Review Article

Virulence Plasmid (pYV)-Associated Expression of Phenotypic Virulent Determinants in Pathogenic Yersinia Species: A Convenient Method for Monitoring the Presence of pYV under Culture Conditions and Its Application for Isolation/Detection of Yersinia pestis in Food

Saumya Bhaduri and James L. Smith

Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA

Correspondence should be addressed to Saumya Bhaduri, saumya.bhaduri@ars.usda.gov

Received 30 May 2011; Revised 23 June 2011; Accepted 27 June 2011

Academic Editor: Didier Montet

Copyright © 2011 S. Bhaduri and J. L. Smith. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica, phenotypic expression of virulence plasmid (pYV: 70-kb)-associated genetic determinants may include low-calcium response (Lcr, pinpoint colony, size = 0.36 mm), colony morphology (size = 1.13 mm), crystal violet (CV) binding (dark-violet colony), Congo Red (CR) uptake (red pinpoint colony, size = 0.36 mm), autoagglutination (AA = cells agglutinate), and hydrophobicity (HP = clumping of cells). Y. pseudotuberculosis is chromosomally closely related to Y. pestis; whereas, Y. enterocolitica is chromosomally more distantly related to Y. pestis and Y. pseudotuberculosis. All three species demonstrate Lcr, CV binding, and CR uptake. The colony morphology/size, AA, and HP characteristics are expressed in both Y. pseudotuberculosis and Y. enterocolitica but not in Y. pestis. Congo red uptake in Y. pestis was demonstrated only on calcium-deficient CR magnesium oxalate tryptic soy agar (CR-MOX), whereas this phenotype was expressed on both CR-MOX and low-calcium agarose media in Y. pseudotuberculosis and Y. enterocolitica. These phenotypes were detectable at 37°C within 24 h in Y. enterocolitica and Y. pseudotuberculosis but did not appear until 48 h in Y. pestis due to its slower growth rate at 37°C. The pYV is unstable (i.e., easily lost under a variety of culture conditions) in all three species but is more unstable in Y. pestis. The specific CR uptake by Y. pestis in CR-MOX and the delayed time interval to express Lcr and CR uptake provide a means to differentiate Y. pestis from Y. enterocolitica and Y. pseudotuberculosis. These differences in pYV expression in Y. pestis can be used for its isolation and detection in food.

1. Introduction

The genus Yersinia consists of 11 species, but only Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis are pathogenic to humans. Yersinia pestis is considered to be ancestrally related to Y. pseudotuberculosis; however, Y. pseudotuberculosis behaves phenotypically and clinically like Y. enterocolitica [1]. The three species are quite diverse in the diseases they cause; Y. enterocolitica and Y. pseudotuberculosis induce gastroenteritis when consumed in contaminated food and have been isolated from patients with diarrhea. Yersinia pestis is the agent of bubonic plague and can cause oropharyngeal plague as a result of the consumption of inadequately cooked goat and camel meat or handling of meat from infected animals [2–5]. The risk, morbidity, and mortality of contracting plague through the consumption of food deliberately contaminated with Y. pestis are currently unknown but potentially real. Furthermore, the identification of multidrug-resistant strains [6] and the potential use of this pathogen for the deliberate contamination of food could cause plague in large populations.
evaluation; lanes 3, 7, and 11 showing the presence of 591-bp product in the original strains of Y. pseudotuberculosis. Lane M, 50–1,000 bp ladder (430- to 1020-nucleotide region) amplified a 591 base pair (bp) product from the virulence plasmid. Lane 1, 5, and 9 showing the absence of 591-bp product in cells of the white borders of Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis, respectively; lanes 2, 6, and 10 showing the presence of 591-bp product in the original strains of Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis respectively before phenotypic evaluation; lanes 3, 7, and 11 showing the presence of 591-bp product in cells of the red pinpoint colonies of Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis, respectively, and lanes 4, 8, and 12 showing the presence of 591-bp product within cells of red pinpoint colonies surrounded by white border of Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis respectively [7].

Three plasmids are involved in the virulence of Y. pestis: (a) pYV (virulence plasmid, 70-kb, Yops, type III secretion system), (b) pFra/pMT1 (96.2-kb, murine toxin: plasminogen activator) [8, 9]. Among these plasmids, the pYV-encoded type III secretion system (Y ops) promotes cytotoxicity and the common symptoms of plague [8].

Virulence Determinants

In Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica, the expression of phenotypic virulence characteristics is encoded by pYV [7]. A derivative of a clinical Y. pestis (KIM5: Kurdistan Iran man) strain lacking the chromosomal 102-kb Pgm locus (pigmentation), but harboring all three virulence plasmids (pYV, pFra/pMT1, and F1) [7, 9], was used for our study. The Pgm locus is only present in Y. pestis. This strain is conditionally virulent (a conditional mutant is only infectious if inoculated intravenously) and can be used in a BL2 laboratory facility [7, 9]. This strain shows CR-uptake in Y. pestis due to the presence of pYV; whereas, another derivative of a clinical strain of Y. pestis, the Kuma strain, contains the chromosomally encoded determinant, Pgm+ for CR-uptake but lacks pYV [7]. Clinical isolates of Y. enterocolitica (serotype O:3; strain GER) and Y. pseudotuberculosis (serotype O:1b; strain PBI+/+) were also used in our study [7, 13]. The presence of pYV in Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis was confirmed by a PCR assay targeting a key regulatory gene, virF, present on pYV (Figure 1, lanes 2, 6, and 10) [15]. The primers (5′-TCATGGCAGACAGCAGTCG-3′ and 5′-ACTCATCTTACCATTAAGAG-3′) for the detection of the virF gene (430- to 1020-nucleotide region) amplified a 591-base pair (bp) sequence from the virulence plasmid [15]. Yersinia pestis Kuma strain did not show the presence of pYV by the PCR assay.

In our study, the pYV-negative derivatives (P−) of Y. pestis KIM5, Y. pseudotuberculosis, and Y. enterocolitica were obtained from large flat colonies, which emerged spontaneously from pYV-positive (P+) cultures growing at 37°C on brain heart infusion agarose with 238 µM Ca2+ (BHO) [16] and were used as negative controls. The expression of pYV-encoded genetic determinants in Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica was evaluated [7]. When P+ and P− strains were cultivated at 37°C for 24–48 h on a low-calcium brain heart infusion agarose with 238 µM Ca2+ (BHO), low-calcium tryptic soy broth agarose with 311 µM Ca2+ (TSO), and calcium-deficient magnesium
oxalate agar with tryptic soy agar (TSA) with 20% D-galactose, 0.25 M sodium oxalate, and 0.25 M magnesium chloride (MOX), the P+ cells of *Y. enterocolitica* and *Y. pseudotuberculosis* produced pinpoint colonies (0.36 mm in diameter; Figure 2(e)(A) at 24 h, whereas *Y. pestis* P+ formed pinpoint colonies at 48 h. The P− cells from each representative strain formed much larger colonies (1.37 mm in diameter; Figure 2(e)(B)). The size and colony morphology of each P+ strain when grown on 75 µg/mL Congo red (CR) containing BHO (CR-BHO), TSO (CR-TSO), and 1% CR containing (CR-MOX) showed identical expression of Lcr as well as CR-uptake (0.36 mm diameter; Figure 2(f)(A) under all these conditions (Table 1). CR-uptake was demonstrated as bright red pinpoint colonies in *Y. enterocolitica* and *Y. pseudotuberculosis* on all three media (Table 2). However, CR-uptake of *Y. pestis* gave a less intense red color as compared to that of *Y. enterocolitica* and *Y. pseudotuberculosis* on CR-BHO and CR-TSO (Table 2). An increase of CR concentration in BHO and TSO to 100 µg/mL, 150 µg/mL, and 200 µg/mL did not increase the color intensity of *Y. pestis* P+ colonies as compared to colonies of *Y. enterocolitica* and *Y. pseudotuberculosis*. On the basis of color contrast between the bacterial colony and the medium, CR-MOX was more suitable to show CR-uptake in *Y. pestis* as compared to CR-BHO (Table 2). The P− cells from each representative strain failed to bind CR and formed much larger colonies...
Another characteristic feature of the CR-uptake in P⁺ strains of *Y. enterocolitica* is the appearance of a white opaque circumference around the red center after 48 h of incubation at 37°C [17]. This characteristic colony type was also observed in *Y. pseudotuberculosis* after 48 h of incubation and in *Y. pestis* after 72 h of incubation. The timing of this colonial characteristic is another parameter that can be used for the identification of P⁺ strains of *Y. pseudotuberculosis* and *Y. pestis* [7, 17]. The cells in red pinpoint colonies (Figure 1, lanes 3, 7, and 11) and red centered colonies surrounded by a white border (Figure 1, lanes 4, 8, and 12) contained pYV in *Y. pseudotuberculosis* and *Y. pestis* similar to the cells reported in *Y. enterocolitica* [7, 17]. Cells in the surrounding white border (Figure 1, lanes 1, 5, and 9) do not contain pYV as demonstrated by PCR. When the pYV-bearing cells recovered from red pinpoint colonies were subcultured in BHI broth (brain infusion broth) at 28°C for 18 h, *Y. enterocolitica* and *Y. pseudotuberculosis* showed the presence of pYV by PCR (Figure 3, lanes 2 and 3) and pYV-associated phenotypic characteristics, while *Y. pestis* did not harbor pYV (Figure 3, lane 1) under the same conditions (Table 1). This showed that pYV is more stable in *Y. enterocolitica* and *Y. pseudotuberculosis* than in *Y. pestis*. Thus, CR uptake can also be used to isolate viable P⁺ cells in *Y. pseudotuberculosis* and *Y. enterocolitica* [7, 17–19].

The flooding of colonies of P⁺ strains on BHA, TSA, CR-BHO, CR-TSO, and CR-MOX grown at 37°C with CV solution at a concentration of 100 μg/mL showed that P⁺ cells from all three *Yersinia* species bound CV and produced dark-violet colonies (Table 1; Figure 2(a)(A)). The P⁻ colonies did not bind CV and remained white (Figure 2(a)(B)). The CV- and CR-binding assays can effectively identify individual pYV-bearing colonies from a mixed culture of P⁺ and P⁻ strains [7, 17, 20]. The CR uptake is unrelated to CV binding; these two phenomena are independent since CV uptake is not related to Lcr.

The colony size of P⁺ cells in *Y. enterocolitica* and *Y. pseudotuberculosis* was smaller (1.13 mm in diameter; Figure 2(b)(A)) than corresponding P⁻ cells when grown on BHA and TSA at 37°C (2.4 mm in diameter: Figure 2(a)(B) [16], whereas, P⁺ and P⁻ cells of *Y. pestis* were approximately the same size (1.3–1.4 mm SD ± 0.11 in diameter) at 37°C. This may be due to the fact that the optimum growth temperature of *Y. pestis* is 28°C (7, 9, 11, 14). Hydrophobicity by latex particle agglutination was positive (Figure 2(c)(A)) for *Y. enterocolitica* and *Y. pseudotuberculosis* but negative for P⁻ cells (Figure 2(c)(B)). *Y. pestis* showed no HP when pregrown cells were tested from CR-BHO, CR-TSO, CR-MOX, BHA, and TSA (Table 1). Thus, HP of *Y. enterocolitica* and *Y. pseudotuberculosis* was expressed in low calcium, calcium-deficient, and calcium-adequate media, indicating that HP is also a non-Lcr property.

The autoagglutination test in Eagle minimal medium supplemented with 10% fetal bovine serum was positive (Figure 2(d)(A)) for pYV-bearing *Y. enterocolitica* and *Y. pseudotuberculosis* but not for P⁻ cells (Figure 2(d)(B)). *Yersinia pestis* cultures failed to autoagglutinate (Table 1). In both the HP and AA tests, P⁻ strains were negative for the three species. The explanation for the absence of expression

![Figure 3: Detection of pYV in cells recovered from red pinpoint colony and subcultured in brain heart infusion broth at 28°C by PCR assay targeting virF gene of pYV. The primer pairs (5'-TCATGGCGAAGACGAGTCG-3' and 5'-ACTCCTTTACCATTAAGAAG-3') for detection of the virF gene (430-to 1020-nucleotide region) amplified a 591 base-pair (bp) product from the virulence plasmid. Lane M, 50–1,000 bp ladder marker; lane 1 showing the absence of 591-bp product in *Y. pestis*; lanes 2 and 3 showing the presence of 591-bp product in *Y. enterocolitica* and *Y. pseudotuberculosis*, respectively.](image-url)
of the HP and AA phenotypic characteristics under the conditions described above in Y. pestis may be due to the lack of synthesis of pYV-associated surface factors essential for HP and AA or due to a structural/regulatory variability of pYV [21].

In conclusion, of the six pYV-associated phenotypes evaluated, only three phenotypes (Lcr, CR-uptake, and CV binding) were expressed in Y. pestis, while all six properties were expressed in Y. enterocolitica and Y. pseudotuberculosis. This differential expression of pYV-encoded phenotypes may be attributed to in vitro assay conditions although pYV is genetically highly conserved in all these species [6, 12, 14, 21]. Thus, the pYV-encoded phenotypes can be used as virulence markers for these pathogens [7, 10, 11, 13]. Although the chromosomal DNA sequence showed that Y. pestis and Y. pseudotuberculosis are nearly identical and closely related [1, 14], the latter exhibits the same expression of pYV-associated phenotypes as the more distantly related Y. enterocolitica and shows similar characteristics and clinical symptoms [1].

3. Procedure to Monitor the Presence of pYV in Y. pestis Cells during Storage and Culturing by Using the Lcr-CR-Uptake Techniques

The well-characterized pYV-associated virulence determinants can be used to determine plasmid maintenance, for isolation/detection, and as an indication of virulence for various serotypes of pYV-bearing Y. enterocolitica in food

Table 1: Comparison of selected phenotypic expression of pYV-bearing Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis (adapted from [7]).

Organism	Strain	CM	CV binding	Lcr	CR-uptake	AA	HP	Plasmid
Y. enterocolitica	GER	+	+	+	+	+	+	
Y. enterocolitica-RE	GER	+	+	+	+	+	+	
Y. enterocolitica-C	GER	−	−	~	~	~	−	
Y. pseudotuberculosis	PB1/+	+	+	+	+	+	+	
Y. pseudotuberculosis-RE	PB1/+	+	+	+	+	+	+	
Y. pseudotuberculosis-C	PB1/+	−	−	~	~	~	−	
Y. pestis	KIM5	−	+	+	+	+	+	
Y. pestis-RE	KIM5	−	−	−	−	−	−	
Y. pestis-C	KIM5	−	−	−	−	−	−	
pYV-less Y. pestis	Kuma	−	−	−	−	−	−	

* Cells recovered from red pinpoint colonies and subcultured in BH broth at 28°C are designated as RE. The pYV-negative strains of Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis are designated as C (cured).
* CM: colony morphology. On calcium-adequate BHA (1500 μM Ca²⁺), and TSA (1400 μM Ca²⁺) the P⁺ cells appeared as small colonies (1.13 mm in diameter) as compared to larger P⁻ colonies (2.4 mm in diameter).
* CV binding: crystal violet binding. The P⁺ cells appeared as small dark-violet colonies, and the P⁻ cells showed large white colonies on calcium-adequate BHA (1500 μM Ca²⁺) and TSA (1400 μM Ca²⁺), low-calcium CR-BHO (238 μM Ca²⁺), CR-TSO (311 μM Ca²⁺), and calcium-deficient CR-MOX.
* Lcr: low calcium response/calium-dependent growth. The P⁺ cells appeared as pinpoint colonies (0.36 in diameter), and the P⁻ cells appeared large colonies (1.37 in diameter) on low-calcium CR-BHO (238 μM Ca²⁺), CR-TSO (311 μM Ca²⁺), and calcium-deficient CR-MOX.
* CR-Uptake: Congo red-uptake. The P⁺ cells appeared as red pinpoint colonies (0.36 in diameter), and the P⁻ cells appeared large white or light orange colonies (1.13 mm in diameter) on calcium-deficient CR-MOX.
* AA: autoagglutination. The P⁺ cells agglutinated. The P⁻ cells remained dispersed.
* HP: hydrophobicity by latex particles. The P⁺ cells formed clumps showing hydrophobicity. The P⁻ cells remained dispersed.
* Plasmid: presence of 70-kb pYV by PCR assay.

Table 2: Effect of media on CR-uptake in pYV-bearing Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis (adapted from [7]).

Organism	Strain	CR-BHO	CR-TSO	CR-MOX
Y. enterocolitica	GER	+	+	+
Y. enterocolitica-RE	GER	+	+	+
Y. enterocolitica-C	GER	−	−	−
Y. pseudotuberculosis	PB1/+	+	+	+
Y. pseudotuberculosis-RE	PB1/+	+	+	+
Y. pseudotuberculosis-C	PB1/+	−	−	−
Y. pestis	KIM5	−	+	+
Y. pestis-RE	KIM5	−	−	−
Y. pestis-C	KIM5	−	−	−
pYV-less Y. pestis	Kuma	−	−	−

* Cells recovered from red pinpoint colonies and subcultured in BH broth at 28°C are designated as RE. The pYV-negative strains of Y. enterocolitica Y. pseudotuberculosis, and Y. pestis are designated as C (cured).
* Low-calcium: CR-BHO (238 μM Ca²⁺) and CR-TSO (311 μM Ca²⁺). CR-MOX (calcium deficient).
[11, 17–20, 22–25], as well as to determine the presence of pYV in *Y. pestis* and *Y. pseudotuberculosis* [7]. The pYV is unstable in all three pathogens, and the loss of pYV after cultivation or during food processing results in avirulent clones (not lethal to mice; do not cause plague) [7, 11, 13, 26–30]. Repeated transfer of cultures, extended storage at 4°C or −20°C, and laboratory manipulation, as well as subculturing of *Y. pestis* at temperatures >30°C leads to the loss of pYV [7, 29, 30]. Moreover, pYV is more unstable in *Y. pestis* (Figure 3, lane 1) than in *Y. enterocolitica* and *Y. pseudotuberculosis* (Figure 3, lanes 2 and 3) [7, 29, 30]. The loss of pYV leads to the eventual overgrowth by cells lacking pYV and results in the loss of virulence and the concomitant disappearance of the pYV-associated virulence characteristics [7, 13, 25, 27, 28].

In a study on the growth of *Y. pestis* in ground beef, it was found that the cultures lost pYV during preparation of the inoculum [29]. It was not possible to maintain pYV in cells from the stock cultures using the standard procedures developed previously [13]. Thus, it was difficult to perform a study with *Y. pestis*, which reflected the actual behavior of pYV-bearing *Y. pestis*. In ground beef, the growth rates of pYV less cells were 0.096 and 0.287 CFU/h at 10 and 25°C, respectively; [30] whereas, for pYV-bearing cells, the growth rates were 0.057 CFU/h and 0.233 CFU/h at 10 and 25°C, respectively [29, 30]. The difference in growth rate between pYV-positive and pYV-negative strains of *Y. pestis* was more pronounced at lower temperatures. There was no growth of the pYV-bearing strain at 0 and 4°C as compared to the growth rates of pYV-negative strains of 0.003 and 0.016 CFU/h at 0 and 4°C, respectively, in ground beef [29]. Therefore, the lack of pYV leads to a faster growth rate and does not represent the true growth rate of the pYV-bearing strain. Hence, it is very important to maintain pYV in *Y. pestis* to properly study the growth behavior of a pYV-bearing strain in order to develop a growth model for this pathogen in food. The unstable nature of pYV in *Y. pestis* necessitates an examination for the presence of pYV and its virulence characteristics throughout laboratory manipulation and investigations.

Bhaduri et al. [30] developed a procedure to monitor the presence of pYV in *Y. pestis* cells during storage and culturing by using the Lcr-CR-binding techniques [7, 30], PCR assays, and the expression of pYV-associated virulence characteristics. It is essential to confirm the presence of pYV in the experimental culture by demonstrating that virulence-associated phenotypes were present and to confirm the presence of the pYV-encoded *virF* gene by a PCR assay (Figure 4, lane 3) [7, 15, 30]. The procedures for monitoring the presence of pYV and differentiating pYV positive clones from pYV-negative colonies during laboratory investigations are outlined in Table 3 [30]. As described in Table 3, the first step is to culture *Y. pestis* on CR-MOX and CR-BHO to isolate pYV-bearing clones from the frozen stock culture. The pYV-positive colonies appeared as red pinpoint colonies (0.36 mm in diameter) showing both Lcr and CR-uptake whereas pYV-negative colonies appeared as much larger white or orange colonies (1.37 mm in diameter) [7, 17, 30]. Colony morphology and CR-uptake were used to differentiate between pYV-positive clones and pYV-negative colonies. The Lcr and CR positive clones were further confirmed as pYV positive by the PCR assay (Figure 4, lane 4: CR-MOX and lane 5: CR-BHO) and by pYV-associated Lcr, CR uptake, and CV-binding phenotypes (see Table 3). These pYV-bearing clones were inoculated into BHI broth for the preparation of frozen and working stock cultures as described in Table 3. Before frozen storage and preparation of working stock cultures, the culture prepared in BHI broth at 28°C was tested for the presence of pYV and its virulence-associated phenotypes (Figure 4, lane 6). The Lcr-CR-positive clones on CR-MOX were used as working stock cultures and could be used for 15 days for laboratory studies. After that period of storage, the red pinpoint colonies of *Y. pestis* lost pYV (Figure 4, lane 11). The CR-BHO medium was also successfully used to ensure the selection of pYV in *Y. pestis* although CR-uptake was not as intense as on CR-MOX. The Lcr-CR positive clones were used as working stock cultures from CR-BHO and could be stored for 30 days at 2°C. To ensure the validity of this procedure for selecting pYV in *Y. pestis* cells, we also examined and monitored pYV stability during the subculturings of pYV-bearing cells in BHI broth, CR-MOX, and CR-BHO. *Yersinia pestis* from stock cultures stored at 2°C on CR-MOX and CR-BHO were subcultured as explained in Figure 5 [30]. The presence of pYV in *Y. pestis* cells in each medium and
Table 3: Isolation and maintenance of pYV in Y. pestis [30].

Day 1
(i) Frozen stock cultures were streaked onto CR-MOX and CR-BHO.
(ii) Plates were incubated at 37°C for 48 h for differentiation and isolation of pYV-bearing cells from pYV-less cells.

Day 3
(i) Using a stereomicroscope, red pinpoint colonies were examined to ensure Lcr and CR uptake. Using a sterile loop, 2-3 red pinpoint colonies were then inoculated into sterile 10 mL of BHI broth.
(ii) The broth was inoculated and incubated at 28°C for 18–24 h.

Day 4
(i) The overnight culture was divided into three portions: frozen stock cultures, working stock cultures, and cells used for PCR assay and for expression of pYV-encoded virulent phenotypic characteristics including Lcr, CR uptake, and CV binding.
(ii) Frozen stock cultures: 5 mL of overnight culture was mixed with equal portions of BHI broth and 20% glycerol and dispensed into 500 µL portions for storage at −80°C.
(iii) Working stock cultures: using a 10 µL loop, cells were streaked on CR-MOX and CR-BHO. The plates were incubated for 48 h at 37°C. Plates were then stored at 2°C for future use. Plates can be stored for 15 days for CR-MOX and 30 days for CR-BHO.
(iv) PCR assay: 1 mL portion of cells was centrifuged, and DNA was prepared for PCR assay. Presence of pYV was confirmed by PCR assay targeting the virF gene in pYV.
(v) The presence of pYV was also confirmed by demonstrating expression of phenotypic virulence characteristics including colonial morphology, CV binding, Lcr, and CR binding.

![Figure 5: Confirmation of pYV in Y. pestis, [30].](image)

after each passage was monitored and confirmed at every step of culture transfer (no. 2–5) by the PCR assay for pYV and by the expression of pYV-associated phenotypic virulence characteristics, including Lcr, CR uptake, and CV binding. The PCR data for the presence of pYV is shown in Figure 1 (lanes 7–10). PCR results confirm that primers amplified a 591-base pair (bp) product from pYV (virF gene) for each phase of the culture as described above, and all PCR-positive clones on CR-MOX and CR-BHO showed their virulent phenotypic characteristics including Lcr, CR-uptake, and CV binding. The presence of the virF gene demonstrates the presence of pYV, which confers pYV-associated phenotypes.

In conclusion, the described procedure provides a method to ensure the selection of pYV-bearing strains of Y. pestis and for studying pYV-bearing Y. pestis without losing pYV during experimental procedures [30]. Although CR-BHO is a better medium for subculturing pYV-bearing Y. pestis, the pYV-bearing red pinpoint colonies are more easily detectable on CR-MOX due to more intense absorption of CR in the cells [7]. Hence, the use of CR-MOX for the preparation of stock cultures and to monitor the selection of pYV is recommended for investigation on the growth of pYV-bearing Y. pestis in food. Thus, this procedure will allow only the Lcr-CR-positive pYV-bearing clones to be used to study growth behavior, growth models, and related studies in food.

4. Application of CR-MOX for Isolation/Detection of Yersinia pestis in Food

Yersinia pestis can cause oropharyngeal plague as a result of the consumption or handling of meat from infected animals [2–5]. Thus, food intentionally contaminated by Y. pestis could have a significant role in the dissemination of human plague. Existing microbiological media designed for the selective isolation/detection of Y. pestis in food based on phenotypic analysis were found to be unsatisfactory. The purpose of this section is to review the development of alternative methods for identification/isolation of pYV-bearing Y. pestis based on the ability of Y. pestis to bind CR on calcium-depleted CR-MOX under specific conditions.

At present, the World Health Organization (WHO) [31] recommends the use of brain heart infusion (BHA) sheep blood agar and MacConkey agar for the isolation of Y. pestis. These growth media are suitable for sterile food;
however, the isolation of \textit{Y. pestis} from nonsterile foods is complicated by the presence of background flora competing for nutrients in the medium. Thus, the numerous colonies grown on these nonselective media require additional testing for the identification of the pathogen. MacConkey agar possesses a certain degree of selectivity; but the presence of CV and bile salt restricts the growth of \textit{Y. pestis} [32]. The colonies show CR uptake only on CR-MOX at 37°C, and this method will enhance the isolation/detection of \textit{Y. pestis} strains in the presence of competing microflora by the proper selection of media and incubation times. The CR+ \textit{Y. pestis} clones can be further confirmed by PCR targeting the \textit{Y. pestis} specific plasmid-encoded plasminogen activator gene [33].

The calcium concentration in CR-BHO (234 μM Ca$^{2+}$) is relatively low, whereas in CR-MOX, sodium oxalate is used to sequester the calcium, making the medium calcium deficient [7, 16]. The comparison of CR uptake on calcium deficient CR-BHO and calcium-depleted CR-MOX among \textit{Y. pestis}, \textit{Y. pseudotuberculosis}, and \textit{Y. enterocolitica} showed that this virulent phenotype is seen in pYY-positive strains of \textit{Y. pestis} only when plated on calcium-depleted CR-MOX [7]. Thus, the CR uptake in \textit{Y. pestis} is more dependent on calcium depletion than that of \textit{Y. enterocolitica} and \textit{Y. pseudotuberculosis}. Therefore, specific CR uptake on CR-MOX by \textit{Y. pestis} can be used to differentiate \textit{Y. pestis} from \textit{Y. enterocolitica} and \textit{Y. pseudotuberculosis} [7]. This would provide diagnostic value as follows: the suspected food samples are plated on CR-BHO and CR-MOX. If the colonies show CR uptake only on CR-MOX at 37°C after 48 h of cultivation, then those CR+ colonies can be isolated and identified as \textit{Y. pestis} strains [7]. This technique will enhance the isolation/detection of \textit{Y. pestis} strains in food.
techniques,” Molecular and Cellular Probes, vol. 17, no. 2-3, pp. 99–105, 2003.
[16] S. Bhaduri, C. Turner-Jones, M. M. Taylor, and R. V. Lachica, “Simple assay of calcium dependency for virulent plasmid-bearing clones of Yersinia enterocolitica,” Journal of Clinical Microbiology, vol. 28, no. 4, pp. 798–800, 1990.
[17] S. Bhaduri, C. Turner-Jones, and R. V. Lachica, “Convenient agarose medium for simultaneous determination of the low-calcium response and congo red binding by virulent strains of Yersinia enterocolitica,” Journal of Clinical Microbiology, vol. 29, no. 10, pp. 2341–2344, 1991.
[18] S. Bhaduri, B. Cottrell, and A. R. Pickard, “Use of a single procedure for selective enrichment, isolation, and identification of plasmid-bearing virulent Yersinia enterocolitica of various serotypes from pork samples,” Applied and Environmental Microbiology, vol. 63, no. 5, pp. 1657–1660, 1997.
[19] S. Bhaduri and B. Cottrell, “Direct detection and isolation of plasmid-bearing virulent serotypes of Yersinia enterocolitica from various foods,” Applied and Environmental Microbiology, vol. 63, no. 12, pp. 4952–4955, 1997.
[20] S. Bhaduri, L. K. Conway, and R. V. Lachica, “Assay of crystal violet binding for rapid identification of virulent plasmid-bearing clones of Yersinia enterocolitica,” Journal of Clinical Microbiology, vol. 25, no. 6, pp. 1039–1042, 1987.
[21] T. Nesbakken, G. Kapperud, H. Sorum, and K. Dommarsnes, “Structural variability of 40–50 Mdal virulence plasmids from Yersinia enterocolitica. Geographical and ecological distribution of plasmid variants,” Acta Pathologica Microbiologica et Immunologica Scandinavica, vol. 95, no. 3, pp. 167–173, 1987.
[22] M. Fredriksson-Ahomaa and H. Korkeala, “Low occurrence of pathogenic Yersinia enterocolitica in clinical, food, and environmental samples: a methodological problem,” Clinical Microbiology Reviews, vol. 16, no. 2, pp. 220–229, 2003.
[23] K. Juriková, B. Gottwaldová, S. Jacková, and J. Šubík, “Characterization of Yersinia enterocolitica isolated from the oral cavity of swines in Slovakia,” International Journal of Food Microbiology, vol. 24, no. 3, pp. 419–424, 1995.
[24] E. Koeppel, R. Meyer, J. Luethy, and U. Candrian, “Recognition of pathogenic Yersinia enterocolitica by crystal violet binding and polymerase chain reaction,” Letters in Applied Microbiology, vol. 17, no. 5, pp. 231–234, 1993.
[25] S. D. Weagant, P. Feng, and J. T. Stanfield, Yersinia enterocolitica, and Yersinia pseudotuberculosis in Bacteriological Manual, Revision A. Food and Drug Administration, AOAC International, Gathersburg, Md, USA, 8th edition, 1998.
[26] J. J. P. Kwaga and J. O. Iversen, “Laboratory investigation of virulence among strains of Yersinia enterocolitica and related species isolated from pigs and pork products,” Canadian Journal of Microbiology, vol. 38, no. 2, pp. 92–97, 1992.
[27] S. C. Straley, “The low-Ca²⁺ response virulence regulon of human-pathogenic yersiniae,” Microbial Pathogenesis, vol. 10, no. 2, pp. 87–91, 1991.
[28] S. C. Straley, E. Skrzypek, G. V. Plano, and J. B. Bliska, “Yops of Yersinia spp. pathogenic for humans,” Infection and Immunity, vol. 61, no. 8, pp. 3105–3110, 1993.
[29] S. Bhaduri, “Effect of fat in ground beef on the growth and virulence plasmid (pYV) stability in Yersinia pestis,” International Journal of Food Microbiology, vol. 136, no. 3, pp. 372–375, 2010.
[30] S. Bhaduri, K. Chaney-Pope, and J. L. Smith, “A procedure for monitoring the presence of the virulence plasmid (pV) in Yersinia pestis under culture conditions,” Foodborne Pathogens and Disease, vol. 8, no. 3, pp. 459–463, 2011.
[31] D. T. Dennis, K. L. Gage, N. Gratz, J. D. Polan, and E. Tikhomriov, Plague Manual: Epidemiology, Distribution, Surveillance and Control, World Health Organization, Geneva, Switzerland, 1999.
[32] R. Ber, E. Mamroud, M. Aftalion et al., “Development of an improved selective agar medium for isolation of Yersinia pestis,” Applied and Environmental Microbiology, vol. 69, no. 10, pp. 5787–5792, 2003.
[33] C. Loiez, S. Herwegh, F. Wallet, S. Armand, F. Guinet, and R. J. Courcol, “Detection of Yersinia pestis in sputum by real-time PCR,” Journal of Clinical Microbiology, vol. 41, no. 10, pp. 4873–4875, 2003.