Limits on the anomalous Wtq couplings

R. Romero Aguilar, Antonio O. Bouzas, F. Larios
Departamento de Física Aplicada, CINVESTAV-Mérida, A.P. 73, 97310 Mérida, Yucatán, México

November 20, 2015

Abstract

Within the model-independent framework of $SU(3) \times SU(2) \times U(1)$ gauge-invariant dimension-six operators, we study flavor off-diagonal Wtq couplings ($q = d, s$) and related four-quark contact interactions involving the top. We obtain bounds on those couplings from Tevatron and LHC data for single-top production and branching fractions in top decays, as well as other experimental results on flavor-changing neutral-current processes including $B \to X_q \gamma$ and $Z \to b\bar{q}$ decays ($q = d, s$). We also update the bounds on flavor-diagonal Wtb couplings using the most recent measurement of W-helicity fractions in top decays from top-pair production.

1 Introduction

Top-quark physics plays an essential role in the research program at the LHC. The top quark and the Higgs boson —being the heaviest known elementary particle and the only known elementary scalar, respectively— may be the best candidates to look for physics beyond the Standard Model (SM) [1].

We may classify the different studies on the top quark by the type of interactions they consider, either flavor off-diagonal or diagonal. Within the class of flavor-diagonal couplings we can find studies on htt [2], γtt [3, 4], Ztt [5], Gtt [6], Wtb [7, 8, 9, 10], as well as contact vertices such as $ttqq$, tbd, $tbve$ [9, 11, 12, 13]. For the flavor off-diagonal case, we can find global studies that include top couplings with several or all of the neutral gauge bosons [14, 15, 16, 17, 18, 19], as well as more specific works on htu [20], $\gamma tu(c)$ [21], $Ztu(c)$ [22] and $Gtu(c)$ [23] couplings. There are also studies on four-fermion interactions like $tbff'$ and $tdve$ [11, 14]. To date, there are no similar studies on experimental limits for the flavor off-diagonal charged-current (CC) Wtq couplings available in the literature.

The main goal of this paper is to fill this gap by obtaining bounds on flavor off-diagonal charged-current couplings of the top quark from available experimental data. We focus on the flavor off-diagonal couplings Wtd and Wts as they arise in the basis of dimension-six $SU(3) \times SU(2) \times U(1)$ gauge-invariant operators involving the top quark. We consider also contact four-quark interactions related to the Wtq couplings through the SM equations of motion. In this work we keep the flavor structure of the theory completely general, by taking the dimension-six couplings as independent parameters. Notice that other theoretical flavor structures have been considered in the literature, such as the Minimal Flavor Violation framework in which the flavor mixing pattern of the SM is extended to the dimension-six Lagrangian [11, 24]. In addition to our analysis of the flavor off-diagonal Wtq vertices we also make an update on the allowed parameter region of the flavor-diagonal Wtb coupling, which has received much attention in the recent literature [7, 8, 25, 26]. We asses the allowed parameter regions for this vertex based on the cross sections for tg and tb production measured at the Tevatron and LHC, and the measurement of W-helicity fractions in top decays from top-pair production most recently reported [27].
A minimal basis of $SU(3) \times SU(2) \times U(1)$ gauge-invariant dimension-six operators involving the top quark has been given in [28, 29], and a complete one in [30]. As far as top interactions are concerned those bases are identical, aside from minor differences in the definition of contact four-fermion operators. We use that basis in this paper, as has become standard in the recent literature. We carry out all computations at leading order (LO) in both the SM and dimension-six effective couplings, fully analytically in the case of decays and numerically with MadGraph5_aMC@NLO [31] for scattering processes. We adopt the operator normalization established in [17] (and references therein) at next-to-leading-order (NLO), which is applicable also at LO and facilitates the counting of coupling-constant powers, especially for automated computations.

Due to $SU(2) \times U(1)$ gauge invariance and its spontaneous breaking a complete separation of charged and neutral currents in dimension-six operators is not possible. As a consequence, most of the basis operators involve interactions of both types in combinations that may not be optimal to study a given process. For those processes we have to consider suitable linear combinations of basis operators instead of the operators themselves. A similar strategy is used in [14]. For those effective operators containing both CC and neutral current (NC) terms, we take into account experimental data for processes involving one or both types of vertices. Thus, besides single-top production in hadron collisions (involving only flavor off-diagonal charged-currents in the SM, but also flavor-changing neutral currents (FCNC) in the effective theory) and branching fractions in $t \rightarrow Wq$ decays, we consider also FCNC vertices not involving the top such as γbq in $b \rightarrow d\gamma, s\gamma$ and Zbq in $Z \rightarrow bd, bs$, as well as the FCNC vertices in $t \rightarrow Zu, Zc$ and $pp(gu) \rightarrow t\gamma$ from [14]. In this way, we survey the sensitivity of the different processes to find the ones providing the best bounds for each effective coupling.

The paper is organized as follows. In section 2 we list the dimension-six gauge-invariant operators relevant to this study. In section 3 we analyze FCNC decay processes of the top quark, the Z boson and the B meson, as well as flavor off-diagonal top decays $t \rightarrow Wq$, that are used to obtain the limits on the operators. In section 4 we discuss the contribution of flavor off-diagonal effective operators to single-top production at the Tevatron and the LHC. In section 5 we present the results obtained from the processes studied in the previous sections on allowed regions for the W_{td} and W_{ts} effective couplings, the flavor-diagonal W_{tb} couplings, and the four-quark ones. Finally, in section 6 we give our conclusions.

2 Top quark dimension six operators

New physics effects related to the top quark can be described consistently by an effective electroweak Lagrangian that satisfies the full $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge symmetry of the SM:

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_k \left(C_k O_k^{(6)} + \text{h.c.} \right) + \cdots,$$

where the ellipsis stands for operators of dimension higher than six. Λ is the scale of new, or beyond the SM physics. The scale Λ is unknown but we will assume it to be $\Lambda = 1 \text{ TeV}$ as is commonly used in the literature [14, 32]. This is a valid assumption given that the physical processes that are being considered are at the significantly lower electroweak scale (m_W, m_t or v). The Wilson coefficients C_k depend on the scale, but in tree level analyses this dependence is not taken into account [33]. As experiments have reached higher precision it has become appropriate to make studies at the next perturbative order, where radiative corrections and renormalization dictate the dependence of C_k on the scale [34]. For instance, in Ref. [17] we can find a study of top quark decay at NLO in QCD where the operator mixing terms that appear at this level are taken into account. In particular, the W-helicity branching fractions of $t \rightarrow bW$ decay at tree level only depend on Wtb operators like $O_{k3}^{(6)}$ (defined below) but at NLO they can receive an indirect contribution from the top-gluon operator O_{qG} [17]. Nevertheless, our study is
made at tree level for processes at (or below) the top mass scale and we do not take into account the effects of scale running and operator mixing.

Many years ago a long list of gauge invariant dimension-six operators was introduced in Ref. [35]. Eventually, it was found that not all operators there are truly independent [36] [28]. A revised list of independent operators for the top-quark sector appeared first in [28], and then a general revised list for all the fields was provided in [30]. Notice that the list of top-gauge boson operators in [28] and in [30] coincide, except for the explicit notation in a few cases (like \(O_{ij}^{ij} \) \(\equiv O_{ij}^{ij} \)). From now on, we will refer to the effective operators as defined in Ref. [30]. However, we adopt the sign convention in the covariant derivatives as well as the operator normalization defined in [17], where a factor \(y_t \) is attached to an operator for each Higgs field it contains, and a factor \(g \) \((g') \) for each \(W \) \((B) \) field-strength tensor.

As stated previously, we will follow the strategy of Ref. [14], where some of the operators considered there are the same in our work. The original Lagrangian in Eq. (1) is written in terms of gauge eigenstates but we are referring to the physical (mass) eigenstates in our operators. This means that additional Cabibbo-Kobayashi-Maskawa (CKM) suppressed terms appear in the \(W t q \) vertices generated; for example, the original diagonal operator \(O_{\phi \phi}^{[33]} \) will generate a \(W t s \) non-diagonal coupling with a \(V_{ts} \) factor. We have taken into account these mixing terms, but we point out that in the end there is only a very small change in the allowed regions of parameters. Notice that there are recent studies on the potential of the LHC to measure CKM matrix elements based on top quark rapidity distribution [37]. Our study is focused on the \(W t q \) vertices that originate in the dimension-six operators.

2.1 Effective \(W t q \) couplings of the top quark

Flavor indices aside, there are only four operators that give rise to effective \(W t q \) couplings: \(O_{\phi \phi}^{[3k3]} \), \(O_{\phi ud}^{3k} \) \((=O_{\phi \phi}^{3k3} \) in [28]), \(O_{uW}^{k3} \) and \(O_{dW}^{k3} \) \((k = 1, 2) \). The operator \(O_{\phi ud}^{3k} \) involves exclusively a charged-current vertex, but the other three also generate NC couplings:

\[
O_{\phi \phi}^{[3k3]}(3) = \frac{y_t^2}{2\sqrt{2}} g (v + h)^2 \left(W^+ \bar{u}_L \gamma^\mu b'_L + W^- \bar{u}_L \gamma^\mu t_L \right) + \frac{y_t^2}{2\sqrt{2}} g (v + h)^2 Z_\mu (\bar{u}_L \gamma^\mu t_L - \bar{d}_L \gamma^\mu b'_L), \\
O_{uW}^{k3} = 2y_t g (v + h) \left(\partial_\mu W^\nu + ig W^3_\mu W^\nu \right) \bar{d}_L \sigma^{\mu\nu} t_R + \sqrt{2} y_t g (v + h) (c_W \partial_\mu Z_\nu + s_W \partial_\mu A_\nu + ig W^3_\mu W^\nu) \bar{u}_L \sigma^{\mu\nu} t_R, \\
O_{dW}^{k3} = 2y_t g (v + h) \left(\partial_\mu W^{+\nu} + ig W^3_\mu W^{+\nu} \right) i_L \sigma^{\mu\nu} d_R + \sqrt{2} y_t g (v + h) \left(c_W \partial_\mu Z_\nu + s_W \partial_\mu A_\nu + ig W^3_\mu W^{+\nu} \right) \bar{b}_L \sigma^{\mu\nu} d_R.
\]

With the aim of isolating NC of the up quarks from those of the down quarks and of separating the \(Z \) field from the photon field \(A \), we consider appropriate linear combinations of \(O_{\phi \phi}^{[3k3]} \), \(O_{uW}^{k3} \) and \(O_{dW}^{k3} \) with the purely NC operators \(O_{\phi \phi}^{[1k3]} \), \(O_{uB}^{k3} \) and \(O_{dB}^{k3} \). This strategy was also used in [14], where the FCNC interactions of the top quark were analyzed. We therefore base our analysis on the following...
operators, written here in terms of the physical vector boson fields:

\[
O_{\varphi|q}^{(\pm)k3} = \frac{y_f^2}{\sqrt{2}}g(v + h)^2 (W_{\mu}^\pm \bar{u}_L k \gamma^\mu b_L + W_{\mu}^- \bar{d}_L k \gamma^\mu t_L)
- \frac{y_f^2}{2} g (v + h)^2 \frac{Z_{\mu}}{c_w} \bar{d}_L k \gamma^\mu b_L,
\]

\[
O_{\varphi|q}^{(-)k3} = \frac{y_f^2}{\sqrt{2}}g(v + h)^2 (W_{\mu}^+ \bar{u}_L k \gamma^\mu b_L + W_{\mu}^- \bar{d}_L k \gamma^\mu t_L)
- \frac{y_f^2}{2} g (v + h)^2 \frac{Z_{\mu}}{c_w} \bar{u}_L k \gamma^\mu b_L,
\]

\[
O_{\varphi|u, d}^{k3} = \frac{y_f^2}{\sqrt{2}}g(v + h)^2 W_{\mu}^+ \bar{t}_R k \gamma^\mu t_R
+ \frac{\sqrt{2}y_t g}{c_w} (v + h) \left(\frac{1}{c_w} \partial_\mu Z_{\nu} + igW_{\mu}^- W_{\nu}^+ \right) \bar{u}_L k \gamma^\mu t_R,
\]

\[
O_{\varphi|d, u}^{k3} = \frac{y_f^2}{\sqrt{2}}g(v + h)^2 W_{\mu}^+ \bar{t}_L k \gamma^\mu d_R
+ \frac{\sqrt{2}y_t g}{c_w} (v + h) \left(-\frac{1}{c_w} \partial_\mu Z_{\nu} + igW_{\mu}^+ W_{\nu}^- \right) \bar{b}_L k \gamma^\mu d_R,
\]

\[
O_{\varphi|u, d}^{k3} = \frac{y_f^2}{\sqrt{2}}g(v + h)^2 (W_{\mu}^+ \bar{u}_L k \gamma^\mu b_L + W_{\mu}^- \bar{d}_L k \gamma^\mu t_L)
- \frac{y_f^2}{2} g (v + h)^2 \frac{Z_{\mu}}{c_w} \bar{b}_L k \gamma^\mu t_L,
\]

\[
O_{\varphi|d, u}^{k3} = \frac{y_f^2}{\sqrt{2}}g(v + h)^2 (W_{\mu}^+ \bar{u}_L k \gamma^\mu b_L + W_{\mu}^- \bar{d}_L k \gamma^\mu t_L)
- \frac{y_f^2}{2} g (v + h)^2 \frac{Z_{\mu}}{c_w} \bar{t}_L k \gamma^\mu d_R,
\]

Standard notation is used in this equation, with \(I, J, K\) SU(2) gauge indices, \(\tau^I\) the Pauli matrices, and \(\varphi\) the SM Higgs doublet with \(\tilde{\varphi} = i\tau^2 \varphi^\ast\). The covariant derivative is defined as \(D_\mu \varphi = \partial_\mu \varphi - ig/2\tau^I W_{\mu}^I \varphi - ig/2B_{\mu} \varphi\). The primed quark fields \(d', s', t'\), are gauge eigenfields related to mass eigenfields through the CKM matrix. In equation (2), operators with \(k = 1, 2\) yield flavor off-diagonal effective \(Wtq\) couplings, while those with \(k = 3\) correspond to flavor-diagonal CC interactions. (The latter have been considered in [14] the CMS measurement \(gg \rightarrow t\gamma\) production process yields strong constraints as well, and we will also be able to neglect its potential effects. This will also allow us to avoid \(t\)-channel photon-exchange diagrams that would lead to divergent total cross sections.

The relations between the coefficients of the original operators \(O_{\varphi|q}^{(1)k3}, O_{\varphi|q}^{(3)k3}, O_{u|W}^{k3}, O_{d|W}^{k3}, O_{u|B}^{k3}, O_{d|B}^{k3}\) and the new ones are given by:

\[
\begin{pmatrix}
 C_{\varphi|q}^{(+)(+)}k3 \\
 C_{\varphi|q}^{(-)(+)}k3 \\
 C_{\varphi|q}^{(+)(-)}k3 \\
 C_{\varphi|q}^{(-)(-)}k3
\end{pmatrix}
= \frac{1}{2}
\begin{pmatrix}
 1 & 1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
 C_{\varphi|q}^{(1)k3} \\
 C_{\varphi|q}^{(3)k3}
\end{pmatrix},
\]
\[
\begin{pmatrix}
C_{k3}^{13} \\
C_{k1}^{23} \\
C_{k1}^{22}
\end{pmatrix}
= \begin{pmatrix}
1 & 1 & 0 \\
-\frac{1}{3} & 0 & 1 \\
\frac{2}{3} & 1 & 0
\end{pmatrix}
\begin{pmatrix}
C_{k3}^{13} \\
C_{k1}^{23} \\
C_{k1}^{22}
\end{pmatrix}.
\]

For concreteness, in the rest of this paper we set \(\Lambda = 1 \) TeV, and write the dimensionful parameters in the operators in units of TeV, namely, \(v = 0.246, \) \(m_t = 0.1725 \) and \(M_W = 0.8094. \) We will show the limits on these coefficients below, but in addition we will translate them to the limits on the form factors \(\langle \bar{W}t \rangle \) and \(g_{\langle \bar{W}t \rangle} \) that are commonly used in the literature for the diagonal \(Wtb \) vertex in \([7, 8, 38, 39].\)

We will extend the definition to the flavor off-diagonal \(Wtb \) couplings: \(\langle \bar{W}t \rangle \) and \(g_{\langle \bar{W}t \rangle} \). The relation between the form factors and the operator coefficients is given by:

\[
\begin{align*}
V_{L}^q &= V_{\bar{q}} + \frac{g_{\bar{q}}^2}{2} \frac{v^2}{\Lambda^2} \left(C_{++}^{k3} - C_{--}^{k3} \right) = V_{tq} + \left(C_{++}^{k3} - C_{--}^{k3} \right) /33.606, \\
V_{R}^q &= \frac{g_{\bar{q}}^2}{2} \frac{v^2}{\Lambda^2} C_{\phi \phi}^{3k} = C_{\phi \phi}^{3k} /33.606, \\
-g_{R} &= \sqrt{2} g_{\bar{q}} \frac{v^2}{\Lambda^2} \left(C_{k3}^{uZ} + \left(s_{W}^{2} C_{uA}^{k3} \right) = \left(C_{k3}^{uZ} + \left(s_{W}^{2} C_{uA}^{k3} \right) /18.156, \\
-g_{L} &= \sqrt{2} g_{\bar{q}} \frac{v^2}{\Lambda^2} \left(C_{k3}^{dZ} + \left(s_{W}^{2} C_{dA}^{k3} \right) = \left(C_{k3}^{dZ} + \left(s_{W}^{2} C_{dA}^{k3} \right) /18.156.
\end{align*}
\]

Where \(q = d(s) \) corresponds to \(k = 1(2) \). The form factors \(V_{L}^q \) and \(g_{L}^q \) are equivalent to \(f_{L}^{1(2)} \) and \(-f_{L}^{2(2)} \) in \([40, 25].\) Notice that the contributions by \(C_{\phi \phi}^{3k} \) to \(g_{L}^q \) are suppressed by the \(s_{W}^{2} \) factor, which is a desirable feature as we are neglecting its effect on single-top production.

2.2 Four-quark operators

The choice of independent \(Wtb \) operators in \([28, 30] \) could have included another operator: \(O_{Wq}^{ij} = \bar{q}_{L_{i}} \gamma_{\mu} \tau_{a} D_{\mu} \bar{q}_{L_{j}} \) \(W_{\mu \nu}^{0} \) that is associated with an off-shell \(W \)-propagator contribution to single top quark production \([29, 39].\) However, since \(O_{Wq}^{ij} \) is related through the equations of motion to four-fermion operators, we choose to include the latter in our basis of independent operators. Bases for the \(SU(2) \times \) \(U(1) \)-gauge invariant dimension-six four-quark operators have been given in \([29, 30].\) The four-quark operators related to \(O_{Wq}^{ij} \) involve left quarks only. In the notation of \([30] \) the four-left-quark basis operators are given by:

\[
O_{qq}^{(1)ijkl} = (\bar{q}_{L_{i}} \gamma_{\mu} q_{L_{j}})(\bar{q}_{L_{k}} \gamma_{\mu} q_{L_{l}}), \quad O_{qq}^{(3)ijkl} = (\bar{q}_{L_{i}} \gamma_{\mu} \tau_{I} q_{L_{j}})(\bar{q}_{L_{k}} \gamma_{\mu} \tau_{I} q_{L_{l}}).
\]

Other chiral structures can also contribute to single top production, some of them have been considered in \([11].\) The operators involving the first and third families that we consider in this paper are:

\[
\begin{align*}
O_{qq}^{(1)1113} &= (\bar{u}_{L_{1}} \gamma_{\mu} u_{L_{3}} + \bar{d}_{L_{1}} \gamma_{\mu} d_{L_{3}})(\bar{u}_{L_{1}} \gamma_{\mu} t_{L_{3}} + \bar{d}_{L_{1}} \gamma_{\mu} b_{L_{3}}), \\
O_{qq}^{(3)1113} &= 2(\bar{u}_{L_{1}} \gamma_{\mu} d_{L_{3}})(\bar{d}_{L_{1}} \gamma_{\mu} t_{L_{3}} + \bar{d}_{L_{1}} \gamma_{\mu} b_{L_{3}}) + (\bar{u}_{L_{1}} \gamma_{\mu} u_{L_{3}} - \bar{d}_{L_{1}} \gamma_{\mu} d_{L_{3}})(\bar{u}_{L_{1}} \gamma_{\mu} t_{L_{3}} - \bar{d}_{L_{1}} \gamma_{\mu} b_{L_{3}}), \\
O_{qq}^{(1)3113} &= (\bar{t}_{L_{3}} \gamma_{\mu} u_{L_{1}} + \bar{b}_{L_{3}} \gamma_{\mu} d_{L_{1}})(\bar{u}_{L_{1}} \gamma_{\mu} t_{L_{3}} + \bar{d}_{L_{1}} \gamma_{\mu} b_{L_{3}}), \\
O_{qq}^{(3)3113} &= 2(\bar{t}_{L_{3}} \gamma_{\mu} d_{L_{1}})(\bar{d}_{L_{3}} \gamma_{\mu} t_{L_{1}} + \bar{d}_{L_{3}} \gamma_{\mu} b_{L_{1}}) + (\bar{t}_{L_{3}} \gamma_{\mu} u_{L_{1}} - \bar{d}_{L_{3}} \gamma_{\mu} d_{L_{1}})(\bar{t}_{L_{1}} \gamma_{\mu} t_{L_{3}} - \bar{d}_{L_{1}} \gamma_{\mu} b_{L_{3}}), \\
O_{qq}^{(1)1133} &= (\bar{u}_{L_{3}} \gamma_{\mu} u_{L_{3}} + \bar{d}_{L_{3}} \gamma_{\mu} d_{L_{3}})(\bar{t}_{L_{1}} \gamma_{\mu} t_{L_{3}} + \bar{b}_{L_{1}} \gamma_{\mu} b_{L_{3}}), \\
O_{qq}^{(3)1133} &= 2(\bar{u}_{L_{3}} \gamma_{\mu} u_{L_{3}})(\bar{t}_{L_{1}} \gamma_{\mu} t_{L_{3}} + \bar{b}_{L_{1}} \gamma_{\mu} b_{L_{3}}) + (\bar{u}_{L_{3}} \gamma_{\mu} d_{L_{3}} - \bar{t}_{L_{3}} \gamma_{\mu} d_{L_{3}})(\bar{t}_{L_{1}} \gamma_{\mu} t_{L_{3}} - \bar{b}_{L_{1}} \gamma_{\mu} b_{L_{3}}), \\
O_{qq}^{(1)3333} &= (\bar{t}_{L_{3}} \gamma_{\mu} t_{L_{3}} + \bar{b}_{L_{3}} \gamma_{\mu} b_{L_{3}})(\bar{u}_{L_{1}} \gamma_{\mu} u_{L_{3}} + \bar{d}_{L_{1}} \gamma_{\mu} d_{L_{3}}), \\
O_{qq}^{(3)3333} &= 2(\bar{t}_{L_{3}} \gamma_{\mu} t_{L_{3}})(\bar{u}_{L_{1}} \gamma_{\mu} u_{L_{3}} + \bar{d}_{L_{1}} \gamma_{\mu} d_{L_{3}}) + (\bar{t}_{L_{3}} \gamma_{\mu} t_{L_{3}} - \bar{b}_{L_{3}} \gamma_{\mu} b_{L_{3}})(\bar{u}_{L_{1}} \gamma_{\mu} u_{L_{3}} + \bar{d}_{L_{1}} \gamma_{\mu} d_{L_{3}}),
\end{align*}
\]
with $O_{qq}^{(1)3113}$ and $O_{qq}^{(1,3)1133}$ Hermitian. All of the operators $[\bar{q}q]$ are relevant to single-top production, except for $O_{qq}^{(1)1133} + O_{qq}^{(3)3113}$ and $O_{qq}^{(1)1133}$ which contain only terms with an even number of top fields and can be bounded by their contribution to top-pair production. The operators O_{qq} except for $O_{qq}^{(1)1133}$ with $q = s, t, b$ comprise single-top and two-top vertices. The ATLAS Coll. [41] has obtained tight limits on the operators O_{qq} that are not associated to the top but to the bottom quark: $O_{qq}^{(1)3113}$, they are related to those in (4) by $O_{qq}^{(1)1133}$, $O_{qq}^{(3)3113}$ enter the decomposition into basis operators of the flavor-diagonal operators O_{qW} and O_{qW}^{33}, and both $O_{qq}^{(3)1113}$ and $O_{qq}^{(3)3313}$ that of the flavor off-diagonal operator O_{qW}^{13}. If we denote by $O_{qq}, O_{qq}^{(1)}$ the four left-quark operators in the basis of [29], they are related to those in [4] by $O_{qq}^{ijkl} = 1/2O_{qq}^{(1)ijkl}$ and $O_{qq}^{ijkl} = 1/4(O_{qq}^{ijkl} + O_{qq}^{(1)ijkl})$ [29]. We point out also that the four-quark operator considered in [7] is $O_{qq}^{(3)} = O_{qq}^{(3)1133}$.

3 Limits from decay processes

In this section we discuss the limits on effective couplings that come from several FCNC processes as well as those from observables associated to $t \to Wq$ decays. A global analysis of FCNC top-quark interactions is given in [14], including NLO QCD corrections [17] [18], in which many processes with direct contributions from effective top vertices are surveyed to find those yielding the best bounds on effective couplings. Here, we restrict ourselves to a simplified analysis involving only the two processes that play the most important role in setting bounds for the operators $O_{qq}^{(1)1133}$, $O_{qq}^{(3)3113}$ and $O_{qq}^{(1)1133}$: the on-shell $t \to jZ$ decay and the single top $pp \to t_\gamma, \bar{t_\gamma}$ production. With these two experimental inputs we will be able to obtain constraints similar to those in [14]. In addition, we consider also two FCNC processes that are not associated to the top but to the bottom quark: $B \to X_q \gamma$ and $Z \to b\bar{q}$. These will provide bounds on the operators O_{dA}^{k3}, O_{dA}^{k3} and $O_{eq}^{(k)3}$.

3.1 Limits from FCNC processes

Let us briefly describe how we can obtain bounds for the NC part of the operators. We will start with the ones that do not involve the top quark but the bottom quark.

The main contribution to the radiative decay $B \to X_q \gamma$ comes from the operator $O_7 = e^{\frac{2}{16\pi^2}} m_b a_\mu b_\mu b_R F_{\mu\nu}$ with $q = d, s$, involving the right-handed b quark and the left-handed light quark q. However, there is also a (smaller) contribution from the right-handed q operator O_7^R. We observe that the operator O_{dA}^{k3} directly (at tree level) contributes to O_7^R at the electroweak scale, with:

$$-\frac{4G_F}{\sqrt{2}} V_{tb} V_{tq}^* \frac{e}{16\pi^2} m_b C_7^R = C_{dA}^{3k} \frac{g_{SW}}{\sqrt{2}} \frac{v}{\Lambda^2} \tag{7}$$

In Ref. [42] (Eq. 42) we can find a specific expression that singles out the contribution from C_7^R:

$$Br(B \to X_q \gamma) = Br^{SM}(B \to X_q \gamma) + 1.22 \times 10^{-2} |V_{tq}|^2 \left| \frac{C_7^R}{C_7^{SM}} \right|^2 \tag{8}$$

Where $C_7^{SM}(\mu = m_t) = -0.189, V_{td} = 0.0088, V_{ts} = 0.0405$, and the SM values for the branching fractions are given as [42]:

$$10^4 Br^{SM}(B \to X_s \gamma) = 3.61 \pm 0.4,$$
10^5 Br^{SM}(B \to X_d \gamma) = 1.38 \pm 0.22.

We can use the experimental results [43]:

\begin{align*}
10^4 Br^{\exp}(B \to X_s \gamma) &= 3.43 \pm 0.21 \pm 0.07, \\
10^5 Br^{\exp}(B \to X_d \gamma) &= 0.92 \pm 0.30,
\end{align*}

to set the limits \(|C_{7}^{Rd}| < 0.32\) and \(|C_{7}^{Rs}| < 0.36\) at 95\% CL. When we translate these limits for the \(C_{dA}\) coefficients we get an extra suppression from the CKM matrix elements:

\[C_{dA}^{31} < 0.96 \times 10^{-5}, \quad C_{dA}^{32} < 5.4 \times 10^{-5}. \quad (9)\]

These are the strongest limits we have obtained for any of the effective operators. FCNC processes will also provide the strongest constraints to all but the \(O_{\phi ud}\) operator as we shall see next.

Operators \(O_{\phi q}^{(+)k3}\) and \(O_{dZ}\) with an effective \(Zbq\) coupling contribute directly to \(Z \to b\bar{q}\) decays \((q = d, s)\). We can use the (90\%C.L.) LEP upper limit [44]

\[R_{bl} = \frac{\sum_{q=d,s} \sigma(e^+e^- \to b\bar{q}, \bar{b}q)}{\sigma(e^+e^- \to hadrons)} \leq 2.6 \times 10^{-3} \quad (10)\]

to set bounds on these coefficients. Numerically, we can write

\[\frac{\Gamma(Z \to b\bar{q}, \bar{b}q)}{\Gamma(Z \to hadrons)} = \left(2.63|C_{\phi q}^{(+13)}|^2 + 2.86|C_{dZ}^{31}|^2\right) \times 10^{-3} + (13 \to 23), \quad (11)\]

and obtain the following bounds

\[1.0 \left(|C_{\phi q}^{(+13)}|^2 + |C_{\phi q}^{(+23)}|^2\right) + 1.1 \left(|C_{dZ}^{31}|^2 + |C_{dZ}^{32}|^2\right) \leq 1.0 \quad (12)\]

There are also (indirect) stringent bounds coming from the \(Br(B_d \to \mu^+\mu^-)\) and \(Br(B_s \to \mu^+\mu^-)\) measurements [45]: \(|C_{\phi q}^{(+13)}| < 0.005\) and \(|C_{\phi q}^{(+23)}| < 0.015\).

The remaining operators that can be constrained with top-quark FCNC processes are \(O_{\phi q}^{(-)k3}\), \(O_{uZ}^{k3}\) and \(O_{uA}^{k3}\). In Ref. [14] there is a thorough analysis based on the \(t \to jZ\) decay including off-shell contributions. Let us simplify our discussion and consider the on-shell \(Br(t \to jZ)\) only:

\[Br(t \to jZ) = 3.34 \times 10^{-4} \Sigma_{k=1,2} \left(\left|\frac{C_{\phi q}^{(-)k3}}{2x} - 2xC_{uZ}^{k3}\right|^2 + 2 \left|\frac{C_{\phi q}^{(-)k3}}{2} - 2C_{uZ}^{k3}\right|^2\right)\]

with \(x = m_Z/m_t\) \((2x = 1.05)\). The (95\%CL) experimental upper bound is: \(Br(t \to jZ) < 5.0 \times 10^{-4}\) [46], therefore

\[\Sigma_{k=1,2} \left(\left|\frac{C_{\phi q}^{(-)k3}}{2x} - 2xC_{uZ}^{k3}\right|^2 + 2 \left|\frac{C_{\phi q}^{(-)k3}}{2} - 2C_{uZ}^{k3}\right|^2\right) < 1.5 \quad (13)\]

For the other operator \(O_{uA}^{k3}\) the CMS collaboration has measured the process \(\sigma(pp \to t\gamma, \bar{t}\gamma)\) that provides the most stringent limit to date [14]:

\[0.460|C_{uA}^{13}|^2 + 0.037|C_{uA}^{23}|^2 < 0.067 \quad (14)\]

Equations [9], [12], [13] and [14] will be used to define the allowed parameter regions for the \(Wtq\) couplings. They are based on the NC part of the dimension six operators. Below, we will describe the processes and experimental values where the CC part plays the leading role.
3.2 Limits from CC processes.

We turn next to the charge-current decays $t \to Wq$, $q = d, s, b$. Specifically, in this section we discuss the total width, the branching ratios and W-helicity fractions in top decay. From a theoretical standpoint, it has been reported that the $t \to Wq$ decay could get a 50% enhancement in the context of the MSSM \cite{17}, which underscores the importance of top decay measurements like the ratio of $Br(t \to Wb)$ to $Br(t \to Wq)$ \cite{38}.

In terms of form factors, the $t \to qW$ width for each helicity of the W boson, including terms proportional to m_q, is given by \cite{40 25 38 49}:

\[
\Gamma_0 = A \left[|a_t V_L^q - g_R^q|^2 + |a_t V_R^q - g_L^q|^2 + a_q G_0^q \right], \\
\Gamma_+ = A \left[|V_R^q - a_t g_L^q|^2 + a_q G_+^q \right], \\
\Gamma_- = A \left[|V_L^q - a_t g_R^q|^2 + a_q G_-^q \right],
\]

\[
A = \frac{g^2 m_t}{64 \pi} \left(1 - \frac{m_W^2}{m_t^2} \right),
\]

with

\[
G_0^q = [(a_t^2 + 1)(M_L^q + M_R^q) - 2a_t M_{LR}^q] / (a_t^2 - 1), \quad G_{+(-)}^q = M_{L(R)}^q - M_{R(L)}^q + G_0^q,
\]

\[
M_{LR}^q = 2 Re \{ V_L^q V^{*}_R + g_R^q g^{*}_L \}, \quad M_{L(R)}^q = 2 Re \{ V_{L(R)}^q g^{(q)}_{L(R)} \},
\]

where $a_t = m_t/m_W$ and so is $a_q = m_q/m_W$ for any down type quark. NLO QCD corrections (for $m_b = 0$) to these W-helicity widths can be found in \cite{50}. We can use the expressions (15) to obtain the ratio $Br(t \to Wb)/\Sigma Br(t \to Wq)$, the total decay width, and the W-helicity branching fractions.

The recent experimental measurement \cite{15} of the ratio:

\[
\mathcal{R} = \frac{Br(t \to Wb)}{\Sigma Br(t \to Wq)} = 1.014 \pm 0.003 \text{(stat)} \pm 0.032 \text{(syst)},
\]

is given by CMS also as a 95% C.L. lower bound $\mathcal{R} > 0.955$ once the condition $\mathcal{R} \leq 1$ has been imposed \cite{48} (see also \cite{51 52} for previous Tevatron results). We use this experimental lower bound on \mathcal{R} to obtain the following bounds at 95% C.L.:

\[
\left\{ \begin{array}{c}
|C_{\varphi q}^{(\pm)k3}|, |C_{\varphi q}^{3k}| < 7.29 \\
|C_{uZ}^{k3}|, |C_{dZ}^{3k}| < 3.16
\end{array} \right., \quad (k = 1, 2), \quad \text{or} \quad \left\{ \begin{array}{c}
V_L^q, V_R^q < 0.22 \\
F_R^q, F_L^q < 0.17
\end{array} \right., \quad (q = d, s),
\]

\[
(16)
\]

given here for convenience for both effective couplings and form factors.

Equation (15) also yields the W-helicity fractions in $t \to bW$ decays:

\[
F_0 = \Gamma_0 / \Gamma, \quad F_L = \Gamma_- / \Gamma.
\]

\[
(17)
\]

$F_{0,L}$ are the most sensitive observables to the flavor-diagonal couplings C_{uZ}^{33}, C_{dZ}^{33}, as has long been known and duly exploited in the recent phenomenological literature \cite{7 8}. In this paper we take into account the recent measurement of W-helicity fractions in top decays from $t\bar{t}$ production at 8 TeV, with 20 fb$^{-1}$ of data collected at the LHC \cite{25}, which constitutes an improvement from previous measurements \cite{39}. We obtain bounds for each effective coupling at 95% CL from the measured W-helicity fractions by means of a likelihood analysis for the two correlated observables $F_{0,L}$, as detailed in equations (18)–(20) of \cite{7}. From the CMS results \cite{25},

\[
F_0 = 0.653 \pm 0.016 \text{(stat)} \pm 0.024 \text{(syst)}, \quad F_L = 0.329 \pm 0.009 \text{(stat)} \pm 0.025 \text{(syst)},
\]

\[
(18)
\]
we get the single-coupling bounds:

$$\begin{align*}
|C_{\psi ud}^{33}| &< 5.38, \quad |C_{\psi d}^{33}| < 1.27 \\
-0.73 < C_{\psi uZ}^{33} < 1.63, \quad |C_{\psi uZ}^{33}| < 4.36,
\end{align*}$$

or

$$\begin{align*}
|V_R| < 0.16, \quad |g_L| < 0.07 \\
-0.09 < g_{Rr} < 0.04, \quad |g_{Rl}| < 0.24
\end{align*}$$

(19)

The partial widths (15a) do not depend on the left-handed vector couplings $C_{\psi q}^{(\pm)33}$ (or, equivalently, V_L) if the other effective couplings vanish, so no single-coupling bounds are obtained. From the indirect measurement of the total top width [48] we obtain:

$$-3.02 < C_{\psi rq}^{(\pm)33} < 3.7, \quad |\delta C_{\psi q}^{(\pm)33}| < 16.13, \quad \text{or} \quad -0.09 < \delta V_{Lr} < 0.11, \quad |\delta V_{Ll}| < 0.48.$$

As discussed below, stronger bounds on $C_{\psi q}^{(\pm)33}$ result from single-top production cross section.

4 Single top quark production

The effective operators [2] contribute to the single top production processes $pp \to tq$ (with q a quark lighter than b) and $p\bar{p} \to tb$, and to the associated production process $p\bar{p} \to tW$, through both their CC and NC vertices. Furthermore, the four-quark operators [5] contribute to the first two types of single-top production. In this section we discuss single-top production assuming for simplicity a diagonal CKM mixing matrix, to keep the diagrams down to a manageable number. Alternatively, the diagrams in Figures 1–6 can be considered as given in the weak-interaction quark basis.

The Feynman diagrams for the process $pp \to tq$ are shown in Figures 1 and 2. In the SM, ignoring CKM mixing, only the tbW CC vertex can lead to single-top production in pp collisions, resulting in the four Feynman diagrams shown in Figure 1(a). Each one of the operators $O_{\psi q}^{(\pm)33}$, $O_{\psi ud}^{33}$, $O_{\psi dZ}^{33}$ or $O_{\psi uZ}^{33}$ contains a flavor-diagonal CC vertex, leading to four SM-like diagrams with an effective tbW vertex, Figure 1(b). Flavor off-diagonal charged-current effective vertices from the operators $O_{\psi q}^{(\pm)33}$, $O_{\psi ud}^{33}$, $O_{\psi dZ}^{33}$ or $O_{\psi uZ}^{33}$ lead to four t-channel and two s-channel diagrams for each operator type and each value of $j = 1, 2$, Figure 1(c). The operators $O_{\psi q}^{(\pm)33}$ ($j = 1, 2$) contain a flavor off-diagonal charged-current effective vertex for the b quark, giving rise to the diagram in Figure 1(d). The flavor-changing NC effective vertices contained in $O_{\psi q}^{(\pm)33}$, $O_{\psi uZ}^{33}$ induce nine t/u-channel and five s-channel diagrams mediated by a Z boson for each operator type and each value of $j = 1, 2$, Figure 1(e).

We point out here that the operator O_{uZ}^{33} ($j = 1, 2$) would lead to an additional set of diagrams analogous to those in Figure 1(d), but mediated by a photon instead of a Z boson. The γ-mediated t-channel diagrams lead to a Coulomb divergence in the full phase-space cross section, which is the reason why we must consider the operators O_{uZ}^{33} instead of O_{uW}^{33}. Notice that the extrapolation of detector-level experimental data to a parton-level cross section for $pp \to tq$ in full phase space, as given in [53] [54] [55], involves the explicit assumption of validity of the SM in which flavor-changing photon vertices are absent.

The operators $O_{\psi q}^{(\pm)k3}$ ($k = 1, 2, 3$) contain flavor diagonal and off-diagonal CC vertices involving a b quark that induce diagrams with two effective CC vertices, as shown in Figures 2 (a) and (b). Furthermore, $O_{\psi q}^{(\pm)n3}$ and $O_{dZ}^{3n} (n = 1, 2, 3)$ contain flavor diagonal and off-diagonal NC vertices involving a b quark which, combined with the flavor-changing NC vertices involving t in $O_{\psi q}^{(\pm)3}$ and O_{uZ}^{3j} ($j = 1, 2$) lead to the Z-mediated diagrams with two effective vertices shown in Figures 2 (c) and (d). We take into account in our analysis these diagrams with two effective vertices, to check that their contributions are indeed small within the allowed regions in coupling space, as discussed below.

The process $p\bar{p} \to tb$ also involves contributions from both flavor off-diagonal and diagonal tWq vertices. The associated Feynman diagrams involving one and two effective vertices are displayed in Figures 3 and 4 for which a description completely analogous to the one given for the two previous
figures applies. As for the associated tW production, it turns out not to play a relevant role in our results so we do not dwell further on it here for brevity.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{feynman_diagrams.png}
\caption{Feynman diagrams for the process $pp \to tq$. (a) SM diagrams, neglecting CKM mixing. (b) One flavor-diagonal CC effective vertex proportional to $C_{\varphi q}^{(+33)}$, $C_{\varphi u d}^{33}$, C_{aZ}^{33} or C_{uZ}^{33} ($q_u, q_d = u, d$ or c, s). (c) One flavor off-diagonal charged-current effective vertex proportional to $C_{\varphi q}^{(+33)}$, $C_{\varphi j}^{33}$, C_{aZ}^{33} or C_{uZ}^{33} ($j = 1, 2$). (d) One flavor off-diagonal charged-current effective vertex proportional to $C_{\varphi q}^{(-33)}$, $C_{\varphi j}^{33}$, C_{aZ}^{33} or C_{uZ}^{33} ($j = 1, 2$). (e) One flavor-changing NC effective vertex proportional to $C_{\varphi q}^{(-33)}$, C_{aZ}^{33} or C_{uZ}^{33} ($j = 1, 2$; $q = u, d, c, s$; $Q = q, b$).}
\end{figure}

In Figure 5 we show the Feynman diagrams for $pp \to tq$ arising from the four-quark vertices from the operators (5). As seen in the figure, in principle all three types of operators (involving three, two and one light quark, respectively) in (5) contribute to this process. It is apparent from Figure 5 (c), however, that the sensitivity of tq production to operators with a single light quark must be negligibly small due to the small PDF of the b quark. The contribution of the four-quark operators with two and one light quarks to $pp \to tb, \bar{t}b$ production is shown in Figure 6. It is in connection with these diagrams that tb production plays its most important role in this paper, since it furnishes the only available limits on the four-quark couplings (5) with a single light quark and the tightest ones on those with two light quarks. In this section we have restricted our discussion of four-quark operators to those involving only first- and third-generation quarks for brevity. However, the extension of equation (5) and diagrams 5 to include second-generation quarks is straightforward. In section 5 below we discuss, besides the operators (5), also those four-quark couplings involving second-generation quarks to which single-top production possesses significant sensitivity.

In our computations of single-top production cross sections we always take into account the decay vertex $t \to bW$, not shown in Figures 1–4 for simplicity, which can proceed through the SM vertex or flavor-diagonal effective ones. This leads to the cross section $\sigma(pp \to tq \to bWq) = \sigma(pp \to tq)Br(t \to bW)$, with $Br(t \to bW)$ the branching fraction for this decay mode. If we restrict ourselves to flavor-diagonal effective operators the decay vertex is irrelevant, since $Br(t \to bW)$ cannot depend on flavor-diagonal couplings and therefore it cancels in the ratio $\sigma_{\text{eff}}/\sigma_{\text{SM}}$ of the effective and SM cross sections. When, as in this study, flavor off-diagonal vertices are considered, the branching fraction cannot be
Figure 2: Feynman diagrams for the process $pp \to tq$ with two effective vertices. (a) Two flavor off-diagonal charged-current vertices, one proportional to $C^{(\pm)3}_{q,q}$ and one proportional to $C^{(\pm)j3}_{\bar{q},d}$, $C^{j3}_{\bar{q},d}$ or $C^{j3}_{u,Z}$, $k,j = 1,2$. (b) Two CC vertices, a flavor off-diagonal one proportional to $C^{(\pm)3}_{q,q}$, $k = 1,2$, and a flavor-diagonal one proportional to $C^{(\pm)33}_{q,q}$, $C^{33}_{\bar{q},ud}$, $C^{33}_{\bar{q},dZ}$ or $C^{33}_{u,Z}$. (c) Two NC vertices, a flavor-diagonal one proportional to $C^{(\pm)33}_{q,q}$ or C^{33}_{dZ}, and a flavor-changing one proportional to $C^{(-)j3}_{q,q}$ or $C^{j3}_{u,Z}$, $j = 1,2$. (d) Two flavor-changing NC vertices, one proportional to $C^{(+)}k3_{q,q}$ or $C^{3k}_{\bar{q},Z}$ and one proportional to $C^{(-)j3}_{q,q}$ or $C^{j3}_{u,Z}$, $k,j = 1,2$.

Figure 3: Feynman diagrams for the process $pp \to tb$, $t\bar{b}$ with less than two effective vertices. (a) SM diagram. (b) One flavor-diagonal CC effective vertex proportional to $C^{(\pm)33}_{q,q}$, $C^{33}_{\bar{q},ud}$, $C^{33}_{\bar{q},dZ}$ or $C^{33}_{u,Z}$. (c) One flavor off-diagonal charged-current vertex effective proportional to $C^{(\pm)j3}_{q,q}$. (d) One FCNC effective vertex proportional to $C^{(-)j3}_{q,q}$ or $C^{j3}_{u,Z}$. ($j = 1,2$.)

 ignored since it does depend on those couplings. We find that the dependence of $Br(t \to bW)$ on the off-diagonal effective couplings tends to relax the bounds on those couplings relative to the ones that would be obtained from the pure production cross section, without including top decay, by up to 15% for operators involving first-generation quarks.

The effective cross section for single-top production can be expressed perturbatively as a power series in the effective couplings. As seen from Figures 2 and 3, the cross section for production and decay receives contributions from the effective vertices up to the sixth power in the dim-6 effective couplings. Higher powers arise from the additional dependence of the top propagator on effective couplings. We
Figure 4: Feynman diagrams for the process $pp \rightarrow tb, \bar{t}b$ with two effective vertices. (a) Two flavor off-diagonal charged-current vertices, one proportional to $C_{\varphi q}^{(\pm)k3}$ and one to $C_{\varphi q}^{(\pm)j3}$, $C_{\varphi ud}^{3j}$ or $C_{\varphi dZ}^{3j}$. (b) Two CC vertices, a flavor off-diagonal one proportional to $C_{\varphi q}^{(\pm)k3}$ and a flavor-diagonal one proportional to $C_{\varphi q}^{(\pm)33}$, $C_{\varphi ud}^{33}$ or $C_{\varphi dZ}^{33}$. (c) Two flavor-changing NC vertices, one proportional to $C_{\varphi q}^{(+k3}$ or $C_{\varphi dZ}^{3k}$ and one to $C_{\varphi q}^{(-k3}$ or $C_{\varphi dZ}^{3j}$. (d) Two NC vertices, a flavor-diagonal one proportional to $C_{\varphi q}^{(+33}$ or $C_{\varphi dZ}^{33}$ and a flavor-changing one proportional to $C_{\varphi q}^{(-33}$ or $C_{\varphi dZ}^{33}$. In all cases $k, j = 1, 2$.

Figure 5: Feynman diagrams for the process $pp \rightarrow tq$ with one contact-interaction four-quark vertex (a) proportional to $C_{qq}^{(1)1113}$ or $C_{qq}^{(3)1113}$, (b) proportional to $C_{qq}^{(1)3113}$ or $C_{qq}^{(3)1133}$, (c) proportional to $C_{qq}^{(1)3313}$ or $C_{qq}^{(3)3313}$.

Figure 6: Feynman diagrams for the process $pp \rightarrow tb, \bar{t}b$ with one contact-interaction four-quark vertex (a) proportional to $C_{qq}^{(1)3113}$ or $C_{qq}^{(3)1133}$, (b) proportional to $C_{qq}^{(1)3313}$ or $C_{qq}^{(3)3313}$.

have explicitly verified in all the cases discussed below that, for values of the effective couplings within their allowed regions, the effect of terms with powers higher than quadratic is negligibly small.

Due to the GIM mechanism for FCNC and to the smallness of CKM third-generation mixing in
flavor off-diagonal charged-currents, flavor off-diagonal processes involving the top quark are strongly suppressed at tree level (and beyond) in the SM. For that reason, terms linear in flavor off-diagonal dim-6 effective couplings in the cross section ($\mathcal{O}(1/\Lambda^2)$) are negligibly small since they arise from the interference of amplitudes involving a dim-6 effective vertex with the SM amplitude. By the same token, the contributions to the cross section at order $1/\Lambda^4$ of flavor off-diagonal dim-8 operators are also suppressed. At that order, however, there can be contributions from dim-8 flavor-diagonal operators interfering with the SM which, although expected to be small, are currently unknown and constitute an inherent uncertainty of the EFT analysis.

On the other hand, that uncertainty does not affect the flavor-diagonal couplings $C^{\pm 33}_{\varphi q}$ and C^{33}_{uZ}, which contribute to the single-top production cross section dominantly through linear terms at order $1/\Lambda^2$ from interference with the SM model. The other two flavor-diagonal couplings, $C^{33}_{\varphi ud}$ and $C^{33}_{d W}$, have their linear interference terms suppressed by m_b and, therefore, significantly smaller.

4.1 Statistical analysis

Let the experimental and theoretical SM cross sections for single top production in pp or $p \bar{p}$ collisions be

$$\sigma_{\text{exp}} + \Delta \sigma_{\text{exp}} = \sigma_{\text{exp}} \times \left(1 + \varepsilon_{\text{exp}} \right), \quad \sigma_{\text{thr}} + \Delta \sigma_{\text{thr}} = \sigma_{\text{thr}} \times \left(1 + \varepsilon_{\text{thr}} \right),$$

where we have allowed for asymmetrical uncertainties. The theoretical cross section σ_{thr} is assumed to be computed in the SM, possibly at NNLO+NNLL (e.g., [56, 57, 58]). We denote by $\tilde{\sigma}(\lambda)$ the cross section in the effective theory, computed at LO in the effective couplings λ and at the same order as σ_{thr} in the SM couplings, so that $\tilde{\sigma}(0) = \sigma_{\text{thr}}$. Furthermore, we denote by $\sigma(\lambda)$ the cross section in the effective theory computed at LO in both the effective couplings and the SM, and $K(\lambda) = \tilde{\sigma}(\lambda)/\sigma(\lambda)$, so that $K(0)$ is the K-factor in the SM. We base our analysis on the inequalities

$$\tilde{\sigma}(\lambda) - \sigma(0) \leq \sigma_{\text{exp}} - \sigma_{\text{thr}} + \sqrt{\sigma^2_{\text{exp}} \varepsilon^2_{\text{exp}} + \sigma^2_{\text{thr}} \varepsilon^2_{\text{thr}}} - \sqrt{\sigma^2_{\text{exp}} \varepsilon^2_{\text{thr}} + \sigma^2_{\text{thr}} \varepsilon^2_{\text{thr}}}.$$

Dividing both sides by σ_{thr} we get,

$$\frac{K(\lambda) \sigma(\lambda)}{K(0) \sigma(0)} \leq R_{\text{exp}} \left(1 + \sqrt{\varepsilon^2_{\text{exp}} + \varepsilon^2_{\text{thr}}/R_{\text{exp}}^2} \right),$$

with $R_{\text{exp}} = \sigma_{\text{exp}}/\sigma_{\text{thr}}$. In [22] the factor $K(\lambda)/K(0) = 1 + \mathcal{O}(\alpha_s \lambda)$, so at LO in the SM we set it to 1. Thus, finally, at LO in both the effective and the SM couplings, we get

$$\frac{\sigma(\lambda)}{\sigma(0)} \leq R_{\text{exp}} \left(1 + \sqrt{\varepsilon^2_{\text{exp}} + \varepsilon^2_{\text{thr}}/R_{\text{exp}}^2} \right).$$

On the right-hand side we identify the ratio R_{exp} of cross sections for single-top production and decay $t \to bW$ with the ratio of production cross sections, from which it differs by multiplication of both numerator and denominator by $B r(t \to bW) = |V_{tb}|^2 + \mathcal{O}(10^{-4})$. On the left-hand side of (23) the LO cross section $\sigma(\lambda)$ enters only through the ratio $R(\lambda) = \sigma(\lambda)/\sigma(0)$, which does not depend on the tree-level cross section normalization. Furthermore, for small values of λ, the relative scale and PDF uncertainties are much smaller for $R(\lambda)$ than for the cross sections themselves.
We point out, parenthetically, that (21) is different from the similarly-looking equation
\[\sigma(\lambda) - \sigma(0) \lesssim \sigma_{\text{exp}} - \sigma_{\text{thr}} + \sqrt{\sigma_{\text{exp}}^2 \varepsilon_{\text{exp}}^2 + \sigma_{\text{thr}}^2 \varepsilon_{\text{thr}}^2} - \sqrt{\sigma_{\text{exp}}^2 \varepsilon_{\text{exp}}^2 + \sigma_{\text{thr}}^2 \varepsilon_{\text{thr}}^2}. \] (24)

This inequality does depend on the tree-level cross section normalization. Equation (24) can be rewritten as
\[\frac{\sigma(\lambda)}{\sigma(0)} \lesssim K(0) R_{\text{exp}} \left(1 + \sqrt{\varepsilon_{\text{exp}}^2 + \varepsilon_{\text{thr}}^2 / R_{\text{exp}}^2} \right) + 1 - K(0), \] (25)
which is different from (23), in particular, because it depends explicitly on \(K(0) \), and therefore also on the normalization of the tree-level cross section. In the case of the single-top production cross sections for combined \(tq + \bar{t}q \) production measured at the LHC, from the SM results of [56] and our tree-level results we get \(K(0) = 1.07 \). As a result, the bounds on effective couplings determined by (23) are only slightly tighter than those obtained from (25). On the other hand, for \(tb \) production at the Tevatron, from the SM result of [58] we get \(K(0) = 1.67 \), which leads to significantly more restrictive bounds obtained from (23) than from (25).

5 Results

In this section we present the results obtained from the processes considered in sections 3 and 4 as single-coupling limits and as two-coupling allowed regions for \(Wtq, Wtb \) and four-quark effective interactions. Our results are based on the cross sections for \(tq \) production measured by CMS:
\[
\begin{align*}
\sigma(pp \to tq + \bar{t}q) &= (67.2 \pm 6.1) \text{ pb}, \quad 7 \text{ TeV, 2.73 fb}^{-1} \quad [53], \\
\sigma(pp \to tq + \bar{t}q) &= (83.6 \pm 7.75) \text{ pb} \\
\sigma(pp \to tq) &= (53.8 \pm 4.65) \text{ pb}, \quad 8 \text{ TeV, 19.7 fb}^{-1} \quad [54], \\
\sigma(pp \to \bar{t}q) &= (27.6 \pm 3.92) \text{ pb}
\end{align*}
\] (26)

together with the NNLO SM predictions from [56]
\[
\begin{align*}
\sigma(pp \to tq + \bar{t}q) &= (64.6^{+2.1}_{-0.6} +1.5_{-1.7}) \text{ pb}, \quad 7 \text{ TeV}, \\
\sigma(pp \to tq + \bar{t}q) &= (87.2^{+2.8}_{-1.0} +2.0_{-2.2}) \text{ pb} \\
\sigma(pp \to tq) &= (56.4 \pm 2.1_{-0.3} \pm 1.1) \text{ pb}, \quad 8 \text{ TeV.} \\
\sigma(pp \to \bar{t}q) &= (30.7 \pm 0.7^{+0.9}_{-1.1}) \text{ pb}
\end{align*}
\] (27)

Further results on the \(tq \) production cross section at 7 TeV at the LHC, and on differential cross sections, have been given by ATLAS [55]. We comment on those data below in section 5.3. The cross section for \(tb \) production has been measured by CDF and D0:
\[
\sigma(p\bar{p} \to t\bar{b} + \bar{t}b) = (1.29^{+0.26}_{-0.24}) \text{ pb}, \quad 1.96 \text{ TeV, 19.4 fb}^{-1} \quad [59],
\] (28)

and computed at NNLO in the SM in [58]:
\[
\sigma(pp \to t\bar{b} + \bar{t}b) = (1.05 \pm 0.06) \text{ pb}, \quad 1.96 \text{ TeV}. \quad (29)
\]
Notice that tb production has also been observed at the LHC \cite{60, 61}. We have also taken into account the associated tW production cross section measured by CMS \cite{62, 63}, for which an approximate NNLO SM result is given in \cite{64}. We include as well in our results the measurements of W-helicity fractions in top decays, top decay width and ratio of branching fractions $Br(t \to Wb)/\sum Br(t \to Wq)$ discussed in section 3.2 as well as the various decay processes in section 3.1.

Some four-quark operators receive bounds from the $t\bar{t}$ production cross section (see section 5.4 below). In those cases we use the experimental measurements:

\begin{align*}
\sigma(pp \to t\bar{t}) &= (239 \pm 12.7) \text{ pb}, \quad 8 \text{ TeV}, \ 5.3 \text{ fb}^{-1} \ \cite{65}, \\
\sigma(pp \to t\bar{t}) &= (158.1 \pm 11) \text{ pb}, \quad 7 \text{ TeV}, \ 2.3 \text{ fb}^{-1} \ \cite{66}, \\
\sigma(p\bar{p} \to t\bar{t}) &= (7.6 \pm 0.41) \text{ pb}, \quad 1.96 \text{ TeV}, \ 8.8 \text{ fb}^{-1} \ \cite{67},
\end{align*}

as quoted by the experimental collaborations. NNLO SM results for $t\bar{t}$ production at 7 TeV have also been given in \cite{70, 71}, which are consistent with the values quoted above.

We compute the tree-level cross sections for single-top production and decay with the matrix-element Monte Carlo program MadGraph5_AMC@NLO version 2.2.3 \cite{31, 72}. The effective operators were implemented in MadGraph5 by means of the UFO \cite{73} interface of the program FeynRules version 2.0.33 \cite{74}. In all cases we set $m_t = 172.5$ GeV, $m_b = 4.7$ GeV, $m_Z = 91.1735$ GeV, $m_W = 80.401$ GeV, $m_h = 125$ GeV, $\alpha(m_Z) = 1/132.507$, $G_F = 1.1664 \times 10^{-5}$ GeV$^{-2}$, $\alpha_S(m_Z) = 0.118$, and the Higgs vacuum-expectation value $v = 246.22$ GeV. We set the renormalization and factorization scales fixed at $\mu_R = m_t = \mu_F$ and use the parton-distribution functions CTEQ6–L1 as implemented in MadGraph5. The new physics scale Λ is set to 1 TeV. Furthermore, we take into account full CKM mixing in our computations, though its effects on our results are very limited. As expected, third-generation mixing is negligible and could be safely ignored. For values of the effective couplings within the allowed regions obtained here, Cabibbo mixing becomes relevant only for certain four-quark operators, as discussed in more detail below.

5.1 Limits on flavor off-diagonal couplings

In Table 1 we gather 95% CL limits on flavor off-diagonal Wtq effective couplings taken to be non-zero one at a time. All operators in \cite{2} involve both W and Z/A bosons, except for $O_{\varphi ud}^{3k}$. Thus, in the table we show limits originating from processes involving vertices Vtq with V a charged or neutral vector boson, and with q a first-generation quark (upper two rows) or second-generation one (lower two rows). On the first row we give the best bounds on those couplings involving flavor off-diagonal charged-current vertices Wtd, obtained from CMS data for single t production at 8 TeV \cite{54}. The cross section for combined $t + \bar{t}$ production at the same energy leads to somewhat weaker bounds, as seen in the figures below. The tightest limits for effective couplings associated to the flavor off-diagonal charged-current vertices Wts stem from the ratio of top branching fractions $Br(t \to Wb)/\sum_q Br(t \to Wq)$ \cite{38}, and are shown on the third row of the table. We remark that direct bounds on $C_{\varphi ud}^{3k}$, $k = 1, 2$, have not been given in the previous literature. However, an indirect limit $|C_{\varphi ud}^{31}| < 5 \times 10^{-3}$ is given in \cite{75} based on the contribution of $O_{\varphi ud}^{31}$ to $b \to d\gamma$.

15
Table 1: Limits on the seven operators that are relevant for the study on Wtq couplings. A comparison is made between limits coming from processes involving flavor off-diagonal charged-current interactions (first and third rows) and purely FCNC processes (second and fourth rows).

On the second and fourth rows of Table 1 we display the bounds on those same couplings obtained from FCNC processes. For the bounds on operators $O_{φq}^{(-)k3}$ and O_{dA}^{3k} we have used the decay $Z → b(d(s))$ in Eq. (12). Operators O_{dA}^{3k} contribute directly to $Br(B → X_qγ)$ and for them we obtain the strongest bounds in this study as seen in Eq. (9). For the bounds on operators $O_{φq}^{(-)k3}$ and O_{dA}^{3k} we have used the decay $t → Zu(e)$ (with on-shell Z) in Eq. (13) [14]. Finally, the best bounds on O_{dA}^{3k} come from the FCNC single top production process $σ(pp → tγ, tγ)$ [14].

Besides the single-coupling bounds in Table 1 we consider also several allowed two-parameter regions. In Figure 7 we display allowed regions for pairs of effective couplings having non-vanishing interference ($C_{φud}^{3k}/C_{dZ}^{3k}$ and $C_{φud}^{(-)k3}/C_{uZ}$, $k=1,2$) and for vector couplings ($C_{φud}^{3k}/C_{φq}^{(-)k3}$). Those regions are obtained at 95% CL, as described in section 4.1, from the production cross section for $tq + ̅tq$, with q lighter than b, in pp collisions at 7 TeV [53] (red hatched area in the figure), from the production cross section for $tq + ̅tq$ at 8 TeV [54] (black dashed line), from the intersection of the regions allowed by the production cross sections for $tq, ̅tq$ and $tq + ̅tq$ at 8 TeV [54] (green hatched area), and from the ratio of branching fractions $Br(t → Wb)/∑_q Br(t → Wq)$ in t decay [15] (orange hatched area). Also shown in the figure, for comparison, are the bounds on C_{dZ}^{3k} and $C_{φud}^{(-)k3}$ from FCNC processes as given in Table 1 (black dotted lines in Figure 7 (a)–(d)), and the allowed region for $C_{φq}^{(-)k3}/C_{uZ}$ from the branching fraction $Br(t → jZ)$ as given by [13] (black dotted lines in Figure 7 (e)–(f)).

The cross section for tb production has been measured at the Tevatron [59, 76] and at the LHC [61, 60]. The production process (see Figures 3–4) does not depend on $C_{φud}^{3k}$, C_{dZ}^{3k} and has a modest sensitivity to $C_{φud}^{(-)k3}$, $C_{uZ}^{(-)k3}$. In fact, for tb production followed by $t → Wb$ decay, most of the sensitivity to the effective couplings originates in the dependence on them of the branching fraction $Br(t → Wb)$, which is already explicitly taken into account in Figure 7. For this reason we do not include tb production in this figure. We have also taken into account tW associated production, whose cross section has been measured at the LHC at 7 and 8 TeV [62, 63]. Due to the somewhat large current experimental uncertainties in those measurements (30% at 7 and 23% at 8 TeV), the allowed regions resulting from this process are significantly looser than those shown in the figure, so we omit them for the sake of simplicity.

In Figure 5 we show the allowed regions on the plane of the flavor off-diagonal charged-current right-handed vector couplings $C_{φud}^{3k}$, $k=1,2$, and the flavor diagonal left- and right-handed vector couplings $C_{φud}^{33}$ and $C_{φq}^{(-)33}$. The allowed regions are determined by the same experimental data as used in the previous figure. In Figure 5 (a), (b) we include for reference the bounds on $C_{φud}^{33}$ set by the experimental determination of W helicity fractions in t decays [27] [39] (black dotted lines in the figure), as discussed in more detail below. In the case of the flavor-diagonal coupling $C_{φq}^{(-)33}$, the best bounds result from a
combination of single-top production cross sections at 7 and 8 TeV [53, 54] as seen in the figure. We remark that for the processes used in the figure the operators $O_{φq}^{(+)}$ and $−O_{φq}^{(−)}$ are equivalent, so the the coupling $C_{φq}^{(+)}$ can be used equally well instead of $−C_{φq}^{(−)}$ to label the horizontal axes in Figures 8 (c), (d).

5.2 Limits on the Wtb couplings

In Figure 9 we show allowed regions for all possible pairs of Wtb effective couplings. As noticed above in connection with Figure 8 in this context the coupling $C_{φq}^{(+)}$ is equivalent to $−C_{φq}^{(−)}$. We obtain the bounds in this figure from the same set of cross sections for single-top production together with a light jet at the LHC [53, 54] as in Figure 7. Also shown in this figure (as light-gray areas) are the allowed regions resulting from the cross section for $p\bar{p} → t\bar{b} + 7b$ measured at the Tevatron [59] (see also [76] for related Tevatron results, and [60, 61] for measurements at the LHC). As seen in Figure 9 the most restrictive limits on the couplings $C_{ϕq}^{(±)}$, C_{uZ}^{33}, C_{uZ}^{33} are imposed by the combination of W-helicity fractions and decay width (orange hatched area). On the other hand, $F_{0,1,2}$ have a weak dependence on $C_{ϕq}^{(±)}$, which is bounded by the decay width and single-top production cross sections. The best bounds on $C_{φq}^{(±)}$ are set by the tq production cross sections at 7 TeV (lower bound) and at 8 TeV (upper bound). The intersection of the regions allowed by tq, t\bar{q} and tq + t\bar{q} production at 8 TeV (green hatched areas) is necessarily more restrictive than the region obtained from tq + t\bar{q} production alone, the difference between the two being most apparent for $C_{ϕq}^{33}$ and less pronounced in the case of $C_{φq}^{(±)}$.

5.3 Differential cross sections

Besides the total cross sections for single-top production used in the previous sections, we have considered also the total and differential cross sections reported by ATLAS for separate and combined single top and antitop production in the LHC at 7 TeV with a total integrated luminosity of 4.58 fb$^{-1}$.

The effect of these additional data on the allowed parameter regions is illustrated in Figure 10 for the couplings $C_{ϕq}^{(−)}$ / C_{uZ}^{33}. For reference, we include in Figure 10 the same 95% CL–allowed regions as in Figure 9 (e). We combined those CMS cross sections with the total cross sections for $pp → tq + t\bar{q}$, tq, t\bar{q} at 7 TeV measured by ATLAS [55] in a $χ^2$ analysis, to obtain at 95% CL the allowed region shown by the light-blue band in Figure 10. As seen in the figure, the allowed region is little changed in a neighborhood of the origin by the inclusion of the additional data points.

We further extended the analysis by including all bins in the measured differential cross sections $dσ/dy(t)$, $dσ/dy(\bar{t})$ in the $χ^2$ function, with their correlation matrices, as well as the data for $dσ/d|p_T|(t)$, $dσ/d|p_T|(\bar{t})$ excluding the two highest-|p_T| bins in each distribution (four excluded bins in total). The resulting allowed region at 95% CL is shown in Figure 10 by the blue solid line. Finally, adding the previously excluded highest-|p_T| bins to the $χ^2$ function, yields the allowed region delimited by the blue dashed line in the figure. As seen there, those highest-|p_T| bins have a large effect on the allowed region, which we attribute to the fact that their central values show large deviations ($\sim 2σ$) from the SM NLO predictions, especially in the case of $dσ/d|p_T|(\bar{t})$. We point out as well that the highest-|p_T| bin corresponds to an energy range of 150 – 500 GeV that is relatively close to the new physics scale $Λ = 1$ TeV assumed here, which would make the validity of our obtained bounds uncertain.

We conclude that the results from the LHC Run-I (7 TeV) on single-top production do not significantly add to the constraining we have obtained based on Run-II (8 TeV) data. This is true even after considering the input from the absolute rapidity and p_T distributions, unless we take into consideration the large deviations observed in the last two bins.
5.4 Limits on four-fermion operators

The operators $O^{(1,3)ijkl}_{qq}$ with $i, j, k < 3$ contribute to single-top production only through $pp \to tq$, $t\bar{q}$. The Feynman diagrams related to these vertices are shown in Figure 5 (a). Due to their flavor off-diagonal nature, there is no interference of these diagrams with the SM ones due to the very small third-generation mixing. Yet, there is an enhanced sensitivity to these couplings because of the large first-generation PDFs. Taking only one coupling to be non-zero at a time, from the single-top production cross section $\sigma(pp \to tq)$ at 8 TeV [54] we get the following single-coupling bounds. The operators $O^{(1,3)1113}_{qq}$, $O^{(1,3)1213}_{qq}$ receive the strongest bounds among four-quark operators:

$$|C^{(1)1113}_{qq}|, |C^{(1)1213}_{qq}| < 0.30, \quad |C^{(3)1113}_{qq}|, |C^{(3)1213}_{qq}| < 0.23. \quad (32)$$

The cross section for antitop production at 8 TeV, and the combined $t + \bar{t}$ production cross sections at 8 and 7 TeV [53, 54] lead to somewhat weaker bounds. Similarly, for the analogous four-quark operators involving only one third-generation quark, we obtain the single-coupling bounds:

$$|C^{(1)1123}_{qq}| < 1.23, \quad |C^{(3)1123}_{qq}| < 0.50, \quad |C^{(1)1113}_{qq}| < 0.86, \quad |C^{(3)2113}_{qq}| < 0.72. \quad (33)$$

The operators $O^{(1,3)3113}_{qq}$ and $O^{(3)1133}_{qq}$ contribute to both single-top production channels ($pp \to tq$, $t\bar{q}$ and $pp \to t\bar{b}$, tb) and to $t\bar{t}$ production, while $O^{(1)1133}_{qq}$ contributes only to the latter process. Notice that these four operators are Hermitian, so their couplings are real. The bounds we find are

$$-1.07 < C^{(1)3113}_{qq} < 1.19, \quad -0.80 < C^{(3)1133}_{qq} < 0.96,$$

$$-2.94 < C^{(1)1133}_{qq} < 2.67, \quad -0.18 < C^{(3)1133}_{qq} < 0.36. \quad (34)$$

The bounds on $C^{(1)3113}_{qq}$ result from a combination of the ones obtained from $t\bar{t}$ production ($-1.07 < C^{(1)3113}_{qq} < 1.23$) and those from tb production ($-2.19 < C^{(1)1133}_{qq} < 1.19$), both at the Tevatron. As mentioned in section 2.2, $O^{(3)3113}_{qq} = -O^{(1)3113}_{qq}$ + terms with 0 or 2 top fields, so single-top production does not distinguish between the two. The bounds on $C^{(3)3113}_{qq}$ in (34) arise from $t\bar{t}$ production at the Tevatron. The operator $O^{(1)1133}_{qq}$ does not contribute to single-top production. The limits (34) on $C^{(1)1133}_{qq}$ are a combination of the ones obtained from $t\bar{t}$ production, at 8 TeV at the LHC ($-2.94 < C^{(1)1133}_{qq} < 2.80$) and at the Tevatron ($-3.28 < C^{(1)1133}_{qq} < 2.67$). The tightest limits on $C^{(3)3113}_{qq}$ arise from tb production at the Tevatron, the bounds from $t\bar{t}$ production on that coupling being much looser, ~ 3 at 8 TeV and larger at lower energies. As discussed in section 2.2, the operator O^{1313}_{qq} contributes to single-top and tt production and $O^{3131}_{qq} = O^{1313 \dagger}_{qq}$ to single-top and $t\bar{t}$ production. Bounds on $C^{(1,3)1313}_{qq}$ have been given by ATLAS [11] from their measurement of same-sign tt production at 8 TeV. We quote here the ATLAS result for completeness, which in our conventions reads $|C^{(1)1313}_{qq}|, |C^{(3)1313}_{qq}| < 0.0265$ at 95% CL.

The sensitivity of both the tq and tb production processes to the couplings $C^{(1)1323}_{qq}$, $C^{(3)1233}_{qq}$ is significantly enhanced by Cabibbo mixing. The strongest bounds on those couplings arise from tq production at 8 TeV:

$$-2.25 < C^{(1)1323}_{qq} < 2.22, \quad -2.23 < C^{(1)1323}_{qq} < 2.23,$$

$$-1.14 < C^{(3)1233}_{qq} < 1.09, \quad -1.11 < C^{(3)1233}_{qq} < 1.11. \quad (35)$$

with $tq + \bar{t}q$ production at the same energy leading to somewhat weaker bounds. The operator $O^{(3)3123}_{qq} = -O^{(1)3123}_{qq}$ + terms with 0 or 2 top fields, so the bounds on $C^{(3)3123}_{qq}$ from single-top production are the same as those for $-C^{(1)3123}_{qq}$ in (35). Top pair production is less sensitive than single-top processes to
these couplings, leading to bounds about twice as large as those in (35) at 8 TeV and larger at lower energies. For the operator $O_{qq}^{(1)1233}$, which does not contribute to single-top production, the bounds obtained from $t\bar{t}$ production at 8 TeV are,

$$-4.72 < C_{qq}^{(1)1233} < 4.58, \quad -5.18 < C_{qq}^{(1)1233} < 5.18,$$

(36)

significantly weaker than the analogous limits in (35).

The operators $O_{qq}^{(1)3313}$ and $O_{qq}^{(3)3313}$ also contribute to both tq and tb production. As shown in Figure 5 (c), tq production through these operators involves two b quarks in the initial state, leading to very low sensitivity to these couplings. More restrictive bounds are furnished by tb production (Figure 6 (b)). From the cross section measurement at 2 TeV \[59\] we get,

$$|C_{qq}^{(1)3313}| < 4.92, \quad |C_{qq}^{(3)3313}| < 2.57,$$

(37)

Neither production channel, tq or tb, possesses significant sensitivity to $O_{qq}^{(1,3)3323}$.

In Figure 11 we show allowed regions for four pairs of couplings $C_{qq}^{(1)ijk3} / C_{qq}^{(3)ijk3}$ with $i, j, k < 3$. The most restrictive limits for these couplings are set in all cases by the tq production cross section at 8 TeV, with the combined cross section for $tq + t\bar{q}$ yielding slightly weaker bounds. As also seen in the figure, there is sizeable interference between the singlet-singlet and triplet-triplet amplitudes, proportional to $C_{qq}^{(1)}$ and $C_{qq}^{(3)}$ respectively.

Figure 12 displays allowed regions for six pairs of four-quark couplings involving two third-generation quarks. The single-top cross sections do not depend on $C_{qq}^{(1)31k3} / C_{qq}^{(3)31k3}$ or on $C_{qq}^{(1)1k3}$, $k = 1, 2, 3$, as seen in Figure 12 (a)–(d). The limits in those directions are set by the $t\bar{t}$ production cross section. We remark the fundamental role played by Tevatron data in bounding the couplings involving only first- and third-generation quarks (left column in the figure), whereas those involving one first- and one second-generation quarks (right column in the figure) are bounded by LHC 8 TeV data.

In Figure 13 we show the allowed regions in the plane of the four-quark couplings C_{qq} involving first-generation quarks and the flavor-diagonal vector coupling $-C_{qq}^{(-)33}$ (i.e., the parameter V_L). The importance of tb production to bound those couplings involving more than one third-generation quark is apparent from the four lower panels though, as seen in the figure, in the case of $C_{qq}^{(1)3113}$ more restrictive bounds result from $t\bar{t}$ production.

In Figure 14 we show the allowed region on the plane of the same four-quark coupling as in the previous figure and the flavor off-diagonal vector coupling $C_{qq}^{(-)13}$. The interference between the amplitudes proportional to $C_{qq}^{(1,3)1113}$ and those proportional to $C_{qq}^{(-)13}$, as well as between the amplitudes proportional to $C_{qq}^{(1)3113}$ and $C_{qq}^{(3)3113}$ and the SM ones is clearly seen in the figure.

6 Conclusions

In this paper we have obtained limits on Wtq vertices in the context of the $SU(2) \times U(1)$-gauge invariant effective Lagrangian of dimension six. We worked with the basis of operators listed in [28, 30], with the operator normalization used in [14, 17]. In the SM the Wtq couplings are suppressed by the CKM parameters. No precise direct measurements of V_{td}, V_{ts} exist so far, but there are studies that propose to use single top production distributions in order to achieve higher accuracy \[37\]. In this study we refer to the Wtq vertices as generated by the dimension six operators. There are previous studies on limits for the diagonal anomalous Wtb coupling based on single top production and W-helicity fractions in the $t \to bW$ decay, with \[7, 8, 25, 26\] the most recent references. However, no similar direct limits have been reported before for the flavor off-diagonal Wts and Wtd couplings. There are 4 independent dimension six operators that give rise to Wtq vertices: $O_{eq}^{(3)3k}$, O_{qud}^{3k}, O_{uW}^{3k} and O_{dW}^{3k}. Three of them generate
simultaneously neutral current couplings. Only $O^{3k}_{\varphi ud}$ generates a CC coupling exclusively, which is the right-handed vector $W^\mu \bar{d}_R \gamma^\mu t_R$. For the other three operators, we have followed the strategy used in Ref. [14] and we have defined six linear combinations with other three operators $O^{(1)k3}_{\varphi q}$, $O^{k3}_{\varphi A}$ and $O^{3k}_{\varphi dZ}$, so as to define separately Ztq_u, Atq_u, Zbq_d and Abq_d interactions, with q_u, q_d any up- or down-type quark.

In order to obtain bounds on these six operators we have considered the FCNC processes $b \to d\gamma$, $s\gamma$ and $Z \to bd, bs$, the CC decays $t \to Wq$ (through its total width, branching fractions and W-helicity fractions) and the single-top production processes $pp \to tq$ and $p\bar{p} \to tb$. These results are summarized in Table 1 and in Figures 7–8. For the operators $O^{(1)k3}_{\varphi q}$, $O^{k3}_{\varphi A}$ and $O^{3k}_{\varphi dZ}$, involving bottom-strange and bottom-down quark interactions, we find that the best bounds are obtained from the LEP measurement of $Z \to bq$ and the most recent experimental result on the $B \to X_q \gamma$ decay ($q = d, s$). The direct bounds on these operators are obtained here for the first time. Notice, however, that for $O^{(1)k3}_{\varphi q}$ there are stronger indirect bounds [15]. We obtain bounds for the operators $O^{3k}_{\varphi ud}$ ($k = 1, 2$), also for the first time. The best bounds on $O^{31}_{\varphi ud}$ result from the single-top production cross section at 8 TeV, and on $O^{32}_{\varphi ud}$ from the ratio of top branching fractions $Br(t \to tb)/\sum Br(t \to tq)$. We also show in the table and figures, for completeness, the best bounds reported in [14] on $O^{(1)k3}_{\varphi q}$, $O^{k3}_{\varphi A}$, from $t \to jZ$, and on $O^{3k}_{\varphi A}$ from $gg \to t\gamma$. For the flavor-diagonal effective Wtb coupling we have made an improvement of the previous analyses [7, 8, 25, 26] using the most recent experimental results on W-helicity fractions in top quark decay from $t\bar{t}$ production at the LHC [27].

We have considered also contact-interaction operators involving the top quark, focusing on those four-quark operators related to the Wtq ones by the SM equations of motion. Our results are given in section 5.4 and in Figures 11–14. The flavor off-diagonal operators $O^{(1,3)ijk3}_{\varphi qq}$ (with $ijk = 111$ or a permutation of 112) involving three light quarks and the top are considered here for the first time. The single-top production process $pp \to tq$ measured at the LHC possesses strong sensitivity to these operators, resulting in the tight bounds on the associated couplings reported above. In fact, the bounds on $C^{(1,3)1113}_{\varphi qq}$, $C^{(1,3)1213}_{\varphi qq}$ (equation (32) and Figures 11–14) are the strongest ones found in this paper for interactions vertices involving the top quark. The flavor off-diagonal operators $O^{(1,3)3313}_{\varphi qq}$ had not been considered before in the literature. For this coupling it is the single-top process $p\bar{p} \to tb$ measured at the Tevatron that has some sensitivity, leading to the bounds in equation (37). The flavor-diagonal triplet operator $O^{(3)1113}_{\varphi qq}$ had already been discussed in [7], though not the singlet $O^{(3)3113}_{\varphi qq}$. Both operators lead to interference with the SM, stronger for the triplet operator. The sensitivity to these couplings comes mostly from the Tevatron result for $p\bar{p} \to tb$ production. Our bounds on $C^{(3)1113}_{\varphi qq}$ (equation (34) and Figures 11–14) are somewhat tighter than those reported in [7] for the reasons explained at the end of section 4.4.

Single top production at the LHC will mostly have a direct impact on the limits for four-fermion quark operators as well as the flavor-diagonal couplings $C^{(\pm)33}_{\varphi q}$ and flavor off-diagonal $C^{3k}_{\varphi ud}$ of top-gauge boson couplings. Also, W-helicity fractions will set strong constraints on the other diagonal Wtb couplings. On the other hand, FCNC processes like $t \to jZ$ and $pp \to t\gamma$ [14] at the LHC will be the best options to set strong constraints to the operators that give rise to the off-diagonal $C^{(-)k3}_{\varphi q}$, $C^{k3}_{\varphi A}$ and $C^{3k}_{dZ/A}$ couplings.

Acknowledgements We acknowledge support from Conacyt and Sistema Nacional de Investigadores de México. We thank Gauthier Durieux and Cen Zhang for useful comments.
References

[1] F. P. Schilling, Int. J. Mod. Phys. A 27, 1230016 (2012); W. Bernreuther and P. Uwer, Nucl. Part. Phys. Proc. 261-262, 414; W. Bernreuther, J. Phys. G 35, 083001 (2008); ibid, Nuovo Cim. C 033, no. 4, 3 (2010); P. Artoisenet et al., JHEP 1311, 043 (2013); T. M. P. Tait, arXiv:1502.07029 [hep-ph].

[2] F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Eur. Phys. J. C 75, no. 6, 267 (2015); Y. Chen, D. Stolarski and R. Vega-Morales, arXiv:1505.01168 [hep-ph]; T. Plehn, P. Reimitz and T. Schell, arXiv:1507.08169 [hep-ph]; K. Kolodziej and A. Slapik, arXiv:1507.01572 [hep-ph]; D. Barducci, S. De Curtis, S. Moretti and G. M. Pruna, JHEP 1508, 127 (2015); M. R. Buckley and D. Goncalves, arXiv:1507.07926 [hep-ph]. J. Yue, Phys. Lett. B 744, 131 (2015)

[3] A. O. Bouzas and F. Larios, Phys. Rev. D 87, 074015 (2013); ibid, Phys. Rev. D 88, 094007 (2013).

[4] U. Baur, A. Juste, L. H. Orr and D. Rainwater, Nucl. Phys. Proc. Suppl. 160, 17 (2006); U. Baur, A. Juste, L. H. Orr and D. Rainwater, Phys. Rev. D 71, 054013 (2005); U. Baur, M. Buice and L. H. Orr, Phys. Rev. D 64, 094019 (2001); L. Labun and J. Rafelski, Phys. Rev. D 88, 071301 (2013); A. Cordero-Cid, J. M. Hernandez, G. Tavares-Velasco and J. J. Toscano, J. Phys. G 35, 025004 (2008); R. Martinez and J. A. Rodriguez, Phys. Rev. D 60, 077504 (1999)

[5] J. Brod, A. Greljo, E. Stamou and P. Uttayarat, JHEP 1502, 141 (2015); R. Rntsch and M. Schulze, JHEP 1508, 044 (2015); ibid, JHEP 1407, 091 (2014); F. Richard, arXiv:1304.3594 [hep-ph]; F. Larios, E. Malkawi and C. P. Yuan, Acta Phys. Polon. B 27, 3741 (1996); P. Janot, JHEP 1504, 182 (2015).

[6] D. Buarque Franzosi and C. Zhang, Phys. Rev. D 91, no. 11, 114010 (2015); J. F. Kamenik, M. Papucci and A. Weiler, Phys. Rev. D 85, 071501 (2012), [Phys. Rev. D 88, no. 3, 039903 (2013)]; K. Kumar, T. M. P. Tait and R. Vega-Moraes, JHEP 0905, 022 (2009); R. Martinez, M. A. Perez and N. Poveda, Eur. Phys. J. C 53, 221 (2008); Z. Hioki and K. Okhuma, Phys. Rev. D 88, 017503 (2013); Q. H. Cao, C. R. Chen, F. Larios and C.-P. Yuan, Phys. Rev. D 79, 015004 (2009); L. Labun and J. Rafelski, arXiv:1210.3150 [hep-ph]; J. L. Diaz-Cruz, M. A. Perez and J. J. Toscano, Phys. Lett. B 398, 347 (1997); B. Lillie, J. Shu and T. M. P. Tait, JHEP 0804, 087 (2008).

[7] M. Fabbrichesi, M. Pinamonti and A. Tonero, Eur. Phys. J. C 74 (2014) 3193.

[8] C. Bernardo, N. F. Castro, M. C. N. Fiolhais, H. Goncalves, A. G. C. Guerra, M. Oliveira and A. Onofre, Phys. Rev. D 90 (2014) 113007.

[9] F. Bach and T. Ohl, Phys. Rev. D 86, 114026 (2012).

[10] Q. H. Cao and B. Yan, arXiv:1507.06204 [hep-ph]; E. L. Berger, Q. H. Cao and I. Low, Phys. Rev. D 80, 074020 (2009); F. Larios and M. A. Perez, Phys. Rev. D 85, 017503 (2012); I. T. Cakir, A. Senol and A. T. Tasci, Mod. Phys. Lett. A 29, 1450021 (2014); S. Dutta, A. Goyal, M. Kumar and B. Mellado, arXiv:1307.1688 [hep-ph]; B. Sahin and A. A. Billur, Phys. Rev. D 86, 074026 (2012); Q. H. Cao, J. Wudka and C.-P. Yuan, Phys. Lett. B 658, 50 (2007); A. Avilez-Lopez, H. Novales-Sanchez, G. Tavares-Velasco and J. J. Toscano, Phys. Lett. B 653, 241 (2007); P. Batra and T. M. P. Tait, Phys. Rev. D 74, 054021 (2006); J. A. Aguilar-Saavedra, J. Carvalho, N. F. Castro, A. Onofre and F. Veloso, Eur. Phys. J. C 53, 689 (2008); Q. H. Cao and J. Wudka, Phys. Rev. D 74, 094015 (2006).
[11] F. Bach and T. Ohl, Phys. Rev. D 90, no. 7, 074022 (2014). See also, J. Gao, C. S. Li and C. P. Yuan, JHEP 1207, 037 (2012).

[12] I. A. Sarmiento-Alvarado, A. O. Bouzas and F. Larios, J. Phys. G 42, no. 8, 085001 (2015).

[13] C. R. Chen, Phys. Lett. B 736, 321 (2014).

[14] G. Durieux, F. Maltoni and C. Zhang, Phys. Rev. D 91, 074017 (2015).

[15] R. A. Coimbra, P. M. Ferreira, R. B. Guedes, O. Oliveira, A. Onofre, R. Santos and M. Won, Phys. Rev. D 79, 014006 (2009).

[16] J. J. Zhang, C. S. Li, J. Gao, H. Zhang, Z. Li, C.-P. Yuan and T. C. Yuan, Phys. Rev. Lett. 102, 072001 (2009); J. L. Diaz-Cruz, R. Martinez, M. A. Perez and A. Rosado, Phys. Rev. D 41, 891 (1990); F. Larios, R. Martinez and M. A. Perez, Int. J. Mod. Phys. A 21, 3473 (2006) J. Drobnak, S. Fajfer and J. F. Kamenik, Phys. Rev. D 82, 073016 (2010). F. Larios and F. Penunuri, J. Phys. G 30, 895 (2004); N. Kidonakis and A. Belyaev, JHEP 0312, 004 (2003); D. Atwood, S. K. Gupta and A. Soni, JHEP 1304, 035 (2013); J. L. Diaz-Cruz, M. A. Perez, G. Tavares-Velasco and J. J. Toscano, Phys. Rev. D 60, 115014 (1999); G. A. Gonzalez-Sprinberg, R. Martinez and J. A. Rodriguez, Eur. Phys. J. C 51, 919 (2007).

[17] C. Zhang, Phys. Rev. D 90 (2014) 014008 [arXiv:1404.1264].

[18] J. J. Zhang, C. S. Li, J. Gao, H. X. Zhu, C.-P. Yuan and T. C. Yuan, Phys. Rev. D 82, 073005 (2010).

[19] J. Drobnak, S. Fajfer and J. F. Kamenik, Phys. Rev. Lett. 104, 252001 (2010); ibid, Phys. Rev. D 82, 073016 (2010).

[20] G. Tetlalmatzi, J. G. Contreras, F. Larios and M. A. Perez, Phys. Rev. D 81, 037303 (2010); J. L. Diaz-Cruz, arXiv:1505.00757 [hep-ph]; A. Fernandez, C. Pagliarone, F. Ramirez-Zavaleta and J. J. Toscano, J. Phys. G 37, 085007 (2010); A. Cordero-Cid, M. A. Perez, G. Tavares-Velasco and J. J. Toscano, Phys. Rev. D 70, 074003 (2004); H. Hesari, H. Khanpour and M. M. Najafabadi, arXiv:1508.07579 [hep-ph]; L. Wu, JHEP 1502, 061 (2015); A. Dery, A. Efrati, Y. Nir, Y. Soreq and V. Susi, Phys. Rev. D 90, 115022 (2014).

[21] H. Sun, Nucl. Phys. B 886, 691 (2014); F. Larios, F. Penunuri and M. A. Perez, Phys. Lett. B 605, 301 (2005); X. Q. Li, Y. D. Yang and X. B. Yuan, JHEP 1108, 075 (2011); R. Martinez, M. A. Perez and J. J. Toscano, Phys. Lett. B 340, 91 (1994).

[22] H. Gong, Y. D. Yang and X. B. Yuan, JHEP 1305, 062 (2013); X. Q. Li, Y. D. Yang and X. B. Yuan, JHEP 1203, 018 (2012); J. Campbell, R. K. Ellis and R. Rentsch, Phys. Rev. D 87, 114006 (2013).

[23] N. Kidonakis and E. Martin, Phys. Rev. D 90, no. 5, 054021 (2014) T. M. P. Tait and C. P. Yuan, Phys. Rev. D 55, 7300 (1997) S. M. Etesami and M. Mohammadi Najafabadi, Phys. Rev. D 81, 117502 (2010) G. Eilam, M. Frank and I. Turan, Phys. Rev. D 74, 035012 (2006) R. Guedes, R. Santos and M. Won, Phys. Rev. D 88, no. 11, 114011 (2013) arXiv:1308.4723 [hep-ph], P. M. Ferreira and R. Santos, Phys. Rev. D 73, 054025 (2006); P. M. Ferreira, O. Oliveira and R. Santos, Phys. Rev. D 73, 034011 (2006); P. M. Ferreira, R. B. Guedes and R. Santos, Phys. Rev. D 77, 114008 (2008); C. X. Yue, J. Wang, Y. Yu and T. T. Zhang, Phys. Lett. B 705, 222 (2011).

[24] S. Faller, S. Gadatsch and T. Mannel, Phys. Rev. D 88, no. 3, 035006 (2013).

[25] Q. H. Cao, B. Yan, J. H. Yu and C. Zhang, arXiv:1504.03785 [hep-ph].
[26] A. Buckley, C. Englert, J. Ferrando, D. J. Miller, L. Moore, M. Russell and C. D. White, arXiv:1506.08845 [hep-ph].

[27] CMS Collaboration [CMS Collaboration], CMS Physics Analysis Summary TOP-14-017.

[28] J. A. Aguilar-Saavedra, Nucl. Phys. B 812 (2009) 181.

[29] J. A. Aguilar-Saavedra, Nucl. Phys. B 843, 638 (2011); [Erratum-ibid. B 851, 443 (2011)].

[30] B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, JHEP 1010, 085 (2010).

[31] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, M. Zaro, J. High Energy Phys. 07 (2014) 079.

[32] J. F. Kamenik, J. Shu and J. Zupan, Eur. Phys. J. C 72, 2102 (2012) arXiv:1107.5257 [hep-ph]. C. Degrande, J. M. Gerard, C. Grojean, F. Maltoni and G. Servant, Phys. Lett. B 703, 306 (2011) arXiv:1104.1798 [hep-ph]. C. Degrande, J. M. Gerard, C. Grojean, F. Maltoni and G. Servant, JHEP 1207, 036 (2012) [JHEP 1303, 032 (2013)] arXiv:1205.1065 [hep-ph]. E. L. Berger, Q. H. Cao and I. Low, Phys. Rev. D 80, 074020 (2009) arXiv:0907.2191 [hep-ph]. T. Han, Z. Liu, Z. Qian and J. Sayre, Phys. Rev. D 91, 113007 (2015) arXiv:1504.01399 [hep-ph]. P. Artoiset al., JHEP 1311, 043 (2013) [arXiv:1306.6464 [hep-ph]]. F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Eur. Phys. J. C 75, no. 6, 267 (2015) arXiv:1504.00611 [hep-ph].

[33] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, T. Stelzer, S. Willenbrock and C. Zhang, Annals Phys. 335, 21 (2013) arXiv:1205.4231 [hep-ph]. C. Zhang, N. Greiner and S. Willenbrock, Phys. Rev. D 86, 014024 (2012) arXiv:1201.6670 [hep-ph]. C. Zhang and S. Willenbrock, Phys. Rev. D 83, 034006 (2011) arXiv:1008.3869 [hep-ph].

[34] S. Willenbrock and C. Zhang, Ann. Rev. Nucl. Part. Sci. 64, 83 (2014) arXiv:1401.0470 [hep-ph]. L. Berthier and M. Trott, JHEP 1505, 024 (2015) arXiv:1502.02570 [hep-ph]. J. Ellis, V. Sanz and T. You, JHEP 1503, 157 (2015) arXiv:1410.7703 [hep-ph]. R. Alonso, H. M. Chang, E. E. Jenkins, A. V. Manohar and B. Shotwell, Phys. Lett. B 734, 302 (2014) arXiv:1405.0486 [hep-ph]. R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, JHEP 1404, 159 (2014) arXiv:1312.2014 [hep-ph].

[35] W. Buchmueller and D. Wyler, Nucl. Phys. B 268 (1986) 621.

[36] B. Grzadkowski, Z. Hikoi, K. Ohkuma, J. Wudka, Nucl. Phys. B 689, 108 (2004).

[37] J. A. Aguilar-Saavedra and A. Onofre, Phys. Rev. D 83, 073003 (2011); A. Ali, F. Barreiro and T. Lagouri, Phys. Lett. B 693, 44 (2010); T. Lagouri, arXiv:1212.0013 [hep-ex]; H. Lacker, A. Menzel, F. Spettel, D. Hirschbuhl, J. Luck, F. Maltoni, W. Wagner and M. Zaro, Eur. Phys. J. C 72, 2048 (2012)
[38] J. A. Aguilar-Saavedra and J. Bernabeu, Nucl. Phys. B 840, 349 (2010). J. A. Aguilar-Saavedra, N. F. Castro and A. Onofre, Phys. Rev. D 83, 117301 (2011);

[39] V. Khachatryan et al. [CMS Collaboration], JHEP 1501, 053 (2015).

[40] C. -R. Chen, F. Larios and C. -P. Yuan, Phys. Lett. B 631, 126 (2005).

[41] ATLAS Coll., “Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at √s = 8 TeV with the ATLAS detector,” arXiv:1504.04605.

[42] T. Hurth, E. Lunghi and W. Porod, Nucl. Phys. B 704, 56 (2005)

[43] Y. Amhis et al. [Heavy Flavor Averaging Group (HFAG) Collaboration], arXiv:1412.7515 [hep-ex].

[44] J. Fuster et al. [DELPHI Collaboration], CERN-OPEN-99-393, CERN-DELPHI-99-81.

[45] A. Efrati, A. Falkowski and Y. Soreq, JHEP 1507, 018 (2015).

[46] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett. 112, no. 17, 171802 (2014). G. Aad et al. [ATLAS Collaboration], arXiv:1508.05796 [hep-ex].

[47] J. L. Diaz-Cruz, R. Gaitan-Lozano, G. Lopez-Castro and C. E. Pagliarone, Phys. Rev. D 77, 094010 (2008).

[48] V. Khachatryan et al. [CMS Collaboration], Phys. Lett. B 736, 33 (2014).

[49] A. Czarnecki, J. G. Korner and J. H. Piclum, Phys. Rev. D 81, 111503 (2010)

[50] J. Drobnak, S. Fajfer and J. F. Kamenik, Phys. Rev. D 82, 114008 (2010).

[51] CDF Coll., Phys. Rev. D 87 (2013) 111101(R).

[52] D0 Coll., Phys. Rev. Lett. 107 (2011) 121802.

[53] S. Chatrchyan et al. [CMS Collaboration], JHEP 1212, 035 (2012).

[54] V. Khachatryan et al. [CMS Collaboration], JHEP 1406, 090 (2014).

[55] ATLAS Coll., Phys. Rev. D 90 (2014) 112006 [arXiv:1406.7844].

[56] N. Kidonakis, arXiv:1311.0283 [hep-ph]. See also, Phys. Rev. D 83, 091503 (2011).

[57] N. Kidonakis, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935].

[58] N. Kidonakis, Phys. Rev. D 81 (2010) 054028.

[59] T. Aaltonen et al. [CDF and D0 Collaborations], Phys. Rev. Lett. 112 (2014) 231803

[60] ATLAS Coll., Phys. Lett. B 740 (2015) 118 [arXiv:1410.0647].

[61] CMS Coll., “Search for s-channel single top-quark production in pp collisions at √s = 8 TeV,” (2013) CMS Physics Analysis Summary TOP-13-009.

[62] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett. 110 (2013) 022003.

[63] S. Chatrchyan et al. [CMS Collaboration] Phys. Rev. Lett. 112 (2014) 231802.

[64] N. Kidonakis, Phys. Rev. D 82 (2010) 054018.
[65] CMS Coll., JHEP 02 (2014) 024 [arXiv:1312.7582 29pp.].

[66] CMS Coll., Phys. Lett. B 720 (2013) 83 [arXiv:1212.6682].

[67] CDF and D0 Colls., Phys. Rev. D 89 (2014) 072001 [arXiv:1309.7570].

[68] M. Czakon and A. Mitov, “Top++, a program for the calculation of the top-pair cross-section at hadron colliders,” [arXiv:1112.5675]

[69] M. Czakon, P. Fiedler, A. Mitov, Phys. Rev. Lett. 110 (2013) 252004.

[70] V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak and L. L. Yang, JHEP 09 (2010) 097 [arXiv:1003.5827].

[71] M. Aliev et al., Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327].

[72] J. Alwall, C. Duhr, B. Fuks, O. Mattelaer, D. G. Öztürk, C.H. Shen, “Computing decay rates for new physics theories with FeynRules and MadGraph5_aMCNLO,” (2014) arXiv:1402.1178 [hep-ph].

[73] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, Comput. Phys. Commun. 183 (2012) 1201.

[74] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, B. Fuks, Comput. Phys. Commun. 185, 2250 (2014).

[75] A. Crivellin, L. Mercolli, Phys. Rev. D 84 (2011) 114005 [arXiv:1106.5499]

[76] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Let. 113 (2014) 261804 [arXiv:1407.4031 [hep-ex]].
Figure 7: Parameter regions for flavor off-diagonal W_{tq} effective couplings allowed at 95% CL. Orange hatched area: region excluded by the branching fractions $Br(W_b)/\sum_i Br(W_{qi})$ in top decays. Red hatched area: region excluded by the cross section for $pp \rightarrow tq + \bar{t}q$ at 7 TeV [53]. Green hatched area: region excluded by the cross sections for $pp \rightarrow tq + \bar{t}q, tq, \bar{t}q$ at 8 TeV [54]. Black dashed line: region excluded by the cross section for $pp \rightarrow tq + \bar{t}q$ at 8 TeV alone [54]. Dotted lines: (a) and (b), bounds on $|C_{dZ}^{3j}|$ ($j = 1, 2$) from [12]; (c)–(f), allowed regions from [13].
Figure 8: Allowed parameter regions at 95% CL for the flavor off-diagonal right-handed vector $W t q$ effective couplings $C_{\varphi u d r}^{3j}$ ($j = 1, 2$) versus flavor-diagonal left- and right-handed vector ones. Color codes as in the previous figure. Black dotted lines in (a) and (b): bounds on $C_{\varphi u d r}^{33}$ from W-helicity fractions in top decays [27].
Figure 9: Allowed parameter regions at 95% CL for flavor-diagonal W_{tq} effective couplings. Orange hatched area: region excluded by W-helicity fractions in top decays [27] and top decay width [48]. Gray area: region excluded by the cross section for $p\bar{p} \rightarrow t\bar{b} + tb$ at 1.96 TeV [59]. Red and green hatched areas and dashed line as in Figure 7.
Figure 10: Allowed parameter regions at 95% CL for two flavor-diagonal \(W_{tq} \) effective couplings. Red and green hatched areas as in previous figures. Light-blue area: allowed region at 95% CL determined simultaneously by the total cross sections for \(pp \to tq + \bar{t}q \) at 7 TeV \[53\], for \(pp \to tq + \bar{t}q, tq, \bar{t}q \) at 7 TeV \[55\], and for \(pp \to tq + \bar{t}q, tq, \bar{t}q \) at 8 TeV \[54\]. Dark-blue solid line: allowed region at 95% CL determined simultaneously by the total cross sections and the differential cross sections \(d\sigma/d|y|(t), d\sigma/d|\vec{p}_T|(t), d\sigma/d|\vec{p}_T|(|\bar{t}t|) \), excluding the two highest-\(|\vec{p}_T| \) bins. Dark-blue dashed line: allowed region at 95% CL determined simultaneously by total and differential cross sections, including all bins.
Figure 11: Allowed parameter regions at 95% CL for contact four-quark effective couplings. Red hatched area: region excluded by the cross section for $pp \rightarrow tq + \bar{t}q$ at 7 TeV [53]. Green hatched area: region excluded by the cross sections for $pp \rightarrow tq + \bar{t}q, tq, \bar{t}q$ at 8 TeV [54]. Black dashed line: region excluded by the cross section for $pp \rightarrow tq + \bar{t}q$ at 8 TeV alone [54]. Gray area: region excluded by the cross section for $p\bar{p} \rightarrow t\bar{b} + \bar{t}b$ at 1.96 TeV [59].
Figure 12: Allowed parameter regions at 95% CL for contact four-quark effective couplings. Red and green hatched areas, gray area and black dashed line as in the previous figure. Regions excluded by the cross section for $pp \rightarrow t\bar{t}$: blue hatched area (1.96 TeV [67]), light-green hatched area (7 TeV [66]), light-blue hatched area (8 TeV [65]).
Figure 13: Allowed parameter regions at 95% CL for four-quark effective couplings versus the flavor-diagonal left-handed vector effective coupling. Red and green hatched areas, gray area and black dashed line as in figure 11. Orange hatched area: region excluded by the top decay width [48]. Blue dotted lines: region excluded by the $t\bar{t}$ production cross section at 1.96 TeV [67].
Figure 14: Allowed parameter regions at 95% CL for four-quark effective couplings versus the flavor off-diagonal left-handed vector effective coupling. Color codes as in figure 11. Blue dotted lines: region excluded by the $t\bar{t}$ production cross section at 1.96 TeV \cite{67}.

\[\sigma_s(t + \bar{t}) \]
\[\sigma_t(t + \bar{t}), \sigma_t(t), \sigma_t(\bar{t}) \]

Tevatron 2 TeV
CMS 7 TeV
CMS 8 TeV

\[\sigma_t(t + \bar{t}) \]

CMS 8 TeV

\[\sigma(t + \bar{t}), \sigma(t), \sigma(\bar{t}) \]