A Mammalian Iron ATPase Induced by Iron*

Received for publication, December 9, 1999, and in revised form, February 3, 2000

David E. Barañano‡, Herman Wolosker‡‡, Byoung-Il Bae‡, Roxanne K. Barrow‡,
Solomon H. Snyder‡‡‡, and Christopher D. Ferris†††‡‡‡

From the Departments of ‡Neuroscience, ‡Pharmacology and Molecular Sciences, and ¶Psychiatry and Behavioral Sciences, and Department of ‡‡Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

While molecular mechanisms for iron entry and storage within cells have been elucidated, no system to mediate iron efflux has been heretofore identified. We now describe an ATP requiring iron transporter in mammalian cells. 55Fe is transported into microsomal vesicles in a Mg-ATP-dependent fashion. The transporter is specific for ferrous iron, is temperature- and time-dependent, and detected only with hydrolyzable nucleotides. It differs from all known ATPases and appears to be a P-type ATPase. The Fe-ATPase is localized together with heme oxygenase-1 to microsomal membranes with both proteins greatly enriched in the spleen. Iron treatment markedly induces ATP-dependent iron transport in RAW 264.7 macrophage cells with an initial phase that is resistant to cycloheximide and actinomycin D and a later phase that is inhibited by these agents. Iron release, elicited in intact rats by glycerol-induced rhabdomyolysis, induces ATP-dependent iron transport in the kidney. Mice with genomic deletion of heme oxygenase-1 have selective tissue iron accumulation and display augmented ATP-dependent iron transport in those tissues that accumulate iron.

Living cells require iron for many critical biological functions, including cellular respiration and DNA synthesis. Iron’s physiologic importance derives from its ability to exist in multiple valence states and therefore participate in reactions requiring single electron transfers. Various mechanisms regulate cellular iron to ensure adequate supplies for cellular physiology while avoiding toxic iron excess. Many of the molecular details for iron accumulation and storage in cells are known. Iron circulates in the blood in the ferric form (Fe3+) bound tightly to transferrin (3, 4). In most physiologic situations, iron enters cells upon the binding of diferric transferrin to the transferrin receptor followed by receptor-mediated endocytosis. Acidification of the lumen of the endocytic vesicle by the H+-ATPase releases iron from transferrin, whereupon iron is transported into the cytoplasm by the divalent cation transporter (5). Excess cellular iron can be stored by ferritin (4). Transferrin receptor and ferritin levels are reciprocally controlled by iron regulatory proteins (IRPs)1 that bind to specific sequences known as iron regulatory elements (IREs) in the mRNAs of these proteins (3, 4, 6, 7).

In contrast, molecular details of a cellular iron efflux pathway are lacking, even though physiologic evidence indicates that bodily stores of iron are conserved and re-utilized. Thus, the human daily dietary requirement for iron is only 1 mg, despite evidence that tissues mobilize 20–30 times that amount to support red blood cell synthesis by the bone marrow (8). Iron is released from hemoglobin and other heme proteins by heme oxygenase-1 (HO1), an inducible enzyme associated with the endoplasmic reticulum, which cleaves the heme ring giving rise to biliverdin, which is rapidly reduced to bilirubin, carbon monoxide, and ferrous iron (9). In mice with targeted genomic deletion of HO1, tissue stores of iron are elevated, while serum iron levels are low (10, 11). Recently, we demonstrated that expression of HO1 is linked to cellular iron efflux, demonstrating a role for HO1 in cellular iron mobilization (12).

Since HO1 is an enzyme that catalyzes the breakdown of cytosolic heme but is not a transport protein, the mechanism by which HO1 activity is linked to cellular iron mobilization remains obscure. We reasoned that a membrane-associated transporter, like the calcium ATPase, might be the molecular link between cytosolic heme catabolism by HO1 and cellular iron release. We now report the identification and characterization of an Fe-ATPase associated with microsomal membranes that is co-distributed in tissues with HO1. Iron induces ATP-dependent iron transport in a macrophage cell line and in HO1−/− mice, and glycerol-induced rhabdomyolysis induces ATP-dependent iron transport in the kidney.

EXPERIMENTAL PROCEDURES

Materials—55FeCl3 (39.7 Ci/g) was obtained from NEN Life Science Products and used without altering the specific activity. Unless otherwise indicated all other chemicals were from Sigma.

Microsome Preparation—For routine isolation of microsomes all manipulations were performed at 4 °C as follows. Tissues or cell cultures were harvested and homogenized with 15 strokes of a Dounce-Teflon homogenizer in five volumes of ice-cold homogenization buffer (0.28 M sucrose, 20 mM Hepes (pH 7.5), 2 mM β-mercaptoethanol, protease inhibitors). The homogenate was centrifuged at 20,000 × g for 15 min to remove intact cells, nuclei, mitochondria, and other debris. The resulting supernatant was then centrifuged at 200,000 × g for 45 min to isolate the microsomal fraction. This second pellet was resuspended in homogenization buffer at a concentration of approximately 20 mg/ml protein, and samples were stored at −80 °C for up to one month prior to use.

Differential Centrifugation—Spleen tissue was homogenized as described above, and the homogenate was centrifuged at 1000 × g for 20

1 The abbreviations used are: IRP, iron regulatory protein; IRE, iron regulatory element; HO1, heme oxygenase-1; HO2, heme oxygenase-2; AD, actinomycin D; CHX, cycloheximide; ER, endoplasmic reticulum; ATP-8, adenosine 5′-(thiotriphosphate); AMP-PCP, adenosine 5′-(β,γ-methylenethio-}

†† Howard Hughes Fellowship for Physicians. To whom correspondence should be addressed. Tel.: 410-955-2380; Fax: 410-955-3623; E-mail: cferris@jhmi.edu.
min. The resulting pellet (P1), containing nuclei, intact cells, and debris, was resuspended in ice-cold homogenization buffer at a concentration of ~20 mg/ml protein and stored at ~80 °C prior to use. The first supernatant (S1) was centrifuged at 10,000 × g for 15 min. The resulting pellet (P2), containing mitochondria, was likewise resuspended in homogenization buffer (~20 mg/ml protein) and stored (~80 °C). The second supernatant (S2) was centrifuged at 200,000 × g for 45 min. This pellet (P3) was also resuspended in homogenization buffer (~20 mg/ml protein) and stored (~80 °C). Marker enzymes for specific subcellular organelles were assayed as described previously (13).

ATP-dependent Iron Transport Assay—For routine experiments, microsomes were thawed on ice, aliquoted (10–100 μg of protein) into reaction buffer (140 mM potassium gluconate, 20 mM Hepes (pH 7.5), 2 mM ascorbate, 5 mM MgSO4, 4 mM Na3ATP, and 5 μM 55FeCl3) in a final volume of 115 μl and incubated at 30 °C. At the indicated times, 100 μl of this reaction mixture was rapidly filtered (vacuum manifold, 0.45-μm filter, Millipore) and washed under continuous vacuum with 25 ml of ice-cold wash buffer (140 mM potassium gluconate, 20 mM Hepes (pH 7.5), 2 mM MgSO4, 4 mM Na3ATP, and 5 μM 55FeCl3) in a final volume of 115 μl and incubated at 30 °C. The associated 55Fe determinate by liquid scintillation spectrometry. In routine experiments, a similar reaction without ATP was used to determine nonspecific iron accumulation. Unless otherwise indicated, zero time was defined as the time when the microsomes were added to the reaction buffer. When iron transport was measured in the presence of other ions, the chloride salt of the corresponding ion was included in the reaction buffer with the 55FeCl3, before the microsomes were added. All reactions were prepared and measured in duplicate or triplicate as indicated in the figure legends.

Cell Culture—RAW 264.7 cells were cultured in Dulbecco’s modified Eagle’s medium (Life Technologies, Inc.) supplemented with 10% fetal bovine serum, penicillin and streptomycin, and glutamine using standard techniques (14). Briefly, RAW 264.7 cells were maintained in continuous culture, changing the medium every 2–3 days, for no more than 4 weeks. When cultures reached >90% confluence, they were subcultured at a ratio of 1:5 for use in experiments or to carry the line. Unless otherwise indicated, experiments were performed when cells were approximately 90% confluent.

Iron treatment of RAW 264.7 cells was performed by including 0.5 mM FeSO4 in the medium for various times as indicated in the figures. In some experiments actinomycin D (1 μg/ml) or cycloheximide (100 μg/ml) was added as described in the figure legend to Fig. 5B to block transcription and translation respectively.

Western Blot Analysis—HO1 and heme oxygenase-2 (HO2) expression were analyzed by Western blot analysis using antibodies developed

Table I

Nucleotide specificity of 55Fe accumulation in spleen microsomes

Substrate (4 mM)	Transport (% ATP)
ATP	100 ± 4.3
GTP	21.3 ± 1.2
CTP	51.8 ± 4.0
TTP	29.3 ± 4.2
ITP	45.4 ± 0.8
AMP-PNP	3.1 ± 1.7
AMP-CP	1.2 ± 1.5
ATP-γS	7.1 ± 3.3

**Fig. 1. Transport of 55Fe in microsomes is time (A)- and temperature (B)-dependent. A, time dependence of iron accumulation in spleen microsomes, (○, −ATP; △, +4 mM ATP). Microsomes were prepared as described under “Experimental Procedures” and incubated in the presence of 55Fe for the indicated times. Then, microsomes were collected by rapid filtration and the associated 55Fe determined by liquid scintillation spectrometry. B, temperature dependence of iron accumulation. Temperature dependence of iron accumulation was measured after 20 min of incubation using spleen microsomes as in A and as described under “Experimental Procedures.” For both A and B the data shown are the means of triplicate determinations with S.E. as indicated by the error bars. In some cases, the error bars are contained within the symbols. The experiment has been repeated at least five times with similar results.
in our laboratory. Specific polyclonal antibodies to HO1 and HO2 were generated using recombinant proteins, prepared in *Escherichia coli*, as antigens. Briefly, cDNAs for human HO1 and HO2 were obtained by polymerase chain reaction using human liver cDNA (CLONTECH) as template. Then, human HO1 and HO2 cDNAs were subcloned into pGEX4T2 (Amersham Pharmacia Biotech), and the sequence was confirmed. Next, glutathione S-transferase-HO1 and glutathione S-transferase-HO2 were obtained following transformation of competent *E. coli* and purification of the fusion proteins using GSH-Sepharose (Amersham Pharmacia Biotech). The purified antigens were provided for injection into rabbits (Covance, Denver, PA), and the resulting sera were analyzed for specific antibodies. For routine studies, protein samples were fractionated using standard SDS-polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride membranes. Fol-

![Graph A](image1)
A
Transport of 55Fe in microsomes depends on ascorbate (**A**), ATP (**B**), and iron (**C**).
A, ascorbate dependence of iron accumulation. Microsomes were prepared as described under “Experimental Procedures” and incubated for 20 min at 30 °C in the presence of various concentrations of ascorbate as indicated.
B, ATP dependence of iron accumulation. Spleen microsomes were incubated as described in the legend to **A** with the indicated concentrations of ATP.
C, iron dependence of iron accumulation. Spleen microsomes were incubated as described in the legends to **A** and **B** with the indicated concentrations of 55Fe. For all of these experiments the data shown are the means of duplicate or triplicate determinations with S.E. as indicated by the error bars. These experiments have been repeated at least five times with similar results.
lowing incubation in blocking buffer (PBS, 0.1% Tween, 5% nonfat dry milk), blots were incubated in blocking buffer supplemented with either anti-HO1 (1:2500) or anti-HO2 (1:10,000) for 1–18 h. After washing, the blots were incubated with secondary antibody (goat anti-rabbit IgG, 1:5000, Amersham Pharmacia Biotech) for 1 h and developed using chemiluminescence (Renaissance, NEN Life Science Products). Antibody specificity was confirmed by determining the molecular weight of candidate immunoreactive bands and examining tissues derived from mice with genomic deletions of HO1 and HO2 (11, 15). Specific antisera for HO1 and HO2 were obtained without evidence of cross-reacting proteins (data not shown).

RESULTS

Identification and Characterization of an Fe-ATPase—To identify a possible iron transporter, we employed 55Fe in attempts to measure ATP-dependent transport of iron into microsomal fractions from rat spleen. In initial experiments, we used rapid filtration onto nitrocellulose filters to monitor the 55Fe transport in microsomes is specific. Spleen microsomes were prepared as described previously (16). Briefly, adult male Harlan Sprague-Dawley rats were injected with 7.5 ml/kg glycerol (50% w/v in sterile water) into the anterior thigh muscles. Sham-treated animals were injected with the same volume of saline. After 72 h, rats were sacrificed, and kidney microsomes were prepared for determination of ATP-dependent iron transport and Western blot analysis of HO1 expression as described above.

![Fig. 3. 55Fe transport in microsomes is specific.](image)

Fig. 3. 55Fe transport in microsomes is specific. Spleen microsomes were prepared as described under “Experimental Procedures” and incubated for 20 min at 30 °C in the presence of 100 μM amounts of various cations as indicated. Statistical significance (p < 0.0001) is indicated by the asterisk symbol. The data shown are the means of duplicate or triplicate determinations with S.E. as indicated by the error bars. This experiment has been repeated three times with similar results.

![Fig. 4. ATP-dependent iron transport and HO1 are co-distributed in tissues.](image)

Fig. 4. ATP-dependent iron transport and HO1 are co-distributed in tissues. The tissue distribution of HO1 was assessed by Western blot analysis. The tissue distribution of ATP-dependent iron transport was determined as described under “Experimental Procedures” by incubating microsomes derived from the indicated tissues for 20 min at 30 °C. The data shown are the means of triplicate determinations with S.E. as indicated by the error bars. This experiment has been repeated three times with similar results.
dependence, suggest that an ATPase mediates 55Fe transport across microsomal membranes.

As mentioned, in initial experiments, we found that 55Fe transport is dependent upon ascorbate. We characterized the ascorbate requirement of 55Fe transport and found maximal activity at 4 mM ascorbate (Fig. 2A). In addition, we examined the ATP and iron dependence. 55Fe transport occurs at physiologic concentrations of ATP with maximal stimulation at 4 mM ATP and a decline in apparent transport at higher concentrations (Fig. 2B). 55Fe transport is saturable with half-maximal transport at about 10 μM iron (Fig. 2C). To evaluate whether 55Fe transport activity is specific, we examined a variety of cations (Fig. 3). Minimal effects are observed with 0.1 mM barium, cadmium, calcium, cobalt, or manganese. Zinc ions produce 23% inhibition, while copper(II) inhibits transport about 70%.

To determine whether the 55Fe transport reflects the activity of known ATPases, we evaluated a variety of ATPase-specific pharmacological agents (Table II). Thapsigargin, a potent inhibitor of microsomal Ca$^{2+}$-ATPases, fails to block 55Fe transport. Bafilomycin, a selective high affinity inhibitor of the V-type ATPases, is similarly ineffective. Oligomycin and ouabain, inhibitors of the mitochondrial proton ATPase and the plasma membrane Na$^+/K^+$-ATPase, respectively, are also inactive. Orthovanadate, a known inhibitor of P-type ATPases, reduces 55Fe transport by 65%. Thus, the iron transport activity appears to represent a novel ATP-dependent transport process with the properties of a P-type ATPase.

Localization of the Fe-ATPase—Most of heme and iron turnover occurs in the reticuloendothelial system, primarily the macrophages of the spleen, where senescent red blood cells are phagocytosed, and the iron from the heme in hemoglobin is freed for re-utilization (3). We monitored 55Fe transport in

Table II

Inhibitor	Control activity (M)	% Inhibition
Thapsigargin (1 μM)	93.7 ± 2.1	6.3
Bafilomycin (0.2 μM)	94.1 ± 3.8	5.9
Oligomycin (1 μM)	90.3 ± 4.1	9.7
Orthovanadate (100 μM)	35.1 ± 2.3	64.9

Fig. 5. Iron-mediated induction of ATP-dependent iron transport in RAW 264.7 cells is biphasic (A) with inhibition of the late phase induction by cycloheximide and actinomycin D (B). A, time dependence of Fe-ATPase induction by FeSO₄. RAW 264.7 cells were cultured as described under “Experimental Procedures” and incubated with 0.5 mM FeSO₄ for the indicated times prior to preparation of microsomes from the cells. B, inhibition of iron-mediated induction of Fe-ATPase by cycloheximide (CHX) and actinomycin D (AD). RAW 264.7 cells were incubated with 0.5 mM FeSO₄ for 2 or 20 hours as indicated. To examine the rapid phase induction, CHX (100 μg/ml) and AD (1 μg/ml) were added 30 min prior to the addition of FeSO₄ and cells were harvested after 2 h of iron treatment. To study the late phase induction AD was added 30 min prior to the addition of iron, while CHX was withheld due to its toxicity and added 16 h after initiating incubation with 0.5 mM FeSO₄ prior to harvesting the cells after 20 h of iron treatment. The data shown are the means of duplicate or triplicate determinations with standard error as indicated by the error bars. This experiment has been repeated two times with similar results.
microsomal fractions from a wide range of rat tissues (Fig. 4). ATP-dependent iron transport is highest in the spleen, almost 20 times higher than levels in any of the other tissues examined. Levels of ATP-dependent iron transport are similar in brain, lung, kidney, heart, intestine, testes, and liver. The high level of Fe^{55} transport in the spleen is paralleled by a comparable enrichment of HO1 protein (Fig. 4). In contrast, HO2 is distributed much differently with selective enrichment in the brain and testes (data not shown).

Since HO1 and ATP-dependent iron transport are co-distributed in tissues, we wondered whether they would have a similar subcellular localization. We conducted limited subcellular fractionation of spleen tissue (Table III). The microsome-enriched fraction (P3) contains >75% of total Fe^{55} transport activity. NADPH cytochrome C reductase activity, a marker for endoplasmic reticulum, is similarly enriched in the microsomal fraction (P3). Alkaline phosphatase, an enzyme marker for plasma membranes, is also enriched in the microsomal fraction, although the distribution of the ATP-dependent iron transport more closely matches that of NADPH cytochrome C reductase. The nuclear fraction (P1) contains >95% of detectable DNA, yet displays undetectable iron transport. As reported previously (21, 22), HO1 protein is comparably enriched in the microsomal fraction. The mitochondrial protein, cytochrome C oxidase, is concentrated 4–5-fold in P2. The proportion of ATP-dependent iron transport in P2 is similar to that of the endoplasmic reticulum marker (NADPH cytochrome C reductase). These findings are consistent with a localization of

Table III

Fraction	Cytochrome c oxidase	Alkaline phosphatase	NADPH cytochrome C reductase	HO1 (Western blot)	Fe^{55} transport
	A/min/µg	A/min/mg	A/min/mg	ND	pmol/mg
P1	2.9 ± 0.8 (7%)	0.12 ± 0.03 (20%)	ND	+	27.7 ± 0.5 (24%)
P2	32.8 ± 5.1 (77%)	0.10 ± 0.03 (17%)	0.057 ± 0.012 (17%)	+	88.0 ± 1.8 (76%)
P3	6.8 ± 1.0 (16%)	0.36 ± 0.04 (62%)	0.280 ± 0.022 (83%)	+++	6.8 ± 1.5 (24%)

Fig. 6. ATP-dependent iron transport is regulated by iron accumulation in tissues from HO1−/− mice (A) and in the kidney in response to glycerol-mediated rhabdomyolysis (B). A, iron-mediated increase in ATP-dependent iron transport in HO1−/− mice. Microsomes were prepared from the brain, liver, kidney, or spleen of 40-week-old HO1−/−, HO1+/−, or wild-type mice, and ATP-dependent iron transport was determined as described under “Experimental Procedures.” The data shown are the means of duplicate or triplicate determinations with S.E. as indicated by the error bars. This experiment has been repeated three times with similar results. B, increase in ATP-dependent iron transport in association with induction of HO1 by rhabdomyolysis in rat kidney. Rhabdomyolysis was induced by glycerol injection into skeletal muscle of adult male rats as described under “Experimental Procedures.” After 72 h, microsomes were prepared from the kidneys of glycerol and sham-injected animals and ATP-dependent iron transport and HO1 induction (Western blot) were determined. The data shown are the means of duplicate or triplicate determinations with S.E. as indicated by the error bars. This experiment has been repeated three times with similar results.
Fe-ATPase Induction by Iron Treatment—The catabolism of hemoglobin heme by HO1 to liberate iron in the spleen takes place in macrophages, which express HO1 whose activity is induced in response to hemin or erythrocytes (23, 24). Accordingly, we examined \(^{59}\)Fe transport in RAW 264.7 cells, a mouse-derived macrophage cell line. Saturable, ATP-dependent iron transport is readily demonstrable in microsomal fractions of these cells (data not shown). Incubating these cells overnight with 0.5 mM FeSO\(_4\) elicits a 10-fold increase in iron transport (Fig. 5A), while treatment with 0.1 mM FeSO\(_4\) produces a significant but smaller increase (data not shown). The augmented iron transport does not reflect an immediate effect of iron, as incubation of the cells with 0.5 mM iron just prior to homogenization has no effect on iron transport (data not shown). We examined the time dependence for induction of the ATP-dependent iron transport by exogenous iron. We observe a biphasic induction with a 2-fold increase in the first 1–2 h, followed by a plateau, and then a delayed and rapid five-fold induction after 18 h of iron treatment. To address the possible mechanism of iron’s induction of ATP-dependent iron transport in RAW 264.7 cells, we examined the effects of transcriptional and translational inhibitors. Inhibition of transcription with actinomycin D (AD), or translation with cycloheximide (CHX), does not block the initial 2-fold induction seen after 1–2 h of iron treatment (Fig. 5B). However, AD and CHX do prevent the delayed induction, reducing the observed iron transport to levels similar to that seen after 2 h of iron treatment (Fig. 5B).

To ascertain the influence of increased iron in intact animals on the ATP-dependent iron transport, we utilized \(\text{HO1}^{-/-}\) mice in which accumulation of non-heme iron has been demonstrated (11, 12). ATP-dependent iron transport in kidney microsomes from 40-week-old \(\text{HO1}^{-/-}\) mice is increased 5–8-fold compared with levels in heterozygotes that are similar to wild-type specimens (Fig. 6A). In liver microsomes from 40-week-old \(\text{HO1}^{-/-}\) mice, the ATP-dependent iron transport is increased >10-fold. The elevated ATP-dependent iron transport is likely due to increased tissue iron levels, since we do not detect an increase in iron transport in microsomes from the kidney and liver of young (10-week-old) \(\text{HO1}^{-/-}\) mice whose tissue iron levels are not yet elevated (11) (data not shown). ATP-dependent iron transport in brain microsomes is not increased even in 40-week-old \(\text{HO1}^{-/-}\) animals, presumably because iron does not accumulate in the brains of the mutant mice (11) (Fig. 6A).

In contrast to the marked augmentation of ATP-dependent iron transport in kidney and liver of \(\text{HO1}^{-/-}\) animals, microsomes from the spleen of \(\text{HO1}^{-/-}\) mice display a >75% decline in \(^{59}\)Fe transport compared with heterozygote and wild-type specimens (Fig. 6A).

We reasoned that directly elevating cellular iron levels by increasing heme oxygenase activity in tissues might also induce ATP-dependent iron transport. Injection of glyceral into skeletal muscles of rodents causes rhabdomyolysis leading to release of myoglobin, and its heme, into the circulation. Induction of heme oxygenase in tissues might also increase ATP-dependent iron transport. Injection of glyceral into RAW 264.7 cells manifests significantly augmented ATP-dependent iron transport when treated with iron. In \(\text{HO1}^{-/-}\) mice, wherein iron accumulates in the liver and kidney, ATP-dependent iron transport is strikingly augmented. In the

DISCUSSION

In the present study we report the identification and characterization of an Fe-ATPase in mammalian tissues. The iron transport we observe appears to be mediated by an Fe-ATPase, since it is dependent upon hydrolyzable nucleotide triphosphates, magnesium, time, and temperature. Inhibition by orthovanadate suggests that the Fe-ATPase may be a P-type ATPase, mediating transmembrane transport through a mechanism that involves transient phosphorylation of an aspartate residue (26–28). The Fe-ATPase we describe appears to be a novel entity, as its activity is not affected by specific inhibitors of the other known ATPases. Conceivably, the ATP-dependent iron transport may reflect transport mediated by a copper ATPase encoded by the Wilson’s or Menkes’ disease genes (29).

However, neither of these genes are significantly expressed in the spleen (30, 31). Meneghini and associates (32) have described nuclear transport of iron in the liver that differs from the Fe-ATPase described here. The transporter they identified utilizes the ferric form of iron (32), which does not support the ATP-dependent iron transport described in this report. Moreover, under our experimental conditions, we do not detect any iron transport in nuclear fractions. Thus, the Fe-ATPase described herein represents a new mammalian transport mechanism.

The total transport activity of the Fe-ATPase is less than that of other P-type ATPases. We measured about 10 pmol/min/mg protein in the spleen, whereas the Ca-ATPase is substantially more active with activities of 115 protein and 234 nmol/min/mg protein in platelet and cerebellar membranes respectively (33). The copper ATPases are the only other metal transporting P-type ATPases described in mammals and direct biochemical measurements of their activity are lacking. While ATP-dependent iron transport is low, this may reflect the low level of free iron compared with other ions in cells.

Our findings suggest that the ATP-dependent iron transport we have described physiologically regulates cellular iron homeostasis. RAW 264.7 cells manifest significantly augmented ATP-dependent iron transport when treated with iron. In \(\text{HO1}^{-/-}\) mice, wherein iron accumulates in the liver and kidney, ATP-dependent iron transport is strikingly augmented. In the
spleen of these mice there is a dramatic reduction in ATP-dependent iron transport, possibly as a result of anemia in these mice (11) leading to a decrease in total erythrocyte turnover. Glycerol-induced rhabdomyolysis, which leads to increased heme levels, HO1 induction, and iron liberation in the kidney, concurrently induces ATP-dependent iron transport. Thus, in cultured cells and animal models, cellular iron accumulation is associated with elevations in ATP-dependent iron transport, implying that, physiologically, the Fe-ATPase responds to iron.

Our findings suggest that the regulatory mechanisms determining expression and induction of ATP-dependent iron transport may be complex. We observe a biphasic induction of ATP-dependent iron transport in RAW 264.7 cells that may reflect different underlying mechanisms. Rapid induction (1–2 h following treatment with iron) may reflect post-translational modifications as the initial induction is not blocked by CHX or AD. A more pronounced induction 16–20 h after iron treatment is blocked by incubation with CHX and AD. Even when added to the cells 16 h after the iron, CHX blocks the delayed induction. Other genes related to cellular iron homeostasis, such as transferrin receptor and ferritin, are regulated by IRPs (4, 6).

Thus, iron deficiency, CHX blocks the delayed induction 16–20 h after iron treatment is blocked by incubation with CHX and AD. Even when added to the cells 16 h after the iron, CHX blocks the delayed induction. Other genes related to cellular iron homeostasis, such as transferrin receptor and ferritin, are regulated by IRPs (4, 6).

IRPs also regulate the heme-synthesizing enzyme Δ-amidolylate synthase as well as the divalent cation transporter-1(5, 34). Thus, with iron deficiency, IRPs prevent the translation of ferritin mRNA and stabilize transferrin receptor mRNA. IRPs also regulate the heme-synthesizing enzyme Δ-amidolylate synthase as well as the divalent cation transporter-1(5, 35, 36). Our results suggest that a rapid, perhaps post-translational, regulatory mechanism mediates the 2-fold induction of ATP-dependent iron transport seen in the first 1–2 h, and a second, translational (e.g. IRE-mediated) or transcriptional regulatory mechanism underlies the delayed induction of ATP-dependent iron transport after 18 h of iron exposure. Since both CHX and AD block iron-mediated induction of ATP-dependent iron transport, we cannot exclude an IRE-mediated mechanism.

A variety of evidence suggests that HO1 is functionally coupled to the Fe-ATPase and iron mobilization (11, 12). HO1 transfection stimulates iron egress from cells, which is markedly diminished in cells from HO1/− mice (12). The ATP-dependent iron transport is more than 20-fold enriched in spleen compared with other tissues, closely resembling the distribution of HO1. Increases in cellular iron, both in vitro and in vivo, induce HO1 and the Fe-ATPase in parallel. HO1 and the Fe-ATPase are similarly enriched in microsomal fractions, where they may co-localize on endoplasmic reticulum membranes. Accordingly, we suggest that HO1 and the Fe-ATPase act in concert (Fig. 7). As heme is degraded by HO1, the freed iron is transported by the Fe-ATPase to the luminal side of the endoplasmic reticulum for subsequent exocytosis (Fig. 7). Iron may bind transferrin in the lumen of the ER if the pH is neutral or following exocytosis. Transferrin is important for physiologic iron uptake, although alternate pathways enable cells to acquire iron. Interestingly, transferrin may be required for cellular iron release. Thus, in a perfused organ model, transferrin was required for 55Fe release from the liver (37). In our own studies, monitoring 55Fe release from HEK-293 cells, we find that cells take up 55Fe in the absence of transferrin, although 55Fe is released only in the presence of transferrin. Together these findings suggest that a portion of the endoplasmic reticulum may be utilized for the regulation of iron uptake, heme turnover, and iron efflux with specific roles for transferrin receptor, HO1, and the Fe-ATPase in close association.

REFERENCES

1. Meneghini, R. (1997) Free Radic. Biol. Med. 23, 788–792
2. McCord, J. M. (1998) Semin. Hematol. 35, 5–12
3. Richardson, D. R., and Ponka, P. (1997) Biochim. Biophys. Acta. 1331, 1–40
4. Ponka, P., Beaumont, C., and Richardson, D. R. (1998) Semin. Hematol. 35, 35–54
5. Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., Nussberger, S., Gollan, J. L., and Hediger, M. A. (1997) Nature 388, 482–488
6. Hentze, M. W., and Kuhn, L. C. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 8175–8182
7. Rouault, T. A., and Klausner, R. D. (1996) Exs 77, 183–197
8. Muallem, S., Schoeffield, M., Pandol, S., and Sachs, G. (1985) J. Biol. Chem. 260, 6388–6394
9. Ferris, C. D., Jaffrey, S. R., Sawa, A., Takahashi, M., Brady, S. D., Row, R. K., Tsuey, S. A., Wolosker, H., Barabino, D. E., Dore, S., Poss, K. D., and Snyder, S. H. (1999) Nat. Cell Biol. 1, 152–157
10. Storrie, B., and Madden, E. A. (1999) Methods Enzymol. 182, 205–225
11. Tenhunen, R., and Schmid, R. M. (1992) J. Clin. Invest. 90, 267–270
12. Maines, M. D. (1997) Annu. Rev. Pharmacol. Toxicol. 37, 517–554
13. Ferris, C. D., and Klausner, R. D. (1996) Exs 77, 183–197
14. Rouault, T. A., and Klausner, R. D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 8175–8182
15. Poss, K. D., and Tonegawa, S. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 10925–10930
16. Rouault, T. A., and Klausner, R. D. (1996) Exs 77, 183–197
17. C. D. Ferris and S. H. Snyder, unpublished observations.
18. Rouault, T. A., and Klausner, R. D. (1996) Exs 77, 183–197
19. Rouault, T. A., and Klausner, R. D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 8175–8182
20. Moller, J. V., Juul, B., and le Maire, M. (1996) Biochim. Biophys. Acta. 1331, 1–26
21. Tenhunen, R., Marver, H. S., and Schmid, R. (1968) Proc. Natl. Acad. Sci. U. S. A. 61, 748–755
22. Tenhunen, R., Marver, H. S., and Schmid, R. (1969) J. Biol. Chem. 244, 6388–6394
23. Pimstone, N. K., Tenhunen, R., Seits, P. T., Marver, H. S., and Schmid, R. (1971) J. Exp. Med. 133, 1264–1281
24. Gemsa, D., Woo, C. H., Fudenberg, H. H., and Schmid, R. (1973) J. Clin. Invest. 52, 812–822
25. Zager, R. A. (1996) Kidney Int. 49, 314–326
26. MacLennan, D. H., Rice, W. J., and Green, N. M. (1997) J. Biol. Chem. 272, 26815–26818
27. Isect, G., and Kirtley, M. R. (1992) J. Bioenerg. Biomembr. 24, 271–283
28. Muller, J. V., Juul, B., and le Maire, M. (1996) Biochim. Biophys. Acta 1286, 1–51
29. Schaefer, M., and Gitlin, J. D. (1999) Am. J. Physiol. 276, G311–G314
30. Paynter, J. A., Grimes, A., Lockhart, P., and Mercer, J. F. (1994) FASEB J. 8, 1150–1155
31. Gurgueira, S. A., and Meneghini, R. (1996) J. Biol. Chem. 271, 186–190
32. Klauser, R. D., Rouault, T. A., and Harford, J. B. (1993) Cell 72, 19–28
33. Dandekar, T., Stripke, R., Gray, N. K., Goossen, B., Constable, A., Meneghini, R. (1996) J. Biol. Chem. 271, 13616–13620
34. Cox, T. C., Bawden, M. J., Martin, A., and May, B. K. (1991) EMBO J. 10, 1829–1836
35. Baker, E., Morton, A. G., and Tavill, A. S. (1988) Br. J. Haematol. 45, 607–629

2 C. D. Ferris and S. H. Snyder, unpublished observations.
