Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates

Katharina Eggensperger · Marius Lindauer · Holger H. Hoos · Frank Hutter · Kevin Leyton-Brown

Abstract The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. The resulting algorithm configuration (AC) problem has attracted much attention from the machine learning community. However, the proper evaluation of new AC procedures is hindered by two key hurdles. First, AC benchmarks are hard to set up. Second and even more significantly, they are computationally expensive: a single run of an AC procedure involves many costly runs of the target algorithm whose performance is to be optimized in a given AC benchmark scenario. One common workaround is to optimize cheap-to-evaluate artificial benchmark functions (e.g., Branin) instead of actual algorithms; however, these have different properties than realistic AC problems. Here, we propose an alternative benchmarking approach that is similarly cheap to evaluate but much closer to the original AC problem: replacing expensive benchmarks by surrogate benchmarks constructed from AC benchmarks.

These surrogate benchmarks approximate the response surface corresponding to true target algorithm performance using a regression model, and the original and surrogate benchmark share the same (hyper-)parameter space. In our experiments, we construct and evaluate surrogate benchmarks for hyperparameter optimization as well as for AC problems that involve performance optimization of solvers for hard combinatorial problems, drawing training data from the runs of existing AC procedures. We show that our surrogate benchmarks capture overall important characteristics of the AC scenarios, such as high- and low-performing regions, from which they were derived, while being much easier to use and orders of magnitude cheaper to evaluate.

Keywords Algorithm Configuration · Hyper-parameter Optimization · Empirical Performance Model
1 Introduction

The performance of many algorithms (notably, both machine learning procedures and solvers for hard combinatorial problems) depends critically on (hyper-)parameter settings, which are often difficult or costly to optimize. This observation has motivated a growing body of research into automatic methods for finding good settings of such parameters. Recently, sequential model-based Bayesian optimization methods have been shown to outperform more traditional methods for hyperparameter optimization (such as grid search and random search) and to rival or surpass the results achieved by human domain experts (Snoek et al. 2012; Bergstra et al. 2014; Lang et al. 2015).

Hyperparameter optimization (HPO) aims to find a hyperparameter setting \(\theta^* \) from the space of all possible settings \(\Theta \) of a given learning algorithm that minimizes expected loss on completely new data (where the expectation is taken over the data distribution). This is often approximated as the blackbox problem of finding a setting that optimizes cross-validation error \(\mathcal{L}(\theta) \):

\[
\theta^* \in \arg \min_{\theta \in \Theta} \mathcal{L}(\theta).
\]

In the more general algorithm configuration (AC) problem, the goal is to optimize a performance metric \(m : \Theta \times \Pi \to \mathbb{R} \) of any type of algorithm (the so-called target algorithm) across a set of problem instances \(\pi \in \Pi \), i.e., to find

\[
\theta^* \in \arg \min_{\theta \in \Theta} \frac{1}{|\Pi|} \sum_{\pi \in \Pi} m(\theta, \pi).
\]

The concept of problem instances arises naturally when optimizing the performance of parameterized solvers for combinatorial problems, such as the propositional satisfiability problem (SAT), but we also use this concept to model individual cross-validation folds in hyperparameter optimization (see, e.g., Thornton et al. 2013). HPO is thus a special case of AC.

General-purpose AC procedures, such as ParamILS (Hutter et al. 2009), GGA (Ansótegui et al. 2009, 2015), irace (López-Ibáñez et al. 2016) and SMAC (Hutter et al. 2011b) have been shown to substantially improve the performance of state-of-the-art algorithms for a wide range of combinatorial problems including SAT (Hutter et al. 2007, 2017), answer set programming (Gebser et al. 2011; Silverthorn et al. 2012), AI planning (Vallati et al. 2013) and mixed integer programming (Hutter et al. 2009), and have also been used to find good instantiations of machine learning frameworks (Thornton et al. 2013; Feurer et al. 2015a) and good architectures and hyperparameters for deep neural networks (Domhan et al. 2015).

1.1 Obstacles for Research on Algorithm Configuration

One obstacle to further progress in AC is a paucity of reproducible experiments and empirical studies. The hyperparameter optimization library HPOlib (Eggensperger et al. 2013) and the algorithm configuration library AClib (Hutter et al. 2014a)
represent first steps towards alleviating this problem. Each benchmark in these libraries consists of a parameterized algorithm and a set of input data to optimize it on, and all benchmarks offer a unified interface, making it easier to systematically compare different approaches. However, even with such benchmark libraries available, it is still challenging to assess the performance of AC procedures in a principled and reproducible manner, for several reasons:

1. A mundane, but often significant, obstacle is to obtain someone else’s implementation of a target algorithm to work on one’s own system. This can involve resolving dependencies, acquiring required software licenses, and obtaining the appropriate input data (which may be subject to confidentiality issues or IP restrictions).

2. Some target algorithms require specialized hardware; most notably, general-purpose graphics processing units (GPGPUs) have become a standard requirement for the effective training of modern deep learning architectures (Krizhevsky et al. 2012).

3. Running even one configuration of a target algorithm can require minutes or hours, and hence evaluating hundreds or even thousands of different algorithm configurations is often quite expensive, requiring days of wall-clock time on a large computer cluster. The computational expense of comprehensive experiments can therefore be prohibitive for research groups lacking access to large-scale computing infrastructure.

1.2 Contributions

In this work, we show that we can use surrogate models to construct cheap-to-evaluate surrogate AC benchmarks that offer a practical alternative for AC benchmarking experiments by replacing expensive evaluations of the true performance \(m(\theta, \pi) \) of a target algorithm configuration \(\theta \) on a problem instance \(\pi \) with a much cheaper model prediction \(\hat{m}(\theta, \pi) \). These surrogate AC benchmarks are syntactically equivalent to the original AC benchmarks they replace, i.e., sharing the same hyperparameter spaces, instances, etc. (c.f. the formal definition of AC in Equation 1).

To construct such surrogate benchmarks, we leverage empirical performance models (EPMs; Leyton-Brown et al. 2009; Hutter et al. 2014b)—regression models that characterize a given algorithm’s performance across problem instances and/or parameter settings. The construction of such surrogate models is an expensive offline step, but once such a model has been obtained, it can be used repeatedly as the basis for efficient experiments with new AC procedures. Figures 1 and 2 schematically illustrate the workflow for running an AC procedure on the original benchmark and the corresponding surrogate benchmark, respectively.

Our surrogate benchmarks can be useful in several different ways, including:

1. They can be used to speed up debugging and unit testing of AC procedures, since our surrogate benchmarks are syntactically the same as the original ones.

2 By far the most expensive part of this offline step is gathering target algorithm performance data by executing the algorithm with various parameter settings on multiple problem instances. However, as we describe in more detail in Section 3, this data can be gathered as a by-product of running algorithm configuration procedures on the algorithm.
(e.g., to test conditional parameters, categorical parameters, and continuous ones, or to test reasoning across instances). Thus they facilitate the development and effective use of such algorithms.

2. Since the large computational expense of running AC procedures is typically dominated by the cost of evaluating target algorithm performance under various (hyper-)parameter settings, our benchmarks can also substantially reduce the time required for running an AC procedure, facilitating whitebox testing.

3. Surrogate benchmarks that closely resemble original benchmarks can also facilitate the evaluation of new features inside an AC procedure, or even be used for meta-optimization of the parameters of such a procedure. Of course, such meta-optimization can also be performed without using surrogates, albeit at great expense (see, e.g., [Hutter et al 2009]).

This article extends an initial study published at AAAI ([Eggensperger et al 2015]), which focused only on the special case of HPO. Here, we generalize that work to the much more complex general AC problem, handling the problems of optimization across many instances with high-dimensional feature vectors, censored observations due to prematurely-terminated runs, and randomized algorithms.

1.3 Existing Work on Surrogates

Given the large overhead involved in studying complex benchmarks from real-world applications, researchers studying HPO have often fallen back on simple synthetic test functions, such as the Branin function ([Dixon and Szegö 1978]), to compare HPO procedures ([Snoek et al 2012]). While such functions are cheap to evaluate, they are not representative of realistic HPO problems because they are smooth and
often have unrealistic shapes. Furthermore, they only involve real-valued parameters
and hence do not incorporate the categorical and conditional hyperparameters
typical of many hyperparameter optimization benchmarks.

In the special case of small, finite hyperparameter spaces, a much better alter-
native is simply to record the performance of every hyperparameter configuration,
thereby speeding up future evaluations via table lookup. Such a table-based surro-
gate can be trivially transported to any new system, without whatever complicating
factors were involved in running the original algorithm (setup, special hardware
requirements, licensing, computational cost, etc.). In fact, several researchers have
already applied this approach to simplify experiments (Birattari et al 2002; Snoek
et al 2012; Bardenet et al 2014; Feurer et al 2015b; Wistuba et al 2015).

Unfortunately, table lookup is limited to small, finite hyperparameter spaces.
Here, we generalize the idea of such surrogates to potentially high-dimensional
spaces that may include real-valued, categorical, and conditional hyperparameters.
As with table lookup, we first evaluate many hyperparameter configurations in an
expensive offline phase. However, we then use the resulting performance data to
train a regression model that approximates future evaluations via model predictions.
As before, we obtain a surrogate of algorithm performance that is cheap to evaluate
and trivially portable. Since these model-based surrogates offer only approximate
representations of performance, it is crucial to investigate the quality of their
predictions, as we do in this work.

We are not the first to propose the use of learned surrogate models that stand in
for computationally complex functions. In the field of meta-learning (Brazdil et al
2008), regression models have been used extensively to predict the performance
of algorithms across various datasets based on dataset features. Similarly, in the
field of algorithm selection (Rice 1976); c.f., Kotthoff (2014), regression models
have been used to predict the performance of algorithms on problem instances
(e.g., a satisfiability formula) to select the most promising one (e.g., Nudelman
et al 2003; Xu et al 2008; Gльser et al 2011). The statistics literature on the design
and analysis of computer experiments (DACE) (Sacks et al 1989; Santner et al
2003; Gorissen et al 2010) uses similar surrogate models to guide a sequential
experimental design strategy, aiming to achieve either an overall strong model
fit or to identify the minimum of a function. Surrogate models are also at the
core of the sequential model-based Bayesian optimization framework (Brochu et al
2010; Hutter et al 2011b; Shahriari et al 2016). While all of these lines of work
incrementally construct surrogate models of a function in order to inform an active
learning criterion that determines new inputs to evaluate, our work differs in its
goal: to obtain surrogates benchmarks rather than to identify good points in the space.
In that vein—as previously mentioned—it is more similar to work on empirical
performance models (Leyton-Brown et al 2009; Hutter et al 2014b).

1.4 Structure of the Article

The remainder of this article is structured as follows. First, we discuss background
on AC in Section 2, paying particular attention to how it generalizes HPO and on
the existing approaches for solving AC we used in our experiments. In Section 3,
we describe how to use EPMs as surrogates to efficiently benchmark new AC
procedures, introducing the use of quantile regression forests (Meinshausen 2006).
for modelling the performance of randomized algorithms. In Section 4, we apply our surrogates to application benchmarks from AClib, showing that they model target algorithm performance well enough to yield surrogate AC benchmarks which behave qualitatively similarly to the original benchmarks, while allowing up to 1641 times faster benchmarking experiments.

2 Background on Algorithm Configuration

In this section, we provide background information on how AC generalizes HPO and hence, how this paper addresses challenges that were not addressed by previous work (Eggensperger et al. 2015). Furthermore, we briefly describe the existing methods for solving AC that we used in our experiments.

2.1 AC as a Generalization of HPO

While we described the AC problem on a high level in Equation 2, more formally it is defined as follows:

Definition 1 (Algorithm Configuration) An instance of the algorithm configuration problem is a 6-tuple \((A, \Theta, D_{\Pi}, \kappa, F, m)\) where:

- \(A\) is a parameterized target algorithm;
- \(\Theta\) is the parameter configuration space of \(A\);
- \(D_{\Pi}\) is a distribution over a set of instances \(\Pi\);
- \(\kappa < \infty\) is a cutoff time at which each run of \(A\) will be terminated;
- \(F : \Pi \rightarrow \mathbb{R}^d\) maps each instance to a \(d\)-dimensional vector of characteristics that describe the instance. This is an optional input; if no features are available, this is modelled by setting \(d\) to 0;
- \(m : \Theta \times \Pi \rightarrow \mathbb{R}\) is a function (e.g., running time) that measures the observed cost of running \(A(\theta)\) on an instance \(\pi \in \Pi\) with cutoff time \(\kappa\).

The goal is to find \(\theta^* \in \arg \min_{\theta \in \Theta} \mathbb{E}_{\pi \sim D_{\Pi}}(m(\theta, \pi))\).

Notably, this definition includes a cutoff time since in practice we cannot run algorithms for an infinite amount of time, and we need to attribute some (poor) performance value to runs that time out unsuccessfully. In most AC scenarios (e.g., those in the algorithm configuration library, AClib), \(D_{\Pi}\) is chosen as the uniform distribution over a representative set of instances from \(\Pi\). In practice, we use a set of training instances \(\Pi_{\text{Train}}\) from \(D_{\Pi}\) to configure our algorithm \(A\) and a disjoint set test instances \(\Pi_{\text{Test}}\) from \(D_{\Pi}\) to evaluate the performance of the configuration finally returned by an AC procedure, also called final incumbent configuration. Using this training–test split, we can identify over-tuning effects (Hutter et al. 2009), i.e., improvements in performance on \(\Pi_{\text{Train}}\) that do not generalize to \(\Pi_{\text{Test}}\). We note that it is typically too expensive to use cross-validation to average over multiple training–test splits, because even single runs of an AC procedure often require multiple CPU days.

This general AC problem generalizes the HPO problem from Equation 1 in various ways:
1. **Types of target algorithms.** While HPO only deals with machine learning algorithms, AC deals with arbitrary ones, such as SAT solvers (Hutter et al 2017) or configurable software systems (Sarkar et al 2015).

2. **Performance metrics.** While HPO typically minimizes one of various loss functions concerning the predictions of a machine learning algorithm, AC includes more general performance metrics, such as running time, approximation error, memory requirements, plan length, or latency.

3. **Randomized algorithms.** While the definition of HPO in Equation 1 concerns deterministic algorithms, the general AC problem includes randomized algorithms. For example, randomized SAT solvers are known to have running time distributions that resemble exponential distributions (Hoos and Stützle 2004), and it is entirely normal that running times with two different pseudo-random number seeds differ by an order of magnitude.

4. **Multiple instances.** Equation 2 already shows that the goal in the AC problem is to minimize the given performance metric on average across instances π from a distribution D_{Π}. HPO can also be cast as optimization across cross-validation folds, in which case these are modelled as instances for AC procedures; these AC procedures will then evaluate configurations on one fold at a time and only evaluate additional folds for promising configurations.

5. **Prevalence of many categorical & conditional parameters.** While the parameter space in current HPO benchmarks is often fairly low-dimensional and all-continuous, general AC benchmarks often feature many discrete choices between algorithm components, as well as conditional parameters that only apply to some algorithm components. We note, however, that high-dimensional spaces with categorical parameters and high degrees of conditionality also exist in HPO, e.g., in the optimization of machine learning frameworks (Thornton et al 2013; Feurer et al 2015a) or architectural optimization of deep neural networks (Bergstra et al 2014; Domhan et al 2015).

6. **Features.** In most AC scenarios, each instance is described by a vector of features. Examples of such features range from simple problem size measurements to “probing” or “landmarking” features derived from the behaviour of an algorithm when run on the instance for a bounded amount of time (e.g., number of restarts or constraint propagations in the case of SAT). Instance features are a crucial ingredient in EPMs (Leyton-Brown et al 2009; Hutter et al 2014b), which, as mentioned earlier, predict the performance $m(\theta, \pi)$ of a target algorithm configuration θ on a problem instance π. They have been studied even more extensively in the context of the per-instance algorithm selection problem (Nudelman et al 2003, 2004; Xu et al 2008; Malitsky et al 2013; Kotthoff 2014; Lindauer et al 2015; Bischl et al 2016), where, given a portfolio of algorithms P, the goal is to find a mapping $s : \Pi \rightarrow P$. Thus, feature extractors are available for many problems, including mixed integer programming (MIP; Leyton-Brown et al 2009; Kadioglu et al 2010; Xu et al 2011; Hutter et al 2014b), propositional satisfiability (SAT; Nudelman et al 2004; Xu et al 2008; Hutter et al 2014b), answer set programming (ASP; Maratea et al 2014; Hoos et al 2014), and meta-learning (Gama and Brazdil 1995; Köpfler et al 2000; Bensusan and Kalousis 2001; Guerra et al 2008; Leite et al 2013; Reif et al 2014; Schilling et al 2015). Recently, Loreggia et al (2016) proposed the use of deep neural networks to generate instance features automatically, which can be useful when expert-crafted features are unavailable.
7. **Censored observations.** For AC scenarios where the goal is to minimize running time, it is common practice in AC procedures to terminate poorly-performing runs early in order to save time. This *adaptive capping* process yields performance measurements that only constitute a lower bound to the actual running time and need to be modelled as such.

2.2 Algorithm Configuration Procedures

While the HPO community has focused quite heavily on the Bayesian optimization framework (Brochu et al. 2010; Shahriari et al. 2016), widely studied approaches for AC are more diverse and include *ParamILS*, which performs iterated local search (Hutter et al. 2009), *GGA*, which leverages genetic algorithms (Ansótegui et al. 2009; 2015), *irace*, a generalization of racing methods (López-Ibáñez et al. 2011; Lang et al. 2015), *OpenTuner*, an approach which appeals to bandit solvers on top of a set of search heuristics (Ansel et al. 2014), *SMAC*, an approach based on Bayesian optimization (Hutter et al. 2011b), and *ROAR*, the specialization of this method to random sampling without a model. We experimented with all of these methods except *GGA* and *OpenTuner*, the former because in its current version it is not fully compatible with the algorithm configuration scenarios used in our experiments, and the latter because it does not consider problem instances and is therefore not efficiently applicable to our algorithm configuration scenarios, which contain many instances.

We now give more complete descriptions of the state-of-the-art AC procedures used in our experiments: *ParamILS*, *irace*, *ROAR* and *SMAC*.

ParamILS (Hutter et al. 2009) combines iterated local search (i.e., hill climbing in a discrete neighborhood with perturbation steps and restarts) with methods for efficiently comparing pairs of configurations. Due to its local search approach, *ParamILS* usually compares pairs of configurations that differ in only one parameter value, but occasionally jumps to completely different configurations. When comparing a pair of configurations, assessing performance on all instances is often far too expensive (e.g., requiring solving hundreds of SAT problems). Thus, the *FocusedILS* variant of *ParamILS* we consider here uses two methods to quickly decide which of two configurations is better. First, it employs an *intensification* mechanism to decide how many instances to run for each configuration (starting with a single run and adding runs only for high-performing configurations). Second, it incorporates *adaptive capping*—a technique based on the idea that, when comparing configurations θ_1 and θ_2 with respect to an instance set $\Pi_{\text{sub}} \subset \Pi$, evaluation of θ_2 can be terminated prematurely when θ_2's aggregated performance on Π_{sub} is provably worse than that of θ_1.

irace (López-Ibáñez et al. 2016) is based on the F-race procedure (Birattari et al. 2002), which aims to quickly decide which of a sampled set of configurations performs significantly best. After an initial race among uniformly sampled configurations, *irace* adapts its sampling distribution according to these results, aiming to focus on promising areas of the configuration space.
ROAR (Hutter et al. 2011b) samples configurations at random and uses an intensification and adaptive capping scheme similar to that of ParamILS to determine whether the sampled configuration should be preferred to the current incumbent. As shown by Hutter et al. (2011b), despite its simplicity, ROAR performs quite well on some algorithm configuration scenarios.

SMAC (Hutter et al. 2011b) extends Bayesian optimization to handle the more general AC problem. More specifically, it uses previously observed \(\langle \theta, \pi, m(\theta, \pi) \rangle \) pairs to learn an EPM to model \(\hat{m}(\theta, \pi) \). This EPM is used in a sequential optimization process as follows. After an initialization phase, SMAC iterates over the following three steps: (1) use the performance measurements observed so far to fit a marginal random forest model \(\hat{f}(\theta) = \mathbb{E}_{\pi \sim \Pi_{\text{train}}} [\hat{m}(\theta, \pi)] \); (2) use \(\hat{f} \) to select promising configurations \(\Theta_{\text{next}} \subset \Theta \) to evaluate next, trading off exploration in new parts of the configuration space and exploitation in parts of the space known to perform well by blending optimization of expected improvement with uniform random sampling; and (3) run the configurations in \(\Theta_{\text{next}} \) on one or more instances and compare their performance to the best configuration observed so far. SMAC also uses intensification and adaptive capping. However, since adaptive capping leads to right-censored data (i.e., we stop a target algorithm run before reaching the running time cutoff because we already know that it will perform worse than our current incumbent), this data is imputed before being passed to the EPM (Schmee and Hahn 1979; Hutter et al. 2011a).

3 Surrogates of General AC Benchmarks

In this section, we show how to construct surrogates of general AC benchmarks. In contrast to our earlier work on surrogate benchmarks of the special case of HPO (Eggensperger et al. 2015), here we need to take into account the many ways in which AC is more complex than HPO (see Section 2.1). In particular, we describe the choices we made to deal with multiple instances and high-dimensional feature spaces; high-dimensional and partially categorical parameter spaces; censored observations; different performance metrics (in particular running time); and randomized algorithms.

3.1 General Setup

To construct the surrogate for an AC benchmark \(X \), we train an EPM \(\hat{m} \) on performance data previously gathered on benchmark \(X \) (see Section 3.2). The surrogate benchmark \(X'_{\hat{m}} \) based on EPM \(\hat{m} \) is then structurally identical to the benchmark \(X \) in all aspects except that it uses predictions instead of measurements of the true performance; in particular, the surrogate’s configuration space (including all parameter types and domains) and configuration budget are identical to \(X \). Importantly, the wall clock time to run an AC procedure on \(X'_{\hat{m}} \) can be much lower than that required on \(X \), since expensive evaluations in \(X \) can be replaced by cheap model evaluations in \(X'_{\hat{m}} \).

Our ultimate aim is to ensure that AC procedures perform similarly on the surrogate benchmark as on the original benchmark. Since effective AC procedures spend
most of their time in high-performance regions of the configuration space, and since relative differences between the performance of configurations in such high-performance regions tend to impact which configuration will ultimately be returned, accuracy in high-performance regions of the space is more important than in regions where performance is poor. Training data should therefore be sampled primarily in high-performance regions. Our preferred way for doing this is to collect performance data primarily via runs of existing AC procedures. As an additional advantage of this strategy, we can obtain this costly performance data as a by-product of executing AC procedures on the original benchmark.

In addition to gathering data from high-performing regions of the space, it is also important to cover the entire space, including potential low-performing regions. To get samples that are neither biased towards good nor bad configurations, we also included performance data gathered by random search. (Alternatively, one could use grid search, which can also cover the entire space. We did not adopt this approach, because it cannot deal effectively with large parameter spaces.)

1. Inactive parameters were replaced by their default value, or if no default value was specified, by the midpoint of their range of values.\(^3\)
2. Since our EPMs handle categorical variables natively (see Section 3.3), we do not need to encode those. For EPMs that cannot handle categorical variables (e.g., a Gaussian process with a Matérn kernel), we would apply a one-hot-encoding\(^4\) to the categorical parameter values;
3. We observed that for most algorithms there were parameter combinations that led to crashes (Hutter et al 2010; Manthey and Lindauer 2016). We removed all algorithm runs that were neither successful runs (i.e., returning a correct solution within the time budget) nor timeouts, since our models cannot classify target algorithm runs into successful and failed runs.\(^5\)

3.2 What Kind of Data to Collect Regarding Instances?

EPMs for general AC need to predict well in both the space of parameter configurations and problem instances (in contrast to the special case of HPO that focuses on the configuration space), opening up another design dimension for gathering training data: which problem instances to run on in order to gather data for our model? Algorithm configuration scenarios typically come with fixed sets of training and test instances, \(\Pi_{Train}\) and \(\Pi_{Test}\). In typical applications of EPMs, we only use data from \(\Pi_{Train}\) to build our model and use \(\Pi_{Test}\) to study its generalization performance in the instance space. If our objective, however, is only to construct surrogate benchmarks that resemble the original benchmarks, then it is never necessary to generalize beyond the instances in the fixed sets \(\Pi_{Train}\) and

\(^3\) There exist other imputation strategies for missing values (e.g., mean, median, most frequent). In preliminary experiments, we also tried to impute inactive parameters with values outside of their value ranges, but this made no difference in the accuracy of our trained RF-based EPMs.

\(^4\) One-hot-encoding encodes a categorical variable with \(k\) possible values by introducing \(k\) binary variables and setting the one of them to 1 that corresponds to the original variable’s value.

\(^5\) An alternative to removing the crashed runs would be to model them explicitly as unknown constraints (Gelbart et al 2013).
Efficient Benchmarking via Model-Based Surrogates

ΠTest; to see this, recall that a table-based surrogate is the perfect solution for small configuration spaces, despite the fact that it obviously would not generalize. Restricting the data for our EPM to instances from ΠTrain is therefore an option, but we can expect better performance if we build our model based on instances from both ΠTrain and ΠTest. In order to assess how the choice of instances used by the EPM affects our surrogate benchmark, we studied two different setups:

I. **AC and random runs on ΠTrain**. This option only collects data for the EPM on ΠTrain and relies on the EPM to generalize to ΠTest. Specifically, we ran \(n \) independent AC procedures runs on ΠTrain (in our experiments, \(n \) was 10 for each AC procedure) and also evaluated \(k \) runs of randomly sampled \((\theta, \pi) \) pairs with configurations \(\theta \in \Theta \) and instances \(\pi \in \PiTrain \) (in our experiments, \(k \) was 10 000).

II. **Add incumbents on ΠTest**. This option includes all the runs from Setting I, but additionally uses some limited data from instances ΠTest. Namely, it also evaluates the performance of the AC procedures’ incumbents (i.e., their best parameter configurations over time) on ΠTest. This is regularly done for evaluating the performance of AC procedures over time and thus comes at no extra cost for obtaining data for the EPM.

We also tried more expensive setups, such as configuration on ΠTrain ∪ ΠTest, to achieve better coverage of evaluated configurations \(\theta \in \Theta \) on ΠTest and not only incumbent configurations with good performance. Preliminary experiments indicated that such more expensive setups did not improve the accuracy of our surrogate benchmarks in comparison to the results for Setting II shown in Section 4.

3.3 Choice of Regression Models for Typical AC Parameter Spaces

In previous work, Hutter et al. (2014b) and Eggensperger et al. (2015) considered several common regression algorithms for predicting algorithm performance: random forests (RFs; Breimann 2001) and Gaussian processes (GPs; Rasmussen and Williams 2006), gradient boosting, support vector regression, \(k \)-nearest-neighbours, linear regression, and ridge regression. Overall, the conclusion of those experiments was that RFs and GPs outperform the other methods for this task. In particular, GPs performed best for few continuous parameters (\(\leq 10 \)) and few training data points (\(\leq 20 \,000 \)); and RFs performed best for many training samples or for parameter spaces that are large and/or include categorical and continuous parameters.

Since our focus here is on general AC problems that typically involve target algorithms with more than 10 categorical and continuous parameters (see Section 4), we limit ourselves to RFs in the following. We used our own RF implementation since it natively handles categorical variables. Somewhat surprisingly, in preliminary experiments, we observed that, in our application, the generalization performance of RFs was sensitive to their hyperparameter values. Therefore, we optimized these RF hyperparameters by using SMAC across four representative datasets from algorithm configuration (with 5000 subsampled data points and at most 400 function evaluations); the resulting hyperparameter configuration is shown in Table 1. Our RF implementation is publicly available as an open-source project in C++ with a Python interface at https://bitbucket.org/aadfreiburg/random_forest_run.
Table 1 Overview of the hyperparameter ranges used to optimize the RMSE of the random forest and the optimized hyperparameter configuration.

Hyperparameter	Ranges	Optimized Setting
bootstrapping	{True, False}	False
frac_points	[0.001, 1]	0.8
max_nodes	[10, 100000]	50000
max_depth	[20, 100]	26
min_samples_in_leaf	[1, 20]	1
min_samples_to_split	[2, 20]	5
frac_feats	[0.001, 1]	0.28
num_trees	[10, 50]	48

3.4 Handling Widely-Varying Running Times

In AC, a commonly used performance metric is algorithm running time (which is to be minimized). The distribution of running times can strongly vary between different classes of algorithms. In particular algorithms for hard combinatorial problems (e.g., SAT, MIP, ASP) have widely-varying running times across instances. These hardness distributions can often be well approximated by log-normal distributions or Weibull distributions (Schneider and Hoos 2012). For this reason, we predict log-running times \(\log(t) \) instead of running times. In this log-space, the noise is distributed roughly according to a Gaussian, which is the typical standard assumption in most machine learning algorithms (including RFs minimizing the sum of squared errors).

3.5 Imputation of Right-Censored Data

Many AC procedures use an adaptive capping mechanism for running time benchmarks to limit algorithm runs with a running time cutoff \(\kappa \) comparable to the running time of the best seen configuration (see Section 2.2). This results in so-called right-censored data points for which we only know a lower bound \(m' \) on the true performance: \(m'(\theta, \pi) \leq m(\theta, \pi) \). AC procedures tend to produce many such right-censored data points (in our experiments, 11% – 38%), and simply discarding those can introduce sizeable bias. We therefore prefer to impute the corresponding running times; as shown by Hutter et al (2011a), doing so can improve the predictive accuracy of SMAC’s EPMs.

Following Schmee and Hahn (1979) and Hutter et al (2011a), we use Algorithm 1, which is not specific to RFs, to impute right-censored running time data. We use all uncensored data points, along with their true performance, and all censored data as input. First, we train the EPM on all uncensored data (Line 1). We then compute, for each censored data point, the mean \(\mu \) and variance \(\sigma^2 \) of the predictive distribution. Since we know the lower bound \(m'(i) \) on the data point’s true running time, we use a truncated normal distribution \(N(\mu, \sigma^2)_{[m'(i), \infty)} \) to update our belief of the true value of \(y(i) \) (Line 4 and 5). Next, we refit our EPM using the uncensored data and the newly imputed censored data (Line 6). We then iterate this process until the algorithm converges or until 10 iterations have been performed.
Algorithm 1: Imputation of censored data

Input : Uncensored data X_u, y_u, Censored data X_c, y_c
Output : Imputed values y_{imp} for X_c

1. $EPM.fit(X_u, y_u);$
2. while not converged do
3. foreach censored sample i do
4. $\mu, \sigma^2 := EPM.predict(X^{(i)}_c);$
5. $y_{imp}^{(i)} := \text{mean of } N(\mu, \sigma^2) \geq y^{(i)}_c;$
6. $EPM.fit(X_u || X_c, y_u || y_{imp});$
7. return y_{imp}

3.6 Handling Randomized Algorithms

Many algorithms are randomized (e.g., RFs or stochastic gradient descent in machine learning, or stochastic local search solvers in SAT solving). In order to properly reflect this in our surrogate benchmarks, we should take this randomization into account in our predictions. Earlier work on surrogate benchmarks (Eggensperger et al. 2015) only considered deterministic algorithms and only predicted means; when these methods are applied to randomized algorithms, the result is a deterministic surrogate that can differ qualitatively from the original benchmark.

Instead, we need to predict the entire distribution $P(Y|X)$ and, when asked to output the performance of a single algorithm run, draw a sample from it. Unfortunately, we do not know in advance the closed form performance distribution (running time distributions have only been studied in some special cases, such as for certain stochastic local search solvers (Hoos and Stützle 2004) – if we knew the running time distributions, we could exploit it in the construction of our EPM (Arbelaez et al. 2016)). Instead, to obtain a general solution, we propose to use quantile regression (Koenker 2005; Takeuchi et al. 2006). Following Meinshausen (2006), the α-quantile $Q_\alpha(x)$ is defined by

$$Q_\alpha(x) = \inf\{y : P(Y \leq y|X = x) \geq \alpha\}. \tag{3}$$

Since we already know that random forests are well suited as EPMs (Hutter et al. 2014b; Eggensperger et al. 2015), we use a quantile regression forest (QRF; Meinshausen 2006) for the quantile regression. The QRF is very similar to a RF of regression trees: instead of returning the mean over all labels in the selected leaves of the trees, it returns a given quantile of these labels, $Q_\alpha(x)$. In our surrogate benchmarks, when asked to predict a randomized algorithm’s performance on $x = (\theta, \pi)$ with seed s, we use s to randomly sample a quantile $\alpha \in [0, 1]$ and simply return $Q_\alpha(\theta, \pi)$. For a deterministic algorithm, we return the median $Q_{0.5}(\theta, \pi)$.

4 Experiments for Algorithm Configuration

Next, we report experimental results for surrogates based on QRFs in the general AC setting. All experiments were performed on Xeon E5-2650 v2 CPUs with 20MB Cache and 64GB RAM running Ubuntu 14.04 LTS.
In the following, we first describe the benchmarks we used to evaluate our approach. Then, we report results for the predictive quality of EPMs based on QRfs. Finally, we show that these EPMs are useful as surrogate benchmarks, based on an evaluation of the performance of ParamILS [Hutter et al 2009], ROAR and SMAC [Hutter et al 2011b], and irace [López-Ibáñez et al 2016] on our surrogate benchmarks and the established AC benchmarks from which our surrogates were derived. For all experiments, we preprocessed the data as described in Section 3.1, imputed right-censored data as described in Algorithm 1, and then trained a QRF as described in Section 3.6, with the logarithm of the penalized average running time (PAR10) serving as the response variable for running time optimization benchmarks.

4.1 Algorithm Configuration Benchmarks from AClib

For our experiments, we drew our benchmarks from the algorithm configuration library, AClib [Hutter et al 2014a, see www.aclib.net]. Our first set of benchmarks involves running time minimization; these consist of different instance sets taken from each of four widely studied combinatorial problems (mixed-integer programming (MIP), propositional satisfiability (SAT), AI planning, and answer set programming (ASP)) and one or more different solvers for each of these problems (CPLEX by Biere 2014, ProbSAT by Balint and Schöning 2012, Minisat-HACK-999ED by Oh 2014, Clasp by Gebser et al 2012 and lpg by Gerevini and Serina 2002). We used the training-test splits defined in AClib. Key characteristics of these benchmarks are provided in Table 2, and the underlying AC scenarios are described in detail in Appendix A.

Since AC is a generalization of HPO, we also generated two surrogate HPO benchmarks, which allows us to situate our new results in the context of previous work [Eggensperger et al 2015]. In these benchmarks, we optimize for misclassification rate \(1 - \text{accuracy}\) on 10-fold cross-validation on training data (90% of the data) and then validate the model trained on all of the training data with the final parameter configurations on held-out test data (10% of the data). We consider each cross-validation split to be one instance. We use pseudo instance features in these benchmarks by simply assigning the \(i\)-th split to feature value \(i\) and the test data with feature value \(k + 1\) (i.e., 11). Inspired by the automated machine learning tool auto-sklearn [Feurer et al 2015a] and available at https://bitbucket.org/mlindauer/aclib2, we configured a SVM [Cortes and Vapnik 1995] on MNIST and xgboost [Chen and Guestrin 2016] on covertype [Collobert et al 2002]. We ran SMAC, ROAR, and ParamILS ten times for each running time optimization scenario in order to collect performance data in regions that are likely to be explored by one or more AC procedures. For the HPO benchmarks, we additionally

6 PAR10 averages all running times, counting each capped run as having taken 10 times the running time cutoff \(\kappa\) (Hutter et al 2009).
7 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
8 http://www.openml.org/d/5554
9 http://www.openml.org/d/290
Table 2 Properties of our AC benchmarks. We report the size of the configuration spaces Θ for the different kinds of parameters (i.e., categorical, integer-valued, continuous and conditionals), the number of instances features, the total number of input features for our EPMs (#parameters + #features), the number of training and test instances, the configuration budget for each AC procedure run (in days for combinatorial problems and number of function evaluations for HPO benchmarks) and the running time cutoff for each target algorithm run (in seconds).

AC Procedure	$#_{\text{parameter}}$	$#_{\text{instance}}$	$#_{\text{features}}$	total	$#_{\text{instances train/test}}$	config	budget	cutoff
CPLEX-Regions	63/7/4 (4)	148	222	1000	(1/000)	2	10000	
CPLEX-RCW2	63/7/4 (4)	148	222	495/495	5	2	10000	
Clasp-Rooks	38/30/7 (55)	119	194	484/351	2	300		
Lingeling-CF	137/185/0 (0)	119	441	299/302	2	300		
ProbSAT-7SAT	5/1/3 (5)	138	128	250/250	2	300		
MiniSATHack-K3	10/0/0 (0)	119	129	300/250	2	300		
LPG-Satellite	48/5/14 (22)	305	372	2000/2000	2	300		
LPG-Zenotravel	48/5/14 (22)	305	372	2000/2000	2	300		
Clasp-WS	61/30/7 (63)	38	136	240/240	4	900		
svm-mnist	2/1/3 (2)	1	7	10/1	500	1000		
xgboost-covertype	0/2/9 (0)	1	12	10/1	500	1000		

Table 3 Properties of our datasets. We list the rounded number/1000 of collected (θ, π) pairs of 10 runs of each AC procedure, the ratio of right-censored runs (#cen) and timeouts (#to) for each of our settings: I, II. We also report the total number/1000 of different configurations (#conf).

AC Procedure	#data	%cen	%to	#data	%cen	%to	#conf
CPLEX-Regions	656	27	0	825	22	<1	198
CPLEX-RCW2	166	38	2	217	29	1	80
Clasp-Rooks	245	14	3	310	11	5	63
Lingeling-CF	149	21	9	176	17	9	66
ProbSAT	199	17	3	245	14	3	28
MiniSATHack-K3	177	16	2	218	13	2	37
LPG-Satellite	565	27	<1	969	16	<1	252
LPG-Zenotravel	685	26	<1	>1K	17	1	204
Clasp-WS	172	17	4	207	14	4	56
svm-mnist	29	-	53	29	-	52	19
xgboost-covertype	30	-	4	30	-	2	22

We report properties of the resulting datasets in Table 3.

As described in Section 3.2, we used two different setups to collect training data for our EPMs. Due to memory limitations on our machines, we used at most 1 million data points to train our EPMs. If we collected more than 1 million points, we subsampled them to 1 million.

\[10\] Since irace does not implement an adaptive capping mechanism, its authors recommend that it not be used for runtime minimization.
4.2 Evaluation of Raw Model Performance

We now report the predictive performance of QRFs as EPMs. [Hutter et al. (2014b)] performed a similar analysis using random forests as EPMs. However, their training data differed substantially from ours. In particular, they uniformly sampled sets of target algorithm configurations and problem instances, and then gathered a performance observation for every entry in the Cartesian product of these sets. In contrast, we use AC procedures to bias training data towards high-performance regions of the given configuration space; this results in a larger number of configurations in our training data, many of which are evaluated only on few instances. The question of whether effective EPMs can be trained using such sparse and biased data has not previously been studied and is an essential requirement for inclusion in our surrogate benchmarks.

In Table 4, we show the predictive accuracy of our trained EPMs based on root mean squared error (RMSE; in log space for running time benchmarks) to estimate how far our predictions are from true performance values, and Spearman’s rank correlation coefficient (CC; [Spearman, 1904]) to assess whether we can accurately rank different configurations based on predicted performance values. The latter metric is particularly useful in the context of surrogate benchmarks, because an AC procedure can make correct decisions as long as the ranking of configurations is correct, i.e., the EPM predicts poorly performing configurations to be bad and strong configurations to be good. To obtain an unbiased estimate of generalization performance, we used a leave-one-run-out validation splitting scheme: in each split, we used all but one run of each AC procedure as training data and evaluated the EPM trained on this data on the remaining runs. All AC procedures are randomized, and each AC procedure run is independently initialized with a different random seed. Therefore, all data points evaluated by a single AC run are independent of the points of a different AC run, even though the two runs may contain identical data points.

Table 4 shows our results on held out data, specifically all data collected while configuring the target algorithm on Π_{Train} as well as on all data collected during the validation of the incumbent configurations on Π_{Test}. As expected, the predictive performance of our EPM on Π_{Train} is quite similar between Setting I and II. However on Π_{Test}, Setting II performed significantly better than Setting I across our benchmarks (p-values of 0.0021 on RMSE and 0.0067 on CC based on a one-sided, non-parametric permutation test, cf. [Hoos, 2017]). Overall, our EPMs yielded rather accurate target algorithm performance predictions, and achieved high overall correlation (CC ≥ 0.75) in 9 out of 11 benchmarks wrt Π_{Train} and in all benchmarks wrt Π_{Test} using Setting II. The RMSE on the running time benchmarks was substantially smaller than 1.0, i.e., the predictions are less than one order of magnitude off on average. Considering the HPO benchmarks, our models were more accurate for svm-mnist than they were for xgboost-covertype. This difference was driven by timeouts (counted using the maximal error value of 1). For svm-mnist, these timeouts were easier to predict (mostly driven by a small number of parameters); in contrast, a potential timeout can depend on more complex interactions of parameters in the case of xgboost-covertype. The predictions for non-timeout runs for xgboost-covertype were roughly as good as for svm-mnist.
Table 4 Leave-one-run-out model performance. We report mean root mean squared error (RMSE) and Spearman's rank correlation coefficient (CC) of log PAR10 running times (for AC scenarios) and loss (for HPO scenarios) across ten runs for which the EPM was trained using data from setting I or II (see Section 4.1). For each run, we trained an EPM on all but one configuration run for each considered AC procedure and report average results across left-out runs. Using the QRF, we predicted the median. We report results on all data collected during configuring the target algorithm on π_{Train} and the data collected during the validation of the incumbent configurations on π_{Test}.

Configuration	RMSE	CC						
	Validation	Training	Validation	Training				
CPLEX-Regions	0.2	0.33	0.2	0.92	0.67	0.9		
CPLEX-RCW2	0.12	0.08	0.08	0.98	0.99	0.99		
Clasp-Rooks	0.35	0.49	0.42	0.98	0.98	0.98		
Lingeling-CF	0.35	0.72	0.31	0.86	0.86	0.7	0.93	
ProbSAT-7SAT	0.6	0.82	0.54	0.69	0.69	0.36	0.78	
MiniSAT Hack-K3	0.27	0.48	0.24	0.96	0.96	0.89	0.97	
LPG-Satellite	0.1	0.14	0.13	0.8	0.8	0.92	0.92	
LPG-Zenotravel	0.27	0.38	0.39	0.7	0.69	0.78	0.77	
Clasp-WS	0.31	0.64	0.42	0.95	0.95	0.85	0.95	
svm-mnist	0.06	0.06	0.06	0.02	0.99	0.99	0.7	0.75
xgboost-covertype	0.25	0.17	0.14	0.87	0.85	0.85	0.85	

Since Setting II performed consistently better than Setting I, in the following we consider only Setting II.

4.3 Evaluation of Surrogates as Benchmarks for Algorithm Configuration

We now turn to the most important experimental question: how well our QRF-based EPMs work as surrogate benchmarks for algorithm configuration procedures. For these experiments, we trained and saved a QRF model on the imputed data from our Setting II (described above). To evaluate these EPMs as AC benchmarks, we re-run our configuration experiments, now obtaining running time measurements from an EPM (running as a background process) rather than the real target algorithm. Doing so reduced the average CPU time required for evaluating a configuration on a single instance from 27.29 ± 100.26 ($\mu \pm \sigma$) seconds to 0.23 ± 0.13 seconds.

We also considered leave-one-configurator-out (LOCO) evaluations, training each EPM on data gathered by all but one AC procedure, and then running the remaining
AC procedures on this surrogate benchmark to simulate benchmarking a new AC procedure.

When used in the context of AC benchmarks, the absolute quality of running time predictions is less important than the ranking of the AC procedures. Therefore we study performance as a function of time in Figure 3 to visually compare the behaviour of different AC procedures on the original and surrogate-base benchmarks. We observe that the relative rankings between AC procedures were well preserved for surrogates trained on all data: SMAC was correctly predicted to outperform ROAR in all AC scenarios and at almost all time steps. ParamILS’s performance was predicted slightly less well, but ranks were still preserved well across scenarios and time steps. Also, the surrogate-based benchmarks captured overtuning effects as present in LPG-Zenotravel and CPLEX-RCW2. For the machine learning benchmarks, we obtained almost perfect surrogate benchmarks, with irace and ParamILS performing similarly, although ParamILS having a slightly higher inter-quartile ratio than on the original benchmark.

In the LOCO setting (Figure 3, right column), the relative performance of SMAC and ROAR was still predicted correctly throughout except for the LPG-Zenotravel benchmark, where SMAC and ROAR did not improve as much as on the original benchmark. ParamILS, again, was predicted slightly worse, but its relative ranks were still predicted correctly, with two exceptions: On the LOCO surrogate of benchmark CPLEX-RCW2, ParamILS performed worse than on the original benchmark (and could not find a configuration better than the default), and on the LOCO surrogate of benchmark Clasp-WS, ParamILS performed better than on the original benchmark. We believe that this is due to the substantial differences in search strategies between ParamILS and the other AC procedures, leading to qualitatively different sets of performance data and hence EPMs; surrogate benchmarks constructed based on data from global search algorithms intuitively capture areas of weak/strong performance well, but do not necessarily capture fine local variation and may thus (as discussed above) not work as well for gradient-following AC procedures.

To also provide a quantitative evaluation of how closely our surrogate benchmarks resemble the original benchmarks, we used an error metric based on the idea that a surrogate benchmark should preserve the outcomes of pairwise comparisons of AC procedures obtained on the underlying original benchmarks, across different overall running time budgets. To deal with performance variability due to randomization in target algorithm and AC procedure runs, we applied statistical tests to determine whether one AC procedure performed significantly better than another. For each running time budget (number of target algorithm or surrogate evaluations, resp.) starting from κ (or 2), we used a Kruskal-Wallis test and a pairwise post-hoc Wilcoxon rank-sum test with Bonferroni’s multiple testing correction ($\alpha = 0.05$). Table 5 shows how our metric penalizes differences in the outcomes of this statistical test between the original and the surrogate versions of a benchmark. This metric was inspired by [Leite and Brazdil 2010], but we additionally penalized the case in which true performance values do not differ significantly while our surrogate-based predictions do. To obtain our overall error values, we averaged across the values of this metric for each pair of AC procedures in our comparison and then averaged the error values thus obtained over the different time budgets considered. We note that this metric provides a quantitative measure of the similarity of the qualitative trajectory diagrams shown in Figure 3.
Efficient Benchmarking via Model-Based Surrogates

Original Benchmark	QRF Surrogate Benchmark All Data/Setting II	QRF Surrogate Benchmark LOCO/Setting II
CPLEX-RCW2	![Graph](image)	![Graph](image)
Clasp-Rooks	![Graph](image)	![Graph](image)
LPG-Zenotravel	![Graph](image)	![Graph](image)
Clasp-WS	![Graph](image)	![Graph](image)
svm-mnist	![Graph](image)	![Graph](image)

Fig. 3 Best performance found by different AC procedures over time. We plot median and quartile of best performance across 10 runs of each AC procedure over time (for `svm-mnist` we use number of function evaluations) on the original benchmark (left) and on QRF-based surrogate benchmarks trained either on data from all AC procedures (middle) or leave-one-configurator-out data (right).
Table 5: Overview of our error metric quantifying the degree to which using surrogates in performance comparisons between two given configurators yields results statistically significant from those obtained based on the underlying original benchmarks.

original \ surrogate	better	equal	worse
better	0	0.5	1
equal	0.5	0	0.5
worse	1	0.5	0

In Table 6, we report this metric for both surrogates based on all data and for the LOCO setting. All our surrogate benchmarks achieved an error lower than 0.5, which indicates that, on average, using our surrogates produces behaviour qualitatively similar to that observed for the underlying target algorithms. In most LOCO experiments, we observed slightly higher error values (but still below 0.5), because our EPMs have never seen data from the AC procedure that was run on the respective surrogate benchmark. On the ProbSAT scenario, the AC procedures running on surrogates show qualitatively similar behaviour as on the original benchmark and achieved an error of 0, although the EPMs were relatively weak (comparatively high RMSE and low CC; see Table 4). This occurred because ProbSAT only has a few important parameters, which all AC procedures identified on the original and surrogate benchmarks. For CPLEX-Regions, Table 6 reports the highest difference between the error on all data and the LOCO setting. In our experiments we observed that for this benchmark, SMAC performed merely en par with ROAR in the LOCO setting, whereas it performed substantially better on the original benchmark. This resulted in a high value of our metric. A similar phenomenon was observed on xgboost-covertype, where ParamILS found a significantly better-performing configuration earlier and therefore constantly added to the error. Overall, our results indicate that the relative performance of AC procedures on surrogate-based benchmarks largely resembles that observed on benchmarks involving much costlier target algorithm runs, but that the resemblance is higher when our surrogates are trained based on all available data.

In Table 6, we also report average speedups gained per target algorithm run. Our surrogate benchmarks allow dramatic speedups in experimentation, cutting down the time required for algorithm configuration by a factor of over 1000 for the most expensive AC benchmarks. This will substantially ease the development of AC procedures by facilitating unit testing, debugging, and whitebox testing. Furthermore, the behaviour of AC procedures on standard benchmarks involving actual target algorithm runs is captured closely enough by our surrogate-based benchmarks that it makes sense to use the latter in comparative performance evaluations of AC procedures.

5 Conclusion

We presented a novel approach for constructing model-based surrogate benchmarks for the general problem of AC—subsuming HPO. Our surrogate benchmarks replace expensive evaluations of algorithm configurations by cheap performance predictions based on EPMs with speedups in excess of up to four orders of magnitude. Our efficient surrogate benchmarks can (i) substantially speed up debugging and unit
testing of AC procedures, (ii) facilitate white-box testing, and (iii) provide a basis for assessing and comparing AC procedure performance.

To construct EPMs for using them as surrogates in AC benchmarks, we proposed to use AC procedures to generate training data for our EPM to focus on the more relevant high-performance regions of the parameter configuration space. We further addressed challenges of AC by studying different ways to collect data on training and test instances, imputation of right-censored data and predicting performance of randomized algorithms; latter by introducing EPMs based on quantile regression forests.

In comprehensive experiments with benchmarks from AClib, we showed that our surrogate benchmarks are well able to stand in for AC benchmarks. An issue arises from large amounts of target algorithm performance data; for some of our AC benchmarks, we had over 1 million data points available, which we subsequently had to subsample to avoid memory issues in the construction of EPMs; however, better solutions to this problem can likely be devised. Since deep neural networks have recently shown impressive results for big data sets and natively support training in batches, we plan to study scalable Bayesian neural networks (Neal 1995; Blundell et al 2015; Snoek et al 2015; Springenberg et al 2016) to predict the performance of randomized algorithms.

Acknowledgements We thank Stefan Falkner for the implementation of the quantile regression forest used in our experiments and for fruitful discussions on early drafts of the paper. K. Eggensperger, M. Lindauer and F. Hutter acknowledge funding by the DFG (German Research Foundation) under Emmy Noether grant HU 1900/2-1; K. Eggensperger also acknowledges funding by the State Graduate Funding Program of Baden-Württemberg. H. Hoos and K. Leyton-Brown acknowledge funding through NSERC Discovery Grants; K. Leyton-Brown also acknowledges funding from an NSERC E.W.R. Steacie Fellowship.

Table 6

Scenario	All Data	LOCO	Mean Running Time	Speed Up
CPLEX-Regions	0.17	0.47	7.3	36
CPLEX-RCW2	0.08	0.25	82.1	497
Clasp-Rooks	0.07	0.05	21.3	128
Lingeling-CF	0.1	0.12	36	199
ProbSAT-7SAT	0	0.17	26.5	159
MiniSATHack-K3	0.02	0	30.1	183
LPG-Satellite	0	0.05	8.21	34
LPG-Zenotravel	0.1	0.12	6.79	22
Clasp-WS	0.07	0.15	61.4	383
svm-mnist	0.01	0.05	658	1641
xgboost-covertype	0.18	0.21	566	1454

We report the weighted average difference between pairs of AC procedures averaged over time (left) and the mean running time (in CPU seconds) across all evaluated real target algorithm runs with the speedup gained when using surrogate benchmarks (right). One prediction took on average 0.23 ± 0.13 seconds.
References

Ahmadizadeh K, Dilkina B, Gomes C, Sabharwal A (2010) An empirical study of optimization for maximizing diffusion in networks. In: Cohen D (ed) Proceedings of the International Conference on Principles and Practice of Constraint Programming (CP’10), Springer-Verlag, Lecture Notes in Computer Science, vol 6308, pp 514–521

Ansel J, Kamili S, Veeramachaneni K, Ragans-Kelley J, Bosboom J, O’Reilly U, Amarasinghe S (2014) Opentuner: an extensible framework for program autotuning. In: Amaral J, Torrellas J (eds) International Conference on Parallel Architectures and Compilation, ACM, pp 303–316

Ansótegui C, Sellmann M, Tierney K (2009) A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent I (ed) Proceedings of the Fifteenth International Conference on Principles and Practice of Constraint Programming (CP’09), Springer-Verlag, Lecture Notes in Computer Science, vol 5732, pp 142–157

Ansótegui C, Malitsky Y, Sellmann M, Tierney K (2015) Model-based genetic algorithms for algorithm configuration. In: Yang and Wooldridge (2015), pp 733–739

Arbelaez A, Truchet C, O’Sullivan B (2016) Learning sequential and parallel runtime distributions for randomized algorithms. In: Proceedings of the international conference on tools with artificial intelligence (ICTAI)

Bach F, Blei D (eds) (2015) Proceedings of the 32nd International Conference on Machine Learning (ICML’15), vol 37, Omnipress

Balint A, Schönig U (2012) Choosing probability distributions for stochastic local search and the role of make versus break. In: Ciocca and Weikum (2012), pp 16–29

Bardenet R, Briedel M, Kegl B, Sebag M (2014) Collaborative hyperparameter tuning. In: Dasgupta and McAllester (2014), pp 199–207

Barrett P, Perina F, Burges C, Botton L, Weinberger K (eds) (2012) Proceedings of the 26th International Conference on Advances in Neural Information Processing Systems (NIPS’12)

Belov A, Diepold D, Heule M, Järvisalo M (eds) (2014) Proceedings of SAT Competition 2014: Solver and Benchmark Descriptions, Department of Computer Science Series of Publications B, vol B-2014-2, University of Helsinki

Bensusan H, Kalousis A (2001) Estimating the predictive accuracy of a classifier. In: Proceedings of the 12th European Conference on Machine Learning (ECML), Springer, pp 25–36

Bergstra J, Yamins D, Cox D (2014) Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In: Dasgupta and McAllester (2014), pp 115–123

Biere A (2013) Lingeling, plingeling and treengeling entering the sat competition 2013. In: Balint A, Belov A, Heule M, Järvisalo M (eds) Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions, University of Helsinki, Department of Computer Science Series of Publications B, vol B-2013-1, pp 51–52

Biere A (2014) Yet another local search solver and Lingeling and friends entering the SAT competition 2014. In: Belov et al (2014), pp 39–40

Birattari M, Stützle T, Paquete L, Vahrenkamp K (2002) A racing algorithm for configuring metaheuristics. In: Langdon W, Cantu-Paz E, Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter M, Schultz A, Miller J, Burke E, Jonoska N (eds) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’02), Morgan Kaufmann Publishers, pp 11–18

Bischl B, Kerschke P, Rothkopf L, Lindauer M, Malitsky Y, Frechette A, Hoos H, Hutter F, Leyton-Brown K, Tierney K, Vanschoren J (2016) ASlib: A benchmark library for algorithm selection. Artificial Intelligence pp 41–58

Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight uncertainty in neural network. In: Bach and Blei (2015), pp 1613–1622

Bonet B, Koenig S (eds) (2015) Proceedings of the Twenty-ninth National Conference on Artificial Intelligence (AAAI’15), AAAI Press

Brazdil P, Giraud-Carrier C, Soares C, Vilalta R (2008) Metalearning: Applications to Data Mining, 1st edn. Springer Publishing Company, Incorporated

Breiman L (2001) Random forests. Machine Learning Journal 45:5–32

Brochu E, Cora V, de Freitas N (2010) A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Computing Research Repository (CoRR) abs/1012.2599
Efficient Benchmarking via Model-Based Surrogates

Brummayer R, Lonsing F, Biere A (2012) Automated testing and debugging of SAT and QBF solvers. In: Cimatti and Sebastiani (2012), pp 44–57

Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. In: Krishnapuram B, Shah M, Smola A, Aggarwal C, Chen D, Rastogi R (eds) Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), ACM, pp 785–794

Cimatti A, Sebastiani R (eds) (2012) Proceedings of the Fifteenth International Conference on Theory and Applications of Satisfiability Testing (SAT’12), Lecture Notes in Computer Science, vol 7317, Springer-Verlag

Collobert R, Bengio S, Bengio Y (2002) A parallel mixture of svms for very large scale problems. Neural Computation 14(5):1105–1114

Dasgupta S, McAllester D (eds) (2014) Proceedings of the 30th International Conference on Machine Learning (ICML’13), Omnipress

Eggensperger K, Feurer M, Hutter F, Bergstra J, Snoek J, Hoos H, Leyton-Brown K (2013) Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In: NIPS Workshop on Bayesian Optimization in Theory and Practice (BayesOpt’13)

Eggensperger K, Hutter F, Hoos H, Leyton-Brown K (2015) Efficient benchmarking of hyperparameter optimizers via surrogates. In: Bonet and Koenig (2015), pp 1114–1120

Gama J, Brazdil P (1995) Characterization of classification algorithms. In: Proceedings of the 7th Portuguese Conference on Artificial Intelligence, Springer, pp 189–200, to read

Gelbart M, Snoek J, Adams R (2014) Bayesian optimization with unknown constraints. In: Zhang N, Tian J (eds) Proceedings of the 30th conference on Uncertainty in Artificial Intelligence (UAI’14), AUAI Press

Gerevini A, Serina I (2002) LPG: A planner based on local search for planning graphs with action effects. In: Ghallab M, Hertzberg J, Traverso P (eds) Proceedings of the Sixth International Conference on Artificial Intelligence / AAAI Press / The MIT Press, pp 13–22

Gorissen D, Coudry I, Demester P, Dhaene T, Crombez K (2010) A surrogate modeling and adaptive sampling toolbox for computer based design. Journal of Machine Learning Research 11:2051–2055
Guerra S, Prudêncio R, Ludermir T (2008) Predicting the performance of learning algorithms using support vector machines as meta-regressors. In: Kurkova-Pohlova V, Koutník J (eds) International Conference on Artificial Neural Networks (ICANN’08), Springer-Verlag, vol 18, pp 523–532

Hoos H (2017) Empirical Algorithmics. Cambridge University Press, to appear

Hoos H, Stützle T (2004) Stochastic Local Search: Foundations & Applications. Morgan Kaufmann Publishers Inc.

Hoos H, Lindauer M, Schaub T (2014) claspfolio 2: Advances in algorithm selection for answer set programming, Theory and Practice of Logic Programming 14:569–585

Hutter F, Babic D, Hoos H, Hu A (2007) Boosting verification by automatic tuning of decision procedures. In: O’Connor L (ed) Formal Methods in Computer Aided Design (FMCAD’07), IEEE Computer Society Press, pp 27–34

Hutter F, Hoos H, Leyton-Brown K (2009) ParamILS: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36:267–306

Hutter F, Hoos H, Leyton-Brown K (2010) Automated configuration of mixed integer programming solvers. In: Lodi A, Milano M, Toth P (eds) Proceedings of the Seventh International Conference on Integration of AI and OR Techniques in Constraint Programming (CPAIOR’10), Springer-Verlag, Lecture Notes in Computer Science, vol 6140, pp 186–202

Hutter F, Hoos H, Leyton-Brown K (2011a) Bayesian optimization with censored response data. In: NIPS workshop on Bayesian Optimization, Sequential Experimental Design, and Bandits (BayesOpt’11)

Hutter F, Hoos H, Leyton-Brown K (2011b) Sequential model-based optimization for general algorithm configuration. In: Coello C (ed) Proceedings of the Fifth International Conference on Learning and Intelligent Optimization (LION’11), Springer-Verlag, Lecture Notes in Computer Science, vol 6683, pp 507–523

Hutter F, López-Iturbide M, Fawcett C, Lindauer M, Hoos H, Leyton-Brown K, Stützle T (2014a) AcLib: a benchmark library for algorithm configuration. In: Pardalos P, Resende M (eds) Proceedings of the Eighth International Conference on Learning and Intelligent Optimization (LION’14), Springer-Verlag, Lecture Notes in Computer Science

Hutter F, Xu L, Hoos H, Leyton-Brown K (2014b) Algorithm runtime prediction: Methods and evaluation. Artificial Intelligence 206:79–111

Hutter F, Lindauer M, Balint A, Bayless S, Hoos H, Leyton-Brown K (2017) The configurable SAT solver challenge (CSSC). Artificial Intelligence 243:1–25

Kadioglu S, Malitsky Y, Sellmann M, Tierney K (2010) ISAC - instance-specific algorithm configuration. In: Coelho et al [2010], pp 751–756

Koenker R (2005) Quantile Regression. Cambridge University Press

Kotthoff L (2014) Algorithm selection for combinatorial search problems: A survey. AI Magazine pp 48–60

Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. In: Barlett et al [2012], pp 1097–1105

Köpf C, Taylor C, Keller J (2000) Meta-analysis: From data characterisation for meta-learning to meta-regression. In: Proceedings of the PKDD-00 Workshop on Data Mining, Decision Support, Meta-Learning and ILP

Lang M, Kotthaus H, Marwedel P, Weihs C, Rahnenführer J, Bischl B (2015) Automatic model selection for high-dimensional survival analysis. Journal of Statistical Computation and Simulation 85:62–76

Leite R, Brazdil P (2010) Active testing strategy to predict the best classification algorithm via sampling and metalearning. In: Coelho et al [2010], pp 309–314

Leite R, Brazdil P, Vanschoren J (2013) Selecting classification algorithms with active testing. In: Pernot P (ed) Machine Learning and Data Mining in Pattern Recognition, Springer-Verlag, Lecture Notes in Computer Science, pp 117–131

Leyton-Brown K, Pearson M, Shoham Y (2000) Towards a universal test suite for combinatorial auction algorithms. In: Proceedings of the International Conference on Economics and Computation, pp 66–76

Leyton-Brown K, Nudelman E, Shoham Y (2009) Empirical hardness models: Methodology and a case study on combinatorial auctions. Journal of the ACM 56(4)

Lierler Y, Schiller P (2012) Parsing combinatory categorial grammar via planning in answer set programming. Springer-Verlag, Lecture Notes in Computer Science, vol 7265, pp 436–453

Lindauer M, Hoos H, Hutter F, Schaub T (2015) Autofolio: An automatically configured algorithm selector. Journal of Artificial Intelligence Research 53:745–778
Efficient Benchmarking via Model-Based Surrogates

Long D, Fox M (2003) The 3rd international planning competition: Results and analysis. Journal of Artificial Intelligence Research (JAIR) 20:1–59

López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package, iterated race for automatic algorithm configuration. Tech. rep., IRIDIA, Université Libre de Bruxelles, Belgium, URL http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

López-Ibáñez M, Dubois-Lacoste J, Caceres LP, Birattari M, Stützle T (2016) The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives 3:43–58

Loreggia A, Malitsky Y, Samulowitz H, Saraswat V (2016) Deep learning for algorithm portfolios. In: Schuurmans D, Wellman M (eds) Proceedings of the Thirtieth National Conference on Artificial Intelligence (AAAI’16), AAAI Press, pp 1280–1286

Malitsky Y, Sabharwal A, Samulowitz H, Sellmann M (2013) Algorithm portfolios based on cost-sensitive hierarchical clustering. In: Rossi F (ed) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13), pp 608–614

Manthey N, Lindauer M (2016) Spybug: Automated bug detection in the configuration space of SAT solvers. In: Proceedings of the International Conference on Theory and Applications of Satisfiability Testing (SAT), pp 554–561

Manthey N, Steinke P (2014) Too many rooks. In: Belov et al (2014), pp 97–98

Maratea M, Pulina L, Ricca F (2014) A multi-engine approach to answer-set programming. Theory and Practice of Logic Programming 14:841–868

Meinshausen N (2006) Quantile regression forests. Journal of Machine Learning Research 7:983–999

Neal R (1995) Bayesian learning for neural networks. PhD thesis, University of Toronto, Toronto, Canada

Nudelman E, Leyton-Brown K, Andrew G, Gomes C, McFadden J, Selman B, Shoham Y (2003) Satzilla 0.9, solver description, International SAT Competition

Nudelman E, Leyton-Brown K, Devkak A, Shoham Y, Hoos H (2004) Understanding random SAT: Beyond the clauses-to-variables ratio. In: International Conference on Principles and Practice of Constraint Programming (CP’04), pp 438–452

Oh C (2014) Minisat hack 999ed, minisat hack 1430ed and swdia5by. In: Belov et al (2014), p 46

Penberthy J, Weld D (1994) Temporal planning with continuous change. In: Hayes-Roth B, Korf R (eds) Proceedings of the 12th National Conference on Artificial Intelligence, AAAI Press / The MIT Press, pp 1010–1015

Rasmussen C, Williams C (2006) Gaussian Processes for Machine Learning. The MIT Press

Rasnussen C, Williams C (2006) Gaussian Processes for Machine Learning. The MIT Press

Reif M, Shafait F, Goldstein M, Breuel T, Dengel A (2014) Automatic classifier selection for non-experts. Pattern Analysis and Applications 17(1):83–96

Rice J (1976) The algorithm selection problem. Advances in Computers 15:65–118

Sacks J, Welch W,Welch T, Wynn H (1989) Design and analysis of computer experiments. Statistical Science 4(4):409–423

Santner T, Williams B, Notz W (2003) The design and analysis of computer experiments. Springer

Sarkar A, Guo J, Siegmund N, Apel S, Czarnecki K (2015) Cost-efficient sampling for performance prediction of configurable systems. In: Cohen M, Grunske L, Whalen M (eds) 30th IEEE/ACM International Conference on Automated Software Engineering, IEEE, pp 342–352

Schilling N, Wistuba M, Drumond L, Schmidt-Thieme L (2015) Hyperparameter optimization with factorized multilayer perceptrons. In: Machine Learning and Knowledge Discovery in Databases, Springer, pp 87–103

Schmee J, Hahn G (1979) A simple method for regression analysis with censored data. Technometrics 21:417–422

Schneider M, Hoos H (2012) Quantifying homogeneity of instance sets for algorithm configuration. In: Hamadi Y, Schoenauer M (eds) Proceedings of the Sixth International Conference on Learning and Intelligent Optimization (LION’12), Springer-Verlag, Lecture Notes in Computer Science, vol 7219, pp 190–204

Shahriari B, Swersky K, Wang Z, Adams R, de Freitas N (2016) Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE 104(1):148–175

Silverthorn B, Lierler Y, Schneider M (2012) Surviving solver sensitivity: An ASP practitioner’s guide. In: Dovier A, Santos Costa V (eds) Technical Communications of the Twentieth International Conference on Logic Programming (ICLP’12), Leibniz International
Proceedings in Informatics (LIPIcs), vol 17, pp 164–175

Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: Larochelle H, Beygelzimer A, d’Alché-Buc F, Ghahramani Z, Catanzaro B (eds) Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI’12), AUAI Press, pp 1730–1739

Snoek J, Larochelle H, Adams RP (2015) Scalable Bayesian optimization using deep neural networks. In: Bach F, Blei D (eds) Advances in Neural Information Processing Systems (NIPS’15), Curran Associates, Inc., pp 151–159

Soares C, Brazdil P (2004) A meta-learning method to select the kernel width in support vector regression. Machine Learning Journal 54:195–209

Spearman C (1904) The proof and measurement of association between two things. American Journal of Psychology 15:71–101

Springenberg J, Klein A, Falkner S, Hutter F (2016) Bayesian optimization with robust Bayesian neural networks. In: Proceedings of the international conference on Advances in Neural Information Processing Systems (NIPS’16)

Takeuchi I, Le Q, Sears T, Smola A (2006) Nonparametric quantile estimation. Journal of Machine Learning Research 7:1231–1264

Thornton C, Hutter F, Hoos H, Leyton-Brown K (2013) Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Dhillon I, Koren Y, Ghani R, Senator T, Bradley P, Parekh R, He J, Grossman R, Uthurasamy R (eds) The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13), ACM Press, pp 847–855

Vallati M, Favaretto C, Gerevini A, Hoos H, Saetti A (2013) Automatic generation of efficient domain-optimized planners from generic parametrized planners. In: Helmert M, Röger G (eds) Proceedings of the Sixth Annual Symposium on Combinatorial Search (SOCS’14), AAAI Press

Wistuba M, Schilling N, Schmidt-Thieme L (2015) Learning hyperparameter optimization initializations. In: Proceedings of the International Conference on Data Science and Advanced Analytics (DSAA), IEEE, pp 1–10

Xu L, Hutter F, Hoos H, Leyton-Brown K (2008) SATzilla: Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research 32:565–606

Xu L, Hutter F, Hoos H, Leyton-Brown K (2011) Hydra-MIP: Automated algorithm configuration and selection for mixed integer programming. In: RCRA workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial Intelligence (IJCAI)

Yang Q, Wooldridge M (eds) (2015) Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI’15)

A Benchmark Descriptions

CPLEX-Regions is a MIP benchmark based on the well-known IBM ILOG CPLEX solver, applied to MIP-encoded instances of the combinatorial auction winner determination problem (Leyton-Brown et al 2000). The MIP instance features used in this scenario include static (Leyton-Brown et al 2009; Kadioglu et al 2010) and probing features (Xu et al 2011). Even though CPLEX has 74 parameters, its performance can be predicted quite accurately (Hutter et al 2014b).

CPLEX-RCW2 also uses CPLEX, in this case to solve MIP-encoded problems from computational sustainability that model habitat preservation for endangered red-cockaded woodpeckers (Ahmadizadeh et al 2010; Xu et al 2011). The configuration space and the instance features are the same as in CPLEX-Regions; however, CPLEX exhibits a much larger range of performance values across RCW2 instances.

Clasp-Rooks is a benchmark from the 2014 Configurable SAT Solver Challenge (CSSSC’14; Hutter et al 2017), and is based on the SAT (and ASP) solver Clasp (Gebser et al 2012) applied to so-called “rooks” instances—a variant of the n-queens problem with additional constraints (Manthey and Steinke 2011). We use the instance features generated by the well-known algorithm selector Satzilla (Nudelman et al 2003; Xu et al 2008; Hutter et al 2014b) for this and all other SAT scenarios. This SAT benchmark is distinguished by Clasp’s highly structured configuration space, which contains a large number of conditional parameters.

Lingeling-CF is also a benchmark from CSSSC’14; it is based on the state-of-the-art SAT solver Lingeling (Biere 2015) applied to circuit-based fuzz testing instances (Brummayer et al...
With 322 parameters, Lingeling has the largest configuration space of any target algorithm considered in our experiments (and also one of the largest of any SAT solver we are aware of). This gives rise to a particularly challenging AC benchmark, because many parameters range from 0 to the maximal 32-bit integer and offer more scope for reductions than improvements in performance.

ProbsAT-7SAT is another benchmark from CSSC’14; it is based on one of the state-of-the-art local search SAT solvers, ProbsAT (Balint and Schöning 2012) applied to 7SAT random instances. With only 9 parameters, the configuration space is quite small.

MiniSATHack-K3 is our last benchmark from the CSSC’14; it is based on a modification of the well-known MiniSAT solver (Eén and Sörensson 2003), called Minisat-HACK-999ED (Oh 2014) on 3SAT random instances. The 10 categorical parameters give raise to a configuration space of 800 000 parameter configurations, making it the smallest configuration space we consider.

LPG-Satellite was introduced in the context of parameter importance analysis with ablation (Fawcett and Hoos 2016). It is based on the AI planning system lpg (Gerevini and Serina 2002), which exposes 67 parameters. In this case we study satellite instances: planning problems arising in the control and observation scheduling of orbital satellites (Long and Fox 2003). The instance features are a combination of native planning features and features derived by translating planning instances into SAT (Fawcett et al 2014).

LPG-Zenotravel uses the same target algorithm, lpg, as LPG-Satellite, in combination with instances from the zenotravel planning domain (Penberthy and Weld 1994), which arise in a version of route planning. The default configuration of lpg achieves worse performance than on LPG-Satellite; nevertheless, after configuration, the instances from this benchmark turn out to be easier for lpg.

Clasp-WS is based on the dual-purpose SAT/ASP solver Clasp applied to ASP (rather than SAT) instances. Clasp has a richer configuration space in the ASP domain (35 additional parameters, including 12 conditional ones); to compensate, we set the configuration budget twice as high as for Clasp-Rooks. The ASP problem instances encode optimizing join order in database systems (Lierler and Schüller 2012). To generate instance features, we used the same feature extractor, claspre, as the state-of-the-art ASP algorithm selector claspfolio (Hoos et al 2014).

Svm-mnist is based on a support vector machine (Cortes and Vapnik 1995) (using the libsvm implementation via scikit-learn) applied to the well-known MNIST data set. We optimized 6 hyperparameters of the SVM, including the kernel (rbf, polynomial or sigmoid) and its dependent hyperparameters.

Xgboost-covertype is based on xgboost (Chen and Guestrin 2016) applied to the covertype data set. We optimized 11 mostly continuous hyperparameters.