Loss of functional pRB is not a ubiquitous feature of B-cell malignancies

Article (Published Version)

Sinclair, A J and Frost, V (1999) Loss of functional pRB is not a ubiquitous feature of B-cell malignancies. British Journal of Cancer, 80. pp. 670-675. ISSN 0007-0920

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/91123/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Loss of functional pRB is not a ubiquitous feature of B-cell malignancies

AJ Sinclair and V Frost
School of Biological Sciences, University of Sussex, Brighton, E Sussex BN1 9QG, UK

Summary Human cancers frequently sustain genetic mutations that alter the function of their G1 cell cycle control check point. These include changes to the retinoblastoma gene and to the genes that regulate its phosphorylation, such as the cyclin-dependent kinase inhibitor p16\(^{INK4a}\). Altered expression of retinoblastoma protein (pRb) is associated with non-Hodgkin’s lymphoma, particularly centroblastic and Burkitt’s lymphomas. pRb is expressed in normal B-cells and its regulatory phosphorylation pathway is activated in response to a variety of stimuli. Since human B-lymphoma-derived cell lines are often used as in vitro model systems to analyse the downstream effects of signal transduction, we examined the functional status of pRb in a panel of human B-cell lines. We identified eleven cell lines which express the hyperphosphorylated forms of pRb. Furthermore, we suggest that the pRb protein appears to be functional in these cell lines.

Keywords: retinoblastoma protein; cdkI; p16\(^{INK4a}\); tumour suppressor; Burkitt’s lymphoma; Epstein–Barr virus

Many human cancers harbour genetic changes that alter the function of the G1 cell cycle control check point (reviewed in Sherr and Roberts, 1995; Bartek et al, 1996; Hall and Peters, 1996; Palmero and Peters, 1996; Herwig and Strauss, 1997). The common outcome of these changes is the functional deregulation of the retinoblastoma protein (pRb). pRb directly interacts with and regulates the activity of a series of RNA polymerase I, II and III dependent transcription factors including members of the E2F family, MyoD and Elf-1 (Bartek et al, 1996; Sanchez and Dynlacht, 1996; Herwig and Strauss, 1997). The activity of pRb is regulated in turn by its phosphorylation status (Weinberg, 1995; Bartek et al, 1996; Herwig and Strauss, 1997; Mittnacht, 1998). In non-proliferating or quiescent cells, pRb is hypophosphorylated and active. However, in response to appropriate growth conditions, cells enter into the G1 phase of the cell division cycle, and cyclin-dependent kinase 4 (cdk4) and cdk6, in conjunction with members of the cyclin D family, and cdk2, in conjunction with cyclin E, phosphorylate pRb protein resulting in its inactivation. This releases both the pRb-associated transcription factors and the cell cycle control check point and allows cells to progress from G1 into S phase (Weinberg, 1995; Bartek et al, 1996; Herwig and Strauss, 1997; Mittnacht, 1998). Members of the p16\(^{INK4a}\) and p21\(^{CIP1}\) cdk-inhibitor families also influence the activity of pRb by directly inhibiting phosphorylation of pRb protein by the cdks (Bartek et al, 1996; Herwig and Strauss, 1997; Mittnacht, 1998). Thus, information from both positive and negative extracellular signals is integrated into a simple ‘stop’ or ‘go’ message at the G1 checkpoint by influencing the ability of the cyclin D–cdk and cyclin E–cdk complexes to phosphorylate pRb protein.

The retinoblastoma gene itself is a target for genetic alterations in many types of cancer (reviewed in Palmero and Peters, 1996). The resulting deletions and point mutations either destroy the coding capacity or else encode for non-functional versions of pRb protein (Cowell and Hogg, 1992; Weinberg, 1992). In cells that have sustained homozygous mutations to the retinoblastoma gene, pRb is constitutively inactive and, as a consequence, the pRb-dependent cell cycle check point cannot be imposed. Thus, mutation of the retinoblastoma gene can contribute to the deregulated proliferation of cancer cells.

The retinoblastoma gene is expressed in a cell cycle-dependent manner in normal human B-cells. As quiescent (Go) cells enter into the cell division cycle in response to relevant extracellular signals, two changes to pRb protein become apparent: the overall level of expression increases and the protein becomes phosphorylated at multiple sites (Sinclair et al, 1994, 1998; Hollyoake et al, 1995; Kempkes et al, 1995; Szekely et al, 1995; Cannell et al 1996). Altered expression of pRb has been described in primary samples derived from high grade non-Hodgkin’s lymphoma (NHL) (Martinez et al, 1993) and expression is lost in 58% of centroblastic and Burkitt’s lymphomas (Weide et al, 1994).

Cell lines derived from Burkitt’s lymphomas and from Epstein–Barr virus (EBV) transformed human B-cells are frequently used as in vitro model systems to ask questions about the effects of extracellular signalling on the proliferation of B-cells (for example, Sinclair et al, 1993; Holder et al, 1993; Allday et al, 1995; Arvanitakis et al, 1995; MacDonald et al, 1996). Since pRb is involved in integrating a wide range of signal transduction pathways, it is important to determine whether or not established human B-cell lines express functional pRb protein.

In this report, the expression and the functional status of the retinoblastoma gene in 11 human B-cell lines are examined.

MATERIALS AND METHODS

Cell culture

The human B-lymphoid cell lines were maintained in RPMI supplemented with 15% (v/v) fetal calf serum, penicillin and streptomycin at between 2 and 8 \(\times 10^5\) cells per ml to ensure that they were in exponential growth. Ramos (Klein et al, 1975), DG75
Functional pRb in B-cell malignancies

British Journal of Cancer (1999) 80(5/6), 670–675

Protein analysis

Total protein extracts were prepared from exponentially growing cell lines and from quiescent primary B-cells as described previously (Cannell et al, 1996). The protein concentrations were normalized after comparing the absorption at 280 nm. A total of 100 µg of each sample was fractionated on a sodium dodecyl sulphate (SDS)-polyacrylamide gel, transferred to polyvinylidene difluoride (PVDF) membrane (Immobilon-P) and processed as described previously (Cannell et al, 1996).

For the analysis of pRb protein, extracts were fractionated in a 10% gel and a monoclonal antibody used to detect the protein (14001A; Pharmingen). For the analysis of p16INK4a protein, extracts were fractionated in a 15% gel and a monoclonal antibody was used to detect the protein (DCSS0; Lukas et al, 1995a). For the analysis of p15INK4b protein, extracts were fractionated in a 15% gel and a rabbit polyclonal antisera was used to detect the protein (K-18; Santa Cruz). For cdk4, proteins were fractionated in a 12.5% gel and a rabbit polyclonal antiserum was used to detect the protein (Bates et al, 1994). In each case an HRP-conjugated species-specific secondary antibody step was included and the signals were detected by enhanced chemiluminescence (ECL) after exposure to autoradiography (Amersham).

Complex formation

Extracts were prepared by lysing cells in NP40 lysis buffer (50 mM Hepes pH 8.0; 1% (v/v) NP-40; 0.1% (v/v) Tween-20; 150 mM sodium chloride; 1 mM EDTA; 2.5 mM EGTA; 1 mM NaF; 10% (v/v) glycerol; 1 mM dithiothreitol; ‘complete protease inhibitor’ (Boehringer Mannheim)). Debris was removed from the extract by centrifugation (1000 rpm for 10 min in a Beckman J64 centrifuge). The extract was precleared by incubation with a mixture of protein G and protein G Sepharose 45 min rocking at 4°C. Sepharose beads were removed by centrifugation (1000 rpm for 10 min in a Beckman J64 centrifuge). Cyclin D3 and any associated proteins were isolated from the precleared extract by precipitation with a cyclin D3 monoclonal antibody (DCSS8; Welcker et al, 1996; Bartokova et al, 1998). For the IB4 extract only, a combination of DCSS8 and a cyclin D2-specific antibody, DCSS5.2 (Lukas et al, 1995b) was used to isolate both cyclin D2 and cyclin D3 associated proteins. A mock precipitation with control mouse antibodies (Sigma) was undertaken in parallel. The precipitated complexes were collected on a combination of Protein A and Protein G Sepharose beads (Sigma) and washed extensively with lysis buffer and then once with 50 mM Tris–HCl, pH 7.5. The proteins were then eluted from the beads by heating at 95°C for 5 min in 2× PS buffer (0.12 m Tris pH 6.8; 4% (v/v) SDS; 20% (w/v) glycerol; 2% (v/v) β-mercaptoethanol; 0.01% (w/v) bromophenol blue) and fractionated on a 12.5% SDS-polyacrylamide gel. Cdk4 protein in the complexes was detected by Western blot analysis using the rabbit polyclonal antiserum described above (Bates et al, 1994).

Densitometric analysis

The relative level of p16INK4a protein detected by Western blot analysis was quantitated by densitometric analysis using Image Quant (Pharmacia) software.

RESULTS

pRb protein is expressed and regulated by phosphorylation in human B-lymphoid cell lines

The expression of pRb protein was surveyed in a series of well-characterized cell lines originally derived from Burkitt’s lymphomas; Ramos, DG75, Akata, Rael, Mutu CI 179, Mutu CI 148 and Jijoye (Figure 1), and a B-cell lymphoma, BJAB (data not shown). In addition, three lymphoblastoid cell lines that had been previously immortalized with EBV in vitro; LCL#3 and B95-8PF (Figure 1) and IB4 (data not shown), were included in the analysis. The osteosarcoma cell lines, SAOS and U2OS, were analysed in parallel as controls. The SAOS cell line is known not to express detectable pRb protein, whereas the U2OS cell line expresses similar levels of pRb protein as proliferating primary human cells (Koh et al, 1995; Lukas et al, 1995a) (Figure 1). A single band of low intensity was observed in the sample of normal primary B-cells (PB). These cells were isolated from the peripheral circulation and the majority of the population were quiescent naïve B-cells (Sinclair et al, 1994; Sinclair and Farrell, 1995). The single pRb band corresponded to the hypophosphorylated form of pRb which is characteristic of this cell type (Cannell et al, 1996). In contrast, all of the B-cell lines and the U2OS cell line displayed stronger signals with the pRb antibody. These appeared as a broad ladder or smear of bands, which corresponded to the multiply phosphorylated forms of pRb that are characteristic of proliferating cells (Buchkovich et al, 1989; Ludlow et al, 1989; Xu et al, 1989).
and p16INK4a expression is elevated (Loss of functional pRb leads to increased p16INK4a expression. Figure 2) contain so much p16INK4a protein that no cyclin D–cdk4 or cyclin D–cdk6 complexes are formed (for example Serrano et al, 1993; Li et al, 1994; Ottersen et al, 1994; Tam et al, 1994; Aagaard et al, 1995; He et al, 1995; Kelley et al, 1995; Kratzke et al, 1995; Lukas et al, 1995a; Musgrove et al, 1995; Parry et al, 1995; Shapiro et al, 1995a;b; Bartkova et al, 1996; Hara et al, 1996; Khleif et al, 1996; Itoh et al, 1997; Ruas and Peters, 1998). As illustrated in Figure 2, p16INK4a was expressed at basal levels in cells containing functional pRb. This was achieved by the repression of p16INK4a transcription by pRb protein. This repression formed part of a homeostatic feedback loop in which hypophosphorylated, active pRb repressed the transcription of p16INK4a, maintaining basal levels of p16INK4a protein in the cell and allowing cdk4 and cdk6 to form active complexes with cyclin D and so phosphorylate pRb. As illustrated in Figure 2B, it is apparent that the functional inactivation of pRb disrupted this regulation, resulting in increased transcription of p16INK4a and the accumulation of high levels of p16INK4a protein within a cell. Indeed, it has been observed that human cell lines lacking functional pRb contain so much p16INK4a protein that no cyclin D–cdk4 or cyclin D–cdk6 complexes are formed (for example Serrano et al, 1993; Tam et al, 1994; Aagaard et al, 1995; Parry et al, 1995).

Thus, in a situation where apparently full-length pRb is expressed and the p16INK4a locus has not been deleted or silenced by methylation, the functional status of pRb can be questioned experimentally (i) by quantitating the relative level of p16INK4a protein within cells and (ii) by asking whether cyclin D–cdk4 and/or cyclin D–cdk6 complexes are present within the cell line. In order to question whether pRb is functional in the panel of B-cell lines, the level of expression of p16INK4a protein was compared between the B-cell lines and the control cell lines. All of the samples were fractionated on the same gel and analysed in an identical fashion. As had been shown previously, the U2OS cell line did not express any pRb protein (Figure 1), contained characteristics high levels of p16INK4a protein (Lukas et al, 1995a) (Figure 3A). These two lines were included in the analysis as positive and negative controls. In comparison to the signal observed in SAOS cells, the normal B-cells (PB) and the B-lymphoid cell lines expressed p16INK4a protein at levels that were just detectable in this assay (Figure 3A). The expression of the related cdkI p15INK4b protein, which is not regulated by pRb, was also compared between this panel of cell lines. p15INK4b did not show the same marked variation in expression (Figure 3B).

Thus, all 11 of the B-lymphoid cell lines contained equivalent levels of pRb protein, which is present in the hyperphosphorylated forms expected for proliferating cells.

Analysis of pRb function in B-lymphoid cell lines

Although non-functional mutant forms of pRb do not generally exist in hyperphosphorylated forms (Scheffner et al, 1991; Templeton et al, 1991), the analysis of protein expression by Western blotting was not able to distinguish unequivocally between functional proteins and those that had sustained either small deletions within the coding sequence or point mutations which rendered them non-functional. We therefore sought further evidence to define whether the pRb proteins observed in this panel of B-cell lines were functional.

One consequence of the loss of pRb function in human cell lines is the increased expression of the cdkI gene p16INK4a (Serrano et al, 1993; Li et al, 1994; Ottersen et al, 1994; Tam et al, 1994; Aagaard et al, 1995; He et al, 1995; Kelley et al, 1995; Kratzke et al, 1995; Lukas et al, 1995a; Musgrove et al, 1995; Parry et al, 1995; Shapiro et al, 1995a;b; Bartkova et al, 1996; Hara et al, 1996; Khleif et al, 1996; Itoh et al, 1997; Ruas and Peters, 1998). As illustrated in Figure 2, p16INK4a was expressed at basal levels in cells containing functional pRb. This was achieved by the repression of p16INK4a transcription by pRb protein. This repression formed part of a homeostatic feedback loop in which hypophosphorylated, active pRb repressed the transcription of p16INK4a, maintaining basal levels of p16INK4a protein in the cell and allowing cdk4 and cdk6 to form active complexes with cyclin D and so phosphorylate pRb. As illustrated in Figure 2B, it is apparent that the functional inactivation of pRb disrupted this regulation, resulting in increased transcription of p16INK4a and the accumulation of high levels of p16INK4a protein within a cell. Indeed, it has been observed that human cell lines lacking functional pRb contain so much p16INK4a protein that no cyclin D–cdk4 or cyclin D–cdk6 complexes are formed (for example Serrano et al, 1993; Tam et al, 1994; Aagaard et al, 1995; Parry et al, 1995).
p16INK4a protein between the B-cell lines (Figure 3C). However, the striking feature of the analysis was that none of the B-lymphoid cell lines expressed p16INK4a proteins at significantly higher levels than the normal primary B-cells, and none at levels comparable to that observed in the SAOS cell line. Thus, the level of p16INK4a protein within these B-lymphoid cell lines was consistent with the retention of functional pRb.

As a further test of the functional status of pRb within these cells, we analysed whether cyclin D–cdk4 complexes could be formed in four representative cell lines: an LCL (IB4), an EBV-positive Burkitt’s lymphoma (Rael) and two EBV-negative Burkitt’s lymphoma cell lines (DG75 and Ramos). These cell lines displayed characteristic differences in their expression of members of the cyclin D family; LCLS expressed predominantly cyclin D2, whereas the other cell lines expressed only cyclin D3 (Palmero et al., 1993; Pokrovskaja et al., 1996; Bartekova et al., 1998). In all four cell lines, isolation of complexes containing the relevant cyclin D protein resulted in the co-purification of cdk4 (Figure 4). Thus, the p16INK4a protein in these cell lines remained below the threshold required to disrupt cyclin D–cdk4 complexes, which further strengthened our general conclusion that pRb is functional in this panel of human B-lymphoid-derived cell lines.

DISCUSSION

Although the incidence of genetic alteration to the retinoblastoma gene is high in non-Hodgkin’s lymphomas (NHL) (Martinez et al., 1993; Weide et al., 1994), we have identified 11 human B-cell lines which express pRb protein. This suggests that at least one allele of the retinoblastoma gene is intact in the cell lines. Furthermore, since (i) the pRb/p16INK4a feedback loop does not appear to have been disrupted and (ii) cyclin D–cdk4 complexes exist in the cells, this suggests that the pRb protein is functional and so inactivating point mutations are unlikely to have occurred. These cell lines may therefore prove to be a useful background in which to investigate the consequences of experimentally disrupting pRb function in human B-cells.

It is intriguing that the published incidence of pRb lesions is higher in B-lymphoid malignancies than B-lymphoid cell lines. However, the discovery that the loss of functional pRb can promote apoptosis (Morganbesser et al., 1994; Pan and Griep, 1994) may suggest an explanation for this difference. Thus, a model can be formulated whereby B-cell tumours lacking functional pRb exist in vivo due to the presence of survival factors expressed by neighbouring cells; however, once they are removed from their microenvironment and placed into in vitro culture, they will not survive. Thus, it is likely that established B-lymphoid cell lines represent only a subset of the tumours.

The presence of slower migrating bands of pRb, as seen in Figure 1, shows that the pRb phosphorylation pathway is active in these cells. However, since components of this pathway are frequently subject to mutation in lymphoid malignancies it is worth considering whether other components of the pathway are likely to be compromised in these cell lines.

i. A chromosomal translocation, t(11;14) (Banks et al., 1992; Shvidasani et al., 1993; Harris et al., 1994), which juxtaposes the cyclin D1 gene with an immunoglobulin enhancer and thus drives the unscheduled expression of cyclin D1 in B-cells (reviewed in Hall and Peters, 1996), is associated with a subset of B-lymphomas (Mantle cell lymphomas). However, this translocation has not been found in Burkitt’s lymphomas, which is consistent with the fact that no cyclin D1 protein or mRNA has been detected in an extensive group of cell lines derived from Burkitt’s lymphomas or EBV immortalized B-cells (Palmero et al., 1993; Pokrovskaja et al., 1996).

ii. Homozygous deletion of the MTS1 (CDKN2A, p16INK4a) locus is detected in a wide range of lymphoid malignancies (reviewed in Ruas and Peters, 1998). This results in a lack of expression of p16INK4a protein. As shown in Figure 3A, we were able to detect p16INK4a protein of the expected molecular weight in all of the B-cell lines, which implies that the locus has not been lost from this panel of cell lines.

iii. Point mutations within the p16INK4a coding sequence have also been observed in non-lymphoid malignancies (reviewed in Ruas and Peters, 1998). Although some of these changes are silent, some result in the expression of a protein which has lost its ability to inhibit cdk4 and cdk6. Although such point mutations are extremely rare in lymphoid malignancies (Ruas and Peters, 1998), we have not eliminated the possibility that they may be present in some of these B-cell lines.

iv. In addition, the molecular mechanisms by which p16INK4a expression can be altered includes silencing of the locus by site-specific methylation (Herman et al., 1995; Merlo et al., 1995; Otterson et al., 1995; Shapiro et al., 1995a,b). However, since we were able to detect expression of p16INK4a protein in these B-cell lines, this silencing mechanism is unlikely to play a significant role here.

The possibility remains that the p16INK4a/pRb pathway is disrupted further downstream or bypassed in these cells. For example, it has been shown recently that elevated expression of either cyclin E or c-myc is able to promote G1 to S phase transition in the presence of hypophosphorylated, active pRb (Alevizopoulos et al., 1997; Leone et al., 1997; Lukas et al., 1997). Since all Burkitt’s lymphoma cells express elevated levels of c-myc due to a translocation involving c-myc and one of the immunoglobulin loci (Rickinson and Keiffer, 1996), this may reduce the selective pressure for mutations in the p16INK4a/pRb pathway during the development of the tumour.

Thus, this panel of 11 cell lines, derived originally from B-cell malignancies (Burkitt’s lymphomas) or Epstein–Barr virus transformation (lymphoblastoid cell lines) appear to express functional pRb and contain an active pRb phosphorylation pathway. In addition, this analysis demonstrates that the MTS1 locus is not silenced in the cell lines. From this, it can be concluded that neither
disruption of pRb function nor the silencing of MTS1 are absolutely required either for the generation of B-cell malignancies or for the subsequent outgrowth of B-cell lines.

ACKNOWLEDGEMENTS

This work was supported by a project grant to AJS from the Leukaemia Research Fund. We thank D Lane, G Peters and J Bartek for antibodies, and M Rowe and K Takada for providing cell lines.

REFERENCES

Aagaard L, Lukas J, Bartkova J, Kjerulf AF, Strauss M and Bartek J (1995) Aberrations of p16(INK4a) and retinoblastoma tumour-suppressor genes occur in distinct subsets of human cancer cell lines. Int J Cancer 61: 115–120

Allday MJ, Sinclair AJ, Crawford DH and Farrell PJ (1995) Epstein-Barr virus efficiently immortalizes human B-cells without neutralising the function of p53. EMBO J 14: 1382–1391

Alevizopoulos K, Vlavh J, Hennecke S and Amati B (1997) Cyclin E and c-myc dependent kinases that associate with cyclin D1. J Biol Chem 272: 71–79

Ben-bassat H, Goldblum N, Mitrani S, Goldblum T, Yoffey JM, Cohey MM, Bentwich Z, Ramot B, Klein E and Klein G (1977) Establishment in continuous culture of a new type of lymphocyte from a Burkitt-like malignant lymphoma (DG-75)

Bartek J, Bartekova J and Lukas J (1996) The retinoblastoma protein pathway and hyperphosphorylated retinoblastoma family proteins EMBO J 15: 5322–5333

Arvanitakis L, Yaseen N and Sharma S (1995) Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-β1-mediated growth-inhibition in EBV-positive B-cells. J Immunol 155: 1047–1056

Banks PM, Chan J, Cleary ML, Delsol G, Dewolfpeeters C, Gatter K, Grogan TM, Harris NL, Isaacsong PG, Jaffe ES, Mason D, Pileri S, Ralfkiaer E, Stein H and Warneke RA (1992) Mantle cell lymphoma – a proposal for unification of morphological, immunological, and molecular data. Am J Surg Pathol 16: 637–640

Bartek J, Bartkova J and Lukas J (1996) Cyclin D3: requirement for G1/S transition and high abundance in quiescent tissues suggest a dual role in proliferation and differentiation. Oncogene 17: 1027–1037

Banko S, Bonetta L, MacAllan D, Parry D, Holder A, Dickson C and Peters G (1994) Cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-β1-mediated growth-inhibition in EBV-positive B-cells. J Immunol 155: 4575–4583

Bartekova J, Lukas J, Strauss M and Bartek J (1998) Cyclin D3: requirement for G1/S transition and high abundance in quiescent tissues suggest a dual role in proliferation and differentiation. Oncogene 17: 1027–1037

Bartekova J, Lukas J, Goldberg P, Alner J, Kirkin AF, Zeuthen J and Bartek J (1996) The p16-cyclin-D-cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis. Cancer Res 56: 5475–5483

Ben-bassat H, Goldblum N, Mitrani S, Goldblum T, Yoffey JM, Cohey MM, Bentwich Z, Ramot B, Klein E and Klein G (1977) Establishment in continuous culture of a new type of lymphocyte from a Burkitt-like malignant lymphoma (DG-75)

Cannell EJ, Farrell PJ and Sinclair AJ (1996) EBV exploits the normal cell pathway to regulate pRb activity during the immortalisation of primary B-cells. Oncogene 13: 1413–1421

Clements GB, Klein G and Povey S (1975) Production by EBV infection of an EBNA-positive subline from an EBNA-negative human carcinoma cell line without EBV DNA. Int J Cancer 16: 125–133

Cowell JK and Hogg A (1992) Genetics and cytogenetics of retinoblastoma. Cancer Genet Cytogenet 64: 11–15

Diller L, Kassel J, Nelson CE, Gryka MA, Litwak G, Gebhardt M, Bresacca B, Ozturk M, Baker SJ, Vogelstein B and Friend SH (1990) p53 functions as a cell-cycle control protein in osteosarcomas. Mol Cell Biol 10: 5772–5781

Farrell PJ, Allan GJ, Shawhan EM and Crook T (1991) p53 is frequently mutated in Burkitt’s lymphoma cell lines. EMBO J 10: 2879–2887

Gregory CD, Rowe M and Rickinson AB (1990) Different Epstein–Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt’s lymphoma cell line. J Gen Virol 71: 1481–1495

Hara E, Smith R, Parry D, Tahara H, Steven S and Peters G (1996) Regulation of p16(CDKN2) expression and its implications for cell immortalization and senescence. Mol Cell Biol 16: 859–867

Harris NL, Jaffe ES, Stein H, Banks PM, Chan J, Cleary ML, Delsol G, Dewolfpeeters C, Falini B, Gatter KC, Grogan TM, Isaacsong PG, Knowles DM, Mason D, Mullerhermelink HK, Pileri SA, Piris MA, Ralfkiaer E and Warneke RA (1994) A revised European–American classification of lymphoid neoplasms – a proposal from the international lymphoma study-group. Blood 84: 1361–1392

Heidel D, Olson JJ and James CD (1995) Lack of p16(INK4a) or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell-lines. Cancer Res 55: 4833–4836

Herman JG, Merlo A, Mao L, Lapidas EJ, Issa J, Davidson NE, Sidransky D and Baylin SB (1995) Inactivation of the CDKN2/p16MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55: 4525–4530

Herwig S and Strauss M (1997) The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur J Biochem 246: 581–601

Hinuma Y, Koom M, Yamaguchi J, Wudsarski D, Blakeslee J and Grace J (1967) Immunofluorescence and herpes type virus particles in the P3HR-1 Burkitt lymphoma gene. J Virol 1: 1043–1051

Holm I, Nakaishi Y, Akao T, Kinoshita H, Okada Y and Yoshida O (1997) Concomitant presence of p16-cyclin-dependent kinase 4 and cyclin D cyclin-dependent kinase 4 complexes in LNCaP prostatic cancer cell line. Jpn J Cancer Res 88: 229–233

Kelley MJ, Otterson GA, Kaye FJ, Popescu NC, Johnson BE and Dippold JA (1995) CDKN2 in HPV-positive and HPV-negative cervical-carcinoma cell lines. Int J Cancer 63: 226–230

Kempkes B, Spitkovsky D, Jansen-Durr P, Eillart JW, Kremmer E, Delecluse HJ, Rottenberger C, Bornkamm GW and Hammerschmidt W (1995) B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2. EMBO J 14: 88–96

Kleef SN, Degregori J, Yee CL, Otterson GA, Kaye FJ, Nevinns JR and Howley PM (1996) Inhibition of cyclin D-cdk4/cdk6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc Natl Acad Sci USA 93: 4350–4354

King W, Thomas-Powell AW, Raab-Trambau N, Hawke M and Kieff E (1980) Epstein-Barr virus RNA. V. Viral RNA in a restirngly infected, growth-transformed cell line. J Virol 36: 500–511

Klein G, Ehlín-Hendrikson B and Schlossman S (1983) Induction of an activated b lymphocyte-associated surface moiety defined by the B2 monoclonal antibody by ebv conversion of an EBV-negative lymphoma line (Ramos): differential effect of transforming (B95-8) and nontransforming (P3HR-1) EBV substrains. J Immunol 130: 1985–1989

Klein G, Giureanu B, Westman A, Stehlin J and Mumford D (1975) An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology 5: 319–334

Koh J, Enders GH, Dynlacht B and Harlow E (1995) Tumour derived p16 alleles encoding proteins defective in cell cycle inhibition. Nature 375: 506–509

Kratzke RA, Otterson GA, Lincoln CE, Ewing S, Oie H, Geradts J and Kaye FJ (1995) Immunohistochemical analysis of the p16(ink4a) cyclin-dependent kinase inhibitor in malignant mesothelioma. J Natl Cancer Inst 87: 1870–1875

Leone G, DeGregori J, Sears R, Jakos L and Nevinns J (1997) Myc and ras collaborate in inducing accumulation of active cyclinE2c and E2F. Nature 387: 422–426

Li Y, Nichols MA, Shay JW, and Xiong Y (1994) Transcriptional repression of the D-type cyclin dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product E2F. Nature 370: 5078–5082

Ludlow JW, Decaprio JA, Huang CM, Lee WH, Paucha E and Livingston DM (1989) SV40 large T-antigen binds preferentially to an underphosphorylated member of the retinoblastoma family. Nature 340: 503–506

Lukas J, Parry D, Aagaard L, Mann DJ, Bartokova J, Strauss M, Peters G and Bartek J (1995) Retinoblastoma-protein dependent cell cycle inhibition by the tumour suppressor p16. Nature 375: 503–506
Morganbesser SD, Williams BO, Jacks T and DePinho RA (1994) p53-dependent

Mittnacht S (1998) Control of pRb phosphorylation.

Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB and

Otterson GA, Kratzke RA, Coxon AB and Kaye FJ (1994) Absence of

Menezes J, Leibold W and Klein G (1975) Biological differences between Epstein-

Martinez JC, Piris MA, Sanchezbeato M, Villuendas R, Orradre JL, Algara P,

Ruas M and Peters G (1998) The p16INK4a/CDKN2A tumour suppressor and its

Parry D, Bates S, Mann DJ and Peters G (1995) Lack of cyclin D-cdk complexes in

Pan H and Griep AE (1994) Altered cell cycle regulation in the lens of HPV-16 E6

Rickinson AB and Fentim A, Delikat D (1998) Interactions between EBV and the cell

Pokrovskaja K, Ehlinhenriksson B, Barthova J, Bartek J, Scuderi R, Szekely L,

Pon H and Grieb AE (1994) Altered cell cycle regulation in the lens of HPV-16 E6

Parry D, Bates S, Mann DJ and Peters G (1995) Lack of cyclin D-cdk complexes in

Pokrovskaja K, Ehlinhenriksson B, Barthova J, Bartek J, Scuderi R, Szekely L,

Wiman KG and Klein G (1996) Phenotype-related differences in the expression of

D-type cyclins in human B-cell-derived lines. Cell Growth Differ 7: 1723–1732

Ponten J and Saksela E (1967) Spontaneous lymphoblast transformation of long-

term cell cultures from human malignant lymphoma. Int J Cancer 2: 434–447

Rickinson AB and Keitel E (1996) Epstein-Barr virus. In Fields Virology, Fields BN,

Knipe DM, Howley PM (eds), pp. 3287–2446. Lippencott-Raven: Philadelphia

Ruan M and Peters G (1998) The p16INK4a/CdkN2A tumour suppressor and its

relatives. Biochim Biophys Acta (in press)

Sanchez I and Dynlacht BD (1996) Transcriptional control of the cell-cycle. Curr

Opin Cell Biol 8: 318–324

Scheffer M, Mienger K, Byrne JC and Howley PM (1991) The state of the p53 and

retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci USA 88: 5523–5527

Serrano M, Hannon GJ and Beach D (1993) A new regulatory motif in cell-cycle

control causing specific inhibition of cyclin D/Cdk4. Nature 366: 704–707

Shapiro GI, Edwards CD, Kobzik L, Godleski J, Richards W, Sugarbaker DJ and

Rollins BJ (1995a) Reciprocal Rb inactivation and p16INK4 expression in primary

lung cancers and cell lines. Cancer Res 55: 505–509

Shapiro GI, Park JE, Edwards CD, Mao L, Merlo A, Sidransky D, Ewen ME and

Rollins BJ (1995b) Multiple mechanisms of p16(INK4a) inactivation in non-

small-cell lung-cancer cell-lines. Cancer Res 55: 6200–6209

Sherr CJ and Roberts JM (1995) Inhibitors of mammalian G(1) cyclin-dependent

kineses. Genes Dev 9: 1149–1163

Shivdasani RA, Hess JL, Skarin AT and Pinkus GS (1993) Intermediate lymphocytic

lymphoma – clinical and pathological features of a recently characterized

type non-Hodgkins-lymphoma. J Clin Oncol 11: 802–811

Sinclair AJ and Farrell PJ (1995) Methods to study Epstein-Barr virus and p53 status

in human cells. In Methods in Molecular Genetics, Aldolph KW (ed), pp. 89–100. Academic Press: Orlando

Sinclair AJ, Jacquemen MG, Brooks LS, Shananah F, Brimmell M, Rowe M and

Farrell PJ (1993) Reduced signal transduction through glucocorticoid receptor in

Burkitt’s lymphoma cell lines. Virology 199: 339–353

Sinclair AJ, Palmero I, Peters G and Farrell PJ (1994) EBNA-2 and EBNA-LP

cooporate to cause G0 to G1 transition during immortalization of resting human B

lymphocytes by Epstein–Barr virus. EMBO J 13: 3321–3328

Sinclair AJ, Fenton M and Delikat D (1998) Interactions between EBV and the cell

cycle control machinery. Histol Histopathol 13: 461–467

Szekely L, Pokrovskaja K, Jiang W-Q, Selivanova G, Lionbeer M, Ringertz N,

Wiman KG and Klein G (1995) Resting B-cells, EBV-infected blasts and

established lymphoblastoid cell lines differ in their Rb, p53 and EBNA-5 expression

patterns. Oncogene 10: 1869–1874

Takada K (1984) Cross-linking of cell surface immunoglobulins induces Epstein-

Barr virus in Burkitt lymphoma lines. Int J Cancer 33: 27–32

Tam SW, Shay JW and Pagano M (1994) Differential expression and cell cycle

regulation of the cyclin dependent kinase 4 inhibitor p16. Cancer Res 54: 5816–5820

Templeton DJ, Park SH, Lanier L and Weinberg RA (1991) Nonfunctional mutants of the retinoblastoma protein are characterised by defects in phosphorylation, viral oncoprotein association and nuclear tethering. Proc Natl Acad Sci (USA) 88: 3033–3037

Weide R, Tiemann M, Pfluger KH, Kopppler H, Parviz B, Wacker HH, Kreipe HH,

Havemann K and Parwaresch MR (1994) Altered expression of the retinoblastoma gene-product in human high-grade non-Hodgkins-lymphomas. Leukemia 8: 97–101

Weinberg RA (1992) The retinoblastoma gene and gene product. Cancer Surv 12: 43–57

Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81: 323–330

Welcker M, Lukas J, Straus M and Bartek J (1996) Enhanced protein stability: a

novel mechanism of D-type cyclin overabundance identified in human sarcoma cells. Oncogene 13: 419–425

Xu HJ, Hu SX, Hashimoto T, Takahashi R and Benedict WF (1989) The retinoblastoma susceptibility gene-product – a characteristic pattern in normal-
cells and abnormal expression in malignant cells. Oncogene 4: 807–812

© Cancer Research Campaign 1999

British Journal of Cancer (1999) 80(5/6), 670–675

Functional pRb in B-cell malignancies 675