Electronic supplementary information

Synthesis and spectral properties of 8-anilinonaphthalene-1-sulfonic acid (ANS) derivatives prepared by microwave-assisted copper(0)-catalyzed Ullmann reaction

Nan Wang,¹ Erik B. Faber¹ and Gunda I. Georg*

Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street, SE, Minneapolis, MN 55414 (USA)

¹These authors contributed equally to this work.
*Corresponding author
Email address: georg@umn.edu
Supporting Information

Contents

I. Method Optimization... S4
Scheme S1. ... S4
Table S1. Reaction optimization... S5

II. Spectra of analogs.. S6
Figure S1. Proton NMR for 3a. ... S6
Figure S2. Carbon NMR for 3a. ... S7
Figure S3. Fluorescent spectra for 3a. ... S7
Figure S4. Proton NMR for 3b. ... S8
Figure S5. Carbon NMR for 3b. ... S9
Figure S6. Fluorine NMR for 3b. ... S10
Figure S7. Fluorescent spectra for 3b. .. S10
Figure S8. Proton NMR for 3c. ... S11
Figure S9. Carbon NMR for 3c. ... S12
Figure S10. Fluorine NMR for 3c. .. S13
Figure S11. Fluorescent spectra for 3c. .. S13
Figure S12. Proton NMR for 3d. ... S14
Figure S13. Carbon NMR for 3d. .. S15
Figure S14. Fluorine NMR for 3d. .. S16
Figure S15. Fluorescent spectra for 3d. ... S16
Figure S16. Proton NMR for 3e. ... S17
Figure S17. Carbon NMR for 3e. ... S18
Figure S18. Fluorescent spectra for 3e. .. S18
Figure S19. Proton NMR for 3f. ... S19
Figure S20. Carbon NMR for 3f. ... S20
Figure S21. Fluorescent spectra for 3f. .. S20
Figure S22. Proton NMR for 3g. ... S21
Figure S23. Carbon NMR for 3g. .. S22
Figure S24. Fluorescent spectra for 3g. ... S22
Figure S25. Proton NMR for 3h. ... S23
Figure S26. Carbon NMR for 3h. ... S24
Figure S27. Fluorescent spectra for 3h. ... S24
Figure S28. Proton NMR for 3i. ... S25
Figure S29. Carbon NMR for 3i. ... S26
Figure S30. Fluorescent spectra for 3i. .. S26
Figure S31. Proton NMR for 3j. ... S27
Figure S32. Carbon NMR for 3j. ... S28
Figure S33. Fluorescent spectra for 3j. ... S28
Figure S34. Proton NMR for 3k. ... S29
Figure S35. Carbon NMR for 3k. ... S30
Figure S36. Fluorescent spectra for 3k. ... S30
Figure S37. Proton NMR for 3l. ... S31
Figure S38. Carbon NMR for 3l
Figure S39. Fluorescent spectra for 3l
Figure S40. Proton NMR for 3m
Figure S41. Carbon NMR for 3m
Figure S42. Fluorescent spectra for 3m
Figure S43. Proton NMR for 3n
Figure S44. Carbon NMR for 3n
Figure S45. Fluorescent spectra for 3n
Figure S46. Proton NMR for 3o
Figure S47. Carbon NMR for 3o
Figure S48. Fluorescent spectra for 3o
III. Hammett Plot of ANS derivatives
Figure S49. Hammett Plot for ANS derivatives.
IV. References
I. Method optimization

Scheme S1

We initially investigated two Ullman coupling conditions for reacting 8-chloronaphthalene-1-sulfonic acid with aniline (Scheme S1 and Table S1).

Method A: To 8-chloronaphthalene-1-sulfonic acid (1, 1 equiv), elemental copper (cat. amount), and aniline (2a, 2 equiv) in H₂O, were added NaH₂PO₄ and Na₂HPO₄ to adjust the pH to 6-7. Then the reaction was conducted under microwave conditions at 90 °C for 20 min.

Method B: To 1 (1 equiv) in DMF, were added tetramethylethylenediamine (TMEDA, cat. amount), CuI (cat. amount), K₂CO₃ (1.5 equiv) and aniline (2 equiv). Then the reaction was conducted under microwave conditions at 150 °C for 25 min.

Method A resulted in a 45% isolated yield of 3a and no product was obtained from method B. Therefore, we next optimized method A by screening copper catalysts, the amount of aniline, reaction time, and temperature (summarized in the table below). The optimized conditions are as follows: reaction in the presence of 1 (0.41 mmol, 1 equiv), 2a (0.46 mmol, 1.1 equiv) and a catalytic amount copper element (10 mol%) in a buffer solution (pH 6-7) of Na₂HPO₄ (pH 9.6) and NaH₂PO₄ (pH 4.2) for 1 h at 100 °C under microwave (100 W) conditions, through which the yield of 3a was improved to 63%.
Table S1. Reaction optimization

Entry	Catalyst (mol %)	Equiv of aniline	Temp (°C)	Reaction time	Yield (%)^b
1	CuI (10)	1.1	80	1 h	trace
2	CuCl (10)	1.1	80	1 h	trace
3	Cu⁰ (10)	1.1	80	1 h	47
4	Cu⁰ (15)	1.1	80	1 h	47
5	Cu⁰ (10)	2	80	1 h	47
7	Cu⁰ (10)	1.1	100	1 h	53
8	Cu⁰ (10)	1.1	120	1 h	52
10	Cu⁰ (10)	1.1	100	1.5 h	63
11	Cu⁰ (10)	1.1	100	2 h	63

^aReaction was carried out in 5 ml sealed microwave tube. 1 (0.41 mmol, 1 equiv), 2a and catalyst were added into a buffer solution (pH 6-7) of Na₂HPO₄ and NaH₂PO₄ and irradiated by microwave (100 W).

^bIsolated yields.
II. Spectra of analogs

Sodium 8-(Phenylamino)naphthalene-1-sulfonate (3a)

Figure S1. Proton NMR for 3a.
Figure S2. Carbon NMR for 3a.

Figure S3. Fluorescent spectra for 3a.

*Fluorescence spectrum in ethylene glycol was taken at a lower gain to achieve an emission spectrum within the measurement parameters of the instrument.
Sodium 8-((4-Fluorophenyl)amino)naphthalene-1-sulfonate (3b)

Figure S4. Proton NMR for 3b.
Figure S5. Carbon NMR for 3b.
Figure S6. Fluorine NMR for 3b.

Figure S7. Fluorescent spectra for 3b.
Sodium 8-((2-Fluorophenyl)amino)naphthalene-1-sulfonate (3c)

Figure S8. Proton NMR for 3c.
Figure S9. Carbon NMR for 3c.
Figure S10. Fluorine NMR for 3c.

*S Fluorescence spectrum in ethylene glycol was taken at a lower gain to achieve an emission spectrum within the measurement parameters of the instrument.

Figure S11. Fluorescent spectra for 3c.
Sodium 8-((3-Fluorophenyl)amino)naphthalene-1-sulfonate (3d)

Figure S12. Proton NMR for 3d.
Figure S13. Carbon NMR for 3d.
Figure S14. Fluorine NMR for 3d.

*Fluorescence spectrum in ethylene glycol was taken at a lower gain to achieve an emission spectrum within the measurement parameters of the instrument.

Figure S15. Fluorescent spectra for 3d.
Sodium 8-((3-Chlorophenyl)amino)naphthalene-1-sulfonate (3e)

Figure S16. Proton NMR for 3e.
Figure S17. Carbon NMR for 3e.

*Fluorescence spectrum in ethylene glycol was taken at a lower gain to achieve an emission spectrum within the measurement parameters of the instrument.

Figure S18. Fluorescent spectra for 3e.
Figure S19. Proton NMR for 3f.
Figure S20. Carbon NMR for 3f.

Figure S21. Fluorescent spectra for 3f.
Sodium 8-((3,4-Dichlorophenyl)amino)naphthalene-1-sulfonate (3g)

Figure S22. Proton NMR for 3g.
Figure S23. Carbon NMR for 3g.

*Fluorescence spectrum in ethylene glycol was taken at a lower gain to achieve an emission spectrum within the measurement parameters of the instrument.

Figure S24. Fluorescent spectra for 3g.
Sodium 8-((4-Bromophenyl)amino)naphthalene-1-sulfonate (3h)

Figure S25. Proton NMR for 3h.
Figure S26. Carbon NMR for 3h.

Figure S27. Fluorescent spectra for 3h.
Sodium 8-(p-Tolylamino)naphthalene-1-sulfonate (3i)

Figure S28. Proton NMR for 3i.
Figure S29. Carbon NMR for 3i.

Figure S30. Fluorescent spectra for 3i.
Sodium 8-((4-Methoxyphenyl)amino)naphthalene-1-sulfonate (3j)

Figure S31. Proton NMR for 3j.
Figure S32. Carbon NMR for 3j.

Figure S33. Fluorescent spectra for 3j.
Sodium 8-((4-Oxidophenyl)amino)naphthalene-1-sulfonate (3k)

Figure S34. Proton NMR for 3k.
Figure S35. Carbon NMR for 3k.

Figure S36. Fluorescent spectra for 3k.
Sodium 8-((4-Cyanophenyl)amino)naphthalene-1-sulfonate (3I)

Figure S37. Proton NMR for 3I.
Figure S38. Carbon NMR for 3l.

Figure S39. Fluorescent spectra for 3l.
Sodium 8-((4-Nitrophenyl)amino)naphthalene-1-sulfonate (3m)

Figure S40. Proton NMR for 3m.
Figure S41. Carbon NMR for 3m.

![Carbon NMR spectrum for 3m](image)

Figure S42. Fluorescent spectra for 3m.

![Fluorescent spectra for 3m](image)
Sodium 8-([1,1'-Biphenyl]-4-ylamino)naphthalene-1-sulfonate (3n)

Figure S43. Proton NMR for 3n.
Figure S44. Carbon NMR for 3n.

Figure S45. Fluorescent spectra for 3n.
Sodium 8-((4-Acetamidophenyl)amino)naphthalene-1-sulfonate (3o)

Figure S46. Proton NMR for 3o.
Figure S47. Carbon NMR for 3o.

Figure S48. Fluorescent spectra for 3o.
III. Hammett Plot of ANS derivatives

![Hammett Plot for ANS derivatives](image)

Figure S49. Hammett Plot for ANS derivatives.

IV. References

1. Baqi, Y.; Muller, C. E. Rapid and efficient microwave-assisted copper(0)-catalyzed ullmann coupling reaction: general access to anilinoanthraquinone derivatives. *Org. Lett.* **2007**, *9*, 1271-1274.
2. Baqi, Y.; Muller, C. E. Synthesis of alkyl- and aryl-amino-substituted anthraquinone derivatives by microwave-assisted copper(0)-catalyzed Ullmann coupling reactions. *Nat. Protoc.* **2010**, *5*, 945-953.
3. Baqi, Y.; Hausmann, R.; Rosefort, C.; Rettinger, J.; Schmalzing, G.; Muller, C. E. Discovery of potent competitive antagonists and positive modulators of the P2X2 receptor. *J. Med. Chem.* **2011**, *54*, 817-830.
4. Buck, E.; Song, Z. J.; Tschaen, D.; Dormer, P. G.; Volante, R. P.; Reider, P. J. Ullmann diaryl ether synthesis: rate acceleration by 2,2,6,6-tetramethylheptane-3,5-dione. *Org. Lett.* **2002**, *4*, 1623-1626.
5. Sun, Q.; Zhang, Y. Y.; Sun, J.; Han, Y.; Jia, X.; Yan, C. G. Copper-catalyzed selective 1,2-dialkylation of N-heteroarenes via a radical addition/reduction process: application for the construction of alkylated dihydroazaarenes derivatives. *J. Org. Chem.* **2018**, *83*, 6640-6649.