The genetic variants in calcium signaling related genes influence anti-tuberculosis drug induced liver injury

A prospective study

Mengyuan Lyu, MDa,b, Jian Zhou, MDd, Hao Chen, MDa,b, Hao Bai, MMa,b, Jiajia Song, MMa,b, Tangyuheng Liu, MMa,b, Yuhui Cheng, MBb, Binwu Ying, MDa,b,*

Abstract

Although many genetic variants related to anti-tuberculosis drug induced liver injury (ATDILI) have been identified, the prediction and personalized treatment of ATDILI have failed to achieve, indicating there remains an area for further exploration. This study aimed to explore the influence of single nucleotide polymorphisms (SNPs) in Bradykinin receptor B2 (BDKRB2), Teneurin transmembrane protein 2 (TENM2), transforming growth factor beta 2 (TGFβ2), and solute carrier family 2 member 13 (SLC2A13) on the risk of ATDILI.

The subjects comprised 746 Chinese tuberculosis (TB) patients. Custom-by-design 2x48-Plex SNPscanTM kit was employed to genotype 28 selected SNPs. The associations of SNPs with ATDILI risk and clinical phenotypes were analyzed according to the distributions of allelic and genotypic frequencies and different genetic models. The odds ratio (OR) with corresponding 95% confidence interval (CI) was calculated.

Among subjects with successfully genotyped, 107 participants suffered from ATDILI during follow-up. In BDKRB2, patients with rs7928075 G allele or rs117806152 C allele were more vulnerable to ATDILI (\(P_{\text{Bonferroni correction}}=0.02\) and 0.03, respectively). Rs79280755 increased the risk of ATDILI significantly whether in additive (OR=3.218, 95% CI: 1.686–6.139, \(P_{\text{Bonferroni correction}}=0.03\)) or dominant model (\(P_{\text{Bonferroni correction}}=0.03\)), as well as rs117806152 (Additive model: \(P_{\text{Bonferroni correction}}=0.02\), while rs2617972 A allele conferred susceptibility to ATDILI (\(P_{\text{Bonferroni correction}}=0.01\)). For TENM2, rs80003210 G allele contributed to the decreased risk of ATDILI (\(P_{\text{Bonferroni correction}}=0.02\), while rs2617972 A allele conferred susceptibility to ATDILI (\(P_{\text{Bonferroni correction}}=0.01\)). Regarding rs26179792, significant findings were also observed in both additive (OR=3.203, 95% CI: 1.487–6.896, \(P_{\text{Bonferroni correction}}=0.02\)) and dominant model (\(P_{\text{Bonferroni correction}}=0.02\)) and dominant model (\(P_{\text{Bonferroni correction}}=0.02\)). Moreover, rs79280755 and rs117806152 in BDKRB2 significantly affected some laboratory indicators. However, no meaningful SNPs were observed in TGFβ2 and SLC2A13.

Our study revealed that both BDKRB2 and TENM2 genetic polymorphisms were interrogated in relation to ATDILI susceptibility and some laboratory indicators in the Western Chinese Han population, shedding a new light on exploring novel biomarkers and targets for ATDILI.

Abbreviations: ALP = alkaline phosphatase, ALT = alanine aminotransferase, AST = aspartate aminotransferase, ATDILI = anti-tuberculosis drug induced liver injury, BDKRB2 = bradykinin receptor B2, BK = bradykinin, CHS = Southern Han Chinese, CI = confidence interval, EPTB = extra pulmonary tuberculosis, Foxa1 = formerly hepatic nuclear factor 3alpha, GGT = gamma glutamyl transpeptidase, HNF1A= hepatocyte nuclear factor 1 alpha, HNF4 = hepatocyte nuclear factor 4, HWE = Hardy–Weinberg equilibrium, LD = linkage disequilibrium, MAF = minor allele frequency, MAPK = mitogen-activated protein kinase, OR = odds ratio, PTB = pulmonary tuberculosis, PTB with EPTB = pulmonary tuberculosis combined with extra pulmonary tuberculosis, SLC2A13 = solute carrier family 2 member 13, SNPs = single nucleotide polymorphisms, TB = tuberculosis, TENM2 = teneurin transmembrane...
1. Introduction

Anti-tuberculosis (TB) drugs hold the key to thwart the rise and spread of TB. However, the adverse drug reactions (ADRs) caused by these anti-TB drugs have become new problems that cannot be ignored. Among all types of ADRs, anti-tuberculosis drug-induced liver injury (ATDILI) has a high prevalence (2–30%) and mortality (22.7%), unpredictable course and adverse impact on anti-TB treatment, thereupon is becoming a mainstream topic for researchers. ATDILI is defined as a heterogeneous set of responses triggered by anti-TB drugs, usually manifesting as a decreased liver function. A growing body of evidence implicates calcium signaling in mitochondrial dysfunction, oxidative stress, and ensuing ATDILI. In addition, an access key role of calcium signaling in some inflammatory processes also supports the involvement of this signaling pathway in the development of ATDILI. Now, risk factors related to calcium signaling have been explored extensively, aiming to identify their value of risk assessment, diagnosis and personalized treatment in ATDILI. Among these factors, genetic factors, especially single nucleotide polymorphisms (SNPs), are considered to play a crucial role due to the unpredictable and non-dose-dependent characteristics of ATDILI.

Bradykinin receptor B2 (BDKRB2) encodes a G-protein coupled receptor of bradykinin (BK). Accumulating reports have confirmed that BDKRB2 is capable of regulating calcium signaling. Through binding to BDKRB2, BK allows calcium to enter, leads to calcium-induced calcium release and evokes calcium signaling via upregulating the expression of transient receptor potential melastatin 7 (TRPM7) and Tenm2. Tenmin transmembrane protein 2 (TENM2) encodes a type 2 membrane protein, consisting of a cytosolic N-terminus, a single transmembrane region and an extracellular C-terminal domain. Existing researches imply that TENM2 is inclined to a better interaction with latrophilin-1, and this interaction elicits intracellular calcium signaling. Transforming growth factor beta 2 (TGFβ2) encodes the transforming growth factor beta family of cytokines which functions in proliferation, differentiation, adhesion, and migration in many cell types. Close relationship between TGFβ2 and calcium signaling has been recognized. TGFβ2 enables to transmit signals via calcium signaling, and thus play roles in some diseases such as cardiomyopathy in mouse models. Solute carrier family 2 member 13 (SLC2A13) is responsible for encoding GLUT13, an H+/inositol cotransporter. Ongoing evidence shows that SLC2A13 participates indirectly in calcium signaling. SLC2A13 is closely associated with the transport of inositol, while inositol is the key molecule in regulating calcium signaling. Clearly, these 4 genes, BDKRB2, TENM2, TGFβ2, and SLC2A13, are correlated with calcium signaling. Therefore, it seems that these 4 genes influence the individual susceptibility to ATDILI via calcium signaling.

Although the exploration of genetic variants related to ATDILI have never been stopped, it is far from to predict and individualize the treatment of ATDILI based on existing findings. More novel genetic variants in different genes and different populations should be identified to facilitate our understanding of ATDILI. Considering the heavy burden of ATDILI in Southwest China, we conducted this prospective study in Western Chinese Han population to investigate the relationship between ATDILI and genetic variants in BDKRB2, TENM2, TGFβ2, and SLC2A13, aiming to evaluate the potential value of these 4 genes polymorphisms in the risk assessment, pathogenesis, and personalized treatment of ATDILI.

2. Materials and methods

2.1. Study population

From December 2016 and April 2018, this prospective study consecutively recruited TB participants registering in the West China Hospital of Sichuan University. Blood and other specimens were collected from all participants for TB diagnosis and liver function examination. The clear TB evidence and normal liver function before anti-TB treatment were need for all included patients. Once participants suffered from HIV, immunodeficiency diseases or other lung or liver disorders, they would be excluded. After recruitment, all subjects would be treated with a 6-month 4-drug standard treatment (2 months of rifampicin, isoniazid, pyrazinamide, and ethambutol, followed by rifampicin and isoniazid for 4 months) and received liver function examination regularly. Patients would also be excluded if they were treated with analgesics and antipyretics including acetaminophen, hypoglycemic drugs including glitazones, anticonvulsants, and herbal medicines during the 6-month follow-up.

The diagnostic criteria of ATDILI was described by Watkins et al. Specifically, ATDILI was identified based on serum alanine aminotransferase (ALT) > 2 times upper limit of the normal (ULN) or aspartate aminotransferase (AST) > 2 times ULN combined with total bilirubin > 2 times ULN during anti-TB therapy.

This trial was approved by the Ethics Committee of West China Hospital of Sichuan University. The signed written informed consents were collected from all included TB patients.

2.2. Genes genotyping

Peripheral whole blood of each patient was collected for extracting genomic DNA by QIAamp DNA blood mini kit (Qiagen, Germany). After considering minor allele frequency (MAF) (≥0.02) in both Southern Han Chinese and Han Chinese in Beijing, locations, linkage disequilibrium (LD) constant (r² < 0.8) and others, 28 SNPs: 8 SNPs in BDKRB2, 7 SNPs in TENM2, 8 SNPs in TGFβ2, and 5 SNPs in SLC2A13 were selected by Haploview version 4.1 (The Broad Institute, Cambridge, MA, USA). All SNPs were genotyped by the custom-by-design 2x48-Plex SNPscantM kit (Genesky Biotechnologies Inc., Shanghai, China). Approximately 10% samples would be redetected to calculate the concordance for quality assessment.

2.3. Statistical analysis

Continuous variables and categorical variables were compared by Mann–Whitney’s U test and chi-square test or Fisher’s exact
test, respectively. While Hardy–Weinberg equilibrium (HWE), and allelic and genotypic frequencies were evaluated by chi-square analysis or Fisher’s exact test. PLINK version 1.07 was applied for identify the relationship between selected SNPs and ATDILI by logistic regression analysis, while SHEsis was employed to perform Linkage analysis and haplotype construction (MAF ≥ 0.01). Odds ratio (OR) with corresponding 95% confidence interval (CI) was calculated for measuring of relationships. Significance was set at P ≤ .05. Power and Sample Size Program was used to calculate the power based on the sample size of this work. Furthermore, some online tools were applied to predictive the functions of candidate SNPs.

3. Results
A total of 746 TB patients were enrolled in our study (Fig. 1), nevertheless, 28 selected SNPs were successfully genotyped among 686 participants. Among these 686 subjects, 107 participants suffered from ATDILI during our 6 months follow-up. Significant differences in the incidence of fever (P = .02), ALT levels (P < .001), AST levels (P < .001), alkaline phosphatase (ALP) levels (P = .03), gamma glutamyl transpeptidase (GGT) levels (P = .004) and uric acid levels (P = .03) were identified between the cases and the controls. While there were no meaningful findings in other characteristics (Table 1).

3.1. The relationship between selected SNPs and ATDILI
All genotypes of 28 SNPs did not deviate from the HWE in controls. In BDKRB2, rs79280755, and rs117806152 were associated with the risk of ATDILI. The mutant G allele of rs79280755 and C allele of rs117806152 increased the risk of ATDILI significantly (P<Bonferroni correction = .002 and .03, respectively). Furthermore, rs79280755 conferred significantly increased risk of ATDILI in both additive (OR = 3.218, 95% CI: 1.686–6.139, P<Bonferroni correction = .003) and dominant model (OR = 3.218, 95% CI: 1.686–6.139, P<Bonferroni correction = .003), as well as rs117806152 (additive model: OR = 2.424, 95% CI: 1.292–4.548, P<Bonferroni correction = .05; dominant model: OR = 2.613, 95% CI: 1.369–4.988, P<Bonferroni correction = .03).

In TENM2, both rs80003210 and rs2617972 had significant impacts on susceptibility to ATDILI. For rs80003210, patients carrying G allele had the decreased risk of ATDILI with an OR of 0.156 (95% CI: 0.038–0.642, P<Bonferroni correction = .02). However, rs80003210 conferred comparable risk of ATDILI based on 3 genetic models. For rs2617972, A allele carriers had 3.083 times (95% CI: 1.455–6.532) higher risk of ATDILI than C allele carriers (P<Bonferroni correction = .01). An adverse effect was identified in both additive model (OR = 3.203, 95% CI: 1.487–6.896, P<Bonferroni correction = .02) and dominant model (OR = 3.203, 95% CI: 1.487–6.896, P<Bonferroni correction = .02).

Whether in TGFβ2 or SLC2A13, no meaningful SNPs were found (Tables 2 and 3).

3.2. Subgroup analyses
Age (the threshold: 50 years) and sex have been reported as risk factors of ATDILI,[25] while TB subtypes were also taken into consideration for subgroup analyses.

A total of 31 ATDILI cases and 217 non-ATDILI controls were classified in the elder subgroup (≥50 years), while the remaining

Figure 1. Selection of patients included in this study. ATDILI = anti-tuberculosis drug induced liver injury, TB = tuberculosis.
whether in dominant model (both rs79280755 and rs117806152 increased the risk of ATDILI.009, respectively). The genetic model analyses demonstrated that females with C allele of BDKRB2 conferred susceptibility to ATDILI (P Bonferroni correction = .04 and .04, respectively). In PTB with EPTB subgroup, the meaningful relationship was identified between TENM2 rs2617972 and the risk of ATDILI (P Bonferroni correction = .009) (Table 4).

3.3. LD analysis and haplotype construction

Based on the cut-off value of pairwise r² > 0.80, 2 SNPs of BDKRB2 (rs76192091 and rs4900312), as well as 2 SNPs of TGFB2 (rs4905469 and rs8012552) and 3 SNPs of TENM2 were in another subgroup. Older patients carrying A allele of BDKRB2 rs79280755 had 4.671 times (95% CI: 1.477–14.770) higher risk of ATDILI than those with G allele (P Bonferroni correction = .03), whereas comparable risk of ATDILI was identified in 3 genetic models. In the younger subgroup, no meaningful findings were observed.

438 patients were in another subgroup. Older patients carrying A allele of BDKRB2 rs79280755 had 4.671 times (95% CI: 1.477–14.770) higher risk of ATDILI than those with G allele (P Bonferroni correction = .03), whereas comparable risk of ATDILI was identified in 3 genetic models. In the younger subgroup, no meaningful findings were observed.

There were 413 males and 273 females in this trial. In BDKRB2, both rs79280755 A allele and rs117806152 C allele conferred susceptibility to ATDILI (P Bonferroni correction < .001 and .009, respectively). The genetic model analyses demonstrated that both rs79280755 and rs117806152 increased the risk of ATDILI whether in dominant model (P Bonferroni correction < .001 and .009, respectively) or additive model (P Bonferroni correction < .001 and .009, respectively). While females with C allele of TENM2 rs2617972 were more susceptible to ATDILI with an OR of 4.000 (95% CI: 1.353–11.820, P Bonferroni correction = .05).

Table 1
The characteristics of enrolled patients.

Characteristics	Cases (n=107)	Controls (n=579)	P
General data			
Age, mean±SD, years	42.34±15.53	42.26±15.78	.35
Sex (male/female)	62/45	351/228	.60
Body mass index, mean±SD (kg/m²)	20.02±3.47	20.28±3.35	.66
TBb subtypes (PTB/EPTB/PTB with EPTB)	68/18/21	406/50/123	.03
Clinical symptoms, n (%)			
Fever	56 (52.34)	232 (40.07)	.02
Night sweat	27 (25.23)	156 (26.94)	.71
Loss weight	31 (28.97)	210 (36.27)	.15
Poor appetite	42 (39.25)	204 (35.23)	.43
Fatigue	27 (25.23)	129 (22.28)	.50

Laboratory data, median (percent25–percent75)

	Cases	Controls	P
WBC (×10⁹/L)	6.61 (4.82–7.92)	6.55 (5.19–8.56)	.96
Platelet (×10⁹/L)	4.34 (4.00–4.73)	4.34 (3.83–4.71)	.31
Neutrophil (%)	61.60 (52.30–71.70)	71.80 (62.70–79.20)	.66
Monocyte (%)	8.00 (5.65–9.25)	7.20 (5.90–8.90)	.09
Direct bilirubin (µmol/L)	3.50 (2.50–5.55)	3.40 (2.50–5.49)	.06
Total bilirubin (µmol/L)	5.70 (3.75–8.05)	4.80 (3.88–7.00)	.22
AST (IU/L)	26.00 (16.50–38.00)	14.50 (10.00–21.00)	<.001
ALP (IU/L)	88.00 (70.00–109.50)	78.50 (62.75–98.25)	.03
Total protein (g/L)	43.00 (27.50–78.00)	30.00 (18.75–48.25)	.004
Albumin (g/L)	69.80 (63.70–75.10)	69.25 (63.60–109.10)	.39
C-reactive protein	37.80 (20.80–53.00)	38.55 (34.80–78.40)	.25
HDL-c (mmol/L)	5.08 (4.62–5.95)	5.13 (4.71–5.82)	.21
Urea (mmol/L)	3.90 (2.92–4.34)	4.00 (3.10–5.32)	.51
Creatinine (µmol/L)	56.40 (48.00–66.50)	60.00 (49.00–74.00)	.72
Cystatin C (mg/L)	0.91 (0.81–1.05)	0.92 (0.79–1.07)	.50
Uric acid (µmol/L)	271.00 (195.95–362.00)	307.00 (228.00–410.00)	.03
Triglyceride (mmol/L)	1.02 (0.82–1.32)	1.06 (0.81–1.44)	.09
Cholesterol (mmol/L)	3.95 (3.16–4.80)	3.80 (3.15–4.56)	.80
LDL-C (mmol/L)	1.12 (0.86–1.46)	1.08 (0.82–1.41)	.76

a = standard, b = tuberculosis, c = pulmonary tuberculosis, d = extra pulmonary tuberculosis, e = white blood cell, f = C-reactive protein, g = erythrocyte sedimentation rate, h = alanine aminotransferase, i = aspartate transaminase, j = gamma glutamyl transpeptidase, k = high density lipoprotein cholesterol, l = low density lipoprotein cholesterol.

The cases and controls referred to patients with and without anti-tuberculosis drug induced liver injury, respectively.
Table 2
The comparison of allelic and genotypic frequency between cases and controls.

Genes	SNP⁴	Group	HWE ¹-P	OR (95% CI)	P	P²	Power	11⁵	12⁵	22⁵	P ⁶	P² ⁶
SLC2A13		**Cases**	> .99	3.039 (1.626–5.678)	< .001	.002	.889	0	16	91	NA	
		Controls	> .99	0.306 (0.175–0.534)	> .05	.38	1.00	0	30	549	NA	
TENM2		**Cases**	> .99	0.511 (0.419–0.613)	< .001	.002	.889	0	2	105	NA	
		Controls	> .99	1.157 (0.818–1.657)	> .05	.35	1.00	0	21	558	NA	
TGFβ2		**Cases**	> .99	2.419 (1.297–4.511)	< .001	.002	.889	0	15	92	NA	
		Controls	> .99	1.197 (0.844–1.684)	> .05	.35	1.00	0	32	549	NA	

*1 = single nucleotide polymorphisms, ² = chromosome, ³ = Hardy–Weinberg equilibrium, ⁴ = odds ratio, ⁵ = confidence interval, ⁶ = Brachykinin receptor B2, ⁷ = non available, ⁸ = Teneurin transmembrane protein 2, ⁹ = transforming growth factor beta 2, ¹⁰ = adult carrier family 2 member 13.

† The cases and controls referred to patients with and without anti-tuberculosis drug induced liver injury, respectively.

*11, 12, and 22 referred to the mutant allele and wild allele, respectively. While “11,” “12,” and “22” represented the mutant homozygote, heterozygote, and wild homozygote, respectively.

The table is intended to show the comparison of allelic and genotypic frequency between cases and controls.
polymorphisms and clinical characteristics were observed rs117806152, patients carrying C allele-containing genotypes

Genes	SNP	Additive model	Dominant model	Recessive model	
BDKRB2	rs79280755 (A>G)	3.218 (1.686–6.139)	.001 (.003)	3.218 (1.686–6.139)	.001 (.003)
	rs76192001 (A>G)	0.264 (0.035–1.986)	.20	0.254 (0.035–1.986)	.20
	rs4003012 (A>G)	0.506 (0.171–2.191)	.36	0.506 (0.171–2.191)	.36
	rs117860152 (A>G)	2.424 (1.292–4.548)	.006 (.05)	2.613 (1.369–4.988)	.006 (.03)
	rs4005470 (A>G)	1.101 (0.796–1.523)	.56	1.043 (0.867–1.582)	.84
TENM2	rs72654737 (A>G)	1.154 (0.857–1.555)	.35	1.053 (0.869–1.069)	.81
	rs75081018 (A>G)	1.900 (0.811–4.466)	.57	1.152 (0.755–1.763)	.51
	rs80003240 (A>G)	0.152 (0.037–0.629)	.009	0.151 (0.036–0.625)	.009
	rs5042074 (A>G)	0.703 (0.418–1.183)	.19	0.672 (0.386–1.170)	.16
	rs9331396 (A>G)	0.966 (0.714–1.307)	.82	1.078 (0.691–1.684)	.74
	rs2617972 (A>G)	3.203 (1.467–6.896)	.003 (.02)	3.203 (1.467–6.896)	.003 (.02)
TGFBR2	rs2799085 (A>G)	0.957 (0.717–1.278)	.766	0.858 (0.558–1.320)	.486
	rs2000912 (A>G)	1.214 (0.804–1.835)	.367	1.299 (0.827–2.038)	.256
	rs4030633 (A>G)	0.973 (0.604–1.616)	.911	0.950 (0.658–1.565)	.955
	rs17047740 (A>G)	1.253 (0.800–1.964)	.325	1.175 (0.805–2.313)	.278
	rs1317681 (A>G)	1.057 (0.784–1.425)	.715	1.112 (0.693–1.785)	.660
	rs6657275 (A>G)	0.840 (0.461–1.779)	.315	0.836 (0.504–1.727)	.403
	rs10402798 (A>G)	0.941 (0.493–2.073)	.048	0.970 (0.523–1.747)	.922
	rs6664820 (A>G)	0.853 (0.608–1.197)	.358	0.884 (0.581–1.346)	.566
SLC2A13	rs75030080 (A>G)	1.195 (0.875–1.633)	.263	1.173 (0.770–1.774)	.448
	rs17356847 (A>G)	1.327 (0.970–1.804)	.071	1.376 (0.910–2.080)	.130
	rs2403450 (A>G)	0.988 (0.675–1.485)	.953	0.905 (0.676–1.444)	.674
	rs7976837 (A>G)	0.755 (0.535–1.066)	.110	0.680 (0.444–1.041)	.076
	rs2404574 (A>G)	0 (0–NA)	.997	0 (0–NA)	.997

\(a = \) single nucleotide polymorphisms, \(b = \) odd ratio, \(c = \) confidence interval, \(d = \) Bradykinin receptor 2, \(e = \) not available, \(f = \) Tenascin transmembrane protein 2, \(g = \) Transforming growth factor beta 2, \(h = \) Solute carrier family 2 member 13.

\(P < .05 \) after Bonferroni correction.

3.4. The association of SNPs and clinical phenotypes

Based on dominant or recessive model, the potential influence of meaningful SNPs in BDKRB2 (rs79280755 and rs117860152) and TENM2 (rs80003210 and rs2617972) on clinical characteristics was investigated further. For BDKRB2 rs79280755, G allele-containing genotypes indicated significantly higher platelet counts \((P = .003)\), percentage of monocyte \((P = .02)\) and erythrocyte sedimentation rate \((P = .02)\). Regarding BDKRB2 rs117860152, patients carrying C allele-containing genotypes showed higher platelet counts \((P = .009)\) and erythrocyte sedimentation rate \((P = .04)\) than those with AA genotype. No significant findings on the relationship between TENM2 gene polymorphisms and clinical characteristics were observed (Fig. 3).

4. Discussion

This present study found BDKRB2 and TENM2 gene polymorphisms, but not TGFBR2 and SLC2A13, had influence on the risk of AIDIL. The mutant alleles of BDKRB2 rs79280755, BDKRB2 rs117860152, and TENM2 rs2617972 were the adverse elements of ATDILL, while a decreased risk of ATDILL was associated with the mutant allele of TENM2 rs80003210. Subgroup analyses identified the relationships between 3 SNPs (BDKRB2 rs79280755, BDKRB2 rs117860152, and TENM2 rs2617972) and the risk of ATDILL for patients with different ages, genders, and TB subtypes. Moreover, the influence of these meaningful SNPs on laboratory indicators was also explored. These findings provided experimental evidence for some new ATDILL-related targets, which promoted the development of ATDILL related research to some extent.

As we described above, BDKRB2 acts though participating in calcium signaling pathway, mitogen-activated protein kinase (MAPK), and other signal pathways to affect inflammatory processes, edenocrine regulation, and drug response. In our study, BDKRB2 rs79280755 and BDKRB2 rs117860152 are intron variants which have not been reported thus far. Online tool, HaploReg, suggests that more than 10 transcription factor binding motifs (TFBMs) are altered by rs79280755, and most of changed motifs contribute their share to regulate transcription (https://pubs.broadinstitute.org/mammals/haploreg/detail_v4.1.php?query=&id=rs79280755). Interestingly, BDKRB2 has been recognized as a transcriptional regulator of specific genes, consistent with the functional predictions provided by HaploReg to some extent. Notably, one of the affected transcription factors, formerly hepatic nuclear factor 3alpha (Foxa3), is known as a pioneer transcription factor and responsible for normal development of liver and lung. [28] Vatamaniuk et al. [30] have revealed that
Table 4

The results of subgroup analyses.

Gene	Subgroup	SNPa	Cases or controls	Allele	Genotype	Dominant model	Reccessive model	Additive model												
BDKRB2	Age: ≥50	rs79280755 (G>A)		Cases (n = 31)	5	57	4.671 (1.477–14.770)	.004	.003	0	5	26	NA	5.024 (1.529–16.500)	.008	NA		5.024 (1.529–16.500)	.008	.006
				Control (n = 217)	8	426				0	8	209	NA	4.908 (2.264–10.640)	<.001	NA		4.908 (2.264–10.640)	<.001	<.001
	Sex: male	rs79280755 (G>A)		Cases (n = 62)	13	111	4.450 (2.121–9.338)	<.001	<.001	0	13	49	NA	3.769 (1.695–8.379)	.001	.009	NA	3.769 (1.695–8.379)	.001	.009
				Control (n = 351)	18	164				0	18	333	NA	3.009 (1.356–6.677)	.007	.005	NA	3.009 (1.356–6.677)	.007	.005
	TB 1 subtypes: PTB 8	rs79280755 (G>A)		Cases (n = 69)	10	126	2.850 (1.319–6.160)	.006	.004	1	18	332	NA	3.161 (1.417–7.049)	.005	.004	NA	3.161 (1.417–7.049)	.005	.004
				Control (n = 406)	22	790				0	22	384	NA	2.779 (1.285–6.007)	.009	.008	NA	2.779 (1.285–6.007)	.009	.008
TENM2	Sex: female	rs2617972 (A>C)		Cases (n = 45)	6	84	4.000 (1.353–11.820)	.007	.005	0	6	39	NA	4.231 (1.392–12.860)	.01	NA		4.231 (1.392–12.860)	.01	NA
				Control (n = 228)	8	448				0	8	220	NA	7.375 (1.921–28.310)	.004	.003	NA	7.375 (1.921–28.310)	.004	.003
	TB subtypes: PTB with EFPIB	rs2617972 (A>C)		Cases (n = 21)	5	37	6.514 (1.796–23.590)	.001	.009	0	5	16	NA	7.375 (1.921–28.310)	.004	.003	NA	7.375 (1.921–28.310)	.004	.003
				Control (n = 123)	5	241				0	5	118	NA	5.024 (1.529–16.500)	.008	NA		5.024 (1.529–16.500)	.008	.006

a = single nucleotide polymorphisms, b = odd ratio, c = confidence interval, d = Bradykinin receptor B2, e = non available, f = tuberculosis, g = pulmonary tuberculosis, h = Teneurin transmembrane protein 2.

1. The cases and controls referred to patients with and without anti-tuberculosis drug induced liver injury, respectively.

2. "1" and "2" referred to the mutant allele and wild allele, respectively. While "11," "12" and "22" represented the mutant homozygote, heterozygote, and wild homozygote, respectively.

3. "1" and "2" referred to the mutant allele and wild allele, respectively. While "11," "12" and "22" represented the mutant homozygote, heterozygote, and wild homozygote, respectively.

4. P value after Bonferroni correction.
Foxa1 involves in calcium influx and regulation of oxidative phosphorylation. Herein, rs79280755 may lead to significantly different risk of ATDILI via mediating calcium metabolism by affecting the Foxa1.

TENM2, locating on chromosome 5, elicits heterophilic cell–cell adhesion via plasma membrane cell adhesion molecules, calcium signaling, axon guidance, and other pathophysiological processes. Our study testified that TENM2 rs2617972 and TENM2 rs80003210 might be the potential pharmacogenetic biomarkers for ATDILI in the Western Chinese Han population. Of the 2 candidate SNPs, rs80003210 is likely to influence the functions of a transcription factor, hepatocyte nuclear factor 4 (HNF4) (https://pubs.broadinstitute.org/mammals/haploreg/detail_v4.1.php?query=&id=rs80003210). Growing investigators have confirmed the relationship between HNF4 and calcium metabolism. Through the animal trials, Niehof et al have demonstrated that the HNF4 acts as a master transcriptional regulator for key genes in calcium signaling. Furthermore, HNF4 is also able to function in the preservation of calcium homeostasis via controlling the expression of hepatocyte nuclear factor 1 alpha (HNF1A).[32,33] Obviously, rs80003210 participates in calcium signaling by various ways, and the relationship between rs8000321 and calcium metabolism may explain the role of this variant in the occurrence of ATDILI to some extent.

We first investigated the roles of variants in 4 genes related to calcium signaling in ATDILI, facilitating our understanding of ATDILI etiology and contributing to develop personalized treatment strategies. Unfortunately, our study still suffered from the limitations of sample size and singleness of ethnicity although the power calculation was performed to assess the reliability of our results. Based on some online bioinformatic tools and our results, we predicted the functions of candidate variants in BDKRB2 and TENM2, and functional trials to verify these predictions are warranted urgently.

Table 5

| Haplotype constructions of BDKRB2a and TGFB2b variants related to the risk of ATDILI. |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Frequency | | | | |
| | ALL (n=686) | Cases (n=107) | Controls (n=579)| OR (95% CI) | P |
| BDKRB2: Rs76192091–rs4900312 haplotype | | | | | |
| GA | 0.983 | 0.991 | 0.982 | 1.000 (NA–NA) | NA |
| AG | 0.015 | 0.005 | 0.017 | 0.270 (0.040–2.000) | .20 |
| GG | 0.002 | 0.005 | NA | 5.310 (0.330–85.630) | .24 |
| BDKRB2: Rs4905469–rs8012552 haplotype | | | | | |
| AA | 0.539 | 0.505 | 0.546 | 1.000 (NA–NA) | NA |
| GG | 0.460 | 0.495 | 0.453 | 1.180 (0.880–1.580) | .26 |
| TGFB2: Rs6657275–rs10482796–rs6684205 haplotype | | | | | |
| GGG | 0.586 | 0.596 | 0.584 | 1.000 (NA–NA) | NA |
| AAA | 0.250 | 0.224 | 0.255 | 0.870 (0.610–1.240) | .43 |
| GAG | 0.157 | 0.173 | 0.154 | 1.100 (0.720–1.660) | .67 |
| AAG | 0.007 | 0.005 | 0.008 | 0.590 (0.070–4.700) | .61 |

a=Bradykinin receptor B2, b=Transforming growth factor beta 2, c=anti-tuberculosis drug induced liver injury, d=odds ratio, e=confidence interval, f=non available.

The cases and controls referred to patients with and without anti-tuberculosis drug induced liver injury, respectively.

Figure 2. Linkage disequilibrium plots. The threshold was set at pairwise $r^2 > 0.80$. The percentages in diamonds and color of diamonds represent pairwise r^2 values for all pairs of SNPs and the intensity of pairwise r^2, respectively. (A) Linkage disequilibrium plots of 8 single-nucleotide polymorphisms (SNPs) in BDKRB2; (B) Linkage disequilibrium plots of 8 single-nucleotide polymorphisms (SNPs) in TGFB2.
5. Conclusion

In summary, we explored the roles of some calcium signaling-related genes and their variants played in ATDILI and first demonstrated that BDKRB2 rs79280755, BDKRB2 rs117806152, TENM2 rs80003210, and TENM2 rs2617972 were in reference to the susceptibility to ATDILI in Western Chinese Han population. The novel biomarkers of ATDILI founded in this work could contribute their share to plot complete genetic map of ATDILI, which could bring benefits to more accurately predict and diagnose the ATDILI. In addition, these new targets may also help researchers to explore the underlying mechanism of this severe disease and develop the effective vaccines or drugs, reducing the heavy disease burden on multiple levels.

Acknowledgments

We are very grateful to Hong Xie for her suggestions on editing English articles.

Author contributions

Conceptualization: Mengyuan Lyu, Binwu Ying.
Data curation: Mengyuan Lyu, Jian Zhou, Hao Chen, Hao Bai, Jiajia Song, Tangyuheng Liu, Yuhui Cheng.
Formal analysis: Mengyuan Lyu, Jian Zhou, Hao Chen, Hao Bai, Jiajia Song, Tangyuheng Liu, Yuhui Cheng.
Funding acquisition: Binwu Ying.
Investigation: Mengyuan Lyu, Jian Zhou, Hao Chen, Hao Bai, Jiajia Song, Tangyuheng Liu, Yuhui Cheng.
Methodology: Mengyuan Lyu, Jian Zhou, Hao Chen, Hao Bai.
Software: Mengyuan Lyu, Jian Zhou.
Supervision: Binwu Ying.
Validation: Binwu Ying.
Visualization: Binwu Ying.
Writing – original draft: Mengyuan Lyu, Jian Zhou, Hao Chen, Hao Bai, Jiajia Song, Tangyuheng Liu, Yuhui Cheng, Binwu Ying.
Writing – review & editing: Mengyuan Lyu, Jian Zhou, Hao Chen, Hao Bai, Jiajia Song, Tangyuheng Liu, Yuhui Cheng, Binwu Ying.

References

[1] Gu J, Tang SJ, Tan SY, et al. An open-label, randomized and multi-center clinical trial to evaluate the efficacy of Silibinin in preventing drug-induced liver injury. Int J Clin Exp Med 2015;8:4320-7.
[2] Huai C, Wei Y, Li M, et al. Genome-wide analysis of DNA methylation and anti-tuberculosis drug-induced liver injury in Han Chinese Population. Clin Pharmacol Ther 2019;doi: 10.1002/cpt.1563.
[3] Alempijevic T, Zec S, Milosavljevic T. Drug-induced liver injury: do we know everything? World J Hepatol 2017;9:491-502.
[4] Kim JH, Nam WS, Kim SJ, et al. Mechanism investigation of rifampicin-induced liver injury using comparative toxicoproteomics in mice. Int J Mol Sci 2017;18:1417.
[5] Fisher K, Vuppalanchi R, Saxena R. Drug-induced liver injury. Archiv Pathol Lab Med 2015;139:876-87.
[6] Tajiri K, Shimizu Y. Practical guidelines for diagnosis and early management of drug-induced liver injury. World J Gastroenterol 2008;14:6774-85.
[7] Abramavicius S, Velickiene D, Kadusevicius E. Methimazole-induced liver injury overshadowed by methylprednisolone pulse therapy: case report. Medicine 2017;96:e8159.
[8] Yuliwulandari R, Susilowati RW, Wicaksono BD, et al. NAT2 variants are associated with drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. J Hum Genet 2016;61:533-7.
[9] Choi S, Quan X, Bang S, et al. Mitochondrial calcium uniporter in Drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death. J Biol Chem 2017;292:14473-85.
[10] Magenta A, Dellambra E, Ciarapica R, et al. Oxidative stress, microRNAs and cytosolic calcium homeostasis. Cell Calcium 2016;60:207-17.

[11] Meena PR, Monu, Meena LS. Fibronectin binding protein and Ca(2+) play an access key role to mediate pathogenesis in Mycobacterium tuberculosis: an overview. Biotechnol Appl Biochem 2016;63:820–6.

[12] Wang Q, Cheng G, Wang X, et al. Genetic effects of BDKRB2 and KNG1 on deep venous thrombosis after orthopedic surgery and the potential mediator. Sci Rep 2018;8:17332.

[13] Chen Y, Yu Y, Sun S, et al. Bradykinin promotes migration and invasion of hepatocellular carcinoma cells through TRPM7 and MMP2. Exp Cell Res 2016;349:68-76.

[14] Gryshchenko O, Gerasimenko JV, Gerasimenko OV, et al. Ca(2+) signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca(2+) channel blockade. J Physiol 2016;594:281-93.

[15] Sharif NA, Wang Y, Katoli P, et al. Human non-pigmented ciliary epithelium bradykinin B2-receptors: receptor localization, pharmacological characterization of intracellular Ca(2+) mobilization, and prostaglandin secretion. Curr Eye Res 2014;39:378-89.

[16] Vysockov NV, Silva JP, Lelanova VG, et al. The mechanism of regulated release of Lasso/Teneurin-2. Front Mol Neurosci 2016;9:59.

[17] Silva JP, Lelanova VG, Ermolyuk YS, et al. Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci U S A 2011;108:12113–8.

[18] Lu R, Ji Z, Li X, et al. Tumor suppressive microRNA-200a inhibits renal cell carcinoma development by directly targeting TGFB2. Tumour Biol 2015;36:6691-703.

[19] Azhar M, Schulte JD, Grapp I, et al. Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev 2003;14:391–407.

[20] Jia Y, Chang HC, Schipapa MJ, et al. Cardiomyocyte-specific ablation of Med1 subunit of the mediator complex causes lethal dilated cardiomyopathy in mice. PLoS One 2016;11:e0160755.

[21] Barron CC, Bilan PJ, Tsakiris T, et al. Facilitative glucose transporters: implications for cancer detection, prognosis and treatment. Metab Clin Exp 2016;65:124–39.

[22] MacFarlane PM, Di Fiore JM. Myo-inositol effects on the developing respiratory neural control system. Adv Exp Med Biol 2018;1071:139-66.

[23] Shen T, Lin Y, Shang J, et al. Incidence and etiology of drug-induced liver injury in Mainland China. Gastroenterology 2019;156:2230–41. e2211.

[24] Watkins PB. How to diagnose and exclude drug-induced liver injury. Digest Dis (Basel, Switzerland) 2015;33:472-6.

[25] Abboud G, Kaplowitz N. Drug-induced liver injury. Drug Saf 2007;30:277–94.

[26] Catalioto RM, Valenti G, Maggi CA, et al. Enhanced Ca(2+) response and stimulation of prostaglandin release by the bradykinin B2 receptor in human retinal pigment epithelial cells primed with proinflammatory cytokines. Biochem Pharmacol 2015;97:189–202.

[27] Sabatini F, Luppi F, Petecchia I, et al. Bradykinin-induced asthmatic fibroblast/myofibroblast activities via bradykinin B2 receptor and different MAPK pathways. Eur J Pharmacol 2013;710:100–9.

[28] Takano M, Matsuyama S. Intracellular and nuclear bradykinin B2 receptors. Eur J Pharmacol 2014;732:169–72.

[29] Zhao Y, Li Z. Interplay of estrogen receptors and FOXA factors in the liver cancer. Mol Cell Endocrinol 2015;418(Pt 3):334–9.

[30] Vatamaniuk MZ, Gupta RK, Lantz KA, et al. Foxa1-deficient mice exhibit impaired insulin secretion due to uncoupled oxidative phosphorylation. Diabetes 2006;55:2730–6.

[31] Niehof M, Borlak J. HNF4 alpha and the Ca-channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes 2008;57:1069–77.

[32] Walesky C, Apte U. Role of hepatocyte nuclear factor 4alpha (HNF4alpha) in cell proliferation and cancer. Gene Expr 2015;16:101–8.

[33] von Wnuck Lipinski K, Weske S, Keul P, et al. Hepatocyte nuclear factor 1A deficiency causes hemolytic anemia in mice by altering erythrocyte sphingolipid homeostasis. Blood 2017;130:2786–98.