Cytochrome P450 1A1 gene polymorphisms and digestive tract cancer susceptibility: a meta-analysis

Anjing Ren a, Tingting Qin a, Qianqian Wang a, Haina Du b, Donghua Zhong c, Yibing Hua c, Lingjun Zhu a, *

a Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
b Department of Oncology, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing, China
c Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China

Received: December 7, 2015; Accepted: February 25, 2016

Abstract

Cytochrome P450 1A1 (CYP1A1) is a phase I enzyme that regulates the metabolism of environmental carcinogens and alter the susceptibility to various cancers. Many studies have investigated the association between the CYP1A1 MspI and Ile462Val polymorphisms and digestive tract cancer (DTC) risk in different groups of populations, but their results were inconsistent. The PubMed and Embase Database were searched for case–control studies published up to 30th September, 2015. Data were extracted and pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the relationship. Totally, 39 case–control studies (9094 cases and 12,487 controls) were included. The G allele in Ile/Val polymorphism was significantly associated with elevated DTC risk with per-allele OR of 1.24 (95% CI = 1.09–1.41, P = 0.001). Similar results were also detected under the other genetic models. Evidence was only found to support an association between MspI polymorphism and DTC in the subgroups of caucasian and mixed individuals, but not in the whole population (the dominant model: OR = 1.19, 95% CI = 0.94–1.91, P = 0.146). In conclusion, our results suggest that the CYP1A1 polymorphisms are potential risk factors for DTC. And large sample size and well-designed studies with detailed clinical information are needed to more precisely evaluate our founding.

Keywords: CYP1A1 • digestive tract cancer • polymorphism • meta-analysis

Introduction

Digestive tract cancers (DTCs), well known as the most common malignant tumours globally, include oesophageal, gastric and colorectal cancers [1–4]. Data from Global Cancer Statistics, 2012 [1] suggest that DTC has contributed to an enormous burden on society today. Actually, colorectal cancer is confirmed as the third most frequently diagnosed cancer in males and the second in females. Both the incidence rates of gastric cancer and oesophageal cancer keep the highest in Eastern Asia. Despite of the updating advances in surgery and chemotherapy, DTC remains the high-mortality disease, even the leading cause of cancer-related death [4]. As generally accepted, the mechanism of the digestive tract tumorigenesis is a comprehensive combination of multiple risk factors including environmental conditions, dietary habits and genetic predispositions [5–7]. Among these, metabolism-associated genetic susceptibility has become an important focus. As a member of the CYP1 family, Cytochrome P4501A1 (CYP1A1) regulates the metabolism of many endogenous and exogenous carcinogens [3, 8, 9]. CYP1A1, as its protein-coding gene, is located on Chr15q22–q14, encoding aryl hydrocarbon hydroxylase. Aryl hydrocarbon hydroxylase is active in metabolizing some pro-carcinogens, particularly the polycyclic aromatic hydrocarbons (PAHs), into intermediates. The intermediate substitues may contribute to carcinogenesis eventually if bind to DNA and form adducts [10–15].

CYP1A1 gene consists of many single nucleotide polymorphisms (SNPs). These diverse variants could break the initial physiological equilibrium between activation and detoxification of metabolic carcinogens by adjusting the quantity and function of such enzyme. The two functional polymorphisms in CYP1A1 gene, MspI (T →C, occurring in the noncoding 3'-flanking region, rs4646903) and Ile462Val (A→G, found at codon 462 in exon 7,
rs1048943), may associate with the risk of DTC by the mechanism above [9].

Many studies have been carried out to examine the association between the two polymorphisms of CYP1A1 and risk of many cancers [9]. However, because of different subject selections, the results were inconsistent. In addition, the relationship for DTC risk has been only explored in Chinese population by Liu et al. [14]. Hence, to further explore that association in the whole of humanity and clarify the former results, we conduct this meta-analysis with more eligible studies.

Materials and methods

Literature search strategy

The published case–control studies about the associations between the CYP1A1 polymorphisms and DTC were searched manually on PubMed and Embase Database up to 30th September, 2015. The search was limited to English language papers, using the key words ‘(CYP1A1 or P4501A1 or MspI or exon7 or Ile/Val or cytochrome)’ and ‘(polymorphism)’ and ‘(colorectal cancer or gastric cancer or oesophageal cancer)’. And the following criteria were established: (i) case–control studies, (ii) exploring the association between MspI or Ile/Val polymorphism and DTC, (iii) DTC confirmed histologically or pathologically, (iv) providing sufficient data to calculate the odds ratio (OR) with its 95% confidence interval (CI) and P-value. The exclusion criteria were as follows: (i) a case report or a review, (ii) no sufficient genotype frequency, (iii) a duplicated publication [10–15].

Data extraction

Based on the inclusion criteria listed above, two authors independently extracted data from all qualified publications. Controversies were eliminated through discussion with another investigator. Following data were collected: first author’s name, year of publication, cancer type, country and ethnicity of population, genotyping method, source of controls, number of cases and controls with different genotypes, adjusted OR and 95% CI and adjustment of variables if available and Hardy–Weinberg equilibrium (HWE) [14, 15] (See in Tables 1 and 2).

Statistical analysis

The HWE in control group was assessed by Pearson’s goodness-of-fit chi-square test and P < 0.05 was considered as significant disequilibrium. OR and 95% CI were calculated for CYP1A1 MspI/Ile462Val polymorphisms and DTC risk in each study. The pooled OR was also determined by the Z-test (if P < 0.05, then considered as significant). Stratified analyses by cancer type, source of controls, ethnicity, sample size and genotyping method were performed [9–15]. The influence of study size of each evaluated publication on the results was assessed by the weight.

Heterogeneity in our meta-analysis was assessed by the chi-square-based Q-test and /P/. A fixed-effects model (the Mantel–Haenszel method) was applied if P > 0.05, which indicated no or little heterogeneity among eligible studies. Otherwise, the random-effects model (Der Simonian and Laird method) was used. Galbraith graph was performed to explore the source of heterogeneity. Sensitivity analysis was tested to assess the stability of our results. The funnel plot was performed for potential publication bias. Funnel plot asymmetry was statistically assessed by Egger’s linear regression test (publication bias exists if P < 0.05). All statistical analyses were carried out by Stata software (version 12.0, StataCorp LP, College Station, TX, USA) [13–15].

Results

Characteristics of studies

Totally 37 publications [16–52] containing 39 studies (6 pieces not consistent with HWE were also included), which investigated the relationship between CYP1A1 (MspI rs4646903 or Ile/Val rs1048943) polymorphisms and DTC risk, were included in the present meta-analysis. The literature selection process was illustrated in Figure 1. All the eligible studies involved 9094 DTC cases and 12,487 controls. 13 studies (2 oesophageal cancer studies, 5 gastric cancer studies and 6 colorectal cancer studies) were identified for the MspI polymorphism, including a total of 1717 cases and 2046 controls. And for the Ile/Val polymorphism, 26 studies (11 oesophageal cancer studies, 5 gastric cancer studies and 10 colorectal cancer studies) were retrieved, covering a total of 7377 cases and 10,441 controls. More detailed characteristics about population source, ethnicity distribution, sample size, genotyping method and adjusted OR and 95% CI and adjustment of variables if available can be seen in Tables 1 and 2.

Association of MspI with digestive tract cancer

Overall, no sufficient evidence was found to support an association between increased susceptibility of DTC and MspI (rs4646903) polymorphism in all genetic models when all the eligible case–control studies were pooled together. Moreover, the adjusted pooled result was consistent with the crude one (data shown in Table 3 and Fig. 2A for the dominant model). In subgroup analysis by cancer type, a significant association was only found between MspI polymorphism and elevated colorectal cancer risk (the allele contrast: OR = 1.82, 95% CI = 1.16–2.86, P = 0.010). However, because of unavailable adjusted data on colorectal cancer, this positive result could not be validated (Fig. S1). Stratifying for ethnicity, an increased susceptibility was found in individuals with CC genotype among Caucasians and mixed population (the codominant model: OR = 1.39, 95% CI = 1.06–1.82, P = 0.018; OR = 5.7, 95% CI = 1.37–23.60, P = 0.016 respectively). However, no evidence was observed to prove that among Asians. In the stratified analysis by the source of controls, sample size or genotyping method, some statistical correlations were observed in the group of ‘population with sources unreported (NR)’, ‘size <300’ and ‘PCR-RFLP method’ respectively (data shown in Table S1).

Association of Ile/Val with digestive tract cancer

The G allele was significantly associated with elevated DTCs risk with per-allele OR of 1.24 (95% CI = 1.09–1.41, P = 0.001). Similar
Table 1 Characteristics of CYP1A1 MspI polymorphism included in the meta-analysis

Year	Ethnicity	Source	Case Genotypes N	Control Genotypes N	Method	Sample size	P for HWE	OR 95% CI*	Adjustment of variables	
			TT/T/T/T/T/T/T/T	CC/T/T/T/T/T/T/T						
Jain et al.	2007	Asian	PB 171 59 83 19	201 79 99 23	PCR	≥300	0.629	1.1 (0.71–1.7) 1.1 (0.55–2.2)	Age, gender, smoking, drinking	
Malik et al.	2010	Asian	PB 135 76 52 7	195 95 88 12	MLPA	≥300	0.361	0.72 (0.45–1.14) 0.70 (0.26–1.87)	Age, gender	
Ma et al.	2006	Asian	PB 60 26 27 7	57 26 28 3	PCR-RFLP	<300	0.423	– – –	– –	
Malik et al.	2009	Asian	HB 108 60 46 2	195 95 88 12	PCR	≥300	0.361	0.84 (0.52–1.37) 0.34 (0.07–1.60)	Age, gender	
Luo et al.	2011	Asian	PB 123 38 61 24	129 47 54 28	PCR-RFLP	<300	0.261	– – –	– –	
Ghoshal et al.	2014	Asian	PB 88 41 36 11	170 78 80 12	PCR-RFLP	<300	0.370	– – –	– –	
Darszy et al.	2011	Caucasian	PB 11 9 0 2	56 54 1 1	PCR-RFLP	<300	**0.000**	0.87 (0.5–1.5) 1.8 (0.7–4.4)	Age, gender	
Sivasman et al.	1994	Mixed	PB 43 23 10 10	47 23 22 2	PCR-RFLP	<300	0.508	– – –	– –	
Ye et al.	2002	Caucasian	NR 41 35 6 0	82 73 9 0	PCR-RFLP	<300	0.871	– – –	– –	
Tabeth et al.	2006	Caucasian	NR 118 94 20	100 91 9 0	PCR-RFLP	<300	0.895	– – –	– –	
Darszy et al.	2011	Caucasian	PB 46 42 2	56 54 1	PCR-RFLP	<300	**0.000**	– – –	– –	
Saeed et al.	2013	Asian	HB 94 70 21 3	79 73 6 0	PCR-RFLP	<300	0.940	– – –	– –	
Rudolph et al.	2011	German	PB 679 539 134 6	679 564 102 13	KASPar assays	≥300	**0.007**	– – –	– –	

Significance of bold value: P < 0.05 for HWE is considered as significant disequilibrium.

*Adjusted. EC: oesophageal cancer; GC: gastric cancer; CC: colorectal cancer; HB: Hospital based; PB: Population based; NR: no record; HWE: Hardy–Weinberg equilibrium; PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism; PCR–ASO: PCR–allele specific oligonucleotide.
Table 2 Characteristics of *CYP1A1* Ile462Val polymorphism included in the meta-analysis

Study	Year	Ethnicity	Source	N	Genotypes	Method	Sample size	OR 95% CI*	Adjustment of variables				
					AA AG GG								
					GA/AA GG/AA								
Morita et al.	1997	Asian	HB	53	32 20 1	PCR	<300	0.355	– – –				
Nimura et al.	1997	Asian	HB	89	50 26 13	PTC-150	<300	0.518	– – –				
Hori et al.	1997	Asian	NR	101	62 37 2	non-Ri-SSCP	>300	0.752	– – –				
Lieshout et al.	1999	Caucasian	NR	34	26 8 0	PCR-RFLP	>300	0.665	– – –				
Wang et al.	2002	Asian	HB	127	25 58 44	PCR	<300	0.915	– – –				
Wu et al.	2002	Asian	HB	146	68 62 16	PCR-RFLP	>300	0.762	1.34 (0.86-2.07) 2.48 (1.15-5.34) Age, education, ethnicity, smoking, drinking, and areca consumption				
Wang et al.	2003	Asian	PB	62	30 28 4	PCR-RFLP	>300	0.870	– – –				
Wang et al.	2004	Asian	HB	127	21 56 50	PCR	<300	0.915	1.7 (0.83-3.58) 3.3 (1.49-7.61) Tobacco smoking, alcohol drinking, FHEC				
Abbas et al.	2004	Caucasian	PB	79	61 9 9	PCR-RFLP	>300	0.000	2.63 (0.84-8.28) – Age, sex				
Wang et al.	2012	Asian	PB	565	304 225 36	PCR	>300	0.981	– – –				
Yun et al.	2013	Asian	PB	157	73 72 12	PCR-RFLP	>300	0.348	2.05 (1.19-3.54) 1.12 (0.41-3.04) Age, gender, smoking, drinking and FHC				
Suzuki et al.	2004	Asian	HB	144	84 51 9	PCR	>300	0.865	– – –				
Li et al.	2005	Asian	HB	102	53 27 22	PCR	>300	0.910	0.59 (0.26-1.34) 5.91 (1.28-27.24) Age, sex, education, job, drinking, smoking				
Study	Year	Ethnicity	Source	Case	Genotypes	Control	Genotypes	Method	Sample size	P for HWE	OR 95% CI*	Adjustment of variables	
---------------	------	-----------	--------	------	-----------	---------	-----------	--------	-------------	-----------	------------	-------------------------	
Shen et al.	2005	Asian	PB	112	70 36 6	676	412 226 38	PCR-RFLP	≥300	0.639	0.9 (0.5–1.4)	0.7 (0.2–1.8)	Age, gender, living areas, FHC, drinking
Agudo et al.	2006	Caucasian	PB	243	229 13 1	906	874 62 0	SNP500cd	≥300	0.578	0.90 (0.48–1.68)	–	Age, sex, centre, and date of blood extraction
Kobayashi et al.	2009	Asian	HB	141	91 44 6	286	162 109 15	MassARRAY system	≥300	0.832	0.79 (0.40–1.57)	2.01 (0.45–9.48)	H. p status, smoking, drink, FHGC, BMI, total food intake, JA membership

CC

Sivanam et al.	1994	Mixed	PB	43	32 9 2	47	33 14 0	PCR-RFLP	≥300	0.487	–	–	–
Kiss et al.	2000	Mixed	PB	163	119 41 3	163	132 31 0	PCR-ASO	≥300	0.407	–	–	–
Slattery et al.	2004	Mixed	HB	1791	1632 148 11	2180	1997 171 12	PCR	≥300	**0.001**	1.0 (0.7, 1.4)	1.5 (0.5, 4.9)	Age, sex
Little et al.	2006	Caucasian	PB	251	235 16 0	396	372 24 0	PCR	≥300	0.824	1.31 (0.59–2.91)	–	Age, sex, FHCC, aspirin use, use of other NSAIDs and physical activity
Yeh et al.	2007	Asian	HB	717	400 228 89	729	410 265 53	PCR-RFLP	≥300	0.558	–	–	–
Yoshida et al.	2007	Asian	NR	66	34 27 5	121	79 37 5	PCR-RFLP	≥300	0.968	1.54 (0.78–3.04)	1.99 (0.41–9.63)	Age, gender, smoking habit
Pereira Serafin et al.	2008	Mixed	PB	114	14 97 3	114	81 33 0	PCR-RFLP	≥300	0.196	–	–	–
results were also detected under other genetic models and in our adjusted pooled result (data shown in Table 3 and Fig. 2B, the dominant model). In the further subgroup analysis based on tumour type, the statistics strongly supported the significant relationship between Ile/Val and the chance of suffering oesophageal and colorectal cancer (the allele contrast: OR = 1.36, 95% CI = 1.19–1.56, P = 0.000, OR = 1.27, 95% CI = 1.01–1.61, P = 0.043 respectively). But the positive result was only observed in oesophagus cancer from the adjusted result partially together (Fig. S2). A significant association was also observed in Asians (the codominant model: OR = 1.62, 95% CI = 1.26–2.09, P = 0.000), but not in caucasians or mixed individuals. Stratified by the source of controls, significant association was observed both in HB and NR group. Stratified by sample size and genotyping method, associations were found in most groups. Detailed analyses of the genetic variant are provided in Table S2.

Heterogeneity analyses

For MspI polymorphism, moderate heterogeneity was detected (e.g. the dominant model: \(I^2 = 47.1\% \), \(P_h = 0.030 \)). As shown in Tables S3 and S4, subgroup analyses stratified by cancer type, ethnicity, source of controls, sample size and genotyping method could not explain the source of heterogeneity at length. Hence, to further explore the heterogeneity source, we performed Galbraith graph. The study conducted by Saeed et al. [24] may be the main source of heterogeneity (data shown in Fig. 3A). Removing this study, the result of the meta-analysis did not change essentially (e.g. the dominant mode: OR = 1.10, 95% CI = 0.90–1.35, \(P = 0.336 \)), but its heterogeneity decreased significantly (the dominant model: \(I^2 = 28.6\% \), \(P_h = 0.046 \) (Fig. S3)). Similar results were observed in other genetic models. In the same way, we found the source of heterogeneity in Figure 3B for Ile/Val polymorphism. When we removed the study conducted by Pereira Serafim et al. [47], the heterogeneity decreased sharply, while the results remained qualitatively (the dominant mode: OR = 1.14, 95% CI = 1.03–1.27, \(P = 0.016 \); \(I^2 = 34.8\% \), \(P_h = 0.046 \) (Fig. S4)).

Sensitivity analyses

The corresponding pooled ORs were not qualitatively influenced when any particular study had been removed from the meta-analysis (including the studies not conforming to HWE) for the two polymorphisms respectively (see in Fig. 4A and B). It confirmed that the results of the present meta-analysis are reliable and stable.

Publication Bias

Begg’s funnel plot and Egger’s test were performed to diagnose the publication bias of papers. The shapes of the funnel plots did not reveal any evidence of obvious asymmetry in all comparison models for MspI (e.g. the dominant model in Fig. 5A). Statistically the results
of both tests showed no publication bias (Begg’s test \(P = 0.127 \), Egger’s test \(P = 0.136 \), \(t = 1.61 \), 95% CI = −0.46 to 2.97). Regarding \(\text{Ile/Val} \), no publication bias was detected as well in the dominant model (Begg’s test \(P = 0.071 \), Egger’s test \(P = 0.085 \), \(t = 1.80 \), 95% CI = −0.23 to 3.30) (Fig. 5B).

Discussion

CYP1A, the subfamily of Cytochrome P450, is an important phase I metabolic enzyme. As a key subtype of CYP1A, CYP1A1 is distributed widely in the kidney, lung, stomach, colon, larynx, placenta, skin, and digestive tract. Understanding the genetic polymorphisms of CYP1A1 is essential for its functional study.

Table 3 The overall results for MspI and Ile462Val polymorphisms in CYP1A1 and digestive tract cancer risk

	OR	95% CI	\(P^* \)	\(I^2 \) (%)	\(Ph^* \)	OR*	95% CI*	\(P^* \)	\(I^2 \) (%)	\(Ph^* \)	
MspI											
Allele											
C/T	1.24	0.99–1.54	0.058	59.60%	0.003	–	–	–		–	
Dominant	CC+CT/TT	1.19	0.94–1.91	0.146	47.10%	0.030	–	–		–	
Resessive	CC/CT+TT	1.32	0.80–2.17	0.283	49.50%	0.026	–	–		–	
Codominant	CT/TT	1.12	0.88–1.42	0.341	42.00%	0.055	0.88	0.69–1.12	0.296	0.0%	0.624
	CC/TT	1.30	0.80–1.21	0.296	43.50%	0.053	1.01	0.64–1.62	0.937	24.4%	0.265
Ile462Val											
Allele											
G/A	1.24	1.09–1.41	\(\textbf{0.001} \)	69.40%	0.000	–	–	–		–	
Dominant	GA+GG/AA	1.27	1.07–1.50	\(\textbf{0.006} \)	74.40%	0.000	–	–		–	
Resessive	GG/AA+GA	1.49	1.21–1.82	\(\textbf{0.000} \)	22.30%	0.157	–	–		–	
Codominant	GA/AA	1.21	1.02–1.45	\(\textbf{0.032} \)	74.20%	0.000	1.03	0.92–1.67	0.593	37.9%	0.074
	GG/AA	1.58	1.24–2.00	\(\textbf{0.000} \)	35.40%	0.042	1.49	1.23–1.96	\(\textbf{0.005} \)	30.1%	0.160

Significance of bold value: \(P < 0.05 \) means a significant relationship between the polymorphism and digestive tract cancer risk.

*Adjusted. \(Ph \): \(P \)-value of Q-test for heterogeneity identification; \(I^2 \) index: a quantitative measurement which indicates the proportion of total variation in study estimates that is due to between-study heterogeneity.
lymphocyte, brain and other tissues [14]. What’s more, recent studies have demonstrated that it involves the metabolism of some exogenous carcinogens such as PAHs. CYP1A1 gene can promote the carcinogenic process by converting PAHs into their ultimate DNA-binding forms [11].

MspI and Ile/Val, the main gene polymorphisms of CYP1A1, have been both verified associated with many kinds of cancers by large number of meta-analyses [9]. However, inconsistent results have been reported. To clarify this inconsistency, this meta-analysis was established. To our best knowledge, it is the first one to explore the association of CYP1A1 polymorphisms and DTC risk in the whole population. Correlation association between CYP1A1 Ile/Val polymorphism and DTC susceptibility were detected in our meta-analysis. While no evidence showed the association between CYP1A1 MspI polymorphism and DTC risk. The overall result is consistent with that of the meta-analysis performed by Liu et al. [14] which was designed only in Chinese population.

Stratified by cancer type, the MspI CC genotype carriers were confirmed with an increased susceptibility to colorectal cancer but not to esophageal or gastric cancer. While an A to G mutation in Ile/Val polymorphism increased the cancer risk in EC and CC groups. The results were partially inconsistent with Wu et al. [9]. In fact, the studies we included in the present meta-analysis were updated compared with Wu et al. And unhealthy eating habits could contribute to the digestive tract damage, such as excessive drinking. That is why different primary cancers of digestive tract may be caused by similar risk factors [13]. On the other hand, DTC includes so many kinds of malignant tumours that heterogeneities among

Fig. 2 (A) Forest plot of digestive cancer risk associated with MspI polymorphism (the dominant model CC + CT versus TT). (B) Forest plot of digestive cancer risk associated with Ile/Val polymorphism (the dominant model GA+GG versus AA).

Fig. 3 (A) Galbraith graph for MspI polymorphism (the dominant model CC + CT versus TT): the study conducted by Saeed et al. may be the main source of heterogeneity. (B) Galbraith graph for Ile/Val polymorphism (the dominant model GA+GG versus AA): the study conducted by Pereira Serafim et al. may be the main source of heterogeneity.
them will be found. One reason for the issue may be that the gene–
gene and gene–environment interactions mechanisms differ in
diverse digestive tract parts. To our common knowledge, some of
the digestive tract tumours have their specific risk factors. For
instance eating spicy and hot food can evaluate the risk of oesopha-
geval cancer, whereas diet with high fat and low fibre may enhance
the incidence of colorectal cancer. In addition, researchers have ver-
ified that *Helicobacter pylori* infection significantly increased suscep-
tibility to gastric cancer [5, 6, 13, 18]. In a word, the aetiological
factors sensitive to various types of DTCs are not all the same. In
the subgroup analysis by ethnicity, significant difference was
detected in caucasian and mixed group for *MspI* polymorphism. Interestingly, high corelarity was otherwise observed in Asian

Fig. 4 (A) Influence analysis of the summary odds ratio coefficients on the association between *MspI* polymorphism with digestive tract cancers risk (the dominant model CC + CT versus TT). Results were computed by omitting each study (left column) in turn. Bars, 95% CI. (B) Influence analysis of the summary odds ratio coefficients on the association between Ile/Val polymorphism with digestive tract cancers risk (the dominant model GA + GG versus AA). Results were computed by omitting each study (left column) in turn. Bars, 95% CI.

This think-provoking phenomenon may excellently reveal that genetic diversity exactly exists among various ethnicities across countrywide. Individuals, disturbing in different places of the world, will experience different environments, including climate, temperature and radiation [7] and will form diverse lifestyles especially a variety of eating habits. Both of the above will contribute to the genetic background discrepancy among ethnicities. In addition, we conduct two subgroup analyses for adjusted status (Yes or no) and adjusted status especially for smoking history (Yes or no) for Ile/Val polymorphism. The result in every subgroup is corresponding (Table S5), which verified the reliability of our results again. As the number of studies with adjusted data for *MspI* polymorphism is only 4, and moreover, only one study

Fig. 5 (A) Begg’s funnel plot for publication bias test for *MspI* polymorphism (the dominant model CC + CT versus TT). Each point represents a separate study for the indicated association. (B) Begg’s funnel plot for publication bias test Ile/Val polymorphism (the dominant model GA+GG versus AA). Each point represents a separate study for the indicated association.
provided adjusted data for smoking, we did not carry out the analyses for MspI polymorphism.

Some limitations and potential bias cannot be ignored in our meta-analysis. First, we centre on the heterogeneity. Moderate and high heterogeneity were detected among the studies for MspI and Ile/Val respectively. Through Galbraith graph, we found the study conducted by Saeed et al. [24] count for the main source of heterogeneity for MspI. For Ile/Val, the heterogeneity mainly came from study conducted by Pereira Serafim et al. [47]. Through reviewing the two papers, we found some reasons to explain that. In the former study, the population was from Saudi Arabia and the number of case and control group is 94/79. While in the later, the population was from Brazil and the number of case and control group is 114/114. In our point, both Saudi Arabia and Brazil have vast territories and long histories. Hence, maybe the ethnic origins are complex. And the lifestyles and customs may vary significantly across the two countries, respectively, which would contribute to great heterogeneity. What is more, the sample sizes of both studies are relatively smaller. Concluding from the results of subgroup analyses, the sample size, the source of controls and the genotyping method also influence the heterogeneity in a certain degree. Thus, more studies with large enough sample sizes and more detailed criteria are warranted. Lastly, published studies were included in our studies, whereas many other unpublished data were ignored. Therefore, potentially publication bias will exist in our study.

In summary, our meta-analysis revealed the significant association between the CYP1A1 Ile462Val polymorphism and increased digestive tract cancers risk. While no sufficient evidence was found to support the association between the CYP1A1 MspI polymorphism and DTC. In the subgroup analyses, the positive results were found in CC group, Caucasians and mixed individuals for MspI polymorphism. Our results suggest that the CYP1A1 polymorphisms are potential risk factors for DTC. Large sample size and well-designed studies with more clinical information like age, gender, smoking and drinking are needed to clarify our finding.

Acknowledgements

This study was partially supported by the National Natural Science Foundation of China (NSFC 81472634) and Jiangsu Province Clinical Science and Technology Projects (Clinical Research Center, BL2012008).

Conflict of interest

The authors declare no competing financial interest.

References

1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65: 87–108.
2. Peleteiro B, Castro C, Morais S, et al. Worldwide burden of gastric cancer attributable to tobacco smoking in 2012 and predictions for 2020. Dig Dis Sci. 2015; 60: 2470–6.
3. Lakhoo K. Neonatal surgical conditions. Early Hum Dev. 2014; 90: 933.
4. Zhang JM, Cui XJ, Xia YQ, et al. Correlation between TGF-beta1-509 C>T polymorphism and risk of digestive tract cancer in a meta-analysis for 21,196 participants. Gene. 2012; 505: 66–74.
5. Zhu CL, Huang Q, Liu CH, et al. NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T gene polymorphism association with digestive...
effective tract cancer: a meta-analysis. Asian Pac J Cancer Prev. 2013; 14: 2349–54.
6. Yao L, Wang HC, Liu JZ, et al. Quantitative assessment of the influence of cytochrome P450 2C19 gene polymorphisms and digestive tract cancer risk. Tumour Biol. 2013; 34: 3083–91.
7. Zhang X, Zhang Y, Gu D, et al. Increased risk of developing digestive tract cancer in subjects carrying the PLCE1 rs2274223 A>G polymorphism: evidence from a meta-analysis. PLoS ONE. 2013; 8: e76425.
8. Li P, Xu J, Shi Y, et al. Association between zinc intake and risk of digestive tract cancers: a systematic review and meta-analysis. Clin Nutr. 2014; 33: 415–20.
9. Wu B, Liu K, Huang H, et al. MspI and Ile462Val polymorphisms in CYP1A1 and overall cancer risk: a meta-analysis. PLoS ONE. 2013; 8: e65166.
10. Gong FF, Lu SS, Hu CY, et al. Cytochrome P450 1A1 (CYP1A1) polymorphism and susceptibility to esophageal cancer: an updated meta-analysis of 27 studies. Tumour Biol. 2014; 35: 10351–61.
11. Yu KT, Ge C, Xu XF, et al. CYP1A1 polymorphism interactions with smoking status in oral cancer risk: evidence from epidemiological studies. Tumour Biol. 2014; 35: 11183–91.
12. Meng FD, Ma P, Sui CG, et al. Association between cytochrome P450 1A1 (CYP1A1) gene polymorphisms and the risk of renal cell carcinoma: a meta-analysis. Sci Rep. 2015; 5: 8108.
13. Du H, Guo N, Shi B, et al. The effect of XPD polymorphisms on digestive tract cancers risk: a meta-analysis. PLoS ONE. 2014; 9: e96301.
14. Liu C, Jiang Z, Deng QX, et al. Meta-analysis of association studies of CYP1A1 genetic polymorphisms with digestive tract cancer susceptibility in Chinese. Asian Pac J Cancer Prev. 2014; 15: 4689–95.
15. Chen B, Cao L, Yang P, et al. Cyclin D1 (CCND1) GSTO4 gene polymorphism is an ethnicity-dependent risk factor for digestive tract cancers: a meta-analysis comprising 20,271 subjects. Cancer Epidemiol. 2012; 36: 106–15.
16. Sivaraman L, Leatham MP, Yeo J, et al. CYP1A1 genetic polymorphisms and in situ colorectal cancer. Cancer Res. 1994; 54: 3692–5.
17. Ye Z, Parry JM. Genetic polymorphisms in the cytochrome P450 1A1, glutathione S-transferase M1 and T1, and susceptibility to colon cancer. Teratog CarcinogMutagen. 2002; 22: 385–92.
18. Ma JX, Zhang KL, Liu X, et al. Concurrent expression of aryl hydrocarbon receptor and CYP1A1 but not CYP1A1 MspI polymorphism is correlated with gastric cancers raised in Dalian. China. Cancer Lett. 2006; 240: 253–60.
19. Talseth BA, Meldrum C, Suchy J, et al. Genetic polymorphisms in xenobiotic clear ance genes and their influence on disease expression in hereditary nonpolyposis colorectal cancer patients. Cancer Epidemiol Biomarkers Prev. 2008; 15: 2307–10.
20. Luo YP, Chen HC, Khan MA, et al. Genetic polymorphisms of metabolic enzymes-CYP1A1, CYP2D6, GSTM1, and GSTT1, and gastric cancer susceptibility. Tumour Biol. 2011; 32: 215–22.
21. Darazy M, Balbba M, Mugharabi A, et al. CYP1A1, CYP2E1, and GSTM1 gene polymorphisms and susceptibility to colorectal and gastric cancer among Lebanese. Genet Test Mol Biomarkers. 2011; 15: 423–9.
22. Rudolph A, Sainz J, Hein R, et al. Modification of menstrual hormone therapy-associated colorectal cancer risk by polymorphisms in sex steroid signaling, metabolism and transport related genes. Endocr Relat Cancer. 2011; 18: 371–84.
23. Ghoshal U, Tripathi S, Kumar S, et al. Genetic polymorphism of cytochrome P450 (CYP) 1A1, CYP1A2, and CYP2E1 genes modulate susceptibility to gastric cancer in patients with Helicobacter pylori infection. Gastric Cancer. 2014; 17: 226–34.
24. Saeed HM, Alanszi MS, Noumou HA, et al. Cytochrome P450 1A1, 2E1 and GSTM1 gene polymorphisms and susceptibility to colorectal cancer in the Saudi population. Asian Pac J Cancer Prev. 2013; 14: 3761–8.
25. Jain M, Kumar S, Ghoshal UC, et al. CYP1A1 MspI T/C polymorphism in esophageal cancer: no association and risk modulation. Oncol Res. 2007; 16: 437–43.
26. Malik MA, Upadhyay R, Mittal RD, et al. Association of xenobiotic metabolizing enzymes genetic polymorphisms with esophageal cancer in Kashmir Valley and influence of environmental factors. Nutr Cancer. 2019; 71: 1027–42.
27. Morita S, Yano M, Shiozaki H, et al. CYP1A1, CYP2E1 and GSTM1 polymorphisms are not associated with susceptibility to squamous-cell carcinoma of the esophagus. Int J Cancer. 1997; 71: 192–5.
28. Nimura Y, Yokoyama S, Fujiromi M, et al. Genotyping of the CYP1A1 and GSTM1 genes in esophageal carcinoma patients with special reference to smoking. Cancer. 1997; 80: 852–7.
29. Hori H, Kawano T, Endo M, et al. Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and human esophageal squamous cell carcinoma susceptibility. J Clin Gastroenterol. 1997; 25: 568–75.
30. van Lieshout EM, Roelofs HM, Dekker S, et al. Polymorphic expression of the glutathione S-transferase P1 gene and its susceptibility to Barrett’s esophagus and esophageal carcinoma. Cancer Res. 1999; 59: 586–9.
31. Wang AH, Sun CS, Li LS, et al. Relationship of tobacco smoking CYP1A1 GSTM1 gene polymorphism and esophageal cancer in Xi’an. World J Gastroenterol. 2002; 8: 49–53.
32. Wu MT, Lee JM, Wu DC, et al. Genetic polymorphisms of cytochrome P450A1 and esophageal squamous-cell carcinoma in Taiwan. Br J Cancer. 2002; 87: 529–32.
33. Wang LD, Zheng S, Liu B, et al. CYP1A1, GSTs and mEH polymorphisms and susceptibility to esophageal carcinoma: study of population from a high- incidence area in north China. World J Gastroenterol. 2003; 9: 1394–7.
34. Wang AH, Sun CS, Li LS, et al. Genetic susceptibility and environmental factors of esophageal cancer in Xi’an. World J Gastroenterol. 2004; 10: 940–4.
35. Abbas A, Delvinguere K, Lechevrel M, et al. GSTM1, GSTT1, GSTP1 and CYP1A1 genetic polymorphisms and susceptibility to esophageal cancer in a French population: different pattern of squamous cell carcinoma and adenocarcinoma. World J Gastroenterol. 2004; 10: 3389–93.
36. Wang D, Su M, Tian D, et al. Associations between CYP1A1 and CYP2E1 polymorphisms and susceptibility to esophageal cancer in Chaoshan and Taihang areas of China. Cancer Epidemiol. 2012; 36: 276–82.
37. Yun YX, Wang YP, Wang P, et al. CYP1A1 genetic polymorphisms and risk for esophageal cancer: a case-control study in central China. Asian Pac J Cancer Prev. 2014; 14: 6507–12.
38. Kiss I, Sandor J, Pajkos G, et al. Colorectal cancer risk in relation to genetic polymorphism of cytochrome P450 1A1, 2E1, and glutathione-S-transferase M1 enzymes. Anti-cancer Res. 2000; 20: 519–22.
39. Suzuki S, Muroishi Y, Nakanishi I, et al. Relationship between genetic polymorphisms of drug-metabolizing enzymes (CYP1A1, CYP2E1, GSTM1, and NAT2), drinking habits, histological subtypes, and p53 gene point mutations in Japanese patients with gastric cancer. J Gastroenterol. 2004; 39: 220–30.
40. Slattery ML, Samowitz W, Ma K, et al. CYP1A1, cigarette smoking, and colon and rectal cancer. Am J Epidemiol. 2004; 160: 842–52.
41. Li H, Chen XL, Li HQ. Polymorphism of CYP1A1 and GSTM1 genes associated with susceptibility of gastric cancer in Shandong Province of China. World J Gastroenterol. 2005; 11: 5757–62.
42. Shen J, Wang RT, Xu YC, et al. Interaction models of CYP1A1, GSTM1 polymorphisms and tobacco smoking in intestinal gastric cancer. World J Gastroenterol. 2005; 11: 6056–60.
43. Little J, Sharp L, Masson LF, et al. Colorectal cancer and genetic polymorphisms of CYP1A1, GSTM1 and GSTT1: a case-control study in the Grampian region of Scotland. Int J Cancer. 2006; 119: 2155–64.
44. Agudo A, Sala N, Pera G, et al. Polymorphisms in metabolic genes related to tobacco smoke and the risk of gastric cancer in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev. 2006; 15: 2427–34.
45. Yeh CC, Sung FC, Tang R, et al. Association between polymorphisms of biotransformation and DNA-repair genes and risk of colorectal cancer in Taiwan. J Biomed Sci. 2007; 14: 183–93.
46. Yoshida K, Osawa K, Kasahara M, et al. Association of CYP1A1, CYP1A2, GSTM1 and NAT2 gene polymorphisms with colorectal cancer and smoking. Asian Pac J Cancer Prev. 2007; 8: 438–44.
47. Pereira Serafim PV, Cotrim Guerreiro da Silva ID, Manoukias Forones N. Relationship between genetic polymorphism of CYP1A1 at codon 462 (Ile462Val) in colorectal cancer. Int J Biol Markers. 2008; 23: 18–23.
48. Kobayashi M, Otani T, Iwasaki M, et al. Association between dietary heterocyclic amine levels, genetic polymorphisms of NAT2, CYP1A1, and CYP1A2 and risk of colorectal cancer: a hospital-based case-control study in Japan. Scand J Gastroenterol. 2009; 44: 952–9.
49. Kobayashi M, Otani T, Iwasaki M, et al. Association between dietary heterocyclic amine levels, genetic polymorphisms of NAT2, CYP1A1, and CYP1A2 and risk of stomach cancer: a hospital-based case-control study in Japan. Gastric Cancer. 2009; 12: 198–205.
50. Nisa H, Kono S, Yin G, et al. Cigarette smoking, genetic polymorphisms and colorectal cancer risk: the Fukuoka Colorectal Cancer Study. BMC Cancer. 2010; 10: 274.
51. Cleary SP, Cotterchio M, Shi E, et al. Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk. Am J Epidemiol. 2010; 172: 1000–14.
52. Malik MA, Upadhyay R, Mittal RD, et al. Role of xenobiotic-metabolizing enzyme gene polymorphisms and interactions with environmental factors in susceptibility to gastric cancer in Kashmir Valley. J Gastrointest Cancer. 2009; 40: 26–32.