Transition-Metal-Free Reductive Cross-Coupling Employing Metabisulfite as a Connector: General Construction of Alkyl–Alkyl Sulfones

Yingying Meng¹, Ming Wang*¹ & Xuefeng Jiang*¹²

¹Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062. ²State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071

*Corresponding authors: xfjiang@chem.ecnu.edu.cn; wangming@chem.ecnu.edu.cn

Cite this: CCS Chem. 2021, 3, 17–24

A multicomponent reductive cross-coupling of unactivated alkyl halides and alkyl tosylates connected via sodium metabisulfite was established for the general construction of alkyl–alkyl sulfones. Neither a metal catalyst nor a metal reductant is required in this “green” reductive cross-coupling. Inorganic sodium metabisulfite served as both the sulfur dioxide source and the robust connector. Safe formate was used as a highly efficient single-electron reductant. Both intramolecular and intermolecular reductive cross-couplings were achieved with broad substrate scopes. Diverse biologically important molecules were efficiently cross-linked with steroids, saccharides, amino acids, peptides, and pharmaceuticals with sensitive functional groups, affording sulfone-bridged hybrid molecules. Mechanistic studies demonstrated that alkyl radicals were involved in the singly occupied molecular orbital (SOMO) of the metabisulfite salt, initiating the transformation.

Keywords: alkyl sulfone, formate, sodium metabisulfite, reductive cross-coupling, transition-metal-free

Introduction

Sulfone motifs have attracted considerable interest in drug discovery because of their dramatic effects on stability, liposolubility, and metabolism.¹–⁴ The linkage of carbon chains to sulfone motifs always improves drug metabolism. Alkyl–alkyl sulfones are among the most frequently occurring sulfone motifs in pharmaceuticals due to their excellent effects on the balance between water solubility and lipid solubility. Several representative and well-known pharmaceutical inhibitors containing alkyl–alkyl sulfones are shown in Scheme 1a.⁵–¹⁰ Conventionally, sulfones are prepared via the oxidation of sulfides with strong oxidants after thiol-involved couplings,¹¹,¹² resulting in low functional group compatibility. Strategies for sulfone construction via the introduction of hypervalent sulfur in the same oxidation state into organic frameworks are of great

COMMUNICATION

Received: Nov. 5, 2020 | Accepted: Dec. 6, 2020 | Published: Jan. 8, 2021

DOI: 10.31635/ccschem.020.20200638

Citation: CCS Chem. 2021, 3, 17–24

Citation denotes calendar year of first online publication.

Issue Assignment: Volume 3 (2021), Issue 12
interest due to the oxidative economy and step economy of such processes. For instance, transition-metal-catalyzed syntheses of aryl–aryl(alkyl) sulfones have been well developed via halides and organometallic reagents. However, a general approach for the introduction of sulfone motifs into C(sp3)−C(sp3) organic frameworks is lacking since the β-hydrogen in alkyl coupling partners is likely to be poorly compatible with transition-metal-catalyzed systems. Although we have achieved the construction of aryl–alkyl sulfone by virtue of the distinction between aryl and alkyl halides, tin is still necessary as a stoichiometric metal reductant. Developing cheap salts for green and safe hydrogen storage and for replacing environmentally unfriendly

Scheme 1 | (a–c) Sulfone-bridged reductive cross-coupling.
metals as reductants in reductive cross-couplings is a long-standing goal.31\textendash 38 In addition, the smaller distinction between two different alkyl coupling partners is a tough challenge compared with the distinction between aryl and alkyl halide coupling partners.39 Traditionally, the direct reductive cross-couplings of electrophilic partners are realized via preactivation of alkyl halides by a metal reductant to avoid precast organometallic reagents (Scheme 1b). Previously, we showed that the SO$_2$ motif in inorganic sulfur dioxide salts possesses a sufficiently active hybridized singly occupied molecular orbital (SOMO) to participate in a radical process.29,40\textendash 51 Alkyl halides can be used as precursors for alkyl radicals, leading to radical capture with inorganic sulfur dioxide salts for the generation of sulfonyl radicals. Due to the slightly higher electronegativity of sulfur atoms than carbon atoms, sulfonyl radicals were apt to be reduced than alkyl radicals. A release-controlled hydrogen storage salt instead of rapid electron transfer from reductive metal powders is the key factor for the highly selective reduction of sulfonyl radicals. Alkyl tosylates are rather inert during the single-electron transfer (SET) process since the high-lying $\pi^*(C\text{-}O)$ orbital is protected from radical reduction and involved in subsequent nucleophilic substitution. The sequential radical release and coupling limits the undesired homocoupling of the partners (Scheme 1c). Herein, we disclose a transition-metal-free reductive cross-coupling of unactivated alkyl halides, alkyl tosylates, and metabisulfite for the modular construction of alkyl-alkyl sulfonyl-bridged compounds.

Results and Discussion

We commenced our evaluation of this reductive cross-coupling with unactivated alkyl tosylates 1a, alkyl halides 2a, and sodium metabisulfite in the presence of a base in dimethyl sulfoxide (DMSO). To increase the solubility of inorganic salts, phase-transfer catalyst tetrabutylammonium bromide (TBAB) was added. No desired product 3a was detected in the absence of a reductant in this transformation (Table 1, entry 1). To our delight, bench-stable formic acid and formate reductants could afford the cross-coupled product in moderate yields (Table 1, entries 2\textendash 4). Diverse inorganic sulfur dioxide surrogates possessing different masking groups and unique SET abilities were tested as the connector in the current transformation. Sodium metabisulfite was found to provide the best efficiency (65\% yield, Table 1, entries 5\textendash 7). Further evaluation of bases revealed that the stronger base cesium carbonate delivers 3a in a better yield (Table 1, entries 8\textendash 11). Considering the effect of the solvent, DMSO is the best choice since it is beneficial for the dissolution of inorganic salts (Table 1, entries 12\textendash 14).

Entry	Reductant	SO$_2$ Source	Base	Solvent	Yields (%)b
1	–	Na$_2$S$_2$O$_5$	K$_2$HPO$_4$	DMSO	NP
2	HCO$_2$H	Na$_2$S$_2$O$_5$	K$_2$HPO$_4$	DMSO	49
3	HCO$_2$Na	Na$_2$S$_2$O$_5$	K$_2$HPO$_4$	DMSO	60
4	HCO$_2$K	Na$_2$S$_2$O$_5$	K$_2$HPO$_4$	DMSO	65
5	HCO$_2$K	K$_2$S$_2$O$_5$	K$_2$HPO$_4$	DMSO	40
6	HCO$_2$K	Na$_2$S$_2$O$_4$	K$_2$HPO$_4$	DMSO	41
7	HCO$_2$K	DABSO	K$_2$HPO$_4$	DMSO	44
8	HCO$_2$K	Na$_2$S$_2$O$_5$	–	DMSO	49
9	HCO$_2$K	Na$_2$S$_2$O$_5$	NaHCO$_3$	DMSO	44
10	HCO$_2$K	Na$_2$S$_2$O$_5$	Et$_3$N	DMSO	57
11	HCO$_2$K	Na$_2$S$_2$O$_5$	Cs$_2$CO$_3$	DMSO	77
12	HCO$_2$K	Na$_2$S$_2$O$_5$	Cs$_2$CO$_3$	DMA	66
13	HCO$_2$K	Na$_2$S$_2$O$_5$	Cs$_2$CO$_3$	DMF	54
14	HCO$_2$K	Na$_2$S$_2$O$_5$	Cs$_2$CO$_3$	Toluene	22

Note: NP, no product; DMA, dimethylacetamide; DMF, dimethylformamide. Bold-italic text represents optimal conditions

a Conditions: 1a (0.2 mmol), SO$_2$ source (0.4 mmol), 2a (0.5 mmol), base (0.4 mmol), reductant (0.5 mmol), TBAB (0.3 mmol), solvent (2.0 mL), 100 °C, N$_2$, 10 h.

b Isolated yields.
The scope of the reductive cross-coupling employing sodium metabisulfite as a connector is shown in Scheme 2 (for characterizations see the Supporting Information). Aryl propyl sulfones with a broad range of substituents, including those with different electronic properties, at various positions were efficiently afforded (3a–3f). A series of alkyl coupling partners, even linear hexadecane (C16), were well tolerated in the coupling (3g–3k). Heterocycle-containing alkyl tosylates provided the desired alkyl-alkyl products in excellent yields (3l). Fused-ring anthracene and pyrene derivatives, common motifs in luminescent materials, successfully underwent the current transformation, furnishing the corresponding sulfone products (3m–3n). Furthermore, this reaction was not only restricted to intermolecular variants but also applicable to the intramolecular synthesis of cyclic sulfones (3o–3p). Regrettably, when secondary tosylates were employed, no desired cross-coupling products were detected. Linear alkyl (3q–3s), trifluoropropyl (3t), and alkoxy (3u) derivatives successfully participated in the multicomponent reductive cross-coupling. Various nitrogen-containing structures (3v–3y) and even amino acids (3y) were compatible with this reductive cross-coupling, efficiently providing the desired sulfones. In addition, secondary alkyl halides are also compatible with this transformation, and these substrates were a notable challenge in C(sp3) reductive cross-coupling. Various nitrogen-containing structures (3v–3y) and even amino acids (3y) were compatible with this reductive cross-coupling, efficiently providing the desired sulfones. In addition, secondary alkyl halides are also compatible with this transformation, and these substrates were a notable challenge in C(sp3) reductive cross-couplings. Both linear (3z) and cyclic (3aa–3ae) secondary alkyl halides underwent this transformation. The compatibility with 7- (3ad) and 12-membered (3ae) rings highlighted the high tolerance of this strategy. The structure of 3ab was confirmed via X-ray diffraction analysis.a

To further demonstrate the practical applicability of this cross-linking protocol, we sought to link structurally

Scheme 2 | Collective alkyl sulfone construction. Reaction conditions: 1 (0.2 mmol), Na2S2O5 (0.4 mmol), 2 (potassium formate, 0.5 mmol), HCOOK (0.5 mmol), Cs2CO3 (0.4 mmol), TBAB (0.3 mmol), DMSO (2 mL), 100 °C, 10 h, isolated yields.
Complicated, naturally occurring molecules with pharmaceuticals by employing sodium metabisulfite as a connector (Scheme 3). The linkage of dehydroepiandrosterone, estrone, and a derivative of the anti-inflammatory drug isoxepac was smoothly achieved under the standard conditions (3af–3ah). The linkage of natural cholic acid and tetrahydropyran provided the corresponding product in an excellent yield (3ai). The structure of 3ai was confirmed via X-ray diffraction analysis. The reductive cross-couplings between an amino acid (L-tyrosine), a saccharide (glucose), steroids (dehydroepiandrosterone and estrone), and nonsteroidal anti-inflammatory drug oxaprozin were all successful, affording the corresponding sulfone-bridged hybrid molecules in good yields (3aj–3an). Notably, this strategy can efficiently connected long-chain linoleic acids and peptides from the corresponding alkyl precursors (3ao).

To demonstrate the mechanism of this multicomponent reductive cross-coupling reaction, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was first added to the system under the standard conditions, and sulfone production was suppressed (Scheme 4a). Subsequently, a radical clock experiment involving (bromomethyl)cyclopropane (4) and alkyl tosylates 1a was conducted under the standard conditions (Scheme 4b). Cyclopropane-opened product 5 was generated in 14% yield, indicating that an alkyl radical intermediate was formed from the alkyl bromide substrate during the transformation. These results demonstrated that the multicomponent reductive cross-coupling began with the radical reduction of the alkyl halide followed by SOMO interaction with sodium metabisulfite. Cyclic voltammetric analyses showed that the reduction potentials of alkyl tosylate 1a was −2.75 V and alkyl halide 2a was −2.40 V, which indicated that 2a was likely to be preferentially reduced relative to 1a. Two reduction peaks at −1.50 and −2.40 V were observed in Scheme 4c, corresponding to two successive SETs to alkyl halide 2a, which demonstrated that 2a easily underwent a single-electron reduction process. Thus, the proposed

Scheme 3 | The cross-linking of steroids, saccharides, amino acids, and pharmaceuticals. Reaction conditions: 1 (0.2 mmol), Na$_2$S$_2$O$_5$ (0.4 mmol), 2 (0.5 mmol), HCOOK (0.5 mmol), Cs$_2$CO$_3$ (0.4 mmol), TBAB (0.3 mmol), DMSO (2 mL), 100 °C, 10 h, isolated yields.
reaction pathway is depicted in Scheme 4d. Initially, the homolysis of the alkyl halide generated alkyl radical \(\cdot{}^{9}Bu \) and iodine radical, which was reduced to iodide ion by the slowly released formate. Subsequently, the reaction of alkyl radical \(\cdot{}^{9}Bu \) and metabisulfite furnished sulfonyl radical \(\cdot{}^{10}Bu \), which was reduced by formate radical cation, affording sulfonyl anion \(\cdot{}^{11}Bu \) and sulfinate \(\cdot{}^{11'}Bu \) in equilibrium. Finally, alkyl coupling of alkyl tosylates 1 and intermediate \(\cdot{}^{11}Bu \) delivered the desired sulfone product 3.

Conclusion

A transition-metal-free multicomponent reductive cross-coupling of unactivated alkyl halides, alkyl tosylates, and sodium metabisulfite was achieved for the construction of alkyl–alkyl sulfones. Inorganic sodium metabisulfite salt served both as the sulfur dioxide source and a robust connector. No transition-metal catalyst was necessary, and a controlled-release hydrogen storage...
salt instead of metal powder reductant allowed the sequential and highly selective reduction of sulfonyl radicals. The linkage of diverse biologically important molecules, such as steroids, saccharides, amino acids, peptides, and pharmaceuticals, was efficiently achieved and delivered sulfone-bridged hybrid molecules. Mechanistic studies demonstrated that alkyl radicals interacted with the SOMO of metabisulfite, initiating the transformation, and the high-lying $\sigma^*(C=O)$ orbital of the alkyl tosylate participated in the subsequent nucleophilic substitution. Further cross-linking protocols with inorganic sulfur salts are being explored in our laboratory.

Footnote
* CCDC 2007887 (3ab) and CCDC 2007888 (3ai) can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Supporting Information
Supplemental Information is available and includes general information, general procedure for the synthesis of sulfones, optimization of reaction conditions, characterization of alkyl-alkyl sulfone products, X-ray crystal structures, and electrochemical measurements.

Conflict of Interest
The authors declare no competing financial or nonfinancial interests.

Acknowledgments
The authors are grateful for financial support provided by NSFC (nos. 22071057, 21971065, and 21871089), STCSM (nos. 20XD1421500, 20JC1416800, and 18JC1415600), Innovative Research Team of High-Level Local Universities in Shanghai (no. SSMU-ZLCX20180501), and Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

References
1. Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. Data-Mining for Sulfur and Fluorine: An Evaluation of Pharmaceuticals to Reveal Opportunities for Drug Design and Discovery. *J. Med. Chem.* 2014, 57, 2832–2842.
2. Feng, M.; Tang, B.; Liang, S.; Jiang, X. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. *Curr. Top. Med. Chem.* 2016, 16, 1200–1216.
3. Scott, K. A.; Njardarson, J. T. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. *Top. Med. Chem.* 2018, 376, 5.
4. Jiang, X., Ed. *Sulfur Chemistry; Topics in Current Chemistry*; Springer: Berlin, 2018.
5. Carmine, A. A.; Brogden, R. N.; Heel, R. C.; Speight, T. M.; Avery, G. S. Tinidazole in Anaerobic Infections. *Drugs* 1982, 24, 85–117.
6. Deeks, E. D. Apremilast: A Review in Oral Ulcers of Behcet’s Disease. *Drugs* 2020, 80, 181–188.
7. Van Paassen, P.; De Zeeuwen, D.; Navis, G.; De Jong, P. E. Renal and Systemic Effects of Continued Treatment with Renin Inhibitor Remikiren in Hypertensive Patients with Normal and Impaired Renal Function. *Nephrol. Dial. Transplant.* 2000, 15, 637–643.
8. McChesney, E. W.; Banks, Jr., W. F.; Portmann, G. A.; Crain, A. V. R. Metabolism of Chloromethazan in Man and Laboratory Animals. *Biochem. Pharmacol.* 1967, 16, 813–826.
9. Liu, K. K.-C.; Bailey, S.; Dinh, D. M.; Lam, H.; Li, C.; Wells, P. A.; Yin, M.-J.; Zhou, A. Conformationally-Restricted Cyclic Sulfones as Potent and Selective mTOR Kinase Inhibitors. *Biorg. Med. Chem. Lett.* 2012, 22, 5114–5117.
10. Rueeger, H.; Lueoeend, R.; Rogel, O.; Rondeau, J.-M.; Möbitz, H.; Machauer, R.; Jacobson, L.; Staufenbiel, M.; Desrayaud, S.; Neumann, U. Discovery of Cyclic Sulfone Hydroxethylamines as Potent and Selective β-Site APP-Cleaving Enzyme 1 (BACE1) Inhibitors: Structure-Based Design and in Vivo Reduction of Amyloid β-Peptides. *J. Med. Chem.* 2012, 55, 3364–3386.
11. Li, Y.; Rizvi, S. A.; Hu, D.; Sun, D.; Gao, A.; Zhou, Y.; Li, J.; Jiang, X. Selective Late-Stage Oxygenation with Ground-State Oxygen Based on Sulfides by Uranyl Photocatalysis. *Angew. Chem. Int. Ed.* 2019, 58, 13499–13506.
12. Li, Y.; Wang, M.; Jiang, X. Controllable Sulfoxidation and Sulfenylation with Organic Thiosulfate Salts via Dual Electron- and Energy-Transfer Photocatalysis. *ACS Catal.* 2017, 7, 7587–7592.
13. Aziz, J.; Messaoudi, S.; Alami, M.; Hamze, A. Sulfinate Derivatives: Dual and Versatile Partners in Organic Synthesis. *Org. Biomol. Chem.* 2014, 12, 9743–9759.
14. Emmett, E. J.; Willis, M. C. The Development and Application of Sulfur Dioxide Surrogates in Synthetic Organic Chemistry. *Asian J. Org. Chem.* 2015, 4, 602–611.
15. Qiu, G.; Zhou, K.; Gao, L.; Wu, J. Insertion of Sulfur Dioxide via a Radical Process: An Efficient Route to Sulfonyl Compounds. *Org. Chem. Front.* 2018, 5, 691–705.
16. Qiu, G.; Zhou, K.; Wu, J. Recent Advances in the Sulfonation of C-H Bonds with the Insertion of Sulfur Dioxide. *Chem. Commun.* 2018, 54, 12561–12569.
17. Ye, S.; Qiu, G.; Wu, J. Inorganic Sulfites as the Sulfur Dioxide Surrogates in Sulfonation Reactions. *Chem. Commun.* 2019, 55, 1013–1019.
18. Hofman, K.; Liu, N.-W.; Manolikakes, G. Radicals and Sulfur Dioxide: A Versatile Combination for the Construction of Sulfonyl-Containing Molecules. *Chem. Eur. J.* 2018, 24, 11852–11863.
19. Ye, S.; Yang, M.; Wu, J. Recent Advances in Sulfonation Reactions Using Potassium/Sodium Metabisulfite. *Chem. Commun.* 2020, 56, 4145–4155.
20. Zeng, D.; Wang, M.; Deng, W.-P.; Jiang, X. The Same Oxygenation-State Introduction of Hypervalent Sulfur under Transition-Metal-Free Conditions. *Org. Chem. Front.* 2020, 7, 3956–3966.
21. Emmett, E. J.; Hayter, B. R.; Willis, M. C. Palladium-Catalyzed Three-Component Diaryl Sulfone Synthesis Exploiting the Sulfur Dioxide Surrogate DABSO. Angew. Chem. Int. Ed. 2013, 52, 12679–12683.

22. Johnson, M. W.; Bagley, S. W.; Mankad, N. P.; Bergman, R. G.; Mascitti, V.; Toste, F. D. Application of Fundamental Organofunctional Chemistry to the Development of a Gold-Catalyzed Synthesis of Sulfinate Derivatives. Angew. Chem. Int. Ed. 2014, 53, 4404–4407.

23. Shavnya, A.; Hesp, K. D.; Mascitti, V.; Smith, A. C. Palladium-Catalyzed Synthesis of (Hetero)aryl Alkyl Sulfones from (Hetero)aryl Boronic Acids, Unactivated Alkyl Halides, and Potassium Metabisulfite. Angew. Chem. Int. Ed. 2015, 54, 13571–13575.

24. Deeming, A. S.; Russell, C. J.; Willis, M. C. Palladium(II)-Catalyzed Intramolecular Reductive Cross Coupling of Electrophiles. J. Am. Chem. Soc. 2012, 135, 13745–13748.

25. Zheng, D.; Mao, R.; Li, Z.; Wu, J. A Copper(I)-Catalyzed Three-Component Reaction of Triethoxysilanes, Sulfur Dioxide, and Alkyl Halides. Org. Chem. Front. 2019, 6, 359–363.

26. Zhu, H.; Shen, Y.; Deng, Q.; Chen, J.; Tu, T. Acenaphthoimidazolylidene Gold Complex-Catalyzed Alkylation/Sulfonylation of Boronic Acids by Potassium Metabisulfite and Alkyl Halides: A Direct and Robust Protocol to Access Sulfonylmes. J. Catal. 2020, 47, 4655–4669.

27. Zheng, D.; Chen, M.; Yao, L.; Wu, J. A General Route to Sulfonylmes via Insertion of Sulfur Dioxide Promoted by Cobalt Oxide. Org. Chem. Front. 2016, 3, 985–988.

28. Zheng, D.; Mao, R.; Li, Z.; Wu, J. A Copper(I)-Catalyzed Three-Component Reaction of Triethoxysilanes, Sulfur Dioxide, and Alkyl Halides. Org. Chem. Front. 2016, 3, 359–363.

29. Meng, Y.; Wang, M.; Jiang, X. Multicomponent Reductive Cross-Coupling of an Inorganic Sulfur Dioxide Surrogate: Straightforward Construction of Diversely Functionalized Sulfonylmes. Angew. Chem. Int. Ed. 2020, 59, 1346–1353.

30. Liu, H.; Jiang, X. Transfer of Sulfur: From Simple to Diverse. Chem. Asian J. 2013, 8, 2546–2563.

31. Kim, S.; Goldfogel, M. J.; Gilbert, M. M.; Weix, D. J. Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Chlorides with Primary Alkyl Chlorides. J. Am. Chem. Soc. 2020, 142, 9902–9907.

32. Komeyama, K.; Michiyuki, T.; Osaka, I. Nickel/Cobalt-Catalyzed C(sp²)-C(sp³) Cross-Coupling of Alkyl Halides with Alkyl Tosylates. ACS Catal. 2019, 9, 9285–9291.

33. Wang, X.; Wang, S.; Xue, W.; Gong, H. Nickel-Catalyzed Reductive Coupling of Aryl Bromides with Tertiary Alkyl Halides. J. Am. Chem. Soc. 2015, 137, 11562–11565.

34. Cherney, A. H.; Reisman, S. E. Nickel-Catalyzed Asymmetric Reductive Cross-Coupling between Vinyl and Benzyl Electrophiles. J. Am. Chem. Soc. 2014, 136, 14365–14368.

35. Liu, H.; Wei, J.; Qiao, Z.; Fu, Y.; Jiang, X. Palladium-Catalyzed Intramolecular Reductive Cross Coupling of Csp²–Csp³ Bond Formation. Chem. Eur. J. 2014, 20, 8308–8313.

36. Durandetti, M.; Nédélec, J. Y.; Périchon, J. Nickel-Catalyzed Direct Electrochemical Cross-Coupling between Aryl Halides and Activated Alkyl Halides. J. Org. Chem. 1996, 61, 1748–1755.

37. Knappke, C. E. I.; Grupe, S.; Gärtnert, D.; Corpet, M.; Gosmini, C.; von Wangelin, A. J. Reductive Cross-Coupling Reactions between Two Electrophiles. Chem. Eur. J. 2014, 20, 6828–6842.

38. Wang, X.; Dai, Y.; Gong, H. Nickel-Catalyzed Reductive Couplings. Top. Curr. Chem. 2016, 374, 43.

39. Choi, J.; Fu, G. C. Transition Metal-Catalyzed Alkyl-Alkyl Bond Formation: Another Dimension in Cross-Coupling Chemistry. Science 2017, 356, 152.

40. Li, Y.; Chen, S.; Wang, M.; Jiang, X. Sodium Dithionite-Mediated Decarboxylative Sulfonylation: Facile Access to Tertiary Sulfonylmes. Angew. Chem. Int. Ed. 2020, 59, 8907–8911.

41. Chen, S.; Li, Y.; Wang, M.; Jiang, X. General Sulfone Construction via Sulfur Dioxide Surrogate Control. Green Chem. 2020, 22, 322–326.

42. He, F.-S.; Yao, Y.; Xie, W.; Wu, J. Photoredox-Catalyzed Sulfonylation of Difluoroenoxysilanes with the Insertion of Sulfur Dioxide. Chem. Commun. 2020, 56, 9469–9472.

43. He, F.-S.; Yao, Y.; Xie, W.; Wu, J. Metal-Free Synthesis of Substituted Sulfonylmes from (Hetero)aryl Boronic Acids and Unactivated Alkyl Halides: A Direct and Robust Protocol to Access Sulfonylmes. J. Org. Chem. 2012, 8, 5469–5473.

44. Gong, X.; Yang, M.; Liu, J.-B.; He, F.-S.; Wu, J. Photoinduced Synthesis of Alkylalkynyl Sulfonylmes through a Reaction of Potassium Alkyltrifluoroborates, Sulfur Dioxide, and Alkynyl Bromides. Org. Chem. Front. 2020, 7, 938–943.

45. He, F.-S.; Gong, X.; Rojsitthisak, P.; Wu, J. Direct C–H Methylsulfonylation of Alkenes with the Insertion of Sulfur Dioxide. J. Org. Chem. 2019, 84, 13159–13163.

46. Gong, X.; Wang, M.; Ye, S.; Wu, J. Synthesis of 3-(Methylsulfonyl)benzo(b)thiophenes from Methylene(2-alkynylphenyl) sulfans and Sodium Metabisulfite via a Radical Relay Strategy. Org. Lett. 2019, 21, 1156–1160.

47. Gong, X.; Li, X.; Xie, W.; Wu, J.; Ye, S. An Unexpected Reaction of Aryldiazonium Tetrafluoroborates, Sodium Metabisulfite, and Thiourea under Photoinduced Conditions. Org. Chem. Front. 2019, 6, 1863–1867.

48. Wang, M.; Zhao, J.; Jiang, X. Aryl Methyl Sulfone Construction from Eco-Friendly Inorganic Sulfur Dioxide and Methyl Reagents. ChemSusChem 2019, 12, 3064–3068.

49. Wang, M.; Fan, Q.; Jiang, X. Metal-Free Construction of Primary Sulfonylamide through Three Diverse Salts. Green Chem. 2018, 20, 5469–5473.

50. Wang, M.; Chen, S.; Jiang, X. Construction of Functionalized Annuated Sulfonylmes via SO₂/I⁻ Exchange of Cyclic Diarylidonium Salts. Org. Lett. 2017, 19, 4916–4919.

51. Ye, S.; Wu, J. A Palladium-Catalyzed Reaction of Aryl Halides, Potassium Metabisulfite, and Hydrazines. Chem. Commun. 2012, 48, 10037–10039.