HDAC2/3 binding and deacetylation of BubR1 initiates spindle assembly checkpoint silencing

Inai Park*, Mi-Sun Kwon*, Sangjin Paik, Hyeonjong Kim, Hae-Ock Lee, Eunhee Choi and Hyunsook Lee

Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, South Korea

Keywords
BRCA2; BubR1; checkpoint silencing; histone deacetylase; spindle assembly checkpoint

Correspondence
H. Lee, Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea
Fax: +82 2 886 4335
Tel: +82 2 886 4339
E-mail: hl212@snu.ac.kr

*These authors contributed equally.

(Received 24 March 2017, revised 11 August 2017, accepted 2 October 2017)
doi:10.1111/febs.14286

Introduction

Individuals with germ-line mutations of the breast cancer susceptibility gene BRCA2 are predisposed to early-onset cancer. BRCA2-deficient cells exhibit genetic instability [1] and chromosome instability as well [2], manifested by the accumulation of DNA lesions, chromosome breaks, radial chromosomes, translocations and aneuploidy [3,4]. It has been revealed that BRCA2 is a multifaceted protein, functioning throughout the cell cycle; it is involved in homology-directed repair, stalled replication fork protection, telomere homeostasis and mitotic fidelity [4].

BRCA2-deficient cells display chromosome missegregation, which can be explained by the role of BRCA2 in fine-tuning the spindle assembly checkpoint (SAC). It recruits P300/CBP-associated factor (PCAF), an acetyltransferase that acetylates BubR1 in mitosis at a

BubR1 acetylation is essential in spindle assembly checkpoint (SAC) signaling. Here we show that BubR1 deacetylation is a signal that initiates mitotic exit. Sustained BubR1 acetylation arrests the cells in metaphase, although chromosome congression is achieved. BubR1 deacetylation was coordinated with dephosphorylation in mitotic exit, suggesting the presence of a coordinated acetylation–phosphorylation code in mitotic signaling. Histone deacetylase (HDAC) 2 and 3 bound to acetylated BubR1 exclusively in mitosis and led to the polyubiquitination of BubR1. Subsequent degradation of BubR1 resulted in the disassembly of the mitotic checkpoint complex. Importantly, BRCA2 was required for HDAC2/3 association with acetylated BubR1 in nocodazole (Noc)-arrested cells. Plk1, PP2A, P300/CPB-associated factor (PCAF) and BubR1 were found in the mitotic BRCA2 complex, suggesting that BRCA2 acts as a signaling scaffold for BubR1 modification. Furthermore, we show that Plk1 is required for BRCA2 to localize at the prometaphase kinetochore (KT). Inhibition of Plk1 resulted in the loss of BRCA2 from the KT, and so did PCAF, consistent with the loss of BubR1 acetylation. Concordantly, BRCA2-dysfunctional cells exhibited resistance to trichostatin A, which was restored when BRCA2 was introduced. That loss of Brca2 conferred resistance to various HDAC inhibitors was corroborated by the experiments in mouse pancreatic organoids. These results suggest that the BRCA2–BubR1 acetylation–deacetylation pathway is an important decision-making point for the HDAC inhibitor response. Taken together, BRCA2 is a signaling platform for BubR1, and BubR1 deacetylation is a cue for SAC silencing.

Abbreviations
APC/C, anaphase-promoting complex/cyclosome; HDAC, histone deacetylase; HDACi, HDAC inhibitor; co-IP, co-immunoprecipitation; KT–MT, kinetochore–microtubule; MCC, mitotic checkpoint complex; MTT, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide; NEBD, nuclear envelope breakdown; PCAF, P300/CPB-associated factor; SAC, spindle assembly checkpoint; TSA, trichostatin A; WB, western blot.
single lysine (K250), which is adjacent to D-box and KEN motif degrons [5]. This activity is critical in modulating anaphase-promoting complex/cyclosome (APC/C) activity in mitosis [6]. Disruption of the interaction between endogenous BRCA2 and BubR1 in mice by the ectopic expression of the BubR1-binding domain of BRCA2 results in tumorigenesis without an apparent homology-directed repair defect [5], suggesting that chromosome missegregation can be oncogenic.

Concordantly, mice heterozygous for the acetylation-deficient BubR1 allele (replacement of the lysine 243 (K250 in humans) with arginine) exhibit a similar level and spectrum of tumorigenesis, when compared with transgenic mice with a disrupted endogenous BRCA2-BubR1 interaction [5], without additional genotoxic insults [7]. The results from the two different mouse models that interfered with K250 acetylation of BubR1 confirmed that BubR1 acetylation represents one axis of BRCA2’s tumor suppressor mechanism. Moreover, further analysis of the mice heterozygous for BubR1 acetylation (K243R/+) taught us that BubR1 acetylation has a dual role: maintenance of the SAC and stabilization of chromosome-microtubule (MT) attachment [7].

Any chromosome unattached to the spindle in prometaphase generates a ‘wait anaphase signal’, which activates the SAC, which ultimately inhibits APC/C [8]. The SAC signal is initiated by Mad1 and Mad2 localization to the unattached kinetochore (KT). Mad2 undergoes a conformational change from open Mad2 to closed Mad2 and then forms a complex with BubR1, Bub3 and Cdc20, constituting the mitotic checkpoint complex (MCC) [9,10]. Sustained MCC binding to APC/C inhibits the metaphase–anaphase transition, and thus maintains the SAC.

Silencing of the SAC is the start of chromosome segregation, as APC/C becomes active, ubiquitinating cyclin B and securin for destruction. Compared with the mechanism of SAC signal generation and MCC formation, the signal that initiates SAC silencing is less well defined. As premature APC/C activation will lead to anaphase onset with unattached chromosomes, the mechanism that controls SAC silencing is essential for chromosome integrity. One important mechanism that is involved in exiting from mitosis is the role of TRIP13 [11–13] and p31comet. TRIP13 and p31comet are involved in disassembling the MCC by extracting Mad2 from the MCC, and thus are essential for SAC silencing [14,15].

In addition to the role of TRIP13 and p31comet in extracting Mad2 for SAC inactivation, in vitro biochemical study showed that destruction of BubR1 silences SAC [16]. Importantly, the MCC was not maintained in mouse embryonic fibroblasts from K243R/+ mice because acetylation-deficient BubR1 was readily recognized by APC/C and destroyed in mitosis, resulting in the premature onset of anaphase with unequal chromosome segregation [7]. This result suggested that deacetylation of BubR1, which leads to the destabilization of BubR1, may be a cue for mitotic exit.

Here, we asked if specific deacetylases were involved in deacetylation of BubR1 in mitosis and silencing of the SAC. Then we asked whether BRCA2 was involved and what made BRCA2 function in mitosis. Finally, we asked whether the results have clinical implications in treating BRCA2-deficient cancers.

Results

Sustained acetylation of BubR1 results in prolonged chromosome congression, subsequent to SAC activation

We asked if deacetylation of BubR1 could be a cue for SAC silencing. For this, mitotic progression in

Fig. 1. Expression of acetylation mimetic form of BubR1 leads to arrest in metaphase with prolonged chromosome congression. (A) The statistical timing of NEBD to anaphase onset upon expression of various forms of BubR1. Endogenous BubR1 was depleted with siRNA (siBubR1) that targets 3’-UTR and mCherry-tagged BubR1 plasmids were transfected into HeLa cells, stably expressing H2B-GFP [6]. Cells were synchronized by thymidine block and then released for 6 h. Reversine (0.5 μM)-treated cases are marked. Cells were filmed with time-lapse microscopy in 5 min intervals for a total of 24 h (Movie S1, siControl; Movie S2, sBubR1; Movie S3, WT-BubR1; Movie S4, K250R-BubR1; Movie S5, K250Q). Each dot represents a single cell event, and the bars mark the mean values (mean ± SEM; n > 50 cells in all cases). **SEM** software was used and P values were obtained with Student’s t test (A–C). Right, WB analysis of endogenous and mCherry-tagged BubR1. Anti-Mad2 and anti-actin WB analyses show that the siBubR1 has little off-target effect. (B) Representation of the timing from metaphase (congressed chromosomes) to anaphase onset (mean ± SEM; n > 50 cells in all cases). (C) The statistical timing of NEBD to anaphase onset upon expression of KARD3A mutant form of BubR1 (mean ± SEM; WT, n = 10; KARD3A, n = 28; P < 0.0001). (D) Captured images of representative cells expressing mCherry-tagged WT-BubR1 (Movie S3), K250R- (Movie S4), or K250Q- (Movie S5). KARD3-A (Movie S6), depleted of endogenous BubR1. Images are shown from NEBD to anaphase onset. Each frame is at a 5 min interval. The duration of metaphase (B) is marked with a bold line and anaphase onset is marked with a red arrow. (E) The effect of BubR1 acetylation status in chromosome congression is assessed by centromere alignment, marked with CENPB. mCherry-tagged CENP-B [52] was transfected into HeLa-FRT-BubR1 (Movies S7 and S10), K250R (Movies S8 and S11), and K250Q (Movies S9 and S12) inducible cells. Expression of BubR1, K250R and K250Q was induced by doxycycline treatment. Cells were subjected to time-lapse video microscopy with 3 min intervals. The beginning of chromosome separation is marked with red arrows. Time 0, NEBD. Red, mCherry-CENP-B; Green, BubR1. Scale bar, 10 μm.
BubR1 deacetylation silences SAC
HeLa cells expressing wild-type, acetylation-deficient (K250R) and acetylation mimetic forms (K250Q) of BubR1 were compared and analyzed. To assess the effect of the various forms of ectopically expressed BubR1, endogenous BubR1 expression was silenced by siRNA that targets the 3’-UTR, and mCherry-tagged BubR1 expression plasmids were cotransfected.

BubR1 acetylation deficiency results in premature degradation in mitosis through APC/C–Cdc20-mediated ubiquitination [6]. When the mitotic timing was measured from nuclear envelope breakdown (NEBD) to anaphase onset, we corroborated that K250R expression leads to shortened mitosis and K250Q expression results in prolonged mitosis (Fig. 1A,D, see the time point marked with an arrow, and Movies S4 and S5). Interestingly, when the Mps1 inhibitor reversine [17] was added, the delay in mitosis from the expression of K250Q was eliminated (Fig. 1A), indicating that BubR1 acetylation is not just a blockade of ubiquitination and degradation but is a cue that is coordinated with Mps1 kinase activity in SAC signaling (Fig. 1A, +Reversine).

Importantly, K250Q-expressing cells stayed in metaphase with congressed chromosomes for 45 min longer than WT, and 55 min longer than K250R-expressing cells (Fig. 1B,D, see bold lines, and Movies S3–S5). It should be noted that depending on the expression level of WT or K250Q, the timing in metaphase was affected in individual cells. Nevertheless, the statistical analysis of more than 60 cells (Fig. 1B) confirmed that K250Q expression achieves and maintains chromosome congression, even when the checkpoint was maintained [7]. The congression of chromosomes in K250Q-expressing cells was sustained while being delayed in metaphase (Fig. 1D and Movie S5). This phenomenon may be the consequence of stabilized KT–MT attachment by the maintenance of acetylated BubR1 [7]. Consistent with this, expression of mutant BubR1 defective in phosphorylation at the KARD domain, which is phosphorylated by Plk1 and recruits PP2A–B56a to counteract Aurora B activity in KT–MT attachment [18], resulted in delayed mitosis (Fig. 1C) with problems in chromosome congression (Fig. 1D, BubR1-KARD3A). These data are consistent with previous findings [19].

Expression of K250Q leads to sustained chromosome congression, yet chromosomes do not segregate. To corroborate that the congression is achieved upon K250Q expression, the movement of CENP-B, the centromere-binding protein located beneath the KT [20], was monitored. mCherry-tagged CENP-B was cotransfected in HeLa cells stably expressing Venus-tagged BubR1 (Movie S7), K250R (Movie S8) and K250Q (Movie S9), and the KT alignment was monitored. CENP-B alignment in metaphase was prolonged in K250Q-expressing cells (Fig. 1E and Movie S12), compared with WT-BubR1 expressers (Fig. 1E and Movie S10). In contrast, CENP-B in K250R-expressing cells hardly aligned (Fig. 1E and Movie S11). Interestingly, BubR1 at the KT diminished before the completion of metaphase, as assessed by CENP-B segregation (Fig. 1E, Venus). The fluorescence intensity of the acetylation-mimetic form (K250Q, Movie S9) was stronger and remained aligned at the KT longer than that of the WT. K250R was never aligned and disappeared from the KT faster (Fig. 1E and Movie S8) than the WT (Fig. 1E and Movie S7). In this experimental setting, expression of K250Q eventually led to degradation of BubR1 from the KT and exit from mitosis (Fig. 1E and Movie S9).

The effect of K250Q expression is similar to the cells lacking p31comet, which functions in SAC silencing by titrating out the MCC component Mad2 [14,15,21], or APC15, which is required for rapid turnover of APC coactivator Cdc20 [22]. Taken together with the information from mice heterozygous for the acetylation-defective BubR1 allele (K243R/+) [7], BubR1 deacetylation may be another mechanism for SAC silencing that leads to MCC disassembly.

BubR1 deacetylation by HDAC2/3 leads to the ubiquitination of BubR1 and mitotic exit

Treatment of mitotic cells with hesperadin, the inhibitor for Aurora B [23], or the Mps1 inhibitor reversine [17] results in mitotic exit. To test the hypothesis that the deacetylation of BubR1 may be a cue for mitotic exit, we asked whether treatment with the inhibitor for Aurora B or Mps1 affected BubR1 acetylation. HeLa cells were synchronized in prometaphase by single thymidine block and release, followed by 10 μM paclitaxel treatment. Mitotic cells were enriched by mechanical shake-off (Fig. 2A, 0 h) and then released to progress into cell division by changing to fresh medium. Cell lysates for western blot (WB) were collected at 0, 1.5 and 3 h, respectively. WB analysis with an antibody specific to acetylated BubR1 (anti-AcK250) [6] confirmed that BubR1 in cells arrested in mitosis was acetylated as expected (Tax, 0 h; see the level of phospho-histone H3 (ph3), compared with attached cells (Att)).

Aurora B inhibition (with hesperadin) or Mps1 inhibition (with reversine) after paclitaxel treatment led to the increase of dephosphorylated BubR1 (Fig. 2A, second row, BubR1). In these cases, BubR1 acetylation markedly disappeared (Fig. 2A, Hes and Rev, 3 h). Cyclin B (Fig. 2A, cyclin B) and ph3 were markedly...
Fig. 2. BubR1 deacetylation acts as the signaling cue for SAC silencing. (A) HeLa cells were synchronized by thymidine block and arrested in prometaphase with paclitaxel treatment, followed by mitotic shake off. Then they were released for mitotic progression in the presence of indicated drugs. Lysates were collected at 0, 1.5 and 3 h from arrest. Treatment with drugs during release is indicated. WB was performed with the antibodies indicated. Att were employed for control. (B) HeLa cells were treated with Noc (Noc), followed by treatment with MG132 and reversine (MG132 + Rev). The cell lysates were then subjected to IP and WB with the antibodies indicated (right). Total cell lysates (2%) were subjected to WB for input control (left). Untreated Asn cells are included for control. Asn immunoprecipitated with rabbit immunoglobulin (IgG) were employed for negative control. (C) Increasing amounts of FLAG-HDAC2- or HDAC3-expressing plasmid was transfected into 293 FT cells with Myc- or HA-tagged ubiquitin-expressing construct. Then the cells were arrested in mitosis by Noc treatment, followed by MG132 treatment. Lysates were then subjected to IP with anti-BubR1, followed by WB with 9E10 (anti-Myc) or anti-HA antibody. Same blot was reprobed for WB with anti-BubR1 (BubR1). Input control shows protein levels of acetylated BubR1 (AcK250), BubR1 and HDAC2/3. Fastest migrating band of BubR1 is marked (*) to compare with the upper migrating ladders of BubR1. The intensities of BubR1 and AcK250 in input were measured using a densitometer (Multi Gauge). The ratio of AcK250/total BubR1, relative to control untransfected, is indicated by the numbers at the bottom of each lane. Level of HDAC2 or HDAC3, relative to untransfected, is indicated as well. (D) HeLa cells were transfected with siRNAs for control (siLuciferase), HDAC2 (siHDAC2), or HDAC3 (siHDAC3). They were treated with Noc, followed by treatment with/without MG132. Then the cell lysates were subjected to WB.
reduced (Fig. 2A, ph3) upon hesperadin or reversine treatment, confirming that cells are exiting from mitosis.

Treatment with 10 μM MG132 resulted in the maintenance of BubR1 acetylation (Fig. 2A, MG132). Cyclin B level persisted upon MG132 treatment (Fig. 2A, cyclin B), indicating that the cells are arrested in metaphase. When hesperadin or reversine was added along with MG132, acetylation of BubR1 was prolonged up to 1.5 h, but markedly diminished at 3 h from release. Meanwhile, WB to anti-BubR1 showed that dephosphorylated BubR1 increased. Owing to MG132 treatment, the total levels of BubR1, cyclin B and Cdc20 are maintained [22,24], indicating that the cells are still in mitosis, regardless of hesperadin or reversine treatment (Fig. 2A, BubR1, cyclin B, Cdc20). Inhibition of Aurora B or Mps1 kinase resulted in the shutdown of KT signaling and exit from mitosis [22,25]. Therefore, the result suggests that the cells are still in mitosis, regardless of hesperadin or reversine treatment.

Previous in vitro transfection experiments showed that class I HDACs bind to BubR1 [6]. However, the mitosis-specific association of deacetylases was not tested until now. We asked if class I HDACs bound to acetylated BubR1 in a mitosis-specific manner. For this, HeLa cells were treated or untreated with Noc and subjected to co-immunoprecipitation (co-IP) and WB. The result showed that HDAC2 and/or HDAC3 was capable of binding to BubR1 in Noc-treated mitotic cells, but not in untreated interphase cells. Interestingly, when reversine was added to MG132-treated mitotic cells, the interaction between BubR1 and HDAC2/3 decreased, suggesting that HDAC2/3 binds to the acetylated BubR1 in mitosis. Note that the acetylated BubR1 is also decreased (Fig. 2B). A similar test was done for SIRT2, as reports had suggested that SIRT2, an NAD+-dependent deacetylase, is implicated in control of cell division [26,27]. Also, SIRT2 was suggested to bind to BubR1 (Fig. 2B, 29). However, we did not observe a mitosis-specific binding between SIRT2 and BubR1 (data not shown). It is possible that SIRT2 binding to BubR1 is independent of mitosis: it may be involved in interphase, regulating aging [28,30]. SIRT2 deacetylation of lysine 668 is involved in aging [30], which therefore supports the notion that the outcomes of acetylation and deacetylation of these two sites are quite distinct [31]. However, we do not rule out the possibility that SIRT2 might be involved, because a report showed that SIRT2 also deacetylates K250 [29]. HDAC1 may function similarly in different cell types, as class I HDACs were all found to interact with BubR1 in a transfection experiment [6].

Then we asked if HDAC2 or HDAC3 association with BubR1 resulted in the ubiquitination of BubR1. Deacetylation (or the unacetylated form) of BubR1 results in APC/C-mediated ubiquitination and degradation [6,7]. Increasing amounts of FLAG-tagged HDAC2 or HDAC3 expression vectors were transfected, and the mitotic cell lysates were subjected to IP followed by WB. The result showed that the expression of HDAC2 or HDAC3 resulted in a marked increase of polyubiquitination in a dose-dependent manner (Fig. 2C). In the input control, the blot showed that the level of acetylated BubR1 decreased with the increasing amount of HDAC2/3 (Fig. 2C, Ack250). Interestingly, the total BubR1 level increased in the same blot, indicating that the decrease of acetylated BubR1 is not merely due to protein degradation. Also, the result suggests that there may be a feedback mechanism to replenish BubR1 when BubR1 is continuously deacetylated and degraded to balance the checkpoint activation and silencing. When HDAC2 or HDAC3 is depleted in Noc-treated cells, the acetylated BubR1 level (AcK250) persisted, compared with control (Fig. 2D), corroborating that HDAC2/3 functions in mitosis to deacetylate BubR1. These results confirm that HDAC2 and HDAC3 (class I HDACs) bind to acetylated BubR1 and deacetylate it, leading to polyubiquitination and subsequent degradation.

BRCA2 serves as a mitotic platform for BubR1 signaling

BRCA2 fine-tunes the SAC by acting as a scaffold for BubR1 and acetyl-transferase PCAF association at the KT [5]. Therefore, we asked if BRCA2 was required for the association of HDACs with BubR1 as well. BRCA2 depletion led to a marked decrease of acetylated BubR1 (Ack250) in Noc-treated mitotic cells (Fig. 3A). As BubR1 is acetylated at K250 exclusively in mitosis, Ack250 was barely detected, and hence the depletion of BRCA2 had little effect in asynchronously growing cells (Fig. 3A, left panel). In IP and WB, the association of BubR1 with HDAC2 or HDAC3 decreased in mitosis. The BubR1 association with HDAC2/3 was barely observed in asynchronous cells (Asn), and thus there was no effect of BRCA2 in interphase (Fig. 3A, right panel). IP with monoclonal antibody specific to Ack250 (mAckBubR1) and subsequent WB confirmed that BRCA2 depletion in Noc-arrested cells interfered with HDAC2/3 association with acetylated BubR1 (Fig. 2B).

When we examined the BRCA2 immune complex, we found that BRCA2 was associated with BubR1, Plk1 and PP2A only in mitotic cells (Fig. 3C, Noc). In
comparison, PCAF association with BRCA2 was found both in mitotic and non-mitotic cells (Fig. 3C). The previous report showed that PCAF binds to BRCA2 in interphase as well [32], which is consistent with the data shown here. However, it should be noted that the outcome of PCAF binding to BubR1 in interphase is quite different from mitotic binding. Acetylated BubR1 recruits PP2A–B56α and antagonizes Aurora B activity on Ndc80, which stabilizes KT–MT attachments for anaphase onset [7]. The finding that the PP2A catalytic subunit and Plk1 were found in the BRCA2 immune complex, together with BubR1, suggests that all of these proteins may be found in a complex on the platform of BRCA2. We do not rule out the possibility that the proteins bind to mitotic BRCA2 independently. In this regard, this hypothesis needs further investigation.

Plk1 is required for BRCA2 to act as a mitotic scaffold for BubR1 acetylation

Entry into mitosis is regulated by timely controlled phosphorylation events by M phase kinases. As Plk1 phosphorylates BRCA2 at multiple sites [32,33], and because Plk1 also phosphorylates BubR1 and stabilizes KT–MT attachment [18,34], we tested whether Plk1 activity is required for BRCA2 to function in mitosis.

When immunoprecipitated with anti-BRCA2 antibody, Plk1 was found in a complex with BRCA2, as is BubR1, in Noc-arrested HeLa cells (Fig. 4A, 0 h). At this stage, BubR1 was acetylated (Fig. 4A, WB with anti-AcK250). The complex began to disappear when cells were released into mitosis (Fig. 4A, 30 min onwards). When Noc-arrested cells were depleted of Plk1 by siRNA, BubR1 disappeared from the BRCA2 immune-complex (Fig. 4B, BubR1), as did Plk1 (Fig. 4B, Plk1). Note that the acetylated BubR1 decreases in total cell lysates when Plk1 is depleted (Fig. 4B, input, AcK250).

Similarly, treatment of cells with BI 2536, a small molecule inhibitor specific for Plk1 [35–37], also failed to pull down BubR1 and Plk1 from BRCA2 IP (Fig. 4C, BI). Accordingly, BubR1 acetylation was lost upon BI 2536 treatment (Fig. 4B,C, anti-AcK250 in input control). Note that the BRCA2 immune complex from Noc-treated cells consistently involves BubR1 and Plk1 (Fig. 4C, Noc). Plk1 and BubR1 binding in mitosis is well established [18,19,38], and BRCA2 and

Fig. 3. Depletion of BubR1 results in the loss of BubR1–HDAC2/3 binding. (A, B) HeLa cells were transfected with siRNA for control (siControl) or BRCA2 (siBRCA2). Twenty-four hours later, Asn or mitotic cells with Noc were harvested. Lysates were then subjected to IP with anti-HDAC2 and anti-HDAC3, followed by WB with antibodies indicated. (B) Noc-treated cells were subjected to IP with monoclonal antibody to Ack250 (mAcBubR1), followed by WB with antibodies indicated. (C) Mitotic HeLa cells were collected by Noc treatment and shake-off. Asynchronously growing HeLa cells (Asn) and Noc-treated cells were subjected to IP with anti-BRCA2 antibody, followed by WB with antibodies indicated. IP with rabbit IgG was included for negative control. Three percent of the total cell lysates were employed for input control.
Plk1 association is known, albeit in interphase cells [4,32,33]. The data shown here indicate a mitosis-specific binding of Plk1 and BRCA2. Therefore, the results altogether suggest the possibility that Plk1–BRCA2–BubR1 may form a prometaphase-specific trimolecular signaling cascade.

It could be argued that inhibition of Plk1 interferes with entry into mitosis, and therefore the loss of complex formation between BRCA2 and BubR1. Also, it needed to be assessed whether Plk1 affected BRCA2–BubR1 binding at the prometaphase KT. Cells were first Noc arrested, then challenged with BI 2536 for 1 and 4 h, respectively. In IP, followed by WB, inhibition of Plk1 kinase activity led to loss of both Plk1 and BubR1 from the BRCA2 complex (Fig. 4D). Simultaneously, BubR1 acetylation was markedly reduced (Fig. 4D, input, AcK250).

Next, the localization of BRCA2 to KTs was assessed. An immunofluorescence assay coupled with metaphase chromosome spread showed that BI 2536
treatment abolished BRCA2 at the KT (Fig. 4E, BI 2536), whereas Noc-treated control cells displayed colocalization of BRCA2 and BubR1 at the KT (Fig. 4E, Noc), as reported [5]. Cotreatment of BI 2536 with Noc (Noc + BI 2536) also abolished BRCA2 at the KT. These data suggest that Plk1 is required for BRCA2 to localize at the KT. This also showed that Plk1 inhibition interfered with the BRCA2 association with BubR1 at outer KTs, whereas BubR1 localization was not affected (Fig. 4E, F). Taken together, we postulate that the mitotic function of BRCA2 at the KT requires Plk1.

BRCA2-deficient cells are resistant to HDAC inhibitors

The observation that BRCA2 serves as a platform for modulating SAC signaling, particularly on BubR1, led us to think that BRCA2 status might affect the sensitivity to histone deacetylase (HDAC) inhibitors. To test this idea, cancer cell lines that possessed intact BRCA2 or with BRCA2 absent (Fig. 5A) were subjected to a viability test, based on the 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after treatment with pan-HDAC inhibitor (HDACi) trichostatin A (TSA) for 2 or 3 days. Capan-1, which is truncated with BRCA2 [39], exhibited far less sensitivity to TSA, compared with BRCA2-positive cell lines, HeLa, GM847, U2OS, and WI-38 (Fig. 5B,C). Meanwhile, Capan-1 displayed similar level of sensitivity to Plk1 inhibitor BI 2536, when compared with BRCA2-positive cells (Fig. 5D). These results suggest that the absence of BRCA2 imposed on the cells reduced sensitivity towards HDACi.

To corroborate that BRCA2 status specifies the sensitivity to HDACi, **BRCA2** was depleted from HeLa or WI-38 cells by transfection with siRNA. The result showed that the absence of BRCA2 significantly reduced the sensitivity to TSA, both in HeLa and WI-38 cells (Fig. 5E). Concordantly, ectopic expression of **BRCA2** in Capan-1 cells restored the sensitivity to TSA, comparable to HeLa cells (Fig. 5F,G). Taken together, these results suggest that the status of **BRCA2**, intact or dysfunctional, is an important factor in determining the sensitivity to HDACi. We suggest that this is because BRCA2 serves as the scaffold for mitotic signaling on BubR1 acetylation. As BRCA2 works downstream of Plk1, BRCA2 deficiency did not affect the sensitivity towards Plk1 inhibitor.

As the result from the cancer cell lines could be due to the different genetic backgrounds, we decided to utilize mouse pancreatic organoids to confirm that the **Brca2** status is related to the response to HDACi. Organoids are self-assembled three-dimensional epithelial structures that are allowed to expand long term [38]. As dysfunctional BRCA2 is associated with pancreatic cancer development [41], we decided to culture and test the drugs in pancreatic organoids. Pancreatic organoids are regarded as stem cell cultures of the ductal epithelial cells [42]. We generated mouse organoids from conditional Brca2 knockout mice (Brca2F11/F11) [5,43] that were bred with endoplasmic reticulum (ER)-Cre-expressing transgenic mice (CAGGC-Cre). In this mouse, Brca2 exon 11 can be deleted in a tamoxifen-inducible way. Mouse pancreas organoids were cultured with or without the treatment of 4-hydroxytamoxifen (4-OHT). To expand our scope of applicability in targeting the BRCA2–BubR1 complex with HDACis, we used different types of HDACis (Fig 6A,B). The result showed that Brca2 mutant mouse organoids were resistant to pan-HDACi TSA and 17 μM suberoylanilide hydroxamic acid (SAHA) [44]. Unexpectedly, Brca2-deleted organoids were resistant to LMK-235, the HDACi reported to have effects on class II HDACs [45]. Control organoids were resistant to the treatment of depsipeptide FK-228 (10 nm), which has epigenetic effects and is a class I HDACi [46], while Brca2-depleted organoids responded mildly (Fig. 6A). The efficiency of the depletion of Brca2 in organoids after 4-OHT treatment was assessed by genomic PCR (Fig. 6B). The reason why Brca2-deficient organoids are resistant to class II HDACi, and less to the class I type, is not fully understood. It could be because HDACi usually have pleiotropic effects as they are also involved in epigenetic modulation. Nevertheless, Brca2-deficient cells and organoids are resistant to HDACi.

Discussion

We showed that HDAC2/3 binds to acetylated BubR1 and leads to ubiquitination and degradation of BubR1. Acetylation-deficient BubR1, K250R, prematurely disappears from the KT, accompanied by chromosome missegregation. Meanwhile, K250Q expression is required to sustain BubR1 at the KT with prolonged metaphase. Therefore, HDAC2/3 binding and deacetylation of BubR1 at K250 lead to the disassembly of the MCC, which is critical in SAC silencing and mitotic exit (Fig. 6C). SIRT2 deacetylase was also shown to bind and deacetylate K250 of BubR1 in vitro [29], but failed to show that SIRT2 expression led to BubR1 ubiquitination. As SIRT2 also acts on the C terminus of BubR1 and functions in controlling aging [30], it is possible that SIRT2 preferentially functions in interphase, and only partially in mitosis.
Nevertheless, with compelling lines of evidence, we suggest that HDAC2/3 binding and deacetylation of BubR1 is a signal for SAC silencing and mitotic exit. For BubR1 acetylation and deacetylation, BRCA2 is required. Furthermore, Plk1 is required for BRCA2 to localize at prometaphase KTs and bind to BubR1. Based on the presented data, it is reasonable to think that BRCA2-deficient cells will be relatively resistant to HDACi, while response to Plk1 inhibitor will not be affected. Indeed, that was the case. We have shown this in cultured cell lines and syngenic mouse pancreas organoids (Figs 5 and 6A).

BubR1 links KT–MT attachment to SAC activity [47], and Plk1 phosphorylation on the KARD domain at the C terminus of BubR1 is critical for the stabilization of KT–MT attachment [18]. When the KARD domain is phosphorylated by Plk1, BubR1 can recruit PP2A–B56α to the KT, which now antagonizes Aurora B kinase activity. As Aurora B destabilizes KT–MT attachment by phosphorylating the Knl1–Mis12–Ndc80 network, which forms the platform for MT attachment at the KT, Aurora B’s kinase activity on Knl1–Mis12–Ndc80 is essential for error correction [48,49]. Now when amphitelic attachment is achieved, Plk1

Fig. 5. BRCA2-deficient cells are resistant to HDACi. (A) Assessment of BRCA2 in HeLa, U2OS, GM847, WI38 VA13/2R (WI-38) and Capan-1 cells by WB using anti-BRCA2 antibody. Same blot was reprobed with anti-Lamin A/C for loading control. (B,C) MTT cell viability assays were performed after treatment of TSA in increasing concentrations. Cell viability is represented as percentage of viable cells, compared with that of the control (0 nM). (D) MTT cell viability assays against BI 2536. (E) HeLa and WI-38 cells were transfected with siRNA for BRCA2 or control (siLuciferase) and subjected to MTT assay after treatment with TSA (top). WB with anti-BRCA2 was performed to assess the level of BRCA2 after depletion (bottom). (F) BRCA2-expression plasmid (pEGFP-N1-BRCA2) or control (pEGFP-N1) was transfected in Capan-1 and the cells were subjected to MTT assay after treatment with TSA. (G) Bar graph representing the MTT assay in (F) (left). WB analysis of expression of BRCA2 in (F,G). Results (B,D,E,F) are from eight replicates (mean ± SEM). P values (C,G) were obtained with Student’s t test.

Fig. 6. HDACi treatment in mouse pancreatic organoids corroborates that Brca2-deficient cells are resistant to HDAC inhibitors. (A) Response to various HDAC inhibitors in pancreatic organoids derived from transgenic mouse harboring BRCA2 conditional knockout mice (brca2f11/f11). The brca2f11 allele was conditionally deleted by treating organoids with 4-OHT. Growing mouse pancreatic organoids were treated with vehicle (DMSO, NT), 500 nM TSA, 17 µM SAHA, 3 µM LMK-235 and 10 nM FK-228 for 5 days. Pictures were taken 5 days post-treatment. (B) Conditional depletion of BRCA2 allele (brca2f11/f11) with 4-OHT treatment in pancreatic organoids was assessed with PCR using the genomic DNA. (C) Working model. For BRCA2 to function in mitosis, Plk1 is required. Phosphorylated BRCA2 can now localize to the KT, bringing PCAF to BubR1 for acetylation. Acetylated BubR1 can maintain SAC and also stabilizes KT–MT attachment. When SAC is satisfied, HDAC2/3 binds to BubR1 and deacetylates it, leading to ubiquitination and degradation. BubR1 degradation leads to disassembly of MCC and SAC silencing.
phosphorylates BubR1, recruits phosphatase activity and antagonizes Aurora B activity, stabilizing MT attachment to the KT (Fig. 6C, illustrated in regular line arrow).

Interestingly, mouse cells deficient in BubR1 acetylation (K243R/+) exhibited failure in the stabilization of KT–MT attachment, accompanied by elevated Ndc80 phosphorylation and failure in recruiting PP2A–B56α [7]. The result had suggested that BubR1 acetylation at the N terminus cross-talks with the C terminus phosphorylation. This idea that BubR1 acetylation cross-talks with phosphorylation was tested and proven in this study. BubR1 is deacetylated when cells exit from mitosis (Fig. 2A). When Aurora B or Mps1 inhibitor is treated with MG132, BubR1 is deacetylated, although the cells are in mitosis with sustained cyclin B level (Fig. 2A). From these results, we suggest an interesting module in SAC signaling in which there may be a BubR1 phosphorylation–acetylation code, including deacetylation and dephosphorylation, which is also illustrated in the model (Fig. 6C).

It is interesting to note that the BRCA2 immune complex includes Plk1, BubR1, PCAF and PP2A (Fig. 3C). How the complex is formed has not been determined yet: whether they are in a complex together or undergo a dynamic change. Nevertheless, BubR1–HDAC2/3 binding in mitosis was lost without BRCA2. Therefore, we postulate that BRCA2 may be a signaling scaffold that brings acetylase, deacetylase and phosphatase to BubR1. We suggest that BRCA2’s participation in mitosis reinforces BubR1’s function in mitosis, the stabilization of KT–MT attachment and SAC maintenance (Fig. 6C, bold arrow). Furthermore, BubR1 deacetylation is a cue for MCC disassembly. In prometaphase, Plk1 may act in both ways: directly phosphorylating BubR1 (Fig. 6C, regular arrows on left) and enabling BRCA2 to function in mitosis that reinforces BubR1 activity (Fig. 6C, bold arrow). Thus, Plk1–BRCA2–BubR1 forms a signaling triangle, ultimately leading to proper chromosome segregation (Fig. 6C).

Cancer cells are characterized by unlimited cell growth, and therefore the control of mitosis was suggested to be effective for cancer treatment. However, clinical trials of mitotic kinase inhibitors, including Plk1 inhibitors are controversial. On the other hand, HDACi control cell division and fate but because they control epigenetic gene expressions at the global level, HDACi have pleiotropic effects [50]. It should be noted that HDACi target non-histone proteins as well, as shown here with BubR1. Interestingly, HDACi treatment often leads to mitotic arrest [51], suggesting that BubR1 may have been an important target. Various HDACi were developed and tested, but due to their pleiotropic activities on tumor cells and invading immune cells, clinical application is complicated. In this study, we showed that BRCA2-deficient cells exhibit reduced sensitivity to HDACi. Taking this information into account, assessing the status of BRCA2 will be beneficial in HDACi application. Collectively, the results shown here have many implications in precision medicine.

Materials and methods

Statistical analysis

The following antibodies were purchased: anti-mCherry [7] and anti-Cyclin B (H-433; Santa Cruz Biotechnology, Santa Cruz, CA, USA). The α-Flag (M2; F1804; Sigma-Aldrich), anti-H2B (H-357; Santa Cruz), or 200 nM hesperadin (S1529; Selleckchem, Houston, TX, USA) or microporation using Neon microporator (ThermoFisher Scientific, Waltham, MA, USA). Transfection of DNA constructs into HeLa-FRT/TO cells (a gift from S. Taylor), followed by selecting the proper clone as described [6,7]. Cells were treated with 1 μg·mL⁻¹ doxycycline (Sigma-Aldrich, St Louis, MO, USA) to induce the expression of ectopic genes. To arrest the cells in S phase, 2.5 mM thymidine (Sigma-Aldrich) was used. After 16 h, cells were washed twice with PBS and released into fresh media. Enriched cells in mitosis were treated with Noc (M1404; Sigma-Aldrich) of 200 ng·mL⁻¹, 10 μM paclitaxel (T7402; Sigma-Aldrich), or 200 nM hesperadin (S1529; Selleckchem, Houston, TX, USA), together with 10 μM MG132 (474790; Calbiochem, La Jolla, CA, USA). Transfection of DNA constructs into cells was done using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) or microporation using Neon microporator (Invitrogen) with a single pulse at 1300 V, 20 ms.

Constructs, antibodies and siRNA

Various BubR1 constructs were generated by PCR and subcloned into pCPO3.1-mCherry for expression in cultured cells. K250R and K250Q BubR1 mutants were generated by site-directed mutagenesis using pCPO3.1-mCherry BubR1 as the template.

The following antibodies were purchased: anti-mCherry (ab125096; Abcam, Cambridge, UK), anti-Flag (M2; F1804; Sigma-Aldrich), anti-Cyclin B (H-433; Santa Cruz Biotechnology, Santa Cruz, CA, USA). The α-Flag (M2; F1804; Sigma-Aldrich), or 200 nM hesperadin (S1529; Selleckchem, Houston, TX, USA) or microporation using Neon microporator (Invitrogen) with a single pulse at 1300 V, 20 ms.
Microscope image acquisition, live imaging and processing

Microscopy images of fixed cells were acquired with a DeltaVision system (Applied Precision/GE Healthcare, Issaquah, WA, USA), equipped with a 100× objective lens (Olympus, Tokyo, Japan). The images were obtained with 0.2 μm distanced optical sections on the z-axis. Each section was deconvoluted and projected into one image using the softworx software (Applied Precision, Issaquah, WA, USA) as previously described [6,7]. For live cell imaging, cells were monitored using the UPlanFLN 40×/NA 1.30 oil lens on a DeltaVision microscope equipped with a charge-coupled device camera (Photometrics, Tucson, AZ, USA) in a CO₂ chamber at 37 °C (Applied Precision). The cells were seeded in a glass-bottom dish containing culture media and images were acquired 3 or 5 min intervals as two sections with 7-μm z steps using 40×, 1.35 NA 0.10 mm WD objective lens and maximally projected.

Immunoprecipitation and western blot

Cells were lysed in NETN buffer (150 mM NaCl, 1 mM EDTA, 20 mM Tris, pH 8.0, and 0.5% NP-40) supplemented with protease inhibitors for IP and WB analysis. Cells were incubated on ice for 20 min and supernatants were collected after centrifugation at 4 °C, 290 g. Cell lysates were pre-cleared for 1 h at 4 °C with protein A/G beads and subjected to IP with indicated antibodies at 4 °C overnight. Immune complexes were precipitated by incubating with Protein A/G beads for 2 h. Before elution with 3× SDS sample buffer, immunoprecipitated beads were washed three times with the lysis buffer.

Immunofluorescence on metaphase chromosome spreads

For chromosome spreads coupled with immunofluorescence assays, cells were incubated with 200 ng·mL−1 Noc for 4 h. To harvest the cells, medium was removed and cells were washed with PBS, then pelleted. Cells were swelled in 0.2% KCl and 0.2% trisodium carbonate solution and cytospun at 145 g for 5 min. The slides were subjected to immunofluorescence assay as described [6].

Cellular viability

Cells were seeded into 96-well plates (3 × 10³ cells per well) and incubated overnight. The following day, cells were treated with increasing concentration of TSA (T5882; Sigma-Aldrich) or BI 2536 (S1109; Selleckchem) and incubated for 2 or 3 days. Cell viability was evaluated by MTT (Sigma-Aldrich) assay. The amount of dye formed was quantified using an ELISA plate reader at 540 nm.

Mouse pancreas organoid culture and HDACi treatment

Mouse protocol and animal experiments were approved by the Institutional Animal Care and Use of Committee (IACUC) of Seoul National University (SNU-130219-4-9). Mice pancreas organoids were isolated and cultured from conditional Brca2 knockout mice, Brca2F11/11 [5,43], that was crossed with ER-Cre mice (CAGGCre-ER, The Jackson Laboratory, Bar Harbor, ME, USA). Mouse pancreas was lysed in digestion solution containing collagenase and DNase I and ductal cells were collected as described previously [40]. Collected ductal cells were washed with cold PBS and seeded onto Matrigel matrix (Corning, NY, USA). Cells were supplemented with culture medium containing stem cell growth factors as described previously [40]. When cells started to form organoids, they were treated with 400 μM 4-OHT (Sigma-Aldrich) to knock-out the Brca2 gene. Mouse organoids were re-plated onto 24-well plates and were treated with varying doses of TSA (Sigma-Aldrich), LMK-235 (Selleckchem), FK-228 (Selleckchem) and BI 2536 (Selleckchem) and SAHA (Sigma-Aldrich). Organoids were imaged with a Zeiss Axio Observer (Carl Zeiss AG, Oberkochen, Germany) after 5 days of drug treatment.

Acknowledgements

Brca2F11 mice were a gift from A. Berns (NCI, The Netherlands). ER-Cre mice (CAGGCre-ER mice were purchased from The Jackson Laboratory, stock No: 004682, Bar Harbor, ME, USA). This work was supported by the National Research Foundation of Korea (2016M3A9B4918405 and 2017M3C9AS031002). SP is a...
recipient of the SNU PhD fellowship and HK is a POSCO Science fellow.

Author contributions

HL conceived, designed and coordinated the study, and wrote the paper. IP and M-SK designed, performed and analyzed the major part of the experiments. SP, HK, H-OL and EC performed experiments. All authors reviewed the results and approved the final version of the manuscript.

Conflict of interest

Authors declare no conflict of interest.

References

1 Patel KJ, Yu VP, Lee H, Corcoran A, Thistlewaite FC, Evans MJ, Coller WH, Friedman LS, Ponder BA & Venkitaraman AR (1998) Involvement of Brca2 in DNA repair. Mol Cell 1, 347–357.
2 Lee H, Trainer AH, Friedman LS, Thistlewaite FC, Evans MJ, Ponder BA & Venkitaraman AR (1999) Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol Cell 4, 1–10.
3 Patel KJ (2007) Fanconi anemia and breast cancer susceptibility. Nat Genet 39, 142–143.
4 Lee H (2014) Cycling with BRCA2 from DNA repair to mitosis. Exp Cell Res 329, 78–84.
5 Choi E, Park PG, Lee HO, Lee YK, Kang GH, Lee JW, Han W, Lee HC, Noh DY, Lekomtsev S et al. (2012) BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev Cell 22, 295–308.
6 Choi E, Choe H, Min J, Choi JY, Kim J & Lee H (2009) BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. EMBO J 28, 2077–2089.
7 Park I, Lee HO, Choi E, Lee YK, Kwon MS, Min J, Park PG, Lee S, Kong YY, Gong G et al. (2013) Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J Cell Biol 202, 295–309.
8 Pines J (2011) Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol 12, 427–438.
9 Musacchio A (2011) Spindle assembly checkpoint: the third decade. Philos Trans R Soc Lond B Biol Sci 366, 3595–3604.
10 Sudakin V, Chan GK & Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154, 925–936.
11 Marks DH, Thomas R, Chin Y, Shah R, Khoo C & Benezra R (2017) Mad2 Overexpression uncovers a critical role for TRIP13 in mitotic exit. Cell Rep 19, 1832–1845.
12 Miniowitz-Shemtov S, Eytan E, Kaisari S, Sitrty-Sheva D & Hershko A (2015) Mode of interaction of TRIP13 AAA-ATPase with the Mad2-binding protein p31comet and with mitotic checkpoint complexes. Proc Natl Acad Sci USA 112, 11536–11540.
13 Ye Q, Rosenberg SC, Moeller A, Speir JA, Su TY & Corbett KD (2015) TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. Elife 4, 1–25.
14 Westhorpe FG, Tighe A, Lara-Gonzalez P & Taylor SS (2011) p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J Cell Sci 124, 3905–3916.
15 Teichner A, Eytan E, Sitrty-Sheva D, Miniwitz-Shemtov S, Dumin E, Gromis J & Hershko A (2011) p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process. Proc Natl Acad Sci USA 108, 3187–3192.
16 Han JS, Holland AJ, Fachinetti D, Kulukian A, Cetin B & Cleveland DW (2013) Catalytic assembly of the mitotic checkpoint inhibitor BubR1-Cdc20 by a Mad2-induced functional switch in Cdc20. Mol Cell 51, 92–104.
17 Santaguida S, Tighe A, Dalise AM, Taylor SS & Musacchio A (2010) Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J Cell Biol 190, 73–87.
18 Suijkerbuijk SJ, Vleugel M, Teixeira A & Kops GJ (2012) Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell 23, 745–755.
19 Kruse T, Zhang G, Larsen MS, Lischtetti T, Streicher W, Kragh Nielsen T, Bjorn SP & Nilsson J (2013) Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J Cell Biol 126, 1086–1092.
20 Cooke CA, Bernat RL & Earnshaw WC (1990) CENP-B: a major human centromere protein located beneath the kinetochore. J Cell Biol 110, 1475–1488.
21 Tipton AR, Wang K, Link L, Bellizzi JJ, Huang H, Yen T & Liu ST (2011) BUBR1 and closed MAD2 (C-MAD2) interact directly to assemble a functional mitotic checkpoint complex. J Biol Chem 286, 21173–21179.
22 Mansfeld J, Collin P, Collins MO, Choudhary JS & Pines J (2011) APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat Cell Biol 13, 1234–1243.
JM (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161, 281–294.

24 Nilsson J, Yekezare M, Minshull J & Pines J (2008) The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat Cell Biol 10, 1411–1420.

25 Jia L, Li B, Warrington RT, Hao X, Wang S & Yu H (2011) Defining pathways of spindle checkpoint silencing: functional redundancy between Cdc20 ubiquitination and p31(come). Mol Biol Cell 22, 4227–4235.

26 Inoue T, Nakayama Y, Yamada H, Li YC, Yamaguchi S, Osaki M, Kurimasa A, Hiratsuka M, Katoh M & Oshimura M (2009) SIRT2 downregulation confers resistance to microtubule inhibitors by prolonging chronic mitotic arrest. Cell Cycle 8, 1279–1291.

27 Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X, Li C, Veenstra TD, Li B, Yu H et al. (2011) SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20, 487–499.

28 Cosentino C & Mostoslavsky R (2014) Sirtuin to the rescue: SIRT2 extends life span of BubR1 mice. EMBO J 33, 1417–1419.

29 Suematsu T, Li Y, Kojima H, Nakajima K, Oshimura M & Inoue T (2014) Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/anaphase transition. Biochem Biophys Res Commun 453, 588–594.

30 North BJ, Rosenberg MA, Jeganathan KB, Hafner AV, Michan S, Dai J, Baker DJ, Cen Y, Wu LE, Sauve AA et al. (2014) SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J 33, 1438–1453.

31 Lee H (2014) How chromosome mis-segregation leads to cancer: lessons from BubR1 mouse models. Mol Cells 37, 713–718.

32 Lin HR, Ting NS, Qin J & Lee WH (2003) M phase-specific phosphorylation of BRCA2 by Polo-like kinase 1 correlates with the dissociation of the BRCA2-P/CAF complex. J Biol Chem 278, 35979–35987.

33 Lee M, Daniels MJ & Venkitaraman AR (2004) Phosphorylation of BRCA2 by the Polo-like kinase Plk1 is regulated by DNA damage and mitotic progression. Oncogene 23, 865–872.

34 Elowe S, Hummer S, Uldschmid A, Li X & Nigg EA (2007) Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 21, 2205–2219.

35 Steegmaier M, Hoffmann M, Baum A, Lenart P, Petronczi M, Krssak M, Gurtler U, Garin-Chesa P, Lieb S, Quant J et al. (2007) BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 17, 316–322.

36 Lenart P, Petronczi M, Steegmaier M, Di Fiore B, Lipp J, Hoffmann M, Retting WJ, Kraut N & Peters JM (2007) The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol 17, 304–315.

37 Jeong K, Jeong JY, Lee HO, Choi E & Lee H (2010) Inhibition of Plk1 induces mitotic infidelity and embryonic growth defects in developing zebrafish embryos. Dev Biol 345, 34–48.

38 Huang H & Yen TJ (2009) BubR1 is an effector of multiple mitotic kinases that specifies kinetochore-microtubule attachments and checkpoint. Cell Cycle 8, 1164–1167.

39 Su LK, Wang SC, Qi Y, Luo W, Hung MC & Lin SH (1998) Characterization of BRCA2: temperature sensitivity of detection and cell-cycle regulated expression. Oncogene 17, 2377–2381.

40 Broutier L, Andersson-Rolf A, Hindley CJ, Boj SF, Clevers H, Koo BK & Huch M (2016) Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat Protoc 11, 1724–1743.

41 Hahn SA, Greenhalf B, Ellis I, Sina-Frey M, Rieder H, Korte B, Gerdès B, Kress R, Ziegler A, Raeburn JA et al. (2003) BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 95, 214–221.

42 Boj SF, Hwang CJ, Baker LA, Chio II, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS et al. (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338.

43 Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M & Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29, 418–425.

44 Richon VM, Emiliàn I, Verdin E, Webb Y, Breslow R, Rifkind RA & Marks PA (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95, 3003–3007.

45 Marek L, Hamacher A, Hansen FK, Kuna K, Gohlke H, Kassack MU & Kurz T (2013) Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J Med Chem 56, 427–436.

46 Furumai R, Matsuymama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H, Tanaka A, Komatsu Y, Nishino N, Yoshida M et al. (2002) FK228 (depsipeptide) as a natural produg that inhibits class I histone deacetylases. Cancer Res 62, 4916–4921.

47 Lampson MA & Kapoor TM (2005) The human mitotic checkpoint protein BubR1 regulates...
chromosome-spindle attachments. Nat Cell Biol 7, 93–98.
48 Funabiki H & Wynne DJ (2013) Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 122, 135–158.
49 Welburn JP, Vleugel M, Liu D, Yates JR 3rd, Lampson MA, Fukagawa T & Cheeseman IM (2010) Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell 38, 383–392.
50 Newbold A, Falkenberg KJ, Prince HM & Johnstone RW (2016) How do tumor cells respond to HDAC inhibition? FEBS J 283, 4032–4046.
51 Xu WS, Parmigiani RB & Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541–5552.
52 Liu D, Vleugel M, Backer CB, Hori T, Fukagawa T, Cheeseman IM & Lampson MA (2010) Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol 188, 809–820.

Supporting information

Additional Supporting Information may be found online in the supporting information tab for this article:
Movie S1. Time-lapse video microscopy of cells expressing H2B-GFP for Fig. 1D, first row.
Movie S2. Time-lapse video microscopy of cells expressing H2B-GFP for Fig. 1D, second row.
Movie S3. Time-lapse video microscopy of cells expressing mCherry-BubR1-WT and H2B-GFP for Fig. 1D, third row.
Movie S4. Time-lapse video microscopy of cells expressing mCherry-K250R and H2B-GFP for Fig. 1D, fourth row.
Movie S5. Time-lapse video microscopy of cells expressing mCherry-K250Q and H2B-GFP for Fig. 1D, fifth row.
Movie S6. Time-lapse video microscopy of cells expressing mCherry-KARD3A [phosphorylation deficient (3A) mutant] and H2B-GFP for Fig. 1D, sixth row.
Movie S7. Time-lapse video microscopy of BubR1 (green) in HeLa-FRT-BubR1-Venus cell line, transfected with mCherry-CENPB.
Movie S8. Time-lapse video microscopy of K250R (green) in HeLa-FRT-K250R-Venus cell line, transfected with mCherry-CENPB.
Movie S9. Time-lapse video microscopy of K250Q (green) in HeLa-FRT-K250Q-Venus cell line, transfected with mCherry-CENPB.
Movie S10. Time-lapse video microscopy of CENP-B (red) in HeLa-FRT-BubR1-Venus cell line, transfected with mCherry-CENPB.
Movie S11. Time-lapse video microscopy of CENP-B (red) in HeLa-FRT-K250R-Venus cell line, transfected with mCherry-CENPB.
Movie S12. Time-lapse video microscopy of CENP-B (red) in HeLa-FRT-K250Q-Venus cell line, transfected with mCherry-CENPB.