Appendix to:
EFSA (European Food Safety Authority), 2018. Conclusion on the peer review of the pesticide risk assessment of the active substance fosetyl. EFSA Journal 2018;16(6):5307, 31 pp. doi:10.2903/j.efsajournal.2018.5307
© European Food Safety Authority, 2018

Appendix A — List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Fosetyl
Following data relate to the variant fosetyl-aluminium
Function (e.g. fungicide) | Fungicide, bactericide.
Rapporteur Member State | France
Co-rapporteur Member State | Estonia

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

| Chemical name (IUPAC) | Fosetyl: ethyl hydrogen phosphonate
| | Fosetyl-aluminium: aluminium tris(ethyl phosphonate)
| Chemical name (CA) | ethyl hydrogen phosphonate
| | aluminium tris[ethyl phosphonate]
| CIPAC No | 384 (fosetyl), 384.013 (fosetyl-Al)
| CAS No | 15845-66-6 (fosetyl), 39148-24-8 (fosetyl-Al)
| EC No (EINECS or ELINCS) | 254-320-2 (fosetyl-Al)
| FAO Specification (including year of publication) | 384.013/TC, January 2013
| Minimum purity of the active substance as manufactured | 960 g/kg (Bayer CropScience AG, SAPEC Agro S.A.)
| | 970 g/kg (Cheminova Agro S.A.-Probelte-Proplan)
| | 965 g/kg (Industrias Afrasa S.A.)
| | 965 and 974 g/kg (Oxon-Italia SpA and Suni Agro Europe Limited)
| Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured | Open (Bayer CropScience AG)
| Molecular formula | fosetyl: C₇H₇O₄P
| | fosetyl-aluminium: C₆H₁₅AlO₅P₃
| Molar mass | fosetyl: 110.0 g/mol
Peer review of the pesticide risk assessment of the active substance fosetyl

Structural formula

fosetyl-aluminium
354.1 g/mol

$$\begin{array}{c}
\text{H}_3\text{C} - \text{H} - \text{P} - \text{O} - \text{O} - \text{O}\hfill \\
\text{H}
\end{array}$$

$$\text{Al}^{3+}$$

$$\left[\begin{array}{c}
\text{H}_3\text{C} - \text{H} - \text{P} - \text{O} - \text{O} - \text{O}\hfill \\
\text{H}
\end{array} \right]_3$$
Physical and chemical properties (Regulation (EU) No 283/2013, Annex Part A, point 2)

The data refer to variant fosetyl-aluminium, unless otherwise stated.

Property	Value
Melting point (state purity)	215 °C (99.1%)
Boiling point (state purity)	/
Temperature of decomposition (state purity)	277-279 °C (99.1%)
Appearance (state purity)	White powder (99.1%)
Vapour pressure (state temperature, state purity)	< 10⁻² Pa (25°C)
Henry’s law constant (state temperature)	< 3.2 x 10⁻¹⁰ Pa m² mol⁻¹ (20°C)
Solubility in water (state temperature, state purity and pH)	Solubility at 20°C
111.3 g/L (pure water at pH 6.0)	
111.4 g/L (buffer at pH 5.1)	
109.8 g/L (buffer at pH 8.6)	
Purity (99.1%)	
Solubility in organic solvents (state temperature, state purity)	Solubility at 20°C
6 mg/L (acetone)	
1 mg/L (acetonitrile)	
4 mg/L (dichloromethane)	
< 1 mg/L (ethyl acetate)	
< 1 mg/L (n-heptane)	
1 mg/L (xylene)	
807 mg/L (methanol)	
10 mg/L (n-octanol)	
Purity (97.6 %)	
Surface tension (state concentration and temperature, state purity)	75.1 mN/m at 20 °C (1 g/L solution)
Purity 99.1%	
Partition coefficient (state temperature, pH and purity)	log Pow = -2.1 at 21-23 °C
As water solubility is not pH-dependent, log Pow is considered as not pH-dependent	
Purity (99.1%)	
Dissociation constant (state purity)	pKa = 4.7 at 20-25 °C (99.1%)
UV/VIS absorption (max.) incl. \(\varepsilon \) (state purity, pH)	No relevant absorption peaks between 190 and 800 nm
(solvent: water; c = 0.1%)	
Flammability (state purity)	Not flammable
Explosive properties (state purity)	Not explosive
Oxidising properties (state purity)	Not oxidizing
Summary of representative uses evaluated, for which all risk assessments needed to be completed (name of active substance or the respective variant)

(Regulation (EU) No 284/2013, Annex Part A, points 3, 4)

Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Formulation	Application	Application rate per treatment	PHI (days) (m)	Remarks					
Grapes	Northern, central, southern EU	FEA + FLC WG 71.11	F	Plasmodora viticola	WG	FEA : 666.7 FLC : 44.4	Spray BBCH 15 - 81	3	10	FEA: 2.0 FLC: 0.133	100-1000	FEA: 2.0 FLC: 0.133	21	
Grapes	Northern, central, southern EU	SIP 409 58	F	Plasmodora viticola	WG	Fos.: 300 Cym.: 28.5 Cu.: 160	Spray BBCH 11 - 79	4	10	Fos.: 0.3375 Cym.: 0.0321 Cu.: 0.18	400-1000	Fos.: 1.35 Cym.: 0.1282 Cu.: 0.720	40	
Citrus	Southern EU	Fosetyl-Al 80% WP	F	Phytophthora spp.	WP	800	Tractor mounted sprayer	1st appl.: flowering	3	3 months	0.36**	1000-1500	3.6	15
Grapes	Southern EU	Fosetyl-Al 80% WP	F	Downy mildew (Plasmodora viticola)	WP	800	Tractor mounted sprayer	Flowering/post-flowering	4	10 days	0.88**	300-1100	2.64	28
Pome fruits	EU	FEA WG 80 (e.g. Aliette)	F	Phytophthora spp. Erwinia amylovora	WG	800	Foliar spray	BBCH 55-85	3	7-10 days*	0.24 – 1.2	300 - 1500	3.6	28

* Following a GAP modification by the applicant, an interval of 10 days between applications is now supported.

** Maximum concentration, corresponding to the use of low water volumes.

*** Minimum concentration (= label dose range for southern MS) to be applied in situations of use of high water volumes.

**** Following the request of additional data by EFSA, the applicant indicated that the use is now intended in the Southern zone only.

(a) For crops, the EU and Codex classifications (both) should be taken into account, where relevant, the use situation should be described (e.g. fumigation of a structure)

(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)

(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds

(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide

(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoxycyprin). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavicalcar-isopropyl).

(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application.
(f) All abbreviations used must be explained.

(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench.

(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant - type of equipment used must be indicated.

(k) Indicate the minimum and maximum number of applications possible under practical conditions of use.

(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200,000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha).

(m) PHI - minimum pre-harvest interval.
Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (name of active substance or the respective variant)

Regulation (EC) No 1107/2009 Article 8.1(g))

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses.

Crop and/or situation (a)	Member State or Country	Product name	F or G (b)	Pests or Group of pests controlled (c)	Preparation Type (d-f) Conc. a.s. (i)	Application Method kind (h)	Range of growth stages & season (j)	Number min-max (k)	Interval between application (min)	Application rate per treatment kg a.s./L (l)	PHI (days) (m)	Remarks

MRL Application (according to Article 8.1(g) of Regulation (EC) No 1107/2009)

Not applicable in the case of this renewal dossier.

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticides
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant - type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. bentiavalicarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

No new data has been provided (not required for renewal of approval of active substances).
Fosetyl-Al contained in FEA + FLC WG 71.11, SIP40958, Fosetyl-Al 80% WP and Fosetyl-Al WG 80 has been tested in field development trials which demonstrated efficacious activity. Products containing fosetyl-Al has been registered in many EU countries based on detailed national assessments of the efficacy package in compliance with Annex III data requirements of Directive 91/414/EEC and according to the Uniform Principles, with which Member States authorities were satisfied.
More detailed consideration will be fully assessed in the context of subsequent applications for products authorisation.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

| Same as above. |

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

| Same as above. |

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

| Activity against target organism |
fosetyl-Al	phosphonic acid	ethanol
yes	yes	no
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Analytical method	Technique
Technical a.s.	ion chromatography coupled with conductivity detector
Impurities in technical a.s.	ion chromatography coupled with conductivity detector
Plant protection product	ion chromatography coupled with UV detector

The specificity of the analytical method for the determination of the counterion in the PPP is required.

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Matrix	Residue Definition
Food of plant origin	Sum of fosetyl and phosphonic acid and their salts, expressed as phosphonic acid
Food of animal origin	Phosphonic acid
Soil	Fosetyl and phosphonic acid
Sediment	Fosetyl and phosphonic acid
Water surface	Fosetyl and phosphonic acid
Drinking/ground	Fosetyl and phosphonic acid
Air	Fosetyl
Body fluids and tissues	Fosetyl and phosphonic acid

Monitoring/Enforcement methods

Analytical method	Technique and LOQ for methods for monitoring purposes
Food/feed of plant origin	Bayer: QuPPe LC-MS/MS (matrices: high water, dry, acid, high oil), ILV missing and extraction efficiencies provided except for high oil and dry. Fosetyl LOQ: 0.01 mg/kg fosetyl-aluminium for all matrices, Phosphonic acid LOQ: 0.1 mg/kg for high water, dry, acid and 0.5 mg/kg for high oil.
	Task Force Iberica: LC-MS/MS (matrices: high water, dry, acid, high oil), ILV provided and validated, extraction efficiencies missing, Fosetyl (expressed as fosetyl-aluminium) and phosphonic acid LOQ: 0.01 mg/kg for all matrices except acid LOQ is 1 mg/kg,
	Task Force Oxon: LC-MS/MS (matrices: high water, dry, acid, high oil), Phosphonic acid: not validated, ILV provided and validated, extraction efficiencies missing, Fosetyl LOQ: 0.05 mg/kg fosetyl-aluminium for all matrices
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	**Bayer**: LC-MS/MS (matrices: milk, bovine meat, bovine kidney, bovine liver, egg, poultry muscle), ILV available, extraction efficiency missing
Fosetyl (expressed as fosetyl-aluminium) and phosphonic acid LOQ: 0.05 mg/kg except for milk 0.01 mg/kg	
Task Force Iberica: LC-MS/MS (milk, egg, fat, muscle meat, kidney), ILV provided and validated, extraction efficiency missing	
Fosetyl (expressed as fosetyl-aluminium) and phosphonic acid LOQ: 0.05 mg/kg milk and egg, 0.1 mg/kg muscle meat, kidney and fat.	
Task Force Oxon: LC-MS/MS (milk, egg, fat, muscle meat, kidney), ILV provided and validated, extraction efficiency missing	
Fosetyl LOQ: 0.05 mg/kg fosetyl-aluminiun for all matrices	
Phosphonic acid: 2 mg/kg for all matrices	
Soil (analytical technique and LOQ)	**Bayer**: LC-MS/MS, LOQ = 0.05 mg/kg for fosetyl (expressed as fosetyl-aluminium) and phosphonic acid
Task Force Iberica: LC-MS/MS, LOQ = 0.025 mg/kg for fosetyl (expressed as fosetyl-aluminium) and phosphonic acid	
Task Force Oxon: LC-MS/MS, LOQ = 0.05 mg/kg for fosetyl (expressed as fosetyl-aluminium) and 0.2 mg/kg for phosphonic acid. Data gap for an analytical method for the determination of phosphonic acid in soil with a LOQ of 0.05 mg/kg.	
Water (analytical technique and LOQ)	**Bayer**: LC-MS/MS, Fosetyl LOQ = 0.1 µg/L (expressed as fosetyl-aluminium), LOQ phosphonic acid = 0.1 µg/L for surface and drinking water
 ILV available.
 Task force Iberica: LC-MS/MS, LOQ Fosetyl (expressed as fosetyl-aluminium) = 0.05 µg/L for surface and drinking water, LOQ phosphonic acid = 0.1 µg/L ILV for phosphonic acid: open.
 Task force Oxon: LC-MS/MS, LOQ Fosetyl (expressed as fosetyl-aluminium) = 0.1 µg/L for surface and drinking water
 Data gap: determination of phosphonic acid in drinking water with an LOQ of 0.1 µg/L and its ILV |
Air (analytical technique and LOQ)

- **Bayer**: GC-FID, LOQ = 0.1 mg/m³ (expressed as fosetyl-aluminium)
- **Task Force Iberica**: LC-MS/MS, LOQ = 0.1 mg/m³ (expressed as fosetyl-aluminium)
- **Task Force Oxon**: LC-MS/MS, LOQ = 3 µg/m³ (expressed as fosetyl-aluminium)

Body fluids and tissues (analytical technique and LOQ)

- Bayer, Task Force Iberica and Task Force Oxon: LC-MS/MS (matrix: plasma), LOQ = 0.05 mg/L (expressed as fosetyl-aluminium) and phosphonic acid respectively

Classification and labelling with regard to physical and chemical data (Regulation (EU) No 283/2013, Annex Part A, point 10)

Substance	Classification and Labelling	Peer Review Proposal
Fosetyl	none	none

1. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

2. It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) No 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability	Rapid and extensive (80–100%) within 24 h over the dose rate range of 100 to 3000 mg/kg bw based on single/repeated low/high dose studies.
Toxicokinetics	14C-fosetyl-Al single dose 3 000 mg/kg bw ($\delta + \varphi$)
	C_{max}: 315.4/460.4 µg/mL (δ/φ)
	T_{max}: 24 h (δ/φ)
	AUC_{0-168} h: 33 786/40053 µg x h/mL (δ/φ)
	$T_{1/2}$: 124/81 h (δ/φ)
Distribution	Widely distributed (kidneys, liver, lungs, spleen, fat, skin adrenal glands and gonads)
Potential for bioaccumulation	No evidence for accumulation
Rate and extent of excretion	Rapid and extensive (56% dose in air expired and 30% dose in urine) within 24 h in single dose studies.
	In repeated dose studies, faeces are the main route of excretion
Metabolism in animals	Rapid, metabolised in CO$_2$ (excreted via exhaled air) and phosphonates (eliminated in urine with unchanged parent and ethanol).
In vitro metabolism	No metabolism in human and rat liver microsomes was observed
Toxicologically relevant compounds	Fosetyl-Al
(animals and plants)	Fosetyl-Al

Acute toxicity (Regulation (EU) No 283/2013, Annex Part A, point 5.2)

Rat LD$_{50}$ oral	> 2000 mg/kg bw
Rat LD$_{50}$ dermal	> 2000 mg/kg bw
Rat LC$_{50}$ inhalation	> 5.11 mg/L air /4h (nose only)
Skin irritation	Non-irritant
Eye irritation	Irritant
	H319
Skin sensitisation	Non-sensitizer (M&K tests)
Phototoxicity	Not required

Short-term toxicity (Regulation (EU) No 283/2013, Annex Part A, point 5.3)

Target organ / critical effect	Rat, mouse: low toxicity, no specific target organ detected
	Dog: decreased absolute weight gonads and
Relevant oral NOAEL

90-day, rat: 1196 mg/kg bw/day
90-day, dog: 274 mg/kg bw/day
See also mechanistic data

Relevant dermal NOAEL

NOAEL for systemic effects = 1000 mg/kg bw per day (rat 21-day)
LOAEL for local effects = 1050 mg/kg bw per day (rat 28-day)

Relevant inhalation NOAEL

No data - not required

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies

- Ames test: negative
- Mammalian cell gene mutation tests: negative
- Chromosomal aberration tests: negative

In vivo studies

- Micronucleus tests: negative

Photomutagenicity

- Not required

Potential for genotoxicity

- Unlikely to be genotoxic

Long-term toxicity and carcinogenicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)

- Mouse: no adverse effect
- Rat: calculi, hyperplasia and inflammation of the urinary bladder.
- Dog: decrease of body weight, vacuolar tubular lesions in kidney ♀ and testicular degenerations

Relevant long-term NOAEL

- 2-year, mouse: 3956 mg/kg bw per day
- 2-year, rat: 348 mg/kg bw per day
- 2-year, dog: 288 mg/kg bw per day

Carcinogenicity (target organ, tumour type)

- Mouse: no tumours
- Rat: transitional cell papilloma and carcinoma of the urinary tract.
- Adverse effects are considered not relevant for human based on MoA proposed: changes in urine physical/chemical with calculi formation and chronic irritation leading to tumours at very high doses.

Relevant NOAEL for carcinogenicity

- 2-year, mouse: 3956 mg/kg bw per day
- 2-year, rat: 348 mg/kg bw per day

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproductive toxicity

Reproduction target / critical effect

- 3-generation study:
- Parental toxicity: decreased body weight during pre-mating period in F2B.
Reproductive and fertility toxicity: decrease of corpora lutea in F0 and F1B generations.
Foetal toxicity: decreased spleen weight in F3B generation.

Relevant parental NOAEL	482 mg/kg bw per day
Relevant reproductive NOAEL	954 mg/kg bw per day
Relevant offspring NOAEL	LOAEL = 482 mg/kg bw per day

Developmental toxicity

Developmental target / critical effect

- **Rat:**
 - Maternal toxicity: mortality and decreased bw (gain) (at 4000 mg/kg bw/day)
 - Developmental toxicity: decreased litter and foetal weights, marginally increased incidence of fetal anomalies (at 4000 mg/kg bw/day)

- **Rabbit:**
 - Maternal toxicity: No adverse effects
 - Developmental toxicity: Increased incidence of dilated ureter at the high dose (at 300 mg/kg bw per day)

| Relevant maternal NOAEL | Rat: 1000 mg/kg bw per day
Rabbit: 300 mg/kg bw per day (highest dose) |
|-------------------------|-----------------------------|
| Relevant developmental NOAEL | Rat: 1000 mg/kg bw per day
Rabbit: 100 mg/kg bw per day |

Neurotoxicity (Regulation (EU) No 283/2013, Annex Part A, point 5.7)

- **Acute neurotoxicity**: Study not required
- **Repeated neurotoxicity**: No neurotoxicological effect in a 90-day rat study including FOB.
 NOAEL: 1 196 mg/kg bw per day
- **Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)**: No effect in a delayed neurotoxicity study in the domestic hen.
 NOAEL: 2000 mg/kg bw
 Data gap for the existing DNT study for Aluminium (pending the analysis of it, further data might be requested for fosetyl-Al).
Other toxicological studies (Regulation (EU) No 283/2013, Annex Part A, point 5.8)

| Supplementary studies on the active substance | Two mechanistic studies:
28-day oral rat study: functional alterations and histopathological changes in kidney
NOAEL = 1000 mg/kg bw per day
90-day oral rat study: increased calcium levels in urine and related changes in the urinary bladder (calculi, hyperplasia), kidney (functional alterations and histopathological changes) and ureters (dilatation)
NOAEL: 500 mg/kg bw per day
Immunotoxicity: no evidence of immunotoxic effects are observed in the available data package. |
|---|---|
| Endocrine disrupting properties | Data gap:
Involvement of parathyroid hormones in the hypothesised mode of action of fosetyl-Al should be further clarified.
According to the conceptual framework, submission of level 2/3 studies is needed to conclude on the ED potential of fosetyl-Al. |
Studies performed on metabolites or impurities

Metabolite	Oral LD₅₀ Rat	Oral LD₅₀ Mouse	Mouse LD₅₀	In vivo Micronucleus
Phosphonic acid	2950 mg/kg bw	1650 mg/kg bw	2450 mg/kg bw	Negative
Sodium phosphonate	5300 mg/kg bw	2450 mg/kg bw	2450 mg/kg bw	Negative
Potassium phosphonate	3624 mg/kg bw	> 2000 mg/kg bw	> 6.14 mg/L	Negative

In vivo micronucleus in mice negative

Reference values of phosphonic acid:
Since phosphonic acid is a major metabolite in rat (73% in the urine), its toxicity (including developmental and reproductive toxicity) is considered covered by the studies performed with fosetyl-Al.
The reference values of the parent are applied to phosphonic acid.

Aluminium (metabolite for worker and resident)
Reference values, oral absorption and dermal absorption from EFSA conclusion on Aluminium ammonium sulphate (EFSA Journal 2012;10(3):2491)

ADI = 0.14 mg/kg bw per day
ARID = 0.14 mg/kg bw
AOEL = 0.002 mg/kg bw per day
Oral absorption = 1%
Dermal absorption = 1%

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

No detrimental effects on health in manufacturing personnel
Summary (Regulation (EU) No 1107/2009, Annex II, point 3.1 and 3.6)

Fosetyl-Al

	Value (mg/kg bw (per day))	Study	Uncertainty factor
Acceptable Daily Intake (ADI)	1\(^{(1)}\)	Rabbit, developmental Developmental NOAEL	100
Acute Reference Dose (ARfD)	Not needed		
Acceptable Operator Exposure Level (AOEL)	1\(^{(2)}\)	Rabbit, developmental Developmental NOAEL	100
Acute Acceptable Operator Exposure Level (AAOEL)	Not needed		

\(^{(1)}\) Previous ADI = 3 mg/kg bw per day based on the chronic studies (European Commission, 2012b)

\(^{(2)}\) Previous AOEL = 5 mg/kg bw per day based on mechanistic study (European Commission, 2012b)

Dermal absorption (Regulation (EU) No 284/2013, Annex Part A, point 7.3)

Representative formulation	Concentrate (666.7 g/kg): 0.1%	Intermediate (20 g/L): 1%	Spray dilution (2 g/L): 4%	In vitro human study performed on formulation
FEA + FLC WG71.11; 666.7 g/kg fosetyl-Al				

Representative formulation	Concentrate: 0.2%	Spray dilution: 6%	In vitro human study performed on formulation
SIP40958; WG; 300 g/kg fosetyl-Al			

Representative formulation	Concentrate (800 g/kg): 0.4%	Spray dilution (2 g/L): 4%	In vitro human study performed on formulation
FOSETYL-AL 80% WP; 800 g/kg fosetyl-Al			

Representative formulation	Concentrate (500 g/kg): 1%	Spray dilution (1 g/L): 3%	In vitro human study performed on formulation
FEA WG80; 800 g/kg fosetyl-Al			

\(^{3}\) If available include also reference values for metabolites
Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

* Exposure estimations with EFSA model are reported for information purposes only since EFSA guidance was not in force when the dossier was submitted.

Operators	Use: grapes, tractor mounted equipment, application rate 2 kg a.s./ha	Exposure estimates (model): % of AOEL	
UK POEM	Without PPE:	105%	
	With PPE (gloves M/L/A):	69%	
German model	Without PPE:	11%	
	EFSA model*;		
	Without PPE AOEL:	4.9%	
Use: grapes, Hand-held sprayer, application rate 2 kg a.s./ha	Exposure estimates (model): % of AOEL		
German model	Without PPE:	5.6%	
EFSA model*	Without PPE AOEL:	2%	
SIP40958	Use: grapes, tractor mounted equipment, application rate 1.35 kg a.s./ha	Exposure estimates (model): % of AOEL	
	Without PPE:	27%	
German model	Without PPE:	11%	
	EFSA model*;		
	Without PPE AOEL:	4.8%	
	Use: grapes, manual-knapsack, application rate 1.35 kg a.s./ha	Exposure estimates (model): % of AOEL	
	EFSA model*;		
	Without PPE AOEL:	0.7%	
	Use: grapes, handheld equipment (high level target), application rate 1.35 kg a.s./ha	Exposure estimates (model): % of AOEL	
	German model	Without PPE:	5.3%
Efsa model:			
----------------	---		
Without PPE AOEL:	1.9%		

**FOSETYL-AL **WG 80 (FEA WG 80)
Fosetyl-Aluminium

Use: pome fruit, **tractor mounted equipment,** application rate 3.6 kg a.s./ha

Exposure estimates (model):	% of AOEL
UK POEM	
Without PPE:	87%
German model	
Without PPE:	16%
EFSA model:	
Without PPE AOEL:	6.7%

Use: pome fruit, **hand-held sprayer application** rate 3.6 kg a.s./ha

Exposure estimates (model):	% of AOEL	
German model		
Without PPE:	9%	
EFSA model:		
Without PPE AOEL:	2.9%	
FOSETYL-AL 80% WP		
------------------------	------------------	
Fosetyl-Aluminium		
Use: citrus, **tractor mounted equipment**, application rate 3.6 kg a.s./ha		
Exposure estimates (model):	% of AOEL	
UK POEM		
Without PPE:	55%	
German model		
Without PPE:	24%	
EFSA model:		
Without PPE:	21%	
Use: citrus, **hand-held sprayer application** rate 3.6 kg a.s./ha		
German model		
Without PPE:	15%	
EFSA model:		
Without PPE:	13%	
Use: grapes, **tractor mounted equipment**, application rate 2.64 kg a.s./ha		
Exposure estimates (model):	% of AOEL	
UK POEM		
Without PPE:	63%	
German model		
Without PPE:	17%	
EFSA model:		
Without PPE:	18%	
Use: grapes, **hand-held sprayer**, application rate 2.64 kg a.s./ha		
German model		
Without PPE:	11%	
EFSA model:		
Without PPE:	11%	
	FEA + FLC WG 71.11	SIP40958
-------------	---------------------	----------
Use:	grapes	grapes
Fosetyl-Aluminium		
Exposure estimates (model):	% of AOEL	
EUROPOEM II		
Without PPE:	78%	93%
EFSA model*:	78%	94%
Without PPE:		
Aluminium		
Exposure estimates (model):	% of AOEL	
EUROPOEM II		
Without PPE:	727%	586%
EFSA model*:	734%	
Without PPE:		
Fosetyl-Aluminium

Use: pome fruit

Exposure estimates (model)	% of AOEL
EUROPOEM II Without PPE:	51%
EFSA model*: Without PPE:	50%

Use: citrus

Exposure estimates (model)	% of AOEL
EUROPOEM II With PPE (gloves):	315%
EFSA model*: With PPE (gloves):	238%

Use: grapes

Exposure estimates (model)	% of AOEL
EUROPOEM II Without PPE:	29%
EFSA model*: Without PPE:	30%

Aluminium

Exposure estimates (model)	% of AOEL
EUROPOEM II Without PPE:	124%
EFSA model*: Without PPE:	125%

Use: citrus

Exposure estimates (model)	% of AOEL
EUROPOEM II With PPE (gloves):	134%
EFSA model*: With PPE (gloves):	139%

Use: grapes

Exposure estimates (model)	% of AOEL
EUROPOEM II Without PPE:	1187%

FOSE TYL AL WG 80 (FEA WG 80)

Use: pome fruit

Exposure estimates (model)	% of AOEL
EUROPOEM II Without PPE:	51%
EFSA model*: Without PPE:	50%

Use: citrus

Exposure estimates (model)	% of AOEL
EUROPOEM II With PPE (gloves):	315%
EFSA model*: With PPE (gloves):	238%

Use: grapes

Exposure estimates (model)	% of AOEL
EUROPOEM II Without PPE:	124%
EFSA model*: Without PPE:	125%

Aluminium

Exposure estimates (model)	% of AOEL
EUROPOEM II Without PPE:	124%
EFSA model*: Without PPE:	125%

Use: citrus

Exposure estimates (model)	% of AOEL
EUROPOEM II With PPE (gloves):	134%
EFSA model*: With PPE (gloves):	139%

Use: grapes

Exposure estimates (model)	% of AOEL
EUROPOEM II Without PPE:	1177%
EFSA model*: Without PPE:	1187%
	FEA + FLC WG 71.11
----------------	-------------------
Use:	grapes
Fosetyl-Aluminium	
Exposure estimates (model):	\% of AOEL
EUROPOEM	
Bystander (adults):	0.7%
Martin et al. (2008)	
Bystander (adults):	2.6%
Bystander (children):	2.0%
Resident (adults):	0.2%
Resident (children):	0.8%
EFSA model	
Resident (adults) all pathways:	5.6%
Resident (children) all pathways:	11%

Aluminium	
Exposure estimates (model):	\% of AOEL
Martin et al. (2008)	
Resident (adults):	3.2%
Resident (children):	4.6%
EFSA model	
Resident (adults) all pathways:	65%
Resident (children) all pathways:	157%

Bystanders and residents
Fosetyl-Aluminium

Exposure estimates (model)	% of AOEL
EUROPOEM	
Bystander (adults)	0.5%
Martin et al. (2008)	
Bystander (adults)	3.1%
Bystander (children)	2.4%
Resident (adults)	0.2%
Resident (children)	0.8%
EFSA model	
Resident (adults)	2.8%
Resident (children)	5.4%

Aluminium

Exposure estimates (model)	% of AOEL				
Martin et al. (2008)					
Resident (adults)	1.4%				
Resident (children)	2.1%				
EFSA model					
Resident (adults) all pathways:	29%				
Resident (children) all pathways:	87%				
FOSE TYL-AL 80% WP					
---	---				
FOSE TYL-AL 80% WP (FEA WG 80)					
Use: pome fruit					
Fosetyl-Aluminium					
Exposure estimates (model):	% of AOEL				
EUROPOEM					
Bystander (adults):	1.6%				
Martin et al. (2008)					
Bystander (adults):	3.8%				
Bystander (children):	3.0%				
Resident (adults):	1%				
Resident (children):	5.6%				
EFSA model*:					
Resident (adults) all pathways:	4.3%				
Resident (children) all pathways:	9.7%				
Aluminium					
Exposure estimates (model):	% of AOEL				
Martin et al. (2008)					
Resident (adults):	12%				
Resident (children):	18%				
EFSA model*					
Resident (adults) all pathways:	66%				
Resident (children) all pathways:	158%				
FOSE TYL-AL 80% WP					
Fosetyl-Aluminium					
Exposure estimates (model):	% of AOEL				
EUROPOEM					
Bystander (adults):	5.1%				
Martin et al. (2008)					
Bystander (adults):	4.2%				
Bystander (children):	3.3%				
Resident (adults):	0.3%				
Resident (children):	1.4%				
EFSA model*					
Resident (adults):	2.1%				
Resident (children):	4.1%				
Use: citrus					
Use: grapes					
Exposure estimates (model):	% of AOEL				
EUROPOEM					
Bystander (adults):	0.7%				
Martin et al. (2008)					
Bystander (adults):	4.1%				
Bystander (children):	3.3%				
Resident (adults):	0.3%				
Substance	Use	Exposure Estimates (Model)	% of AOEL	Martin et al. (2008)	EFSA Model*
-----------	-----	----------------------------	-----------	----------------------	-------------
Residues (children):			1.4%		
Residues (adults):			4.2%		
Residues (children):			8%		

Aluminium

Use	Exposure Estimates (Model)	% of AOEL
Residents (adults):	2.8%	
Residents (children):	4.1%	

Use: citrus

Exposure estimates (model):

- Martin et al. (2008)
 - Residents (adults): 2.8%
 - Residents (children): 4.1%

EFSA model

- Residents (adults): 31%
- Residents (children): 90%

Use: grapes

Exposure estimates (model):

- Martin et al. (2008)
 - Residents (adults): 2.8%
 - Residents (children): 4.1%

EFSA model

- Residents (adults): 52%
- Residents (children): 130%

Classification with regard to toxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance: Fosetyl - Al

- Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]:
 - Eye Dam. 1 H318 “Causes serious eye damage”
 - Eye Irrit. 2 H319 “Causes serious eye irritation”

4 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

5 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) No 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops (Plant groups covered)	Crop groups	Crop(s)	Application(s)	DAT (days)
OECD Guideline 501	Fruit crops	Oranges	3-4 x 1 g a.s./15 trees (paintbrush application)	75
		Apples	2 x unknown dose/ha	0; 0+; 7; 14
		Pineapples	1 dipping treatment of crowns (2.4 g/L solution)	0; 7; 14; 28; 56; 120
			And 1 spraying treatment (2.4 g/L solution)	115; 122
		Tomatoes	2 x 4.4 kg a.s./ha	-14, 0+, 14 & 42
		Grapes	1 x 3024 µg a.s. per plant	7, 14, 21

The initial step of fosetyl-Al metabolism proceeds through dissociation and the hydrolytic cleavage of the ethyl ester bond with phosphonic acid and ethanol as the major plant metabolites. Ethanol, when not lost by volatilisation, is further incorporated into natural products.

Rotational crops (metabolic pattern)	Crop groups	Crop(s)	PBI (days)	Comments
OECD Guideline 502	Root/tuber crops	Radish	32; 182	Residues of phosphonic acid are observed in plants grown only one month after application to the soil. Radish root: 0.8 mg/kg Lettuce: 0.76 mg/kg In all other crop parts phosphonic acid residues <LOQ (0.5 mg/kg).
	Leafy crops	Lettuce	32	
	Cereals (small grain)	Barley	32	
	Others			

Rotational crop and primary crop metabolism similar? Yes. Fosetyl-Al degrades in soil very rapidly to its metabolite, phosphonic acid. However, the study was not conducted with a radiolabelled material.

Processed commodities (standard hydrolysis study)	Conditions	Fosetyl-Al	Phosphonic acid	
OECD Guideline 507	30 min, 90°C, pH 4	99.8%	101.8%	The test substances were not radiolabelled
	60 min, 100°C, pH 5	101.3%	102.6%	
	20 min, 120°C, pH 6	99.5%	101.9%	

Residue pattern in processed commodities similar to residue pattern in raw commodities? Fosetyl-Al and phosphonic acid are therefore considered to be hydrolytically stable under conditions representative of pasteurisation, baking, brewing, boiling and sterilisation.

Plant residue definition for monitoring (RD-Mo) OECD Guidance, series on pesticides No 31	Sum of fosetyl, phosphonic acid and their salts expressed as phosphonic acid – All categories of crops
Plant residue definition for risk assessment (RD-RA)	Sum of fosetyl, phosphonic acid and their salts expressed as phosphonic acid – All categories of crops
Conversion factor (monitoring to risk assessment) Not applicable

Metabolism in livestock (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment
Animals covered	Laying hen	Not required		
	Goat/Cow	0.42-0.43 mg/kg bw/d	7	1.1N
		0.51 mg/kg bw/d	7	1.34N
		1.46-1.50 mg/kg bw/d	7	3.92N
Pig	Not required			
Fish	Not required			

Time needed to reach a plateau concentration in milk and eggs (days) Day 2 to day 3 of dosing.

Animal residue definition for monitoring (RD-Mo) Phosphonic acid

OECD Guidance, series on pesticides No 31

Animal residue definition for risk assessment (RD-RA) Phosphonic acid

Conversion factor (monitoring to risk assessment) Not applicable

Metabolism in rat and ruminant similar (Yes/No) Yes

Fat soluble residues (Yes/No) (FAO, 2009) No (Log Po/w: -2.1)

Residues in succeeding crops (Regulation (EU) N° 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study (Quantitative aspect) Not relevant as rotational crops field trials were provided.

OECD Guideline 502
Field rotational crop study

OECD Guideline 504

Field trials on rotational crops (carrots, lettuce and winter wheat or winter barley) were performed following three spraying applications with fosetyl at a dose rate of 0.775 kg a.s./ha. The residues of phosphonic acid were < LOQ (LOQ = 0.10 mg/kg in lettuce (head), carrots (root and leaf) and cereal (grain) and LOQ = 0.50 mg/kg in straw) except in the Spanish trial where apparent residue of phosphonic acid were found in the grain sample at 0.21 mg/kg.

Since these trials were under dosed compared to the critical GAPs that were assessed in the framework of the Article 12 MRL review, no conclusion can be drawn on the actual residue levels of fosetyl and phosphonic acid in rotational crops.
Stability of residues (Regulation (EU) No 283/2013, Annex Part A, point 6.1)
OECD Guideline 506

Plant products (Category)	Commodity	T (°C)	Stability (Months)
			Sum of fosetyl, phosphonic acid and their salts expressed as phosphonic acid
High water content	Cucumbers	-20	25
	Cabbages	-18	24
	Lettuces	-18	24
	Tomatoes	-18	24
High oil content	Avocados	-18	29
High protein content	Beans	-18	24
High starch content	Potatoes	-20	25
High acid content	Grapes	-20	25
	Oranges	-18	24

Data gap for IBERICA: Valid storage stability data on citrus fruit and covering the maximum storage time period of the residues from the trials on oranges and mandarins are requested.

Animal	Animal commodity	T (°C)	Stability (Month/Year)
	Muscle		
	Liver		
	Kidney		
	Milk		
	Egg		

Storage stability data on phosphonic acid in animal matrices were not submitted and are not required.
Summary of residues data from the supervised residue trials (Regulation (EU) No 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop	Region/Indoor	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)	STMR (mg/kg)
Citrus	SEU	Mandarins: 3.5, 3.6, 4.0, 4.2, 4.8, 7.7, 12.7, 15.10	Data gap: a complete residue dataset on oranges compliant with the critical SEU GAP and supported by acceptable storage stability data (data gap; IBERICA).	30 (mandarins)	15.1	4.5
	(a)					
	NEU	7.6; 8.2; 11; 12; 14; 15; 16; 17;	According to the Student test, 5% and Mann-Whitney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.	50	22	15
Pome fruits (Bayer)						
	SEU	12, 13, 15, 15, 15.6, 17, 17.2, 22;				
	(Bayer)					
Grapes	NEU	10.11, 11.16, 14.23, 14.78, 16.25, 16.40, 19.32, 22.42, 23.42, 25.01, 27.23, 27.37, 39.78	According to the Student test, 5% and Mann-Whitney U-test (α=5%), residue levels in southern trials are not different from the northern ones. MRL, HR and STMR derived from the merged dataset.	60	39.8	16.25
	SEU	4.73, 7.97, 11.61, 11.91, 12.18, 12.32, 13.04, 13.54, 23.63, 31.25, 31.71, 37.15				
Grapes (Iberica)	SEU	-	Data gap: the submitted residue trials are not compliant with the time interval between application and a complete residue dataset on grapes compliant with the critical SEU GAP is required (data gap: IBERICA).	-	-	-
Grapes (Iberica)						
	(Iberica)					
	NEU	8.5, 20.2, 26.6, 29.3	Data gap: 4 additional residue trials compliant respectively with the NEU and SEU GAP on grapes are required to complete the residue dataset (data gap: OXON)	-	-	-
	SEU	3.1, 3.7, 9.3, 12.6				

Summary of the data on formulation equivalence OECD Guideline 509

No information provided and not requested

Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)
Crop Residue Data and Recommendations

Product(s)	Region / Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations / comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Citrus Nectar	SEU / Spain	At 0 DALA: 9.4, 31.7, 65.2 At 1 DALA: <2.8, 4.1, 10.2	For sum of fosetyl, phosphonic acid and their salts expressed as phosphonic acid	-	-	31.7
Citrus Flowers	SEU / Spain	At 0 DALA: 63.2, 72.5, 106 At 1 DALA: 21.7, 70.7, 72.1		-	-	-

Data gap: Determination of residues of fosetyl-Al and phosphonic acid in pollen and bee products for human consumption resulting from residues taken up by honeybees from pome fruit and grapes at blossom (IBERICA, BCS, OXON).

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.

(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use Mo/RA to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.

(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HR\textsubscript{Mo}).

(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR\textsubscript{Mo}).

if both Northern and Southern data set are not merged the calculated MRLs based on each zone data are: 8 mg/kg (NEU data) and 15 mg/kg (SEU data)
Inputs for animal burden calculations

Feed commodity	Median dietary burden (mg/kg)	Comment	Maximum dietary burden (mg/kg)	Comment
Risk assessment residue definition: sum of fosetyl, phosphonic acid and their salts expressed as phosphonic acid				
Apple, wet pomace	21 (15 x 1.2)	STMRp (STMR x PF)	21 (15 x 1.2)	STMRp (STMR x PF)
Citrus, dried pulp	45 (4.5 x 10^1)	STMRp (STMR x PF)	45 (4.5 x 10^1)	STMRp (STMR x PF)

^ as no data on dried pulp are available, the default factor of 10 is used
Residues from livestock feeding studies (Regulation (EU) No 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)
Residue definition for monitoring and risk assessment: Phosphonic acid

MRL calculations	Ruminant	Pig/Swine	Poultry	Fish
Highest expected intake (mg/kg bw/d)	Beef cattle 0.216	Ram/Ewe 0.150	Breeding 0.171	Broiler
(mg/kg DM for fish)	Dairy cattle 0.380	Lamb 0.191	Finishing	Layer
Intake >0.004 mg/kg bw	Yes	Yes	Yes	No
Feeding study submitted	Yes (evaluated in the initial DAR)	/	/	No

Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates	Level 0.352 mg/kg bw	Beef: 1.6 N Dairy: 0.9 N	Level 0.352 mg/kg bw	Lamb: 1.8 N
Muscle	HR_(a) at 1N	MRL proposals	HR_(a) at 1N	MRL proposals
Fat	0.500	0.5	0.000	<0.5
Meat^(b)	0.500	0.5	0.000	<0.5
Liver	0.500	0.5	0.000	<0.5
Kidney	0.495	0.5	0.000	<0.5
Milk^(c)	0.000	<0.1	0.000	<0.1
Eggs				

| Method of calculation^(c) | |
|------------------|----------------------|----------------------|----------------------|----------|

^(a): Estimated HR calculated at 1N level (estimated mean level for milk).
^(b): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry
^(c): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by extrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
Conversion Factors (CF) for monitoring to risk assessment

Not relevant

Processing factors (Regulation (EU) No 283/2013, Annex Part A, points 6.5.2 and 6.5.3)
OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Crop (RAC)/Edible part or Crop (RAC)/Processed product	Number of studies(a)	Processing Factor (PF) Individual values	Conversion Factor (CF) for RA(b)
Orange/mandarin, peeled	33	0.21; 0.24; 0.33; 0.4; 0.48; 0.48; 0.48; 0.48; 0.5; 0.5; 0.54; 0.6*; 0.6*; 0.62; 0.8; 0.8; 0.8; 0.8*; 0.8*; 0.9*; 0.9; 1.0; 1.0; 1.0; 1.0*; 1.1; 1.1; 1.1*; 1.1*; 1.1*; 1.2; 1.3; 2.0; 3.8;	0.8
Orange, wet pomace	4	0.9; 0.1; 0.1;	0.1
Orange, juice	7	0.9; 0.9*; 1.1; 1.3; 1.6*;	1.1
Orange, marmelade	4	0.5*; 0.7*;	0.6
Apple, wet pomace	4	<0.5*; <0.8*; 1.6*; 1.6*	<1.2
Apple, juice	4	<0.6*; <1.2*; <2.5*; <2.9*;	<1.9
Apple, puree	4	0.4*; 0.7*; 1.1*; 1.6*	0.9
Grape, white wine	8	0.4; 0.4; 0.5; 0.5; 0.6; 1.1; 1.5; 1.4*; 1.6*	0.6
Grape, red wine	13	0.1; 0.5; 0.6; 0.7; 0.8; 0.8; 1.1; 1.3; 1.8; 1.4; 1.2; 1.5*; 2.5;	1.1
Grape, juice	7	0.5; 0.7; 0.9; 1.0; 1.0; 1.1; 1.2;	1.0

*a new data submitted by Iberica
b new data submitted by Bayer

Consumer risk assessment (Regulation (EU) No 283/2013, Annex Part A, point 6.9)
Limited to the representative uses.

Residue definition for risk assessment: sum of fosetyl, phosphonic acid and their salts expressed as phosphonic acid

ADI

1 mg/kg bw per day

TMDI according to EFSA PRIMo

Highest TMDI: 73% ADI (DE, child)

NTMDI, according to (to be specified)

Highest NTMDI: Not provided, not required

IEDI (% ADI), according to EFSA PRIMo

Highest IEDI: Not provided, not required

NEDI (% ADI), according to (to be specified)

Highest NEDI: Not provided, not required

Factors included in the calculations

None

ARfD

ARfD not allocated; not required

IESTI (% ARfD), according to EFSA PRIMo

Factors included in IESTI and NESTI
Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Residue definition for monitoring: sum of fosetyl, phosphonic acid and their salts expressed as phosphonic acid

Code^(a)	Commodity/Group	MRL/Import tolerance^(b) (mg/kg) and Comments
Plant commodities		
0110050	Mandarin s	30
0130000	Pome fruits	50
0151000	Wine grapes	60
1000000	Products of animal origin	MRLs are not required.

(a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005
(b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure
Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Parameter	Value
Mineralisation after 100 days	19.6 % after 15 h, [ethyl-1-^{14}C]-fosetyl-Al (n=4)
Non-extractable residues after 100 days	47 % after 16 h, [ethyl-1-^{14}C]-fosetyl-Al (n=4)
Metabolites requiring further consideration	Phosphonic acid: 100 % assumed (not measured) Ethanol: 78 % at 1.5 h (n=4)

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Parameter	Value
Mineralisation after 100 days	48 % after 10 days, [ethyl-1-^{14}C]-fosetyl-Al (n=2) 47% after 10 days, [ethyl-1-^{14}C]-fosetyl-ammonium (n=1)
Non-extractable residues after 100 days	6% after 1.33 days, [ethyl-1-^{14}C]-fosetyl-Al (n=2) 7% after 1.33 days, [ethyl-1-^{14}C]-fosetyl-ammonium (n=1)
Metabolites that may require further consideration	[ethyl-1-^{14}C]-fosetyl-ammonium (n=1) Ethanol; 22% after 5 days

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Parameter	Value
Metabolites that may require further consideration	-
Mineralisation at study end	No data
Non-extractable residues at study end	No data

Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Fosetyl-Al	Dark aerobic conditions						
Data package	Soil type	pH	t. °C / Moisture	DT_{so}/DT_{so} (d)	DT_{so} (20 °C pF2/10kPa)	St. (χ²)	Method of calculation
Previous Approval	sandy loam (Soil 1)	5.3	20°C/75%WHC (1/3 bar)	0.01/0.04	0.01	2.3	SFO
	loamy sand (Soil 2)	6.6	20°C/75%WHC (1/3 bar)	0.05/0.16	0.04	0.6	SFO

n corresponds to the number of soils.
Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1.1)

Trigger endpoints:

Phosphonic acid	Dark aerobic conditions. Study performed with phosphonic acid.						
Data package	**Soil type**	**pH a)**	**T °C / Moisture**	**DT 50/DT 90**	**DT 50 (d)**	**St. (χ2)**	**Method of calculation**
PREVIOUS APPROVAL	clay loam	-	-	-	-	-	-
	Sandy loam	5.0	20°C / 75%WHC (1/3 bar)	130/432	-	6.88	SFO
BAYER CROP SCIENCE	silt loam	6.0	20°C / 50%MWHC	115/441 b)	-	2.60	DFOP
	clay loam	7.2	20°C / 50%MWHC	31/143 c)	-	3.37	DFOP
	sandy loam	5.0	20°C / 50%MWHC	>1000/>1000 d)	-	3.49	DFOP
	sandy loam	6.1	20°C / 50%MWHC	28/91	-	11.3	SFO
IBERICA	Loamy sand	5.2	20°C / 45%MWHC	240/10000 e)	-	3.17	FOMC

a) Measured in calcium chloride solution
b) Kinetic parameters: k1=0.0953; k2=0.0049; g=0.1201
c) Kinetic parameters: k1=0.1572; k2=6.984x10^{-5}; g=0.04124
d) Kinetic parameters: k1=0.04619; k2=7.1x10^{-13}; g=0.300
e) Kinetic parameters: alpha=0.2236; beta=11.31

Modelling endpoints:

Phosphonic acid	Dark aerobic conditions. Study performed with phosphonic acid.						
Data package	**Soil type**	**pH a)**	**T °C / Moisture**	**DT 50/DT 90**	**DT 50 (d)**	**St. (χ2)**	**Method of calculation**
PREVIOUS APPROVAL	clay loam	-	-	-	-	-	-
	Sandy loam	5.0	20°C / 75%WHC (1/3 bar)	130/432	88	6.88	SFO
Geometric mean

Soil Type	pH	t. °C / Moisture	DT₅₀/DT₉₀ (d)	FF	St. (Q²)	Method of calculation
clay loam (Soil 1)	7.2	20°C/50%MWHC	38.9/129	38.9	7.17	SFO
sandy loam	5.0	20°C/50%MWHC	1000 c)	1000 c)	-	DFOP
sandy loam	6.1	20°C/50%MWHC	27.5/91.4	27.5	11.3	SFO
Loamy sand	5.2	20°C/45%MWHC	532 (slow phase)	3.43	HS	

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Ethanol	Data package	Soil type	pH a)	t. °C / Moisture	DT₅₀/DT₉₀ (d)	DT₅₀(20 °C) pF2/10kPa b)	FF	St. (Q²)	Method of calculation
Sandy loam (Soil 1)	5.3	20°C/75%WHC (1/3 bar)	0.16/0.54	0.13	1	9.6	SFO-SFO Fosetyl-Al applied		
Sandy loam (Soil 1)	5.3	20°C/75%WHC (1/3 bar)	0.17/0.57	0.14	1	8.3	SFO Ethanol applied		
Loamy sand (Soil 2)	6.6	20°C/75%WHC (1/3 bar)	0.12/0.41	0.11	1	4.8	SFO-SFO Fosetyl-Al applied		
Silt loam (Soil 3)	6.6	20°C/75%WHC (1/3 bar)	0.18/0.58	0.14	1	4.3	SFO-SFO Fosetyl-Al applied		
Clay loam (Soil 4)	7.6	20°C/75%WHC (1/3 bar)	0.08/0.28	0.07	1	20.0	SFO-SFO Fosetyl-Al applied		
Clay loam (S261)	6.9	20°C/40%MWHC	-	-	-	-			
Sand (S262)	5.4	20°C/40%MWHC	-	-	-	-			
Sandy loam (S263)	6.6	20°C/40%MWHC	-	-	-	-			

- a) Measured in calcium chloride solution
- b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
- c) Default value on the basis of kinetic evaluation of second slower phase
- Fraction of formation from fosetyl-Al = 1.0

pH dependence:

- No
Rate of degradation field soil dissipation studies (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.2.1)

No data submitted.
Data gap for phosphonic acid: field studies should be conducted (DT50, lab > 60 days).

Combined laboratory and field kinetic endpoints for modelling (when not from different populations)*
Not relevant since no field data submitted.

Soil accumulation (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.2.2)
No soil accumulation study submitted. For PEC_{soil,accumulation}, please refer to PEC_{soil} section.

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.1)
No reliable data.

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.1)
No reliable data.
The route of degradation of Fosetyl-Al in soil under anaerobic conditions is not expected to be distinct from the one observed under aerobic conditions.

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) No 283/2013, Annex Part A, point 7.1.1.3)
No data submitted.

Soil adsorption active substance (Regulation (EU) No 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.2.1)

Fosetyl-Al: Low adsorption to soil. No reliable data could be determined as indicated by a batch adsorption equilibrium study due to very short half-life in soil.
The K_{foc} value of 0.1 L/kg in association with a Freundlich exponent of 1 is proposed by the applicants in the exposure calculations.

Soil adsorption transformation products (Regulation (EU) No 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.2.1)

Phosphonic acid	Soil Type	OC %	Soil pH0	K_{dl} (mL/g)	K_{doc} (mL/g)	K_{f} (mL/g)	K_{foc} (mL/g)	1/n
Data package								
EFSA (2013)*								
Batch study								
sandy loam	1.7	7.2	-	4.2	246	0.88		
silt loam	1.18	6.97	-	12.8	1086	0.74		
sand	1.08	5.8	-	32.8	3038	0.66		
silt loam	2.6	6.7	-	5.0	193	0.78		
loam	1.46	7.1	-	4.9	332	0.92		
Soil Type	pH	CEC (mEq/kg)	Kd (mL/g)	Elution (mm)	Time period (d)			
-------------------------	--------	--------------	-----------	--------------	-----------------			
IBERICA Batch study								
loamy sand	2.3	5.7	-	17.7	770			
sandy silt loam	2.19	7.2	-	9.0	409			
clay loam	1.4	6.6	-	35.8	2557			
silt loam	4	5.6	-	82.4	2060			
light silty sand	2.9	5.1	-	50.5	1741			
Geometric mean	15.9	827						
Arithmetic mean	16	5307						
EFSA (2012)								
Loam	1.36	6.80	3.10	228	-			
Clay loam	4.13	7.55	10.37	251	-			
Silty clay loam	2.67	5.00	15.67	587	-			
Sandy loam	2.3	5.6	5.30	230	-			
Silt loam	1.95	5.52	18.96	972	-			
Geometric mean	-	-						
Arithmetic mean	-	-						
BAYER CROP SCIENCE								
Sand	2.4	6.2	43.9	1829	-			
Sandy loam	3.0	4.6	46.3	1543	-			
Clay loam	4.3	7.2	28	650	-			
Sandy loam	1.6	5.0	87	5429	-			
Sandy loam	1.2	6.1	30	1650	-			
Geometric mean	-	-						
Arithmetic mean	-	-						

- Measured in calcium chloride solution
- *EFSA conclusion on disodium phosphonate (2013)
- **EFSA conclusion on potassium phosphonates (2012)

Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

| Column leaching | No reliable data |

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching (Phosphonic acid)	Elution (mm): 508 mm	Time period (d): 15 d
Leachate: 0% total radioactivity in leachate 54.0-63.2% phosphonic acid retained in top 2.5 cm. Not detected in other segments		
Kd (mL/g) = see above		
Elution (mm): 508 mm	Time period (d): 5 d	
Leachate: 0% phosphonic acid in leachate (only compound sought)
Between 35.2-74.1% phosphonic acid retained in top 5 cm. < 3% phosphonic acid below 10 cm.
Kd (mL/g) = see above

Lysimeter / field leaching studies (Regulation (EU) No 283/2013, Annex Part A, points 7.1.4.2/7.1.4.3 and Regulation (EU) No 284/2013, Annex Part A, points 9.1.2.2/9.1.2.3)
No data submitted.

Hydrolytic degradation (Regulation (EU) No 283/2013, Annex Part A, point 7.2.1.1)
Hydrolytic degradation of the active substance and metabolites > 10%
Stable at pH 5 to 9 at 20 to 70 °C

Aqueous photochemical degradation (Regulation (EU) No 283/2013, Annex Part A, points 7.2.1.2/7.2.1.3)
Photolytic degradation of active substance and metabolites above 10%
DT$_{50}$: 35 days (direct photolysis, sterile pure water)
DT$_{50}$: 77 days (indirect photolysis, sterile natural water)
Metabolites:
Ethyl phosphate: 24.3% AR (7 d)
Ethanol: 14.3% AR (7 d)
Acetic acid: 44.6% AR (7 d)

Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm

‘Ready biodegradability’ (Regulation (EU) No 283/2013, Annex Part A, point 7.2.2.1)
Readily biodegradable (yes/no)
No

Aerobic mineralisation in surface water (Regulation (EU) No 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) No 284/2013, Annex Part A, point 9.2.1)

Data package	System	pH water phase	pH sed	t. °C$^\circ$	DT$_{50}$/DT$_{90}$ whole sys. (suspended sediment test)	St. (χ^2)	DT$_{50}$/DT$_{90}$ Water (pelagic test)	St. (χ^2)	Method of calculation	
BAYER	Fresh water (low dose)	8.0	-	20	-	-	6.9/23.0	14.7/48.9	26.4	SFO
Data package	System	pH water phase	pH sed	Mineralisation	Non-extractable residues	Non-extractable residues	Method of calculation			
--------------	----------------	----------------	--------	-------------------------------------	--------------------------	--------------------------	-----------------------			
BAYER	Fresh water	8.0	-	44.2 % after 63 d. (end of the study).	-	-				
	Fresh water	8.0	-	58.1 % after 63 d. (end of the study).	-	-				
IBERICA	Fresh water	7.9	-	56.6 % after 21 d. (then decrease until the end of study at 61 days).	-	-				
	Fresh water	7.9	-	96.5 % after 30 d. (then decrease until the end of study at 61 days).	-	-				
OXON	Fresh water	7.8	-	48.2 % after 62 d. (end of the study).	-	-				
	Fresh water	7.8	-	55.2 % after 62 d. (end of the study).	-	-				

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Fosetyl-Al	Distribution (Max. sed 0.6 % after 1d)									
Water / sediment system	pH	pH	t. °C	DT₅₀ / DT₉₀ whole sys.	St. (χ²)	DT₅₀ / DT₉₀ water	St. (χ²)	DT₅₀ / DT₉₀ sed	St. (χ²)	Method of calculation
Water / sediment system										
Maningtree	6.94	6.1	20	3.68/12.22	3.4	3.64/12.10	3.6	-	-	SFO
Ongar	7.90	7.7	20	2.44/8.12	5.5	2.44/8.12	5.5	-	-	SFO
Geometric mean at 20°C^b	3.00/9.96	-	-	-	-	-	-	SFO	-	

^a Measured in calcium chloride solution
^b Normalised using a Q10 of 2.58
Phosphonic acid

Method of calculation	Water / sediment system	pH water phase	pH sed	t. °C	DT₅₀ / DT₉₀ whole sys.	St. (χ²)	DT₅₀ / DT₉₀ water	St. (χ²)	DT₅₀ / DT₉₀ sed	St. (χ²)
Maningtree		6.94	6.1	20	No data	-	No data	-	No data	-
Ongar		7.90	7.7	20	No data	-	No data	-	No data	-

Geometric mean at 20°C⁶⁰ - - - -

⁶⁰ Measured in calcium chloride solution
^d Normalised using a Q10 of 2.58

Mineralisation and non-extractable residues (from parent dosed experiments)

Water / sediment system	pH water phase	pH sed	Mineralisation	Non-extractable residues in sed.	Non-extractable residues in sed.
Maningtree	6.94	6.1	75.9 % after 100 d. (end of the study).	max 28.8 % after 14 d	max 19.4 % after 100 d (end of the study)
Ongar	7.90	7.7	70.9 % after 100 d. (end of the study).	max 24 % after 30 d	max 20.8 % after 100 d (end of the study)

Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

- **Direct photolysis in air**: Not studied - no data requested
- **Photochemical oxidative degradation in air**: DT₅₀ of 2.22 hours derived by the Atkinson model (AOPWIN version 1.92a). OH (12) concentration assumed = 1.5x10⁶ cm⁻³
- **Volatilisation**: Not studied - no data requested
- **Metabolites**: -

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

- **Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure**
 - **Soil**: fosetyl-Al, phosphonic acid and ethanol
 - **Surface water**: fosetyl-Al and phosphonic acid
 - **Sediment**: fosetyl-Al and phosphonic acid
 - **Ground water**: fosetyl-Al, phosphonic acid and ethanol
 - **Air**: fosetyl-Al

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology
Monitoring data, if available (Regulation (EU) No 283/2013, Annex Part A, point 7.5)
No data provided by the Applicants

PEC soil (Regulation (EU) No 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Fosetyl-Al	DT$_{50}$ (d): 0.1 days
Method of calculation	Kinetics: SFO
	Field or Lab: Representative worst case from laboratory studies

Application data

	Depth of soil layer: 5 cm
	Soil bulk density: 1.5 g/cm3
Crop:	
A.) Grapes	
% plant interception: 60 (BBCH 15-81)	
Number of applications: 3	
Interval (d): 10	
Application rate(s): 2000 g a.s./ha	
B.) Grapes	
% plant interception: 60 (flowering)	
Number of applications: 4	
Interval (d): 10	
Application rate(s): 2640 g a.s./ha	
C.) Grapes	
% plant interception: 50 (BBCH 11-79)	
Number of applications: 4	
Interval (d): 10	
Application rate(s): 1350 g a.s./ha	
D.) Pome fruits	
% plant interception: 60 (BBCH 55-85)	
Number of applications: 3	
Interval (d): 7	
Application rate(s): 3600 g a.s./ha	
E.) Citrus	
% plant interception: 80 (flowering)	
Number of applications: 3	
Interval (d): 90	
Application rate(s): 3600 g a.s./ha	

A.) Grapes (3 x 2000 g a.s./ha) Formulated product Fosetyl-Al + Fluopicolide WG 71.11 (Bayer CropScience)
B.) Grapes (4 x 2640 g a.s./ha) Formulated product FOSETYL AL 80% WP (Iberica)

PEC_(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	n.c.		1.067	
Short term 24h	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
Long term 7d	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
100d	n.c.	n.c.	-	-
Plateau concentration	Not needed			

- not required for the risk assessment of the soil organisms. n.c. not calculated

C.) Grapes (4 x 1350 g a.s./ha) Formulated product SIP40958 (Oxon SAE Fosetyl Task Force)

PEC_(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	n.c.		0.900	
Short term 24h	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
Long term 7d	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
100d	n.c.	n.c.	-	-
Plateau concentration	Not needed			

- not required for the risk assessment of the soil organisms. n.c. not calculated
PE C\(_{(s)}\) (mg/kg)

	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average

	Initial	Short term	Long term	Plateau concentration
		24h	7d	
	n.c.	n.c.	n.c.	Not needed
		2d	28d	
	n.c.	n.c.	n.c.	
		4d	50d	
	n.c.	n.c.	n.c.	
			100d	
	n.c.		n.c.	

- not required for the risk assessment of the soil organisms.

n.c. not calculated

D) Pome fruits (3 x 3600 g a.s./ha) - Formulated product Fosetyl-ALUMINIUM WG 80 (Bayer CropScience)

	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average

	Initial	Short term	Long term	Plateau concentration
		24h	7d	
	n.c.	n.c.	n.c.	Not needed
		2d	28d	
	n.c.	n.c.	n.c.	
		4d	50d	
	n.c.	n.c.	n.c.	
			100d	
	n.c.		n.c.	

- not required for the risk assessment of the soil organisms.

n.c. not calculated

E) Citrus (3 x 3600 g a.s./ha) - Formulated product FOSETYL AL 80 % WP (Iberica)

	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average

	Initial	Short term	Long term	Plateau concentration
		24h	7d	
	n.c.	n.c.	n.c.	Not needed
		2d	28d	
	n.c.	n.c.	n.c.	
		4d	50d	
	n.c.	n.c.	n.c.	
			100d	
	n.c.		n.c.	

- not required for the risk assessment of the soil organisms.

n.c. not calculated
PEC_(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
100d	n.c.	n.c.	-	-

Plateau concentration: Not needed

- not required for the risk assessment of the soil organisms.

n.c. not calculated

Phosphonic acid

Method of calculation

- Molecular weight relative to the parent: 0.695 (considering 3 molecules of phosphonic acid are formed from a single molecule of fosetyl-Al)
- DT₅₀ (d): 1000 days
- Kinetics: SFO. Worst case from laboratory studies
- Application rate assumed: x g/ha (assumed Met I is formed at a maximum of 100% of the applied dose)

Application data

- Depth of soil layer: 5 cm
- Soil bulk density: 1.5 g/cm³

Crop:

- **A.) Grapes**
 - % plant interception: 60 (BBCH 15-81)
 - Number of applications: 3
 - Interval (d): 10
 - Application rate(s) assumed: 1390 g a.s./ha

- **B.) Grapes**
 - % plant interception: 60 (flowering)
 - Number of applications: 4
 - Interval (d): 10
 - Application rate(s) assumed: 1835 g a.s./ha

- **C.) Grapes**
 - % plant interception: 50 (BBCH 11-79)
 - Number of applications: 4
 - Interval (d): 10
 - Application rate(s) assumed: 938 g a.s./ha

- **D.) Pome fruits**
 - % plant interception: 60 (BBCH 55-85)
 - Number of applications: 3
 - Interval (d): 7
 - Application rate(s) assumed: 2502 g a.s./ha

- **E.) Citrus**
 - % plant interception: 80 (flowering)
 - Number of applications: 3
 - Interval (d): 90
 - Application rate(s) assumed: 2502 g a.s./ha
A.) Grapes (3 x 2000 g a.s./ha) Formulated product Fosetyl-Al + Fluopicolide WG 71.11 (Bayer CropScience)

	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	n.c.		2.207	
Short term 24h	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
Long term 7d	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
Plateau concentration	9.875 mg/kg			

- not required for the risk assessment of the soil organisms.

n.c. not calculated

B.) Grapes (4 x 2640 g a.s./ha) Formulated product Fosetyl-Al 80% WP

	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	n.c.		3.874	
Short term 24h	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
Long term 7d	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
	n.c.	n.c.	-	-
Plateau concentration	17.331 mg/kg			

- not required for the risk assessment of the soil organisms.

n.c. not calculated

C.) Grapes (4 x 1350 g a.s./ha) Formulated product SIP40958 (Oxon SAE Fosetyl Task Force)
PEC\(_{\text{s}}\) (mg/kg)

	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average
Initial	n.c.	2.476		
Short term	n.c.	n.c.	-	-
24h	n.c.	n.c.	-	-
2d	n.c.	n.c.	-	-
4d	n.c.	n.c.	-	-
Long term	n.c.	n.c.	-	-
7d	n.c.	n.c.	-	-
28d	n.c.	n.c.	-	-
50d	n.c.	n.c.	-	-
100d	n.c.	n.c.	-	-
Plateau	11.076 mg/kg			
concentration				

- not required for the risk assessment of the soil organisms.

n.c. not calculated

D.) Pome fruits (3 x 3600 g a.s./ha) Formulated product Fosetyl-ALUMINIUM WG (Bayer CropScience)

	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average
Initial	n.c.	3.982		
Short term	n.c.	n.c.	-	-
24h	n.c.	n.c.	-	-
2d	n.c.	n.c.	-	-
4d	n.c.	n.c.	-	-
Long term	n.c.	n.c.	-	-
7d	n.c.	n.c.	-	-
28d	n.c.	n.c.	-	-
50d	n.c.	n.c.	-	-
100d	n.c.	n.c.	-	-
Plateau	17.810 mg/kg			
concentration				

- not required for the risk assessment of the soil organisms.

n.c. not calculated

E.) Citrus (3 x 3600 g a.s./ha) Formulated product FOSETYL AL 80% WP (Iberica)
PEC\textsubscript{(s)}

	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	n.c.		1.881	
Short term				
24h	n.c.	n.c.		
2d	n.c.	n.c.		
4d	n.c.	n.c.		
Long term				
7d	n.c.	n.c.		
28d	n.c.	n.c.		
50d	n.c.	n.c.		
100d	n.c.	n.c.		
Plateau				
concentration	n.c.			

- not required for the risk assessment of the soil organisms.

n.c. not calculated

PEC ground water (Regulation (EU) \textnumero 284/2013, Annex Part A, point 9.2.4.1)

See below.

PEC\textsubscript{(gw)} - FOCUS modelling results (80th percentile annual average concentration at 1m)

A.) Formulated product Fosetyl-Al + Fluopicolide WG 71.11 (Bayer CropScience):
Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)

For FOCUS gw modelling, values used –
Modelling using FOCUS models, with appropriate FOCUSgw scenarios, according to FOCUS guidance.
Models used: FOCUS PEARL 4.4.4, FOCUS PELMO 5.5.3

Fosetyl-Al
Crop uptake factor: 0
Water solubility (mg/L): 110000 at pH 7 and 20°C
Vapour pressure: 1.10^{-7} Pa at 20°C
Geometric mean parent DT$_{50\text{lab}}$ 0.1 d (default conservative assumption).
K_{OC}: 0.1 mL/g, γ_a= 1 (default conservative assumptions).

Phosphonic acid
Molar mass: 246 (considering 3 molecules of phosphonic acid are formed from 1 molecule of fosetyl-Al)
Crop uptake factor: 0
Water solubility (mg/L): 110000 at pH 7 and 20°C
Vapour pressure: 1.10^{-7} Pa at 20°C
Geometric mean parent DT$_{50\text{lab}}$ 133.7 d (normalisation to pH2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).
Formation fraction from parent: 1
K_f: geometric mean 15.9 mL/g (manually implemented and kept constant in all soil horizons) arithmetic mean $\overline{\gamma_a}= 0.69$

Application rate

Grapes (3 x 2000 g a.s./ha)
Crop growth stage: BBCH 15-81
Canopy interception: 60%
Delay between applications: 10 days

Scenario	1st App. Date
Chateaudun	02 May
Hamburg	24 May
Kremsmunster	24 May
Piacenza	02 May
Porto	20 Apr
Sevilla	20 Apr
Thiva	12 Apr

Mines	PEARL 4.4.4	PELMO 5.5.3
(3 x 2000 g a.s./ha)		
Chateaudun	<0.001	<0.001
Hamburg	<0.001	<0.001
Kremsmunster	<0.001	<0.001
Piacenza	<0.001	<0.001
Porto	<0.001	<0.001
Sevilla	<0.001	<0.001
Thiva	<0.001	<0.001
B.) Formulated product Fosetyl-Al WG 80 (Bayer CropScience):

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter): For FOCUS gw modelling, values used – Modelling using FOCUS models, with appropriate FOCUSgw scenarios, according to FOCUS guidance. Models used: FOCUS PEARL 4.4.4, FOCUS PELMO 5.5.3

Fosetyl-Al
- Crop uptake factor: 0
- Water solubility (mg/L): 110000 at pH 7 and 20°C
- Vapour pressure: 1.10^{-7} Pa at 20°C
- Geometric mean parent DT_{50,lab} 0.1 d (default conservative assumption).
- K_{OC}: 0.1 mL/g, \(\frac{1}{n} = 1 \) (default conservative assumptions).

Phosphonic acid
- Molar mass: 246 (considering 3 molecules of phosphonic acid are formed from 1 molecule of fosetyl-Al)
- Crop uptake factor: 0
- Water solubility (mg/L): 110000 at pH 7 and 20°C
- Vapour pressure: 1.10^{-7} Pa at 20°C
- Geometric mean parent DT_{50,lab} 133.7 d (normalisation to pF2, 20°C with Q10 of 2.58 and Walker equation coefficient 0.7).
- Formation fraction from parent: 1
- K_f: geometric mean 15.9 mL/g (manually implemented and kept constant in all soil horizons) arithmetic mean \(\frac{1}{n} = 0.69 \)

Application rate

Pome fruits (3 x 3600 g a.s./ha)
- Crop growth stage: BBCH 55-85
- Canopy interception: 60%
- Delay between applications: 7 days
- Time of application (absolute application dates):

Scenario	1st App. Date
Chateaudun	21 May
Hamburg	08 May
Jokioinen	23 May
Kremsmuenster	08 May
Okehampton	02 Jun
Piacenza	21 May
Porto	13 Jun
Sevilla	19 May
Thiva	13 Jun
C.) Formulated product SIP40958 (Oxon SAE Fosetyl Task Force):

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)

For FOCUS gw modelling, values used –
Modelling using FOCUS models, with appropriate FOCUS gw scenarios, according to FOCUS guidance.
Models used: FOCUS PEARL 4.4.4, FOCUS PELMO 5.5.3

Fosetyl-Al
- Crop uptake factor: 0
- Water solubility (mg/L): 110000 at pH 7 and 20°C
- Vapour pressure: 1.10^{-7} Pa at 20°C
- Geometric mean parent DT$_{50,lab}$ 0.1 d (default conservative assumption).
- K_{OC}: 0.1 mL/g, I_a= 1 (default conservative assumptions).

Phosphonic acid
- Molar mass: 246 (considering 3 molecules of phosphonic acid are formed from 1 molecule of fosetyl-Al)
- Crop uptake factor: 0
- Water solubility (mg/L): 110000 at pH 7 and 20°C
- Vapour pressure: 10^{-7} Pa at 20°C
- Geometric mean parent DT$_{50,lab}$ 133.7 d (normalisation to pH2, 20°C with Q10 of 2.58 and Walker equation coefficient 0.7).
- Formation fraction from parent: 1
- K_f: geometric mean 15.9 mL/g (manually implemented and kept constant in all soil horizons) arithmetic mean I_a= 0.69

Application rate

Grapes (4 x 1350 g a.s./ha)
- Crop growth stage: BBCH 11-79
- Canopy interception: 50% (1st and 2nd app) - 60% (3rd and 4th app)
- Delay between applications: 10 days
- Time of application (relative application dates: at emergence)

Scenario	1st App. Date
Chateaudun	1 Apr
D.) Formulated product FOSETYL AL 80% WP (Iberica):

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)

For FOCUS gw modelling, values used – Modelling using FOCUS models, with appropriate FOCUSgw scenarios, according to FOCUS guidance. Models used: FOCUS PEARL 4.4.4, FOCUS PELMO 5.5.3

Fosetyl-Al
- Crop uptake factor: 0
- Water solubility (mg/L): 110000 at pH 7 and 20°C
- Vapour pressure: 1.10^{-7} Pa at 20°C
- Geometric mean parent DT$_{50}$ (default conservative assumption): K_{OC}: 0.1 mL/g, $t_{1/2}$= 1-(default conservative assumptions).

Phosphonic acid
- Molar mass: 246 (considering 3 molecules of phosphonic acid are formed from 1 molecule of fosetyl-Al)
- Crop uptake factor: 0
- Water solubility (mg/L): $1.1.10^6$ at pH 7 and 20°C
- Vapour pressure: 0 at 20°C
- Geometric mean parent DT$_{50}$ 133.7 d (normalisation to pF2, 20°C with Q10 of 2.58 and Walker equation coefficient 0.7).
- Formation fraction from parent: 1
- K_r: geometric mean 15.9 mL/g (manually implemented and corrected by the different sorption factors in each horizon) arithmetic mean $t_{1/2}$= 0.69

Application rate

Grapes (4 x 2640 g a.s./ha)
- Crop growth stage: at flowering
Canopy interception: 60%
Delay between applications: 10 days

Scenario	1st App. Date
Chateaudun	31 Jul
Hamburg	15 Jul
Kremsmuenster	15 Jul
Piacenza	31 Jul
Porto	31 Jul
Sevilla	15 Jul
Thiva	30 Jun

Citrus (3 x 3600 g a.s./ha)
Crop growth stage: at flowering
Canopy interception: 80%
Delay between applications: 90 days

Scenario	1st App. Date (Julian day)
Piacenza	15 Apr
Porto	15 Apr
Sevilla	15 Apr
Thiva	15 Apr

Vines

Scenario	PEARL 4.4.4	PELMO 5.5.3
Chateaudun	<0.001	<0.001
Hamburg	<0.001	<0.001
Kremsmuenster	<0.001	<0.001
Piacenza	<0.001	<0.001
Porto	<0.001	<0.001
Sevilla	<0.001	<0.001
Thiva	<0.001	<0.001

Citrus

Scenario	PEARL 4.4.4	PELMO 5.5.3
Piacenza	<0.001	<0.001
Porto	<0.001	<0.001
Sevilla	<0.001	<0.001
Thiva	<0.001	<0.001

PEC surface water and PEC sediment (Regulation (EU) No 284/2013, Annex Part A, points 9.2.5/9.3.1)

FOSETYL-AL

A.) Formulated product Fosetyl-Al + Fluopicolide WG 71.11 (Bayer CropScience):
Parameters used in FOCUSsw step 1 and 2

Parameter	Value
Version control no. of FOCUS calculator:	v3.2.
Molecular weight	354.14 g/mol
K_{OC}	0.1 mL/g
DT₅₀ soil	0.1 d (conservative assumption in lab. In accordance with FOCUS SFO)
DT₅₀ water/sediment system	3 d (geomean from sediment water studies)
DT₅₀ water (d)	3 d
DT₅₀ sediment (d)	1000 d

Parameters used in FOCUSsw step 3 (if performed)

Parameter	Value
Version control no. of FOCUS software:	FOCUS SWASH 5.3 (FOCUS PRZM SW 4.3.1; FOCUS MACRO 5.5.4; FOCUS TOXSWA 4.4.3)
SWAN tool, version	4.0.1
Water solubility (mg/L)	110000 (20 °C)
Vapour pressure (Pa at 25 °C)	1x10⁻⁷
Kom/Koc (mL/g)	0.10/0.06
1/n	1.0 (Freundlich exponent general or for soil, susp. solids or sediment respectively)
Q10	2.58, Walker equation coefficient 0.7
Crop uptake factor	0

Application rate:

Crop and growth stage: Grapes (3 x 2000 g a.s./ha), BBCH 15-81

Application scheme:

Number of applications: 1-3
Delay between applications: 10 days
Application rate(s): 2000 g a.s./ha
Crop interception (%) and application window:

Scenario	Early app.	Late app.
vines, late	vines, late	
Minimal canopy	Full canopy	
Mar-may	Jun-sept	

Application window: late spray drift selected

Scenarios	Early application	Late application
D6 Ditch	24-Feb/27-Apr	27-Apr/13-Sep
Pond/Stream	05-May/27-Jun	27-Jun/24-Sep
R1	20-Apr/24-Jul	24-Jul/12-Sep
R2 Stream	02-May/25-Jul	25-Jul/04-Oct
R4 Stream	13-Apr/13-Jul	13-Jul/01-Sep

Major route of contamination: Spray drift

GRAPES (3 x 2000 g/ha)
FOCUS STEP 1

Vines (3 x 2000 g a.s./ha)	PEC_{SW, MAX} (µg/L)	PEC_{SED, MAX} (µg/kg)		
	Actual	TWA	Actual	TWA
early	720.10		0.6666	
late	720.10		0.6666	

FOCUS STEP 2

Vines (3 x 2000 g a.s./ha)

	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)				
	Actual	TWA	Actual	TWA		
Early app.						
March-May, minimal crop cover						
Northern EU						
single	53.520		0.0357			
multiple	51.002		0.0340			
Southern EU						
single	53.520		0.0357			
multiple	51.002		0.0340			
Late app.						
June-sept, full canopy						
Northern EU						
single	53.520		0.0357			
multiple	51.002		0.0340			
Southern EU						
single	53.520		0.0357			
multiple	51.002		0.0340			
FOCUS STEP 3	Water	Day after overall maximum	PEC_{SW} (µg/L) Actual	PEC_{SW} (µg/L) TWA	PEC_{SED} (µg/kg) Actual	PEC_{SED} (µg/kg) TWA
--------------	-------	---------------------------	------------------------	---------------------	---------------------------	------------------------
Scenario						
Multiple applications; early application						
D6 Ditch	0 h	29.250	-	2.4640	-	
R1 Pond	0 h	1.1950	-	0.2446	-	
R1 Stream	0 h	21.410	-	0.6621	-	
R2 Stream	0 h	28.660	-	0.6336	-	
R3 Stream	0 h	30.250	-	1.2850	-	
R4 Stream	0 h	21.050	-	0.5425	-	
Single application; early application						
D6 Ditch	0 h	33.700	-	1.3700	-	
R1 Pond	0 h	1.2220	-	0.1678	-	
R1 Stream	0 h	24.610	-	0.5638	-	
R2 Stream	0 h	33.140	-	0.5952	-	
R3 Stream	0 h	35.120	-	1.1370	-	
R4 Stream	0 h	24.700	-	0.5754	-	
Multiple applications; late application						
D6 Ditch	0 h	30.530	-	5.0100	-	
R1 Pond	0 h	1.1810	-	0.1962	-	
R1 Stream	0 h	21.400	-	0.6196	-	
R2 Stream	0 h	28.770	-	0.6667	-	
R3 Stream	0 h	30.250	-	1.2750	-	
R4 Stream	0 h	21.460	-	0.7240	-	
Single application; late application						
D6 Ditch	0 h	34.330	-	3.8550	-	
R1 Pond	0 h	1.2220	-	0.1362	-	
R1 Stream	0 h	25.100	-	0.7270	-	
R2 Stream	0 h	33.750	-	0.7161	-	
R3 Stream	0 h	35.490	-	1.3260	-	
R4 Stream	0 h	25.180	-	0.7528	-	

FOCUS STEP 4	Water	Day after overall maximum	PEC_{SW} (µg/L) including 5 m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	PEC_{SW} (µg/L) including 10 m non-spray buffer zone and 10 m vegetative buffer strip (corresponding to ≤ 95 % drift reduction)
Parameters used in FOCUSsw step 1 and 2

Parameter	Value
Version control no. of FOCUS calculator	v3.2
Molecular weight	354.14 g/mol
K_{OC}	0.1 mL/g
DT₅₀ soil	0.1 d (conservative assumption in lab. In accordance with FOCUS SFO)
DT₅₀ water/sediment system	3 d (geomean from sediment water studies)
DT₅₀ water (d)	3 d
DT₅₀ sediment (d)	1000 d

Parameters used in FOCUSsw step 3 (if performed)

Parameter	Value
Version control n° of FOCUS software	
FOCUS SWASH 5.3 (FOCUS PRZM SW 4.3.1; FOCUS MACRO 5.5.4; FOCUS TOXSWA 4.4.3)	
SWAN tool, version 4.0.1	
Water solubility (mg/L)	110000 (20 °C)
Vapour pressure	1x10⁻⁷ Pa at 25 °C
Kom/Koc (mL/g)	0.10/0.06
1/n: 1.0 (Freundlich exponent general or for soil, susp. solids or sediment respectively)	0.7
Q₁₀ = 2.58, Walker equation coefficient 0.7	
Crop uptake factor	0

Formulated product Fosetyl-Al WG 80 (Bayer CropScience):

B.

Early application *

Location	Application Time	0% Reduction by Drift Nozzle	50% Reduction by Drift Nozzle	0% Reduction by Drift Nozzle	50% Reduction by Drift Nozzle
Ditch	0 h	20.390	10.210	7.4100	3.7240
Pond	0 h	1.4190	0.7093	0.7811	0.3906
Stream	0 h	17.930	8.9640	6.4940	3.2470
Stream	0 h	24.140	12.070	8.7440	4.3720
Stream	0 h	25.590	12.790	9.2680	4.6340
Stream	0 h	17.990	8.9960	6.5170	3.2580

Late application *

Location	Application Time	0% Reduction by Drift Nozzle	50% Reduction by Drift Nozzle	0% Reduction by Drift Nozzle	50% Reduction by Drift Nozzle
Ditch	0 h	20.760	10.380	7.5180	3.7590
Pond	0 h	1.4190	0.7095	0.7813	0.3906
Stream	0 h	18.290	9.1450	6.6250	3.3120
Stream	0 h	24.590	12.290	8.9060	4.4530
Stream	0 h	25.860	12.930	9.3660	4.6830
Stream	0 h	18.340	9.1710	6.6440	3.3220

* Maximum PECsw derived from single application
Application rate:
Crop and growth stage: **Pome fruits (3 x 3600 g a.s./ha)**, BBCH 55-85

Application scheme:
Number of applications: 1-3
Delay between applications: 7 days
Application rate(s): 3600 g a.s./ha

Crop interception (%) and application window:

Scenario	Pome/stone fruit, late
Crop intercept.	Full canopy
Timing	Mar-May

Application window: late spray drift selected

Scenarios	PAT start/end date
D3 Ditch	08-May/26-Sep
D4 Pond/Stream	23-Jun/11-Oct
D5 Pond/Stream	21-May/18-Sep
R1 Pond/Stream	08-May/26-Sep
R2 Stream	08-Jul/20-Sep
R3 Stream	21-May/22-Sep
R4 Stream	19-May/22-Sep

Major route of contamination: Spray drift

POME FRUITS (3 x 3600 g/ha)

FOCUS STEP 1	PEC_{SW,MAX} (µg/L)	PEC_{SED,MAX} (µg/kg)		
Pome fruits (3 x 3600 g a.s./ha)	Actual	TWA	Actual	TWA
Late app. Mar-May, full canopy	4165.6	3.5995		

FOCUS STEP 2	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
Pome/Fruit (3 x 3600 g a.s./ha)	Actual	TWA	Actual	TWA
Late app. Mar-May, full canopy				
Northern EU	single	188.70	0.1257	
Multiple	163.56	0.1090		
Southern EU	single	188.70	0.1257	
Multiple	163.56	0.1090		
FOCUS STEP 3

Scenario

Water body	Day after overall maximum	PEC$_{sw}$ (µg/L)	PEC$_{SED}$ (µg/kg)	
	Actual	TWA	Actual	TWA

Multiple applications

	Actual	TWA	Actual	TWA
D3 Ditch	93.930	-	7.6890	-
D4 Pond	4.9500	-	0.9342	-
D4 Stream	94.640	-	3.1780	-
D5 Pond	4.9440	-	0.8517	-
D5 Stream	102.30	-	4.3700	-
R1 Pond	4.4280	-	0.7465	-
R1 Stream	72.520	-	2.3050	-
R2 Stream	97.200	-	2.3120	-
R3 Stream	102.20	-	4.4120	-
R4 Stream	72.510	-	2.3740	-

Single application

	Actual	TWA	Actual	TWA
D3 Ditch	132.10	-	8.2860	-
D4 Pond	5.9290	-	0.6522	-
D4 Stream	132.60	-	4.4530	-
D5 Pond	5.9300	-	0.7446	-
D5 Stream	143.20	-	5.5600	-
R1 Pond	5.9250	-	0.8144	-
R1 Stream	99.710	-	2.3460	-
R2 Stream	136.20	-	2.8900	-
R3 Stream	143.20	-	5.4840	-
R4 Stream	99.320	-	2.2750	-

FOCUS STEP 4

Scenario

Water body	Day after overall maximum	PEC$_{sw}$ (µg/L) including 5 m non-spray buffer zone (corresponding to ≤ 95 % drift reduction) *			
	Actual	0% reduction by drift nozzle	50% reduction by drift nozzle	75% reduction by drift nozzle	90% reduction by drift nozzle
		Actual	Actual	Actual	Actual

D3 Ditch	89.13	44.57	22.28	8.913
D4 Pond	6.781	3.39	1.695	0.6781
D4 Stream	103.5	51.75	25.87	10.35
D5 Pond	6.782	3.391	1.696	0.6782
D5 Stream	111.8	55.89	27.94	11.18
FOCUS STEP 4 Scenario

Water

Scenario	Day after overall maximum	PECsw (µg/L) including 5 m non-spray buffer zone (corresponding to ≤ 95 % drift reduction) *			
		0% reduction by drift nozzle	50% reduction by drift nozzle	75% reduction by drift nozzle	90% reduction by drift nozzle
		Actual	Actual	Actual	Actual
R1	Pond 0 h	6.776	3.388	1.694	0.6776
R1	Stream 0 h	77.83	38.91	19.46	7.783
R2	Stream 0 h	106.3	53.15	26.58	10.63
R3	Stream 0 h	111.8	55.89	27.95	11.18
R4	Stream 0 h	77.52	38.76	19.38	7.752

* *Maximum PECsw derived from single application

FOCUS STEP 4 Scenario

Water	Day after overall maximum	PECsw (µg/L) including 10 m non-spray buffer zone and 10 m vegetative buffer strip (corresponding to ≤ 95 % drift reduction) *			
		0% reduction by drift nozzle	50% reduction by drift nozzle	75% reduction by drift nozzle	90% reduction by drift nozzle
		Actual	Actual	Actual	Actual
D3	Ditch 0 h	39.83	19.92	9.958	
D4	Pond 0 h	3.761	1.88	0.9402	
D4	Stream 0 h	46.25	23.12	11.56	
D5	Pond 0 h	3.762	1.881	0.9404	
D5	Stream 0 h	49.95	24.97	12.49	
R1	Pond 0 h	3.758	1.879	0.9395	
R1	Stream 0 h	34.78	17.39	8.694	
R2	Stream 0 h	47.5	23.75	11.88	
R3	Stream 0 h	49.95	24.98	12.49	
R4	Stream 0 h	34.64	17.32	8.66	

* *Maximum PECsw derived from single application

- PECsw values > 95 % drift reduction

FOCUS STEP 4 Scenario

Water	Day after overall maximum	PECsw (µg/L) including 15 m non-spray buffer zone and 10 m vegetative buffer strip (corresponding to ≤ 95 % drift reduction) *			
		0% reduction by drift nozzle	50% reduction by drift nozzle		
		Actual	Actual	Actual	Actual
FOCUS STEP 4 Scenario

Water	Day after overall maximum	PECsw (µg/L) including 20 m non-spray buffer zone and 20 m vegetative buffer strip (corresponding to ≤ 95% drift reduction) *	
body	Actual	0% reduction by drift nozzle	50% reduction by drift nozzle
	Actual	Actual	Actual
D3	Ditch 0 h	12.29	-
D4	Pond 0 h	1.711	0.8555
D4	Stream 0 h	14.27	7.136
D5	Pond 0 h	1.711	0.8556
D5	Stream 0 h	15.41	7.707
R1	Pond 0 h	1.71	0.8549
R1	Stream 0 h	10.73	5.366
R2	Stream 0 h	14.66	7.329
R3	Stream 0 h	15.41	7.707
R4	Stream 0 h	10.69	5.345

* Maximum PECsw derived from single application
- PECsw values > 95% drift reduction

C. Formulated product SIP40958 (Oxon SAE Fosetyl Task Force):

[Table and text as per the document]
Parameters used in FOCUSsw step 1 and 2

- Version control no. of FOCUS calculator: v3.2
- Molecular weight: 354.14 g/mol
- KOC: 0.1 mL/g
- DT₅₀ soil: 0.13 d (conservative assumption in lab. In accordance with FOCUS SFO)
- DT₅₀ water/sediment system: 3 d (geomean from sediment water studies)
- DT₅₀ water (d): 3 d
- DT₅₀ sediment (d): 1000 d

Parameters used in FOCUSsw step 3 (if performed)

- Version control no. of FOCUS software: FOCUS SWASH 5.3 (FOCUS PRZM SW 4.3.1; FOCUS MACRO 5.5.4; FOCUS TOXSWA 4.4.3)
- SWAN tool, version 4.0.1
- Water solubility (mg/L): 110000 (20 °C)
- Vapour pressure: 1x10⁻⁷ Pa at 25 °C
- DT₅₀ soil: 0.1 d (conservative assumption in lab. In accordance with FOCUS SFO)
- Kon/Koc (mL/g): 0.10/0.06
- 1/n: 1.0 (Freundlich exponent general or for soil, susp. solids or sediment respectively)
- Q₁₀=2.58, Walker equation coefficient 0.7
- Crop uptake factor: 0

Application rate:

- Crop and growth stage: Grapes (4 x 1350 g a.s./ha; BBCH 11-79)
- Number of applications: 1-4
- Delay between applications: 10 days
- Application rate(s): 1350 g a.s./ha
- Crop interception (%) and application window:

Scenario	Early app.	Late app.
Timing	Minimal canopy	Minimal canopy
Mar-May; Jun-Sept; Oct-Feb	Mar-May; Jun-Sept; Oct-Feb	

Application window: early/late spray drift selected

Scenarios	PAT start/end date	
R1 Pond/Stream	Early application: 96-263 Late application: 203-233	
R2 Stream	68-233	173-233
R3 Stream	77-265	205-265
R4 Stream	63-223	163-223
D6 Ditch	18-274	214-274

Major route of contamination: Spray drift

GRAPES (4 x 1350 g/ha)
FOCUS STEP 1

	PEC\textsubscript{SW,MAX} (µg/L)	PEC\textsubscript{SED,MAX} (µg/kg)
Vines (4 x 1350 g a.s./ha)		
early	462.09	0.450
late	486.07	0.450

FOCUS STEP 2

	PEC\textsubscript{SW} (µg/L)	PEC\textsubscript{SED} (µg/kg)				
Vines (4 x 1350 g a.s./ha)						
Early app.						
March-May, June Sept, Oct-Feb Minimal crop cover						
Northern EU	single 12.146	0.008				
	multiple 12.483	0.008				
Southern EU	single 12.146	0.008				
	multiple 12.483	0.008				
Late app.						
March-May, June Sept, Oct-Feb Minimal crop cover						
Northern EU	single 36.126	0.024				
	multiple 33.123	0.022				
Southern EU	single 36.126	0.024				
	multiple 33.123	0.022				
FOCUS STEP 3 Scenario	Water body	Day after overall maximum	$\text{PEC_{SW}}$ (μg/L)	$\text{PEC_{SED}}$ (μg/kg)		
-----------------------	------------	---------------------------	-----------------------------	-------------------------------		
			Actual	TWA	Actual	TWA
Multiple applications; early application						
D6	Ditch	0 h	6.916	-	0.8891	-
	Pond	0 h	0.2620	-	0.05146	-
	Stream	0 h	4.979	-	0.1598	-
	Stream	0 h	6.649	-	0.1480	-
	Stream	0 h	6.977	-	0.2883	-
	Stream	0 h	4.930	-	0.1392	-
Single application; early application						
D6	Ditch	0 h	7.696	-	0.9893	-
	Pond	0 h	0.2605	-	0.03946	-
	Stream	0 h	5.562	-	0.1503	-
	Stream	0 h	7.373	-	0.1294	-
	Stream	0 h	7.833	-	0.2566	-
	Stream	0 h	5.560	-	0.1443	-
Multiple applications; late application						
D6	Ditch	0 h	19.24	-	2.667	-
	Pond	0 h	0.7514	-	0.1594	-
	Stream	0 h	13.98	-	0.4718	-
	Stream	0 h	18.74	-	0.4426	-
	Stream	0 h	19.71	-	0.8224	-
	Stream	0 h	13.98	-	0.4773	-
Single application; late application						
D6	Ditch	0 h	23.17	-	1.729	-
	Pond	0 h	0.8247	-	0.08944	-
	Stream	0 h	16.53	-	0.3658	-
	Stream	0 h	22.78	-	0.4828	-
	Stream	0 h	23.96	-	0.8951	-
	Stream	0 h	16.99	-	0.5133	-

FOCUS STEP 4 Scenario	Water body	Day after overall maximum	$\text{PEC_{SW}}$ (μg/L) including 5 m non-spray buffer zone (corresponding to ≤ 95% drift reduction) *
			0% reduction by drift nozzle
			Actual
D. Formulated product FOSETYL AL 80% WP (Iberica):

Parameters used in FOCUSsw step 1 and 2

Parameter	Value
Version control no. of FOCUS calculator	v3.2
Molecular weight	354.14 g/mol
KOC	0.1 mL/g
DT50 soil	0.1 d
DT50 water/sediment system	3 d
DT50 water (d)	3 d
DT50 sediment (d)	1000 d

Parameters used in FOCUSsw step 3 (if performed)

Parameter	Value
Version control n°’s of FOCUS software	FOCUS SWASH 5.3 (FOCUS PRZM SW 4.3.1; FOCUS MACRO 5.5.4; FOCUS TOXSWA 4.4.3)
Water solubility (mg/L)	110000 (20 °C)
Vapour pressure	1x10⁻⁷ Pa at 25 °C
Kom/Koc (mL/g)	0.10/0.06
1/n	1.0 (Freundlich exponent general or for soil, susp. solids or sediment respectively)
Q10	2.58, Walker equation coefficient 0.7
Crop uptake factor	0

Application rate:

Application rate:	Crop and growth stage: Citrus (3 x 3600 g a.s./ha)
	1st appl.: flowering; 2nd appl. July; 3rd application: Oct-Nov
Number of applications	1-3
Delay between applications	90 days
Application rate(s)	3600 g a.s./ha

Application scheme:

Scenario	Citrus
Crop intercept.	Full canopy
Timing | Mar-May, Jun-Sept, Oct-Feb

Application window:

Scenarios	PAT start/end date
D6 Ditch	11 Apr–7 Nov
R4 Stream	4 Mar–30 Sep

Major route of contamination: Spray drift

Crop and growth stage: Grapes (4 x 2640 g a.s./ha) , Flowering / Post-flowering
Number of applications: 1-4
Delay between applications: 10 days
Application rate(s): 2640 g a.s./ha
Crop interception (%) and application window:

Scenario	vines, late
Crop intercept	Full canopy

Application window: late spray drift selected

Scenarios	PAT start/end date
R1 Pond/Stream	24 Jul–23 Sep
R2 Stream	23 Jun–22 Aug
R3 Stream	10 Jul–8 Sep
R4 Stream	18 Jun–17 Aug
D6 Ditch	11 Jun–10 Aug

Major route of contamination: Spray drift

GRAPES (4 x 2640 g/ha)

FOCUS STEP 1	PEC_{SW,MAX} (µg/L)	PEC_{SED,MAX} (µg/kg)
Vines (4 x 2640 g a.s./ha)	Actual TWA	Actual TWA
950.5	0.880	

FOCUS STEP 2	Vines (4 x 2640 g a.s./ha)	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
Late app.	June-sept, full canopy	Actual TWA	Actual TWA
Northern EU	single	70.65	0.047
	multiple	64.77	0.043
Southern EU	single	70.65	0.047
	multiple	64.77	0.043
FOCUS STEP 3

Water body	Day after overall maximum	PECesw (µg/L) Actual	TWA	PECsed (µg/kg) Actual	TWA
Multiple applications					
D6 Ditch 0 h	37.850	-	5.369	-	
R1 Pond 0 h	1.500	-	0.325	-	
R1 Stream 0 h	27.34	-	0.916	-	
R2 Stream 0 h	36.65	-	0.866	-	
R3 Stream 0 h	38.54	-	1.736	-	
R4 Stream 0 h	27.34	-	0.948	-	
Single application					
D6 Ditch 0 h	45.32	-	4.539	-	
R1 Pond 0 h	1.613	-	0.200	-	
R1 Stream 0 h	32.33	-	1.014	-	
R2 Stream 0 h	44.55	-	0.945	-	
R3 Stream 0 h	46.85	-	1.775	-	
R4 Stream 0 h	33.23	-	0.994	-	

FOCUS STEP 4

Water body	Day after overall maximum	PECesw (µg/L) including 10 m non-spray buffer zone (corresponding to ≤ 95 % drift reduction) *	0% reduction by drift nozzle	Actual
FOCUS STEP 4 Scenario				
D6 Ditch 0 h	3.481			
R1 Pond 0 h	0.519			
R1 Stream 0 h	2.992			
R2 Stream 0 h	4.123			
R3 Stream 0 h	4.336			
R4 Stream 0 h	3.076			

* Maximum PECsw derived from single application

CITRUS (3 x 3600 g/ha)

FOCUS STEP 1	PECsw.max (µg/L) Actual	TWA	PECsed.max (µg/kg) Actual	TWA
citrus (3 x 3600 g a.s./ha)	1390		1.200	

FOCUS STEP 2	PECsw (µg/L) Actual	TWA	PECsed (µg/kg) Actual	TWA
Citrus (3 x 3600 g a.s./ha)				
FOCUS STEP 2

Citrus (3 x 3600 g a.s./ha)	PEC_{sw} (µg/L)	PEC_{sed} (µg/kg)		
	Actual	TWA	Actual	TWA
March-May, June Sept, Oct-Feb	Southern EU	single	188.7	0.126
		multiple	132.1	0.088
March-May, June Sept, Oct-Feb	Northern EU	single	n.c.	n.c.
		multiple	n.c.	n.c.

n.c. not calculated

FOCUS STEP 3

Scenario	Water body	Day after overall maximum	PEC_{sw} (µg/L)	PEC_{sed} (µg/kg)		
		Actual	TWA	Actual	TWA	
Multiple applications	Ditch	0 h	94.40	-	10.650	-
	Stream	0 h	72.51	-	2.220	-
Single application	Ditch	0 h	133.0	-	17.590	-
	Stream	0 h	101.6	-	3.055	-

FOCUS STEP 4

Scenario	Water body	Day after overall maximum	PEC_{sw} (µg/L) including 20 m non-spray buffer zone (corresponding to ≤ 95% drift reduction) *	
		Actual	0% reduction by drift nozzle	Actual
		Ditch	0 h	12.37
		Stream	0 h	10.93

* Maximum PEC_{sw} derived from single application

PHOSPHONIC ACID

A.) Formulated product Fosetyl-Al + Fluopicolide WG 71.11 (Bayer CropScience):

Parameters used in FOCUS_{sw} step 1 and 2

Molecular weight: 246 g/mol (considering 3 molecules of phosphonic acid are formed from 1 molecule of fosetyl-Al)

Soil and water metabolite

K_{oc}/K_{om}: 318 mL/g (Using the K_f parameter instead of K_{oc} requires the following changes in the FOCUS surface water calculations: a pseudo-K_{oc} of 318 mL/g has been derived from the effective K_d of 15.9 mL/g, assuming an OC content of 5%)
DT_{50} soil: 133.7 d (Lab. In accordance with FOCUS SFO)
DT_{50} water/sediment system(d): 1000 d (conservative assumption)
DT_{50} water (d): 1000 d (conservative assumption)
DT_{50} sediment (d): 1000 d (conservative assumption)
Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water/Sediment: 100% (conservative assumption)
- Soil: 100% (conservative assumption)

Parameters used in FOCUSsw step 3 (if performed)
Not used in risk assessment

Application scheme
Grapes (3 x 2000 g a.s./ha), 10d-interval, BBCH 15-81

Scenario	Early app.	Late app.
Crop intercept.	Minimal canopy	Full canopy
Timing	Mar-May	Jun-Sept

GRAPES (3 x 2000 g/ha)

FOCUS STEP 1	PEC_{SW,MAX} (µg/L)	PEC_{SED,MAX} (µg/kg)	
Actual	TWA	Actual	TWA
Vines (3 x 2000 g a.s./ha)			
early	2062.8		6449.5
late	2062.8		6449.5

FOCUS STEP 2	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	
Actual	TWA	Actual	TWA
Vines (3 x 2000 g a.s./ha)			
Early app. March-May, minimal crop cover			
Northern EU	single	67.129	204.20
Southern EU	single	105.35	558.10
multiple	182.97	325.67	
multiple	291.94	904.40	
Late app. June-sept, full canopy			
Northern EU	single	54.387	163.71
Southern EU	single	146.64	442.67
multiple	67.129	204.20	
multiple	182.97	558.10	

B.) Formulated product Fosetyl-Al WG 80 (Bayer CropScience):

Parameters used in FOCUSsw step 1 and 2
Molecular weight: 246 g/mol (considering 3 molecules of phosphonic acid are formed from 1 molecule of fosetyl-Al)
Soil and water metabolite
Koc/Kom: 318 mL/g (Using the K_{f} parameter instead of K_{oc} requires the following changes in the FOCUS surface water calculations: a pseudo-K_{oc} of 318 mL/g has been derived from the effective K_{d} of 15.9 mL/g, assuming an OC content of 5%)
DT_{50} soil: 133.7 d (Lab. In accordance with FOCUS SFO)
Parameters used in FOCUSgw step 3 (if performed)

Application scheme

POME FRUITS (3 x 3600 g/ha)

FOCUS STEP 1	PEC$_{SW,MAX}$ (µg/L)	PEC$_{SED,MAX}$ (µg/kg)		
Pome fruits (3 x 3600 g a.s./ha)	Actual	TWA	Actual	TWA
--------------	--------	-----	-------	-----
Pome fruits (3 x 3600 g a.s./ha)	3905.5	12039		

FOCUS STEP 2	PEC$_{SW}$ (µg/L)	PEC$_{SED}$ (µg/kg)		
Pome/Fruit (3 x 3600 g a.s./ha)	Actual	TWA	Actual	TWA
Late app. Mar-May, full canopy	Northern EU	single	142.05	419.25
	multiple	329.21	978.96	
	Southern EU	single	182.18	546.79
	multiple	445.37	1348.1	

C.) Formulated product SIP40958 (Oxon / SAE Fosetyl Task Force):

Metabolite Phosphonic acid

Parameters used in FOCUSgw step 1 and 2

Molecular weight: 246 g/mol (considering 3 molecules of phosphonic acid are formed from 1 molecule of fosetyl-Al)

Soil and water metabolite
Koc/Kom: 0 mL/g
DT$_{50}$ soil: 133.7 d (Lab. In accordance with FOCUS SFO)
DT$_{50}$ water/sediment system(d): 1000 d (conservative assumption)
DT$_{50}$ water (d): 1000 d (conservative assumption)
DT$_{50}$ sediment (d): 1000 d (conservative assumption)
Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water/Sediment: 100% (conservative assumption)
- Soil: 100% (conservative assumption)

Parameters used in FOCUSgw step 3 (if performed)

Not used in risk assessment
Application scheme

	Early app.	Late app.
Scenario	vines, early	vines, late
Crop intercept	Minimal canopy	Minimal canopy
Timing	Mar-May; Jun-Sept; Oct-Feb	Mar-May; Jun-Sept; Oct-Feb

GRAPES (4 x 1350 g/ha) (using a Kof of 0 L/kg)

FOCUS STEP 1

Vines (4 x 1350 g a.s./ha)	PEC_{SW,M} (µg/L) Actual	TWA	PEC_{SED,MAX} (µg/kg) Actual	TWA
early	2540	0	0	0
late	2600	0	0	0

FOCUS STEP 2

Vines (4 x 1350 g a.s./ha)

Early app.
- **March-May,** Minimal crop cover
- **June-Sept,** Minimal crop cover
- **Oct-Feb,** Minimal crop cover

	PEC_{SW} (µg/L) Actual	TWA	PEC_{SED} (µg/kg) Actual	TWA
Northern EU				
single	Northern EU			
multiple				
single	Southern EU			
multiple				

Late app.	PEC_{SW} (µg/L) Actual	TWA	PEC_{SED} (µg/kg) Actual	TWA
March-May,				
June-Sept,				
Mineral crop cover				
Oct-Feb,				

D. Formulated product FOSETYL AL 80 % WP (Iberica):

- **Parameters used in FOCUSsw step 1 and 2**
- **Molecular weight:** 246 g/mol (considering 3 molecules of phosphonic acid are formed from 1 molecule of fosetyl-Al)
- **Soil and water metabolite**
- **Koc/Kom:** 318 mL/g (Using the K_f parameter instead of K_f requires the following changes in the FOCUS surface water calculations: a pseudo-K_f of 318 mL/g has been derived from the effective K_d of 15.9 mL/g, assuming an OC content of 5%)
DT₅₀ soil: 133.7 d (Lab. In accordance with FOCUS SFO)
DT₅₀ water/sedimentsystem(d): 1000 d (conservative assumption)
DT₅₀ water (d): 1000 d (conservative assumption)
DT₅₀ sediment (d): 1000 d (conservative assumption)
Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water/Sediment: 100% (conservative assumption)
- Soil: 100% (conservative assumption)

Parameters used in FOCUSsw step 3 (if performed)
Application scheme

Not used in risk assessment

Grapes (4 x 2640 g a.s./ha) at flowering

Scenario	vines, late
Crop intercept.	Full canopy
Timing	Jun-Sept

Citrus (3 x 3600 g a.s./ha) at flowering

Scenario	Citrus
Crop intercept.	Full canopy
Timing	Mar-May, Jun-Sept, Oct-Feb

GRAPES (4 x 2640 g/ha)

FOCUS STEP 1	PEC₅₀₅₀,MAX (µg/L)	PEC₅₀₅₀,MAX (µg/kg)		
Vines (4 x 2640 g a.s./ha)	Actual	TWA	Actual	TWA
	3630	10900		

FOCUS STEP 2	PEC₅₀₅₀ (µg/L)	PEC₅₀₅₀ (µg/kg)		
Vines (4 x 2640 g a.s./ha)	Actual	TWA	Actual	TWA
Late app.	Northern EU	single	71.8	216.1
		multiple	249.5	753.3
	Southern EU	single	88.6	269.5
		multiple	311.8	268.5

CITRUS (3 x 3600 g/ha)

FOCUS STEP 1	PEC₅₀₅₀,MAX (µg/L)	PEC₅₀₅₀,MAX (µg/kg)		
citrus (3 x 3600 g a.s./ha)	Actual	TWA	Actual	TWA
	3910	11200		
FOCUS STEP 2

Citrus (3 x 3600 g a.s./ha)

Period	Season	Application	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
March-May	Full canopy	single	147.8	437.5
		multiple	294.1	871
June Sept	Full canopy	single	136.3	401
		multiple	270.9	797.3
Oct-Feb	Full canopy	single	147.8	437.5
		multiple	294.1	871

Estimation of concentrations from other routes of exposure (Regulation (EU) No 284/2013, Annex Part A, point 9.4)

No data, not required
Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) Nº 283/2013, Annex Part A, point 8.1 and Regulation (EU) Nº 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds				
Colinus virginianus	a.s. (unprotected)	Acute	LD$_{50}$	> 8000
Colinus virginianus	a.s. (unprotected)	Acute	LD$_{50}$	> 2000
Coturnix coturnix japonica	a.s. (unprotected)	Acute	LD$_{50}$	4997
Colinus virginianus	Phosphonic acid (unprotected)	Acute	LD$_{50}$	> 675
Colinus virginianus	Fosetyl-Al WG 80 (Bayer CropScience)	Acute	LD$_{50}$	> 6400 mg product/kg bw (> 5082 mg a.s./kg bw)
Colinus virginianus	FEA + FLC WG 71.11 (Bayer CropScience)	Acute	LD$_{50}$	> 2000 mg product/kg bw
Colinus virginianus	SIP 40958 (OXN-SA)	Acute	LD$_{50}$	> 2000 mg product/kg bw
Colinus virginianus	a.s.	Long-term	LD$_{50}$/10	499.7
Coturnix coturnix japonica	a.s. (unprotected)	Long-term	NOEC (NOEL)	1500 mg a.s./kg diet 216 mg a.s./kg b.w./d*
Colinus virginianus	a.s. (Bayer CropScience)	Long-term	NOEC (NOEL)	3000 mg a.s./kg diet 331 mg a.s./kg b.w./d*
Colinus virginianus	a.s. (Iberica Taskforce)	Long-term	NOEC (NOEL)	6500 mg a.s./kg b.w./d
Mammals				
Rat	a.s. (unprotected)	Acute	LD$_{50}$	> 7080
Rat	Fosetyl-Al WG 80 (Bayer CropScience)	Acute	LD$_{50}$	> 2000 mg product/kg bw
Rat FEA + FLC WG 71.11 (Bayer CropScience) Acute LD₅₀ > 2000 mg product/kg bw
Rat Fosetyl-Al80% WP (Iberica Taskforce) Acute LD₅₀ > 2000 mg product/kg bw
Rat SIP 40958 (OXN-SAE) Acute LD₅₀ > 2500 mg product/kg bw
Rat Phosphonic acid (unprotected) Acute LD₅₀ 3624
Rat a.s. (unprotected) Long-term NOAEL 482
Rat Phosphonic acid (unprotected) Long-term NOAEL 390**

Endocrine disrupting properties (Annex Part A, points 8.1.5)
The available ecotoxicological data are not sufficient to conclude on the endocrine disruption potential of fosetyl-Al. Pending on the outcome of the data gap in Section 2, further ecotoxicological tests might be necessary to address the potential endocrine disrupting properties of fosetyl-Al.

Additional higher tier studies (Annex Part A, points 10.1.1.2):
A residue decline study on arthropods is available. The DT₅₀ values estimated in this are based on 2 trials only. The number of trials was not considered sufficient by the experts at the Pesticide Peer Review TC 167; in order to use this refinement additional data may be needed as the number of trials was not sufficient.

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):
No relevant data are available from open literature.

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)
Fosetyl-Al 80 WG: Orchards (Pome fruits) at 3600 g a.s./ha [3 applications]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small insectivorous birds	Acute	252.7	19.8	10
All	Small insectivorous birds	Long-term	62.5	8.0	5
Tier 1 (Birds)					
Not required					
Screening Step (Mammals)					
All	Small herbivorous mammal	Acute	736.6	> 9.6	10
All	Small herbivorous mammal	Long-term	248.3	1.94	5
Tier 1 (Mammals)					
Not required					
Application crop directed BBCH ≥ 40	Large herbivorous mammal “lagomorph” 100% Non-grass herbs	Acute	56.7	> 124.9	10
Application crop directed BBCH ≥ 40	Small herbivorous mammal “vole Grass + cereals 100% grass”	Acute	220.9	> 32.1	10
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
--------------	---------------------------	------------	-----------------------	-----	---------
Application crop directed BBCH ≥ 40	Small omnivorous mammal “mouse” 25% weeds 50% weed seeds 25% ground arthropods	Acute	28.1	> 252.1	10
Fruit stage BBCH 71-79 currants	Frugivorous mammal “dormouse” larger fruits 100% fruit	Acute	258.7	> 27.4	10
Application crop directed BBCH ≥ 40	Large herbivorous mammal “lagomorph” 100% Non-grass herbs	Long-term	14.8	32.6	5
Application crop directed BBCH ≥ 40	Small herbivorous mammal “vole Grass + cereals 100% grass”	Long-term	74.5	6.5	5
Application crop directed BBCH ≥ 40	Small omnivorous mammal “mouse” 25% weeds 50% weed seeds 25% ground arthropods	Long-term	7.9	61.0	5
Fruit stage BBCH 71-79 currants	Frugivorous mammal “dormouse” larger fruits 100% fruit	Long-term	74.5	6.2	5

Higher tier (Mammals): [in higher tier refinement provide brief details of any refinements used (e.g., residues, PT, PD or AV)]

Risk from bioaccumulation and food chain behaviour [not relevant since Log kow ≤ 3]

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Long-term	-	-	5
Earthworm-eating mammals	Long-term	-	-	5
Fish-eating birds	Long-term	-	-	5
Fish-eating mammals	Long-term	-	-	5

Higher tier: [in higher tier refinement provide brief details of any refinements used]

Risk from consumption of contaminated water

Scenarios

Leaf scenario

Not relevant for the representative use

Puddle scenario, Screening step

1) Application rate (3600 g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed for birds and mammals

Puddle scenario	Indicator	Type	Time scale	DDD	TER	Trigger
Puddle scenario	Birds	acute	-	-	-	10
Puddle scenario	Mammals	acute	-	-	-	10
Puddle scenario	Birds	Long-term	-	-	5	
Puddle scenario	Mammals	Long-term	-	-	-	
FEA + FLC WG 71.11: Grapes at 2000 g a.s./ha [3 applications]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous birds	Acute	285.9	17.5	10
All	Small omnivorous birds	Long-term	74.2	6.7	5
Tier 1 (Birds)					
All	Small herbivorous mammal	Acute	400.2	> 17.3	10
All	Small herbivorous mammal	Long-term	138	3.5	5
Tier 1 (Mammals)					
Application	Small herbivorous mammal	Long-term	82.8	5.8	5
crop directed	"vole Grass + cereals 100% grass"				
BBCH 10 - 19					
Application	Small omnivorous mammal	Long-term	9.0	53.7	5
crop directed	"mouse" 25% weeds 50% weed seeds 25% ground arthropods				
BBCH 10 - 19					
Application	Large herbivorous mammal	Long-term	12.8	37.7	5
BBCH 10 - 19	"lagomorph" 100% Non-grass herbs				
Application	Large herbivorous mammal	Long-term	10.1	47.5	5
BBCH 20 - 39	"lagomorph" 100% Non-grass herbs				
Application	Large herbivorous mammal	Long-term	6.1	79.2	5
BBCH ≥ 40	"lagomorph" 100% Non-grass herbs				
Application	Small insectivorous mammal	Long-term	8.0	60.1	5
BBCH 10 - 19	"shrew" 100% ground arthropods				
Application	Small insectivorous mammal	Long-term	3.5	137.6	5
BBCH ≥ 20	"shrew" 100% ground arthropods				
Application	Small herbivorous mammal	Long-term	68.9	7.0	5
crop directed	"vole Grass + cereals 100% grass"				
BBCH 20 - 39					
Application	Small omnivorous mammal	Long-term	7.4	64.8	5
crop directed	"mouse" 25% weeds 50% weed seeds 25% ground arthropods				
BBCH 20 - 39					
Application	Small herbivorous mammal	Long-term	41.4	11.6	5
crop directed	"vole Grass + cereals 100% grass"				
BBCH ≥ 40					
Application	Small omnivorous mammal	Long-term	4.4	109.8	5
crop directed	"mouse" 25% weeds 50% weed seeds 25% ground arthropods				
BBCH ≥ 40					

Risk from bioaccumulation and food chain behaviour [not relevant since Log Kow ≤ 3]

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger	
Earthworm-eating birds	Long-term	-	-	5	
Earthworm-eating mammals	Long-term	-	-	5	
Fish-eating birds	Long-term	-	-	5	
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
--------------	---------------------------	------------	-----------------------	-----	---------
Fish-eating mammals	Long-term	-	-	5	
Higher tier: [in higher tier refinement provide brief details of any refinements used]					

Risk from consumption of contaminated water

Scenarios

Scenario	Details
Leaf scenario	Not relevant for the representative use

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint < 50 (koc < 500 L/kg), TER calculation not needed

Scenario	Species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Puddle scenario	Birds	acute	-	-	10
Puddle scenario	Mammals	acute	-	-	10
Puddle scenario	Birds	Long-term	-	-	5
Puddle scenario	Mammals	Long-term	-	-	5

Fosetyl-Al WP 80: Citrus at 3600 g a.s./ha [3 applications]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger	
Screening Step (Birds)	All	Small insectivorous birds	Acute	168.5	29.7	10
	All	Small insectivorous birds	Long-term	34.7	14.4	5
Tier 1 (Birds)	Not required.					
Screening Step (Mammals)	All	Small herbivorous mammal	Acute	491.0	> 14.4	10
	All	Small herbivorous mammal	Long-term	138.0	3.5	5
Tier 1 (Mammals)	Application crop directed BBCH ≥ 40	Large herbivorous mammal “lagomorph” 100% Non-grass herbs	Long-term	8.2	58.7	5
	Application crop directed BBCH ≥ 40	Small herbivorous mammal “vole Grass + cereals 100% grass”	Long-term	41.4	11.6	5
	Application crop directed BBCH ≥ 40	Small omnivorous mammal “mouse” 25% weeds 50% weed seeds 25% ground arthropods	Long-term	4.4	109.8	5
	Fruit stage BBCH 71-79 currants	Frugivorous mammal “dormouse” larger fruits 100% fruit	Long-term	43.3	11.1	5

Risk from bioaccumulation and food chain behaviour [not relevant since Log kow<3]

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Long-term	-	-	5
Earthworm-eating mammals	Long-term	-	-	5
Fish-eating birds	Long-term	-	-	5
Fish-eating mammals	Long-term	-	-	5

Risk from consumption of contaminated water

Scenarios

Scenario	Details
Leaf scenario	
Fosetyl-Al WP 80: Grapes at 2640 g a.s./ha [4 applications]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous birds	Acute	377.4	13.2	10
All	Small omnivorous birds	Long-term	103.4	4.8	5
Tier 1 (Birds)					
BBCH ≥ 40	Small granivorous bird “finch”	Long-term	9.0	55.3	5
BBCH ≥ 40	Small omnivorous bird “lark”	Long-term	8.8	57.9	5
BBCH ≥ 20	Small insectivorous species “redstart”	Long-term	26.3	19.0	5
Ripening	Frugivorous bird “thrush/starling”	Long-term	38.3	13.1	5
Screening Step (Mammals)					
All	Small herbivorous mammal	Acute	540.1	> 13.1	10
All	Small herbivorous mammal	Long-term	192.2	2.5	5
Tier 1 (Mammals)					
Application BBCH ≥ 20	Small insectivorous mammal “shrew”	Long-term	5.1	95.4	5
Application crop directed BBCH ≥ 40	Small herbivorous mammal “vole Grass + cereals 100% grass”	Long-term	57.7	8.4	5
Application crop directed BBCH ≥ 40	Small omnivorous mammal “mouse” 25% weeds 50% weed seeds 25% ground arthropods	Long-term	6.1	78.8	5
Application BBCH ≥ 40	Large herbivorous mammal “lagomorph”	Long-term	8.8	54.9	5

Risk from bioaccumulation and food chain behaviour

[not relevant since \(\log K_{ow} \leq 3\)]

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Long-term	-	-	5
Earthworm-eating mammals	Long-term	-	-	5
Fish-eating birds	Long-term	-	-	5
Fish-eating mammals	Long-term	-	-	5

Higher tier: [in higher tier refinement provide brief details of any refinements used]

Risk from consumption of contaminated water
Scenarios

Leaf scenario

Not relevant for the representative use

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed

Puddle scenario	Indicator or focal species	Acute	Long-term	TER	Trigger
Puddle scenario	Birds	acute	-	-	10
Puddle scenario	Mammals	acute	-	-	10
Puddle scenario	Birds	Long-term	-	-	5
Puddle scenario	Mammals	Long-term	-	-	5

SIP40958: Grapes at 1350 g a.s./ha [4 applications]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous birds	Acute	193.0	25.9	10
All	Small omnivorous birds	Long-term	52.9	9.4	5
Tier 1 (Birds)					
Not required					
Screening Step (Mammals)					
All	Small herbivorous mammal	Acute	276.2	> 25.6	10
All	Small herbivorous mammal	Long-term	98.3	4.9	5
Tier 1 (Mammals)					
Application	Small herbivorous mammal	Long-term	59.0	8.2	5
crop directed BBCH 10 - 19	“vole Grass + cereals 100% grass”				
Application	Small omnivorous mammal	Long-term	6.4	75.4	5
crop directed BBCH 10 - 19	“mouse”	25% weeds 50% weed seeds 25% ground arthropods			
Application	Large herbivorous mammal	Long-term	9.1	52.9	5
BBCH 10 - 19	“lagomorph”	100% Non-grass herbs			
Application	Large herbivorous mammal	Long-term	7.3	65.7	5
BBCH 20 - 39	“lagomorph”	100% Non-grass herbs			
Application	Large herbivorous mammal	Long-term	4.4	109.5	5
BBCH ≥ 40	“lagomorph”	100% Non-grass herbs			
Application	Small insectivorous mammal	Long-term	5.7	84.4	5
BBCH 10 - 19	“shrew”	100% ground arthropods			
Application	Small insectivorous mammal	Long-term	2.5	190.3	5
BBCH ≥ 20	“shrew”	100% ground arthropods			
Application	Small herbivorous mammal	Long-term	49.1	9.8	5
crop directed BBCH 20 - 39	“vole Grass + cereals 100% grass”				
Application	Small omnivorous mammal	Long-term	5.3	90.9	5
crop directed BBCH 20 - 39	“mouse”	25% weeds 50% weed seeds 25% ground arthropods			
Application	Small herbivorous mammal	Long-term	29.5	16.3	5
crop directed BBCH ≥ 40	“vole Grass + cereals 100% grass”				
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
--------------	---------------------------	------------	------------------------	-----	---------
Application crop directed BBCH ≥ 40	Small omnivorous mammal “mouse” 25% weeds 50% weed seeds 25% ground arthropods	Long-term	3.1	154.2	5

Risk from bioaccumulation and food chain behaviour
not relevant since Log kow≤3

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Long-term	-	-	5
Earthworm-eating mammals	Long-term	-	-	5
Fish-eating birds	Long-term	-	-	5
Fish-eating mammals	Long-term	-	-	5

Higher tier: [in higher tier refinement provide brief details of any refinements used]

Risk from consumption of contaminated water

Scenarios
- Leaf scenario
- Not relevant for the representative use

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed

Puddle scenario	Test substance	Time-scale (Test type)	End point	Toxicity
Puddle scenario	Birds	acute	LC₅₀ > 122 mg a.s./L (mm)	
Puddle scenario	Mammals	acute	LC₅₀ > 100 mg a.s./L (nom)	
Puddle scenario	Birds	Long-term	LC₅₀ > 5 (nom)	
Puddle scenario	Mammals	Long-term	LC₅₀ > 5 (nom)	

**Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)*

This section does not yet reflect the new EFSA Guidance Document on aquatic organisms which has been noted in the meeting of the Standing Committee on Plants, Animals, Food and Feed on 11 July 2014.

Group	Test substance	Time-scale (Test type)	End point	Toxicity
Fish	Oncorhynchus mykiss a.s. (unprotected)	Acute 96 hr (semi-static)	Mortality, LC₅₀	> 122 mg a.s./L (mm)
	Cyprinus carpio a.s. (Bayer CropScience)	Acute 96 hr (static)	Mortality, LC₅₀	> 100 mg a.s./L (nom)
	Oncorhynchus mykiss Fosetyl-aluminium WG 80 (Bayer CropScience)	Acute 96 hr (semi-static)	Mortality, LC₅₀	> 120 mg prep./L (> 95 mg a.s./L atnom)
Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
-----------------------------	---------------------------------	------------------------	--------------------	----------------------------
Oncorhynchus mykiss	FEA + FLC WG 71.11 (Bayer CropScience)	Acute 96 hr (static)	Mortality, LC₅₀	8.54 mg product/L (nom)
Oncorhynchus mykiss	a.s. (unprotected)	Chronic (semi-static)	Growth, NOEC	100 mg a.s./L (nom)
Pimephales promelas	a.s. (Bayer Cropscience)	Chronic (flow-through)	Hatching, NOEC	0.213 mg a.s./L (nom)
			Hatching, EC₁₀	0.31 mg a.s./L (nom)
			Hatching, EC₂₀	0.44 mg a.s./L (nom)
Oncorhynchus mykiss	Phosphonic acid (unprotected)	Acute 96 hr (static)	Mortality, LC₅₀	> 28.6 mg met./L (nom)
Lepomis macrochirus	Phosphonic acid (unprotected)	Acute 96 hr (flow-through)	Mortality, LC₅₀	> 35.7 mg met./L (nom)
Oncorhynchus mykiss	Phosphonic acid (Bayer CropScience)	Acute 96 hr (static)	Mortality, LC₅₀	> 400 mg met./L (nom)
Oncorhynchus mykiss	Phosphonic acid (Iberica Taskforce)	Acute 96 hr (semi-static)	Mortality, LC₅₀	> 100 mg met./L (nom)
Aquatic invertebrates	Daphnia magna	a.s. (unprotected)	48 h (static)	> 100 mg a.s./L (nom)
	Fosetyl-aluminium WG 80 (Bayer CropScience)	48 h (static)	Mortality, EC₅₀	37 mg product/L (nom) (29.6 mg a.s./L)
	FEA + FLC WG 71.11 (Bayer CropScience)	48 h (static)	Mortality, EC₅₀	> 100 mg product/L (nom)
	Phosphonic acid (unprotected)	48 h (static)	Mortality, EC₅₀	> 29.7 mg met./L (nom)
	Phosphonic acid (Bayer CropScience)	48 h (static)	Mortality, EC₅₀	> 400 mg met./L (nom)
	Phosphonic acid (Iberica Taskforce)	48 h (static)	Mortality, EC₅₀	> 100 mg met./L (nom)
Group	Test substance	Time-scale (Test type)	End point	Toxicity
-----------------------------------	--------------------	------------------------	----------------------------	----------
Daphnia magnæ	a.s. (unprotected)	21 d (semi-static)	Reproduction, NOEC	17.0 mg a.s./L (nom)
Daphnia magnæ	a.s. (Iberica Taskforce)	23 d (semi-static)	Reproduction, NOEC	10.1 mg a.s./L (nom)
Sediment-dwelling organisms				
Chironomus riparius	Phosphonic acid (unprotected)	28 d (static)	NOEC	100.2 mg met./L (nom)
Chironomus riparius	Phosphonic acid (Iberica Taskforce)	28 d (static)	NOEC	100 mg met./L (nom)
Algae				
Pseudokirchneriella subcapitata	a.s. (Bayer CropScience)	72 h (static)	Growth rate: E₅₀	9.54 mg a.s./L (nom)
			Growth rate: E₂₀	4.85 mg met./L (nom)
			Biomass: E₅₀	4.99 mg a.s./L (nom)
			Biomass: E₂₀	2.11 mg met./L (nom)
			(NOEC)	(2.28 mg a.s./L (nom))
Desmodesmus subspicatus	a.s. (Bayer CropScience)	72 h (static)	Growth rate: E₅₀	43.3 mg a.s./L (nom)
			Growth rate: E₂₀	24.91 mg met./L (nom)
			Biomass: E₅₀	24.9 mg a.s./L (nom)
			Biomass: E₂₀	12.12 mg met./L (nom)
			(NOEC)	(9.77 mg a.s./L (nom))
Navicula pelliculosa	a.s. (Bayer CropScience)	72 h (static)	Growth rate: E₅₀	18.11 mg a.s./L (nom)
			(NOEC)	(Not available at 72 h)
Group	Test substance	Time-scale (Test type)	End point	Toxicity
-------------------------------	-----------------------------	------------------------	--------------------	--------------
Pseudokirchneriella subcapitata	FEA + FLC WG 71.11 (Bayer CropScience)	72 h (static)	Growth rate: E_{C50}	12.5 mg prep./L
			Biomass: E_{bC50}	3.9 mg prep./L
			(NOEC)	4.7 mg prep./L
	Fosetyl-A180% WP (Iberica Taskforce)	72 h (static)	Growth rate: E_{C50}	14.8 mg prep./L
			Growth rate: E_{C20}	5.77 mg prep./L
			Growth rate: E_{C10}	3.32 mg prep./L
			Yield: E_{yC50}	6.8 mg prep./L
			Yield: E_{yC20}	4.74 mg prep./L
			Yield: E_{yC10}	3.84 mg prep./L
			(NOEC)	(3.05 mg prod./L)
	Phosphonic acid (unprotected)	72 h (static)	Growth rate: E_{C50}	29.4 mg met./L_(nom)
			Growth rate: E_{C20}	25.96 mg met./L_(nom)
			(NOEC)	(2.3 mg met./L_(nom))
			Biomass: E_{bC50}	8.6 mg met./L_(nom)
			Biomass: E_{bC20}	13.03 mg met./L_(nom)
			(NOEC)	(2.3 mg met./L_(nom))
Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
--------------	----------------	------------------------	-----------	-----------
Higher plant	*Lemna gibba*	a.s. (unprotected)	14 d (static)	Fronds number², 14d-
				EC₅₀
				79.67 mg
				a.s./L(mm)
				166.6 mg
				a.s./L(mm)
				90.0 mg
				a.s./L(mm)
				(20.4 mg
				a.s./L(mm))

Further testing on aquatic organisms

Not available and not required

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

The available ecotoxicological data are not sufficient to conclude on the endocrine disruption potential of fosetyl-Al. Pending on the outcome of the data gap in Section 2, further ecotoxicological tests might be necessary to address the potential endocrine disrupting properties of fosetyl-Al.

¹ (nom) nominal concentration; (mm) mean measured concentration; prep.: preparation; a.s.: active substance
² in this study only the variable frond number was measured
Bioconcentration in fish (Annex Part A, point 8.2.2.3)

	Active substance	Phosphonic acid
logP_{O/W}	-2.1	-4.96
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	-	-
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)	-	-
Annex VI Trigger for the bioconcentration factor	-	-
Clearance time (days) (CT₅₀)	-	-
(CT₉₀)	-	-
Level and nature of residues (%) in organisms after the 14 day depuration phase	-	-

RAC values for the risk assessment

Estimation of the acute RAC

Test substance	Test species	Endpoint (mg/L)	RAC value (µg/L)
Fosetyl-Al	Fish, acute<br/)*Cyprinus carpio*	LC₅₀ > 100 mg a.s./L	> 1 000
	Invertebrate, acute<br/)*Daphnia magna*	EC₅₀ > 100 mg a.s./L	> 1 000
Phosphonic acid	Fish, acute<br/)*Lepomis macrochirus*	LC₅₀ > 35.7 mg a.s./L	> 357
	Invertebrate, acute<br/)*Daphnia magna*	EC₅₀ > 400 mg a.s./L	> 4 000

Estimation of the chronic RAC

Test substance	Test species	Endpoint (mg/L)	RAC value (µg/L)
Fish, chronic<br/)*Pimephales promelas*	NOEC = 0.213 mg a.s./L	21.3	
Invertebrate, chronic<br/)*Daphnia magna*	NOEC = 10.1mg a.s./L	1010	
Algae<br/)*Pseudokirchneriella subcapitata*	ErC₅₀ = 9.54 mg a.s./L	954	
Sediment dweller<br/)*Chironomus riparius*	NOEC = 100.2 mg /L	10 200	
Algae<br/)*Pseudokirchneriella subcapitata*	ErC₅₀ = 29.4 mg a.s./L	2 940	
Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) No 284/2013, Annex Part A, point 10.2)

Comparison RAC/PECsw for fosetyl-Al – Fosetyl-Al WG 80 - Orchards (Pome fruits) at 3600 g a.s./ha [3 applications]

Acute RAC value for aquatic organisms for fosetyl-Al compared to relevant PECsw values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al WG 80

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Acute RAC (> 1000 µg/L) PEC< RAC
Orchards (Pome fruits)	55-85	3600	1	4166	No
			2	188.7	Yes

Acute RAC value for aquatic organisms for phosphonic acid compared to relevant PECsw values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al WG 80

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Acute RAC (> 357 µg/L) PEC< RAC
Orchards (Pome fruits)	55-85	3600	1	3905	No
			2	445.4	No

Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PECsw values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al WG 80

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Chronic RAC (= 21.3 µg/L) PEC< RAC
Orchards (Pome fruits)	55-85	3600	1	4166	No
			2	188.7	No

Chronic RAC value for aquatic organisms for fosetyl-Al compared to PECsw values (Step 3) from the proposed uses of Fosetyl-Al WG 80 (late application)
Chronic RAC value for aquatic organisms for fosetyl-Al compared to PEC_{sw} values (Step 4) from the proposed uses of Fosetyl-Al WG 80 (late application)

Crop	Growth Stage	Maximum Application Rate	Scenario	Buffer	PEC_{sw}	Chronic RAC (= 21.3 µg/L) PEC_{sw}<RAC
Orchards (Pomefruits)	55-85	3600				
BBCH [g a.s./ha]						
Orchards (Pomefruits)						
BBCH [g a.s./ha]						
BBCH [g a.s./ha]						

Chronic RAC value for aquatic organisms for fosetyl-Al compared to PEC_{sw} values (Step 4) from the proposed uses of Fosetyl-Al WG 80 (late application)

Crop	Growth Stage	Maximum Application Rate	Scenario	Buffer	PEC_{sw}	Chronic RAC (= 21.3 µg/L) PEC_{sw}<RAC
Orchards (Pomefruits)	55-85	3600	D3 Ditch			
BBCH [g a.s./ha]						
	Description	Value	Status			
----------------	---	-------	--------			
D4 Pond	5 m non-spray and 90% reduction drift	0.7	Yes			
	10 m non-spray, 10 m vegetative buffer strip and 75% reduction drift	0.9	Yes			
	15 m non-spray, 10 m vegetative buffer strip and 50% reduction drift	1.2	Yes			
	20 m non-spray and 20 m vegetative buffer strip	1.7	Yes			
D4 Stream	5 m non-spray and 90% reduction drift	10.4	Yes			
	10 m non-spray, 10 m vegetative buffer strip and 75% reduction drift	11.6	Yes			
	15 m non-spray, 10 m vegetative buffer strip and 50% reduction drift	11.7	Yes			
	20 m non-spray and 20 m vegetative buffer strip	14.3	Yes			
D5 Pond	5 m non-spray and 90% reduction drift	0.7	Yes			
	10 m non-spray, 10 m vegetative buffer strip and 75% reduction drift	0.9	Yes			
	15 m non-spray, 10 m vegetative buffer strip and 50% reduction drift	1.2	Yes			
	20 m non-spray and 20 m vegetative buffer strip	1.7	Yes			
D5 Stream	5 m non-spray and 90% reduction drift	11.2	Yes			
	10 m non-spray, 10 m vegetative buffer strip and 75% reduction drift	12.5	Yes			
	15 m non-spray, 10 m vegetative buffer strip and 50% reduction drift	12.6	Yes			
Region	Description	Distance	Reduction			
--------	-------------	----------	-----------			
R1 pond	20 m non-spray and 20 m vegetative buffer strip	15.4	Yes			
	5 m non-spray and 90% reduction drift	0.7	Yes			
	10 m non-spray, 10 m vegetative buffer strip and 75% reduction drift	0.9	Yes			
	15 m non-spray, 10 m vegetative buffer strip and 50% reduction drift	1.2	Yes			
	20 m non-spray and 20 m vegetative buffer strip	1.7	Yes			
R1 Stream	5 m non-spray and 90% reduction drift	7.8	Yes			
	10 m non-spray, 10 m vegetative buffer strip and 75% reduction drift	8.7	Yes			
	15 m non-spray, 10 m vegetative buffer strip and 50% reduction drift	8.8	Yes			
	20 m non-spray and 20 m vegetative buffer strip	10.7	Yes			
R2 Stream	5 m non-spray and 90% reduction drift	10.6	Yes			
	10 m non-spray, 10 m vegetative buffer strip and 75% reduction drift	11.9	Yes			
	15 m non-spray, 10 m vegetative buffer strip and 50% reduction drift	12.0	Yes			
	20 m non-spray and 20 m vegetative buffer strip	14.7	Yes			
R3 Stream	5 m non-spray and 90% reduction drift	11.2	Yes			
	10 m non-spray, 10 m vegetative buffer strip and 75% reduction drift	12.5	Yes			
	15 m non-spray, 10 m	12.6	Yes			
Crop	Growth Stage BBCH	Maximum Application Rate [g a.s./ha]	Step	PEC_{sw} [µg/L]	Chronic RAC (2940 µg/L) PEC_{sw} < RAC	
------------------------	-------------------	--------------------------------------	------	-----------------------------	--	
Orchards (Pome fruits)	55-85	3600	1	3905	No	
			2	445.4	Yes	

Chronic RAC value for aquatic organisms for phosphonic acid compared to relevant PEC_{sw} values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al WG 80

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PEC_{sw} [µg/L]	R4 Stream	vegetative buffer strip and 50% reduction drift	20 m non-spray and 20 m vegetative buffer strip	15.4	Yes
						5 m non-spray and 90% reduction drift	7.8	Yes	
						10 m non-spray, 10 m vegetative buffer strip and 75% reduction drift	8.7	Yes	
						15 m non-spray, 10 m vegetative buffer strip and 50% reduction drift	8.7	Yes	
						20 m non-spray and 20 m vegetative buffer strip	10.7	Yes	
Comparison RAC/PECsw for fosetyl-Al– FEA + FLC WG 71.11 - Grapevines at 2000 g a.s./ha [3 applications]

Acute RAC value for aquatic organisms for fosetyl-Al compared to relevant PECsw values (Step 1 and Step2) from the proposed uses of FEA + FLC WG 71.11.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Acute RAC (> 1000 µg/L) PEC< RAC
Grapes	15-81	2000	1	720.1	Yes
			2	53.5	Yes

Acute RAC value for aquatic organisms for phosphonic acid compared to relevant PECsw values (Step 1 and Step2) from the proposed uses of FEA + FLC WG 71.11.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Acute RAC (>357 µg/L) PEC< RAC
Grapes	15-81	2000	1	2062.8	No
			2	291.9	Yes

Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PECsw values (Step1 and Step 2) from the proposed uses of FEA + FLC WG 71.11.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Chronic RAC (= 21.3 µg/L) PEC< RAC
Grapes	15-81	2000	1	720.1	No
			2	53.5	No

Chronic RAC value for aquatic organisms for fosetyl-Al compared to PECsw values (Step 3) from the proposed uses of FEA + FLC WG 71.11 (early application).
Crop	Growth Stage	Maximum Application Rate	Scenario	Buffer	PEC<sw	Chronic RAC (= 21.3 µg/L) PEC<RAC
	BBCH [g a.s./ha]					
	D6 Ditch	Step 3	33.7	No		
Grapes	15-81	2000				
	R1 Pond	Step 3	1.2	Yes		
	R1 Stream	Step 3	24.6	No		
	R2 Stream	Step 3	33.1	No		
	R3 Stream	Step 3	35.1	No		
	R4 Stream	Step 3	24.7	No		

Chronic RAC value for aquatic organisms for fosetyl-Al compared to PEC<sw values (Step 4) from the proposed uses of FEA + FLC WG 71.11 (early application).

Crop	Growth Stage	Maximum Application Rate	Scenario	Buffer	PEC<sw	Chronic RAC (= 21.3 µg/L) PEC<RAC
	BBCH [g a.s./ha]					
	D6 Ditch			5 m non-spray and 50% reduction drift	10.2	Yes
	R1 Pond			10 m non-spray and 10 m vegetative buffer strip	7.4	Yes
	R1 Stream			5 m non-spray and 50% reduction drift	0.7	Yes
	R2 Stream			10 m non-spray and 10 m vegetative buffer strip	0.8	Yes
Grapes	15-81	2000				
	R1 Stream			5 m non-spray and 50% reduction drift	9.0	Yes
	R2 Stream			10 m non-spray and 10 m vegetative buffer strip	6.5	Yes
Chronic RAC value for aquatic organisms for fosetyl-Al compared to PEC$_{sw}$ values (Step 3) from the proposed uses of FEA + FLC WG 71.11 (late application).

Crop	Growth Stage	Maximum Application Rate	Scenario	Buffer	PEC$_{sw}$	Chronic RAC (= 21.3 µg/L) PEC< RAC
				R3 Stream 5 m non-spray and 50% reduction drift	12.8	Yes
				10 m non-spray and 10 m vegetative buffer strip	9.3	Yes
				R4 Stream 5 m non-spray and 50% reduction drift	9.0	Yes
				10 m non-spray and 10 m vegetative buffer strip	6.5	Yes

Chronic RAC value for aquatic organisms for fosetyl-Al compared to PEC$_{sw}$ values (Step 4) from the proposed uses of FEA + FLC WG 71.11 (late application).

Crop	Growth Stage	Maximum Application Rate	Scenario	Buffer	PEC$_{sw}$	Chronic RAC (= 21.3 µg/L) PEC< RAC
				D6 Ditch Step 3	34.3	No
Grapes	15-81	2000		R1 Pond Step 3	1.2	Yes
				R1 Stream Step 3	25.1	No
				R2 Stream Step 3	33.8	No
				R3 Stream Step 3	35.5	No
				R4 Stream Step 3	25.2	No

www.efsa.europa.eu/efsajournal
Crop	Growth Stage BBCH	Maximum Application Rate [g a.s./ha]	Step	\(PEC_{sw} \) [\(\mu g/L \)]	Chronic RAC (2940 \(\mu g/L \)) PEC< RAC
Grapes	15-81	2000	1	2062.8	Yes
			2	291.9	Yes

Chronic RAC value for aquatic organisms for phosphonic acid compared to relevant \(PEC_{sw} \) values (Step 1 and Step 2) from the proposed uses of FEA + FLC WG 71.11.
Comparison RAC/PECsw for fosetyl-Al– Fosetyl-Al 80% WP - Citrus at 3600 g a.s./ha [3 applications]

Acute RAC value for aquatic organisms for fosetyl-Al compared to relevant PECsw values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al 80% WP on citrus.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Acute RAC (> 1000 µg/L) PEC<RAC
Citrus	Flowering (> 60)	3600	1	1390	No
			2	188.7	Yes

Acute RAC value for aquatic organisms for phosphonic acid compared to relevant PECsw values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al 80% WP on citrus.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Acute RAC (> 357 µg/L) PEC<RAC
Citrus	Flowering (> 60)	3600	1	3910	No
			2	294.1	Yes

Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PECsw values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al 80% WP on citrus.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Chronic RAC (= 21.3 µg/L) PEC<RAC
Citrus	Flowering (> 60)	3600	1	1390	No
			2	188.7	No
Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PEC_{sw} values (Step 3) from the proposed uses of Fosetyl-Al 80% WP on citrus (late application).

Crop	Growth Stage	Maximum Application Rate	Scenario	Buffer	PEC_{sw}	Chronic RAC (= 21.3 µg/L) PEC<RAC
Citrus	Flowering > 60	3600	D6 Ditch	Step 3	133.0	No
			R4 Stream	Step 3	101.6	Yes

Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PEC_{sw} values (Step 3) from the proposed uses of Fosetyl-Al 80% WP on citrus (late application).

Crop	Growth Stage	Maximum Application Rate	Scenario	Buffer	PEC_{sw}	Chronic RAC (= 21.3 µg/L) PEC<RAC
Citrus	Flowering > 60	3600	D6 Ditch 20 m non-spray	12.4	Yes	
			R4 Stream 20 m non-spray	11.0	Yes	

Chronic RAC value for aquatic organisms for phosphonic acid compared to relevant PEC_{sw} values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al 80% WP on citrus.

Crop	Growth Stage	Maximum Application Rate	Step	PEC_{sw}	Chronic RAC (= 2940 µg/L) PEC<RAC
Citrus	Flowering > 60	3600	1	3910	No
			2	294.1	Yes

Comparison RAC/PEC_{sw} for fosetyl-Al– Fosetyl-Al 80% WP - Grapevines at 2640 g a.s./ha [4 applications]
Acute RAC value for aquatic organisms for fosetyl-Al compared to relevant PEC\textsubscript{sw} values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al 80% WP on grapevine.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PEC\textsubscript{sw} [µg/L]	Acute RAC (> 1000 µg/L) PEC<RAC
Grapes	Flowering > 60	2640	1	950.5	No
			2	70.7	Yes

Acute RAC value for aquatic organisms for phosphonic acid compared to relevant PEC\textsubscript{sw} values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al 80% WP on grapevine.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PEC\textsubscript{sw} [µg/L]	Acute RAC (>357 µg/L) PEC<RAC
Grapes	Flowering > 60	2640	1	3630	No
			2	311.8	Yes

Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PEC\textsubscript{sw} values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al 80% WP on grapevine.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PEC\textsubscript{sw} [µg/L]	Chronic RAC (= 21.3 µg/L) PEC<RAC
Grapes	Flowering > 60	2640	1	950.5	No
Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PEC_{sw} values (Step 3) from the proposed uses of Fosetyl-Al 80 % WP on grapevine (late application).

Crop	Growth Stage	Maximum Application Rate	Scenario	Buffer	PEC_{sw}	Chronic RAC (= 21.3 µg/L) PEC<RAC
	BBCH [g a.s./ha]					
Grapes	Flowering > 60	2640	D6 Ditch	Step 3	45.3	No
			R1 Pond	Step 3	1.6	Yes
			R1 Stream	Step 3	32.3	No
			R2 Stream	Step 3	45.6	No
			R3 Stream	Step 3	46.9	Yes
			R4 Stream	Step 3	33.2	Yes

Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PEC_{sw} values (Step 4) from the proposed uses of Fosetyl-Al 80 % WP on grapevine (late application).

Crop	Growth Stage	Maximum Application Rate	Scenario	Buffer	PEC_{sw}	Chronic RAC (= 21.3 µg/L) PEC<RAC
	BBCH [g a.s./ha]					
Grapes	Flowering > 60	2640	D6 Ditch	10 m non-spray	3.5	Yes
			R1 Pond	10 m non-spray	0.5	Yes
			R1 Stream	10 m non-spray	3.0	Yes
			R2 Stream	10 m non-spray	4.1	Yes
			R3 Stream	10 m non-spray	4.3	Yes
			R4 Stream	10 m non-spray	3.1	Yes

Chronic RAC value for aquatic organisms for phosphonic acid compared to relevant PEC_{sw} values (Step 1 and Step 2) from the proposed uses of Fosetyl-Al 80 % WP on grapevine
Crop	Growth Stage BBCH	Maximum Application Rate [g a.s./ha]	Step	PEC_{sw} [µg/L]	Chronic RAC (= 2940 µg/L) PEC<RAC
Grapes	Flowering > 60	2640	1	3630	No
			2	311.8	Yes
Comparison RAC/PECsw for fosetyl-Al– SIP40958 - Grapevine at 1350 g a.s./ha [4 applications]

Acute RAC value for aquatic organisms for fosetyl-Al compared to relevant PECsw values (Step 1 and Step2) from the proposed uses of SIP40958.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Acute RAC (> 1000 µg/L) PEC<RAC
Grapes	11-79	1350	1	462.1	Yes
			2	36.1	Yes

Acute RAC value for aquatic organisms for phosphonic acid compared to relevant PECsw values (Step 1 and Step2) from the proposed uses of SIP40958.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Acute RAC (> 357 µg/L) PEC<RAC
Grapes	11-79	1350	1	2600	No
			2	422.5	No

Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PECsw values (Step 1 and Step 2) from the proposed uses of SIP40958.

Crop	Growth Stage	Maximum Application Rate [g a.s./ha]	Step	PECsw [µg/L]	Chronic RAC (= 21.3 µg/L) PEC<RAC
Grapes	11-79	1350	1	462.1	No
			2	36.1	No

Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PECsw values (Step3) from the proposed uses of SIP40958 (early application).
Crop Growth Stage Maximum Application Rate

Crop	Growth Stage	Maximum Application Rate
Grapes	11-79	1350

Scenario Buffer PEC_{sw} Chronic RAC (= 21.3 µg/L) PEC_{sw}<RAC

Scenario	Buffer	PE C_{sw}	Chronic RAC (= 21.3 µg/L) PEC_{sw}<RAC
D6 Ditch	Step 3	7.7	Yes
R1 Pond	Step 3	0.3	Yes
R1 Stream	Step 3	5.6	Yes
R2 Stream	Step 3	7.4	Yes
R3 Stream	Step 3	7.8	Yes
R4 Stream	Step 3	5.6	Yes

Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PE C_{sw} values (Step3) from the proposed uses of SIP40958 (late application).

Crop Growth Stage Maximum Application Rate

Crop	Growth Stage	Maximum Application Rate
Grapes	11-79	1350

Scenario Buffer PEC_{sw} Chronic RAC (= 21.3 µg/L) PEC_{sw}<RAC

Scenario	Buffer	PE C_{sw}	Chronic RAC (= 21.3 µg/L) PEC_{sw}<RAC
D6 Ditch	Step 3	23.17	No
R1 Pond	Step 3	0.8247	Yes
R1 Stream	Step 3	16.53	Yes
R2 Stream	Step 3	22.78	No
R3 Stream	Step 3	23.96	No
R4 Stream	Step 3	16.99	Yes

Chronic RAC value for aquatic organisms for fosetyl-Al compared to relevant PE C_{sw} values (Step4) from the proposed uses of SIP40958 (late application).

Crop Growth Stage Maximum Application Rate

Crop	Growth Stage	Maximum Application Rate
Grapes	11-79	1350

Scenario Buffer PEC_{sw} Chronic RAC (= 21.3 µg/L) PEC_{sw}<RAC

Scenario	Buffer	PE C_{sw}	Chronic RAC (= 21.3 µg/L) PEC_{sw}<RAC
D6 Ditch	5 m non-spray	14.0	Yes
R2 Stream	5 m non-spray	16.6	Yes
R3 Stream	5 m non-spray	17.5	Yes
Chronic RAC value for aquatic organisms for phosphonic acid compared to relevant PEC\textsubscript{sw} values (Step 1 and Step 2) from the proposed uses of SIP40958.

Crop	Growth Stage BBCH	Maximum Application Rate [g a.s./ha]	Step	PEC\textsubscript{sw} [µg/L]	Chronic RAC (= 2940 µg/L) PEC<\textsubscript{RAC}
Grapes	11-79	1350	1	2600	Yes
			2	422.5	Yes
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)*

* This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Apis mellifera	a.s. (unprotected)	Acute	Oral toxicity	> 140 µg/bee
Apis mellifera	a.s. (unprotected)	Acute (96 h)	Oral toxicity	461.8 µg/bee
Apis mellifera	a.s. (Bayer CropScience)	Acute	Oral toxicity	> 108.5 µg/bee
Apis mellifera	a.s. (unprotected)	Acute	Contact toxicity	> 100 µg/bee
Apis mellifera	a.s. (unprotected)	Acute	Contact toxicity	> 1000 µg/bee
Apis mellifera	a.s. (Bayer CropScience)	Acute	Contact toxicity	> 100 µg/bee
Apis mellifera	Phosphonic acid (unprotected)	Acute	Oral toxicity	> 212 µg met./bee
Apis mellifera	Phosphonic acid (Bayer CropScience)	Acute	Oral toxicity	> 848 µg met./bee
Apis mellifera	Phosphonic acid (Iberica Taskforce)	Acute	Oral toxicity	> 98.24 µg met./bee
Apis mellifera	Phosphonic acid (unprotected)	Acute	Contact toxicity	> 29.7 µg met./bee
Apis mellifera	Phosphonic acid (Bayer CropScience)	Acute	Contact toxicity	> 1050 µg met./bee
Apis mellifera	Phosphonic acid (Iberica Taskforce)	Acute	Contact toxicity	> 100 µg met./bee
Apis mellifera	Fosetyl-A1WG80 (Bayer CropScience)	Acute	Oral toxicity	>440 µg prod/bee (>390 µg a.s./bee)
Apis mellifera	Fosetyl-A1WG80 (Bayer)	Acute	Oral toxicity	>136.3 µg prod/bee (>110.4 µg a.s./bee)
Crop	Pesticide	Test Type	Effect	Toxicity
------	-----------	-----------	--------	----------
Apis mellifera	Fosetyl-A1WG80 (Bayer CropScience)	Acute Contact toxicity (LD₉₀)	>390 µg prod/bee (>310 µg a.s./bee)	
Apis mellifera	Fosetyl-A1WG80 (Bayer CropScience)	Acute Contact toxicity (LD₉₀)	>123.5 µg prod/bee (>100 µg a.s./bee)	
Apis mellifera	FEA + FLC WG71.11 (Bayer CropScience)	Acute Oral toxicity (LD₉₀)	>169 µg prod/bee	
Apis mellifera	FEA + FLC WG71.11 (Bayer CropScience)	Acute Oral toxicity (LD₉₀)	>219 µg prod/bee	
Apis mellifera	FEA + FLC WG71.11 (Bayer CropScience)	Acute Contact toxicity (LD₉₀)	>70 µg prod/bee	
Apis mellifera	FEA + FLC WG71.11 (Bayer CropScience)	Acute Contact toxicity (LD₉₀)	>200 µg prod/bee	
Apis mellifera	Fosetyl-A180% WP (Iberica Taskforce)	Acute Oral toxicity (LD₉₀)	>222.99 µg prod/bee (>182.85 µg a.s./bee)	
Apis mellifera	Fosetyl-A180% WP (Iberica Taskforce)	Acute Contact toxicity (LD₉₀)	>200 µg prod/bee (>164 µg a.s./bee)	
Apis mellifera	SIP 40958 (OXN-SAE)	Acute Oral toxicity (LD₉₀)	>90.8 µg prod/bee	
Apis mellifera	SIP 40958 (OXN-SAE)	Acute Contact toxicity (LD₉₀)	>400 µg prod/bee	
Bombus terrestris	a.s., (Bayer CropScience)	Acute Contact toxicity (LD₉₀)	>250 µg a.s./bumble bee	
Bombus terrestris	a.s., (Bayer CropScience)	Acute Oral toxicity (LD₉₀)	>206.49 µg a.s./bumble bee	
Bombus terrestris	FEA + FLC WG71.11	Acute Contact toxicity (LD₉₀)	>450 µg prod./bumble bee	
Species	Product Formulation	Study Type	Endpoint and Effect Level	Test Results
--------------------	---------------------	------------	---------------------------	--------------
Bombus terrestris	FEA + FLC WG 71.11	Acute	Oral toxicity (LD₅₀)	> 664.1 µg prod./bumble bee
Apis mellifera	Fosetyl-A1 WG80 a.s.	Chronic	10 d-LC₅₀ 10 d-LDD₅₀	> 750 mg a.s./kg > 37.3 µg/bee/day
Apis mellifera	Fosetyl-A180% WP	Chronic	10 d-LC₅₀ 10 d-LDD₅₀	> 750 mg a.s./kg > 14.78 µg a.s./bee/day
Apis mellifera	a.s. (OXN-SAE)	Chronic	10 d-LC₅₀	71.98 µg a.s./bee/day
Apis mellifera	Fosetyl-A180% WP	Bee brood development	NOEC larvae	99.9 µg/larva/developmental period*
Apis mellifera	a.s. (OXN-SAE)	Bee brood development	NOEC larvae	120.5 µg/larva/developmental period
-	-	Sub-lethal effects (behavioural and reproductive)	NOEC hypopharyngeal glands	Not available

* study duration is 8 days

Potential for accumulative toxicity: Not studied

The following high tier studies were available. It is noted that these studies were considered by EFSA as sufficient to cover effects on mortality but were not considered sufficient to cover potential chronic effects.

Semi-field test (Cage and tunnel test)

Oomen test (Bayer CropScience):
A single dose brood feeding test was conducted at a rate of 2.4 g fosetyl-Al/L sucrose solution (corresponding to 2.97 g Fosetyl-A1 WG 80/L, derived from a theoretical spray application of 4.0 kg Thiram 80 WG/ha). The termination rate of eggs was significantly higher in the test item treatment group when compared to the control. The brood index and brood compensation index increased continuously indicating a development of the brood during the test.

Semi-field brood development study according to OECD 75 (2007), tunnel test on Phacelia (Bayer CropScience):
No adverse effects on mortality, flight intensity, brood development (brood termination rate, brood index, compensation index) as well as on brood and food abundance at 3600 g a.s./ha.
Some significant effects (higher mortality, effects on brood development-termination rates, brood and compensation indices) were observed at 570 g a.s./ha. These effects were considered not treatment related since the mortality in this treatment group was already higher during the pre-application period indicating that the colonies
used in this group seemed to be more sensitive to restricted conditions in the tunnels and since no significant effects on mortality were observed at 3600 g a.s./ha. A second semi-field study using the application rate of 588 g a.s./ha was available (see below).

Semi-field brood development study according to OECD 75 (2007), tunnel test on Phacelia (Bayer CropScience):

No adverse effects on mortality, flight intensity, behavior, brood development (brood termination rate, brood index, compensation index) as well as on brood and food abundance at 570 g a.s./ha.

Semi-field honey bee study (OEPP/EPPO Guideline No. 170(4), tunnel test on Phacelia (Bayer CropScience):

Application up to 80 kg product/ha at approx. 30% flowering of Phacelia, 28 h before the introduction of bees in the tents (7-day exposure) did not cause adverse effects to honeybees. It is, however, noted that in this study the product was applied on soil and that the post-exposure phase was short and not sufficient to conclude on potential effects on the colonies.

Semi-field honey bee study (OEPP/EPPO Guideline No. 170(4), tunnel test in flowering apple orchard (Bayer CropScience):

No adverse effects on mortality, foraging activity, behavior, amount of brood and food storage after one application of 1214 g a.s./ha/m canopy height (corresponding to 3600 g a.s./ha/3 m canopy height).

Semi-field honey bee study (OEPP/EPPO Guideline No. 170(4), tunnel test in flowering apple orchard (Bayer CropScience):

No adverse effects on mortality, behavior amount of brood and food storage after two applications of 1200 g a.s./ha/m canopy height (corresponding to 3600 g a.s./ha/3 m canopy height) in a 6-day spray interval. Foraging activity of the honeybees in the test item group was slightly but statistically significantly reduced compared to the control directly after the first application and directly before the second application but no difference was detected during any other assessment.

Field tests

Not available

Risk assessment for Fosetyl-Al WG80 – Orchards (Pome fruits) at 4500 g product/ha [3 applications]

Species	Test substance	Risk quotient	HQ	Trigger
Apis mellifera	Fosetyl-Al WG80	HQcontact	< 36.0	50
Apis mellifera	Phosphonic acid	HQcontact	< 2.4	50
Apis mellifera	Fosetyl-Al WG80	HQoral	< 32.6	50
Apis mellifera	Phosphonic acid	HQoral	< 2.9	50

Risk assessment for FEA + FLC WG 71.11 – Vine at 3000 g product/ha [3 applications]

Species	Test substance	Risk quotient	HQ	Trigger
Apis mellifera	a.s.	HQcontact	< 20.0	50
Apis mellifera	FEA + FLC WG 71.11	HQcontact	< 15.0	50
Apis mellifera	Phosphonic acid	HQcontact	< 1.3	50
Risk assessment for Fosetyl-Al 80% WP – Citrus at 3600 g a.s./ha [3 applications] (worst-case exposure for Fosetyl-Al 80% WP)

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Apis mellifera	a.s.,	HQoral	< 18.4	50
Apis mellifera	FEA + FLC WG 71.11	HQoral	< 13.7	50
Apis mellifera	Phosphonic acid	HQoral	< 1.6	50

Risk assessment for SIP40958 – Vine at 4500 g preparation/ha [4 applications]

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Apis mellifera	a.s.,	HQcontact	< 36	50
Apis mellifera	Fosetyl-Al 80% WP	HQcontact	< 19.7	50
Apis mellifera	Phosphonic acid	HQcontact	< 11.8	50
Apis mellifera	a.s.,	HQoral	< 36	50
Apis mellifera	Fosetyl-Al 80% WP	HQoral	< 22	50
Apis mellifera	Phosphonic acid	HQoral	< 25.5	50

* risk can be considered acceptable for bees since the LD50 value of 29.7 µg/bee corresponds to the highest tested rate in the study and since phosphonic acid is not considered more toxic to bees than fosetyl-Al.

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	Fosetyl-A1WG80 (Bayer CropScience)	Mortality, LR50	< 11 880 g product/ha
Typhlodromus pyri	Fosetyl-A1WG80 (Bayer CropScience)	Mortality, LR50	> 18 870 g product/ha
		Reproduction, ER50	> 2 520 g product/ha
Species	Test Substance	End point	Toxicity
-------------------------------	---------------------------------	--------------------	--------------------------
Aphidius rhopalosiphi	Fosetyl-A1WG80 (Bayer CropScience)	Mortality, LR₅₀	> 18 560 g product/ha
		Reproduction, ER₅₀	> 18 560 g product/ha
Aphidius rhopalosiphi	Fosetyl-A1WG80 (Bayer CropScience)	Mortality, LR₅₀	> 80 000 g product/ha
		Reproduction, ER₅₀	> 80 000 g product/ha
Typhlodromus pyri	FEA + FLC WG 71.11 (Bayer CropScience)	Mortality, LR₅₀	7130 g product/ha
		Reproduction, ER₅₀	> 6900 g product/ha
Aphidius rhopalosiphi	FEA + FLC WG 71.11 (Bayer CropScience)	Mortality, LR₅₀	> 400 g product/ha
		Reproduction, ER₅₀	> 400 g product/ha
Aphidius rhopalosiphi	FEA + FLC WG 71.11 (Bayer CropScience)	Mortality, LR₅₀	8230 g product/ha
		Reproduction, ER₅₀	> 4600 g product/ha
Typhlodromus pyri	Fosetyl-A180% WP (Iberica Taskforce)	Mortality, LR₅₀	> 8400 g a.s./ha
		Reproduction, ER₅₀	> 8400 g a.s./ha
Aphidius rhopalosiphi	Fosetyl-A180% WP (Iberica Taskforce)	Mortality, LR₅₀	> 8400 g a.s./ha
		Reproduction, ER₅₀	> 8400 g a.s./ha
Aphidius rhopalosiphi	SIP 40958 (OXN-SAE)	Mortality, LR₅₀	> 13500 g product/ha
		Reproduction, ER₅₀	> 13500 g product/ha

Additional species

Coccinella septempunctata	Fosetyl-A1WG80 (Bayer CropScience)	Mortality, LR₅₀	> 11 880 g product/ha
		Reproduction, ER₅₀	< 18 560 g product/ha
Aleochara bilineata	Fosetyl-A1WG80 (Bayer CropScience)	Reproduction, ER₅₀	> 18 560 g product/ha
Poecilus cupreus	Fosetyl-A1WG80 (Bayer CropScience)	Reproduction, ER₅₀	> 18 890 g product/ha
First tier risk assessment for Fosetyl-Al WG80 – Orchards (Pome fruits) at 4500 g product/ha [3 applications]

Test substance	Species	Effect (LR50 g/ha)	HQ in-field	HQ off-field	Trigger
Fosetyl-Al WG80	Typhlodromus pyri	> 18870	< 0.55	< 0.13	2
Fosetyl-Al WG80	Aphidius rhopalosiphi	> 80000	< 0.13	< 0.03	2

First tier risk assessment for FEA + FLC WG 71.11 – Vine at 3000 g product/ha [3 applications]

Test substance	Species	Effect (LR50 g product/ha)	HQ in-field	HQ off-field	Trigger
FEA + FLC WG 71.11	Typhlodromus pyri	7130	0.97	0.067	2
FEA + FLC WG 71.11	Aphidius rhopalosiphi	8230	0.84	0.058	2

First tier risk assessment for Fosetyl-Al 80% WP – Citrus at 3600 g a.s./ha [3 applications] (worst-case exposure for Fosetyl-Al 80% WP)

Test substance	Species	Effect (LR50 g/ha)	HQ in-field	HQ off-field	Trigger
Fosetyl-Al 80% WP	Typhlodromus pyri	> 8400	< 0.99	< 0.24	2
Fosetyl-Al 80% WP	Aphidius rhopalosiphi	> 8400	< 0.99	< 0.24	2

First tier risk assessment for SIP40958 – Vine at 4500 g preparation/ha [4 applications]

Test substance	Species	Effect (LR50 g/ha)	HQ in-field	HQ off-field	Trigger
SIP40958	Aphidius rhopalosiphi	> 13500	<0.9	< 0.06	2
-	Typhlodromus pyri				2

Extended laboratory tests, aged residue tests

Species	Life stage	Test substance, substrate	Time scale	Dose (kg/ha)	End point	% effect	ER50
Typhlodromus pyri	protonymphs	Fosetyl-Al WG80 (Bayer CropScience)	7-d	7.43 18.56	Mortality	69.3 98.9	< 7.43 kg product/ha
Species	Life stage	Test substance, substrate	Time scale	Dose (kg/ha)	End point	% effect	ER₅₀
-------------------------------	---------------------	---------------------------	------------	--------------	--------------------	----------	--------------
Typhlodromus pyri	protonymphs	Fosetyl-Al WG 80 (Bayer CropScience)	7-d	2.5, 5.0, 11.25, 20.0, 40.0, 80.0	Reproduction	7.9, 57.6, 11.2, 43.8, 32.3, -20.2	> 80.0 kg product/ha
		SIP40958 (OZN-SAE)	7-d	1.5, 2.0, 3.0, 7.0, 13.5	Reproduction	34.65, 42.65, 43.04, 46.16, 52.01	10.23 kg product/ha
Coccinella septempunctata	larvae	Fosetyl-Al WG 80 (Bayer CropScience)	20-22 d	12, 19, 33, 58, 82	Mortality and reproduction	No effects on mortality or reproduction	> 82 kg product/ha
		SIP40958 (OZN-SAE)	20-22-d	0.42, 0.84, 1.69, 3.38, 6.75, 13.5	Reproduction	34.8, 37.5, 31.6, 39.4, 31.3, 32.4	> 13.5 kg product/ha
Aleochara bilineata	adult	Fosetyl-Al WG 80 (Bayer CropScience)	68-d	36, 57, 67	Reproduction	7.4, 16.8, 21.9	> 67 kg product/ha

1 dose is expressed in units of preparation
2 positive percentages relate to adverse effects

Risk assessment for Fosetyl-Al WG 80– Orchards (Pome fruits) at 4500 g product/ha [3 applications] based on extended lab test or aged residue tests

Species	ER₅₀ (g/ha)	In-field rate	Off-field rate¹
Typhlodromus pyri	10234.4	12150	815

The Tier 2 risk assessment is not required since the HQv values of Tier 1 are below the trigger value of 2.

¹ indicate distance assumed to calculate the drift rate and if 3D or 2D.

Risk assessment for SIP40958 – Vine at 4500 g preparation/ha [4 applications] based on extended lab test

Species	ER₅₀ (g/ha)	In-field rate	Off-field rate¹
Typhlodromus pyri		12150	815
Species	ER$_{50}$ (g/ha)	In-field rate	Off-field rate1
-------------------------	------------------	---------------	-------------------
Coccinella septempunctata	> 13500	12150	815

1 drift rate at 3 m and if for 3D studies.

Semi-field tests	No studies are available
Field studies	

Field study of the effects of Fosetyl-Al WG 80 on predatory mite populations in apple orchard (southern France):
No unacceptable effects on predatory mite populations at 3 x 3.2 kg prod/ha (2 d spray interval) and 3 x 4.0 kg prod/ha (18-21 d spray interval).

Field study of the effects of Fosetyl-Al WG 80 on predatory mite populations in apple orchard (central zone):
No unacceptable effects on predatory mite populations at 3 x 4.5 kg prod/ha (3-4 d spray interval), 3 x 7.5 kg prod/ha (7 d spray interval) and 3 x 3.75 kg prod/ha (9 d spray interval).

| Additional specific test | No studies are available |
Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation

Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5

Test organism	Test substance	Application method of test a.s./OM†	Time scale	End point	Toxicity	
Earthworms	**Eisenia fetida**	Fosetyl-AlWG 80 (Bayer CropScience)	Mixed with soil / 10% OM	Chronic	Reproduction	NOEC = 316 mg product/kg d.w. soil (254.4 mg a.s./kg d.w. soil corresponding to 176.8 mg H₃PO₃/kg d.w. soil) EC₉⁰ = 459 mg product/kg d.w. soil (369.5 mg a.s./kg d.w. soil corresponding to 256.8 mg H₃PO₃/kg d.w. soil) EC₅₀ = 360 mg product/kg d.w. soil (289.8 mg a.s./kg d.w. soil corresponding to 201.4 mg H₃PO₃/kg d.w. soil)
Eisenia fetida	FEA + FLC WG 71.11 (Bayer CropScience)	Sprayed on soil / 10% OM	Chronic	Reproduction	NOEC = 40500 g product/ha (153.7 mg product/kg d.w.soil)	
Eisenia fetida	FEA + FLC WG 71.11 (Bayer CropScience)	Mixed with soil / 10% OM	Chronic	Reproduction	NOEC = 178 mg product/kg d.w. soil EC₉⁰ = 223 mg product/kg d.w. soil EC₅₀ = 133 mg product/kg d.w. soil	
Test organism	Test substance	Application method of test a.s./OM	Time scale	End point	Toxicity	
------------------	---	-----------------------------------	------------	--------------	--	
Eisenia fetida	Phosphonic acid (Iberica Taskforce)	Mixed with soil/ 10% OM	Chronic	Reproduction	No NOEC nor EC10 can be derived*	
Eisenia fetida	Fosetyl-A180 % WP (Iberica Taskforce)	Mixed with soil/ 10% OM	Acute	Mortality	LC50 > 1000 mg/kg soil d.w.	
Eisenia fetida	Fosetyl-A180 % WP (Iberica Taskforce)	Mixed with soil/ 10% OM	Chronic	Reproduction	NOEC = 200 mg product/kg d.w. soil (164 mg a.s./kg d.w. soil corresponding to 114 mg H3PO3/kg d.w. soil)	
Eisenia andrei	SIP 40958 (Oxn-SAE)	Mixed with soil/ 10% OM	Chronic	Reproduction	NOEC = 40 mg product/kg d.w. soil	
Other soil macroorganisms						
Folsomia candida	Phosphonic acid (Bayer CropScience)	Mixed with soil/ 5% OM	Chronic	Mortality, reproduction	NOEC = 1000 mg H3PO3/kg d.w. soil	
Folsomia candida	Phosphonic acid (Oxn-SAE)	Mixed with soil/ 5% OM	Chronic	Reproduction	NOEC = 3.15 mg H3PO3/kg d.w. soil**	
Folsomia candida	Fosetyl-A1WG 80 (Bayer CropScience)	Mixed with soil/ 5% OM	Chronic	Reproduction	NOEC = 562 mg product/kg d.w. soil (452.4 mg a.s./kg d.w. soil) (EC10 = 774 mg product/kg d.w. soil (623.1 mg a.s./kg d.w. soil) EC20 = 1191 mg product/kg d.w. soil (958.8 mg a.s./kg d.w. soil)	
Folsomia candida	FEA + FLC WG 71.11 (Bayer CropScience)	Mixed with soil/ 5% OM	Chronic	Mortality, reproduction	NOEC = 1000 mg product/kg d.w. soil	
Test organism	Test substance	Application method of test a.s./OM¹	Time scale	End point	Toxicity	
-------------------	---	--------------------------------------	------------	---------------------------------	---------------------------------	
Folsomia candida	SIP 40958 (OXN-SAE)	Mixed with soil/5% OM	Chronic	Mortality, reproduction	NOEC = 1000 mg product/kg d.w. soil	
Hypoaspis aculeifer	Phosphonic acid (Bayer CropScience)	Mixed with soil/5% OM	Chronic	Mortality, reproduction	NOEC = 1000 mg H3PO4/kg d.w. soil	
Hypoaspis aculeifer	Phosphonic acid (OXN-SAE)	Mixed with soil/5% OM	Chronic	Mortality, reproduction	NOEC = 52.49 mg H3PO4/kg d.w. soil**	
Hypoaspis aculeifer	Fosetyl-AlWG 80 (Bayer CropScience)	Mixed with soil/5% OM	Chronic	Mortality, reproduction	NOEC = 1000 mg product/kg d.w. soil	
Hypoaspis aculeifer	FEA + FLC WG 71.11 (Bayer CropScience)	Mixed with soil/5% OM	Chronic	Mortality, reproduction	NOEC = 1000 mg product/kg d.w. soil	
Hypoaspis aculeifer	SIP 40958 (OXN-SAE)	Mixed with soil/5% OM	Chronic	Mortality, reproduction	NOEC = 1000 mg product/kg d.w. soil	

¹To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 % or 10 %).
²Copper included in the composition of the product SIP 40958 would significantly contribute to the toxicity of this compound and the toxicity endpoint from this study is not suitable in the purpose of the renewal process of fosetyl-Al.
*Statistically significant difference relative to the control in the number of juveniles observed at all concentration tested (lowest concentration tested 693 mg a.s./kg dry weight).
**Highest tested concentration

Higher tier testing (e.g. modelling or field studies)
A field study (data from Bayer CropScience) is available for earthworms but the results of this study are not considered robust enough to be included in the risk assessment.

Nitrogen transformation	a.s. (unprotected)	< 25 % effect at day 28 at 26.6 mg a.s./kg d.w. soil (20 kg a.s./ha)
Nitrogen transformation	Fosetyl-AlWG 80 (Bayer CropScience)	< 25 % effect at day 42 at 1304 mg prod/kg soil (1067 mg a.s./kg soil; 978 kg prod/ha)
Nitrogen transformation	FEA + FLC WG 71.11 (Bayer CropScience)	< 25 % effect at day 28 at 40.8 mg prod/kg soil (30.6 kg prod/ha)
Nitrogen transformation	Fosetyl-A180% WP (Iberica Taskforce)	< 25 % effect at day 28 at 30.0 mg/kg soil (24.60mg a.s./kg soil)
Nitrogen transformation	SIP40958 (OXN-SAE)	< 25 % effect at day 28 at 45 kg prod/ha
-------------------------	---------------------	-------------------------------------
Nitrogen transformation	Phosphonic acid (unprotected)	< 25 % effect at day 42 at 65.31 mg met./kg d.w.soil

Toxicity/exposure ratios for soil organisms

Fosetyl-Al WG 80 at 3600 g a.s./ha [3 applications on orchards (Pome fruits)]

Test organism	Test substance	Time scale	Soil PEC¹	TER	Trigger
Earthworms					
Eisenia fetida	a.s.	Chronic	1.92	132.5	5
Eisenia fetida	Phosphonic acid*	Chronic	17.81	9.93	5
Other soil macroorganisms					
Folsomia candida	a.s.	Chronic	1.92	235.6	5
Folsomia candida	Phosphonic acid	Chronic	17.81	56.1	5
Hypoaspis aculeifer	a.s.	Chronic	1.92	419.3	5
Hypoaspis aculeifer	Phosphonic acid	Chronic	17.81	56.1	5

¹The PEC values are the maximum value for the substance and the preparation and the plateau PEC for the metabolite

*The endpoint derived from the study with the formulated product was used in the risk assessment; this is considered acceptable since the parent is rapidly converted into phosphonic acid in soil.

FEA + FLC WG 71.11 at 3000 g preparation/ha [3 applications on grapes]

Test organism	Test substance	Time scale	Soil PEC¹	TER	Trigger
Earthworms					
Eisenia fetida	a.s.	Chronic	1.067	238.4	5
Eisenia fetida	FEA + FLC WG 71.11	Chronic	4.8	27.8	5
Eisenia fetida	Phosphonic acid	Chronic	9.875	17.9	5
Other soil macroorganisms					
Folsomia candida	a.s.	Chronic	1.067	424.0	5
Folsomia candida	FEA + FLC WG 71.11	Chronic	4.8	208.3	5
Folsomia candida	Phosphonic acid	Chronic	9.875	101.3	5
Hypoaspis aculeifer	FEA + FLC WG 71.11	Chronic	4.8	208.3	5
Hypoaspis aculeifer	Phosphonic acid	Chronic	9.875	101.3	5

¹The PEC values are the maximum value for the substance and the preparation and the plateau PEC for the metabolite
Fosetyl-Al 80% WP at 3600 g a.s./ha [3 applications on citrus]

Test organism	Test substance	Time scale	Soil PEC\(^1\)	TER	Trigger
Earthworms					
Eisenia fetida	a.s.	Chronic	0.96	166.7	5
Eisenia fetida	Phosphonic acid*	Chronic	1.881	60.7	5
Other soil macroorganisms					
Folsomia candida	a.s.	Chronic	0.96	471.25	5
Folsomia candida	Phosphonic acid	Chronic	1.881	531.6	5
Hypoaspis aculeifer	a.s.	Chronic	0.96	838.5	5
Hypoaspis aculeifer	Phosphonic acid	Chronic	1.881	531.6	5

\(^1\)The PEC values are the maximum value for the substance and the plateau PEC for the metabolite.

*In the absence of data the endpoints available for Fosetyl-Al WG80 were used in the risk assessment.

Fosetyl-Al 80% WP at 2640 g a.s./ha [4 applications on grapes]

Test organism	Test substance	Time scale	Soil PEC\(^1\)	TER	Trigger
Earthworms					
Eisenia fetida	a.s.	Chronic	1.408	113.6	5
Eisenia fetida	Phosphonic acid	Chronic	17.33	6.58	5
Other soil macroorganisms					
Folsomia candida	a.s.	Chronic	1.408	321.3	5
Folsomia candida	Phosphonic acid	Chronic	17.33	57.7	5
Hypoaspis aculeifer	a.s.	Chronic	1.408	571.73	5
Hypoaspis aculeifer	Phosphonic acid	Chronic	17.33	57.7	5

\(^1\)The PEC values are the maximum value for the substance and the plateau PEC for the metabolite.

SIP40958 at 4500 g preparation/ha [4 applications]

Test organism	Test substance	Time scale	Soil PEC\(^1\)	TER	Trigger
Earthworms					
Eisenia foetida	a.s.	Chronic	3.0	13.3	5
Eisenia foetida	metabolite 1*	Chronic	11.08	10.3	5
Other soil macroorganisms					
Folsomia candida	SIP40958	Chronic	3.0	333	5
Folsomia candida	Phosphonic acid	Chronic	11.08	0.28	5
Hypoaspis aculeifer	SIP40958	Chronic	3.0	333	5
Hypoaspis aculeifer	Phosphonic acid	Chronic	11.08	4.74	5

\(^1\)The PEC values are the maximum value for the substance and the plateau PEC for the metabolite.
The PEC values are the maximum value for the substance and the plateau PEC for the metabolite.

*lowest available endpoint for phosphonic acid derived from the studies performed with ‘Fosetyl-Al 80% WP’ and ‘Fosetyl WG 80’.

Effects on terrestrial non target higher plants (Regulation (EU) No 283/2013, Annex Part A, point 8.6 and Regulation (EU) No 284/2013 Annex Part A, point 10.6)

Screening data

Not required for herbicides or plant growth regulators as ER50 tests should be provided.

Laboratory dose response tests

Species
6 species for vegetative vigour and seedling emergence
10 species for seedling emergence

Test substance	ER50 (g/ha)2 vegetative vigour	ER50 (g/ha)2 emergence	Exposure1 (g/ha)2	TER	Trigger
Fosetyl-Al 80% WG 80	> 80 kg a.s./ha (tomato)	> 7 kg a.s./ha (oilseed rape)	0.57	12.3	5
FEA + FLC WG 71.11	Data gap	> 3.0 kg prod/ha (lettuce)	-	-	
Fosetyl-Al 80% WP	> 3.6 kg a.s./ha	Data gap	-	-	
SIP 40958	> 4.0 kg prod/ha	Data gap	-	-	

Extended laboratory studies:

Semi-field and field test:

No data available.

1 explanation of how exposure has been estimated should be provided (e.g. based on Ganzelmeier drift data)

2 for preparations indicate whether dose is expressed in units of a.s. or preparation

Effects on biological methods for sewage treatment (Regulation (EU) No 283/2013, Annex Part A, point 8.8)

Test type/organism	end point
Activated sludge	NOEC = 100 mg a.s./L

Monitoring data (Regulation (EU) No 283/2013, Annex Part A, point 8.9 and Regulation (EU) No 284/2013, Annex Part A, point 10.8)

Available monitoring data concerning adverse effect of the a.s.

No data available.

Available monitoring data concerning effect of the PPP.

No data available.
Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

Ecotoxicologically relevant compounds

Compartment	Fosetyl-Al and phosphonic acid
soil	
water	
sediment	
groundwater	

1 metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent compound.

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance	Fosetyl-Al
Harmonised classification	Not classified for environment
according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]:	
Peer review proposal for harmonised classification according to Regulation (EC) No 1272/2008:	H412 (based on the NOEC value of 0.213 mg/L for fish for this rapidly degradable substance)

7 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

8 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.