A systematic literature review on attribute independent assumption of Naïve Bayes: research trend, datasets, methods and frameworks

Ahmad Ilham¹, Laelatul Khikmah², Akhmad Qahslim³, Ida Bagus Ary Indra Iswara⁴, Folkes E Laumal⁵ and Robbi Rahim⁶

¹Informatics Department, Universitas Muhammadiyah Semarang, Semarang, Indonesia
²Akademi Statistika Muhammadiyah, Semarang, Indonesia
³Department of Information System, Universitas Al Asyariah Mandar, Polewali Mandar, Indonesia
⁴Informatics Engineering Department, STIMIK STIKOM Indonesia, Denpasar, Bali, Indonesia
⁵Departement of Electrical Engineering, Politeknik Negeri Kupang, Indonesia
⁶Sekolah Tinggi Ilmu Manajemen Sukma, Medan, Indonesia

*ahmadilham@unimus.ac.id

Abstract. Recent studies of attribute independent assumptions on Naïve Bayes (NB) typically generate data sets, methods and frameworks that enable researchers to focus on development activities in terms of finding solutions to attribute independent issues, thereby enhancing the quality of NB classification and better utilizing resources. Many data sets deal with the NB attribute independence issues and different frameworks, so the overall picture of the independent assumption of the current NB attribute is not yet complete. This literature review aims to identify and analyze the research trends, data sets, methods and frameworks used in the attribute independence assumption research on NB for data classification between 2010 and 2018. The results of this research identified three frameworks that are highly cited and therefore influential in the software defect prediction field. They are Langley and Sage Framework, Friedman et al. Framework, and Wu et al. Framework

1. Introduction

Naïve Bayes (NB) is a Bayes-oriented learning method that is very useful for learning involving high-dimensional data[1]–[3], such as text classification[1], [4]–[6], Searching[7]–[10] and web mining[11]. In general, the Bayesian classification method has a conditional dependency between random variables. This problem is often called the independent assumption of attribute which assumes all independent attributes so that the effect is time consuming because it examines the relationship between all random variables in which this task is a combinatorial optimization task[1]. Alternatively, the NB relaxes the restriction of the dependency structure between attributes by simply assuming that attributes are independent by class labeling. Consequently, examining relationships between attributes is no longer necessary and derivation of NB methods can be linearly measured by training data.

Many data sets are used to solve the problem of NB attribute independence attributes, different methods and frameworks[12]–[14], so a through overview of the assumptions of independent attribute solutions is necessary. This literature review aims to identify and
analyze the research trends, data sets, methods and frameworks used in the study of attribute independent assumptions on NB between 2010 and 2017.

2. Methodology
This paper will use the SLR approach to review research on the Naïve Bayes algorithm with the problem of attribute independence assumptions. Systematic Literature Review (SLR) is a process for identifying, assessing, and interpreting all available research with a view to providing answers to specific RQs[15]. In the guide that Kitchenham has made in 2007[15], the literature review will be compiled based on the Systematic Literature Review.

![Figure 1. Systematic review diagram](image)

The Research Question (RQ) is used to keep current research remains focused. At this stage will use the design criteria of[15], namely Population, Intervention, Comparison, Outcomes, and Context (PICOC). Table 1 shows the PICOC design of the research question. The RQ in the literature review can be seen in Table 2. The mind map of the research question can be seen visually in Figure 2.
Before starting the search, specifying keywords must first be done to increase the likelihood of finding the corresponding related research. In this research will be used source search from:

a. ScienceDirect (scienecedirect.com)
b. IEEE eXplore (ieeexplore.ieee.org)
c. SpringerLink (link.springer.com)

The search keywords will be organized according to the following steps:

a. Identification of keywords from PICOC, mainly from population and intervention
b. Identify the keyword from the problem formulation
c. Identify keywords from relevant titles, abstractions and keywords
d. Identify the keyword from its synonym
e. Construct complex keywords, consisting of multiple keywords using AND and OR boolean. The search keyword used are: “Naïve Bayes” AND “Assuming” AND “Independent” AND “Attribute” OR “Feature”

Searching for publications using several criteria, these criteria can be seen in Table 3. Thereafter, an extraction of the research publication on the assumption of attribute independence on Naïve Bayes required to obtain data relating to RQ is presented in Table 4. Furthermore, we conducted a quality research assessment to help interpret the quality of the findings and to determine the strength of the conclusions described. The last step, synthesize the data in which the purpose of collecting evidence from the survey paper that has been obtained to answer RQ. Synthesis data used in this study, will generally be a narrative synthesis. Some tables and visual tools will be used to support the explanation in this study.

Table 3. Inclusion and Exclusion Criteria

Inclusion Criteria	The study discusses the feature independence assumption on the naïve bayes algorithm
	For research that has two types of journal and conference publications, it will take the type of journal publication
	For duplicate research, the most comprehensive and up-to-date data is available
Exclusion Criteria	The study discusses the independent attribute assumption on naïve bayes method, but does not propose methods to overcome the independent attribute assumption on the naïve bayes method
	Research that does not use strong validation
	Studies not written in English

Figure 2. Mind map research question
3. Result and Discussion
As mentioned earlier, this literature review will be limited to journals published in 2010 through 2018. The time span is to see if research on the feature independence assumption on the Naïve Bayes method is still relevant. In Figure 3 it can be seen that the trend of research from 2010 to 2016 has increased, so it can be concluded that research on the assumption of attribute independence on the Naïve Bayes method is still very relevant to date.’

![Figure 3. Publication per-year](image)

Then in figure 4 can be seen a journal that published a paper about the assumption of feature independence in the Naïve Bayes method. For the record, the journal in question is a journal that publishes papers that have been selected.

![Figure 4. Number of publications per year](image)
Contributing to the research topic on the assumption of attribute independence on the Naïve Bayes method will be investigated and identified. Figure 5 shows the most active researcher on research on the assumption of attribute independence on the Naïve Bayes method. The most influential researchers were Liang Xiao Jiang and followed by Lungan Zhang, and Shasa Wang. In addition it is not the first writer that is Chaoqun Li and Yang Xiang.

![Figure 5. The most active and influential researcher](image)

Figure 6 shows the percentage of total data sets used from 2010 to 2018. 70% of researchers use public datasets and 30% of researchers use private datasets. Public datasets are mostly accessible at the University of California Irvine (UCI) repository[16].

![Figure 6. Dataset Distribution](image)

The main study distribution over the years, and by source, is presented in Figure 7. More research has been published, and more public datasets have been used for research topics assuming attribute independence in naïve bayes since 2011.

![Figure 7. Distribution of private datasets and public datasets](image)
On investigation, there are three strategies method approaches used to overcome the assumption of independence in naive bayes, including: 1) weighted strategies based on single correlation (Mutual Information (MI)[2], Attribute Weighted K-Nearest Neighboard (AWKNN) [17], Hidden Naïve Bayes (HNB)[3], Attribute weighted Naive Bayes using mutual information weighted method (MIWNB)[4], GRWNB [18]), 2) attribute weighting strategy using attribute correlation (like CFSWNB [19], SBC [20], TreeWNB [21], ReFWNB [22], FDNB [23]), and 3) self-adaptive attribute strategy (like NACO [24], DPGA [25], ES [26], SODE [27]and AISWNB [28]).

Some researchers propose several techniques to improve the accuracy of previously proposed classifier to overcome attribute independence on NB. This proposed technique has recently attempted to improve the prediction accuracy of methods generated by the modification and incorporation of several machine learning methods[27], add feature selection method[17]using several methods of optimizing evolutionary calculations[29].

Sixteen different methods have been applied to find the attribute independence solution on the NB method. Of the sixteen methods are found the most frequently used method of Mutual Information (MI)[2], metode Selective Bayes Classifier (SBC) [20], and immune Systems based weighting scheme for Naive Bayes classification (AISWNB) method[28].

4. Conclusion

This literature review aims to identify and analyze the trends, datasets, methods and frameworks used in the topic of attribute independence assumption assumptions on NB between 2010 and 2018. Based on the inclusion and exclusion criteria designed, it shows 71 study studies of attribute independence assumptions on the published NB between January 2010 and December 2018 are investigated in this literature review have been conducted as a review of systematic literature. A systematic literature review is defined as the process of identifying, assessing, and interpreting all available research evidence in order to provide answers to specific research questions.

The results of this study identified three of the most commonly used and influential framework methods in the topic of attribute independence on the NB. They are Menzies et al. Framework, Lessmann et al. Framework, and Song et al. Framework. They are Langley et al [20], Friedman et al [2], and Wu et al [28].

References
[1] J. Hernández-González, I. Inza, and J. A. Lozano, “Learning Bayesian network classifiers from label proportions,” Pattern Recognit., vol. 46, no. 12, pp. 3425–3440, 2013.
[2] N. Friedman, D. Geiger, M. Goldszmidt, G. Provan, P. Langley, and P. Smyth, “Bayesian Network Classifiers *,” Mach. Learn., vol. 29, pp. 131–163, 1997.
[3] L. Jiang, H. Zhang, and Z. Cai, “A novel bayes model: Hidden naive bayes,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 10, pp. 1361–1371, 2009.
[4] L. Jiang, H. Zhang, Z. Cai, and D. Wang, “Weighted average of one-dependence estimators,” J. Exp. Theor. Artif. Intell., vol. 24, no. 2, pp. 219–230, 2012.
[5] P. harliana and R. Rahim, “Comparative Analysis of Membership Function on Mamdani Fuzzy Inference System for Decision Making,” J. Phys. Conf. Ser., vol. 930, no. 1, p. 012029, Dec. 2017.
[6] R. Rahim et al., “Searching Process with Raita Algorithm and its Application,” J. Phys. Conf. Ser., vol. 1007, no. 1, p. 012004, Apr. 2018.
[7] R. Rahim, A. S. Ahmar, A. P. Ardyanti, and D. Nofriansyah, “Visual Approach of Searching Process using Boyer-Moore Algorithm,” J. Phys. Conf. Ser., vol. 930, no. 1, p. 012001, Dec. 2017.

[8] R. Rahim, S. Nurarif, M. Ramadhan, S. Aisyah, and W. Purba, “Comparison Searching Process of Linear, Binary and Interpolation Algorithm,” J. Phys. Conf. Ser., vol. 930, no. 1, p. 012007, Dec. 2017.

[9] R. Rahim, Nurjamiyah, and A. R. Dewi, “Data Collision Prevention with Overflow Hashing Technique in Closed Hash Searching Process,” J. Phys. Conf. Ser., vol. 930, no. 1, p. 012012, Dec. 2017.

[10] R. Rahim, D. Hartama, H. Nurdiyanto, A. S. Ahmar, D. Abdullah, and D. Napitupulu, “Keylogger Application to Monitoring Users Activity with Exact String Matching Algorithm,” J. Phys. Conf. Ser., vol. 954, no. 1, p. 012008, 2018.

[11] C. Zhang, G.-R. Xue, Y. Yu, and H. Zha, “Web-scale classification with naive bayes,” Proc. 18th Int. Conf. World wide web - WWW '09, p. 1083, 2009.

[12] R. S. Wahono, “A Systematic Literature Review of Software Defect Prediction: Research Trends, Datasets, Methods and Frameworks,” J. Softw. Eng., vol. 1, no. 1, pp. 1–16, 2015.

[13] C. Catal and B. Diri, “A systematic review of software fault prediction studies,” Expert Syst. Appl., vol. 36, no. 4, pp. 7346–7354, 2009.

[14] A. S. Ahmar et al., “Modeling Data Containing Outliers using ARIMA Additive Outlier (ARIMA-AO),” J. Phys. Conf. Ser., vol. 954, no. 1, 2018.

[15] B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3,” Engineering, vol. 45, no. 4ve, p. 1051, 2007.

[16] D. Aha et al., “UCI Repository of Machine Learning Database,” 1987.

[17] J. Wu, Z. Cai, S. Zeng, and X. Zhu, “Artificial immune system for attribute weighted Naive Bayes classification,” Proc. Int. Jt. Conf. Neural Networks, no. 61075063, 2013.

[18] H. Zhang and S. Sheng, “Learning weighted naive bayes with accurate ranking,” Proc. - Fourth IEEE Int. Conf. Data Mining, ICDM 2004, pp. 567–570, 2004.

[19] M. A. Hall, “uw-cs-wp-2000-08.pdf,” 2000.

[20] P. Langley and S. Sage, “Induction of Selective Bayesian Classifiers,” Proc. Tenth Int. Conf. Uncertain. Artif. Intell., no. 1990, pp. 399–406, 1994.

[21] M. A. Hall, “A decision tree-based attribute weighting filter for naive Bayes.pdf,” 2006.

[22] M. Robnik-Sikonja and I. Kononenko, “Theoretical and empirical analysis of Relieff and RRelieff,” Mach Learn, vol. 53, pp. 23–69, 2003.

[23] Ö. F. Arar and K. Ayan, “A Feature Dependent Naive Bayes Approach and Its Application to the Software Defect Prediction Problem,” Appl. Soft Comput. J., 2017.

[24] M. Borrotti, G. Minervini, D. De Lucrezia, and I. Poli, “Naïve Bayes ant colony optimization for designing high dimensional experiments,” Appl. Soft Comput. J., pp. 1–10, 2016.

[25] T. Park and K. R. Ryu, “A dual-population genetic algorithm for adaptive diversity control,” IEEE Trans. Evol. Comput., vol. 14, no. 6, pp. 865–884, 2010.

[26] Y. P. Huang, Y. T. Chang, S. L. Hsieh, and F. E. Sandnes, “An adaptive knowledge evolution strategy for finding near-optimal solutions of specific problems,” Expert Syst. Appl., vol. 38, no. 4, pp. 3806–3818, 2011.

[27] J. Wu, S. Pan, X. Zhu, P. Zhang, and C. Zhang, “SODE: Self-Adaptive One-
Dependence Estimators for classification,” *Pattern Recognit.*, vol. 51, pp. 358–377, 2016.

[28] J. Wu, S. Pan, X. Zhu, Z. Cai, P. Zhang, and C. Zhang, “Self-adaptive attribute weighting for Naive Bayes classification,” *Expert Syst. Appl.*, vol. 42, no. 3, pp. 1487–1502, 2015.

[29] J. Lakoumentas, J. Drakos, M. Karakantza, G. Sakellaropoulos, V. Megaloookonomou, and G. Nikiforidis, “Optimizations of the naïve-Bayes classifier for the prognosis of B-Chronic Lymphocytic Leukemia incorporating flow cytometry data,” *Comput. Methods Programs Biomed.*, vol. 108, no. 1, pp. 158–167, 2012.