A diversity and a flexibility of language expression forms are awkward problems for the machine processing of language, such as translation, indexing and question-answering. This paper presents a method of decomposing Japanese sentences appearing in the Patent Documents on "Pulse network", into normal forms. First, the linguistic information is analysed and classified based on the human linguistic process. Then, predicate functions, phrase functions and operators are introduced as the normal forms. Finally, the decomposing procedure and some experimental results are shown.

Analysis of linguistic information

In this section, we analyse and classify the linguistic information necessary for decomposing Japanese sentences into their normal forms.

Classification of words

From the standpoint of linguistic process, that is, objects, cognitions and expressions, all words are divided into objective expressions W_1 and subjective expressions W_2. W_1 is the set of expressions which reflect external objects, namely, conceptual expressions. On the other hand, W_2 is the set of cognitive expressions without conceptual process, and immediately represents the affection, judgement, desire, will and so on. The detail of the classification of words is summarized in Table 1. We give supplementary explanations about Table 1.

Adjective \sim is the words which are called stem of adjectival verb in the traditional Japanese grammar. For inflectional words such as $A\alpha_n$, V_n, $T\beta_n$ and $J\gamma_n$, we specify n as 1, 2, 3, 4, and 5(6) according to inflectional forms, that is, negative, declinable word modifying, final, noun modifying, and conditional(imperative) form respectively.

Analysis of cognitive structure

In order to describe the content of words and the relation among words, we introduce the descriptive scheme M which consists of such five descriptors as follows;

$$M = < O, E, U, \sim, \Lambda >$$

(1) $O = \{ s_u, a_u, r_u \}$, where s_u is the substance, a_u is the attribute, and r_u is the relation. The symbol \sim_i specifies the variety and the abstracting level of each unit. Thus, O is the cognitive unit formed by separating and abstracting the external objects ideally, and is classified into three large categories, namely, substances, attributes and relations.

(2) $E = \{ c_1, c_2, c_3 \}$. E describes the relationship between objects from the various viewpoint. c_1 is the relationship between substance and attribute, c_2 is the relationship between substance and relation, and c_3 is the
Definition of predicate function

We define the normal forms of Japanese sentences, so generally a sentence expresses the property of an object, or the relationship among objects. The component which indicates such property or relationship, is the predicate of a sentence. So we introduce the function, the constans of which are the predicate and the case postpositions, and the variables of which are noun phrases just in front of case postpositions. This function is called predicate function and is expressed by

$$X_1{a_1}X_2{a_2}...X_n{a_n}P$$

where X_1, a_1 and P indicate the noun phrase, the case postposition and the predicate respectively.

[Example]
1. (SOOTI) GA (ZIZUKUSA) WO (PULSE) NI KAERU.
 $X_1{a_1} = \text{device}$
 $X_2{a_2} = \text{converts continuous wave into pulse train.}$

2. (DENATU) WO (TEIKOOKI) NI KUWAETA.
 $X_1{a_1} = \text{someone}$
 $X_2{a_2} = \text{applied voltage across a resistor.}$

3. (DENRYOKU HENKA) GA TISSAI.
 (The variation in power is small.)

Table 1 Classification of words

Category	Symbol	Example	
Objective expression (X_1)			
Noun	Common noun	NA transitor	
	Attribute noun	Dynamic, Nominal	
	Dynamic	HABA(SIN) (oscillation)	
	Static	NOD(SIN) (sinusoidal)	
	Nominal	HABANANA(SIN) (oscillation)	
Pronoun	HABANANA(SIN) (oscillation)		
Adjective	Adj ective	AD (large)	
	Adjective II	AB (tidy)	
	Abstract	VDN (voltage)	
	Special	VDN (voltage)	
Uninflected noun modifier	RK	ARHI (current)	
Prefix	NO	HIN (noon)	
Suffix	Nominal suffix	TA	KAI (the)
	Verbal suffix	TAN	SAFER (make)
Special symbols			
Compound word	RE	KURURUKO	
Auxiliary verb	TT	YO(1)	
Post-position	Case postposition	XA	GA, MD, N1
	Dependent postposition	XD	DA(N1), NAD
	Adverbial postposition	XD	TD(TO), DON
	Conjunctive postposition	XD	DON
Assertive adverb	CC	OPORI (and)	
Punctuation marks			

Table 2 List of descriptor O

Symbol	Descriptor	Example
A	Substance	NITTO
B	Potentiul substance	SMART
C	Substance object	DAIU
D	Functional body	AHAI, DONAP
E	Circuit element	HANAMAI, DIAD, INO
F	Circuit device	HANASEM(ionizer), KIBANAI, KOMASU
G	Device of system	KISANAI, KOMADONAI
H	Material	KOMANAI, KOMADONAI
I	Particle	DONAI, DONAI, DONAI
J	Abstract group	NITEKI
K	Phononym	XUAI
L	Paradigm	XUAI
M	Word	XUAI
N	Phoneme	XUAI
O	Abstract phoneme	XUAI
P	Functional phoneme	XUAI
Q	Other phonemes	XUAI
R	Abstract function	XUAI
S	Ideal substance	XUAI
T	View position	XUAI
U	Characteristic	XUAI
V	Component	XUAI
W	Quantity	XUAI
X	Arguement	XUAI
Y	Argument	XUAI
Z	State	XUAI
AA	Degree	XUAI
AB	Value	XUAI
AC	Constant	XUAI
AD	Method	XUAI
AE	Process	XUAI
AF	Function	XUAI
AG	Place	XUAI
AH	Process	XUAI
AI	Format	XUAI
AJ	Event	XUAI
AK	Attribute	XUAI
AL	Possibility	XUAI
AM	Possibility	XUAI
AN	Substance	XUAI
AO	Object	XUAI
AP	Operation	XUAI
AQ	Concrete operator	XUAI
AR	Event	XUAI
AS	Change	XUAI
AT	Change	XUAI
AU	Condition	XUAI
AV	Effect of change	XUAI
AW	Source	XUAI
AX	Place of removal	XUAI
AY	Input/output	XUAI
AZ	Input/output	XUAI
BA	Output	XUAI
BB	Continuation	XUAI
BC	Movement	XUAI
BD	Movement	XUAI
BE	Movement	XUAI
BF	Movement	XUAI
BG	Movement	XUAI
BH	Movement	XUAI
BI	Movement	XUAI
BJ	Movement	XUAI
BK	Movement	XUAI
BL	Movement	XUAI
BM	Movement	XUAI
BN	Movement	XUAI
BO	Movement	XUAI
BP	Movement	XUAI
BQ	Movement	XUAI
BR	Movement	XUAI
BS	Movement	XUAI
BT	Movement	XUAI
BU	Movement	XUAI
BV	Movement	XUAI
BW	Movement	XUAI
BX	Movement	XUAI
BY	Movement	XUAI
BZ	Movement	XUAI
CA	Attribute	XUAI
CB	Dynamic attribute	XUAI
CC	Dynamic attribute	XUAI
CD	Dynamic attribute	XUAI
CE	Dynamic attribute	XUAI
CF	Dynamic attribute	XUAI
CG	Dynamic attribute	XUAI
CH	Dynamic attribute	XUAI
CI	Dynamic attribute	XUAI
CJ	Dynamic attribute	XUAI
CK	Dynamic attribute	XUAI
CL	Dynamic attribute	XUAI
CM	Dynamic attribute	XUAI
CN	Dynamic attribute	XUAI
CO	Dynamic attribute	XUAI
CP	Dynamic attribute	XUAI
CQ	Dynamic attribute	XUAI
CR	Dynamic attribute	XUAI
CS	Dynamic attribute	XUAI
CT	Dynamic attribute	XUAI
CU	Dynamic attribute	XUAI
CV	Dynamic attribute	XUAI
CW	Dynamic attribute	XUAI
CX	Dynamic attribute	XUAI
CY	Dynamic attribute	XUAI
CZ	Dynamic attribute	XUAI
DA	Relational attribute	XUAI
DB	Relational attribute	XUAI
DC	Relational attribute	XUAI
DD	Relational attribute	XUAI
DE	Relational attribute	XUAI
DF	Relational attribute	XUAI
DG	Relational attribute	XUAI
DH	Relational attribute	XUAI
DI	Relational attribute	XUAI
DJ	Relational attribute	XUAI
DK	Relational attribute	XUAI
DL	Relational attribute	XUAI
DM	Relational attribute	XUAI
DN	Relational attribute	XUAI
DO	Relational attribute	XUAI
DP	Relational attribute	XUAI
DQ	Relational attribute	XUAI
DR	Relational attribute	XUAI
DS	Relational attribute	XUAI
DT	Relational attribute	XUAI
DU	Relational attribute	XUAI
DV	Relational attribute	XUAI
DW	Relational attribute	XUAI
DX	Relational attribute	XUAI
DY	Relational attribute	XUAI
DZ	Relational attribute	XUAI

Table 3 List of descriptor O

Symbol	Descriptor	Example
A	Substance	NITTO
B	Substance	NITTO
C	Substance	NITTO
D	Substance	NITTO
E	Substance	NITTO
F	Substance	NITTO
G	Substance	NITTO
H	Substance	NITTO
I	Substance	NITTO
J	Substance	NITTO
K	Substance	NITTO
L	Substance	NITTO
M	Substance	NITTO
N	Substance	NITTO
O	Substance	NITTO
P	Substance	NITTO
Q	Substance	NITTO
R	Substance	NITTO
S	Substance	NITTO
T	Substance	NITTO
U	Substance	NITTO
V	Substance	NITTO
W	Substance	NITTO
X	Substance	NITTO
Y	Substance	NITTO
Z	Substance	NITTO

Various connection of the same kind of objects.

3. U represents the active cognitions which are relatively independent of concepts.

4. V specifies the cognitive behaviors how the speaker cognize the objects.

5. $\Lambda = (\iota_3(\text{tense}), \nu_3(\text{anaphora}))$. A represents the relation between a speaker and objects.

A part of O, Z, U and V is tabulated in Table 2-5 respectively.
However, a predicate P has a variety of expressions in Japanese. For example, a verb is frequently connected with some auxiliary verbs (e.g., NA (negative), TA (past)) or verbal suffixes (e.g., RAREHU (passive), SASERU (causative)). Therefore, we decompose the predicate P into objective expression P_0 and subjective expression P_s. Then, we define the basic predicate function as the function which consists of the following four kinds of predicate P_0P_s:

1. P_0 (Final form of verb) P_s (Zero element of speaker's judgement)
2. P_0 (Final form of adjective I) P_s (Zero element of speaker's judgement)
3. P_0 (Adjective II) P_s (Judgement expression "DA(be)"
4. P_0 (Noun) P_s (Judgement expression "DA(be)"

The application of operators presented in next section, inflects the form of P_0 or P_s. Other predicate functions are defined by the application of operators to basic predicate functions. Thus, the predicate functions are classified as follows:

Predicate function

- Constant function (ideographic expression)
- Basic predicate function (simple connection between substance and attribute)
- Derivative function (expand the form of basic predicate)

The predicate generally represents some attribute concept. Unlike substances an attribute does not occur alone. It arises accompanying substances. When we cognize an attribute as the concept, there exist some substances which accompany the attribute. The variables corresponding to these substances are called obligatory variables of the predicate, and the case postpositions, obligatory ones aei. On the other hand, one substance usually accompanies various kinds of attribute, and is related to other substances as a mediation of attributes. In the predicate function, the variables corresponding to such attributes and substances are called facultative variables, and the case postpositions, facultative ones agi.

The variables of a predicate function have some domains of their own, that is to say, substitutable word classes. So we specify the domain of variables in terms of the descriptor Σ. Also, the relationship between the predicate and each variable is given by the descriptor Σ. These are summarized in Table 6.

Table 3 List of descriptor Σ

Symbol	Descriptor	Example
01.1	Simple connection	(IMPULSE) CA TAKAI (The impulse is MAX.)
01.2	Object of action or operation	(SINDO) KO RISSHIDORU-SU (A thing amplified signal.)
01.3	Starting point in action	(TRANSITOR) KARA MAN (A thing consists of a transistor.)
01.4	Finishing point in action	(SAYUTTARI) NI TASSERU (A thing reaches minimum value.)
01.5	Opponent in mutual action	(NO) JE KITUROI-SU (A thing depends on noise.)
01.6	Standard or reference	(POLUB) DE MAster-SU (A thing depends on pulse.)
01.7	Way or means	(KASEKU) IN KU (A thing in between collectors.)
01.8	Spatial positioning	(OTEKI) DI MAGAI (A thing floats whatever...)
01.9	Temporal positioning	(YO(U)) NI KITUROI-SU (A person connects a thing as it is...)
01.10	Others	

Symbol	Substance with the relation	Example
02.1	Order of substance	DA (1) (TRANSISTOR) (second transistor)
02.2	Number of substance	(2) KO NO (TRANSISTOR) (two transistors)
02.3	Property of substance	(MUKI) SI NAI-SU (frequency of pulse train)
02.4	Material of substance	(HEIRETU) (SETUZOKU) (wavelength of 400 nm.)
02.5	Unit of substance	(YO0) NI KETUGOO-SU (A thing depends on noise.)
02.6	Various connection among attributes	

Table 4 List of descriptor U

Symbol	Describer	Example of subjective expression
01	Affirmative judgment	DA, ARU (be, do)
02	Negative judgment	NA, NI (not)
03	Universal judgment	VA, ND
04	Purpose or aim	
05	Will	EI, YOO (will, shall)
06	Assumption	DA, SOSI (if)
07	Certification	VA
08	Inference	U, TANIN (probably)
09	Desire	
10	Natural judgment	HUREI (should, have to)
11	Instance	HAN (should, have to)
12	Limitation	(toward ideal)

Table 5 List of descriptor V

Symbol	Describer	Cognitive Behavior
48	Cognizing object	O faithfully
49	Cognizing attribute	A in substance
50	Cognizing static attribute	Dynamically
51	Cognizing dynamic attribute	Statically
52	Cognizing causal relation	Events backward
53	Cognizing an objective object	Ideal
54	Cognizing an object	Ideal
55	Cognizing one object	Ideationally
56	Cognizing the degree of	Quantity
57	Cognizing one object	From the various view points
58	Conjunctive enumeration	
59	Disjunctive enumeration	

-494-
cate, and varies the mode of the attribute which is expressed by the function. On the other hand, F_{12} applies to P_3, and varies the mode of the judgement. An example of F_{11} and F_{12} are shown in Table 7-8 respectively.

Nominalization operator

The nominalization operators apply to one predicate function and nominalize it in the following way.

(1) F_{11}: Cognizing one of the objects expressed by the predicate function, as the substance with attribute.

$$F_{11} \text{ (object) } \text{ predicate function}$$

(2) F_{12}: Recognizing the concrete event expressed by the predicate function, as substance ideally.

$$F_{12} \text{ (event) } \text{ predicate function}$$

(3) F_{13}: Transforming the predicate function into clauses which express the time, reason, state, effect and so on.

$$F_{13} \text{ (clause) } \text{ predicate function}$$

Table 6 Example of basic predicate function

Predicate P	Variable	Case position	λ	Domain
KUSEI (give)	x_1	y_1	w_1	x_2
KUSEI-SURI (detect)	x_3	y_1	w_1	x_4
KUSEI (received)	x_5	y_1	w_1	x_6
KUSEI-SURI (connect)	x_7	y_1	w_1	x_8
TANGU (keep)	x_9	y_1	w_1	x_{10}
DOMASHI-SURU (conduct)	x_{11}	y_1	w_1	x_{12}
ITTEI (constant)	x_{13}	y_1	w_1	x_{14}
OKU (large)	x_{15}	y_1	w_1	x_{16}
TATE (strong)	x_{17}	y_1	w_1	x_{18}

Table 7 Example of modal operators F_{11}

Symbol	Operator	Content	Usage
F_{11}	SURI (make)	a_1	IMPROVING THE TIME (The time is high.)
F_{11}	NARI (become)	a_2	IMPROVING THE TIME (The time becomes high.)
F_{11}	RAHEI (be able to)	a_3	IMPROVING THE TIME (A thing is able to increase the time.)
F_{11}	SHIHI (passive)	a_4	IMPROVING THE TIME (A thing is able to increase the time.)

Table 8 Example of modal operators F_{12}

Symbol	Operator	Content	Usage
F_{12}	DA, AB (be)	u_1	SWITCHING (ON/OFF) (The switching operation is correct.)
F_{12}	MATU (be)	u_2	IMPROVING THE TIME (The switching operation is correct.)
F_{12}	U, YOSHI (do)	u_3	IMPROVING THE TIME (The switching operation is correct.)
F_{12}	RENJU (be)	u_4	IMPROVING THE TIME (The switching operation is correct.)
F_{12}	TA (be)	u_5	IMPROVING THE TIME (The switching operation is correct.)
F_{12}	MADO (be)	u_6	IMPROVING THE TIME (The switching operation is correct.)
F_{12}	DAKE (be)	u_7	IMPROVING THE TIME (The switching operation is correct.)
F_{12}	TATE (be)	u_8	IMPROVING THE TIME (The switching operation is correct.)
(NYUURYOKU SINGO) WO HENTYO-SURU
(A thing modulates the input signal.)
→ (NYUURYOKU SINGO) WO HENTYO-SI TA SINGO
(the signal which is modulated by the input signal.)

(4) fII4 : Cognizing the only attribute as substance.
(PULSE) WO HASSTIN-SI WA SURU
(A thing generates the pulse train.)
÷ (NYUURYOKU SINGO) WO HENTYO-SI TA SINGO
(the signal which is modulated by the input signal.)
(ONDOKA) GA HENKA-SURU
(A temperature changes.)
÷ ONDO NO HENKA, or ONDO HENKA
(A change in temperature.)

The clause or noun phrase which is produced by the application of the nominalization operator, is substituted in the variable of other predicate function by embedding operator fIII.

Connecting operator
A connecting operator joins one predicate function to another coordinately or subordinately. Generally, it corresponds to conjunctions and conjunctive postpositions. Some operators are related to modal operators, attribute adverbs, or variety of predicate. It is classified into following six groups.

(1) Conjunctive connecting operator(fIV1)
S1 : (SYOOGI DENRYOKU) GA TISAI
(The consumption power is small.)
S2 : (SWITCHING ZIKAN) GA MIZIKAI
(The switching time is short.)
÷ S1*fIV1*S2
(SYOOGI DENRYOKU) GA TISAI, (SWITCHING ZIKAN) GA MIZIKAI
(The consumption power is small, and the switching time is short.)

(2) Simultaneous conjunctive connecting operator(fIV2)
S1 : (TRANSISTOR) WO KUDOO-SURU
(A thing drives the transistor.)
S2 : (HOOWADO) WO SEIGYO-SURU
(A thing controls the saturation rate.)
÷ S1*fIV2*S2
(TRANSISTOR) WO KUDOO-SURU TO DOOZI NI
(HOOWADO) WO SEIGYO-SURU
(The moment a thing drives the transistor, it controls the saturation rate.)

(3) Disjunctive connecting operator(fIV3)
S1 : (CONDENSER) WO SETUZOKU-SURU
(A person connects a capacitor.)
S2 : (COIL) WO IKERU
(A person inserts a coil.)
÷ S1*fIV3*S2
(CONDENSER) WO SETUZOKU-SURU KA (COIL) WO IKERU
(A person connects a capacitor, or inserts a coil.)

(4) Causal connecting operator(fIV4)
S1 : (DENRYU) GA (SYOTEITI) WO KOSU
(The current exceeds the fixed value.)
S2 : (DENATU HENKA) GA SYOOZOKU
(The voltage changes.)
÷ S1*fIV4*S2
(DENRYU) GA (SYOTEITI) WO KOSU TO (DENATU HENKA) GA SYOOZOKU
(The voltage changes when the current exceeds the fixed value.)

(5) Concessive connecting operator(fIV5)
S1 : (SYUUKI) WO KAIERU
(A person changes the period.)
S2 : (SINPUKU) GA ITTEI-DA
(The amplitude is constant.)
÷ S1*fIV5*S2
(SYUUKI) WO KAIERU TEMO (SINPUKU) GA ITTEI-DA
(When a person changes the period, the amplitude is constant.)

(6) Modificatory operator(fIV6)
S1 : (TEIKOO) WO KAIERU
(Through the resistor)
S2 : (BASE) WO (DENGEN) NI SETUZOKU-SURU
(A person connects the base to the power source.)
÷ S1*fIV6*S2
(TEIKOO) WO KAIERU TE (BASE) WO (DENGEN) NI SETUZOKU-SURU
(A person connects the base to the power source through the resistor.)

Generally, more than one connecting operator is applied in the actual sentences. So we define the universal connecting formula as follows. Let fII and fIII be the nominalization and the embedding operator respectively. An arbitrary predicate function Ai is expressed by
Ai = Ai1*fIV1*Ai2*flV1*...*fIV1*Ai m
where Ai k is
(i) Su,
(~) [Ai*fIVd*Aj] (d = 2,3,4,5,6).
Su is the basic predicate function, or the derivative function which is produced by the application of more than one modal operator, and is called unit predicate function. Moreover, the embedding operator is sometimes applied to Su in the following way.
Su(fIII-A1, A2, ..., Ai, ..., An)
where Ai = fIIAi.

Other operators
When one predicate function is produced by the application of the connecting operator to two functions, the elliptical operator omits the one of the same expression forms in the two functions and anaphoric operator replaces the one of the same expression forms with the pronoun.

Definition of phrase function
We introduce the phrase function in order to describe the structure of noun phrases or compound words. However, it is not easy to define the phrase function based on the word class, unlike the predicate function. So we classify the phrases according to their content, and define the phrase function based on this classification. An example of phrase function is listed in Table 9.

G1 is the phrase connected in terms of such relational concepts as position(r1), reference (r2), and part(r3). G2 is the phrase formed by cognitive behaviors(f), such as enumeration(φ10, φ11), cognition of one object from the various viewpoint(φ9), concrete and abstract cognition of one object(φ9), and so on. G3 is the phrase constructed in terms of the relationship(φ) between substance and attribute, and the various
connection(G_o) of the same kind of objects. G_o is other phrases.

Decomposition process

The new derivative functions can be produced by the application of the various operators to the basic predicate functions. This means that the sentences with complex syntactic structure correspond to one predicate function. Therefore, the normalization of sentences is the decomposition of the predicate function corresponding to these sentences, into a set of basic predicate functions, phrase functions and operators. In this section, we describe the decomposing procedure.

Machine dictionary

A machine dictionary consists of three elementary dictionaries, that is, word dictionary(WD), predicate function dictionary(PFD) and related concept dictionary(RCD). WD is utilized to acquire the basic linguistic information of each word in input sentences. PFD is given to the candidate word for predicate, such as verb, adjective, and so on, and is used to extract the predicate function from sentences and phrases. RCD is stored with the relation between concepts, and is used for not only the decision of embedded phrase but also the analysis of phrases. Table 9 shows an example of each dictionary.

Procedural description

General flow of decomposition process.

The general procedural flow and the data flow of decomposition process are shown in Fig.1 and Fig.2 respectively. Input Japanese sentences spelled in Roman letters are segmented word by word with spaces.

Each word is matched with entry words of WD. The word list(WLIST) is constructed based on the information from WD. The candidate for predicate (e.g., verb, adjective) is found by searching WLIST from the head of the list. Then, the modal operator (P_{II}, P_{I2} and P_{I2}), embedding operator P_{II} and connecting operator P_{I} are extracted by investigating the variety and the inflectional form of the predicate or the words which follow the predicate. The extracting method of these operators is shown in Fig.3. The extracted information is stored in WLIST1 and CLIST1. The variables of the predicate function are extracted by reference to PFD. At the same time, the modal operators P_{I2} and P_{I2} are extracted, if any. If the obligatory variable of the function is omitted, the word whose concept is coincident with the domain of the variable, is found from the extracted word string in WLIST. This is regarded as the application of the elliptical operator. When the embedding operator applies to the predicate, the variety of the nominalization operator and the embedded phrase are

Table 9 Example of phrase functions

Symbol	Phrase Function	Structure	Example
P_{I1}	V_{I1}	V_{I1}	V_{I1}
P_{I2}	V_{I2}	V_{I2}	V_{I2}
P_{I3}	V_{I3}	V_{I3}	V_{I3}

Table 10 Structure of machine dictionary

(a) Word dictionary (WD)

Entry word	Category	Code	Concept	Pointer
TRANSISTOR	NA	300	V_{I1}	-1
GE(-)	NA	1	-	-
SETSUKI	VB	1010	V_{I1}	-1
COLLECTOR	NA	410	V_{I2}	-2
DENTYOO	NA	376	V_{I2}	-2
SIDEN	VB	36	V_{I3}	-3
HEN~%	VB	1025	V_{I3}	-3
NOITAI	NA	343	V_{I3}	-3
DOU	VB	1018	V_{I3}	-3
BAI	NA	410	V_{I3}	-3
KONI	VB	1018	V_{I3}	-3
NOITAI	NA	343	V_{I3}	-3
KONI	VB	1018	V_{I3}	-3

(b) Predicate function dictionary (PFD)

No.	Number of case	Case postposition	Number of domain	Domain	Character setting of predicate
1	1	0	0	0	V_{I1}, V_{I2}, V_{I3}
2	2	0	2	2	V_{I1}, V_{I2}, V_{I3}
3	3	0	3	3	V_{I1}, V_{I2}, V_{I3}

(c) Related concept dictionary (RCD)

No.	Number	Variety	Direction	Level	Related concept
1	1	0	+	0	V_{I1}, V_{I2}, V_{I3}
2	2	0	+	0	V_{I1}, V_{I2}, V_{I3}
3	3	0	+	0	V_{I1}, V_{I2}, V_{I3}

* O (obligatory variable), I (optional variable), I (special variable due to P_{I1} and P_{I2}). I (special variable due to P_{I2}).
decided. The extracted information is stored FLIST I, and the word strings of the variables are stored in VLIST. These word strings are decomposed into basic predicate functions, nominalization operators and phrase functions, and then stored in FLIST 2 and GLIST. The above procedure are repeated for other predicate candidates. Finally, the connecting formula which indicates the relation among predicate functions are formed by reference to CLIST.

Processing of phrases. At first, the procedure finds the candidate for predicate, such as dynamic attribute noun, declinable word modifying form of common verb, prefix (e.g., "KOO(high)", "TSI(low)", "DAI(large)", etc.) and adjective II, from the word strings stored in VLIST. If the candidate is found, the basic predicate function, nominalization operator and embedded word are extracted. If not, the phrase function are extracted. They are classified into three types according to decision method.

[Type I] Phrase functions extracted by the features of their constant. The example are 8101, 8201, 8301, and so on, in Table 9. Their constants, such as "NYOOG(both)", "KAN (between)", "TAHOO(another)", "DAI", "GO", etc., are given the priority based on the strength of the connectability to variable, and are stored in constant list. The phrase function of this type is extracted according to priority.

[Type II] Phrase functions extracted by using RCD. The examples are 8105, 8308, and so on.

[Type III] Phrase functions extracted by using the variety or level of word concept. For example, 8203 is extracted by investigating whether the upper concepts of both words agree with each other or not, and 8204 is done by investigating whether the concept of second word

Fig.1 Decomposing procedure of Japanese sentences

Fig.2 Data flow of decomposition process

Fig.3 Extraction of modal, connecting and embedding operators

Experiments

The merit of above procedure is the combination of top-down processing and bottom-up processing. The former finds a key word in sentences without reference to the word order. The latter analyses word string based on the word order. This is advantageous for the SPC processing of Japanese sentences which embody the order variation and the embedding appear frequently.

The procedure was programmed by the assembly language of TOSBAC-60C mini computer. The experimental results for sentences in 30 documents confirmed the adequacy of our procedure. The examples of phrases and sentences processing are shown in Fig.4-5.

Conclusion

This paper have presented the method of decomposing Japanese sentences into normal forms. This method has following desirable advantages:

1. The descriptive scheme M which describes the word content and the relation among words, is introduced based on the human linguistic process.

2. The normal forms which consist of the basic predicate function, phrase function and operator, are interpreted according to the descriptive scheme M. This is useful for the semantic processing of input sentences.

3. The structure of considerably long sentences can be described by the embedding and connecting operators.

4. The structural description of phrases or compound words is useful to reduce the amount of storage for word dictionary.

5. The normal forms of sentences can serve as input data for an automatic subject indexing or abstracting of documents in the information retrieval system.

The problems left unsolved are word segmentation of input Japanese sentences, detection of syntactic and semantic ambiguity, and semantic reference to the word order. The latter analyses word string based on the word order. This is advantageous for the SPC processing of Japanese sentences which embody the order variation and the embedding appear frequently.

The procedure was programmed by the assembly language of TOSBAC-60C mini computer. The experimental results for sentences in 30 documents confirmed the adequacy of our procedure. The examples of phrases and sentences processing are shown in Fig.4-5.

Reference

1. T.Pujita, H.Tsurumaru and S.Yoshida,"Machine Processing of Japanese—Decomposition of Japanese Sentences into Their Normal Forms—", Trans. IECE Japan, Vol.59-D, No.7, pp.405-412, July 1975.

2. F.Nishida and S.Takamatsu, "A Reduction of Restricted Japanese Sentences to Predicate Formulas and the Information-Extraction", Trans. IECE Japan, Vol.59-D, No.8, pp.515-522, Aug. 1975.

3. T.Endo and T.Tamati, "Syntax Analysis of Japanese Text for Subject Indexing", Tech. Report of IECE Japan, AL77-46, Oct. 1977.

4. T.Endo and T.Tamati, "On a Structural Description of Japanese Text", Tech. Report of IECE Japan, AL79-37, July 1979.

5. G.Salton, "The SMART RETRIEVAL SYSTEM—Experiments in Automatic Document Processing—", Prentice-Hall Inc., 1971.

6. P.W.Lancaster, "Vocabulary Control for Information Retrieval", Information Resource Press, 1972.