Fatty grass, grasita or purslane (Portulaca oleracea L.) is an important plant identified as a natural weed in field crops and lawns. Purslane is widespread worldwide and is popular as edible plants in many areas of Europe, Asia and the Mediterranean region. This plant possesses mucilaginous substances of great medicinal importance. It is a rich source of potassium, magnesium and calcium and has the potential to be used as a vegetal source of omega-3 and omega-6. It is very good as a source of alpha-linolenic acid (ALA) and gamma-linolenic acid (GLA) and contains the highest amount compared to any other green leafy vegetables. It also contains significant amounts of alpha-tocopherol and ascorbic acid, as well as an increased content of oxalate in fresh leaves. The antioxidant value and nutritional content of purslane are important for human consumption. It reveals a huge nutritional potential and indicates the potential for future use of this plant in food industry, dietary supplements, drugs, cosmetics and products for body care.

Keywords: Portulaca Oleracea, omega-3, omega-6

Purslane (Portulaca oleracea L.) deserves a special attention from farmers, nutritionists, doctors and other categories of researchers from the pharmaceutical industry, food supplements and cosmetics. Purslane is a common plant in areas of grass, lawn, and in field crops. Many varieties of purslane, which is known under several names, grow in a wide range of climates and regions. Purslane has a wide acceptability in Central Europe, Asia and the Mediterranean region. It is an important component as lettuce, and the fresh stem and young leaves are used raw, alone or in combination with other herbs. Purslane is also used for cooking or as pickles [1-3].

Its medicinal value is evident from its use in the treatment of burns, headaches, and also in diseases related to the gut, liver, stomach, cough, shortness of breath and arthritis, use as a purgative, cardiac tonic, emollient, muscle relaxant and anti-inflammatory treatment and diuretic, all of these making purslane important in herbal based medicine. Purslane was also used to treat osteoporosis and psoriasis. Recent research has demonstrated that the purslane has much better nutritional quality than the main vegetables, with a higher amount of beta-carotene, ascorbic acid and alpha-linolenic acid. In addition, purslane was described as a consistent food due to its high nutritive and antioxidant characteristics [4-8].

Different varieties, harvesting methods and environmental conditions can contribute to the composition and nutritional benefits of purslane. Purslane is popular in traditional Chinese medicine, to treat diabetes and arterial hypotension. From a scientific perspective, it was not proved to have anti-diabetic effect, but still people are using it for this purpose. An experiment was conducted to extract the raw polysaccharides in purslane to investigate the hypoglycaemic effects of these constituents with animal testing for the use of this plant in the treatment of diabetes [9-13].

Purslane is a good source of alpha-linolenic acid. Alpha-linolenic acid is an omega-3 fatty acid, which plays an important role in human growth and development and also in disease prevention. Purslane has been proved to contain a five times higher amount of Omega-3 and Omega-6 fatty acids, compared to the spinach. Fatty acids Omega-3 and Omega-6 belong to a group of polyunsaturated fatty acids that are essential for human growth, development, prevention of various cardiovascular diseases and maintaining of a healthy immune system.

The human body does not synthesize Omega-3 fatty acids. Therefore, the Omega-3 fatty acids must be consumed from an exogenous food source. Omega-3 fatty acids contain 18 to 24 carbon atoms and they have three or more double bonds in its chain of fatty acids. Omega-3 fatty acids are part of the family of polyunsaturated long chain fatty acids of carbon atoms and are represented by alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA). Alpha-linolenic acid is considered essential as it can not be synthesized by the organism, the main source for obtaining it being the food. ALA may be converted in the body to EPA and DHA but the amounts are insignificant (less than 5%) [14-18].

Omega-6 is another class of polyunsaturated fatty acids comprising the linoleic acid (LA), gamma-linolenic acid (GLA) and arachidonic acid (ARA). LA is the main Omega-6 in the food, corn oil and and sunflower oil having the highest content; it is still considered an essential fatty acid because it cannot be synthesized in the body. Except for the human milk, most foods contain very little active GLA. ARA is found in meat and eggs. In the human body, Omega-6 fatty acids, especially the linoleic acid, are converted to...
arachidonic acid, which is embedded in the cell membranes [19-21].

There has been much debate among the nutritionists regarding the harmful effects of Omega-6 fatty acids, assuming that they would promote inflammation (because the arachidonic acid is involved in the early stages of inflammation) and thus would increase the cardiovascular risk. However, the linoleic acid generates anti-inflammatory molecules. Thus, at the level of the vascular endothelium, Omega-6 fatty acids have anti-inflammatory properties, suppressing the production of adhesion molecules, chemokines, and interleukins, which are the key mediators of the process of atherosclerosis [22-25].

Purslane has been identified as one of the richest vegetal sources of alpha-linolenic acid, an Omega-3 essential fatty acid. The lack of food sources of Omega-3 fatty acids led to a growing interest to enter purslane as a new cultivated vegetable. Purslane flourishes in numerous biogeographical locations around the world and is highly adaptable to many adverse conditions, such as drought, saline solution and nutrient deficient conditions.

Purslane (Portulaca oleracea) is an annual plant of the Portulaceae family, native to Southern Europe and Middle East. In Romania it is also known as grasita. It was mentioned by Dioscorides in the list of medicinal plants used by the Greeks, by the name of lax. It is a plant with root systems, with cylindrical and firm stem, fleshy, creeping, but it is also able to develop erect stems, often with a reddish shade, reaching lengths of 10-40cm. The leaves are thick, spatulate, narrowed to the base, glossy, dark green. The flowers are small, generally in yellow colored, with colors of orange, pink, yellow, purple or white, with five petals and they are usually opened only in warm and sunny days from mid-morning to early afternoon. Fruits are formed by egg-shaped capsules, almost rounded, approximately 4-8 mm in length and they open in the middle to release the seeds. The seeds are small, less than 1 mm in diameter, flattened, brown to black, with a white point of attachment. Many seeds are produced.

The health benefits of purslane are due to its nutritional value and content in unsaturated fatty acids. It is rich in vitamin A, which is a natural antioxidant asset. The presence of this vitamin may play an important role in the health of the mucous membranes, for the protection against lung cancer and mouth cavity. Purslane has one of the highest content of vitamin A among the vegetables with green leaves. It also contains vitamin C and B vitamins such as riboflavin, niacin, and pyridoxine. This provides large amounts of food minerals such as potassium, magnesium, calcium, phosphorus and iron. Omega-3 fatty acids: purslane is one of the richest sources of green plants in Omega-3. Its consumption determines lower values of cholesterol and triglycerides, and also the increase of beneficial high-density lipoproteins. Moreover, the ability to provide Omega-3 fatty acids leads to reduced atheroma and may be advantageous in the treatment of vascular diseases. Omega-3 fatty acids are important nutrients for the body, in particular for the maintenance of cardiovascular health. Often recommended for their anti-inflammatory and anticoagulant properties, Omega-3 healthy fats reduce considerably the onset risk of heart disease or heart attack triggering.

Most people associate the benefits of Omega-3 fatty acids with a healthy heart, but they have many key roles in the body. For example, they are important for brain function, improved mood, memory, joint mobility, reduce inflammation caused by arthritis, protection of vision health, strengthen the immune system and maintain hair, skin and nails in optimal shape.

The most important fatty acids in the nutritional point of view, in the category of Omega-3 essential fats are the alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Alpha-linolenic acid is among the fatty acids classified as essential, because it can not be produced by the body and plays a basic role in many physiological functions. The body converts the alpha-linolenic acid to two important Omega-3 fats, namely the eicosapentaenoic acid and docosahexaenoic acid. These two derivatives acids can also be derived from certain foods, such as the species of cold water fish (salmon, tuna, halibut or herring). The eicosapentaenoic acid plays an important role in preventing the cardiovascular disease, while the docosahexaenoic acid is required for proper development of the brain and nervous system. Unlike fish oils with high cholesterol and caloric content, purslane also provide an excellent source of beneficial Omega-3 fatty acids, cholesterol-free as those in fish oils.

The role of Omega-3 fatty acids in the body

Each cell of the body is surrounded by a cell membrane, primarily composed of fatty acids. It regulates the necessary level of nutrients that get inside the cell and facilitates the elimination of residual products. To fulfill its functions optimally, the cell membrane must maintain its integrity and fluidity (diseased membrane cells lose their ability to retain water and vital nutrients, and to promptly communicate with other cells). Since the structure of cell membrane is composed mostly of fats, the Omega-3 fatty acids are directly involved in the longevity of the body's cells.
Another important function of Omega-3 essential fats is to actively participate in the production of powerful substances, like hormones, called prostaglandins. The latter regulates many physiological functions, from blood pressure and blood clotting, to the nervous, inflammatory and allergic responses, functioning of the renal system and the gastrointestinal tract and the production of other hormones. For instance, the eicosapentaenoic acid and the docosahexaenoic acid are direct precursors of prostaglandins of the 3 series, considered to be beneficial because it reduces platelet aggregation and inflammation, while improving the blood circulation. The role of the EPA and DHA acids in the prevention of cardiovascular disease can be explained in part by the ability of these fatty acids to increase the production of beneficial prostaglandins.

Researchers have recently discovered an fatty organic product, derived from EPA (following the intervention of cellular enzymes), called Resolvin, that inhibits the proliferation and migration of inflammatory cells and of harmful chemical products in close proximity to the inflamed regions. Unlike the anti-inflammatory drugs, such as aspirin or ibuprofen, the Resolvin within the body, derived from EPA acids, show no side effects on the gastrointestinal or cardiovascular system.

Symptoms of deficiency in Omega-3 fatty acids

Recent medical statistics show that over 90% of the population does not have a sufficient intake of essential Omega-3 fatty acids in their daily diet. Symptoms of deficiency in these nutrients are often confused with the clinical manifestations of other nutritional deficiencies or disorders. Signs and symptoms that the body sends if it does not take enough Omega-3 are: low physical strength, lack of concentration, tiredness, aches and pains.

There are three varieties of purslane, namely: green, gold, and a variety with reddish leaves. In table 1 are listed the important sources of Omega-3 fatty acids; the presence of these acids cause a low incidence of cancer and heart disease, eventually, in part because of the natural intake of Omega-3 fatty in the products with the purslane.

Table 1

Category	Fruits/vegetables	Amount (g)
Low	Avocado, California raw	0.1
	Broccoli	0.1
	Strawberries	0.1
	Cauliflower, raw	0.1
	Kale, raw	0.2
	Spinach, raw	0.1
	Peas, garden dry	0.2
	Cowpea, dry	0.3
	Beans, navy, sprouted, cooked	0.3
	Corn, germ	0.3
Medium	Bean, common dry	0.6
	Leeks, freeze-dried, raw	0.7
	Wheat, germ	0.7
	Spinach, dried	0.8
	Purslane	0.9
	Oat, germ	1.4
	Beednuts	1.7
	Soybeans kernels, roasted	1.5
	Soybeans, green	3.2
High	Soybean oil	8.8
	Walnuts, Persian, English	6.8
	Wheat germ oil	6.9
	Butter nuts	8.7
	Walnut oil	10.4
	Rapeseed oil	11.1

Edacious use

-Purslane has no flavor; fleshy leaves have a refreshing taste, slightly spicy and astringent (a little citric) and their texture is both crispy and succulent.

-The leaves and young stems are a nice addition to salads. In Middle East there are prepared delicious salads of chopped purslane leaves, yogurt and various green vegetables (green cucumber, green pepper, etc.) as an accompaniment to roasted meat. Purslane is one of the famous ingredients in Lebanese salad Fattoush.

-Mature leaves are blanched and used as a vegetable. Cooking enhances their mucilaginous content, making them a good thickener for soups and stews. In Turkey, for example, the purslane is used to prepare stews of lamb and beans, while around the entire Mediterranean is used in soups. In Mexico, the purslane is cooked with pork, tomatoes and peppers (especially those of the chipotles variety). The purslane is also very suitable combined with spinach, olive oil and lemon juice. It is a high quality companion for the dishes prepared with beets, beans, cucumbers, eggs, cheese, potatoes, yogurt.

-Among other spices, it fits well with borage, chervil, cress (nasturtium), cow-cheese, cress, ruccola, watercress, parsley, mint, etc. (http://condimenteweb.ro).
Experimental part

Materials and methods

In order to obtain the dried vegetal product of purslane (*Portulaca oleracea*), after harvesting, the fresh vegetal product passes through the following stages (within SC Hoffag Import SA):

- **Sorting of the fresh vegetal product:** is performed for removing foreign matter (parts of the same plant or parts of other plants and foreign materials of mineral origin).
- **Washing of the vegetal product:** is performed using the XY-700 vegetable material washing machine with drum made of stainless steel for removing any foreign mineral origin (dust, sand).
- **Drying of the vegetal product:** after washing, the fresh vegetal product is introduced in the HG 25 hot air dryer which has been previously brought to a temperature of 400°C. Drying is carried out over a period of 48 h. After the drying process, hot air supply of the dryer is closed and the dried vegetal product is discharged.

The HG 25 dryer is provided with panel, electro-mechanical system in the feeding area, gear system, conveyor belt made of stainless steel, drying room, radiator, fan. The operating parameters of the HG 25 dryer are: voltage 380 V; hot air pressure: 1.5-3 bar; temperature: 400°C; time: 48h.

- **Grinding of the dried vegetal product:** is performed using the MMC 2 mill for grinding plant material, which is made of stainless steel, provided with sliding elements on the side walls to remove the shaft port knife, lugs of the lid made of stainless steel, provided with sliding elements on the side walls to remove the shaft port knife, lugs of the lid, sieve holder located inside the sidewalls, main shaft with 16 double-edged knives, arranged by 4 to 4, bag at the bottom, sieve holder located inside the sidewalls, parts for catching the discharge at the outlet of the mill, conveyor belt made of stainless steel, sieve holder located inside the sidewalls, main shaft with 16 double-edged knives, arranged by 4 to 4.

Grinding of the dried plant product takes place as follows:
- The collection box for the chopped plant material is fixed at the outlet of the mill;
- sieve no. 8000 m is being assembled;
- the mill for grinding the vegetal material is started acting the switch;
- the dried vegetal product is introduced in the MMC 2 mill feed funnel, gradually or in portions, so that a sudden supply of the mill does not lead to its blocking.

In order to determine the chromatographic profile of fatty oil in *Portulaca oleracea* it was used the chromatographic method (GC-MS) for the identification and dosing of fatty acid composition: it is performed according to the method of analysis developed by the European Pharmacopoeia, the current edition.

Equipment:
- gas chromatograph coupled with mass spectrometer;
- reflushing installation.

Reagents:
- petroleum ether R;
- the sample to be analyzed: the oil as such;
- hydrochloric acid R in methanol, 0.5 M solution;
- water R;
- isooctane R;
- heptane R;
- sodium sulfate R, anhydrous;
- test solution: 0.1 g of sample is weighted into a round bottom flask and is dissolved in 5.0 mL of ether petroleum R and 50 mL of hydrochloric acid R in 0.5 M methanol solution. It is then maintained at reflux under stirring and heating in the nest, at a temperature of about 65°C for 1 h (until there is no further notice of unmethylated drops of oil). The sample is cooled and passed into a separating funnel. The round-bottomed flask is washed with 30-40 mL of water R, then with 40 mL of isooctane R and is added and the separatory funnel. The isooctane layer is washed with water R to neutral pH. The iso-octane layer is separated, and switched over to anhydrous sodium sulfate R, to remove water and then is filtered;
- reference solution A: a calibration mixture is prepared with the composition described in the European Pharmacopoeia, the current edition, Chapter 2.4.22. Table 2.4.22-1, the substances being dissolved in heptane R, thus:

Substances in the mixture	Amount (%, m/m)
Methyl laurate R	3
Methyl myristate R	5
Methyl palmitate R	10
Methyl stearate R	20
Methylarachidate R	40
Methyl oleate R	20

Chromatographic system:
- a) Gas chromatograph fitted with:
 - detector MS (mass spectrometer);
 - split injector;
 - automatic injection system of the sample for analysis;
 - automatic integration system of peak areas of the obtained chromatograms.
- b) column:
 - material: fused silica; lenght 30 m, diameter 0.25 mm;
 - macrogl stationary phase 20000 R (film thickness 0.25μm);
- c) work conditions:
 - carrier gas: helium R, for chromatography;
 - flow: 1.5 mL/min;
 - split report: 1:60;
 - temperature program:

Characteristic	Time (minutes)	Temperature (°C)
Column	0 - 5	160
	6.0 - 10.0	160 - 200
	10.0	200 - 225
Injector	-	250
Detector	-	270

Technical work

1 µL of reference solution A and 1 µL of test solution are injected. Retention times are recorded. Resolution: minimum 1.8 between the peaks determined by methyl oleate and methyl stearate in the chromatogram obtained with the reference solution A.

Identification: oil components in the sample are located by using MS spectra library in the range M/Z: 40-450. The limits range as follows: oleic acid (40 - 55%), linoleic acid, (26-36%), α-linolenic acid <0.5%, palmitic acid (10-20%), stearic acid (4 - 8%).

Results and discussions

1. Chromatographic profile of fatty oil in *Portulaca oleracea*, plant harvested in September 2014

Qualitative Report Library Gas-Chromatograph GC – MS

Data File: Purslane oil /from 05.09.14
Current Data Path: C:\Xcalibur\DATA2\Fat oil 9\Sample Type: Unknown
Acquisition Date: 9/5/2014 10:05:39AM
Run Time (min): 73.57
Vial: 171
Injection Volume (µL): 1.00
Calibration Level: Instrument Method: C:\Xcalibur\DATA2\Fat oil
Processing Method: C:\Xcalibur\DATA2\Fat oil
9/22SoftNou 10pkBB V
Chromatographic profile of fatty oil in *Portulaca oleracea*, plant harvested in September 2014 shows a content in fatty acids in the following decreasing order of its abundance, as follows:

Linoleic γ C18:2 > Linolenic α C18:3 > Palmitic C16:0 > Oleic C18:1 > Octaethylene glycol > Lignoceric C24:0 > Behenic C22:0 > Stearic C18:0.

Chromatographic profile of fatty oil in *Portulaca oleracea*, plant harvested in July 2015 shows a content in fatty acids in the following decreasing order of its abundance, as follows:

Linolenic γ C18:2 > Linolenic α C18:3 > Palmitic C16:0 > Oleic C18:1 > Octaethylene glycol > Lignoceric C24:0 > Behenic C22:0 > Stearic C18:0.

Chromatographic profile of fatty oil in *Portulaca oleracea*, plant harvested in July 2015 shows a content in fatty acids in the following decreasing order of its abundance, as follows:

Linolenic γ C18:2 > Linolenic α C18:3 > Palmitic C16:0 > Oleic C18:1 > Octaethylene glycol > Lignoceric C24:0 > Behenic C22:0 > Stearic C18:0.

Current Data Path: C:\Xcalibur\DATA2\Fat oil 11\Current Data Path: C:\Xcalibur\DATA2\Fat oil 11\Sample Type: UnknownSample Type: Unknown Acquisition Date: 7/10/1015 1:15:52 PM Acquisition Date: 7/10/1015 1:15:52 PM Run Time (min): 64.21 Run Time (min): 64.21 Vial: 184Vial: 184 Injection Volume (µL): 1.00Injection Volume (µL): 1.00 Calibration Level: Calibration Level: Instrument Method: C:\Xcalibur\DATA2\Fat oil11\1mOMEGA315200F8.methInstrument Method: C:\Xcalibur\DATA2\Fat oil11\1mOMEGA315200F8.meth Processing Method: C:\Xcalibur\DATA2\Fat oil10\22NewSoft10pkBB VProcessing Method: C:\Xcalibur\DATA2\Fat oil10\22NewSoft10pkBB V
Chromatographic profile of fatty oil in *Portulaca oleracea*, plant harvested in July 2015 shows a content in fatty acids in the following decreasing order of its abundance, as follows:

- Palmitic C16:0 > Linoleic γ C18:2 > Linolenic α C18:3 > Lignoceric C24:0 > Behenic C22:0 > Stearic C18:0 > Oleic C18:1 > Octaethylene glycol > Arachic C20:0.

Chromatographic profile of fatty oil in *Portulaca oleracea*, plant harvested in August 2016 Hofigal / Alexandria Qualitative Report Library Gas-Chromatograph GC – MS Data File: Purslane oil Furculesti DCD from 01.07.16

Current Data Path: C:\XCALIBUR\DATA2\FAT OIL 14\Sample Type: Unknown Acquisition Date: 8/18/2016 12:49:05 PM Run Time (min): 56.08 Vial: 173 Injection Volume (µL): 1.00 Calibration Level: Instrument Method: C:\Xcalibur\DATA2\Fat oil 12\1ml OMEGA315250oFarm.meth Processing Method: C:\Xcalibur\DATA2\Fat oil 12\22 SoftNou 10pkBB V

![Fig. 4. Chromatogram: Purslane Hofigal/ Alexandria, Furculesti DCD](image)

No.	Compound name	RT	Area %	Peak Area	Peak Height	S/N
1.	Palmitic C16:0	9.81	17.08	50689257	1479604	9109.20
2.	Stearic C18:0	11.99	7.0	10975238	3027275	1853.95
3.	Oleic C18:1	14.38	4.22	3416004	379391	2327.91
4.	Linoleic γ C18:2	15.34	21.88	6492969	1742197	10726.79
5.	Linolenic α C18:3	16.86	27.94	82941020	19463104	11983.85
6.	Behenic C22:0	26.66	5.04	14881450	1783428	1098.08
7.	Lignoceric C24:0	36.28	5.46	16205138	1741678	1072.37
8.	Tricosanol	44.50	3.80	11286730	996405	609.85
9.	Hexacosanol	55.70	2.79	17186301	123768	792.89

Chromatographic profile of *Portulaca oleracea* fatty oil, plant harvested in August 2016 Hofigal / Alexandria shows a content in fatty acids in the following decreasing order of its abundance, as follows:

- Linolenic α C18:3 > Linoleic γ C18:2 > Palmitic C16:0 > Hexacosanol > Lignoceric C24:0 > Behenic C22:0 > Oleic C18:1 > Tricosanol > Stearic C18:0

Chromatographic profile of fatty oil in *Portulaca oleracea*, plant harvested in August 2016 Hofigal / Bucharest Qualitative Report Library Gas-Chromatograph GC – MS Data File: Purslane oil CPCasa 10.08.2016

Current Data Path: C:\XCALIBUR\DATA2\FAT OIL 14\Sample Type: Unknown Acquisition Date: 8/22/2016 10:27:38 AM Run Time (min): 58.33 Vial: 191 Injection Volume (µL): 1.00 Calibration Level: Instrument Method: C:\Xcalibur\DATA2\Fat oil 12\1ml OMEGA315250oFarm.meth Processing Method: C:\Xcalibur\DATA2\Fat oil 12\22 SoftNou 10pkBB V

![Fig. 5. Chromatogram: Purslane oil Hofigal/ Bucharest](image)
Chromatographic profile of *Portulaca oleracea* fatty oil, plant harvested in August 2016. Hofigal / Bucharest shows a content in fatty acids in the following decreasing order of its abundance, as follows:

- Palmitic C16:0
- Linolenic α C18:3
- Linoleic γ C18:2
- Lignoceric C24:0
- Stearic C18:0
- Behenic C22:0
- Oleic C18:1
- Hexacosanol
- Tricosanol.

Table 7

No.	Component name of the fatty oil	Content in the plant from 09.2014	Content in the plant from 07.2015	Content in the plant from 09.2016	
1	Palmitic C16:0	12.35	22.79	17.08	
2	Octaethylene glycol α	3.88	3.60	-	
3	Stearic C18:0	3.47	4.02	3.70	
4	Oleic C18:1	10.73	4.41	4.32	
5	Linoleic γ C18:2	28.72	21.41	21.88	
6	Linolenic α C18:3	22.95	17.14	27.94	
7	Arachid C20:0	-	3.35		
8	Behenic C22:0	-	3.98	3.94	
9	Lignoceric C24:0	4.23	9.13	5.46	
10	Octaethylene glycol β	2.78	4.03	-	
11	Octaethylene glycol γ	6.91	-	-	
12	Tricosanol	-	3.80	4.77	
13	Hexacosanol	-	-	5.79	5.33

Table 8

COMPARATIVE STUDY OF THE CHROMATOGRAPHIC PROFILE OF THE PLANT HARVESTED IN THREE CONSECUTIVE YEARS IN THE SAME AREA, IN JULY, AUGUST, SEPTEMBER

From table 8 it results that:
- the content in Omega-3 (Linolenic α C18:3) was the highest in the vegetal product harvested in August, respectively in September;
- the content in Omega-6 (Linoleic γ C18:2) was the highest in the vegetal product harvested in September, respectively in August;
- the lowest content in Omega-3 (Linolenic α C18:3) was found in the vegetal product harvested in July;
- For the purpose in this study, the optimum time of harvesting the native plant *Portulaca oleracea* as natural plant source of Omega-3 / Omega-6 is August-September.

Conclusions

It was found the possibility of dosing fatty oil in the dry plant (2.20-2.24%), while in the fresh plant the oil is in traces. The presence of fatty acids Omega 3, 6 and 9 in the composition of analyzed *Portulaca* samples (essential fatty acids Omega-3 (Linolenic C18:3); Omega-6 (Linoleic C18:2) and Omega-9 (Oleic C18:1)) meet the above functions and its manifest these actions when the plant is an active source of raw material source for drugs, food supplements and cosmetics. The presence of this plant on almost all types of relief in our country, where it grows without large claims, is a source of native raw material to a very low cost, which contributes to improving the production costs, according to key concepts in business, efficiency by efficiency.

As a significant source of Omega-3 oils, *Portulaca oleracea* could bring considerable health benefits for vegetarian diets and other areas where the consumption of fish oils is excluded. Scientific analysis of its chemical components showed that this common plant has a less frequently encountered nutritional value, making it one of the most important potential food for future.

Also, the presence of a high content of antioxidants (vitamins A and C, alpha-tocopherol, beta carotene and glutathione), fatty acids Omega-3, 6 and 9, due to its healing effects wound and antimicrobial properties, and its traditional use in the local treatment of the inflammatory conditions suggests that the purslane (*Portulaca oleracea*) is a very likely candidate and also as a useful cosmetic ingredient.

References

1. LIU, L., HOWE P., ZHOU Y-F, XU Z-Q, HOCART C, ZHANG R., Fatty acids and β-carotene in Australian purslane (*Portulaca oleracea*) varieties. Journal of Chromatography A., 893(1), 2000, pp. 207-213.
2. SIMPOPOULOS A.P., NORMAN H.A., GILLASPY J.E., Purslane in human nutrition and its potential for world agriculture. World Review of Nutrition and Dietetics, 77, 1995, pp. 47-74.
3. Oliveira I, Valentao P, Lopes R, Andreade P.B., Bento A., Pereira J.A., Phytochemical characterization and radical scavenging activity of Portulaca oleracea L. leaves and stems. Microchemical Journal, 92(2), 2009, pp.129-134.

4. Simopoulos A.P., Omega-3 fatty acids and antioxidants in edible wild plants, Biological Research, 37(2), 2004, pp. 263-277.

5. Whelan J., Rust C., Innovative dietary sources of n-3 fatty acids. Annual Review of Nutrition, 26, 2006, pp. 75-103.

6. Uddin M.K., Juraimi A.S., Hossain M.A., Anwar F., Alam M.A., Effect of salt stress of Portulaca oleracea on antioxidant properties and mineral compositions. Australian Journal Crop Science, 6, 2012, pp.1732-1736.

7. Raciuc, A.D., Popescu M., Ivopol G.C., Bordei N., Alexandru G., Crisan I., Manea S., Dima S.O., Rev. Chim. (Bucharest), 67, no. 12, 2016, pp.2449-2453.

8. Siriamornpun S, Suttajit M., Microchemical components and antioxidant activity of different morphological parts of thai wild purslane (Portulaca oleracea) Weed Science, 58, (3), 2010, pp. 182-188.

9. Simopoulos A.P., Norman H.A., Gillaspy J.E., Duke J.A., Common purslane: a source of omega-3 fatty acids and antioxidants. Journal of the American College of Nutrition, 11(4), 1992, pp. 374-382.

10. Lim Y.Y, Quah E.P.L. Antioxidant properties of different cultivars of Portulaca oleracea. Food Chemistry, 103(3), 2007, pp. 734-740.

11. Alam M.A., Juraimi A.S., Rafii M.Y., Evaluation of antioxidant compounds, antioxidant activities and mineral composition of 13 collected purslane (Portulaca oleracea L.) accessions. BioMed Research International, 10, 2014, p.296.

12. Simopoulos A.P., Tan D-X, Manchester L.C., Reiter R.J., Purslane: a plant source of omega-3 fatty acids and melatonin. Journal of Pineal Research, 39(3), 2005, pp. 331-332.

13. Ahmed A., Ibrahim A.N., Mohamed D.A., Saleh A.O., Neuronal activities of portulaca oleracea in adult rats, Journal of medicinal plant Research, 6(16), 2012, pp.3162-3168.

14. Lee A.S., Lee Y.J., Lee S.M., Yoon J.J., Kim J.S., Kang D.G., Lee H.S., Portulaca oleracea ameliorates diabetic vascular inflammation and endothelial dysfunction in db/db Mice. Evidence-based complementary and alternative medicine, 2012, pp. 1-9.

15. Dwecck A.C., Purslane (Portulaca oleracea) - the global panacea. Personal care magazine, 2(4), 2001, pp. 7-15.

16. Cherukuri Vidyulatha Chowdthary, Anusha Meruva, Naresh K., Ranjith Kumar A. Elumalai. A review on phytochemical and pharmacological profile of portulaca oleracea Linn. (Purslane). Int. J. Res. Ayur. Pharm., 4(1), 2013, pp. 34-37.

17. Foster, S., Duke J. A., A Field Guide to Medicinal Plants and Herbs. 2nd Ed. Boston: Houghton Mifflin Company, 2000.

18. Grieve, M., A Modern Herbal - the medicinal, culinary, cosmetic and economic properties, cultivation and folklore of herbs, grasses, fungi, shrubs and trees with all their modern scientific uses. Tiger Books International, London, 1998.

19. Jagan R., Mallikarjuna R.B., Kavitha R., Subash K.R., BinoVargheze C., Evaluation of anti-arthritic activity of pet-ether extract of portulaca oleracea, International Journal of Applied Biology and Pharmaceutical Technology, 3(3), 2012, pp. 144-148.

20. Kamal U. M., Abdul S.J., Eaqub A. M., Mohd R.I., Evaluation of Antioxidant properties and mineral composition of purslane (Portulaca oleracea) at different growth stages, Int. J. Mol. Sci., 13, 2012, pp. 10257-10267.

21. Leung, A.Y., Foster, S., Encyclopedia of Common Natural Ingredients used in food, drugs and cosmetics. 2nd. edition. John Wiley 1996.

22. Ramesh L., Hanumantappa N.B., Phytochemical and antimicrobial activities of portulaca oleracea. Journal of Pharmacy Research, 4(10), 2011, pp.3553-3555.

23. United States Department of Agriculture, Agricultural research service, National Nutrient Database for Standard Reference Release 26 2011. Basic report:11427, purslane Raw

24. INMA - Metodologie pentru experimentarea masinii de taiat plante medicinale si aromatice (MET-01), Bucuresti, 2011.

25. Egga-Gilabert C., RuiZ-Hernandez V., Parra A., Fernandez J.A., Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product, Scientia Horticulturae no. 172, 2014, pp. 73-81.

26. Farmacopoea Romana, editia a X-a, Editura medicala, Bucuresti, 2008.

27. European Pharmacopoeia, 8th Edition, Council of Europe, Strasbourg, 2014.

Manuscript received: 6.06.2017