Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients

Daniel A. Medina ¹, Juan P. Pedreros ¹, Dannae Turiel ², Nicolas Quezada ²,³, Fernando Pimentel ³, Alex Escalona ⁴, Daniel Garrido Corresp. ¹

¹ Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
² Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
³ Departamento de Cirugía Digestiva, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
⁴ Department of Surgery, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile

Corresponding Author: Daniel Garrido
Email address: dgarridoc@ing.puc.cl

Bariatric surgery is highly successful in improving health compared to conventional dietary treatments. It has been suggested that the gut microbiota is a relevant factor in weight loss after bariatric surgery. Considering that bariatric procedures cause different rearrangements of the digestive tract, they probably have different effects on the gut microbiota. In this study, we compared the impact of medical treatment, sleeve gastrectomy and Roux-en-Y gastric bypass on the gut microbiota from obese subjects. Anthropometric and clinical parameters were registered before, 6 and 12 months after treatment. Fecal samples were collected and microbiota composition was studied before and 6 months post treatment using 16S rRNA gene sequencing and qPCR. In comparison to dietary treatment, changes in intestinal microbiota were more pronounced in patients subjected to surgery, observing a bloom in Proteobacteria. Interestingly, Bacteroidetes abundance was largely different after six months of each surgical procedure. Furthermore, changes in weight and BMI, or glucose metabolism, correlated positively with changes in these two phyla in these surgical procedures. These results indicate that distinct surgical procedures alter the gut microbiota differently, and changes in gut microbiota might contribute to health improvement. This study contributes to our understanding of the impact of weight loss surgery on the gut microbiota, and could be used to replicate this effect using targeted therapies.
Distinct Patterns in the Gut Microbiota after Surgical or Medical Therapy in Obese Patients

Daniel A. Medina¹, Juan P. Pedreros¹, Danne Turiel², Nicolas Quezada², Fernando Pimentel², Alex Escalona³, Daniel Garrido¹.

¹Department of Chemical and Bioprocess Engineering, Pontificia Universidad Catolica Chile;
²Department of Digestive Surgery, School of Medicine, Pontificia Universidad Catolica Chile;
³Department of Surgery, Faculty of Medicine, Universidad de los Andes.

*Corresponding author: Daniel Garrido
Department of Chemical and Bioprocess Engineering
School of Engineering
Pontificia Universidad Catolica Chile
Vicuña Mackenna 4860
Santiago, Chile
Phone: 56-223541143
Email: dgarridoc@ing.puc.cl

Abstract
Bariatric surgery is highly successful in improving health compared to conventional dietary treatments. It has been suggested that the gut microbiota is a relevant factor in weight loss after bariatric surgery. Considering that bariatric procedures cause different rearrangements of the digestive tract, they probably have different effects on the gut microbiota. In this study, we compared the impact of medical treatment, sleeve gastrectomy and Roux-en-Y gastric bypass on
the gut microbiota from obese subjects. Anthropometric and clinical parameters were registered before, 6 and 12 months after treatment. Fecal samples were collected and microbiota composition was studied before and 6 months post treatment using 16S rRNA gene sequencing and qPCR. In comparison to dietary treatment, changes in intestinal microbiota were more pronounced in patients subjected to surgery, observing a bloom in *Proteobacteria*. Other signature changes were observed in the *Bacteroidetes* phylum. Furthermore, changes in certain clinical parameters correlated with changes in some taxa. These results indicate that distinct surgical procedures alter the gut microbiota differently, and these discrete changes correlate with metabolic markers. This study contributes to our understanding of the impact of weight loss surgery on the gut microbiota, and could be used to replicate this effect using targeted therapies.

Running title: Changes in gut microbiota after two bariatric surgeries

Introduction

Obesity is a worldwide health problem that negatively affects quality of life. According to the World Health Organization, more than 1900 million people over 18 years old have a body mass index (BMI) of 25 kg/m² or greater, and 600 million are catalogued as obese, with BMI ≥ 30 kg/m² (World Health Organization, 2016). Type 2 diabetes, cardiovascular disorders, certain cancers and asthma are comorbidities that show an increased risk in subjects with obesity.

The first line of treatment for obesity is medical treatment, which combines diet and physical activity. Unfortunately, the effectiveness of this approach appears to be only short term, since weight regain is common and not all patients respond similarly (Kral et al., 2012). In subjects with obesity and comorbidities, surgical procedures have been successful in controlling weight in
the long term and reducing the incidence of related comorbidities such as hypertension and type 2 diabetes (Sjöström et al., 2007; Sjöström, 2008; Eldar et al., 2011). These procedures are collectively known as bariatric surgery (BS). Indications for BS include a BMI more than 40 or a BMI more than 35 with medical comorbidities (Mechanick et al., 2013). BS can either restrict food intake (restrictive), or reduce nutrient absorption (malabsorptive) (Buchwald et al., 2004). Sleeve gastrectomy (SG) is an example of a restrictive procedure. It removes a significant portion of the stomach, decreasing its volume and leading to a significant reduction in the amount of food consumed (Gumbs et al., 2007). While, Roux-en-Y gastric bypass (RYGB) is both restrictive and malabsorptive, creating a small stomach pouch connected to the proximal jejunum, reducing stomach volume to restrict food intake and bypassing food to the small intestine (Tice et al., 2008). Both procedures cause anatomical rearrangements that directly change gastrointestinal anatomy and function, accelerating food transit and altering hormonal regulation (Tice et al., 2008; Tran et al., 2016). While weight loss could be more pronounced in patients undergoing RYGB compared to SG after two years, the risk for post-surgical complications is greater in patients who have undergone RYGB (Lager et al., 2016). Other studies indicate that RYGB significantly outperforms SG in achieving glycated haemoglobin (HbA1C) values under 7.0% without medications (Schauer et al., 2014). In aggregate, these observations make interesting to understand the changes in the gut microbiota associated to both surgeries.

The intestinal microbiota has been shown to have a strong impact on host health and is considered a metabolic organ. It consists of a dense community of microorganisms that matches the number of cells of the human body (Sender et al., 2016). The influence of the gut microbiota is better exemplified at the metabolic level, since the microbiota synthesizes vitamins and amino acids absorbed by the epithelium (LeBlanc et al., 2013). Additionally, it is capable of fermenting
complex dietary polysaccharides and other dietary sources, resulting in the production of short
chain fatty acids (SCFA) such as acetate, propionate and butyrate (Cook and Sellin, 1998; Hijova
and Chmelarova, 2007; Morrison et al., 2016). These acids modulate physiological processes in
several tissues, such as insulin sensitivity, liver function and cholesterol metabolism (Todesco et
al., 1991; Demigné et al., 1995; Fushimi et al., 2006; Gao et al., 2009; den Besten et al., 2013).
Furthermore, the gut microbiota plays important roles in the development of the immune system
and the maintenance of intestinal epithelium integrity (Sekirov et al., 2010).

Certain studies have linked obesity with changes in the composition and metabolic function
of the gut microbiota (Bäckhed et al., 2004; Ley et al., 2005; Turnbaugh et al., 2006; Tremaroli et
al., 2015; Palleja et al., 2016). The gut microbiota is dominated by species that belong mainly to
the Firmicutes and Bacteroidetes phylum, and to a lesser degree to Actinobacteria, Proteobacteria
and Verrucomicrobia (Qin et al., 2010). In obese subjects, it has been observed a decrease in the
relative proportion of the Bacteroidetes/Firmicutes ratio, compared to lean people. Interestingly,
this phenotype is transmissible to mice. Moreover, this proportion appears increased after weight
loss on two low-calorie diets (Ley et al., 2006). These taxonomical differences in the gut
microbiota of obese subjects might contribute to obesity in several ways, including energy
extraction from the diet (Turnbaugh et al., 2006), mainly from SCFA, together with an increase in
low-grade inflammation and altered bile acid metabolism (Khan et al., 2016).

Interestingly, bariatric surgery also induces important changes in the composition of the
gut microbiota of patients undergoing these procedures (Zhang et al., 2009; Li et al., 2011; Kong
et al., 2013). The main changes reported after surgical intervention includes increases in
Proteobacteria (E. coli, Enterobacter spp.), decreases in Clostridium and changes in Bacteroides
and Prevotella (Zhang et al., 2009; Furet et al., 2010; Li et al., 2011; Huttenhower et al., 2012;
Furthermore, it has been reported that these taxonomical and functional changes in the microbiota are stable nine years after RYGB intervention (Tremaroli et al., 2015). Whether the observed changes in microbiota composition contribute to weight loss or they are just a consequence of the surgical procedure is unclear. In a mouse model, transfer of the gut microbiota from RYGB-operated to germ-free mice induced weight loss and decreased fat mass in comparison with germ-free animals colonized with microbiota from sham-operated animals (Liou et al., 2013). This suggested that the gut microbiota is an active player in weight loss in obesity surgery, and that weight loss is a transmissible trait of the microbiota post-surgery. On the other hand, a recent report showed that in one person, fecal microbiota from a healthy but overweight donor induced obesity (Alang & Kelly, 2015).

Sleeve gastrectomy and gastric bypass are common bariatric procedures that exert different physiological changes in the gastrointestinal tract, possibly inducing different changes in the gut microbiota that may contribute to different health outcomes. Unfortunately, this has been studied mostly using animal models and more evidence is needed to correlate changes in microbiota compositions with health markers. To provide further information regarding the impact of bariatric surgery treatments on the gut microbiota composition, in this work we compared the changes in clinical parameters and microbiota composition in subjects undergoing medical dietary treatment (MT), sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB).

Material and Methods

Patient inclusion and clinical parameters
This study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of the Faculty of Medicine, Pontificia Universidad Catolica de Chile. All study participants provided written informed consent. Participants of this study were recruited from eligible candidates of the Obesity Program from Red de Salud UC-Christus. Eligible subjects were men or women, 18 to 60 years old with a body mass index (BMI) 30 to 50 kg/m². Women who were pregnant or with the intention to get pregnant were excluded. Other exclusion criteria include chronic antibiotic use, record of small intestine and/or colon resection, intestinal inflammatory diseases and probiotic consumption. A total of 19 patients were recruited. Nine patients following medical dietary treatment (MT), based in hypocaloric diet combined with moderate physical activity three times per week, in addition to a monthly doctor visit for twelve months. In addition, five recruited patients underwent Roux-en-Y gastric bypass (RYGB) and five sleeve gastrectomy (SG), with a 5-trocar technique as described previously (Escalona et al., 2007; Boza et al., 2012). Patients undergoing either RYBG or SG received nutrient supplementation during the follow-up period such as multivitamin supplements, iron, vitamin B12 and calcium, and were instructed to follow a hypocaloric diet.

Anthropometric and clinical parameters were obtained in a clinical assessment. The patients were evaluated in three opportunities (baseline evaluation before medical intervention, 6 and 12 months post treatment), which consisted of anthropometry measurements (weight and size), laboratory studies taking blood sample (lipids, HOMA and HbA1c). Patients were instructed to bring a homogenized fecal sample in a sterile container the day of the evaluation, which was transported in ice and immediately stored at -80 °C.

Descriptive statistical parameters (mean and standard deviation), and significant differences between clinical data were estimated by non-parametric unpaired Wilcoxon rank-sum
test at 0.05 significance level. Mean differences between phylum changes were contrasted using parametric unpaired t-test at 0.05 significance level. Pairwise Spearman Rank correlations between clinical parameters changes and bacterial variation were done using R statistical environment (R Core Team, 2013).

DNA isolation

Fecal samples were thawed and 150 mg were used for total DNA isolation using the ZR Fecal DNA MiniPrep kit (Zymo Research, USA) following manufacturer instructions and using a Disruptor Genie device (Scientific Industries, USA). Total DNA concentration was measured in a NanoDrop 2000c device (Thermo Fisher Scientific, USA).

Analysis of gut microbiota by 16S rRNA gene sequencing

Fecal DNA samples were diluted to 20 ng/µl in Nuclease-free water (IDT, USA) and submitted for Illumina MiSeq sequencing to Molecular Research DNA sequence services (MR-DNA, USA). The 16S rRNA gene V3 to V4 variable region was amplified using the 341F and 785R primers (Klindworth et al., 2013), adding a barcode on the forward primer. The reaction was performed in 30 cycles using the HotStarTaq Plus Master Mix Kit (Qiagen, USA). After amplification, PCR products were checked in a 2% agarose gel. Multiple samples were pooled together and purified using calibrated Ampure XP beads (Agencourt Bioscience Corporation, USA). The pooled and purified combined PCR products were used to prepare a DNA library using TruSeq DNA LT Sample Prep Kit (Illumina, USA) following manufacturer instructions. Sequencing was performed using MiSeq platform (Illumina, USA) by paired-end sequencing.
The Quantitative Insights Into Microbial Ecology (QIIME, v1.9.1) software was used to analyze the 16S rRNA sequences (Caporaso et al., 2010; Navas-Molina et al., 2013). Briefly, chimera sequences were removed, then paired sequences joined and barcode was depleted. Operational taxonomic units (OTUs) were picked by closed reference command and defined by clustering at 1% divergence (99% similarity) using as reference the GreenGenes database (DeSantis et al., 2006; McDonald et al., 2012) release 05-2013. Low sequence counts were filtered from BIOM table using the minimum value of count/sample between all samples. To compare phylum level changes, OTUs belonging to phyla with less than 1% representation were removed. Alpha and Beta diversity were calculated using QIIME. BIOM OTU table and weighted Unifrac tables were exported from QIIME to R environment (R Core Team, 2013) for statistical analysis and figure representation. The raw data reads obtained from the MiSeq platform were stored in SRA NCBI online public database with accession number SRP076859 (http://www.ncbi.nlm.nih.gov/sra/SRP076859).

qPCR amplification

In order to validate 16S rRNA gene sequencing results, quantitative PCR analysis was performed in fecal DNA samples using specific primers (Supplementary Table 1) that were previously described (Rinttilä et al., 2004; Fierer & Jackson, 2005; Frank et al., 2007; Bacchetti De Gregoris et al., 2011). Amplification and detection were carried out in a StepOnePlus equipment (Applied Biosystems, USA), using 96-well optical plates MicroAmp Fast Optical (ThermoFisher, USA), filled with a mixture containing for each well 5 µl of PowerUp SYBR Master Mix or Fast SYBR Green Master Mix (Applied Biosystems, USA), 0.3 µM of each primer (0.3 µl each), 4.4 µl nuclease-free water (IDT, USA) and 1 µl of DNA previously diluted to 10
ng/µl. DNA samples were amplified with an initial hold of 50 °C for 2 min and a polymerase
activation step of 95 °C for 2 min for PowerUp SYBR Master Mix, or 95 °C for 20 s for Fast
SYBR Green Master Mix, followed by 40 cycles of a denaturation at 95 °C for 3 s and 62 °C for
30 s annealing and elongation. To verify a single amplification peak, a melting curve was
performed by incrementing the temperature from 62 °C to 95 °C. All the samples were amplified
in triplicate, and to correct primer efficiency, each plate contained a standard curve with ten-fold
dilutions of genomic DNA of one species of the corresponding phylum, starting from 10 ng of
DNA of the following microorganisms. *Firmicutes: Lactobacillus acidophilus* ATCC 4356;
Bacteroides: B. dorei CL03T12C01, HM-718; NIAID, NIH; *Actinobacteria: Bifidobacterium
longum* subsp. *infantis* ATCC 15697; *Proteobacteria: Escherichia coli* K12. The 16S rRNA gene
copy number for each phylum in each sample was estimated from the corresponding standard
curve and adjusted by the average genome 16S rRNA gene copy number of bacteria. To convert
bacterial DNA amounts into copy number, the following equation was applied:

\[
\text{Copy number } 16S \text{ rRNA gene} = \frac{\text{Avogadro } N^0 (\text{mol}^{-1}) \times \text{DNA quantity } (g) \times \text{Genome } 16S \text{ copy number}}{\text{Genome } (\text{pb}) \times 660 \left(\frac{g}{\text{mol}}\right)}
\]

Results

Effect of obesity treatments on clinical parameters

In this study we compared the impact of three treatments for obesity on the gut microbiota,
which included 19 patients who have undergone SG or RYGB, or received MT. Clinical data and
fecal samples were collected before the medical intervention, and after six and twelve months post-
treatment.
Six months after surgery, both RYGB and SG patients showed a marked weight loss, accompanied by significantly lower BMI values (28% and 29% decrease) and significant waist and hip perimeter reduction (Table 1 & Supplementary Table 2). In contrast, patients on MT showed similar weight after six months of treatment with no major improvements in their anthropometric parameters (2.8% reduction in BMI).

Other specific signatures were found in the clinical markers of this cohort (Table 1). In RYGB and SG treatments, we observed a decrease in insulin levels and glycemia, however these levels maintained in a normal range. Importantly, surgery led to a significant improvement in insulin sensitivity (HOMA < 3) after treatment. No statistical significant changes were observed in lipid metabolism markers, nevertheless cholesterol and triglycerides tended to decrease in RYGB after surgery (Supplementary Table 2). In contrast to the above observations, none of these clinical parameters improved in MT patients. The general clinical observations presented here appeared stable after 12 months of treatment (Supplementary Table 2).

Obesity treatments induce global microbiota changes

Next, we determined the composition of the gut microbiota of these patients before and six months after each treatment. The hypervariable regions V3-V4 of the 16S rRNA gene in each fecal DNA sample was amplified by PCR and the products were sequenced by MiSeq Illumina platform. We obtained over 2 million reads in 38 samples, which includes DNA from before and after 6 months of obesity treatment. Rarefaction curves of the number of OTUs at different sequencing depths were obtained for each DNA sample (Figure 1A), and they indicated saturation near 25,000 sequences. To evaluate microbiota composition of each patient, beta diversity was calculated, which estimates the degree of similarity of each sample in terms of their microorganism
composition. Weighted Unifrac metric indicated that microbiota composition of MT patients was similar between 0 and 6 months (Figure 1B). In contrast, the microbiota of patients undergoing RYGB cluster together at the beginning of the study, but after treatment its composition was divergent (Figure 1C). Conversely, microbiota composition in SG group was divergent before the medical intervention but after treatment the compositions of 3 patients clustered closely (Figure 1D).

On average, more than 99% of sequences aligned to the phyla *Firmicutes*, *Bacteroidetes*, *Actinobacteria* and *Proteobacteria*, with the first two being dominant in these samples (Figure 2A). Changes in the representation of each phylum in patients in each treatment were then expressed as the ratio of the relative abundance after the intervention compared to pre-treatment (Figure 2B, Figure 2C and Figure 2D). In MT patients, no major changes were observed in any of these bacterial groups after six months, consistent with their poor response to the treatment. In contrast, important changes were observed in RYGB and SG patients. In the RYGB group, both *Bacteroidetes* and *Proteobacteria* increased in abundance (Figure 2D), while in SG patients we observed an increase in *Proteobacteria*, but a decrease in *Bacteroidetes* (Figure 2C). *Firmicutes* abundance was mostly unaffected in these patients. These different changes in microbiota also caused an increase in the *Bacteroides/Firmicutes* ratio in SG patients (Figure 2E), and conversely a strong decrease in the RYGB group, consistent with previous reports (Li et al., 2011; Kong et al., 2013; Walters, Xu & Knight, 2014). Abundance and microbial composition obtained from 16S rRNA gene sequencing at genus-species level is summarized in Supplementary Table 3 for each group.

In order to address to validate the 16S RNA gene sequencing results, the composition of the microbiota of these patients was also evaluated by qPCR, quantifying the abundance of the
phyla Actinobacteria, Firmicutes and Bacteroides, and the order Enterobacteriales. These results showed a good correlation with data obtained by MiSeq. MT patients did not show major microbiota changes after six months of treatment (Figure 3A). In RYGB patients, we observed an increase in Bacteroidetes and a decrease in Firmicutes abundance (Figure 3B). Actinobacteria also appeared in higher amounts in these patients. In contrast, in SG patients the abundance of Bacteroidetes decreased, while the Firmicutes and Enterobacteriales proportions increased. This in turn caused a reduction in the ratio Bacteroidetes/Firmicutes (Figure 3D), similar to our previous observations by 16S rRNA gene sequencing (Figure 2D). qPCR raw data and gene copy number for each group are included in Supplementary Table 4, while phylum relative abundance measured by qPCR and 16S rRNA sequencing is presented in Supplementary Table 5.

A correlation analysis comparing the abundance of each microbiota across all patients is represented in Figure 4. This analysis shows that in general the initial microbiota abundance of most patients was uniformly correlated (R Spearman > 7). However, after six months of each treatment, microbiota abundance of RYGB subjects was very heterogeneous, in contrast to MT and SG subjects which grouped according to their respective treatment (Figure 4B).

Microbial signatures for each obesity treatment

The most abundant genera or species that displayed the highest change in abundance after each obesity treatment (determined by 16S rRNA sequencing) is shown in Table 2. These bacteria mostly belong to the Firmicutes phylum. Changes in the microbiota of MT patients were less pronounced compared to the surgical treatments. In the RYGB group, Succiniclasterum sp. displayed a significant increase, as well as a few Bacteroides and Citrobacter species (Table 2). A Bulleidia OTU displayed the highest fold change in the SG group, followed by Escherichia coli and Akkermansia muciniphila OTUs. Other interesting signatures observed include an increase of
Streptococcus luteciae in both RYGB and SG patients. Species such as Bacteroides eggerthii, Bacteroides coprophilus and Lactobacillales sp. showed an important increase in RYGB subjects, but a marked down-representation after six months in the SG group.

Associations between microbiota changes and clinical markers

Finally, we evaluated whether changes in microbiota composition in each group correlated with clinical and anthropometric data collected. Certain positive and negative associations between microbial changes and clinical markers after 6 months of each treatment were found, using Pairwise Spearman Rank correlation analysis (Figure 5). Only a few of them were statistically significant (p-value < 0.05). In MT patients, no significant correlations were observed. Changes in Proteobacteria positively correlated with weight loss and bilirubin levels in RYGB patients. In addition, a negative association between Actinobacteria and liver markers such as Gamma-glutamyl transpeptidase and alkaline phosphatase was obtained. In the SG group, hip and waist perimeter reduction correlated negatively with Proteobacteria and Actinobacteria, and positively with Firmicutes abundance. In this group most significant clinical changes were associated with the reduction in Bacteroidetes, such as liver markers and HbA1c.

Discussion

In this study we compared the impact of three different obesity treatments on the gut microbiota and we investigated how these changes correlated with clinical markers. BS procedures are well known for causing a marked weight loss, and importantly reducing the incidence of comorbidities such as type 2 diabetes (Sjöström et al., 2007; Sjöström, 2008; Eldar et al., 2011).
A direct contribution of the gut microbiota post-surgery in weight loss and reduced adiposity has been shown in animal models (Liou et al., 2013). Moreover, the impact of these surgeries on the microbiota have been shown to be stable in the long-term (Tremaroli et al., 2015).

The size of the study was relatively small, which might limit certain observations. However, other similar studies have been conducted in small cohorts (Zhang et al., 2009; Graessler et al., 2013; Damms-Machado et al., 2015; Tremaroli et al., 2015; Palleja et al., 2016), and changes in the gut microbiota of these subjects are clear.

Both RYGB and SG induce different rearrangements in the gastrointestinal tract, and therefore it is expected that they also cause changes in the gut microbiota composition. Most studies to date have focused on the impact of RYGB procedures on the gut microbiota, and little research has been done on SG. Previous clinical studies have shown clear alterations in the microbiota associated to these treatments, especially in *Proteobacteria* (such as *E. coli*) (Zhang et al., 2009; Furet et al., 2010; Kong et al., 2013; Tremaroli et al., 2015; Palleja et al., 2016). Evidence in animal models indicate a similar pattern of microbiota alteration (Liou et al., 2013; Shao et al., 2016). In concordance with previous studies, an important increase in *Proteobacteria* in RYGB and SG was observed in this study. The overgrowth of these microbes could be associated with increases in luminal acidity and dissolved oxygen after these procedures, conditions that largely favour the growth of enterobacteria (Duncan et al., 2009). It could also be that *Escherichia* contributes to a more efficient energy harvest after BS during the initial nutritional starvation (Tennant et al., 1968).

In addition, we observed that the phylum *Bacteroidetes* was increased in RYGB patients, however it was down-represented in SG subjects. The physiological changes associated with these treatments, and their consequences may explain these differences, as *Bacteroides* species are
dominant in the adult microbiome, and are well known for their foraging ability for complex polysaccharides. Furthermore, these species are also favoured by less acidic luminal pH (Duncan et al., 2009).

Previous studies regarding changes in microbiota associated to BS have also shown changes in key microorganisms of the microbiome. For example, *Akkermansia muciniphila* has a remarkable mucin degrading ability, and it has been shown to prevent inflammation and adipose tissue alterations (Schneeberger et al., 2015). Mouse and clinical data have shown an increase in the abundance of this species after RYGB (Liou et al., 2013; Palleja et al., 2016), and here we observed a similar trend on SG patients. *Faecalibacterium prausnitzii*, a key species in the gut microbiome (Miquel et al., 2015), appeared under-represented post RYGB (Palleja et al., 2016).

Sequencing data in this study also revealed other signature species with interesting changes. *Streptococcus luteciae* (*Firmicutes*), increased its abundance means several fold in RYGB and SG, but decrease in MT. A *Lactobacillales* OTU, *Bacteroides coprophilus* and *Bacteroides eggerthii* were increased after RYGB but underrepresented post SG surgery. Conversely, a *Bulleidia* OTU (*Firmicutes*) showed the highest increase after SG but reduced its abundance several fold post RYGB. It is possible that the enrichment or depletion of these microorganisms in the gut microbiota might contribute to the positive health outcomes of RYGB and SG.

Is important to take into consideration that fecal microbiota is more representative of the large intestine, and evaluating the changes in upper parts of the intestine is difficult to achieve (Goodrich et al., 2014). Moreover, gut microbiota composition is influenced by geography distribution (De Filippo et al., 2010; Yatsunenko et al., 2012). Dietary and caloric restriction might also have a direct impact in the gut microbiota after obesity surgery (Buchwald et al., 2004). However, in this study we observed that medical treatment, consisting of an intervention with a
low calorie diet and physical activity, does not result in significant changes in the gut microbiota or weight markers.

Finally, we found certain significant associations between changes in bacterial phyla abundance and clinical parameters after surgery. For example, changes in *Proteobacteria* correlated negatively with weight and BMI in RYGB patients, and in SG patients we observed that *Bacteroidetes* correlated with certain blood and hepatic markers. It would be interesting to determine if these associations in humans are causative or are a consequence of each surgical procedure. Unfortunately, this study is correlational, and therefore further functional studies are needed to understand the role of the gut microbiota in weight loss and metabolic improvements observed after bariatric surgery, as observed in animals (Liou *et al.* 2013; Tremaroli *et al.* 2015).

At least in mice, two studies have shown that the microbiota post-RYGB is capable of transmitting the weight loss and reduced adiposity to germ-free mice, indicating a causal relationship of the microbiota influencing metabolic processes (Liou *et al.* 2013; Tremaroli *et al.* 2015). In humans, a recent report showed that fecal microbiota transplantation from a healthy but overweight donor induced obesity in one person (Alang & Kelly, 2015).

It is probable that advances in functional metagenomics, and measuring additional clinical markers such as bile salts and hormone production, could provide a better description of the role of the gut microbiota in health in the context of bariatric surgery. Also including larger cohorts, evaluated for longer periods, might provide more solid answers. These studies will definitely help to improve surgical procedures, and eventually design microbiome based bacto-therapies aimed to treat metabolic disorders.

Conclusions
In this study we determined the impact of two bariatric procedures at the same time scale on the gut microbiota, including a comparison with the effect of medical treatment on human subjects. While no major changes were observed on weight, clinical markers or the microbiota of subjects on MT, both RYGB and SG caused major adjustments in the gut microbiota, which correlated with certain anthropometric or metabolic parameters. An increase in *Proteobacteria* was observed six months after both RYGB and SG, whereas *Bacteroidetes* increased in RYGB but decreased in SG. These alterations are probably caused by the physiological rearrangements of the gastrointestinal tract, and may in fact contribute to weight and metabolic improvement in these subjects.

Bibliography

Alang N., Kelly CR. 2015. Weight Gain After Fecal Microbiota Transplantation. *Open Forum Infectious Diseases* 2:ofv004-ofv004. DOI: 10.1093/ofid/ofv004.

Bacchetti De Gregoris T., Aldred N., Clare AS., Burgess JG. 2011. Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. *Journal of Microbiological Methods* 86:351–356. DOI: 10.1016/j.mimet.2011.06.010.

Bäckhed F., Ding H., Wang T., Hooper L V., Koh GY., Nagy A., Semenkovich CF., Gordon JI. 2004. The gut microbiota as an environmental factor that regulates fat storage. *Proceedings of the National Academy of Sciences of the United States of America* 101:15718–23. DOI: 10.1073/pnas.0407076101.

den Besten G., van Eunen K., Groen AK., Venema K., Reijngoud D-J., Bakker BM. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. *Journal of Lipid Research* 54:2325–2340. DOI: 10.1194/jlr.R036012.
Boza C., Salinas J., Salgado N., Pérez G., Raddatz A., Funke R., Pimentel F., Ibáñez L. 2012. Laparoscopic sleeve gastrectomy as a stand-alone procedure for morbid obesity: Report of 1,000 cases and 3-year follow-up. *Obesity Surgery* 22:866–871. DOI: 10.1007/s11695-012-0591-6.

Buchwald H., Avidor Y., Braunwald E., Jensen MD., Pories W., Fahrbach K., Shoelles K. 2004. Bariatric surgery. A Systematic Review and Meta-analysis. *JAMA: the journal of the American Medical Association* 292:1724–1737. DOI: 10.1016/j.mpsur.2008.09.006.

Caporaso JG., Kuczynski J., Stombaugh J., Bittinger K., Bushman FD., Costello EK., Fierer N., Peña AG., Goodrich JK., Gordon JI., Huttley GA., Kelley ST., Knights D., Koenig JE., Ley RE., Lozupone CA., McDonald D., Muegge BD., Pirrung M., Reeder J., Sevinsky JR., Turnbaugh PJ., Walters WA., Widmann J., Yatsunenko T., Zaneveld J., Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. *Nature methods* 7:335–6. DOI: 10.1038/nmeth.f.303.

Cook SI., Sellin JH. 1998. Review article: short chain fatty acids in health and disease. *Alimentary pharmacology & therapeutics* 12:499–507. DOI: 10.1046/j.1365-2036.1998.00337.x.

Cummings JH., Ccu O. 1981. Short chain fatty acids in the human colon. *Gut* 22:763–779. DOI: 10.1136/gut.22.9.763.

Demigné C., Morand C., Levrat M-A., Besson C., Moundras C., Rémy C. 1995. Effect of
Propionate on Fatty Acid and Cholesterol Synthesis and on Acetate Metabolism in Isolated Rat Hepatocytes. *The British Journal of Nutrition* 74:209–219. DOI: 10.1079/BJN19950124.

DeSantis TZ., Hugenholtz P., Larsen N., Rojas M., Brodie EL., Keller K., Huber T., Dalevi D., Hu P., Andersen GL. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. *Applied and Environmental Microbiology* 72:5069–5072. DOI: 10.1128/AEM.03006-05.

Duncan SH., Louis P., Thomson JM., Flint HJ. 2009. The role of pH in determining the species composition of the human colonic microbiota. *Environ Microbiol* 11:2112–2122. DOI: 10.1111/j.1462-2920.2009.01931.x.

Eldar S., Heneghan HM., Brethauer S a., Schauer PR. 2011. Bariatric surgery for treatment of obesity. *International journal of obesity (2005)* 35 Suppl 3:S16-21. DOI: 10.1038/ijo.2011.142.

Escalona A., Devaud N., Pérez G., Crovari F., Boza C., Viviani P., Ibáñez L., Guzmán S. 2007. Antecolic versus retrocolic alimentary limb in laparoscopic Roux-en-Y gastric bypass: a comparative study. *Surgery for Obesity and Related Diseases* 3:423–427. DOI: 10.1016/j.soard.2007.04.005.

Fierer N., Jackson J. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. *Applied and Environmental Microbiology* 71:4117. DOI: 10.1128/AEM.71.7.4117.

De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet JB., Massart S., Collini S., Pieraccini G., Lionetti P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. *Proceedings of the National
Academy of Sciences of the United States of America 107:14691–6. DOI: 10.1073/pnas.1005963107.

Frank DN., St Amand AL., Feldman RA., Boedeker EC., Harpaz N., Pace NR. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America 104:13780–5. DOI: 10.1073/pnas.0706625104.

Furet J., Kong L., Tap J., Poitou C., Basdevant A., Bouillot J., Mariat D., Henegar C., Rizkalla S., Cle K. 2010. Differential Adaptation of Human Gut Microbiota to bariatric surgery-induced weight loss. Diabetes 59:3049–3057. DOI: 10.2337/db10-0253.

Fushimi T., Suruga K., Oshima Y., Fukiharu M., Tsukamoto Y., Goda T. 2006. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. The British journal of nutrition 95:916–924. DOI: 10.1079/BJN20061740.

Gao Z., Yin J., Zhang J., Ward RE., Martin RJ., Lefevre M., Cefalu WT., Ye J. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517. DOI: 10.2337/db08-1637.

Gill RS., Majumdar SR., Rueda-Clausen CF., Apte S., Birch DW., Karmali S., Sharma AM., Klarenbach S., Padwal RS. 2016. Comparative effectiveness and safety of gastric bypass, sleeve gastrectomy and adjustable gastric banding in a population-based bariatric program: prospective cohort study. Canadian journal of surgery. Journal canadien de chirurgie 59:13315. DOI: 10.1503/cjs.013315.

Goodrich JK., Waters JL., Poole AC., Sutter JL., Koren O., Blekhman R., Beaumont M., Van Treuren W., Knight R., Bell JT., Spector TD., Clark AG., Ley RE. 2014. Human genetics shape the gut microbiome. Cell 159:789–799. DOI: 10.1016/j.cell.2014.09.053.
Graessler J., Qin Y., Zhong H., Zhang J., Licinio J., Wong M-L., Xu A., Chavakis T., Bornstein a B., Ehrhart-Bornstein M., Lamounier-Zepter V., Lohmann T., Wolf T., Bornstein SR. 2013. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. The Pharmacogenomics Journal:514–522. DOI: 10.1038/tpj.2012.43.

Gumbs AA., Gagner M., Dakin G., Pomp A. 2007. Sleeve gastrectomy for morbid obesity. Obesity Surgery 17:962–969. DOI: 10.1007/s11695-007-9151-x.

Hijova E., Chmelarova A. 2007. Short chain fatty acids and colonic health. Bratislavsk?? lek??rske listy 108:354–358. DOI: 10.1111/j.1365-2982.2011.01744.x.

Huttenhower C., Gevers D., Knight R., Abubucker S., Badger JH., Chinwalla AT., Creasy HH., Earl AM., FitzGerald MG., Fulton RS., Giglio MG., Hallsworth-Pepin K., Lobos EA., Madupu R., Magrini V., Martin JC., Mitreva M., Muzny DM., Sodergren EJ., Versalovic J., Wollam AM., Worley KC., Wortman JR., Young SK., Zeng Q., Aagaard KM., Abolude OO., Allen-Vercoe E., Alm EJ., Alvarado L., Andersen GL., Anderson S., Appelbaum E., Arachchi HM., Armitage G., Arze CA., Ayvaz T., Baker CC., Begg L., Belachew T., Bhonagiri V., Bihan M., Blaser MJ., Bloom T., Bonazzi V., Paul Brooks J., Buck GA., Buhay CJ., Busam DA., Campbell JL., Canon SR., Cantarel BL., Chain PSG., Chen I-MA., Chen L., Chhibba S., Chu K., Ciulla DM., Clemente JC., Clifton SW., Conlan S., Crabtree J., Cutting MA., Davidovics NJ., Davis CC., DeSantis TZ., Deal C., Delehaunty KD., Dewhirst FE., Deych E., Ding Y., Dooling DJ., Dugan SP., Michael Dunne W., Scott Durkin A., Edgar RC., Erlich RL., Farmer CN., Farrell RM., Faust K., Feldgarden M., Felix VM., Fisher S., Fodor AA., Forney LJ., Foster L., Di Francesco V., Friedman J., Friedrich DC., Fronick CC., Fulton LL., Gao H., Garcia N., Giannoukos G., Giblin C., Giovanni
MY., Goldberg JM., Goll J., Gonzalez A., Griggs A., Guija S., Kinder Haake S., Haas BJ.,
Hamilton HA., Harris EL., Hepburn TA., Herter B., Hoffmann DE., Holder ME., Howarth
C., Huang KH., Huse SM., Izard J., Jansson JK., Jiang H., Jordan C., Joshi V., Katancik
JA., Keitel WA., Kelley ST., Kells C., King NB., Knights D., Kong HH., Koren O., Koren
S., Kota KC., Kovar CL., Kyrpides NC., La Rosa PS., Lee SL., Lemon KP., Lennon N.,
Lewis CM., Lewis L., Ley RE., Li K., Lioios K., Liu B., Liu Y., Lo C-C., Lozupone CA.,
Dwayne Lunsford R., Madden T., Mahurkar AA., Mannon PJ., Mardis ER., Markowitz
VM., Mavromatis K., McCorrison JM., McDonald D., McEwen J., McGuire AL., McInnes
P., Mehta T., Mihindukulasuriya KA., Miller JR., Minx PJ., Newsham I., Nusbaum C.,
O’Laughlin M., Orvis J., Pagani I., Palaniappan K., Patel SM., Pearson M., Peterson J.,
Podar M., Pohl C., Pollard KS., Pop M., Priest ME., Proctor LM., Qin X., Raes J., Ravel J.,
Reid JG., Rho M., Rhodes R., Riehle KP., Rivera MC., Rodriguez-Mueller B., Rogers Y-
H., Ross MC., Russ C., Sanka RK., Sankar P., Fah Sathirapongsasuti J., Schloss JA.,
Schloss PD., Schmidt TM., Scholz M., Schriml L., Schubert AM., Segata N., Segre JA.,
Shannon WD., Sharp RR., Sharpton TJ., Shenoy N., Sheth NU., Simone GA., Singh I.,
Smillie CS., Sobel JD., Sommer DD., Spicer P., Sutton GG., Sykes SM., Tabbaa DG.,
Thiagarajan M., Tomlinson CM., Torralba M., Treangen TJ., Truty RM., Vishnivetskaya
TA., Walker J., Wang L., Wang Z., Ward D V., Warren W., Watson MA., Wellington C.,
Wetterstrand KA., White JR., Wilczek-Boney K., Wu Y., Wylie KM., Wylie T., Yandava
C., Ye L., Ye Y., Yooseph S., Youmans BP., Zhang L., Zhou Y., Zhu Y., Zoloth L., Zucker
JD., Birren BW., Gibbs RA., Highlander SK., Methé BA., Nelson KE., Petrosino JF.,
Weinstock GM., Wilson RK., White O. 2012. Structure, function and diversity of the
healthy human microbiome. Nature 486:207–214. DOI: 10.1038/nature11234.
Khan MJ., Gerasimidis K., Edwards CA., Shaikh MG. 2016. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. *Journal of Obesity* 2016:1–27. DOI: 10.1155/2016/7353642.

Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glöckner FO. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. *Nucleic Acids Research* 41:1–11. DOI: 10.1093/nar/gks808.

Kong L-C., Veronique Pelloux Basdevant AJA-W., Bouillot., Tap J-L., Zucker J., Jean-Daniel., Karine Cle’ment JD. 2013. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. *American Society for Nutrition* 98:16–24. DOI: 10.3945/ajcn.113.058743.Obesity.

Kral JG., Kava RA., Catalano PM., Moore BJ. 2012. Severe obesity: The neglected epidemic. *Obesity Facts* 5:254–269. DOI: 10.1159/000338566.

Lager CJ., Esfandiari NH., Subauste AR., Kraftson AT., Brown MB., Cassidy RB., Nay CK., Lockwood AL., Varban OA., Oral EA. 2016. Roux-En-Y Gastric Bypass Vs. Sleeve Gastrectomy: Balancing the Risks of Surgery with the Benefits of Weight Loss. *Obesity Surgery*:1–8. DOI: 10.1007/s11695-016-2265-2.

LeBlanc JG., Milani C., de Giori GS., Sesma F., van Sinderen D., Ventura M. 2013. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. *Current Opinion in Biotechnology* 24:160–168. DOI: 10.1016/j.copbio.2012.08.005.

Ley RE., Bäckhed F., Turnbaugh P., Lozupone CA., Knight RD., Gordon JI. 2005. Obesity alters gut microbial ecology. *Proceedings of the National Academy of Sciences of the United States of America* 102:11070–5. DOI: 10.1073/pnas.0504978102.
Ley R., Turnbaugh P., Klein S., Gordon J. 2006. Microbial ecology: human gut microbes associated with obesity. *Nature* 444:1022–3. DOI: 10.1038/nature4441021a.

Li J V., Ashrafian H., Bueter M., Kinross J., Sands C., le Roux CW., Bloom SR., Darzi A., Athanasiou T., Marchesi JR., Nicholson JK., Holmes E. 2011. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. *Gut* 60:1214–23. DOI: 10.1136/gut.2010.234708.

Liou AP., Liou AP., Paziuk M., Jr JL., Machineni S. 2013. Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. 41. DOI: 10.1126/scitranslmed.3005687.

McDonald D., Price MN., Goodrich J., Nawrocki EP., DeSantis TZ., Probst A., Andersen GL., Knight R., Hugenholtz P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. *The ISME journal* 6:610–8. DOI: 10.1038/ismej.2011.139.

Mechanick JI., Youdim A., Jones DB., Garvey WT., Hurley DL., Mcmahon MM., Heinberg LJ., Kushner R., Adams TD., Shikora S., Dixon J., Brethauer S. 2013. Clinical Practice Guidelines for the Perioperative Nutritional, Metabolic, and Nonsurgical Support of the Bariatric Surgery. *Surgery for Obesity and Related Diseases* 9:159–191. DOI: 10.1016/j.soard.2012.12.010.

Miquel S., Leclerc M., Martin R., Chain F., Lenoir M., Raguideau S., Hudault S., Bridonneau C., Northene T., Bowene B., Bermúdez-Humarán LG., Sokol H., Thomas M., Langella P. 2015. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. *mBio* 6:1–10. DOI: 10.1128/mBio.00300-15.

Morrison DJ., Preston T., Morrison DJ., Preston T. 2016. Formation of short chain fatty acids by...
the gut microbiota and their impact on human metabolism. *Gut Microbes* 976:1–12. DOI: 10.1080/19490976.2015.1134082.

Navas-Molina JA., Peralta-Sánchez JM., González A., McMurdie PJ., Vázquez-Baeza Y., Xu Z., Ursell LK., Lauber C., Zhou H., Song SJ., Huntley J., Ackermann GL., Berg-Lyons D., Holmes S., Caporaso JG., Knight R. 2013. Advancing our understanding of the human microbiome using QIIME. *Methods in Enzymology* 531:371–444. DOI: 10.1016/B978-0-12-407863-5.00019-8.

Palleja A., Kashani A., Allin KH., Nielsen T., Zhang C., Li Y., Brach T., Liang S., Feng Q., Jørgensen NB., Bojsen-møller KN., Dirksen C., Burgdorf KS., Holst JJ., Madsbad S., Wang J., Pedersen O., Hansen T., Arumugam M. 2016. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. *Genome Medicine*:1–13. DOI: 10.1186/s13073-016-0312-1.

Qin J., Balzola F., Bernstein C., Ho GT., Lees C., Bork P., Dusko E., Wang J. 2010. A human gut microbial gene catalogue established by metagenomic sequencing: Commentary. *Inflammatory Bowel Disease Monitor* 11:28. DOI: 10.1038/nature08821.

R Core Team. 2013. R Core Team. *R: A language and environment for statistical computing*. *R Foundation for Statistical Computing, Vienna, Austria*: ISBN 3-900051-07-0, URL http://www.R-project.org/.

Rinttilä T., Kassinen A., Malinen E., Krogius L., Palva A. 2004. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. *Journal of Applied Microbiology* 97:1166–1177. DOI: 10.1111/j.1365-2672.2004.02409.x.

Schauer PR., Bhatt DL., Kirwan JP., Wolski K., Brethauer SA., Navaneethan SD., Aminian A.,
Pothier CE., Kim ESH., Nissen SE., Kashyap SR. 2014. Bariatric Surgery versus Intensive Medical Therapy for Diabetes — 3-Year Outcomes. *New England Journal of Medicine* 370:2002–2013. DOI: 10.1056/NEJMoa1401329.

Schneeberger M., Everard A., Gómez-Valadés AG., Matamoros S., Ramírez S., Delzenne NM., Gomis R., Claret M., Cani PD. 2015. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. *Scientific reports* 5:16643. DOI: 10.1038/srep16643.

Sekirov I., Russell SL., Antunes LCM., Finlay BB. 2010. Gut Microbiota in Health and Disease. *Physiological Reviews* 90:859–904. DOI: 10.1152/physrev.00045.2009.

Shao Y., Ding R., Xu B., Hua R., Shen Q., He K., Yao Q. 2016. Alterations of Gut Microbiota After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy in Sprague-Dawley Rats. *Obesity Surgery*. DOI: 10.1007/s11695-016-2297-7.

Sjöström L. 2008. Bariatric surgery and reduction in morbidity and mortality: experiences from the SOS study. *International journal of obesity (2005)* 32 Suppl 7:S93–S97. DOI: 10.1038/ijo.2008.244.

Sjöström L., Narbro K., Sjöström CD., Karason K., Larsson B., Wedel H., Lystig T., Sullivan M., Bouchard C., Carlsson B., Bengtsson C., Dahlgren S., Gummesson A., Jacobson P., Karlsson J., Lindroos A-K., Lönroth H., Näslund I., Olbers T., Stenlöf K., Torgerson J., Agren G., Carlsson LMS., Swedish Obese Subjects Study. 2007. Effects of bariatric surgery on mortality in Swedish obese subjects. *The New England journal of medicine* 357:741–52. DOI: 10.1056/NEJMoa066254.

Tennant B., Malm OJ., Horowitz RE., Levenson SM. 1968. Response of germfree, conventional, conventionalized and E. coli monocontaminated mice to starvation. *The Journal of nutrition*
Tice JA., Karliner L., Walsh J., Petersen AJ., Feldman MD. 2008. Gastric Banding or Bypass? A Systematic Review Comparing the Two Most Popular Bariatric Procedures. *American Journal of Medicine* 121:885–893. DOI: 10.1016/j.amjmed.2008.05.036.

Todesco T., Rao a V., Bosello O., Jenkins DJ. 1991. Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. *The American journal of clinical nutrition* 54:860–5.

Tran DD., Nwokeabia ID., Purnell S., Zafar SN., Ortega G., Hughes K., Fullum TM. 2016. Revision of Roux-En-Y Gastric Bypass for Weight Regain: a Systematic Review of Techniques and Outcomes. *Obesity Surgery*. DOI: 10.1007/s11695-016-2201-5.

Tremaroli V., Karlsson F., Werling M., Stahlman M., Kovatcheva-Datchary P., Olbers T., Fandriks L., Le Roux CW., Nielsen J., Backhed F. 2015. Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. *Cell Metabolism* 22:228–238. DOI: 10.1016/j.cmet.2015.07.009.

Turnbaugh PJ., Ley RE., Mahowald M a., Magrini V., Mardis ER., Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. *Nature* 444:1027–31. DOI: 10.1038/nature05414.

Walters WA., Xu Z., Knight R. 2014. Meta-analyses of human gut microbes associated with obesity and IBD. *FEBS Letters* 588:4223–4233. DOI: 10.1016/j.febslet.2014.09.039.

World Health Organization. 2016.No Title. Available at http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed June 1, 2016).

Yatsunenko T., Rey FE., Manary MJ., Trehan I., Dominguez-Bello MG., Contreras M., Magris M., Hidalgo G., Baldassano RN., Anokhin AP., Heath AC., Warner B., Reeder J.,
Kuczynski J., Caporaso JG., Lozupone CA., Lauber C., Clemente JC., Knights D., Knight R., Gordon JI. 2012. Human gut microbiome viewed across age and geography. *Nature* 486:222–227. DOI: 10.1038/nature11053.

Zhang H., DiBaise JK., Zuccolo A., Kudrna D., Braidotti M., Yu Y., Parameswaran P., Crowell MD., Wing R., Rittmann BE., Krajmalnik-Brown R. 2009. Human gut microbiota in obesity and after gastric bypass. *Proceedings of the National Academy of Sciences of the United States of America* 106:2365–70. DOI: 10.1073/pnas.0812600106.
Figure 1

Rarefaction curves and Principal Component Analysis of the gut microbiota composition of the subjects of the study, obtained by 16S rRNA sequencing and QIIME.

A: rarefaction curves for all samples sequenced, indicating the number of OTUs observed with different sequencing depths; B, C and D: 2D-PCoA analysis of gut microbiota composition at time 0 (red squares) compared to 6 months after treatment (blue circles), for medical treatment subjects (MT), Sleeve Gastrectomy (SG) and Roux-en-Y Gastric Bypass (RYGB) groups.
Figure 2

Relative abundance of major bacterial phyla in the gut microbiota of the three groups of the study, before and after each treatment.

A: average relative abundance of four representative phyla (indicated in the upper part), at time 0 and 6 months, in medical treatment (MT), Sleeve Gastrectomy (SG) or Roux-en-Y Gastric Bypass (RYGB) groups; B, C and D: changes in the abundance of each phylum after/before each treatment. The phyla are represented from left to right side as Act (Actinobacteria), Bac (Bacteroidetes), Fir (Firmicutes), Pro (Proteobacteria). Values were expressed as fold change and log(2) normalized; E: Bacteroidetes/Firmicutes ratio at time 0 (red) and 6 months after treatment (light blue) for Medical Treatment (MT), Roux-en-Y gastric bypass (GB) and Sleeve Gastrectomy (SG). Asterisk indicates significant fold change differences (p-value < 0.05).
Figure 3

Changes in major phyla in the gut microbiota after each obesity treatment measured by qPCR.

A, B and C: ratio of the abundance of each phylum after/before each treatment. The changes are represented from left to right side as Act (*Actinobacteria*), Bac (*Bacteroidetes*), Fir (*Firmicutes*), Ent (*Enterobacteriales*). Values were expressed as fold change and log normalized. D: Ratio of *Bacteroidetes/Firmicutes* at time 0 (black) and 6 months after treatment (grey). Asterisk indicates significant fold change differences (p-value < 0.05).
Figure 4

Gut microbiota comparison across subjects before and after the obesity treatment.

Heatmap of pairwise Spearman Rank correlations for gut microbiota abundance, with other subjects in the study. A: Pairwise correlations for all subjects before each intervention (Medical Treatment (MT), Roux-en-Y Gastric Bypass (GB) and Sleeve Gastrectomy (SG); numbers indicate subjects); B: Pairwise correlations for all subjects six months after each treatment. Legend in the bottom indicates the scale of correlation across different gut microbiota compositions.
Figure 5

Figure 5: Correlations between clinical data change and gut microbiota variation.

Heatmap of pairwise Spearman Rank correlation analysis of microbiome changes with changes in clinical markers, considering data after and before the treatment. Data corresponds to subjects on Medical Treatment (A), Roux-en-Y gastric bypass (B) and Sleeve Gastrectomy (C). The phyla are represented from left to right side as Act (Actinobacteria), Fir (Firmicutes), Bac (Bacteroidetes) and Pro (Proteobacteria). Blue denotes a negative correlation while yellow indicates positive correlations. The asterisk denotes significant correlation values (p-value < 0.05).
Clinical and anthropometric parameters before (0 month) and after treatment (6 months).

Significant p-values (Mann-Whitney test) are denoted by bold numbers. MT: Medical Treatment, RYGB: Roux-en-Y Gastric Bypass, SG: Sleeve Gastrectomy
Table 1: Clinical and anthropometric parameters before (0 month) and after each obesity treatment (6 months). Significant p-values (Mann-Whitney test) are denoted by bold numbers. MT: Medical Treatment, RYGB: Roux-en-Y Gastric Bypass, SG: Sleeve Gastrectomy

Treatment (time)	MT (0 months)	MT (6 months)	p-value	RYGB (0 months)	RYGB (6 months)	p-value	SG (0 months)	SG (6 months)	p-value	
Anthropometric data										
Weight (kg)	102.3 ±23	99.5 ±23.7	0.479	100.1 ±11.6	72.1 ±11.2	**0.008**	88.9 ±7.5	62.7 ±4.2	**0.008**	
BMI (kg/m²)	38.9 ±5.8	37.8 ±6.7	0.86	37.1 ±2.8	26.7 ±3.1	**0.012**	35.2 ±2.4	24.9 ±2.9	**0.012**	
Waist circumference (cm)	107.8 ±13.4	99.3 ±16.6	0.269	102.6 ±12.5	76.4 ±7.1	**0.021**	95.2 ±10.5	73.6 ±8	**0.015**	
Hip perimeter (cm)	116.0 ±10.4	111.2 ±14.8	0.374	116.4 ±7.8	97.2 ±5.4	**0.016**	105.3 ±4.5	91.0 ±4.1	**0.036**	
Lipid metabolism										
Cholesterol (mg/dL)	185.6 ±35.4	178.0 ±15.5	0.825	216.8 ±88.5	148.6 ±39.8	0.095	174.2 ±21.1	171.4 ±15.4	0.841	
Triglycerides (mg/dL)	109.0 ±28.8	109.4 ±30.8	0.965	349.0 ±443.5	46.6 ±10.6	0.753	44.4 ±13.5	50.0 ±17	0.599	
HDL (mg/dL)	52.0 ±12.9	56.1 ±122	0.401	34.4 ±6.4	26.7 ±3.1	0.753	44.4 ±13.5	50.0 ±17	0.599	
LDL (mg/dL)	111.8 ±32.2	100.1 ±14.8	0.48	103.8 ±19	78.0 ±18	0.095	99.0 ±15.8	80.2 ±36.2	0.6	
Glucose metabolism										
Glycemia (mg/dL)	95.6 ±11.7	90.4 ±13.2	0.426	93.4 ±14.2	78.2 ±4.4	**0.032**	96.5 ±19.3	75.4 ±2.4	0.343	
Insulin (mcU/dL)	39.6 ±25.4	39.6 ±25.4	0.243	34.4 ±6.4	26.7 ±3.1	0.753	44.4 ±13.5	50.0 ±17	0.599	
HOMA	9.4 ±6.2	6.1 ±4.4	0.102	3.4 ±1.6	1.2 ±0.7	**0.008**	3.0 ±1.4	1.2 ±0.5	**0.032**	
HbA1c (%)	5.9 ±0.5	5.8 ±0.5	0.894	5.5 ±0.1	5.5 ±0.2	0.589	5.5 ±0.5	5.6 ±0.5	0.916	
Liver function										
SGOT (UI/L)	35.1 ±18	31.3 ±19.5	0.659	18.6 ±5	16.4 ±1.9	0.67	29.0 ±21.7	15.6 ±3	0.205	
SGPT (UI/L)	57.2 ±34.9	37.2 ±23.7	0.216	17.6 ±5.9	13.2 ±3.6	0.243	28.6 ±14.4	15.0 ±4.8	0.206	
GGT (UI/L)	48.2 ±40	36.4 ±39	0.17	17.0 ±1.9	8.6 ±1.7	**0.011**	23.2 ±14.1	11.0 ±1.6	**0.016**	
Phosphatase A (UI/L)	82.8 ±16.8	78.1 ±18.9	0.895	55.0 ±34.5	86.0 ±22.7	0.222	85.2 ±22.1	78.0 ±10.5	0.548	
Total Bilirubin (mg/dL)	0.4 ±0.2	0.5 ±0.2	0.387	0.3 ±0.1	0.4 ±0.2	0.548	14.6 ±31.5	0.4 ±0.3	0.548	
Direct Bilirubin (mg/dL)	0.2 ±0.06	0.2 ±0.1	0.142	0.1 ±0.03	0.2 ±0.1	0.074	0.2 ±0.1	0.2 ±0.1	0.675	
Total Protein (%)	97.1 ±15	104.8 ±14.4	0.401	98.4 ±4.7	91.4 ±11.6	0.248	97.0 ±5.1	101.2 ±11.2	0.527	
Plasmatic data										
Hto	43.0 ±3	42.3 ±3.3	0.596	39.6 ±3.9	35.9 ±4.9	0.222	41.0 ±2	38.3 ±3.2	0.222	
Table 2 (on next page)

Top ten OTUs (genera or species), with the highest fold change between 0 and 6 months after each treatment.

Abundance values are expressed as the average of each species abundance in all patients on each group and expressed as percentage. Fold change is the ratio 6 to 0 months and values are log(2) normalized.
Table 2: Top ten OTUs (genus or species), with the highest fold change abundance between 0 and 6 months after each treatment. Absolute abundance values were expressed as the average of each species abundance. Fold change is the log$_2$ normalized ratio 6 to 0 months. Unpaired t-test were used to find significant differences between averages.

Medical Treatment	0 m	6 m	Fold change	p-val	0 m	6 m	Fold change	p-val
Elusimicrobiaceae	0.11	4.89	5.46	0.34	1.4	140.6	6.65	0.34
RF32 sp.	3.22	81.67	4.66	0.30	0.8	69.8	6.45	0.35
Peptococcaceae rc4-4 sp.	0.22	2.44	3.46	0.20	1	86.2	6.43	0.35
Anaerobiospirillum sp.	1.67	16.89	3.34	0.38	1.2	88.2	6.20	0.35
Bacteroides ovatus	344.11	1794.67	2.38	0.19	3.8	154	4.66	0.35
Elusimicrobiaceae sp.	0.11	0.56	2.32	0.18	1	33.6	5.07	0.32
Eubacterium cylindroides	0.67	3.00	2.17	0.35	3	90.2	4.91	0.18
Bifidobacterium bifidum	51.33	206.22	2.01	0.27	0.8	16.2	4.34	0.37
Lachnobacterium sp.	57.44	218.56	1.93	0.42	16.8	287.8	4.10	0.35
Atopobium sp.	0.33	1.22	1.87	0.16	0.4	6.2	3.95	0.36
Akkermansia muciniphila	119.44	11.67	-3.36	0.10	184.8	20.8	-3.15	0.06
Turicibacteraceae Turicibacter sp.	19.11	1.78	-3.43	0.13	2.2	0.2	-3.46	0.34
Desulfovibrionaceae sp.	3.78	0.22	-4.09	0.23	351.8	26.4	-3.74	0.36
Leuconostocaceae sp.	2.22	0.11	-4.32	0.18	127.2	6	-4.41	0.37
Serratia sp.	5.22	0.22	-4.55	0.30	34.2	1.4	-4.61	0.36
Lactobacillus sp.	58.22	1.89	-4.95	0.33	429.8	12.2	-5.14	0.05
Streptococcus lactiae	264.78	7.11	-5.22	0.32	355.8	9.2	-5.27	0.26
Enterococcus sp.	541.89	9.89	-5.78	0.33	242	4.4	-5.78	0.09
Clostridium baratii	8.11	0.11	-6.19	0.33	560	7.2	-6.28	0.34
Enterococcus casseliflavus	57.56	0.33	-7.43	0.33	198.8	0.6	-8.37	0.35