Appraisal of Landslides Due To Rainfall
(Alfrendo Satyanaga Nio)

Komputerisasi Perhitungan Parameter Marshall Untuk Rancangan Campuran Beton Aspal
(Deni Setiawan)

Studi Manajemen Pemeliharaan Jalan Tol Padalarang-Cileunyi
(Maksum Tanubrata, Dini Handayani Asmara)

Analisa Daya Dukung Tata Guna Lahan Dalam Menunjang Keberlanjutan Sungai (Studi Kasus DAS Ciliwung)
(Robby Yussac Tallar)

Perhitungan Lendutan Pondasi Telapak Dengan Metode Elemen Hingga
(Hanny J. Dani, Olga Pattipawaej, Putra W. Remantan)

Visualisasi Pembelajaran Tekuk Pada Kolom Dengan Bantuan Software Berbasis Perhitungan Numerik
(Yosafat Aji Pranata, Anang Kristianto)

Kajian Operasional Bus Rapid Transit Trans-Jakarta Dan Transmilenio Bogota
(Budi Hartanto Susilo, Apriyanto Loentan)
FAKULTAS TEKNIK UNIVERSITAS KRISTEN MARANATHA

Jurnal Teknik Sipil adalah jurnal ilmiah jurusan teknik sipil Universitas Kristen Maranatha yang diterbitkan 2 kali setahun pada bulan April dan Oktober. Pertama kali terbit bulan Oktober 2003. Tujuan penerbitan adalah sebagai wadah komunikasi ilmiah dan juga penyebarluasan hasil penelitian, studi literatur dalam bidang teknik sipil atau ilmu terkait. Bila pernah dipresentasikan pada seminar agar diberi keterangan lengkap.

Pelindung: Rektor Universitas Kristen Maranatha
Penanggung Jawab: Dekan Fakultas Teknik Universitas Kristen Maranatha
Pemimpin Redaksi: Yosafat Aji Pranata, ST., MT.
Ketua Dewan Penyunting: Ir. Maksum Tanubrata, MT.
Penyunting Pelaksana: Anang Kristianto, ST., MT.
Andrias Suhendra Nugraha, ST., MT.
Ir. Budi Hartanto Susilo, M.Sc.
Ir. Herianto Wibowo, M.Sc.
Robby Yussac Tallar, ST., MT.

Desain Visual dan Editor: Aldrin Boy
Sekretariat dan Sirkulasi: Dra. Dorliana, Kristianto
Alamat Redaksi: Sekretariat Jurnal Teknik Sipil
Jurusan Teknik Sipil, Universitas Kristen Maranatha
Jl. Prof. drg. Suria Sumantri MPH. No. 65 Bandung 40164
Tel. 022 - 2012186 ext. 219, 212 Fax. 022 - 2017622
E-mail: jurnal_ts@eng.maranatha.edu, atau jurnaltsukm@gmail.com
Penerbit: Jurusan Teknik Sipil, Universitas Kristen Maranatha
Jl. Prof. drg. Suria Sumantri MPH. No. 65 Bandung 40164
DAFTAR ISI:

Appraisal of Landslides Due To Rainfall
(Alfrendo Satyanaga Nio) 1-8

Komputerisasi Perhitungan Parameter Marshall Untuk Rancangan Campuran Beton Aspal
(Deni Setiawan) 9-27

Studi Manajemen Pemeliharaan Jalan Tol Padalarang-Cileunyi
(Maksum Tanubrata, Dini Handayani Asmara) 28-45

Analisa Daya Dukung Tata Guna Lahan Dalam Menunjang Keberlanjutan Sungai
(Studi Kasus DAS Ciliwung)
(Robby Yussac Tallar) 46-59

Perhitungan Lendutan Pondasi Telapak Dengan Metode Elemen Hingga
(Hanny J. Dani, Olga Pattipawaij, Putra W. Remantan) 60-76

Visualisasi Pembelajaran Tekuk Pada Kolom Dengan Bantuan Software Berbasis Perhitungan Numerik
(Yosafat Aji Pranata, Anang Kristianto) 77-86

Kajian Operasional Bus Rapid Transit Trans-Jakarta Dan Transmilenio Bogota
(Budi Hartanto Susilo, Apriyanto Loentan) 87-104
APPRAISAL OF LANDSLIDES DUE TO RAINFALL

Alfrendo Satyanaga Nio
Geotechnics Laboratory Staff, School of Civil and Environmental Engineering,
Nanyang Technological University, Singapore.
e-mail: maredoez@yahoo.com

ABSTRACT

This paper describes an investigation into rainfall-induced slope stability via a parametric study. Landslides usually occur in residual soil slopes and exposed to prolonged and/or heavy rainfall. The parametric study conducted investigates the effect of two of the important parameters affecting the slope stability, slope geometry and rainfall loading. The results show that there are some correlations between the two factors and slope stability, along with other conclusions. Comparisons have also been made to other results obtained by other researchers.

Keywords: Slope stability, Matric suction, Rainfall, Residual soil, Slope failure.

1. INTRODUCTION

Rainfall-induced slope failures are shallow failures (typically 1m to 1.5m deep) that occur due to prolonged and/or heavy rainfall. This type of slope failure often occurs in residual soils in climates that allow prolonged and/or heavy rainfall (Fourie, 1996). Many researchers (e.g. Lumb, 1975; Rahardjo, 2000) have concluded that these failures can be attributed to the infiltration of rainwater into the slope as the most important factor contributing to rainfall-induced slope failures.

The objective of the project is to conduct a parametric study to assess the effect of various parameters in rainfall-induced slope failures. The parameters studied were the slope geometry (case A) and the rainfall applied (case B).
2. METHODOLOGY

The methodology involves three steps (i) selecting appropriate values for the parameters used in the analysis, (ii) seepage analysis and (iii) slope stability analysis. This methodology is similar to what has been done (Rahardjo et al., 2006).

2.1 Selecting appropriate values for the parameters used in analysis

For Case A, the soil chosen comes from a Jurong Sedimentary Formation. The soil properties were taken as shown in the Table 1.

Table 1. Soil Properties for Case A.
Water Content (%)
Liquid Limit (%)
Plastic Limit (%)
Plasticity Index (%)
Total Density (Mg/m3)
Sand (%)
Silt (%)
Clay (%)

The shear strength parameters of the soils used for Case A are \(c' = 5 \) kPa, effective angle of internal friction, \(\phi' = 26^\circ \), rate of increase in shear strength caused by matric suction, \(\phi^b = 11^\circ \). The shear strength parameters \(\phi^b \) was later found out to be slightly low, whereby the typical value for such a soil should be somewhere around 16° to 19°. However, due to time constraints, a review of the analysis was unable to be carried out.

Meanwhile, the Soil Water Characteristic Curve (SWCC) and the permeability function used were derived according to Fredlund and Xing (1994) from the grains size analysis. The saturated permeability is taken as 1x10⁻⁴, which is a rather high value. The derived permeability function is shown in Figure 1.

The rainfall intensity of 2.2x10⁻⁵ m/s was applied in this case for 4 hours. The slope geometry was varied by changing the angle of the slope, \(\alpha \). The angles used in the analysis ranged from 26.6° to 42.0°.

For Case B, there are two layers of soils from a Bukit Timah Granitic Formation, the top layer being a medium stiff silty sand layer with the bottom layer being a hard silty sand layer.
The shear strength parameters for the top layer are $c' = 5$ kPa, effective angle of internal friction, $\phi' = 30^\circ$, rate of increase in shear strength caused by matric suction, $\phi^h = 17^\circ$. This is taken from experiment conducted in NTU’s Geotechnics Laboratory (Chong, 2007).

Meanwhile, the bottom layer’s shear strength parameters are $c' = 8$ kPa, effective angle of internal friction, $\phi' = 33^\circ$, rate of increase in shear strength caused by matric suction, $\phi^h = 21.5^\circ$ (Khonsavanh, 2007).

The SWCC functions are taken from experiment conducted by Chong and Khonsavanh for the top and bottom layers respectively. From the SWCC, the permeability function is derived for the two layers of soils.

There is no experimental measurement for the saturated permeability of the soils, and thus they are taken to be 2×10^{-5} m/s and 2×10^{-7} m/s respectively, which are reasonable values for these soils. Figure 2 shows the permeability function for the top layer while Figure 3 shows the permeability function for the bottom layer.

Table 2. Rainfall loading for Case B.

Total (mm)	Duration (h)	Intensity (m/s)
533.2	24	6.17×10^{-6}
376.7	12	8.72×10^{-6}
281.9	6	1.31×10^{-5}
151.4	3	1.40×10^{-5}

The slope angle, α, is 26°, with a slope height of 11.5m. The top layer thickness is 5m. Meanwhile, the water table is defined according to field measurement. There are four different rainfall intensities applied to the slope in Case B, shown in table 2. These rainfalls
are rainfalls with a 100-yr return period obtained from Singapore’s National Environmental Agency (NEA).

![Permeability Function for Case B, Top Layer.](image)

Figure 2. Permeability Function for Case B, Top Layer.

![Permeability Function for Case B, Bottom Layer.](image)

Figure 3. Permeability Function for Case B, Bottom Layer.

2.2 Seepage Analysis

The analysis for the rainfall-induced slope stability is conducted using the programme Geo-Slope 2004. In the program, there are two components used in this project, Seep/W for seepage analysis and Slope/W for slope stability analysis.

In the seepage analysis, the infiltration of the rainfall into the soil is modelled, yielding the pore-water pressure distribution throughout the cross-section of the slope at any specified time. The pore-water pressure can then be used in the slope stability analysis to obtain the factor of safety of the slope at any specified time.
The boundary conditions specified for Case A and Case B in the seepage analysis are similar, with a slight difference. In both cases, a boundary flux, \(q \), equal to the rainfall intensity is applied to the top surface of the slope. The nodal flux, \(Q \), is applied to the bottom of the slope in both cases to indicate that no flow is allowed at this boundary.

Equal total heads, \(H \), is applied to the sides of the slope in Case A. However, \(H \) is only applied on the sides of the slope below the water table in Case B, with \(Q \) being applied to the sides of the slope above the water table.

The limit on negative pressure was specified to be the maximum suction present in the ground hydrostatically, prior to the rainfall. This limit should not be less than -75 kPa, which is based on field measurements around Singapore (Rahardjo, 2000).

2.3 Slope Stability Analysis

For the slope stability analysis, both the simplified Bishop and Morgenstern-Price (with half-sine function) methods were used. The factors of safety obtained from the two methods are very close (with difference of not more than 0.003) and for recording purpose, the results from the more rigorous Morgenstern-Price method were recorded.

3. RESULTS

The results will be divided into two parts, one pertaining to the effect of slope geometry (Case A), with the other pertaining to the effect of rainfall (Case B). It should be noted that all other parameters were kept constant when the investigated parameter, slope geometry for Case A and rainfall for Case B, during the numerical modelling.

3.1 Effect of Slope Geometry

The results for Case A is summarised by Figure 4, which shows the variation of factor of safety against time for 5 slopes with different slope angles. From the graph, it can be seen that the variation of factor safety with time is similar for all the slopes, whereby the factor of safety decreases and reach minimum factor of safety at the end of the rain before rising again. This indicates that the permeability of the soil is rather high as immediately after the rain stops, the factor of safety bounce back. However, it should be noted that the factor of safety does not seem to rise back to the original factor of safety before the rain.

Another interesting phenomenon is that the steeper the slope, the smaller the factor of safety, i.e. the possibility of failure to occur is larger for steeper slopes. This is highlighted by the modelling result which suggests slope with 42° is expected to fail at the end of the
rain, while the other gentler slopes are not expected to fail. This observation is consistent with what was reported (Rahardjo et al., 2006).

![Variation of Factor of Safety against Time](image)

Figure 4. Plot of Factor of safety against Time for Case A.

3.2 Effect of Rainfall

The results for Case B is summarised in Figure 8, which shows the variation of factor of safety against time for a slope exposed to four different rainfall patterns. From the results presented, there are three conclusions that can be drawn.

Firstly, the more intense the rainfall, the faster the factor of safety drops. This can be seen as the gradient of the graph for more intense rainfall is steeper than for less intense rainfall.

This can be attributed to the speed in which rainwater percolates into the soil. It is expected that more rainwater percolates and it percolates faster in more intense rainfall. This observation is consistent with what was reported (Rahardjo et al., 2006).

Secondly, the drop in factor of safety is observed to be larger when the rainfall has bigger volume. This can be attributed to the amount of water that enters the soil during and at the end of the rain. The more water enters, the less the matric suction in the soil will be. This will result in lower strength of the soil and lower factor of safety of the slope.

Lastly, for all the rainfalls, the factor of safety seems to rise back to a common value of approximately 1.70, regardless of the exposure to different rainfall.

This may indicate that the factor of safety of the slope will return to a value, provided that no more rainfall occurs. This value does not seem to depend on the rainfall but the physical condition of the slope itself, instead.
4. CONCLUSION

The parametric study was aimed to investigate the effect of several important factors affecting rainfall-induced slope stability problems. In the end, two factors were investigated, slope geometry and rainfall loading.

Using the numerical modelling programme, Geo-slope 2004, the author was able to observe some effects of the two parameters being tested. It is observed that the steeper the angle the slope, the lower the factor of safety of safety.

Meanwhile, both the rainfall intensity and volume have pronounced effects to the slope stability. When the rainfall is more intense, the factor of safety drops faster and when the rainfall is larger (i.e. larger volume), the factor of safety drops more. Also, the recovery of factor of safety does not seem to depend on the rainfall loading; it seems to depend on the slope geometry instead.

More examples with different slope geometry and soil properties should be explored in the future. In addition, a more realistic rainfall with varying intensity or antecedent rainfall may be applied to further the understanding of the effect of rainfall to slope stability.

5. ACKNOWLEDGEMENT

The author would like to show his gratitude to his supervisor, Professor Harianto Rahardjo for his guidance and support throughout this paper. His kind advice and patience...
will not be forgotten by the author. The author would also like to thank the project officers, Henry Krisdani for his assistance and counsel, as well as the Geotechnics laboratory and CADD laboratory staff for the technical support provided.

REFERENCES

1. Fourie, A. B., (1996), Predicting rainfall-induced slope instability, Proc. Institution of Civil Engineers and Geotechnical Engineering, vol. 119, pp. 211-218, October 1996.

2. Lumb, P., (1975), Slope failures in Hong Kong, Quarterly J. Engineering Geology. Vol 8, pp. 31-65.

3. Rahardjo, H., (2000), Rainfall-induced slope failures, Research Report: NSTB 17/6/16, Nanyang Technological University.

4. Rahardjo, H., Ong, T.H., Rezaur, R.B., Leong, E.C., (2006), Factors Controlling Instability of Homogeneous Soil Slopes Under Rainfall Loading, in press.

5. Chong, K.L., (2007), Shear Strength Characteristics of Granitic Bukit Timah Formation, unpublished.

6. Khonesavanh V., (2007), Relationship between Shear Strength Properties and Soil Water Characteristic Curve, unpublished.
KOMPUTERISASI PERHITUNGAN PARAMETER MARSHALL UNTUK RANCANGAN CAMPURAN BETON ASPAL

Deni Setiawan
Dosen Luar Biasa, Jurusan Teknik Sipil, Universitas Kristen Maranatha
Mahasiswa S2, Program Magister Teknik Sipil, Universitas Parahyangan
e-mail: den9851@yahoo.com

ABSTRACT

Until now, calculation of Marshall test is done with manually by tables. There are some weakness if we do it with manually, like: much procedure must do, unaccuracy in calculation (human errors), and not efficient in time. For that purpose hence required existence of program to overcoming or minimizes errors. The purpose of this paper is to computerize the calculation of Marshall test by utilizing Borland Delphi 7.0 programming. By statistical analysis, the comparition result of calculation manually and with program is \(t < t_\alpha \), this means that program calculation is acceptable. Programming result of this Marshall test required some retouchings like performance to draw graph and performance to print graph.

Keywords: Marshall, programming, Borland Delphi 7.0.

1. PENDAHULUAN

Kinerja beton aspal dapat diperiksa dengan mempergunakan alat pemeriksaan Marshall. Untuk saat ini prosedur pengujian mengikuti SNI 06-2489-1991, atau AASHTO T 245-90, atau ASTM D1559-76. Perhitungan volume dan pengolahan hasil uji Marshall ini dilakukan secara manual dalam bentuk tabel dan grafik, dengan demikian ada beberapa kelemahan di antaranya:

1. Banyaknya prosedur perhitungan yang harus dilakukan.
2. Adanya ketidaktelitian dalam perhitungan akibat kesalahan manusia (human error).
3. Tidak efisien dalam waktu.

Kata kunci: Marshall, programming, Borland Delphi 7.0.
Maka untuk mengatasi atau memperkecil kelemahan-kelemahan tersebut, perlu mengkomputerisasikan perhitungan selama proses pengujian Marshall, yaitu dengan menggunakan bahasa program Borland Delphi 7.0 yang berbasis visual di lingkungan Windows dan diproduksi oleh Microsoft. Penelitian ini dibatasi hanya untuk pemrograman perhitungan hasil pengujian dengan menggunakan alat Marshall untuk memperoleh kadar aspal optimum dan parameter Marshall lainnya dengan memasukkan data-data yang diperlukan.

2. PENGUJIAN MARSHALL

Kinerja beton aspal padat ditentukan melalui pengujian benda uji yang meliputi:

Penentuan berat volume benda uji.
1. Pengujian nilai stabilitas, adalah kemampuan maksimum beton aspal padat menerima beban sampai terjadi kelelahan plastis.
2. Pengujian kelelehan (flow), adalah besarnya perubahan bentuk plastis dari beton aspal padat akibat adanya beban sampai batas keruntuhan.
3. Perhitungan Kuosien Marshall, adalah perbandingan antara stabilitas dan flow.
4. Perhitungan berbagai jenis volume pori dalam beton aspal padat (VIM, VMA, dan VFA).
5. Perhitungan tebal selimut atau film aspal.

Pengujian kinerja beton aspal padat dilakukan melalui pengujian Marshall, yang dikembangkan pertama kali oleh Bruce Marshall dan dilanjutkan oleh U.S. Corps. Engineer.

Alat Marshall merupakan alat tekan yang dilengkapi dengan proving ring (cincin penguji) berkapasitas 22,2 KN (=5000 lbf) dan flowmeter. Proving ring digunakan untuk mengukur nilai stabilitas, dan flowmeter untuk mengukur kelelahan plastis atau flow. Benda uji Marshall berbentuk silinder berdiameter 4 inci (=10,2 cm) dan tinggi 2,5 inci (=6,35 cm). Prosedur pengujian Marshall mengikuti SNI 06-2489-1991, atau ASTM D 1559-76.

Gambar 2.4 Alat Marshall.
Jadi, dari keenam butir pengujian yang umum dilakukan untuk menentukan kinerja beton aspal, terlihat bahwa hanya nilai stabilitas dan flow yang ditentukan dengan mempergunakan alat Marshall, sedangkan parameter lainnya ditentukan melalui penimbangan benda uji, dan perhitungan. Walaupun demikian, secara umum telah dikenali bahwa pengujian Marshall meliputi pengujian keenam butir di atas.

Secara garis besar pengujian Marshall meliputi:
 1. Persiapan benda uji.
 2. Penentuan berat jenis bulk dari benda uji.
 3. Pemeriksaan nilai stabilitas dan flow.
 4. Perhitungan sifat volumetrik benda uji.

3. KOMPUTERISASI
3.1 Borland Delphi 7

Bahasa pemrograman yang dipergunakan dalam Penelitian ini adalah mempergunakan Borland Delphi 7 untuk selanjutnya dalam Penelitian ini disebut Delphi. Delphi merupakan bahasa pemrograman yang mempunyai cakupan kemampuan yang luas dan sangat canggih. Berbagai jenis aplikasi dapat dibuat dengan Delphi, termasuk aplikasi untuk mengolah teks, grafik, angka, database dan aplikasi web.

Untuk mempermudah pemrograman dalam membuat program aplikasi, Delphi menyediakan fasilitas pemrograman yang sangat lengkap. Fasilitas pemrograman tersebut dibagi dalam dua kelompok, yaitu object dan bahasa pemrograman. Secara ringkas, object adalah suatu komponen yang mempunyai bentuk fisik dan biasanya dapat dilihat (visual). Object biasanya dipakai untuk melakukan tugas tertentu dan mempunyai batasan-batasan tertentu. Sedangkan bahasa pemrograman secara singkat dapat disebut sebagai kumpulan text yang mempunyai arti tertentu dan disusun dengan aturan tertentu serta untuk menjalankan tugas tertentu. Delphi menggunakan struktur bahasa pemrograman Object Pascal yang sudah dikenal di kalangan pemrogram. Gabungan dari object dan bahasa pemrograman ini sering disebut sebagai bahasa pemrogram berorientasi object atau Object Oriented Programming (OOP).
3.2 Konsep Umum Program

Sistem pemrograman perhitungan hasil pengujian *Marshall* ini, sistem pemrogramannya mempergunakan *database*. Hal ini disebabkan karena data yang diolah saling terkait satu dengan lainnya.

Untuk mempermudah pemrograman dan pengolahan data maka dipergunakan operasi dalam bentuk tabel seperti yang dilakukan dalam pengoperasian program *Excel*. Sedangkan untuk pengolahan fungsi regresi dipergunakan fasilitas bahasa *Pascal* yang telah disediakan oleh *Delphi*.

3.2.1 Data Masukan

Data masukkan untuk program ini dibagi menjadi dua yaitu:

1. Data masukkan untuk tabel perhitungan hasil pengujian Marshall.
 Sebagai data masukkan untuk tabel perhitungan hasil pengujian Marshall antara lain:
 a. Berat jenis bulk, \(G_{sb} \).
 b. Berat jenis aspal.
 c. Kalibrasi *proving ring*.
 d. Persentase berat aspal terhadap total agregat.
 e. \(G_{mm} \).
 f. Berat benda uji di udara.
 g. Berat benda uji dalam air.
 h. Berat benda uji kering permukaan.
 i. Isi benda uji.
j. Bacaan dial.
k. Flow (kelelehan).

2. Data masukan untuk menampilkan grafik hasil perhitungan.
 Sebagai data masukan untuk menampilkan grafik antara lain:
 a. Koefisien fungsi regresi.
 Koefisien fungsi regresi diperoleh dari hasil perhitungan program.
 b. Syarat batas.
 Syarat batas diperoleh dari ketentuan dari tabel sifat campuran beton aspal.

3.2.2 Proses Data

Proses data dalam program untuk tabel perhitungan hasil pengujian Marshall adalah sebagai berikut:

1. \[B = \frac{A}{100 + A} \times 100 \]
2. \[D = \frac{G_{ib} + G_{ea}}{2} \]
3. \[H = G - F \]
4. \[I = \frac{E}{H} \]
5. \[J = 100 \times \frac{(D - G_{ib})}{(G_{se} \times G_{ib})} \times \text{Berat jenis aspal} \]
6. \[K = A - \left(\frac{K}{100} \right) \times P_s \]
7. \[L = 100 - \frac{J \times P_s}{G_{ib}} \]
8. \[M = 100 \times \frac{C - I}{G_{ib}} \]
9. \[N = \frac{100(L - M)}{M} \]
10. \[R = Q \times \text{kalibrasi proving ring.} \]
11. \[S = R \times \text{faktor koreksi.} \]

dengan:
A = Persen berat aspal terhadap total agregat.
B = Persen berat aspal terhadap total campuran
C = G_{mm}.
D = G_{se}
E = Berat benda uji di udara.
F = Berat benda uji dalam air.
G = Berat benda uji kering permukaan.
H = Volume bulk
I = Berat jenis bulk, Gmb.
J = Pba.
K = Pbe.
L = VMA.
M = VIM.
N = VFA.
O = Bacaan dial.
P = Justifikasi kg.
Q = Stabilitas Marshall.
R = Flow (kelelehan).
S = Marshall Quotient.

Gambar 3.2 Tampilan tabel perhitungan hasil pengujian Marshall.

3.2.3 Data Keluaran

Yang menjadi data keluaran dari program perhitungan hasil pengujian Marshall adalah ditampilkan dalam hasil eksekusi program sebagai berikut:
Gambar 3.3 Plotting point antara % kadar aspal terhadap % VIM.

Gambar 3.4 Plotting point antara % kadar aspal terhadap % VMA.

Gambar 3.5 Plotting point antara % kadar aspal terhadap stabilitas.
Gambar 3.6 *Plotting point antara % kadar aspal terhadap flow (Kelelehan).*

Gambar 3.7 *Plotting point antara % kadar aspal terhadap Marshall Quotient.*

Gambar 3.8 *Grafik kadar aspal optimum.*
3.3 Algoritma Program

Algoritma adalah urutan langkah-langkah logis penyelesaian masalah yang disusun secara sistematis.

1. Algoritma tabel perhitungan hasil pengujian Marshall.
 a. Tentukan berat jenis apperent \((G_{sa})\), berat jenis bulk \((G_{sb})\), berat jenis aspal, \(P_o\), kalibrasi proving ring, % berat aspal terhadap agregat, \(G_{mm}\), berat benda uji di udara, berat benda uji dalam air, berat benda uji kering permukaan, isi benda uji, bacaan dial, dan flow (kelelehan).
 b. Lakukan proses penyimpanan dan pengolahan data dalam bentuk tabel database.
 c. Akhiri program.

2. Algoritma perhitungan regresi polinomial.
 a. Tentukan jumlah data \(n\), serta titik data \(x_i\) dan \(y_i\).
 b. Lakukan inisialisasi koefisien persamaan simultan.
 c. Selesaikan persamaan simultan dengan metode yang telah diberikan untuk mendapatkan harga koefisien persamaan.
 d. Tulis hasil perhitungan.
 e. Akhiri program.

3. Algoritma perhitungan plotting point antara % kadar aspal dengan % VIM.
 a. Ambil data % berat aspal terhadap total campuran dan % VIM dari tabel perhitungan hasil pengujian Marshall.
 b. Masukkan koefisien fungsi regresi dari hasil program.
 c. Lakukan perhitungan dengan persamaan \(y = a[0]x^2 + a[1]x + a[2]\), dimana \(a[0]\), \(a[1]\), \(a[2]\) adalah koefisien fungsi regresi, \(x\) adalah data % berat aspal terhadap total campuran, dan \(y\) adalah % VIM.
 d. Plot titik \(x\) dan \(y\).
 e. Tentukan syarat batas.
 f. Lakukan perhitungan dengan mempergunakan rumus abc untuk mendapatkan hasil \(x_1\) dan \(x_2\).
 g. Akhiri program.

4. Algoritma perhitungan plotting point antara % kadar aspal dengan % VMA.
 a. Ambil data % berat aspal terhadap total campuran dan % VMA dari tabel perhitungan hasil pengujian Marshall.
 b. Masukkan koefisien fungsi regresi dari hasil program.
c. Lakukan perhitungan dengan persamaan \(y = a[0]x^2 + a[1]x + a[2] \), dimana
 \(a[0] \), \(a[1] \), \(a[2] \) adalah koefisien fungsi regresi, \(x \) adalah data % berat aspal terhadap total campuran, dan \(y \) adalah % VMA.

d. Plot titik \(x \) dan \(y \).

e. Tentukan syarat batas.

f. Lakukan perhitungan dengan mempergunakan rumus abc untuk mendapatkan hasil \(x_1 \) dan \(x_2 \).

g. Akhiri program.

5. Algoritma perhitungan plotting point antara % kadar aspal dengan stabilitas.

a. Ambil data % berat aspal terhadap total campuran dan stabilitas dari tabel perhitungan hasil pengujian Marshall.

b. Masukkan koefisien fungsi regresi dari hasil program.

c. Lakukan perhitungan dengan persamaan \(y = a[0]x^2 + a[1]x + a[2] \), dimana
 \(a[0] \), \(a[1] \), \(a[2] \) adalah koefisien fungsi regresi, \(x \) adalah data % berat aspal terhadap total campuran, dan \(y \) adalah berat volume.

d. Plot titik \(x \) dan \(y \).

e. Akhiri program.

6. Algoritma perhitungan plotting point antara % kadar aspal dengan flow (kelelehan).

a. Ambil data % berat aspal terhadap total campuran dan flow dari tabel perhitungan hasil pengujian Marshall.

b. Masukkan koefisien fungsi regresi dari hasil program.

c. Lakukan perhitungan dengan persamaan \(y = a[0]x^2 + a[1]x + a[2] \), dimana
 \(a[0] \), \(a[1] \), \(a[2] \) adalah koefisien fungsi regresi, \(x \) adalah data % berat aspal terhadap total campuran, dan \(y \) adalah flow.

d. Plot titik \(x \) dan \(y \).

e. Tentukan syarat batas.

f. Lakukan perhitungan dengan mempergunakan rumus abc untuk mendapatkan hasil \(x_1 \) dan \(x_2 \).

g. Akhiri program.

7. Algoritma perhitungan plotting point antara % kadar aspal dengan Marshall Quotient.

a. Ambil data % berat aspal terhadap total campuran dan Marshall Quotient dari tabel perhitungan hasil pengujian Marshall.

b. Masukkan koefisien fungsi regresi dari hasil program.
c. Lakukan perhitungan dengan persamaan $y = a[0]x^2 + a[1]x + a[2]$, dimana $a[0]$, $a[1]$, $a[2]$ adalah koefisien fungsi regresi, x adalah data % berat aspal terhadap total campuran, dan y adalah berat volume.

d. Plot titik x dan y.

e. Akhiri program.

8. Algoritma perhitunga grafik kadar aspal optimum.
 a. Masukkan data nilai maksimum dan minimum dari data syarat batas.
 b. Plot data pada gambar grafik.
 c. Akhiri program.

4. ANALISIS HASIL PROGRAM

4.1 Contoh Perhitungan

1. Berat jenis bulk, G_{sb} = 2,538
2. Berat jenis aspal = 1,03
3. P_s = 96
4. Berat jenis apparent, G_{sa} = 2,644
5. % Berat aspal terhadap total agregat (A) = 4 %.
6. % Berat aspal terhadap total campuran (B) = \(\frac{A}{100 + A} \times 100 \)
 = 3,846 %.
7. $G_{mm}(C) = 2,443.$
8. $G_{se} (D) = \frac{G_{sb} + P_s}{2}$
 = 2,591
9. Berat benda uji di udara (E) = 1089,1 gram.
10. Berat benda uji dalam air (F) = 614 gram.
11. Berat benda uji kering permukaan (G) = 1123,9 gram.
12. Volume bulk (H) = $G - F$
 = 1123,9 - 614
 = 509,9 cm3
13. Berat jenis bulk, $G_{mb} (I)$ = \(\frac{E}{H} \)
 = 2,136 gr/ml.
14. Kadar aspal yang terabsorbsi ke dalam pori agregat, $P_{ab} (J)$
15. Kadar aspal efektif yang menyelimuti butir-butir agregat, \(P_{se} \) (K)

\[
= A - \left(\frac{I}{100} \right) \times P_{s}
\]

\[
= 3,20 \%
\]

16. VMA (L)

\[
= 100 - \frac{I \times P_{s}}{G_{sb}}
\]

\[
= 19,2 \%
\]

17. VIM (M)

\[
= 100 \times \frac{C - I}{C}
\]

\[
= 12,6 \%
\]

18. VFA (N)

\[
= \frac{100(L - M)}{L}
\]

\[
= 34,6 \%
\]

19. Bacaan dial (O)

\[
= 61 \text{ div}
\]

20. Justifikasi kg (P)

\[
= Q \times \text{kalibrasi proving ring}
\]

\[
= 716,010 \text{ kg}
\]

21. Stabilitas Marshall (Q) = R x faktor koreksi

\[
= 687,4 \text{ kg}
\]

22. Flow (R)

\[
= 3 \text{ mm}
\]

23. Marshall Quotient (S)

\[
= \frac{Q}{R}
\]

\[
= 229,1 \text{ kg/mm}
\]

4.2 Hasil Perhitungan dengan Program

Hasil perhitungan dengan mempergunakan program ditampilkan dalam bentuk Tabel 4.1
Tabel 4.1 Hasil Perhitungan Pengujian Marshall.

%erat thdp total camp.	Gge	Volume bulk	Gmb	Pab	Pae	VMA	VIM	VFA	Stabilitas Marshall	Flow Marshall Quotient	
3.8461538	2.591	509.9	2.1399	0.83014	3.20306	19.2081	12.5702	34.6610	867,37142	3	229,12380
3.8461538	2.591	501.0	2.2105	0.83014	3.20306	16.3555	9.51461	41.9327	642,29786	2,5	256,91915
3.8461538	2.591	500.4	2.1994	0.83014	3.20306	16.8060	9.98629	40.6779	425,73638	2,5	170,29545
4.3062220	2.591	499.7	2.2314	0.83014	3.70306	15.5947	9.58091	48.8232	766,25011	2,5	306,50004
4.3062220	2.591	503.3	2.1838	0.83014	3.70306	17.4015	9.95900	42.8175	721,71657	2,5	268,47063
4.3062220	2.591	503.7	2.1947	0.83014	3.70306	16.9831	9.49448	44.0964	800,05626	2,5	320,02210
4.7619047	2.591	500.0	2.2312	0.83014	4.20306	15.6047	7.34219	52.0498	946,54425	4	236,63006
4.7619047	2.591	509.9	2.1963	0.83014	4.20306	19.0590	10.0370	44.4215	1019,7387	3,5	291,36821
4.7619047	2.591	509.2	2.1865	0.83014	4.20306	17.2929	9.19571	46.8239	924,00748	3	308,00024
5.2132701	2.591	503.3	2.1621	0.83014	4.70306	17.4589	7.73362	49.9762	597,22435	3	199,07478
5.2132701	2.591	503.3	2.2131	0.83014	4.70306	16.2985	7.4351	54.3527	763,15280	2,5	313,20107
5.2132701	2.591	498.7	2.2273	0.83014	4.70306	15.7487	6.84269	56.5510	918,37329	3	302,13443
5.6603773	2.591	485.3	2.2731	0.83014	5.20306	14.0172	4.27677	69.4115	917,73010	2,5	365,09664
5.6603773	2.591	488.4	2.2454	0.83014	5.20306	15.0041	5.45207	83.8016	839,49460	2,5	335,73764
5.6603773	2.591	496.3	2.2617	0.83014	5.20306	14.4466	4.76897	68.9696	845,1288	3	241,40337
6.1032863	2.591	501.6	2.2408	0.83014	5.70306	15.2404	4.99606	67.3956	839,49460	3	279,81315
6.1032863	2.591	497.7	2.2357	0.83014	5.70306	15.4329	5.18484	66.4040	726,81076	3,5	207,66021
6.1032863	2.591	500.6	2.2383	0.83014	5.70306	16.3356	6.05756	68.9203	816,78406	3	271,92901
6.5420560	2.591	500.0	2.2674	0.83014	6.20306	14.2334	3.18153	77.6431	974,71521	3	324,95007
6.5420560	2.591	497.5	2.2554	0.83014	6.20306	14.6994	3.69436	74.8448	1192,0521	2,5	464,82084
6.5420560	2.591	498.7	2.2572	0.83014	6.20306	14.6186	3.61789	75.2515	1047,9597	2,5	419,18388

4.3 Perbandingan Hasil Perhitungan Manual dan Perhitungan dengan Program

4.3.1 Perhitungan Uji t untuk VMA

\[H_0 : \mu_1 = \mu_2 \]
\[H_a : \mu_1 > \mu_2 \]

Jumlah data = 21

\[\bar{Y}_1 = \frac{187,2000}{21} = 8,910\% \]
\[\bar{Y}_2 = \frac{187,0842}{21} = 8,909\% \]

\[S_1^2 = \frac{n \times \sum Y_1^2 - (\sum Y_1)^2}{n_1(n_1 - 1)} \]
\[= 76,598 \]

\[S_2^2 = \frac{n \times \sum Y_2^2 - (\sum Y_2)^2}{n_2(n_2 - 1)} \]
\[= 76,324 \]

\[S_p^2 = \frac{(n_1 - 1) \times S_1^2 + (n_2 - 1) \times S_2^2}{n_1 + n_2 - 2} \]
\[= 76,461 \]

\[S_p = 8,744 \]
t = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{(n_1 - 1) \times S_1^2 + (n_2 - 1) \times S_2^2} \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}
\left(\frac{n_1 + n_2 - 2}{n_1 + n_2 - 2} \right)
\left(\frac{n_1 + n_2 - 2}{n_1 + n_2 - 2} \right)
= 0,0004
\alpha = 0,05
\nu = n_1 + n_2 - 2
= 40
\text{t}_\alpha = 1,684
\text{t} = 0,0004

Karena \text{t} < \text{t}_\alpha, maka H_0 diterima, sehingga disimpulkan bahwa hasil perhitungan secara program dapat diterima.

Tabel 4.2 Perbandingan hasil perhitungan manual dengan hasil perhitungan program.

VMA	Manual	Program		
	\(Y_1\)	\(Y_1^2\)	\(Y_2\)	\(Y_2^2\)
19,2	368,64	19,2091	368,9895	
16,4	268,96	16,3855	268,4846	
16,8	282,24	16,8060	282,4416	
15,6	243,36	15,5947	243,1947	
17,4	302,76	17,4015	302,8122	
17,0	289,00	16,9831	288,4257	
15,6	243,36	15,6047	243,5067	
18,1	327,61	18,0593	326,1383	
17,3	299,29	17,2929	299,0444	
17,5	306,25	17,4589	304,8132	
16,3	265,69	16,2885	265,3152	
15,7	246,49	15,7487	248,0216	
14,0	196,00	14,0172	196,4819	
15,1	228,01	15,0641	226,9271	
14,4	207,36	14,4496	208,7909	
15,2	231,04	15,2404	232,2698	
15,4	237,16	15,4329	238,1744	
15,3	234,09	15,3356	235,1806	
14,2	201,64	14,2324	202,5603	
14,7	216,09	14,6864	215,6903	
14,6	213,16	14,6186	213,7035	
\(\Sigma = 187,2\)	\(\Sigma = 3197,16\)	\(\Sigma = 187,0842\)	\(\Sigma = 3193,1661\)	
4.3.2 Perhitungan Uji t untuk VIM

\[H_0 : \mu_1 = \mu_2 \]
\[H_a : \mu_1 > \mu_2 \]

Jumlah data = 21

\[\bar{Y}_1 = \frac{102.2}{21} = 4.867 \% \]
\[\bar{Y}_2 = \frac{102.22852}{21} = 4.868 \% \]

\[S_1^2 = \frac{n \times \sum Y_1^2 - (\sum Y_1)^2}{n_1(n_1-1)} = 23,715 \]
\[S_2^2 = \frac{n \times \sum Y_2^2 - (\sum Y_2)^2}{n_2(n_2-1)} = 23,698 \]

\[S_p^2 = \frac{(n_1 - 1) \times S_1^2 + (n_2 - 1) \times S_2^2}{n_1 + n_2 - 2} = 23,707 \]
\[S_p = 4,869 \]

\[t = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{\frac{(n_1 - 1) \times S_1^2 + (n_2 - 1) \times S_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}} = -0.0007 \]
\[\alpha = 0.05 \]
\[\nu = n_1 + n_2 - 2 = 40 \]
\[t_a = 1.684 \]
\[t = -0.0007 \]

Karena \(t < t_a \), maka \(H_0 \) diterima, sehingga disimpulkan bahwa hasil perhitungan secara program dapat diterima.
Tabel 4.2 Perbandingan hasil perhitungan manual dengan hasil perhitungan program.

VIM	Manual	Program	
Y₁	Y₁פיד	Y₂	Y₂פיד
12.6	158.80	12.57020	158.0099
9.5	90.25	9.51461	90.5278
10.0	100.00	9.96969	99.39472
8.0	64.00	7.98091	63.69492
10.0	100.00	9.95060	99.01444
9.5	90.25	9.49448	90.14515
7.3	53.29	7.34219	53.90775
10.0	100.00	10.03700	100.7414
9.2	84.64	9.19571	84.56108
8.7	75.69	8.73362	76.27612
7.4	54.76	7.43951	55.34631
6.8	46.24	6.84269	46.82241
4.3	18.49	4.28767	18.38411
5.5	30.25	5.45297	29.73488
4.8	23.04	4.76897	22.74307
5.0	25.00	4.96906	24.69156
5.2	27.04	5.18484	26.88257
5.1	26.01	5.07574	25.76314
3.2	10.24	3.18193	10.12468
3.7	13.69	3.69438	13.64844
3.6	12.96	3.61789	13.08913
Σ = 102.2	Σ = 971.68	Σ = 102.22852	Σ = 971.61959

4.3.3 Perhitungan Uji t untuk VFA

\[H_0 : \mu_1 = \mu_2 \]

\[H_a : \mu_1 > \mu_2 \]

Jumlah data = 21

\[
\bar{Y}_1 = \frac{501.2}{21} = 23.867 \%
\]

\[
\bar{Y}_2 = \frac{501.404}{21} = 23.876 \%
\]

\[
S_t^2 = \frac{n \times \sum Y_i^2 - (\sum Y_i)^2}{n_i(n_i - 1)}
\]

\[= 560.251 \]
\[S_2^2 = \frac{n \times \sum Y_1^2 - \left(\sum Y_2 \right)^2}{n_1(n_2 - 1)} \]

\[= 553,590 \]

\[S_p^2 = \frac{(n_1 - 1) \times S_1^2 + (n_2 - 1) \times S_2^2}{n_1 + n_2 - 2} \]

\[= 556,921 \]

\[S_p = 23,599 \]

Tabel 4.3 Perbandingan hasil perhitungan manual dengan hasil perhitungan program.

VFA	Manual	Program	
\(Y_1\)	\(Y_1^2\)	\(Y_2\)	\(Y_2^2\)
34,6	1197,2	34,5610	1194,46
41,9	1755,6	41,9327	1758,35
40,7	1656,5	40,6779	1654,69
48,8	2381,4	48,8232	2383,70
42,8	1831,8	42,8175	1833,34
44,0	1936,0	44,0945	1944,32
52,9	2798,4	52,9489	2803,59
44,4	1971,4	44,4215	1973,27
46,8	2190,2	46,8239	2192,48
50,0	2500,0	49,9762	2497,62
54,3	2948,5	54,3267	2951,39
56,6	3203,6	56,5510	3198,02
69,4	4816,4	69,4115	4817,96
63,8	4070,4	63,8016	4070,64
67,0	4489,0	66,9959	4488,45
67,4	4542,8	67,3956	4542,17
66,4	4409,0	66,4040	4409,49
66,9	4475,6	66,9023	4475,92
77,6	6021,8	77,6431	6028,45
74,8	5595,0	74,8448	5601,74
75,3	5670,1	75,2515	5662,79
\(\Sigma = 501,2\)	\(\Sigma = 23167\)	\(\Sigma = 501,404\)	\(\Sigma = 23187,21\)

\[t = \frac{\overline{Y}_1 - \overline{Y}_2}{\sqrt{(n_1 - 1) \times S_1^2 + (n_2 - 1) \times S_2^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}} \]

\[= -0,0012 \]

\(\alpha = 0,05\)
\[\nu = n_1 + n_2 - 2 \]
\[= 40 \]
\[t_\alpha = 1.684 \]
\[t = -0.0012 \]

Karena \(t < t_\alpha \), maka \(H_0 \) diterima, sehingga disimpulkan bahwa hasil perhitungan secara program dapat diterima.

5. KESIMPULAN DAN SARAN

5.1 Kesimpulan
Dari hasil pemrograman perhitungan hasil pengujian Marshall dengan mempergunakan program Delphi dapat disimpulkan sebagai berikut:
1. Dengan hasil uji statistik diperoleh bahwa \(t < t_\alpha \), maka perbedaan perhitungan antara manual dan program tidak signifikan, sehingga program dapat dipergunakan.
2. Kesalahan perhitungan dengan mempergunakan manual dapat diminimalisasikan dengan mempergunakan program.
3. Waktu yang dibutuhkan untuk menghitung dapat diperkecil, sehingga waktu jadi efisien.

5.2 Saran
Dari hasil pemrograman perhitungan hasil pengujian Marshall dengan mempergunakan program Delphi dapat disampaikan saran sebagai berikut:
1. Berdasarkan hasil pemrograman, dapat diberikan saran bahwa program ini diperlukan beberapa penyempurnaan yaitu kemampuan untuk menggambar grafik dan kemampuan untuk mencetak grafik.
2. Perlu pengembangan untuk modifikasi program untuk beton aspal tidak masif.

6. DAFTAR PUSTAKA
1. AASHTO (1990), *Standard Specifications For Transportation Material And Methods of Sampling and Testing*, Part II, “Test”, Fifteenth Edition, Washington, D.C.
2. Alam, M. Agus J., *Mengolah Database dengan Borland Delphi 7*, Elex Media Komputindo.
3. Ardiansyah, *Membangun Sistem Komputerisasi Laboratorium*, Elex Media Komputindo.

4. Departemen Pekerjaan Umum, Badan Penelitian Dan Pengembangan PU, Standar Nasional Indonesia, *Metode Campuran Aspal Dengan Alat Marshall, SNI 06-2489-1991; SK SNI M-578-1990-03.*

5. Kadir, Abdul, *Dasar Pemrograman Delphi 5.0*, Penerbit ANDI, Yogyakarta.

6. MADCOMS., *Pemrograman Borland Delphi 7 (Jilid 1)*, Penerbit ANDI, Yogyakarta.

7. MADCOMS., *Pemrograman Borland Delphi 7 (Jilid 2)*, Penerbit ANDI, Yogyakarta.

8. Nasution, Amrinsyah & Zakaria, Hasballah, *Metode Numerik dalam Ilmu Rekayasa Sipil*, Penerbit ITB Bandung

9. Sukirman, Silvia (2004), *Beton Aspal Campuran Panas*, Granit, Jakarta.

10. Sukirman., Silvia (1997), *Perkerasan Lentur Jalan Raya*, Penerbit NOVA.

11. Yuliqurtinisih, Deasy, *Perbandingan Indeks Perendaman antara Campuran Beton Aspal Menggunakan Aspal Penetrasi 60 dan Aspal Penetrasi 80*, Tugas Akhir, Universitas Kristen Maranatha, Bandung.

12. Zakhri, Zainudin, *Dasar-dasar Pemrograman Visual dengan Delphi 6.0*, Penerbit GRAHA ILMU.
STUDI MANAJEMEN PEMELIHARAAN JALAN TOL PADALARANG–CILEUNYI

Maksum Tanubrata[1], Dini Handayani Asmara[2]

ABSTRACT

PT. Jasa Marga (Persero) in this time face the condition of where costly turnpike maintenance cost progressively, where as very limited available funds amount. Other side traffic volumes amount which passing turnpike will progressively mount and also claim the existence of adequate service. Hence organizer of turnpike have to look for way to take care of turnpike remain to prima in a condition competent and. To fulfill desire and requirement of society service user of this toll, is needed a way that is system handling of good turnpike. System handling of the turnpike recognized with Management Conservancy of Turnpike or of Maintenance Management System (MMS). This MMS very assist for the agenda of conservancy and management of turnpike of Padalarang-Cileunyi. With existence of MMS entire/ all activity of conservancy, good that conservancy of routine, special and periodic/ emergency, can observe and schedule better. Entire/ All activity of conservancy which have been executed to be to be kept / to be recorded in this MMS, as data which if needed at any times earn is immediately peeped out swiftly. In turnpike organization chart of Padalarang-Cileunyi there are commissioned shares arrange program, execution and also observation of conservancy. Procedures execution of Management Conservancy of Turnpike which there good enough, provided with conservancy procedure, diagram emit a stream of a sset data, inspection, and also planning of follow-up. Pursuant to obtained literature study and data, please get that by using management conservancy of turnpike will facilitate execution of work of conservancy.

Keyword: Management Conservancy, Turnpike.

ABSTRAK

PT. Jasa Marga (Persero) saat ini menghadapi kondisi dimana biaya pemeliharaan jalan tol semakin mahal, sementara jumlah dana yang tersedia sangat terbatas. Disisi lain jumlah volume lalu lintas yang melalui jalan tol akan semakin meningkat serta menuntut adanya pelayanan yang memadai. Maka pengelola jalan tol harus mencari cara untuk menjaga agar jalan tol tetap dalam kondisi yang prima dan layak. Untuk memenuhi keinginan dan kebutuhan dari masyarakat pengguna jasa tol ini, diperlukan suatu cara yaitu sistem penanganan jalan tol yang baik. Sistem penanganan jalan tol tersebut dikenal dengan Manajemen Pemeliharaan Jalan Tol atau Maintenance Management System (MMS). MMS ini sangat membantu dalam rangka pemeliharaan dan pengelolaan jalan tol Padalarang-Cileunyi. Dengan adanya MMS seluruh kegiatan pemeliharaan, baik itu pemeliharaan rutin, periodik dan khusus/darurat, dapat terawasi dan terjadwal dengan baik. Seluruh kegiatan pemeliharaan yang telah dilaksanakan disimpan/direkam dalam MMS ini, sebagai data yang apabila diperlukan sewaktu-waktu dapat segera dimunculkan dengan cepat. Dalam struktur organisasi jalan tol Padalarang-Cileunyi terdapat bagian yang bertugas mengatur program, pelaksanaan serta pengawasan pemeliharaan. Tata cara pelaksanaan Manajemen Pemeliharaan Jalan Tol yang sudah ada cukup baik, dilengkapi dengan prosedur pemeliharaan, diagram alir pendataan aset, inspeksi, serta perencanaan tindak lanjut. Berdasarkan data dan studi literatur yang diperoleh, didapatkan bahwa dengan menggunakan manajemen pemeliharaan jalan tol akan memudahkan pelaksanaan pekerjaan pemeliharaan.

Kata Kunci: Manajemen pemeliharaan, Jalan tol.
1. PENDAHULUAN
1.1 Latar Belakang

Pembangunan infrastruktur jalan telah terbukti secara nyata mampu memperlancar arus manusia, barang dan jasa serta beragam informasi ke segala penjuru wilayah. Demikian pula infrastruktur jalan tol di kota Bandung yang merupakan salah satu gerbang masuk bagi masyarakat untuk melakukan segala macam aktifitas menuju atau dari dan melewati kota Bandung.

Pada masa yang akan datang, PT. Jasa Marga sebagai pengelola jalan tol akan dihadapkan pada suatu kondisi dimana biaya pengelolaan jalan menjadi semakin mahal sementara jumlah dana yang tersedia sangat terbatas. Disisi lain jumlah volume lalu lintas yang melalui jalan tol akan semakin meningkat serta menuntut adanya pelayanan yang memadai. Pada saat itulah pengelola jalan tol harus mencari cara terbaik dalam menangani jaringan jalan yang ada sehingga mencapai suatu tingkat pelayanan yang layak dan kendala keterbatasan dana.

Adalah merupakan tanggung jawab pengelola jalan tol untuk menyiapkan anggaran yang lebih ketat dan kriteria pengelolaan yang jelas dalam setiap biaya yang dikeluarkan. Diperlukan metode yang tepat untuk memperkirakan dan mengalokasikan biaya, anggaran, dan sumber daya yang dibutuhkan untuk melaksanakan program pemeliharaan.

Banyak cara untuk mengatur program pemeliharaan dengan anggaran yang terbatas. Salah satu metode yang banyak dipakai saat ini adalah Maintenance Management System (MMS). MMS didefinisikan sebagai proses optimasi kinerja jaringan yang isinya meliputi beberapa aktivitas pemeliharaan jaringan beserta prasararannya.

1.2 Tujuan

Tujuan penelitian adalah mempelajari manajemen pemeliharaan jalan tol Padalarang - Cileunyi yang sudah ada, sehingga didapatkan manajemen pemeliharaan jalan tol yang baik.

1.3 Batasan Studi

Dalam studi ini diambil manajemen pemeliharaan jalan tol Padalarang – Cileunyi yang sudah ada, dengan mempelajari cara pelaksanaan pekerjaan pemeliharaan yang dilakukan apakah sudah memenuhi persyaratan atau prosedurnya. Pembahasan pekerjaan pemeliharaan ini dibatasi hanya pada pemeliharaan periodik pada bulan Juli – Desember 2007, dan tidak dibahas rincian biayanya.
2. TINJAUAN PUSTAKA

2.1 Jalan Tol

Undang-Undang nomor 38 tahun 2004 tentang jalan tol, menyebutkan bahwa jalan tol adalah jalan umum yang merupakan bagian dari sistem jaringan jalan dan sebagai jalan nasional yang penggunanya dikenakan kewajiban membayar tol. Sedangkan tol adalah sejumlah uang tertentu yang harus dibayarkan untuk pemakaian jalan tol. Masyarakat yang berhak menggunakan jalan tol adalah masyarakat yang menggunakan kendaraan bermotor roda 4 atau lebih. Tujuan penyelenggaraan jalan tol adalah sebagai berikut:

1. Memperlancar lalu lintas di daerah yang telah berkembang.
2. Meningkatkan hasil guna dan daya guna pelayanan distribusi barang dan jasa guna menunjang peningkatan pertumbuhan ekonomi.
3. Meringankan beban dana Pemerintah melalui partisipasi pengguna jalan.
4. Meningkatkan pemerataan hasil pembangunan dan keadilan.

Selain itu tujuan dari pembangunan jalan tol, yaitu:

1. Menjamin kelancaran arus lalu lintas jarak jauh, terutama bagi pengendara komersial dan lalu lintas perkotaan yang lain.
2. Mempunyai fungsi sebagai pengendalian arus lalu lintas wilayah dan mengurangi kejenuhan jaringan jalan di sekitar lokasi akibat meningkatnya volume lalu lintas.
3. Menghemat biaya operasional kendaraan dan waktu tempuh bagi para pemakai jalan.
4. Memenuhi kebutuhan masyarakat akan prasarana jalan, sehubungan dengan semakin meningkatnya laju pertumbuhan dan perkembangan kendaraan.
5. Mengurangi pengaruh-pengaruh negatif akibat pelayanan yang tidak memadai seperti tingkat kadar polusi, dan jumlah kecelakaan lalu lintas.
6. Meningkatkan kapasitas jalan, karena jalan yang sudah ada tidak mampu lagi menampung volume lalu lintas yang ada.

Dari hal tersebut di atas dapat disimpulkan bahwa jalan tol mempunyai peran untuk melayani jasa distribusi utama yang mempunyai spesifikasi bebas hambatan agar dicapai tingkat efisiensi yang maksimal dalam penggunaan sumber daya, serta sebagai pemacu pengembangan wilayah untuk mewujudkan keseimbangan perkembangan antar daerah.

2.2 Manajemen Pemeliharaan

Pengembangan sistem manajemen pemeliharaan ini diawali pada tahun 1983 dengan diadakannya studi *Technical Assisten and Training in Toll Road Managemant* yang dilaksanakan oleh The New Jersey Turnpike Authority dan Louis Beger pada periode tahun
1983 – 1985. Hasilnya berupa satu set laporan teknis yang berisi tentang kajian terhadap pengoperasian jalan tol yang dilaksanakan oleh PT. Jasa Marga (Persero). Laporan teknis yang dihasilkan oleh studi ini belum dapat sepenuhnya digunakan sebagai acuan untuk sistem manajemen pemeliharaan jalan tol, mengingat studi tersebut hanya memuat gambaran operasional PT. Jasa Marga dan advis teknis yang diperlukan pada saat itu.

Pada tahun 1989 suatu tim studi dari Jepang yaitu IECA-EHRF-OPMAC, melakukan Studi Management Service for The Tollway System yang substansinya tidak jauh berbeda dengan studi yang dilakukan oleh The New Jersey Turnpike. Pembahasan mengenai Manajemen Pemeliharaan Jalan Tol Hanya terfokus pada dua pokok bahasan yaitu Manual Inspeksi Pekerjaan Pemeliharaan dan Pengukuran & Evaluasi Kondisi Perkerasan. Meskipun Laporan teknis yang disajikan telah cukup terperinci namun masih terdapat kesulitan dalam menerapkan di lapangan dikarenakan oleh tidak tersedianya petunjuk pelaksanaan pengisian formulir survey maupun tata cara mengevaluasinya.

Pada tahun 1991 dimulai proyek Toll Road Desain, Maintenance Management System tahap 1 (MMS-1). Studi ini dilaksanakan oleh Noadtec Resources (NZ) LTD/PT Virama Karya/Disiplan Consult. Tujuan studi ini adalah membuat standar desain jalan tol, kendali mutu pembangunan dan pemeliharaan jalan tol serta menyusun suatu sistem pemeliharaan jalan tol. Dari studi ini semula diharapkan akan dapat diperoleh suatu strategi yang mencakup penanganan pemeliharaan jalan tol mulai dari perencanaan pemeliharaan sampai dengan penyiapan dokumen tender untuk pekerjaan pemeliharaan. Namun sampai dengan selesainya studi, hasil yang dicapai baru sebatas pada pembuatan pangkalan data.

MMS tahap 2 dilaksanakan oleh lembaga penelitian ITB pada tahun 1994 yang merupakan kelanjutan dari MMS tahap 1. Seperti halnya konsep MMS tahap 1 maka MMS tahap 2 dirancang dengan sistem modular dengan penekanan pada penyelesaian Treatment Policy Module (TPM) dan Economic & Financial Evolution Module (EFEM) yang membentuk Planning and Budgeting Module (PBM). Aspek yang dicakup dalam MMS II ini baru mencakup perkerasan jalan tol, belum meliputi 5 aset lain seperti geometrik, jembatan, gedung, peralatan dan elektrikal. Lebih dari itu belum mencakup Design Tendering Module (DTM) dan Contract Implementation Module (CIM) yang merupakan bagian tak terpisahkan dari pengembangan konsep MMS untuk perkerasan jalan tol secara keseluruhan.

Pada tahun 1998 dilakukan penyempurnaan program MMS menjadi suatu sistem manajemen pemeliharaan jalan tol yang lebih terpadu. Program ini disebut sebagai Integrated Maitenance Management System (IMMS) atau lebih dikenal dengan MMS II+. Program MMS II+ merupakan sistem yang terkomputerisasi sebagai alat bantu bagi PT. Jasa
Marga (Persero) dalam melaksanakan kegiatan pemeliharaan jaringan jalan tol yang meliputi:

1. Menyediakan informasi dalam pangkalan data MMS mengenai karakteristik dan kondisi jaringan jalan tol.
2. Perkiraan anggaran pemeliharaan rutin tahunan.
3. Penyusunan rencana dan anggaran pemeliharaan berkala dan peningkatan lima tahunan.
4. Persiapan dokumen lelang/kontrak pekerjaan pemeliharaan.
5. Pemantauan pelaksanaan pekerjaan pemeliharaan.
6. Pelaporan dan informasi geografis mengenai pemeliharaan jaringan jalan tol.

2.3 Prosedur Pemeliharaan Fasilitas Operasi

2.3.1 Tujuan

Prosedur ini bertujuan mengatur pelaksanaan kegiatan pemeliharaan fasilitas operasi, sehingga dapat dicapai keseragaman pola tindak lanjut dan tanggung jawab bagi unit bagian Program Pemeliharaan serta unit lain dalam rangka pelaksanaan pemeliharaan fasilitas operasi agar dalam keadaan siap dioperasikan.

2.3.2 Ruang Lingkup

Prosedur pemeliharaan fasilitas operasi ini mencakup tata cara pemeliharaan yang meliputi perawatan, rehabilitas/perbaikan, penujangan dan peningkatan yang berdasarkan Rencana Kerja Anggaran Perusahaan (RKAP) dengan aktivitas rutin mulai dari inspeksi, pengumpulan data, evaluasi data, menentukan alternatif penanganan sampai dengan analisis data untuk dituangkan dalam RAB (Rencana Anggaran Biaya) sampai dengan pelaksanaan pekerjaan pemeliharaan di PT. Jasa Marga (Persero).

2.3.3 Rencana Kerja Anggaran Perusahaan (RKAP)

1. Penyusunan RKAP Cabang untuk tahun ke depan disiapkan paling lambat bulan ketiga pada triwulan III pada tahun berjalan.
2. RKAP disusun secara detail dengan cerminan program kerja, biaya serta alokasinya, dengan merujuk pada hasil inspeksi dan laporan kerusakan yang masuk pada pangkalan data atau merupakan program yang tertunda.
3. Kepala Cabang manetapkan kebijakan RKAP Cabang bidang pemeliharaan fasilitas operasi.
4. Kepala Bagian Pemeliharaan harus membuat rencana aktivitas pencapaian toluk pemeliharaan fasilitas operasi yang berdasarkan pada RKAP hasil RUPS dengan mengatur waktu pelaksanaan program-program yang ada pada RKAP secara rinci menurut titik kontrol dan penanggung jawabnya.

5. Kepala Sub Bagian Program Pemeliharaan harus melaksanakan monitoring pelaksanaan rencana aktivitas yang dibuat oleh Kepala Bagian Pemeliharaan.

2.3.4 Pelaksanaan Inspeksi

1. Kepala Sub Bagian Program Pemeliharaan harus menyusun jadwal inspeksi dan pendataan aset pemeliharaan secara bulanan, paling lambat bulan ketiga minggu keempat triwulan berjalan sesuai lampiran.

2. Kepala Bagian Pemeliharaan harus memberikan persetujuan jadwal inspeksi dan pendataan aset pemeliharaan.

3. Tata Usaha Pelayanan Umum harus melaksanakan pengetikan dan pendistribusian jadwal inspeksi dan pendataan aset pemeliharaan.

4. Teknisi terkait harus melaksanakan inspeksi sesuai jadwal yang telah ditetapkan dan melaporkan hasil pelaksanaan inspeksi kepada Juru Teknik terkait paling lambat 1 hari setelah pelaksanaan inspeksi.

5. Tata Usaha Pendataan harus melaksanakan pendataan aset pemeliharaan sesuai jadwal yang telah ditetapkan serta merekap hasil pendataan tersebut dan melaporkan kepada Juru Tata Usaha Pengolahan Data Pemeliharaan paling lambat 1 hari setelah pelaksanaan.

6. Juru Teknik terkait menerima laporan hasil inspeksi serta harus memperbarui jadwal hasil pelaksanaan inspeksi.

7. Juru Teknik terkait harus membuat laporan kerusakan dan rencana penanganan kerusakan berdasarkan hasil inspeksi kepada Kepala Sub Bagian Program Pemeliharaan melalui Juru Tata Usaha Pengolahan Data Pemeliharaan.

8. Juru Tata Usaha Pengolahan Data Pemeliharaan manerima laporan hasil pendataan serta harus memperbarui jadwal hasil pelaksanaan pendataan.

9. Tata Usaha Pendataan menerima berkas hasil inspeksi dari Juru Tata Usaha Pengolahan Data Pemeliharaan dan harus membuat rekapitulasi hasil inspeksi tersebut.

10. Kepala Sub Bagian Program Pemeliharaan bersama-sama Juru Tata Usaha Pengolahan Data Pemeliharaan harus membuat laporan performa aset pemeliharaan...
kepada Kepala Bagian Pemeliharaan berdasarkan data laporan hasil inspeksi dan pendataan.

11. Kepala Sub Bagian Program Pemeliharaan harus mengevaluasi laporan performa aset pemeliharaan dengan kategori (R1, R2 dan R3) dan prioritas penanganan (P1 dan P2). Apabila hasil evaluasi ternyata merupakan kategori kerusakan berat (R1) yang tidak dapat ditunda atau prioritas (P1), maka perlu merujuk program pada rencana kegiatan yang telah ditetapkan (action plan), maka mengusulkan penanganan tindak lanjut tersebut kepada Kepala Bagian Pemeliharaan.

12. Kepala Bagian Pemeliharaan harus melakukan evaluasi rencana aktivitas tindak lanjut penanganan yang tidak terdapat pada program yang telah ditetapkan (action plan). Apabila program penanganan tindak lanjut tersebut tidak dapat ditunda, maka Kepala Bagian Pemeliharaan mengusulkan perubahan program atau mutasi anggaran kepada Kepala Cabang.

13. Kepala Cabang memberikan persetujuan usulan perubahan program atau mutasi. Apabila mendapat persetujuan Kepala Cabang, maka program dapat ditindaklanjut dengan perencanaan. Dan apabila tidak disetujui, dimasukan kedalam program yang ditunda.

2.3.5 Perencanaan Program Tindak Lanjut

1. Juru Teknik dan Teknisi terkait secara bersama-sama harus melakukan perencanaan tindak lanjut yang telah ditetapkan/mendapatkan persetujuan revisi. Perencanaan tindak lanjut meliputi perhitungan volume, gambar, spesifikasi, analisa terinci harga satuan dan Rencana Anggaran Biaya. Dan mengusulkan kepada Kepala Sub Bagian Program Pemeliharaan melalui Juru Tata Usaha Pengolahan Data Pemeliharaan.

2. Kepala Sub Bagian Program Pemeliharaan harus melakukan pemeriksaan rencana program tindak lanjut.

3. Kepala Bagian Pemeliharaan memberikan persetujuan program tindak lanjut. Dan meminta persetujuan Kepala Cabang yang diwujudkan dalam bentuk Ijin Penggunaan Anggaran Biaya (IPA) dan dilengkapi data dukung teknis yang lengkap, melalui Bagian Keuangan.

4. Juru Tata Usaha Pengolahan Data Pemeliharaan dan Tata Usaha pendataan secara bersama-sama harus melakukan pencatatan dan monitoring program kerja dan anggaran.
2.3.6 Pengendalian Mutu Pekerjaan

1. Kepala Bagian Pemeliharaan harus mengeluarkan surat Penugasan Pengendalian Mutu Pekerjaan kepada Kepala Sub Bagian Pengawasan Pengendalian dan Evaluasi Pemeliharaan, Juru serta Teknisi yang ditugaskan untuk melaksanakan pengendalian pekerjaan dari segi volume, waktu dan mutu sesuai ketentuan kontrak.

2. Kepala Sub Bagian Pengawasan Pengendalian dan Evaluasi Pemeliharaan harus memonitor pelaksanaan program tindak lanjut yang dilaporkan oleh Juru dan Teknisi terkait dalam pengendalian mutu pekerjaan setiap minggu pada hari pertama.

3. Proses pemeriksaan pekerjaan dilakukan setelah pekerjaan diselesaikan sesuai volume, spesifikasi, gambar rencana dan waktu pelaksanaan dalam kontrak. Pemeriksaan pekerjaan dilakukan bersama-sama oleh pengendalian mutu pekerjaan dari PT. Jasa Marga dan kontraktor yang dituangkan dalam Berita Acara Pemeriksaan Pekerjaan yang ditanda tangani bersama dan diketahui oleh Kepala Bagian Pemeliharaan dan dilengkapi dengan laporan pengendalian mutu pekerjaan.

4. Kepala Sub Bagian Pengawasan Pengendalian dan Evaluasi Pemeliharaan, Juru dan Teknisi terkait harus melakukan penyempurnaan data yang dilaksanakan setiap triwulan sekali dengan cara menghimpun, menyusun dan memperbaharui data pemeliharaan.

3. PENGUMPULAN DATA

3.1 Peta Jalan Tol Padalarang-Cileunyi

Jalan tol Padalarang–Cileunyi berada di sebelah selatan kota Bandung. Jalan tol ini dimaksudkan agar kendaraan dari arah timur (Cirebon, Tasikmalaya dan Garut) yang menuju ke arah barat (Jakarta) dan sebaliknya tidak melalui jalan dalam kota Bandung, serta memperlancar kendaraan yang akan masuk dan keluar kota Bandung, terutama dari arah selatan, yaitu Soreang, Banjaran dan Majalaya. Jalan tol tersebut dapat dilihat pada Gambar 1 berikut:
3.2 Struktur Organisasi Jalan Tol Padalarang–Cileunyi

Gambar 2. Struktur Organisasi Jalan Tol Padalarang–Cileunyi.

Gambar 1. Peta Jalan Tol Padalarang–Cileunyi.
3.3 Diagram Alir Pendataan Fasilitas Operasi

Instruksi kerja pelaksanaan pendataan ini bertujuan untuk menyeragamkan pola tindak lanjut tugas inventarisasi fasilitas operasi dalam rangka mengoptimalkan kegiatan/program pemeliharaan. Langkah-langkahnya dapat dilihat pada gambar berikut ini:

Gambar 3. Diagram alir pendataan fasilitas operasi

3.4 Diagram Alir Inspeksi Fasilitas Operasi

Dalam instruksi kerja inspeksi fasilitas operasi ini terdapat diagram alir langkah-langkah pekerjaannya, seperti pada gambar berikut ini:
3.5 Diagram Alir Perencanaan Tindak Lanjut

Pada gambar dibawah ini dapat dilihat langkah-langkah instruksi kerja perencanaan tindak lanjut dalam bentuk diagram alir, yaitu sebagai berikut:
Diagram Alir Pengendalian Mutu Pekerjaan

Instruksi Kerja Pengendalian Mutu Pekerjaan ini mencakup kegiatan-kegiatan dari mulai menerima surat penugasan pengendalian mutu pekerjaan, penerimaan dokumen kontrak, persiapan pekerjaan, pengawasan pekerjaan, pemeriksaan pekerjaan sampai dengan proses pembuatan Berita Acara Pemeriksaan Pekerjaan, seperti pada gambar berikut ini:
Gambar 6. Diagram alir pengendalian mutu pekerjaan.
4. ANALISIS DATA

4.1 Analisis Struktur Organisasi Jalan Tol Padalarang–Cileunyi

Analisis struktur organisasi jalan tol Padalarang–Cileunyi yang dapat dilihat pada Gambar 2, mencakup analisis pada kebijakan serta tugas yang dilaksanakan oleh pihak yang ditugaskan untuk melaksanakan pekerjaan pemeliharaan jalan tol. Analisis struktur organisasi dilakukan karena menyangkut sumber daya manusia yang terkait dalam manajemen pemeliharaan jalan tol sehingga dapat dicapai keseragaman pola tindak lanjut pekerjaan dan tanggung jawab masing – masing.

Pada struktur organisasi jalan tol cabang Padalarang–Cileunyi sebagian besar unsur yang harus dimiliki dalam suatu struktur organisasi sudah ada. Struktur organisasi yang baik dirasakan sangat penting untuk meningkatkan kualitas perusahaan yang semakin lama semakin berkembang. Dalam hal ini, yaitu pada pekerjaan pemeliharaan semua pihak yang terkait pada struktur organisasi dimulai dari tahap pendataan, inspeksi, perencanaan, pelaksanaan dan pengawasan harus menunjukkan koordinasi serta kinerja yang baik dalam menjalankan tugas dan wewenang.

Di sini hanya akan dibahas mengenai bagian pemeliharaannya saja. Pada bagian ini terdiri dari 2 sub bagian, yaitu sub bagian program pemeliharaan dan sub bagian pengawasan pengendalian dan evaluasi pemeliharaan.

Sub bagian program pemeliharaan ini bertugas menyusun program-program pemeliharaan, penyiapan dokumen, serta pengelolaan pemeliharaan. Contohnya yaitu melakukan pendataan fasilitas operasi, membuat laporan hasil inspeksi fasilitas operasi, serta menyusun perencanaan tindak lanjut. Sedangkan pada sub bagian pengawasan pengendalian dan evaluasi pemeliharaan, bertugas mengawasi pelaksanaan pekerjaan pemeliharaan, pengendalian mutu pekerjaan, serta mengevaluasi hasil pekerjaan pemeliharaan apakah sesuai dengan yang direncanakan. Pada sub bagian ini terdiri dari juru teknik bangunan gedung, jalan dan jembatan, mekanikal elektrikal, teknik lingkungan, sarana pelengkap jalan, dan bangunan pelengkap jalan.

Dari uraian di atas dapat dilihat bahwa semua pihak terkait dalam pekerjaan pemeliharaan saling berkoordinasi dan menjalankan tugas serta wewenangnya.

4.2 Analisis Instruksi Kerja Pendataan Fasilitas Operasi

Pada pendataan fasilitas operasi, langkah ini sangat penting sekali untuk dapat mengoptimalkan kegiatan/program pemeliharaan. Dengan kata lain bila pada saat pendataan
terjadi kesalahan pencatatan maka kegiatan pemeliharaan tidak akan mendapat hasil yang maksimal.

Untuk langkah-langkah yang dilakukan dapat dilihat pada Gambar 3, dimulai dari melaksanakan pendataan. Pendataan yang dimaksud adalah melakukan pendataan mengenai jumlah serta kondisi fasilitas jalan tol tersebut. Bila terjadi perubahan, baik itu mengenai jumlah ataupun kondisi fasilitas operasi, Pendata bisa langsung melakukan pencatatan, untuk perubahan kondisi fasilitas operasi tidak perlu dilakukan pemeriksaan kerusakan yang mendetail. Pencatatan ini nantinya akan dipakai untuk *mengupdate data base*. Baik itu ada perubahan ataupun tidak ada perubahan, Pendata harus tetap *mengupdate data base*. Data ini nantinya akan dipakai dalam pelaksanaan inspeksi.

4.3 Analisis Instruksi Kerja Inspeksi Fasilitas Operasi

Setelah melakukan pendataan fasilitas operasi, kegiatan selanjutnya yaitu inspeksi. Inspektor menginspeksi fasilitas operasi berdasarkan data yang diperoleh dari hasil pendataan. Dari diagram alir inspeksi (Gambar 4), disebutkan bila pada saat pelaksanaan inspeksi, inspektor menemukan adanya kerusakan harus dilakukan identifikasi kerusakan, yang kemudian dilakukan pencatatan mengenai kerusakan tersebut untuk dianalisa, serta dicari solusi yang tepat untuk menangani kerusakan tersebut. Barulah pada akhirnya melakukan rekapitulasi hasil inspeksi tersebut, untuk diserahkan pada bagian perencana tindak lanjut. Begitu juga bila pada saat inspeksi tidak ditemukan kerusakan pada fasilitas operasi, inspektor tetap harus merekapitulasi hasil inspeksi.

Data hasil inspeksi, yang disertai analisa identifikasi kerusakan dan rencana penanganannya dserahkan kepada Kepala Sub Bagian Program Pemeliharaan untuk dievaluasi. Bila mendapat persetujuan, pekerjaan pemeliharaan dapat dilanjutkan ke tahap berikutnya.

4.4 Analisis Instruksi Kerja Perencanaan Tindak lanjut

Pada diagram alir perencanaan tindak lanjut (Gambar 5), disebutkan setelah bagian perencana menerima laporan inspeksi mengenai jenis kerusakan fasilitas operasi dan berita acara kejadian, perencana melakukan survey ke lapangan untuk mengetahui detail kerusakannya yang akan dipakai dalam pembuatan Rencana Anggaran Biaya (RAB). Kemudian Perencana mulai menyusun Perencanaan.

Perencanaan tersebut harus dilengkapi dengan RAB, Analisa Volume, Analisa Terinci Harga Satuan Pekerjaan, Spesifikasi Umum/Teknis, gambar, hasil inspeksi, foto dan
brosur atau referensi lainnya apabila diperlukan dengan formulir Ijin Penggunaan Anggaran (IPA) yang telah ditetapkan. Kemudian Perencanaan melaporkan perencanaan tersebut kepada Kepala Sub Bagian Program Pemeliharaan melalui Juru Tata Usaha Pengolahan Data Pemeliharaan untuk dikonfirmasikan program kerja dan anggarannya serta pencatatannya.

Kepala Sub Bagian Program Pemeliharaan memeriksa dan mengevaluasi perencanaan tindak lanjut tersebut. Apabila hasil evaluasi perencanaan tindak lanjut tersebut sesuai dengan kebutuhan lapangan atau program kerja dan anggarannya, perencanaan tindak lanjut tersebut dilaporkan kepada Kepala Bagian Pemeliharaan untuk mendapat persetujuan. Kepala Bagian Pemeliharaan memeriksa perencanaan tindak lanjut tersebut, dan apabila perencanaan tindak lanjut tersebut sesuai dengan kebutuhan lapangan atau program kerja dan anggarannya, maka Kepala Bagian Pemeliharaan mengusulkan perencanaan tersebut kepada Kepala Cabang untuk meminta persetujuan melalui Bagian Keuangan untuk dikonfirmasikan anggaran dan program kerjanya.

Kepala Bagian Pemeliharaan menerima perencanaan tindak lanjut yang telah mendapat atau tidak mendapat persetujuan dari Kepala Cabang, selanjutnya Kepala Bagian Pemeliharaan mendisposisi perencanaan tersebut kepada Kepala Sub Bagian Program Pemeliharaan. Perencanaan tindak lanjut yang telah mendapat persetujuan Kepala Cabang kepada Sub Bagian Logistik untuk diproses pengadaan barang dan jasa melalui Juru Tata Usaha Pengolahan Data Pemeliharaan. Sedangkan bila anggaran yang diperlukan tidak tersedia, dan tidak mendapat persetujuan dari Kepala Cabang selanjutnya diserahkan kepada Juru Teknik dan Teknisi terkait untuk direvisi.

4.5 Analisis Instruksi Kerja Pengendalian Mutu Pekerjaan

Penanggung jawab dalam pelaksanaan instruksi kerja ini adalah Kepala Bagian Pemeliharaan. Petugas pengendalian mutu pekerjaan bertanggung jawab kepada Kepala Bagian Pemeliharaan. Setelah menerima surat penugasan dan SPK, Petugas pengendalian mutu pekerjaan melaksanakan pemeriksaan dan evaluasi terhadap dokumen kontrak sebelum pelaksanaan lapangan dimulai. Kemudian menyelenggarakan rapat pra pelaksanaan pekerjaan (Pre construction meeting) dan membahas kesepakatan kerja dengan pihak kontraktor sesuai dengan ketentuan kontrak yang telah disepakati.

Setelah melaporkan hasil rapat dan menerima kelengkapan administrasi kontraktor, petugas pengendalian mutu pekerjaan harus melakukan pemeriksaan terhadap kelengkapan administrasi kontraktor tersebut sebelum pelaksanaan lapangan. Bila kelengkapan terpenuhi petugas meminta persetujuan Kepala Bagian Pemeliharaan untuk menerbitkan Surat Perintah
Mulai Pelaksanaan (*Work Order*), serta persetujuan untuk menerbitkan Berita Acara Serah Terima Lapangan (*Site Hand Over*) melalui Kepala Bagian Pemeliharaan.

Setelah mendapatkan persetujuan Petugas pengendalian mutu pekerjaan dapat melaksanakan pemeriksaan terhadap material dan peralatan yang dipergunakan dilapangan, apakah sesuai dengan yang disyaratkan dalam kontrak. Yang nantinya hasil pemeriksaan fisik pekerjaan tersebut dituangkan ke dalam Berita Acara untuk diproses.

5. KESIMPULAN DAN SARAN

5.1 Kesimpulan

1. Dengan menggunakan Manajemen Pemeliharaan Jalan Tol akan memudahkan pelaksanaan pekerjaan pemeliharaan pada jalan tol.
2. Dari Struktur Organisasi Jalan Tol Padalarang–Cileunyi yang telah dipelajari, diperoleh struktur organisasi yang baik dan saling berkoordinasi dalam menjalankan tugas.
3. Berdasarkan tata cara pelaksanaan pekerjaan perbaikan jalan tol Padalarang–Cileunyi yang telah dipelajari, diperoleh Manajemen Pemeliharaan Jalan Tol yang baik.

5.2 Saran

1. Untuk penelitian lebih lanjut perlu dilakukan penelitian mengenai sumber daya manusia pada pekerjaan pemeliharaan jalan tol Padalarang-Cileunyi.
2. Untuk penelitian lebih lanjut perlu juga dilakukan penelitian mengenai biaya pemeliharaan jalan tol Padalarang-Cileunyi.

DAFTAR PUSTAKA

1. Cornelis, Renound. (2006), *Prosedur Pemeliharaan Fasilitas Operasi*, PT. Jasa Marga, Bandung.
2. Divisi Pelayanan Lalu Lintas dan Pemeliharaan. (1999), *Kumpulan SK Direksi Tentang Pedoman Pemeliharaan Jalan Tol*, PT. Jasa Marga, Bandung.
3. Divisi Pelayanan Lalu Lintas dan Pemeliharaan. (2000), *Kumpulan SK Direksi Tentang Pedoman Pemeliharaan Jalan Tol*, PT. Jasa Marga, Bandung.
4. Hudson, W, Ronald., Haas Ralph., Uddin, Waheed. (1997), *Infrastructure Management*, Mc Graw-Hill Book Company, New York.
5. Mudjiyono. (2006), *Identifikasi Kinerja Gerbang Tol Jalan Tol Padalarang – Cileunyi*, Departemen Teknik Sipil ITB, Bandung.

6. Nugroho, Mardi, Imam. (2005), *Penetapan Prioritas Pemeliharaan Rutin dan Periodik Jalan di Sungailiat Kabupaten Bangka Menggunakan Metode Proses Hirarki Analitik (PHA)*, Universitas Sriwijaya, Palembang.

7. Winarsa, Dwi. (2006), *Instruksi Kerja Inspeksi Sarana Fasilitas Operasi*, PT. Jasa Marga, Bandung.

8. Winarsa, Dwi. (2006), *Instruksi Kerja Pendataan Aset Sarana Fasilitas Operasi*, PT. Jasa Marga, Bandung.

9. Winarsa, Dwi. (2006), *Instruksi Kerja Pengendalian Mutu Pekerjaan*, PT. Jasa Marga, Bandung.

10. Winarsa, Dwi. (2006), *Instruksi Kerja Perencanaan Tindak Lanjut*, PT. Jasa Marga, Bandung.

11. Wirawan, Adhi. (2005), *Evaluasi Kinerja Pemeliharaan Rutin Jalan Tol Kota Semarang*, Departemen Teknik Sipil ITB, Bandung.

[1] **Maksum Tanubrata, Ir., MT.**, Dosen Tetap, Jurusan Teknik Sipil Universitas Kristen Maranatha.

[2] **Dini Handayani Asmara, ST.**, Alumnus Jurusan Teknik Sipil Universitas Kristen Maranatha.
ANALISA DAYA DUKUNG TATA GUNA LAHAN DALAM MENUNJANG KEBERLANJUTAN SUNGAI (STUDI KASUS DAS CILIWUNG)

Robby Yussac Tallar[1]

ABSTRAK
Indonesia adalah negara yang kepulauan yang sebagian besar panjang sungainya kurang dari 250 km atau tergolong pendek. Kondisi alamiah dari sungai-sungai tersebut tidaklah terlalu mendukung dari segi keberlanjutannya. Hal tersebut tampak dari fluktuasi debit sungai yang dari tahun ke tahun semakin meningkat, yaitu relatif besar pada musim hujan (seringkali menyebabkan banjir) dan relatif kecil pada musim kemarau (seringkali menyebabkan kekeringan). Disamping itu, perubahan dari tata guna lahan terutama pada wilayah hulu DAS dari waktu ke waktu semakin tidak terkendali. Kondisi-kondisi demikian menunjukkan bahwa telah terjadinya kerusakan DAS yang berdampak terhadap permasalahan surplus/defisit neraca air sepanjang tahun. Begitu juga dengan DAS Ciliwung yang sebagian besar sungai-sungainya mengalami kerusakan sehingga mengancam keberlanjutannya. Keberlanjutan sungai merupakan salah satu cara dari melindungi DAS dalam rangka mewujudkan pengelolaan sumber daya air yang berkelanjutan.

Kata kunci: perubahan tata guna lahan, koefisien limpasan, standar daya dukung, keberlanjutan sungai.

1. PENDAHULUAN
1.1 Latar Belakang
Pertumbuhan penduduk yang pesat mengakibatkan kebutuhan akan pembangunan tempat tinggal dan tempat usaha meningkat secara pesat pula. Pembangunan yang tak terencana dengan baik dapat menyebabkan meningkatnya wilayah kedap air (impervious area) tanpa memberikan solusi dalam mengurangi banyaknya air larian yang dapat mengakibatkan banjir sebagai akibat dari perubahan tata guna lahan yang berada pada suatu DAS tersebut. Kejadian banjir tidak hanya terjadi di negara yang sedang berkembang, tetapi di negara maju pun masalah banjir masih sering terjadi. Sebagai contoh, di Amerika Serikat (AS) berdasarkan data USGS (United States Geological Survey) pada abad ke 20 telah terjadi 32 kali bencana banjir besar yang menelan kerugian miliaran dollar, bahkan tercatat masalah banjir adalah bencana perusak pertama di negara tersebut. Para pakar hidrologi AS memprediksi bahwa masalah banjir disebabkan oleh infiltrasi yang kecil dan air larian (runoff) yang besar dan langsung masuk ke sungai. Begitu juga halnya di wilayah DKI Jakarta, dimensi dan masalah banjir terus meningkat dari waktu ke waktu. Peningkatan banjir tersebut selain karena faktor alamiah, juga akibat dari aktivitas manusia. Kedua faktor tersebut sangat berpengaruh pada keberlanjutan suatu sungai. Keberlanjutan sungai perlu
Analisa Daya Dukung Tata Guna Lahan Dalam Memunjang Keberlanjutan Sungai (Studi Kasus DAS Ciliwung) (Robby Yussac Tallar)

1.2 Tujuan

Tujuan dari penulisan ini adalah untuk menganalisa daya dukung tata guna lahan dalam menunjang keberlanjutan sungai yang berada pada wilayah DAS Ciliwung dilihat dalam kurun waktu tertentu.

1.3 Ruang Lingkup

Beberapa batasan yang menjadi ruang lingkup penulisan antara lain:

1. Indikator yang diperhitungkan untuk mengetahui daya dukung suatu DAS hanya indikator daya dukung tata guna lahan. Tidak membahas kinerja sungai maupun daya dukung ekosistem pada DAS yang dibahas.

2. Standar daya dukung ditentukan hanya berdasarkan kriteria koefisien limpasan kumulatif (\(C_{\text{kum}} \)).

3. DAS yang dibahas adalah DAS Ciliwung yang terdiri dari beberapa Sub DAS didalamnya.

4. Penulisan ini juga tidak membahas mengenai perubahan kualitas air, erosi dan sedimentasi yang dihasilkan sebagai akibat dari perubahan tata guna lahan.

1.4 Metodologi

Tahapan dari penulisan ini adalah sebagai berikut:

1. Merumuskan masalah.

2. Melakukan pencarian dan pengkajian pustaka, literatur yang mendukung.

3. Mengumpulkan data-data sekunder dan studi pendukung yang terkait.

4. Menganalisa masalah dan membahasnya sesuai dengan literatur yang diperoleh.

5. Membuat kesimpulan dan saran.

2. TINJAUAN PUSTAKA

2.1 Pengertian DAS
Daerah Aliran Sungai (DAS) secara umum didefinisikan sebagai suatu hamparan wilayah/kawasan yang dibatasi oleh pembatas topografi (puncung bukit) yang menerima, mengumpulkan air hujan, sedimen, dan unsur hara serta mengalirkannya melalui anak-anak sungai dan keluar pada satu titik (outlet). Oleh karena itu, pengelolaan DAS merupakan hal penting dalam mewujudkan sungai yang berkelanjutan. Dari definisinya, DAS dapat artikan juga suatu hubungan ekosistem yang mana unsur organisme dan lingkungan biofisik serta unsur kimia berinteraksi secara dinamis dan di dalamnya terdapat keseimbangan inflow dan outflow dari material dan energi. Ekosistem DAS, terutama DAS bagian hulu merupakan bagian yang penting karena mempunyai fungsi perlindungan terhadap keseluruhan bagian DAS. Perlindungan ini antara lain dari segi fungsi tata air, oleh karenanya perencanaan DAS hulu seringkali menjadi fokus perhatian mengingat dalam suatu DAS, bagian hulu dan hilir mempunyai keterkaitan biofisik melalui daur hidrologi. Aktivitas perubahan tata guna lahan dan atau pembuatan bangunan konservasi yang dilaksanakan di daerah hulu dapat memberikan dampak di daerah hilir dalam bentuk perubahan fluktuasi debit air dan transport sedimen serta material terlarut lainnya atau non-point pollution. Adanya bentuk keterkaitan daerah hulu – hilir seperti tersebut di atas maka kondisi suatu DAS dapat digunakan sebagai satuan unit perencanaan sumberdaya alam dalam menentukan penetapan suatu sungai yang berkelanjutan. Pentingnya posisi DAS sebagai unit perencanaan yang utuh merupakan konsekuensi logis untuk menjaga kesinambungan pemanfaatan sumberdaya hutan, tanah, dan air. Dalam dekade terakhir ini permintaan akan sumberdaya tersebut meningkat sangat tajam yang pada kondisi tertentu menimbulkan dampak negatif bagi daya dukung DAS itu sendiri.

2.2 Sungai Berkelanjutan

Sungai adalah cekungan terendah dalam suatu DAS yang menampung limpasan permukaan tanah dari curahan hujan maupun limpasan air tanah dan berakhir di laut atau danau sebagai lokasi labuhan terendahnya. Sungai merupakan salah satu sumber daya air yang mampu menyanyangka kehidupan manusia dan berbagai mahluk hidup yang tinggal dalam wilayahnya. Namun keberlanjutan kemampuannya sangat bergantung pada keseimbangan jumlah curah hujan yang jatuh, yang menjadi limpasan permukaan dan yang meresap masuk menjadi simpanan air tanah. Maka sungai berkelanjutan adalah sungai yang mampu melakukan “self-purification” sehingga ekosistem biotik maupun abiotik tidak terganggu. Indikator dalam menentukan kriteria baik, kritis atau buruknya sungai yang berkelanjutan adalah kinerja sungai, daya dukung ekosistem sungai dan daya dukung tata guna lahan yang...
mempengaruhi daya dukung keseluruhan dari wilayah DAS sungai tersebut. Daya dukung akan dikatakan baik/bagus bila seluruh komponen indikator pada suatu wilayah DAS tersebut sangat menunjang keberlanjutan sungai yang ada. Begitu pula sebaliknya, bila daya dukung suatu DAS digolongkan buruk/jelek, artinya terjadi gangguan pada indikator tersebut yang membuat sungai tersebut menjadi berkurang atau hilang keberlanjutannya.

2.3 Pola Tata Guna Lahan yang Menunjang Keberlanjutan Sungai

Tata guna lahan menurut Arsyad (1989) merupakan suatu keadaan unsur-unsur lahan yang dapat diukur dan memiliki sifat-sifat lahan (land characteristic) yang akan dapat menentukan dan mempengaruhi perilaku lahan seperti ketersediaan air, sirkulasi/peredaran udara, perkembangan/pertumbuhan akar, kepekaan erosi, ketersediaan unsur hara dan lain sebagainya sehingga perilaku lahan sangat menentukan pertumbuhan vegetasi yang biasa disebut dengan kualitas lahan. Tanah, lahan dan air merupakan sumber daya alam dan lingkungan hidup. Oleh karena itu, semuanya berkaitan erat dari suatu tempat ke tempat lain dalam hubungannya dengan kelangsungan proses ekosistem. Pola tata guna lahan yang harmonis dalam suatu DAS dapat menunjang keberlanjutan suatu sungai dalam DAS tersebut. Berikut ini adalah suatu formulasi dari tata guna lahan yang harmonis yang diteliti melalui minimalisasi limpasan kumulatif (C_{kum}) berdasarkan luas hutan di DAS hulu yang terbatas (Guritno, 1997):

$$C_{\text{kum}} = 0.1F + 0.3R + 0.35Gr + 0.4A + 0.7U + 0.6O$$

Untuk : $F + R + Gr + A + U + O = 1$

dimana:

- F = % luas hutan di DAS
- R = % luas sawah di DAS
- Gr = % luas padang rumput di DAS
- A = % luas areal pertanian lainnya di DAS
- U = % luas daerah perkotaan di DAS
- O = % penggunaan lainnya untuk DAS

Dengan menghitung C_{kum} berdasarkan prosentase luas dari tiap-tiap pola tata guna lahan tersebut, maka didapat suatu kesimpulan daya dukung tata guna lahan terhadap keberlanjutan sungai (Lihat Tabel 1).

No	Standar Daya Dukung	Kriteria C_{kum}

Tabel 1. Standar Daya Dukung Tata Guna Lahan (Guritno, 1997).
1. Buruk \(\geq 0.4 \)
2. Sedang \(0.3 – 0.39 \)
3. Baik \(0.29 – 0.2 \)
4. Bagus \(\leq 0.2 \)

3. DATA

Data yang digunakan merupakan data sekunder, yaitu pengumpulan data didapat berdasarkan instansi yang terkait, persepsi masyarakat, karangan ilmiah, penelaahan kepustakaan dari buku-buku, internet dan tulisan yang berhubungan dengan penulisan ini. Data yang digunakan adalah data DAS Ciliwung (tahun 1995 dan prediksi tahun 2025). Data tersebut adalah luas DAS dan prosentase tata guna lahannya.

| Tabel 2. Tata Guna Lahan Wilayah DAS Ciliwung (1995). |
|---|---|---|---|---|---|---|
DAS	Luas (Km²)	Permakultur (%)	Sawah (%)	Padang Rumput (%)	Hutan, Semak (%)	
Sungai Cidurian						
CD.1	378	1	9	34	56	
CD.2	218	-	-	77	23	
Sungai Cimanceuri						
CM.1	233	-	8	45	47	
CM.2	66	34	-	66	-	
CM.3	116	28	4	47	21	
Sungai Cirarab						
CR.1	147	30	27	43	-	
Sungai Cisadane						
CS.1	193	-	-	57	43	
CS.2	12	40	-	60	-	
CS.3	643	-	2	45	53	
CS.4	320	9	-	73	18	
CS.5	80	32	3	65	-	
Cengkareng Floodway						
CF.1	S. Pesanggrahan	72	-	-	100	-
CF.2	S. Pesanggrahan	22	70	-	30	-
CF.3	Sungai Grogol	30	64	-	36	-
CF.4	S. Pesanggrahan	13	100	-	-	-
CF.5	Sungai Angke	107	20	-	80	-
CF.6	Sungai Angke	117	20	-	80	-
CF.7		31	63	-	37	-
CF.8	Mookervaart canal	67	28	-	72	-
-----	------------------	----	----	---	----	---

Banjir Kanal Barat

WB.1	Sungai Ciliwung	88	-	-	32	68
WB.2	Sungai Ciliwung	64	10	-	48	42
WB.3	Sungai Ciliwung	62	70	-	30	-
WB.4	Sungai Ciliwung	123	90	-	10	-
WB.5	Sungai Krukut	84	78	-	22	-
WB.6	Lower Angke	55	100	-	-	-

Banjir Kanal Timur

EB.1	Sungai Cipinang	50.5	80	-	20	-
EB.2	Sungai Sunter	73.8	50		50	
EB.3	Sungai Jatikramat	34.1	80		20	
EB.4	Sungai Cakung	48.6	60	4	36	-

CBL Floodway

CB.1	Sungai Cileungsi	261	15	5	30	50
CB.2	Sungai Cikeas	110	30	1	49	20
CB.3	Sungai Bekasi	18	30	10	60	-
CB.4	Sungai Bekasi	14	30	70	-	-
CB.5	Sungai Cikarang	216	-	1	67	32
CB.6	Sungai Cikarang	14	-	100	-	-
CB.7	Sungai Cikarang	135	-	30	70	-
CB.8	109	-	50	50	-	

Sungai Cilemahabang

| CL.1 | S. Cilemahabang | 121 | - | 40 | 60 | - |

Tabel 3. Tata Guna Lahan DAS Ciliwung (2025).

DAS	Luas (Km²)	Permukiman (%)	Sawah (%)	Padang Rumput (%)	Hutan, Semak (%)

Sungai Cidurian

| CD.1 | 378 | 9 | - | 74 | 17 |
| CD.2 | 218 | - | - | 94 | 6 |

Sungai Cimanceuri

CM.1	233	-	-	53	47
CM.2	66	76	-	24	-
CM.3	116	28	-	51	21

Sungai Cirarab

| CR.1 | 147 | 94 | 3 | 3 | - |

Sungai Cisadane

CS.1	193	35	-	20	45
CS.2	12	100	-	-	-
CS.3	643	25	-	24	51
CS.4	320	43	-	35	22
CS.5	80	100	-	-	-
4. PEMBAHASAN

Berdasarkan data sekunder yang telah diperoleh yaitu luas tiap-tiap Sub DAS pada DAS Ciliwung dan prosentase tata guna lahannya, maka dapat dihitung nilai C_{kum} dengan rumus.

Perhitungan untuk Sub DAS Kode CD 1:

$$C_{kum} = 0.1F + 0.3R + 0.35Gr + 0.4A + 0.7U + 0.6O$$

$$= 0.1 (0.56) + 0.3 (0.09) + 0.35 (0.34) + 0.4 (0) + 0.7 (0.01) + 0.6 (0)$$

$$= 0.209$$

Perhitungan C_{kum} untuk Sub DAS lainnya seperti hasilnya pada tabel berikut:

Tabel 4. Nilai C_{kum} Dari Prosentase Tata Guna Lahan Wilayah DAS Ciliwung (1995).

DAS	Luas	Tata Guna Lahan (1995)			
Cengkareng Floodway					
CF.1 S. Pesanggrahan	72	42	-	58	-
CF.2 S. Pesanggrahan	22	100	-	-	-
CF.3 Sungai Grogol	30	100	-	-	-
CF.4 S. Pesanggrahan	13	100	-	-	-
CF.5 Sungai Angke	107	95	-	5	-
CF.6 Sungai Angke	117	95	-	5	-
CF.7	31	100	-	-	-
CF.8 Mokkervaart canal	67	100	-	-	-
Banjir Kanal Barat					
WB.1 Sungai Ciliwung	88	-	-	32	68
WB.2 Sungai Ciliwung	64	30	-	28	42
WB.3 Sungai Ciliwung	62	96	-	4	-
WB.4 Sungai Ciliwung	123	100	-	-	-
WB.5 Sungai Krukut	84	100	-	-	-
WB.6 Lower Angke	55	100	-	-	-
Banjir Kanal Timur					
EB.1 Sungai Cipinang	50.5	100	-	-	-
EB.2 Sungai Sunter	73.8	100	-	-	-
EB.3 Sungai Jatikramat	34.1	100	-	-	-
EB.4 Sungai Cakung	48.6	100	-	-	-
CBL Floodway					
CB.1 Sungai Cileungsi	261	30	-	20	50
CB.2 Sungai Cikeas	110	75	-	17	8
CB.3 Sungai Bekasi	18	100	-	-	-
CB.4 Sungai Bekasi	14	80	20	-	-
CB.5 Sungai Cikarang	216	25	-	43	32
CB.6 Sungai Cikarang	14	100	-	-	-
CB.7 Sungai Cikarang	135	93	-	7	-
CB.8	109	85	15	-	-
Sungai Cilemahabang					
CL.1 S. Cilemahabang	121	75	-	25	-

(Sumber: Skema Strategi Drainage Plan, NIPPON KOEI COLTD and KWARSÀ HEXAGON)
Analisa Daya Dukung Tata Guna Lahan Dalam Menunjang Keberlanjutan Sungai (Studi Kasus DAS Ciliwung)
(Robby Yussac Tallar)

Kode	Permukaan (Km²)	0.7 U (%)	Sawah (%)	0.3 R (%)	Padang Rumput (%)	0.35 Gr (%)	Hutan, Semak (%)	0.1 F (%)	C. kem		
Sungai Cidurian											
CD.1	378	1	0.007	9	0.027	34	0.119	56	0.056	0.209	
CD.2	218	-	-	-	77	0.2695	23	0.023	0.2925		
Sungai Cimanceuri											
CM.1	233	-	8	0.024	45	0.1575	47	0.047	0.2285		
CM.2	66	34	0.238	-	66	0.231	-	0.469			
CM.3	116	28	0.196	4	0.012	47	0.1645	21	0.021	0.3935	
Sungai Cirarab											
CR.1	147	30	0.21	27	0.081	43	0.1505	-	0.4415		
Sungai Cisadane											
CS.1	193	-	-	-	57	0.1995	43	0.043	0.2425		
CS.2	12	40	0.28	-	60	0.21	-	0.49			
CS.3	643	-	2	0.006	45	0.1575	53	0.053	0.2165		
CS.4	320	9	0.063	-	73	0.2555	18	0.018	0.3365		
CS.5	80	32	0.224	3	0.009	65	0.2275	-	0.4605		
Cengkareng Floodway											
CF.1	S. Pesanggrahan	72	-	-	100	0.35	-	-	0.35		
CF.2	S. Pesanggrahan	22	70	0.49	-	30	0.105	-	0.595		
CF.3	Sungai Grogol	30	64	0.448	-	36	0.126	-	0.574		
CF.4	S. Pesanggrahan	13	100	0.7	-	-	-	0.7			
CF.5	Sungai Angke	107	20	0.14	-	80	0.28	-	0.42		
CF.6	Sungai Angke	117	20	0.14	-	80	0.28	-	0.42		
CF.7	31	63	0.441	-	37	0.1295	-	0.5705			
Moockervaart canal											
CF.8		67	28	0.196	-	72	0.252	-	0.448		
Banjir Kanal Barat											
WB.1	Sungai Ciliwung	88	-	-	32	0.112	68	0.068	0.18		
WB.2	Sungai Ciliwung	64	10	0.07	-	48	0.168	42	0.042	0.28	
WB.3	Sungai Ciliwung	62	70	0.49	-	30	0.105	-	0.595		
WB.4	Sungai Ciliwung	123	90	0.63	-	10	0.035	-	0.665		
WB.5	Sungai Krukut	84	78	0.546	-	22	0.077	-	0.623		
WB.6	Lower Angke	55	100	0.7	-	-	-	-	0.7		
Banjir Kanal Timur											
EB.1	Sungai Cipinang	50.5	80	0.56	-	20	0.07	-	0.63		
EB.2	Sungai Sunter	73.8	50	0.35	50	0.175	-	0.525			
EB.3	Sungai Jatikramat	34.1	80	0.56	-	20	0.07	-	0.63		
EB.4	Sungai Cakung	48.6	60	0.42	4	0.012	36	0.126	-	0.558	
CBL Floodway											
CB.1	Sungai Cileeungsi	261	15	0.105	5	0.015	30	0.105	50	0.05	0.275
CB.2	Sungai Cikeas	110	30	0.21	1	0.003	49	0.1715	20	0.02	0.4045
CB.3	Sungai Bekasi	18	30	0.21	10	0.03	60	0.21	-	0.45	
CB.4	Sungai Bekasi	14	30	0.21	70	0.21	-	-	0.42		
CB.5	Sungai Cikarang	216	-	1	0.003	67	0.2345	32	0.032	0.2695	
CB.6	Sungai Cikarang	14	-	100	0.3	-	-	0.3			
CB.7	Sungai Cikarang	135	-	30	0.09	70	0.245	-	0.335		
CB.8	Sungai Cilemahabang	109	-	50	0.15	50	0.175	-	0.325		
CL.1	S. Cilemahabang	121	-	40	0.12	60	0.21	-	0.33		

Sedangkan untuk perkiraan tata guna lahan mendatang (2025) didapat hasil sebagai berikut:

Tabel 5. Nilai \(C_{kum} \) Dari Prosentase Tata Guna Lahan Wilayah DAS Ciliwung (2025).

DAS	Luas	Pertanaman	0.7 U	Sawah	0.3 R	Padang Rumput	0.35 Gr	Hutan, Semak	0.1 F	\(C_{kum} \)
	Kode	(Km²) (%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Sungai Cidurian										
CD.1	378	9	0.063	-	74	0.259	17	0.017	0.339	
CD.2	218	-	-		94	0.329	6	0.006	0.335	
Sungai Cimanceuri					(%)	(%)	(%)	(%)		
CM.1	233	-	-		53	0.1855	47	0.047	0.2325	
CM.2	66	76	0.532	-	24	0.084	-		0.616	
CM.3	116	28	0.196	-	51	0.1785	21	0.021	0.3955	
Sungai Cirarab					(%)	(%)	(%)	(%)		
CR.1	147	94	0.658	3	0.009	3	0.0105	-	0.6775	
Sungai Cisadane					(%)	(%)	(%)	(%)		
CS.1	193	35	0.245	-	20	0.07	45	0.045	0.36	
CS.2	12	100	0.7	-	-	-	-	-	0.7	
CS.3	643	25	0.175	-	24	0.084	51	0.051	0.31	
CS.4	320	43	0.301	-	35	0.1225	22	0.022	0.4455	
CS.5	80	100	0.7	-	-	-	-	-	0.7	
Cengkareng Floodway					(%)	(%)	(%)	(%)		
CF.1 S. Pesanggrahan	72	42	0.294	-	58	0.203	-	-	0.497	
CF.2 S. Pesanggrahan	22	100	0.7	-	-	-	-	-	0.7	
CF.3 Sungai Grogol	30	100	0.7	-	-	-	-	-	0.7	
CF.4 S. Pesanggrahan	13	100	0.7	-	-	-	-	-	0.7	
CF.5 Sungai Angke	107	95	0.665	-	5	0.0175	-	-	0.6825	
CF.6 Sungai Angke	117	95	0.665	-	5	0.0175	-	-	0.6825	
CF.7	31	100	0.7	-	-	-	-	-	0.7	
Mookervaart	67	100	0.7	-	-	-	-	-	0.7	
Banjir Kanal Barat					(%)	(%)	(%)	(%)		
WB.1 Sungai Ciliwung	88	-	-	32	0.112	68	0.068	0.18		
WB.2 Sungai Ciliwung	64	30	0.21	-	28	0.098	42	0.042	0.35	
WB.3 Sungai Ciliwung	62	96	0.672	-	4	0.014	-	-	0.686	
WB.4 Sungai Ciliwung	123	100	0.7	-	-	-	-	-	0.7	
WB.5 Sungai Krukut	84	100	0.7	-	-	-	-	-	0.7	
WB.6 Lower Angke	55	100	0.7	-	-	-	-	-	0.7	

Jurnal Teknik Sipil Volume 4 Nomor 1, April 2008 : 1-104
Sehingga untuk tahun 1995 dan tahun 2025 didapat suatu analisa standar daya dukung tata guna lahan pada tiap-tiap Sub DAS yang menunjang keberlanjutan sungai yang melewati Sub DAS tersebut, seperti berikut:

Nama Sungai	Standar Daya Dukung (1995)	Standar Daya Dukung (2025)
Sungai Cidurian	Baik	Sedang
Sungai Cimanceuri	Sedang	Buruk
Sungai Cirarab	Buruk	Buruk
Sungai Cisadane	Sedang	Buruk
Cengkareng Floodway, terdiri dari:		
Sungai Pesanggrahan	Buruk	Buruk
Sungai Grogol	Buruk	Buruk
Sungai Angke	Buruk	Buruk
Moorkevaart canal	Buruk	Buruk
Banjir Kanal Barat, terdiri dari:		
Sungai Ciliwung	Buruk	Buruk
Sungai Krukut	Buruk	Buruk
Lower Angke	Buruk	Buruk
Banjir Kanal Timur, terdiri dari:		
Sungai Cipinang	Buruk	Buruk
Sungai Sunter	Buruk	Buruk
Sungai Jatikramat	Buruk	Buruk
Sungai Cakung	Buruk	Buruk
CBL Floodway, terdiri dari:		
Sungai Cileungsi	Baik	Sedang
Sungai Cikeas	Buruk	Buruk
Sungai Bekasi	Buruk	Buruk
Sungai Cikarang	Sedang	Buruk
Sungai Cilemahabang	Sedang	Buruk
Untuk mengetahui prosentase kenaikan dari C_{kum} dari tahun 1995 ke tahun 2025, dihitung dengan rumus:

$$\% \text{ kenaikan} = \left| \frac{C_{kum\ 1995} - C_{kum\ 2025}}{C_{kum\ 1995}} \right| \times 100\%$$

Perhitungan untuk Sub DAS Kode CD 1:

$$\% \text{ kenaikan} = \left| \frac{0.209 - 0.339}{0.209} \right| \times 100\%$$

$$= 62.20 \%$$

Perhitungan % kenaikan untuk Sub DAS lainnya seperti hasilnya pada tabel berikut:

| 7. Tabel % Kenaikan Koefisien Limpasan dari Tahun 1995 sampai 2025 |
|------------------------|------|----------------|---------|
| | DAS | Luas (Km2) | C_{kum} (1995) | C_{kum} (2025) | % kenaikan |
| Kode | | | | | |
| Sungai Cidurian | | | | | |
| CD.1 | | 378 | 0.209 | 0.339 | 62.20 |
| CD.2 | | 218 | 0.2925 | 0.335 | 14.53 |
| Sungai Cimanceuri | | | | | |
| CM.1 | | 233 | 0.2285 | 0.2325 | 7.66 |
| CM.2 | | 66 | 0.469 | 0.616 | 31.34 |
| CM.3 | | 116 | 0.3935 | 0.3955 | 0.51 |
| Sungai Cirarab | | | | | |
| CR.1 | | 147 | 0.4415 | 0.6775 | 53.45 |
| Sungai Cisadane | | | | | |
| CS.1 | | 193 | 0.2425 | 0.36 | 48.45 |
| CS.2 | | 12 | 0.49 | 0.7 | 42.86 |
| CS.3 | | 643 | 0.2165 | 0.31 | 43.19 |
| CS.4 | | 320 | 0.3365 | 0.4455 | 32.39 |
| CS.5 | | 80 | 0.4605 | 0.7 | 52.01 |
| Cengkareng Floodway | | | | | |
| CF.1 | | S. Pesanggrahan | 72 | 0.35 | 0.497 | 42.00 |
| CF.2 | | S. Pesanggrahan | 22 | 0.595 | 0.7 | 17.65 |
| CF.3 | | Sungai Grogol | 30 | 0.574 | 0.7 | 21.95 |
| CF.4 | | S. Pesanggrahan | 13 | 0.7 | 0.7 | |
| CF.5 | | Sungai Angke | 107 | 0.42 | 0.6825 | 62.50 |
| CF.6 | | Sungai Angke | 117 | 0.42 | 0.6825 | 62.50 |
| CF.7 | | 31 | 0.5705 | 0.7 | 22.70 |
| CF.8 | | Mookervaat canal | 67 | 0.448 | 0.7 | 56.25 |
| Banjir Kanal Barat | | | | | |
| WB.1 | | Sungai Ciliwung | 88 | 0.18 | 0.18 | 0.00 |
| WB.2 | | Sungai Ciliwung | 64 | 0.28 | 0.35 | 25.00 |
| WB.3 | | Sungai Ciliwung | 62 | 0.595 | 0.686 | 15.29 |
| WB.4 | | Sungai Ciliwung | 123 | 0.665 | 0.7 | 5.26 |
| WB.5 | | Sungai Krukut | 84 | 0.623 | 0.7 | 12.36 |
| WB.6 | | Lower Angke | 55 | 0.7 | 0.7 | 0.00 |
| Banjir Kanal Timur | | | | | |
| EB.1 | | Sungai Cipinang | 50.5 | 0.63 | 0.7 | 11.11 |
| EB.2 | | Sungai Sunter | 73.8 | 0.525 | 0.7 | 33.33 |
EB.3	Sungai Jatikramat	34.1	0.63	0.7	11.11
EB.4	Sungai Cakung	48.6	0.558	0.7	25.45
CBL Floodway					
CB.1	Sungai Cileungsi	261	0.275	0.33	20.00
CB.2	Sungai Cikeas	110	0.4045	0.5925	46.48
CB.3	Sungai Bekasi	18	0.45	0.7	55.56
CB.4	Sungai Bekasi	14	0.42	0.62	47.62
CB.5	Sungai Cikarang	216	0.2695	0.3575	32.65
CB.6	Sungai Cikarang	14	0.3	0.7	133.33
CB.7	Sungai Cikarang	135	0.335	0.6755	101.64
CB.8		109	0.325	0.64	96.92
Sungai Cilemahabang					
CL.1	S. Cilemahabang	121	0.33	0.6125	85.61

5. KESIMPULAN

Dari uraian diatas, maka didapat beberapa kesimpulan, antara lain:

1. Sungai-sungai yang berada di DAS Ciliwung (berdasarkan data tahun 1995), termasuk di dalamnya adalah wilayah Jakarta, sebagian besar sudah buruk daya dukung tata guna lahannya terhadap keberlanjutan sungai itu sendiri. Sebagian kecil sungai dengan daya dukung tata guna lahan yang masih baik dan sedang hanya ditemui pada bagian hulu dari DAS Ciliwung sedangkan untuk sungai-sungai yang berada di wilayah-wilayah yang padat jumlah penduduknya (sebagian besar di bagian hilir DAS) keberlanjutan sungainya telah menjadi kritis.

2. Prediksi pada masa yang akan datang (tahun 2025), keberlanjutan sungai-sungai di Jakarta atau DAS Ciliwung hampir dipastikan buruk. Artinya, tidak ada lagi daya dukung yang mampu mendukung keberlanjutan sungai sehingga sungai sudah menjadi saluran drainase yang menampung segala macam effluent yang masuk didalamnya.

3. Perubahan tata guna lahan semakin lama semakin mengkhawatirkan, hal ini dapat terlihat dari % kenaikan koefisien limpasan pada Sub-sub DAS Ciliwung yang rata-rata kenaikannya sebesar 38.726% dengan % kenaikan terkecil sebesar 0% terjadi Sub DAS Ciliwung paling hulu (WB1) sekitar kawasan pegunungan Gede Pangrango dan Salak di Bogor dan wilayah Sub DAS Lower Angke karena prosentase tata guna lahan untuk permukimannya sudah mencapai 100% pada tahun 1995. Sementara % kenaikan terbesar sebesar 101.64% terjadi di Sub DAS Sungai Cikarang (CB7). Hal ini terjadi karena pada kawasan Sub DAS ini diproyeksikan sebagai tata guna lahan untuk permukiman penduduk.

4. Perubahan yang menggambarkan adanya alih fungsi lahan atau tata guna lahan mempengaruhi volume limpasan runoff, semakin besar koefisien permukaan...
semakin besar pula volume runoff yang dihasilkan. Hal tersebut sangat berpotensi menimbulkan bencana banjir bila kapasitas sungai tidak memenuhi.

6. SARAN

Setelah menganalisa dan menyimpulkan, maka disarankan:
1. Diperlukan usaha yang maksimal untuk menjaga keberlanjutan sungai yang daya dukungnya masih baik atau sedang dan melakukan pengelolaan sungai yang baik. Usaha tersebut antara lain melakukan reboisasi terutama di bagian hulu DAS, melakukan terapan Best Management Practice (BMP) yang sesuai, menegakkan peraturan yang sudah ada secara tegas, memberikan pengertian kepada masyarakat seperti penyuluhan agar tidak membuang sampah ke sungai-sungai dan lainnya agar mereka dapat berpartisipasi dalam menjaga keberlanjutan sungai.
2. Agar para pemangku kepentingan (stakeholders) terutama yang menangani perizinan penggunaan lahan serta pengawasan pelaksanaannya dapat mengintegrasikan perencanaan pengelolaan aliran air permukaan (sungai) dengan perencanaan tata guna lahan dan rencana tata ruang kepada tuntutan keberlanjutan sungai.
3. Pengembangan pada tata guna lahan permukiman, komersi al dan industri diarahkan kepada Konsep Low Impact Development (LID) agar dapat menekan pertambahan volume runoff yang terjadi disamping menjaga ekosistem alaminya.

DAFTAR PUSTAKA
1. Asdak, C. (2002), Hidrologi dan Pengelolaan Daerah Aliran Sungai, Gadjah Mada University Press, Yogyakarta.
2. Asvaliantina, Velly et. al (2003), Kajian Banjir Dan Penyelamatan Obyek Vital Akibat Reklamasi Pantura Jakarta, BPPT, Jakarta.
3. Guritno, Indreswari (1997), Determinan Sungai yang Berkelanjutan, Jakarta.
4. JICA (1988), The Study on The Flood Control Plan of The Upper Citarum Basin Supporting Report, Bandung.
5. NIPPON KOEI, CO LTD (2004), Schematic Strategic Drainage Plan, Ministry of Settlement and Regional Infrastructure Directorate General of Urban and Rural Development Western Java Environmental Management Project, Jakarta.
6. Sugandhy, Aca (1999), Penataan Ruang dalam Pengelolaan Lingkungan Hidup, Gramedia, Jakarta.
7. Suripin (2004), *Sistem Drainase Perkotaan yang Berkelanjutan*, Penerbit ANDI, Yogyakarta.

[1] Robby Yussac Tallar, ST., MT., Dipl. IWRM adalah dosen di Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kristen Maranatha Bandung.
PERHITUNGAN LENDUTAN PONDASI TELAPAK DENGAN METODE ELEMEN HINGGA

Hanny J. Dani[1], Olga Pattipawai[2], Putra W. Remantan[3]

ABSTRACT

Civil engineering structures such as building, road and bridge congregate at the ground. Frequently, the ground doesn't fulfill the strength criterion of the bearing capacity to support the structural loads, so that it is required resolving that problem. The foundation bear load which in transmitted by column before distribute to the ground. One of parameter that needs to be paid attention in a foundation design is a displacement. In this article, spread foundation displacement is determined using finite element method. The spread foundation is assumed as a rigid structure and is located at the joint of elastic spring in the place of modulus influence reaction of the soil. The design of the plate foundation is modelled as a stiffness matrix equation of the modified thin plate for the soil. A case study is performed to obtain the displacement at each nodal point. In finite element method, spread foundation is modeled as an elastic plate. The maximum displacement is obtained and the comparison is made by analytical and numerical calculation using software SAP2000. The difference result of maximum displacement using analytical and numerical computation is 0.28 %.

Keywords: spread foundation, displacement, finite element method.

ABSTRAK

Bangunan teknik sipil seperti gedung, jalan dan jembatan bertumpu pada lapisan tanah. Dalam pelaksanaan pembangunan sering kali tanah tersebut tidak memenuhi kriteria kekuatan untuk memikul beban dari struktur di atasnya, sehingga diperlukan suatu pemecahan dalam masalah tersebut. Pondasi memikul beban yang di salurkan oleh kolom sebelum diteruskan ke tanah. Salah satu parameter yang perlu diperhatikan dalam suatu desain pondasi adalah lendutan. Dalam tulisan ini, lendutan pondasi telapak dihitung dengan menggunakan metode elemen hingga. Pondasi diasumsikan sebagai struktur yang rigid dan berada di atas tunamp elaas/pegas sebagai pengganti pengaruh modulus reaksi tanah. Desain pondasi pelat dimodelkan sebagai persamaan matrik dari perilaku pelat tipis yang dimodifikasi terletak di atas tanah. Studi kasus dilakukan untuk mendapatkan lendutan pada tiap-tiap titik nodal. Dalam metode elemen hingga, pondasi telapak dimodelkan sebagai pelat lentur. Hasil lendutan maksimum dengan perhitungan manual dan numerik dengan menggunakan software SAP2000. Perbedaan hasil lendutan maksimum dari kedua metode ini diperoleh sebesar 0.28 %.

Kata kunci: pondasi telapak, lendutan, metode elemen hingga.

1. PENDAHULUAN

Geoteknik merupakan suatu bagian dari ilmu Teknik Sipil. Didalamnya diperdalam pembahasan mengenai permasalahan kekuatan tanah dan hubungannya dengan kemampuan menahan beban bangunan yang berdiri diatasnya. Pada dasarnya ilmu ini tergolong ilmu tua yang berjalan bersamaan dengan tingkat peradaban manusia, dari mulai pembangunan Piramid di Mesir, candi Borobudur hingga pembangunan gedung pencakar langit sekarang ini. Salah satu contohnya ialah kemiringan menara Pisa di Itali disebabkan kurangnya
kekuatan dukung tanah terhadap menara tersebut. Secara keilmuan, bidang Teknik Sipil ini mempelajari lebih mendalam ilmu ilmu seperti mekanika tanah dan batuan, teknik pondasi (suatu upaya teknis untuk mendapatkan jenis dan dimensi pondasi bangunan yang efisien, sehingga dapat menyangga beban yang bekerja dengan baik) dan struktur bawah tanah.

Semua konstruksi yang direkayasa untuk bertumpu pada tanah harus didukung oleh suatu pondasi. Pondasi merupakan bagian dari suatu sistem rekaaya yang meneruskan beban yang ditopang oleh pondasi dan beratnya sendiri kepada dan ke dalam tanah dan batuan yang terletak di bawahnya. Jenis pondasi yang digunakan dalam suatu perencanaan bangunan tergantung dari jenis tanah dan beban yang bekerja pada lokasi rencana proyek. Dalam tulisan ini, pondasi telapak dipilih umumnya dibangun di atas tanah pendukung pondasi dengan membuat suatu tumpuan yang bentuk dan ukurannya (dimensi) sesuai dengan beban bangunan dan daya dukung tanah. Pondasi tersebut bersatu dengan bagian bangunan utama (tembok penahan tanah) sehingga merupakan suatu konstruksi yang monolit.

Beban yang bekerja pada suatu pondasi dapat diproyeksikan menjadi:
1. Beban Horizontal/Beban Geser, contohnya beban akibat gaya tekan tanah, transfer beban akibat gaya angin pada dinding.
2. Beban Vertikal/Beban Tekan dan Beban Tarik, contohnya:
 a. Beban Mati, contoh berat sendiri bangunan.
 b. Beban Hidup, contoh beban penghuni, air hujan dan salju.
 c. Gaya Gempa.
 d. Gaya Angkat Air (Lifting Force).
3. Momen.
4. Torsi.
Tegangan-tegangan tanah yang dihasilkan, kecuali pada permukaan tanah, merupakan tambahan kepada beban-beban yang sudah ada dalam massa tanah dari bobot sendiri, bahan dan sejarah geologisnya.

Dalam pelaksanaan pembangunan suatu struktur sering kali tanah tersebut tidak memenuhi kriteria kekuatan untuk memikul beban dari struktur diatasnya. Oleh karena itu, diperlukan suatu pemecahan masalah supaya tanah tersebut dapat memenuhi beban yang dipikul akibat struktur diatasnya. Dalam hal ini, pondasi menerima beban dari kolom sebelum di salurkan ke tanah dan perhitungan lendutan merupakan salah satu parameter yang menjadi pertimbangan dalam desain pondasi.
Tulisan ini bertujuan untuk mencari pemodelan pondasi telapak dengan memanfaatkan metode elemen hingga dalam menghitung matriks kekakuan elemen, matriks gaya simpul yang kemudian digeneralisasikan menjadi matriks gaya global, menghitung perpindahan nodal dengan memasukan kondisi batas, sehingga menghasilkan lendutan dengan memperhitungkan konstanta pegas sebagai model kondisi tanah.

Dalam penelitian ini, pondasi dimodelkan sebagai pelat dengan ketebalan yang sama di atas konstanta pegas yang terjadi pada lapisan bawah pondasi telapak. Pelat pondasi dianggap sebagai suatu struktur yang terletak di atas tumpuan elastis. Dalam metode elemen hingga pondasi telapak dimodelkan sebagai elemen segiempat dengan menggunakan SAP2000 versi 11. Lendutan pada pelat pondasi akibat beban dan pengaruh modulus reaksi tanah yang dimodelkan sebagai pegas dan dianggap sebagai perletakan yang terjadi di bawah pelat pondasi.

2. PONDASI

Untuk memilih pondasi yang memadai, perlu diperhatikan apakah pondasi tersebut cocok untuk berbagai keadaan di lapangan dan apakah pondasi itu memungkinkan untuk diselesaikan secara ekonomis sesuai dengan jadwal pengerjaannya. Bila keadaan tersebut ikut dipertimbangkan dalam menentukan macam pondasi, hal-hal berikut ini perlu dipertimbangkan:

1. Keadaan tanah pondasi
2. Batasan-batasan akibat konstruksi diatasnya (superstructure)
3. Batasan-batasan dari lingkungan sekelilingnya
4. Waktu dan biaya pekerjaan.

Dari empat hal di atas, keadaan tanah pondasi merupakan keadaan yang paling penting. Lima jenis pondasi berdasarkan keadaan tanah dijabarkan sebagai berikut (Sosrodarsono dan Nakazawa, 1984):

1. Pondasi telapak (spread foundation)
 Bila tanah pendukung pondasi terletak pada permukaan tanah atau terletak 2 sampai 3 meter di bawah permukaan tanah.

2. Pondasi tiang atau pondasi tiang apung (floating pile foundation)
 Bila tanah pendukung pondasi terletak pada kedalaman sekitar 10 meter di bawah permukaan tanah. Pondasi ini digunakan untuk memperbaiki tanah pondasi. Jika menggunakan tiang, maka tiang baja atau tiang beton yang dicor di tempat (cast in place) kurang ekonomis karena tiang-tiang tersebut kurang panjang.
3. Pondasi tiang pancang (pile driven foundation)
Bila tanah pendukung pondasi terletak pada kedalaman sekitar 20 meter di bawah permukaan tanah. Dalam hal ini, tergantung dari penurunan (settlement) yang diijinkan. Apabila tidak boleh terjadi penurunan, biasanya digunakan pondasi tiang pancang (pile driven foundation). Tetapi bila terdapat batu besar (cobble stone) pada lapisan antara, pemakaian kaison lebih menguntungkan.

4. Kaison terbuka dan/atau Kaison Tekanan
Bila tanah pendukung pondasi terletak pada kedalaman sekitar 30 meter dibawah permukaan tanah. Dalam hal ini biasanya dipakai kaison terbuka, tiang baja atau tiang yang dicor di tempat. Tetapi bila tekanan atmosfir yang bekerja ternyata kurang dari 3 kg/cm² digunakan juga kaison tekanan.

5. Tiang Baja dan Tiang Beton yang dicor di tempat
Bila tanah pendukung pondasi terletak pada kedalaman lebih dari 40 meter di bawah permukaan tanah. Dalam hal ini, yang paling baik dipakai adalah tiang baja dan tiang beton yang dicor di tempat.

Batasan-batasan akibat konstruksi juga penting. Kondisi beban (besar, penyebaran, arah dan lain-lain), sifat dinamis bangunan atas (statis tertentu atau statis tak tertentu, kekakuan dan sebagainya), kegunaan dan kepentingan bangunan atas, kesulitan pemeliharaan dan bahan-bahan untuk bangunan harus diamati. Jenis pondasi yang akan dipakai tergantung kepada sifat bangunan itu mengizinkan untuk tidak terjadinya penurunan pondasi. Apabila jenis struktur bangunan di atasnya telah ditetapkan, maka sulit sekali memilih pondasi yang ekonomis. Suatu jembatan misalnya direncanakan sebagai balok menerus dan jika penurunan pondasi tidak boleh terjadi, seringkali biaya pembuatan pondasi menjadi amat tinggi dan sangat tergantung pada jenis pondasi. Sebaliknya, bila bangunan atas dianggap sebagai balok sederhana dan penurunan diijinkan pada pondasi, maka biaya pengerjaan bangunan atas meningkat, walaupun biaya pengerjaan pondasi menjadi lebih kecil. Secara keseluruhan, jembatan menjadi lebih ekonomis. Berdasarkan segi pelaksanaan, ada beberapa keadaan dimana kondisi lingkungan tidak memungkinkan adanya pekerjaan yang baik sesuai dengan kondisi yang diasumsikan dalam perencanaan.

Jenis pondasi yang akan digunakan pada tulisan ini adalah pondasi telapak (spread foundation). Pondasi telapak adalah suatu pondasi yang mendukung bangunan secara langsung pada tanah pondasi, bila mana terdapat lapisan tanah yang cukup tebal dengan kualitas yang baik yang mampu mendukung bangunan itu pada permukaan tanah atau sedikit di bawah permukaan tanah (Sosrodarsono dan Nakazawa, 1984). Pondasi telapak umumnya
dibangun di atas tanah pendukung dengan membuat suatu tumpuan yang bentuk serta ukuran (dimensinya) sesuai dengan beban bangunan dan daya dukung tanah pondasi itu. Pondasi itu bersatu dengan bagian utama bangunan dan daya dukung tanah pondasi itu. Pondasi tersebut bersatu dengan bagian utama (tembok penahan tanah, tembok membujur dari kepala jembatan atau kolom dermaga) sehingga merupakan suatu konstruksi yang monolit. Pondasi telapak ini dijabarkan seperti pada Gambar 1. Gambar 2 memperlihatkan pondasi telapak dan tumpuannya.

Gambar 1. Bagan Pondasi Telapak.

Alas pondasi telapak terletak pada lapisan tanah pendukung yang mempunyai kualitas cukup baik. Biasanya, selain lapisan batuan dasar atau kerikil, lapisan tanah berpasir (sandy soil) memiliki nilai uji penetrasi tanah (N) yang lebih besar dari 30, dan tanah kohesif memiliki nilai N yang lebih besar dari 20. Kedua tanah tersebut sebaiknya memiliki ketebalan lapisan yang cukup (lebih dari 1.5 kali lebar dari pondasi), dan dibawahnya tidak terdapat lapisan tanah yang kurang baik kualitasnya (Sosrodarsono dan Nakazawa, 1984).

Mekanisme pendukung pondasi langsung, berdasarkan pada prinsip bahwa beban vertikal dan momen yang bekerja pada pondasi, sebagian besar ditahan oleh daya dukung (bearing capacity) tanah pondasi pada dasar pondasi dan beban mendatar sebagian besar ditahan oleh hambatan geser (sliding resistance) dari dasar pondasi. Jika pondasi tertanam didalam, geseran atau tekanan tanah dimuka pondasi juga ikut menahan beban, tetapi bila ini tertanam dangkal, gaya penahan ini pada umumnya kecil dan tanah di muka pondasi kadang-kadang akan mengalami pengikisan dan pengaruh cuaca, sehingga dalam perencanaanannya, gaya penahan ini diabaikan.
Gambar 2. Jenis Pondasi Telapak.

Dalamnya pondasi telapak ditetapkan dengan mempertimbangkan hal-hal sebagai berikut:
1. Kemiringan dasar sungai dan sifat terkikisnya
2. Dalamnya tanah yang menimbulkan perubahan volume
3. Tergantung apa yang tertanam di dalam tanah dan bangunan didekatnya
4. Muka air tanah
5. Derajat dan besarnya ketebalan lapisan tanah pendukung.
Pondasi telapak harus direncanakan sedemikian rupa sehingga keadaan berikut ini dapat dipenuhi:

1. Struktur secara keseluruhan adalah stabil dalam arah vertikal, arah mendatar, dan terhadap guling
2. Pergeseran bangunan (besarnya penurunan, sudut kemiringan dan pergeseran mendatar), harus lebih kecil dari nilai yang diijinkan dari bangunan bagian atas. Pada pondasi telapak biasa, pergeseran ini tidak dihitung
3. Bagian-bagian pondasi harus memiliki kekuatan yang diperlukan.

3. MODULUS REAKSI TANAH DASAR

Modulus reaksi tanah dasar adalah suatu konsep perbandingan antara tekanan tanah dan lendutan yang banyak sekali digunakan di dalam analisis konstruksi. Modulus reaksi tanah dasar tersebut digunakan untuk pondasi telapak kontinu, pondasi rakit dan berbagai jenis tiang pancang. Perbandingan ini dapat dicari dari data pengujian beban pelat. Hasil dari pengujian ini diperoleh data dan hubungan antara tekanan tanah \(q \) dan penurunan tanah \(\delta \) sebagai berikut (Bowles, 1996):

\[
k_s = \frac{q}{\delta}
\]

(dimana \(k_s \) adalah modulus reaksi tanah dasar. Tabel 1 memperlihatkan modulus reaksi tanah dasar berdasarkan jenis tanah.

Tabel 1. Modulus reaksi tanah dasar berdasarkan jenis tanah.

Tanah	\(k_s \), kcf	\(k_s \), kN/m³
Pasir lepas	30-100	4800-16000
Pasir padat sedang	60-500	9600-80000
Pasir padat	400-800	64000-128000
Pasir padat sedang berlempung	200-500	32000-80000
Pasir padat sedang berlanau	150-300	24000-48000
Tanah berlempung 200<\(q_u \)≤200 kPa (4 ksf)	75-150	12000-24000
Tanah berlempung 200<\(q_u \)≤400 kPa	150-300	24000-48000
Tanah berlempung 200<\(q_u \)>800 kPa	>300	>4800
4. ANALISIS KEKAKUAN PELAT LENTUR

Pada tulisan ini, pondasi telapak diasumsikan sebagai pelat lentur. Pelat lentur adalah suatu elemen struktur yang datar (tidak melengkung) yang memiliki ukuran tebal jauh lebih kecil dibandingkan dengan dimensi lainnya, dengan arah beban luar yang bekerja tegak lurus dengan bidang strukturnya. Peralihan dari pelat lentur menggunakan teori peralihan kecil (small displacement theory) yang diterapkan pada kontinum. Untuk masalah deformasi-tegangan, besaran yang perlu untuk ditentukan adalah regangan yang berasal dari suatu peralihan titik. Untuk peralihan yang kecil, regangan \((\varepsilon) \) adalah turunan pertama dari peralihan sehingga akan didapatkan hubungan antara regangan dan lendutan \((w) \) seperti persamaan berikut:

\[
\begin{align*}
\varepsilon_x &= -z \frac{\partial^2 w}{\partial y^2} \\
\varepsilon_y &= -z \frac{\partial^2 w}{\partial x^2} \\
\gamma_{xy} &= -2z \frac{\partial^2 w}{\partial x \partial y}
\end{align*}
\]

Rasio regangan lateral \(\varepsilon' \) terhadap regangan aksial \(\varepsilon \) dikenal dengan rasio Poisson sebagai berikut:

\[
\nu = \frac{\varepsilon'}{\varepsilon}
\]

Hukum tegangan–regangan pada suatu bahan homogen isotropic, elastis didasarkan pada hukum Hooke untuk tegangan tiga dimensi. Untuk pelat tipis dengan lendutan kecil, hubungan tersebut disederhanakan menjadi kondisi dua dimensi dengan memberi nilai \(\gamma_{xz} = \gamma_{yz} = \varepsilon_z = 0 \) sehingga didapatkan persamaan tegangan dalam fungsi perpindahan seperti dalam persamaan berikut:

\[
\begin{align*}
\sigma_x &= -\frac{E_z}{1-\nu} \left[\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right] \\
\varepsilon_y &= -\frac{E_z}{1-\nu} \left[\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right] \\
\gamma_{xy} &= -\frac{E_z}{1-\nu} \frac{\partial^2 w}{\partial x \partial y}
\end{align*}
\]

dimana \(E_z \) adalah modulus elastisitas.

Akibat tegangan yang terjadi pada pelat, menimbulkan bending momen, bending twisting, serta vertical shear force. Secara umum momen-momen yang terjadi adalah
\[
\{M\}_e = \begin{cases}
-D \left[\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right] \\
-D \left[\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right] \\
-D (1 - \nu) \frac{\partial^2 w}{\partial x \partial y}
\end{cases}
\] (5)

dimana kekakuan pelat lentur (flexure rigity of the plate) adalah \(D = \frac{Et^3}{12(1 - \nu^2)} \).

Persamaan pembentuk (Governing Equation), pelat yang dibebani dengan beban terbagi per satuan luas, \(p \) adalah
\[
\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = -\frac{pkw}{D}
\] (6)

5. METODE ELEMEN HINGGA

Dalam website wikipedia Indonesia dicantumkan sejarah Metode Elemen Hingga (MEH). MEH berawal pada kebutuhan untuk menyelesaikan permasalahan kompleks di bidang Teknik Sipil dan Teknik Aeronautika terutama pada permasalahan elastisitas dan analisa struktur. Perkembangan MEH diawali atas jerih payah Alexander Hrennikoff (1941) dan Richard Courant (1942). Pendekatan yang dilakukan oleh para pioneer ini benar-benar berbeda, namun mereka mempopulerkan satu nilai yang esensial, yaitu: diskretisasi/pembagian jaringan pada sebuah bidang pengaruh (domain) yang menerus menjadi kumpulan sub-domain yang berbeda. Hrennikoff membagi-bagi domain dengan menggunakan analogi kisi-kisi, sedangkan pendekatan yang dilakukan Courant adalah mengubah domain menjadi sub-region dengan bentuk segitiga-segitiga terbatas (finite triangular subregions) sebagai solusi untuk permasalahan Persamaan Differensial Parsial Ellips (Elliptic Partial Differential Equation) yang muncul pada permasalahan di bidang torsi pada sebuah silinder. Kontribusi Courant berevolusi, penggambaran hasil awal PDEs dibuat oleh Rayleigh, Ritz dan Galerkin.

Perkembangan MEH secara sungguh-sungguh diawali pada pertengahan sampai dengan akhir dekade 1950an untuk bidang airframe dan analisa struktur dan meraih banyak energi tambahan untuk berkembang pada University of California, Berkeley pada dekade 1960an dibidang teknik sipil. Di tahun 1973, Strang dan Fix melalui tulisannya “An Analysis of The Finite Element Method” mengatakan bahwa MEH menawarkan solusi matematis yang setepat-tetapnya. Perkembangan MEH di mekanika struktur sering didasari pada
prinsip energi, seperti pada prinsip pekerjaan virtual (eng: virtual work principle) atau prinsip energi potensial total minimum (minimum total potential energy), dimana MEH menyediakan secara keseluruhan intuisi dan basis fisik yang dapat menjadi bahan pertimbangan yang baik bagi para insinyur struktur.

Analisis pelat lentur merupakan struktur dimana analisis struktur yang mudah digunakan melalui metode kekakuan langsung. Metode kekakuan langsung ini memanfaatkan perkalian dan pembagian dengan matriks yang juga dikenal sebagai metode elemen hingga (Hadipratomo, 2005). Konsep dasar yang melandasi metode elemen hingga adalah prinsip diskritisasi atau membagi elemen-elemen sehingga menjadi elemen-elemen lebih kecil sehingga diperoleh solusi dengan elemen hingga. Dalam tulisan ini, pelat lentur dimodelkan sebagai elemen segiempat. Pada tiap simpul elemen segi empat hanya memiliki tiga komponen perpindahan, yaitu: lendutan pada sumbu z, rotasi pada sumbu y ($\theta_y = -\frac{\delta y}{\delta y}$) dan rotasi pada sumbu x ($\theta_x = -\frac{\delta x}{\delta x}$), rotasi berhubungan dengan kemiringan θ (slope). Arah positif dari rotasi dapat ditentukan dengan menggunakan aturan tangan kanan (right hand rules) seperti terlihat pada Gambar 3.

Gambar 3. Elemen Segi Empat.
Matriks perpindahan simpul (nodal displacement matrix) elemen segi empat dapat dijabarkan sebagai berikut:

\[
\begin{bmatrix}
\delta_j \\
\delta_k \\
\delta_l
\end{bmatrix} = \begin{bmatrix}
\theta_x, i, \theta_y, i \\
\theta_x, j, \theta_y, j \\
\theta_x, k, \theta_y, k \\
\theta_x, l, \theta_y, l
\end{bmatrix}^T
\]

(7)

Sedangkan bentuk polinomial dari fungsi perpindahan elemen segi empat dapat dinyatakan dengan:

\[
w_i = \alpha_i + \alpha_2 x_i + \alpha_4 y_i + \alpha_5 x_i^2 + \alpha_6 y_i^2 + \\
\alpha_7 x_i^3 + \alpha_8 x_i^2 y_i + \alpha_9 x_i y_i^2 + \alpha_{10} y_i^3 + \alpha_{11} x_i^3 y_i + \alpha_{12} x_i y_i^3
\]

(8)

Matriks perpindahan regangan umum diperoleh sebagai berikut:

\[
\{\varepsilon\}_e = [B][A]^{-1}\{\delta\}_e
\]

(9)

dimana:

\[
[B] = \begin{bmatrix}
0 & 0 & 0 & -2 & 0 & 0 & -6x & -2y & 0 & 0 & -6xy & 0 \\
0 & 0 & 0 & 0 & -2 & 0 & 0 & -2x & -6y & 0 & -6xy & 0 \\
0 & 0 & 0 & 0 & -2 & 0 & 0 & -4x & -4y & 0 & -6x^2 & -6y^2
\end{bmatrix}
\]

dan

\[
[A] = \begin{bmatrix}
1 & x_i & y_i & x_i^2 & x_i y_i & x_i y_i^2 & x_i^2 y_i & x_i y_i^3 & x_i^3 y_i & x_i y_i^4 & x_i^2 y_i^2 & x_i^3 y_i^3 & x_i^4 y_i^4 \\
0 & -1 & 0 & -2x_i & -y_i & 0 & -3x_i^2 & -2x_i y_i & -y_i^2 & 0 & -3x_i^3 y_i & -y_i^3 \\
0 & 0 & 1 & 0 & x_i & 2y_i & 0 & x_i^2 & 2x_i y_i & 3y_i^2 & x_i y_i^2 & 3x_i^2 y_i \\
1 & x_j & y_j & x_j^2 & x_j y_j & y_j^2 & x_j^3 & x_j y_j^2 & x_j^2 y_j & y_j^3 & x_j^3 y_j & x_j y_j^3 \\
0 & -1 & 0 & -2x_j & -y_j & 0 & -3x_j^2 & -2x_j y_j & -y_j^2 & 0 & -3x_j^3 y_j & -y_j^3 \\
0 & 0 & 1 & 0 & x_j & 2y_j & 0 & x_j^2 & 2x_j y_j & 3y_j^2 & x_j y_j^2 & 3x_j^2 y_j \\
1 & x_k & y_k & x_k^2 & x_k y_k & y_k^2 & x_k^3 & x_k y_k^2 & x_k^2 y_k & y_k^3 & x_k^3 y_k & x_k y_k^3 \\
0 & -1 & 0 & -2x_k & -y_k & 0 & -3x_k^2 & -2x_k y_k & -y_k^2 & 0 & -3x_k^3 y_k & -y_k^3 \\
0 & 0 & 1 & 0 & x_k & 2y_k & 0 & x_k^2 & 2x_k y_k & 3y_k^2 & x_k y_k^2 & 3x_k^2 y_k \\
1 & x_l & y_l & x_l^2 & x_l y_l & y_l^2 & x_l^3 & x_l y_l^2 & x_l^2 y_l & y_l^3 & x_l^3 y_l & x_l y_l^3 \\
0 & -1 & 0 & -2x_l & -y_l & 0 & -3x_l^2 & -2x_l y_l & -y_l^2 & 0 & -3x_l^3 y_l & -y_l^3 \\
0 & 0 & 1 & 0 & x_l & 2y_l & 0 & x_l^2 & 2x_l y_l & 3y_l^2 & x_l y_l^2 & 3x_l^2 y_l
\end{bmatrix}
\]
Menurut Brown (1981), matriks kekakuan elemen \([K]_e \) dapat dinyatakan sebagai berikut:

\[
[K]_e = [A]^T [C] [A]^{-1}
\]

(10)

dengan \([C] = \int_{a-b}^{a+b} [B]^T [D] [B] \partial_x \partial_y \).

Untuk pondasi yang terletak di atas tumpuan elastis, pondasi dianggap didukung oleh beberapa pegas yang saling bebas atau pelenturan setiap pegas tidak terpengaruh oleh pegas–pegawai yang ada disebelahnya (Bowles, 1996). Jika pegas diasumsikan saling bebas, maka koefisien kekakuanannya dapat dijumlahkan secara langsung pada koefisien diagonal matrik global (Desai, 1979). Sehingga matriks kekakuan elemen pondasi pelat dapat dinyatakan sebagai berikut:

\[
[k]_w = [K]_e + [k]_w
\]

(11)

dimana \([k]_w = ab \left[\begin{array}{cccc} [k]_s & 0 & 0 & 0 \\ 0 & [k]_s & 0 & 0 \\ 0 & 0 & [k] & 0 \\ 0 & 0 & 0 & [k]_s \end{array} \right] \) dan \([k]_e = \left[\begin{array}{ccc} k_s & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right] \).

Gambar 4 merupakan ilustrasi pembentukan konstanta pegas.
Gambar 4. Pembentukan Konstanta Pegas.

Ada dua cara penurunan persamaan elemen, yaitu cara energi dan cara residual, tetapi cara energi lebih dikenal, yaitu Prinsip Energi Potensial Minimum (Hadipratomo, 2005). Cara energi ini menyatakan bahwa semua konfigurasi geometrik yang mungkin, yang dapat diasumsikan dan yang benar adalah yang memenuhi kondisi seimbang stabil dan dinyatakan oleh harga minimum energi potensial totalnya (energi regangan dan energi potensial). Sehingga dihasilkan rumus umum:

\[
[K]\{\delta\} = \{F\}
\]

(12)
dimana:
\([K]\) matriks kekakuan,
\(\{\delta\}\) adalah vektor perpindahan, dan
\(\{F\}\) vektor beban.

Vektor beban berasal dari gaya traksi yang timbul akibat interaksi antara pondasi dan medium elastik dan juga beban-beban luar sehingga besarnya gaya reaksi yang timbul dapat diuraikan menjadi

\[
\{F\} = -\{F^0\} + \{P\}
\]

(13)
dimana:
\(\{F^0\}\) = vektor beban akibat beban elemen,
\(\{P\}\) = dan vektor beban yang bekerja pada titik nodal.

Sehingga persamaan umum untuk metode elemen hingga adalah sebagai berikut:

\[
[K]\{\delta\} = -\{F^0\} + \{P\}.
\]

(14)

Prosedur umum menggunakan metode elemen hingga untuk desain fondasi telapak adalah sebagai berikut:

1. Menghitung matriks kekakuan elemen (elemen stiffness matrix), \(\{k\}_e\), kemudian digeneralisasikan menjadi matriks kekakuan global \(\{K\} = \sum\{k\}_e\)

2. Menghitung matriks gaya simpul (nodal force matrix), \(\{P\}_e\) kemudian digeneralisasikan menjadi matriks gaya global \(\{P\} = \sum\{P\}_e\)
3. Menghitung perpindahan titik nodal (nodal displacement) dengan memasukan kondisi batas (boundary conditions), \(\{ \delta \} = [K]^{-1} \{ P \} \).

6. STUDI KASUS DAN PEMBAHASAN
Satu contoh pondasi telapak akan dimodelkan sebagai studi kasus. Pemodelan mengambil kasus struktur fiktif seperti pada Gambar 5 dan Gambar 6. Dengan mengasumsikan tanah mempunyai gaya tekan yang diasumsikan sebagai pegas \((k_i) \) terhadap pondasi (Gambar 6).

Gambar 5. Model Pondasi Telapak.

Gambar 6. Gaya Pegas terhadap Pondasi.
Dalam tulisan ini, nilai \(k_s \) diasumsikan untuk tanah pasir lepas (sand loose). Untuk jenis tanah seperti ini, adalah 2 kg/cm\(^2\) (Bowles, 1996). Untuk studi kasus ini, Poisson Rasio adalah \(\nu = 0.3 \), momen Inersia \(I = \left(1/12\right)Bt^3 = 66666,667 \) cm\(^4\) dan modulus elastisitas \(E = 23963330,5 \) kg cm dimana \(f' = 25 \) MPa. Rigiditas elemen pelat diperoleh

\[
\lambda L = \sqrt{\frac{k_s B L^4}{4EI}} = 0,0559 < \frac{\pi}{4}
\]

atau pelat yang digunakan rigid.

Gaya di titik nodal (nodal force) dihitung dengan mengillustrasikan gaya yang bekerja pada balok seperti pada Gambar 7. Hasil perhitungan gaya pada titik nodal dapat dilihat pada Tabel 2.

Gambar 7. Gaya yang bekerja pada Balok.

Tabel 2. Gaya pada Titik Nodal.

Titik Nodal	\(F \) (Kg)	\(Q \) (Kg)	\(M \) (Kg M)
i	1875	9281.25	-1875
j	1875	-9281.25	1875
k	1875	9281.25	-1875
l	1875	-9281.25	1875
Lendutan yang terjadi pada elemen pelat tersebut diperoleh dengan cara mengalikan gaya-gaya batang yang terjadi pada titik nodal dengan matrik kekakuan total. Tabel 3 memperlihatkan lendutan yang terjadi pada titik nodal.

Titik Nodal	Lendutan (cm)
i	-2.589 10^{-9}
j	-2.789 10^{-9}
k	-2.589 10^{-9}
l	-2.789 10^{-9}

Sebagai pembanding dilakukan secara numeric dengan menggunakan program SAP 2000 versi 11. Langkah-langkah yang dilakukan sebagai berikut:
1. Pemilihan tipe struktur yang digunakan. Dalam tulisan ini dilakukan perbandingan dengan menggunakan tipe struktur solid.
2. Pengisian data-data yang diperlukan.
3. Pemilihan solid elemen dalam empat mesh area.
4. Pengisian data-data material
5. Pembuatan shell area
6. Pengisian data-data dari shell area dan pengisian tebal pelat
7. Pemasukan load cases
8. Pemilihan kombinasi beban
9. Pengisian data kombinasi beban
10. Pengisian perletakan pegas pada joint
11. Pengisian konstanta pegas dalam arah sumbu Z sebesar 2 kg/cm²
12. Pemilihan jenis yang akan dianalisis
13. Analisis program
14. Hasil keluaran.

Hasil numerik dengan memanfaatkan software SAP 2000 versi 11, diperoleh lendutan maksimum sebesar 2.781 10^{-9} cm.
7. KESIMPULAN

Dengan memodelkan pondasi telapak sebagai pelat lentur, hasil perhitungan dengan metode elemen hingga sederhana diperoleh lendutan maksimum sebesar \(-2.789 \times 10^{-9}\) cm. Sebagai pembanding secara numerik dengan menggunakan software SAP 2000 versi 11 diperoleh lendutan maksimum \(2.781 \times 10^{-9}\) cm. Persentase perbedaan hasil lendutan yang di dapatkan melalui pemodelan dengan menggunakan metode elemen hingga dan penggunaan software SAP 2000 versi 10, diperoleh 0.28 %.

Penelitian lanjut yang dapat diusulkan adalah pemodelan dilakukan dengan memodifikasi beban-beban yang bekerja pada balok. Pemodelan dilakukan dengan mendiskritisasi elemen lebih kecil lagi. Selanjutnya pemodelan tidak terbatas pada pondasi yang berkelakuan rigid saja tetapi pemodelan juga dapat dilakukan pada pondasi dengan kondisi fleksibel.

DAFTAR PUSTAKA

1. Bowles, J. E (1996), Foundation Analysis and Design, Edisi 5, McGraw-Hill Inc., New York.
2. Brown, D. K. (1984), Introduction to the Finite Element Method using BASIC Programs, Blackie & Son, Glasgow.
3. Desai, C. S. (1979), Elementary Finite Element Method, Prentice Hall, Inc., Englewood Cliffs, New Jersey.
4. Hadipratomo, W. (2005), Dasar Dasar Metode Elemen Hingga, PT. Danamarta Sejahtera Utama, Bandung.
5. url: http://id.wikipedia.org
6. Sosrodarsono, S. dan Nakazawa, K. (1984), Mekanika Tanah dan Teknik Pondasi, Pradnya Paramita, Jakarta.

[1] Hanny J. Dani adalah dosen tetap Jurusan Teknik Sipil, Universita Kristen Maranatha, Bandung.
[2] Olga Pattipawaej adalah dosen tetap Jurusan Teknik Sipil, Universita Kristen Maranatha, Bandung.
[3] Putra W. Remantan adalah alumni Jurusan Teknik Sipil, Universita Kristen Maranatha, Bandung.
VISUALISASI PEMBELAJARAN TEKUK PADA KOLOM DENGAN BANTUAN SOFTWARE BERBASIS PERHITUNGAN NUMERIK

Yosafat Aji Pranata, Anang Kristianto
Dosen Tetap, Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kristen Maranatha
Jalan Prof. drg. Suria Sumantri MPH., No. 65, Bandung, 40164
e-mail: yosafat.ap@eng.maranatha.edu, anang.kristianto@eng.maranatha.edu

ABSTRAK

Proses pembelajaran merupakan suatu proses komunikasi antara dosen dengan mahasiswa, yaitu bagaimana materi disampaikan, kurikulum sebagai rangkaian materi kuliah, serta hasil proses pembelajaran. Ketiga komponen tersebut saling terkait. Dalam prakteknya, banyak terjadi kendala ketika mahasiswa berhadapan dengan materi kuliah yang sulit untuk dibayangkan, bahkan untuk materi yang secara matematis dapat dituliskan dengan sederhana. Kondisi ini berhubungan dengan gaya belajar mahasiswa. Hasil penelitian yang dilakukan terhadap mahasiswa teknik pada beberapa perguruan tinggi menunjukkan bahwa gaya belajar visual learners ternyata lebih dominan daripada active learners dan sensing learners. Mahasiswa dengan gaya belajar active-sensing-visual learners memiliki kecenderungan belajar melalui metode praktek problem-solving, penggunaan banyak gambar, grafik atau sketsa sederhana serta aktivitas kelompok dimana mahasiswa diberi kesempatan untuk bertukar pikiran. Dalam penulisan ini disampaikan masukan untuk pembelajaran teknik pada kolom dengan visualisasi menggunakan alat bantu software komputer. Beberapa manfaat penggunaan alat bantu ini adalah yang pertama, mahasiswa dapat memahami proses mulai dari dasar teori, penggunaan rumus, latihan soal serta hasil perhitungan dapat terdokumentasi dengan baik. Kedua, dengan bantuan flowchart yang berguna untuk menjelaskan urutan suatu proses pelaksanaan yang mempunyai banyak kondisi pilihan atau percabangan. Ketiga, mahasiswa dapat melakukan berbagai variasi simulasi sederhana untuk berbagai kondisi bentuk, dimensi serta ukuran kolom.

Kata kunci: Gaya belajar, Visualisasi, Tekuk, Kolom.

1. PENDAHULUAN

Proses pembelajaran bukan hanya suatu proses komunikasi bagaimana materi disampaikan kepada mahasiswa, akan tapi terdapat dua komponen penting lain yang saling terkait, yaitu kurikulum sebagai rangkaian materi kuliah serta hasil proses pembelajaran.

Pada kenyataannya, terdapat kecenderungan bahwa materi yang telah disusun dengan baik tidak dapat disampaikan secara efektif. Hal ini mempengaruhi hasil yang diharapkan. Dalam konteks ini, mekanika bahan sebagai salah satu mata kuliah utama dalam pendidikan teknik sipil di Indonesia mengalami permasalahan yang sama, yaitu menununnya hasil belajar mahasiswa.

Memberikan pemahaman kepada mahasiswa ternyata tidak mudah. Dari segi materi kuliah, hal ini dipengaruhi oleh beberapa hal, yaitu antara lain dasar teori, asumsi dan perhitungan matematis, serta visualisasi dalam bentuk grafik atau gambar.
Sebagai gambaran, pada penulisan ini dipaparkan hasil penelitian yang telah dilakukan oleh Kristianto dan MSDU [Kristianto, 2004] terhadap mahasiswa Jurusan Teknik Sipil Universitas Kristen Maranatha. Hasil penelitian menunjukkan kecenderungan gaya belajar adalah *active-sensing leaners* (41,38%) dan *visual leaners* (68,97%).

Kemudian sebagai perbandingan, dilakukan suatu studi literatur terhadap hasil penelitian yang dilakukan oleh Felder [Felder, 2005] terhadap mahasiswa di beberapa universitas terkemuka di Amerika. Hasil penelitian terhadap mahasiswa Iowa State University menyatakan bahwa 63% mahasiswa adalah *active leaners*, 67% *sensing leaners*, dan 85% *visual leaners*. Penelitian terhadap mahasiswa Michigan Tech. menunjukkan bahwa 56% *active leaners*, 63% *sensing leaners*, dan 74% *visual leaners*. Secara umum hasil penelitian Felder menunjukkan bahwa 64% *active leaners*, 63% *sensing leaners*, dan 82% *visual leaners*.

Kondisi tersebut setidaknya bisa memberikan gambaran yang cukup umum bahwa mahasiswa teknik memiliki kecenderungan gaya belajar yang hampir sama di beberapa perguruan tinggi.

Mahasiswa dengan gaya belajar *active-sensing-visual leaners* memiliki kecenderungan belajar melalui metode praktis *problem-solving*, penggunaan banyak gambar, grafik atau sketsa sederhana serta aktivitas kelompok dimana mereka diberi kesempatan untuk bertukar pikiran.

Salah satu kendala pemahaman terhadap materi adalah ketika mahasiswa berhadapan dengan materi mekanika bahan yang sulit untuk dibayangkan, bahkan untuk materi yang secara matematis dapat dituliskan dengan sederhana. Salah satu materi dasar yang diberikan adalah tekuk pada kolom. Memberikan pemahaman kepada mahasiswa mengenai tekuk pada kolom, penggunaan dan penempatan pengaku ternyata tidak mudah. Dalam penulisan ini disampaikan masukan untuk pembelajaran tekuk pada kolom dengan visualisasi menggunakan alat bantu *software* komputer.

Tujuan dari penulisan ini adalah agar mahasiswa menjadi lebih fokus pada proses pembelajaran tekuk pada kolom tanpa mengabaikan pemahaman dasar teori. Selain itu untuk membuat mata kuliah tekuk pada kolom menjadi lebih menarik dan meningkatkan kemampuan mahasiswa pada pemanfaatan komputer.

Penulisan menggunakan ruang lingkup batasan materi tekuk pada kolom. Visualisasi pembelajaran dilakukan dengan bantuan *software* komputer yang dikembangkan secara mandiri dengan menggunakan bahasa pemrograman *DELPHI*, yaitu suatu bahasa
pemrograman berbasis perhitungan numerik, yang dapat juga melakukan visualisasi kedalam bentuk grafik atau gambar.

2. GAYA DAN CARA BELAJAR MAHASISWA

Kegagalan mahasiswa dalam mengikuti pembelajaran mekanika rekayasa, sebagaimana biasa dikeluhkan dosen, condong hanya ditinjau dari sisi mahasiswa saja, yaitu sebagai kekurangan mahasiswa. Kekurangan yang dikontribusikan oleh dosen jarang atau malah tidak ditinjau, sehingga tidak diperhitungkan dalam program perbaikan yang dikontruksi untuk mengatasi masalah gagal komunikasi yang timbul [Besari, 2004].

Gaya belajar membahas tentang perbedaan cara individu untuk lebih efektif mempelajari suatu konsep. Selain gaya belajar, setiap mahasiswa juga memiliki cara belajar yang berbeda. Cara belajar merupakan suatu perbedaan cara yang dilakukan untuk memahami informasi secara optimal [Kristianto, 2004].

Salah satu upaya agar proses pembelajaran berhasil secara optimal adalah dosen berusaha untuk menyampaikan materi dengan baik dan kompeten. Salah satunya adalah mengajar dengan memahami gaya dan cara belajar mahasiswa.

Hasil penelitian seperti yang telah disampaikan pada pendahuluan diatas dapat memberikan informasi yang bermanfaat secara khusus pada kasus ini adalah matakuliah mekanika rekayasa pada mahasiswa teknik.

3. TINJAUAN LITERATUR

Kolom merupakan elemen struktur yang sangat banyak digunakan. Secara umum, kolom dibagi menjadi dua tipe, yaitu kolom pendek dan kolom panjang. Kolom pendek adalah tipe kolom yang kegagalannya berupa kegagalan material (ditentukan oleh kekuatan material), sedangkan kolom panjang adalah tipe kolom yang kegagalannya ditentukan oleh tekuk (buckling), jadi kegagalan karena ketidakstabilan [Schodek, 1999].

Beban tekuk kritis adalah beban maksimum yang dapat dipikul kolom. Peningkatan kecil dari beban ini akan meningkatkan lendutan secara signifikan, yang memungkinkan terjadinya kegagalan stabilitas [Lwin, 2001].

Beban tekuk kritis untuk kolom panjang yang digunakan dalam penulisan ini menggunakan persamaan Euler. Modifikasi persamaan Euler bergantung pada panjang efektif kolom. Rasio panjang efektif merupakan rasio panjang efektif dari idealisasi perletakan ujung kolom terhadap panjang aktual kolom untuk berbagai kondisi perletakan ujung.
\[
P_{cr} = \frac{\pi^2. E . I}{(K . L)^2}
\]

dimana:

- \(P_{cr}\) = Beban tekuk kritis.
- \(E\) = Modulus elastisitas.
- \(I\) = Momen inersia penampang.
- \(K\) = Rasio panjang efektif kolom.
- \(L\) = Panjang kolom.

Beberapa ilustrasi untuk menggambarkan tekuk pada kolom dapat dilihat pada Gambar 1 dan Gambar 2.

*Gambar 1. Beberapa model tekuk pada kolom [Sumber: http://www.wikipedia.com].

*Gambar 2. Kegagalan kolom karena tekuk [Sumber: http://www.arch.virginia.edu].
4. VISUALISASI PEMBELAJARAN DENGAN SOFTWARE

Pada saat ini terdapat banyak software untuk pemodelan dan perhitungan tekuk pada kolom. Sebagai contoh adalah software ALADDIN dan MDSOLIDS.

Gambar 3. Perhitungan beban tekuk Euler dengan software ALADDIN.

Gambar 4. Visualisasi tekuk pada kolom dengan software MDSOLIDS.

Dalam penulisan ini juga disampaikan suatu software sederhana namun cukup interaktif untuk visualisasi materi tekuk pada kolom, yang dikembangkan secara mandiri.
dengan bahasa pemrograman DELPHI. Informasi lebih lanjut mengenai software ini dapat di-download pada website http://yosafat.ap.tripod.com.

Software-software yang ada tersebut sangat efektif untuk digunakan dalam perhitungan dengan berbagai variasi data masukan dan proses perhitungannya pun sangat cepat. Namun apabila terjebak pada mitos bahwa software selalu benar dan tidak mengetahui serta memahami parameter-parameter yang digunakan sebagai data masukan (input), maka hal ini bisa berakibat fatal, karena bisa menghasilkan suatu interpretasi hasil yang tidak tepat.

Gambar 5. Kolom dengan variasi penempatan pengaku.

(a). Arah sumbu lemah. (b). Arah sumbu kuat.

Gambar 6. Tekuk pada kolom dengan pengaku.

4.1 Algoritma dan Flowchart

Algoritma merupakan suatu strategi penyelesaian suatu masalah secara detail sehingga dapat dilakukan proses oleh komputer secara efisien dan tepat. Agar dapat diproses oleh komputer, maka algoritma diterjemahkan terlebih dahulu ke dalam bahasa pemrograman.
Flowchart atau bagan alir diperlukan untuk memudahkan menjelaskan suatu proses yang rumit bila diuraikan dengan kata-kata. Flowchart sangat berguna untuk menjelaskan urutan suatu proses pelaksanaan yang mempunyai banyak kondisi pilihan atau percabangan.

Bagan alir digunakan untuk membuat software. Dalam penulisan ini bagan alir proses perhitungan secara garis besar seperti terlihat pada Gambar 7. Secara umum, terlebih dahulu diperiksa rasio kelangsingan, dan menghitung beban tekuk kritis sesuai persamaan Euler (persamaan 1). Kemudian visualisasi dilakukan sebagai contoh perlu atau tidaknya penggunaan pengaku. Beberapa simulasi sederhana dapat dilakukan dengan variasi bentuk, dimensi dan ukuran penampang kolom, serta penempatan pengaku.

Pemodelan Kolom
↓
Check rasio kelangsingan
↓
Menghitung beban tekuk kritis
↓
Visualisasi :
- Tekuk terhadap sumbu kuat, sumbu lemah
- Penggunaan dan penempatan pengaku

Gambar 7. Flowchart yang digunakan dalam studi.

Perhitungan rasio kelangsingan menggunakan persamaan 2 dan persamaan 3.

\[
\frac{K.L}{r} \leq \text{rasio ijin} \tag{2}
\]

\[
r = \sqrt{\frac{I}{A}} \tag{3}
\]

dimana \(r \) adalah jari-jari girasi penampang kolom dan \(A \) adalah luas penampang kolom.

4.2 Software Interaktif Berbasis Perhitungan Numerik

Beberapa manfaat menggunakan bahasa pemrograman berbasis perhitungan numerik adalah dapat menentukan sendiri data-data masukan yang akan digunakan untuk rangkaian perhitungan. Persamaan-persamaan yang akan digunakan dalam perhitungan pun dapat ditentukan sendiri sesuai keperluan. Kemudian hasil perhitungan yang akan divisualisasikan dalam bentuk gambar atau diagram dapat ditampilkan dengan baik, bahkan untuk model 3 dimensi.

Beberapa manfaat tersebut dapat digunakan untuk menampilkan suatu pemodelan tekuk pada kolom secara interaktif. Namun pada akhirnya, tetap diperlukan dasar teori dan
asumsi pemahaman yang benar terlebih dahulu, karena hal ini sangat penting agar interpretasi hasil juga menjadi benar.

4.3 Studi kasus dan Pembahasan

Beberapa variasi perletakan ujung-ujung kolom untuk menghitung panjang efektif kolom menggunakan asumsi seperti terlihat pada Gambar 8.

Penulisan ini menggunakan contoh studi kasus kolom persegi 150mm x 300mm, dengan tinggi 10 meter, dengan model perletakan jepit pada ujung bawah dan sendi pada ujung atas. Sebagai asumsi digunakan batasan rasio kelangsingan ijin sebesar 175.

Hasil perhitungan cek rasio kelangsingan menunjukkan bahwa baik pada sumbu kuat maupun sumbu lemah tidak memenuhi persyaratan rasio kelangsingan ijin (rasio kelangsingan masing-masing 461,88 dan 230,94). Maka sebagai penyelesaian, dalam penulisan ini mengambil solusi digunakan pengaku. Agar memenuhi persyaratan kelangsingan, maka digunakan dua buah pengaku pada arah sumbu lemah dan satu buah pengaku pada arah sumbu kuat.
Sebagai tambahan untuk melengkapi visualisasi tersebut, dalam program ini juga disertakan *reports* berupa urutan langkah demi langkah perhitungan, sehingga alur perhitungan dapat dipahami dengan baik.

5. KESIMPULAN

Kesimpulan dan beberapa manfaat penggunaan alat bantu ini adalah:

1. Mahasiswa dapat memahami proses mulai dari dasar teori, penggunaan rumus, latihan soal serta hasil perhitungan dapat terdokumentasi dengan baik.
2. Dengan bantuan *flowchart*, sangat berguna untuk menjelaskan urutan suatu proses pelaksanaan yang mempunyai banyak kondisi pilihan atau percabangan.
3. Mahasiswa dapat melakukan berbagai variasi simulasi sederhana untuk berbagai kondisi bentuk, dimensi serta ukuran kolom.

Materi dalam penulisan ini dipresentasikan pada “Lokakarya Pembelajaran Mekanika Teknik, Konstruksi Beton, dan Konstruksi Baja”, di Universitas Udayana, Bali, pada tanggal 26-27 Juli 2006.

DAFTAR PUSTAKA

1. Besari, M.S. (2004), *Pembelajaran Ilmu Mekanika Rekayasa*, Seminar dan Workshop Nasional Mekanika Rekayasa Teknik Sipil, 7-8 Oktober 2004, Universitas Atma Jaya Yogyakarta, Yogyakarta.
2. Borland (2001), *DELPHI User Guide*, Borland Software Corporation.
3. Felder, R.M., Brent, R. (2005), *Understanding Student Differences*, Journal of Engineering Education, 94 (1), 57-72, January 2005.
4. Hibbeler, R.C. (1997), *Mechanics of Materials 3rd Edition*, Prentice Hall, Inc.
5. Kristianto, A. (2004), *Mengajar Mekanika Rekayasa Dengan Memahami Gaya Dan Cara Belajar Mahasiswa*, Seminar dan Workshop Nasional Mekanika Rekayasa Teknik Sipil, 7-8 Oktober 2004, Universitas Atma Jaya Yogyakarta, Yogyakarta.
6. Lwin, M.M., Lee, C.S., Lee, J.J. (2001), *Civil Engineering PE Exam Depth Guide*, McGraw-Hill.
7. Schodek, D.L., (1999), *Struktur, Edisi kedua*, Penerbit Erlangga, Jakarta.
8. url: http://instruct1.cit.cornel.edu
9. url: http://msumusik.mursuky.edu/mdsolids
10. url: http://www.arch.virginia.edu
11. url: http://www.isr.umd.edu
12. url: http://www.wikipedia.com
13. url: http://yosafat.ap.tripod.com
14. Wibowo, F. N. (2005), *Pembelajaran Metode Kekakuan Dengan Bantuan Microsoft Excel*, Lokakarya Pengajaran Konstruksi Beton dan Mekanika Teknik, 13-14 Juli 2005, Institut Teknologi Sepuluh November, Surabaya.
KAJIAN OPERASIONAL BUS RAPID TRANSIT
TRANS-JAKARTA DAN TRANSMILENIO BOGOTA

Budi Hartanto Susilo2, Apriyanto Loentan3
1Disampaikan dalam Konferensi Nasional Teknik Jalan ke-8,
DPP Himpunan Pengembang Jalan Indonesia, Jakarta, 4 – 5 September 2007
2 Dosen tetap Teknik Sipil Universitas Kristen Maranatha.
3 Alumnus Teknik Sipil Universitas Kristen Maranatha.

ABSTRACT

TransJakarta inspiring from the successfull of the TransMilenio whose come to be a vision and positive sample for the capital city of developing country including Jakarta. After 3 years operation, the successfull of TransJakarta has been seen now and perhaps its should be more succes from the TransMilenio, but unfortunately, it’s not happen, especially for the others corridor after Blok M – Kota, how come? Many aspect influence the successfull of TransJakarta like a seriously, attention, and diligence from the people an instance whose concerned with it includes the user. The other aspect was appeared from operation system such as imbalance the number of vehicle and transport demand (supply and demand), conditions of means and infrastructure (maintenance), schedule system (time schedule), and sanction for the other vehicle who use the busway lane include the busway driver whose not obedient with traffic regulation (law enforcement). Less of the vehicle on each corridor would be impact to the long waiting time for the passenger and it will be cause the stack of passenger on the shelter. Now, it is not late to reflection and re-learning to the succesfull of transmilenio, and also doing self-evaluation of the working programme to reach the delayed succesfull.

Keywords: TransJakarta, TransMilenio, operation system, vehicle imbalance, schedule and waiting time, and self evaluation.

ABSTRAK

Trans-Jakarta dibangun dengan terinspirasi oleh Trans-Milenio Bogota yang telah dibangun dan dioperasikan jauh sebelumnya dan sukses besar sehingga menjadi sorotan dan contoh positif bagi kota besar lainnya khususnya bagi negara berkembang termasuk Jakarta. Trans-Jakarta setelah dioperasikan lebih dari 3 tahun, sudah terlihat kesuksesannya dan seyogyanya melampaui kesuksesan pendahulunya atau lebih baik dari Trans-Milenio, tetapi kenyataannya tidaklah demikian khususnya pembangunan koridor-koridor lainnya setelah koridor Blok M - Kota, mengapa demikian? Banyak aspek yang mempengaruhi suksesnya Trans-Jakarta mulai dari keta keseriusan, kepedulian dan ketekunan orang-orang dan lembaga yang menanganinya termasuk para penggunanya. Aspek lain juga muncul dari sistem operasinya antara lain ketimpangan antara jumlah armada dan kebutuhan pengangkutan (supply and demand), kondisi sarana dan prasarana (maintenance), sistem penjadwalan (time schedule), serta penegasan sanksi bagi pengemudi kendaraan lain yang menggunakan jalur busway atau pun bagi pengemudi busway yang tidak mentaati peraturan lalu lintas (law enforcement). Kurangnya unit-unit armada bus yang beroperasi pada masing-masing koridor yang akhirnya berimbias pada waiting time penumpang yang lama yang berakibat pada penumpukan calon penumpang yang berlebihan di halte. Saat ini masih belum terlambat untuk bercermin dan belajar kembali pada sukses-besar transmilenio, melakukan evaluasi diri pada program yang telah berjalan dan mengejar kesuksesannya yang tertunda.

Kata kunci: Trans-Jakarta, Trans-Milenio, sistem operasi, ketimpangan armada, jadwal dan waktu tunggu, dan evaluasi diri.
1. PENDAHULUAN

Pada awal tahun 2004, Pemprov DKI Jakarta telah berhasil meluncurkan program Bus Rapid Transit yang diberi nama TransJakarta dengan mengoperasikan busway Koridor I Jurusan Blok M–Kota, dan disusul dengan Koridor II (Pulogadung-Harmoni) dan Koridor III (Kalideres-Pasar Baru) pada awal tahun 2006.

Keseriusan Pemprov DKI untuk terus mengembangkan program ini terlihat dengan terealisasinya koridor IV, V, VI, dan VII pada awal tahun 2007 ini. Beroperasinya 7 koridor busway TransJakarta merupakan prestasi yang baik bagi Pemprov DKI Jakarta dalam pengentasan masalah transportasi.

Sayangnya prestasi ini tidak berjalan dengan baik sesuai dengan program dan kebutuhan real di lapangannya. Dimulai dari ketimpangan antara jumlah armada dan kebutuhan pengangkutan (supply and demand), kondisi sarana dan prasarana (maintenance), sistem penjadwalan (time schedule), serta penegasan sanksi bagi pengemudi kendaraan lain yang menggunakan jalur busway atau pun bagi pengemudi busway yang tidak mentaati peraturan lalu lintas (law enforcement).

Permasalahan tersebut telah berkembang dan menjadi semakin kompleks sehingga sangat menghambat kesuksesan yang semestinya telah di raih oleh TransJakarta ini. Oleh sebab itu, pada makalah ini akan mengkaji sistem operasi Busway TransJakarta dan TransMilenio Bogota.

Maksud dari kegiatan ini adalah melakukan kajian operasi TransJakarta dan pendahulunya TransMilenio. Sedangkan tujuan dari kegiatan ini adalah informasi mengenai sistem operasional TransJakarta dan TransMilenio. Bahan evaluasi operasi bagi pihak pengelola terhadap kekurangan yang mungkin dimiliki oleh TransJakarta bila dibandingkan dengan TransMilenio Bogota.

Dalam studi ini permasalahan dibatasi hanya pada kajian operasi TransJakarta dan TransMilenio Bogota meliputi Armada Bus, Kondisi Lajur Busway, Sistem Tiket, dan waktu tunggu penumpang (time headway).
Gambar 1. Rute Koridor TransJakarta.
Gambar 2. Rute Koridor TransMilenio–Bogota.
2. STUDI LITERATUR DAN KAJIAN PENGEMBANGAN

Angkutan umum merupakan inti dari pergerakan ekonomi diperkotaan. Berbagai bentuk moda angkutan umum dengan karakteristik dan tingkat pelayanan yang diberikan mewarnai perkembangan sistem angkutan umum kota yang berorientasi kepada kenyamanan dan keamanan sehingga dapat bersaing dengan angkutan pribadi. Dari berbagai macam moda angkutan umum bus, baik yang berskala besar, menengah maupun kecil, tetap menjadi angkutan yang dekat dengan masyarakat.

Hanya saja, masih banyak angkutan umum bus yang tidak dapat memberikan pelayanan yang baik bagi penggunanya. Faktor keamanan, kenyamanan, dan ketepatan waktu sering terabaikan dalam operasional angkutan bus yang akhirnya berdampak pada penurunan minat penggunaan angkutan bus. Hal ini tentu saja sangat mengganggu pengembangan sistem angkutan kota yang berbasiskan Bus Rapid Transit.

Saat ini, konsep BRT terus mengalami perkembangan dari waktu ke waktu sebagai solusi yang efektif dalam permasalahan sistem angkutan massa bagi wilayah perkotaan yang memiliki keterbatasan pendanaan.

Dalam sejarahnya pun, BRT lahir di wilayah Amerika latin yang saat itu tidak memiliki dana dalam mengembangkan infrastruktur yang berbasis kendaraan (car-based infrastructure), sehingga perencana kota tersebut tertantang untuk membuat paradigma baru dalam transportasi kotanya.

Secara umum, BRT memiliki kualitas yang baik dalam melayani penumpang dengan berorientasi pada kecepatan, kenyamanan, dan efektifitas biaya perjalanan penduduk. Dalam perjalanannya, BRT memiliki nama-nama lain pada berbagai tempat seperti High-Capacity Bus System, High-Quality Bus System, Metro-Bus, Express Bus System, dan Busway System. Kesemua sistem BRT tersebut, memiliki karakteristik sebagai berikut:

1. Lajur khusus bus (exclusive busway),
2. Shelter yang bersih, aman dan nyaman,
3. Sistem Angkut penumpang yang efisien,
4. Pengemudi Bus yang di latih khusus,
5. Informasi Jadwal bis yang jelas,
6. Prioritas Khusus pada persimpangan,
7. Terminal dan Stasiun yang terintegrasi,

Karakteristik diatas merupakan syarat mutlak yang harus dimiliki oleh suatu sistem BRT, meskipun masing-masing BRT dalam pelaksanaannya tetap bergantung daripada kondisi daerah dimana sistem BRT tersebut di jalankan. Namun begitu, dalam perencanaan suatu sistem BRT yang baik seyogyanya akan melewati 7 tahapan perencanaan yaitu:

1. Analisis pra perencanaan (Pre-planning Analysis), meliputi analisa latar belakang dan situasi, stakeholder analysis, survei asal-tujuan, dan kajian mengenai alternatif transit massa.
2. Perencanaan struktur BRT (BRT System Structure), meliputi komitmen visi, pengaruh nyata, isu perundang-undangan dan hukum, administrasi dan konsep bisnis, tarif yang berlaku, dan analisa biaya.
3. Komunikasi, Pelayanan Konsumen, dan Pemasaran (Communication, Customer Service, and Marketing), meliputi partisipasi masyarakat, komunikasi yang baik dengan operator transportasi yang telah ada, strategi pendidikan masyarakat, strategi pelayanan pelanggan, dan strategi marketing.
4. Rekayasa dan Design (Engineering and Design), meliputi lokasi koridor layanan, pilihan rute, rekayasa jalan, desain terminal dan shelter, desain pangkalan bus, dan rencana landscape.
5. Teknologi dan Perangkatnya (Technology and Equipment), meliputi teknologi pengumpulan pendapatan dan sistem verifikasi, rencana pusat kontrol sistem, kehandalan sistem transport, teknologi bus, interior design bus, proses persiapan perangkat teknologi.
6. Integrasi Moda (Modal Integration), meliputi rencana integrasi moda, manajemen permintaan perjalanan, dan integrasi dengan tata guna lahan sekitar.
7. Rencana Implementasi (Plans for Implementation), meliputi rencana finansial, rencana rekrutmen, perjanjian kontrak sistem, implementasi rencana konstruksi, rencana perawatan, dan rencana monitoring serta evaluasi.
3. PENGUMPULAN DAN PENGOLAHAN DATA SEKUNDER

3.1 Gambaran Umum Busway TransJakarta

Implementasi busway di Jakarta pertama kalinya dilakukan pada koridor Blok M–Kota yang dianggap sebagai koridor paling sibuk di Jakarta, dimana disepanjang koridor ini adalah kawasan komersial terpadu, aktivitas perkantoran, pemerintahan, jasa dan pusat-pusat aktivitas perekonomian masyarakat. Pada tahapan berikutnya, implementasi dilakukan pada dua koridor lainnya yaitu Pulo Gadung–Harmoni dan Kali deres–Harmoni. Gabungan dari ketiga koridor tersebut membentuk suatu sistem tulang punggung (*backbone system*) yang menghubungkan pergerakan dari wilayah Jakarta bagian barat–timur, menuju wilayah Jakarta bagian utara–selatan. Selanjutnya koridor busway kembali ditambah 4 koridor yaitu Pulo Gadung-Dukuh Atas (Koridor IV), Kampung Melayu-Ancol (Koridor V), Ragunan-Kuningan (Koridor VI), Kampung Rambutan-Kampung Melayu (Koridor VII). Jadi, sampai dengan saat ini telah beroperasi 7 koridor busway yang melayani pergerakan penduduk kota Jakarta.

Bus yang digunakan sebagai bus TransJakarta umumnya adalah bus Mercedes-Benz dan Hino dengan warna bus adalah merah dan kuning dan bahan bakar yang digunakan adalah bio solar. Namun sekarang ada pula beberapa armada yang memakai bahan bakar Gas. Bus-bus ini dibangun dengan menggunakan bahan-bahan pilihan. Untuk interior langit-langit bus, menggunakan bahan yang tahan api sehingga jika terjadi percikan api tidak akan menjalar. Untuk kerangkanya, menggunakan Galvanil, suatu jenis logam campuran seng dan besi yang kokoh dan tahan karat.

Bus TransJakarta memiliki pintu yang terletak lebih tinggi dibanding bus lain sehingga hanya dapat dinaiki dari halte khusus busway (juga dikenal dengan sebutan shelter). Pintu tersebut terletak di bagian tengah kanan dan kiri dengan menggunakan sistem lipat otomatis yang dapat dikendalikan dari konsol yang ada di panel pengemudi. Untuk bus koridor II dan III, mekanisme pembukaan pintu telah diubah menjadi sistem geser untuk lebih mengakomodasi padatnya penumpang pada jam-jam tertentu. Setiap bus dilengkapi dengan papan pengumuman elektronik dan pengeras suara yang memberitahukan halte yang akan segera dilalui kepada para penumpang dalam 2 bahasa, yaitu bahasa Indonesia dan bahasa Inggris. Setiap bus
juga dilengkapi dengan sarana komunikasi radio panggil yang memungkinkan pengemudi untuk memberikan dan mendapatkan informasi terkini mengenai kemacetan, kecelakaan, barang penumpang yang tertinggal, dan lain-lain.

Gambar 3. Sarana Bus Busway TransJakarta.

Halte-halte TransJakarta berbeda dengan halte bus biasa karena selain berupa box shelter yang nyaman juga terletak di tengah jalan. Konstruksi halte didominasi oleh bahan aluminium, baja, dan kaca. Ventilasi udara diberikan dengan menyediakan kisi-kisi aluminium pada sisi halte. Lantai halte dibuat dari pelat baja dan pintu halte menggunakan sistem geser otomatis yang akan langsung terbuka pada saat bus telah merapat di halte. Jembatan penyebrangan yang jadi penghubung halte dibuat landai (dengan perkecualian beberapa halte, seperti halte Bunderan HI) agar lebih ramah terhadap orang cacat. Lantai jembatan menggunakan bahan yang sama dengan lantai halte. Di Jalan Gadjah Mada, Jakarta Pusat, dibangun sebuah halte khusus dengan ukuran jauh lebih besar dari halte-halte yang lain. Halte tersebut diberi nama Harmoni Central Busway. Halte yang dibangun di atas Kali Ciliwung adalah satu-satunya titik transfer antarkoridor I, II, dan III dengan daya tampung 500 orang ini dan memiliki 6 pintu.

Gambar 4. Halte Busway TransJakarta.
Lajur khusus busway TransJakarta berada di tengah jalan dengan jumlah lajur pada masing-masing arah pergerakan adalah 1 lajur. Lajur khusus bus ini memiliki struktur perkerasan kaku (rigid pavement) dengan lebar lajur rata-rata minimum 3,6 meter. Untuk memisahkan lajur bus dengan lalu lintas biasa maka dibuat separator kecuali pada beberapa lokasi yang memaksakan busway harus mixed-traffic dengan lalu lintas reguler.

Gambar 5. Lajur Khusus Busway.

Kartu Magnet Elektronik akan digunakan dalam sistem tiket pada sistem busway untuk koridor Blok M–Kota. Untuk tiap halte/stasiun/titik transfer, akan disediakan suatu pintu masuk yang dilengkapi dengan alat yang akan mendeteksi kartu masuk tersebut secara elektronik.

Gambar 6. Sistem Tiket Penumpang Busway.
TransJakarta memiliki sistem operasi reguler dimana setiap bus akan berhenti diseluruh shelter yang dilewati sepanjang koridor. Sampai dengan saat ini telah beroperasi armada bus sebanyak 147 unit, yang melayani 7 koridor rute. Penambahan armada bus terus dilakukan hingga dapat memenuhi kebutuhan pengguna jasa. Transjakarta beroperasi selama 17 jam dari pukul 05.00 – 22.00, namun bila masih ada penumpang di dalam halte yang belum terangkut karena kendala teknis operasional, maka jadwal operasi akan diperpanjang secukupnya untuk mengakomodasi kepentingan para penumpang yang sudah terlanjur membeli tiket tersebut.

3.2 Gambaran Umum Busway TransMilenio-Bogota

Kota Bogota merupakan kota penting di negara Colombia karena selain sebagai ibukota, kota ini juga menjadi pusat kegiatan bagi pemerintahan dan perekonomian negara tersebut.

Perkembangan permasalahan transportasi yang terjadi di kota ini semakin kompleks hingga akhirnya pemerintah setempat berupaya untuk mengatasi dengan melahirkan suatu sistem transportasi perkotaan yang berbasiskan bus berdasarkan rekomendasi dari Lloyd Wright, the Institute for Transportation and Development Policy. Hingga akhirnya pada Desember tahun 2000, Transmilenio lahir sebagai sistem transportasi perkotaan yang berbasiskan pada Bus Rapid Transit dengan model BRT yang sama seperti yang diaplikasikan di Curitiba, Brazil.

Transmilenio memiliki banyak elevated station pada sisi tengah jalan raya disepanjang koridornya. Koridor I dari Transmilenio ini melayani pergerakan penumpang dari Av.Caracass–Calle 80, dan selanjutnya secara bertahap hingga 5 tahun kedepan akan ditambah koridor lainnya.

Bus yang digunakan oleh TransMilenio dibuat khusus oleh beberapa perusahaan besar dari Columbia dan Brazil yaitu Perusahaan Marcopolo-Superior, Perusahaan Jerman Mercedes-Benz, dan dari Skandinavia dengan basis perusahaan nya Volvo dan Scania. Struktur bus dibangun dengan sistem gandeng (articulated) dengan kapasitas penumpang 160 orang.

Pada bulan Mei 2007, direncanakan akan dioperasikan bus berkapasitas besar yang terdiri dari 3 bagian bus articulated (3 section with 2 articulation) dengan kapasitas penumpang 270 orang.
Halte TransMilenio secara struktural sama dengan halte yang dimiliki oleh TransJakarta, hanya saja daya tampung halte Transmilenio lebih besar. Ada 5 jenis stasiun di sepanjang koridor busway Transmilenio, yaitu:

1. Sencillas (Simple): shelter lokal, terletak di setiap 500 m.
2. De transferencia (Transfer): shelter yang menerima penumpang transfer antar line yang berbeda tapi masih dalam satu koridor.
3. Sin intercambio (No transfer): shelter yang tidak melyani transfer penumpang dari line utara – selatan ke arah sebaliknya selatan-utara.
4. Intermedias (Intermediate): shelter layanan bagi bus feeder dan transportasi lainnya.
5. Cabecera (Portal): shelter yang dekat dengan pintu gerbang kota. Angkutan kota seperti bus feeder, articulated bus, dan bus antar kota selalu melewati shelter ini.
Semua halte memiliki papan informasi mengenai perkiraan kedatangan bus dan peta sistem angkutan.

Gambar 9. Halte TransMilenio.

Lajur khusus busway TransMilenio juga berada di tengah jalan seperti halnya TransJakarta. Bedanya, pada masing-masing arah Transmilenio memiliki 2 lajur busway, sehingga memberikan keleluasaan gerak pada bus yang sedang beroperasi.

Gambar 10. Lajur Khusus Busway.

Transmilenio memiliki sistem operasi koridor rute yang terdiri dari beberapa sistem yaitu layanan express (servicios expreso), layanan reguler (servicios corrientes), dan layanan feeder (servicios alimentado). Layanan bus express hanya berhenti di stasiun yang telah ditentukan, layanan bus reguler melayani seluruh stasiun yang dilewati disepanjang koridor. Kombinasi operasi kedua sistem ini meningkatkan layanan dalam memenuhi kapasitas sistem yang sesuai dengan kebutuhan penumpang. Layanan bus feeder beroperasi untuk melayani penumpang dari wilayah yang tidak terjangkau koridor menuju shelter-shelter yang akan disinggahi bus Transmilenio. Sistem operasi ini telah dilakukan secara bertahap dari sejak 19 Desember 2000 dengan membawa penumpang sebanyak 18,618 per
hari pada hari pertama beroperasi. Selama 20 minggu pertama, permintaan harian naik menjadi lebih dari 20 kali lipat. Dan sampai dengan Maret 2002, jumlah penumpang yang diangkut adalah 644.586/hari, dengan 38 kilometer koridor rute, 104 kilometer layanan feeder pada 60 shelter dengan jumlah armada beroperasi 462 articulated-bus dan 197 bus feeder. Sampai saat ini, Transmilenio beroperasi 18 jam per hari dengan 14 koridor rute dengan layanan express. Pada hari minggu hanya beroperasi 3 koridor rute layanan express dan 3 koridor layanan reguler dengan interval kedatangan minimum 2 menit pada tiap-tiap shelter.

4. ANALISA DAN PEMBAHASAN

Evaluasi busway TransJakarta dilakukan dengan melihat kondisi real pada aspek-aspek yang mempengaruhi layanan operasional seperti armada bus, kondisi halte, dan kondisi lajur busway.

1. Armada Busway TransJakarta

Bercermin pada sarana bus yang beroperasi di Transmilenio-Bogota, bus-bus yang ada di TransJakarta memiliki kapasitas angkut yang jauh lebih kecil yakni hanya 85 penumpang (30 duduk, 55 berdiri), sedangkan Transmilenio berkapasitas 160 penumpang.

Hal ini dikarenakan TransJakarta hanya menggunakan single cabin bus, dan TransMilenio menggunakan articulated-bus (Bus Gandeng). Perbedaan penggunaan model armada bus tentu saja sangat mempengaruhi tingkat layanan pada pengguna jasa. Keterbatasan kapasitas angkut ini menyebabkan tidak terangkutnya calon penumpang yang menunggu di halte sehingga tidaklah mengherankan pada beberapa halte saat jam sibuk pagi dan sore hari terjadi penumpukan calon penumpang akibat waiting-time terlalu lama.

Hal ini diperparah lagi dengan kurangnya jumlah armada yang beroperasi pada masing-masing koridor. Sehingga interval kedatangan (time-headway) antar bus pun sangat lama. Jadi kondisi armada TransJakarta saat ini, selain memiliki keterbatasan kapasitas angkut juga kekurangan jumlah armada, sehingga terjadi ketimpangan kebutuhan antara supply (armada angkut) dan demand (kebutuhan pengangkutan).
Kondisi halte TransJakarta masih terbilang cukup baik dan terawat. Hanya saja saat jam-jam sibuk terutama di sore hari pada beberapa halte yang terletak di pusat-pusat kegiatan perkantoran dan komersil sering terlihat antrian dan penuh sesak. Halte *Harmoni Central Busway* (HCB) merupakan halte busway terbesar di sistem TransJakarta. Hal ini dikarenakan peranan halte ini sebagai titik pusat transit para penumpang busway yang ingin berganti koridor. Sangat disayangkan, dengan potensi pengangkutan yang sangat besar, TransJakarta hanya memiliki satu titik transit.

Tidak heran, meskipun dimensi haltenya lebih besar, kepadatan penumpang senantiasa terlihat di halte ini. Selain itu, permasalahan lain yang tidak kalah pentingnya adalah keseriusan pengelola busway dalam menjaga dan merawat perangkat halte.

Pada beberapa halte seperti di Halte Bendungan Hilir, terlihat adanya papan lantai JPO yang jebol dan rusak serta lantai beton yang ambruk. Kondisi ini tentu saja sangat membahayakan bagi para calon penumpang bila tidak berhati-hati melewatinnya. Jadi, kondisi halte TransJakarta secara umum masih cukup baik, hanya saja perlu penambahan pusat titik transit agar pergerakan pengangkutan bisa tersebar dan tidak terpusat di HCB saja.

Perawatan perangkat halte mestinya dapat lebih di perhatikan dengan melakukan pengecekan berkala terhadap JPO dan fasilitas halte, serta melakukan perbaikan pada perangkat fisik yang rusak. Berikut ini gambar Jembatan Penyebrangan Orang di Bendungan Hilir yang Jebol dan Rusak.

Gambar 11. Penumpukan Calon Penumpang Busway TransJakarta.
Lajur khusus Bus (Busway) TransJakarta berada ditengah jalan, dengan 1 lajur per arah dan lebar minimum 3,6 meter. Antar bus TransJakarta tidak dapat saling mendahului karena lajur yang dimiliki hanya 1 lajur. Lajur ini dibangun dengan struktur perkerasan kaku, dan untuk memisahkannya dengan regular traffic, maka digunakan separator beton. Pada beberapa ruas jalan, TransJakarta dibiarkan mixed-traffic, meskipun pada persimpangan tetap mendapatkan prioritas untuk didahulukan. Kondisi permukaan jalan pada lajur busway secara umum masih dalam kondisi baik. Peruntukan lajur khusus bus (busway) TransJakarta berbeda dengan Transmilenio-Bogota. Di Bogota, Transmilenio diberikan lajur sebanyak 2 lajur pada masing-masing arah pergerakan. Hal ini juga dipengaruhi oleh sistem pengoperasian TransMilenio yang sedikit berbeda dengan TransJakarta. Lajur kedua Transmilenio diberikan untuk mengakomodir bus yang melayani layanan ekspres dimana bus tersebut tidak berhenti disemua halte. Jadi antar Transmilenio masih bisa saling menyiap tergantung pada fungsi layan bus tersebut pada saat itu.
Dari ketiga aspek di atas, terlihat bahwa ada beberapa perbedaan antara TransJakarta dengan TransMilenio-Bogota. Ketiga aspek tersebut saling mempengaruhi dan menentukan keberhasilan operasional sistem Bus Rapid Transit (BRT). Busway TransJakarta sebenarnya telah membuka paradigma baru bagi pengentasan masalah transportasi di Kota Jakarta.

Hal ini terlihat dari antusiasme positif para pengguna busway yang sangat mengharapkan ditambahnya armada busway agar tidak terjadi penumpukan penumpang pada saat jam-jam sibuk. Penambahan kapasitas penumpang/daya angkut bus sudah selayaknya menjadi prioritas utama dalam upaya memperbaiki armada busway, hingga dicapai keseimbangan antara daya pengangkutan dan kebutuhan pengangkutan (*supply and demand*).

Disamping itu, jikalau memungkinkan ada baiknya dilakukan penambahan lajur dan perubahan sistem operasi seperti halnya Transmilenio, agar tercipta sistem transportasi yang terintegrasi serta berorientasi pada peningkatan pelayanan pada pengguna jasa busway. Keseriusan pun semestinya terlihat pada perawatan dan penjagaan perangkat pendukung program busway agar tetap terjaga dengan baik (*maintenance*).

Hal lain yang tak kalah pentingnya adalah pelaksanaan sanksi hukum (*law enforcement*) baik bagi para pengemudi busway yang tidak mematuhi peraturan lalu lintas maupun bagi pengemudi kendaraan lain yang melintas dilajur khusus bus. Jadi ketegasan dari para aparat kepolisian dan Dinas Perhubungan sangat diperlukan untuk menjaga ketertiban di koridor-koridor yang dilewati busway. Jadi, mempertahankan kualitas perencanaan dan konsistensi dalam implementasi program.
sangat perlu demi menunjang keberhasilan sistem transportasi perkotaan yang berbasiskan BRT.

5. PENUTUP

Keseriusan Pemerintah Provinsi DKI Jakarta dalam pengentasan masalah transportasi perkotaan di Kota Jakarta tetap layak diacungi jempol karena program ini masih akan terus dikembangkan hingga daerah layanan menjadi 15 koridor. Akan tetapi, baiklah kiranya Pemerintah maupun operator TransJakarta mengevaluasi diri dengan belajar kembali pada keberhasilan TransMilenio, serta tetap berusaha dalam mempertahankan visi dan misi yang telah di programkan agar kesuksesan pengentasan masalah transportasi perkotaan dapat dicapai.

Perbaikan sarana bus dengan peningkatan kapasitas/daya angkut, penambahan jumlah armada, peningkatan usaha perawatan terhadap perangkat pendukung busway, perbaikan lajur bus, modifikasi sistem operasi serta penegakan hukum demi menjaga ketertiban sudah selayaknya dilakukan dari sekarang.

Dalam upaya peningkatan kualitas operasi busway TransJakarta, maka dapat dilakukan beberapa hal berikut ini:

1. Perlunya penyesuaian daya angkut bus, melakukan upgrade pada model bus yang digunakan, jika tadinya hanya menggunakan single-bus, maka dapat diganti dengan articulated-bus yang memiliki daya angkut 2 kali lebih besar, dan khususnya beroperasi pada waktu sibuk.
 Melakukan penambahan Armada bagi koridor-koridor sibuk, termasuk juga dengan melakukan pengaturan pengoperasian armada pada waktu-waktu tertentu dengan crossing-vehicle dari koridor yang kurang ramai ke koridor yang lebih ramai.

2. Perubahan Sistem Operasi, bila memungkinkan untuk dilakukan penambahan lajur busway pada beberapa koridor dari 1 lajur menjadi 2 lajur busway per arah maka lebih baik disertai perubahan sistem operasi seperti halnya TransMilenio. Sehingga ada 2 jenis layanan yang beroperasi di jalur busway yaitu: layanan express dan layanan reguler.

3. Penambahan rute-rute bus feeder pada simpul-simpul yang tidak terjangkau koridor TransJakarta dalam upaya peningkatan terhadap layanan pengguna jasa.
DAFTAR PUSTAKA

1. Agung Pujo Wicaksono, 2006: Analisis Time-Headway Bus TransJakarta pada Koridor Blok M–Kota, Tugas Akhir Strata 1, Jurusan Teknik Sipil, FTSP, Universitas Trisakti, Jakarta.

2. Dishub DKI, 2004: Penetapan Pola Transportasi Makro di Propinsi DKI Jakarta, Kep.Gub No.84/2004, Jakarta.

3. url: http://id.wikipedia.org/wiki/TransJakarta.

4. url: http://trans.jakarta.go.id, website resmi TransJakarta.

5. url: http://en.wikipedia.org/wiki/TransMilenio

6. Sustainable Transport: *A Sourcebook for Policy-makers in Developing Cities: Module 3b Bus Rapid Transit*, Deutsche Gesselschaft fur Technische Zusammenarbeit (GTZ).