Device-Free User Authentication, Activity Classification and Tracking Using Passive Wi-Fi Sensing: A Deep Learning-Based Approach

Vinoj Jayasundara, Member, IEEE, Hirunima Jayasekara, Member, IEEE, Tharaka Samarasinghe, Member, IEEE, and Kasun T. Hemachandra, Member, IEEE

Abstract—Growing concerns over privacy invasion due to video camera based monitoring systems have made way to non-invasive Wi-Fi signal sensing based alternatives. This paper introduces a novel end-to-end deep learning framework that utilizes the changes in orthogonal frequency division multiplexing (OFDM) sub-carrier amplitude information to simultaneously predict the identity, activity and the trajectory of a user and create a user profile that is of similar utility to a one made through a video camera based approach. The novelty of the proposed solution is that the system is fully autonomous and requires zero user intervention unlike systems that require user originated initialization, or a user held transmitting device to facilitate the prediction. Experimental results demonstrate over 95% accuracy for user identification and activity recognition, while the user localization results exhibit a ±12cm error, which is a significant improvement over the existing user tracking methods that utilize passive Wi-Fi signals.

Index Terms—Activity Classification, Bidirectional Gated Recurrent Unit (Bi-GRU), Tracking, Long Short-Term Memory (LSTM), User Authentication, Wi-Fi.

I. INTRODUCTION

USER identification, behaviour analysis, localization and user activity recognition have become crucial tasks due to the increasing popularity of fully automated facilities such as cashierless stores, and many applications associated with smart cities. Current state-of-the-art techniques for passive user authentication [1], re-identification [2], activity classification [3] and tracking [4], [5] are primarily based on video feed analysis. Growing concerns on privacy invasion related to video surveillance have made way to many non-invasive alternatives. These alternatives utilize passive visible light positioning and artificial potential fields [6], electric potential changes in human bodies [7], body frequency absorption signatures [8], acoustics [9], and kinect sensing [10]. However, a better alternative is ambient Wi-Fi signals, due to the wide availability and easy accessibility.

In this paper, we introduce a fully autonomous, non invasive, Wi-Fi based alternative, which can carry out user identification, activity recognition and tracking, simultaneously, similar to a video camera based approach.

A. Related Works

1) User Authentication: A majority of the wireless aided user authentication systems in the literature require the user to carry or wear a device to facilitate the authentication process [11]. A device-free method which eliminates the necessity of a user to carry a wireless transmitting device for active user sensing is deemed more suitable practically.
Several device-free authentication mechanisms are popular in the literature, including video for appearance-based user authentication [1], gait pattern based user authentication, and hybrid (appearance-based and gait pattern) models [12]. To this end, WiWho [13] and Wi-Fi-ID [14] utilize conventional signal processing techniques to create a gait profile for each user, which is subsequently used for identification. Research focus, however, has recently shifted towards learning based techniques [15], [16], but being able to handle only registered users is considered a major limitation in such systems, e.g., NeuralWave [15]. WiAU [16] focuses on alleviating this issue by introducing a system that is robust to unauthorized users via training their model with both authorized and unauthorized (unregistered) user data. However, training a model for limitless potential unauthorized users is practically infeasible. Our system focuses on providing a robust device-free solution for this limitation.

2) Activity Recognition: Wireless-aided activity recognition is a well studied area in the literature [17]–[21]. It has been already established that deep learning based techniques do outperform the conventional signal processing based techniques [17]–[19] with regards to activity recognition (see [20] and references therein). However, the existing deep learning based systems face difficulties in deployment due to their omission of the constantly re-occurring periods without any activities in their models. Thus, these systems require the user to invoke the system by conducting a predefined action, or a sequence of actions. This limitation is addressed in our work to introduce a fully autonomous system.

3) User Tracking: Wi-Fi based localization systems that utilize deep learning approaches are well studied in the literature [22]–[24]. However, most of these systems have the compulsory requirement of user to carry a Wi-Fi capable device for active user sensing. Hence, existing device-free Wi-Fi based approaches have attracted considerable research interest [25]–[27]. Most existing deep learning based device free localization systems can predict the position of the user out of a set of pre-determined positions [9], but lack the ability to continuously output user co-ordinates, which is mandatory for continuous tracking. This is another gap in the literature that is bridged in our paper.

B. Contributions of the Paper

We consider a distributed single-input multiple-output (SIMO) system that consists of a Wi-Fi transmitter, and a multitude of fully synchronized multi-antenna Wi-Fi receivers, placed in the sensing area. The samples of the received signals are fed forward to a data concentrator, where channel state information (CSI) related to all OFDM sub carriers are extracted and pre-processed, before feeding them into the deep neural networks. The key features of the proposed system are as follows:

- The system is self-sustaining, device-free, non-invasive, and does not require any user interaction at commencement or otherwise, and can be deployed with existing infrastructure.
- The system consists of a novel black-box technique that produces a standardized annotated vector for authentication, activity recognition and tracking with pre-processed CSI streams as the input for any event.
- With the aid of the three annotations, the system is able to fully characterize an event, similar to a camera video.

State-of-the-art deep learning techniques are the key enabler of the proposed system. With the advanced learning capabilities of such techniques, complex mathematical modelling required for the process of interest can be conveniently learned. To the best of our knowledge, this is the first attempt at proposing an end-to-end system that predicts all these three in a multi-task manner. Then, to address the limitations in already available systems; firstly, for authentication, we propose a novel prediction confidence-based thresholding technique to filter out unauthorized users of the system, without the necessity of any training data from them. Secondly, we introduce a no activity (NoAc) class to characterize the periods without any activities, which we utilize to make the system fully autonomous. Finally, we propose a novel deep learning based approach for device-free passive continuous user tracking, which enables the system to completely characterize an event similar to a camera video, but in a non-invasive manner. The performance of the proposed system is evaluated through experiments, and the system achieves accurate results even with only two single-antenna Wi-Fi receivers.

The rest of the paper is organized as follows: in Sections II, III and IV, we present the system overview, methodology on data processing, and the proposed deep neural networks, respectively. Subsequently, we discuss our experimental setup in Section V, followed by results and discussion in Section VI. Section VII concludes the paper.
where S is the number of subcarriers in the transmitted OFDM signal. Moreover, for the i-th subcarrier, $h_{m,n,i,t}$ and $\theta_{m,n,i,t}$ denote the amplitude and the phase values of the random channel between the transmitter and the n-th antenna of the m-th receiver, respectively, and $\eta(t)$ represents the random noise in the received signal. We assume that at a given time t, the data concentrator has access to all received signals (samples), which can be achieved through a feedforward mechanism.

Fig. 2 presents an overview of the system. The first stage, which is implemented at the data concentrator, focuses on extracting CSI from the received signals. CSI is considered to be more stable and robust to complex environmental effects compared to Received Signal Strength Indicator (RSSI) values [28], and since the CSI related to each subcarrier of the OFDM signal can be extracted, the system will have more information for effective learning. Moreover, the effect of activities in a sensing area on the CSI has been recently studied in [29]. This stage is explained in Section III-A. The second stage is pre-processing the extracted CSI information, which is elaborated in Section III-B. The pre-processed data is fed into the deep neural networks, which include the activity recognizer, the authenticator and the tracker. This is considered to be the third stage in the system architecture, and it is discussed in Section IV. The deep neural networks output three annotations per data segment of the form $[A_t, P_t, (X_t, Y_t)]$, where at time t, A_t is the predicted activity, P_t is the predicted person and (X_t, Y_t) are the Cartesian coordinates of the location. With the aid of the three annotations, we can sufficiently characterize the proceedings within a T second window, similar to a camera video.

Both amplitude and phase values are finer-grained descriptors of the wireless channel [31]. However, the phase values are affected by several sources of error, including the carrier frequency offset (CFO) and the sampling frequency offset (SFO) [20]. Although these errors can be eliminated using a calibration technique termed data sanitization in [32], we avoid phase values in the learning process to reduce the computational and implementational complexity. Thus, at time t, for each $m \in \{1, \ldots, M\}$ and $n \in \{1, \ldots, N\}$, the data concentrator estimates $\hat{h}_{m,n,t} = [h_{m,n,1,t} \ldots h_{m,n,S,t}]^\top$, which is an S-by-1 vector that consists of amplitude values of the channel between the transmitter and the n-th antenna of the m-th receiver. The concentrator then forwards the estimated amplitude values to the next stage for further processing.

B. CSI Preprocessing

We start the CSI preprocessing by a sparsity reduction operation that aids the learning of the network. The coarse frequency offset correction done in channel estimation usually leads to some elements in $\hat{h}_{m,n,t}$ to have negligibly small values (quantitatively, amplitude < 0.05), as evident from Fig. 8, irrespective of the setup, trial, activity or the person. Furthermore, this observation holds irrespective of the application, distance between the Wi-Fi devices, and the position of the person. These elements do not provide any useful information and in fact hinders learning. Hence, they are removed from the estimated channel amplitude vectors. We denote the respective sparsity reduced amplitude vector of $\hat{h}_{m,n,t}$ by $\tilde{h}_{m,n,t}$. As an example, if $\hat{h}_{1,1,t} = [0.1 \ 0.2 \ 0.0 \ 0.4 \ 0.0003]^\top$, we have $\tilde{h}_{1,1,t} = [0.1 \ 0.2 \ 0.4]^\top$. Moreover, $\tilde{h}_{m,n,t}$ is a \tilde{S}-by-1 vector, where $\tilde{S} \leq S$. Note that for a given m and n, the dimensionality of $\hat{h}_{m,n,t}$ is fixed at \tilde{S} for all t values since the sparsity is caused by the coarse frequency offset correction. Next, for each $m \in \{1, \ldots, M\}$ and $n \in \{1, \ldots, N\}$, we concatenate the sparsity reduced amplitude vectors along the temporal axis to produce the \tilde{S}-by-T_{jk} matrix $\tilde{C}_{m,n} = [\hat{h}_{m,n,1} \ldots \hat{h}_{m,n,T_{jk}}]$. Here, T_{jk} denotes the duration of the j-th trial of the k-th activity, signifying the variability in the duration of activities, as well as the variability in the duration of different trials of the same activity.

Next, we focus on noise removal. In order to reduce burst noise, we carry out Butterworth filtering on each time series represented by the rows of $\tilde{C}_{m,n}$. Even though principal component analysis (PCA) based noise removal is proven to be more effective at burst noise removal in CSI signals than low-pass filtering [33], we again resort to the low complex method to minimize the implementation complexity. Butterworth low pass filtering provides sufficiently adequate noise removal, as shown later in our experimental results. We denote the noise filtered data matrix of $\tilde{C}_{m,n}$ by $\tilde{\tilde{C}}_{m,n}$. Guidelines on selecting the cutoff frequency of the low pass filter are also provided with reference to the experiments in Section V.

We concatenate all filtered CSI for a particular activity such that the resultant $M\tilde{N}\tilde{S}$-by-T_{jk} matrix is given by $\tilde{\tilde{C}} = [\tilde{\tilde{C}}_1 \cdots \tilde{\tilde{C}}_M]^\top$, where $\tilde{\tilde{C}}_m = [\tilde{\tilde{C}}_{m,1} \cdots \tilde{\tilde{C}}_{m,N}]^\top$ for all $m \in \{1, \ldots, M\}$. We segment $\tilde{\tilde{C}}$ into time steps of $f_s T$ samples.
Algorithm 1 CSI Data Pre-Processing Algorithm

Input: \(y_m,n(t) \) \(\forall m \in [1, \ldots, M], \forall n \in [1, \ldots, N] \) and \(\forall t \)

Output: Processed dataset \(D \) to be fed into the deep networks

1: \(\forall m, n, \overline{h}_{m,n,t} \leftarrow \text{Estimate Channel}(y_m,n(t)) \)
2: \(\forall m, n, \overline{h}_{m,n,t} \leftarrow \text{Sparsity Reduce}([\overline{h}_{m,n,t}]) \)
3: \(\forall m, n, \overline{C}_{m,n} \leftarrow [\overline{h}_{m,n,1} \cdots \overline{h}_{m,n,T}] \)
4: \(\forall m, n, \overline{C}_{m,n} \leftarrow \text{Butterworth}([\overline{C}_{m,n}]) \)
5: \(\forall m, n, \overline{C}_{m,n} \leftarrow [\overline{C}_{m,1} \cdots \overline{C}_{m,N}]^T \)
6: \(\overline{C} \leftarrow [\overline{C}_1 \cdots \overline{C}_M]^T \)
7: \(D \leftarrow \text{Segment}(\overline{C}) \)

IV. DEEP NETWORKS FOR ACTIVITY CLASSIFICATION, AUTHENTICATION AND TRACKING

We consider a threefold classification of activities as dynamic, static and no activity (NoAc). Firstly, we classify an activity as dynamic if the location coordinates of the performer vary significantly during the action. This includes activities such as running and walking. Secondly, we classify an activity as static if the location coordinates of the performer do not vary significantly during the action. For example, activities such as sitting, jumping and falling can be categorized as static activities if minor location coordinate changes are disregarded. Finally, as a novel and very important contribution, we classify scenarios where there is no one in the sensing area, or the performer in the sensing area is not engaging in any activity, as NoAc. If NoAc is not captured in the classification process, the system will require the user to initiate the system before performing the activity, e.g., through a push button input. Classification of NoAc makes this a system that requires zero user interaction.

A. Activity Classification

We propose the deep neural network illustrated in Fig. 4 for activity classification. The network consists of two recurrent layers followed by one fully connected layer. We add a dropout layer after the first recurrent layer to reduce overfitting and set the dropout rate to 0.3 [34]. We used three different types of recurrent layers in our study, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Bidirectional-Gated Recurrent Unit (B-GRU), in an attempt to find the best suited recurrent layer type for each task. Following the recommendations in [34], it is widely accepted that, in order to avoid overfitting, dropout should be used prior to the layers with the highest percentage of trainable parameters, which results in them being more prone to co-adapting themselves to the training data. For our networks, the highest percentage of the trainable parameters (more than 75%) are concentrated in the recurrent layers. Hence, we add the dropout layers between the recurrent layers. Literature suggests that in general, the dropout rate is set between 0.2 [35] and 0.5 [34] to achieve optimum results. Hence, in compliance, we empirically set the drop rate to 0.3 for our application. The two recurrent layers are set with tanh activation in order to maintain the layer outputs within \([-1, 1]\), similar to the normalized CSI streams [36], whereas the final fully connected layer has softmax activation following the existing state-of-the-art classification approaches [37]. Each recurrent layer consists of \(3 \times MN\) hidden units, and the fully connected layer consists of \(K\) units, where \(K\) is the number of activity classes, \(M\) is the number of receivers, \(N\) is the number of antennas per receiver and \(S\) is the number of subcarriers after sparsity reduction. Following the existing state-of-the-art classification approaches with more than two distinct classes, we use categorical cross-entropy as the loss function, where the total loss for activity recognition is given by

\[
L_{\text{activity}} = -\frac{1}{R} \sum_{r=1}^{R} \sum_{k=1}^{K} a_r \log(b_{r,k}),
\]

where \(a_r\) is the ground truth of the \(r\)-th sample, and \(b_{r,k}\) is the predicted value for the \(k\)-th activity of the \(r\)-th training/testing sample. The network uses adam with a learning rate of 0.001 as the optimizer, following [38].

B. User Authentication

The network we propose for authentication consists of three recurrent layers, followed by one fully connected layer. We add a dropout layer after the first recurrent layer to reduce overfitting and set the dropout rate to 0.3. The fully connected layer consists of \(P\) units, where \(P\) is the number of participants. The rest of the network parameters are similar to the activity recognizer in IV-A. Using the same loss function as earlier, the total loss for activity recognition is given by

\[
L_{\text{auth}} = -\frac{1}{R} \sum_{r=1}^{R} \sum_{p=1}^{P} c_r \log(d_{r,p}),
\]

where \(c_r\) is the ground truth of the \(r\)-th sample, and \(d_{r,p}\) is the predicted value for the \(p\)-th person of the \(r\)-th sample.

C. Tracking

The tracking network consists of two recurrent layers. First layer consists of two parallel recurrent layers with each having
such that the total loss for tracking is given by

\[L_{\text{tracking}} = \frac{1}{R} \sum_{r=1}^{R} (x_{p,r} - x_{t,r})^2 + \frac{1}{R} \sum_{r=1}^{R} (y_{p,r} - y_{t,r})^2, \quad (4) \]

where \((x_{p,r}, y_{p,r})\) are the predicted Cartesian coordinates and \((x_{t,r}, y_{t,r})\) are the ground truth Cartesian coordinates of the \(r\)-th training/testing sample.

Proper training is critical for the performance of the system. It is clear that the tracking network should only be trained on dynamic activities because effective learning necessitates significant changes in location. Similarly, the authentication network should only be trained on dynamic activities, as it will not be effective to authenticate the performer after learning through static activities. For example, consider authenticating a performer from the manner in which he jumps or falls. On the other hand, the activity recognition network is trained on all these three categories of activities. In this case, even not doing an activity should be classified, and hence, NoAc is of importance as well. Note that in a practical activity recognition system, NoAc will be the most common and frequent activity. Since the activity labels are available during the training phase, we can conveniently train the authentication and tracking networks with only the dynamic activities and the activity recognition network with all activity classes, including the balanced NoAc class.

Now, let us focus on the inference phase; that is, the operation of a functioning deployed system. In the inference phase, we do not have knowledge on the activity classification as a priori. Therefore, the incoming CSI data are fed into all three networks for prediction, irrespective of the activity. Obviously, the authenticator and the tracker will fail to predict accurately for static and NoAc categories. However, since we have an activity predictor, we can observe the output of the activity predictor, and discard the predictions of the authenticator and the tracker for static and NoAc categories, as illustrated by the decision box in Fig. 3. We update the activity \(A_t\), authentication \(P_t\) and location \((X_t, Y_t)\) annotations if \(A_t\) is a dynamic activity. Else, we discard the predicted authentication and location annotations, and continue with the previously predicted annotations, i.e., \(P_t = P_{t-1}\) and \((X_t, Y_t) = (X_{t-1}, Y_{t-1})\), respectively.

D. Combined Multi-Task Network for Dynamic Activities

It is evident that the authenticator and the tracker should only be trained on dynamic activities, whereas the activity recognizer can be trained on both static and dynamic activities. Due to this variability, it is challenging to design a single network for all three tasks. However, for applications with only dynamic activities, we propose a single multi-task network, as illustrated in Fig. 5. The network consists of an initial recurrent layer, which is shared by all the three tasks. Since the lower level features learnt for all three tasks are similar, the initial layer can be jointly learnt by all tasks. Subsequently, the network splits into three task heads, each corresponding to activity recognition, classification and tracking. Each recurrent layer has tanh activation, and every fully connected layer in the classification heads has softmax activation, whereas every fully connected layer in the regression head has linear activation.

We define the objective function for the proposed multi-task network as a weighted sum of the three distinct loss functions defined in (2), (3) and (4), as follows:

\[L^* = \alpha L_{\text{activity}} + \beta L_{\text{auth}} + \gamma L_{\text{tracking}}, \quad (5) \]

where \(0 < \alpha, \beta, \gamma < 1\) and \(\alpha + \beta + \gamma = 1\).

V. EXPERIMENTAL VALIDATION

A. Experimental Setup

We deploy our system using three Universal Software Radio Peripheral (USRP) N210 software defined radios (SDRs), each...
B. Data Collection

configured to have one omni-directional antenna, such that we have one transmitter and two receivers. The acquisition sampling rate, f_s, for each antenna is 100Hz. Optimum placement of the transmitter and the receivers is not studied in this paper, and we resort to the simplest form of placing the two receivers. To this end, one receiver (RX1) is placed directly opposite to the transmitter, and the other (RX2) is placed perpendicular to the line that joins the transmitter and RX1, as illustrated in Fig. 6. The perpendicular placement allows us to achieve perspective invariance. We show later that the results obtained from this simple setup, which may or may not be optimal, can be used to get insights on the optimal placement of receivers. The SDRs are programmed to transmit and receive Wi-Fi packets with 64 subcarriers ($S = 64$), and in the 2.45GHz frequency band. The SDRs that act as receivers are utilized for the channel estimation. The experiment is done inside an indoor environment (lecture room), where there is rich scattering, and high interference from other Wi-Fi networks and radio frequency (RF) sources.

![Experiment setup, where different colored lines show the four walking paths used to experiment tracking algorithm, and TX1, RX1, RX2 refer to the transmitter and the two receivers. The distances are in cm.](image)

![Activity and no-activity labelling of the CSI streams, in order to obtain the training data for each activity class, where RX1 and RX2 refer to the receivers.](image)

![A sample $h_{1,1,t}$, which is the estimated channel state vector, as a function of the subcarrier index. It can be clearly observed that amplitudes of certain subcarriers are approximately zero.](image)

Section III-B is applied on the extracted CSI results in frames with dimensions [1, 80, 104], for $T = 0.8$ s. The duration of the jump activity generally registers the lowest duration, between 0.9 – 1.1 s. Hence, the value of T is chosen to be 0.8 s, which is less than 0.9 s. We assume that human movements typically do not exceed 10 m/s, which is consistent with the 7.7 m/s limit set in [33], where running is not considered. Thus, typical human movements introduce frequencies less than $\frac{10}{0.122372} = 163.53$ Hz [33] at a wavelength of 12.23 cm since our system operates at 2.45 GHz. Hence, the cut-off frequency of the 10th order Butterworth low pass filter is set to 200 Hz.

For the classification tasks, which are activity recognition and authentication, we train two different models, that consist of LSTM layers, and GRU layers, respectively. For the regression task, which is tracking, we train three different models, that consist of the state-of-the-art recurrent layers: LSTM layers, GRU layers and B-GRU layers [36], respectively.

A major challenge in generating a dataset for activity recognition is the class imbalance caused by the variable durations of the activities. For example, the sit activity has an average duration of 1 s, whereas the run activity has an average duration of 4 s, resulting in more data samples. On average, NoAc accounts for 60%-90% of the duration of each trial, largely contributing to the data imbalance. In an attempt to reduce this inherent class imbalance, we vary the number of trials (estimated based on the average duration per activity and the comfort of the participant in performing repeated trials) for each activity inversely proportional to the duration of the activity. Hence, for sit and jump activities, we conduct...
10 trials for each participant, whereas we conduct 8 trials for the fall activity and 6 trials for the run and walk activities, for each participant, respectively. The reduced number of training samples due to the low activity duration can be compensated by obtaining samples from a higher number of trials. Further, we randomly sample the no activity duration in order to obtain training samples matching the average number of training samples obtained for other activity classes, thus resolving the class imbalance.

C. Robustness Analysis of the Proposed Networks

We study the robustness of the proposed networks through several experiments. We use the collected data from an in-the-wild participant, whose data is not used for training, to investigate the robustness of the activity recognizer and the authenticator. We hypothesize that if the two networks are sufficiently robust, the activity recognizer should successfully classify the activities with high confidences, whereas the authenticator should fail to provide a prediction with high confidence.

VI. RESULTS AND DISCUSSION

In this section, we present and discuss the experimental results. We use ensembling techniques [39] to improve the performance of our networks by reducing the model variance, and take a simple weighted voting of the predictions of the set of classifiers to produce the ensemble prediction. Each model is trained on a GTX 1080 graphics processing unit (GPU) for 60 epochs. The results obtained for the proposed networks for the three tasks, with different types of recurrent layers, are summarized in Table I. Each result depicts the average of the maximum accuracy obtained in 3 independent trials. The average inference time per training sample in milliseconds for each model is summarized in Table II.

A. Performance of the Activity Recognition Network

It is evident from Table I that the proposed model with GRU layers marginally outperforms the model with LSTM layers (by 1.45%). Nevertheless, ensembling over the said two models provides the best performance of 98.74%, outperforming the GRU model by a margin of 0.63%. According to Table II, the time taken by the ensemble model to perform inference on a sample 800 ms long is 5.82 ms, which is higher than that for the LSTM and GRU models, yet, acceptable for a real time system since inference is completed in 0.72% of the total sample duration. Table IV tabulates error rates for each activity used for activity recognition. The highest error rate of 2.49% is recorded by the 3-rd variation of the walk activity, and yet, it is within acceptable margins. The NoAc class is evidently distinct from every other activity class and the jump activity contains upwards motion not present in any other activity class, resulting in 0% error rate. Furthermore, sit and fall have similar downwards motions, and run and walk have similar forwards motions causing them to have higher error rates.

B. Performance of the Authentication Network

Similar to the activity recognizer, it can be observed from Table I that the proposed model with GRU layers marginally outperforms the model with LSTM layers (by 1.12%) and ensembling over the said two models provides the best performance, outperforming the GRU model by a margin of 1.88%. According to Table II, the time taken by the ensemble model to perform inference on a sample 800 ms long is 8.64 ms, which is higher than that for the LSTM and GRU models, yet, acceptable for a real time system since inference is completed in 1.08% of the total sample duration.

C. Performance of the Tracking Network

By referring to Table I, the proposed model with GRU layers slightly outperforms the model with LSTM layers by an error margin of ± 2 cm, which is an improvement of approximately 9.52%, whereas the model with B-GRU layers significantly outperforms the model with GRU layers by an error margin of ± 9 cm, which is a significant improvement of approximately 47.36%. It achieves a mean squared error of ± 10 cm on both x and y coordinates, which is highly acceptable for an indoor tracking system. Table III compares our system with the existing state-of-the-art, in terms of the size of the sensing area, number of transmitters/receivers used, mean squared error achieved, etc.

Fig. 9 illustrates the estimated trajectories for the four different paths of the walk activity. The ground truth is represented by the blue lines, whereas the Cartesian coordinates predicted by the network are represented by the small gray
Fig. 9. Trajectories predicted by the tracking network, for the four different walking paths defined in Fig. 6. It is evident from the observation that the approximated trajectory (red) is close to the true trajectory (blue) in each instance.

TABLE V
RESULTS OF THE COMBINED MULTI-TASK NETWORK

Task	Model performance	Inference time
Activity recognition	97.36 %	14.35 ms
Authentication	98.80 %	14.35 ms
Tracking	± 12 cm	14.35 ms

circles. The red dotted line illustrates the predicted trajectory, which is the regression line estimated from the predicted Cartesian coordinates using the least squares regression technique. It is evident that the proposed network is able to successfully track the trajectory for the first three paths of the user, including the starting and the ending coordinates of the trajectory. We can observe the predicted path diverging from the ground truth in the fourth path, as the user approaches the side of the sensing area where a receiver has not been placed. It is not hard to see that placing a third receiver at \((340, 170)\) (please refer Fig. 6) will lead to superior performance in all predictions (we were unable to experiment with a three receiver set up due to hardware limitations).

When comparing the inference times between B-GRU and other uni-directional models, B-GRU inference time is 1.75 times higher than that of the other two models. However, B-GRU completes the inferring within 0.7% of the sample duration, which qualifies for a real time system.

D. Performance of the Combined Multi-Task Network

We empirically set values for \(\alpha, \beta, \gamma\) as 0.15, 0.15 and 0.70, respectively. Using these values, we obtain the results tabulated in Table V. The performance of the combined model for the three tasks marginally falls below the performance of the respective individual models, yet, achieves a significant speedup. The ensemble models collectively require \(5.82 + 8.64 + 8.72 = 23.18\) ms for the entire prediction, whereas the combined model requires only 14.35 ms, achieving a speedup of 38%. Operating all the ensemble models in parallel is not feasible in practice due to memory constraints of GPUs. Thus, the system operates sequentially.

E. Results of the Robustness Analysis

We base our robustness analysis of the activity recognizer and the authenticator on the highest confidence score of its prediction, as summarized in Table VI. For the authenticator, we argue that the confidence of a successful authentication should be near perfect and we raise the confidence score margin to a high value of 99.9%. This is due to the fact that, if an authenticator network recognizes an individual, it should almost be fully confident about its prediction, due to the sensitive nature of authentication. Thus, after thresholding, the accuracy for the in-the-wild dataset should be as low as possible, to avoid unauthorized persons being authenticated. Raising the confidence margin in this manner reduces the performance of the main test set to a 79.12%, yet, we can tolerate false negatives over false positives from an authentication system. The authenticator only predicts 25.57% of the in-the-wild dataset, establishing that it often fails to recognize a person that it has never seen before, demonstrating its robustness.

For the activity recognizer, we accept the prediction of the network if the confidence of prediction is above 75%. The confidence of a successful prediction should be high, yet intuitively, the threshold need not be enforced as strictly as for the authenticator. Hence, we choose a generic value of 75% as the confidence threshold. 98.85% of the activity predictions on the main test set by the activity recognizer were made with a confidence score in excess of 75%, whereas a significant portion of 86.86% of the activity predictions on the in-the-wild dataset were made with a confidence score in excess of 75%. Hence, it can be concluded that the activity recognizers can successfully recognize the activities of a person that the network has never seen before, which ensures its robustness.

F. Potential Enhancements to the Proposed System

Even though the simple setup proposed in Section V-A provides adequate performance, a superior performance can be obtained via several enhancements. Our system discarded the phase information of the estimated CSI for implementational simplicity, yet integrating phase information for a system where the required additional processing can be dispensed can lead to better performance. Similarly, increasing the number of receivers and the number of antennas per receiver can provide finer predictions in more complex scenarios. Optimal antenna placement for the transmitters and receivers can also enhance the performance of the system.
VII. CONCLUSIONS

This paper proposes a novel system capable of completely characterizing an event, using processed channel state information gathered from commercial Wi-Fi devices. The system performs activity recognition, authentication and tracking simultaneously, by utilizing deep neural networks. It is fully autonomous, non-invasive, requires zero user intervention, device free and passive. Experimental results have been presented to demonstrate the feasibility and the achievable performance of the proposed system. The results have shown that the proposed system achieves promising prediction scores for all three tasks on a collected dataset, by only using two single-antenna Wi-Fi receivers. The robustness of the system has been established through an in-the-wild study. Possible improvements of the proposed system have also been highlighted. Future work includes performance improvements for the single user case and extending the framework to accommodate multiple simultaneous users.

REFERENCES

[1] J. Metzler, “Appearance-based re-identification of humans in low-resolution videos using means of covariance descriptors,” in Proc. IEEE 9th Int. Conf. Adv. Video Signal-Based Surveill., Sep. 2012, pp. 191–196.

[2] H. Han, M. Zhou, and Y. Zhang, “Can virtual samples solve small sample size problem of KISSME in pedestrian re-identification of smart transportation?” IEEE Trans. Intell. Transp. Syst., early access, Sep. 25, 2019, doi: 10.1109/TITS.2019.2935099.

[3] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action recognition in videos,” in Proc. Adv. Neural Inf. Process. Syst., Dec. 2014, pp. 558–576.

[4] J. Kang, I. Cohen, and G. Medioni, “Continuous tracking within and across camera streams,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2003, p. 1.

[5] X. Yuan, L. Kong, D. Feng, and Z. Wei, “Automatic feature point detection and tracking of human actions in time-of-flight videos,” IEEE/CAA J. Automatica Sinica, vol. 4, no. 4, pp. 677–685, Sep. 2017.

[6] D. Koning, N. Faulkner, F. Alam, E. M.-K. Lai, and S. Demidenko, “FieldLight: Device-free indoor human localization using passive visible light positioning and artificial potential fields,” IEEE Sensors J., vol. 20, no. 2, pp. 1054–1066, Jan. 2020.

[7] T. Grosse-Puppendahl et al., “Flatpybus: Indoor localization and identification through sensing of electric potential changes in human bodies,” in Proc. 14th Int. Conf. Mobile Syst. Appl., Services (MobiSys), 2016, pp. 17–30.

[8] J. Iqbal, M. T. Lazarescu, O. B. Tariq, A. Arif, and L. Lavagno, “Capacitive sensor for tagless remote human identification using body frequency absorption signatures,” IEEE Trans. Instrum. Meas., vol. 67, no. 4, pp. 789–797, Apr. 2018.

[9] J. Wang, X. Zhang, G. Ye, H. Yue, and H. Wang, “Device-free wireless localization and activity recognition: A deep learning approach,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 6258–6267, Jul. 2017.

[10] J. Preis, M. Kessel, M. Werner, and C. Linnhoff-Popien, “Gait recognition with Kinect,” in Proc. Int. Workshop Kinect Pervasive Comput., Jun. 2012.

[11] F. Sun, C. Mao, X. Fan, and Y. Li, “Accelerometer-based speed-adaptive gait authentication method for wearable IoT devices,” IEEE Internet Things J., vol. 6, no. 1, pp. 820–830, Feb. 2019.

[12] R. Chellappa, A. K. Roy-Chowdhury, and A. K. S. Jayant, “Human identification using gait and face,” in Proc. Int. Conf. Comput. Vis. Syst., Jun. 2007.

[13] Y. Zeng, P. H. Pathak, and P. Mohapatra, “WiWho: Wifi-based person identification in smart spaces,” in Proc. IEEE Int. Conf. Int. Conf. Process. Sensor Netw., Apr. 2016, p. 4.

[14] J. Zhang, B. Wei, W. Hu, and S. S. Kanhere, “WiFi-ID: Human identification using WiFi signal,” in Proc. Int. Conf. Distrib. Comput. Sensor Syst. (DCOSS), May 2016, pp. 75–82.

[15] A. Pokkunuru, K. Jakkala, A. Bhuayan, P. Wang, and Z. Sun, “Neural-Wave: Gait-based user identification through commodity WiFi and deep learning,” in Proc. 44th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2018, pp. 758–765.
Vinoj Jayasundara (Member, IEEE) received the Bachelor of Science in Engineering (Hons.) degree and the Bachelor of Information Technology (Hons.) degree from the University of Moratuwa, Sri Lanka, in 2017 and 2018, respectively, and the Bachelor of Laws degree from the University of London, U.K., in 2016. He is currently a Research Engineer with the Agency for Science, Technology and Research (A*STAR), Singapore. His research interests are in the general areas of computer vision and machine learning.

Hirunima Jayasekara (Member, IEEE) received the B.Sc. Engineering (Hons.) degree in electronics and telecommunication from the University of Moratuwa, Sri Lanka, in 2018. She is currently a Research Engineer with the SUTD-MIT International Design Centre, Singapore. Her current research interests are machine learning and computer vision.

Tharaka Samarasinghe (Member, IEEE) was born in Colombo, Sri Lanka, in 1984. He received the B.Sc. degree in engineering from the Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka, in 2008, and the Ph.D. degree from the Department of Electrical and Electronic Engineering, University of Melbourne, Australia, in 2012. He was a Research Fellow with the Department of Electrical and Computer Systems Engineering, Monash University, Australia, from 2012 to 2014. He has been with the Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka, since January 2015, where he is currently a Senior Lecturer. He is also an Honorary Fellow with the Department of Electrical and Electronic Engineering, University of Melbourne. His research interests are in communications theory, information theory, and wireless networks. He received the Award for the most outstanding undergraduate upon graduation from University of Moratuwa.

Kasun T. Hemachandra (Member, IEEE) received the B.Sc. (Hons.) degree in electronic and telecommunication engineering from the University of Moratuwa, Sri Lanka, in 2008, and the M.Sc. and Ph.D. degrees in electrical and computer engineering from the University of Alberta, Canada, in 2010 and 2015, respectively. From 2015 to 2017, he was a Postdoctoral Fellow with the Department of Electrical and Computer Engineering, University of Calgary, AB, Canada. He is a currently a Senior Lecturer with the Department of Electronic and Telecommunication Engineering, University of Moratuwa. His current research interests include in-band full duplex systems, device-to-device communications, cache enabled wireless networks, vehicular networks, and application of machine learning techniques in wireless communications.