Research Article

Sera from Visceral Leishmaniasis Patients Display Oxidative Activity and Affect the TNF-α Production by Macrophages In Vitro

Neci M. Soares,1 Joelma N. de Souza,1 Tatiana F. Leal,1 Eliana A. G. Reis,2 Maria S. Miranda,1 Washington L. C. dos Santos,2 and Márcia C. A. Teixeira1

1Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
2Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil

Correspondence should be addressed to Neci M. Soares; necisoares@gmail.com

Received 11 April 2017; Accepted 8 October 2017; Published 5 November 2017

1. Introduction

Zoonotic visceral leishmaniasis (ZVL), caused by the intracellular protozoan parasite Leishmania infantum, is a tropical disease that is often fatal when untreated [1]. ZVL patients are usually unable to mount an effective immune response against the parasite and indeed appear to be immunosuppressed. This suppression has strong nonspecific and specific components mediated by serum factors and leishmanicidal activity of infected macrophages, respectively. The lipid profile has been shown to be altered in ZVL patients’ sera. This work aimed at (i) determining the HDL, Apo A1, LDL, and VLDL concentrations in ZVL patients’ sera; (ii) investigating the oxidative effect of ZVL patients’ sera on the β-carotene matrix; (iii) measuring IL-10, IL-6, IL-12p40, and tumour necrosis factor-α (TNF-α) concentrations in the macrophage cultures, to which 10% of ZVL patients’ serum had been added. Levels of HDL, LDL fraction, and apolipoprotein A1 in ZVL patients’ sera were lower than those of healthy individuals’ sera, except for the mean level of VLDL. The matrix of β-carotene and linoleic acid system was oxidized in the presence of ZVL patients’ sera. The presence of ZVL patients’ sera did not modify the cytokine production of IL-6, IL-12p40, and IL-10 by human macrophages in vitro but TNF-α production was altered, probably due to lack of macrophage stimulation by lipoprotein.
2. Methods

2.1. Sera Samples. A total of 15 blood samples, for serum preparation, were collected before chemotherapy, from 15 parasitologically diagnosed patients with ZVL, aged over 18 and seen at the Endemic Diseases Unit, Pirajá da Silva in Jequié (PIEJ), Bahia, Brazil. Control sera were collected from 15 age- and sex-matched (seemingly healthy) of same endemic region individuals, who did not have detectable anti-Leishmania antibody by ELISA [18]. All patients and volunteers were previously informed of the nature of the research and agreed to participate in the study. The project was approved by the Committee of Ethics in Research of the Gonçalo Moniz Research, Oswaldo Cruz Foundation.

2.2. Evaluation of Oxidant Activity of the ZVL Patients’ Sera Using the β-Carotene and Linoleic Acid System. Oxidant activity was assessed according to the methodology described by Marco (1968) [19] and modified by Fernández-Miranda et al. (1998) [20]. Fifteen ZVL patients’ and 15 healthy individuals’ sera were tested. The β-carotene solution was prepared by dissolving 1 mg of β-carotene in chloroform in a round-bottom flask containing 20 mg of linoleic acid and 200 mg of the emulsifier Tween 20 (β-carotene system). After removal of the chloroform by rotary evaporator at 50°C, 50 mL of distilled water was added under vigorous stirring. Aliquots (5 ml) of this emulsion were transferred to a series of test tubes containing in duplicate 0.2 mL of sera and initial absorbance (Abs) was read at 470 nm (time zero) in a spectrophotometer (BIOSPECTRO SP-220). The samples were then incubated in a water bath at 50°C for 120 min and the absorbances were read again at 470 nm. The oxidant activity was calculated considering 100% of absorbance in β-carotene system without serum (control) using the following formula:

\[
\text{Abs initial of sample} - \text{Abs final of sample} \times 100.
\]

2.3. Quantification of Sera Lipids. The serum levels of triglycerides, cholesterol, and fraction, and apolipoprotein A1 were determined with the use of commercially available kits (Labtest Diagnostica S.A., Belo Horizonte, Brazil), using enzymatic methodologies or Trinder’s final reaction (quinone imine formation).

2.4. Cell Culture. Healthy donors’ PBMC were separated using Ficoll-Paque (Sigma Chemical Co., St. Louis, USA) and cultured in 24-well plates in RPMI medium supplemented with amino acids and 10% normal AB human serum (complete RPMI), at 37°C and 5% CO₂. After 48 hours of culture, the wells were washed with RPMI at 37°C for removal of nonadherent cells and incubated in complete RPMI medium. On the seventh day 100 μl (10% v/v) of ZVL patients’ or healthy individuals’ sera was added to wells and the cultures were incubated for 24 hours at 37°C and 5% CO₂. The culture supernatants were then collected and stored at −20°C.

2.5. Quantification of Cytokines. Commercially available detection kits were used to determine the concentrations of IL-6, IL-12p40, TNF-α (Duo-set-Kit; R&D Systems, Inc.), and IL-10 (Human ELISA Set kit, BD Biosciences), following the manufacturers’ instructions.

2.6. Statistical Analyses. Analyses of the statistical significance of differences in lipid fractions and cytokines production found in ZVL patients and in normal individuals’ sera were carried out using the unpaired Student’s t-test. The correlation between oxidant activity of the ZVL patients’ sera and concentrations of HDL fraction was determined by Spearman test. Differences were considered as statistically significant when \(p < 0.05 \).

3. Results

Low levels of HDL, LDL fraction, and apolipoprotein A1 were found in ZVL patients’ sera. The mean level of HDL in those sera was 4.4 times lower than that of healthy individual sera. Conversely, the mean level of VLDL was higher in ZVL patients’ sera than that found in healthy individuals’ sera (\(p < 0.05 \), Table 1).

The matrix of β-carotene and linoleic acid system was oxidized to a higher degree in the presence of ZVL patients’ sera than in the presence of healthy individuals’ sera (\(p <
The percentage of oxidation had a negative correlation with the serum HDL-cholesterol concentration ($r = -0.86$, $p < 0.05$). The system in vitro used here did not show differences in the IL-6, IL-12p40, and IL-10 production by macrophages of healthy individuals in presence of ZVL patients’ sera or normal human sera. However, TNF-α production by macrophage in the presence of ZVL patients’ sera was inhibited, perhaps by the low concentration of LDL, two times lower than those found in normal individuals’ sera. A minimal concentration of LDL could be necessary to stimulate the TNF-α production by the macrophage infected by *Leishmania* in vitro. We have previously shown that LDL stimulates the production of TNF-α by infected PBMC-derived macrophage, and not by uninfected macrophage [4]. The synergy between infection and LDL was obligatory, and neither of them alone led to the production of high individuals’ sera, as well as low values of Apo A1 and LDL.

Table 2: Oxidant activity of 15 zoonotic visceral leishmaniasis (ZVL) sera and 15 healthy individuals’ sera on the β-carotene and linoleic acid and linoleic acid system.

Number of individuals	Oxidant activity (%)	Concentrations of HDL fraction (mg/dL)\(^a\)		
	ZVL patients	Healthy individuals	LV patients	Healthy individuals
1	93	32	7	37
2	52	33	5	36
3	86	24	7	39
4	85	23	6	41
5	26	36	18	32
6	52	30	8	34
7	11	51	16	48
8	41	32	9	59
9	25	36	15	32
10	27	32	10	37
11	51	21	7	53
12	94	29	6	42
13	30	48	9	58
14	92	34	5	35
15	25	42	11	31

Mean\(^b\) $52.7 ± 29.7$ \(33.5 ± 8.4\) \(9.3 ± 4.1\) \(40.9 ± 9.3\)

Correlation between oxidant activity of the ZVL patients’ sera and \(r = -0.86\), $p < 0.05$. \(^b\) Mean concentration in mg/dL$^{-1}$ ± standard deviation of the mean.

Discussion

Lipid disorders have been described in patients with active ZVL [4]. The serum lipid profile of these patients is characterized by hypertriglyceridemia with reduced levels of HDL and apolipoprotein A1. In the present work, it is shown that concentrations of HDL and its major apolipoprotein, Apo A1, and LDL were markedly reduced in ZVL sera when compared with those concentrations in the sera of normal individuals living in the same area. These results are in agreement with Bekker and collaborators (1989) [21], who reported decreased sera levels of HDL and Apo A1 in 17 Tunisian patients with ZVL, and with Liberopoulos and collaborators (2002) [22], who reported a case of a man with ZVL and severely decreased HDL-cholesterol serum levels. Soares and collaborators (2010) [4] described values of HDL in ZVL patients’ sera approximately six times lower than in normal individuals’ sera, as well as low values of Apo A1 and LDL.
concentration of the cytokines [4]. On the other hand, in some reports, the in vitro infection of macrophages by *Leishmania* was shown to promote the synthesis of IL-10, IL-6, TNF-α, and/or their correspondent mRNA, even in the presence of subphysiological concentrations of sera lipoproteins, that is, the concentrations present in a medium containing 10% normal serum [33–37].

Evidence has provided herein that ZVL patients’ sera oxidize the matrix of β-carotene and linoleic acid system but do not modify the production of IL-6, IL-12p40, and IL-10 by human macrophages in vitro. The TNF-α production in the presence of ZVL patients’ sera was inhibited, probably due to the low concentration of LDL in ZVL patients’ sera.

Conflicts of Interest

The authors declare that there are no financial or commercial conflicts of interest.

Acknowledgments

The authors wish to thank and pay tribute to Dr. Lain Carlos Pontes-de-Carvalho (in memoriam) for his valuable comments and linguistic improvement on this manuscript.

References

[1] L.-I. McCall, W.-W. Zhang, and G. Matlashewski, "Determinants for the development of visceral leishmaniasis disease," *PLoS Pathogens*, vol. 9, no. 1, Article ID e1003053, 2013.

[2] E. M. Carvalho, R. Badaro, S. G. Reed, T. C. Jones, and W. D. Johnson Jr., "Absence of gamma interferon and interleukin 2 production during active visceral leishmaniasis," *The Journal of Clinical Investigation*, vol. 76, no. 6, pp. 2066–2069, 1985.

[3] L. Saporito, G. M. Giammanco, S. De Grazia, and C. Colomba, "Visceral leishmaniasis: Host-parasite interactions and clinical
presentation in the immunocompetent and in the immunocompromised host," International Journal of Infectious Diseases, vol. 17, no. 8, pp. e572–e576, 2013.

[4] N. M. Soares, T. F. Leal, M. C. Fiuza et al., "Plasma lipoproteins in visceral leishmaniasis and their effect on Leishmania-infected macrophages," Parasite Immunology, vol. 32, no. 4, pp. 259–266, 2010.

[5] L. G. Costa, G. Giordano, and C. E. Furlong, "Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: The hunt goes on," Biochemical Pharmacology, vol. 81, no. 3, pp. 337–344, 2011.

[6] L. Gaidukov and D. S. Tawfik, "High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I," Biochemistry, vol. 44, no. 35, pp. 11843–11854, 2005.

[7] M. I. Mackness, S. Arrol, C. Abbott, and P. N. Durrington, "Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase," Atherosclerosis, vol. 104, no. 1-2, pp. 129–135, 1993.

[8] D. Cruz, A. D. Watson, C. S. Miller et al., "Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy," The Journal of Clinical Investigation, vol. 118, no. 8, pp. 2917–2928, 2006.

[9] K.-A. Rye and P. J. Barter, "Antiinflammatory actions of HDL. A new insight," Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 11, pp. 1890-1891, 2008.

[10] M. Barral-Netto, R. Badaro, A. Barral et al., "Tumor necrosis factor (cachectin) in human visceral leishmaniasis," The Journal of Infectious Diseases, vol. 163, no. 4, pp. 853–857, 1991.

[11] H. W. Ghalib, M. R. Piuvezam, Y. A. W. Skeiky et al., "Interleukin 10 production correlates with pathology in human visceral leishmaniasis," J. Pathology, vol. 146, no. 1, pp. 124–132, 2006.

[12] C. R. Engwerda, M. Ata, and P. M. Kaye, "Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis," Trends in Parasitology, vol. 20, no. 11, pp. 524–531, 2004.

[13] A. Caldas, C. Favali, D. Aquino et al., "Balance of IL-10 and interferon-γ plasma levels in human visceral leishmaniasis: implications in the pathogenesis," BMC Infectious Diseases, vol. 5, article 113, 2005.

[14] O. Bacellar, A. D’Oliveira Jr., S. M. B. Jerônimo, and E. M. Carvalho, "IL-10 and IL-12 are the main regulatory cytokines in visceral leishmaniasis," Cytokine, vol. 12, no. 8, pp. 1228–1231, 2000.

[15] M. L. Murphy, U. Wille, E. N. Villegas, C. A. Hunter, and J. P. Farrell, "IL-10 mediates susceptibility to Leishmania donovani infection," European Journal of Immunology, vol. 31, no. 10, pp. 2848–2856, 2001.

[16] V. Peruhype-Magalhães, O. A. Martins-Filho, A. Prata et al., "Mixed inflammatory/regulatory cytokine profile marked by simultaneous raise of interferon-γ and interleukin-10 and low frequency of tumour necrosis factor-α’ monocyes are hallmarks of active human visceral Leishmaniasis due to Leishmania chagasi infection," Clinical & Experimental Immunology, vol. 146, no. 1, pp. 124–132, 2006.

[17] S. G. Reed and P. Scott, "T-cell and cytokine responses in leishmaniasis," Current Opinion in Immunology, vol. 5, no. 4, pp. 524–531, 1993.

[18] A. Voller, A. Bartlett, and D. E. Bidwell, "Enzyme immunoassays with special reference to ELISA techniques," Journal of Clinical Pathology, vol. 31, no. 6, pp. 507–520, 1978.

[19] G. J. Marco, "A rapid method for evaluation of antioxidants," Journal of the American Oil Chemists’ Society, vol. 45, no. 9, pp. 594–598, 1968.

[20] C. Fernández-Miranda, F. Pulido, J. L. Carrillo et al., "Lipoprotein alterations in patients with HIV infection: Relation with cellular and humoral immune markers," Clinica Chimica Acta, vol. 274, no. 1, pp. 63–70, 1998.

[21] E. D. Bekaa, R. Kallel, M.-B. Bouma et al., "Plasma lipoproteins in infantile visceral Leishmaniasis: deficiency of apolipoproteins A-I and A-II," Clinica Chimica Acta, vol. 184, no. 2, pp. 181–191, 1989.

[22] E. Liberopoulos, G. Alexandridis, E. Bairaktari, and M. Elsaf, "Severe hypcholesterolemia with reduced serum Lipoprotein(a) in a patient with visceral leishmaniasis," Annals of Clinical & Laboratory Science, vol. 32, no. 3, pp. 305–308, 2002.

[23] T. M. Andrade, E. M. Carvalho, and H. Rocha, "Bacterial infections in patients with visceral leishmaniasis," The Journal of Infectious Diseases, vol. 162, no. 6, pp. 1354–1359, 1990.

[24] A. Kontush and M. J. Chapman, "Functionally defective high-density lipoprotein: A new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis," Pharmacological Reviews, vol. 58, no. 3, pp. 342–374, 2006.

[25] S. J. Nicholls, P. Lundman, J. A. Harmer et al., "Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function," Journal of the American College of Cardiology, vol. 48, no. 4, pp. 715–720, 2006.

[26] E. A. Podrez, "Anti-oxidant properties of high-density lipoprotein and atherosclerosis: Frontiers in research review: Physiological and pathological functions of high-density lipoprotein," Clinical and Experimental Pharmacology and Physiology, vol. 37, no. 7, pp. 719–725, 2010.

[27] N. V. Perova, R. G. Oganov, D. H. Williams et al., "Association of high-density-lipoprotein cholesterol with mortality and other risk factors for major chronic noncommunicable diseases in samples of US and Russian men," Annals of Epidemiology, vol. 5, no. 3, pp. 179–185, 1995.

[28] U. P. Steinbrecher, S. Parthasarathy, D. S. Leake, J. L. Witztum, and D. Steinberg, "Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 12, pp. 3883–3887, 1984.

[29] C. P. Sparrow, T. W. Doebber, J. Olszewski et al., "Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant n,n-diphenyl-phenylenediamine," The Journal of Clinical Investigation, vol. 89, no. 6, pp. 1885–1891, 1992.

[30] C. R. Engwerda, M. Ata, S. E. J. Cotterell et al., "A role for tumor necrosis factor-α in remodeling the splenic marginal zone during Leishmania donovani infection," The American Journal of Pathology, vol. 161, no. 2, pp. 429–437, 2002.

[31] G. W. Cockerill, K.-A. Rye, J. R. Gamble, M. A. Vadas, and P. J. Barter, "High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules," Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 11, pp. 1987–1994, 1995.

[32] R. Kallel, E. D. Bekaa, D. Y. Dubois, L. G. Alcindor, M. Ayraud-Jarrier, and A. Mebazaa, "Acute phase proteins and plasma lipoproteins during antimony treatment in infantile visceral leishmaniasis," Clinical Physiology and Biochemistry, vol. 10, no. 1, pp. 8–12, 1993.
[33] D. Chandra and S. Naik, "Leishmania donovani infection down-regulates TLR2-stimulated IL-12p40 and activates IL-10 in cells of macrophage/monocytic lineage by modulating MAPK pathways through a contact-dependent mechanism," Clinical & Experimental Immunology, vol. 154, no. 2, pp. 224–234, 2008.

[34] S. J. Green, S. Mellouk, S. L. Hoffman, M. S. Meltzer, and C. A. Nacy, "Cellular mechanisms of nonspecific immunity to intracellular infection: Cytokine-induced synthesis of toxic nitrogen oxides from l-arginine by macrophages and hepatocytes," Immunology Letters, vol. 25, no. 1-3, pp. 15–19, 1990.

[35] C. M. Theodos, L. Povinelli, R. Molina, B. Sherry, and R. G. Titus, "Role of tumor necrosis factor in macrophage leishmanicidal activity in vitro and resistance to cutaneous leishmaniasis in vivo," Infection and Immunity, vol. 59, no. 8, pp. 2839–2842, 1991.

[36] K. J. Moore and G. Matlashewski, "Intracellular infection by Leishmania donovani inhibits macrophage apoptosis," The Journal of Immunology, vol. 152, no. 6, pp. 2930–2937, 1994.

[37] P. M. A. Gorak, C. R. Engwerda, and P. M. Kaye, "Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection," European Journal of Immunology, vol. 28, no. 2, pp. 687–695, 1998.