Morphological variation, chromosome number, and DNA barcoding of Giant Duckweed (Spirodela polyrhiza) in Vietnam

Tran Ngoc Bao Tram, Tran Thi Nhung, and Hoang Thi Nhu Phuong*
Faculty of Biology, Da Lat University, Vietnam
*Correspondence: Hoang Thi Nhu Phuong (email: phuonghtn@dlu.edu.vn)

Article info.

Received 25 Aug 2022
Revised 11 Oct 2022
Accepted 14 Oct 2022

ABSTRACT

Our present study is the first systematic survey on duckweed biodiversity in Vietnam. More than 100 samples of Spirodela, Lemna, and Wolffia were collected throughout Vietnam and maintained under laboratory conditions. In this report, the morphological variation, chromosome number, and DNA barcoding on Spirodela samples were investigated. S. polyrhiza and S. intermedia are the only two species of Spirodela genus - the most ancient genus among the five duckweed genera. The obtained DNA sequences of atpF–atpH and psbK–psbI regions showed that all 29 Spirodela samples collected from different regions along Vietnam are S. polyrhiza. Specific SNPs of individual S. polyrhiza clones were identified in the psbK-psbI region. The differences in genome size (163 – 170 Mbp), frond size (0.80 – 1.25 cm²), frond shape (oval/circular symmetry/asymmetry), stomata (20.57 – 24.00 µm in length and 10.00 – 21.30 µm in width) and root number (4.75 – 6.69 roots) among six representatives S. polyrhiza clones were recorded. The chromosome number of these clones was uniformly 2n=40.

Keywords
Chromosome number, duckweed, DNA barcode, genome size

1. INTRODUCTION

Duckweeds are small, free-floating, largely asexual, and highly neotenic organisms. They belong to the monocot order Alismatales and display highly reduced organs, the fastest growth rate among flowering plants, and are of growing interest in aquaculture and genome biology to become a new generation of sustainable crops. Duckweeds comprise 36 species within 5 genera: 02 Spirodela, 01 Landoltia, 12 Lemna, 10 Wolffia, and 11 Wolffia species (Bog et al., 2010, Tippery et al., 2015, Bog et al., 2020). “Frond” was used to describe the leaf-like organism structure of duckweeds which lacks a stem. Progressive evolutionary reduced roots and body size from 1.5cm in diameter with many roots in Spirodela (the most ancient genus) to less than 1mm and no root in Wolffia (the most derived genus). All duckweeds reproduce asexually by forming daughter fronds from meristematic pockets (primordia) at the proximal end of a mother frond although flowers were observed in many species.

Due to notable features of duckweeds such as their worldwide distribution (except in the Arctic and Antarctica), water surface habitat, and fast growth rate - yielding up to 100 tons dry mass/hectare/year (Lam et al. 2014; Ziegler et al. 2015) -, the ability to remove contaminants from wastewater (Chaudhuri et al. 2014; Goswami et al. 2014; Teixeira et al. 2014), high quality and quantity of protein (Appenroth et al. 2017; Rusoff et al. 1980) and high starch content in some strains under particular growth conditions (Cui and Cheng 2015; Fujita et al. 2016; Sree et al. 2015), duckweeds are attractive as a new crop production platform. They are considered as a potential resource for an increasing
world population, useful for wastewater remediation, feedstock for biofuels, and animal feed, as well as for human nutrition, without competing with traditional crops for arable land.

Usually, genome sizes and chromosome sets (karyotypes) are rather stable for distinct species and therefore of diagnostic value for taxonomy. Genome size can be a diagnostic feature of individual species and contributes to elucidating whole-genome duplication (WGD) and other events during genome evolution. During the last decades, flow cytometry became the preferred method for genome size measurement in plants. Besides the easiness of sample preparation and high throughput, the capability to estimate genome size, nuclear replication state, ploidy, and endopolyploidy levels are advanced features of this method compared to other approaches such as Feulgen densitometry or genome sequencing (Dolezel et al., 2007). The genome size has been reported for different duckweed species with more than 14-fold variation from 160 Mbp (S. polyrhiza) to 2203 Mbp (Wo. arrhiza). No significant differences in genome sizes were detected among diploid clones with 160Mbp in both Spirodela species (S. polyrhiza and S. intermedia) and 421 Mbp in La. punctata while in other genera Lemna, Wolffia, and Wolfia, genome size variations among different clones of the same species were reported such as in Le. minor or Wo. arrhiza. Although the two Spirodela species have similar genome sizes (160 Mbp), the chromosome number differ from 2n = 40 in S. polyrhiza to 2n = 36 in S. intermedia. In addition, a cytogenetic map using chromosome–specific probes of S. polyrhiza for subsequence multi-color FISH revealed the homeology and chromosome rearrangements between these Spirodela species (Hoang and Schubert, 2017).

Due to the high potential for research and practical applications of duckweed in general and S. polyrhiza in particular (Lam et al., 2014), the genomes of S. polyrhiza clones 7498 (Wang et al., 2014) and 9509 (Michael et al., 2017) have been sequenced to produce the reference genetic map for this species. In addition, the cytogenomic study revealed no chromosome rearrangements between the seven S. polyrhiza clones, but several misassemblies were uncovered in both previous maps (Hoang et al., 2018).

In Vietnam, the biodiversity and potential application of duckweed have not yet been investigated comprehensively. Only a few surveys on the possibility of heavy metal accumulation or transgenic research on duckweed have been conducted (Bui, 2009, Nguyen, 2016, Tran, 2009). Therefore, this study is the first systematic study comprising the collection, identification, and evaluation of the genetic diversity of duckweed species in Vietnam. Among more than 100 samples collected from different regions along Vietnam, all 29 Spirodela samples were identified S. polyrhiza based on DNA sequences of atpF– atpH and psbK–psbI regions, the chromosome set from six representative samples is 2n = 40. Furthermore, the genome size, as well as frond size, frond shape, and root system of the six representative clones, were investigated.

2. MATERIALS AND METHOD

2.1. Plant materials

Twenty-eight Spirodela samples collected from different regions in Vietnam were sterilized and grown in liquid nutrient medium including KH2PO4 (60 µM), Ca(NO3)2 (1 µM), KNO3 (8 mM), MgSO4 (1 mM), H3BO3 (5 µM), MnCl2 (13 µM), Na2MoO4 (0.4 µM), FeEDTA (25 µM) (Appenroth et al., 2015) under 16 h white light of 100 µmol m2 s1, at 24°C.

Six representative S. polyrhiza samples were used for further investigation collected at Ninhthuan (HNP002), Quangnhin (HNP053), Dongthap (HNP079), Lamdong (HNP095), Vungtau (HNP100) and Binhthuan (HNP101).

2.2. DNA isolation, amplification, sequencing, and alignment

For each sample, 0.3 g of fresh and healthy fronds were harvested and cleaned in distilled water, put into a 2 ml Eppendorf tube with two metal balls, frozen in liquid nitrogen, and ground by a ball mill mixer (Retsch MM400). The genomic DNA of the studied species was isolated using the DNeasy Plant Mini Kit (cat. nos. 69104 Qiagen). DNA was eluted by 200 µl buffer AE and quality was checked by electrophoresis.

Among different plastid markers such as rpl16, rps16, atpF-atpH, psbK-psbI, and amplified fragment length polymorphism (AFLP) were used for barcoding of taxa in duckweed genera (Bog et al., 2010, Bog et al., 2015, Bog et al., 2020 Wang et al., 2010, Borisjuk et al., 2015), atpF-atpH and psbK-psbI regions are suitable for determination at the species level. In this study, we used these two plastid markers (atpF-atpH and psbK-psbI) for...
barcoding. The investigated regions were amplified using the corresponding primer pairs: for the atpF-atpH region: atpF 5′- ACTCGCACACACTCCCTTCC-3′; atpH 5′-GCTTTTATGGAAGCTTTAACAAT-3′; and for psbK-psbI region: psbK- 5′- TTAGCCTTTGTTGCAAG-3′, psbl- 5′- AGAGTTTGAGAGTA-3′.

The PCR reactions were carried out in a total volume of 25 µl containing 2.5 µl of a ten-fold concentrated Dream Taq Green buffer with, 2.0 µl dNTPs (2.5 mM), 2.5 µl 1× of each primer (10 mM), 0.5 µl Dream Taq enzyme (5 U.µl⁻¹) and 2 µl DNA template (20 ng.µl⁻¹).

Amplification was carried out at 95°C for 5 min, followed by 35 cycles at 95°C for 45 sec, at 55°C (psbK-psbI) or 49°C (atpF-atpH) for 30 sec, at 72°C for 50 sec, and a final extension step at 72°C for 7 min. The amplified DNA fragments were resolved on a 1.2% (w/v) agarose gel, stained with SYBR Green, and visualized with a UV light (GelDoc-It®2315 imager UVP-USA).

The PCR amplicons obtained from the successful amplifications were selected for sequencing at Macrogen company (10F, 254 barcoding.

Species identification by plastidic sequences barcoding

The phylogenetically basic genus Spirodela comprises two species, S. polyrhiza L. (Schleich) and S. intermedia W. Koch, which have a similar genome size (~160 Mbp/1C) (Bog et al., 2015). Spirodela genus can be easily distinguished morphologically from other genera according to its biggest frond size (~1.5cm), and round leaf shape. Some morphology characteristics were reported that could be used to distinguish the two Spirodela species; however, these features also differ due to growth conditions. Therefore, we would like to use molecular factors for the correct identification of the species.

The results generated from the two plastid markers (psbK-psbI, and atpF-atpH) for species identification showed that all 29 Spirodela samples collected along Vietnam are S. polyrhiza.
The sequencing efficiency for *atpF – atpH* was 89.7% (26/29 samples were sequenced) and all 26 obtained sequences showed no SNPs (Single Nucleotide Polymorphisms) among 29 tested samples and with *S. polyrhiza* reference on NCBI. The length of sequences ranged 662-684 bp.

psbK – psbI region

The length of *psbK – psbI* sequences ranged 662-684bp. The sequencing efficiency for this region was 96.6% (28/29 samples were sequenced), 4 SNPs at positions 235 (T/G), 257 (A/G), 425 (A/G), and 474 (A/G) among the 28 obtained sequences were found. Depending on the position of SNPs, the 28 samples were divided into 7 groups (Table 1).

Table 1. SNPs in *psbK – psbI* region occurred in 28 *S. polyrhiza* sequences

Clone ID	Clone ID	HNP133	HNP111	HNP100	HNP002	HNP060	HNP069	HNP079	HNP101	HNP055	HNP062	HNP063	HNP082	HNP112	HNP118
T A A A	T A A A	T G A A	T G A A	T G A A	T G A A	T G A A	T G A A	T G A A	T G A A	T G A A	T G A A	T G A A	T G A A	T G A A	

3.2. Genome size measurement

Six representative *S. polyrhiza* samples were used for genome size measurement. The obtained results showed that the genome in size of Vietnam *S. polyrhiza* samples is a bit larger size (163 – 170 Mbp) (Table 2) compared to reported data (158 – 160 Mbp) for other *S. polyrhiza* clones. This might be caused by the use of different internal reference standards or different equipment, but most likely by assuming a different genome size of *Arabidopsis thaliana* as a basis for calculation (157 Mbp in Hoang et al. (2019), versus 147 Mbp in Wang et al. (2011)).

The R-gate charts of six *S. polyrhiza* and the reference standard (*R. sativus*) genome size measurement showed that all tested samples gave nice peak with more than 100 counts/measurement. The small third peak (on the right side) indicated for 4C cells of *R. sativus* (Fig. 1).

3.3. Chromosome number

Preparing nice mitotic chromosome spread of *S. polyrhiza* was a challenge due to the small genome size and the high number of chromosome (~160 Mbp and 2n = 40). Minor modifications were performed according to published protocol (Cao et al., 2016) yielded nice spread of all six tested clones. The images (Fig 2) were captured by SIM (Super Illuminated Microscope) for a high-quality image and precise counting. All tested *S. polyrhiza* clones comprised 40 chromosomes.

Figure 1. Genome size measurement of *S. polyrhiza* samples with *R. sativus* as reference

Figure 2. Chromosome spreads of *S. polyrhiza* samples (2n = 40) collected in Vietnam

Scale bar: 0.5 µm

Combined data from DNA barcode, genome size and chromosome counting revealed that *S. polyrhiza* samples collected in Vietnam share similar value with other reported *S. polyrhiza* clones (Hoang et al., 2019, Bog et al., 2015) with genome size (160 – 170 Mbp).

3.4. Morphology variation

Variation between frond shape, frond size, root system, and stomata among six *S. polyrhiza* clones were investigated. The frond shape changes from circular to oval, symmetry to asymmetry, and the surface area (cm²) of the largest frond cluster also vary from 0.75 (HNP053) to 1.25 cm² (HNP101)
The number of fronds per cluster mostly is usually 3 (one mother frond and two daughter fronds). A “bridge” was formed before a mature daughter frond separates itself from its mother frond to produce the next generation cluster (Fig. 3).

The variation in genome size; frond, root, and stomata morphology among six representative *S. polyrhiza* samples observed, showed that *S. polyrhiza* operates changes in its morphology according to its environment (Tab 2 and Fig 4). The most notable difference could be seen in the shape of the stomata of *S. polyrhiza* HNP095 (collected at Con Dao Island – Vung Tau Province), which is narrow oval (22.75 × 12.25µm), while the stomata of other samples are round oval (with 17 – 21µm in width).

Table 2. Variation of genome size, frond shape, and size, number of frond and root, stomata diameter among six *S. polyrhiza* samples collected in Vietnam

Sample	Genome size (Mbp)	Frond shape	No. of frond	No. of root	Frond size (cm²)	Stomata length (µm)	Stomata width (µm)
HNP002	164	oval symmetry	3.5 ± 0.67	6.41 ± 2.55	0.80 ± 0.06	22.17 ± 1.34	18.33 ± 2.50
HNP053	165	circular symmetry	2.9 ± 0.70	5.55 ± 2.01	0.75 ± 0.03	22.67 ± 0.47	17.00 ± 1.58
HNP079	164	circular asymmetry	2.5 ± 0.67	5.92 ± 2.02	0.98 ± 0.05	22.25 ± 0.97	17.25 ± 0.97
HNP095	165	circular asymmetry	2.4 ± 0.72	5.63 ± 2.63	0.79 ± 0.06	22.75 ± 1.09	12.25 ± 1.09
HNP100	170	circular symmetry	2.2 ± 0.75	6.69 ± 2.64	1.07 ± 0.07	24.00 ± 1.55	21.3 ± 2.05
HNP101	163	oval symmetry	2.3 ± 0.46	4.75 ± 2.51	1.25 ± 0.04	20.57 ± 1.68	19.00 ± 2.56

Figure 4. Morphology of frond, root system and stomata of six *S. polyrhiza* sample collected in Vietnam

(A) the side view of the fronds with the root system. Scale bar: 1 cm; (B) the front view (left) and ventral view (right) of fronds. Scale bar: 1 cm; (C) stomata shape and size. Scale bar: 20 µm

4. CONCLUSIONS

Our study combining morphology, DNA barcode, and cytogenetic approaches showed that all *Spirodea* samples collected along Vietnam are *S. polyrhiza*. This species has potential applications in wastewater treatment or biofuel biomass (due to the high concentration of starch) (Lam et al., 2014, Appenroth et al., 2015, Cui et al., 2015). Therefore, our result comes from the first systematic survey on the biodiversity of duckweed in general and *S. polyrhiza* in particular and provides the background for further research and application studies.

ACKNOWLEDGMENT

This work was supported by the Vietnam National Foundation for Science and Technology
Development (NAFOSTED) grant # 106.01-2020.33 for Hoang Thi Nhu Phuong.

REFERENCES

Appenroth, K. J., Crawford, D. J., & Les, D. H. (2015). After the genome sequencing of duckweed—how to proceed with research on the fastest growing angiosperm?. *Plant Biology*, 17, 1-4.

Appenroth, K. J., Sree, K. S., Böhm, V., Hammann, S., Vetter, W., Leiterer, M., & Jahreis, G. (2017). Nutritional value of duckweeds (Lemnaceae) as human food. *Food chemistry*, 217, 266-273.

Bog, M., Baumbach, H., Schwein, U., Hellwig, F., Landolt, E., & Appenroth, K. J. (2010). Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. *Planta*, 232, 609-19.

Bog, M., Lautenschlager, U., Landrock, M. F., Landolt, E., Fuchs, J., S.K., S., Oberprieler, C., & Appenroth, K. J. (2015). Genetic characterization and barcoding of taxa in the genera *Lemnalia* and *Spirodela* (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP). *Hydrobiologia*, 749, 169-182.

Bog, M., Sree, K. S., Fuchs, J., Hoang, P. T. N., Schubert, I., Kuever, J., Rabenstein, A., Paolacci, S., Jansen, M. A. K., & Appenroth, K. J. (2020). A taxonomic revision of *Lemna* sect. Uninerves (Lemnaceae). *Taxon*, 69, 56-66.

Borisjuk, N., Chu, P., Gutierrez, R., Zhang, H., Acosta, K., Friesen, N., ... & Lam, E. (2015). Assessment, validation and deployment strategy of a two-barcode protocol for facile genotyping of duckweed species. *Plant Biology*, 17, 42-49.

Bui, X. (2009). Evaluation of integrated systems and uses of water plants in diets for duck production in the Mekong Delta. *Can Tho University Journal of Science*, 11, 228-236 (in Vietnamese).

Cao, H. X., Vu, G. T., Wang, W., Appenroth, K. J., Messing, J., & Schubert, I. (2016). The map-based genome sequence of *Spirodela polyrhiza* aligned with its chromosomes, a reference for karyotype evolution. *New Phytol*, 209, 354-63.

Chaudhuri, D., Majumder, A., Misra, A. K., & Bandyopadhyay, K. (2014) Cadmium removal by Lemna minor and *Spirodela polyrhiza*. *Int J Phytoremediation*, 16(7-12):1119-1132. doi: 10.1080/15226514.2013.821446

Cui, W., & Cheng, J. J. (2015). Growing duckweed for biofuel production: a review. *Plant biology*, 17, 16-23. doi: 10.1111/plb.12216

Dolezel, J. (2003). Nuclear DNA content and genome size of trout and human. *Cytometry Part A*, 51, 127-128.

The authors thank Jörg Fuchs, Veit Schubert, and Ingo IPK Gatersleben, for discussions and help with the artwork.

Doležel, J., Greilhuber, J., & Suda, J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. *Nature protocols*, 2(9), 2233-2244.

Fujita, T., Nakao, E., Takeuchi, M., Tanimura, A., Ando, A., Kishino, S., ... & Shimizu, S. (2016). Characterization of starch-accumulating duckweeds, *Wolflia globosa*, as renewable carbon source for bioethanol production. *Biocatalysis and agricultural biotechnology*, 6, 123-127. https://doi.org/10.1016/j.bcab.2016.03.006

Goswami, C., Majumder, A., Misra, A. K., & Bandyopadhyay, K. (2014). Arsenic uptake by *Lemna* minor in hydroponic system. *International journal of phytoremediation*, 16(12), 1221-1227. doi: 10.1080/15226514.2013.821452

Hoang, P. N., Michael, T. P., Gilbert, S., Chu, P., Motley, S. T., Appenroth, K. J., ... & Lam, E. (2018). Generating a high-confidence reference genome map of the greater duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. *The Plant Journal*, 96(3), 670-684.

Hoang, P. T., & Schubert, I. (2017). Reconstruction of chromosome rearrangements between the two most ancestral duckweed species *Spirodela polyrhiza* and *S. intermedia*. *Chromosoma*, 126(6), 729-739.

Hoang, P. T., Schubert, V., Meister, A., Fuchs, J., & Schubert, I. (2019). Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. *Scientific reports*, 9(1), 1-13.

Lam, E., Appenroth, K. J., Michael, T., Mori, K., & Fakhoorian, T. (2014). Duckweed in bloom: the 2nd International Conference on Duckweed Research and Applications heralds the return of a plant model for plant biology.

Landolt, E. (1986). The family of Lemnaceae—a monographic study: Vol. 1: Morphology, karyology, ecology, geographic distribution, systematic position, nomenclature, descriptions. *Veroff. Geobot. Inst. ETH, Stiftung Rübel, Zurich*, 71, 566.

Michael, T. P., Bryant, D., Gutierrez, R., Borisjuk, N., Chu, P., Zhang, H., ... & Lam, E. (2017). Comprehensive definition of genome features in *Spirodela polyrhiza* by high-depth physical mapping and short-read DNA sequencing strategies. *The Plant Journal*, 89(3), 617-635.

Nguyen, H. N. (2016). Evaluation of the influence and accumulation level of Copper, Alkalin, and Cadmium on duckweed (*Lemna gibba* L.) in an exclusive test. Vietnam Academy of Agriculture (in Vietnamese).
Rusoff, L. L., Blakeney Jr, E. W., & Culley Jr, D. D. (1980). Duckweeds (Lemnaceae family): a potential source of protein and amino acids. *Journal of Agricultural and Food Chemistry*, 28(4), 848-850.

Shtein, I., Popper, Z. A., & Harpaz-Saad, S. (2017). Permanently open stomata of aquatic angiosperms display modified cellulose crystallinity patterns. *Plant signaling & behavior*, 12(7), 1021-33.

Sree, K. S., Adelmann, K., Garcia, C., Lam, E., & Appenroth, K. J. (2015). Natural variance in salt tolerance and induction of starch accumulation in duckweeds. *Planta*, 241(6), 1395-1404. doi: 10.1007/s00425-015-2264-x

Teixeira, S., Vieira, M. N., Marques, J. E., & Pereira, R. (2014). Bioremediation of an iron-rich mine effluent by Lemna minor. *International journal of phytoremediation*, 16(12), 1228-1240. doi: 10.1080/15226514.2013.821454

Tippery, N. P., Les, D. H., & Crawford, D. J. (2015). Evaluation of phylogenetic relationships in Lemnaceae using nuclear ribosomal data. *Plant Biology*, 17, 50-58.

Tran, T. D. (2009). Study on isolation control factors of ubiquitin gene expression from two species of duckweeds *Lemna aequinoctialis* DB1 and *Spirodela polyrhiza* DB2. Thai Nguyen University - University of Pedagogy (in Vietnamese).

Wang, W., Haberer, G., Gundlach, H., Gläßer, C., Nussbaumer, T. C. L. M., Luo, M. C., ... & Messing, J. (2014). The *Spirodela polyrhiza* genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. *Nature communications*, 5(1), 1-13.

Wang, W., Kerstetter, R. A. & Michael, T. P. 2011. Evolution of Genome Size in Duckweeds (Lemnaceae). *Journal of Botany*, 2011, 1-9.

Wang, W., Wu, Y., Yan, Y., Ermakova, M., Kerstetter, R., & Messing, J. (2010). DNA barcoding of the Lemnaceae, a family of aquatic monocots. *BMC Plant Biology*, 10(1), 1-11.