The Primary Structure of Globin and Linker Chains from the Chlorocruorin of the Polychaete Sabella spallanzanii

Alberto Pallavicini,§§, Enrico Negrisolo,§§, Roberto Barbato,¶, Sylvia Dewilde,¶¶, Anna Ghiretti-Magaldi,¶¶, Luc Moens,¶, and Gerolamo Lanfranchi,¶¶

From the Dipartimento di Biologia and Centro di Ricerca Interdipartimentale per le Biotechnologie Innovative, Biotechnology Center, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy, the Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale Amedeo Avogadro, Corso Borsalino 54 I-15100 Alessandria, Italy, the Dipartimento di Biologia and Consiglio Nazionale delle Ricerche Center for the Study of Metalloproteins, Università di Padova, via Ugo Bassi 58/B, 35131 Padova, Italy, and the Department of Biochemistry, University of Antwerp UIA, Antwerp, Belgium

Annelid hemoglobins are organized in a very complex supramolecular network of interacting polypeptides, the structure of which is still not wholly resolved. We have separated by two-dimensional electrophoresis the 4-MDa chlorocruorin of Sabella spallanzanii and identified its components by amino-terminal sequencing. This work reveals a high rate of heterogeneity of constituent chains in a single animal as well as in the Sabella population. Using a cDNA library prepared from the hematopoietic tissue of this worm, we have isolated and fully sequenced most globin and linker cDNAs. The primary structure features of these polypeptides have been characterized by comparison with model globin and linker sequences.

Chlorocruorins (Chls)§§ are giant extracellular oxygen-binding heme proteins found in four marine polychaete families. They contain an altered heme with a formyl group substituting the vinyl group of the heme and critical D8E and H11W substitutions in the globin subunit. The structural hierarchy within the HBL Hb of Lumbriicus terrestris was determined recently by x-ray diffraction analysis at 5.5 Å resolution (12). This Hb, composed of 144 globin and 36 linker chains, is arranged in dodecameric substructures. Twelve trimeric linker complexes project triple-stranded helical coiled-coil “spokes” toward the center of the complex; interdigitation of these spokes seems crucial for stabilization. The resulting complex of linker chains forms a scaffold on which 12 Hb dodecamers assemble.

The nature of the disulfide-bonded globin subunits composing the dodecameric structures is different among the different classes. Monomers and disulfide-bonded trimers or monomers and disulfide-bonded dimers are found in oligochaete/polychaete and leeches/vestimentiferans Hbs, respectively (5, 13, 14). In contrast the Eudistylia vancouverii Chl (15, 16) consists of two types of globin subassemblies, a dodecamer formed by the noncovalent association of three disulfide-bonded trimers and a tetramer formed by the noncovalent association of disulfide-bonded dimers.

In contrast to annelid Hbs, in which a wealth of sequence information of globin chains is available, only a single primary structure of a Chl globin chain has been published (17). Globin chain E of Sabellastarte indica shows 27–49% sequence identity with the annelid globin chains. Five cysteines, crucial for the subunit formation, are present. Two adjacent cysteines just preceding A1 and one at position H11 are conserved as in all annelid globin chains of type I (18). Two other cysteines occur at position E8 and within the corner between the G and H helices, as frequently seen in other annelid Hbs as well (19).

The Chl of Sabella spallanzanii, a marine fan worm polychaete formerly known as Spirographis spallanzanii, was chosen as a model molecule to identify the set of polypeptides that form the complete protein. The globin and linker polypeptides that compose its supramolecular structure have been resolved by two-dimensional gel electrophoresis. Three globin and three linker mRNAs and some variants have been isolated from S. spallanzanii cDNA libraries by screening with specific antibodies and have been completely sequenced and characterized.

MATERIALS AND METHODS

Purification and Gel Separation of S. spallanzanii Globin and Linker Chains—Live specimens of S. spallanzanii were collected in the Bay of Napoli. When Chl was prepared from pools of animals, the collected hemolymph was first centrifuged (10 min at 1,000 × g) and then frozen at −20 °C in 0.1 M Tris/HCl, pH 7.0, 0.5 mM CaCl2, and 20% sucrose. Tablets of the Complete protease inhibitor kit (Roche) were added to prevent proteolytic activity. The Chl was sedimented by ultracentrifugation (3.5 h at 300,000 × g) at 4 °C, and the obtained pellet was resuspended in the same buffer and stored at −20 °C. The Chl concen-
tation was determined using E$_{1% cm}^{1}$ = 2.18 for Chl at 280 nm. Absorption spectra were measured with an 8452A Hewlett Packard spectrophotometer. For single S. spallanzanii specimens, the crowns were dissected and immediately frozen in liquid nitrogen. The Chl was purified by running directly the hemolymph obtained from each crown on a fast protein liquid chromatography Superose 6 (Amersham Pharmacia Biotech) column in 0.1 M Tris/HCl, pH 7.0. The final purity was checked by transmission electron microscopy, spectroscopy, and polyacrylamide gel separation.

One- and two-dimensional electrophoresis (2-DE) were performed according to Fling and Gregerson (20) and Gorg et al. (21). The first dimension separation was an anodic focusing on a 4.0–7.0 Immobiline pH gradient. A 15% polyacrylamide/SDS slab gel electrophoresis was used as second dimension.

Protein Sequencing—Globin and linker chains were separated by 2-DE, and the band pattern was transferred to a polyvinylidene fluoride membrane (Millipore). Selected spots were sequenced in an Applied Biosystems ABI 471-B sequencer operating as recommended by the manufacturer.

cDNA Library Construction—The monolayer hematopoietic tissue of S. spallanzanii (22) was prepared from living animals, immediately frozen in liquid nitrogen, and kept at −80°C. The extraction of total RNA was performed according to Chomczynsky and Sacchi (23) using the tissues of a total of seven specimens. Poly(A)$^+$ mRNA was purified by oligo(dT) affinity chromatography (24). The first strand was synthesized with an oligo(dT)-No1 primer using the Copy kit (Invitrogen). The double-stranded blunt-ended cDNA was ligated to BstXI nonpalindromic adaptors, NotI-digested, and finally directionally cloned into BstXI-NotI cut pcDNAI plasmid vector (Invitrogen). The recombinant vectors were electroporated into Escherichia coli strains InvF and Top10F$^+$ (Invitrogen).

Production of Anti-Chl Antibodies—Purified Chl was separated into its components by SDS-polyacrylamide gel electrophoresis (20), and the gel was stained with acid-free Coomassie. Three main bands were cut out from the gel and electro-eluted as described previously (25). After checking the purity by a second SDS-polyacrylamide gel electrophoresis run, the purified proteins were emulsified with complete Freund's adjuvant and injected into rabbits. Animals were booster-injected every second week over a period of 2 months. Blood was collected, and the serum was separated by centrifugation and stored at −80°C. As controls, sera were collected from the same rabbits before the immunization protocol. The specificity of the different antisera was checked by immunoblotting according to standard protocols (26).

Screening and Sequencing of Sabella Globin and Linker cDNA Clones—In a first round of screening, 100,000 bacteria colonies were grown on 10 nylon filters laid on square Luria Bertani broth plates (27). The colonies were then replicated twice on nitrocellulose filters and re-grown on Luria Bertani broth plates containing isopropyl β-D-thiogalactopyranoside as an inducer for the expression of the recombinant proteins. The clones containing the globin and linker cDNAs were detected by immunological screening using the specific antibodies at a dilution of 1:1,000. Two rounds of subscreening were performed to select single positive clones. Both strands of the cDNA inserts were sequenced by a primer-walking strategy using the fluorescent BigDye$^+$ terminator chemistry (PE Biosystems), and the sequencing reactions were analyzed on an ABI-377 automated DNA sequencer (PE Biosystems). The sequences were assembled using the SeqMan II program from the Lasergene software package (DNASTar, Madison, WI). Full-length sequences of linker 3 and globin 1 were completed by 5$'$ and 3$'$ terminal sequenced during this work or with globins and linkers available from the literature and data bases to identify the export signal peptides. Successively, the pl and molecular mass were computed from the cDNA sequences with the program Compute pl/Mw and compared with the experimental data obtained from the 2-DE gel analysis. The pl and Mw measured with the two protocols are perfectly comparable. Amino acid compositions of the mature polypeptides were determined with the program ProtParam. Finally, the linker chains were aligned using the ClustalW program (28), and the globins were manually aligned according to the tertiary structure template of invertebrate globins (19).

RESULTS AND DISCUSSION

Determination of the Chl Polypeptide Components—A representative 2-DE separation of the Chl extracted from a single specimen is shown in Fig. 1A. A complex pattern of multiple spots is clearly detectable. They can be divided into three groups: heavy linkers (molecular mass ~35 kDa), light linkers (molecular mass ~31 kDa), and globin chains (Glb) (molecular mass ~14.4 kDa). This pattern is comparable with that obtained for the Chls of E. vancouverii, in which two groups of linkers (L$_{1a-}$ and L$_{2a-d}$, 10 chains) and six globin chains where detected by electron spray ionization mass spectrometry (16).
Although the solution of the three-dimensional structure of the HBL Hb of *L. terrestris* offers a splendid explanation for the structural hierarchy within the molecule, no rationale is presented for the globin and linker chain multiplicity (12). The observed high cooperativity of the HBL Hbs (Hill coefficient \(n_{50} > 3\)) (29–32) as well as the aggregation into trimers, tetramers, and dodecamers definitively need different globin types (1) \(a, b, c\), and \(d\) in *L. terrestris*. The formation of the coiled coils in the linker scaffold complex also probably needs structurally different linker chain types (1) \(L_{1-4}\) in *L. terrestris*.

A comparison of the globin and linker chains of a single animal (Fig. 1A) with that of a pool of 500 *S. spallanzanii* specimens (Fig. 1B) reveals a high degree of heterogeneity. Sixteen spots in the range of ~31 kDa and thirteen in the range of 14.4 kDa are clearly distinguishable. Amino-terminal sequencing of the major spots and alignment with published sequences confirm their identification as linkers and globin chains (Table I). There are three possible explanations for this heterogeneity: (i) the described variations (see below) suggest the presence of multiple copies of the same gene such that allelic as well as nonallelic variations can occur, (ii) post-translational modifications, or (iii) artificial modifications might be induced by the extraction and separation procedures used (21). It should be considered however that in invertebrates as well as in vertebrates, multiple copies of globin genes are a rule rather than an exception (33–35). Therefore this multiplicity could most likely be explained by the necessity to synthesize huge amounts of the oxygen carrier (35). A final conclusion on the exact number of globin and linker chains in *S. spallanzanii* must wait for a careful analysis of the Chl of single animal by electron spray ionization mass spectrometry.

Characterization of Specific Antibodies against Chl Components—For the molecular cloning of globin and linker cDNAs, we produced specific antibodies as described under “Materials and Methods.” Immunological tests on Chl Western blots reveal that the produced antibodies are efficient and specific for the detection of the polypeptides for which they were developed for Glb1 and Glb2. The signal peptide was identified aligning the amino-terminal sequences of Glb1 and Glb2 with that of a pool of 500 *S. spallanzanii* (Fig. 1A). The formation of the coiled coils in the linker scaffold complex also probably needs structurally different linker chain types (1) \(L_{1-4}\) in *L. terrestris*.

Primary Structure of Sabella Globins and Linkers

Polypeptide	pl	Sequence
Linker f	4.81	XXXWGSXLTTARVDSQEMRLDQLAKQDNXXEGXWV
Linker g	4.90	XXXWGSXLTTARVDSQEMRLDQLAKQDLQ
Globin B	5.14	EAEEMEDRQEVLLKAMWAXEFTGGRVXXXXXXQQRLEEFK
Globin C	5.40	EAEEMEDRQEVLLKAMWAXEFT
Globin D	5.47	WNIQLRLKVKIQWQAFGFTDEREDNTDNOVRYIFVQKPEAEAK
Globin E	5.66	EGCCSMGDQREVLNAWELMSAETYGRRMV
Globin J	6.08	

The ORF codified by the Glb1 cDNA can be identified as the polypeptide J in 2-DE (Fig. 1B) because the corresponding amino-terminal sequences are identical. Two variants for Glb2 cDNA were obtained that differ for two transversions in the coding region. The first (G versus T) is placed in the third base of the codon 66 and does not change the coded amino acid (Leu). The second (A versus C), however, produces a variation of the ORF (codon 92) with the presence of Ala instead of Asp in six of seven independent Glb2 cDNA clones. The signal peptide of Glb2 was identified by aligning the amino-terminal sequences obtained from the Glb B and C 2-DE spots (Fig. 1B; Table I). The cDNA for Glb3 is about 200 bases shorter than the cDNAs for Glb1 and Glb2. The signal peptide was identified aligning the ORF with the amino-terminal of the Glb D polypeptide. For this cDNA we found also some variants that differ both in the coding and in the 3’-noncoding regions. The C→T transition in the coding region (codon 42) produces Pro-Leu variants that have the same pl but vary slightly in molecular mass. One transversion and two transitions are also present in the 3’-noncoding regions of these two variants.

The cDNAs of L1 and L2 share 99% identity and code for...
the same ORF (Fig. 3B). They are identical in the 5′-noncoding regions, whereas some transitions and transversions are accumulated in the coding and in the 3′-noncoding regions. The most important differences are a six-base deletion (5′-GAATA-3′) and the insertion of a single T in L2. These two genes could have originated in a very recent gene duplication, because the observed differences are regularly present in all the independent clones. The amino-terminal amino acid sequences deduced from L1 and L2 cDNAs match with the amino-terminal sequences obtained, at the protein level, from the spots f and g in the 2-DE of Chl components (Fig. 1B; Table I). The cDNA for L3 is markedly shorter than those for L1 and L2; nevertheless it codes for an ORF that is two amino acids longer. No amino terminus was available to determine the signal peptide of L3. However, a putative signal can be identified by aligning the ORF with the amino terminus of Linker LAV1 of Lamellibrachia sp. (36).

The amino acid compositions of the globin and linker chains deduced from the cDNA sequences were computed using the program ProtParam. The data are summarized in Fig. 4. Glb1 and Glb2 have a rather similar composition even though they show some peculiar differences (e.g. Glu is more abundant in Glb2). The amino acid composition of Glb3, however, differs more strikingly from the other two globins. This is particularly evident for Ser residues. The percentage of Ser in Glb3 is twice that in Glb1 and Glb2. As mentioned above, L1 and L2 cDNAs code for an identical polypeptide that differs in composition from L3 (e.g. the percentage of Ser in L1 and L2 is twice that in L3, whereas Lys instead is two times more abundant in L3). Both globin and linker chains show a high percentage of neg-
atively charged residues that explains the low pI calculated for all the chains (Table II).

Sequence Alignment and Characterization—To characterize the primary structure of the *Sabella* globin chains, we have aligned them with the annelid, pogonophoran, and vestimentiferan globin sequences available in our data base including a globin chain from the Chl of *S. indica* and globin references (17–19). A representative selection of this alignment is presented in Fig. 5. The alignment is unambiguous because of the presence of the globin landmarks A12-Trp, C2-Pro, CD1-Phe, E7-His, F8-His and H8-Trp. All three novel globin chains fit the nonvertebrate globin template quite well, resulting in low penalty scores (19). Glb3 has a hydrophobic residue at the surface positions A6 and CD2. Because similar hydrophobic substitutions occur in other annelid globin sequences, it might be that they represent specific adaptations for the aggregation into high molecular mass complexes. No specific adaptations can be localized to harbor the formyl group on the heme ring. The positions of cysteine residues in annelid globin chains are strictly conserved because of their role in the formation of disulfide-bonded subunits (18). On the basis of the pattern of these residues, two types of chains can be distinguished. Type I has absolutely conserved cysteines at positions NA2 and H11 and a less conserved one at position GH4. Type II displays the same pattern with an additional cysteine at position NA1. As such, Glb3 can be classified as type I and Glb1 and Glb2 can be classified as type II. In all annelid-like globin chains studied thus far, the cysteines at positions NA2 and H11 are involved in an intrachain disulfide bridge linking the NA terminus to the H-helix and leaving the two other cysteine residues free for the formation of inter-chain bridges (12, 16). As such, based on the alignment it can be concluded that the *Sabella* globin primary structure is not sufficiently informative to explain how these Hbs have acquired the possibility of harboring...
FIG. 5. Alignment of globin chains. The sequences have been aligned in the coding portions using as a reference (19) the tertiary and (P02185), a piens of the ligand-binding domain of the low density lipoprotein (36–38). This pattern is identical with the cysteine-rich repeats (Lamy, J., N. (1996) Biochim. Biophys. Acta 1252, 1109–1129. 14. Green-Kelly, N. Brawell, E. A., Walz, D. A., Moens, L., and Vinogradov, S. (1998) Biochemistry 37, 6598–6605 15. Suzuki, T., Hiroo, Y., and Vinogradov, S. (1995) Biochim. Biophys. Acta 1252, 189–193 16. Zal, F., Suzuki, T., Kawasawa, Y., Childress, J. L., Lallier, F. H., and Toulmond, A. (1996) J. Biol. Chem. 271, 8875–8881 17. Qabar, A. N., Stern, M. S., Walz, D. A., Chiu, J. T., Timkovich, R., Wall, J. S., Kapp, O. H., and Vinogradov, S. N. (1993) J. Mol. Biol. 222, 1109–1129 18. Green-Kelly, N. Brawell, E. A., Walz, D. A., Moens, L., and Vinogradov, S. N. (1985) in Respiratory Pigments in Animals (Lamy, J., Truchot, J. P., and Gilles, R., eds) pp. 9–20, Springer Verlag, Berlin 19. Zal, F., Lallier, F., Green, B. N., Vinogradov, S. N., and Toulmond, A. (1996) J. Biol. Chem. 271, 8875–8881 20. Fling, S. P., and Gregerson, D. S. (1986) Anal. Biochem. 155, 83–88 21. Gorg, A., Postel, W., and Gunter, S. (1988) Electrophoresis 9, 531–546 22. Mezzasalma, V., Tognon, G., and Ghiretti-Magaldi, A. (1992) Anim. Biol. 1, 85–96 23. Chomczynski, P., and Sacchi, N. (1987) Anal. Biochem. 162, 156–159 24. Aviv, H., and Leder, P. (1972) Proc. Natl. Acad. Sci. U. S. A. 69, 1408–1412

FIG. 6. Alignment of linker chains. Sabella L1 (AJ131900), S. spallanzanii linker 1; Lumbricus L1 (A46587), L. terrestris linker 1; Lamellibrachia LAV1 (P16222), Lamellibrachia sp. linker LAV1; Sabella L3 (AJ131926), S. spallanzanii linker are shown (the accession numbers from the Swiss-Prot, NCBI, and EMBL data banks are in parentheses). Black bars indicate the position of invariant amino acids, and the asterisks underline the conserved cysteine-rich segment (see text for details).
Primary Structure of Sabella Globins and Linkers

25. Barbato, R., Shipton, C. A., Giaconetti, G. M., and Barber, J. (1991) FEBS Lett. 290, 162–166
26. Bjerrum, O. J., and Heegaard, N. H. H. (1988) CRC Handbook of Immunoblotting of Proteins: Technical Descriptions, Vol. I, CRC Press, Inc., Boca Raton, FL
27. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
28. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res. 22, 4673–4680
29. Antonini, E., Rossi-Fanelli, A., and Caputo, A. (1962) Arch. Biochem. Biophys. 97, 336–342
30. Antonini, E., Rossi-Fanelli, A., and Caputo, A. (1962) Arch. Biochem. Biophys. 97, 343–350
31. Imai, K., Sharma, P. K., and Vinogradov, S. N. (1996) Comp. Biochem. Physiol. B 113, 613–618
32. Imai, K., and Yoshikawa, S. (1985) Eur. J. Biochem. 147, 453–463
33. Dickerson, R. E., and Geis, I. (1983) Hemoglobin: Structure, Function, Evolution and Pathology, Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA
34. Rashid, A. K., Van Hauwaert, M.-L., Haque, M., Siddiai, A. H., Lasters, I., De Mayer, M., Griffon, N., Marden, M. C., Dewilde, S., Clauwaert, J., Vinogradov, S. N., and Moens, L. (1997) J. Biol. Chem. 272, 2892–2999
35. Dewilde, S., Blaxter, M., Van Hauwaert, M.L., Van Houtte, K., Pesci, A., Griffon, N., Kiger, L., Marden, M. C., Vermeire, S., Vanfleteren, J., Esmans, E., and Moens, L. (1998) J. Biol. Chem. 273, 32467–32474
36. Suzuki, T., Takagi, T., and Ohta, S. (1990) J. Biol. Chem. 265, 1551–1555
37. Suzuki, T., Takagi, T., and Gotôh, T. (1990) J. Biol. Chem. 265, 12168–12177
38. Suzuki, T., and Riggs, A. (1993) J. Biol. Chem. 268, 13548–13555
39. Negrisolo, E., Pallavicini, A., Barbato, R., Dewilde, S., Ghiretti Magaldi, A., Moens, L., and Lanfranchi, G. (2001) J. Biol. Chem. 276, 26391–26397
The Primary Structure of Globin and Linker Chains from the Chlorocruorin of the Polychaete *Sabella spallanzanii*

Alberto Pallavicini, Enrico Negrisolo, Roberto Barbato, Sylvia Dewilde, Anna Ghiretti-Magaldi, Luc Moens and Gerolamo Lanfranchi

J. Biol. Chem. 2001, 276:26384-26390.
doi: 10.1074/jbc.M006939200 originally published online April 6, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M006939200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 35 references, 9 of which can be accessed free at http://www.jbc.org/content/276/28/26384.full.html#ref-list-1