FAITHFULNESS OF BI-FREE PRODUCT STATES

CHRISTOPHER RAMSEY

Abstract. Given a non-trivial family of pairs of faces of unital C*-algebras where each pair has a faithful state, it is proved that if the bi-free product state is faithful on the reduced bi-free product of this family of pairs of faces then each pair of faces arises as a minimal tensor product. A partial converse is also obtained.

1. Introduction

The reduced free product was given independently by Avitzour [1] and Voiculescu [7] and it has been foundational in the development of free probability. Dykema proved in [2] that the free product state on the reduced free product of unital C*-algebras with faithful states is faithful. In consequence of this, if \(\{A_i\}_{i \in I} \) is a free family of unital C*-algebras in the non-commutative C*-probability space \((A, \varphi)\) and if \(\varphi \) is faithful on \(C^{*}(\{A_i\}_{i \in I}) \) then

\[
C^{*}(\{A_i\}_{i \in I}) \simeq \ast_{i \in I}(A_i, \varphi|_{A_i}),
\]

the reduced free product of the \(A_i \)'s with respect to the given states. This can be deduced from a paper of Dykema and Rørdam, namely [3, Lemma 1.3].

The present paper is the result of the author’s attempt to prove the same result in the new context of bi-free probability introduced by Voiculescu [8]. To this end, suppose \((A^{(i)}_{l}, A^{(i)}_{r})_{i \in I}\) is a non-trivial family of pairs of faces in the non-commutative C*-probability space \((A, \varphi)\). If \(\varphi_i = \varphi|_{C^{*}(A^{(i)}_{l}, A^{(i)}_{r})} \) is faithful on \(C^{*}(A^{(i)}_{l}, A^{(i)}_{r}) \), for all \(i \in I \), then it will be proven that if the bi-free product state \(**_{i \in I}\varphi_i \) is faithful on the reduced bi-free product \(**_{i \in I}(A^{(i)}_{l}, A^{(i)}_{r}) \) then \(C^{*}(A^{(i)}_{l}, A^{(i)}_{r}) \simeq A^{(i)}_{l} \otimes_{\text{min}} A^{(i)}_{r}, i \in I \). A converse is shown with the added assumption that each \(\varphi_i \) is a product state. Moreover, in this case there is a commensurate result to that which follows from Dykema and Rørdam, mentioned above.

It should be mentioned that the failure in general of the faithfulness of the bi-free product state has been pointed out in [4] and this failure has been the cause of the introduction of weaker versions of faithfulness in the bi-free context [4, 5].
Acknowledgements: The author would like to thank Scott Atkinson for sparking my interest into bi-free independence and for suggesting the reduced bi-free product, Paul Skoufranis for pointing out an error in a previous version of this paper, and the referee for their help in improving several difficult passages.

2. Bi-free independence and the reduced bi-free product

We will first take some time to recall the definition of bi-free independence from [8] and then define the reduced bi-free product of C*-algebras and the bi-free product state.

Fix a non-commutative C*-probability space (A, φ), that is a unital C*-algebra and a state. Given a set I, suppose that for each $i \in I$ there is a pair of unital C*-subalgebras $A_{l}^{(i)}$ and $A_{r}^{(i)}$ of A, a “left” algebra and a “right” algebra. We call the set $(A_{l}^{(i)}, A_{r}^{(i)})_{i \in I}$ a family of pairs of faces in A. Such a family will be called non-trivial if $|I| \geq 2$ and $C^{*}(A_{l}^{(i)}, A_{r}^{(i)}) \neq \mathbb{C}$ for all $i \in I$. That is, there are at least two pairs of faces and there are no trivial pairs of faces.

Let $(\pi_{i}, H_{i}, \xi_{i})$ be the GNS construction for $(C^{*}(A_{l}^{(i)}, A_{r}^{(i)}), \varphi_{i})$ where $\varphi_{i} = \varphi|_{C^{*}(A_{l}^{(i)}, A_{r}^{(i)})}$. Voiculescu [8] (and even way back in [7]) observed that there are two natural representations of $B(H_{i})$ on the free product Hilbert space, which we will now introduce. The free product Hilbert space,

$$(H, \xi) = \ast_{i \in I}(H_{i}, \xi_{i}),$$

is given by associating all of the distinguished vectors and then forming a Fock space like structure. Namely, if $H_{j} = H_{j} \oplus \mathbb{C}\xi_{j}$, then

$$H := \mathbb{C}\xi \oplus \bigoplus_{\substack{n \in \mathbb{N} \setminus I \cup \{i_{1}, \ldots, i_{n}\}} \cap (1, \ldots, n) \in I \setminus \{i_{1}, \ldots, i_{n}\}}} \otimes \cdots \otimes H_{i_{n}}.$$

To define these representations we need to first build some Hilbert spaces and some unitaries. To this end, define

$$H(l, i) := \mathbb{C}\xi \oplus \bigoplus_{\substack{n \in \mathbb{N} \setminus I \cup \{i_{1}, \ldots, i_{n}\}} \cap (1, \ldots, n) \in I \setminus \{i_{1}, \ldots, i_{n}\}}} \otimes \cdots \otimes H_{i_{n}} \quad \text{and}$$

$$H(r, i) := \mathbb{C}\xi \oplus \bigoplus_{\substack{n \in \mathbb{N} \setminus \{i_{1}, \ldots, i_{n}\}} \cap \{i_{1}, \ldots, i_{n}\}}} \otimes \cdots \otimes H_{i_{n}}.$$

Then there are unitaries $V_{l} : H_{i} \otimes H(l, i) \to H$ and $W_{l} : H(r, i) \otimes H_{i}$ given by concatenation (with appropriate handling of ξ_{i} and ξ). Finally, the two natural representations are the left representation $\lambda_{l} : B(H_{i}) \to B(H)$ which is defined as

$$\lambda_{l}(T) = V_{l}(T \otimes I_{H(l, i)})V_{l}^{*}.$$
and the right representation \(\rho_i : B(\mathcal{H}_i) \to B(\mathcal{H}) \) which is defined as
\[
\rho_i(T) = W_i(I_{\mathcal{H}(r;i)} \otimes T)W_i^*.
\]

With all of this groundwork established we can finally define bi-free independence. Note that \(* \) below refers to the full (or universal) free product of \(C^* \)-algebras.

Definition 2.1 (Voiculescu [8]). The family of pairs of faces \((\mathcal{A}_l^{(i)} , \mathcal{A}_r^{(i)})_{i \in I} \) in the non-commutative probability space \((\mathcal{A}, \varphi) \) is said to be bi-freely independent with respect to the states \(\varphi \) if the following diagram commutes
\[
\begin{array}{ccc}
*_{i \in I} (\mathcal{A}_l^{(i)} , \mathcal{A}_r^{(i)}) & \overset{\iota}{\longrightarrow} & \mathcal{A} \\
\downarrow_{*_{i \in I}(\pi_i \ast \pi_i)} & & \| \\
*_{i \in I}(B(\mathcal{H}_i) \ast B(\mathcal{H}_i)) & \overset{*_{i \in I}(\lambda_i \ast \rho_i)}{\longrightarrow} & B(\mathcal{H}) \\
\end{array}
\]
where \(\iota \) is the unique \(* \)-homomorphism extending the identity on each \(\mathcal{A}_\chi^{(i)} \), for all \(\chi \in \{l, r\} \) and \(i \in I \).

From this we can now define the main objects of this paper.

Definition 2.2. Let \((\mathcal{A}_l^{(i)} , \mathcal{A}_r^{(i)})_{i \in I} \) be a family of pairs of faces in the non-commutative \(C^* \)-probability space \((\mathcal{A}, \varphi) \). As before, denote \(\varphi_i \) to be the restriction of \(\varphi \) to \(C^*(\mathcal{A}_l^{(i)}, \mathcal{A}_r^{(i)}) \) and let \((\pi_i, \mathcal{H}_i, \xi_i) \) be the GNS construction of \(C^*(\mathcal{A}_l^{(i)}, \mathcal{A}_r^{(i)}), \varphi_i \).

The reduced bi-free product of \((\mathcal{A}_l^{(i)} , \mathcal{A}_r^{(i)})_{i \in I} \) with respect to the states \(\varphi_i \) is
\[
(**_{i \in I} (\mathcal{A}_l^{(i)} , \mathcal{A}_r^{(i)}), **_{i \in I} \varphi_i) = **_{i \in I}((\mathcal{A}_l^{(i)} , \mathcal{A}_r^{(i)}), \varphi_i)
\]
which is made up of the unital \(C^* \)-subalgebra of \(B(\mathcal{H}) \), called the reduced bi-free product of \(C^* \)-algebras,
\[
**_{i \in I} (\mathcal{A}_l^{(i)} , \mathcal{A}_r^{(i)}) := C^*((\lambda_i \circ \pi_i(\mathcal{A}_l^{(i)}), \rho_i \circ \pi_i(\mathcal{A}_r^{(i)}))_{i \in I}) \subset B(\mathcal{H})
\]
and the bi-free product state
\[
**_{i \in I} \varphi_i(\cdot) := \langle \xi, \xi \rangle.
\]

It is an immediate fact that the family of pairs of faces \((\lambda_i \circ \pi_i(\mathcal{A}_l^{(i)}), \rho_i \circ \pi_i(\mathcal{A}_r^{(i)}))_{i \in I} \) is bi-freely independent with respect to the bi-free product state.

It should be noted that we are working within the framework of the original non-commutative \(C^* \)-probability space \((\mathcal{A}, \varphi) \). This means that the reduced bi-free product is taking into account the behaviour of \(\varphi \) not just on the left and right faces but on the \(C^* \)-algebra they generate, \(C^*(\mathcal{A}_l^{(i)} , \mathcal{A}_r^{(i)})\).

Since bi-free independence is a statement about the behaviour in the original \(C^* \)-probability space this definition makes sense.

That being said, one can create the reduced bi-free product as an external product. Start with pairs of faces in different \(C^* \)-probability spaces and simply create a new \(C^* \)-probability space by taking the full free product of
Theorem 3.1. Let the non-commutative reduced bi-free product family of pairs of faces. This gives that C^* since ϕ be using the convention that H_{ω} suppresses the π and thus already a subalgebra of B_r and thus ϕ is faithful on $C^*(A^{(i)}_l, A^{(i)}_r)$ for each $i \in I$. If $\phi_{\ast_{i \in I}}$ is faithful on the reduced bi-free product $\phi_{\ast_{i \in I}}(A^{(i)}_l, A^{(i)}_r)$ then

$$C^*(A^{(i)}_l, A^{(i)}_r) \simeq A^{(i)}_l \otimes_{\min} A^{(i)}_r.$$

Proof. First we will establish that $A^{(i)}_l$ and $A^{(i)}_r$ commute in A, then we will show that they induce a C^*-norm on the algebraic tensor product $A^{(i)}_l \otimes A^{(i)}_r$ and finally that this is in fact the minimal tensor norm.

We will be using the notation from Section 2. To simplify things a little bit, because the ϕ_i are assumed to be faithful, consider $C^*(A^{(i)}_l, A^{(i)}_r)$ as already a subalgebra of $B(H_i)$ and so $\phi_i(\cdot) = \langle \xi_i, \xi_i \rangle$. That is, we are suppressing the π_i notation from the GNS construction. Moreover, we will be using the convention that $\lambda_i(x), \rho_i(x), \lambda_i \ast \rho_i(x)$ all are living in $B(H)$.

Suppose $a_i \in A^{(i)}_l$ such that $\phi_i(a_i) = 0, \chi \in \{l, r\}$ and $0 \neq b \in A^{(j)}_l \cup A^{(j)}_r$ for $j \neq i$ such that $\phi_j(b) = 0$. Such a b exists by the non-triviality of the family of pairs of faces. This gives that $\langle b^* \xi_j, \xi_j \rangle = \phi_j(b) = 0$ and so $b^* \xi_j \in \mathcal{H}_j$ while $\langle b(b^* \xi_j), \xi_j \rangle = \phi_j(bb^*) \neq 0$ by the faithfulness of ϕ_j.

Now, [8, Section 1.5] establishes that $[\lambda_i(A^{(i)}_l), \rho_i(A^{(i)}_r)](\mathcal{H}\ominus \mathcal{H}_i) = 0$ which gives that

$$\langle \lambda_i(a_l)\rho_i(a_r)\lambda_j \ast \rho_j(b) - \rho_i(a_r)\lambda_i(a_l)\lambda_j \ast \rho_j(b)\rangle \xi = 0$$

since $b \xi \in \mathcal{H}_j \subset \mathcal{H}$. The faithfulness of $\phi_{\ast_{i \in I}}$ implies that ξ is a separating vector for the reduced bi-free product and thus

$$\lambda_i(a_l)\rho_i(a_r)\lambda_j \ast \rho_j(b) - \rho_i(a_r)\lambda_i(a_l)\lambda_j \ast \rho_j(b) = 0$$

which gives that

$$0 = P_{\mathcal{H}_i} \lambda_i(a_l)\rho_i(a_r)\lambda_j \ast \rho_j(b) - \rho_i(a_r)\lambda_i(a_l)\lambda_j \ast \rho_j(b)b^* \xi_j$$

$$= \lambda_i(a_l)\rho_i(a_r) - \rho_i(a_r)\lambda_i(a_l)\lambda_j \ast \rho_j(b)b^* \xi_j$$

$$= \langle b^* \xi_j, \xi_j \rangle (a_l a_r - a_r a_l) \xi_i.$$
Since $\mathcal{A}_l^{(i)}$ and $\mathcal{A}_r^{(i)}$ commute, the universal property of $\mathcal{A}_l^{(i)} \odot \mathcal{A}_r^{(i)}$ gives that there exists a $*$-homomorphism

$$\sum_{k=1}^{m} a_{k,l} \odot a_{k,r} \mapsto \sum_{k=1}^{m} a_{k,l}a_{k,r}.$$

We need to establish its injectivity. To this end, consider $h \in \mathcal{H}_j$, $\|h\| = 1$ where $j \neq i$ and the isometric map $V_h : \mathcal{H}_i \otimes \mathcal{H}_i \rightarrow \mathcal{H}_i \otimes h \otimes \mathcal{H}_i$

defined by $V_h(h_l \otimes h_r) = h_l \otimes h \otimes h_r$ for $h_l, h_r \in \mathcal{H}_i$. This map is inspired by Dykema’s proof of the faithfulness of the free product state [2, Theorem 1.1]. Note that in \mathcal{H} we really have that

$$\mathcal{H}_i \otimes h \otimes \mathcal{H}_i = C_h \oplus (\mathcal{H}_i \otimes h) \oplus (h \otimes \mathcal{H}_i) \oplus (\mathcal{H}_i \otimes h \otimes \mathcal{H}_i)$$

but hopefully the reader will pardon the simplified notation.

Now $\mathcal{H}_i \otimes h \otimes \mathcal{H}_i$ is a reducing subspace of $C^*(\lambda_i(\mathcal{A}_l^{(i)}), \rho_i(\mathcal{A}_r^{(i)}))$ since for all $a \in \mathcal{A}_l^{(i)}, b \in \mathcal{A}_r^{(i)}$ and $\eta_1, \eta_2 \in \mathcal{H}_i$ we have that

$$V_h^* \lambda_i(a) \rho_i(b) V_h(\eta_1 \otimes \eta_2) = V_h^* \lambda_i(a) \rho_i(b)(\eta_1 \otimes h \otimes \eta_2)$$

$$= a\eta_1 \otimes b\eta_2.$$

Thus, compressing to $\mathcal{H}_i \otimes h \otimes \mathcal{H}_i$ gives

$$V_h^* C^*(\lambda_i(\mathcal{A}_l^{(i)}), \rho_i(\mathcal{A}_r^{(i)}))V_h = \mathcal{A}_l^{(i)} \otimes_{\text{min}} \mathcal{A}_r^{(i)}.$$

So, if $\sum_{k=1}^{m} a_{k,l} \otimes a_{k,r} \neq 0 \in \mathcal{A}_l^{(i)} \otimes \mathcal{A}_r^{(i)}$ then $\sum_{k=1}^{m} a_{k,l} \otimes a_{k,r} \neq 0 \in \mathcal{A}_l^{(i)} \otimes_{\text{min}} \mathcal{A}_r^{(i)}$ which implies that

$$0 \neq \sum_{k=1}^{m} a_{k,l} \otimes a_{k,r}(\xi_i \otimes \xi_i)$$

$$= V_h^* \sum_{k=1}^{m} \lambda_i(a_{k,l}) \rho_i(a_{k,r}) V_h(\xi_i \otimes \xi_i)$$

$$= \sum_{k=1}^{m} \lambda_i(a_{k,l}) \rho_i(a_{k,r}) h$$

since the state $(\xi_i \otimes \xi_i, \xi_i \otimes \xi_i)$ is faithful on the min tensor product. But then

$$\sum_{k=1}^{m} \lambda_i(a_{k,l}) \rho_i(a_{k,r}) \neq 0 \in C^*(\lambda_i(\mathcal{A}_l^{(i)}), \rho_i(\mathcal{A}_r^{(i)}))$$ which by the faithfulness
of $\ast_{i\in I} \varphi_i$ gives that $\sum_{k=1}^m \lambda_i(a_{k,l})\rho_i(a_{k,r})\xi \neq 0$. Finally,

$$0 \neq \left(\sum_{k=1}^m \lambda_i(a_{k,l})\rho_i(a_{k,r})\xi, \sum_{k=1}^m \lambda_i(a_{k,l})\rho_i(a_{k,r})\xi\right)$$

$$= \left(\left(\sum_{k=1}^m \lambda_i(a_{k,l})\rho_i(a_{k,r})\right)^* \left(\sum_{k=1}^m \lambda_i(a_{k,l})\rho_i(a_{k,r})\right)\xi, \xi\right)$$

$$= \varphi_i \left(\left(\sum_{k=1}^m a_{k,l}a_{k,r}\right)^* \left(\sum_{k=1}^m a_{k,l}a_{k,r}\right)\right)$$

which gives by the faithfulness of φ_i that $\sum_{k=1}^m a_{k,l}a_{k,r} \neq 0$. Therefore, the claim is verified.

Now, this implies that $C^*(\mathcal{A}_i^{(i)}, \mathcal{A}_r^{(i)}) \simeq \mathcal{A}_l^{(i)} \otimes_{\alpha} \mathcal{A}_r^{(i)}$ where $\|\cdot\|_\alpha$ is a C^*-norm on $\mathcal{A}_l^{(i)} \otimes \mathcal{A}_r^{(i)}$. So by Takesaki’s Theorem [6] we have that there exists a surjective $*$-homomorphism

$$q : C^*(\mathcal{A}_l^{(i)}, \mathcal{A}_r^{(i)}) \to \mathcal{A}_l^{(i)} \otimes_{\min} \mathcal{A}_r^{(i)}.$$

To finish the proof all we need to do is show that q is injective.

To this end, let $a \in C^*(\mathcal{A}_l^{(i)}, \mathcal{A}_r^{(i)})$ such that $q(a) = 0$. Again as in the first part of this proof, find $0 \neq b \in \mathcal{A}_l^{(j)} \cup \mathcal{A}_r^{(j)}$ for $j \neq i$ such that $\varphi_j(b) = 0$ and $h \in \mathcal{H}_j$ such that $\langle bh, \xi_j \rangle \neq 0$. Additionally, assume that $\|b\xi_j\| = 1$.

In the second part of this proof we saw that compressing to $\mathcal{H}_i \otimes b\xi_j \otimes \mathcal{H}_i$ is tantamount to this quotient homomorphism q. Namely, suppose

$$\iota_i : \mathcal{A}_l^{(i)} \ast \mathcal{A}_r^{(i)} \to C^*(\mathcal{A}_l^{(i)}, \mathcal{A}_r^{(i)}) \quad (\subseteq B(\mathcal{H}_i) \text{ by assumption})$$

is the unique $*$-homomorphism extending the identity in each component. There then exists $\tilde{\alpha} \in \mathcal{A}_l^{(i)} \ast \mathcal{A}_r^{(i)}$ such that $\iota_i(\tilde{\alpha}) = a$. An important fact to record is that, by uniqueness,

$$\lambda_i \ast \rho_i(\cdot)|_{\mathcal{H}_i} = \iota_i(\cdot),$$

remembering that we have that $\lambda_i \ast \rho_i(\cdot) \in B(\mathcal{H})$. Thus,

$$V_{b\xi_j} \lambda_i \ast \rho_i(\tilde{\alpha})V_{b\xi_j} = q(a) = 0,$$

which implies, by the fact that $V_{b\xi_j}(\mathcal{H}_i \otimes \mathcal{H}_i)$ is reducing for $\lambda_i \ast \rho_i(\mathcal{A}_l^{(i)} \ast \mathcal{A}_r^{(i)})$, that

$$0 = \lambda_i \ast \rho_i(\tilde{\alpha})V_{b\xi_j}(\xi_i \otimes \xi_i)$$

$$= \lambda_i \ast \rho_i(\tilde{\alpha})(b\xi_j)$$

$$= \lambda_i \ast \rho_i(\tilde{\alpha})\lambda_j \ast \rho_j(b)\xi.$$
By the faithfulness of the bi-free product state $\lambda_i \ast \rho_i(\tilde{a}) \lambda_j \ast \rho_j(b) = 0$ and so

$$
0 = P_{H_i} \lambda_i \ast \rho_i(\tilde{a}) \lambda_j \ast \rho_j(b) h
= \lambda_i \ast \rho_i(\langle bh, \xi_j \rangle) \xi
= \langle bh, \xi_j \rangle i_i(\tilde{a}) \xi
= \langle bh, \xi_j \rangle a \xi_i.
$$

Hence, by the faithfulness of ϕ_C we have that $a = 0$. Therefore, for all $i \in I$, $C^*(A_l^{(i)}, A_r^{(i)}) \simeq A_l^{(i)} \otimes_{\min} A_r^{(i)}$. \hfill \Box

We turn now to a partial converse of the previous theorem. This is probably known among the experts in bi-free probability but we could not find a published proof. The following proof may be a tad clunky but we find it the clearest from a non-expert perspective.

Theorem 3.2. Let $(A_l^{(i)}, A_r^{(i)})_{i \in I}$ be a family of pairs of faces in the non-commutative C^*-probability space (\mathcal{A}, ϕ). If $C^*(A_l^{(i)}, A_r^{(i)}) \simeq A_l^{(i)} \otimes_{\min} A_r^{(i)}$ and $\phi_i = \phi_{l,i}|A_l^{(i)} \otimes \phi_{r,i}|A_r^{(i)}$ is a faithful product state on $C^*(A_l^{(i)}, A_r^{(i)})$, for all $i \in I$, then $**_{i \in I} \phi_i$ is faithful on the reduced bi-free product and

$$
**_{i \in I} (A_l^{(i)}, A_r^{(i)})_{i \in I} \simeq *_{i \in I} (A_l^{(i)}, \phi) \otimes_{\min} *_{i \in I} (A_r^{(i)}, \phi).
$$

Proof. As before, we will be using the notation of Section 2.

For each $i \in I$, since $C^*(A_l^{(i)}, A_r^{(i)}) \simeq A_l^{(i)} \otimes_{\min} A_r^{(i)}$ and ϕ_i is a product state we can a priori choose $H_i = H_{i,l} \otimes H_{i,r}$, unit vectors $\xi_{i,l} \in H_{i,l}, \xi_{i,r} \in H_{i,r}$ such that $\xi_i = \xi_{i,l} \otimes \xi_{i,r}$ and $*$-homomorphisms $\pi_{i,\chi} : A_\chi^{(i)} \to B(H_{i,\chi})$ such that $\pi_i = \pi_{i,l} \otimes \pi_{i,r}$. This will give for $a_\chi \in A_\chi^{(i)}, \chi \in \{l, r\}$, that

$$
\phi_i(a_\chi a_\chi) = \langle \pi_{i,l}(a_\chi a_\chi) \xi_{i,l}, \xi_{i,l} \rangle
= \langle \pi_{i,l}(a_\chi) \xi_{i,l}, \xi_{i,l} \rangle \langle \pi_{i,r}(a_\chi) \xi_{i,r}, \xi_{i,r} \rangle.
$$

Along with the free product Hilbert space

$$
(H, \xi) = *_{i \in I}(H_i, \xi_i)
$$

we need to also define, for $\chi \in \{l, r\}$, the free product Hilbert spaces

$$
(H_\chi, \xi_\chi) = *_{i \in I}(H_{i,\chi}, \xi_{i,\chi}).
$$

Since there are multiple free product Hilbert spaces we will use subscripts to denote the different left and right representations, namely,

$$
\lambda_{H_i} : B(H_i) \to B(H) \quad \text{and} \quad \lambda_{H_{i,l}} : B(H_{i,l}) \to B(H_l)
$$

for the left representations and

$$
\rho_{H_i} : B(H_i) \to B(H) \quad \text{and} \quad \rho_{H_{i,r}} : B(H_{i,r}) \to B(H_r)
$$

for the right representations.
Dykema’s original result [2] proves that \(\langle \xi_\chi, \xi_\chi \rangle \) is faithful on \(*_{i \in I}(A_\chi^{(i)}, \varphi) \) for \(\chi \in \{l, r\} \) and it is a folklore result that the minimal tensor product of faithful states is faithful. Thus, \(\langle \cdot \otimes \xi_r, \xi_l \otimes \xi_r \rangle \) is faithful on \(*_{i \in I}(A_\chi^{(i)}, \varphi) \otimes_{\min} *_{i \in I}(A_\chi^{(i)}, \varphi) \).

Fix \(k \geq 1 \) and \(j_1, \cdots, j_k \in I \) such that \(j_i \neq j_{i+1}, 1 \leq i \leq k - 1 \). Now fix a unit vector
\[
\eta_\chi = (\xi_{j_1, l} \otimes h_{j_1, r}) \otimes h_{j_2} \otimes \cdots \otimes h_{j_{k-1}} \otimes (h_{j_{k-1}, l} \otimes \xi_{j_k, r})
\]
\(\in (\xi_{j_1, l} \otimes \hat{\mathcal{H}}_{j_1, r}) \otimes \hat{\mathcal{H}}_{j_2} \otimes \cdots \otimes \hat{\mathcal{H}}_{j_{k-1}} \otimes (\hat{\mathcal{H}}_{j_{k-1}, l} \otimes \xi_{j_k, r}) \).

If \(k = 1 \) the only possible \(h \) is \(\xi = \xi_{j_1, l} \otimes \xi_{j_1, r} \). Call the collection of such \(h \), as \(k \) and the indices vary, \(\mathcal{S} \subset \mathcal{H} \).

As will be shown below, this set of unit vectors \(\mathcal{S} \) plays an important role in decomposing simple tensors in \(\mathcal{H} \), in particular for every simple tensor \(\eta \in \mathcal{H} \) that is also a simple tensor in each component there exists a unique \(h \in \mathcal{S} \) such that \(\eta \in \mathcal{H}_l \otimes h \otimes \mathcal{H}_r \). By abuse of tensor notation this is not very hard to see in one’s mind but the reality of proving this carefully needs plenty of indices.

To this end, for \(m \geq 1 \) suppose \(s_1, \ldots, s_m \in I \) such that \(s_t \neq s_{t+1} \) for \(1 \leq t \leq m - 1 \), and \(\eta_t \in \mathcal{H}_{s_t, l}, \eta_r \in \mathcal{H}_{s_t, r} \) such that \(\eta_t \otimes \eta_r \in \mathcal{H}_{s_t} \) for \(1 \leq t \leq m \). This last condition implies that \(\eta_{t, \chi} = \|\eta_{t, \chi}\|\xi_{t, \chi} \) cannot hold for both \(\chi = l \) and \(\chi = r \). In summary,
\[
\eta := (\eta_{1, l} \otimes \eta_{1, r}) \otimes \cdots \otimes (\eta_{m, l} \otimes \eta_{m, r}) \in \mathcal{H}_{s_1} \otimes \cdots \otimes \mathcal{H}_{s_m}.
\]

Note that the conditions imposed on the \(\eta_{t, \chi} \) in the above paragraph imply that the form of \(\eta \) above is as reduced as it can be.

As mentioned above, it will be established that there exists \(h \in \mathcal{S} \) such that
\[
\eta \in \mathcal{H}_l \otimes h \otimes \mathcal{H}_r.
\]

To prove the required decomposition, let
\[
v = \max\{0 \leq t \leq m : \eta_{j, r} = \|\eta_{j, r}\|\xi_{s_j, r}, 1 \leq j \leq t\}
\]
and
\[
w = \min\{1 \leq t \leq m + 1 : \eta_{j, l} = \|\eta_{j, l}\|\xi_{s_j, l}, t \leq j \leq m\}.
\]
This gives that \(v \) is the number of terms in a row from the left with trivial right tensor components and \(m + 1 - w \) is the number of terms in a row from the right with trivial left tensor components.

By the fact that \(\eta_{t, l} \otimes \eta_{t, r} \in \mathcal{H}_{s_t} \), that is \(\eta_{t, \chi} = \|\eta_{t, \chi}\|\xi_{t, \chi} \) cannot hold for both \(\chi = l \) and \(\chi = r \), we have that \(v < w \). If \(v = m \) then \(w = m + 1 \) and \(\eta \in \mathcal{H}_l \), and if \(w = 1 \) then \(v = 0 \) and \(\eta \in \mathcal{H}_r \). Otherwise, when \(0 \leq v \leq m - 1 \) and \(2 \leq w \leq m \), define
\[
\eta_l = (\eta_{1, l} \otimes \|\eta_{1, r}\|\xi_{s_1, r}) \otimes \cdots \otimes (\eta_{v, l} \otimes \|\eta_{v, r}\|\xi_{s_v, r}) \otimes (\eta_{v+1, l} \otimes \xi_{s_{v+1}, r}),
\]
\[
\eta_S = (\xi_{v+1, l} \otimes \eta_{v+1, r}) \otimes \cdots \otimes (\eta_{w-1, l} \otimes \xi_{w-1, r}),
\]
\[
\eta_r = (\xi_{w-1, l} \otimes \eta_{w-1, r}) \otimes (\|\eta_{w, l}\|\xi_{w, l} \otimes \eta_{w, r}) \otimes \cdots \otimes (\|\eta_{m, l}\|\xi_{m, l} \otimes \eta_{m, r})
\]
with $\eta_S = \xi$ if $v + 1 = w$. Hence, by the usual slight abuse of the tensor notation, $\eta = \eta_l \otimes \eta_S \otimes \eta_r \in \mathcal{H}_l \otimes \eta_S \otimes \mathcal{H}_r$ with $\|\eta_S\|\in \mathcal{S}$. Therefore,

$$\mathcal{S} \ni \{ \mathcal{H}_l \otimes h \otimes \mathcal{H}_r : h \in \mathcal{S} \} = \mathcal{H}.$$

For any $h \in \mathcal{S}$, which is a unit vector, there is a natural isometric map $S_h : \mathcal{H}_l \otimes \mathcal{H}_r \to \mathcal{H}$ given by the concatenation $\mathcal{H}_l \otimes \mathcal{H}_r \mapsto \mathcal{H}_l \otimes h \otimes \mathcal{H}_r$, with the appropriate simplification of tensors when needed. In particular, there exist $k \geq 1$ and $j_1, \cdots, j_k \in I$ such that $j_i \neq j_{i+1}, 1 \leq i \leq k - 1$ and then

$$h = (\xi_{j_1,l} \otimes h_{j_1,r}) \otimes h_{j_2} \cdots \otimes h_{j_{k-1}} \otimes (h_{j_k,l} \otimes \xi_{j_k,r})$$

$$\in (\xi_{j_1,l} \otimes \mathcal{H}_{j_1,r}) \otimes \mathcal{H}_{j_2} \cdots \otimes \mathcal{H}_{j_{k-1}} \otimes (\mathcal{H}_{j_k,l} \otimes \xi_{j_k,r}).$$

We can now carefully specify that the isometric map is given by

$$\xi_l \otimes \xi_r \mapsto h,$$

$$\begin{cases} h \otimes (\xi_{i_1,l} \otimes \mathcal{H}_{i_1,r}) \otimes \cdots \otimes (\xi_{i_m,l} \otimes \mathcal{H}_{i_m,r}), & i_1 \neq j_k \\
(\xi_{j_1,l} \otimes h_{j_1,r}) \otimes h_{j_2} \cdots \otimes h_{j_{k-1}} \otimes (h_{j_k,l} \otimes \mathcal{H}_{j_1,r}) \otimes \\
\cdots \otimes (\xi_{i_m,l} \otimes \mathcal{H}_{i_m,r}), & i_1 = j_k \end{cases}$$

$$((\mathcal{H}_{i_1,l} \otimes \cdots \otimes \mathcal{H}_{i_m,l}) \otimes \xi_r) \mapsto$$

$$\begin{cases} (\mathcal{H}_{i_1,l} \otimes \xi_{i_1,r}) \otimes \cdots \otimes (\mathcal{H}_{i_m,l} \otimes \xi_{i_m,r}) \otimes h, & i_m \neq j_1 \\
(\mathcal{H}_{i_1,l} \otimes \xi_{i_1,r}) \otimes \cdots \otimes (\mathcal{H}_{i_m,l} \otimes h_{i_1,r}) \otimes h_{j_2} \otimes \\
\cdots \otimes h_{j_{k-1}} \otimes (h_{j_k,l} \otimes \xi_{i_1,r}), & i_m = j_1 \end{cases}$$

and

$$((\mathcal{H}_{i_1,l} \otimes \cdots \otimes \mathcal{H}_{i_m,l}) \otimes (\mathcal{H}_{t_1,r} \otimes \cdots \otimes \mathcal{H}_{t_s,r}) \mapsto$$

$$((\mathcal{H}_{i_1,l} \otimes \xi_{i_1,r}) \otimes \cdots \otimes (\mathcal{H}_{i_m,l} \otimes \xi_{i_m,r}) \otimes h \otimes (\xi_{t_1,l} \otimes \mathcal{H}_{t_1,r}) \otimes \cdots \otimes (\xi_{t_s,l} \otimes \mathcal{H}_{t_s,r})$$

if $i_m \neq j_1$ and $j_k \neq t_1$ with similar statements as the cases above when $i_m = j_1$ or $j_k = t_1$ or both happen. Perhaps the most natural case of S_h is when $h = \xi$. It certainly minimizes, but doesn’t remove, the need for all of the cases above.

A careful examination of the S_h isometric map implies that for $a \in \mathcal{A}^{(1)}_{\chi}$, $b \in \mathcal{A}^{(2)}_{\chi}$ and $\eta_{\chi} \in \mathcal{H}_{\chi}$ for $\chi \in \{l, r\}$ we have that, by abuse of the tensor notation,

$$\lambda_{\mathcal{H}_{i_1}}(\pi_{i_1}(a))\rho_{\mathcal{H}_{i_2}}(\pi_{i_2}(b))S_h(\eta_l \otimes \eta_r)$$

$$= \lambda_{\mathcal{H}_{i_1}}(\pi_{i_1}(a))\rho_{\mathcal{H}_{i_2}}(\pi_{i_2}(b))(\eta_l \otimes h \otimes \eta_r)$$

$$= \lambda_{\mathcal{H}_{i_1,l}}(\pi_{i_1,l}(a))\eta_l \otimes h \otimes \rho_{\mathcal{H}_{i_2,r}}(\pi_{i_2,r}(b))\eta_r$$

$$= S_h(\lambda_{\mathcal{H}_{i_1,l}}(\pi_{i_1,l}(a))\eta_l \otimes \rho_{\mathcal{H}_{i_2,r}}(\pi_{i_2,r}(b))\eta_r)$$
Hence, \(S_h(\mathcal{H}_l \otimes \mathcal{H}_r) \) is a reducing subspace of the reduced bi-free product. Moreover,

\[
S_h^* \lambda_{\mathcal{H}_l} \circ \pi_l(\cdot) S_h = (\lambda_{\mathcal{H}_l} \circ \pi_l(\cdot)) \otimes I_{\mathcal{H}_r} \quad \text{on } \mathcal{A}_{l}^{(i)}
\]

and

\[
S_h^* \rho_{\mathcal{H}_l} \circ \pi_l(\cdot) S_h = I_{\mathcal{H}_l} \otimes (\rho_{\mathcal{H}_r} \circ \pi_r(\cdot)) \quad \text{on } \mathcal{A}_{r}^{(i)}
\]

Therefore, for any \(h \in \mathcal{S} \),

\[
S_h^* (\star_{i \in I}(A_l^{(i)}, A_r^{(i)})) S_h = \star_{i \in I}(A_l^{(i)}, \varphi) \otimes_{\min} \star_{i \in I}(A_r^{(i)}, \varphi)
\]

and furthermore, by the identities involving \(S_h, \lambda \) and \(\rho \), \(S_h^* a S_h = S_{\xi}(a) S_{\xi} \) for all \(h \in \mathcal{S} \) and \(a \in \star_{i \in I}(A_l^{(i)}, A_r^{(i)}) \).

Finally, we want to show that compression to \(S_{\xi}(\mathcal{H}_l \otimes \mathcal{H}_r) \) is a *-isomorphism. Note that this is the same as compression to \(S_h(\mathcal{H}_l \otimes \mathcal{H}_r) \) being injective for any \(h \in \mathcal{S} \). This gives us a way forward. Suppose that \(a \in \star_{i \in I}(A_l^{(i)}, A_r^{(i)}) \) such that \(\star_{i \in I} \varphi_i(a^* a) = 0 \). This implies that

\[
0 = a \xi = S_{\xi}^* a S_{\xi}(\xi_l \otimes \xi_r).
\]

By the faithfulness of \((\cdot \xi_l \otimes \xi_r, \xi_l \otimes \xi_r) \) this gives that \(S_{\xi}^* a S_{\xi} = 0 \) or rather \(a \) is 0 on the reducing subspace \(S_{\xi}(\mathcal{H}_l \otimes \mathcal{H}_r) \). But then for all \(h \in \mathcal{S} \) we have that

\[
S_h^* a S_h = S_{\xi}^* a S_{\xi} = 0
\]

and \(a \) is 0 on the reducing subspace \(S_h(\mathcal{H}_l \otimes \mathcal{H}_r) \). By what we proved about the set \(\mathcal{S} \), we have that \(a \) is 0 on

\[
\mathfrak{span}\{S_h(\mathcal{H}_l \otimes \mathcal{H}_r) : h \in \mathcal{S}\} = \mathfrak{span}\{\mathcal{H}_l \otimes h \otimes \mathcal{H}_r : h \in \mathcal{S}\} = \mathcal{H}.
\]

Therefore, \(a = 0 \) and thus \(\star_{i \in I} \varphi_i \) is faithful. \(\square \)

There may exist a full converse to Theorem 3.1 but the previous proof highly depends on the state \(\varphi_i \) arising as a tensor product of states. In general, \(\varphi_i \) need not be of this form. We should note here that if \(\varphi_i|_{A_l^{(i)}} \) or \(\varphi_i|_{A_r^{(i)}} \) is a pure state then \(\varphi_i \) will be a tensor product of states.

To end this paper, we summarize with the following corollary.

Corollary 3.3. Let \((A_l^{(i)}, A_r^{(i)})_{i \in I} \) be a non-trivial family of pairs of faces in the non-commutative C*-probability space \((\mathcal{A}, \varphi) \). If \(\varphi \) is faithful on \(C^*(A_l^{(i)}, A_r^{(i)})_{i \in I} \), \(C^*(A_l^{(i)}, A_r^{(i)}) \simeq \mathcal{A}_{l}^{(i)} \otimes_{\min} \mathcal{A}_{r}^{(i)} \), \(\varphi_i = \varphi_i|_{A_l^{(i)}} \otimes \varphi_i|_{A_r^{(i)}} \) and \((A_l^{(i)}, A_r^{(i)})_{i \in I} \) is bi-freely independent with respect to \(\varphi \), then

\[
C^*(A_l^{(i)}, A_r^{(i)})_{i \in I} \simeq \star_{i \in I}(A_l^{(i)}, A_r^{(i)})_{i \in I} \simeq \star_{i \in I}(A_l^{(i)}, \varphi) \otimes_{\min} \star_{i \in I}(A_r^{(i)}, \varphi).
\]
Proof. Recall, that by bi-free independence we know that the following diagram commutes
\[
\begin{array}{ccc}
\hat{\pi} \in I & & C^*((A_{\hat{\mathcal{I}}}^{(i)}, \mathcal{A}^{(i)})_{i \in \mathcal{I}}) \\
\mathcal{I} \mathcal{I} \mathcal{I} & & \\
\mathcal{I} \mathcal{I} \mathcal{I} & & C^* (Λ_{\mathcal{I}}^{(i)}, \mathcal{A}^{(i)})_{i \in \mathcal{I}} \\
\end{array}
\]
Because both of the states are faithful on their algebras then for any \(a^*a \in \hat{\pi} \mathcal{I} \mathcal{I} \mathcal{I} (A_{\hat{\mathcal{I}}}^{(i)}, \mathcal{A}^{(i)})_{i \in \mathcal{I}} \), \(a^*a \) is in the kernel of \(\iota \) if and only if \(a^*a \) is in the kernel of \(\mathcal{I} \mathcal{I} \mathcal{I} (Λ_{\mathcal{I}}^{(i)}, \mathcal{A}^{(i)})_{i \in \mathcal{I}} \). Therefore, both quotients are \(\ast \)-isomorphic and Theorem 3.2 gives the final \(\ast \)-isomorphism. \(\square \)

References

[1] D. Avitzour, Free products of \(C^* \)-algebras, Trans. Amer. Math. Soc. 271 (1982), 423–435.
[2] K. Dykema, Faithfulness of free product states, J. Funct. Anal. 154 (1998), 323–329.
[3] K. Dykema and M. Rørdam, Projections in free product \(C^* \)-algebras, Geom. Funct.
Anal., 8 (1998), 1-16; Erratum, idem., 10(4) (2000), 975.
[4] A. Freslon, M. Weber On bi-free de Finetti theorems, Ann. Math. Blaise Pascal 23 (2016), 21–51.
[5] P. Skoufranis, On operator-valued bi-free distributions, Adv. Math. 303 (2016), 638–715.
[6] M. Takesaki, On the cross-norm of the direct product of \(C^* \)-algebras, Tôhoku Math. J. 16 (1964), 111-122.
[7] D. Voiculescu, Symmetries of some reduced free product \(C^* \)-algebras, in Operator algebras and their connection with topology and ergodic theory, Lecture Notes in Math. 1132, Springer, 1985, 556–588.
[8] D. Voiculescu, Free probability for pairs of faces I, Comm. Math. Phys. 332 (2014), 955–980.

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada
E-mail address: christopher.ramsey@umanitoba.ca