	-1, -7, 0, 8	-5, -3, 4, 8
19	051782353215153	17678365277211	7, 1, 0, 8	3, 5, 8, 4
20	051567121285343	17765468271156	7, 1, 0, 8	3, 5, -8, 4
Table 1 (continued)

	\(A \) & \(B \)	\(C \) & \(D \)	\(a, b, c, d \)	\(a^*, b^*, c^*, d^* \)
1	0782321435141431	167587656743842	9, 1, −6, 2	3, 7, 8, 0
2	0784151482828782	167835857653471	−5, −5, −6, 6	−3, −7, 0, −8
3	0784351765121731	167838232233854	3, 7, 0, −8	9, 1, 2, −6
4	0767641512178561	176536611456768	3, 7, 0, 8	9, 1, −6, −2
5	0564376515151581	118772615545132	5, 5, 6, 6	7, 3, 8, 0
6	0512656235371531	165711846213678	9, 1, 2, 6	3, 7, 0, 8
7	0534678534348481	165344387727573	−5, −5, −6, 6	−3, −7, −8, 0
8	0532678482348461	167165812256464	−1, −9, 6, 2	−7, −3, 0, −8
9	0515153564821232	177863718512664	9, 1, −2, 6	3, 7, 8, 0

\[n = 30 \]

REFERENCES

[1] C.J. Colbourn and J.H. Dinitz, Editors, Handbook of Combinatorial Designs, 2nd edition, Chapman & Hall, Boca Raton/London/New York, 2007.

[2] D.Z. Đoković, Aperiodic complementary quadruples of binary sequences, JCMCC 27 (1998), 3–31. Correction: ibid 30 (1999), p. 254.

[3] ______, Some new near-normal sequences (preprint).

[4] C. Koukouvinos, S. Kounias, J. Seberry, C.H. Yang and J. Yang, Multiplication of sequences with zero autocorrelation, Austral. J. Combin. 10 (1994), 5–15.

[5] J. Seberry and M. Yamada, Hadamard matrices, sequences and block designs, in Contemporary Design Theory: A Collection of Surveys, Eds. J.H. Dinitz and D.R. Stinson, J. Wiley, New York, 1992, pp. 431–560.

[6] C.H. Yang, On composition of four-symbol \(\delta \)-codes and Hadamard matrices, Proc. Amer. Math. Soc. 107 (1989), 763–776.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, N2L 3G1, CANADA

E-mail address: djokovic@uwaterloo.ca