Association between dioxin and cancer incidence and mortality: a meta-analysis

Jinming Xu1,*, Yao Ye1,*, Fang Huang1, Hanwen Chen1, Han Wu2, Jian Huang3, Jian Hu4, Dajing Xia1 & Yihua Wu1

The objective of the present study was to systematically assess the association between dioxin/2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and cancer incidence and mortality. Systematic literature searches were conducted until July 2015 in Pubmed, Embase and Cochrane library to identify relevant studies. A random-effects model was applied to estimate the pooled odds ratio (OR), risk ratio (RR), standard incidence ratio (SIR) or standard mortality ratio (SMR) for cancer incidence or mortality. In addition, dose-response, meta-regression, subgroup, and publication bias analyses were conducted. Thirty-one studies involving 29,605 cancer cases and 3,478,748 participants were included. Higher external exposure level of TCDD was significantly associated with all cancer mortality (pooled SMR = 1.09, 95% CI: 1.01–1.19, p = 0.04), but not all cancer incidence (pooled RR = 1.01, 95% CI: 0.97–1.06, p = 0.49). Higher blood level of TCDD was both significantly associated with all cancer incidence (pooled RR = 1.57, 95% CI: 1.21–2.04, p = 0.001) and all cancer mortality (pooled SMR = 1.45, 95% CI: 1.25–1.69, p < 0.001). Subgroup analysis suggested that higher external exposure and blood level of TCDD were both significantly associated with the mortality caused by non-Hodgkin’s lymphoma. In conclusion, external exposure and blood level of TCDD were both significantly associated with all cancer mortality, especially for non-Hodgkin’s lymphoma.

Cancer constitutes an enormous burden on society in more and less economically developed countries. An estimated 14.1 million new cancer cases and 8.2 million cancer deaths occurred in 2012 worldwide. As one of the important established risk factors for cancer, environmental carcinogen like dioxin might contribute to its increasing prevalence. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) is the most toxic halogenated aromatic hydrocarbon, which is a widespread environmental contaminant released by various sources of combustion, incineration, and chemical manufacturing. This compound is extremely stable and thus accumulates in the food chain with a half-life of 7–9 years in humans. In 1997, the International Agency for Research on Cancer (IARC) has classified it as a known human carcinogen (group 1) on the basis of animal studies and mechanistic information, but the epidemiology data was limited. In 2012, the IARC illustrated the associations between TCDD and human cancers according to many observational studies, but these issues were not systematically reviewed and quantified by a meta-analysis. Molecular studies has proven that TCDD is a potent a carcinogen which could disrupt multiple endocrine pathways via aryl-hydrocarbon receptors (AhR) widely present in animals and humans.

As mentioned above, many epidemiological cohort studies and case-control studies have evaluated the association between TCDD/dioxin and cancer incidence and mortality, but the results remained inconsistent. In addition, two previous meta-analyses reported the association between TCDD exposure and prostate cancer and lung cancer, while another reported the dose-response relationship for blood level of TCDD and cancer mortality based on 3 cohort studies. However, to date, no study has systematically analyzed the association between external exposure or blood level of TCDD and all cancer incidence and mortality. Thus, the aim of this study is to systematically assess the association between dioxin/TCDD and cancer incidence and mortality.
study was to provide a systematically quantitative assessment of the association from an epidemiological point of view, and fill in gaps in the IARC deficiencies on this issue.

Materials and Methods
Data sources, search strategy and selection criteria. Systematic literature searches were conducted in PUBMED, EMBASE and Cochrane library (up to July 2015) to identify eligible studies. The following terms were used in the search procedure: (“dioxin” or “TCDD” or “Tetrachlorodibenzo-p-dioxin” or “2,3,7,8-Tetrachlorodibenzo-p-dioxin”) AND (“cancer” or “tumor” or “tumour” or “carcinoma” or “neoplasm” or “sarcoma” or “melanoma” or “malignancy” or “leukemia” or “leukemia” or “myeloma” or “lymphoma” or “adenoma”). Reports cited the references identified in this systematic review and relevant reviews were also searched to include potentially missed studies. Titles and abstracts were first scanned, and then full articles of potential eligible studies were reviewed. The retrieved studies were carefully examined to exclude potential duplicates or overlapping data. For duplicate reports, the ones with larger sample size, longer follow-up time and/or more detailed information were selected. This meta-analysis was designed, conducted and reported according to PRISMA and MOOSE statements.44,45

Studies were eligible for inclusion if all the following criteria were fulfilled: (1) prospective or retrospective cohort studies and case-control studies evaluated the association between dioxin/TCDD and cancer incidence and mortality; (2) the odds ratio (OR), risk ratio (RR), standard incidence ratio (SIR) or standard mortality ratio (SMR) estimates and their 95% confidence intervals (95% CI) were given or sufficient data were available for evaluation; (3) articles as full papers in English were evaluated for eligibility. Studies reported the association between Agent Orange/herbicides and cancer incidence and mortality were excluded because the limitation of precise data on TCDD. For studies conducted in the same population, the criteria priority was established according to (1) whether the detailed information of different cancer subtypes and dioxin exposure level was provided or studies with a larger sample size and (2) the publication time. Reviews, meeting abstracts, notes, comments, editorials, and case reports were excluded because of the limited data.

Data extraction and quality assessment. Data extraction was carried out independently by two investigators (Drs. Xu JM and Ye Y). Discrepancies were resolved by a third investigator. The endpoints of this analysis were all cancer incidence and mortality as most of the included studies adopted, as well as site/type-specific cancers. The following information was extracted from each study: authors, year of publication, country of each study, study period, population characteristics (sample size, gender and age), and cancer subtypes. ORs (RRs, SIRs or SMRs) reflected the greatest degree of control for potential confounders were adopted in this meta-analysis. The quality of each study was assessed according to NEWCASTLE-OTTAWA quality assessment.46 The total score ranges from 0 to 9, and a higher score indicates higher quality. Sensitivity analyses are further conducted according to the quality assessment results to explore the source of heterogeneity.

Data synthesis and statistical analysis. The primary meta-analyses were conducted to assess the association between external exposure and blood level of TCDD and all cancer incidence and mortality. Heterogeneity between individual studies was assessed by the chi-square test and I² test; P ≤ 0.10 and/or I² > 50% indicates significant heterogeneity.47 Summary ORs (RRs, SIRs or SMRs) and 95% CI were calculated using a random-effects model. The significance of the pooled ORs (RRs, SIRs or SMRs) were determined by Z test (p < 0.05 was considered to be significant). Studies that reported results of a specific type of cancer but no data on all cancer were not pooled for all cancer analysis. Subgroup analyses were applied to explore source of heterogeneity and to evaluate potential effect of modification of variables including cancer subtype, exposure way and TCDD exposure reference category. In order to avoid bias and make the analysis more accurate, subgroup results were shown in pooled form if there were three or more studies for one subtype, otherwise, it was listed in an original form. Funnel plots were constructed and Begg’s and Egger’s tests were performed to assess the publication bias (p ≤ 0.10 was considered to be significant).

We analyzed the dose-response relationship using first-order, and second-order, and three-order fractional polynomial regression of the inverse variance-weighted data to estimate a curve of best fit. Best-fit curves were selected using decreased deviance compared with the reference model.48 Comparisons of curves to determine best fit were done using a chi-square distribution. The average values within the blood TCDD categories were specified as the midpoint for bounded ranges, and 0.75 times the higher bound for the lowest (unbounded) range, and 1.25 times the lower bound for the highest (unbounded) range. RRs or SMRs (the ratio of observed to expected cancer deaths multiplied by 100) was the response measure used in these studies. All analyses were conducted using Stata software (version 12.0; StatCorp, College Station, TX, USA).

Results
Study characteristics and data quality. After searching PUBMED, EMBASE and Cochrane library, 6446 articles were identified. 4437 articles were assessed after removing 2009 duplicate papers. Review of titles and abstracts resulted in exclusion of 4206 articles. For the remaining 231 articles, 163 were excluded for the following reasons: insufficient data (n = 60), foreign languages (n = 17), not on the right topic or targeted population (the outcomes of these studies were not cancer incidence or mortality, or the study interests were not dioxin) (n = 56), review articles (n = 14), meeting abstracts (n = 6), letters or comments (n = 10). 68 studies were included for further consideration and then 37 duplicate reports from the same population were excluded. The detailed study selection methods for the same population are shown in Supplementary Table 1. Finally, a total of 31 studies were included for the meta-analysis, including 22 cohort studies and 9 case-control studies. There were different TCDD exposure ways as follow: occupational exposure, non-occupational exposure, industrial accidents, and soldiers exposed to herbicides used in Vietnam War. The reference categories also varied among different studies,
some adopted the non-exposed population to calculate SIRs or SMRs (external reference), and others adopted the lowest exposure categories (internal reference). We pooled the RRs or SMRs of high-exposed versus non-exposed categories for external reference, and highest versus lowest categories for the internal reference. Of note, all the included case-control studies only provided data on specific cancer types but no combined data on all cancer, and these studies were only pooled for the subgroup analysis but not for the all cancer analysis in order to ensure the accuracy of the results. The selection process is shown in Fig. 1, and the characteristics of the included studies are shown in Table 1. The exposure level and adjustment for confounders of included studies are shown in Supplementary Table 2.

Among the included studies, ten13,20,22,25,31,32,34,38–40 assessed the association between external exposure level of TCDD and cancer incidence. Eleven10–12,15–18,20,21,29,30 evaluated the association between external exposure level of TCDD and cancer mortality. For blood and adipose tissue level of TCDD, seven14,19,26,33,35–37 assessed cancer incidence and seven14,16,23,24,27–29 evaluated cancer mortality. Ott et al.14 reported the association between blood level of TCDD and both cancer incidence and mortality. Read et al.20 reported the association between external exposure of TCDD and both cancer incidence and mortality. Steenland et al.16 and Manuwald et al.29 reported the association between both external exposure and blood level of TCDD and cancer mortality. The results of quality assessment were shown in the Supplementary Table 3. The scores of most studies ranged from seven to nine (except for two studies got six points), which indicated the high quality of included studies and enhanced the reliability of the analysis. The PRISMA checklist and flow diagram were shown in Supplementary Tables 4 and 5, respectively.

External exposure of TCDD and cancer incidence and mortality. Ten studies involving 18,969 cancer cases and 3,155,159 participants assessed the association between external exposure of TCDD and cancer incidence, including five cohort studies and five case-control studies. The pooled RR of all cancer incidence of TCDD exposure level was 1.01 (95% CI: 0.97–1.06), indicating no significant association (Fig. 2a). There was significant heterogeneity across the included studies ($I^2 = 73.5\%, p < 0.001$), as shown in Fig. 2a. Subgroup analysis was conducted according to cancer subtype, as shown in Table 2. The pooled RRs of different cancer types were all not significant, including breast cancer, Hodgkin's lymphoma, lymphatic leukemia, non-Hodgkin's lymphoma, and soft-tissue sarcoma. The results of subgroup analysis suggested the heterogeneity may be caused by special cancer types. Sensitivity analysis was also conducted to further explain the source of heterogeneity according to quality assessment results. After exclusion of the study13 of the lowest score (six points), the pooled RR was 1.01 (95% CI: 0.97–1.05), while the heterogeneity was not significantly changed (from $I^2 = 73.5\%$ to $I^2 = 72.7\%$).

Eleven studies involving 9,122 cancer deaths and 691,326 participants assessed the association between external exposure of TCDD and cancer mortality. The pooled SMR of all cancer mortality of TCDD exposure level was
No.	Study	Country/cohort	Time period	Exposure way	Exposure assessment	Reference category	Cancer types	Gender	No. of cancer cases/cohort or controls	Study quality	Age (years)	Duplicated reports
1	Kogevinas\[^13\]	part of IARC\[^1\]	1955–1988	occupational	job records, company records and detailed company exposure questionnaires	External: SIR and SMR	all cancer, breast cancer	F	29/701	6	N/A	
2	Read\[^20\]	New Zealand	1970–2001	non-occupational	individual's recorded Territorial Authority for usual place of residence at death or cancer registration	External: New Plymouth population	all cancer, lymphocytic leukemia, Hodgkin’s disease, Non- Hodgkin’s lymphoma, soft tissue sarcoma	F/M	8013/375583	8	N/A	
3	Viel\[^22\]	French\[^4\]	1990–1999	non-occupational	modelled ground-level concentrations	External: Isère population	non-Hodgkin’s lymphoma	F/M	3974/2487274	8	mean 61.49 ± 16.21	
4	Pesatori\[^25\]	Italy, Seveso	1977–1996	industrial accident	measurements of TCDD soil levels	External: surrounding non-contaminated territory including 11 municipalities	All cancer, Esophagus, stomach, colon, rectum, liver, biliary tract, pancreas, lung, pleura, soft tissue sarcoma, melanoma, skin, breast, genito-urinary tract, ovary, prostate, testis, bladder, kidney, brain, thyroid, Hodgkin’s disease, non-Hodgkin’s lymphoma, leukemia	F/M	2122/218761	8	0.74 Pesatori\[^71\], Bertazzi\[^22\], Pesatori\[^73\]	
5	Danjou\[^31\]	French, E3N cohort	1993–2008	non-occupational	diet history questionnaire	Internal: the lowest category	breast cancer	F	3465/63830	9	mean 52.73 ± 6.58	

Exposure mortality

No.	Study	Country/cohort	Time period	Exposition way	Exposure assessment	Reference category	Cancer types	Gender	No. of cancer cases/cohort or controls	Study quality	Age (years)	Duplicated reports
1	Michalek\[^10\]	USA, Vietnam veterans-AFSH	1982–1987	Vietnam war	physical Examination, Ranch Hands veterans	External: the comparison veterans	all cancer	M	12/2294	6	48.5	
2	Zober\[^31\]	Germany-BASF Aktiengesellschaft	1953–1987	industrial accident	company records	External: national mortality rate	all cancer, buccal cavity and pharynx, esophagus, stomach, colon, rectum, larynx, lung, bone, skin, prostate, bladder, leukemia	F/M	23/247	8	mean 63.4	
3	Collins\[^32\]	USA, West Virginia, Monsanto company	1949–1987	industrial accident	work records and Internal Revenue Service Form	External: local population mortality rate	all cancer, stomach, colorectal, liver and biliary, respiratory system, bone, skin, prostate, bladder, lymphatic and hematopoietic, soft-tissue sarcoma	M	102/754	7	N/A	

Continued
No.	Study	Country/cohort	Time period	Exposure way	Exposure assessment	Reference category	Cancer types	Gender	No. of cancer cases/cohort or controls	Study quality	Age (years)	Duplicated reports
4	Kogevinas15	IARC, 36 cohorts	1939–1992	occupational	job records, company records and detailed company exposure questionnaires	External: SIR and SMR	all cancer, buccal cavity and pharynx, esophagus, stomach, colon, rectum, liver and biliary, pancreas, peritoneum, nose and nasal sinuses, larynx, lung, bone, skin, prostate, kidney, testis, bladder, breast, cervix, endometrium and uterus, leukemia, Hodgkin's disease, non-Hodgkin's lymphoma, myeloma, brain, soft tissue sarcoma, thyroid	F/M	710/21863	7	N/A	Saracci77, Kogevinas86, Bueno de Mesquita78, Kogevinas13, Vena19, Kogevinas85
5	Steenland16	USA, NIOSH	1942–1993	occupational	job records, job-exposure matrix and blood sample test	External (US non-exposed people) and Internal (the lowest category)	all cancer, esophagus, stomach, colon, rectum, liver and biliary, pancreas, peritoneum, larynx, lung, prostate, kidney, bladder, lymphatic and hematopoietic, leukemia, Hodgkin's disease, non-Hodgkin's lymphoma, myeloma, brain and nervous system, connective tissue and soft tissue	M	377/5172	7	N/A	Fingerhut61, Steenland78, Salvan75
6	Revich17	Russia	1983–1997	non-occupational	food and soil concentration test	External: death rate in Samara Region	all cancer, intestine, stomach, colon, rectum, larynx, lung, bone, soft tissue, breast, cervix, urinary organs, leukemia, lymphomas	F/M	803/−	8	N/A	
7	Bodner18	USA-Michigan, Dow chemical company	1940–1994	occupational	job records and exposure score	External: other area workers with background exposure to dioxin	all cancer, lung, soft tissue sarcoma, non-Hodgkin's lymphoma	M	168/2187	7	N/A	Cook60, Ort79, Bond57, Ramlow74
8	Read20	New Zealand	1970–2001	non-occupational	individual's recorded Territorial Authority for usual place of residence at death or cancer registration	External: New Plymouth population	all cancer, lymphocytic leukemia, Hodgkin's disease, Non-Hodgkin's lymphoma, soft tissue sarcoma	F/M	4235/37583	8	N/A	

Continued
No.	Study	Country/cohort	Time period	Exposure way	Exposure assessment	Reference category	Cancer types	Gender	No. of cancer cases/cohort or controls	Study quality	Age (years)	Duplicated reports
9	Consonni21	Italy, Seveso	1976–2001	industrial accident	measurements of TCDD soil levels	External: surrounding non-contaminated territory including 11 municipalities	all cancer, stomach, colon, rectum, liver, biliary tract, pancreas, lung, soft tissue sarcoma, melanoma, breast, genital-urinary tract, ovary, prostate, bladder, kidney, brain, Hodgkin's disease, non-Hodgkin's lymphoma, leukemia	F/M	2278/278108	8	0–74	Bertazzi56, Bertazzi55, Bertazzi54, Bertazzi53, Baccarelli50
10	Manuwald29	Germany, Hamburg, Boehringer Ingelheim	1952–2007	occupational	company records and blood or fat tissue samples	External: Hamburg population	all cancer, hypopharynx, digestive organs, esophagus, stomach, colon, rectum, pancreas, larynx, lung, pleura, breast, prostate, kidney, bladder, hematopoietic system, non-Hodgkin's lymphoma	F/M	291/1589	7	N/A	Manz68
11	Wang30	China	1980–2005	occupational	air sample concentration test	External: Chinese national mortality rates	all cancer, lung, liver, gastric	F/M	121/3529	7	N/A	

Blood incidence

No.	Study	Country/cohort	Time period	Exposure way	Exposure assessment	Reference category	Cancer types	Gender	No. of cancer cases/cohort or controls	Study quality	Age (years)	Duplicated reports
1	Ott14	Germany, Ludwigshafen	1959–1992	occupational	questionnaire and blood sample	External: West Germany population	all cancer, buccal cavity, digestive organs, stomach, colorectal, liver, gall bladder or bile duct, respiratory system, lung, prostate, bladder or kidney, lymphatic or hematopoietic tissue, skin	M	47/243	7	N/A	

No.	Study	Country/cohort	Time period	Exposure way	Exposure assessment	Reference category	Cancer types	Gender	No. of cancer cases/cohort or controls	Study quality	Age (years)	Duplicated reports
2	Pavuk19	USA, vietnam veterans	1982–2003	Vietnam war	physical examination and blood sample	Internal: the lowest category	all cancer, all SEER sites, digestive system, respiratory system, melanoma, basal or squamous cell, prostate	M	402/1482	8	mean 63.7	Ketchum66, Akhtar49, Pavuk19, Michalek69
3	Warner24	Italy, Seveso, SWHS cohort	1976–1996, 11/1997–2009	industrial accident	interview, physical examination and blood sample	Internal: the lowest category	all cancer, breast cancer	F	66/981	9	0–40	Warner24

Blood mortality

Continued
No.	Study	Country/cohort	Time period	Exposure way	Exposure assessment	Reference category	Cancer types	Gender	No. of cancer cases/cohort or controls	Study quality	Age (years)	Duplicated reports
1	Ott14	Germany, Ludwigshafen	1959–1992	occupational	questionnaire and blood sample	External: West Germany population	all cancer, digestive organs, respiratory system, prostate, bladder or kidney, lymphatic or hematopoietic tissue	M	31/243	7	N/A	Zober11
2	Steenland16	USA, NIOSH	1942–1993	occupational	job records, job-exposure matrix and blood sample test	External (US non-exposed people) and Internal (the lowest category)	all cancer, lung cancer	M	256/5172	8	N/A	Steenland77, Cheng59
3	Collins23	USA, Michigan	1937–1980	occupational	job records and blood sample test	External (US population) and Internal (the lowest category)	all cancer, lung, prostate, kidney, non-Hodgkin's lymphomas	M	94/773	8	mean 31.1	
4	McBride24	New Zealand	1969–2004	occupational	job records and blood sample test	External (New Zealand population) and internal (the lowest category)	all cancer, digestive organs, lung, soft-tissue sarcoma, lymphatic and hematopoietic tissue, non-Hodgkin's lymphoma	F/M	61/1599	8	mean 52.9	
5	Boers27	Netherlands, Dutch cohort	1955–2006	occupational	blood sample test and predictive model	Internal (background exposure level as reference)	all cancer, digestive organs, stomach, pancreas, respiratory system, lung, skin, genital and urinary cancer, prostate, bladder, kidney, lymphatic and hematopoietic cancer, non-Hodgkin's lymphoma, leukemia	M	192/2056	8	N/A	Heederik64, Hooiveld65
6	Lin28	USA, NHANES	1999–2006	non-occupational	blood sample test	Internal (the lowest category)	all cancer	F/M	72/2361	8	>40	
7	Manuwald29	Germany, Hamburg	1952–2007	occupational	company records and blood or fat tissue samples	External: Hamburg population	all cancer, digestive organs, respiratory system, breast cancer	F/M	291/1589	7	N/A	Flesch-Janys96, Brencher97, Flesch-Janys98

Case-control studies

Exposure incidence
1
2
3

Continued
Blood and adipose tissue incidence

No.	Study	Country/cohort	Time period	Exposure way	Exposure assessment	Reference category	Cancer types	Gender	No. of cancer cases/cohort or controls	Study quality	Age (years)	Duplicated reports
4	Viel39	France, Besançon	1996–2002	non-occupational	modeled ground-level according to meteorological conditions	Internal (the lowest category)	breast cancer	F	434/2170	6	>20	
5	Villeneuve40	Eight European countries	1995–1997	occupational	structured questionnaire and work history	Internal (the lowest category)	male breast cancer	M	104/1903	6	35–70	

Table 1. Characteristics of included studies. IARC: The International Agency for Research on Cancer. E3N: Etude Epidémologique auprès de femmes de la Mutuelle Générale de l’Education Nationale. AFSH: air force health study. NIOSH: National Institute for Occupational Safety and Health. SWHS: the Seveso Women’s Health Study. NHANES: National Health and Nutrition Examination Survey. F: female, M: male, N/A: not available. Study quality was judged on the basis of the Newcastle-Ottawa Scale (1–9 stars). 1 Austria, Denmark, Finland, Italy, Netherlands, New Zealand, and Sweden. 2 Four administrative departments, Isère, Bas-Rhin, Haut-Rhin and Tarn. 3 Australia, Austria, Canada, Denmark, Finland, Italy, the Netherlands, New Zealand, Sweden, UK, Germany, USA. 4 Denmark, France, Germany, Italy, Sweden, Latvia, Portugal and Spain.

1.09 (95% CI: 1.01–1.19), indicating a significant positive association (Fig. 2b). There was significant heterogeneity across the included studies ($I^2 = 90.8\%, \ p < 0.001$), as shown in Fig. 2b. Subgroup analyses for the association between external exposure of TCDD and cancer mortality were conducted according to cancer types and TCDD exposure ways, as shown in Table 2. The pooled SMRs of cancer mortality were significant in esophagus cancer (pooled SMR = 1.52, 95% CI: 1.09–2.13), larynx cancer (pooled SMR = 2.2, 95% CI: 1.61–3.02), kidney cancer (pooled SMR = 1.39, 95% CI: 1.08–1.78), non-Hodgkin’s lymphoma (pooled SMR = 1.18, 95% CI: 1.01–1.37), myeloma (pooled SMR = 1.49, 95% CI: 1.03–2.15), soft-tissue sarcoma (pooled SMR = 1.60, 95% CI: 1.15–2.23), and occupational exposed population (pooled SMR = 1.25, 95% CI: 1.07–1.46). Subgroup analyses suggested that heterogeneity was partly influenced by cancer type and TCDD exposure way (Table 2). To further explore the potential impact of within-study heterogeneity, we also conducted sensitivity analyses according to the quality assessment results. After excluded the study10 of the lowest score (six points), the pooled SMR was 1.10 (95% CI: 1.01–1.20), while the heterogeneity was not significantly changed (from $I^2 = 90.8\%$ to $I^2 = 91.2\%$). The efficiency of the current sensitivity analysis was not able to provide evidence to further explain the source of heterogeneity.

Blood level of TCDD and cancer incidence and mortality. Seven studies comprising 837 cancer cases and 3,446 participants evaluated the association between blood level of TCDD and cancer incidence, including three cohort studies and four case-control studies. The pooled RR of all cancer incidence for the highest versus lowest categories of TCDD exposure level was 1.57 (95% CI: 1.21–2.04), indicating a positive significant association (Fig. 3a). The I^2 and p value for heterogeneity across the included studies were 7.0% and 0.341 respectively, as shown in Fig. 3a. Subgroup analysis was not conducted due to the limited data.

Seven studies involving 997 cancer deaths and 13,793 participants assessed the association between blood level of TCDD and cancer mortality. The pooled SMR of all cancer mortality for the highest versus lowest categories of TCDD exposure level was 1.45 (95% CI: 1.25–1.69), indicating a significant positive association (Fig. 3b). There was no significant heterogeneity across the included studies ($I^2 = 4.7\%, \ p = 0.394$), as shown in Fig. 3b. Subgroup analysis was conducted according to cancer type, exposure way and reference category. Two studies assessed the association between blood level of TCDD and non-Hodgkin’s lymphoma, and the SMRs (95% CI) were 4.50 (1.20–11.50) and 1.36 (1.06–1.74), respectively. The results suggested a significant positive association, which was consistent with the results of higher exposure level of TCDD. However, the results should be treated cautiously considering the relatively small sample size (n = 11), and more studies were needed to validate it. The subgroup analyses also indicated that it was all significant for occupational exposed and non-occupational exposed population, and for external and internal reference category, which further verified the stability of the results.

Dose-response analysis was conducted based on five studies14,16,23,24,29 according to the model of two-order fractional polynomial regression. RRs or SMRs using the low exposure group as the reference group were not appropriate for the dose-response analysis, which needs the RRs or SMRs relative to the normal background.
Crump et al. conducted a dose-response analysis in 2003 with only three studies. The raw data of Ott et al. and Steenland et al. was obtained by personal communication by the authors, thus we used these data extracted from Crump et al. to improve the validity of our analysis. We adopted Manuwald et al.’s study for the Hamburg cohort since the former had a longer follow-up time. Cumulative serum lipid concentration (CSLC, ppt-years) was selected as the exposure metric to relate to risk, and the second-order fractional polynomial regression plot indicated a positive correlation between blood TCDD level and all cancer SMR, as shown in Fig. 4a. After log transformation of TCDD dose, the curve showed a non-linear increasing trend (Fig. 4b). The size of the circles in Fig. 4 represented the study sample size. The SMRs remained below 114.02 for serum TEQ dose from 316.23 ppt-years to 5141.62 ppt-years. For the TEQ dose of 1000, 10000, 100000 ppt-years, the SMRs with 95% CIs were 110.67(99.09–122.26), 119.82(105.79–133.23) and 167.68(141.77–194.21), respectively. With SMRs increased from 114.02 to 124.02, the TEQ dose increased form 5141.62 ppt-years to 14883.33 ppt-years.

Figure 2. Meta-analysis of the association between external exposure level of TCDD and (a) all cancer incidence and (b) all cancer mortality.
Categories Classification

Study number	No. of cases	RR or SMR (95% CI)	Heterogeneity		
			I²	p	
Exposure incidence					
cancer type					
breast cancer	3	3768	0.99(0.93–1.06)	9.30%	0.356
Hodgkin's lymphoma	2	49	1.13(0.83–1.54)	—	—
lymphatic leukemia	2	104	1.35(0.93–1.97)	—	—
non-Hodgkin's lymphoma	4	4263	1.09(0.92–1.30)	65.80%	0.001
soft-tissue sarcoma	4	105	1.37(0.97–1.93)	48.70%	0.041

Exposure mortality					
cancer type					
buccal cavity and pharynx	2	22	1.30(0.82–1.97)	—	—
esophagus	3	44	1.52(0.99–2.31)	9.10%	0.333
stomach	7	433	1.02(0.82–1.27)	68.10%	0.001
colorectal	7	453	1.05(0.94–1.19)	20.10%	0.214
colon	5	298	0.97(0.86–1.09)	0.00%	0.532
rectum	5	154	1.18(0.97–1.44)	25.10%	0.238
liver and biliary	5	212	1.01(0.79–1.30)	0.00%	0.046
pancreas	4	139	0.93(0.78–1.11)	0.00%	0.719
peritoneum	2	5	2.19(0.45–6.41)	—	—
larynx	4	45	2.20(1.61–3.02)	0.00%	0.563
trachea/lung	8	1190	1.21(0.89–1.65)	95.20%	<0.001
prostate	5	172	1.14(0.97–1.34)	0.00%	0.830
kidney	4	90	1.39(1.08–1.78)	16.60%	0.309
bladder	5	117	1.73(0.95–3.18)	89.00%	<0.001
Hodgkin's disease	4	43	1.35(0.97–1.88)	0.00%	0.895
non-Hodgkin's lymphoma	6	239	1.18(1.01–1.37)	20.10%	0.235
myeloma	3	50	1.49(1.03–2.15)	24.80%	0.256
leukemia	5	156	1.14(0.96–1.35)	0.00%	0.464
skin	2	9	0.89(0.36–2.18)	—	—
brain nervous system	3	57	0.91(0.69–1.20)	0.00%	0.418
bone	2	2	5.00(0.60–18.1)	—	—
soft-tissue sarcoma	6	46	1.60(1.15–2.23)	0.00%	0.550
breast	4	234	1.27(0.78–2.06)	87.80%	<0.001
endometrium and uterus	2	3	3.41(0.70–9.96)	—	—
occupational	5	1667	1.25(1.07–1.47)	78.30%	0.001
industrial accident	3	2405	1.02(0.91–1.14)	44.80%	0.093
Vietnam war	1	12	0.70(0.30–1.10)	—	—

exposure way					
non-occupational	2	803	1.28(0.65–2.52)	—	—
occupational	5	1667	1.25(1.07–1.47)	78.30%	0.001

reference category					
external	5	733	1.39(1.18–1.63)	0.00%	0.458
internal	2	192	1.80(1.16–2.82)	—	—

Table 2. Subgroup analyses of the association between TCDD and cancer incidence and mortality.

— Could not be calculated. *Significant association was indicated, statistical z test: p < 0.05.
Publication bias. Begg’s funnel plots and Egger’s linear regression test indicated no evidence of publication bias in the present study (TCDD external exposure and cancer incidence $P_{\text{Begg}} = 0.755$ and $P_{\text{Egger}} = 0.245$, and mortality $P_{\text{Begg}} = 0.150$ and $P_{\text{Egger}} = 0.521$; blood level of TCDD and cancer incidence $P_{\text{Begg}} = 1.000$ and $P_{\text{Egger}} = 0.620$, and mortality $P_{\text{Begg}} = 0.711$ and $P_{\text{Egger}} = 0.834$). The funnel plots were shown in Supplementary Figures 1 to 4.

Discussion
The current meta-analysis summarized the results of twenty-two cohort studies and nine case-control studies, including ten on external exposure level of TCDD and cancer incidence, eleven on external exposure level and cancer mortality, seven on blood level of TCDD and cancer incidence, and seven on blood level of TCDD and cancer mortality. The results indicated that higher external exposure level of TCDD was significantly associated with all cancer mortality but not all cancer incidence. For external exposure studies, the dioxin exposure ways, exposure quantification methods, reference categories, exposure level and adjustment for potential confounders differed greatly among included studies, which could cause heterogeneity and these results should be taken cautiously. Besides, there was a significantly positive association between higher blood level of TCDD and both all cancer incidence and mortality. The subgroup analysis for TCDD exposure mortality reported significant results for esophagus cancer, larynx cancer, kidney cancer, non-Hodgkin’s lymphoma, myeloma, soft-tissue sarcoma and occupational exposed population. However, the IARC’s review suggested that the evidence for specific cancers was strongest for lung cancer, soft-tissue sarcoma and non-Hodgkin’s lymphoma. The IARC’s review listed the related publications, while they didn’t distinguish the duplicated studies based on the same population and didn’t provided quantitatively pooled results. Thus, the results of the current study may provide relatively more detailed indications on specific cancer types. Interestingly, the subgroup analysis also suggested consistency for increased mortality ratio of non-Hodgkin’s lymphoma in both higher external exposure and blood level of TCDD.
which may provide evidence on the precise carcinogenic potency of TCDD from an epidemiological point of view. The dose-response analysis showed an increasing trend of SMR with higher blood TEQ dose. For the TEQ dose of 1000, 10000, 100000 ppt-year, the SMRs were 110.67, 119.82 and 167.68, respectively.

The present meta-analysis provided epidemiological evidence for the carcinogenic potency of TCDD and the subgroup analysis showed specific cancer sites. Importantly, the consistent results for non-Hodgkin's lymphoma mortality of both external exposure and blood level of TCDD may indicate its specific effect on hematopoietic system. Although the sample size was relative small in the blood level of TCDD and non-Hodgkin's lymphoma mortality subgroup analysis, the results of the included two studies were both significant, independently. The SMRs and sample size of non-Hodgkin's lymphoma by Collins et al. and Boers et al. were 4.50 (1.2–11.5, n = 4) and 1.36 (1.06–1.74, n = 7), respectively, which suggested possibility that the association may be especially significant for non-Hodgkin's lymphoma. It has been reported by Hardell et al. that exposure to phenoxy acids, chlorophenols and organic solvents may be a causative factor in malignant lymphoma as early as 1981. And based on decades of research, it has been realized that, exposure to dioxins, in particular TCDD could induce chloracne, and WHO has also classified it as a human carcinogen. In consideration of the extensive sources, widespread trend and the strong toxicity of TCDD, the present results have considerable epidemiological and public health importance for humans. However its carcinogenic potential to humans and the mechanisms are not clearly demonstrated. It's commonly believed that AhR activation accounted for most biological properties of dioxins, including various physiological and developmental processes, tumor promotion, thymic involution, craniofacial anomalies, skin disorders and alterations in the endocrine, immunological and reproductive systems. Furthermore, TCDD may also up-regulate drug-metabolizing enzymes, thus increasing the presence of highly reactive intermediates that form during metabolic activation and/or transformation of several key hormones. Animal experiment also suggested that intraperitoneal injection of TCDD could cause increased incidence of lymphomas in male and female mice.

Determining the sources of heterogeneity is an important goal of meta-analysis. The heterogeneity of our study mainly existed in external exposure level of TCDD and all cancer incidence (I² = 73.5%, p < 0.001) and mortality (I² = 90.8%, p < 0.001). Subgroup analyses suggested that cancer subtype and dioxin exposure way can partially explain heterogeneity across the studies. Sensitivity analysis was also conducted according to the quality assessment results, while the efficiency was not able to provide evidence to further explain the source of heterogeneity. However, the heterogeneity caused by different TCDD exposure ways, quantification methods, reference categories (internal or external), lag time, background exposure levels and adjustment for confounders couldn't be fully quantified due to the limitation of individual participant data. The future research should pay...
more attention to the unity of survey methods and the standardization of the exposure reference category to control heterogeneity.

Our study has several strengths. First, we adopted the external exposure and blood level of TCDD to thoroughly assess the association between TCDD and cancer incidence and mortality. Second, subgroup analyses and dose-response analyses were applied, which further strengthened the conclusions and emphasized the TCDD effects on some specific cancer sites. Although the 2012 IARC monographs\(^4\) evaluated the evidence in humans for the carcinogenicity of TCDD and made a list of cohort studies, these issues were not systematically reviewed and quantified by a meta-analysis. Thus, the current meta-analysis fill in gaps in the IARC deficiencies on this issue and it’s of considerable interest and public health importance. In addition, no publication bias was observed, indicating that the pooled results should be unbiased.

However, the current analysis is restricted by several limitations. First, the number of studies involved in blood level of TCDD and all cancer incidence was relatively small, and thus some of the subgroup analyses were difficult to conduct. Second, in the dose-response analysis, the normal background uncontaminated by occupational dioxin exposure was different, and only McBride et al.\(^5\) study provided the New Zealand background level of 3.9 ppt. We didn't add the background exposure level to our analysis for the limitation of original data. Third, the Steenland et al.\(^6\) used a 15-year lag time, whereas no lag was used in other cohorts. Although the Crump et al.'s analysis\(^7\) inferred that results based on cumulative exposure lagged 15 years should not differ greatly from those based on unlagged exposure, this could cause inaccuracy and heterogeneity. Thus, the individual participant data meta-analysis is needed to enhance future analysis. Fourth, the subgroup analysis for blood level of TCDD and all cancer mortality was limited in digestive system, respiratory system, lung cancer, prostate cancer and non-Hodgkin's lymphoma. More studies with precise data of different cancer types are warranted to support the effects of TCDD on other cancers.

In conclusion, our findings suggest that external exposure and blood level of TCDD were both significantly associated with all cancer mortality. Higher external exposure of TCDD may significantly increase the mortality rate of esophagus cancer, larynx cancer, kidney cancer, non-Hodgkin's lymphoma, myeloma, soft-tissue sarcoma and occupational exposure population. Of note, such relationship may be especially significant for non-Hodgkin's lymphoma.

References

1. Torre, L. A. et al. Global cancer statistics, 2012. CA: a cancer journal for clinicians 65, 87–108, doi: 10.3322/caac.21262 (2015).
2. IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans: Polychlorinated Dibenzo-Para-Dioxins and Polychlorinated Dibenzo-p-dioxins. Lyon, France, 4–11 February 1997. IARC monographs on the evaluation of carcinogenic risks to humans/World Health Organization, International Agency for Research on Cancer 69, 1–631 (1997).
3. Chemical agents and related occupations. IARC monographs on the evaluation of carcinogenic risks to humans/World Health Organization, International Agency for Research on Cancer 100F, 9–562 (2012).
4. Safe, S. Development of bioassays and approaches for the risk assessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Environmental health perspectives 101 Suppl 3, 317–325 (1993).
5. Lorber, M., Patterson, D., Huwe, J. & Kahn, H. Evaluation of background exposures of Americans to dioxin-like compounds in the 1990s and the 2000s. Chemosphere 77, 640–651, doi: 10.1016/j.chemosphere.2009.08.016 (2009).
6. Viel, J. F., Arveux, P., Baverel, J. & Cahn, J. Y. Soft-tissue sarcoma and non-Hodgkin's lymphoma clusters around a municipal solid waste incinerator with high dioxin emission levels. American journal of epidemiology 152, 13–19 (2000).
7. Pirkle, J. L. et al. Estimates of the half-life of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Vietnam Veterans of Operation Ranch Hand. Journal of toxicology and environmental health 27, 165–171, doi: 10.1080/15287398909531288 (1989).
8. Birnbaum, L. S. The mechanism of dioxin toxicity: relationship to risk assessment. Environmental health perspectives 102 Suppl 9, 157–167 (1994).
9. Birnbaum, L. S. Developmental effects of dioxins and related endocrine disrupting chemicals. Toxicology letters 82–83, 743–750 (1995).
10. Michalek, J. E., Wolfe, W. H. & Miner, J. C. Health status of Air Force veterans occupationally exposed to herbicides in Vietnam. II. Mortality. Jama 264, 1832–1836 (1990).
11. Zober, A., Messerer, P. & Huber, P. Thirty-four-year mortality follow-up of BASF employees exposed to 2,3,7,8-TCDD after the 1953 accident. International archives of occupational and environmental health 62, 139–157 (1990).
12. Collins, J. J., Strauss, M. E., Levinskas, G. J. & Conner, P. C. The mortality experience of workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin in a trichlorophenol process accident. Epidemiology (Cambridge, Mass.) 4, 7–13 (1993).
13. Kogevinas, M. et al. Cancer incidence and mortality in women occupationally exposed to chlorophenoxy herbicides, chlorophenols, and dioxins. Cancer causes & control: CCC 4, 547–553 (1993).
14. Ott, M. G. & Zober, A. Cause specific mortality and cancer incidence among employees exposed to 2,3,7,8-TCDD after a 1953 reactor accident. Occupational and environmental medicine 53, 606–612 (1996).
15. Kogevinas, M. et al. Cancer mortality in workers exposed to phenoxy herbicides, chlorophenols, and dioxins. An expanded and updated international cohort study. American journal of epidemiology 145, 1061–1075 (1997).
16. Steenland, K., Paciattelli, L., Deddens, J., Fingerhut, M. & Chang, L. I. Cancer, heart disease, and diabetes in workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of the National Cancer Institute 91, 779–786 (1999).
17. Revich, B. et al. Dioxin exposure and public health in Chapaevsk, Russia. Chemosphere 43, 951–966 (2001).
18. Bodner, K. M., Collins, J. J., Bloemen, L. J. & Carson, M. L. Cancer risk for chemical workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Occupational and environmental medicine 60, 672–675 (2003).
19. Pavuk, M. et al. Did TCDD exposure or service in Southeast Asia increase the risk of cancer in air force Vietnam veterans who did not spray agent orange? Journal of occupational and environmental medicine/American College of Occupational and Environmental Medicine 47, 335–342 (2005).
20. Read, D., Wright, C., Weinstein, P. & Borman, B. Cancer incidence and mortality in a New Zealand community potentially exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin from 2,4,5-trichlorophenoxyacetic acid manufacture. Australian and New Zealand journal of public health 31, 13–18 (2007).
21. Consonni, D. et al. Mortality in a population exposed to dioxin after the Seveso, Italy, accident in 1976: 25 years of follow-up. American journal of epidemiology 167, 847–858, doi: 10.1093/aje/kwm371 (2008).
22. Viel, J. F. et al. Risk for non-Hodgkin's lymphoma in the vicinity of French municipal solid waste incinerators. Environmental health: a global access science source 7, 51, doi: 10.1186/1476-069x-7-51 (2008).

Scientific RepoRTS | 6:38012 | DOI: 10.1038/srep38012
39. Viel, J. F.

53. Bertazzi, P. A.

54. Bertazzi, P. A.

32. Hardell, L. Phenoxy herbicides, chlorophenols, soft-tissue sarcoma (STS) and malignant lymphoma.

36. De Roos, A. J.

35. Tuomisto, J. T.

47. Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis.

48. Royston, P. A strategy for modelling the effect of a continuous covariate in medicine and epidemiology.

49. Akhtar, F. Z., Garabrant, D. H., Ketchum, N. S. & Michalek, J. E. Cancer in US Air Force veterans of the Vietnam War.

52. Bertazzi, A.

50. Baccarelli, A.

51. Becher, H., Steindorf, K. & Flesch-Janys, D. Quantitative cancer risk assessment for dioxins using an occupational cohort.

25. Pesatori, A. C., Consonni, D., Rubagotti, M., Grillo, P. & Bertazzi, P. A. Cancer incidence in the population exposed to dioxin after the “Seveso accident”: twenty years of follow-up. Environmental health: a global access science source 8, 39, doi: 10.1186/1476-069X-8-39 (2009).

26. Warner, M. et al. Dioxin exposure and cancer risk in the Seveso Women’s Health Study. Environmental health perspectives 119, 1700–1705, doi: 10.1289/ehp.1103720 (2011).

20. Boers, D. et al. Plasma dioxin levels and cause-specific mortality in an occupational cohort of workers exposed to chlorophenols, herbicides and contaminants. Occupational and environmental medicine 69, 113–118, doi: 10.1136/oem.2010.060426 (2012).

21. Lin, Y. S. et al. Environmental exposure to dioxin-like compounds and the mortality risk in the U.S. population. International journal of hygiene and environmental health 215, 541–546, doi: 10.1016/j.ijheh.2012.02.005 (2012).

22. Manowald, U., Velasco-Cerrillo, M., Berger, J., Manz, A. & Baur, X. Mortality study of chemical workers exposed to dioxines: follow-up 23 years after chemical plant closure. Occupational and environmental medicine 69, 636–642, doi: 10.1136/oemed-2012-100682 (2012).

23. Collins, J. I. et al. Mortality rates among workers exposed to dioxins in the manufacture of pentachlorophenol. Journal of occupational and environmental medicine/american College of Occupational and Environmental Medicine 51, 1212–1219, doi: 10.1097/JOM.0b013e3181badd4e (2009).

24. McBride, D. I. et al. Mortality in workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin at a trichlorophenol plant in New Zealand. Journal of occupational and environmental medicine/american College of Occupational and Environmental Medicine 51, 1049–1056, doi: 10.1097/JOM.0b013e3181b571ae (2009).

25. Pesatori, A. C., Consonni, D., Rubagotti, M., Grillo, P. & Bertazzi, P. A. Cancer incidence in the population exposed to dioxin after the “Seveso accident”: twenty years of follow-up. Environmental health: a global access science source 8, 39, doi: 10.1186/1476-069X-8-39 (2009).
59. Cheng, H. et al. TCDD exposure-response analysis and risk assessment. Risk analysis: an official publication of the Society for Risk Analysis 26, 1059–1071, doi: 10.1111/j.1539-6924.2006.00800.x (2006).
60. Cook, R. R., Bond, G. G. & Olson, R. A. Evaluation of the mortality experience of workers exposed to the chlorinated dioxins. Chemosphere 15, 1769–1776 (1986).
61. Fingerhut, M. A. et al. Cancer mortality in workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. The New England journal of medicine 324, 211–218, doi: 10.1056/nejm199102143240402 (1991).
62. Flesch-Janss, D. et al. Exposure to polychlorinated dioxins and furans (PCDD/F) and mortality in a cohort of workers from a herbicide-producing plant in Hamburg, Federal Republic of Germany. American journal of epidemiology 142, 1165–1175 (1995).
63. Flesch-Janss, D., Steindorf, K., Gurn, P. & Recher, H. Estimation of the cumulated exposure to polychlorinated dibenz-p-dioxins/ furans and standardized mortality ratio analysis of cancer mortality by dose in an occupationally exposed cohort. Environmental health perspectives 106 Suppl 2, 653–662 (1998).
64. Feederik, D., Hooiveld, M. & Bueno-de-Mesquita, H. B. Modelling of 2,3,7,8-tetrachlorodibenzo-p-dioxin levels in a cohort of workers with exposure to phenoxy herbicides and chlorophenols. Chemosphere 37, 1743–1754 (1998).
65. Hooiveld, M. et al. Second follow-up of a Dutch cohort occupationally exposed to phenoxy herbicides, chlorophenols, and contaminants. American journal of epidemiology 147, 891–901 (1998).
66. Ketchum, N. S., Michalek, J. E. & Burton, J. E. Serum dioxin and cancer in veterans of Operation Ranch Hand. American journal of epidemiology 149, 630–639 (1999).
67. Kogevinas, M. et al. Cancer mortality from soft-tissue sarcoma and malignant lymphomas in an international cohort of workers exposed to chlorophenoxy herbicides and chlorophenols. Chemosphere 25, 1071–1076 (1992).
68. Manz, A. et al. Cancer mortality among workers in chemical plant contaminated with dioxin. Lancet (London, England) 338, 959–964 (1991).
69. Michalek, J. E. & Pavuk, M. Diabetes and cancer in veterans of Operation Ranch Hand after adjustment for calendar period, days of spraying, and time spent in Southeast Asia. Journal of occupational and environmental medicine/American College of Occupational and Environmental Medicine 50, 330–340, doi: 10.1097/JOM.0b013e31815f88b9 (2008).
70. Ott, M. G., Olson, R. A., Cook, R. R. & Bond, G. G. Cohort mortality study of chemical workers with potential exposure to the higher chlorinated dioxins. Journal of occupational medicine: official publication of the Industrial Medical Association 29, 422–429 (1987).
71. Pavuk, M., Michalek, J. E. & Ketchum, N. S. Prostate cancer in US Air Force veterans of the Vietnam war. Journal of exposure science & environmental epidemiology 16, 184–190, doi: 10.1038/sj.see.7500448 (2006).
72. Pesatori, A. C. et al. Cancer morbidity in the Seveso area, 1976-1986. Chemosphere 25, 209–212 (1992).
73. Pesatori, A. C. et al. Cancer in a young population in a dioxin-contaminated area. International journal of epidemiology 22, 1010–1013 (1993).
74. Ramlow, J. M. et al. Mortality in a cohort of pentachlorophenol manufacturing workers, 1940–1989. American journal of industrial medicine 30, 180–194, doi: 10.1002/(sici)1097-0274(19960830)30:2<180::aid-ajim>3.0.co;2-4 (1996).
75. Salvan, A., Thomasath, K., Bortot, P. & Sartori, N. Use of a toxicokinetic model in the analysis of cancer mortality in relation to the estimated absorbed dose of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). The Science of the total environment 274, 21–35 (2001).
76. Saracci, R. et al. Cancer mortality in workers exposed to chlorophenoxy herbicides and chlorophenols. Lancet (London, England) 338, 1027–1032 (1991).
77. Steenland, K., Deddens, J. & Piacentilli, L. Risk assessment for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) based on an epidemiologic study. American journal of epidemiology 154, 451–458 (2001).
78. Steenland, K., Nowlin, S., Ryan, B. & Adams, S. Use of multiple-cause mortality data in epidemiologic analyses: US rate and proportion files developed by the National Institute for Occupational Safety and Health and the National Cancer Institute. American journal of epidemiology 136, 855–862 (1992).
79. Vena, J. et al. Exposure to dioxin and nonneoplastic mortality in the expanded IARC international cohort study of phenoxy herbicide and chlorophenol production workers and sprayers. Environmental health perspectives 106, 645–653 (1998).
80. Warner, M. et al. Serum dioxin concentrations and breast cancer risk in the Seveso Women's Health Study. Environmental health perspectives 110, 625–628 (2002).
81. Hardell, L. & Sandstrom, A. Case-control study: soft-tissue sarcomas and exposure to phenoxyacetic acids or chlorophenols. British journal of cancer 39, 711–717 (1979).
82. Eriksson, M., Hardell, L., Berg, N. O., Moller, T. & Axelson, O. Soft-tissue sarcomas and exposure to chemical substances: a case-referent study. British journal of industrial medicine 38, 27–33 (1981).
83. Hardell, L. & Eriksson, M. The association between soft tissue sarcomas and exposure to phenoxyacetic acids. A new case-referent study. Cancer 62, 652–656 (1988).
84. Eriksson, M., Hardell, L. & Adami, H. O. Exposure to dioxins as a risk factor for soft tissue sarcoma: a population-based case-control study. Journal of the National Cancer Institute 82, 486–490 (1990).
85. Kogevinas, M. et al. Soft tissue sarcoma and non-Hodgkin's lymphoma in workers exposed to phenoxy herbicides, chlorophenols, and dioxins: two nested case-control studies. Epidemiology (Cambridge, Mass.) 6, 396–402 (1995).
86. Hardell, L., Eriksson, M., Lenner, P. & Lundgren, E. Malignant lymphoma and exposure to chemicals, especially organic solvents, chlorophenols and phenoxy acids: a case-control study. British journal of cancer 43, 169–176 (1981).
87. Sorg, O. AhR signalling and dioxin toxicity. Toxicology letters 230, 225–233, doi: 10.1016/j.toxlet.2013.10.039 (2014).
88. Zudaire, E. et al. The ary hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers. The Journal of clinical investigation 118, 640–650, doi: 10.1172/jci30024 (2008).
89. Della Porta, G., Dragani, T. A. & Sozzi, G. Carcinogenic effects of infantile and long-term 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment in the mouse. Tumori 73, 99–107 (1987).

Acknowledgements
The work was supported by grants from the National Natural Science Foundation of China (Grant Nos 81403711). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors wish to thank Dr. Xinqiang Zhu and Dr. Jun Zhang (Department of Toxicology, Zhejiang University School of Public Health) for valuable discussion and suggestion.

Author Contributions
The Corresponding Authors (Drs. Y.W. and D.X.) have the right to grant on behalf of all authors and does grant on behalf of all authors. Drs. Y.W. and D.X. contributed to conception and design of the study; Drs. J.X. and Y.Y. contributed to conception, design, and editing the manuscript; Drs. F.H., H.C. and H.W. contributed to the data acquisition, analysis, interpretation of the data, and the statistical analysis; Drs. J.H. and J.H. contributed to conception, design, and editing the manuscript. All authors commented on drafts of the paper and have approved the final draft of the manuscript.
Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Xu, J. et al. Association between dioxin and cancer incidence and mortality: a meta-analysis. Sci. Rep. 6, 38012; doi: 10.1038/srep38012 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016
Corrigendum: Association between dioxin and cancer incidence and mortality: a meta-analysis

Jinming Xu, Yao Ye, Fang Huang, Hanwen Chen, Han Wu, Jian Huang, Jian Hu, Dajing Xia & Yihua Wu

Scientific Reports 6:38012; doi: 10.1038/srep38012; published online 29 November 2016; updated 10 February 2017

The Acknowledgements section in this Article is incomplete.

'The work was supported by grants from the National Natural Science Foundation of China (Grant Nos 81400371). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors wish to thank Dr. Xinqiang Zhu and Dr. Jun Zhang (Department of Toxicology, Zhejiang University School of Public Health) for valuable discussion and suggestion.'

Should read:

'The work was supported by grants from the National Natural Science Foundation of China (Grant Nos 81302455 and 31471297). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors wish to thank Dr. Xinqiang Zhu and Dr. Jun Zhang (Department of Toxicology, Zhejiang University School of Public Health) for valuable discussion and suggestion.'

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017