Articles

Comparison between total laparoscopy and laparoscopy-assisted distal gastrectomy for gastric cancer

A meta-analysis based on Japanese and Korean articles

Shuo-Meng Xiao, MM, Xiao-Jin Gao, MM, Ping Zhao, MB.

ABSTRACT

Objectives: To assess the safety and feasibility of total laparoscopy distal gastrectomy (TLDG).

Methods: This meta-analysis was conducted between April and July 2013 in Sichuan Cancer Hospital, Chengdu, China. We searched PubMed, EMBASE and China Knowledge Resource Integrated Database updated until May 2013. Eight retrospective studies and one prospective study involving 2,046 total patients were included.

Results: The results showed that TLDG was associated with lower blood loss (mean difference=-22.39, \(p=0.04\)). and a greater number of harvested lymph nodes (mean difference=2.74, \(p=0.02\)). There was no significant difference between the 2 groups in operation time, time to first flatus, length of postoperative hospital stay, and postoperative complications.

Conclusion: Compared with laparoscopy-assisted distal gastrectomy, TLDG resulted in reduced blood loss, and a greater number of harvested lymph nodes. Total laparoscopy distal gastrectomy is safe and feasible for gastric cancer.

Disclosure. Authors have no conflict of interests, and the work was not supported or funded by any drug company.
techniques advanced and the endoscopic linear stapler was developed, total laparoscopy distal gastrectomy (TLDG) was gradually applied. For TLDG, tumor location determination, specimen removal, and anastomotic reconstruction are different from LADG. Intracorporeal gastrointestinal anastomosis is the major difference between LADG and TLDG. A side-to-side anastomosis using a linear stapler, called “delta-shaped anastomosis,” is widely performed by gastrointestinal surgeons. Although there are difficulties associated with intracorporeal anastomosis, TLDG is considered to be less invasive, and results in smaller wounds, and is accepted by most surgeons. Many studies have been performed to compare the short-term clinical outcomes of TLDG and LADG, but there were many differences in the data in these studies. Therefore, we performed this meta-analysis to compare the immediate postoperative outcomes of TLDG, and LADG for gastric cancer, and to further assess the safety and feasibility of TLDG.

Methods. This meta-analysis was conducted from April to July 2013 in Sichuan Cancer Hospital, Chengdu, China. We searched PubMed, EMBASE, and the China Knowledge Resource Integrated Database (CNKI), and no restrictions were applied. The following key words were used: ‘gastric’ or ‘stomach,’ ‘cancer’ or ‘tumor’ or ‘carcinoma,’ ‘laparoscopy,’ or ‘laparoscopic,’ ‘laparoscopy-assisted’ or ‘laparoscopic-assisted,’ and ‘gastrectomy.’ The last search was conducted in May 2013. A total of 1,169 articles were selected (Figure 1). The collected studies for this meta-analysis met all of the following inclusion criteria: (1) contained both TLDG and LADG for gastric cancer; (2) study designs were retrospective case-control and prospective, non-random studies; and (3) sufficient data were provided. The main exclusion criteria included: (1) contained either TLDG or LADG alone for gastric cancer; (2) no sufficient data; (3) contained cases of total and proximal gastrectomy. According to the pre-specified inclusion and exclusion criteria, all data were extracted independently. Crosschecking was used to discover differences, and disagreements were resolved through discussion. The following data from each study were extracted: the name of the first author, year of publication, nationality of the corresponding author, study period, numbers of TLDG and LADG procedures, characteristics of patients, operation time, blood loss, postoperative hospital stay, lymph nodes, time to first flatus, and postoperative complications. When duplicate articles and data were discovered, the article that was published most recently, or contained more study subjects was included.

The RevMan 5.2 statistical package (The Cochrane Collaboration, www.cochrane.org) was used to perform statistical analysis of the data. Heterogeneity was assessed using the chi-squared test with significance set at $p<0.10$, and measured using the I² index. When $p<0.10$, the fixed effects model was used. When $p<0.10$, the random effect model was used. For qualitative variables (surgical complications), the odds ratio (OR) was used to assess the outcomes of these studies. For quantitative variables (operation time, blood loss, hospitalization days, lymph nodes, time to first flatus) the mean difference (MD) with 95% confidence interval (CI) was used to assess the outcomes of these studies. $P<0.05$ was considered as statistically significant. The study was approved by the Institution Review Board.

Results. In the process of searching the literature, only one prospective, multicenter study was found. We included both retrospective and prospective studies that were of high quality. A total of 9 studies were included in our meta-analysis, comprising 2,046 patients; 846 of these patients underwent TLDG and 1,200 underwent LADG. The main characteristics of the 9 studies were not statistically different, this information is listed in Table 1.

Operation time. Operation time was measured in all 9 studies. The meta-analysis results had shown that there was no significant difference for TLDG and LADG for gastric cancer in operation time. The heterogeneity test for operation time was: $I^2=95\%$, $p=0.00001$, and the test for overall effect was: $Z=0.28$, $p=0.78$ (Table 2).

Blood loss. There were 6 studies that provided data on blood loss (784 patients). Our results revealed that blood loss of TLDG was less than that of LADG. Meanwhile, a significant difference was displayed. The heterogeneity test for blood loss was: $I^2=61\%$, $p=0.02$, and the test for overall effect was: $Z=2.07$, $p=0.04$ (Figure 2).

Number of harvested lymph nodes. All studies (2,046 patients) provided data on the number of harvested lymph nodes. The MD of harvested lymph nodes came from TLDG minus LADG. Moreover, the result displayed the harvested lymph nodes was greater of TLDG than of LADG. Forest plot revealed that there was a significant difference between TLDG and LADG in the dissected lymph nodes. The heterogeneity test for the number of harvested lymph nodes was: $I^2=75\%$, $p=0.0001$, and the test for overall effect was: $Z=2.26$, $p=0.02$ (Figure 3).
Time to first flatus. Eight studies (1647 patients) provided data on the time to first flatus. The Forest plot results revealed there was no significant difference in the time to first flatus between TLDG and LADG. The heterogeneity test for time to first flatus was: $I^2=77\%$, $p<0.0001$, and the test for overall effect was: $Z=1.88$, $p=0.06$ (Table 2).

Postoperative hospital stay. All studies provided data on hospital stay, however, Kim et al. provided only mean hospital stay, not postoperative hospital stay, and so this study was excluded. Eight studies (1699 patients) were included for the analysis of postoperative hospital stay. The results showed that there was no significant difference in postoperative hospital stay between TLDG and LADG. The heterogeneity test for postoperative hospital stay was: $I^2=80\%$, $p<0.00001$, and the test for overall effect was: $Z=0.93$, $p=0.35$ (Table 2).

Postoperative complications. Not all studies provided intact data regarding postoperative complications. One study only analyzed the anastomosis-related complications, and one study did not provide any data on postoperative complications. We collected data on

Table 1 - Characteristics of studies of total laparoscopy distal gastrectomy (TLDG) and laparoscopy-assisted distal gastrectomy (LADG) for gastric cancer.

Study	Country	Study period	TLDG	LADG	Male to female ratio	Age, years	Body mass index (kg/m²)
Choi et al.	Korea	2007-2012	37	35	23:14	65.2±10.9	67.9±10.1
Lee et al.	Korea	2004-2011	130	126	97:43	61.0±11.2	60.1±11.7
Kinoshita et al	Japan	2005-2008	42	41	25:17	64.7±10.8	68.4±10.3
Ikeda et al.	Japan	2005-2006	20	20	13:7	58.7±7.1	58.5±10.1
Song et al.	Korea	2005-2006	20	20	13:7	58.7±7.1	58.5±10.1

Table 2 - Meta-analysis results of operation time, time to first flatus, postoperative hospital stay. Mean difference are shown with 95% confidence intervals (CIs).

Variables	No. of studies	No. of patients	Z	Mean difference inverse variance, random, 95% CI	P-value	I^2	P-value Heterogeneity test
Operation time	9	2046	0.28	2.15 (-12.67, 16.97)	0.78	95%	0.00001
Time to first flatus	9	2046	1.08	-0.17 (-0.35, 0.01)	0.06	77%	0.00001
Postoperative hospital stay	9	2014	0.93	-0.30 (-0.93, 0.33)	0.35	80%	0.00001

Figure 1 - Flow chart of the selecting process of articles. LADG - laparoscopy-assisted distal gastrectomy; TLDG - total laparoscopy distal gastrectomy. CNKI - China Knowledge Resource Integrated Database.
Comparison of TLDG and LADG in gastric cancer ... Xiao et al

the overall postoperative complications from 7 studies including a total of 1,607 patients. Forest plot results revealed there was no significant difference between TLDG and LADG. Moreover, we also analyzed the main postoperative complications, such as anastomotic leakage, wound problems, and postoperative bleeding (Table 3). Interestingly, these were no differences between the 2 groups.

Discussion. Laparoscopy gastrectomy (LG) was widely accepted for treating early gastric cancer in Japan and Korea.17,19 Many studies demonstrated the safety and feasibility of LG, and most surgeons performed LADG as the first step of LG.20-22 During the process of LADG, when the surrounding omentum is divided and the blood vessels are clipped, surgeons must pull the stomach out of the abdomen through a small
abdominal wall incision. Then, the surgeons cut off the stomach carcinoma, and perform the anastomosis extracorporeally. This process has technical difficulties, especially in cases of obese patients. However, compared with open surgery, LADG was less invasive, and was associated with shorter hospital stays and faster recovery time, except for several trocar puncture wounds, LADG only requires a small abdominal incision to complete the surgery. Along with the accumulated surgeon experience and improved anatomic equipment came the development of TLDG. Compared with LADG with extra-corporeal stomach dissection and gastroenterostomy, the specimen was extracted via a smaller incision, and anastomosis was performed intracorporeally during TLDG. The mini laparotomy was considered to be less invasive and more favorable. Existing research compared the short-term clinical outcomes between TLDG and LADG for gastric cancer, but inconsistent conclusions were reported. For example, some studies reported that TLDG can shorten the postoperative hospital stay, while other researchers do not agree. Therefore, we performed this meta-analysis to compare the clinical outcomes between TLDG and LADG to confirm whether TLDG should be recommended for distal gastrectomy.

In our studies, compared with LADG, TLDG had lower blood loss and more harvested lymph nodes. The smaller abdominal incision of TLDG may be the reason for lower blood loss. We cannot confirm why TLDG resulted in a greater number of harvested lymph nodes, but most studies observed this, and a statistically significant difference was displayed. The D2 lymph node dissection is the standard radical surgery for gastric cancer. Based on this radical surgery, the number of lymph nodes harvested should be the same in both TLDG and LADG. More high quality clinical trials are needed to confirm this inference. Although the mean difference in the operation time between TLDG and LADG was 2.15 in the current study, -there was no significant difference.

Many studies revealed that TLDG can shorten the postoperative recovery time and reduce postoperative complications. Our meta-analysis results revealed that no significant differences existed in the postoperative recovery time and complications between TLDG and LADG. In the studies from our search, only one reported the comparative outcome of total cost. Due to the requirement for more staplers, the cost of TLDG was higher than that of LADG. More studies are needed to compare surgery costs between LADG and TLDG. Due to the heterogeneity of the included studies, the meta-analysis results should be treated with caution.

Several limitations were discussed in our study. First, the sample size was low in some of the studies, and most of the studies included in this meta-analysis were retrospective studies, only one prospective, non-random study was included. Compared with randomized controlled trials, factors in the retrospective studies were not controlled, thereby decreasing the reliability of the results. Second, LADG and TLDG were performed from 2005-2012. Due to the experience of these surgeons and the fact that the learning curve revealed large differences, the clinical outcomes varied greatly. Therefore, it may be better to combine these studies using a random-effect model.

In summary, this meta-analysis provides evidence that TLDG significantly reduces intraoperative bleeding and harvests more lymph nodes. However, long-term follow-up outcome is not clear, especially regarding the recurrence rate and overall survival rate. At the same time, more prospective, random trials are needed to confirm the clinical outcomes of TLDG.

References

1. Sakuramoto S, Yamashita K, Kikuchi S, Futawatari N, Katada N, Watanabe M, et al. Laparoscopy versus open distal gastrectomy by expert surgeons for early gastric cancer in Japanese patients: short-term clinical outcomes of a randomized clinical trial. Surg Endosc 2013; 27: 1695-1705.
2. Qiu J, Pankaj P, Jiang H, Zeng Y, Wu H. Laparoscopy versus open distal gastrectomy for advanced gastric cancer: a systematic review and meta-analysis. Surg Laparosc Endosc Percutan Tech 2013; 23: 1-7.
3. Daigle C, Menghetti AT, Lam J, Panton ON. Laparoscopic management of gastrointestinal stromal tumours: review at a Canadian centre. Can J Surg 2012; 55: 105-109.
4. Qiu J, Pankaj P, Jiang H, Zeng Y, Wu H. Laparoscopy versus open distal gastrectomy for advanced gastric cancer: a systematic review and meta-analysis. Surg Laparosc Endosc Percutan Tech 2013; 23: 1-7.
5. Xu XW, Mou YP, Yan JF, Yan HJ, Xu B, Chen QL, et al. [Totally laparoscopic gastrectomy for gastric cancer]. Zhonghua Yi Xue Za Zhi 2010; 90: 386-389.
6. Kim HG, Park JH, Jeong SH, Lee YJ, Ha WS, Choi SK, et al. Totally laparoscopic distal gastrectomy after learning curve completion: comparison with laparoscopy-assisted distal gastrectomy. J Gastric Cancer 2013; 13: 26-33.
7. Choi YY, Kim YJ. Intracorporeal anastomosis using a Lapra-ty clip in laparoscopic distal gastrectomy: initial clinical experiences. J Laparoendosc Adv Surg Tech A 2011; 21: 51-55.
8. Liakakos T, Roukouz DH. Is there any long-term benefit in quality of life after laparoscopy-assisted distal gastrectomy for gastric cancer? Surg Endosc 2008; 22: 1402-1404.
9. Kim MG, Kim KC, Yook JH, Kim BS, Kim TH, Kim BS. A practical way to overcome the learning period of laparoscopic gastrectomy for gastric cancer. *Surg Endosc* 2011; 25: 3838-3844.

10. Kim MG, Kawada H, Kim BS, Kim TH, Kim KC, Yook JH, et al. A totally laparoscopic distal gastrectomy with gastroduodenostomy (TLDG) for improvement of the early surgical outcomes in high BMI patients. *Surg Endosc* 2011; 25: 1076-1082.

11. Ikeda O, Sakaguchi Y, Aoki Y, Harimoto N, Taomoto J, Masuda T, et al. Advantages of totally laparoscopic distal gastrectomy over laparoscopically assisted distal gastrectomy for gastric cancer. *Surg Endosc* 2009; 23: 2374-2379.

12. Kim BS, Yook JH, Choi YB, Kim KC, Kim MG, Kim TH, et al. Comparison of early outcomes of intracorporeal and extracorporeal gastroduodenostomy after laparoscopic distal gastrectomy for gastric cancer. *J Laparoendosc Adv Surg Tech A* 2011; 21: 387-391.

13. Kinoshita T, ShibaSaki H, Oshiro T, Ooshiro M, Okazumi S, Katoh R. Comparison of laparoscopy-assisted and total laparoscopic Billroth-I gastrectomy for gastric cancer: a report of short-term outcomes. *Surg Endosc* 2011; 25: 1395-1401.

14. Lee J, Kim D, Kim W. Comparison of laparoscopy-assisted and totally laparoscopic Billroth-II distal gastrectomy for gastric cancer. *J Korean Surg Soc* 2012; 82: 135-142.

15. Choi BS, Oh HK, Park SH, Park JM. Comparison of laparoscopy-assisted and totally laparoscopic distal gastrectomy: the short-term outcome at a low volume center. *J Gastric Cancer* 2013; 13: 44-50.

16. Song KY, Park CH, Kang HC, Kim JJ, Park SM, Jun KH, et al. Is totally laparoscopic gastrectomy less invasive than laparoscopy-assisted gastrectomy?: prospective, multicenter study. *J Gastrointest Surg* 2008; 12: 1015-1021.

17. Kitano S, Shiraishi N, Uyama I, Sugihara K, Tanigawa N; Japanese Laparoscopic Surgery Study Group. A multicenter study on oncologic outcome of laparoscopic gastrectomy for early cancer in Japan. *Ann Surg* 2007; 245: 68-72.

18. Lee JH, Han HS. A prospective randomized study comparing open vs laparoscopy-assisted distal gastrectomy in early gastric cancer: early results. *Surg Endosc* 2005; 19: 168-173.

19. Kim HH, Hyung WJ, Cho GS, Kim MC, Han SU, Kim W, et al. Morbidity and mortality of laparoscopic gastrectomy versus open gastrectomy for gastric cancer: an interim report--a phase III multicenter, prospective, randomized Trial (KLASS Trial). *Ann Surg* 2010; 251: 417-420.

20. Strong VE, Devaud N, Allen PJ, Gonen M, Brennan MF, Coit D. Laparoscopic versus open subtotal gastrectomy for adenocarcinoma: a case-control study. *Ann Surg Oncol* 2009; 16: 1507-1513.

21. Yoo CH, Kim HO, Hwang SI, Son BH, Shin JH, Kim H. Short-term outcomes of laparoscopic-assisted distal gastrectomy for gastric cancer during a surgeon's learning curve period. *Surg Endosc* 2009; 23: 2250-2257.

22. Yano H, Monden T, Kinuta M, Nakano Y, Tono T, Matsui S, et al. The usefulness of laparoscopy-assisted distal gastrectomy in comparison with that of open distal gastrectomy for early gastric cancer. *Gastric Cancer* 2001; 4: 93-97.

Related Articles

Pu YW, Gong W, Wu YY, Chen Q, He TF, Xing CG. Proximal gastrectomy versus total gastrectomy for proximal gastric carcinoma. A meta-analysis on postoperative complications, 5-year survival, and recurrence rate. *Saudi Med J* 2013; 34: 1223-1228.

Fram KM, Sumrein IM. Laparoscopic versus abdominal hysterectomy in the treatment of endometrial cancer. *Saudi Med J* 2013; 34: 11-18.

Beqiri AI, Domi RQ, Sula HH, Zaimi EQ, Petrela EY. The combination of infiltrative bupivacaine with low-pressure laparoscopy reduces postcholecystectomy pain. A prospective randomized controlled study. *Saudi Med J* 2012; 33: 134-138.