Absence of an appreciable iron isotope effect on the transition temperature of the optimally doped SmFeAsO$_{1-y}$ superconductor

Parasharam M. Shirage1,†, Kiuchi Miyazawa1,2, Kunihiro Kihou1, Hijiri Kito1,3, Yoshiyuki Yoshida1, Yasumoto Tanaka1, Hiroshi Eisaki1,3, Akira Iyo1,2,3,*

1 National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan

2 Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-3510, Japan

3 JST, Transformative Research-Project on Iron Pnictides (TRIP), 5, Sanbancho, Chiyoda, Tokyo 102-0075, Japan

†E-mail: paras-shirage@aist.go.jp

*E-mail: iyo-akira@aist.go.jp
Abstract:

We report the iron (Fe) isotope effect on the transition temperature \(T_c \) in the oxygen-deficient SmFeAsO\(_{1-y}\), a 50 K-class Fe-based superconductor. For the optimally-doped samples with \(T_c = 54 \) K, change of the Fe average atomic mass \((M_{Fe}) \) causes a negligibly small shift in \(T_c \), with the Fe isotope coefficient \((\alpha_{Fe}) \) as small as -0.024 \(\pm \) 0.015 (where \(\alpha_{Fe} = -d\ln T_c / d\ln M_{Fe} \)). This result contrasts with the finite, inverse isotope shift observed in optimally-doped (Ba,K)Fe\(_2\)As\(_2\), indicating that the contribution of the electron-phonon interaction markedly differs between these two Fe-based high-\(T_c \) superconductors.

KEYWORDS: isotope effect, high-\(T_c \) superconductivity, iron-based superconductor, SmFeAsO\(_{1-y}\), high-pressure synthesis

PACS numbers: 74.62.Bf, 74.25.Kc, 74.70.Dd
High-T_c exceeding 50 K realized in the Fe-based superconductors has generated the worldwide extensive investigations towards discovering new materials with related structures, as well as towards elucidating their superconducting mechanism. With respect to the latter, the immediate question to be addressed is whether one can understand the high-T_c superconductivity within the conventional framework, namely, the pairing of electrons mediated by the electron-phonon interaction, or more exotic mechanism should be introduced to account for the high-T_c superconductivity.

It is well known that the isotope effect on T_c has played a crucial role in establishing the basic concept of phonon-mediated superconductivity. In the framework of Bardeen-Cooper-Schrieffer’s (BCS) theory, the isotope effect coefficient α, defined by the relation $\alpha = -d\ln T_c / d\ln M$, is equal to 0.5 (in the case of compound superconductors, the sum of all isotope coefficients for the individual elements, $\alpha = \Sigma \alpha_i$, where $\alpha_i = -d\ln T_c / d\ln M_i$, becomes 0.5), which is indeed observed in many ‘conventional’ superconductors, such as elemental or binary alloy superconductors [1]. One example of such cases is MgB$_2$, a 38 K high-T_c superconductor, in which boron (B) isotope exchange changes its T_c by 1 K, corresponding to $\alpha_B = 0.26(3)$. The result clearly demonstrates that the superconductivity in MgB$_2$ is indeed mediated by the electron-phonon interaction [2]. On the other hand, in the optimally-doped cuprate superconductors, the lack of the oxygen isotope effect [3] has led the researchers to search for non-phonon-mediated mechanisms as a source of high-T_c superconductivity. (It should be noted that the lack of the isotope effect itself does not necessarily imply the non-phonon mediated superconductivity. Indeed, several transition elements superconductors like Ru and Os
show zero isotope coefficients, which are explained by strong electron-phonon coupling [4].

In the Fe-based superconductors, their essential structural unit is the Fe-As plane. Accordingly, isotope experiments on the Fe or As site should provide crucial information to sort out the role of electron-phonon interaction in these systems. Based on this motivation, Fe isotope experiments were carried out by two groups. (Since As has only one stable isotope, As isotope experiment is practically impossible.) Both results indicated the finite isotope shift in T_c, although they contradict with each other. Liu et al. carried out 54Fe isotope exchange on SmFeAs(O,F) ($T_c \sim 42$ K) and (Ba,K)Fe$_2$As$_2$ ($T_c \sim 38$ K), and reported large isotope coefficients $\alpha_{Fe} = 0.34$ and 0.37, respectively, which are comparable with the values expected from the BCS theory [5]. On the other hand, Shirage et al. carried out 54Fe and 57Fe isotope exchange on optimally-doped (Ba,K)Fe$_2$As$_2$ ($T_c \sim 38$ K) and reported that heavier Fe isotope substitution results in increasing T_c, yielding the negative $\alpha_{Fe} = -0.18(3)$, referred to as “inverse” isotope effect [6]. The reason for the discrepancy is yet unclear. It may suggest that the isotope effect significantly depends on the subtle difference among the samples, such as carrier concentration, synthesis technique, lattice strain, etc.

In any case, results on the 40 K-class Fe-based superconductors indicate finite α_{Fe}, strongly suggesting that the electron-phonon interaction exists and plays either positive [5] or negative [6] role. The natural question to be addressed is, whether the Fe isotope shift on T_c also occurs in other Fe-based superconductors, in particular those with higher T_c’s. It is worth recalling that in the case of cuprates, the oxygen isotope effect is negligibly small in the optimally-doped samples, while the sizable isotope shift is observed for the under- or over-doped samples, as well as for the lower-T_c materials [7-9]. There is also a possibility that α_{Fe} of the Fe-based
superconductors exhibit significant material- and doping-dependence. Along the line of the reasoning, in this study we have examined the Fe isotope effect on a 50 K-class SmFeAsO$_{1-y}$ superconductor.

In order to evaluate the Fe isotope effect, one has to prepare the twin samples with different Fe isotopic mass under exactly the same conditions and then precisely compare their T_c’s. It is technically challenging since the shift in T_c is estimated to be as small as 1.4 K, even if we assume the full isotope effect ($\alpha_{Fe} \sim 0.5$) when we substitute heavier 57Fe by lighter 54Fe. Moreover, T_c’s of the LnFeAsO-based system strongly depend on their carrier concentration, which is changed by the amount of fluorine substitutions (x) in the case of LnFeAsO$_{1-x}$F$_x$, or by the amount of oxygen deficiencies (y) for LnFeAsO$_{1-y}$. It is critically important that the carrier concentrations of the twin samples are exactly the same and optimally-doped. In this regard, before carrying out the isotope exchange experiments, it is necessary to establish the relationship between y and T_c, and to find out the optimal carrier concentrations.

In this study, polycrystalline samples of oxygen-deficient SmFeAsO$_{1-y}$ were prepared by high-pressure synthesis method as employed in our previous studies [10-12]. The starting materials were Fe, 54Fe$_2$O$_3$, 57Fe$_2$O$_3$, As, Sm(OH)$_3$ and a precursor of SmAs. (The role of Sm(OH)$_3$ addition is described below.) For the isotope substitution, we employed 57Fe$_2$O$_3$ and 54Fe$_2$O$_3$ powders, which were obtained by fully oxidizing the 57Fe enriched powder (ISOFLEX USA, enrichment 95.36%, average atomic mass 56.94, Fe purity 99.99%) and 54Fe enriched powder (ISOFLEX USA, enrichment 99.86%, average atomic mass 53.94, Fe purity 99.99%), respectively.
As a source of Fe, we used \(^{56}\text{Fe}\) (natural abundance, average atomic mass = 55.85) powder instead of using the raw (as-purchased) \(^{57}\text{Fe}\) and \(^{54}\text{Fe}\) metal powders, because the powders were partially oxidized from the beginning and the degree of oxidization were different from powder to powder. Even small oxidation of the starting elements increases the oxygen content \(y\) in the synthesized materials, resulting in the shift of \(T_c\) not due to the isotope exchange but due to the change in carrier concentration.

The materials of \(^{56}\text{Fe}, \text{As}, \text{Sm(OH)}_3\) and \(\text{SmAs}\) were mixed and ground well using an agate mortar, and then divided into two equal parts. Then, the powder was mixed with the \(^{57}\text{Fe}_2\text{O}_3\) (or \(^{54}\text{Fe}_2\text{O}_3\)) powders and ground again, then pressed into a pellet. These processes were carried out inside a glove box filled with dried \(\text{N}_2\) gas. The two pellets were placed in a BN crucible and heated at about 1100°C under a pressure of about 3.5 GPa for 2 h. The sample assembly used for the sample synthesis is shown in the inset of Fig. 2. Powder X-ray diffraction (XRD) patterns of the samples were measured using CuK\(_\alpha\) radiation. The dc magnetic susceptibility was measured using a SQUID magnetometer (Quantum Design MPMS) under a nominal magnetic field of 5 Oe. The resistivity of the twin samples was measured simultaneously by a four-probe method using Quantum Design PPMS.

Introduction of the oxygen deficiency \(y\) in \(\text{LnFeAsO}_{1-y}\) is reflected as the contraction of the \(a\)- and \(c\)-axis lattice parameters [13]. In Ref. [14], we reported that the addition of rare-earth hydroxide to the starting composition causes further contraction of the lattice parameters. Fig. 1 represents the \(a\)-parameter dependence of \(T_c\) in \(\text{SmFeAsO}_{1-y}\) and hydroxide added \(\text{SmFeAsO}_{1-y}(\text{OH})_x\). It shows that \(T_c\) changes quite sensitively with the \(a\)-parameter. For the most underdoped samples with long \(a\)-axis length of 3.928 Å, \(T_c\) is as low as 40 K. By introducing oxygen deficiency \(y\), \(T_c\)
increases monotonously up to 54 K where the a-parameter becomes 3.915Å, the minimum length that we can reach. Then, by introducing Sm(OH)$_3$, additional decrease in the a-parameter is realized. Resultantly, a broad, flat-topped peak in T_c (~54 K) shows up at around $a = 3.913$ Å. Existence of the peak in T_c implies that there exists the ‘optimal’ carrier concentration in this system, as in other Fe-based superconductors such as (Ba,K)Fe$_2$As$_2$. The existence of this flat-top peak in T_c allows us to extract the subtle change in T_c caused by the isotope exchange, since the change in T_c due to the fluctuation of carrier concentration is minimal around this broad peak.

Having established the ideal synthesis conditions for the isotope experiments, we synthesized the two samples with different Fe isotopes under exactly the same conditions. The nominal composition of the sample is SmFeAsO$_{0.77}$H$_{0.12}$, and 43% of Fe in the samples is exchanged by the 57Fe or 54Fe isotopes. The resultant average atomic masses of Fe (M_{Fe}) are 56.32 and 55.02 for the samples synthesized using the 57Fe$_2$O$_3$ and 54Fe$_2$O$_3$ powders, respectively. If one assumes the isotope coefficient α_{Fe} to be 0.5, the shift in T_c is 0.60 K, which is large enough to be detected experimentally.

XRD patterns show that the synthesized samples are single-phases within the experimental uncertainty (impurity phases less than about 5% can not be detected) and the lattice parameters of the two samples synthesized at the same time are identical to each other. Fig. 2 shows the XRD patterns of the representative sample set (S1) as a typical example. The lattice parameters for the samples with the M_{Fe} of 56.32 and 55.02 are $a = 3.9110(2)$ Å, $c = 8.4428(8)$ Å and $a = 3.9111(2)$ Å, $c = 8.4440(8)$ Å, respectively. The a-parameters of both samples correspond to the lattice spacing at which T_c shows the maximum value in Fig. 1.
Fig. 3 (a) and (b) represents the temperature (T) dependence of the field-cooled (FC) magnetic susceptibility (χ) for the two sample sets, S_1 and S_2, respectively. The magnitudes of χ at 5 K are around -0.01 emu/g, corresponding to the superconducting volume fraction of 100% without demagnetizing field correction. In Fig. 3, the magnitude of χ is normalized at their 5 K (-1) and 56 K (0) values for the sake of exact comparison. Sharp superconducting transition allows us to define the accurate T_c value, as indicated in the inset of Fig. 3. Shifts in T_c for the sample sets S_1 and S_2 are at most -0.05 K and -0.01 K, which correspond to $\alpha_{Fe} = -0.04$ and -0.01, respectively.

Fig. 4 shows T dependent resistivity of the sample set S_2. Here again, the magnitude of the resistivity is normalized using the 300 K value. The resistivity data are almost overlapped with each other, indicative of the same carrier concentrations of the two samples. T_c’s of the samples are determined by the onset of resistive transition, which are 54.15 K and 54.10 K for $M_{Fe} = 56.32$ and 55.02, respectively, as shown in the inset of Fig. 4. The estimated α_{Fe} is -0.04, which is comparable with that obtained from χ.

Table I summarizes the M_{Fe} dependence of T_c determined from χ for five samples sets S_1 - S_5. The absolute value of T_c is highly reproducible (54.02 K ± 0.13 K) and the difference in T_c caused by the isotope substitution is at most -0.05 K, yielding the average α_{Fe} to be -0.024 ± 0.015. As mentioned, if we assume α_{Fe} as 0.5, the isotope shift is expected to be 0.6 K, which is one order of magnitude larger than the value obtained from the experiments. The results presented here evidently demonstrate that α_{Fe} is very small in the optimally doped, highest T_c SmFeAsO$_{1-y}$ samples. Naively thinking, the negligibly small α_{Fe} may indicate that the superconductivity in this material is not caused by the electron-phonon interaction.
At this moment there still exists the possibility that there is a finite isotope effect at As site.

Our result is apparently in contradictory with a large $\alpha_{Fe} = 0.34$ on SmFeAsO$_{0.85}$F$_{0.15}$ ($T_c = 41$ K) reported by Liu et al. [5]. Giving lower T_c’s of their samples in comparison to the present ones, their samples are probably located at the under-doped region and the apparent difference might arise from the different carrier concentration of the samples. If this is the case, this situation resembles the cuprate superconductors in which the oxygen isotope effect is negligibly small in the optimal doped samples, while that in the under- or over-doped one is large, almost close to 0.5 [7-9].

Here we attempt to analyze the α_{Fe} of SmFeAsO$_{1-y}$ and (Ba,K)Fe$_2$As$_2$ by taking account of the possible competition between the contribution from phonons and antiferromagnetic (AF) spin fluctuations, as we have presented in the previous paper to explain the inverse isotope effect in (Ba,K)Fe$_2$As$_2$ [6,15]. According to this model, T_c and α are described as:

\[
k_B T_c = 1.13 \omega_{ph} \exp\left(-\frac{1}{\lambda_{ph} + \lambda_{AF}^*}\right) \quad ----(1)
\]

where \[
\lambda_{AF}^* = \frac{\lambda_{AF}}{1 - \lambda_{AF} \ln\left(\frac{\omega_{AF}}{\omega_{ph}}\right)} \quad ----(2)
\]

\[
\alpha = \frac{1}{2} \left(1 - \left(\frac{\lambda_{AF}^*}{\lambda_{ph} + \lambda_{AF}^*}\right)^2\right) \quad ----(3)
\]

where λ_{AF}, ω_{AF}, λ_{ph}, ω_{ph} are the dimensionless coupling constants and characteristic energies of the AF spin fluctuation and phonon, respectively. λ_{ph} is defined by $\lambda_{ph}^{\text{in}} - \lambda_{ph}^{\text{inter}}$, where λ_{ph}^{in} and $\lambda_{ph}^{\text{inter}}$ are the dimensionless
electron-phonon coupling constants for intraband and interband pair hoppings, respectively. In the present calculation we provided [16] the value of $\omega_{ph} = 350$ K. The λ_{AF}^* and λ_{ph} deduced from eqs. (1) and (3) by using the observed T_c and α_{Fe} values are listed in Table II.

One can see that the values of λ_{AF}^* are almost the same for both systems at their optimal T_c. Within the present framework, the higher T_c for SmFeAsO$_{1-y}$ in comparison to (Ba,K)Fe$_2$As$_2$ is ascribed to the smaller magnitude of λ_{ph}, namely, the larger (negative) contribution of the intraband electron-phonon coupling, rather than the larger λ_{AF}^*. The lack of the isotope effect in the optimal doped SmFeAsO$_{1-y}$ implies that the $\lambda_{ph}^{\text{interband}}$ is comparable to the $\lambda_{ph}^{\text{intraband}}$. According to this model, T_c can be enhanced if the intraband electron-phonon interaction works cooperatively with the AF spin fluctuation ($\lambda_{ph}^{\text{intraband}} > \lambda_{ph}^{\text{interband}}$).

In summary, we have studied the Fe isotope effect on T_c in the optimally-doped SmFeAsO$_{1-y}$ ($T_c = 54$ K). Change of the M_{Fe} yields a negligibly small shift in T_c, with its α_{Fe} as small as -0.024 ± 0.015. This result indicates that α_{Fe} strongly depends on the system and carrier concentrations. To clarify the issue, it is desirable to evaluate α_{Fe} as a function of doping level for Fe-based systems in the future.

This work was supported by a Grant-in-Aid for Specially Promoted Research (20001004) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and Mitsubishi Foundation.
References:

[1] C. A. Reynolds, B. Serin, L. B. Nesbitt, Phys. Rev. 84, 691 (1951).

[2] S. L. Bud’ko et al., Phys. Rev. Lett. 86, 1877 (2001).

[3] B. Batlogg et al., Phys. Rev. Lett. 58, 2333 (1987).

[4] T. H. Geballe, B. T. Matthias, G. W. Hull, Jr., and E. Corenzwit, Phys. Rev. Lett. 6, 275 (1961); T. H. Geballe, B. T. Matthias, IBM J. Res. Dev. 6, 256 (1962).

[5] R. H. Liu et al., Nature 459, 64 (2009).

[6] P. M. Shirage et al., Phys. Rev. Lett. 103, 257003 (2009).

[7] D. E. Morris et al. Phys Rev B 37, 5936 (1988).

[8] D. J. Pringle, G. V. M. Williams, J. L. Tallon, Phys. Rev. B 62, 12527 (2000).

[9] R. Khasanov et al., Phys. Rev. Lett. 101, 77001 (2008).

[10] H. Kito, H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn. 77, 63707 (2008).

[11] K. Miyazawa et al., J. Phys. Soc. Jpn. 77(C), 127 (2008); P. M. Shirage et al., Phys. Rev. B 78, 172503 (2008).

[12] P. M. Shirage et al., Physica C 469, 355 (2009).

[13] K. Miyazawa et al., J. Phys. Soc. Jpn. 78, 034712 (2009).

[14] K. Miyazawa et al., Appl. Phys. Lett. 96, 072514 (2010).

[15] T. Yanagisawa et al., J. Phys. Soc. Jpn. 78, 094718 (2008).

[16] S. C. Zhao et al., Supercond. Sci. Technol. 22, 015017 (2009).
Table I. The Fe average atomic mass (M_{Fe}) dependence of the T_c determined from χ for five sample sets $S1 - S5$.

Sample sets	M_{Fe}	$T_c (\chi)$ (K)	$\Delta T_c (\chi)$ (K)	α_{Fe}
$S1$	55.02	54.02	-0.05	-0.040
	56.32	54.07		
$S2$	55.02	53.79	-0.01	-0.008
	56.32	53.80		
$S3$	55.02	53.96	-0.02	-0.016
	56.32	53.98		
$S4$	55.05	54.10	-0.02	-0.016
	56.31	54.12		
$S5$	55.02	54.13	-0.05	-0.040
	56.32	54.18		

Average α_{Fe} -0.024 ± 0.015
Table II. Deduced λ_{AF} and λ_{ph} from eqs. (1) and (3) using the observed T_c and α_{Fe} values for (Ba,K)Fe$_2$As$_2$ and SmFeAsO$_{1-y}$.

	Observed	Provided	Deduced			
	T_c (K)	α_{Fe}	ω_{ph} (K)	$\lambda_{ph}/\lambda_{AF}$	λ_{AF}	λ_{ph}
(Ba,K)Fe$_2$As$_2$	38	-0.18 ± 0.03	350	-0.14 ± 0.02	0.50 ± 0.01	-0.07 ± 0.01
SmFeAsO$_{1-y}$	54	-0.02 ± 0.01	350	-0.02 ± 0.01	0.51 ± 0.01	-0.01 ± 0.005
Figure captions

Figure 1. Dependence of T_c on the lattice parameter a in oxygen-deficient SmFeAsO$_{1-y}$ and hydroxide added SmFeAsO$_{1-y}$(OH)$_x$.

Figure 2. X-ray diffraction patterns of the sample set S1 with M_{Fe} of 55.02 and 56.32 synthesized simultaneously under high pressure. The inset shows the sample cell assembly for the high-pressure synthesis method.

Figure 3. Temperature (T) dependence of the field-cooled (FC) susceptibility (χ) for (a) sample set S1 and (b) sample set S2 normalized at 5 K and 56 K. Inset shows the T dependence of χ near T_c. The Fe isotope coefficient is estimated to be $\alpha_{Fe} = -0.04$ and -0.01 for the S1 and S2, respectively.

Figure 4. Temperature (T) dependence of resistivity (ρ) of the sample set S2 with M_{Fe} of 55.02 and 56.32. The inset shows the T dependence of ρ near T_c. The Fe isotope coefficient is estimated to be $\alpha_{Fe} = -0.04$.
Figure 1
Figure 2

\[M_{Fe} = 55.02 \]
\[a = 3.911 \text{ Å}, \ c = 8.443 \text{ Å} \]

\[M_{Fe} = 56.32 \]
\[a = 3.911 \text{ Å}, \ c = 8.444 \text{ Å} \]
Figure 3
Figure 4