The Baer-invariant of a Semidirect Product

by
Behrooz Mashayekhy
Department of Mathematics
Ferdowsi University of Mashhad
P.O.Box 1159-91775
Mashhad, Iran
e-mail: mashaf@science2.um.ac.ir

Abstract

In 1972 K.I.Tahara [7,2 Theorem 2.2.5] , using cohomological method, showed that if a finite group \(G = T\triangleright N \) is the semidirect product of a normal subgroup \(N \) and a subgroup \(T \), then \(M(T) \) is a direct factor of \(M(G) \), where \(M(G) \) is the Schur-multiplicator of \(G \) and in the finite case, is the second cohomology group of \(G \). In 1977 W.Haebich [1 Theorem 1.7] gave another proof using a different method for an arbitrary group \(G \).

In this paper we generalize the above theorem. We will show that \(N_c M(T) \) is a direct factor of \(N_c M(G) \), where \(N_c \) [3 page 102] is the variety of nilpotent groups of class at most \(c \geq 1 \) and \(N_c M(G) \) is the Baer-invariant of the group \(G \) with respect to the variety \(N_c \) [3 page 107] .

A.M.S.Classification (1990): 20E22,20F12,20F18

Key Words and Phrases: Baer-invariant, Semidirect Product, Splitting Extension.
1. Notations and Preliminaries

Definition 1.1

The group G is said to be a **semidirect product** of a normal subgroup A and a subgroup B, denoted by $G = B
times_A A$ (or a *splitting extension* of A by B) if

(i) G is generated by A and B,

(ii) $A \cap B = 1$.

Since A is normal in G, the maps $\theta b : a \mapsto a^b$, $a \in A$, for all $b \in B$ are automorphisms of A and they induces a homomorphism $\theta : B \rightarrow Aut(A)$ which is called the action of B on A. G is determined up to isomorphism by θ and is therefore called the semidirect product of A and B under θ (or the splitting extension of A by B under θ). Note that every element of G is uniquely determined by ab, for $a \in A$ and $b \in B$.

Now the following elementary results on semidirect product are needed in our work, see [1 page 421, 5]

Lemma 1.2

Let G be the semidirect product of A and B under $\theta : B \rightarrow Aut(A)$ and \overline{G} be the semidirect product of \overline{A} and \overline{B} under $\overline{\theta}$. If

$$\alpha : A \longrightarrow \overline{A} \quad \text{and} \quad \beta : B \longrightarrow \overline{B}$$

are epimorphisms such that

$$\alpha((\theta b)(a)) = (\overline{\theta} b)(\alpha a)$$

for all $a \in A$, and $b \in B$,

then the map

$$\tau : G \longrightarrow \overline{G}$$

$$ab \longmapsto (\alpha a)(\beta b)$$

is an epimorphism extending α and β.
Lemma 1.3

Let G be the semidirect product of A and B under $\theta : B \rightarrow Aut(A)$. If N is a subgroup of A which is normal in G, then G/N is the semidirect product of A/N and B under

$$\tilde{\theta} : B \rightarrow Aut(A/N)$$

$$b \mapsto \tilde{\theta}b$$

where $\tilde{\theta} : A/N \rightarrow A/N$ given by $aN \mapsto \theta(a)N$.

In the following theorem a free presentation for G is introduced in terms of free presentations of A and B.

Theorem 1.4

Let G be a semidirect product of A and B under $\theta : B \rightarrow Aut(A)$ and

$$1 \rightarrow R_1 \rightarrow F_1 \xrightarrow{\nu_1} A \rightarrow 1 \ , \ 1 \rightarrow R_2 \rightarrow F_2 \xrightarrow{\nu_2} B \rightarrow 1$$

be free presentations for A and B, respectively. Then

$$1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$$

is a free presentation for G, where

(i) $F = F_1 * F_2$, the free product of F_1 and F_2;

(ii) $R = R_1^F R_2^F S$;

(iii) $S = \langle f_1^{-1} f_2, f_1 \mid f_1, f_2 \in F_1; f_2 \in F_2; \nu_1 f_1 = \theta(\nu_2 f_2)(\nu_1 f_1) >^F \rangle$.

Proof.

See[1 Lemma 1.4] . □

Let \mathcal{V} be a variety of groups defined by a set of laws V and G be a group with a free presentation

$$1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$$
Then the *Baer-invariant* of G with respect to the variety \mathcal{V}, denoted by $\mathcal{V}M(G)$, is defined to be

$$\frac{R \cap V(F)}{[RV^*F]}$$

where $V(F)$ is the verbal subgroup of F and $[RV^*F]$ is the least normal subgroup of F, contained in R, generated by

$$\{v(f_1, \ldots, f_ir, \ldots, f_s)v(f_1, \ldots, f_s)^{-1}| r \in R, f_i \in F, v \in V, 1 \leq i \leq s\} .$$

It is easily seen that the Baer-invariant of the group G with respect to the variety \mathcal{V} is always abelian and that it is independent of the choice of the free presentation of G, see [3 Lemma 1.8].

In particular, if \mathcal{V} is the variety of abelian groups, then the Baer-invariant of G with respect to \mathcal{V} will be

$$\frac{R \cap F'}{[R, F]} ,$$

which, by I.Schur, is isomorphic to the Schur-multiplicator of G, denoted by $M(G)$, in general, and in the finite case, is isomorphic to the second cohomology group of G, $H^2(G, C)$ [2 Theorem 2.4.6].

If \mathcal{V} is the variety \mathcal{N}_c of nilpotent groups of class at most $c \geq 1$, then the Baer-invariant of G with respect to \mathcal{N}_c is

$$\frac{R \cap \gamma_{c+1}(F)}{[R, cF]} ,$$

where $\gamma_{c+1}(F)$ is the $(c+1)$st-term of the lower centeral series and $[R, cF]$ stands for $[R, F, F, \ldots, F]$ c-times. For further details, properties, conventions, see [3,4,5].

2. The Main Result

The following theorem is fundamental to the proof of Theorem 2.2. We adopt the notations and conventions from section 1, in what follows.
Theorem 2.1

(i) R_1 and $[R_2, F_1]$ are subgroups of S;
(ii) $R = R_2S$;
(iii) $R \cap \gamma_{c+1}(F) = (R_2 \cap \gamma_{c+1}(F_2))(S \cap \gamma_{c+1}(F))$, for all $c \geq 1$;
(iv) $[R, _F] = [R_2, F_2] \prod [R_2, F_1, F_2] [S, _F]$, for all $c \geq 1$,

where

\[\prod [R_2, F_1, F_2]_c = \langle [r_2, f_1, \ldots, f_c] \mid f_i \in F_1 \cup F_2, r_2 \in R_2, 1 \leq i \leq c, \exists k, f_k \in F_1 >^F . \]

In particular, $\prod [R_2, F_1, F_2]_1 = [R_2, F_1]$.

Proof.

(i) If $r_1 \in R_1$, then $\nu_1 r_1 = 1$ and hence $\theta(\nu_2 f_2)(\nu_1 f_1) = 1$, for all $f_2 \in F_2$. Therefore $r_1 = 1^{-1} r_1[f_2, 1]$, so $r_1 \in S$ i.e $R_1 \leq S$.

If $r_2 \in R_2$, then $\nu_2 r_2 = 1$, so $\theta(\nu_2 r_2)$ is the identity automorphism. Thus $[r_2, f_1] = f_1^{-1} f_1 [r_2, f_1] \in S$ and so $[R_2, F_1] \leq S$.

(ii)

\[R = R_2^F R_1^F S \quad \text{, by Theorem 1.4} \]
\[= R_2^F S \quad \text{, by (i)} \]
\[= R_2[R_2, F]^F S \]
\[= R_2[R_2, F_1]^F S \quad \text{, since } R_2 \leq F_2 \]
\[= R_2 S \quad \text{, by (i)} . \]

(iii) Since $F = F_1 * F_2$, we have

\[\gamma_{c+1}(F) = \gamma_{c+1}(F_1) \gamma_{c+1}(F_2) \prod [F_1, F_2]_{c+1} , \]

where

\[\prod [F_1, F_2]_{c+1} = \langle [F_1, F_2, F_i, \ldots, F_{i-1}] \mid i_j \in \{1, 2\}, 1 \leq j \leq c - 1 > \]
and \(\prod[F_1, F_2]_{c+1} \leq F \) (to find a proof see M.R.R. Moghaddam [4]). Also we know that \(F = F_2 \triangleright F_1[F_1, F_2] \) is the semidirect product of \(F_2 \) and \(F_1[F_1, F_2] \) (since \(F_2 \cap F_1[F_1, F_2] = 1 \) and \(F_1[F_1, F_2] \leq F \)) and \(S \leq F_1[F_1, F_2] \). So using part (ii) and the above remarks, we have

\[
R \cap \gamma_{c+1}(F) = R_2 S \cap \gamma_{c+1}(F_1) \gamma_{c+1}(F_2) \prod[F_1, F_2]_{c+1}
\]

\[
= (R_2 \cap \gamma_{c+1}(F_2))(S \cap \gamma_{c+1}(F_1) \prod[F_1, F_2]_{c+1})
\]

\[
= (R_2 \cap \gamma_{c+1}(F_2))(S \cap \gamma_{c+1}(F))
\]

(iv) Use induction on \(c \). Let \(c = 1 \). Then

\[
[R, F] = [R_2 S, F] \quad , \quad by \ (ii)
\]

\[
= [R_2, F][S, F] \quad , \quad since \ S \leq F
\]

\[
\subseteq [R_2, F_2][R_2, F_1]^F[S, F] \quad , \quad since \ F = F_1 * F_2
\]

\[
= [R_2, F_2][R_2, F_1][S, F] \quad , \quad since \ [R_2, F_1] \leq S .
\]

Clearly \([R_2, F_2][R_2, F_1][S, F] \subseteq [R, F] \). Hence \([R, F] = [R_2, F_2][R_2, F_1][S, F] \).

Now, suppose \([R, kF] = [R_2, kF_2] \prod[R_2, F_1, F_2] k[S, kF] \). Then we have

\[
[R, k+1F] = [[R, kF], F]
\]

\[
= [[R_2, kF_2] \prod[R_2, F_1, F_2] k[S, kF], F]
\]

\[
= [[R_2, kF_2], F]\prod[R_2, F_1, F_2] k[S, kF], F \quad , \quad (by \ induction \ hypothesis)
\]

\[
\subseteq [[R_2, kF_2], F_2] \prod[R_2, F_1, F_2] k[S, k+1F] \quad , \quad (since \ [S, kF] \leq \prod[R_2, F_1, F_2] k \leq F)
\]

\[
\subseteq [R, k+1F] .
\]

Therefore, by induction we have

\[
[R, cF] = [R_2, cF_2] \prod[R_2, F_1, F_2] c[S, cF] \quad for \ all \ c \geq 1 \ . \ □
\]
Now we are in a position to state and prove the main theorem of this paper.

Theorem 2.2

Let \(G \) be a semidirect product of \(A \) by \(B \) under \(\theta : B \rightarrow Aut(A) \) (or a splitting extension of \(A \) by \(B \) under \(\theta) \), and \(\mathcal{N}_c \) be the variety of nilpotent groups of class at most \(c \) \((c \geq 1)\). Then

\[
\mathcal{N}_c M(G) \cong \mathcal{N}_c M(B) \oplus \frac{S \cap \gamma_{c+1}(F)}{\prod [R_2, F_1, F_2]_{c}[S, cF]}.
\]

In particular, \(\mathcal{N}_c M(B) \) can be regarded as a direct factor of \(\mathcal{N}_c M(G) \).

Proof.

By the previous assumptions and notations we have

\[
F \xrightarrow{\varphi} \frac{F}{[R_2, cF_2]^F} \xrightarrow{\eta} \frac{F}{[R_2, cF_2] \prod [R_2, F_1, F_2]_{c}[S, cF]},
\]

where \(\varphi \) and \(\eta \) are natural homomorphisms. Then for any \(c \geq 1 \), we have

\[
\frac{R \cap \gamma_{c+1}(F)}{[R, cF]} \cong (\eta \varphi)(R \cap \gamma_{c+1}(F))
\]

\[
\cong (\eta \varphi)(R_2 \cap \gamma_{c+1}(F_2))(\eta \varphi)(S \cap \gamma_{c+1}(F)) \quad \text{by Theorem 2.1 (iii) \quad (*)}.
\]

Consider the following two natural homomorphisms

\[
\frac{F_1 * F_2}{[R_2, cF_2]^F} \xrightarrow{h} \frac{F_1 * F_2}{[R_2, cF_2]} \xrightarrow{g} \frac{F_1 * F_2}{[R_2, cF_2]^F},
\]

given by

\[
\overline{f_1} \mapsto f_1 \quad f_1 \mapsto \overline{f_1},
\]

\[
\overline{f_2} \mapsto \overline{f_2} \quad f_2 \mapsto \overline{f_2}.
\]

Clearly \(h \circ g = 1 \) \& \(g \circ h = 1 \) i.e \(g \) is the inverse of \(h \) and so \(h \) is an isomorphism. Thus we have

\[
\frac{F_1 * F_2}{[R_2, cF_2]^F} = \varphi(F) \cong \frac{F_1 * F_2}{[R_2, cF_2]}.
\]
Also $\varphi(F_2) = F_2/[R_2, \, \epsilon F_2]$ and
$$\varphi(F_1[F_1, F_2]) \cong \varphi(F_1)[\varphi(F_1), \varphi(F_2)] \cong F_1[F_1, F_2/[R_2, \, \epsilon F_2]].$$

Therefore
$$\varphi(F) \cong F_1 * \frac{F_2}{[R_2, \, \epsilon F_2]} \cong \frac{F_2}{[R_2, \, \epsilon F_2]} \varphi(F_1) \sim \frac{F_2}{[R_2, \, \epsilon F_2]} \varphi(F_1)[\varphi(F_1), \varphi(F_2)].$$

Thus by Lemma 1.3 and the property that $\text{Ker}(\eta) \leq \varphi(F_1)[\varphi(F_1), \varphi(F_2)]$ we have
$$(\eta \varphi)(F) \cong \frac{\varphi(F)}{\text{Ker}(\eta)} = \frac{\varphi(F)}{\varphi([R_2, F_1, F_2], [S, \, \epsilon F])} \cong \frac{\varphi(F_1)[\varphi(F_1), \varphi(F_2)]}{\text{Ker}(\eta)},$$

Clearly $(\eta \varphi)(F_2) \cong \varphi(F_2)$ and $(\eta \varphi)(F_1) \cong \varphi(F_1)/\text{Ker}(\eta)$, thus we have
$$(\eta \varphi)(F) \cong \varphi(F_2) \varphi(F_1)[\varphi(F_1), \varphi(F_2)],$$

(by 1.3 and (**))

So
$$(\eta \varphi)(R_2 \cap \gamma_{c+1}(F_2)) \cap (\eta \varphi)(S \cap \gamma_{c+1}(F)) \subseteq (\eta \varphi)(F_2) \cap (\eta \varphi)(F_1)[(\eta \varphi)(F_1), (\eta \varphi)(F_2)] = 1.$$

Hence, by (*)
$$\frac{R \cap \gamma_{c+1}(F)}{[R, \, \epsilon F]} \cong (\eta \varphi)(R_2 \cap \gamma_{c+1}(F_2)) \oplus (\eta \varphi)(S \cap \gamma_{c+1}(F))$$

and
$$(\eta \varphi)(R_2 \cap \gamma_{c+1}(F_2)) = \frac{(R_2 \cap \gamma_{c+1}(F_2)) \text{Ker}(\eta \varphi)}{\text{Ker}(\eta \varphi)} \cong \frac{R_2 \cap \gamma_{c+1}(F_2)}{(R_2 \cap \gamma_{c+1}(F_2)) \cap \text{Ker}(\eta \varphi)}$$

$$\cong \frac{R_2 \cap \gamma_{c+1}(F_2)}{[R_2, \, \epsilon F_2]} \cong N \circ M(B).$$
Also
\[(\eta_\varphi)(S \cap \gamma_{c+1}(F)) = \frac{(S \cap \gamma_{c+1}(F))\text{Ker}(\eta_\varphi)}{\text{Ker}(\eta_\varphi)} \cong \frac{S \cap \gamma_{c+1}(F)}{(S \cap \gamma_{c+1}(F)) \cap \text{Ker}(\eta_\varphi)}\]

Therefore
\[N_cM(B \triangleright A) \cong \frac{R \cap \gamma_{c+1}(F)}{[R, cF]} \cong N_cM(B) \oplus \frac{S \cap \gamma_{c+1}(F)}{[R_2, F_1, F_2][S, cF]} . \]

Now we obtain the following corollaries:

Corollary 2.3 (Tahara [7,2 Theorem 2.2.5])

Let \(G = B \triangleright A\) be the semidirect product of a normal subgroup \(A\) and a subgroup \(B\). Then \(M(B)\) is a direct factor of \(M(G)\).

Corollary 2.4 (Haebich [1 Theorem 1.7])

Suppose \(G = B \triangleright A\) is a semidirect product of \(A\) by \(B\) under \(\theta : B \to \text{Aut}(A)\). By the notation of Theorem 1.4 we have

\[M(G) \cong M(B) \oplus \frac{S^F \cap F'}{[R_2, F_1][S, F]} . \]
References

[1] W. Haebich; “The Multiplicator of a Splitting Extension.” J. Algebra, 44 (1977), 420-33.

[2] G. Karpilovsky; “The Schur Multiplier.” London Math. Soc. Monographs (New Series No. 2) (1987).

[3] C. R. Leedham-Green and S. McKay; “Baer-invariant, Isologism, Varietal Laws and Homology.” Acta Math., 137 (1976), 99-150.

[4] M. R. R. Moghaddam; “The Baer-invariant of a Direct Product.” Archiv. der. Math., vol. 33 (1979), 504-511.

[5] D. J. S. Robinson; “A Course in the Theory of Groups.” Springer Verlag, (1982).

[6] I. Schur; “Untersuchungen über die Darstellung der Endlichen Gruppen durch Gebrochenen Linearen Substitutionen.” J. Reine Angew. Math., 132 (1907), 85-137.

[7] K. I. Tahara; “On the Second Cohomology of Semidirect Product.” Math. Z., 129 (1972), 365-379.