The Risk Factors for Complications After Crohn’s Disease Surgery

Ilker Ozgur¹, Bora Karip², Cemil Burak Kulle³, Bilger Cavus⁴, Recep Ercin Sonmez¹, Filiz Aykuz⁴, Arzu Poyanli⁵, Emre Balik³, Mehmet Turker Bulut¹, Metin Keskin¹

¹Gastrointestinal Surgery Unit, Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
²Department of General Surgery, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
³Department of General Surgery, VKV Koc University Hospital, VKV Koc University Medicine School, Istanbul, Turkey
⁴Gastroenterohepatology, Department of Internal Diseases, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
⁵Department of Radiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey

Background: Crohn’s disease needs a multidisciplinary approach, and surgery will ultimately be necessary for most patients. Complications usually occur after surgery.

Objective: This study aims to present complication rates in surgically treated Crohn’s disease patients at a single institution and to determine possible risk factors.

Methods: A retrospective analysis of 112 consecutive surgery performed on Crohn’s disease patients between 2003 and 2015. The demographic data, patient and disease characteristics, surgery type, and complications were analyzed.

Results: Of 112 patients, 64 (57.1%) were male and 48 (42.9%) were female. The mean age was 34 (range, 18–78) years. The mean follow-up was 114 ± 32.4 (range, 61–197) months. The most common early complications were intra-abdominal abscess formation (n = 10, 8.9%) and wound infection (n = 7, 6.26%). The incisional hernia was the most common late complication (n = 4, 3.6%). Nonmodifiable disease features associated with complications were colonic involvement of the disease (P = 0.001), penetrating disease character (P = 0.037), stoma formation (P = 0.000), fistula (P = 0.008), and concomitant fistula and intra-
abdominal abscess existence \((P = 0.043)\). Stoma formation was found to be an independent risk factor for complications \((P = 0.001)\).

Conclusions: Colonic involvement, penetrating disease, fistula, concomitant abscess and fistula, and stoma formation were identified as nonmodifiable risk factors for complications after surgery for Crohn’s disease.

Key words: Crohn’s disease – Postoperative complications – Surgery – Risk factors

Crohn’s disease (CD) is a chronic inflammatory bowel disease that can involve any part of the gastrointestinal system and nondigestive system organs, such as the eyes, joints, and skin. The mean annual incidence of CD in Turkey is 2.2 per 100,000 capita.\(^1\) The disease presents with symptoms that depend on the involved organ. The most common form is a simple ulcerous and inflammatory luminal disease, but stricture or fistula of the bowel is not unusual. The primary treatment option for CD is medical treatment. Advancement in medical therapy options and newly developed drugs in the last 2 decades have decreased the disease relapse rate and prolonged remission.

Although the primary treatment option is medical, depending on the severity of the disease behavior, CD patients will typically undergo surgery at least once during their life.\(^2\) Disease recurrence is reported with a high rate of even >50% in the first year after surgery, and half of these patients become symptomatic.\(^3\) Recent studies have reported a 30% to 50% complication rate after ileocecal resections.\(^4-6\) Disease behavior, aggressive forms, a high risk of disease recurrence, and critical complications mandate a multidisciplinary approach and close follow-up of patients. Insight the mentioned knowledge, we conducted this study to examine the treatment results and complication rates of our multidisciplinary clinic, which has been dealing with the surgical treatment of CD for a long time, and to determine possible risk factors in the health care–provided population.

Materials and Methods

Data from a total of 112 patients who had been diagnosed with CD and directed to the Gastrointestinal Surgery Unit at Istanbul Faculty of Medicine, between January 2003 and January 2015, were analyzed retrospectively. Details of patient demographics, smoking status, disease behavior and location, extraluminal disease status, medical therapy, biological agent use and duration, corticosteroid use and duration, immunosuppressive medication type and duration, prior surgery, type of surgery, type of anastomosis, stoma formation rate, and postoperative complications were accessed from patient charts and analyzed. The study was conducted in accordance with the principles of the Declaration of Helsinki, and the study protocol was approved by the Istanbul University Clinical Research Ethics Committee with the 04 numbered decision on date February 22, 2019.

Surgical decision

All performed interventions were decided on in weekly multidisciplinary department meetings (surgery, gastroenterology, radiology), and the surgeries were performed by colorectal surgeons. All patients had an intestinal resection and/or stricturoplasty. The anastomosis was created with a stapler or hand sewn, according to the surgeon’s preference.

Patient medication use

Preoperative medical treatment was defined as steroid use until the day of surgery; azathioprine, 6-mercaptopurine, or methotrexate within 4 weeks before surgery; and anti–tumor necrosis factor-α (anti-TNFα) treatment within 8 weeks of surgery.

Follow-up

Patients were followed up in outpatient clinics. The first control visit was in the first month, followed by a visit at the sixth month after surgery with both the general surgery and gastroenterology departments. After the first year, routine, yearly controls, and colonoscopy if needed were performed at the gastroenterology outpatient clinic.

Evaluation of potential variables

Several variables were evaluated as potential risk factors for complications. Preoperative nonmodifiable risk factors were sex, age \((\geq 40\text{ }\text{versus }< 40\text{ years})\),
years), age group at operation (A1, ≤16 years; A2, 17–40 years; A3, >40 years), disease location (ileal [L1], colonic [L2], ileocolonic [L3], isolated upper disease [L4]), disease behavior (nonpenetrating/nonstricturing [B1], stricturing [B2], penetrating [B3]), presence of perianal disease, extraluminal disease, disease duration, age at disease onset, medical treatment existence before surgery, and medical treatment duration before surgery. The modifiable preoperative risk factors were smoking habit, medical treatment before surgery, hematocrit level, albumin level, total parenteral nutrition, intraperitoneal abscess, fistula other than a perianal disease, and coexisting fistula and abscess. The modifiable operative risk factors were defined as the surgical approach (laparoscopic versus open), surgery type (elective versus emergent), stoma formation, and anastomosis type (hand sewn versus stapled).

Complications

Early complications were defined as those occurring within 30 days of surgery. Late complications were defined as those occurring during follow-up after hospital discharge.

Statistical analysis

A Microsoft Excel database (Microsoft Corp, Redmond, Washington) was used to extract data for statistical analysis. Categorical values were calculated with χ² or Fisher’s exact test. Univariate and multivariate regression was performed for risk factors. P < 0.05 was considered statistically significant. IBM SPSS Statistics for Windows, Version 22.0 software (IBM Corp, Armonk, New York) was used to perform the statistical analyses.

Compliance with ethical standards

This article was written in accordance with the ethical standards of the institutional review board and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Results

A total of 112 patients were included in the study. Male sex was more common than female (n = 64, 57.1% versus n = 48, 42.9%). The mean age at surgery was 38 ± 12.3 years (range: 19–80 years), and the mean age at diagnosis of CD was 30.8 ± 11.4 years (range: 7–63 years). Ileocolic disease was the most common form, followed by ileal disease. Penetrating disease (n = 51, 45.5%) and stricturing disease (n = 44, 39.3%) were the most common forms of disease behavior. Concomitant extraluminal disease was observed in 22 (19.6%) patients (Table 1). The mean disease duration was 95.9 ± 64.7 months (range: 6–324 months). Sixty-one patients (54.4%) were active smokers until the surgery. Before surgery, 90 (80.4%) patients were using medical treatment for a mean of 65.5 ± 56.4 months (range: 12–324 months), and 79 (70.5%) were using more than 1 medication. In all, 33% (n = 37) used a biological agent and 42.8% (n = 48) used steroids.

Sixty-four (57.1%) patients had prior abdominal surgery, and acute appendicitis was the most common indication. Thirty-five (31.5%) patients required total parenteral nutrition (TPN) before surgery. An intraabdominal abscess was present in 44 (39.3%) patients, and 23 (20.5%) that were suitable were drained percutaneously before surgery. Preoperative antibiotics were used in 84 (75%) patients. Elective (n = 98, 87.5%) and open surgery (n = 93, 83%) were the most common surgical approaches. Fourteen patients underwent emergency (n = 14, 12.5%) surgery. Laparoscopic surgery was performed in 19 (17%) patients, with a 15.8% (n = 3) conversion rate to open surgery. A stapled anastomosis (n = 74, 66.1%) was more common than a hand-sewn technique (n = 11, 12.9%), and 27 (24.1%) patients had no anastomosis. Ileocolonic resection was the predominant surgery type (n = 95, 84.4%), followed by colonic resection (n = 7, 6.34%). Only six patients (5.4%) underwent stricturoplasty. The mean follow-up after surgery was 114 ± 32.4 months, with a median of 113 months (range: 61–197 months).

In total, 27 (24.1%) patients developed complications after surgery. Intraabdominal abscess formation (n = 10) was the most common early complication after surgery, followed by wound infection (n = 7). Incisional hernia (n = 4) was the most common late complication (Table 2). The complication rate was higher among patients with shorter medical treatment (n = 27, mean: 54.8 ± 48.9 months versus n = 85, mean: 68.8 ± 58.5 months; P = 0.324) but was not statistically significant. Sex, medical treatment before surgery, steroid use, biological agent use, multiple drug use, hematocrit level, albumin level, age at diagnosis, disease duration, and smoking habit did not affect the complication rate (Table 1). The stoma formation was not affected by disease location or behavior. Disease duration was different
Table 1 Disease characteristics and factors affecting complications

	Complicated		Uncomplicated		P	OR
	n	%	n	%		
Sex						
Female	12	44.4	36	42.4	0.848	0.037
Male	15	55.6	49	57.6		
Age, years						
A1 (<16)						0.859
A2 (17–40)	16	59.3	52	61.2		
A3 (>40)	11	40.7	33	38.8		
Mean age, years	39.6±13.7		38.5±11.8		0.694	
Age at diagnosis, years					0.589	
A1 (<16)	2	7.4	5	5.8		
A2 (17–40)	18	66.6	65	76.5		
A3 (>40)	7	26	15	17.7		
Mean age at diagnosis, years	31.4±12.7		30.7±11		0.753	
Disease location^a					0.001	1.409
L1 (ileal)	0		10		11.8	
L2 (colonic)	4	14.8	4		4.7	
L3 (ileo-colonic)	23	85.2	62		72.9	
L4 (isolated upper disease)	0		9		10.6	
Disease behavior^b					0.037	2.550
B1 (nonpenetrating/stricturing)	1		16	18.8		
B2 (structuring)	9	33.3	35		41.2	
B3 (penetrating)	17	63	34		40	
P (perianal disease)	7	25.9	27	31.8	0.565	0.752
Smoking					0.449	0.716
Current smokers	13	48.4	48		56.5	
Nonsmoker or ex-smoker	14	51.6	37		43.5	
Disease age, months	97.3±52.4		95.4±67.5	6324	0.894	
Medical treatment duration until surgery, months	54.8±48.9 (12–324)	68.8±58.4 (12–240)	0.324			
Anti-TNF consumption time, months (37 patients)	6.8±3.9	6.6±6.7	0.912			
Steroid consumption time, months (42 patients)	18.7±31.3	9.6±13.3	0.185			
Serum albumin level, gr/dL	3.46±0.7	3.41±0.7	0.768			
Hematocrit level, %	34.2±6.2		34.7±4.5		0.644	
Prior medical treatment	21	77.7	69	81.2	0.699	0.812
Med. Treat. Change	18	66.7	51	67.1	0.937	0.963
Multiple drug consumption	18	66.7	61	71.8	0.613	0.787
Steroid consumption	13	52	35	43.2	0.440	1.424
Anti-TNF consumption	11	44	26	32.5	0.293	1.632
TPN	7	6.3	28	25.2	0.563	0.780
Prior abdominal surgery	17	15.2	47	42	0.483	1.374
Extra-intestinal involve	8	7.1	14	12.5	0.134	2.135
Intra-abdominal abscess existence	13	11.6	31	27.7	0.279	1.618
Fistula existence	17	63	29	34.1	0.008	3.283
Abscess and fistula coexistence	11	40.7	18	21.2	0.043	2.559
Percutaneous drainage	7	25.9	16	18.8	0.426	1.509
Preoperative antibiotics	23	85.2	61	71.8	0.161	2.262
Surgical approach					0.352	0.539
Laparoscopic	3	11.1	16	18.8		
Open	24	88.9	69	81.2		
Surgery type					0.676	0.767
Emergent	4	14.8	10	11.8		
Elective	23	85.2	75	88.2		
Anastomosis type					0.248	2.500
Hand sewn	4	18.2	7	11.1		
Stapler	18	81.8	56	88.2		
Anastomosis	22	81.5	63	74.1	0.395	1.537
Stoma formation	12	44.4	10	11.8	0.000	6.0

OR, odds ratio; TNF, tumor necrosis factor; TPN, total parenteral nutrition.

^aGroups are compared as L1 (ileal) versus L2 (colonic) + L3 (ileo-colonic).

^bB1 (nonpenetrating/ nonstricturing) versus B2 (structuring) + B3 (penetrating).
Late complications

Involvement, penetrating disease, presence of a single institution. Our study suggested that colonic and risk factors for complications of CD patients in a this study, we showed the clinical characteristics associated with complications have been investigated. Various risk factors have been investigated, but these factors differ across communities. In this study, we showed the clinical characteristics and risk factors for complications of CD patients in a single institution. Our study suggested that colonic involvement, penetrating disease, presence of a fistula, concomitant abscess and fistula, and stoma formation were associated with complication occurrence. Stoma formation was an independent risk factor for complications.

Unfortunately, nearly 80% to 90% of CD patients are likely to undergo surgery during the disease. The surgical strategy may vary depending on the bowel site affected, the existence of complications, the patient’s general condition, and disease severity, which will determine a single operation approach, such as ileocecal resection or stricturoplasty, or more extended surgery, such as a total colectomy or proctocolectomy. Several population-based studies have reported postoperative complication rates of 10% to 50%. Abscess formation, wound site infection, anastomosis leakage, and extra-abdominal infections were all related to infectious processes. Postoperative complication risks have been evaluated in several other retrospective studies. The reported intra-abdominal septic complication (IASC) rate is 9% to 13%, which is similar to the results of our research.

Our study group has similarities of disease characteristics to the Western population in disease location, disease behavior, and smoking habit. When demographic data were compared, the male predominance (57.1%) in our cohort was dissimilar to most Western reports, and a smaller proportion of patients (39.3%) was diagnosed after age 40. These demographic variations between study groups, such as later onset age, may arise because of underlying genetic differences, dietary patterns, and gut microbiota. Exposure to the Western lifestyle and dietary habits in daily social life is more common among Turkish men than women. This condition may contribute to the predominance of male sex in our study group.

Preoperative preparation is critical for CD patients because nutritional status is a major determinant of surgical outcomes. The complication rate can be minimized with optimal preparation before surgery. Malnutrition, weight loss, low blood hemoglobin, hematocrit values, and albumin levels have frequently been observed as parameters that are a risk factor for postoperative complications. Our results revealed no association between the complication rate and preoperative TPN or smoking. Nonetheless, smoking is a well-described risk factor for disease recurrence. Heavy smokers have been shown to have a higher risk of relapse compared with other groups who smoked less. The rate of smoking in our study was high because patients who smoked even 1 cigarette per day were

Table 2 Complications after CD surgery

Complications	n	%	Dindo-Clavien Class
Early complications (within 30 days)			
Intra-abdominal abscess	10	8.9	II
Wound infection	7	6.3	II
Anastomotic leakage	3	2.7	IIIb
Intra-abdominal bleeding	3	2.7	n = 2/ II, n = 1/IIIb
De-novo fistula	1	0.9	IIIb
Pneumonia	1	0.9	II
Stoma torsion	1	0.9	IIIb
More than one	6		
Total patients	20	17.8	
Late complications			
Incisional hernia	4	3.6	IIIb
Ileus	1	0.9	II
Stoma stricture	1	0.9	IIIb
Fecal incontinence	1	0.9	IIIb
Total patients	7	6.3	
considered smokers. The degree of tobacco use may determine the absolute effect of smoking on disease course. Several other recent studies did not find smoking to be a risk factor. One author even followed an initial report indicating that smoking was a risk factor for complications, with a subsequent report several years later that did not regard it as a risk factor.

The choice of drug therapy largely depends on individualized medical treatment. Disease response, remission, tolerance, and side effects all play a role in drug preference. Most of the patients in our study

Variable	n	%	P	OR
Sex				
Female	11	9.8	0.450	1.432
Male	11	9.8	0.754	0.857
Age, yrs.				
A1 (≤16)	0	0	0.735	0.674
A2 (17–40)	14	12.5		
A3 (>40)	8	7.1		
Age at diagnosis, years				
A1 (≤16)	2	1.8	0.685	1.263
A2 (17–40)	15	13.4		
A3 (>40)	5	4.5		
Disease location: L2 (colonic) + L3 (ileocolonic)	22	19.4	0.102	4.570
Disease behavior				
B1 (nonpenetrating/nonstricturing)	2	1.8	0.375	0.873
B2 (structuring) + B3 (penetrating)	20	17.9		
Smoking				
Current smokers	12	10.7	0.353	0.637
Nonsmoker or ex-smoker	10	8.9		
Prior medical treatment	21	18.8	0.047	6.391
Medical treatment change	19	16.4	0.023	4.136
Multiple drug consumption	20	17.9	0.019	5.254
Steroid consumption	15	14.2	0.015	3.312
Anti-TNF consumption	12	11.4	0.033	2.784
Extra intestinal involvement	4	3.6	0.847	0.889
Abscess	17	15.2	0.076	0.385
Fistula	12	10.7	0.152	1.976
Fistula and abscess	4	3.6	0.357	0.578
TPN	9	8.1	0.290	1.678
Percutaneous drainage	3	2.7	0.372	0.553
Antibiotics	17	15.2	0.784	1.167
Surgery type				
Emergency	2	1.8	0.590	1.538
Elective	20	17.9		
Surgical approach			0.643	0.730
Laparoscopic	3	2.7		
Open	19	17		
Disease age (months ± SD)			0.044	
Stoma formed	68.9			
No stoma	53.5			
Medical treatment duration until surgery (months ± SD)	65.4 ± 56.4	0.212		
Stoma formed	43.6			
No stoma	51.7			
Albumin level, g/dL ± SD			0.264	
Stoma	3.4 ± 0.7			
No stoma	3.38			
Hematocrit level, % ± SD			0.032	
Stoma	34.6 ± 4.9			
No stoma	34.1			
No stoma	36.7			
used thiopurine, 5-aminosalicylic acid, and a corticosteroid before surgery. Thirty percent of the patients included in our research were using anti-TNFα therapy. This rate is slightly higher than that reported in the Western population. It may be a result of our status as a referral hospital and an accumulation of nonresponders to medical therapy in the study group. The study group also consisted of patients who had been referred to surgery with no further medical options for treatment.

Several studies and meta-analyses have investigated whether immunosuppressive or biological therapy increases the risk of postoperative complications. Some studies have demonstrated that anti-TNFα therapy increased the complication rate, but not all. The current recommendation does not suggest the cessation of anti-TNFα medication before surgery. It has been reported that preoperative treatment with anti-TNFα did not increase the risk of postoperative complications. We also found that the complication rate was not affected by anti-TNFα therapy or duration. Withdrawal of steroids from treatment has been linked to decreased complication rates. We demonstrated no association between the incidence of complications and the use of corticosteroids, or medication use before the surgery, long duration of medical treatment duration before surgery, or multidrug treatment. All these patients were evaluated as being at high risk for complications and had a higher stoma rate.

The perforating disease has been reported as a risk factor for postoperative complications. It has been found to increase anastomosis-related complications and postoperative IASC. Aggressive disease characteristics also contribute to the outcome. In our study, disease behavior and localization both significantly influenced the complication rate.

Preoperative antibiotics and percutaneous drainage have been proposed as a means to improve the postoperative outcome. Previous reports have demonstrated that the presence of an abscess or fistula increased the occurrence of postoperative IASC. Our study population had similar complication rates concerning preoperative antibiotic administration and percutaneous drainage. A fistula or fistula with abscess formation also significantly increased the complication rate in our study group.

Emergency conditions and the surgical approach did not affect the complication rate. Stoma formation is sometimes unavoidable and was seen in 19.6% of the patients in this study. Colonic disease and penetrating disease behavior were not found to affect stoma formation. Prior medical treatment, the need for a change in medical treatment, corticosteroid use, and multidrug treatment all affected stoma formation with significant statistical value. The stoma-formed patients also had a longer disease duration. These patients had no further medical treatment options and were referred for surgery because of unresponsiveness to medical therapy. The statistical significance between the stoma formation rate and medical treatment parameters verifies the disease condition and patient status thus the stoma-formed patients who depleted both medical treatment options and general condition had higher complication rates despite stoma formation.

The current study has a comparable complication rate to the reported in the literature. Only 2 of the nonmodifiable risk factors, disease location and behavior, had a statistical significance on the complication rate, and none of the modifiable risk factors had statistical significance. This low complication rate may be accepted as an achievement indicator of the health care team, which has good

Table 4 Univariate and multivariate analysis of risk factors for complications

Risk Factor	Univariate	Multivariate				
	P	OR	LR	HR	95% CI	P
Disease location						
L1 (ileal)	0.001	13.3	2.577	Reference	0.000–656892	0.787
L2 (colonic) + L3 (ileocolonic)	0.037	2.550	11.664	Reference	0.265–46.373	0.342
Disease behavior						
B1 (nonpenetrating/stricturing)	0.008	3.283	6.972	Reference	0.904–0.176	0.903
B2 (structuring) + B3 (penetrating)	0.043	2.559	3.846	Reference	0.581–11.582	0.212
Fistula existence						
Abscess and fistula existence	0.000	6.0	12.300	7.242	2.207–23.767	0.001

CI, confidence interval; HR, hazard ratio; LR, likelihood ratio.
control of risk factors because of convenient and multidisciplinary enthusiasm.

This study has some limitations. Limited data acquisition was possible with a retrospective design, and working as a referral center aggravated this condition. The study group consisted of severely deteriorated CD patients. Although the patients’ general condition, medical treatment, and nutritional status before surgery were considered, there may be some bias in the study group because of an accumulation of patients with varying disease severity. Research with larger study groups and a prospective design may decrease these biases. Further prospective studies may be designed to investigate risk factors and the underlying genetic pool in a nationwide database.

Conclusion

We determined several nonmodifiable risk factors of complications after surgery for CD: colonic involvement, penetrating disease, presence of a fistula, concomitant abscess and fistula, and stoma formation. The study also demonstrated that corticosteroid treatment, medical treatment before the surgery, longer duration of medical treatment before surgery, and multidrug treatment were not risk factors for intra-abdominal septic complications. Thus, stoma formation can be advocated for this subgroup of patients.

References

1. Tozun N, Atug O, Imeryuz N, Hamzaoglu HO, Tiftikci A, Parlak E et al. Clinical characteristics of inflammatory bowel disease in Turkey: a multicenter epidemiologic survey. J Clin Gastroenterol 2009;43(1):51–57
2. Shaffer VO, Wexner SD. Surgical management of Crohn’s disease. Langenbecks Arch Surg 2013;398(1):13–27
3. Gklavas A, Dellaportas D, Papaconstantinou I. Risk factors for postoperative recurrence of Crohn’s disease with emphasis on surgical predictors. Am J Gastroenterol 2017;102(6):598–612
4. Yamamoto T, Spinelli A, Suzuki Y, Saad-Hossne R, Teixeira FV, de Albuquerque IC et al. Risk factors for complications after ileocolonic resection for Crohn’s disease with a major focus on the impact of preoperative immunosuppressive and biologic therapy: a retrospective international multicentre study. United European Gastroenterol J 2016;4(6):784–793
5. Abdalla S, Brouquet A, Maggiori L, Zerbib P, Denost Q, Germain A, Cotte E et al. Postoperative morbidity after iterative ileocolonic resection for crohn’s disease: should we be worried? A prospective multicentric cohort study of the GETAID chirurgie. J Crohns Colitis 2019;13(12):1510–1517
6. Fumery M, Seksik P, Auzolle C, Munoz-Bongrand N, Gornet JM, Boschetti G et al. Postoperative complications after ileocecal resection in Crohn’s disease: a prospective study from the REMIND group. Am J Gastroenterol 2017;112(2):337–345
7. Myrelid P, Olaison G, Sjödahl R, Nyström PO, Almer S, Andersson P. Thiopurine therapy is associated with postoperative intra-abdominal septic complications in abdominal surgery for Crohn’s disease. Dis Colon Rectum 2009;52(8):1387–1394
8. Morar PS, Hodgkinson JD, Thalayasingam S, Koysombat K, Purcell M, Hart AL et al. Determining predictors for intra-abdominal septic complications following ileocolonic resection for Crohn’s disease-considerations in pre-operative and peri-operative optimisation techniques to improve outcome. J Crohns Colitis 2015;9(6):483–491
9. Racine A, Carbonnel F, Chan SS, Hart AR, Bueno-de-Mesquita HB, Oldenburg B et al. Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC study. Inflamm Bowel Dis 2016;22(2):345–354
10. GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2020;5(1):17–30
11. Spinelli A, Allocca M, Jovani M, Danese S. Review article: optimal preparation for surgery in Crohn’s disease. Aliment Pharmacol Ther 2014;40(9):1009–1022
12. Torres J, Bonovas S, Doherty G, Kucharzik T, Gisbert JP, Raine T et al. ECCO guidelines on therapeutics in Crohn’s disease: medical treatment. J Crohns Colitis 2020;14(1):4–22
13. Zerbib P, Koriche D, Truant S, Bouras AF, Vernier-Massouille G, Seguy D et al. Pre-operative management is associated with low rate of post-operative morbidity in penetrating Crohn’s disease. Aliment Pharmacol Ther 2010;32(3):459–465
14. Cheon JH. Genetics of inflammatory bowel diseases: a comparison between Western and Eastern perspectives. J Gastroenterol Hepatol 2013;28(2):220–226
15. Hartman C, Eliakim R, Shamir R. Nutritional status and nutritional therapy in inflammatory bowel diseases. World J Gastroenterol 2009;15(21):2570–2578
16. Lochs H, Dejong C, Hammarqvist F, Hebuterne X, Leon-Sanz M, Schütz T et al. ESPEN guidelines on enteral nutrition: gastroenterology. Clin Nutr. 2006;25(2):260–274
17. Patel KV, Darakshian AA, Griffin N, Williams AB, Sanderson JD, Irving PM. Patient optimization for surgery relating to Crohn’s disease. Nat Rev Gastroenterol Hepatol 2016;13(12):707–719
18. Manser CN, Frei P, Grandinetti T, Biedermann L, Mwinyi J, Vavricka SR et al. Risk factors for repetitive ileocolic resection in patients with Crohn’s disease: results of an observational cohort study. Inflamm Bowel Dis 2014;20(9):1548–1554
19. de Barcelos IF, Kotze PG, Spinelli A, Suzuki Y, Teixeira FV, de Albuquerque IC et al. Factors affecting the incidence of early endoscopic recurrence after ileocolonic resection for Crohn’s disease: a multicentre observational study. *Colorectal Dis* 2017; 19(1):O39–O45

20. Yamamoto T, Keighley MR. The association of cigarette smoking with a high risk of recurrence after ileocolonic resection for ileocecal Crohn’s disease. *Surg Today* 1999;29(6): 579–580

21. Yamamoto T, Allan RN, Keighley MR. Smoking is a predictive factor for outcome after colectomy and ileorectal anastomosis in patients with Crohn’s colitis. *Br J Surg* 1999;86(8):1069–1070

22. Louis E, Belaiche J, Reenaers C. Anti-tumor necrosis factor nonresponders in Crohn’s disease: therapeutic strategies. *Dig Dis* 2009;27(3):351–357

23. Huang W, Tang Y, Nong L, Sun Y. Risk factors for postoperative intra-abdominal septic complications after surgery in Crohn’s disease: a meta-analysis of observational studies. *J Crohns Colitis* 2015;9(3):293–301

24. El-Hussuna A, Theede K, Olaison G. Increased risk of postoperative complications in patients with Crohn’s disease treated with anti-tumour necrosis factor α agents: a systematic review. *Dan Med J* 2014;61(12):A4975

25. Smedh K, Andersson M, Johansson H, Hagberg T. Preoperative management is more important than choice of sutured or stapled anastomosis in Crohn’s disease. *Eur J Surg* 2002;168(3):154–157

26. Alves A, Panis Y, Bouhnik Y, Pocard M, Vicaut E, Valleur P. Risk factors for intra-abdominal septic complications after a first ileocecal resection for Crohn’s disease: a multivariate analysis in 161 consecutive patients. *Dis Colon Rectum* 2007; 50(3):331–336

27. Yamamoto T, Shiraki M. Risk factors for anastomotic complications after resection for Crohn’s disease. *Dis Colon Rectum* 2012;55(10):e346–e347

28. Lowney JK, Dietz DW, Birnbaum EH, Kodner IJ, Mutch MG, Fleshman JW. Is there any difference in recurrence rates in laparoscopic ileocolic resection for Crohn’s disease compared with conventional surgery? A long-term, follow-up study. *Dis Colon Rectum* 2006;49(1):58–63

29. Eshuis EJ, Polle SW, Slors JF, Hommes DW, Sprangers MA, Gouma DJ et al. Long-term surgical recurrence, morbidity, quality of life, and body image of laparoscopic-assisted vs. open ileocolic resection for Crohn’s disease: a comparative study. *Dis Colon Rectum* 2008;51(6):858–867