FRATTINI-INJECTIVITY AND MAXIMAL PRO-p GALOIS GROUPS

ILIR SNOPCE AND SLOBODAN TANUSHEVSKI

ABSTRACT. We call a pro-p group G Frattini-injective if distinct finitely generated subgroups of G have distinct Frattinis. This paper is an initial effort toward a systematic study of Frattini-injective pro-p groups (and several other related concepts). Most notably, we classify the p-adic analytic and the solvable Frattini-injective pro-p groups, and we describe the lattice of normal abelian subgroups of a Frattini-injective pro-p group.

We prove that every maximal pro-p Galois group of a field that contains a primitive pth root of unity (and also contains $\sqrt{-1}$ if $p = 2$) is Frattini-injective. In addition, we show that many substantial results on maximal pro-p Galois groups are in fact consequences of Frattini-injectivity. For instance, a p-adic analytic or solvable pro-p group is Frattini-injective if and only if it can be realized as a maximal pro-p Galois group of a field that contains a primitive pth root of unity (and also contains $\sqrt{-1}$ if $p = 2$); and every Frattini-injective pro-p group contains a unique maximal abelian normal subgroup.

1. Introduction

Throughout, p stands for a prime number. Given a pro-p group G, we denote by $\Phi(G)$ the Frattini subgroup of G.

Definition 1.1. We say that a pro-p group G is Frattini-injective if the function $H \mapsto \Phi(H)$, from the set of finitely generated subgroups of G into itself, is injective.

This paper is an initial effort toward a systematic study of Frattini-injective pro-p groups (and several other related concepts). Straightforward examples of Frattini-injective pro-p groups are provided by the free abelian pro-p groups. In fact, they are the only Frattini-injective abelian pro-p groups, since all Frattini-injective pro-p groups are torsion-free or, better yet, they all have the unique extraction of roots property (see Corollary 2.3).

Every subgroup of a Frattini-injective pro-p group is also Frattini-injective. Furthermore, if U is an open subgroup of a Frattini-injective pro-p group G, then $d(U) \geq d(G)$ (see Proposition 2.6). This is already an indication that Frattini-injectivity is a quite restrictive condition. Nonetheless, as we shall soon see, many significant pro-p groups are indeed Frattini-injective.

Our first substantial result is

Mathematics Subject Classification (2020): Primary 20E18, 12F10; Secondary 12G05, 22E20.
Theorem 1.2. Let G be a p-adic analytic pro-p group of dimension $d \geq 1$. Then, G is Frattini-injective if and only if it is isomorphic to one of the following groups:

1. the abelian group \mathbb{Z}_p^d;
2. the metabelian group $\langle x \rangle \rtimes \mathbb{Z}_p^{d-1}$, where $\langle x \rangle \cong \mathbb{Z}_p$ and x acts on \mathbb{Z}_p^{d-1} as scalar multiplication by λ, with $\lambda = 1 + p^s$ for some $s \geq 1$ if $p > 2$, and $\lambda = 1 + 2^s$ for some $s \geq 2$ if $p = 2$.

It turns out that the Frattini-injective solvable pro-p groups are also quite scarce.

Theorem 1.3. Let G be a solvable pro-p group. Then, G is Frattini-injective if and only if it is free abelian or isomorphic to a semidirect product $\langle x \rangle \rtimes A$, where $\langle x \rangle \cong \mathbb{Z}_p$, A is a free abelian pro-p group and x acts on A as scalar multiplication by $1 + p^s$, with $s \geq 1$ if p is odd, and $s \geq 2$ if $p = 2$.

Next, we give a complete description of the lattice of abelian normal subgroups of a Frattini-injective pro-p group.

Theorem 1.4. Let G be a Frattini-injective pro-p group. Then, G has a unique maximal normal abelian subgroup N. Moreover, the following assertions hold:

(i) N is isolated in G.
(ii) Every subgroup of N is normal in G.
(iii) If $Z(G) \neq 1$, then $N = Z(G)$.
(iv) If $Z(G) = 1$ but $N \neq 1$, then $G \cong \mathbb{Z}_p \rtimes C_G(N)$ and $Z(C_G(N)) = N$.

There are two obvious ways of sharpening the Frattini-injectivity condition. Instead of confining to finitely generated subgroups, one can take all subgroups into consideration: We call a pro-p group G **strongly Frattini-injective** if the function $H \mapsto \Phi(H)$, from the set of all subgroups of G into itself, is injective. Alternatively, we may require the map $H \mapsto \Phi(H)$ to be an embedding of posets: A pro-p group G is defined to be **strongly Frattini-resistant** (Frattini-resistant) if for all (finitely generated) subgroups H and K of G,

$$H \leq K \iff \Phi(H) \leq \Phi(K).$$

(To understand our reason for the choice of terms, see Section 4, where Frattini-resistance and another related concept, commutator-resistance, are introduced in a unified manner.)

Every (strongly) Frattini-resistant pro-p group is (strongly) Frattini-injective. All solvable and all p-adic analytic Frattini-injective pro-p groups are strongly Frattini-resistant. Additional examples of strongly Frattini-resistant groups are provided by the free pro-p groups (Theorem 6.1).

If G is a Demushkin group, then $G^{ab} \cong \mathbb{Z}_p^d$ or $G^{ab} \cong \mathbb{Z}/p^e\mathbb{Z} \times \mathbb{Z}_p^{d-1}$ for some $e \geq 1$; set $q(G) := p^e$ in the latter and $q(G) := 0$ in the former case.

Theorem 1.5. Let G be a Demushkin pro-p group. Then, the following assertions hold:
(i) If \(q(G) \neq p \), or \(q(G) = p \) and \(p \) is odd, then \(G \) is strongly Frattini-resistant.

(ii) If \(q(G) = 2 \) and \(d(G) > 2 \), then \(G \) is Frattini-injective, but not Frattini-resistant.

(iii) If \(q(G) = 2 \) and \(d(G) = 2 \), then \(G \) is not Frattini-injective.

The absolute Galois group of a field \(k \) is the profinite group \(G_k =: \text{Gal}(k_s/k) \), where \(k_s \) is a separable closure of \(k \). The maximal pro-\(p \) Galois group of \(k \), denoted by \(G_k(p) \), is the maximal pro-\(p \) quotient of \(G_k \). Equivalently, \(G_k(p) = \text{Gal}(k(p)/k) \), where \(k(p) \) is the compositum of all finite Galois \(p \)-extensions of \(k \) inside \(k_s \). De-
lineating absolute (maximal pro-\(p \)) Galois groups of fields within the category of profinite (pro-\(p \)) groups is one of the central problems of Galois theory.

Theorem 1.6. Let \(k \) be a field containing a primitive \(p \)th root of unity. If \(p = 2 \), in addition, assume that \(\sqrt{-1} \in k \). Then \(G_k(p) \) is strongly Frattini-resistant.

Theorem 1.7. For any field \(k \) and odd prime \(p \), every pro-\(p \) subgroup of the absolute Galois group \(G_k \) is strongly Frattini-resistant. Moreover, if \(\sqrt{-1} \in k \), then also every pro-2 subgroup of \(G_k \) is strongly Frattini-resistant.

In what follows, \(k \) is a field containing a primitive \(p \)th root of unity, and also \(\sqrt{-1} \in k \) if \(p = 2 \). In the last few decades, substantial progress has been made in the direction of finding necessary conditions for a pro-\(p \) group to be realiz-
able as the maximal pro-\(p \) Galois group of some field \(k \) (cf. for example, \([2, 3, 9, 10, 11, 12, 20, 21, 24, 25, 30, 38]\) and references therein). Most notably, it follows from the positive solution of the Bloch-Kato conjecture by Rost and Voevodsky (with a ‘patch’ of Weibel; cf. \([33, 38, 41]\)) that every maximal pro-\(p \) Galois group \(G_k(p) \) is quadratic, i.e., the cohomology algebra \(H^\bullet(G_k(p), \mathbb{F}_p) = \bigoplus_{n \geq 0} H^n(G_k(p), \mathbb{F}_p) \) is generated by elements of degree 1 and defined by homogeneous relations of degree 2 (see \([29]\)). Another restriction discovered recently concerns the external cohomological structure of \(G_k(p) \), more precisely, for every \(\varphi_1, \varphi_2, \varphi_3 \in H^1(G_k(p), \mathbb{F}_p) \) the triple Massey product \(\langle \varphi_1, \varphi_2, \varphi_3 \rangle \) is not essential (cf. \([12, 24, 25]\)).

In contrast to the above-mentioned properties of maximal pro-\(p \) Galois groups, Frattini-injectivity (and also Frattini-resistance) is a fairly elementary and quite palpable group theoretic condition; yet, it seems to be highly restrictive. For instance, within the classes of \(p \)-adic analytic and solvable pro-\(p \) groups, Frattini-injectivity completely characterizes maximal pro-\(p \) Galois groups.

Corollary 1.8. Let \(G \) be a solvable or \(p \)-adic analytic pro-\(p \) group. Then, \(G \) is Frattini-injective if and only if it is isomorphic to \(G_k(p) \) for some field \(k \) that contains a primitive \(p \)th root of unity, and also contains \(\sqrt{-1} \) if \(p = 2 \).

In particular, we recover a result due to Ware \([40]\) (when \(p \) is odd and \(k \) contains a primitive \(p^2 \)th root of unity; for \(p = 2 \) see \([17, 39]\)) and Quadrelli \([28]\) (for all \(k \); see also \([32]\)).
Corollary 1.9. Let \(G \) be a solvable or \(p \)-adic analytic pro-\(p \) group. Then \(G \) can be realized as a maximal pro-\(p \) Galois group of some field \(k \) that contains a primitive \(p \)th root of unity (and also \(\sqrt{-1} \in k \) if \(p = 2 \)) if and only if it is free abelian or isomorphic to a semidirect product \(\langle x \rangle \rtimes A \), where \(\langle x \rangle \cong \mathbb{Z}_p \), \(A \) is a free abelian pro-\(p \) group and \(x \) acts on \(A \) as scalar multiplication by \(1 + p^s \), with \(s \geq 1 \) if \(p > 2 \), and \(s \geq 2 \) if \(p = 2 \).

As a corollary of Theorem 1.4, we obtain yet another well-known result on maximal pro-\(p \) Galois groups due to Engler and Nogueira [15] (for \(p = 2 \)) and Engler and Koenigsmann [14] (for \(p > 2 \)).

Corollary 1.10. Let \(k \) be a field containing a primitive \(p \)th root of unity (and \(\sqrt{-1} \in k \) if \(p = 2 \)). Then \(G_k(p) \) contains a unique maximal normal abelian subgroup.

More recently, 1-smooth cyclotomic pro-\(p \) pairs, a formal version of Hilbert 90 for pro-\(p \) groups (for a precise definition, see Section 7), have been investigated in an attempt to abstract essential features of maximal pro-\(p \) Galois groups (see [4], [13], [30], [31] and [32]).

Theorem 1.11. Let \(\mathcal{G} = (G, \theta) \) be a torsion-free 1-smooth cyclotomic pro-\(p \) pair. If \(p = 2 \), in addition, assume that \(\text{Im}(\theta) \leq 1 + 4\mathbb{Z}_2 \). Then \(G \) is strongly Frattini-resistant.

Consequently, many of the known properties of 1-smooth cyclotomic pro-\(p \) pairs can be obtained as consequences of Frattini-injectivity (see Section 7).

Outline of the paper: In Section 2, several elementary results on Frattini-injective pro-\(p \) groups are established. Theorem 1.2 is proved in Section 3. In Section 4, the concepts of Frattini-resistance and commutator-resistance are developed within the unifying framework of hierarchical triples. The proofs of Theorem 1.3 and Theorem 1.4 are given in Section 5. Section 6 is devoted to Free pro-\(p \) and Demushkin groups. In Section 7 Frattini-injectivity is investigated in the context of Galois theory. We close the paper with a brief section on another related concept, \(p \)-power resistance, and a section in which we formulate several problems that we hope will stimulate further research on Frattini-injective pro-\(p \) groups.

Notation: We take all group theoretic terms in the appropriate sense for topological groups; for instance, subgroups are assumed to be closed, homomorphisms are continuous, and generators are always understood to be topological generators. Let \(G \) be a pro-\(p \) group, \(H \) a subgroup of \(G \) and \(x, y \in G \). We use the following fairly standard notation: \(d(G) \) is the cardinality of a minimal generating set for \(G \); \(x^y = y^{-1}xy \) and \([x, y] = x^{-1}x^y \); the \(n \)th terms of the derived series and the lower central series of \(G \) are denoted by \(G^{(n)} \) and \(\gamma_n(G) \), respectively, with the exception of the commutator subgroup, which is always denoted by \([G, G] \); we write \(G^{ab} \) for
the abelianization of G; the center of G is denoted by $Z(G)$; $N_G(H)$ and $C_G(H)$ are the normalizer and the centralizer of H in G, respectively; G^p is the subgroup of G generated by pth powers of elements of G; the terms of the lower p-series are denoted by $P_i(G)$, so $P_1(G) = G$ and $P_{i+1}(G) = P_i(G)^p[G, P_i(G)]$ for $i \geq 1$.

2. Basic properties of Frattini-injective pro-p groups

Frattini-injectivity is obviously a hereditary property, that is, every subgroup of a Frattini-injective pro-p group is Frattini-injective. Furthermore, a Frattini-injective pro-p group is necessarily torsion-free: if a pro-p group G has a non-trivial element of finite order, then it has an element, say x, of order p and $\Phi(\langle x \rangle) = \{1_G\} = \Phi(\langle 1_G\rangle)$. Hence, the only Frattini-injective finite p-group is the trivial group, which henceforth will be tacitly disregarded.

Lemma 2.1. Let G be a Frattini-injective pro-p group, and let H be a finitely generated subgroup of G. Then $N_G(H) = N_G(\Phi(H))$. In particular, $H \trianglelefteq G$ if and only if $\Phi(H) \trianglelefteq G$.

Proof. Since $\Phi(H)$ is a characteristic subgroup of H, it follows that $N_G(H) \leq N_G(\Phi(H))$. For the other inclusion, let $x \in G \setminus N_G(H)$; then $H \neq x^{-1}Hx$ and by Frattini-injectivity $\Phi(H) \neq \Phi(x^{-1}Hx) = x^{-1}\Phi(H)x$. Hence, $x \notin N_G(\Phi(H))$. \qed

A subgroup H of a pro-p group G is said to be isolated (in G) if $x \in H$ whenever $x^p \in H$. (More generally, the condition implies that for every $\alpha \in \mathbb{Z}_p \setminus \{0\}$, if $x^\alpha \in H$, then $x \in H$.) A related concept (which will appear only later) is the isolator of a subgroup H of a pro-p group G; it is the smallest isolated subgroup of G containing H.

Proposition 2.2. Every maximal abelian subgroup of a Frattini-injective pro-p group is isolated.

Proof. Let G be a Frattini-injective pro-p group, and let A be a maximal abelian subgroup of G. Consider an element $x \in G$ such that $x^p \in A$, and set $H := \langle x, A \rangle$. Then $x^p \in Z(H)$, and thus $\Phi(\langle x \rangle) = \langle x^p \rangle \trianglelefteq H$. It follows from Lemma 2.1 that $\langle x \rangle \trianglelefteq H$. This, in turn, implies that $[x, a] \in \langle x \rangle$ for every $a \in A$. Consequently,

$$1 = [x^p, a] = [x, a]x^{p-1}[x, a]x^{p-2} \cdots [x, a] = [x, a]^p.$$

Since all Frattini-injective pro-p groups are torsion free, it follows that $[x, a] = 1$ for every $a \in A$. Hence, H is abelian, and as A is a maximal abelian subgroup of G, we get that $H = A$, i.e., $x \in A$. \qed

Corollary 2.3. Let G be a Frattini-injective pro-p group, $x, y \in G$, and $\alpha, \beta \in \mathbb{Z}_p \setminus \{0\}$. The following assertions hold:

(i) If G is virtually abelian, then it is abelian.
(ii) All centralizers of elements of G are isolated.
(iii) If x^α and y^β commute, then x and y commute.
(iv) If $x^α = y^α$, then $x = y$, i.e., G has the unique extraction of roots property.

Proof. (i) is an immediate consequence of Proposition 2.2. In order to prove (ii), suppose that $y^p \in C_G(x)$. Then $H := \langle x, y^p \rangle$ is an abelian group, and it is contained in some maximal abelian subgroup A of G. By Proposition 2.2, $y \in A$, and hence $y \in C_G(x)$.

Suppose that $x^α$ and $y^β$ commute. Then $y^β \in C_G(x^α)$, and it follows from (ii) that $y \in C_G(x^α)$. By applying the same argument to the pair of commuting elements y and $x^α$, we conclude that x and y commute, which proves (iii).

Now, (iv) is a consequence of (iii) and the fact that free abelian groups of rank two have the unique extraction of roots property. □

Remark 2.4. Note that all of the claims collected in Corollary 2.3 hold true for torsion-free (pro-p) groups all of whose maximal abelian subgroups are isolated. Furthermore, a pro-p group G has the unique extraction of roots property if and only if every maximal abelian subgroup of G is isolated. Indeed, suppose that G is a pro-p group with the unique extraction of roots property. Then, G is torsion free and distinct cyclic subgroups of G have distinct Frattinis. As in the proof of Lemma 2.1, we deduce that for every cyclic subgroup H of G, if $Φ(H) \leq G$, then $H \leq G$. Now observe that besides torsion-freeness, this is the only other property of Frattini-injective pro-p groups used in the proof of Proposition 2.2.

Lemma 2.5. Let G be a finitely generated pro-p group, and let M be a maximal subgroup of G. If $d(M) < d(G)$, then $d(G) = d(M) + 1$ and $Φ(G) = Φ(M)$.

Proof. Suppose that $d(M) < d(G)$, and let $x \in G \setminus M$. Since $G = \langle x, M \rangle$, we must have $d(G) = d(M) + 1$. Furthermore,

$$|G : Φ(M)| = |G : M||M : Φ(M)| = p^{1+d(M)} = p^{d(G)} = |G : Φ(G)|,$$

and as $Φ(M) ≤ Φ(G)$, it follows that $Φ(M) = Φ(G)$. □

Proposition 2.6. Let G be a Frattini-injective pro-p group. Then, every finitely generated subgroup H of G satisfies the following property: if K is an open subgroup of H, then $d(K) ≥ d(H)$.

Proof. This follows directly from Lemma 2.5 by induction on the index of the open subgroup. □

3. Frattini-injective p-adic analytic pro-p groups

A pro-p group G is said to be powerful if p is odd and $[G,G] ≤ G^p$, or $p = 2$ and $[G,G] ≤ G^4$. A finitely generated powerful pro-p group G such that $|P_i(G) : P_{i+1}(G)| = |G : P_2(G)|$ for all $i ∈ \mathbb{N}$ is called uniform. By [7, Theorem 4.5], a powerful finitely generated pro-p group is uniform if and only if it is torsion-free. Uniform pro-p groups play a central role in the theory of p-adic analytic groups:
A topological group is p-adic analytic if and only if it contains an open uniform pro-p subgroup (see [4, Theorems 8.1 and 8.18]).

In the seminal paper [23], Lazard defined saturable pro-p groups. For our purposes, it is enough to know that every uniform pro-p group is saturable. To every saturable pro-p group G one can associate a (saturable) \mathbb{Z}_p-Lie algebra L_G. Moreover, the assignment $G \mapsto L_G$ defines an equivalence between the category of saturable pro-p groups and the category of saturable \mathbb{Z}_p-Lie algebras. One advantage of working with saturable pro-p groups stems from the fact that every torsion-free p-adic analytic pro-p group of dimension less than p is saturable (see [16, Theorem E]), but in general not uniform.

A uniform pro-p group is said to be hereditarily uniform if all of its open subgroups are also uniform.

Proposition 3.1. Every hereditarily uniform pro-p group is Frattini-injective.

Proof. Let G be a hereditarily uniform pro-p group. Suppose that there are distinct subgroups H and K of G such that $\Phi(H) = \Phi(K)$. Without loss of generality, we may assume that there is some $x \in H \setminus K$. Choose an open subgroup U of G such that $K \leq U$ and $x \notin U$. Then $x^p \in \Phi(H) = \Phi(K) \leq \Phi(U)$. Since U is uniform, $\Phi(U) = U^p$ and $x^p = z^p$ for some $z \in U$ ([7, Lemma 3.4]). By unique extraction of roots in G ([7, Lemma 4.10]), $x = z$, which yields a contradiction with $x \notin U$. □

The hereditarily uniform pro-p groups were classified in [19]. It turns out that a uniform pro-p group G is hereditarily uniform if and only if it has a constant generating number on open subgroups, that is, $d(U) = d(G)$ for every open subgroup U of G (cf. [18] and [19, Corollary 1.12]).

Proposition 3.2. Let G be a Frattini-injective p-adic analytic pro-p group. Then, G is virtually hereditarily uniform. More precisely, G contains an open subgroup U isomorphic to one of the following groups:

1. the abelian group \mathbb{Z}_p^d with $d \geq 1$;
2. the metabelian group $\langle x \rangle \ltimes \mathbb{Z}_p^d$, where $d \geq 1$, $\langle x \rangle \cong \mathbb{Z}_p$, and x acts on \mathbb{Z}_p^d as scalar multiplication by λ, with $\lambda = 1 + p^s$ for some $s \geq 1$ if $p > 2$, and $\lambda = 1 + 2^s$ for some $s \geq 2$ if $p = 2$.

Proof. It follows from [7, Theorem 8.32] that there is an open subgroup U of G that is uniform. For every open subgroup V of U, we have $d(V) \geq d(U)$ by Proposition 2.6, and also $d(U) \geq d(V)$ by [7, Theorem 3.8]. Hence, U is a uniform pro-p group with constant generating number on open subgroups. By [18, Corollary 2.4], U is isomorphic to one of the groups listed in the proposition. In particular, U is a hereditarily uniform pro-p group (cf. [19, Corollary 1.12]). □

The rest of this section is devoted to eliminating the adverb “virtually” from Proposition 3.2. We begin with several lemmas.
Lemma 3.3. Let p be an odd prime, and let $G = \langle x \rangle \rtimes N$, where $\langle x \rangle \cong \mathbb{Z}_p$ and $N \cong \mathbb{Z}_p^d$ for some $d \geq 1$, be a saturable pro-p group. Suppose that x^p acts on N as scalar multiplication by $1 + p^s$ for some $s \geq 1$. Then, $s \geq 2$ and there is a unit $\alpha \in \mathbb{Z}_p^*$ such that x^α acts on N as scalar multiplication by $1 + p^{s-1}$.

Proof. Note that the maximal subgroup $H := \langle x^p \rangle \rtimes N$ of G is uniform, and therefore saturable. Consider the \mathbb{Z}_p-Lie algebras L_G and L_H associated to G and H, respectively. Then, L_H is a maximal subalgebra of L_G, and we can choose elements y_1, y_2, \ldots, y_d from N such that $\{x, \bar{y}_1, \bar{y}_2, \ldots, \bar{y}_d\}$ is a basis for L_G and $\{px, \bar{y}_1, \bar{y}_2, \ldots, \bar{y}_d\}$ is a basis for L_H. Furthermore, we can assume that for each $1 \leq i \leq d$, we have $[\bar{y}_i, px]_{\text{Lie}} = p^s \bar{y}_i$. Hence, we must have $[\bar{y}_i, x]_{\text{Lie}} = p^{s-1} \bar{y}_i$. Moreover, $s - 1$ cannot be 0, since in that case L_G would not be residually-nilpotent. Therefore, for some suitable unit $\alpha \in \mathbb{Z}_p^*$, the element x^α acts on N as scalar multiplication by $1 + p^{s-1}$.

Lemma 3.4. Let $G = \langle x \rangle \rtimes N$, where $\langle x \rangle \cong \mathbb{Z}_p$ and $N \cong \mathbb{Z}_p^d$ for some $d \geq 1$. Suppose that x^p acts on N as scalar multiplication by $1 + p^s$ for some $s \geq 1$ if $p > 2$, and as scalar multiplication by $1 + 2^s$ for some $s \geq 2$ if $p = 2$. If $p + 2 \leq \dim(G)$, then $d(G) > 2$.

Proof. Suppose that $p + 2 \leq \dim(G)$ and $d(G) = 2$. Then $G = \langle x, y \rangle$ for some $y \in N$. From $(x^p)^{-1}yx^p = y^{1+p^s}$, we get that the set $T = \{x^{-i}yx^i \mid 0 \leq i \leq p-1\}$ generates N. Hence, $d(N) \leq |T| \leq p < p + 1 \leq d = d(N)$, which yields a contradiction.

Lemma 3.5. Let p be an odd prime, and let $G = \langle x \rangle \rtimes N$, where $\langle x \rangle \cong \mathbb{Z}_p$ and $N \cong \mathbb{Z}_p^{p-1}$, be a Frattini-injective pro-p group. Suppose that x^p acts on N as scalar multiplication by $1 + p^s$ for some $s \geq 1$. Then $d(G) > 2$.

Proof. Suppose by way of contradiction that $d(G) = 2$. Then $G = \langle x, y \rangle$ for some $y \in N$. For $1 \leq i \leq p$, set $y_i := x^{-(i-1)}yx^{i-1}$. Since $(x^p)^{-1}yx^p = y^{1+p^s}$, the set $\{y_i \mid 1 \leq i \leq p\}$ generates N. Moreover, after (possibly) replacing y by $x^{-(i-1)}yx^{i-1}$ for a suitable $1 \leq i \leq p$, we may assume that $\{y_1, y_2, \ldots, y_{p-1}\}$ is a basis for N.

Let $\alpha_1, \alpha_2, \ldots, \alpha_{p-1} \in \mathbb{Z}_p$ be such that $x^{-1}y_{p-1}x = y_1^{\alpha_1}y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-1}}$. Then

$$y_1^{1+p^s} = y_1^{p^s} = (y_{p-1})^{x^2} = (y_1^{\alpha_1}y_2^{\alpha_2} \cdots y_{p-2}^{\alpha_{p-2}}y_{p-1}^{\alpha_{p-1}})$$

$$= y_2^{\alpha_1}\cdot y_3^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-2}}(y_1^{\alpha_1}y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-1}})^{\alpha_{p-1}}$$

$$= y_1^{\alpha_1}\cdot y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-2}}y_3^{\alpha_2+\alpha_3} \cdots y_{p-2}^{\alpha_{p-3}+\alpha_{p-2}}y_{p-1}^{\alpha_{p-2}+\alpha_{p-1}}.$$

By comparing exponents, we get the following relations:
It readily follows that
\[\alpha_i = (-1)^i \alpha_{p-1}^{p-i} \]
for \(1 \leq i \leq p - 2 \) and \(-\alpha_{p-1}^{p} = 1 + p^s\). If \(s = 1 \), the equation \(-\alpha_{p-1}^{p} = 1 + p^s\) does not have a solution in \(\mathbb{Z}_p \). Hence, we may assume that \(s \geq 2 \), in which case, there is a unique \(\omega \in \mathbb{Z}_p \) such that
\[-w^p = 1 + p^s.\]
It follows that \(\alpha_i = (-1)^i \omega^{p-i} \) for \(1 \leq i \leq p - 1 \).

Consider the open subgroup \(H := \langle x, y_1^p \rangle = \langle x \rangle \Phi(N) \) of \(G \). We have that \(y_1^{-p} y_2^p = [y_1^p, x] \in \Phi(H) \), and it follows by induction that
\[y_{i+1}^{-p} y_{i+2} = y_i^{-p} y_{i+1}^p [y_i^{-p} y_{i+1}^p, x] \in \Phi(H) \]
for every \(1 \leq i < p - 2 \).

Since \(\langle y_1^{-p} y_2^{p}, y_3^{-p} y_3^{p}, \ldots, y_{p-2}^{-p} y_{p-2}^{p}, y_1^{p} \rangle \) has index \(p \) in \(\Phi(N) \), it follows that
\[\Phi(H) = \langle x, y_1^{-p} y_2^{p}, y_3^{-p} y_3^{p}, \ldots, y_{p-2}^{-p} y_{p-2}^{p}, y_1^{p} \rangle. \]

Next, consider the open subgroup \(K := \langle x, y_2^p \rangle \) of \(G \). Observe that \(K \neq H \).

For every \(\tilde{y} \in N \), we have \([\tilde{y}, x, y_2] = [\tilde{y}, x]\). Hence, as for the subgroup \(H \), we can deduce that \(y_i^{-p} y_{i+2}^p \in \Phi(K) \) for every \(1 \leq i < p - 2 \). Using the identities
\[y_i^\beta x = x y_i^\beta \]
\((1 \leq i \leq p - 2) \) and \(y_{p-1}^\beta x = x (y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-1}})^\beta \), we obtain
\[
(xy_2)^p = x^2 y_3 y_3 \cdots y_3 y_2 = x^3 y_1 y_1 \cdots y_3 y_3 y_2 = \cdots = x^{p-2} y_{p-1} x y_{p-1} x (y_{p-1} \cdots y_3 y_2) \\
= x^{p-1} y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-2}} (y_{p-1}^{\alpha_{p-1}} x) y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-2}} (y_{p-1} \cdots y_3 y_2) \\
= x^{p-1} y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-2}} x (y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-1}})^{\alpha_{p-1}} y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-2}} (y_{p-1} \cdots y_3 y_2) \\
= x^p y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-2}} (y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-1}})^{1+\alpha_{p-1}} (y_{p-1} \cdots y_3 y_2) \\
= x^p y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-2}} (y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-1}})^{1+\alpha_{p-1}} y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-2}} (y_{p-1} \cdots y_3 y_2) \\
= x^p y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-2}} (y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_{p-1}^{\alpha_{p-1}})^{1+\alpha_{p-1}} (y_{p-1} \cdots y_3 y_2). \\
\]
Moreover, it follows from \((\text{II}) \) that
\[(xy_2)^p = x^p y_1^{1+\alpha_1+p^s} y_2^{1+\alpha_2} y_3^{1+\alpha_3} \cdots y_{p-2}^{1+\alpha_{p-2}} y_{p-1}^{1+\alpha_{p-1}}. \]

Observe that \(\omega \equiv -1 \pmod{p} \), and thus \(\alpha_i \equiv -1 \pmod{p} \) for every \(1 \leq i \leq p - 1 \). Let \(l_i \in \mathbb{Z}_p \) be such that \(1 + \alpha_i = pl_i \) \((1 \leq i \leq p - 1) \). Then
\[
(xy_2)^p (y_{p-2}^{1+\alpha_1+p^s} y_{p-3}^{1+\alpha_2+p^s} \cdots (y_{p-3}^{1+\alpha_2+p^s} y_{p-2}^{1+\alpha_2+p^s} + \cdots + l_2) (y_1^{1+\alpha_1+p^s} y_2^{1+\alpha_2+p^s} + \cdots + l_2)) \\
= x^p y_1^{(1+\alpha_1+p^s) + (1+\alpha_2) + \cdots + l_2} \\
= x^p y_1^{(1+\alpha_1+p^s) + (1+\alpha_2) + \cdots + (1+\alpha_{p-2}) + (1+\alpha_{p-1})}. \\
\]
where \(\gamma = (\alpha_1 + 1 + p^s) + (1 + \alpha_2) + (1 + \alpha_3) + \cdots + (1 + \alpha_{p-2}) + (1 + \alpha_{p-1}) \).
For $1 \leq m \leq \frac{p-1}{2}$, we have $1 + \alpha_{p-(2m-1)} = 1 + \omega^{2m-1} = (1 + \omega)u_m$, where $u_m = 1 - \omega + \omega^2 - \cdots - \omega^{2m-3} + \omega^{2m-1}$, and $1 + \alpha_{p-2m} = 1 - \omega^{2m} = (1 + \omega)v_m$, where $v_m = (1 - \omega)(1 + \omega^2 + \omega^4 + \cdots + \omega^{2(m-1)})$. From $(-1)^i \omega^{p-i} \equiv -1 \pmod{p}$, we get that

$$u_m \equiv 2m - 1 \pmod{p} \text{ and } v_m \equiv 2m \pmod{p}.$$

Hence,

$$\tilde{\gamma} := \frac{v_{p-1}}{u} + u_{p-1} + v_{p-3} + u_{p-3} + \cdots + v_1 + u_1$$

$$\equiv (p - 1) + (p - 2) + \cdots + 2 + 1 = \frac{(p - 1)p}{2} \equiv 0 \pmod{p}.$$

Since $\gamma = p^s + (1 + \omega)\tilde{\gamma}$ and $s \geq 2$, it follows that p^2 divides γ. Therefore, $x^p \in \Phi(K)$. Now it is easy to see that

$$\Phi(K) = \langle x^p, y_1^p y_2^p, y_2^{-p} y_3^p, \ldots, y_{p-2}^{-p} y_{p-1}^p, y_1^{p^2} \rangle = \Phi(H),$$

which yields a contradiction. Hence, we must have $d(G) > 2$. \hfill \Box

Lemma 3.6. Let $G = \langle x \rangle \times N$, where $\langle x \rangle \cong \mathbb{Z}_p$ and $N \cong \mathbb{Z}_p$, be a Frattini-injective pro-p group. Suppose that x^p acts on N as scalar multiplication by $1 + p^s$ for some $s \geq 1$ if $p > 2$, and as scalar multiplication by $1 + 2^s$ for some $s \geq 2$ if $p = 2$. Then $d(G) > 2$.

Proof. Suppose that $d(G) = 2$. Then $G = \langle x, y \rangle$ for some $y \in N$, and $\{x^{-i}yx^i \mid 0 \leq i \leq p - 1\}$ is a basis for N. Set $y_1 := y$ and $y_{i+1} := [y_i, x]$ for $1 \leq i \leq p - 1$. Then $\{y_1, y_2, \ldots, y_p\}$ is also a basis for N.

It is easy to see that $y_2^p = y_2 y_3 \cdots y_{i+2} \cdots y_{k+2}$ for every $1 \leq k \leq p - 2$, and

$$y_2^{p-1} = \left(y_2^{p-2} y_3 \cdots y_{i+2} \cdots y_{k+2} \right)^x = y_2^{p-2} y_3^{(p-2)} \cdots y_{i+2}^{(p-2)} \cdots y_{k+2}^{(p-2)}$$

Moreover,

$$y_2^p = [y_2, x] = [y_1, y][y_1, x]^x \cdots [y_1, x]^{x^{p-2}} [y_1, x]^{x^{p-1}} = y_2 y_2^x \cdots y_2^{x^{p-2}} y_2^{x^{p-1}}.$$

By first expressing each y_2^k ($1 \leq k \leq p - 1$) in terms of the basis y_1, \ldots, y_p of N, and then applying the hockey-stick identity, $\sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1}$, to simplify exponents, we obtain $y_2^p = \gamma \gamma_{i+1} \cdots \gamma_{p-1} y_1^{x^p - 1} y_p^x$. Hence,

$$[y_p, x] = y_2^{x^p - (p)} y_2^{x^{p-1} - (p)} \cdots y_1^{x^{p-2} - (p)} y_p^{x^{p-1} - (p)},$$

Case 1: $s \geq 2$. Consider the open subgroup $H := \langle x, y_1^p, y_2 \rangle$ of G. It is not difficult to see that $d(H) = 3$. However, $K := \langle x, y_1^p \rangle$ is an open subgroup of H with $d(K) < d(H)$, which contradicts Proposition 2.6.
Case 2: $s = 1$ (and thus $p > 2$). Consider the subgroups $H := \langle x, y \rangle$ and $K := \langle xy^{-1}, y \rangle$ of G. Observe that $H \neq K$. It is straightforward to see that

$$\Phi(N) = \langle [y_p, x], [[y_p, x], x], \ldots, [y_p, x] \rangle = \langle [y_p, xy^{-1}], \ldots, [y_p, xy^{-1}] \rangle.$$

Hence, $\Phi(N)$ is a subgroup of both $\Phi(H)$ and $\Phi(K)$. Moreover, it is not difficult to see that $\Phi(H) = \langle x^p, \Phi(N) \rangle$. Since $\gamma_3(\langle x, y \rangle^{-1}) \leq \Phi(N)$, it follows from the Hall-Petresco formula that

$$(xy^{-1})^p \equiv x^p \mod \Phi(N).$$

This implies that $\Phi(K) = \langle x^p, \Phi(N) \rangle = \Phi(H)$, a contradiction. \qed

Lemma 3.7. Let $G = \langle x \rangle \ltimes \langle y \rangle$, where $\langle x \rangle \cong \langle y \rangle \cong \mathbb{Z}_2$ and x acts on $\langle y \rangle$ either as scalar multiplication by $-(1 + 2^s)$ for some $s \geq 2$ or by inversion. Then G is not Frattini-injective.

Proof. Suppose first that x acts on $\langle y \rangle$ as scalar multiplication by $-(1 + 2^s)$ for some $s \geq 2$. Consider the subgroups $H = \langle x, y^{2s-1} \rangle$ and $K = \langle xy, y^{2s-1} \rangle$ of G. Obviously, $H \neq K$. Moreover, $\Phi(H) = \langle x^2, y^{2s} \rangle$ and $\Phi(K) = \langle (xy)^2, y^{2s} \rangle$. Since $(xy)^2 = x^2y^{2s}$, it follows that $\Phi(H) = \Phi(K)$. Therefore, G is not Frattini-injective.

Now suppose that x acts on $\langle y \rangle$ by inversion. Then $(xy)^2 = x^2$, and thus $\Phi(\langle x \rangle) = \Phi(\langle xy \rangle)$. Hence, in this case also G is not Frattini-injective. \qed

Proof of Theorem 1.2. One implication follows from Proposition 3.1. For the other implication, suppose that G is Frattini-injective. By Proposition 3.2, G contains an open hereditarily uniform subgroup U. If U is abelian, then by Corollary 2.3 (i), $G \cong \mathbb{Z}_p^d$. Hence, we may assume that $U = \langle y \rangle \ltimes N$, where $\langle y \rangle \cong \mathbb{Z}_p$, $N \cong \mathbb{Z}_p^{d-1}$, and y acts on N as scalar multiplication by $\lambda = 1 + p^s$ for some $s \geq 1$ (or $s \geq 2$ if $p = 2$).

We proceed by induction on $|G : U|$. If $G = U$, there is nothing to prove; so, suppose that $|G : U| \geq p$. In fact, running along a subnormal series from U to G, it suffices to consider the case $|G : U| = p$.

Let $x \in G \setminus U$; then $G = \langle x \rangle U$ and $x^p \in U$. Note that N is the isolator of the commutator subgroup $[U, U]$ of U. Hence, N is a characteristic subgroup of U. Since U is normal in G, it follows that N is also normal in G.

Consider the group $K = \langle x \rangle N$. We consider two separate cases: $x^p \in N$ and $x^p \notin N$.

Case 1: $x^p \in N$. Then, K is a Frattini-injective pro-p group that contains an abelian subgroup N of index p. By Corollary 2.3 (i), $K \cong \mathbb{Z}_p^{d-1}$. From $\Phi((y^{-1}xy)) = \langle y^{-1}x^py \rangle = \langle (x^p)^\lambda \rangle = \Phi((x^\lambda))$, it follows that $y^{-1}xy \in \langle x \rangle$. Moreover, we have that $(x^\lambda)^p = (x^p)^\lambda = y^{-1}x^py = (y^{-1}xy)^p$. By Corollary 2.3 (iv), $y^{-1}xy = x^\lambda$. Therefore, y acts on K as scalar multiplication by λ and $G = \langle y \rangle \ltimes K \cong U$ is of the required form.
Case 2: \(x^p \notin N \). Then, \(x^p = y^p w \) for some \(k \in \mathbb{N} \) and \(w \in N \).

Subcase 2.1: \(p \) is odd and \(k \geq 1 \). Since \(N \) is characteristic in \(U \), conjugation by \(x \) induces an action on \(U/N \cong \mathbb{Z}_p \). Moreover, as \(\text{Aut}(\mathbb{Z}_p) \cong C_{p-1} \times \mathbb{Z}_p \), this action must be trivial. Put \(z := x^{-1} y^{p^{k-1}} \); then \(z^p = (x^{-1} y^{p^{k-1}})^p \equiv x^{-p} y^{p^k} \equiv 1 \) (mod \(N \)). Hence, \(z^p \in N \), and after replacing \(x \) by \(z \), we return to Case 1.

Subcase 2.2: \(p = 2 \) and \(k \geq 1 \). Since \(\text{Aut}(\mathbb{Z}_2) \cong C_2 \times \mathbb{Z}_2 \), either \(y^x \equiv y \) (mod \(N \)) or \(y^x \equiv y^{-1} \) (mod \(N \)). We contend that the latter case does not occur. Indeed, suppose that \(y^x \equiv y^{-1} \) (mod \(N \)); thus \(y^x = y^{-1} n_0 \) for some \(n_0 \in N \). Then, for every \(n \in N \), we have

\[
(n^x)^{1+2^s} = (n^{1+2^s})^x = (n^y)^x = (n^x)y^x = (n^x)y^{-1}n_0 = (n^x)y^{-1} = (n^x)^{(1+2^s)}^{-1}.
\]

Hence, \((1 + 2^s)^2 = 1\), a contradiction.

Thus we must have \([y, x] \in N \). Put \(z := x^{-1} y^{2^{k-1}} \); then \(z^2 = (x^{-1} y^{2^{k-1}})^2 \equiv x^{-2} y^{2^k} \equiv 1 \) (mod \(N \)). Therefore, \(z^2 \in N \), and after replacing \(x \) by \(z \), we return to Case 1.

Subcase 2.3: \(k = 0 \). Replacing \(y \) by \(yw \), we may assume that \(x^p = y \). We proceed by induction on \(d = \dim(G) \). Since \(N \) is normal in \(G \), we conclude that \(G = \langle x \rangle \rtimes N \). If \(p > d \), then \(p \) is odd and by [16, Theorem E], \(G \) is saturable. It follows from Lemma 3.3 that \(G \) is of the required form.

If \(p = d = 2 \), then by the classification of 2-adic analytic pro-2 groups ([16, Proposition 7.2]), either \(G \) is of the required form or \(G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \), where the action is as scalar multiplication by \(-1 + 2 \ell \) for some \(t \geq 2 \) or by inversion. The latter case is excluded by Lemma 3.7.

Therefore, we may assume that \(d \geq \max\{p, 3\} \). Let \(\{z_1, z_2, \ldots, z_{d-1}\} \) be a basis for \(N \). For each \(1 \leq i \leq d-1 \), set \(N_i := \langle x, z_i \rangle \). We claim that each \(N_i \) is of infinite index in \(G \). Indeed, if \(N_i \) is open in \(G \), then \(\dim(N_i) = \dim(G) = d \), and it follows from Lemma 3.4, Lemma 3.5 and Lemma 3.6 that \(d(N_i) > 2 \), a contradiction.

Hence, each \(N_i \) is Frattini-injective and of dimension \(\leq d - 1 \). By the induction hypothesis, \(N_i \) is of the required form (hereditarily uniform). It follows easily (by Lie theoretic methods, for example) that \(s \geq 2 \) and for each \(1 \leq i \leq d - 1 \), there is \(\alpha_i \in \mathbb{Z}^N_p \) such that \(x^{-\alpha_i} z_i x^{\alpha_i} = z_i^{1+p^{s-1}} \). Since \(x^{-p} z_i x^p = z_i^{1+p^s} \) for each \(1 \leq i \leq d - 1 \), it is not difficult to see that we must have \(\alpha_1 = \alpha_2 = \ldots = \alpha_{d-1} \). Therefore, \(G \) is of the required form. \(\square \)

We end this section with an example of a \(p \)-adic analytic pro-\(p \) group in which Frattini-injectivity fails in a rather extreme way. Let \(D_p \) be a central simple \(\mathbb{Q}_p \)-division algebra of index 2, \(\Delta_p \) the (unique) maximal \(\mathbb{Z}_p \)-order in \(D_p \) and \(\Psi \) the maximal ideal of \(\Delta_p \). Let \(SL_1(D_p) \) be the set of elements of reduced norm 1 in \(D_p \), and let \(G = SL_1(\Delta_p) := SL_1(D_p) \cap (1 + \Psi) \). Then, if \(p > 3 \), for every maximal subgroup \(M \) of \(G \) we have \(\Phi(M) = \Phi(G) \) (cf. [27, Lemma 2.26]).
4. Hierarchical triples

Definition 4.1. Let G, K and H be pro-p groups with $H \leq K \leq G$. We say that (G, K, H) is a hierarchical triple if for every $x \in G$, we have that $x \in K$ whenever $x^p \in H$. We call a pro-p group G Frattini-resistant if for every finitely generated subgroup H of G, the triple $(G, H, \Phi(H))$ is hierarchical.

Recall that a pro-p group G is said to be strongly Frattini-injective if distinct subgroups of G (not necessarily finitely generated) have distinct Frattinis. In the same vein, G is defined to be strongly Frattini-resistant if $(G, H, \Phi(H))$ is a hierarchical triple for every subgroup H of G.

Our first result shows that the definition of Frattini-resistance in terms of hierarchical triples coincides with the definition given in the introduction.

Proposition 4.2. A pro-p group G is Frattini-resistant if and only if for all finitely generated subgroups H and K of G,

$$\Phi(H) \leq \Phi(K) \implies H \leq K.$$

In other words, a pro-p group G is Frattini-resistant if and only if the function $H \mapsto \Phi(H)$ is an embedding of the partially ordered set of finitely generated subgroups of G into itself.

Proof. Suppose that G is a Frattini-resistant pro-p group, and let H and K be finitely generated subgroups of G such that $\Phi(H) \leq \Phi(K)$. For every $x \in H$, we have that $x^p \in \Phi(K)$, and as $(G, K, \Phi(K))$ is a hierarchical triple, it follows that $x \in K$. Hence, $H \leq K$.

For the converse, suppose that $\Phi(H) \leq \Phi(K) \implies H \leq K$ for all finitely generated subgroups H and K of G. Let L be a finitely generated subgroup of G. If $x^p \in \Phi(L)$ for some $x \in G$, then $\Phi(\langle x \rangle) = \langle x^p \rangle \leq \Phi(L)$, and thus $\langle x \rangle \leq L$, i.e., $x \in L$. It follows that $(G, L, \Phi(L))$ is a hierarchical triple, and therefore G is Frattini-resistant.

Clearly, there is also a “strong” version of Proposition 4.2: A pro-p group G is strongly Frattini-resistant if and only if for all subgroups H and K of G, $\Phi(H) \leq \Phi(K) \implies H \leq K$.

Corollary 4.3. Every (strongly) Frattini-resistant pro-p group is (strongly) Frattini-injective.

Proof. Let G be a Frattini-resistant pro-p group, and suppose that $\Phi(H) = \Phi(K)$ for some finitely generated subgroups H and K of G. By Proposition 4.2, $\Phi(H) \leq \Phi(K)$ implies $H \leq K$, and $\Phi(K) \leq \Phi(H)$ implies $K \leq H$. Therefore, $H = K$.

In like manner, the “strong” version of the corollary is a consequence of the “strong” version of Proposition 4.2.\[\square \]

We develop next several results that could be useful when trying to prove that a given pro-p group is (strongly) Frattini-resistant.
Proposition 4.4. Let G be a pro-p group, and suppose that $(G, U, \Phi(U))$ is a hierarchical triple for every open subgroup U of G. Then, G is strongly Frattini-resistant.

Proof. Let H be a proper subgroup of G, and let $x \in G \setminus H$. Then, there exists an open subgroup U of G such that $H \leq U$ and $x \notin U$. By assumption, $(G, U, \Phi(U))$ is a hierarchical triple; hence, $x^p \notin \Phi(U)$. Since $\Phi(H) \leq \Phi(U)$, it follows that $x^p \notin \Phi(H)$. Therefore, $(G, H, \Phi(H))$ is a hierarchical triple. □

Corollary 4.5. A finitely generated Frattini-resistant pro-p group is strongly Frattini-resistant.

Proof. This follows from Proposition 4.4 and the fact that every open subgroup of a finitely generated pro-p group is also finitely generated. □

Recall that an epimorphism $\varphi : G \to H$ of pro-p groups such that $\ker \varphi \leq \Phi(G)$ is called a Frattini-cover.

Proposition 4.6. Let G be a pro-p group. Suppose that for every open subgroup U of G, there exists a Frattini-cover $\varphi : \langle x, U \rangle \to K$ onto a pro-p group K with the property that $(K, M, \Phi(M))$ is a hierarchical triple for every maximal subgroup M of K. Then, G is strongly Frattini-resistant.

Proof. Let U be a proper open subgroup of G, and let $x \in G \setminus U$. Fix a Frattini-cover $\varphi : \langle x, U \rangle \to K$ onto a pro-p group K with the property that $(K, M, \Phi(M))$ is a hierarchical triple for every maximal subgroup M of $K.$

Set $N := \Phi(\langle x, U \rangle)U$; then N is a maximal subgroup of $\langle x, U \rangle$ which contains U, but does not contain x. Since φ is a Frattini-cover, $M := \varphi(N)$ is a maximal subgroup of K and $\varphi(x) \notin M$. Furthermore, $\varphi(x^p) = \varphi(x)^p \notin \Phi(M)$ (because $(K, M, \Phi(M))$ is a hierarchical triple), and as $\varphi(\Phi(N)) = \Phi(M)$, we get that $x^p \notin \Phi(N)$. Since $\Phi(U) \leq \Phi(N)$, it follows that $x^p \notin \Phi(U)$. Hence, $(G, U, \Phi(U))$ is a hierarchical triple. As U was chosen to be an arbitrary (proper) open subgroup of G, it follows from Proposition 4.4 that G is strongly Frattini-resistant. □

Remark 4.7. For a pro-p group G that is not finitely generated, the existence of appropriate Frattini-covers (as in Proposition 4.6) for all finitely generated subgroups of G, implies that G is Frattini-resistant (although, not necessarily strongly Frattini-resistant).

Corollary 4.8. Let G be a pro-p group. Suppose that for every open subgroup U of G and for every maximal subgroup M of U, the triple $(U, M, \Phi(M))$ is hierarchical. Then, G is strongly Frattini-resistant.

Proof. For every open subgroup U of G, the identity map $id_U : U \to U$ is a Frattini-cover satisfying the condition of Proposition 4.6. □
Definition 4.9. We define a pro-p group G to be **strongly commutator-resistant** (commutator-resistant) if $(H, \Phi(H), [H, H])$ is a hierarchical triple for every (finitely generated) subgroup H of G.

Proposition 4.10. Every (strongly) commutator-resistant pro-p group is (strongly) Frattini-resistant.

Proof. Let G be a commutator-resistant pro-p group, and let H be a finitely generated subgroup of G. Consider an element $x \in G$ such that $x^p \in \Phi(H) = H^p[H, H]$. Then $x^p[H, H] = h^p[H, H]$ for some $h \in H$. Set $K := \langle x, H \rangle$; as $x, h \in K$ and $x^p[K, K] = h^p[K, K]$, it follows that $(x^{-1}h)^p \in [K, K]$. Since K is finitely generated, $(K, \Phi(K), [K, K])$ is a hierarchical triple, and thus $x^{-1}h \in \Phi(K)$, or equivalently, $x\Phi(K) = h\Phi(K)$. Hence, we may replace x by h in a generating set for K.

It follows that $K = H$, and thus $x \in H$. This proves that G is Frattini-resistant.

The “strong” version of the proposition can be proved in the same way. □

For an element x of a pro-p group G, we have that $x \in \Phi(G)$ if and only if $x[G, G] \in \Phi(G^{ab})$ (in other words, the abelianization homomorphism is a Frattini-cover). It follows that $(G, \Phi(G), [G, G])$ is a hierarchical triple if and only if every element of G^{ab} of order p is contained in $\Phi(G^{ab})$.

Proposition 4.11. Let G be a pro-p group. The following statements are equivalent:

(i) $(G, \Phi(G), [G, G])$ is a hierarchical triple.

(ii) Every element of order p in G^{ab} is contained in $\Phi(G^{ab})$.

(iii) Every element of order p in G^{ab} is a pth power.

Proof. This follows from the remarks made before the proposition and the fact that $\Phi(G^{ab})$ consists of the pth powers of elements of G^{ab}. □

As an immediate consequence of Proposition 4.11, we get the following

Corollary 4.12. Let G be a pro-p group. The following assertions hold:

(i) If G is finitely generated, then $(G, \Phi(G), [G, G])$ is a hierarchical triple if and only if G^{ab} does not contain a direct cyclic factor of order p.

(ii) If G^{ab} is torsion-free, then $(G, \Phi(G), [G, G])$ is a hierarchical triple.

The following characterization of commutator-resistance is handy within the context of Galois theory.

Proposition 4.13. Let G be a pro-p group, and let $\pi : \mathbb{Z}_p/p^2\mathbb{Z}_p \rightarrow \mathbb{Z}_p/p\mathbb{Z}_p$ be the natural projection. Then, $(G, \Phi(G), [G, G])$ is a hierarchical triple if and only if for every homomorphism $\varphi : G \rightarrow \mathbb{Z}_p/p\mathbb{Z}_p$, there is a homomorphism $\psi : G \rightarrow \mathbb{Z}_p/p^2\mathbb{Z}_p$ such that $\pi \circ \psi = \varphi$.

Proof. Suppose that $(G, \Phi(G), [G, G])$ is a hierarchical triple, and let $\varphi : G \rightarrow \mathbb{Z}_p/p\mathbb{Z}_p$ be an epimorphism. Then φ factors through an epimorphism $\tilde{\varphi} : G^{ab} \rightarrow \mathbb{Z}_p/p\mathbb{Z}_p$.
Let \(x \in G^{\text{ab}} \setminus \ker \bar{\varphi} \). If \(px \in \Phi(\ker \varphi) \), then \(px = py \) for some \(y \in \ker \bar{\varphi} \), and \(p(x - y) = 0 \); this contradicts Proposition \ref{prop:4.14} (ii) since \(x - y \notin \Phi(G^{\text{ab}}) \). Hence, there exists a maximal subgroup \(M \) of \(\ker \bar{\varphi} \) that does not contain \(px \). It follows that \(G^{\text{ab}} / M \cong \mathbb{Z}_p / p^2 \mathbb{Z}_p \), and there is an obvious homomorphism \(\psi : G \to \mathbb{Z}_p / p^2 \mathbb{Z}_p \) such that \(\pi \circ \psi = \varphi \).

For the other direction, suppose that for every homomorphism \(\varphi : G \to \mathbb{Z}_p / p^2 \mathbb{Z}_p \), there exists a homomorphism \(\psi : G \to \mathbb{Z}_p / p^2 \mathbb{Z}_p \) such that \(\pi \circ \psi = \varphi \), and let \(x \in G \setminus \Phi(G) \). Choose a maximal subgroup \(M \) of \(G \) that does not contain \(x \), and consider the quotient homomorphism \(\varphi : G \to G / M \cong \mathbb{Z}_p / p \mathbb{Z}_p \) \((\varphi(x) = 1 + p \mathbb{Z}_p) \). Let \(\psi : G \to \mathbb{Z}_p / p^2 \mathbb{Z}_p \) be a homomorphism such that \(\pi \circ \psi = \varphi \). Then \(\psi(x) \) generates \(\mathbb{Z}_p / p^2 \mathbb{Z}_p \), and thus \(\psi(x^p) = \psi(x)^p \neq 1 \). Since \([G,G] \leq \ker \psi\), it follows that \(x^p \notin [G,G] \). Therefore, \((G, \Phi(G), [G,G])\) is a hierarchical triple. \(\square \)

Considering \(\mathbb{Z}_p / p^2 \mathbb{Z}_p \) as a trivial \(G \)-module, the extension property of Proposition \ref{prop:4.13} comes down to saying that the natural projection \(\mathbb{Z}_p / p^2 \mathbb{Z}_p \to \mathbb{Z}_p / p \mathbb{Z}_p \) induces an epimorphism \(H^1(G, \mathbb{Z}_p / p^2 \mathbb{Z}_p) \to H^1(G, \mathbb{Z}_p / p \mathbb{Z}_p) \) of cohomology groups.

Corollary 4.14. Let \(G \) be a pro-\(p \) group, and suppose that \((U, \Phi(U), [U,U])\) is a hierarchical triple for every open subgroup \(U \) of \(G \). Then, \(G \) is strongly commutator-resistant. In particular, a finitely generated commutator-resistant pro-\(p \) group is strongly commutator-resistant.

Proof. By Proposition \ref{prop:4.13} the natural projection \(\pi : \mathbb{Z}_p / p^2 \mathbb{Z}_p \to \mathbb{Z}_p / p \mathbb{Z}_p \) induces an epimorphism \(\pi^* : H^1(U, \mathbb{Z}_p / p^2 \mathbb{Z}_p) \to H^1(U, \mathbb{Z}_p / p \mathbb{Z}_p) \) for every open subgroup \(U \) of \(G \) (where \(U \) is assumed to act trivially on \(\mathbb{Z}_p / p^2 \mathbb{Z}_p \)). It follows that \(\pi^* : H^1(H, \mathbb{Z}_p / p^2 \mathbb{Z}_p) \to H^1(H, \mathbb{Z}_p / p \mathbb{Z}_p) \) is an epimorphism for every subgroup \(H \) of \(G \) (cf. \cite{35} I.2.2, Proposition 8). Hence, by Proposition \ref{prop:4.13} \(G \) is strongly commutator resistant. \(\square \)

Before we turn to concrete classes of groups, we make one more useful observation.

Proposition 4.15. The properties Frattini-injective, Frattini-resistant and commutator-resistant (as well as their “strong” forms) are preserved under inverse limits.

Proof. Let \((G_i, \varphi_{i,j})_I\) be an inverse system of Frattini-injective pro-\(p \) groups with inverse limit \((G, \varphi_i)_{i \in I}\). Let \(H \) and \(K \) be finitely generated subgroups of \(G \) with \(\Phi(H) = \Phi(K) \). Then, for every \(i \in I \),

\[\Phi(\varphi_i(H)) = \varphi_i(\Phi(H)) = \varphi_i(\Phi(K)) = \Phi(\varphi_i(K)). \]

Hence, \(\varphi_i(H) = \varphi_i(K) \) for all \(i \in I \), and thus \(H = K \).

It is equally easy to prove that all of the other properties are preserved under inverse limits. \(\square \)
5. FRATTINI-INJECTIVE SOLVABLE PRO-\(p\) GROUPS

Let \(G = \langle x \rangle \ltimes \mathbb{Z}_p^d\), where \(\langle x \rangle \cong \mathbb{Z}_p\) and \(x\) acts on \(\mathbb{Z}_p^d\) as scalar multiplication by \(1 + p^r\) with \(s \geq 1\) (\(s \geq 2\) if \(p = 2\)). It is easy to see that \(G^{ab} = \mathbb{Z}_p \ltimes (\mathbb{Z}_p/p^s\mathbb{Z}_p)^d\).

It follows from Corollary 4.12(i) that \(G\) is not commutator-resistant if \(s = 1\). On the other hand, it is not difficult to show that \(G\) is commutator-resistant for \(s \geq 2\). Moreover, a slight modification of the proof of Proposition 3.1 yields the following

Proposition 5.1. Every \(p\)-adic analytic Frattini-injective pro-\(p\) group is strongly Frattini-resistant.

It follows from Theorem 1.2 that all Frattini-injective \(p\)-adic analytic pro-\(p\) groups are metabelian. Conversely, we prove in this section that every solvable Frattini-injective pro-\(p\) group is metabelian and locally \(p\)-adic analytic.

Lemma 5.2. Let \(G = \langle x \rangle \ltimes A\), where \(\langle x \rangle \cong \mathbb{Z}_p\) and \(A\) is an abelian pro-\(p\) group, be a finitely generated Frattini-injective pro-\(p\) group. Then \(A\) is finitely generated.

Proof. Since \(G\) is finitely generated, \(A\) is finitely generated as a topological \(\langle x \rangle\)-module. The completed group algebra \(\mathbb{Z}_p[\langle x \rangle]\) can be identified with the formal power series algebra \(\mathbb{Z}_p[y]\) (by identifying \(x\) with \(1 + y\)); so, we may regard \(A\) as a right (topological) \(\mathbb{Z}_p[y]\)-module (cf. [32, Chapter 7]).

First suppose that \(A\) is a cyclic \(\mathbb{Z}_p[y]\)-module. Thus \(A \cong \mathbb{Z}_p[y]/I\) for some ideal \(I\) of \(\mathbb{Z}_p[y]\). We claim that \(I\) can not be the zero ideal. Indeed, identify \(A\) with \(\mathbb{Z}_p[y]\), and consider the subgroups \(H := \langle x, p^2y^0, py, y^2 \rangle\) and \(K := \langle x, p^2y^0, y^2 \rangle\) of \(G = \langle x \rangle \ltimes \mathbb{Z}_p[y]\) (where, in order to avoid confusion, we denote by \(y^0\) the identity element of \(\mathbb{Z}_p[y]\)). It is readily seen that \(H \neq K\) (in fact, \(K\) is a maximal subgroup of \(H\)), however,

\[
\Phi(H) = \Phi(K) = \langle x^p \rangle [p^2\mathbb{Z}_p[y] + (y^2)],
\]

which contradicts the assumption that \(G\) is Frattini-injective.

Hence, we may assume that \(I \neq (0)\). Since \(A\) is Frattini-injective, and thus torsion-free, there is an element \(a(y) = \sum_{n \geq 0} a_n y^n \in I\) that is not \(p\)-divisible in the abelian group \(\mathbb{Z}_p[y]\). Let \(m \geq 0\) be the smallest integer such that \(a_m \notin p\mathbb{Z}_p\); then \(a(y) \equiv b(y) \mod \Phi(\mathbb{Z}_p[y])\), where \(b(y) = \sum_{n \geq m} a_n y^n\). Since \(a_m\) is a unit in \(\mathbb{Z}_p\), there is \(c(y) \in \mathbb{Z}_p[y]\) such that \(b(y)c(y) = y^m\). Consequently, \(a(y)c(y) \equiv y^m \mod \Phi(\mathbb{Z}_p[y])\) and \((y^m) + \Phi(\mathbb{Z}_p[y]) \leq I + \Phi(\mathbb{Z}_p[y])\). From here it readily follows that \(A\) is finitely generated as a pro-\(p\) group.

Now suppose that \(A\) is generated by \(a_1, a_2, \ldots, a_d\) as \(\mathbb{Z}_p[y]\)-module. For each \(i = 1, \ldots, d\), let \(B_i\) be the submodule of \(A\) generated by \(a_i\); put \(H_i := \langle x, B_i \rangle = \langle x \rangle B_i\) and \(K_i := \langle x, B_i^n \rangle = \langle x \rangle B_i^n\). It follows from what has been already proved that \(B_i\) is a finitely generated free abelian pro-\(p\) group. Consequently, \(H_i\) is a \(p\)-adic analytic Frattini-injective pro-\(p\) group (since every extension of \(p\)-adic analytic pro-\(p\) groups is \(p\)-adic analytic). By Proposition 5.1, \(H_i\) is strongly Frattini-resistant.
For a given \(a \in A \), we have \([x, a] \in A\) and \([[x, a], a] = 1\). Hence, for every \(n \in \mathbb{N} \),
\[
[x, a^n] = [x, a][x, a^{n-1}][[x, a], a^{n-1}] = [x, a][x, a^{n-1}].
\]
It follows that \([x, a^n] = [x, a]^n\) for all \(n \in \mathbb{N} \). In particular, for each \(i = 1, \ldots, d \),
\[
[x, a_i]^p = [x, a_i^p] \in [K_i, K_i] \leq \Phi(K_i).
\]
Hence, \([x, a_i] \in K_i\) (because \(H_i \) is strongly Frattini-resistant). Since also \([x, a_i] \in B_i\), we get that
\[
[x, a_i] \in K_i \cap B_i = B_i^p \leq A^p.
\]
Note that \(A \) is generated (as a pro-\(p \) group) by \(x^{-\alpha}a_ix^\alpha \) (\(\alpha \in \mathbb{Z}_p \) and \(i = 1, \ldots, d \)). However, \([x, a_i] \in A^p = \Phi(A)\) implies that \(a_i\Phi(A) = x^{-1}a_ix\Phi(A) \). Therefore, \(a_1, \ldots, a_d \) suffice to generate \(A \).

Lemma 5.3. Let \(G \) be a non-abelian Frattini-injective metabelian pro-\(p \) group. Then \(G \cong \langle x \rangle \rtimes A \), where \(\langle x \rangle \cong \mathbb{Z}_p \), \(A \) is a free abelian pro-\(p \) group, and \(x \) acts on \(A \) as scalar multiplication by \(1 + p^s \) with \(s \geq 1 \) if \(p \) is odd, and \(s \geq 2 \) if \(p = 2 \).

Proof. Let \(A \) be a maximal abelian subgroup of \(G \) containing \([G, G]\). Then \(A \) is a free abelian pro-\(p \) group (all torsion-free abelian pro-\(p \) groups are free abelian). Moreover, \(A \leq G \) (since \([G, G] \leq A\) and \(A \) is isolated in \(G \) (Proposition 2.2)).

Let \(x \in G \setminus A \), and let \(a_1, \ldots, a_d \in A \). Consider the subgroup \(H := \langle x, a_1, \ldots, a_d \rangle \) of \(G \). Let \(N \) be the normal subgroup of \(H \) generated (as a normal subgroup) by the elements \(a_1, \ldots, a_d \). Then \(N \leq A \), and hence \(N \) is abelian. Since \(A \) is isolated in \(G \), we also have \(\langle x \rangle \cap N = \{1\} \). Therefore, \(H = \langle x \rangle N \) is an internal semidirect product. By Lemma 5.2, \(N \) is a finitely generated free abelian pro-\(p \) group, and thus \(H \) is \(p \)-adic analytic.

By Theorem 1.2, either \(H \) is abelian or for some unit \(\alpha \) of \(\mathbb{Z}_p \), \(x^\alpha \) acts on \(N \) as scalar multiplication by \(1 + p^s \) with \(s \geq 1 \) if \(p \) is odd, and \(s \geq 2 \) if \(p = 2 \). Since \(a_1, \ldots, a_d \) were chosen to be arbitrary elements of \(A \), it follows that \(x \) must act in the same way on all elements of \(A \). As \(A \) is a maximal abelian subgroup of \(G \), \(x \) can not commute with all elements of \(A \); so, \(x^\alpha \) (for some unit \(\alpha \)) acts on \(A \) as scalar multiplication by \(1 + p^s \).

The group \(G/A \) is torsion-free since \(A \) is isolated in \(G \). We claim that \(G/A \cong \mathbb{Z}_p \). Suppose that this is not the case. Then, there exist \(x_1, x_2 \in G \) such that \(x_1A \) and \(x_2A \) generate in \(G/A \) a free abelian pro-\(p \) group of rank two. Fix \(a \in A \), \(a \neq 1 \), and consider the group \(L := \langle x_1, x_2, a \rangle \). Now, we know that \(x_1 \) and \(x_2 \) normalize the abelian group \(M := \langle [x_1, x_2], a \rangle \leq A \). Hence, \(M \leq L \) and \(L/M \cong \mathbb{Z}_p \times \mathbb{Z}_p \). This implies that \(L \) is \(p \)-adic analytic. It follows from Theorem 1.2 that all Frattini-injective \(p \)-adic analytic pro-\(p \) groups that have a quotient isomorphic to \(\mathbb{Z}_p \times \mathbb{Z}_p \) are abelian. However, \(L \) is not abelian since \(x_1 \) and \(x_2 \) do not commute with \(a \), a contradiction.
Let \(x \) be an element of \(G \) such that \(G/A = \langle xA \rangle \). Clearly, we may choose \(x \) in such a way that it acts on \(A \) as scalar multiplication by \(1 + p^s \) (\(s \geq 1 \) if \(p \) is odd, and \(s \geq 2 \) if \(p = 2 \)). Therefore, \(G = \langle x \rangle \ltimes A \) is of the required form.

\[\square \]

Proof of Theorem 1.3. Let \(G = \langle x \rangle \ltimes A \) be a semidirect product as in the statement of the theorem. It is easily seen that

\[G = \lim_{\leftarrow} \langle x \rangle \ltimes A_i, \]

where \(\{ A_i \mid i \in I \} \) is the set of finitely generated direct factors of \(A \). Since all of the groups \(\langle x \rangle \ltimes A_i \) are Frattini-injective (Theorem 1.2), it follows from Proposition 4.15 that \(G \) is also Frattini-injective. (In fact, Proposition 5.1 and Proposition 4.15 imply that \(G \) is strongly Frattini-resistant.)

In light of Lemma 5.3, in order to prove the converse, it suffices to argue that there are no solvable Frattini-injective pro-\(p \) groups of derived length 3. Suppose to the contrary that \(G \) is such a group. By Lemma 5.3, \([G, G] = \langle x \rangle \ltimes A \), where \(\langle x \rangle \cong \mathbb{Z}_p \), \(A \) is a free abelian pro-\(p \) group, and \(x \) acts on \(A \) as scalar multiplication by \(1 + p^s \) with \(s \geq 1 \) if \(p \) is odd, and \(s \geq 2 \) if \(p = 2 \). Note that \(A \) is the isolator of \(G^{(2)} = A^{p^s} \) in \([G, G]\). Since \([G, G]\) is normal in \(G \) and \(G^{(2)} \) is characteristic in \([G, G]\), it follows that \(A \) is normal in \(G \).

There are elements \(y, z \in G \) such that \([y, z] \notin A \) (otherwise, we would have \([G, G] \leq A \) and \(G^{(2)} = 1 \), a contradiction); so, \([y, z]\) acts on \(A \) as scalar multiplication by some \(\lambda \neq 1 \). Clearly, \(\langle y, A \rangle \) and \(\langle z, A \rangle \) are metabelian groups, and it follows from Lemma 5.3 that \(y \) and \(z \) also act on \(A \) by scalar multiplication.

Fix \(a \in A, \ a \neq 1 \). Then the group \(\langle y, z \rangle \) acts on \(\langle a \rangle \cong \mathbb{Z}_p \), so we get a homomorphism \(\varphi : \langle y, z \rangle \rightarrow \text{Aut}(\mathbb{Z}_p) \). However, \([y, z] \notin \ker \varphi \), which is impossible since \(\text{Aut}(\mathbb{Z}_p) \) is abelian.

\[\square \]

Proof of Theorem 1.4. It is readily seen (using Zorn’s lemma) that \(G \) contains a maximal normal abelian subgroup \(N \). The isolator of \(N \) is also a normal subgroup of \(G \), and it follows from Lemma 2.3 (iii) that it is abelian. Hence, \(N \) coincides with its isolator, and so it is isolated in \(G \).

Suppose that \(M \) is another maximal normal abelian subgroup of \(G \). Then, \(NM \) is a solvable Frattini-injective pro-\(p \) group. It follows from Theorem 1.3 that \(NM = \langle x \rangle \ltimes A \) (where the semidirect product is of the form described in the theorem). Without loss of generality, we may assume that the restriction to \(N \) of the projection homomorphism from \(NM \) onto \(\langle x \rangle \) is surjective. Hence, there is \(n \in N \) with \(n = xy \) for some \(y \in A \). For every \(a \in A, \ [a, n] = a^{p^s} \in N \); as \(N \) is isolated in \(G \), it follows that \(a \in N \). This implies that \(M \leq NM \leq N \), a contradiction. Hence, \(N \) is the unique maximal normal abelian subgroup of \(G \).
Let \(x \in G \). Then, the group \(\langle x, N \rangle \) is either abelian or metabelian with \(x \) acting on \(N \) by scalar multiplication. Furthermore, if \(Z(G) \neq 1 \), then \(Z(G) \leq N \), and \(x \) commutes with every element in \(N \). Now, it is clear that \((ii)\) and \((iii)\) hold.

Suppose that \(Z(G) = 1 \) but \(N \neq 1 \). Since \(N \) is normal in \(G \), the centralizer of \(N \) is also normal in \(G \). Moreover, as \(Z(C_G(N)) \) is characteristic in \(C_G(N) \), it follows that \(Z(C_G(N)) \) is a normal abelian subgroup of \(G \). Hence, \(Z(C_G(N)) \leq N \), and as the reverse inclusion is obvious, we get \(Z(C_G(N)) = N \).

It follows from Corollary 2.3 \((ii)\) that \(C_G(N) \) is isolated in \(G \) (because every intersection of isolated subgroups is also isolated). Hence, \(G/C_G(N) \) is torsion free. We need to prove that \(G/C_G(N) \) is pro-cyclic.

Fix \(n \in N \), \(n \neq 1 \). It follows from \((ii)\) that every non-trivial element of \(G/C_G(N) \) acts on \(\langle n \rangle \) by non-trivial scalar multiplication. Hence, \(G/C_G(N) \) embeds into \(\text{Aut}(\langle x \rangle) \). Since \(G/C_G(N) \) is torsion free, it follows that it is isomorphic to \(\mathbb{Z}_p \).

\[\square \]

6. Free pro-\(p \) groups and Demushkin groups

Let \(F \) be a free pro-\(p \) group, and let \(H \) be a subgroup of \(F \). Then, \(H \) is also free pro-\(p \) and \(H^{ab} \) is a free abelian pro-\(p \) group. It follows from Corollary 4.12 \((ii)\) that \((H, \Phi(H), [H, H])\) is a hierarchical triple.

Theorem 6.1. Every free pro-\(p \) group is strongly commutator-resistant.

A pro-\(p \) group \(G \) is called a Demushkin group if it satisfies the following conditions:

\begin{enumerate}
 \item \(\dim_{\mathbb{F}_p} H^1(G, \mathbb{F}_p) < \infty \),
 \item \(\dim_{\mathbb{F}_p} H^2(G, \mathbb{F}_p) = 1 \), and
 \item the cup-product \(H^1(G, \mathbb{F}_p) \times H^1(G, \mathbb{F}_p) \to H^2(G, \mathbb{F}_p) \cong \mathbb{F}_p \) is a non-degenerate bilinear form.
\end{enumerate}

If \(k \) is a \(p \)-adic number field containing a primitive \(p \)th root of unity and \(k(p) \) is a maximal \(p \)-extension of \(k \), then \(\text{Gal}(k(p)/k) \) is a Demushkin group. Furthermore, the pro-\(p \) completion of any orientable surface group is also a Demushkin group. In fact, all Demushkin groups have many properties reminiscent of surface groups. For instance, every finite index subgroup \(U \) of a Demushkin group \(G \) is a Demushkin group with \(d(U) = |G : U|(d(G) - 2) + 2 \), and every subgroup of infinite index is free pro-\(p \). For a detailed exposition of the theory of Demushkin groups, see [35] or [26].

Let \(G \) be a Demushkin group. Since \(\dim_{\mathbb{F}_p} H^2(G, \mathbb{F}_p) = 1 \), it follows that \(G \) is a one related pro-\(p \) group. Hence, there is an epimorphism \(\pi : F \to G \) where \(F \) is a free pro-\(p \) group of rank \(d := d(G) \) and \(\text{ker} \pi \) is generated as a closed normal subgroup by one element \(r \in \Phi(F) = F^p[F, F] \). It follows that either \(G^{ab} \cong \mathbb{Z}_p^d \) or \(G^{ab} \cong \mathbb{Z}/p^e \mathbb{Z} \times \mathbb{Z}_p^{d-1} \) for some \(e \geq 1 \); set \(q := p^e \) in the latter and \(q := 0 \) in the former case. Then, \(d \) and \(q \) are two invariants associated to \(G \). (When we wish to
emphasize the Demushkin group under consideration, we write $d(G)$ and $q(G)$ for the invariants of G.)

Demushkin groups were classified by Demushkin, Serre and Labute (\cite{Demushkin}, \cite{Serre}, \cite{Labute}, and \cite{Demushkin2}). We summarise the classification in the following

Theorem 6.2. Let G be a Demushkin group with invariants d and q. Then G admits a presentation $G = \langle x_1, x_2, \ldots, x_d \mid r \rangle$, where

(i) if $q \neq 2$, then d is even and

$$r = x_d^q [x_1, x_2] [x_3, x_4] \cdots [x_{d-1}, x_d];$$

(ii) if $q = 2$ and d is even, then

$$r = x_1^{2+\alpha} [x_1, x_2] x_3^{2f} [x_3, x_4] \cdots [x_{d-1}, x_d]$$

for some $f = 2, 3, \ldots, \infty$ ($2f = 0$ when $f = \infty$) and $\alpha \in 4\mathbb{Z}_2$;

(iii) if $q = 2$ and d is odd, then

$$r = x_1^2 x_2^{2f} [x_2, x_3] \cdots [x_{d-1}, x_d]$$

for some $f = 2, 3, \ldots, \infty$.

We first consider Demushkin groups with $q \neq 2$. (As is often the case, $q = 2$ takes more effort.)

Theorem 6.3. Let G be a Demushkin pro-p group. Then, the following assertions hold:

(i) If $q(G) \neq p$, then G is strongly commutator-resistant.

(ii) If $q(G) = p$ and p is odd, then G is strongly Frattini-resistant, but not commutator-resistant.

Proof. (i) Suppose that $q(G) \neq p$, and let H be a subgroup of G. If $|G : H| < \infty$, then H is a Demushkin group with $q(H) \neq p$ (\cite{Demushkin} §3. Corollary), and it follows from Corollary 4.12 (i) that $(H, \Phi(H), [H, H])$ is a hierarchical triple; otherwise, H is a free pro-p group, and $(H, \Phi(H), [H, H])$ is a hierarchical triple by Theorem 6.1.

(ii) Suppose that p is odd and $q(G) = p$. Since $G^{ab} \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}_p^{d-1}$, it follows from Corollary 4.12 (i) that the triple $(G, \Phi(G), [G, G])$ is not hierarchical. Therefore, G is not commutator-resistant.

Let U be an open subgroup of G. Then, U is a Demushkin group and there exist elements $x_1, \ldots, x_d \in U$ such that $U = \langle x_1, \ldots, x_d \mid x_1^q [x_1, x_2] [x_3, x_4] \cdots [x_{d-1}, x_d] \rangle$, where $q = q(U) = p^e$ for some $e \geq 1$. Consider the hereditarily uniform pro-p group

$$K := \langle z_1, z_2, \ldots, z_d \mid [z_i, z_j] = 1 \text{ and } z_1^{-1} z_i z_1 = z_i^{1-q} \text{ for all } 2 \leq i, j \leq d \rangle \cong \mathbb{Z}_p \times \mathbb{Z}_p^{d-1}.$$

The assignment $x_1 \mapsto z_2$, $x_2 \mapsto z_1$ and $x_i \mapsto z_i$ for $3 \leq i \leq d$ defines a Frattini-cover $U \to K$. Since K is Frattini-resistant (Proposition 5.1), it follows from Proposition 4.6 that G is strongly Frattini-resistant. \hfill \square
Before we turn to the case $q = 2$, we prove two auxiliary results.

Lemma 6.4. Let G be a pro-p group that contains two distinct open subgroups with the same Frattini. Then, there are two distinct open subgroups M and N of G such that $\Phi(M) = \Phi(N)$ and $M, N \leq \langle M, N \rangle$.

Proof. Let X be the set of all pairs (U, V) of distinct open subgroups of G with $\Phi(U) = \Phi(V)$, and let

$$r := \min \{|G : U| - |G : V| | (U, V) \in X\}.$$

Set $X_r := \{(U, V) \in X | r = |G : U| - |G : V|\}$, and fix some $(U_0, V_0) \in X_r$. Among all pairs $(U, V) \in X_r$ such that $|G : U| = |G : U_0|$ and $|G : V| = |G : V_0|$, choose one, say (M, N), that maximizes the index $|G : \langle U, V \rangle|$. We claim that both M and N are normal in $\langle M, N \rangle$. Suppose to the contrary that M is not normal in $\langle M, N \rangle$. Then, there is $x \in N$ such that $M \neq M^x$. Moreover,

$$\Phi(M^x) = \Phi(M)^x = \Phi(N)^x = \Phi(N) = \Phi(M),$$

so $(M, M^x) \in X$. Since $|G : M| = |G : M^x|$, it follows that $r = 0$, and thus $|G : M| = |G : N|$. Furthermore, by the choice of (M, N), we have that $|G : \langle M, M^x \rangle| \leq |G : \langle M, N \rangle|$. This, in turn, implies that $\langle M, M^x \rangle = \langle M, N \rangle$. However, this is only possible if $M = \langle M, N \rangle$, which yields a contradiction with $M \neq N$ and $|G : M| = |G : N|$.

\[\square \]

Lemma 6.5. Let G be a pro-2 group, and let M and N be normal open subgroups of G such that $G = MN$ and $\Phi(M) = \Phi(N)$. Then

$$\log_2(|\Phi(G) : \Phi(M)|) \leq \log_2(|M : M \cap N|) \log_2(|N : M \cap N|).$$

Proof. For an arbitrary element $g = mn \ (m \in M, n \in N)$ of G, we have

$$g^2 = m^2 n^2 [m, n][[n, m], n].$$

Clearly, $m^2, n^2 \in \Phi(M)$, and as $[n, m] \in N$, we also get $[[n, m], n] \in \Phi(M)$. Therefore, $g^2 \in [M, N] \Phi(M) \leq \Phi(G)$. Since the squares of elements of G generate $\Phi(G)$, it follows that $\Phi(G) = [M, N] \Phi(M)$.

From $\Phi(M) = \Phi(N) \leq M \cap N$, we deduce that $M/M \cap N$ and $N/M \cap N$ are elementary abelian 2-groups. In addition, $\Phi(G)/\Phi(M)$ is also elementary abelian, and it is easily seen that

$$M/(M \cap N) \times N/(M \cap N) \to \Phi(G)/\Phi(M), (m(M \cap N), n(M \cap N)) \mapsto [m, n] \Phi(M),$$

is a well-defined bilinear map. Since $\Phi(G) = [M, N] \Phi(M)$, the induced linear transformation $M/(M \cap N) \otimes_{\mathbb{F}_2} N/(M \cap N) \to \Phi(G)/\Phi(M)$ is surjective. Hence,

$$\log_2(|\Phi(G) : \Phi(M)|) = \dim_{\mathbb{F}_2} \Phi(G)/\Phi(M) \leq \dim_{\mathbb{F}_2} M/(M \cap N) \otimes_{\mathbb{F}_2} N/(M \cap N)$$

$$= \dim_{\mathbb{F}_2} M/(M \cap N) \dim_{\mathbb{F}_2} N/(M \cap N) = \log_2(|M : M \cap N|) \log_2(|N : M \cap N|).$$

\[\square \]
Theorem 6.6. Let G be a Demushkin group with $q(G) = 2$. Then, the following assertions hold:

(i) If $d(G) = 2$, then G is not Frattini-injective.
(ii) If $d(G) > 2$, then G is Frattini-injective, but not Frattini-resistant.

Proof. (i) If $d(G) = 2$, then $G = \langle x_1, x_2 \mid x_1^{2+\alpha}[x_1, x_2] \rangle$ for some $\alpha \in 4\mathbb{Z}_2$. It is easily seen that G is 2-adic analytic, however, it is not isomorphic to any of the pro-2 groups listed in Theorem 1.2 (for instance, it is obvious that G is not powerful). Therefore, G is not Frattini-injective.

(ii) Suppose that $d(G) > 2$, and assume that there are two distinct finitely generated subgroups H and K of G such that $\Phi(H) = \Phi(K)$. Since a subgroup of G is open if and only if it has open Frattini, H and K are either both open or they both have infinite index in G. Furthermore, in case that H and K are open, they necessarily have the same index in G (since for U open, $|G : \Phi(U)|$ is a strictly increasing function of $|G : U|$).

First suppose that H and K are open. By Lemma 6.5 we may further assume that H and K are both normal in $L := \langle H, K \rangle$. Moreover, it follows from Lemma 6.5 that

$$\log_2(|\Phi(L) : \Phi(H)|) \leq \log_2(|H : H \cap K|) \log_2(|K : H \cap K|).$$

Hence,

$$\log_2(|H : \Phi(H)|) = \log_2(|H : \Phi(L)|) + \log_2(|\Phi(L) : \Phi(H)|)$$

$$\leq d(L) + \log_2(|H : H \cap K|) \log_2(|K : H \cap K|).$$

On the other hand,

$$\log_2(|L : \Phi(H)|) = \log_2(|L : H|) + \log_2(|H : \Phi(H)|) = \log_2(|L : H|) + d(H).$$

Therefore,

$$\log_2(|L : H|) + d(H) \leq d(L) + \log_2(|H : H \cap K|) \log_2(|K : H \cap K|).$$

Since L is a Demushkin group, we have $d(H) = |L : H|(d(L) - 2) + 2$; in addition, $|H : H \cap K| \leq |L : K| = |L : H|$ and $|K : H \cap K| \leq |L : H|$. Thus

$$\log_2(|L : H|) + |L : H|(d(L) - 2) + 2 \leq d(L) + \log_2(|L : H|)^2.$$
Now assume that H and K have infinite index in G. By Theorem A (H, K) can not be free, so it must be open in G. Moreover, since $\Phi(H)$ has finite index in both H and K, it follows from the Greenberg property of Demushkin groups (37, Theorem A) that $\Phi(H)$ also has finite index in (H, K). This implies that H and K are open in G, a contradiction.

It remains to prove that G is not Frattini-resistant. Suppose first that $d(G)$ is odd. Then $G = \langle x_1, \ldots, x_d \mid x_1^{2+\alpha}[x_1, x_2]x_2^{2f}[x_3, x_4] \cdots [x_d-1, x_d] \rangle$ for some $f = 2, 3, \ldots, \infty$. Let H be the subgroup of G generated by x_2, x_3, \ldots, x_d. Then $x_1 \notin H$, but $x_1^2 = [x_2, x_{d-1}] \cdots [x_3, x_2]x_2^{-2f} \in \Phi(H)$. Therefore, G is not Frattini-resistant.

Now assume that $d(G)$ is even. Then

$$G = \langle x_1, \ldots, x_d \mid x_1^{2+\alpha}[x_1, x_2]x_2^{2f}[x_3, x_4] \cdots [x_d-1, x_d] \rangle$$

for some $f = 2, 3, \ldots, \infty$ and $\alpha \in 4\mathbb{Z}_2$. Let M be a maximal subgroup of G that contains the elements x_2, x_3, \ldots, x_d; then $x_1x_2 \notin M$. We may write the square of x_1x_2 as

$$(x_1x_2)^2 = x_1^2x_2^2[x_2, x_1][x_2, x_1] = (x_1^2x_2x_1^{-1})^2(x_1^2[x_1, x_2])[x_2, x_1]^2[x_2, x_1, x_2].$$

Clearly, $(x_1^2x_2x_1^{-1})^2 \in \Phi(M)$, and as $[x_2, x_1] \in M$, we also have $[x_2, x_1]^2 \in \Phi(M)$ and $[x_2, x_1, x_2] \in \Phi(M)$. Furthermore, $x_1^\alpha \in \Phi(M)$ (since $\alpha \in 4\mathbb{Z}_2$), and it follows from the relation of G that

$$x_1^2[x_1, x_2] = x_1^{-\alpha}[x_1, x_{d-1}] \cdots [x_3, x_2]x_2^{-2f} \in \Phi(M).$$

Therefore, $(x_1x_2)^2 \in \Phi(M)$, which proves that G is not Frattini-resistant.

\[\square\]

7. Maximal pro-p Galois groups

Recall that we denote by $G_k = \text{Gal}(k_s/k)$ and $G_k(p) = \text{Gal}(k(p)/k)$ the absolute Galois group and the maximal pro-p Galois group of a field k, respectively.

Theorem 7.1. Let p be an odd prime, and let k be a field that contains a primitive pth root of unity. Then $G_k(p)$ is a strongly Frattini-resistant pro-p group.

Proof. By Corollary 4.8 it suffices to prove that for every subgroup H of $G_k(p)$ and every maximal subgroup M of H, the triple $(H, M, \Phi(M))$ is hierarchical. Let F, K and L be the fixed fields of H, M and $\Phi(M)$, respectively. Then $K = F(\sqrt[p^a]{a})$ for some $a \in F^\times$ (since F contains a primitive pth root of unity). Let $b \in k(p)$ be a root of the polynomial $X^{p^a} - \sqrt[p^a]{a}$; then $[K(b) : K]$ divides p, and hence $b \in L$.

Let $\sigma \in H \setminus M$. We claim that σ^p does not fix b, and consequently $\sigma^p \notin \Phi(M)$.

Since the roots of the polynomial $X^{p^2} - a$ are $b^{p^i}_{p^2}$ (where $0 \leq i \leq p^2 - 1$, ζ_{p^2} is a primitive p^2th root of unity, we have $\sigma(b) = b^{p^i}_{p^2}$ for some $0 \leq s \leq p^2 - 1$. Furthermore, \(s \) is relatively prime to p, since $p \mid s$ would imply

$$\sigma(\sqrt[p^a]{a}) = \sigma(b^p) = \sigma(b)^p = [b^p_{p^2} = \sqrt[p^a]{a},$$
which yields a contradiction with $\sigma \notin M$.

Consider the action of σ on the group $\mu_{p^2} = \langle \zeta_{p^2} \rangle$ of p^2th roots of unity. Since $\zeta_{p^2}^p \in k$, we have $\sigma(\zeta_{p^2}^p) = \zeta_{p^2}^p$, and thus $\sigma(\zeta_{p^2}) = \zeta_{p^2}^t$ for some $1 \leq t \leq p^2 - 1$ with $t \equiv 1 \pmod{p}$, i.e., $t = 1 + lp$ for some $0 \leq l \leq p - 1$. Moreover, by a simple calculation, we obtain

$$\sigma^p(b) = b \zeta_{p^2}^{s + ts + \ldots + t^{p-1}s}.$$

We need to prove that p^2 does not divide $s + ts + \ldots + t^{p-1}s = s(1 + t + \ldots + t^{p-1})$. Since p does not divide s, it suffices to show that p^2 does not divide $1 + t + \ldots + t^{p-1}$. This is clearly the case if $t = 1$, so we may assume that $t = 1 + lp$ for some $1 \leq l \leq p - 1$. Then

$$1 + t + \ldots + t^{p-1} = \frac{t^p - 1}{t - 1} = \frac{\sum_{i=1}^{p-1} (p)(lp)^i}{lp} = p + p^2 \left[\frac{p - 1}{2} + \sum_{i=3}^{p} \left(\frac{p}{i} \right) p^{i-3} i^{-1} \right].$$

Since p is odd, it follows that p^2 does not divide $1 + t + \ldots + t^{p-1}$. \hfill \square

Clearly, the assumption that p is an odd prime is essential in Theorem 7.1 (for instance, \mathbb{C}/\mathbb{R} is a maximal 2-extension with Galois group cyclic of order two, which is obviously not Frattini-injective). However, the condition on the prime is used only in the last line of the proof (when $t \neq 1$). Hence, under the stronger assumption that k contains a primitive p^2th root of unity, the theorem holds also for $p = 2$. In fact, in that case we can say more.

Theorem 7.2. Let k be a field that contains a primitive p^2th root of unity. Then $G_k(p)$ is strongly commutator-resistant.

Proof. Let H be a subgroup of $G_k(p)$ with fixed field F, and let $\varphi : H \to \mathbb{Z}_p/p\mathbb{Z}_p$ be an epimorphism. Denote by K the fixed field of $\ker \varphi$. Then $K = F(\sqrt[p^2]{a})$ for some $a \in F^\times$, and φ induces an isomorphism $\tilde{\varphi} : H/\ker \varphi \cong \text{Gal}(K/F) \to \mathbb{Z}_p/p\mathbb{Z}_p$. Since F contains a p^2th root of unity, there is a field L containing K such that the extension L/F is cyclic of degree p^2 (take $L := F(\sqrt[p^2]{a})$). By composing the restriction homomorphism $H \to \text{Gal}(L/F)$ with a suitable isomorphism from $\text{Gal}(L/F)$ to $\mathbb{Z}_p/p^2\mathbb{Z}_p$, we obtain an epimorphism $\psi : H \to \mathbb{Z}_p/p^2\mathbb{Z}_p$ such that $\pi \circ \tilde{\psi} = \varphi$, where $\pi : \mathbb{Z}_p/p^2\mathbb{Z}_p \to \mathbb{Z}_p/p\mathbb{Z}_p$ is the natural projection. It follows from Proposition 4.13 that $G_k(p)$ is strongly commutator resistant. \hfill \square

For a field F containing a primitive pth root of unity, we denote by $F(\sqrt[p]{F^\times})$ the maximal p-Kummer extension of F. In terms of field extensions, the Frattini-resistance of $G_k(p)$ takes the following form.

Corollary 7.3. Let k be a field that contains a primitive pth root of unity. If $p = 2$, in addition, assume that $\sqrt{-1} \in k$. Then, for all intermediate fields F and K of the extension $k(p)/k$,

$$F \subseteq K \iff F(\sqrt[p]{F^\times}) \subseteq K(\sqrt[p]{K^\times}).$$

Moreover, F/k is Galois if and only if $F(\sqrt[p]{F^\times})/k$ is Galois.
Proof. Note that if H is a subgroup of $G_k(p)$ with fixed field F, then $F(\sqrt[\varphi(F)]{F})$ is the fixed field of $\Phi(H)$. Hence, by Galois correspondence, the corollary follows from Theorem 7.1, Theorem 7.2 and Lemma 2.1.

As an immediate consequence of the torsion-freeness of Frattini-injective pro-p groups, we obtain Becker’s restriction on the finite subgroups of $G_k(p)$ ([1]).

Corollary 7.4. Let k be a field that contains a primitive pth root of unity.

(i) If p is odd or $\sqrt{-1} \in k$, then $G_k(p)$ is torsion free and has the unique extraction of roots property. Furthermore, for every finitely generated subgroup H of $G_k(p)$ and every open subgroup U of H, we have $d(U) \geq d(H)$.

(ii) If $p = 2$, then every non-trivial finite subgroup of $G_k(p)$ is cyclic of order two.

Proof. (i) follows from the results of Section 2. For the proof of (ii), suppose that H is a non-trivial finite subgroup of $G_k(2)$ with fixed field F. It follows from Theorem 7.2 that $k(2) = F(\sqrt{-1})$. Hence, H is a cyclic group of order two.

Before we turn to the more general context of 1-smooth cyclotomic pro-p pairs, we give the proof of Theorem 1.7.

Proof of Theorem 1.7. First suppose that p is an odd prime. Since every pro-p subgroup of the absolute Galois group G_k is contained in a p-Sylow subgroup, it suffices to prove that every p-Sylow subgroup P of G_k is strongly Frattini-resistant.

If k is of characteristic p, then P is a free pro-p group by [26, Theorem 6.1.4]. Hence, P is strongly Frattini-resistant by Theorem 6.1. If k is of characteristic different than p, then the fixed field F of P contains a primitive pth root of unity and $P = G_F(p)$; in this case, the claim follows from Theorem 7.1. For $p = 2$, the result follows from Theorem 7.2.

7.1. 1-smooth pro-p groups. Following [10] and [13], we call a pair $\mathcal{G} = (G, \theta)$ consisting of a pro-p group G and a homomorphism $\theta : G \to 1+p\mathbb{Z}_p$ (where $1+p\mathbb{Z}_p$ is the group of 1-units of \mathbb{Z}_p) a cyclotomic pro-p pair.

Given a cyclotomic pro-p pair $\mathcal{G} = (G, \theta)$, let $Z_p(1)$ be the G-module with underlying abelian group Z_p and G action defined by $g \cdot v = \theta(g)v$ for all $g \in G$ and $v \in Z_p$. The pair \mathcal{G} is said to be 1-smooth (or 1-cyclotomic; see [4], [13], [30], [31] and [32]), if for every open subgroup U of G and every $n \in \mathbb{N}$, the quotient map $Z_p(1)/p^nZ_p(1) \to Z_p(1)/pZ_p(1)$ (considered as a U-module homomorphism) induces an epimorphism

$$H^1(U, Z_p(1)/p^nZ_p(1)) \to H^1(U, Z_p(1)/pZ_p(1)).$$

Let k be a field containing a primitive pth root of unity, and let μ_{p^∞} be the group of all roots of unity in $k(p)$ of order a power of p. The cyclotomic pro-p character $\theta_{k,p} : G_k(p) \to 1+p\mathbb{Z}_p$ is defined by $\sigma(\zeta) = \zeta^{\theta_{k,p}(\sigma)}$ for all $\sigma \in G_k(p)$ and
Let \(G \) be a pro-\(p \) group. Suppose that the abelian group \(\mathbb{Z}_p/p^2\mathbb{Z}_p \) can be endowed with a structure of a (topological) \(G \)-module in such a way that for every open subgroup \(U \) of \(G \), the quotient homomorphism \(\pi : \mathbb{Z}_p/p^2\mathbb{Z}_p \to \mathbb{Z}_p/p\mathbb{Z}_p \) induces an epimorphism

\[
\pi^* : H^1(U, \mathbb{Z}_p/p^2\mathbb{Z}_p) \to H^1(U, \mathbb{Z}_p/p\mathbb{Z}_p).
\]

Then, the following assertions hold:

(i) If \(\mathbb{Z}_p/p^2\mathbb{Z}_p \) is the trivial \(G \)-module, then \(G \) is strongly commutator-resistant.

(ii) Some maximal subgroup of \(G \) is strongly commutator-resistant.

(iii) If \(p \) is an odd prime, then \(G \) is strongly Frattini-resistant.

Proof. If \(G \) acts trivially on \(\mathbb{Z}_p/p^2\mathbb{Z}_p \), then every open subgroup of \(G \) satisfies the extension of homomorphisms property of Proposition 4.13. Hence, (i) follows from Corollary 4.14. In general (for an arbitrary action), we obtain a continuous homomorphism from \(G \) to \(\text{Aut}(\mathbb{Z}_p/p^2\mathbb{Z}_p) \) with kernel \(M \) such that \(|G : M| \leq p \). Now \(M \) acts trivially on \(\mathbb{Z}_p/p^2\mathbb{Z}_p \), and it follows from (i) that \(M \) is strongly commutator-resistant, whence (ii).

For the proof of (iii), let \(U \) be an open subgroup of \(G \), and let \(M \) be a maximal subgroup of \(U \). By Proposition 4.14, it suffices to prove that \((U, M, \Phi(M))\) is a hierarchical triple. Upon identifying \(U/M \) with \(\mathbb{Z}_p/p\mathbb{Z}_p \), we may consider the natural projection \(\varphi : U \to U/M \) as an element of \(H^1(U, \mathbb{Z}_p/p\mathbb{Z}_p) = \text{Hom}(U, \mathbb{Z}_p/p\mathbb{Z}_p) \).

The surjectivity of the homomorphism \(H^1(U, \mathbb{Z}_p/p^2\mathbb{Z}_p) \to H^1(U, \mathbb{Z}_p/p\mathbb{Z}_p) \) implies the existence of a derivation (1-cocycle) \(d : U \to \mathbb{Z}_p/p^2\mathbb{Z}_p \) such that \(\pi \circ d = \varphi \). For every \(x \in M \), we have \(\pi(d(x)) = \varphi(x) = 0 \); so, \(d(M) \leq p\mathbb{Z}_p/p^2\mathbb{Z}_p \). Since \(p\mathbb{Z}_p/p^2\mathbb{Z}_p \) is necessarily a trivial \(G \)-module, the restriction of \(d \) to \(M \) is a homomorphism. It follows that \(d(\Phi(M)) = 0 \).

Let \(x \in U \setminus M \). Then \(\varphi(x) \neq 0 \), and thus \(d(x) \notin p\mathbb{Z}_p/p^2\mathbb{Z}_p \). Now \(x \cdot d(x) = \alpha d(x) \) for some \(\alpha = 1 + lp \) with \(0 \leq l \leq p - 1 \), and

\[
d(x^p) = (1 + \alpha + \ldots + \alpha^{p-1})d(x).
\]

If \(\alpha = 1 \), then \(d(x^p) = pd(x) \neq 0 \), and thus \(x^p \notin \Phi(M) \); otherwise

\[
1 + \alpha + \ldots + \alpha^{p-1} = \frac{\alpha^p - 1}{\alpha - 1} = \frac{\sum_{i=1}^{p-1} (lp)^i}{lp} = p + p^2 \left[\frac{p-1}{2} l + \sum_{i=3}^{p} \left(\binom{p}{i} \right) p^{i-3}l^{i-1} \right].
\]

Since \(p \) is assumed to be an odd prime, it follows that \(p^2 \) does not divide \(\frac{\alpha^p - 1}{\alpha - 1} \). Therefore, \(d(x^p) \neq 0 \) and \(x^p \notin \Phi(M) \). \(\square \)

Proof of Theorem 7.14. For \(p \) odd, this follows from Lemma 7.13 (iii). If \(p = 2 \) and \(\text{Im}(\theta) \leq 1 + 4\mathbb{Z}_2 \), then \(G \) acts trivially on \(\mathbb{Z}_2(1)/4\mathbb{Z}_2(1) \) and by Lemma 7.13 \(G \) is commutator-resistant. \(\square \)
The following two corollaries, in particular, subsume Theorem 1.8 and Theorem 1.9. They were recently proved by Quadrelli [31], [32].

Corollary 7.6. Let G be a p-adic analytic pro-p group. Then, there exists a homomorphism $\theta : G \to 1 + p\mathbb{Z}_p$ (with $\text{Im}(\theta) \leq 1 + 4\mathbb{Z}_2$ if $p = 2$) such that (G, θ) is a 1-smooth cyclotomic pro-p pair if and only if G is one of the groups listed in Theorem 1.2.

Proof. This follows from Theorem 1.11 and the well-known fact that the groups listed in Theorem 1.2 can be realized as maximal pro-p Galois groups. \(\square\)

Corollary 7.7. Let G be a solvable pro-p group. Then, there exists a homomorphism $\theta : G \to 1 + p\mathbb{Z}_p$ (with $\text{Im}(\theta) \leq 1 + 4\mathbb{Z}_2$ if $p = 2$) such that (G, θ) is a 1-smooth cyclotomic pro-p pair if and only if G is free abelian or it is a semidirect product $(x) \ltimes A$, where $(x) \cong \mathbb{Z}_p$, A is a free abelian pro-p group and x acts on A as scalar multiplication by $1 + p^s$ with $s \geq 1$ if p is odd, and $s \geq 2$ if $p = 2$.

Proof. This follows from Theorem 1.11 and Theorem 1.3. \(\square\)

By Theorem 1.4, for a field k containing a primitive pth root of unity (and also $\sqrt{-1} \in k$ if $p = 2$), $G_k(p)$ contains a unique normal abelian subgroup N. Moreover, it was proved in [30] that

$$N = \{h \in \ker \theta_{k,p} \mid ghg^{-1} = h^{\theta_{k,p}(g)} \text{ for all } g \in G_k(p)\},$$

where $\theta_{k,p}$ is the cyclotomic pro-p character defined above.

Given a pro-p group G and a homomorphism $\theta : G \to 1 + p\mathbb{Z}_p$, let

$$Z_\theta(G) := \{h \in \ker \theta \mid ghg^{-1} = h^\theta(g) \text{ for all } g \in G\}.$$

Note that $Z_\theta(G)$ is a normal abelian subgroup of G.

Proposition 7.8. Let G be a Frattini-injective pro-p group containing a non-trivial normal abelian subgroup. The following assertions hold:

(i) There exists a unique homomorphism $\theta : G \to 1 + p\mathbb{Z}_p$ such that $Z_\theta(G)$ is the (unique) maximal abelian normal subgroup of G.

(ii) If G is not pro-cyclic and for some $\psi : G \to 1 + p\mathbb{Z}_p$, $G = (G, \psi)$ is a 1-smooth cyclotomic pro-p pair (with $\text{Im}(\psi) \leq 1 + 4\mathbb{Z}_2$ if $p = 2$), then $\psi = \theta$.

Proof. (i) The uniqueness part is obvious. Let N be the unique maximal normal abelian subgroup of G, whose existence is guaranteed by Theorem 1.4. We define $\theta : G \to 1 + p\mathbb{Z}_p$ as follows: if $N = Z(G)$, then take θ to be the trivial homomorphism (i.e., $\theta(g) = 1$ for all $g \in G$); otherwise, by Theorem 1.4 (iv), $G = \langle x \rangle \ltimes C_G(N)$ for some suitable $x \in G$, and we let $\theta(C_G(N)) = 1$ and $xax^{-1} = a^{\theta(x)}$ for any (and hence every) $a \in N$. It readily follows from Theorem 1.4 that indeed $N = Z_\theta(G)$.

(ii) If $G = \langle x \rangle \ltimes A$ is metabelian (decomposed in a semidirect product as in Theorem 1.3), then A is the isolator of $[G, G]$, and consequently, $\psi(A) = 1$.

28 ILIR SNOPECE AND SLOBODAN TANUSHEVSKI
Moreover, for every $n \in \mathbb{N}$, $a \in A$ and a derivation $d : G \to \mathbb{Z}_p(1)/p^n\mathbb{Z}_p(1)$, we have $\theta(x)d(a) = d(a^{\theta(x)}) = d(axa^{-1}) = d(a^{\psi(x)}) = \psi(x)d(a)$. Therefore, the surjectivity of the cohomology maps $H^1(U, \mathbb{Z}_p(1)/p^n\mathbb{Z}_p(1)) \to H^1(U, \mathbb{Z}_p(1)/p\mathbb{Z}_p(1))$ implies that $\psi = \theta$. By a similar argument, if G is abelian (but not pro-cyclic), ψ must be the trivial homomorphism.

In general, denoting by N the unique maximal normal subgroup of G, for an arbitrary element $x \in G \setminus N$, the group $H := \langle x, N \rangle$ is metabelian and (H, ψ_H) is a 1-smooth cyclotomic pro-p pair. It follows from what has been already proved that $\psi(N) = 1$ and $\psi(x) = \theta(x)$. \qed

8. p-POWER-INJECTIVE PRO-p GROUPS

Definition 8.1. We say that a pro-p group G is strongly p-power-injective (p-power-injective) if for all (finitely generated) subgroups H and K of G,

$$H^p = K^p \implies H = K.$$

We call a pro-p group G strongly p-power-resistant (p-power-resistant) if for every (finitely generated) subgroup H of G, the triple (G, H, H^p) is hierarchical.

In our opinion, these are concepts deserving careful investigation. However, in this brief final section, we do little more than record several statements that follow from (or could be proved in a similar manner as) the main results of this paper.

Proposition 8.2. A pro-p group G is strongly p-power-resistant (p-power-resistant) if and only if for all (finitely generated) subgroups H and K of G,

$$H \leq K \iff H^p \leq K^p$$

Consequently, every (strongly) p-power-resistant pro-p group is (strongly) p-power-injective.

Proposition 8.3. Let G be a pro-p group. If (G, U, U^p) is a hierarchical triple for every open subgroup U of G, then G is strongly p-power-resistant. In particular, a finitely generated p-power-resistant pro-p group is strongly p-power-resistant.

Proposition 8.4. A (strongly) Frattini-resistant pro-p group is (strongly) p-power-resistant.

Proof. This follows from the fact that $G^p \leq \Phi(G)$ for every pro-p group G. \qed

For a pro-2 group G, we have $\Phi(G) = G^2$. Hence, 2-power-injectivity (2-power-resistance) is the same as Frattini-injectivity (Frattini-resistance).

Corollary 8.5. (1) Every free pro-p group is strongly p-power-resistant.

(2) Let G be a Demushkin pro-p group. Then, the following assertions hold:

(i) If $q(G) \neq p$, or $q(G) = p$ and p is odd, then G is strongly p-power-resistant.
(ii) If \(q(G) = 2 \) and \(d(G) > 2 \), then \(G \) is \(p \)-power-injective, but not \(p \)-power-resistant.

(iii) If \(q(G) = 2 \) and \(d(G) = 2 \), then \(G \) is not \(p \)-power-injective.

(3) Let \(k \) be a field that contains a primitive \(p \)-th root of unity. If \(p = 2 \), in addition, assume that \(\sqrt{-1} \in k \). Then \(G_k(p) \) is strongly \(p \)-power-resistant.

In contrast to Frattini-resistance, \(p \)-adic analytic \(p \)-power-resistant pro-\(p \) groups are ubiquitous.

Proposition 8.6. Every torsion free \(p \)-adic analytic pro-\(p \) group of dimension less than \(p \) is (strongly) \(p \)-power-resistant.

Proof. Let \(G \) be a torsion free \(p \)-adic analytic pro-\(p \) group of dimension less than \(p \). By [16, Theorem A], every closed subgroup of \(G \) is saturable. Thus to every subgroup \(H \) of \(G \) we can associate a saturable \(\mathbb{Z}_p \)-Lie algebra \(L_H \); moreover, \(L_{H^p} = pL_H \). Now let \(H \) and \(K \) be subgroups of \(G \) such that \(H^p \leq K^p \). Then

\[
H^p \leq K^p \implies pL_H \leq pL_K \implies L_H \leq L_K \implies H \leq K.
\]

Hence, by Proposition 8.2 \(G \) is a (strongly) \(p \)-power-resistant pro-\(p \) group. \(\square \)

Corollary 8.7. Suppose that \(p \geq 5 \). Then there are uncountably many pairwise non-commensurable \(p \)-power-resistant \(p \)-adic analytic pro-\(p \) groups.

Proof. This follows from [36, Theorem 1.1]. \(\square \)

9. Final Remarks

In this final section, we formulate several problems that we hope will stimulate further research on Frattini-injective pro-\(p \) groups.

Problem 1. Is every finitely generated Frattini-injective pro-\(p \) group strongly Frattini-injective?

Theorem 6.6 provides examples of Frattini-injective pro-2 groups that are not Frattini-resistant. We do not know any such examples for \(p \) odd.

Problem 2. For \(p \) an odd prime, find examples of Frattini-injective pro-\(p \) groups that are not Frattini-resistant, or prove that such groups do not exist.

In [40], Ware proved that for \(p \) odd the maximal pro-\(p \) Galois group of a field containing a primitive \(p \)-th root of unity is either metabelian or it contains a non-abelian free pro-\(p \) subgroup.

Problem 3. Does every non-metabelian Frattini-injective (Frattini-resistant) pro-\(p \) group contain a non-abelian free pro-\(p \) subgroup?

Following [43], we call a pro-\(p \) group \(G \) absolutely torsion-free if \(H^{ab} \) is torsion-free for every subgroup \(H \) of \(G \). Let \(G = (G, \theta) \) be a 1-smooth cyclotomic pro-\(p \) pair (with \(\text{Im}(\theta) \leq 1 + 4\mathbb{Z}_2 \) if \(p = 2 \)), and suppose that \(G \) has a non-trivial center.
It follows from Proposition 7.8 that θ is the trivial homomorphism. Moreover, the proof of Proposition 4.13 can be adapted to show that G is absolutely torsion-free.

Problem 4. Is every Frattini-injective (Frattini-resistant) pro-p group with non-trivial center absolutely torsion-free?

In what follows assume that p is odd.

Problem 5. Let G be a strongly Frattini-resistant pro-p group. Does there necessarily exist a homomorphism $\theta : G \to 1 + p\mathbb{Z}_p$ such that (G, θ) is a 1-smooth cyclotomic pro-p pair? (Note that if G contains a non-trivial abelian normal subgroup, then Corollary 7.8 gives a description of the only possible candidate for θ.)

Problem 6. Is every Frattini-resistant pro-p group Bloch-Kato?

In [10], Efrat introduced the class C of cyclotomic pro-p pairs of elementary type. This class consists of all finitely generated cyclotomic pro-p pairs which can be constructed from \mathbb{Z}_p and Demushkin groups using free pro-p products and certain semidirect products, known also as fibre products (cf. [10, 3]; see also [30, 7.5]). Given a field k that contains a primitive pth root of unity, Efrat conjectured that if $G_k(p)$ is finitely generated, then the cyclotomic pro-p pair $(G_k(p), \theta_k,p)$ is of elementary type; this is the so-called elementary type conjecture (cf. [8], [9] and [10]; see also [30, 7.5]).

It follows from [30, Theorem 1.4] and Theorem 1.11 that if (G, θ) is a cyclotomic pro-p pair of elementary type, then G is a strongly Frattini resistant pro-p group.

Problem 7. Is there a finitely generated (strongly) Frattini resistant pro-p group which is not of elementary type.

A negative answer to the above question would settle the elementary type conjecture. On the other hand, if there exist counter examples, then they will likely be pro-p groups with exotic properties.

Acknowledgement The first author acknowledges support from the Alexander von Humboldt Foundation, CAPES (grant 88881.145624/2017-01), CNPq and FAPERJ.

References

[1] E. Becker, *Euklidische Körper und euklidische Hülle von Körpern*, J. Reine Angew. Math. 268/269 (1974), 41–52.

[2] D. Benson, N. Lemire, J. Mináč and J. Swallow, *Detecting pro-p groups that are not absolute Galois groups*, J. reine angew. Math. 613 (2007), 175–191.

[3] S. K. Chebolu, I. Efrat and J. Mináč *Quotients of absolute Galois groups which determine the entire Galois cohomology*, Math. Ann. 352 (2012), 205–221.

[4] C. De Clercq and M. Florence *Lifting theorems and smooth profinite groups*, preprint, available at [arXiv:1710.10631] 2017.
[5] S. Demushkin, *On the maximal p-extension of a local field*, Izv. Akad. Nauk, USSR Math. Ser. 25 (1961), 329–346.

[6] S. Demushkin, *On 2-extensions of a local field*, Sibirsk. Mat. Z. 4 (1963), 951–955.

[7] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, *Analytic pro-p groups*, Cambridge Studies in Advanced Mathematics 61, Cambridge University Press, Cambridge, second edition, 1999.

[8] I. Efrat, *Orderings, valuations, and free products of Galois groups*, Sem. Structures Algébriques Ordonnées, Univ. Paris VII 54 (1995).

[9] I. Efrat, *Pro-p Galois groups of algebraic extensions of Q*, J. Number Theory 64 (1997), 84–99.

[10] I. Efrat, *Small maximal pro-p Galois groups*, Manuscripta Math. 95 (1998), no. 2, 237–249.

[11] I. Efrat and J. Mináč, *On the descending central sequence of absolute Galois groups*, Amer. J. Math. 133 (2011), 1503–1532.

[12] I. Efrat and E. Matzri, *Triple Massey products and absolute Galois groups*, J. Eur. Math. Soc. (JEMS) 19 (2017), 3629–3640.

[13] I. Efrat and C. Quadrelli, *The Kummerian property and maximal pro-p Galois groups*, J. Algebra 525 (2019), 284–310.

[14] A. J. Engler and J. Koenigsmann, *Abelian subgroups of pro-p Galois groups*, Trans. Amer. Math. Soc. 350(6) (1998), 2473–2485.

[15] A. J. Engler and J. B. Nogueira, *Maximal abelian normal subgroups of Galois pro-2 groups*, J. Algebra 166(3) (1994), 481–505.

[16] J. González-Sánchez and B. Klopsch, *Analytic pro-p groups of small dimensions*, J. Group Theory 12 (2009), 711–734.

[17] B. Jacob and R. Ware, *A recursive description of the maximal pro-2 Galois group via Witt rings*, Math. Z. 200 (1989), 379–396.

[18] B. Klopsch and I. Snopce, *Pro-p groups with constant generating number on open subgroups*, J. Algebra 331 (2011), 263–270.

[19] B. Klopsch and I. Snopce, *A characterisation of uniform pro-p groups*, Quarterly J. Math. 65 (2014), 1277–1291.

[20] J. Koenigsmann, *Pro-p Galois groups of rank ≤ 4*, Manuscripta Math. 95 (1998), 251–271.

[21] J. Koenigsmann, *Solvable absolute Galois groups are metabelian*, Inventiones Math. 144 (2001), 1–22.

[22] J. P. Labute, *Classification of Demushkin groups*, Canad. J. Math. 19 (1967), 106–132.

[23] M. Lazard, *Groupes analytiques p-adiques.*, Publ. Math. IHÉS 26 (1965), 389–603.

[24] J. Mináč and N. D. Tân, *Triple Massey products vanish over all fields*, J. Lond. Math. Soc. 94 (2016), 909–932.

[25] J. Mináč and N. D. Tân, *Triple Massey products and Galois theory*, J. Eur. Math. Soc. (JEMS) 19 (2017), 255–284.

[26] J. Neukirch, A. Schmidt and K. Wingberg, *Cohomology of Number Fields*. Second edition. Springer-Verlag, Berlin (2008).

[27] F. Noseda and I. Snopce, *On self-similarity p-adic analytic pro-p groups of small dimension*, J. Algebra 540 (2019), 317–345.

[28] C. Quadrelli, *Bloch-Kato pro-p groups and locally powerful groups*, Forum Math. 26 (2014), 793–814.

[29] C. Quadrelli, I. Snopce and M. Vanacci, *On Pro-p groups with quadratic cohomology*, preprint, available at arXiv:1906.04789.

[30] C. Quadrelli and Th. Weigel, *Profinite groups with a cyclotomic p-orientation*, preprint, available at arXiv:1811.02250, 2018.
[31] C. Quadrelli, *1-Smooth pro-p groups and the Bloch-Kato conjecture*, preprint, available at arXiv:1904.00667v3, 2020.

[32] C. Quadrelli, *Galois theoretic features for 1-smooth pro-p groups*, preprint, available at arXiv:2004.12605v4, 2020.

[33] M. Rost, *Norm varieties and algebraic cobordism*, Proceedings of the International Congress of Mathematicians. Vol. II (Beijing 2002), Higher Ed. Press, pp. 77–85.

[34] J. P. Serre, *Structure de certains pro-p groupes*, Séminaire Bourbaki 1962/63, no. 252 (1971), 357–364.

[35] J. P. Serre, Galois Cohomology. Springer-Verlag, Berlin (1997).

[36] I. Snopce, *Uncountably many non-commensurable finitely presented pro-p groups*, J. Group Theory 19 (2016), 515–521.

[37] I. Snopce and P. Zalesskii, *Subgroup properties of Demushkin groups*, Math. Proc. Camb. Phil. Soc. 160 (2016), 1–9.

[38] V. Voevodsky, *On motivic cohomology with Z/l-coefficients*, Ann. of Math. 174 (2011), 401–438.

[39] R. Ware, *Quadratic forms and profinite 2-groups*, J. Algebra 58 (1979), 227–237.

[40] R. Ware, *Galois groups of maximal p-extensions*, Trans. Amer. Math. Soc. 333 (1992), no. 2, 721–728.

[41] C. Weibel, *The norm residue isomorphism theorem*, J. Topol. 2 (2009), 346–372.

[42] J. S. Wilson, Profinite Groups. Clarendon Press, Oxford (1998).

[43] T. Würlfel, *On a class of pro-p groups occurring in Galois theory*, J. Pure Appl. Algebra 36 (1985), 95–103.

Universidade Federal do Rio de Janeiro, Instituto de Matemática, 21941-909 Rio de Janeiro, RJ, Brasil

E-mail address: ilir@im.ufrj.br

Universidade Federal Fluminense, Instituto de Matemática e Estatística, 24210-201 Niterói, RJ, Brasil

E-mail address: stanushevski@id.uff.br