ESTIMATING THE SPECTRAL GAP OF A REVERSIBLE MARKOV CHAIN FROM A SHORT TRAJECTORY

DAVID A. LEVIN AND YUVAL PERES

ABSTRACT. The spectral gap γ of an ergodic and reversible Markov chain is an important parameter measuring the asymptotic rate of convergence. In applications, the transition matrix P may be unknown, yet one sample of the chain up to a fixed time t may be observed. Hsu, Kontorovich, and Szepesvari [1] considered the problem of estimating γ from this data. Let π be the stationary distribution of P, and $\pi_* = \min_x \pi(x)$. They showed that, if $t = O(\frac{1}{\gamma^3 \pi_*})$, then γ can be estimated to within multiplicative constants with high probability. They also proved that $\tilde{\Omega}(\frac{n}{\gamma})$ steps are required for precise estimation of γ. We show that $\tilde{O}(\frac{1}{\gamma \pi_*})$ steps of the chain suffice to estimate γ up to multiplicative constants with high probability. When π is uniform, this matches (up to logarithmic corrections) the lower bound in [1].

1. INTRODUCTION

Consider an ergodic and reversible Markov chain $\{X_t\}$ on a finite state space of size n, with transition matrix P and stationary distribution π. We will assume that P is positive definite, to avoid complications arising from eigenvalues close to -1. The spectral gap of the chain is $\gamma = 1 - \lambda_2$, where λ_2 is the second largest eigenvalue of P. The spectral gap is an important parameter of intrinsic interest, as it governs the asymptotic rate of convergence to stationarity.

Suppose one does not know P, but is able to observe the chain $\{X_t\}_{t=1}^T$. Can one estimate γ with precision from this data? This question was studied by Hsu, Kontorovich, and Szepesvari in [1]. Their estimator is the spectral gap of the (suitably symmetrized) empirical transition matrix. They show that $t = \tilde{O}(\frac{1}{\gamma^3 \pi_*})$ observations of the chain are enough to estimate γ to within a constant factor. See Theorem 2 for a precise statement. In the case where π is uniform, the authors of [1] also show that $\tilde{\Omega}(\frac{1}{\pi \gamma})$ steps are needed to estimate γ. Here we show that $t = \tilde{O}(\frac{1}{\gamma \pi_*})$ is a sufficient number of observations to estimate γ to within a constant factor. In particular, we prove:

Theorem 1. Fix $\delta > 0$. There is an estimator $\hat{\gamma}$ of γ based on $\{X_t\}_{t=0}^T$, and a polynomial function \mathcal{L} of the logarithms of γ, π_*^{-1}, δ^{-1}, and n, such that, if $t > \frac{1}{\pi \gamma \mathcal{L}}$, then we have $|\hat{\gamma} - \gamma| < \varepsilon$ with probability at least $1 - \delta$.

The definition of \mathcal{L} is in (4).

The proof of Theorem 1 applies the estimator of Hsu, Kontorovich, and Szepesvari to estimate the gap γ_A of the "skipped chain" $\{X_{A_i}\}_{i=1}^{T/A}$. By successively doubling A, with
high probability one can identify the first value \(A \) such that \(\gamma_A \) is uniformly bounded below. Once this \(A \) is identified, the estimate of \(\gamma_A \) can be transformed to an estimate of \(\gamma \).

While \(\gamma \) is a parameters of intrinsic interest, it is also related to another important parameter, the mixing time. The mixing time \(t_{\text{mix}}(\epsilon) \) is the first time such that (from every starting state) the distribution of the chain is within \(\epsilon \) from \(\pi \) in total-variation. Always \(\gamma^{-1} \leq t_{\text{mix}}(1/4) + 1 \), however, if \(\pi_* = \min_x \pi(x) \), then \(t_{\text{mix}}(\epsilon) \leq |\log(\epsilon \pi_*)| \cdot \gamma^{-1} \). See [2] for background on the spectral gap and the mixing time.

2. Proof of Theorem 1

We will repeatedly apply the following estimate of Hsu, Kontorovich, and Szepesvari:

Theorem 2 ([1]). There is an estimator \(\hat{\gamma} \) of \(\gamma \), based on \(t \)-steps of the Markov chain, such that for some absolute constant \(C \), with probability at least \(1 - \delta \),

\[
|\hat{\gamma} - \gamma| \leq C \left(\frac{\log \left(\frac{\delta}{\epsilon} \right) \cdot \log \left(\frac{1}{2^t} \right) \cdot \log(1/\gamma)}{\pi_* \gamma^2} + \frac{\log(1/\gamma)}{\gamma^t} \right) := M(t; \delta, \pi, \gamma). \tag{1}
\]

Thus, Theorem 2 says \(t = \tilde{O}(\frac{1}{\gamma^2}) \) steps suffice for \(\hat{\gamma} \gamma \) to be near 1.

We call the estimator \(\hat{\gamma} \) the HKS estimator. Note that if

\[
t_1 = t_1(\epsilon; \delta, \gamma) := \frac{1}{\pi_* \gamma} \frac{12C^2 \log(n/\delta) \log(12C^2/(\epsilon^2 \pi_*^2 \gamma \delta))}{\epsilon^2},
\]

then

\[
M(t_1; \delta, \pi, \gamma) \leq \frac{\epsilon}{2} \left(\frac{\log \left(\frac{12C^2}{\epsilon^2 \pi_*^2 \gamma \delta} \right) + \log(\log(n/\delta)) + \log \log(\frac{12C^2}{\epsilon^2 \pi_*^2 \gamma \delta})}{3 \log \left(\frac{12C^2}{\epsilon^2 \pi_*^2 \gamma \delta} \right)} + \frac{\epsilon}{2} \right) \leq \epsilon.
\]

(Each term in the numerator under the radical is at most a third of the denominator. We have used that \(\pi_* \leq 1/n \) in comparing the second term in the numerator to the denominator.)

For \(a > 0 \), the gap of the chain with transition matrix \(P^a \) is denoted by \(\gamma_a \), and the HKS estimator of \(\gamma_a \), based on \(t/a \) steps of \(P^a \), is denoted by \(\hat{\gamma}_a \). Note that

\[
\gamma_a = 1 - (1 - \gamma)^a.
\]

Let \(\delta_{\gamma} = \frac{\delta}{\lfloor \log(1/\gamma) \rfloor + 1} \).

Proposition 3. Fix \(\delta > 0 \) and \(\epsilon < 0.01 \). If \(t > t_1(\epsilon/2; \delta_{\gamma}, \gamma) \), then there is an integer-valued random variable \(A \), based on \(t \) steps of the Markov chain, and an event \(G(\epsilon) \) having probability at least \(1 - \delta \), such that on \(G(\epsilon) \),

\[
0.30 < \gamma_A < 0.54 \quad \text{if} \quad \gamma < 1/2,
\]

\[
A = 1 \quad \text{if} \quad \gamma \geq 1/2.
\]

Moreover, on \(G \), the HKS estimator \(\hat{\gamma}_A \) applied to the chain \(\{X_{sA} \}_{s=0}^{t/A} \) satisfies

\[
|\hat{\gamma}_A - \gamma_A| < \epsilon.
\]

Define

\[
G(a; \epsilon) = \{ |\gamma_a - \hat{\gamma}_a| < \epsilon \}.
\]

Lemma 4. Fix \(t > t_1(\epsilon/2; \delta, \gamma) \). If \(\alpha \gamma \leq 1 \), then \(\mathbb{P}(G(a; \epsilon)) > 1 - \delta. \)
Proof. Recall the bound \(M(t; \delta, \pi, \gamma)\) on the right-hand side of (1). If \(\gamma_a \geq \frac{1}{2} \gamma a\), then
\[
M(t; \alpha; \delta, \gamma, \pi, \gamma_a) \leq 2M(t; \delta, \pi, \gamma) \leq 2 \frac{\epsilon}{a} = \epsilon,
\]
and the lemma follows from applying Theorem 2 to the \(P^a\)-chain. We now show that \(\gamma_a \geq \frac{1}{2} \gamma a\). Expanding \((1 - \gamma)^a\), there exists \(\xi \in [0, a^{-1}]\) such that
\[
\gamma_a = 1 - (1 - \gamma)^a = \gamma a - \frac{a(a - 1)(1 - \xi)^{a-2} \gamma^2}{2} \geq \frac{\gamma a}{2}.
\]
(We have used the hypothesis \(a \gamma \leq 1\) in the inequality.) \(\square\)

Proof of Proposition 3. Let \(\delta_{\gamma} = \frac{\delta}{\log (1/\gamma)}\). Fix \(t > t_1(\epsilon/2; \delta_{\gamma}, \gamma)\).

Set \(K_\gamma := \left\lfloor \log_2 \left(\frac{1}{\delta_{\gamma}} \right) \right\rfloor\), and let \(\{X_{i+1}^t\}_{i=1}^t\) be \(t\) steps of the Markov chain. Consider the following algorithm:

Begin by setting \(k = 0\). Let \(a = 2^k\). Using the “skipped” chain \(\{X_{i+1}^t\}_{i=1}^{t/\alpha}\) observed for \(t/\alpha\) steps, form the HKS estimator \(\hat{\gamma}_a\) of the spectral gap \(\gamma_a\) of the skipped chain. If \(\hat{\gamma}_A > 0.31\) then set \(A = a = 2^k\), and stop. Otherwise, increment \(k\) and repeat.

Define the event \(G = G(\epsilon) \overset{\text{def}}{=} \bigcap_{k=0}^{K_\gamma} G(2^k; \epsilon)\). If \(k \leq K_\gamma\), then \(\gamma 2^k \leq 2^{-\log_2 (1/\gamma)} \leq 1\) and Lemma 4 implies that
\[
P(G^c) \leq \sum_{k=0}^{K_\gamma} P(G(2^k; \epsilon)^c) \leq (K_\gamma + 1) \frac{\delta}{K_\gamma + 1} = \delta.
\]

On \(G\), if \(\gamma \geq 1/2\), then \(\hat{\gamma} - \gamma < 0.01\), and consequently \(\hat{\gamma} \geq 0.49 > 0.31\). In this case, \(A = 1\) on \(G\).

On the event \(G\), if the algorithm has not terminated by step \(k - 1\), then:

- \(\gamma_{2^k} \leq 0.30\), then the algorithm does not terminate at step \(k\);
- \(\gamma_{2^k} > 0.32\), then the algorithm terminates at step \(k\).

Also,
\[
\gamma_{2^k} \geq 1 - (1 - \gamma)^{1/2} \geq 1 - e^{-1/2} \geq 0.39,
\]
so the algorithm always terminates before \(k = K_\gamma\) on \(G\).

Finally, on \(G\), if \(A > 1\), then \(\gamma_{2^k} \leq 0.32\), whence
\[
\gamma_A = 1 - (1 - \gamma_{2^k}) \leq 1 - (0.68)^2 < 0.54.
\]

If \(\gamma < 1/2\) and \(A = 1\), then \(\gamma_A = \gamma \leq 1/2\). \(\square\)

Proof of Theorem 1. For \(C_0 = 23232 \cdot C\), where \(C\) is the constant in (1), let
\[
t_0(\epsilon; \delta, \gamma, \pi_+) = t_0(\epsilon) := \left(\frac{1}{\epsilon \pi_+} \right) \frac{C_0}{\epsilon^2 \mathcal{L}^*},
\]
where
\[
\mathcal{L}^* = \log \left(\frac{C_0 \left(\left\lfloor \log_2 (1/\gamma) \right\rfloor + 1 \right)}{\epsilon^2 \pi_+^2 \gamma \delta} \right) \log \left(\frac{n \left(\left\lfloor \log_2 (1/\gamma) \right\rfloor + 1 \right)}{\delta} \right).
\]

Fix \(t > t_0(\epsilon) = t_1(\epsilon/44; \delta_{\gamma}, \gamma)\). Let \(A\) and \(G\) be as defined in Proposition 3. Assume we are on the event \(G = G(\epsilon/22)\) for the rest of this proof.

Suppose first that \(\gamma < 1/2\). We have \(0.30 < \gamma_A < 0.54\), and
\[
|\hat{\gamma}_A - \gamma_A| < \frac{\epsilon}{22} < 0.01,
\]
so both \(\gamma_A\) and \(\hat{\gamma}_A\) are in \([0.29, 0.55]\), say.
Let \(h(x) = 1 - (1 - x)^{1/A} \), so \(\gamma = h(\gamma A) \). Note that on \([0.29, 0.55]\),

\[
\frac{d}{dx} \log h(x) = \frac{1}{1 - (1 - x)^{1/A}} \cdot \frac{1}{A} (1 - x)^{1/A - 1} \leq \frac{1}{A (1 - (1 - 0.29)^{1/A})} \leq \frac{1}{0.45}.
\]

Since \((1 - x)^{1/A} \leq 1 - x/A + x^2/(2 A^2) \),

\[
\frac{d}{dx} \log h(x) \leq \frac{1}{0.29 - 0.29^2/(2)(0.45)} < 11.
\]

Thus, \(|\frac{d}{dx} \log h(x)\)| is bounded (by 11) on \([0.29, 0.55]\). Write \(\tilde{\gamma} = h(\tilde{\gamma} A) \). We have

\[
|\log(h(\tilde{\gamma} A)/\gamma)| = |\log h(\gamma A) - \log h(\tilde{\gamma} A)| \leq 11 |\gamma A - \tilde{\gamma} A| \leq 11 \frac{\varepsilon}{22} \leq \frac{\varepsilon}{2}.
\]

Thus,

\[
\frac{h(\tilde{\gamma} A)}{\gamma} \leq e^{\varepsilon/2} \leq 1 + \varepsilon.
\]

Similarly, \(\frac{\gamma}{h(\gamma A)} \leq e^{\varepsilon/2} \), so

\[
\frac{h(\tilde{\gamma} A)}{\gamma} \geq e^{-\varepsilon/2} \geq 1 - \varepsilon.
\]

Suppose that \(\gamma \geq 1/2 \). Then \(A = 1 \) on the event \(G \), and

\[
|\tilde{\gamma} - \gamma| < \frac{\varepsilon}{22},
\]

so

\[
\left| \frac{\tilde{\gamma}}{\gamma} - 1 \right| < \frac{\varepsilon}{22 \gamma} \leq \varepsilon.
\]

\[\square\]

Remark 1. If \(t < t_0(\varepsilon) \), then our estimation procedure is not guaranteed to produce a sensible estimate.

Acknowledgements

We thank Jian Ding for helpful conversations on this topic.

References

[1] Daniel J. Hsu, Aryeh Kontorovich, and Csaba Szepesvari. Mixing time estimation in reversible markov chains from a single sample path. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, *Advances in Neural Information Processing Systems 28*. Curran Associates, Inc., 2015.

[2] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. *Markov chains and mixing times*. American Mathematical Society, Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson.