Supporting Information
for

A novel and widespread class of ketosynthase is responsible for the head-to-head condensation of two acyl moieties in bacterial pyrone biosynthesis
Darko Kresovic¹, Florence Schempp¹, Zakaria Cheikh-Ali¹ and Helge B. Bode⁎¹,²

Address: ¹Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany and ²Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany

Email: Helge B. Bode - h.bode@bio.uni-frankfurt.de
* Corresponding author

Experimental procedures, details of bioinformatic analysis and NMR data of pseudopyronines

Materials and methods

Cultivation of strains. E. coli strains were cultivated in liquid or solid LB-medium (10 g/L tryptone, 5 g/L yeast extract and 10 g/L NaCl) or TB-medium (12 g/L tryptone, 24 g/L yeast extract, 4 mL/L glycerol and 0.17 M KH₂PO₄/0.72 M K₂HPO₄). For preparation of solid media, 1.5% (w/v) Agar was added. For plasmid preparation E. coli strains were cultivated at 37 °C in TB-medium. Kanamycin (50 μg/mL) and chloramphenicol (20 μg/mL) were used as resistant markers. For cultivation of Pseudomonas sp. GM30 and Pseudomonas putida KT2440 the same media was used but strains were grown at 30 °C.

Construction of ppyS mutants. Mutants were either constructed using the TA-cloning strategy [1] or with oligonucleotide-directed mutagenesis. Point mutations were introduced to the pCOLA_ppys vector, which is used to heterologously express
PpyS in *E. coli* BL21(DE3) Star. Mutants C129A, H281A, E105A and E330A were constructed using the TA-cloning strategy, for this method a pair of oligonucleotides (v.p. fw and v.p. rev) were used to amplify the vector, containing the non-mutated gene section using the Phusion polymerase (Fermentas). After separation by agarose gel electrophoresis, the desired fragments were extracted with the GeneJET Gel Extraction Kit (Fermentas) and incubated for 30 minutes at 70 °C with Taq polymerase (Thermo Scientific), resulting in a 3' A-overhang fragment. Another pair of oligonucleotides (ds fw and ds rev), containing the mutated gene section, was used to form the 3' T-overhang fragment carrying the mutation. For ligation both fragments were incubated overnight at room temperature with T4 DNA ligase (Fermentas). The N310A and R121D PpyS mutants were created using oligonucleotide-directed mutagenesis, for which a pair of oligonucleotides was applied to amplify the vector and to introduce the point mutation using the Phusion polymerase (Fermentas) for PCR. For both strategies the ligation mixture was subsequently used to transform *E. coli* DH10B by electroporation (1250 V, 200 Ω and 25 μF). After plasmid extraction the obtained plasmids were verified by sequencing at SeqIT GmbH (Germany, Kaiserslautern). Verified plasmids were used to transform *E. coli* BL21 (DE3) Star along with pACYC_bkdABCngrA [2] by electroporation. For photopyrone biosynthesis both vectors (pCOLA_ppyS and pACYC_bkdABCngrA) are induced with 0.01 mM isopropyl-β-D-thiogalactopyranoside (IPTG) (Fermentas) for expression in *E. coli* BL21 (DE3) Star.

Cloning of pseudopyronine synthase (pyrS). We first constructed pCOLA_pyrS for heterologous expression in *E. coli* BL21 (DE3) Star. Therefore pyrS was cloned from extracted *Pseudomonas* sp. GM30 genomic DNA using the oligonucleotides pyrS_pCOLA_FW and pyrS_pCOLA_Rev. The vector pCOLADuet-1 and PyrS PCR
product were both digested with restriction enzymes BamHI and HindIII and ligated using the T4 DNA Ligase. This mixture was then used to transform *E. coli* DH10B by electroporation (1250 V). After plasmid extraction the obtained plasmid was verified by sequencing at SeqIT GmbH (Germany, Kaiserslautern). The verified plasmid was used to transform *E. coli* BL21 (DE3) Star by electroporation. The construction of pCom10_pyrS was performed using the Gibson assembly method [3]. Therefore the vector was amplified via PCR using the oligonucleotides pCom10_Fw and pCom10_Rev. PyrS was amplified using the oligonucleotides pyrS_pCom_Fw and pyrS_pCom_Rev and pCOLA_pyrS as template, the oligonucleotides were previously modified with a 30 bp 3’ overhang which are homologues to the amplified pCom10 product. Both products were then incubated with the Gibson assembly mix for 1 h at 50 °C. This mixture was then used to transform *E. coli* DH10B by electroporation as described earlier. The plasmid was obtained by using the extraction protocol described previously.

Electrotransformation of *Pseudomonas* strains. *Pseudomonas putida* KT2440 and *Pseudomonas* sp. GM30 were grown over night at 30 °C in liquid LB media. To prepare cells for electro transformation 2 mL of fresh liquid LB media were inoculated with an overnight culture (1:100) and were then grown for 3 hours at 30 °C. The cells were then centrifuged and washed twice with cold water. Centrifuged cells were then resuspended in 50 μL cold water and cells were kept on ice. 1 μL of plasmid was used to transform *Pseudomonas* strains by electroporation (2500 V).

Analytical scale culture extraction. In order to detect photopyrone production in the wildtype and mutant strains by means of HPLC/MS, 20 mL of liquid LB-medium, containing the appropriate resistant markers, were inoculated with an overnight culture to an optical density of OD$_{600}$ = 0.05 and cultivated for 3.5 h at 37 °C. Then
0.01 mM isopropyl-β-D-thiogalactopyranoside (IPTG) (Fermentas) and 2% Amberlite™ XAD16 (Sigma-Aldrich) were added to the culture, which was cultivated for 48 h at 16 °C. For detection of pseudopyronines 20 mL of liquid LB-medium, containing the appropriate resistant marker and 2% Amberlite™ XAD16, were inoculated with an overnight culture (1:100). Expression was induced with addition of 0.05% (v/v) dicyclopropyl ketone. The *Pseudomonas* containing cultures were then incubated for 72 h at 30 °C. After 48 h again 0.05% (v/v) of dicyclopropyl ketone was added. Cultures were harvested by centrifugation (4000 rpm, 10 min, 18 °C) followed by removal of the supernatant. Amberlite™ XAD16 resins were extracted with 30 mL of methanol and incubated for 1 h under constant rotation followed by a filtration step (Folded Filters (Quality), grade: 3 m/N, Munktell) to remove cells and resins. The elution step was repeated once with 10 mL of methanol. The methanol extract was then concentrated to dryness using a rotary evaporator. The solid residue was redissolved in 2 mL of methanol and a 1:10 dilution was analyzed by means of HPLC/MS. Extracts were analyzed using a Dionex UltiMate 3000 system coupled to a Bruker Daltonik AmaZon X mass spectrometer, a RP18-column (50 mm × 2.1 mm × 1.7 μm; Waters GmbH) and an acetonitrile/0.1% formic acid in H₂O gradient, ranging from 5 to 95% in 22 min at a flow rate of 0.6 mL/min. The production of *ppyS* mutants of 4 was calculated against standard concentrations of the main compound photopyrone D (4) produced by wildtype *ppyS*. The retention time of 4 under these conditions was 10.5 min.

Preparative extraction and purification. For the isolation of compounds 9–11 from *Pseudomonas* sp. GM30, the strain was cultivated in 6 L of LB-medium, with an addition of 2% Amberlite™ XAD16 for 3 days at 30 °C. Cultures were harvested by centrifugation (4000 rpm, 10 min, 18 °C) followed by removal of the supernatant.
Amberlite™ XAD16 resins were extracted with methanol and incubated for 1 h under constant rotation followed by a filtration step to remove cells and resins. The methanol extract was then concentrated to dryness using a rotary evaporator. The solid residue (4.6 g) was redissolved in 10 mL of water, then 20 mL of ethyl acetate was added and the mixture was shacked in a separating funnel. This step was repeated two times with the addition of 20 mL of ethyl acetate and separation. The ethyl acetate phase was then concentrated to dryness using a rotary evaporator. The solid residue (0.7 g) was redissolved in a 70% dimethyl sulfoxide (DMSO), 20% methanol and 10% isopropanol mixture. Compounds were then isolated with a Waters Bridge XBridge™ Prep C18 5 µm OBD™ 19 × 150 mm Column (S/N) and a Waters HPLC-MS system as described in the following: Waters 3100 Mass Detector, Waters 2998 Photodiode Array Detector, Waters SFO System Fluidics Organizer, Waters 515 HPLC Pump, Waters 2545 Binary Gradient Module, Waters Selector Value, Waters 2767 Sample Manager. The purification was performed at a flow rate of 24 mL/min with an acetonitrile–water (0.1% formic acid) gradient: 0–26 min 50–75%, 26.1–30 min 76–95%. The combined fractions were then concentrated to dryness using a rotary evaporator to give 4.8 mg, 35.6 mg and 1.6 mg of 9, 10 and 11, respectively.

NMR. 1D and 2D nuclear magnetic resonance (NMR) spectra for purified compounds were recorded on a Bruker DRX 500 spectrometer using deuterated dimethyl sulfoxide as solvent and internal standard.

HR-ESI-MS. Determination of exact masses of 9–11 were carried out using a Dionex Ultimate 3000 RSLC coupled to a Bruker microTOF-Q II equipped with an ESI source. The following masses were detected: for 9, \(m/z \) 267.1956 (calcd for \([C_{16}H_{26}O_3 + H]^+ \), 267.1955, \(\Delta = 0.38 \) ppm); 10, \(m/z \) 295.2270 (calcd for \([C_{18}H_{30}O_3 + \)
H]⁺, 295.2268, Δ = 0.68 ppm); 11, m/z 323.2583 (calc’d for [C₂₀H₃₄O₃ + H]⁺, 323.2581, Δ = 0.62 ppm).

Homology modelling. The protein sequences of PpyS and PyrS were used as queries for BLASTP [4] searches in the PDB [5], to identify the most similar available structure in the PDB. This resulted in the identification of OleA (sequence identity 27%, E-value 1e-14, PDB: 3S21) from *Xanthomonas campestris* for PpyS and OleA (sequence identity 37%, E-value 4e-10, PDB: 3S21) for PyrS-. These template structures were used to create a sequence alignment applying the ClustalW algorithm [6]. The homology models were generated using the Homology Modelling Tool integrated in MOE 2012.10 (Molecular Operating Environment; Chemical Computing Group Inc., Montreal, Canada) and the ClustalW sequence alignment was imported. A series of ten models was created, for further processing the one with the highest packing quality score was chosen and energy minimized applying the AMBER12EHT (integrated in MOE) force field. All figures showing protein structures in this work, were created using MOE.

Docking. Protein–ligand docking calculations were carried out using the program GOLD (version 5.2) [7] using the empirical scoring function for advanced protein–ligand docking CHEMPLP [8]. For each docking study the result with the highest docking score is shown in this work.

Phylogenetic analysis. A PHYML [9] tree (50 bootstraps) was calculated using a ClustalW alignment (gap opening: 10; gap extension: 0.1), which was generated using the collected ketosynthases. For visualization and calculation of the alignment as well as the PHYML tree the Geneious software (Biomatters Ltd., New Zealand) was used.
Supplementary Tables and Figures

Table S1: Strains used in this work.

Strain	Genotype	Reference
E. coli DH10B	$\text{F}_mcrA \ (\text{mrr-hsdRMS-mcrBC}), \ 80\text{lacZ}_{\Delta, \ M15, \ \Delta \ \text{lacX74} \ \text{recA1} \ \text{endA1} \ \text{araD} \ 139}$ \ $\ ext{\Delta (ara, leu)7697 galIJ galK \ \lambda. \ \text{rpsL} (\text{Str}) \ \text{nupG}}$	[10]
E. coli BL21 (DE3) Star	$\text{F- ompT hsdSB(rB-, mB-) gal dcm}$	Invitrogen
Pseudomonas sp. Wildtype		[11]
Pseudomonas putida KT2440		[12]
WT	BL21 (DE3) Star:pCOLA_ppyS, pACYC_bkdABC_ngrA, KmR, CmR	[2]
C129A	BL21 (DE3) Star:pCOLA_ppyS_C129A, pACYC_bkdABC_ngrA, KmR, CmR	this work
H281A	BL21 (DE3) Star:pCOLA_ppyS_H281A, pACYC_bkdABC_ngrA, KmR, CmR	this work
N310A	BL21 (DE3) Star:pCOLA_ppyS_N310A, pACYC_bkdABC_ngrA, KmR, CmR	this work
E105A	BL21 (DE3) Star:pCOLA_ppyS_E105A, pACYC_bkdABC_ngrA, KmR, CmR	this work
R121D	BL21 (DE3) Star:pCOLA_ppyS_R121D, pACYC_bkdABC_ngrA, KmR, CmR	this work
E330A	BL21 (DE3) Star:pCOLA_ppyS_E330A, pACYC_bkdABC_ngrA, KmR, CmR	this work
E. coli DH10B	*E. coli* DH10B:pCOLA_pyrS	this work
E. coli BL21 (DE3) Star	*E. coli* BL21 (DE3) Star:pCOLA_pyrS	this work
E. coli DH10B	*E. coli* DH10B:pCom10_pyrS	this work
P. putida KT2440 Pseudomonas putida this work
pCom10_pyrS KT2440:pCom10_pyrS

Pseudomonas sp. Pseudomonas sp. GM30:pCom10_pyrS this work
Gm30 pCom10_pyrS

Table S2: Plasmids used in this work.

Plasmid	Genotype	Reference
pCOLADuet-1	ColA ori, Km\(^\text{R}\), T7lac promoter	Merck Millipore
pACYCDuet-1	CloDF13 ori, Cm\(^\text{R}\), T7lac promoter	Merck Millipore
pCOLA_ppyS	ColA ori, Km\(^\text{R}\), T7lac promoter, ppyS	[2]
pACYC_bkdABC_ngrA	CloDF13 ori, Cm\(^\text{R}\), T7lac promoter, bkdABC, ngrA	[2]
pCOLA_ppyS_C129A	ColA ori, Km\(^\text{R}\), T7lac promoter, ppyS	this work
pCOLA_ppyS_H281A	ColA ori, Km\(^\text{R}\), T7lac promoter, ppyS	this work
pCOLA_ppyS_N310A	ColA ori, Km\(^\text{R}\), T7lac promoter, ppyS	this work
pCOLA_ppyS_E105A	ColA ori, Km\(^\text{R}\), T7lac promoter, ppyS	this work
pCOLA_ppyS_R121D	ColA ori, Km\(^\text{R}\), T7lac promoter, ppyS	this work
pCOLA_ppyS_E330A	ColA ori, Km\(^\text{R}\), T7lac promoter, ppyS	this work
pCom10	pBR322 ori, Km\(^\text{R}\), alkB promoter	[13]
pCom10_pyrS	pBR322 ori, Km\(^\text{R}\), alkB promoter, pyrS	this work
pCOLA_pyrS	ColA ori, Km\(^\text{R}\), T7lac promoter, pyrS	this work

Table S3: Oligonucleotides used in this work.

Oligonucleotide	Sequence	
Cys129_Fw.ds	CGCCGCGAACGCT	
Cys129_Rev.ds	CCGTTCGCGGCAT	
Cys129_Fw.V.P	TGGGTGCGAGCTGGATAGGATTAATCATAGT	
Cys129_Rev.V.P	CTACAACATCGTAGTTCCTACAAAGTTAGCC	
Glu105_Fw.ds	TAGCGCCAGCTAACAGTACTTT	
Glu105_Rev.ds	AGTACTGTTAGCAGCTGCCATAG	
Glu105_Fw.V.P	TTGCTCTAAAGGCACTAGGGCTACTGTT	
Glu105_Rev.V.P	GAAGCGCGCGGCAACTGGGCTACTGG	
His281_Fw.ds	TTTTTTATGCGACAAGGAGTACTGCAAACGACGAC	
His281_Rev.ds	CGTTTTGGTGAACCTGGCTGCAGAAAAT	
His281_Fw.V.P	GGGCACGCGCTGGTGAACCCATGAGAAGATG	
Protein	Organism	Accession number
--------------------	-------------------------------	------------------
OleA homologues		
1 3-Oxoacyl-ACP synthase	S. sp. NRRL F-5555	WP_030402327
2 3-Oxoacyl-ACP synthase	Streptomyces	WP_031086294
3 3-Oxoacyl-ACP synthase	S. sp. NRRL F-5650	WP_031039494
4 3-Oxoacyl-ACP synthase	A. rifamycini	WP_026404743
5 3-Oxoacyl-ACP synthase	M. rosea	WP_036407026
6 3-Oxoacyl-ACP synthase	N. candida	WP_043622914
7 3-Oxoacyl-ACP synthase	S. pristinaespiralis	WP_005309093
8 3-Oxoacyl-ACP synthase	T. sp. 28	WP_045191732
9 3-Oxoacyl-ACP synthase	S. hofmanni	WP_017748751
10 3-Oxoacyl-ACP synthase	L. araneosa	WP_007281261
11 OleA	X. campestris pv. campestris	3S21_A
12 3-Oxoacyl-ACP synthase	S. amylolyticus	AKF07269
13 3-Oxoacyl-ACP synthase	B. muris	WP_017822397
14 3-Oxoacyl-ACP synthase	A. phenanthrenivorans	WP_004353199
15 3-Oxoacyl-ACP synthase	Arthrobacter	WP_018779660
16 3-Oxoacyl-ACP synthase	A. sp. MWB30	KIA73109
17 3-Oxoacyl-ACP synthase	L. rubra	WP_021808728
18 3-Oxoacyl-ACP synthase	M. yannicii	WP_040569064
19 3-Oxoacyl-ACP synthase	M. sp. B19	WP_026096098
20 3-Oxoacyl-ACP synthase	M. testaceum	WP_04360932
21 3-Oxoacyl-ACP synthase	M. testaceum StLB037	BAJ73499
22 3-Oxoacyl-ACP synthase	M. sp. SUBG005	KEP74827
PpyS homologues		
23 3-Oxoacyl-ACP synthase	X. nematophilia	WP_010847197
24 3-Oxoacyl-ACP synthase	X. nematophilia ATCC 19061	WP_003713506

Table S4: Ketosynthases used for the phylogenetic tree. The sequences are ordered clockwise according to their location in the respective branches. All KS showing the conserved glutamic acid residue identified as catalytically important are shown in red.
No.	Description	Accession
25	3-Oxoacyl-ACP synthase	X. nematophila
26	3-Oxoacyl-ACP synthase	X. bovienii
27	3-Oxoacyl-ACP synthase	X. bovienii
28	PpyS	P. luminescens TT01
29	3-Oxoacyl-ACP synthase	P. luminescens TT01
30	3-Oxoacyl-ACP synthase	P. luminescens TT01
31	3-Oxoacyl-ACP synthase	P. sp. PH1b
32	3-Oxoacyl-ACP synthase	P. sp. St29
33	3-Oxoacyl-ACP synthase	P. sp. Os17
34	3-Oxoacyl-ACP synthase	P. mosselii
35	3-Oxoacyl-ACP synthase	P. mosselii
36	PyrS	P. sp. GM30
37	3-Oxoacyl-ACP synthase	P. sp. URL14HWK12:16
38	3-Oxoacyl-ACP synthase	P. sp. W15Feb9B
39	3-Oxoacyl-ACP synthase	B. sp. UYPR1.413
40	3-Oxoacyl-ACP synthase	B. bannensis
41	3-Oxoacyl-ACP synthase	B. mimosarum
42	3-Oxoacyl-ACP synthase	B. nodosa
43	3-Oxoacyl-ACP synthase	B. heileia
44	3-Oxoacyl-ACP synthase	B. phytofirmans PsJN
45	3-Oxoacyl-ACP synthase	B. phytofirmans
46	3-Oxoacyl-ACP synthase	B. sp. WSM2230
47	3-Oxoacyl-ACP synthase	B. sp. WSM2232
48	3-Oxoacyl-ACP synthase	B. sp. CCGE1003
49	3-Oxoacyl-ACP synthase	B. sp. CCGE1003
50	3-Oxoacyl-ACP synthase	B. sp. WSM3556
51	3-Oxoacyl-ACP synthase	B. graminis
52	3-Oxoacyl-ACP synthase	B. sp. URHA0054
53	3-Oxoacyl-ACP synthase	B. sp. CCGE1001
54	3-Oxoacyl-ACP synthase	B. sp. CCGE1001
55	3-Oxoacyl-ACP synthase	B. phenoliruptrix BR3459a
56	3-Oxoacyl-ACP synthase	Burkholderia
57	3-Oxoacyl-ACP synthase	L. anisa
58	3-Oxoacyl-ACP synthase	L. pneumophila
59	3-Oxoacyl-ACP synthase	S. sp. CNB091
60	3-Oxoacyl-ACP synthase	A. mirum
61	3-Oxoacyl-ACP synthase	A. azurea
62	3-Oxoacyl-ACP synthase	S. sp. MspMP-M5
63	3-Oxoacyl-ACP synthase	N. abscessus
64	3-Oxoacyl-ACP synthase	N. sp. CNY236
65	3-Oxoacyl-ACP synthase	N. farcinica
66	3-Oxoacyl-ACP synthase	N. higoensis
67	3-Oxoacyl-ACP synthase	G. maliensis
68	3-Oxoacyl-ACP synthase	T. campyonemoides
69	3-Oxoacyl-ACP synthase	A. sp. PCC 7108
70	3-Oxoacyl-ACP synthase	M. sp. SC2
71	3-Oxoacyl-ACP synthase	M. rosea
72	3-Oxoacyl-ACP synthase	M. sp. SB2
73	3-Oxoacyl-ACP synthase	M. sp. T1-4
74	3-Oxoacyl-ACP synthase	C. fritschii
75	3-Oxoacyl-ACP synthase	C. acetobutylicum
76	3-Oxoacyl-ACP synthase	P. lactis
77	3-Oxoacyl-ACP synthase	B. thuringiensis
78	3-Oxoacyl-ACP synthase	B. sp. 1NLA3E
79	3-Oxoacyl-ACP synthase	O. scapharcae
80	3-Oxoacyl-ACP synthase	P. polymerma
81	3-Oxoacyl-ACP synthase	P. polymerma
82	3-Oxoacyl-ACP synthase	P. sp. Aloe-11
83	3-Oxoacyl-ACP synthase	P. terrae

Closest BLAST-P hits for XcIC

[14]
No.	Gene Name	Organism	Accession Number
84	3-Oxoacyl-ACP synthase	P. peoriae	WP_010345468.1
85	FabH		
86	CorB	C. coraloides	ADI59524
87	Myxopyron ketosynthase	M. fulvus	AGS77282
88	FabHB	B. subtilis	NP_388898
89	FabH	N. punctiforme	YP_001865657
90	FabH	B. subtilis	NP_389015.1
91	FabH	P. luminescens	NP_930069
92	FabH	E. coli	NP_287225
93	FabH	S. griseus	YP_001826619
94	FabH	S. echinatus	AAV84077
95	NP_626634	S. coelicolor A3(2)	NP_626634
96	FabH	S. avermitilis	BAC73499
97	Q54206	S. glaucescens	Q54206
98	FdmS	S. roseofulvus	AAC18104
99	CAM58805_S._sp._BenQ	S. sp. CM020	ACI88883
100	ZhuH 1MZJ	S. sp. A2991200	CAM58805
101	FrnI	S. roseofulvus	AAC18104
102	AlnI	S. coelicolor A3(2)	NP_626634
103	Plu1885	P. luminescens	NP_929153
104	NanA8	S. nanchangensis	AAP42874
105	EryAll	S. erythraea	YP_001102990
106	TylGi KSQ	S. fradiae	AAB66504
107	MerA	S. violaceusniger	AJB97437
108	TamAI	S. sp. 3079	ADC79637
109	OleAI KSQ	S. antibioticus	AAF82408
110	HedT	S. griseoruber	AAP85336
111	3-Oxoacyl-ACP synthase	R. blandensis	WP_008043745.1
112	3-Oxoacyl-ACP synthase	X. nematophila	YP_003714026.1
113	3-Oxoacyl-ACP synthase	X. nematophila	WP_010848687.1
114	3-Oxoacyl-ACP synthase	M. sp. PE36	WP_006034384.1
115	3-Oxoacyl-ACP synthase	P. profundum	WP_132684.1
116	3-Oxoacyl-ACP synthase	P. damselae	WP_005305524.1
117	3-Oxoacyl-ACP synthase	P. sp. AK15	WP_007465048.1
118	3-Oxoacyl-ACP synthase	P. leiognathi	WP_008989540.1
119	3-Oxoacyl-ACP synthase	P. sp. SKA34	WP_006644045.1
120	3-Oxoacyl-ACP synthase	P. angustum	WP_005364526.1
121	FabF	M. sp. 4-46	YP_001771620
122	FabF	C. pinensis	ACU62401
123	cpin1855	C. pinensis	YP_003121552
124	Dfer_1997	D. fermentans	YP_003086385
125	FabB	A. pleuro pneumoniae	ZP_00134992
126	FabB	C. sp. 30_2	ZP_04562837
127	NP_416826	E. coli	NP_416826
128	FabB	S. boydii	YP_001881145
129	NP_344945	S. pneumoniae	NP_344945
130	FabF	T. thermophilus	YP_143679
131	FabF	N. punctiforme	YP_001867862
132	FabF	B. subtilis	NP_389016
133	NP_645683	S. aureus	NP_645683
134	FabF	P. luminescens	NP_930065
135	FabF	E. albertii	ZP_02902779.1
136	FabF	E. coli	NP_287229
137	NP_415613	E. coli	NP_415613
138	FabF	S. avermitilis	BAC70003

Type II PKS KS a
139 SimA2
S. antibioticus
AF324838.4
140 TcmL
S. glaucescens
AA67516
141 EncB
S. maritimus
AAF81729
142 ActIA
S. coelicolor A3(2)
SCO5087
143 NcnB
S. arenae
AAD20268

FabB

144 AntD (Plu4191)
P. luminescens
NP_931374
145 EncA
S. maritimus
AAF81729
146 ActIB
S. coelicolor A3(2)
SCO5087
147 NcnA
S. arenae
AAD20267
148 TcmK
S. davawensis
CCK26894
149 SimA1
S. antibioticus
AAK06784

ChlB6; CerJ; KSIII DpsC-like

150 ChlB6
S. antibioticus
AAZ77679
151 CerJ
S. tendae
AE91069
152 CosE
S. olindensis
ABC00733
153 DpsC
S. peucetius
AAA65208
154 AknE2
S. sp. SPB74
ZP_04991255.1
155 BAB72048
S. galilaeus
BAB72048
156 PokM2
S. diastatocchromogenes
ACN64832
157 CalO4
S. aurantiaca
ZP_01462124
158 NcnA
S. arenae
AAD20267

Closest BLAST-P hits for XclB

167 3-Oxoacyl-ACP synthase III
B. sp. EniD312
WP_00911263.1
168 3-Oxoacyl-ACP synthase III
A. nasoniae
CBA73264.1
169 3-Oxoacyl-ACP synthase III
P. carotovorum
WP_010301235.1
170 3-Oxoacyl-ACP synthase III
P. pacifica
WP_006975318.1
171 3-Oxoacyl-ACP synthase III
C. stagnale
YP_007317906.1
172 3-Oxoacyl-ACP synthase III
N. punctiforme
YP_001865628.1
173 3-Oxoacyl-ACP synthase III
R. sp. PCC 7116
YP_007056099
174 3-Oxoacyl-ACP synthase III
S. cyanobacteria
YP_007130807.1
175 3-Oxoacyl-ACP synthase III
Calothrix sp. PCC 6303
YP_007138278
176 3-Oxoacyl-ACP synthase III
N. punctiforme
YP_001868566.1
177 3-Oxoacyl-ACP synthase III
R. sp. PCC 7116
YP_007057764.1

KS adjacent to XclA homologues

178 3-Oxoacyl-ACP synthase
C. sp. PCC 7822
YP_003899222.1
179 3-Oxoacyl-ACP synthase
N. punctiforme
YP_001865657.1
180 3-Oxoacyl-ACP synthase
A. cylindrica
YP_007155727.1

KS type III PKS

181 Chs-like
R. baltica
NP_868579
182 BPS (PLN03172)
H. androaemum
Q8SAS8
183 CHS H. (PLN03173)
H. androaemum
Q9FUB7
184 CHS9
M. sativa
AAA02827
185 STS
P. quinquefolia
AAM21773
186 BAS
R. palmatum
AAK82824
187 bpsA
B. subtilis str. 168
NP_390087
188 MXAN_6639
M. xanthus
YP_634756
189 PKS10
M. tuberculosis
NP_216176
190 PKS11
M. tuberculosis
NP_216181
191 Cpz6 Capramyzin ketosynthase
Streptomyces sp. MK730–62F2
192 Germicidin synthase
Streptomyces coelicolor
3V71_A
193 RppA S
S. antibioticus
BAB91443
194	RppA	S. avermitilis	NP_828307
195	RppB	S. antibioticus	BAB91444
196	O3I_37171	N. brasiliensis	ZP_09843377
197	M446_0174	M. sp. 4-46	YP_001767187
198	cpin6850	C. pinensis	YP_003126452
199	BFO_3187	T. forsythia	YP_005015826
200	NiAsoDRAFT_0547	N. soli	ZP_09632794
201	Mucpa_6793	M. paludis	ZP_09618305
202	Oweho_0889	O. hongkongensis	YP_004988545
203	CHU_0390	C. hutchinsonii	YP_677020
204	Fluta_1447	F. taffensis	YP_004344279
205	Dfer_5797	D. fermentans	YP_003090150
206	BZARG_2045	B. argentinensis	ZP_08820341
207	Lacal_2074	L. sp. 5H-3-7-4	YP_004580348
208	Aeqsu_0932	A. sublithincola	YP_006417450
209	Zobellia_2074	Z. galactanivorans	YP_004736513
210	Lbys_1508	L. byssophila	YP_003997574
211	HMPREF0204_10987	C. gleum	ZP_07085127
212	PM13_02465	C. sp. CF314	ZP_10726507
213	HMPREF0156_01383	B. taxon 274 str. F0058	YP_06803320
214	HMPREF9071_0527	C. taxon 338 str. F0234	YP_08201061
215	CAPGl0001_0843	C. gingivalis	YP_04056582
216	HMPREF1154_2288	C. sp. CM59	ZP_10800679
217	HMPREF1320_1701	C. taxon 335 str. F0486	EJF37460
218	HMPREF1321_1154	C. taxon 412 str. F0487	ZP_10366882
219	CAPSP0001_1216	C. sputigena	ZP_03390203
220	Coch_0547	C. ochracea	YP_003140666
221	HMPREF1319_0374	C. ochracea	EJF43732
222	HMPREF1977_1456	C. ochracea	ZP_07866642
223	Weevi_1554	W. virosa	YP_004238932.1
224	HMPREF9716_01579	M. odoratimimus	EKB07937
225	Myrod_1723	M. odoratus	ZP_09672239
226	HMPREF9711_01694	M. odoratimimus	EKB04829
227	HMPREF9712_01161	M. odoratimimus	ZP_09523568
228	Fco1_11845	F. columnare	YP_004942963
229	FP2279	F. psychrophilum	YP_001297136
230	PM10_02641	F. sp. CF136	ZP_10730768
231	FF52_12311	F. sp. F52	ZP_10481912
232	Fjoh_1102	F. johnsoniae	YP_001193454
233	FJSC11DRAFT_3961	F. sp. JSC-11	ZP_08987753
234	Micag_1820011	M. aeruginosa	CCI22605
235	Ds_105116	M. psychrophilum	YP_065553
236	DaAHT2_1139	D. psychrophilus	YP_003890456
237	MidDRAFT_4065	delta proteobacterium MLMS-1	ZP_01289639
238	CBGD1_514	S. gotlandica	ZP_05070248
239	SMGD1_1386	S. gotlandica	EHP29910
240	Sdel_2118	S. deleyianum	YP_003305165
241	Sulba_2257	S. barnesii	YP_006405107
242	Armi_2310	A. nitrofigilis	YP_003656468
243	HMPREF9401_0244	A. butzleri	ZP_07890833
244	Hbal_2902	H. baltica	YP_003061270
245	Parca3_01010003428	P. arctica	ZP_10280196
246	PspsU_010100018642	P. spongiae	ZP_10300425
247	PSJM300_17945	P. stutzeri	AFN79642
248	MDS_0597	P. mendocina	YP_004378380
249	Psefu_0435	P. fulva	YP_004472512
250	Plu2164	P. luminescens	NP_929424
251	PAU-RAVE6-3077	P. asymbiotica	CAR66906
252	PAU_02401	P. asymbiotica	YP_003041237
253	PchloO6_4243	P. chlororaphis	ZP_10172862
	Genomic Location	Species	Accession Number
254	DarB	*P. chlororaphis*	AAN18032
255	Pch3084_3967	*P. chlororaphis*	EJL05977
256	PMI20_00702	*P. sp. GM17*	ZP_10707840
257	Daro_2368	*D. aromatic*	YP_285574
258	azo0292 DarB	*A. sp. BH72*	YP_931796
259	Rter_3974	*R. ferrirucedens*	YP_525203
260	Sli1_0359	*S. lithotrophicus*	YP_003522988
261	PMI12_02025	*V. sp. CF313*	ZP_10567997
262	Varp_3389	*V. paradoxxus*	YP_002945272
263	Varpa_2231	*V. paradoxxus*	YP_004154548
264	Col_2002	*M. haemolytica*	ZP_05992665
265	COK_0379	*M. haemolytica*	ZP_05988513
266	HMPREF9417_0595	*H. parainfluenzae*	ZP_08147854
267	HMPREF9952_1824	*H. pittmaniae*	ZP_08755481
268	HMPREF9064_0174	*A. segnis*	ZP_07888807
269	ATCC33389_0196	*A. aphrophilus*	EGY32238
270	NT05HA_1737	*A. aphrophilus*	YP_003008155
271	HMPREF9335_01583	*A. aphrophilus*	EHB98432
272	GOWU000324_02596	*K. oralis*	ZP_04603113
273	EIKCOROL_00456	*E. corrodens*	ZP_03712789
274	HMPREF9371_1043	*N. shayegani*	ZP_08866538
275	HMPREF9370_1914	*N. wadsworthii*	ZP_08940206
276	NEIFLAIOT_02523	*N. flavescens*	ZP_03720660
277	HMPREF0604_01363	*N. mucosa*	ZP_07993739
278	NEIFL0001_0036	*N. flavescens*	ZP_04757628
279	NEISUBOT_03200	*N. subflava*	ZP_05983976
280	NEISICOT_02133	*N. sicca*	ZP_05318975
281	HMPREF9418_1128	*N. macacae*	ZP_08684521
282	HMPREF1051_1749	*N. sicca*	EIG27057
283	HMPREF1028_00835	*N. sp. GT4A_CT1*	ZP_08888860
284	HMPREF9016_01947	*N. taxon 014 str. F0314*	ZP_06980826
Table S5: NMR spectroscopic data (400 MHz, J in Hz) of pseudopyronine A, B and C in DMSO-d$_6$.

Position	Pseudopyronine A	Pseudopyronine B	Pseudopyronine C
	δ$_C$ (δ$_H$ (J in Hz))	δ$_C$ (δ$_H$ (J in Hz))	δ$_C$ (δ$_H$ (J in Hz))
2	164.9 -	165.0 -	166.9 -
3	100.7 -	101.3 -	101.5 -
3a	22.7 2.23 (t, 8.0, 2H)	22.7 2.24 (t, 8.0, 2H)	22.8 2.22 (t, 8.0, 2H)
3b	27.5 1.34 (m, 2H)	27.5 1.35 (t br, 8.0, 2H)	27.7 1.34 (t br, 8.0, 2H)
3c	28.5 1.24 (m, 2H)	28.6 1.26 (m, 2H)	28.8 1.23 (m, 2H)
3d	30.4 1.28 (m, 2H)	31.2 1.25 (m, 2H)	31.2 1.24 (m, 2H)
3e	22.0 1.24 (m, 2H)	22.0 1.26 (m, 2H)	22.1 1.25 (m, 2H)
3f	13.8 0.86 (m, 3H)	14.0 0.84 (m, 3H)	13.9 0.85 (m, 3H)
4	162.2 -	164.8 -	165.1 -
5	99.9 5.91 (s, 1H)	99.2 5.94 (s, 1H)	100.4 5.86 (s, 1H)
6	162.2 -	162.6 -	162.0 -
6a	32.5 2.36 (t, 8.0, 2H)	32.6 2.37 (t, 8.0, 2H)	32.6 2.34 (t, 8.0, 2H)
6b	25.8 1.52 (m, 2H)	26.2 1.51 (t br, 8.0, 2H)	26.2 1.50 (t br, 8.0, 2H)
6c	31.1 1.26 (m, 2H)	28.6 1.26 (m, 2H)	28.6 1.26 (m, 2H)
6d	21.7 1.26 (m, 2H)	28.2 1.28 (m, 2H)	28.2 1.26 (m, 2H)
6e	13.7 0.86 (m, 3H)	31.1 1.25 (m, 2H)	28.6 1.28 (m, 2H)
6f	22.0 1.26 (m, 2H)	28.6 1.28 (m, 2H)	31.2 1.26 (m, 2H)
6g	13.8 0.84 (m, 3H)	22.1 1.26 (m, 2H)	13.9 0.85 (m, 3H)
6h			
6i			

Pseudopyronine A

Pseudopyronine B

Pseudopyronine C
Figure S1: Analysis of amino acid substitutions for PpyS activity regarding the biosynthesis of photopyrone D (PPYD, 4). The data is calculated in dependence to the production of the PpyS wildtype enzyme. Cys129, His281 and Asn310 form the catalytic triade, Glu105 is proposed to act as a catalytic base, Arg121 is located at the dimerization interface and Glu330 was used as a neutral control. In PpyS-C129A, -N310A, -E105A and -R121D the production of 4 was not detectable (n. d.) anymore.
Figure S2: Extracted-ion chromatograms (EICs) of the most abundant photopyrones, which are produced heterologously in *E. coli* wildtype and mutant strains. 2 (m/z 267.2 [M + H]+), 3 (m/z 281.2 [M + H]+), 4 (m/z 295.2 [M + H]+), 5 (m/z 309.2 [M + H]+), 6 m/z 323.3 [M + H]+. As the data for PpyS N310A, E105A and R121D look identical to C129A showing a complete loss of photopyrone production, they are not shown here.
Figure S3: Structure of OleA-dimer (PDB: 3ROW) from Xanthomonas campestris (A). Modeled structure of PpyS-dimer from P. luminescens TT01 (B), which was generated using the OleA structure as a template: Red (α-helices), yellow (β-sheets), blue (turns), white (random coils). The superposition of OleA (blue) and PpyS (red) structures (C) revealed a root-mean-square deviation (RMSD) of 2.0 Å. To picture the dimer interface of PpyS the surface of chain α was calculated (green, magenta, and white represent a lipophilic, hydrophilic and neutral surface area, respectively) and the ribbon of chain β is shown (D). At the interface the atoms of Arg121β are represented as spheres, this residue is predicted to be involved in the dimerization of PpyS by interacting with Asp137α. The mutation of Arg121 led to a complete loss of photopyrone production. Furthermore Glu330 is shown in cyan spheres, this residue was mutated as a control, which should not influence the photopyrone production as indeed shown in Figure S1.
Figure S4: Structure of the FabH-dimer (PDB: 1HN9) from *E. coli* (A). Structure of FabH-monomer (PDB: 1HNJ) from *E. coli* along with co-crystallized malonyl-CoA (B). The superposition of both these structures (C) reveals the location of the substrate malonyl-CoA within the dimeric structure and the distance to Phe87\(\beta\), which is the analogue to Glu105 of PpyS. With a shortest distance of ca. 5.3 Å to the ligand this residue seems not to be directly involved in the catalysis.
Figure S5: Last step of myxopyronin A [15] and corallopyronin A [16] biosynthesis. The western (red) and the east (blue) chains are thought to be condensed by the catalytic activity of the KS MxnB or CorB, respectively. The intermediate shown here follows from the nucleophilic attack of the deprotonated α-carbon of the western chain with the carbonyl carbon of the eastern chain. Both intermediates were used for docking studies.
Figure S6: A multiple sequence alignment (ClustalW, standard parameters) of PpyS from *P. luminescens* TT01, YP_004230959 (YP42) from *Burkholderia* sp. CCGE1001, WP_016949109 (WP16) from *Anabaena* sp. PCC 7108, WP_007967127 (PyrS) from *Pseudomonas* sp. GM30, OleA from *X. campestris*, FabH from *E. coli*, CorB from *C. coralloides*, MxnB from *M. fulvus*, Cpz6 [17] (caprazamycin biosynthesis) from *Streptomyces* sp. MK730-62F2 and Gcs [18] (germicidin synthase) from *S. coelicolor*. Highly conserved residues are shown in grey, conserved catalytic triad and position of E105 from PpyS are highlighted in black.
Figure S7: Extracted-ion chromatograms (EICs) of pseudopyronines. 9 (m/z 267.2 \([M + H]^+\)), 10 (m/z 295.2 \([M + H]^+\)), 11 (m/z 323.2 \([M + H]^+\)). In *Pseudomonas putida* KT2440 no pseudopyronines could be detected (top chromatogram). All chromatograms are drawn to the same scale.
Figure S8: Structure of OleA-dimer (PDB: 3ROW) from *Xanthomonas campestris* (A). Modeled structure of pseudopyronine synthase (PyrS)-dimer from *Pseudomonas* sp. GM30 (B), which was generated using the OleA structure as a template. The superposition of OleA (blue) and PyrS (red) structures (C) revealed a root-mean-square deviation (RMSD) of 3.3 Å. The modeled PyrS-dimer structure with covalently to Cys124 docked pseudopyronine B intermediate (19, D). In a green sphere representation Glu100 is shown, which is the analogue to Glu105 of PpyS.
Figure S9: A detailed view of the proposed PyrS-binding pocket with covalently to Cys124 docked substrate (17, A) and intermediat (19, B) of pseudopyronine B. The catalytic triade consists of Cys124, His277 and Asn306. The cavity of the binding pocket is shown in a line representation, where green represents a lipophilic surface area, magenta a hydrophilic and white a neutral. Possible formed hydrogen bonds are shown as dashed blue lines.
Scheme S1: Proposed biosynthesis of 10 by PyrS from *Pseudomonas* sp. GM30. In the first step octanoic acid (17) is covalently bound to the active site Cys124. The deprotonated α-carbon nucleophilically attacks a 3-oxodecanoyl thioester (18, $R = \text{ACP}$ or CoA) to form the covalently bound intermediate (19). Due to a spontaneous or a catalyzed deprotonation (by E100) the pyrone ring is formed and 10 is released from PyrS.
References

1. Adachi, Y.; Fukuhara, C. Anal. Biochem. 2012, 431, 66-68.

2. Brachmann, A. O.; Brameyer, S.; Kresovic, D.; Hitkova, I.; Kopp, Y.; Manske, C.; Schubert, K.; Bode, H. B.; Heermann, R. Nat. Chem. Biol. 2013, 9, 573-578.

3. Gibson, D. G.; Young, L.; Chuang, R.; Venter, J. C.; 3rd, C. A. H.; Smith, H. O. Nat. Methods 2009, 6, 343-345.

4. Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J. J. Mol. Biol. 1990, 215, 403-410.

5. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weisig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235-242.

6. Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.; McGettigan, P. A.; McWilliam, H.; Valentin, F.; Wallace, I. M.; Wilm, A.; Lopez, R.; Thompson, J. D.; Gibson, T. J.; Higgins, D. G. Bioinformatics 2007, 23, 2947-2948.

7. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol. 1997, 267, 727-748.

8. Korb, O.; Stützle, T.; Exner, T. E. J. Chem. Inf. Model. 2009, 49, 84-96

9. Guindon, S.; Gascuel, O. Syst. Biol. 2003, 52, 696-704

10. Hanahan, D. J. Mol. Biol. 1983, 166, 557-580.

11. Brown, S. D.; Utturkar, S. M.; Klingeman, D. M.; Johnson, C. M.; Martin, S. L.; Land, M. L.; Lu, T. S.; Schadt, C. W.; Doktycz, M. J.; Pelletier, D. A. J. Bacteriol. 2012, 194, 5991-5993

12. Nelson, K. E.; Weinel, C.; Paulsen, I. T.; Dodson, R. J.; Hilbert, H.; Santos, dos, V. A. P. M.; Fouts, D. E.; Gill, S. R.; Pop, M.; Holmes, M.; Brinkac, L.; Beanan, M.; DeBoy, R. T.; Daugherty, S.; Kolonay, J.; Madupu, R.; Nelson, W.; White, O.; Peterson, J.; Khouri, H.; Hance, I.; Lee, P. C.; Holtzapple, E.; Scanlan, D.; Tran, K.; Moazzez, A.; Utterback, T.; Rizzo, M.; Lee, K.; Kosack, D.; Moestl, D.; Wedler, H.; Lauber, J.; Stjepanic, D.; Hoheisel, J.; Straetz, M.; Heim, S.; Kiewitz, C.; Eisen, J. A.; Timmis, K. N.; Düsterhöft, A.; Tümmler, B.; Fraser, C. M. Environ. Microbiol. 2002, 4, 799-808.

13. Smits, T. H.; Seeger, M. A.; Witholt, B.; van Beilen, J. B. Plasmid 2001, 46, 16-24.

14. Proschak, A.; Zhou, Q.; Schöner, T.; Thanwisai, A.; Kresovic, D.; Dowling, A.; ffrench-Constant, R.; Proschak, E.; Bode, H. B. ChemBioChem 2014, 15, 369-372.

15. Sucipto, H.; Wenzel, S. C.; Müller, R. ChemBioChem 2013, 14, 1581-1589.

16. Erol, O.; Schäberle, T. F.; Schmitz, A.; Rachid, S.; Gurgui, C.; Omari, el, M.; Lohr, F.; Kehraus, S.; Piel, J.; Müller, R.; König, G. M. ChemBioChem 2010, 11, 1253-1265.

17. Tang, X.; Eitel, K.; Kaysser, L.; Kulik, A.; Grond, S.; Gust, B. Nat. Chem. Biol. 2013, 9, 610-615.

18. Chemler, J. A.; Buchholz, T. J.; Geders, T. W.; Akey, D. L.; Rath, C. M.; Chlipala, G. E.; Smith, J. L.; Sherman, D. H. J. Am. Chem. Soc. 2012, 134, 7359-7366.
1H-NMR spectrum of pseudopyronine C, DMSO-\textit{d6}
^{13}C -NMR spectrum of pseudopyronine C, DMSO-d_6
COSY spectrum of pseudopyronine C, DMSO-d_6
HSQC spectrum of pseudopyronine C, DMSO-d6
HMBC spectrum of pseudopyronine C, DMSO-d_6