Mechanisms affecting exercise ventilatory inefficiency-airflow obstruction relationship in male patients with chronic obstructive pulmonary disease

Ming-Lung Chuang 1,2

Abstract

Background: Exercise ventilatory inefficiency is usually defined as high ventilation (VE) versus low CO₂ output (VCO₂). The inefficiency may be lowered when airflow obstruction is severe because VE cannot be adequately increased in response to exercise. However, the ventilatory inefficiency-airflow obstruction relationship differs to a varying degree. This has been hypothesized to be affected by increased dead space fraction of tidal volume (V₅/V₆), acidity, hypoxemia, and hypercapnia.

Methods: A total of 120 male patients with chronic obstructive pulmonary disease were enrolled. Lung function and incremental exercise tests were conducted, and VE versus VCO₂ slope (VE/VCO₂S) and intercept (VE/VCO₂I) were obtained by linear regression. Arterial blood gas analysis was also performed in 47 of the participants during exercise tests. V₅/V₆ and lactate level were measured.

Results: V₅/V₆peak was moderately positively related to VE/VCO₂S (r = 0.41) and negatively related to forced expired volume in 1 sec % predicted (FEV₁%) (r = −0.27), and hence the FEV₁%-VE/VCO₂S relationship was paradoxical. The higher the VE/VCO₂S, the higher the pH and P aO₂, and the lower the P aCO₂ and exercise capacity. VE/VCO₂I was marginally related to V₅/V₆rest. The higher the VE/VCO₂I, the higher the inspiratory airflow, work rate, and end-tidal PCO₂peak.

Conclusion: 1) Dead space ventilation perturbs the airflow-VE/VCO₂S relationship, 2) increasing ventilation thereby increases VE/VCO₂S to maintain biological homeostasis, and 3) the physiology-VE/VCO₂S-VE/VCO₂I relationships are inconsistent in the current and previous studies.

Trial Registration: MOST 106–2314-B-040-025.

Keywords: Incremental exercise test, Obstructive airway disease, Dead space and tidal volume ratio, Ventilatory equivalents for oxygen and CO₂, Slope for ventilation versus CO₂ output, Intercept for ventilation versus CO₂ output.
Background

High ventilatory equivalents for oxygen and CO₂ (VE/VO₂ and VE/VCO₂) have been shown to be indexes of uneven alveolar ventilation-perfusion ratio (VA/Q) [1] and markers of ventilation inefficiency caused by both heart and lung diseases [2]. The VE/VCO₂ slope (VE/VCO₂S) is elevated in dyspneic patients and can differentiate congestive heart failure (CHF) from chronic obstructive pulmonary disease (COPD) with exercise impairment [3]. VE/VCO₂S has also been shown to be a marker of the severity and prognosis of CHF [4, 5] and an indicator of treatment response [6, 7], even though it cannot reflect the treatment effect in patients with CHF of different severity [8].

Compared to VE/VCO₂ ratio (VE/VCO₂R) in COPD, VE/VCO₂ intercept (VE/VCO₂I) i.e. dead space ventilation [9, 10], has been shown to be a better indicator of exertional ventilatory inefficiency and unfavorable patient outcomes i.e. mechanical constraint, pulmonary gas exchange, exertional dyspnea, and exercise intolerance [11]. In patients with COPD, VE/VCO₂S is negatively related to VE/VCO₂I and decreases when airflow obstruction [11] and emphysema are severe [12]. However, in patients with COPD, the relationship between VE/VCO₂S and forced expired volume in one s % predicted (FEV₁%) is weak [3, 11, 13], although it is slightly better when Global Initiative for Chronic Lung Disease (GOLD) staging is used to grade the severity [11]. Similarly, in patients with CHF the slope is increased, however it decreases when the patients have airflow limitation [12] or when an external dead space is large enough to hamper VE compensation for hypercapnia [9].

Several mechanisms to explain overlapping VE/VCO₂I values across GOLD stage I to IV have been proposed [11]. These mechanisms include variousafferent information from working limbs [14], peripheral chemoreceptors [15], pulmonary artery pressure, and V̇D/V̇T. However, no data or references have been reported for the last two factors [11].

In COPD, the lower the FEV₁%, the lower the VE/VCO₂S [11, 13], and the lower the FEV₁%, the larger the V̇D/V̇T [16, 17]. In contrast, the larger the V̇D/V̇T, the higher the VE/VCO₂S [1, 18]. In this context, VE/VCO₂S may be high or low at a given FEV₁%. Hence, we hypothesized that the positive but weak relationship between VE/VCO₂S and FEV₁% may be influenced by V̇D/V̇T. We also evaluated other factors that may influence the relationship including hypoxemia and/or metabolic and/or respiratory acidity. This study aimed to elucidate the mechanisms underpinning the unclear relationship between FEV₁% and VE/VCO₂S and between VE/VCO₂S and exercise biological homeostasis.

Methods

Study design

We conducted an observational cross-sectional study on incremental maximal exercise in subjects with COPD at our institution. To obtain invasive measurement data, arterial catheterization was established for blood gas sampling in a subgroup of the participants. Each subject signed informed consent before entering the study. The local Institutional Review Board of our institutions (CS19014) approved this study. This study was conducted in compliance with the Declaration of Helsinki.

Subjects

We enrolled subjects aged ≥40 years with COPD but without any chronic diseases including uncontrolled diabetes mellitus, uncontrolled hypertension, anemia (hemoglobin < 13 g·dL⁻¹ in males), and no acute illnesses in the recent 1 month. The FEV₁/forced vital capacity (FVC) was < 0.7 [19]. The diagnosis of COPD was made by pulmonologists according to the GOLD criteria [19]. All of the participants had to be able and willing to perform the study protocol including a maximal or symptom-limited cardiopulmonary exercise test (CPET). All of the participants were regularly followed-up at our pulmonary outpatient clinics and received optimized and individually tailored drug treatment, and they all had a stable clinical condition for at least 1 month.

We excluded subjects with a body mass index ≤18 kg·m⁻² or ≥32 kg·m⁻² and those with laboratory findings of hematological, metabolic or neuromuscular diseases, as these factors may confound exercise performance. Subjects with coexisting heart failure with/without documented pulmonary embolism, primary valvular heart disease, pulmonary artery hypertension, pericardial disease, exercise-induced angina, ST changes, and severe arrhythmias were also excluded. As few female subjects meet the criteria of COPD in Taiwan [20], they were not included in this study. We also excluded those who had contraindications to perform the exercise test and those who were participating in exercise training. However, recreational activity was allowed.

Measurements

Demographic and anthropometric data

Age, height, weight, body mass index, and cigarette consumption were recorded.

Functional daily activity

The oxygen-cost diagram (OCD) was used to evaluate the participants’ functional activity. The participants were asked to indicate a point on an OCD, a 10-cm long vertical line with everyday activities listed alongside the line, above which breathlessness limited them [21]. The distance from zero was measured and scored.
Pulmonary function testing

Cigarette smoking, drinking coffee, tea, or alcohol, and taking medications were not permitted 24 h before any test. Bronchodilators were not administered within 3 h for short-acting beta agonists and 12 h for long-acting beta agonists before the tests [22, 23]. FEV₁, FVC, total lung capacity (TLC), residual volume (RV), and diffusing capacity for carbon monoxide (DLCO) were measured using spirometry, body plethysmography and the single-breath technique (MasterScreen™ Body, Carefusion, Wuerzburg, Germany), respectively in accordance with the currently recommended standards [24, 25]. The best of three technically satisfactory readings was used [24, 26, 27]. All of the spirometry data were obtained before and after inhaling 400 μg of fenoterol HCl. Post-dose measurements were performed 15 min after inhalation. Static lung volume data and DLCO data were obtained before inhaling fenoterol. For details, please refer to reference [22].

CPET

Each subject completed pulmonary gas exchange measured at rest and during exercise on the different days within 1 month after lung function test. Short-acting and long-acting beta bronchodilators were withheld 4–6 h and ≥12 h before the test, respectively. Gas exchange equipment including a face mask connected to a turbine pneumotachograph was used to measured VO₂ (mL/min), CO₂ output (VCO₂) (mL/min), minute ventilation (VE) (L/min), tidal volume (VT) (L), breathing frequency (b/min), and end-tidal PCO₂ (PETCO₂) (mm Hg) breath-by-breath (MasterScreen CPX™, Carefusion, Wuerzburg, Germany), and then the data were averaged and reported at 15-s intervals of each stage using a computer. For each test, 12-lead electrocardiograms were recorded, pulse oximetry was used to record arterial oxyhemoglobin saturation (SpO₂, %), and a sphygmomanometer was used to measure blood pressure every 2 min. An electro-magnetically braked cycle ergometer (Lode, Groningen, the Netherlands) was used to adjust workload via a computer. The exercise test protocol was a 2-min period of rest followed by 2-min period of unloaded exercise, followed by ramp-pattern loaded exercise with a workload per stage selected according to the oxygen-cost diagram so that the loaded exercise could be completed within 10 ± 2 min of each participant reaching the limit of symptoms [28]. During each test, a pedaling frequency of 60 rpm was maintained with the aid of a visual pedal rate indicator. Calibrations of the turbine pneumotachograph were performed using a 3-L syringe before each test. The O₂ and CO₂ analyzers were calibrated with standard gases.

Calculation of VE/VCO₂S and VE/VCO₂R

Linear regression was used to quantify the relationship between VE and VCO₂ to obtain VE/VCO₂S and VE/VCO₂R. For linear regression, data of the entire loaded exercise [5] were used if the respiratory or ventilatory compensation point (RCP or VCP) [1, 29] were not identified by PETCO₂ curve; data below the RCP were used if the RCP or VCP was identified. PETCO₂ curve reveals slow increase from start of exercise to anaerobic threshold and is then relatively stable during iso-capneic buffering period. After the period, PETCO₂ starts to decrease where RCP is defined. To be noted, RCP was reported in four of 16 subjects with pulmonary emphysema in a previous study [12]. VE/VCO₂R was directly calculated. VE/VCO₂ nadir (VE/VCO₂N) was the lowest value of VE/VCO₂R during loaded exercise period [30].

\[\frac{V_D}{V_T} = \left(\frac{P_a CO_2 - P CO_2}{P_a CO_2} \right) / \left(V_Dm / V_T \right) \]

where \(P CO_2 = VCO₂/VE \times (P_B - 47 \text{mmHg}) \) and PB was barometric pressure measured daily and V_Dm was the dead space of mouth piece and pneumotachograph as the manufacture reported.

Statistical analysis

Data were summarized as mean ± standard deviation. Comparisons between two groups were performed using two-sample t test. Pearson’s or Spearman’s correlation coefficients were used when appropriate for quantifying the pair-wise relationships among the interested continuous variables. Statistical significance was set at \(p \leq 0.05 \). Marginal statistical significance was set at 0.05 < \(p < 0.1 \).

Results

A total of 120 male subjects with COPD aged 67.0 ± 6.8 years were enrolled after excluding nine subjects aged ≥80 years (Fig. 1 and Table 1). Most of the participants had moderate to severe disease severity. Overall, 118 subjects completed the exercise test after excluding two who had poor motivation (Table 1). In the entire group and its
subgroup of patients who underwent blood gas sampling, \(\dot{V}E/\dot{V}CO_2 \) and \(\dot{V}E/\dot{V}CO_2I \) were moderately negatively related (Table 2, \(r = -0.40 \) to \(-0.44, p < 0.001 \) to \(< 0.0001 \)). The relationships between \(\dot{V}E/\dot{V}CO_2 \) and the pulmonary physiology variables of interest were similar to some extent between the entire group and the subgroup of patients who underwent blood gas sampling (Table 2).

\(\dot{V}E/\dot{V}CO_2 \) versus Pulmonary Physiology and Exercise Capacity. \(\dot{V}E/\dot{V}CO_2 \) was related to a varying degree to expiratory flow (\(r = 0.20\) to \(0.42, p < 0.05 \) to \(< 0.01 \)), and marginally related to inspiratory flow. \(\dot{V}E/\dot{V}CO_2 \) was not related to any of the volume excursion variables at peak exercise except for \(V_D/V_T \) peak in the subgroup analysis (Table 2, \(r = -0.32, p < 0.05 \)). \(\dot{V}E/\dot{V}CO_2 \) was positively related to an increase in \(S_FO_2 \) (\(r = 0.32\) to \(0.50 \)). \(\dot{V}E/\dot{V}CO_2 \) was mildly negatively related to \(VO_2 \) peak% (\(r = -0.27 \) to \(-0.33 \)). In the subgroup of patients who underwent blood gas sampling, at peak exercise, \(\dot{V}E/\dot{V}CO_2 \) was moderately positively related to \(pH \) and \(P_AO_2 \) (Table 3, \(r = 0.40\) to \(0.53 \)), and strongly negatively related to \(P_ACO_2 \) and \(P_ECO_2 \) (Tables 2 and 3, \(r = -0.60 \) to \(-0.62 \)).

In the subgroup of patients who underwent blood gas sampling, with regards to pulmonary physiology variables, \(V_D/V_T \) peak was moderately positively related to \(\dot{V}E/\dot{V}CO_2 \), and marginally negatively related to \(FEV_1 \) % (Table 2 and Fig. 2, \(r = -0.27, p = 0.08 \)).

\(\dot{V}E/\dot{V}CO_2I \) versus Pulmonary Physiology and Exercise Capacity. \(\dot{V}E/\dot{V}CO_2I \) was mildly related to inspiratory flow (\(r = 0.22\) to \(0.30, p < 0.05 \)), marginally to mildly related to \(VO_2 \) peak% (Table 2, \(r = 0.27\) to \(0.28 \)) and mildly to moderately related to \(Work_\text{peak} \) % (Table 2, \(r = 0.30\) to \(0.43 \)), but not to expiratory flow or all volume excursion variables.

In the subgroup of patients who underwent blood gas sampling, \(\dot{V}E/\dot{V}CO_2I \) was moderately related to an increase in \(P_ECO_2 \) (Table 2, \(r = 0.53 \)) and marginally related to \(V_D/V_T \) rest (\(r = 0.28, p = 0.08 \)), but not to \(V_D/V_T \) peak.

Discussion

The main findings of this study confirm that in male subjects with COPD, \(\dot{V}E/\dot{V}CO_2 \) was correlated to a varying degree with \(FEV_1 \) % and GOLD stage. We further found that \(V_D/V_T \) peak was the main cause of the relationships (Fig. 2). A high \(\dot{V}E/\dot{V}CO_2 \) improved arterial \(pH \), \(PO_2 \), and \(PCO_2 \) but was not caused by these factors. The findings support our hypothesis. Additionally, \(\dot{V}E/\dot{V}CO_2I \) was marginally related to dead space at rest and \(VO_2 \) peak and significantly related to increases in inspiratory airflow, \(P_ACO_2 \), and work rate.

\(\dot{V}E/\dot{V}CO_2 \) versus Pulmonary Physiology of COPD. The results revealed that expiratory airflow graded by
Table 1 Subjects' characteristics, lung function, and exercise data (n = 120) versus the subgroup data (n = 47)

Characteristic	Total	Mean	SD	Subgroup	Mean	SD	T test
Age, year							
	67.0	6.8		65.3	5.7		NS
Height, cm	164.8	5.7		165.1	6.4		NS
Weight, kg	62.4	9.4		60.8	11.4		NS
Body mass index, kg/m²	23.0	3.1		22.2	3.6		NS
Smoke, pack-year	51.3	28.1		41.4	19.3	0.01	
Oxygen-cost diagram, cm	7.1	1.3		7.0	1.4		NS
Total lung capacity, TLCpred%	1.15	0.23		1.34	0.21	<0.0001	
Residual volume/TLC	0.56	0.10		0.58	0.09		NS
Dl,CO%	0.76	0.24		0.69	0.22		NS
Forced vital capacity, FVCpred%	0.83	0.20		0.81	0.21		NS
FEV1%	0.57	0.18		0.50	0.19	0.06	
GOLD I-IV, n=	10.68	33.9		3.1	19.6		NS
FEV1/FVC	0.53	0.12		0.49	0.13	0.1	
Heart Ratepeak%	0.82	0.11		0.81	0.12		NS
Oxygen uptake, VO2peak%	0.69	0.20		0.69	0.21		NS
Respiratory exchange ratiopeak%	1.05	0.10		1.05	0.10		NS
Workpeak%	0.75	0.26		0.68	0.30		NS
O2Pulsepeak%	0.83	0.22		0.85	0.23		NS
Minute ventilation, Vpeak L/min	43.6	13.1		38.6	12.3	0.02	
Vpeak/MVV	1.00	0.30		1.16	0.36	<0.01	
VE/VCO2Slope	38.6	7.8		35.0	6.9	<0.0001	
VTpeak/TLC	33.7	7.5		29.9	5.7	<0.0001	
Vp/VCO2 Intercept	5.2	1.8		5.2	1.6		NS
SVO2peak%	92.2	5.4		91.0	5.8		NS
Tidal volume, Vpeak/TLC	0.22	0.06		0.19	0.05	<0.01	
Vp/Inspiratory time, Tpeak L/s	1.70	0.50		1.52	0.46	0.04	
Breathing frequencypeak, b/min	33.5	6.1		32.6	5.9		NS
Breathing cycle time, Tpeak s	1.85	0.33		1.89	0.31		NS
Strpake, s	0.78	0.16		0.78	0.13		NS
RSBIPpeak, b/L	27.8	11.3		30.5	13.9		NS

Note: Abbreviations: FEV1%: Forced expiratory volume in 1 s, TLC: Total Lung Capacity, Dl,CO: Diffusing capacity for carbon monoxide.

Table 2 Summary of correlation (r) of VE/VCO2 slope (VE/VCO2S) and its intercept (VE/VCO2I) with pulmonary physiology

Characteristic	Total	Mean	SD	Subgroup	Mean	SD	T test
Intercept	-0.44†	-0.40**	1	1			
Expiration							
FEV1%	0.20*	0.42**	-0.09	-0.12			
FEV1/VCO2S	0.27**	0.15	0.02	-0.02			
GOLD	-0.26**	-0.44**	0.08	0.11			
Exercise capacity							
VO2peak	-0.33***	-0.27**	0.28**	0.27**			
Workpeak	-0.31**	-0.3**	0.30***	0.43**			

Note: Abbreviations: VO2peak: Oxygen uptake, Workpeak: Workrate, VE/VCO2S: Oxygen-exchange ratio, VE: Minute ventilation, VCO2: Carbon dioxide production, SV02: Oxygen saturation.

FEV1%, GOLD stage, and FEV1/VCO2S was related to VE/VCO2S to a varying degree (Fig. 2 and Table 2, [r] = 0.20–0.44). This is in line with previous reports that in patients with heart and lung diseases, severe airflow impairment may limit VE/VCO2S to compensate for metabolic acidosis during heavy exercise [3, 9, 11, 12]. However, this notion is not consistent with the study by Teopompi et al., who reported that VE/VCO2S and FEV1% were not related (Supplementary Table) [13], although the role of inspiratory muscles was not considered. With regards to the tension time index of ventilatory muscle mechanics in normal healthy people and those with a disease, the inspiratory muscles may adapt to a level below or within the critical zone to sustain breathing in various conditions [32, 33]. As the mechanical load increases to a level which the inspiratory muscles can no longer tolerate, alveolar hypoventilation develops and the Pco2 point may be reset [34]. However, in the current study, mean inspiratory airflow was marginally related to VE/VCO2S in the entire group and not significantly related to VE/VCO2S.
in the subgroup, suggesting that mean inspiratory airflow was not sensitive enough to be related to \(\dot{V}E/\dot{V}CO_2S \).

However, expiratory airflow was related to \(\dot{V}E/\dot{V}CO_2S \) to a varying degree, which may be explained by \(V_D/V_T \). In the current study, \(V_D/V_{peak} \) was positively related to \(\dot{V}E/\dot{V}CO_2S \), similar to previous reports which used \(\dot{V}E/\dot{V}CO_2R \) ranging from 31 to 40 in parallel with a \(V_D/V_T \) ratio ranging from 0.37 to 0.49 [16]. Combining the positive \(V_D/V_{peak} \) - \(\dot{V}E/\dot{V}CO_2S \) relationship with the positive \(FEV_1 \% - \dot{V}E/\dot{V}CO_2S \) relationship, it can be deduced that a high \(V_D/V_{peak} \) and a high \(FEV_1 \% \) together may synergistically amplify \(\dot{V}E/\dot{V}CO_2S \) (Fig. 2). However, \(FEV_1 \% \) and \(V_D/V_{peak} \) were negatively related in this study \((r = -0.27) \) and in a previous report \((r = -0.377) \) [17]. As a result, the relationship between \(FEV_1 \% \) and \(\dot{V}E/\dot{V}CO_2S \) was perturbed [3, 11, 12]. Hence, the relationship between \(V_D/V_{peak} \) and \(\dot{V}E/\dot{V}CO_2S \) may also have been perturbed (Fig. 2 and Table 3).

Nevertheless, the high \(V_D/V_T \) was also biphasic, i.e. it caused an increase or decrease in \(\dot{V}E \) at a given level of metabolism. An appropriately high \(V_D/V_T \) may increase \(\dot{V}E \) to maintain arterial isocapnia. However, Poon and Tin [35] and Gargiuro et al. [9] reported that excessive mechanical constraints may occur in patients with CHF when external dead space volume is loaded to an inappropriate extent. The biphasic effect of high \(V_D/V_{peak} \) on \(\dot{V}E \) may further modify the \(\dot{V}E/\dot{V}CO_2S - FEV_1 \% \) relationship.

At peak exercise, the more severe the airflow obstruction and emphysema, the lower the \(\dot{V}E/\dot{V}CO_2S \) [3, 11, 12]. Although Paolotti et al. [12] agreed with this notion, they proposed another two hypotheses: (1) an improvement in ventilatory efficiency during exercise due to reduced physiological dead space; (2) a higher arterial CO2 (PaCO2) set-point, as they found that the hypercapnia was related to emphysema. In this study, the increase in \(\dot{V}E/\dot{V}CO_2S \) at peak exercise was related to an increase in \(V_D/V_T \) but not to a decrease in \(V_D/V_T \). A higher \(P_{aCO_2} \) point was not reset; instead, a lower \(P_{aCO_2} \) level developed. Notably, only 10 subjects had arterial blood gas data during exercise in their study, and the formula

| Table 3 Three-factor interrelationships in 46 subjects with COPD |
|----------------------|----------------|-----------------|-----------------|-----------------|
| | F3 | F1 = \(\dot{V}E/\dot{V}CO_2S \) | F2 = FEV_1% |
| \(V_D/V_{peak} \) | 0.41\(^*\) | 0.27\(^*\) | 0.53\(^*\) | 0.02 |
| \(pH_{peak} \) | 0.53\(^*\) | 0.39\(^*\) | 0.29\(^*\) | 0.29\(^*\) |
| \(P_{aO_2_{peak}} \) | 0.40\(^*\) | 0.50\(^*\) | 0.50\(^*\) | 0.50\(^*\) |
| \(P_{CO_2_{peak}} \) | -0.60\(^*\) | -0.52\(^*\) | -0.52\(^*\) | -0.52\(^*\) |
| Lactate_{peak} | -0.13 | 0.34\(^*\) | 0.34\(^*\) | 0.34\(^*\) |

Paradoxical: due to one r + and one r - Consistent: due to both r + Consistent: due to both r + Consistent: due to both r -

Fig. 2 Flow chart showing the deductive mechanism of exercise ventilatory inefficiency and biological homeostasis. \(V_D/V_T \): dead space fraction of tidal volume, \(\dot{V}E/\dot{V}CO_2S \): minute ventilation versus CO2 output slope, \(FEV_1 \): forced expired volume in one s, \(S_{O_2_{peak}} \): oxyhemoglobin saturation measured by pulse oximetry at peak exercise, \(P_{aO_2} \): arterial partial pressure of O2, \(P_{aCO_2} \): arterial partial pressure of CO2. Solid line with two-direction arrowheads: positive correlation, dashed line with two-direction arrowheads: negative correlation. Solid line with a single direction arrowhead: positively inducing, dashed line with a single direction arrowhead: negatively inducing.
for V_D/V_T did not subtract apparatus V_D [12], which was addressed by Wasserman et al. and Sun et al. [2, 30]. A high FEV$_1$% is associated with a high VE; a high VE is associated with a high VE/VCO$_2$S; a high VE/VCO$_2$S is associated with a high pH and P_O_2, and a low P_CO_2 (Fig. 2). In other words, this also suggests that mechanical constraints may limit the increase in VE during exercise with a negative influence on gas exchange values at peak exercise (i.e. P_O_2 and S_PO_2 decrease, P_CO_2 increase).

Interestingly, VE/VCO$_2$S was highly negatively related to emphysema ($r = -0.77$, $p < 0.001$) [12] in Paolotti et al’s study and in the current study as represented by V_{Tpeak}/FEV_1 as the emphysema factor [13] (Table 2), whereas it was moderately positively related to V_D/V_{Tpeak} in the current study and in another report [16]. In this context, it can be deduced that emphysema may be inversely related to V_D/V_{Tpeak}. However, Paolotti et al. reported that when emphysema was measured by high resolution computed tomography, the FEV$_1$% and V_D/V_{Tpeak} were weakly related to the emphysema extent [12, 36]. When emphysema was evaluated by pathology, the feature of loss of alveolar attachments was inversely related to VE/VCO$_2$S in the literature (Supplementary Table, $r = -0.31$ - -0.35 and -0.48 - -0.60). However, in the current study, even though none of the markers of volume excursion and DH as represented by V_{T}/TLC [38, 39] were related to VE/VCO$_2$S, the emphysema factor was mildly negatively related to VE/VCO$_2$S ($r = -0.32$).

VE/VCO$_2$I versus Pulmonary Physiology. In patients with heart failure and normal subjects with or without external V_D at rest and during exercise, VE/VCO$_2$I is assumed to be V_D when CO_2 is zero [9, 40]. However, our findings may challenge this notion, as VE/VCO$_2$I was not significantly related to V_D/V_{Trest} or V_D/V_{Tpeak} (Table 2). Other studies have also not supported that VE/VCO$_2$I is an index of V_D. The VE/VCO$_2$I has been reported to be ≤ 1 in more than 10% of subjects in previous reports [3, 29] even though other studies have reported no patients with ≤ 0.9 (0.9–9.9 L) [13]. In normal subjects, Sun et al. reported a VE/VCO$_2$I value of 11.7 L/min [30]. In patients with heart failure, Gargiulo et al. reported that the average of V_D and VE/VCO$_2$I at rest was $0.3-0.5$ L ± 0.2 L, with a V_T of 0.38 ± 0.08 L [9]. These values are too large to be biologically plausible for V_D and V_D in their study [9]. Nevertheless, the apparatus V_D was also not subtracted from the physiological V_D when calculating V_D/V_T [9]. In this context, despite an increase in $P_{ET}CO_2$ being moderately related to VE/VCO$_2$I in the current study and to VE/VCO$_2$S in Paolotti et al’s report [12], whether or not VE/VCO$_2$I reflects VD remains unclear.

On the other hand, in the current study, we found that VE/VCO$_2$I was mildly related to inspiratory flow rather than FEV$_1$% (Table 2). The loss of alveolar attachments is a feature of emphysema with high V_D and V_D/V_T [37] and is usually measured in fully inflated lungs so that expiratory flow obstruction cannot sufficiently reflect the condition, and thus its severity can be underestimated [41]. However, Teopompi et al. reported that VE/VCO$_2$I was moderately negatively related to FEV$_1$% and diffusing capacity [13]. Moreover, they reported that the inconsistency in the VE/VCO$_2$I-FEV$_1$% relationship was attributed to volume excursion constraint which developed during exercise [13], whereas volume excursion constraint was not related to VE/VCO$_2$I or VE/VCO$_2$S in the current study.

In the current study, the relationships between VE/VCO$_2$S and VO$_2$ peak% and Workpeak% were negative to a varying extent, which is consistent with the previous reports (Table 2 and Supplementary Table) [3, 11, 13]. However, the relationship between VE/VCO$_2$I and VO$_2$ peak% in the current study was different to a previous report [11] (Table 2 and Supplementary Table). The reason is unclear. In the current study, V_D/V_{Tpeak} was simultaneously the opposite of VE/VCO$_2$I and VO$_2$ peak% ($r = -0.23$ and -0.62, respectively) and V_T/T_{peak} was simultaneously consistent with VE/VCO$_2$I and VO$_2$ peak% ($r = 0.22-0.30$ and 0.59, respectively). The heterogeneity of the population of this study may also have contributed to the inconsistencies. Further studies are warranted to clarify this issue.

Lastly, an interesting finding was the difference between VE/VCO$_2$R and VE/VCO$_2$S in combination with VE/VCO$_2$I. VE/VCO$_2$S and VE/VCO$_2$I have consistently been negatively related to a varying degree both in the current study and in previous studies (Table 2, $r = -0.25-0.74$) [11, 13]. The sum of VE/VCO$_2$S and VE/VCO$_2$I was reported to be close to or closely related to VE/VCO$_2$R in a previous report [11]. In the current study, the sum of the two variables and VE/VCO$_2$R were similar (39.5 ± 7.5 versus 38.6 ± 7.8, $p = 0.52$). The relationship between the sum of VE/VCO$_2$S and VE/VCO$_2$I and VE/VCO$_2$R has been reported to be mathematical [1, 2]. Further mathematical simulation studies on this issue are warranted.

Study limitations

There are several limitations to this study. First, correlation studies allow researchers to study the relationships
between one variable and others, and may not be appropriate to infer a cause and effect. However, it is reasonable to consider that a high V_D/V_T may induce VE/VCO2S rather than to consider that a high VE/VCO2S induces a high V_D/V_T. Similarly, a high FEV1% may induce a high VE/VCO2S rather than a high VE/VCO2S induces a high FEV1%. Second, the number of cases in this subgroup study was small, and this may have caused insufficient power when performing correlation coefficient analysis on V_D/V_T and the other variables of interest. However, the sample size of 46 achieved a power of 80% to detect a difference between a correlation of 0.4 and the null (no correlation) using a two-sided test with a significance level of 0.05. As the power is related to type II error, a non-significant test results should be interpreted more conservatively. Third, all of the participants in this study were male, so the results cannot be applied to females. As only 4% of patients with COPD are female in Taiwan [20], and as breathing pattern and dead space are different between men and women [42], it would be difficult to enroll a sufficient number of female subjects with COPD to compare the differences between male and female patients with COPD. To calculate VE/VCO2S and VE/VCO2I, the methodology to identify VCP or RCP [1, 9, 29] and whether to use the entire loaded exercise data [5] or data below VCP/RCP [2, 3, 11–13] are inconsistent in the literature. Further studies are warranted to clarify these issues.

Clinical implication
Although airflow obstruction may attenuate the increase in VE/VCO2S during incremental exercise, an increase in dead space ventilation may amplify VE/VCO2S and thus perturb the VE/VCO2S - FEV1% relationship. Nevertheless, airflow obstruction is usually accompanied with increased dead space ventilation. Hence, this study reveals the paradoxical relationship among the three factors (i.e. VE/VCO2S, airflow obstruction and dead space ventilation). The role of VE/VCO2I as a marker of ventilatory insufficiency in COPD is also questionable. Further studies are warranted to study the clinical applications and importance of exercise VE/VCO2S and VE/VCO2I in patients with COPD.

Conclusions
Using V_D/V_T measurements, we found that dead space ventilation perturbs the airflow - VE/VCO2S relationship. Increasing ventilation thereby increasing VE/VCO2S may be the cause rather than the effect of maintaining biological homeostasis. The pulmonary physiology - VE/VCO2S - VE/VCO2I relationship is inconsistent between the current study and previous studies.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12931-020-01463-4.

Additional file 1: Supplementary Table

Summary of correlation (r) of V'_{E}/V'_{CO2S} slope and its intercept (V'_{E}/V'_{CO2I}) with pulmonary physiology.

Additional file 2

Abbreviations

VE: Ventilation; $V'_{E}/CO2$: output; V'_V/V_T: Dead space fraction of tidal volume; VE/VCO2S: VE versus VCO2S slope; VE/VCO2I: VE versus VCO2 intercept; FEV1%: Forced expired volume in one s % predicted; CHF: Congestive heart failure; COPD: Chronic obstructive pulmonary disease; VE/VCO2R: VE/VCO2 ratio; GOLD: Global Initiative for Chronic Lung Disease; FVC: Forced vital capacity; CPET: Cardiopulmonary exercise test; O2: Oxygen-cost diagram; TLC: Total lung capacity; RV: Residual volume; D_{CO}: Diffusing capacity for carbon monoxide; $P_{1_{2}}$: End-tidal P_{CO2}; S_{O2}: Arterial oxygen saturation was measured by pulse oximetry; RCP or VCP: Respiratory or ventilatory compensation point; VE/VCO2S: VE/VCO2 nadir

Acknowledgements

I thank Professor Lin, I-Feng of National Yang Ming University, Institute of Public Health, for her comments on statistical analysis. The name of the institution(s) review board: The Institutional Review Board of Chung Shan Medical University Hospital.

Author’s contributions

MLC: initiated and designed the study, analyzed and interpreted the data, wrote the manuscript, and approved the version to be published.

Funding

This study was supported in part by Chung Shang Medical University Hospital. The funding body had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. This study was supported in part by the Minister of Science and Technology, Taiwan.

Availability of data and materials

Uploaded.

Ethics approval and consent to participate

Signed informed consent was obtained from each participant. The local Institutional Review Boards of the two institutions approved this study. The name of the ethics committee: Chung Shan Medical University Hospital (CS19014). Registered at this site: Chung Shan Medical University Hospital, Taichung, Taiwan. Registration number: CSH-2019-C-030. Studies involving animals: ‘Not applicable’.

Consent for publication

‘Not applicable’.

Competing interests

The authors declare no competing financial interests.

Received: 13 June 2020 Accepted: 22 July 2020

Published online: 06 August 2020

References

1. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Measurements during integrative cardiopulmonary exercise testing. In: Wasserman K, editor. Principles of exercise testing and interpretation. 4th ed. Philadelphia: Lipincott Williams & Wilkins; 2005. p. 76–110.

2. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Normal values. In: Wasserman K, editor. Principles of exercise testing and interpretation. 4th ed. Philadelphia: Lipincott Williams & Wilkins; 2005. p. 160–82.
3. Teopompi E, Tzani P, Aiello M, et al. Ventilatory response to carbon dioxide output in subjects with congestive heart failure and in patients with COPD with comparable exercise capacity. Respir Care. 2014;59(7):1034–41.

4. Arena R, Myers J, Abella J, et al. Influence of heart failure etiology on the prognostic value of peak oxygen consumption and minute ventilation/ carbon dioxide production slope. Circulation. 2007;115(18):2410–7.

5. Tabet JY, Beaulieu F, Thabut G, Tartière JM, Logeart D, Cohen-Solal A. A critical appraisal of the prognostic value of the VE/VO2 slope in chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2003;10(4):267–72.

6. Kim V, Kretschman DM, Stemberg AL, DeCamp MMJ, Ciner GJ. National Emphysema Treatment Trial Research Group. Weight gain after lung resection surgery is related to improved lung function and ventilatory efficiency. Am J Respir Crit Care Med. 2012;186(11):1109–16.

7. Metra M, Raccagni D, Carini G, et al. Ventilatory and arterial blood gas changes during exercise in heart failure. In: Wasserman K, editor. Exercise gas exchange in heart failure. 1st ed. Armonk; Futura; 1996. p. 125–33.

8. Koike A, Hiroe M, Marumo F. Increased ventilatory response to exercise as related to functional capacity. In: Wasserman K, editor. Exercise gas exchange in heart disease. 1st ed. Armonk; Futura; 1996. p. 109–23.

9. Gargulio P, Apostolo A, Perrone-Filardi P, Sciomer S, Palange P, Agostoni P. A non invasive estimate of dead space ventilation from exercise measurements. PLoS One. 2014(9):e87395.

10. Whipp BJ, Ward SA, Wasserman K. Ventilatory control to exercise and their control in man. Am Rev Respir Dis. 1984;129(2 Pt 2):S17–20.

11. Neder JA, Arbex FF, Alencar MC, et al. Exercise ventilatory inefficiency in mild to end-stage COPD. Eur Respir J. 2015;45(2):377–87.

12. Paolotti D, De Filippis F, Fraioli F, et al. Cardiopulmonary exercise testing (CPET) in pulmonary emphysema. Respir Physiol Neurobiol. 2011;179(2–3):167–73.

13. Teopompi E, Tzani P, Aiello M, Giola MR, Marangio E, Chetta A. Exercise ventilation and ventilatory constraints during exercise in patients with chronic obstructive pulmonary disease. Respir Physiol Neurobiol. 2014;197:14–14.

14. Gagnon P, Russières JS, Ribeiro F, et al. Influences of spinal anesthesia on exercise tolerance in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(7):606–15.

15. Peters MM, Webb KA, O’Donnell DE. Combined physiological effects of bronchodilators and hyperoxia on exertional dyspnoea in normoxic COPD. Am J Respir Crit Care Med. 2012;186(7):606

16. Sun XG, Hansen JE, Garatachea N, Storer TW, Wasserman K. Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med. 2002;166(11):1443–8.

17. Wasserman K, Hansen JE, Sue DY, Whipp BJ. Calculations, formulas, and examples. In: Wasserman K, editor. Principles of exercise testing and interpretation. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 556–65.

18. Vassilakopoulos T, Zakynthinos S, Roussos C. Assessing muscular oxygenation during incremental exercise using near-infrared spectroscopy: comparison of three different methods. Am J Respir Crit Care Med. 1998;158(2):378–85.

19. Zocchi L, Fitting JW, Majani U, Fraccchia C, Rampiona C, Grassino A. Effect of preoperative smoking on ventilatory function and on the success of surgery. Eur J Cardiovasc Prev Rehabil. 2003;10(5 supplement 1):S271–S275.

20. Chuang ML, Lee CH, Lin IF. Using the oxygen-cost diagram in ramp-slope selection for dyspeptic patients. Intern Med. 2010;49(14):1325–32.

21. American Thoracic Society, American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.

22. Sun XG, Hansen JE, Garatachea N, Storer TW, Wasserman K. Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med. 2002;166(11):1443–8.

23. Chuang ML, Lee CH, Lin IF. Using the oxygen-cost diagram in ramp-slope selection for dyspeptic patients. Intern Med. 2010;49(14):1325–32.

24. American Thoracic Society, American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.

25. Sun XG, Hansen JE, Garatachea N, Storer TW, Wasserman K. Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med. 2002;166(11):1443–8.

26. Vassilakopoulos T, Zakynthinos S, Roussos C. Assessing muscular oxygenation during incremental exercise using near-infrared spectroscopy: comparison of three different methods. Am J Respir Crit Care Med. 1998;158(2):378–85.

27. Zocchi L, Fitting JW, Majani U, Fraccchia C, Rampiona C, Grassino A. Effect of preoperative smoking on ventilatory function and on the success of surgery. Eur J Cardiovasc Prev Rehabil. 2003;10(5 supplement 1):S271–S275.

28. Chuang ML, Lee CH, Lin IF. Using the oxygen-cost diagram in ramp-slope selection for dyspeptic patients. Intern Med. 2010;49(14):1325–32.

29. American Thoracic Society, American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.

30. Sun XG, Hansen JE, Garatachea N, Storer TW, Wasserman K. Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med. 2002;166(11):1443–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.