The influence of weak texture on the critical currents in polycrystalline MgB$_2$

M Eisterer and H W Weber

Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna, Austria

E-mail: eisterer@ati.ac.at

Received 28 August 2009, in final form 8 January 2010
Published 22 February 2010
Online at stacks.iop.org/SUST/23/034006

Abstract

The current transport in polycrystalline MgB$_2$ is strongly influenced by the intrinsic anisotropy of this superconductor. Untextured bulks and wires are macroscopically isotropic, but the grains retain their anisotropic properties and the field dependence of the critical currents is much stronger than in isotropic superconductors. Weakly or partially textured tapes are macroscopically anisotropic, but the anisotropy of the zero resistivity (or irreversibility) field is smaller than the intrinsic upper critical field anisotropy, γ. The J_c-anisotropy is field and temperature dependent and can be much larger than γ. The most suitable parameter for the quantification of the macroscopic anisotropy is, therefore, the anisotropy of the zero resistivity field. It is difficult to distinguish between a higher degree of texture at a lower intrinsic anisotropy and a weaker texture at higher anisotropy and hardly possible on the basis of the field dependence of the critical current anisotropy alone. The knowledge of the upper critical field is crucial and angularly resolved measurements of either the critical currents or, better, the resistive in-field transitions are favorable for this purpose.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A considerable anisotropy of the critical current is found in ex situ [1–6] and in situ [7, 8] MgB$_2$ tapes. It is favored by a large aspect ratio of the tape, and is a consequence of the upper critical field anisotropy, γ, in magnesium diboride [9–13], if partial or weak texture is induced by the preparation technique. If the grain orientation is totally random (no texture), the conductor is macroscopically isotropic, since no preferred orientation exists. However, also in that case the intrinsic anisotropy of MgB$_2$ has severe consequences for the properties of polycrystalline materials. The critical current density, J_c, becomes zero well below the upper critical field, B_{c2}, which in turn leads to a much stronger field dependence of the critical current than in isotropic materials [14]. The Kramer plot is no longer linear near the irreversibility field and the peak of the volume pinning force shifts to significantly lower fields [15]. Large critical current densities of the order of 5×10^6 A m$^{-2}$ can be expected only up to [16] $B_{c2}^\perp = B_{c2}^{ab}/\gamma$, since only highly percolative currents flow on a macroscopic length scale at higher fields. B_{c2}^{ab} and B_{c2}^\perp denote the upper critical field, when the field is applied parallel and perpendicular to the boron planes, respectively. B_{c2}^{ab} is around 14 T at 0 K in clean MgB$_2$ and determines the upper critical field in untextured polycrystalline samples [16], if defined by a typical onset criterion (e.g. our definition in section 3). B_{c2}^\perp is not easily accessible in polycrystalline MgB$_2$ and only about 3 T at 0 K in the clean limit [9–12], which strongly restricts the field range for applications. Fortunately, B_{c2}^{ab} (and the upper critical field in polycrystalline samples) can be enhanced by impurity scattering [17–19], which also reduces γ [9, 20]. Both changes enhance B_{c2}^\perp at low temperatures, which is good for applications. Impurity scattering is less effective in improving the properties at high temperatures, since it decreases the transition temperature [21] and this change offsets the other beneficial effects. Texturing the material might, therefore, be an interesting alternative for optimizing the material for application at higher temperatures and fields. It increases the in-field critical currents for one orientation at the expense of decreasing them in the other main orientation [22]. Texture is therefore only beneficial, if the tape is operated in or near the favorable orientation, which generally complicates the design of devices, but is certainly feasible in superconducting magnets.

Only weak texture was achieved in MgB$_2$ tapes so far, with the c-axis oriented preferentially perpendicular to the tape. The
average misalignment angle of the c-axis from the tape normal was found to be rather high [5, 23] (above 20°) compared to highly textured materials (a few degrees only).

Weak texture is a unique property of some MgB₂ tapes, since the strongly anisotropic cuprate superconductors have to be highly textured for high intergranular currents [24, 25] leading to a pronounced Jc-anisotropy. NbTi and Nb₅Sn on the other hand are isotropic superconductors, thus (weak) texture is not expected to influence the properties of wires or tapes. In this report the influence of weak texture on the macroscopic current transport in MgB₂ will be discussed and the resulting behavior compared to the limiting cases of zero or perfect texture.

2. The model

A general model for nonlinear transport in heterogeneous media was presented in [14]. The critical current was obtained by integrating the percolation cross section, \(\sigma_p \propto (p(J) - p_c)^\beta \), over all possible local currents \(J_c \). \(p(J) \) was defined as the fraction of grains with a \(J_{\text{local}} \) above \(J_c \). The percolation threshold, \(p_c \), depicts the minimum fraction of superconducting grains for a continuous path through the superconductor. The percolation cross section reduces to zero at \(p_c \), which is expected to be around 0.25 in typical polycrystalline MgB₂ materials [14, 26–28]. This value will be used in the following. The transport exponent, \(t \), is expected to be 1.76 [29], which will be assumed in the following, although higher values were also observed experimentally [26, 30]. Furthermore, a model for the field dependence of the local critical currents is needed for calculating \(p(J) \). Since grain boundary pinning is dominant in the majority of MgB₂ conductors [9, 14, 31], \(J_{\text{local}} \propto (1 - b)^\gamma / \sqrt{B} \) was assumed [32], but contributions of point pins were also reported [33, 34]. \(b \) denotes the magnetic field normalized by the (angular dependent) upper critical field of the grain. Finally, the anisotropic scaling approach [35] was used to model the angular dependence of the local critical currents. Note that we already had to make four approximations/assumptions (\(p_c \), \(t \), pinning model, anisotropic scaling), which influence the field dependence of \(J_c \) independently of the degree of texture.

Texture is a modification of the distribution function of the grains' orientation. For uniaxial texture and the present geometry (preferred c-axis orientation perpendicular to the tape), the density of grains with a certain orientation only depends on the angle \(\alpha \) between the tape normal and the c-axis of the grains. The corresponding distribution function is \textit{a priori} unknown. A Gaussian-like exponential function

\[
f_\alpha(\alpha) \propto \exp\left(-\frac{\alpha^2}{2\alpha_i^2} \right)
\]

was chosen, which was confirmed by high energy synchrotron x-ray diffraction measurements [23]. Since \(\alpha \) is restricted to [0°, 90°], the density distribution function has to be renormalized numerically [22] and is formally not a true Gaussian distribution. This implies that \(\alpha_i \), or in the standard deviation of the distribution or an average misalignment angle, which are restricted to angles below 90°, but only a parameter which characterizes the decrease of the density distribution function between 0° and 90° and, therefore, the degree of texture. \(\alpha_i \) converges to zero in the limit of perfect texture and diverges in untextured materials (\(f_\alpha \) becomes constant between 0° and 90° for \(\alpha_i \to \infty \), uniform distribution).

Only a few quantitative data about texture in MgB₂ tapes exist in the literature, varying between 20° and 30° [5, 23], but the model is not restricted to this angular range. For \(\alpha_i \to 0 \) and \(\infty \), the results of the model merge the predictions of the anisotropic scaling approach [35] and the percolation model for untextured MgB₂ [14], respectively.

For the calculation of the angular dependence of \(J_c \), \(B_{c2} \) and \(B_{p=0} \), the density distribution function with respect to the direction of the applied magnetic field is needed, which was derived from the distribution function equation (1) in [22]. All following calculations are based on this density distribution function.

3. Results and discussion

At first we focus on the anisotropy of the zero resistivity (irreversibility) field \(B_{p=0} \). This quantity is less model dependent than \(J_c \). It is independent of the pinning mechanism, the transport exponent and anisotropic scaling. Only the angular dependence of the upper critical field has to be known. Good agreement with the theoretical prediction of the anisotropic Ginzburg Landau theory [36],

\[
B_{c2}(\theta) = B_{c2}^b \left/ \sqrt{\gamma^2 \cos^2(\theta) + \sin^2(\theta)} \right.,
\]

was demonstrated [10, 13, 37, 38]. It was shown in [16], that \(B_{p=0} \) in untextured materials is given by

\[
B_{p=0} = \frac{B_{c2}^b}{\sqrt{(\gamma^2 - 1) p_c^2 + 1}}.
\]

While \(B_{c2}^b \) can be easily assessed experimentally, \(p_c \) [26] and \(\gamma \) [11] are difficult to determine. By fixing \(p_c \) to a realistic value, \(\gamma \) can be estimated from the difference between [39] \(B_{p=0} \) and \(B_{c2}^b \), or, alternatively, by estimating \(\gamma \) from \(T_c \), \(p_c \) can be obtained [9, 26]. However, any uncertainty in one quantity induces a similar error in the other one; furthermore equation (3) was derived for a perfectly homogeneous material and neglecting the influence of thermal fluctuations. Both effects increase the difference between \(B_{p=0} \) and \(B_{c2} \). Thermal fluctuations, which result in a difference between the \textit{intrinsic} \(B_{c2} \) and \(B_{m} \) in each grain, generally increase with \(B_{c2} \) (the importance of fluctuations is quantified by the Ginzburg number [40] \(G_i \propto B_{c2}^b \)) and \(T \). A successful description of the resistive transition by equation (3) thus requires a homogeneous material (narrow superconducting zero field transition), a moderate upper critical field, and temperatures well below \(T_c \).

Texture enhances \(B_{p=0} \) (compared to the prediction of equation (3) for untextured MgB₂), when the field is oriented
The zero resistivity field in parallel orientation (top) increases with the degree of texture (decreasing \(\alpha \)), but decreases in perpendicular orientation (middle). \(B_{p=0} \) was normalized by \(B_{c2}^0 \) (\(b_{p=0} := B_{p=0}/B_{c2}^0 \)). The anisotropy of \(B_{p=0} \) varies between the intrinsic value at \(\alpha = 0 \) and 1 in the untextured material (bottom). It changes strongest between 10° and 70°.

The upper critical field is less sensitive to texture than \(B_{c2} \), but the anisotropy increases with the degree of texture (decreasing \(\alpha \)). This is why the onset of the transition always corresponds to \(\theta = 90° \) (perfect texture), the anisotropy is very small at \(\alpha = 180° \) (1.02, 1.03, and 1.04 for \(\gamma = 3, 4, \) and 5, respectively).

The upper critical field is less sensitive to texture than \(B_{p=0} \), as demonstrated for \(\gamma = 4 \) in figure 2. The data roughly correspond to a 90% resistive criterion, since a fraction of 25% superconducting grains was assumed for the calculations. If, say, 25% superconducting grains were needed for zero resistivity (\(p_c = 0.25 \)), around 2.5% should be enough to lower the resistivity by 10%. This definition (2.5% superconducting grains) will be used for the (angular dependent) upper critical field, \(B_{c2} \), in the following. (Henceforth \(B_{c2}(\theta) \) always denotes this macroscopic upper critical and not the intrinsic \(B_{c2}(0) \) (equation (2)) within the grains.) The upper critical field is nearly independent of texture, if the field is applied parallel to the tape. This is why the onset of the transition always corresponds to \(B_{c2}^0 \) in untextured materials. A significant anisotropy of the upper critical field is observed only for \(\alpha < 45° \). The anisotropy of the upper critical field is only 1.4, while \(\gamma_{p=0} = 2.4 \) at \(\alpha = 30° \).

The upper critical field and its anisotropy are much more sensitive to the chosen criterion than \(B_{p=0} \) and \(\gamma_{p=0} \). Therefore, and because of the field and temperature dependence of the \(J_c \)-anisotropy (see below), \(\gamma_{p=0} \) is the most useful parameter for the quantification of the macroscopic anisotropy.

The same \(\gamma_{p=0} (2.4) \) can be obtained with \(\gamma = 5 \) and \(\alpha = 34.5° \) or with \(\gamma = 3 \) and \(\alpha = 20.8° \). The corresponding angular dependencies of \(B_{p=0} \) are presented in figure 3 (open symbols). They are similar to each other and cannot be described by the angular dependence predicted by anisotropic Ginzburg Landau theory (equation (2), line graph) by assuming \(\gamma_{p=0} \) instead of \(\gamma \). The deviation from this theory is even more pronounced for the onset of the transition (\(B_{c2} \), solid symbols) and the anisotropy of the upper critical field is quite different at the same \(B_{p=0} \)-anisotropy. It seems therefore possible to estimate the three unknown parameters (\(\gamma \), \(\alpha \), and \(p_c \)) from the angular dependence of \(B_{p=0} \) and \(B_{c2} \) and from the ratio of these quantities (not visible in figure 3, because the data were normalized by the values in parallel orientation).
The increase of $B_{p=0}$ in parallel orientation as well as the decrease in perpendicular orientation (compared to untextured materials) lead to a weaker and stronger field dependence of the critical currents, respectively (figure 4). While J_c converges to the limiting behavior of perfect texture ($\alpha_t = 0^\circ$) rather quickly in the perpendicular orientation, it remains significantly below its limit in the parallel orientation, even for a high degree of texture ($\alpha_t = 5^\circ$). However, for a typical texture of $\alpha_t = 20^\circ$–30° [5, 23], a quite significant enhancement beyond untextured materials can be expected at $B = B_{p=0}^{\text{ab}}/2$ in the parallel orientation.

Next we consider the influence of different combinations of γ and α_t, which lead to the same $\gamma_{p=0} = 2.4$, on the field dependence of J_c (figure 5). Although the results are slightly changed, the differences are not sufficient to derive these two parameters from $J_c(B)$ alone, since they are also influenced by the usually unknown percolation threshold, the transport exponent, the pinning model and the angular dependence of J_c^{local}. Moreover $J_c(B)$ is usually not available over four orders of magnitude. Note on the other hand that $B_{p=0}^{\text{ab}}/B_{p=0}^{\text{ab}}$ is different (0.7, 0.8, and 0.91 for $\gamma/\alpha_t = 5/34.5^\circ$, 4/30$^\circ$, and 3/20.8$^\circ$, respectively), which cannot be seen in figure 5 due to the normalization. The knowledge of the upper critical field is therefore vital for the distinction between γ and α_t. Unfortunately, the metal sheath of tapes usually masks the onset of the transition [16] and must be removed for the determination of B_{c2}.

The anisotropy of the critical current is strongly field dependent (inset in figure 5) and diverges at $B_{p=0}^{\perp}$ ($B_{p=0}^{\parallel}$ in orthogonal orientation). At fixed reduced field, $B/B_{p=0}$, it is not very sensitive to changes of the parameters, as long as the $B_{p=0}^{\parallel}$-anisotropy is kept constant and is, therefore, also not appropriate for a (simultaneous) determination of γ and α_t. Since the field dependence of the critical current anisotropy scales with the upper critical field, the critical current anisotropy is also temperature dependent, because the reduced magnetic field increases with temperature at fixed magnetic field (B_{c2} decreases).

The angular dependence of J_c is altered by different combinations of γ and α_t, which lead to the same anisotropy of the zero resistivity field, $B_{p=0} (\gamma_{p=0} = 2.4)$. The reduced fields, b, were normalized to $B_{p=0}$ in parallel orientation.

The angular dependence of J_c is presented in figure 6. The same combinations of γ and α_t as for the field dependence of J_c were used. Data at the same reduced field, $b = B/B_{p=0}$, are compared. The differences between $\gamma = 4$ and 5 are small, but the curve for $\gamma = 3$ differs more significantly, which favors the analysis of texture from angularly resolved measurements of J_c. However, the higher degree of modeling (pinning mechanism, percolation cross section, anisotropic scaling) renders this procedure less reliable than measurements of the resistive transitions (without sheath) at various angles.

The data in figure 6 can be fitted to the behavior predicted by the anisotropic scaling approach [35] for perfectly textured materials, with B_{c2} and γ as free parameters (not shown in figure 6). However, the obtained parameters do not have any physical meaning, because they change with field and strongly underestimate the real $B_{p=0} (< B_{c2})$ and $\gamma_{p=0} (< \gamma)$.
4. Conclusions

The influence of homogeneous weak texture on the macroscopic currents in MgB$_2$ was investigated on the basis of a percolation model for nonlinear transport in heterogeneous media. While any texture leads to an anisotropy of the zero resistivity field, the occurrence of a macroscopic upper critical field anisotropy (onset of the superconducting transition) indicates a significant degree of texture. Although the calculations were based on the anisotropic scaling approach for the intrinsic properties, the angular dependence of the macroscopic quantities (i.e., critical current, zero resistivity field, and upper critical field) do not obey the predictions of this general scaling in weakly textured materials, even if an effective instead of the intrinsic anisotropy is assumed.

It is hardly possible to derive the degree of texture and the intrinsic anisotropy from the field dependence of the critical current, in particular, if the upper critical field is unknown. Angularly resolved measurements of the resistive transition turn out to be more appropriate for this purpose, but usually require the removal of the sheath.

The most suitable parameter for the quantification of the macroscopic anisotropy is the anisotropy of the zero resistivity field.

References

[1] Grasso G, Malagoli A, Marré D, Bellingeri E, Braccini V, Roncallo S, Scati N and Siri A S 2002 Physica C, 378–381 899
[2] Kitaguchi H and Kumakura H 2005 Supercond. Sci. Technol. 18 S284
[3] Lezza P, Gladyshevskii R, Senatore C, Cusanelli G, Luo H L and Flükiger R 2005 IEEE Trans. Appl. Supercond. 15 3196
[4] Beilin V, Lapidès I, Roth M, Dul’kin E, Mojaev E, Gerber A and Riss O 2006 J. Appl. Phys. 100 043903
[5] Lezza P, Gladyshevskii R, Abächerli V and Flükiger R 2006 Supercond. Sci. Technol. 19 286
[6] Serrano G, Serquis A, Civale L, Maiorov B, Malachevsky M T and Ayala C 2008 J. Phys.: Conf. Ser. 97 012129
[7] Kovář P, Mělišek T and Hušek I 2005 Supercond. Sci. Technol. 18 L45
[8] Kovář P, Hušek I, Dobročka E, Melišek T, Haessler W and Herrmann M 2008 Supercond. Sci. Technol. 21 015004
[9] Eisterer M 2007 Supercond. Sci. Technol. 20 R47
[10] Lyard L et al 2002 Phys. Rev. B 66 185002(R)
[11] Bud’ko S L and Canfield P C 2002 Phys. Rev. B 65 212501
[12] Welp U et al 2003 Phys. Rev. B 67 012505
[13] Angst M, Puzniak R, Wisniewski A, Jun J, Kazakov S M, Karpinski J, Roos J and Keller H 2002 Phys. Rev. Lett. 88 167004
[14] Eisterer M, Zehetmayer M and Weber H W 2003 Phys. Rev. Lett. 90 247002
[15] Eisterer M 2008 Phys. Rev. B 77 144524
[16] Eisterer M, Krutzler C and Weber H W 2005 J. Appl. Phys. 98 033906
[17] Gurevich A 2003 Phys. Rev. B 67 184515
[18] Eisterer M, Müller R, Schöppfl, R, Weber H W, Soltanian S and Dou S X 2007 Supercond. Sci. Technol. 20 117
[19] Putti M et al 2005 Appl. Phys. Lett. 86 112503
[20] Krutzler C, Zehetmayer M, Eisterer M, Weber H W, Zhigadlo N D and Karpinski J 2007 Phys. Rev. B 75 224510
[21] Putti M, Brotto P, Monni M, Galleani E, Sanna A and Massidda S 2007 Europhys. Lett. 77 57005
[22] Eisterer M, Häßler W and Kovač P 2009 Phys. Rev. B 80 174516
[23] Häßler W et al 2010 at press
[24] Durrell J H and Rutter N A 2009 Supercond. Sci. Technol. 22 013001
[25] Feldmann D M, Holmsinger T G, Feenstra R and Larbalestier D C 2008 J. Am. Ceram. Soc. 91 1869
[26] Eisterer M, Emhofer J, Sorta S, Zehetmayer M and Weber H W 2009 Supercond. Sci. Technol. 22 034016
[27] Yamamoto A, Shimoyama J-I, Kishio K and Matsushita T 2007 Supercond. Sci. Technol. 20 658
[28] Grinenko V, Krasnoperek V E, Stoliarov V A, Bush A A and Mikhaljov B P 2006 Solid State Commun. 138 461
[29] Deutscher G, Fallen R and Adler J 1983 Percolation Structure and Processes (Bristol: Hilger)
[30] Vionnet-Menot S, Grimaldi C, Maeder T, Strasser R, Di Capua R, Maglione M G and Vaglio R 2003 Phys. Rev. B 70 024512
[31] Martínez E, Mikheenko P, Martínez-López M, Millán A, Bevan A and Abel J S 2007 Phys. Rev. B 75 134515
[32] Dew-Hughes D 1974 Phil. Mag. 30 293
[33] Pallecchi I et al 2005 Phys. Rev. B 71 212507
[34] Chen J, Ferrando V, Orgiani P, Pogetrebyakov A V, Wilke R H T, Bets J B, Mielke C H, Redwing J M, Xi X X and Li Q 2006 Phys. Rev. B 74 174511
[35] Blatter G, Geshkenbein V B and Larkin A I 1992 Phys. Rev. Lett. 68 875
[36] Tilley D R 1965 Proc. Phys. Soc. 86 289
[37] Rydhl A et al 2004 Phys. Rev. B 70 132503
[38] Prischepa S L, Della Rocca M L, Maritato L, Salvato M, Di Capua R, Maglione M G and Vaglio R 2003 Phys. Rev. B 67 024512
[39] Kim J H, Dou S X, Oh S, Jerčinović M, Babic E, Nakane T and Kumakura H 2008 J. Appl. Phys. 104 063911
[40] Brandt E H 1995 Rep. Prog. Phys. 58 1465