Thr353, Located within the COOH-terminal Tail of the δ Opiate Receptor, Is Involved in Receptor Down-regulation*

Svetlana Cvejic, Nino Trapaidze, Curt Cyr‡, and Lakshmi A. Devi§

From the Department of Pharmacology, New York University Medical Center, New York, New York 10016

Prolonged exposure to abused drugs such as opiates causes decreased response to the drug; this reduced sensitivity is thought to be due to the loss of receptors, or down-regulation. The molecular mechanism of the opiate receptor down-regulation is not known. In order to address this, we generated a number of mutants of the δ opiate receptor COOH-terminal tail. When expressed in the Chinese hamster ovary cells, both the wild type and the receptor with a deletion of 37 COOH-terminal residues bind diprenorphine with comparable affinities and show similar decreases in cAMP levels in response to d-Ala2, d-Leu5, enkephalin (DADLE). However, the truncated receptor does not show down-regulation from the cell surface upon prolonged exposure (2–48 h) to DADLE. In contrast, both the wild type receptor and the receptor with the deletion of only 15 COOH-terminal residues show substantial down-regulation upon long term DADLE treatment. These results suggest that the region located between 15 and 37 residues from the COOH terminus is involved in the receptor down-regulation. In order to identify residues that play a key role in down-regulation, point mutations of residues within this region were examined for their ability to modulate receptor down-regulation. The receptor with a mutation of Thr353 to Ala does not down-regulate, whereas the receptor with a mutation of Ser344 to Gly down-regulates with a time course similar to that of the wild type receptor. Taken together, these results suggest that the COOH-terminal tail is not essential for functional coupling but is necessary for down-regulation and that Thr353 is critical for the agonist-mediated down-regulation of the δ opiate receptor.

EXPERIMENTAL PROCEDURES

Generation of Mutants and Cell Lines Expressing Full-length or Truncated δ Opiate Receptor—Flag-epitope (ADDDEDDKYD) tagged δ opiate receptor was subcloned into the pCDNA3 expression vector. Two deletion mutants, D15 and D37 were generated using polymerase chain reaction to amplify regions of flag-tagged δ opiate receptor from Thr211 to Val357 (for D15) or from Thr211 to Thr335 (for D37). The amino acid numbering is adopted from the numbering of mouse δ opiate receptor (6). The schematic drawing of the primary structure of full-length receptor and the positions of insertions for generating the flag epitope-tagged receptor are given in Fig. 1. Polymerase chain reaction fragments were restriction-digested with unique restriction enzymes and subcloned into the corresponding restriction sites of pCDNA3-OR that was digested with the same restriction enzymes. The point mutations were generated by oligonucleotide-directed mutagenesis using an Altered Sites II in vitro mutagenesis kit from Promega (Madison, WI) according to the manufacturer’s directions. Nucleotide sequence was confirmed by double-stranded DNA sequencing (9). The resulting COOH-terminal truncations and point mutations are shown in the lower panel of Fig. 1.

Approximately 3×10^5 Chinese hamster ovary (CHO)1 cells were transfected with 5 μg of Qiagen-purified plasmid DNA using Lipofectin reagent (Life Technologies Inc.). Colonies with stable expression were selected in medium containing 500 μg/ml of Geneticin (Life Technologies Inc.). 24–48 colonies were tested for receptor expression by binding

*This work was supported in part by National Institutes of Health Grants DA0863 and NS1788 (to L. A. D.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ A recipient of the NIDA postdoctoral training grant DA-07254. Current Address: Dept. of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195.

§ To whom correspondence should be addressed: Dept. of Pharmacology, New York University Medical Center, MSB 411, 550 First Ave., New York, NY 10016. Tel.: 212-263-7119; Fax: 212-263-7133; E-mail: Lakshmi.Devi@med.nyu.edu.

1 The abbreviations used are: CHO, Chinese hamster ovary; DADLE, [d]Ala2, [d]Leu5, enkephalin.
assay using [3H]diprenorphine (10). Specific binding is defined as the difference between the radioactivity bound to the cells in the presence and absence of 10 μM diprenorphine. Expression of the receptor was also confirmed by Western blotting of the membranes from the stably expressing cells using a flag tag-specific antibody, M1 (IBI/Kodak).

Binding Assay— Approximately 10⁶ cells were incubated with [3H]diprenorphine for 20 min in 0.5 ml of Krebs-Ringer-HEPES buffer, pH 7.4, at 37°C, without or with the unlabeled diprenorphine. The cells were collected on Whatman GF-B filters and washed extensively with 50 mM Tris-Cl, pH 7.4. The radioactivity on the filters was determined after an overnight incubation of filters in Biosafe scintillation fluid (Beckman).

Kₐ and *Bₘₐₓ* values were determined by Scatchard analysis using the Ligand program.

Functional Coupling— Functional coupling of the wild type and mutant receptors was determined by assaying for changes in levels of intracellular cAMP after the stimulation of cells with various concentrations of DADLE. For this, 1–2 × 10⁵ cells/well were plated onto a 24-well plate. The next day the cells were pretreated for 1 h with 10 μM forskolin in increasing doses of DADLE, followed by 20 min. Treatment was terminated with 5% trichloroacetic acid, and the level of cAMP was determined by radioimmunoassay following neutralization of the cell extract by 2.5 M potassium carbonate.

cAMP Assay— For the cAMP radioimmunoassay, 10–50 μl of neutralized cell extract, a dilution of cAMP antiserum (Biomedical Technology Inc.) that gives approximately 30% binding of [125I]-cAMP, and approximately 5,000 cpm of [125I]-cAMP were incubated in 50 mM Tris-Cl buffer, pH 7.5, for 30 min. Following overnight incubation at 4°C, the radioimmunoassay was terminated by the addition of 50 μl of calf serum and 1 ml of 17.5% polyethylene glycol-8000 in 50 mM sodium phosphate buffer, pH 7.5. The antigen-antibody complex was covered with 1 ml of BioSafe scintillation fluid (Beckman) and counted in a Beckman LS 6800 liquid scintillation spectrometer.

FIG. 1. Schematic representation of the structure of the full-length mouse δ opiate receptor, WT. The putative glycosylation sites are shown as branched chains, and the putative palmitylation site is shown as a beaded line near the COOH-terminal tail. The COOH-terminal residues 335-372 are shown by filled circles. The flag epitope-tagged receptor (F-WT) contains additional amino acid sequence shown in capital letters near the NH₂ terminus. The lower panel shows the COOH-terminal tail residues 333–372 of the wild type receptor in single-letter amino acid code. The asterisks point to the putative protein kinase C phosphorylation sites, and the numbers indicate the amino acid positions; the numbering is according to Evans et al. (6). The amino acid sequence of the mutants identical to the wild type is represented by a line, and the changes are as indicated.

FIG. 2. Functional coupling of the wild type (WT, ○), flag-tagged wild type (F-WT, ●), or mutant lacking the COOH-terminal 37 amino acids (ΔC37, □) receptors. The functional coupling was examined by changes in cAMP levels as a measure of the inhibition of adenylate cyclase. Cells were treated with various doses of DADLE, and the cAMP was determined by radioimmunoassay as described under "Experimental Procedures." The cAMP in control cells that was not treated with DADLE is taken as 100%. The data represent the average ± S.E. of triplicate values from three separate determinations. The data for cells expressing 1–2 × 10⁵ receptors/cell are presented; similar dose-response curves were observed with additional clonal cultures expressing different numbers of receptors.

WT...CRTPGQRyPSLRRPRQA_TTRERVTA_GPTS_DPGGGAAACOOH

ΔC15..._A-COOH

ΔC37..._A-COOH

S₃₄₄G...G...COOH

T₃₅₂A..._A...COOH

T₃₅₃A..._A...COOH
DADLE, an opiate receptor agonist, was used to determine the COOH-terminal 37 amino acids is comparable with the dose-response curves for the wild type receptors (Fig. 2). The fact that the removal of the COOH-terminal 37 amino acids does not affect the efficiency of functional coupling suggests that the COOH-terminal tail does not play a role in signal transduction by the δ opiate receptor. This is in contrast to other G-protein coupled receptors where the COOH-terminal tail is thought to play an important role in functional coupling to G-proteins (15). Studies with deletion and other mutational analyses in β2 adrenergic and other G-protein-coupled receptors have shown that in these receptors the COOH-terminal tail is an integral part of signal transduction (16, 17).

To evaluate the role of the COOH-terminal tail in receptor down-regulation, cells expressing the wild type or the mutant receptors were treated with 100 nM DADLE for various time periods, and the amount of receptors was determined by the binding of [3H]diprenorphine to intact cells. Cells expressing the full-length receptors (untagged or flag-epitope-tagged) exhibited a time-dependent decrease in diprenorphine binding with a maximal decrease of about 60–70% by about 16 h (Fig. 3). Comparable results were obtained with two other transfected cultures expressing different numbers of receptors (data not shown). The cells expressing ΔC37 receptor (lacking the COOH-terminal 15 amino acids) exhibit a time-dependent decrease in diprenorphine binding similar to the pattern of down-regulation seen with the wild-type receptor, although the maximal decrease is only about 40% even after 48 h of treatment (Fig. 3). In contrast, the cells expressing ΔC37 receptor (lacking the COOH-terminal 37 amino acids) show no decrease in diprenorphine binding even upon 48 h of treatment with DADLE. The cell surface diprenorphine binding actually increases after 48 h as compared with the control (untreated) cells (Fig. 3). The finding that the ΔC15 receptor shows down-regulation and ΔC37 receptor does not suggests that the region located between 15 and 37 residues from the COOH terminus plays an important role in δ opiate receptor down-regulation. In order to identify the residues involved in this down-regulation process, we generated receptors with mutations of three phosphorylatable residues within the region between 15 and 37 amino acids from the COOH terminus, namely, Ser344, Thr352,

![Fig. 3. Time-dependent decrease in [3H]diprenorphine binding during chronic DADLE treatment. Cells expressing the WT (○), F-WT (●), ΔC15 (△), ΔC37 (✓), S344G (×), or T353A (¶) were treated with 100 nM DADLE for various periods of time. After extensive washing with buffer, [3H]diprenorphine binding to the cells was measured as described under "Experimental Procedures." [3H]diprenorphine binding to untreated cells (treated 1–3 min with 100 nM DADLE prior to extensive washing) is taken as "control" (100%). The data represent the average ± S.E. of triplicate determinations. The data for cells expressing 1–2 × 10^6 receptors/cell is presented. For each construct, a similar time course of down-regulation was observed with at least two additional clonal cultures expressing different numbers of receptors.](http://www.jbc.org/attachment/suppl/20180724/fig3.jpg)
the down-regulation of other G-protein-coupled receptors (22–
cated the involvement of phosphorylation in opiate receptor
of treatment (Figs. 3 and 4). In contrast, the cells expressing
not exhibit a decrease in diprenorphine binding even after 48 h
Studies in cell lines and in
adrenergic receptor have demonstrated the importance of this
levels of the Thr352
have been unable to isolate cell lines expressing significant
Scatchard analyses (Fig. 4). It should be pointed out that we
binding in cells treated with DADLE represents a change in the
receptor number in cells treated for 1–3 min with DADLE is taken as “control” (100%). Standard error of the mean
is included for each value of the Bmax.
and Thr353. The cells expressing the Thr353 → Ala receptor do
not exhibit a decrease in diprenorphine binding even after 48 h
of treatment (Figs. 3 and 4). In contrast, the cells expressing Ser344 → Gly receptor exhibit a time course of decrease in
diprenorphine binding identical to the time course seen for the
wild type receptor (Figs. 3 and 4). This change in diprenorphine
binding in cells treated with DADLE represents a change in the
receptor number and not a change in affinity as examined by
Scatchard analyses (Fig. 4). It should be pointed out that we
have been unable to isolate cell lines expressing significant
levels of the Thr352 → Ala receptors among 96 clones tested.
Taken together, these results suggest that Thr353 is critical for
the agonist-induced down-regulation of the δ opiate receptor.
There is growing evidence that in many of the G-protein-
coupled receptors the COOH-terminal tail plays a role in re-
ceptor down-regulation. Studies involving the prototypical
β2 adrenergic receptor have demonstrated the importance of this
receptor’s carboxyl terminus in mediating desensitization through
both second messenger-dependent and independent kinases, which
phosphorylate multiple serines and threonines in this region (8). The COOH-terminal tail of the opiate recep-
tor contains putative phosphorylation sites (6, 7); phosphory-
ation could play a role in opiate receptor down-regulation.
Studies in cell lines and in Xenopus laevis oocytes have implic-
cated the involvement of phosphorylation in opiate receptor
function (18–21).
Phosphorylation by protein kinase C has been implicated in the
down-regulation of other G-protein-coupled receptors (22–
24). It is possible that protein kinase C plays a role in δ opiate
receptor desensitization and/or down-regulation since the
COOH-terminal tail of the δ opiate receptor contains residues
that fit the consensus for phosphorylation by protein kinase C. Studies examining the desensitization of δ opiate receptors
have shown that a β-ARK-related kinase, and not protein ki-

acine C, plays an important role in the receptor desensitization
(19). In contrast, studies with the down-regulation of the en-
dogenous opiate receptors in NG108-15 cells have shown that
modulators of protein kinase C affect receptor down-regulation,
suggesting an involvement of protein kinase C in this process
(25). In this study we find that mutation of a protein kinase C
consensus site (Ser344) does not affect down-regulation, sug-
gesting that phosphorylation by protein kinase C at this site
can regulate δ opiate receptor desensitization to δ agonists.
This is further supported by studies with modulators of protein
kinase C on receptor down-regulation. Pretreatment of the cells
expressing wild type receptor with 30 nm phorbol ester for 3 h
(to activate protein kinase C) or with 1 μM phorbol ester for 24 h
(to deplete protein kinase C) does not affect the DADLE-
mediated down-regulation (data not shown). Furthermore, treatment of the cells for 24 h with 0.5 μM calphostin C has no
effect on down-regulation (not shown). Taken together, these
results suggest that protein kinase C does not play a major role
in the down-regulation of the δ opiate receptor expressed in
CHO cells.

The possibility that the Thr353 may play a role other than
being phosphorylated cannot be ruled out. It is possible that
the Thr353 identified in this study specifically recognizes some
cellular factor(s) involved in the process of receptor down-
regulation. Such a possibility is supported by the studies with
the avian β2 adrenergic receptor that does not exhibit agonist-
mediated down-regulation (26, 27). Deletion of a certain
portion of the COOH-terminal tail of this receptor results in
down-regulation (26), and addition of this COOH-terminal portion to the mammalian β2 adrenergic receptor results in a dramatic
decrease in the down-regulation of the latter receptor (27).
These results suggest that COOH-terminal domains could
interact with certain cellular protein(s) that mediate receptor
down-regulation.

In summary, our study has shown that removal of the
COOH-terminal tail does not affect functional coupling but
completely abolishes down-regulation of the δ opiate receptor.
In addition, these studies demonstrate that Thr353 is essential
for δ opiate receptor down-regulation.

Acknowledgments—We thank Drs. C. J. Evans for pCDM8-OR1 and M. von Zastrow for the pCDNA3-F OR1 plasmids. We also thank Dr. L. D. Fricker for critical reading of the manuscript.

REFERENCES
1. Herz, A. (1993) Opiods, Vol. 1, Springer-Verlag, Berlin
2. Law, P.-Y., Hom, D. S., and Loh, H. H. (1982) Mol. Pharmacol. 22, 1–4
3. Law, P.-Y., and Bergsbaken, C. (1995) J. Pharmacol. Exp. Ther. 272, 322–332
4. Law, P.-Y., Hom, D. S., and Loh, H. H. (1984) Mol. Pharmacol. 259, 4096–4104
5. Uhli, G. R., Childers, S., and Pasternak, G. (1994) Trends Neurosci. 17, 89–93
6. Evans, C. J., Kelth, D. E., Morrison, H., Magendzo, K., and Edwards, R. H. (1992) Science 258, 152–155
7. Kieffer, B. L., Bofert, K., Gaveriaux-Ruff, C., and Hirth, C. G. Proc. Natl. Acad. Sci. U.S.A. 89, 12048–12052
8. Dohlman, H. G., Thorporner, J., Caron, M. G., and Lefkowitz, R. J. (1991) Annu. Rev. Biochem. 60, 653–688
9. Petanconka, S., and Divi, L. (1991) J. Biol. Chem. 267, 26038–26043
10. Law, P.-Y., McGinn, T. M., Wick, M. J., Eriksen, L. J., Evans, C. J., and Loh, H. H. (1994) J. Pharmacol. Exp. Ther. 271, 1686–1694
11. Prathee, P. L., McGinn, T. M., Claude, P. A., Liu-Chen, L. Y., Loh, H. H., Law, P. Y. (1996) Mol. Brain Res. 29, 336–346
12. Vanetti, M., Vogt, G., Holt, V. (1993) FEBS Lett. 331, 260–266
13. Yang J. Y., Logdon, C. D., Johnsen, T. E., and Williams, J. A. (1993) Mol. Pharmacol. 44, 1158–1164
14. Raynor, K., O’Carror, A. M., Kong, H., Yasuda, K., Mahan, L. C., Bel, G. I., and Resine, T. (1993) Mol. Pharmacol. 44, 385–392
15. Lohse, M. J. (1993) Biochim. Biophys. Acta 1179, 171–188
16. Bovier, M., Hausdorff, W. P., De Blasi, A., O’Dowd, B. F., Koblikia, B. K., Caron, M. G., and Lefkowitz, R. J. (1988) Nature 333, 370–373
17. Liggett, S. B., Bovier, M., Hausdorff, W. P., O’Dowd, B. F., Caron, M. G., and Lefkowitz, R. J. (1989) Mol. Pharmacol. 36, 641–646
18. Wang, Z., Bilsky, E. J., Porecca, F., and Sadee, W. (1994) Life Sci. 54, 330–350
19. Pei, G., Kieffer, B. L., Lefkowitz, R. J., and Freedman, N. J. (1995) Mol. Pharmacol. 48, 173–177
20. Chen, Y., and Yu, L. (1994) J. Biol. Chem. 269, 7839–7842
21. Miyake, T., Fukushima, N., Misu, Y., and Ueda, H. (1993) FEBS Lett. 333, 311–314
22. Shapiro, R. A., and Nathanson, N. M. (1989) Biochemistry 28, 8946–8950
23. Benya, R. V., Kusui, T., Battey, J. F., and Jensen, R. T. (1995) J. Biol. Chem. 270, 3346–3352
24. Swope, S. L., and Schonbrunn, A. (1990) Mol. Pharmacol. 37, 758–766
25. Gucker, S., and Biddick, J. (1992) Mol. Pharmacol. 42, 656–665
26. Hertel, C., Nunnally, M. H., Wong, S. K-F., Murphy, E. A., Ross, E. M., and Perkins, J. P. (1990) J. Biol. Chem. 265, 1788–17994
27. Parker, E. M., and Ross, E. M. (1991) J. Biol. Chem. 266, 9978–9996
Thr, Located within the COOH-terminal Tail of the Opiate Receptor, Is Involved in Receptor Down-regulation
Svetlana Cvejic, Nino Trapaidze, Curt Cyr and Lakshmi A. Devi

J. Biol. Chem. 1996, 271:4073-4076.
doi: 10.1074/jbc.271.8.4073

Access the most updated version of this article at http://www.jbc.org/content/271/8/4073

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 25 references, 16 of which can be accessed free at http://www.jbc.org/content/271/8/4073.full.html#ref-list-1