Determining $L(2,1)$-Span in Polynomial Space

Konstanty Junosza-Szaniawski, Paweł Rzążewski
{k.szaniawski, p.razzewski}@mini.pw.edu.pl

Warsaw University of Technology
Faculty of Mathematics and Information Science
Pl. Politechniki 1, 00-661 Warsaw, Poland

Abstract

A k-$L(2,1)$-labeling of a graph is a function from its vertex set into the set $\{0, \ldots, k\}$, such that the labels assigned to adjacent vertices differ by at least 2, and labels assigned to vertices of distance 2 are different. It is known that finding the smallest k admitting the existence of a k-$L(2,1)$-labeling of any given graph is NP-Complete.

In this paper we present an algorithm for this problem, which works in time $O((9+\epsilon)^n)$ and polynomial memory, where ϵ is an arbitrarily small positive constant. This is the first exact algorithm for $L(2,1)$-labeling problem with time complexity $O(c^n)$ for some constant c and polynomial space complexity.

1 Introduction

A frequency assignment problem is the problem of assigning channels of frequency (represented by nonnegative integers) to each radio transmitter, so that no transmitters interfere with each other. Hale [12] formulated this problem in terms of so-called T-coloring of graphs.

According to [11], Roberts was the first who proposed a modification of this problem, which is called an $L(2,1)$-labeling problem. It asks for such a labeling with nonnegative integer labels, that no vertices in distance 2 in a graph have the same label and labels of adjacent vertices differ by at least 2.

A k-$L(2,1)$-labeling problem is to determine if there exists an $L(2,1)$-labeling of a given graph with no label greater than k. By $\lambda(G)$ we denote an $L(2,1)$-span of G, which is the smallest value of k that guarantees the existence of a k-$L(2,1)$-labeling of G.

The problem of $L(2,1)$-labeling has been extensively studied (see [3, 7, 10, 20] for some surveys on the problem and its generalizations). A considerable attention has been given to bounding the value of $\lambda(G)$ by some function of G.

Griggs and Yeh [11] proved that $\lambda(G) \leq \Delta^2 + \Delta + 1$ and conjectured, that

$^{1}\Delta$ denotes the largest vertex degree in a graph.

1 Introduction

A frequency assignment problem is the problem of assigning channels of frequency (represented by nonnegative integers) to each radio transmitter, so that no transmitters interfere with each other. Hale [12] formulated this problem in terms of so-called T-coloring of graphs.

According to [11], Roberts was the first who proposed a modification of this problem, which is called an $L(2,1)$-labeling problem. It asks for such a labeling with nonnegative integer labels, that no vertices in distance 2 in a graph have the same label and labels of adjacent vertices differ by at least 2.

A k-$L(2,1)$-labeling problem is to determine if there exists an $L(2,1)$-labeling of a given graph with no label greater than k. By $\lambda(G)$ we denote an $L(2,1)$-span of G, which is the smallest value of k that guarantees the existence of a k-$L(2,1)$-labeling of G.

The problem of $L(2,1)$-labeling has been extensively studied (see [3, 7, 10, 20] for some surveys on the problem and its generalizations). A considerable attention has been given to bounding the value of $\lambda(G)$ by some function of G.

Griggs and Yeh [11] proved that $\lambda(G) \leq \Delta^2 + \Delta + 1$ and conjectured, that

$^{1}\Delta$ denotes the largest vertex degree in a graph.
\(\lambda(G) \leq \Delta^2 \) for every graph \(G \). There are several results supporting this conjecture, for example Gonçalves \[9\] proved that \(\lambda(G) \leq \Delta^2 + \Delta - 2 \) for graphs with \(\Delta \geq 3 \). Havet et al. \[13\] have settled the conjecture in affirmative for graphs with \(\Delta \geq 10^6 \). For graphs with smaller \(\Delta \), the conjecture still remains open.

It is interesting to note that the Petersen and Hoffmann-Singleton graphs are the only two known graphs with maximum degree greater than 2, for which this bound is tight.

The second main branch of research in \(L(2,1) \)-labeling was pointed to analyzing the problem from the complexity point of view. For \(k \geq 4 \), the \(k-L(2,1) \)-labeling problem was proven to be NP-complete by Fiala et al. \[6\] (for \(k \leq 3 \) the problem is polynomial). It remains NP-complete even for regular graphs (see Fiala and Kratochvíl \[8\]), planar graphs (see Eggeman et al. \[4\]) or series-parallel graphs (see Fiala et al. \[5\]).

An exact algorithm for the so called Channel Assignment Problem, presented by Král’ \[19\], implies an \(O^*(4^n) \) \(^2\) algorithm for the \(L(2,1) \)-labeling problem. Havet et al. \[14\] presented an algorithm for computing \(L(2,1)(G) \), which works in time \(O^*(15^\omega) = O^*(3.8730^n) \). This algorithm has been improved \[17\] \[18\], achieving a complexity bound \(O^*(3.2361^n) \). Recently, a new algorithm for \(L(2,1) \)-labeling with a complexity bound \(O^*(2.6488^n) \) has been presented \[16\].

All algorithms mentioned above are based on dynamic programming approach and use exponential memory. Havet et al. \[14\] presented a branching algorithm for \(k-L(2,1) \)-labeling problem with a time complexity \(O^*((k-2.5)^n) \) and polynomial space complexity. Until now, no algorithm for \(L(2,1) \)-labeling with time complexity \(O(c^n) \) for some constant \(c \) and polynomial space complexity has been presented. However, there are such algorithms for a related problem of classical graph coloring. The first one, with time complexity \(O(5.283^n) \), was shown by Bodleander and Kratsch \[2\]. The best currently known algorithm for graph coloring with polynomial space complexity is by Björklund et al. \[1\], using the inclusion-exclusion principle. Its time complexity is \(O(2.246^n) \).

In this paper we present the first exact algorithm for the \(L(2,1) \)-labeling problem with polynomially bounded space complexity. The algorithm works in time \(O((9+\epsilon)n) \) (where \(\epsilon \) is an arbitrarily small positive constant) and is based on a divide and conquer approach.

2 Preliminaries

Throughout the paper we consider finite undirected graphs without multiple edges or loops. The vertex set (edge set) of a graph \(G \) is denoted by \(V(G) \) (\(E(G) \), respectively).

Let \(\text{dist}_G(x, y) \) be the distance between vertices \(x \) and \(y \) in a graph \(G \), which is the length of a shortest path joining \(x \) and \(y \).

A set \(X \subseteq V(G) \) is a 2-packing in \(G \) if and only if all its vertices are in distance at least 3 from each other (\(\forall x, y \in X \text{ dist}_G(x, y) > 2 \)).

\(^2\)In the \(O^* \) notation we omit polynomially bounded terms.
Let $N(v) = \{u \in V(G): (u, v) \in E(G)\}$ denote the set of neighbors (the neighborhood) of a vertex v. The set $N[v] = N(v) \cup \{v\}$ denotes the closed neighborhood of v. The neighborhood of a set X of vertices in G is denoted by $N(X) = \bigcup_{v \in X} N(v)$ and its closed neighborhood is denoted by $N[X] = N(X) \cup X$.

For a subset $X \subseteq V(G)$, we denote the subgraph of G induced by the vertices in X by $G[X]$. A square of a graph $G = (V, E)$ is the graph $G^2 = (V, \{uv \in V^2: \text{dist}_G(u, v) \leq 2\})$.

Definition 1. For a graph G and sets $Y, Z, M \subseteq V(G)$, a $(k - 1)$-$L^M_Z(Y)$-labeling of a graph G is a function $c: Y \to \{0, 1, \ldots, k - 1\}$, such that $c^{-1}(0) \cap Z = c^{-1}(k - 1) \cap M = \emptyset$, and for every $u, v \in Y$:

$$|c(v) - c(u)| \geq 2 \text{ if } \text{dist}_G(u, v) = 1$$

$$|c(v) - c(u)| \geq 1 \text{ if } \text{dist}_G(u, v) = 2.$$

A function $c: Y \to \mathbb{N}$ is an $L^M_Z(Y)$-labeling of G if there exists $k \in \mathbb{N}$ such that c is a $(k - 1)$-$L^M_Z(Y)$-labeling of G.

Definition 2. For $Y, Z, M \subseteq V(G)$ let $\Lambda^M_Z(Y, G)$ denote the smallest value of k admitting the existence of $(k - 1)$-$L^M_Z(Y)$-labeling of G. We define $\Lambda^M_Z(\emptyset, G) \overset{\text{def.}}{=} 0$ for all graphs G and sets $Z, M \subseteq V(G)$.

Any $(k - 1)$-$L^M_Z(Y)$-labeling of G with $k = \Lambda^M_Z(Y, G)$ is called optimal.

We observe that even if c is an optimal $L^M_Z(Y)$-labeling of G, then any of the sets $c^{-1}(0)$ and $c^{-1}(\Lambda^M_Z(Y, G) - 1)$ may be empty. In the extremal case, if $Z = M = Y$, then $c^{-1}(0) = c^{-1}(k - 1) = \emptyset$ for all k and feasible $(k - 1)$-$L^M_Z(Y)$-labelings c of G.

Notice that $\Lambda^0_Z(V(G), G) = \lambda(G) + 1$ for every graph G.

Definition 3. For a graph G, a G-correct partition of a set $Y \subseteq V(G)$ is a triple (A, X, B), such that:

1. The sets $A, X, B \subseteq Y$ form a partition of Y
2. X is a nonempty 2-packing in G
3. $|A| \leq \frac{|Y|}{2}$ and $|B| \leq \frac{|Y|}{2}$

3 Algorithm

In this section we present a recursive algorithm for computing $\Lambda^M_Z(Y, G)$ for any graph G and sets $Y, Z, M \subseteq V(G)$. It is then used to find an $L(2, 1)$-span a graph G.

The algorithm is based on the divide and conquer approach. First, the algorithm exhaustively check if $\Lambda^M_Z(Y, G) \leq 3$. If not, the set Y is partitioned into three sets A, X, B, which form a G-correct partition of Y. The sets A and B are then labeled recursively.
The labeling of the whole \(Y \) is constructed from the labelings found in the recursive calls. The sets of labels used on the sets \(A \) and \(B \) are separated from each other by the label used for the 2-packing \(X \). This allows to solve the subproblems for \(A \) and \(B \) independently from each other.

Iterating over all \(G \)-correct partitions of \(Y \), the algorithm computes the minimum \(k \) admitting the existence of a \((k-1)\)-\(L^M_Z(Y) \)-labeling of \(G \), which is by definition \(\Lambda^M_Z(Y,G) \).

Algorithm 1: Find-Lambda

1. **Input**: Graph \(G \), Sets \(Y, Z, M \subseteq V(G) \)
2. if \(Y = \emptyset \) then return 0
3. foreach \(c : Y \rightarrow \{0, 1, 2\} \) do
4. for \(k \leftarrow 1 \) to 3 do
5. if \(c \) is a \((k-1)\)-\(L^M_Z(Y) \)-labeling of \(G \) then return \(k \)
6. \(k \leftarrow \infty \)
7. foreach \(G \)-correct partition \((A, X, B)\) of \(Y \) do
8. if \(A \neq \emptyset \) and \(B \neq \emptyset \) then \(k_X \leftarrow 1 \)
9. if \(A = \emptyset \) and \(X \cap Z = \emptyset \) then \(k_X \leftarrow 1 \)
10. if \(A = \emptyset \) and \(X \cap Z \neq \emptyset \) then \(k_X \leftarrow 2 \)
11. if \(B = \emptyset \) and \(X \cap M = \emptyset \) then \(k_X \leftarrow 1 \)
12. if \(B = \emptyset \) and \(X \cap M \neq \emptyset \) then \(k_X \leftarrow 2 \)
13. \(k_A \leftarrow \text{Find-Lambda}(G, A, Z, N(X)) \)
14. \(k_B \leftarrow \text{Find-Lambda}(G, B, N(X), M) \)
15. \(k \leftarrow \min(k, k_A + k_X + k_B) \)
16. return \(k \)

Lemma 1. For a graph \(G \) and sets \(Y, Z, M \subseteq V(G) \), if \(Y \) is a 2-packing in \(G \), then \(\Lambda^M_Z(Y,G) \leq 3 \).

Proof. The labeling \(c : Y \rightarrow \{0, 1, 2\} \) such that \(c(v) = 1 \) for every \(v \in Y \) is a 2-\(L^M_Z(Y) \)-labeling of \(G \).

Theorem 1. For any graph \(G \) and sets \(Y, Z, M \subseteq V(G) \), the algorithm call \(\text{Find-Lambda}(G, Y, Z, M) \) returns \(\Lambda^M_Z(Y,G) \).

Proof. If \(Y = \emptyset \), the correct result is given in the line \(\mathbb{I} \) (by the definition of \(\Lambda^M_Z(\emptyset, G) \)). If \(\Lambda^M_Z(Y,G) \leq 3 \), the result is found by the exhaustive search in the line \(\mathbb{II} \). Notice that if \(|Y| \leq 1 \), then by Lemma \(\mathbb{I} \) \(\Lambda^M_Z(Y,G) \leq 3 \).

Assume that the statement is true for all graphs \(G' \) and all sets \(Y', Z', M' \subseteq V(G') \), such that \(|Y'| < n \), where \(n \geq 1 \).

Let \(G \) be a graph and \(Y, Z, M \) be subsets of \(V(G) \) such that \(|Y| = n \). We may assume that \(\Lambda^M_Z(Y,G) > 3 \). Let \(k \) be the value returned by the algorithm call \(\text{Find-Lambda}(G, Y, Z, M) \).

First we prove that \(k \geq \Lambda^M_Z(Y,G) \), i.e. there exists a \((k-1)\)-\(L^M_Z(Y) \)-labeling of \(G \). Let us consider the \(G \)-correct partition \((A, X, B)\) of \(Y \), for which the value of \(k \) was set in the line \(\mathbb{III} \). Since each of the sets \(A \) and \(B \) has less than \(n \)
vertices, by the inductive assumption there exists a $(k_A - 1) - L_{Z}^{N(X)}(A)$-labeling c_A of G and a $(k_B - 1) - L_{N(X)}^{M}(B)$-labeling c_B of G.

One of the following cases occurs:

1. If $A \neq \emptyset$ and $B \neq \emptyset$, then in the line 7 the value of k_X is set to 1 and thus $k = k_A + k_B + 1$. The labeling c of Y, defined as follows:

$$c(v) = \begin{cases}
 c_A(v) & \text{if } v \in A \\
 k_A & \text{if } v \in X \\
 k_A + 1 + c_B(v) & \text{if } v \in B
\end{cases}$$

is a $(k - 1) - L_{Y}^{M}(Y)$-labeling of G.

2. If $A = \emptyset$ and $X \cap Z = \emptyset$, then in the line 8 the value of k_X is set to 1 and thus $k = k_B + 1$. The labeling c of Y, defined as follows:

$$c(v) = \begin{cases}
 0 & \text{if } v \in X \\
 c_B(v) + 1 & \text{if } v \in B
\end{cases}$$

is a $(k - 1) - L_{Y}^{M}(Y)$-labeling of G.

3. If $A = \emptyset$ and $X \cap Z \neq \emptyset$, then in the line 9 the value of k_X is set to 2 and thus $k = k_B + 2$. The labeling c of Y, defined as follows:

$$c(v) = \begin{cases}
 1 & \text{if } v \in X \\
 c_B(v) + 2 & \text{if } v \in B
\end{cases}$$

is a $(k - 1) - L_{Y}^{M}(Y)$-labeling of G.

4. If $B = \emptyset$ and $X \cap M = \emptyset$, then in the line 10 the value of k_X is set to 1 and thus $k = k_A + 1$. The labeling c of Y, defined as follows:

$$c(v) = \begin{cases}
 c_A(v) & \text{if } v \in A \\
 k_A & \text{if } v \in X
\end{cases}$$

is a $(k - 1) - L_{Y}^{M}(Y)$-labeling of G.

5. If $B = \emptyset$ and $X \cap M \neq \emptyset$, then in line 11 the value of k_X is set to 2 and thus $k = k_A + 2$. The labeling c of Y, defined as follows:

$$c(v) = \begin{cases}
 c_A(v) & \text{if } v \in A \\
 k_A & \text{if } v \in X
\end{cases}$$

is a $(k - 1) - L_{Y}^{M}(Y)$-labeling of G (the label $k_A + 1$ is counted as used, but no vertex is labeled with it).

The case when $X = \emptyset$ is not possible, since the partition (A, X, B) is G-correct. The case when $A = B = \emptyset$ is not possible, since then $Y = X$ is a 2-packing in G and by the Lemma 1 $A_{Y}^{M}(Y, G) \leq 3$, so the algorithm would finish in the line 4.
Now let us show that $k \leq \Lambda_M^Y(Y, G)$. Let c be an optimal $L_M^Y(Y)$-labeling of G. Let l be the smallest number, such that $|c^{-1}(0)| \cup c^{-1}(l) \cup \cdots \cup c^{-1}(|l|) \geq \frac{|Y|}{2}$.

Let $A = c^{-1}(0) \cup \cdots \cup c^{-1}(l-1)$, $X = c^{-1}(l)$ and $B = c^{-1}(l+1) \cup \cdots \cup c^{-1}(\Lambda_M^Y(Y, G) - 1)$. Notice that X is a 2-packing and $X \neq \emptyset$ by the choice of l. Hence we observe that the partition (A, X, B) is G-correct, so the algorithm considers it in one of the iterations of the main loop.

Let $c_A: A \to \mathbb{N}$ be a function such that $c_A(v) = c(v)$ for every $v \in A$ and $c_B: B \to \mathbb{N}$ be a function such that $c_B(v) = c(v) - (l + 1)$ for every $v \in B$. Notice that c_A is an optimal $L_N^X(A)$-labeling of G and c_B is an optimal $L_N^X(B)$-labeling of G, because otherwise c would not be an optimal.

Hence by the inductive assumption the call in the line 12 returns the number $k_A \leq \Lambda_N^X(A, G)$ and the call in the line 13 returns the number $k_B \leq \Lambda_N^X(B, G)$.

Let k' be the value of $k_A + k_X + k_B$ in the iteration of the main loop when partition (A, X, B) is considered.

Let us consider the following cases:

1. $A, B \neq \emptyset$. In such a case the algorithm **Find-Lambda** sets $k_X = 1$ in the line 4 and

 \[\Lambda_M^Y(Y, G) = \Lambda_N^X(A, G) + \sum_{c^{-1}(l) = X} + \Lambda_N^X(B, G) \geq k_A + k_X + k_B = k'. \]

2. $A = \emptyset$ and $l = 0$. In such a case $k_A = 0$ and $X \cap Z = \emptyset$ and the algorithm **Find-Lambda** sets $k_X = 1$ in the line 8 and

 \[\Lambda_M^Y(Y, G) = \Lambda_N^X(A, G) + \sum_{c^{-1}(0) = X} + \Lambda_N^X(B, G) \geq k_A + k_X + k_B = k'. \]

3. $A = \emptyset$ and $l = 1$. In such a case $k_A = 0$ and $X \cap Z \neq \emptyset$. Otherwise c' defined by $c'(v) = c(v) - 1$ for every $v \in Y$ would be a $L_M^Y(Y)$-labeling of G using less labels than the optimal $L_M^Y(Y)$-labeling c of G – contradiction.

 The algorithm **Find-Lambda** sets $k_X = 2$ in the line 9 and

 \[\Lambda_M^Y(Y, G) = \Lambda_N^X(A, G) + \sum_{c^{-1}(0) = \emptyset} + \sum_{c^{-1}(1) = X} + \Lambda_N^X(B, G) \geq k_A + k_X + k_B = k'. \]

4. $B = \emptyset$ and $l = \Lambda_M^Y(Y, G) - 1$. In such a case $k_B = 0$ and $X \cap M = \emptyset$, and the algorithm **Find-Lambda** sets $k_X = 1$ in the line 10 and

 \[\Lambda_M^Y(Y, G) = \Lambda_N^X(A, G) + \sum_{c^{-1}(\Lambda_M^Y(Y, G) - 1) = X} + \Lambda_N^X(B, G) \geq k_A + k_X + k_B = k'. \]

5. $B = \emptyset$ and $l = \Lambda_M^Y(Y, G) - 2$. In such a case $k_B = 0$ and $X \cap M \neq \emptyset$ and the algorithm **Find-Lambda** sets $k_X = 2$ in the line 11 and

 \[\Lambda_M^Y(Y, G) = \Lambda_N^X(A, G) + \sum_{c^{-1}(\Lambda_M^Y(Y, G) - 2) = X} + \sum_{c^{-1}(\Lambda_M^Y(Y, G)) = \emptyset} + \Lambda_N^X(B, G) \geq k_A + k_X + k_B = k'. \]
are positive constants):

Since those are all possible cases and \(k \) is the minimum over values of \(k' \) for all correct partitions, clearly \(k \leq \Lambda^M_Z(Y, G) \).

Observation 1. By the definition of \(\Lambda^M_Z(Y, G) \), the algorithm call \textbf{Find-Lambda}(G, V(G), \emptyset, \emptyset) returns \(\lambda(G) + 1 \).

Lemma 2. Let \(G \) be a graph on \(n \) vertices, \(Y, Z, M \subseteq V(G) \) and let \(y = |Y| \). If \(G^2 \) is computed in advance, the algorithm \textbf{Find-Lambda} finds \(\Lambda^M_Z(Y, G) \) in the time \(O(C^{\log y} y^{3 \log y} y^9y) \) and polynomial space, where \(C \) is a positive constant.

Proof. Having \(G^2 \) computed, checking if any two vertices in \(V(G) \) are in distance at most 2 from each other in \(G \) takes a constant time. Hence verifying if a given \(X \subseteq Y \) is a 2-packing in \(G \) can be performed in the time \(O(y^2) \). Moreover, we can check if a given function \(c: Y \to \mathbb{N} \) is an \(L^M_Z(Y) \) labeling of \(G \) in the time \(O(y^2) \).

Let \(y = |Y| \) be the measure of the size of the problem. Let \(T(y) \) denote the running time of the algorithm \textbf{Find-Lambda} applied to a graph \(G \) and \(Y, Z, M \subseteq V(G) \).

The algorithm \textbf{Find-Lambda} first checks in constant time if \(Y = \emptyset \). Then it exhaustively checks if there exists a \((k-1)-L^M_Z(Y) \) labeling of \(G \) for \(k \in \{1, 2, 3\} \). There are \(3^y \) functions \(c: Y \to \{0, 1, 2\} \), so this step is performed in the time \(O(y^2 \cdot 3^y) \).

Then for every \(G \)-correct partition of \(Y \) the algorithm is called recursively for two sets of size at most \(\frac{y}{2} \). Notice that there are at most \(3^y \) considered partitions. Checking if a partition of \(Y \) is \(G \)-correct can be performed in time \(O(y^2) \). Hence we obtain the following inequality for the complexity (\(C_1 \) and \(C_2 \) are positive constants):

\[
T(y) \leq C_1 y^2 4^y + C_2 y^3 3^y 2 \cdot T \left(\frac{y}{2} \right)
\]

Let \(C = \max(C_1, 2C_2) \), then

\[
T(y) \leq C y^2 4^y + C y^3 3^y \cdot T \left(\frac{y}{2} \right)
\]

It is not difficult to verify that \(T(y) \leq D \cdot C^{\log y} y^{3 \log y} y^9y = O(C^{\log y} y^{3 \log y} y^9y) \), where \(D \) is a positive constant.

The space complexity of the algorithm is clearly polynomial.

Theorem 2. For a graph \(G \) on \(n \) vertices \(\lambda(G) \) can be found in the time \(O((9 + \epsilon)^n) \) and polynomial space, where \(\epsilon \) is an arbitrarily small positive constant.

Proof. The square of a graph \(G \) can be found in the time \(O(n^3) \). By the Observation and Lemma the algorithm \textbf{Find-Lambda} applied to \(G, Y = V(G) \) and \(Z = M = \emptyset \) finds \(\Lambda^0_0(V(G), G) = \lambda(G) - 1 \) in the time \(O(C^{\log n} n^{3 \log n} n^9n) = O((9 + \epsilon)^n) \) and polynomial space.
Remark

We have just learned that results similar to those included in this paper were independently obtained (but not published) by Havet, Klazar, Kratochvíl, Kratsch and Liedloff [15].

References

[1] Björklund, A., Husfeldt, T., Koivisto, M.: Set Partitioning via Inclusion-Exclusion. SIAM J. Comput. 39 (2009), pp. 546–563
[2] Bodlaender, H.L., Kratsch D: An exact algorithm for graph coloring with polynomial memory. UU-CS 2006-015 (2006)
[3] Calamoneri, T.: The L(h,k)-Labelling Problem: A Survey and Annotated Bibliography. Computer Journal 49 (2006), pp. 585–608
[4] Eggeman, N., Havet, F., Noble, S.: k-L(2,1)-Labelling for Planar Graphs is NP-Complete for k ≥ 4. Discrete Applied Mathematics 158 (2010), pp. 1777–1788.
[5] Fiala, J., Golovach, P., Kratochvíl, J.: Distance Constrained Labelings of Graphs of Bounded Treewidth. Proceedings of ICALP 2005, LNCS 3580 (2005), pp. 360–372.
[6] Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of λ-labelings. Discrete Applied Mathematics 113 (2001), pp. 59–72.
[7] Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms - structure, complexity, and applications. Computer Science Review 2 (2008), pp. 97–111.
[8] Fiala, J., Kratochvíl, J.: On the Computational Complexity of the L(2,1)-Labeling Problem for Regular Graphs Proceedings of ICTCS 2005, LNCS 3703 (2005), pp. 228–236
[9] Gonçalves, D.: On the L(p; 1)-labelling of graphs. Discrete Mathematics 308 (2008), pp. 1405–1414
[10] Griggs, J. R., Král, D.: Graph labellings with variable weights, a survey. Discrete Applied Mathematics 157 (2009), pp. 2646–2658.
[11] Griggs, J. R., Yeh, R. K.: Labelling graphs with a condition at distance 2. SIAM Journal of Discrete Mathematics 5 (1992), pp. 586–595.
[12] Hale, W.K.: Frequency assignemnt: Theory and applications. Proc. IEEE 68 (1980), pp. 1497–1514
[13] Havet, F., Reed, B., Sereni, J.-S.: L(2,1)-labellings of graphs. Proceedings of SODA 2008 (2008), pp. 621–630.
[14] Havet, F., Klazar, M., Kratochvíl, J., Kratsch, D., Liedloff, M.: Exact algorithms for $L(2,1)$-labeling of graphs. *Algorithmica* 59 (2011), pp. 169–194.

[15] Havet, F., Klazar, M., Kratochvíl, J., Kratsch, D., Liedloff, M.: private communication

[16] Junosza-Szaniawski K., Kratochvíl J., Liedloff M., Rossmanith P., Rzążewski P.: Fast Exact Algorithm for $L(2,1)$-Labeling of Graphs. *Proceedings of TAMC 2011*, LNCS 6648 (to appear)

[17] Junosza-Szaniawski K., Rzążewski P.: On Improved Exact Algorithms for $L(2,1)$-Labeling of Graphs. *Proceedings of IWOCA 2010*, LNCS 6460 (2011), pp. 34–37

[18] Junosza-Szaniawski K., Rzążewski P.: On the Complexity of Exact Algorithm for $L(2,1)$-labeling of Graphs. *Information Processing Letters* (to appear). Preliminary version in KAM-DIMATIA Preprint Series 2010-992

[19] D. Král’: Channel assignment problem with variable weights. *SIAM Journal on Discrete Mathematics* 20 (2006), pp. 690–704.

[20] Yeh, R.: A survey on labeling graphs with a condition at distance two. *Discrete Mathematics* 306(2006), pp. 1217–1231.