Review of Cadmium Pollution in Bangladesh

Md. Sahadat Hossain,1,2 Gulshan Ara Latifa,1,2 Prianqa,1 Abdullah Al Nayeem 1,2
1 Department of Environmental Science, Stamford University Bangladesh, Dhaka, Bangladesh
2 Center for Atmospheric Pollution Studies (CAPS), Dhaka, Bangladesh

Background. Exposure to cadmium (Cd) is a global public health concern. The primary Cd exposure pathways are inhalation and ingestion. Globally, Cd production and consumption has increased, along with nickel-cadmium battery production, alloys, anticorrosive coatings, pigments, polyvinyl chloride stabilizers, semiconductors for solar cells, etc. After the end use of these elements, improper management may cause Cd pollution in different spheres of the environment and living organisms that eventually lead to adverse effects on human health.

Objectives. The aim of the present study is to demonstrate the sources and routes of Cd that enter different environmental spheres, their concentrations, and describe associated human health impacts in Bangladesh.

Methods. The present study searched a total of 304 peer-reviewed articles in the National Center for Biotechnology Information database, Science Direct, Web of Science, Springer Link, BanglaJOL, and university libraries and ultimately selected 71 articles. Afterwards, the relevant findings on Cd exposure through inhalation and diet and age-based impacts (i.e., adults, women, children and infants) in Bangladesh were combined. Finally, the results were processed with a cross-tabulation technique.

Results. The present study found that Cd concentration in the local diet and river water is within the World Health Organization and Bangladesh Standard Testing Institute guidelines.

Discussion. The concentration of Cd in sediments is comparatively higher than in river water in Bangladesh. Cadmium has been found in samples of foods, including leafy and non-leafy vegetables collected from different places in Bangladesh and may ultimately enter the human body via dietary intake of these foods. Consequently, individuals may be exposed to Cd and may be suffering from long-term adverse health effects.

Conclusions. The comparison of concentrations in this study with national and international standards will assist with the formulation of effective pollution mitigation measures in Bangladesh.

Competing Interests. The authors declare no competing financial interests.

Keywords. cadmium, heavy metal, bioaccumulation, food contamination, health impact, Bangladesh

Received March 25, 2019. Accepted July 2, 2019.

© Pure Earth
fractional excretion of calcium and urinary N-terminal telopeptide; lung cancer; disturb hormonal interactions, thyroid hormones, and growth hormones; causes sex differences in nutritional status, and hormone stimulation; decrease zinc supply for fetuses; causes oxidative stress; as well as interferes with neuronal differentiation.2,8,9,10,11 In addition, jewelry shop workers involved in soldering Cd are susceptible to pulmonary edema and are at risk of high blood pressure.10 Furthermore, Cd exposure can negatively impact pregnancy, lactation and lead to undernourishment when breast-feeding. Cadmium inhibits the transport of calcium to breast milk.5 Lastly, brain development in children can be hampered due to the Cd exposure.5,6

Global Cd production totaled 23,200 tons in 2015 (Figure 1), a slight increase from the amount produced in 2014. Most secondary metal is recovered at Ni-Cd battery recycling facilities in Asia, Europe, and the United States.14

According to the United States Geological Survey,15,16 most (62%) of the world’s refined Cd is produced in Asia and the Pacific (Australia, China, India, Japan, and the Republic of Korea), followed by Europe and Central Eurasia (Bulgaria, Germany, Kazakhstan, the Netherlands, Norway, Poland, Russia, and Uzbekistan) (23%), North America (Canada and Mexico) (11%), and South America (Argentina, Brazil, and Peru) (4%).15 The majority of global Cd consumption is generated from Ni-Cd battery production, followed by other end uses such as alloys, anticorrosive coatings, pigments, polyvinyl chloride stabilizers, and semiconductors for solar cells.15

Natural and anthropogenic activities are the main causes of Cd contamination in different spheres of the environment. Table 1 summarizes the various routes and activities that cause Cd contamination in the environment and the associated effects on human health are presented in Table 2.

Due to various types of human activities such as tannery industries, pharmaceutical industries, low grade fertilizer application, automobiles, etc., the soils of Bangladesh are contaminated with high concentrations of Cd. As a result, the people of Bangladesh are exposed to Cd and experience various types Cd-induced health problems. Thus, the aim of the present study is to demonstrate the sources and routes of Cd that enter different environmental spheres, their concentrations, and describe associated human health impacts in Bangladesh. In order to formulate pollution mitigation measures in Bangladesh, comparisons should be drawn with national and international standards.

Methods

This study is based on research findings on Cd exposure from pertinent sources such as peer-reviewed articles, textbooks, university theses, reports, etc. Studies were collected by prioritizing four aspects of Cd pollution and pathways (atmosphere, sediment, water and soil) along with corresponding health impacts on living organisms. Search
terms included “Cd pathway”, “Cd exposure”, “heavy metals in river water”, “trace elements in water”, “Cd in river water” “Cd in river sediment”, “Cd from industrial processes”, “heavy metal contamination in soil” “Cd in food”, “Pathways of Cd”, “heavy metals in food chain”, “Cd effects”, “Cd effects on plants”, and “Cd effects on human health”. Three hundred and two (304) Cd exposure-related studies were collected from worldwide accepted sources including Science Direct, the National Center for Biotechnology Information, Web of Science, Springer Link, BanglaJOL and other national libraries such as Environment and Social Development Organization, Department of Environment, Bangladesh, Bangladesh Bureau of Statistics, Ministry of Environment, Forest and Climate Change, International Center for Diarrhoeal Disease Research, Bangladesh (icddr,b); and international libraries such as Asian Development Bank, Pure Earth, World Health Organization (WHO), World Bank, and the United States Geological Survey.

All of the studies were screened via abstracts to determine whether the study was relevant. Considered studies included a good description of Cd sources, routes and impacts on humans and other living organisms. After sorting out the related abstracts, full text articles or reports were assessed to identify studies which were fully or partially related to the study’s objectives. The characteristics of reviewed papers, particularly the number of studies and their methods, are described in Table 3. Subsequently, studies that did not match the present study’s aim were excluded, and finally 71 studies were selected for review. Selected studies were categorized based on their objectives. An overview of the literature selection process is shown in Figure 3. Lastly, findings were processed and analyzed with the

Name of spheres	Sources	Pathways	References
Atmosphere	Burning coal and fossil fuel, Cement factory, Battery manufacturing, Plastic factory, Fertilizer industry, Metal alloys industry, Paint factory, Ceramics industry, Textiles industry, Electronics and automobile industry, Copper plant, Sulfuric acid plant, Automotive transport	Atmospheric transmission	1,4,17,18
Water	Sanitary sewage, Chemical wastewater, Industrial mining, Urban mining, Mixed sewage, Industrial sludge, Nitrogen and phosphoric fertilizers, Pesticides, Incinerator ash	Surface runoff, wind and deposition	3,15,19,20,21
Sediment	Irrigation, Zinc refinery	Accumulation	22-24
Soil	Bedrock, Aerial deposition, Sewage sludge, Manure, Phosphate fertilizer	Deposition, emission	1,25-27

Table 1 — Sources of Heavy Metals in the Environment
cross-tabulation technique to compare Cd concentrations from various sources.

Results

Studies indicate that the major sources of Cd exposure in Bangladesh are tobacco smoking, food, particularly cereals, vegetables and seafood. Diet is most likely the main source of Cd exposure in Bangladesh for those who live in rural environments with essentially no industrial contamination. The rice-based diet in the population contributes to 20–35 μg Cd daily. These studies highlight the fact that elevated Cd concentrations in rice is a widespread problem and the present study has identified, for the first time, which Bangladeshi populations are exposed to excessively high levels of Cd in their diet. Previous studies have reported heavy metal contamination in surface water and aquifers along with human exposure in Bangladesh. Additional studies analyzing the pathways of heavy metals and contamination in the food chain found a considerable amount of Cd in the food chain (Table 4).

The present study scrutinized Cd concentrations in rivers across Bangladesh. The highest concentration of Cd was in the Turag River (17 mg/kg), followed by the Buriganga River (3.3 mg/kg), the Karnaphuli River (2.01 mg/kg), the Korotoa River (1.5 mg/kg) and the Bangshi River (0.61 mg/kg). Cadmium concentrations were comparatively higher in river sediments than in dietary products (Table 5). In addition, Cd concentrations in the water of these rivers were low in comparison to those of sediment, indicating that Cd accumulates in river sediment by deposition processes.

Discussion

In Bangladesh, Cd is used in metal plating, plastics, pigments and batteries. Previous studies have found that different types of toys contain a considerable amount of Cd, posing a significant health risk to children. Cadmium is carcinogenic when inhaled, but there is no evidence that ingestion through drinking water poses a cancer risk. The WHO guideline value of 0.003 mg/l was set to protect against kidney damage. According to the Bangladesh Standard Testing Institute standard, the maximum permissible level for Cd is 1 mg/kg.

The present study found that chicken, chicken egg, duck egg and fish accumulate a substantial amount of Cd (Table 4). Different types of metal processing and textile industries have been established on the banks of rivers in Bangladesh. Industry effluent has contaminated river water as well as sediment with heavy metals. Table 2 shows the adverse effects of heavy metals on various organisms.
metals. Subsequently, heavy metals, particularly Cd, accumulate in fish and other aquatic organisms. Meanwhile, most of the poultry feed in Bangladesh is contaminated by heavy metals which accumulate in poultry meat. This contaminated food enters the human body at the top of the food chain and causes adverse and toxic health disorders.

Cadmium inhibits the transport of calcium to breast milk, effecting pregnancy, lactation and hormonal interactions. In children, Cd effects bone metabolism, cancer, and brain development. Cadmium attacks thyroid and growth hormones and causes sex differences in nutritional status due to hormone stimulation, decreases Zn transport to the fetus and causes oxidative stress, as well as interferes with neuronal differentiation2,15,18,30

Moreover, Cd concentrations were observed in dietary items such as honey (0.024 mg/kg), frozen shrimp (0.043 mg/kg) and fish (0.13 mg/kg). The highest concentrations were found in fish (0.1 mg/kg), pasteurized cow’s milk (0.053 mg/kg) and dairy milk (0.024 mg/kg). Concentrations of Cd were also identified in chicken egg (0.3 mg/kg), duck (0.34 mg/kg), raw rice (0.03 mg/kg), cooked rice (0.047 mg/kg), bitter gourd (0.021 mg/kg), and in eggplant (0.027 mg/kg) (Table 4).

Previous studies found that Cd concentrations in food were within Bangladesh Standard Testing Institute (2001)44 and WHO (2006)45 guidelines. It is clear that the population of Bangladesh has been exposed to Cd pollution along with other heavy metals. However, Bangladeshis are unaware of Cd pollution or its adverse health impacts.41 Education is needed on metal accumulation in living organisms that can magnify with continuous consumption.

Study theme	Study type	Studies	Countries	Number of study participants
Source identification	Biomonitoring, cross sectional	12	5	8
Health risk	Cross sectional, cohort	17	5	765
Other effects	Cross sectional, cohort	6	3	1107
Pathway	Biomonitoring, cross sectional	133,112,13,23,54,39,67,48,50, 52,55,57	5	89
Exposure	Cross sectional, cohort	19	2	1423
Law and policies	National biomonitoring	4	1	1
Total		71	21	3393

Table 3 — Characteristics of Included Papers
of contaminated foods through the biomagnification process. Consequently, Cd consumption may cause chronic effects on the human body, such as cancer, kidney damage, and inhibit enzymatic activities. In Bangladesh, young children (1.5-5 years) are primarily exposed to Cd, especially in rural areas. Pregnant women are also particularly vulnerable to Cd exposure in Bangladesh.

Industrialization has been increasing along with economic growth in Bangladesh over the last few decades. Many industries dump industrial waste on the nearby river banks due to insufficient treatment facilities. Soil samples collected from dumping locations of the Tejgaon industrial area, such as Hatirjeel, Rampura Bridge, Gulshan as well as Dhamrai and Savar were found to have considerable amounts of Cd in soil due to industries such as galvanization and alloy, paints, batteries, metal fittings, rubber, plastics, tires, etc. Cadmium from industrial dumping and emissions, along with sewage sludge, fertilizers and pesticides contaminate the soil, surface and ground water, and eventually leads to uptake by plants through the irrigation process and surface runoff and accumulates in the human body through the food chain. Samples collected from Konabari, Gazipur; Keraniganj; Shahbag; Saver; Dhamrai; Markets of Dhaka; Bogra; Matlab; Chandpur; Samta Village, and Jessore contained Cd in foods (rice, wheat, maize, etc.) as well as in different leafy and non-leafy vegetables (snake gourd, amaranth, taro, bitter gourd, eggplant, green papaya, elephant foot, bottle ground leaf, tomato, spinach, cauliflower, cabbage, etc.) and Cd is accumulated in the human body via dietary intake of these foods.

In addition, Cd was found in fish samples collected from markets in Bangladesh. Cadmium was found in placentas and umbilical cord blood of pregnant women, as well as the breastmilk of lactating mothers in the Matlab subdistrict of the Chandpur district, which can diminish Zn transfer to the fetus, lower birth weight, and cause disabilities in infancy and childhood, as well as cause long term adverse effects on child health and development.

Consequently, aquatic organisms have a high risk of exposure to Cd pollution that may ultimately enter the human body. Figure 4 illustrates the pathways of Cd exposure into the environment as well as their interlinkage among different media along with the human health impacts due to Cd exposure.

Conclusions

Cadmium concentrations in river water, sediments and diet are within the Bangladesh Standard Testing Institute and WHO limits. However, Cd can accumulate in aquatic species that are consumed by humans.
Therefore, concentrations of Cd in water and sediment have been increasing due to bioconcentration and biomagnification, resulting in significant adverse health effects for invertebrates, fish and humans. It is important to investigate the root causes of Cd pollution and further experimental research is needed to more fully understand the level of Cd pollution in the environment, human tissue and the food chain. Moreover, legal actions and strong national policies are needed to reduce adverse health impacts of Cd pollution in Bangladesh.

Acknowledgment

This study was carried out in the Pollution Monitoring Lab of the Department of Environmental Science, Stamford University Bangladesh with financial support from the Center for Atmospheric Pollution Studies (CAPS).

Copyright Policy

This is an Open Access article distributed in accordance with Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).

References

1. Su C, Jiang J, Zhang W. A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skept Crit. 2014;2(2):24-38.
2. Shaheen N, Ahmed MK, Islam MS, Habilullah-Al-Mamun M, Tukun AB, Islam S, Rahim AT. Health risk assessment of trace elements via dietary intake of 'non-piscine protein source' foodstuffs (meat, milk and egg) in Bangladesh. Environ Sci Pollut Res Int [Internet]. 2016 Apr [cited 2019 Jul 2];23(8):7794-806. Available from: https://doi.org/10.1007/s11356-015-5613-2 Subscription required to view.
3. Zhang W, Jiang F, Ou J. Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci [Internet]. 2011 [cited 2019 Jul 2];1(2):125-44. Available from: http://www.iaees.org/publications/journals/piaees/articles/2011-1%282%29/Global-pesticide-consumption-pollution.pdf
4. Lin Z, Harsobo K, Ahlgren M, Qvarfort U. The source and fate of Pb in contaminated soils at the urban area of Falun in central Sweden. Sci Total Environ [Internet]. 1998 Jan 8 [cited 2019 Jul 2];209(1):47-58. Available from: https://doi.org/10.1016/S0048-9697(97)00300-8 Subscription required to view.
5. Islam MD, Rahaman A, Jannat F. Assessment of micro and macro nutrients in poultry feeds available in Dhaka city, Bangladesh. J Sci Agric. 2017;1:264-8.
6. Kippler M, Nermell B, Hamadani J, Tofail F, Moore S, Vahter M. Burden of cadmium in early childhood: Longitudinal assessment of urinary cadmium in rural Bangladesh. Toxicol Lett [Internet]. 2010 Sep 15 [cited 2019 Jul 2];198(1):20-5. Available from: https://doi.org/10.1016/j.toxlet.2010.04.029 Subscription required to view.
7. Mohiuddin KM, Islam MS, Basak S, Abdullah HM, Ahmed I. Status of heavy metal in sediments of the Turag river in Bangladesh. Progress Agric. 2016;27(2):78-85.
Review of Cadmium Pollution in Bangladesh

contaminated soil profiles from Bangladesh. Nutr Cycl Agroecosystems [Internet]. 2007 Feb [cited 2019 Jul 2];77(2):187-98. Available from: https://doi.org/10.1007/s10705-006-9056-4 Subscription required to view.

10. Siddiq AM, Hosssain T, Khan MI, Aziz Hasan M, Fakhruzzaman M, Turner JB, Pestov D, McCallister LS, Mausood Elahi K. Toxicity assessment of ash and dust from handmade gold jewelry manufacturing workshops in Bangladesh. Environ Monit Assess [Internet]. 2017 Jan [cited 2019 Jul 2];189(6):Article 279. Available from: https://doi.org/10.1007/s10661-017-5978-3 Subscription required to view.

11. Muhib MI, Chowdhury MA, Easha NJ, Rahman MM, Shammi M, Fardous Z, Bari MI, Uddin MK, Kurasaki M, Alam MK. Investigation of heavy metal contents in cow milk samples from area of Dhaka, Bangladesh. Int J Food Contam [Internet]. 2016 Dec [cited 2019 Jul 2];3(16):10 p. Available from: https://doi.org/10.1186/s40550-016-0039-1

12. Paul S, Hossein MS, Tanvir EM, Afroz R, Hossen D, Das S, Bhoomik NC, Karim N, Juliana FM, Gan SH, Khalil MI. Minerals, toxic heavy metals, and antioxidant properties of honeys from Bangladesh. J Chem [Internet]. 2017 [cited 2019 Jul 2];2017:Article 6101793 (11 p.). Available from: https://doi.org/10.1155/2017/6101793

13. Ali MS, Saha S, Ahmed S, Uddin MF, Yeasmin N. Spectroscopic analysis of heavy metal in frozen shrimp from different seafood processing plants of Chittagong, Bangladesh. Asian J Med Biol Res. 2017(24):513-7.

14. Risk reduction monograph no. 5: cadmium background and national experience with reducing risk [Internet]. Paris, France: Organisation for Economic Co-operation and Development Environment; 1995 [cited 2019 Jul 2]. (Monograph Series No. 104). 195 p. Available from: http://www.oecd.org/officialdocuments/publicdisplaydocumentcontent?cote=ocde/gd(95)97

15. Cadmium statistics. In: Historical statistics for mineral commodities in the United States: U.S. Geological Survey open-file report 01-006. Reston, VA: U.S. Geological Survey; 2002.

16. Cadmium statistics. In: Historical statistics for mineral commodities in the United States: U.S. Geological Survey open-file report 2015. Reston, VA: U.S. Geological Survey; 2016.

17. Chen YP, Liu Q, Liu YJ, Jia FA, He XH. Responses of soil microbial activity to cadmium pollution and elevated CO2. Sci Rep [Internet]. 2014 Mar 6 [cited 2019 Jul 2];4:Article 4287 [6 p.]. Available from: https://doi.org/10.1038/srep04287

18. Dar MI, Green ID, Naikoo MI, Khan FA, Ansari AA, Lone MI. Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard-aphid-beetle food chain. Sci Total Environ [Internet]. 2017 Apr 15 [cited 2019 Jul 2];584-585:1221-9. Available from: https://doi.org/10.1016/j.scitotenv.2017.01.186 Subscription required to view.

19. Li H, Luo N, Li YW, Cai QY, Li HY, Mo CH, Wong MH. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures. Environ Pollut [Internet]. 2017 May [cited 2019 Jul 2];224:622-30. Available from: https://doi.org/10.1016/j.envpol.2017.01.087 Subscription required to view.

20. Kim SH, Lim YW, Park KS, Yang JY. Relation of rice intake and biomarkers of cadmium for general population in Korea. J Trace Elem Med Biol [Internet]. 2017 Sep [cited 2019 Jul 2];43:209-16. Available from: https://doi.org/10.1016/j.jtemb.2017.04.010 Subscription required to view.

21. Morrow H. Proceedings of the Eighth International Cadmium Conference; 2011; Kunming, China. Brussels, Belgium: International Cadmium Association. 284 p.

22. Ali MM, Ali MI, Islam MS, Rahman MZ. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ Nanotechnol Monit Manag [Internet]. 2016 May [cited 2019 Jul 2];5:27-35. Available from: https://doi.org/10.1155/2016/3.6101793

23. Islam MS, Ahmed MK, Habibullah-Al-Mamun M. Heavy metals in sediment and their accumulation in commonly consumed fish species in Bangladesh. Arch Environ Occup Health [Internet]. 2017 [cited 2019 Jul 2];62(4):26-38. Available from: https://doi.org/10.1080/19338244.2016.1152946 Subscription required to view.

24. Gupta GS, Kumar A, Senapati VA, Pandey AK, Shanker R, Dhawan A. Laboratory scale microbial food chain to study bioaccumulation, biomagnification, and ecotoxicity of cadmium telluride quantum dots. Environ Sci Technol. 2017 [cited 2019 Jul 2];51(3):1695-706. Available from: https://doi.org/10.1021/acs.est.6b03950 Subscription required to view.

25. Wang X, Zhang C, Qiu B, Ashraf U, Azad R, Wu J, Ali S. Biotransfer of Cd along a soil-plant-meat-bug-ladybird food chain: a comparison with host plants. Chemosphere [Internet]. 2017 Feb [cited 2019 Jul 2];168:699-706. Available from: https://doi.org/10.1016/j.chemosphere.2016.11.005 Subscription required to view.

26. Gupta GS, Kumar A, Senapati VA, Pandey AK, Shanker R, Dhawan A. Laboratory scale microbial food chain to study bioaccumulation, biomagnification, and ecotoxicity of cadmium telluride quantum dots. Environ Sci Technol. 2017 [cited 2019 Jul 2];51(3):1695-706. Available from: https://doi.org/10.1021/acs.est.6b03950 Subscription required to view.

27. Ezedomin T, Asagba SO. Effect of a controlled food-chain mediated exposure to cadmium and arsenic on oxidative enzymes in the tissues of rats. Toxicol Rep [Internet]. 2016 Jul [cited 2019 Jul 2];3:708-15. Available from: https://doi.org/10.1016/j.toxrep.2016.07.002

28. Wyszkowska J, Wyszkowski M. Effect of cadmium and magnesium on enzymatic activity in soil. Pol J Environ Stud. 2003;12(4):473-9.

29. Zhu D, Ke X, Wu L, Li Z, Christie P, Luo Y. Ecotoxicity of cadmium in a soil collembolan-predatory mite food chain: can we use the 15N labeled litter addition method to assess soil functional change? Environ Pollut [Internet]. 2016 Dec [cited 2019 Jul 2];219:37-46. Available from: https://doi.org/10.1016/j.envpol.2016.09.051 Subscription required to view.

30. Dar MI, Green ID, Naikoo MI, Khan FA, Ansari AA, Lone MI. Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard-aphid-beetle food chain. Sci Total Environ [Internet]. 2017 Apr 15 [cited 2019 Jul 2];584-585:1221-9. Available from: https://doi.org/10.1016/j.scitotenv.2017.01.186 Subscription required to view.

31. Kippler M, Wagatsuma Y, Rahman A, Nermell B, Persson LA, Raqib R, Vahter M. Environmental exposure to arsenic and cadmium during pregnancy and fetal size: a longitudinal study in rural Bangladesh. Reprod Toxicol [Internet]. 2012 Dec [cited 2019 Jul 2];34(4):504-11. Available from: https://doi.org/10.1016/j.reprotox.2012.08.002 Subscription required to view.

32. Draft toxicological profile for cadmium. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 1999.

33. Moynihan M, Peterson KE, Cantoral A, Song PX, Jones A, Solano-Gonzalez M, Meeker JD, Basu N, Tellez-Rojo MM. Dietary predictors of urinary arsenic and cadmium during pregnancy and fetal size: a longitudinal study in rural Bangladesh. Reprod Toxicol [Internet]. 2012 Dec [cited 2019 Jul 2];34(4):504-11. Available from: https://doi.org/10.1016/j.reprotox.2012.08.002 Subscription required to view.
Solar energy systems

1. Review

Journal of Health & Pollution

2. World Health Organization/Food and Agriculture Organization of the United Nations.

3. Evaluation of certain food additives and contaminants. Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives. 2011.

4. Geneva, Switzerland. Available from: www.who.int Accessed on 2019 Jul 31

5. Bangladesh National Drinking Water Quality Survey of 2009. Dhaka, Bangladesh: UNICEF; 2011.

6. Available from: https://iopen.net/documents/esdo-study-report-toxic-toys-heavy-metal-content-and-public-perception-bangladesh

7. Hussain KM. Lead, cadmium and nickel contents of vegetables grown in industrially polluted and non-polluted areas of Bangladesh. Bangladesh J Agric Res. 2009 Dec;34(4):545-54.

8. Rahman MM, Asaduzzaman M, Naidu R. Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh. J Hazard Mater [Internet]. 2013 Nov 15 [cited 2019 Jul 2];262:1056-63. Available from: https://doi.org/10.1016/j.jhazmat.2012.06.045 Subscription required to view.

9. Islam MA, Romic D, Akber MA, Romic M. Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. Environ Geochem Health [Internet]. 2018 Feb [cited 2019 Jul 2];40(1):59-85. Available from: https://doi.org/10.1007/s10653-017-9907-8 Subscription required to view.

10. Al-Rmali SW, Jenkins RO, Haris PI. Dietary intake of cadmium from Bangladeshi foods. J Food Sci [Internet]. 2012 Jan [cited 2019 Jul 2];77(1):T26-33. Available from: https://doi.org/10.1111/j.1750-3841.2011.02467.x Subscription required to view.

11. Khan MS, Zaidi A, Wani PA, Oves M. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett [Internet]. 2009 Feb [cited 2019 Jul 2];7(1):1-19. Available from: https://doi.org/10.1007/s10311-008-0155-9 Subscription required to view.

12. Alam MG, Snow ET, Tanaka A. Arsenic and heavy metal contamination of vegetables grown in Sama village, Bangladesh. Sci Total Environ [Internet]. 2003 Jun 1 [cited 2019 Jul 2];308(1-3):83-96. Available from: https://doi.org/10.1016/S0048-9697(02)00651-4 Subscription required to view.

13. Hezbullah M, Sultana S, Chakraborty S R, Patwary MI. Heavy metal contamination of food in a developing country like Bangladesh: an emerging threat to food safety. J Toxicol Environ Health Sci. 2016 May;8(1):1-5.

14. Mahmood MA, Hassan M, Hassan R, Mandal R, Rahman MK. Human health risk assessment due to Cadmium accumulation through consumption of Chinese cabbage grown in Cadmium-contaminated soil. J Biodivers Conserv Bioresour Manag [Internet]. 2017 [cited 2019 Jul 2];3(1):1-8. Available from: https://doi.org/10.3329/jbcbm.v3i1.36755

15. Islam SM, Ahmed MK, Habibullah-Al-Mamun M, Raknuzzaman M. The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh.
Review of Cadmium Pollution in Bangladesh

Ahmed AT, Mandal S, Chowdhury DA, Tareq AR, Rahman MM. Bioaccumulation of some heavy metals in Ayre Fish (Sperata Aor Hamilton, 1822), sediment and water of Dhaleshwari River in dry season. Bangladesh J Zool. 2012;6(1):147-53.

Shovon MN, Majumdar BC, Rahman Z. Heavy metals (lead, cadmium and nickel) concentration in different organs of three commonly consumed fishes in Bangladesh. Fish Aquac J. 2017;8(3):[5 p.].

Mottalib MA, Zilani G, Suman TI, Ahmed T, Islam S. Assessment of trace metals in consumer chickens in Bangladesh. J Health Pollut [Internet]. 2018 Dec [cited 2019 Jul 2];8(20):Article 181208 [10 p.]. Available from: https://doi.org/10.5696/2156-9614-8.20.181208

Jahiruddin M, Xie Y, Ozaki A, Islam MR, Nguyen TV, Kurosawa K. Arsenic, cadmium, lead and chromium concentrations in irrigated and rain-fed rice and their dietary intake implications. J Crop Sci. 2017;11(7):806-12.

Islam MS, Kazi MA, Hossain MM, Ahsan MA, Hossain AM. Propagation of heavy metals in poultry feed production in Bangladesh. Bangladesh J Sci Ind Res [Internet]. 2007 [cited 2019 Jul 2];42(4):465-74. Available from: https://doi.org/10.3329/bjser.v42i4.755

Kabir A, Khan K, Khan MI, Jubair T, Jhahan E. A study of heavy metal presence in cow milk of different dairy farms near Karnaphuli paper mills, Chittagong, Bangladesh. Am J Environ Sci. 2017;6(9):329-33.

Kippler M, Lonnerdal B, Goessler W, Ekstrom EC, Arifine S, Vahter M. Cadmium interacts with the transport of essential micronutrients in the mammary gland - a study in rural Bangladeshi women. Toxicol [Internet]. 2009 Mar 4 [cited 2019 Jul 2];257(1-2):64-9. Available from: https://doi.org/10.1016/j.tox.2008.12.006

Kippler M, Goessler W, Nermell B, Ekstrom EC, Lonnerdal B, El Arifeen S, Vahter M. Factors influencing intestinal cadmium uptake in pregnant Bangladeshi women—a prospective cohort study. Environ Res [Internet]. 2009 Oct [cited 2019 Jul 2];109(7):914-21. Available from: https://doi.org/10.1016/j.envres.2009.07.006

Kippler M, Wagatsuma Y, Rahman A, Nermell B, Persson LA, Raqib R, Vahter M. Environmental exposure to arsenic and cadmium during pregnancy and fetal size: a longitudinal study in rural Bangladesh. Reprod Toxicol [Internet]. 2012 Dec [cited 2019 Jul 2];34(4):504-11. Available from: https://doi.org/10.1016/j.reprotox.2012.08.002

Kippler M, Tofail F, Hamadani JD, Gardner RM, Grantham-McGregor SM, Bottai M, Vahter M. Early-life cadmium exposure and child development in 5-year-old girls and boys: a cohort study in rural Bangladesh. Environ Health Perspect [Internet]. 2012 Oct [cited 2019 Jul 2];120(10):1462-8. Available from: https://doi.org/10.1289/ehp.1104431

Islam MS, Ahmed MK, Habibullah-Al-Mamun M, Raknuzzaman M. The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicol Environ Saf [Internet]. 2015 Dec [cited 2019 Jul 2];8(2):462-9. Available from: https://doi.org/10.1016/j.ecoenv.2015.09.022

Hosssain, Latifa, Nayeem