Does COPD differ by veteran status in males 50-79 years of age?

Kole P Knutson, Jordan M Stellato, Kelli R Vogler, Jourdan B Whorley, Vic Holmes and Jessica L Hartos*

Department of Physician Assistant Studies, University of North Texas Health Science Center, USA

Abstract

Purpose: With little research addressing veteran status as related to COPD, the purpose of this study is to assess whether COPD differs by veteran status in males ages 50-79 in the general population.

Methods: This study was a cross sectional analysis using 2016 BRFSS data for males ages 50-79 in Arkansas (N=1283), Montana (N=1586), New Jersey (N=1842), Tennessee (N=1473), and West Virginia (N=1854). Multiple logistic regression analyses were performed by state to determine whether COPD status differed by veteran status when controlling for age, ethnicity, tobacco use, weight status, general health, asthma, income, education, and employment.

Results: Across states, less than one-fifth of participants reported COPD (9-18%), and 25-40% reported veteran status. After controlling for socioeconomic, demographic, and health factors, results showed significant consistent relationships between COPD and veteran status in three out of five states. COPD was also consistently related to tobacco use, general health, and having ever been diagnosed with asthma in all 5 states.

Conclusion: The results of this study indicated that veteran males ages 50-79 are about two times more likely to have COPD when compared to non-veteran males of the same age in the general population. Due to the low prevalence of COPD overall, it is recommended that health care providers screen for COPD in this target population when patients present with symptoms, especially for current or ex-military personnel. In addition, COPD was highly related to smoking, general health, and asthma. Providers should identify and treat COPD and any other health conditions concurrently to make sure they are managed properly. Most importantly, as COPD is a disease of chronicity, providers should educate and refer smokers as early as possible for assistance with smoking cessation.

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is defined as a progressive respiratory disease characterized by chronic airflow impedance [1-4]. COPD is not typically diagnosed until after lung function has already been nearly compromised [3] and it has been reported that an additional twelve million individuals are thought to be undiagnosed [5]. Past studies report that COPD could actually affect up to 16.8% of the population [4,6,7], and is a leading cause of death [2,3,8,9]. Additionally, several medical conditions have been reported as having a significant relationship with COPD including cardiovascular disease, ischemic heart disease, lung cancer, asthma, obesity, hypertension, diabetes, depression, anxiety, and obstructive sleep apnea [1,2,4,10,11].

Research has repeatedly indicated that COPD is highly related to tobacco use. Studies report that up to 90% of COPD patients identify as current or former smokers [1,2,4,5,9,12,13]. In addition, COPD patients are more likely to be white males [6-8,9,12] and have lower levels of income [7,12] and education [7,10].

COPD may also be related to veteran status. Several studies have determined the prevalence of COPD separately among the general population [6,12] and veteran population [13-16], but there is a lack of research comparing COPD status and veteran status [11,16]. One study, however, conducted at the Cincinnati Veterans Administration (VA) found that veterans had a higher rate of COPD when compared to the U.S. general population [16]. Furthermore, research has not adequately accounted for any age or gender differences in COPD status between these populations. Therefore, the purpose of this study was to assess whether COPD status differs by veteran status in males ages 50-79.

Methods

Design

This cross-sectional analysis used 2016 data from the Behavioral Risk Factor Surveillance System (BRFSS) conducted by the Center for Disease Control and Prevention (CDC) [17]. BRFSS collects health-related data annually through telephone interviews with adults in all fifty states, the District of Columbia, and three U.S. territories using random digit dialing techniques. The CDC compiles all BRFSS data and makes de-identified data available to researchers for secondary data analysis. This study was given exempt status by Institutional Review Board of The University of North Texas Health Science Center.

Sample

The samples for this study included males ages 50-79 from Arkansas (N=1,283), Montana (N=1,586), New Jersey (N=1,842), Tennessee (N=1,473), and West Virginia (N=1,854) with data for COPD. These states were chosen because they have a higher prevalence of veterans and reported COPD diagnosis when compared to other U.S. states [18].

*Correspondence to: Jessica L Hartos, Department of Physician Assistant Studies, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA, Tel: (817) 735-2454, Fax: (817) 7352529, E-mail: Jessica.hartos@unthsc.edu

Key words: veteran, COPD, smoking, male, adults, general population

Received: June 05, 2018; **Accepted:** June 22, 2018; **Published:** June 25, 2018
Data

The outcome, COPD status, was measured as ever/never diagnosed with "chronic obstructive pulmonary disease, chronic bronchitis, and/or emphysema" in the participant's lifetime. The factor of interest, veteran status, was measured as ever/never on active duty in the armed forces including "regular, Guard, and Reserve."

The control variables included age, ethnicity/race, smoker status, BMI, general health, asthma, income level, education level, and employment status. Age was dichotomized as "50-64 years of age" versus "65-79 years of age." Since the majority of the participants reported their ethnicity as White, ethnicity/race was dichotomized as "white, non-Hispanic" versus "other." Smoker status was categorized as "never smoker," "former smoker," and "current smoker." BMI was dichotomized as "overweight or obese" versus "not overweight or obese." In BRFFS, general health is defined as "poor health," "fair health," "good health," "very good health," and "excellent health."; however, due to low frequencies of participants with very good health and excellent health, four categories were used: "poor health," "fair health," "good health," and "very good/excellent health." Asthma was measured as ever/never being diagnosed with asthma. Income level was measured as an annual income of "$0 to less than $25,000," "$25,000 to less than $50,000," and "$50,000 or more." Education level was measured as yes/no graduated from college or technical school. Employment status was categorized as "wages/self-employed," "retired," or "other."

Analysis

Frequency distributions were used to describe the sample as well as to assess any issues with the distributions of variables. Multiple logistic regression analysis was used to assess the relationship between COPD status and veteran status while controlling for demographic, health, and socioeconomic factors. All analyses were conducted separately by state (instead of combining the data) to determine patterns in variable frequencies and socioeconomic factors. All analyses were conducted separately by state to assess any issues with the distributions of variables. Multiple logistic regression analyses for males ages 50-79 indicated that after controlling for all other variables in the model, COPD status were significantly related to veteran status in 3 out of 5 states. Veterans were about 2 times more likely to report COPD than non-veterans. In addition, former smokers were about 3 times more likely, and current smokers were about 4.5 times more likely, to report COPD compared to never-smokers in all five states. Also, those with asthma were about 4.5 times more likely to report COPD compared to those without asthma in all 5 states. In contrast, compared to those with poor health, those who reported fair, good, or very good/excellent health were about 2 to 11 times less likely to report COPD across states.

Discussion

The purpose of this study was to assess whether COPD status differed by veteran status in males ages 50-79 in the general population when controlling for demographic, health, and socioeconomic factors that may be related to COPD. Across states, less than one-fifth of participants reported ever being diagnosed with COPD, and at least one-fourth reported being a veteran. The results of adjusted analyses revealed that COPD status was significantly related to veteran status across states. These results are consistent with a study indicating that veterans may have higher rates of COPD than the general population [16]. In addition, our study found that being a former or current smoker was also significantly related to COPD status across all states, which is similar to many other studies that have reported strong relations between smoking and COPD [1,2,4,5,9,12,13]. Furthermore, our study supports the findings of other studies that indicate that fair or better health is inversely related to COPD [11,12] and asthma is highly related to COPD [7].

Smoking may contribute to the relationship between COPD and veteran status [19]. According to the CDC [20] veteran males have a higher prevalence of smoking than non-veteran males. However, even after controlling for smoking, veteran status still had a significant relationship with COPD. This would suggest that although smoking is related to COPD and veterans may smoke more than civilians, other factors related to veteran status contribute to COPD. Indeed, another study comparing COPD in different occupations found that serving in the armed forces was related to higher COPD rates than other occupations [14]. One such related factor may be higher exposure to hazardous agents in the military versus other occupations [14,19]. Future studies may want to include data for hazardous exposures that could contribute to veteran and non-veteran COPD status. Knowing whether or not people with COPD were exposed and/or continue to be exposed to hazardous agents could help practitioners screen earlier, modify treatment plans, and educate about reducing such exposures.

Limitations

Using BRFFS data allowed us to use state data most relevant to our clinical question. The large sample sizes allowed us to analyze the data based on the age and gender of our target population. However, our study findings may be limited by not having data for the severity of COPD, treatment modalities being used, or compliance with treatment plans [21]. Future studies should include such information. In addition, COPD rates in this study may be underestimated given that millions of individuals in the US population may have COPD but no formal diagnosis [5]. Future studies may define COPD status by symptoms rather than diagnosis in order to incorporate patients living with undiagnosed COPD.
Table 1. Participant Characteristics by State

Variable	Arkansas N=1283	Montana N = 1586	New Jersey N=1842	Tennessee N = 1473	West Virginia N = 1854
N	%	N	%	N	%
COPD diagnosis	1274 99	1576 99	1842 100	1464 99	1842 99
Yes	166 13	151 10	171 9	166 11	324 18
No	1108 87	1425 90	1671 91	1300 88	1518 82
Veteran status	1274 99	1576 99	1841 100	1464 100	1854 100
Yes	516 40	590 37	452 25	533 36	615 33
No	766 60	988 63	1389 75	935 64	1239 67
Age	1283 100	1586 100	1842 100	1473 100	1854 100
50-64	612 48	848 53	774 42	820 56	1047 56
65-79	671 52	738 47	1068 58	653 44	807 44
Ethnicity	1266 99	1561 98	1778 97	1440 98	1825 98
White, non-Hispanic	1019 80	1354 87	1391 78	1217 84	1,234 94
Other	247 20	207 13	387 22	234 16	106 6
Tobacco use	1241 97	1552 98	1782 97	1420 96	1814 98
Never smoked	502 41	683 44	873 49	577 41	704 39
Former smoker	511 41	632 41	656 37	564 40	735 41
Current smoker	228 19	237 16	253 14	279 20	375 21
Weight status	957 75	1199 76	1754 95	1099 75	1455 78
Overweight or obese	957 77	1199 78	1373 78	1099 77	1455 78
Not overweight or obese	278 23	344 22	381 22	325 23	338 19
General Health	1280 100	1581 100	1835 100	1471 100	1846 100
Poor	140 11	110 7	92 5	144 10	221 12
Fair	250 20	255 16	266 15	263 18	380 21
Good	446 35	497 31	584 32	500 34	600 33
Very good/excellent	444 35	719 45	893 49	564 38	645 35
Asthma	1282 100	1580 100	1837 100	1466 100	1846 100
Ever diagnosed	126 10	163 10	150 8	166 11	211 11
Never diagnosed	1156 90	1417 90	1687 92	1300 89	1635 89
Income	1084 84	1391 88	1555 84	1255 85	1554 84
S$0 to less than $25,000	294 27	348 25	293 19	353 28	469 30
$25,000 to less than $50,000	274 25	403 29	289 19	360 29	460 30
$50,000 or more	516 48	640 46	973 63	542 43	625 40
Education	1278 100	1581 100	1833 100	1469 100	1850 100
Did not graduate/technical school	455 36	543 34	851 46	477 32	521 28
Employment	1281 100	1574 99	1823 99	1462 99	1851 100
Wages/self-employed	469 37	802 51	917 50	637 44	688 37
Other	226 18	172 11	254 14	259 18	388 21
Retired	586 46	600 38	652 36	566 39	775 42

Table 2. Adjusted Results by State

Predicting COPD (diagnosis vs. no diagnosis)	Arkansas	Montana	New Jersey	Tennessee	West Virginia	
AOR	AOR	AOR	AOR	AOR	AOR	
95% CI Low	95% CI High		95% CI Low	95% CI High	95% CI Low	95% CI High
Veteran Status						
Non-veteran	ref	ref	ref	ref	ref	
Veteran	1.88	1.21	2.38	1.48	3.81	
Age						
50-64	ref	ref	ref	ref	ref	
65-79	0.87	0.75	2.26	1.45	2.54	
Ethnicity						
Other						
White, non-Hispanic	1.31	0.75	2.19	1.17	4.13	
Tobacco Use						
Former	2.86	1.62	3.94	2.14	7.26	
Current	4.59	2.43	6.37	3.19	12.71	
Weight Status						
Knutson KP (2018) Does COPD differ by veteran status in males 50-79 years of age?

Not overweight or obese	ref	-										
Overweight or obese	1.29	0.8	2.1	1.02	0.6	1.72	1.23	0.75	2.02	1.07	0.67	1.7
General Health												
Poor	ref	-										
Fair	0.37	0.2	0.66	0.5	0.26	0.96	0.78	0.41	1.48	0.53	0.3	0.95
Good	0.17	0.09	0.32	0.32	0.17	0.63	0.22	0.11	0.43	0.35	0.2	0.63
Very good/excellent	0.09	0.04	0.19	0.15	0.07	0.31	0.14	0.07	0.28	0.18	0.09	0.38

Asthma												
Never diagnosed	ref	-										
Ever diagnosed	4.62	2.67	7.99	8.74	5.22	14.63	9.78	5.86	16.32	4.72	2.92	7.61

Income												
$0 to less than $25,000	ref	-										
$25,000 to less than $50,000	1.03	0.6	1.78	0.51	0.29	0.89	0.52	0.29	0.94	0.72	0.44	1.17
$50,000+	0.75	0.41	1.35	0.69	0.38	1.24	0.61	0.35	1.07	0.63	0.35	1.13

Education												
Did not graduate college/tech school	ref	-										
Graduated college/tech school	1.05	0.62	1.77	0.99	0.6	1.65	0.53	0.32	0.88	0.95	0.55	1.64

Employment												
Wages/self-employed	ref	-										
Other	1.27	0.63	2.58	2.15	1.1	4.18	1.13	0.60	2.12	3.52	1.87	6.63
Retired	1.51	0.82	2.78	2.01	1.1	3.67	1.38	0.78	2.42	2.45	1.32	4.56

Conclusion

Because this is a population-based study, the results may generalize to men between the ages of 50-79 in primary care settings. Different results may be found in the Veteran Administration or pulmonology settings. Primary care providers may expect less than one-fourth of their patients in this target population to have a COPD diagnosis, with higher prevalence related to (a) undiagnosed persons and (b) current or former military. Health care providers should screen for COPD if patients in this target population present with symptoms of COPD such as chronic cough, shortness of breath, fatigue, wheezing, and/or frequent respiratory infections, with particular consideration for veterans. Primary care providers should work closely with pulmonology specialists in treatment plans for COPD. In addition, because there is a moderate prevalence of smokers within the target population and there is a high relation between smoking and COPD, providers should screen for both when patients present with symptoms of either. Providers should encourage, and provide resources for, tobacco cessation to reduce severity or complications for COPD or other health issues related to smoking. Lastly, because few patients in this target population have asthma, but asthma and COPD are highly related, providers should screen for both when patients present with symptoms of either. Providers should determine whether the patient's asthma is properly managed or if better management strategies or referrals are needed.

References

1. Mikkelsen RL, Middelboe T, Pisinger C, Stage KB (2004) Anxiety and depression is patients with chronic obstructive pulmonary disease (COPD). A review. Nordic J Psychiatry 58: 65-70. [Crossref]
2. Orens RL, Macera MM, Teodorescu M (2017) The overlaps of asthma or COPD with OSA: A focused review. Respiratology 22: 1073-1083. [Crossref]
3. Sogbetum F, Eschenbacher WL, Welge JA, Panos RJ (2016) A comparison of five surveys that identify individuals at risk for airflow obstruction and chronic obstructive pulmonary disease. Respir Med 120: 1-9. [Crossref]
4. Viegi G, Pistelli F, Sherrill DL, Maio S, Baldacci S, et al. (2007) Definition, epidemiology and natural history of COPD. Eur Respir J 30: 993-1013. [Crossref]
5. National Institutes of Health (2010) Chronic Obstructive Pulmonary Disease (COPD). https://report.nih.gov/nihfactsheets/viewfactsheet.aspx?csid=77.
6. Ford ES, Croft JB, Mannino DM, Wheaton AG, Zhang X, et al. (2013) COPD surveillance--United States, 1999-2011. Chest 144: 284-305. [Crossref]
7. Kim J, Kim YS, Kim K, Oh YM, Yoo KH, et al. (2017) Socioeconomic impact of asthma, chronic obstructive pulmonary disease and asthma-COPD overlap syndrome. J Thorac Dis 9: 1547-1556. [Crossref]
8. Centers for Disease Control and Prevention (2017) FastStats - Leading Causes of Death.
9. Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, et al. (2006) Global burden of COPD: systematic review and meta-analysis. Eur Respir J 28: 523-532. [Crossref]
10. Centers for Disease Control and Prevention (2017) Chronic Obstructive Pulmonary Disease (COPD).
11. Mapel DW, Dedrick D, Davis K (2005) Trends and cardiovascular co-morbidities of COPD patients in the Veterans Administration medical system, 1991-1999. COPD 2: 35-41. [Crossref]
12. Allen-Ramey FC, Gupta S, DiBonaventura (2012) Patient characteristics, treatment patterns, and health outcomes among COPD phenotypes. Int J Chron Obstruct Pulmon Dis 7: 779-787. [Crossref]
13. Thompson WH, St-Hilaire S (2010) Prevalence of chronic obstructive pulmonary disease and tobacco use in veterans at Boise Veterans Affairs Medical Center. Respir Care 55: 555-560. [Crossref]
14. Hnizdo E, Sullivan PA, Bang KM, Wagner G (2002) Association between chronic obstructive pulmonary disease and employment by industry and occupation in the US population: A study of data from the third national health and nutrition examination survey. Am J Epidemiol 156: 738-746. [Crossref]
15. Lam TH, He Y, Shi QL, Huang JY, Zhang F, et al. (2002) Smoking, quitting, and mortality in a Chinese cohort of retired men. Ann Epidemiol 12: 316-320. [Crossref]
16. Murphy DE, Chaudhry Z, Almoosa KF, Panos RJ (2011) High prevalence of chronic obstructive pulmonary disease among veterans in the urban Midwest. Mil Med 176: 555-560. [Crossref]
17. Centers for Disease Control and Prevention (CDC). (2014) About BRFS.
18. Centers for Disease Control & Prevention (CDC. (2016). BRFSS Prevalence & Trends Data.
19. Basaza R, Ortejo E, Musinguzi A, Mugyenyi P, Haddock CK (2017) Factors influencing cigarette smoking among soldiers and costs of soldier smoking in the work place at Kakiri Barracks, Uganda. Tobacco Control 26: 330-333.

Disord, 2018 doi: 10.15761/JDD.1000109 Volume 2(1): 4-5
Knutson KP (2018) Does COPD differ by veteran status in males 50-79 years of age?

20. Centers for Disease Control and Prevention (2012) Quick Stats: Current Smoking among Men Aged 25–64 Years, by Age Group and Veteran Status- National Health Interview Survey (NHIS), United States, 2007-2010. Morbidity and Mortality Weekly Report 61(45): 909-927. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6145a9.htm

21. Neugaard BI, Priest JL, Burch SP, Cantrell RC, Foulis PR (2011) Quality of care for veterans with chronic diseases: Performance on quality indicators, medication use and adherence, and health care utilization. Popul Health Manag 14: 99-106. [Crossref]

Copyright: ©2018 Knutson KP. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.