Supernova-blast waves in wind-blown bubbles, turbulent, and power-law ambient media

S. Haid1*, S. Walch1, T. Naab2, D. Seifried1, J. Mackey1,3 and A. Gatto2

1I. Physikalisches Institut, Universität zu Köln, Zülpicher-Strasse 77, 50937 Cologne, Germany
2Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching, Germany
3Dublin Institute for Advanced Studies, School of Cosmic Physics, 31 Fitzwilliam Place, Dublin 2, Ireland

*E-mail: haid@ph1.uni-koeln.de

\section*{ABSTRACT}
Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of \(0.1 \leq n_0 [\text{cm}^{-3}] \leq 100\)) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers \(M \) from 1 \(-100\)) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with \(n(r) \sim r^{-2}\) (for \(n(r) > n_{\text{floor}}\)) the amount of momentum injection is solely regulated by the background density \(n_{\text{floor}}\) and compares to \(n_{\text{uni}} = n_{\text{floor}}\). However, in turbulent ambient media with log-normal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as

\begin{equation}
\frac{p_{\text{turb}}}{p_0} = 23.07 \left(\frac{n_{0,\text{turb}}}{1 \text{ cm}^{-3}}\right)^{-0.12} + 0.82(\ln(1 + b^2 M^2))^{1.49} \left(\frac{n_{0,\text{turb}}}{1 \text{ cm}^{-3}}\right)^{-1.6}.
\end{equation}

The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.

\textbf{Key words:} ISM: Supernova remnants, shock wave, turbulence

\section*{1 INTRODUCTION}
Supernovae (SN) play a fundamental role in setting the properties of the multi-phase interstellar medium (ISM) (e.g. Salpeter 1955; de Avillez & Breitschwerdt 2004; Joung \\& Mac Low 2006; Kim et al. 2013; Walch et al. 2013). They not only enrich the ISM with metals but also inject energy and momentum leading to the dispersal of molecular clouds (MC), the driving of turbulent motions as well as galactic outflows (e.g. Mac Low \\& Klessen 2004; Dib et al. 2006; Gent et al. 2013; Girichidis et al. 2013). Therefore, SN explosions may locally (and globally) control star formation \cite{Agertz2013, Hennebelle2014, Iffrig2014, Walch2014}. Spatially and temporally correlated SNe can interact and drive the expansion of coherent shells, often termed as 'super-bubbles' \cite{McCray1987, MacLow1988, Tenorio-Tagle1987, Sharma2014}. Large-scale super-shells \cite{CarinaFlare, Palouš2009, Dawson2011} may sweep up enough mass to create new MCs, which in turn could spawn new stars and star clusters \cite{Elmegreen1997, Wünsch2010, Ntormousi2011}. On galactic scales SNe might drive fountain flows or even galactic winds \cite{Larson1974, MacLow1999, Ostriker2014, DallaVecchia2012, Hill2012, Creasey2013, Girichidis2013}. Therefore, SNe might play an important role for regulating the efficiency of galaxy formation and determine galaxy morphology \cite{Dekel1986, Goldbaum2011}. © 2015 RAS
When a massive star explodes as a core-collapse SN, gas (typically $\sim 2 - 5 \, M_\odot$) is ejected with supersonic velocities ($v_\infty \sim 6000 - 7000 \, \text{km} \, \text{s}^{-1}$), and drives a blast wave into the ISM. The evolution of the blast wave can be characterised by the wave evolution - are unresolved in dense environments, leading to discrepancies between the theoretical expectations and the simulated reality (see e.g. Schaye et al. 2013).

In general, this long-known ‘over-cooling problem’ appears when the main momentum creating stages, the Sedov-Taylor and the pressure driven snowplough phase, stay unresolved and become artificially short (Balogh et al. 2001; Stinson et al. 2004; Creasey et al. 2011; Tomassetti et al. 2013). The thermal energy is radiated away too quickly and the momentum input is unresolved as too much mass is accelerated to too low velocities $\langle v \rangle_{\text{SNR}} \lesssim 100 \, \text{km} \, \text{s}^{-1}$, in particular if the time step is not reduced accordingly (Dalla Vecchia & Schaye 2012; Kim & Ostriker 2014). The properties of the hot phase within the SNR are also predicted inaccurately and the effect on the global filling factor of the ISM is then biased (McKee & Ostriker 1977; Agertz et al. 2013; Keller et al. 2015). A plausible way to overcome these inaccuracies might be the construction of sub-resolution feedback models with information extracted from small-scale resolved numerical simulations of SNRs. However, this computationally expensive process has to cover all the complexity of SNRs and their surroundings (Martizzi et al. 2014; Thompson & Krumholz 2014; Walch & Naab 2013; Kim & Ostriker 2015).

To better understand the evolution of blast waves in the complex ISM we present an efficient 1-dimensional model, based on the thin-shell approach (Ostriker & McKee 1988), to compute the momentum input from SNe for uniform (see Section 3.1), radial power-law (see Section 3.2), wind-blown bubble (see Section 5) or turbulent environmental density distributions (see Section 6.1). In addition to previous studies (e.g. Ciotti et al. 1988; Ostriker & McKee 1988) we combine the computation of all blast wave phases and their transitions in a single code using tabulated cooling functions. This way we can cover a wide range of ambient medium parameters. The model is easily customised to different SN scenarios as shown in case of a pre-existing wind bubble or a turbulent environment. We test the code results against recent, highly resolved numerical simulations (Martizzi et al. 2014; Thompson & Krumholz 2014; Walch & Naab 2013; Kim & Ostriker 2015) and show that we are able to achieve comparable results at almost negligible computational costs.

The paper is structured as follows. In Section 2 we discuss the set of equations which govern the evolution of the SNR and the momentum transfer to the ISM. Section 3 introduces the model which forms the basis for this work. We discuss cases (i) and case (ii) in Section 4. In Section 5 we use show the momentum input in a wind-blown bubble. In Section 6 we extend our model to apply it to a turbulent environment and conclude in Section 7.
time evolution t of the shock radius r_s,

$$r_s \propto t^\eta,$$

where t is the time after the explosion and η is the expansion parameter (Klein et al. 1994; Cohen et al. 1998; Kushnir & Waxman 2014). It can be separated into five different phases (see Fig. 1). McKee & Ostriker 1977; Cioffi et al. 1988; Ostriker & McKee 1988; Petruk 2006; Li et al. 2015).

- **Pre-Sedov-Taylor (PST) phase**: After the initial explosion the density profile of the ejected gas can be approximated with a steep power-law. In this case the shocked ambient medium decelerates the ejecta. The expansion parameter η in this ejecta-dominated phase is smaller than one (Chevalier 1982). As both shocks merge, the SN ejecta move radially outwards with constant velocity v_{eject} and sweep up the ambient ISM until the swept-up mass is comparable to the ejecta mass M_{ej}. Part of the kinetic energy of the SN ejecta is converted into heat while the shock wave radius evolves as $r_s \propto t^\eta$.

- **Sedov-Taylor (ST) phase**: At the end of the PST phase about 72 per cent of the initial SN energy is converted into thermal energy and the energy conserving ST phase starts at $t = t_{\text{ST}}$ (Taylor 1950; Sedov 1958; McKee & Ostriker 1977),

$$t_{\text{ST}} = r_s^{5/2} \left(\frac{\xi E_{\text{ej}}}{\rho_0} \right)^{-1/5},$$

with the factor $\xi \sim 2$ and the shock radius $r_{s,\text{ST}}$, which can be computed as

$$r_{s,\text{ST}} = \left(\frac{3 M_{\text{ej}}}{4 \pi \rho_0} \right)^{1/3}.$$

During the energy conserving ST phase the shock evolves adiabatically with $r_s \propto t^{2/5}$ and the radial momentum of the swept-up mass increases.

- **Transition (TR) Phase**: The energy conserving phase ends when the rate-of-change in temperature due to adiabatic expansion is comparable to radiative losses (Ostriker & McKee 1988; Petruk 2006). In this TR phase, starting at $t = t_{\text{TR}}$, the post-shock cooling time t_{cool} becomes comparable to the age of the remnant (see Section 2.1.2),

$$t_{\text{TR}} \sim t_{\text{cool}}.$$

The radial momentum can still significantly increase. As the shock front decelerates, the faster post-shock gas compresses the shocked material and forms a thin, dense shell at the end of the TR phase (Ostriker & McKee 1988; Cioffi et al. 1988).

- **Pressure driven snowplough (PDS) phase**: At the beginning of the PDS phase, at $t = t_{\text{PDS}}$, a dense shell has formed behind the radiative shock (Falle 1973). Typically t_{PDS} is a few times t_{TR} (see Section 2.1.2). The further evolution is dominated by radiative transfer. The homogeneous pressure inside the bubble drives the expansion into the low density environment (Cox 1972; Gaffet 1983; Cioffi et al. 1988). The shock velocity and further momentum input to the ISM decrease.

- **Momentum-conserving snowplough (MCS) phase**: The MCS phase starts at $t = t_{\text{MCS}}$ once the excess thermal energy is radiated away. The momentum of the shell cannot increase any more. Momentum is conserved and inertia becomes the main driver of the further expansion (Cioffi et al. 1988). We therefore stop and compare our models at t_{MCS}.

2.1 The Ambient Medium

The structure and the mean density of the ambient medium have a significant influence on the evolution of a blast wave. Here, we consider the general case of a radial power-law density profile (Ostriker & McKee 1988)

$$\rho(r) = \rho_0 Br^{-\omega},$$

where ρ_0 is the central density, ω is the power-law index and B can be used to normalize the radius (Truelove & McKee 1994).

The mass density is related to the number density, n, by $\rho = n \mu m_p$, with m_p being the proton mass and the mean molecular weight μ (ionized gas with $\mu_i = 0.61$; atomic gas with $\mu_a = 1.27$).

The total mass of the SNR, M, is

$$M(r) = M_{\text{ej}} + \frac{4}{3 - \omega} \pi \rho_0 Br^{3-\omega}$$

for $\omega \neq 3$, where M_{ej} is the mass of the SN ejecta. The second term corresponds to the swept-up mass. As the PST phase is dominated by the mass of the ejecta, we assume a constant density, ρ_0 until t_{ST}. In the following we describe in detail our numerical model considering the different phases starting with the ST phase.

2.1.1 Sedov-Taylor phase

At the beginning of the adiabatic ST phase a certain percentage of the initial kinetic energy has thermalized (ap-
proximately 75 per cent in a homogeneous medium). The fraction of kinetic to thermal energy stays constant and the total energy is conserved (Chevalier 1977; Cioffi et al. 1988).

At \(r_{S,ST} \) (Eq. 3) the adiabatic expansion begins with the radial evolution of the shock, described by the Sedov solution (Sedov 1946; Newman 1981; Ostriker & McKee 1988; Klein et al. 1994; Truelove & McKee 1999; Breitschwerdt et al. 2012).

\[
\frac{d}{dt}(r_s) = \left(\frac{\xi E}{\rho_0 B} \right)^{\frac{1}{3}} t^{\frac{1}{3}}
\]

with \(\xi = (5 - \omega)(10 - 3\omega)/8\pi \) and the expansion parameter \(\eta = 2/(5 - \omega) \).

The expansion speed can be derived by considering the time derivatives of the shock radius \(r_s \) in the ST stage (Cavaliere & Messina 1972):

\[
\frac{d}{dt}(r_s) = v = \frac{2}{5 - \omega} \frac{r_s}{t}.
\]

Here \(v \) is the shock velocity. The post-shock velocity \(v' \) is

\[
v' = 3/4v.
\]

2.1.2 Transition phase

Between the ST and PDS phases, there is an intermediate period of non-self-similar behaviour which, therefore, cannot be described by a power-law solution as in Eq. 1. We treat the TR phase independently, which allows a more realistic modelling of the SNR (e.g. Cioffi et al. 1988; Petruk 2006). The description of the ST phase as energy conserving is accurate as long as cooling plays a minor role and the energy loss due to radiation is negligible.

Following Blondin et al. (1998) the TR phase is defined as the time at which the cooling rate is comparable to the age of the remnant. We obtain similar results when the rate of change in temperature of the SNR, \(T \), due to the adiabatic expansion becomes comparable to the radiative losses (Petruk 2006):

\[
\frac{d}{dt}(T)_{\text{exp}} \sim \frac{d}{dt}(T)_{\text{cool}}.
\]

During the TR phase the post-shock gas velocity approaches the shock speed (Cioffi et al. 1988),

\[
v' = K_{01} \nu_1 v,
\]

with the velocity moment, \(K_{01} \), and the fraction \(\nu_1 \) of the shock velocity \(v \) (see Eq. 5).

The velocity moment, \(K_{01} \), is unity in self-similar blast waves but changes whenever this condition is violated, thus at \(t_{\text{TR}} \), \(K_{01,\text{TR}} = 0.857 \) (Cioffi et al. 1988, but see also Ostriker & McKee 1988, for more details).

We follow Cioffi et al. (1988) and assume that the TR phase lasts until

\[
t_{\text{TR}}c = t_{\text{PDS}}
\]

where \(c = (1+\eta)/(\eta/1+\eta)^2 \) with \(\eta = (4(3-\omega)-2\omega)/(5-\omega) \). We follow the approximation by Petruk (2006) and assume \(c = 1.83 \) for the homogeneous medium and \(c = 1 \) for \(\omega = 2 \). During this period, \(\nu_1 \) changes as

\[
\nu_1 = \frac{3}{4} + 0.25 \left(\frac{T_{\text{TR}}}{T_{01}} \right)^{2.1}.
\]

As radiative cooling becomes important, \(\nu_1 \) increases from the ST value of 3/4 to a value of one at \(t_{\text{PDS}} \). A thin, dense, radiatively cooling shell forms (Gaffet 1983; Ostriker & McKee 1988; Cioffi et al. 1988; Petruk 2006).

The large thermal pressure gradient across the shock drives the expansion under the influence of radiative cooling (Cioffi et al. 1988). We use a set of coupled ordinary differential equations for the further evolution of the SNR starting at \(t_{\text{TR}} \), throughout the PDS phase until \(t_{\text{MCS}} \). The time evolution of mean momentum and shock radius then read (see Ostriker & McKee 1988, their Eq. (2.9) and appendix D):

\[
\frac{d}{dt}(\bar{p}) = \frac{4(3-\omega)\pi}{3} K_{\text{pres}} \bar{P}_{\text{th}} r_s^2
\]

\[
\frac{d}{dt}(r_s) = \frac{3}{4r_s^3} \pi \bar{P}_{\text{th}} K_{01} \nu_1 (\bar{p})
\]

where \(K_{\text{pres}} \) is the pressure moment and \(\bar{P}_{\text{th}} \) is the mean thermal pressure within the SNR,

\[
\bar{P}_{\text{th}} = \frac{E_{\text{th}}}{2\pi r_s^3}.
\]

which depends on the thermal energy \(E_{\text{th}} \) of the SNR changing as

\[
\frac{d}{dt}(E_{\text{th}}) = -VA(T)\bar{n}^2.
\]

\(\Lambda \) is the cooling function (see Section 3) in a volume \(V \) with a mean number density \(\bar{n} \) and a mean temperature \(T \). We consider two volumes, namely that of the shock and the interior. Note that Eq. 17 is used throughout the entire evolution of the SN blast wave from \(t_{\text{TR}} \) until the end (Ostriker & McKee 1988; Bisnovatyi-Kogan & Silich 1995). During the ST phase almost no thermal energy is radiated away. Internal structures have minor influence compared to the shock and are therefore neglected.

The pressure moment, \(K_{\text{pres}} \), can be interpreted as the weighted mean interior pressure of the SNR (see Ostriker & McKee 1988, Eq. D10a for further details). At the beginning of the TR phase in our SN-model \(K_{\text{pres,TR}} = 0.932 \) and approaches \(K_{\text{pres,PDS}} = 1 \) (Cioffi et al. 1988; Ostriker & McKee 1988; Bisnovatyi-Kogan & Silich 1995).

2.1.3 Pressure driven snowplough phase

The PDS is the first fully radiative phase. It starts with the formation of a thin shocked shell, which contains most of the mass of the SNR and encloses a roughly isobaric and hot cavity (Blondin et al. 1998). Since we restrict ourselves to one dimension, we neglect instabilities or deviations from spherical geometry (Franco et al. 1994).

The evolution during the PDS is also described by the equations introduced in Section 2.1.2 with \(K_{\text{pres}} = K_{\text{th}} = \nu_1 = 1 \). With a dense, uniform, thin shell we can model the
flow using a self-similar solution and Eq. (1) is valid. As we neglect the influence of the inner parts, the expansion parameter η in this case is \cite{OstrikerMcKee1988, Gaffet1983},

$$\eta = \frac{2}{2 + 3\gamma - \omega}, \quad (18)$$

where $\gamma = 5/3$ is the adiabatic index of a mono-atomic gas.

During the PDS almost all thermal energy is radiated away. The thermal pressure inside the cavity becomes equal to the ambient thermal pressure at t_{MCS}. At this point we stop the calculation of the PDS phase and assume that afterwards the radial momentum stays constant.

3 THE NUMERICAL SETUP

We study the evolution of a single SNR from the ST to the MCS phase by solving the set of ODEs (Eq. 8 and 18), together with Eq. (17), based on the thin-shell approach \cite{Cioffi1988, OstrikerMcKee1988}, described in Section 2.1 via a fifth-order Runge-Kutta-Fehlberg integration scheme \cite{Butcher1996} with adaptive step-sizing. This spherically-symmetric, 1-dimensional SN model assumes no instabilities in the shell, no shell perforation or internal structures. An advantage of the presented SN model is, that we can easily and efficiently calculate the evolution of SNe in a large number of different ambient media.

We assume solar metallicity and we model radiative cooling for $10^4 K < T < 10^8 K$ using the cooling function by Sutherland et al. \cite{1993ApJ...407..525S}. For $T < 10^4 K$ a cooling function by Kovama & Inutsuka \cite{2000ApJS..126...85K, 2002ApJ...574..810K} is used with

$$\Lambda = \Gamma \left[10^7 \exp \left(-\frac{1.184 \times 10^5}{T + 1000} \right) + 1.4 \times 10^{-2} \sqrt{T} \exp \left(-\frac{92}{T} \right) \right] \text{erg cm}^3 \text{s}^{-1} \quad (19)$$

with a fixed heating rate Γ \cite{2002ApJ...574..810K, 2013ApJ...769..108W}.

$$\Gamma = 2 \times 10^{-26} \text{erg s}^{-1}. \quad (20)$$

The SN is initialised at the beginning of the ST phase by adding 10^{51} erg of total energy E_{SN} \cite{OstrikerMcKee1988} and $2 M_\odot$ \cite{2011ApJ...740...86D} of ejecta mass at the initial ST radius, Eq. (8), corresponding to an initial momentum input of $p_0 = 14181 M_\odot \text{km s}^{-1}$.

We run simulations with different combinations of ambient medium densities and density distributions (Eq. 9), see Table 1. The initial number densities for a uniform distribution $n_{0,\text{uni}}$, and the central density of the power-law distribution $n_{0,\text{power}}$, vary in a range of $0.1 - 100$ cm$^{-3}$ ($n_{0,\text{uni}} = n_{0,\text{power}} = 0.1, 0.3, 1, 3, 10, 30, 100$ cm$^{-3}$).

At radii smaller than R_{ST} we assume the density to be homogeneous as the mass of the ejecta dominates the first phase. At larger radii we consider different density distributions (constant, power-law, turbulent) in the ambient medium. For the power-law distribution we assume a density floor, n_{floor}:

$$n_{\text{power}}(r) = \begin{cases} n_{0,\text{power}} & \text{for } r \leq R_{\text{ST}} \\ n_{0,\text{power}} \left(\frac{r}{R_{\text{ST}}} \right)^{-\omega} & \text{for } r > R_{\text{ST}} \\ n_{\text{floor}} & \text{for } r > R_{\text{ST}} \text{ and } n_{\text{power}}(r) \geq n_{\text{floor}} \\ \text{and } n_{\text{power}}(r) < n_{\text{floor}}. \end{cases} \quad (21)$$

Without this lower limit the mean of the ambient density would drop to non-physical values and the sound speed of the ambient medium with a fixed pressure would increase to infinity \cite{Chevalier1974, CavalieriMessina1974, Greif2011, HennebelleFalgarone2012}.

A self-consistent treatment of the chemical evolution is not included and it is not possible to consider multiple ionization states of the ambient medium. For simplicity, we choose a neutral environment with solar abundances with $\mu_i = 1.27$. Some studies (e.g.: Cioffi et al. 1988; Petruk 2000) consider the SN environment to be ionized. To compare with these results we rerun the simulations in uniform media and for a turbulent example with $\mu_i = 0.61$ (see Section 4.3 and Section 6.3).

A simulation is terminated at the beginning of the MCS phase, t_{MCS} (see Section 2.3), after which the momentum is constant. For all environments we assume an universal ambient pressure, because $P \propto n T \sim \text{const}$ \cite{McKeeOstriker1977}. All parameters of the model and the performed simulations are summarized in Table 1.

The computational effort to run a single SN depends on the number of time steps. The initial step-size is chosen to be a fraction of the ST time, which depends on the density of the ambient medium. During the computation we use adaptive step-size control. We compare the local, relative error of the radius and the thermal energy obtained from the applied integration scheme with a global tolerance of 10^{-6} at densities of $n_{0,\text{uni}} \leq 50$ cm$^{-3}$ and 10^{-4} for denser environments. In case the local error exceeds the global tolerance the time-step is adjusted. On a single core (clock speed 3.40 GHz) a simulations needs between 4×10^3 and 10×10^4 time-steps, which corresponds to a CPU time of 1.5 s to 6 s.

4 BLASTWAVE EVOLUTION IN IDEALISED ENVIRONMENTS

4.1 Homogeneous density distribution

We apply our model to follow the evolution of blast waves for a single SN in homogeneous media with densities of $n_{0,\text{uni}} = 0.1 - 100$ cm$^{-3}$, covering the more tenuous ISM up to average densities of MCs. We assume both an ionized with μ_i and a neutral ambient medium with μ_i.

The transition times t_{TR} and t_{PDS} (see Fig. 2) of SNe in homogeneous media, obtained in this work, can be fitted with a power-law which depend on the number density $n_{0,\text{uni}}$ and mean molecular weight μ (see Section 6.1):

$$t_{\text{TR},\mu} = 4.15 (n_{0,\text{uni}}/1 \text{ cm}^{-3})^{-0.53} \times 10^3 \text{ yr}$$

$$t_{\text{PDS},\mu} = 7.80 (n_{0,\text{uni}}/1 \text{ cm}^{-3})^{-0.53} \times 10^4 \text{ yr}$$

© 2015 RAS, MNRAS 000, 000–000
and 5 we give the turbulent Mach number and number of cones used to simulate the turbulent sub-structure of the ambient medium. Column 2 fixes the density structure of the ambient medium, and column 3 defines the density profile. In column 4 and 5 we give the turbulent Mach number and number of cones used to simulate the turbulent sub-structure of the ambient medium (see section 6). The last column lists the corresponding figures in this paper.

Table 1. *Top section:* Initial SN properties for all simulations. *Bottom section:* List of performed simulations. Column 1 gives the considered property, column 2 fixes the density structure of the ambient medium, and column 3 defines the density profile. In column 4 and 5 we give the turbulent Mach number and number of cones used to simulate the turbulent sub-structure of the ambient medium.

Property	Structure	Density	Turbulence	Figures	
Uniform media \((\mu_+, \mu_i)\)	Homogeneous	\(n_{0,\text{uni}} = 0.1 - 100 \text{ cm}^{-3}\)	—	—	8
Media with density gradient	Power-law	\(n_{0,\text{power}} = 0.1 - 100 \text{ cm}^{-3}\)	—	—	9
Different surrounding media	Power-law	\(n_{0,\text{power}} = 1 \text{ cm}^{-3}\)	—	—	10
Different initial densities	Wind-blown bubble	\(n_{0,\text{uni}} = 1 - 1000 \text{ cm}^{-3}\)	—	—	11
Different initial temperatures	Wind-blown bubble	\(n_{0,\text{uni}} = 1 \text{ cm}^{-3}\)	—	—	12
Example \((\mu_+, \mu_i)\)	Turbulent	\(n_{0,\text{turb}} = 1 \text{ cm}^{-3}\)	\(M = 10\)	\(N_{\text{cones}} = 12\)	13
Density variation	Turbulent	\(n_{0,\text{turb}} = 1 \text{ cm}^{-3}\)	\(M = 10\)	\(N_{\text{cones}} = 12 - 384\)	14 (top)
Momentum variation	Turbulent	\(n_{0,\text{turb}} = 1 \text{ cm}^{-3}\)	\(M = 10\)	\(N_{\text{cones}} = 12 - 384\)	15 (bottom)
Momentum at \(t_{\text{MCS}}\)	Turbulent	\(n_{0,\text{turb}} = 0.1 - 100 \text{ cm}^{-3}\)	\(M = 0.1 - 100\)	\(N_{\text{cones}} = 192\)	16
Mass-velocity distribution	Turbulent	\(n_{0,\text{turb}} = 1, 100 \text{ cm}^{-3}\)	\(M = 1, 10\)	\(N_{\text{cones}} = 384\)	17

Figure 2. Model predictions for the end of the ST phase \(t_{\text{PDS}}\) (black triangles) and the beginning of the pressure driven snow-plough phase \(t_{\text{PDS}}\) (black circles) in ambient media with different number densities \(n_{0,\text{uni}}\) and different states of ionization of the ambient gas. Full symbols show the case of a neutral ambient medium with solar abundances (\(\mu_+, \mu_i\), open symbols show the case of a fully ionized ambient medium with \(\mu_i\). Our results are consistent with previous works by Blondin et al. (1998, here BW98) and Petruk (2006, here P06) but differ significantly from Cioffi et al. (1988, here CO88) and Franco et al. (1994, here FM94) for several reasons (see details in the text).

\[
t_{\text{TR}, \mu_i} = 3.18 \left(n_{0,\text{uni}} / 1 \text{ cm}^{-3} \right)^{-0.54} \times 10^4 \text{ yr}
\]

\[
t_{\text{PDS}, \mu_i} = 5.80 \left(n_{0,\text{uni}} / 1 \text{ cm}^{-3} \right)^{-0.54} \times 10^4 \text{ yr}
\]

The definitions for the respective transition times are not unique. Different numerical setups (e.g. Petruk 2006), cooling functions (e.g. Cioffi et al. 1988) and assumptions for the ambient medium (mean molecular weight in ionized, \(\mu_+, \mu_i\), or neutral, \(\mu_+, \mu_i\), media) can lead to different results. Fig. 2 compares \(t_{\text{TR}}\) and \(t_{\text{PDS}}\) from previous works (Cioffi et al. 1988, Franco et al. 1994, Blondin et al. 1998, Petruk 2006) to values obtained from this work (black triangles, black circles) in uniform ambient media with number densities between 0.1 cm\(^{-3}\) and 100 cm\(^{-3}\).

Our results are consistent with previous studies by Blondin et al. (1998) and Petruk (2006) assuming the ambient medium to be ionized (open symbols). The differences in low density environments are less than 10 per cent. Only at \(n_{0,\text{uni}} = 100 \text{ cm}^{-3}\) the values differ by \(\sim 40\) per cent. In models with a neutral medium (full symbols), \(t_{\text{TR}}\) and \(t_{\text{PDS}}\) are significantly shifted to later times. Cioffi et al. (1988) and Franco et al. (1994) use different setups and show no agreement with the findings of all other authors. For a detailed comparison of important times in the evolution of SNRs we refer to Kim & Ostriker (2013) and Petruk (2006).

In Fig. 3 (top left panel) we show the evolution of the swept-up mass of the SNR. Initially it is dominated by the ejecta mass. The swept-up mass increases rapidly during the ST phase. The final swept-up mass, \(M_{\text{swept}}\), is \(\sim 1290\) [660] \(M_\odot\) in dense environments increasing up to about 8870 [4590] \(M_\odot\) in an ambient medium with \(n_{0,\text{uni}} = 0.1 \text{ cm}^{-3}\). This significant increase is a consequence of a 30 times longer evolution in lower-density environments. It will be discussed in more detail in Section 6.4.

In Fig. 3 (top right panel) we show the evolution of the thermal energy starting from the ST phase (71.7 per cent of the initial SN energy) until the onset of the MCS phase (end of lines). Here and in all following plots, the beginning of the TR phase is indicated by triangles and the onset of the PDS phase by circles. Filled symbols and thick solid lines...
The time evolution of the shell radius is shown in the bottom left panel of Fig. 3. For all densities the radius evolves as \(r \propto t^{\eta} \) with \(\eta = 2/5 \) in the ST phase. At \(t = t_{\text{TR}} \), \(\eta \) shifts towards \(2/7 \) and the SNR enters the PDS stage. For the highest density the shell expands to a radius of 3.4 \(\times 10^{3} \) pc during the ST phase. At \(t = t_{\text{TR}} \), the momentum evolves as \(p \propto t^{\eta} \) with \(\eta = 2/5 \) in the ST phase. At \(t = t_{\text{TR}} \), the momentum evolves as \(p \propto t^{\eta} \) with \(\eta = 2/7 \) during \(t < t_{\text{TR}} \) and \(2/7 \) during \(t > t_{\text{PDS}} \). Bottom right panel: Evolution of the momentum input normalized to the initial SN momentum \(p_{0} \).

The time evolution of the shell radius is shown in the bottom left panel of Fig. 3. For all densities the radius evolves as \(r \propto t^{\eta} \) with \(\eta = 2/5 \) in the ST phase. At \(t = t_{\text{TR}} \), \(\eta \) shifts towards \(2/7 \) and the SNR enters the PDS stage. For the highest density the shell expands to a radius of 3.4 \(\times 10^{3} \) pc during the ST and to 4.2 \(\times 10^{3} \) pc in the PDS phase. For the lowest density the \(\text{TR} \) radius is about 30 \(\times 10^{2} \) pc expanding to 30 \(\times 10^{2} \) pc in the transition phase and finally reaches 30 \(\times 10^{2} \) pc at the end of the PDS. The final expansion radius significantly decreases from low to high density environments, because the cooling of the shell occurs earlier and therefore the interior pressure drops more rapidly in denser media.

In the bottom right panel of Fig. 3 we show the corresponding evolution of the radial shell momentum. During the ST phase the SN momentum increases significantly from \(p_{0} \approx 1.4 \times 10^{3} \text{M}_{\odot} \text{km s}^{-1} \) by a factor of \(\sim 8 \) [6] for \(n_{0,\text{uni}} = 100 \text{ cm}^{-3} \) and up to a factor 20 [14] at \(n_{0,\text{uni}} = 0.1 \text{ cm}^{-3} \). The following transition phase further increases the momentum by \(\sim 40 \) per cent with respect to the ST values. At the beginning of the MCS phase the shell
momentum varies between 13.4 [9.3] p$_0$ for the highest density and 30.9 [21.3] p$_0$ for an ambient density of 0.1 cm$^{-3}$. However the momentum increase during the PDS, is almost negligible because the pressure inside the SNR is lowered to values similar to the ambient pressure (see Section 4). Within a high density environment ($n_{0,uni} = 100$ cm$^{-3}$) the increase is only 0.9 p$_0$. The final radial momentum converges as the temperature inside the SNR drops. Shortly before the onset of the MCS phase a final plateau forms. The temperature has dropped below 104 K and the photoelectric heating starts to compensate the radiative cooling [Koyama & Inutsuka 2002].

In Fig. 4 we compare the final momenta in a density range of $n_{0,uni} = 0.1 - 100$ cm$^{-3}$ from our model with recent numerical simulations [Kim & Ostriker 2013; Li et al. 2014; Martizzi et al. 2014] and with previous works (Cioffi et al. 1988). We show the results for atomic (full black squares) and ionized media (open black squares). The SN model in an ionized medium with a density of $n_{0,uni} = 1$ cm$^{-3}$ has a radial momentum input of $2.3 \times 10^9 M_\odot$ km s$^{-1}$, which is in good agreement with $2.17 \times 10^5 M_\odot$ km s$^{-1}$ found by [Kim & Ostriker 2013] with $2.66 \times 10^5 M_\odot$ km s$^{-1}$ by [Li et al. 2013] and the semi-analytic solution by Cioffi et al. 1988).

For neutral and ionised gas the final momentum input is

$$p_{0,uni} = 22.44 \left(\frac{n_{0,uni}}{1 \text{ cm}^{-3}} \right)^{-0.12} p_0$$

respectively. Numerical simulations by Kim & Ostriker (2013) find a lower factor of 19.75 and an exponent of -0.16.

4.2 Power-law density distribution

We now assume a power-law ambient medium density distribution following Eq. (27) with $\omega = 2$. We vary $n_{0,\text{power}} = 0.1 - 100$ cm$^{-3}$ [Weaver et al. 1977; Band & Liang 1988].

In the top left panel of Fig. 5 we show the corresponding evolution of the swept-up mass. We find two distinct regimes for the mass evolution. Where the ambient density distribution follows a power-law with $M \propto t^{1.95}$. In this medium and a high density ($n_{0,\text{power}} = 100$ cm$^{-3}$) is swept-up compared to $6 M_\odot$ for $n_{0,\text{power}} = 0.1$ cm$^{-3}$. Once the uniform density floor is reached, the swept-up mass is quickly dominated by the surrounding uniform medium with $n_{0,\text{ini}}$. Independent of $n_{0,\text{power}}$ the swept-up mass is around $5000 M_\odot$ at t_{TR} and $1.3 \times 10^4 M_\odot$ at t_{MCS}. Compared to the uniform ambient medium with $n_{0,\text{ini}} = 0.01$ cm$^{-3}$, the total swept-up mass in the power-law distribution is around 20 per cent smaller. The expansion proceeds shorter in time and expansion in the latter case because slightly less momentum is created during the evolution.

In Fig. 5 (top right panel) we show the evolution of the thermal energy normalized to the initial SN energy. The initial thermal energy is 0.82 E_{SN} (results from Eq. (7) and the momentum at t_{TR}). Starting with energy conservation during the ST phase, thermal energy is radiated away at the same t_{TR} (triangles, $t_{\text{TR}} \sim 510$ kyr) independent of the profile density. The thermal energy drops significantly during the PDS phase ($t_{\text{PDS}} \sim 1$ Myr) to 0.26 E_{SN}. For all central densities the thermal energy is lost only within the last ~300 kyr of the simulation ($t_{\text{MCS}} \sim 1.2$ Myr). For comparison, the thermal energy retained at t_{PDS} in a uniform ambient medium with $n_{0,\text{power}} = 0.01$ cm$^{-3}$ is 0.4 E_{SN}.

The time evolution of the shell radius is shown in Fig. 5 (bottom left panel). For all densities the radius evolves with an expansion parameter $\eta \sim 2/(5 - \omega)$ in the ST phase turning to $\eta \sim 2/7$ as it reaches the PDS phase within the homogeneous medium. For the highest central density ($n_{0,\text{power}} = 100$ cm$^{-3}$) the shell expands to 155 pc during the ST phase. At t_{PDS} the radius is 204 pc and finally the shell has expanded to 215 pc. These values are almost independent of the central density and are more comparable to the expansion radius of a homogeneous ambient medium with $n_{0,\text{power}} = 0.01$ cm$^{-3}$, which expands to 230 pc.

The radial momentum (Fig. 5, bottom right panel) depends, among others, on the swept-up mass, which couples the thermal energy to the ambient medium. In a power-law medium, where $n(r)$ decreases rapidly the mass of the SN ejecta dominates the initial evolution (Fig. 5, bottom right panel). The momentum increases between 2.4 p_0 ($n_{0,\text{power}} = 0.1$ cm$^{-3}$) and 5.1 p_0 ($n_{0,\text{power}} = 100$ cm$^{-3}$) before $n(r) = n_{0,\text{ini}}$ is reached. From this point onwards, the momentum increases more rapidly. At t_{TR} all simulations converge to a common value of $\sim 25.3 p_0$, increase to 36.3 p_0 at t_{PDS} and finally to 37.0 p_0. For comparison, the momentum in a homogeneous medium with $n_{0,\text{ini}} = 0.01$ cm$^{-3}$ at t_{TR} is 26.6 p_0 and 39.0 p_0 at t_{MCS}.

In Fig. 6 we illustrate the impact of different values of $n_{0,\text{ini}}$ ($n_{0,\text{ini}} = 10^{-2}, 10^{-4}$ cm$^{-3}$) on the remnant evolution in power-law environments. For comparison, we show the case of a homogeneous ambient medium with $n_{0,\text{power}} = 1$ cm$^{-3}$ (black, solid line), $n_{0,\text{power}} = 10^{-2}$ cm$^{-3}$ (green, dashed line) and $n_{0,\text{power}} = 10^{-4}$ cm$^{-3}$ (dark yellow, dashed line). We compare the case of a SNR expanding into a warm ionized medium (WM case; green lines) with $n_{0,\text{ini}} = 10^{-2}$ cm$^{-3}$, $T = 7000$ K, and $P/k_b = 70$ cm$^{-3}$ K; or into a hot ionized medium (HIM case; dark yellow lines) with $n_{0,\text{ini}} = 10^{-4}$ cm$^{-3}$, $T = 3 \times 10^5$ K, and $P/k_b = 30$ cm$^{-3}$ K, respectively [McKee 1995]. A plain power-law with no density floor (red lines) is also shown. We terminate the latter simulation at 30 Myr. The density distributions are shown in the top left panel of Fig. 6.

In the top right panel of Fig. 6 we show the interior pressure, P/k_b (full lines) and the counteracting ambient pressure (dotted lines). Assuming an isothermal environment, the ambient pressure is directly proportional to the density distribution. The homogeneous ambient medium is isobaric, whereas in the WM and HIM the pressure decreases with increasing radius down to the isobaric floor. The pressure in the ambient medium with a plain power-law would decrease to zero at infinity. The pressure inside the bubble decreases and drops significantly at t_{TR} when radiation becomes important. When the ambient pressure is equal to the interior pressure, the simulation terminates
at 98 kyr (homogeneous medium), 1.3 Myr (WIM) and 26 Myr (HIM).

The expansion radius of the SNR (left bottom panel) increases with lower ambient densities. In a homogeneous medium the radius is the smallest as the shock sweeps-up mass with a constant density. The power-law media with homogeneous surroundings show similar behaviour but different final radii depending on the ambient pressure. The final radius in the WIM is ~ 200 pc ($t_{\text{MCS}} = 1.1$ Myr) and in the HIM ~ 1020 pc ($t_{\text{MCS}} = 5.6$ Myr). For the plain power-law the density drops with the radius. The counteracting swept-up mass is missing and the expansion terminates without forming a dense shell (Ostriker & McKee 1988; Truelove & McKee 1999; Petruk 2006).

The final radial momentum input (Fig. 4 bottom right panel) increases from 22.9 p_0 in the homogeneous medium and almost doubles to 39.0 p_0 assuming a WIM. In the HIM the momentum input is 68.3 p_0. The momentum in the plain power-law environment increases continuously.

To summarize, we find that the momentum injection in a power-law environment is small compared to the uniform medium, because the decreasing density suppresses the coupling of the momentum to the gas. If the power-law environment is surrounded by a homogeneous density floor the final momentum can increase. However, the momentum input is always smaller or equal to the case of a uniform ambient medium with $n_{0,\text{uni}} = n_{\text{floor}}$, independent of $n_{0,\text{power}}$.

5 BLAST WAVE EVOLUTION IN WIND-DRIVEN BUBBLES

During the lifetime of a massive star strong stellar winds interact with the ambient medium and blow low-density bubbles (Weaver et al. 1977). The subsequent SNe explode in these bubbles and the evolution of the blast wave is modified. Here we discuss the evolution of SN blast waves in wind-blown bubbles. We assume a simple model for a constant wind expanding into an initially cold (80 K) homogeneous medium with four different initial densities ($n_{0,\text{uni}} = 1, 10, 100, 1000$ cm$^{-3}$). In these cold environments the wind-blown bubble expands supersonically and drives a strong shock into the ambient ISM. The shock is radiative and cools down to $T_{s,\text{SH}}$.

We assume a 20 M_\odot O-star with a constant wind velocity of $v_\infty = 2000$ km s$^{-1}$ and a constant mass-loss rate of $M_\infty = 10^{-7} M_\odot$ yr$^{-1}$ over a lifetime of $t_B = 10$ Myr. The SN has an ejecta mass $M_{\text{eject}} = 2 M_\odot$ (Puls et al. 2009). The expansion radius $r_{s,B}$ of a wind-blown bubble from a constant stellar wind without heat transfer is given by (Weaver et al. 1977; Pittard 2013)

$$ r_{s,B}(t) = \left(\frac{125}{154\pi} \right)^{1/5} \left(\frac{L_\omega}{\rho_{0,\text{uni}}} \right)^{1/5} t^{3/5} \tag{22} $$

where $\rho_{0,\text{uni}}$ is the density of the initial homogeneous ambient medium with $\mu = 1$. L_ω is the mechanical luminosity

$$ L_\omega = \frac{1}{2} M_\infty v_\infty^2. \tag{23} $$

The average density ρ_B within the bubble without
mixing is \cite{Dyson1973, Garcia-Segura1995, Pittard2013}.

\begin{equation}
\rho_B(t) = \frac{3M_t}{4\pi r_{s,B}^3} t
\end{equation}

The density of the wind-shocked shell \(\rho_{s,B} \) can be estimated by the isothermal shock jump condition (\(\gamma = 1 \)),

\begin{equation}
\rho_{s,B} = \rho_{0,\text{uni}} \frac{v_{s,B}^2}{c_0^2}
\end{equation}

where \(c_s \) is the sound-speed of the ambient medium with \(c_0 = (\gamma P_0/\rho_{0,\text{uni}})^{1/2} \). The wind bubble expands supersonically with the velocity \(v_{s,B} \)

\begin{equation}
\frac{d}{dt}(r_{s,B}) = v_{s,B} = \frac{3}{4} \frac{r_{s,B}}{t}.
\end{equation}

The shell thickness \(\delta r_{s,B} \) is

\begin{equation}
\delta r_{s,B} = \frac{c_0^2}{3} \frac{r_{s,B}}{v_{s,B}}.
\end{equation}

In Fig. 4 we show the evolution of a SN in each of the four pre-existing wind-blown bubbles. The densities inside the bubble, \(n_{s,B} \), are 3.7, 14.8, 59.1 and \(235.1 \times 10^{-4} \) cm\(^{-3} \) for ambient densities of \(n_{0,\text{uni}} = 1, 10, 100, 1000 \) cm\(^{-3} \) (top left panel, dashed line). The interior is separated from the ambient medium by a dense shell. The density contrast of between the interior and the shell is constant with 1.5 \(\times 10^{-3} \). The thickness of the shells are 0.7, 1.2, 1.8 and 2.9 pc. The density of the SNR follows this evolution until the evolutions stalls.

The SN evolution in the low density interior is dominated by the ST phase, which immediately ends when the blast wave hits the dense shell (top left panel). Within \(\sim 2 \) kyr 80 per cent of the initial thermal energy is radiated away, almost independently of the shell density. The remaining thermal energy is related to the hot, low-density interior of the SNR. Previous works (e.g. \cite{Dwarkadas2007}) show a similar behaviour of rapid cooling at the shock boundary. Recent numerical simulations \cite{Fierlinger2013} point out that 1.5 per cent of the SN energy is left after the SNR stalls at the boundary.

Initially the radial evolution (bottom left panel) is that of between the interior and the shell is constant with 1.5 \(\times 10^{-3} \). The thickness of the shells are 0.7, 1.2, 1.8 and 2.9 pc. The density of the SNR follows this evolution until the evolutions stalls.

The SN evolution in the low density interior is dominated by the ST phase, which immediately ends when the blast wave hits the dense shell (top left panel). Within \(\sim 2 \) kyr 80 per cent of the initial thermal energy is radiated away, almost independently of the shell density. The remaining thermal energy is related to the hot, low-density interior of the SNR. Previous works (e.g. \cite{Dwarkadas2007}) show a similar behaviour of rapid cooling at the shock boundary. Recent numerical simulations \cite{Fierlinger2013} point out that 1.5 per cent of the SN energy is left after the SNR stalls at the boundary.

Initially the radial evolution (bottom left panel) is
Figure 6. Time evolution of a SNR expanding into ambient media with four different density distributions: a homogeneous (black lines) environment with a density of $n_{\text{v, power}} = 1$ cm$^{-3}$, media with a power-law distribution $\omega = 2$ and density floors similar to the WIM (green lines, 7000 K, $n_{\text{floor}} = 10^{-3}$ cm$^{-3}$, $P/k_B = 70$ cm$^{-3}$ K) and the HIM (dark yellow lines, 3×10^5 K, $n_{\text{floor}} = 10^{-4}$ cm$^{-3}$, $P/k_B = 30$ cm$^{-3}$ K) and a power-law distributed medium without a lower limit (red lines). Dashed lines correspond to homogeneous ambient media with $n_{\text{n, power}} = n_{\text{floor}}$ (HIM, WIM). Triangles indicate the beginning of the TR phase, circles the onset of the PDS phase. Top left panel: Evolution of the expansion radius. Top right panel: Evolution of the internal pressures (solid lines) and the counteracting ambient pressure (dotted lines). Bottom left panel: Number density evolution at the shock front, showing the assumed density floors. Bottom right panel: Evolution of the radial momentum input. The simulation without a density floor is terminated after ~ 30 Myr.

within a homogeneous medium. For the densest ambient medium ($n_{\text{v, uni}} = 1000$ cm$^{-3}$) the wall of the wind-blown cavity is reached after ~ 4.9 kyr and 22.0 pc, while it takes ~ 12.2 kyr and 87.6 pc for $n_{\text{v, uni}} = 10$ cm$^{-3}$. The final radius corresponds to the inner radius of the bubble.

The density distribution of the wind-bubble is assumed to be static and the shell has no momentum. While in the ST phase, the momentum input by the SN is small because of the low gas density within the bubble. Once the remnant reaches the shell, which is massive compared to the swept-up mass from the SN, it cools quickly and cannot accelerate the shell. As a result the evolution of the SNR stalls. The final momentum input (bottom right panel) lies between 2.4 and $2.9 p_9$.

The density difference between the interior and the shock as well as the density of the wind-blown shell itself determine the final radial momentum. Assuming isothermal behaviour, the ambient temperature of the initial environment is linked to the shell temperature, which again effects the thickness of the shell. Therefore, in Fig. 8 we show the influence of densities, n_{g}, and the temperature of the ambient interstellar medium on the momentum input. We choose $n_{\text{g}} = 3.7 \times 10^{-4}$ and 0.37 cm$^{-3}$, where the first corresponds to an wind-blown bubble with an initial density $n_{\text{v, uni}} = 1$ cm$^{-3}$ and the latter corresponds to a bubble which is filled by ionised gas as would be the case for an HII region. We increase the temperatures from 80 K to 800 K and to the temperature (3175 K), which corresponds to $v_{\text{g, B}} = c_\text{g}$. The dashed lines show the momenta of SNe in uniform media with $n_{\text{B}} = n_{\text{v, uni}}$.

For the low density case ($n_{\text{g}} = 3.7 \times 10^{-4}$ cm$^{-3}$) we show how the final momentum increases with temperature from $2.9 p_9$ at 80 K to $4.4 p_9$ at 800 K and up to $6.5 p_9$ at 3175 K. At a higher interior density ($n_{\text{g}} = 0.37$ cm$^{-3}$) the momentum in the cold (80 K) ambient medium is 19.3 p_9 and is comparable to the corresponding homogeneous medium. Recent numerical results of SNe exploding into bubbles blown by a stellar wind and ionizing radiation give a factor of ~ 10 (Geen et al. 2015).

This shows that the ambient density and tempera-

© 2015 RAS, MNRAS 000, 11
ture are essential for the evolution of a SNR in a wind-blown bubble. Higher temperatures broaden the wind-blown shell and reduce the density contrast. This results in a lower cooling and an increase of radial momentum (e.g. Walch & Naab 2015). The influence of the wind-blown bubble on the evolution of the SNR diminishes as the swept-up mass increases compared to the mass of the shell. SNR with a high density inside the bubble and a small difference between the swept-up mass and the mass of the wind-blown shell show a behaviour that is comparable to a uniform medium with that bubble density.

6 BLAST WAVE EVOLUTION IN TURBULENT ENVIRONMENTS

We study the evolution of a SNR expanding in a more realistic ambient medium, which is subject to isothermal, supersonic turbulence (Klessen et al. 1998, 2000; Kainulainen et al. 2009; Schneider et al. 2011; Federrath 2013). Numerical simulations suggest that the volume-weighted density PDF of gas shaped by isothermal turbulent motions can be described by a log-normal distribution (Vazquez-Semadeni et al. 1994; Nordlund et al. 1997; Federrath et al. 2008),

$$q(z) = \frac{1}{{\sqrt {2\pi \sigma_{\ln \rho}^2} }} \exp \left[{\frac{{(z - \bar{z})^2}}{{2\sigma_{\ln \rho}^2}}} \right],$$

where $z = \ln(\rho/\rho_{0,\text{turb}})$ with a mean density of the gas $\rho_{0,\text{turb}}$. The median is $\bar{z} = -\sigma_{\ln \rho}^2/2$ (Vazquez-Semadeni et al. 1994; Thompson & Krumholz 2014). The dispersion of the density distribution $\sigma_{\ln \rho}^2$ can be related to the Mach number M of turbulent motions (Federrath et al. 2008; Thompson & Krumholz 2014),

$$\sigma_{\ln \rho}^2 \sim \ln(1 + b^2 M^4).$$

The turbulent driving factor b is assumed to be 0.5 with a thermal mix of divergence free (solenoidal) and curl free (compressive) turbulence (Federrath et al. 2008; Brunt 2010; Krumholz 2014).

The volume density PDF can also be related to the surface density PDF σ_{in}^2 (Brunt 2010; Brunt et al. 2010a).
Figure 8. Radial momentum of SNR in wind-blown bubbles in different initial media in comparison to uniform media (dashed lines). The densities are $n_B = n_{uni} = 3.7 \times 10^{-4}$ cm$^{-3}$ and 0.37 cm$^{-3}$. The initial temperatures of the ambient medium, which hosts the wind-blowing star are 80, 800 and 3175 K. At the latter temperature the shock speed is equal to the sound speed of the medium.

In this case, the dispersion reads
\[
\sigma_{\ln \rho}^2 = \ln(1 + Qb^2M^2),
\] (30)
with the conversion factor
\[
Q = \frac{\sigma_{\ln \rho}^2}{\sigma_{\ln \Sigma}^2}.
\] (31)

6.1 Approximating the turbulent structures of the ambient medium

We adopt our model to compute the SNR evolution in turbulent ambient media, where the density structure is described by the log-normal PDF in Eq. 28. Since the blast wave evolution is primarily determined by the mean density of the swept-up material (Ostriker & McKee 1988; Padoan et al. 1997a), we assume that small-scale density fluctuations along the radial direction of the SNR have a negligible effect on the evolution. We assume that in different directions, the blast wave will encounter gas with different mean densities.

In this simplified model we abstain from following winding shock fronts between structures with a large density gradient (e.g. Martizzi et al. 2014) or interaction between different radial directions. The first constraint arises from the simple set of equations used in our model. It is not designed to follow the dynamical evolution but gives a statistical expectation of SNR in turbulent media. For the latter we assume no physical interactions between the different cones and assume that during the ST and TR phase the radially outwards directed velocities of the SNR are large and the interaction has minor effects. At later phases, the extent of the different radial directions is sufficient to neglect an interacting boundary.

To model the mean densities in different radial directions, the ambient medium in our model is discretized (see Fig. 9 bottom panel) into N_{cones} cones. The cones are defined by equal solid angles and have equal surface areas and volumes. For each cone, we randomly draw a mean density, n_i, from the log-normal density distribution and run the 1-dimensional model of the evolution of a SNR for an uniform medium (see Section 2). The total momentum p_{turb} injected by a SN in this pseudo 3-dimensional turbulent medium is derived from the sum over all cone momenta p_i,
\[
\sum_{i} p_i = p_{turb}.
\] (32)

Each cone is initialised with the same fraction of the total SN energy, i.e. E_{SN}/N_{cones}. As the expansion radius in each cone is different, the symmetry of the SN bubble is broken (Walch & Naab 2015).

In Fig. 10 we show results using 12 cones, which is the minimum number needed to divide the unit sphere into equal surface area pixels (see Görski et al. 2004). With $N_{cones} = 12$ the log-normal PDF is not well sampled (see Section 6.2 for a further discussion. The turbulent Mach number is 10 and the mean number density of the ambient medium, is $n_{0,turb} = 1$ cm$^{-3}$. The sampled densities n_i have values between 3×10^{-3} cm$^{-3}$ and 4.5 cm$^{-3}$ according to a PDF with a width of $\sigma_{n,\rho} = 1.8$ for $M = 10$. Fig. 10 shows the equal initial momenta (upside down triangles) as well as the individual momenta p_i at the end of the individual
ST (triangles), TR (circles) and PDS (squares) phase for a neutral (μ_0, black) and ionized (μ_1, red) medium for all mean cone densities n_i (green line and corresponding y-axis on the right-hand side).

The mean momentum per cone, $\langle p_i \rangle$,

$$\langle p_i \rangle = \frac{p_{\text{amb}}}{N_{\text{cone}}},$$

in a neutral [ionized] medium at t_{TR} is 1.7 [1.2] p_0, which increases up to 2.4 [1.7] p_0 at t_{PDS} ($p_0 = 14181 M_{\odot} \text{ km s}^{-1}$). At t_{MCS} the mean momentum per cone is 2.6 [1.9] p_0, as indicated by the black horizontal line (red line for ionized ambient medium). This corresponds to a total momentum of 31.2 [22.8] p_0 ($2.16 \times 10^5 M_{\odot} \text{ km s}^{-1}$). Note that $t_{\text{TR}}, t_{\text{PDS}}$ and t_{MCS} are different for cones with different densities. However, since the momentum stays constant after t_{MCS}, $p(t_{\text{MCS}})$ is considered as the final momentum.

The blast wave simulation in a homogeneous medium with $n_{0,\text{uni}} = 1 \text{ cm}^{-3}$ injects 22.3 [16.4] p_0 of momentum. Therefore, the increase in momentum is a direct consequence of turbulence. For higher M, the PDF becomes broader. The blast wave encounters more low density regions, which are subject to less radiative cooling and allow for a higher momentum injection.

6.2 Accuracy of the model

The fidelity of the SN model depends on the number of sampled densities, i.e. N_{cone}. We need a sufficient number in order to accurately represent the underlying density distribution.

We compute the evolution of 50 individual SN explosions in turbulent media, each with an increasing number of equal-volume cones (sampling points of the PDF) from 12 to 384. For each of the 50 runs we use a different random seed to sample the number densities in each cone from the log-normal density PDF with $\sigma = 1 \text{ cm}^{-3}$ and $\mathcal{M} = 10$.

Fig. 11 presents all 6 sets ($N_{\text{cone}} = 12, 24, 48, 96, 192, 384$; different symbols) with 50 SN simulations each. In the top panel the sampled mean densities of the individual simulations, $\langle n_i \rangle = \sum_{i}^{N_{\text{cone}}} n_i / N_{\text{cone}}$, are shown. Independent of the number of cones the mean ambient density ($n_{0,\text{amb}} = 1 \text{ cm}^{-3}$; blue dashed line) is well sampled by the overall mean of the individual simulations (red bars). The variance decreases from 1.2 to 0.9 with increasing number of cones from 12 to 384.

The bottom panel shows the final momentum p_{turb} (normalized to the initial momentum) of the same simulations. The overall mean converges to 29.4 p_0 at the highest numbers of cones (blue dashed line). The variance is similar in all runs at about 4 p_0.

To summarize, we show that the combination of high-M-turbulence and small N_{cone} may not accurately represent the turbulent PDF structure. Individual realizations might over/under-predict the mean densities but larger samples and a higher number of cones reduced the variance in the mean density and the momentum input.

6.3 Momentum distribution in turbulent media

We perform simulations of SNRs in turbulent media with mean densities of $n_{0,\text{turb}} = 0.1 - 100 \text{ cm}^{-3}$, and Mach numbers, $\mathcal{M} = 1 - 100$. Based on the previous section, we decided to use sets of 20 realizations for each turbulent setup with $N_{\text{cone}} = 192$ and evaluate the total radial momenta up to t_{MCS} of the cone with the lowest density cone (Fig. 12).

The mean shell momenta lie between 13.0 p_0 ($n_{0,\text{turb}} = 100 \text{ cm}^{-3}$, $\mathcal{M} = 1$) and 30.6 p_0 ($n_{0,\text{turb}} = 0.1 \text{ cm}^{-3}$, $\mathcal{M} = 1$). Higher supersonic turbulence ($\mathcal{M} = 100$) boosts the momentum by 60 per cent ($n_{0,\text{turb}} = 100 \text{ cm}^{-3}$) up to 88 per cent ($n_{0,\text{turb}} = 0.1 \text{ cm}^{-3}$) compared to the low-$M$-turbulence value.

The radial momentum input of a single SN in a turbulent medium can be quantified in terms of the mean density.
Figure 10. Example for the SN momentum injection in a turbulent medium sampled with 12 cones. The number densities are randomly drawn from a log-normal PDF with a mean number density $n_{0,\text{turb}} = 1 \, \text{cm}^{-3}$ and a turbulent Mach number $M = 10$. We show the values at t_{ST} (upside down triangles), t_{TR} (triangles), t_{PDS} (circles) and t_{MCS} (squares) within a ionized ambient medium (μ_{i}, red symbols) and an atomic (μ_{a}, black symbols). The individual radial momentum for each cone p_{i} is shown as a function of the sampled density n. At t_{PDS} the mean momentum per cone is $2.6 \pm 1.9 \, p_{0}$ (black [red] horizontal line). The underlying log-normal PDF is indicated with a green line.

Figure 12. Final (at t_{MCS}) radial momentum input p_{turb} to turbulent media with mean densities in the range of $n_{0,\text{turb}} = 0.1 - 100 \, \text{cm}^{-3}$ and Mach numbers increasing from $M = 1 - 100$ (different grey squares). The environment of each SN is separated into 195 cones. Each data point corresponds to the mean of 20 realizations and a standard deviation (grey shaded areas). We add recent numerical simulations from Iffrig & Hennebelle (2014, here IH14, blue pentagons), Kim & Ostriker (2015, here KO15, red squares), Martizzi et al. (2014, here MF14, orange triangles) and Walsh & Naab (2015, here WN15, dark yellow circles) and Li et al. (2015, here LO15, green circles). For better visibility these symbols are shifted to the right of the corresponding number density.

The first term corresponds to the momentum transfer from a single SN into a homogeneous medium. The second term depends on a combination of the turbulent Mach number (width of the PDF) and the mean density. The factor in the first term is higher compared to the value (22.44) obtained for the uniform medium. The difference results from the additional turbulent term. The fit was generated over all data points by a Bees algorithm coupled with Levenberg-Marquardt provided by the fitting tool MAGIX ($\chi^{2} \sim 8$; Bernst et al. 2011; Möller et al. 2013).

In Fig. 12 we compare our results to direct, 3-dimensional (magneto-) hydrodynamical simulations from different authors, namely, Iffrig & Hennebelle (2014), Martizzi et al. (2014) Kim & Ostriker (2015), Li et al. (2015) and Walsh & Naab (2015) (coloured symbols). We compare at times similar to our t_{MCS}. As the methodology for setting up the ISM conditions varies from author to author, we explain each set of simulations in more detail.

$$p_{\text{turb}}/p_{0} = 23.07 \left(n_{0,\text{turb}} / 1 \, \text{cm}^{-3} \right)^{-0.12} + 0.82 \left(\ln (1 + b^{2} M^{2}) \right)^{1.49} \left(n_{0,\text{turb}} / 1 \, \text{cm}^{-3} \right)^{-0.17}. \quad (34)$$

The figure shows the final radial momentum input to turbulent media with mean densities in the range of $n_{0,\text{turb}} = 0.1 - 100 \, \text{cm}^{-3}$ and Mach numbers increasing from $M = 1 - 100$ (different grey squares). The environment of each SN is separated into 195 cones. Each data point corresponds to the mean of 20 realizations and a standard deviation (grey shaded areas). We add recent numerical simulations from Iffrig & Hennebelle (2014, here IH14, blue pentagons), Kim & Ostriker (2015, here KO15, red squares), Martizzi et al. (2014, here MF14, orange triangles) and Walsh & Naab (2015, here WN15, dark yellow circles) and Li et al. (2015, here LO15, green circles). For better visibility these symbols are shifted to the right of the corresponding number density.
Effect of the number of cones

Figure 11. Effect of the number of cones N_{cones} on the accuracy of the turbulent SN model for the mean density (top panel) and momentum input (bottom panel). The number densities are randomly sampled from a log-normal PDF with a fixed mean density $n_0,\text{turb} = 1 \text{ cm}^{-3}$ and Mach number $M = 10$. Each of the 6 data sets consists of 50 SN simulations. Mean values and the standard deviation are shown in red. The mean ambient density (blue line; top panel) is well sampled and the momentum injection converges to 29.4 p_0 (blue line; bottom panel).

The ambient medium is initialized with fractal substructures, which represent a log-normal density pdf. The resulting variance is translated to a turbulent Mach number, $M = 4.4$. The normalized final momentum $p = 25.6$ p_0 is ~ 9 per cent higher compared to values obtained from our SN model ($n_0,\text{turb} = 1 \text{ cm}^{-3}$, $M = 4.4$).

Martizzi et al. (2014, orange triangles) perform hydrodynamic simulations in an ambient medium with a log-normal density field but only cooling by Sutherland et al. (1993) at temperatures above 10^4 K. The variance of the distribution uses a parametrization by Lemaster & Stone (2009). The spatial correlations are parametrized by Burgers power-spectrum. The initial velocity field is set to zero. Within these structures (maximum grid resolution 0.05 pc) the SNR evolves along the path of least resistance but cools significantly (down to 10^4 K) when dense structures are hit and merge with the shock. This results in a final momentum input of of 7.3 p_0 in a supersonic environment ($M = 30$, $n_0,\text{turb} = 100 \text{ cm}^{-3}$), which is lower than the performed fiducial simulation in a homogeneous medium. The final value is ~ 2.6 lower than a similar simulation with our model.

Li et al. (2013, green circles) creates an (artificial) environment with randomly distributed cold clouds and hot inter-cloud medium with a SN in the centre. The results show no distinctive phases and an expansion between the cold and dense regions on a path of least resistance. Initially the radial momentum input is lower, than the homogeneous comparison and shows an increasing power-law behaviour with radius. As the shock expands further it interacts with the medium in non-radial directions. At the end the momentum is almost constant and similar to values from uniform media. The momentum of the homogeneous runs (18.8 p_0) compares with the input from structured media at later phases of 17.7 p_0 ($n_0,\text{turb} = 1 \text{ cm}^{-3}$).

To summarize, we find that momentum input from low-M-turbulent structures is comparable to SNR in homogeneous media. We find similar values compared to different 3-dimensional numerical simulations, under the assumption of an atomic medium. We show that high-M-turbulent structures boost the radial momentum input. We conclude that turbulence could be important for the momentum input. However, more 3-dimensional models with very high resolution will be required to address the impact of a highly turbulent substructure.

6.4 Velocity-mass distribution in turbulent media

The SN model assumes that the swept-up ambient material is condensed into a small volume at the shock front (Klein et al. 1994). The density profile inside the SNR can be neglected as the mass is only a small fraction of the total mass. We show the distribution of the shock velocity and the swept-up mass to mean densities n_0,turb of 1 cm^{-3} (Fig. 13, top panel) and 100 cm^{-3} (Fig. 13, bottom panel) with turbulent Mach numbers of 1 and 10 both with $N_{\text{cones}} = 384$. The distributions are evaluated at fixed times between $t = 10^{2.5}$ yr and $t = 10^{4.5}$ yr. In dense environments ($n_0,\text{turb} = 100 \text{ cm}^{-3}$) the simulations terminate earlier, explaining...
why in Fig.13 (bottom panel) the distributions at $t = 10^{4.5}$ yr are missing.

As expected, the swept-up mass continuously increases during the decelerating expansion of the SNR. At 10^6 yr the swept-up mass in a low density and low-M-turbulence environment ($M = 1$, $n_{turb} = 1 \text{ cm}^{-3}$) is $6.5 \times 10^5 M_\odot$. For the case of $n_{turb} = 100 \text{ cm}^{-3}$ the swept-up mass is $29.8 \times 10^5 M_\odot$. In general higher-M-turbulence results in lower swept-up masses, by 12 per cent in low- and 24 per cent in high-density environments. At 10^6 yr the swept-up masses have increased to $280 \times 10^5 M_\odot$ and $1279 \times 10^5 M_\odot$ in the low- and high-density ambient medium. At this time the SNR evolution in the latter case has almost reached the end of the PDS, whereas in the first medium the PDS lasts longer, until $\sim 10^7$ yr.

The mean velocity at $t = 10^{2.5}$ yr is 2569 km s^{-1} in the low density environment. High-M-turbulence increases the value to 3096 km s^{-1}. The SNR slows down by ~ 50 per cent in high density structures with $n_{turb} = 100 \text{ cm}^{-3}$. Typically, at each plotted time the mean velocity decreases by ~ 50 per cent compared with the previous time. At $t = 10^4$, the velocities have dropped to 323 km s^{-1} in low density structures with $n_{turb} = 1 \text{ cm}^{-3}$ and trans-sonic turbulence. In high density environment the mean velocity is 151 km s^{-1}.

At the end of the simulations, the distributions within an environment with trans-sonic turbulence cover a small velocity range. High-M-turbulence broadens the mass- (shock-) velocity distribution and therefore, a small fraction of the swept-up mass remains at high velocities.

Similar behaviour is found in numerical simulations by Walch & Naab (2014). At 0.2 Myr the velocity distribution in a dense ($n_{turb} = 100 \text{ cm}^{-3}$) fractal environment shows that about 2 per cent of a cloud mass of $10^5 M_\odot$ are accelerated to velocities larger than $\sim 20 \text{ km s}^{-1}$.

7 SUMMARY AND DISCUSSION

We present a fast model to follow the evolution of SN blast waves in their momentum generating phases (ST, TR and PDS phase). We test the model for homogeneous and power-law density distributions and extend it to the evolution of SNR in wind-blown bubbles and a turbulent ISM. Previous analytic work is combined in our SN model and extended by the inclusion of a cooling function, a detailed treatment of the thermal energy, and a transition phase between the adiabatic and radiative phase.

The main results are summarized in the following:

- We recover recent numerical results (e.g. Kim & Ostriker 2013; Martizzi et al. 2014; Li et al. 2015) of a single SN in a homogeneous medium as well as the analytic Sedov-Taylor solution. The final momentum for a density range between $1 - 100 \text{ cm}^{-3}$ is $\sim 13 - 31 p_0$ ($p_0 = 14181 \text{ M}_\odot \text{ km s}^{-1}$). We obtain reliable values for the radial momentum, the expansion radius and the thermal energy with small computational effort of a few seconds. The results depend solely on the ambient density.
- In ambient media with a power-law density distribution and a surrounding density floor, the final momentum clearly exceeds the homogeneous results by at most a factor of 2. This is independent of the central density and is controlled by the density of the density floor. The inner power-law part has minor effect.
- The momentum input of SNR in wind-blown bubbles depend on the initial ambient medium. Low initial temperatures result in dense shells, where the incoming SN shock cools efficiently. The momentum input is only $\sim 3 p_0$. Higher temperatures of the initial ambient medium delay the radiative cooling in the wind-blown shell. The momentum input increases by a factor up to 10. A high density inside the bubble and a small difference between the swept-up mass and the mass of the wind-blown shell show a behaviour that is comparable to a uniform medium with that bubble density.
- We use the SN model to approximate the lower limit of momentum input in turbulent ambient media. To do this we randomly sample densities from a log-normal density distribution with a given dispersion which is related to the Mach number in the turbulent gas. For low turbulent Mach numbers ($M \sim 1$) the momentum input is very similar to homogeneous media ($\sim 13 - 31 p_0$). We obtain the largest momentum input in turbulent media with $M \sim 100$ by as

© 2015 RAS, MNRAS 000, 1-20
much as a factor of 2 in a low density environment ($n_{\text{g,turb}} = 0.1 \text{ cm}^{-3}$). We have parametrised the momentum input as a function of Mach number and average environmental density as follows:

$$\frac{p_{\text{turb}}}{p_0} = 23.07 \left(\frac{n_{\text{g,turb}}}{1 \text{ cm}^{-3}} \right)^{-0.12} + 0.82 \ln(1 + 6.2 M^4)^{1.49} \left(\frac{n_{\text{g,turb}}}{1 \text{ cm}^{-3}} \right)^{-0.17}. \quad (35)$$

Under the assumption of a neutral ambient medium we find values comparable to recent numerical simulations (e.g. [Kim & Ostriker 2013; Martizzi et al. 2014; Walch & Naab 2014]).

- The model is computational cheap and can be used for a variety of parameters. This model is an accurate alternative to recent SN sub-grid models.

ACKNOWLEDGMENTS

We thank J. P. Ostriker for the useful discussions and criticism, which added significantly to the presented paper. SH, SW and DS acknowledge the support by the Bonn-Cologne Graduate School for physics and astronomy as well as the SFB 956 on the 'Conditions and impact of star formation'. JM acknowledges funding from a Royal Society - Science Foundation Ireland University Research Fellowship. We acknowledge the support by the DFG Priority Program 1573 'The physics of the interstellar medium'. We thank Anika Schmiedeke for her help of fitting with MAGIX and Thomas Möller for providing this tool. We thank the anonymous referees for constructive input.

REFERENCES

Agertz, O., Kravtsov, A. V., Leitner, S. N., & Gnedin, N. Y. 2013, ApJ, 770, 25
Aumer, M., White, S. D. M., Naab, T., & Scannapieco, C. 2013, MNRAS, 434, 3142
Balogh, M. L., Pearce, F. R., Bower, R. G., & Kay, S. T. 2001, MNRAS, 326, 1228
Band, D. L. & Liang, E. P. 1988, ApJ, 334, 266
Bernstein, I., Schilke, P., Moeller, T., et al. 2011, in Astronomical Society of the Pacific Conference Series, Vol. 442, Astronomical Data Analysis Software and Systems XX, ed. I. N. Evans, A. Accomazzi, D. J. Mink, & A. H. Rots, 505
Bisnovatyi-Kogan, G. S. & Silich, S. A. 1995, Reviews of Modern Physics, 67, 661
Blondin, J. M., Wright, E. B., Borkowski, K. J., & Reynolds, S. P. 1998, ApJ, 500, 342
Breitschwerdt, D., de Avillez, M. A., Feige, J., & Dettbarn, C. 2012, Astronomische Nachrichten, 333, 486
Brook, C. B., Stinson, G., Gibson, B. K., et al. 2012, MNRAS, 419, 771
Brunth, C. M. 2010, A&A, 513, A67
Brunth, C. M., Federrath, C., & Price, D. J. 2010a, MNRAS, 405, L56
Brunth, C. M., Federrath, C., & Price, D. J. 2010b, MNRAS, 403, 1507
Butcher, J. C. 1996, Applied Numerical Mathematics, 20, 247

Cavaliere, A. & Messina, A. 1976, ApJ, 209, 424
Chevalier, R. A. 1976, ApJ, 207, 872
Chevalier, R. A. 1982, ApJ, 258, 790
Cioffi, D. F., McKee, C. F., & Bertschinger, E. 1988, ApJ, 334, 252
Cohen, E., Piran, T., & Sari, R. 1998, ApJ, 509, 717
Cowie, L. L., McKee, C. F., & Ostriker, J. P. 1981, ApJ, 247, 908
Cox, D. P. 1972, ApJ, 178, 159
Cox, D. P. & Franco, J. 1981, ApJ, 251, 687
Creasey, P., Theuns, T., & Bower, R. G. 2013, MNRAS, 429, 1922
Creasey, P., Theuns, T., Bower, R. G., & Lacey, C. G. 2011, MNRAS, 415, 3706
Dale, J. E., Bonnell, I. A., Clarke, C. J., & Bate, M. R. 2005, MNRAS, 358, 291
Dalla Vecchia, C. & Schaye, J. 2012, MNRAS, 426, 140
Dawson, J. R., McClure-Griffiths, N. M., Dickey, J. M., & Fukui, Y. 2011, ApJ, 741, 85
Dawson, J. R., Mizuno, N., Onishi, T., McClure-Griffiths, N. M., & Fukui, Y. 2008, MNRAS, 387, 31
de Avillez, M. A. & Breitschwerdt, D. 2004, in Astrophysics and Space Science Library, Vol. 315, How Does the Galaxy Work?, ed. E. J. Alfaro, E. Pérez, & J. Franco, 331

Dekel, A. & Silk, J. 1986, ApJ, 303, 39
Dib, S., Bell, E., & Burkert, A. 2006, ApJ, 638, 797
Draine, B. T. 2011, Physics of the Interstellar and Inter-Galactic Medium
Dwarkadas, V. V. 2007, ApJ, 667, 226
Dyson, J. E. 1973, A&A, 23, 381
Elmegreen, B. G. & Lada, C. J. 1977, ApJ, 214, 725
Falle, S. A. E. G. 1975, MNRAS, 172, 55
Federrath, C. 2013, MNRAS, 436, 1245
Federrath, C., Klessen, R. S., & Schmidt, W. 2008, ApJ, 688, L79
Fierlinger, K. M., Burkert, A., Ntormousi, E., et al. 2015, ArXiv e-prints
Franco, J., Miller, III, W. W., Arthur, S. J., Tenorio-Tagle, G., & Terlevich, R. 1994, ApJ, 435, 805
Gaffet, B. 1983, ApJ, 273, 267
García-Segura, G. & Mac Low, M.-M. 1995, ApJ, 455, 145
Gatto, A., Walch, S., Low, M.-M. M., et al. 2015, MNRAS, 449, 1057
Geen, S., Rosdahl, J., Blaižot, J., Devriendt, J., & Slyz, A. 2015, MNRAS, 448, 3248
Gent, F. A., Shukurov, A., Fletcher, A., Sarson, G. R., & Marten, M. J. 2013, MNRAS, 432, 1396
Girichidis, P., Walch, S., Naab, T., et al. 2015, ArXiv e-prints 1508.06646
Goldbaum, N. J., Krumholz, M. R., Matzner, C. D., & McKee, C. F. 2011, ApJ, 738, 101
Görski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Greif, T. H., Springel, V., White, S. D. M., et al. 2011, ApJ, 737, 75
Gritschneder, M., Naab, T., Walch, S., Burkert, A., & Heitsch, F. 2009, ApJ, 694, L26
Hennebelle, P. & Falgarone, E. 2012, A&ARv., 20, 55
Hennebelle, P. & Vfield, O. 2014, ArXiv e-prints 1405.7819
Hill, A. S., Joung, M. R., Mac Low, M.-M., et al. 2012, ApJ, 750, 104

C⃝ 2015 RAS, MNRAS 000, 1–20
Wünsch, R., Dale, J. E., Palouš, J., & Whitworth, A. P. 2010, MNRAS, 407, 1963

This paper has been typeset from a \TeX/ \LaTeX file prepared by the author.