Sex differences in the association between diabetes and cancer: a systematic review and meta-analysis of 121 cohorts including 20 million individuals and one million events

Toshiaki Ohkuma1 · Sanne A. E. Peters2 · Mark Woodward1,2,3

Received: 16 January 2018 / Accepted: 2 May 2018 / Published online: 20 July 2018
© The Author(s) 2018

Abstract

Aims/hypothesis Diabetes has been shown to be a risk factor for some cancers. Whether diabetes confers the same excess risk of cancer, overall and by site, in women and men is unknown.

Methods A systematic search was performed in PubMed for cohort studies published up to December 2016. Selected studies reported sex-specific relative risk (RR) estimates for the association between diabetes and cancer adjusted at least for age in both sexes. Random-effects meta-analyses with inverse-variance weighting were used to obtain pooled sex-specific RRs and women-to-men ratios of RRs (RRRs) for all-site and site-specific cancers.

Results Data on all-site cancer events (incident or fatal only) were available from 121 cohorts (19,239,302 individuals; 1,082,592 events). The pooled adjusted RR for all-site cancer associated with diabetes was 1.27 (95% CI 1.21, 1.32) in women and 1.19 (1.13, 1.25) in men. Women with diabetes had ~6% greater risk compared with men with diabetes (the pooled RRR was 1.06, 95% CI 1.03, 1.09). Corresponding pooled RRRs were 1.10 (1.07, 1.13) for all-site cancer incidence and 1.03 (0.99, 1.06) for all-site cancer mortality. Diabetes also conferred a significantly greater RR in women than men for oral, stomach and kidney cancer, and for leukaemia, but a lower RR for liver cancer.

Conclusions/interpretation Diabetes is a risk factor for all-site cancer for both women and men, but the excess risk of cancer associated with diabetes is slightly greater for women than men. The direction and magnitude of sex differences varies by location of the cancer.

Keywords Cancer · Diabetes · Meta-analysis · Sex differences · Systematic review

Introduction

Cancer is the second leading causes of death in the world [1]. In 2015, there were 17.5 million incident cancer cases and 8.7 million cancer deaths globally, and it is estimated that one in four women and one in three men develop cancer during their lifetime [2]. The incidence of cancer is expected to increase in the next decades, emphasising the importance of efficient prevention and treatment of cancer worldwide.

The prevalence of diabetes has also grown rapidly. In 2015, one in 11 adults (415 million) were reported to have diabetes, five million deaths were attributed to diabetes, and 12% of global health expenditure was spent on diabetes and its
complications [3]. Diabetes has been associated with the risk of all-site and some site-specific cancers in several systematic reviews and meta-analyses [4–13]. However, only a minority of these associations are based on robust supporting evidence without question of significant bias [14]. To date, there has been no systematic overview of the evidence available on sex differences in the association between diabetes and cancer.

We have previously published compelling evidence that women with diabetes are at an increased risk of stroke [15], coronary heart disease [16] and dementia [17] compared with their male peers. We now question whether this is also true for cancer. In this study, we conducted the most comprehensive systematic review and meta-analysis, to date, to estimate the relative effect of diabetes on the risk of cancer in women compared with men.

Methods

Search strategy and selection criteria A systematic search was performed in PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) on 23 December 2016 using a combined text word and medical subject heading search strategy (electronic supplementary material [ESM] Table 1). The reference lists of identified reports were also checked for other potentially relevant studies.

Observational cohort studies in general populations were included if they had provided relative risks (RRs), or equivalents, for the association between diabetes and cancer in both women and men. Studies were excluded if they had not adjusted at least for age or did not provide information about the variability around the point estimate, or if they only had data for one sex. In case of duplicate reports from the same study, the study providing the longest follow-up or the highest number of cases was included. We also used individual participant data from the Asia Pacific Cohort Studies Collaboration (APCSC) [18], treated as two separate combinations of data from cohorts in Asia and cohorts from Australia or New Zealand, as in our previous work [15, 16]. One author (TO) did the search and extracted the data. Uncertainties regarding the inclusion or exclusion of articles and data extraction were discussed by all authors and resolved by mutual consent. The meta-analysis was done in accordance with the PRISMA criteria [19].

Data extraction and statistical analysis The primary endpoint was all-site cancer events (incident or, if this was all that was presented, mortal only). The secondary endpoints were all-site cancer incidence (i.e. omitting studies that only reported mortality), all-site cancer mortality and, for those cancers that could present in both sexes, site-specific cancer events, site-specific incidence and site-specific mortality. In sensitivity analysis we also compared all-site cancer incidence and mortality when restricting to the studies that reported both.

The primary metrics were the pooled adjusted RRs and the women-to-men ratios of RRs (RRRs) for individuals with diabetes vs those without diabetes. For each study, we extracted the sex-specific RRs and 95% CIs for individuals with diabetes vs those without diabetes, from which we estimated the RRRs and
95% CIs. To include the largest set of individuals and cancer endpoints, studies that reported either age-adjusted or multiple-adjusted (maximum-available-adjusted, i.e. the maximum set of adjustments available for each study) results were included in our primary analyses. In pooling multiple-adjusted results, the set of adjustments made were allowed to vary by study, but had to include at least one other risk factor for cancer, in addition to age [15, 16]. We obtained pooled estimates of sex-specific RRs across studies using random-effects meta-analyses applied on the loge scale. Individual studies were weighted according to the inverse variance of loge RRs. The same method was used to pool the RRRs.

The I² statistic was used to estimate the percentage of variability across studies due to between-study heterogeneity and the Q test was used to assess whether there was a significant lack of homogeneity. The possibility of publication bias was explored using funnel plots and Egger’s and Begg’s tests. Random-effects meta-regression analyses were used to test for differences between pre-assigned subgroups: study region (Asia or Non-Asia), year of baseline study (pre-1985 or 1986 onwards, and also examined as a continuous variable), ascertainment of diabetes (self-reported only or others), type of diabetes (type 1 or type 2, where studies which did not differentiate type were classified as type 2), level of adjustment (age-adjusted or multiple-adjusted), and study quality (the Newcastle–Ottawa Scale [20] ≥7 or <7 points, and also examined as a continuous variable). Post hoc, we also considered absolute risk difference, examined as a categorical and continuous variable) (ESM Table 3). A p value of below 0.05 was considered to be statistically significant in analyses for the primary analyses, i.e. all-site cancer. As many statistical tests were envisaged, a p value of below 0.01 was taken to denote significance for site-specific cancers. All analyses were performed using Stata software (release 13; StataCorp, College Station, TX, USA).

Results

Of the 6371 articles identified through the systematic search, 371 articles qualified for full-text evaluation, and 107 articles provided summary data on the association between diabetes and the risk of cancer for both sexes [21–127]. In addition, 36 cohorts with individual participant data from the APCSC were included (Fig. 1).

Characteristics of the studies that reported the association between diabetes and all-site cancer incidence or mortality are shown in Table 1 and ESM Table 4. Data on all-site cancer were available from 47 studies, involving 121 cohorts, 19,239,302 individuals (not counting one study [25] that did not state the total number of participants), and 1,082,592 events (not counting one study [65] that did not state the total number of cancer events).

The maximum-available-adjusted pooled sex-specific RR estimates for combined fatal and non-fatal cancer associated with diabetes were 1.27 (95% CI 1.21, 1.32, p < 0.001) for women and 1.19 (1.13, 1.25, p < 0.001) for men (Fig. 2). The pooled women-to-men RRR was 1.06 (1.02, 1.11, p = 0.005) for type 1

Fig. 1 Flow chart of study selection

Table 1 Characteristics of the studies reporting on the association between diabetes and all-site cancer

Cohort	Country	Baseline study (years)	Follow-up (years)	No. participants (% women)	Mean age (years)	No. with diabetes (% women)	Type of diabetes	Ascertainment of diabetes	No. with outcome (% women)	I or M	Maximum adjustment available
Ragozzino et al [21]	USA	1945–1969	8.6	1135 (NR)	NR	1135 (NR)	Both	Measured	120 (47)	I	Age
Sasaizuki et al [22]	Japan (8 cohorts)	1984–1994	9.9	339,459 (54)	35–103	32,427 (45)	T2	Hospital discharge diagnosis, exemption from medical charges, prescription	2069 (37)	I	Age, area, Hx of cerebrovascular disease, CHD, smoking, alcohol consumption, BMI, physical exercise, green leafy vegetable consumption, coffee intake
Gini et al [23]	Italy	2002–2009	3.7	32,247 (45)	65	32,247 (45)	Both	Measured	423,942 (51)	I	Age
Berger et al [24]	Denmark	1996–2011	12.6	4,826,142 (50)	41.4	65,690 (47)	Both	Measured	128,720 (50)	I	Age
Carstensen et al [25]	Australia, Denmark, Finland, Scotland, Sweden	2007–2000	8–38	NR	NR	NR	T2	Diabetes registry, impatient dataset	9149 (56)	I	Age, date of follow-up, date of birth
Diabetes II-to-Cancer [26]	Germany	2003	3.3	26,742 (53)	64	26,742 (53)	Both	Measured	1364 (44)	I	Age
VHM&PP Study Cohort [27]	Austria	1988–2001	8.4	140,813 (55)	43	4758 (48)	Both	Measured	5213 (30)	I, M	Age, smoking, alcohol use
Jee et al [28]	Korea	1992–1995	10	1,298,385 (36)	46.9	159,104 (33)	Both	Measured	13,833 (30)	I, M	Age
Wang et al [29]	China	2007–2013	6	327,268 (50)	59.8	327,268 (50)	T2	Diabetes registry	7435 (45)	I	Age, urbanisation level
Hsu et al [30]	Taiwan	2000–2007	5.9	14,619 (53)	50.2	14,619 (53)	Both	Measured	760 (44)	I	Age, calendar year
Adami et al [31]	Sweden	1965–1983	5.2	51,008 (55)	NR	51,008 (55)	Both	Hospital discharge diagnosis	2417 (54)	I	Age
Daniker et al [32]	Israel	2002	11	12,870 (63)	21–89	12,870 (63)	Both	Diabetes registry	128,720 (50)	I	Age
NIH-AARP Diet and Health Study [33]	USA	1995–1996	6	494,867 (40)	62.5	494,867 (40)	Both	Diabetes registry	82,253 (32)	I	Age
Xu et al [34]	China	2004	3.7	36,379 (56)	52	36,379 (56)	T2	Diabetes registry	1205 (53)	I	Age
DRT [35]	Austria	2005	8.7	5709 (47)	57.4	5709 (47)	T2	Diabetes registry	525 (45)	I	Age
NDSS (T2DM) [36]	Australia	1997	5.8	872,706 (47)	60.4	872,706 (47)	T2	Diabetes registry	70,406 (38)	I	Age, calendar year
NDSS (T1DM) [36]	Australia	1997	12	68,072 (47)	27.4	68,072 (47)	T1	Diabetes registry	26,333 (37)	I, M	Age, calendar year
Walker et al [37]	UK	2001–2007	7	80,838 (45)	55–79	80,838 (45)	T2	Diabetes registry	4285 (43)	I	Age
MHS registry [38]	Israel	2000	8	100,595 (53)	61.6	100,595 (53)	Both	Healthcare service database	8977 (45)	I	Age
CLUE II [39]	USA	1989	17	18,280 (57)	51.8	18,280 (57)	Both	Measured	1.2483 (52), M: 907 (50)	I, M	Age
Zhang et al [40]	China	2002–2008	6	7950 (52)	61.1	7950 (52)	T2	Diabetes registry	366 (47)	I	Age
Västerbotten Intervention Project [41]	Sweden	2003	8.3	68,301 (51)	46.1	68,301 (51)	NR	Both	2699 (33)	I	Age, year of recruitment, smoking
ARIC [42]	USA	1990–1992	15	12,792 (55)	56.9	12,792 (55)	Both	Measured	1.2675 (45), M: 887 (42)	I, M	Age, race/ethnicity, ARIC study site, education, smoking status, cigarette-y N smoking, BMI, waist circumference, postmenopausal hormone use (for women)
Wideroff et al [43]	Denmark	1977–1989	5.7	109,581 (50)	64	109,581 (50)	Both	Hospital discharge diagnosis	8831 (47)	I	Age, calendar year
APCSC (Asia) [18]	Asia (26 cohorts)	1961–1993	7	89,468 (46)	45	89,468 (46)	Both	Measured	8000 (33)	M	Age, BMI, education, alcohol, smoking
APCSC (Australia and New Zealand) [18]		1989–1996	7	82,913 (52)	51	82,913 (52)	Both	Measured	2563 (41)	M	Age, BMI, education, alcohol, smoking
Table 1 (continued)

Cohort	Country	Baseline study (years)	Follow-up (years)	No. participants (% women)	Mean age (years)	No. with diabetes (% women)	Type of diabetes	Ascertainment of diabetes	No. with outcome (% women)	I or M	Maximum adjustment available
Singapore Chinese Health Study [44]	Singapore	1999	10.1	7388 (52)	62	510 (47)	T2	Measured	388 (NR)	M	Age, diabetes, interview year, education, smoking, alcohol, BMI
Poole Diabetes Study [45]	UK	1996-1998	5.25	736 (NR)		368 (NR)	T2	Diabetes registry	45 (58)	M	Age (matched)
DERI Mortality Study [46]	Japan	1965–1979	24.4	1385 (60)	8.8	1385 (60)	T1	Diabetes registry	2 (50)	M	Age
Diabetes UK cohort study [47]	UK	1972–1993	28	T2: 23,326 (NR)	NR	T2: 23,326 (NR)	Diabetes registry	T1: 89 (48), T2: 185 (32)	1759 (33)	M	Age, calendar year, country (stratified)
JPHC [48]	Japan	1990, 1993	17.8	99,584 (54)	50.2	4286 (36)	Both	Measured, self-reported	5288 (36)	M	Age, BMI, alcohol intake, smoking, Hx of hypertension, physical activity, area (stratified)
Fresno study [49]	Spain (pool of 12 cohorts)	1991	10	55,283 (54)	56	8627 (47)	Both	Self-reported, measured	850 (36)	M	Age, smoking, BMI, SBP, TC, HDL, C
NHS-NSC [50]	Korea	2002–2003	9.7	29,807 (48)	NR	29,807 (48)	T2	National health insurance database	1759 (33)	M	Age
DECODE study [51]	Denmark, Finland, Italy, the Netherlands, Poland, Sweden, UK (17 cohorts)	1966-2004	15.8	44,655 (41)	53.4	3759 (48)	Both	Measured, self-reported	3235 (27)	M	Age, cohort, BMI, total cholesterol, BP, smoking
Tseng [52]	Taiwan	1995–1998	4.4	256,036 (54)	61.2	256,036 (54)	Both	National health insurance database	8098 (41)	M	Age
Piemonte Diabetes Register, Turin Population Register [53]	Italy	1991–1999	7.7	906,065 (NR)	20	T1: 1608 (NR) T2: 29,656 (NR)	Both	Diabetes registry	26,253 (44)	M	Age, area of birth
Hisayama [54]	Japan	1988	16.9	2438 (57)	57.6	298 (45)	Both	Measured, self-reported	229 (37)	M	Age, BMI, total cholesterol, smoking, alcohol, family Hx of cancer, physical activity, dietary factors (daily intakes of total energy, total fat, sugar, vitamin A, vitamin B1, vitamin B2, vitamin C, dietary fibre)
Fonsas et al [55]	Finland	2003	5	5,147,349 in 1997, 5,300,484 in 2007	1–79	171,596 (54) in 1997, 284,832 (49) in 2007	Both	Diabetes registry	54,461 (48)	M	Age (stratified)
Fedeli et al [56]	Italy	2008	3	167,621 (45)	30–89	167,621 (45)	Both	Archives from subjects exempt from medical charges	5110 (35)	M	Age
HSE, SHES [57]	UK	1994-1995	17, 16	204,533 (55)	47	7199 (48)	Both	Self-reported, prescription	5571 (NR)	M	Age, smoking, BMI
Shu et al [58]	China	1998-2001	10.9	66,813 (66)	65	9225 (66)	Both	Self-reported	6356 (55)	M	Age, alcohol use, smoking, exercise, housing and monthly expenditure, BMI
Weidegaard et al [59]	Sweden	1965–1983	6.7	144,427 (NR)	Max. 61.3	144,427 (NR)	Both	Hospital discharge diagnosis	9660 (49)	M	Age, calendar year, comorbidity
CPS II [60]	USA	1982	26	1,053,831 (56)	NR	52,655 (50)	Both	Self-reported	120,221 (46)	M	Age, education, BMI, smoking, alcohol use, vegetable intake, red meat intake, physical activity, aspirin use
Veenaa Diabetes Study [61]	Italy	1987	10	7148 (53)	67	7148 (53)	Both	Medical records, drug prescription database	641 (41)	M	Age
Sievers et al [62]	USA	1975	10	5131 (52)	15	1266 (58)	T2	Measured	40 (50)	M	Age
2001 ENTRID study [63]	France	2003	5	9101 (NR)	66	9101 (NR)	Both	Self-reported, prescription	380 (NR)	M	Age
Allegheny County Type 1 Diabetes Registry [64]	USA	1965–1979	32.9	1075 (47)	10.9	1075 (47)	Both	Medical records	10 (NR)	M	Age, race
BRFFS [65]	USA	1992	5	9074 (NR)	18	392 (NR)	Both	Self-reported, prescription	131 (48)	M	Age
Wong et al [66]	UK	1985	5	4186 (49)	15	4186 (49)	Both	Diabetes registry	107 (51)	M	Age, calendar period
Bruno et al [67]	Italy	1988	5.7	1967 (57)	66.5	1967 (57)	T2	Medical record, prescription, sale records of reagent strips and syringes	107 (51)	M	Age
Table 1 (continued)

Cohort	Country	Baseline study (years)	Follow-up (years)	No. participants (% women)	Mean age (years)	No. with diabetes (% women)	Type of diabetes	Ascertainment of diabetes	No. with outcome (% women)	I or M	Maximum adjustment available
Shaw et al [68]	Mauritius, Fiji, Nauru	1980, 1982, 1987	5	9179 (NR)	40.7	595 (53)	Both	Self-reported	97 (57)	M	Age, ethnicity, smokinga
Moss et al [69]	USA	1980	8.5	1772 (NR)	66.7	1772 (NR)	Both	Medical records	85 (55)	M	Age
Takayama study [70]	Japan	1992	6.9	29,079 (54)	54.6	1217 (35)	Both	Self-reported	653 (39)	M	Age, smoking, BMI, physical activity, years of education, Hx of HT, intake of total energy, vegetables, fat and alcohol
Chicago Heart Association Detection Project in Industry [71]	USA	1967–1973	12	20,755 (42)	35–64	643 (34)	Both	Self-reported	513 (38)	M	Age, BMI, smoking, SBP, serum cholesterol, education, treatment for HT

If mean values of age or follow-up year were unavailable, median or range was extracted

Wideroff et al was not included in meta-analysis as they did not provide sufficiently accurate CIs for RRs

Studies by Hsu et al, Adami et al, Walker et al, and the Japan Public Health Center-based prospective study, National Diabetes Services Scheme (type 1 diabetes), Takayama study and Västerbotten Intervention Project were excluded from the meta-analysis of primary outcome (all-site cancer) and included in either of the meta-analyses of all-site cancer incidence or mortality only, because of the overlapping of individuals with other studies

a Derived from total cohort

b Proportion with fasting glucose in the diabetic range (>6.9 mmol/l) was 2% for women and 3% for men

c Korean Medical Insurance Corporation cohort was excluded

d For type 1 diabetes, RRs for non-South Asians were extracted

e RRs for non-insulin-treated diabetes were extracted

f RRs for known diabetes were extracted

ARIC, Atherosclerosis Risk in Communities; BRFSS, Behavioral Risk Factor Surveillance System; CLUE II, Give Us a Clue to Cancer and Heart Disease; CPS II, Cancer Prevention Study II; CVD, cardiovascular diseases; DECODE, Diabetes Epidemiology: Collaborative analysis of Diagnostic criteria in Europe; DERI, Diabetes Epidemiology Research International; DRT, Diabetes Registry Tyrol; F, female; HDLC, HDL-cholesterol; HSE, Health Survey for England; HT, hypertension; Hx, history; I, incidence; JPHC, Japan Public Health Center-based prospective study; M, mortality; Ma, male; MHS, Maccabi Healthcare Services; NDSS, National Diabetes Services Scheme; NIH-AARP, National Institutes of Health-American Association of Retired Persons; NHIS-MSC, Korean National Health Insurance Service-National Sample Cohort; NR, not reported; SBP, systolic BP; SHeS, Scottish Health Survey; T1(DM), type 1 diabetes; T2(DM), type 2 diabetes; TC, total cholesterol; VHM&PP, The Vorarlberg Health Monitoring and Promotion Programme; 2001 ENTRED study, 2001–2006 National representative sample of people with diabetes study
Fig. 2 Maximum-available-adjusted RR for all-site cancer, comparing individuals with diabetes with those without diabetes by sex: (a) women; and (b) men. ANZ, Australia and New Zealand; ARIC, Atherosclerosis Risk in Communities; BRFSS, Behavioral Risk Factor Surveillance System; CLUE II, Give Us a Clue to Cancer and Surveillance System; CLUE II, Behavioral Risk Factor Surveillance System; CLUE II, Diabetes Epidemiology: Collaborative analysis of Diagnostic criteria in Europe; DERI, Diabetes Epidemiology Research International; DRT, Diabetes Registry Tyrol; ENTRED study, 2001–2006 National representative sample of people with diabetes at HSE, Health Survey for England; MHS, Maccabi Healthcare Services; NDSS, National Diabetes Services Scheme; NIH-AARP, National Institutes of Health-American Association of Retired Persons; NIH-NSC, Korean National Health Insurance Service-National Sample Cohort; SHS, Scottish Health Survey; VHM&RP, The Vorarlberg Health Monitoring and Promotion Programme

Table A

Study	RR (95% CI)	Weight	
Type 1			
DERN mortality study [46]	0.40 (0.00, 2.10)	0.07	
Diabetes UK cohort study [47]	1.00 (0.10, 10.9)	0.10	
Canzanello et al [25]	1.07 (1.10, 3.37)	0.33	
Allegheny county type 1 diabetes registry [64]	1.78 (1.12, 2.82)	0.448	
Subtotal (I² = 0.0%, p = 0.643)		1.07 (1.04, 10.9)	4.65
Type 2			
Diabetes UK cohort study [47]	0.70 (0.50, 0.92)	0.80	
Hse, Shng [51]	0.92 (0.64, 1.35)	0.00	
Sverme et al [51]	1.05 (0.43, 2.02)	0.21	
DRT [35]	1.05 (0.12, 2.69)	1.09	
Berger et al [26]	1.07 (1.02, 3.29)	3.37	
NHI-AARP day and health study [33]	1.06 (0.80, 1.41)	0.14	
Rosamond et al [27]	1.10 (0.81, 1.50)	1.43	
Moss et al [69]	1.11 (0.54, 2.27)	3.32	
Hse, Shng [51]	1.12 (1.24, 2.93)	2.71	
NHI-AARP day and health study [33]	1.16 (1.20, 2.31)	2.71	
Weiderpass et al. [59]	1.17 (1.12, 2.82)	0.458	
SHS-S, National representative sample of people with diabetes study [61]	1.18 (1.07, 2.99)	1.09	
Subtotal (I² = 0.0%, p = 0.643)		1.19 (1.07, 10.9)	2.96
Overall (I² = 94.7%, p < 0.001)		1.27 (1.21, 1.32)	100.00

Table B

Study	RR (95% CI)	Weight	
Type 1			
DERN mortality study [46]	0.60 (0.00, 3.30)	0.06	
Diabetes UK cohort study [47]	0.80 (0.60, 1.10)	1.43	
Canzanello et al [25]	1.01 (0.86, 1.20)	0.03	
Allegheny county type 1 diabetes registry [64]	1.20 (1.02, 2.20)	1.09	
Subtotal (I² = 0.0%, p = 0.448)		1.01 (0.86, 1.04)	4.65
Type 2			
Wang et al [80]	0.65 (0.51, 0.82)	1.80	
Moss et al [69]	0.80 (0.50, 1.26)	0.76	
Sverme et al [51]	0.90 (0.20, 2.02)	3.11	
DRT [35]	0.91 (0.79, 1.14)	2.61	
NHI-AARP day and health study [33]	0.93 (0.93, 1.93)	0.04	
Diabetes UK cohort study [47]	0.98 (0.80, 2.03)	0.34	
Brun et al [67]	0.98 (0.73, 1.35)	2.53	
Hse, Shng [51]	0.99 (0.32, 1.00)	0.28	
Berger et al [24]	1.02 (0.79, 1.35)	0.03	
CLUE II [29]	1.04 (0.72, 1.05)	0.12	
CPS II [60]	1.07 (0.80, 1.34)	0.00	
Venet diabetes study [61]	1.07 (0.81, 1.39)	0.03	
NHI-AARP day and health study [33]	1.07 (0.87, 1.34)	0.00	
Subtotal (I² = 0.0%, p = 0.448)		1.11 (1.10, 1.19)	0.89
Overall (I² = 94.7%, p < 0.001)		1.19 (1.12, 1.19)	2.96

Overall (I² = 94.7%, p < 0.001)
diabetes and 1.06 (1.03, 1.09, p < 0.001) for type 2 diabetes, without evidence of significant heterogeneity by type of diabetes (p for interaction = 0.88, Fig. 4). Exclusion of 22 studies that provided only age-adjusted results had no appreciable effect on the pooled RR estimates (multiple-adjusted pooled RR in women 1.25 [1.17, 1.34], p < 0.001, RR in men 1.20 [1.11, 1.29], p < 0.001, RRR 1.06 [1.03, 1.10], p < 0.001, I² = 48.9%) (ESM Figs 2 and 3).

The pooled RRR did not vary substantially by study region (p = 0.45), year of baseline study (p = 0.54 for categorical analysis, p = 0.18 for continuous analysis), ascertainment of diabetes (p = 0.72), level of adjustment (p = 0.70), quality of study (p = 0.09 for categorical analysis) or absolute risk difference between men and women (p = 0.82 for categorical analysis, p = 0.99 for continuous analysis), with the exception of continuous analysis for quality of study, p = 0.01) (Fig. 4 and ESM Fig. 4).

Secondary analyses of incidence (fatal or not) and mortality alone for all-site cancer are described in the ESM. The pooled women-to-men RRR for incidence was 1.10 (1.07, 1.13, p < 0.001) (ESM Fig. 5) and for mortality was 1.03 (0.99, 1.06, p = 0.16) (ESM Fig. 6).

In sensitivity analysis using only those studies which provided the RRs for both incidence and mortality, the pooled maximum-available-adjusted RRR was 1.12 (1.06, 1.17, p < 0.001) for all-site cancer incidence, and 1.10 (1.00, 1.21, p = 0.04) for all-site cancer mortality (ESM Fig. 7).

Data on site-specific cancer were available for 50 sites (50 sites for incidence and 29 sites for mortality) (https://www.georgeinstitute.org/sites/default/files/esm-table.pdf). Diabetes was associated with an increased risk of cancer in 43 sites in women and 42 sites in men, with a statistically significant increase (p < 0.01) in risk for those with diabetes in 20 sites in women and 18 sites in men (ESM Fig. 8). The pooled maximum-available-adjusted RRR was statistically significantly higher in women than men for kidney (1.11 [99% CI 1.04, 1.18], p < 0.001), oral (1.13 [1.00, 1.28], p = 0.009), stomach cancer (1.14 [1.07, 1.22], p < 0.001) and leukaemia (1.15 [1.02, 1.28], p = 0.002), whereas it was statistically significantly lower for liver cancer (0.88 [0.79, 0.99], p = 0.005).
Discussion

This systematic review, with meta-analysis, of 121 cohorts including more than 19 million individuals and over one million all-site cancer events, demonstrated that diabetes was associated with a 6% higher excess risk of all-site cancer in women than men. Diabetes was associated with several site-specific cancers and conferred a significantly greater excess risk in women than men for oral, stomach and kidney cancer and for leukaemia, but a lower excess risk for liver cancer. The findings were broadly consistent for incident and fatal cancers and across a wide range of prespecified subgroups.

Our findings are in agreement with a previous meta-analysis, which found that the risk of all-site cancer incidence and mortality was significantly increased in both sexes [4]. However, this previous meta-analysis was about a tenth of the size of the current study, and included single-sex studies, and therefore was not able to reliably quantify sex differences as they could have been explained by differences in methods, confounders adjusted for, and the background risks between studies of women and men alone.

As we found some evidence to suggest that the women-to-men RRRs tended to be smaller in studies of lower quality (Fig. 4 and ESM Fig. 4), our results may underestimate any true sex difference. A significant degree of heterogeneity was also observed between studies conducted in and outside Asia with regards to all-site cancer mortality (ESM Fig. 19). However, we did not find heterogeneity between regions for our primary outcome, nor for the other secondary outcomes (all-site cancer incidence), and thus we speculate that this may be a chance finding consequent to the high number of statistical tests conducted.

Although we found a slightly higher women-to-men RRR for cancer incidence than cancer mortality, the finding may be explained by chance differences between the included studies, as almost identical pooled RRR estimates were obtained in the sensitivity analysis restricted to five studies which provided the sex-specific RRs for both incidence and mortality from the same study.

With regard to cancer at specific sites, previous meta-analyses have yielded inconsistent results of increased (stomach [5], lung [6], kidney [7]), similar (oesophagus [8], colorectum [9], pancreas [10], bladder [11], thyroid [12]) or decreased (liver [13]) excess risk of cancer associated with diabetes in women compared with men. However, unlike our methods, these analyses included single-sex studies as well as studies among both women and men.

There are several possible explanations for the excess risk of cancer conferred by diabetes in women than men. One possible mechanism is poor glycaemic control in women with diabetes compared with men with diabetes [128, 129]. Hyperglycaemia may have carcinogenic effects by causing DNA damage [130], which could result from increased oxidative stress due to hyperglycaemia [130] or from hyperglycaemia itself [131]. Historically, women were likely to be undertreated or receive less intensive care compared with men [128, 132]. Further, a recent study showed that adherence to glucose-lowering medication was lower in women than men [133]. As such, the carcinogenic effects of hyperglycaemia may be enhanced in women and subsequently lead to an increased cancer risk compared with men. Alternatively, cumulative exposure to insulin resistance and subsequent hyperinsulinaemia may be longer in women compared with men. The average duration of impaired glucose tolerance or impaired fasting glucose has been found to be more than 2 years longer in women than men [134], suggesting that women may have more exposure to, often untreated, hyperinsulinaemia in the prediabetic state. Hyperinsulinaemia promotes cancer cell proliferation by stimulating the insulin receptor directly and insulin-like growth factor-I indirectly [135]. Another factor that may, to some extent, explain the smaller RR for incidence of all-site cancer in men compared with women is the apparent protective effect of diabetes on prostate cancer in
We quantified sex differences based on RRs rather than risk differences. This might introduce a statistical artefact, in which the generally higher absolute risk for cancer in men, and the same risk difference subsequent to diabetes in each sex, would translate to a greater relative risk in women than men. However, this would require that risks of cancers associated with diabetes are additive rather than multiplicative, which is not generally considered to be the case in epidemiology. Indeed, RRs are much more commonly reported than risk differences in both epidemiological studies and clinical trials. Also, unlike risk differences, RRs are typically fairly stable across populations with different background risks, which make them suitable for summarisation of effects in meta-analyses. Furthermore, our previous meta-analyses on risk factors for cardiovascular diseases demonstrated that detection of a female disadvantage in RRs is not inevitable when men have higher absolute risk [141, 142]. We thus believe that the use of RRs in the present analyses is both practical and justifiable.

The strengths of this meta-analysis are its size and the inclusion of studies on the sex-specific effects of diabetes on all-
site cancer and 50 site-specific cancers, which enabled us to conduct the most comprehensive analyses to date on the sex-specific effects of diabetes on cancer risk. To limit the risk of bias, we only included cohort studies that were conducted in men and women and had adjusted for at least age. Limitations of this study are inherent to the use of published data and the heterogeneity between studies in ascertaining of diabetes, study design and duration, endpoint definition and degree of adjustment for confounders. Nevertheless, a range of subgroup analysis provided broadly consistent results. However, as we compared women and men from within the same study, any effect of differences in methods between studies is likely to have affected women and men similarly. We therefore assume that the sex comparisons reported in this analysis are still valid. Second, the lack of data on duration of diabetes and the degree of glycaemic control precluded more detailed analyses on the effect of diabetes on the risk of cancer. Third, as this meta-analysis largely used published data, endpoint definition varied across the studies. Fourth, in analysis of all-site cancer, the women-to-men RRRs depend not only on the strengths of the RRRs of site-specific cancers (as illustrated by Fig. 5), but also on the relative incidence of site-specific cancers, which varies considerably between populations. This is likely to be a key factor in the high between-study heterogeneity we show in Fig. 3. Finally, studies generally did not adjust for obstetric and gynaecological history and unmeasured confounding is likely in the current estimates. However, confounding is likely to have been non-differentially distributed between women and men from the same study and we therefore assume that it had only a negligible effect on the reported associations.

In conclusion, diabetes is a risk factor for all-site cancer in both sexes, with a stronger effect in women than men. Sex differences varied across the location of the cancer, heightening the importance of a sex-specific approach to quantification of the role of diabetes in cancer research, prevention and treatment. Further studies are needed to clarify the mechanisms underlying the sex differences in the diabetes–cancer association.

Data availability The datasets generated during and/or analysed in the current study are available from the corresponding author on reasonable request.

Funding This study received no external funding. TO is supported by the John Chalmers Clinical Research Fellowship of the George Institute. SAEP is supported by a UK Medical Research Council Skills Development Fellowship (MR/P014550/1). MW is a National Health and Medical Research Council of Australia Principal Research Fellow.

Duality of interest MW is a consultant to Amgen. Both other authors declare that there is no duality of interest associated with their contribution to this manuscript.

Contribution statement TO searched the scientific literature, did the statistical analyses, participated in data interpretation and drafted the report. SAEP contributed data, did the statistical analyses, participated in data interpretation and made revisions to the draft report. MW conceived the study, contributed data, oversaw the data analyses, participated in data interpretation and made revisions to the draft report. All authors gave final approval of the version to be published and are responsible for the integrity of the work as a whole. TO is the guarantor of this work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. GBD 2015 Mortality and Causes of Death Collaborators (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1459–1544
2. Fitzmaurice C, Allen C, Barber RM et al (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 3:524–548
3. International Diabetes Federation (2015) IDF Diabetes Atlas, 7th edn. IDF, Brussels. Available from https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/13-diabetes-atlas-seventhedition.html. Accessed 12 May 2018
4. Noto H, Tsujimoto T, Sasazuki T, Noda M (2011) Significantly increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis. Endocr Pract 17:616–628
5. Ge Z, Ben Q, Qian J, Wang Y, Li Y (2011) Diabetes mellitus and risk of gastric cancer: a systematic review and meta-analysis of observational studies. Eur J Gastroenterol Hepatol 23:1127–1135
6. Lee JY, Jeon I, Lee JM, Yoon JM, Park SM (2013) Diabetes mellitus as an independent risk factor for lung cancer: a meta-analysis of observational studies. Eur J Cancer 49:2411–2423
7. Bao C, Yang X, Xu W et al (2013) Diabetes mellitus and incidence and mortality of kidney cancer: a meta-analysis. J Diabetes Complicat 27:357–364
8. Huang W, Ren H, Ben Q, Cai Q, Zhu W, Li Z (2012) Risk of esophageal cancer in diabetes mellitus: a meta-analysis of observational studies. Cancer Causes Control 23:263–272
9. Kramer HU, Schottker B, Raun E, Brenner H (2012) Type 2 diabetes mellitus and colorectal cancer: a meta-analysis on sex-specific differences. Eur J Cancer 48:1269–1282
10. Ben Q, Xu M, Ning X et al (2011) Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies. Eur J Cancer 47:1928–1937
11. Zhu Z, Wang X, Shen Z, Lu Y, Zhong S, Xu C (2013) Risk of bladder cancer in patients with diabetes mellitus: an updated meta-analysis of 36 observational studies. BMC Cancer 13:310
12. Schmid D, Behrens G, Jochem C, Keimling M, Leitzmann M (2013) Physical activity, diabetes, and risk of thyroid cancer: a systematic review and meta-analysis. Eur J Epidemiol 28:945–958
13. Wang Y, Wang B, Yan S et al (2016) Type 2 diabetes and gender differences in liver cancer by considering different confounding factors: a meta-analysis of cohort studies. Ann Epidemiol 26:764–772
14. Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP (2015) Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350:g7607
15. Peters SA, Huxley RR, Woodward M (2014) Diabetes as a risk factor for stroke in women compared with men: a systematic
review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet 383:1973–1980
16. Peters SA, Huxley RR, Woodward M (2014) Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia 57:1542–1551
17. Chatterjee S, Peters SA, Woodward M et al (2016) Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care 39:300–307
18. Lam EK, Batty GD, Huxley RR et al (2011) Associations of diabetes mellitus with specific-site cancer mortality in the Asia-Pacific region. Ann Oncol 22:730–738
19. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2553
20. Wells G, Shea B, O’Connell D et al. (2013) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available from www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 17 Jun 2017
21. Ragozzino M, Melton III LJ, Chu CP, Palumbo PJ (1982) Subsequent cancer risk in the incidence cohort of Rochester, Minnesota, residents with diabetes mellitus. J Chronic Dis 35:13–19
22. Sasazuki S, Charvat H, Hara A et al (2013) Diabetes mellitus and cancer risk: pooled analysis of eight cohort studies in Japan. Cancer Sci 104:1499–1507
23. Gini A, Bidoli E, Zanier L et al (2016) Cancer among patients with type 2 diabetes mellitus: a population-based study in northern Italy. Cancer Epidemiol 41:80–87
24. Berger SM, Gislason G, Moore LL et al (2016) Associations between metabolic disorders and risk of cancer in Danish men and women—a nationwide cohort study. BMC Cancer 16:133
25. Carstensen B, Read SH, Friis S et al (2016) Cancer incidence in persons with type 1 diabetes: a five-country study of 9,000 cancers in type 1 diabetic individuals. Diabetologia 59:980–988
26. Hense HW, Kajuter H, Wellmann J, Batzler WU (2011) Cancer incidence in type 2 diabetes patients—first results from a feasibility study of the D2C cohort. Diabetol Metab Syndr 3:15
27. Rapp K, Schroeder J, Klenk J et al (2006) Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria. Diabetologia 49:945–952
28. See SH, Ohrr H, Sull JW, Yun JE, Ji M, Samet JM (2005) Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293:194–202
29. Wang M, Hu RY, Wu HB et al (2015) Cancer risk among patients with type 2 diabetes mellitus: a population-based prospective study in China. Sci Rep 5:11503
30. Hsu PC, Lin WH, Kuo TH, Lee HM, Kuo C, Li CY (2015) A population-based cohort study of all-cause and site-specific cancer incidence among patients with type 1 diabetes mellitus in Taiwan. J Epidemiol 25:567–573
31. Adami HO, McLaughlin J, Ekblom A et al (1991) Cancer risk in patients with diabetes mellitus. Cancer Causes Control 2:307–314
32. Dankner R, Boffetta P, Balicer RD et al (2016) Time-dependent risk of cancer after a diabetes diagnosis in a cohort of 2.3 million adults. Am J Epidemiol 183:1099–1106
33. Lai GY, Park Y, Hartge P, Hollanden AR, Freedman ND (2013) The association between self-reported diabetes and cancer incidence in the NIH-AARP Diet and Health Study. J Clin Endocrinol Metab 98:E497–E502
34. Xu HL, Fang H, Xu WH et al (2015) Cancer incidence in patients with type 2 diabetes mellitus: a population-based cohort study in Shanghai. BMC Cancer 15:852
35. Oberaigner W, Ebenbichler C, Oberaigner K, Juchum M, Schonherr HR, Lechleiter M (2014) Increased cancer incidence risk in type 2 diabetes mellitus: results from a cohort study in Tyrol/Austria. BMC Public Health 14:1058
36. Harding JL, Shaw JE, Peeters A, Cartensen B, Magliano DJ (2015) Cancer risk among people with type 1 and type 2 diabetes: disentangling true associations, detection bias, and reverse causation. Diabetes Care 38:264–270
37. Walker JJ, Brewster DH, Colhoun HM et al (2013) Type 2 diabetes, socioeconomic status and risk of cancer in Scotland 2001–2007. Diabetologia 56:1712–1715
38. Chodick G, Heymann AD, Rosenmann L et al (2010) Diabetes and risk of incident cancer: a large population-based cohort study in Israel. Cancer Causes Control 21:879–887
39. Yeh HC, Plataz EA, Wang NY, Visvanathan K, Helzlsouer KJ, Brancati FL (2012) A prospective study of the associations between treated diabetes and cancer outcomes. Diabetes Care 35:113–118
40. Zhang PH, Chen ZW, Lv D et al (2012) Increased risk of cancer in patients with type 2 diabetes mellitus: a retrospective cohort study in China. BMC Public Health 12:567
41. Stattin P, Bjor O, Ferrari P et al (2007) Prospective study of hyperglycemia and cancer risk. Diabetes Care 30:561–567
42. Joshi CE, Pritz N, Zhang J (2012) Glycated hemoglobin and cancer incidence and mortality in the Atherosclerosis in Communities (ARIC) Study, 1990–2006. Int J Cancer 131:1667–1677
43. Wideroff L, Gridley G, Mellemkjaer L et al (1997) Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark. J Natl Cancer Inst 89:1360–1365
44. Barcet MP, Odegaard AO, Pankow JS et al (2014) Glycated hemoglobin and all-cause and cause-specific mortality in Singaporean Chinese without diagnosed diabetes: the Singapore Chinese Health Study. Diabetes Care 37:3180–3187
45. Guzder RN, Gatling W, Muller MA, Byrne CD (2007) Early mortality from the time of diagnosis of type 2 diabetes: a 5-year prospective cohort study with a local age- and sex-matched comparison cohort. Diabet Med 24:1164–1167
46. Morimoto A, Onda Y, Nishimura R, Sano H, Utsunomiya K, Tajima N (2013) Cause-specific mortality trends in a nationwide population-based cohort of childhood-onset type 1 diabetes in Japan during 35 years of follow-up: the DERI Mortality Study. Diabetologia 56:2171–2175
47. Swerdlow AJ, Laing SP, Dos Santos Silva I et al (2004) Mortality of South Asian patients with insulin-treated diabetes mellitus in the United Kingdom: a cohort study. Diabet Med 21:845–851
48. Kato M, Noda M, Mizoue T et al (2015) Diagnosed diabetes and premature death among middle-aged Japanese: results from a large-scale population-based cohort study in Japan (JPHC study). BMJ Open 5:e007736
49. Baena-Diez JM, Penafiel J, Subirana I et al (2016) Risk of cause-specific death in individuals with diabetes: a competing risks analysis. Diabetes Care 39:1987–1995
50. Kang YM, Kim YJ, Park JY, Lee WJ, Jung CH (2016) Mortality and causes of death in a national sample of type 2 diabetic patients in Korea from 2002 to 2013. Cardiovasc Diabetol 15:131
51. Zhou XH, Qiao Q, Zethelius B et al (2010) Diabetes, prediabetes and cancer mortality. Diabetologia 53:1867–1876
52. Tseng CH (2004) Mortality and causes of death in a national sample of diabetic patients in Taiwan. Diabetes Care 27:1605–1609
53. Gnani R, Petrelli A, Demaria M, Spada T, Carta Q, Costa G (2004) Mortality and educational level among diabetic and non-diabetic population in the Turin Longitudinal Study: a 9-year follow-up. Int J Epidemiol 33:864–871
54. Hirakawa Y, Ninomiya T, Mukai N et al (2012) Association between glucose tolerance level and cancer death in a general Japanese population: the Hisayama Study. Am J Epidemiol 176: 856–864
55. Forssás E, Sund R, Mandereau-Loury L et al (2014) Diabetes and cancer mortality: a multifaceted association. Diabetes Res Clin Pract 106:e68–e89
56. Gordon-D’Sa Qu VL, Shelton N, Mindell J (2014) Diabetes mellitus and mortality from all-causes, cancer, cardiovascular and respiratory disease: evidence from the Health Survey for England and Scottish Health Survey cohorts. J Diabetes Complicat 28:791–797
57. Shen C, Schooling CM, Chan WM, Lee SY, Leung GM, Lam TH (2014) Self-reported diabetes and mortality in a prospective Chinese elderly cohort study in Hong Kong. Prev Med 64:20–26
58. Weiderpass E, Gridley G, Nyren O, Pennello G, Landstrom AS, Ekbom A (2001) Cause-specific mortality in a cohort of patients with diabetes mellitus: a population-based study in Sweden. J Clin Epidemiol 54:802–809
59. Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM (2012) Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults. Diabetes Care 35:1835–1844
60. Verlato G, Zoppini G, Bonora E, Muggeo M (2003) Mortality from site-specific malignancies in type 2 diabetic patients from Verona. Diabetes Care 26:1047–1051
61. Sievers ML, Nelson RG, Knowler WC, Bennett PH (1992) Impact of NIDDM on mortality and causes of death in Pima Indians. Diabetes Care 15:1541–1549
62. Romon I, Rey G, Manderba-Bravo L et al (2014) The excess mortality related to cardiovascular diseases and cancer among adults pharmacologically treated for diabetes—the 2001-2006 ENTRED cohort. Diabet Med 31:946–953
63. Secrest AM, Becker DJ, Kelsey SF, Laporte RE, Orchard TJ (2010) Cause-specific mortality trends in a large population-based cohort with long-standing childhood-onset type 1 diabetes. Diabetes 59:3216–3222
64. Tierney EF, Geiss LS, Engelgau MM et al (2001) Population-based estimates of mortality associated with diabetes: use of a death certificate check box in North Dakota. Am J Public Health 91:84–92
65. Wong JS, Pearson DW, Murchison LE, Williams MJ, Narayan V (1991) Mortality in diabetes mellitus: experience of a geographically defined population. Diabet Med 8:135–139
66. Bruno G, Merletti F, Boffetta P et al (1999) Impact of glycemic control, hypertension and insulin treatment on general and cause-specific mortality: an Italian population-based cohort of type II (non-insulin-dependent) diabetes mellitus. Diabetologia 42:297–301
67. Shaw JE, Hodge AM, de Courten M, Chitson P, Zimmet PZ (1999) Isolated post-challenge hyperglycaemia confirmed as a risk factor for mortality. Diabetologia 42:1050–1054
68. Moss SE, Klein R, Klein BE (1991) Cause-specific mortality in a population-based study of diabetes. Am J Public Health 81:1158–1162
69. Oba S, Nagata C, Nakamura K, Takatsuka N, Shimizu H (2008) Self-reported diabetes mellitus and risk of mortality from all causes, cardiovascular disease, and cancer in Takayama: a population-based prospective cohort study in Japan. J Epidemiol 18:197–203
70. Levine W, Dyer AR, Shkele RB, Schoenberger JA, Stamler J (1990) Post-load plasma glucose and cancer mortality in middle-aged men and women. 12-year follow-up findings of the Chicago Heart Association Detection Project in Industry. Am J Epidemiol 131:254–262
71. Idlibi NM, Barchana M, Milman U, Carel RS (2013) Incidence of cancer among diabetic and non-diabetic adult Israeli Arabs. Isr Med Assoc J 15:342–347
72. Hippisley-Cox J, Coupland C (2015) Development and validation of risk prediction algorithms to estimate future risk of common cancers in men and women: prospective cohort study. BMJ Open 5:e007825
73. Lin CC, Chiang JH, Li CI et al (2014) Cancer risks among patients with type 2 diabetes: a 10-year follow-up study of a nationwide population-based cohort in Taiwan. BMC Cancer 14:381
74. Xu HL, Tan YT, Epplin M et al (2015) Population-based cohort studies of type 2 diabetes and stomach cancer risk in Chinese men and women. Cancer Sci 106:294–298
75. Khaw KT, Wareham N, Luben R, Welch A, Day N (2004) Preliminary communication: glycated hemoglobin, diabetes, and incident colorectal cancer in men and women: a prospective analysis from the European prospective investigation into cancer-Norfolk study. Cancer Epidemiol Biomark Prev 13:915–919
76. Limburg PJ, Vierkant RA, Frederiksen ZS et al (2006) Clinically confirmed type 2 diabetes mellitus and colorectal cancer risk: a population-based, retrospective cohort study. Am J Gastroenterol 101:1872–1879
77. Schoen RE, Tangen CM, Kuller LH et al (1999) Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst 91:1147–1154
78. Campbell PT, Deka A, Jacobs EJ et al (2010) Prospective study reveals associations between colorectal cancer and type 2 diabetes mellitus or insulin use in men. Gastroenterology 139:1138–1146
79. Shu X, Ji J, Li X, Sundquist K, Hemminki K (2010) Cancer risk among patients hospitalized for type 1 diabetes mellitus: a population-based cohort study in Sweden. Diabet Med 27:791–797
80. Jarvandi S, Davidson NO, Schootman M (2013) Increased risk of colorectal cancer-Norfolk study. Cancer Epidemiol Biomark Prev 13:915–919
90. Koskinen SV, Reunanen AR, Martelin TP, Valkonen T (1998) Mortality in a large population-based cohort of patients with drug-treated diabetes mellitus. Am J Public Health 88:765–770

91. Tan C, Mori M, Adachi Y et al (2016) Diabetes mellitus and risk of colorectal Cancer mortality in Japan: the Japan Collaborative Cohort Study. Asian Pac J Cancer Prev 17:4681–4688

92. Ren X, Zhang X, Zhang X et al (2009) Type 2 diabetes mellitus associated with increased risk for colorectal cancer: evidence from an international ecological study and population-based risk analysis in China. Public Health 123:540–544

93. Chen HF, Chen P, Su YH, Su HF, Li CY (2010) Risk of malignant neoplasms of the liver in Chinese men and women. Ann Oncol 24:1679–1685

94. Weiderpass E, Gridley G, Nyren O, Ekbom A, Persson I, Adami HO (1997) Diabetes mellitus and risk of large bowel cancer. J Natl Cancer Inst 89:660–661

95. Onitilo AA, Berg RL, Engel JM et al (2013) Increased risk of diabetes mellitus and kidney cancer risk: the results of Japan Collaborative Cohort Study for Evaluation of Cancer Risk (JACC Study). Int J Urol 19:369–375

96. Fujino Y, Mizoue T, Tokui N, Yoshimura T (2001) Prospective evaluation of type 2 diabetes mellitus on the risk of primary liver cancer in Chinese men and women. Ann Oncol 12:1679–1685

97. Yang WS, Shu XO, Gao J et al (2012) Prospective evaluation of type 2 diabetes mellitus on the risk of primary liver cancer in Chinese women. Br J Cancer 107:2594–2599

98. Koh WP, Wang R, Jin A, Yu MC, Yuan JM (2013) Diabetes mellitus and risk of hepatocellular carcinoma: findings from the Singapore Chinese Health Study. Br J Cancer 108:756–760

99. Wild SH, Morling JR, McA llister DA et al (2016) Body mass index, waist circumference, diabetes, and risk of Liver Cancer for U.S. adults. Cancer Res 76:6083–6083

100. Goossens ME, Zeegers MP, Buzelli MT, De Bruin ML, Buntinx F, de Vries F (2015) Risk of pancreatic cancer in patients with diabetes mellitus: a retrospective cohort study. BMJ Open 5:e007470

101. Newton CC, Gapstur SM, Campbell PT, Jacobs EJ (2013) Type 2 diabetes mellitus, insulin-use and risk of bladder cancer in a large cohort study. Int J Cancer 132:2186–2191

102. Woolcott CG, Maskarinec G, Haiman CA, Henderson BE, Kolonel LN (2011) Diabetes and urothelial cancer risk: the Multiethnic Cohort study. Cancer Epidemiol 35:551–555

103. Inoue M, Iwasaki M, Otani T, Sasazuki S, Noda M, Tsugane S (2006) Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch Intern Med 166:1871–1877

104. Khan M, Mori M, Fukuji Y et al (2006) Site-specific cancer risk due to diabetes mellitus history: evidence from the Japan Collaborative Cohort (JACC) Study. Asian Pac J Cancer Prev 7:253–259

105. Khan AE, Gallo V, Linseisen J et al (2008) Diabetes and the risk of non-Hodgkin’s lymphoma and multiple myeloma in the European Prospective Investigation into Cancer and Nutrition. Haematologica 93:842–850

106. Yang WS, Li HL, Xu HL et al (2016) Type 2 diabetes and the risk of non-Hodgkin’s lymphoma: a report from two population-based cohort studies in China. Eur J Cancer Prev 25:149–154

107. Erber E, Lim U, Maskarinec G, Kolonel LN (2009) Common immune-related risk factors and incident non-Hodgkin lymphoma: the Multiethnic Cohort. Int J Cancer 125:1440–1445

108. Weiderpass E, Gridley G, Ekbom A, Nyren O, Hjalgrim H, Adami HO (1997) Medical history risk factors for non-Hodgkin’s lymphoma in older women. J Natl Cancer Inst 89:816–817

109. Weiderpass E, Gridley G, Persson I, Nyren O, Ekbom A, Adami HO (1997) Risk of endometrial and breast cancer in patients with diabetes mellitus. Int J Cancer 71:360–363

110. Kaurczyk-Willer A, Kamyar MR, Gerhat D et al (2010) Sex-specific differences in metabolic control, cardiovascular risk, and interventions in patients with type 2 diabetes mellitus. J Am Coll Cardiol 57:571–583

111. Pettiti DB, Klingensmith GJ, Bell RA et al (2009) Glycemic control in youth with diabetes: the SEARCH for Diabetes in Youth Study. J Pediatr 155:668–672, e661–663
130. Abe R, Yamagishi S (2008) AGE-RAGE system and carcinogenesis. Curr Pharm Des 14:940–945

131. Lorenzi M, Montisano DF, Toledo S, Barrieux A (1986) High glucose induces DNA damage in cultured human endothelial cells. J Clin Invest 77:322–325

132. Kramer HU, Raum E, Ruter G et al (2012) Gender disparities in diabetes and coronary heart disease medication among patients with type 2 diabetes: results from the DIANA study. Cardiovasc Diabetol 11:88

133. Kirkman MS, Rowan-Martin MT, Levin R et al (2015) Determinants of adherence to diabetes medications: findings from a large pharmacy claims database. Diabetes Care 38:604–609

134. Bertram MY, Vos T (2010) Quantifying the duration of pre-diabetes. Aust N Z J Public Health 34:311–314

135. Giovannucci E, Harlan DM, Archer MC et al (2010) Diabetes and cancer: a consensus report. Diabetes Care 33:1674–1685

136. Bansal D, Bhansali A, Kapil G, Undela K, Tiwari P (2013) Type 2 diabetes and risk of prostate cancer: a meta-analysis of observational studies. Prostate Cancer Prostatic Dis 16:151–158

137. Uemura N, Okamoto S, Yamamoto S et al (2001) Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345:784–789

138. Tsukuma H, Hi yama T, Tanaka S et al (1993) Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med 328:1797–1801

139. Szmuilowicz ED, Stuenkel CA, Seely EW (2009) Influence of menopause on diabetes and diabetes risk. Nat Rev Endocrinol 5:553–558

140. Shapiro S (2007) Recent epidemiological evidence relevant to the clinical management of the menopause. Climacteric 10(Suppl 2):2–15

141. Peters SA, Huxley RR, Woodward M (2013) Comparison of the sex-specific associations between systolic blood pressure and the risk of cardiovascular disease: a systematic review and meta-analysis of 124 cohort studies, including 1.2 million individuals. Stroke 44:2394–2401

142. Mongraw-Chaffin ML, Peters SA, Huxley RR, Woodward M (2015) The sex-specific association between BMI and coronary heart disease: a systematic review and meta-analysis of 95 cohorts with 1.2 million participants. Lancet Diabetes Endocrinol 3:437–449