A probabilistic approach to consecutive pattern avoiding in permutations

Guillem Perarnau

JMDA, Almería - July 13th, 2012

Universitat Politècnica de Catalunya, Barcelona
Consecutive pattern-avoiding permutations – Definition

Let \(\pi = (\pi_1 \ldots \pi_n) \in S_n \) permutation
and \(\sigma = (\sigma_1 \ldots \sigma_m) \in S_m \) pattern.

We consider \(n \gg m \).

Reduction: \(st(\pi_{i_1} \ldots \pi_{i_k}) = \tau \) if \(\tau \in S_k \) and \(\pi_{i_j} < \pi_{i_\ell} \iff \tau_j < \tau_\ell \).

\(\pi \) contains the consecutive pattern \(\sigma \) if \(\exists \ i \) such that \(st(\pi_{i+1} \ldots \pi_{i+m}) = \sigma \), otherwise it avoids \(\sigma \).

Example

\(n = 5, \ m = 3: \)

\[\pi = (15423) \quad \text{reduces to} \quad st(542) = (321) \]

\[\pi = (15423) \quad \text{contains} \quad \sigma = (321) \]

\[\pi = (15423) \quad \text{avoids} \quad \sigma = (123) \]
Consecutive pattern-avoiding permutations – Definition

Let \(\pi = (\pi_1 \ldots \pi_n) \in S_n \) permutation
and \(\sigma = (\sigma_1 \ldots \sigma_m) \in S_m \) pattern.

We consider \(n \gg m \).

Reduction: \(st(\pi_{i_1} \ldots \pi_{i_k}) = \tau \) if \(\tau \in S_k \) and \(\pi_{i_j} < \pi_{i_\ell} \iff \tau_j < \tau_\ell \).

\(\pi \) contains the consecutive pattern \(\sigma \) if \(\exists i \) such that \(st(\pi_{i+1} \ldots \pi_{i+m}) = \sigma \), otherwise it avoids \(\sigma \).

For any \(\sigma \in S_m \), we are interested in

\[
\alpha_n(\sigma) = |\{ \pi \in S_n : \pi \text{ avoids } \sigma \}|
\]

(Elizalde and Noy, 2003)
Consecutive pattern-avoiding permutations – Results

CMP Conjecture (Elizalde and Noy, 2003)

For any $\sigma \in S_m$,
\[\alpha_n(\sigma) \leq \alpha_n(12\ldots m). \]

Theorem (Elizalde, 2006)

For any $\sigma \in S_m$ the limit
\[\rho_\sigma = \lim_{n \to \infty} \left(\frac{\alpha_n(\sigma)}{n!} \right)^{1/n} \quad (\alpha_n(\sigma) \sim c \rho_\sigma^n n!). \]
Consecutive pattern-avoiding permutations – Results

CMP Conjecture (Elizalde and Noy, 2003)

For any $\sigma \in S_m$,

$$\rho_\sigma \leq \rho(12\ldots m)$$

Theorem (Elizalde, 2006)

For any $\sigma \in S_m$ the limit

$$\rho_\sigma = \lim_{n \to \infty} \left(\frac{\alpha_n(\sigma)}{n!} \right)^{1/n}$$

$(\alpha_n(\sigma) \sim c\rho^n_\sigma n!)$.
Theorem (Elisalde, 2012+ / P, 2012+)

For any $\sigma \in S_m$,

$$\rho_\sigma \leq \rho(12\ldots m).$$

Theorem (Elizalde, 2006)

For any $\sigma \in S_m$ the limit

$$\rho_\sigma = \lim_{n \to \infty} \left(\frac{\alpha_n(\sigma)}{n!} \right)^{1/n} \quad (\alpha_n(\sigma) \sim c \rho_\sigma^n n!).$$
Fix $\sigma \in S_m$ and choose $\pi \in S_n$ uniformly at random.

Define for any $0 \leq i \leq n - m$, the event $A_i = \{st(\pi_{i+1} \ldots \pi_{i+m}) = \sigma\}$.

Example

$\sigma = (123), \pi = (193482576) \Rightarrow A_3$ but A_1

Then, the probability of π is σ-avoiding is, $\Pr(\cap_{i=0}^{n-m} A_i)$.

Thus,

$$\alpha_n(\sigma) = \Pr(\cap_{i=0}^{n-m} A_i) n!$$

$$\rho_\sigma = \lim_{n \to \infty} \Pr(\cap_{i=0}^{n-m} A_i)^{1/n}.$$
Fix A_i. For any pattern $\sigma \in S_m$,

$$\Pr(A_i) = \frac{1}{m!}.$$

If they were independent...

$$\rho_{\sigma} = \lim_{n \to \infty} \Pr(\cap_{i=0}^{n-m} \overline{A_i})^{1/n} = \lim_{n \to \infty} \left(\prod_{i=0}^{n-m} \Pr(\overline{A_i}) \right)^{1/n} \sim 1 - \frac{1}{m!}.$$
Upper Bound on ρ_{σ}

Theorem (P, 2012+)

Let $\sigma \in S_m \backslash \{(12 \ldots m), (m \ldots 21)\}$, then

$$\rho_{\sigma} \leq 1 - \frac{1}{m!} + O\left(\frac{1}{m^2 \cdot m!}\right).$$

Suen’s inequality, If

$$\mu = \sum \Pr(A_i), \quad \Delta = \frac{1}{2} \sum_i \sum_{i \sim j} \Pr(A_i \land A_j) \quad \text{and} \quad \delta = \max_i \sum_{i \sim j} \Pr(A_j)$$

then,

$$\Pr(\cap A_i) \leq \exp\left(-\mu + \Delta e^{2\delta}\right).$$

We need to take care of $\Pr(A_i \land A_j)$: DEPENDS on the pattern.
Upper Bound on ρ_σ

Theorem (P, 2012+)

Let $\sigma \in S_m \setminus \{(12\ldots m), (m\ldots 21)\}$, then

$$\rho_\sigma \leq 1 - \frac{1}{m!} + O\left(\frac{1}{m^2 \cdot m!}\right).$$

Number of permutations with no runs of length m,

$$\rho_{(12\ldots m)} \geq 1 - \frac{1}{m!} + O\left(\frac{1}{m \cdot m!}\right).$$

Theorem (Elisalde, 2012+ / P, 2012+)

CMP conjecture is true.
Lower Bound on ρ_σ

Theorem (P, 2012+)

Let $\sigma \in S_m$, then

$$\rho_\sigma \geq 1 - \frac{1}{m!} - O\left(\frac{m-1}{(m!)^2}\right).$$

One-sided Lovász Local Lemma,

Let H be the dependency graph, if there exists an x such that

$$\Pr(A_i) \leq x(1 - x)^{\Delta(H)}$$

then

$$\Pr(\cap \overline{A_i}) \geq (1 - x)^n.$$

We just care of $\Delta(H)$: does NOT depend on the pattern.
Lower Bound on ρ_σ

Theorem (P, 2012+)

Let $\sigma \in S_m$, then

$$\rho_\sigma \geq 1 - \frac{1}{m!} - O\left(\frac{m - 1}{(m!)^2}\right).$$

One-sided Lovász Local Lemma,

Let H be the dependency graph, if there exists an x such that

$$\Pr(A_i) \leq x(1 - x)^{\Delta(H)}$$

then

$$\Pr(\cap \overline{A_i}) \geq (1 - x)^n.$$

We just care of $\Delta(H)$: does NOT depend on the pattern.

TIGHT! $\implies (1, 2 \ldots m - 2, m, m - 1)$
How do most of the patterns behave?

Theorem (P., 2012+)

Let \(\sigma \in S_m \) chosen uniformly at random. For any \(1 \leq k < m/2 \), we have

\[
\rho_\sigma \leq 1 - \frac{1}{m!} + O \left(\frac{4^{m-k}}{(m-k)!m!} \right),
\]

with probability at least \(1 - \frac{2}{(k+1)!} - m2^{-m/2} \).
How do most of the patterns behave?

Theorem (P., 2012+)

Let $\sigma \in S_m$ chosen uniformly at random. For any $1 \leq k < m/2$, we have

$$\rho_\sigma \leq 1 - \frac{1}{m!} + O\left(\frac{4^{m-k}}{(m-k)!m!}\right),$$

with probability at least $1 - \frac{2}{(k+1)!} - m2^{-m/2}$.

![Diagram showing lower and upper bounds for different patterns](image)
How do most of the patterns behave?

Theorem (P., 2012+)

Let $\sigma \in S_m$ chosen uniformly at random. For any $1 \leq k < m/2$, we have

$$\rho_\sigma \leq 1 - \frac{1}{m!} + O\left(\frac{4^{m-k}}{(m-k)!m!} \right),$$

with probability at least $1 - \frac{2}{(k+1)!} - m2^{-m/2}$.

\[F(t) = \Pr(\rho_\sigma < t) \]

\[f(t) = \frac{\partial F}{\partial t} = ? \]
How do most of the patterns behave?

Let $\sigma \in S_m$ chosen uniformly at random. Then, we have

$$\rho_\sigma \geq 1 - \frac{1}{m!} + \Omega(???) ,$$

with probability at least $\Omega(???)$.

$F(t) = \Pr(\rho_\sigma < t)$

$$f(t) = \frac{\partial F}{\partial t} = ?$$
How do most of the patterns behave?

Let $\sigma \in S_m$ chosen uniformly at random. Then, we have

$$\rho_\sigma \geq 1 - \frac{1}{m!} + \Omega(???),$$

with probability at least $\Omega(???)$.