Unique Image Characteristics of an Occipital Primary Chondroblastic Osteosarcoma: A Rare Case Report and a Brief Literature Review

Xin He¹ Tingting Yuan¹ Yuzhu Yan¹ Jinlu Yu² Dan Tong¹

¹Department of Radiology, the First Affiliated Hospital of Jilin University, Changchun, China
²Department of Neurosurgery, the First Affiliated Hospital of Jilin University, Changchun, China

Abstract

Keywords
► chondroblastic osteosarcoma
► occipital bone
► skull base
► computed tomography
► magnetic resonance imaging

Primary osteosarcomas of the skull and skull base are rare and comprise < 2% of all skull tumors. In head and neck osteosarcomas, the chondroblastic subtype occurs most frequently, which has an exceedingly poor outcome, but its image characteristic remains unknown. Herein, we report a case in the right occipital bone of the skull base and the unique characteristics of image. Pathologic examination of the surgical specimens led to the diagnosis of chondroblastic osteosarcomas. We believe those image characteristics can improve the understanding of skull chondroblastic osteosarcoma and the preoperative diagnosis.

Introduction

Osteosarcoma (OS) develops most frequently in the extremities, and it is the most common histologic form of the primary bone cancers.¹ ² Head and neck OSs are rare, comprising only 6 to 10% of all OSs.³ ⁴ They typically present in the third or fourth decade of life and comprise only 1% of all pediatric head and neck malignancies. The most common craniofacial sites affected by OSs are the mandible and maxilla, followed by the calvaria and then the skull base.⁴ ⁶ On cytology, OS can be divided into several pathologic types, including the pleomorphic, epithelioid, chondroblastic, small cell, mixed, and osteoclast-like giant cell types.⁶ In head and neck OSs, the chondroblastic type occurs most frequently.⁷

Skull base OSs can be challenging to resect and an aggressive surgical approach can result in poor cosmetic outcome.⁸ Imaging plays a crucial role in the diagnosis of each subtype of OS and ultimately in patients’ survival because the diagnosis is based on a combination of histopathologic and imaging features. The therapeutic options and prognoses for different types of OS differ from each other, so correct diagnosis is essential.⁹ ¹⁰ Magnetic resonance imaging (MRI) or computed tomographic (CT) scan should be used to assess the extent of the primary tumor.¹¹

In this case report, we describe a pediatric patient of occipital OS of the chondroblastic type. The chondroblastic type of OS has an exceedingly poor outcome.¹² However, the detailed imaging description of such cases have not been reported in the previous literatures. We present the CT, MRI, and enhanced MRI features of this case, followed by a brief review of the related cases reported in the previous literatures

Case Report

A 9-year-old boy was admitted to our hospital with a major complaint of a growing mass on his head. Physical examination found a firm and tough mass on the right occipital that showed no tenderness upon palpation. CT scan showed the right occipital bone to be irregularly thickened with fluffy and cloudy calcification, with a mass deriving from the
internal occipital protuberance extending toward the basilar part of the occipital bone, invading the neighboring jugular foramen, the sublingual neural tube, and the mamillary process. On MRI, the lesion was 4.5- × 5.5- × 6.5-cm in size with calcifications areas of hypointensity in T1- and heterogeneous in T2-weighted series. Contrast MRI showed peripheral and septal enhancement in the interior side of the tumor (Fig. 1). Significant mass effect was present, distorting the cerebellar hemisphere, pons, and the forth ventricle, which led to hydrocephalus, and the oppression of the sigmoid sinus and the transverse sinus. Histopathology examination reported lace-like osteoid material abutting the neoplastic cells (Fig. 2), corresponding to the features of chondroblastic OS, and occipital bone chondroblastic OS was the final definitive diagnosis. A subtotal resection of the tumor was performed followed by radiation therapy. The patient died after half a year of local recurrence.

Discussion
Craniofacial OSs are rare. They typically present in the third or fourth decade of life, account for fewer than 5% of OSs in children, and comprise only 1% of all pediatric head and neck malignancies. The most common craniofacial sites are the mandible and maxilla, followed by the calvaria and then the skull base. Our case in the right occipital bone of skull base is a very rare location. A search of the English language literature revealed 22 cranial OSs previously reported in children (Table 1): 12 calvarial tumors and 10 tumors of the skull base. The mean age of the pediatric patients with cranial OS was 12.2 years old in this table. The patient in our case suffered at a younger age. On cytology, OS can be divided into pleomorphic, epithelioid, chondroblastic, small cell,
mixed, and osteoclast-like giant cell types. Our case is a chondroblastic subtype, which occurs most frequently in head and neck OSs.

The etiology of OS is unknown, but the major risk factors for development of OS in craniofacial bones may be similar to those of the long skeletal bones, consisting of exposure to radiation, retinoblastoma, Li-Fraumeni syndrome, and Paget’s disease. The skull is a favored site for OS arising out of Paget’s disease. Other bone abnormalities, such as fibrous dysplasia, multiple osteochondromatosis, chronic osteomyelitis, myositis ossificans, and trauma, have also been proposed as risk factors.

The presenting symptoms varied with the location of the tumors. The maxillary or cranial lesions usually produced no pain, which was in accordance with our case; however, mandibular tumors frequently presented with focal painful swelling. Other common presenting symptoms include headache, cranial nerve palsies, exophthalmos, and visual impairment due to different location of the tumor. CT best demonstrates tumor mineralization, especially when minimal, and it is usually able to demonstrate tumor extension into the soft tissues. Hemorrhage, necrosis, and unmineralized, chondroblastic, or fibroblastic components of the tumor will appear as areas of low attenuation on CT if present. Unlike any other conventional OSs, we see fluffy calcification in our case, and we believe it is a characteristic of OS. The osteoblastic subtype is most common with nearly 90% containing variable amounts of cloudlike opacities.

Table 1

Author and Year	Age at diagnosis	Location	Extent of resection	Adjuvant therapy	Follow-up	Outcome
Garland, 1945	17, M	Occipital	NR	RT	NR	NR
Reddy et al, 1973	8, F	Occipital	Biopsy	RT	NR	Dead, progressive disease
Goodman and McMaster, 1976	15, F	Parietal-occipital	NR	Chemotherapy and RT	6	Alive, disease free
Wang et al, 1981	17, M	Frontal-occipital	NR	RT	6	Dead, progressive disease
Benson et al, 1984	11, M	Frontal	NR	Chemotherapy	12	Alive, disease status
Sundaresan et al, 1985	11, M	Parietal	STR	STR	36	Alive, progressive disease
	13, F	Skull base			66	Alive, disease free
	11, M	Parietal	STR	Chemotherapy	9	Dead, progressive disease
	15, F	Frontal	GTR	Chemotherapy	144	Alive, disease free
Mark et al, 1991	14, M	Anterior skull base	NR	Chemotherapy and RT	12	Dead, progressive disease
Shramek et al, 1992	8, M	Parietal-occipital	GTR	Chemotherapy and RT	16	Alive, progressive disease
Salvati et al., 1993	11, M	Frontal-occipital	STR	RT	9	Dead, progressive disease
Chander et al, 2003	15, F	Frontal	GTR	Chemotherapy	NR	NR
Ellison et al, 1996	11, F	Skull base	STR	Chemotherapy	NR	NR
Gadwal et al, 2001	9, M	Sphenoid	NR	RT	9	Dead, progressive disease
	1, M	Sphenoid	NR	RT	NR	NR
Chennupati et al, 2008	14, F	Skull base	Biopsy	Chemotherapy	12	Alive, progressive disease
Kirby et al, 2011	16, M	Parietal	GTR	Chemotherapy	5	Alive, disease free
Oakley et al, 2011	15, M	Anterior skull base	GTR	Chemotherapy	NR	NR
Ohno et al, 2011	14, F	Anterior skull base	STR	Chemotherapy	26	Dead, progressive disease
Meel et al, 2012	10, M	Sphenoid	Biopsy	Chemotherapy	18	Alive, disease free
Caroline et al, 2014	14, M	Parietal	GTR	Chemotherapy	16	Alive, disease free
	12, M	Skull base	GTR	Chemotherapy	12	Alive, disease free
He et al, 2016	9, M	Occipital	STR	Chemotherapy	6	Dead, progressive disease

Abbreviations: GTR, gross total resection; NR, not reported; RT, radiation therapy; STR, subtotal resection.
in accordance with the current literature. Areas that demonstrate either a heterogeneous enhancement pattern or lack enhancement are the preferred sites for biopsy because they are more likely to contain both chondroid and osteoid elements that are necessary for the correct diagnosis.21,22 Chondrosarcomas show similar image characteristic, but they occur in an older age with a mean age of 57 years old. DWI can also help identify chondroblastic OS. Chondroblastic OSs also have significantly higher minimum and maximum apparent diffusion coefficient (ADC) values compared with other conventional OS subtypes, but they have a lower minimum ADC and similar maximum ADC value compared with chondrosarcoma.23

Skull base OSs can be challenging to resect, and an aggressive surgical approach can result in poor cosmetic outcome. Thus, skull base tumors have a poorer prognosis than mandibular or maxillary tumors.3 Complete surgical excision is the mainstay of treatment of the primary tumor. Local recurrence is the main reason of treatment failure and a high mortality in head and neck OSs. Positive margins and a high excision is the mainstay of treatment of the primary tumor. Therapeutic regimens.

This subtype has some particular image characteristic, which helps surgeons identify before surgery and set early therapeutic regimens.

References

1. Murphey MD, Robbin MR, McRae GA, Flemming DJ, Temple HT, Kransdorf MJ. The many faces of osteosarcoma. Radiographics 1997;17(05):1205–1231

2. Meel R, Thulkar S, Sharma MC, et al. Childhood osteosarcoma of greater wing of sphenoid: case report and review of literature. J Pediatr Hematol Oncol 2012;34(02):e59–e62

3. Mathkour M, Garces J, Beard B, Bartholomew A, Sulaiman OA, Ware ML. Primary high-grade osteosarcoma of the clivus: a case report and literature review. World Neurosurg 2016;89:730–736, e10

4. Hayashi T, Kuroshima Y, Yoshida K, Kawase T, Ikeda E, Mukai M. Primary osteosarcoma of the sphenoid bone with extensive periosteal extension—case report. Neurol Med Chir (Tokyo) 2000;40(08):419–422

5. Hadley C, Gressot LV, Patel AJ, et al. Osteosarcoma of the cranial vault and skull base in pediatric patients. J Neurosurg Pediatr 2014;13(04):380–387

6. Ha PK, Eisele DW, Frassica FJ, Zahurak ML, McCarthy EF. Osteosarcoma of the head and neck: a review of the Johns Hopkins experience. Laryngoscope 1999;109(06):964–969

7. White VA, Fanning CV, Ayala AG, Raymond AK, Carrasco CH, Murray JA. Osteosarcoma and the role of fine-needle aspiration. A study of 51 cases. Cancer 1988;62(06):1238–1246

8. Daw NC, Mahmoud HH, Meyer WH, et al; Jude Children’s Research Hospital Experience. Bone sarcomas of the head and neck in children: the St Jude Children’s Research Hospital experience. Cancer 2000;88(09):2172–2180

9. Yarmish G, Klein MJ, Landa J, Lefkowitz RA, Hwang S. Imaging characteristics of primary osteosarcoma: nonconventional subtypes. Radiographics 2010;30(06):1653–1672

10. Haque F, Fazal ST, Ahmad SA, Abbas ZN, Naseem S. Primary osteosarcoma of the skull. Australas Radiol 2006;50(01):63–65

11. Chennupati SK, Norris R, Dunham B, Kazahaya K. Osteosarcoma of the skull base: case report and review of literature. Int J Pediatr Otorhinolaryngol 2008;72(01):115–119

12. Chen Y, Shen Q, Gokavarapu S, et al. Osteosarcoma of head and neck: a retrospective study on prognostic factors from a single institute database. Oral Oncol 2016;58:1–7

13. Gadwal SR, Gannon FH, Fanburg-Smith JC, Becoskie EM, Thompson LD. Primary osteosarcoma of the head and neck in pediatric patients: a clinicopathologic study of 22 cases with a review of the literature. Cancer 2001;91(03):598–605

14. van den Berg H, Merks JH. Incidence and grading of cranio-facial osteosarcomas. Int J Oral Maxillofac Surg 2014;43(01):7–12

15. Gangadhar K, Santhosh D. Radiopathological evaluation of primary malignant skull tumors: a review. Clin Neurol Neurosurg 2012;114(07):833–839

16. Yamada SM, Ishii Y, Yamada S, Kuribayashi S, Kumita S, Matsuno A. Advanced therapeutic strategy for radiation-induced osteosarcoma in the skull base: a case report and review. Radiat Oncol 2012;7(01):136

17. Lee YY, Van Tassel P, Nauert C, Raymond AK, Edeiken J. Craniofacial osteosarcomas: plain film, CT, and MR findings in 46 cases. AJR Am J Roentgenol 1988;150(06):1397–1402

18. Adwani D, Bhattacharya A, Adwani N, Adwani R, Sharma VW. Massive recurrent chondroblastic osteosarcoma of maxilla: a rare case report. J Clin Diagn Res 2014;8(01):288–290

19. Fox MG, Trotta BM. Osteosarcoma: review of the various types with emphasis on recent advancements in imaging. Semin Musculoskeletal Radiol 2013;17(02):123–136

20. Bose B. Primary osteogenic sarcoma of the skull. Surg Neurol 2002;58(3–4):234–239, discussion 239–240

21. Geirnaerd MD, Bloem JL, van der Woude HJ, Taminiau AH, Nooy MA, Hogendoorn PC. Chondroblastic osteosarcoma: characterisation by gadolinium-enhanced MR imaging correlated with histopathology. Skeletal Radiol 1998;27(03):145–153

22. Yen CH, Chang CY, Teng MM, et al. Different and identical features of chondroblastic osteosarcomas: plain film, CT, and MR findings in 46 cases. AJR Am J Roentgenol 1988;150(06):1397–1402

23. Lee YY, Van Tassel P, Nauert C, Raymond AK, Edeiken J. Craniofacial osteosarcomas: plain film, CT, and MR findings in 46 cases. AJR Am J Roentgenol 1988;150(06):1397–1402

24. Yakushiji T, Oka K, Sato H, et al. Characterization of chondroblastic osteosarcoma: gadolinium-enhanced versus diffusion-weighted MR imaging. J Magn Reson Imaging 2009;29(04):895–900

25. Gupta N, Rajwanshi A, Gupta P, Vaiphei K, Gupta AK. Chondroblastic osteosarcoma of the temporal region: a diagnostic dilemma. Diagn Cytopathol 2011;39(05):377–379