VARDA (VArved sediments DAtabase) – providing and connecting proxy data from annually laminated lake sediments

Arne Ramisch¹, Alexander Brauser¹, Mario Dorn¹, Cecile Blanchet¹, Brian Brademann¹, Matthias Köppl¹, Jens Mingram¹, Ina Neugebauer¹, Norbert Nowaczyk¹, Florian Ott¹, Sylvia Pinkerneil¹, Birgit Plessen¹, Markus J. Schwab¹, Rik Tjallingii¹ and Achim Brauer¹

¹. GFZ German Research Center for Geoscience, Section Climate Dynamics and Landscape Evolution, Telegrafenberg, 14473 Potsdam, Germany

Correspondence to: Arne Ramisch (arne.ramisch@gfz-potsdam.de)

Abstract. Varved lake sediments provide long climatic records with high temporal resolution and low associated age uncertainty. Robust and detailed comparison of well-dated and annually laminated sediment records is crucial for reconstructing abrupt and regionally time-transgressive changes as well as validation of spatial and temporal trajectories of past climatic changes. The VARved sediments DAtabase (VARDA) presented here is the first data compilation for varve chronologies and associated palaeoclimatic proxy records. The current version 1.0 allows detailed comparison of published varve records from 95 lakes. VARDA is freely accessible and was created to assess outputs from climate models with high-resolution terrestrial palaeoclimatic proxies. VARDA additionally provides a technical environment that enables to explore the database of varved lake sediments using a connected data-model and can generate a state-of-the-art graphic representation of multi-site comparison. This allows to reassess existing chronologies and tephra events to synchronize and compare even distant varved lake records. Furthermore, the present version of VARDA permits to explore varve thickness data. In this paper, we report in detail on the data mining and compilation strategies for the identification of varved lakes and assimilation of high-resolution chronologies as well as the technical infrastructure of the database. Additional paleoclimate proxy data will be provided in forthcoming updates. The VARDA graph-database and user interface can be accessed online at https://varve.gfz-potsdam.de, all datasets of version 1.0 are available at http://doi.org/10.5880/GFZ.4.3.2019.003 (Ramisch et al., 2019).

1 Introduction

A major challenge in simulating climate change of the last glacial cycle is validating model outputs with palaeoclimatic data. Model-data comparisons on regional to global scale require the integration of palaeoclimatic data from single sites into multi-site networks (e.g. Franke et al., 2017). Annually laminated lake sediments provide reliable nodes for such networks because they offer palaeoclimatic information in high temporal resolution with low associated age uncertainty. Due to their annual to seasonal resolution, multi-site networks of varved lake sediments enable investigations of abrupt and regionally time-transgressive climate change on the continents (e.g. Lane et al., 2013; Rach et al., 2014) which is fundamental to understand climates of the last glacial cycle (Clement and Peterson, 2008) and to better assess spatial and temporal trajectories of future
climate changes. Networks of varved lake sediments also provide means to test differentiated proxy responses to climate change (e.g. Ott et al., 2017; Ramisch et al., 2018; Roberts et al., 2016), further enhancing the robustness of paleoclimatic reconstructions. However, despite their usefulness for the generation of highly resolved multi-site networks, a global synthesis of varve-related paleoclimatic data is still not available.

Various data providers have been developed which offer free access to palaeoclimatic and paleoenvironmental information including high resolution terrestrial archives. These include (1) large scale data repositories such as Pangaea (www.pangaea.de), the National Oceanic and Atmospheric Administration’s (NOAA) World data service for Paleoclimatology archives (www.ncdc.noaa.gov) and Neotoma (www.neotomadb.org, Williams et al., 2018) and, (2) proxy or time-slice specific databases like the ACER (Sánchez Goñi et al., 2017), the European Pollen database (Fyfe et al., 2009), the SISAL database (Atsawawaranunt et al., 2018) or the PAGES2k Global 2,000 Year Multiproxy Database (Pages 2k consortium, 2017). However, the distribution of information in between data providers make a custom generation of multi-site networks from varved sediments inefficient and time consuming. Moreover, continuous geochronological development results in frequent updates of fundamental methods such as calibration curves (e.g. Reimer et al., 2004, 2009, 2013) and age-depth modelling algorithms (e.g. Bronk Ramsey et al., 2007; Blauuw and Christen, 2011). Incorporating such changes into existing varve-related datasets requires an interactive approach that is not offered by fixed data structures of standard relational database management systems. To overcome these limitations, we developed a new and state-of-the-art graph database especially, but not exclusively, for varved sediment records. We compiled all available and published varved sediment records and developed criteria how these data are integrated in this database.

2. Data and methods

2.1 Data mining

We assessed varve related publications aided by the literature database of the PAGES varve working group (http://www.pastglobalchanges.org/download/docs/working_groups/vwg/Varve%20publications.pdf) to identify lake archives exhibiting varved sediments and to compile suitable core related paleoclimatic proxy time series. A comprehensive set of lake sediment records was identified, for which proxy data from continuous or floating varve sequences were previously published. All data were collected as raw data from freely available online sources, either from online data repositories (Pangaea, NOAA, and Neotoma) or data archives within the supplementary materials section of online publications. For a permanent and definite assignment of the compiled data sets within the database to their respective original publication, the digital object identifier (DOI) of the publication or the data-provider (if available) was additionally collected and stored.

2.2 Data compilation

To ensure an unambiguous identification of a lake record corresponding to a given dataset, we collected and reviewed the required information of lake names and geographic coordinates from the published literature. Table 1 lists required and
additional information for lake records included in VARDA. To facilitate searches for lakes in an alphabetically ordered list, the string “Lake” was removed from the name if the string appeared in the beginning of the lake name (e.g. “Lake Ammersee” was changed to “Ammersee”). However, exceptions were made if the string “Lake” is an essential feature of the lake name (e.g. “Lake of the Clouds”) or if the reference is in non-english language (e.g. “Lac D'Annecy”). Lake locations were stored as WGS84 referenced geographical coordinates in decimal degree with 4 decimal places, which corresponds to a precision of ~ 10 m. This even allows a reliable location of small lakes with a surface area < 1 ha and especially useful for dense lake distributions common in large lake districts such as in Canada or Scandinavia. Since the required precision was not available in most publications, we re-assessed the published geographical location using ArcGIS and Google Earth.

Sediment profiles that were collected from primary literature sources (see Tab. 2) only require a unique identifier (e.g. MON for Lago Grande di Monticchio) within the VARDA database that links a profile to a corresponding lake (Tab.2). Additional information encompasses the geographical coordinates of coring location (fields: Latitude, Longitude), coring methods (e.g. piston corer), a coring date, water depths at the core location as well as an upper (field: depth start) and lower (field: depth end) depth of the sediment profile.

2.2.1 Lake and sediment profile meta information

The data compilation followed the basic strategy to collect proxy data associated with a published sediment profile and information about age-depth models and event layers. A sediment profile may either consist of a single core section or several overlapping core sections combined to a composite profile. Since data and meta information availability greatly varied in between different publications, we classified the available information into required and additional information. The category required encompasses all information that is necessary to a) associate a proxy value at a given depth in a sediment profile with a corresponding age and to b) uniquely identify a lake, sediment profile and original publication for a given dataset. The category additional encompasses all information that extends the data pool for more comprehensive analyses and therefore improves reproducibility, the ability to filter data by specific properties and, in addition, the quantification of methodological uncertainties. We converted all datasets to default units to provide standardized and thus intercomparable data formats. Tables 1 to 7 provide an overview of data categories and required and additional information properties including the default units.

2.2.2 Radiocarbon dates

Uncalibrated radiocarbon measurements were collected from the published literature and adapted to the 14C data reporting standards of Millard et al. (2014). This allows efficient reassessments of published chronologies by calibration, age-depth modelling, and age uncertainty estimation (see Table 3). However, reporting standards are not yet fully adapted in the paleoclimatic community, leading to variations in reported information and data gaps. The required information encompasses from left to right (i) the sampling depth (field: sediment profile depth); (ii) the uncalibrated age (field: Age uncalibrated); (iii) the associated measurement error (field: Error); (iv) the error type (e.g. 1 sigma); and (v) the dated material (e.g. wood remains).
The required sampling position refers to the depth within the sediment profile, whereas the sampling position within the individual core sections can be attributed as additional information. If available, we collected additional information on (i) the corresponding core section label (field core section); (ii) section depth (field: section depth); (iii) the lab code; (iv) δ13C data; (v) the measurement method (field: method) as e.g. AMS 14C; (vi) the organic carbon content of a sample (field: %C) and (vii) C/N ratios.

Table 3

2.2.3 Age-depth models and chronologies

Chronologies for varved lake sediments are commonly based on a combination of different dating methods (Brauer et al., 2014), such as varve counting, radiometric dating (e.g. 14C, 137Cs or 210Pb) and event age-equivalent dating (e.g. correlation to dated volcanic eruptions). Age-depth models provide the time frame for down-core sequences of sediment profiles and allow transformations of sediment proxy records into time series. Initially, most researchers constructed age-depth models by simple linear interpolation between individual chronological points. However, age-depth modelling algorithms such as the OxCal P-sequence (Bronk-Ramsey, 2007) or Bacon (Blaauw and Christen, 2011) have become more common and perform more complex statistical interpolations.

Table 4

VARDA version 1.0 includes published chronologies that are available in public data repositories. Table 4 and 5 provide an overview of the required and additional meta-information for storing chronologies in VARDA and the resulting chronological data-sheet respectively. The required information includes a label for the associated sediment profile as well as the corresponding data and publication DOI. Additional information will enable rapid reassessments of original chronologies.

Table 5

Additional information reports (i) on age uncertainty; (ii) presence, type and age of anchor points for floating chronologies (e.g. sediment surface for continuous varve chronologies, 14C dates or elsewhere dated tephra layer for floating chronologies); (iii) the applied dating methods (e.g. varve counting, radiometric dating or event layers); (iv) the interpolation method (e.g. linear interpolation or bayesian age-depth modelling such as OxCal P-sequence or Bacon); (v) the applied 14C calibration curve (e.g. IntCal09); and (vi) the resulting median resolution of the chronology.

Ideally, the chronological data sheet associates a given depth of a sediment profile to an age estimate and, if available, an uncertainty range expressed as minimum and maximum estimate (2 sigma as default). If depth information for a sediment profile was not provided, we either reconstructed an auxiliary sediment profile depth by cumulative sums of continuous varve thickness measurements (if available) or excluded the corresponding chronology from the present data compilation because such time series without corresponding core depth are not updatable. The default depth scale unit was set to mm to avoid...
excessive decimal places in depth reporting. The default age scale unit was set to years BP (1950 CE). The default age unit was restricted to annual precision and ages are reported in integer numbers (without usage of decimal places).

2.2.4 Isochronous event layers

Isochronous event layers provide precise tie points for the synchronization of proxy time series from regionally different locations and facilitate the construction of multi-site networks. Furthermore, the identification of layers corresponding to dated events such as e.g. volcanic eruptions or geomagnetic excursions provide additional information for the construction of robust chronologies. For the first version of VARDA, we collected information on reported tephra layers in the sediment profiles included in the database. Table 6 provides an overview of required and additional information of published tephra layers in VARDA. The required information (sediment profile depth, age, age error and dating method) are essential to assign a tephra layer to a given depth in a sediment profile and to store information on the age of the layer as it has been reported. Since standards for age reporting of tephra layers greatly vary in between different studies (e.g. uncalibrated vs. calibrated), information on the dating method and calibration are required for the field “Dating method/Calibration”. The required field “Dated in profile?” provides information if the age of the tephra layer originates from the corresponding sediment profile itself (field = true) or if the age was adapted from the literature (field = false). If the age was adapted from the literature, a DOI from the original publication is required. Further event layers such as geomagnetic excursions will be included in forthcoming versions of VARDA.

Table 6

2.2.5 Proxy data

The technical infrastructure of VARDA is intended to attribute a down-profile record of paleoclimatic proxy data to the corresponding chronology of the sediment profile. Therefore, the required information for proxy data sequences is the sample depth and a corresponding proxy measurement, while additional information further describes proxy specific measurement standards. We adapted the variable controlled vocabulary of the PaST thesaurus for proxy data (World Data Service for Paleoclimatology, https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/past-thesaurus, last access in September 2019). Therefore, all proxy records will be broadly categorized into biological, sedimentological and geochemical proxy data. In the present version of the database, we included varve thickness data that were found in public data repositories. Table 7 lists the required and additional information concerning varve thickness records. Further proxy data such as stable-isotope, pollen or XRF records will be included in forthcoming versions of VARDA.

Table 7
3. Database

3.1 Database design

VARDA is intended to offer a flexible generation of multi-site networks with complex data relations for storing and organizing the collected information. To store and organize datasets from varved lake archives, we use a graph database. Graph technology in computer science has evolved as part of the NoSQL movement (meaning “Not only SQL”) and is based on graph theory, a mathematical concept of expressing objects as interconnected entities, which dates back to the early works of Leonard Euler in the 18th century (Euler, 1741). In contrast to fixed data schemes required by relational database management systems (RDBMS), a graph explicitly models relations between data by representing entities as nodes (or vertices) described by properties and connected through edges as shown in Fig. 1 (also see property graph model). To categorize the nature of a particular entity, one or more labels can be added to the node. Edges can be distinguished by their type and may have properties just like nodes. The ability to add new labels, edges and properties to any entity at all times enables developers to quickly adapt the data model to changing scientific or technical requirements. Neo4j’s native query language Cypher is used to read and update the contents in the graph. It allows for an intuitive and flexible generation of queries that are short and readable even for complex patterns (many relationships, circular structures, variable-length paths).

Figure 1

The integration of paleoenvironmental datasets from varved lakes into a graph database resulted in a flexible data structure, which allows for connected paleoenvironmental datasets within a single lake as well as in between different lakes. Fig. 1 illustrates the VARDA property graph model schematically and visualizes connections between nodes. The VARDA data model associates each lake with one or more sediment profiles, which are connected to one or more datasets. Datasets, in turn, are connected to a publication, a category (chronology, tephra layer, radiocarbon date or varve thickness record in version 1.0) and various category specific attributes (as listed in Tab. 1 to 7) which further describe a dataset. All these connections provide the necessary meta information to the actual data points, which are included in a given data set. Data points from the category tephra layer can additionally connect to an event which is described in more than one lake, as for example the Laacher See tephra. The event node offers the possibility to connect datasets between different lakes for e.g. synchronization.

3.2 Application design

VARDA provides fast access to palaeoclimatic data from varved lakes, irrespective of a user’s technical background or operating system. Therefore, the user interface (UI) was designed to be intuitive and reactive with self-explanatory forms and components which immediately respond to the user’s actions. It is implemented as an online service, which can be accessed permanently using a web browser.

Overall the application consists of the web client, a server-side Neo4j graph database and an Application Programming Interface (API) for communication of the client with the database. All software libraries that are integrated into VARDA have licenses that are free and permissive. The client is built with Vue.js, a JavaScript UI framework which has raised attention in
the developer community since its launch in 2014 due to its versatility and runtime performance. It is also less opinionated and easier to learn than many similar frameworks. Some features of VARDA integrate other well-documented third-party libraries, such as D3.js for data visualization and OpenLayers for rendering maps (e.g. from OSM) among vector layers with spatial data. The client state (e.g. user data and entity cache) and any transactions with the database are being handled with Apollo GraphQL, a framework for API communication and state management. The client’s component-oriented architecture enables fast development of new features with little interference with existing modules. All lines of source code required by the client are being checked, minified and bundled using WebPack for use in the browser.

The web application offers a user interface with optional filters to explore and visualize multi-site networks on demand (see Fig. 2). A universal search field (1 in Fig. 2) can be used to select filters either by region or proxy category. An interactive diagram (2 in Fig. 2) can be used to select a temporal filter by scrolling with the mouse or resizing the light-blue coloured frame (3 in Fig. 2) underneath the main figure.

Figure 2
We add the iconic NGRIP oxygen-isotope (δ18O) record with the GICC05 chronology (Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al., 2006; Svensson et al., 2005) as a temporal reference curve for the user. This curve is well-known in the paleoclimate community and thus allows an easy recognition of the time interval covered by a lake record of interest. In the present version it does not allow precise correlations between lake records with the NGRIP curve because chronological uncertainties for the latter are not shown for visual clarity. Orange circles (4 in Fig. 2) correspond to tephra layers that have been identified in sediments of at least two archives. Clicking a circle enables (or disables) the respective filter. The results will be updated immediately on the map (5 in Fig. 2) and in the result list (6 in Fig. 2) below whenever any filters have been changed. Direct selection of a lake on the map or in the result list guides users to the lake detail view with a list of corresponding core datasets. In version 1.0 all datasets of interest can be downloaded in CSV format.

4. Data inventory

We identified 186 lakes from the published literature, which are described to exhibit continuous or floating varve sequences in their sediments. We additionally included unvarved sediments from Lake Prespa (Europe), Lake Ohrid (Europe), Laguna Potrok Aike (South America) and Bear Lake (North America) to the compilation due to their long continuous chronologies and good age-control from independent dating techniques or the frequent occurrence of tephra layers. In total, 261 datasets for 95 of the identified lakes are available (September 2019) in public data repositories and were included in VARDA version 1.0. The datasets comprise of 70 individual chronologies from 43 lakes, 146 tephra layers from 36 lakes, 118 uncalibrated 14C records from 50 lakes and 55 varve thickness records from 23 lakes. Tab. 8 lists all identified lakes with name, geographical coordinates and available data sets including the corresponding literature reference.

Table 8
Fig. 3 presents the spatial coverage of lakes and associated datasets included in VARDA 1.0. The identified lakes are located on all continents except Antarctica, with ~56% located in Europe, ~26% in North America, ~8% in Asia, ~5% in Middle and South America, ~3% in Africa, and ~2% in Oceania. The spatial coverage shows a distinct spatial emphasis in lake distribution on the mid-latitudes of the Northern Hemisphere, especially the North Atlantic realm. In contrast, only 13 of the 190 lake archives are located on the Southern Hemisphere.

Figure 3

Fig. 4 presents the temporal distribution of datasets included in VARDA 1.0. The combined chronologies span the entire last glacial cycle with a minimum age range of 87 yrs (from -60 to 27 BP) for Lake Woseren (Czymzik et al., 2016) and a maximal age range of 1,208,643 yrs (from 10,475 to 1,219,118 BP) for Lake Malawi (Ivory et al., 2018). However, none of the chronologies entirely covers the last glacial cycle on its own, illustrating the need to generate multi-site networks to effectively cover long time periods for environmental reconstructions. For network synchronization purposes, 146 individual tephra layers reported for sediment profiles in 36 lakes were identified from the published literature. Thirty tephra layers are reported to occur in more than one lake and are therefore suitable for synchronization.

Figure 4

5. Data availability

All datasets are available online at http://doi.org/10.5880/GFZ.4.3.2019.003 (Ramisch et al., 2019) in JavaScript Object Notation (JSON) format. The benefit of this data format is it’s accurate depiction of the VARDA data model, including the relationships in between data nodes. Additionally, all datasets are also available in CSV format. The VARDA graph-database and the user interface can be assessed online via the URL: https://varve.gfz-potsdam.de.

6. Conclusion and future developments

VARDA offers a user-friendly and time efficient way to explore the multitude of paleoenvironmental data from varved lake archives. Due to the integration of precise chronologies and isochrones from tephra event layers into a modern graph database, VARDA offers an easy way to construct regional to global networks of paleoenvironmental information. These multi-site networks can be used e.g. to explore and analyze leads and lags of regional climate change, large scale patterns in environmental variability or differentiated proxy responses within and between archives. Forthcoming updates of VARDA will include additional proxy data such as stable isotopes, pollen or geochemical proxies.
References

Allen, J. R. M., Brandt, U., Brauer, A., Hubberten, H.-W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J. F. W., Nowaczyk, N. R., Oberhäsli, H., Watts, W. A., Wulf, S. and Zolitschka, B.: Rapid environmental changes in southern Europe during the last glacial period, Nature, 400(6746), 740–743, doi:10.1038/23432, 1999.

Amann, B., Szidat, S. and Grosjean, M.: A millennial-long record of warm season precipitation and flood frequency for the North-western Alps inferred from varved lake sediments: implications for the future, Quaternary Science Reviews, 115, 89–100, doi:10.1016/j.quascirev.2015.03.002, 2015.

Andersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Flückiger, J., Fritzschke, D., Fujii, Y., Goto-Azuma, K., Grønvold, K., Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M., Lorraín, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S. O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H., Siggard-Andersen, M. L., Steffensen, J. P., Stocker, T., Sveinbjörnsdóttir, A. E., Svensson, A., Takata, M., Tison, J. L., Thorsteinsson, T., Watanabe, O., Wilhelms, F. and White, J. W. C.: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431(7005), 147–151, doi:10.1038/nature02805, 2004.

Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Röthlisberger, R., Ruth, U., Siggard-Andersen, M.-L., Steffensen, J.P., Dahl-Jensen, D., Vinther, B.M. and Clausen., H.B: The Greenland Ice Core Chronology 2005, 15-42 ka. Part 1: Constructing the time scale. Quaternary Science Reviews, vol. 25, Shackleton special issue 24.

Ariztegui, D., Bösch, P. and Davaud, É: Dominant ENSO frequencies during the Little Ice Age in Northern Patagonia: The varved record of proglacial Lago Frías, Argentina, Quaternary International, 161(1), 46–55, doi:10.1016/j.quaint.2006.10.022, 2007.

Bakke, J., Dahl, S. O., Paasche, Ø., Løvlie, R. and Nesje, A.: Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in Lyngen, northern Norway, during the Lateglacial and Holocene, The Holocene, 15(4), 518–540, doi:10.1191/0959683605hl815rp, 2005.

Balascio, N. L., Zhang, Z., Bradley, R. S., Perren, B., Dahl, S. O. and Bakke, J.: A multi-proxy approach to assessing isolation basin stratigraphy from the Lofoten Islands, Norway, Quaternary Research, 75(1), 288–300, doi:10.1016/j.yqres.2010.08.012, 2011.

Bendle, J. M., Palmer, A. P., Thorndycraft, V. R. and Matthews, I. P.: High-resolution chronology for deglaciation of the Patagonian Ice Sheet at Lago Buenos Aires (46.5°S) revealed through varve chronology and Bayesian age modelling, Quaternary Science Reviews, 177, 314–339, doi:10.1016/j.quascirev.2017.10.013, 2017.

Berke, M. A., Johnson, T. C., Werne, J. P., Grice, K., Schouten, S. and Sinninghe Damsté, J. S.: Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa, Quaternary Science Reviews, 55, 59–74, doi:10.1016/j.quascirev.2012.08.014, 2012.
Bertrand, S., Castiaux, J. and Juvigné, E.: Tephrostratigraphy of the late glacial and Holocene sediments of Puyehue Lake (Southern Volcanic Zone, Chile, 40°S), Quaternary Research, 70(3), 343–357, doi:10.1016/j.yqres.2008.06.001, 2008.

Bird, B. W., Abbott, M. B., Finney, B. P. and Kutchko, B.: A 2000 year varve-based climate record from the central Brooks Range, Alaska, Journal of Paleolimnology, 41(1), 25–41, doi:10.1007/s10933-008-9262-y, 2008.

Blaauw, M. and Christeny, J. A.: Flexible paleoclimatic age-depth models using an autoregressive gamma process, Bayesian Anal., 6(3), 457–474, doi:10.1214/11-BA618, 2011.

Blaauw, M., van Geel, B., Kristen, I., Plessen, B., Lyaruu, A., Engstrom, D. R., van der Plicht, J. and Verschuren, D.: High-resolution 14C dating of a 25,000-year lake-sediment record from equatorial East Africa, Quaternary Science Reviews, 30(21-22), 3043–3059, doi:10.1016/j.quascirev.2011.07.014, 2011.

Brauer, A. and Casanova, J.: Journal of Paleolimnology, 25(2), 163–177, doi:10.1023/a:1008136029735, 2001.

Brauer, A., Endres, C., Zolitschka, B. and FW Negendank, J.: AMS Radiocarbon and Varve Chronology from the Annually Laminated Sediment Record of Lake Meerfelder Maar, Germany, Radiocarbon, 42(3), 355–368, doi:10.1017/s0033822200030307, 2000.

Brauer, A., Hajdas, I., Blockley, S. P. E., Bronk Ramsey, C., Christl, M., Ivy-Ochs, S., Moseley, G. E., Nowaczyk, N. N., Rasmussen, S. O., Roberts, H. M., Spöl, C., Staff, R. A. and Svensson, A.: The importance of independent chronology in integrating records of past climate change for the 60–8 ka INTIMATE time interval, Quat. Sci. Rev., 106, 47–66, doi:10.1016/j.quascirev.2014.07.006, 2014.

Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M. and Negendank, J. F. W.: An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period, Nature Geoscience, 1(8), 520–523, doi:10.1038/ngeo263, 2008.

Bronk Ramsey, C.: Deposition models for chronological records, Quat. Sci. Rev., 27(September 2006), 42–60, 2008.

Chassiot, L., Chapron, E., Di Giovanni, C., Albéric, P., Lajeunesse, P., Lehours, A.-C. and Meybeck, M.: Extreme events in the sedimentary record of maar Lake Pavin: Implications for natural hazards assessment in the French Massif Central, Quaternary Science Reviews, 141, 9–25, doi:10.1016/j.quascirev.2016.03.020, 2016.

Clark, J. S., Merkt, J. and Muller, H.: Post-Glacial Fire, Vegetation, and Human History on the Northern Alpine Forelands, South-Western Germany, The Journal of Ecology, 77(4), 897, doi:10.2307/2260813, 1989.

Clement, A. C. and Peterson, L. C.: Mechanisms of abrupt climate change of the last glacial period, Rev. Geophys., 46(4), RG4002, doi:10.1029/2006RG000204, 2008.

Colman, S. M., Rosenbaum, J. G., Kaufman, D. S., Dean, W. E. and McGeehin, J. P.: Radiocarbon ages and age models for the past 30,000 years in Bear Lake, Utah and Idaho, Paleoenvironments of Bear Lake, Utah and Idaho, and its catchment, doi:10.1130/2009.2450(05), 2009.

Cook, T. L., Bradley, R. S., Stoner, J. S. and Francus, P.: Five thousand years of sediment transfer in a high arctic watershed recorded in annually laminated sediments from Lower Murray Lake, Ellesmere Island, Nunavut, Canada, Journal of Paleolimnology, 41(1), 77–94, doi:10.1007/s10933-008-9252-0, 2008.
Corella, J. P., Moreno, A., Morellón, M., Rull, V., Giralt, S., Rico, M. T., Pérez-Sanz, A. and Valero-Garcés, B. L.: Climate and human impact on a meromictic lake during the last 6,000 years (Montcortès Lake, Central Pyrenees, Spain), Journal of Paleolimnology, 46(3), 351–367, doi:10.1007/s10933-010-9443-3, 2010.

Courtney Mustaphi, C. J. and Gajewski, K.: Holocene sediments from a coastal lake on northern Devon Island, Nunavut, Canada, edited by O. Lian, Canadian Journal of Earth Sciences, 50(5), 564–575, doi:10.1139/cjes-2012-0143, 2013.

Cuven, S., Francus, P. and Lamoureux, S.: Mid to Late Holocene hydroclimatic and geochemical records from the varved sediments of East Lake, Cape Bounty, Canadian High Arctic, Quaternary Science Reviews, 30(19-20), 2651–2665, doi:10.1016/j.quascirev.2011.05.019, 2011.

Czymzik, M., Brauer, A., Dulski, P., Plessen, B., Naumann, R., von Grafenstein, U. and Scheffler, R.: Orbital and solar forcing of shifts in Mid- to Late Holocene flood intensity from varved sediments of pre-alpine Lake Ammersee (southern Germany), Quaternary Science Reviews, 61, 96–110, doi:10.1016/j.quascirev.2012.11.010, 2013.

Czymzik, M., Drebrodt, S., Feeser, I., Adolphi, F. and Brauer, A.: Mid-Holocene humid periods reconstructed from calcite varves of the Lake Woserin sediment record (north-eastern Germany), The Holocene, 26(6), 935–946, doi:10.1177/0959683615622549, 2016.

Dean, W. E. and Megard, R. O.: Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States, 97–114, doi:10.1130/spe276-p97, 1993.

Diedrich, K. E. and Loso, M. G.: Transient impacts of Little Ice Age glacier expansion on sedimentation processes at glacier-dammed Iceberg Lake, southcentral Alaska, Journal of Paleolimnology, 48(1), 115–132, doi:10.1007/s10933-012-9614-5, 2012.

Dietze, E., Brykała, D., Schreuder, L. T., Jaźdżewski, K., Blarquez, O., Brauer, A., Dietze, M., Obrem ska, M., Ott, F., Pieńczewska, A., Schouten, S., Hopmans, E. C. and Słowiński, M.: Human-induced fire regime shifts during 19th century industrialization: a robust fire regime reconstruction using northern Polish lake sediments, doi:10.31223/osf.io/c9z4y, 2019.

Dörfler, W., Feeser, I., van den Bogaard, C., Drebrodt, S., Erlenkeuser, H., Kleinmann, A., Merkt, J. and Wiethold, J.: A high-quality annually laminated sequence from Lake Belau, Northern Germany: Revised chronology and its implications for palynological and tephrochronological studies, The Holocene, 22(12), 1413–1426, doi:10.1177/0959683612449756, 2012.

Dräger, N., Theuerkauf, M., Szeroczyńska, K., Wulf, S., Tjallingii, R., Plessen, B., Kienel, U. and Brauer, A.: Varve microfacies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany), The Holocene, 27(3), 450–464, doi:10.1177/0959683616660173, 2016.

Eden, D. N. and Page, M. J.: Palaeoclimatic implications of a storm erosion record from late Holocene lake sediments, North Island, New Zealand, Palaeogeography, Palaeoclimatology, Palaeoecology, 139(1-2), 37–58, doi:10.1016/s0031-0182(97)00136-3, 1998.

Elbert, J., Jacques-Coper, M., Van Daele, M., Urrutia, R. and Grosjean, M.: A 600 years warm-season temperature record from varved sediments of Lago Plomo, Northern Patagonia, Chile (47°S), Quaternary International, 377, 28–37, doi:10.1016/j.quaint.2015.01.004, 2015.
Emile-Geay, J., McKay, N. P., Kaufman, D. S., Von Gunten, L., Wang, J., Anchukaitis, K. J., Abram, N. J., Addison, J. A., Curran, M. A. J., Evans, M. N., Henley, B. J., Hao, Z., Martrat, B., McGregor, H. V., Neukom, R., Pederson, G. T., Stenni, B., Thirumalai, K., Werner, J. P., Xu, C., Divine, D. V., Dixon, B. C., Gergis, J., Mundo, I. A., Nakatsuka, T., Phipps, S. J., Routson, C. C., Steig, E. J., Tierney, J. E., Tyler, J. J., Allen, K. J., Bertler, N. A. N., Björklund, J., Chase, B. M., Chen, M. Te, Cook, E., De Jong, R., DeLong, K. L., Dixon, D. A., Ekaykin, A. A., Ersek, V., Filipsson, H. L., Francus, P., Freund, M. B., Frezzotti, M., Gaire, N. P., Gajewski, K., Ge, Q., Goosse, H., Gornostaeva, A., Grosjean, M., Horiuchi, K., Hormes, A., Husum, K., Isaksson, E., Kandasamy, S., Kawamura, K., Kilbourne, K. H., Koç, N., Leduc, G., Linderholm, H. W., Lorrey, A. M., Mikhailenko, V., Mortyn, P. G., Motoyama, H., Moy, A. D., Mulvaney, R., Munz, P. M., Nash, D. J., Oerter, H., Opel, T., Orsi, A. J., Ovchinnikov, D. V., Porter, T. J., Roop, H. A., Saenger, C., Sano, M., Sauchyn, D., Saunders, K. M., Seidenkrantz, M. S., Severi, M., Shao, X., Sicre, M. A., Sigl, M., Sinclair, K., St George, S., St Jacques, J. M., Thamban, M., Thapa, U. K., Thomas, E. R., Turney, C., Uemura, R., Vagnozzi, D. O., Wahl, E. R., White, J. W. C., Yu, Z. and Zinke, J.: A global multiproxy database for temperature reconstructions of the Common Era, Sci. Data, 4, 1–33, doi:10.1038/sdata.2017.88, 2017.

Engels, S., van Geel, B., Buddelmeijer, N. and Brauer, A.: High-resolution palynological evidence for vegetation response to the Laacher See eruption from the varved record of Meerfelder Maar (Germany) and other central European records, Review of Palaeobotany and Palynology, 221, 160–170, doi:10.1016/j.revpalbo.2015.06.010, 2015.

Enters, D., Kirilova, E., Lotter, A. F., Lücke, A., Parplies, J., Jahns, S., Kuhn, G. and Zolitschka, B.: Climate change and human impact at Sacrower See (NE Germany) during the past 13,000 years: a geochemical record, Journal of Paleolimnology, 43(4), 719–737, doi:10.1007/s10933-009-9362-3, 2009.

Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae, 128–140, 1741.

Fortin, D., Praet, N., McKay, N. P., Kaufman, D. S., Jensen, B. J. L., Haeussler, P. J., Buchanan, C. and De Batist, M.: New approach to assessing age uncertainties – The 2300-year varve chronology from Eklutna Lake, Alaska (USA), Quaternary Science Reviews, 203, 90–101, doi:10.1016/j.quascirev.2018.10.018, 2019.

Francke, A., Wagner, B., Just, J., Leicher, N., Gromig, R., Baumgarten, H., Vogel, H., Lacey, J. H., Sadori, L., Wonik, T., Leng, M. J., Zanchetta, G., Sulpizio, R. and Giaccio, B.: Sedimentological processes and environmental variability at Lake Ohrid (Macedonia, Albania) between 637 ka and the present, Biogeosciences, 13(4), 1179–1196, doi:10.5194/bg-13-1179-2016, 2016.

Francus, P., Bradley, R. S., Abbott, M. B., Patridge, W. and Keimig, F.: Paleoclimate studies of minerogenic sediments using annually resolved textural parameters, Geophysical Research Letters, 29(20), 59–1–59–4, doi:10.1029/2002gl015082, 2002.

Franke, J. G., Werner, J. P. and Donner, R. V: Reconstructing Late Holocene North Atlantic atmospheric circulation changes using functional paleoclimate networks, Clim. Past, 13(11), 1593–1608, doi:10.5194/cp-13-1593-2017, 2017.
Garbe-Schönberg, C.-D., Wiethold, J., Butenhoff, D., Utech, C., & Stoffers, P. (1998). Geochemical and palynological record in annually laminated sediments from Lake Belau (Schleswig-Holstein) reflecting paleoecology and human impact over 9000 a. MEYNIANA; 50; 47-70; ISSN 0076-7689. https://doi.org/10.2312/meyniana.1998.50.47

Gierga, M., Hajdas, I., van Raden, U. J., Gilli, A., Wacker, L., Sturm, M., Bernasconi, S. M. and Smittenberg, R. H.: Long-stored soil carbon released by prehistoric land use: Evidence from compound-specific radiocarbon analysis on Soppensee lake sediments, Quaternary Science Reviews, 144, 123–131, doi:10.1016/j.quascirev.2016.05.011, 2016.

Giguet-Covex, C., Arnaud, F., Poulenard, J., Disnar, J.-R., Delhon, C., Francus, P., David, F., Enters, D., Rey, P.-J. and Delannoy, J.-J.: Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred from lake sediment geochemistry (Lake Anterne, 2063 m a.s.l., NW French Alps): The role of climate and human activities, The Holocene, 21(4), 651–665, doi:10.1177/0959683610391320, 2011.

Goñi, M. F. S., Desprat, S., Daniau, A. L., Bassinot, F. C., Polanco-Martínez, J. M., Harrison, S. P., Allen, J. R. M., Scott Anderson, R., Behling, H., Bonnefille, R., Burjachs, F., Carrión, J. S., Cheddadi, R., Clark, J. S., Combourieu-Nebout, N., Mustaphi, C. J. C., Debusk, G. H., Dupont, L. M., Finch, J. M., Fletcher, W. J., Giardini, M., González, C., Gosling, W. D., Grigg, L. D., Grimm, E. C., Hayashi, R., Helmens, K., Heusser, L. E., Hill, T., Hope, G., Huntley, B., Igarashi, Y., Irino, T., Jacobs, B., Jiménez-Moreno, G., Kawai, S., Peter Kershaw, A. and Kershaw, A., Kumon, F., Lawson, I. T., Ledru, M. P., Lézine, A. M., Mei Liew, P., Magri, D., Marchant, R., Margari, V., Mayle, F. E., Merna Mckenzie, G., Moss, P., Müller, S., Müller, U. C., Naughton, F., Newnham, R. M., Oba, T., Pérez-Obiol, R., Pini, R., Ravazzi, C., Roucoux, K. H., Rucina, S. M., Scott, L., Takahara, H., Tzedakis, P. C., Urrego, D. H., Van Geel, B., Guido Valencia, B., Vandergoes, M. J., Vincens, A., Whitlock, C. L., Willard, D. A. and Yamamoto, M.: The ACER pollen and charcoal database: A global resource to document vegetation and fire response to abrupt climate changes during the last glacial period, Earth Syst. Sci. Data, 9(2), 679–695, doi:10.5194/essd-9-679-2017, 2017.

Grafenstein, U. v.: A Mid-European Decadal Isotope-Climate Record from 15,500 to 5000 Years B.P., Science, 284(5420), 1654–1657, doi:10.1126/science.284.5420.1654, 1999.

Guyard, H., Chapron, E., St-Onge, G., Anselmetti, F. S., Arnaud, F., Magand, O., Francus, P. and Mélières, M.-A.: High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif), Quaternary Science Reviews, 26(19-21), 2644–2660, doi:10.1016/j.quascirev.2007.07.007, 2007.

Haberzettl, T., Corbella, H., Fey, M., Janssen, S., Lücke, A., Mayr, C., Ohlendorf, C., Schäbitz, F., Schleser, G. H., Wille, M., Wulf, S. and Zolitschka, B.: Lateglacial and Holocene wet—dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina, The Holocene, 17(3), 297–310, doi:10.1177/0959683607076437, 2007.

Haëssler, E., Nadeau, M.-J., Vött, A. and Unkel, I.: Natural and human induced environmental changes preserved in a Holocene sediment sequence from the Etoliko Lagoon, Greece: New evidence from geochemical proxies, Quaternary International, 308-309, 89–104, doi:10.1016/j.quaint.2012.06.031, 2013.
Hajdas, I. and Michczyński, A.: Age-Depth Model of Lake Soppensee (Switzerland) Based on the High-Resolution 14C Chronology Compared with Varve Chronology, Radiocarbon, 52(3), 1027–1040, doi:10.1017/s0033822200046117, 2010.

Hajdas, I., Bonani, G., Moreno, P. I. and Ariztegui, D.: Precise radiocarbon dating of Late-Glacial cooling in mid-latitude South America, Quaternary Research, 59(1), 70–78, doi:10.1016/s0033-5894(02)00017-0, 2003.

Hajdas, I., Bonani, G., Zolitschka, B., Brauer, A. and Negendank, J.: 14C Ages of Terrestrial Macrofossils from Lago Grande Di Monticchio (Italy), Radiocarbon, 40(2), 803–807, doi:10.1017/s0033822200018750, 1997.

HALTIAHOVI, E., SAARINEN, T. and KUKKONEN, M.: A 2000-year record of solar forcing on varved lake sediment in eastern Finland, Quaternary Science Reviews, 26(5-6), 678–689, doi:10.1016/j.quascirev.2006.11.005, 2007.

Head, M. J., Taylor, L. J. and Walker, D.: ANU Radiocarbon Date List XI: Radiocarbon Dates from Lakes Barrine and Eacham, Atherton Tableland, North Queensland, Australia, Radiocarbon, 36(1), 73–94, doi:10.1017/s003382220001434x, 1994.

Hu, F. S., Slawinski, D., Wright, H. E., Ito, E., Johnson, R. G., Kelts, K. R., McEwan, R. F. and Boedigheimer, A.: Abrupt changes in North American climate during early Holocene times, Nature, 400(6743), 437–440, doi:10.1038/22728, 1999.

Hubeny, J. B., King, J. W. and Cantwell, M.: Anthropicogen influences on estuarine sedimentation and ecology: examples from the varied sediments of the Pettaquamscutt River Estuary, Rhode Island, Journal of Paleolimnology, 41(2), 297–314, doi:10.1007/s10933-008-9226-2, 2008.

Huntley, B., Watts, W. A., Allen, J. R. M. and Zolitschka, B.: Palaeoclimate, chronology and vegetation history of the Weichselian Lateglacial: comparative analysis of data from three cores at Lago Grande di Monticchio, southern Italy, Quaternary Science Reviews, 18(7), 945–960, doi:10.1016/s0277-3791(99)00007-4, 1999.

Ivory, S. J., Blome, M. W., King, J. W., McGlue, M. M., Cole, J. E. and Cohen, A. S.: Environmental change explains cichlid adaptive radiation at Lake Malawi over the past 1.2 million years, Proceedings of the National Academy of Sciences, 113(42), 11895–11900, doi:10.1073/pnas.1611028113, 2016.

Jones, G., Lane, C. S., Brauer, A., Davies, S. M., de Bruijn, R., Engels, S., Haliuc, A., Hoek, W. Z., Merkt, J., Sachse, D., Turner, F. and Wagner-Cremer, F.: The Lateglacial to early Holocene tephrachronological record from Lake Hämelsee, Germany: a key site within the European tephra framework, Boreas, 47(1), 28–40, doi:10.1111/bor.12250, 2017.

Kalliokoski, M., Wastegård, S. and Saarinen, T.: Rhyolitic and dacitic component of the Askja 1875 tephra in southern and central Finland: first step towards a Finnish tephrochronology, Journal of Quaternary Science, 34(1), 29–39, doi:10.1002/jqs.3078, 2018.

Kato, M., Fukusawa, H. and Yasuda, Y.: Varved lacustrine sediments of Lake Tougou-ike, Western Japan, with reference to Holocene sea-level changes in Japan, Quaternary International, 105(1), 33–37, doi:10.1016/s1040-6182(02)00148-9, 2003.

Kliem, P., Enters, D., Hahn, A., Ohlendorf, C., Lisé-Pronovost, A., St-Onge, G., Wastegård, S. and Zolitschka, B.: Lithology, radiocarbon chronology and sedimentological interpretation of the lacustrine record from Laguna Potrok Aike, southern Patagonia, Quaternary Science Reviews, 71, 54–69, doi:10.1016/j.quascirev.2012.07.019, 2013.
Koutsodendris, A., Brauer, A., Reed, J. M., Plessen, B., Friedrich, O., Henrich, B., Zacharias, I. and Pross, J.: Climate variability in SE Europe since 1450 AD based on a varved sediment record from Etoliko Lagoon (Western Greece), Quaternary Science Reviews, 159, 63–76, doi:10.1016/j.quascirev.2017.01.010, 2017.

Labuhn, I., Hammarlund, D., Chapron, E., Czymzik, M., Dumoulin, J.-P., Nilsson, A., Régnier, E., Robyg, J. and von Grafenstein, U.: Holocene Hydroclimate Variability in Central Scandinavia Inferred from Flood Layers in Contourite Drift Deposits in Lake Storsjön, Quaternary, 1(1), 2, doi:10.3390/quat1010002, 2018.

Lafontaine-Boyer, K. and Gajewski, K.: Vegetation dynamics in relation to late Holocene climate variability and disturbance, Outaouais, Québec, Canada, The Holocene, 24(11), 1515–1526, doi:10.1177/0959683614544054, 2014.

Lamoureux, S. and Bradley, R.: A late Holocene varved sediment record of environmental change from northern Ellesmere Island, Canada, Journal of Paleolimnology, 16(2), doi:10.1007/bf00176939, 1996.

Lane, C. S., Andrič, M., Cullen, V. L. and Blockley, S. P. E.: The occurrence of distal Icelandic and Italian tephra in the Lateglacial of Lake Bled, Slovenia, Quaternary Science Reviews, 30(9-10), 1013–1018, doi:10.1016/j.quascirev.2011.02.014, 2011.

Lane, C. S., Brauer, A., Blockley, S. P. E. and Dulski, P.: Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas, Geology, 41(12), 1251–1254, doi:10.1130/G34867.1, 2013.

Lane, C. S., Brauer, A., Martín-Puertas, C., Blockley, S. P. E., Smith, V. C. and Tomlinson, E. L.: The Late Quaternary tephr stratigraphy of annually laminated sediments from Meerfelder Maar, Germany, Quaternary Science Reviews, 122, 192–206, doi:10.1016/j.quascirev.2015.05.025, 2015.

Lane, C. S., Martin-Jones, C. M. and Johnson, T. C.: A cryptotephra record from the Lake Victoria sediment core record of Holocene palaeoenvironmental change, The Holocene, 28(12), 1909–1917, doi:10.1177/0959683618798163, 2018.

Larsen, D. J., Miller, G. H. and Geirsdóttir, Á.: Asynchronous Little Ice Age glacier fluctuations in Iceland and European Alps linked to shifts in subpolar North Atlantic circulation, Earth and Planetary Science Letters, 380, 52–59, doi:10.1016/j.epsl.2013.07.028, 2013.

Larsen, D. J., Miller, G. H., Geirsdóttir, Á. and Thordarson, T.: A 3000-year varved record of glacier activity and climate change from the proglacial lake Hvítárvatn, Iceland, Quaternary Science Reviews, 30(19-20), 2715–2731, doi:10.1016/j.quascirev.2011.05.026, 2011.

Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P., Hüls, M., Milecka, K., Namiotko, T., Plessen, B., Grafenstein, U. V. and Participants, D.: Multi-proxy evidence for early to mid-Holocene environmental and climatic changes in northeastern Poland, Boreas, 40(1), 57–72, doi:10.1111/j.1503-8835.2010.00159.x, 2010.

Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P., Hüls, M., Milecka, K., Namiotko, T., Obremska, M. and Von Grafenstein, U.: Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps), Journal of Quaternary Science, 26(3), 253–267, doi:10.1002/jqs.1448, 2011.
Leicher, N., Zanchetta, G., Sulpizio, R., Giaccio, B., Wagner, B., Nomade, S., Francke, A. and Del Carlo, P.: First tephrostratigraphic results of the DEEP site record from Lake Ohrid (Macedonia and Albania), Biogeosciences, 13(7), 2151–2178, doi:10.5194/bg-13-2151-2016, 2016.

Leonard, E. M. and Reasoner, M. A.: A Continuous Holocene Glacial Record Inferred from Proglacial Lake Sediments in Banff National Park, Alberta, Canada, Quaternary Research, 51(1), 1–13, doi:10.1006/qres.1998.2009, 1999.

Litt, T., Schölzel, C., Kühl, N. and Brauer, A.: Vegetation and climate history in the Westeifel Volcanic Field (Germany) during the past 11 000 years based on annually laminated lacustrine maar sediments, Boreas, 38(4), 679–690, doi:10.1111/j.1502-3885.2009.00096.x, 2009.

Loso, M. G.: Summer temperatures during the Medieval Warm Period and Little Ice Age inferred from varved proglacial lake sediments in southern Alaska, Journal of Paleolimnology, 41(1), 117–128, doi:10.1007/s10933-008-9264-9, 2008.

Macleod, A., Brunnberg, L., Wastegård, S., Hang, T. and Matthews, I. P.: Lateglacial cryptotephra detected within clay varves in Östergötland, south-east Sweden, Journal of Quaternary Science, 29(7), 605–609, doi:10.1002/jqs.2738, 2014.

Martin-Puertas, C., Brauer, A., Dulski, P. and Brademann, B.: Testing climate–proxy stationarity throughout the Holocene: an example from the varved sediments of Lake Meerfelder Maar (Germany), Quaternary Science Reviews, 58, 56–65, doi:10.1016/j.quascirev.2012.10.023, 2012.

Martin-Puertas, C., Brauer, A., Wulf, S., Ott, F., Lauterbach, S. and Dulski, P.: Annual proxy data from Lago Grande di Monticchio (southern Italy) between 76 and 112 ka: new chronological constraints and insights on abrupt climatic oscillations, Climate of the Past, 10(6), 2099–2114, doi:10.5194/cp-10-2099-2014, 2014.

Martín-Puertas, C., Valero-Garcés, B. L., Pilar Mata, M., González-Sampériz, P., Bao, R., Moreno, A. and Stefanova, V.: Arid and humid phases in southern Spain during the last 4000 years: the Zoñar Lake record, Córdoba, The Holocene, 18(6), 907–921, doi:10.1177/0959683608093533, 2008.

Mellström, A., Muscheler, R., Snowball, I., Ning, W. and Haltia, E.: Radiocarbon Wiggle-Match Dating of Bulk Sediments—How Accurate can It Be?, Radiocarbon, 55(3), 1173–1186, doi:10.1017/s0033822200048086, 2013.

Migowski, C., Agnon, A., Bookman, R., Negendank, J. F. and Stein, M.: Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustrine sediments, Earth and Planetary Science Letters, 222(1), 301–314, doi:10.1016/j.epsl.2004.02.015, 2004.

Mingram, J., Stebich, M., Schettler, G., Hu, Y., Rioual, P., Nowaczyk, N., Dulski, P., You, H., Opitz, S., Liu, Q. and Liu, J.: Millennial-scale East Asian monsoon variability of the last glacial deduced from annually laminated sediments from Lake Sihailongwan, N.E. China, Quaternary Science Reviews, 201, 57–76, doi:10.1016/j.quascirev.2018.09.023, 2018.

Moore, J. J., Hughen, K. A., Miller, G. H. and Overpeck, J. T.: Journal of Paleolimnology, 25(4), 503–517, doi:10.1023/a:1011181301514, 2001.
Morellón, M., Anselmetti, F. S., Ariztegui, D., Brushulli, B., Sinopoli, G., Wagner, B., Sadori, L., Gilli, A. and Pambuku, A.: Human–climate interactions in the central Mediterranean region during the last millennia: The laminated record of Lake Butrint (Albania), Quaternary Science Reviews, 136, 134–152, doi:10.1016/j.quascirev.2015.10.043, 2016.

Neugebauer, I., Brauer, A., Dräger, N., Dulski, P., Wulf, S., Plessen, B., Mingram, J., Herzschuh, U. and Brande, A.: A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany, Quaternary Science Reviews, 36, 91–102, doi:10.1016/j.quascirev.2011.12.010, 2012.

Neugebauer, I., Brauer, A., Schwab, M. J., Dulski, P., Frank, U., Hadzhiivanova, E., Kitagawa, H., Litt, T., Schiebel, V., Taha, N. and Waldmann, N. D.: Evidences for centennial dry periods at ~3300 and ~2800 cal. yr BP from micro-facies analyses of the Dead Sea sediments, The Holocene, 25(8), 1358–1371, doi:10.1177/0959683615584208, 2015.

O’Beirne, M. D., Werne, J. P., Hecky, R. E., Johnson, T. C., Katsev, S. and Reavie, E. D.: Anthropogenic climate change has altered primary productivity in Lake Superior, Nature Communications, 8(1), doi:10.1038/ncomms15713, 2017.

Ott, F., Kramkowski, M., Wulf, S., Plessen, B., Serb, J., Tjallingii, R., Schwab, M., Słowiński, M., Brykała, D., Tyszkowski, S., Putyrskaya, V., Appelt, O., Blaszkiewicz, M. and Brauer, A.: Site-specific sediment responses to climate change during the last 140 years in three varved lakes in Northern Poland, The Holocene, 095968361772944, doi:10.1177/0959683617729448, 2017.

Park, J., Byrne, R., Böhnel, H., Garza, R. M. and Conserva, M.: Holocene climate change and human impact, central Mexico: a record based on maar lake pollen and sediment chemistry, Quaternary Science Reviews, 29(5-6), 618–632, doi:10.1016/j.quascirev.2009.10.017, 2010.

Paull, T. M., Finkelstein, S. A. and Gajewski, K.: Interactions between climate and landscape drive Holocene ecological change in a High Arctic lake on Somerset Island, Nunavut, Canada, Arctic Science, 3(1), 17–38, doi:10.1139/as-2016-0013, 2017.

Pickarski, N., Kwiecien, O., Langgut, D. and Litt, T.: Abrupt climate and vegetation variability of eastern Anatolia during the last glacial, Climate of the Past, 11(11), 1491–1505, doi:10.5194/cp-11-1491-2015, 2015.

Pilskaln, C. H. and Johnson, T. C.: Seasonal signals in Lake Malawi sediments, Limnology and Oceanography, 36(3), 544–557, doi:10.4319/lo.1991.36.3.0544, 1991.

Prasad, S. and Baier, J.: Tracking the impact of mid- to late Holocene climate change and anthropogenic activities on Lake Holzmaar using an updated Holocene chronology, Global and Planetary Change, 122, 251–264, doi:10.1016/j.gloplacha.2014.08.020, 2014.

Rach, O., Brauer, A., Wilkes, H. and Sachse, D.: Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe, Nat. Geosci., 7(2), 109–112, doi:10.1038/ngeo2053, 2014.

Ramisch, A., Tjallingii, R., Hartmann, K., Diekmann, B. and Brauer, A.: Echo of the Younger Dryas in Holocene lake sediments on the Tibetan Plateau, Geophys. Res. Lett., doi:10.1002/2018GL080225, 2018.

Ramisch, A., Brauer, A., Dorn, M., Brauer, A., Blanchet, C., Brademann, B., Köppl, M., Mingram, J., Neugebauer, I., Nowaczyk, N., Ott, F., Pinkerneil, S., Plessen, B., Schwab, M. J., Tjallingii, R.: Data inventory of the varve database
(VARDA): Sediment profiles, chronologies, radiocarbon dates, tephra layers and varve thickness data. V. 1.1. GFZ Data Services. http://doi.org/10.5880/GFZ.4.3.2019.003, 2019.

Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Sigggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., and Ruth, M.E.: A new Greenland ice core chronology for the last glacial termination. Journ. Geophys. Res., vol. 111, D06102, doi:10.1029/2005JD006079, 2006.

Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J. and Weyhenmeyer, C. E.: IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years CAL BP, Radiocarbon, 51(4), 1111–1150, doi:10.1017/S0033822200034202, 2009.

Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Lawrence Edwards, R., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer, B., McCormac, G., Manning, S., Ramsey, C. B., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J. and Weyhenmeyer, C. E.: IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP, Radiocarbon, 46(3), 1029–1058, doi:10.1017/S0033822200032999, 2004.

Reimer, P. J., Edouard Bard, B., Alex Bayliss, B., Warren Beck, B. J., Blackwell, B. G. and Christopher Bronk Ramsey, B.: Intcal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal Bp, Radiocarbon, 55(4), 1869–1887, doi:10.1017/S0033822200048864, 2013.

Roberts, N., Allcock, S. L., Arnaud, F., Dean, J. R., Eastwood, W. J., Jones, M. D., Leng, M. J., Metcalfe, S. E., Malet, E., Woodbridge, J. and Yiğitbaşoğlu, H.: A tale of two lakes: a multi-proxy comparison of Lateglacial and Holocene environmental change in Cappadocia, Turkey, J. Quat. Sci., 31(4), 348–362, doi:10.1002/jqs.2852, 2016.

Rudaya, N., Nazarova, L., Novenko, E., Andreev, A., Kalugin, I., Daryin, A., Babich, V., Li, H.-C. and Shilov, P.: Quantitative reconstructions of mid- to late holocene climate and vegetation in the north-eastern altai mountains recorded in lake teletskoye, Global and Planetary Change, 141, 12–24, doi:10.1016/j.gloplacha.2016.04.002, 2016.

Saarni, S., Saarinen, T. and Dulski, P.: Between the North Atlantic Oscillation and the Siberian High: A 4000-year snow accumulation history inferred from varved lake sediments in Finland, The Holocene, 26(3), 423–431, doi:10.1177/0959683615609747, 2015.

Saarni, S., Saarinen, T. and Lensu, A.: Organic lacustrine sediment varves as indicators of past precipitation changes: a 3,000-year climate record from Central Finland, Journal of Paleolimnology, 53(4), 401–413, doi:10.1007/s10933-015-9832-8, 2015.

Sánchez Goñi, M. F., Desprat, S., Daniau, A.-L., Bassinot, F. C., Polanco-Martínez, J. M., Harrison, S. P., Allen, J. R. M., Anderson, R. S., Behling, H., Bonnifille, R., Burjachs, F., Carrió, J. S., Cheddadi, R., Clark, J. S., Combourieu-Nebout, N., Mustaphi, C. J. C., Debusk, G. H., Dupont, L. M., Finch, J. M., Fletcher, W. J., Giardini, M., González, C., Gosling, W. D., Grigg, L. D., Grimm, E. C., Hayashi, R., Helmens, K., Heusser, L. E., Hill, T., Hope, G., Huntley, B., Igarashi, Y., Irino, T.,
Jacobs, B., Jiménez-Moreno, G., Kawai, S., Kershaw, A. P., Kumon, F., Lawson, I. T., Ledru, M.-P., Lézine, A.-M., Liew, P. M., Magri, D., Marchant, R., Margari, V., Mayle, F. E., McKenzie, G. M., Moss, P., Müller, S., Müller, U. C., Naughton, F., Newnham, R. M., Oba, T., Pérez-Obiol, R., Pini, R., Ravazzi, C., Roucoux, K. H., Rucina, S. M., Scott, L., Takahara, H., Tzedakis, P. C., Urrego, D. H., van Geel, B., Valencia, B. G., Vangergoos, M. J., Vincens, A., Whitlock, C. L., Willard, D. A. and Yamamoto, M.: The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period, Earth System Science Database, 9(2), 679–695, doi:10.5194/essd-9-679-2017, 2017.

Schmidt, R., van den Bogaard, C., Merkt, J. and Müller, J.: A new Lateglacial chronostratigraphic tephra marker for the south-eastern Alps: The Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a regional biostratigraphy and palaeoclimate, Quaternary International, 88(1), 45–56, doi:10.1016/s1040-6182(01)00072-6, 2002.

Sheng Hu, F., Wright, H. E., Ito, E. and Lease, K.: Climatic effects of glacial Lake Agassiz in the midwestern United States during the last deglaciation, Geology, 25(3), 207, doi:10.1130/0091-7613(1997)025<0207:ceogla>2.3.co;2, 1997.

Shuman, B., Henderson, A. K., Colman, S. M., Stone, J. R., Fritz, S. C., Stevens, L. R., Power, M. J. and Whitlock, C.: Holocene lake-level trends in the Rocky Mountains, U.S.A., Quaternary Science Reviews, 28(19-20), 1861–1879, doi:10.1016/j.quascirev.2009.03.003, 2009.

Smith, A. J., Donovan, J. J., Ito, E. and Engstrom, D. R.: Ground-water processes controlling a prairie lake’s response to middle Holocene drought, Geology, 25(5), 391, doi:10.1130/0091-7613(1997)025<0391:gwpcap>2.3.co;2, 1997.

Smith, V. C., Staff, R. A., Blockley, S. P. E., Bronk Ramsey, C., Nakagawa, T., Mark, D. F., Takemura, K. and Danhara, T.: Identification and correlation of visible tephras in the Lake Suigetsu SG06 sedimentary archive, Japan: chronostratigraphic markers for synchronising of east Asian/west Pacific palaeoclimatic records across the last 150 ka, Quaternary Science Reviews, 67, 121–137, doi:10.1016/j.quascirev.2013.01.026, 2013.

Snowball, I., Mellström, A., Ahlstrand, E., Haltia, E., Nilsson, A., Ning, W., Muscheler, R. and Brauer, A.: An estimate of post-depositional remanent magnetization lock-in depth in organic rich varved lake sediments, Global and Planetary Change, 110, 264–277, doi:10.1016/j.gloplacha.2013.10.005, 2013.

Stager, J. C., Mayewski, P. A. and Meeker, L. D.: Cooling cycles, Heinrich event 1, and the desiccation of Lake Victoria, Palaeogeography, Palaeoclimatology, Palaeoecology, 183(1-2), 169–178, doi:10.1016/s0031-0182(01)00468-0, 2002.

Stager, J. C., Ryves, D., Cumming, B. F., Meeker, L. D. and Beer, J.: Solar variability and the levels of Lake Victoria, East Africa, during the last millenium, Journal of Paleolimnology, 33(2), 243–251, doi:10.1007/s10933-004-4227-2, 2005.

Stebich, M., Brüchmann, C., Kulbe, T. and Negendank, J. F. W.: Vegetation history, human impact and climate change during the last 700 years recorded in annually laminated sediments of Lac Pavin, France, Review of Palaeobotany and Palynology, 133(1-2), 115–133, doi:10.1016/j.revpalbo.2004.09.004, 2005.

Stone, J. R. and Fritz, S. C.: Multidecadal drought and Holocene climate instability in the Rocky Mountains, Geology, 34(5), 409, doi:10.1130/g22225.1, 2006.
STRIBERGER, J., BJÖRCK, S., INGÓLFSSON, Ó., KJAER, K. H., SNOWBALL, I. and UVO, C. B.: Climate variability and glacial processes in eastern Iceland during the past 700 years based on varved lake sediments, Boreas, 40(1), 28–45, doi:10.1111/j.1502-3885.2010.00153.x, 2010.

605 Sullivan, D. G.: The discovery of Santorini Minoan tephra in western Turkey, Nature, 333(6173), 552–554, doi:10.1038/333552a0, 1988.

610 Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Rasmussen, S.O., Röthlisberger, R., Steffensen, J.P. and Vinther, B.M.: The Greenland Ice Core Chronology 2005, 15-42 ka. Part 2: Comparison to other records. Quaternary Science Reviews, vol. 25, Shackleton special issue 24, 2006.

615 Swierczynski, T., Lauterbach, S., Dulski, P. and Brauer, A.: Late Neolithic Mondsee Culture in Austria: living on lakes and living with flood risk?, Climate of the Past, 9(4), 1601–1612, doi:10.5194/cp-9-1601-2013, 2013.

Thomas, E. K. and Briner, J. P.: Climate of the past millennium inferred from varved proglacial lake sediments on northeast Baffin Island, Arctic Canada, Journal of Paleolimnology, 41(1), 209–224, doi:10.1007/s10933-008-9258-7, 2008.

Tierney, J. E., Mayes, M. T., Meyer, N., Johnson, C., Swarzenski, P. W., Cohen, A. S. and Russell, J. M.: Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500, Nature Geoscience, 3(6), 422–425, doi:10.1038/ngeo865, 2010.

Tierney, J. E., Russell, J. M., Huang, Y., Damste, J. S. S., Hopmans, E. C. and Cohen, A. S.: Northern Hemisphere Controls on Tropical Southeast African Climate During the Past 60,000 Years, Science, 322(5899), 252–255, doi:10.1126/science.1160485, 2008.

Tlan, J., Brown, T. A. and Hul, F. S.: Comparison of varve and 14C chronologies from Steel Lake, Minnesota, USA, The Holocene, 15(4), 510–517, doi:10.1191/0959683605hl828rp, 2005.

Vasskog, K., Paasche, Ø., Nesje, A., Boyle, J. F. and Birks, H. J. B.: A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier, Quaternary Research, 77(1), 192–204, doi:10.1016/j.yqres.2011.10.001, 2012.

Verschuren, D., Sinninghe Damsté, J. S., Moernaut, J., Kristen, I., Blaauw, M., Fagot, M. and Haug, G. H.: Half-precessional dynamics of monsoon rainfall near the East African Equator, Nature, 462(7273), 637–641, doi:10.1038/nature08520, 2009.

Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., Seierstad, I.K., Siggaard-Andersen, M.-L., Steffensen, J.P., Svensson, A.M., Olsen, J. and Heinemeier, J.: A synchronized dating of three Greenland ice cores throughout the Holocene. Journ. Geophys. Res., vol. 111, D13102, 2006, doi:10.1029/2005JD006921, 2006.
Vogel, H., Wagner, B., Zanchetta, G., Sulpizio, R. and Rosén, P.: A paleoclimate record with tephrochronological age control for the last glacial-interglacial cycle from Lake Ohrid, Albania and Macedonia, Journal of Paleolimnology, 44(1), 295–310, doi:10.1007/s10933-009-9404-x, 2010.

Vukotic, A., Watt, N., Abedrabbo, T., Fox, D. and Partner, J.: Neo4j in action, Manning Publications Co., 2014.

Wagner, B., Aufgebauer, A., Vogel, H., Zanchetta, G., Sulpizio, R. and Damaschke, M.: Late Pleistocene and Holocene contourite drift in Lake Prespa (Albania/F.Y.R. of Macedonia/Greece), Quaternary International, 274, 112–121, doi:10.1016/j.quaint.2012.02.016, 2012.

Wagner, B., Lotter, A. F., Nowaczyk, N., Reed, J. M., Schwalb, A., Sulpizio, R., Valsecchi, V., Wessels, M. and Zanchetta, G.: A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia), Journal of Paleolimnology, 41(3), 407–430, doi:10.1007/s10933-008-9234-2, 2008.

Wagner, B., Vogel, H., Zanchetta, G. and Sulpizio, R.: Environmental change within the Balkan region during the past ca. 50 ka recorded in the sediments from lakes Prespa and Ohrid, Biogeosciences, 7(10), 3187–3198, doi:10.5194/bg-7-3187-2010, 2010.

Watts, W.: Vegetation history and palaeoclimates of the last glacial period of Lago Grande di Monticchio, southern Italy, Quaternary Science Reviews, 15(2-3), 133–153, doi:10.1016/0277-3791(95)00093-3, 1996.

Whitlock, C., Dean, W. E., Fritz, S. C., Stevens, L. R., Stone, J. R., Power, M. J., Rosenbaum, J. R., Pierce, K. L. and Brach-Flyr, B. B.: Holocene seasonal variability inferred from multiple proxy records from Crevice Lake, Yellowstone National Park, USA, Palaeogeography, Palaeoclimatology, Palaeoecology, 331-332, 90–103, doi:10.1016/j.palaeo.2012.03.001, 2012.

Williamson, D., Thouveny, N., Hillaire-Marcel, C., Mondeguer, A., Taieb, M., Tiercelin, J.-J. and Vincens, A.: Chronological potential of palaeomagnetic oscillations recorded in late quaternary sediments from Lake Tanganyika, Quaternary Science Reviews, 10(4), 351–361, doi:10.1016/0277-3791(91)90036-t, 1991.

Wolff, C., Haug, G. H., Timmermann, A., Damste, J. S. S., Brauer, A., Sigman, D. M., Cane, M. A. and Verschuren, D.: Reduced Interannual Rainfall Variability in East Africa During the Last Ice Age, Science, 333(6043), 743–747, doi:10.1126/science.1203724, 2011.

Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O. and Svensson, A.: Millennial-scale variability during the last glacial: The ice core record, Quat. Sci. Rev., 29(21–22), 2828–2838, doi:10.1016/j.quascirev.2009.10.013, 2010.

Wulf, S., Dräger, N., Ott, F., Serb, J., Appelt, O., Guðmundsdóttir, E., van den Bogaard, C., Słowiński, M., Błaszkiewicz, M. and Brauer, A.: Holocene tephr stratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland), Quaternary Science Reviews, 132, 1–14, doi:10.1016/j.quascirev.2015.11.007, 2016.

Wulf, S., Keller, J., Paterner, M., Mingram, J., Lauterbach, S., Opitz, S., Sottili, G., Giaccio, B., Albert, P. G., Satow, C., Tomlinson, E. L., Viccaro, M. and Brauer, A.: The 100–133 ka record of Italian explosive volcanism and revised tephrochronology of Lago Grande di Monticchio, Quaternary Science Reviews, 58, 104–123, doi:10.1016/j.quascirev.2012.10.020, 2012.
Wulf, S., Kraml, M., Brauer, A., Keller, J. and Negendank, J. F. W.: Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy), Quaternary International, 122(1), 7–30, doi:10.1016/j.quaint.2004.01.028, 2004.

Wulf, S., Ott, F., Słowiński, M., Noryśkiewicz, A. M., Dräger, N., Martin-Puertas, C., Czymzik, M., Neugebauer, I., Dulski, P., Bourne, A. J., Błaszkiewicz, M. and Brauer, A.: Tracing the Laacher See Tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland, Quaternary Science Reviews, 76, 129–139, doi:10.1016/j.quascirev.2013.07.010, 2013.

Yamada, K., Kamite, M., Saito-Kato, M., Okuno, M., Shinozuka, Y. and Yasuda, Y.: Late Holocene monsoonal-climate change inferred from Lakes Ni-no-Megata and San-no-Megata, northeastern Japan, Quaternary International, 220(1-2), 122–132, doi:10.1016/j.quaint.2009.09.006, 2010.

Yu, Z. and Eicher, U.: Abrupt Climate Oscillations During the Last Deglaciation in Central North America, Science, 282(5397), 2235–2238, doi:10.1126/science.282.5397.2235, 1998.

Żarczyński, M., Tylmann, W. and Goslar, T.: Multiple varve chronologies for the last 2000 years from the sediments of Lake Żabińskie (northeastern Poland) – Comparison of strategies for varve counting and uncertainty estimations, Quaternary Geochronology, 47, 107–119, doi:10.1016/j.quageo.2018.06.001, 2018.

Zhou, A., Chen, F., Wang, Z., Yang, M., Qiang, M. and Zhang, J.: Temporal Change of Radiocarbon Reservoir Effect in Sugan Lake, Northwest China during the Late Holocene, Radiocarbon, 51(2), 529–535, doi:10.1017/s0033822200055909, 2009.

Zillén, L. M., Wastegård, S. and Snowball, I. F.: Calendar year ages of three mid-Holocene tephra layers identified in varved lake sediments in west central Sweden, Quaternary Science Reviews, 21(14-15), 1583–1591, doi:10.1016/s0277-3791(02)00036-7, 2002.

Zolitschka, B., Brauer, A., Negendank, J. F. W., Stockhausen, H. and Lang, A.: Annually dated late Weichselian continental palaeoclimate record from the Eifel, Germany, Geology, 28(9), 783, doi:10.1130/0091-7613(2000)28<783:adlwcp>2.0.co;2, 2000.

Zolitschka, B.: Sedimentology, dating and palaeoclimatic interpretation of a 76.3 ka record from Lago Grande di Monticchio, southern Italy, Quaternary Science Reviews, 15(2-3), 101–112, doi:10.1016/0277-3791(95)00022-4, 1996.

Author contribution

AR coordinated manuscript writing and wrote most parts except chapter 3 which was written by AlB and MD. All authors contributed to manuscript writing. AlB, AR and AcB carried out the data compilation and designed the standardization scheme with contributions from IN, MJB, JM and NN for tephrochronological data, RT, JM, FO, BP and CB for 14C data and chronologies as well as JM, FO and RT for varve thickness data. AlB, MD and AR collected meta information with contributions from AcB, RT, IN, JM, BP, SP and BB for the standardization of meta-information. MD and AlB designed the
graphical user interface for the database. MD implemented the user client and the server application with the help of MK. All authors reviewed the database and provided valuable feedback. AcB and AR coordinated the project.

Competing interests

The authors declare that they have no conflict of interests.

Acknowledgements

This work was supported by German Federal Ministry of Education and Research (BMBF) as Research for Sustainability initiative (FONA; www.fona.de) through Palmod project (01LP1510A). We thank Malte Räuchele, Laura Schley, Konstantin Mittelbach, Anna Beer, Helena Rollmann, Ole Tölle, Vincent Moll and Robert Keil for their valuable support in the data compilation and graph data-base generation.
Figure 1: VARDA property graph model. Coloured circles represent nodes, grey arrows represent edges between nodes. For explanation see text.
Figure 2: Screenshot of the user interface in version 1.0 available online at https://varve.gfz-potsdam.de. See text for explanation. © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.
Figure 3: Spatial distribution of identified lakes and collected datasets included in VARDA 1.0. Data availability is indicated by blue coloured dots.
Figure 4: Temporal distribution of datasets in VARDA 1.0. a) Age range of chronologies indicated by black bars where each bar indicates the coverage of an individual chronology. The NGRIP stable oxygen record (Andersen et al., 2004) with the GICC05 chronology (Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al., 2006; Svensson et al., 2005) is shown as a temporal reference curve. b) Tephra layers associated with lakes included in VARDA. Dots indicate the number of lakes associated with a single tephra layer. c) Number of samples per kyr bin of uncalibrated 14C measurements. d) Number of samples per kyr bin of individual varve thickness measurements.
Table 1: VARDA v01 data sheet for lake information
(Green field: required information, yellow field: additional information)

Attribute	Default Units
Name	String
Latitude	Decimal degrees (4 digits scale)
Longitude	
Elevation	m a.s.l.
Max depth	m
Surface area	m²
Catchment area	m²

Table 2: VARDA v01 data sheet for sediment profile information
(Green field: required information, yellow field: additional information)

Attribute	Default Units
Label	String
Latitude	Decimal degrees (4 digits scale)
Longitude	
Coring method	
Drill date	dd/mm/year
Water depth	m
depth start	mm
depth end	mm

Table 3: VARDA v01 data sheet for 14C information
(Green field: required information, yellow field: additional information)

Attribute	Default Units
Core section	String
Lab code	String
Section depth	mm
Sediment profile depth	mm
Age uncalibrated	a B.P.
Error	± a

Table 3 - continued

Attribute	Default Units
Error type	1 sigma [%]
Dated material	String
δ13C	%
Method	String
%C	%
C/N ratio	dimensionless

Table 4: VARDA v01 data sheet for chronological meta-information
(Green field: required information, yellow field: additional information)

Attribute	Default Units
Sediment profile	String
Data DOI	String
Publication DOI	String
Has uncertainty?	Boolean
Uncertainty type	String
Anchored?	Boolean
Table 4 – continued

Attribute:	Anchorpoint type	Anchorpoint age	Dating method	Interpolation method	14C Calibration Curve	Median Resolution
Default Units:	String	a BP	String	String	String	a

Table 5: VARDA v01 chronology data sheet (Green field: *required* information, yellow field: *additional* information)

Attribute:	Core section	depth	Age	Age min	Age max
Default Units:	String	mm	a BP	a BP	a BP

Table 6: VARDA v01 data sheet for tephra layers (Green field: required information, yellow field: *additional* information)

Attribute:	Core section	Lab code	Section depth	Sediment profile depth	Age	Error	Dating method / Calibration
Default Units:	String	String	mm	mm	a BP	± a	String

Table 6 - continued

Attribute:	Correlated to event	Source locality	Major element data available	Trace element data available	Dated in profile?	Age transfer reference*
Default Units:	String	String	Boolean	Boolean	Boolean	DOI

Table 7: VARDA v01 data sheet for varve thickness (Green field: required information, yellow field: additional information)

Attribute:	Sediment profile	Core section	Varve number	Section depth	Composite depth	Age	Varve Thickness
Default Unit:	String	String	integer	mm	mm	a BP	mm
Tab. 8 Identified lakes, updated geographic coordinates and datasets included in VARDA 1.0. Letters indicate data availability in data repositories. Table also includes varved lake sites without publicly available data (without letters and references).

Lake Name	Lat	Long	Chronology	Tephra Layer	14C	Varve Thick.	References
A	83,0004	-75,4247					
Ahvenainen	60,8263	28,1254					
Albano	41,7461	12,6695					
Alimmainen	61,7442	24,4016					
Savijärvi							
Ammersee	47,9983	11,1218	A	B			A: Grafenstein, 1999; B: Czymzik et al., 2013
Angulinao	41,3500	114,3833					
Anterne	45,9910	6,7983	A				A: Giguet-Covex et al., 2011
Arendsee	52,8900	11,4759					
Arreo	42,7784	-2,9911					
Aspevatnet	69,7503	19,9608	A				A: Bakke et al., 2005
Avigliana	45,0564	7,3870					
Ayr Lake	70,4590	-70,0860	A				A: Thomas et al., 2012;
Baldegersee	47,1979	8,2614					
Barrine	-17,2504	145,6356	A				A: Head et al., 1994
Bear Lake	75,4838	-85,1900					
Bear Lake (USA)	41,9950	-111,3382	A				A: Colman et al., 2009
Belau	54,1006	10,2524	A	B	B		A: Garbe-Schönberg et al., 1998; B: Dörrler et al., 2012;
Berrington Pool	52,6605	-2,7042					
Big Round Lake	69,8648	-68,8548	A				A: Thomas and Briner, 2008;
Big Watab Lake	45,5526	-94,4524					
Bled	46,3616	14,0953	A				A: Lane et al., 2011
Blue Lake	68,0870	-150,4652	A	A	A		A: Bird et al., 2008;
Bosumtwi	6,5014	-1,4113					
Bourget	45,7262	5,8673					
Bow Lake	51,6644	-116,4486	A				A: Leonard and Reasoner, 1999
Bramant	45,1999	6,1759	A				A: Guyard et al., 2007
Brownie Lake	44,9676	-93,3243					
Location	Coordinates	Age Range	Notes				
--------------	-------------	-----------	---				
Butrint	39,7803	20,0313	A: Morellón et al., 2016				
C2	82,8276	-77,9860	A: Lamoureux and Bradley, 1996; B: Verschuren et al., 2009; C: Wolff et al., 2011				
Challa	-3,3168	37,7040	A: Lamoureux and Bradley, 1996; B: Blaauw et al., 2011; C: Wolff et al., 2011				
Cheakamus	50,0080	-122,9179					
Constance	47,6017	9,4218					
Crawford Lake	43,4684	-79,9488	A: Yu and Eicher, 1998				
Crevice	45,0006	-110,5784	A: Whitlock et al., 2012				
Czechowskie	53,8740	18,2370	A: Dietze et al., 2019; B: Wulf et al., 2016; C: Wulf et al., 2013				
Dead Sea	31,5352	35,4909	A: Moore et al., 2001; B: Moore et al., 2001; A: Courtney Mustaphi and Gajewski, 2013				
Deep Lake	47,6830	-95,3993	A: Hu et al., 1997; B: Hu et al., 1999				
Diss Mere	52,3754	1,1075					
Donard	66,6625	-61,7875	A: Moore et al., 2001; B: Moore et al., 2001; A: Courtney Mustaphi and Gajewski, 2013				
DV09	75,5744	-89,3094					
East Lake	74,8882	-109,5342	A: Cuven et al., 2011				
Eklutna	61,4053	-149,0259	A: Fortin et al., 2019				
Elk Lake	47,1891	-95,2179	A: Smith et al., 1997; B: Dean and Megard, 1993				
Ellesmere Mere	52,9088	-2,8843					
Erlongwan	42,3026	126,3806					
Foy Lake	48,1662	-114,3599	A: Stone and Fritz, 2006; B: Shuman et al., 2009				
Frängsjön	64,0228	19,7376					
Frias	-41,0617	-71,7990	A: Ariztegui et al., 2007				
Frickenhäuser See	50,4029	10,2373					
Fukami	35,3256	137,8195					
Furskogstjärnet	59,3802	12,0801	A: Zillén et al., 2002				
Geneva	46,4392	6,5164					
Glacier Lake	40,0230	-105,5027					
Gosciaz	52,5829	19,3398					
Gölcük	31,6270	40,6547	A: Sullivan, 1988				
Location	Coordinates	Notes					
------------------------	---------------------------	--					
Greifen	47.3500	8.6794					
Grimselsee	46.5680	8.3092					
Gropviken	58.3376	16.6678					
Gyltigesjön	56.7567	13.1754					
Hämelsee	52.7596	9.3107					
Hancza	54.2647	22.8126					
Hännisenlampi	62.0750	30.2096					
Hector Lake	51.5881	-116.3643					
Hell's Kitchen Lake	46.1868	-89.7025					
Holzmaar	50.1193	6.8787					
Hoya La Alberca	20.3889	-101.2009					
Hoya Rincón de Parangueo	20.4311	-101.2495					
Huron	44.6418	-82.3580					
Hvítárvatn	64.6101	-19.8401					
Iceberg Lake	60.7880	-142.9589					
Järlasjön	59.3020	18.1515					
Jødesjøen	62.8337	17.7728					
Jyväsjärvi	62.2385	25.7771					
Kälksjön	60.1531	13.0559					
Kallio Kourujärvi	62.5600	27.0030					
Kalliojärvi	63.2261	25.3678					
Kassjön	63.9254	20.0100					
Kissalammi	61.2556	24.3549					
Koltjärnen	62.9526	18.3043					
Kongressvatnet	78.0212	13.9605					
Kortejärvi	63.6236	28.9341					
Kortujärvi	62.3373	25.6903					
Lac Brulé	45.7192	-75.4422					
Lac D’Annecy	45.8578	6.1717					
Lac Pavin	45.4955	2.8877					

A: Macleod et al., 2014
A: Mellström et al., 2013;
B: Snowball et al., 2013
A: Lauterbach et al., 2010
A: Leonard and Reasoner, 1999;
A: Zolitschka et al., 2000;
B: Prasad and Baier, 2014;
A: Park et al., 2010
A: Larsen et al., 2011;
B: Larsen et al., 2013
A: Loso, 2008;
B: Diedrich and Loso, 2012;
A: Saarni et al., 2015a;
B: Kalliokoski et al., 2018;
A: Saarni et al., 2015b
A: Lafontaine-Boyer and Gajewski, 2014;
A: Brauer and Casanova, 2001
Location	Latitude	Longitude	Ref. 1	Ref. 2	Ref. 3	Ref. 4
Etoliko	38.4732	21.3248	B	A	A	A: Koutsodendris et al., 2017; B: Haensssler et al., 2013;
Lago Buenos Aires	46.4900	-72.0129	A			A: Bendle et al., 2017
Laguna Potrok Aike	-51.9608	-70.3794	A	B	B	A: Kliem et al., 2013; B: Haberzettl et al., 2007;
Lake of the Clouds	48.1426	-91.1122				
Lampellonjärvi	61.0737	25.0605				
Längsee	46.7894	14.4242	A			A: Schmidt et al., 2002
Laukunlampi	62.6682	29.1564				
Lavijärvi	61.6333	30.5000				
Lehmilampi	63.6283	29.1022	A	A		A: Haltiahovi et al., 2007;
Lillooet	50.2425	-122.4973				
Lind	45.7504	-92.4354				
Linné	78.0463	13.8028	A			A: Werner, A., et al. 2009
Loch Ness	57.3000	-4.4500				
Loe Pool	50.0730	-5.2909				
Lögurinn	65.2507	-14.4649	A			A: Stribberger et al., 2010
Lower Murray Lake	81.3328	-69.5510	A		A	A: Cook et al., 2008;
Lower Mystic Lake	42.4261	-71.1474				
Lugano	45.9203	8.9053				
Malawi	-11.5486	34.5376	A; B	C		
Mascardi	-41.3157	-71.5757	A			A: Hajdas et al., 2003
McCarrons	44.9981	-93.1131				
Meerfelder Maar	50.1010	6.7570	A	B; C	D	A: B; E; F; A: Martin-Puertas et al., 2012; B: Engels et al., 2015; C: Lane et al., 2015; D: Brauer et al., 2000; E: Brauer et al., 2008; F: Litt et al., 2009;
Mina	45.8878	-95.4788				
Mirror Lake	62.0305	-128.2840				
Mondsee	47.8157	13.3819	A	B		A: Lauterbach et al., 2011; B: Swierczynski et al., 2013
Location	Latitude	Longitude	Correlation Coefficient	References		
------------------	-----------	-----------	--------------------------	---------------------------------		
Montcortés	42.3306	0.9951 A		A: Corella et al., 2010		
Monticchio	40.9313	15.6050 A; B C; D; E; F; G; H		A: Martin-Puertas et al., 2014; B: Allen et al., 1999; C: Huntley et al., 1999; D: Wulf et al., 2012; E: Wulf et al., 2004; F: Hajdas et al., 1997; G: Watts, 1996; H: Zolitschka, 1996		
Motterutjärnet	59.6394	12.6675 A		A: Zillén et al., 2002		
Murray Lakes	81.3555	-69.5436				
Nar Göli (Lake)	38.3403	34.4560 A				
Nautajärvi	61.8052	24.6782 A				
Nedre Heimredalsvatnet	68.2990	13.6547 A		A: Balascio et al., 2011		
Nedrefloen	61.9306	6.8664 A		A: Vasskog et al., 2012		
Nicolay Lake	77.7670	-94.6529				
Nikkilänlampi	63.1745	30.9479 A				
Ni no Megata	39.9524	139.7284 A		A: Yamada et al., 2010		
Nylandssjön	62.9458	18.2826 A				
Oeschinen	46.4984	7.7274 A		A: Amann et al., 2015;		
Ogac	62.8432	-67.3401 A				
Ohrid	41.0371	20.7181 A; B C; D E; F F		A: Vogel et al., 2010a; B: Wagner et al., 2008; C: Francke et al., 2016; D: Wagner et al., 2010; E: Leicher et al., 2016; F: Vogel et al., 2010b;		
Ojibway	48.4739	-79.2801 A				
Pääjärvi	61.0625	25.1307 A				
Pavin	45.4957	2.8879 A		A: Stebich et al., 2005; B: Chassiot et al., 2016		
Perespiño	51.4269	23.5695 A				
Pettaquamscutt	41.5030	-71.4506 A		A: Hubeney et al., 2008		
Ptkälampi	62.2543	30.4679 A				
Plomo	-47.0047	-72.9122 A		A: Elbert et al., 2015		
Pohjajärvi	62.8157	28.0332 A				
Polvijärvi	63.1614	28.9700 A				
Prespa	40.8967	21.0050 A; B A		A: Wagner et al., 2012; B: Wagner et al., 2010;		
Puyehue	-40.6667	-72.4667 A		A: Bertrand et al., 2008		
Pyhäjärvi	60.7167	26.0000 A				
Location	Latitude	Longitude	Reference			
---------------	----------	-----------	--			
Rehwiese	52.4280	13.1996	A: Neugebauer et al., 2012;			
Rostherne Mere	53.3543	-2.3862				
Rõge Suurjärv	53.7282	26.9223				
RS29	73.1400	-95.2780	A: Paul et al., 2017			
Rudetjärn	62.3662	16.9975				
Sacrower See	52.4432	13.0991	A: Enters et al., 2009;			
Saky	45.1224	33.5612	A: Clark et al., 1989			
San Puerto	41.2856	13.4080	A: Mingram et al., 2018;			
Sanagak Lake	70.2095	-93.6355	A: Frank et al., 2002			
Sarsjön	64.0387	19.6008				
Sawtooth	79.3494	-83.9235	A: Francus et al., 2002;			
Schleinsee	47.6122	9.6348	A: Clark et al., 1989			
Seebergsee	46.5773	7.4433				
Sihailongwan	42.2865	126.6019	A: Mingram et al., 2018;			
Silvapiana	46.4487	9.7923				
Skilak Lake	60.4107	-150.3386	A: Hajdas and Michczyński, 2010; B: Gierga et al., 2016			
Soppensee	47.0901	8.0803	A: Hajdas and Michczyński, 2010; B: Gierga et al., 2016			
Sotkulampi	61.4964	29.0894				
Stamberger See	47.9000	11.3167				
Steel Lake	46.9730	-94.6834	A: Tlan et al., 2005			
Storsjön	63.2149	14.3146	A: Labuhn et al., 2018;			
Suan Lake	38.8667	93.9000	A: Zhang et al., 2009; B: Zhou et al., 2009			
Suigetsu	35.5833	135.8833	A: Smith et al., 2013			
Suminko	54.1841	17.7970				
Summit Lake	59.6737	-135.0958				
Superior	47.7508	-72.2719	A: O’Beirne et al., 2017			
Szurpily	54.2291	22.8978				
Taka-Killo	61.0584	24.9477				
Tanganyika	-5.8363	29.5976	A: B; C; D; E			
Tekapo	35.0301	-108.9329				
Teletskoye	51.5914	87.6672	A: Rudaya et al., 2016			
Location	Longitude	Latitude	Reference			
---------------	-----------	----------	---			
Tiefer See	53,5946	12,5281	A: Dräger et al., 2016; B: Wulf et al., 2016			
Tõugjärv	57,7386	26,9051				
Tougou-ike	35,4775	133,8925	A: Kato et al., 2003			
Trüibsee	46,7942	8,3899				
Tuborg	80,9500	-75,7667				
Tutira	-39,2238	176,8923	A: Eden and Page, 1998			
Upper Soper Lake	62,9150	-69,8784				
Valkiajärvi	61,9048	23,8812				
Van	38,6040	42,8763	A: Pickarski et al., 2015			
Vesijärvi	61,1368	25,4732				
Victoria	33,19833	-1,2317	A; B; C D			
Vuolep	68,3419	18,7808				
Njakajaure	-39,2351	176,8944				
Waikopiro						
Woserin	53,6684	12,0263	A			
Xiaolongwan	42,2999	126,3594				
Xinluhai	31,8485	99,1129				
Yoa	19,0576	20,5069				
Zabińskie	54,1318	21,9836	A			
Zohar	37,4833	-4,6897				
Zürichsee	47,2513	8,6672				