REVIEW

Platelet dysfunction after trauma: From mechanisms to targeted treatment

Pieter H. Sloos1,2 | Paul Vulliamy3 | Cornelis van ’t Veer4 | Anirban Sen Gupta5 | Matthew D. Neal6 | Karim Brohi3 | Nicole P. Juffermans2,7 | Derek J. B. Kleinveld2,8

1Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
2Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
3Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
4Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
5Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
6Pittsburgh Trauma and Transfusion Medicine Research Center and Division of Trauma and Acute Care Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
7Department of Intensive Care Medicine, OLVG Hospital, Amsterdam, The Netherlands
8Department of Intensive Care Medicine, Erasmus MC, Rotterdam, The Netherlands

Correspondence
Derek J. B. Kleinveld, Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
Email: d.j.kleinveld@amsterdamumc.nl

Funding information
Institutional sources

KEYWORDS: hematology – platelets, hemostasis, platelet transfusion

1 | INTRODUCTION

Trauma-induced bleeding is a leading cause of preventable mortality worldwide.1–3 Severely injured bleeding trauma patients frequently present with trauma-induced coagulopathy (TIC).4,5 Platelets are important in hemostatic response but can rapidly become dysfunctional in these patients, which contributes to TIC, exsanguination, and early mortality.5–13 Characteristically, circulating platelets display increased levels of surface activation markers and have a reduced ability to adhere and aggregate ex vivo, despite normal counts.8,11–13 However, lack of a clear boundary between platelet function and dysfunction hampers development of specific diagnostic criteria.14 Besides their role in hemostasis, platelets act as orchestrators of the initial immune response, which could contribute to immunothrombosis, organ dysfunction and late mortality.11,15

An appreciation of the “normal” adaptive response of platelets to local injury is necessary to understand the dysfunctional platelet response seen in TIC. Moreover, it forms the basis for potential targeted treatments to improve outcomes of severely injured trauma patients.

In this narrative review the aims are to: (1) describe “normal” platelet function following local tissue injury, (2) describe the characteristics of platelet dysfunction after trauma, (3) outline potential mechanisms, and (4) summarize current and novel treatment strategies for early and late trauma-induced platelet dysfunction.
2 | THE “RESTING” PLATELET AND THE VASCULAR WALL

Resting platelets are disc-shaped, anucleate blood cells, derived from megakaryocytes. Platelets have a short lifespan (7–10 days), indicating a continuous production to maintain blood counts between 150–350 × 10^9 per liter. The exterior surface of resting platelets contains a layer of glycoproteins and lipids (platelet glyocalyx) (Table 1, Figure 1A). The negative charge of the platelet glyocalyx prevents spontaneous aggregation with surrounding cells. Furthermore, it facilitates endocytosis of plasma proteins, which are stored in platelet granules. Platelet contain alpha granules, dense granules and lysosomes. Alpha granules contain adhesion molecules (e.g., P-selectin, von Willebrand factor [VWF], fibrinogen), (anti)coagulation factors (e.g., factor V, antithrombin, protease-nexin-I), fibrinolytic factors (e.g., plasminogen activator inhibitor-1 [PAI-1]) and immune molecules (e.g., cytokines). Dense granules contain polyphosphates (PolyP), amines (e.g., serotonin), nucleotides (e.g., ADP/ATP) and cations (e.g., Ca^{2+}, K^+, Mg^{2+}). Lysosomes contain protein degrading enzymes (e.g., collagenase), carbohydrate degrading enzymes and phosphatases.

Endothelial cells also have a glyocalyx, which has important thromboresistant and anti-coagulant functions. Endothelial cells release ectonucleotidases, which break down ADP and ATP (CD39-CD73-adenosine pathway), preventing ADP-induced platelet activation via the P2Y₁/P2Y₁₂ receptor. Endothelial cells also release prostacyclin (PGI₂) and nitric oxide (NO) which further inhibits platelet activation (Figure 1A). Once activated, platelets transform from disc- to spherical shape, out of which extrusions grow (lamellipodia), increasing the surface area of the platelet membrane. Intracellular calcium levels in platelets can rise up to 100-fold, causing activation. An example is the calcium-dependent activation of the GPIIb/IIIa complex, which has binding sites for fibrinogen and other extracellular proteins. Upon activation, platelet granules fuse with the outer membrane, releasing their contents, amplifying coagulation and inflammation. Platelet–platelet interaction (i.e., aggregation) occurs primarily through GPIIb/IIIa binding to fibrinogen.

Receptor	Main ligand(s)
Agonist receptors	
Protease activated receptor (PAR)	Thrombin
α₂-adrenergic receptor (α₂-AG)	Epinephrine
5-HT₂	Serotonin
Thromboxane receptor (TP)	Thromboxane A₂ (TXA₂)
P₂Y₁/P₂Y₁₂	ADP
GPVI	Collagen
Adhesion and aggregation receptors	
GPIb-IX-V	Von Willebrand factor (VWF)
GPIaIIa	Collagen
αVβ₃	Fibronectin
CD62P (P-selectin)	P-selectin glycoprotein ligand-1 (PSGL-1)
GPIbIIIa	Fibrinogen
Pattern recognition receptors (PRR)	
Toll like receptors (TLRs)	DNA, histones, high-mobility group box 1 (HMGB1), S100-proteins

Once activated, platelets can be functionally classified into subpopulations, which differ in their contribution to clot formation. In some platelets, cytoskeletal shape change is accompanied by phosphatidylserine (PS) mobilization to the outer membrane, which results in a procoagulant membrane surface. Upon strong agonistic stimulation, PS-exposing platelets can transform into “coated” platelets, which express procoagulant proteins (e.g., VWF) with high fibrinogen-binding capacity. The decrease in cytoskeletal proteins can also lead to transformation into PS-positive, balloon-like platelets as well as the formation of platelet extracellular vesicles (EVs). Platelet

3 | LOCAL PLATELET RESPONSE TO VASCULAR INJURY

Inherent to local tissue injury is the disruption of the endothelial wall, exposing subendothelial structures to blood components (Figure 1B). Endothelial activation causes upregulation and release of adhesion molecules such as intracellular adhesion molecule-1 (ICAM-1), VWF, platelet agonists and damage associated molecular patterns (DAMPs). Under high shear conditions, platelets cannot readily bind to endothelial cells and subendothelial structures. Therefore, immobilized VWF on subendothelial collagen or VWF multimers on endothelial cells are needed to facilitate platelet binding (through GPIbα-IX-V). More secure binding of platelets with endothelial cells occurs through GPIIbIIIa via fibrinogen which is bound to ICAM-1. Platelets securely bind subendothelial structures through GPIaIIa (collagen) and αVβ₃ (fibronectin) (Figure 1B).
EVs promote fibrin formation by tissue factor (TF)-bearing cells (e.g., monocytes, endothelial cells). In this regard, platelets contain considerable amounts of tissue factor pathway inhibitor α (TFPIα) in the cytoplasm which is secreted upon strong stimulation and expressed on coated platelets. Likewise, PS-positive platelets
promote fibrin formation by serving as assembly sites for intrinsic tenase (FIXa, FVIIIa, FX) and prothrombinase (FXa, FVa, FII) complexes (Figure 1C). In addition, platelets can both inhibit and promote fibrinolysis, depending on their location within the thrombus architecture. During thrombus formation, release of PAI-1 and α2-antiplasmin may inhibit unwanted fibrinolysis.

On the other hand, activated platelets also catalyze the conversion of plasminogen to plasmin on their surface membranes.

The immunological roles of platelets are also important in the local response to tissue injury. Activated platelets upregulate P-selectin, which interacts with P-selectin glycoprotein ligand (PSGL)-1, connecting platelets with different leukocytes (Figure 1D). Furthermore, platelets produce leukocyte-stimulating molecules, promoting platelet-leukocyte interaction and leukocyte activation. Platelets further stimulate neutrophil extracellular trap (NET) formation, which is composed of DNA, histones and high-mobility group box 1 (HMGB1). NETs further promote platelet PolyP release, amplifying fibrin formation.

In all, platelets exert numerous functions following local tissue injury orchestrating hemostasis and the initial immune response.

4 | CHARACTERIZATION OF PLATELET DYSFUNCTION AFTER TRAUMA

Trauma-induced platelet dysfunction is poorly defined and not fully understood. Specific pre-existing factors (e.g., age, medical history, prior antiplatelet therapy), trauma-related factors (e.g., injury severity, shock, traumatic brain injury [TBI]) and prehospital resuscitation factors (e.g., use of crystalloids, blood products, calcium and tranexamic acid [TXA]) may affect diagnosis of platelet function. Currently, clinical diagnosis of platelet dysfunction after trauma relies on platelet count and viscoelastic hemostatic assays (VHAs). For research purposes other tests are available (Table 2).

Decreased platelet counts after trauma and TBI have been associated with increased risk of mortality. However, platelet counts remain relatively normal during bleeding (>100 × 10⁹ per liter) and only decrease 24-h post-injury. Platelet dysfunction therefore often exists despite normal counts. P-selectin and GPIIb/IIIa expression on platelet membranes are increased after traumatic injury. However, after agonistic stimulation, further upregulation of these receptors (i.e., platelet reactivity) is impaired. Additionally, platelets from trauma patients show reduced adhesion to collagen compared to healthy platelets. Moreover, the platelet response to agonists in aggregation assays and VHAs (e.g., platelet mapping) is impaired after trauma and is associated with injury severity, shock, transfusion requirements and mortality.

In the most severely injured patients, approximately 10% of all platelets have balloon-like shapes and an increase in circulating platelet EVs is observed. Platelet-leukocyte aggregate formation is also increased, which is associated with increased platelet activation and impaired function.

In the post-resuscitation phase, there is an increased risk of thrombosis and organ dysfunction. Shock, injury severity, TBI and early platelet dysfunction are all associated with these late complications. Platelet counts drop during intensive care unit (ICU) stay, but rise 72-h post injury, resulting in a reactive thrombocytosis, which is correlated with increased clot strength. This hypercoagulable profile is associated with (venous) thromboembolic events (VTE). Post-injury arterial thrombosis is less frequently diagnosed and is associated with older age, indicating different underlying mechanisms. Patients with VTE showed an increased maximum amplitude in VHA compared to patients without VTE. Aggregation and platelet mapping remained impaired until day five of admission, which is associated with development of VTE. Platelets likely participate in the progression towards thrombosis and organ failure on the ICU.

5 | POTENTIAL MECHANISMS OF PLATELET DYSFUNCTION AFTER TRAUMA

The human body is well-adapted to deal with local tissue injury. However, humans likely have not been evolutionarily adapted to major traumatic injuries and shock. Nonetheless, modern resuscitation techniques allow many of these severely injured patients to survive, thus causing the original “adaptive” changes of the platelet to persist to later phases of the injury response where they may become “maladaptive.”

5.1 | Increased platelet activation: Platelet exhaustion

Impaired platelet reactivity after trauma could be due to early strong systemic activation of platelets, rendering platelets “exhausted” and dysfunctional. Systemically elevated levels of platelet agonists and DAMPs are thought to play an important role. Despite high intracellular
Coagulation assay	Assay type	Description	Assay time	Pros	Cons
Conventional Platelet count	Whole blood	Measurement of number of platelets in whole blood	Fast (<15 min)	• Standardized • Simple to perform	• Does not reveal functional defects
Bleeding time	Whole blood	Measurement of time until bleeding stops after making a small incision	Fast (<15 min)	• Standardized • Simple to perform	• Limited accuracy to predict bleeding
Global coagulation Viscoelastic tests (thromboelastography (TEG) and rotational thromboelastometry (ROTEM)	Whole blood	Assessment of general coagulation potential by measuring viscoelasticity of whole blood	Fast, (<15 min first results)	• Standardized • Simple to perform • Whole blood assay • Potential to differentiate (different reagents)	• Some expertise needed • Limited sensitivity to detect mild platelet dysfunction
Platelet activation	Whole blood or platelet-rich plasma	Quantitative measurement of platelet (activation) receptors and reactivity in whole blood or platelet-rich plasma	Relatively fast (30 min-1 h)	• Potential to differentiate (different antibodies) • Abnormalities in quantity and function of receptors can be diagnosed	• Not standardized • Expertise needed • Prone to artifacts • Unknown correlation with platelet dysfunction
Soluble activation markers	Plasma	Detection of platelet membrane protein shedding, most commonly measured by ELISA	Slow (>2 h)	• Simple to perform • Low volume plasma needed	• Time-consuming (ELISA) • Prone to artifacts • Unknown correlation to platelet dysfunction
Platelet adhesion	Whole blood or platelet suspension	Platelet adhesion to extracellular matrix components under different shear conditions	Relatively fast (30 min-1 h), depending on methods	• Mimicking in vivo conditions	• Not standardized • Expertise needed • Unknown correlation with platelet dysfunction

(Continues)
calcium levels, calcium mobilization within platelets is impaired after trauma, which might explain the reduced reactivity.57 Additionally, increased formation of platelet-leukocyte aggregates in response to agonists and DAMPs are thought to contribute to platelet exhaustion.60

5.2 Reduced platelet adhesion: Receptor shedding

After trauma, the adhesion receptor GPIbα and collagen receptor GPVI are shed, which was associated with decreased platelet adhesion and aggregation.8 Proteases such as plasmin and thrombin are elevated after trauma and can cleave platelet adhesion receptors.71,72 The shedding of GPVI and GPIbα is mediated by a disintegrin and metalloproteinase (ADAM)10 and ADAM17, in response to elevated intracellular calcium.73 Platelet binding to collagen and fibrin further contributes to GPVI shedding, resulting in desensitization to subsequent agonist stimulation.8,74 During bleeding, increased ADAM10 and ADAM17 activity could be detrimental. Tissue inhibitors of metalloproteinases (TIMP) 1 and 3 inhibit ADAM10 and ADAM17 activity. These inhibitors may reduce platelet dysfunction after trauma.75 However, due to the broad mechanisms of action of ADAM10 and ADAM17, they are a challenging target for treatment.

5.3 Reduced platelet adhesion: The deranged VWF-ADAMTS13 axis

Plasma concentrations of VWF are increased after trauma and correlate with injury severity,76–79 but lower plasma VWF can be associated with increased mortality and TIC.77 Insufficient VWF could contribute to reduced platelet adhesion in trauma. VWF is regulated by its cleaving enzyme a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13 (ADAMTS13), but possibly also by plasmin.80 ADAMTS13 is, in general, decreased in concentration and activity after trauma.76,81,82 However, increased ADAMTS13 activity can also exist in severely injured patients.76 Under normal circumstances, ADAMTS13 circulates in an inactive form (its cleavage site is protected by CUB-domains), and becomes activated upon binding to unfolded VWF, underlining its specificity to VWF.83–85 Several proteases that are elevated after traumatic injury (e.g., thrombin, plasmin) can degrade ADAMTS13, decreasing its activity.66,87 However, specific proteolysis of CUB domains of ADAMTS13 can enhance ADAMTS13 activity and remove substrate specificity for VWF.85,88 Hyperactive ADAMTS13 can cleave fibrinogen, potentially impairing platelet adhesion and
aggregation. The CUB domains of ADAMTS13 also directly inhibit platelet adhesion to collagen under flow. In all, various changes in the VWF-ADAMTS13 axis occur after traumatic injury, which could affect platelet function.

5.4 | Reduced platelet aggregation

Low fibrinogen levels in trauma are associated with poor outcomes and could contribute to the observed decrease in platelet aggregation after trauma. Alternatively, GPIIbIIIa shedding, induced by high intracellular calcium concentration or by proteases such as plasmin may also contribute. Acidosis and hypothermia could further worsen platelet aggregation.

5.5 | DAMPs and platelet dysfunction

DAMPs are thought to play a key role in trauma-induced platelet dysfunction. DAMPs such as DNA, histones and HMGB1 are released in high concentration into the circulation after trauma. Histones can activate platelets and facilitate platelet-dependent thrombin generation. Histones can induce platelet dysfunction after trauma. Particularly, histone H4 has been shown to induce platelet ballooning and contribute to the formation of platelet EVs. Histones have also been linked to the development of thrombosis and organ dysfunction after traumatic injury.

Likewise, nuclear protein HMGB1 is increased up to 300-fold within the first hours after injury. Despite lacking a nucleus, platelets have been identified as a major source of HMGB1. HMGB1 can induce platelet activation and inflammation via the toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE). In an experimental trauma model, platelet-specific HMGB1 knockout compared to wild type mice showed reduced inflammation and decreased platelet adhesion, highlighting the importance of HMGB1 in platelet function. In line with this, high HMGB1 levels are associated with thrombosis and adverse outcomes. Another DAMP activating TLR4 and RAGE that has recently gained interest with regards to trauma-induced platelet dysfunction is S100A8/A9. S100A8/A9 is a heterodimeric, intracellular protein, especially abundant in neutrophils, where it comprises almost half of the cytoplasm proteins. Platelets may have some capacity for de novo synthesis of S100A8/A9, but it is unknown if they are the main source after trauma. In vitro data shows that neutrophils are able to transfer S100A8/A9 to platelets upon activation, impairing platelet reactivity.

In all, the precise mechanism by which DAMPs impair platelet function after trauma is unknown, but pattern-recognition receptors and their ligands are likely involved.

5.6 | Endothelial dysfunction, immunothrombosis, and organ dysfunction

Endothelial activation, glycocalyx shedding, and increased permeability are present early after trauma and are associated with the presence of shock. Endothelial dysfunction can be worsened by crystalloid resuscitation. Additionally, platelet-endothelial interactions distant from localized endothelial injury may aggravate endothelial dysfunction and contribute to thrombosis. VWF multimers are continuously released, and ADAMTS13 is decreased, associated with microthrombi formation and organ dysfunction. Moreover, histones and HMGB1 remain significantly elevated for multiple days following injury. Furthermore, platelet TLR4 expression stimulates formation of platelet-leukocyte aggregates. The extensive crosstalk between activated platelets, damaged endothelium and primed leukocytes could promote excessive release of platelet EVs, platelet-leukocyte aggregates and NETs. The sustained inflammatory and procoagulant state which is aggravated by endothelial dysfunction may result in microvascular thrombosis and organ dysfunction.

6 | TREATMENTS FOR TRAUMA-INDUCED PLATELET DYSFUNCTION

Targeted treatment of trauma-induced platelet dysfunction is time-dependent. The treatment priority switches from augmenting platelet hemostatic function during active bleeding, towards preventing thrombosis in the post-resuscitation phase. The exact timing of the shift from a hypocoagulable to a hypercoagulable state may be patient-, time-, injury- and/or shock dependent, but remains currently unclear. Figure 2 broadly summarizes (proposed) intervention times of current and experimental treatments.

7 | CURRENT EARLY TREATMENTS FOR PLATELET DYSFUNCTION

Current trauma resuscitation consists of early administration of TXA, permissive hypotension (i.e., limiting
crystalloid infusion), a balanced transfusion strategy, and fibrinogen and calcium supplementation. In addition, hypothermia and acidosis should be addressed early as it affects platelet dysfunction. In some centers, treatment is guided by VHAs, which might be beneficial for patients with TIC. Mechanisms of early treatments are shown in Figure 3.

7.1 Tranexamic acid

Early use of TXA has been shown to significantly improve survival after trauma, including mild to moderate TBI. TXA binds to plasminogen, preventing its conversion to plasmin, decreasing fibrinolysis. Moreover, in vitro, TXA improved clot strength, which could suggest improved platelet function. Mechanistically, by plasmin inhibition, TXA could decrease proteolysis of platelet receptors. Plasmin also induces immune cell activation, which could explain part of the beneficial effects of TXA after trauma.

7.2 Platelet transfusion

Standard care is empiric transfusion of room temperature stored (RT) platelets in a balanced ratio with red blood cells and plasma. Early and high-dosed platelet transfusion is associated with a significant reduction in mortality. In contrast, in patients with mild TBI, platelet transfusion may be harmful.

Despite the overall mortality benefits, it is unknown how platelet transfusion affects platelet dysfunction. Transfused platelets may adapt the same dysfunction as their endogenous counterparts and do not appear to improve platelet aggregation during active bleeding. Interestingly, circulating PAI-1 concentration increases after platelet transfusion in trauma patients. The clinical benefits of platelet transfusion could therefore be partly due to a reduction in hyperfibrinolysis rather than an improvement in platelet function.

The storage conditions and donor-related factors could affect the function of transfused platelets. Cold-stored platelets showed hemostatic superiority over RT-stored platelets in vitro. Clinical trials need to assess the hemostatic capacity of cold-stored platelets in trauma patients.

An alternative to platelet component transfusion is whole blood (WB), which has gained renewed interest in trauma resuscitation. Although WB may be clinical feasible and showed survival benefits over component therapy in an observational trial, randomized controlled trials (RCTs) are needed to evaluate its safety and effectiveness.

7.3 Fibrinogen

Fibrinogen can be supplemented as fibrinogen concentrate or as cryoprecipitate, the former of which has recently been
shown to improve survival after trauma.135,136 The mechanism by which fibrinogen improves outcomes could be, in part, due to promoting platelet adhesion and aggregation. Cryoprecipitate also contains other pro-hemostatic factors, such as FXIII, FVIII and VWF, and is associated with superior clotting kinetics in vitro.137,138 In vitro data suggest that cryoprecipitate increases thrombin generation.137 More data is necessary to evaluate the role of fibrinogen concentrate and cryoprecipitate on platelet dysfunction.139

7.4 | Calcium

Hypocalcaemia is a common finding after trauma, associated with increased blood transfusion requirements, coagulopathy and mortality.140 Ionized calcium is essential for platelet activation, adhesion and aggregation.141 After trauma, hypocalcemia is independently associated with decreased platelet function and clot strength.142 Hypocalcaemia cannot be detected in ROTEM, as calcium is added ex vivo. Although some in vitro data exist, the direct effect of supplementation of extracellular ionized calcium on platelet function needs further exploration.

8 | NOVEL EARLY TREATMENT STRATEGIES FOR PLATELET DYSFUNCTION

Despite decreased mortality with current resuscitation strategies, TIC and platelet dysfunction continue to be present in severely injured patients, highlighting the need for novel targeted treatments.

8.1 | Desmopressin

As mentioned, VWF is important for platelet adhesion. Increasing VWF through desmopressin (DDAVP) could therefore be beneficial in bleeding trauma patients. Besides promoting platelet adhesion to collagen and endothelium, DDAVP has various other pro-hemostatic effects on platelets.143,144 A recent RCT showed that DDAVP compared to vehicle reduced the amount of blood product use during trauma resuscitation.145 A retrospective study in TBI showed that platelet function after treatment with DDAVP was comparable to patients receiving platelet transfusion.146

8.2 | Potential role for (semi)synthetic platelets

In recent decades, synthetic nanoparticles that mimic the important hemostatic functions of platelets have gained interest.147 These can be constructs derived and processed from natural platelets (Figure 4A,B), or be fully synthetic (Figure 4C,D). Ideally, such platelet-mimicking particles would adhere at the site of injury and interact with fibrinogen and locally activated platelets to form aggregates, without any significant immunogenic or thrombotic risks. Examples of semi-synthetic platelet products
that are derived from natural platelets include infusible platelet membranes148,149 and infusion of platelet EVs.150 Alternatively, loading platelets or fibrinogen coated-nanoparticles with hemostatic agents such as thrombin or TXA to more effectively reach the site of injury are promising novel treatment options for traumatic bleeding.151,152

Infusion of fully synthetic nanovesicles coated with VWF binding, collagen binding, and fibrinogen mimetic peptides (e.g., SynthoPlate design) was shown to be comparable to other platelet products in terms of safety and hemostatic efficacy in animal models of thrombocytopenia and traumatic bleeding.153–155 Recently this design has been refined by incorporation of PS, which promotes thrombin generation.156 Similarly, ADP containing vesicles coated with HHLLGAKQAGDV (H12), a fibrinogen mimic, were effective in an animal model of thrombocytopenia and trauma.157,158 Although promising, rigorous safety and efficacy clinical trials are needed to translate these technologies to trauma patients.

9 | REDUCING INFLAMMATION, IMMUNOTHROMBOSIS AND ORGAN DYSFUNCTION

Once the bleeding has stopped, treatment goals shift from promoting platelet hemostatic function to preventing and treating inflammation and thrombosis. As mentioned, activated endothelium, circulation of “exhausted platelets” and DAMPs maintain a vicious pro-inflammatory and procoagulant environment. These components have been proposed as targets for novel treatments. Additionally, and more directly, inhibiting platelet aggregation might be necessary to prevent thrombosis (Figure 5). However, individual bleeding risk assessment is needed.

9.1 | Targeting DAMPs: DNA, Histones, and HMGB1

Targeting circulating DNA and NETs has potential beneficial effects after trauma. DNase-1 is responsible for removing most of the cell free DNA in the circulation, making it a potentially promising treatment option. A recent observational study in trauma showed that DNase-1 is significantly decreased and coexisted with increased circulating DNA after traumatic injury.159 In a rodent model of traumatic injury, scavenging free mitochondrial DNA decreased organ dysfunction.160 Like circulating DNA, histones and HMGB1 are promising targets for treating platelet dysfunction after trauma. Several endogenous molecules, such as protein C and glycosylated components are shown to inhibit histone-induced cytotoxicity.161–164 In a swine model of trauma and shock, fresh frozen plasma (FFP) supplemented with histone deacetylase inhibitor valproic acid significantly increased plasma platelet activation markers P-selectin and sCD40L, and improved outcomes compared to FFP alone.164 Therapeutic strategies to inhibit HMGB1 have been shown to reduce acute lung injury after trauma.165 The effect of anti-HMGB1 on platelet dysfunction after trauma is currently unknown.
Besides inhibiting their ligands, directly modulating or inhibiting immune receptors could be another target for trauma-induced platelet dysfunction. In experimental models of TBI, HMGB1 receptor antagonists reversed brain damage and decreased inflammation. In addition, targeting platelet TLRs could be a promising target for thrombosis after traumatic injury.

9.2 | Recombinant thrombomodulin

Recombinant thrombomodulin (rTM) inhibits DAMPs such as histones and HMGB1. rTM reduces HMGB1 levels and improves inflammation and platelet function. In a RCT in septic patients, rTM improved coagulopathy. These results raise the question regarding the utility of rTM for TIC, which differs markedly from the coagulopathy in sepsis. In experimental models of coagulopathy, rTM inhibited histone-induced platelet aggregation. The effects of rTM could be attributable to direct modulating effect on histone H4, or could be mediated by increased activated protein C. In vitro data suggest that platelets incubated with rTM have normal aggregation, but reduced thrombin reactivity and tissue factor induced EV formation. Besides the inhibitory effects of rTM on DAMPs, rTM has been shown to prevent thrombin induced degradation of ADAMTS13 in vitro, which could prevent low ADAMTS13 levels in trauma. Dosage should depend on the phase after trauma (i.e., bleeding vs. thrombosis risk), because high concentration of rTM activates protein C, which could exacerbate early TIC.

9.3 | Targeting endothelial dysfunction to improve platelet dysfunction

The endothelium can be targeted to potentially improve platelet dysfunction and reduce microthrombosis. Firstly, the endothelial glycocalyx can be protected by
plasma transfusion, the benefits of which are shown in severely injured trauma patients and in animal trauma models.76,181,182 Secondly, VWF release can be targeted by administration of recombinant ADAMTS13, associated with reduced endothelial permeability and organ failure.76,79 Furthermore, the VWF-targeting thrombo-lytic agent Microlyse has been shown to reduce microvascular thrombosis, which may be beneficial after trauma.183 Thirdly, prostaglandin receptor agonists (e.g., iloprost) can reduce endothelial activation, glyco-lyx shedding, and platelet aggregation.184,185 Fourthly, the CD39-CD72-adenosine pathway is a promising therapeutic target, as it inhibits ADP-induced platelet activation. In vitro, sCD39 inhibited platelet aggregation27 and adenosine restored ADP induced platelet aggregation.186 Lastly, NO inhalation during ventilation may reduce platelet activation and aggregation.187–189 Together, targeting the endothelium may reduce organ dysfunction by improving late trauma-induced platelet dysfunction.

9.4 | Targeting thrombosis: LMWH and platelet aggregation inhibitors

Low-molecular weight heparin (LMWH) is the current pharmacological thromboprophylactic treatment after trauma and is associated with reduced VTE and mortality.190 However, VTE was independently associated with acquired antithrombin deficiency 72 h post-injury, which raises a question on timing and dose of LMWH.191 LMWH reduced platelet aggregation in vitro.192 On contrary, administration of LMWH did not reduce the hypercoagulable profile and still showed patients developing VTEs, highlighting the need for additional therapies targeting late platelet dysfunction.55 Patients on antiplatelet therapy showed a reduction in progression of organ dysfunction and late mortality.193 The P-selectin-PSGL-1 interaction can be reduced by P-selectin antibodies (e.g., inclacumab, crizanlizumab). In a model of arterial injury, PSGL-1 inhibition compared to vehicle reduced thrombosis.194 Similarly, inhibition of P-selectin prevented pulmonary arterial thrombosis in a murine model of traumatic chest injury.109 Platelet aggregation reduction can be achieved by targeting GPIIbIIa (e.g., tirofiban). In a model of systemic inflammation, induced by extracor- pareal circulation, tirofiban protected platelets and decreased platelet-leukocyte binding.195 Lastly, specific platelet-VWF interactions could be reduced by caplacizumab, which in patients with thrombotic thrombocytopenic purpura has been shown to reduce microthrombosis and organ failure.196 The efficacy and optimal timing of these potential treatments require further study in trauma patients.

10 | CONCLUSION AND FUTURE DIRECTIONS

Platelets play an important role in the hemostatic response to local tissue injury, but can become dysfunc- tional in severely injured trauma patients. Trauma-induced platelet dysfunction is still poorly defined and additional characterization is needed to formulate accurate diagnostic criteria. Identification of potential mechan- isms underlining platelet dysfunction after trauma has led to the emergence of novel targeted treatment options. Both early and late platelet dysfunction require different therapeutic interventions, which should be personalized based on the patient-specific coagulation defects. Early treatments should prioritize bleeding control, while late treatments should target thrombosis. To improve the care of severely injured trauma patients, safety, timing, and dose of proposed treatments should be further studied.

ACKNOWLEDGMENTS

Grant NIH HL 121212 (Anirban Sen Gupta) and figures are created with biorender.com.

FUNDING INFORMATION

Institutional sources.

CONFLICT OF INTEREST

PHS, PV, CvV, KB, NPJ, and DJBK have disclosed no conflicts of interest. ASG is a co-founder of Haima Therapeutics and an inventor on patents US 9107845, US 9636383, US 10426820, and US 10434149 regarding synthetic platelet technologies that are licensed to Haima Therapeutics. MDN is a member of the Scientific Advisory Board for Haima Therapeutics.

ORCID

Anirban Sen Gupta https://orcid.org/0000-0002-5773-0667
Derek J. B. Kleinvedl https://orcid.org/0000-0002-6357-1471

REFERENCES

1. Oyeniyi BT, Fox EE, Scerbo M, Tomasek JS, Wade CE, Holcomb JB. Trends in 1029 trauma deaths at a level 1 trauma center: impact of a bleeding control bundle of care. Injury. 2017;48(1):5–12. https://doi.org/10.1016/j.injury.2016.10.037
2. Koh EY, Oyeniyi BT, Fox EE, Scerbo M, Tomasek JS, Wade CE, et al. Trends in potentially preventable trauma deaths between 2005-2006 and 2012-2013. Am J Surg. 2019; 218(3):501–6. https://doi.org/10.1016/j.amjsurg.2018.12.022
3. Collaborators GBDCoD. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the global
burden of disease study 2017. Lancet. 2018;392(10159):1736–88. https://doi.org/10.1016/S0140-6736(18)32203-7
4. Maegle M. Acute traumatic coagulopathy: incidence, risk stratification and therapeutic options. World J Emerg Med. 2010;1(1):12–21.
5. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30. https://doi.org/10.1097/01.TA.00000969184.82147.06
6. St John AE, Newton JC, Martin EJ, Mohammed BM, Contaifer D, Saunders JL, et al. Platelets retain inducible alpha granule secretion by P-selectin expression but exhibit mechanical dysfunction during trauma-induced coagulopathy. J Thromb Haemost. 2019;17(5):771–81. https://doi.org/10.1111/jth.14414
7. Vuilliamy P, Gillespie S, Armstrong PC, Allan HE, Warner TD, Brohi K. Histone H4 induces platelet ballooning and microparticle release during trauma hemorrhage. Proc Natl Acad Sci U S A. 2019;116(35):17444–9. https://doi.org/10.1073/pnas.1904978116
8. Vuilliamy P, Montague SI, Gillespie S, Chan MV, Coupland LA, Andrews RK, et al. Loss of GPVI and GPIbalpha contributes to trauma-induced platelet dysfunction in severely injured patients. Blood Adv. 2020;4(12):2623–30. https://doi.org/10.1182/bloodadvances.2020001776
9. Starr NE, Matthy ZA, Fields AT, Nunez-Garcia B, Callcut RA, Cohen MJ, et al. Identification of injury and shock driven effects on ex vivo platelet agregometry: a cautionary tale of phenotyping. J Trauma Acute Care Surg. 2020;89(1):20–8. https://doi.org/10.1097/TA.0000000000002707
10. Li R, Elmongy S, Sims C, Diamond SL. Ex vivo recapitulation of trauma-induced coagulopathy and preliminary assessment of trauma patient platelet function under flow using microfluidic technology. J Trauma Acute Care Surg. 2016;80(3):440–9. https://doi.org/10.1097/TA.0000000000000915
11. Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM, et al. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg. 2012;73(1):13–9. https://doi.org/10.1097/TA.0b013e31825d6eab
12. Ramsey MT, Fabian TC, Shahan CP, Sharpe JP, Mabry SE, Weinberg JA, et al. A prospective study of platelet function in trauma patients. J Trauma Acute Care Surg. 2016;80(5):726–32; discussion 732–3. https://doi.org/10.1097/TA.0000000000001017
13. Wohlauer MV, Moore EE, Thomas S, Sauraia A, Evans E, Harr J, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012;214(5):739–46. https://doi.org/10.1016/j.jamcollsurg.2012.01.050
14. Vuilliay P, Kornblith LZ, Kutcher ME, Cohen MJ, Brohi K, Neal MD. Alterations in platelet behavior after major trauma: adaptive or maladaptive? Platelets. 2021;32(3):295–304. https://doi.org/10.1080/09537104.2020.1718633
15. Müller MCA, Balvers K, Binnekade JM, Curry N, Stanworth S, Gaarder C, et al. Thromboelastometry and organ failure in trauma patients: a prospective cohort study. Crit Care. 2014;18(6):687–7. https://doi.org/10.1186/s13054-014-0687-6
16. Patel SR, Hartwig JH, Italiano JE Jr. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest. 2005;115(12):3348–54. https://doi.org/10.1172/JCI26891
17. van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 2019;16(3):166–79. https://doi.org/10.1038/s41569-018-0110-0
18. George JN. Platelets. Lancet. 2000;355(9214):1531–9. https://doi.org/10.1016/S0140-6736(00)02175-9
19. Shamova EV, Gorudko IV, Drozd ES, Chizhik SA, Martinovich GG, Cherkenkevich SN, et al. Redox regulation of morphology, cell stiffness, and lectin-induced aggregation of human platelets. Eur Biophys J. 2011;40(2):195–208. https://doi.org/10.1007/s00249-010-0639-2
20. Collier BS. Biochemical and electrostatic considerations in primary platelet aggregation. Ann N Y Acad Sci. 1983;416:693–708. https://doi.org/10.1111/j.1749-6632.1983.tb35221.x
21. Essex DW. Redox control of platelet function. Antioxid Redox Signal. 2009;11(5):1191–225. https://doi.org/10.1089/ars.2008.2322
22. Handagama P, Scarborough RM, Shuman MA, Bainton DF. Endocytosis of fibrinogen into megakaryocyte and platelet alpha-granules is mediated by alpha IIb beta 3 (glycoprotein IIb-IIIa). Blood. 1993;82(1):135–8.
23. Cimmino G, Golino P. Platelet biology and receptor pathways. J Cardiovasc Transl Res. 2013;6(3):299–309. https://doi.org/10.1007/s12265-012-9445-9
24. Rijkers M, van den Eshof BL, van der Meer PF, van Alphen FJP, de Korte D, Leebek FWG, et al. Monitoring storage-induced changes in the platelet proteome employing label free quantitative mass spectrometry. Sci Rep. 2017;7(1):11045. https://doi.org/10.1038/s41598-017-11643-w
25. Heijnen H, van der Sluijs P. Platelet secretory behaviour: as diverse as the granules ... or not? J Thromb Haemost. 2015;13(12):2141–51. https://doi.org/10.1111/jth.13147
26. Boulafati Y, Ho-Tin-Noe B, Pena A, Lcyau S, Venisse L, Francois D, et al. Platelet protease nexin-1, a serpin that strongly influences fibrinolysis and thrombolysis. Circulation. 2011;123(12):1326–34. https://doi.org/10.1161/CIRCULATIONAHA.110.00885
27. Hohmann JD, Wang X, Krajewski S, Selan C, Haller CA, Straub A, et al. Delayed targeting of CD39 to activated platelet GPIIb/IIIa via a single-chain antibody: breaking the link between antithrombotic potency and bleeding? Blood. 2013;121(16):3067–75. https://doi.org/10.1182/blood-2012-08-449694
28. van Hinsbergh VW. Endothelium–role in regulation of coagulation and inflammation. Semin Immunopathol. 2012;34(1):93–106. https://doi.org/10.1007/s00281-011-0285-5
29. Hamilos M, Petousis S, Parthenakis F. Interaction between platelets and endothelium: from pathophysiology to new therapeutic options. Cardiovasc Diagn Ther. 2018;8(5):568–80. https://doi.org/10.21037/cdt.2018.07.01
30. Schneider SW, Nussche S, Wixforth A, Gorzelanny C, Alexander-Katz A, Netz RR, et al. Shear-induced unfolding and microparticle release during trauma hemorrhage. Proc Natl Acad Sci. 2017;104(19):7899–8004. https://doi.org/10.1073/pnas.0608422104
31. Coenen DM, Mastenbroek TG, Cosemans JMEM. Platelet interaction with activated endothelium: mechanistic insights from microfluidics. Blood. 2017;130(26):2819–28. https://doi.org/10.1182/blood-2017-04-780825
32. Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIb/IIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alpha(v)beta(3) integrin, and GPIIbalpha. J Exp Med. 1998;187(3):329–39. https://doi.org/10.1084/jem.187.3.329

33. Cerecedo D. Platelet cytoskeleton and its hemostatic role. Blood Coagul Fibrinolysis. 2013;24(8):798–808. https://doi.org/10.1097/MBC.0b013e3283634c37

34. Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost. 2009;7(7):1057–66. https://doi.org/10.1111/j.1538-7836.2009.03455.x

35. Shattil SJ, Brass LF. The interaction of extracellular calcium with the platelet membrane glycoprotein IIb-IIIa complex. Nouv Rev Fr Hematol. 1985;27(4):211–7.

36. Fullard JF. The role of the platelet glycoprotein IIb/IIIa in thrombosis and haemostasis. Curr Pharm Des. 2004;10(14):1567–76. https://doi.org/10.2174/1381612043384682

37. Agbani EO, Poole AW. Procoagulant platelets: generation, function, and therapeutic targeting in thrombosis. Blood. 2017;130(20):2171–9. https://doi.org/10.1182/blood-2017-05-787259

38. Kempston CL, Hoffman M, Roberts HR, Monroe DM. Platelet Heterogeneity. Arterioscler Thromb Vasc Biol. 2005;25(4):861–6. https://doi.org/10.1161/01.ATV.0000159587.26583.9b

39. Reddy EC, Rand ML. Procoagulant phosphatidylserine-exposing platelets in vitro and in vivo. Front Cardiovasc Med. 2020;7:15–5. https://doi.org/10.3389/fcvm.2020.00015

40. Heemskerk JWM, Mattheij NJA, Cosemans JMEM. Platelet-based coagulation: different populations, different functions. J Thromb Haemost. 2013;11(1):2–16. https://doi.org/10.1111/jth.12045

41. Mattheij NJ, Gilio K, van Kruchten R, Jobe SM, Wieschhaus AJ, Chishti AH, et al. Dual mechanism of integrin alphabeta3 closure in procoagulant platelets. J Biol Chem. 2013;288(19):13325–36. https://doi.org/10.1074/jbc.M112.428359

42. Italiano JE Jr, Mairuhu ATA, Flaumenhaft R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol. 2010;17(6):578–84. https://doi.org/10.1097/MOH.0b013e3283377ee

43. Agbani EO, Williams CM, Hers I, Poole AW. Membrane ballooning in aggregated platelets is synchronised and mediates a surge in Microvesiculation. Sci Rep. 2017;7(1):2770. https://doi.org/10.1038/s41598-017-02933-4

44. Maroney SA, Haberlicht SL, Friese P, Collins ML, Ferrell JP, Dale GL, et al. Active tissue factor pathway inhibitor is expressed on the surface of coated platelets. Blood. 2007;109(5):1931–7. https://doi.org/10.1182/blood-2006-07-037283

45. Whyte CS, Mitchell JL, Mitch NJ. Platelet-mediated modulation of fibrinolysis. Semin Thromb Hemost. 2017;43(2):115–28. https://doi.org/10.1055/s-0036-1597283

46. Huebner BR, Moore EE, Moore HB, Stettler GR, Nunnns GR, Lawson P, et al. Thrombin provokes degranulation of platelet alpha-granules leading to the release of active plasminogen activator Inhibitor-1 (PAI-1). Shock. 2018;50(6):671–6. https://doi.org/10.1097/SHK.0000000000001089

47. Plow EF, Collen D. The presence and release of alpha 2-antiplasmin from human platelets. 1981.
61. Cole E, Gillespie S, Vulliamy P, Brohi K. Multiple organ dysfunction after trauma. Br J Surg. 2020;107(4):402–12. https://doi.org/10.1002/bjs.11361

62. McCully BH, Connelly CR, Fair KA, Holcomb JB, Fox EE, Wade CE, et al. Onset of coagulation function recovery is delayed in severely injured trauma patients with venous thromboembolism. J Am Coll Surg. 2017;225(1):42–51. https://doi.org/10.1016/j.jamcollsurg.2017.03.001

63. Harr JN, Moore EE, Chin TL, Ghasabayan A, Gonzalez E, Wohlauer MV, et al. Platelets are dominant contributors to hypercoagulability after injury. J Trauma Acute Care Surg. 2013;74(3):756–62; discussion 762–5. https://doi.org/10.1097/TA.0b013e3182826d7e

64. Bouchinita A, Terekhov K, Nony P, Vassilevski Y, Volpert V. A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PLoS One. 2020;15(7):e0235392. https://doi.org/10.1371/journal.pone.0235392

65. Van Haren RM, Valle EJ, Thorson CM, Jouria JM, Busko AM, Guarch GA, et al. Hypercoagulability and other risk factors in trauma intensive care unit patients with venous thromboembolism. J Trauma Acute Care Surg. 2014;76(2):443–9. https://doi.org/10.1097/TA.0b013e3182e95656

66. Knudson MM, Moore EE, Kornblith LZ, Shui AM, Brakenridge S, Bruns BR, et al. Challenging traditional paradigms in posttraumatic pulmonary thromboembolism. JAMA Surg. 2022;157(2):e216356. https://doi.org/10.1001/jamasurg.2021.6356

67. Matthay ZA, Hellmann ZI, Nunez-Garcia B, Fields AT, Cuschieri J, Neal MD, et al. Post-injury platelet aggregation and venous thromboembolism. J Trauma Acute Care Surg. 2022. https://doi.org/10.1097/TA.0000000000003655, Publish Ahead of Print.

68. Lichte P, Kobbe P, Almahmoud K, Pfeifer R, Andruszkow H, Wohlauer MV, et al. Platelets are dominant contributors to hypercoagulability after injury. J Trauma Acute Care Surg. 2017;225(1):42–51. https://doi.org/10.1016/j.jamcollsurg.2017.03.001

69. Mwiza JMN, Lee RH, Paul DS, Holle LA, Cooley BC, Nieswandt B, et al. Both G protein-coupled and immunoreceptor tyrosine-based activation motif receptors mediate platelet dysfunction in patients with severe traumatic brain injury. J Neurotrauma. 2007;24(11):1699–706. https://doi.org/10.1089/neu.2007.0322

70. van der Vorm LN, Remijn JA, de Laat B, Huskens D. Effects of plasmin on von Willebrand factor and platelets: a narrative review. TH Open. 2018;2(2):e218–28. https://doi.org/10.1055/s-0038-1660505

71. Wu J, Heemskerk JWM, Baaten CCFMJ. Platelet membrane receptor proteolysis: implications for platelet function. Front Cardiovasc Med. 2021;7:608391. https://doi.org/10.3389/fcvm.2020.608391

72. Baaten CCFMJ, Swieringa F, Misztal T, Mastenbroek TG, Feijge MAH, Bock PE, et al. Platelet heterogeneity in activation-induced glycoprotein shedding: functional effects. Blood Adv. 2018;2(18):2320–31. https://doi.org/10.1182/bloodadvances.2017011544

73. Gardiner EE, Arthur JF, Kahn ML, Berndt MC, Andrews RK. Regulation of platelet membrane levels of glycoprotein VI by a platelet-derived metalloproteinase. Blood. 2004;104(12):3611–7. https://doi.org/10.1182/blood-2004-04-1549

74. Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol. 2013;13(9):649–65. https://doi.org/10.1038/nri3499

75. Kleinved DJB, Simons DGD, Dekimpe C, Deconinck SI, Sloos PH, Maas MAW, et al. Plasma and rhADAMTS13 reduce trauma-induced organ failure by restoring the ADAMTS13-VWF axis. Blood Adv. 2021;5(17):3478–91. https://doi.org/10.1182/bloodadvances.20210004404

76. Tang N, Yin S, Sun Z, Pan Y. Time course of soluble P-selectin and von Willebrand factor levels in trauma patients: a prospective observational study. Scand J Trauma Resusc Emerg Med. 2013;21(1):70. https://doi.org/10.1186/1757-7241-21-70

77. Dyer MR, Plautz WE, Ragni MV, Alexander W, Haldeman S, Sperry JL, et al. Traumatic injury results in prolonged circulation of ultralarge von Willebrand factor and a reduction in ADAMTS13 activity. Transfusion. 2020;60(6):1308–18. https://doi.org/10.1111/trf.15856

78. Plautz WE, Haldeman SH, Dyer MR, Sperry JL, Guyette FX, Loughran PA, et al. Reduced cleavage of von willebrand factor by ADAMTS13 is associated with microangiopathic acute kidney injury following trauma. Blood Coagul Fibrinolysis. 2021;33:14–24. https://doi.org/10.1177/1047997821992391

79. Tersteeg C, de Maat S, De Meyer SF, Smeets MWJ, Breederecht AD, Roest M, et al. Plasmin cleavage of von Willebrand factor as an emergency bypass for ADAMTS13 deficiency in thrombotic microangiopathy. Circulation. 2014;129(12):1320–31. https://doi.org/10.1161/circulationaha.113.006727

80. Matsumoto H, Takeba H, Umakoshi K, Kikuchi S, Ohshita M, Annen S, et al. ADAMTS13 activity decreases in the early phase of trauma associated with coagulopathy and systemic inflammation: a prospective observational study. Thromb J. 2021;9(1):17. https://doi.org/10.1186/s12959-021-00270-1

81. Russell RT, McDaniel JK, Cao W, Shroyer M, Wagener BM, Zheng XL, et al. Low plasma ADAMTS13 activity is associated with coagulopathy, endothelial cell damage and mortality after severe Paediatric trauma. Thromb Haemost. 2018;118(4):676–87. https://doi.org/10.1055/s-0038-1636528

82. South K, Luken BM, Cawley JT, Phillips R, Thomas M, Collins RF, et al. Conformational activation of ADAMTS13. Proc Natl Acad Sci U S A. 2014;111(52):18578–83. https://doi.org/10.1073/pnas.1411979112

83. South K, Luken BM, Cawley JT, Phillips R, Thomas M, Collins RF, et al. Conformational activation of ADAMTS13. Proc Natl Acad Sci U S A. 2014;111(52):18578–83. https://doi.org/10.1073/pnas.1411979112

84. Petri A, Kim HJ, Xu Y, de Groot R, Li C, Vandenbulcke A, et al. Crystal structure and substrate-induced activation of ADAMTS13. Nat Commun. 2019;10(1):3781. https://doi.org/10.1038/s41467-019-11474-5

85. South K, Freitas MO, Lane DA. Conformational quiescence of ADAMTS13 prevents proteolytic promiscuity. J Thromb Haemost. 2016;14(10):2011–22. https://doi.org/10.1111/jth.13445

86. Cawley JT, Lam JK, Rance JB, Mollica LR, O'Donnell JS, Lane DA. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood. 2005;105(3):1085–93. https://doi.org/10.1182/blood-2004-03-1101

87. Lam JK, Chion CK, Zanardelli S, Lane DA, Cawley JT. Further characterization of ADAMTS-13 inactivation by thrombin.
promotes development of microvascular thrombosis in rats. J Thromb Haemost. 2007;5(1):109–16. https://doi.org/10.1111/j.1538-7836.2006.02255.x

101. Yang Y, Shen L, Xu M, Chen L, Lu W, Wang W. Serum calprotectin as a prognostic predictor in severe traumatic brain injury. Clin Chim Acta. 2021;520:101–7. https://doi.org/10.1016/j.cca.2021.06.009

102. Joly P, Marshall JC, TESSIER PA, Massé C, Page N, Foretne AI, et al. S100A8/A9 and sRAGE kinetic after polytrauma; an explorative observational study. Scand J Trauma Resusc Emerg Med. 2017;25(1):114. https://doi.org/10.1186/s13049-017-0455-0

103. Larsson A, Tydén J, Johansson J, Lipsey M, Bergquist M, Kultima K, et al. Calprotectin is superior to procalctin as a sepsis marker and predictor of 30-day mortality in intensive care patients. Scand J Clin Lab Invest. 2020;80(2):156–61. https://doi.org/10.1080/03693500.2019.1703216

104. Wang Y, Fang C, Gao H, Bilodeau ML, Zhang Z, Crooke K, et al. Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis. J Clin Invest. 2014;124(5):2160–71. https://doi.org/10.1172/JCI70966

105. Joshi A, Schmidt LE, Burnap SA, Lu R, Chan MV, Armstrong PC, et al. Neutrophil-derived protein S100A8/A9 alters the platelet proteome in acute myocardial infarction and is associated with changes in platelet reactivity. Arterioscler Thromb Vasc Biol. 2022;42(1):49–62. https://doi.org/10.1161/ATVBAHA.121.317113

106. Johansson PI, Henriksson HH, Stensballe J, Gybel-Brask M, Cardenas JC, Baer LA, et al. Traumatic Endotheliopathy: a prospective observational study of 424 severely injured patients. Ann Surg. 2017;265(3):597–603. https://doi.org/10.1097/sla.0000000000001751

107. Naumann DN, Hazeline J, Davies DJ, Bishop J, Midwinter MJ, Belli A, et al. Endotheliopathy of trauma is an on-scene phenomenon, and is associated with multiple organ dysfunction syndrome: a prospective observational study. Shock. 2018;49(4):420–8. https://doi.org/10.1097/shk.0000000000009999

108. Milford EM, Reade MC. Resuscitation fluid choices to preserve the endothelial Glycocalyx. Crit Care. 2019;23(1):77–7. https://doi.org/10.1186/s13054-019-2369-x

109. Schutzman LM, Rigor RR, Lin YJ, Dang AN, Le PH, Singh HB, et al. P-selectin antibody treatment after blunt thoracic trauma prevents early pulmonary arterial thrombosis without changes in viscoelastic measurements of coagulation. J Trauma Acute Care Surg. 2021;90(6):1032–9. https://doi.org/10.1097/ta.0000000000003612

110. Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, Larsen P, Cognasse F. Revisiting platelets and toll-like receptors (TLRs): at the interface of vascular immunity and thrombosis. Int J Mol Sci. 2020;21(17):6150. https://doi.org/10.3390/ijms21176150

111. Puhm F, Boilard E, Machlus KR. Platelet extracellular vesicles. Arterioscler Thromb Vasc Biol. 2021;41(1):87–96. https://doi.org/10.1161/ATVBAHA.120.314644

112. Mortaz E, Zadian SS, Shahir M, Folkerts G, Garssen J, Mumbay S, et al. Does neutrophil phenotype predict the survival of trauma patients? Front Immunol. 2019;10. https://doi.org/10.3389/fimmu.2019.02122
113. Juffermans NP, van den Brom CE, Kleinveld DJB. Targeting endothelial dysfunction in acute critical illness to reduce organ failure. Anesth Analg. 2020;131(6):1708–20. https://doi.org/10.1213/ane.0000000000005023

114. Baksaa-Aasen K, Gall LS, Stensballe J, Juffermans NP, Curry N, Maegle M, et al. Viscoelastic haemostatic assay augmented protocols for major trauma haemorrhage (ITACTIC): a randomized, controlled trial. Intensive Care Med. 2021;47(1):49–59. https://doi.org/10.1007/s00134-020-06266-1

115. Gonzalez E, Moore EE, Moore HB, Chapman MP, Chin TL, Ghasabayan A, et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg. 2016;263(6):1051–9. https://doi.org/10.1097/sla.0000000000001608

116. Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32. https://doi.org/10.1016/S0140-6736(10)60835-5

117. Roberts I, Shakur H, Coats T, Hunt B, Balogun E, Barnetson L, et al. The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol Assess. 2013;17(10):1–79. https://doi.org/10.3310/hta17100

118. Wu X, Benov A, Darlington DN, Keesee JD, Liu B, Cap AP. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;394(10210):1713–23. https://doi.org/10.1016/S0140-6736(19)32323-0

119. Wu X, Benov A, Darlington DN, Keesee JD, Liu B, Cap AP. Effect of tranexamic acid administration on acute traumatic coagulopathy in rats with polytrauma and hemorrhage. PLoS One. 2019;14(10):e0223406. https://doi.org/10.1371/journal.pone.0223406

120. Spinella PC, Thomas KA, Turnbull IR, Fuchs A, Bochichio K, Schuerer D, et al. The immunologic effect of early intravenous two and four gram bolus dosing of Tranexamic acid compared to placebo in patients with severe traumatic bleeding (TAMPITI): a randomized, double-blind, placebo-controlled, single-center trial. Front Immunol. 2020;11:2085. https://doi.org/10.3389/fimmu.2020.02085

121. Holcomb JB, Tilley BC, Baranuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma the PROPR randomized clinical trial. JAMA. 2015;312(5):471–82. https://doi.org/10.1001/jama.2015.12

122. Kleinveld DJB, van Amstel RBE, Wirtz MR, Geeraedts LMG, Goslings JC, Hollmann MW, et al. Platelet-to-red blood cell ratio and mortality in bleeding trauma patients: a systematic review and meta-analysis. Transfusion. 2021;61(Suppl 1):S243–s251. https://doi.org/10.1111/trf.16455

123. Washington CW, Schuerer DJ, Grubb RL Jr. Platelet transfusion: an unnecessary risk for mild traumatic brain injury patients on antiplatelet therapy. J Trauma. 2011;71(2):358–63. https://doi.org/10.1097/TA.0b013e518220ad7e

124. Anglin CO, Spence JS, Warner MA, Paliiota C, Harper C, Moore C, et al. Effects of platelet and plasma transfusion on outcome in traumatic brain injury patients with moderate bleeding diatheses. J Neurosurg. 2013;118(3):676–86. https://doi.org/10.3171/2012.11.Jns12622

125. Vulliamy P, Gillespie S, Gall LS, Green L, Brohi K, Davenport RA. Platelet transfusions reduce fibrinolysis but do not restore platelet function during trauma hemorrhage. J Trauma Acute Care Surg. 2017;83(3):388–97. https://doi.org/10.1097/TA.0000000000001520

126. Henriksson HH, Grand AG, Viggers S, Baer LA, Solbeck S, Cotton BA, et al. Impact of blood products on platelet function in patients with traumatic injuries: a translational study. J Surg Res. 2017;214:154–61. https://doi.org/10.1016/j.jss.2017.02.037

127. Nair PM, Picdicoke HF, Cap AP, Ramasubramanian AK. Effect of cold storage on shear-induced platelet aggregation and clot strength. J Trauma Acute Care Surg. 2014;77(3 Suppl 2):S88–93. https://doi.org/10.1097/TA.0b013e318287ba82

128. Reddoch KM, Picdicoke HF, Montgomery RK, Fedyk CG, Aden JK, Ramasubramanian AK, et al. Hemostatic function of apheresis platelets stored at 4°C and 22°C. Shock. 2014;41(Suppl 1):54–61. https://doi.org/10.1097/SHK.0000000000000862

129. Cotton BA, Podbielski J, Camp E, Welch T, del Junco D, Bai Y, et al. A randomized controlled pilot trial of modified whole blood versus component therapy in severely injured patients requiring large volume transfusions. Ann Surg. 2013;258(4):527–32; discussion 532-3. https://doi.org/10.1097/SLA.0b013e3182a4ff0a

130. Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Holcomb JB. Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma. 2009;66(4 Suppl):S69–76. https://doi.org/10.1097/TA.0b013e31819d85f

131. Shea SM, Staadt AM, Thomas KA, Schuerer D, Mielke JE, Folkerts D, et al. The use of low-titer group O whole blood is independently associated with improved survival compared to component therapy in adults with severe traumatic hemorrhage. Transfusion. 2020;60(Suppl 3):S2–s9. https://doi.org/10.1111/trf.15696

132. Jobes D, Wolfe Y, O’Neill D, Calder J, Jones L, Sesok-Pizzini D, et al. Toward a definition of “fresh” whole blood: an in vitro characterization of coagulation properties in refrigerated whole blood for transfusion. Transfusion. 2011;51(1):43–51. https://doi.org/10.1111/j.1537-2995.2010.02772.x

133. Hanna K, Bible L, Chehab M, Asmar S, Douglas M, Ditillo M, et al. Nationwide analysis of whole blood hemostatic resuscitation in civilian trauma. J Trauma Acute Care Surg. 2020;89(2):329–35. https://doi.org/10.1097/TA.0000000000002753

134. Guyette FX, Zenati M, Triulzi DJ, Yazer MH, Skroczky H, Del Junco D, et al. Fibrinogen early in severe trauma study (feisty): results from an Australian multicentre randomised controlled trial. J Trauma Acute Care Surg. 2022;92(5):839–43. https://doi.org/10.1111/jtra.16455

135. Curry N, Rourke C, Davenport R, Beer S, Pankhurst L, Deary A, et al. Early cryoprecipitate for major haemorrhage in
trauma: a randomised controlled feasibility trial. Br J Anaesth. 2015;115(1):76–83. https://doi.org/10.1093/bja/aev134

137. Morrow GB, Carlier MSA, Dasgupta S, Craigen FB, Mutch NJ, Curry N. Fibrinogen replacement therapy for traumatic coagulopathy: does the fibrinogen source matter? Int J Mol Sci. 2021;22(4):2185. https://doi.org/10.3390/ijms22042185

138. Thomas KA, Shea SM, Spinnell PC. Effects of pathogen reduction technology and storage duration on the ability of cryoprecipitate to rescue induced coagulopathies in vitro. Transfusion. 2021;61(6):1943–54. https://doi.org/10.1111/trf.16376

139. Marsden M, Benger J, Brohi K, Curry N, Foley C, Green L, et al. Coagulopathy, cryoprecipitate and CRYOSTAT-2: realising the potential of a nationwide trauma system for a national clinical trial. Br J Anaesth. 2019;122(2):164–9. https://doi.org/10.1016/j.bja.2018.10.055

140. Vasudeva M, Mathew JK, Groombridge C, Tee JW, Johnny CS, Maini A, et al. Hypocalcemia in trauma patients: a systematic review. J Trauma Acute Care Surg. 2021;90(2):396–402. https://doi.org/10.1097/TA.00000000000013027

141. Davlouros P, Xanthopoulou I, Mparrisonis N, Gkannopoulos G, Defferes S, Alexopoulos D. Role of calcium in platelet activation: novel insights and pharmacological implications. Med Chem. 2016;12(2):131–8. https://doi.org/10.2174/15734064120160208195923

142. Matthay ZA, Fields AT, Nunez-Garcia B, Patel MH, Cohen MJ, Callcut RA, et al. Dynamic effects of calcium on in vivo and ex vivo platelet behavior after trauma. J Trauma Acute Care Surg. 2020;89(5):871–9. https://doi.org/10.1097/TA.0000000000002820

143. Calmer S, Ferkau A, Larmann J, Johanning K, Czaja E, Hegl C, et al. Desmopressin (DDAVP) improves recruitment of activated platelets to collagen but simultaneously increases platelet endothelial interactions in vitro. Platelets. 2014;25(1):8–15. https://doi.org/10.3109/09537104.2013.767442

144. Colucci G, Stutz M, Rochat S, Conti T, Pavicic M, Reusser M, et al. The effect of desmopressin on platelet function: a selective enhancement of procoagulant COAT platelets in patients with primary platelet function defects. Blood. 2014;123(12):1905–16. https://doi.org/10.1182/blood-2013-04-497123

145. Sims CA, Holena D, Kim P, Pascual J, Smith B, Martin N, et al. Effect of low-dose supplementation of arginine vasopressin on need for blood product transfusions in patients with trauma and hemorrhagic shock: a randomized clinical trial. JAMA Surg. 2019;154(11):994–1003. https://doi.org/10.1001/jamasurg.2019.2884

146. Furay EJ, Daley MJ, Saratasinghe P, Lara S, Aydelotte JD, Teixeira PG, et al. Desmopressin is a transfusion sparing option to reverse platelet dysfunction in patients with severe traumatic brain injury. J Trauma Acute Care Surg. 2020;88(1):80–6. https://doi.org/10.1097/TA.0000000000002521

147. Luc NF, Rohner N, Girish A, Didar Singh Sekhon U, Neal MD, Sen Gupta A. Bioinspired artificial platelets: past, present and future. Platelets. 2021;33:1–13. https://doi.org/10.1080/09537104.2021.1967916

148. Barroso J, Osborne B, Teramura G, Pellowham E, Fitzpatrick M, Biehl R, et al. Safety evaluation of a lyophilized platelet-derived hemostatic product. Transfusion. 2018;58(12):2969–77. https://doi.org/10.1111/trf.14972

149. Fitzpatrick GM, Cliff R, Tandon N. Thrombosomes: a platelet-derived hemostatic agent for control of noncompressible hemorrhage. Transfusion. 2015;53(Suppl 1):100s–6s. https://doi.org/10.1111/trf.12043

150. Lopez E, Srivastava AK, Burchfield J, Wang YW, Cardenas JC, Togarattii PP, et al. Platelet-derived extracellular vesicles promote hemostasis and prevent the development of hemorrhagic shock. Sci Rep. 2019;9(1):17676. https://doi.org/10.1038/s41598-019-53724-y

151. Chan V, Sarkari M, Sunderland R, St John AE, White NJ, Kastrap CJ. Platelets loaded with liposome-encapsulated thrombin have increased coagulability. J Thromb Haemost. 2018;16(6):1226–35. https://doi.org/10.1111/jth.14006

152. Girish A, Hickman DA, Banerjee A, Luc N, Ma Y, Miyazawa K, et al. Trauma-targeted delivery of tranexamic acid improves hemostasis and survival in rat liver hemorrhage model. J Thromb Haemost. 2019;17(10):1632–44. https://doi.org/10.1111/jth.14552

153. Dyer MR, Hickman D, Luc N, Haldeman S, Loughran P, Pawlowski C, et al. Intravenous administration of synthetic platelets (SynthoPlate) in a mouse liver injury model of uncontrolled hemorrhage improves hemostasis. J Trauma Acute Care Surg. 2018;84(6):917–23. https://doi.org/10.1097/TA.0000000000001893

154. Hickman DA, Pawlowski CL, Shevitz A, Luc NF, Kim A, Girish A, et al. Intravenous synthetic platelet (SynthoPlate) nanoconstructs reduce bleeding and improve ‘golden hour’ survival in a porcine model of traumatic arterial hemorrhage. Sci Rep. 2018;8(1):3118. https://doi.org/10.1038/s41598-018-21384-z

155. Shukla M, Sekhon UD, Betapudi V, Li W, Hickman DA, Pawlowski CL, et al. In vitro characterization of SynthoPlate™ (synthetic platelet) technology and its in vivo evaluation in severely thrombocytopenic mice. J Thromb Haemost. 2017;15(2):375–87. https://doi.org/10.1111/jth.13579

156. Sekhon Ujjal Didar S, Swingle K, Girish A, Luc N, de la Fuente M, Alvikas J, et al. Platelet-mimicking procoagulant nanoparticles augment hemostasis in animal models of bleeding. Sci Transl Med. 2022;14(629):eabb8975. https://doi.org/10.1126/scitranslmed.abb8975

157. Hagisawa K, Nishikawa K, Yangawara K, Kinoshita M, Doi M, Suzuki H, et al. Treatment with fibrinogen γ-chain peptide-coated, adenosine 5′-diphosphate-encapsulated liposomes as an insufusable hemostatic agent against active liver bleeding in rabbits with acute thrombocytopenia. Transfusion. 2015;55(2):314–25. https://doi.org/10.1111/trf.12829

158. Nishikawa K, Hagisawa K, Kinoshita M, Shono S, Katsuno S, Doi M, et al. Fibrinogen γ-chain peptide-coated, ADP-encapsulated liposomes rescue thrombocytopenic rabbits from non-compressible liver hemorrhage. J Thromb Haemost. 2012;10(10):2137–48. https://doi.org/10.1111/j.1538-7836.2012.04889.x

159. Hazeldine J, Dinsdale RJ, Naumann DN, Acharjee A, Bishop JRB, Lord JM, et al. Traumatic injury is associated with reduced deoxyribonuclease activity and dysregulation of the Actin scavenging system. Burns Trauma. 2021;9:tkab001. https://doi.org/10.1093/burnst/tkab001

160. Aswani A, Manson J, Itagaki K, Chiazza F, Collino M, Wupeng WL, et al. Scavenging circulating mitochondria
DNA as a potential therapeutic option for multiple organ dysfunction in trauma hemorrhage. Front Immunol. 2018;9:891-1. https://doi.org/10.3389/fimmu.2018.00891

161. Abrams ST, Zhang N, Dart C, Wang SS, Thachil J, Guan Y, et al. Human CRP defends against the toxicity of circulating histones. J Immunol. 2013;191(5):2495–502. https://doi.org/10.4049/jimmunol.1203181

162. Kutcher ME, Xu J, Vilardi RF, Ho C, Esmon CT, Cohen MJ. Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C. J Trauma Acute Care Surg. 2012;73(6):1389–94. https://doi.org/10.1097/TA.0b013e318270d395

163. Chaaban H, Keshari RS, Silas-Mansat R, Popescu NI, Mehta-D’Souza P, Lim YP, et al. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury. Blood. 2015;125(14):2286–96. https://doi.org/10.1182/blood-2014-06-582759

164. Dekker SE, Sillesen M, Bambakis T, Andjelkovic AV, Jin G, Liu B, et al. Treatment with a histone deacetylase inhibitor, valproic acid, is associated with increased platelet activation in a large animal model of traumatic brain injury and hemorrhagic shock. J Surg Res. 2014;190(1):312–8. https://doi.org/10.1016/j.jss.2014.02.049

165. Kim JY, Park JS, Strassheim D, Douglas I, Diaz del Valle F, Asehnoune K, et al. HMGB1 contributes to the development of acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol. 2005;288(5):1958–65. https://doi.org/10.1152/ajplung.00359.2004

166. Yang L, Wang F, Yang L, Yuan Y, Chen Y, Zhang G, et al. HMGB1 a-box reverses brain edema and deterioration of neurological function in a traumatic brain injury mouse model. Cell Physiol Biochem. 2018;46(6):2532–42. https://doi.org/10.1159/000489659

167. Okuma Y, Liu K, Wake H, Liu R, Nishimura Y, Hui Z, et al. Glycerophosphatidylcholine inhibits traumatic brain injury by reducing HMGB1–RAGE interaction. Neuropharmacology. 2014;85:18–26. https://doi.org/10.1016/j.neuropharm.2014.05.007

168. Gu XJ, Xu J, Ma BY, Chen G, Gu PY, Wei D, et al. Effect of glycerophosphatidylcholine on traumatic brain injury in rats and its mechanism. Chin J Traumatol. 2014;17(1):1–7.

169. Panigrahi S, Ma Y, Hong L, Gao D, West XZ, Salomon RG, et al. Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis. Circ Res. 2013;112(1):103–12. https://doi.org/10.1161/circresaha.112.274241

170. Ding N, Chen G, Hoffman R, Loughran PA, Sodhi CP, Hackam DJ, et al. Toll-like receptor 4 regulates platelet function and contributes to coagulation abnormality and organ injury in hemorrhagic shock and resuscitation. Circ Cardiovasc Genet. 2014;7(5):615–24. https://doi.org/10.1161/circgenetics.113.000398

171. Ito T, Kawahara K, Okamoto K, Yamada S, Yasuda M, Imaiuzumi H, et al. Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arterioscler Thromb Vasc Biol. 2008;28(10):1825–30. https://doi.org/10.1161/atvbaha.107.150631

172. Abeyama K, Stern DM, Ito Y, Kawahara KI, Yoshimoto Y, Tanaka M, et al. The N-terminal domain of thrombomodu- lin sequesters high-mobility group B1 protein, a novel antiinflammatory mechanism. J Clin Invest. 2005;115(5):1267–74. https://doi.org/10.1172/jci22782

173. Nomura S, Fujita S, Ozasa R, Nakanishi T, Miyaji M, Mori S, et al. The correlation between platelet activation markers and HMGB1 in patients with disseminated intravascular coagulation and hematologic malignancy. Platelets. 2011;22(5):396–7. https://doi.org/10.3109/09537104.2011.553970

174. Vincent J-L, Francois B, Zabolotskikh I, Daga MK, Lascarrou JB, Kirou MY, et al. Effect of a recombinant human soluble Thrombomodulin on mortality in patients with sepsis-associated coagulopathy: the SCARLET randomized clinical trial. JAMA. 2019;321(20):1993–2002. https://doi.org/10.1001/jama.2019.5358

175. Nakahara M, Ito T, Kawahara K-i, Yamamoto M, Nagasato T, Shrestha B, et al. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism. PLoS One. 2013;8(9):e75961. https://doi.org/10.1371/journal.pone.0075961

176. Kimpara N, Tawara S, Kawasaki K. Thrombomodulin alfa prevents the decrease in platelet aggregation in rat models of disseminated intravascular coagulation. Thromb Res. 2019;179:73–80. https://doi.org/10.1016/j.thromres.2019.05.002

177. Adiguzel C, Iqbal O, Fareed D, Hoppensteadt D, Jeske W, Simmikkannu M, et al. Modulation of platelet function by recombinant Thrombomodulin hematologic implications. Blood. 2007;110(11):3898–8. https://doi.org/10.1182/blood.v110.11.3898.3898

178. Davenport RA, Guerreiro M, Frith D, Rourke C, Platon S, Cohen M, et al. Activated protein C drives the Hyperfibrinolysis of acute traumatic coagulopathy. Anesthesiology. 2017;126(1):115–27. https://doi.org/10.1097/ALN.0000000000001428

179. Mosnier LO, Meijers JC, Bouma BN. Regulation of fibrinolysis in plasma by TAFI and protein C is dependent on the concentration of thrombomodulin. Thromb Haemost. 2001;85(1):5–11.

180. Chesebro BB, Rahn P, Carles M, Esmon CT, Xu J, Brohi K, et al. Beneficial effects of iloprost during experimental hemorrhagic shock. Panminerva Med. 2000;42(2):109–17.

181. Dalva K, et al. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1. Shock. 2013;40(3):195–202. https://doi.org/10.1097/SHK.0b013e318299f1fc

182. de Maat S, Clark C, Barendrecht AD, Smits S, van Kleef N, el Henriksen HH, et al. Efficacy and safety of iloprost in trauma hemorrhage. Front Immunol. 2018;9:1267. https://doi.org/10.3389/fimmu.2018.00891

183. Katircioğlu SF, Ulas AT, Gökçe P, Apaydin N, Ayaz S, Dalva K, et al. Beneficial effects of iloprost during experimentally induced hemorrhagic shock. Panminerva Med. 2000;42(2):109–17.

184. Johansson PI, Eriksson CF, Schmal H, Gaarder C, Pall M, Henriksen HH, et al. Efficacy and safety of iloprost in trauma
186. Letson H, Dobson G. Adenosine, lidocaine and Mg2+ (ALM) fluid therapy attenuates systemic inflammation, platelet dysfunction and coagulopathy after non-compressible truncal hemorrhage. PLoS One. 2017;12(11):e0188144. https://doi.org/10.1371/journal.pone.0188144

187. Wang GR, Zhu Y, Halushka PV, Lincoln TM, Mendelsohn ME. Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1998;95(9):4888–93. https://doi.org/10.1073/pnas.95.9.4888

188. Keh D, Gerlach M, Kürer I, Seiler S, Kern T, Falke KJ, et al. The effects of nitric oxide (NO) on platelet membrane receptor expression during activation with human alpha-thrombin. Blood Coagul Fibrinolysis. 1996;7(6):615–24. https://doi.org/10.1097/00001721-199609000-00007

189. Taylor RW, Zimmerman JL, Dellinger RP, Straube RC, Criner GJ, Davis K Jr, et al. Low-dose inhaled nitric oxide in patients with acute lung injury: A randomized controlled trial. JAMA. 2004;291(13):1603–9. https://doi.org/10.1001/jama.291.13.1603

190. Tran A, Fernando SM, Carrier M, Siegel DM, Inaba K, Vogt K, et al. Efficacy and safety of low molecular weight heparin versus unfractionated heparin for prevention of venous thromboembolism in trauma patients: a systematic review and meta-analysis. Ann Surg. 2022;275(1):19–28.

191. Rahbar E, Cotton BA, Wade CE, Cardenas JC. Acquired anti-thrombin deficiency is a risk factor for venous thromboembolism after major trauma. Thromb Res. 2021;204:9–12. https://doi.org/10.1016/j.thromres.2021.05.015

192. Xiao Z, Théroux P. Platelet activation with unfractionated heparin at therapeutic concentrations and comparisons with a low-molecular-weight heparin and with a direct thrombin inhibitor. Circulation. 1998;97(3):251–6. https://doi.org/10.1161/01.CIR.97.3.251

193. Harr JN, Moore EE, Johnson J, Chin TL, Wohlauer MV, Maier R, et al. Antiplatelet therapy is associated with decreased transfusion-associated risk of lung dysfunction, multiple organ failure, and mortality in trauma patients. Crit Care Med. 2013;41(2):399–404. https://doi.org/10.1097/CCM.0b013e31826ab38b

194. Phillips JW, Barringhaus KG, Sanders JM, Hesselbacher SE, Czarnik AC, Manka D, et al. Single injection of P-selectin or P-selectin glycoprotein Ligand-1 monoclonal antibody blocks Neointima formation after arterial injury in Apolipoprotein E-deficient mice. Circulation. 2003;107(17):2244–9. https://doi.org/10.1161/01.CIR.0000065604.56839.18

195. Straub A, Azevedo R, Beierlein W, Wendel HP, Dietz K, Ziemer G. Tirofiban (Aggrastat) protects platelets and decreases platelet-granulocyte binding in an extracorporeal circulation model. Thorac Cardiovasc Surg. 2006;54(3):162–7. https://doi.org/10.1055/s-2005-872952

196. Scully M, Cataland SR, Peyvandi F, Coppo P, Knöbl P, Kremer Hovinga JA, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–46. https://doi.org/10.1056/NEJMoa1806311

How to cite this article: Sloos PH, Vulliamy P, van’t Veer C, Gupta AS, Neal MD, Brohi K, et al. Platelet dysfunction after trauma: From mechanisms to targeted treatment. Transfusion. 2022;62(S1):S281–S300. https://doi.org/10.1111/trf.16971