On quasi Steinberg characters of complex reflection groups

Ashish Mishra
UFPA

(Joint work with Digjoy Paul and Pooja Singla)

Representation Theory and Applications
ICTP-SAIFR
28th April 2022
Outline

- Definition of quasi p-Steinberg characters
- Quasi p-Steinberg characters of symmetric groups
- Murnaghan–Nakayama rule for Symmetric groups
- Murnaghan–Nakayama rule for the groups $G(r, 1, n)$
- Complex reflection groups and their representation theory
- Main results
- Sketch of the proof
Notation: p is a prime; G denotes a finite group.

Definition (p-regular element of a group G)

An element whose order is not divisible by p.

Let p divide the order of G.

Definition (p-Steinberg character)

An irreducible character χ of G such that $\chi(x) = \pm |C_G(x)|_p$, for every p-regular element x in G, where $C_G(x)$ denotes the centralizer of x in G.

Definition (quasi p-Steinberg character)

An irreducible character χ of G is called a quasi p-Steinberg character if $\chi(g) \neq 0$ for all p-regular elements g in G.
Example

- All irreducible characters of a p-group are quasi p-Steinberg characters.
- Linear characters of a finite group are quasi p-Steinberg characters.

So, we concentrate on nonlinear characters when talking about quasi p-Steinberg characters.
Theorem (Paul and Singla, 2021)

For $n \geq 3$, let λ be a partition of n such that $\lambda \neq (n), (1^n)$ and p be a prime. All triplets (n, λ, p) such that χ_{λ} is a quasi p-Steinberg character of S_n are given in Table below.

n	λ	p
3	$(2, 1)$	2
4	$(2, 2)$	2
4	$(3, 1), (2, 1, 1)$	3
5	$(4, 1), (2, 1, 1, 1)$	2
5	$(3, 2), (2, 2, 1)$	5
6	$(3, 2, 1)$	2
6	$(4, 2), (2, 2, 1, 1)$	3
8	$(5, 2, 1), (3, 2, 1, 1, 1)$	2
Murnaghan–Nakayama rule for \(S_n \)

Definition (Skew hook/Rim hook/Ribbon)

A skew diagram that is edgewise connected and contains no \(2 \times 2 \) subset of boxes.

The height of a ribbon is equal to one less than the number of rows in the ribbon.

Example

![Example Diagram]

Its height is 3.
Definition

A ribbon tableau is a generalized tableau T with positive integral entries such that the entries in the rows and columns of T weakly increase, and all occurrences of a given entry lie in a single ribbon. The height of ribbon tableau T, denoted by $ht(T)$, is the sum of heights of all of its ribbons.

Theorem (Murnaghan–Nakayama rule)

For a partition λ of n and $\sigma \in S_n$, the character χ^λ is given by

$$
\chi^\lambda(\sigma) = \sum_{T} (-1)^{ht(T)},
$$

where the sum is over all ribbon tableaux T of shape λ and content given by the lengths of the cycles in σ.
Example

Let $\lambda = (4, 2)$ and $\sigma = (1, 2, 3)(4, 5)$. Then, the ribbon tableaux are

\[
\begin{array}{cccc}
1 & 1 & 1 & 3 \\
2 & 2 & & \\
\end{array}, \quad
\begin{array}{cccc}
1 & 1 & 2 & 2 \\
1 & & 3 & \end{array}
\]

So, $\chi^\lambda(\sigma) = 0$.
Representation theory of $G(r, 1, n)$

$$G(r, 1, n) : = \mathbb{Z}_r^n \rtimes S_n$$
$$= \{ (z_1, z_2, \ldots, z_n, \sigma) \mid z_i \in \mathbb{Z}_r \text{ for all } 1 \leq i \leq n, \sigma \in S_n \}.$$

Various ways to study representation theory of $G(r, 1, n)$

- Theory of symmetric functions (Specht’s Thesis/Macdonald’s book on “Symmetric functions and Hall polynomials”)
- Wigner–Mackey method of little groups
- The Okounkov–Vershik approach [Mishra and Srinivasan, 2016]

Theorem

The irreducible representations of $G(r, 1, n)$ are parametrized by r-partite partitions of n.

Ashish Mishra (UFPA)
Murnaghan–Nakayama rule for $G(r,1,n)$

It was first proved by Stembridge in 1989. The version we state here is by Adin, Postnikov and Roichman in 2010.

Sequence of ribbons

A sequence of ribbons $b = (b_1, b_2, \ldots, b_t)$ corresponding to an r-partite Young diagram $\lambda = (\lambda_0, \ldots, \lambda_{r-1})$ is obtained from a sequence of r-partite Young diagrams

$$\emptyset = \lambda^{(0)} \subseteq \ldots \subseteq \lambda^{(t)} = \lambda$$

by defining $b_i := \lambda^{(i)} \setminus \lambda^{(i-1)}$ for $1 \leq i \leq t$ such that each b_i has $r - 1$ empty components and the nonempty component is a ribbon.
An \emph{\(r\)-partite ribbon tableau} \(T\) of shape \(\lambda\) is obtained by filling the boxes in the nonempty component of the ribbon \(b_i\) with entry \(i\) for each \(1 \leq i \leq t\).

\begin{itemize}
 \item \textbf{\(i\)-th index, \(i\)-th length and \(i\)-th height of \(T\)}
 \begin{align*}
 f_T(i) &:= \text{index in } \lambda^{(i)} \text{ of the nonempty component in the } r\text{-tuple } b_i; \\
 l_T(i) &:= \text{number of boxes in the nonempty component in } b_i; \\
 ht_T(i) &:= \text{one less than the number of rows in the nonempty component in } b_i.
 \end{align*}
\end{itemize}
Murnaghan–Nakayama rule for $G(r, 1, n)$

\[
\chi^\lambda(\pi) = \sum_{T \in RT_c(\lambda)} \prod_{i=1}^{t} (-1)^{ht_T(i)} \omega^{f_T(i) \cdot z(c_i)}
\]

where

\[
\pi = (z_1, z_2, \ldots, z_n, \sigma),
\]

cycle decomposition of σ is given by $c = (c_1, c_2, \ldots, c_t)$,

for $1 \leq i \leq t$, $l(c_i) = \text{length of the cycle } c_i$, $z(c_i) = \text{color of the cycle } c_i$,

ω is a primitive r-th root of unity,

$RT_c(\lambda)$ is the set of r-partite ribbon tableaux T of shape λ such that $l_T(i) = l(c_i)$ for all $1 \leq i \leq t$.
Complex reflection groups $G(r, q, n)$

Definition

For a positive integer q which divides r, we define a subgroup $G(r, q, n)$ of $G(r, 1, n)$ as follows:

$$G(r, q, n) := \{(z_1, z_2, \ldots, z_n, \sigma) \in G(r, 1, n) \mid \sum_{i=1}^{n} z_i \equiv 0 \pmod{q} \}.$$

By Shephard–Todd classification, the family $G(r, q, n)$ is the only infinite family of finite irreducible complex reflection groups.
Special subfamilies in the family $G(r, q, n)$

- Cyclic group of order r, $\mathbb{Z}/r\mathbb{Z} = G(r, 1, 1)$;
- Dihedral group of order $2r$, $D_{2r} = G(r, r, 2)$;
- Symmetric group $S_n = G(1, 1, n)$;
- Weyl group of type B_n is $G(2, 1, n)$;
- Weyl group of type D_n is $G(2, 2, n)$.

Notation: $m = \frac{r}{q}$

Representation theory of $G(r, q, n)$

The irreducible $G(r, q, n)$-modules are parametrized by the ordered pairs $(\tilde{\lambda}, \delta)$, where $\tilde{\lambda}$ is an (m, q)-necklace with total n boxes and $\delta \in C_{\lambda}$, the stabilizer subgroup for the necklace $\tilde{\lambda}$.
Main Results
Theorem (M., Paul and Singla)

Given a partition λ of n, define $\hat{\lambda}^j = (\lambda_0, \lambda_1, \ldots, \lambda_j, \ldots, \lambda_{r-1})$, where $\lambda_j = \lambda$ for some $0 \leq j \leq r - 1$, and $\lambda_k = \emptyset$ for $k \neq j$. Then, $\chi^{\hat{\lambda}^j}$ is a quasi p-Steinberg character of $G(r, 1, n)$ if and only if χ^{λ} is a quasi p-Steinberg character of S_n.

Proof of the easier part

Assuming $\chi^{\hat{\lambda}^j}$ to be a quasi p-Steinberg character of $G(r, 1, n)$, it follows that χ^{λ} is a quasi p-Steinberg character of S_n by the following identity:

$$\chi^{\lambda}(\sigma) = \chi^{\hat{\lambda}^j}((0, \ldots, 0, \sigma)).$$
Theorem (M., Paul and Singla)

For an r-partite partition $\lambda = (\lambda_0, \lambda_1, \ldots, \lambda_{r-1})$ of n, the irreducible character χ^λ is a quasi p-Steinberg character of $G(r, 1, n)$ in exactly the following cases:

General case

(i) $\lambda_j \vdash n$ for some j and $\lambda_k = \emptyset$ for all $j \neq i$, and

(ii) χ^λ_j is a quasi p-Steinberg character of S_n.

Additional cases for $n < 5$:

(a) For $n = 2$, the character χ^λ is a quasi 2-Steinberg character when $\lambda_j = (1)$ for some j, $\lambda_k = (1)$ for some $k \neq j$, and $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$.

(b) For $n = 3$, the character χ^λ is a quasi 3-Steinberg character when $\lambda_j \vdash 2$ for some j, $\lambda_k = (1)$ for some $k \neq j$ and $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$.

(c) For $n = 4$, the character χ^λ is a quasi 2-Steinberg character when $\lambda_j \vdash 3$ for some j, $\lambda_k = (1)$ for $k \neq j$, and $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$.
Sketch of the proof

$p \nmid n$: Consider the element $\alpha = (0, \ldots, 0, (1, 2, \ldots, n))$ whose type is $((n), \emptyset, \ldots, \emptyset)$. Now $\chi^\lambda(\alpha) \neq 0$ implies that $\lambda_j \vdash n$ for some j, $\lambda_k = \emptyset$ for $k \neq j$, and

$$\chi^\lambda(\alpha) = \chi^{\lambda_j}((1, 2, \ldots, n)).$$

Thus, χ^{λ_j} is a quasi p-Steinberg character of S_n.

Why are there additional cases for $n < 5$?

$p \mid n$: $p \nmid n - 1$. One of the subcases is $\lambda_j \vdash n - 1$ for some j, $\lambda_k = (1)$ for some $k \neq j$ and $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$.

When $n \geq 5$, we have the following observations:

- Either $\alpha_2 = (0, \ldots, 0, (1, 2, \ldots, n - 2)(n - 1, n))$ or $\alpha_3 = (0, \ldots, 0, (1, 2, \ldots, n - 3)(n - 2, n - 1, n))$ is p-regular;

- Also, $\chi^\lambda(\alpha_2) = \chi^\lambda(\alpha_3) = 0$.
Notation: \((\chi^\lambda)^*\) denotes an irreducible character of \(G(r, q, n)\) which appears in \(\text{Res}^{G(r,1,n)}_{G(r,q,n)} \chi^\lambda\). Note that \((\chi^\lambda)^*\) may not be unique.

Theorem (M., Paul and Singla)

The irreducible character \((\chi^\lambda)^*\) is a quasi \(p\)-Steinberg character of \(G(r, q, n)\) in exactly the following cases:

General case

\(\chi^\lambda\) is a quasi \(p\)-Steinberg character of \(G(r, 1, n)\). In this case,

\[(\chi^\lambda)^* = \text{Res}^{G(r,1,n)}_{G(r,q,n)} \chi^\lambda.\]
Additional cases:

(a) For $n = 3$, $p = 2$, the three two-dimensional characters $(\chi^\lambda)^*$ in $\text{Res}^{G(r,1,3)}_{G(r,q,3)} \chi^\lambda$ are quasi 2-Steinberg characters. This case arises if and only if r and q are multiples of 3, and $k = j + \frac{r}{3}$, $l = j + \frac{2r}{3}$ for $0 \leq j \leq \frac{r}{3} - 1$.

(b) For $n = 4$, $p = 3$, the two three-dimensional characters $(\chi^\lambda)^*$ in $\text{Res}^{G(r,1,4)}_{G(r,q,4)} \chi^\lambda$ are quasi 3-Steinberg characters. This case arises if and only if r and q are both even, and $k = j + \frac{r}{2}$ for $0 \leq j \leq \frac{r}{2} - 1$.
Sketch of the proof

Case 1: $p
mid n$.

Subcase (1a): $p
mid n - 1$.

The element $\alpha_1 = (0, \ldots, 0, (1, 2, \ldots, n - 1))$ is a p-regular element of $G(r, q, n)$. So, $(\chi^\lambda)^*(\alpha_1) \neq 0$. This implies that $\chi^\lambda(\alpha_1) \neq 0$. Then, λ can be of one of the two forms:

(i) either $\lambda_j \nmid n$ for some j, $\lambda_k = \emptyset$ for all $k \neq j$:

$$(\chi^\lambda)^* = \text{Res}_{G(r,q,n)}^{G(r,1,n)} \chi^\lambda.$$

Also, $\lambda = \hat{\lambda}_j$. $\chi^\hat{\lambda}_j$ is a quasi p-Steinberg character of $G(r, 1, n)$,

or
(ii) $\lambda_j \vdash n - 1$ for some j, $\lambda_k = (1)$ for some $k \neq j$, $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$: the corresponding irreducible character $(\chi^\lambda)^*$ is not a quasi p-Steinberg character of $G(r, q, n)$ because of the following observations when $n \geq 3$:

- $(\chi^\lambda)^* = \text{Res}_{G(r, q, n)}^{G(r, 1, n)} \chi^\lambda$;
- The element $\alpha = (0, \ldots, 0, (1, 2, \ldots, n))$ is p-regular;
- $\chi^\lambda(\alpha) = 0$.

For $n = 2$, $(\chi^\lambda)^*$ is not a quasi p-Steinberg character if χ^λ does not decompose as a representation of $G(r, q, n)$.
Subcase (1b): $p | n − 1$. Then, $p | n − 2$ and

$\alpha_2 = (0, \ldots, 0, (1, 2, \ldots, n − 2))$ is p-regular. Then, $\chi^\lambda(\alpha_2) \neq 0$. Then one of the following is true:

(i) $\lambda_j \vdash n$ for some j, $\lambda_k = \emptyset$ for all $k \neq j$;

(ii) $\lambda_j \vdash n − 1$ for some j, $\lambda_k = (1)$ for some $k \neq j$, $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$;

(iii) $\lambda_j \vdash n − 2$ for some j, $\lambda_k \vdash 2$ for some $k \neq j$, $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$;

(iv) $\lambda_j \vdash n − 2$ for some j, $\lambda_k = (1)$ for some $k \neq j$, $\lambda_l = (1)$ for some $l \notin \{j, k\}$, and $\lambda_u = \emptyset$ for all $u \notin \{j, k, l\}$;
For \(n \geq 5 \), when \(\lambda \) is of one of the forms (ii)-(iv), \((\chi^\lambda)^* \) is not a quasi \(p \)-Steinberg character of \(G(r, q, n) \). And, if it is of form (i), then \(\hat{\chi}^j \) is a quasi \(p \)-Steinberg character of \(G(r, 1, n) \).

Here, \(n \neq 2 \) as \(p \mid n - 1 \).

What happens when \(n = 3, p = 2 \) or \(n = 4, p = 3 \)?

\(n = 3, p = 2 \). The only important form is \(\lambda_j = (1) \) for some \(j \), \(\lambda_k = (1) \) for some \(k \neq j \), \(\lambda_l = (1) \) for some \(l \notin \{j, k\} \), and \(\lambda_u = \emptyset \) for all \(u \notin \{j, k, l\} \).

Also, \(\chi^\lambda \) decomposes into three two-dimensional irreducible characters of \(G(r, q, n) \) if and only if \(r \) and \(q \) are multiples of 3, and \(k = j + \frac{r}{3}, l = j + 2\frac{r}{3} \) for \(0 \leq j \leq \frac{r}{3} - 1 \). And, in such a case, all these three two-dimensional irreducible characters of \(G(r, q, n) \) are quasi 2-Steinberg characters.

Case 2: \(p \mid n \) is studied using similar types of arguments.
Thank you