Continuous Passive Motion Not Affect the Knee Motion and the Surgical wound Aspect After Total Knee Arthroplasty

Sergi Gil-Gonzalez (✉ sergilg8@gmail.com)
Igualada Hospital: Hospital d'Igualada
https://orcid.org/0000-0001-5939-0769

Ricardo Andrés Barja Rodriguez
Igualada Hospital: Hospital d'Igualada

Antoni Lopez Pujol
Igualada Hospital: Hospital d'Igualada

Hussein Berjaoui
Igualada Hospital: Hospital d'Igualada

Jose Enrique Fernandez Bengoa
Igualada Hospital: Hospital d'Igualada

Juan Ignacio Erquicia
Igualada Hospital: Hospital d'Igualada

Joan Leal Blanquet
Igualada Hospital: Hospital d'Igualada

Xavier Pelfort
Igualada Hospital: Hospital d'Igualada

Research article

Keywords: Total knee arthroplasty, continuous passive motion, knee motion, surgical wound aspect, pain

Posted Date: November 15th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1060396/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Journal of Orthopaedic Surgery and Research on January 15th, 2022. See the published version at https://doi.org/10.1186/s13018-022-02916-w.
Abstract

Background. This study aimed to assess whether use of continuous passive motion (CPM) can improve range of motion in patients after total knee arthroplasty (TKA). Moreover, the relationship between the use of CPM with the surgical wound aspect (SWA) and pain management after TKA was analysed.

Methods. We randomized 210 patients, 102 patients in the CPM group, who received a standard rehabilitation protocol together with CPM application; and 108 patients in the no-CPM group, without CPM. Variables as knee motion (flexion, extension, range of motion) and pain was measured before surgery, on the 1st, 2nd and 3rd postoperative day, and in the 2nd, 6th, 12th and 24th postoperative weeks following TKA. The SWA was determined by the “surgical wound aspect score” (SWAS) in the next 48 hours after surgery. This scale analyses swelling, erythema, haematoma, blood drainage and blisters.

Results. There was an improvement in the knee motion over the course of follow-up in both groups, without significant difference in flexion parameter. We found no significant differences in the total score of SWA, except for haematoma, with less severity in the CPM group. Furthermore, we found no differences in the others SWAS parameters and pain.

Conclusions. The application of CPM does not provide benefit to our patients undergoing TKA in terms of either improved flexion mobility or decreased pain. No relationship was found between the use of CPM and the global score of SWA following a TKA, except for a decrease in haematoma appearance.

1. Introduction

Knee osteoarthritis (OA) is a common disorder which generate severe pain, deformity and reduced knee mobility [1]. Total knee arthroplasty (TKA) is one of the best methods to treat knee OA, reducing pain, improving range of motion (ROM) and recovery of knee function [2, 3]. Since the 1970s, continuous passive motion (CPM) has been used to improve knee mobility and reduce stiffness after TKA, being part of the rapid postoperative recovery programs [4–6]. This intervention is provided by a machine that performs repetitive passive motion. The main benefits of CPM described in the literature are: improvement in the range of motion, decreased pain and reduced swelling, improvement in local circulation and reduced need for manipulation under anesthesia [7]. Nevertheless multiple studies show that the application of CPM does not have long-term advantages [4, 5, 8–15]. Moreover, some studies found no differences comparing the addition of CPM in these rehabilitation programs after TKA, versus patients who only received standard physical therapy alone [16–19]. Concerning short-term benefits, in the last two decades the controversy has grown. Some studies suggest that patients who have received CPM after TKA have faster recovery in ROM [4, 9, 11, 15, 18, 20–23], less stiffness [24], less pain [25] and lower incidence of thrombophlebitis [23]. On the other hand, some studies find an increase in swelling [5, 14] and higher levels of pain [14]. Few articles analyze the relationship of wound healing and the use of CPM, being this association a fairly unknown topic [26]. Despite all the contradictory information, CPM is
widely used in hospitals around the world as part of the standard postoperative management protocol for TKA [7].

The main objective of this study is to assess whether the use of CPM can improve range of motion in patients after TKA in comparison to a conventional self-assisted rehabilitation program without CPM. Additionally, we evaluate the level of pain and the relationship between the use of CPM and the surgical wound aspect (SWA) after TKA.

2. Materials And Methods

2.1 Participants

Between January to December 2018, a prospective, randomized controlled trial was performed. All patients over 50 years of age and implanted with a primary TKA due to knee OA, were asked to enrol in our study. All patients signed an informed consent. Patients with a high degree of deformity in the mechanical axis (over 15° in varus or valgus deformity) or contracture knee flexion (>20°), inflammatory arthropathies, previous surgeries in the same knee (except simple arthroscopies), were excluded. The hospital’s ethical committee approved the study (PR180/19). This study was performed in line with the principles of the Declaration of Helsinki.

2.2 TKA procedure

All the surgical procedures were carried by the same four senior consultants. All of them used two types of posterior stabilized cemented TKA: Stryker ® Triathlon (Stryker, Mahwah, NJ, USA) or Surgival ® Genutech (Surgival, Valencia, España) employing a medial parapatellar surgical approach. Intradural anaesthesia was used for all patients without regional nerve blocks and a pneumatic tourniquet was inflated to 300mmHg pressure before the incision and deflated at the end of surgery after skin closure. Local infiltration with 10-20cc of Ropivacaine or Bupivacaine was administrated. A suction drain was introduced before wound closure and removed on the first postoperative day. Wound closure was made with simple stiches of coated vicryl ® suture (polyglactin 910, Ethicon, Inc.) on subcutaneous tissue and skin with staples. Wound dressing was made with two gauzes and a soft bandage, removed at same time that suction drain, at the 24th postoperative hours. Patients received low weight heparin as venous thromboembolism prophylaxis for 30 days. Multimodal pain management protocol was applied in all patients.

2.3 Data collection

Of the 230 eligible patients, 220 patients were randomized into two groups (Figure 1). The randomization was done by week, which means that all patients who underwent a TKA in the same week were in the same group, in order to prevent patients from different groups meeting in the common areas of the hospital. Finally, 105 patients were included in the first group (CPM group), and they received a standardized rehabilitation program (SRP) with CPM. On the second (no-CPM) group, 115 patients received the same SRP without CPM. The SRP started on the afternoon of the day of surgery. The SRP
consisted of assisted exercises carried out by a professional trained physiotherapist. On subsequent postoperative days, physiotherapy was provided three times daily for at least 1 hour on each occasion, and involving twenty repetitions for every exercise, including ankle mobility, active isometric contraction of the quadriceps, straight leg raises, quad sets and physiotherapist-assisted knee mobility exercises. In the CPM group, all patients started the CPM therapy the day of surgery and during two hours of therapy per three sessions at day until discharge. The degree of flexion was adjusted by the physiotherapist according to patient tolerance and progression at each session. Following discharge, a physiotherapist continued rehabilitation and knee mobility exercises without CPM at home for all patients in both groups, for one hour every day for the following ten consecutive days.

The main variable was collected using double-blind. Knee ROM was measured using a long digital goniometer before surgery, on the 1st, 2nd and 3rd postoperative day, and in the 2nd, 6th, 12th and 24th postoperative weeks following TKA. The measurement was carried out by the rehabilitation consultant after the rehabilitation session of each day, and in the different visits of follow-up. The aspect of the surgical wound was assessed by the “surgical wound aspect score” (SWAS) in the next 48 hours after surgery by the senior surgeon. This scale analyses five parameters of wound characteristic: swelling, erythema, hematoma, blood drainage and blisters, obtaining a value from 0 to 2 points for each parameter depending on the severity of the injury and resulting a total score from 0 to 10 (being 10 the worst condition of the wound) [27]. Postoperative pain was measured by a rehabilitation consultant using the visual analogue scale (VAS) (values from 0 to 10), prior surgery, on the 1st, 2nd and 3rd postoperative day, and in the 2nd, 6th, 12th and 24th postoperative week following TKA.

2.4 Statistical analysis

Descriptive results were calculated as means values and its standard deviations for continuous variables and a descriptive of the frequencies and its corresponding percentages for categorical variables. Differences in clinical characteristics and outcomes between study and control group were assessed using Mann-Whitney U tests for continuous variables and chi-squared and Fisher’s exact tests for categorical variables. In our statistical analyses we accepted an alpha risk of 0.05 and a beta risk of 0.2 in a two-sided test. Anticipating a 20% drop-out rate, we aimed to recruit 187 consenting patients to achieve sufficient power. All analyses were performed based on intention-to-treat. All analyses were performed using IBM SPSS Statistics.

3. Results

The randomization procedure created demographically similar groups, without differences in preoperative parameters like age, gender, mobility (extension, flexion, ROM) or pain (Table 1). The mean age of the patients was 74.23 (range: 55 to 87 years), with a non-statistical significant higher percentage of females (n=137; 65.2%) compared to males (p=0.895).

In Figure 1, we can observe that six patients were excluded from analysis because of postoperative complications that prevented application of the rehabilitation protocol. There were two patients with
intraoperative fractures, two patients with deep infections that required two-stage revision, one with patellar tendon rupture and one that died during the follow-up. In addition, information from four patients who did not complete follow-up, two in each group, was also excluded from the database.

Results comparing knee mobility are shown in Table 2. We found an improvement of flexion, extension, and ROM, in both groups along the process between admission and discharge and over the course of follow-up (p < 0.010). ROM improved throughout the follow-up in both groups after the surgery (Figure 2). However, the improvement in the CPM group was greater than the no-CPM group through all follow-up, being significant in the first and second postoperative day and in the second postoperative week of follow-up. At the 24th postoperative week, we observed a persistent improvement in ROM in the CPM group (6 degrees greater in with respect to the no-CPM group), although this difference was not significant (p = 0.056). The most relevant parameter in the application of CPM was highlighting flexion. At the time of discharge, both groups again had similar results, with a mean flexion of 91.38° (SD 9.4) in the CPM group and 92.23° (SD 10.06) in the no-CPM group (p = 0.769). There were no significant differences between groups at any of the time points evaluated (Table 2). At the last follow-up, 24th postoperative week, mean flexion in the CPM group was 121.39° (SD 8.92) and 118.73° (SD 9.92) in the no-CPM group (p = 0.066) (Figure 3). Concerning the extension, we did not observe any significant difference between groups. No patient had knee stiffness that required any surgical procedure or forced mobilization.

Regarding the surgical wound, we did not find any difference in the total score of SWAS between CPM or no-CPM groups (p = 0.289) (Table 3). However, when we analyzed the individual parameters of the SWAS, we found significantly fewer patients with a worse hematoma in the CPM group compared to the no-CPM group (p = 0.028). Despite this, any patient required surgical drainage or had skin necrosis due to the hematoma.

From surgery, pain levels experienced by the patients were similar, with a comparable decrease over time in both groups (Table 4).

4. Discussion

The main finding of our study is the lack of benefit to the knee flexion, surgical wound healing and reduction pain of the use of CPM. Our results are in agreement with many recent studies [22, 28]. We found no significant difference between groups in extension or flexion. We found a suggestion of higher degrees value of ROM in CPM group than in no-CPM group, observing around five degrees of difference in favor of the CPM group, especially on the 1st postoperative day or 2nd postoperative week, however we did not consider that difference could represent a significant clinical improvement. These results are in line with those reported in the Cochrane review [22], with a difference of two degrees to six in favor of CPM application in knee flexion between CPM and non-CPM group. However, some studies find different results to ours. McInnes et al [29] or Lenssen et al [30] described an increment in active flexion on the earlier postoperative days, in patients who received CPM, but not long-term benefit. Liao et al [31] obtain
an improvement on ROM at 3rd and 6th month follow-up with an early application of CPM with initial high flexion angle and rapid progress.

We observed a similar improvement from the 1st postoperative day to 24th postoperative week of follow-up in both groups. All our patients had a consistent improvement in ROM, both groups achieving a mean flexion of 90° at 2nd postoperative week and a mean flexion of 115° at 12th postoperative week. They recovered preoperative levels of knee range of motion between 6th and 12th postoperative week. But the use of CPM in the post-TKA has remained controversial. Several studies have reported benefits of CPM during the acute phase [10, 22, 31, 32], while others report the absence of benefits [11, 28, 33]. But we should be careful and be prudent when comparing these different studies, because there is a high degree of heterogeneity in rehabilitation protocols, with different frequency and duration of CPM applied, anesthetic and analgesic drugs used, among other. In our study, we maintained the same fast recovery program, with the exception of the use and duration of CPM application. In the publication of Boese et al [25] they compare three groups with different CPM application (full moving CPM, 90 degrees non-moving CPM, no CPM) at least two postoperative days, finding no differences between them in terms of ROM. In Joshi et al [34] they used a similar rehabilitation program, but with a very different anesthesia protocol with peripheral nerve block option, and they found no benefits in CPM use.

In our study, we didn’t found repercussion of the CPM rehabilitation protocol to the SWA, except for hematoma. Our SWA analysis revealed a significantly increased number of patients in the no-CPM group with hematoma compared to the CPM group. This could be possible due to CPM may reduce swelling due to its pumping action, pushing blood and edema fluid away from the joint and periarticular tissues [5, 35]. McInnes et al [29] and Montgomery et al [36] observed a decrease in swelling with the use of CPM. However, we did not observe any difference in swelling in our SWA scores, according to other studies [5, 11, 25]. With respect to another SWA parameters, i.e. bleeding, Maniar et al, [5] concluded that CPM may tend to lead to a greater incidence of wound staining according to their classification. We did not see any such difference. Johnson et al. [37] pointed out that the transcutaneous oxygen tension on the lateral aspect of incision might decrease as the knee flexed more than 40°. In our patients, with more than 40° on flexion in the 1st postoperative day, no skin necrosis was observed. Other studies suggest a positive benefit of CPM in biological tissues with respect to tissue healing, limb edema, hemarthrosis and knee function [10, 35, 38]. Our results are partly in agreement with these findings.

In terms of pain, the patients included in this study had a progressive reduction in pain during the course of follow-up, with no difference within groups. However, Denis et al [18] showed that use of CPM might be beneficial for pain relief in the early postoperative stage. Cochrane review [22] find only low-quality evidence for the reduction of pain using CPM, with a mean reduction scores of 0.4 points (10 point scale) at 6th postoperative week, whereas in our study, we saw a difference within groups of only 0,1 points.

In addition, the Cochrane review [22] find that CPM reduced the possibility of performing a forced mobilization under anesthesia because of the stiffness after surgery. In our study, no patients required this kind of procedure in any of both groups.
The main strength of our study is one of the largest sample size studies in the literature, excluding reviews. Furthermore, the prospective and randomized controlled trial design strength the results. Nevertheless, this study has few limitations. The grouping of the participants to CPM used could not be blinded because of the nature of CPM device. In addition, some patients had undergone a previous TKA before this study, and thus knew that use of a CPM device was standard, potentially resulting in an effect that could produce an uncontrollable patient suggestion. SWA score, used for assess surgical wound aspect, even publicated it is not validated [27].

5. Conclusions

The use of CPM under this protocol does not provide clinical improvement in terms of knee flexion, appearance of surgical wound or reduction pain after TKA, except for hematoma where we observed a decreased risk of postoperative using CPM.

Abbreviations

CPM Continuous passive motion

TKA Total knee arthroplasty

SWA Surgical wound aspect

SWAS Surgical wound aspect score

OA osteoarthritis

ROM Range of motion

SRP Standardized rehabilitation program

Declarations

Ethical approval

Ethic Committee of Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona (Spain) approved project ref. PR180/19 (code PRCSA0117). This study was performed in line with the principles of the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all individual participants included in the study.
Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interest

Each author certifies that he has no commercial associations that might pose a conflict of interest in connection with the submitted article.

Funding

No funding was received for conducting this study.

Author Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SGG, ABR, ALP, HB, JEFB, JIE, JLB and XP. The first draft of the manuscript was written by SGG and ABR with the supervision by XP, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors wish to acknowledge Ms. Marta Banqué, for her participation in the statistical analysis of the study; Ms. Saron Bosch and Ms. Sara Torres for their help in the post-operative physiotherapy treatment of patients; Mr. Chris McKinnell, providing language help; Ms. Angela Zumel for their critical revision of manuscript.

References

1. Noble PC, Gordon MJ, Weiss JM, Reddix RN, Conditt MA, Mathis KB. Does total knee replacement restore normal knee function? Clin Orthop 2005:157–65. https://doi.org/10.1097/01.blo.0000150130.03519.fb.
2. Carr AJ, Robertsson O, Graves S, Price AJ, Arden NK, Judge A, et al. Knee replacement. Lancet Lond Engl 2012;379:1331–40. https://doi.org/10.1016/S0140-6736(11)60752-6.
3. Rowe PJ, Myles CM, Walker C, Nutton R. Knee joint kinematics in gait and other functional activities measured using flexible electrogoniometry: how much knee motion is sufficient for normal daily life? Gait Posture 2000;12:143–55. https://doi.org/10.1016/s0966-6362(00)00060-6.
4. Leach W, Reid J, Murphy F. Continuous passive motion following total knee replacement: a prospective randomized trial with follow-up to 1 year. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 2006;14:922–6. https://doi.org/10.1007/s00167-006-0042-9.

5. Maniar RN, Baviskar JV, Singhi T, Rathi SS. To use or not to use continuous passive motion post-total knee arthroplasty presenting functional assessment results in early recovery. J Arthroplasty 2012;27:193–200.e1. https://doi.org/10.1016/j.arth.2011.04.009.

6. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. J Bone Joint Surg Am 1980;62:1232–51.

7. Salter RB. Continuous passive motion: from origination to research to clinical applications. J Rheumatol 2004;31:2104–5.

8. Bennett LA, Brearley SC, Hart JAL, Bailey MJ. A comparison of 2 continuous passive motion protocols after total knee arthroplasty: a controlled and randomized study. J Arthroplasty 2005;20:225–33. https://doi.org/10.1016/j.arth.2004.08.009.

9. Beaupré LA, Davies DM, Jones CA, Cinats JG. Exercise combined with continuous passive motion or slider board therapy compared with exercise only: a randomized controlled trial of patients following total knee arthroplasty. Phys Ther 2001;81:1029–37.

10. Brosseau L, Milne S, Wells G, Tugwell P, Robinson V, Casimiro L, et al. Efficacy of continuous passive motion following total knee arthroplasty: a metaanalysis. J Rheumatol 2004;31:2251–64.

11. Chen L-H, Chen C-H, Lin S-Y, Chien S-H, Su JY, Huang C-Y, et al. Aggressive continuous passive motion exercise does not improve knee range of motion after total knee arthroplasty. J Clin Nurs 2013;22:389–94. https://doi.org/10.1111/j.1365-2702.2012.04106.x.

12. He ML, Xiao ZM, Lei M, Li TS, Wu H, Liao J. Continuous passive motion for preventing venous thromboembolism after total knee arthroplasty. Cochrane Database Syst Rev 2012;1:CD008207. https://doi.org/10.1002/14651858.CD008207.pub2.

13. Maloney WJ, Schurman DJ, Hangen D, Goodman SB, Edworthy S, Bloch DA. The influence of continuous passive motion on outcome in total knee arthroplasty. Clin Orthop 1990:162–8.

14. Pope RO, Corcoran S, McCaul K, Howie DW. Continuous passive motion after primary total knee arthroplasty. Does it offer any benefits? J Bone Joint Surg Br 1997;79:914–7. https://doi.org/10.1302/0301-620x.79b6.7516.

15. Ritter MA, Gandolf VS, Holston KS. Continuous passive motion versus physical therapy in total knee arthroplasty. Clin Orthop 1989:239–43.

16. Lau SK, Chiu KY. Use of continuous passive motion after total knee arthroplasty. J Arthroplasty 2001;16:336–9. https://doi.org/10.1054/arth.2001.21453.

17. Davies DM, Johnston DWC, Beaupre LA, Lier DA. Effect of adjunctive range-of-motion therapy after primary total knee arthroplasty on the use of health services after hospital discharge. Can J Surg J Can Chir 2003;46:30–6.
18. Denis M, Moffet H, Caron F, Ouellet D, Paquet J, Nolet L. Effectiveness of continuous passive motion and conventional physical therapy after total knee arthroplasty: a randomized clinical trial. Phys Ther 2006;86:174–85.

19. Hewitt B, Shakespeare D. Flexion vs. extension: a comparison of post-operative total knee arthroplasty mobilisation regimes. The Knee 2001;8:305–9. https://doi.org/10.1016/s0968-0160(01)00110-7.

20. Alkire MR, Swank ML. Use of inpatient continuous passive motion versus no CPM in computer-assisted total knee arthroplasty. Orthop Nurs 2010;29:36–40. https://doi.org/10.1097/NOR.0b013e3181c8ce23.

21. Chiarello CM, Gundersen L, O’Halloran T. The effect of continuous passive motion duration and increment on range of motion in total knee arthroplasty patients. J Orthop Sports Phys Ther 1997;25:119–27. https://doi.org/10.2519/jospt.1997.25.2.119.

22. Harvey LA, Brosseau L, Herbert RD. Continuous passive motion following total knee arthroplasty in people with arthritis. Cochrane Database Syst Rev 2014:CD004260. https://doi.org/10.1002/14651858.CD004260.pub3.

23. Vince KG, Kelly MA, Beck J, Insall JN. Continuous passive motion after total knee arthroplasty. J Arthroplasty 1987;2:281–4. https://doi.org/10.1016/s0883-5403(87)80060-8.

24. Ververeli PA, Sutton DC, Hearn SL, Booth RE, Hozack WJ, Rothman RR. Continuous passive motion after total knee arthroplasty. Analysis of cost and benefits. Clin Orthop 1995:208–15.

25. Boese CK, Weis M, Phillips T, Lawton-Peters S, Gallo T, Centeno L. The efficacy of continuous passive motion after total knee arthroplasty: a comparison of three protocols. J Arthroplasty 2014;29:1158–62. https://doi.org/10.1016/j.arth.2013.12.005.

26. Goletz TH, Henry JH. Continuous passive motion after total knee arthroplasty. South Med J 1986;79:1116–20. https://doi.org/10.1097/00007611-198609000-00019.

27. Torres-Claramunt R, Gil-González S, Leal J, Hinarejos P, Pelfort X, Puig L, et al. A new score assessing the surgical wound of a TKA and its relation with pain, infection and functional outcome. Acta Orthop Belg 2015;81:713–9.

28. Yang X, Li G-H, Wang H-J, Wang C-Y. Continuous Passive Motion After Total Knee Arthroplasty: A Systematic Review and Meta-analysis of Associated Effects on Clinical Outcomes. Arch Phys Med Rehabil 2019;100:1763–78. https://doi.org/10.1016/j.apmr.2019.02.001.

29. Mclnnes J, Larson MG, Daltroy LH, Brown T, Fossel AH, Eaton HM, et al. A controlled evaluation of continuous passive motion in patients undergoing total knee arthroplasty. JAMA 1992;268:1423–8. https://doi.org/10.1001/jama.268.11.1423.

30. Lenssen TAF, van Steyn MJA, Crijns YHF, Waltjé EMH, Roost GM, Geesink RJT, et al. Effectiveness of prolonged use of continuous passive motion (CPM), as an adjunct to physiotherapy, after total knee arthroplasty. BMC Musculoskelet Disord 2008;9:60. https://doi.org/10.1186/1471-2474-9-60.

31. Liao C-D, Tsauo J-Y, Huang S-W, Chen H-C, Chiu Y-S, Liou T-H. Preoperative range of motion and applications of continuous passive motion predict outcomes after knee arthroplasty in patients with
32. Bade MJ, Kittelson JM, Kohrt WM, Stevens-Lapsley JE. Predicting functional performance and range of motion outcomes after total knee arthroplasty. Am J Phys Med Rehabil 2014;93:579–85. https://doi.org/10.1097/PHM.0000000000000065.

33. Chaudhry H, Bhandari M. Cochrane in CORR (®): Continuous Passive Motion Following Total Knee Arthroplasty in People With Arthritis (Review). Clin Orthop 2015;473:3348–54. https://doi.org/10.1007/s11999-015-4528-y.

34. Joshi RN, White PB, Murray-Weir M, Alexiades MM, Sculco TP, Ranawat AS. Prospective Randomized Trial of the Efficacy of Continuous Passive Motion Post Total Knee Arthroplasty: Experience of the Hospital for Special Surgery. J Arthroplasty 2015;30:2364–9. https://doi.org/10.1016/j.arth.2015.06.006.

35. O'Driscoll SW, Giori NJ. Continuous passive motion (CPM): Theory and principles of clinical application. J Rehabil Res Dev 2000.

36. Montgomery F, Eliasson M. Continuous passive motion compared to active physical therapy after knee arthroplasty: similar hospitalization times in a randomized study of 68 patients. Acta Orthop Scand 1996;67:7–9. https://doi.org/10.3109/17453679608995599.

37. Johnson DP. The effect of continuous passive motion on wound-healing and joint mobility after knee arthroplasty. J Bone Joint Surg Am 1990;72:421–6.

38. Salter RB. The biologic concept of continuous passive motion of synovial joints. The first 18 years of basic research and its clinical application. Clin Orthop 1989:12–25.

Tables

Table 1

Patient demographic and pre-operative data.
Variable	CPM group (n=105)	No-CPM group (n=115)	P Value
Age (years)	74.23 (6.79)	73.33 (6.9)	0.347
Gender (F:M)	67:38	70:45	0.895
Pre-op mobility (*)			
- Extension	3.11 (4.29)	3.53 (5.63)	0.540
- Flexion	110.48 (11.92)	109.21 (12.32)	0.445
- Full ROM	107.38 (13.28)	105.67 (15.43)	0.393
Pre-op VAS	4.4 (2.4)	3.9 (2.4)	0.204

Values shown are mean (SD) p value significant at 0.05.

Table 2

Comparison of postoperative knee mobility in degrees in CPM and no-CPM groups.
Follow-Up	CPM group	No-CPM group	P Value
Day 1			
- Extension	7.48 (8.51)	9.14 (8.60)	0.164
- Flexion	77.83 (13.32)	74.27 (16.05)	0.083
- Full ROM	70.34 (13.62)	64.53 (17.04)	0.007
Day 2			
- Extension	4.52 (5.93)	5.83 (6.57)	0.130
- Flexion	86.59 (11.16)	84.33 (11.90)	0.158
- Full ROM	82.07 (11.93)	77.76 (15.01)	0.023
Day 3			
- Extension	1.11 (3.29)	2.7 (5.33)	0.064
- Flexion	91.38 (9.40)	92.23 (10.06)	0.769
- Full ROM	89.65 (13.75)	86.08 (15.49)	0.088
Week 2			
- Extension	0.84 (3.19)	1.90 (4.99)	0.113
- Flexion	97.01 (10.40)	94.89 (12.10)	0.180
- Full ROM	94.57 (11.34)	88.62 (20.20)	0.010
Week 6			
- Extension	0.31 (1.65)	0.54 (2.42)	0.484
- Flexion	109.70 (10.35)	108.72 (11.84)	0.530
- Full ROM	105.91 (18.61)	103.08 (21.90)	0.315
Week 12			
- Extension	1.02 (2.74)	2.05 (4.16)	0.060
- Flexion	116.17 (9.19)	115.44 (10.77)	0.603
- Full ROM	112.89 (18.71)	109.19 (24.75)	0.225
Week 24			
- Extension	0.65 (2.51)	1.23 (3.43)	0.175
- Flexion	121.39 (8.92)	118.73 (9.92)	0.066
- Full ROM	118.73 (19.59)	112.07 (27.08)	0.056
Values shown are mean (SD) p value significant at 0.05.

Table 3
Distribution of patients relative to the SWAS and comparison of CPM and no-CPM groups.
SWAS	CPM group	No-CPM group	P Value
Swelling	0.157		
- 0	27 (26.5%)	17 (15.8%)	
- 1	57 (55.9%)	70 (64.8%)	
- 2	18 (17.6%)	21 (19.4%)	
Erythema	0.463		
- 0	95 (93.1%)	97 (89.8%)	
- 1	7 (6.9%)	11 (10.2%)	
- 2	0	0	
Haematoma	0.028		
- 0	58 (56.9%)	44 (40.8%)	
- 1	36 (35.3%)	46 (42.6%)	
- 2	8 (7.8%)	18 (16.6%)	
Drainage	0.558		
- 0	68 (66.7%)	73 (67.6%)	
- 1	28 (27.5%)	25 (23.2%)	
- 2	6 (5.9%)	10 (9.2%)	
Blisters	0.175		
- 0	98 (96.1%)	98 (90.7%)	
- 1	2 (2%)	8 (7.4%)	
- 2	2 (2%)	2 (1.9%)	
TOTAL	0.289		
- 0	11 (10.8%)	5 (4.6%)	
- 1	36 (35.3%)	29 (26.9%)	
- 2	25 (24.5%)	34 (31.5%)	
- 3	12 (11.8%)	16 (14.8%)	
- 4	12 (11.8%)	11 (10.2%)	
- 5	3 (2.9%)	7 (6.5%)	
- 6	2 (2%)	4 (3.7%)	
	- 7	-	2 (1.9%)
----	-----	---	----------
- 8	1 (1%)	-	
- 9	-	-	
- 10	-	-	

SWAS, surgical wound aspect scale.

Values shown are number and percentage of patients for each parameter and score level. \(P \) value significant at 0.05.

Table 4

Comparison of post-operative pain in CPM and no-CPM groups.

VAS	CPM group	No-CPM group	\(P \) Value
- Day 1	6.4 (1.9)	6.5 (2.0)	0.773
- Day 2	5.6 (1.8)	5.8 (1.8)	0.497
- Day 3	4.9 (1.7)	5.0 (1.7)	0.831
- Week 2	4.4 (1.9)	4.4 (1.8)	0.997
- Week 6	2.3 (2.0)	2.4 (2.0)	0.545
- Week 12	1.1 (1.6)	1.1 (1.9)	0.914
- Week 24	0.5 (1.1)	0.6 (1.3)	0.598

VAS, visual analogue scale (0 to 10).

Values shown are mean (SD) \(p \) value significant at 0.05.

Figures
Figure 1

Flowchart of the participants recruitment
Figure 2

Evolution of knee full ROM through follow-up in CPM and no-CPM groups.
Figure 3

Evolution of knee flexion through follow-up in CPM and no-CPM groups.