Original Research Article

TSH receptor antibodies in breast cancer and benign breast disease: a hospital based study

Jawahar Krishnaswamy, Reshma Sattar

Department of General Surgery, Saveetha Medical College, Chennai, Tamil Nadu, India

Received: 02 September 2017
Accepted: 31 October 2017

Correspondence:
Dr. Reshma Sattar,
E-mail: surgeonreshma@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Associations between breast cancer, benign breast tumours and thyroid disorders are reported in numerous studies. Relationship between thyroperoxidase antibodies (TPOAb), thyroglobulin antibodies (TgAb), and breast cancer have been previously demonstrated. However, no analysis has been performed concerning an association between thyrotropin (TSH) receptor antibodies (TSHRAb) and breast cancer. The aim of the study was to evaluate the presence of TSH Receptor antibodies in women with breast cancer or benign breast tumours, and to analyze a possible relationship between TSH Receptor antibodies, and these two groups of breast diseases with emphasis to laboratory findings.

Methods: Clinical and laboratory details of 87 women hospitalized were prospectively analyzed, using an Post hoc Tukey HSD for normally distributed continuous data, chi-square test for comparison.

Results: TSH Receptor antibody levels in breast cancer was statistically significant. We observed TSHRAb more frequently in patients with breast cancer. We found that TSHRAb is the only variable possessing as a prognostic marker for breast cancer.

Conclusions: The present study indicates that the serum levels of TSH Receptor Antibody are significant higher in patients with Breast cancer. These results have implications not only for the screening of patients but also for the development of new prognostic markers. Further high-quality prospective studies are needed to explore whether TSH Receptor Antibodies are potential prognostic markers for patients with Breast cancer.

Keywords: Breast cancer, Benign breast tumours, TSH receptor antibody, TSH

INTRODUCTION

Breast cancer is the most frequent malignant tumour in women worldwide with about 1 million women being affected.\(^1\) Breast cancer is a hormone dependent malignancy. Thyroid hormone receptors affect both the normal breast cell differentiation and breast cancer cell proliferation, with effects of thyroid hormones similar to those caused by estrogens.\(^2,3\) Some studies have indicated thyroid autoimmune changes as prognostic factors in breast cancer.\(^4\) Relationship between thyroid diseases with breast cancer was demonstrated in several studies.\(^5-8\) Some of the studies showed higher incidence of breast cancer in patients with thyroid dysfunction compared to healthy controls.\(^5,9-13\)

TSH Receptor Antibodies is present in thyroid autoimmune diseases. The ligand for TSH Receptor Antibody (i.e.) TSH Receptor, is also present in breast cancer tissue.\(^14\) Only limited aspects of potential association between TSHRAb and breast cancer have been postulated, whereas the exact mechanism has not
been identified. Genetic, environmental and molecular pathways of both female predominant diseases have been described, and integrated analysis of the above entities provides opportunity to identify the potential relevant common etiological mechanism.

The potential relationship between TSH Receptor antibodies and breast cancer has not been clearly documented, as the elevated serum levels of TPO Ab and Tg Ab in patients with breast cancer, detected in some studies, have not been confirmed elsewhere. Moreover, no conclusive research has been undertaken concerning significance of TSHRAb in patients with breast cancer and benign breast tumours. The aim of this prospective study is to determine the presence of TSH Receptor antibodies in women with breast cancer or benign breast tumours, and to analyse a possible relationship between TSH Receptor antibodies and these two groups of breast diseases with emphasis to laboratory findings.

METHODS

The study was carried out in Saveetha medical college and hospital, Chennai, India. The study included healthy controls (Group 1, \(n=29 \)), women with benign breast tumours (Group 2, \(n=29 \)), and women with breast cancer (Group 3, \(n=29 \)).

All patients were without any known thyroid disease, and studied before any radio or chemotherapy. Breast cancer patients, women with benign breast tumours and healthy controls gave formal consent for participation in the study. Signed informed consent was obtained from all participants, allowing analysis of all clinical and laboratory data mentioned in this paper.

All patients underwent serological determination of TSH Receptor antibodies based on electro chemiluminescence immune assay. The normal ranges were \(<1.22 \) IUL for TSH receptor antibody. Those women without any breast or thyroid disease were the control group. The clinical and laboratory details of 87 women hospitalized were prospectively analyzed, using a post hoc Tukey HSD for normally distributed continuous data, chi-square test for comperses.

RESULTS

Table 1: Mean age of all three groups.
Group

Age

A total number of 87 patients were included in this study. Out of this, 29 women were healthy controls, 29 women with benign breast tumours and 29 women with breast cancers.

The age of the patients ranged from 20 years to 92 years (Table 1).

Table 2: Parameters of the study population.
Parameter

TSHRAb (<1.22Iu/L)

Groups	Control group	Benign tumours	Breast cancer	Total
Normal range	27 (93.1%)	29 (100.0%)	23 (79.3%)	79 (90.8%)
Elevated	2 (6.9%)	0 (0%)	6 (20.7%)	8 (9.2%)
Total	29 (100.0%)	29 (100.0%)	29 (100.0%)	87 (100.0%)

All patients were without any known thyroid disease are studied. TSHR Ab were determined in healthy controls, women with benign breast tumours and breast cancer (Table 2).

Those women without any breast or thyroid disease were the control group. Out of these 29 patients in control group, 2 had elevated TSH Receptor antibody level.

Among the 29 patients with benign breast tumours there was no elevation of TSHR Ab (Table 3), which indicated no association of TSHR Ab with benign breast tumours.

Out of 29 patients with breast cancer, 6 had elevated levels of TSH Receptor antibodies, which indicated TSH Receptor antibodies are statistically significant in breast cancer (Table 3), (Figure 1), and association of TSH Receptor antibodies with breast cancer.
DISCUSSION

TSHR Ab is a positive determinant of breast cancer. The prevalence of TSHR Ab in breast cancer is 20.7%. In the present study, among 29 patients with breast cancer, 6 patients were found positive for TSHR Ab. TSHR Ab levels were significantly higher in our series in patients with breast cancer, comparing to controls and to patients with benign breast tumors.

Mammary gland is derived from iodide-concentrating ectoderm.\(^1\) Breast has absorption capacity of iodide for use as a milk ingredient during lactation.\(^5,26\) Increased intake of iodine is considered as a protective factor against the occurrence of breast cancer.\(^27\) The incidence of breast cancer has been attributed to differences in dietary iodine intake, and an effect of iodine on breast has been postulated (Mittra I, 1976).\(^27\) Uptake of iodide in to the breast alveolar and ductular cells happens in the mechanism of active transport via the glycoprotein - Na\(^+\)/I- symporter (NIS).\(^28\) The expression of NIS occurs in 80% to 90% breast cancer cases. TSH receptors are present in fatty tissue, which is abundant in mammary gland (Davies tf,1994).\(^29\) Additionally, some endocrine stimuli identified in thyroid products exert a simultaneous action on the breast and the various thyroid antibodies which could also interact with receptors on breast tumours. Thyroid antibodies could interact with the receptors on breast tumours.\(^30\) Interaction between TSHR Ab and breast cancer can occur, common in the adipose tissue.\(^31\) TSH Receptor expression is common in breast cancer, with higher prevalence in low-grade breast cancer.\(^14\)

In our study, TSHR Ab levels were significantly higher in breast cancer comparing to benign breast tumours and controls. They are positive determinants of breast cancer. Therefore, we suggest that TSHR Ab can be called a positive predictor for the subsequent development of breast cancer.

However, further research is needed to elucidate the mechanism linking Breast cancer and TSHR Ab. The major limitation of our study was the small sample size. Further studies including a larger group of patients are necessary to confirm the results. (Ditsch et al., 2010; Szychta et al., 2013).\(^2,33\)

CONCLUSION

The present study indicates that the serum levels of TSH Receptor Antibody are significant higher in patients with Breast cancer. These results have implications not only for the screening of patients but also for the development of new prognostic markers. Further high-quality prospective studies are needed to explore whether TSH Receptor Antibodies are potential prognostic markers for patients with Breast cancer.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Ferlay J, Bray F, Sankila R, Parkin D. GLOBOCAN 2002. Cancer incidence, mortality and prevalence worldwide, version 2.0,2004; IARC press; Lyon. Available at http://ci.cancer.fr/naid/10029456013/.
2. Dinda S, Sanchez A, Moudgil V. Estrogen-like effects of thyroid hormone on the regulation of tumor suppressor proteins, P53 and retinoblastoma, in breast cancer cells. Oncogene. 2002:21:761-8.
3. Conde I, Paniagua R, Zamora J, Blanquez MI, fraile B, Ruiz A, et al. Influence of thyroid hormone receptors on breast cancer cell proliferation. Ann Oncol. 2006;17:60-4.
4. Fiore E, Giustarini E, Mammoli C, Fragomeni F, Campani D, Muller I, et al. Favourable predictive value of thyroid autoimmunity in high aggressive breast cancer. J Endocrinol Invest. 2007;30(9):734-8.
5. Turken O, Narln Y, Demlrbas S, Onde ME, Sanyan O, Kandemlr EG, et al. Breast cancer in association with thyroid disorders. Breast Cancer Res. 2003;5:R110-3.
6. Hellevik Al, Asvold Bo, Bjoro T, Romundstad PR, Nilsen TI, Vatten LJ. Thyroid function and cancer risk: a prospective population study cancer Epidemiol Biomarkers Prev. 2009;18:570-4.
7. Tosovic A, Bondeson AG, Bondeson L, Ericsson UB, Malm J, Manjer J. prospectively measured triiodothyronine levels are positively associated with breast cancer risk in post-menopausal women. Breast Cancer Res. 2010;12:R33.
8. Siegler JE, Lix, Jones SD, Kandil E. Early-onset breast cancer in a woman with Graves’s disease. Int J Clin Exp Med. 2012;5:358-62.
9. Rasmussen B, Feldt-Rasmussen U, Hegedus L, Perrild H, Bech K, Hoier-madsen M. Thyroid...
function in patients with breast cancer. Eur J Cancer Clin Oncol. 1987;23:553-6.
10. Coebergh JWW, Janssen-Heijnen MLG, Louwman WJ, Voogd AC, eds. Cancer incidence, care and survival in the south of the Netherlands 1995-1999: A Report of the Eindhoven cancer Registry with cross-border implications 2001. Comprehensive cancer centre south (1kz), Eindhoven.
11. Schemhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, et al. Rotating night shifts and risk of breast cancer in women participating in the Nurse’s Health study. J Natl Cancer Inst. 2001;93:1563-8.
12. Smyth PPA, Shering SG, Kilbane MT, Murray MJ, Mc Dermott EWM, Smith DF. Serum thyroid peroxidase antibodies, thyroid volume, and outcome in breast carcinoma. J Clin Endocrinol Metab. 1998;83:2711-6.
13. Shering SG, Zbar AP, Moriarty M, McDermott EWM, O’ Higgins NJ, Smith PPA. Thyroid disorders and breast cancer. Eur J Cancer Pre. 1996;5:504-6.
14. Oh HJ, Chung JK, Kang JH, Kang WJ, NohDy, Park IA. The relationship between expression of the sodium/iodide symporter gene and the status of hormonal receptors in human breast cancer tissue. Cancer Res Treat. 2005;37:247-50.
15. Munoz JM, Gorman CA, Elveback LR, Wentz JR. Incidence of malignant neoplasms of all types of patients with Grave’s disease. Arch Intern Med. 1978;138:944-7.
16. Chen YK, Lin CL, Chang YJ, Cheng FT, Peng CL, Sung FC, et al. Cancer risk in patients with Grave’s disease: a nationwide cohort study. Thyroid. 2013;23(7):879-84.
17. Hardefeldt PJ, Eslick GD, Edirimanne S. Benign thyroid disease is associated with breast cancer: a meta-analysis. Breast Cancer Res Treat. 2012;133:1169-77.
18. Venturi S. Is there a role for iodine in breast diseases? Breast. 2001;10:379-82.
19. Jiskra J, Limanova Z, Barkmanova J, Smutek D, Fried Mannova Z. Autoimmune thyroid diseases in women with breast cancer and colorectal cancer. Pysiol Res. 2004;53:693-702.
20. Smyth PP. The thyroid, iodine and Breast cancer. Cancer Res Treat. 2003;5:235-8.
21. Giani C, Fierabracci P, Bonacci R, Gigliotti A, Campani D, De Negri F. Relationship between breast cancer and thyroid disease: relevance of autoimmune thyroid disorders in breast malignancy. J Clin Endocrinol Metab. 1996;81:990-4.
22. Smyth PPA, Shering S, Kilbane MT, Murray MJ, Mc Dermott EWM, Smith DF, et al. Serum thyroid peroxidase autoantibodies, thyroid volume, and outcome in breast cancer. J Clin Endocrinol Metab. 1998;83:2711-6.
23. Kuipjens IL, Nyklietek I, Louwman MW, Weetman TA, Pop VJ, Coebergh JW. Hypothyroidism might be related to breast cancer in post-menopausal women. Thyroid. 2005;15:1253-9.
24. Simon MS, Tang MT, Bernstein L, Norman SA, Weiss L, Burkman RT, et al. Do thyroid disorders increase the risk of breast cancer? Cancer Epidemiol Biomarkers Prev. 2002;11:1574-8.
25. Latif R, Morshed SA, Zaidi M, Davies TF. The thyroid-stimulating hormone receptor: Impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signalling. Endocrinol Metab Clin North AM. 2009;38:319-41.
26. Zygmunt A, Adamczewski Z, Wojciechowska-Durczynska K, Cyniag-Magierska A, Krawczyk-Rusiecka K, et al. Evaluation of efficacy of iodine prophylaxis in Poland based on the examination of school children living in apoczno Town (Lodz Vovod ship). Thyroid Res. 2012;5:23.
27. Mittra I, Perrin J, Kumaoka S. Thyroid and other autoantibodies in British and Japanese women: an epidemiological study of breast cancer. BMJ. 1976;1:257-9.
28. Beyer SJ, Jimenez RE, Shapiro CL, Cho YJ, Jhiang SM. Do cell surface trafficking impairments account for variable cell surface sodium iodide symporter levels in breast cancer? Breast Cancer Res Treat. 2009;115:205-12.
29. Davies TF. The thyrotrophin receptors spread themselves around. J Clin Endocrinol Metab. 1994;79:1232-8.
30. Dumont JE, Meinhaut C. Growth factors controlling the thyroid gland. Baillieres Clin Endocrinol Metabol. 1991;5:727-53.
31. Ali A, Mir MR, Bashir S, Hassan T, Bhat SA. Relationship between the levels of serum Thyroid Hormones and the Risk of Breast cancer. J Biol Agr Health C. 2011;2:56-60.
32. Ditsch N, Liebhardt S, Von Koch F, Lenhard M, Vogeser M, Spitzweg C. Thyroid function in breast cancer patients. Anticancer Res. 2010;30:1713-7.
33. Szychta P, Szychta W, Gesing A, Lewinski A, Karbownik-Lewinska M. TSH receptor antibodies have predictive value for breast cancer–retrospective analysis. Thyroid Research. 2013;6(1):8.

Cite this article as: Krishnaswamy J, Sattar R. TSH receptor antibodies in breast cancer and benign breast disease: a hospital based study. Int Surg J 2017;4:3989-92.