NODAL CURVES AND POSTULATION OF GENERIC FAT POINTS ON SURFACES

EDOARDO BALLICO
LUCA CHIANTINI

ABSTRACT. Let X be a smooth projective surface. Here we study the postulation of a general union Z of fat points of X, when most of the connected components of Z have multiplicity 2. This problem is related to the existence of "good" families of curves on X, with prescribed singularities, most of them being nodes, and to the cohomology of suitable line bundles on blowing ups of X. More precise statements are obtained in the case $X = \mathbb{P}^2$.

INTRODUCTION

Let X be an algebraic surface, defined over an algebraically closed field of characteristic 0; let $m > 0$ be an integer and let $P \in X$. The $(m-1)$-th infinitesimal neighbourhood of P in X will be denoted by mP, hence mP has $(I_{P,X})^m$ as ideal sheaf. Often mP is called a fat point; m is the multiplicity of mP and $h^0(mP, O_{mP}) = m(m+1)/2$ is called its degree or its length. If s, m_1, \ldots, m_s are positive integers and P_1, \ldots, P_s are distinct points of X, the 0-dimensional subscheme $W = \bigcup_{1 \leq i \leq s} m_i P_i$ of X is called a multi-jet of X, with multiplicity $\max \{m_i\}$, type $(s; m_1, \ldots, m_s)$ and length $h^0(W, O_W)$. For a fixed type $(s; m_1, \ldots, m_s)$, the set of all multi-jets of type $(s; m_1, \ldots, m_s)$ on X, is an integral variety, of dimension $2s$; hence we may speak of the general multi-jet of type $(s; m_1, \ldots, m_s)$.

In this paper, we study the postulation of a 0-dimensional general subscheme Z of a smooth complex projective surface, under the assumption that "many" of the connected components of Z are fat points of multiplicity 2. This study is a key tool for the understanding of families of curves with prescribed singularities, many of them being nodes, on a smooth surface (see e.g. [2] and [3]). This study gives also cohomological results for suitable line bundles on certain blowing ups of X ([4]). Our result 0.1 below is related with the study of such families, in the blowing up of \mathbb{P}^2 at r general points.

We state all our results in the introduction, the proofs will be given in section 1. They use a very powerful lemma ([1], Lemma 2.3) which is a key improvement of the so-called Horace method, used in [4] for this type of problems.

\textbf{Theorem 0.1.} Fix positive integers t, r, d_1, \ldots, d_r and e; set $d_j = 2$ for $r < j \leq r+e$. Set $m = \max \{d_i\}_{1 \leq i \leq r+e}$. Assume $(t+2)(t+1)/2 \geq 1 + \sum_{1 \leq j \leq r+e} d_j(d_j+1)/2$.
and \(e \geq (m-1)(t-1)/2\). Then for a general multi-jet \(Z := \bigcup_{1 \leq j \leq r+e} d_j P_j\) of type \((r + e; d_1, \ldots, d_{r+e})\) in \(P^2\), we have \(h^1(P^2, I_Z(t)) = 0\).

Here is a generalization of theorem 0.1 to the case of an arbitrary smooth projective surface.

Theorem 0.2. Let \(X\) be a smooth projective surface. Fix integers \(t > 0, r \geq 0, d_j \geq 0 \ 1 \leq j \leq r\) and \(e\); set \(d_j = 2\) for \(r < j \leq r + e\) and \(m := \max\{d_i\}_{1 \leq i \leq r+e}\); assume \(e \geq (m-1)(t-1)/2\). Fix \(H \in \text{Pic}(X)\), with \(H\) very ample and spanned. Assume \(h^1(X, H^{\otimes j}) = 0\) for all \(j > 0\) and:

1. \(2(\sum_{1 \leq i \leq r} \max\{d_i - t + j, 0\}) + 2m \leq h^0(X, H^{\otimes j}) - h^0(X, H^{\otimes j-1})\) for all \(2 \leq j \leq t\).
2. \(h^0(X, H^{\otimes j}) \geq h^0(X, H) + \sum_{1 \leq j \leq r+e} d_j(d_j + 1)/2\).

Then for a general multi-jet \(Z := \bigcup_{1 \leq j \leq r+e} d_j P_j\) of type \((r + e; d_1, \ldots, d_{r+e})\) in \(X\), we have \(h^1(X, I_Z(t)) = 0\).

Any reader of [3] will appreciate the extensions of theorem 0.1 and theorem 0.2 to the case in which we take \(r\) arbitrary 0-dimensional connected subschemes, instead of \(r\) multiple points (see e.g. the definition of (generalized) singularity scheme, introduced in [3], and its very effective use made there). We will do this now.

Let \(Z\) be a 0-dimensional connected subscheme of the germ \(A^2_0\) of the affine plane at \(O\) and let \(W\) be a 0-dimensional connected subscheme of a smooth projective surface \(X\); set \(P := W_{\text{red}}\). We will say that \(W\) is equivalent to \(Z\), or that \(W\) has type \(Z\), if there is a formal (or étale, or analytic if the base field is \(C\)) isomorphism of the germ \(A^2_0\) on the germ of \(X\) at \(P\), sending \(Z\) onto \(W\). The multiplicity \(\text{mult}_P(W)\) of \(W\) is the maximal integer \(m\) such that \(Z \subset mP\). Note that \(\text{mult}_P(W) = \text{mult}_O(Z)\) if \(Z\) and \(W\) are equivalent.

With these notations, the proofs of Theorems 0.1 and 0.2 give without any modification the following result:

Theorem 0.3. Fix positive integers \(t, r, e\) and the type \(Z_1, \ldots, Z_r\) of \(r\) 0-dimensional subschemes of the germ \(A^2_0\). Set \(m' := \max\{\text{mult}_0(Z_i)\}_{1 \leq i \leq r}\) and \(m := \max\{m', 2\}\). Assume \(m' + 1 \geq \sum_{1 \leq j \leq r} \text{length}(Z_i)\) and \(e \geq (m-1)(t-1)/2\).

Then for a general reunion \(Z \subset P^2\) of \(e\) double points and \(r\) subschemes \(W_1, \ldots, W_r\), with \(W_i\) equivalent to \(Z_i\) for every \(i\), we have \(h^1(P^2, I_Z(t)) = 0\).

Theorem 0.4. Let \(X\) be a smooth projective surface. Fix positive integers \(t, r, e\) and the type \(Z_1, \ldots, Z_r\) of \(r\) 0-dimensional subschemes of the germ \(A^2_0\). Set \(m' := \max\{\text{mult}_0(Z_i)\}_{1 \leq i \leq r}\) and \(m := \max\{m', 2\}\). Assume \(e \geq (m-1)(t-1)/2\). Fix \(H \in \text{Pic}(X)\) very ample and spanned and assume \(h^1(X, H^{\otimes j}) = 0\) for all \(j > 0\) and:

1. \(2(\sum_{1 \leq i \leq r} \max\{d_i - t + j, 0\}) + 2m \leq h^0(X, H^{\otimes j}) - h^0(X, H^{\otimes j-1})\) for all \(2 \leq j \leq t\).
2. \(h^0(X, H^{\otimes j}) \geq h^0(X, H) + \sum_{1 \leq j \leq r+e} d_j(d_j + 1)/2\).

Then for a general reunion \(Z \subset X\) of \(e\) double points and \(r\) subschemes \(W_1, \ldots, W_r\), with \(W_i\) equivalent to \(Z_i\) for every \(i\), we have \(h^1(P^2, I_Z(t)) = 0\).

We want to thank the referee for very useful constructive criticism on the first version of this paper. The authors were partially supported by MURST and GN-SAGA of Italy.
NODAL CURVES AND POSTULATION OF GENERIC FAT POINTS ON SURFACES 3

THE PROOFS

We will use several times the following easy form of the so-called Horace Lemma ([4]):

Lemma 1.1. Let X be a smooth projective surface, $H \in \text{Pic}(X)$ an effective divisor and Z a 0-dimensional subscheme of X. Let $W := \text{Res}_D(Z)$ be the residual scheme of Z with respect to D, i.e. let $W \subset Z$ be the subscheme of X with the conductor $(I_Z : I_D)$ as ideal sheaf. Set $L := H|_D \in \text{Pic}(X)$ and assume $H^1(X, I_W \otimes H(-D)) = H^1(D, I_{Z \cap D} \otimes L) = 0$. Then $H^1(X, I_Z \otimes H) = 0$.

Proof of Theorem 0.1. If $t \leq 2$ the result is trivial, hence we may assume $t \geq 3$. We have $m < t$ because otherwise $e \geq (t - 1)^2 / 2$ and one cannot have $(t + 1)(t + 2)/2 \geq 1 + t(t + 1)/2 + 3e$.

Fix a line $D \subset \mathbb{P}^2$. Take a general multi-jet W of type $(r; d_1, \ldots, d_r)$ with length($D \cap W$) $\leq t + 1$ and length($D \cap W$) as large as possible. Set $s := t + 1 - \text{length}(D \cap W)$ and let J be the union of W, $e - [s/2]$ general double points of D and $[s/2]$ general double points supported on D. Note that $t \leq \text{length}(D \cap J) \leq t + 1$ and that $[s/2] \leq (m - 1)/2$. Let x be the number of connected components of J, with support on D; we have $x \geq 2$ because $m < t$ and $t + 1 - \text{length}(D \cap W) < m$, by the maximality of $\text{length}(D \cap W)$. Let m' be the maximum of the multiplicities of the fat points of $J \cap (\mathbb{P}^2 - D)$ and e' be the number of double points of $J \cap (\mathbb{P}^2 - D)$; we have $e' \geq e - [s/2]$. If $m' < m$, since $s \leq t - 1$ with strict inequality when $\text{length}(D \cap J) = t$, then we have $e' \geq e - (t - 1)/2 > (t - 1)(m - 2)/2 \geq (t - 2)(m' - 1)/2$. If $m' = m$, then $s \leq (m - 1)/2$, with strict inequality if $\text{length}(D \cap J) = t$; thus $e' \geq e - (s - 1)/2 > (t - 2)(m' - 1)/2$.

First assume $\text{length}(D \cap J) = t + 1$, i.e. s even. By construction we have $h^0(D, I_{D \cap J}(t)) = h^0(D, I_{D \cap J}(t)) = 0$. Let $G := \text{Res}_D(J)$ be the residual scheme of J with respect to D. By Lemma 1.1 and semicontinuity, it is sufficient to show that $h^1(\mathbb{P}^2, I_G(t - 1)) = 0$. G contains at least $e' \geq (t - 2)(m' - 1)/2$ double points; it is not a general multi-jet, because some of the points of its support are forced to be contained in D. But $\text{length}(D \cap G) = \text{length} (J \cap D) - x = t + 1 - x \leq t - 1$ and we will be able to continue, exploiting again the same line, if we know how to handle the case in which $\text{length}(D \cap J) = t$, i.e. s is odd, for at the next step we may meet such situation.

Assume $\text{length}(D \cap J) = t$. We take a general $P \in D$ and set $E := J \cup \{P\}$. Let p be the length 2 subscheme of D with $p_{\text{red}} = \{P\}$; the scheme p is the second simple residue of P with respect to D, in the sense of [1], Definition 2.2. Note that J is a general multi-jet of type $(r + e - 1; d_1, \ldots, d_r, 2, \ldots, 2)$, containing $J \cap D$. Set $G' := \text{Res}_D(J) \cup p$; we have $h^0(D, I_{D \cap E}(t)) = h^1(D, I_{D \cap E}(t)) = 0$.

We claim that by [1], Lemma 2.3, to prove 0.1 it is sufficient to prove that $h^1(\mathbb{P}^2, I_{G'}(t - 1)) = 0$; since we will use the claim also to prove 0.2, 0.3 and 0.4, we want to give some details concerning the proof and translate the notations of [1], Lemma 2.1, in our situation. Set $\alpha := h^0(\mathbb{P}^2, I_{G'}(t - 1)) - \text{length}(G')$; the vanishing of $h^1(\mathbb{P}^2, I_{G'}(t - 1))$ is equivalent to the fact that $\alpha \geq 0$ and that for the union, A of α general points of \mathbb{P}^2, we have $h^0(\mathbb{P}^2, I_{A \cup \{A\}}(t - 1)) = 0$. In the notations of the statement of [1], Lemma 2.3, we may take $Z_0 = J \cup A$, $L = O_{\mathbb{P}^2}(t)$, $H = D$, $r = h^0(D, O_D(t)) - \text{length}(D \cap J) = 1$ (hence the integer r appearing in [1] is not our integer r) and $Q_1 = P$, i.e. Q_1 is a general point of D; hence we obtain the claim.
G' is not a multi-jet, but since we want to exploit again D for Lemma 1.1 and $G' \cap D$ is an effective divisor on D with multiplicity 2 at P, this is not a problem and we may repeat the construction. To obtain $H^1(\mathbb{P}^2, I_{G'}(t-1)) = 0$, we use in an essential way that $x \geq 2$ in the following argument: since $P \in D$ and $\text{length}(p) = \text{length}(\{P\}) + 1$, we have $\text{length}(D \cap G') = 2 + \text{length}(\text{Res}_D(J) \cap D) = 2 + \text{length}(J \cap D) - x = 2 + t - x \leq t = h^0(D, \mathcal{O}_D(t-1))$. Alternatively, we may be sure that $J \cap D$ is not connected (i.e. that $x \geq 2$) if we impose that at each step we add at least a double point; if however at the previous step we added a double point, then at this step we are not forced to add a double point, say $2Q$ (except if $s > 2$), because the residual scheme $\{Q\} = \text{Res}_D(2Q)$ of 2Q is one connected component of J and obviously not the unique one, when $t \geq 2$; this alternative proof is useful for 0.2, 0.3 and 0.4.

To prove $h^1(\mathbb{P}^2, I_{G'}(t-1)) = 0$, we continue with the same procedure, moving some points to D and taking the residue with respect to D; in the residue, the contribution of p disappears, hence we will never have more than one 0-dimensional component which is not a multiple point and this component (if any) will be a length 2 subscheme of D. Then we continue using the line D to apply Lemma 1.1, each time with respect to $\mathcal{O}_{\mathbb{P}^2}(t')$, with a lower integer t'. In this way, we finally reduce 0.1 to a maximal rank assertion for $H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1))$ and a 0-dimensional subscheme $A \subset \mathbb{P}^2$. To conclude, it is sufficient to prove that A is either empty or a reduced point. This is true because:

$$h^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(t)) \geq h^0((\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(0)) + \sum_{1 \leq j \leq r+e} d_j(d_j + 1)/2. \quad \Box$$

Proof of Theorem 0.2. Fix $D \in |H|$, with D smooth and irreducible. Since H is very ample, we may find such D passing through a general point P of X and tangent to an arbitrary tangent vector to X at P. Set $L := H|_D$. Since $h^1(X, H^{\otimes j}) = 0$ for every $j > 0$, we have $h^0(X, H^{\otimes j+1}) = h^1(X, H^{\otimes j}) + h^0(D, L^{\otimes j+1})$ for every $j > 0$.

We do not want to assume the vanishing of $H^1(X, \mathcal{O}_X)$ and this explains why, in the statement of 0.2, we are forced to add the term $h^0(X, H)$ in equation (2).

the postulation of a general multi-jet on D is as good as possible, i.e. for every integer $j > 0$ and any datum (x, m_1, \ldots, m_x), then for a general multi-jet Z on D, with datum (x, m_1, \ldots, m_x), the restriction map $H^0(D, L^{\otimes j}) \to H^0(Z, L^{\otimes j}_Z)$ has maximal rank (see [1], Proposition 7.2).

We repeat verbatim the proof of 0.1. Call $G(t-j)$ the 0-dimensional scheme that we obtain after $t - j$ steps and set $Z(j) := D \cap (\text{Res}_D(G(t-j)))$. By the weak form of one of the assumptions in the statement of 0.2 (i.e. equation (1), without the term $2m$ in the left hand side) we have $\text{length}(Z(j)) \leq h^0(D, L^{\otimes j-1})$ and hence the construction is possible, even if at one step we add a second residue, supported at a point of D. The condition on the integer $\text{length}(D \cap G')$ appearing in the proof of 0.1 is satisfied because we added the term $2m$ in the left hand side of equation (1). \(\boxed{} \)

One should compare Theorem 0.1 and Theorem 0.2 with the very general paper [1], Theorem 1.1 and Corollary 1.2. After [1], the only justification for these kind of result is given by being very explicit.
References

[1] Alexander J., Hirschowitz A., *An asymptotic vanishing theorem for generic unions of multiple points*, preprint alg-geom 9703037 (1997).

[2] Greuel G.M., Lossen C., Schustin E., *Geometry of families of nodal curves on the blown up projective plane*, Trans. Amer. Math. Soc. (to appear).

[3] Greuel G.M., Lossen C., Schustin E., *Plane curves of minimal degree with prescribed singularities*, Invent. Math. (to appear).

[4] Hirschowitz A., *Une conjecture pour la cohomologie des diviseurs sur les surfaces rationelles generiques*, J. Reine Angew. Math. 397 (1989), 208-213.

E.Ballico: Dipartimento di Matematica, Universitá di Trento 38050 POVO Trento (Italy) email: ballico@science.unitn.it

L.Chiantini: Dipartimento di Matematica, Universitá di Siena, Via del Capitano 15 53100 SIENA (Italy) email: chiantini@unisi.it