Developing an Outcome Measure With High Luminance for Optogenetics Treatment of Severe Retinal Degenerations and for Gene Therapy of Cone Diseases

Artur V. Cideciyan,1 Alejandro J. Roman,1 Samuel G. Jacobson,1 Boyuan Yan,2 Michele Pascolini,3 Jason Charng,1 Simone Pajaro,3 and Sheila Nirenberg2

1Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
2Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States
3Nidek Technologies, Srl, Padova, Italy

Correspondence: Artur V. Cideciyan, Scheie Eye Institute, 51 North 39th Street, Philadelphia, PA 19104, USA; cideciya@mail.med.upenn.edu.
Submitted: March 17, 2016
Accepted: May 17, 2016
Citation: Cideciyan AV, Roman AJ, Jacobson SG, et al. Developing an outcome measure with high luminance for optogenetics treatment of severe retinal degenerations and for gene therapy of cone diseases. Invest Ophthalmol Vis Sci. 2016;57:3211–3221. DOI:10.1167/iovs.16-19586

PURPOSE. To present stimuli with varied sizes, colors, and patterns over a large range of luminance.

METHODS. The filter bar used in scotopic MP1 was replaced with a custom slide-in tray that introduces light from an external projector driven by an additional computer. MP1 software was modified to provide retinal tracking information to the computer driving the projector. Retinal tracking performance was evaluated by imaging the system input and the output simultaneously with a high-speed video system. Spatial resolution was measured with achromatic and chromatic grating/background combinations over scotopic and photopic ranges.

RESULTS. The range of retinal illuminance achievable by the modification was up to 6.8 log photopic Trolands (phot-Td); however, in the current work, only a lower range over −4 to +3 log phot-Td was tested in human subjects. Optical magnification was optimized for low-vision testing with gratings from 4.5 to 0.2 cyc/deg. In normal subjects, spatial resolution driven by rods, short wavelength-sensitive (S-) cones, and long/middle wavelength-sensitive (L/M-) cones was obtained by the choice of adapting conditions and wavelengths of grating and background. Data from a patient with blue cone monochromacy was used to confirm mediation.

CONCLUSIONS. The modified MP1 can be developed into an outcome measure for treatments in patients with severe retinal degeneration, very low vision, and abnormal eye movements such as those for whom treatment with optogenetics is planned, as well as for patients with cone disorders such as blue cone monochromacy for whom treatment with gene therapy is planned to improve L/M-cone function above a normal complement of rod and S-cone function.

Keywords: channelrhodopsin, optogenetics, outcome measures, retinal degeneration, low vision

Inherited retinal degenerations (IRDs) are a molecularly heterogeneous group of diseases that cause progressive loss of photoreceptors and blindness.1 There is currently only one Food and Drug Administration (FDA)-approved treatment for IRDs that involves the surgical implantation of an electronic stimulator chip in eyes with no photoreceptors or vision left.2 Other treatment strategies at various stages of development include those that aim to substitute for lost neurons, arrest ongoing progression, improve visual function, or prevent the onset of the disease.3 Optogenetics belongs to the first category, in which light-sensitive channels are introduced into nonphotoreceptor retinal cells.4–10 An optogenetics clinical trial attempting to express channelrhodopsin with the use of intravitreally injected adeno-associated virus (AAV) vector in ganglion cells has recently started (NCT02556736, ClinicalTrials.gov). Gene augmentation therapy belongs to the second and third categories, in which the wild-type gene is introduced into the affected retinal tissue.11,12

There is no single outcome measure that is appropriate for varied treatment approaches designed for different stages of diseases with vastly diverse underlying pathobiology. For optogenetics treatments in severely affected IRD eyes, currently available outcome measures will likely encounter at least four major obstacles. First, many of the light-sensitive channels available for optogenetics today are relatively insensitive to ambient light13,14 and thus require additional technology that transforms ambient light from natural scenes to a high-illuminance version to be presented to the retina.15–18 Second, there is a need for an encoding scheme that simulates the natural intraretinal processing in order to make a natural scene intelligible by activation of postreceptorial cells.10,19 Third, eyes with low vision tend to have lost normal oculomotor control20–22 and thus require eye tracking methods to allow presentation of high-luminance encoded patterns to a specific part of the retina reproducibly time after time. And finally, currently available AAV vectors from intravitreal injections have...
produced an annular expression of channelrhodopsin in ganglion cells surrounding the fovea25–27; thus natural scenes need to be converted to an annular form to maximize the availability of information content.28 For gene augmentation therapy aimed at improving retinal function, it is important for outcome measures to be able to distinguish native visual function that exists before the treatment from the potential new function. This differentiation is especially challenging in cone disorders where normal rod function reserved for night vision can provide some level of daylight vision.26–28 Currently available outcome measures such as visual acuity, perimetry, and flicker ERGs are not likely to distinguish the native rod function from small incremental cone-driven gains even though the latter may have very significant implications regarding evidence of biological effects in early clinical trials.

Here we modified the Nidek MP1 microperimeter (Nidek Technologies, Padova, Italy) in order to generate high-luminance chromatic stimulation under precise spatiotemporal control. We performed experiments evaluating spatial resolving properties driven by the rod, long/middle wavelength-sensitive (L/M) cone, and short wavelength-sensitive (S) cone systems near their respective increment thresholds in order to better understand subtle efficacy signals that are likely to result from early-stage therapies. Our results suggest that the modified MP1 may be a useful tool in developing relevant outcome measures for very low-vision patients undergoing optogenetics treatment and for patients with achromatopsia (ACHM) or blue cone monochromacy (BCM) undergoing gene augmentation treatment.

METHODS

Human Subjects

Patients with retinal degeneration (n = 5) and subjects with healthy vision (n = 5) participated in this study (Table). All subjects had complete clinical ocular examinations, including best-corrected visual acuity. All testing was performed with dilated pupils. The tenets of the Declaration of Helsinki were followed, and informed consent and assent were obtained from all patients. The research was approved by the institutional review board at the University of Pennsylvania.

Modification of the MP1S Microperimeter Software

In the standard MP1 system, optical paths of the retinal imaging and stimulation systems partially overlap. For the retinal imaging system, infrared illumination enters the dilated pupil, and the proportion reflected by the retina is imaged by a camera running at 25-Hz frame rate (Fig. 1A, red arrows). For the stimulation system, a second light path allows the subject to focus onto an internal liquid crystal display (LCD) screen that shows targets locked to a specific retinal location based on tracking of retinal features (Fig. 1A, blue arrows). The scotopic version of the MP1 instrument (MP1S) adds a filter holder rail placed between the final lens and the LCD screen (in addition to other software and hardware modifications) in order to allow for two-color microperimetry under dim backgrounds.29,30 The modification used in the current work was designed to build further upon the MP1S and consisted of a custom-machined slide-in tray that inserted directly into the filter holder rail (Figs. 1A, 1B). The tray held an optical relay assembly and an external microprojector (DLP Lightcrafter with DLP3000 micromirror array; Texas Instruments, Dallas, TX, USA). The optical relay assembly consisted of two achromatic doublets (L\textsubscript{1} = 47-715 and L\textsubscript{2} = 49-292; Edmund Optics, Barrington, NJ, USA) and a front-surface mirror (M\textsubscript{1}, Edmund Optics). Software control of 8-bit red, green, and blue (R, G, B) values provided >2 log units of dynamic range of the DLP output controllable digitally. In addition, there were slots (F\textsubscript{3} and F\textsubscript{4}) for the introduction of absorptive neutral density (ND) filters (e.g., 65-822, Edmund Optics) to attenuate the light output by up to 9 log units. The scattered light from the internal LCD screen was blocked (X\textsubscript{1}). A long-pass filter (F\textsubscript{5}) was mounted in front of the camera to block scattered light from the projector reaching the detector. For future studies intending to use higher levels of output, a short-pass (<625 nm) filter (F\textsubscript{6} = 84-723, Edmund Optics) can be used to spectrally shape the light in order to avoid saturating the retinal imaging system.

Modification of the MP1S Microperimeter Hardware

The standard manufacturer’s MP1 software (Ver. 1.7.8) tracks each frame of the video image compared to a reference image obtained at the start of each session; the tracking result is an estimate, approximately every 40 ms, of the shift in degrees in two orthogonal directions. This estimate is used to shift the location of the stimulus presentation such that the same retinal location can be repeatedly stimulated. The standard software contains an option to send all the tracking data to a log file. For the current project, the manufacturer modified the standard MP1 software such that the stream consisting of the time stamp, and x and y values of shifts and tracking success, was sent through a serial communication link (USB NMC-2.5m; FTDI Ltd., Glasgow, UK).
Figure 1. Modification of the MP1 microperimeter to optically couple an external DLP projector. (A) Schematic of the MP1 system and the light paths under the unmodified and modified conditions. The retina is illuminated with an infrared source and the reflected light from the retina is imaged with a camera (light path shown with red arrows). In addition, a stimulus shown on the internal LCD screen is imaged on the retina (light path shown with blue arrow). Modification adds F1 and the optical relay tray. F1 is a long-pass filter in front of the camera in order to minimize the stray light originating from the external DLP; this is relevant only when the modified MP1 is used under high-luminance conditions. The optical relay tray is introduced between the final lens and the LCD using the rail normally carrying the filters used for scotopic testing. The relay tray bends the light path 90° away from the LCD (front-surface mirror M1) and focuses the DLP projector onto the retina along the stimulus path. Ray traces are shown with red. Two lenses, L1 and L2, are used to form a virtual image at the same plane as the LCD. Filters F2, F3, and F4 spectrally shape and attenuate the DLP light output. X1 is an opaque cover to prevent stray light from the internal LCD from reaching the eye. (B) Photograph of the optical relay tray inserted into the MP1 scotopic filter slot. (C) Judd chromaticity diagram of the DLP light coupled to the modified MP1. Red, green, blue, yellow, and white-filled circles correspond to R, G, B settings of (255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), and (255, 255, 255), respectively. Dashed lines delineate the final system gamut (light yellow area) within the standard observer. Triangle symbol indicates the equal-energy white point in the diagram. Gray dashed line shows the position of several CIE standard illuminators.
External Computer and Software

A laptop computer (running Ubuntu 15.04 Linux) was connected to the DLP via HDMI (High-Definition Multimedia Interface) and USB ports and to the MP1 computer via a USB port acting as the serial communication link. The laptop was set up in a two-screen mode, and the second screen was defined as the projector connected through the HDMI port. Custom software was written (Java 8 SE; Oracle Corp, Redwood City, CA, USA) to read retinal tracking information obtained from the MP1 computer through one USB port and control the DLP through commands sent via another USB port. Three light-emitting diode (LED) illuminators (R = 624 nm, G = 526 nm, B = 454 nm) of the DLP were run with the default current setting of 635 mA. In theory, the LED illuminators can be run at up to 1.5 A each to increase illumination; however, that approach requires active cooling and was not used in the current work. Importantly, default settings of the DLP include a variety of color correction matrices such that specific changes to R, G, and B values do not necessarily correspond to equivalent changes in light output. These color correction matrices were all disabled for the current work.

Psychophysics Used in Feasibility Experiments

In the current work, feasibility experiments were performed to help design and develop outcome measures in the future based on detection and discrimination thresholds for specific conditions and specific interventions. All thresholds used forced-choice methods where the presentation of a 0.5-second-long stimulus was paired with a sound and the subject was asked to respond following the sound. In a small subset of experiments, the subject indicated whether the stimulus was detected. In the great majority of experiments, the task was to discriminate between two possible alternatives representing the diagonal direction of a flashed grating. In this two-alternative forced-choice (2AFC) paradigm, the subject pressed one of two buttons of a modified numeric keyboard depending on the perceived direction of the stimulus, and the software recorded the response. Appropriate for eventual outcome development for the clinic, there were 5 to 10 trials for each test condition depending on the difficulty of the task; full psychophysical functions were not performed. After each experiment, all data were downloaded and analyzed offline together with a reference retinal image obtained at the start of each session. The “threshold” was considered to correspond to the trials with the highest spatial frequency grating whose direction could be discriminated with no more than one incorrect answer.

Maximum Retinal Illuminance

The MP1 uses a Maxwellian illumination system where the retinal illuminance is the total power entering the dilated pupil divided by the retinal exposed area.51 To calculate the maximum retinal illuminance achievable with the modified MP1 system using the external DLP as the illumination source, the power entering the pupil was estimated by first measuring the irradiance in air at 50 cm with a calibrated radiometer (IL1700; International Light, Peabody, MA, USA) and then the irradiance in air at 50 cm with a calibrated radiometer. The background was always 32° in diameter. Gratings of 11° diameter were presented nasal to the optic nerve centered at an eccentricity of 22° (Fig. 2A, inset). The fixation was to either four small squares brighter than background for photopic conditions, or a single small square darker than the background for scotopic conditions. The retinal illuminance in phot-Td was estimated after each stimulus condition using measured values of illuminance in photopic lux at 100 mm.54 The retinal illuminance in scot-Td was similarly estimated from measures of scotopic lux. The retinal illuminance in S-cone Trolands (s-
Td) was estimated from phot-Td values and irradiance spectra (Figs. 2B, 2C). Whenever possible, the achromatic and chromatic gratings were tested in sets where the backgrounds were matched in terms of their effectiveness to stimulate a certain photoreceptor mechanism. For example, under scotopic conditions, WonW and BonY sets were tested with rod-matched backgrounds (Fig. 2B), whereas WonW and red-on-blue (RonB) sets were tested with L/M-cone–matched backgrounds (Fig. 2C). Testing was performed over a large range of adaptation conditions from −3 log scot-Td to 2.2 log phot-Td with the use of ND filters. The absorption spectra of the ND filters were near flat (Fig. 3D). For scotopic conditions, the necessity of stacking multiple ND filters would be expected to cause some shifts at the spectral extremes, but such effects should be minimal for photopic conditions where fewer ND filters are stacked.

RESULTS

Eye Movements in Retinal Degenerations of Interest

The main impetus for the development of the modified MP1 was to design a potential outcome measure for treatments designed for two cohorts of patients: those with severe vision loss due to end-stage degeneration retina-wide and those with cone photoreceptor diseases. Both groups of patients show abnormal eye movements. A representative example of retinal movements expected from end-stage retina-wide photoreceptor degeneration and “light perception” visual acuity was recorded from patient (P5) (Fig. 3A), a 66-year-old patient with X-linked retinitis pigmentosa due to RPGR mutation. He would be a potential candidate for optogenetics therapy. In a dark room, the patient was instructed to gaze straight ahead, and eye movements were recorded directly from the retina under infrared illumination. There was small-amplitude nystagmus as well as a slow drift of the eyes in both x and y directions.

Examples of retinal movements in cone photoreceptor diseases were recorded in P1, P2, and P3, representing patients with ACHM due to CNGA3 or CNGB3 mutations and BCM, respectively (Fig. 3A). All three patients would be potential candidates for gene augmentation therapy. In a dark room, the patients with cone diseases were instructed to fixate at a ~1° diameter target that was adjusted to be visible. In the two ACHM patients, eye movements had both horizontal and vertical components, whereas in the BCM patient most of the movement was along the horizontal meridian. There were periods of large saccades as well as...
periods of relative stability. The estimated velocity of the eye movements varied in all four patients and could reach up to 100°/s; however, more than 84% of the samples had a velocity below 5°/s (Fig. 3A, insets). These examples illustrate the characteristics of the eye tracking needed for outcome measures in both types of patients.

Retinal Tracking and Stimulation Performance of the Modified MP1

We first evaluated static performance of the retinal tracking by measuring the detection linearity of a tracked object across the area of the modified MP1 that could be illuminated. For this
High-Luminance Chromatic Stimulation With MP1

Spatial Resolving Properties of the Rod System

We used grating increments on dim backgrounds to evaluate spatial resolution of the peripheral rod system. The eyes were dark adapted, and the grating stimuli were expected to be visible to the normal rod system but below the threshold of the L/M- and S-cones in the periphery. Achromatic testing was performed with WonW and chromatic testing with BonY gratings. Two background luminances were used. The lower background level corresponded to \(-5\) log scot-Td, which was achieved by the insertion of a total of 8 log ND filters in the light path and digital selection of either a W (R, G, B = 20, 20, 20) or a Y (R, G, B = 25, 25, 0) background. The spatial frequency of 0.6 cyc/deg first became perceptible with an increment of 0.7 log scot-Td. Greater increments above the background resulted in discrimination of finer spatial resolutions reaching 2.3 cyc/deg at 2.2 log scotopic increment (Fig. 4A, upper).

The higher background corresponded to \(-2\) log scot-Td and was achieved with a total of 7 log ND filters inserted into the light path; the same set of achromatic and chromatic gratings/backgrounds were used as for the lower background. White-on-white or BonY gratings of 0.8 cyc/deg first became perceptible with increments of 0.3 log scot-Td. Greater increments corresponded to visibility of higher spatial frequencies (Fig. 4A, lower). With the largest scotopic increment available (2.1 log scot-Td), spatial frequencies of 3.2 cyc/deg could be discriminated. Assuming peripheral cone thresholds to be near \(-2\) log phot-Td, all BonY conditions and most WonW conditions would be expected to stimulate only the rod system.

Spatial Resolving Properties of the L/M-Cone System

To evaluate the spatial resolution of the peripheral L/M-cone system, we took advantage of light adaptation and longer wavelength gratings on shorter-wavelength backgrounds with the chromatic stimuli. Two backgrounds were used. The lower of the two backgrounds corresponded to \(-0.2\) log phot-Td achieved by the insertion of a total of 5 log ND filters in the light path and either a W (R, G, B = 53, 53, 53) or a B (R, G, B = 0, 0, 255) background. WonW gratings of 2.1 cyc/deg first became perceptible with 0.1 log phot-Td increments (Fig. 4B, upper). With greater increments near 0.7 log phot-Td, both RonB and WonW gratings of 3.3 cyc/deg were reliably perceptible. With increments beyond 0.8 log phot-Td, all normal subjects could discriminate the 4.7 cyc/deg gratings, which was the upper limit of the current system designed for low vision. The higher background corresponded to \(-2.2\) log phot-Td achieved with a total of 3 log ND filters inserted into the light path. With increments of 0.1 log phot-Td, both WonW and RonB gratings of up to 2.7 cyc/deg could be reliably discriminated (Fig. 4B, lower). With increments of 0.5 log phot-Td and beyond, most normal subjects could discriminate the 4.7 cyc/deg gratings. Considering that the maximum available R grating on the B background corresponded to an increment of 0.1 log S-Td compared to 0.8 log phot-Td, it is likely that RonB gratings were detected by the L/M-cone system also.

Spatial Resolving Properties of the S-Cone System

To evaluate the spatial resolution of the peripheral S-cone system, we took advantage of light adaptation (to saturate the rod system) and shorter-wavelength gratings (to preferentially
stimulate the S-cones) on middle- and longer-wavelength backgrounds (to reduce the increments available to the L/M-cones). Two Y backgrounds (R, G, B = 200, 200, 0) were used. The lower of the two backgrounds (0.6 log S-Td; 1.6 log phot-Td) was achieved by the insertion of a total of 5 log ND filters in the light path (Fig. 4D, upper) and the higher background (2.6 log S-Td; 3.6 log phot-Td) with 3 ND filters (Fig. 4D, lower). Discrimination of grating directions was not possible for increments less than 0.4 log S-Td at either background level. At 0.7 log S-Td increment with the lower background, and at 0.4 log S-Td increment with the higher background, 1 cyc/deg gratings were visible. These BonY conditions in the periphery under strong light adaptation likely represented the activity of S-cones considering that the maximum available B grating corresponded to an increment of 1.2 log S-Td as opposed to 0.02 log phot-Td.

Spatial Resolving Properties in Blue Cone Monochromacy

A 31-year-old BCM patient (P4) (Table) was evaluated with the modified MP1 to determine whether the combination of adapting conditions and chromatic gratings was able to discriminate between perceptions originating from different photoreceptor systems. The clinical, molecular, and retinal phenotype characteristics of the patient have been previously published. Blue cone monochromacy data were much more limited in scope compared to normal data. The dark-adapted BCM eye tested with a WonW achromatic grating at the −2 log scot-Td background showed results qualitatively similar to those of normal subjects (Fig. 4A, lower). Under strong B adaptation (2.2 log phot-Td), the BCM patient did not detect the highest available contrast (0.8 log phot; 0.1 log S) of chromatic RonB gratings and thus could not perform discrimination experiments (Fig. 4B, lower). Insensitivity to R stimuli was consistent with the severe abnormality of L/M-cone–driven vision in BCM. Achromatic WonW gratings were visible to the BCM patient under light-adapted conditions (Fig. 4C). For both the lower (0.1 log S-Td; 0.2 log phot-Td) and the higher (2.1 log S-Td; 2.2 log phot-Td) achromatic backgrounds, the BCM patient could discriminate the direction of gratings up to 1.6 cyc/deg with 0.7 log S increments (Fig. 4C). These spatial frequencies were substantially lower than the results obtained in normals with the same conditions (Fig. 4C) but more similar to normal results obtained with BonY (Fig. 4D). These limited results in the BCM patient appear to confirm the conclusion that BonY recordings are driven by S-cones in normal subjects.

DISCUSSION

Perceptual testing is often performed under free-viewing conditions in which the subject either looks directly at the
target with his or her best vision (such as visual acuity testing) or looks at a fixation target while the stimulus is presented elsewhere within the visual field (such as computerized visual field testing). This approach often produces reliable, reproducible, and interpretable results as long as the subject has the ability to fixate steadily. On the other hand, there is much less certainty about the retinal location where perception is originating, and thus interpretation of the results, in patients who lack steady (foveal) fixation. For these patients, there is a long history of techniques used (variably named fundus perimetry, gaze-controlled perimetry, or microperimetry) coupling an objective estimate of the instantaneous gaze direction to the retinal location where the stimulus is being presented. Earlier approaches have involved operator judgment for the localization of retinal landmarks to adjust the location of the stimulus presentation (for examples, see Refs. 38–46). More modern systems image the retina with infrared illumination, detect the movement of the retina compared to a reference image, and present a stimulus adjusted to the movement of the retina (for examples, see Refs. 47–50). One of the modern systems is the Nidek MP1 microperimeter, which has been used in a large number of studies since its introduction more than 10 years ago (examples include Refs. 47, 51–54). Modification of the hardware and the software has resulted in the scotopic version of MP1 primarily designed for dark-adapted two-color testing.55–58 Red gratings on bright blue backgrounds were not ble were the limited results from the BCM patient and previous experiments we measured grating visual acuities near the special outcome measure. Toward this aim, in preliminary measurements in order to develop the feasibility experiments reported here into an outcome measure.

One of the key design features of the modified MP1 is the availability of high-luminance stimuli that may be necessary to activate optogenetic proteins. A clinical trial is currently under way (NCT02556736, Clinicaltrials.org) to introduce channelrhodopsins into retinal ganglion cells of patients with severe loss of vision and determine whether there is any evidence of improved vision. Assuming safety of the procedure, efficacy determination will require levels of retinal irradiance that will stimulate channelrhodopsin. The level of retinal irradiance that will be necessary in human eyes is currently unknown and is likely to be dependent on the expression level achieved. For any level of expression, it is thought that neural encoding of the stimuli will reduce the time-averaged retinal irradiance due to temporal sparsity of firing patterns applied at any given retinal location.18 However, success of efficiently activating optogenetic proteins in nonphotoreceptor cells with encoded patterns requires availability of high peak retinal irradiance that can be precisely controlled in space and time in response to a retina that is dynamically and unpredictably moving. The modified MP1 presented here takes an important first step toward this goal. We designed the optics to provide a maximum retinal irradiance of approximately 0.1 mW/mm², which is thought to fall within the bounds of retinal safety and potential effectiveness with first-generation optogenetic proteins.18 For comparison, this maximal irradiance is approximately 4.5 log units higher than that available from the unmodified MP1, and approximately 2.8 log units higher than the standard (10,000 asb) stimulus available in many computerized perimeters.

The ability to repetitively stimulate the same region by tracking retinal features in a moving eye was an important prerequisite considered for choosing the MP1 as a starting platform. With the cooperation of the manufacturer, we were able to stream this retinal tracking information into an external projector and successfully use it to steer the stimulus delivered by the external projector. However, there was an unavoidable delay between the retinal movement and the resulting stimulus movement. Two-thirds of the delay originated from the standard MP1, and one-third was added due to the modification. In eyes with stable fixation, the consequences of the delay are negligible. But in unstable eyes, the delay would be expected to result in errors between the intended and actual retinal locations to be stimulated, and the magnitude of the error would be proportional to the instantaneous velocity of eye movements. Based on data from patients who could be enrolled in relevant clinical trials, we conclude that the average absolute value of such errors is \(< 0.25 \), but the range can reach up to 4\(^{\circ}\) with the current system. Future improvements in speed of image processing and data transfer are likely to reduce the delay and the magnitude of this error but could not eliminate it. For patients with "wandering" eye movements, but not for patients with repetitive fast saccades, predictive methods of retinal tracking could also be considered in the future to partially compensate for the system delay.

Changes in the instantaneous velocity of retinal movements coupled with a fixed tracking delay could be hypothesized to reduce the effective modulation depth of gratings by smearing the stimulus. However, previous work in idiopathic infantile nystagmus syndrome comparing tachistoscopic flashes to constant irradiance has suggested that smearing of gratings has no consequence for visual acuity determinations.55 Applicability of those results to ACHM and BCM patients remains unknown. To minimize the effects of smearing on perception in patients, we used a grating flash duration that was long compared to both the integration time of the underlying rod and/or cone photoreceptors and the typical duration of a saccadic "jerk" in patients with abnormal eye movements. Within the period of grating presentation, there were expected to be periods of eye movement with near-constant speed, which would correspond to a shift in retinal location stimulated (due to tracking delay) but no smearing when perception of highest spatial frequencies can occur.

An essential measure of human visual performance is spatial resolution. Most commonly, standard high-contrast letters under free-viewing conditions are used in bright ambient lights to evaluate the resolving power of the L/M-cone system. In cone photoreceptor diseases, however, rod (and sometimes S-cone) photoreceptors can dominate low levels of vision even in daytime conditions.27,28,57 The overarching aim of gene therapies for cone photoreceptor diseases is to improve L/M-cone-driven visual performance of patients. However, it is hypothetically possible, maybe even likely, that early-phase gene therapies will result in incremental improvements at best, and the detection of such improvement within the context of the native vision of these patients will require specialized outcome measures. The modified MP1 developed here had the luminance and chromaticity range to be applicable as such a specialized outcome measure. Toward this aim, in preliminary experiments we measured grating visual acuities near the increment threshold in the nasal retina of normal subjects and a BCM patient. Under conditions where grating discrimination is likely to be dominated by the peripheral rod system, we found spatial frequencies of 1 cyc/deg near luminance increment thresholds representing peak sensitivity. Comparable were the limited results from the BCM patient and previous findings performed under similar but not identical conditions.56–58 Red gratings on bright blue backgrounds were not
detectable by the BCM patient even at the highest contrast levels, consistent with the expected pathophysiology in BCM.57,59,60 For these I/M-cone-mediated conditions, spatial frequencies of 2 to 3 cyc/deg were measured near peak sensitivity with our flashed stimuli in normal subjects; previously reported results in the periphery with drifting stimuli have been somewhat lower.54 And finally, blue gratings on bright yellow backgrounds tapped perception originating from S-cones and showed spatial frequencies of 1 to 1.5 cyc/deg near peak sensitivity in the nasal periphery. Comparable results have been obtained from central S-cones near threshold57,59,60 or implied by suprathreshold results in perifovea or periphery.50,61

In conclusion, the modified MP1 described here provides an early step with promising potential toward presenting varied stimuli of a very wide range of luminance and chromaticity with precise spatiotemporal control locked to retinal features.

Acknowledgments

The authors thank Fred Letterio for machine shop expertise and Robert Knighton for advice on light calibrations.

Supported by Bionic Sight LLC; BCM Families Foundation; National Eye Institute (EY001583, EY017280, EY06895, EY17549, and EY022012); Research to Prevent Blindness; and Foundation Fighting Blindness.

SN is the founder of Bionic Sight LLC and is listed as inventor on two patents related to this work (US patent no. 61/382,280; PCT [international] no. 61/308,681, titled “Retinal Prosthesis,” and US patent no. 20130289608, titled “Device to Implement Retinal Prosthetic”). Both patents are held by Cornell University and licensed to Bionic Sight. MP and SP are employees of Nidek Technologies, Srl, which manufactures the MP1 instrument.

Disclosure:
A.V. Cideciyan, Bionic Sight LLC (F); A.J. Roman, Bionic Sight LLC (F); S.G. Jacobson, Bionic Sight LLC (F); B. Yan, Bionic Sight LLC (F); M. Pascolini, Nidek Technologies, Srl (E); J. Charrng, Bionic Sight LLC (F); S. Pajarao, Nidek Technologies, Srl (E); S. Nirenberg, Bionic Sight LLC (F I, R), P

References

1. Bramall AN, Wright AF, Jacobson SG, McInnes BR. The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. *Annu Rev Neurosci*. 2010;33:441–472.

2. Ho AC, Humayun MS, Dorn JD, et al. Long-term results from an epiretinal prosthesis to restore sight to the blind. *Opththalmo-
logy*. 2015;122:1547–1554.

3. Jacobson SG, Cideciyan AV. Treatment possibilities for retinitis pigmentosa. *N Engl J Med*. 2010;363:1669–1671.

4. Bi A, Gaij J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. *Neuron*. 2006;50:23–33.

5. Tomita H, Sugano E, Yawo H, et al. Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelrhodopsin-2 gene transfer. *Invest Ophtalmol Vis Sci*. 2007;48:3821–3826.

6. Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. *Nat Neurosci*. 2008;11:667–675.

7. Lin B, Koizumi A, Tanaka N, Panda S, Masland RH. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. *Proc Natl Acad Sci U S A*. 2008;105:16009–16014.

8. Thyagarajan S, van Wyk M, Lehmann K, Löwel S, Feng G, Wässle H. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. *J Neurosci*. 2010;30:8745–8758.

9. Dorosadchi MM, Greenberg KP, Liu J, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. *Mol Tber*. 2011;19:1220–1229.

10. Nirenberg S, Pandarinath C. Retinal prosthetic strategy with the capacity to restore normal vision. *Proc Natl Acad Sci U S A*. 2012;109:15012–15017.

11. Cideciyan AV, Jacobson SG, Beltran WA, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. *Proc Natl Acad Sci U S A*. 2013;110:E517–E525.

12. Beltran WA, Cideciyan AV, Iwabeca S, et al. Successful arrest of photoreceptor and vision loss expands the therapeutic window of retinal gene therapy to later stages of disease. *Proc Natl Acad Sci U S A*. 2015;112:E5844–E5853.

13. Zhang F, Prigge M, Beyri`ere F, et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. *Nat Neurosci*. 2008;11:631–633.

14. Lin JY, Lin MZ, Steinbach F, Tsien RY. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. *Biophys J*. 2009;96:1803–1814.

15. Loudin JD, Simanovskii DM, Vijayraghavan K, et al. Optoelec-
tronic retinal prosthesis: system design and performance. *J Neural Eng*. 2007;4:R72–R84.

16. Grossman N, Poher V, Grubb MS, et al. Multi-site optical excitation using ChR2 and micro-LED array. *J Neural Eng*. 2010;7:16004.

17. Pandarinath C, Carlson ET, Nirenberg S. A system for optically controlling neural circuits with very high spatial and temporal resolution. *IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE)*. 2013;1–6.

18. Yan B, Vakulenko M, Min SH, Hauswirth WW, Nirenberg S. Maintaining ocular safety with light exposure, focusing on devices for optogenetic stimulation. *Vision Res*. 2016;24:57–71.

19. Fine I, Boynton GM. Pulse trains to percepts: the challenge of creating a perceptually intelligible world with sight recovery technologies. *Philos Trans R Soc Lond B Biol Sci*. 2015;370:20140208.

20. Leigh RJ, Zee DS. Eye movements of the blind. *Invest Ophtalmol Vis Sci*. 1980;19:328–331.

21. Hall EC, Gordon J, Hainline L, Abramov I, Engber K. Childhood visual experience affects adult voluntary ocular motor control. *Optom Vis Sci*. 2000;77:511–523.

22. Cideciyan AV, Aguirre GK, Jacobson SG, et al. Pseudo-fovea formation after gene therapy for RPE65-LCA. *Invest Ophtalmol
Vis Sci*. 2015;56:526–537.

23. Ivanova E, Hwang GS, Pan ZH, Troilo D. Evaluation of AAV-
mediated expression of Chop2-GFP in the marmoset retina. *Invest Ophtalmol Vis Sci*. 2010;51:5288–5296.

24. Yin L, Greenberg K, Hunter JJ, et al. Intravitreal injection of AAV2 transduces macaque inner retina. *Invest Ophtalmol Vis Sci*. 2011;52:2775–2783.

25. Werblin F, Palanker D. Restoring vision to the blind: advancements in vision aids for the visually impaired. *Trans Vis Sci Technol*. 2014;3(7):9.

26. Buck SL, Knight R. Partial additivity of rod signals with M- and L-cone signals in increment detection. *Vision Res*. 1994;34:2537–2545.

27. Zelinger L, Cideciyan AV, Kohl S, et al. Genetics and disease expression in the CNGA3 form of achromatopsia: steps on the path to gene therapy. *Ophtalmology*. 2015;122:1097–1007.

28. Luo X, Cideciyan AV, Iannaccone A, et al. Blue cone monochromacy: visual function and efficacy outcome measures for clinical trials. *PloS One*. 2015;10:e0125700.
