Monitoring the decomposition of wealth-related inequality in the use of regular antenatal care in Egypt (1995-2014)

Zeinab Khadr (zeinabk@aucegypt.edu)

Research article

Keywords: Egypt; maternal care; antenatal care; concentration index; decomposition; Blinder-Oaxaca decomposition.

DOI: https://doi.org/10.21203/rs.3.rs-35614/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background Between 1995 and 2014 Egypt successfully increased the use of regular antenatal care (URAC) among women from 30.4% to 82.9%. The same period saw a decrease in the wealth-based inequality in URAC, with significant decline in its prevalence among the richest and poorest wealth quintiles. This paper investigates the changes in the main determinants contributing to the wealth-based inequality in URAC for the two years of 1995 and 2014, and the determinants that underlined the declines in this inequality.

Methods The secondary analysis was based on data from the 1995 and 2014 rounds of the Egypt Demographic and Health Survey. Logistic regression was implemented to model URAC for those two years and inequality was measured using the concentration index. Decomposition of the concentration index and Blinder-Oaxaca decomposition were implemented to assess the contribution of the URAC determinants to its inequality and the changes between 1995 and 2014.

Results Decomposition of inequalities in URAC in 1995 and 2014 showed that social determinants were the main contributors to these inequalities. More than 90% of the inequalities were explained by the determinants of living in rural Upper Egypt, women and their husbands having attained higher education, the household standard of living, and birth order. These same determinants were also responsible for more than 76% of the decline in the inequality in URAC between 1995 and 2014. Findings show that high concentration of poverty in rural Upper Egypt contributes significantly to the inequality in URAC. There was a relatively smaller change in the relationship between education and URAC, whereby women and their husbands who have secondary or higher education maintain their higher odds of URAC. These findings highlight the importance of the health system and the social determinants to achieve equality in URAC.

Conclusion Decomposition of inequality can support prioritization of interventions and can lead to effective and efficient use of the limited resources available in any society. Decomposition of the changes in inequality can aid the assessment of the effectiveness and the monitoring of the impact of these interventions and help identify new policies and interventions needed to tackle these inequalities.

Background

Over a period of 25 years, Egypt succeeded in decreasing its maternal mortality ratio by more than 68.9%, from 106 deaths per 100,000 live births in 1990 to 33 deaths per 100,000 live births in 2015 [1]. Campbell and colleagues attributed this success to the adoption of safe motherhood initiatives in Egypt [2]. These initiatives were based on the results of the 1992 and 2000 national maternal mortality surveys, which revealed that one fifth of maternal deaths were attributed to avoidable risk factors. A lack of antenatal care, or the poor quality of this care where available, were responsible for almost one third of these deaths [2,3]. Consequently, all safe motherhood initiatives in Egypt incorporated activities to promote the use of antenatal care [2]. These initiatives paid back in an increased use of antenatal care services by pregnant women. Data from the Egypt Demographic and Health Survey showed that, in 1995, only 39.1% of women with births in the five years preceding the survey had at least one antenatal care visit, and only 28.3% had regular antenatal care (four visits or more [4]) [5]. By 2014, women who had ever used antenatal care and those who had regularly used antenatal care had increased to 90.3% and 82.8%, respectively [6]. This relative improvement in the use of antenatal care services was also associated with a relatively moderate decline in wealth-based inequality. While the absolute difference between the richest and the poorest wealth quintile was almost 61 percentage points in 1995 for both ever receiving antenatal care and for regular antenatal care, it decreased to 12.3 percentage points for ever receiving antenatal care and 21.1% for receiving regular antenatal care in 2014 [5,6].

The improved use of antenatal care and the reduction in wealth-based inequality in relation to it are associated with significant changes on the social and health fronts in Egypt in this period. On the social front, despite a 60% increase in population size between 1996 and 2016, Egypt managed to increase its GDP per capita by a factor of 3.5, from $944.2 in 1995 to $3,477.9 in 2016. In addition, illiteracy eradication efforts succeeded in decreasing illiteracy rates by ten percentage points in 20 years to reach 29% in 2017 [7]. This decline in illiteracy was greater among women, among whom the illiteracy
rate decreased by 13 percentage points to 37% in 2017. This improvement was also reflected in declines in those with low educational attainment and increases in higher educational attainment between 1995 and 2014. According to the data, 35% of the female population had no education in 1995, while in 2014, 16.5% of the same population had completed secondary or higher education [5]. In 2014, about 24.7% of the female population had no education and the percentage of those with completed secondary or higher education had almost doubled to reach 33.9% [6].

On the reproductive health front, in its implementation of the 1994 International Conference on Population and Development (ICPD) Programme of Action, Egypt focused on improving both accessibility and use of reproductive health services in Egypt. Access to reproductive health services was expanded to underserved women, in particular those residing in remote areas and in rural Upper Egypt [8]. This was achieved through the renovation of almost all of the Ministry of Health health units and clinics and by adding more than 300 mobile clinics to provide reproductive health to remote areas in Egypt. In addition, the ministry's efforts were supported by many nongovernmental organizations, who ran their own family planning and reproductive health clinics under the ministry's technical supervision and with its logistic support [9]. During the same period, reproductive health promotion campaigns played a significant role in promoting many messages regarding the importance of antenatal care, safe delivery, breastfeeding, immunization and premarital medical examinations. These campaigns were supported by the provision of training courses to media professionals on population and reproductive health issues [10].

In conclusion, there is no doubt that Egypt has achieved many successes on the social and reproductive health fronts. The two main questions posed by the current paper are: to what extent have these achievements contributed to tackling wealth-related inequalities in the use of regular antenatal care and its determinants, and how have the changes in the inequalities in these determinants contributed to the changes in the inequalities in the use of antenatal care?

Determinants and inequality of antenatal care in Egypt

Analyses of the main determinants of maternal health services in Egypt, including the use of antenatal care, have received significant attention from researchers. Some research efforts have focused on understanding the main determinants of any use or of regular use of antenatal care. As in the literature on determinants of antenatal care use in developing countries [11-16], research in Egypt has confirmed the importance of both social and health needs as determinants of antenatal care. On the social side, women's age or age at birth, their education, their husbands' education level, the women's work status, the household standard of living/wealth, and place of residence, assessed in terms of regional level or by rural/urban differentiation, were identified as significant determinants of antenatal care [17-20]. On the health dimension, most research highlighted the significant contribution of parity/birth order, previous birth experience, attributes of current pregnancy (in particular preceding birth interval), the survival status of the previous birth, and the experience of a terminated pregnancy [15].

Other research efforts focused on monitoring changes in the use of antenatal care over time [16,19]. Modeling any use of antenatal care separately for the years 2000 and 2014, Zaky and colleagues showed that wealth, higher education attainment of both women and their husbands, and residence in frontier governorates were significantly related to the use of any antenatal care in 2000 [19]. However, most of these determinants had lost their significance, in particular education and regional differences, by 2014.

Recently, since the launch of the Commission on Social Determinants of Health in 2005 [22], many research efforts have focused on assessing inequality in maternal health services in developing countries. These efforts used different approaches in measuring inequality, including modeling the different factors that affect the use of maternal health services for the different social groups [23] and identifying the main determinants for each social category. Other research efforts have implemented a summary measure of inequality for different maternal health measures, in particular the concentration index and its decomposition to the contribution of their determinants including use of antenatal care [23-26]. Inequalities in antenatal care use have received significant attention from researchers in Egypt. Some research has been limited to assessing inequality using the concentration index across wealth quintiles [27,28] and educational attainment categories [27]. Other efforts have assessed inequality through marginal probabilities of use of antenatal care across two latent variables of socio-cultural resourcefulness and economic resourcefulness [29]. Findings from this research showed both
socio-cultural resourcefulness and economic resourcefulness were positively related to use of antenatal care services in Egypt. The probability of seeking any antenatal care increases from 55.2% to 62.0% as women move from the lowest to the highest level of socio-cultural resourcefulness. Furthermore, the probability of regular antenatal care also increases from 63.1% to 70.3%, with similar movement among antenatal care users. Similarly, the probability of any antenatal care increases from 52.1% to 64.0% as women move from the lowest category to the highest category of economic resourcefulness.

This paper expands on these efforts by decomposing the wealth-based inequality in the use of antenatal care and assessing the contribution to that inequality of the different determinants. It further decomposes the changes in wealth-based inequality to assess the contribution of the changes in its determinants inequalities using Blinder-Oaxaca decomposition. This analysis provides an insight into the contribution of the changes in the two groups of determinants (social and health needs) to the decline of wealth-based inequality in the use of antenatal care. The results of this analysis can support the ongoing efforts to tackle inequality in maternal health care through the identification of the policies needed to achieve the largest decline in these inequalities, as well as the appropriate points of intervention.

Methods

Data sources and study variables

The current study uses data from two years of the Egyptian Demographic and Health Surveys (1995 and 2014) to monitor the changes in antenatal care use and its determinants over this period of time. The Egyptian Demographic and Health Surveys are comprehensive reproductive health surveys that aim to provide detailed information on maternal and child health. Eight rounds have been conducted in Egypt over the last 25 years (in 1989, 1992, 1995, 2000, 2003, 2005, 2008, and 2014). The periodicity of these surveys establishes them as a significant and rich data repository for monitoring changes in levels of inequality in various dimensions of women's reproductive health. The current research focuses on two rounds, namely the 1995 and 2014 rounds. This period is a significant one; during this time, Egypt adopted the International Conference on Population and Development's (ICPD) Programme of Action and committed to and aimed to fulfill the Millennium Development Goals.

The study sample in this research was limited to currently married women who had had at least one live birth in the five years preceding the survey. The final analytical samples were 7,532 women in 1995 and 10,864 women in 2014. These women account for 50.1% and 43.6% of the total sample of ever-married women in the surveys from 1995 and 2014, respectively.

Use of antenatal care in the current study is assessed in terms of use of regular antenatal care (URAC). URAC was assessed in terms of a dichotomous variable defined as: (1) having had at least four antenatal care visits during pregnancy; and (0) otherwise. The health stratifier used in the current study was the wealth index. The wealth index is a commonly used measure of the economic status of the households in which women live. It is based on the first principle component produced in the factor analysis in a set of indicators regarding the physical characteristics and possession of consumer durable goods by the respondent's household [30]. Of the two rounds used in the current study the wealth index was only available in 2014. As a result, the wealth index for the data from the EDHS 1995 was calculated using the same methodology reported by Macro International for the production of the wealth index.

Determinants of antenatal care were classified into two main categories of variables: social determinants and health needs determinants. The social determinants included in the analysis are: 1) the respondent's age at the birth of the child, measured in terms of five-year age groups (15-19, 20-24, 25-29, 30-34, 35-39, and 40+); 2) the respondent's education, measured in four categories (no education, primary, secondary or higher education); 2) the husband's education, measured in four categories (no education, primary, secondary or higher education); 3) the household standard of living, assessed in terms of having modern toilet facility, with the absence acting as a proxy for being poor; and 4) region (urban governorates, urban Lower Egypt, rural Lower Egypt, urban Upper Egypt and rural Upper Egypt).
Health needs are measured in terms of two groups of variables. The first relates to the current pregnancy, namely the length of the preceding birth interval (preceding birth intervals >24 months=1, otherwise=0), having multiple births (single birth=1, otherwise=0) and birth order. The second group of variables relates to previous birth experience, namely delivery of previous birth in a medical care unit (yes=1, no=0), previous birth by cesarean section (yes=1, no=0), previous birth was alive (yes=1, no=0). In addition, an experience of a terminated pregnancy (yes=1, no=0).

Weights provided by the EDHS datasets were used in the analysis to account for the under- or over-sampling of some subgroups relative to others in the dataset.

Statistical analysis

(See Supplementary Materials for Statistical Analysis.)

Results

Antenatal care and its determinants

Table 1 presents a profile and a comparison of antenatal care visits in Egypt in the two surveys and their main determinants. It shows a significant improvement in the use of antenatal care services: while only 41.7% of women had had at least one antenatal care visit in 1995, this proportion had increased to 90.2% by 2014. A similar improvement is observed for URAC: while just 30.4% of women had received URAC in 1995, that number had increased to 89.2% of women in 2014.

This improvement in use of antenatal care was accompanied by significant changes in the demographic attributes of the women surveyed. Regarding age at birth, the proportions of women who gave birth at both young and old ages decreased significantly between the two surveys; while 75.4% of women gave birth between the age of 20 and 35 in 1995, this proportion increased to 82% in 2014. The majority of the declines occurred among older women (35 and over).

On the socioeconomic front, in 2014 the level of educational attainment achieved by women and their husbands showed significant gains compared to the levels in 1995. In 2014, almost 73% of women had secondary or higher education, compared to 34% in 1995. Similarly, while only 44.3% of the women's husbands had secondary or higher education in 1995, this proportion had increased to 73.2% in 2014.

Using the lack of a modern toilet facility as a proxy for household standard of living, Table 1 shows significant improvement in these standards of living, with the proportion of households with a modern toilet increasing from 21.6% in 1995 to 52.3% in 2014.

Table 1. Percentage distribution and concentration indexes for URAC and its determinants (1995 and 2014)
Variables	1995		2014	
	%	CI	%	CI
Antenatal care				
Any antenatal care***	41.7	0.294	90.20	0.028
Regular antenatal care***	30.4	0.417	82.90	0.052
Age at birth*				
<20 years***	10.00	-0.146	7.40	-0.119
20-27.40				
25-	29.10	0.067	32.40	0.030
30-	18.90	0.026	19.10	0.010
35-	10.70	-0.016	8.60	-0.027
40+	3.90	-0.079	2.00	-0.080
Respondent's educational attainment*				
No education***	44.30	-0.352	18.30	-0.393
Primary	22.00	-0.019	8.90	-0.205
Secondary	28.10	0.406	57.30	0.036
Higher	5.70	0.812	15.60	0.446
Respondent's husband's educational attainment*				
No education***	27.80	-0.407	13.20	-0.286
Primary	28.00	-0.130	13.60	-0.133
Secondary	33.40	0.235	56.60	-0.009
Higher	10.90	0.654	16.60	0.365
Region*				
Urban governorate	18.00	0.475	10.50	0.712
Urban Lower Egypt	10.30	0.430	9.30	0.616
Rural Lower Egypt	30.00	-0.124	39.40	-0.154
Urban Upper Egypt	11.30	0.307	11.10	0.479
Rural Upper Egypt	29.40	-0.437	28.80	-0.438
Frontier governorate	1.00	0.142	1.00	0.123
Toilet type (modern)***	21.60	0.732	52.30	0.350
Experience of terminated pregnancy*	26.70	-0.022	20.70	-0.066
Birth attributes				
Birth interval>24 months)***	78.80	0.027	84.50	0.011
Single birth**	98.40	0.001	97.80	0.001
Birth order***	3.90	-0.115	2.70	-0.074
Previous birth experience				
Delivery at medical unit***	11.00	0.250	28.60	0.012
Delivered by C-section***	1.90	0.328	15.80	0.085
Live birth	75.00	-0.008	75.80	-0.028
On the health needs front, except for the death of the previous child and having had multiple births, Table 1 shows significant improvement on all indicators. Experience of terminated pregnancies among the sample decreased significantly, from 26.7% in 1995 to 20.7% in 2014. The prevalence of appropriate preceding birth interval (more than 24 months) increased from 78.8% in 1995 to 84.5% in 2014. Birth order also showed a significant decrease between 1995 and 2014, from 3.9 to 2.7. Delivery in medical centers also increased from 11% in 1995 to 28.6% in 2014. By contrast, the prevalence of cesarean section increased from 1.9% in 1995 to 15.8% in 2014.

Improvement in the prevalence of URAC was accompanied by significant improvement/reduction in the levels of wealth-based inequality; while in 1995 CI for URAC was 0.417, it had declined to 0.052 in 2014, a reduction of 87.5%.

Table 1 also shows the concentration indexes for the main determinants of URAC. In 1995, wealth-related inequalities were large for almost all the determinants. On one hand, women aged below 25 years and those 35 years or older while giving birth, those with low levels of education, low levels of husband’s education, and rural residents of both Lower Egypt and Upper Egypt, were highly concentrated among relatively poor respondents. The factor of a large number of children was also highly concentrated among poor respondents. On the other hand, proper birth intervals, delivery in medical units and cesarean section were less prevalent among relatively poor respondents.

In 2014, similar patterns of the wealth-related inequalities in the determinants of URAC can be observed, with the majority of the inequalities declining in magnitude, reflecting improvements in their wealth-related differentials. For example, while CI for the respondents’ secondary education was 0.406 in 1995, in 2014, CI had decreased to 0.036. Similarly, wealth-related differentials in birth order declined from CI=-0.115 in 1995 to CI=-0.066 in 2014. The concentration of the poor who live in rural Upper Egypt showed a stability between the two years (CI=-0.438). By contrast, an increase in inequality was observed in the experience of terminated pregnancies, and for respondents living in urban Lower and Upper Egypt.

Determinants of use of regular antenatal care

Table 2 presents the odds ratios for the logit coefficients for URAC in the years 1995 and 2014. For 1995, older age at birth and high levels of education in both the respondent and her husband were significantly more likely to correlate with URAC. Regional patterns for URAC exhibited lower odds of use among all regions, in particular the rural regions. For example, living in rural Upper Egypt decreased the odds of URAC by 71%.

Proper preceding birth intervals were associated with significantly higher odds of URAC, while a higher birth order was significantly related to lower odds of regular use of antenatal care (OR=0.89). Delivery in a medical unit for the previous birth was also associated with 2.16 higher odds of regular use of antenatal care. A previous live birth decreased the odds of URAC by 45%.

In 2014, the odds of URAC showed a similar pattern as in 1995, but the effects of the different determinants on URAC were attenuated. For age at birth, only those giving birth aged 30-35, or over 40, exhibited higher odds of use compared to other age groups. Education for both the respondents and their husbands continued to be positively related to increased odds of URAC. Residents of regions other than urban governorates and urban Lower Egypt showed lower odds of URAC. High standards of living were also associated with 26% higher odds of antenatal care. Delivery of a previous birth by cesarean section showed 84% increases in URAC.
Variables	1995	2014
Age at birth		
20-	1.21	1.05
25-	1.73 (***	1.24
30-	1.93 (***	1.43 *
35-	1.98 (***	1.34
40+	2.19 (**	1.84 *
Respondent's educational attainment		
Primary	1.38 (**	1.11
Secondary	2.54 (***	1.51 (***
Higher	4.68 (***	2.61 (***
Respondent's husband's educational attainment		
Primary	1.40 (**	1.39 (**
Secondary	1.44 (**	1.51 (***
Higher	1.92 (***	1.95 (***
Region		
Urban Lower Egypt	0.89	0.99
Rural Lower Egypt	0.43 (***	0.82
Urban Upper Egypt	0.74 *	0.59 (***
Rural Upper Egypt	0.29 (***	0.48 (***
Frontier governorate	0.43 (***	0.52 (***
Toilet type (modern)		
(modern)	2.47 (***	1.20 *
Experience of terminated pregnancy		
Birth attributes		
Birth interval>24 months)	1.46 (***	1.46 (***
Single birth	0.78	0.58 *
Birth order	0.89 (***	0.83 (***
Previous birth experience		
Delivery at medical unit	2.16 (***	0.93
Delivered by C-section	0.98	1.84 (***
Live birth	0.55 (***	0.45 (***
Pseudo R²	0.26	0.11
Log likelihood	-3317.39	-4451.88

*** Significant < 0.001 ** Significant <0.01 *Significant at <0.05

Decomposition of use of regular antenatal care inequality

Table 3 presents the results of the decomposition of the inequalities in URAC into its determinants. Figures 1A and 1B show the different shares of the inequality in the determinants of receiving regular antenatal care in 1995 and 2014, respectively. Figure 1A reveals that, in 1995, six determinants of URAC accounted for 90% of its inequality. In 1995, these determinants (arranged by their relative share) are: living in rural Upper Egypt (25.3%), household standard of living indicator (20.8%), women's secondary or higher education (17.4% and 12.4%, respectively), husbands with higher education (7.1%), and birth order of the child (6.9%).
Variables	2014	1995	2014	1995	Shar e	% Shar e			
	dy/dx CI Mean Elast	Shar e dy/dx CI Mean Elast	Shar e	dy/dx CI Mean Elast	Shar e	dy/dx CI Mean Elast	% Shar e	dy/dx CI Mean Elast	% Shar e
Age at birth									
20-	0.00 0.00 0.305 0.003 0.000 0.0 0.0 0.025 0.018 0.274 0.023 -0.00	0.04 -0.1							
25-	0.02 0.03 0.324 0.011 0.000 3 0.8 0.078 0.067 0.291 0.074 0.005	0 1.5							
30-	0.04 0.01 0.192 0.011 0.000 1 0.3 0.094 0.026 0.189 0.058 0.001	5 0.5							
35-	0.03 -0.02 0.086 0.004 -0.00 01 -0.3 0.098 -0.016 0.107 0.034 -0.00	05 -0.2							
40+	0.07 -0.08 0.020 0.002 -0.00 01 -0.3 0.114 -0.079 0.039 0.015 -0.00	12 -0.4							
Respondent's educational attainment									
Primary	0.01 0.20 0.089 0.002 -0.00 03 -0.8 0.048 -0.019 0.220 0.035 -0.00	07 -0.2							
Secondary	0.05 0.03 0.573 0.040 0.001 4 3.4 0.153 0.406 0.281 0.142 0.057	5 17.4							
Higher	0.11 0.44 0.156 0.022 0.009 6 22.9 0.271 0.812 0.057 0.051 0.041	0 12.4							
Respondent's husband's educational attainment									
Primary	0.04 -0.13 0.136 0.008 -0.00 10 -2.4 0.050 -0.130 0.279 0.046 -0.00	59 -1.8							
Secondary	0.05 -0.00 0.566 0.039 -0.00 03 -0.8 0.054 0.235 0.334 0.059 0.013	9 4.2							
Higher	0.08 0.36 0.166 0.017 0.006 4 15.2 0.099 0.654 0.109 0.036 0.023	3 7.1							
Region									
Urban Lower Egypt	-0.00 -0.61 0.093 0.000 -0.00 01 -0.2 -0.023 0.430 0.103 -0.008	33 -1.0							
Rural Lower Egypt	-0.02 -0.15 0.394 0.014 -0.01 6 3.7 -0.142 -0.124 0.300 -0.140	4 5.3							
Urban Upper Egypt	-0.06 0.47 0.111 0.018 -0.00 8 41 -9.7 -0.054 0.307 0.113 -0.020	62 -1.9							
Rural Upper Egypt	-0.09 -0.43 0.287 0.014 -0.03 1 33.5 -0.198 -0.437 0.294 -0.191	0.083	6 25.3						
Frontier	-0.08 0.12 0.009 0.000 -0.00 01 -0.3 -0.142 0.142 0.010 -0.005	-0.00 -0.2							
Figure 1B shows that, in 2014, five of the previous six determinants continued to play a major role in explaining the inequalities in URAC and account for 97.6% of the inequalities. The highest share was attributed to inequalities in living in rural Upper Egypt (33.5%), followed by inequalities in the respondent's higher education (22.9%) and husband's higher education (15.2%). Inequalities in birth order accounted for 13.9% and household standard of living retreated, accounting for 12.1% of the inequality in antenatal care.

Changes in the determinants' shares between 1995 and 2014 reveal the role played by their concentration indexes and elasticities. For example, the analysis shows that living in rural Upper Egypt maintained its place as providing the largest contribution to inequality in URAC in both years. In 1995, this large share was mainly the product of a high concentration of poor women in this region (CI=-0.437) and its large elasticity in URAC =-0.191), resulting in a 25.3% share. Between 1995 and 2014, this share increased to 33.5%. This increase was the product of the lower value CI for URAC in 2014 compared to the
level in 1995. At the same time, living in rural Upper Egypt maintained its high concentration of poor women (CI=-0.438), but experienced some improvement in its elasticity (=-0.093). For household standard of living (toilet type), the 20.8% share in 1995 was the product of its high concentration among the rich (CI=0.732) and relatively moderate elasticity (=0.093). By contrast, in 2014, the concentration index declined by almost 50% (CI=0.350) and elasticity also decreased, reaching (=0.015), producing a decline in its share to 12.1%. The respondent's higher education showed an increase in its share between 1995 and 2014 from 12.4% to 22.9%, respectively, despite the improvement in its concentration index (from 0.812 to 0.446) and elasticity (from 0.051 to 0.022).

Decomposition of the change in the wealth-related inequalities of use of regular antenatal care between 1995 and 2014

Understanding the main source for the decline in wealth-related inequalities in URAC is an important exercise to assess the contribution of the different policies over the period under consideration. Table 4 shows the changes in the determinants of URAC that contributed to the decline in its inequality between 1995 and 2014. These changes are further divided between its two components, namely changes in their elasticity and changes in their concentration index (CI). The assessment of a determinant's contribution to the change in the inequalities in regular use of antenatal care is carried out in terms of the overall sign and the magnitude of this contribution. A large absolute value indicates a large contribution. As the difference in the inequality of URAC is assessed in terms of inequality in 1995 minus inequality in 2014, a positive sign for any determinant indicates that this determinant has contributed to the decline in inequality, while a negative sign indicates that this determinant has counteracted the decline in the inequality.

Table 4. Decomposition of changes in the wealth-related inequalities in URAC
Variables	Differences in Share	% Share						
	Elasticity	CI	Elasticity	CI	Total	Elasticity	CI	Total
Age at birth								
20-	0.020	-0.022	0.000	-0.001	0.000	0.0	-0.2	-0.2
25-	0.063	0.038	0.002	0.003	0.005	0.6	1.0	1.6
30-	0.048	0.016	0.000	0.001	0.001	0.2	0.3	0.5
35-	0.030	0.011	-0.001	0.000	0.000	-0.3	0.1	-0.2
40+	0.013	0.001	-0.001	0.000	-0.001	-0.4	0.0	-0.4
Respondent's educational attainment								
Primary	0.033	0.185	-0.007	0.006	0.000	-2.4	2.3	-0.1
Secondary	0.102	0.370	0.004	0.052	0.056	1.3	18.2	19.5
Higher	0.029	0.366	0.013	0.019	0.031	4.5	6.4	10.9
Respondent's husband's educational attainment								
Primary	0.038	0.003	-0.005	0.000	-0.005	-1.7	0.0	-1.7
Secondary	0.020	0.243	0.000	0.014	0.014	-0.1	5.0	4.9
Higher	0.018	0.288	0.007	0.010	0.017	2.3	3.6	5.9
Region								
Urban Lower Egypt	-0.007	-0.186	-0.005	0.001	-0.003	-1.6	0.5	-1.1
Rural Lower Egypt	-0.130	0.030	0.020	-0.004	0.016	7.0	-1.5	5.5
Urban Upper Egypt	-0.012	-0.172	-0.006	0.003	-0.002	-1.9	1.2	-0.7
Rural Upper Egypt	-0.159	0.001	0.070	0.000	0.070	24.2	-0.1	24.1
Frontier governorate	-0.004	0.019	0.000	0.000	-0.001	-0.2	0.0	-0.2
Toilet type (modern)	0.079	0.382	0.028	0.036	0.064	9.6	12.4	22.0
Experience of terminated pregnancy	0.063	0.044	-0.004	0.003	-0.001	-1.4	1.1	-0.3
Birth attributes								
Birth interval>24 months)	0.093	0.017	0.001	0.002	0.003	0.3	0.8	1.1
Single birth	-0.036	0.000	0.000	0.000	0.000	0.0	0.0	0.0
Birth order -0.120 -0.040 0.009 0.008 0.017 3.1 2.8 5.9
Previous birth experience
Delivery at medical unit 0.044 0.237 0.001 0.010 0.010 0.2 3.4 3.6
Delivered by C-section -0.015 0.243 -0.001 0.000 -0.001 -0.4 0.0 -0.4
Live birth -0.122 0.020 0.003 -0.004 -0.001 1.2 -1.5 -0.3

Figure 2 shows that socioeconomic determinants were the largest contributors to the decline in wealth-based inequality in URAC between 1995 and 2014. Of the 12 determinants with positive signs, nine were socioeconomic determinants. Living in rural Upper Egypt, the household’s standard of living, and the woman’s attainment of secondary or higher education were the largest contributors to the decline in inequality, with a total share of 76.6% (24.1%, 22.1%, 19.5% and 10.9%, respectively).

These were followed by husbands’ higher or secondary education and living in rural Lower Egypt, which accounted for a total share of 16.3% (5.9%, 4.9% and 5.5%, respectively). By contrast, only three health need determinants showed positive contributions to the decline in URAC, namely birth order (5.9%), delivery in a medical center (3.6%) and appropriate birth interval (>24 months) (1.2%).

Examination of the two components of the determinant’s contribution to the decline in inequality revealed different patterns for different determinants. Table 4 shows that the contributions of living in rural Upper Egypt and living in rural Lower Egypt were mainly due to declines in elasticity between 1995 and 2014. By contrast, the contribution of a woman’s and her husband’s secondary education was mainly due to declines in CI during the same period. For the other positively contributing determinants, their contributions were divided between declines in elasticity () and declines in CI, with the share of the declines in CI commonly larger than that for elasticity. For example, the 22.1% contribution of the household standard of living was divided into 12.4% for declines in CI and 9.7% for declines in elasticity. Similarly, the 10.9% contribution of women’s higher education was divided into 6.4% for declines in CI and 4.5% for declines in elasticity.

Discussion

Over a period of 20 years, Egypt successfully increased URAC from 30.4% to 82.9%. At the same time, Egypt managed to decrease its wealth-based inequalities in URAC, with the difference between the richest and poorest wealth quintiles declining from 61% in 1995 to 21.1% in 2014. The current paper investigates the changes in the main determinants that contributed to the wealth-based inequality in URAC for the two years 1995 and 2014, as well as the main determinants that underlined the declines in this inequality in this period.

These changes in wealth disparities were confirmed by the decline in the wealth-based CI from 0.417 in 1995 to 0.052. This decline was also associated with improvements in the inequalities of many of its determinants, in particular the ages of childbearing, women’s and their husbands’ education, household standard of living, and birth order. Nevertheless, other determinants either maintained the same level of inequalities, such as living in rural Upper Egypt, or showed increases in inequalities, such as experience of a terminated pregnancy and living in urban Lower or Upper Egypt.

As modeling is the common approach in assessing the relationship between health variables and their determinants, modeling URAC for the two years of 1995 and 2014 was carried out. The modeling of URAC confirmed the findings in previous literature on developing countries, and on Egypt [11-21]: both social and health needs were significant in determining
URAC. On the social side, women’s age at birth, their education level, their husbands’ education level, the household standard of living/wealth, and the region, were significant determinants of URAC. Changes in the relationship between URAC and its determinants confirmed the findings of Zaky and colleagues with regard to the sustainability of the effect of health needs on use of antenatal care[21]. Like in Zaky’s work, an experience of terminated pregnancy was significantly related to URAC in both 1995 and 2004.

The main contribution of the current study is the introduction of the decomposition analysis of the inequalities in URAC and the changes in these inequalities between 1995 and 2014. While the modeling approach leads to the identification of the significant relationships between URAC and its determinants, recommendations based on this approach commonly focus on strengthening the health system to better serve the population, or blaming individuals for their underutilization of URAC. By contrast, decomposition of the inequalities quantifies two factors underlying URAC inequality, namely: 1) the relationship between URAC and its determinants assessed in terms of the determinants’ elasticity; and 2) the inequality in these determinants assessed in terms of determinants’ CI. While the elasticity can be interpreted as the success of the health system in expanding its services to all individuals, CI shows the role of inequality in the determinants. The decomposition of URAC inequality for the two years showed the substantial contribution of five main determinants that accounted for more than 90% of the estimated inequality for both years. These determinants were dominated by social determinants, except for birth order. The social determinants were: living in rural Upper Egypt, the respondent’s higher education, the husband’s higher education, and the household standard of living. However, their relative contribution changed in the time between the two years. These changes in relative contributions were the product of the interplay between three changes, namely the decline in the concentration indexes for URAC, the decline in the concentration indexes in the majority of the determinants, and the changes in the elasticities of these determinants.

This interplay was more redefined in the decomposition of the changes in the inequalities of URAC between 1995 and 2014. In this decomposition, the above five determinants were the most-contributing determinants to the decline in the URAC inequalities. As the determinant’s contribution is the product of the sum of the changes in its concentration index and the changes in its elasticity, declines in concentration index indicate the success of social policies in decreasing inequality of the social determinants and the success of the health system in decreasing inequality of health need determinants. By contrast, declines in elasticity indicate the success of health system in attenuating the effect of the determinant on URAC. With this understanding, areas for interventions can be identified. For example, living in rural Upper Egypt was the biggest contributor to the inequalities and the biggest contributor to the changes in the inequalities; analysis revealed that the decline in URAC inequality was mainly due to the changes in the elasticity of this determinant, which can be traced to the better performance of the health system, attenuating its effect on URAC. This confirmed the results of Gipson and colleagues that showed that the focus of government efforts on improving the maternal service in most vulnerable areas including rural Upper Egypt have paid off in the form of significant declines in their maternal mortality ratio [8]. By contrast, there was no change in its concentration index. In other words, despite the ongoing effort to tackle poverty in rural Upper Egypt, poverty continues to be significantly prevalent in this region. This result is in line with the findings from the Egypt Household Income, Expenditure, and Consumption Survey in 2017, which showed that the high concentration of poverty in this region did not change between 2005 and 2015, with more than 50% of the population classified as poor [39]. The result in the current analysis highlights the need for an area of intervention at the level of social policies to tackle these high levels of poverty, which in turn could lead to more declines in URAC inequalities.

The large shares of the women’s and husbands’ education in the changes in URAC inequalities can be attributed to declines in their concentration index, which confirm the observed improvement in educational attainment of women and men in Egypt in that time period. UN data show that the proportion of Egyptians with at least secondary education among those aged 25 years and older increased from 29.7% in 1995 to 61.4% in 2014 [40]. However, the changes in their elasticity were relatively small, which could point to the need for the health system to direct more interventions to attenuating the impact of women’s and their husbands’ education on URAC. For household standards of living, there is still more area for intervention, particular on the level of the social policies to decrease its inequalities. Similarly, for other positively contributing determinants, the
declines in the concentration index and, to a lesser extent, in the elasticity, showed the need to work more on interventions in the health system and in social policies.

Conclusion

The current study offers clear insight into the use of decomposition in tackling health inequality in general. Decomposition of inequality can support prioritization of interventions and hence can lead to effective and efficient use of the limited resources available in any society. Decomposition of the changes in inequality can aid assessment of the effectiveness and the monitoring of the impact of these interventions, as well as help generate new policies and interventions needed to tackle these inequalities.

List Of Abbreviations

CI: Concentration index; DHS: Demographic and health survey; EDHS: Egypt Demographic and Health Survey; CSDH: Commission on Social Determinants of Health

Declarations

Ethical approval and consent to participate

NOT APPLICABLE: The study is a secondary analysis of the Egypt Demographic and Health Survey 2014.

Consent for publication

NOT APPLICABLE

Availability of Data and Material

The dataset analyzed during the current study is available in The DHS program: The Demographic and Health Survey program repository.

https://www.dhsprogram.com/data/dataset/Egypt_Standard-DHS_2014.cfm?flag=0

Competing interests:

The authors declare that they have no competing interests

Funding:

NOT APPLICABLE

Author's contribution

I am a single author (NOT APPLICABLE)

Acknowledgements

Not applicable

Author's information

Zeinab Khadr

Professor, Statistics Department, Faculty of Economics and Political Science, Cairo University
Senior Research Scientist, The Social Research Center, The American University in Cairo

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division. Trends in maternal mortality: 1990 to 2015: Estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division. Geneva: World Health Organization, 2015.

2. Campbell, O., Gipson, R., Issa, A., Matta, N., El Deeb, B. El Mohandes, A., Alwen, A. and Mansour, E. National maternal mortality ratio in Egypt halved between 1992–1993 and 2000. Bulletin of the World Health Organization: the International Journal of Public Health 83 (6) 462-472.

3. Khalil, K., and Roudi-Fahimi, F. Making Motherhood Safer in Egypt.” PRB MENA Policy Brief, 2004, 1-8.

4. World Health Organization. WHO recommendations on antenatal care for a positive pregnancy experience. Geneva: World Health Organization; 2016.

5. El-Zanaty, F., Hussein, E., Shawky, G., Way, A. and Kishor, S. Egypt Demographic and Health Survey 1995. Calverton, Maryland [USA]: National Population Council and Macro International Inc. 1996.

6. Ministry of Health and Population [Egypt], El-Zanaty and Associates [Egypt], and ICF International. Egypt Demographic and Health Survey 2014. Cairo, Egypt and Rockville, Maryland, USA: Ministry of Health and Population and ICF International. 2015.

7. Central Agency for Public Mobilization and Statistics (Egypt) (CAPMAS). 2017 population and housing census. 2018. Cairo, Egypt.

8. Gipson, R., Mohandes, A.E., Campbell, O. et al. The Trend of Maternal Mortality in Egypt from 1992–2000: An Emphasis on Regional Differences. Maternal and Child Health Journal. 2005. 9, 71–82.

9. Cole A., Afifi M. and Salah R. Bridging Gaps in Reproductive Health Care in Egypt through Private Sector Involvement. 2008, Final report. World Bank Institute. a

10. Brasington A, Abdelmegeid A, Dwivedi V, Kols A, Kim YM, Khadka N, Rawlins B, Gibson A. Promoting Healthy Behaviors among Egyptian Mothers: A Quasi-Experimental Study of a Health Communication Package Delivered by Community Organizations. PLoS One. 2016 18;11(3).

11. Pervin, J., Moran, A., Rahman, M., Razzaque, A. Sibley, L., Streatfield, P., Reichenback, L., Koblinsky, M., Hruschka, D., Rahman, A. Association of antenatal care with facility delivery and perinatal survival – a population-based study in Bangladesh. BMC Pregnancy Child birth, 2012.12(1), 111.

12. Islam, M. R., and J. O.Odland. Determinants of antenatal and postnatal care visits among Indigenous people in Bangladesh: a study of the Mru Community. Rural and Remote Health, 2011.11: 1672

13. Ahmed, N. Some Determinants to Reduce Maternal and Child Mortality in Bangladesh. IOSR Journal of Nursing and Health Science, 2015, 4 (3) Ver. II (May. - Jun. 2015): 64-70.

14. Adewuyi E., Auta, A., Khanal, V., Bamidele, O., Akuoko, C., Adefemi, K., Tapshak, S and Zhao, Y. Prevalence and factors associated with underuse of antenatal care services in Nigeria: A comparative study of rural and urban residences based on the 2013 Nigeria demographic and health survey. PLoS ONE, 2018, 13(5): e0197324.https://doi.org/10.1371/journal.pone.0197324

15. Rurangirwa, A. A., Mogren, I., Nyirazinyoye, L.,Ntaganira, J. and Krantz, G. Determinants of poor use of antenatal care services among recently delivered women in Rwanda; a population based study. BMC Pregnancy and Childbirth, 2017,17:142 DOI 10.1186/s12884-017-1328-2.
16. Okedo-Alex, I., Akamike, I., Ezeanosike, O., and Uneke, C. Determinants of antenatal care utilisation in sub-Saharan Africa: a systematic review. BMJ Open 2019; 9.

17. Gopalan, S. S. Association between conflict and usage of maternal health services in Egypt: an uncontrolled before and after study. DrPH (research paper style) thesis, London School of Hygiene & Tropical Medicine. 2019.

18. Benova, L., Campbell, O., Ploubidis, G. Socio-Economic Gradients in Maternal and Child Health-Seeking Behaviours in Egypt: Systematic Literature Review and Evidence Synthesis. PLoS ONE, 2014, 9(3).

19. Benova, L. Bad behaviour or “poor” behaviour?: Mechanisms underlying socioeconomic inequalities in maternal and child health seeking in Egypt. PhD thesis, London School of Hygiene & Tropical Medicine. 2015.

20. Zaky, H., Armanious, D. and Hussein, M. Determinants of Antenatal Health Care Use in Egypt (2000-2014) Using Binary and Count Outcomes. Health, 2019, 11, 25-39.

21. Zaky, H., Armanious, D. and Hussein, M. Impact of the Changes in Women’s Characteristics over Time on Antenatal Health Care Use in Egypt (2000-2008). Open Journal of Obstetrics and Gynecology, 2015, 5, 542-552. https://doi.org/10.4236/ojog.2015.510078

22. Commission on Social Determinants of Health. Closing the gap in a generation: health equity through action on the social determinants of health. Final Report of the Commission on Social Determinants of Health. Geneva, World Health Organization; 2008.

23. Liu, X., Goa, W. & Yan, H. “Measuring and decomposing the inequality of maternal health services use in western rural China.” BMC health services research vol. 14 102. 3 Mar. 2014, doi:10.1186/1472-6963-14-102

24. Nwosu, C. and Ataguba, J. Socioeconomic inequalities in maternal health service utilisation: a case of antenatal care in Nigeria using a decomposition approach. BMC Public Health. 2019; 19(1):1493.

25. Ali B and Chauhan S. Inequalities in the utilisation of maternal health Care in Rural India: Evidences from National Family Health Survey III & IV. BMC Public Health. 2020; 20(1):369.

26. Ogundele, O., Pavlova, M. and Groot, W. “Inequalities in reproductive health care use in five West-African countries: A decomposition analysis of the wealth-based gaps.” International journal for equity in health 2020 : 19,1 44.

27. Khadr Z. Monitoring socioeconomic inequity in maternal health indicators in Egypt: 1995-2005. International Journal for Equity in Health, 2009, 8.

28. Gwatkin, D., Rutstein, S., Johnson, K., Suliman, E., Wagstaff, A., and Amouzou, A. Socioeconomic Differences in Health, Nutrition, and Population: Egypt. The World Bank. 2007.

29. Benova, L. Bad behaviour or “poor” behaviour?: Mechanisms underlying socioeconomic inequalities in maternal and child health seeking in Egypt. PhD thesis, London School of Hygiene & Tropical Medicine. 2015.

30. The DHS program. Wealth Index construction in Egypt (2014). Available from https://dhsprogram.com/programming/wealth%20index/Egypt%20DHS%202014/Egypt%202014.pdf. Accessed on September 2019.

31. O'Donnell, O, van Doorslaer, E., Wagstaff, A. and Lindelow, M. (eds.) Analyzing Health Equity Using Household Survey Data: A Guide to Techniques and Their Implementation. Washington, DC: World Bank Group; 2007.

32. Kakwani, N., Wagstaff, A. and Van Doorslaer, E. "Socioeconomic Inequalities in Health: Measurement, Computation and Statistical Inference." Journal of Econometrics; 1997, 77(1): 87–104

33. Wagstaff, A., Van Doorslaer, E. and Paci, P. “Equity in the Finance and Delivery of Health Care: Some Tentative Cross-Country Comparisons.” Oxford Review of Economic Policy; 1989, 5(1): 89–112.

34. Van Doorslaer, E., Koolman, X. and Jones, A. ‘Explaining Income-Related Inequalities in Doctor Use in Europe’, Health Economics, 2004, 13 (7): 629–47.

35. O'Donnell, O., Van Doorslaer, E., Wagstaff, A., Lindelow, M. Analyzing health equity using household survey data: a guide to techniques and their implementation. World Bank, Washington, 2007

36. Oaxaca R. Male–female wage differentials in urban labor markets. Int Econom Rev 1973;14: 693.
Figures

Figure 1

Decomposition share of the inequalities in the determinants of URAC (1995 and 2014)
Figure 2

Share of the changes in the determinants of inequalities and elasticities in the changes in the inequalities in URAC (1995 and 2014)

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- StatisticalAnalysis.pdf