Boundary Hamiltonian theory for gapped topological orders

Yuting Hu,1 Yidun Wan,1,2 and Yong-Shi Wu3,1,2,4

1Department of Physics and Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
3State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
4Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, 84112, U.S.A.

(Dated: February 27, 2018)

PACS numbers: 71.10.-w, 05.30.Pr, 71.10.Hf, 02.20.Uw

Introduction. Matter phases with intrinsic topological orders (ITO) not only extend our understanding of phases of matter far beyond the Landau-Ginzburg paradigm, but also may support robust quantum memories and topological quantum computation. Most studies of the dynamical theories of 2d ITO have been unfortunately limited to closed surfaces (except Ref. 11,13 of the Kitaev model). On the one hand, closed surface materials are hardly realizable in experiments. On the other hand, a bulk Hamiltonian theory is incomplete for a system on open surfaces, if its boundary conditions are not specified. In this letter, we report our explicit and systematic construction of a wide class of boundary Hamiltonians for string-net models, to specify the boundary conditions and to be added to the bulk Levin-Wen bulk Hamiltonian.11 We present explicit ground-state wavefunctions and construct creation and hopping operators of boundary excitations in our new approach. (We have also systematically constructed the boundary Hamiltonian of the twisted quantum double model12 of ITO, which is to be reported elsewhere.)

We shall make heavy use of the graphic techniques, of which details can be found in original references11,13. With the graphic rules, a graph equality can be unambiguously turned into usual algebraic equations involving tensors. Our notations follow the conventions in 13.

Preliminaries. Non-chiral bulk intrinsic topological phases in (2+1)-D can be studied by effective discrete topological quantum field theories, such as the LW model, an exactly solvable Hamiltonian model defined on 2d spatial trivalent graphs. The LW model is essentially a discrete gauge theory, defined using a unitary fusion category (UFC) C, e.g., the collection of all representations of a finite or quantum group, as input data (see, e.g., Ref.13). For simplicity, we assume C is multiplicity free. The Hamiltonian is defined in terms of the 6j-symbols over C. The topological properties of the LW model, such as the ground state degeneracy (GSD) and the topological quantum numbers of the quasi-particle excitations are ensured by their invariance under the change of Γ by the Pachner moves. There are three elementary Pachner moves, associated with which are respectively three unitary linear maps13 in the ground-state subspace:

\[T_{2\to2} = \sum_{j_5} G_{j_3}^{j_2j_1j_6} v_{j_3} v_{j_6} \frac{\sqrt{D}}{G_{j_2}^{j_1j_6}} |j_1, j_2, j_3, j_5, j_6\rangle, \]

\[T_{1\to3} = \frac{\sqrt{D}}{G_{j_2}^{j_1j_3j_4}} \sum_{j_4, j_5, j_6} v_{j_2} v_{j_4} v_{j_6} G_{j_3}^{j_1j_2j_5} |j_1, j_2, j_3, j_4, j_5, j_6\rangle, \]

\[T_{3\to1} = \frac{\sqrt{D}}{G_{j_1}^{j_3j_2j_6}} \sum_{j_4, j_5, j_6} v_{j_3} v_{j_5} v_{j_6} G_{j_2}^{j_1j_3j_4} |j_1, j_2, j_3, j_4, j_5, j_6\rangle. \] (1)

where \(j_i \)'s are inequivalent simple objects (usually called string-types) of C, G's are the symmetric 6j-symbols13 over C with normalization \(v_j = 1/G_{00j}^{j0} \), and \(D = \sum_j v_j^2 \). These operators yield a unique transformation between the Hilbert spaces before and after the Pachner moves. We shall denote the unique transformation by \(T \), which is independent of the path of Pachner moves involved.

Frobenius algebra and boundary Hamiltonian. We propose to use the Frobenius algebras in a UFC to specify boundary conditions and construct boundary terms to be added to the LW Hamiltonian. Let \(G \) be a symmetric 6j-symbol over the string-type set \(L \), the set of all (inequivalent) simple objects of \(C \). A Frobenius algebra \(A \) (in \(C \)) is a subset \(L_A \) of \(L \) equipped with a multiplication \(f_{abc} \), satisfying

\[\text{(associativity)} \sum_c f_{abc} f_{ced} G_{def}^{gbc} v_c v_d v_e = f_{age} f_{bdg}, \]

\[\text{(non-degeneracy)} f_{bb^*0} \neq 0, \quad \forall b \in L_A. \] (2)
where all indices take values in \(L_A \). Due to the symmetry conditions of the symmetric 6j-symbols, the multiplication have the following defining properties.

\[
\begin{align*}
(f_{bb}^a) = f_{ab} b^a = f_{bb}^a = 1, \\
(f_{abc}) = f_{cba}, \\
\sum_{ab} f_{abc} f_{cde} v_a v_b = d_A v_c,
\end{align*}
\]

where \(d_A = \sum_{a \in L_A} d_a \) is the quantum dimension of \(A \).

We can express the associative and strong conditions in a compact way graphically:

\[
T \left(\begin{array}{c} a \\ b \\ c \\ d \\ e \\ f \\ g \\ h \\ i \\ j \\ k \\ l \\ m \\ n \\ o \\ p \\ q \\ r \\ s \\ t \\ u \\ v \\ w \\ x \\ y \\ z \\ A \\ B \\ C \\ D \\ E \\ F \\ G \\ H \\ I \\ J \\ K \\ L \\ M \\ N \\ O \\ P \\ Q \\ R \\ S \\ T \\ U \\ V \\ W \\ X \\ Y \\ Z \\ a \\ b \\ c \\ d \\ e \\ f \\ g \\ h \\ i \\ j \\ k \\ l \\ m \\ n \\ o \\ p \\ q \\ r \\ s \\ t \\ u \\ v \\ w \\ x \\ y \\ z \\ A \\ B \\ C \\ D \\ E \\ F \\ G \\ H \\ I \\ J \\ K \\ L \\ M \\ N \\ O \\ P \\ Q \\ R \\ S \\ T \\ U \\ V \\ W \\ X \\ Y \\ Z \end{array} \right) = \left(\begin{array}{c} a \\ b \\ c \\ d \\ e \\ f \\ g \\ h \\ i \\ j \\ k \\ l \\ m \\ n \\ o \\ p \\ q \\ r \\ s \\ t \\ u \\ v \\ w \\ x \\ y \\ z \\ A \\ B \\ C \\ D \\ E \\ F \\ G \\ H \\ I \\ J \\ K \\ L \\ M \\ N \\ O \\ P \\ Q \\ R \\ S \\ T \\ U \\ V \\ W \\ X \\ Y \\ Z \end{array} \right),
\]

\[
T \left(\begin{array}{c} a \\ b \\ c \\ d \\ e \\ f \\ g \\ h \\ i \\ j \\ k \\ l \\ m \\ n \\ o \\ p \\ q \\ r \\ s \\ t \\ u \\ v \\ w \\ x \\ y \\ z \\ A \\ B \\ C \\ D \\ E \\ F \\ G \\ H \\ I \\ J \\ K \\ L \\ M \\ N \\ O \\ P \\ Q \\ R \\ S \\ T \\ U \\ V \\ W \\ X \\ Y \\ Z \end{array} \right) = \left(\begin{array}{c} e \\ \end{array} \right),
\]

Here each vertex carries a multiplication, and an unlabelled thick line implies a summation over its label in \(L_A \). We take this convention in graphical equations throughout the letter.

For simplicity, let us consider a system on an open surface, outside of which is the vacuum. To each boundary (component) \(A \), we associate a Frobenius algebra \(L_A \), and attach an open edge (or a tail), labeled by a string-type \(a \in L_A \), from the vacuum side to each boundary edge. See Fig. 1(a), in which the grey region represents the bulk of the graph, including the edges along the rim of the grey region. Throughout the paper, we shall adopt this convention.

Similar to transformations \([1] \), we can use the Frobenius algebra \(A \) to define unitary transformations associated with 1D Pachner moves on the boundaries of a graph: (with \(u_a = \sqrt{v_a} \))

\[
T_{1\rightarrow 2} \left(\begin{array}{c} a_1 \\ i \\ j \\ \end{array} \right) = \sum_{a_2, a_3} \frac{u_{a_1} u_{a_2} u_{a_3}}{\sqrt{d_A}} \sum_k v_k f_{a_2 a_3} G_{a_2 a_3}^{j^* i a_1^*} \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \\ k \\ i \\ j \\ \end{array} \right),
\]

\[
T_{2\rightarrow 1} \left(\begin{array}{c} a_3 \\ k \\ i \\ j \\ \end{array} \right) = \sum_{a_1, a_2} \frac{u_{a_1} u_{a_2} u_{a_3}}{\sqrt{d_A}} v_k f_{a_2 a_3} G_{a_2 a_3}^{j^* i a_1^*} \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \\ k \\ i \\ j \\ \end{array} \right) \].
\]

Here \(u_a = \sqrt{v_a} \) (sign of square root may be arbitrarily chosen but if fixed once then for all).

With the boundaries, the topological feature of the entire model is described as follows. The ground-state Hilbert space is invariant under any transformation composed of \(T_{2\rightarrow 2}, T_{1\rightarrow 3}, T_{3\rightarrow 1} \) in the bulk and \(T_{1\rightarrow 2}, T_{2\rightarrow 1} \) on the boundary. Associativity ensures that a product of such transformations is unique. We shall show the uniqueness for boundary Pachner moves \(T_{1\rightarrow 2}, T_{2\rightarrow 1} \), as that for bulk Pachner moves shown in Ref.\(^{13} \).

Without loss of generality, consider the transformation from \(N_1 \) open edges to \(N_2 \) open edges (See Fig. 2). The composition of \(T_{1\rightarrow 2} \) and \(T_{2\rightarrow 1} \) amounts a graph structure with \(N_1 \) input edges and \(N_2 \) output edges, where each trivalent vertex is attached with a multiplication. From the associativity condition, the transformation presented by the graph in the dashed box is unique.

In ground states, the boundary degrees of freedom are restricted to \(L_A \). The boundary Hamiltonian reads

\[
H_{\text{bdry}} = -\sum_n \overline{Q}_n - \sum_p \overline{B}_p, \quad \overline{B}_p = \frac{1}{d_A} \sum_{i \in L_A} v_i \overline{B}_p.
\]

Here, \(\overline{Q}_n \) is a boundary edge operator acting on open
edge \(n \), which projects the boundary d.o.f. to \(L_A \subseteq L \):

\[
\overline{Q}_n \left| \begin{array}{c} j_3 \\ j_1 \\ j_2 \\ a_2 \\ a_1 \\ j_4 \end{array} \right. = \delta_{a_2 \in L_A} \left| \begin{array}{c} j_3 \\ j_1 \\ j_2 \\ a_2 \\ a_1 \\ j_4 \end{array} \right. .
\] (8)

And \(\overline{B}_p \) acts on a boundary open plaquette between a pair of nearest neighboring open edges:

\[
\overline{B}_p \left| \begin{array}{c} j_3 \\ j_2 \\ a_2 \\ j_4 \\ a_1 \\ j_1 \end{array} \right. = \sum_{a'_2} a'_2 j_2 j'_2 f_{i''} a'_2 a_2 f_{a_1} t a'_1 \cdot u_{a_2} u_{a_1} u_{a'_2} \times
\]

\[v_{j_2} v_{j_4} v_{j_2} v_{j_4} G^j_{t''} j_{a'_2} j_{a_2} G^j_{t''} j_{a_2} j_{a'_2} G^j_{t'} j_2 a_1 a'_1 \] \[= \sum_{a'_2} \sqrt{D u_{a'_2} u_{a_2}} \left| \begin{array}{c} j_3 \\ j_2 \\ a_1 \\ a'_2 \\ j_4 \\ j_4 \end{array} \right. \] \[\times \sum_{a_2} \delta_{a_2} \overline{B}_p \] \[\left| \begin{array}{c} j_3 \\ j_2 \\ a_1 \\ a_2 \\ j_4 \end{array} \right. \]. \] (9)

Following the same convention as in eq. (5), we can write \(\overline{B}_p \) in a more compact fashion as

\[
\overline{B}_p \left| \begin{array}{c} j_3 \\ j_2 \\ a_2 \\ j_4 \\ a_1 \\ j_1 \end{array} \right. = \mathcal{T} \sum_{a'_2} \frac{\sqrt{D u_{a'_2} u_{a_2}}}{d_A u_{a_1} u_{a_2}} \left| \begin{array}{c} j_3 \\ j_2 \\ a_1 \\ a'_2 \\ j_4 \end{array} \right. \] \[\times \sum_{a_2} \delta_{a_2} \overline{B}_p \] \[\left| \begin{array}{c} j_3 \\ j_2 \\ a_1 \\ a_2 \\ j_4 \end{array} \right. \]. \] (10)

The marked \((\times)\) plaquette will be annihilated by the boundary Pachner moves to generate the coefficients in Eq. (9).

Boundary terms \(\overline{Q}_\nu \) and \(\overline{B}_p \) are shown to be projections commuting with bulk terms \(Q_\nu, B_p \) and other boundary terms \(\overline{Q}_\nu', \overline{B}_p' \). Correspondence properties between bulk and boundary operators are summarized in Table I.

Bulk	Boundary
\(B_{p=\Delta} = T_{1 \rightarrow 3} \cdot T_{3 \rightarrow 1} \)	\(\overline{B}_p = T_{1 \rightarrow 2} \cdot T_{2 \rightarrow 1} \)
\(B_p = \sum_{a_2} \delta_{a_2} B_p' \)	\(\overline{B}_p = \frac{1}{A} \sum_{a_2} v_{a_2} B_p' \)
\(B_p'^\dagger B_p' = \sum_{a_2} \delta_{a_2} B_p' \)	\(\overline{B}_p'^\dagger \overline{B}_p' = \sum_{a_2} \delta_{a_2} \overline{B}_p' \)

TABLE I: Correspondence between Bulk and boundary operators

Ground states. A (right) module over Frobenius algebra \(A \) is a tensor \(\rho^j_{12} \), with \(a \in L_A \) and \(j_1, j_2 \in L \), satisfying

\[
T_{2 \rightarrow 2} \left| \begin{array}{c} j_2 \\ a_2 \\ j_1 \\ j_2 \end{array} \right. = \rho^j_{12} \left| \begin{array}{c} j_2 \\ a_2 \\ j_1 \\ j_2 \end{array} \right. \] \[= \rho_{12} \left| \begin{array}{c} j_2 \\ a_2 \\ j_1 \\ j_2 \end{array} \right. \]. \] (11)

Here a box \(\rho \) at a vertex means that the tensor \(\rho \) is associated with the vertex (e.g., \(\rho^j_{12} \)) on RHS, with a summation over \(c \). We denote all modules over \(A \) by \(Mod_A \).

![Figure 3](image)

FIG. 3: A surface with multiple disconnected boundaries. An \(A \)-boundary has a \(Mod_A \) ground state basis.

The local ground states on a boundary component \(A \) is characterized by \(Mod_A \). See Fig. 3. The basis (for \(M \in Mod_A \)) is given by

\[
|\Phi_M\rangle = |\mathcal{P}M\rangle .
\] (12)

Nevertheless, \(\Phi_M \) may not belong to a ground state of the entire system. The global constraint for no quasiparticle in the bulk may mix local basis on different boundary components. In the following, without loss of generality, we consider the cases on a disk and a cylinder, respectively, with no quasiparticles in the bulk.

On a disk, we can apply the \(T \) transformation to shrink the bulk graph to a single plaquette, bounded by a circle with outward open edges, as in the equation below. The ground state is non-degenerate and expressed by

\[
|\Phi\rangle = \sum_M d_M |\Phi_M\rangle
\] (13)

\[
|\Phi_M\rangle = u_{a_1} u_{a_2} \cdots |\rho_M|_{12} \cdots |\rho_M|_{13} \cdots
\] (14)

A cylinder with \(A \)- and \(B \)-boundaries can be effectively studied on a circular wall (see Fig. 11). The ground states may be degenerate. The ground state degeneracy (GSD) in terms of \(f \) and \(G \) is explicitly computed by

\[
GSD = \frac{1}{d^2_A} \sum_{a \neq b'} \sum_{a \neq b'} \sum_{a \neq b'} \sum_{a \neq b'} v_a v_{b'} v_a v_{b'} f_{a' \Rightarrow a} f_{a' \Rightarrow a} f_{a' \Rightarrow a} f_{a' \Rightarrow a} G_{a' \Rightarrow a} G_{a' \Rightarrow a} G_{a' \Rightarrow a} G_{a' \Rightarrow a} \] \[\times G_{a' \Rightarrow a} \] \[\times G_{a' \Rightarrow a} \] \[\times G_{a' \Rightarrow a} \]. \] (15)
The global constraint on the Mod_A and Mod_B basis leads to a (slightly generalized) (A, B)-bimodule structure P satisfying

$$ T\left(\left| \begin{array}{c} b_1 \\ j_1 \\ a_1 \\ b_2 \\ j_2 \\ a_2 \\ \end{array} \right| \right) = \left| \begin{array}{c} b_1 \\ j_1 \\ a_1 \\ P \\ j_2 \\ a_2 \\ \end{array} \right| $$

(16)

for $j_1, j_2 \in L$, $a \in L_A$, and $b, c \in L_B$. Note that a box P is not a 4-valent vertex but a composition of two trivalent vertices (in general, two trivalent vertices may carry extra indices). We denote the collection of all (AB)-bimodules by $\text{Mod}_{A|B}$. GSD equals the total number of (A, B)-bimodules. The ground state basis is similarly expressed as in eq. (14), with ρ replaced by P.

Boundary Excitations. The elementary boundary excitations are characterized by topological quasiparticles. On an A-boundary component, quasiparticle species are identified with the (A, A)-bimodules. We denote the collection of all (A, A)-bimodules. The ground state basis is similarly expressed as in eq. (14), with ρ replaced by P.

$$ W_M \left| \begin{array}{c} b_1 \\ j_1 \\ a_1 \\ b_2 \\ j_2 \\ a_2 \\ \end{array} \right| = T\left(\left| \begin{array}{c} b_1 \\ j_1 \\ a_1 \\ j_2 \\ a_2 \\ \end{array} \right| \right) $$

(17)

for $M \in \text{Mod}_{A|A}$. In this example, the operator W_M creates an M-type and M^*-type quasiparticles on both neighboring open edges of the middle open edge. By acting creation operators on ground states, we get an elementary boundary excitation basis $W_M |\Phi\rangle$.

Quasiparticles can move along the boundary under the hopping operator H_M defined by

$$ H_M \left| \begin{array}{c} b_1 \\ j_1 \\ a_1 \\ \end{array} \right| = T\left(\left| \begin{array}{c} b_1 \\ j_1 \\ a_1 \\ P \end{array} \right| \right) $$

(18)

that hops an M-type quasiparticle initially at the bottom open edge upward across the edge.

An example. Consider the input data for Fibonacci model has Label set $L = \{0, 2\}$, sometimes denoted by $\{1, \tau\}$. Let $\phi = \frac{1 + \sqrt{5}}{2}$ be the golden ratio. The quantum dimensions are $d_0 = 1$ and $d_2 = \phi$. The fusion rules are $\delta_{000} = \delta_{022} = \delta_{222} = 1, \delta_{002} = 0$, and the nonzero independent 6j-symbols G are given by

$$ G_{000}^{000} = 1, G_{022}^{022} = G_{222}^{022} = 1/\phi, $$

$$ G_{000}^{222} = 1/\sqrt{\phi}, G_{222}^{222} = -1/\phi^2. $$

(19)

There are two Frobenius algebras: $A_1 = 0$, or $A_2 = 0 \oplus 2$. Each $j \in L$ is an A_1-module, with action $[\rho_j]_{jk}^0 = 1$. For A_2, $L_A = \{0, 2\}$, and $f_{222} = \phi^{-3/4}$. The Frobenius algebra A_2 has two modules: (1) M_0 is A_2 itself, with $[\rho_{M_0}]_{jk}^0 = f_{jk}$; (2) $M_1 = 2$, with $[\rho_{M_1}]_{jk}^2 = -\phi^{1/4}$. The two Frobenius algebras A_1 and A_2 give rise to equivalent boundary conditions. They both lead to two boundary quasiparticles species and $GSD = 2$ on cylinder.

Discussion. Here we first elaborate on our motivations. Gapping conditions and GSD of Abelian ITOs on open surfaces have recently been understood\cite{23,24}. For non-Abelian ITOs on open surfaces, the gapping conditions and GSD counting have recently been solved by the mechanism of anyon condensation\cite{25,26} and by solving certain algebraic equations\cite{27}. These studies of ITOs on open surfaces are however algebraic and non-dynamical, which limits their applicability, because they lack a Hamiltonian with explicit boundary terms.

On the other hand, the ground states of an ITO can be effectively described by a continuum Chern-Simons gauge theory. A Chern-Simons theory on an open surface must contain a boundary term\cite{28}; otherwise the bulk Chern-Simons action is not gauge invariant in the presence of spatial boundary. This fact is usually interpreted as the holographic correspondence between the bulk and the boundary. Such holography exists generally in ITOs in two spatial dimensions. Dynamical theories of topological orders are nevertheless usually formulated using discrete Hamiltonian models. It is thus desirable to demonstrate how the holographic principle works in discrete dynamical models for 2d ITOs.

Our approach has the following advantages over the existing approaches to gapped ITOs on open surfaces. First, our approach depends on the input data of the model, respecting the usual Hamiltonian dynamics. Second, our boundary Hamiltonians, together with the input data, automatically classifies the gapped boundaries and domain walls of ITOs. Third, by solving the total Hamiltonian, we can obtain the explicit wave functions of the ground and excited states, all in the form of tensor network states. This will provide us a very detailed dynamic understanding of the stationary topological states of the whole bounded system, especially about what is happening on and near the boundary. For example, our model will enable us to study the boundary excitations explicitly. Also anyon condensation will be understood at more microscopic scales. These studies will be reported later separately. Moreover, certain Abelian\cite{22} and non-Abelian ITOs\cite{29,31} on the torus have recently been experimentally simulated on physical systems by imposing periodic boundary conditions. Our approach would make experimental simulation of ITOs on open surfaces possible, and may help construct new quantum computing codes using the boundary states.

Note added: In preparation of this letter, we noticed a recent work\cite{32} by Wang, Wen and Witten that constructed the gapped interfaces between symmetry protected topological and symmetry enriched topological states for finite groups.
Acknowledgments

We appreciate Zhenghan Wang, Liang Kong, Ren Pankovich, Zhu-Xi Luo, and Ethan Lake for discussions.

* Electronic address: yuting.phys@gmail.com
† Electronic address: ydwan@fudan.edu.cn
‡ Electronic address: yswu@fudan.edu.cn

1 Wen X-G 1989 Physical Review B 40 7387.
2 Wen X-G 1991 Int. J. Mod. Phys. B 5 1641.
3 Dennis E Kitaev A Landahl A and Preskill J 2002 Journal of Mathematical Physics 43 4452.
4 Kitaev A 2003 Annals of Physics 303 2.
5 Freedman M Kitaev A Preskill J and Wang Z 2003 Bull. Amer. Math. Soc. 40 31.
6 Stern A and Halperin B Phys Rev Lett 96 016802.
7 Nayak C Stern A Freedman M and Das Sarma S 2008 Rev Mod Phys 80 1083.
8 Beigi S Shor P and Whalen D 2011 Comm Math Phys 306 663.
9 Cong I, Cheng M and Wang Z 2016 arXiv:1609.02037
10 Cong I, Cheng M and Wang Z 2017 arXiv:1703.03564
11 Levin M and Wen X-G 2005 Phys Rev B 71 21.
12 Hu Y Wan Y and Wu Y-S 2013 Phys Rev B 87, 125114.
13 Hu Y Stirling S and Wu Y-S 2012 Phys Rev B 85 075107.
14 Wu Y-S 2016 Mod Phys Lett B 30 1630003.
15 Kitaev A and Kong L 2012 Comm Math Phys 313 351.
16 Levin M 2013 Phys Rev X 3 021009.
17 Kong L 2014 Nucl Phys B 886 436.
18 Barkeshli M Jian C-M and Qi X-L 2013 Phys Rev B 88 241103.
19 Barkeshli M Jian C-M and Qi X-L 2013 Phys Rev B 88 235103.
20 Wang J and Wen X-G 2015 Phys. Rev. B 91 125124.
21 Hung L-Y and Wan Y 2013 Phys Rev B 87 195103.
22 Iadecola T Neupert T Chamon C and Mudry C 2014 Phys Rev B 90 205115
23 Barkeshli M Oreg Y and Qi X-L 2014 arXiv:1401.3750.
24 Barkeshli M Berg E and Kivelson S 2014 Science 346 6210.
25 Hung L-Y and Wan Y 2015 Phys Rev Lett 114 076401.
26 Hung L-Y and Wan Y 2015 JHEP 1507 120.
27 Lan T Wang J and Wen X-G 2015 Phys Rev Lett 114 9.
28 Elitzur S Moore G Schwimmer A and Seiberg N 1989 Nucl Phys B 326.
29 Luo Z Li J Li Z Hung L-Y Wan Y Peng and Du J 2016 arXiv:1608.06963.
30 Lesanovsky I and Katsura H 2012 Phys Rev A 86 041601.
31 Li K Wan Y Huang L-Y Lan T Long G Lu D Zeng B and Laflamme 2017 Phys Rev Lett 118 080502.
32 Wang J Wen X-G and Witten E 2017 arXiv:1705.06728.