The cp genome characterization of Adenium obesum: Gene content, repeat organization and phylogeny

Khalid Mashay Alanazi a,1, Mohammad Ajmal Ali b,1,* Soo-Yong Kim c, M. Oliur Rahman d, Mohammad Abul Farah a, Fahad Alhemaid b, Meena Elangbam e, Arun Bahadur Gurung f,⇑⇑, Joongku Lee g

a Genetics Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
b Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
c International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yuseong-gu, Daejeon 34141, Republic of Korea
d Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh
e Genetics Laboratory, Centre of Advanced Studies in Life Sciences, Manipur University, Canchipur 795 003, India
f Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong – 793022, Meghalaya, India
g Department of Environment and Forest Resources, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

Article info
Article history:
Received 15 February 2021
Revised 15 March 2021
Accepted 16 March 2021
Available online 23 March 2021

Keywords:
Chloroplast genome
Plastome
Poisonous plant
Medicinal plant
Adenium obesum
Apocynaceae

Abstract
Adenium obesum (Forssk.) Roem. & Schult. belonging to the family Apocynaceae, is remarkable for its horticultural and ornamental values, poisonous nature, and medicinal uses. In order to have understanding of cp genome characterization of highly valued medicinal plant, and the evolutionary and systematic relationships, the complete plastome / chloroplast (cp) genome of A. obesum was sequenced. The assembled cp genome of A. obesum was found to be 154,437 bp, with an overall GC content of 38.1%. A total of 127 unique coding genes were annotated including 96 protein-coding genes, 28 tRNA genes, and 3 rRNA genes. The repeat structures were found to comprise of only mononucleotide repeats. The SSR loci are composed of only A/T bases. The phylogenetic analysis of cp genomes revealed its proximity with Nerium oleander.

© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction
Adenium obesum (Forssk.) Roem. & Schult. (family Apocynaceae), the ‘Desert Rose’ is a poisonous, medicinal plant, distributed from Africa to Arabia, and is used traditionally in the treatment of various ailments e.g. skin diseases, wounds, muscle pain, joint pain, venereal diseases, tooth decay, septic wounds, and nasal infections (Dimmitt and Hanson, 2002; Mouza and Hossain, 2015; Hossain et al., 2017). It is also used as a pesticide (Versiani et al., 2014), arrow poison for hunting in Africa (Oyen, 2008) and fish toxin (Wiseman, 2009). The A. obesum plant extract reported to possess cytotoxic (Almehdar et al., 2012), antimicrobial (Hossain et al., 2017) and anti-influenza (Kiyohara et al., 2012) activities. The phytochemical compounds identified from A. obesum include cardiac glycosides (cardenolides), pregnanes, triterpenes, flavonoids, and acetyldigitoxigenin (Versiani et al., 2014). The molecular docking of acetyldigitoxigenin elucidates the plausible mechanisms underlying the anticancer properties (Gurung et al., 2020).

The recent development in plastome or chloroplast (cp) genomics due to massive progress in the next-generation sequencing (NGS) platforms (Eid et al., 2009; Rothberg et al., 2011; Pattnaik et al., 2014; Jain et al., 2016; Shendure et al., 2017) and bioinformatics tools (Mavromatis et al., 2007; Knudsen et al., 2010; Huang et al., 2012; McElroy et al., 2012; Shendure and Aiden, 2012; Yang and Rannala, 2012; Caboche et al., 2014; Shcherbina 2014; Kwon et al., 2015; Langmead and Nellore, 2018) have greatly impact on biotechnology application (Spök et al., 2008; Zhang et al., 2015; Daniell et al., 2016). We herein for the first time report the cp genome characterization of highly valued medicinal plant A.
obesum, and discuss its structure including gene content, repeat organization, and phylogeny.

2. Materials and methods

2.1. DNA sequencing, assembly and annotation

The fresh leaves of A. obesum were collected from the wild condition of desert habitat near to Riyadh, Saudi Arabia. The total genomic DNA was isolated using QIAGEN DNeasy DNA extraction kit. The de novo sequencing base calling was performed using the Illumina Pipeline 1.3.2 (Nie et al., 2012). The raw reads were filtered using FastQC to obtain the high-quality clean data by removing adaptor sequences using trimmomatic and low-quality reads with Q-value < 20. The filtered reads were assembled using Spades (Bankevich et al., 2012), and annotated using GeSeq (https://chlorobox.mpimp-golm.mpg.de/geseq.html) (Tillich et al., 2017; Hansel et al., 2007). Further downstream analysis from the assembled cp genome included the repeat structure (Benson 1999; Timme et al., 2007) and small inversion (Nagano et al., 1991; Yang et al., 2010; Doorduin et al., 2011; Castro et al., 2013; Beier et al., 2017).

2.2. Comparison of cp genome and phylogenetic analysis

The cp genome of A. obesum were plotted using the mVISTA (http://genome.lbl.gov/vista/mvista/submit.shtml) program with a total number of nine complete cp genomes of Apocynaceae [i.e. (1) Asclepias nivea Forssk., (2) Carissa macrocarpa (Eckl.) A. DC., (3) Catharanthus roseus (L.) G. Don, (4) Cynanchum auriculatum Buch.-Ham. ex Wight, (5) Echites umbellatus Jacq., (6) Nerium oleander L., (7) Oncinotis tenuiloba Stapf, (8) Pentalinon luteum (L.) B.F. Hansen & Wunderlin, and (9) Rhazya stricta Decc.).

The cp sequences of 48 genes [e.g. ATP synthase genes (atpA, atpB, atpE, atpF, atpH, and atpI), c-type cytochrome synthesis gene (ccsA), envelope membrane protein gene (cemA), Maturase gene (matK), cytochrome b6/f genes (petA, petB, petD, petG, and petN), Photosystem I genes (psaA, psaB, psaC, and psaL), Photosystem II genes (psbA, psbB, psbE, psbH, psbI, psbJ, psbK, and psbT), Rubisco gene (rbcL), Large-subunit ribosomal protein genes (rpl14, rpl2, rpl20, rpl32, rpl33, and rpl36), RNA polymerase subunit genes (rpoB, rpoC1, and rpoC2), Small-subunit ribosomal protein genes (rps14, rps15, rps18, rps19, rps2, rps3, rps4, and rps7), Genes of unknown function (ycf3, and ycf4)] were retrieved from 19 ingroup taxa comprising 10 species of the family Apocynaceae, the representative of the family Apiaceae, Aquifoliaceae, Apocynaceae, Aredoxaceae, Eucommiaceae, Gentianaceae, Icacinaceae, Lamiaceae, Solanaceae, and the outgroup from the family Cornaceae (Table 1), and aligned using Clustal X (Thompson et al., 1994), and the molecular phylogenetic analysis was performed by Maximum Evolution method (Rzhetsky and Nei, 1992) using in MEGA X (Kumar et al., 2018).

3. Results and discussion

The present study reports assembly of the complete cp genome map as a conserved circular structure comprising a total length of 154,437 bp (including LSC, SSC, IRA, and IRB), with an overall GC content of 38.1% (Fig. 1). The results revealed the gene contents, orientation, and the conservation as well as polymorphisms were found in the chloroplast genome as similar to those of other cp genome of angiosperms (Daniell et al., 2016). A total number of 127 genes were annotated including 96 protein-coding genes, 28 tRNA genes, and 3 rRNA genes (NCBI GenBank accession number: MN765097).

The sequence identity of A. obesum plotted with the nine different complete cp genomes from the family Apocynaceae e.g. A. nivea, C. macrocarpa, C. roseus, C. auriculatum, E. luteola, O. tenuiloba, P. luteum and R. stricta using the mVISTA revealed high similarities amongst them with few regions where the identities was below 90% (Fig. 2).

Moreover, the present study depicted the distribution and location of repeated structures and microsatellites in the cp genome. The microsatellites or simple sequence repeats (SSRs) are tandem repeats which ranges from 1 to 6 bp and are present commonly in cp genomes (Meng et al., 2018). SSRs have been served as an important marker for molecular characterization of plant species. A total of 40 SSRs were predicted in A. obesum (Table 2) which were composed of a length of at least 10 bp, all of which were found to be homopolymers containing multiple A or T nucleotides at each locus. These reveal that SSR loci are rich in A-T content in the A. obesum cp genome which supports previous chloroplast SSRS

Sl. No.	Taxon	Order	Family	Subfamily	Tribe	Subtribe	GenBank
1.	Adenium obesum (Forssk.) Roem. & Schult.	Gentianales	Apocynaceae	Apocynoideae	Nerieae	Nerinae	MN765097*
2.	Asclepias nivea Forssk.	Gentianales	Apocynaceae	Apocynoideae	Nerieae	Nerinae	NC_022431.1*
3.	Cynanchum auriculatum Buch.-Ham. ex Wight	Gentianales	Apocynaceae	Apocynoideae	Nerieae	Nerinae	NC_025460.1
4.	Carissa macrocarpa (Eckl.) A. DC.	Gentianales	Apocynaceae	Apocynoideae	Nerieae	Nerinae	NC_033534.1
5.	Catharanthus roseus (L.) G. Don	Gentianales	Apocynaceae	Apocynoideae	Nerieae	Nerinae	NC_021423.1*
6.	Rhazya stricta Decc.	Gentianales	Apocynaceae	Apocynoideae	Nerieae	Nerinae	NC_024292.1*
7.	Echites umbellatus Jacq.	Gentianales	Apocynaceae	Apocynoideae	Nerieae	Nerinae	NC_025555.1
8.	Pentalinon luteum (L.) B.F. Hansen & Wunderlin	Gentianales	Apocynaceae	Apocynoideae	Nerieae	Nerinae	NC_025658.1
9.	Nerium oleander L.	Gentianales	Apocynaceae	Apocynoideae	Nerieae	Nerinae	NC_025656.1*
10.	Oncinotis tenuiloba Stapf	Gentianales	Apocynaceae	Apocynoideae	Nerieae	Nerinae	NC_025656.1
11.	Anethum graveolens L.	Apiaceae	Apioideae	Apioideae	Apioideae	Apioideae	NC_029470.1
12.	Ilex delavayi Franch.	Aquifoliaceae	Aquifoliaceae	Aquifoliaceae	Aquifoliaceae	Aquifoliaceae	KX426470.1
13.	Helianthus annuus L.	Asterales	Asterales	Asterales	Asterales	Asterales	NC_007977.1
14.	Viburum betulifolium Batalin	Dipsacales	Dipsacales	Dipsacales	Dipsacales	Dipsacales	NC_037951.1
15.	Eucommia ulmoides Oliv.	Garryales	Eucommiaceae	Eucommiaceae	Eucommiaceae	Eucommiaceae	NC_025319.1
16.	Gentiana tibetica King ex Hook. f.	Gentianales	Gentianaceae	Gentianaceae	Gentianaceae	Gentianaceae	NC_025319.1
17.	Iodes cirrhosa Turcz.	Icacinaceae	Icacinaceae	Icacinaceae	Icacinaceae	Icacinaceae	NC_036254.1
18.	Premna microphylla Turcz.	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	Lamiaceae	NC_026291.1
19.	Tochona australie Griseb.	Solanaceae	Solanaceae	Solanaceae	Solanaceae	Solanaceae	NC_028333.1

Ingroup

Outgroup

The ingroup and outgroup taxon with their classification and GenBank accession number included in the phylogenetic analyses. The GenBank accession number marked with * were included in the mVISTA alignment.
reports (Li et al., 2017). Among these SSRs, four SSRs were situated in coding regions and 31 were located in the intergenic regions (Table 2). A total number of 19 genes including 11 protein-coding genes and 8 tRNA genes contained one or two introns (Table 3). Furthermore, five SSRs were found in intronic regions. Thus, most of the repeats were situated in the intergenic region. Tandem and dispersed repeats were analyzed for A. obesum cp genomes and a total of 25 tandem and 19 dispersed repeats were observed (Fig. 3).

The phylogenetic relationships of a total number of 48 cp genes from the 19 cp genomes including the family Apocynaceae and the representative members of the family Apiaceae (Apiales), Aquifoliaceae (Aquifoliales), Adoxaceae (Dipscales), Eucommiaceae (Garryales), Gentianaceae (Gentianales), Icacinaceae (Icinales), Lamiaeeae (Lamiiales), Solanaceae (Solanales), and the outgroup at the family Cornaceae (Cornales) revealed the proximity of A. obesum (Subfamily Apocynoideae, Tribe Nerieae, Subtribe Neriinae) with Nerium oleander (Subfamily Apocynoideae, Tribe Ner-
Fig. 2. The percent identity plot for comparison of cp genome of *A. obesum* with the other Apocynaceae genomes. Lane from up to down: *A. nivea*, *C. macrocarpa*, *C. roseus*, *C. auriculatum*, *E. umbellatus*, *N. oleander*, *O. temuloba*, *P. luteum*, and *R. stricta*.
The family Apocynaceae is one of the 10 largest angiosperm families with c. 4,500 species under c. 370 genera globally with the greatest diversity in the tropics and subtropics (Stevens, 2001; Endress et al., 2014; APG, 2016). Apart from the large number of molecular phylogenetic studies on the family Apocynaceae (e.g. Liede and Täuber, 2000, 2002; Liede, 2001; Liede and Meve, 2001, 2002; Meve and Liede, 2001, 2002, 2004a,b; Potgieter and Albert, 2001; Liede and Kunze, 2002; Khalid Mashay Alanazi, Mohammad Ajmal Ali, Soo-Yong Kim et al. Saudi Journal of Biological Sciences 28 (2021) 3768–3775

Table 2
The SSR loci in the cp genome of Adenium obesum.

Start	End	Repeat	Repeat length of consensus	Locus Region
2109	2189	(A)10	81	ycf1
2914	2925	(A)12	12	ycf1
9557	9566	(T)10	10	ndhF-ndhG
13,831	13,840	(A)10	10	ccsA-trnL-UAG
15,378	15,388	(T)11	11	rpl22-ndhF
15,614	15,624	(A)11	11	rns23-trnA-UGC
23,933	23,950	(T)18	18	trnM-GCC
43,878	43,887	(A)10	10	rps16
49,254	49,266	(T)13	13	atpF
52,132	52,141	(A)10	10	psbI-trnS-GCU
53,347	53,356	(T)10	10	ndhI-ndhG
53,607	53,620	(T)14	14	trnG-GCC
53,763	53,775	(T)13	13	trnR-UUC-trnA
55,426	55,435	(A)11	11	rpl22
55,657	55,667	(T)10	10	rpl32
56,129	56,139	(T)11	11	rps16
57,865	57,874	(T)10	10	psbA-trnS-GCU
58,082	58,093	(T)12	12	ndhI-ndhG
60,138	60,148	(A)10	10	ycf1
62,367	62,377	(T)11	11	rps16
72,576	72,585	(T)10	10	ycf1
79,736	79,747	(T)12	12	ycf1
88,261	88,272	(T)12	12	ycf1
95,456	95,465	(T)10	10	ndhI-ndhG
96,134	96,144	(T)10	10	ycf1
97,206	97,257	(T)12	12	ycf1
104,329	104,341	(T)13	13	ycf1
105,304	105,315	(T)12	12	ycf1
105,629	105,642	(T)14	14	ycf1
109,940	109,960	(T)10	10	ycf1
111,353	111,366	(T)14	14	ycf1
113,000	113,009	(A)10	10	ycf1
115,212	115,222	(T)11	11	ycf1
120,988	120,997	(A)10	10	trnK-trnL
122,446	122,455	(A)10	10	ycf1
125,125	125,136	(T)12	12	ycf1
125,645	125,710	(A)10	10	ycf1
128,414	128,424	(T)11	11	ycf1
128,795	128,804	(T)10	10	ycf1
148,732	148,749	(A)18	18	ycf1

Table 3
The intron containing genes in the cp genome of Adenium obesum.

Gene	Location	Exon I bp	Intron I bp	Exon II bp	Intron II bp	Exon III bp
trnA-UCC	IR	35	818	38		
trnL-CAU	IR	35	943	42		
rps12*	LSC-IR	234	536	25		114
ndhB	IR	777	684	756		
rpl2	IR	391	649	434		
trnK-UUU	LSC	35	2476	37		
rps16	LSC	226	843	41		
trnG-GCC	LSC	23	691	37		
atpF	LSC	411	706	144		
rpoC1	LSC	1613	749	451		
ycf1	LSC	155	773	228		
trnL-UAA	LSC	37	491	50		
trnV-UAC	LSC	37	586	38		
ctpP	LSC	229	657	291		746
rpl2	IR	434	649	391		71
ndhB	IR	756	684	777		
rps12	IR	25	536	234		
trnL-CAU	IR	42	943	35		
trnA-UCC	IR	38	818	35		

*rps12 is trans-spliced gene with 5’ end exon located in the LSC region and the duplicated 3’ end exon located in IR regions.

Khalid Mashay Alanazi, Mohammad Ajmal Ali, Soo-Yong Kim et al. Saudi Journal of Biological Sciences 28 (2021) 3768–3775

ieae, Subtribe Neriinae) (Fig. 4). The family Apocynaceae is one of the 10 largest angiosperm families with c. 4,500 species under c. 370 genera globally with the greatest diversity in the tropics and subtropics (Stevens, 2001; Endress et al., 2014; APG, 2016). Apart from the large number of molecular phylogenetic studies on the family Apocynaceae (e.g. Liede and Täuber, 2000, 2002; Liede, 2001; Liede and Meve, 2001, 2002; Meve and Liede, 2001, 2002, 2004a,b; Potgieter and Albert, 2001; Liede and Kunze, 2002;
Liede et al., 2002a,b; Verhoeven et al., 2003; Rapini et al., 2003, 2004, 2006, 2007; Simões et al., 2004, 2006, 2007; Liede-Schumann et al., 2005; Venter et al., 2006; Endress et al., 2007; Goyder et al., 2007; Ionta and Judd, 2007; Lahaye et al., 2007; Livshultz et al., 2007; Meve and Liede-Schumann, 2007; Wanntorp and Forster, 2007), the family has also been intensely studied for their pollination biology, plant–herbivore interactions, and secondary chemistry (Wyatt and Broyles, 1994; Góngora Castillo et al., 2012; Courdavault et al., 2014; Agrawal et al., 2015). The phylogenetic nesting of the family Asclepiadaceae in Apocynaceae s.s. has been demonstrated repeatedly (Wanntorp, 1988; Judd et al., 1994; Sennblad and Bremer, 1996; Potgieter and Albert, 2001). The most recent classification of Apocynaceae (Endress et al., 2014) segregated the family into five subfamilies, two paraphyletic which correspond to the former Apocynaceae s.s. (Rauvolfioideae and Apocynoideae) and three monophyletic that relates to the former Asclepiadaceae (Periplocoideae, Secamonoideae, and Asclepiadoideae).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of the research through the research group project #RG-
Pattnaik, S., Gupta, S., Rao, A.A., Panda, B., 2014. ShrC: an accurate and fast error-model based simulator for SNPs, Indels and CNVs coupled with a read generator for short-read sequence data. BMC Bioinf. 15, 1–9.

Petzoldt, K., Albert, V.A., 2001. Phylogenetic relationships within Apocynaceae s.l. based on trnL intron and trnF spacer sequences and propage characters. Ann. Miss. Bot. Gard. 88, 523–549.

Rapini, A., Chase, M.W., Goyder, D.J., Griffiths, J., 2003. Asclepiadeae classification: evaluating the phylogenetic relationships of New World Asclepiadoideae (Apocynaceae). Taxon 52, 33–50.

Rapini, A., Fontella-Pereira, J., Lamare, E., Liede-Schumann, S., 2004. Taxonomy of Peplonia (including Conionthela) and a reinterpretation of Orthosieae (Asclepiadoideae, Apocynaceae). Kew Bull. 59, 531–539.

Rapini, A., Chase, M.W., Konno, T.U.P., 2006. Phylogenetics of South American Asclepiadeae (Apocynaceae). Taxon 55, 119–124.

Rapini, A., van den Berg, C., Liede-Schumann, S., 2007. Diversification of Asclepiadoideae (Apocynaceae) in the New World. Ann. Miss. Bot. Gard. 94, 407–422.

Rothberg, J.M., Hinz, W., Rearick, T.M., Schultz, J., Mieski, W., Davey, M., Leamon, J. H., Johnson, K., Milgrew, M.J., Edwards, M., Hoo, J., Simons, J.F., Marcan, D., Myers, J.W., Davidson, J.F., Branting, A., Nobile, J.R., Puc, B.P., Light, D., Clark, T.A., Huber, M., Branciforte, J.T., Stoner, J.B., Cawley, S.E., Lyons, M., Fu, Y., Homer, N., Sedova, M., Miao, X., Reed, B., Sabina, J., Feierstein, E., Schorn, M., Alajary, M., Dimalanta, E., Dressman, D., Kasinskas, R., Sokolsky, T., Fidanza, J.A., Namsaraev, E., McKernan, K.J., Williams, A., Roth, G.T., Bustillo, J., 2011. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352.

Rzhetsky, A., Nei, M., 1992. A simple method for estimating and testing minimum evolution trees. Mol. Biol. Evol. 9, 945–967.

Sembled, B., Bremer, B., 1996. The familial and subfamilial relationships of Apocynaceae and Asclepiadeae evaluated with rbcL data. Plant Syst. Evol. 202, 153–175.

Shcherbina, A., 2014. FASTQSim: platform-independent data characterization and in silico read generation for NGS datasets. BMC Res. Notes 7, 533.

Shendure, J., Aiden, E.L., 2012. The expanding scope of DNA sequencing. Nature Biotechn. 30, 1084–1994.

Shendure, J., Chase, M.W., Goyder, D.J., Schloss, J.A., Waterston, R.H., 2010. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One 5: e12762.

Simões, A.O., Livshultz, T., Conti, E., Endress, M.E., 2007. Phylogeny and systematics of the Rauvolfioideae (Apocynaceae) based on molecular and morphological evidence. Ann. Miss. Bot. Gard. 94, 268–297.

Spök, A., Karner, S., Stein, A.J., Rodríguez, C.E., 2008. Plant molecular farming: opportunities and challenges. JRC Scientific Technical Reports.

Stevens, P.F., 2001 onwards. Angiosperm phylogeny website, version 12. http://www.mobot.org/MOBOT/research/APweb/.

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

Tillich, M., Lehwarz, P., Pellizzer, T., Ulbricht-Jones, E.S., Fischer, A., Bock, R., Greiner, S., 2017. GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6–W11.

Timme, R.E., Kuehl, J.V., Boone, J.L., Jansen, R.K., 2007. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. American J. Bot. 94, 302–312.

Venter, H.J.T., Dold, A.P., Verhoeven, R.L., Ionta, G., 2006. Rappia lobulata (Apocynaceae, Periplocoideae), a new genus from South Africa. South African J. Bot. 72, 529–533.

Verhoeven, R.L., Liede, S., Endress, M.E., 2003. The tribal position of Fockea and Cibotidea (Apocynaceae: Asclepiadoideae): evidence from pollinium structure and cpDNA sequence data. Grana 42, 70–81.

Versiani, M.A., Ahmed, S.K., Ikram, A., Ali, S.T., Yasmeen, K., Faizi, S., 2014. Chemical constituents and biological activities of Adenium obesum (Forsk.). Roem. et Schult. Chem Biodivers. 11 (2), 171–180.

Wanntorp, H.E., 1988. The genus Microloma (Asclepiadaceae). Opera Botanica 98, 1–69.

Wanntorp, L., Forster, P.I., 2007. Phylogenetic relationships between Hoya and the monotypic genera Madangia, Absolmsia, and Micholitzia (Apocynaceae, Marsdeniaceae): Insights from flower morphology. Ann. Miss. Bot. Gard. 94, 36–55.

Wiseman, J., 2009. SAS Survival Handbook (Revised Edition). William Morrow Paperbacks, pp. 240.

Wyatt, R., Bryyles, S.B., 1994. Ecology and evolution of reproduction in milkweeds. Ann. Rev. Ecol. & Syst. 25, 423– 441.

Yang, M., Zhang, X., Liu, G., Yin, Y., Chen, K., Yun, Q., Zhao, D., Al-Mssallem, I.S., Yu, J., 2010. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One 5: e12762.

Yang, Z., Rannala, B., 2012. Molecular phylogenetics: Principles and practice. Nat. Rev. Genet. 13 (5), 303–314.

Zhang, J., Khan, S.A., Hasee, C., Ruf, S., Heckel, D.G., Bock, R., 2015. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347, 991–994.