Evaluation of the significance of some diagnostic parameters in making an early diagnose of primary open-angle glaucoma

Barbara Polaczek-Krupa, Iwona Grabska-Liberek

Clinic of Ophthalmology, Medical Center of Postgraduate Education, Warsaw, Poland

Summary

Background: The aim of this study was to evaluate diagnostic parameters and analysis of their advantages and limitations in early diagnostics of primary open-angle glaucoma (POAG). Cup/disc ratio (C/D), nerve fiber index (NFI) and mean deviation of retinal sensitivity (MD) were considered.

Material/Methods: Fifty primary open-angle glaucoma patients (95 eyes), 67 primary open-angle glaucoma suspects (128 eyes), and 77 healthy subjects (148 eyes) underwent full ophthalmologic examination and also HRT, GDx and FDT examinations for determination of C/D, NFI, and MD parameters. Student’s t test was used to confirm the statistical significance of the differences between the particular group pairs. Histograms of distribution of the occurrence frequency of the parameter values in the groups were plotted.

Results: The mean values of C/D were 0.65±0.11, 0.58±0.11 and 0.43±0.11, NFI 37.0±22.7, 18.5±5.6 and 15.1±4.8 and MD –3.00±5.07, –0.77±2.49 and –0.29±1.94, respectively. Statistically significant differences between the particular groups were found. There was a partial overlapping of the histograms of distribution of the occurrence frequency of the parameter values.

Conclusions: The basic diagnostic C/D NFI and MD parameters in primary open-angle glaucoma patients, primary open-angle glaucoma suspects and healthy subjects differed significantly. These parameters are important diagnostic tools in glaucoma diagnosis. A limitation of their applicability is related to a high scatter of the results and their overlapping in particular groups.

key words: glaucoma • diagnostics • C/D • NFI • MD • standard deviation

Full-text PDF: http://www.medscimonit.com/fulltxt.php?ICID=883214

Word count: 1770
 Tables: 3
 Figures: 3
 References: 21

Author’s address: Iwona Grabska-Liberek, Clinic of Ophthalmology at the Medical Center of Postgraduate Education in Warsaw, Warsaw, Poland, e-mail: iliberek@gmail.com
BACKGROUND

Primary open-angle glaucoma (POAG) is a group of chronic, slowly progressive neuropathies of the optic nerve, with distinctive defects in the visual field and morphological changes of the optic disc and of the retinal nerve fibre layer. According to Weinreb et al. [1–3] the course of neuropathy can be divided into 3 stages. The first stage, which is the beginning of the apoptosis of ganglion cells and of the retinal nerve fibre atrophy, is undetectable with available diagnostic methods. In the second stage, changes in the retinal nerve fibre layer thickness and initial changes in the visual field can be ascertained. Diagnosing POAG and initiating its treatment at this stage increases the chance of stopping the progression of the disease. In the third stage the glaucomatous changes in the optic nerve and nerve fibre layer are advanced and although this makes the detection easy, the chance for stopping the progress of the disease is low. The aforementioned reasons make it clear that early diagnosis and initiation of treatment are crucial.

No objective symptoms of POAG are notable until slowly growing defects in the visual field encompass central vision and the patient suddenly loses useful visual acuity. Therefore, an active quest for early features of optic disc glaucomatous damage during an ophthalmological examination is necessary. The recent decade saw a tremendous growth in the development of auxiliary examination techniques that facilitate precise evaluation of the optic disc, the nerve fibre layer and the retinal sensitivity. Currently, methods such as Heidelberg Retinal Tomography (HRT), laser scanning ophthalmoscopy, GDxVCC laser scanning polarimetry and FDT II perimetry are among the more commonly used.

The use of the HRT method allows obtaining a 3D morphological image and determining detailed diagnostic parameters of the optic disc [4], such as the cup/disc ratio (C/D). The GDx laser scanning polarimetry allows the evaluation of retinal nerve fibre layers’ thickness in the peripapillary region, expressed as the nerve fibre index (NFI) [4]. The FDT enables the possibility of assessing the visual field and determining the retinal sensitivity mean deviation (MD) [5]. These parameters are widely used in the diagnostics of POAG.

The aim of this study was to evaluate diagnostic parameters (C/D, NFI, MD) and analyze their advantages and limitations in the early diagnostics of POAG.

MATERIAL AND METHODS

During the period 2007–2008, 194 patients (371 eyes) 30–65 years of age were recruited from the outpatient department of the Clinic of Ophthalmology, Medical Center of Postgraduate Education. Subjects were given prophylactic examination, refraction testing or testing for POAG. Tested subjects were divided into 3 groups. Group A consisted of 50 patients (95 eyes, average age 43.7±9.0 years) with diagnosed POAG, confirmed by additional examinations. Group B had 67 POAG suspects (128 eyes, average age 43.2±11.0 years) without glaucomatous visual field defects. Control group C included healthy subjects with normal results on examination for POAG (77 subjects, 148 eyes, average age 46.3±10.9 years). Demographics of the examined subject groups are shown in Table 1.

Inclusion criteria for A group were specified in accordance with the guidelines of the European Glaucoma Society [1] and described in detail in previous publications [6,7]: age over 35 years, regular anterior chamber angle, glaucomatous damage of the optic nerve head, as well as abnormal results of GDx and visual field examinations. For inclusion to group B, glaucoma-suspicious appearance of optic head nerve and GDx results, but normal results of visual field examination, were adopted. The subjects included to group C did not show any glaucoma-related abnormalities. Exclusion criteria were: eye refraction error greater than 2 Dspht and media opacity, which lowers the quality of HRT and GDx results. Subjects with very small or very large optic disc area (less than 1.69 mm² or more than 3.82 mm²) evaluated in HRT examination were also excluded.

Patients underwent detailed ophthalmological examinations and HRT (HRT II Heidelberg Engineering, Germany), GDx VCC (Laser Diagnostic Technologies, USA) and FDT (Hamphrey Matrix, Zeiss, Germany) examinations, to determine standard diagnostic parameters. C/D ratio was determined as square root of surface ratio of cup-to-disc [8]. NFI was determined as the probability of glaucomatous damage of the retinal nerve fibre layer [9]. MD value was determined as the difference between retinal sensitivity in a healthy eye (taking age into consideration) and retinal sensitivity values measured in the examined subject in all examined points [10].

All the basic ophthalmological examinations were performed at the Clinic of Ophthalmology, Medical Center of Postgraduate Education in Warsaw while GDx, HRT and FDT examinations were performed at the Institute of Glaucoma and Eye Diseases in Warsaw. The study was approved by the Bioethics Commission of the Medical Center of Postgraduate Education in Warsaw (resolution of 2 March 2005 and of 30 January 2008). The tested subjects were informed about the study and agreed to participate.

The significance of differences between the particular group pairs was tested by using Student’s t test. Histograms showing the frequency of occurrence of those parameters in individual groups were also drawn [11].

RESULTS

Results of the measurements of the nerve fibre layer thickness index (NFI), cup-to-disc ratio (C/D) and mean deviation of retinal sensitivity (MD) in POAG patients (group A), POAG suspects (group B) and in healthy subjects (group
C) are shown in Table 2. Results of the evaluation of the significance of differences between the group pairs of examined subjects are shown in Table 3. Histograms showing the frequency of occurrence of selected parameters (C/D, NFI and MD) in individual groups are shown in Figures 1–3.

Discussion

The juxtaposition of the results of C/D ratio measurements shows, as expected [1,27,28], a great difference of the parameter’s mean value (p=0.001) between healthy subjects (group C) and groups B (glaucoma suspects) and A (glaucoma patients). The difference is smallest between the mean values of the parameter in groups A and B, which makes evident the difficulties in differentiation between glaucoma patients and glaucoma suspects based on the evaluation of the optic disc. The results of our study are in agreement in particular with Jonas et al. [12] observations and confirm that linear C/D ratio is of great use in diagnosing primary open-angle glaucoma. Histograms showing the distribution of particular C/D values' frequency occurrence in individual groups (Figure 1) demonstrate partial overlapping of

Group	NFI	MD
A (59 eyes)	4.53	12.10
B (83 eyes)	3.62	4.36

Table 2. Results of the measurements of C/D, NFI and MD in particular groups.

Group	C/D	NFI	MD
A (glaucoma patients, 95 eyes)	0.65	37.0	-3.00
Standard deviation	0.11	22.7	5.07
B (glaucoma suspects, 128 eyes)	0.58	18.5	-0.77
Standard deviation	0.11	5.6	2.49
C (healthy subjects, 148 eyes)	0.43	15.1	-0.29
Standard deviation	0.11	4.8	1.94

Table 3. Student’s t test values for comparison of mean NFI, C/D and MD values in particular group pairs.

Compared groups	Total number of eyes	Critical value t (p=0.001)
A and B	223	3.34
A and C	243	3.339
B and C	276	3.338
curves. However, their shift between the control group of healthy patients and the glaucoma patients group is clearly visible, which is evidenced by a high significance of mean values’ differences in these groups (Table 3).

The results of measurements of the retinal nerve fibre layer thickness in the peripapillary region, shown in Table 2, expressed as a probability index of glaucomatous damage NFI, differ statistically significant between individual groups of tested subjects. The acquired results confirm previous observations of da Pozzo et al. [13], who have shown that the NFI is lower than 18 in healthy subjects and does not exceed 31 in glaucoma patients. The diagnostic value of the NFI has also been confirmed by Reus and Lemij [14], Zheng et al. [15] and Medeiros et al. [16]. According to the data collected in the GDx corporate materials [9], the glaucomatous damage probability index NFI below 30 defines this probability as low, NFI of 30–50 as suspicion of glaucoma, and NFI over 50 indicates an increased probability of glaucomatous damage to the retinal nerve fibre layer in the peripapillary region. Histograms showing the distribution of particular NFI values’ frequency of occurrence in individual groups (Figure 2) demonstrate overlapping of curves to a larger degree than in the case of C/D parameter; however, their shift between the control group of healthy patients and the glaucoma patients group is also visible, which can be confirmed by the high significance of differences of the NFI mean values in these groups (Table 3). The high dispersion of the NFI indicator observed in primary open-angle glaucoma suspects, and healthy subjects differs significantly. They are an important diagnostic tool in glaucoma diagnosis.

Mean values of the basic diagnostic parameters (C/D NFI and MD) in primary open-angle glaucoma patients, primary open-angle glaucoma suspects, and healthy subjects differed significantly. What limits the diagnostic value of these parameters is their wide span and overlapping in populations of primary open-angle glaucoma patients and healthy patients.

CONCLUSIONS

What limits the diagnostic value of these parameters is their wide span and overlapping in populations of primary open-angle glaucoma patients and healthy patients.

REFERENCES:

1. Terminology and guidelines for glaucoma. European Glaucoma Society, Editrice Dogma S.r.l., Savona (Italy), 2008
2. Weinreb RN, Friedman DS, Fechtner RD et al: Risk assessment in the management of patients with ocular hypertension. Am J Ophthalmol, 2004; 138: 458-67
3. Czechowicz-Janicka K: Optymalna diagnoza warunkiem sukcesu w leczeniu jaskry. Okulistyka, 2005; 2(1): 9–11 [in Polish]
4. Salinas-Van Orman E, Bashford KP, Craven ER: Obrazowanie warstw skłokiem narzewnych, placiky i tarczy narwka wojewodzkie w jaskryczce. Focal Points, Polish Ed., 2006: 24(8): 1–12 [in Polish]
5. Sample PA, Bosworth CF, Blumenthal EZ et al: Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest Ophthalmol Vis Sci, 2000; 41(7): 1783–90
6. Polaczek-Krupa B, Grabiska-Liberik I: Zmiany grubości siatkówki w okolicy placiky u chorych z jaskry pierwotną otwartego kąta mierzone za pomocą analizatora RTA. Klinika Oczna, 2010; 112(1–3): 24–28 [in Polish]
7. Polaczek-Krupa B, Grabiska-Liberik I: Ocena grubości siatkówki w okolicy placiky w populacji osób zdrowych wykonana za pomocą analizatora RTA. Klinika Oczna, 2009; 111(7–9): 217–20 [in Polish]
8. Heidelberg Retina Tomograph II. Operating Instructions. May 2001
9. Laser Diagnostic Technologies. Operation Manual. April 2005
10. Humphrey Matrix Visual Field Instrument. User’s guide. Welch Allyn 2003
11. Petrie A, Sahina C: Statystyka medyczna w zarysie. Wyd. Lekarskie PZWL, Warszawa, 2006 [in Polish]
12. Jonas JB, Bergua A, Schmitz-Valckenberg P et al: Ranking of optic variables for detection of glaucomatous optic nerve damage. Invest Ophthalmol Vis Sci, 2000; 41(7): 1764–73

13. Da Pozzo S, Fuser M, Vattovani O et al: GDx-VCC performance in discriminating normal from glaucoma eyes with early field loss. Graefes Archive for Clinical and Experimental Ophthalmology, 2006; 244(6): 689–95

14. Reus NJ, Lemij HG: Diagnostic accuracy of the GDx VCC for glaucoma. Ophthalmology, 2004; 111(10): 1860–65

15. Zheng W, Cui B et al: Retinal nerve fiber layer images captured by GDx-VCC in early diagnosis of glaucoma. Ophthalmologica, 2008; 222(17): 17–20

16. Medeiros FA, Bowd Ch, Zangwill LM et al: Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci, 2007; 48(7): 3146–53

17. Medeiros FA, Zangwill LM, Bowd Ch et al: Fourier analysis of scanning laser polarimetry measurements with variable corneal compensation in glaucoma. Invest Ophthalmol Vis Sci, 2003, 44(6): 2606–12

18. Da Pozzo S, Fuser M, Vattovani O et al: GDx-VCC performance in discriminating normal from glaucoma eyes with early field loss. Graefes Archive for Clinical and Experimental Ophthalmology, 2006; 244(6): 689–95

19. Bowd C, Zangwill LM, Berry CC et al: Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci, 2001; 42(9): 1993–2005

20. Boden C, Pascual J, Medeiros FA et al: Relationship of SITA and full-threshold standard perimetry to frequency-doubling technology perimetry in glaucoma. Invest Ophthalmol Vis Sci, 2005; 46(7): 2433–39

21. Racette L, Medeiros FA, Zangwill LM et al: Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Invest Ophthalmol Vis Sci, 2008; 49(5): 954–60