Earliness of spring bread wheat accessions under the conditions of the Middle Volga Region

Damir F. Askhadullin1, Danil F. Askhadullin1, Nurania Z. Vasilova1, Alla N. Brykova2

1 Kazan Scientific Center of the Russian Academy of Sciences, Tatar Research Institute of Agriculture, Kazan, Russia
2 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, St. Petersburg, Russia

Corresponding author: Damir F. Askhadullin, damir.askhadullin@knc.ru

Background. Development of early-ripening high-yielding cultivars of spring bread wheat is a complicated and difficult process. Striving for higher yields has triggered a trend to prolong the growing season of the cultivars released by the Tatar Research Institute of Agriculture (TatRIA). Our breeding efforts to produce early cultivars, based on using an early-ripening sample as one of the parents, were unsuccessful. This paper presents a search for solutions to the said problem.

Materials and methods. We studied spring bread wheat accessions from the collections of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) and Baicheng Academy of Agricultural Sciences (China) as well as promising lines developed by TatRIA. The study of the material was based on conventional spring bread wheat breeding methods. Phenological phases of wheat development were identified using the Zadoks scale.

Results. An ambiguous role played by the vernalization response (Vrn) and photoperiod sensitivity (Ppd) genes in wheat earliness was shown, which is consistent with the data repeatedly presented in other publications. We identified accessions with the shortest period from sprouting to heading. Under our climate conditions, the earliest cultivars were those from Novosibirsk Province, Russia, and the North-Eastern China, where wheat development from sprouting to heading lasted 36–46 days.

Keywords: early spring bread wheat cultivars, Vrn and Ppd genes, phenological phases, heading dates

Acknowledgments: the research was performed within the framework of the State Tasks according to the theme plans of: VIR, Project No. 0481-2022-0001 “Structuring and disclosing the potential of hereditary variation in the global collection of cereal and grain crops at VIR for the development of an optimized genebank and its sustainable utilization in plant breeding and crop production”;
Kazan Scientific Center of the RAS “Ecological and genetic approaches to the creation and conservation of plant and animal resources, the expansion of their adaptive potential and biodiversity, the development of conservation agrotechnologies in order to increase the sustainability of production of high-quality products, to achieve safety for human health and the environment”.

The authors thank the reviewers for their contribution to the peer review of this work.

For citation: Askhadullin Damir F., Askhadullin Danil F., Vasilova N.Z., Brykova A.N. Earliness of spring bread wheat accessions under the conditions of the Middle Volga Region. Proceedings on Applied Botany, Genetics and Breeding. 2022;183(3):66-75. DOI: 10.30901/2227-8834-2022-3-66-75

© Askhadullin Damir F., Askhadullin Danil F., Vasilova N.Z., Brykova A.N., 2022
Скороспелость образцов яровой мягкой пшеницы в условиях Среднего Поволжья

Д-р. Ф. Асхадуллин, Д-л. Ф. Асхадуллин, Н. З. Василова, А. Н. Брыкова

1 Федеральный исследовательский центр Казанский научный центр Российской академии наук, Татарский научно-исследовательский институт сельского хозяйства, Казань, Россия.
2 Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова, Санкт-Петербург, Россия.

Актуальность. Создание скороспелых продуктивных сортов яровой мягкой пшеницы – трудная и сложная задача. В связи с «гонкой» за продуктивностью идет тенденция на увеличение вегетационного периода у сортов селекции Казанского научного центра РАН. Проводимая нами селекционная работа по созданию скороспелых сортов, основанная на использовании в качестве одного из родителей раннеспелых образцов, не дает желаемого результата. Поиски путей решения этой проблемы отражены в данной работе.

Материал и методы. Материалом для исследований служили образцы яровой мягкой пшеницы из коллекции ВИР и Байченской сельскохозяйственной академии (Китай), а также перспективные линии яровой пшеницы селекции Татарского НИИСХ. Селекционная проработка материала осуществлялась по традиционным методикам. Фенологические фазы развития пшеницы определяли на основании шкалы Задокса.

Результаты. Продемонстрирована неоднозначная роль генов, детерминирующих реакцию растений на яровизацию (Vrn) и отзывчивость растений на фотопериод (Ppd), в формировании скороспелости, что согласуется с данными, показанными неоднократно в других работах. Выявлены образцы с наименьшим межфазным периодом «всходы – колошение». Самыми скороспелыми в наших климатических условиях оказались сорта из Новосибирской области России и сорта северо-восточной зоны Китая с межфазным периодом «всходы – колошение» 36–46 дней.

Ключевые слова: раннеспелые сорта яровой мягкой пшеницы, Vrn и Ppd гены, фенологические фазы, дата колошения

Благодарности: работа выполнена в рамках государственных заданий: ВИР, проект № 0481-2022-0001 «Структурирование и раскрытие потенциала наследственной изменчивости мировой коллекции зерновых и крупяных культур ВИР для развития оптимизированного генбанка и рационального использования в селекции и растениеводстве»; КазНЦ РАН «Эколого-генетические подходы к созданию и сохранению ресурсов растений и животных, расширению их адаптивного потенциала и биоразнообразия, разработка сберегающих агротехнологий с целью повышения устойчивости производства высококачественной продукции, достижения безопасности для здоровья человека и окружающей среды».

Авторы благодарят рецензентов за их вклад в экспертную оценку этой работы.

Для цитирования: Асхадуллин Д-р.Ф., Асхадуллин Д-л.Ф., Василова Н.З., Брыкова А.Н. Скороспелость образцов яровой мягкой пшеницы в условиях Среднего Поволжья. Труды по прикладной ботанике, генетике и селекции. 2022;183(3):66-75. DOI: 10.30901/2227-8834-2022-3-66-75
Introduction

Development of spring bread wheat cultivars combining high yields and earliness under specific soil and climate conditions is a complicated task that is not always achievable. As a rule, early-ripening wheat cultivars in the Middle Volga Region cannot compete with those having medium and long growing seasons. Only three mid-early cultivars with a 39–43-day-long period from spraying to heading are recommended for cultivation in the Middle Volga Region: they are 'Zlata', 'Ekaterina' and 'Chelyaba Stepnaya'. All three have significantly lower yields than the mid-ripening cultivar 'Yoldyz' traditionally cultivated in the region.

There are several reasons to broaden the range of commercial early wheat cultivars in this region:

1. In the Middle Volga Region, harvesting is the hardest part of the wheat cultivation practice. Organizational measures to reduce losses while ensuring the high grain quality have been studied (Dubcovsky et al., 1998). Weather change during harvesting sometimes prevents obtaining high-quality grain at minimum costs. Thus, growing cultivars that differ in maturity time will provide for a chain of harvesting operations that will minimize the loss of high-quality grain.

2. Since 2016, wheat stem rust has become more harmful. The infection tends to manifest itself when early-ripening cultivars enter the middle grain dough stage, which does not have a strong negative effect on their yield.

3. When cultivating winter cereals in this region, there is a risk of low overwinter survival. A way to preserve such crops could be complementary springtime seeding of early spring cultivars.

Breeding for a specific trait always implies a search for and examination of source material. For wheat, breeding for the duration of the spraying-to-heading period (strongly correlated with maturity) generally takes into account three genetic systems: 1. vernalization response, i.e., the way plants respond to lower temperature during spraying (Vrn); 2. sensitivity to photoperiod (Ppd); and 3. earliness perse (Eps) (Dubcovsky et al., 1998). The expressivity of these genes in the plant development duration has not yet been determined. It is possible to combine these genetic systems for greater phenotypical diversity in the plant development rate. Therefore, information on the input of each system into the feature of earliness will be useful for the selection of parents for hybridization in order to produce promising early-ripening cultivars.

To denote genes that determine vernalization response, A. Pugsley introduced the symbol Vrn for 'vernalization' (Pugsley, 1971). Classical sources describe the genes Vrn1, Vrn2, Vrn3, Vrn4 and Vrn5 (Pugsley, 1972; Maystrenko, 1980; Stelmakh, 1987). In a more contemporary interpretation used in the catalogue of gene symbols for wheat (McIntosh et al., 2010), the development type is marked in a slightly different way: what used to be marked as Vrn1[5AL], Vrn2[5BL], and Vrn3[5DL] are now referred to as Vrn-A1, Vrn-B1, and Vrn-D1. For the rare Vrn4 and Vrn5 genes, alternative molecular modifications have been published; in the latest version they were marked as Vrn-D4 (Yoshida et al., 2010) and Vrn-B3, respectively (Yan et al., 2006). At least for Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-D4 almost isogenic lines were developed (Pugsley, 1968; Stelmakh, Avsenin, 1983; Koval et al., 2001). Winter plants are homozygous recessive for these genes and require low above-zero temperatures to enter the flowering stage. Spring plants have at least one dominant allele of these genes (Kobylyansky, Fadeeva, 1986; Goncharov, 2004).

Plants with dominant alleles of Vrn-A1 do not respond to vernalization, while plants with other dominant alleles demonstrate low sensitivity to the level and duration of cold temperatures (Shindo, Sasakuma, 2002). The Vrn-A1 gene is fully epistatic to other vernalization genes. Therefore, its presence inhibits the need for vernalization, notwithstanding the presence of dominant or recessive alleles of other genes (Pugsley, 1983). At the same time, for the Vrn-1 locus, there is a series of multiple alleles that further increase diversity in terms of vernalization response (Stelmakh, 1986; Yan et al., 2004).

It has been observed that dominant alleles of Vrn genes do not only influence springtime development, but also the flowering time (Rigin, Goncharov, 1989). All ultra-early accessions of spring bread wheat do not respond to vernalization (RIGIN et al., 2019). A. F. Stelmakh (1987) believes that these genes determine up to 70% of the development rate in a wheat plant. Plants in which dominant alleles of Vrn-A1 were present had an earlier-ripening phenotype, while plants where only the dominant Vrn-B1 allele was present demonstrated the latest maturity. B. V. Rigin and colleagues calculated that Vrn-A1 is present in 85.7% early and ultra-early wheat accessions, Vrn-B1 was present in 63.5%, and Vrn-D1 in 1.8% (RIGIN et al., 2015). In terms of the effect on the flowering time, the dominant allele sequence is as follows: Vrn-A1 > Vrn-D1 > Vrn-D4 ≥ Vrn-B1 > Vrn-B3 (Goncharov N., Goncharov P., 2009). However, it is worth mentioning that different Vrn loci demonstrate different genetic effect values under specific conditions, thus leading to varying trait prominence in certain genotypes (Dzhalpakova et al., 1996; Moiseeva, Goncharov, 2007), i.e., a number of plant cultivars combining the same Vrn loci will demonstrate different response under different soil and climate conditions, which will affect the productivity and early maturity. This is especially important for the development of a breeding strategy targeted at earliness.

Response to Photoperiod (Ppd). Spring bread wheat is a long-day plant; however, some varieties enter the heading stage at the same time both during long and short days, i.e., these plants are not sensitive to photoperiod. Lack of photoperiod sensitivity is controlled by the dominant allele of the Ppd gene, while sensitivity is controlled by its recessive allele. Response to photoperiod in hexaploid wheats is controlled by Ppd-A1(2A), Ppd-B1(2B), Ppd-D1(2D), and Ppd-B2(7B), as per the contemporary gene nomenclature system (Khlestkina et al., 2009). Before, the first three genes used to be denoted as Ppd3, Ppd2, and Ppd1, respectively.

It is believed that the Ppd-D1 gene is fully epistatic to other photoperiod sensitivity genes (Merezhko et al., 1997). At the same time, in terms of influence on photoperiodism, some researchers point to a possible dominance of Ppd-B1 (Keim et al., 1973; Voronin, Stelmakh, 1991; TANIO, Kato, 2007). This may be explained not only by the isogenic lines used, which could have yielded a false result, but also from the fact that in isolated cases Ppd-B1 has been observed to produce an effect comparable to that of Ppd-D (GONZALEZ et al., 2005); however, such effect is an exception. The degree of photoperiod sensitivity increases for the Ppd genes in the following order: Ppd-D1 > Ppd-A1 > Ppd-B1 (Pugsley, 1966). While breeding precocious cultivars to grow in different climatic zones, it is necessary to be in the Ppd-D1 genotype, since the heading date will not depend on the length of the day.

Earliness perse (Eps). At present, molecular tests are carried out for the Eps-A1m, Eps-A1a, Eps-A1b, and Eps-D1 genes in wheat (ZILKHANI et al., 2016). The expressivity of these genes is contingent on temperature and impacts the timing of development stages, thereby influencing the plant’s yield (OCHAGAVIA et al., 2019). It is possible that Eps, which controls wheat
ultra-earliness per se, is not an independent structural unit, but a block of polygenes (modifiers) with low effect, which determine continuous variability and are associated with the gene (Rigin et al., 2018).

The purpose of the research was to identify accessions with the shortest period from sprouting to heading from the different spring bread wheat collections, and demonstrate the effect of the Vrn and Ppd genes in accessions with different maturation periods under the conditions of the Middle Volga Region.

Materials and methods

We studied spring bread wheat (*Triticum aestivum* L.) accessions with a short growing season provided by the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) and received through interinstitutional exchange (372 accessions).

Hybridization, observation, selection and nursery establishment took place in 2015–2020 in TatRIA’s experimental fields in the north of the Middle Volga Region, Republic of Tatarstan, Russia (55°38′60″N, 49°18′25″E), 90 m above sea level.

Local soils are of the well-cultivated Alfisol (USDA soil taxonomy) type. The climate is continental, with large seasonal differences: cold and snowy winters, and warm and dry summers. The mean air temperature in January, the coldest month of the year, is −13.6°C. The maximum soil freezing is 95 cm; and the average snow cover depth in February is 39 cm, while the snow melts in the fields by the end of April. Summertime weather conditions establish themselves at the beginning of June and end by late August. The mean air temperature in July, the warmest summer month, is 19.5°C. The mean annual precipitation is 560 mm, with 176 mm in the summer months.

The weather conditions during the study were typical of the forest-steppe zone, with frequent summer droughts in each year, except 2017 when the rainy and cold summer resulted in a prolonged growing season. Under the local climate, given that the seeding took place at the optimal time, i.e., in early May, the air temperature in most years rapidly grew and the daylight period between sprouting and heading was 16.5–17.3 hours long, i.e., the day was relatively long. Meteorological data were obtained from a weather station located in the immediate vicinity where the experiment was conducted.

The phenological results were obtained in accordance with the Zadoks scale (Zadoks et al., 1974). The tests were carried out without watering. The seeding rate was 600 pieces per 1 m². The fertilizer background corresponded to the ratio of N:85, P:40, and K:40 kg/ha active ingredient. There was no treatment with fungicides or insecticides. A sulfonylurea class herbicide was used against weeds.

The relationships between the indicators were analyzed using the Pearson correlation coefficient.

The collection nursery was seeded in a single replication, with a frequent standard reference cultivar, on a plot of 1 m². The selection nurseries were seeded in accordance with the conventional spring wheat breeding methods adopted in Russia (Table 1).

Results and discussion

The current phase of spring bread wheat breeding at TatRIA, located in the north of the Middle Volga Region, was launched twenty years ago. All cultivars developed before 2015 were mid-early wheats. However, due to the pursuit of higher yields, the cultivars released in recent years have a longer growing season (Figure). Cvs. ‘Al Varis’ and ‘Balkysh’ are within the mid-late category.

Our breeding efforts, based on the use of early-ripening accessions as one of the parents, failed to yield desirable results and did not guarantee identifying lines with short duration of the growing season that meet breeders’ criteria. On average, we made 10–17% of combinations using early cultivars (total year-by-year number varied from 435 to 523). Starting with F₃, early-maturing plants were selected, and this process continued in the first-year breeding nursery (BN-1), where the maturity period was used as a screening criterion. In 2018, after field screening for early maturity, only 227 breeding lines out of 16343, i.e., 1.4%, were selected for the second-year breeding nursery (BN-2). After laboratory

Table 1. Scheme of the breeding process in the development of early spring wheat cultivars

Year	Nursery. Generation	Nursery sowing method. Description.
first	Crossing	Pollination by the Twell method.
second	F₁	Manual sparse seeding. Reproduction of the progeny.
third	F₂ – F₃	Seeding with a seeder on a plot of 1 m² – 5 m². Reproduction of the progeny.
fourth	F₄	Seeding with a seeder on a plot of 10 m². Individual selection of plants
fifth	Breeding nursery of the first year (BN-1)	Seeding of the best selected ears was carried out manually by kin. Selection of disease-resistant kin. Selection of early-maturing lines.
sixth	Breeding nursery of the second year (BN-2)	Seeding with a seeder on a plot of 1 m². Selection of disease-resistant kin and assessment of their productivity. Selection of early-maturing lines.
seventh	Breeding nursery of the third year (BN-3)	Seeding with a seeder on a plot of 10 m². Selection of productive and disease-resistant lines.
eighth	Preliminary variety testing (PVT)	Seeding with a seeder on a plot of 10 m² in triple replication. Selection of productive and disease-resistant lines.
ninth	Competitive variety testing (CVT)	Seeding with a seeder on a plot of 25 m² in quadruple replication. Selection of productive and disease-resistant lines. Grain quality assessment.
screening for grain quality and seed weight, only 23 lines were kept for further seeding, and their future is quite vague, as the productivity of these lines is significantly inferior to the standard mid-ripening reference cultivar.

Breeding for earliness has not yet yielded desirable results. Therefore, researching the ways to solve this problem is one of the main areas of our work.

Most researchers use the period between sprouting and heading to characterize the duration of the growing season. This may be due to the ability of establishing more precise temporal boundaries of this period, which is more difficult to do if the more ‘vague’ and difficult to observe middle dough stage is selected as the ultimate boundary. In addition, for spring bread wheat, there is a strong correlation between the number of days to heading and maturity (Rigin, 2012). We observed medium or strong year-by-year correlations in the accessions from the VIR collection. Such correlation decreased only during the years when the heading/middle dough stage fell on droughty weather (Table 2).

In breeding for earliness, the collection of N.L Vavilov All-Russian Institute of Plant Genetic Resources (VIR) plays a vital role as it contains a sufficient set of early-ripening accessions (Zuev et al., 2009). In the studied collection, the number of early accessions was minimal and averaged 5.6% (Table 3).

Annual assessment of the collection by the date of heading allowed us to identify a number of accessions with the shortest period from sprouting to heading. Most of the accessions from Novosibirsk Province, Russia, in the southeast of the West Siberian Plain were classified as early-ripening cultivars. Some of the accessions from the northeast of China were characterized by a minimum duration of the period from sprouting to heading. This is the so called northeastern zone of spring wheat cultivation. The cultivars typical for this region possess the short-duration genotype of Vrn-А1+Vrn-В3 (Zhang et al., 2008) (Table 4). At the same time, this genotype is also characteristic of ‘Ekada-6’ which we classify as a mid-ripening cultivar. All early accessions demonstrated yields far lower than those of the mid-ripening cultivar ‘Simbirtsit’.

Table 2. The Pearson correlation coefficient between days from sprouting to heading and to the middle dough stage in spring bread wheat (VIR collection)

Year	Days from sprouting to heading (Zadoks 10–51)	Days from sprouting to the middle dough stage (Zadoks 10–71)	Pearson correlation factor	SCC between the heading and middle dough stages (Zadoks 51–71)
2015	lim 39–53	lim 75–94	0.777*	1.86
2016	lim 36–49	lim 67–75	0.517*	0.19
2017	lim 43–62	lim 77–92	0.634*	0.37
2018	lim 36–53	lim 67–83	0.781*	0.55
2019	lim 35–58	lim 73–97	0.828*	2.14
2020	lim 36–52	lim 72–86	0.732*	1.35

Note: * – significant at the 0.01 level

Примечание: * – значимо на уровне 0.01
late-maturing cultivar ‘Buryatskaya ostistaya’, having the winter wheat cultivar ‘Odessa-66’ in its pedigree, has only one dominant Vrn-A1a allele, which is consistent with the data of many authors on the additive effect of Vrn genes on precocity.

Wheat growth in our zone under optimal seeding rates occurs with a long day, so it is impossible to identify the contribution of Ppd genes in the field. All early cultivars with identified Ppd genes have the genotype in recessive state and do not manifest phenotypically at our light day.

In the breeding for high yields, we often use winter cultivars in our work. However, there is a possibility of a significant shift towards late maturity. At the same time, there is a complex long-term hybridological analysis that is sometimes unable to distinguish multiple allelism from close linkage leads scientists to molecular research. A number of catalogues and research papers publish the results of molecular tests on the Vrn and Ppd genes in wheat cultivars and breeding lines. The role of allele variants in wheat earliness was demonstrated (Emtseva et al., 2012; Likhenko et al., 2014; Chumanova et al., 2020). Some cultivars with the identified Vrn and Ppd genes are presented in Table 5. It is obvious that the same genotype is characteristic of both early and mid-ripening wheat cultivars, so it is impossible to speak unambiguously about these “earliness” genes in our climate zone. The late-maturing cultivar ‘Buryatskaya ostistaya’, having the winter wheat cultivar ‘Odessa-66’ in its pedigree, has only one dominant Vrn-A1a allele, which is consistent with the data of many authors on the additive effect of Vrn genes on precocity.

Wheat growth in our zone under optimal seeding rates occurs with a long day, so it is impossible to identify the contribution of Ppd genes in the field. All early cultivars with identified Ppd genes have the genotype in recessive state and do not manifest phenotypically at our light day.

In the breeding for high yields, we often use winter cultivars in our work. However, there is a possibility of a significant shift towards late maturity. At the same time, there are...
examples of transgression when crosses between winter and spring wheat resulted in earlier-ripening cultivars than that of the spring component (Nettevich, 2008). Our experiments failed to demonstrate transgressive early cultivars in segregating populations. The expected prolongation of the growing season compared to the spring component was observed. No influence of the cytoplasm of winter cultivars on the duration of maturation was identified. Thus, in F1, reciprocal crossings between winter wheat accessions and spring ones with short maturation did not result in any difference in heading dates (Table 6).

Conclusion

As shown above, earliness cannot be explained by the Vrn and Ppd gene systems alone. Breeding for early maturity involves a number of interconnected factors and genetic systems; therefore, it is evident that the development of cultivars with short growing seasons is a difficult and complicated task. Having analyzed the data of molecular tests and hybridological analyses conducted by various researchers, we can make the following conclusion on the presence of Vrn and Ppd in the studied accessions. For our set of accessions, the dominant genes Vrn-A1a, Vrn-B1a, vrn-D1, vrn-B3 are not enough to achieve the earliest maturity for the precocious phenotype. The long daylight period in our region results in a weak impact of photoperiod on earliness. The presence of a recessive ppd-D1 gene in the earliest Novosibirsk cultivars confirms this observation. As for the genetic system of earliness per se, determining its special significance for earliness in our region, it requires a large set of ultra-early accessions that are not available at present. Given that three genetic systems influence precocity; we can assume that in our zone the key role in precocity will be played by the earliness per se system.

VIR catalogue No.	Accession	Origin	Days from sprouting to heading, (Zadoks 10-51)	Presence in the genotype	
				Vrn	Ppd
Early cultivars					
64856	Polyushko	Novosibirsk Prov.	39	Vrn-A1a, Vrn-B1a, vrn-D1, vrn-B3	ppd-D1c
64257	Novosibirskaya-15	Novosibirsk Prov.	40	Vrn-A1a, Vrn-B1a, vrn-D1, vrn-B3	ppd-D1c
65132	Pamjati Vavenkova	Novosibirsk Prov.	40	Vrn-A1a, vrn-B1, vrn-D1, vrn-B3	ppd-D1c
64872	Chelyab steppnaya	Chelyabinsk Prov.	43	Vrn-A1a, Vrn-B1a, vrn-D1, vrn-B3	ppd-D1c
Mid-ripening cultivars					
65250	Ulyanovskaya-100	Ulyanovsk Prov.	46	Vrn-A1a, Vrn-B1c, vrn-D1, vrn-B3	ppd-D1c
62644	Prokhorovka	Saratov Prov.	45	Vrn-A1a, Vrn-B1c, vrn-D1, vrn-B3	ppd-D1c
64544	Ester	Moscow Prov.	46	Vrn-A1a, Vrn-B1a, vrn-D1, vrn-B3	ppd-D1c
64543	Ekada-6	Samara Prov.	44	Vrn-A1a, Vrn-B1c, vrn-D1, vrn-B3	Ppd-D1a / ppd-D1c
63714	Tulaykovskaya-10	Samara Prov.	44	Vrn-A1a, Vrn-B1a, vrn-D1, vrn-B3	ppd-D1c
64377	Kazanskaya Yubileinaya	Rep. of Tatarstan	46	Vrn-A1a, Vrn-B1a, vrn-D1, vrn-B3	ppd-D1c
63206	Omskaya-33	Omsk Prov.	45	Vrn-A1a, Vrn-B1c, vrn-D1, vrn-B3	ppd-D1c
Late cultivars					
64113	Buryatskaya ostistaya	Rep. of Buryatia	48	Vrn-A1a, vrn-B1, vrn-D1, vrn-B3	ppd-D1c
Table 6. Heading dates in F, after reciprocal crossing of winter and spring accessions, 2018

Growth habit	Crossing combination	Date
Winter / spring	Skipter / Baichun N 0.7	July 3
	Skipter / 2004R-177-4-7-2	June 29
Spring / winter	Baichun N 0.7 / Skipter	July 3
	2004R-177-4-7-2 / Skipter	June 29

References / Литература

Chumanova E.V., Efremova T.T., Kruchinina Yu.V. The effect of different dominant Vrn alleles and their combinations on the duration of developmental phases and productivity in common wheat lines. *Russian Journal of Genetics.* 2020;56(7):822-834. DOI: 10.31857/S0106175820070024

Dubcovsky J., Lijavetzky D., Appelendo L., Tranquilli G. Comparative AFLP mapping of *Triticum monococcum* genes controlling vernalization requirement. *Theoretical and Applied Genetics.* 1998;97(5-6):968-975. DOI: 10.1007/s00126095978

Dzhalpakova K.D., Bersimbaev R.I., Goncharov N.P. Genetic control of growth habit in common wheat cultivars from Kazakhstan. *Russian Journal of Genetics.* 1996;32(1):73-78.

Emtseva M.V., Efremova T.T., Arbuzova V.S. Heading time of substitution and near-isogenic lines of common wheat with dominant alleles Vrn-Bla and Vrn-Blc. *Vavilov Journal of Genetics and Breeding.* 2012;16(1):69-76. [in Russian] (Емцева М.В., Ефремова Т.Т., Арбузова В.С. Время колошения замещенных и изогенных линий мягкой пшеницы с домinantными аллелями Vrn-Bla и Vrn-Blc. *Вавиловский журнал генетики и селекции.* 2012;16(1):69-76).

Goncharov N.P. Response to vernalization in wheat: Its quantitative or qualitative nature. *Cereal Research Communications.* 2004;32(3):323-330. DOI: 10.1007/BF03543277.

Goncharov N.P., Goncharov P.L. Methodical bases of plant breeding. V.K. Shumnyi (ed.). 2nd ed. Novosibirsk: Geo; 2009. [in Russian] (Гончаров Н.П., Гончаров П.Л. Теоретические основы селекции растений / под ред. В.К. Шумны). 2-е изд. Новосибирск: Гео; 2009).

González F.G., Slafer G.A., Miralles D.J. Pre-anthesis development and number of fertile florets in wheat as affected by photoperiod sensitivity genes Ppd-D1 and Ppd-B. *Euphytica.* 2005;146(3):253-269. DOI: 10.1007/s10681-005-0921-3

Guileyev G.V., Guzhov Yu.L. Breeding and seed growing of field crops: Selektiya i semenovodstvo polevykh kultur. Moscow: Agropromizdat; 1987. [in Russian] (Гулейев Г.В., Гужов Ю.Л. Селекция и семеноводство полевых культур. Москва: Агропромиздат; 1987).

Keim D.L., Welsh J.R., McConnell R.L. Inheritance of photoperiodic heading response in wheat. *Canadian Journal of Plant Science.* 1973;53(2):247-250. DOI: 10.4141/cjps73-046

Khlestkina E.K., Giura A., Röder M.S., Börner A. A new gene controlling the flowering response to photoperiod in wheat. *Euphytica.* 2009;165(3):579-585.

Kobylyansky V.D., Fadeeva T.S. (eds.). Genetics of cultivated plants: Cereal crops (Genetika kulturnykh rasteniy: Zernovy kultury). Leningrad: Agropromizdat; 1986. [in Russian] (Генетика культурных растений: Зерновые культуры) / под ред. В.Д. Кобылянского, Т.С. Фадеевой. Ленинград: Агропромиздат; 1986).

Koval S.F., Koval V.S., Shamayan V.P. Wheat isogenic lines: a monograph (Isogenny linii pshenitsy: monografiya). Omsk: Omskblankizdat; 2001. [in Russian] (Коваль С.Ф., Коваль В.С., Шамянин В.П. Изогенные линии пшеницы: монография. Омск: Омскбланкиздат; 2001).

Likhenko I.E., Stasyuk A.I., Scherberan A.B., Zyryanova A.F., Likhenko N.I., Salina E.A. Analysis of the allelic variation of the Vrn-1 and ppd-1 genes in Siberian early and medium early varieties of spring wheat. *Vavilov Journal of Genetics and Breeding.* 2014;18(4-1):691-703. [in Russian] (Лишенко И.Е., Стасюк А.И., Щербакан А.Б., Зырянова А.Ф., Лишенко Н.И., Салина Е.А. Изучение аллельного состава генов Vrn-1 и Ppd-1 у раннеспелых и среднеспелых сортов яровой мягкой пшеницы Сибири. *Вавиловский журнал генетики и селекции.* 2014;18(4-1):691-703).

Lyusenko N.S., Kiseleva A.A., Mitrofanova O.P., Potokina E.K. Catalogue of the VIR global collection. Issue 815. Bread wheat. Molecular testing of alleles of Vrn and Ppd genes in cultivars approved for use in the Russian Federation (Katalog mirovoj kollektiv VIR. Vypusk 815. Myagkaya pshenitsa. Molekuljarnoye testirovanie alleley Vrn-i i Ppd-genov u dopushchennykh k ispolzovaniyu v Rossiyskoj Federatsii selektsionnykh sortov. Vypusk 815. Мягкая пшеница. Молекулярное тестирование аллелей генов Vrn и Ppd у допущенных к применению в Российской Федерации селекционных сортов. Выпуск 815).

Maystrenko O.I. cytogenetic study of growth habit and ear emergence time in wheat (*Triticum aestivum* L.) (*Tsitoge­neticheskiye izucheniya tipa razvitiya i vremeni kolosheniya pshenitsy [*Triticum aestivum* L.]). In: D.K. Belyaev (ed.). *Proceedings of the XIV International Congress of Genetics.* Vol. 1: Well-Being of Mankind and Genetics. Book 2. Moscow: Mir; 1980. p.267-282. [in Russian] (Маистренко О.И. Цитогенетическое изучение типа развития и времени колошения пшеницы [*Triticum aestivum* L.]. In: D.K. Беляев (ред.). *Труды XIV международного генетического конгресса.* Т.1: Благосостояние человечества и генетика. Москва 2. Москва: Мир; 1980. С.267-282).

McIntosh R.A., Dubcovsky J., Rogers W.J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat: 2010 supplement. *Annual wheat Newsletter.* 2010;56:273-276.

Merezhko A.F., Koshkin V.A., Matvienko I.I. Initial material for testing alleles of *Triticum monococcum* and *Triticum dicoccum* with different photoperiodic response. *Theoretical and Applied Genetics.* 2010;56:273-276. [in Russian] (Мережко А.Ф., Коскин В.А., Матвieńко И.И. Оригинальный материал для тестирования аллелей *Triticum monococcum* и *Triticum dicoccum* с разными адаптивными реакциями на продолжительность дня. *Теоретические и прикладные генетические исследования.* 2010;56:273-276).

Moiseeva E.A., Goncharov N.P. Genetic control of the spring growth habit in old local cultivars and landraces of common wheat with different photoperiodic response. *Vavilov Journal of Genetics and Breeding.* 2010;56:273-276. [in Russian] (Моисеева Е.А., Гончаров Н.П. Генетическое контроль развития сортообразцов пшеницы с разными фотоперiodическими реакциями. *Вавиловский журнал генетики и селекции.* 2010;56:273-276).

Mirezhko A.F., Koshkin V.A., Matvieńko I.I. Initial material for testing alleles of *Triticum monococcum* and *Triticum dicoccum* with different photoperiodic response. *Theoretical and Applied Genetics.* 2010;56:273-276. [in Russian] (Мережко А.Ф., Коскин В.А., Матвieżко И.И. Оригинальный материал для тестирования аллелей *Triticum monococcum* и *Triticum dicoccum* с разными адаптивными реакциями на продолжительность дня. *Теоретические и прикладные генетические исследования.* 2010;56:273-276).

Moiseeva E.A., Goncharov N.P. Genetic control of the spring growth habit in old local cultivars and landraces of com-
mon wheat from Siberia. *Russian Journal of Genetics*. 2007;43(4):369-376. DOI: 10.1134/S1022795407040035

Nettevich E.D. Features of development of *F₁* hybrids and segregation of the *F₂* populations derived from crosses of spring wheat forms with winter forms (Особенности разветвления гибридов *F₁* и рассеяния яровых популяций *F₂* полненьых от скрещивания яровых форм пшеницы с озимыми). In: E.D. Nettevich. *Selected works. Breeding and seed production of spring cereal crops (Избраные Труды. Селекциона семеноводства яровых зерновых культур)*. Moscow; Nemchinovka; 2008. p.128-132. [in Russian]

Bovin B.V., Zuev E.V., Tyunin V.A., Shreyder E.R., Pyzhenkova Z.S., Matvienko I.I. Breeding and genetic aspects of creating productive forms of fast-developing spring bread wheat. *Proceedings on Applied Botany, Genetics and Breeding*. 2018;179(3):194-202. [in Russian]

Rigin B.V., Zuev E.V., Tyunin V.A., Shreyder E.R., Pyzhenkova Z.S., Matvienko I.I. Genetic studies of phasic development and their application to wheat breeding. In: *Proceedings of the 3rd International Wheat Genetics Symposium*. Canberra: Australian Academy of Science; 1966. p.288-293.

Pugsley A.T. A genetic analysis of the spring-winter habit of growth in wheat. *Australian Journal of Agricultural Research*. 1971;22(1):21-31. DOI: 10.1071/AR1710021

Pugsley A.T. Additional genes inhibiting winter habit in wheat. *Euphytica*. 1972;21(6):547-552. DOI: 10.1007/BF00039355

Pugsley A.T. Genetic studies of phasic development and their application to wheat breeding. In: *Proceedings of the 3rd International Wheat Genetics Symposium*. Canberra: Australian Academy of Science; 1966. p.288-293.

Rigin B.V. Spring type of common wheat (*Triticum aestivum* L.) by temperature interaction on wheat development. *Scientific Reports*. 2019;9(1):2584. DOI: 10.1038/s41598-019-39201-6

Rigin B.V., Andreeva A.S., Pyzhenkova Z.S., Matvienko I.I. High rate of development and productivity of spring common wheat. *Euphytica*. 2018;179(3):194-202. DOI: 10.30901/2227-8834-2018-3-194-202

Shindo C., Sasakuma T. Genes responding to vernalization in hexaploid wheat. *Theoretical and Applied Genetics*. 2002;104(6-7):1003-1010. DOI: 10.1007/s00122-002-0886-4

Stelmakh A.F. Analysis of the VRn1–VRn3 allele and genotype frequencies in spring common wheat (*Analiz chastot al’lelej i genotypov po lokusam VRn1–3 u yaroyovoy myagkoj psheنيcji)*. *Russian Journal of Genetics*. 1986;22(10):2459-2467. [in Russian]

Stelmakh A.F. The role of genetic systems in the ontogenetic adaptation of common wheat (* Rol geneticheskikh sistem v ontogeneticheskom adaptatsii mягкоj пшеницы*). In: *Genetics of growth in wheat*. 1987;21(6):547-552. DOI: 10.1007/BF00039355

Stelmakh A.F. Analysis of the VRn1–VRn3 alleles and genotypes of creating productive forms of fast-developing spring bread wheat. *Proceedings on Applied Botany, Genetics and Breeding*. 2018;179(3):194-202. DOI: 10.30901/2227-8834-2018-3-194-202

Shindo C., Sasakuma T. Genes responding to vernalization in hexaploid wheat. *Theoretical and Applied Genetics*. 2002;104(6-7):1003-1010. DOI: 10.1007/s00122-002-0886-4

Stelmakh A.F. Analysis of the VRn1–VRn3 allele and genotype frequencies in spring common wheat (*Analiz chastot al’lelej i genotypov po lokusam VRn1–3 u yaroyovoy myagkoj psheниcji)*. *Russian Journal of Genetics*. 1986;22(10):2459-2467. [in Russian]

Stelmakh A.F. The role of genetic systems in the ontogenetic adaptation of common wheat (*Rol geneticheskikh sistem v ontogeneticheskom adaptatsii mягкоj пшеницы*). In: *Genetics of growth in wheat*. 1987;21(6):547-552. DOI: 10.1007/BF00039355

Stelmakh A.F. Analysis of the VRn1–VRn3 alleles and genotypes of creating productive forms of fast-developing spring bread wheat. *Proceedings on Applied Botany, Genetics and Breeding*. 2018;179(3):194-202. DOI: 10.30901/2227-8834-2018-3-194-202

Tanio M., Kato K. Development of near-isogenic lines for photoperiod-insensitive genes, *Ppd-B1* and *Ppd-D1*, carried by the Japanese wheat cultivars and their effect on apical development. *Breeding Science*. 2007;57(1):65-72. DOI: 10.1270/jsbsb.57.65

Voronin A.N., Stelmakh A.F. Genetic system of sensitivity to photoperiod and its role in the formation of productivity (*Geneticheskaya sistema chuvstvitelʹnosti k fotoperiodu i yeje rol v formirovanii produktivnosti*). In: *Genetic and physiological basis of winter wheat breeding*. Odessa; 1991. p.47-53. [in Ukrainian]

Van L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M. et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT. *Proceedings of the National Academy of Sciences of the United States of America*. 2006;103(51):19581-19586. DOI: 10.1073/pnas.060714203

Van L., Helguera M., Kato K., Fukuyama S., Sherman J., Dubcovsky J. Allelic variation at the *VRN-1* promoter region
in polyploid wheat. *Theoretical and Applied Genetics*. 2004;109(8):1677-1686. DOI: 10.1007/s00122-004-1796-4

Yoshida T., Nishida H., Zhu, J., Nitcher R., Distelfeld A., Akashi Y. et al. Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. *Theoretical and Applied Genetics*. 2010;120(3):543-553. DOI: 10.1007/s00122-009-1174-3

Zadoks J., Chang T., Konzak C. A decimal code for the growth stages of cereals. *Weed Research*. 1974;14(6):415-421. DOI: 10.1111/j.1365-3180.1974.tb01084.x

Zhang X. K., Xiao Y. G., Zhang Y., Xia X. C., Dubcovsky J., He Z. H. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. *Crop Science*. 2008;48(2):458-467. DOI: 10.2135/cropsd2007.06.0355

Zikhali M., Wingen L. L., Griffiths S. Delimitation of the Earliness per se DI (Eps-DI) flowering gene to a subtelomeric chromosomal deletion in bread wheat (*Triticum aestivum*). *Journal of Experimental Botany*. 2016;67(1):287-299. DOI: 10.1093/jxb/erv458

Zuev E. V., Brykova A. N., Nikonov V. I., Zakharov V. G., Terekhin M. V., Potokina S. A. et al. The results of the spring bread wheat collection screening for earliness in Russian breeding centers. *Proceedings on Applied Botany, Genetics and Breeding*. 2009;166:101-106. [in Russian] (Зуев Е. В., Брыкова А. Н., Никонов В. И., Захаров В. Г., Терехин М. В., Потокина С. А. и др. Результаты изучения коллекции яровой мягкой пшеницы на скороспелость в селекцентрах России. *Труды по прикладной ботанике, генетике и селекции*. 2009;166:101-106).

Information about the authors

Damir F. Askhadullin, Cand. Sci. (Agriculture), Leading Researcher, Kazan Scientific Center of Russian Academy of Sciences, Tatar Research Institute of Agriculture, subdivision of the KSC RAS, 48 Orenburgsky Tract, Kazan 420059, Russia, damir.askhadullin@knc.ru, tatnii-rape@mail.ru, https://orcid.org/000-0002-2606-6735

Danil F. Askhadullin, Cand. Sci. (Agriculture), Leading Researcher, Kazan Scientific Center of Russian Academy of Sciences, Tatar Research Institute of Agriculture, subdivision of the KSC RAS, 48 Orenburgsky Tract, Kazan 420059, Russia, tatnii-rape@mail.ru, https://orcid.org/000-0002-2711-7178

Nurania Z. Vasilova, Cand. Sci. (Agriculture), Leading Researcher, Kazan Scientific Center of Russian Academy of Sciences, Tatar Research Institute of Agriculture, subdivision of the KSC RAS, 48 Orenburgsky Tract, Kazan 420059, Russia, tatnii-rape@mail.ru, https://orcid.org/000-0002-2606-6735

Alia N. Brykova, Senior Researcher, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42, 44 Bolshaya Morskaya Street, St. Petersburg 190000, Russia, a.brykova@vir.nw.ru, https://orcid.org/0000-0002-2215-5068

Информация об авторах

Дамир Фидусович Асхадуллин, кандидат сельскохозяйственных наук, ведущий научный сотрудник, Федеральный исследовательский центр Казанский научный центр Российской академии наук, Татарский научно-исследовательский институт сельского хозяйства – обособленное структурное подразделение КазНЦ РАН, 420059 Россия, Казань, Оренбургский тракт, 48, damir.askhadullin@knc.ru, tatnii-rape@mail.ru, https://orcid.org/000-0002-2711-7178

Данил Фидусович Асхадуллин, кандидат сельскохозяйственных наук, ведущий научный сотрудник, Федеральный исследовательский центр Казанский научный центр Российской академии наук, Татарский научно-исследовательский институт сельского хозяйства – обособленное структурное подразделение КазНЦ РАН, 420059 Россия, Казань, Оренбургский тракт, 48, tatnii-rape@mail.ru, https://orcid.org/000-0002-2606-6735

Нуралия Зуфаровна Василова, кандидат сельскохозяйственных наук, ведущий научный сотрудник, Федеральный исследовательский центр Казанский научный центр Российской академии наук, Татарский научно-исследовательский институт сельского хозяйства – обособленное структурное подразделение КазНЦ РАН, 420059 Россия, Казань, Оренбургский тракт, 48, nurania59@mail.ru, https://orcid.org/0000-0003-1135-486x

Алла Николаевна Брыкова, старший научный сотрудник, Федеральный исследовательский центр Всероссийский институт генетических ресурсов пшеницы имени Н.И. Вавилова, 190000 Россия, Санкт-Петербург, ул. Б. Морская, 42, 44, a.brykova@vir.nw.ru, https://orcid.org/0000-0002-2215-5068

Contribution of the authors: the authors contributed equally to this article.

Conflict of interests: the authors declare no conflicts of interests.

The article was submitted on 23.11.2020; approved after reviewing on 11.03.2022; accepted for publication on 06.09.2022. Статья поступила в редакцию 23.11.2020; одобрена после рецензирования 11.03.2022; принята к публикации 06.09.2022.