Genetic and chemical characterization of white and red peony root derived from *Paeonia lactiflora*

Shu Zhu · Xiaoli Yu · Yuqiu Wu · Fumio Shiraishi · Nobuo Kawahara · Katsuko Komatsu

Received: 17 May 2014 / Accepted: 10 July 2014 / Published online: 24 August 2014
© The Japanese Society of Pharmacognosy and Springer Japan 2014

Abstract Two kinds of peony roots—white peony root (WPR) and red peony root (RPR)—are used for different remedies in traditional Chinese medicine; however, most of them are derived from the same botanical origin, *Paeonia lactiflora*. The difference between WPR and RPR has been debated for a long time. This study attempted to clarify the genetic and chemical characteristics of WPR and RPR in order to provide a scientific dataset for their identification and effective use. The nucleotide sequence of nrDNA internal transcribed spacer (ITS) and the contents of 8 main bioactive constituents were analyzed from specimens of *P. lactiflora*, *P. veitchii* and two related species as well as crude drug samples of WPR, RPR and peony root produced in Japan. Of the samples derived from *P. lactiflora*, the WPR produced in the southern parts of China and the RPR produced in the northern parts of China were clearly divided into two subgroups within the *P. lactiflora* group based on similarity of the ITS sequences. The nucleotides at positions 69, 458 and 523 upstream of the ITS sequence served as molecular markers to discriminate between WPR and RPR. Quantitative analysis indicated that the RPR samples obviously contained a higher content of paeoniflorin and paeonol, but a lower content of albiflorin than the WPR produced in the southern parts of China and peony root produced in Japan. The WPR available from Chinese markets was usually processed by sulfur fumigation, which resulted in an extremely low content of paeoniflorin. This study indicated that WPR and RPR were not only geographically isolated, but also genetically and chemically separated. The ITS sequence provided a genetic index for their identification.

Keywords *Paeonia lactiflora* · White peony root · Red peony root · Internal transcribed spacer of nrDNA (ITS) sequence · Chemical composition · Paeoniflorin · Pentagalloylglucose

Introduction

Peony root (PR) (Paeonieae Radix) is one of the most frequently used crude drugs in traditional Chinese medicine and Kampo medicine. In China there are two kinds of PR available—white peony root (WPR) and red peony root (RPR)—which are used for different remedies. WPR has been used to treat symptoms such as dizziness, limb spasm, abdominal pain, diarrhea, blood deficiency and irregular menses, etc. RPR, however, has been mainly used as remedies for blood stasis, gynecological diseases, cardiovascular illness, etc. [1]. In Chinese Pharmacopoeia, WPR is prescribed as the root of *Paeonia lactiflora* Pallas, which has been boiled and peeled and RPR is prescribed as the naturally dried root of *P. lactiflora* and *P. veitchii* Lynch. With the exception of *P. veitchii*-derived RPR, the WPR and RPR are from the same botanical origin, *P. lactiflora*. The difference between WPR and RPR has been debated for a long time with regard to the processing methods (peeled or unpeeled), difference in flower colors or root
colors, and cultivated or wild, etc. [2]. The most recent Pharmacognosy textbook describes that WPR is derived from cultivated sources mainly produced in Anhui, Zhejiang, and Sichuan provinces of southern China, whereas RPR is derived from wild plants collected from Inner Mongolia and northeastern China [3]. It is interesting to explore the underlying differences between these two crude drugs. It is also an appealing yet difficult task in terms of how to accurately discriminate between them. In this study, we attempted to find the answers using genetic and chemical approaches.

In the Japanese Pharmacopoeia, PR is prescribed as the root of *P. lactiflora* with not less than 2.0 % paeoniflorin [4]. As an analgesic, antispasmodic, astringent, etc., it has been included in approximately one-third of Kampo formulas used in Japan [5]. Hereafter, PR refers limitedly to the crude drugs of the roots of *P. lactiflora* available from Japanese markets. PR is supplied mainly by import from China and partly by domestic production, e.g., 1,188 tons was imported in 2010 and the domestic supply was 38 tons [6]. Apart from the different processing methods, PR and WPR are considered to be almost the same crude drug, because both are derived from the cultivated *P. lactiflora*. Generally, the PR samples imported from China are produced in the same producing areas of WPR.

To date, genetic markers used in phylogenetic analysis of *Paeonia* species include nucleotide sequences of the ribosomal DNA internal transcribed spacer (ITS) region, Adh1/2 genes and GPAT gene of nDNA, as well as *matK* gene, intergenic spacer *trnL*-F and *psbA*-trnH of cpDNA [7–10]. Among them, the ITS sequence has been demonstrated to be powerful for phylogenetic resolution and for discrimination between species due to the high rate of variation [11, 12]. Moreover, ITS sequencing of *Paeonia* species provides the most successful example of using the ITS sequence to reconstruct reticulate evolution; the nucleotide additivity is highly informative for detecting hybridization and inferring parental lineages [7]. Phytochemical studies have indicated that *Paeonia* plants contain many bioactive components, including monoterpenes, flavonoids, phenols and tannins [13]. Several reports have described quantitative analyses of the main chemical components of commercial samples of WPR and RPR [14, 15].

The present study determined the nucleotide sequence of the ITS region and conducted quantitative analysis of 8 main bioactive components on 4 *Paeonia* species, as well as commercial samples of PR, WPR and RPR collected from Japanese and Chinese markets to clarify the genetic and chemical characteristics of WPR and RPR.

Table 1 Plant specimens used in this study

Original plant	Location for collecting plant	W/C	Voucher no.	Code no.	Collection date
Paeonia lactiflora Pallas	Duolun, Inner Mongolia, China	W	Wei S.L., 2007-1	P1	2007.01.28
P. lactiflora Arxan, Inner Mongolia, China	W	Murakami M., MM-1	P2	2007.08.11	
P. lactiflora Chifeng, Inner Mongolia, China	W	Komatsu K. et al., HJN269	P14	2012.08.04	
P. lactiflora Wudalianchi, Heilongjiang, China	W	Komatsu K. et al., HJN143	P15	2012.07.22	
P. lactiflora Wudalianchi, Heilongjiang, China	W	Komatsu K. et al., HJN145	P16	2012.07.22	
P. lactiflora Mongolia	W	623-63	P3	1967	
P. lactiflora Xinwo, Zhejiang, China	C	Komatsu K. et al., CJZ132	P9a	2009.08.05	
P. lactiflora (Bonten) Toyama, Japan	C	Murakami M., S34	S34a	2008.11.	
P. lactiflora (Kitasaisho) Toyama, Japan	C	Murakami M., S31	S31a	2008.11.	
P. anomala Linn. Tuluugiyn davas-Hutag-Ondor, Bulgan, Mongolia	W	Komatsu K. et al., M505	P4a	2002.07.20	
P. anomala Jingiin halzan-Bayannuul, Uvs, Mongolia	W	Komatsu K. et al., M755-1	P5a	2002.07.29	
P. anomala Mongolia	W	Komatsu K. et al., M755-2	P6a	2002.07.29	
P. veitchii Lynch Ganzi, Sichuan, China	W	Komatsu K. et al., S-1	P7a	1996.07.10	
P. japonica Miyabe et Takeda Toyama, Japan	C	Murakami M., MM-4	P8	2008.12.04	

W, wild; C, cultivated

a Samples used in chemical analysis
Table 2 Crude drug samples used in this study

Drug name	Abr.	Production area	Obtained from	Code no.	Collection date	TMPW no.
White peony root	WPR	Bozhou, Anhui, China	Bozhou, Anhui, China	D1*	2006.05.02	25071
White peony root	WPR	Bozhou, Anhui, China	Bozhou, Anhui, China	D2*	2006.05.02	25072
White peony root	WPR	Bozhou, Anhui, China	Bozhou, Anhui, China	D3*	2006.10.17	25244
White peony root	WPR	Bozhou, Anhui, China	Bozhou, Anhui, China	D17*	2006.05.02	25073
White peony root	WPR	Anhui, China	Hohhot, Inner Mongolia, China	D23*	2010.10.14	26975
White peony root	WPR	Zhongjiang, Sichuan, China	Jihuang, Zhongjiang, Sichuan, China	D4*	2002.09.23	25820
White peony root	WPR	Zhejiang, China	Cenxi, Guangxi, China	D18*	2008.09.06	25973
White peony root	WPR	Hangzhou, Zhejiang, China	Hohhot, Inner Mongolia, China	D22*	2010.10.13	26974
White peony root	WPR	Pan’an, Zhejiang, China	Pan’an, Zhejiang, China	D29*	2009.08.05	26620
White peony root	WPR	Jiangsu, China	Hohhot, Inner Mongolia, China	D24*	2010.10.16	26976
Peony root	PR	Anhui, China	National Institute of Biomedical Innovation, Japan	D30	2010	27685
Peony root	PR	Anhui, China	National Institute of Biomedical Innovation, Japan	D31	2009	27689
Peony root	PR	Anhui, China	National Institute of Biomedical Innovation, Japan	D32	2008	27690
Peony root	PR	Anhui, China	National Institute of Biomedical Innovation, Japan	D33	2008	27691
Peony root	PR	Anhui, China	National Institute of Biomedical Innovation, Japan	D34	2009	27693
Peony root	PR	Anhui, China	National Institute of Biomedical Innovation, Japan	D35	2010	27696
Peony root	PR	Anhui, China	National Institute of Biomedical Innovation, Japan	D36	2009	27697
Peony root	PR	Zhejiang, China	National Institute of Biomedical Innovation, Japan	D37	2010	27686
Peony root	PR	Sichuan, China	National Institute of Biomedical Innovation, Japan	D38	2009	27687
Peony root	PR	Sichuan, China	National Institute of Biomedical Innovation, Japan	D39	2009	27692
Peony root	PR	Sichuan, China	National Institute of Biomedical Innovation, Japan	D40	Unknown	27699
Peony root	PR	Zhejiang, China	Tochimoto Tenkaido Co., Ltd., Osaka, Japan	D45*	2012.09.04	27887
Peony root	PR	Sichuan, China	Tochimoto Tenkaido Co., Ltd., Osaka, Japan	D46*	2012.09.04	27888
Peony root	PR	Anhui, China	Tochimoto Tenkaido Co., Ltd., Osaka, Japan	D47*	2012.09.04	27889
Peony root	PR	China	Uchida Wakanyaku Co., Ltd., Tokyo, Japan	D53*	2012.09.04	27890
Peony root	PR	Toyama, Japan	Nara, Japan	D50a	2008.02.15	25834
Peony root (Bonten)	PR	Toyama, Japan	Nara, Japan	D51a	2008.02.15	25835
Peony root (Bonten)	PR	Toyama, Japan	Nara, Japan	D52a	2008.02.15	25836
Peony root (Yamato)	PR	Niigata, Japan	Uchida Wakanyaku Co., Ltd., Tokyo, Japan	D6a	2008.10.07	26400
Peony root (Yamato)	PR	Nara, Japan	Tochimoto Tenkaido Co., Ltd., Osaka, Japan	D7a	2008.02.14	25818
Peony root (Yamato)	PR	Hokkaido and Nagano, Japan	Tochimoto Tenkaido Co., Ltd., Osaka, Japan	D8a	2008.02.14	25819
Peony root (Yamato)	PR	Nara, Japan	Tochimoto Tenkaido Co., Ltd., Osaka, Japan	D9a	2008.10.31	26107
Materials and methods

Plant and crude drug materials

Fourteen specimens of four *Paeonia* species were analyzed—*P. lactiflora*, *P. veitchii*, *P. anomala* Linn. and *P. japonica* Miyabe et Takeda. Details of the plant materials are shown in Table 1. Meanwhile, 46 commercial samples available from Chinese and Japanese markets were collected and analyzed for comparison. Of the PR samples collected from Japanese markets, half were imported from China and half were produced in Japan. In several commercial samples, multiple individuals were analyzed and their identities were indicated separately. All of the plant specimens and crude drug samples were stored in the Museum of Materia Medica, Institute of Natural Medicine, University of Toyama, Japan (TMPW) (Table 2).

Genomic DNA extraction and PCR amplification

Total DNA was extracted from 50 — 60 mg of root powder by using DNeasyTM Plant Mini Kit (Qiagen, Germany) with little modification to the protocol provided by the manufacturer. The primer pair used for PCR amplification were ITS-1F (5'-GTA GGT GAA CCT GCA GAA GGA TCA-3') and 18S-25S-3'R (5'-CCA TGC TTA AAC TCA GCG GGT-3') as reported previously [16], which was able to amplify a fragment of approximately 700 bp including the rDNA ITS1–5.8S–ITS2 regions. PCR amplification was performed in 25 µl of reaction mixture, consisting of 1 x PCR buffer for KOD-Plus-, 0.2 mM of each dNTP, 1.0 mM MgSO4, 0.3 µM of each primer, 0.5 U KOD-Plus-DNA polymerase (Toyobo, Japan), and 0.5 µl of total DNA. PCR amplification was performed under the cycling profile of a preliminary denaturation at 94 °C for 5 min, 35 cycles of 94 °C for 30 s, 55 °C for 30 s, and 68 °C for 50 s, and a final extension at 68 °C for 10 min by a Takara thermal cycler (Takara, Japan). PCR products were purified with a WizardSV PCR Clean-Up System (Promega, USA).

Sequence analysis and clustering analysis

Sequencing reaction of purified PCR products was carried out separately using ABI PRISM Bigdye Terminator v3.1 Cycle Sequencing Kits (Applied Biosystems, USA) with each of the 4 types of primers (ITS-1F, 18S-25S-3’R, In-18S-25S-5’F: 5’-TCT CGC ATC GAT GAA GAA CG-3’ and In-18S-25S-3’R: 5’-GAC TCG ATG GTT CAC GGG ATT CT-3’). The sequence was determined directly using ABI Prism 3100-Avant Genetic Analyzer (Applied Biosystems, USA). With regard to the judgment of additive sites, we calculated the relative intensity of the lower peak as S value (lower peak intensity/sum of main peak intensity and lower peak intensity) for the sites where double peaks occurred. The sites with an S value no less than 15% were recorded as additive sites, according to our previous results.

Table 2 continued

Drug name	Abr.	Production area	Obtained from	Code no.	Collection date	TMPW no.
Peony root (Yamato)	PR	Nara, Japan	Tochimoto Tenkaido Co., Ltd., Osaka, Japan	D10	2008.10.31	26398
Peony root	PR	Nagano, Japan	National Institute of Biomedical Innovation, Japan	D41	2009	27688
Peony root	PR	Nara, Japan	National Institute of Biomedical Innovation, Japan	D42	2010	27694
Peony root	PR	Niigata, Japan	National Institute of Biomedical Innovation, Japan	D43	2010	27695
Peony root	PR	Nara, Japan	National Institute of Biomedical Innovation, Japan	D44	2010	27698
Peony root	PR	Japan	Uchida Wakanyaku Co., Ltd., Tokyo, Japan	D49a	2012.09.04	27891
Red peony root	RPR	Sichuan, China	Cenxi, Guangxi, China	D16	2008.09.06	25974
Red peony root	RPR	Inner Mongolia, China	Chifeng, Inner Mongolia, China	D12a	2002.09.14	21565
Red peony root	RPR	Inner Mongolia, China	Bozhou, Anhui, China	D13	2006.05.01	25047
Red peony root	RPR	China	Uchida Wakanyaku Co., Ltd., Tokyo, Japan	D14a	2008.10.07	26401
Red peony root	RPR	Inner Mongolia, China	Tochimoto Tenkaido Co., Ltd., Osaka, Japan	D15	2008.10.16	26406
Red peony root	RPR	China	Matsuura Co., Ltd., Nagoya, Japan	D54	2012.10.04	27893
Red peony root	RPR	Ganzi, Sichuan, China	Ganzi, Sichuan, China	D11	1996.07.11	17304

a Samples used in chemical analysis; italicized number: multiple individuals in the sample were analyzed

b This sample is derived from *P. veitchii*; apart from this sample the others are derived from *P. lactiflora* based on sequence analysis results
from experimental examinations [17, 18]. The borders of ITS1, 5.8S, and ITS2 regions were determined by comparison with the known sequences of mung bean and rice [19, 20]. The nucleotides sequence data of the ITS1–5.8S–ITS2 regions were deposited in the International Nucleotide Sequence Database (INSD: DDBJ/EMBI/NCBI) with the accession numbers shown in Table 3.

Comparison of ITS sequences was carried out by the ClastalW2 program for multiple sequence alignment. A guide tree on the basis of sequence similarity was constructed during multiple sequence alignment (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Besides the sequences determined in the present study, ITS sequences of related Paeonia species obtained from INSD were also included.

HPLC analysis of 8 main components

Quantitative analysis of 8 main components (paeoniflorin, albiflorin, pentagalloylglucose [PGG], (-)-catechin, gallic acid, methyl gallate, benzoic acid and paeonol) (Fig. 1) was conducted using the reported method [14, 21] with little modification. Of the standards, paonoiflorin, albiflorin and paeonol were purchased from Wako Pure Chemical Industries (Osaka, Japan), PGG from Toronto Research Chemicals (ON, Canada), (+)-catechin from Cayman Chemical Company (MI, USA), gallic acid and benzoic acid from Nacalai Tesque Inc. (Japan), and methyl gallate from ChromaDex (CA, USA). Reagents for HPLC analysis including acetonitrile, distilled water (both of HPLC grade) and phosphatic acid (analytical grade) were purchased from Wako Pure Chemical Industries (Japan).

A Jasco HPLC system equipped with a PU-1580 pump, an LC-1580-02 ternary gradient unit, and an MD-1510 multiple wavelength detector was used. Analysis was carried out using a YMC Pack AQ-303 (ODS, 4.6 mm i.d. × 250 mm, 5 μm) with column temperature at 27 °C. The mobile phase consisted of binary eluents of (A) 0.1 % (v/v) phosphoric acid and (B) CH3CN under gradient conditions (0 min, 10 % B; 5 min, 15 % B; 40 min, 30 % B; 45 min, 70 % B; 46 min, 80 % B; 50 min, 80 % B; 55 min, 10 % B; 65 min, 10 % B). Flow rate was 1.0 ml/min. Detection was performed at a wavelength of 232 nm.
Each standard was accurately weighed and dissolved in 75 % EtOH to make a stock solution of 1.0 mg/ml. To make calibration curves, a series of standard solutions (200, 100, 20, 10, 2 μg/ml) were prepared from the stock solution. The calibration curve of each component was prepared by plotting the peak areas against a series of injection amounts.

The respective samples (10–50 g) were pulverized and then screened through a 300-μm sieve to obtain homogeneous fine powder of each sample; 0.3 g of the fine powder was accurately weighed and extracted with 75 % EtOH (9 ml, 8 ml × 2) by ultrasonication at room temperature for 30 min, mixed periodically by vortex to obtain full extraction. The supernatant was then obtained by centrifugation at 2,500 rpm (Kubota 3740, Japan) for 10 min. Supernatants were combined into a 25.0-ml volumetric flask and finally filled with 75 % EtOH to the volume. After filtration through a 0.2-μm Millipore filter unit (Advantec, Japan), 20.0 μl of this solution was injected into the HPLC system for analysis.

The quantitative analysis data was further subjected to principal component analysis (PCA) by using software IBM SPSS Statistics (Version 19.0) to facilitate characterization of WPR and RPR.

Results and discussion

Genetic characterization based on ITS sequences

The ITS sequences of specimens of the four *Paeonia* species as well as the crude drug samples were clearly determined and compared. All the sequences were of the same length, in which the ITS1 region was 267 bp, the 5.8S rRNA gene region was 164 bp, and the ITS2 region was 221 bp. The specimens of the 4 species showed their own ITS sequences which had > 99 % homology to the corresponding sequences of the respective species registered in INSD. All the determined sequences were compared using ClastalW2, a program for multiple sequence alignment. The program constructed a guide tree (Fig. 2) on the basis of sequence similarity to facilitate the alignment. In this guide tree, *P. lactiflora* formed a large group which was completely separate from *P. veitchii, P. anomala, P. japonica* and *P. suffruticosa*. Of the crude drug samples collected from markets, only a sample of RPR (D11) collected from Sichuan province presented an almost identical sequence to that of *P. veitchii* (P7) and was identified as *P. veitchii* (Fig. 2). Other samples which included both WPR and RPR were confirmed to be *P. lactiflora* based on the sequence similarity. Within the group of *P. lactiflora*, two main subgroups were further clustered (Fig. 2). It is noteworthy that the WPR produced in the southern parts of China belonged to one subgroup (WPR subgroup) and the RPR produced in the northern parts of China fell into another subgroup (RPR subgroup) (Fig. 2). The results clearly indicated that the ITS sequence was informative and sufficiently powerful to discriminate *Paeonia* plants at either inter-species or intra-species levels and suggested that WPR and RPR were geographically isolated and genetically separated.

Within *P. lactiflora*, significant intra-species polymorphism of the ITS sequences was detected. Although Sang et al. [7] reported that there was almost no polymorphism
in the ITS sequence among intraspecific populations, the present study, by sampling dozens of accessions widely collected from China and Japan, indicated a significant polymorphism in the ITS sequences of *P. lactiflora*. Table 3 shows nucleotide differences among various types of ITS sequences from *P. lactiflora*-derived samples. The ITS sequences of *P. lactiflora* deposited in INSD included two main types, which differed from each other by three nucleotides at positions 69, 458 and 523 (Table 3). Type 1 (U27682 reported by Sang et al. [7]) shows three cytosines (C–C–C), while type 2 (JN572150 reported by Sun and Hong [22]) has thymine, adenosine and thymine (T-A-T) at the three sites. According to the nucleotides at these three sites, the samples analyzed in the present study were divided into two main groups corresponding to the two subgroups as shown in Fig. 2. One subgroup which included all the samples of WPR produced in Anhui, Zhejiang and Sichuan provinces and the two Japanese medicinal cultivars (S31, S34) showed T₆₉-A₄₅₈-T₅₂₃ at the same three sites as the type 2. The other subgroup which included plant specimens of wild *P. lactiflora* (P1–P3) as well as the RPR samples, except for sample D16 from Sichuan province, showed additive nucleotides (double nucleotides detected at the same site) as Y (T&C), M (A&C) and Y at the three sites (Y₆₉-M₄₅₈-Y₅₂₃), respectively. Three PR samples (D6-2, D6-5, D8) with additive nucleotides at one or two of the three sites presented intermediate type of sequences.
Apart from the difference at the above three sites, nucleotide additivities were observed at another 17 positions (Table 3). Due to the bi-parental inheritance mode of the nrDNA ITS region, nucleotide additivities detected in the sequence are potentially advantageous features for speculating hybridization and inferring progenitors and lineages [7]. However, lineages other than *P. lactiflora* which are possibly involved and responsible for these nucleotide additivities could not be implied even through wide comparison of the ITS sequences from genus *Paeonia* registered in INSD. Future investigation around wild habitats of *P. lactiflora* and subsequent sequencing of related samples might provide further evidence. Among such sites, additivities detected at nucleotide positions 239 and 246 were found to be in common within the WPR subgroup, and those at position 93 were almost in common within the RPR subgroup. Detailed sequence comparison indicated that the divergent sites in the ITS sequence have the potential to discriminate between WPR and RPR; in particular, the nucleotides at positions 69, 458 and 523 were the most informative.

The two Japanese medicinal cultivars of *P. lactiflora*—‘Bonten’ (S34) and ‘Kitasaisho’ (S31)—showed the same sequence which was identical to a type of sequence from *P. lactiflora*. WPR which was processed by sulfur fumigation. D16 was purchased in Guangxi, China as RPR; however, genetic analysis indicated it belonged to the WPR subgroup. Therefore we placed it within the WPR group. *P9 and P1 were collected in Zhejiang and Inner Mongolia, respectively, where are the production areas of WPR and RPR.

Chemical comparison on the basis of quantitation of 8 main components

The contents of 8 main components were quantitatively analyzed to clarify the chemical properties of *P. lactiflora*, *P. veitchii*, *P. anomala*, and the crude drug samples including WPR, PR and RPR. Within the commercial samples derived from *P. lactiflora*, the RPR samples produced in the northern parts of China had an obviously higher content of paeoniflorin and paeonol, but a lower content of albiflorin than WPR/PR produced in the southern parts of China and most of the PR produced in Japan. Among the 11 commercial samples of WPR collected from various places in China, eight samples contained < 20 mg/g of paeoniflorin. In particular, the three samples (D18, D22, D24) had extremely low content of paeoniflorin (< 1.5 mg/g). When the HPLC chromatograms of these 3 samples were compared with others, a conspicuous peak with a retention time at approximately 10.4 min was...
commonly observed in these 3 samples, which was not detected in the PR collected from the Japanese markets. Wang et al. [14] reported that an artifact compound, paeoniflorin sulphonate, could be detected in WPR which has been processed by sulfur fumigation (a traditional process for crude drugs in traditional Chinese medicine). Further analysis using LC/MS clearly indicated this notable peak was paeoniflorin sulphonate (data not shown). In the HPLC chromatograms of more than half of the WPR collected from Chinese markets (indicated in Fig. 3), the paeoniflorin sulphonate peak was detected. This result indicated that the WPR available from Chinese markets was usually processed by sulfur fumigating which resulted in an extremely low content of paeoniflorin; however, the PR available from Japanese markets did not undergo this process (Table 4).

Table 4 Contents of 8 compounds in *Paeonia* species and crude drug samples of WPR, PR and RPR

Code no.	Content (mg/g)							
	Paeoniflorin	Albiflorin	PGG	Gallic acid	Catechin	Benzoic acid	Paeonol	Methylgallate
D1	23.39	4.07	2.57	0.89	0.26	0.32	ND	ND
D2	16.00	3.41	1.91	0.39	ND	2.20	0.02	ND
D3	28.29	3.43	3.60	1.14	0.24	0.60	ND	Trace
D17	20.21	5.33	3.31	0.98	0.30	0.34	ND	ND
D23	9.12	5.92	3.72	0.91	0.46	0.13	ND	ND
D4	37.58	10.36	10.51	1.60	0.40	1.39	ND	ND
D16	18.82	5.21	8.37	2.15	Trace	0.72	0.05	ND
D18	1.11	4.93	2.72	0.97	0.53	0.26	Trace	ND
D22	0.53	3.16	2.05	0.88	0.53	0.17	ND	ND
D29	18.48	4.96	3.52	0.53	0.57	0.20	ND	ND
D24	1.21	5.87	3.87	1.60	0.68	0.17	ND	ND
P9-1	24.81	4.77	5.71	0.84	0.29	0.68	ND	ND
P9-2	23.90	19.66	4.39	0.57	1.03	1.63	ND	ND
P9-3	20.02	1.47	5.11	1.39	0.23	0.20	ND	ND
D45	27.54	3.73	5.09	1.21	0.22	0.28	ND	ND
D46	34.42	2.77	7.38	0.95	Trace	1.20	0.03	ND
D47	43.46	13.05	9.60	1.66	0.48	1.90	ND	ND
D48	40.32	5.73	6.69	1.02	0.21	1.08	ND	ND
D53	29.24	3.29	7.29	1.38	Trace	2.03	ND	ND
D50	21.17	1.81	9.35	1.75	0.16	1.12	ND	ND
D51	22.10	3.78	8.87	1.88	ND	1.08	ND	ND
D52	21.82	5.28	7.44	1.57	ND	1.21	ND	ND
D10	29.97	2.67	5.83	1.00	0.33	1.28	ND	ND
D7	26.45	0.48	5.34	1.10	ND	1.47	ND	ND
D8	27.36	3.70	2.66	0.46	0.32	1.13	ND	ND
D6	33.42	3.80	4.10	0.81	0.43	1.12	Trace	ND
D9	41.99	4.11	3.75	0.77	1.24	0.76	ND	ND
D49	30.49	2.33	5.72	1.08	0.34	1.37	Trace	ND
P1	54.65	2.89	2.51	0.57	3.73	0.88	0.11	ND
D12	69.27	2.27	5.80	0.60	1.05	0.90	0.32	ND
D13	64.94	1.47	2.38	0.55	Trace	0.90	0.14	ND
D15	53.64	1.22	4.39	0.63	1.75	1.23	0.23	ND
D14	39.43	1.04	7.18	0.80	0.71	0.91	0.05	ND
D54	35.32	0.53	3.63	0.48	0.91	0.82	0.27	ND
P7	61.92	0.64	35.45	4.79	ND	1.01	ND	ND
D11	71.36	0.69	38.32	9.79	ND	0.82	ND	0.78
P4	8.42	2.65	11.08	2.25	ND	0.68	ND	ND
P5	13.00	0.24	11.29	1.62	ND	0.79	0.01	ND
P6	15.62	0.28	16.56	2.51	ND	0.81	ND	ND

ND, not detected; trace, lower than limit of quantitation
The root of *P. veitchii* (P7), as well as the RPR sample derived from this species (D11) showed the highest content of paeoniflorin (6.19–7.14 %), PGG (3.55–3.83 %) and gallic acid (0.48–0.98 %), and clearly differed from the samples derived from *P. lactiflora*. In particular, the contents of PGG as well as gallic acid were twice as high as those in other species. Such characteristics in the chemical composition have been supported by the reported data [21].

In the roots of *P. anomala* (P4–P6), the content of paeoniflorin was very low and catechin was not detected.

Apart from the WPR samples which were thought to be processed by sulfur fumigation, the quantitative data of the 6 main compounds in *Paeonia* specimens and commercial samples were subjected to PCA analysis in order to compare the chemical characteristics of WPR and RPR derived from *P. lactiflora*, as well as the related species. The PCA scores plot is shown in Fig. 4a, where the first and second principal components accounted for 65.3 % of the total variance (PC1, 37.1 %; PC2, 28.2 %). The PCA loading plot (Fig. 4b) indicated that compounds 3 and 5 contributed much to the positive value of PC1, and compounds 1 and 4–6 contributed much to the positive value of PC2. The distribution of all the samples in the PCA scores plot (Fig. 4a) showed that four separated groups were clustered. Besides the respective groups of *P. veitchii* and *P. anomala*, samples derived from *P. lactiflora* were clearly classified into two groups—one group included RPR and the other group was composed of WPR, PR produced in China and most of the PR produced in Japan. By comparing the scores plot and loading plot, the characteristic chemical composition of the respective groups could be easily observed. The *P. veitchii* group which was different from other groups had a significantly high content of paeoniflorin, PGG and gallic acid. The RPR group had an obviously high content of paeonol, catechin and paeoniflorin, while the WPR/PR group had a relatively high content of albiflorin. Moreover, the grouping result in the PCA scores plot was in accordance with the clustering result based on the similarity of ITS sequences.

Conclusion

The present study determined the nucleotide sequence of the ITS region and conducted quantitative analysis of 8 main chemical components of four *Paeonia* species, as well as commercial samples of WPR, PR and RPR collected from Chinese and Japanese markets. The ITS sequence was informative and sufficiently powerful to discriminate *Paeonia* plants at either inter-species or intra-
species levels. Significant intra-species polymorphism of the ITS sequences was detected within P. lactiflora. Clustering analysis based on the ITS sequences of the samples showed that P. lactiflora formed a group which was completely separate from other Paeonia species. Within the P. lactiflora group, the WPR and PR produced in the southern parts of China and the RPR produced in the northern parts of China were clearly clustered into two subgroups. The nucleotides at positions 69, 458 and 523 upstream of the ITS sequence served as molecular markers to discriminate between WPR and RPR. The medicinal cultivars ‘Bonten’ and ‘Kitasaisho’, as well as half of the PR produced in Japan belonged to the WPR subgroup. Quantitative analysis of 8 main components clarified the chemical properties of three Paeonia species as well as the WPR and RPR derived from P. lactiflora. The root of P. veitchii and its derived RPR sample showed the highest content of paeoniflorin, PGG and gallic acid, which clearly differed from those derived from P. lactiflora. As for the samples derived from P. lactiflora, the RPR samples produced in the northern parts of China had an obviously higher content of paeoniflorin and paenol, but a lower content of albiflorin than the WPR and PR produced in the southern parts of China and the PR produced in Japan. Chemical analysis indicated that the WPR available in Chinese markets was usually processed by sulfur fumigation, which resulted in an extremely low content of paeoniflorin. The present study indicated that WPR and RPR were not only geographically isolated, but also genetically and chemically separated. The ITS sequence provided a genetic index for their identification.

Acknowledgments We thank Dr. Javzan Batkhuu, National University of Mongolia and Dr. Chinbat Sanchir, Institute of Biology, Mongolian Academy of Science, Mr. Morikazu Murakami and the staff of Toyama Prefectural Medicinal Plants Center, Dr. Shengl Wei, Beijing University of Chinese Medicine, and Dr. Kyoko Takahashi, Osaka University for kind help in sample collection. We thank Dr. Kohei Kazuma, Institute of Natural Medicine, University of Toyama for measurement of paeoniflorin sulphonate by LC/MS. This work was supported by MEXT/JSPS KAKENHI Grant Nos. 21406004 and 24406005, and in part by a grant from the Ministry of Health, Labor and Welfare of Japan (H22-SOYAKUSOGO-General-214). We thank Dr. Kohei Kazuma, Institute of Natural Medicine, University of Mongolia and Dr. Chinbat Sanchir, Institute of Biology, Mongolian Academy of Science, Mr. Morikazu Murakami and the staff of Toyama Prefectural Medicinal Plants Center, Dr. Shengl Wei, Beijing University of Chinese Medicine, and Dr. Kyoko Takahashi, Osaka University for kind help in sample collection. We thank Dr. Kohei Kazuma, Institute of Natural Medicine, University of Toyama for measurement of paeoniflorin sulphonate by LC/MS. This work was supported by MEXT/JSPS KAKENHI Grant Nos. 21406004 and 24406005, and in part by a grant from the Ministry of Health, Labor and Welfare of Japan (H22-SOYAKUSOGO-General-013).

References

1. Namba T (1993) The encyclopedia of Wakan-Yaku (Traditional Sino-Japanese Medicines) with color pictures, 2nd edn, vol I. Hoikusha Publishing Co. Ltd., Osaka, pp 102–104
2. Mikage M, Ona N (2009) Herbological study of red peony and white peony used in Chinese medicine. Kampo Med 60:419–428
3. Cai SQ, Qing LP, Chen DF, Yin J (eds) (2011) Pharmacognosy. People’s Medical Publishing House, Beijing, pp 130–133
4. The Ministry of Health, Labour and Welfare (2011) The Japanese pharmacopoeia, 16th edn, p 1704 (English version)
5. The State Pharmacopeia Commission of China (2010) Pharmacopoeia of the People’s Republic of China, vol 1 (English version). China Medical Science Press, Beijing, pp 306–308
6. Japan Kampo Medicinal Manufacturers Association (2013) Survey reports on annual consumption of herbal drugs (2). Tokyo, p 8
7. Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813–6817
8. Sang T, Crawford D, Stuessy T (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136
9. Sang T, Donoghue MJ, Zhang D (1997) Evolution of alcohol dehydrogenase genes in peonies (Paeonia): phylogenetic relationships of putative nonhybrid species. Mol Biol Evol 14:994–1007
10. Pan J, Zhang D, Sang T (2007) Molecular phylogenetic evidence for the origin of a diploid hybrid of Paeonia (Paeoniaceae). Am J Bot 94:400–408
11. Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the Ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6:167–177
12. China Plant BOL Group (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA 108:19641–19646
13. Wu SH, Wu DG, Chen YW (2010) Chemical constituents and bioactivities of plants from genus Paeonia. Chem Biodivers 7:90–104
14. Wang Q, Liu RX, Guo HZ, Ye M, Hua CH, Bi KS, Guo DA (2005) Simultaneous LC determination of major constituents in red and white peony root. Chromatographia 62:581–588
15. Luo NC, Ding W, Qian DW, Li ZH, Qian YF, Guo JM, Duan JA (2013) UPLC-Q-TOF/MS Coupled with multivariate statistical analysis as a powerful technique for rapidly exploring potential chemical markers to differentiate between Radix Paeoniae Alba and Radix Paeoniae Rubra. Nat Prod Commun 8:487–497
16. Sukrong S, Zhu S, Ruangrungsi N, Phadungcharoen T, Palanuvej C, Komatsu K (2007) Molecular analysis of the genus Mitragyna existing in Thailand based on rDNA ITS sequences and its application to identify a narcotic species: Mitragyna speciosa. Biol Pharm Bull 30:1284–1288
17. Kitani Y, Zhu S, Batkhuu J, Sanchir C, Komatsu K (2011) Genetic diversity of Ephedra plants in Mongolia inferred from internal transcribed spacer sequence of nuclear ribosomal DNA. Biol Pharm Bull 34:717–726
18. He JY, Zhu S, Komatsu K, Goda Y, Cai SQ (2014) Genetic polymorphism of medicinally-used Codonopsis species in an internal transcribed spacer sequence of nuclear ribosomal DNA and its application to authenticate Codonopsis Radix. J Nat Med 68:112–124
19. Takaia F, Oono K, Iida Y, Sugiura M (1985) Nucleotide sequence of the 17S–25S spacer from rice rDNA. Plant Mol Biol 4:355–364
20. Schiebel K, Hemleben V (1989) Phylogenetic relation of medicinally-used Codonopsis species. In: Proceedings of the 17th International Symposium of the Society for Economic Botany, pp 285–288
21. Xu S, Yang L, Tian RT, Wang ZT, Liu ZJ, Xie PS, Feng Q (2009) Species differentiation and quality assessment of Radix Paeoniae Rubra (Chi-shao) by means of high-performance liquid chromatographic fingerprint. J Chromatogr A 1216:2163–2168
22. Sun YL, Hong SK (2011) Genetic diversity and phylogenetic analysis of genus Paeonia based on nuclear ribosomal DNA ITS sequence. J Plant Biotechnol 38:234–240