Historical precipitation data in Sumatra and Kalimantan from 1879 to 1900, by using Dutch colonial materials

R Kajita
1
1Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan

E-mail: kajita0709@gmail.com

Abstract. Indonesia suffers from serious fire and haze problems occurring in the peatland areas of Sumatra and Kalimantan. Haze has become an international issue in Southeast Asia, and Indonesia must now implement better prevention management for this severe crisis. To understand the meteorological conditions in Indonesia, it is important to analyze the historical precipitation ranging back to the colonial days. This study focuses on historical precipitation data observed during the Dutch colonial era. The observation records from 1879-1900 were recorded in historical materials called “Regenwaarnemingen in Nederlandsch-Indie”. The records not only include Batavia, but also other observation stations in Indonesia. In this study, the historical precipitation data in Sumatra (Medan, Jambi, Bengkalis) and Kalimantan (Pontianak, Banjarmasin, Amuntai) were reconstructed. By using these reconstructed precipitation data, I analyzed the annual precipitation fluctuation and mean monthly precipitation at six stations. The colonial materials have not yet been examined enough in the meteorological research field, and their historical data contribute to Indonesia’s historical research and climatic problems.

1. Introduction

1.1. Background
In September 2015, large fires occurred in Sumatra and Kalimantan, Indonesia. The peat fire caused serious haze problems not only in Indonesia, but also in surrounding Southeast Asian countries, such as Singapore, Malaysia, Brunei, and Thailand [1]. The haze poses health hazards to humans and emerges as a serious international problem due to its transboundary nature. Indonesia has been criticized internationally for its fire management, and is now trying to reduce the risk of fire and haze by developing better prevention management practices. After the 1980s, peatland in Indonesia faced a major threat from human activities, such as the transmigration program, reclamation by local people, the drainage of water for agricultural regions, and large-scale deforestation [2]. Continuous water drainage in peatland areas and increasing human activities caused this peatland to become fire-prone in dry seasons. The frequency of fire is affected by precipitation throughout the year. It is important to search and collect colonial precipitation data to understand the historical rain conditions of those characteristic sites in Sumatra and Kalimantan.

1.2. Previous studies related to Indonesian rainfall
Studies on precipitation in Indonesia have mainly been conducted in the modern era, especially after the 1950s and the post-colonial era. Yasunari [3] analyzed the long-term fluctuations in monthly
precipitation (1951-1973) using data from the BMG (Institute of Meteorology and Geophysics, Indonesia). Eguchi [4] clarified the relationship between rainfall distribution and air streams in Indonesia using a climatic dataset (1978-1979) from the Geostationary Meteorological Satellite. However, historical precipitation data from the Dutch colonial era do not usually receive enough focus when collecting data from historical materials. Konnen’s group [5] reconstructed air pressure and rain-day count data in Indonesia and Haiti. Their study targeted two countries, only focused on Jakarta and Bogor in Indonesia (formerly Batavia and Buitenzorg). They used climatic reports by Braak [6] and Berlage [7], which were published in the Dutch colonial era, to reconstruct related meteorological data. As their research target cities were Batavia and Buitenzorg, it is necessary to use other colonial data or materials to reconstruct meteorological data for the other regions in Indonesia, such as Sumatra and Kalimantan. The SACA&D Project (Southeast Asian Climate Assessment & Dataset Project [8]) was completed by a collaboration between the BMKG (Institute of Meteorology, Climatology and Geophysics, Indonesia) and KNMI (Royal Netherlands Meteorological Institute, Netherlands). This project focused on the digitization of historical meteorological data since 1901 in Southeast Asian countries and they created a database called the SACA Dataset. Indonesia is also included in this dataset, but the available data period is mainly after the independence of Indonesia (only Batavia has the data from 1866). Batavia’s dataset was collected from colonial materials called the “Observations made at the Royal Magnetical and Meteorological Observatory at Batavia”. This series of materials was originally published in Dutch and English, and it contains historical meteorological data, such as the air pressure, humidity, temperature, rain-day counts, and precipitation in Batavia. It was the center of the colonial government, so detailed meteorological observation was conducted by the Batavia Central Observatory. The SACA Dataset is an important meteorological database for Southeast Asia and Indonesia, but historical meteorological records in Indonesia must be reconstructed from various historical materials, and not only from the “Observations made at the Royal Magnetical and Meteorological Observatory at Batavia”. In this study, material series called “Regenwaarnemingen in Nederlandsch-Indie” (Rainfall in the East Indian Archipelago [9]) includes historical precipitation records from the 19-20th Centuries. The purpose of this study is to focus on collecting the precipitation records of Sumatra and Kalimantan from Dutch colonial materials. A reconstruction of the historical precipitation data from the late 19th Century will create a new dataset for Indonesia’s meteorological research.

2. Historical materials and colonial rainfall observation structure

2.1. General outline of “Regenwaarnemingen in Nederlandsch-Indie”

The “Regenwaarnemingen in Nederlandsch-Indie” series was first published by Batavia Landsdrukkerij (Batavia Government Printing Office) in 1880. This study used 22 volumes (volume 1-22) and the precipitation records of 1879-1900. Photo 1 shows the sample pages from volume 21 of “Regenwaarnemingen in Nederlandsch-Indie”. The left photo describes the monthly precipitation records by each observation station located in Indonesia in 1899. The right photo refers to the location of each observation station with an explanation of each station’s regent (administrative district in the Dutch colonial era) and its distance from the coastline.
2.2. Method of rainfall observation and equipment in the late 19th Century

In the late 19th Century, observers were under the control of rigid rules for conducting precise rainfall observations. Those involved in rainfall observation were not only official staff, but also non-official people. The official observers were surgeons and medical officers from the army or civil services, and other observers were categorized as non-official. They used the same observation equipment distributed by the observatory. The rain gauge used for measurement was originally made by H. Olland from Utrecht, Netherlands. A detailed explanation of this “rain-gauge” is described in the preface section of “Regenwaarnemingen in Nederlandsch-Indie”, as cited below.

The receiving surface is circular and has a diameter of 12 centimetres (about 5 inches). The receiving funnel is tightly screwed on to a rectangular iron box, in which is placed a movable copper vessel acting as a reservoir; two reservoirs are added to each rain-gauge. At the observation hour the reservoirs are changed and the water collected is gauged by means of a measuring glass; this can be done within doors which is very convenient in this country, especially during heavy rains. The iron box that contains the reservoir and protects it from the direct influence of the rays of the sun, is fixed by means of three screws on to an iron stand; the base of this stand is a rectangular frame which by means of a few iron pins, about half a foot long, is fixed to the ground, in order to prevent the stand from being shifted by accident. The height of the receiving surface above the ground is 1.2 metres (about 3 1/2 feet).

All observers followed strict rules for rainfall observation using the above equipment. They must have conducted an observation once per day by selecting a time from 6, 7, 8, or 9 in the morning. If there are any rotational changes or troubles, the observer in charge should have noted the reason for this problem. They compiled daily records to generate a monthly report for the central government, and this copy of the monthly report was also sent to the Official Gazette (Javasche Courant) and Batavia Central Observatory.

2.3. The Number of observation station in the late 19th century

According to “Regenwaarnemingen in Nederlandsch-Indie”, the observation began at 124 stations in 1879. This number gradually increased to 225 stations in 1900. Figure 1 shows the number of observation stations in 1879 and 1900, categorizing the locations into six groups, as shown below. (1) Java and the surrounding islands (including Kangean, Madura, and Bawean), (2) Sumatra and the
surrounding islands (including Nias, Weh, Belitung, Bangka, and the Riau Archipelagos), (3) Kalimantan, (4) Sulawesi and the surrounding islands (including Sangihe, Salebabu, and Selayar), (5) Maluku (including the Banda Islands and New Guinea), and (6) the Lesser Sunda Islands. The first rainfall observation was taken in Batavia in 1866, as discussed by a previous study. Since 1879, observation stations expanded into wide areas and simultaneously begun observation.

This study mainly focuses on peatland and its surrounding areas in Sumatra and Kalimantan by selecting the following six observation stations: Medan, Bengkalis, Jambi, Pontianak, Amuntai, and Banjarmasin (see Figure 2 for a location map). These six stations recorded all 22 years of precipitation without a large blank period between 1879 and 1900.

Figure 1. Number of observation stations in Colonial Indonesia 1879 and 1900. Java possessed the most observation stations, and Batavia Observatory was a central observatory in the colonial era.

Figure 2. Location map for the six observation stations in Sumatra and Kalimantan.
3. Annual precipitation at the six observation stations from Sumatra and Kalimantan

Indonesia has two seasons in a year, a dry season and a rainy season. Table 1 shows the annual precipitation at the six stations from 1879 to 1900. In Table 1, years labeled with “*” include unknown monthly precipitation data. For more detailed information regarding the unavailable monthly precipitation data, see Appendix Table A.

Table 1. Annual precipitation records from 1879-1900. Each observation station has reported monthly precipitation data in volumes 1-22 of "Regenwaarnemingen in Nederlandsch-Indie". The annual precipitation was calculated by summing the monthly precipitation from January to December. The seven years labeled with “*” in this table include missing precipitation data for one of the months in that year. Monthly precipitation is described in detail in Appendix Table A. The column headings describe the names of the stations and their province (N.Sum = North Sumatra, S.Kali = South Kalimantan, W.Kali = West Kalimantan).

year	Bengkalis, Riau	Medan, N.Sum	Jambi, Jambi	Amuntai, S.Kali	Pontianak, W.Kali	Banjarmasin, S.Kali
1879	3005*	2028*	2460	2651*	3326	2643
1880	2679	3510	2661	2469	2753	2214
1881	2671	2327	2662	2485	3186	2606
1882	2164	1840	2154	2673	3186	2609
1883	2515	1972	2393	2411	2662	1656
1884	2178	2130	2557	2205	3279	2501
1885	2173	1920	1553	2401	3768	1591*
1886	2624	1821	2841	3229	3620	2768
1887	2886	2556	3258	2402	3820	2419
1888	2754	2196	1990	2276*	3473	1777
1889	2808	2137	2280	2864	3398	3578
1890	2817	1641	2339	2986	3372	2885
1891	2848	1683	2603	1630	2617	1885*
1892	3391	2029	2754	2982	3355	3060
1893	2495	1794	2684	2401	3187	2582
1894	2768	1749	2345	2127	2890	2848
1895	2633	2242	3246	2517	3119	2732
1896	2142	2125	2251	2108	2719	2035
1897	2909	2457	2664	2279	3972	2293
1898	2742	1985*	2440	2397	4331	2557
1899	2534	1671	2890	2182	2521	2011
1900	2297	1728	3100	2534	3253	2246

Figure 3 shows the annual fluctuation in precipitation at the Sumatra observation stations in 1879-1900. Rainfall increased annually at Bengkalis (Riau) and Jambi (Jambi), while that at Medan (North Sumatra) decreased annually. The highest annual precipitation at each station is as follows: Bengkalis-1892 (3391 mm), Medan-1880 (3510 mm), Jambi-1887 (3258 mm). The lowest annual precipitation is as follows: Bengkalis-1896 (2142 mm), Medan-1890 (1641 mm), Jambi-1885 (1553 mm). Three horizontal lines indicate normal year precipitation in 2005 (2208 mm), El Nino year precipitation in 1997 (1893 mm), La Nina year precipitation in 1999 (2972 mm), respectively at Medan, N.Sumatra. These precipitation data referred from BMKG Online Database, Iklim data.[10]
Figure 4 shows the annual precipitation fluctuations at the observation stations in Kalimantan during 1879-1900. Precipitation increased annually at Pontianak and Banjarmasin, but decreased annually at Amuntai. The highest annual precipitation at each station is as follows: Pontianak-1898 (4331 mm), Banjarmasin-1889 (3578 mm), Amuntai-1886 (3229 mm). The lowest annual precipitation at each station is as follows: Pontianak-1899 (2521 mm), Banjarmasin-1885 (1591 mm), Amuntai-1891 (1630 mm). Three Horizontal lines indicate normal year precipitation in 2018 (2791 mm), El Nino year precipitation in 1997 (1689 mm), La Nina year precipitation in 1999 (3122 mm), respectively at Banjarmasin, S.Kalimantan. These precipitation data referred from BMKG Iklim data, same as Figure 3. Both Figures 3 and 4 are available to understand the precipitation conditions in the areas surrounding the peatland during the late 19th Century.
4. Monthly precipitation records at six stations in Sumatra and Kalimantan

4.1. Reconstruction of historical precipitation data from monthly records
Appendix Table A shows the monthly precipitation records from the six observation stations. There are some abbreviations, “n.w.” and “w.o.”, written in the table, which stand for “niet waargenomen” (“no observation has been made”) and “waarnemingen onvolledig” (“insufficient to give suitable record”), respectively. The other two labels, “-” and “?” mean that the corresponding month has no numerical data. These unavailable monthly records were from the Bengkalis (January and February of 1879), Medan (January 1879 and April 1898), Amuntai (January 1879 and July 1888), and Banjarmasin stations (September 1885 and August 1891). In this period, the observers were simply ordered to conduct daily observations by their supervisor, but most of them had no interest in meteorology nor certain methods. Konnen [5] noted that the observers were frightened about receiving a penalty for their poor job, so they carefully checked the daily routine work and recorded data. At these six stations, eight months were unavailable from the precipitation records during 1879-1900. In 1879, not all observation stations began operation at the same time.

4.2. Mean monthly precipitation for 22 years historical data
Figure 5 shows the mean monthly precipitation during 1879-1900. This graph indicates that the dry season began in May at the six locations, but the specific trend differs between each location. At first, the three stations in Sumatra presented similar characteristics for the fluctuations in precipitation. Bengkalis recorded lower amounts for mean monthly precipitation in January (157.5 mm), February (146.9 mm), June (143.7 mm), and July (143.8 mm). August is usually the onset of the rainy season, and it lasts until December in this area. Jambi experienced higher precipitation (over 200 mm) from October to April, but precipitation declined during May to September (less than 200 mm). In Medan’s case, the mean recorded monthly precipitation from January to July was below 200 mm, but it increased from August to December (more than 200 mm).

The mean monthly precipitation at the three stations in Kalimantan indicates that Amuntai and Banjarmasin exhibited similar fluctuations in the 22 years of data. Amuntai is located in the approximately 123 km north-east of Banjarmasin, and these two locations experienced over 200 mm of precipitation from November to April. However, both Amuntai and Banjarmasin experienced low precipitation from May to October, especially during August and September, with extremely low precipitation of below 100 mm. For these reasons, the conditions in the southern part of Kalimantan were quite severe in the dry season. In Pontianak, the western coastal city of Kalimantan, experienced over 200 mm of precipitation in every month excluding July (160.5 mm). Notably, in October and November, high levels of precipitation exceeding 400 mm were recorded. According to the fire history map from Global Forest Watch Fire [11], recent fire and haze (2001-2015) largely occurred in the western and southern parts of Kalimantan. However, unlike the present day, Figure 5 indicates that Pontianak did not experience severe dry seasons during 1879-1900, therefore, it can be presumed that serious fire and haze did not occur during that colonial period. Figure 5 also includes dashed line and dotted line, which show current mean monthly precipitation in Sumatra and Kalimantan, respectively. Adding to this, long dashed line shows the El Nino year precipitation in Banjarmasin 1997.
Discussions and Conclusions

This study aimed to reconstruct historical precipitation records in Indonesia from Dutch colonial materials. Table 1 and Appendix Table A present the important historical Indonesian precipitation data reconstructed from materials that have not been used by previous research. This study focused on six observation stations in Sumatra and Kalimantan to determine the precipitation in the late 19th century by using "Regenwaarnemingen in Nederlandsch-Indie", which is a vital material for understanding Indonesian precipitation in areas other than Batavia, including Sumatra and Kalimantan. Data reconstruction and digitization need to continue for the other observation stations. This study also advocates the importance of using written Dutch colonial materials to reconstruct meteorological data.

To understand climate change in Indonesia from the long perspective, it is the reason why we need to work on colonial data reconstruction. In the future, more detailed investigation for historical meteorological conditions in colonial times is required. Due to climate change and serious global warming in recent years, our assignment is to build sustainable society for human beings. Scientists need to work on this matter by working on sustainability science and multiple disciplines. This paper is contributing to this concept of sustainability science, from interdisciplinary research of history and meteorology of Indonesia. The sustainable society needs to be built framework and discuss the feasibility of concept from a longer scale time. Reconstruction of precise historical precipitation data would be helpful to meteorological research, which is directly associated with discussion of climate change. Nineteenth century is one of the essential periods for history of Indonesia and climate conditions, it is my future assignments to continue the reconstruction of meteorological data from Dutch colonial materials.

Acknowledgment

This research was supported by Research Institute for Humanity and Nature (RIHN: a constituent member of NIHU) Project No.14200117.

Figure 5. Mean monthly precipitation at six stations from 1879-1900 records. Dashed line and dotted line show current mean monthly precipitation in Sumatra and Kalimantan, respectively. Long dashed line indicates monthly precipitation in El Nino Year 1997 at Banjarmasin. The dry season was concentrated in June and July.
Appendix

Table A. Monthly precipitation records from January 1879 to December 1900. There are three different abbreviations used for the unavailable month records. In this table, (1) “n.w.” stands for “niet waargenomen”, which means no observation has been made, (2) “w.o.” stands for “waarnemingen onvolledig”, which means that the observations were insufficient to give a record, and (3) “-” and “?” mean that this month is without any numerical data for any reason.

year/month	Bengkalis Riau	Medan, N.Sum	Jambi, Jambi	Amuntai, S.Kali	Pontianak, W.Kali	Banjarmasin S.Kali			
1879-Jan	n.w.	n.w.	203	n.w.	356	329			
1879-Feb	w.o.	110	234	187	94	281			
1879-Mar	349	129	269	377	132	357			
1879-Apr	386	146	174	225	83	112			
1879-May	359	158	242	218	321	101			
1879-Jun	173	76	58	204	300	301			
1879-Jul	152	90	292	124	329	168			
1879-Aug	467	338	185	194	324	273			
1879-Sep	252	196	139	170	269	122			
1879-Oct	400	273	294	207	619	129			
1879-Nov	226	386	184	418	301	231			
1879-Dec	241	126	186	327	198	239			
1880-Jan	109	154	168	257	203	212			
1880-Feb	249	13	381	219	288	237			
1880-Mar	107	155	357	331	57	300			
1880-Apr	279	202	391	231	306	252			
1880-May	190	390	195	206	252	109			
1880-Jun	219	72	138	266	267	185			
1880-Jul	46	124	125	150	94	170			
1880-Aug	148	377	115	15	129	130			
1880-Sep	165	243	165	70	128	33			
1880-Oct	293	1198	130	59	289	143			
1880-Nov	508	305	261	253	460	84			
1880-Dec	366	277	235	412	280	359			
1881-Jan	86	196	261	383	340	323			
1881-Feb	12	4	100	290	130	252			
1881-Mar	145	122	276	546	311	416			
1881-Apr	175	68	257	139	293	276			
1881-May	431	382	339	240	205	210			
1881-Jun	254	30	211	220	143	159			
1881-Jul	72	155	121	49	188	46			
1881-Aug	89	148	78	60	170	120			
1881-Sep	248	251	85	9	146	32			
1881-Oct	368	297	191	36	510	46			
1881-Nov	472	366	311	175	475	313			
1881-Dec	319	308	432	338	275	413			
1882-Jan	102	85	142	228	241	252			
1882-Feb	388	134	236	266	394	382			
1882-Mar	136	78	110	211	358	314			
1882-Apr	221	142	201	261	393	340			
1882-May	135	80	92	245	211	297			
1882-Jun	20	171	122	219	155	113			
1882-Jul	83	70	85	99	52	143			
1882-Aug	95	152	112	69	123	74			
1882-Sep	329	218	221	145	262	31			
1882-Oct	154	203	232	189	200	168			
1882-Nov	191	273	268	392	506	233			
Year	Month	Day	Rainfall	Day	Rainfall	Day	Rainfall	Day	Rainfall
-------	-------	-----	----------	-----	----------	-----	----------	-----	----------
1887	Nov	269	354	505	340	452	212		
1887- Dec	604	303	515	415	779	385			
1888	Jan	53	198	211	209	117	199		
1888	Feb	49	94	139	501	269	255		
1888	Mar	325	56	224	276	401	186		
1888	Apr	302	185	216	353	169	279		
1888	May	183	255	225	386	330	303		
1888	Jun	70	76	37	54	220	139		
1888	Jul	107	115	68	-	40	25		
1888	Aug	249	216	114	19	129	8		
1888	Sep	335	207	195	34	143	59		
1888	Oct	176	208	92	45	752	71		
1888	Nov	441	197	231	66	474	87		
1888- Dec	464	389	238	336	429	166			
1889	Jan	255	146	139	318	171	326		
1889	Feb	287	121	137	318	410	459		
1889	Mar	153	66	431	374	193	519		
1889	Apr	313	67	223	173	260	321		
1889	May	86	141	105	184	238	271		
1889	Jun	111	108	114	186	187	309		
1889	Jul	99	212	225	149	261	323		
1889	Aug	145	270	89	157	301	86		
1889	Sep	377	328	233	175	379	287		
1889	Oct	308	217	292	171	333	183		
1889	Nov	339	273	192	364	391	303		
1889- Dec	335	188	100	295	174	191			
1890	Jan	262	89	320	453	192	271		
1890	Feb	366	195	199	337	126	442		
1890	Mar	173	25	205	473	141	210		
1890	Apr	338	106	266	242	311	166		
1890	May	189	183	201	149	219	113		
1890	Jun	166	113	31	111	363	235		
1890	Jul	177	66	96	159	293	211		
1890	Aug	249	136	94	162	313	173		
1890	Sep	218	191	236	78	205	94		
1890	Oct	217	299	192	136	423	285		
1890	Nov	266	149	314	323	478	374		
1890- Dec	266	189	195	308	386	311			
1891	Jan	319	158	374	263	139	335		
1891	Feb	49	138	343	202	47	277		
1891	Mar	194	40	212	240	386	359		
1891	Apr	179	19	348	149	221	117		
1891	May	238	58	130	164	318	171		
1891	Jun	103	105	55	23	82	50		
1891	Jul	130	71	146	66	129	2		
1891	Aug	272	147	17	33	135	5		
1891	Sep	403	334	149	46	137	31		
1891	Oct	249	222	246	69	274	124		
1891	Nov	389	187	317	147	385	200		
1891- Dec	323	204	266	228	364	219			
1892	Jan	209	124	326	394	375	398		
1892	Feb	89	256	183	398	166	404		
1892	Mar	164	128	242	263	230	341		
1892	Apr	299	293	427	520	270	294		
1892	May	368	160	181	193	350	234		
1892	Jun	127	68	206	140	308	333		
1892	Jul	298	96	101	56	148	28		
1892	Aug	155	121	187	192	337	246		
1892	Sep	332	252	245	96	223	96		
Year	Month	Value							
------	-------	-------							
1892	Oct	501							
1892	Nov	367							
1892	Dec	482							
1893	Jan	95							
1893	Feb	7							
1893	Mar	181							
1893	Apr	239							
1893	May	304							
1893	Jun	178							
1893	Jul	243							
1893	Aug	96							
1893	Sep	218							
1893	Oct	283							
1893	Nov	403							
1893	Dec	248							
1894	Jan	191							
1894	Feb	77							
1894	Mar	517							
1894	Apr	320							
1894	May	117							
1894	Jun	117							
1894	Jul	134							
1894	Aug	163							
1894	Sep	338							
1894	Oct	330							
1894	Nov	253							
1894	Dec	211							
1895	Jan	162							
1895	Feb	112							
1895	Mar	262							
1895	Apr	258							
1895	May	305							
1895	Jun	115							
1895	Jul	109							
1895	Aug	268							
1895	Sep	215							
1895	Oct	375							
1895	Nov	213							
1895	Dec	239							
1896	Jan	60							
1896	Feb	116							
1896	Mar	144							
1896	Apr	284							
1896	May	116							
1896	Jun	191							
1896	Jul	64							
1896	Aug	144							
1896	Sep	284							
1896	Oct	284							
1896	Nov	116							
1896	Dec	106							
1897	Jan	33							
1897	Feb	333							
1897	Mar	277							
1897	Apr	115							
1897	May	128							
1897	Jun	112							
1897	Jul	81							
1897	Aug	257							

Note: The data represents some form of periodic measurements or counts for each month from 1892 to 1897.
References

[1] Field R et al 2016 Proc Natl Acad Sci USA 113 9204-09
[2] Siegert F et al 2001 Nature 414 437-40
[3] Yasunari T 1981 Southeast Asian Studies 19 170-86
[4] Eguchi T 1983 Geographical Review of Japan 56-3 151-70
[5] Konnen G P et al 1998 American Meteorological Society 2325-39
[6] Braak C 1921 Het Klimaat van Nederlandsch-indie Verhandelingen 8 528
[7] Berlage P 1940 Observations made at the Royal Magnetical and Meteorological Observatory at Batavia 63 43
[8] Southeast Asian Climate Assessment & Dataset (Last accessed, 30 April 2019) http://sacad.database.bmkg.go.id/
[9] Bergsma P A et al 1879-1900 Regenwaarnemingen in Nederlandsch-Indie 1-22
[10] Data Online Pusat Database-BMKG, Iklim Data (Last accessed 30 April 2019)
[11] Global Forest Watch (Last accessed, 30 August 2018) http://fires.globalforestwatch.org/home/