REVIEW

Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments

Viviana Mourino1,2,*, Juan Pablo Cattalini1 and Aldo R. Boccaccini3,*

1Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín Street, Sixth Floor, Buenos Aires CP1113, Argentina
2CONICET, 1917 Rivadavia Avenue, Buenos Aires CP C1033AAJ, Argentina
3Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany

This article provides an overview on the application of metallic ions in the fields of regenerative medicine and tissue engineering, focusing on their therapeutic applications and the need to design strategies for controlling the release of loaded ions from biomaterial scaffolds. A detailed summary of relevant metallic ions with potential use in tissue engineering approaches is presented. Remaining challenges in the field and directions for future research efforts with focus on the key variables needed to be taken into account when considering the controlled release of metallic ions in tissue engineering therapeutics are also highlighted.

Keywords: metallic ions; tissue engineering; scaffolds; bone; drug delivery; controlled release

1. INTRODUCTION

A common tissue engineering approach involves the development of novel biomaterials to produce three-dimensional porous scaffolds, that encourage cell infiltration and proliferation for tissue regeneration [1–3]. Several debilitating and deadly conditions such as osteoporosis, osteoarthritis, retinopathy, burns, myocardial infarction as well as tendon and ligament defects, among others have the potential to be treated by tissue engineering strategies. Scaffolds made from biodegradable polymers, ceramics or their composites are popular choices for tissue engineering applications and there are increasing investigations focusing on loading engineered scaffolds with therapeutic drugs, generating a dual function for the matrices: scaffolds for the growth of new tissue and carriers for controlled in situ drug delivery [4–13]. In addition, there is growing interest in developing matrices with the capacity to induce specific interactions within cells in order to unlock the innate path for self-repair [14]. Further, it is worthwhile noting the current expansion of the field of therapeutic tissue engineering (TTE), which considers the enhancement of the functionality of scaffolds by incorporating a drug delivery function with therapeutic effectiveness [12,15]. In this context, in order to design and develop TTE scaffolds, several variables have to be taken into account. From a tissue engineering perspective, selection of suitable processing methods that provide the best mechanical and structural properties to the final porous scaffold is of highest relevance [16]. From a pharmaceutical perspective, the scaffold fabrication method must be compatible with drug stability and sustained drug release; conditions such as high temperature, use of some organic solvents, pressure and free radicals that may lead to drug decomposition will restrict the selection of fabrication processes [17]. There are several otherwise very convenient fabrication techniques for tissue engineering scaffolds, involving however, processes that are incompatible with the incorporation and stability of organic drugs [12]. It is therefore attractive to explore the use of metallic ions as therapeutic agents (MITAs) within the scope of TTE. A wide range of MITA, the majority of them being essential cofactors.

*Authors for correspondence (aldo.boccaccini@ww.uni-erlangen.de; vmourino@ffyb.uba.ar).
of enzymes, can be considered in this regard, including cobalt, copper, gallium, iron, manganese, silver, strontium, vanadium and zinc, and will be discussed further in this article. The use of MITA does not pose the risk of decomposition or instability, which is intrinsic to organic molecules. Further, the unique properties of MITA with therapeutic significance (e.g. hydrolytic and redox activity, Lewis acidity, electrophilicity, valency, geometry, magnetic effect, spectroscopy, radiochemical properties) indicate the ability of these ions to interact with other ions that can alter cellular functions, cell metabolism or biological functions, by binding to macromolecules such as enzymes and nucleic acids, and/or activating ion channels or secondary signalling [17]. These actions of MITA may provide effects that are different from those that can be achieved through other chemical, biochemical or genetic manipulations [17]. In addition, an MITA approach is usually economic and stable under typical processing conditions for biomaterial scaffold production, which may involve the use of organic solvents, high temperatures, pressure and free radicals. Nevertheless, the potential toxicity of metallic ions when delivered locally has to be taken into account. From this perspective, the purpose of this review is to provide an overview of the advances in the expanding field of application of metallic ions in regenerative medicine and tissue engineering, focusing on their therapeutic applications. Particular emphasis is given to bone tissue engineering (TE), as this particular TE area seems to be the more developed regarding the use of MITA (also named bioinorganics [18]). This article is not encyclopaedic; rather, selected examples have been chosen to illustrate and summarize the progress in the research field. In addition, some works that detail the use of MITA to regulate specific metabolic processes are included despite not yet being used in tissue engineering, but with the potential to be considered in future TE strategies. The article is organized in the following manner: §2 discusses the general local release of metallic ions and their interaction with metabolic processes, §3 focuses on the key variables needed to be taken into account when considering the inclusion of MITA in controlled drug delivery systems in general and in scaffolds for tissue engineering in particular. Finally, remaining challenges in the field and directions for future research efforts are highlighted in §4.

2. LOCALIZED RELEASE OF METALLIC IONS

In the body, various metallic ions act as cofactors of enzymes and stimulate a chain of reactions associated with cell signalling pathways towards tissue equilibrium [19]. These properties, far from specific, are reflected in the very wide range of pathological conditions in which metallic ions are involved. Interactions with metallic ions play important roles in a variety of diseases and metabolic disorders such as cancer, central nervous system disorders, infectious diseases, perturbation of gastrointestinal activity and endocrine disorders; studies based on the effects of metallic ions in a wide range of pathologies are reviewed in the literature [17,20]. Thus, the efficiency and selectivity of the therapeutic effect of metallic ions can be improved by controlling the precise level and/or location of them in the body. In addition, the ionic states of certain metallic ions are unstable, and they may have toxic effects when directly ingested. To overcome these disadvantages, extensive research has been conducted to develop matrices to control the local release of metallic ions. Current metallic-ion-based drugs are prone to lead to significant systemic toxicity; thus, the design of matrices for the local delivery of relatively high concentrations of metallic-ion-based drugs to target tissues with reduced systemic adverse effects is of high interest.

The degree of metallic ion loading into matrices for local delivery and the controlled and sustained release of the loaded ions are undoubtedly important to ultimately optimize metal ion delivery for therapeutic use. In addition, it is imperative to control the release rate of loaded ions. Nevertheless, ascertaining the appropriate degree of metallic ion loading and the appropriate amount released in a determined period is difficult because therapeutic levels of most MITA are unknown. A strategy very often used to load metallic ions into matrices is to bind them to a suitable substrate (zeolites, hydroxyapatite, bioactive glass, silica, carbon fibres) so that the stability of ionic states is improved and the ions can be released over a long period of time with potential applications in many fields [21–32]. Despite the efforts made in this respect, the achievements in controlling and sustaining the release of loaded therapeutic metal ions—in terms of obtaining constant therapeutic amount release of the ion over a period of time—have been very limited [18]. Amorphous peroxititanates (APT) might also be used to bind a variety of metal compounds with high-affinity forming complexes to control the delivery of metal-based drugs to target tissues avoiding systemic toxicity, or to capture metal ions from body tissues [33–37]. Wataha et al. [33] demonstrated that metal–APT complexes facilitate metal ion delivery (such as gold and platinum) to monocytes as well as fibroblasts. Despite the improvements made in controlling ion release from a variety of biomaterials, potential accumulation and toxicity require further research. In healthy systems, free metallic ion concentrations are maintained at very low levels, and the normal metal metabolism delivers them in a selective manner to their sites of action, while maintaining rigid control over their reactivity. However, anomalous metallic ion metabolism can contribute to pathological states such as haemochromatosis, Wilson disease and Menkes disease [38–40]. Moreover, as mentioned above, the singular properties of metallic ions, such as Lewis acidity, hydrolytic and redox activity, electrophilicity and valency, can alter cellular activities supporting the cell metabolism or, in the worse case scenario, inducing toxic effects. For example, minimal shortages of certain metallic ions are involved in the pathogenesis of various chronic diseases such as diabetes mellitus, rheumatoid arthritis, coronary heart disease, epilepsy, nephropathy and a variety of bone-related pathologies [41–45]. By contrast, the uncontrolled release of metal ions may produce adverse effects such as the case of
corrosion of metal implants, which causes the release of significant amounts of metal ions into the tissues in close contact with the implant and the systemic circulation, often resulting in complications such as inflammatory and immune reactions [46–48]. The actions of MITA loaded within matrices for local release in general, and within scaffolds for tissue engineering in particular, may be different from those that can be achieved through other chemical, biochemical or genetic interactions. The local actions of MITA within the environment in which they are released are presumed to differ in general from the actions of non-metallic agents, offering singular therapeutic opportunities. On the other hand, it is important to gain control over the potential toxicity of MITA, and the appropriate therapeutic concentrations for local release must be defined. In this context and considering the growing interest in the local release of metallic ions for therapeutic purposes, the following issues must be taken into consideration: (i) reactions of metallic ions with cellular constituents (e.g. proteins, nucleic acids—DNA and RNA—lipids, carbohydrates, redox substrates, signalling molecules); (ii) reactions of metallic ions in the local cellular environment; (iii) incorporation of metallic ions into cells and delivery to specific organelles and cellular structures; and (iv) interactions of metallic ions with specific receptors and enzymes and their involvement in metabolic pathways to alter cell functions [49,50].

3. THERAPEUTIC IONS IN TISSUE ENGINEERING

The interest in the application of MITA in the field of regenerative medicine and TE scaffold development is growing owing to the fact that MITA may offer therapeutic opportunities coupled with high flexibility to be incorporated in engineered biomaterial scaffolds by a broad range of processing methods. Moreover, MITA have lower cost, higher stability and potentially greater safety than recombinant proteins or genetic engineering approaches [50]. Table 1 summarizes the most common processes reported to produce scaffolds for tissue engineering with the potential to be used for the incorporation of MITA in scaffolds. Processing techniques such as rapid prototyping, electrospinning, thermally induced phase separation and solid free form fabrication are attractive because they enable fabrication of engineered three-dimensional, porous structures of high uniformity and reproducibility [81–89]. Additionally, organic/inorganic composite scaffolds, particularly for bone tissue engineering applications, made of bio ceramics or bioactive glasses and biodegradable polymers [16], often include metallic ions as part of the bio ceramic or bioactive glass structural composition. These inorganic materials enable metal ion release during their degradation in vitro or in vivo [18,32]. For example, when bioactive glass (e.g. 45S5 Bioglass) [90] is used in scaffolds for bone tissue engineering and introduced to fill a bone defect, critical concentrations of soluble Si, Ca, P and Na ions are released, with the capability to produce both intracellular and extracellular effects at the interface between the glass and the cellular environment [32,60,91–101]. These ions are known to stimulate various processes; for example, several investigations have demonstrated that released ions from bioactive glasses are able to induce gene expression with known roles in processes related to bone metabolism by signal transduction, thereby enhancing cell differentiation and osteogenesis [91,94,95,102]. The ionic dissolution products of bioactive glasses can also promote angiogenesis [103]. It is, therefore, vital that the kinetics of ion release from any scaffold (or implant) made from bio ceramics can be tailored and controlled [18]. A comprehensive review about the biological response to ionic dissolution products from glass—ceramics and bioactive glasses in the context of bone tissue engineering has been recently published [32]. Nevertheless, it is important to highlight that few studies are focused on developing ideal matrices for the control and sustained release of loaded ions within specific therapeutic levels, over a previously defined period of time. Several attempts to intentionally load therapeutic metal ions rely on ion substitution in ceramic systems, limiting the possibility to control and sustain the release of a specific therapeutic dose over a period of time. In this sense, the application of inorganic ions in the field of bone regeneration, with special emphasis on the lack of a controlled, sustained and localized release of both structural and non-structural ions from bio ceramics, is discussed in a recent report of Habibovic & Barralet [18]. Novel strategies are based on biodegradable metals, such as magnesium alloys and iron, which are dissolved in vivo when no longer needed [104]. In this regard, research activities are underway to make biodegradable metals practical for tissue engineering [105]. There are also new techniques to produce degradable metallic implants, innovative coating technologies to yield special surface functionalities, new biodegradable materials and methods to develop nano-devices for monitoring implants and sensing functions [104,106–113]. In addition, the use of metallic ions as cross-linkers of polymers in the formation of hydrogels and as network formers or modifiers of bioactive glasses (silicate or phosphate systems) in the elaboration of bioactive scaffolds are being increasingly investigated [13,32,51,114–118]. Figure 1 provides a summary of the most common specific targets of relevant metallic ions reviewed in the present work in their role as therapeutic agents. Table 2 summarizes relevant functions and biological effects of metallic ions with promising applications in tissue engineering. As indicated above, one of the obvious negative effects of the localized release of ions could be potential ion accumulation and toxicity. It is, therefore, vital that the kinetic of ion release from any scaffold is tailored. Several investigations have shown how the incorporation of specific metallic ions in different matrices could affect (usually improve) the physiology and metabolism of cells close to the release area; a summary of previous investigations is presented in table 3. The list is intended to be illustrative, not exhaustive. The number of specific investigations on effects of MITA intentionally added to scaffolds for therapeutic
purposes, aimed at engineering a wide range of tissues, is continuously growing. Particularly, in the case of bone TE, there is increasing interest in the role of certain metallic ions (e.g. copper, strontium and zinc) in bone pathologic states because many of them are cofactors in metabolic processes involving bone, articular tissues and immune system functions [43,246]. Further, the loading of MITA within scaffolds lacks the risk of drug decomposition or instability depending on the employed processes of fabrication, as explained above. Moreover, bacterial adhesion to biomaterials that causes biomaterial-centred infection and poor tissue integration are problems that could limit the viability of the scaffold, especially when it is designed to be applied in vivo (as opposed to applications in bioreactors, for example) [91]. As mentioned above, there is growing interest in exploring the possibility of using the device itself to deliver therapeutic drugs to prevent possible bacterial colonization of the device following implant surgery and/or pro-angiogenic agents to

Table 1. Summary of the most common processes reported to fabricate scaffolds for tissue engineering with capabilities to include metallic ions.

technique	characteristics	reference
melt moulding + ion-exchange	melting and sintering at high temperature + introduction of ions by ion-exchange process	[51]
solvent casting	scaffolds are prepared by dissolving/suspending polymers/ceramics in presence of porogens (such as sodium chloride, sugar crystals). After pouring the mixture into a mould, solvents are removed either by evaporation or vacuum/freeze drying. Porosity is achieved by dissolving the porogens in water. Finally, the porous materials are usually lyophilized	[52,53]
freeze drying	scaffolds are prepared by dissolving/suspending polymers/ceramics in water or in an organic solvent followed by emulsification with a water phase. After pouring the mixture into a mould, solvents are removed by freeze drying and porous are obtained	[54]
liquid/liquid thermally induced separation technique	scaffolds are prepared by dissolving/suspending polymers/ceramics in a solvent that freezes below the phase separation temperature of the polymer solution. Porous materials are obtained by subsequent freeze drying	[55]
foaming	effervescent salts (ammonium bicarbonate) are used as porogens and mixed with an organic viscous solution/suspension of polymer/ceramic. After solvent evaporation, porosity is achieved by placing scaffolds into hot water or an aqueous solution of citric acid to dissolve the salts. An alternative is to use CO2-based gas	[53,56,57]
replica technique	scaffolds are prepared by dipping a polyurethane sponge into a slurry of proper viscosity containing ceramic particles. The impregnation step and the removal of the exceeding slurry should be tuned in order to obtain, after the sponge removal, a defect-free porous three-dimensional scaffold. Sometimes, in order to obtain mesoporous, a tensioactive may be added to the vehicle	[58,59]
sol-gel	scaffolds are prepared by dissolving metallic metal salts or metal organic compounds in a solvent where a series of hydrolysis and polymeration reactions allows the formation of a colloidal suspension (‘sol’). After casting the ‘sol’ into a mould, a wet ‘gel’ is formed. With further drying and heat treatment, the ‘gel’ is converted into dense ceramic or glass articles	[60,61]
powder compression	scaffolds are prepared by compressing polymers/ceramics using projectiles or punch and dies. The velocity of the projectile or punch and dies is adjusted to achieve powder consolidation and the desire porosity. It can be followed by sintering. An alternative is to use uniaxial and isostatic pressure	[62–65]
laser-based processing systems	scaffolds are prepared either layer by layer by photopolymerization of a liquid (stereolithography) or sintering of powder material (selective laser sintering). In both cases, material is swept over a build platform that is lowered for each layer	[66–72]
printing-based systems	scaffolds are prepared by printing a chemical binder onto a bed of powdered material (three-dimensional printing)	[73,74]
electrospinning	the material to be electrospun is first dissolved in a suitable solvent to obtain a viscous solution. The solution is passed through a spinneret and a high voltage is used to charge the solution	[75–77]
nozzle-based systems	a thin filament of material (extruded thermoplastic polymer) that is heated through a nozzle is printed by a fused deposition modeller. Then, the mould is negative for the scaffold fabricated via fused deposition modelling	[78–80]
secure vascularization [13,32,91,117,141]. In this context, bacteriostatic effect and pro-angiogenic potential seem to be the most common aims of the incorporation of metallic ions within scaffolds to date and the most common ions studied in this regard are copper, silver, strontium and zinc (table 3).

Figure 1. Most common specific targets of relevant metallic ions in their role of therapeutic agents. VEGF, vascular endothelial growth factor.
ion	functions and biological effects	experimental trial	reference
calcium	approximately 99% of the body’s calcium is stored in bone. Forms hydroxyapatite in combination with phosphate		[119-122]
	Ca^{2+} acts as an ionic messenger. Its movements into and out of the cytoplasm serve as a signal for many cellular processes, such as exocytosis of neurotransmitter for muscle contraction. Optimal levels of intracellular Ca^{2+} may control neurite elongation and growth		
	bone motility in vitro stimulation of bone cell differentiation, osteoblast proliferation, bone metabolism and its mineralization	[123-127]	
	Ca^{2+} supplants Na^{+} as the ion that depolarizes the cell in the action potential in the heart’s system conduction increment of release of glutamate by osteoblast cells (bone mechanosensitivity)	[126]	
	seven transmembrane-spanning extracellular calcium-sensing receptors in bone cells modulates the recruitment, differentiation and survival of bone cells via activation of several intracellular signalling pathways	in vitro/in vivo	[125]
	Ca^{2+} increases the expression of insulin-like growth factors (IGFs) that regulate human osteoblast proliferation such as IGF-1 and IGF-II	[125]	
cobalt	part of vitamin B_{12} which stimulates the production of red blood cells		[128,129]
	cobalt chloride can activate the hypoxia inducible factor-1 (HIF-1) in mesenchymal stem cells and subsequently activate HIF-α target genes including vascular endothelial growth factor (VEGF), EPO and p21		
	hypoxia-treated bone marrow stromal cells (BMSCs) have been applied successfully to assist in re-vascularizing ischaemic or infarcted muscles in animal models upregulation of the expression of pro-angiogenic growth factors (VEGF) in a variety of cells, including BMSCs	in vitro	[129-131]
copper	stimulation of proliferation of human endothelial cells	in vitro	[134]
	copper–thiolate complexes are reported to be anti-inflammatory component of super oxide dismutasa (SOD), lysi oxidase, ceruplasmin (CP) and cytochrome c oxidase (COX) inhibition of synthesis and modification of three-dimensional structure of DNA. Modulation of protein synthesis. Inhibition of the activity of several enzymes (such as ATPase, DNA polymerases, ribonucleotide reductase and tyrosine-specific protein phosphatase)	in vitro	[135-137]
	modulation of proliferation and differentiation of human mesenchymal stem cells towards osteogenic lineage facilitating the release of growth factors and cytokines from producing cells antibacterial properties against Staphylococcus epidermis decreases the risk of ischemia in skin flaps and can induce a vascularized capsule around cross-linked hyaluronic acid-composed hydrogel involvement in the activity of several transcription factors (via HIF-1 and proline hydroxylase) and bind to cell membrane releasing complex induction of endothelial growth factor and enhancement of angiogenesis in vivo stimulation of angiogenesis in association with FGF-2	in vitro	[139]
		[140]	
			[141]
		[142,143]	
		[144-146]	
gallium	alteration of plasma membrane permeability and mitochondrial functions effective in the treatment of hypercalcaemia associated with tumour metastasis in bones	in vivo	[151]
	Ga^{3+} inhibits bone resorption and lowers concomitant elevated plasma calcium Ga^{3+} exhibits a dose-dependent antioestrocalastic effect by reducing osteoclastic resorption, differentiation and formation, inhibits bone resorption and lowers concomitant elevated plasma calcium Ga^{3+} inhibits Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and Clostridium difficile	in vitro	[152-154]
iron	participation in redox reactions of metalloproteins such as cytochrome proteins, and oxygen carrier proteins such as haemoglobin and myoglobin promotion of cell attachment and differentiation of a conditionally immortal muscle precursor cell line derived from the H-2 kb-tsA58 immortomouse	in vitro	[157,158]
			[144,159]
Magnesium is vital for living cells owing to the interaction with phosphate ions (ATP exists in cells normally as a chelate with Mg$^{2+}$) as a cofactor for many enzymes (catalytic action) in vitro/in vivo [160–165].

Manganese is a cofactor for a very broad number of enzymes (oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases, lectins, integrins and glutamine synthetase). Essential in detoxification of superoxide free radicals in vitro/in vivo [166,167].

Silver is an antibacterial agent (Ag$^{+}$) binding to microbial DNA (preventing replication) or to sulphydryl groups of bacteria enzymes (inhibition of cells’ respiration and bounding transportation of important substances across the cells membrane and within the cells) in vitro/in vivo [59,168–177].

Strontium is stored in the skeleton by exchanging with Ca$^{2+}$ in the hydroxyapatite crystal lattice, preferably in new trabecular bone and with variations depending upon the skeletal site (Sr$^{2+}$ content increases in the sequence diaphysis of the femur, lumbar vertebra and iliac crest) in vitro/in vivo [178,179]. Low doses of Sr$^{2+}$ have been shown to stimulate bone formation. High doses have deleterious effects on bone mineralization, through reduction in calcium absorption and possibly alterations of the mineral properties [180].

Vanadium works by regulating specific protein phosphatases and kinases instead of insulin hormone itself or insulin receptors messengers, possibly bypassing non-functional components of the insulin signalling pathways in vitro/in vivo [181–190].

Zinc ion (Zn$^{2+}$; with copper) is a component of SOD in bone metabolism; it is associated with growth hormone (GH) or insulin-like growth factor 1 (IGF-1) after addition of zinc to tibial cultures, the relative extend of the zinc-induced DNA increase was similar to the relative extend of the zinc-induced increase in ALP activity in vitro/in vivo [209,210].

Vanadium it works by regulating specific protein phosphatases and kinases instead of insulin hormone itself or insulin receptors messengers, possibly bypassing non-functional components of the insulin signalling pathways could inhibit the enzyme protein tyrosine phosphatase 1B (PTP1B). The PTP1B obstructs the active site where phosphate hydrolysis of the insulin receptor occurs, thus acting as a negative regulator of insulin signalling in vitro/in vivo [190–194].

Organic compounds decreases neuropeptide Y levels in the hypothalamus and thus an increment in the insulin sensitivity in adipose tissue and a decrement in the appetite and body fat can be observed in vitro/in vivo [195].

Several vanadium (Va$^{4+}$) compounds studied (such as with ascorbic acid, maltol, threalose and non-steroidals anti-inflammatory drugs) such as aspirin, ibuprofen, naproxen and tolmetin) did affect osteoblast proliferation and differentiation at low doses by stimulating cell growth and inhibiting alkaline phosphatase (ALP)-associated osteoblastic differentiation. In vitro/in vivo [201–205].

Silver antibacterial agent (Ag$^{+}$) binding to microbial DNA (preventing replication) or to sulphydryl groups of bacteria enzymes (inhibition of cells’ respiration and bounding transportation of important substances across the cells membrane and within the cells) in vitro/in vivo [59,168–177].

Silver antibacterial agent (Ag$^{+}$) binding to microbial DNA (preventing replication) or to sulphydryl groups of bacteria enzymes (inhibition of cells’ respiration and bounding transportation of important substances across the cells membrane and within the cells) in vitro/in vivo [59,168–177].

Silver antibacterial agent (Ag$^{+}$) binding to microbial DNA (preventing replication) or to sulphydryl groups of bacteria enzymes (inhibition of cells’ respiration and bounding transportation of important substances across the cells membrane and within the cells) in vitro/in vivo [59,168–177].
ion	scaffold composition	experimental trial	reference	
calcium	osteochondral composite using type II collagen gel with hydroxyapatite (HAP) varying amount of calcium (2–4 mmol, 6–8 mmol, less than 10 mmol)	*in vitro*	[123]	
	on one side (two- and three-dimensional)	low Ca\(^{2+}\) concentrations (2–4 mmol) promoted osteoblast proliferation. Medium Ca\(^{2+}\) concentrations (6–8 mmol) produced differentiation and extracellular matrix mineralization. Higher concentrations (greater than 10 mmol) are cytotoxic		
calcium phosphate (CaP) treatment of the surface of three-dimensional bioactive glass scaffolds	*in vitro*	three types of bioactive glass scaffolds (non-treated, thick and thin Ca–P–treated) were compared. The expression of osteopontin and alkaline phosphatase (ALP; both indices of osteogenic differentiation) were higher in the non-treated and thin Ca–P–treated scaffolds when compared with thick Ca–P–treated scaffolds. The higher release of Ca\(^{2+}\) from thick Ca–P–treated scaffold relates to the low ALP activity and may also lead to low osteopontin synthesis	[208]	
mesoporous silica xerogels (SiO\(_2\)–CaO–P\(_2\)O\(_5\)) with varying amounts of calcium (0, 5, 10 and 15 wt%) by template sol–gel method	*in vitro*	small (5 wt%) and medium (10 wt%) Ca concentrations stimulated cell proliferation but only 5 wt% Ca stimulated differentiation (indicated through ALP activity) and stimulated gene expression (via ERK1/2 activation). Higher amounts of calcium (15 wt%) tended to decrease ALP stimulation levels	[122]	
cobalt	dual-layered periosteum using BMSCs treated with CoCl\(_2\) in a type I collagen scaffold	*in vivo*	[129]	
copper	copper nanoparticles (CuNPs) concurrent with HA oligomeric cues three-dimensional print-ed macroporous bioceramic scaffolds made by brushite	*in vitro*	the release of Cu ions improved recruitment and cross-linking of soluble tropoelastin precursors and facilitated their assembly into mature fibres very low doses of Cu\(^{2+}\) (56 ng) facilitated implant vascularization, whereas a 10-fold increase in the dose enhanced wound tissue ingrowth (560 ng Cu\(^{2+}\))	[222]
gallium	quaternary gallium-doped phosphate-based glasses (1, 3, and 5 mol% GA\(_2\)O\(_3\)) using a conventional melt quenching technique	*in vitro*	the results confirmed that the net bactericidal effect against both Gram-negative (Esherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus, methicillin-resistant S. aureus and Clostridium difficile) bacteria, was owing to Ga\(^{3+}\), and a concentration as low as 1 mol% Ga\(_2\)O\(_3\) was sufficient to mount a potent antibacterial effect the controlled release of Ga\(^{3+}\) produced the proliferation of human-like osteoblast cells and an effective prophylaxis against S. aureus. Further studies remain to be done, but the composite films are expected to be promising candidates for bone tissue engineering applications	[156]
Ga-cross-linked alginate films with nano bioactive glass	*in vitro*	the capability of Fe films as scaffolds for culturing normal human dermal fibroblasts (NHDF) were compared with those obtained on alginate films containing calcium ions (Ca-alginate). No adhesion of NHDF was observed on Ca-alginate but NHDF proliferated substantially on Fe-alginate. The participation of serum proteins such as vitronectin was essential for initial attachment and spreading. The investigation also showed that significantly higher amounts of vitronectin and fibronectin were adsorbed by Fe-alginate films	[114]	
iron	Fe\(^{3+}\)-alginate films	*in vitro*		
magnesium glass ceramics (49.13 wt% SiO₂-7.68 wt% CaO-43.19 wt% MgO) with varying amounts of wt% CaO by template sol–gel method

quaternary glass system SiO₂–CaO–P₂O₅–MgO (64% SiO₂, 26% CaO, 5% MgO and 5% P₂O₅ in mol%) synthesized by the sol–gel technique

manganese Mn(II)-substituted hydroxyapatite (Mn-HA) was produced by the wet chemical method coupled with ion-exchange mechanism and displayed non-cytotoxicity to osteoblast

silver SiO₂–CaO–P₂O₅–Ag₂O (3 wt% Ag₂O in the glass)

Ag⁺ ions were introduced into three-dimensional bioactive silicate glass–ceramic scaffold surfaces through a patented ion-exchange process

silver-doped bioactive glass (AgBG) coating on surgical sutures, which was elaborated by using a slurry-dipping process

Ag⁺ incorporated on surface of scaffolds based on 45S5 bioglass

strontium porous ceramic bone substitutes, for replacing cancellous bone or as filler in the orthopaedic and dental fields

sol–gel derived bioactive silicophosphate glass based on SiO₂–CaO–SrO–P₂O₅ system

Sr-doped BG as solid discs

phase-pure strontium silicate powders (SrSiO₃) were also developed by the chemical precipitation method

Sr was incorporated into mesoporous SiO₂ (mSr-Si) by a modified template-induced and self-assembling method

Sr-doped bioactive glass in the SiO₂–CaO–SrO system manufactured by the sol–gel method

Young’s modulus was similar to that of cortical bone (29.73 GPa).

Osteoblast cell proliferation and differentiation were stimulated

the incorporation of a limited amount of magnesium enhanced bioactivity.

The glass system facilitated the growth of human foetal osteoblastic cells (hFOB1.19)

Mn²⁺ ions increase ligand binding affinity of integrate and activate cell adhesion to HA

bactericidal effect on E. coli MG1655, P. aeruginosa and S. aureus with Ag⁺ concentrations in the range 0.05–0.20 mg ml⁻¹

the control of Ag⁺ content on the scaffold surface, as well as the Ag diffusion profile throughout the ion-exchanged layer, was achieved by controlling the ion-exchange parameters (temperature, time and silver concentration in the molten bath)

Ag⁺ ions increase ligand binding affinity of integrate and activate cell adhesion to HA

Sr²⁺ released in vitro became constant after one week, but Ca²⁺ release was improved for SrHA compared with stoichiometric HA, owing to the higher solubility of SrHA

the glass-stimulated proliferation of rat calvaria osteoblast and enhanced cell differentiation and ALP activity

Sr²⁺ released (in the range of 5–23 ppm) increased osteoblast metabolic activity and inhibited osteoclast differentiation. Osteoblasts proliferation and ALP activity were observed with increasing Sr²⁺ substitution.

Osteoclasts adopt typical resorption morphologies

bioactivity of the powder was confirmed. Cell proliferation of rabbit BMSC was observed at Sr concentrations of 1.87–0.12 mM and 0.12–3.75 × 10⁻³ mM. There was no cytotoxicity for mouse fibroblast cells, except at high ion concentrations (Si 3.75 and Sr 0.12 mM) SR²⁺ and SiO₄⁻² ion concentrations from mSr–Si glass reached as high as 34.5 and 102 ppm, respectively. These levels were not cytotoxic to human bone mesenchymal cells but there was a slight inhibitory effect on ALP activity when the Sr²⁺ concentration was greater than 26.5 ppm; below this, level ALP activity was comparable to that of the controls

Sr-doped bioactive glass in the SiO₂–CaO–SrO system manufactured by the sol–gel method

osteoblast differentiation was enhanced in the presence of bioactive glass particles containing 5 wt% strontium

(Continued.)
ion	scaffold composition	experimental trial	reference
zinc	zinc-doped hydroxyapatite	*in vitro*	[237]
	addition of zinc ions to an organoapatite coating of titanium fibres	*in vitro*	[130]
	disk made by sol–gel derived CaO–P₂O₅–SiO₂–ZnO bioglass containing 5 mol% ZnO	*in vitro*	[238]
	Zn-containing phosphate-based glasses of P50C40N10	*in vitro*	[239]
	zinc-based glass polyalkenoate cements	*in vitro*	[240]
	Zn addition (5 wt%) on bioactive glass scaffold (45S5)	*in vitro*	[241]
	Zn addition on bioactive glass scaffold (Na₂O, K₂O, MgO, CaO, B₂O₃, TiO₂, P₂O₅ and SiO₂)	*in vitro*	[208]
	multiple association of ions	*in vitro*	
	varying compositions of Ca–Sr–Na–Zn–Si glass bone grafts	*in vitro*	
	controlled substitution and incorporation of strontium and zinc into a calcium–silicon system to form Sr–hardystonite (Sr–Ca₂ZnSi₂O₇, Sr-HT)	*in vitro* and *in vivo*	[242]
	controlled release of Zn²⁺ and Sr²⁺ (in the 3–18 ppm and 0–3500 ppm ranges, respectively) with the potentiality to allow therapeutic levels. Higher viability of mouse fibroblast cells was observed when ionic extracts of these Zn–Sr-doped glasses were applied, compared with standard bioactive glass (Novabone)	*in vitro*	[243]
	Sr-HT ceramic scaffolds induced the attachment and differentiation of cells and osteoconductivity after six weeks following implantation in tibial bone defects in rats with rapid new growth of bone into the pores of the three-dimensional scaffolds. However, Sr-HT scaffolds were less mechanically resistant when compared with a calcium-zinc–silicate system ((Ca₂ZnSi₂O₇) HT)	*in vitro*	
4. CONCLUDING REMARKS AND FUTURE STEPS

Metallic ions are of interest in the fields of regenerative medicine and tissue engineering owing to the possibility of exploiting their unique advantages for therapeutic applications: reduced cost, increased stability and, in terms of safety, potentially lesser risk than techniques of recombinant proteins or genetic engineering. Several biomaterial-based strategies are being designed for the controlled-localized delivery of metallic ions and the field is continuously expanding. However, many challenges remain. First, there is a need to acquire a deep understanding of the roles of specific metals in cellular regulation and cell–cell signalling in both healthy and diseased tissue when they are released locally from scaffolds, implants or other releasing devices. Second, more in vivo evidence confirming that metallic ions can be released locally from scaffolds without systemic toxicity and carcinogenic effects is bound to follow [247]. In addition, broader knowledge about mechanisms linking univocally the improved biological performance provided by TE scaffolds to the effect of metallic ion release is also needed. Much of the work is expected to involve collaborations, including biologists, material scientists, pharmaceutical technologists, tissue engineers and biomedical researchers. A great deal of further work is necessary but current investigations suggest that such work may be fruitful towards more effective tissue engineering strategies with improved MITA-releasing biomaterials. The final objective of this review has been thus to encourage research that bridges the areas at the interface between materials chemistry and medicine for developing new tissue engineering therapeutic strategies based on controlled metal ion release.

REFERENCES

1. Langer, R. & Vacanti, J. P. 1993 Tissue engineering. *Science* **260**, 920–926. (doi:10.1126/science.8495329)
2. Cima, L. G., Vacanti, J. P., Vacanti, C., Ingber, D., Mooney, D. & Langer, R. 1991 Tissue engineering by cell transplantation using degradable polymer substrates. *J. Biomech. Eng.* **113**, 143–151. (doi:10.1115/1.2891228)
3. Hutmacher, D. 2001 Scaffold design and fabrication technologies for engineering tissues: state of the art and future perspectives. *J. Biomater. Sci. Polym.* **12**, 107–124. (doi:10.1163/156856201744489)
4. Sokolsky-Papkov, M., Agashi, K., Olaye, A., Shakesheff, K. & Domb, A. J. 2007 Polymer carriers for drug delivery in tissue engineering. *Adv. Drug Deliv. Rev.* **59**, 234–248. (doi:10.1016/j.addr.2007.03.011)
5. Habraken, W., Wolke, J. G. C. & Jansen, J. A. 2007 Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. *Adv. Drug Deliv. Rev.* **59**, 274–291. (doi:10.1016/j.addr.2007.03.020)
6. Tessmar, J. K. & Göpferich, A. M. 2007 Matrices and scaffolds for protein delivery in tissue engineering. *Adv. Drug Deliv. Rev.* **59**, 292–307. (doi:10.1016/j.addr.2007.03.017)
412 Review: Metallic ions as therapeutic agents V. Mourino et al.

8 Moioli, E. K., Clark, P. A., Xin, X., Lal, S. & Mao, J. J. 2007 Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv. Drug Deliv. Rev. 59, 308–324. (doi:10.1016/j.addr.2007.03.019)

9 Willerth, S. M. & Sakiyama-Elbert, S. E. 2007 Approaches to neural tissue engineering using scaffolds for drug delivery. Adv. Drug Deliv. Rev. 59, 325–338. (doi:10.1016/j.addr.2007.03.014)

10 Lee, S. H. & Shin, H. 2007 Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv. Drug Deliv. Rev. 59, 339–350. (doi:10.1016/j.addr.2007.03.016)

11 Jiang, G. & Suggs, L. J. 2007 Matrices and scaffolds for drug delivery in vascular tissue engineering. Adv. Drug Deliv. Rev. 59, 360–373. (doi:10.1016/j.addr.2007.03.018)

12 Mourino, V. & Boccaccini, A. 2010 Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J. R. Soc. Interface 7, 209–227. (doi:10.1098/rsif.2009.0379)

13 Mourino, V., Newby, P. V., Phishin, F., Cattalini, P., Lucangioli, S. & Boccaccini, A. R. 2011 Preparation, characterization and in vitro studies of gallium crosslinked alginate/bioactive glass composite films. Soft Matter 7, 6705–6712. (doi:10.1039/C3SM5331K)

14 Stevens, M. 2008 Biomaterials for bone tissue engineering. Mater. Today 11, 18–25. (doi:10.1016/S1369-7021(07)70086-5)

15 Baroli, B. 2009 From natural bone graft to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. J. Pharm. Sci. 98, 1317–1375. (doi:10.1002/jps.21528)

16 Rezwan, K., Chen, Q. Z., Blaker, J. J. & Boccaccini, A. R. 2006 Biomimetic and bioactive porous polymer/metallic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413–3431. (doi:10.1016/j.biomaterials.2006.01.039)

17 Gleden, M. & Tiekink, E. 2005 Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine. Chichester, UK: Wiley & Sons. (ISBN: 978-0-470-86403-6).

18 Habibovic, P. & Barralet, J. E. 2011 Bioinorganics and biomaterials: bone repair. Acta Biomater. 7, 3013–3026. (doi:10.1016/j.actbio.2011.03.027)

19 Gérard, C., Bordeau, L. J., Barralet, J. & Doillon, C. J. 2010 The stimulation of angiogenesis and collagen deposition by copper. Biomaterials 31, 824–831.

20 Taylor, A. 1985 Therapeutic uses of trace elements. Clin. Endocrinol. Metab. 14, 703–724. (doi:10.1001/S0300-595X(S380013-X)

21 Jie, X. W., Li, X. W., Zhi, H. W. & Jian, F. C. 2006 Immobilization of silver on hollow silica nanostructures and nanotubes and their antibacterial effects. Mater. Chem. Phys. 96, 90–97. (doi:10.1016/j.matchemphys.2005.06.045)

22 Garza, M. R., Olguin, M. T., Sosa, I. G., Akcantara, D. & Fuentes, G. R. 2000 Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater. 39, 431–444. (doi:10.1016/S1387-1811(00)00217-1)

23 Kim, T. N., Feng, Q. L., Kim, J. O., Wu, J., Wang, H., Chen, G. C. & Cui, F. Z. 1998 Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J. Mater. Sci. Mater. Med. 9, 129–134. (doi:10.1023/A:1008881501734)

24 Kawashita, M., Tsuneyama, S., Miyaji, F., Kobuko, T., Kozuka, H. & Yamamoto, K. 2000 Antibacterial silver-containing silica glass prepared by sol–gel method. Biomaterials 21, 393–398. (doi:10.1016/S0142-9612(99)00201-X)

25 Soo, J. P. & Yu, S. J. 2003 Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J. Colloid Interface Sci. 261, 238–243. (doi:10.1006/jcis.2001.9797(03)00083-3)

26 Duhas, S. T., Kumlaidhulsana, P. & Potiyara, P. 2006 Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloid Surf. A 289, 105–109. (doi:10.1016/j.colsurfa.2006.01.012)

27 Rupp, M. E., Fitzgerald, T., Marion, N., Helvet, V., Pumalada, S., Anderson, J. R. & Fey, P. D. 2004 Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am. J. Infect. Control. 32, 445–450. (doi:10.1016/j.jinf.2004.05.002)

28 Volker, A., Thorsten, B., Peter, S., Michael, W., Peter, S., Elvira, D., Eugen, D. & Reinhard, S. 2004 An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25, 4383–4391. (doi:10.1016/j.biomaterials.2003.10.078)

29 Dueland, R., Sparvalo, J. A. & Rahn, B. A. 1982 Silver antibacterial bone cement. Clin. Orthop. Relat. Res. 169, 264–268.

30 Yamamoto, K., Ohashi, S., Aono, M., Kobuko, T., Yamada, I. & Yamauchi, J. 1996 Antibacterial activity of silver ions implanted in filler on oral streptococci. Dent. Mater. 12, 227–229.

31 Blaker, J. J., Nazhat, S. N. & Boccaccini, A. R. 2004 Development and characterisation of silverdoped bioactive glasscoated sutures for tissue engineering and wound healing applications. Biomaterials 25, 1319–1329. (doi:10.1016/j.biomaterials.2003.08.007)

32 Hoppe, A., Guldal, N. & Boccaccini, A. R. 2011 Biological response to ionic dissolution products from bioactive glass and glass–ceramics in the context of bone tissue engineering. Biomaterials 32, 2757–2774. (doi:10.1016/j.biomaterials.2011.01.004)

33 Wataha, J. C., Hobbs, D. T., Wong, J. J., Dogan, S., Zhang, H., Chung, K. H. & Elvington, M. C. 2010 Titanates deliver metal ions to human monocytes. J. Mater. Sci. Mater. Med. 21, 1289–1295. (doi:10.1007/s10585-009-3941-8)

34 Davis, R. R., Hobbs, D. T., Kaishaba, R., Sekhar, P., Seta, F. N., Messer, R. L., Lewis, J. B. & Wataha, J. C. 2010 Titanate particles as agents to deliver gold compounds to fibroblasts and monocytes. J. Biomed. Mater. Res. A 93, 864–870.

35 Wataha, J. C., Hobbs, D. T., Lockwood, P. E., Davis, R. R., Elvington, M., Lewis, J. B. & Messer, R. L. W. 2009 Peroxotitanates for biodelivery of metals. J. Biomed. Mater. Res. B 91, 489–496. (doi:10.1002/jbm.b.31402)

36 Davis, R. R., Lockwood, P. E., Hobbs, D. T., Messer, R. L. W., Price, R. J., Lewis, J. B. & Wataha, J. C. 2007 In vitro biological effects of sodium titanate materials. J. Biomed. Mater. Res. B 83, 505–511. (doi:10.1002/jbm.b.30823)

37 Nyman, M. & Hobbs, D. T. 2006 A family of peroxotitanate materials tailored for optimal strontium and actinide sorption. Chem. Mater. 18, 6425–6435. (doi:10.1021/cm051797a)

38 Goka, T. J., Stevenson, R. E., Hefferan, P. M. & Howello, R. 1976 Menkes disease: a biochemical abnormality in cultured human fibroblast. Proc. Natl Acad. Sci. USA 73, 604–606. (doi:10.1073/pnas.73.2.604)

39 Lutsenko, S. 2008 Metal metabolism: transport, development and neurodegeneration. Biochem. Soc. Trans. 36, 1233–1238. (doi:10.1042/BST0361233)
References

40 Milman, N., Pedersen, P., Steig, T. & Melsen, G. V. 2003 Frequencies of the hereditary hemochromatosis allele in different populations. Comparison of previous phenotypic methods and novel genotypic methods. Int. J. Hematol. 77, 48–54. (doi:10.1007/BF02982602)

41 Thompson, K. & Orvig, C. 2003 Boon and bane of metal ions in medicine. Science 300, 936–939. (doi:10.1126/science.1085004)

42 Rosenstein, E. D. & Caldwell, J. R. 1999 Trace elements in the treatment of rheumatic conditions. Rheum. Dis. Clin. North Am. 25, 929–935. (doi:10.1016/S0889-857X(05)70111-3)

43 Saltman, P. D. & Strause, L. G. 1993 The role of trace minerals in osteoporosis. J. Am. Coll. Nutr. 12, 384–389.

44 Saltman, P. D. & Strause, L. G. 2006 The role of metal ions released by biocorrosion in aseptic loosening: current concepts. J. Biomed. Mater. Res. A 91, 1252–1262. (doi:10.1002/jbma.32625)

45 Nielsen, F. 1990 New essential trace elements for the life sciences. Biol. Trace Elem. Res. 26–27, 399–611. (doi:10.1007/BF02992716)

46 Cadiosh, D., Chan, E., Gauthier, O. P. & Filgueira, L. 2009 Metal ion concentration role of metal ions released by biocorrosion in aseptic loosening: current concepts. J. Biomed. Mater. Res. A 91, 1252–1262. (doi:10.1002/jbma.32625)

47 Huber, M., Reinsch, G., Trettenhahn, G., Zweymüller, K. & Lintner, F. 2009 Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening. Acta Biomater. 5, 172–180. (doi:10.1016/j.actbio.2008.07.032)

48 Gündy, J. S., Schiel, H., Schmidt, F. & Wirz, J. 2004 Corrosion at the marginal gap of implant-supported superstructures and implant failure. Int. J. Oral Maxillofac. Implants 19, 826–831.

49 Rutherford, J. C. & Bird, A. J. 2004 Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3, 1–13. (doi:10.1128/EC.3.1.1-3,2004)

50 Barralet, J., Gbureck, U., Habibovic, P., Vondran, E., Gerard, C. & Doillon, C. J. 2009 Angiogenesis in calcium phosphate scaffolds with antibacterial properties. Biomaterials 30, 599–611. (doi:10.1016/j.biomaterials.2008.07.032)

51 Di Nunzio, S. & Vernè, E. 2003 Frequency of the hereditary hemochromatosis allele in different populations. Comparison of previous phenotypic methods and novel genotypic methods. Int. J. Hematol. 77, 48–54. (doi:10.1007/BF02982602)

52 Thompson, K. & Avenell, A. 1992 Trace element nutrition and bone metabolism. Nutr. Res. Rev. 5, 167–188. (doi:10.1079/NRR19920013)

53 Nielsen, F. 1990 New essential trace elements for the life sciences. Biol. Trace Elem. Res. 26–27, 399–611. (doi:10.1007/BF02992716)

54 Cabanillas, M. V., Pen˜a, J., Roma´n, J. & Vallet-Regı́, M. 2004 Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3, 1–13. (doi:10.1128/EC.3.1.1-3,2004)

55 Barralet, J., Gbureck, U., Habibovic, P., Vondran, E., Gerard, C. & Doillon, C. J. 2009 Angiogenesis in calcium phosphate scaffolds by metallic copper ion release. Tissue Eng. A 15, 1601–1609.

56 Di Nunzio, S. & Vernè, E. 2005 Process for the production of silver-containing prosthetic devices. PCT/ EP2005/056391.

57 Thompson, K. & Orvig, C. 2000 Design of vanadium compounds as insulin enhancing agents. J. Chem. Soc. Dalton Trans. 2985–2982. (doi:10.1039/b002753e)

58 Vitale-Brovarone, C., Miola, M., Balagna, C. & Vernè, E. 2008 3D-glass–ceramic scaffolds with antibacterial properties for bone grafting. Chem. Eng. J. 137, 129–136. (doi:10.1016/j.cej.2007.07.083)

59 Chen, W., Liu, Y., Courtney, H. S., Bettenga, M., Agrawal, C. M., Bumgardner, J. D. & Ong, J. L. 2006 Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J. Mater. Sci. Mater. Med. 17, 989–996. (doi:10.1002/jbmm.2006060434-x)

60 Vitale-Brovarone, C., Miola, M., Balagna, C. & Vernè, E. 2008 3D-glass–ceramic scaffolds with antibacterial properties for bone grafting. Chem. Eng. J. 137, 129–136. (doi:10.1016/j.cej.2007.07.083)

61 Domínguez, Z. R., Cortés, M. E., Gomes, T. A., Diniz, H. F., Freitas, C. S., Gomes, J. B., Faria, A. M. & Sinisterra, R. D. 2004 Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials 25, 327–333.

62 Kimakhe, S., Bohic, S., Larosse, C., Reynaud, A., Pilet, P., Giumelli, B., Heymann, D. & Ducalsi, G. 1999 Biological activities of calcium phosphate scaffolds with antibacterial properties. J. Biomed. Mater. Res. 37, 1252–1262. (doi:10.1002/jbma.32625)

63 Vallet-Regi, M., Salinas, A. J., Roman, J. & Gil, M. 1999 Effect of magnesium content on the in vitro bioactivity of CaO-MgO-SiO2-P2O5 sol–gel glasses. J. Mater. Chem. 9, 515–518. (doi:10.1039/a088679f)

64 Miyai, T., Ito, A., Tamazawa, G., Matsuno, T., Sogo, Y., Nakamura, C., Yamazaki, A. & Satoh, T. 2008 Antibiotic-loaded poly-e-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis. Biomaterials 29, 350–358.

65 Castro, C., Evora, C., Baro, M., Soriano, I. & Sánchez, E. 2005 Two-month ciprofloxacin implants for multibacterial- bone infections. Eur. J. Pharm. Sci. 60, 401–406.

66 Chua, C. K., Leong, K. F., Tan, K. H., Wiria, F. E. & Cheah, C. M. 2004 Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/ hydroxyapatite biocomposite for craniofacial and joint defects. J. Mater. Sci. Mater. Med. 15, 1112–1113. (doi:10.1023/B:JMSM.0000046303.81449.a5)

67 Ciardelli, G., Chiomo, V., Cristallini, C., Barbani, N., Ahiwalla, A., Vozzi, G., Previti, A., Tantussi, G. & Giusti, P. 2004 Innovative tissue engineering structures through advanced manufacturing technologies. J. Mater. Sci. Mater. Med. 15, 305–310. (doi:10.1023/B:JMSM.0000021902.05602.a7)

68 Cooke, M. N., Fisher, J. P., Dean, D., Rimmac, C. & Mikos, A. G. 2003 Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J. Biomed. Mater. Res. B 64, 65–69. (doi:10.1002/jbm.b.10485)

69 Dhariwala, B., Hunt, E. & Boland, T. 2004 Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 10, 1316–1322.

70 Fisher, J. P., Vehof, J. W., Dean, D., Van der Waerde, J. P., Holland, T. A., Mikos, A. G. & Jansen, J. A. 2002 Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J. Biomed. Mater. Res. 59, 547–556.

71 Sodian, R., Loeb, M., Hein, A., Martin, D. P., Hoerstrup, S. P., Potapov, E. V., Hausmann, H., Lueth, T. & Hetzer, R. 2002 Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J. 48, 12–16. (doi:10.1097/00002480-200201000-00004)
135 Munthe, E., Aaseth, J. & Jellum, E. 1986 Trace elements and rheumatoid arthritis (RA)—pathogenic and therapeutic aspects. *Acta Pharmacol. Toxicol. (Copenh)* 59, 365–373. (doi:10.1111/j.1600-0775.1986.tb02781.x)

136 Arredondo, M. & Nunez, M. T. 2005 Iron and copper metabolism. *Mol. Aspects Med.* 26, 313–327. (doi:10.1016/j.mam.2005.07.010)

137 Linder, M. C. & Hazegh-Azam, M. 1996 Copper biochemistry and molecular biology. *Am. J. Clin. Nutr.* 63, 797S–811S.

138 Collery, P., Keppler, B., Madoulet, C. & Desoize, B. 2002 Gallium in cancer treatment. *Crit. Rev. Oncol. Hematol.* 42, 283–296. (doi:10.1016/S1040-8428(01)00225-6)

139 Rodríguez, P., Ríos, S. & González, M. 2002 Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. *J. Cell. Biochem.* 85, 92–100. (doi:10.1002/jcb.10111)

140 Bar-Or, D., Thomas, G. W., Yuld, R. L., Rael, L. T., Shimonekivitz, R. P., Curtis, C. G. & Winkler, J. V. 2003 Copper stimulates the synthesis and release of interleukin-8 in human endothelial cells: a possible early role in systemic inflammatory responses. *Shock* 20, 154–158. (doi:10.1097/01.shk.0000068318.49350.3a)

141 Abou Neel, E. A., Ahmed, I., Pratten, J., Nazhat, S. N. & Knowles, J. C. 2005 Characterisation of antibacterial copper releasing degradable phosphate glass fibres. *Biomaterials* 26, 2247–2254. (doi:10.1016/j.biomaterials.2004.07.024)

142 Barbucci, R., Lamponi, S., Magnani, A., Piras, F. M., Rossi, A. & Weber, E. 2005 Role of the Hyal-Cu(II) complex on bovine aortic and lymphatic endothelial cells behaviour on microstructured surfaces. *Biomacromolecules* 6, 212–219. (doi:10.1021/bm049568g)

143 Giavaresi, G., Torricelli, P., Fornasari, P. M., Giardino, R., Barbucci, R. & Leone, G. 2005 Blood vessel formation in systemic inflammatory responses. *Shock* 20, 154–158. (doi:10.1097/01.shk.0000068318.49350.3a)

144 Feng, W., Ye, F., Xue, W., Zhou, Z. & Kang, Y. J. 2009 Copper regulation of hypoxia-inducible factor-1 activity. *Mol. Pharmacol.* 75, 174–182. (doi:10.1124/mol.108.051516)

145 Rajalingam, D., Kumar, T. K. & Yu, C. 2005 The C2A domain of synaptotagmin exhibits a high binding affinity for copper: implications in the formation of the multiprotein FGF release complex. *Biochemistry* 44, 14 431–14 442. (doi:10.1021/bi051387r)

146 Gérard, C., Bordeveau, L. J., Barral, J. & Doillon, Ch. J. 2010 The stimulation of angiogenesis and collagen deposition by copper. *Biomaterials* 31, 824–831. (doi:10.1016/j.biomaterials.2009.10.009)

147 Borkow, G., Gabbay, J. & Zatcoff, R. 2008 Could chronic disease of bone: effectiveness and close–response analysis. *Ann. Intern. Med.* 113, 847–851.

148 Hu, G. F. 1998 Copper stimulates proliferation of human endothelial cells under culture. *J. Cell. Biochem.* 69, 326–335.

149 Sen, C. K., Khanna, S., Venojarvi, M., Trikha, P., Ellison, E. C., Hunt, T. K. & Roy, S. 2002 Copper induced vascular endothelial growth factor expression and wound healing. *Am. J. Pathol. Heart Circ. Physiol.* 282, H1821–H1827.

150 Parke, A., Bhattacharjee, P., Palmer, R. M. & Lazarus, N. R. 1998 Characterization and quantification of copper sulphate induced vascularization of the rabbit cornea. *Am. J. Pathol.* 130, 173–178.

151 Warrell, R. P., Bosco, B., Weinerman, S., Levine, B., Lane, J. & Bockman, R. 1990 Gallium nitrate for advanced Paget
Westenberg, D. 2000 Fighting infections with glass. In Proc. 100th General Meeting of the American Society for Microbiology, 21–25 May 2000, Los Angeles, ASM. Chichester, UK: John Wiley & Sons Ltd.

Wassall, M. A., Santin, M., Isalberti, C., Cannas, M. & Denyer, S. P. 1997 Adhesion of bacteria to stainless steel and silver-coated orthopaedic external fixation pins. J. Biomed. Mater. Res. 36, 325–330. (doi:10.1002/(SICI)1097-4636(19970905)36:3<325::AID-JBM7>3.0.CO;2-G)

Yoshida, K., Tanagawa, M. & Asatsu, M. 1999 Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J. Biomed. Mater. Res. 47, 516–522. (doi:10.1002/(SICI)1097-4636(19990115)47:4<516::AID-JBM7>3.0.CO;2-E)

Hetrick, E. M. & Schoenfisch, M. H. 2006 Reducing and microbiological modeling studies of the inhibition of protein tyrosine phosphatases by N,N-dimethylhydroxy-

Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N. & Yoshida, K., Tanagawa, M. & Atsuta, M. 1999 Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J. Biomed. Mater. Res. (Appl. Biomater.) 48, 277–288. (doi:10.1002/(SICI)1097-4636(1999)48:3<277::AID-JBM11>3.0.CO;2-T)

Massé, A., Bruno, A., Bosetti, M., Binsabetti, A., Cannas, M. & Gallinaro, P. 2000 Prevention of pin track infection in external fixation with silver coated pins: clinical and microbiological results. J. Biomed. Mater. Res. (Appl. Biomater.) 53, 600–604. (doi:10.1002/(SICI)1097-4636(200009)53:5<600::AID-JBM21>3.0.CO;2-D)

Kumon, H., Hashimoto, H., Nishimura, M., Monden, K. & Ono, N. 2001 Catheter-associated urinary tract infections: active release strategies. J. Electrochem. Soc. 148, B515219b)

Huyer, G., Liu, S., Kelly, J., Mollaf, J., Payette, P., Kennedy B., Tsaprailis, G., Gresser, M. J. & Chidambaram, R. 1997 Mechanism of inhibition of protein–tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 272, 843–851. (doi:10.1074/jbc.272.2.843)

Posner, B. I. et al. 1994 Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem. 269, 4506–4604.

Crans, D. C. 1998 Vanadium compounds: chemistry, biochemistry, and therapeutic applications, vol. 711 (eds A. S. Tracey & D. C. Crans), pp. 82–103. Washington, DC: American Chemical Society.

Cunic, C., Detich, N., Ethier, D., Tracey, A. S., Gresser, M. J. & Ramachandran, C. J. 1999 Vanadium inhibition of protein tyrosine phosphatases in Jurkat cells: modulation by redox state. J. Biol. Inorg. Chem. 4, 354–359. (doi:10.1007/s007750050322)

Tracey, A. S. 2000 Hydroxamido vanadates: aqueous chemistry and function in protein tyrosine phosphatases and cell cultures. J. Inorg. Biochem. 80, 11–16. (doi:10.1016/S0162-0134(00)00353-7)

Goldwaser, I., Gefel, D., Gershonov, E., Fridkin, M. & Shechter, Y. 2000 Insulin-like effects of vanadium: basic and clinical implications. J. Inorg. Biochem. 80, 21–25. (doi:10.1002/(SICI)1097-4636(200009)84:3<219::AID-JBM3>3.0.CO;2-C)

Scior, T., Guevara-Garcia, J. A., Melendez, F. J., Abdallah, H., Do, Q. & Bernard, P. 2010 Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B. Drug Des. Dev. Ther. 4, 231–242.

Li, J., Guo, S. J., Su, H., Han, L. J. & Shi, D. Y. 2008 Total synthesis of bis-(2,3-dibromo-4,5-dihydroxyphene")(methane as potent PTP1B inhibitor. Chem. Commun. 27, 1290–1292. (doi:10.1007/jbc.200809.007)

Li, M., Ding, W., Baruah, B., Crans, D. C. & Wang, R. 2008 Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato) oxovanadium (IV). J. Inorg. Biochem. 102, 1846–1855. (doi:10.1016/j.jinorgbio.2008.06.007)

Seale, A. P., de Jesus, L. A., Kim, S-Y., Choi, Y.-H., Lim, H. B., Hwang, C.-S. & Kim, Y.-S. 2005 Development of an automated protein-tyrosine phosphatase 1B inhibition assay and the screening of putative insulin-enhancing vanadium(IV) and zinc(II) complexes. Biochem. Biophys. Res. Commun. 327, 221–225. (doi:10.1016/s0006-291x(05)00785-8)

Scior, T., Mack, H.-G., Guevara-Garcia, J. A. & Koch, W. 2008 Antidiabetic bis-maltolato-oxovanadium (IV): conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP1B. Drug Des. Dev. Ther. 2, 221–231. ISSN: 1177–8881. (doi:10.2147/DDDT.S3732)

Wang, Y., Yuen, V. G. & McNeill, J. H. 2001 Effect of vanadium on insulin sensitivity and appetite. Metabolism 50, 667–673. (doi:10.1053/meta.2001.23294)

Shukla, R. & Bhonde, R. R. 2008 Adipogenic action of vanadium: a new dimension in treating diabetes. Biometals 21, 205–210. (doi:10.1007/s10534-007-9109-4)
Hafez, Y. & Kratzer, F. H. 1976 The effect of dietary vanadium on fatty acid and cholesterol turnover in the chick. J. Nutr. 106, 249–257.

Upreti, R. K. 1995 Membrane–vanadium interaction: a toxikokinetic evaluation. Mol. Cell Biochem. 153, 167–171. (doi:10.1007/BF01075934)

Barrio, D. A., Cattáneo, E. R., Apezteguía, M. C. & Etcheverry, S. B. 2006 Vanadyl(IV) complexes with saccharides. Bioactivity in osteoblast-like cells in culture. Can. J. Physiol. Pharmacol. 84, 765–775. (doi:10.1139/y06-021)

Barrio, D. A. & Etcheverry, S. B. 2006 Vanadium and bone development: putative signalling pathways. Can. J. Physiol. Pharmacol. 84, 677–686. (doi:10.1139/y06-022)

Cortizo, A. M., Molinuevo, M. S., Barrio, D. A. & Bruzzone, L. 2006 Osteogenic activity of vanadyl(IV)-ascorbate complex: evaluation of its mechanism of action. Int. J. Biochem. Cell Biol. 38, 1171–1180. (doi:10.1016/j.biocel.2005.12.007)

Barrio, D. A., Bazzanese, M. D., Etcheverry, S. B. & Cortizo, A. M. 2007 Maltol complexes of vanadium(IV) and (V) regulate in vitro alkaline phosphatase activity and osteoblast-like cell growth. J. Trace Elem. Med. Biol. 11, 110–115. (doi:10.1016/S0946-672X(07)80053-1)

Barrio, D. A., Williams, P. A., Cortizo, A. M. & Etcheverry, S. B. 2003 Synthesis of a new vanadyl(IV) complex with trehalose (TreVO): insulin-mimetic activities in osteoblast-like cells in culture. J. Biol. Inorganic Chem. 8, 459–468.

Etcheverry, S. B., Barrio, D. A., Cortizo, A. M. & Williams, P. A. 2002 Three new vanadyl(IV) complexes with non-steroidal anti-inflammatory drugs (Ibuprofen, Naproxen and Tolmetin). Bioactivity on osteoblast-like cells in culture. J. Metallic Chem. 88, 94–100.

Etcheverry, S. B., Williams, P. A., Salice, V. C., Barrio, D. A., Ferrer, E. G. & Cortizo, A. M. 1997 Maltol complexes of vanadium(IV) and bone development: putative signalling pathways. J. Biol. Metallic Chem. 8, 335–340. (doi:10.1016/S0924-8579(02)00115-2)

Yamaguchi, M., Oishi, H. & Suketa, Y. 1988 Zinc stimulation of bone protein synthesis in tissue culture: activation of aminonucleotide synthetase. Biochem. Pharmacol. 37, 4075–4080. (doi:10.1016/0006-2952(88)90098-6)

Ovesen, J., Moller-Madsen, B., Thomsen, J. S., Danscher, G. & Mosekilde, L. 2001 The positive effects of zinc on skeletal strength in growing rats. Bone 29, 565–570. (doi:10.1016/S8756-3282(01)00616-0)

Haimi, S. et al. 2009 Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater. 5, 3122–3131. (doi:10.1016/j.actbio.2009.04.006)

Chen, D., Waite, L. & Pierce, W. 1999 In vitro effects of zinc on markers of bone formation. Biol. Trace Elem. Res. 68, 225–234. (doi:10.1007/BF02783905)

Yin, Y., Cui, Q., Li, Y., Irwin, N., Fischer, D., Harvey, A. R. & Benowitz, L. I. 2003 Macrophage-derived factors stimulate optic nerve regeneration. J. Neurosci. 23, 2284–2293.

Diamond, I. & Hurley, L. S. 1970 Histopathology of zinc-deficient fetal rats. J. Nutr. 100, 325–329.

Hall, S. L., Dimai, H. P. & Farley, J. R. 1999 Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif. Tissue Int. 64, 163–172. (doi:10.1007/s002239900597)

Kawamura, H., Ito, A., Muramatsu, T., Miyakawa, S., Ochiai, N. & Tateishi, T. 2003 Long-term implantation of zinc-releasing calcium phosphate ceramics in rabbit femora. J. Biomed. Mater. Res. A 65, 468–474. (doi:10.1002/jbm.a.10524)

Ikeuchi, M., Ito, A., Doli, Y., Ohgushi, H., Shimaoka, H., Yonemasu, K. & Tateishi, T. 2003 Osteogenic differentiation of cultured rat and human bone marrow cells on the surface of zinc-releasing calcium phosphate ceramics. J. Biomed. Mater. Res. A 67, 1115–1122. (doi:10.1002/jbm.a.10041)

Popp, J. R., Love, B. J. & Goldstein, A. S. 2007 Effect of soluble zinc on differentiation of osteoprogenitor cells. J. Biomed. Mater. Res. A 81, 766–769. (doi:10.1002/jbm.a.31214)

Yamaguchi, M., Oishi, H. & Suketa, Y. 1987 Stimulatory effect of zinc on bone formation in tissue culture. Biochem. Pharmacol. 36, 4007–4012. (doi:10.1016/0006-2952(87)90471-0)

Kwun, I.-S., Cho, Y.-E., Lo meda, R.-A. R., Shin, H.-L., Choi, J.-Y., Kang, Y.-H. & Beattie, J. H. 2010 Zinc deficiency suppresses mineralization and retards osteogenesis transiently with catchup possibly through Runx 2 modulation. Bone 46, 732–741. (doi:10.1016/j.bone.2009.11.003)

Aedo, F., Delgado, R., Wolff, D. & Vergara, C. 2007 Copper and zinc as modulators of neuronal excitability in a physiologically significant concentration range. Neurochem. Int. 50, 591–600. (doi:10.1016/j.neuint.2006.12.001)

Lang, C., Murgia, C., Leong, M., Tan, L.-W., Perozzi, G., Knight, D., Ruffin, R. & Zalenski, P. 2007 Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 292, L577–L584. (doi:10.1152/ajplung.00280.2006)

Cho, Y. H., Lee, S. J., Lee, J. Y., Kim, S. W., Lee, C. B., Lee, W. Y. & Yoon, M. S. 2002 Antibacterial effect of intraprostatal zinc injection in a rat model of chronic bacterial prostatitis. Int. J. Antimicrob. Agents 19, 576–582. (doi:10.1016/S0924-8579(02)00115-2)

Lansdown, A. B., Minnatschejski, U., Stubbs, N., Scanlon, E. & Agren, M. S. 2007 Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen. 15, 2–16. (doi:10.1111/j.1524-7247.2006.00179.x)

Kothapalli, C. R. & Ramamurthi, A. 2009 Copper nanoparticle cues for biomimetic cellular assembly of crosslinked elastin fibers. Acta Biomater. 5, 541–553. (doi:10.1016/j.actbio.2008.09.004)

Cho, X., Liao, X., Huang, Z., You, P., Chen, C., Kang, Y. & Guangfa, Y. 2010 Synthesis and characterization of novel multiphase bioactive glass–ceramics in the CaO–MgO–SiO2 system. J. Biomed. Mater. Res. B 93, 194–202.

Saboori, A., Rabiee, M., Mozfarzadeh, F., Sheikh, M., Tahirii, M. & Karimi, M. 2009 Synthesis, characterization and in vitro bioactivity of sol–gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater. Sci. Eng. C 29, 335–340. (doi:10.1016/j.msec.2008.07.004)

Mayer, I., Jacobsbohn, O., Niazov, T., Werckmann, J., Iliescu, M., Richard-Plouet, M., Burghaus, O. & Reinen, D. 2003 Manganese in precipitated hydroxyapatite. Eur. J. Inorg. Chem. 7, 1445–1451. (doi:10.1002/ejic.200390188)

Li, Y., Teck Nam, C. H. & Ping Ooi, C. H. 2009 Iron(III) and manganese(II) substituted hydroxyapatite nanoparticles: characterization and cytotoxicity analysis. J. Phys. Conf. Ser. 187, 012024. (doi:10.1088/1742-6596/187/1/012024)

Bellantone, M., Coleman, N. J. & Hench, L. L. 2000 Bacteria-tic action of a novel four-component bioactive
