Terrestrial Evaporation and Moisture Drainage in a Warmer Climate

Daniel J. Short Gianotti¹, Ruzbeh Akbar¹, Andrew F. Feldman¹, Guido D. Salvucci², and Dara Enthekabi³

¹Massachusetts Institute of Technology
²Boston University
³Bacardi and Stockholm Water Foundations Professor Department of Civil and Environmental Engineering and Department of Earth, Atmospheric and Planetary Sciences

November 23, 2022

Abstract

To determine hydrologic changes in a warmer climate, we impose precipitation and potential evaporation perturbations on hydrologic response functions constructed from precipitation and satellite soil moisture observations across the United States. Despite nonlinearities in the evaporation (E) and drainage (D) responses and opposing-sign perturbations, changes in individual fluxes are superposable. Empirical frameworks (Budyko) can misrepresent changes in E/D partitioning by neglecting shifts/trends in hydrologic regime and subseasonal precipitation dynamics. E/D both increase to balance mean precipitation (P) increases, and increased E reduces soil moisture. E and D are generally more elastic to changes in P than E. The results suggest that (1) the impacts of regional hydrologic perturbations may allow for simple superposition/scaling, (2) changes in timing/intensity of precipitation may have substantial impacts on mean moisture states and fluxes, and (3) changes to the distribution of surface moisture states are likely more relevant for E/D partitioning than common aridity indices.
Terrestrial Evaporation and Moisture Drainage in a Warmer Climate

Daniel J. Short Gianotti¹, Ruzbeh Akbar¹, Andrew F. Feldman¹, Guido D. Salvucci², and Dara Entekhabi¹

¹Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology.

²Department of Earth and Environment, Boston University.

Corresponding author: Daniel Short Gianotti (gianotti@mit.edu)

Key Points:

- Assess sensitivity of terrestrial evaporation and drainage to climate perturbations based on satellite-era soil moisture observations
- Climate perturbation effects are superposable despite nonlinear flux mechanisms and mixed-sign effects of each climate perturbation
- Changes in water fluxes poorly-captured by hydroclimate indices (Budyko framework) with changing precipitation extremes
Abstract

To determine hydrologic changes in a warmer climate, we impose precipitation and potential evaporation (E_o) perturbations on hydrologic response functions constructed from precipitation and satellite soil moisture observations across the United States. Despite nonlinearities in the evaporation (E) and drainage (D) responses and opposing-sign perturbations, changes in individual fluxes are superposable. Empirical frameworks (Budyko) can misrepresent changes in E/D partitioning by neglecting shifts/trends in hydrologic regime and subseasonal precipitation dynamics. E/D both increase to balance mean precipitation (\bar{P}) increases, and increased E_o reduces soil moisture. E and D are generally more elastic to changes in \bar{P} than E_o. The results suggest that (1) the impacts of regional hydrologic perturbations may allow for simple superposition/scaling, (2) changes in timing/intensity of precipitation may have substantial impacts on mean moisture states and fluxes, and (3) changes to the distribution of surface moisture states are likely more relevant for E/D partitioning than common aridity indices.

Plain Language Summary

We use satellite observations of soil moisture and expected increase in air temperature to determine how evaporation and soil drainage (to groundwater recharge and rivers/streamflow) will change in a warmer climate. The impacts of drier air, more rainfall, and more extreme rainfall (drier dry days and wetter wet days) can largely be considered separately and then added, which will help when predicting a specific location’s water balance using scenarios from global climate models. In typical scenarios, soils are likely to dry, evaporation is likely to increase, and — when precipitation increases — drainage to groundwater/streams is likely to increase as well. Evaporation and drainage are relatively more sensitive to changes in precipitation and humidity in the Western US than the East, and the Corn Belt is particularly susceptible to changes in precipitation intensity. Common methods of determining changes in evaporation and drainage which neglect changes in soil moisture may have large errors in global change scenarios.

Introduction

Our best predictions for the future of the terrestrial water cycle come from Global Climate and Earth System Models (GCMs, ESMs), which forecast general increases in precipitation (Greve et
al., 2018; O’Gorman et al., 2012; O’Gorman & Schneider, 2008) and atmospheric water demand (Q. Fu & Feng, 2014), along with distributional changes in precipitation intensity (Greve et al., 2014; Hirabayashi et al., 2013; Schewe et al., 2014). The spatial patterns of these changes are driven by the coupling between radiative processes, cloud physics, and moisture advection, and are affected to a large degree by unpredictable internal variability in global atmospheric dynamics (Anderson et al., 2015; Greve et al., 2018; Greve & Seneviratne, 2015; Hawkins & Sutton, 2011; Samset et al., 2016). The modeled land-surface response to these changes is represented through parameterizations — as simple as single functions or as complex as a land-surface biosphere model — and is rarely separated from the uncertain atmospheric drivers or confronted with observations (Berg et al., 2017).

Water cycle changes are often summarized as changes in an aridity index — typically the ratio of mean precipitation (P) to mean potential evaporation (E_o) — following well-known hydroclimatological frameworks which suggest that this ratio is sufficient (under some assumptions) to determine land-surface water flux partitioning into evaporation and drainage/runoff (Budyko, 1963; Oldekop, 1911; Roderick & Farquhar, 2011; Turc, 1954). Changes in both E_o and mean precipitation may offset each other, potentially with no change in \bar{E}/E_o. Projected changes in storm characteristics, such as intensification of precipitation extremes (Kharin et al., 2013; O’Gorman & Schneider, 2009), are neglected in these frameworks.

Land surface moisture fluxes are state dependent, however (Akbar et al., 2018; Haghighi et al., 2018; Koster et al., 2018; Short Gianotti et al., 2019). Thus, changes in flux partitioning are better understood through (1) changes in the probability distribution of soil moisture (θ, the surface moisture state variable, highly inconsistent across models; Koster et al., 2009) and (2) its downstream impacts on evaporation (E), surface runoff (R), and drainage/percolation (D). E determines surface temperatures and humidity through the surface energy balance. D and R together determine streamflow and groundwater recharge, and will be assessed together in this study as D (see discussion below). Both outfluxes, E and D, depend nonlinearly on θ. It is thus necessary to query observations of the land surface to see which changes in atmospheric forcings are expected to add linearly and which may be offsetting.
Observations of surface soil moisture (Entekhabi et al., 2010; O’Neill et al., 2016) and inferred surface moisture fluxes (Akbar et al., 2019) provide an opportunity to constrain these downstream variables. The use of historical observations to develop hydrologic response functions does not replace ESMs which couple the synchronous dynamics of atmospheric circulation, surface hydrology, and land-atmosphere feedbacks (Berg et al., 2016; Milly & Dunne, 2016; Swann, 2018). These observations instead provide a framework to assess the response of each component of the surface water balance to different climate perturbations free from model-imposed parameterizations. Additionally, daily time series allow finer temporal assessment of θ variations and the mechanisms of E/D partitioning, an advantage over use of historical annual means in other frameworks (Berghuijs et al., 2017; Greve et al., 2018; Roderick et al., 2014; Roderick & Farquhar, 2011).

This motivates our research question: How will precipitation be partitioned into evaporation and subsurface drainage fluxes in a warmer climate with changes in potential evaporation (E_o), mean precipitation (\bar{P}), and precipitation extremes?

To address this question, we use an observation-driven framework to assess how key fluxes pull the landscape water balance in opposing directions in response to climate perturbations. We use hydrologic response functions estimated from historical precipitation and satellite soil moisture observations to (a) determine evaporative and drainage responses to precipitation forcing and soil moisture state. We then (b) use the retrieved E and D response functions to determine changes in warm-season fluxes across the Contiguous United States (ConUS) subject to perturbed (i) E_o, (ii) \bar{P}, (iii) precipitation extremes, and (iv) coincident changes in all three.

As we will find, these perturbations lend themselves well to superposition and magnitude-scaling, and so the choice of perturbation magnitudes is not particularly significant, except in relation to the magnitude of impact on E or D.

We will compare the results to typical aridity-index (Budyko) methods for estimating changes in E and D and find that changes to the precipitation distribution/extremes are critical in E/D partitioning. Finally we calculate elasticities of E and D to changes in E_o, \bar{P}, and precipitation extremes.
Methods

Water balance model and parameter estimation

To derive time series of surface soil moisture, evaporation, and drainage we follow the method of Akbar et al., (2019). Surface soil moisture for the summers (May-September) of 2015-2017 is modeled using an estimation approach with two objective functions to minimize squared differences between modeled surface microwave brightness temperatures and observations from the SMAP satellite (Entekhabi et al., 2010; O’Neill et al., 2016) while additionally conserving water mass. The problem is solved with an adjoint variational method where the water balance equation is incorporated using a Lagrange multiplier. The water balance is driven by gridded gauge-based precipitation observations from NCEP’s Climate Prediction Center (Chen et al., 2008) and determines effluxes of water from the homogeneous surface layer as

\[\Delta z \cdot \frac{d\theta}{dt} = P(t) - E(\theta) - D(\theta) \tag{1} \]

where \(\Delta z \) is the thickness of the surface layer, \(\theta \) is the volumetric soil moisture (modeled as uniform within the layer), \(P(t) \) is the precipitation rate, \(E(\theta) \) is evapotranspiration to the atmosphere, and \(D(\theta) \) is drainage losses to subsurface soil layers. Four parameters — \(E_o, b, c, \) and \(d \) determine the shapes of the evaporation \((E) \) and drainage \((D) \) components:

\[E(\theta; E_o, b) = \frac{1}{2} \left(1 + \tanh \left[8 \left(\frac{\theta}{\phi} - \frac{1}{1 + e^{-b}} + 0.25 \right) \right] \right) \cdot E_o \tag{2} \]

\[D(\theta; c, d) = c \cdot \left(\frac{\theta}{\phi} \right)^d \tag{3} \]
for porosity ϕ. The parameters Δz, E_o, b, c, and d are estimated in Akbar et al. (2019) for each 36km SMAP pixel and create a forward water model for surface soil moisture given precipitation inputs and the previous soil moisture state. The loss functions (2) and (3) are intentionally flexible enough to span most plausible moisture/flux relations: b shifts the evaporation function as a function of soil moisture, c and d are effective Clapp-Hornberger parameters (Clapp & Hornberger, 1978). The estimated Δz determines the thickness of the surface layer that maintains hydrologic mass balance. An example loss function is shown for a location in Southern Iowa in Figure 1a.

Climate Perturbations

To begin we impose warm-season (MJJAS) climate perturbations as 3%, 6%, 9%, and 12% increases of E_o, 2.5%, 5%, 7.5%, and 10% increases in \Bar{P}, and 2.5%, 5%, 7.5%, and 10% increases in “heavy” (upper decile) precipitation, denoted P_{X90}. The values are selected as typical of the modeled global mean (including oceans) response to 1-4°C increases in global temperature (Fläschner et al., 2016; Hartmann et al., 2013; Kharin et al., 2013; Lambert & Webb, 2008; McVicar et al., 2012; Pall et al., 2007; Pendergrass et al., 2017; Samset et al., 2016; Scheff & Frierson, 2014), but this selection is somewhat arbitrary. We assert that these perturbations are not intended to represent real forecasts of future climate. Forecasts of perturbations at local scale will depend on uncertain changes in atmospheric water vapor dynamics (Anderson et al., 2015; Byrne & O’Gorman, 2015; Dai et al., 2018; Gianotti et al., 2014; Muller et al., 2011; Prein & Pendergrass, 2019; Romps, 2011; Sohn & Park, 2010; Thackeray et al., 2018; Vecchi et al., 2006) and land-atmosphere-biosphere feedbacks (Greve et al., 2018; Greve & Seneviratne, 2015; Novick et al., 2016; Rigden et al., 2018), and must be estimated in fully-coupled settings (Berg et al., 2016; Berg & Sheffield, 2018; Milly & Dunne, 2016; Swann, 2018). Results from this study can then be applied to variable fields of perturbations.

To investigate water demand-only effects, the E_o parameter is perturbed at each location. E values from Equation 2 represent the soil moisture-conditioned mean-state evaporation, and hence E_o represents the mean-state potential evaporation. E itself varies at the timestep of our model (sub-daily), as it is driven by daily precipitation influxes and soil moisture states. See Figure 1b for loss function impacts.
In all scenarios, precipitation occurrence is unchanged, as is the timing of the ranked precipitation intensity (if the July 12th rain event is the 10th heaviest observed amount at a given location, this timing/ranking will remain true in all scenarios). The intensities themselves are altered by either: (a) increasing mean precipitation or (b) through an amplification of extreme events. To increase mean precipitation, intensities on all wet days are multiplied by a scaling factor $1 + m \cdot \nu$, using $\nu = 0.025$, $m = \{1, 2, 3, 4\}$ (Figure 1c). Amplification of extreme precipitation re-allocates some precipitation from the dry tail of the intensity distribution to the wet tail in a manner which leaves both the mean and maximum precipitation unchanged (Figure 1d and Supplementary Figure 1). See Supplementary Information for further details. Note that this re-allocation has no impact on E/D partitioning in the Budyko framework.

Water Balance

The time series of θ, E, and D are determined by integrating the water balance (1) using the CPC precipitation observations at 3-minute time steps and the parameters estimated in Akbar et al. (2019) (additionally, see Akbar et al., 2019) for validation of θ against SMAP Level 3 soil moisture retrievals, D against gauged streamflow, and E against flux tower latent heat flux measurements). Explicit Hortonian overland runoff is generated when precipitation influx exceeds the storage capacity of the entire pixel, but is rare at 36km scale using 3-minute time steps. Drainage from the surface layer drives both groundwater recharge and surface streamflow in this framework; the two are not estimated separately. Seasonal mean Hortonian runoff out of the saturated pixel is $< 0.01\%$ of seasonal mean precipitation for all locations. Adding this runoff to estimated drainage fluxes has no impact on the results.

We integrate the water balance (1) using the observations (Figure 1a), the altered potential evaporation parameter (E_o experiment — Figure 1b), the altered precipitation through scaling (\bar{P} experiment — Figure 1c), and the altered precipitation through amplification of extremes (P_{X90} experiment — Figure 1d) independently to determine perturbative effects on evaporation and drainage partitioning. An example of each experiment is shown for a single summer in Figure 1. We also integrate the water balance with all interacting effects (Combined experiment) for analysis. In each case, the dynamics by which the probability distribution of soil moisture plays
out through the moisture-dependent flux functions determine the aggregate flux partitioning into E and D.

Results

As found previously (Akbar et al., 2019), warm season continental evaporation under present conditions is generally larger than drainage by a factor of 2 or more (Figure 2a). As shown in Figure 1b, increasing E_o shifts the PDF of soil moisture towards drier states, decreasing the D component faster than the E component. E increases (and D decreases) by roughly 0.05-0.1 mm/day for a 3% increase in E_o in the wettest regions (Figure 2b), with notable changes in the Eastern ConUS, and minimal changes in the already water-limited West.

Increasing water supply through increased precipitation (\bar{P} experiment; Figure 2c) leads to increases in both E and D as expected, with larger magnitude increases in D in wetter, more energy-limited regions and larger magnitude increases in E in drier, more water-limited regions (effectively defined by the typical 100th parallel arid/humid division of ConUS hydroclimate). Drainage is essentially unchanged in arid regions, where existing E_o dominates surface fluxes. The shift in the soil moisture marginal distribution does not significantly increase drainage in these arid regions since the drainage function (steep only for wetter soils) is largely insensitive to soil moisture under drier conditions (see Fig. 1a).

The redistribution of precipitation from light rainfall days to heavy days (P_{X90} experiment; Figure 2d) leads to near-universal increases in D at the expense of E. This is perhaps expected due to the sensitivity of hydraulic conductivity to soil moisture, but not a priori certain due to the complex interplay of precipitation regimes, climatic conditions, and soil texture controls on evaporative and drainage fluxes. The dominant impacts in the Eastern US highlight the role the wet end of the precipitation and soil moisture distributions can play in seasonal-scale water budgets, effectively offsetting E_o (atmospheric demand) changes in 2b with no change to the seasonal supply.

When integrating the water balance using the combined forcings of the E_o, \bar{P}, and P_{X90} experiments, we find near-universal increases in both mean E and D across the range of changes to E_o and precipitation (Figure 2e). As with the subcomponents shown in 2b-d, D is primarily
impacted in the Eastern ConUS, while E has more-nearly-equivalent magnitude changes across climate gradients for equivalent boundary condition perturbations. Recall that water supply changes in these experiments are driven by equivalent relative changes, e.g., 5% of local mean precipitation, rather than absolute changes in mm/day. Mean soil moisture decreases universally across the ConUS as well for the combined experiment (Supplementary Figure 2), which is also projected in coupled model experiments (Gu et al., 2019). The largest magnitude decreases occur in the Ohio and Mississippi River Valleys, effectively shifting the arid/humid transition zone to the East.

On average across the ConUS, a 3% increase in E_o alone (spatial average of leftmost column of Figure 2b) increases E by a little more than 3 mm over a single warm season (0.017 mm/day or 1% of the ConUS-averaged E). A 2.5% increase in mean precipitation increases E by a little more than 5 mm, and a 2.5% increase in the upper decile of precipitation (transferred from the driest days) decreases E by 2.6 mm. The combined effect is an average 5.6 mm, 1.5% of the ConUS average, and equivalent to a roughly 0.82 W/m² latent heat equivalent. These are all roughly an order of magnitude larger than the corresponding (same sign) changes in surface soil moisture storage.

Water balance sensitivities to climate perturbations using superposition

In Figure 2 — while each location is driven by the unique local characteristics of the retrieved moisture loss functions — all locations are subject to identical relative perturbations, which would not be the case in a broader future climate change scenario. We investigate the impact of the relative perturbation magnitudes on the combined (Figure 2e) experiment in Supplementary Figures 3-5 and find similar spatial patterns with changes in E/D partitioning magnitudes. Exploring every combination of E_o, \bar{P}, and P_{X90} perturbations is infeasible, and it prompts the question of how significant the interactions of multiple simultaneous perturbations is on changes to E/D partitioning.

We find that adding the change in evaporation ΔE (or changes in drainage ΔD) from each of the E_o, \bar{P}, and P_{X90} perturbations modeled independently is quite similar to the ΔE from imposing the perturbations separately. Figure 3a shows the difference between the rightmost column of Figure 2e ($E_o + 12\%$, $\bar{P} + 10\%$, and $P_{X90} + 10\%$, all perturbations simultaneously) and the sum
of the rightmost columns of Figure 2b-d. Errors are on the order of 1% or less, suggesting counterintuitively small impact of interactions between moisture supply and demand when averaged over the warm season.

We also find that scaling the impact of a perturbation is a close approximation of the impact of a scaled perturbation. Figure 3b shows the error in estimating ΔE in the rightmost column of Figure 2e ($E_o + 12\%$, $\bar{P} + 10\%$, and $P_{X90} + 10\%$ simultaneously) as four times ΔE in the leftmost column ($E_o + 3\%$, $\bar{P} + 2.5\%$, and $P_{X90} + 2.5\%$ simultaneously). Just as for superposition errors (combining different types of perturbations), combining multiple, say, 3% perturbations of E_o to get a 12% E_o perturbation works quite well. Errors are on the order of 2% or less in terms of ΔE, and much less in terms of the total $E + \Delta E$ estimate for the season.

Comparison with aridity-index approach: The Budyko framework misses important dynamics

The integration of the water balance in (1)-(3) results in time series of E across the ConUS, which can then be used to fit the spatially-varying n parameter of the standard hydroclimatological Budyko curve (Choudhury, 1999) for each pixel location:

$$\frac{E}{E_o} = \frac{P}{(P^n + E_o^n)^{\frac{1}{n}}}$$

Without the actual evaporation (E) time series, n is typically either assumed constant (often $n = 2$ as from Turc [1954], although for a single continent-wide fit we find better fit with $n = 2.24$), or n comes somewhat circularly from land surface model output, where the internal functions driving water flux partitioning are themselves parameterized. We emphasize that using model output to fit these hydroclimatological parameters without some ingested water cycle data will necessarily return results based largely on the parameters used to drive the same land surface model. We fit n for each pixel using monthly aggregated values across the warm season using total least-squares (or “errors in variables”) regression (Figure 4a), giving a spatial map of the n parameter (Figure 4b). This n estimation technique is independent of these circularities arising from use of land surface model outputs.
Changes in evaporation (ΔE) due to perturbations of E_o and \bar{P} alone are similar for the framework in this study and the Budyko-based method (Figure 4c, $r^2 = 0.88$ for $E_o + 12\%$, $r^2 = 0.96$ for $\bar{P} + 10\%$, similar for ΔD and for smaller perturbations), but with some bias. Errors between the methods are nearly entirely explained by changes in surface moisture storage, and the Budyko method’s evaporation bias for increased \bar{P} is similarly due to neglecting the shift in mean soil moisture towards wetter, more drainage-favorable conditions.

Changes in the distribution of precipitation intensities, however, have no representation in the Budyko framework (Figure 4c $\Delta P_{X90} + 10\%$), and can be a major player in the partitioning of E and D (bias in ΔE by a factor of 2, and $r^2 = 0.58$ for all effects combined).

Elasticity of evaporation and drainage to E_o, \bar{P}, and extreme P perturbations

To assess relative impacts with more spatial granularity, we calculate the rate of change of each hydrologic response to a given climate perturbation (Supplementary Figure 6). When normalized, these are elasticities of fluxes to perturbations (Andréassian et al., 2016; Chiew, 2006; G. Fu et al., 2007; Risbey & Entekhabi, 1996; Sankarasubramanian et al., 2001; Yang & Yang, 2011). These elasticities are calculated as regression slopes of E versus E_o (normalized by observed E/E_o) for 0-12% changes in E_o, of E vs \bar{P} (normalized by observed E/\bar{P}) for 0-10% changes in \bar{P}, and of E vs P_{X90} (normalized by observed E/P_{X90}) for 0-10% changes in P_{X90} — where P_{X90} is the amount of precipitation in the upper decile of the observed precipitation distribution. P_{X90} increasing by 5% represents the wettest days originally providing 10% of seasonal average precipitation now provide 10.5% of seasonal precipitation, and the driest days contributing 0.5% of seasonal precipitation now see no rain. Elasticities for drainage are calculated similarly.

Evaporation is more sensitive to relative changes in \bar{P} than E_o (both positive elasticities) in 74% of ConUS pixels, and drainage is more sensitive to relative changes in \bar{P} than E_o in 99% of pixels. Differences between these numbers are due to the difference in effect of surface soil drying/wetting for E and D (i.e., transient climate change effects of changes in storage). The general finding that a 1% change in moisture supply \bar{P} has a larger impact on downstream fluxes
than a 1% change in moisture demand E_0 is typical of elasticity studies using aridity index frameworks and modeled evaporation data (Berghuijs et al., 2017).

Drainage elasticities to change in mean potential evaporation E_0 and mean precipitation \bar{P} are an order of magnitude larger than for E, and with opposing signs (Supplementary Figures 6d and 6e). The shifts in precipitation extremes P_{x90} has equivalent magnitude as shifts in \bar{P}, amplifying the impacts on drainage.

Separating the ConUS into East and West halves (Supplementary Figure 7) leads to average E increases of 0.17 mm/day per each additional 1 mm/day of E_0 in the East (aggregate elasticity of 0.34) versus 0.05 mm/day in the West (aggregate elasticity of 0.28). East (West) ConUS E increases by 0.35 (0.66) mm/day per 1 mm/day of additional \bar{P}, an aggregate elasticity of 0.48 (0.72). By changing precipitation extremes, E in the East (West) decreases 0.62 (0.34) mm seasonally per 1 mm of precipitation reallocated to wet days from dry days, an aggregate elasticity of -0.30 (-0.14). Actual evaporation increases slightly with increased extremes in the most arid pixels (Supplementary Figures 6 and 10) due to a shift of the soil moisture PDF from “Stage III” evaporation to “Stage II” evaporation, but magnitudes of both fluxes are vanishingly small.

Discussion and Conclusions

This study assesses the responses of evaporation and soil drainage to changes in potential evaporation, mean precipitation, and the distribution of daily precipitation intensities using a water balance framework developing observed fields of surface soil brightness temperatures and precipitation alone. These response sensitivities have been previously calculated using models, but we argue that modeled sensitivities are inherently determined by land surface parameterizations of evapotranspiration and soil moisture pedotransfer functions. This study confronts these sensitivities with data directly—in an “offline” mode with no representation of feedbacks (e.g., canopy conductance) other than that captured in the water cycle observations—and thus serves as a partial derivative of land surface moisture fluxes to climate perturbations, holding feedbacks constant. We claim that this uncoupled (but data-driven) approach serves as a necessary counterbalance to data-blind models (but with fully coupled dynamics), and we
advocate for future assimilation and reanalysis schemes incorporating dynamical land surface and vegetation data streams.

We find that the E/D partitioning response to climate perturbations is generally additive and scalable (Figure 4). This is unexpected, given the nonlinearity of the loss functions and time series responses shown in Figure 1, but may prove quite useful in both parameterized land surface schemes in global climate models and in estimating climate impacts from the output of GCMs with simplified land surface hydrology representations. As an example, locally-estimated climate sensitivities for E_o, P, and P_{X90} to surface temperature changes from a coupled model could be multiplied by the perturbation responses in Figure 2b-d for temperature-driven future scenario estimation of water flux partitioning.

There are, however, many processes that could change this linearity, including land-cover change, changes to seasonal water storage (snowpack), and land-atmosphere feedbacks such as convective triggering and changes in vegetation-controlled surface conductance and water-use efficiency. We hypothesize that the major non-linearities occur around the transition from water-limited to energy-limited states; thus, this simple additivity is unlikely to hold for shifts large enough to transition between moisture regimes (see the Central Plains, Supplementary Figure 8).

Our method for amplifying precipitation extremes is simple, and one of many possible approaches to represent this process. Actually characterizing the local changes to the precipitation distribution as a function of global mean temperature changes is likely empirically intractable, due to the magnitude of internal variability relative to low-frequency signals (Gianotti et al., 2014). Similarly, we do not investigate changes in the timing of precipitation (Pal et al., 2013) or storm/interstorm durations, which might expose more of the nonlinearity of the land surface flux partitioning. The results of these investigations would only be as robust as our estimation of the climate signal itself, which remains highly uncertain at this time.

While the superposability and scaling of impacts of climate perturbations is similar to the assumptions of aridity-index based hydroclimatology frameworks (Budyko), we find differences between these frameworks and our observation-driven scheme. These differences include large biases in changes to evaporation and drainage when precipitation extremes change (Figure 4). This suggests that mean-state conditions alone (E_o, seasonal P totals) are not sufficient to
characterize changes to land-surface wetting of the atmosphere and surface- and ground-water resource supplies under changing climate scenarios.

Two major consequences of using our more process-based representation over a steady-state aridity-index formulation are 1) that transient changes in water storage (not part of the Budyko scheme) are significant for global change scenarios which display trends/shifts in surface moisture regimes, and 2) that assumptions embedded in aridity-index frameworks where E/D partitioning responds identically to a 10% increase in seasonal precipitation as to a 10% decrease in \(E_o \) neglect the significant nuance of water balance dynamics. We argue that both of these effects are important, and that the dynamic system state of (2) — summarized here as the probability distribution of soil moisture — plays a role in the long-term average E and D partitioning. This is shown clearly in the \(P_{X^{90}} \) experiment in Figures 2d, 4c, and 5c.f.

GCM studies suggest trends towards drier warm season surface soils, but perhaps wetter subsurface soils (Berg et al., 2017), which align with our global mean-state perturbation experiments (Figure 2e and Supplementary Figure 2). We argue that this is the expected consequence of an increase in both water supply and water demand, and that these trends are likely to only be amplified by increases in precipitation extremes (heavy days and dry spells).

The results of this study suggest that caution is necessary when viewing land surface conditions through a simple aridity lens when asking questions about global change. The downstream responses to water supply and demand will depend on the dynamics and distribution of land surface state variables (e.g., soil moisture). Changes in these state variables will more directly determine how the continental water cycle responds to global climate change.

References

Akbar, R., Short Gianotti, D. J., McColl, K. A., Haghighi, E., Salvucci, G. D., & Entekhabi, D. (2018). Estimation of landscape soil water losses from satellite observations of soil moisture. *Journal of Hydrometeorology, 19*(5), 871–889. https://doi.org/10.1175/JHM-D-17-0200.1

Akbar, R., Short Gianotti, D. J., Salvucci, G. D., & Entekhabi, D. (2019). Mapped Hydroclimatology of Evapotranspiration and Drainage Runoff Using SMAP Brightness
Temperature Observations and Precipitation Information. Water Resources Research, 55, 3391–3413.

Anderson, B. T., Gianotti, D. J., & Salvucci, G. D. (2015). Detectability of historical trends in station-based precipitation characteristics over the continental united states. Journal of Geophysical Research, 120(10), 4842–4859. https://doi.org/10.1002/2014JD022960

Andréassian, V., Coron, L., Lerat, J., & Le Moine, N. (2016). Climate elasticity of streamflow revisited - An elasticity index based on long-term hydrometeorological records. Hydrology and Earth System Sciences, 20(11), 4503–4524. https://doi.org/10.5194/hess-20-4503-2016

Berg, A., & Sheffield, J. (2018). Climate Change and Drought: the Soil Moisture Perspective. Current Climate Change Reports, 4(2), 180–191. https://doi.org/10.1007/s40641-018-0095-0

Berg, A., Findell, K., Lintner, B., Giannini, A., Seneviratne, S. I., van den Hurk, B., et al. (2016). Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nature Climate Change, 6(May). https://doi.org/10.1038/nclimate3029

Berg, A., Sheffield, J., & Milly, P. C. D. (2017). Divergent surface and total soil moisture projections under global warming. Geophysical Research Letters, 44, 236–244. https://doi.org/10.1002/2016GL071921

Berghuijs, W. R., Larsen, J. R., van Emmerik, T. H. M., & Woods, R. A. (2017). A Global Assessment of Runoff Sensitivity to Changes in Precipitation, Potential Evaporation, and Other Factors. Water Resources Research, 53(10), 8475–8486. https://doi.org/10.1002/2017WR021593

Budyko, M. I. (1963). Evaporation under natural conditions. Isreal Program for Scientific Translations.

Byrne, M. P., & O’Gorman, P. A. (2015). The response of precipitation minus evapotranspiration to climate warming: Why the “Wet-get-wetter, dry-get-drier” scaling does not hold over land. Journal of Climate, 28(20), 8078–8092. https://doi.org/10.1175/JCLI-D-15-0369.1
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Higgins, R. W., & Janowiak, J. E. (2008). Assessing objective techniques for gauge-based analyses of global daily precipitation. *Journal of Geophysical Research Atmospheres*, 113(4), 1–13. https://doi.org/10.1029/2007JD009132

Chiew, F. H. S. (2006). Estimation of rainfall elasticity of streamflow in Australia. *Hydrological Sciences Journal*, 51(4), 613–625. https://doi.org/10.1623/hysj.51.4.613

Choudhury, B. J. (1999). Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. *Journal of Hydrology*, 216(1–2), 99–110. https://doi.org/10.1016/S0022-1694(98)00293-5

Clapp, R. B., & Hornberger, G. M. (1978). Empirical Equations for Some Soil Hydraulic Properties. *Water Resources Research*, 14(4), 601–604.

Dai, A., Zhao, T., & Chen, J. (2018). Climate Change and Drought: a Precipitation and Evaporation Perspective. *Current Climate Change Reports*, 4(3), 301–312. https://doi.org/10.1007/s40641-018-0101-6

Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., et al. (2010). The Soil Moisture Active Passive (SMAP) Mission. *Proceedings of the IEEE*, 98(5), 704–716. https://doi.org/10.1109/JPROC.2010.2043918

Fläschner, D., Mauritsen, T., & Stevens, B. (2016). Understanding the intermodel spread in global-mean hydrological sensitivity. *Journal of Climate*, 29(2), 801–817. https://doi.org/10.1175/JCLI-D-15-0351.1

Fu, G., Charles, S. P., & Chiew, F. H. S. (2007). A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. *Water Resources Research*, 43(11), W11419. https://doi.org/10.1029/2007WR005890

Fu, Q., & Feng, S. (2014). Responses of terrestrial aridity to global warming. *Journal of Geophysical Research: Atmospheres*, (119), 7863–7875. https://doi.org/10.1002/2014JD021608
Gianotti, D. J. S., Anderson, B. T., & Salvucci, G. D. (2014). The potential predictability of precipitation occurrence, intensity, and seasonal totals over the continental United States. *Journal of Climate, 27*(18), 6904–6918. https://doi.org/10.1175/JCLI-D-13-00695.1

Greve, P., & Seneviratne, S. I. (2015). Assessment of future changes in water availability and aridity. *Geophysical Research Letters, 42*(13), 5493–5499. https://doi.org/10.1002/2015GL064127

Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., & Seneviratne, S. I. (2014). Global assessment of trends in wetting and drying over land. *Nature Geoscience, 7*(10), 716–721. https://doi.org/10.1038/NGEO2247

Greve, P., Gudmundsson, L., & Seneviratne, S. I. (2018). Regional scaling of annual mean precipitation and water availability with global temperature change. *Earth System Dynamics, 9*(1), 227–240. https://doi.org/10.5194/esd-9-227-2018

Gu, X., Zhang, Q., Li, J., Singh, V. P., Liu, J., Sun, P., & Cheng, C. (2019). Attribution of Global Soil Moisture Drying to Human Activities: A Quantitative Viewpoint. *Geophysical Research Letters, 1–10*. https://doi.org/10.1029/2018GL080768

Haghighi, E., Short Gianotti, D. J., Akbar, R., Salvucci, G. D., & Entekhabi, D. (2018). Soil and Atmospheric Controls on the Land Surface Energy Balance: A Generalized Framework for Distinguishing Moisture- and Energy-Limited Evaporation Regimes. *Water Resources Research, 1–21*. https://doi.org/10.1002/2017WR021729

Hartmann, D. L., Tank, A. M. G. K., M. Rusticucci, L. V., Alexander, S. B., Charabi, Y., Dentener, F. J., et al. (2013). *Observations: Atmosphere and Surface. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (Vol. 9781107057). Cambridge, UK and New York, NY, USA: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.008

Hawkins, E., & Sutton, R. (2011). The potential to narrow uncertainty in projections of regional precipitation change. *Climate Dynamics, 37*(1), 407–418. https://doi.org/10.1007/s00382-
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., et al. (2013). Global flood risk under climate change. *Nature Climate Change, 3*(9), 816–821. https://doi.org/10.1038/nclimate1911

Kharin, V. V., Zwiers, F. W., Zhang, X., & Wehner, M. (2013). Changes in temperature and precipitation extremes in the CMIP5 ensemble. *Climatic Change, 119*(2), 345–357. https://doi.org/10.1007/s10584-013-0705-8

Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K., & Puma, M. J. (2009). On the nature of soil moisture in land surface models. *Journal of Climate, 22*(16), 4322–4335. https://doi.org/10.1175/2009JCLI2832.1

Koster, R. D., Crow, W. T., Reichle, R. H., & Mahanama, S. P. (2018). Estimating Basin-Scale Water Budgets With SMAP Soil Moisture Data. *Water Resources Research, 54*(7), 4228–4244. https://doi.org/10.1029/2018WR022669

Lambert, F. H., & Webb, M. J. (2008). Dependency of global mean precipitation on surface temperature. *Geophysical Research Letters, 35*(16), 1–5. https://doi.org/10.1029/2008GL034838

McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., Van Niel, T. G., Thomas, A., et al. (2012). Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. *Journal of Hydrology, 416*, 182–205. https://doi.org/10.1016/j.jhydrol.2011.10.024

Milly, P. C. D., & Dunne, K. A. (2016). Potential evapotranspiration and continental drying. *Nature Climate Change, 6*, 946-951. https://doi.org/10.1038/NCLIMATE3046

Muller, C. J., O’Gorman, P. A., & Back, L. E. (2011). Intensification of precipitation extremes with warming in a cloud-resolving model. *Journal of Climate, 24*(11), 2784–2800. https://doi.org/10.1175/2011JCLI3876.1

Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., et al. (2016).
The increasing importance of atmospheric demand for ecosystem water and carbon fluxes.

Nature Climate Change, 1(September), 1–5. https://doi.org/10.1038/nclimate3114

O’Gorman, P. A., & Schneider, T. (2008). The hydrological cycle over a wide range of climates simulated with an idealized GCM. *Journal of Climate, 21*(15), 3815–3832. https://doi.org/10.1175/2007JCLI2065.1

O’Gorman, P. A., & Schneider, T. (2009). The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. *Proceedings of the National Academy of Sciences of the United States of America, 106*(35), 14773–14777. https://doi.org/10.1073/pnas.0907610106

O’Gorman, P. A., Allan, R. P., Byrne, M. P., & Previdi, M. (2012). Energetic Constraints on Precipitation Under Climate Change. *Surveys in Geophysics, 33*(3–4), 585–608. https://doi.org/10.1007/s10712-011-9159-6

O’Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., & Bindlish, R. (2016). SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 4. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/OBBHQ5W22HME

Oldekop, E. (1911). *Evaporation from the surface of river basins (Испарение съ поверхности речныхъ бассейновъ).* University of Tartu-Jurjew-Dorpat, Tartu, Estonia.

Pal, I., Anderson, B. T., Salvucci, G. D., & Gianotti, D. J. (2013). Shifting seasonality and increasing frequency of precipitation in wet and dry seasons across the U.S. *Geophysical Research Letters, 40*(15), 4030–4035. https://doi.org/10.1002/grl.50760

Pall, P., Allen, M. R., & Stone, D. A. (2007). Testing the Clausius-Clapeyron constraint on changes in extreme precipitation under CO2 warming. *Climate Dynamics, 28*(4), 351–363. https://doi.org/10.1007/s00382-006-0180-2

Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., & Sanderson, B. M. (2017). Precipitation variability increases in a warmer climate. *Scientific Reports, 7*(1), 1–9. https://doi.org/10.1038/s41598-017-17966-y
Prein, A. F., & Pendergrass, A. G. (2019). Can we Constrain Uncertainty in Hydrologic Cycle Projections? *Geophysical Research Letters*, (2018), 2018GL081529. https://doi.org/10.1029/2018GL081529

Rigden, A. J., Salvucci, G. D., Entekhabi, D., & Short Gianotti, D. J. (2018). Partitioning Evapotranspiration Over the Continental United States Using Weather Station Data. *Geophysical Research Letters*, 45(18), 9605–9613. https://doi.org/10.1029/2018GL079121

Risbey, J. S., & Entekhabi, D. (1996). Observed Sacramento Basin streamflow response to precipitation and temperature changes and its relevance to climate impact studies. *Journal of Hydrology*, 184(3–4), 209–223. https://doi.org/10.1016/0022-1694(95)02984-2

Roderick, M. L., & Farquhar, G. D. (2011). A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. *Water Resources Research*, 47(6), 1–11. https://doi.org/10.1029/2010WR009826

Roderick, M. L., Sun, F., Lim, W. H., & Farquhar, G. D. (2014). A general framework for understanding the response of the water cycle to global warming over land and ocean. *Hydrology and Earth System Sciences*, 18(5), 1575–1589. https://doi.org/10.5194/hess-18-1575-2014

Romps, D. M. (2011). Response of Tropical Precipitation to Global Warming. *Journal of the Atmospheric Sciences*, 68(1), 123–138. https://doi.org/10.1175/2010jas3542.1

Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Andrews, T., Faluvegi, G., et al. (2016). Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. *Geophysical Research Letters*, 43(6), 2782–2791. https://doi.org/10.1002/2016GL068064

Sankarasubramanian, A., Vogel, R. M., & Limbrunner, J. F. (2001). Climate elasticity of streamflow in the United States. *Water Resources Research*, 37(6), 1771–1781. https://doi.org/10.1029/2000WR900330

Scheff, J., & Frierson, D. M. W. (2014). Scaling potential evapotranspiration with greenhouse warming. *Journal of Climate*, 27(4), 1539–1558. https://doi.org/10.1175/JCLI-D-13-
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., et al. (2014). Multimodel assessment of water scarcity under climate change. *Proceedings of the National Academy of Sciences, 111*(9), 3245–3250. https://doi.org/10.1073/pnas.1222460110

Short Gianotti, D. J., Rigden, A. J., Salvucci, G. D., & Entekhabi, D. (2019). Satellite and Station Observations Demonstrate Water Availability’s Effect on Continental-Scale Evaporative and Photosynthetic Land Surface Dynamics. *Water Resources Research, 55*(1), 540–554. https://doi.org/10.1029/2018WR023726

Sohn, B. J., & Park, S. C. (2010). Strengthened tropical circulations in past three decades inferred from water vapor transport. *Journal of Geophysical Research Atmospheres, 115*(15), 1–9. https://doi.org/10.1029/2009JD013713

Swann, A. L. S. (2018). Plants and Drought in a Changing Climate. *Current Climate Change Reports, 4*(2), 192–201. https://doi.org/10.1007/s40641-018-0097-y

Thackeray, C. W., DeAngelis, A. M., Hall, A., Swain, D. L., & Qu, X. (2018). On the Connection Between Global Hydrologic Sensitivity and Regional Wet Extremes. *Geophysical Research Letters, 45*(20), 11,343–11,351. https://doi.org/10.1029/2018GL079698

Turc, L. (1954). The water balance of soils: relationship between precipitations, evaporation and flow (Le bilan d’eau des sols: relation entre les précipitations, l’évaporation et l’écoulement). *Annales Agronomiques, Série A, 5*, 491–595.

Vecchi, G. A., Soden, B. J., Wittenberg, A. T., Held, I. M., Leetmaa, A., & Harrison, M. J. (2006). Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. *Nature, 441*(1), 73–76. https://doi.org/10.1038/nature04744

Yang, H., & Yang, D. (2011). Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff. *Water Resources Research, 47*(7), 1–12. https://doi.org/10.1029/2010WR009287
Acknowledgements

Soil moisture (SMAP) data are available from the National Snow and Ice Data Center portal (http://www.nsidc.org). Precipitation data are available from the NCEP ftp portal (ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/) The authors acknowledge no conflicts of interest.
Figure 1: Example evaporation and drainage loss losses for observations and experimental perturbations for a location in Southern Iowa, summer 2015. a) Retrieved evaporation (E) and drainage (D) loss functions; observed precipitation (P); and time series of soil moisture (θ), E, and D based on observations. Grey shaded regions show the marginal probability density (PDF) of soil moisture f(θ). Blue bars show daily precipitation with accompanying PDF for wet days. Black line, orange line, and green markers show θ, E, and D time series (E and D shown on right axis). Orange (green) bar shows E’s (D’s) fractional contribution to seasonal outfluxes from the land surface. b) Same as (a), except for the increased potential evaporation (Eo) experiment using the orange dashed line for E(θ). Precipitation unchanged, but f(θ) moves towards drier conditions where E losses dominate D. c) Same as (a) except for with increased daily precipitation, shown as red bars above observed (blue) precipitation bars. f(θ) (in red) shifts to wetter conditions, increasing D. d) Same as (a) except with increased precipitation extremes (mean and maximum daily P unchanged). Red P bars show added precipitation on wet days, taken from an equal amount of precipitation removed on drier days. f(θ) (in red) increases the wet tail at the expense of the dry tail, leading to increased D and reduced E.
Figure 2: Evaporation, drainage, and hydrologic sensitivities to climate perturbations. a) Mean evaporation (E) and drainage (D) for warm season 2015–2017 from the estimated loss functions and climate perturbations. b) First column shows changes ΔE and ΔD relative to (a) for
a 3% increase in E_0. Columns 2–4 show impacts for E_0 increases of 6%, 9%, and 12%.

Evaporation increases across the ConUS and drainage decreases, with the most substantial changes in the energy-limited East. c) Same as (b) but for perturbations to \bar{P}. d) Same as (b) but for increases in extreme precipitation (percentages show heaviest decile increase — no change in \bar{P}). e) Changes in mean E and D when simultaneously combining the impacts of increased E_0, \bar{P}, and precipitation extremes.
Figure 3: Superposability and scaling of individual perturbations. a) The percentage error in evaporation when adding the individual E_o, mean P, and extreme P perturbations (the sum of the rightmost column of Figure 2b-d) in place of the fully-coupled system (rightmost column of Figure 2e). b) The percentage error in evaporation when assuming linear temperature-equivalent scaling of perturbations (4 times the leftmost column of Figure 2e in place of the rightmost column of Figure 2e). Both the superposition errors and the scaling errors are small (~1-2%), suggesting that the effects shown in Figure 2b-d can be combined and scaled directly based on local estimated climate sensitivities of E_o, \bar{P}, and P extremes. See also Supplementary Figures 8-9.
Figure 4: Comparison with Budyko hydroclimatological framework. a) The classical Budyko curve fit to a single location. Each point is a month of mean evaporation \bar{E} versus mean precipitation \bar{P}, both normalized by potential evaporation E_o. Evaporation time series and estimated potential evaporation are from the integration of the water balance (1)-(3). Lines show the shift in \bar{E}/E_o that follows a change in \bar{P}/E_o by changing E_o (red) or \bar{P} (blue). Equal E_o and \bar{P} changes cancel each other. b) The estimated Budyko n parameter for each location: $\bar{E} = \bar{P} \cdot E_o \cdot (\bar{P}^{n} + E_o^{n})^{-1/n}$. c) Comparison of changes in evaporation ΔE versus the Budyko method. Plots show comparison for increased E_o, increased \bar{P}, increased precipitation extremes (P_{X90}), and all simultaneous effects combined. Colors show mean soil moisture calculated as part of the water balance. Bias in increased \bar{P} comparison due primarily to changes in soil water storage. Bias in All Effects comparison due primarily to impact of precipitation extremes.
Figure 1.
Figure 2.
Figure 3.
Contents of this file

Changing precipitation extremes ($P_{X_{90}}$)
Figures S1 to S9

Introduction

This document provides supplementary information for the GRL article, “Hydrologic Sensitivities of Terrestrial Evaporation and Moisture Drainage in a Warmer Climate,” specifically Figures S1 to S8. Figures were created following the methods outlined in the main text (following the methods of Akbar et al. (2019) for flux estimation and soil moisture states). All other information is contained within the main text.

Changing precipitation extremes ($P_{X_{90}}$)

For our precipitation extremes experiment, precipitation is re-allocated from the dry tail of the precipitation distribution to the wet tail. This is performed by first calculating the total precipitation in the upper decile of the precipitation intensity distribution (ignoring days with no rainfall), referred to as $P_{X_{90}}$. This value is multiplied by a scaling factor $1 + m \cdot w$, where m...
using \(w = 0.025 \) and \(m = \{1,2,3,4\} \) by increasing the intensity of the 2nd wettest day until it is equal to the wettest day, then the 3rd wettest until it equals the wettest, etc., until \(P_{X90} \) has increased by the desired amount \(m \cdot w \cdot P_{X90} \). An equal amount is removed from the dry tail of the distribution by setting the driest day with some rain to have no rainfall, then the 2nd driest, etc., until the \(m \cdot w \cdot P_{X90} \) precipitation has been reallocated from the dry tail to the wet tail. This leaves the mean precipitation and event timing unchanged, but increases the number of dry days. See Supplementary Figure 1.
Supplementary Figure 1: Changes to precipitation extremes. To increase precipitation extremes without changing mean or maximum observed precipitation, we move precipitation from low precipitation days to high precipitation days. a) A simulated time series of precipitation, with the upper decile (10% wettest) days shown in red. Of the 50 days with measured precipitation, the five heaviest (red) days contribute a sizeable portion of seasonal total rainfall (shown in the left bar chart of (c)). b) Extremes (P_{X90}) increased by 7.5%. To increase the precipitation in the upper decile of days by 7.5% (as seen in the right bar of (c)), precipitation equal to 7.5% of the red area in (a) is taken from the driest days, shown in white. This precipitation is added to the 2nd wettest day (added precipitation shown as black bar) until precipitation on that day equals that of the heaviest observed day, P_{max}. Precipitation from the dry days is then added to the 3rd wettest day, and the 4th, until all of the additional 7.5% of the upper decile precipitation has been re-allocated. The seasonal total is unaffected, as is the maximum precipitation. Some of the driest days now have zero precipitation (white bars), and three of the wettest days are somewhat wetter. All other days’ precipitation is unchanged.
Supplementary Figure 2: Changes in mean soil moisture. Mean surface soil moisture from data-assimilated brightness temperatures from SMAP for May-September 2015-2017 in mm3/mm3 (top panel). The second row shows changes in surface soil moisture (in mm3/mm3) relative to the top panel due to just E_o changes (as in Main Text Figure 2b) for 1-4°C changes in surface air temperature (3-12% changes in local PET). The surface dries in all locations, as expected. The third row shows changes in surface soil moisture (in mm3/mm3) relative to the top panel due to just changes in mean precipitation (as in Main Text Figure 2c) for 1-4°C changes in surface air temperature (2.5-10% changes in local mean precipitation); the surface wets in all locations. The fourth row shows changes in surface soil moisture (in mm3/mm3) relative to the top panel due to just changes in extreme precipitation (as in Main Text Figure 2d) for 1-4°C changes in surface air temperature (2.5-10% changes in local mean precipitation); the surface dries in all locations. The fifth row shows changes in surface soil moisture (in mm3/mm3) relative to the top panel due synchronous changes in all of PET, mean precipitation, and extreme precipitation (as in Main Text Figure 2e) for 1-4°C changes in surface air temperature; the surface dries in all locations.
Supplementary Figure 3: Sensitivity of results to dPET/dT. Changes in evaporation (E) and drainage (D) from the present day observations (Main Text Figure 2a) for a +3°C scenario (compare to 3rd column, Main Text Figure 2b-d), using differing values for the sensitivity of PET to temperature, from 1%/°C to 5%/°C. Sensitivities for mean and extreme precipitation stay the same as in Main Text Figure 2.
Supplementary Figure 4: Sensitivity of results to dP/dT. Changes in evaporation (E) and drainage (D) from the present day observations (Main Text Figure 2a) for a +3°C scenario (compare to 3rd column, Main Text Figure 2b-d), using differing values for the sensitivity of mean precipitation to temperature, from 1.5%/°C to 3.5%/°C. Sensitivities for PET and extreme precipitation stay the same as in Main Text Figure 2.
Supplementary Figure 5: Sensitivity of results to dX90/dT. Changes in evaporation (E) and drainage (D) from the present day observations (Main Text Figure 2a) for a +3°C scenario (compare to 3rd column, Main Text Figure 2b-d), using differing values for the sensitivity of extreme precipitation to temperature, from 1.5%/°C to 3.5%/°C. Sensitivities for PET and extreme precipitation stay the same as in Main Text Figure 2.
Supplementary Figure 6: Elasticities. a-c) Elasticities of evaporation with E_o, \bar{P}, and P_{X90} respectively. A 1% increase in E_o corresponds to up to a 4% increase in E in the darkest blue areas. A 1% increase in mean P contributes up to a roughly equal percent increase in E. A 1% increase heavy (top decile) precipitation corresponds to roughly a 0.5% decrease in E across the Central Plains. Insets show probability density of mapped values. d-f) Elasticities of drainage, as in c-e. Evaporation is more sensitive to relative changes in \bar{P} than E_o in 74% of pixels; drainage is more sensitive to relative changes in \bar{P} than E_o in 99% of pixels (in an absolute value sense).
Supplementary Figure 7: Probability densities for East/West ConUS. Top row, left: Probability density functions (PDFs) of the partial derivative of evaporation (E) with respect to changes in potential evaporation ($\partial E / \partial E_o$). Blue shows the distribution for locations west of 98°W, red shows the distribution for locations east of 98°W. The more energy-limited Eastern ConUS shows larger changes in E for a given change in E_o, with an average of 0.17 mm/day increase in E for every 1 mm/day increase in E_o (roughly 3.5 times larger effect than in the Western ConUS). Top row, middle: PDFs of the partial derivative of evaporation with respect to changes in mean precipitation ($\partial E / \partial \bar{P}$). Increasing moisture supply (as opposed to E_o demand) shows greater evaporative increases in the more arid West; values fall strictly between 0 (no change; fully energy limited or very large hydraulic conductivity) and 1 (all additional water goes to evaporation; fully water limited). Mean Top row, right: PDFs of the partial derivative of seasonal total evaporation with respect to changes in heavy precipitation ($\partial E / \partial P_{X90}$). Heavy precipitation in the upper decile of the precipitation distribution is increased by ΔP_{X90} mm (max and mean precipitation are unchanged) at the expense of an equivalent precipitation from the light tail, so that $\partial E / \partial P_{X90}$ is the change in E (mm over the season) for every 1 mm of precipitation added to the upper decile of the P distribution. Increasing extremes reduces evaporation more in the East (by further increasing drainage). Bottom row: Same as top row, but for drainage (D) instead of E.
Supplementary Figure 8: Linear additivity of the separate PET, mean P, and P extremes effects. Each map shows the difference in E or D when subtracting the individual perturbation effects (Main Text Figure 2b-d) from the combined model including all processes (Figure 2e).
Supplementary Figure 9: Linearity of temperature scaling. Each map shows the difference when subtracting the scaled changes in E or D using ΔT multiplied by the +1°C ΔE or ΔD map from the model representing the scaled sensitivity perturbation directly (i.e., subtracting 4 times column 1 from column 4 in Main Text Figure 2e).
Supplementary Figure 10: $\partial E / \partial P_{X90}$. Blue regions in the arid West show areas where increased extremes increase evaporation, and red regions see decreased evaporation. Values in mm of seasonal evaporation per mm of precipitation moved from the driest days to the upper decile. Regions with increased evaporation are where changes in extremes push soil moisture into somewhat dry conditions (“Stage II” evaporation) where $E(\theta) \gg D(\theta)$ from very dry conditions (“Stage III” evaporation) where $E(\theta)$ and $D(\theta)$ are both very small, but of a more similar relative magnitude. Actual changes in E and D (in mm/day) are miniscule in these regions, as seen in main text Figure 2d.