Pion electromagnetic form factor from full Lattice QCD

Jonna Koponen
University of Glasgow
HPQCD collaboration*

*F. Bursa, C. T. H. Davies, G. Donald, R. Dowdall and J. K.

Lattice 2013, Mainz, Germany
Motivation

• The electromagnetic form factor of the charged π meson parameterises the deviations from the behaviour of a point-like particle when struck by a photon

• These deviations arise from the internal structure of the π: constituent quarks and their strong interaction

• Can be calculated in QCD, but need fully nonperturbative treatment \rightarrow use Lattice QCD

• Experimental determination from $\pi - e$ scattering

• Important to work at physical pion mass
Dependence on pion mass

$\langle r^2 \rangle$ (fm2)

M_{π}^2 (GeV2)

ETMC, Phys. Rev. D79 (2009) 074506
Lattice configurations

- MILC $n_f=2+1+1$ HISQ lattice configurations
- HISQ action for valence quarks
- Quark masses tuned to physical masses
- $L m_\pi \approx 4$ for the coarse ($a=0.12$ fm) and fine ($a=0.088$ fm) lattices

Set	a/fm	$a m_l$	$a m_s$	$a m_c$	m_π/MeV	$L/a \times L_t$	N_{conf}
1	0.15	0.00235	0.0647	0.831	133	32 \times 48	1000
2	0.12	0.00184	0.0507	0.628	133	48 \times 64	1000
3	0.088	0.00120	0.0363	0.432	128	64 \times 96	223
Form factors = 3pt amplitudes

- Consider two currents, a 1-link spatial vector current and a scalar current.
- Use a phase at the boundary to give a quark a momentum: \(\Phi(x + \hat{e}_j L) = e^{i2\pi\theta_j} \Phi(x) \rightarrow p_j = \frac{2\pi\theta_j}{L} \).
- Tune \(\theta \) to get the desired \(q^2 \) and extract \(f_+(q^2) \) in the space-like (negative) region of \(q^2 \) near zero.

\[
q^2 = (E(\vec{p}_2) - E(\vec{p}_1))^2 - (\vec{p}_2 - \vec{p}_1) \cdot (\vec{p}_2 - \vec{p}_1)
\]
Connected and disconnected diagrams

- Writing down 3-point matrix elements gives two types of terms, connected and disconnected
- Vector current: Disconnected diagrams cancel due to charge conjugation and isospin symmetries
- Scalar current: For a full calculation of the scalar form factor need both connected and disconnected diagrams, but here we only consider connected diagrams

\[J^{\pi_1}(\vec{p}_1) \pi(\vec{p}_2) \pi(\vec{p}_1) \pi(\vec{p}_2) \]
Fitting the correlators

- Fit 2-point and 3-point correlators simultaneously
- Multi-exponential fits to reduce systematical errors from the excited states
- Use Bayesian priors to constrain fit parameters
- Fit all q^2 values simultaneously to take into account the correlations
Scalar and vector form factors

\[
\langle \pi(\vec{p}_1) | J | \pi(\vec{p}_2) \rangle = Z \sqrt{4E_0(\vec{p}_1)E_0(\vec{p}_2)} J_{0,0}(\vec{p}_1, \vec{p}_2)
\]

\[
\langle \pi(\vec{p}_1) | V_i | \pi(\vec{p}_2) \rangle = f_+(q^2)(\vec{p}_1 + \vec{p}_2)_i
\]

\[
\langle \pi(\vec{p}_1) | S | \pi(\vec{p}_2) \rangle = f_0(q^2) \frac{\partial M_\pi^2}{\partial m_l}
\]

- Need renormalisation constant \(Z \) for the vector current: demand that \(f_+(0) = 1 \)
- Scalar current is absolutely normalised, but we do not have complete calculation of the matrix element (only the connected 3pt correlator) - treat the scalar current as requiring a \(Z \) factor and set \(f_0(0) = 1 \)
Results: vector form factor

\[f_+(q^2) \]

\[q^2 \text{ in GeV}^2 \]

Graph showing the relationship between \(f_+(q^2) \) and \(q^2 \) in GeV^2, with different fit lines for experimental data and lattice simulations.
Results: scalar form factor

Connected diagram only
Continuum extrapolation

- Fit the form factors to the pole form
 \[f(q^2) = \frac{1}{(1 + ba^2 + ca^4 + q^2\langle r^2 \rangle / 6)} \]
 or as power series in \(q^2 \) allowing for \(a^2 \) and \(m_\pi \) dependence
 \[f(q^2) = A_0 + \frac{1}{6}\langle r^2 \rangle q^2 + A_4 q^4 + A_6 q^6; \quad A_i = d_i (1 + b_i a^2 + c_i a^4) \]
 \[\langle r^2 \rangle = A_2 + c_J \ln(m_\pi^2/\mu^2) \]

- The slope at \(q^2=0 \) gives the mean square of the charge radius:
 \[\langle r_{v}^2 \rangle = -6 \frac{df_+(q^2)}{dq^2} \bigg|_{q^2=0} \]
Dependence on pion mass

\[\langle r^2 \rangle / \text{fm}^2 \]

\[- \ln \left(\frac{M^2_\pi}{\text{GeV}^2} \right) \]

ETMC
this work
expt NA7
Vector mean square radius

\[\langle r^2 \rangle / \text{fm}^2 \]

- **n_f = 2 + 1 + 1**
 - \(m_{\pi}^{\text{min}} = 128 \text{ MeV} \)

- **n_f = 2 + 1**
 - \(m_{\pi}^{\text{min}} = 260 \text{ MeV} \)

- **n_f = 2**
 - \(m_{\pi}^{\text{min}} = 280 \text{ MeV} \)
 - \(m_{\pi}^{\text{min}} = 330 \text{ MeV} \)
 - \(m_{\pi}^{\text{min}} = 290 \text{ MeV} \)
 - \(m_{\pi}^{\text{min}} = 400 \text{ MeV} \)

- **expt, NA7**
- **HPQCD**
- **UKQCD/RBC**
- **ETMC**
- **Mainz**
- **QCDSF/UKQCD**
- **JLQCD/TWQCD**
Scalar mean square radius

\[<r^2>/\text{fm}^2 \]

\(\pi\pi \) scattering & \(\chi pt \)

Connected + disconnected

Connected

JLQCD/TWQCD

HPQCD

Mainz
Charge density

• In the non-relativistic limit, \(q^2 \approx -\langle \vec{q} \rangle^2 \), the form factor \(f_+(q^2) \) can be viewed as the Fourier transform of the electric charge distribution

• The form factor is usually taken to be of pole form

\[
 f_+(q^2) = \frac{1}{(1 + q^2\langle r_V^2 \rangle/6)}
\]

or a power series in \(q^2 \)
Non-relativistic charge density

\[\langle r_v^2 \rangle = 0.409 \text{ fm}^2 \]
Summary

- Full Lattice QCD calculation of the pion vector electromagnetic form factor
 - physical pion mass
 - can choose the q^2 range
 - determine the charge radius:
 our preliminary result is $\langle r_v^2 \rangle = 0.409(23) \text{ fm}^2$

- Compare with experiment - get good agreement

- The scalar form factor needs much more work
Thank you!
References

• **NA7:**
 S. R. Amendolia et al., Nucl. Phys. B277 (1986) 168

• **UKQCD/RBC:**
 P. A. Boyle et al., JHEP 07 (2008) 112

• **ETMC:** R. Frezzotti et al., PRD 79 (2009) 074506

• **Mainz:** B. B. Brandt et al., arXiv 1306.2916 [hep-lat] and V. Gülpers et al., PoS (Lattice 2012) 181

• **JLQCD/TWQCD:**
 T. Kaneko et al., PoS (Lattice 2008) 158

• **QCDSF/UKQCD:**
 D. Brömmel et al., Eur. Phys. J. C51 (2007) 335