CD229 CAR T cells eliminate multiple myeloma and tumor propagating cells without fratricide

Sabarinath V. Radhakrishnan1,7, Tim Luetkens1,7*, Sandra D. Scherer2, Patricia Davis3, Erica R. Vander Mause1, Michael L. Olson1, Sara Yousef1, Jens Panse4, Yasmina Abdiche5, K. David Li3, Rodney R. Miles3, William Matsui6, Alana L. Welm2 & Djordje Atanackovic1

Multiple myeloma (MM) is a plasma cell malignancy and most patients eventually succumb to the disease. Chimeric antigen receptor (CAR) T cells targeting B-Cell Maturation Antigen (BCMA) on MM cells have shown high-response rates, but limited durability. CD229/LY9 is a cell surface receptor present on B and T lymphocytes that is universally and strongly expressed on MM plasma cells. Here, we develop CD229 CAR T cells that are highly active in vitro and in vivo against MM plasma cells, memory B cells, and MM-propagating cells. We do not observe fratricide during CD229 CAR T cell production, as CD229 is down-regulated in T cells during activation. In addition, while CD229 CAR T cells target normal CD229high T cells, they spare functional CD229neg/low T cells. These findings indicate that CD229 CAR T cells may be an effective treatment for patients with MM.

1 Multiple Myeloma Program & Cancer Immunotherapy, Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA. 2 Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA. 3 Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA. 4 Department of Oncology, Hematology, Hemostaseology, and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany. 5 Carterra Inc., Salt Lake City, UT, USA. 6 Department of Oncology, The University of Texas at Austin, Austin, TX, USA. *These authors contributed equally: Sabarinath V. Radhakrishnan, Tim Luetkens.

*email: tim.luetkens@hci.utah.edu
Multiple myeloma (MM) is a clonal plasma cell (PC) malignancy that develops in the patients’ bone marrow (BM) and ultimately causes bone lesions with fractures, kidney failure, BM failure, and immunoparesis with fatal infections. Approximately 30,000 new cases are diagnosed per year in the United States alone and almost all patients will eventually succumb to the disease due to the development of chemotherapy resistance.

T cells engineered to express chimeric antigen receptors (CARs) can be used to effectively target tumor cells. CARs combine a binding domain against a surface antigen with signaling domains inducing T cell activation. The adoptive transfer of CAR T cells targeting B cell maturation antigen (BCMA) has resulted in high overall response rates in MM patients. However, modulation of BCMA expression after BCMA CAR T cell therapy has been observed and median progression-free survival is <1 year13. In addition, 33/85 patients screened for a clinical BCMA CAR T-cell trial did not express BCMA in their bone marrow4. Currently, there is no cellular immunotherapy available for the substantial number of patients who are not eligible for anti-BCMA CAR T cells in the first place or patients with relapses after BCMA CAR T cell treatment.

It has previously been shown that the SLAM receptor CD229/LY9 is a potential target for CAR T cell therapy in MM due to its strong and homogenous expression on the bulk of tumor cells, as well as chemotherapy-resistant myeloma progenitors, its absence from most normal cells, and dependence of MM cells on CD229 for their survival5–8. We now develop CD229-specific CAR T cells showing strong and persistent activity against MM in vitro and in vivo.

Results

Expression of CD229 in MM plasma cells and B lineage cells. Analyzing bone marrow samples from 20 MM patients using flow cytometry, we found that, in agreement with previous observations5–7, CD229 shows equally strong expression on the surface of MM cells from all patients with newly diagnosed and relapsed/refractory disease (Fig. 1a). It has been suggested that clonotypic MM B cells may be present in the pre-plasma cell memory B-cell compartment10–12 and targeting of CD19+ B cells in MM patients using CAR T cells has shown some clinical activity13,14. We found that CD229, but not BCMA expression, can already be detected in transitional and memory B cells (Fig. 1b). This finding suggests that targeting CD229 may lead to the eradication not only of terminally differentiated MM plasma cells but also clonotypic MM-propagating cells potentially present in the memory B-cell compartment.

Generation of a fully human CD229-specific antibody. We next generated the first fully human antibody against CD229 using antibody phage display. In an initial monoclonal screening of the selected binders using a time-resolved fluorescence-based binding assay (Supplementary Fig. 1A), we identified 23 antibodies recognizing CD229 and lacking measurable affinity to any other SLAM family receptors (Supplementary Fig. 1B). We then stained 293T cells expressing second generation CARs (Supplementary Fig. 1C) based on these antibodies with recombinant CD229 and observed high-surface expression and antigen binding by 15/23 constructs (Supplementary Fig. 1D). For subsequent assays, we selected clone 2D3 (Supplementary Fig. 1E), which showed strong CD229 binding in monoclonal antibody and CAR format (Supplementary Fig. 1F) and no off-target binding to a set of 5,300 human surface proteins (Fig. 2a). In addition, we observed binding of 2D3 to K562 cells transduced with a CD229 expression construct (K562-CD229) but not to CD229+ parental K562 cells (Fig. 2b). Replacing the four Ig-like domains in the extracellular region of human CD229 with their mouse homologs, we mapped the binding region of 2D3 to the membrane-proximal variable domain of CD229 (Fig. 2c).

Determining the selectivity of 2D3 for MM cells compared to normal hematopoietic cells, we first analyzed binding of 2D3 to purified MM plasma cells using flow cytometry and observed strong and uniform staining of all malignant cells (Fig. 2d). Comparing binding of 2D3 to MM cells in bone marrow samples from patients with newly diagnosed disease to patients with relapsed/refractory disease, we again observed universal staining and no significant difference between the groups (Fig. 2e). We next determined binding of 2D3 to other hematopoietic cells and did not observe any binding to CD34+ hematopoietic progenitors, neutrophils, or monocytes (Fig. 2f). Analyzing normal lymphocyte subpopulations, 2D3 did not show any binding to NK cells but weakly stained T and B cells (Fig. 2g).

CD229 CAR T cells show minimal fratricide. We next generated primary human CD229 CAR T cells based on 2D3 (outline of production process in Supplementary Fig. 2B) and demonstrated efficient surface expression of the CD229 CAR construct using flow cytometry (Supplementary Fig. 2C). As we had observed binding by 2D3 to T cells, we asked the question whether 2D3-based CAR T cells would exhibit fratricide as previously observed.
in CAR T cells targeting surface antigens expressed on healthy T cells. However, we did not observe a significant reduction in the expansion of CD229 CAR T cells compared to control T cells expressing either a CAR without a binding domain (ΔscFv) or CD19 CAR T cells. Comparing phenotypes of CAR T cells at the end of manufacturing by flow cytometry, we also observed no significant differences between CD229 CAR T cells and CD19 CAR T cells with most of the T cells showing a central memory phenotype.

Analyzing CD229 CAR T-cell function, we found that CD229 CAR T cells secreted pro-inflammatory cytokines and proliferated in the presence of CD229+ target cells. We next measured the cytotoxic activity of CD229 CAR T cells against K562 and K562-CD229 cells and observed specific killing only of the CD229-expressing cells. Further analyzing the possibility of fratricide, which means killing of CAR T cells by other CAR T cells, we observed no cytotoxic activity of CD229 CAR T cells against activated T cells that had undergone the same CAR T cell production process except for the addition of lentiviral particles. Comparing CD229 expression in normal T cells and T act cells, we found that T act cells had downregulated CD229 protein and mRNA expression, resulting in the loss of 2D3 binding. While we did not observe substantial levels of fratricide or targeting of NK cells, we found that, without prior T-cell activation, CD229 CAR T cells did not suffer significant killing by other CAR T cells.
targeted normal T cells in vitro (Fig. 3g) and in an in vivo cytotoxicity assay using human peripheral blood mononuclear cells (PBMCs) (Fig. 3h and Supplementary Fig. 3B). We observed that the remaining T cells in our in vivo experiment were CD229neg/low (Fig. 3i), and determined that emergence of this population was not the result of CD229 downregulation induced by CD229 CAR T cells but of the sparing of CD229 neg/low T cells (Supplementary Fig. 3C). A similar observation has previously been made by Gogishvili et al. 22 who found that CAR T cells targeting the SLAM receptor CS1 selected a functional CS1 neg T-cell population.

Asking the question whether non-activated CD229 neg/low T cells are functional, we next compared CD229 high to CD229 neg/low T cells. We observed reduced IFNG secretion by CD4+ (Fig. 3j) but not by CD8+ (Fig. 3j) CD229 neg/low T cells. However, we did not observe significant differences in T-cell phenotypes (Supplementary Fig. 3D) and proliferation in response to stimulation with CD3/CD28 beads (Fig. 3k), targeting the SLAM receptor CS1 selected a functional CS1 neg T-cell population.
indicating that CD229low T cells are functional and exhibit key effector functions.

CD229 CAR T cells eliminate MM including MM-propagating cells. We next analyzed the cytotoxic activity of CD229 CAR T cells against MM cells. Using two MM cell lines, U-266 and RPMI-8226, expressing different levels of CD229 (Suppl. Fig. 4A), we found that CD229 CAR T cells but not ΔscFv CAR T cells efficiently killed both cell lines in vitro (Fig. 4a). Furthermore, using primary CD138+ tumor cells from 3 patients with plasma cell leukemia, a highly aggressive form of MM, which all showed high expression of CD229 (Suppl. Fig. 4B), we found that CD229 CAR T cells exhibited high cytotoxic activity against these cells (Fig. 4b) and pro-inflammatory cytokine production (Fig. 4c). In order to determine the in vivo activity of CD229 CAR T cells, we performed two NOD.Cg-Prkdc scid Il2rgtm1Wjl/SzJ (NSG) xeno-graft models. After engraftment of the tumor cells for 7 days, we injected a single dose of 3 x 10^6 CAR T cells and monitored animals using in vivo imaging (Supplementary Fig. 4C). We found that in mice engrafted with MM cell lines U-266 (Fig. 4d) and RPMI-8226 (Fig. 4e), treatment with CD229 CAR T cells resulted in the loss of luminescence signal in 5/5 and 4/5 animals, respectively, a significant reduction in MM-related serum light-chain levels (Supplementary Fig. 4D), and significantly prolonged survival.

CD19-specific CAR T cells have previously been shown to be effective in some patients with MM although CD19 is typically absent from most MM plasma cells. It has been hypothesized that the therapeutic benefit of CD19 CAR T cells in patients with MM is the result of the targeting of clonotypic MM-propagating cells present in the B cell compartment. As expected based on our binding data, we found that CD229 CAR T cells killed B lymphocytes in vitro (Fig. 4f). In our humanized mouse model, CD229 CAR T cells also efficiently targeted B cells in the animals’ peripheral blood (Fig. 4g) and bone marrow (Fig. 4h). Specifically, CD229 CAR T cells spared naïve B cells but killed memory B cells (Fig. 4i). In contrast, BCMA CAR T cells, which specifically bound to (Supplementary Fig. 4E) and killed MM cells (Supplementary Fig. 4F), did not target either B cell population (Fig. 4i). Based on these findings, we hypothesized that CD229 CAR T cells may be able to target not only MM plasma cells but also clonotypic MM-propagating cells present in the memory B-cell population. To explore this possibility, we performed colony formation assays to quantify MM-propagating cells in BM samples from seven patients with MM after ΔscFv, BCMA, or CD229 CAR T-cell treatment. While we found no effect on normal hematopoietic progenitors (Supplementary Fig. 4G), we indeed observed a significant reduction in the number of MM-propagating cells in samples treated with CD229 CAR T cells compared to BCMA CAR T cells (Fig. 4i).

Discussion

The standard of care for patients with MM includes treatments such as proteasome inhibitors, immunomodulatory drugs, autologous stem cell transplantation, and monoclonal antibodies, which have substantially prolonged patient survival. However, to date, MM still remains an incurable disease. CAR T cells have emerged as an effective approach for a number of other hematologic malignancies and recent results from BCMA-targeting CAR T-cell clinical trials in MM indeed showed impressive overall response rates. However, the durability of these responses was relatively limited and even patients with initial complete responses eventually relapsed. Relapses may be due to a number of factors including heterogenous and/or low pre-treatment expression of BCMA by fully differentiated tumor cells, absence of BCMA from less differentiated MM cells, and loss of BCMA expression under the selective pressure of the CAR T cell-mediated immune response.

We have now developed CAR T cells against CD229, a surface antigen which shows universal and strong tumor expression in patients with MM although CD229 CAR T cells efficiently eliminated not only terminally differentiated MM plasma cells, which are also targeted by BCMA CAR T cells, but also memory B cells, a potential reservoir for clonotypic MM cells and MM-propagating cells. Combined with the essential function of CD229 in MM, we hypothesize that this broader targeting of MM cells may lead to more robust and durable clinical responses. A common mechanism of resistance to CAR T cell therapy in MM and other hematologic malignancies is the escape of tumor cells expressing lower levels of the target antigen. Our data also indicate that CD229low lymphocytes and MM cells are not targeted as efficiently as CD229high cells by CD229 CAR T cells. We hypothesize that, although we and others have shown that CD229low lymphocytes and MM cells are not targeted as efficiently as CD229high cells by CD229 CAR T cells, we hypothesize that this broader targeting of MM cells may lead to more robust and durable clinical responses.

Like all SLAM receptors, CD229 also shows expression on normal lymphocytes but in contrast to CS1, the target of the FDA-approved monoclonal antibody elotuzumab and a clinical CAR T-cell trial, CD229 is absent from normal monocytes and dendritic cells. Indeed, we found that CD229 CAR T cells showed cytotoxicity against CD229high T cells but spared
Fig. 4 CD229 CAR T cells target MM plasma cells and MM-propagating cells. a Killing of MM cell lines by CD229 CAR T cells or ΔscFv CAR T cells as determined by luciferase-based cytotoxicity assay after 16 h co-culture. Data represent mean ± SD from three independent experiments. b Cytotoxic activity of CD229 CAR T cells or ΔscFv CAR T cells against malignant cells from three patients with plasma cell leukemia as determined by flow cytometry after 2–4 h co-culture. Data indicate mean ± SD from three patient samples. c Secretion of cytokines by CAR T cells during co-cultures with primary plasma cell leukemia cells as determined by cytometric bead assay. Data indicate mean ± SD from three co-cultures. Significance was calculated using two-sided Student’s t-test. NSG mice were injected with d 3 × 10^6 U-266 or e 1 × 10^6 RPMI-8226 cells expressing luciferase. After 1 week, mice were injected with 3 × 10^6 CAR T cells and bioluminescence was determined weekly. Differences in survival were determined by log-rank test. Data are representative of two independent experiments. f Killing of purified healthy B cells by CD229 CAR T cells or GFP T cells as determined by flow cytometry-based cytotoxicity assay. Data represent mean ± SD from three independent experiments. Significance was calculated using two-sided Student’s t-test. NSG mice were intravenously injected with 10^7 healthy PBMCs. After two days, mice were injected with 1 × 10^6 CD19 or CD229 CAR T cells or PBS and sacrificed after 4 days. B-cell numbers were determined in the animals’ g peripheral blood and h bone marrow. Data represent mean ± SD from three animals per group. Significance was determined by two-sided Student’s t-test. i In vitro cytotoxicity of CD229, ΔscFv, or BCMA CAR T cells against purified memory or naive B cells as determined by flow cytometry. Data represent mean ± SD from three independent experiments. j Bone marrow mononuclear cells from seven MM patients were co-cultured with CD229, ΔscFv, or BCMA CAR T cells for 4–6 h, depleted of CD3+ CAR T cells, and plated in methylcellulose. Colonies were counted after 14–21 days of culture. Data represent mean ± SD from seven patient samples. Statistical significance was determined by two-sided Student’s t-test. Source data are provided as a Source Data file.
analyses were performed as previously described 8. To determine expression on Thermo-Fisher.

Methods

Patient samples and cell lines. Peripheral blood, bone marrow, and unused CD34+ hematopoietic stem cells from autologous transplant products were obtained from MM and/or plasma cell leukemia patients or healthy donors. Cell lines U-266, RPMI-8226, 293T, and K562 cells were obtained from ATCC and cultured according to manufacturer’s instructions. Competent bacteria TG1, BL21[DE3], and DH5α were obtained from Lucigen, Sibl3 cells were obtained from Thermo-Fisher.

Flow cytometry analyses of CD229 expression. Flow cytometry staining and analyses were performed as previously described. To determine expression on MM plasma cells, bone marrow samples from patients with MM were stained with antibodies against CD38 and CD138 and co-stained with HLy9.1.25 (1:100), or CD3 μ chain (1:100). To confirm enrichment of CD229-specific binders in a polyclonal binding assay using time-resolved fluorescence (TRF), scFv sequences from the second selection round were cloned into pSANG10-3F and transformed into BL21[DE3] cells (Lucigen). Monoclonal scFvs were expressed overnight in MagicMedia E. coli autoexpression medium (Thermo-Fisher) in 96-well plates and binding of individual supernatants to recombinant CD229 was determined by TRF. Plasma DNA of binders was isolated using QIAamp Miniprep columns (Qiagen) and scFv sequences were determined by Sanger sequencing. For expression analyses, 2D3 was purified from 293F cells, and purified by NiNTA. For some experiments, 2D3 was expressed as a full IgG1 antibody using Expi293 cells simultaneously transfected with individual expression plasmids that are individually transfected in separate wells of a 384-well plate. The entire library of plasmids is arrayed in duplicate in a matrix format and transfected into HEK-293T cells, followed by incubation for 36 h to allow protein expression. After specification testing, optimal antibody concentrations for screening were determined by using cells expressing positive (membrane-tethered Protein A) and negative (mock-transfected) binding controls, followed by flow cytometric detection with an Alexa Fluor-conjugated secondary antibody (Jackson ImmunoResearch Laboratories). Based on the assay setup results, ZS (1.25 μg/ml) was added to the MPA. Binding across the protein library was visualized on an IntelliCyt HTFC (Ann Arbor, MI) using the same fluorescence-labeled secondary antibody. To ensure data validity, each array plate contained positive (Fc-binding) and negative (empty vector) controls. Identified targets were confirmed in a second flow cytometric experiment by using serial dilutions of the test antibody. The identity of each target was also confirmed by sequencing.

Antibody generation. A human antibody phage display library was constructed as previously described by cloning variable heavy and light chains from healthy donors separated by a (GlySer) linker into a pUC19-based phagemid containing the M13 leader and gene III. We performed two rounds of panning selections using recombinant human CD229 (R&D Systems, catalog number: 1989-CD-050) immobilized on MaxiSorp Immuno tubes (Nunc). After confirming enrichment of CD229-specific binders in a polyclonal binding assay using time-resolved fluorescence (TRF), scFv sequences from the second selection round were cloned into pSANG10-3F and transformed into BL21[DE3] cells (Lucigen). Monoclonal scFvs were expressed overnight in MagicMedia E. coli autoexpression medium (Thermo-Fisher) in 96-well plates and binding of individual supernatants to recombinant CD229 was determined by TRF. Plasma DNA of binders was isolated using QIAamp Miniprep columns (Qiagen) and scFv sequences were determined by Sanger sequencing. For expression analyses, 2D3 was purified from 293F cells, and purified by NiNTA. For some experiments, 2D3 was expressed as a full IgG1 antibody using Expi293 cells simultaneously transfected with individual pdDNA3.4 plasmids encoding light and heavy chains. Full IgG1 antibodies were purified using Protein G (GE Healthcare) using standard protocols.

Western blot. Total cell lysates of sorted lymphocyte populations and activated T cells were extracted using RIPA buffer (Thermo-Fisher). Protein concentrations were determined by BCA assay (Thermo-Fisher), samples separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and separated proteins transferred to nitrocellulose membranes (GE Healthcare). Membranes were blocked with 5% non-fat milk powder and incubated with primary antibodies against CD229 antigen (clone: HH9.1.25) and ACTB (clone: BAA3R, Thermo-Fisher) and then incubated with secondary antibody horseradish peroxidase conjugate (GE Healthcare) and visualized using the ECL Plus Western blotting detection kit (GE Healthcare). Bands were visualized on a Gel Doc XR + System (Bio-Rad).

T-cell proliferation assay. In all, 2.5 × 10^5 CAR T cells were labeled with 1 nM CellTrace Far Red (Thermo-Fisher) according to the manufacturer’s instructions and co-cultured with CD229-positive U-266 cells and CD229-negative K562 cells running buffer. The prism was immediately removed from the CFM and quenched in the Mx3000 with a 7 min injection of 0.5 μM Ethanolamine. CD229-specific antibodies and soluble SLAM receptor antibodies (R&D Systems) were diluted in phosphate-buffered saline (PBS) and injected sequentially at 200 nM to determine cross-reactivity. To determine binding constants recombinant human CD229 was injected at 200, 20, and 2 nM.

Membrane proteome array specificity testing. Integral Molecular, Inc. (Philadelphia, PA) performed specificity testing of 2D3 using the Membrane Proteome Array (MPSA) platform. The MPSA comprises 5,300 different human membrane protein clones (Supplementary Data 1), each overexpressed in live cells from expression plasmids that are individually transfected in separate wells of a 384-well plate. The entire library of plasmids is arrayed in duplicate in a matrix format and transfected into HEK-293T cells, followed by incubation for 36 h to allow protein expression. After specificity testing, optimal antibody concentrations for screening were determined by using cells expressing positive (membrane-tethered Protein A) and negative (mock-transfected) binding controls, followed by flow cytometric detection with an Alexa Fluor-conjugated secondary antibody (Jackson ImmunoResearch Laboratories). Based on the assay setup results, ZS (1.25 μg/ml) was added to the MPA. Binding across the protein library was visualized on an IntelliCyt HTFC (Ann Arbor, MI) using the same fluorescence-labeled secondary antibody. To ensure data validity, each array plate contained positive (Fc-binding) and negative (empty vector) controls. Identified targets were confirmed in a second flow cytometric experiment by using serial dilutions of the test antibody. The identity of each target was also confirmed by sequencing.

Quantitative reverse transcription PCR (qRT-PCR). CD229 expression was measured by quantitative reverse transcription PCR. In brief, mRNA from sorted T cells and NK cells, as well as T cells that had undergone our CAR T-cell production process without addition of lentiviral particles was isolated using the RNeasy Mini kit (Qiagen), according to the manufacturer’s instructions. Complementary DNA (cDNA) was generated using the SuperScript III First-Strand Synthesis system (Thermo-Fisher). We performed PCRs for CD229 (CD229_F: 5ʹ-ATC ACC CCA ACC TCA CAT GC-3ʹ; CD229_R: 5ʹ-CGC ACA GAA GCC AAA CGA TC-3ʹ) and GAPDH (GAPDH_F: 5ʹ-AIT GCC CTC AAC GAC CAC TTT G-3ʹ; GAPDH_R: 5ʹ-TTG ATG GTA CAT GAC AAG GTG CCG-3ʹ) using SYBR Green (Thermo-Fisher) and calculated the relative expression of CD229 to the samples’ respective GAPDH expression.

High-throughput surface plasmon resonance (SPR). A Xanctec 200 mT sensor (CM5 analog) was removed from the freeze and brought to room temperature. For coupling, 100 μl of each of the 16 purified antibodies in scFv-Fc format was diluted to 20 μg/ml in 10 mM NaOAc pH 5.0 + 0.01% Tween-20. The continuous running flow microsensor (CFM) was primed with 1x HBST (150 mM NaCl 10 mM hepes 0.01% Tween-20). The prism was first activated by cycling 12 mM NHS, 3 mM EDC in 100 mM MES pH 5.0 for 5 min in the CFM. An anti-human Fc antibody (R&D Systems) was coupled for 7 min, followed by a 3 min rinse with

T-cell proliferation assay. In all, 2.5 × 10^5 CAR T cells were labeled with 1 nM CellTrace Far Red (Thermo-Fisher) according to the manufacturer’s instructions and co-cultured with CD229-positive U-266 cells and CD229-negative K562 cells
Cytotoxicity assays were used to determine cytotoxicity of CD229 CAR T cells against primary human cells. For normal lymphocytes and CD34⁺ hematopoietic stem cells, target cells were purified (Stemcell Technologies) and stained with 20 μM calcein AM. Subsequently, 1 × 10⁴ target cells were incubated with CD229 CAR T cells or control T cells at different effector-target ratios for 4 h at 37 °C. At the end of the co-culture, we stained the cells with propidium iodide, added counting beads (Life Technologies), and analyzed the samples on a FACSCan or an LSRFortessa flow cytometer (BD). To determine cytotoxic activity of CD229 CAR T cells against plasma cell leukemia samples, 5 × 10⁴ PBMCs containing 80% plasma cells were co-cultured with CAR T cells for 2 or 4 h and then stained with antibodies against CD3, CD138, and CD56 or CD3 to identify malignant plasma cells, as well as CD45, CD138, CD56, CD19, CD27, and IgG to differentiate between memory and naïve B cells, as well as DAPI. Counting beads were added for normalization prior to analysis on an LSRFortessa flow cytometer (BD).

Luciferase-based cytotoxicity assay. To determine cytotoxicity of CD229 CAR T cells against MM cell lines, U-266 and RPMI-8226 cells were transduced with pHHV-Luc-ZsGreen lentivirus and sorted on a FACSAria flow cytometer (BD) for GFP expression. Sorted MM cells were incubated with CD229 CAR T cells or control T cells at the indicated effector-target ratios for 4 h or overnight. At the end of the co-culture, cells were transferred to a black 96-well plate and incubated with 150 μg/mL D-luciferin (Cell Biolabs; 1 μg/mL transfection control) in PBS for 5 min before luminescence was determined on an EnVision plate reader (PerkinElmer).

Multiple myeloma xenograft mouse models. Six- to 8-week-old male NOD.Cg-HuPrkdcscidIl2rgtm1Wjl/SzJ (NSG, The Jackson Laboratory (Cat#005557)) mice were sublethally irradiated with 200 Gy (Rad-Source RS-2000) and injected on the same day via the lateral tail vein with the indicated numbers of U-266 or RPMI-8226 cells stably expressing luciferase. On day 7 after tumor cell injection, the indicated numbers of CD229 CAR T cells, CAR T cells lacking a binding domain (StopX), or PBS alone were injected into the tail vein. Animals were weighed twice weekly and monitored for signs of distress in accordance with institutional regulations. For in vivo imaging, mice received an intraperitoneal injection of 3.3 mg D-luciferin. Photographic and luminescent images were acquired starting 10 min after the D-luciferin injection, both in prone and supine position using a PerkinElmer IVIS Spectrum. Myeloma progression was monitored every 7 days until the study endpoint. Average radiance (p/s/cm²/ster) was quantified for individual animals using Living Image software (PerkinElmer).
18. Porter, D. L. et al. A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. *Blood* **107**, 1325–1331 (2006).

19. Gacez, A. T. & Sentman, C. L. T-bet promotes potent antitumor activity of CD4(+) CAR T cells. *Cancer Gene Ther.* **25**, 1227–1240 (2018).

20. Haabebth, O. A. et al. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. *Nat. Commun.* **2**, 240 (2011).

21. Kemp, R. J. et al. TrucT; F: Tumor-specific Tc1, but not Tc2, cells deliver protective antitumor immunity. *J. Immunol.* **167**, 6497–6502 (2001).

22. Gogishtveli, T. et al. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7(+) normal lymphocytes. *Blood* **130**, 2838–2847 (2017).

23. Kumar, S. K. et al. Multiple myeloma. *Nat. Rev. Dis. Prim.* **3**, 1704 (2017).

24. Majmder, R. G. & Mackall, C. L. Tumor antigen escape from CAR T-cell therapy. *Cancer Discov.* **8**, 1219–1226 (2018).

25. NCT03710421. CSI-CAR T Therapy Following Chemotherapy in Treating Patients With Relapsed or Refractory CSI Positive Multiple Myeloma. (ClinicalTrials.gov, 2018).

26. Malaej, J. D. & Mathew, P. A. CSI1 (SLAMF7, CD319) is an effective immunotherapeutic target for multiple myeloma. *Am. J. Cancer Res.* **7**, 1637–1641 (2017).

27. Schofield, D. J. et al. Application of phage display to high throughput antibody generation and characterization. *Genome Biol.* **8**, R254 (2007).

28. Vieira, J. & Messing, J. Production of single-stranded plasmid DNA. *Methods Enzymol.* **153**, 3–11 (1987).

29. Martin, C. D. et al. A simple vector system to improve performance and utilisation of recombinant antibodies. *BMC Biotechnol.* **6**, 46 (2006).

30. Tucker, D. F. et al. Isolation of state-dependent monoclonal antibodies against the 12-transmembrane domain glucose transporter 4 using virus-like particles. *Proc. Natl Acad. Sci. USA* **115**, E4990–E4999 (2018).

31. Berumen, J. et al. Treatment of Cancer Using Humanized Anti-bcma Chimeric Antigen Receptor. (Google Patents, 2016).

32. Matsui, W. et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. *Cancer Res.* **68**, 190–197 (2008).

33. de la Fuente, M. A. et al. Molecular characterization and expression of a novel human leukocyte cell-surface marker homologous to mouse Ly-9. *Blood* **97**, 3513–3520 (2001).

Acknowledgements

This project was supported by an International Myeloma Foundation Senior Grant (D.A.), an American Association for Cancer Research (AACR) fellowship (S.V.R.), a NCCN Young Investigator Award (T.L.), the Huntsman Cancer Institute Experimental Therapeutics program supported by the National Cancer Institute of the National Institutes of Health under Award number P30CA042014. (D.A. and T.L.), and by the DOD Era of Hope Scholar Expansion Award W81XWH-12-1-0077 (A.L.W.). We thank the Huntsman Cancer Institute in Salt Lake City, UT for the use of the Preclinical Research Resource (P3R), which performed the MM xenograft model, and the University of Utah Flow Cytometry core facility, which assisted with flow cytometry analyses and cell sorting. pUC119 was a gift from Joachim Messing (Addgene plasmid # 50010). pSANG010-3F (Addgene plasmid # 39264) and anti-flagged_D5-pBIOCAM5 (Addgene plasmid # 39345) were gifts from John McCafferty. pRLSN.cFPT.PGK-GFP.WPRE was a gift from Didier Trono (Addgene plasmid # 12252). pHIV-Luc-ZsGreen was a gift from Bryan Welm (Addgene plasmid # 39196).

Author contributions

S.V.R performed experiments, developed the luminescence-based in vitro cytotoxicity assay, analyzed data, and wrote the manuscript. T.L. conceived of the project, generated the antibody library, CD229-specific antibodies and CAR constructs, developed antibody screening assays, performed flow cytometry assays to determine CD229 expression on B lineage cells and correlative flow cytometry assays for the animal models, analyzed data, and wrote the manuscript. J.P. performed flow cytometry and analyzed data. P.D. performed flow cytometry assays determining 2D3 binding in patient bone marrow samples and analyzed data. E.R.V.M. and M.O. performed experiments and analyzed data. S.Y. established flow cytometry assays, helped establishing cytotoxicity assays, and analyzed data. S.D.S. established and performed the humanized mouse model, performed flow cytometry analyses, and analyzed data. Y.A. conceived of the project, analyzed data, and wrote the manuscript.

Competing interests

D.A., T.L. and S.V.R. are inventors on PCT application US2017/42840 “Antibodies and CAR T Cells for the Treatment of Multiple Myeloma” describing the therapeutic use of CD229 CAR T cells for the treatment of multiple myeloma. The other authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-14619-z.

Correspondence and requests for materials should be addressed to T.L.

Peer review information Nature Communications thanks Alfred Garfall and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.