Solving the Persistent Phylogeny Problem in polynomial time

Paola Bonizzoni∗ Gianluca Della Vedova∗ Gabriella Trucco†

November 2nd, 2016

Abstract

The notion of a Persistent Phylogeny generalizes the well-known Perfect phylogeny model that has been thoroughly investigated and is used to explain a wide range of evolutionary phenomena. More precisely, while the Perfect Phylogeny model allows each character to be acquired once in the entire evolutionary history while character losses are not allowed, the Persistent Phylogeny model allows each character to be both acquired and lost exactly once in the evolutionary history. The Persistent Phylogeny Problem (PPP) is the problem of reconstructing a Persistent phylogeny tree, if it exists, from a binary matrix where the rows represent the species (or the individuals) studied and the columns represent the characters that each species can have.

While the Perfect Phylogeny has a linear-time algorithm, the computational complexity of PPP has been posed, albeit in an equivalent formulation, 20 years ago. We settle the question by providing a polynomial time algorithm for the Persistent Phylogeny problem.

1 Introduction

The problem of reconstructing an evolutionary history from characters is a classical topic in computational biology [29,30]. The instance of the problem consists of a matrix M where the rows correspond to species (or individuals/taxa) and columns correspond to characters. Moreover, each entry $M[s,c]$ is the state of species s and character c. Notice that each character can be phenotypical (i.e., a species has wings) or genotypical (a cell has a certain mutation). A phylogeny is a tree T where each input species is a node, a character c can be gained or lost in each edge of T: how a character can be gained or lost in the tree T is called the evolution model.

There is a contrast between different evolution models, as more restrictive models — such as the Perfect Phylogeny — are more informative, but are unable to give a tree consistent with all possible input matrices. On the other hand, more general models, such as Camin-Sokal [10] and Dollo [27] are always able to produce a tree consistent with the input matrix, but such tree might not be informative on the actual evolutionary history.

In this paper we will focus on binary characters, that is the state 0 means that a species does not have a character, while the state 1 means that a species has a character. Each edge represents a change of state for some characters during the evolution of the ancestral taxa: a change from 0 to 1 is the gain of a character, while a change from 1 to 0 is the loss of a character. Two main general models have been introduced in the literature to describe character-based evolutions of taxa: the Camin-Sokal [10] and the Dollo [27] model.

The Camin-Sokal model assumes that each character may change state from 0 to 1 several times, but no change from 1 to 0 state is allowed. Differently, in the Dollo model, characters may change state from 0 to 1 only once in the tree, but they may change state from 1 to 0 multiple times. The Dollo model appears appropriate for reconstructing the evolution of genes in eukaryotic
organisms, mainly the gain and loss of genes modeled as change to 1 and to 0 respectively in the taxa. Indeed, while multiple gains of the same gene in different lineages is improbable, multiple losses of a gene are more common [27]. The model recently gained a lot of interest in the context of reconstructing the clonal evolution in tumors due to mutation events taking into account copy number aberrations [23]. In this context characters are mutations that are gained or lost during the clonal evolution. It is assumed that a given mutation is acquired at most once in the tree, but it may be lost due to the loss of genes related to deletion events.

From the algorithmic point of view, the Dollo model has a trivial decision problem — given a matrix M, there is always a tree T consistent with M — and an NP-complete optimization problem — find a tree T consistent with M and minimizing the number of changes of state.

At the other end of the spectrum lies the Perfect Phylogeny Problem [18] which is likely the most restrictive possible model: each character is acquired exactly once in the tree T and is never lost. Despite its relative simplicity, the Perfect Phylogeny model has found several applications in Biology [2][12][14] and Linguistics [26]. Moreover the Perfect Phylogeny has been extensively studied from a computational point of view, starting from the seminal linear-time algorithm [17] for binary matrices, and going on with the NP-completeness for the general case of unbounded number of states [4], and the polynomial-time algorithms for any constant number of states [1][20]. Moreover, the algorithmic properties of some variants of the Perfect Phylogeny have been recently studied [3][21][22] restricting the possible state transitions or the topology of the tree. Another result that is especially relevant for our paper is a polynomial-time algorithm for computing the Directed Perfect Phylogeny with Missing Data [24], where a first reframing of Perfect Phylogeny as a graph problem.

Still, some biological problems require a more general model than the Perfect Phylogeny model, but need an efficient algorithm to compute an informative tree [13]. In this direction, the notion of a persistent character have been proposed in [25] and later studied [5][8]: a persistent character can change state from 0 to 1 at most once during the evolution then change state from one to zero, again at most once in the entire tree. The computational problem of constructing a persistent phylogeny, albeit in a different context, has been introduced at least as early as 1996 [16], where it takes the name of $(1,2)$-phylogeny and the open problem of determining its computational complexity has been stated.

Recently some algorithms for the PPP have been introduced: more precisely, an algorithm whose time complexity is polynomial in the number of taxa, but exponential in the number of characters [5], and an integer linear programming solution [19]. The ILP formulation uses a reformulation of the PPP as the problem of completing a matrix M_e obtained by doubling columns of the input matrix M of the PPP problem (i.e. adding a persistent copy of the character) and posing as unknown the state of characters that may be persistent — those characters that have entry 0 in matrix M. In [5][7] the PPP problem is restated as a colored graph problem. In this paper we use this graph framework to design a polynomial time algorithm that solves the PPP problem, settling the question of [16]. An implementation of our algorithm is available at http://www.algolab.eu/persistent-phylogeny.

2 Preliminaries

The input of the PPP problem is an $n \times m$ binary matrix M whose columns are associated with the set $C = \{c_1, \ldots, c_m\}$ of characters and whose rows are associated with the set $S = \{s_1, \ldots, s_n\}$ of taxa also called species in the paper. Then $M[s, c] = 1$ if and only if the species s has character c, otherwise $M[s, c] = 0$.

The character c is gained in the only edge where its state goes from 0 to 1 or, more formally, in the edge (x, y) such that y is a child of x and c has state 0 in x and state 1 in y. In this case the edge (x, y) is labeled by c^+. Conversely, c is lost in the edge (x, y) if y is a child of x and character c has state 1 in x and state 0 in y. In the latter case the edge (x, y) is labeled by $c^−$. For each character c, we allow at most one edge labeled by $c^−$ [5][31]. Each character c^+ and $d^−$ is called a signed character.
Let c be an unsigned character and let M be an instance of the PPP problem. Then $S(c)$ is the set of species that have the character c, that is the set \{ $s \in S : M[s,c] = 1$ \}. Given two characters c_1 and c_2, we will say that c_1 includes c_2 if $S(c_1) \supseteq S(c_2)$. Then a character c of M is maximal in M if $S(c) \not\subseteq S(c')$ for any character c' of M. Moreover, two characters c,c' overlap if they share a common species but neither is included in the other. We now introduce the definition of Persistent Phylogeny used in the paper [7].

Definition 1 (Persistent Phylogeny). Let M be an $n \times m$ binary matrix over a set s of species and a set n of characters. Let A be a subset of its characters, called **active** characters. Then a persistent phylogeny, in short *p-pp*, for the pair (M, A) is a rooted tree T such that:

1. each node x of T is labeled by a vector $l_x \in \{0, 1\}$ of length m;
2. the root r of T is labeled by a vector l_r such that $l_r(j) = 1$ if and only if $c_j \in A$, while for each node x of T the value $l_x[j] \in \{0, 1\}$ represents the state of character c_j in the node x;
3. each edge $e = (v, w)$ is labeled by a character,
4. for each character c_j there are at most two edges $e = (x, y)$ and $e' = (u, v)$ such that $l_x[j] \neq l_y[j]$ and $l_u[j] \neq l_v[j]$ (representing a change in the state of c_j).
5. for each row x of M there exists a node x of T labeled by row x and such that vector l_x is equal to the row x.

Let A is also called **active set** of matrix M and we say that the matrix M is solved by tree T.

Observe that the definition of persistent phylogeny allows the internal nodes of T to be labeled by species. The definition given in [5] corresponds to the case the set A is empty, i.e. the root of a tree T is labeled by the length m zero vector.

The above generalization allows to consider persistent phylogenies where the root state is not the zero vector. This fact is relevant when considering subtrees of the phylogenies as solutions of the same problem on subinstances of the input. Indeed, notice that subtrees of the tree solving the instance M have roots that are not labeled by the zero vector.

If there exists an edge of T labeled c^-, then the character c is called **persistent** in T. Moreover, for each character $c \in A$ only the edge labeled c^- might appear in the phylogeny.

A special case, called **perfect phylogeny**, is when no character of T is ever lost.

Definition 2 (Perfect Phylogeny). A persistent phylogeny T is a perfect phylogeny if there are no persistent characters in tree T.

Since no two edges share the same label of T, we might use the label to identify and denote an edge.

Given a tree T and a node x, we say that a character c occurs below node x if c labels an edge of a path from node x to a leaf node of tree T. Similarly, we say that a node v occurs below node x if v is along a path from node x to a leaf of tree T. Moreover, we will say that the character c is above the node x if there is an edge of the path from x to the root that is labeled by c.

2.1 The red-black graph and conflicting characters

In this paper, our algorithm is based on a graph called the red-black graph and denoted by G_{RB}. Red-black graphs provide an equivalent representation of matrices that are solved by persistent phylogenies [5,7]. Moreover, the iterative construction or visit of a tree can be restated as applying specific graph operations to the red-black graph. In this section we recall the main results that we use in our algorithm. A connected component is called **nontrivial** if it has more than one vertex.
Figure 1: Instance of the Persistent Persistent Phylogeny problem where the set of active characters is $A = \{c_4\}$.

\[
\begin{array}{l|cccccccc}
&M & c_1 & c_2 & c_3 & c_4 & c_5 & c_6 & c_7 & c_8 \\
\hline
s_1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
s_2 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
s_3 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
s_4 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
s_5 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
s_6 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Figure 2: Red-black graph associated with the matrix in Figure 1 and with set $A = \{c_4\}$ of active characters.

Definition 3 (Red-black graph). A **red-black graph** on a set S of species and a set C of characters, denoted by G_{RB}, is a bipartite graph whose vertex set is $S \cup C$.

Moreover each character $c \in C$ is incident only on black edges (in this case c is **inactive**), or it is incident only on red edges (in this case c is **active**).

Given A an empty set of active characters and M an instance of PPP, the red-black **associated with** M is the graph $G_{RB} = (S \cup C, E)$ that has black edges given by set $E = \{(s, c) : s \in S, c \in C, M[s,c] = 1\}$.

Conversely, given a red-black graph, the following definition of a matrix associated with a red-black graph justifies our use of red-black graphs in place of binary matrices.

Given a red-black graph $G_{RB} = (S \cup C, E)$, the matrix M **associated with** G_{RB} has species S and characters C and active set A given by the characters in C with incident red edges. Moreover $M[s,c] = 1$ iff (1) (s, c) is a black edge of G_{RB}, or (2) c is active and (s, c) is not an edge of G_{RB}.

In this paper we use extensively the following notion.

Definition 4 (Persistent phylogeny for G_{RB}). Let G_{RB} be a red-black graph with active characters A. Let M be the matrix associated with G_{RB}. Then the persistent phylogeny for G_{RB} is the persistent phylogeny for the pair (M, A).

If T is a persistent phylogeny for G_{RB} we also say that G_{RB} is solved by tree T. We recall that, given a vertex v of a graph G, the **neighborhood** of v is the set of vertices of G that are adjacent to v, and it is denoted by $N(v)$ [11]. In a previous paper [7] it has been proved that given a persistent phylogeny T solving red-black graph G_{RB}, then T can be related to a sequence of graph operations on graph G_{RB} which are described in the following definition.

Definition 5 (Realization). Let G_{RB} be a red-black graph, and let c be a character of G_{RB}. Let $D(c)$ be the set of species in the connected component of G_{RB} that contains c. The result of the
realization of c^+ on G_{RB}, which is defined only if c is inactive, is a red-black graph obtained from G_{RB} by adding a red edge between c and each species in $D(c) \setminus N(c)$, deleting all black edges incident on c, and finally deleting all isolated vertices. The realization of c^- on G_{RB} is defined only if c is active and there is no species in $D(c) \setminus N(c)$: in this case the results of the realization is obtained from G_{RB} by deleting all edges incident on c, and then deleting all isolated vertices.

The realization of a species s is the realization of its set $C(s)$ of characters in any order. An active character c that is connected to all species of a graph G_{RB} by red edges is called free in G_{RB} and it is then deleted from G_{RB}.

The main relationship between a graph G_{RB} and the tree solving G_{RB} is given by the notion of c-reduction stated in [3]. A c-reduction R is a sequence of positive characters. A c-reduction R is feasible for G_{RB} if the realization of each character in the sequence R one after the other is defined and the realization of a negative character c^- must be applied whenever c^- is free in G_{RB}.

Clearly a c-reduction also represents a sequence of graph operations on G_{RB}. Then the application of a feasible c-reduction $R = (c^+_1, \ldots, c^+_l)$ to red-black graph G_{RB} is the graph G_{RB}' obtained as follows: G_{RB}' is the red-black graph G_{RB}, while, when $i > 0$, G_{RB}^{i-1} is obtained from G_{RB}^{i-1} by realizing the character c^+_i and, eventually all previous characters c^+_l, for $1 \leq l < i$ such that c^+_i is free after the realization of c^+_l. Then the extended c-reduction of R is the sequence c^+_l, c^+_l, c^+_i. For example, the c-reduction (c^+_2, c^+_3, c^+_4) corresponds to the extended c-reduction $c^+_2, c^+_2, c^+_3, c^+_4$, since the character c_4 becomes free after the realization of c^+_2 (see Figure 6 for the corresponding red-black graph).

The following fact that we use in the paper is stated and proved in [7]. A tree traversal of T is a sequence of the nodes of T where each node appears exactly once [28] and has the additional properties that a node always precedes all of its descendants.

Proposition 6 (Successful reduction). A tree traversal of the positive characters of a tree T solving a graph G_{RB} is a c-reduction R that is feasible for G_{RB} and its application to G_{RB} results in an empty graph. Then R is called a successful reduction for G_{RB}.

In [7] it has been proved that given a red-black graph G_{RB} and a successful reduction R, there exists a polynomial time algorithm that computes a persistent phylogeny solving G_{RB}.

Based on Proposition 4, we observe that a successful reduction for a red-black graph G_{RB} can be characterized using the notion of red Σ-graph: this is a path of length four induced in G_{RB} by a pair c_1 and c_2 of active characters and by three species s_1 and s_2 and s_3. Observe that c_1 and c_2 cannot be free in the red-black graph as they cannot be connected to all species of the red-black graph by red edges and thus c_1^- and c_2^- cannot be realized. Consequently, a red-black graph containing a red Σ-graph cannot be reduced to an empty graph by a c-reduction.

Now, the notion of conflicting characters is used to detect candidate pairs of characters that may induce a red Σ-graph. Let M be a binary matrix and let c_1, c_2 be two characters of M. Then the configurations induced by the pair (c_1, c_2) in M is the set of ordered pairs $(M[s, c_1], M[s, c_2])$ over all species. Two characters c_1 and c_2 of M are conflicting if and only if the configurations induced by such pair of columns is the set of all possible pairs $(0, 1), (1, 1), (1, 0)$ and $(0, 0)$.

We say that characters c, c' in graph G_{RB} are conflicting if they are conflicting in the matrix associated with G_{RB}. Then graph G_{RB} contains a conflict if it has a conflicting pair of characters.

The following two main observations [28] and Lemma [28] will be used in the next sections and are crucial in the polynomial time algorithm for computing a successful reduction for the red-black graph.

Observation 7. A c-reduction R for graph G_{RB} is successful if and only if R includes all characters of the graph and each graph G_{RB_i} obtained after the realization of the first i-characters of sequence of R does not contain red Σ-graphs.

Another important observation used in the paper and easy to prove by the definition of realization of a character is the following.
Observation 8. A red-black graph consisting of k distinct components has a successful reduction R if and only if each component G_{RB_i} has a successful reduction R_i. Then R consists of any concatenation of the k sequences R_i.

Lemma 9. Let G_{RB} be a red-black graph solved by T. If G_{RB} is connected then the root r of T has only one child.

We will assume that the instances of the PPP problem do not contain any free, null or universal characters (a null character is an isolated vertex of the red-black graph, while a universal character is adjacent to all species of the red-black graph by black edges -), or a null species (a species that possesses no characters). Notice that the removal of null characters does not modify the phylogeny, while a null species can only be associated to the root of the phylogeny. Removing a universal character trivially consists of fixing the first character of a c-reduction or, equivalently, determining the label of a topmost edge of the phylogeny. Moreover, we will assume that the instances of the PPP problem do not have two identical columns.

A reducible red-black graph G_{RB} is an instance of the PPP problem that admits a successful reduction, i.e. it is solved by a persistent phylogeny, and G_{RB} is a connected graph.

2.2 Maximal reducible graphs

The red-black graph induced in G_{RB} by a set C' of characters, denoted as $G_{RB}|C'$, consists of the subgraph G_{RB}' of G_{RB} induced by the set all characters in C' and the species of G_{RB} that are adjacent to C'.

Given a red-black graph G_{RB} and its associated matrix M, then a character c of G_{RB} is maximal in G_{RB} if it is maximal among the inactive characters of M. Then we denote by C_M the set of maximal characters for a red-black graph G_{RB}.

A maximal reducible graph consists of a reducible red-black graph whose characters are all maximal and inactive in the graph. Then $G_{RB}|C_M$ is the maximal reducible graph induced by C_M in graph G_{RB}. In the paper we denote by G_M a maximal reducible graph and by T_M a tree solving a maximal reducible graph.

Given a tree T, a path π of the tree is simple if it consists of internal nodes of outdegree and indegree one.

2.3 The Hasse diagram

Our polynomial time algorithm for solving the PPP problem computes a successful reduction of a red-black graph G_{RB} associated to the input matrix M in polynomial time, if it exists. Then the algorithm in [7] can be used to build a tree T from the successful reduction. The computation of a successful reduction for G_{RB} is done by computing the Hasse diagram \mathcal{P} of its maximal reducible graph G_M obtained as the restriction $G_{RB}|C_M$, where C_M is the set of maximal characters of G_{RB}. In the following, given s a species, by $C(s)$ we denote the set of characters of s.

Definition 10 (Hasse diagram for a maximal reducible graph). Let G_M be a maximal reducible graph. Then the diagram \mathcal{P} for G_M is the Hasse diagram for the poset (P_s, \leq) of all species of G_M ordered by the relation \leq, where $s_1 \leq s_2$ if $C(s_1) \subseteq C(s_2)$.

Given (P_s, \leq) the poset of all inactive species of a red-black, we consider the representation of the poset (P_s, \leq) by its Hasse diagram (or simply diagram), represented by a directed acyclic graph \mathcal{P} [9]. More precisely, two species s_1 and s_2 are connected by the arc (s_1, s_2) if $s_1 < s_2$ and there does not exist a species s_3 such that $s_1 < s_3 < s_2$. The definition of \mathcal{P} can be immediately translated into a polynomial time construction algorithm [9]. The main notions that we use in the following related to a diagram \mathcal{P} are those of source, sink and chain. A source is a node of indegree 0 and a sink a node of out-degree 0. In particular, a chain of \mathcal{P} is a direct path of \mathcal{P} from a source to a sink of \mathcal{P}. Observe that each edge (s_i, s_{i+1}) of diagram \mathcal{P} is labeled by the set of positive characters that are in $C(s_{i+1})$ and not in $C(s_i)$. A chain is trivial if it consists of a
singleton in the diagram. Thus a diagram P consisting only of trivial chains is called degenerate. Given a chain C of the diagram P for a graph G_M, we associate to it a c-reduction.

Definition 11 (c-reduction of a chain). The c-reduction of the chain $C = <s_1, s_2, \ldots, s_k>$ of the diagram P for a graph G_M is the sequence of characters of s_1 and those labeling the arcs (s_i, s_{i+1}) for $1 \leq i \leq k-1$.

The following two notions of safe chain and safe source are crucial for building our algorithm. Observe that the notion of safe chain is related to a maximal reducible graph $G_{RB}|C_M$ while the notion of safe source is related to a reducible graph G_{RB}. Some examples are in the Appendix as Figures 7 and 8.

Definition 12 (safe chain). Let G_M be a maximal reducible red-black graph, let P be the diagram for G_M, and let C be a chain of P. Then C is safe if the c-reduction $S(C)$ of C is feasible for the graph G_M and applying $S(C)$ to G_M results in a graph that has no red Σ-graph.

Definition 13 (safe source). Let G_{RB} be a red-black graph, let P be the diagram for $G_{RB}|C_M$. A source s of a chain C of diagram P is safe for G_{RB} if the realization of s in G_{RB} does not induce red Σ-graphs in G_{RB}.

2.4 The algorithm

The polynomial time algorithm for finding a successful reduction of a graph G_{RB} starts with the detection in the graph of universal or free characters, which must be realized as the first characters in the graph.

Then the algorithm applies observation 8 if G_{RB} is disconnected then we decompose a red-black graph into its connected components, solve recursively each component separately, and finally concatenate all successful reduction computed. Therefore we focus only on instances corresponding to connected red-black graphs.

By Lemma 9 any tree T solving a connected G_{RB} has a unique child of the root r. Moreover a direct consequence of the definition of maximal character in G_{RB} is that the edge incident to r is labeled by at least a maximal character.

Clearly, given C_M, the set of maximal characters of G_{RB}, the tree T contains a solution T_M for the subgraph $G_{RB}|C_M$ where T_M is obtained from T by contracting all edges that are not labeled by characters in C_M. The first main results of our paper is that the tree T_M has a very specific topology that is strictly related to the one of all other possible solutions for $G_{RB}|C_M$ and this form is computed from the Hasse diagram P for $G_{RB}|C_M$. More precisely, if P is not degenerate then there are at most two trees T_1, T_2 solving $G_{RB}|C_M$: in this case T_2 is obtained from T_1 by reversing a path form an internal node to a leaf of T_1. If P is degenerate, then there can be multiple solutions for $G_{RB}|C_M$, but again given two trees T_1, T_2 solving $G_{RB}|C_M$, T_2 is obtained from T_1 by reversing a path form an internal node to a leaf of T_1.

Now, using the Hasse diagram, we can compute in polynomial time for each tree T_M solving $G_{RB}|C_M$ the maximal characters that label the longest path of T_M that starts from the root and is labeled by positive characters: such path is given by a safe chain of diagram P. If the diagram P has multiple safe chains, we are able to choose in polynomial time the correct chain, i.e. the correct tree T_M, by testing the source of the chain using G_{RB}: this is given by the notion of safe source (Definition 13) stated before. More precisely, a tree T solving G_{RB}, and equivalently a successful reduction of G_{RB}, starts with the sequence of maximal characters of a safe source of the diagram P.

The above observations are applied in the following two main steps of the algorithm used for computing a successful reduction of a reducible red-black graph G_{RB}.

Step 1: compute the Hasse diagram P for the maximal reducible graph $G_{RB}|C_M$. Then find a safe source s of P. Theorems 28 and 27 show that there exists a tree T for G_{RB} that starts with the characters of s.

7
Step 2: update graph G_{RB} with the realization of the characters of the safe source s. By Theorem 29 the updated graph G_{RB} is still reducible and the algorithm is then applied recursively on G_{RB}.

Finally, observe that the correctness of the algorithm is based on the above theorems stating characterizations of trees solving maximal reducible graphs and reducible graphs. Whenever the input of the algorithm is a non reducible graph, the above two steps fail.

The rest of the paper presents the arguments that Algorithm 1 (Reduce) that computes a successful reduction of a reducible graph.

3 Maximal reducible graphs

In this section we consider only maximal reducible graphs and give a characterization of the trees solving such graphs. Observe that we assume that a simple path in a tree T between two species may be contracted to a unique edge that is labeled by the sequence of characters occurring along the path. We distinguish three types of edges in a tree: positive edges that are only labeled by positive characters, negative edges that are only labeled by negated characters and mixed ones, where both positive and negative characters occur.

In the paper we consider two main types of trees representing the persistent phylogenies solving maximal reducible graphs: line-trees and branch-trees. A tree T is a line-tree if it consists of a simple path. A tree T is a branch-tree if it consists of a simple path from the root r to a node x that is the topmost node with more than one child, and no positive character occurs below node x: in this case the path from r to node x is called the initial-path of the tree T, and the node x is called the branch-node of T.

Lemma 14. Let G_M be a maximal reducible graph and let T_M be a solution of graph G_M. Then T_M is either a line-tree or a branch-tree.

Proof. Let T_M be any solution of G_M and let x be the topmost node of tree T that has at least two children. If x does not exist, then T is a line-tree, and thus the Lemma holds. By Lemma 9 x is not the root, hence in the initial path there is an edge labeled by a positive character. In fact, if the first character of tree T_M is a negated character, it means that G_M has an active character connected to all species of G_{RB} which is not possible as the graph G_{RB} is reduced. Assume that below x there exists an edge labeled d^+. Since graph G_M is connected, there must exist a positive character a^+ in the initial path of tree T_M such that is negated below the node x. Indeed, if all characters are negated below node x, it must be that all positive characters below node x are disjoint from the other characters of the initial path which contradicts the assumption that the graph G_M is connected.

Assume that a^- occurs along a branch distinct from the one having character d^+. Then a is greater than d and this contradicts the assumption that d is a maximal character, i.e. all characters of T_M are maximal in G_M. Indeed, observe that all species having d have also character a. Otherwise, assume that a^- and d^+ occur along the same branch of tree T_M.

Then let us consider the edge e outgoing from x that is not in the same branch as d^+. If such edge e is labeled by a positive edge b^+, then b is smaller than a and is not maximal, which contradicts the initial assumption that characters are maximal ones. Indeed, a^- occurs along a branch distinct from the one having b^+ and thus all species with b have also have character a. Otherwise edge e is labeled by character b^-. But then b is greater than d, contradicting the assumption that all characters are maximal. Indeed, observe that all species including character d have also character b.

Given a line-tree T_1 whose sequence of species of a depth-first traversal is s_1, \ldots, s_k, the inverted tree T_2 has the sequence of species s_k, \ldots, s_1. Moreover, the label of each edge (s_i, s_{i+1}) in T_2 has the same characters as the edge (s_i, s_{i+1}) in T_1, but with opposite signs (positive characters in T_1 are negative characters in T_2 and vice versa).
Lemma 15. Let G_M be a maximal reducible graph solved by a line-tree T_M. Then the line-tree T_1 obtained from T_M inverting the entire tree is a solution for G_M.

Proof. It is an immediate consequence of the observation that T_M has no active character, by our definition of maximal reducible graph.

Lemma 16. Let G_M be a maximal reducible graph, let T_M be a solution of G_M, and let c, c' be overlapping characters occurring in tree T_M and inactive in G_M. Then one of the following cases hold:

- T_M contains the sequence of edges c^+, c'^+, c^-, c'^-, with c'^- eventually missing;
- T_M contains the sequence of edges c'^+, c^+, c^-, c'^-, with c^- eventually missing;
- c and c' appear in two distinct paths, and T_M has a species preceding both c and c' if they are conflicting in G_M.

Proof. Since c and c' are maximal characters, if all four edges c^+, c'^+, c^-, c'^- appear in the same path, the relative order of c^+ and c'^+ must be the same as c^-, c'^-, otherwise there is a containment relation between characters, i.e. either c includes c' or vice versa, contradicting the fact that characters are maximal ones.

Let us now consider the case that c^- and c'^- appear in two distinct paths of T_M. By Lemma 14, T is a branch-tree.

If they are in conflict in G_M, there must exists a species s of such graph that induces the $(0, 0)$ configuration in columns for characters c, c' and such species must occurs before c, c' in tree T. In fact, in the tree, since they are negated along distinct paths, it means that the only way to have a species with the $(0, 0)$ configuration is just to have such species node before the occurrence of c and c'.

The following proposition is an immediate consequence of the definition of branch-tree and the fact that a maximal reducible graph contains no null character.

Proposition 17. Let G_M be a maximal reducible graph solved by a branch-tree T_M, and let x be the branch-node of T_M. Then the state of x consists of all characters of G_M.

Lemma 18. Let G_{RB} be a connected red-black graph and let G_M be the subgraph of G_{RB} induced by the maximal characters of G_{RB}. Then G_M is a connected graph.

Proof. Assume to the contrary that G_M is not connected. Since G_{RB} is connected, there exists a character c in G_{RB} that is adjacent to two species s_1 and s_2 belonging to two distinct connected components of the graph G_M, but c is not in the graph G_M, i.e., c is not maximal. Since c is not maximal, it must be contained in a maximal character c_M, hence c_M is adjacent to both s_1 and s_2 in G_M, contradicting the assumption that s_1 and s_2 belong to two different connected components of G_M. Thus given a character c' of a given component of G_M either c is disjoint from c' or share a common species with c'. But since c is adjacent to a species s' such that s' is in a component that is distinct from the one having c', and since c' is maximal in G_{RB}, it follows that c and c' are not comparable. Consequently, since c is disjoint or is not comparable with any other character in G_{RB}, it follows that c is also maximal, thus contradicting the initial assumption that G_M is not connected.

4 The Hasse diagram and the algorithm

In this section we explore a characterization of the Hasse diagram associated to maximal reducible graphs.

For our purposes we are interested only in solutions of a maximal reducible graph G_M that is in a special form that we call normal form. Such a form requires that a tree T does not have two consecutive edges e_1, e_2 each labeled by c^+ and c^- respectively.
Lemma 19. Let T_M be a tree solving a maximal reducible graph G_M. Then tree T_M can be transformed into a tree T_M' that solves G_M and is in normal form.

Proof. Assume that tree T_M has two consecutive edges e_1, e_2 each labeled by c^+ and c^- respectively. We distinguish the case that e_2 ends before or in the branch-node or e_2 ends below the branch-node. Observe that in the last case it must be that e_1 ends in the branch-node, as by definition of branch-tree no positive character can be below the branch-node. Now, if the first case holds, then by construction of the tree T_M, it must be that e_1 ends in a species s_1. Since the species s_1 is the branch-node. Observe that in the last case it must be that c is not a maximal character, which is a contradiction with the fact that T_M solves G_{RB}. Thus the only possible case occurs when e_1 ends in the branch-node x of the tree T_M and x is not labeled by a species, otherwise again c is not a maximal character in G_M.

Now, the species s_2 that is the end of e_2 does not have character c, while all the other species s below x along the branches distinct from the one containing s_2 have character c. Observe that we can transform tree T_M into a tree T_M' by introducing species s_2 above the branch-node x. Then c^+ is introduced below species s_2 along the edge (s_2, x). Observe that this change is possible in tree T_M, since if there exist a subtree with root s_2, then c is not maximal in tree T_M. Thus such subtree does not exist. Then T_M' is in normal form. \hfill \square

The following lemma shows that the Hasse diagram for a maximal reducible graph $G_{RB}|C_M$ contains a safe chain.

Lemma 20. Let P be the diagram for a maximal reducible graph G_M. Let T_M be a tree of G_M such that the child x of the root r is a source of the diagram P. Then the longest path $< r, \ldots, z >$ of T_M containing the root r of T_M and consisting only of positive edges corresponds to a safe chain of P, called the initial chain of tree T_M.

Proof. Consider a tree T_M solving the maximal reducible graph G_M. Since G_M cannot have singletons, the edge of T_M incident on the root must be positive, hence $r \neq x$. By construction of tree T solving G_{RB}, each node t_i of tree T_M is labeled by a species, while x is not a species only if x is the branch-node of T_M.

First consider the case that x is not a species. Then x is the branch-node of T_M. By Proposition 17 the state of x consists of all characters of G_M. Assume that the path $< r, \ldots, x >$ consists of the single edge (r, x), i.e no species is along the initial path of tree T_M. Then we show that tree T cannot be in normal form. Since T_M is a branch tree, and (r, x) is the only edge of the initial path of a solution of G_M, none of the species of G_M are comparable, hence the Hasse diagram P of G_M consists of singletons s. Clearly, the tree T must have two consecutive edges one labeled c^+ and the other labeled c^- which is not possible in the normal form. Indeed, we can obtain a new solution T_1 from T by replacing the edge (r, x) with the path $< r, s, x >$ (such replacement is always possible since the set of characters of s is a subset of the characters of x). It is immediate to notice that T_1 is a solution of G_M and the trivial chain of P consisting of the singleton s corresponds to the path $< r, x >$ which is the initial path of T_1. Thus this case proves the Lemma.

Now consider the case that x is a species.

Let $p = < r, t_1, \ldots, t_l >$ be the path $< r, \ldots, x >$ of T_M, where all t_i are species of G_{RB} and $l \geq 2$, i.e. at least two species label the initial path of tree T_M. Notice that each edge (t_i, t_{i+1}) of p is either an arc of P or a path of P: in the latter case replace in T_M the edge (t_i, t_{i+1}) of T with the corresponding path of P. It is immediate to notice that the resulting tree is still a solution of G_{RB}.

Since p is the longest path including positive edges, we show that t_l must be a sink of the diagram P. Indeed, given a species s that is a descendant of species t_i, edges that follows t_i in tree T_M are mixed edges or negative edges. Since it is not possible to have two consecutive edges with c^+, c^-, because of the normal form, it follows that any species s does not include at least a character of t_i. Hence s cannot include species t_i which must be a sink of the diagram.
If t_1 is not a source of \mathcal{P}, then (w, t_1) is an edge of \mathcal{P}, hence the set of characters of w is a subset of the set of characters of t_1. Since the edge (r, t_1) of T_M is labeled by the characters of t_1, then we can replace the edge (r, t_1) of T_M with the path (r, w, t_1). We can iterate the process until the child of r in the tree is the source of the chain.

The chain is safe since the corresponding c-reduction is the initial portion of the c-reduction associated to the tree T_M solving G_M. \hfill \square

As a main consequence of Lemma 20 we are able to show that given G_{RB} reducible there exists a tree T solving G_{RB} such that it starts with the inactive characters of a source s of a safe chain of diagram \mathcal{P} for $G_{RB}|C_M$.

Since such a safe source may not be unique in diagram \mathcal{P}, the rest of the section provides results that will be used to show that we can choose any safe source of the diagram \mathcal{P} to find the initial characters of a tree T solving G_{RB}.

Lemma 21. Let G_{RB} be a reducible graph and \mathcal{P} the diagram for the graph $G_{RB}|C_M$. Then there exists a solution T of G_{RB} and a child x of the root r of T such that $C(x) \cap C_M$ is the set of characters of a safe source s of \mathcal{P}. The vertex x is called the initial state of the tree T.

Proof. Given a solution T of G_{RB}, we denote with z the least common ancestor of all species of G_{RB} in T. Without loss of generality, we can assume that there is a single edge from the root of T to z. Let T_1 be a solution of G_{RB} such that node z minimizes the number of characters of C_M.

We distinguish two cases, according to whether z is a species of G_{RB}. Case 1: assume initially that z is a species, hence $C(z) \cap C_M$ is a node of the diagram \mathcal{P}. By our construction, $C(z) \cap C_M$ cannot have an incoming arc in \mathcal{P}, otherwise we would contradict the minimality of T_1. Then we can split the edge (r, z) of T_1 into two edges (r, x) and (x, z) where the label of (r, x) is $C(x) \cap C_M$.

Clearly, by construction there exists a species s of \mathcal{P} with the set $C(x) \cap C_M$ of characters and s is a source node of the diagram \mathcal{P}. Consider the tree $T_1|C_M$ that is induced by the maximal characters of G_{RB} and such that s is the child of the root of $T_1|C_M$ and is a source of diagram \mathcal{P}. By applying Lemma 20 tree $T_1|C_M$ has the initial-chain which is a safe chain of diagram \mathcal{P}. Finally, since s is obtained by the traversal of tree T_1, s is safe in G_{RB} and being the source of a safe chain of diagram \mathcal{P} is a safe source of G_{RB}, as desired.

Moreover, it must be that s is the source of the safe chain of diagram \mathcal{P} which is the initial chain of tree $T|C_M$, thus proving what is required.

Case 2: assume now that z is not a species. It is immediate to notice that the tree $T_1|C_M$, which is a solution of $G_{RB}|C_M$ must be a branch-tree, by Lemma 14. Moreover, by Proposition 17 $C_M \subseteq C(z)$. Let x be any species of G_{RB} such that the species s with set of characters $C(x) \cap C_M$ is a source of the diagram \mathcal{P}. Just as for the previous case, we can split the edge (r, z) of T_1 into two edges (r, x) and (x, z) where the label of (r, x) is given by $C(x) \cap C_M$. Then $C(x) \cap C_M$ is the set of characters of a species s of tree $T_1|C_M$ where s is the source of the diagram \mathcal{P} of $T_1|C_M$. Similarly as above for case 1, s is a safe source of G_{RB}. \hfill \square

The following technical Lemma is used to characterize the safe chains of the diagram \mathcal{P} of a maximal reducible graph.

Lemma 22. Let G_M be a maximal reducible graph, let \mathcal{P} be the diagram for G_M, and let T_M be a tree solving G_M. Given a chain \mathcal{C} of the diagram \mathcal{P}, then one of the following statements holds:

1. \mathcal{C} is a sequence of species that occur along a path π of the tree T_M, where π has only positive edges,

2. \mathcal{C} is a sequence of species that occur along a path π of the tree T_M, where π has only negative edges,

3. \mathcal{C} is a sequence of species that occur along a path π_1 consisting only of positive edges and along a path π_2 consisting only of negative edges, where paths π_1 and π_2 are subpaths of the same path and for any character c^- of path π_2 c^+ occurs along the path that connects π_1 to π_2.

11
Proof. Assume that chain C has source s and sink t. Let us first show that species of a chain are along the same path π of tree T_M that occurs from the root to a leaf of tree T_M, by proving its contrapositive. Let s,s' be two species that are not in the same path of T. By the structure of tree T_M stated in Lemma 14 then the least common ancestor x of s,s' is neither s nor s', and the paths from x to s and s' contain only negative edges. Those two facts imply s and s' are not comparable, hence they cannot be in a chain. Thus a chain corresponds to a path of tree T.

Assume first that tree T_M is a line-tree: in this case we can prove that only cases (1) or (2) can happen. Assume to the contrary that the path of T_M connecting s and t contains both positive and negative edges (or mixed edges). Assume initially that s is an ancestor of t, and consider the negated character c^- that is the first to appear in such path (and let (s_1,s_2) be the edge labeled by c^+). Observe that by Lemma 10 characters are negated in the same order as they are introduced, hence the edge c^+ either labels the first edge of the path or it does not label any edge of the path. In both cases, s_1 has the character c, while s_2 has not, hence contradicting the assumption that (s_1,s_2) is an edge of the Hasse diagram. A similar argument holds when t is an ancestor of s and to show that a chain my label a path only consisting of negative edges.

Consider now the case when T_M is a branch-tree. If the path connecting s and t in T_M is entirely contained in the initial path or it is composed only of descendants of the branching node, then condition (1) and (2) respectively holds. Hence we only have to consider the case when the $s-t$ path contains both ancestors and descendants of the branching node. We split this path into π_1 and π_2 which are the two subpaths of π containing the ancestors and the descendants of the branching node, respectively, and from which species of chain C are obtained. Let x_1 be the last species of π_1 and let x_2 be the first species of π_2: clearly (x_1,x_2) is an edge of \mathcal{P}. The same argument used for the line-tree case also proves that π_1 does not contain any negated character c^-. Moreover, the edge (x_1,x_2) of T_M cannot be labeled by a negated character c^-, unless character c^+ is introduced after species x_1 along the path that connects x_1 to x_2. Indeed, if c^+ is on path π_1 no species of π_2 can have c, while x_1 has c, contradicting the fact that (x_1,x_2) is an edge of \mathcal{P}.

By Lemma 10 all edges of π_2 must be negative, completing the proof.

Now we are able to show the next Lemma that gives a characterization of the safe chains of diagram \mathcal{P} of a maximal reducible graph and thus it allows to characterize the distinct safe sources of G_{RB}. In the next Lemma we use the notion of inverted path:

- a path $\pi_{u,v}$ from a node u of T to a node v of T is inverted in tree T_1 if the sequence $<s_1,\ldots,s_i>$ of species of the path $\pi_{u,v}$ is replaced in T_1 by sequence $<s_i,s_{i-1},\ldots,s_1>$.

Lemma 23. Let G_M be a maximal reducible graph and let C and C_1 be two safe chains with distinct sources, where C_1 is not trivial. Let T_M be a tree solving G_M such that C is the initial chain of T_M. Then T_M is a line-tree and C_1 is the initial chain of a line-tree T_1 such that the path $\pi_{r,v}$ where r is the root of T_M and v the leaf of T_M is inverted in tree T_1.

Proof. First observe that by definition of G_M the graph has no active characters. By Lemma 22, given chain C_1, the following cases are possible: (1) the sequence C_1 labels a path of tree T_M consisting of positive edges or (2) C_1 labels a path of tree T_M consisting of negative edges (3) C_1 labels two paths π_1 and π_2, where π_1 consists of positive edges and π_2 consists of negative edges of tree T_M, and both paths occur along the same path of tree T_M and for any character c^- of π_2, it holds that c^+ labels only edges of the path that connects the two paths.

Case 1. (Figure 3) Assume first that sequence C_1 consists of $<s_1,s_2,\ldots,s_k,s_{k+1}>$ and labels a path in tree T_M consisting of positive edges $<c_1,\ldots,c_k>$ of the tree i.e. species s_i is the end of a positive edge labeled c_i. W.l.o.g. we assume that each edge is labeled by a single character (the same argument applies in the case an edge is labeled by more than one character). Now, since C_1 is not the initial chain of tree T_M, it must be that it occurs after chain C in tree T_M.

We distinguish two cases. Case 1.1. Now, let c_0 be a character of s_1 that is from a species s_0 that precedes s_1 along the initial path. We now show that c_1 and c_0 are in conflict in graph G_M. Observe that they are not comparable as they are maximal ones, but there exists also two species in graph G_M, one that has both characters, which is the species s_1 and one that does not have
Figure 3: The chain C_1 of case 1 of Lemma 23 induced by $< c_1^+, c_2^+, \ldots, c_k^+ >$

both characters. Since s_1 is the source of chain C_1, then s_1 must be preceded by an edge labeled d^-. But, d^+ precedes character c_0^+ as characters are negated in the order they are introduced (see Lemma 16) and thus d^+ is introduced in a species s_2 distinct from s_0 and not having characters c_0, c_1 (by the normal form of tree T_M, d^+ and d^- cannot label two consecutive edges). This fact proves that in graph G_M species s_2 does not have c_0, c_1. Consequently, characters c_0, c_1 are in conflict in G_M. Then c_0, c_1 induce a red Σ-graph in G_M when the source species s_1 and c_1 are realized, since the species s_2 with configurations $(0,0)$ and species s_0 with configuration $(1,0)$ for the pair (c_0, c_1) are not removed from graph G_M. Hence we obtain a contradiction with the fact that the chain C_1 is safe, i.e. it has a safe source.

Case 1.2. Assume that there does not exist any character c_0 of s_1 that belongs also to a species s_0 that precedes s_1 along the initial path, that is s_1 has none of the characters labeling the path of T_M from the root to s_1. Hence we can obtain a new solution T_1 for G_M by regrafting the subtree of T_M rooted at s_1 as a new child of the root. By Lemma 9, the graph G_M is disconnected, which is a contradiction.

Since both cases 1.1 and 1.2 are not possible, then case 1 is not possible.

Case 2. (Figure 3). Assume that sequence C_1 consists of $< s_{i+1}, \ldots, s_1 >$ and is induced by a path in tree T_M of negative edges $< c_1^-, \ldots, c_k^- >$ of the tree T_M, i.e., each edge s_i, s_{i+1} being labeled by c_i^- — by maximality of all characters of G_M, no two negated characters can label the same edge. By Lemma 16, the sequence of characters $< c_1^+, \ldots, c_k^+ >$ appears in the initial path above the edge c_1^- — notice that those positive characters might be interleaved with other characters.

First we will prove that no such interleaving can happen, that is no positive character occurs between two consecutive characters c_{i+1}^+, c_{i+1}^+ for $i \in \{1, \ldots, k-1\}$.

Assume to the contrary that a character d^+ occurs between c_i^+ and c_{i+1}^+ in T_M.

Then d^+ is in conflict with character c_k^+ in G_M. Indeed, d^+ and c_k^+ are not comparable (being maximal characters) and there exists a species of G_M that contains d, c_k, which is species s_k of chain C_1. Indeed, it must be that d^- cannot label an edge of chain C_1 (otherwise C_1 is not the correct chain), and thus d^- must occur on a path distinct from the one of C_1, in virtue of Lemma 16. Moreover, there is also a species w_1 not having c_k and d, which is the one occurring
before c_i^+. Observe that there is at least a species having d and not c_k which is the species w_2 that is the end of edge labeled d^+ along the path $<c_1^+,...,c_k^+>$. Since w_1 and w_2 are not realized before the species s_k of chain C_1, the conflict between d, c_k cannot be removed when the chain C_1 is realized, that is d, c_k induce a red Σ-graph after the realization of the species s_{k+1} of chain C_1. It follows that chain C_1 cannot be safe in G_M, a contradiction with the initial assumption. Thus it must be that no positive character occurs between two consecutive characters c_i^+, c_{i+1}^+ in tree T_M. Observe that the above argument showing that d^+ cannot occur on a path distinct from the one having chain C_1 shows that the path labeled by $<c_1^-,...,c_k^->$ does not have branches for characters introduced after $<c_1^+,...,c_k^+>$. Moreover, it cannot have branches due to the negation of characters that precede character c_1^-, since otherwise there exist a character c that is negated after one that is introduced in the initial path after c, contradicting Lemma 16. It follows that the path labeled $<c_1^-,...,c_k^->$ is simple.

To complete the proof of case 2, we show the following. Claim (1): the sequence of edges $<c_1^-,...,c_k^->$ is not followed in tree T_M by any other characters (positive or negative). This fact shows that the tree T_M is a line-tree since the edge labeled c_1^- is preceded by an edge labeled by a positive character and thus no branch-node occurs before sequence $<c_1^-,...,c_k^->$ and no branch-node occurs after being this path simple. In virtue of Lemma 15 it follows that we can build a tree T_M' by reading the tree T_M in inverted order that is from the leaf to the root. Thus this case proves that C_1 is the initial chain of the tree T_M' and this concludes the proof of the Lemma.

In order to prove Claim (1) we prove the following Claim (2): the path labeled $<c_1^+,...,c_k^+>$ is followed by a positive character d^+ before the occurrence of $<c_1^-,...,c_k^->$ if d^+ cannot be negated in the tree, that is the path labeled $<c_1^-,...,c_k^->$ ends in a leaf of the tree. Observe that if $<c_1^+,...,c_k^+>$ is followed only by negative characters, then the sequence $<c_1^-,...,c_k^->$ does not induce a chain, since the chain ends in a different sink node. Now, assume that a character d^+ follows sequence $<c_1,...,c_k>$. Let us recall that by Lemma 16, positive characters are introduced in the same order they are negated if they occur negated along the same path. Consequently, it must be that d^+ is negated along a path distinct from the one having chain C_1 (i.e. T_M is a branch-tree). Assume that d is negated below the negation of character c_i of chain C_1, where $1 \leq i < k$, (otherwise if $i = k$ or then C_1 has a different source node) and thus there exists a species w_1 having c_k but not d, where w_1 is the end of the branch having d^-. Observe that in chain C_1 the species s_k contains characters c_k and d. These two characters share a common species, are not comparable and there exists clearly a species w_2 without both characters c_k and d, which is a species of chain $<c_1^+,...,c_k^+>$. Thus they are in conflict in G_M. Now, after the realization of s_k it holds that c_k and d induces a red Σ-graph in G_M as the species w_2 with configuration $(0,0)$ for the pair (c_k,d) is not realized before s_k and similarly there are species with configuration $(1,0)$ and $(0,1)$ that are not realized before s_k such as the species in which edge labeled c_k^+ ends. Thus we obtain a contradiction with the fact the chain C_1 is safe.

As a consequence of Claim (2), either there is no character that follows path labeled $<c_1^-,...,c_k^->$ proving Claim (1), otherwise there exists a character d^+ that follows the path labeled $<c_1^+,...,c_k^+>$. Thus if there exists a character c that is after sequence $<c_1^-,...,c_k^->$, c is disjoint from the other characters in G_M, which contradicts the fact that G_M is connected. Moreover, no negative character occurs after sequences $<c_1,...,c_k>$ because of the ordering of characters. Thus Claim (1) holds.

Case 3. (Figure 3). Assume that the sequence C_1 consists of sequence $<w_1, w_2,...,w_l>$ (induced in tree T_M by a path labeled by consecutive positive characters $<b_1, b_2,...,b_l>$) followed by sequence $<s_{k+1},...,s_1>$ that is induced in tree T_M by a path labeled by consecutive negative characters $<c_1^-,...,c_k^->$ of the tree. More precisely, each edge (s_i,s_{i+1}) is labeled c_i^- by maximality of all characters of G_M, no two negated characters can label the same edge, w_l is the end of the edge labeled b_l when $1 \leq i \leq l$. Then we show the following Claim (3): there exists no character in tree T_M that precedes sequence $<b_1, b_2,...,b_l>$. This fact shows that chain C_1 share the same source node of chain C thus contradicting the assumption that they have distinct sources. Observe that case 3 implies that for each character c_i^-, then c_i^+ occurs after $<b_1, b_2,...,b_l>$.

14
Now, by Lemma 22 it must be that the sequence of positive edges $<c_1^+,\ldots,c_k^+>$ occurs before sequence $<c_1^-,\ldots,c_k^->$ and after sequence $<b_1,b_2,\ldots,b_l>$. This fact implies that path $<b_1^-,b_2^-,\ldots,b_l^->$ must occur below the branch-node as the negated characters $<b_1^-,b_2^-,\ldots,b_l^->$ must occur below the branch-node of tree T_M. Similarly, a positive character d^+ that occurs before $<b_1^-,b_2^-,\ldots,b_l^->$ must occur negated below the branch node. Let us prove Claim (3). Assume to the contrary that a character d^+ occurs before b_1^+. Since chain C_1 does not contain d^- it must be that d^- occurs along a distinct path of the one having C_1 and from the one having $<b_1^-,b_2^-,\ldots,b_l^->$. But, then the species w_2 of C_1 has character d^+. Observe that since chain C_1 starts with the positive edge $<b_1^+$ it must be that there exists a species before w_2 with a positive character distinct from d^+. In other words there exists a species s_0 without the pair d^+ and b_1^+. The two characters are not comparable (they are not maximal ones) and they are in the same species w_2, thus they are conflicting in G_M. But, when w_2 is realized they induce a red Σ-graph as the species with configuration $(0,0)$ and $(1,0)$ are not all removed from G_M when realizing w_2. Thus this would contradict that C_1 is safe, thus proving that Claim 3 holds.

A main consequence of the proof of the previous Lemma 23 is the fact that if the diagram of a maximal reducible graph is non degenerate then there are at most two trees solving the same maximal reducible graph such that the initial chain of such trees starts with distinct sources.

Lemma 24. Let G_{RB} be a reducible graph. Let $G_{RB}|C_M$ be a maximal reducible graph whose diagram P is not degenerate. Then diagram P has at most two distinct safe chains and at most two safe sources for G_{RB}.

(a) Phylogeny
(b) Hasse diagram
(c) Alternative Phylogeny

![Figure 4: The chain C_1 of case 2 of Lemma 23 induced by $<c_1^-,c_2^-,\ldots,c_k^->$](image)

4.1 The degenerate diagram

If the diagram P for graph $G_{RB}|C_M$ is degenerate, then the notion of safe source for G_{RB} is defined differently as follows.
Definition 25 (safe source in a degenerate diagram). Let G_{RB} be a reducible graph such that $G_{RB}|C_M$ has a degenerate diagram. Then a source s of P is safe for G_{RB} if $C(s)$ are realized in graph G_{RB} without inducing red $Σ$-graphs and either (1) s is a species of G_{RB} or (2) s is not a species of G_{RB} and none of the sources of P is a species of G_{RB}.

A degenerate tree T_M for a maximal reduced graph that is not in normal form is a branch-tree whose branches are single edges outgoing from the branch-node each labeled by a single negative character of the graph; only the leaves are labeled by species. Then a degenerate tree in normal form is obtained by moving one of the leaves in the initial path and then removing the edge labeled by the negated character that ends in the leaf. Observe that given a degenerate tree T_M solving G_M that is in normal form with s the species of the initial path, then for each each leaf s_i of tree T_M there exists a tree T'_M solving G_M such that is obtained by inverting the species s_i with the
species \(s \) (see Figure 9).

Lemma 26. Let \(G_M \) be a maximal reducible graph such that its diagram is degenerate and let \(T_M \) be a tree solving \(G_M \). Then the tree \(T_M \) is a degenerate tree and the graph \(G_M \) has no conflicting characters.

Proof. Assume first that the initial-path of the tree \(T \) has more than one species. Then the species are ends of mixed edges since they cannot be included one in the other. In the following we show that there cannot be two consecutive mixed edges in the tree \(T \). Assume to the contrary that we have two consecutive mixed edges that negate the characters \(c, c' \) one after the other. It is not restrictive to assume that these two edges are the first ones to occur along the initial-path of tree \(T \). Observe that the two characters must be introduced together otherwise there are species one included in the other. But as a consequence of this fact, character \(c' \) includes character \(c \), which is a contradiction. As a consequence of this fact there is at most one species \(s \) along the initial path of tree \(T \). Then we show that each branch of the tree consists of a single edge labeled only by a negated character. Indeed, otherwise a branch may have at least two species \(s, s' \) one included in the other as they differ only by the negation of characters, which contradicts the fact that the diagram has only singletons. Let us now show that each branch is labeled by a single character. Otherwise, it is easy to show that the characters labeling a branch edge are identical in the graph, which contradicts the initial assumption, or they are not maximal ones. As a consequence of the above observations it follows that all the characters that are negated along the branches occur on the edge ending in species \(s \) or they occur on the initial path which has no species. It follows that the tree is a degenerate one as required. It is immediate to show that the graph has no conflicting characters.

Theorem 27. Let \(G_{RB} \) be a reducible graph. Let \(G_{RB|M} \) be a maximal reducible graph whose diagram \(\mathcal{P} \) is degenerate and let \(s \) be a safe source of \(G_{RB} \). Then there exists a solution \(T \) of \(G_{RB} \) such that the child \(x \) of the root \(r \) of \(T \) is labeled by the characters of \(s \) that are inactive in \(G_{RB} \).

Proof. By definition of safe source for \(G_{RB} \) we have to distinguish two cases. Let \(T \) be a tree solving \(G_{RB} \) and let \(T_M = T|C_M \) be the tree solving \(G_{RB|M} \). Case 1: assume first that \(s \) is not a species of \(G_{RB} \), i.e., by definition any safe source of the diagram is safe for \(G_{RB} \). Then given \(T_M \) we need to consider two cases. Case 1.1 Assume that tree \(T_M \) is not in normal form. This fact implies that if there exists a species \(s_1 \) below the root of tree \(T \) which is on the path of tree \(T \) including the initial path of tree \(T_M \), then \(s_1 \) includes all the characters of \(C_M \). Then we can split the edge \((r, s_1)\) into two edges \((r, s)\) and \((s, s_1)\), where the first is labeled by the characters of \(s \) that are inactive in \(G_{RB} \), thus proving the Theorem. Otherwise it means that no species is along the path that includes the initial path of tree \(T_M \), but then we can find a state \(s \) of tree \(T \) corresponding to the safe species \(s \) of \(\mathcal{P} \).

Case 1.2 Assume that tree \(T_M \) is in normal form, i.e., there exists a species \(v \) along the initial path of tree \(T_M \). Since by assumption \(s \) is not a species of \(G_{RB} \), there exists a species \(s_1 \) of \(G_{RB} \) including \(s \) such that \(s_1 \) also includes at least a non maximal character \(x \). Let \(s \) be the species with the minimum number of characters including \(s \). Observe that such a species exists in tree \(T \). Now, if tree \(T \) starts with species \(s_1 \) it is immediate that the Theorem holds, since \(T \) is the tree satisfying the Theorem. Thus we must consider the case that \(s_1 \) is a species of tree \(T \) but \(s_1 \) is along a path of tree \(T \) that is not the one including the initial path of tree \(T_M \), that is \(s \) is a leaf of tree \(T_M \). Moreover, observe that \(s_1 \) must be a leaf of tree \(T \) because of the structure of degenerate trees. Let us recall that by the structure of the degenerate tree it must be that \(s \) consists of set \(C_M \setminus \{c_0\} \). Now, by Theorem 26 we know that there exists another tree \(T_M^1 \) with species \(s \) in the initial path and solving \(G_{RB|C_M} \) such that tree \(T_M^1 \) is obtained by inverting the path \(\pi_{v,s} \) labeled \(<v, s>_L \) of tree \(T_M \). Now, it is easy to show that the tree \(T_M^1 \) can be extended to a solution \(T_1 \) for graph \(G_{RB} \). Indeed, we build tree \(T_1 \) from \(T \) by inverting the species of the path of tree \(T \) that includes path \(\pi_{v,s} \). We then show that tree \(T_1 \) represents all the species of graph \(G_{RB} \) and hence is a solution of \(G_{RB} \) and moreover \(T_1 \) is such that starts with species \(s_1 \), consequently it is the tree that satisfies the Theorem. First observe that the inverting the path is
possible if there are no active characters in G_{RB} otherwise, it is immediate to show that s cannot be a safe source of P, as it cannot have active characters in G_{RB} which is not possible. Indeed, observe that the path π_1 of tree T_1 that includes the initial path of tree T^1_M includes the same set of maximal and non maximal characters of the path π of tree T that includes the initial path of tree T_M. Now, the species that are below the path π_1 in tree T can be also represented in tree T_1 along the branches that are identical in the two trees T_1 and T since such species derive by the negation of characters in π or adding new characters. In particular notice that the characters that are negated along one branch of tree T_1 are the same to be negated along the same branch of tree T. It follows that all species of the paths different from the inverted one are also represented in T_1. Case 2: assume that s is a species of G_{RB}. Then given tree T we must consider two cases. Case 2.1 Assume that s occurs as the first species of tree T. Then the Lemma holds.

Case 2.2 Assume that s does not occur as the first species of tree T. Now, let $T_M = T|C_M$ be the tree induced by the maximal characters and let T^1_M be the tree that is obtained from T_M by inverting the path π from the root r to node v such that π ends in species s, that is $v = s$ (observe that such path exists). In the following we show that the tree T_1 obtained from tree T inverting the path that includes π is a tree solving G_{RB}. First observe that inverting the path is possible if there are no active characters in G_{RB} otherwise, it is immediate to show that s cannot be a safe source of P, as it cannot have active characters in G_{RB} which is not possible. Now, we need to show that s is a species of tree T_1 and is the first species of tree T_1. But since s is a species of tree T and being s the leaf of tree T_M it follows that s must be a leaf of tree T. It is immediate that tree T_1 is the tree that satisfies the Lemma thus proving what is required. In fact it is enough to observe that tree T_1 contains all the species of tree T and thus by construction it solves G_{RB} as T solves G_{RB}.

4.2 Step 1 of the algorithm

As a consequence of the Lemma 21 we are able to show that there exists a tree T for G_{RB} such that the inactive characters of the first state below the root consists of the characters of a safe source of the diagram P for $G_{RB}|C_M$.

This result is a main consequence of the fact that a tree T starts with the characters of a tree solving the maximal reducible $G_{RB}|C_M$ and such set of characters correspond to those of a safe chain C of diagram P (see lemma 20) and clearly since these characters are obtained by a tree traversal of tree T their realization does not induce red Σ-graphs in G_{RB}, i.e., the source of the chain C is safe in G_{RB}.

A stronger result states in Theorem 28 can be proved: for any safe source s of G_{RB}, there exists a tree T solving G_{RB} such that the set of characters of s gives the inactive characters of the first state below the root r of tree T. Thus we show that we are able to compute in polynomial time the first state of a tree T solving a graph G_{RB}.

Observe that the result is a consequence of the previous characterization of trees solving a maximal reducible graph: there are at most two safe chains of diagram P that have distinct sources and are the initial chains of two trees solving G_M and such trees are two line-trees T_1 and T_2, one tree being the inverted path of the other tree.

Theorem 28. Let G_{RB} be a reducible graph, let P be the diagram for a maximal reducible graph $G_{RB}|C_M$ that is not degenerate, and let s be a safe source of G_{RB}. Then there exists a solution T of G_{RB} such that the child x of the root r of T is labeled by the characters of s that are inactive in G_{RB}. The vertex x is called the initial state of the tree T.

Proof. By Lemma 21 there exists a tree T solving G_{RB} such that its root has a child node x such that x is a safe source of diagram P. Let T_M be the tree $T|C_M$ induced by the maximal characters of T.

Since P is not degenerate, by Lemma 23 there are at most two trees that solve the graph G_M and have distinct sources. If the diagram has a unique safe source the Lemma follows since s is the unique safe source. Thus assume that there is another tree T'_M, that solves the graph G_M: by Lemma 23 such tree is obtained from tree T_M which is a line-tree by reading it in inverted order.
Assume now that the graph G_{RB} has no active characters. Since tree T is obtained by inserting characters in tree T_M and adding subtrees to states of tree T_M, it is immediate to show that a tree T' solving G_{RB} can be also obtained from tree T'_M by reading the tree T in inverted order from the leaf v of tree T_M. This fact proves the Lemma in this case. Assume now that the graph G_{RB} has active characters. Now, the other tree T'_M solving $G_{RB}|C_M$ starts with a source that is the leaf v of tree T_M. Observe that the smallest species of tree T solving G_{RB} and including v does not have the active characters of G_{RB}. Indeed, by Lemma 16 characters that occur negated along the same path must be introduced as positive ones in the same order they are negated. Thus state v cannot be the initial state of another tree T_1 solving G_{RB}.

4.3 Step 2 of the algorithm

We can now state the main Lemma used in the recursive step of our algorithm Reduce.

Theorem 29. Let G_{RB} be a reducible graph and let \mathcal{P} be the diagram for $G_{RB}|C_M$. Let s be a safe source of diagram \mathcal{P}. Then the graph G'_{RB} obtained after the realization of s is reducible.

Proof. By Theorem 28, the source s is the initial state of a tree T solving graph G_{RB}. Thus the realization of the sequence of characters of s is the initial sequence of a successful reduction for graph G_{RB}. Indeed, the tree traversal of tree T produces a successful reduction in virtue of Proposition 6. Consequently the realization of s on graph G_{RB} produces a reducible graph.

The following result is a natural consequence of the fact that the number of chains in a degenerate diagram for graph G_{RB} is at most the number of characters of G_{RB}.

Lemma 30. The total number of distinct chains in a diagram \mathcal{P} for a maximal reducible graph G_{RB} is polynomial in the number of characters of the diagram.

Proof. Let T be a tree solving G_{RB}. Given a chain C, then an internal node x of the chain has outdegree greater than 1 when x is adjacent to a species obtained by the negation of some characters of the chain below the node x. Now, the negation of such characters occur only once in the tree T producing a number of distinct chains that is linear in the number of characters. This observation is enough to prove the Lemma.

Lemma 31. Let G_{RB} be a maximal reducible graph and let \mathcal{P} be the diagram for G_{RB}. Then the number of safe chains in G_{RB} is polynomial in the number of characters and a safe chain is computed in polynomial time.

Proof. By Lemma 30 the number of distinct chains in diagrams \mathcal{P} that we need to test to be safe is polynomial in the number if characters. A chain C is safe for a red-black graph if the realization of the sequence of characters labeling the edges of the chain does not induce a red Σ-graph. It is easy to verify that such test can be done in polynomial time.

The following is a direct consequence of Lemma 31.

Lemma 32. Let G_{RB} be a reducible graph. The total number of distinct safe sources is polynomial in the number of characters of the diagram and a safe source is computed in polynomial time.

Algorithm $\text{Reduce}(G_{RB})$ describes the procedure $\text{Reduce}(G_{RB})$ that given a red-black graph (with active and non active characters) computes an extended e-reduction that is a successful reduction of G_{RB} if G_{RB} can be solved by a tree T.

Notice that Algorithm $\text{Reduce}(G_{RB})$ when applied to a graph G_{RB}, computes a successful reduction R of G_{RB} (if it exists). A successful reduction can then be transformed into a persistent phylogeny for G_{RB}— see Algorithm $\text{Reduction2Phylogeny}$.
Theorem 33. Let G_{RB} be a reducible red-black graph. Then Algorithm 1 computes a tree T solving G_{RB} in polynomial time.

Proof. The correctness of Algorithm 1 can be proved by induction on the length n of the reduction found.

If $n = 0$, then the red-black graph G_{RB} must be edgeless, hence line 1 removes all vertices of G_{RB} and the condition at line 2 holds. The empty reduction that is computed is trivially correct.

If $n = 1$, then the reduction solving G_{RB} is either c^+ or c^-. In both cases, the character c is the only character of G_{RB} that is not a singleton. It is immediate to notice that in the first case c is a universal character and in the second case c is a free character, and the reduction that is computed is correct.

Let us now consider the case $n \geq 2$. If G_{RB} is disconnected, by Observation 8. the reduction solving G_{RB} is the concatenation of the reduction solving each connected component of G_{RB}. The correctness of lines 10–11 is immediate.

Consider now the case when G_{RB} is connected. If G_{RB} has a universal or a free character, then the algorithm computes the correct reduction by inductive hypothesis. If G_{RB} has no universal or free characters, then lines 12–19 are reached. By Theorem 9 and Theorem 28, if the diagram \mathcal{P} is degenerate, there exists a solution T of G_{RB} such that the topmost edge is labeled by the set X of the characters of C_M (which are all inactive in G_{RB}) that are possessed by a safe source s of G_{RB}. Notice that the reduction associated with T begins with the characters X, hence lines 12–19 of the algorithm correctly compute the reduction.

A direct consequence of Lemma 25 is that either G_{RB} has only a safe source, or G_{RB} has two safe sources s_1 and s_2, if the diagram \mathcal{P} is not degenerate. Otherwise, if the diagram is degenerate by definition of safe source given in Definition 24 it is immediate to compute the correct safe source for which Theorem 27 holds. In the latter case, there exist two solutions T_1 and T_2 of G_{RB} such that s_1 is the topmost species of T_1 and s_2 is the topmost species of T_2, hence choosing any of s_1 or s_2 is correct.

Since each invocation of Algorithm 1 computes at least a signed character of the reduction and
the reduction contains at most $2m$ signed characters, the overall time complexity is polynomial, if computing a safe source has polynomial time complexity, which is a consequence of Lemma 31.

Notice that the same argument shows that applying Algorithm 1 to a red-black graph G_{RB} that has no solution, then Algorithm 1 requires polynomial time and either aborts or computes an incorrect tree — checking if a tree is actually a solution of G_{RB} is immediate.

5 Conclusions

The Persistent Phylogeny model has appeared many times in the literature under different formulations [16], but its computational complexity has been open for 20 years. In this paper we have answered this question by providing a polynomial-time algorithm that determines if a binary matrix has a persistent phylogeny and constructs such a persistent phylogeny if it exists.

A natural optimization criterion is to compute a tree with the smallest number of persistent characters — this is equivalent to computing the tree with the fewest edges. The computational complexity of this optimization problem is an open problem. We believe that the graph theoretic approach developed in the paper could shed some light into the solution of this problem.

References

[1] R. Agarwala and D. Fernández-Baca. A Polynomial-Time Algorithm For the Perfect Phylogeny Problem When the Number of Character States is Fixed. SIAM Journal on Computing, 23(6):1216–1224, Dec. 1994.

[2] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phylogeny: A direct approach. Journal of Computational Biology, 10(3-4):323–340, 2003.

[3] C. Benham, S. Kannan, M. Paterson, and T. Warnow. Hen’s teeth and whale’s feet: generalized characters and their compatibility. Journal of Computational Biology, 2(4):515–525, 1995.

[4] H. L. Bodlaender, M. R. Fellows, and T. J. Warnow. Two strikes against perfect phylogeny. In Automata, languages and programming (Vienna, 1992), volume 623 of Lecture Notes in Comput. Sci., pages 273–283. Springer, Berlin, 1992.

[5] P. Bonizzoni, C. Braghin, R. Dondi, and G. Trucco. The binary perfect phylogeny with persistent characters. Theoretical computer science, 454:51–63, 2012.

[6] P. Bonizzoni, A. P. Carrieri, G. Della Vedova, R. Dondi, and T. M. Przytycka. When and How the Perfect Phylogeny Model Explains Evolution. In N. Jonoska and M. Saito, editors, Discrete and Topological Models in Molecular Biology, Natural Computing Series, pages 67–83. Springer Berlin Heidelberg, Berlin, Germany, 2014.

[7] P. Bonizzoni, A. P. Carrieri, G. Della Vedova, R. Rizzi, and G. Trucco. A colored graph approach to perfect phylogeny with persistent characters. Theoretical Computer Science, pages –, 2016.

[8] P. Bonizzoni, A. P. Carrieri, G. Della Vedova, and G. Trucco. Explaining evolution via constrained persistent perfect phylogeny. BMC Genomics, 15(Suppl 6):S10, Oct. 2014.

[9] A. Brandstadt, V. B. Le, and J. Spinrad. Graph Classes. A Survey. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, PA, 1999.

[10] J. H. Camin and R. R. Sokal. A method for deducing branching sequences in phylogeny. Evolution, 19(3):pp. 311–326, 1965.
[11] R. Diestel. *Graph Theory*, volume 173 of *Graduate Texts in Mathematics*. Springer-Verlag, Heidelberg, third edition, 2005.

[12] Z. Ding, V. Filkov, and D. Gusfield. A linear time algorithm for Perfect Phylogeny Haplotyping (pph) problem. *Journal of Computational Biology*, 13(2):522–553, 2006.

[13] M. El-Kebir, L. Oesper, H. Acheson-Field, and B. J. Raphael. Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. *Bioinformatics*, 31(12):i62–i70, June 2015.

[14] M. El-Kebir, G. Satas, L. Oesper, and B. Raphael. Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. *Cell Systems*, 3(1):43 – 53, 2016.

[15] D. Fernández-Baca and J. Lagergren. A polynomial-time algorithm for near-perfect phylogeny. *SIAM J. Comput.*, 32(5):1115–1127, 2003.

[16] L. A. Goldberg, P. W. Goldberg, C. A. Phillips, E. Sweedyk, and T. Warnow. Minimizing phylogenetic number to find good evolutionary trees. *Discrete Applied Mathematics*, 71(1–3):111–136, Dec. 1996.

[17] D. Gusfield. Efficient algorithms for inferring evolutionary trees. *Networks*, pages 19–28, 1991.

[18] D. Gusfield. *Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology*. Cambridge University Press, Cambridge, 1997.

[19] D. Gusfield. Persistent phylogeny: a galled-tree and integer linear programming approach. In *Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics*, pages 443–451. ACM, 2015.

[20] S. Kannan and T. Warnow. A fast algorithm for the computation and enumeration of perfect phylogenies. *SIAM Journal on Computing*, 26(6):1749–1763, 1997.

[21] J. Manuch, M. Patterson, and A. Gupta. On the generalised character compatibility problem for non-branching character trees. In *Computing and Combinatorics*, pages 268–276, 2009.

[22] J. Manuch, M. Patterson, and A. Gupta. Towards a characterisation of the generalised cladistic character compatibility problem for non-branching character trees. In *ISBRA*, pages 440–451, 2011.

[23] A. McPherson, A. Roth, E. Laks, T. Masud, A. Bashashati, A. W. Zhang, G. Ha, J. Biele, D. Yap, A. Wan, L. M. Prentice, J. Khattrra, M. A. Smith, C. B. Nielsen, S. C. Mullaly, S. Kalloger, A. Karnezis, K. Shumansky, C. Siu, J. Rosner, H. L. Chan, J. Ho, N. Melnyk, J. Senz, W. Yang, R. Moore, A. J. Mungall, M. A. Marra, A. Bouchard-Cote, C. B. Gilks, D. G. Huntsman, J. N. McAlpine, S. Aparicio, and S. P. Shah. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. *Nat Genet*, 48(7):758–767, 2016.

[24] I. Pe’er, T. Pupko, R. Shamir, and R. Sharan. Incomplete directed perfect phylogeny. *Siam Journal on Computing*, 33(3):590–607, 2004.

[25] T. Przytycka, G. Davis, N. Song, and D. Durand. Graph theoretical insights into evolution of multidomain proteins. *Journal of computational biology*, 13(2):351–363, 2006.

[26] D. Ringe, T. Warnow, and A. Taylor. Indo-European and Computational Cladistics. *Transactions of the Philological Society*, 100(1):59–129, Mar. 2002.

[27] I. B. Rogozin, Y. I. Wolf, V. N. Babenko, and E. V. Koonin. Dollo parsimony and the reconstruction of genome evolution. In I. V. A. Albert, editor, *Parsimony, Phylogeny, and Genomics*. Oxford University Press, 2006.
Figure 6: Red-black graph associated with the matrix in Figure 1 and with set $A = \{c_4\}$ of active characters, after the realization of the sequence $\langle c^+_4, c^+_5, c^+_2 \rangle$. The character c_2 is adjacent to the species s_3, s_4, s_5 which are all the species in the same connected components as c_2.

Figure 7: The set of maximal characters of the red-black graph in Figure 2 is $\{c_2, c_3\}$. We represent the graph $G_{RB}|C_M$.

[28] R. Sedgewick. *Algorithms in C Parts 1-4: Fundamentals Data Structures Sorting Searching*. Algorithms in C. Addison-Wesley, 2001.

[29] C. Semple and M. Steel. *Phylogenetics*. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, USA, 2003.

[30] M. A. Steel. *Phylogeny: discrete and random processes in evolution*. Number 89 in CBMS-NSF regional conference series in applied mathematics. Society for Industrial and Applied Mathematics, Philadelphia, 2016.

[31] J. Zheng, I. B. Rogozin, E. V. Koonin, and T. M. Przytycka. Support for the Coelomata Clade of Animals from a Rigorous Analysis of the Pattern of Intron Conservation. *Mol. Biol. Evol.*, 24(11):2583–2592, 2007.
Figure 8: The Hasse diagram of the graph of Figure 7, obtained from the red-black graph G_{RB} of Figure 7. The species s_2 and s_4 are two safe sources for G_{RB}.

(a) Degenerate tree, not in normal form

(b) Degenerate tree, in normal form

(c) Degenerate tree, in normal form

Figure 9: Some possible solutions for a G_{RB} with degenerate Hasse diagram.