A comparative assessment of the dynamics of technological development in Ukraine and Russia for 2014–2019 has been carried out in the context of the Russian-Ukrainian war. A method for assessing the economic losses of the conflicting parties due to a slowdown in their technological development, under the influence of militarization, based on the parameter of technological progress of the Solow–Tinbergen production function, built according to the World Bank 1991–2019 data, was proposed and tested. It is substantiated that during the Russian-Ukrainian war, starting from 2015, the technological development of the Russian Federation was curtailed and the economy transitioned to an extensive basis, when the parameter of technological progress acquired a negative value. In the case of Ukraine, a deterioration in technological development was detected due to a decrease in the values of the parameter of technological progress during 2014–2019. It has been proven that the economic recession of the aggressor is the worst in comparison with the victim country, but the relative losses of GDP due to the curtailment of technological development caused by the war are much less. In the case of the Russian Federation as an aggressor country, it is substantiated that the main catalyst for the economic recession was the curtailment of the participation of the real sector of the economy in the international transfer of technologies under the influence of international economic sanctions. In the case of Ukraine, as a country-victim of military intervention, it is justified that the replacement of international partnership in the field of technological cooperation ensured a slowdown in the economic recession. The results of the development of methodological support for the process of assessing GDP losses of the parties to a military conflict are universal for use in international comparisons. The proposed methods are relevant in assessing the technological development of countries that are or were in a state of military confrontation, which significantly expands the basis for future research by the authors.
in the Medium Size Malaysian-industry Level: Primal and Dual Approaches. Asian Social Science, 8 (12). doi: https://doi.org/10.5539/ass.v8n12p20

16. Kohli, U., Natal, J.-M. (2013). The real exchange rate and the structure of aggregate production. Journal of Productivity Analysis, 42 (1), 1–13. doi: https://doi.org/10.1007/s11123-013-0356-9

17. Gamboa, F., Maldonado, W. L. (2014). Feasibility and optimality of the initial capital stock in the Ramsey vintage capital model. Journal of Mathematical Economics, 52, 40–45. doi: https://doi.org/10.1016/j.jmateco.2014.03.005

18. Merz, M. (2016). Scarce natural resources, recycling, innovation and growth. Springer. 118. doi: https://doi.org/10.1007/978-3-658-12055-9

19. Biloshkurska, N., Harnyk, O., Biloshkurskyi, M., Liainoi, M., Kudrina, O., Omelyanenko, V. (2019). Methodological bases of innovation development priorities integrated assessment. International Journal of Civil Engineering and Technology, 10 (01), 1231–1240. Available at: https://www.iaeme.com/MasterAdmin/Journal_uploadfiles/IJCET/VOLUME_10_ISSUE_1/IJCET_10_01_113.pdf

20. Solow, R. M. (1956). A Contribution to the Theory of Economic Growth. The Quarterly Journal of Economics, 70 (1), 63–94. doi: https://doi.org/10.2307/1884513

21. Solow, R. M. (1974). Intergenerational Equity and Exhaustible Resources. The Review of Economic Studies, 41 (5), 29–45. doi: https://doi.org/10.2307/2296370

22. Tinbergen, J. (1942). Zur theorie der langfristigen wirtschaftsentwicklung. Weltwirtschaftliches Archiv, 55, 511–549. Available at: http://www.jstor.org/stable/40430851

23. Tinbergen, J., Haag, D. (1973). Exhaustion and technological development: a macro-dynamic policy model. Zeitschrift für Nationalökonomie, 33, 213–234. Available at: https://core.ac.uk/download/pdf/19186417.pdf

24. Stiglitz, J. (1974). Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths. The Review of Economic Studies, 41 (5), 123–137. doi: https://doi.org/10.2307/2296377

25. Biloshkurska, N. V. (2010). Adaptive behavior models and their role in formation of enterprise economic security. Actual Problems of Economics, 12 (114), 101–105.

26. Omelyanenko, V., Martynenko, V., Slatvinskyi, M., Povorozniuk, I., Biloshkurska, N., Biloshkurskyi, M. (2019). Methodological bases of sectoral innovation priorities within security-based strategies. International Journal of Civil Engineering and Technology, 10 (2), 1217–1226. Available at: http://www.ieaem.com/MasterAdmin/uploadfolder/IJCET_10_02_118/IJCET_10_02_118.pdf

27. Bezliudnyi, O., Chepka, O., Omelyanenko, V., Biloshkurska, N., Biloshkurskyi, M. (2020). ICT architecture for networks activities of higher education institutions. International Journal of Scientific Technology Research, 9 (2), 3563–3570. Available at: http://www.ijstsr.org/final-print/chb2020/Ict-Architecture-For-Networks-Activities-Of-Higher-Education-Institutions.pdf

28. Cobb, C. W., Douglas, P. H. (1928). A theory of production. The American Economic Review, 18 (1), 139–163. Available at: https://www.aeaweb.org/aer/top20/18.1.139-165.pdf

29. Biloshkurska, N., Biloshkurskyi, M., Chyryva, H. (2018). Estimated losses of innovative capacity of the parties as a result of “hybrid” Russian aggression against Ukraine. Technology Audit and Production Reserves, 4 (5 (42)), 42–48. doi: https://doi.org/10.15587/2312-8372.2018.142081

30. World Bank Open Data. Free and open access to global development data. Available at: https://data.worldbank.org/

31. Horbulin, V. (2017). The world hybrid war: Ukrainian forefront. Kharkiv: Folio. 158. Available at: https://miss.gov.ua/sites/default/files/2017-01/GW_engl_site.pdf

DOI: 10.15587/1729-4061.2021.227805

DEVELOPMENT OF A MATRIX OF FOOD INDUSTRY CAPACITY FOR MAKING MANAGEMENT DECISIONS IN THE FORMATION OF SUSTAINABLE DEVELOPMENT OF AGROECOSYSTEMS (p. 16–27)

Kateryna Andriushchenko
Kyiv National Economic University named after Vadyna Hetman, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-6274-5310

Oleksandr Datsii
Interregional Academy of Personnel Management, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-7436-3264

Oksana Lavruk
Kamianets-Podilskyi Ivan Ohienko National University, Kamianets-Podilskyi, Ukraine
ORCID: https://orcid.org/0000-0001-9089-237X

Ruslan Dmytrenko
Vinnytsia National Agrarian University, Vinnytsia, Ukraine
ORCID: https://orcid.org/0000-0003-2461-5184

Igor Kutashhev
Interregional Academy of Personnel Management, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-3428-6225

Igor Vinichenko
Dnipro State Agrarian and Economic University, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-9527-1625

Dmytro Mischenko
University of Customs and Finance, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0003-9278-7290

Yulia Kakhovych
University of Customs and Finance, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-3016-8096

Konstantin Pivovarov
Interregional Academy of Personnel Management, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-2593-9976

Ganna Ortina
Dnipro Motornyi Tavria State Agrotechnological University, Melitopol, Ukraine
ORCID: https://orcid.org/0000-0003-0266-740X

A theoretical and methodological study was carried out to determine the need and features of developing a matrix of food industry capacity for making management decisions in the formation of sustainable development of agroecosystems, which will increase the operational efficiency of companies and food security of the country. The paper uses the following research methods: historical – in the process of studying modern views on understanding the importance of the agricultural sector for the economy; system analysis – when building a model of innovative business improvement. Methods of comparison and analysis of trends – the study of trends in the agricultural sector of Ukraine with the identification of important areas for improving their activities. Methods of financial analysis – for the analytical assessment of financial and economic activities of the investigated enterprises; forecasting methods – to substantiate the expected results of implementing the author’s proposals in management practice. It is proposed to take into account the significant difference in the technology of their processing and production (number of advanced technologies used per 100 thousand people). The paper reveals the dependence of production technologies in agriculture on natural and weather conditions (share of technological innovation costs, %). Criteria for innovation skills in the development of...
agricultural engineering were proposed. The criteria were determined, which were divided into development groups. The tools for constructing a matrix of food industry capacity were substantiated. Note that for each indicator, the optimal value was determined taking into account the sensitivity factor and the rating of enterprises, which determined their place in the matrix. In the course of the study and the matrix of innovative development, the proposed technology was tested at leading domestic enterprises.

Keywords: digitalization, technological transformation, customization, high-tech agriculture, food security.

References

1. Andreoni, A. (2016). Varieties of Industrial Policy: Models, Packages, and Transformation Cycles. Efficiency, Finance, and Varieties of Industrial Policy, 245–305. doi: https://doi.org/10.7312/noma18050-009
2. Babu, S. C., Shishodia, M. (2017). Agribusiness competitiveness: Applying analytics, typology, and measurements to Africa. International Food Policy Research Institute. URL: http://ebrary.ifpri.org/utils/getfile/collection/p1578coll2/id/131232/fileid/131443.pdf
3. Nötivitayta, M. Precision Agriculture and Agritech concept. Sensor network in Agriculture technology network on framerate using smart phone to connect the sensor system against vegetable field background. URL: https://www.shutterstock.com/rz/image-photo/precision-agriculture-agritech-concept-sensor-network-524072125
4. Lavruk, A., Lavruk, V. (2019). Problems of revival and development of animal husbandry in Ukraine. Przasnysz Wschodniosuwieckie, 10 (1), 201–213. doi: https://doi.org/10.31648/jwc.6514
5. Sabluk, P. T., Kropivko, M. F. (2019). Clustering as a mechanism for increasing the competitiveness and social orientation of the agrarian economy. APK Economy, 1, 3–13.
6. Andriushchenko, K., Kovytn, V., Shergina, L., Roukko, O., Yefimenko, L. (2020). Agro-based Clusters: A Tool for Effective Management of Regional Development in the ERA of Globalisation. TEM Journal, 9 (1), 198–204. doi: https://doi.org/10.18421/TEM91-28
7. Yu, M., Calzadilla, J., Lopez, J. L., Villa, A. (2013). Engineering agro-food development: The cluster model in China. Agricultural Sciences, 04 (09), 33–39. doi: https://doi.org/10.4236/as.2013.49066
8. Google's Sergey Brin explains why he paid $330,000 for lab burger (2013). URL: https://www.nbcnews.com/technolog/googles-sergey-brin-explains-why-he-paid-330-000-lab-6c10853442
9. Tillak, P. (Ed.) (2000). Land ownership, land markets and their implications. Earthscan, 04 (09), 33–39. doi: https://doi.org/10.4236/as.2013.49066
10. Google's Sergey Brin explains why he paid $330,000 for lab burger (2013). URL: https://www.nbcnews.com/technolog/googles-sergey-brin-explains-why-he-paid-330-000-lab-6c10853442
11. Tillak, P. (Ed.) (2000). Land ownership, land markets and their influence on the efficiency of agricultural production in Central and Eastern Europe. Kiel: Wiss.-Verl. Bauk. 123–124.
12. Velten, S., Leventon, J., Jager, N., Newig, J. (2015). What Is Sustainable Agriculture? A Systematic Review. Sustainability, 7 (6), 7833–7865. doi: https://doi.org/10.3390/su7067833
13. Environmental indicators for agriculture: Methods and Results (2001). Vol. 3. French: OECD, 400. doi: https://doi.org/10.1787/9789264188556-en
14. ASAE Standards D497.4. Agricultural machinery management data. American Society of Agricultural Engineers.
15. Liezina, A. V., Andriushchenko, K. A., Rozhko, O. D., Datsii, O. I., Mishchenko, L. O., Cherniaieva, O. O. (2020). Resource planning for risk diversification in the formation of a digital twin enterprise. Accounting, 1337–1344. doi: https://doi.org/10.5267/j.ac.2020.8.016
16. Feher, I., Beke, J. (2013). Rationale of sustainable agriculture. Iustum Aquem Salutarie, 9, 73–87.
17. Lebaq, T., Barlet, P. V., Stilhunt, D. (2012). Sustainability indicators for livestock farming. A review. Agronomy for Sustainable Development, 33 (2), 311–327. doi: https://doi.org/10.1007/s13593-012-0121-x
18. Binder, C. R., Feeda, G., Steinberger, J. K. (2010). Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environmental Impact Assessment Review, 30 (2), 71–81. doi: https://doi.org/10.1016/j.eiar.2009.06.002
19. Schader, C., Grenz, J., Meier, M. S., Stolze, M. (2014). Scope and precision of sustainability assessment approaches to food systems. Ecology and Society, 19 (3). doi: https://doi.org/10.5751/es-06866-190342
20. Marta-Costa, A. A., Silva, E. (2012). Approaches for Sustainable Farming Systems Assessment. Methods and Procedures for Building Sustainable Farming Systems, 21–29. doi: https://doi.org/10.1007/978-94-007-5003-6_3
21. De Olde, E. M., Outshoorn, F. W., Sørensen, C. A. G., Bokkers, E. A. M., de Boer, I. J. M. (2016). Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecological Indicators, 66, 391–404. doi: https://doi.org/10.1016/j.ecolind.2016.01.047
22. Finkbeiner, M., Schau, E. M., Lehmann, A., Traverso, M. (2010). Towards Life Cycle Sustainability Assessment. Sustainability, 2 (10), 3309–3322. doi: https://doi.org/10.3390/su2103309
23. Gasparatos, A. (2010). Embedded value systems in sustainability assessment tools and their implications. Journal of Environmental Management, 91 (6), 1613–1622. doi: https://doi.org/10.1016/j.jenvman.2010.03.014
24. Marchand, F., Debruyne, L., Triste, L., Gerrard, C., Padel, S., Lawers, L. (2014). Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecology and Society, 19 (3). doi: https://doi.org/10.5751/es-06876-190346
25. DeSurbo, W. S., Anthony Di Benedetto, C., Michael Song, Sinha, I. (2004). Revisiting the Miles and Snow strategic framework: uncovering interrelationships between strategic types, capabilities, environmental uncertainty, and firm performance. Strategic Management Journal, 26 (1), 47–74. doi: https://doi.org/10.1002/smj.431
26. Arcosa, M., coronado, D., Ferrándiz, E. (2013). Trends in the acquisition of external knowledge for innovation in the food industry. Open Innovation in the Food and Beverage Industry, 3–24. doi: https://doi.org/10.1553/9788579077248.1.3
27. Arcese, G., Flammini, S., Lucchetti, M., Martucci, O. (2015). Evidence and Experience of Open Sustainability Innovation Practices in the Food Sector. Sustainability, 7 (7), 8067–8090. doi: https://doi.org/10.3390/su7078067
28. Jacobs, B. W., Singhal, V. R., Subramanian, R. (2010). An empirical investigation of environmental performance and the market value of the firm. Journal of Operations Management, 28 (5), 430–441. doi: https://doi.org/10.1016/j.jom.2010.01.001
29. Folyt, I., Štúková, O., Mrhláková, I., Zedničková, I. (2016). Model AGRO-2014 for simulation of strategic decision making in the area of agrarian complex. Agrarian Perspectives XXV. Global and European Challenges for Food Production, Agribusiness and the Rural Economy, Proceedings of the 25th International Scientific Conference. Prague, 105–112.
30. Andriushchenko, K., Teplukh, M., Boniar, S., Ushenko, N., Liezina, A. (2019). Influence of cost drivers on value-oriented management of investment activity of companies. Investment Management and Financial Innovations, 16 (3), 333–364. doi: https://doi.org/10.7312/noma18050-009
31. Andriushchenko, K., Datsii, O., Aleinikova, O., Mohammad Abdulla, A., Mohammed Ali, A. (2019). Improvement of the water resources management system at the territorial level. Problems and Perspectives in Management, 17 (3), 421–437. doi: https://doi.org/10.21511/ppm.17(3).2019.34
32. Monitoring the performance of agriculture and food systems. GSDB 2015 Brief. URL: https://sustainabledevelopment.un.org/content/documents/6469103-Monitoring%20the%20performance%20of%20agriculture%20and%20food%20systems.pdf
33. Romanko, Y. O. (2016). Place and role of communication in public policy. Actual Problems of Economics, 2 (176), 25–31.
The competitiveness, market value and income of an enterprise depend on the level of intellectual property management. Therefore, the aim of research is to develop, substantiate and test a scientific and methodological approach to a quantitative and qualitative assessment of the management of intellectual property of industrial enterprises.

The originality of the proposed approach is that on the basis of the concept of “management of intellectual property” a procedure for current management has been developed, the main stage of which is a quantitative and qualitative assessment. The assessment is based on the structural and logical model, which is built according to two criteria. The criteria make it possible to determine the current state of the use of intellectual property (intangible assets) – a quantitative assessment, and the prospect of further use (intellectual potential) – a qualitative assessment.

A quantitative assessment involves the calculation of indicators characterizing the state of assets, the dynamics of the impact on the market value of the enterprise, the profitability of production, which is proposed to be determined through the net cash flow from operating activities. A qualitative assessment is carried out in terms of components (information and investment, organizational and legal, economic, personnel and motivation), tools and relative indicators that characterize the intellectual potential of an industrial enterprise. The assessment is carried out using a general integral indicator, which is of practical importance, since it shows the existing level of intellectual property management and directions for improvement in the future.

The approbation of the scientific and methodological approach was carried out on the example of three Ukrainian coke-chemical enterprises (CJSC Avdeevka Coke Plant, CJSC Zaporozhzhoks, CJSC Yuzhloks) of the American association SUNCOK ENERGY, INC and the Polish association J.S.W. S.A. Group. Empirical studies for the period from 2015 to 2019 made it possible to build a scale for assessing the level of intellectual property management according to the Harrington function.

Keywords: intellectual property, intangible assets, intellectual potential, quantitative and qualitative assessment of management.

References
1. Holgersson, M., van Santen, S. (2018). The Business of Intellectual Property: A Literature Review of IP Management Research. Stockholm Intellectual Property Law Review, 1 (1), 44–63. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3298247
2. Adner, R., Kapoor, R. (2010). Value creation in innovation ecosystems: how the structure of technological interdependence affects firm performance in new technology generations. Strategic Management Journal, 31 (3), 306–333. doi: https://doi.org/10.1002/smj.821
3. Teixeira, A. A. C., Ferreira, C. (2019). Intellectual property rights and the competitiveness of academic spin-offs. Journal of Innovation & Knowledge, 4 (3), 154–161. doi: https://doi.org/10.1016/j.jik.2018.12.002
4. De Rassenfosse, G., Palangkaraya, A., Webster, E. (2016). Why do patents facilitate trade in technology? Testing the disclosure and appropriation effects. Research Policy, 45 (7), 1326–1336. doi: https://doi.org/10.1016/j.respol.2016.03.017
5. Soranzo, B., Nosella, A., Filippini, R. (2017). Redesigning patent management process: an Action Research study. Management Decision, 55 (6), 1100–1121. doi: https://doi.org/10.1108/md-04-2016-0226
6. Holgersson, M., Wallin, M. W. (2017). The patent management tri-chotomy: patenting, publishing, and secrecy. Management Decision, 55 (6), 1087–1099. doi: https://doi.org/10.1108/md-03-2016-0172
7. Mollic, D., Hafner, A., Damij, N., Cehovin Zaic, L. (2019). Innovations in intellectual property rights management. European Journal of Management and Business Economics, 28 (2), 189–203. doi: https://doi.org/10.1108/ejmb201612-2018-0139
8. Belingheri, P., Leone, M. I. (2017). Walking into the room with IP: exploring start-ups’ IP licensing strategy. Management Decision, 55 (6), 1209–1225. doi: https://doi.org/10.1108/md-04-2016-0227
9. Aloini, D., Lazzarotti, V., Manzini, R., Pellegrini, L. (2017). IP, openness, and innovation performance: an empirical study. Management Decision, 55 (6), 1307–1327. doi: https://doi.org/10.1108/md-03-2016-0230
10. De Vries, G., Pennings, E., Block, J. H., Fisch, C. (2016). Trademark or patent? The effects of market concentration, customer type and venture capital financing on start-ups’ initial IP applications. Industry and Innovation, 24 (4), 325–345. doi: https://doi.org/10.1080/13662236.2016.1231607
11. Brem, A., Nylund, P. A., Hitchen, E. L. (2017). Open innovation and intellectual property rights. Management Decision, 55 (6), 1285–1306. doi: https://doi.org/10.1108/md-04-2016-0223
12. Lima, F. V. R., Santos, J. A. B. dos. (2018). Intellectual Property Management in Small and Medium-Sized Enterprises. International Journal for Innovation Education and Research, 6 (9), 109–127. doi: https://doi.org/10.31686/ijier.v06i09.1161
13. Valdez-Juárez, L. E., García-Pérez-de-Lema, D., Maldonado-Guzmán, G. (2018). ICT and KM, Drivers of Innovation and Profit-
ability in SMEs, Journal of Information & Knowledge Management, 17 (01), 1850007. doi: https://doi.org/10.1142/s0219649118500077
14. Maldonado-Guzmán, G., Lopez-Torres, G. C., Garza-Reyes, J. A., Kumar, V., Martínez-Covarrubias, J. L. (2016). Knowledge management as intellectual property. Management Research Review, 39 (7), 830–850. doi: https://doi.org/10.1108/mrr-02-2015-0024
15. Miyashita, S., Katoh, S., Anzai, T., Sengoku, S. (2020). Intellectual Property Management in Publicly Funded R&D Program and Projects: Optimizing Principal–Agent Relationship through Transdisciplinary Approach. Sustainability, 12 (23), 9923. doi: https://doi.org/10.3390/su12239923
16. Mizioz, M., Desyllas, P., Lee, H., Miles, I. (2016). Innovation collaboration and appropriability by knowledge-intensive business services firms. Research Policy, 45 (7), 1337–1351. doi: https://doi.org/10.1016/j.respol.2016.03.018
17. Córdova, F. M., Durán, C. A., Galindo, R. (2016). Evaluation of Intangible Assets and Best Practices in a Medium-sized Port Community. Procedia Computer Science, 91, 73–84. doi: https://doi.org/10.1016/j.procs.2016.07.043
18. Varenyn, V. M., Yevtushenko, Ya. S. (2018). Diagnostic analysis of company assets management efficiency. Sikhidna yevropa: ekonomi ka, biznes ta upravlinnia, 1 (12), 117–122. Available at: http://www.easterneurope-ebn.in.ua/journal/12/2018/22.pdf
19. Semenova, V. G. (2015). Analysis of efficiency of intellectual property companies. Economics: time realities, 2 (18), 263–268. Available at: http://economics.opu.ua/files/archive/2015/n2.html
20. Semenova, V. (2015). Mathematical model of efficiency evaluation components of enterprise intellectual property management. Ekonomika ta derzhava, 8, 58–62. Available at: http://www.econo myin.ua/?op=1&z=32868&i=12
21. Semenova, V. G. (2015). Components of the system of intellectual property management enterprises. Economics: time realities, 3 (19), 159–165. Available at: https://www.elibraryru/item.asp?id=26342638
22. Pavlenko, T. V. (2012). Process of intellectual property management. Ekonomichnyi visnyk NTU «KPI», 9, 266–270. Available at: https://ela.kpi.ua/handle/123456789/2983
23. Kuchumova I. Y. (2013). Intellectual Capital in the System of Enterprise Management. Business Inform, 12, 357–364. Available at: http://nbuv.gov.ua/UJRN/binf_2013_12_65
24. Karnaukh, K. V. (2010). Suchasniy stan upravlinnia obiektyami promyslovoi vlasnosti v innovatsiyi díyalnosti sudnobudivnykh pidpryimstv: Ekonomika pidpryimstva ta upravlinnia vyrobnyt stvom, 2 (54), 64–65. Available at: http://www.ed.ksesu.edu.ua/ER/knt/e102_54/c102karn.pdf
25. Husakovska Sp, T. O. (2009). Upravlinnia intelektualnoi vlasnistiu pidpryimstva. Kharkiv, 20. Available at: http://dspace.pu.edu.ua/handle/123456789/9158
26. Semenova, V. H. (2016). Upravlinnia intelektualnoi vlasnistiu pidpryimstva: protsesniy pidkhid. Odessa: Odeskyi natsionalnyi ekonomichnyi universitet, 417. Available at: http://dspace.onu. edu.ua/jspui/handle/123456789/5044
27. Sylla, I. V. (2019). The Theoretical Foundations of Management of Intellectual Property of Industrial Enterprises. Business Inform, 7, 144–153. doi: https://doi.org/10.32983/2222-4439-2019-7-144-153
28. PrAT “Avdiyivskiy koskohimichniy zavod”. Available at: https://akhz.metinvestolding.com.ua/about/info
29. PrAT «Zaporizhzhia». Available at: https://zaporozhzhia.com/in forma_cija-dlia-akcionerov/ustav-obshhestva?lang=ru
30. PrAT «Vizhzhkoks». Available at: https://blogs.dp.ua/information_shareholders/
31. Jastrzębska Spółka Węglowa S.A.’s Investor Relations website. Available at: https://www.jsw.pl/en/investors-relations
32. SunCoke Energy, Inc. Available at: http://www.suncoke.com/English/investors/sxc/overview/default.aspx
33. Pro zatverdzhennia Natsionalnoho polozhennia (standartu) bukh- halterskoho obliku. Dokument z0750-99. Available at: https://zakon. rada.gov.ua/laws/show/z0750-99#Text
34. UNPA Ukrkoks. Available at: http://ukrkoks.com/
35. Shatskova, L. P. (2014). Pokazateli sotsiokulturnoi efektivnosti ispol’zo vaniya nematerial’nykh aktivov: Mezhdunarodnyi ekonomicheskii for um 2014. Available at: https://bc5.hiz/economak4/c2014/4097.htm
36. Raiko, D., Podrez, O., Cherepanova, V., Fedorenko, I., Shypulina, Y. (2019). Evaluation of quality level in managing the development of industrial enterprises. Eastern-European Journal of Enterprise Technologies, 5 (3 (101)), 17–32. doi: https://doi.org/10.15387/1729-4061.2019.177919
37. Volkov, K., Volkov, S., Kazakova, N. (2019). Improving Quality Score function desirability Harrington. Modern Information Security, 1, 103–108. Available at: http://journals.dut.edu.ua/index.php/data- protect/article/view/1419

DOI: 10.15387/1729-4061.2021.230308
ENSURING SECURITY OF ECONOMIC AND INFORMATIONAL INTERESTS OF MINING ENTERPRISES TAKING INTO ACCOUNT INNOVATIVE TECHNOLOGICAL TRENDS (p. 42–54)

Ievgeniia Mishehuk
Kryvyi Rih National University, Kryvyi Rih, Ukraine
ORCID: https://orcid.org/0000-0003-4143-5711
Olha Serdiuk
Kryvyi Rih National University, Kryvyi Rih, Ukraine
ORCID: https://orcid.org/0000-0003-0505-0800
Lilija Bekhter
Zaporizhzhia National University, Zaporizhzhia, Ukraine
ORCID: https://orcid.org/0000-0001-9931-9780
Olена Bondarenko
Donetsk National University of Economics and Trade named after Mykhailo Tuhан-Baranovsky, Kryvyy Rih, Ukraine
ORCID: https://orcid.org/0000-0002-0387-3480

It was revealed that mining enterprises are poorly focused on rapid introduction of innovative technologies and developments in line with modern technological trends. Conceptual approach to ensuring the security of economic and informational enterprises’ interests with innovative technological trends has been developed. Developed approach, in contrast to existing ones, makes it possible to determine directions of ensuring security in current period from perspective of future. It has been substantiated that proposed approach has high scientific explanatory potential for revealing substantive factors that determine current and desired enterprises’ economic and informational interests’ security state. Highlighting security of economic and informational interests as component which is one of the first is responding to integration of innovation and technology degree will help to improve entire enterprise’s economic security ensuring quality. It is proposed to use ratio indicator of IT capital value to sum of fixed and intangible assets as indicator of security state of enterprise’s economic and informational interests. Verification of this indicator has been implemented. It is shown that automation of verification makes it possible to exclude subjective decision factor. On basis of verified indicator, state of economic and informational interests’ security of mining enterprises was assessed. The value obtained at PrJSC Northern GZK is 1, which corresponds to very high security state. Estimated values at all enterprises in sample are...
0 and so they correspond to catastrophic security state. Obtained results are important, since they allow to reasonably make management decisions regarding the directions of ensuring the economic and informational interests security of mining enterprises on basis of IT capital value increasing.

Keywords: security, economic and informational interests, innovative technological trends, IT capital, robotization.

References
1. Sahaliaskaite, G., Adepu, S. (2017). Integrating Six-Step Model with Information Flow Diagrams for Comprehensive Analysis of Cyber-Physical System Safety and Security. 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE). doi: https://doi.org/10.1109/hase.2017.25
2. Mishchuk, I., Rebrova, S., Krush, P., Zinchenko, D., Astafiev, K. (2021). Digitalization Security as a Marker of Modern Mechanical Engineering Technology Implementation in the Context of Ensuring Strategic Economic Security of Enterprises. WSEAS TRANSACTIONS ON BUSINESS AND ECONOMICS, 18, 117–125. doi: https://doi.org/10.37394/23207.2021.18.13
3. Hryylytska, L. V. (2011). Analiz metodolohichnykh pidkhodiv do otsinky stanu ta rivnia ekonomichnoi bezpeky subjektiv hospodaruvannia. Naukovi visnyk Lvivskoho derzhavnoho universytetu vnutrishnikh sprav. Seriya ekonomichna, 2, 46–57. Available at: http://nbuv.gov.ua/UJRN/Nvldu_e_2011_2_8
4. Butnuk, D. V. (2013). Kriterii i pokazateli ekonomicheskoy bezopasnosti. Upravlenie finansovo-ekonomichnoi bezpekoi informatisno-analитicheskih zabezpecheniia ta konkurentna rozvikh: materialy konferentsiyi. Available at: https://eprints.kname.edu.ua/38580/1/36-38.pdf
5. Prikhodko, V. P. (2013). Methodological approaches for assessing the economic security. Akhroev. 13, 33–36. Available at: http://wwwwagros-vit.info/pdf/13_2013.pdf
6. Yakimenko, Y. (2015). The approach to assessing the economic security of business in the organization. Ekonomika Menedzhment. Biznes, 3 (13), 133–142. Available at: http://nbuv.gov.ua/UJRN/ecmebi_2015_3_25
7. Department of Defense Trusted Computer System Evaluation Criteria. DoD 5200.28-STD (1985). Available at: http://csrc.nist.gov/publications/history/dod85.pdf
8. Information Technology Security Evaluation Criteria (ITSEC). v.1.2. Available at: https://op.europa.eu/en/publication-detail/-/publication/b2e2a1f-5f3c-4561-82d2-f8de49f96902
9. Wasieck, A. (2015). Attack modeling in Ptolemy: Towards a secure design for Cyber-Physical Systems. Available at: https://chess.eecs.berkeley.edu/pubs/1039/wasieck_AttackModeling_PtolemyMinConf2013.pdf
10. Adepu, S., Palleti, V. R., Mishra, G., Mathur, A. (2020). Investigation of Cyber Attacks on a Water Distribution System. Applied Cryptography and Network Security Workshops, 274–291. doi: https://doi.org/10.1007/978-3-030-61638-9_16
11. Berman, D., Butts, J. (2012). Towards characterization of cyber attacks on industrial control systems: Emulating field devices using Gumstix technology. 2012 5th International Symposium on Resilient Control Systems. doi: https://doi.org/10.1109/ResSec.2012.6309294
12. Zhuravel, M. Yu., Polozova, T. V., Storozhenko, O. V. (2011). Formuvannia systemy pokazyvnik otsinky rivnia informatsiinykh bezpeky pidpryiemstva. Visnyk ekonomiky transportu i promyslovoi, 33, 171–177. Available at: http://nbuv.gov.ua/UJRN/EMA_2011_33_39
13. Nasinov, V. Ya., Lobov, S. P. (2020). IT capital as a factor of production in industrial enterprises and its role in countering threats. Suchasni problemy ekonomiky i pidpryiemnytvstva, 25, 42–51.
14. Lutsenko, I., Vihrova, E., Fomovskaya, E., Serdiuk, O. (2016). Development of the method for testing of efficiency criterion of models of simple target operations. Eastern-European Journal of Enterprise Technologies, 2 (4 (80)), 42–50. doi: https://doi.org/10.15587/1729-4061.2016.66307
15. Jain, H., Kroening, D., Sharygina, N., Clarke, E. (2007). VCEGAR: Verilog CounterExample Guided Abstraction Refinement. Lecture Notes in Computer Science, 583–586. doi: https://doi.org/10.1007/978-3-540-71299-1_45
16. Lam, W. K. (2008). Hardware Design Verification: Simulation and Formal Method-Based Approaches. Prentice Hall, 585. Available at: https://www.amazon.com/Hardware-Design-Verification-Simulation-Method-Based/dp/0137019023
17. Buch, G., Yakobson, A., Rambo, Dzh. (2006). UML. Klassika CS. Sankt-Peterburg: Piter, 736. Available at: http://eecsocm.hse.ru/text/19198823/
18. Lutsenko, I., Fomovskaya, O., Serdiuk, O., Baranovskaya, M., Fomovskiy, V. (2018). Development of test operations of different duration in terms of input for the verification of efficiency formula. Eastern-European Journal of Enterprise Technologies, 5 (4 (95)), 14–21. doi: https://doi.org/10.15587/1729-4061.2018.142212
19. Mishchuk, Ye. V. (2019). Differentiated approach to evaluating the level and state of multilevel indicators on the example of economic security of the enterprise. Economics, Management and Administration, 3 (89), 16–23. doi: https://doi.org/10.26642/ema-2019-3(89)-16-23
20. Kozachenko, A. V., Ponomarev, V. P., Lyashenko, A. N. (2003). Ekonomicheskaya bezopasnost’ predpriyatiya. suschnost’ i mehanizm osebpecheniya. Kyiv: Lybrea, 280.
21. Denchuk, O. V., Arefieva, S. G. (2015). Evaluation of financial condition of enterprises fisheries crimen federal district through rating analysis of multivariate. Problemy ekonomiki i menedzhmenta, 8 (48), 6–9. Available at: https://cyberleninka.ru/article/n/pribyl-i-rentabelnost-predpriyatiya-suschnost-polozheniya-i-pribylnosti
22. Simonov, L. N. (Ed.) (2017). Vozmozhnosti i predely innovatsionnogo razvitiya Latinskoy Ameriki. Moscow: ILA RAN, 552.
23. Trubetskoy, K. N., Rylinskova, M. V., Vladimirov, D. Ya. (2019). From the system «PI?» to the new intellectual structure of open cost mining. Problemy nedropol’zovaniya. 3, 39–48. doi: https://doi.org/10.25635/2313-1586.2019.03.039
24. Aldoshyn, O. Yu., Babin, D. V. (2018). Zastosuvannia lazernoho skanuvannia dla yakonalisthi okhryskovychh robot. XVII Mizhnarodna nauko-praktichna konferentsiya molodykh uchenykh i studentiv «Polit. Suchasni problemy nauky». Natsionalnyi aviatytsiyny universitet. Kyiv: https://doi.org/10.15587/1729-4061.2018.142212
25. Plakitkin, Yu. A., Plakitkina, L. S. (2018). Digitalization of the Russian coal sector economy – from Industry 4.0 to Society 5.0. Mining Industry Journal (Gornay Promishlenost), 140 (4/2018), 22–30. doi: https://doi.org/10.30686/1609-9192-2018-4-140-22-30
26. Kaurkin, I. A., Zinov’ev, V. V. (2017). Robotizatsiya v gornodobyvayushche promishlennosti. Nauchno-prakticheskaya konferentsiya molodykh uchenykh s mezhdunarodnym uchastiem «Rossiya molodoj». Available at: https://www.elibrary.ru/article/n/90018467
27. Vladimirov, D. Ya., Klebanov, A. F., Kuleshov, A. A., Trubetskoy, K. N. (2007). Sovremennye sistemy upravleniya gorno-transportnymi kompleksami. Sankt-Peterburg: Nauka, 306. Available at: https://www.geokniga.org/books/16307
ANALYZING THE DRIVERS OF SUSTAINABLE VALUE CREATION, PARTNERSHIP STRATEGIES, AND THEIR IMPACT ON BUSINESS COMPETITIVE ADVANTAGES OF SMALL & MEDIUM ENTERPRISES: A PLS-MODEL (p. 55–66)

Sustainable manufacturing is a critical phenomenon in the process of creating sustainable value. This is a way to increase innovation and resource quality. On the other hand, the partnership strategy is an important factor in efforts to improve company performance. The involvement of the partnership strategy is one of the factors that strengthen the achievement of sustainable values. Furthermore, this affects the sustainability of a manufacturing company’s competitiveness, including Small and Medium Enterprises (SMEs). In this study, we focus on creating sustainable value and the role of partnership strategies in improving the business performance of SMEs engaged in the metal manufacturing industry. The Partial Least Squares (PLS) approach to Structural Equation Modeling (SEM) is used to evaluate relationships and effects based on survey data from small and medium industries. The results show that the creation of sustainable value, including products, processes, production, equipment, organization, and human values, has a significant impact ($\beta=0.522; p<0.001$) on increasing the competitiveness of small and medium enterprises. The effect of sustainable value creation on sustainable competitiveness is fully moderated by the partnership strategy ($\beta=0.179; p<0.03$), especially in the technology & equipment, and human resources. From being a moderating variable, the partnership strategy has also shown to significantly act as a partial mediating variable ($\beta=0.135; p<0.05$) for sustainable value creation in enhancing competitiveness. The partnership strategy’s simultaneous involvement proves that the partnership strategy plays an important role in value creation to increase the competitiveness of sustainable manufacturing SMEs.

Keywords: sustainable, value creation, partnership strategy, competitiveness, small and medium enterprises.

References

1. Abdul-Rashid, S. H., Sakundarini, N., Ariffin, R., Ramayah, T. (2017). Drivers for the adoption of sustainable manufacturing practices: A Malaysia perspective. International Journal of Precision Engineering and Manufacturing, 18 (11), 1619–1631. doi: https://doi.org/10.1007/s12541-017-0191-4
2. Bilge, P., Badurdeen, F., Seliger, G., Jawahir, I. S. (2016). A novel manufacturing architecture for sustainable value creation. CIRP Annals, 65 (1), 455–458. doi: https://doi.org/10.1016/j.cirp.2016.04.114
3. Clarke-Sather, A. R., Hutchins, M. J., Zhang, Q., Gershenson, J. K., Sutherland, J. W. (2011). Development of social, environmental, and economic indicators for a small/medium enterprise. International Journal of Accounting & Information Management, 19 (3), 247–266. doi: https://doi.org/10.1108/18347641111169250
4. Singh, S., Olugu, E. U., Fallahpour, A. (2013). Fuzzy-based sustainable manufacturing assessment model for SMEs. Clean Technologies and Environmental Policy, 16 (5), 847–860. doi: https://doi.org/10.1007/s10098-013-0676-5
5. Khatri, J. K., Metri, B. (2016). SWOT-AHP Approach for Sustainable Manufacturing Strategy Selection: A Case of Indian SME. Global Business Review, 17 (5), 1211–1226. doi: https://doi.org/10.1177/0972150916656693
6. O’Donnell, A., Gilmore, A., Carson, D., Cummins, D. (2002). Competitive advantage in small to medium-sized enterprises. Journal of Strategic Marketing, 10 (3), 205–223. doi: https://doi.org/10.1080/09652540210151388
7. Ulenjin, F., Onsel, Ş., Aktas, E., Kabak, Ö., Özaydın, Ö. (2014). A decision support methodology to enhance the competitiveness of the Turkish automotive industry. European Journal of Operational Research, 234 (3), 789–801. doi: https://doi.org/10.1016/j.ejor.2013.09.044
8. Jennings, P., Beaver, G. (1997). The Performance and Competitive Advantage of Small Firms: A Management Perspective. International Small Business Journal: Researching Entrepreneurship, 15 (2), 63–75. doi: https://doi.org/10.1177/0266242097152004
9. Mcalanan, P., McGowan, P. (1999). Managing service quality for competitive advantage in small engineering firms. International Journal of Entrepreneurial Behavior & Research, 5 (2), 35–47. doi: https://doi.org/10.1108/13552559910274480
10. Tambunan, T. (2005). Promoting Small and Medium Enterprises with a Clustering Approach: A Policy Experience from Indonesia. Journal of Small Business Management, 43 (2), 138–154. doi: https://doi.org/10.1111/j.1540-627x.2005.00130.x
11. Ueda, K., Takenaka, T., Vánca, J., Monostori, L. (2009). Value creation and decision-making in sustainable society. CIRP Annals, 58 (2), 681–700. doi: https://doi.org/10.1016/j.cirp.2009.09.010
12. Seliger, G. (2012). Sustainable Manufacturing for Global Value Creation. Sustainable Manufacturing, 3–8. doi: https://doi.org/10.1007/978-3-642-7290-5_1
13. Moore, S. B., Manring, S. L. (2009). Strategy development in small and medium sized enterprises for sustainability and increased value creation. Journal of Cleaner Production, 17 (2), 276–282. doi: https://doi.org/10.1016/j.jclepro.2008.06.004
14. Evans, S., Fernando, L., Yang, M. (2017). Sustainable Value Creation – From Concept Towards Implementation. Sustainable Production, Life Cycle Engineering and Management, 203–220. doi: https://doi.org/10.1007/978-3-319-48514-0_13
15. Cui, Y., Jiao, H. (2011). Dynamic capabilities, strategic stakeholder alliances and sustainable competitive advantage: evidence from China. Corporate Governance: The International Journal of Business in Society, 11 (4), 386–398. doi: https://doi.org/10.1108/14720701111159235
16. Khurana, S., Hales, A., Mannan, B. (2019). Determinants for integration of sustainability with innovation for Indian manufacturing enterprises: Empirical evidence in MSMEs. Journal of Cleaner Production, 229, 374–386. doi: https://doi.org/10.1016/j.jclepro.2019.04.022
17. Tahi Hamonangan Tambunan, T. (2011). Development of small and medium enterprises in a developing country. Journal of Enterprise Communities: People and Places in the Global Economy, 5 (1), 68–82. doi: https://doi.org/10.1108/17506021111119626
18. Aboelmaged, M. (2018). The drivers of sustainable manufacturing practices in Egyptian SMEs and their impact on competitive ca-
Проведено порівняльну оцінку динаміки технологічного розвитку України та Російської Федерації за 2014–2019 рр. в умовах російсько-українського конфлікту. Запропоновано та апробовано методику макроекономічної оцінки економічних втрат конфлікту через зменшення значень параметра технологічного прогресу виробнича функція Солоу-Тінбергена. Обґрунтовано, що у ході російсько-української війни, починаючи з 2015 року (параметр технологічного прогресу від’ємний), відбулося згортання технологічного розвитку Російської Федерації та переход економіки на екстенсивну основу. В Україні виявлене погіршення технологічного розвитку через зменшення значень параметра технологічного прогресу. Доведено, що економічний спад агресора є гіршим, порівняно з країною-жертвою, але відносно втрати валового внутрішнього продукту (ВВП) унікальний згортання технологічного розвитку, спричиненого війною, значно менший. У випадку Російської Федерації як країни-агресора обґрунтовано, що основним катализатором економічного спаду було згортання участі реального сектора економіки у міжнародному трансфері технологій під впливом міжнародних економічних санкцій. У випадку України як країни-жертви воєнної інтервенції обґрунтовано, що заміщення міжнародного партнерства у сфері технологічного співробітництва забезпечило сповільнення економічного спаду.

Результати розробки методичного забезпечення процесу оцінки втрат ВВП сторін воєнного конфлікту є універсальними для використання у міжнародних порівняннях. Актуальним є запропоновані методи в оцінці технологічного розвитку країн, що перебувають або перебували у стані воєнного протистояння, що значно розширює базу для майбутніх досліджень авторів.

Ключові слова: виробнича функція, технологічний прогрес, технологічний розвиток, економічні втрати, воєнний конфлікт.

Проведено теоретико-методологічне дослідження визначення необхідності та особливостей розробки матриці потенціалу харчової промисловості для прийняття управлінських рішень при формуванні сталого розвитку агроекосистем, яка забезпечує підвищення операційної ефективності компаній та продовольчу безпеку країни. У статті використані методи дослідження, а саме: історичний – у процесі вивчення сучасних поглядів на розуміння значення аграрного сектору для економіки; системного аналізу – при побудові моделі інноваційної досконалості бізнесу. Методи порівняння та аналізу тенденцій – вивчення тенденцій в історичний – у процесі вивчення сучасних поглядів на розуміння значення аграрного історичний сектору для економіки; системного аналізу тенденцій – при побудові моделі інноваційної досконалості бізнесу.

Ключові слова: цифровізація, технологічна трансформація, кастомізування, високотехнологічне сільське господарство, продовольча безпека.
конкурентоспроможності МСП у сфері сталого виробництва.

Одночасне залучення Стратегії партнерства свідчить про те, що вона відіграє важливу роль у формуванні вартості для підвищення якості ресурсів. Крім того, що стратегія партнерства є стримуючою змінною, було також показано, що вона в значній мірі рентоспроможність повністю стримується стратегією партнерства (включаючи вартість продукції, процесів, виробництва, обладнання, організації та людських ресурсів, має значний вплив (чотири навіть управління рентоспроможністю за функцією Харінгтона).

Ключові слова: інтелектуальна властивість, нематеріальні активи, інтелектуальний потенціал, кількісно-якісна оцінка управління. DOI: 10.15587/1729-4061.2021.228864

АНАЛІЗ ФАКТОРІВ ФОРМУВАННЯ СТАЛОЇ ВАРТОСТІ, СТРАТЕГІЙ ПАРТНЕРСТВА ТА ЇХ ВПЛИВУ НА КОНКУРЕНТНИ ПЕРЕВАГИ МАЛІХ І СЕРЕДНІХ ПІДПРИЄМСТВ З УРАХУВАННЯМ ІННОВАЦІЙНИХ ТЕХНОЛОГІЧНИХ ТРЕНДІВ (с. 55–66)

Е. В. Мішук, О. Ю. Сердюк, Л. А. Бехтер, О. О. Бондаренко

Виявлено, що гірничодобувне підприємство мало орієнтовані на швидке впровадження інноваційних технологій та розробок, які відповідають сучасним технологічним трендам. Розроблено концептуальний підхід до забезпечення безпеки економіко-інформаційних інтересів підприємств з урахуванням інноваційних технологічних трендів. Розроблений підхід, на відміну від існуючих, дозволяє визначити напрями забезпечення безпеки у поточному періоді з позиції майбутнього. Обґрунтовано, що пропонований підхід володіє високим науковим пояснювальним потенціалом щодо розкриття чинників, які зумовлюють поточний та бажаний стан безпеки економіко-інформаційних інтересів підприємств. Використання безпеки економіко-інформаційних інтересів в якості складника, який одним із перших реагує на ступінь впровадження інноваційних розробок і технологій сприяє підвищенню якості забезпечення усієї економічної безпеки підприємства. Запропоновано показник відношення величини ІТ-капіталу до суми основних засобів і нематеріальних активів використовувати в якості індикатора стану безпеки економіко-інформаційних інтересів підприємства. Реалізовано верифікацію даного показника. Показано, що автоматизація верифікації дозволяє вилучити фактор суб'єктивного рішення. На основі верифікованого показника оцінено стан безпеки економіко-інформаційних інтересів підприємств. Тримання значення на ПРАТ «Північний ГЗК» дорівнює 1, що відповідає дуже високому стану безпеки. Запропонований підхід дозволяє вилучити фактор суб'єктивного рішення. На основі верифікованого показника оцінено стан безпеки економіко-інформаційних інтересів підприємств.

Ключові слова: безпека, економіко-інформаційні інтереси, інноваційні технологічні тренди, ІТ-капітал, роботизація.

DOI: 10.15587/1729-4061.2021.230308

ЗАБЕЗПЕЧЕННЯ БЕЗПЕКИ ЕКОНОМІКО-ІНФОРМАЦІЙНИХ ІНТЕРЕСІВ ГІРНИЧОДОБУВНИХ ПІДПРИЄМСТВ З УРАХУВАННЯМ ІННОВАЦІЙНИХ ТЕХНОЛОГІЧНИХ ТРЕНДІВ (с. 42–54)

Є. В. Мішук, О. Ю. Сердюк, Л. А. Бехтер, О. О. Бондаренко

Аналіз фінансово-господарської діяльності індустрії гірничодобування показує, що вона є осередком інноваційних технологій, що сприяє підвищенню якості виробництва, доходності виробництва, яку запропоновано визначати через чистий грошовий потік від операційної діяльності. Якісна оцінка здійснюється за складовими (інформаційно-інвестиційна, організаційно-правова, економічна, кадрова-мотиваційна), інструментами та відносними показниками, що характеризують інтелектуальний потенціал промислового підприємства. Оцінка проводиться за допомогою загального інтегрального показника, який має практичне значення, тому що показує існуючі рівні управління інтелектуальною власністю за функцією Харінгтона.

Ключові слова: інтелектуальна власність, нематеріальні активи, інтелектуальний потенціал, кількісно-якісна оцінка управління. DOI: 10.15587/1729-4061.2021.228864

АНАЛІЗ ФАКТОРІВ ФОРМУВАННЯ СТАЛОЇ ВАРТОСТІ, СТРАТЕГІЙ ПАРТНЕРСТВА ТА ЇХ ВПЛИВУ НА КОНКУРЕНТНІ ПЕРЕВАГИ МАЛІХ І СЕРЕДНІХ ПІДПРИЄМСТВ: ЧНК-МОДЕЛЬ (с. 55–66)

Ni Luh Putu Hariastuti, Pratikto, Purnomo Budi Santoso, Ishardita Pambudi Tama

Стале виробництво є найважливішим елементом в процесі формування сталої вартості. Це спосіб підвищити інноваційність і яксть ресурсів. З іншої боку, важливим фактором у підвищенні ефективності роботи підприємства є стратегія партнерства. Залучення стратегії партнерства є одним з факторів, що сприяють досягненню сталої вартості. Крім того, це впливає на стан конкурентоспроможності виробничого підприємства, включаючи малі та середні підприємства (МСП). Дане дослідження спрямоване на формування сталої вартості та ролі стратегії партнерства у підвищенні ефективності діяльності МСП металообробної промисловості. Для оцінки взаємозв'язків і наслідків на основі даних винчення маліх і середніх підприємств використовується метод часткових найменших квадратів (ЧНК) для моделювання структурних рівнянь (МСР). Результати показують, що формування сталої вартості, включаючи вартість продукції, процесів, виробництва, обладнання, організації та людських ресурсів, має значний вплив (ρ=0,522; p<0,001) на підвищення конкурентоспроможності маліх і середніх підприємств. Вплив формування сталої вартості на стан конкурентоспроможності відбувається середніх (ρ=0,176; p=0,03), особливо в областях технологій і обладнання, а також ресурсних ринках. Крім того, стратегія партнерства є стимулюючою змінною, його важлива роль у формуванні вартості для підвищення конкурентоспроможності МСП у сфері сталого виробництва.

Ключові слова: сталій, формування вартості, стратегія партнерства, конкурентоспроможність, малі та середні підприємства.