Оптимальный синтез в простейшей задаче быстродействия с линейным фазовым ограничением

А.В. Дмитрук, И.А. Самыловский

Аннотация. Рассматривается задача быстродействия для классической системы "двойной интегратор" при наличии произвольного линейного фазового ограничения. С помощью принципа максимума строится полный синтез оптимальных траекторий и проводится качественное исследование их множителей Лагранжа.

Ключевые слова: оптимальное быстродействие, фазовое ограничение, принцип максимума Дубовицкого–Милютина, скачок меры.

1 Постановка задачи

На отрезке \([0, T]\) рассмотрим следующую задачу быстродействия:

\[
\begin{cases}
\dot{x} = y, & x(0) = x_0, \quad x(T) = 0, \\
\dot{y} = u, & y(0) = y_0, \quad y(T) = 0, \\
T \rightarrow \min, & |u| \leq 1,
\end{cases}
\]

при наличии линейного фазового ограничения

\[y \geq kx - b \quad (b > 0). \]

Здесь \(x\) есть положение объекта (материальной точки) на прямой, \(y\) — ее скорость, \(u\) — сила воздействия на точку (управляющий параметр), \(t \in [0, T]\). Требуется перевести объект из заданного состояния \((x_0, y_0)\) в состояние \((0, 0)\) за минимальное время при соблюдении линейного ограничения (3) на переменные состояния (т.н. фазовые переменные) \(x, y\). Априори предполагается, что \(u(t)\) — произвольная измеримая ограничённая функция, и следовательно, \(x(t), y(t)\) — липшицевы функции.

При отсутствии фазового ограничения задача (1)-(2) есть хорошо известная задача Фельдбаума, которая служила одним из первых тестовых примеров применения принципа максимума Понтрягина (см. [1]). Случай, когда ограничение (3) присутствует и \(k = 0\), рассмотрен, например, в книге [3]) как пример применения принципа максимума в форме Дубовицкого–Милютина. Случай общего ограничения (3) до сих пор не рассматривался.
Отметим, что и в случае, когда ограничения нет, и в случае, когда оно есть, но \(k = 0 \), решение может быть найдено и без применения принципа максимума. Действительно, здесь требуется найти минимальный отрезок времени, на котором липшицева функция \(y(t) \) с заданными граничными условиями, ограничением на производную \(|\dot{y}| \leq 1 \) и нижней границей на саму функцию \(y \geq -1 \) имеет заданный интеграл. В случае отсутствия этой нижней границы несложными соображениями приходим к выводу, что оптимальная функция кусочно-линейна с производной \(\pm 1 \) и не более чем одним изломом. Если найденная функция нарушает нижнюю границу, то на отрезке времени, где происходит это нарушение, надо положить \(y = -1 \), а длину отрезка подобрать так, чтобы функция \(y(t) \) имела заданный интеграл. Детальное изложение этого решения можно рекомендовать в качестве упражнения для студентов младших курсов.

В случае, когда ограничение присутствует и \(k \neq 0 \), решение вряд ли может быть найдено описанным способом, ибо здесь нижняя граница для функции \(y(t) \) в каждой точке \(t \) зависит от ее интеграла на отрезке \([0, t]\). Поэтому мы здесь будем применять принцип максимума для задач с фазовыми ограничениями, полученный А.Я. Дубовицким и А.А. Милютиным (см. также [3, 4, 5]).

2 Формулировка принципа максимума

Пусть процесс \(x^0(t), y^0(t), u^0(t), t \in [0, T] \) доставляет минимум в задаче \((\mathbf{1})\)–(\(\mathbf{3}\)). Будем сначала считать, что его начальная точка \((x_0, y_0)\) не лежит на фазовой границе, т.е. \(y_0 > kx_0 - b \). Тогда согласно [2, 4] найдутся непрерывные слева функции ограниченной вариации \(\varphi(t), \psi(t) \) (сопряженные переменные), не равные одновременно нулю, неубывающая функция \(\mu \) с условием \(\mu(0) = 0 \), которые порождают функцию Понтрягина

\[
H = \varphi y + \psi u
\]

и расширенную функцию Понтрягина

\[
\overline{H} = \varphi y + \psi u + \dot{\mu} (y - kx + b),
\]

так что при этом выполняются сопряженные уравнения

\[
\begin{cases}
\varphi = -\overline{H}_x = k\dot{\mu}, \\
\dot{\psi} = -\overline{H}_y = -\varphi - \dot{\mu},
\end{cases}
\]

условие дополняющей нежесткости

\[
\dot{\mu}(t) (y^0(t) - kx^0(t) + b) = 0,
\]

закон сохранения энергии

\[
H(x^0(t), y^0(t), u^0(t)) \equiv \text{const} \geq 0,
\]

2
и условие максимума:

$$\max_{|u|\leq 1} H(x^0(t), y^0(t), u) = H(x^0(t), u^0(t)).$$

Последнее означает, что

$$u^0 \in \text{Sign}\psi = \begin{cases} +1, & \text{если } \psi > 0, \\ -1, & \text{если } \psi < 0, \\ [-1, +1], & \text{если } \psi = 0. \end{cases} \tag{9}$$

Здесь везде $\dot{\mu}(t)$ есть производная в смысле обобщенных функций. Другими словами, сопряженные уравнения следует понимать как равенства мер, т.е.,

$$d\varphi = k \, d\mu, \quad d\psi = -\varphi \, dt - d\mu,$$

или в интегральном смысле:

$$\varphi(t) = \int_0^t k \, d\mu(s) \, ds, \quad \psi(t) = -\int_0^t \varphi(s) \, ds - \mu(s), \quad t \in [0, T].$$

Условия трансверсальности мы не пишем, так как концы траектории фиксированы. Условие нетривиальности состоит в том, что пара $(\varphi, \psi) \neq (0, 0)$. В дальнейшем верхний индекс 0 у оптимального процесса указывать не будем.

Прежде, чем применять принцип максимума, определим то множество начальных точек, из которых исходит хотя бы одна допустимая траектория. Оно зависит от знака коэффициента k.

3 Случай $k > 0$: описание допустимого множества

Обозначим через Γ прямую $y = kx - b$ (границу допустимой фазовой области), через S – линию переключения в задаче без фазового ограничения (она есть объединение двух полупарабол: $x = -\frac{1}{2}y^2$, $y \geq 0$ и $x = \frac{1}{2}y^2$, $y \leq 0$).

Введем характерные точки для случая $k > 0$ (см. рис. 1):

1) точка A есть пересечение Γ с кривой S,
2) точка E есть пересечение Γ с осью абсцисс,
3) C есть точка касания Γ некоторой параболы семейства $x = -\frac{1}{2}y^2 + \text{const}$ (ясно, что эта парабола единственна),
4) точка B есть пересечение параболы из предыдущего пункта с кривой S.

Нетрудно найти координаты этих точек. Точка A задается соотношениями $x = \frac{1}{2}y^2$, $y = kx - b$, откуда

$$x = \frac{(bk + 1) - \sqrt{2bk + 1}}{k^2}, \quad y = \frac{1 - \sqrt{2bk + 1}}{k}.$$
Рис. 1: Траектория $C'CBO$ соответствует управлению $u = -1, 1$, траектория ABO – управлению $u \equiv 1$

Точка $E = (b/k, 0)$. Точка C общая для параболы $x = -\frac{1}{2}y^2 + m$ и прямой $y = kx - b$, в которой касательная к этой параболе совпадает с данной прямой, т.е. $dx/dy = -y = -1/k$. Отсюда

\[
y = -\frac{1}{k}, \quad x = \frac{(kb - 1)}{k^2}, \quad m = \frac{2kb - 1}{2k^2}.
\]

Точка B задается соотношениями $x = -\frac{1}{2}y^2 + m, \quad x = \frac{1}{2}y^2$, откуда $x = m/2, \quad y = \sqrt{m}$. Впрочем, для качественного исследования эти координаты нам не понадобятся. Важно будет лишь взаимное расположение точек A и C. В зависимости от этого возможны три случая, см. рис. 1, 2, 3.

Рассмотрим сначала те свойства допустимых траекторий, которые справедливы во всех этих трех случаях.

Пусть $x(t), y(t), u(t), t \in [0, T]$ есть некоторый допустимый процесс. Для удобства обозначим через $r(t) = (x(t), y(t))$ фазовую точку на плоскости xOy. Будем говорить, что точка $r(t)$ лежит на фазовой границе Γ выше (ниже) точки C, если $y(t) > y_C$ (соответственно, $y(t) < y_C$).
1) Точки на фазовой границе, лежащие ниже C, никогда не достигимы. В самом деле, здесь всегда $u \geq -1 > ky$, ибо $y < -1/k$, поэтому $(y - kx)^* = u - ky > 0$, т. е. мы приходим в такую точку из запрещенной области, что невозможно.

2) Пусть C^* есть точка на прямой Γ, симметричная точке C относительно E. Если мы попали на фазовую границу в точку E_1 и $r(E_1) > r(C^*)$, то дальше двигаться нельзя, ибо система (1) сносит нас в запрещенную область. Если мы попали на Γ в точку $E_1 \in (E, C^*)$ то далее движение возможно только в лунке, образованной прямой Γ и дугой параболы, исходящей из точки E_1 с управлением $u = +1$, и выбраться из этой лунки, не нарушая фазовое ограничение, нельзя. Поэтому все точки на фазовой границе выше E недостижимы. Отсюда следует, что и все точки верхней полуплоскости, лежащие правее параболы (E', E) и выше Γ, также недостижимы (ибо из них мы рано или поздно попадаем на фазовую границу выше точки E).

3) Допустим, что в некоторый момент t' мы попали в точку E. Если дальше найдется сколь угодно близкий момент t, при котором $y(t) > 0$, то мы должны находиться правее параболы, исходящей из точки E с $u = +1$, и тогда попадаем в уже запрещенную область, что невозможно. Следовательно, существует $\delta > 0$, такое что $y(t) \leq 0$ на $[t', t' + \delta]$. Учитывая фазовое ограничение $y \geq kx - b$ и применения нижеследующую лемму 1 для $\xi = x_E - x$, $\eta = -y$, получаем $x(t) = x_E$, $y(t) = 0$ на $[t', t' + \delta]$, т.е. мы стоим в точке E, движение из нее невозможно. Таким образом, в точку E попадать нельзя.

Но тогда нельзя попадать и во всю верхнюю часть параболы (E', E), ибо оттуда мы попадем либо в E, либо в уже запрещенную область правее этой параболы. Отсюда следует, что множество начальных позиций D, из которых существуют допустимые траектории, не замкнуто — оно состоит из полуплоскости $y \geq kx - b$ за вычетом замкнутого множества, ограниченного слева параболой (E', E).

Лемма 1 Пусть $k > 0$, $\delta > 0$, и для липшицевых функций $\xi(t)$ и $\eta(t)$ п.в. на отрезке $[0, \delta]$ выполняются соотношения:

$$\dot{\xi}(t) = \eta(t), \quad \xi(0) = 0, \quad \eta(0) = 0, \quad k \xi(t) \geq \eta(t) \geq 0.$$

Тогда $\xi(t) \equiv \eta(t) \equiv 0$ на $[0, \delta]$.

Доказательство. Из условия следует, что $0 \leq \xi(t) = \int_0^t \eta(\tau) d\tau \leq \int_0^t k \xi(\tau) d\tau$, а тогда по лемме Гронуолла $\xi(t) \equiv 0$, а значит, и $\eta(t) \equiv 0$. ∎

4) Итак, на фазовую границу можно попадать только на полуотрезке $[C, E)$, и здесь $\dot{x} = y < 0$. В частности, двигаться по границе можно лишь влево—вниз, от точки E, не включая ее саму, до точки C.

Если на некотором отрезке времени мы находимся на границе Γ, т.е. $y(t) = kx(t) - b$, то $y(t) = kx(t)$, т.е. $u = ky$, и в силу ограничения $|u| \leq 1$ это может продолжаться лишь пока $|y| \leq 1/k$. Предельное значение $y = -1/k$ соответствует как раз точке C.

5) Нетрудно видеть, что для любой начальной позиции из множества D хотя бы одна допустимая траектория существует. Эти траектории состоят из движений по параболам под действием управлений $u = -1$ или $u = +1$, а также движения вдоль фазовой границы. Отсюда по теореме Филиппова следует, что для любой начальной позиции из D существует и оптимальная траектория.

4 Анализ принципа максимума для случая $k > 0$

Пусть для некоторого процесса $x(t), y(t), u(t)$, $t \in [0, T]$ с начальной точкой $(x_0, y_0) \notin \Gamma$ выполнен принцип максимума. Перейдем к его анализу.

5) Если в момент t' мы на Γ, то слева около нее не может быть $\psi > 0$, иначе там было $u = +1$, и мы пришли в данную точку из запрещенной области. Следовательно, $\psi(t' - 0) \leq 0$. Так как в силу сопряженного уравнения всегда $\Delta \psi(t') = -\Delta u(t') \leq 0$, то и $\psi(t' + 0) \leq 0$.

6) Если в момент t' мы на Γ и выше C, то $\psi(t' + 0) \geq 0$, ибо иначе справа от t' будет $\psi < 0$, $u = -1$, и мы пробиваем границу. Следовательно, $\Delta \psi(t') \geq 0$.

С другой стороны, так как $\Delta \psi(t') = -\Delta u(t') \leq 0$, то $\Delta \psi(t') = 0$, скачка меры нет, и $\psi(t') = 0$. Таким образом, в этом случае ψ и φ непрерывны в t', а скачок меры возможен только в точке C.

7) Пусть $M = \{ t \mid r(t) \in \Gamma \}$ есть множество точек выхода на фазовую границу. Если оно пусто, то решение хорошо известно — движение происходит по параболам из двух указанных выше семейств. Будем считать, что M непусто. Положим $t_1 = \min M$, $t_2 = \max M$.

Лемма 2 M связно, т.е. это есть отрезок или точка: $M = [t_1, t_2]$.

Доказательство. Допустим, что M не связано, т.е. существуют точки $t' < t''$ из M, такие что на интервале $\omega = (t', t'')$ мы вне Γ. Тогда $\mu = 0$ на ω, значит $\varphi = \text{const}$, а ψ — линейная функция. Согласно п.5, $\psi(t' - 0) \leq 0$ и $\psi(t'' + 0) \leq 0$. Если $\psi < 0$ на ω, то $u = -1$ и мы не вернемся на Γ в момент t''. Поэтому на ω имеем $\psi = 0$.

Отсюда следует, что на любом интервале $\omega' \subset [t_1, t_2]$, где мы вне Γ, имеем $\psi = 0$ (ибо он содержится в некотором максимальном интервале ω рассмотренного типа), а тогда в силу системы и $\varphi = 0$. Таким образом, если на некотором интервале из $[t_1, t_2]$ выполнено $\psi < 0$, то на этом интервале мы на Γ.

6
Мы утверждаем, что $\psi = 0$ на всем полуотрезке $[t_1, t_2)$. Действительно, пусть $\psi(t_*) < 0$ в некоторой точке непрерывности $t_* \in (t_1, t_2)$. Тогда в окрестности этой точки $\psi < 0$, и значит мы на Γ, при этом $u = -1$. Но с таким управлением держаться на Γ невозможно. Следовательно, $\psi(t) = 0$ во всех точках своей непрерывности из (t_1, t_2), а значит и всюду на (t_1, t_2).

В точке t_1 имеем $\psi(t_1 - 0) \leq 0$ и $\psi(t_1 + 0) = 0$, а так как $\Delta \psi(t_1) \leq 0$, то $\psi(t_1 - 0) = 0$, значит ψ непрерывна в t_1, и $\psi(t_1) = 0$. Левее этой точки $\dot{\mu} = 0$, поэтому там по-прежнему $\psi = 0$, так что $\psi = 0$ на полуотрезке $[0, t_2)$.

Тогда на этом полуотрезке $\dot{\psi} = -(\varphi + \dot{\mu}) = 0$, откуда $\varphi = -\dot{\mu}$, и в силу сопряженного уравнения $\dot{\varphi} = -k\varphi$, т.е. φ есть экспонента. Поскольку у нас $\varphi = 0$ на интервале ω, то $\varphi = 0$ и на всем полуотрезке $[0, t_2)$.

Посмотрим теперь, что будет правее t_2. Если $\Delta \mu(t_2) = 0$, то $\psi = \varphi = 0$ и правее t_2, т.е. на всем отрезке $[0, T]$, а это тривиальный набор. Значит $\Delta \mu(t_2) > 0$, тогда $\Delta \varphi(t_2) > 0$, $\Delta \psi(t_2) < 0$, и дальше имеем $\dot{\psi} = -\varphi < 0$, поэтому дальше всюду $\psi < 0$, $u = -1$, и мы не попадаем в 0.

Из этих рассуждений следует, что интервала $\omega = (t', t'')$ с указанными свойствами быть не может, и значит $M = [t_1, t_2]$. Лемма доказана.

8) Если $t_1 < t_2$, т.е. M есть отрезок, то на (t_1, t_2) согласно п. 4 $u = ky < 0$, т.е. мы движемся влево-вниз, значит $|y| < 1/k$, поэтому $|u| < 1$, и в силу (9) $\psi = 0$. Тогда $\dot{\psi} = -(\varphi + \dot{\mu}) = 0$, откуда $\varphi = -\dot{\mu}$, и $\dot{\varphi} = -k\varphi$, поэтому φ есть экспонента на (t_1, t_2).

Может ли быть $\dot{\mu} = 0$ на (t_1, t_2)? В этом случае, повторяя рассуждения п. 7, получаем $\psi = \varphi = 0$ на полуотрезке $[0, t_2)$. Далее, случай $\Delta \mu(t_2) = 0$ приводит к тривиальному набору, а в случае $\Delta \mu(t_2) > 0$ мы не попадаем в 0.

Таким образом, если $t_1 < t_2$, то плотность меры $\dot{\mu} > 0$ на (t_1, t_2), и это есть экспонента.

Рассмотрим теперь все возможные случаи расположения множества M.

9) Может ли быть $M = \{t_*\}$ (касание границы в одной точке) при $r(t_*) > C$? Поскольку здесь скачка нет, то $\dot{\mu} \equiv 0$, поэтому движение такое же, как и без фазового ограничения, т.е. по параболам. Но так как в окрестности точки $r(t_*)$ будет $u = -1$, то при выходе из этой точки мы пробьем границу. Таким образом, этот случай невозможен.

Дальнейшее рассмотрение зависит от взаимного расположения точек A и C.

4.1 Случай $k > 0$ и $C \geq A$.

10) Может ли быть $M = [t_1, t_2]$ при $t_1 < t_2$ и $r(t_2) > C$? В этом случае скачков меры нет нигде, и на M согласно п. 8 имеем $|u| < 1$, тогда $\psi = 0$, а $\dot{\mu} = -\varphi$ есть положительная экспонента.
Далее будет \(\varphi = \text{const} < 0 \), тогда \(\dot{\psi} = -\varphi > 0 \), поэтому правее \(M \) всё время \(\psi > 0 \), \(u = 1 \) без переключения, и тогда попасть в ноль можно только при \(r(t_2) = A \), что возможно только если \(C < A \).

Итак, при \(C \geq A \) выхода на фазовую границу с \(r(t_2) > C \) быть не может, возможно лишь \(r(t_2) = C \).

11) Рассмотрим случай, когда \(M = \{ t_* \} \) и \(r(t_*) = C \). Тогда до и после \(t_* \), функция \(\psi \) линейная (вообще говоря, с разными коэффициентами). Отбросим сначала некоторые заведомо невозможные случаи. Если \(\psi > 0 \) слева около \(t_* \), то мы пришли в точку \(C \) по параболе с управлением \(u = 1 \), а значит, из запрещенной зоны, противоречие.

Если \(\psi = 0 \) всюду слева \(t_* \), то там и \(\varphi = 0 \). Если при этом \(\Delta \mu(t_*) > 0 \), то далее \(\varphi = \text{const} > 0 \), тогда \(\Delta \psi(t_*) = -\Delta \mu(t_*) < 0 \), и далее \(\dot{\psi} = -\varphi < 0 \), т.е. \(\psi < 0 \) и убывает, и тогда \(u = -1 \) без переключения. Но с таким управлением прийти из точки \(C \) в 0 невозможно. Следовательно, \(\Delta \mu(t_*) = 0 \), а тогда правее \(t_* \) получаем \(\varphi = 0 \), \(\psi = 0 \) – тривиальный набор множителей.

Таким образом, слева около \(t_* \) должно быть \(\psi < 0 \). Если при этом \(\psi \) невозрастает слева от \(t_* \), то \(\psi(t_* - 0) < 0 \), и с учетом возможного скачка функции \(\Delta \psi(t_*) \leq 0 \) и ее производной \(\Delta \dot{\psi}(t_*) = -\Delta \varphi(t_*) = -k \Delta \mu(t_*) \leq 0 \) получаем, что всюду правее \(t_* \) тем более \(\psi < 0 \), и тогда описать \(u = -1 \), что невозможно. Значит, остается лишь случай, когда \(\psi \) слева от \(t_* \) отрицательна и возрастает до некоторого значения \(\psi(t_* - 0) \leq 0 \).

Если \(\Delta \mu(t_*) = 0 \), то мера не работает, \(\psi \) и далее линейно возрастает, либо меняя знак с минуса на плюс в точке \(B \) (см. рис 1), либо \(\psi > 0 \) всюду справа от \(t_* \). Тогда справа от \(t_* \) будет либо \(u = -1 \), 1, либо \(u = 1 \) без переключений. Первый вариант возможен лишь при \(C > A \), второй при \(C = A = B \). Такая траектория является оптимальной в задаче со свободной фазой, она лишь случайно коснулась фазовой границы, которая на нее никак не повлияла.

Если же \(\Delta \mu(t_*) > 0 \), то \(\psi(t_* + 0) < 0 \), и тогда для попадания в 0 надо, чтобы \(\psi \) сменила знак с минуса на плюс в точке \(B < C \).

Итак, если \(A = B = C \), то всюду правее \(t_C \) будет \(\psi > 0 \), \(u = 1 \) без переключения и без скачка.

Если же \(C > A \) (и значит, также \(C > B \)), то участок \(\psi < 0 \) обязательно присутствует, а в точке \(C \) может быть и скачок меры. Определим возможную величину этого скачка. Пусть \(t_C, t_B \) – соответствующие моменты времени. (Отмечим, что \(t_C = t_* \)). Обозначим \(\Delta \mu(t_*) = \delta \), \(\Delta t = t_B - t_C \). Величина \(\Delta t \) задана положением точек \(B \) и \(C \), тогда как \(\delta \) пока неизвестна. Примем для наших множителей нормировку \(-\varphi(T) = 1 \). Тогда на \([t_C, T] \) имеем \(\dot{\psi} = -\varphi = 1 \), поэтому \(\psi(t_B) - \psi(t_C + 0) = \Delta t \), откуда с учетом условия \(\psi(t_B) = 0 \) получаем \(\psi(t_C + 0) = -\Delta t \), и нам надо лишь обеспечить неравенство \(\psi(t_C - 0) \leq 0 \). Так как \(\psi(t_C + 0) - \psi(t_C - 0) = -\delta \), то \(\psi(t_C - 0) = -\Delta t + \delta \), поэтому возможная величина
скачка определяется лишь неравенством $0 \leq \delta \leq \Delta t$, а в этих пределах скачок меры в точке C может быть любым\footnote{В качестве проверки отметим, что при любом скачке меры $\Delta H(t_*) = \Delta \varphi \cdot y(t_*) + |\Delta \psi| = k \delta \left(-\frac{1}{k} \right) + \delta = 0$, так что условие $H = \text{const}$ сохраняется независимо от величины скачка.}

Таким образом, случай когда $M = \{t_*\}$ и $r(t_*) = C$, полностью разобран.

12) Наконец, пусть $M = [t_1, t_2]$, $t_1 < t_2$ и $r(t_2) = C$ (см. рис. 2) Тогда на M мы движемся по границе влево-вниз, значит $r(t_1) > C$, поэтому скачок в t_1 нет, ψ непрерывна в этой точке и равна 0 на $[t_1, t_2)$, а φ, как было установлено раньше, есть экспонента на $[t_1, t_2)$.

Если слева от t_1 имеем $\psi = 0$, то и $\varphi = 0$, тогда $\varphi = 0$ и на $[t_1, t_2)$, а тогда там и $\dot{\mu} = -\dot{\psi} = 0$. Если далее $\Delta \mu(t_2) > 0$, то с этого момента $\varphi > 0$, $\psi < 0$, $u = -1$ до конца отрезка, и мы опять не попадаем в 0. Значит, $\Delta \mu(t_2) = 0$, тогда и дальше $\psi = \varphi = 0$, получаем тривиальный набор.

Случай $\psi > 0$ слева от t_1 исключается в силу п. 4. Остается случай, когда слева от t_1 функция $\psi < 0$ и возрастает до нуля, при этом $u = -1$, $\varphi = \text{const} < 0$. Для определенности можно считать $\varphi = -1$. Далее на M имеем $\psi = 0$, поэтому $\dot{\varphi} = -k \varphi$, и значит $\varphi = -e^{-k(t-t_1)}$. Если в точке t_2 скачка нет, то дальше мера отключается, $\varphi = \text{const} < 0$, поэтому $\psi > 0$ и возрастает, $u = +1$. Учитывая, что
Отсюда следует, что если \(C > A \), то в точке \(t_2 \) должен быть скачок \(\Delta \mu(t_2) = \delta > 0 \). Тогда \(\Delta \varphi(t_2) = k\delta \), \(\Delta \psi(t_2) = -\delta \), поэтому справа от \(t_2 \) будет \(\varphi = -e^{-km + k\delta} \), где \(m = t_2 - t_1 \), и тогда в точке переключения \(B \) должно выполняться равенство \(\psi(t_B) = -\delta + (e^{-km} - k\delta) \Delta t = 0 \), откуда

\[
\delta = \frac{(e^{-km} \Delta t)}{(1 + k \Delta t)}.
\]

Для данной траектории величины \(\Delta t \) и \(m \) известны, поэтому величина скачка \(\delta \) определяется однозначно.

Таким образом, для случая \(k > 0 \), \(C \geq A \) мы рассмотрели все возможные случаи расположения множества \(M \), и для каждого случая нашли соответствующие сопряженные переменные и меру, сосредоточенную на множестве контактов траектории с фазовой границей. Отсюда вытекает, что оптимальный синтез здесь следующий.

Случай \(C > A \). В замкнутой области левее параболы \((C', C] \) (включая саму эту параболу) и прямой \(\Gamma \) (включая точки этой прямой \(\leq C \)), оптимальные траектории те же, что и в задаче со свободными фазовыми переменными. В области, ограниченной параболами \((C', C], (E', E] \) и прямой \(\Gamma \), оптимальные траектории с \(u = -1 \) приходят на отрезок \([C, E] \), далее идут вдоль \(\Gamma \) до точки \(C \), в которой мера делает скачок, после чего движение при \(u = -1 \) идет по дуге \([C, B] \), и затем с \(u = 1 \) по дуге \([B, O] \).

Случай \(C = A = B \). В области левее параболы \((C', C] \) и прямой \(\Gamma \), оптимальные траектории те же, что и в свободной задаче. В области, ограниченной параболами \((C', C], (E', E] \) (включая сами эти параболы) и прямой \(\Gamma \), оптимальные траектории приходят на полуотрезок \([C, E] \), далее идут вдоль \(\Gamma \) до точки \(C \), и затем с \(u = 1 \) по дуге \([C, O] \).

В обоих этих случаях для начальных точек, лежащих на полуотрезке \([C, E] \), оптимальные траектории являются "хвостами" оптимальных траекторий, исходящих из некоторых точек вне \(\Gamma \), первый участок движения по которым и состоит в попадании на этот полуотрезок с управлением \(u = -1 \).

4.2 **Случай** \(k > 0 \) и \(C < A \).

Рассуждения пунктов 1–9 здесь по-прежнему остаются в силе. Отличие от случая \(C \geq A \) состоит в том, что здесь двигаться по границе \(\Gamma \) ниже точки \(A \) не имеет смысла, так как в этой точке можно переключиться на \(u = +1 \) и наискорейшим образом прийти в 0 (см. рис 3). Пункт 10 как раз и относится к случаю, когда \(M = [t_1, t_2] \) при \(t_1 < t_2 \) и \(r(t_2) = A \). Это здесь единственный случай, когда мера ненулевая. Отсюда вытекает, что оптимальный синтез здесь следующий.
В области левее параболы $(A', A]$ и прямой Γ (включая эту параболу и прямую) оптимальные траектории те же, что и в свободной задаче. В области между параболами $(A', A], \ (E', E]$ и выше прямой Γ оптимальные траектории с $u = -1$ приходят на полуотрезок $[A, E)$, далее идут вдоль Γ до точки A, и затем с $u = 1$ по дуге $[A, O]$. Для начальных точек, лежащих на полуотрезке $[A, E)$, оптимальные траектории являются "хвостами" оптимальных траекторий, исходящих из некоторых точек вне Γ, первый участок движения по которым и состоит в попадании на этот полуотрезок с управлением $u = -1$. Замкнутое множество, ограниченное параболой $(E', E]$ и прямой Γ, недопустимо.

5 Случай $k < 0$.

Положим $k = -q$, где $q > 0$. Прямая Γ (гранича допустимой фазовой области) задается теперь равенством $y = -qx - b$, а кривая переключения S та же, что и раньше. Здесь возможны три качественно различных случая в зависимости от числа точек, в которых прямая Γ пересекает кривую S: в одной, двух или трех.

5.1 Случай $k < 0$ с тремя точками пересечения

Введем характерные точки для этого случая. Пусть C есть точка касания Γ и некоторой параболы семейства $x = \frac{1}{2} y^2 + \text{const}$ (ясно, что она единственна), F
есть пересечение Γ с кривой S выше точки C, а точка H — пересечение Γ с кривой S ниже точки C (см. Рис. 4).

Рис. 4:

Найдем координаты этих точек. Точка A задается соотношениями $x = \frac{1}{2} y^2$, $y = -(qx + b)$, откуда

$$x = \frac{(1 - bq) - \sqrt{1 - 2bq}}{q^2}, \quad y = -1 + \frac{\sqrt{1 - 2bq}}{q}.$$

Точка C общая для параболы $x = \frac{1}{2} y^2 + m$ и прямой $y = -(qx + b)$, в которой касательная к этой параболе совпадает с данной прямой, т.е. $dx/dy = y = -1/q$. Отсюда

$$y = -\frac{1}{q}, \quad x = \frac{(1 - bq)}{q^2}.$$

Точка H никакой роли играть не будет.

Обозначим через Ω_1 открытую область, ограниченную прямой Γ и левой ветвью линии S; через Ω_2 область, лежащую между левой ветвью линии S и дугой параболы $[F, F']$; через Ω_3 область, ограниченную прямой Γ и параболами $[F, F']$ и $[C, C']$; через Ω_4 область, ограниченную параболами $[C, C']$ и $[C, C'']$; и через Ω_5 область, лежащую между прямой Γ и параболой $[C, C'']$. Границные линии этих областей будем рассматривать как специальные случаи.

Прежде всего, отметим некоторые свойства допустимых траекторий управляемой системы (4) в нашем случае и определим множество начальных допустимых точек.
1) Точки на фазовой границе, лежащие ниже \(C \), недостижимы на траекториях нашей системы. Действительно, здесь всегда \(y < -\frac{1}{q} \), поэтому \((y + qx)^* = u + qy < u - 1 \leq 0 \), т. е. допустимые скорости направлены внутрь запрещенной области, и значит дальнейшее движение из таких точек невозможно.

Нетрудно видеть, что и любые точки из области \(\Omega_5 \) также недопустимы, ибо любое движение из них приводит в точки фазовой границы, лежащие ниже \(C \), поэтому множество начальных допустимых точек \(D \) в нашей задаче состоит из полуплоскости, заданной фазовым ограничением, за вычетом открытой области \(\Omega_5 \). Таким образом, \(D \) — замкнутое множество. Мы, однако, будем сначала считать, что начальная точка \((x(0), y(0)) \) лежит внутри \(D \), а случай граничных точек рассмотрим потом отдельно. Как и в предыдущем случае, по теореме Филиппова для любой начальной позиции из \(D \) существует и оптимальная траектория.

2) Заметим, что для начальных точек, лежащих в области \(\Omega_1 \) и \(\Omega_2 \), включая их границы, оптимальные траектории в свободной задаче, без фазового ограничения, всюду удовлетворяют этому ограничению, поэтому они будут оптимальными и в задаче с фазовым ограничением. Таким образом, остается рассмотреть только области \(\Omega_3 \) и \(\Omega_4 \).

3) Как уже было показано, на фазовую границу можно попадать только выше точки \(C \), и здесь \(\dot{x} = y < 0 \). В частности, двигаться по границе можно лишь влево—вверх, пока сохраняется условие \(y < 0 \). Нам, конечно, достаточно двигаться лишь до точки \(F \), ибо из нее мы уже оптимально попадаем в 0 при постоянном управлении \(u = +1 \).

Если на некотором отрезке времени мы находимся на \(\Gamma \), т. е. \(y(t) = -qx(t) - b \), то \(\dot{y}(t) = -q \dot{x}(t) \), т. е. \(u = -q y \), и в силу ограничения \(|u| \leq 1 \) это может быть лишь при \(y \geq -\frac{1}{q} \). Предельное значение \(y = -\frac{1}{q} \) соответствует точке \(C \). Таким образом, двигаться по границе можно лишь в пределах отрезка \([C, F] \).

5.2 Анализ принципа максимума для случая \(k < 0 \) с тремя точками пересечения

Пусть \((x(t), y(t), u(t)), t \in [0, T] \), есть некоторый оптимальный процесс, выходящий из точки \((x(0), y(0)) \in \Omega_3 \cup \Omega_4 \), не лежащей на \(\Gamma \). Тогда для него выполнен принцип максимума [1]–[3]. Перейдем к его анализу.

4) Если в момент \(t' \) мы на \(\Gamma \), то справа около этого момента не может быть \(\psi < 0 \), иначе там будет \(u = -1 \), и мы пробиваем фазовую границу. Следовательно, \(\psi(t'+0) \geq 0 \). Так как в силу сопряженного уравнения всегда \(\Delta \psi(t') = -\Delta u(t') \leq 0 \), то и \(\psi(t' - 0) \geq 0 \).

5) Если в момент \(t' \) мы на \(\Gamma \) и выше \(C \), то слева около этого момента не может быть \(\psi > 0 \), ибо иначе там будет \(u = +1 \), и мы пришли в данную точку из запрещенной области. Следовательно, \(\psi(t' - 0) \leq 0 \). Тогда с учетом предыдущего
Лемма 3 М связно, т.е. это есть отрезок или точка: $M = [t_1, t_2]$.

Доказательство. Допустим, что M не связно, т.е. существуют точки $t' < t''$ из M, такие что на интервале $\omega = (t', t'')$ мы вне Γ. Тогда $\mu = 0$ на ω, значит $\varphi = \text{const}$, а ψ — линейная функция. Согласно п.4, $\psi(t' + 0) \geq 0$ и $\psi(t'' + 0) \geq 0$. Если $\psi > 0$ на ω, то $u = +1$ и мы не вернемся на Γ в момент t''. Поэтому $\psi = 0$ на ω.

Таким образом, на любом интервале $\omega \subset [t_1, t_2]$, где мы вне Γ, имеем $\psi = 0$ (а тогда в силу системы и $\varphi = 0$). Отсюда следует, что если на некотором интервале из $[t_1, t_2]$ выполнено $\psi > 0$, то на этом интервале мы на Γ.

Мы утверждаем, что $\psi = 0$ на всем полуинтервале $(t_1, t_2]$. Действительно, пусть $\psi(t_1) > 0$ в некоторой точке своей непрерывности $t_1 \in (t_1, t_2)$. Тогда в окрестности этой точки $\psi > 0$, и значит мы на Γ, при этом $u = +1$. Но с таким управлением держаться на Γ невозможно. Следовательно, $\psi(t) = 0$ во всех точках своей непрерывности из (t_1, t_2), а значит и всюду на этом интервале.

В точке t_2 имеем $\psi(t_2 - 0) = 0$, и $\psi(t_2 + 0) \geq 0$ а так как $\Delta\psi(t_2) \leq 0$, то $\psi(t_2 + 0) = 0$, значит ψ непрерывна в t_2, и $\psi(t_2) = 0$. Правее этой точки $\mu = 0$, поэтому там по-прежнему $\psi = 0$, так что $\psi = 0$ на полуинтервале $(t_1, T]$.

Тогда на этом полуинтервале $\dot{\psi} = -(\varphi + \mu) = 0$, откуда $\varphi = -\mu \leq 0$ и $\varphi = q\varphi$, т.е. φ есть экспонента. Последовательно, $\varphi = 0$ на ω, то $\varphi = 0$ и на всем полуинтервале $(t_1, T]$.

Посмотрим, что происходит левее t_1. Если $\Delta\mu(t_1) = 0$, то $\psi = \varphi = 0$ и левее t_1, т.е. на всем отрезке $[0, T]$, а это тривиальный набор. Значит $\Delta\mu(t_1) > 0$, тогда $\Delta\varphi(t_1) < 0$, $\Delta\psi(t_1) < 0$, и на участке $[0, t_1]$ имеем $\varphi = \text{const} > 0$, $\psi = -\varphi < 0$, так что $\psi > 0$ и убывает до значения $\psi(t_1 - 0) > 0$, при этом $u = +1$, и значит, начальная точка лежит на параболе $[C, C'']$ правее точки C, что мы исключили пока из рассмотрения.

Из этих рассуждений следует, что интервала $\omega = (t', t'')$ с указанными свойствами быть не может, и значит $M = [t_1, t_2]$. Лемма доказана. □

7) Если $t_1 < t_2$, то на (t_1, t_2) согласно п. 4 $u = -qy > 0$, т.е. мы движемся влево-вверх, значит $|y| < 1/q$, поэтому $|u| < 1$, и в силу $\psi = 0$. Тогда $\dot{\psi} = -(\varphi + \mu) = 0$, поэтому $\varphi = -\mu$, и $\varphi = q\varphi$, т.е. $\varphi = -\mu$ есть экспонента на (t_1, t_2).

\[\Delta\psi(t') \geq 0, \text{ и значит } \Delta\psi(t') = 0, \text{ скачка меры нет, и } \psi(t') = 0. \text{ Таким образом, в этом случае } \psi \text{ и } \varphi \text{ непрерывны в } t', \text{ а скачок меры возможен только в точке } C.\]
Может ли быть \(\dot{\mu} = 0 \) на \((t_1, t_2)\)? В этом случае, повторяя рассуждения п. 6, получаем \(\psi = \varphi = 0 \) на полунтервале \((t_1, T]\). Далее, случай \(\Delta \mu(t_1) = 0 \) приводит к тривиальному набору, а в случае \(\Delta \mu(t_1) > 0 \) начальная точка лежит на параболе \([C, C''\rangle\), исключенной из рассмотрения.

Таким образом, если \(t_1 < t_2 \), то \(\dot{\mu} > 0 \) на \((t_1, t_2)\) и это есть экспонента.

Рассмотрим теперь все возможные случаи расположения множества \(M \).

8) Может ли быть \(M = \{t_\ast\} \) (касание границы в одной точке) при \(r(t_\ast) < F \)? Если к тому же \(r(t_\ast) > C \), то как мы знаем, скачка меры здесь нет, \(\dot{\mu} \equiv 0 \), поэтому движение такое же, как и без фазового ограничения, т.е. по параболам. Так как \(r(t_\ast) < F \), то в окрестности этой точки \(u = -1 \), и при выходе из неё мы пробиваем границу. Следовательно, в точке \(r(t_\ast) \) должен быть скачок меры, а это возможно только при \(r(t_\ast) = C \).

В этом случае, так как слева и справа от \(t_\ast \) мера не работает, функция \(\psi \) линейная (с разными коэффициентами), и поскольку \(\psi(t_\ast + 0) \geq 0 \), справа от \(t_\ast \) либо всюду \(\psi > 0 \) и тогда \(u = +1 \), либо \(\psi \) меняет знак с плюса на минус и тогда \(u = +1, -1 \). (Случай, когда \(\psi < 0 \) справа около \(t_\ast \) исключается, ибо тогда мы пробиваем границу.) В обоих этих случаях, как легко видеть, мы можем попасть в 0, так что они тоже исключаются.

Итак, множество \(M \) может состоять из одной точки лишь в случае, когда эта точка есть \(F \), и согласно п. 5, скачка меры здесь нет. Тогда мы имеем траекторию свободной задачи, которая лишь случайно коснулась фазовой границы.

9) Может ли быть \(M = [t_1, t_2] \) при \(t_1 < t_2 \) и \(r(t_1) > C \)? В этом случае скачков меры нет нигде, и на \(M \) согласно п. 9 имеем \(|u| < 1 \), \(\psi = 0 \), \(\dot{\mu} = -\varphi \) есть положительная экспонента. Правее \(t_2 \) имеем \(\varphi = \text{const} < 0 \), тогда \(\dot{\psi} = -\varphi > 0 \), поэтому всё время \(\psi > 0 \), \(u = 1 \) без переключения, и тогда попасть в ноль можно только при \(r(t_2) = F \). Таким образом, отрезок выхода на фазовую границу всегда кончается в точке \(F \).

На начальном отрезке \([0, t_1]\) также имеем \(\varphi = \text{const} < 0 \) и \(\dot{\psi} = -\varphi > 0 \), поэтому \(\psi < 0 \) и растет до значения \(\psi(t_1) = 0 \), при этом \(u = -1 \). Такие траектории соответствуют начальным значениям из области \(\Omega_3 \).

10) Наконец, пусть \(M = [t_1, t_2] \), где \(t_1 < t_2 \), \(r(t_1) = C \) и \(r(t_2) = F \). Тогда на \(M \), как и прежде, \(\psi = 0 \), \(\dot{\mu} = -\varphi \) есть положительная экспонента, и далее \(\psi > 0 \), \(u = +1 \) без переключения.

Если \(\Delta \mu(t_1) = 0 \), то слева от \(t_1 \) имеем \(\varphi = \text{const} < 0 \) и, как и выше, \(\dot{\psi} = -\varphi > 0 \), так что \(\psi < 0 \) и растет до значения \(\psi(t_1) = 0 \), при этом \(u = -1 \). Это соответствует траекториям, начинаящимся на параболе \([C, C''\rangle\), разделяющей области \(\Omega_3 \) и \(\Omega_4 \).

Если же \(\Delta \mu(t_1) > 0 \), то \(\Delta \psi(t_1) < 0 \), и значит \(\psi(t_1 - 0) > 0 \). При этом либо \(\psi > 0 \) всюду левее \(t_1 \), либо \(\psi \) меняет знак с минуса на плюс. Первый случай соответствует траекториям, начинаящимся правее точки \(C \) на параболе \([C, C''\rangle\),
ограничивающей снизу область Ω_4, а второй — траекториям, начинающимся в
самой этой области и с управлением $u = -1$ приходящим на параболу $[C, C'']$.
В этом втором случае величина скачка меры в точке t_1 при любой нормировке
пары функций (φ, ψ) однозначно определяется временем движения из начальной
точки до параболы $[C, C'']$.

11) Как мы обещали, рассмотрим отдельно случай "граничных" траекторий,
начинающихся на параболе $[C, C'']$ правые точки C, идущих с управлением $u =
+1$ вдоль этой параболы до точки C, затем по прямой Γ до точки E, и далее с
управлением $u = +1$ по кривой S до нуля.

Если для такой траектории $\Delta \mu(t_1) = 0$, то как мы видели, $\psi \equiv \varphi \equiv 0$, про-
тиворечие. Поэтому $\Delta \mu(t_1) > 0$, и можно принять нормировку $\Delta \mu(t_1) = 1$. То-
гда $\Delta \psi(t_1) = -1$, и значит $\psi(t_1 - 0) = 1$ (поскольку $\psi = 0$ на M). При этом
$\Delta \varphi(t_1) = -q$, и так как на M у нас $\varphi = -\mu \leq 0$, то $\varphi(t_1 + 0) = \varphi(t_1 - 0) - q \leq 0$,
откуда $\varphi_1 := \varphi(t_1 - 0) \leq q$. Итак, левее t_1 имеем $\varphi \equiv \varphi_1 \leq q$, и при этом
$\psi(0) = 1 + \varphi_1 t_1$. Поскольку на начальном участке нашей траектории $u = +1$, то
на этом участке не может быть $\psi < 0$, поэтому $\psi(0) = 1 + \varphi_1 t_1 \geq 0$. Правее t_2,
как и прежде, мера отключается, $\psi > 0$ и $u = +1$. Таким образом, значение φ_1
определяется неоднозначно: оно лишь ограничено неравенствами $-1/t_1 \leq \varphi_1 \leq q$.
В предельном случае $\varphi_1 = q$ получаем $\psi = 1 + q(t_1 - t)$ левее t_1 , и затем $\varphi = \psi = 0$
на всем участке $(t_1, T]$. Это как раз тот вырожденный случай, который был описа-
н в доказательстве леммы.

Таким образом, случай $k < 0$ с тремя точками пересечения полностью рассмотрен. Оптимальный синтез здесь таков. Из точек множества Ω_1 траектория идет с управлением $u = +1$ до левой ветви кривой S, и затем с управлением
$u = -1$ до начала координат. Из множества Ω_2 траектория идет с управлением
$u = -1$ до правой ветви кривой S, и затем с управлением $u = +1$ до начала координат.
Из множества Ω_3 движемся с управлением $u = -1$ до отрезка $[F, C]$ фазовой границы, затем влево — вверх вдоль этого отрезка до точки F, после чего с управлением
$u = +1$ приходим в начало координат. Наконец, Из множества Ω_4 движемся с управлением $u = -1$ до параболы $[C, C'']$, затем вдоль этой параболы с управлением
$u = +1$ до точки C, далее вдоль отрезка $[C, F]$ фазовой границы, в точке F переключаемся на $u = +1$ и приходим в начало координат.

5.3 Случай $k < 0$ с двумя точками пересечения
Введем характерные точки для этого случая. Пусть C есть точка касания Γ и
верхней ветви линии переключения S (ясно, что она единственна) (см. Рис.5).

Обозначим через W_1 открытую область, ограниченную прямой Γ и левой ветвью
линии S; через W_2 область, лежащую правее и выше линии S и левее пара-
Рис. 5:

болы $[C, C']$; через W_3 область, лежащую правее параболы $[C, C']$ и параболы $[C, C'']$; и через W_4 область, лежащую между прямой Γ и параболой $[C, C'']$.

Этот случай есть предел предыдущего случая с тремя точками пересечения, когда граничный отрезок $[C, E]$ сужается до одной точки C. Здесь множество $\overline{W_1}$ есть предел множества $\overline{\Omega_1}$ (в некотором естественном смысле, который мы здесь не формализуем), множество $\overline{W_2}$ — предел множества $\overline{\Omega_2 \cap \Omega_3 \cap \Omega_4}$, а множество $\overline{W_3}$ — предел множества $\overline{\Omega_5}$.

Как и прежде, здесь справедливы следующие свойства допустимых траекторий.

1) Точки на фазовой границе, лежащие ниже C, недоступны на траекториях нашей системы. Любые точки из области W_4 также недопустимы, ибо любое движение из них приводит к точке фазовой границы, лежащей ниже C. Таким образом, множество начальных допустимых точек D в нашей задаче замкнуто, оно состоит из полуплоскости $y \geq kx - b$ за вычетом области W_4.

2) Для начальных точек, лежащих в областях W_1, W_3 и W_3, включая их границы, оптимальные траектории свободной задачи всюду удовлетворяют фазовому ограничению, поэтому они будут оптимальными и в задаче с этим ограничением.

Таким образом, оптимальный синтез в данном случае есть "обрезка" свободного синтеза по линии, составленной из фазовой границы Γ и ветви параболы $[C, C']$. 17
5.4 Случай $k < 0$ с одной точкой пересечения

Здесь характерной точкой является точка C касания прямой Γ и некоторой параболы семейства $x = \frac{1}{2}y^2 + \text{const}$ (ясно, что она единственна) (см. Рис. 6).

Обозначим через Q_1 открытую область, ограниченную прямой Γ, линией S и параболой $[C,C']$, через Q_2 — область, лежащую правее и выше прямой Γ и линии S, и через Q_3 — область между прямой Γ и параболой $[C,C']$.

![Diagram](image)

Рис. 6:

В этом случае по-прежнему точки, лежащие на фазовой границе ниже C, как и точки из области Q_3, недостижимы на траекториях нашей системы. Таким образом, множество начальных допустимых точек D замкнуто, оно состоит из полуплоскости, заданной фазовым ограничением, за вычетом области Q_3.

Для начальных точек, лежащих в области Q_1 и Q_2, включая их границы, оптимальные траектории свободной задачи всюду удовлетворяют фазовому ограничению, поэтому они будут оптимальными и в задаче с этим ограничением.

Таким образом, синтез в данном случае есть "обрезка" свободного синтеза по линии, составленной из фазовой границы Γ и ветви параболы $[C,C']$.
Список литературы

[1] Л.С. Понтрягин, В.Г. Болтянский, Р.В. Гамкрелидзе, Е.Ф. Мищенко. Математическая теория оптимальных процессов. – М., Наука, 1969.

[2] А.Я. Дубовицкий, А.А. Милушин. Задачи на экстремум при наличии ограничений // ЖВМ и МФ – 1965 – т. 5, № 3 – с. 395–453.

[3] А.Д. Иоффе, В.М. Тихомиров. Теория экстремальных задач. – М., Наука, 1974.

[4] А.А. Милушин, А.В. Дмитрук, Н.П. Осмоловский. Принцип максимума в оптимальном управлении. – Изд-во мехмата МГУ – 2004 – 168 с.

[5] A.V. Dmitruk. On the development of Pontryagin’s Maximum principle in the works of A.Ya. Dubovitskii and A.A. Milyutin // Control & Cybernetics, 2009, v. 38, no. 4a, p. 923–958.

Случай $k > 0$ рассмотрен А.В. Дмитруком. Его исследование выполнено за счет гранта Российского научного фонда (проект № 20-11-20169) в Математическом институте им. В.А. Стеклова Российской академии наук.

Случай $k < 0$ рассмотрен И.А. Самыловским. Его исследование выполнено за счет гранта Российского научного фонда (проект № 19-71-00103) в Московском государственном университете им. М.В. Ломоносова, факультет космических исследований.

Дмитрук Андрей Венедиктович: vraimax@mail.ru.
Самыловский Иван Александрович: ivan.samylovski@cosmos.msu.ru.