Comment on: Thermal model for Adaptive Competition in a Market: Cavagna et al. [1] introduced an interesting model — called TMG as in [1] — similar to the minority game (MG), of N agents interacting in a market. Strategies of agents are represented by D dimensional vectors \vec{R}_i with $i = 1, \ldots, N$ running through agents and $a = 1, \ldots, s$ through ith agent’s available choices. The strategy \vec{R}_i used by i is selected drawing $a = \star$ from a Boltzmann distribution given by Eq. (4) of ref. [1] or (4) [1] for short — with “temperature” T and energies $-P(\vec{R}_i^2)$ (see Eq. (3) [1]). Cavagna et al. [1] report numerical data showing an interesting collective behavior as a function of T (figs. 2-1 and 3-1) and arrive at Eqs. (5,6)-[1] which are claimed to be the “exact dynamical equations for” the TMG. We show here that i) Eqs. (5,6)-[1] are incorrect ii) the correct continuum time dynamics is the same as that of the MG [4]. As a consequence the analytic solution of the MG of ref. [4] holds also for the TMG. Finally iii) the features found in [1] for $T \gg 1$ (figs. 2-3-[1]) are due to small simulation times and disappears if the system is in a steady state.

Cavagna et al. fail to define properly the continuum time limit (CTL) prescription, which is essential for stochastic differential equations such as Eq. (5)-[1]. It is crucial, in a proper derivation of the CTL, to observe that characteristic times in the TMG are proportional to D, as shown numerically in Fig. 1. This is natural because the adaptation of each agent’s strategy requires an optimization of all its D components. This need sampling $\sim D$ values of $\vec{η}$, i.e. a time of order D. In order to eliminate the dependence of times on system size $N = D/d$, one has to rescale time by a factor D. The dynamics in the rescaled time $\tau = t/D$ is obtained iterating Eq. (3)-[1] from $t = D\tau$ to $D\tau'$

$$P(\vec{R}, \tau') - P(\vec{R}, \tau) = \frac{-d}{D(\tau' - \tau)} \sum_{t = D\tau}^{D\tau' - 1} A(t) \vec{R} \cdot \vec{η}(t). \quad (1)$$

The law of large numbers implies that, when $D = dN \to \infty$, the r.h.s. converges to $d\langle A \vec{R} \cdot \vec{η} \rangle$ where the average $\langle \ldots \rangle$ is both on the distribution π^0_{α} of \vec{R}_i^* and on that of $\vec{η}$. If we then let $\tau' \to \tau$ the l.h.s. converges to the derivative P of P w.r.t. τ. Hence, using Eq. (2)-[1] for $A(t)$ and $\langle \eta_{\alpha} \eta_{\beta} \rangle = \delta_{\alpha,\beta}/D$, Eq. (1) becomes $P = -\frac{d}{N} \sum \langle \vec{R}_i^* \rangle \cdot \vec{R}$ with $\langle \vec{R}_i^* \rangle = \sum \pi^0_{\alpha} \vec{R}_i$. The combination of Eq. (1) and Eq. (4)-[1] yields a dynamical equation for π^α_i, which reads

$$\dot{\pi}^\alpha_i = -\frac{1}{NT} \pi^\alpha_i \sum_{j=1}^{N} (\langle \vec{R}_j^* \rangle - \langle \vec{R}_i^* \rangle) \cdot \left(\vec{R}_i^* - \langle \vec{R}_i^* \rangle \right). \quad (2)$$

Eq. (2) coincides with the continuum time equation of ref. [1] which leads to the exact solution of the MG for $N \to \infty$. This depends only on the first two moments of the distribution of components of \vec{R}_i, which plays the role of quenched disorder. Since, in the TMG, $\langle (\vec{R}_i^*)^2 \rangle = D$, these are the same as in the MG. Hence the two models have exactly the same collective behavior, as confirmed by Fig. 1.

Eq. (2) suggests that the dependence on T disappears by time rescaling. This is true in the $d \geq d_c$ phase: The T dependence for $T \gg 1$ reported in Figs 2,3-[1] is an artifact due to short simulation times (see also ref. [1]). For $d < d_c$ the CTL only holds for T larger than a crossover $T_c(d)$, as discussed elsewhere [2]. Indeed for $d = 0.1 < d_c$ and T large enough, data nicely collapses onto a single curve (see inset) once plotted against T/τ. For $T < T_c(d)$ the solution of Eq. (2) becomes dynamically unstable and the system enters into a turbulent regime where the CTL breaks down [1].

D. Challet(1), M. Marsili(2), and R. Zecchina(3)
(1) Institut de Physique Théorique, Université de Fribourg, Pétroles, Fribourg, CH-1700, Switzerland.
(2) Istituto Nazionale per la Fisica della Materia, SISSA unit, V. Beirut 4, I-34014 Trieste.
(3) Abdus Salam International Center for Theoretical Physics, Strada Costiera, 11, I-34100, Trieste.

[1] A. Cavagna, J.P. Garrahan, I. Giardina, D. Sherrington, Phys. Rev. Lett. 83, 4429 (1999).
[2] D. Challet and Y.-C. Zhang, Physica A 246, 407 (1997).
[3] R. Savit, R. Manuca, and R. Riolo, Phys. Rev. Lett. 82, 2203 (1999).
[4] D. Challet, M. Marsili and R. Zecchina, Phys. Rev. Lett. 84, 1824 (2000); M. Marsili, D. Challet and R. Zecchina, Physica A, 280, 522 (2000).
[5] M. Marsili and D. Challet, e-print cond-mat/0004376.
[6] G. Bottazzi, G. Devetag and G. Dosi, LEM-S. Anna School preprint (1999).