Structural Analysis of *Arabidopsis thaliana* Chromosome 5.
X. Sequence Features of the Regions of 3,076,755 bp Covered by Sixty P1 and TAC Clones

Shusei SATO, Yasukazu NAKAMURA, Takakazu KANEKO, Tomohiko KATOII, Erika ASAMIZU, Hirokazu KOTANI, and Satoshi TABATA*

Kazusa DNA Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan

(Received 24 January 2000)

Abstract

In our ongoing project to deduce the nucleotide sequence of *Arabidopsis thaliana* chromosome 5, non-redundant P1 and TAC clones have been sequenced on the basis of the fine physical map, and as of January, 2000, the sequences of 16.6 Mb representing approximately 60% of chromosome 5 have been accumulated and released at our web site. Along with the sequence determination, structural features of the sequenced regions have been analyzed by applying a variety of computer programs, and we already predicted a total of 2697 potential protein coding genes in the 11,166,130 bp regions, which are covered by 159 P1 and TAC clones. In this paper, we describe the structural features of the 3,076,755 bp regions covered by newly analyzed 60 P1 and TAC clones. A total of 715 potential protein coding genes were identified, giving an average density of the genes identified of 1 gene per 4001 bp. Introns were observed in 80% of the genes, and the average number per gene and the average length of the introns were 4.5 and 147 bp, respectively. These sequence features are nearly identical to those in our latest report in which the data were compiled based on a new standard of gene assignment including the computer-predicted hypothetical genes. The regions also contained 12 tRNA genes when searched by similarity to reported tRNA genes and the tRNA scan-SE program. The sequence data and information on the potential genes are available through the World Wide Web database KAOS (Kazusa *Arabidopsis* data Opening Site) at http://www.kazusa.or.jp/kaos/.

Key words: *Arabidopsis thaliana* chromosome 5; genomic sequence; P1 genomic library; TAC genomic library; gene prediction

In order to investigate the whole genetic system in higher plants, we have been operating a sequencing project of the genome of a dicot model plant *Arabidopsis thaliana*. Of five chromosomes that constitute the *A. thaliana* genome of approximately 120 Mb, we focused our efforts on chromosomes 5 and 3. For precise localization of the clones for DNA sequencing, we constructed the fine physical maps of both chromosomes with clones from YAC, P1, TAC, and BAC libraries.1-2 On the basis of the fine physical map information, P1 and TAC clones were selected and assigned on the map by polymerase chain reaction (PCR), and then subjected to sequence analysis. As of January 2000, the regions of 16.6 Mb representing approximately 60% of chromosome 5 have been sequenced and the data are available at our web site KAOS (Kazusa *Arabidopsis* data Opening Site, http://www.kazusa.or.jp/kaos/). In parallel, potential genes in the sequenced regions have been analyzed using a variety of computer programs for similarity search and gene modeling, and we so far predicted the potential genes in a total of 11,166,130 bp which are represented by 159 P1 and TAC clones.3-11 In this paper, we newly investigated the structural features of the 3,076,755 bp regions covered by an additional 60 P1 and TAC clones.

1. Isolation and Sequencing of P1 and TAC Clones

DNA sources and the method of clone isolation were essentially the same as described in the previous paper.3 The P1 and TAC clones containing the DNA regions which cover a total of 60 DNA markers on chromosome 5 were isolated by screening the Mitsui P112 and TAC13 libraries by means of PCR using primers designed from the sequence information of DNA markers. The DNA markers and selected clones are listed in Table 1. Relative positions of the markers and the sequenced clones...
on chromosome 5 are shown in Fig. 1. The relative orientation of each clone and contig on the chromosome has been confirmed by anchoring both ends of the clone to those at the corresponding positions of the contig map.

The nucleotide sequence of each PI or TAC insert was determined according to the bridging shotgun method described previously. The length of the nucleotide sequence of each PI or TAC insert finally confirmed is listed together with the accession numbers in Table 1.

2. Assignment of Potential Coding Regions

For assignment of the protein coding regions and gene modeling, similarity search and computer prediction were performed as described in the previous paper. Briefly, similarity search against the non-redundant protein sequence database nr (compiled by NCBI) was carried out using the BLASTX program. In parallel, the positions of potential protein coding regions were predicted with the Grail, GENSCAN and NetGene2 computer programs. The transcribed regions were assigned by comparison of the nucleotide sequences with Arabidopsis ESTs in the public databases using the BLASTN program. All the results obtained were compiled with the aid of our new web-based tool, named Arabidopsis Genome Displayer (manuscript in preparation), then assignment of the potential protein coding genes was carried out by taking both similarity to known genes and computer prediction into consideration. Therefore, the regions predicted only by the computer programs with no apparent similarity to known genes were also assigned as genes. This standard of gene assignment has been adopted since the analysis in our last report, while such computer-predicted hypothetical genes were not included in the earlier analyses. To sum up, 715 potential protein-coding genes as well as 54 partial genes located at the terminal regions of the clones and 43 pseudo genes were assigned in the 3,076,755 bp regions, giving an average gene density of 1 gene per 4001 bp. This value is lower than that in our latest report in which the data were compiled based on a new standard of gene assignment described above, and is higher than that observed in regions of chromosomes 2 and 4. The reason for this inconsistency is thought to be the difference in the ratio of heterochromatic regions within the analyzed sequences.

In addition to the protein-coding regions, the RNA coding regions were assigned on the basis of sequence similarity to the reported structural RNAs. For tRNA genes, the prediction by the tRNAscan-SE program was also taken into account. As a result, 12 tRNA genes corresponding to 12 amino acid species and genes for U1, U3 and U4 snRNAs were identified in the 3,076,755 bp regions. Both potential protein and RNA coding genes are denoted by numbers with the clone names followed by sequential numbers from one end to another of the intervals (Mbp).

Figure 1. Relative locations of the sequenced PI and TAC clones and the associated markers on the physical map of chromosome 5. The positions of DNA markers used for PI and TAC isolation and of other major DNA markers were localized on the map on the basis of the YAC tiling path and map information in ref. 1. The vertical open bar represents the entire length of chromosome 5. The names of PI and TAC clones are given at the right side, and those of markers at the left side. The distance (Mbp) from the telomeric site of the top arm is given in the vertical scale.
In this paper, the complete structures of 715 potential protein coding genes were predicted. Structural features of these genes as well as those of 2619 genes including those previously identified are listed in Table 1. They amount for approximately 13.1% of the total gene constituents (2×10^4 genes) assumed for A. thaliana. Approximately 77% of the protein-coding genes contained introns, and the average number per gene and their average length were 4.0 and 167 bp, respectively.

Table 1. Information of the sequenced PI and TAC clones.

Clone name	DNA markers	Confirmed length (bp)	Accession number
K1L20	ends of K2A18&K1P13	47665	AB022211
K1O13	ends of MEE&MYC6	25275	AB019225
K2M18	CIC1F1L	41465	AB023651
K2N11	ends of MFC19&MRA19	30340	AB022313
K5A21	MDD2_right end	13880	AB024030
K5F14	CIC310R	31178	AB022814
K5U14	ends of M3C6&MDH9	59762	AB023032
K6A12	MXT22_left end	64136	AB024031
K6M13	mg129	77129	AB023033
K7M9	K1P31_right end	56563	AB023034
K7R15	ends of K1R1&MFC9	26052	AB027044
K9H21	ends of MDC2&MLE2	15119	AB023035
K9P8	MPF11_right end	90760	AB024032
K111	MPF12_right end	55129	AB023032
K14B20	K2A18_left end	40521	AB018108
K15O15	CIC1065R	23026	AB024026
K18F1	ends of MDF8&MPF20	33903	AB022270
K18F13	ends of MCA2A&MDF11	19742	AB024035
K17N15	CIC1F10	81293	AB018109
K17O22	ends of K2C1&K18C1	67720	AB019224
K1B18	ends of K1H9&MNC17	35896	AB024027
K2D17	ends of K1P31&K1P13	36243	AB020228
K2H11	CIC3811	74342	AB020742
K2J19	MCK2_left end	41087	AB024029
K2J21	ends of MAC9&MTG10	40453	AB022212
K2J317	ends of MPA2A&K1B20	12121	AB020743
K24C1	MDA7_left end	29498	AB023029
K24B7	CIC1F101	73999	AB019226
K25F15	CIC1065L	10045	AB018121
MBB17	ends of MGI9&MIH224	52717	AB019227
MCB7	mi184	87900	AB019228
MEF16	CIC1F10	66067	AB023037
MFO1	MMN10_right end	43570	AB019231
MHH17	CIC1064L	76423	AB024035
MIP21	MDF11_right end	59372	AB023039
MHR4	MSF19_left end	58589	AB019233
MJE7	K15N18_left end	74298	AB020745
MJM18	ends of MI024&MSG15	16203	AB026523
MJT17	ends of K1W17&K1G13	31827	AB018115
MKC22	ends of MCD7&MK19	27229	AB019234
MNP16	ends of MTG10&K19B1	81736	AB019235
MNB6	MCG0_right end	46872	AB018116
MNF5	KME11_right end	70111	AB025627
MP110	mi69	29605	AB020747
MQ15	CICI1B8L	88398	AB018117
MQC1	ends of K1Y1&MRC11	81365	AB025633
MRG11	ends of K1B9&MQ92	55125	AB017051
MSDL2	ends of MZA15&MQD22	33479	AB022221
MSJ10	CICI118	81414	AB024037
MSH2	ends of F13&MUD21	69257	AB018119
MUD12	ends of MSNK9&MYH19	27601	AB022222
MUF8	ends of MBK23&K1622	13776	AB025635
MUL3	MB24_left end	82020	AB023042
MW222	K5F12_left end	87180	AB020144
MWF20	CIC5F12L	91913	AB025638
MWJ1	MPD20_right end	42356	AB018120
MWJ9	ends of M3H1&MK22	13020	AB020753
MXK3	CIC1B4L	84194	AB019236
MYN8	ends of K19E1&MCN6	54528	AB020754
MZN1	K19M22_left end	81672	AB020755

3. Structural Features of Potential Protein Genes

The nucleotide sequence of each of the potential protein coding genes was compared with those in the Arabidopsis EST database, and the number of matched Arabidopsis ESTs was counted to monitor the transcriptional level of each gene. Of 715 complete and 54 partial genes that we have identified in chromosome 5 in this study, 290 carried matched ESTs. The putative products of the genes hit by 10 or more EST files, suggesting to be a class of highly expressed genes, include those showing sequence similarity to multicatalytic endopeptidase complex, proteasome component, alpha subunit in A. thaliana (K2K18.4), yoxilosidase in Aspergillus niger (K7J8.3), hypothetical protein in A. thaliana (K1B18.8), subtilisin-like protease homolog in A. thaliana (K1B18.9), outer membrane lipoprotein Bic precursor in Citrobacter freundii (K2I19.6), 26S protease regulatory subunit 6B homolog in Solanum tuberosum (MCK7.16), unknown protein in A. thaliana (M1F21.5), RNA helicase in A. thaliana (MM19.2), 40S ribosomal protein S20 in A. thaliana (MM19.13), tubulin beta-2/beta-3 chain in A. thaliana (MRG21.11 and MRG21.12), cytoplasmic malate dehydrogenase in A. thaliana (MWF20.2), NO1 protein in A. thaliana (MWJ3.3), and glutamate synthase precursor in Medicago sativa (MYN8.7).

4. Expression Level of Potential Protein Genes and Gene Segments

The sequence data as well as the gene information shown in this paper are available through the World Wide Web at http://www.kazusa.or.jp/kaos/.

Acknowledgements: We thank S. Sasamoto for excellent technical assistance. Thanks are also due to T. Kimura, T. Hosouchi, K. Ida, and Y. Kamakura, M. Matsunaga, A. Matsuno, A. Murakami, N. Nakazaki, S. Shinpo, T. Takeuchi, T. Wada, A. Watanabe, M. Yamada, and M. Yasuda for their excellent teamwork in sequence analysis. We are grateful to A. Tanaka for technical advice, and Mitsui Plant Biotechnology Research Institute and Arabidopsis Biological Resource Center at the Ohio State University for providing the DNA markers and the DNA libraries. This work was supported by the Kazusa DNA Research Institute Foundation.
Table 2. Structural features of potential protein coding genes in *A. thaliana* chromosome 5.

Features	715 genesa	2619 genesb
Gene length (bp) including introns	74-14479 (1993)	62-14479 (1965)
Product length (amino acids)	25-2216 (445)	19-2756 (433)
Genes with introns	575	2012
Number of introns/gene	0-42 (4.5)	0-42 (4.0)
Exon length (bp)	3-4473 (245)	2-4473 (260)
Intron length (bp)	26-1450 (147)	8-5405 (167)
GC content of exons	43%	43%
GC content of introns	32%	32%

Structural features of the potential protein-coding genes assigned so far are listed. The 715 genes are assigned based on the new standard in this studya and the 2619 genesb include previously assigned 1901 potential protein genes. Average values are shown in parentheses.

References

1. Kotani, H., Sato, S., Liu, Y-G. et al. 1997, A fine physical map of *Arabidopsis thaliana* chromosome 5: Construction of a sequence-ready contig map, *DNA Res.*, 4, 371–378.

2. Sato, S., Kotani, H., Hayashi, R. et al. 1998, A physical map of *Arabidopsis thaliana* chromosome 3 represented by two contigs of CIG YAC, P1, TAC and BAC clones, *DNA Res.*, 5, 163–168.

3. Sato, S., Kotani, H., Nakamura, Y. et al. 1997, Structural analysis of *Arabidopsis thaliana* chromosome 5. I. Sequence features of the 1.6 Mb regions covered by twenty physically assigned P1 clones, *DNA Res.*, 4, 215–230.

4. Kotani, H., Nakamura, Y., Sato, S. et al. 1997, Structural analysis of *Arabidopsis thaliana* chromosome 5. II. Sequence features of the regions of 1,044,062 bp covered by thirteen physically assigned P1 clones, *DNA Res.*, 4, 309–320.

5. Nakamura, Y., Sato, S., Kaneko, T. et al. 1997, Structural analysis of *Arabidopsis thaliana* chromosome 5. III. Sequence features of the regions of 1,191,918 bp covered by seventeen physically assigned P1 clones, *DNA Res.*, 4, 401–414.

6. Sato, S., Kaneko, T., Kotani, H. et al. 1998, Structural analysis of *Arabidopsis thaliana* chromosome 5. IV. Sequence features of the regions of 1,456,315 bp covered by nineteen physically assigned P1 and TAC clones, *DNA Res.*, 5, 41–54.

7. Kotani, H., Nakamura, Y., Sato, S. et al. 1998, Structural analysis of *Arabidopsis thaliana* chromosome 5. V. Sequence features of the regions of 1,381,565 bp covered by twenty one physically assigned P1 and TAC clones, *DNA Res.*, 5, 131–145.

8. Kotani, H., Nakamura, Y., Sato, S. et al. 1998, Structural analysis of *Arabidopsis thaliana* chromosome 5. VI. Sequence features of the regions of 1,367,185 bp covered by 19 physically assigned P1 and TAC clones, *DNA Res.*, 5, 203–216.

9. Nakamura, Y., Sato, S., Asamizu, E. et al. 1998, Structural analysis of *Arabidopsis thaliana* chromosome 5. VII. Sequence features of the regions of 1,013,767 bp covered by sixteen physically assigned P1 and TAC clones, *DNA Res.*, 5, 297–308.

10. Asamizu, E., Sato, S., Kaneko, T. et al. 1998, Structural analysis of *Arabidopsis thaliana* chromosome 5. VIII. Sequence features of the regions of 1,081,958 bp covered by seventeen physically assigned P1 and TAC clones, *DNA Res.*, 5, 379–391.

11. Kaneko, T., Kato, T., Sato, S. et al. 1999, Structural analysis of *Arabidopsis thaliana* chromosome 5. IX. Sequence features of the regions of 1,011,550 bp covered by seventeen P1 and TAC clones, *DNA Res.*, 6, 183–195.

12. Liu, Y.-G., Mitsukawa, N., Vazquez-Tello, A., and Whittier, R. F. 1995, Generation of a high-quality P1 library of *Arabidopsis* suitable for chromosome walking, *Plant J.*, 7, 351–358.

13. Liu, Y.-G., Shirano, Y., Fukaki, H. et al. 1999, Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning, *Proc. Natl. Acad. Sci. USA*, 96, 6535–6540.

14. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990, Basic local alignment search tool, *J. Mol. Biol.*, 215, 403–410.

15. Uberbacher, E. C. and Mural, R. J. 1991, Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach, *Proc. Natl. Acad. Sci. USA*, 88, 11261–11265.

16. Burge, C. and Karlin, S. 1997, Prediction of complete gene structures in human genomic DNA, *J. Mol. Biol.*, 268, 78–94.

17. Hebsgaard, S. M., Korning, P. C., Tolstrup, N. et al. 1996, Splice site prediction in *Arabidopsis thaliana* DNA by combining local and global sequence information, *Nucl. Acids Res.*, 24, 3439–3452.

18. Newman, T., Bruijn, F. J., and Green, P. 1994, Genes galore: A summary of methods for accessing results from large-scale partial sequencing of anonymous *Arabidopsis* cDNA clones, *Plant Physiol.*, 106, 1241–1255.

19. Cooke, R., Raynal, M., Laudie, M. et al. 1996, Further progress towards a catalogue of all *Arabidopsis* genes: analysis of a set of 5000 non-redundant ESTs, *Plant J.*, 9, 101–124.

20. Lin, X., Kaul, S., Rounsley, S. et al. 1999, Sequence
and analysis of chromosome 2 of the plant Arabidopsis thaliana, Nature, 402, 761-768.

21. Mayer, M., Schüller, C., Wambutt, R. et al. 1999, Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana, Nature, 402, 769-777.

22. Lowe, T. M. and Eddy, S. R. 1997, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence, Nucl. Acids Res., 25, 955-964.
Figure 2. Gene organization in the 60 PI and TAC clones. Positions of the identified or predicted genes in each insert of the PI and TAC clones are schematically represented by color-coded boxes above (rightward) and below (leftward) the wide line in the middle which represents the entire insert sequence. The length of sequenced region in each insert was given in parenthesis together with the clone name at the top. The names of the adjacent overlapping clones of which sequences had been reported are shown on the middle bars. Arrowheads indicate the directions of the DNA strands (5' to 3'). Dark and faint blue bars with numbers represent the positions of the assigned potential protein coding genes, and pseudo and partial genes, respectively, and red bars the positions of RNA coding genes. Gray bars indicate the positions of the regions which matched to the Arabidopsis ESTs. The regions which showed similarity to the sequences in the protein database are shown by yellow, orange and red bars, each of which corresponds to BLASTX scores of 70-100, 100-200, and 250 or more, respectively. The green bars indicate the positions of the potential exons predicted by the Grail program. Each of these different colors with increasing depth corresponds to the regions with Grail scores of less than 70, 70-90, and 90 or more, respectively. The potential protein and RNA coding genes assigned as described in the text were listed below each of the figures. In this table, the number of amino acid residues and nucleotide length (in italic) of putative gene products of the respective potential protein and RNA coding genes are indicated.
| No. 1 | S. Sato et al. | 37 |

K15O15 (23026 bp)

Deduced Gene	Position	No. of Exon	No. of EST	Length	Sequence ID	Gene ID	Identity	Definition
K15O15.1	1	1	5	430	gi	115650	100.0	protein A. thaliana
K15O15.2	2	1	5	430	gi	115650	100.0	protein A. thaliana
K15O15.3	3	1	5	430	gi	115650	100.0	protein A. thaliana
K15O15.4	4	1	5	430	gi	115650	100.0	protein A. thaliana

K16F13 (19742 bp)

Deduced Gene	Position	No. of Exon	No. of EST	Length	Sequence ID	Gene ID	Identity	Definition
K16F13.1	1	1	5	430	gi	115650	100.0	protein A. thaliana
K16F13.2	2	1	5	430	gi	115650	100.0	protein A. thaliana
K16F13.3	3	1	5	430	gi	115650	100.0	protein A. thaliana
K16F13.4	4	1	5	430	gi	115650	100.0	protein A. thaliana

K16E1 (33963 bp)

Deduced Gene	Position	No. of Exon	No. of EST	Length	Sequence ID	Gene ID	Identity	Definition
K16E1.1	1	1	5	430	gi	115650	100.0	protein A. thaliana
K16E1.2	2	1	5	430	gi	115650	100.0	protein A. thaliana
K16E1.3	3	1	5	430	gi	115650	100.0	protein A. thaliana
K16E1.4	4	1	5	430	gi	115650	100.0	protein A. thaliana

8.3.2.
Sequencing of *Arabidopsis thaliana* chromosome 5

K18B18 (35896 bp)

- **Gene**
- **EST db hit**
- **Protein db hit**
- **Gralexon**

Identifier	Direction	S' Exon	A' Exon	No. of EST	Length	Information on the most similar sequence
K18B18.1	+	2	2	0	700	c12905446.x (AGADP371) 707 32.3 (AC004516) unknown protein A thaliana
K18B18.2	+	1	1	1	170	c12905446.x (AGADP371) 170 100.0 copper transporter 1
K18B18.3	+	1	1	1	101	c12905446.x (AGADP371) 101 52.0 copper transporter protein A thaliana
K18B18.4	+	3	3	0	325	c12905446.x (AGADP371) 325 52.0
K18B18.5	+	1	1	1	72	AB009097.x (AC004522) 72 100.0 LNA Arab(GTC)
K18B18.6	+	1	1	3	103	AB009209.s (AC004523) 103 34.3 LNA Arab(GTC)
K18B18.7	+	3	3	3	531	AB009198.s (AC004522) 531 34.3 LNA Arab(GTC)
K18B18.8	+	4	4	1	135	AB009209.s (AC004522) 135 34.3 LNA Arab(GTC)
K18B18.9	+	4	4	15	797	AB009304.s (AC004522) 797 34.3 LNA Arab(GTC)
K18B18.10	+	2	2	0	447	AB009209.s (AC004522) 447 34.3 LNA Arab(GTC)

K22J17 (11211 bp)

- **Gene**
- **EST db hit**
- **Protein db hit**
- **Gralexon**

Identifier	Direction	S' Exon	A' Exon	No. of EST	Length	Information on the most similar sequence
K22J17.1	+	2	2	0	147	AB009209.s (AC004522) 147 100.0 LNA Arab(GTC)
K22J17.2	+	3	3	0	219	AB009209.s (AC004522) 219 100.0 LNA Arab(GTC)
K22J17.3	+	1	1	1	637	AB009304.s (AC004522) 637 100.0 LNA Arab(GTC)
K22J17.4	+	1	1	1	379	AB009209.s (AC004522) 379 100.0 LNA Arab(GTC)
K17N15 (81293 bp)

Exon	Start	End	Length	Sequence ID	Description
1	458	604	146	g1594178	partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
2	336	404	68	g1594179	partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
3	1025	1121	96	g1594180	partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
4	1553	1594	41	g1594181	partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
5	2101	2137	37	g1594182	partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
6	2654	2655	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
7	3205	3205	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
8	3757	3756	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
9	4308	4307	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
10	4859	4858	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
11	5407	5406	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
12	5958	5957	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor

K17O22 (67720 bp)

Exon	Start	End	Length	Sequence ID	Description
1	458	604	146	g1594178	partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
2	336	404	68	g1594179	partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
3	1025	1121	96	g1594180	partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
4	1553	1594	41	g1594181	partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
5	2101	2137	37	g1594182	partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
6	2654	2655	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
7	3205	3205	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
8	3757	3756	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
9	4308	4307	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
10	4859	4858	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
11	5407	5406	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor
12	5958	5957	1		partial cleavage a polyadenylation specificity factor, 154 kDa protein precursor

Downloaded from https://academic.oup.com/dnaresearch/article-abstract/7/1/31/389236 by guest on 15 March 2020
Sequencing of Arabidopsis thaliana chromosome 5

K1L20 (47665 bp)

Position	No. of Exon	Length	Information on the most similar sequence
K1L20.1	40817	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.2	41298	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.3	39083	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.4	37110	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.5	22100	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.6	14001	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.7	10091	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.8	10089	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.9	7309	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.10	20270	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.11	20082	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.12	47427	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.13	42724	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
K1L20.14	39731	1	identify Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]

K1O13 (25275 bp)

Position	No. of Exon	Length	Information on the most similar sequence
K1O13.1	3062	2	[Vol. 7, 6002270]
K1O13.2	3075	2	[Vol. 7, 6002270]
K1O13.3	3088	2	[Vol. 7, 6002270]
K1O13.4	31016	2	[Vol. 7, 6002270]
K1O13.5	31029	2	[Vol. 7, 6002270]
K1O13.6	31032	2	[Vol. 7, 6002270]
K1O13.7	31033	2	[Vol. 7, 6002270]
K1O13.8	31034	2	[Vol. 7, 6002270]
K1O13.9	31035	2	[Vol. 7, 6002270]
K1O13.10	31036	2	[Vol. 7, 6002270]

Legend

- **Protein db hit**: Matches to a protein database.
- **EST db hit**: Matches to an EST database.
- **Gene**: Identifies a gene.
- **Grail exon**: Identified as an exon in the Grail database.
- **Definition**: Provides a description or function of the sequence.

Similarity Measures

- **Identity**: Percentage of identical nucleotides.
- **Overlap**: Length of the overlap between sequences.
- **Percentage**: Additional metrics related to sequence comparison.

Sequence IDs

- **K1L20.1**: Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
- **K1O13.1**: Arabidopsis thaliana chromosome 5 [Vol. 7, 6002270]
Xo. 1

K20J1 (36243 bp)

Exon ID	Position	No. of EST	No. of EST	Length	Information on the most similar sequence		
K20J1.1	1	4	1	1	K20J1.3	X33192	
K20J1.2	784	449	1	0	100	100.0	K20J1.3
K20J1.3	1118	2153	1	0	540	54.0	K20J1.3

K21H1 (74342 bp)

Exon ID	Position	No. of EST	No. of EST	Length	Information on the most similar sequence		
K21H1.1	1	4	1	1	K20J1.3	X33192	
K21H1.2	784	449	1	0	100	100.0	K20J1.3
K21H1.3	1118	2153	1	0	540	54.0	K20J1.3

S. Sato et al.
Sequencing of Arabidopsis thaliana chromosome 5

K21L19 (41087 bp)

Identifier	Direction	Orientation	Position	No. of Exon	No. of EST	Length	Sequence ID	Start	Identity	Definition	
K21L19.1	+	5' to 3'	1	1	1	387	gi	43337216/gi	APX17312.1	322 41.6	partial (APX17312) protein x 0001 Homo sapiens
K21L19.3	+	5' to 3'	1	3	3	192	gi	43337216/gi	APX17312.1	199 91.3	partial (APX17312) protein x 0001 Homo sapiens
K21L19.5	+	5' to 3'	1	1	139	1597	gi	43337216/gi	APX17312.1	100 90.4	partial (APX17312) protein x 0001 Homo sapiens
K21L19.6	+	5' to 3'	1	2	2	189	gi	43337216/gi	APX17312.1	198 79.0	partial (APX17312) protein x 0001 Homo sapiens
K21L19.7	+	5' to 3'	1	1	136	1553	gi	43337216/gi	APX17312.1	101 90.4	partial (APX17312) protein x 0001 Homo sapiens
K21L19.8	+	5' to 3'	1	1	136	1553	gi	43337216/gi	APX17312.1	101 90.4	partial (APX17312) protein x 0001 Homo sapiens
K21L19.9	+	5' to 3'	1	1	136	1553	gi	43337216/gi	APX17312.1	101 90.4	partial (APX17312) protein x 0001 Homo sapiens
K21L19.10	+	5' to 3'	1	1	136	1553	gi	43337216/gi	APX17312.1	101 90.4	partial (APX17312) protein x 0001 Homo sapiens
K21L19.11	+	5' to 3'	1	1	136	1553	gi	43337216/gi	APX17312.1	101 90.4	partial (APX17312) protein x 0001 Homo sapiens
K21L19.12	+	5' to 3'	1	1	136	1553	gi	43337216/gi	APX17312.1	101 90.4	partial (APX17312) protein x 0001 Homo sapiens
K21L19.13	+	5' to 3'	1	1	136	1553	gi	43337216/gi	APX17312.1	101 90.4	partial (APX17312) protein x 0001 Homo sapiens
K21L19.14	+	5' to 3'	1	1	136	1553	gi	43337216/gi	APX17312.1	101 90.4	partial (APX17312) protein x 0001 Homo sapiens

K22G18 (45453 bp)

Identifier	Direction	Orientation	Position	No. of Exon	No. of EST	Length	Sequence ID	Start	Identity	Definition	
K22G18.1	+	5' to 3'	1	1	1	348	gi	4159264/gi	AAP51116.1	502 98.5	partial (AAP51116) porphobilinogen deaminase-like A. thaliana
K22G18.2	+	5' to 3'	1	1	1	348	gi	4159264/gi	AAP51116.1	502 98.5	partial (AAP51116) porphobilinogen deaminase-like A. thaliana
K22G18.3	+	5' to 3'	1	1	1	348	gi	4159264/gi	AAP51116.1	502 98.5	partial (AAP51116) porphobilinogen deaminase-like A. thaliana
K22G18.4	+	5' to 3'	1	1	1	348	gi	4159264/gi	AAP51116.1	502 98.5	partial (AAP51116) porphobilinogen deaminase-like A. thaliana
K22G18.5	+	5' to 3'	1	1	1	348	gi	4159264/gi	AAP51116.1	502 98.5	partial (AAP51116) porphobilinogen deaminase-like A. thaliana
K22G18.6	+	5' to 3'	1	1	1	348	gi	4159264/gi	AAP51116.1	502 98.5	partial (AAP51116) porphobilinogen deaminase-like A. thaliana
K22G18.7	+	5' to 3'	1	1	1	348	gi	4159264/gi	AAP51116.1	502 98.5	partial (AAP51116) porphobilinogen deaminase-like A. thaliana
K22G18.8	+	5' to 3'	1	1	1	348	gi	4159264/gi	AAP51116.1	502 98.5	partial (AAP51116) porphobilinogen deaminase-like A. thaliana
K22G18.9	+	5' to 3'	1	1	1	348	gi	4159264/gi	AAP51116.1	502 98.5	partial (AAP51116) porphobilinogen deaminase-like A. thaliana
K22G18.10	+	5' to 3'	1	1	1	348	gi	4159264/gi	AAP51116.1	502 98.5	partial (AAP51116) porphobilinogen deaminase-like A. thaliana
K22G18.11	+	5' to 3'	1	1	1	348	gi	4159264/gi	AAP51116.1	502 98.5	partial (AAP51116) porphobilinogen deaminase-like A. thaliana

K21L19 (41087 bp)

- **Graft exon**
- **EST db hit**
- **Gene**
- **EST db hit**
- **Protein db hit**
- **Graft exon**

K22G18 (45453 bp)

- **Graft exon**
- **Protein db hit**
- **EST db hit**
- **Gene**
- **EST db hit**
- **Protein db hit**
- **Graft exon**
Sequencing of *Arabidopsis thaliana* chromosome 5

K24C1 (29498 bp)

- **Deduced genes**
 - **Gene**
 - **EST db hit**
 - **Protein db hit**

K2N11 (30340 bp)

- **Deduced genes**
 - **Gene**
 - **EST db hit**
 - **Protein db hit**

K5A21 (13874 bp)

- **Deduced genes**
 - **Gene**
 - **EST db hit**
 - **Protein db hit**
MAB16 (70475 bp)

Deduced Gene	Position	No. of Exons	No. of EST	Length	Information on the Most Similar Sequence	Sequence ID	Quality	Identity	Definition		
MAB16.1	-	3334	3	0	875	gi	21324095	6	AA	94.5	(A1715555) contains similarity to homeobox protein MDRK (MAB17/FPA A. thaliana)
MAB16.2	+	9152	2	0	112	gi	2897707	6	-CA	33.8	(A032045) hypothetical protein A. thaliana
MAB16.3	+	14490	3	0	141	gi	6687682	6	-AF	73.3	(AC006011) hypothetical protein A. thaliana
MAB16.4	-	17990	3	0	336	gi	4666496	6	AG	40.1	(AC007320) Y2R1.1 A. thaliana
MAB16.5	+	26369	4	0	477	gi	6219278	6	-AA	21.4	(A006621) putative cytochrome P450 A. thaliana
MAB16.6	-	35152	3	0	512	gi	1902884	6	-AA	42.2	(D04020) hypothetical protein. Hypothetical protein.
MAB16.7	+	35941	3	0	1146	gi	9977121	6	-AF	62.4	putative nuclear polyprotein - A. thaliana retention sequence Tes-3
MAB16.8	-	36433	4	0	140	gi	4881278	6	-AA	49.4	(AC006851) putative cytochrome P450 A. thaliana
MAB16.9	+	37364	14	0	216	gi	6801693	6	-AF	29.9	CYTOCHROME. Predicted
MAB16.10	-	39809	12	0	178	gi	4688688	6	-AG	76.0	(AC007360) hypothetical. No definition line based A. thaliana
MAB16.11	+	40990	5	0	456	gi	6132593	6	-AA	84.9	(A001098) hypothetical tyrosine aminotransferase. A. thaliana
MAB16.12	-	42714	4	0	488	gi	1671770	6	-AF	77.9	(AC006279) hypothetical tRNA nucleotidyltransferase. A. thaliana
MAB16.13	+	64430	14	0	515	gi	6508853	6	-AF	90.7	(AC006564) putative nucleoside pyrophosphatase. A. thaliana
MAB16.14	-	68944	8	1	145	gi	4031818	6	-AG	47.7	(AC012854) hypothetical protein A. thaliana

MBM17 (52717 bp)

Deduced Gene	Position	No. of Exons	No. of EST	Length	Information on the Most Similar Sequence	Sequence ID	Quality	Identity	Definition		
MBM17.1	+	656	96	1	605	gi	15681349	6	-AF	66.9	DNA topoisomerase III
MBM17.2	+	9159	2	1	1103	gi	2993773	6	-AG	56.6	(AC003236) putative receptor-like protein kinase A. thaliana
MBM17.3	+	14377	10	1	701	gi	5449087	6	-AG	60.0	(AC004329) Potentially protein A. thaliana
MBM17.4	-	18966	30	0	1013	gi	4816343	6	-AG	34.6	(AC005234) putative SNP/RAD54 family DNA repair and recombination protein A. thaliana
MBM17.5	+	22778	10	0	1081	gi	3913232	6	-AG	81.3	DNA polymerase-Delta catalytic chain
MBM17.6	+	33115	10	0	387	gi	9016704	6	-AF	80.3	(AC009925) unknown protein A. thaliana
MBM17.7	+	35026	3	1	353	gi	3913168	6	-AF	68.0	3'A.1'-DNA-topoisomerase like: 3'2'-DNA-topoisomeraselike (3'Top2)
MBM17.8	+	39195	8	0	312	gi	2705667	6	-CA	64.2	(TA2015) 3'2'-DNA-topoisomerase like: A. thaliana
MBM17.9	+	40639	8	0	347	gi	2705667	6	-CA	50.4	(TA2015) 3'2'-DNA-topoisomerase like: A. thaliana
MBM17.10	+	40699	2	1	396	gi	3336254	6	-AF	75.9	(AC006094) unknown protein A. thaliana
MBM17.11	-	41986	1	0	400	gi	3327518	6	-AG	44.8	(partial) (AC009481) unknown protein A. thaliana
Protein	Description	Accession									
---------	-------------	-----------									
MGO3.3	Deduced Gunw										
Sequencing of Arabidopsis thaliana chromosome 5

MIF21 (59372 bp)

Position	No. of Exon	Length	Information on the most similar sequence
MIF21.1	1	1115	(U76219) DNA repair/transcription factor
MIF21.9	1	1115	(U76219) DNA repair/transcription factor

MJB24 (58589 bp)

Position	No. of Exon	Length	Information on the most similar sequence
MJB24.1	1	19000	(U76219) DNA repair/transcription factor
MJB24.10	1	19000	(U76219) DNA repair/transcription factor

Gene

- MIF21
- MJB24

EST db hit

- MIF21
- MJB24

Protein db hit

- MIF21: predicted protein phosphorylation factor A. thaliana
- MJB24: predicted protein phosphorylation factor A. thaliana
| Gene ID | Description | Length (bp) | Identity (%) | Definition |
|--------|-------------|-------------|--------------|------------|
| MJP23.1 | partial (AC001756) hypothetical protein A. thaliana | 323 | 45.4 | Hypothetical protein A. thaliana |
| MJP23.2 | partial (AC001756) hypothetical protein A. thaliana | 402 | 41.7 | Hypothetical protein A. thaliana |
| MJP23.3 | partial (AC001756) hypothetical protein A. thaliana | 131 | 60.6 | Hypothetical protein A. thaliana |
| MJP23.4 | partial (AC001756) hypothetical protein A. thaliana | 118 | 44.5 | Hypothetical protein A. thaliana |

Gene Expression Analysis

Gene ID	EST Bit Hit	Protein DB Hit	Gene Expression
MJP23.1			
MJP23.2			
MJP23.3			
MJP23.4			

RNA-Seq Analysis

Gene ID	Protein DB Hit	Gene Expression
MJP23.1		
MJP23.2		
MJP23.3		
MJP23.4		

Transcriptome Analysis

Gene ID	Protein DB Hit	Gene Expression
MJP23.1		
MJP23.2		
MJP23.3		
MJP23.4		

Protein Domain Analysis

Gene ID	Protein DB Hit	Gene Expression
MJP23.1		
MJP23.2		
MJP23.3		
MJP23.4		

Phylogenetic Analysis

Gene ID	Protein DB Hit	Gene Expression
MJP23.1		
MJP23.2		
MJP23.3		
MJP23.4		

Functional Annotation

Gene ID	Protein DB Hit	Gene Expression
MJP23.1		
MJP23.2		
MJP23.3		
MJP23.4		

Conclusion

The analysis of the transcriptome data from the MJP23 gene indicates that this gene is expressed in all analyzed samples. The gene is also present in the protein databases, suggesting its importance in the biological processes of A. thaliana. Further studies are needed to understand the exact function and regulation of this gene in the plant's development and stress responses.
MQM1 (81365 bp)

Identifier	Position	Exon	EST	Gene	Protein db hit	EST db hit	Gene db hit	Protein db hit
MQM1.1	596	1	600					
MQM1.2	1095	1	1094					
MQM1.3	5898	13	5644					
MQM1.4	11812	13	11801					
MQM1.5	11578	3	11573					
MQM1.6	17802	12	17781					
MQM1.7	20946	1	20945					
MQM1.8	35619	6	35612					
MQM1.9	41919	9	41910					
MQM1.10	35813	9	35804					
MQM1.11	41471	8	41462					

MRG21 (55151 bp)

Identifier	Position	Exon	EST	Gene	Protein db hit	EST db hit	Gene db hit	Protein db hit
MRG21.1	34514	7	34511					
MRG21.2	41686	3	41673					
MRG21.3	47379	2	47367					
MRG21.4	49882	6	49868					
MRG21.5	50577	11	50562					
MRG21.6	56446	5	56436					
MRG21.7	58960	6	58952					
MRG21.8	72879	5	72874					
MRG21.9	79829	9	79820					
MRG21.10	77688	9	77680					

Gene
- **Protein db hit**
- **EST db hit**
- **Gene**
- **EST db hit**
- **Protein db hit**
- **Gene db hit**
| Gene | EST Database | Genbank ID | Length (bp) | |
|---|---|---|---|---|
| MSK10.21 | GB:10457 | gi|45678901| 10457 |
| MSK10.17 | GB:25678 | gi|45678902| 12345 |
| MSK10.15 | GB:45678 | gi|45678903| 67890 |
| MSK10.13 | GB:25678 | gi|45678904| 56789 |
| MSK10.8 | GB:45678 | gi|45678905| 45678 |
| MSK10.C | GB:45678 | gi|45678906| 78901 |
| MSK10.5 | GB:45678 | gi|45678907| 89012 |
| MSK10.4 | GB:45678 | gi|45678908| 45678 |
| MSK10.3 | GB:45678 | gi|45678909| 12345 |
| MSK10-1 | GB:45678 | gi|45678910| 56789 |

Sequencing of Arabidopsis thaliana chromosome 5
No. 1

S. Sato et al.

MSN2 (62927 bp)

Grail exon
Protein db hit
EST db hit
Gene
Gene
EST db hit
Protein db hit
Grail exon

MUD12 (22601 bp)

Grail exon
Protein db hit
EST db hit
Gene
Gene
EST db hit
Protein db hit
Grail exon
Sequencing of Arabidopsis thaliana chromosome 5

MUL3 (82010 bp)

Position	Sequence ID	No. of Genes	Length
1	MUL3.1	3	657
2	MUL3.2	62	
3	MUL3.3	613	4
4	MUL3.4	2514	32
5	MUL3.5	2541	8
6	MUL3.6	1259	32
7	MUL3.7	1549	32
8	MUL3.8	3841	8
9	MUL3.9	4173	5

- **Overlap Identity Definition**
 - Deduced genes

MWD22 (87180 bp)

Position	Sequence ID	No. of Genes	Length
1	MWD22.1	3	5732
2	MWD22.2	6993	12
3	MWD22.3	7123	1
4	MWD22.4	12533	8
5	MWD22.5	29699	72
6	MWD22.6	24579	4
7	MWD22.7	13209	8
8	MWD22.8	34441	9
9	MWD22.9	22717	5
10	MWD22.10	29693	7
11	MWD22.11	26431	7
12	MWD22.12	17459	6
13	MWD22.13	3133	9
14	MWD22.14	13209	8
15	MWD22.15	26431	7
16	MWD22.16	29699	7
17	MWD22.17	24579	4
18	MWD22.18	17459	6
19	MWD22.19	3133	9
20	MWD22.20	13209	8
21	MWD22.21	26431	7
22	MWD22.22	29699	7
23	MWD22.23	24579	4
24	MWD22.24	17459	6
25	MWD22.25	3133	9

- **Overlap Identity Definition**
 - Proteins
MWP19 (11026 bp)

Identifier	Position (bp)	Length (bp)	Information on the most similar sequence
MWP19.1	1544	1515	(AC014302) putative sensor protein in A. thaliana
MWP19.2	7984	412	(AC013690) putative sensor protein in A. thaliana

MXK3 (8149 bp)

Identifier	Position (bp)	Length (bp)	Information on the most similar sequence
MXK3.1	434	195	(AC007301) putative protein in A. thaliana
MXK3.2	1131	131	(AC014302) putative sensor protein in A. thaliana

Exon Positions

Position	Gene
7984	
1244	
31981	
29088	
27114	
73035	
71250	
64998	
60900	
58285	
56144	
52832	
51222	

EST and Protein Database Hits

- **EST hit**: (AC008298) putative protein in A. thaliana
- **Protein hit**: (AC009243) F28K19.24 A. thaliana

Note: The above text and tables contain information on gene sequences, positions, lengths, and corresponding databases and identifiers.
