Study on variability, relationships and path analysis for agro-morphological traits in elite wheat (*Triticum aestivum* L.) germplasm lines under northern hill zone conditions

Shubhanshu Anubhav$, Vijay Rana$ and Harinder Kumar Chaudhary$¹

$¹Department of Genetics and Plant Breeding, CSK Himachal Pradesh Agricultural University, Palampur, India

$²CSK Himachal Pradesh Agricultural University, Rice and Wheat Research Centre, Malan (176047), India.

Article history: Received: 07 Aug., 2019 Revised: 22 Feb., 2020 Accepted: 05 Mar., 2020

Citation: Anubhav S, V Rana and HK Chaudhary 2020. Study on variability, relationships and path analysis for agro-morphological traits in elite wheat (*Triticum aestivum* L.) germplasm lines under Northern Hill Zone conditions. *Journal of Cereal Research* 12(1):74-78. https://doi.org/10.25174/2582-2675/2020/92518

Corresponding author: E-mail: anubhav.shubhanshu33@gmail.com

© Society for Advancement of Wheat and Barley Research

Keywords: Correlation, genetic variation, path analysis, wheat

Most of the agro-morphological characters are quantitative in nature. Yield is a complex quantitative trait, significantly influenced by environmental conditions. Therefore, selection based on yield is not effective. Genotype selection has to be made on the basis of components of yield. Bhatt (1972) showed that correlation studies alone do not reveal such type of information and inadequate knowledge on inter-relationships between heritable traits may lead to negative results. On the other hand, path coefficient analysis measures the direct and indirect effect of different traits and allows separation of the correlation coefficient into direct and indirect effects (Dewey and Lu 1959). Hence, the information provided by correlations combined with path analysis for different characters along with the grain yield provides a better approach for planning efficient improvement programme. The present study was done to evaluate diverse wheat germplasm lines for various agro-morphological traits and to find out correlations among various traits to find out suitable selection criteria.

In order to evaluate various agro-morphological traits of elite wheat germplasm lines by variability, correlation and path analysis the work was conducted during Rabi 2014 - 15 at the experimental area of Rice and Wheat Research Centre, Malan. Thirty diverse lines of bread wheat (*Triticum aestivum* L.) were tested in alpha design with two replications. Observations recorded were based on five randomly selected plants from every genotype in both the replications. The data was subjected to analysis of variance utilizing online Statistical Analysis Package. Path analysis was calculated following the procedure given by Wright (1921) and applied by Dewey and Lu (1959).

The analysis of variance showed that mean squares due to genotypes were found to be significant for every character under study (Table 1). All the lines exhibited significant genetic differences for every trait. The presence of substantial variability for every character indicated the prevalence of adequate variability at the genetic level for selecting potential advance lines for wheat improvement. Earlier, Riaz-ud-Din *et al.* (2010) showed higher variation for different traits in wheat.

Grain yield showed significant positive correlation with 1000-grain weight, harvest index and biological yield at the phenotypic level. While, it showed non-significant negative correlation with peduncle length and days to heading (Table 2). These results corroborate the findings of earlier workers, Singh (2015) and Masood *et al.* (2014). Grain yield was found to be significantly correlated with biological yield and number of grains per spike as reported by Ebrahimnejad and Rameeh (2016). Thus, based on present and earlier findings, 1000-grain weight, biological yield and harvest index can be utilized as suitable criteria to select high yielding genotypes. Tillers per plant had significant positive correlation with biological yield and grain filling period. In recently research, Singh *et al.* (2016) showed positively significant correlation of grain yield with tillers number per plant and 100-grain weight.

Grains per spike had significant positive correlation with biological yield and days to maturity and non-significant positive correlation with harvest index and grain yield, while it had significant negative correlation with days to heading. The correlation coefficient between grain number and grain yield was found to be significantly...
Table 1 Analysis of variance of wheat genotypes for different traits

Trait/source	Replication	Blocks with in replication	Genotypes	Error
D.F.	1	10	20	19
Grain yield/plant [g]	0.60	0.52	4.59	0.35
Tillers/plant	0.02	0.14	0.24	0.07
Grains/spike	4.27	22.39	111.03	26.20
1000-grain weight [g]	9.60	10.65	84.03	6.15
Biological yield/plant [g]	7.56	12.6	15.20	2.25
Harvest index (%)	0.20	15.72	52.57**	13.66
Flag leaf area [cm^2]	4.04	7.20	109.13**	14.27
Plant height [cm]	20.89	7.57	107.62**	5.13
Peduncle length [cm]	4.99	4.08	19.11**	1.20
Days to heading	3.75	6.49	25.73**	3.78
Days to maturity	0.07	5.37	18.20**	2.91
Grain filling period	4.82	9.83	18.41**	6.13

*5% level of significance, ** 1% level of significance

positive (Nabi et al. 1998; Aycicek and Yildirim 2006). Relationship between grains per spike and grain yield was positive and highly significant as reported by Shahid et al. 2002; Ashfaq et al. 2003; Aycicek and Yildirim 2006. 1000-grain weight showed significant positive correlation with grain yield and significant negative correlation with days to heading and days to maturity as reported by Mohammadi et al. (2012). Biological yield had significant positive correlation with grain yield, flag leaf area and grain filling period. Direct positive correlation of biological yield with grain yield was also reported by Gupta et al. (2001).

Tofiq et al. (2015) revealed the presence of significantly high and positively correlated grain yield with spikes number per plant, 1000-grain weight and biological yield. Harvest index revealed significant positive correlation with grain yield as reported by earlier research workers namely Donmez et al. (2001) and Avinashe et al. (2015). Flag leaf area revealed positivesignificant correlation with plant height. Plant height showed positively significant correlation with peduncle length, days to maturity and grain filling period. Bogale et al. (2011) also reported a significant positive correlation between peduncle length and plant height. Peduncle length revealed significantly positive correlation with days to maturity. Days to heading showed positively significant correlation with days to maturity, while it had negative significant correlation with grain filling period. On the contrary, studies conducted by Anwar et al. (2009) revealed that days to maturity and days to heading were non-significantly correlated to each other at phenotypic level.

Table 2 Estimates of correlation coefficient at Phenotypic and genotypic level among different traits studied

Characters	Gns/spike	1000 GW	Biological yield	Harvest index	Flag leaf area	Plant height	Peduncle length	Days to heading	Days to maturity	Grain filling period	Grain yield
Effective tillers/plant	P	-0.155	0.174	0.419**	0.027	0.161	0.143	0.031	-0.156	0.171	0.33**
Grains per spike	P	-0.071	0.261*	-0.081	-0.209	-0.078	-0.297*	0.290*	-0.051	0.169	
1000-grain weight [g]	P	-0.115	0.303*	-0.206	-0.267	-0.117	0.403**	0.429**	-0.052	0.113	
Biological yield[g]	P	0.249	0.241	-0.063	-0.035	-0.081	-0.290*	-0.297*	0.047	0.289	
Harvest index(%)	G	0.220	0.413**	0.182	-0.037	-0.173	0.181	0.362**	0.642**	0.698	0.829**
Flag leaf area(cm²)	P	0.547**	0.216	0.018	-0.270*	0.280*	0.689**	0.829**			
Plant height(cm)	P	-0.009	-0.060	-0.078	0.032	0.030	-0.006	0.879**			
Peduncle Length(cm)	P	0.373**	0.234	0.001	0.191	0.180	0.186				
Days to heading	G	0.408**	0.292*	-0.063	0.197	0.314*	0.216				
Days to maturity	P	0.714*	0.903	0.395*	0.273*	0.045					
Grain filling period	G	0.818**	0.147	0.516**	0.398**	0.045					
At phenotypic level, harvest index followed by biological yield, days to heading and grain filling period had the highest positive direct effects, while days to maturity had the highest negative direct effect on grain yield (Table 3). These findings are similar to earlier research workers Kotal et al. (2010) and Singh et al. (2010). Though grains per spike has low magnitude of direct effects but it exhibited high positive indirect effects mainly via biological yield, days to heading and harvest index, whereas low magnitude of negative indirect effects via days to maturity and grain filling period were observed. Mohsin et al. (2009) found in his studies from path coefficient analysis that spike length and grains per spike had positive direct effects on grain yield. The significant positive correlation of 1000-grain weight with grain yield was mainly due to positive indirect effects via biological yield and harvest index, whereas the indirect effects via other traits were low in magnitude. 1000-grain weight exhibited the low magnitude of negative indirect effects via days to heading. Highly significant positive correlation of biological yield with grain yield was mainly due to its positive direct effect on grain yield and also indirect effect via harvest index and grain filling period, whereas it exhibited low magnitude of negative indirect effects via days to heading and days to maturity. These findings are similar to earlier research workers Bagrei and Bybordi (2015) and Kumar et al. (2016). Harvest index had high positive direct effect on grain yield and low magnitude of positive indirect effect via biological yield. Therefore, significant positive correlation of harvest index is mainly attributable to its high positive direct effect. Importance of harvest index as selection criterion has also been highlighted in studies.

Table 3: Estimates of direct and indirect effects of different characters at phenotypic and genotypic level

Character	Effective tillers/plant	Grains per spike	Thousand grain weight	Biological yield	Harvest Index	Flag leaf area	Plant Height	Peduncle length	Days to heading	Days to maturity	Grain filling period	Correlation with grain yield
Effective tillers/plant	P	0.020 (0.05)	0.007 (0.20)	0.210 (0.021)	-0.003 (0.348)	-0.039 (0.039)	-0.040 (0.040)				0.076 (0.209)	
Grains per spike	G	0.003 (0.03)	0.003 (0.03)	0.200 (0.121)	-0.006 (0.119)	-0.040 (0.040)	-0.041 (0.041)				0.631 (0.365**)	
Thousand grain weight	P	0.019 (0.02)	0.014 (0.001)	0.128 (0.018)	0.001 (0.073)	0.017 (0.017)	0.019 (0.020)	-0.005 (0.005)			0.005 (0.113)	
Biological yield	G	-0.021 (0.574)	-0.007 (0.299)	0.026 (0.038)	0.003 (0.038)	-0.056 (0.056)	0.037 (0.037)	-0.006 (0.006)			0.032 (0.642**)	
Harvest Index	G	-0.009 (0.200)	0.009 (0.116)	0.020 (0.073)	0.004 (0.056)	-0.542 (0.542)	0.000 (0.000)				0.680 (0.892**)	
Flag leaf area	G	-0.003 (0.021)	0.001 (0.019)	0.540 (0.494)	-0.004 (0.053)	-0.073 (0.073)	0.015 (0.015)				-0.177 (0.915**)	
Plant height	G	-0.055 (0.118)	-0.004 (0.460)	0.009 (0.021)	-0.218 (0.590)	-0.132 (0.132)	0.001 (0.001)				0.300 (0.300)	
Peduncle length	G	-0.002 (0.003)	0.010 (0.010)	0.580 (0.582)	0.000 (0.000)	0.008 (0.008)	0.000 (0.000)				0.062 (0.062)	
Days to heading	G	-0.003 (0.003)	-0.007 (0.001)	0.207 (0.172)	-0.007 (0.007)	0.000 (0.000)	0.000 (0.000)				0.011 (0.011)	
Days to maturity	G	-0.001 (0.001)	-0.009 (0.001)	0.013 (0.011)	-0.004 (0.001)	0.019 (0.019)	0.010 (0.010)				0.031 (0.031)	
Grain filling period	G	-0.055 (0.002)	-0.020 (0.021)	0.276 (0.276)	-0.009 (0.009)	0.001 (0.001)	0.001 (0.001)				-0.043 (0.043)	

*Significant at P<0.05, **Significant at P<0.01. Bold figures denote the direct effects,
Residual effects (Phenotypic) = -0.01474, Residual effect (Genotypic) = -0.01945
by researchers namely Subhani and Chowdhry (2000), Kumar et al. (2014) and Kumar et al. (2019). Plant height exhibited positive indirect effects via biological yield and grain filling period, while low magnitude of negative indirect effects were exhibited via harvest index, days to maturity and peduncle length. The direct positive effects of height of plant and weight of grain per spike, negatively direct effects of days to heading associated with grain yield suggested that yield components may be good selection criterion to improve yield of wheat genotypes (Aycicek and Yildirim 2006). Peduncle length had low positive indirect effects via days to heading, plant height and grain filling period. Grain filling period had high magnitude of indirect effects via biological yield, also low magnitude of negative indirect effects via days to heading.

Simple correlation analysis coupled with path analysis, therefore, suggested that biological yield, harvest index and 1000-grain weight are the traits of greater importance for improving performance of genotypes.

Analysis of variance indicated that mean squares due to genotypes were highly significant for all the characters under study. Correlation studies indicated significant positive correlations of grain yield with harvest index, biological yield and 1000-grain weight. Further, harvest index and biological yield had positively high direct effects on grain yield. This indicated that selection of these traits under normal conditions will be effective of improvement of grain yield. Thus, based on present findings, 1000-grain weight, biological yield and harvest index can be utilized as suitable criteria to select high yielding genotypes under northern hill zone conditions.

References

1. Albayrak S, CS Sevimay and MO Tongel. 2003. Determination of characters regarding to seed yield using correlation and path analysis uninoculated and non-inoculated common vetch. Turkish Journal of Field Crops 8: 76-84.

2. Anwar J, MA Ali, M Hussain, W Sabir, MA Khan, M Zulkifial and M Abdullah. 2009. Assessment of yield criteria in bread wheat through correlation and path analysis. Journal of Animal and Plant Sciences 19: 185-188.

3. Ashfaq M, AS Khan and Z Ali. 2003. Association of morphological traits with grain yield in wheat (Triticum aestivum L.). International Journal of Agriculture and Biology 5: 262-264.

4. Avinashe HA, RS Shukla, N Dubey and S Jaiviar. 2015. Correlation and path analysis for yield and yield contributing characters in bread wheat (Triticum aestivum L.). Electronic Journal of Plant Breeding 6: 555-559.

5. Aycicek M and T Yildirim. 2006. Path coefficient analysis of yield and yield components in bread wheat (Triticum aestivum L.) genotypes. Pakistan Journal of Botany 38: 417-424.

6. Bagrei B and A Bybordi. 2015. Yield and yield components in bread wheat (Triticum aestivum L.) under non stress and drought stress conditions. International Journal of Biosciences 6: 338-348.

7. Bhatt GM. 1972. Significance of path coefficient analysis in determining the nature of character association. Euphytica 22: 38-43.

8. Bogale A, K Tesfaye and T Geleto. 2011. Morphological and physiological attributes associated to drought tolerance of Ethiopian durum wheat genotypes under water deficit. Journal of Biodiversity and Environmental Sciences 12: 22-36.

9. Dewey DR and KH Lu. 1959. A correlation and path coefficient analysis of components of crested wheat grass seed production. Agronomy Journal 51: 515-518.

10. Donmez E, RG Sears, JP Shroyer and GM Paulsen. 2001. Genetic gain in yield attributes of winter wheat in the great plains. Crop Science 41: 1412-1419.

11. Ebrahimnejad S and V Rameeh. 2016. Correlation and Factor analysis of yield grain and some important component characters in spring bread wheat genotypes. Cercetări Agronomice în Moldova 1: 5-15.

12. Gupta NK, S Gupta and A Kumar. 2001. Effect of water stress on physiological attributes and their relationship with growth and yield of wheat cultivars at different stages. Journal of Agronomy and Crop Science 186: 55-62.

13. Kotal BD, A Das and BK Choudhury. 2010. Genetic variability and association of characters in wheat (Triticum aestivum L.). Asian Journal of Crop Sciences 2: 155-160.

14. Kumar K, P Kumar, V Kumar and L Singh. 2016. Genetic variability, inter-relationship and path coefficient analysis for different quantitative characters in wheat (Triticum aestivum L.). Environment and Ecology 34: 97-103.

15. Kumar Y, RAS Lamba and RP Saharan. 2014. Genetic variability for different biometric traits in wheat (Triticum aestivum L.) under medium fertility conditions. Electronic Journal of Plant Breeding 5: 71-76.

16. Kumar S, G Sandhu, SS Yadav, P Pandey, O Prakash, A Verma, SC Bhardwaj, R Chatrath and GP Singh. 2019. Agro-morphological and Molecular Assessment
of Advanced Wheat Breeding Lines for Grain Yield, Quality and Rust Resistance. Journal of Cereal Research 11(2): 131-139.

17. Masood SA, S Ahmad, M Kashif and Q Ali. 2014. Correlation analysis for grain and its contributing traits in wheat (Triticum aestivum L.). Nature and Science 12: 168-176.

18. Mohammadi M, P Sharifi, R Karimizadeh and MK Shefazadeh. 2012. Relationships between Grain Yield and Yield Components in Bread Wheat under Different Water Availability (Dryland and Supplemental Irrigation Conditions). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40: 195-200.

19. Mohsin T, N Khan and FN Naqvi. 2009. Heritability, phenotypic correlation and path coefficient studies for some agronomic characters in synthetic elite lines of wheat. Journal of Food and Agriculture and Environment 7: 278-282.

20. Nabi TG, MA Chowhdhry, K Aziz and WM Bhutta. 1998. Interrelationship among some polygenic traits in hexaploid spring wheat (Triticum aestivum L.). Pakistan Journal of Biological Sciences: 229-302.

21. Riaz-ud-Din, GM Subhani, N Ahmad, M Hussain and AU Rehman. 2010. Effect of temperature on development and grain formation in spring wheat. Pakistan Journal of Botany 42: 896-899.

22. Tofiq SE, TNH Amin, SMS Abdulla and DAA Khaleq. 2015. Correlation and Path coefficient analysis of grain yield and yield components in some barley genotypes created by full diallel analysis in sulaimani region for F2 generation. International Journal of Plant, Animal and Environmental Sciences 5: 76-79.

23. Shahid M, F Mohammad and M Tahir. 2002. Path coefficient analysis in wheat. Srant Journal of Agriculture 18: 383-388.

24. Singh BN, SR Vishwakarma and VK Singh. 2010. Character association and path analysis in elite lines of wheat (Triticum aestivum L.). Plant Archives 10: 845-847.

25. Singh K, MS Punia and Vikram. 2016. Singh Interrelationship between grain yield and its component characters in F2 generation of bread wheat (Triticum aestivum L.). International Journal of Current Advanced Research 5: 749-751.

26. Singh M. 2015. Genetic diversity and association studies for some morpho-physiological traits under rainfed conditions in wheat (Triticum aestivum L.). M Sc Thesis, Department of Crop Improvement, CSK Himachal Pradesh KrishiVishvavidyalaya Palampur, India

27. Subhani GM and MA Chowdhry. 2000. Correlation and path coefficient analysis in bread wheat under drought stress and normal conditions. Pakistan Journal of Biological Sciences 3: 72-77.

28. Wright S. 1921. Correlation and causation, Journal of Agricultural Research 20: 557-585.