Towards a Singular Value Decomposition and spectral theory for all rings

Ran Gutin*

21st December 2021

Abstract

We propose definitions of SVD, spectral decomposition (for self-adjoint matrices) and Jordan decomposition which make sense for all rings. For many rings, these decompositions can be shown to exist. For some specific rings, these decompositions are complicated to describe in full and prove the existence of. These decompositions have occurred piecemeal in the literature. We conjecture that they exist for many rings, including all Clifford algebras over the real numbers and complex numbers. The origin of this programme is not directly in module theory or linear algebra.

1 Motivation before giving the definitions

1.1 Objective

The objective of this paper is to propose a general definition for three matrix decompositions, which can be shown to be satisfiable (or not) over any given ring:

- SVD (Singular Value Decomposition)
- Spectral decomposition. In this paper, we see this as a decomposition of self-adjoint matrices.
- Jordan decomposition.

The motivation for this is that we have discovered analogues of those three decompositions outside the obvious linear algebra or module theory context. These analogues present canonical forms which are not as simple as in the complex case, because they might fail to be diagonal. This phenomenon is already familiar for the Jordan decomposition (in the complex case), but is not present for the other two decompositions when working over the complex numbers. In general, the canonical forms can be complicated, and their existence is not easy to prove on a case-by-case basis.

*Department of Computer Science, Imperial College London
1.2 Summary of origins

I give an account of how I stumbled upon SVDs over different rings. Admittedly, this is somewhat subjective. It is written in the first person.

There is a 19th century “non-Euclidean” geometry (in the Kleinian sense) called Laguerre geometry which admits a relationship to the algebra of 2×2 matrices over the dual numbers. I found that based on the correspondence between the congruence transformations of this geometry, and the 2×2 matrices over the dual numbers, there was a strong hint towards the existence of an analogue of the Singular Value Decomposition over the ring of dual numbers instead of the usual ring of complex numbers. An account of this matrix/ transformation correspondence can be found in Yaglom’s book *Complex numbers in geometry*. The SVD interpretation and subsequent result was inspired by a classification of the Laguerre transformations which can be found in Yaglom’s book. This analogue of the SVD turned out to exist for matrices over the dual numbers, where the matrices could be of any possible dimension (not just the 2×2 case that Yaglom considered, and not just the square matrices), even in the case where the matrices were singular, and satisfied certain uniqueness properties similar to the complex SVD.

I will now state exactly the result I obtained [1]. The ring of dual numbers is denoted formally as $\mathbb{R}[\varepsilon]/(\varepsilon^2)$. The dual numbers admit an involution $*$ for which $(a + b\varepsilon)^* = a - b\varepsilon$. This defines a conjugate-transpose or adjoint operator on matrices M^* such that $(M^*)_{ij} = (M_{ji})^*$. Analogously, we get a notion of unitary matrix U for which $UU^* = U^*U = I$. Given a matrix M over the dual numbers (of any dimension), I obtained a result which states that M can be factorised into USV^* where U and V are unitary, and S is a direct sum of matrices in the set

$$\{(x) : x \in \mathbb{R}; x > 0\} \cup \left\{\begin{bmatrix} x & -y\varepsilon \\ y\varepsilon & x \end{bmatrix} : x \in \mathbb{R}, y \in \mathbb{R}; x > 0, y > 0\right\} \cup \{[y\varepsilon] : y \in \mathbb{R}; y > 0\} \cup \{0_{1,0}, 0_{0,1}\}.$$

This set is quite complicated, and we won’t dwell on it. Notice though that the matrix $0_{1,0}$ (and $0_{0,1}$) is missing in the usual account of the SVD over \mathbb{C}, but we will show that it is implicitly there as well! It’s the unique 1×0 matrix.

To explain the occurrence of this strange matrix, let’s consider the complex matrix $M = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$. Ignoring the exact values of U and V, but focussing our attention on S, we have that $M = USV^*$ where $S = [3] \oplus [-1] \oplus 0_{0,1}$. The reader

1 More informally, a dual number is a number of the form $a + b\varepsilon$ where $\varepsilon^2 = 0$ while $\varepsilon \neq 0$. The dual numbers form an associative and commutative unital algebra over the real numbers.
should verify that given a matrix K, the value of $K \oplus 0_{0,1}$ is the same matrix as K but padded with a zero column. Likewise, the value of $K \oplus 0_{1,0}$ is the same matrix as K but padded with a zero row. The value of $[3] \oplus [-1] \oplus 0_{0,1}$ is thus
\[
\begin{bmatrix}
3 & 0 & 0 \\
0 & -1 & 0
\end{bmatrix}
\] as expected. We conclude that the “singular values” of a complex matrix form a multiset (a similar object to a set but the elements are allowed to repeat) whose elements belong to the set $\{[x] : x \in \mathbb{R}; x > 0\} \cup \{0_{1,0}, 0_{0,1}\}$. This is actually a set of matrices rather than scalar “values”. This suggests that the notion of a singular value as a scalar value is questionable.

Given a matrix M over \mathbb{C} or $\mathbb{R}[\epsilon]/(\epsilon^2)$, the direct summands that make up S in $M = USV^*$ are unique up to permutation. In the dual number case, a direct summand can be of dimension 2×2, and non-square direct summands can be found over both rings (and in fact all rings).

Upon discovering the above dual number SVD, I found that a dual number SVD of sorts had already been considered in the literature, and it wasn’t the one above. In that case, the involution over the dual numbers is the trivial one: $z^* := z$, and the notion of unitary matrix degenerates into $U^TU = UU^T = I$. We then have that the direct summands that make up S are of the form:

\[
\{[x + ye] : x \in \mathbb{R}, y \in \mathbb{R}; x > 0\} \cup \{[ye] : y \in \mathbb{R}; y > 0\} \cup \{0_{1,0}, 0_{0,1}\}.
\]

This shows that the correct setting is not a ring as such, but a \ast-ring, which is a ring equipped with an involution. The motivation for considering matrix algebra over this particular \ast-ring came from the mechanics literature where this SVD was suggested for solving kinematic synthesis problems.

Over the \ast-ring of double numbers, which are defined as $\mathbb{R} \oplus \mathbb{R}$, equipped with the involution $(a, b)^* := (b, a)$, a matrix decomposition that constitutes an SVD over the double numbers has been given \[^3\]. I attempted to come up with such a decomposition myself, which I called the Jordan SVD, but it had the problem that it didn’t exist for all matrices over the double numbers, and therefore didn’t satisfy the general criteria I give here. The paper in which the actual double-number SVD is introduced has some limitations, chief among them is that the paper is unaware of the connection to the double numbers, or that the decomposition constitutes the analogue of the SVD over the \ast-ring of double numbers. A lot of terminology is introduced there, like contragredient equivalence, which I view as needless.

Finally, over the quaternions an analogue of SVD exists which satisfies my definition. This has recently been extended to the case of the dual quaternions (an algebra equal to $\mathbb{H}[\epsilon]/(\epsilon^2)$). These algebras are non-commutative, so our definitions don’t assume commutativity.

There is clearly a need for a general result which states precisely when an analogue of the SVD, spectral decomposition for self-adjoint matrices, or Jordan decomposition, exists for a given \ast-ring. Such a result has already been obtained
for the analogue of the Jordan decomposition which we discuss here, but this apperas at the moment to be the least general of the three decompositions. We supply general definitions here and formulate conjectures.

1.3 Rough desired criteria

If \(M = USV^* \) is the “SVD” of \(M \), then \(S \) should be a block diagonal matrix which is unique up to permutation of the blocks. This is similar to, and somewhat related to, the fact that the Jordan decomposition of a square matrix \(M \), expressed as \(PJP^{-1} \), should be unique up to permutation of the Jordan blocks. The objective is to decide whether or not a set of such blocks can be exhibited for a given ring.

The formal definitions which we give below express in a rigorous way the desired existence and uniqueness properties which we’ve alluded to.

2 Definitions

A \(\ast \)-ring is a ring \(R \) equipped with an automorphism denoted \(\ast : R \to R \) that has order 2. Such an automorphism is called an involution. Every ring can be made into a \(\ast \)-ring in at least one way by defining \(z^* = z \) for all \(z \in R \).

We define the following monoids:

- \(\text{Mat}(R, \ast) \) is the monoid of all matrices over a \(\ast \)-ring \(R \) where the monoid operation is \(\oplus \), denoting direct sum of matrices. The matrices can be of any possible dimensions, and they don’t have to be square. The matrices can also have 0 rows or 0 columns.
- \(\text{Herm}(R, \ast) \) is the monoid of all self-adjoint matrices over a \(\ast \)-ring \(R \) where the monoid operation is \(\oplus \).
- \(\text{Sq}(R) \) is the monoid of all square matrices over a ring \(R \), where \(R \) is merely a ring and not a \(\ast \)-ring.

We then define the following equivalence relations on \(\text{Mat}(R, \ast) \) and its various submonoids above:

- \(\sim_{\text{UE}} \) means unitary equivalence. In other words, we have that \(A \sim_{\text{UE}} B \) is true whenever there exist unitary matrices \(U \) and \(V \) such that \(A = UBV^* \).
- \(\sim_{\text{US}} \) means unitary similarity. In other words, we have that \(A \sim_{\text{US}} B \) is true whenever there exists a unitary matrix \(V \) such that \(A = VBV^* \).
- \(\sim_{S} \) means similarity. In other words, we have that \(A \sim_{S} B \) is true whenever there exists an invertible matrix \(P \) such that \(A = PBP^{-1} \).

We aim to study the three monoids:

- \(\overline{\text{Mat}}(R, \ast) := \text{Mat}(R, \ast)/\sim_{\text{UE}} \) with the intention of generalising the singular value decomposition,
\begin{itemize}
 \item \(\text{Herm}(R,\ast) := \text{Herm}(R,\ast)/\sim_{US}\) with the intention of generalising the spectral theorem (on self-adjoint matrices).
 \item \(\text{Sq}(R,\ast) := \text{Sq}(R)/\sim_S\) with the intention of generalising the Jordan decomposition.
\end{itemize}

To do this, notice that all three monoids are abelian, and for some \(\ast\)-rings \(R\), they are even free as abelian monoids. A free abelian monoid consists of all finite multisets whose elements belong to some set \(S\). An isomorphism between each of the three monoids above and a free abelian monoid produces an analogue of the SVD, spectral theorem, and Jordan decompositions respectively.

As an aside: Note that all six parametrised families of monoids can be thought of as functors between two categories, if this fact can ever be useful. The functors are all from the category of \(\ast\)-rings to the category of monoids.

\section{Discussion of the relationship of monoid algebra to the SVD, spectral decomposition and Jordan decompositions}

When an abelian monoid \((M, +, 0)\) is free, there is a unique subset (which we will here denote \(P\)) of \(M\) (called the generators of \(M\)) such that each element of \(M\) is a unique sum elements of the generators \(P\). It can be argued that many “unique factorisation” type results in mathematics merely state the fact that some abelian monoid with a complicated construction is actually free.

An example of the above is the abelian monoid of positive integers under integer multiplication, in which the generators are the prime numbers. The fact that for every integer there exists a prime factorisation, and moreover it is unique, is equivalent to the fact that the abelian monoid of positive integers is free.

The abelian monoid \(\text{Mat}(R,\ast)\) for a given \(\ast\)-ring \((R,\ast)\) is constructed in a complicated way. In spite of that fact, if it is free, then it is actually quite simple. Its freeness captures the existence and uniqueness of the SVD.

\section{Summary of existing results}

\textbf{Theorem 1:} \(\text{Sq}(R)\) is a free abelian monoid for every Artinian ring \(R\).

\textit{Proof.} See [4].

The above theorem in particular shows that something approaching a Jordan decomposition exists for the dual numbers, which are an Artinian ring. All finite dimensional associative algebras over a field, like the quaternions and dual numbers, are Artinian, so this generalises an important aspect of the Jordan decomposition.
Let $\text{swap}(a, b) := (b, a)$. This is a natural choice of involution for $R \oplus R$ where R is any ring. An illustrative special case is when R is \mathbb{R}, in which case $R \oplus R$ is commonly called either the split-complex numbers or the double numbers. This is an interesting hypercomplex number system considered in [2]. When $R = \mathbb{C}$, the name we give to $R \oplus R$ is the double complex numbers.

Theorem 2: $\text{Herm}(R \oplus R, \text{swap}) \cong \text{Sq}(R)$ for every ring R.

Remark: When both sides are treated as functors of R, the isomorphism is natural. We don’t attempt to verify this fact.

Proof. Let M be an element of $\text{Herm}(R \oplus R, \text{swap})$. We have that $M = (A, B^T)$ because M in particular must belong to $J(R \oplus R)$. We furthermore have that M is Hermitian, so $(A, B^T) = M = M^* = (B, A^T)$; therefore $A = B$. In summary, we have that $M = (A, A^T)$. Let $\phi_R : \text{Sq}(R) \to \text{Herm}(R \oplus R, \text{swap})$ be given by $\phi_R(A) = (A, A^T)$. The mapping is clearly an isomorphism of monoids. But we’re not done yet because we would like an isomorphism $\psi_R : \text{Sq}(R) \to \text{Herm}(R \oplus R, \text{swap})$ instead. This isomorphism is obtained by noticing that if $M \sim_S K$ then $\phi_R(M) \sim_{\text{US}} \phi_R(K)$. We show that this is indeed true: If $M \sim_S K$ then $M = PKP^{-1}$, so $\phi_R(M) = (M, M^T) = (PKP^{-1}, (P^T)^{-1}K^TP^T) = (P, (P^{-1})^T)(K, K^T)(P^{-1}, P^T) \sim_{\text{US}} (K, K^T) = \phi_R(K)$. We are done.

The above result is significant because it shows that the monoid family $\text{Sq}(R)$ is somewhat redundant. The study of these monoids is subsumed by the study of monoids in the family $\text{Herm}(R, \ast)$.

Theorem 3: $\text{Mat}(R, \ast)$ admits an isomorphism to a free abelian monoid with the following generators when (R, \ast) is any of the following \ast-rings:

R	$\ast : R \to R$	Generators of $\text{Mat}(R, \ast)$
1 0	$z^* := z$	$\{0, 0, 0, 1\}$
2 \mathbb{R}	$z^* := z$	$\{[x] : x \in \mathbb{R}; x > 0\}$
		$\cup \{0, 0, 0, 1\}$
3 \mathbb{C}	$(a + bi)^* := a - bi$	$\{[x] : x \in \mathbb{R}; x > 0\}$
		$\cup \{0, 0, 0, 1\}$
4 $\mathbb{R}[\varepsilon]/(\varepsilon^2)$	$z^* := z$	$\{[x + y\varepsilon] : x \in \mathbb{R}, y \in \mathbb{R}; x > 0\}$
		$\cup \{y\varepsilon : y \in \mathbb{R}; y > 0\} \cup \{0, 0, 0, 1\}$
5 $\mathbb{R}[\varepsilon]/(\varepsilon^2)$	$(a + b\varepsilon)^* := a - b\varepsilon$	$\{[x] : x \in \mathbb{R}; x > 0\}$
		$\cup \{[x + y\varepsilon] : x, y \in \mathbb{R}; x > 0, y > 0\}$
		$\cup \{y\varepsilon : y \in \mathbb{R}; y > 0\} \cup \{0, 0, 0, 1\}$
\[
\begin{array}{|c|c|c|}
\hline
6 & \mathbb{C} \oplus \mathbb{C} & \text{swap} \\
\hline
7 & \mathbb{H} & \{ (a + bi + cj + dk)^* := a - bi - cj - dk : [x] \in \mathbb{R} ; x > 0 \} \cup \{ 0_{1,0}, 0_{0,1} \} \\
\hline
8 & \text{span}(1, i, \varepsilon j, \varepsilon k) \subset \mathbb{H}[\varepsilon]/(\varepsilon^2) & \{ (a + bi + c\varepsilon j + d\varepsilon k)^* := a - bi - c\varepsilon j - d\varepsilon k : [x] \in \mathbb{R} ; x > 0 \} \\
& & \cup \{ [x] - \delta \begin{pmatrix} x \\ \delta \end{pmatrix} : x \in \mathbb{R} ; x > 0, \delta^2 = 0 \} \\
& & \cup \{ [y\varepsilon j] : y \in \mathbb{R} ; y > 0 \} \cup \{ 0_{1,0}, 0_{0,1} \} \\
\hline
\end{array}
\]

Proof. For each example in turn:

1. The ring here is the 0 ring, whose set of elements is \{0\}. The definition of the operations \{+,-,\times\} is immediate. The generators are the two degenerate matrices \(0_{1,0}\) and \(0_{0,1}\). The first matrix has 1 row and 0 columns. The second matrix has 0 rows and 1 column. Matrices with 0 rows or columns appear strange but they are an inevitable part of matrix algebra because they represent linear maps which map to or from 0-dimensional vector spaces.

2. A proof of this fact can be found in any undergraduate textbook on linear algebra for mathematics students, as long as that textbook covers the spectral theorem and SVD. The only unusual generators are \(0_{1,0}\) and \(0_{0,1}\), which are 1 \(\times\) 0 and 0 \(\times\) 1 matrices respectively. While it is strange to have matrices with these dimensions, they are an inevitable part of the matrix formalism because they represent linear maps that go to or from 0-dimensional vector spaces.

3. A proof of this fact can be found in any undergraduate textbook on linear algebra for mathematics students, as long as that textbook covers the spectral theorem and SVD. The only unusual generators are \(0_{1,0}\) and \(0_{0,1}\), which are 1 \(\times\) 0 and 0 \(\times\) 1 matrices respectively. While it is strange to have matrices with these dimensions, they are an inevitable part of the matrix formalism because they represent linear maps that go to or from 0-dimensional vector spaces.

4. See [1]. The only thing missing from the paper is a complete proof of uniqueness. This can be achieved by using the uniqueness of the eigen-decomposition for dual-number matrices (a fact proved in the reference) and observing that the diagonal form of the block matrix \(\begin{pmatrix} 0 & M^* \\ M & 0 \end{pmatrix}\) is
\[\Sigma \oplus (-\Sigma) \text{ where } \Sigma \text{ is the normal form of } M \text{ under SVD. This implies that } \Sigma \text{ is unique.} \]

5. See [1]. Uniqueness can be reduced to the case of the involution \(z^* := z \).

6. This follows from [3].

7. This follows from Theorem 7.2 of [7].

8. See [5].

Theorem 4: \(\text{Herm}(R, \ast) \) admits an isomorphism to a free abelian monoid with the following generators when \((R, \ast)\) is any of the following \ast-rings:

\(R \)	\(\ast : R \to R \)	Generators of \(\text{Herm}(R, \ast) \)
1	0	\(z^* := z \)
2 \(\mathbb{R} \)	\(z^* := z \)	\(\{x \in \mathbb{R}; x > 0\} \cup \{0\} \)
3 \(\mathbb{C} \)	\((a + bi)^* := a - bi\)	\(\{x \in \mathbb{R}; x > 0\} \cup \{0\} \)
4 \(\mathbb{R}[\varepsilon]/(\varepsilon^2) \)	\(z^* := z \)	\(\{x + y\varepsilon : x \in \mathbb{R}, y \in \mathbb{R}; x > 0\} \cup \{y\varepsilon : y \in \mathbb{R}; y > 0\} \cup \{0\} \)
5 \(\mathbb{R}[\varepsilon]/(\varepsilon^2) \)	\((a + b\varepsilon)^* := a - b\varepsilon\)	\(\{x \in \mathbb{R}; x > 0\} \cup \left\{ \begin{bmatrix} x & -y\varepsilon \\ y\varepsilon & x \end{bmatrix} : x \in \mathbb{R}, y \in \mathbb{R}; x > 0, y > 0 \right\} \cup \{0\} \)
6 \(\mathbb{C} \oplus \mathbb{C} \)	swap	\(\{J_m(re^{i\theta}), J_m(re^{i\theta})^T : r \geq 0, \theta \in [0, \pi)\} \)
7 \(\mathbb{H} \)	\((a + bi + cj + dk)^* := a - bi - cj - dk\)	\(\{x \in \mathbb{R}; x > 0\} \cup \{0\} \)
8 \(\text{span}(1, i, \varepsilon j, \varepsilon k) \subseteq \mathbb{H}[\varepsilon]/(\varepsilon^2) \)	\((a + bi + c\varepsilon j + d\varepsilon k)^* := a - bi - c\varepsilon j - d\varepsilon k\)	\(\{x \in \mathbb{R}; x > 0\} \cup \left\{ \begin{bmatrix} x & -\delta \\ \delta & x \end{bmatrix} : x \in \mathbb{R}; x > 0, \delta^2 = 0 \right\} \cup \{0\} \)
9 \(\mathbb{Z} \)	\(z^* := z \)	The generators are related to the set of adjacency matrices of all connected graphs. We don’t give an explicit description.
10 \(\mathbb{C} \)	\(z^* := z \)	Very complicated. Given in [6].

Proof. For each example in turn:

1. The ring here is the 0 ring, whose set of elements is \(\{0\} \). The definition of the operations \(\{+, -, \times\} \) is immediate.

2. A proof of this fact can be found in any undergraduate textbook on linear algebra for mathematics students, as long as that textbook covers the spectral theorem and SVD.
3. A proof of this fact can be found in any undergraduate textbook on linear algebra for mathematics students, as long as that textbook covers the spectral theorem and SVD.

4. See [1].

5. See [1].

6. Consequence of Theorem 2.

7. This follows from Theorem 7.2 of [7].

8. See [5].

9. In this case, we haven’t stated the result clearly enough that we can prove it. If we wished to, we could state it rigorously and prove it. Note that a unitary matrix U that is also an integer matrix is precisely a signed permutation matrix. Two undirected graphs, represented as adjacency matrix M and K, are isomorphic iff there exists a permutation matrix P such that $M = PKP^{-1}$. The generators are therefore connected graphs which are combined by direct sum to form unconnected graphs.

10. See [6].

5 Meta-conjectures

By a meta-conjecture, we mean a conjecture which is true for a large class of rings, but not necessarily for all rings. We suspect that the class of rings for which these conjectures are true is large.

Conjecture 1: For any ring \ast-ring (R, \ast), $\text{Herm}(R, \ast)$ is free.

Conjecture 2: For any ring \ast-ring (R, \ast), $\text{Mat}(R, \ast)$ is free.

We know from theorem 1 that $\text{Sq}(R)$ is free whenever R is Artinian. $\text{Sq}(R)$ may be free for some non-Artinian rings as well. Therefore we do not pose this as one of the meta-conjectures.

A proof of those two meta-conjectures may end up being non-constructive, in the sense that it might fail to give the generators of the corresponding free abelian monoids explicitly. We consider the search for a constructive proof in some special cases to be worthwhile.

References

[1] Ran Gutin. Generalizations of singular value decomposition to dual-numbered matrices. *Linear and Multilinear Algebra*, 0(0):1–8, 2021.

[2] Ran Gutin. Matrix decompositions over the double numbers, 2021.
[3] Roger A Horn and Dennis I Merino. Contragredient equivalence: a canonical form and some applications. *Linear algebra and its applications*, 214:43–92, 1995.

[4] Uriya First (https://mathoverflow.net/users/86006/uriya first). For every ring r, is there a block-diagonal canonical form for a square matrix over r? MathOverflow. URL:https://mathoverflow.net/q/409211 (version: 2021-11-23).

[5] Liqun Qi and Ziyuan Luo. Eigenvalues and singular value decomposition of dual complex matrices, 2021.

[6] Nigel H Scott. A new canonical form for complex symmetric matrices. *Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences*, 441(1913):625–640, 1993.

[7] Fuzhen Zhang. Quaternions and matrices of quaternions. *Linear Algebra and its Applications*, 251:21–57, 1997.