Detection of IS903, IS26 and ISEcp1 Elements in CTX-M-Producing Klebsiella pneumoniae and Escherichia coli Isolates From Patients with Leukemia in Iran

Mahdane Roshani 1, Hossein Goudarzi 1, Ali Hashemi 1,*, Abdollah Ardebeli 2, 3, Soroor Erfanimanesh 4 and Aghil Bahramian 1

1Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
3Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
4Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Keywords: Escherichia coli, Extended-Spectrum Beta-Lactamases, Insertion Sequence, Klebsiella pneumoniae, Leukemic Patients

Abstract

Background: The ability of extended spectrum beta-lactamases (ESBLs) production is one of the main mechanisms for the emergence of antibiotic resistance in Escherichia coli and Klebsiella pneumoniae.

Objectives: The aim of this study was to evaluate the occurrence of IS903, IS26, and ISEcp1 insertion elements among the CTX-M-producing K. pneumoniae and E. coli isolates from patients with leukemia in Tehran.

Methods: Eighty E. coli and K. pneumoniae isolates were recovered from patients admitted to hospitals of Tehran. Antibiotic susceptibility tests were performed by Kirby-Bauer disc diffusion and broth microdilution methods. Detection of ESBL producers was evaluated by phenotypic confirmatory test. The presence of IS903, IS26, and ISEcp1 insertion elements in CTX-M-positive E. coli and K. pneumoniae isolates was investigated by PCR-sequencing methods.

Results: The rate of resistance of 80 E. coli and K. pneumoniae isolates against the nine antibiotics was as follows: 100% to ampicillin, 15% to amikacin, 51% to ciprofloxacin, 30% to gentamicin, 58% to ceftriaxone, 10% to imipenem, 63% to cefotaxime, 51% to levofloxacin, and 55% to ceftazidime. Using phenotypic confirmatory test revealed that 51 (63.75%) isolates were ESBL producers. The prevalence of CTX-M-1, CTX-M-2, CTX-M-9, CTX-M-8, and CTX-M-25 genes was 87.5%, 13.75%, 23.75%, 10%, and 0%, respectively. IS903, IS26, and ISEcp1 elements were detected in 93.75%, 71.25%, and 100% of the isolates, respectively.

Conclusions: This study indicates that the high prevalence of antibiotic resistance, IS and CTX-M-producing E. coli and K. pneumoniae isolates could be a major concern and highlights the need for infection control measures.

The extensive use of β-lactams has led to the emergence of resistant isolates worldwide (5). Resistance to this class of antibiotics is mostly mediated by acquisition of β-lactamase genes located on mobile genetic elements, such as transposons or plasmids. Extended spectrum beta-lactamases (ESBLs) have increased among clinical isolates of members of the Enterobacteriaceae family during last four decades. High prevalence of infections caused by ESBL-producing Enterobacteriaceae at intensive care units (ICUs) was reported worldwide. Such drug-resistant bacterial infections are top concerns in people admitted to nursing homes, geriatric and oncology patients, transplant recipients, and pediatric populations. Failure to identify β-lactamase-producing isolates by laboratory susceptibility
testing methods may lead to inappropriate empirical therapy and a subsequent increased mortality in these fragile and intolerable people (6).

Extended spectrum β-lactamase-producing *Klebsiella pneumoniae* and *E. coli* are progressively being identified in many parts of the world and are prevalent in countries located in the Asia-Pacific region (7). Over the past 20 years, CTX-M has emerged as a major type of ESBLs, which are now rapidly spreading among members of *Enterobacteriaceae* around the world (8). Since the discovery of the CTX-M-1 from a European patient in the late 1980s, more than 130 allelic variants of CTX-M were characterized (9). Among antimicrobial-resistant Gram-negative pathogens, organisms producing CTX-M-type ESBLs have become a serious threat to public health worldwide (10).

Insertion sequences (ISs) are the smallest transposable elements (< 2.5 kb) capable of independent transposition in an organism, thereby causing insertion mutations and genome rearrangements (11). Various elements may possibly be involved in the mobilization, spread, and expression of *bla*_{CTX-M} genes, of which ISEcp1 is often associated with the upstream gene region. In addition, other insertion sequences, such as IS26, IS10, IS5, and IS903 have been detected surrounding the *bla*_{CTX-M} resistance determinant (12).

2. Objectives

This study investigated the genetic environment of *bla*_{CTX-M} genes in terms of the IS903, IS26, and ISEcp1 insertion sequences in *E. coli* and *K. pneumoniae* isolates recovered from patients with leukaemia in Tehran, capital of Iran.

3. Methods

3.1. Ethics Statement and Patient Consent

The present study was approved by the Ethics Committee of Shahid Beheshti University of Medical Sciences with reference number IR.SBMU.SM.REC.1394.38. The authors confirm that all patients, and the patients’ parents provided their informed consent form to take part in the study.

3.2. Study Patients and Bacterial Isolation

Bacterial isolates included in this study were collected during May 2014 to October 2015 from two medical centers of Tehran, Iran: The Hematology-Oncology Research Center, Dr. Shariati Hospital (with a capacity of 857 beds), and the Mahak Pediatric Oncology Center, a 120-bed oncology hospital with an outpatient clinic. Sixty-one and nineteen subjects included in this study were patients with acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL), respectively. Bacterial isolates were recovered from various biological material, including blood, urine, wound, sputum, and vaginal swabs. All clinical specimens were immediately sent to the laboratory to be processed for microbial pathogens. Isolates were identified by using standard microbiological and biochemical methods (13). After identification, bacteria were stored in glycerol stock at -70°C before retrieval for testing.

3.3. Antimicrobial Susceptibility Testing

The susceptibility of clinical isolates to imipenem (10 µg), ceftazidime (30 µg), ceftriaxone (30 µg), cefotaxime (30 µg), ciprofloxacin (5 µg), levofloxacin (30 µg), amikacin (30 µg), ampicillin (30 µg), and gentamicin (10 µg) (Mast, UK) was evaluated by the Kirby-Bauer disk diffusion method, based on the Clinical Laboratory Standards Institute (CLSI) guidelines (14). The minimum inhibitory concentration (MIC) of selected antibiotics, including imipenem, ceftazidime, cefotaxime, and ciprofloxacin (Glaxo, UK) was determined by the reference broth microdilution method. All antibiotics were incorporated in Mueller-Hinton broth (Merck, Germany) in serial two-fold concentrations from 0.5 to 256 µg/mL. Quality control was done using the *E. coli* ATCC 25922 strain.

3.4. Screening Tests for ESBL Production

All isolates were evaluated for production of ESBLs by the phenotypic confirmatory disc diffusion method containing cefotaxime (CTX, 30 µg) and ceftazidime (CAZ, 30 µg) with CTX + clavulanic acid (CA, 10 µg) and CAZ + CA per disc (Mast Group, Merseyside, UK). The zones of inhibition were compared for the CTX and CAZ discs with that of the CAZ + CA and CTX + CA disk. An increase in zone diameter of ≥ 5 mm in the presence of CA was interpreted positive for the presence of ESBL in the test organism. *Escherichia coli* ATCC 25922 and *K. pneumoniae* ATCC 700603 were used as negative and positive controls for ESBL production, respectively (14).

3.5. PCR-Based Detection of *bla*_{CTX-M}-Type Genes and Sequencing Analysis

To determine the *bla*_{CTX-M} variants, including *bla*_{CTX-M-1}, *bla*_{CTX-M-2}, *bla*_{CTX-M-8}, *bla*_{CTX-M-9}, and *bla*<sub>CTX-M-25*, PCR was performed on DNA extracted by a genomic DNA purification kit (Fermentas, Germany), using primers specific to each gene (Bioneer Company, Korea) (Table 1). Reactions were performed in a DNA thermal cycler (Eppendorf, Mastercycler gradient) in a 25-µL mixture containing 1 U of *Taq* polymerase (Bioneer Company, Korea).
and 1× buffer consisting of 1.5 mM MgCl$_2$, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, each dNTPs at a concentration of 250 µM, and primer at a concentration of 10 pmol. Thirty-six cycles were performed for each reaction, with the following temperature protocol for each cycle: 94°C for 60 seconds, 57°C for 60 seconds, and 72°C for 60 seconds. Sequencing of amplicons in both directions was done by the Bioneer Company (Daejeon, South Korea). The BLAST program from the national centre for biotechnology information (NCBI) website (http://www.ncbi.nlm.nih.gov/BLAST) was used to analyse the nucleotide sequences.

3.6. PCR Assay for Insertion Sequences

All isolates were evaluated for the presence of three insertion elements ISEcp1, IS26, and IS903. The oligonucleotide primer sets specific for each IS are shown in Table 1. Sequencing was the same as described previously for CTX-M type genes.

3.7. Genetic Association of the CTX-M gene with ISEcp1, IS26, and IS903

The association of $\text{bla}_{\text{CTX-M}}$ to insertion sequences, such as ISEcp1, IS26, and IS903, was performed by PCR and sequencing. The reaction mixture and running protocols were the same as described before (12, 22).

4. Results

4.1. Isolation and Identification

A total of 56 $E.\text{coli}$ and 24 $K.\text{pneumoniae}$ isolates were recovered from urine (62.5%), blood (26.25%), sputum (8.75%), wound (1.25%), and vagina (1.25%). In total, 35% and 65% of the isolates were obtained from males and females, respectively. The distribution of patients’ age groups was as follows: ≤ 1 year, 3.75%; 2 to 17 years, 30%; 18 to 45 years, 40%; 46 to 64 years, 22.5%; and ≥ 65 years, 3.75%.

4.2. Antimicrobial Susceptibility Test and Phenotypic Confirmatory Disc

Both clinical isolates of $E.\text{coli}$ and $K.\text{pneumoniae}$ showed resistance towards ampicillin, while all $K.\text{pneumoniae}$ isolates were susceptible to imipenem. Resistance rate of $E.\text{coli}$ versus $K.\text{pneumoniae}$ isolates to nine examined antibiotics was as follows: 44.64% versus 12.5% to ciprofloxacin, 7.14% versus 0% to imipenem, 35.35% versus 12.5% to gentamycin, 35.74% versus 16.66% to cefazidime, 57.14% versus 20.83% to ceftaxime, 16.07% versus 8.33% to amikacin, 100% versus 100% to ampicillin, 62.5% versus 25% to levofloxacin, and 58.92% versus 20.83% to ceftriaxone (Table 2). Thirty-eight (67.85%) isolates of $E.\text{coli}$ were capable of producing ESBL, with a variable range of resistance to all antibiotics tested from 13.15% against imipenem to 100% against ampicillin. In addition, 13 of 24 (54.16%) $K.\text{pneumoniae}$ isolates exhibited ESBL-positivity, of which 100% and 100% were susceptible and resistant to imipenem and ampicillin, respectively. The MIC range, MIC$_{50}$, and MIC$_{90}$ determinations of four selected antibiotics against $E.\text{coli}$ and $K.\text{pneumoniae}$ along with the rate of resistant isolates are shown in Table 2. Of tested antibiotics, imipenem showed the lowest determinations of MIC$_{50}$, and MIC$_{90}$ (≤ 1 µg/mL) in both $E.\text{coli}$ (MIC$_{50} \leq 1 \mu g/mL$, MIC$_{90} \leq 1 \mu g/mL$) and $K.\text{pneumoniae}$ (MIC$_{50} \leq 1 \mu g/mL$, MIC$_{90} = 2 \mu g/mL$) isolates (Table 2).

4.3. Detection of genes by PCR and Sequencing

Molecular characterization of isolates revealed the presence of 89.28% (50/56) $\text{bla}_{\text{CTX-M}}$, 14.28% (8/56) $\text{bla}_{\text{CTX-M}}$, 7.14% (4/56) $\text{bla}_{\text{CTX-M}}$, and 25% (14/56) $\text{bla}_{\text{CTX-M}}$ in $E.\text{coli}$, while $K.\text{pneumoniae}$ isolates were found to have 83.33% (20/24) $\text{bla}_{\text{CTX-M}}$, 12.5% (3/24) $\text{bla}_{\text{CTX-M}}$, 16.66% (4/24) $\text{bla}_{\text{CTX-M}}$, and 16.66% (4/24) $\text{bla}_{\text{CTX-M}}$.
Prevalence of CTX-M variants among ESBL and non-ESBL-producing isolates and co-existence of resistance determinants is shown in Table 3. In addition, PCR identified the insertion sequences IS903 and ISEcpt in 69.64% (39/56) and 96.42% (54/56) of \(E. coli \) isolates, respectively. Overall, 87.5% (21/24) and 75% (18/24) of \(K. pneumoniae \) were also positive for ISEcpt and IS903 elements, respectively. The IS26 element was detected in all \(E. coli \) and \(K. pneumoniae \) isolates. Distribution of CTX-M variants and insertion elements among the isolates and co-existence of IS elements with CTX-M types is illustrated in Figure 1. Moreover, distribution of the insertion elements among the \(\text{bla}_{\text{CTX-M}} \)-harboring ESBL and non-ESBL isolates is shown in Table 4. Sequencing analysis of the \(\text{bla}_{\text{CTX-M}} \) products revealed the presence of \(\text{bla}_{\text{CTX-M1}} \) and \(\text{bla}_{\text{CTX-M55}} \) variants among all clinical isolates.

5. Discussion

Leukemia makes up about one-third of all malignancies in the 0- to 14-year-old age group. The most common subtype, acute lymphocytic leukemia (ALL), represents about 80% of these cases (22, 23). A total of 6000 new cases (3400 males and 2600 females) of ALL are diagnosed annually in the US. It occurs mainly in children and around 60% of cases are children and adolescents aged less than 20 years. Up to 90% of children affected by ALL survive, although it is necessary to improve the treatment of infants and adults (24). Severe, life-threatening infections continue to be a major cause of morbidity and mortality in patients with acute leukemia undergoing intensive chemotherapy (25). It has been reported that several risk factors, including neutropenia, decreased immunity due to underlying diseases, hemorrhagic diathesis of skin and mucosal tissue, severe mucositis, as well as central venous catheters (CVCs) increase the susceptibility to infections in leukemic patients (20, 26).

Specifically, multidrug-resistant organisms and even those previously considered harmless have currently emerged as a therapeutic challenge and can be catastrophic in this cohort of patients. Furthermore, ESBL-producing bacteria, such as \(Klebsiella \) spp. and \(E. coli \), have become resistant to cephalosporins, fluoroquinolones, and penicillin classes of antibiotics, posing a threat to public health (27). This study focused on the detection of \(\text{bla}_{\text{CTX-M}} \) genes, as an important mechanism of resistance to oximino cephalosporins (cefotaxime and ceftiraxone) in \(K. pneumoniae \) and \(E. coli \), and analysis of the genetic organization of these determinants in terms of different insertion elements involved in their mobilization (7).

The high occurrence of ESBL-producing \(E. coli \) and \(K. pneumoniae \) isolates recovered from leukaemia patients admitted to therapeutic centres is alarming (28). Recently, Liu et al. reported even a higher prevalence (68.2%) of these isolates that were mainly positive for \(\text{bla}_{\text{CTX-M15}} \) (29). In a study from India, 48.27% of isolates were found to be ESBL-producers. Of these, 55.69% and 44.31% were identified as \(E. coli \) and \(K. pneumoniae \), respectively (7). Yousefichaijan et al. showed that 53% of \(E. coli \) strains, isolated from infected children, were ESBL producing (30). In another study, Samet et al. showed that 0.41% of \(E. coli \) isolates from the leukemia patients were ESBL-producers (31). In the present study, \(\text{bla}_{\text{CTX-M}} \) genes were detected in both clinical isolates of ESBL- and non-ESBL-producing \(E. coli \) and \(K. pneumoniae \). CTX-M-type ESBL was first reported among \(E. coli \) isolates from Iran, during year 2008 (32).
of *E. coli* and *K. pneumoniae* isolates carrying the *bla*CTX-M has increased significantly since then. In the previous studies during 2012 to 2013, *bla*CTX-M determinants was detected among 74% of ESBL-producing *E. coli* and the 58.33% of *K. pneumoniae* isolates (33, 34). To date, CTX-M–producing *E. coli* and *K. pneumoniae* were recognized in other parts of the country, including northern Iran (*Enterobacteriaceae*, 2014 to 2015, n = 8) (35), Kashan (*Klebsiella* spp, 2012 to 2013, n = 9) (36), Shiraz (2010, n = 2) (37), and Tehran (*K. pneumoniae*, 2015 to 2016, n = 40) (38).

The results revealed that the CTX-M-1 group, mainly CTX-M-15, was the most prevalent genotype, followed by CTX-M-9. The prevalence of CTX-M-15 in the current study was similar to that of previous reports. These findings also agree with recent studies from China and other countries, in which CTX-M-15 was reported as the dominant ESBL genotype (29). In the study by Chen et al., CTX-M-2 and CTX-M-8 groups of ESBLs were identified only in one isolate of *K.

Table 3. Number of Strains That Produce CTX-M-Type β-Lactamases as Detected by PCR

Bacterial Species, No. (%)	Escherichia coli	Klebsiella pneumoniae				
CTX-M Group	**ESBL-Positive (N = 38)**	**Non ESBL (N = 18)**	**Total (N = 56)**	**ESBL-Positive (N = 13)**	**Non ESBL (N = 11)**	**Total (N = 24)**
*bla*CTX-M-1	34 (90.47)	16 (88.88)	50 (88.28)	11 (84.61)	7 (63.63)	20 (83.33)
*bla*CTX-M-1 + *bla*CTX-M-2	7 (18.42)	1 (5.55)	8 (14.28)	1 (7.69)	2 (16.66)	3 (12.5)
*bla*CTX-M-1 + *bla*CTX-M-4	2 (5.26)	1 (5.55)	3 (5.33)	1 (7.69)	2 (16.66)	3 (12.5)
*bla*CTX-M-1 + *bla*CTX-M-9	11 (28.94)	3 (16.66)	14 (25)	1 (7.69)	2 (16.66)	4 (16.66)
*bla*CTX-M-1 + *bla*CTX-M-25	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
*bla*CTX-M-1 + *bla*CTX-M-30	7 (18.42)	1 (5.55)	8 (14.28)	1 (7.69)	2 (16.66)	3 (12.5)
*bla*CTX-M-2 + *bla*CTX-M-9	1 (2.63)	1 (5.55)	1 (1.78)	0 (0)	1 (9.09)	1 (4.16)
*bla*CTX-M-2 + *bla*CTX-M-9	4 (10.52)	5.55 (1)	5 (8.92)	0 (0)	2 (16.66)	2 (8.33)
*bla*CTX-M-2 + *bla*CTX-M-45	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
*bla*CTX-M-8 + *bla*CTX-M-9	2 (5.26)	1 (1.11)	4 (7.14)	1 (7.69)	0 (0)	4 (16.66)
*bla*CTX-M-8 + *bla*CTX-M-9	1 (2.63)	0 (0)	1 (1.78)	0 (0)	1 (9.09)	1 (4.16)
*bla*CTX-M-8 + *bla*CTX-M-9	14 (36.84)	0 (0)	14 (25)	0 (0)	3 (27.27)	5 (20.83)
*bla*CTX-M-8 + *bla*CTX-M-9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
*bla*CTX-M-8 + *bla*CTX-M-9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
*bla*CTX-M-9 + *bla*CTX-M-9	1 (2.63)	0 (0)	1 (1.78)	0 (0)	1 (9.09)	1 (4.16)
*bla*CTX-M-9 + *bla*CTX-M-9	4 (10.52)	5.55 (1)	5 (8.92)	0 (0)	2 (16.66)	1 (4.16)
*bla*CTX-M-9 + *bla*CTX-M-9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
*bla*CTX-M-9 + *bla*CTX-M-9	1 (2.63)	1 (1.78)	1 (1.78)	1 (9.09)	1 (4.16)	1 (4.16)
*bla*CTX-M-9 + *bla*CTX-M-9	1 (2.63)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
*bla*CTX-M-9 + *bla*CTX-M-9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
*bla*CTX-M-9 + *bla*CTX-M-9	1 (2.63)	0 (0)	1 (1.78)	0 (0)	1 (9.09)	1 (4.16)
*bla*CTX-M-9 + *bla*CTX-M-9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
*bla*CTX-M-9 + *bla*CTX-M-9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
*bla*CTX-M-9 + *bla*CTX-M-9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
*bla*CTX-M-9 + *bla*CTX-M-9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
*bla*CTX-M-9 + *bla*CTX-M-9	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Table 4. Distribution of Insertion Elements Among the $\text{bla}_{\text{CTX-M}}$-Harbouring Clinical Isolates

Bacterial Isolates, No. (%)	CTX-M Group	IS_{Ecp1}	IS_{26}	IS_{903}	$\text{CTX-M} + \text{IS}^a$	IS_{Ecp1}	IS_{26}	IS_{903}	$\text{CTX-M} + \text{IS}^a$
Escherichia coli (N = 56)	$\text{bla}_{\text{CTX-M14}}$	50 (89.28)	50 (89.28)	37 (66.07)	36.56 (64.28)	14.24 (58.33)	20 (83.33)	14 (58.33)	11 (45.16)
$\text{bla}_{\text{CTX-M4}}$	10 (17.85)	8 (14.28)	6 (10.71)	5 (8.92)	3 (12.5)	3 (12.5)	2 (8.33)	2 (8.33)	
$\text{bla}_{\text{CTX-M9}}$	3 (5.35)	4 (7.14)	4 (7.14)	3 (5.35)	4 (16.66)	4 (16.66)	3 (12.5)	3 (12.5)	
$\text{bla}_{\text{CTX-M15}}$	14 (25)	14 (25)	9 (16.07)	9 (16.07)	5 (20.83)	5 (20.83)	4 (20.83)	4 (20.83)	
$\text{bla}_{\text{CTX-M25}}$	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	

* CTX-M + IS, coexistence of IS types with CTX-M types.

Figure 1. Distribution of CTX-M variants and insertion elements among the 56 Escherichia coli (A) and 24 Klebsiella pneumoniae (B) isolates from leukaemia patients. CTX-M + IS, coexistence of IS types with CTX-M types.

pneumoniae (3). Xia and coworkers reported that 96.2% (1, 124/1, 168) of the isolates harboured $\text{bla}_{\text{CTX-M}}$ determinants, with a 40.7% (457/1, 124) and 48.7% (547/1, 124) $\text{bla}_{\text{CTX-M1}}$ and $\text{bla}_{\text{CTX-M9}}$-positive subgroups, respectively (39). Mirkalan-tari et al. showed that imipenem, with 84.7% susceptibility, was the most effective antibiotic against *K. pneumoniae*. Seventy (63.63%) isolates had ESBL-positive results and 42 (60 %) of them were positive for the CTX-M-1 gene (40).

Findings from previous studies suggest that more than one mobile element may be associated with different members of the CTX-M group (41). In the present study, ISE_{Ecp1}, IS_{26}, and IS_{903} elements were found to be associated with $\text{bla}_{\text{CTX-M1}}$, $\text{bla}_{\text{CTX-M2}}$, $\text{bla}_{\text{CTX-M8}}$, and $\text{bla}_{\text{CTX-M9}}$ in a significant percentage of studied isolates ($P \leq 0.05$). In addition, a high presence of IS_{26} and IS_{903} elements was detected in CTX-M-1-producing isolates. It is interesting to note that the presence of IS_{26} flanking IS_{Ecp1} may affect the impact of this insertion sequence on the mobilization and expression of the $\text{bla}_{\text{CTX-M15}}$ gene. These elements could play an important role in the spread of such ESBLs. Thus, IS_{26}, IS_{903}, and ISE_{Ecp1} may be efficient tools for mobilization and expression of β-lactamase genes (42).

5.1. Conclusions

Multidrug-resistant *Enterobacteriaceae* that produce ESBLs, such as the CTX-M enzymes, have emerged both within the community and hospital settings as a serious issue. The rapid diagnosis of ESBL-producing isolates is helpful in selection of appropriate antimicrobials for therapy and prevention of the spread of these strains. Clinical microbiology laboratories should consider detection of ESBL producing *K. pneumoniae* and *E. coli* isolates important. It is recommended to routinely check all antibiotic resistant *K. pneumoniae* and *E. coli* isolates for ESBL production. This study indicates that the high prevalence of antibiotic resistance, IS and CTX-M-producing *E. coli* and *K. pneumoniae* iso-
lates could be a major concern and highlights the need of infection control measures.

Acknowledgments

The present study was financially supported by the research Department of the School of Medicine, Shahid Beheshti University of Medical Sciences (grant No.: 6157).

Footnotes

Authors’ Contribution: Conception and design of study: Ali Hashemi, Hossein Goudarzi and Mahdaneh Roshani; acquisition of data: Mahdaneh Roshani, Aghil Bahramian and Ali Hashemi; data analysis: Abdollah Ardebili andAli Hashemi; drafting of manuscript: Ali Hashemi, Soroor Erfanimanesh and Abdollah Ardebili; approval of final version of manuscript: All of authors approved the manuscript.

Funding/Support: The present study was financially supported by the Research Department of the School of Medicine, Shahid Beheshti University of Medical Sciences (grant No.: 6157).

References

1. Farsi Z, Dehghan Nayeri N, Negarandeh R. The perceived threat in adults with leukemia undergoing hematopoietic stem cell transplantation. Nurs Midwifery Stud. 2013;2(2):226-33. [PubMed: 25414863]. [PubMed Central: PMC4228549].
2. Hallbrook H, Lidstrom AK, Pauksens K. Ciprofloxacin prophylaxis delays initiation of broad-spectrum antibiotic therapy and reduces the overall use of antimicrobial agents during induction therapy for acute leukemia: A single-centre study. Infect Dis (Lond). 2016;48(6):443-8. doi: 10.1093/infdis/jiu207. [PubMed: 27030917].
3. Jafari M, Fallah F, Borhan RS, Navidinia M, Karimi A, Rafiee Tabatabaei S, Roshani M et al. Extended-spectrum beta-lactamases in multiple Escherichia coli clones isolated in Tel Aviv, Israel. Arch Pediatr Infect Dis. 2013;2(2):109-12. [PubMed: 23181343].
4. Bradford PA. Extended-spectrum beta-lactamas in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2000;13(4):933-51. Table of contents. doi: 10.1128/CMR.13.4.933-951.2000. [PubMed: 11587991]. [PubMed Central: PMC89009].
5. Ruppe E, Hem S, Lath S, Gautier V, Arey F, Sarthou JL, et al. CTX-M beta-lactamas in Escherichia coli from community-acquired urinary tract infections, Cambodia. Emerg Infect Dis. 2009;15(5):741-8. doi: 10.3201/eid1505.081799. [PubMed: 19402960]. [PubMed Central: PMC2687024].
6. Siu LK, Lu PL, Hsueh PR, Lin FM, Chang SC, Luh KT, et al. Bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a pediatric oncology ward: Clinical features and identification of different plasmids carrying both SHV-5 and TEM-1 genes. J Clin Microbiol. 1999;37(12):4040-7. [PubMed: 10569224]. [PubMed Central: PMC883780].
7. Shakh S, Ruxi SM, Anis R, Shakil S. Prevalence of CTX-M resistance marker and integrons among Escherichia coli and Klebsiella pneumoniae isolates of clinical origin. Lett Appl Microbiol. 2016;62(5):499-27. doi:10.1111/lam.12567. [PubMed: 26997253].
8. Zhang J, Zhou K, Zheng B, Zhao L, Shen P, Ji J, et al. High prevalence of ESBL-producing Klebsiella pneumoniae causing community-onset infections in China. Front Microbiol. 2016;7:2180. doi: 10.3389/fmicb.2016.01830. [PubMed: 27959637]. [PubMed Central: PMC5109008].
9. Wang G, Huang T, Surendraiah PK, Wang K, Komal R, Zhuge J, et al. CTX-M beta-lactamase-producing Klebsiella pneumoniae in suburban New York City, New York, USA. Emerg Infect Dis. 2013;19(12):2803-10. doi: 10.3201/eid1912.120740. [PubMed: 24188126]. [PubMed Central: PMC3876622].
10. Xie M, Lin D, Chen K, Chan EW, Yao W, Chen S. Molecular characterization of Escherichia coli strains isolated from retail meat that harbor blaCTX-M and fosA3 genes. Antimicrob Agents Chemother. 2016;60(4):2450-5. doi: 10.1128/AAC.03101-15. [PubMed: 26858843]. [PubMed Central: PMC4808224].
11. Zhao WH, Hu ZQ. Epidemiology and genetics of CTX-M extended-spectrum beta-lactamas in Gram-negative bacteria. Crit Rev Microbiol. 2013;39(1):79-101. doi: 10.3109/10588390.2012.694460. [PubMed: 2269733]. [PubMed Central: PMC4086240].
12. Upadhyay S, Hussain A, Mishra S, Maurya AP, Bhattacharjee A, Joshi SR. Genetic environment of plasmid mediated CTX-M-15 extended spectrum beta-lactamas from clinical and food borne bacteria in North-Eastern India. Plos One. 2015;10(9). e0139806. doi: 10.1371/journal.pone.0139806. [PubMed: 26301395]. [PubMed Central: PMC4567102].
13. Betty AF, Daniel FS, Alice SW, William R. Bailey and Scott’s diagnostic microbiology. 12th ed. Mosby Inc USA; 2007.
14. Patel JB; Clinical Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility test: Twenty-fifth informational supplement. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.
15. Strauss LM, Dahms C, Becker K, Kramer A, Kaase M, Mellimann A. Development and evaluation of a novel universal beta-lactamase gene subtyping assay for blaSHV, blaTEM and blaCTX-M using clinical and livestock-associated Escherichia coli. J Antimicrob Chemother. 2015;70(9):1719-5. doi: 10.1093/jac/dku450. [PubMed: 25414200].
16. Liu Z, Li W, Wang J, Pan J, Sun S, Yu Y, et al. Identification and characterization of the first Escherichia coli strain carrying NDM-1 gene in China. Plos One. 2013;8(6). e66666. doi: 10.1371/journal.pone.0066666. [PubMed: 23762496]. [PubMed Central: PMC367923].
17. Jouini A, Vinue L, Slama KB, Saenz Y, Kibli N, Hammami S, et al. Characterization of CTX-M and SHV extended-spectrum beta-lactamas and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J Antimicrob Chemother. 2007;60(5):117-41. doi: 10.1093/jac/dkm316. [PubMed: 17855726].
18. ChmelNatinsky I, Carmelli Y, Leavitt A, Schwaber MJ, Navon-Venezia S. CTX-M-2 and a new CTX-M-39 enzyme are the major extended-spectrum beta-lactamas in multiple Escherichia coli clones isolated in Tel Aviv, Israel. Antimicrob Agents Chemother. 2005;49(11):4745-50. doi: 10.1128/AAC.49.11.4745-4750.2005. [PubMed: 1625120]. [PubMed Central: PMC8810269].
19. Poirel L, Decousser JW, Nordmann P. Insertion sequence IS6001 is involved in expression and mobilization of a bla(CTX-M)-beta-lactamase gene. Antimicrob Agents Chemother. 2003;47(9):2938-45. doi: 10.1128/AAC.47.9.2938-2945.2003. [PubMed: 12963998]. [PubMed Central: PMC182628].
20. Del Giudice I, Foix R. New therapies in onco-hematology and new infectious risk factors. Rev Clin Exp Hematol. 2005;9(2). El. [PubMed: 1684811].
21. Curiao T, Canton R, Garcilano-Barcia MP, de la Cruz Y, Baez O. Coque TM. Association of composite IS26-sul3 elements with highly transmissible IncI plasmids in extended-spectrum beta-lactamase-producing Escherichia coli clones from humans. Antimicrob Agents Chemother. 2011;55(5):2451-7. doi: 10.1128/AAC.01448-10. [PubMed: 2194460]. [PubMed Central: PMC3088289].
22. Maia RRP, Wunsch Filho V. Infection and childhood leukemia: Review of evidence. Rev Saude Publ. 2011;47(6):472-85. doi: 10.1590/0034-89102011000100004.

23. Zaborina O, Kohler JE, Wang Y, Bethel C, Shevchenko O, Wu I, et al. Identification of multidrug-resistant pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier. Ann Clin Microbiol Antimicrob. 2006;5(1). doi: 10.1086/476071-5-14. [PubMed: 16762057]. [PubMed Central: PMC1521449].

24. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukemia. Lancet. 2013;381(9861):1943-55. doi: 10.1016/S0140-6736(12)62187-4. [PubMed: 2352389]. [PubMed Central: PMC3816716].

25. Klastersky J, Paesmans M, Rubenstein EB, Boyer M, Elting L, Feld R, et al. The multinational association for supportive care in cancer risk index: A multinational scoring system for identifying low-risk febrile neutropenic cancer patients. J Clin Oncol. 2000;18(16):3038-51. doi: 10.1002/cco.200018.18.16.3038. [PubMed: 10944439].

26. Giamarello H, Antoniadou A. Fybrosis complications of febrile leukopenia. Infect Dis Clin North Am. 2000;14(2):457-82. doi: 10.1016/S0891-5520(05)70156-2.

27. Adamski CJ, Cardenas AM, Brown NG, Horton LB, Sankaran B, Prasad BV, et al. Molecular basis for the catalytic specificity of the CTX-M extended-spectrum beta-lactamases. Biochemistry. 2015;54(2):447-57. doi: 10.1021/bi501195g. [PubMed: 25489790]. [PubMed Central: PMC4303296].

28. Xiao YH, Giske CG, Wei ZQ, Shen P, Heddin A, Li LJ. Epidemiology and characteristics of antimicrobial resistance in China. Drug Resist Updat. 2011;14(4-5):236-50. doi: 10.1016/j.drup.2011.07.001. [PubMed: 21807550].

29. Ali T, Ur Rahman S, Zhang L, Shahid M, Zhang S, Liu G, et al. ESBL-producing Escherichia coli from cows suffering mastitis in China contain clinical class I integrons with CTX-M linked to ISCR1. Front Microbiol. 2016;7(13). doi: 10.3389/fmicb.2016.00931. [PubMed: 27965653]. [PubMed Central: PMC5127808].

30. Yousefichaijan P, Rezagholizamenjany M, Safi F, Rafiei F, Arjmand A. Distribution of extended-spectrum β-lactamases among Klebsiella spp. isolated from clinical specimens in the teaching hospital of Kashan, Iran. Iran Red Crescent Med J. 2016;18(3), e22260. doi: 10.5812/irccmj.22260. [PubMed: 27247786]. [PubMed Central: PMC4884628].

31. Ghorbani-Dalini S, Kargar M, Doosti A, Abbasi P, Sarshar M. Molecular epidemiology of ESBL genes and multi-drug resistance in diarrheagenic Escherichia coli strains isolated from adults in Iran. Iran J Pharm Res. 2015;14(4):1257-62. doi: 10.1590/0976-002X2015-04-0003. [PubMed: 26664394]. [PubMed Central: PMC4673955].

32. Ranjarb H, Memariani H, Sorouri R, Memariani M. Distribution of virulence genes and genotyping of CTX-M-15-producing Klebsiella pneumoniae isolated from patients with community-acquired urinary tract infection (CAUTI). Microb Pathog. 2016;100:244-9. doi: 10.1016/j.micpath.2016.10.002. [PubMed: 27725280].

33. Goudarzi H, Aghamohammadm S, Hashemi A, Niknamesh B, Noori M. Distribution of blatem, blashv and blactX-M genes among Escherichia coli isolates causing urinary tract infection in children. Arch Clin Infect Dis. 2013;8(3). doi: 10.5822/archcid.16207.

34. Taherpour A, Hashemi A. Detection of OqxAB efflux pumps, OmpK35 and OmpK36 porins in extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae isolates from Iran. Hippokratia. 2017;31(4):355-8. [PubMed: 25031516]. [PubMed Central: PMC4979418].

35. Bagheri-Nesami M, Rafiei A, Eslami G, Ahangarkani F, Rezaei MS, Nikkhah A, et al. Assessment of extended-spectrum beta-lactamases and integrons among Enterobacteriaceae in device-associated infections: Multicenter study in north of Iran. Antimicrob Resist Infect Control. 2016;5:52. doi: 10.1186/s13756-016-0043-2. [PubMed: 27980729]. [PubMed Central: PMC5134273].

36. Amiriri A, Firoozeh F, Monirir Z, Zibaee M. Prevalence of CTX-M-type and PER extended-spectrum beta-lactamases among Klebsiella spp. isolated from clinical specimens in the teaching hospital of Kashan, Iran. Iran Red Crescent Med J. 2016;18(3). e22260. doi: 10.5812/irccmj.22260. [PubMed: 27247786]. [PubMed Central: PMC4884628].

37. Ghorbani-Dalini S, Kargar M, Doosti A, Abbasi P, Sarshar M. Molecular epidemiology of ESBL genes and multi-drug resistance in diarrheagenic Escherichia coli strains isolated from adults in Iran. Iran J Pharm Res. 2015;14(4):1257-62. doi: 10.1590/0976-002X2015-04-0003. [PubMed: 26664394]. [PubMed Central: PMC4673955].

38. Ranjarb H, Memariani H, Sorouri R, Memariani M. Distribution of virulence genes and genotyping of CTX-M-15-producing Klebsiella pneumoniae isolated from patients with community-acquired urinary tract infection (CAUTI). Microb Pathog. 2016;100:244-9. doi: 10.1016/j.micpath.2016.10.002. [PubMed: 27725280].

39. Xia S, Fan X, Huang Z, Xia L, Xiao M, Chen R, et al. Dominance of CTX-M-type extended-spectrum beta-lactamase (ESBL) producing Escherichia coli isolated from patients with community-onset and hospital-onset infection in China. PLoS One. 2014;9(7), e0107007. doi: 10.1371/journal.pone.0100707. [PubMed: 24983621]. [PubMed Central: PMC4077569].

40. Mirkalantari S, Jazayeri Moghadas A. Diversity determination of CTX-M producing klebsiella pneumoniae using multilocus variable-number tandem repeat analysis, Semnan, Iran. Jundishapour J Microbiol. 2018;11(12):e58929. [PubMed: 27980729]. [PubMed Central: PMC5134273].