Sharp bounds for Hardy-type operators on mixed radial-angular spaces

Mingquan Wei* and Dunyan Yan

Abstract. In this paper, by using the rotation method, we calculate that the sharp bound for n-dimensional Hardy operator \mathcal{H} on mixed radial-angular spaces. Furthermore, we also obtain the sharp bound for n-dimensional fractional Hardy operator \mathcal{H}_β from $L^p_{\|x\|}L^p_\vartheta(\mathbb{R}^n)$ to $L^q_{\|x\|}L^q_\vartheta(\mathbb{R}^n)$, where $0 < \beta < n$, $1 < p, q, \bar{p}, \bar{q} < \infty$ and $1/p - 1/q = \beta/n$. By using duality, the corresponding results for the dual operators \mathcal{H}^* and \mathcal{H}^*_β are also established. In addition, the sharp weak-type estimate for \mathcal{H} is also considered.

Mathematics Subject Classification (2010). Primary 42B20; Secondary 42B25, 42B35.

Keywords. Hardy operator, sharp bound, fractional Hardy operator, mixed radial-angular space, rotation method.

1. Introduction

Let f be a non-negative integrable function on \mathbb{R}. The classical Hardy operator and its dual operator are defined by

$$H(f)(x) := \frac{1}{x} \int_0^x f(t) dt, \quad H^*(f)(x) := \int_x^{\infty} \frac{f(t)}{t} dt,$$

respectively, where $x \neq 0$.

As we know, the classical Hardy operator was initially introduced by Hardy [21], who showed the following Hardy inequalities:

$$\|H(f)\|_{L^p} \leq \frac{p}{p-1} \|f\|_{L^p}, \quad \|H^*(f)\|_{L^p} \leq p \|f\|_{L^p},$$

where the constants $\frac{p}{p-1}$, p are best possible.

Later, Hardy-type operators were extended to higher dimension by Faris [11]. In 1995, Christ and Grafakos [4] gave an equivalent version of n-dimensional Hardy

* Corresponding author
operator
\[
\mathcal{H}(f)(x) := \frac{1}{\Omega_n|x|^n} \int_{|y|<|x|} f(y) dy, \quad x \in \mathbb{R}^n \setminus \{0\},
\]
where \(f\) is a non-negative measurable function on \(\mathbb{R}^n\) and \(\Omega_n = \frac{\pi^{n/2}}{\Gamma(1+n/2)}\) is the volume of the unit ball in \(\mathbb{R}^n\). By a direct computation, the dual operator of \(\mathcal{H}\) can be defined by setting, for any locally integrable function \(f\) and \(x \in \mathbb{R}^n\),
\[
\mathcal{H}^*(f)(x) := \int_{|y|>|x|} \frac{f(y)}{\Omega_n|y|^n} dy, \quad x \in \mathbb{R}^n \setminus \{0\}.
\]

By using the rotation method, Christ and Grafakos [4] showed that the norms of \(\mathcal{H}\) and \(\mathcal{H}^*\) on \(L^p(\mathbb{R}^n)\) (1 < \(p < \infty\)) are also \(\frac{p}{p-1}\) and \(p\). Moreover, the sharp weak estimate for \(\mathcal{H}\) was obtained by Zhao et al. [48] as follows:

For 1 ≤ \(p \leq \infty\), we have
\[
\|\mathcal{H}(f)\|_{L^{p,\infty}} \leq 1 \cdot \|f\|_{L^p},
\]
where the constant 1 is best possible.

Similarly, for 0 < \(\beta < n\), the \(n\)-dimensional fractional Hardy operator \(\mathcal{H}_\beta\) and its dual operator \(\mathcal{H}^*_{\beta}\) are defined by
\[
\mathcal{H}_\beta(f)(x) := \frac{1}{(\Omega_n^{1/n}|x|)^{n-\beta}} \int_{|y|<|x|} f(y) dy, \quad x \in \mathbb{R}^n \setminus \{0\},
\]
and
\[
\mathcal{H}^*_\beta(f)(x) := \int_{|y|>|x|} \frac{f(y)}{(\Omega_n^{1/n}|y|)^{n-\beta}} dy, \quad x \in \mathbb{R}^n \setminus \{0\},
\]
respectively.

In recent years, much attention has been paid to the sharp bounds for Hardy-type operators on different function spaces. For instance, the sharp bounds for Hardy-type operators and their dual operators on weak Lebesgue spaces were considered in [17, 18, 25, 35, 40, 44, 47, 48, 49]. See also [12, 13, 32, 42] for sharp constants for multilinear Hardy operator on Lebesgue spaces and Morrey-type spaces. Moreover, Hardy-type inequalities have been extended to different settings. For example, Wu et al. [44] and Guo et al. [19] considered the sharp constants for Hardy operators and their dual operators on Heisenberg group in the linear and multilinear situations. Fu et al. [16, 45] investigated sharp constants for Hardy-type operators on p-adic field. Maligranda et al. [34], Guo and Zhao [20], Fan and Zhao [9] studied Hardy \(q\)-type integral inequalities. In addition, there are many extensions of the Hardy-type operators, such as weighted Hardy-Littlewood averages [14, 18, 46] and Hausdorff operators [3, 3, 27, 43]. Readers can refer to the book [22] to get some earlier development of Hardy-type inequalities. We also refer the readers to the review papers [26, 31] for some recent progress on Hardy-type operators and their related topics.

Recently the mixed radial-angular spaces have been successfully used in studying Strichartz estimates and partial differential equations to improve the corresponding results (see [2, 6, 10, 33, 41], etc.). After that, many operators in harmonic analysis have been proved to be bounded on these spaces. For instance, the extrapolation theorems on mixed radial-angular spaces were build by Duoandikoetxea and
Hardy-type operators on mixed radial-angular spaces

Oruetxebarria [8] to study the boundedness of a large class of operators which are weighted bounded. In addition, the boundedness of some operators with rough kernels on mixed radial-angular spaces were also considered by Liu et al. [28, 29, 30].

Inspired by the references mentioned above, it is natural to ask whether we can obtain the boundedness, or furthermore the sharp bounds, for Hardy-type operators on mixed radial-angular spaces. In this paper, we will give an affirmative answer. More precisely, we will study the sharp bounds for n-dimensional Hardy operator \mathcal{H} and n-dimensional fractional Hardy operator \mathcal{H}_β on mixed radial-angular spaces. By using a duality argument, we also obtain the sharp constants for their dual operators \mathcal{H}^* and \mathcal{H}_β^* on mixed radial-angular spaces. Moreover, the sharp weak type estimate for \mathcal{H} is also considered.

Now we recall the definition of mixed radial-angular spaces.

Definition 1.1. For $n \geq 2$, $1 \leq p, \bar{p} \leq \infty$, the mixed radial-angular space $L^p_{|x|}L^{\bar{p}}_{\theta} (\mathbb{R}^n)$ consists of all functions f in \mathbb{R}^n for which

$$\|f\|_{L^p_{|x|}L^{\bar{p}}_{\theta}} := \left(\int_0^\infty \left(\int_{S^{n-1}} |f(r,\theta)|^{\bar{p}} \, d\theta \right)^{\frac{p}{\bar{p}}} r^{n-1} \, dr \right)^{1/p} < \infty,$$

where S^{n-1} denotes the unit sphere in \mathbb{R}^n. If $p = \infty$ or $\bar{p} = \infty$, then we have to make appropriate modifications.

Similarly, we can define the weak mixed radial-angular spaces.

Definition 1.2. For $n \geq 2$, $1 \leq p, \bar{p} \leq \infty$, the weak mixed radial-angular space $wL^p_{|x|}L^{\bar{p}}_{\theta} (\mathbb{R}^n)$ consists of all functions f in \mathbb{R}^n for which

$$\|f\|_{wL^p_{|x|}L^{\bar{p}}_{\theta}} := \sup_{\lambda > 0} \lambda \|\chi\{|x|: |f(x)| > \lambda\}\|_{L^p_{|x|}L^{\bar{p}}_{\theta}} < \infty,$$

where $\chi\{|x|: |f(x)| > \lambda\}$ denotes the characteristic function of the set $\{x \in \mathbb{R}^n : |f(x)| > \lambda\}$.

In fact, the mixed radial-angular spaces can be seen as particular cases of mixed-norm Lebesgue spaces introduced by Benedek and Panzone [1]. We refer readers to [7, 23, 24, 36, 37, 39] for more studies on mixed-norm Lebesgue spaces and their applications in PDE.

The organization of this article is as follows. The sharp bounds for n-dimensional Hardy operator and its dual operator on mixed radial-angular spaces are obtained in Sect. 2. We calculate the operator norms of n-dimensional fractional Hardy operator on mixed radial-angular spaces in Sect. 3. In addition, we also establish a sharp weak type estimate for n-dimensional Hardy operator on mixed radial-angular spaces Sect. 4.

2. Sharp bounds for \mathcal{H} and \mathcal{H}^* from $L^p_{|x|}L^{\bar{p}1}_{\theta} (\mathbb{R}^n)$ to $L^p_{|x|}L^{\bar{p}2}_{\theta} (\mathbb{R}^n)$

The main result in this section is the following:
Therefore we have that
\[|H|_{L_p^w \to L_p^w} = \frac{p}{p - 1} w_n^{1/p_2 - 1/p_1}, \]
where \(w_n = 2\pi^{n/2}/\Gamma(n/2) \) is the induced measure of \(S^{n-1} \).

Proof. We borrow some ideas from [4,13] and use the method of rotation. Set
\[g(x) = \frac{1}{w_n} \int_{S^{n-1}} f(|x|\theta) d\theta, \quad x \in \mathbb{R}^n. \] (6)

Obviously, \(g \) is a radial function and it was proved by Fu et al [13, Proof of Theorem 1] that \(H(g) \) is equal to \(H(f) \). Moreover, we have
\[\|g\|_{L_p^w}^{p/p_1} = \left(\int_0^\infty \left(\int_{S^{n-1}} |g(r, \theta)|^{p_1} d\theta \right)^{p/p_1} r^{n-1} dr \right)^{1/p} \]
\[= w_n^{1/p_1} \left(\int_0^\infty |g(r)|^p r^{n-1} dr \right)^{1/p}, \] (7)
where \(g(r) \) can be recognized as \(g(r) = g(x) \) for any \(x \in \mathbb{R}^n \) with \(|x| = r \), since \(g \) is a radial function.

Combining (6) and (7), and using Hölder’s inequality, we get
\[\|g\|_{L_p^w}^{p/p_1} = w_n^{1/p_1} \left(\int_0^\infty \left(\int_{S^{n-1}} f(r\theta) d\theta \right)^p r^{n-1} dr \right)^{1/p} \]
\[= w_n^{1/p_1 - 1} \left(\int_0^\infty \left(\int_{S^{n-1}} |f(r\theta)|^{p_1} d\theta \right)^{p/p_1} \left(\int_{S^{n-1}} d\theta \right)^{p/p_1} r^{n-1} dr \right)^{1/p} \]
\[\leq \left(\int_0^\infty \left(\int_{S^{n-1}} |f(r\theta)|^{p_1} d\theta \right)^{p/p_1} r^{n-1} dr \right)^{1/p} = \|f\|_{L_p^w}^{p/p_1}. \]

Therefore we have that
\[\frac{\|H(f)\|_{L_p^w}^{p/p_2}}{\|f\|_{L_p^w}^{p/p_1}} \leq \frac{\|H(g)\|_{L_p^w}^{p/p_2}}{\|g\|_{L_p^w}^{p/p_1}}. \]
That is to say, the operator \(H \) and its restriction to radial functions have the same operator norm from \(L_p^w \) to \(L_p^w \). Therefore, we can assume that \(f \) is a radial function.

For a radial function \(f \), \(H(f) \) is also a radial function. Consequently,
\[\|H(f)\|_{L_p^w}^{p/p_2} = \left(\int_0^\infty \left(\int_{S^{n-1}} |H(f)(r, \theta)|^{p_2} d\theta \right)^{p/p_2} r^{n-1} dr \right)^{1/p} \]
\[= \left(\int_0^\infty \left(\int_{S^{n-1}} |H(f)(r, \theta)|^{p_2} d\theta \right)^{p/p_2} r^{n-1} dr \right)^{1/p} \]
where \(|\mathcal{H}(f)(r)| \) can be recognized as \(\mathcal{H}(f)(r) = \mathcal{H}(f)(x) \) for any \(x \in \mathbb{R}^n \) with \(|x| = r \), since \(\mathcal{H}(f) \) is a radial function.

Denote \(B(0, R) \) by the ball centered at the origin with radius \(R \). By changing variables, we further have

\[
\mathcal{H}(f)(r) = \frac{1}{\Omega_n} \int_{B(0,1)} f(ry)dy.
\]

(9)

Combining (8) with (9), and using Minkowski’s inequality, we have

\[
\|\mathcal{H}(f)\|_{L_p^{\beta_2} L_n^{\beta_1}} = \frac{w_n^{1/\beta_2}}{\Omega_n} \left(\int_0^\infty \left(\int_{B(0,1)} |f(ry)dy| r^{n-1}dr \right)^{1/p} \right)
\]

\[
\leq \frac{w_n^{1/\beta_2}}{\Omega_n} \int_{B(0,1)} \left(\int_0^\infty |f(ry)|^p r^{n-1}dr \right)^{1/p} dy
\]

\[
= \frac{w_n^{1/\beta_2 - 1/\beta_1}}{\Omega_n} \int_{B(0,1)} |y|^{-n/p} dy \|f\|_{L_p^{\beta_1}}
\]

\[
= \frac{w_n^{1/\beta_2 - 1/\beta_1}}{\Omega_n} \int_{B(0,1)} |y|^{-n/p} dy \|f\|_{L_p^{\beta_1}}
\]

\[
= \frac{p}{p-1} w_n^{1/\beta_2 - 1/\beta_1} \|f\|_{L_p^{\beta_1}},
\]

where we have used the identity \(w_n = n\Omega_n \).

To prove the constant \(\frac{p}{p-1} w_n^{1/\beta_2 - 1/\beta_1} \) is best possible, we take

\[
f_\varepsilon(x) = \begin{cases} 0, & |x| \leq 1, \\ |x|^{-(\frac{1}{p} + \varepsilon)}, & |x| > 1, \end{cases}
\]

where \(0 < \varepsilon < 1 \). A direct computation yields

\[
\|f_\varepsilon\|_{L_p^{\beta_1}} = \frac{w_n^{1/\beta_1}}{(p\varepsilon)^{1/p}}.
\]

On the other hand,

\[
\mathcal{H}(f_\varepsilon)(x) = \begin{cases} 0, & |x| \leq 1, \\ \frac{1}{\Omega_n} |x|^{-(\frac{1}{p} + \varepsilon)} \int_{B(0,1)} |y|^{-(\frac{1}{p} + \varepsilon)} dy, & |x| > 1. \end{cases}
\]

So we have

\[
\|\mathcal{H}(f_\varepsilon)\|_{L_p^{\beta_2} L_n^{\beta_1}} = \frac{w_n^{1/\beta_2}}{\Omega_n} \left(\int_1^\infty \left| r^{-(\frac{1}{p} + \varepsilon)} \int_{B(0,1)} |y|^{-(\frac{1}{p} + \varepsilon)} dy \right|^pr^{n-1}dr \right)^{1/p}.
\]
This observation enables us to obtain the sharp bound for H and furthermore, for any T.

To state the main result in this section, we need the following Lemma.

Remark 2.1. When $p = \bar{p}_1 = \bar{p}_2 \in (1, \infty)$ in Theorem 2.1, we recover the results in [4, 13].

A standard argument yields that for $1 < p, \bar{p} < \infty$, the dual space of $L^p_{\|x\|}L^p_{\theta}(\mathbb{R}^n)$ is $L^{p'}_{\|x\|}L^{p'}_{\theta}(\mathbb{R}^n)$, where p' and \bar{p}' satisfy $1/p + 1/p' = 1$ and $1/\bar{p} + 1/\bar{p}' = 1$ (see [1]), and furthermore, for any $f \in L^{p'}_{\|x\|}L^{p'}_{\theta}(\mathbb{R}^n)$,

$$
\|f\|_{L^{p'}_{\|x\|}L^{p'}_{\theta}} = \sup_{\|g\|_{L^{p'}_{\|x\|}L^{p'}_{\theta}}} \int_{\mathbb{R}^n} f(x)g(x)dx.
$$

This observation enables us to obtain the sharp bound for H^* from $L^p_{\|x\|}L^{\bar{p}_1}_{\theta}(\mathbb{R}^n)$ to $L^p_{\|x\|}L^{\bar{p}_2}_{\theta}(\mathbb{R}^n)$ by using duality.

Theorem 2.2. Let $n \geq 2$, $1 < p, \bar{p}_1, \bar{p}_2 < \infty$. Then the operator H^* defined in (2) is bounded from $L^p_{\|x\|}L^{\bar{p}_1}_{\theta}(\mathbb{R}^n)$ to $L^p_{\|x\|}L^{\bar{p}_2}_{\theta}(\mathbb{R}^n)$. Moreover,

$$
\|H^*\|_{L^p_{\|x\|}L^{\bar{p}_1}_{\theta} \rightarrow L^p_{\|x\|}L^{\bar{p}_2}_{\theta}} = p\|w\|_{L^{\bar{p}_2-1/\bar{p}_1}}.
$$

3. Sharp bound for H_β from $L^p_{\|x\|}L^{\bar{p}}_{\theta}(\mathbb{R}^n)$ to $L^q_{\|x\|}L^{\bar{q}}_{\theta}(\mathbb{R}^n)$

To state the main result in this section, we need the following Lemma.
Lemma 3.1. Let \(n \geq 2, 0 < \beta < n \) and \(1 < p < q < \infty \) such that \(1/p - 1/q = \beta/n \). Then the \(n \)-dimensional fractional Hardy operator \(\mathcal{H}_\beta \) defined in (4) is bounded from \(L^p(\mathbb{R}^n) \) to \(L^q(\mathbb{R}^n) \). Moreover,

\[
\|\mathcal{H}_\beta\|_{L^p \to L^q} = C_{p,q,n,\beta},
\]

where \(C_{p,q,n,\beta} = \left(\frac{\nu}{q} \right)^{1/q} \left(\frac{\nu}{q} \right) \cdot B \left(\frac{\nu}{q}, \frac{n}{\beta} \right) \right)^{-\beta/n} \) and \(B \) is the Beta function, i.e., \(B(z_1, z_2) = \int_0^1 t^{z_1-1}(1-t)^{z_2-1} \, dt \) for any complex numbers \(z_1 \) and \(z_2 \) with the positive real parts.

Our main result in this section can be stated as follows:

Theorem 3.1. Let \(n \geq 2, 0 < \beta < n, 1 < \bar{p}, \bar{q} < \infty \) and \(1 < p < q < \infty \) such that \(1/p - 1/q = \beta/n \). Then the \(n \)-dimensional fractional Hardy operator \(\mathcal{H}_\beta \) defined in (4) is bounded from \(L^\bar{p}_{|x|} L^\bar{q} (\mathbb{R}^n) \) to \(L^q_{|x|} L^\bar{q} (\mathbb{R}^n) \). Moreover,

\[
\|\mathcal{H}_\beta\|_{L^\bar{p}_{|x|} L^\bar{q} \to L^q_{|x|} L^\bar{q}} = C_{p,q,n,\beta} w_n^{1/q-1/p+\beta/n}.
\]

Proof. A similar process as in the proof of Theorem 2.1 yields that the norm of the operator \(\mathcal{H}_\beta \) from \(L^\bar{p}_{|x|} L^\bar{q} (\mathbb{R}^n) \) to \(L^q_{|x|} L^\bar{q} (\mathbb{R}^n) \) is equal to the norm of \(\mathcal{H}_\beta \) acting on radial functions.

For a radial function \(f \), \(\mathcal{H}_\beta(f) \) is also a radial function. Consequently,

\[
\|\mathcal{H}_\beta(f)\|_{L^q_{|x|} L^\bar{q}} = \left(\int_0^\infty \left(\int_{S^{n-1}} |\mathcal{H}_\beta(f)(r, \theta)|^\bar{q} r^{n-1} \, d\theta \right)^{q/\bar{q}} r^{n-1} \, dr \right)^{1/q} = w_n^{1/q} \left(\int_0^\infty |\mathcal{H}_\beta(f)(r, \theta)|^q r^{n-1} \, dr \right)^{1/q} = w_n^{1/q-1/q} \left(\int_0^\infty \int_{S^{n-1}} |\mathcal{H}_\beta(f)(r, \theta)|^q r^{n-1} \, d\theta \, dr \right)^{1/q} = w_n^{1/q-1/q} \|\mathcal{H}_\beta(f)\|_{L^\bar{q}} \leq w_n^{1/q-1/q} \times C_{p,q,n,\beta} \cdot \|f\|_{L^\bar{p}} = C_{p,q,n,\beta} \cdot w_n^{1/q-1/q} \cdot w_n^{1/p-1/\bar{p}} \cdot \|f\|_{L^\bar{p}_{|x|} L^\bar{q}} = C_{p,q,n,\beta} w_n^{1/q-1/p+\beta/n} \|f\|_{L^\bar{p}_{|x|} L^\bar{q}},
\]

where we have used Lemma 3.1 in the inequality and \(1/p - 1/q = \beta/n \) in the last equality.

To get the sharp bound, we take

\[
f_0(x) = \frac{1}{(1 + |x|^{\bar{q}})^{1+\bar{q}}/\bar{q}}.
\]

Since \(f_0 \) is a radial function, we have

\[
\|f_0\|_{L^\bar{p}_{|x|} L^\bar{q}} = w_n^{1/\bar{p}-1/p} \|f_0\|_{L^p}.
\]

Similarly, noting that \(\mathcal{H}_\beta(f_0) \) is also a radial function, we have

\[
\|\mathcal{H}_\beta(f_0)\|_{L^q_{|x|} L^\bar{q}} = w_n^{1/q-1/q} \|\mathcal{H}_\beta(f_0)\|_{L^\bar{q}}.
\]
Due to Zhao and Lu [49], there holds
\[
\|\mathcal{H}_\beta(f_0)\|_{L^{q}} = C_{p,q,n,\beta}\|f_0\|_{L^p}.
\] (12)

Combining (10), (11) with (12), we arrive at
\[
\|\mathcal{H}_\beta(f_0)\|_{L^{q}_w} = C_{p,q,n,\beta}w_n^{1/q-1/q+\beta/n}\|f_0\|_{L^{p}_w L^q_w},
\]

since \(1/p - 1/q = \beta/n\).

The proof is finished. \(\square\)

Remark 3.1. Similar to Theorem 2.2, one can also calculate the sharp bound for \(\mathcal{H}_\rho^*\) defined in (5) from \(L^p_{|x|} L^{\bar{p}}_\theta(\mathbb{R}^n)\) to \(L^q_{|x|} L^{\bar{q}}_\theta(\mathbb{R}^n)\) by duality. We omit the details here. In particular, if \(p = \bar{p} \in (1, \infty)\) and \(q = \bar{q} \in (1, \infty)\) in Theorem 3.1, we recover the results in [38-49].

4. Sharp weak bound for \(\mathcal{H}\) from \(L^p_{|x|} L^{\bar{p}}_\theta(\mathbb{R}^n)\) to \(w L^p_{|x|} L^{\bar{p}}_\theta(\mathbb{R}^n)\)

This section considers the sharp weak type estimate for \(n\)-dimensional Hardy operator on mixed radial-angular spaces. Our main result can be read as follows.

Theorem 4.1. Let \(n \geq 2, 1 \leq p, \bar{p}_1, \bar{p}_2 \leq \infty\). Then the \(n\)-dimensional Hardy operator \(\mathcal{H}\) defined in (7) is bounded from \(L^p_{|x|} L^{\bar{p}}_\theta(\mathbb{R}^n)\) to \(w L^p_{|x|} L^{\bar{p}}_\theta(\mathbb{R}^n)\). Moreover,
\[
\|\mathcal{H}\|_{L^p_{|x|} L^{\bar{p}}_\theta \rightarrow w L^p_{|x|} L^{\bar{p}}_\theta} = w_n^{1/\bar{p}_2-1/\bar{p}_1}.
\]

Proof. We only give the proof of the case \(1 < p, \bar{p}_1, \bar{p}_2 < \infty\), with the usual modifications made when \(p = 1, \bar{p}_i = 1\) or \(p = \infty, \bar{p}_i = \infty, i = 1, 2\). For any \(\lambda > 0\), we have

\[
\|\chi_{\{x \in \mathbb{R}^n : |\mathcal{H}(f)(x)| > \lambda\}}\|_{L^p_{|x|} L^{\bar{p}}_\theta} = \left\| \chi_{\{x \in \mathbb{R}^n : \lambda^{1/\bar{p}'_1} \mathcal{H}_\rho f \geq \lambda\}} \right\|_{L^p_{|x|} L^{\bar{p}}_\theta} \\
\leq \left\| \chi_{\{x \in \mathbb{R}^n : \lambda^{1/\bar{p}'_2} \mathcal{H}_\rho f \geq \lambda\}} \right\|_{L^p_{|x|} L^{\bar{p}}_\theta} \\
\leq \left\| \chi_{\{x \in \mathbb{R}^n : \lambda^{1/\bar{p}'_2} \mathcal{H}_\rho f \geq \lambda\}} \right\|_{L^p_{|x|} L^{\bar{p}}_\theta} \\
= w_n^{1/\bar{p}_2} \left(\int_0^{R_n \lambda^{1/\bar{p}'_2} \mathcal{H}_\rho f} \mathcal{H}_\rho f \right)^{1/p} dr \right)^{1/p} \\
= w_n^{1/\bar{p}_2} \left(\int_0^{\lambda} \mathcal{H}_\rho f \right)^{1/p} dr \right)^{1/p}.
\]
where we have used Hölder’s inequality on mixed-norm Lebesgue spaces, see [1].

On the other hand, we need to show that the constant $w_n^{1/p_2-1/p_1}$ is the best possible. Denote by $\chi_r = \chi_{[0,r]}$, $r > 0$. Taking $f_0(x) = \chi_r(|x|)$, $x \in \mathbb{R}^n$, a simple calculation shows that

$$\|f_0\|_{L_n^{p_1},L_n^{p_2}} = \frac{w_n^{1/p_1}}{n^{1/p}}\|f\|_{L_n^{p_1},L_n^{p_2}},$$

Zhao et al. [48, Proof of Theorem 2.1] proved that for

$$\int_{|x| < r; \mathcal{H}(f_0)(x) > \lambda} \|f\|_{L_n^{p_1},L_n^{p_2}},$$

(i) When $|x| < r$, it was showed by Zhao et al. [48, Proof of Theorem 2.1] that $\mathcal{H}(f_0)(x) = 1$. As a consequence, we have

$$\|\chi_{|x| < r; \mathcal{H}(f_0)(x) > \lambda}\|_{L_n^{p_1},L_n^{p_2}} = w_n^{p/p_2} \frac{r^n}{n}.$$

(ii) When $|x| \geq r$, it was also showed by Zhao et al. [48, Proof of Theorem 2.1] that $\mathcal{H}(f_0)(x) = r^n/|x|^p$. Therefore we have

$$\|\chi_{|x| \geq r; \mathcal{H}(f_0)(x) > \lambda}\|_{L_n^{p_1},L_n^{p_2}} = \left\|\chi_{|x| \leq r; |x| < \frac{r^n}{n} \lambda} \right\|_{L_n^{p_1},L_n^{p_2}} = \frac{w_n^{p/p_2} \frac{r^n}{n} \left(\frac{1}{\lambda} - 1\right)}{\lambda}.$$
Acknowledgements

The authors would like to express their deep gratitude to the anonymous referees for their careful reading of the manuscript and their comments and suggestions. This work is supported by the National Natural Science Foundation of China (No. 11871452), the Natural Science Foundation of Henan Province (No. 202300410338) and the Nanhu Scholar Program for Young Scholars of Xinyang Normal University.

References

[1] A. Benedek and R. Panzone. The space L^p, with mixed norm. _Duke Mathematical Journal_, 28(3):301–324, 1961.
[2] F. Cacciafesta and P. D’Ancona. Endpoint estimates and global existence for the nonlinear Dirac equation with potential. _Journal of Differential Equations_, 254(5):2233–2260, 2013.
[3] J. Chen, J. Dai, D. Fan, and X. Zhu. Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces. _Science China Mathematics_, 61(9):1647–1664, 2018.
[4] M. Christ and L. Grafakos. Best constants for two nonconvolution inequalities. _Proceedings of the American Mathematical Society_, 123(6):1687–1693, 1995.
[5] N. M. Chuong, D. V. Duong, and K. H. Dung. Two-weighted inequalities for Hausdorff operators in Herz-type Hardy spaces. _Mathematical Notes_, 106(1-2):20–37, 2019.
[6] P. D’Ancona and R. Lucà. On the regularity set and angular integrability for the Navier–Stokes equation. _Archive for Rational Mechanics and Analysis_, 221(3):1255–1284, 2016.
[7] H. Dong and N. V. Krylov. Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces. _Calculus of Variations and Partial Differential Equations_, 58(4):145, 2019.
[8] J. Duoandikoetxea and O. Oruetxebarria. Weighted mixed-norm inequalities through extrapolation. _Mathematische Nachrichten_, 292(7):1482–1489, 2019.
[9] D. Fan and F. Zhao. Sharp constant for multivariate Hausdorff q-inequalities. _Journal of the Australian Mathematical Society_, 106(2):274–286, 2019.
[10] D. Fang and C. Wang. Weighted strichartz estimates with angular regularity and their applications. _Forum Mathematicum_, 23(1):181–205, 2011.
[11] W. G. Faris. Weak Lebesgue spaces and quantum mechanical binding. _Duke Mathematical Journal_, 43(2):365–373, 1976.
[12] Z. Fu, S. Gong, S. Lu, and W. Yuan. Weighted multilinear Hardy operators and commutators. _Forum Mathematicum_, 27(5):2825–2851, 2015.
[13] Z. Fu, L. Grafakos, S. Lu, and F. Zhao. Sharp bounds for m-linear Hardy and Hilbert operators. _Houston Journal of Mathematics_, 38:225–244, 2012.
[14] Z. Fu, Z. Liu, and S. Lu. Commutators of weighted Hardy operators on \mathbb{R}^n. _Proceedings of the American Mathematical Society_, 137(10):3319–3328, 2009.
[15] Z. Fu and S. Lu. Weighted Hardy operators and commutators on Morrey spaces. *Frontiers of Mathematics in China*, 5(3):531–539, 2010.

[16] Z. Fu, Q. Wu, and S. Lu. Sharp estimates of p-adic Hardy and Hardy-Littlewood-Pólya operators. *Acta Mathematica Sinica, English Series*, 29(1):137–150, 2013.

[17] G. Gao, X. Hu, and C. Zhang. Sharp weak estimates for Hardy-type operators. *Annals of Functional Analysis*, 7(3):421–433, 2016.

[18] G. Gao and F. Zhao. Sharp weak bounds for Hausdorff operators. *Analysis Mathematica*, 41(3):163–173, 2015.

[19] J. Guo, L. Sun, and F. Zhao. Hausdorff operators on the Heisenberg group. *Acta Mathematica Sinica, English Series*, 31(11):1703–1714, 2015.

[20] J. Guo and F. Zhao. Some q-inequalities for Hausdorff operators. *Frontiers of Mathematics in China*, 12(4):879, 2017.

[21] G. H. Hardy. Note on a theorem of Hilbert. *Mathematische Zeitschrift*, 6(3):314–317, 1920.

[22] G. H. Hardy, J. E. Littlewood, and G. Pólya. *Inequalities*. Cambridge University Press, Cambridge, 1952.

[23] L. Huang, J. Liu, D. Yang, and W. Yuan. Atomic and Littlewood-paley characterizations of anisotropic mixed-norm Hardy spaces and their applications. *The Journal of Geometric Analysis*, 29(3):1991–2067, 2019.

[24] L. Huang and D. Yang. On function spaces with mixed norms—a survey. *Journal of Mathematical Study*, 54(3):262–336, 2021.

[25] A. Hussain, N. Sarfraz, and F. Gurbuz. Sharp weak bounds for p-adic Hardy operators on p-adic linear spaces. *arXiv preprint arXiv:2002.08045*, 2020.

[26] A. Kufner, L. Maligranda, and L.-E. Persson. The prehistory of the Hardy inequality. *The American Mathematical Monthly*, 113(8):715–732, 2006.

[27] E. Liflyand and A. Miyachi. Boundedness of the Hausdorff operators in H^p spaces, $0 < p < 1$. *Studia Mathematica*, 194:279–292, 2009.

[28] F. Liu and D. Fan. Weighted estimates for rough singular integrals with applications to angular integrability. *Pacific Journal of Mathematics*, 301(1):267–295, 2019.

[29] R. Liu, F. Liu, and H. Wu. Mixed radial-angular integrability for rough singular integrals and maximal operators. *Proceedings of the American Mathematical Society*, 148(9):3943–3956, 2020.

[30] R. Liu, F. Liu, and H. Wu. On the mixed radial-angular integrability of Marcinkiewicz integrals with rough kernels. *Acta Mathematica Scientia*, 41(1):241–256, 2021.

[31] S. Lu. Some recent progress of n-dimensional Hardy operators. *Advance in Mathematics (China)*, 42(6):737–747, 2013.

[32] S. Lu, D. Yan, and F. Zhao. Sharp bounds for Hardy type operators on higher-dimensional product spaces. *Journal of Inequalities and Applications*, 2013(1):148, 2013.

[33] R. Lucà. Regularity criteria with angular integrability for the Navier–Stokes equation. *Nonlinear Analysis: Theory, Methods & Applications*, 105:24–40, 2014.
REFERENCES

[34] L. Maligranda, R. Oinarov, and L.-E. Persson. On Hardy q-inequalities. Czechoslovak Mathematical Journal, 64(3):659–682, 2014.

[35] W. Mingquan and Y. Dunyan. Sharp bounds for Hardy operators on product spaces. Acta Mathematica Scientia, 38(2):441–449, 2018.

[36] T. Nogayama. Boundedness of commutators of fractional integral operators on mixed Morrey spaces. Integral Transforms and Special Functions, 30(10):790–816, 2019.

[37] T. Nogayama, T. Ono, D. Salim, and Y. Sawano. Atomic decomposition for mixed Morrey spaces. The Journal of Geometric Analysis, 31(9):9338–9365, 2021.

[38] L.-E. Persson and S. Samko. A note on the best constants in some Hardy inequalities. J. Math. Inequal., 9(2):437–447, 2015.

[39] T. Phan. Well-posedness for the Navier-Stokes equations in critical mixed-norm Lebesgue spaces. Journal of Evolution Equations, 20(2):553–576, 2020.

[40] N. Sarfraz and F. Gürbüz. Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator. International Journal of Nonlinear Sciences and Numerical Simulation, Online, 2021.

[41] T. Tao. Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation. Communications in Partial Differential Equations, 25(7-8):1471–1485, 2000.

[42] S. Wang, S. Lu, and D. Yan. Explicit constants for Hardy’s inequality with power weight on n-dimensional product spaces. Science China Mathematics, 55(12):2469–2480, 2012.

[43] Q. Wu and D. Fan. Hardy space estimates of Hausdorff operators on the Heisenberg group. Nonlinear Analysis, 164:135–154, 2017.

[44] Q. Wu and Z. Fu. Sharp estimates for Hardy operators on Heisenberg group. Frontiers of Mathematics in China, 11(1):155–172, 2016.

[45] Q. Wu and Z. Fu. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bulletin of the Malaysian Mathematical Sciences Society, 40(2):635–654, 2017.

[46] J. Xiao. L^p and BMO bounds of weighted Hardy–Littlewood averages. Journal of Mathematical Analysis and Applications, 262(2):660–666, 2001.

[47] H. Yu and J. Li. Sharp weak bounds for n-dimensional fractional Hardy operators. Frontiers of Mathematics in China, 13(2):449–457, 2018.

[48] F. Zhao, Z. Fu, and S. Lu. Endpoint estimates for n-dimensional Hardy operators and their commutators. Science China Mathematics, 55(10):1977–1990, 2012.

[49] F. Zhao and S. Lu. The best bound for n-dimensional fractional Hardy operators. Mathematical Inequalities and Applications, 18(1):233–240, 2015.

Mingquan Wei
School of Mathematics and Stastics, Xinyang Normal University
Xinyang 464000, China
e-mail: weimingquan11@mails.ucas.ac.cn

* Corresponding author
Dunyan Yan
School of Mathematical Sciences, University of Chinese Academy of Sciences
Beijing 100049, China
e-mail: ydunyan@ucas.ac.cn