FLUORESCENCE DETECTION OF AMYLOID DEPOSITS IN HUMAN TISSUES USING HISTOCHEMICAL DYES

Guselnikova VV1,2✉, Sufieva DA1, Tsyba DL1, Korzhevskii DE1
1 Institute of Experimental Medicine, Saint Petersburg, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia

Recently, fluorescence microscopy becomes more available, presenting new opportunities to face several challenges of experimental biology and medicine. The study was aimed to assess the effectiveness of fluorescence microscopy for the identification of amyloid deposits in human tissues. Post-mortem samples of the myocardium (n = 12) and cerebral cortex (n = 8) obtained from subjects of both sexes aged 60–98 with verified amyloidosis were used as a material for the study. The specimens were stained using 11 different histochemical dyes and subsequently analyzed by light and fluorescence microscopy. Qualitative and quantitative analysis has shown that Thioflavin T is the most effective stain for fluorescence detection of β- and transthyretin amyloid in human tissues. Congo red staining is highly effective for the detection of transthyretin amyloidosis, however, it is ill-suited for the identification of β-amyloid plaques. It has been found that the ability of Congo red to exhibit fluorescence when binding to amyloid fibrils can be used for verification of amyloid deposits instead of the traditional polarized light microscopy. As has been first noted, methyl violet can selectively bind to β-amyloid with fluorescent complex formation. In addition, methyl violet treatment effectively reduces the autofluorescent background in the nervous tissue. This makes methyl violet staining a promising diagnostic tool for Alzheimer’s-type pathology.

Keywords: fluorescence microscopy, amyloid, amyloid plaques, histochemistry, congo red, thioflavin, methyl violet

Author contribution: Guselnikova VV — literature analysis, study planning, staining specimens, analysis and interpretation of the results, manuscript draft writing; Sufieva DA — quantitative data analysis; Tsyba DL — quantitative data analysis; Korzhevskii DE — conceptual development, study planning, manuscript editing.

Compliance with ethical standards: the study was conducted in accordance with the requirements of the World Medical Association Declaration of Helsinki (2013) and approved by the Ethics Committee of the Institute of Experimental Medicine (protocol № 3/18 dated November 22, 2018).

✉ Correspondence should be addressed: Valeria V. Guselnikova
Acad. Pavlova, 12, Saint Petersburg, 197376; Guselnikova.Valeria@yandex.ru

DOI: 10.24075/vrsmu.2021.034

Recently, fluorescence microscopy becomes more available, presenting new opportunities to face several challenges of experimental biology and medicine. The study was aimed to assess the effectiveness of fluorescence microscopy for the identification of amyloid deposits in human tissues. Post-mortem samples of the myocardium (n = 12) and cerebral cortex (n = 8) obtained from subjects of both sexes aged 60–98 with verified amyloidosis were used as a material for the study. The specimens were stained using 11 different histochemical dyes and subsequently analyzed by light and fluorescence microscopy. Qualitative and quantitative analysis has shown that Thioflavin T is the most effective stain for fluorescence detection of β- and transthyretin amyloid in human tissues. Congo red staining is highly effective for the detection of transthyretin amyloidosis, however, it is ill-suited for the identification of β-amyloid plaques. It has been found that the ability of Congo red to exhibit fluorescence when binding to amyloid fibrils can be used for verification of amyloid deposits instead of the traditional polarized light microscopy. As has been first noted, methyl violet can selectively bind to β-amyloid with fluorescent complex formation. In addition, methyl violet treatment effectively reduces the autofluorescent background in the nervous tissue. This makes methyl violet staining a promising diagnostic tool for Alzheimer’s-type pathology.

Keywords: fluorescence microscopy, amyloid, amyloid plaques, histochemistry, congo red, thioflavin, methyl violet

Author contribution: Guselnikova VV — literature analysis, study planning, staining specimens, analysis and interpretation of the results, manuscript draft writing; Sufieva DA — quantitative data analysis; Tsyba DL — quantitative data analysis; Korzhevskii DE — conceptual development, study planning, manuscript editing.

Compliance with ethical standards: the study was conducted in accordance with the requirements of the World Medical Association Declaration of Helsinki (2013) and approved by the Ethics Committee of the Institute of Experimental Medicine (protocol № 3/18 dated November 22, 2018).

✉ Correspondence should be addressed: Valeria V. Guselnikova
Acad. Pavlova, 12, Saint Petersburg, 197376; Guselnikova.Valeria@yandex.ru

DOI: 10.24075/vrsmu.2021.034

Recently, fluorescence microscopy becomes more available, presenting new opportunities to face several challenges of experimental biology and medicine. The study was aimed to assess the effectiveness of fluorescence microscopy for the identification of amyloid deposits in human tissues. Post-mortem samples of the myocardium (n = 12) and cerebral cortex (n = 8) obtained from subjects of both sexes aged 60–98 with verified amyloidosis were used as a material for the study. The specimens were stained using 11 different histochemical dyes and subsequently analyzed by light and fluorescence microscopy. Qualitative and quantitative analysis has shown that Thioflavin T is the most effective stain for fluorescence detection of β- and transthyretin amyloid in human tissues. Congo red staining is highly effective for the detection of transthyretin amyloidosis, however, it is ill-suited for the identification of β-amyloid plaques. It has been found that the ability of Congo red to exhibit fluorescence when binding to amyloid fibrils can be used for verification of amyloid deposits instead of the traditional polarized light microscopy. As has been first noted, methyl violet can selectively bind to β-amyloid with fluorescent complex formation. In addition, methyl violet treatment effectively reduces the autofluorescent background in the nervous tissue. This makes methyl violet staining a promising diagnostic tool for Alzheimer’s-type pathology.

Keywords: fluorescence microscopy, amyloid, amyloid plaques, histochemistry, congo red, thioflavin, methyl violet

Author contribution: Guselnikova VV — literature analysis, study planning, staining specimens, analysis and interpretation of the results, manuscript draft writing; Sufieva DA — quantitative data analysis; Tsyba DL — quantitative data analysis; Korzhevskii DE — conceptual development, study planning, manuscript editing.

Compliance with ethical standards: the study was conducted in accordance with the requirements of the World Medical Association Declaration of Helsinki (2013) and approved by the Ethics Committee of the Institute of Experimental Medicine (protocol № 3/18 dated November 22, 2018).

✉ Correspondence should be addressed: Valeria V. Guselnikova
Acad. Pavlova, 12, Saint Petersburg, 197376; Guselnikova.Valeria@yandex.ru

DOI: 10.24075/vrsmu.2021.034
леких, желудочно-кишечном тракте и др.) приводит к нарушению их функции и может стать причиной развития кардиомиопатии, сердечной и почечной недостаточности, тромбоза печеночных вен и т. д. Накопление амилоида в мозге является гистопатологическим признаком таких нейродегенеративных заболеваний, как болезнь Альцгеймера и болезнь Паркинсона [2–4]. Дифференциальная диагностика амилоидозов сильно затруднена вследствие большого разнообразия клинических проявлений и отсутствия патогномоничных симптомов. В настоящее время наиболее надежным методом диагностики остается гистологическое исследование образцов тканей с применением красителя Конго красного и последующим исследованием препаратов методами световой и поляризационной микроскопии [5]. Однако применение такого подхода нередко приводит к получению ложноположительных и/или ложноотрицательных результатов [6], что указывает на несовершенство существующей методической базы. Это обусловливает актуальность проблемы поиска новых подходов к улучшению качества морфологической диагностики амилоидозов. Определенный вклад в решение этой задачи может внести применение метода флороценной микроскопии. В настоящее время многие клинико-диагностические центры оснащены флороцентными микроскопами, что позволяет им использовать флороцентные свойства ряда красителей в диагностических целях, в том числе для диагностики амилоидозов.

Целью работы было оценить эффективность применения метода флороценной микроскопии для идентификации амилоидных скоплений в тканях человека.

ПАЦИЕНТЫ И МЕТОДЫ

В качестве материала для исследования были использованы фрагменты миокарда (n = 12) и коры головного мозга (n = 8) пациентов обоих полов (четверо мужчин и восемь женщин, трое мужчин и пять женщин соответственно) в возрасте от 60 до 98 лет с клиникой и неврологическими симптомами. В качестве материала для исследования были использованы фрагменты миокарда (второй — «I3») и ВР=515–560 нм (третий — «N2,1»). Система фильтров состояла из следующих возбуждающих фильтров: ВР=340–380 нм (первый — «А»), ВР=450–490 нм (второй — «3») и ВР=515–560 нм (третий — «N2,1»).

Анализ и фотографирование препаратов проводили с использованием светового микроскопа Leica DM750 (Leica Microsystems; Германия) и флороценного микроскопа Leica DM2500 (Leica Microsystems; Германия), оснащенного системой фильтров флороценции от 340 до 560 нм. Система фильтров состояла из следующих возбуждающих фильтров: ВР=340–380 нм (первый — «А»), ВР=450–490 нм (второй — «3») и ВР=515–560 нм (третий — «N2,1»).

Подсчет количества выявленных разными методами амилоидных бляшек проводили на сериях срезов коры головного мозга одного и того же случая. Подсчет осуществляли три разные исследователя в идентичных условиях, используя объектив ×40. Так как распределение амилоидных бляшек в нервной ткани характеризуется выраженной неравномерностью, подсчет проводили по всей площади среза (0,67 см²) с последующим пересчетом на см². В качестве контрольного значения использовали амилоидные бляшки, выявленные при использовании иммунофлюоресцентной реакции. Для этого применяли мышиные моно克莱нальные (клон DE2B4) антитела к β-амилоиду (разведение 1:200, кат. номер ab11132, Abcam; Великобритания); в качестве контрольного значения использовали антимышьный Fab-фрагмент иммуногобулина осла (Jackson ImmunoResearch; США) и конъюгат стрептавидина с флуорохромом Cy2 (Jackson ImmunoResearch; США). Статистический анализ полученных данных выполнен в программе GraphPad Prism 9 (GraphPad Software Inc.; США). Для сравнения показателей использовали однофакторный дисперсионный анализ (ANOVA) с последующим попарным сравнением групп (тиофлавин T, конго красный, метиловый фиолетовый) с контролем (иммуногистохимия) с помощью post hoc критерия Даннета. Различия считаются статистически значимыми при p < 0,05.
Данные представляли в следующем формате: среднее ± стандартная ошибка среднего.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Эффективность применения гистохимических красителей для флуоресцентного выявления амилоидных скоплений

Результаты применения разных гистохимических красителей для идентификации скоплений β-амилоида и транстиретинового амилоида с использованием методов световой и флуоресцентной микроскопии представлены в табл. 2 и 3 соответственно.

Способность связываться с амилоидными фибриллами с формированием флуоресцирующего комплекса характерна для трех красителей — тиофлавина T (ThT), конго красного и метилового фиолетового.

При окраске ThT амилоидные бляшки в коре головного мозга хорошо визуализируются уже на малом увеличении микроскопа (×10). Выявленные скопления имеют вид компактных сгустков образований, флуоресцирующих в синем диапазоне спектра (рис. 1А). Амилоидные бляшки характеризуются морфологической гетерогенностью, которая выражается в том, что для одних бляшек характерно наличие интенсивно флуоресцирующего плотного центра округлой формы и расположенного вокруг него волокнистого ореола (рис. 1А; стрелка 1), при этом другие бляшки выглядят как скопления, сформированные только волокнистыми структурами (рис. 1А; стрелка 2). Флуоресценция характерна для амилоидных бляшек обоих морфологических типов. При окраске ThT они визуализируются с одинаковой эффективностью (рис. 1А). Анализ препаратов выявил присутствие небольшой фоновой флуоресценции ядер клеток и автофлуоресценции липофусцина — пигмента, накапливающегося в нейронах при старении.

Транстиретиновый амилоид в миокарде человека при окраске ThT также характеризуется интенсивной флуоресценцией в синем диапазоне спектра (рис. 1Б). Как и в случае изучения препаратов коры головного мозга, в миокарде было отмечено присутствие фоновой флуоресценции ядер клеток (рис. 1Б, головка стрелки, бирюзовый цвет) и автофлуоресценции липофусцина (рис. 1Б, короткая стрелка, оранжевый цвет), накопление которого характерно не только для нейронов, но и для кардиомиоцитов. Важно отметить, что, хотя цвет флуоресценции неамилоидных компонентов ткани отличается от цвета флуоресценции связанных ThT амилоидных фибрилл, присутствие дополнительных флуоресцирующих элементов затрудняет идентификацию амилоидных скоплений и их количественный анализ.

Анализ препаратов, окрашенных конго красным, с помощью флуоресцентного микроскопа показал, что конгофильные амилоидные скопления в тканих человека флуоресцируют в красном диапазоне спектра (рис. 1В, Г). При изучении препаратов коры головного мозга было отмечено, что после окраски конго красным амилоидные бляшки выявляются не во всех исследованных образцах.

Таблица 2. Результаты окраски β-амилоида в коре головного мозга человека

Краситель	Цвет амилоидных скоплений при наблюдении в проходящем свете	Флуоресценция амилоидных скоплений
Конго красный	Розово-красный	+
Тиофлавин T	–	+
Альциановый синий	Синий	–
Толуидиновый синий	Светло-фиолетовый	–
Метиловый фиолетовый	Насыщенно-фиолетовый	–
Метиленовый зеленый	–	–
Эозин Y	Светло-розовый	–
Янус зеленый	–	–
Пиронин G	–	–
Фуксин основной	–	–
Нейтральный красный	–	–

Таблица 3. Результаты окраски транстиретинового амилоида в миокарде человека

Краситель	Цвет амилоидных скоплений при наблюдении в проходящем свете	Флуоресценция амилоидных скоплений
Конго красный	Розово-красный	+
Тиофлавин T	–	+
Альциановый синий	Синий	–
Толуидиновый синий	Светло-фиолетовый	–
Метиловый фиолетовый	Насыщенно-фиолетовый	–
Метиленовый зеленый	–	–
Эозин Y	Светло-розовый	–
Янус зеленый	–	–
Пиронин G	–	–
Фуксин основной	–	–
Нейтральный красный	–	–
Лишь в трех проанализированных случаях из восьми в тканях мозга были идентифицированы единичные конгофильные скопления. Наиболее высокой интенсивностью флуоресценции при окраске конго красным обладает плотное центральное ядро амилоидной бляшки. Периферический волокнистый ареол плохо визуализируется. Бляшки, не имеющие компактного центра, значительно хуже различимы по сравнению с бляшками, имеющими ярко флуоресцирующую центральную область. Было также отмечено присутствие значительной фоновой флуоресценции (в красном диапазоне спектра) ядер клеток коры головного мозга, эритроцитов и липофусцина (рис. 1В). При изучении препаратов миокарда, окрашенных метиловым фиолетовым, с помощью флуоресцентного микроскопа было обнаружено, что в данном случае амилоидные бляшки интенсивно флуоресцировали в синем диапазоне спектра (рис. 1Д). При этом фоновая флуоресценция ткани полностью отсутствовала. Наблюдалось лишь слабое темно-малиновое окрашивание нервной ткани, что усиливало контрастность выявления амилоидных бляшек (рис. 1Д). Полное отсутствие фоновой флуоресценции значительно облегчало идентификацию амилоидных бляшек, бляшки с плотным центральным ядром и бляшки без него визуализировались одинаково эффективно. Интересно, что транстиретиновий амилоид в миокарде человека не флуоресцирует при окраске метиловым фиолетовым (в отличие от амилоидных бляшек в коре головного мозга), хотя при наблюдении окрашенных препаратов в проходящем свете амилоидные депозиты в миокарде четко визуализируются за счет метахроматической окраски амилоида в насыщенный фиолетовый цвет (рис. 2А).
миксарда основным фуксином. При использовании этого красителя амилоидные скопления приобретают насыщенный красный цвет при наблюдении в проходящем свете (рис. 2Б). По нашим данным, ранее способность основного фуксина метахроматически окрашивать амилод описана не была.

Количественный анализ амилоидных бляшек, выявляемых с использованием разных красителей

В ходе анализа препаратов коры головного мозга человека было отмечено, что визуально количество выявляемых амилодов ТнТ при использовании метилового фиолетового сильно варьирует в зависимости от выбранной методики окраски. В связи с этим было проведено количественное исследование, которое заключалось в подсчете амилодных бляшек в зависимости от разных исследователей на препаратах одного и того же случая, окрашенных разными красителями. Результаты проведенного количественного анализа представлены на рис. 3. Полученные результаты были сопоставлены с результатами иммуногистохимической реакции на β-амилоидные фибриллы как наиболее чувствительного метода идентификации амилодных бляшек.

Из представленной гистограммы видно, что количество амилодных бляшек, выявляемых при использовании любого гистохимического красителя, значительно меньше по сравнению с количеством иммуногистохимических бляшек. Среднее количество выявляемых ТнТ амилодных бляшек составило 1106 ± 78,72 на см² ткани мозга. Наименьшие количественные различия с группой контроля наблюдались при окрашивании срезов ТнТ. При применении такой окраски среднее количество амилодных бляшек составило 810,9 ± 44,49 на см². Наибольшие различия с группой контроля наблюдались при использовании метилового фиолетового, которое при окраске подсчитано количество амилодных бляшек составило 268,1 ± 15,34 на см². Среднее количество бляшек при окраске метиловым фиолетовым было 399,0 ± 60,03 на см², что являлось промежуточным значением между результатами использования ThT и конго красного.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Способность формировать флуоресцирующие комплексы при связывании с клеточными и тканевыми структурами ранее была показана для целого ряда гистохимических красителей. Так, флуоресцентные свойства эозина применяются для визуализации эластических волокон [7], оценки повреждения печени [8], морфологической оценки состояния селезенки [9], изучения структуры и функционального состояния пародонта [10]. Основной фуксин также обладает способностью флуоресцировать при связывании с эластическими волокнами [11]. В связи с этим поиск среди известных гистохимических красителей новых флуоресцентных зондов, специфичных в отношении амилодных фибрилл, может способствовать разработке новых диагностических подходов для выявления амилодозов.

Окраска срезов ThT является наиболее известным способом флуоресцентного выявления амилодоз. Показано, что молекулы этого красителя способны специфически связываться в β-складчатую структуру амилодных фибрилл. По мнению исследователей, такое связывание блокирует вращение диметиламинобензольного кольца

Рис. 2. Метахроматическая окраска транстиретинового амилодоза у человека. A. Окраска метиловым фиолетовым. B. Окраска основным фуксином. Масштабный отрезок равен 50 мкм.
комплекс, для клинической диагностики его применяют значительно реже, чем другой краситель со сходным механизмом действия, конго красный. В настоящее время именно окраска конго красным является «золотым стандартом» выявления амилоида. Ее широко применяют в научных исследованиях и клинико-диагностической практике [14, 5]. Как и ThT, конго красный обладает свойством встраиваться в β-складчатый слой амилоидных фибрилл, при этом приобретает способность поворачивать плоскость поляризации света. Поэтому для подтверждения природы обнаруженных контрграфных скоплений традиционно применяют метод поляризационной микроскопии [14]. Однако цвет свечения контрграфных скоплений в поляризованном свете может сильно варьировать, что значительно усложняет интерпретацию полученных результатов [15].

Нами было показано, что для верификации скоплений амилоида после окраски конго красным вместо микроскопии в поляризованном свете может быть рекомендовано использование флуоресцентной микроскопии. Способность конго красного флуоресцировать при связывании с фибриллами амилоида была описана еще в 1959 г. [16], однако в то время использование флуоресцентных свойств конго красного не нашло широкого применения. Вероятно, это обусловлено тем фактом, что на момент выхода указанной статьи флуоресцентные микроскопы были доступны лишь немногим диагностическим лабораториям. Использование свойства конго красного флуоресцировать при связывании с амилоидом может способствовать снижению количества ложноположительных и ложноотрицательных результатов, связанных с ошибочной интерпретацией результатов из-за непостоянства цвета свечения контрграфных скоплений в поляризованном свете. Тем не менее важно подчеркнуть, что, согласно результатам наших исследований, окраска конго красным характеризуется низкой эффективностью в отношении выявления амилоидных бляшек. Об этом свидетельствует тот факт, что при использовании конго красного амилоидные бляшки удается идентифицировать не во всех образцах коры, в которых они присутствуют (согласно данным иммуногистохимического исследования). Кроме того, количество выявленных контрграфных бляшек в образце, взятом для количественного анализа, в четыре раза меньше соответствующего значения, полученного после проведения иммуногистохимического окрашивания.

Первые попытки выявления амилоида с помощью метахроматических красителей, таких как толуидиновый синий, кристаллический фиолетовый и метиловый красный с использованием метахроматических красителей, таких как толуидиновый синий, кристаллический фиолетовый и метиловый фиолетовый, относится к концу прошлого века. Согласно результатам исследований тех лет, эти методики значительно менее эффективны в отношении выявления амилоида по сравнению с окраской конго красным и ThT [17]. Здесь следует отметить, что исследование препаратов, окрашенных с использованием метахроматических красителей, ранее проводили исключительно методом микроскопии в проходящем свете. Нами было отмечено, что окраска метиловым фиолетовым с последующей верификацией амилоида методом флуоресцентной микроскопии является эффективным способом выявления β-амилоидных бляшек. В этом случае идентифицировать амилоидные бляшки в пределах среза значительно легче благодаря полному отсутствию фоновой флуоресценции неамилоидных компонентов ткани. Ранее было показано, что обработка парафиновых срезов тканей кристаллическим фиолетовым, который по своей химической природе близок к метиловому фиолетовому, приводит к значительному уменьшению автофлуоресценции [18]. Вероятно, метиловый фиолетовый обладает сходным свойством. Интересно, что эта методика при окраске неэффективна в отношении трансстиролинового амилоида миокарда. В данном случае амилоид приобретает метахроматическую окраску при наблюдении в проходящем свете, но характеризуется полным отсутствием флуоресценции. Это может указывать на специфику связывания молекул красителя метилового фиолетового с амилоидными фибриллами определенной природы.

Рис. 3. Количественная оценка амилоидных бляшек, окрашенных разными методами. Различия с группой контроля (иммуногистохимическое исследование) значимы при *p < 0,01 (*) и **p < 0,0001 (****)
место локализации определенного белка (β-амилоида, транстиретина и т. д.). В данном случае гистохимические методы представляют собой более эффективный способ выявления конformationальной патологии.

Несмотря на то что количественные данные свидетельствуют о меньшей эффективности использования любой из гистохимических окрасок для выявления амилоидных бляшек по сравнению с методом иммунофлюоресценции, полученные результаты могут представлять интерес для будущих исследований. Метод иммунофлюоресценции — сложный в реализации и дорогостоящий из-за высокой стоимости необходимых реагентов и расходных материалов. По этой причине его можно применять в качестве рутинного метода лишь в специализированных патоморфологических лабораториях. Гистохимические методики, напротив, отличаются простотой и дешевизной, будучи значительно более доступными. Проблему более низкой эффективности этих методик в отношении выявления амилоидной отчасти можно решить за счет модификации имеющихся гистохимических красителей и отчасти поиска амилоидов отчасти можно решить за счет модификации имеющихся гистохимических красителей и создания их аналогов [12, 20].

ВЫВОДЫ
Применение метода флуоресцентной микроскопии позволяет найти новые подходы для визуализации амилоида в тканях головного мозга человека, что может быть успешно использовано для улучшения эффективности морфологической диагностики амилоидозов. Тиофлавин T является наиболее эффективным гистохимическим красителем для флуоресцентного выявления β- и транстиретинового амилоида в тканях человека. Методика окраски конго красным характеризуется высокой эффективностью в отношении транстиретинового амилоида, но плохо подходит для идентификации β-амилоидных бляшек. Способность конго красного флуоресцировать при связывании с амилоидными фибриллами может быть использована для верификации амилоидных скоплений вместе с поляризационной микроскопией. Метиловый фиолетовый обладает способностью специфически связываться с β-амилоидными скоплениями с образованием флуоресцирующего комплекса, одновременно подавляя автофлуоресценцию нервной ткани. Это делает методику окраски метиловым фиолетовым перспективной для диагностики патологии альцгеймеровского типа.

Литература

1. Picken MM. The pathology of amyloidosis in classification: A review. Acta Haemtol. 2020; 143 (4): 322–34. DOI: 10.1159/000506696.
2. Cuddy SAM, Falk RH. Amyloidosis as a systemic disease in context. Can J Cardiol. 2020; 36 (3): 396–407. DOI: 10.1016/j.cjca.2019.12.033.
3. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019; 14 (1): 32. DOI: 10.1186/s13246-019-0333-5.
4. Dickson DW. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 2017; 46 (Suppl 1): S30–S33. DOI: 10.1016/j.parkreldis.2017.07.033.
5. Dapson RW. Amyloid from a histochemical perspective. A review of the structure, properties and types of amyloid, and a proposed staining mechanism for Congo red staining. Biotech Histochem. 2018; 93 (8): 543–56. DOI: 10.1080/10520294.2018.1528385.
6. Yakupova EI, Bobyleva LG, Vikhlyantsev IM, Bobylev AG. Congo red and amyloids: history and relationship. Bioscience Reports. 2018; 93 (8): 543–56. DOI: 10.1080/10520294.2018.1528385.
7. Elghetany MT, Saleem A. Methods for staining amyloid in tissues: a review. Stain Technol. 1988; 63 (4): 201–12. DOI: 10.1080/00221554.1998.999107185.
8. Buchynska L, Kashuba E, Szekely L. Immunofluorescence staining of paraffin sections: creating DAB staining like virtual tissue. Stain Technol. 2005.2005.09.003.
9. Mott RT, Hulette CM. Neuropathology of Alzheimer’s disease. Neuroimaging Clin N Am. 2005; 15: 755–65. DOI: 10.1016/j.nic.2005.09.003.
10. Styren SD, Hamilton RL, Styren GC, Klink WE. X-34, a fluorescent derivative of Congo red. J Histochem Cytochem. 2000; 48 (9): 1223–32. DOI: 10.1177/002215540004800906.

References

1. Picken MM. The pathology of amyloidosis in classification: A review. Acta Haemtol. 2020; 143 (4): 322–34. DOI: 10.1159/000506696.
2. Cuddy SAM, Falk RH. Amyloidosis as a systemic disease in context. Can J Cardiol. 2020; 36 (3): 396–407. DOI: 10.1016/j.cjca.2019.12.033.
3. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019; 14 (1): 32. DOI: 10.1186/s13024-019-0333-5.

4. Dickson DW. Neuropathology of Parkinson disease. Parkinsonism Relat Disord. 2017; 46 (Suppl 1): S30–S33. DOI: 10.1016/j.parkreldis.2017.07.033.

5. Dapson RW. Amyloid from a histochemical perspective. A review of the structure, properties and types of amyloid, and a proposed staining mechanism for Congo red staining. Biotech Histochem. 2018; 93 (8): 543–56. DOI: 10.1080/10520295.2018.1528385.

6. Yakupova EI, Bobyleva LG, Vikhlyantsev IM, Bobylev AG. Congo Red and amyloids: history and relationship. Biosciences Reports. 2019; 39 (1): BSR20181415. DOI: 10.1042/BSR20181415.

7. De Carvalho HF, Taboga SR. The applicability of hematoxylin-eosin staining plus fluorescence or confocal laser scanning microscopy to the study of collagen fibers in cartilages. Coll R Acad Sci III. 1996; 319; 991–6. PMID: 9064122.

8. Hamid A, Safdar A, Maryam M, Amjad A, Azra J, Abid A. Eosin fluorescence: A diagnostic tool for quantification of liver injury. Photodiagnosis Photodyn Ther. 2017; 19: 37–44. DOI: 10.1016/j.pdpdt.2017.03.016.

9. Jakubovský J, Guller L, Cerna M et al. Fluorescence of hematoxylin and eosin-stained histological sections of the human spleen. Acta Histochem. 2002; 104 (4): 353–6. DOI: 10.1078/0001-9127-00694.

10. De Rossi A, Rocha LB, Rossi MA. Application of fluorescence microscopy on hematoxylin and eosin-stained sections of healthy and diseased teeth and supporting structures. J Oral Pathol Med. 2007; 36 (6): 779–81. DOI: 10.1111/j.1600-0714.2007.00642.x.

11. Piilman K, Linder E. Fluorescence microscopic visualization of elastic fibres using basic fuchsin. Histochecmistry. 1983; 79 (2): 157–65. DOI: 10.1007/BF00489778.

12. Sapozhnikov SP, Karyshev PB, Sheptukhina AI, Nikolayeva OV, Avruyskaya AA, Mitrason YuN, Kozlov VA. Novel fluorescent probes for amyloid detection. CNT. 2017; 9 (2): 91–8. DOI: 10.17691/ stm2017.9.2.111.

13. Biancalana M, Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta. 2010; 1804 (7): 1405–12. DOI: 10.1016/j.bbapap.2010.04.001.

14. Sipe JD, Benson MD, Buxbaum JN, Ikeda S-I, Merlini G, Saraiva MJM, Westermark P. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid. 2016; 23 (4): 209–13. DOI: 10.1080/13506129.2016.1257986.

15. Howie AJ, Mared P O-C. ’Apple-green birefringence’ of amyloid stained by Congo red. Kidney Int. 2012; 82 (1): 114. DOI: 10.1038/ki.2012.89.

16. Cohen AS, Calkins E, Levene CI. Studies on experimental amyloidosis. Analysis of histology and staining reactions of casein-induced amyloidosis in the rabbit. Am J Pathol. 1959; 35: 971–89. PMID: 13810917.

17. Eighetany MT, Saleem A. Methods for staining amyloid in tissues: a review. Stain Technol. 1988; 63 (4): 201–12. DOI: 10.3109/10520298809107185.

18. Buchynska L, Kashuba E, Szekely L. Immunofluorescence staining of paraffin sections: creating DAB staining like virtual digital images using CMYK color conversion. Exp Oncol. 2008; 30 (4): 327–9. PMID: 19112433.

19. Mott RT, Hulette CM. Neuropathology of Alzheimer’s disease. Neuroimaging Clin N Am. 2005; 15: 755–65. DOI: 10.1016/j. nic.2005.09.003.

20. Styren SD, Hamilton RL, Styren GC, Klunk WE. X-34, a fluorescent derivative of Congo red: a novel histochemical stain for Alzheimer’s disease pathology. J Histochem Cytochem. 2000; 48 (9): 1223–32. DOI: 10.1177/00221554004800906.