The Endosymbiotic Bacterium *Wolbachia* Selectively Kills Male Hosts by Targeting the Masculinizing Gene

Takahiro Fukui¹☯, Munetaka Kawamoto¹☯, Keisuke Shoji¹☯, Takashi Kiuchi¹☯, Sumio Sugano², Toru Shimada¹, Yutaka Suzuki³, Susumu Katsuma¹*

¹ Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan, ² Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, Japan, ³ Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan

☯ These authors contributed equally to this work.

* katsuma@ss.ab.a.u-tokyo.ac.jp

Abstract

Pathogens are known to manipulate the reproduction and development of their hosts for their own benefit. *Wolbachia* is an endosymbiotic bacterium that infects a wide range of insect species. *Wolbachia* is known as an example of a parasite that manipulates the sex of its host's progeny. Infection of *Ostrinia* moths by *Wolbachia* causes the production of all-female progeny, however, the mechanism of how *Wolbachia* accomplishes this male-specific killing is unknown. Here we show for the first time that *Wolbachia* targets the host masculinizing gene of *Ostrinia* to accomplish male-killing. We found that *Wolbachia*-infected *O. furnacalis* embryos do not express the male-specific splice variant of *doublesex*, a gene which acts at the downstream end of the sex differentiation cascade, throughout embryonic development. Transcriptome analysis revealed that *Wolbachia* infection markedly reduces the mRNA level of *Masc*, a gene that encodes a protein required for both masculinization and dosage compensation in the silkworm *Bombyx mori*. Detailed bioinformatic analysis also elucidated that dosage compensation of Z-linked genes fails in *Wolbachia*-infected *O. furnacalis* embryos, a phenomenon that is extremely similar to that observed in *Masc* mRNA-depleted male embryos of *B. mori*. Finally, injection of *in vitro* transcribed *Masc* cRNA into *Wolbachia*-infected embryos rescued male progeny. Our results show that *Wolbachia*-induced male-killing is caused by a failure of dosage compensation via repression of the host masculinizing gene. Our study also shows a novel strategy by which a pathogen hijacks the host sex determination cascade.

Author Summary

Pathogens are known to manipulate the physiology, behavior, and reproduction of their hosts for their own benefit. The endosymbiotic bacterium *Wolbachia* is known to
manipulate the sex of its host’s progeny. Male-killing is one of the phenotypes that *Wolbachia* induces, but the mechanism of how *Wolbachia* induces sex-specific death is unknown. Here we found a marked down-regulation of *Masc*, a lepidopteran-specific zinc finger protein gene, in embryos that are produced by *Wolbachia*-infected *Ostrinia* moths. We also observed that dosage compensation fails in *Wolbachia*-infected *Ostrinia* embryos. The findings of this study and our previous study using a lepidopteran model insect *Bombyx mori* indicate that *Wolbachia* has evolved to hijack the *Masc*-dependent, lepidopteran insect-specific sex determination system by capturing an unknown factor during *Wolbachia*-host coevolution.

Introduction

Wolbachia is a genus in Rickettsiales, a diverse order of intracellular bacteria. Recent meta-sequencing analysis shows that over 65% of insect species possess *Wolbachia* [1], indicating that *Wolbachia* is the most widespread and common intracellular bacterium that infects insects. *Wolbachia* is a well-known example of a parasite that alters host reproduction to facilitate its own propagation. *Wolbachia*-induced phenotypes include parthenogenesis, feminization, cytoplasmic incompatibility, and male-killing, each of which is supposed to be adaptive for *Wolbachia* by enhancing the production of infected females [2].

Wolbachia-induced male-killing has been reported in three insect orders, Coleoptera [3], Diptera [4], and Lepidoptera [5], in which male-killing occurs mainly during embryogenesis. Recent advances in *Wolbachia*-induced male-killing have been made mainly from studies using *Ostrinia* moths [5–7]. *Ostrinia* species (corn borer) have a WZ/ZZ sex chromosome system and all of the progeny of *Wolbachia*-infected mother moths have a W chromosome, indicating the existence of male-killing [7]. The male-type splice variant of *doublesex* (*dsx*), a gene that acts at the downstream end of the sex differentiation cascade [8–9], is not detected in *Ostrinia* late embryos that originate from *Wolbachia*-infected mothers [7], suggesting that *Wolbachia*’s sexual manipulation is presumably established at an early embryonic stage. However, the molecular mechanism(s) by which *Wolbachia* manipulates sex and male lethality in *Ostrinia* moths has remained elusive.

The sex determination cascade in lepidopteran insects has been studied mainly using silk-worm *Bombyx mori* as a model insect [10–11]. In *B. mori*, females have ZW sex chromosomes and males have two Z chromosomes. *B. mori* femaleness is strongly determined by the presence of the W chromosome irrespective of the Z chromosome number, suggesting that there is a dominant feminizing gene (*Fem*) on the W chromosome [12–13]. In 2014, we discovered that *Fem* is a precursor of a single W chromosome-derived PIWI-interacting RNA (piRNA) (*Fem* piRNA) [14]. We also identified the target gene of *Fem*-derived piRNA (*Fem* piRNA), which is located on the Z chromosome. Depletion of this Z-linked gene, *Masculinizer (Masc)*, in male embryos leads to the production of the female-type splicing of *B. mori dsx*, indicating that the product of *Masc* is a masculinizing factor. These results revealed that sex of *B. mori* is determined by the *Fem* piRNA–*Masc* cascade [14].

Further experiments showed that silencing of *Masc* in *B. mori* embryos results in male-specific lethality [14]. Deep sequencing (RNA-seq) of *Masc* mRNA-depleted embryos revealed that the Masc protein is required for the repression of global transcription from the Z chromosome in male embryos, and that a failure of this dosage compensation causes male-specific embryonic death [14]. Bioinformatic analysis also revealed that most of the Z-linked genes are dosage compensated by 72 hours post-oviposition (hpo) [15]. These results indicate that
Masc-mediated control of dosage compensation at an early embryonic stage is essential for male development of *B. mori*.

In this study, we attempted to explore the mechanism by which *Wolbachia* accomplishes sexual manipulation using *Wolbachia*-infected *Ostrinia* moths as a model. We previously showed that artificial depletion of Masc mRNA in *B. mori* early embryos results in male-specific embryonic lethality [14]. This phenomenon likely mimics the way that *Wolbachia* induces male-killing in *Ostrinia* [7]. In the light of these facts, we first focused on the expression of *Ostrinia* homologue of Masc in *Wolbachia*-infected embryos. Transcriptome analysis by RNA-seq revealed that *Wolbachia*-induced male-killing is established by a failure of dosage compensation through Masc mRNA depletion. Furthermore, injection of Masc cRNA into *Wolbachia*-infected *Ostrinia* embryos prevented males from being killed at embryonic stages. This is the first study to identify the *Wolbachia*’s target that is utilized for sexual manipulation.

Results and Discussion

Characterization of a male-killing *Wolbachia* found in *Ostrinia* moths

We collected over 80 *Ostrinia* moths in the field and found 3 female moths that were infected with *Wolbachia* (Fig 1A). One of these moths produced only female progeny. By sex pheromone analysis, this female was found to be *O. furnacalis*. Subsequently, when the females were mated with other *Wolbachia*-free *O. furnacalis* males only female progeny were produced. There was no deviation in this pattern of female only progeny through 5 generations (in total 302 females and no males judged by external morphology at the adult stage) (Fig 1B).

We established the quantitative PCR (qPCR)-based molecular sexing method for *O. furnacalis* (S1A Fig), and verified that *Wolbachia*-infected moths were all female (S1B Fig). Using this method, we found that *Wolbachia*-infected embryos (just prior to hatching) contained both female and male individuals (S1C Fig). The hatched larvae were all female (S1C Fig), indicating that this *Wolbachia* induces male-specific embryonic lethality. In addition, when *Wolbachia* was eliminated from infected individuals by tetracycline treatment and *Wolbachia*-eliminated female moths were mated with other *Wolbachia*-free males, only male progeny were produced (S1D Fig). Taken together with these results, we concluded that this *Wolbachia* strain induces male-killing in *O. furnacalis*, which is similar to the phenotype observed in *Wolbachia*-infected *O. scapulalis* [7].

Sugimoto and Ishikawa [7] reported that the male-type splice variants of *Ostrinia dsx* [6] is not expressed in all 5-day-old *O. scapulalis* embryos (just prior to hatching) that are infected with a male-killing *Wolbachia*. In order to determine the precise developmental stage at which *Wolbachia* starts sexual manipulation in *Ostrinia*, we examined the splicing patterns of *dsx* in *Wolbachia*-infected *Ostrinia* embryos starting immediately after oviposition. Both male- and female-type variants of *dsx* were observed in uninfected embryos (Fig 1C). The male-type variant in uninfected embryos was detected from 12 hpo, indicating that the sex determination signal is transmitted prior to 12 hpo in *Ostrinia*. In contrast, the male-type *dsx* variant was not detected in *Wolbachia*-infected embryos throughout embryogenesis (Fig 1C). These results indicate that *Wolbachia* manipulates the sex of *Ostrinia* from the beginning of the sex determination period.

Marked down-regulation of Masc in *Wolbachia*-infected *Ostrinia* embryos

In order to investigate what occurs during *Wolbachia*-induced sexual manipulation, we performed RNA-seq experiments using RNAs prepared from *Wolbachia*-infected and-uninfected
Fig 1. Characterization of a male-killing Wolbachia found in adult Ostrinia. (A) Wolbachia-infected female moth of Ostrinia. Bar, 5 mm. (B) Brood sex ratios in a Wolbachia-infected matriline through 5 generations. The female: male ratio of each mating is shown. (C) Splicing patterns of Ostrinia dsx during embryonic development (0–120 hpo) of embryos that were infected with Wolbachia (wol+) or uninfected (wol-). Total RNA was prepared from Ostrinia embryos (25–50 embryos at each time point) and subjected to RT-PCR for dsx and actin. The F and M indicate female- and male-type splicing of Ostrinia dsx, respectively. actin was used as an internal control. Wolbachia infection was verified by PCR using wsp-specific primers. Note that in other experiments (S1E Fig), the female-type splicing variants were clearly detected when the same RNA pool prepared from Wolbachia-uninfected embryos at 60 hpo was used, although that was not observed in this case.

doi:10.1371/journal.ppat.1005048.g001
embryos (of both sexes) at 0, 12, 24, 36, and 48 hpo. We recently showed that Masc protein encodes a lepidopteran-specific CCCH-tandem zinc finger protein, which is required for both masculinization and dosage compensation in B. mori [14]. RNA interference-mediated knockdown experiments also show that depletion of Masc mRNA in B. mori early embryos results in male-specific death via a failure of dosage compensation [14]. In order to test whether this male-specific death in B. mori is related to the Wolbachia-induced male killing in Ostrinia, we first identified and characterized the Masc homolog of Ostrinia. Using RNA-seq data, we identified contigs that potentially encode a protein with significant homology to Masc proteins (Fig 2A and S2 Fig). Ostrinia Masc was composed of 583 amino acid residues and showed 28.1% identity to B. mori Masc (S2 Fig). Phylogenetic analysis based on the amino acid sequences of zinc finger domains revealed that Ostrinia Masc was closely related to that of Chilo suppressalis (Fig 2A).

The silkworm ovarian cell line BmN4 expresses the female-type Bmdsx variant only, whereas transfection of B. mori Masc cDNA results in the production of the male-type splice variant [14]. Using this system, we examined whether Ostrinia Masc protein also has a masculinizing activity. As shown in Fig 2B, we observed the expression of the male-type variant of Bmdsx in BmN4 cells when transfected with Ostrinia Masc cDNA as well as B. mori Masc cDNA. In addition, we examined the expression of B. mori insulin-like growth factor II mRNA-binding protein (BmIMP), a factor that is involved in the male-specific splicing of Bmdsx [16], in Ostrinia Masc cDNA-transfected cells. We found that either B. mori or Ostrinia Masc cDNA markedly enhanced BmIMP expression (Fig 2C). These results strongly suggest that Ostrinia Masc encodes a masculinizing protein and may be required for masculinization in Ostrinia sex determination pathway.

We next compared the level of Masc mRNA in Wolbachia-infected and-uninfected embryos by mapping RNA-seq tags onto the Ostrinia Masc coding sequence. We found a significant decrease in Masc mRNA in Wolbachia-infected embryos prior to 12 hpo (Fig 3A). To elucidate this reduction in greater detail, we performed reverse transcription-qPCR (RT-qPCR) using total RNA isolated from Wolbachia-infected and uninfected embryos at 0, 6, 12, and 18 hpo. In uninfected embryos, Masc expression peaked at 6 hpo and decreased rapidly. In contrast, Masc expression in Wolbachia-infected embryos declined by 6 hpo, and remained at a low level compared with that observed in uninfected embryos (Fig 3B). These results clearly showed that Wolbachia infection markedly reduces Masc mRNA level during embryogenesis of Ostrinia. Together with transfection results (Fig 2B and 2C) and our previous results showing that knock down of Masc mRNA results in the production of the female-type dsx in male embryos of B. mori [14], we conclude that the lack of the male-type dsx in Wolbachia-infected Ostrinia embryos (Fig 1C) was caused by down-regulation of Masc mRNA (Fig 3A and 3B).

Failure of dosage compensation in Wolbachia-infected Ostrinia embryos

Considering our recent finding that depletion of Masc mRNA in early embryos of B. mori results in male-specific embryonic lethality due to a failure of dosage compensation [14], we hypothesized that a decrease in Masc mRNA in Wolbachia-infected Ostrinia embryos also affects dosage compensation, presumably resulting in a male-specific embryonic death. To test this hypothesis, we examined dosage compensation effects in Wolbachia-infected Ostrinia embryos using RNA-seq data. As reported previously [14], Z-linked transcripts are expressed at higher levels in Masc mRNA depleted B. mori embryos than in control embryos (Fig 4A, left panel). A similar transcriptional bias in putative Z-linked genes in Wolbachia-infected Ostrinia embryos at 48 hpo was also found (Fig 4A, right panel). A failure of dosage compensation of Z-linked genes was detected from 24 hpo and continued to 48 hpo (Fig 4B and S3 Fig). These
How Does Wolbachia Kill Male Moths Selectively?

A

B

Masc cDNA

vector | B. mori | Ostrinia

F

M

C

BmMPI/rp49 (vector = 1)

vector | B. mori | Ostrinia

Masc cDNA
results strongly support our hypothesis that *Wolbachia* infection leads to abnormally enhanced expression of Z-linked genes in male embryos via *Masc* mRNA down-regulation, resulting in a male-killing phenotype.

Rescue of male progeny by injection of *Masc* cRNA into *Wolbachia*-infected *Ostrinia* embryos

To obtain direct evidence that down-regulation of *Masc* mRNA in *Wolbachia*-infected *Ostrinia* embryos results in the male-killing phenotype, we performed rescue experiments by injecting *in vitro* synthesized capped, poly(A)-tailed *Masc* cRNA into *Wolbachia*-infected embryos. As shown in Fig 5, the hatched larvae injected with control (GFP) cRNA were all female, whereas both male and female larvae were observed when injected with *Masc* cRNA. This clearly indicates that introduction of *Masc* cRNA into *Wolbachia*-infected embryos can rescue male embryos. Together with the results of transcriptome data, we conclude that a decrease in *Masc* mRNA in *Wolbachia*-infected embryos causes a male-killing phenotype via a failure of dosage compensation.
Fig 4. A failure of dosage compensation in Wolbachia-infected embryos. (A) Chromosomal distribution of differentially expressed transcripts in *B. mori* and *Ostrinia* embryos. The *B. mori* RNA-seq data of Masc RNAi experiments (GFP and Masc RNAi embryos of mixed sex, 72 h post-injection) were used as a control experiment (left panel). The *Ostrinia* RNA-seq data (Wolbachia-infected and uninfected embryos of both sexes at 48 hpo were used to draw the panel on the right. The chromosome number for each *Ostrinia* transcript-derived contig was assigned using *B. mori* gene models. The data are shown by box-and-whisker diagrams. The boxes represent the median and 25–75 percentile ranges of the expression ratios. (B) Time-course and Z chromosome-biased distribution of differentially expressed transcripts in Wolbachia-infected and uninfected *Ostrinia* embryos. The data are separately shown in Z
Conclusion and perspective

In conclusion, our study answered the question of how *Wolbachia* manipulates sex ratios in moths: in *Ostrinia*, *Wolbachia* targets *Masc*, a masculinizing gene that was originally characterized in *B. mori*, to establish male-killing (Fig 6). In *Drosophila*, the Sex lethal protein functions as a master switch for sex determination, and also controls dosage compensation by inhibiting translation of *male-specific lethal 2 (msl-2)* [17]. Veneti et al. reported that a male-killing *Spiroplasma* targets the dosage compensation complex, including *msl-2*, to kill male *D. melanogaster* [18]. Our current results demonstrate that a similar event occurs in *Wolbachia*-infected lepidopteran insects; *Wolbachia* infection leads to male-killing by down-regulating *Masc* (Fig 3A and 3B), which is an essential factor controlling both sex determination and dosage compensation pathways in lepidopteran insects [14]. This analogy comes from the fact that the sex determination cascade is often tightly associated with the control of dosage compensation in insects.

In *B. mori*, femaleness is determined by *Femin* piRNA-mediated, highly tuned post-transcriptional regulation of *Masc* mRNA [14, 19]. Our findings suggest that *Wolbachia* has captured an unknown factor through evolution and succeeded in mimicking this sex determination system to execute the male-specific death. Our future goal is to identify a *Wolbachia* factor that decreases *Masc* mRNA post-transcriptionally or that directly inhibits *Masc* transcription (Fig 6).

Materials and Methods

Insects

Moths were collected at Matsudo (35.8° N, 139.9° E) and Nishi-Tokyo (35.4° N, 139.3° E), Japan, in early summer, 2014. GC-MS analysis of the pheromone gland extracts of the moths used in this study showed the presence of (E)-12- and (Z)-12-tetradecenyl acetates (E12-14:OAc and Z12-14:OAc). The relative abundance of the two components was 1:1.6 (E12-14:OAc and Z12-14:OAc) in *Wolbachia*-infected and 1:2.7 in *Wolbachia*-uninfected moths, indicating
that they were *O. furnacalis* (Lepidoptera: Crambidae). Wolbachia-infected strain was main-
tained by crossing with Wolbachia-free *O. furnacalis* male moths. *Ostrinia* larvae were reared on an artificial diet (Insecta LF, Nusan Corp.) at 23°C under a photoperiod of 16 L and 8 D. Tetracycline treatment was performed as described previously [7].

Molecular sexing

Molecular sexing of *Ostrinia* moths and embryos was performed by qPCR using two Z-linked genes triose phosphate isomerase (*Tpi*) and *kettin* as described by Kern *et al.* [20]. The autosomal gene *EF-1a* was used for normalization. Primers used for qPCR are listed below:

Tpi_F: 5'-ACGGAGGATCGGTTACTGGAGC-3'
Tpi_R: 5'-CGATGTCAACGAACTCTGGCTTGA-3'
kettin_F: 5'-AGGACTCTGGACGCATGGCT-3'
kettin_R: 5'-TGCAAGGCTATCAACAGGGCA-3'
EF1a_F: 5'-TTGCCACACAGCCCACATTG-3'
EF1a_R: 5'-TTGACAATGGCGGCATCACC-3'

RNA-seq analysis

Total RNA and genomic DNA were prepared simultaneously from *Ostrinia* embryos (25–50 embryos at each time point) using TRIzol reagent (Invitrogen) according to the manufacturer’s protocol. Libraries for RNA-seq were generated from 0, 12, 24, 36, 48 hpo embryos using the TruSeq RNA Sample Preparation kit (Illumina). The cDNAs were analyzed using the Illumina HiSeq 2500 platform with 100-bp paired-end reads according to the manufacturer’s protocol [21]. *De novo* assembly of RNA-seq data from 10 data sets was performed as described.

![Fig 6. A proposed model for Wolbachia-induced male-killing in Ostrinia.](image)
previously [14]. *Ostrinia Masc* was identified from assembled contigs by BLAST using the *B. mori* Masc amino acid sequence as a query.

Because extensive synteny conservation is observed among several lepidopteran insects including *Ostrinia* [22–24], we identified putative corresponding chromosomes for *Ostrinia* RNA-seq derived contigs by BLAST using 13,789 *B. mori* gene models (putative protein-coding genes whose chromosomal locations are identified). Transcript abundance in each contig was quantified as described previously [14–15]. RNA-seq data of *B. mori Masc* RNAi experiments (GFP and Masc RNAi embryos of each sex, 72 h post-injection, 4 data sets) [14] were used as a control data set.

RT-PCR

Total RNA and genomic DNA were prepared from *Ostrinia* embryos (25–50 embryos at each time point) using TRIzol reagent (Invitrogen) according to the manufacturer’s protocol. Total RNA was subjected to reverse transcription using avian myeloblastosis virus (AMV) reverse transcriptase with an oligo-dT primer (TaKaRa). PCR was carried out with KOD FX-neo DNA polymerase (TOYOBO). Sex-specific splicing of *Ostrinia dsx* by RT-PCR and Wolbachia detection by wsp PCR were performed with primers reported previously [6]. RT-qPCR analyses were performed using a KAPA™ SYBR FAST qPCR kit (Kapa Biosystems) and specific primers. The expression levels of *rps3* were used to normalize transcript levels. Primers used for RT-qPCR are listed below:

- **OstriniaMasc_F**: 5′-TTTGCCGCATTACATTGCAG-3′
- **OstriniaMasc_R**: 5′-TGGTTTTTGCAACCAATTGCAG-3′
- **OstriniaRPS3_F**: 5′-TGGCCACCAGAACCTCAAG-3′
- **OstriniaRPS3_R**: 5′-GAAACGCTTCTGGACTACGGA-3′

Transfection of Ostrinia Masc cDNA in BmN4 cells

Ostrinia Masc cDNA was cloned into the pIZ/V5-His vector (Invitrogen). Transfection experiments were performed as described previously [14]. In brief, BmN4 cells were transfected with plasmid DNAs using X-tremeGENE HP (Roche). Cells were collected at 72 h after transfection, and RT-PCR for *Bmdsx* and RT-qPCR for *BmIMP* were performed. *B. mori Masc* was used as a positive control for this experiment. *BmIMP* mRNA level was normalized to that of *rp49*. Primers used for RT-qPCR are listed below:

- **Bmdsx_F**: 5′-AACCATTGACGACTGACCAAC-3′
- **Bmdsx_R**: 5′-GCAACACGAAATGGCTGCAAC-3′
- **rp49_F**: 5′-CCCAACATTGGTTACGTTAC-3′
- **rp49_R**: 5′-GCTCTTCCACGATCAGCTT-3′
- **BmIMP_F**: 5′-ATGCGGAAGGTTTATG-3′
- **BmIMP_R**: 5′-TCATCCCAGCTCAGATCAG-3′
cRNA injection

The DNA template for cRNA synthesis was amplified by PCR using the pIZ/V5-His vector containing Ostrinia Masc (described above) or GFP (control) cDNA. Primers used for PCR are listed below:

pIZ-F-T7: 5’-TAATACGACTCACTATAGGGAGACAGTTGAACAGCATCTGTTC-3’
pIZ-R: 5’-GACAATACAAACTAAGATTTAGTCAG-3’

Capped, poly(A)-tailed cRNA was synthesized using mMESSAGE mMACHINE T7 Ultra Kit (Ambion). cRNA injection was performed as described previously [14] with some modifications. We injected 1–2 nl of Masc or GFP cRNA solution (1 μg/μl in 100 mM potassium acetate, 2 mM magnesium acetate, 30 mM HEPES-KOH; pH7.4) into Wolbachia-infected Ostrinia embryos within 4 h after oviposition. The hatched larvae were collected and molecularly sexed by qPCR.

Phylogenetic analysis

Phylogenetic analysis of Ostrinia Masc protein was performed as described previously [14]. The amino acid sequences of proteins in the NCBI database and those deduced form the RNA-seq data obtained in this study with significant homology (E-value of < 1 × 10^-9) to residues 51–122 of Masc were identified using the BLAST program. A neighbor-joining tree was constructed using 43 sequences [including 3 Ostrinia sequences (Ostrinia Masc, c66984_g1_i4, and c66984_g1_i3)] and the reliability of the tree was tested by bootstrap analysis with 1000 replications.

Sequence deposition

The nucleotide sequence of Ostrinia Masc has been submitted to the DDBJ/EMBL/GenBank data bank under the accession number LC028928. Deep sequencing data obtained in this study are available under the accession number DRA003038 (DDBJ).

Supporting Information

S1 Fig. Characterization of a male-killing Wolbachia found in O. furnacalis. (A) Establishment of the molecular sexing method for O. furnacalis. Molecular sexing of Wolbachia-uninfected O. furnacalis moths was performed by qPCR using two Z-linked genes Tpi and kettin. The autosomal gene EF-1α was used for normalization. Moth sexes were judged by external morphology. The number indicates the sample size of each group. (B) Molecular sexing of Wolbachia-infected O. furnacalis moths. The number indicates the sample size of each group. (C) Molecular sexing of Wolbachia-infected embryos (just prior to hatching, left panel) or hatched larvae (right panel). The number indicates the sample size of each group. (D) Brood sex ratios in a Wolbachia-eliminated matriline by tetracycline treatment. The female: male ratio of two independent mating is shown. (E) Splicing patterns of Ostrinia dsx in Wolbachia-free embryos at 60 hpo. The female-type splicing variants were clearly detected from the same RNA pool used in Fig 1C.

S2 Fig. Identification of Ostrinia Masc protein. Alignment of B. mori and Ostrinia Masc proteins was performed by the Clustal W program. The locations of putative zinc finger domains are indicated by red lines.
S3 Fig. MA plots of RNA-seq data of *Wolbachia*-infected and uninfected *Ostrinia* during embryogenesis. The *Ostrinia* contigs that were assigned to *B. mori* gene models were used for analysis. Z-linked genes are indicated by red dots.

(EPS)

Acknowledgments

We thank Takeshi Fujii for pheromone analysis and Shizuo George Kamita for critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: SK TK. Performed the experiments: TF MK KS TK SK. Analyzed the data: TF MK KS SS TS YS SK. Wrote the paper: SK.

References

1. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with *Wolbachia*?—a statistical analysis of current data. FEMS Microbiol Lett. 2008; 281: 215–220. doi: 10.1111/j.1574-6968.2008.01110.x PMID: 18312577
2. Werren JH, Baldo L, Clark ME. *Wolbachia*: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008; 6: 741–751. doi: 10.1038/nrmicro1969 PMID: 1879412
3. Fialho RF, Stevens L. Male-killing *Wolbachia* in a flour beetle. Proc R Soc Lond B. 2000; 267: 1469–1473.
4. Dyer KA, Jaenike J. Evolutionarily stable infection by a male-killing endosymbiont in *Drosophila innubila*: molecular evidence from the host and parasite genomes. Genetics 2004; 168: 1443–1455. PMID: 15579697
5. Kageyama D, Traut W. Opposite sex-specific effects of *Wolbachia* and interference with the sex determination of its host *Ostrinia scapulalis*. Proc Biol Sci. 2004; 271: 251–258. PMID: 15058435
6. Sugimoto TN, Fuji T, Kayukawa T, Sakamoto H, Ishikawa Y. Expression of a *doublesex* homologue is altered in sexual mosaics of *Ostrinia scapulalis* moths infected with *Wolbachia*. Insect Biochem Mol Biol. 2010; 40: 847–854. doi: 10.1016/j.ibmb.2010.08.004 PMID: 20728536
7. Sugimoto TN, Ishikawa Y. A male-killing *Wolbachia* carries a feminizing factor and is associated with degradation of the sex-determining system of its host. Biol Lett. 2012; 8: 412–415. doi: 10.1098/rsbl.2011.1114 PMID: 22219393
8. Suzuki MG, Funaguma S, Kanda T, Tamura T, Shimada T. Analysis of the biological functions of a *doublesex* homologue in *Bombyx mori*. Dev Genes Evol. 2003; 213: 345–354. PMID: 12733073
9. Suzuki MG, Funaguma S, Kanda T, Tamura T, Shimada T. Role of the male *BmDSX* protein in the sexual differentiation of *Bombyx mori*. Evol Dev. 2005; 7: 58–68. PMID: 15642090
10. Traut W, Sahara K, Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 2007; 1: 332–346. doi: 10.1159/000111765 PMID: 18391545
11. Fujii T, Shimada T. Sex determination in the silkworm, *Bombyx mori*: a female determinant on the W chromosome and the sex-determining gene cascade. Semin Cell Dev Biol. 2007; 18: 379–788. PMID: 17446095
12. Hasimoto H. The role of the W-chromosome in the sex determination of *Bombyx mori* [in Japanese]. Jpn J Genet. 1933; 8: 245–247.
13. Tajima Y. Studies on chromosome aberrations in the silkworm. II. Translocation involving second and W-chromosomes [in Japanese]. Bull Seiic Exp Strn. 1944; 12: 109–181.
14. Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, et al. A single female-specific piRNA is the primary determinant of sex in the silkworm. Nature 2014; 509: 633–636. doi: 10.1038/nature13315 PMID: 24828607
15. Kawamoto M, Koga H, Kiuchi T, Shoji K, Sugano S, Shimada T, et al. Sexually biased transcripts at early embryonic stages of the silkworm depend on the sex chromosome constitution. Gene 2015; 560: 50–56. doi: 10.1016/j.gene.2015.01.036 PMID: 25615878
16. Suzuki MG, Imanishi S, Dohmae N, Asanuma M, Matsumoto S. Identification of a male-specific RNA binding protein that regulates sex-specific splicing of *Bmdsx* by increasing RNA binding activity of *BmPSI*. Mol Cell Biol. 2010; 30: 5776–5786. doi: 10.1128/MCB.00444-10 PMID: 20956562
17. Penalva LO, Sañchez L. RNA binding protein sex-lethal (Sxl) and control of Drosophila sex determination and dosage compensation. Microbiol Mol Biol Rev. 2003; 67: 343–359. PMID: 12966139
18. Veneti Z, Bentley JK, Koana T, Braig HR, Hurst GD. A functional dosage compensation complex required for male killing in Drosophila. 2005;307: 1461–1463.
19. Katsuma S, Kawamoto M, Kiuchi T. Guardian small RNAs and sex determination. RNA Biol. 2014; 11: 1238–1242. doi: 10.1080/15476286.2014.996060 PMID: 25588029
20. Kern P, Cook JM, Kageyama D, Riegler M. Double trouble: combined action of meiotic drive and Wolbachia feminization in Eurema butterflies. Biol. Lett. 2015; 11: 20150095. doi: 10.1098/rsbl.2015.0095 PMID: 25948567
21. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nature Genet. 2013; 45: 860–867. doi: 10.1038/ng.2699 PMID: 23797736
22. d’Alençon E, Sezutsu H, Legeai F, Permal E, Bernard-Samain S, Gimenez S, et al. Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc Natl Acad Sci U S A. 2010; 107: 7680–7685. doi: 10.1073/pnas.0910413107 PMID: 20388903
23. Sahara K, Yoshido A, Shibata F, Fujikawa-Kojima N, Okabe T, Tanaka-Okuyama M, et al. FISH identification of Helicoverpa armigera and Mamestra brassicae chromosomes by BAC and fosmid probes. Insect Biochem Mol Biol. 2013; 43: 644–653. doi: 10.1016/j.ibmb.2013.04.003 PMID: 23628856
24. Kroemer JA, Coates BS, Nusawardani T, Rider SD Jr, Fraser LM, Hellmich RL. A rearrangement of the Z chromosome topology influences the sex-linked gene display in the European corn borer, Ostrinia nubilalis. Mol Genet Genomics. 2011; 286: 37–56. doi: 10.1007/s00438-011-0624-1 PMID: 21573787