Pattern of presentation of Graves’ disease and response to radioiodine therapy in South African men

Yetunde Ajoke Onimode1,2,*, David Magbagbeola Dairo3,4, Annare Ellmann5,6

1Nuclear Medicine Unit, Department of Radiation Oncology, College of Medicine, Faculty of Clinical Sciences, University of Ibadan, Oyo State, Nigeria, 2Nuclear Medicine Centre, University College Hospital, Ibadan, Oyo State, Nigeria, 3Department of Epidemiology & Medical Statistics, College of Medicine, Faculty of Public Health, University of Ibadan, Oyo State, Nigeria, 4Department of Epidemiology & Medical Statistics, University College Hospital, Ibadan, Oyo State, Nigeria, 5Division of Nuclear Medicine, Department of Medical Imaging & Clinical Oncology, Tygerberg Hospital, Western Cape Province, South Africa, 6Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape Province, South Africa

*Corresponding author: Yetunde Ajoke Onimode, Nuclear Medicine Unit, Department of Radiation Oncology, College of Medicine, Faculty of Clinical Sciences, University of Ibadan, Oyo State, Nigeria

Key words: Hyperthyroidism, thyroid neoplasms, Graves’ disease, nuclear medicine

Received: 22/08/2017 - Accepted: 14/12/2017 - Published: 18/01/2018

Abstract

Introduction: Typically hyperthyroidism has been more often associated with the female gender. There is a large female predilection (male:female sex ratio up to 1:10), with little documentation in the literature about wholly male hyperthyroid populations. A male incidence of 0.7 per 100,000 has been reported for South African men while the women have a relatively higher rate of 0.02. There is no documented evidence between male and female genders in response to treatment of PH with radioactive iodine (RAI), although operational evidence suggests that hyperthyroidism in males is less amenable to RAI treatment (RAIT) than females. This study therefore proposed to evaluate male hyperthyroid patients with Graves’ disease (GD) treated at our facility, for factors affecting outcome of RAIT. Methods: This is a retrospective analysis of records of hyperthyroid patients who were treated with RAI over a 19-year period at a university teaching hospital, in the Western Cape of South Africa. Results: The overall cure rate was 76.4% for these male patients. Cure was observed as euthyroidism in 31 patients (15.3%) and hypothyroidism in 129 (63.5%). Age, thyroid uptake, severity of hyperthyroidism, previous antithyroid drug (ATD) usage, administered quantity of RAI, ethnicity and patients’ pulse at presentation were not significant in influencing outcome. Conclusion: Factors which have been evaluated as affecting outcome of RAIT were unimportant in these patients. Despite the mainly hyperthyroid presentation of the patients, RAIT was so effective that the main type of cure after therapy was hypothyroidism.

Pan African Medical Journal. 2018; 29:48 doi:10.11604/pamj.2018.29.48.13655

This article is available online at: http://www.panafrican-med-journal.com/content/article/29/48/full/

© Yetunde Ajoke Onimode et al. The Pan African Medical Journal – ISSN 1937-8688. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

Graves' disease (GD) was named after Robert Graves for his publication in 1835 on the features of tachycardia and goitre in a trio of women, along with exophthalmos in a fourth [1]. However, GD was reportedly first noted in eight women as exophthalmic goitre along with palpitations and thyrototoxic symptoms by CH Parry in 1790, but this was only published post-humously much later by his son [2, 3]. A probably underestimated prevalence rate of 1.2% to 9.9% has been reported for autoimmune thyroid disorders in Africa [4, 5]. In South Africa, while thyrotoxicosis (TT) comprised about 66% of all thyroid disease in the country, GD comprised 34% of all thyroid diseases [4]. In Johannesburg, a hospital-based average incidence rate of 8.75 per 100 000 people in women and 0.7 per 100 000 in men was reported for GD in the black population. GD was the most common cause (88%) of thyroid disease with a peak age of incidence between 34 to 54 years. In patients older than 65 years however, toxic multinodular goitre (TMG) prevailed as the most common cause of TT [6]. Typically, hyperthyroidism has more often been associated with the female gender. There is a large female predilection (male: female sex ratio up to 1:10), with little documentation in the literature about wholly male hyperthyroid populations [7-9]. A male incidence of 0.00007 per 100, 000 has been reported for South African men while the women have a relatively higher rate of 0.009 [6]. GD is the most common type of primary hyperthyroidism (PH). It is an autoimmune hyperthyroid disease caused by stimulating antibodies against the thyroid stimulating hormone (TSH) receptor which override normal control of thyroid hormone production, resulting in hyperthyroidism. These antibodies cause abnormal stimulation of the TSH receptor, resulting in hyperthyroidism [8, 10, 11].

Several risk factors have been ascribed to the development of GD including genetic predisposition, pregnancy, stress, and infection [12-14]. GD is diagnosed by the presence of diffuse toxic goiter, biochemical evidence of primary hyperthyroidism, as well as TSH receptor stimulating antibodies [15, 16]. The three main methods of managing GD are surgically (thyroidectomy), radioactive iodine-131 (RAI) therapy, and antithyroid medication (ATD) [17]. RAI gradually destroys thyroid follicles by producing a radiation thyroiditis. Common indications for the use of RAI in GD are ATD failure, and recurrent goitre. RAI therapy (RAIT) for hyperthyroidism has been performed for over 80 years, and continues to gain increased acceptance by managing clinicians [18, 19]. RAIT is non-invasive, physiologically suitable, and usually does not require hospital admission for the quantity required to treat hyperthyroidism. Non-compliance is not an issue since RAIT is administered directly by the Nuclear Medicine (NM) physician. Side effects are minimal at doses for primary hyperthyroidism. Moreover, due to the tracer quantities of iodine present in the capsule, RAI remains suitable even for patients known with iodine allergies [20]. Although there is no perfect cure for PH yet; the ideal therapy has been described as one which should render patients euthyroid, avoid recurrence of hyperthyroidism, prevent hypothyroidism and de novo or recurrent thyroid-associated ophthalmopathy (TAO) [21]. Although hypothyroidism is usually a long-term outcome it may be attained earlier as clinicians give higher quantities of RAI. TAO has been described as worsening after RAI, especially in patients who smoke. This may be mitigated with the use of prophylactic steroids; however Bartalena et al warn that smoking increases the risk of TAO worsening even despite the use of prophylactic steroids [22-24]. There is no documented evidence of differences between male and female genders in response to treatment of PH with RAI, although operational evidence suggests that hyperthyroidism in males is less amenable to RAIT than females. Studies involving wholly male subjects with GD are quite rare, with little evidence in the literature in support of this observation. This study therefore proposed to evaluate male hyperthyroid patients with GD treated at our facility, for factors affecting outcome of RAIT.

Methods

This is a retrospective analysis of records of hyperthyroid patients who were treated with RAI over a 19-year period at a university teaching hospital, in the Western Cape of South Africa. Patients were typically referred for RAIT from other clinicians. RAIT was preceded in all patients by a Tc-99m pertechnetate thyroid scan to confirm diagnosis of PH, exclude differential diagnoses, estimate uptake of the radiotracer (in lieu of the radioiodine uptake test) and to help plan RAIT. The thyroid scans were performed using a pinhole collimator. RAI doses had been determined empirically, with patients receiving relatively higher doses if older, if diagnosed with toxic multinodular goitre (TMG), or having higher uptake of Tc-99m pertechnetate (PU). For instance, relatively higher doses were administered to patients with TMG than GD, and to older patients than to younger patients. For the purpose of this study, cure was defined as hypothyroidism or euthyroidism at 3 months after receiving RAI. The three-month period was selected based on the pattern of patient return to referring clinician soon after RAIT and thus only a limited number of patients had long enough follow-up. Data analysis was performed with SPSS 21.0 [25]. Analysis of variance (ANOVA) was used to assess the relationship between continuous and categorical data: treatment outcome and patient parameters such as age, Tc-99m pertechnetate uptake, quantity of RAI treatment. Patients’ age was stratified in as ≤ 20 years, 21-34 years, 35 to 50 years, and older than 50 years. For categorical analysis, the ages of the patients were further reclassified into those aged 50 years or younger, and those older than 50 years, based on the peak age incidence of 50 years for PH. Estimated thyroid uptake of PU was also grouped as ≤ 4% which is the normal range for patients at our institution, and also as 5-10%, 11-19% and > 20%. The quantity of RAI treatment was also classified as < 250 MBq, 250-399 MBq, and ≥ 400 MBq. Patient ethnicity was classified as Caucasian, mixed origin, Indian, and African; and later reclassified into Caucasian and non-Caucasian for the purpose of categorical data analysis. Comparison of categorical data was performed using contingency tables with the chi-square test. Mean levels of thyroid hormones at presentation and at three-month follow-up were compared using the paired student’s t-test. The level of statistical significance was set at 0.05.

Results

Records of three hundred and sixty-five (365) male patients with primary hyperthyroidism (PH) were available and reviewed. Two hundred and sixty-six (266, 86.4%) had GD. About half (203, 76.3%) had at least three months’ follow-up and were considered for statistical analysis. Baseline characteristics of male patients treated for GD are shown in Table 1, and the age distribution of the patients in Table 2. In Table 3, treatment related data are compared for the entire group, the patients who received a single dose of RAI and the patients in this group who were cured after this single dose. Table 4 compares thyroid function tests at baseline and after treatment for the three different groups and shows marked differences in follow-up results mainly favouring cure post-RAIT. The age of presentation for GD was highest in the third to fifth decades of life (126 patients, respectively). Records of patients’ pulse rates at presentation were available for 138 patients (68%); we observed tachycardia in 49 (35.5%) of these patients. We further observed that more patients presented without a history of...
prior ATD use (116, 57.1% versus 87, 42.9%). Most patients (88.2%) had received a single dose of RAI while 20 (9.9%) had two, three had three (1.5%) and one had four doses of RAI (0.5%). Patients of mixed ethnicity comprised the largest proportion (124, 61.1%), followed by Caucasians (61, 30%) then Africans (11, 5.4%) and one Indian patient (0.5%). Ethnicity was not recorded for 6 patients. Following RAIT, one Indian, nine Africans (9.3%), 46 Caucasians (23.4%) and 101 patients (51.3%) of mixed ethnicity were cured. The overall cure rate was 76.4% for these male patients. Cure was observed as euthyroidism in 31 patients (15.3%) and hypothyroidism in 129 (63.5%). Although there were more patients aged 50 years old and below who were cured at three months than older patients (78.9% versus 78.6%) this was not statistically significant (chi square = 0.004, p = 0.95). As with other parameters such as age, thyroid uptake, severity of hyperthyroidism, previous ATD usage, administered quantity of RAI; neither ethnicity (chi square = 1.21, p = 0.75) nor patients’ pulse at presentation (chi square = 1.35, p = 0.25) were significant in influencing outcome of RAIT.

Discussion

As GD is more commonly encountered in women, there are few studies that have studied GD in male patients. One such study by Blahd and Hays was performed on 241 wholly male patients of heterogeneous ethnic origin with GD [26]. These men were aged 21 to 78 years, with an average age of 44 years. Eighty-five percent of treated patients became euthyroid after a single dose of RAI ranging from 55-770 MBq. This was a long-term study with follow-up for up to 17 months after RAIT. It was observed that African patients required more treatment sessions with RAI than Caucasians (74% vs. 45%), which reflected more severe GD in the former. The quantity of administered RAI did not affect the outcome of RAIT. In another mixed population of 464 male and female African patients (female-to-male ratio of 8.5:1) GD comprised 88% of the patients [6]. The authors observed that male hyperthyroid African patients tended to present at an older age than their female counterparts by five years. Patients with GD had an average age of 39.9 ± 11.3 years in women and 44.7 ± 14.1 in men. The male:female sex ratio was approximately 1:8. In this present study, GD comprised 73% of all male hyperthyroid patients referred for RAIT, which was in keeping with reputed incidence of 50-88% [6, 8]. The average age at presentation of these patients was 43 years (with a range of 16-73 years), also consistent with previously reported age incidence of GD [6].

Within three months of being treated with a range of 216 to 487 MBq of RAI (average of 329 MBq), 76% of these patients had been rendered euthyroid or hypothyroid. Considering that this was a shorter follow-up period than observed in the earlier study by Blahd and Hays, this result would seem to indicate that higher cure rates would have been observed with longer follow-up. The more hyperthyroid presentation of our patients could be explained by the fact that they had all been referred for RAIT, one of the indications for which was hyperthyroidism recalcitrant to ATDs. This contrasted a West African study in which the patients presented largely with ATD-induced euthyroidism/hypothyroidism which also reflected in patients' body-mass index (BMI) [27]. It has also been observed that male patients with GD tended to have a more severe presentation than females [28]. RAIT for hyperthyroidism began in the early 1940s and has been described as an initial application of nuclear medicine [29].

After incorporation into the thyroid, emitted beta radiation causes gradual necrosis of thyroid tissue [30]. Despite its advantages, onset of cure is slower compared to thyroidectomy and thus patient follow-up is necessary to ascertain the time of cure [21]. Follow-up after RAIT requires adequate time to assess efficacy of therapy. In this study, follow-up was limited to 3 months due to the patient attrition. As has been mentioned previously, the practice of patients returning to their referring/managing physicians for further management, and local transportation challenges contributed significantly to attrition. Knowledge of outcome is necessary to determine the benefits of RAIT. Patients who remain hyperthyroid after treatment with RAI at this time (three months) will be closely monitored as they may require re-treatment with RAI. The decision to repeat RAIT is made with persistent hyperthyroidism up to six months to one year post-RAIT; most patients would have been cured by six months [31].

The quest for prediction of outcome of RAIT is a perpetual one. Certain factors have been alluded to as influencing outcome of therapy. These are patients' age and gender, pretherapy with antithyroid medication, thyroid size as well as thyroid-associated ophthalmopathy [27, 28, 32]. Transient hypothyroidism has been observed in a small proportion (11-17%) of hyperthyroid patients within a few months of RAIT [33-35]. Thyroid hormone levels initially decrease and may then spontaneously resolve to euthyroidism or rebound to hyperthyroidism. However, basal TSH levels from 45 mU/L and above after RAIT have been described as excluding patients from this phenomenon with a specificity of 100% [33]. This may serve as a guide for managing clinicians. The cure rate of 76% in this study is similar to that found in a study of 605 male and female patients with GD in the United States [32]. A success rate of 85% was also found in 241 male patients with GD [26]. In another subset of 389 GD patients (from a mixed population of 555 patients with GD, TMG and toxic adenoma), 90% required only one therapy session with RAIT to be cured [36]. A similar result of 90% was obtained in a questionnaire survey of patients with GD and toxic nodular goitre [37]. A smaller study from West Africa has shown a rate of 77% [38]. Thus, there is documented evidence of high success rate following a single dose of RAI for GD. In the previous study on wholly male patients, patients aged 21-78 years received empirical doses as little as 1.5-20.8 mCi as first dose of RAI. The study also affirmed that the dose of RAI delivered had little effect on therapeutic outcome. The most distinctive feature between patients who were cured with a single dose of RAI and those requiring multiple doses was ethnic origin; 74% of patients of African descent needed further therapy, compared to 41% of those other ethnicities. African patients also displayed greater weight loss, protein-bound iodine, RAI uptake, and required a significantly longer time to be cured (euthyroidism and hypothyroidism) [26]. However, in our study, ethnicity was not influential in determining outcome of RAIT.

Conclusion

Graves’ disease in men remains uncommon. In this cohort of hyperthyroid patients, the factors which have been evaluated as affecting outcome of RAIT were unimportant. Despite the mainly hyperthyroid presentation of the patients, RAIT was so effective that the main type of cure after therapy was hypothyroidism.

What is known about this topic

- Radioactive iodine treatment is effective in the management of primary hyperthyroidism including Graves’ disease.
What this study adds

- A wholly male heterogeneous South African study adds further evidence that radioactive iodine-131 therapy is effective in male patients with Graves' disease;
- In this South African population, African patients tended to require multi-treatment to be cured of hyperthyroidism;
- Radioactive iodine-131 therapy still effective despite mainly hyperthyroid presentation of patients.

Competing interests

The authors declare no competing interests.

Authors’ contributions

Concept: Prof A Ellmann. Design: Prof A Ellmann, Dr YA Onimode. Data Collection or Processing: Dr YA Onimode, Dr MD Dairo. Analysis or Interpretation: Dr YA Onimode, Dr MD Dairo. Literature Search: Dr YA Onimode. Writing: Dr YA Onimode, Dr MD Dairo, Prof A Ellmann. All authors have read and agreed to the final version of the manuscript.

Acknowledgments

The authors appreciate the following people for their assistance: Prof. SM Rubow, Prof. DG Nel, Dr. C Meyer, Dr. N Lambwe, Mr. Kleinhaus, Ms. E Beetge, and Ms. C Flus. This study is the result of research from a M.Sc. programme sponsored by the International Atomic Energy Agency (IAEA).

Tables

Table 1: Age at presentation of male hyperthyroid patients treated with RAIT.
Table 2: Baseline characteristics of male patients with GD
Table 3: Comparison of baseline parameters of male GD patients, those who received single therapy and those cured after single therapy
Table 4: Comparison of baseline and post-treatment thyroid function tests among all male GDa patients, those who received single therapy and those cured after single therapy

References

1. Graves R. Newly observed affection of the thyroid gland in females (Clinical lectures). London Medical and Surgical Journal (Renshaw). 1835; 7(2): 516-7.
2. Parry CH. Collections from the unpublished medical writings of the late Caleb Hillier Parry. London: Underwoods. 1825; 1: 2.
3. Legge RI. Parry and Parry’s disease. Res Medica. 1961; 2(4):33-7.
4. Ogbera AO, Kuku SF. Epidemiology of thyroid diseases in Africa. Indian J Endocrinol Metab. 2011 Jul;15(Suppl 2):S82-8. PubMed | Google Scholar
5. Ogbera A, Okosiem O. Thyroid diseases in Africa: epidemiology and management challenges. Thyroid International. 2014;1.
6. Kalk WJ, Kalk J. Incidence and causes of hyperthyroidism in blacks. S Afr Med J. 1989 Feb 04;75(3):114-7. PubMed | Google Scholar
7. Franklyn JA. The management of hyperthyroidism. N Engl J Med. 1994 Jun 16;330(24):1731-8. PubMed | Google Scholar
8. Melmed S, Polonsky K, Larsen PR, Kronenberg H. Williams Textbook of Endocrinology. Philadelphia: Elsevier Saunders. 2011.
9. Werner SC, Ingbar SH, Braverman LE, Utiger RD. Werner and Ingbar's the Thyroid: A Fundamental and Clinical Text. Philadelphia: Lippincott-Raven. 1996. Google Scholar
10. Vanderpump MP. The epidemiology of thyroid disease. Br Med Bull. 2011;99:39-51. PubMed | Google Scholar
11. Davies TF, Ando T, Lin RY, Tomer Y, Latif R. Thyrotropin receptor-associated diseases: from adenomata to Graves disease. J Clin Invest. 2005 Aug;115(8):1972-83. PubMed | Google Scholar
12. Bech K. Yersinia enterocolitica and thyroid autoimmunity. Autoimmunity. 1990;7(4):291-4. PubMed | Google Scholar
13. Wolf MW, Misaki T, Bech K, Tvede M, Silva JE, Ingbar SH. Immunoglobulins of patients recovering from Yersinia enterocolitica infections exhibit Graves' disease-like activity in human thyroid membranes. Thyroid. 1991 Winter;1(4):315-20. PubMed | Google Scholar
14. Davies TF, Greenberg D, Tomer Y. The genetics of the autoimmune thyroid diseases. Annales d'endocrinologie. 2003 Feb;64(1):28-30. PubMed | Google Scholar
15. Prabhakar BS, Bahn RS, Smith TJ. Current perspective on the pathogenesis of Graves' disease and ophthalmopathy. Endocr Rev. 2003 Dec;24(6):802-35. PubMed | Google Scholar
16. Brent GA. Clinical practice: Graves' disease. N Engl J Med. 2008 Jun 12;358(24):2594-605. PubMed | Google Scholar
17. Bartalena L, Marcocci C, Tanda ML, Plantanida E, Lai A, Marino M et al. An update on medical management of Graves' ophthalmopathy. J Endocrinol Invest. 2005 May;28(5):469-78. PubMed | Google Scholar
18. Glinoer D, Hesch D, Lagasse R, Lauber P. The management of hyperthyroidism due to Graves' disease in Europe in 1986: Results of an international survey. Acta endocrinologica Supplementum. 1987;285:3-23. PubMed | Google Scholar
19. Wartofsky L, Glinoer D, Solomon B, Nagataki S, Lagasse R, Nagayama Y et al. Differences and similarities in the diagnosis and treatment of Graves' disease in Europe, Japan, and the United States. Thyroid. 1991;1(2):129-35. PubMed | Google Scholar
20. Silberstein EB, Ryan J. Prevalence of adverse reactions in nuclear medicine: pharmacopeia Committee of the Society of Nuclear Medicine. J Nucl Med. 1996 Jan;37(1):185-92. PubMed | Google Scholar

21. Bartalena L. Diagnosis and management of Graves disease: a global overview. Nat Rev Endocrinol. 2013 Dec;9(12):724-34. PubMed | Google Scholar

22. Acharya SH, Avenell A, Philip S, Burr J, Bevan JS, Abraham P. Radiiodine therapy (RAI) for Graves’ disease (GD) and the effect on ophthalmopathy: a systematic review. Clin Endocrinol (Oxf). 2008 Dec;69(6):943-50. PubMed | Google Scholar

23. Traisk F, Tallstedt L, Abraham-Nordling M, Andersson T, Berg G, Calissendorff J et al. Thyroid-associated ophthalmopathy after treatment for Graves’ hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab. 2009 Oct;94(10):3700-7. PubMed | Google Scholar

24. Bartalena L, Marcocci C, Tanda ML, Manetti L, Dell’Unto E, Bartolomei MP et al. Cigarette smoking and treatment outcomes in Graves ophthalmopathy. Ann Intern Med. 1998 Oct 15;129(8):632-5. PubMed | Google Scholar

25. IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.

26. Blahd WH, Hays MT. Graves’ disease in the male: a review of 241 cases treated with an individually calculated dose of sodium iodide I 131. Arch Intern Med. 1972 Jan;129(1):33-40. PubMed | Google Scholar

27. Onimode YA, Adedapo KS, Dairo MD. Ophthalmic manifestation as adverse factor for cure in radiiodine treatment of Graves’ disease. Thyroid Res Pract. 2017; 14(1):18-21. Google Scholar

28. Allahabadi A, Daykin J, Holder RL, Sheppard MC, Gough SC, Franklyn JA. Age and gender predict the outcome of treatment for Graves’ hyperthyroidism. J Clin Endocrinol Metab. 2000 Mar;85(3):1038-42. PubMed | Google Scholar

29. Sawin CT, Becker DV. Radiiodine and the treatment of hyperthyroidism: the early history. Thyroid. 1997 Apr;7(2):163-76. PubMed | Google Scholar

30. Ross DS. Radioiodine therapy for hyperthyroidism. N Engl J Med. 2011 Feb 10;364(6):542-50. PubMed | Google Scholar

31. Wartofsky L. Radioiodine therapy for Graves’ disease: case selection and restrictions recommended to patients in North America. Thyroid. 1997 Apr;7(2):213-6. PubMed | Google Scholar

32. Nordyke RA, Gilbert FI Jr. Optimal iodine-131 dose for eliminating hyperthyroidism in Graves’ disease. J Nucl Med. 1991 Mar;32(3):411-6. PubMed | Google Scholar

33. Gomez N, Gomez JM, Orti A, Gavalda L, Villabona C, Leyes P et al. Transient hypothyroidism after iodine-131 therapy for Graves’ disease. J Nucl Med. 1995 Sep;36(9):1539-42. PubMed | Google Scholar

34. Sheehan MT, Doi SA. Transient Hypothyroidism after Radioiodine for Graves’ disease: challenges in Interpreting thyroid Function Tests. Clin Med Res. 2016 Mar;14(1):40-5. PubMed | Google Scholar

35. Gomez JM, Virgili N, Soler J, Fernandez M, Montana E. Transient hypothyroidism after iodine-131 treatment of Graves’ disease. Thyroidology. 1989 Dec;1(3):149-52. PubMed | Google Scholar

36. Berg GE, Michanek AM, Holmberg EC, Fink M. Iodine-131 treatment of hyperthyroidism: significance of effective half-life measurements. J Nucl Med. 1996 Feb;37(2):228-32. PubMed | Google Scholar

37. Berg G, Michanek A, Holmberg E, Nyström E. Clinical outcome of radioiodine treatment of hyperthyroidism: a follow-up study. Journal of Internal Medicine. 1996;239(2):165-71. PubMed | Google Scholar

38. Onimode YA, Ankrah A, Adedapo KS. Outcome of Radioiodine Therapy in a West African Population. World J Nucl Med. 2016 Jan-Apr;15(1):24-9. PubMed | Google Scholar

Table 1: Age at presentation of male hyperthyroid patients treated with RAITa

Age group (years)	Number of patients (frequency (%))	Cumulative total (n)
< 20	7 (3.4)	
21-34	57 (28.1)	64
35-50	69 (34)	133
> 50	70 (34.5)	203

RAITa = radioactive iodine therapy
Table 2: Baseline characteristics of male patients with GD

Parameter	Mean	Median	Mode	Minimum	Maximum
AGE	43.58	44.25	35	16	73
PULSE	93.79	90	80	56	160
PTU (%)	16.67	14.20	10	1	63
T4	70.09	67.10	105	12	155
T3	25.79	26.90	31	4	44
TSH	0.06	0.04	0	0	2
RAIT	329.23	314.00	300	216	487

GD = Graves’ disease, PTU = pertechnetate thyroid uptake, FT4 = free thyroxine, FT3 = free triiodothyronine, TSH = thyroid stimulating hormone, RAIT = radioactive iodine therapy, SD = standard deviation

Table 3: Comparison of baseline parameters of male GD patients, those who received single therapy and those cured after single therapy

Parameter	All GD patients (n = 203)	GD patients administered single dose RAIT (n = 179)	GD patients cured after single RAIT (n = 152)
Age at presentation	43.58±13.23	43.99±13.25	44.1±13.25
Pulse at presentation (mean ± SD)	93.79 ± 19.79	92.68 ± 18.76	92.79 ± 19.70
PTU (%)	16.67±10.72	15.80±9.97	15.6±9.57
Antithyroid pre-treatment	Yes	87 (42.86)	75 (41.90)
	No	116 (57.14)	104 (58.10)
Number of therapies			
Single-therapy	179 (88.18)	179 (100)	152 (100)
Multiple-therapy	24 (11.82)	0	0
First RAIT (mean ± SD)	329.23±69.15	328.10±69.17	326.98±68.46
Category of RAIT administered			
<250 MBq	25 (12.32)	23 (12.85)	18 (11.84)
250-399 MBq	146 (71.92)	129 (72.07)	111 (73.03)
≥400 MBq	32 (15.76)	27 (15.08)	23 (15.13)
Cure			
Yes (euthyroid)	25 (13.97)	25 (16.45)	
Yes (hypothyroid)	127 (70.95)	127 (83.55)	
No	27 (15.08)	27 (15.08)	

GD = Graves’ disease, RAIT = radioactive iodine therapy, SD = standard deviation, PTU = estimated Tc-99m pertechnetate uptake

Table 4: Comparison of baseline and post-treatment thyroid function tests among all male GD patients, those who received single therapy and those cured after single therapy

Variable	TSH	FT4	FT3			
Median (range)	Baseline	3 months	3 months	Baseline	3 months	
All GD	0.04	11.43	2.9	5.8	26.9	2.9
(0-2)	(0-150)	(0-105)	(0-130)	(4-44)	(0-105)	
GD with single treatment RAI	0.04	20.02	2.7	5.25	26.6	2.7
(0-2)	(0-150)	(0-105)	(0-81)	(4-44)	(0-105)	
GD with single treatment RAI and cured	0.04	26.32	2.40	4.6	27.35	2.40
(0-2)	(0-150)	(0-10)	(0-26)	(4-44)	(0-10)	

GD = Graves’ disease, TSH = thyroid stimulating hormone, FT4 = free thyroxine, FT3 = free triiodothyronine, RAI = radioactive iodine