Syringic acid induces apoptosis in human oral squamous carcinoma cells through mitochondrial pathway

Bhaskhar Abijeth, Devaraj Ezhilarasan
Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India

ORIGINAL ARTICLE

INTRODUCTION

Oral squamous carcinoma cell (OSCC) is among the ten most frequent human malignancies\(^1\) and is the most common malignancy of head-and-neck cancer.\(^2\) Advanced oral cancers can cause significant morbidity and mortality. OSCC is highly invasive and destroys tissues, thus causing disfigurement, loss of function, pain, bleeding, and necrosis.\(^3\) Tobacco chewing and smoking, alcohol consumption alone or with chewing tobacco and betel quid are potential carcinogens contributing to the high occurrence of OSCC.\(^4\) High incidences of OSCC has been reported in developing countries due to different forms of smokeless tobacco exposure.\(^5\) OSCC has a very poor prognosis, and it is often characterized

Access this article online

Quick Response Code:
Website:
www.jomfp.in
DOI:
10.4103/jomfp.JOMFP_178_19

How to cite this article: Abijeth B, Ezhilarasan D. Syringic acid induces apoptosis in human oral squamous carcinoma cells through mitochondrial pathway. J Oral Maxillofac Pathol 2020;24:40-5.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
by aggressive local invasion, early metastasis and poor response to chemotherapy.[5] Current treatment modalities for OSCC include chemo or radiotherapy, surgical removal of cancer, targeted therapy using epidermal growth factor receptor inhibitors and cyclooxygenase-2 inhibitors, and photodynamic therapy.[6] However, none of these therapies are curative but merely symptomatic, and these treatments produce only temporary clinical benefit and often led to the major problems related to nonspecific cell death and severe side effects.[5] Hence, there is a necessary to identify the key agents that control tumor proliferation and development of novel treatments that can block or inhibit invasion and/or metastasis is important for improving the prognosis of OSCC.

Several plants derived and synthetic compounds have been tested for their anticancer potential in experimental animals and in vitro OSCC cell lines.[7–9] Previous studies showed that plant-derived compounds could selectively target cancer cells and inhibit their proliferation and induce cytotoxicity via apoptosis and these effects are implicated as their beneficial effects against cancer.[8–12] Further, these plant-derived compounds have been reported to modify the redox status and interfere with basic cellular functions cell cycle, apoptosis, inflammation, angiogenesis, invasion and metastasis.[13] Several studies have shown that natural products have a wide spectrum of biological activities including anti-inflammatory, antioxidant, antimutagenic and anticancer properties.[14,15] Hence, in this study, we evaluated the cytotoxic effect of syringic acid (SA) in squamous carcinoma cell (SCC)-25 cell line.

SA, a known phenolic acid used in traditional Chinese herbal medicine, is an emerging nutraceutical for the treatment of cancer.[16] Studies were reported the hepatoprotective and anti-inflammatory, antimitogenic, anti-hyperglycemic, neuroprotective and memory-enhancing properties of SA in various animal models.[17–19] In the context of in vitro, the cytotoxic effect of SA has been explored in several cancer cell lines other than human OSCC.[16,19,21,22] Although SA has studied against various cancer types in vitro, its efficacy against human OSCC is not available. Hence, this study has been conducted to explore the anticancer efficacy of SA against OSCC SCC-25 cells.

MATERIALS AND METHODS

Chemicals

SA (4-hydroxy-3,5-dimethoxybenzoic acid), 3-(4,5-dimethylthiazol-2-yi)-2,5-diphenyltetrazolium Bromide (MTT) and dimethyl sulfoxide (DMSO) was purchased from Sigma Chemical (Chennai, India). The other chemicals used in this study were purchased locally and were of analar grade.

Cell cultures and treatment

The SCC-25 human oral SCC line was procured from ATCC. Cells were maintained in Dulbecco’s Minimum Essential Media and Ham’s F-12 (1:1 ratio) supplemented with 10% fetal bovine serum, with 100 units/ml penicillin and 100 µg/ml streptomycin. Cells were cultured in a humidified atmosphere with 5% CO₂ at 37°C. Cells were grown in 75 cm² culture flasks, and after a few passages, cells were seeded for experiments. The experiments were done at 70%–80% confluence. On reaching confluence, cells were detached using 0.05% Trypsin-ethylenediaminetetraacetic acid solution.

SA was dissolved in 0.1% DMSO (v/v). SCC-25 cells were plated at 10,000 cells/cm². After 24 h, cells were fed with fresh expansion culture medium supplemented with different final concentrations of SA (25 and 50 µM) or the corresponding volumes of the vehicle. The concentrations (25 µM and 50 µM) used in this study was based on previously published literature. In previous studies, 25 µM and 50 µM concentrations of SA was reported to inhibit cell proliferation and apoptosis of various cancer cells.[11,23] After 24 h of treatment, cells were collected by trypsin application. The total cell number was determined by counting each sample in triplicate under the inverted microscope.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay

Cytotoxic effect of SA in SCC-25 cells was assessed by MTT assay.[24] Cells were plated in 96-well plates at a concentration of 5 × 10⁴ cells/well. After 24 h, cells were fed with fresh expansion culture medium supplemented with different final concentrations of SA (25 and 50 µM) and incubated for 24 h. Untreated cells served as control and received only 0.1% DMSO. At the end of the treatment period, media from control, SA-treated cells was discarded and 50 µl of MTT (0.5 mg/ml of phosphate-buffered saline [PBS]) was added to each well. Cells were then incubated for 4 h at 37°C in CO₂ incubator. MTT was then discarded and the colored crystals of produced formazan were dissolved in 150 µl of DMSO and mixed effectively. The purple-blue formazan dye formed was measured using an ELISA reader (BIORAD) at 570 nm.

Acridine orange/ethidium bromide (dual staining)

Acridine orange/ethidium bromide (AO/EB) orange staining was carried out by the method of Gohel et al.[25] SCC-25 cells were plated at a density of 1 × 10⁴ in 48-well
plates. They were allowed to grow until they are 70%–80% confluent. After 24 h, the cells were treated with different concentrations of SA. The culture medium was aspirated from each well and cells were gently rinsed twice with PBS at room temperature. Then, equal volumes of cells from control and SA treated were mixed with 100 µl of dye mixture (1:1) of EB and AO and viewed immediately under Nikon inverted fluorescence microscope (Ti series) at ×10. A minimum of 300 cells was counted in each sample in two different fields. The percentage of apoptotic cells was determined by (% of apoptotic cells = [total number of apoptotic cells/total number of cells counted] ×100).

Gene expression analysis

Total RNA was extracted by trizol reagent according to the standard protocol. The concentration of the extracted RNA was determined, and the integrity of RNA was visualized on a 1% agarose gel using a gel documentation system (BioRad, Hercules, CA). The first strand of cDNA was synthesized from 1 µg of total RNA by reverse transcriptase using M-MLV (Promega, Madison, WI) and oligo (dT) primers (Promega) according to the manufacturer’s protocol. Then, 2 µl of template cDNA was added to the final volume of 20 µl of the reaction mixture. Reverse transcription-polymerase chain reaction (RT-PCR) cycle parameters included 10 min at 95°C followed by 40 cycles involving denaturation at 95°C for 15 s, annealing at 60°C for 20 s and elongation at 72°C for 20 s. The sequences of the specific sets of primer for bax, bcl-2, cytochrome c, caspase-3,‑9 and GAPDH used in this study were taken from literature. Expressions of selected genes were normalized to the GAPDH gene, which was used as an internal housekeeping control. All the RT-PCR experiments were performed in triplicate.

Statistical analysis

Data were expressed as mean ± standard error of mean and analyzed by Tukey’s test to determine the significance of differences between groups. $P < 0.05$ or/and 0.001 was considered to be statistically significant.

RESULTS

Syringic acid treatments induced cytotoxicity in squamous carcinoma cell-25 cells

Initially, SCC-25 cells were treated with logarithmic concentrations (1.56, 3.12, 6.25, 12.5, 25, 50 and 100 μM) of SA and cell viability was determined by the MTT assay. The morphology of SA-treated cells is shown in Figure 1a-d. In this study, SA treatment for 24 h caused a marked increase in cell death in a concentration-dependent manner. At the end of 24 h, maximum inhibition (78%) of cell growth was found at a maximum concentration (100 μM) used in this study when compared to control. The control and DMSO-treated cells did not produce any significant change in the proliferation of SCC-25 cells [Figure 1e].

Syringic acid treatments induced apoptosis-related morphological changes in squamous carcinoma cell-25 cells

Dual AO/EB fluorescent staining can detect basic morphological changes in apoptotic cells of SA treated and control cells. Viable cell’s DNA was stained by AO and their nuclei were bright green, while apoptotic cell’s DNA were stained by EB and appears orange to red color. In this study, the negative control group (normal cells) and DMSO treated vehicle control group cells exhibit with the circular nucleus uniformly distributed in the center of the cell [Figure 2a and b]. In the experimental group, early apoptotic cells were visualized as yellow-green by AO nuclear staining after 25 μM of SA treatment in SCC-25 cells [Figure 2c].
While 50 µM-SA-treated cells show significant apoptosis as evidenced by orange or red color staining [Figure 2d]. The apoptotic nuclei counted were also showed a statistically significant ($P < 0.001$) increase in apoptotic cell number upon SA treatment in a concentration-dependent manner as compared to control [Figure 2e].

Syringic acid treatments modulated the apoptosis marker genes in squamous carcinoma cell-25 cells

To further substantiate our results at the molecular level, we evaluated the apoptosis marker gene expressions in control and SA-treated cells. SA treatments caused a significant up regulation of bax, cytochrome c and caspas (3 and 9) gene expressions in SCC-25 cells as compared to untreated control and DMSO-treated cells. Further, SA treatment downregulated the bcl-2 expression, an inhibitor of apoptosis in SCC-25 cells [Figure 3a and b]. In all cases, GAPDH used as an internal control for normalization.

DISCUSSION

Plants comprise an imperative source of active natural products and new drug entities, such as anticancer drugs.
treatment caused early and late apoptosis at 25 and 50 µM concentrations for 24 h, respectively. The fluorescent stain EB only entered cells with damaged membranes, such as late apoptotic and dead cells, emitting orange-red fluorescence when bound to concentrated DNA fragments or apoptotic bodies. The presence of red fluorescent stained cells suggesting the fact that SA can induce the morphological changes related to apoptosis in SCC-25 cells.

To investigate the mechanism involved in apoptosis induction, we evaluated the molecular mechanism. During tumorigenesis, significant loss or inactivation of caspases leads to impairing apoptosis induction, causing a dramatic imbalance in the growth dynamics, ultimately resulting in the aberrant growth of human cancers. In contrast, the induction of apoptosis is almost always associated with the activation of caspases; a conserved family of enzymes that irreversibly commit a cell to die. The release of cytochrome c from mitochondria to the cytosol after being induced by a variety of apoptosis-inducing agents leads to the formation of apoptosome which forms a platform for the efficient processing and activation of caspase-9. Activation of caspase-9, in turn, cleaves effectors caspases such as caspase-3 and 7 which eventually lead to apoptosis. Therefore, in the next series of experiments, we investigated the proapoptotic effect of SA on the caspase cascade. Results from the present study demonstrated that mRNA expression levels of these caspases were significantly increased in SCC-25 cells upon SA treatment. Consistent with above reports, the activation of executioner caspases 3 and 9 could be the possible cause for the induction of apoptosis.

Bcl-2, anti-apoptotic gene, prevents apoptosis either by sequestering performs of caspases or by preventing the release of mitochondrial apoptogenic factors such as cytochrome c into the cytosol. After entering into the cytosol, cytochrome c directly activates caspases that cleave a set of cellular proteins to cause apoptotic changes. Mitochondria induce apoptosis by releasing cytochrome c that participates in caspase activation. In contrast, a pro-apoptotic member such as bax trigger the release of caspases from death antagonists via heterodimerization and also by inducing the release of mitochondrial cytochrome c into the cytoplasm via acting on mitochondrial permeability transition pore, thereby leading to caspase activation. In this study, SA treatment caused a significant upregulation of bax (a proapoptotic signal to mitochondria) expression, and it was well correlated with the significant downregulation of an anti-apoptotic gene, i.e., bcl-2 expression. Results from the current study suggest that the strong proapoptotic bax signal could have act on mitochondria and inhibited the antiapoptotic signal (bcl-2 expression), and this in turn induced the cytochrome c release into the cytosol for the caspase activation and induction of apoptosis [Figure 4]. These findings suggest that SA induce the cytotoxicity through induction of apoptosis via intrinsic or mitochondrial pathway in SCC-25 cell lines.

CONCLUSION
SA has a potent cytotoxic effect on human oral SCCs. SA induced mitochondria-mediated apoptosis via cytochrome c release and caspases 9 and 3 activation. SA treatment also increases the bax expression, and it was well correlated with concomitant downregulation of bcl-2 gene expression. Our molecular findings are well corroborated with dual staining assay. SA may be an effective therapeutic strategy for human oral squamous carcinoma.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Eckert AW, Wickenhauser C, Salins PC, Kappler M, Bukur J, Seliger B, et al. Clinical relevance of the tumor microenvironment and immune escape of oral squamous cell carcinoma. J Transl Med 2016;14:85.
Abijeth and Ezhilarasan: Syringic acid induced apoptosis in SCC‑25 cells

2. Li P, Xiao LY, Tan H. Mac-1 promotes migration and invasion of oral squamous cell carcinoma cells via PI3K‑Akt signaling. Int J Clin Exp Pathol 2015;8:10365‑74.

3. Ezhilarasan D, Apoorva VS, Ashok Vandan H, Veyyigum cumini extract induced reactive oxygen species-mediated apoptosis in human oral squamous carcinoma cells. J Oral Pathol Med 2019;48:115‑21.

4. Alaeddini M, Etemad‑Moghadam S. Lymphangiogenesis and angiogenesis in oral cavity and lower lip squamous cell carcinoma. Braz J Otorhinolaryngol 2016;82:385‑90.

5. Malik UU, Zarina S, Pennington SR. Oral squamous cell carcinoma: Key clinical questions, biomarker discovery, and the role of proteomics. Arch Oral Biol 2016;63:53‑65.

6. Gharat SA, Momin M, Bhavsar C. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit Rev Ther Drug Carrier Syst 2016;33:363‑400.

7. Han Y, Cai Z, Li YH, Hu SH, Lee BH. In vitro and in vivo anticanicancer activity of podax against proliferation and growth of oral squamous cell carcinoma. Mar Drugs 2015;14:2.

8. Mohan S, Thigaarajan K, Chandrasekar R. In vitro evaluation of antiproliferative effect of ethyl gallate against oral human squamous cell carcinoma line KB. Nat Prod Res 2015;29:366‑9.

9. Kwak HH, Kim IR, Kim HJ, Park BS, Yu SB. A-mangostin induces apoptosis and cell cycle arrest in oral squamous cell carcinoma cell. Evid Based Complement Alternat Med 2016;2016:3532412.

10. Cha JD, Jeong MR, Kim HY, Lee JC, Lee KY. MAPK activation is necessary to the apoptotic death of KB cells induced by the essential oil isolated from Artemisia absinthiomy. J Ethnopharmacol 2009;123:308‑14.

11. Liang CH, Wang GH, Liaw CC, Lee MF, Wang SH, Cheng DL, et al. Extracts from Cladina australis, Clavularia viridis and Klyxum simplex (soft corals) are capable of inhibiting the growth of human oral squamous cell carcinoma cells. Mar Drugs 2008;6:595‑606.

12. Rauth S, Ray S, Bhattacharyya S, Mehrtra DG, Alam N, Mondal G, et al. Luteol evokes anticancer effects in oral squamous cell carcinoma by inhibiting oncogenic EGFR pathway. Mol Cell Biochem 2016;417:97‑110.

13. Kampa M, Nifi AP, Notas G, Castanas E. Polyphenols and cancer cell growth. Rev Physiol Biochem Pharmacol 2007;159:79‑113.

14. Espín JC, García‑Conesa MT, Tomás‑Barberán FA. Nutraceuticals: Facts and fiction. Phytochemistry 2007;68:2986‑3008.

15. Miyata T. Pharmacological basis of traditional medicines and health supplements as curatives. J Pharmacol Sci 2007;103:127‑31.

16. Gheena S, Ezhilarasan D. Syringic acid triggers reactive oxygen species-mediated cytotoxicity in HePG2 cells. Hum Exp Toxicol 2019;38:694‑702.

17. Güven M, Aras AB, Topalolu N, Ozkan A, Sen HM, Kalkan Y, et al. The protective effect of syringic acid on ischemia injury in rat brain. Turk J Med Sci 2015;45:233‑40.

18. Ham JR, Lee HI, Choi HY, Sim MO, Seo KI, Lee MK. Anti‑steatotic and anti‑inflammatory roles of syringic acid in high‑fat diet‑induced obese mice. Food Funct 2016;7:689‑97.

19. Abaza MS, Al‑Attiyah R, Bharchwaj R, Abbadi G, Koviippally M, Afzal M. Syringic acid from Tamarix australis possesses antimitogenic and chemo‑sensitizing activities in human colorectal cancer cells. Pharm Biol 2013;51:1110‑24.

20. Srinivasan S, Murukumaran J, Muruganathan U, Venkatesan RS, Jalaladeen AM. Antihyperglycemic effect of syringic acid on attenuating the key enzymes of carbohydrate metabolism in experimental diabetic rats. Biomed Prec Nutr 2014;4:595‑602.

21. Karthik G, Vijayakumar A, Natarajapillai S. Preliminary study on salubrious effect of syringic acid on apoptosis in human Lung carcinoma a549 cells and in silico analysis through docking studies. Asian J Pharm Clin Res 2014;7:46‑9.

22. Orabi KY, Abaza MS, El Sayed KA, El Naggar AY, Al‑Attiyah R, Guleri RP, et al. Expression of connective tissue growth factor in bone: Its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J Cell Physiol 2003;196:51‑62.

23. Gohel A, McCarthy MB, Gronowicz G. Estrogen prevents glucocorticoid‑induced apoptosis in osteoblasts in vitro and in vivo. Endocrinology 1999;140:3339‑47.

24. Ezhilarasan D. Herbal therapy for cancer: Clinical and experimental perspectives. In Timiri Shanmugam P. editor. Understanding Cancer Therapies. 1st ed. Boca Raton: CRC Press; 2018. p. 129‑66.

25. Ezhilarasan D, Sokal E, Karthikeyan S, Najimi M. Plant derived antioxidants and antiinfective drugs: Past, present and future. J Coast Life Med 2014;2:378‑45.

26. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Proff 2012;45:487‑98.

27. Westhoff MA, Marsenall N, Dehant KM. Novel approaches to apoptosis‑inducing therapies. Adv Exp Med Biol 2016;930:173‑204.

28. Nishida K, Yamaguchi O, Otsu K. Crosstalk between autophagy and apoptosis in heart disease. Cinc Res 2008;103:343‑51.

29. Liu K, Liu PC, Liu R, Wu X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res 2015;21:15‑20.

30. Ribble D, Goldstein NB, Norris DA, Shellman YG. A simple technique for quantifying apoptosis in 96‑well plates. BMC Biotechnol 2005;5:12.

31. Fiandalo MV, Kyprianou N. Caspase control: Protagonists of cancer therapy. Arch Oral Biol 2016;63:533‑6.

32. Ribble D, Goldstein NB, Norris DA, Shellman YG. A simple technique for quantifying apoptosis in osteoblast proliferation and differentiation. BMC Biotechnol 2005;5:12.

33. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and programmed necrosis. Cell Prolif 2012;45:487‑98.

34. Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Caspase‑15: A novel endocannabinoid receptor with roles in immune regulation. J Cell Physiol 2003;196:51‑62.

35. Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: The role of cytochrome c. Biochim Biophys Acta 1998;1366:139‑49.

36. Westhoff MA, Marsenall N, Dehant KM. Novel approaches to apoptosis‑inducing therapies. Adv Exp Med Biol 2016;930:173‑204.

37. Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Caspase control: Protagonists of cancer therapy. Arch Oral Biol 2016;63:533‑6.