The 75th anniversary of professor Grigory Isaevich Greisukh

V A Danilov¹, S B Odinokov²

¹Scientific and Technological Center of Unique Instrumentation RAS, Butlerova str. 15, Moscow, Russia, 117342
²Bauman Moscow State Technical University, Bausmanskaya 2nd str. 5, Moscow, Russia, 105005

e-mail: viktordanilov@bk.ru

Abstract. The article briefly describes scientific, pedagogical and organizational achievements of professor Greisukh Grigory Isaevich, Doctor of Engineering Science.

1. Introduction
October 29th, 2018, the head of the Physics and Chemistry Department of Penza State University of Architecture and Construction (PSUAC), Professor Grigory Isaevich Greisukh (Fig.1), Doctor of Engineering Science, has celebrated his 75th birthday. The article briefly describes the scientific, pedagogical and organizational achievements of Professor G.I. Greisukh, Doctor of Technical Sciences.

Figure 1. Professor G.I. Greisukh.
2. General biographical information

Date and place of birth: 29.10.1943, the city of Penza; Education: 1965 – Penza Polytechnic Institute, radio engineer; 1977 – Leningrad Polytechnic Institute, part-time doctoral program and defense of the candidate thesis in specialization Physical electronics incl. quantum electronics; 1989 – Leningrad Institute of Precise Mechanics and Optics, defense of the doctoral thesis in specialization Optical and optoelectronic devices. Career: from 1966 to 1971 – engineer of enterprises and ships of Ministry of shipbuilding industry and USSR Navy; from 1972 – PGUAS, engineer of scientific-research department, post-graduate student, senior lector (1977), assistant professor (1979), department professor (1990), head of the department (from 1991 till present). Awards: Certificate of Merit of USSR shipbuilding Minister (1970), honored employee of the Russian Federation Higher Education (1998), honored employee of Russian Science and Engineering (2016), Certificate of Merit of Penza Region Governor (2003), rank Veteran of Labor, All-Russian Exhibition Center gold medal (2001), All-Russian Exhibition Center silver medal (2002), honorary diploma of Optical society named after D.S. Rozhdestvensky with presentation of D.S. Rozhdestvensky commemorative medal (2011), honorary diploma of Optical society named after D.S. Rozhdestvensky with presentation of Yu.N. Denisyuk commemorative medal (2016). Unions membership: acting member of Russian Academy of Informational Supported Education and Optical society named after D.S. Rozhdestvensky.

3. Computer optics in Penza PSUAC

The scientific laboratory of optics at the Physics Department of Penza Civil Engineering Institute made a significant contribution into the establishment and development of computer optics. The engineer of scientific-research department and post-graduate student of Leningrad Polytechnic Institute named after M.I. Kalinin (LPI) G.I. Greisukh has established this laboratory in 1975 according to the agreement between the Leningrad Scientific and Production Association Svetlana (SPA) and Penza Civil Engineering Institute.

Academic advising in laboratory works was performed by the LPI Physical Electronics Department professor, Doctor of Physics and Mathematics, professor M.M. Butusov and lead specialist of SPA Svetlana candidate of Physical and Mathematical Sciences Yu.G. Turkevich. The main direction of work was associated with the use of wave optical phenomena and, in particular, the rapidly developing holography, for microelectronics purposes. At the first stage, the laboratory creator remained the only full-time employee, and then the laboratory welcomed engineers V.G. Shitov and S.A.Stepanov. Simultaneously with physical experiments, studies by computer numerical simulation methods were carried out. After the defense of Candidate thesis in 1978, G.I. Greisukh takes independent scientific management of the laboratory, engineer S.A.Stepanov becomes an executive worker.

The Coordination Councils on Optics and Holography of the USSR Academy of Sciences and, in particular, their leaders: academician K.K. Rebane, academician A.L. Mikaelyan and academician Yu.N. Denisyuk, the founder of national holography have comprehensively supported the laboratory’s activity. The scientific secretary of the Coordinating Council for Optics of the USSR Academy of Sciences, candidate of engineering sciences I.M.Efimenko and head and primary constructor of Central design bureau of unique instrument engineering in the USSR Science Academy, Doctor of Physics and Mathematics I.I. Sisakyan for many years have been providing invaluable assistance in shaping the research topics and financing. Financing was carried out through economic contracts by enterprises and scientific organizations of Leningrad, Moscow and other cities of the country. Contractual funds allowed to purchase the necessary laboratory equipment, including lasers, interferometric table with the necessary equipment, as well as the first personal computers made in the USSR.

Lack of own production center was balanced by cooperation with leading scientific or scientific and production centers of the country such as Physics and Technology Institute named after A.F.Ioffe of the USSR Science Academy, State Optical Institute named after S.I.Vavilov, Scientific and Production Association Svetlana (Leningrad), Acoustic Institute of the USSR Science Academy (Moscow), State Institute of Applied Optics (Kazan), Samara State Aerospace University named after academician S.P. Korolev, Institute of Image Processing Systems of the Russian Academy of Sciences.
In order to carry out more ambitious projects, informal creative teams were formed, which, along with employees of PSUAC, included representatives of other organizations. The most prominent examples of such cooperation were the author groups of two Russian and one English-language monographs on diffractive and gradient optics. These groups together with G.I. Greisukh and S.A. Stepanov included leading specialists of Leningrad SPA Svetlana, Candidates of Sciences S.T. Bobrova and Yu.G. Turkevich as well as the researcher of the USSR Academy of Sciences, Candidate of Engineering Science.

After 1991, the activity of the scientific optical laboratory at the Physics Department was supported by the Joint Council on Optics of the Russian Academy of Sciences and was funded by government programs and grants from industry ministries. Over the years of its existence, the laboratory has completed over 25 contractual and state budgetary R&D works.

4. Key results of scientific activity

For forty-seven years dedicated to optical science, G.I. Greisukh made a significant contribution to the development of the theory, principles of construction, and calculating methods of optical systems with aspheric, diffractive, and gradient elements. In practical terms, his efforts were directed towards the improvement of real optical and optoelectronic devices, due to the use of a new element base and continuously improved software used in the calculation and design.

According to the results of own developments of a creative team consisting of G.I. Greisukh, S.T. Bobrov and Yu.G. Turkevich Leningrad branch of publishing house Mashinostroenie published the first public monography devoted to focusing diffractive elements and optical systems based on them in 1986 [1]. In 1990 G.I. Greisukh together with I.M. Efimenko published a small monography which for the first time has presented the results of contrastive analysis of aberration features of diffractive and gradient lenses [2]. Finally, in 1997 the USA SPIE Press publishing house published an English-language monograph reflecting the achievements of the authors’ group in both diffractive and gradient optics [3].

G.I. Greisukh and his colleagues have made a significant contribution into theory and calculation methods of hybrid optical systems, which include elements of different types and also into research and evaluation of the capability of such systems. At this point, the following scientific results are considered the most prominent.

Development of aberration calculation methods for optical systems, which include elements of different types: homogeneous spherical and aspherical lenses and mirrors, gradient and diffractive lenses based on pseudo-beam path tracking, whose trajectories are calculated in the approximation of smallness preassigned order [4-8].

Research and comparison of the correctional ability of diffractive, homogeneous and gradient lenses [9-12].

Development of design concepts, methods, algorithms and software for designing optical systems implemented using aspherical, diffractive and gradient elements and having different functions:

- high-resolution object lens [13-19];
- optical path of information transferring devices [20];
- ultra-fine rigid endoscopes [21-23];
- optical path of projected displays and TV receivers [24-26];
- object lenses of infrared, visible, ultraviolet and X-ray electromagnetic radiation spectrum [27-40].

In recent years, the research team, headed by G.I. Greisukh, has published a series of articles devoted to analyzing and reducing the dependence of the kinoform optical elements diffraction efficiency on the wavelength and angle of radiation incidence on an element in leading Russian and foreign optical journals. The acquiring of the results within the frames of strict diffraction theory provides their significance [41-48].

5 candidate and 2 doctoral theses were successfully prepared and defended due to using the results of scientific researches accomplished under the supervision of professor G.I. Greisukh.
G.I. Greisukh is an active author and reviewer of scientific journal Kompjuternaya optika (Computer optics), he significantly contributes into the success of the journal, that reached the top half of journals indexed by the bibliometric database Scopus in 2017 [49]. Monographs of G.I. Greisukh are well-known among specialists in optics around the world, they are actively used and cited, in particular by scientists of leading scientific school of the Russian Academy of Science member V.A. Soifer [50-53].

5. Conclusion
In conclusion, we would like to wish Grigory Isaievich Greisukh robust health and energy to continue his scientific researches.

6. References
[1] Bobrov S T, Greisukh G I and Turkevich Yu G 1986 Optics of diffractive and gradient-index elements and systems (Leningrad: Machine Industry) p 223
[2] Greisukh G I, Efimenko I M and Stepanov S A 1990 Optics of gradient-index and diffractive elements (Moscow: Radio and Communication) p 136
[3] Greisukh G I, Bobrov S T and Stepanov S A 1997 Optics of diffractive and gradient-index elements and systems (Bellingham: SPIE Press) p 414
[4] Greisukh G I, Stepanov S A 1983 Aberration analysis of optical systems, including diffractive elements Opt. and spec.tr. 54(1) 164-166
[5] Greisukh G I, Ezhov E G and Stepanov S A 1997 Computer aspects of projecting imaging optical systems, including gradient and diffractive lenses Computer Optics 17 53-56
[6] Greisukh G I, Ezhov E G and Stepanov S A 2000 Composition and calculation of high-resolution optical systems with gradient and diffractive elements Computer Optics 20 20-24
[7] Ezhov E G, Stepanov S A 2000 Calculation of pseudo-beam path through diffractive structures, made on the spherical surface Computer Optics 20 25-28
[8] Greisukh G I, Ezhov E G and Stepanov S A 2001 Calculation of pseudo-beam path through optical systems, which include diffractive lenses, with structure on the aspheric surface Computer Optics 21 70-72
[9] Greisukh G I, Ezhov E G and Stepanov S A 2005 Contrastive analysis of diffractive and refractive lenses chromatic aberration Computer Optics 28 60-65
[10] Greisukh G I, Ezhov E G and Stepanov S A 2006 Diffractive-refractive hybrid corrector for achro- and apochromatic corrections of optical systems Applied Optics 45(24) 6137-6141
[11] Greisukh G I, Ezhov E G, Kazin S V and Stepanov S A 2010 Optical systems with diffractive elements: ways of the chromatism correction Computer Optics 34(2) 187-193
[12] Greisukh G I, Ezhov E G, Kazin S V and Stepanov S A 2010 Diffraction-refraction corrector of the tertiary spectrum Journal of Optical Technology 77(9) 542-547
[13] Greisukh G I, Ezhov E G and Stepanov S A 1999 Triple cemented radial-gradient objectives Journal of Optical Technology 66(10) 918-921
[14] Greisukh G I, Ezhov E G and Stepanov S A 1999 Design of objectives consisting of cemented radial gradient-index lenses Proc. SPIE 3737 369-375
[15] Greisukh G I, Ezhov E G and Stepanov S A 2000 Correction possibilities of a hybrid lens consisting of two diffractive lenses and a cemented Wood lens Journal of Optical Technology 67(10) 896-899
[16] Greisukh G I, Ezhov E G and Stepanov S A 2001 High-resolution diffraction-gradient objective Journal of Optical Technology 68(3) 212-215
[17] Greisukh G I, Ezhov E G and Stepanov S A 2001 Aberration properties and performance of a new diffractive-gradient-index high-resolution objective Applied Optics 40(16) 2730-2735
[18] Greisukh G I, Ezhov E G, Levin I A and Stepanov S A 2011 Design of high aperture confocal diffractive objectives Computer Optics 35(1) 22-28
[19] Greisukh G I, Ezhov E G, Levin I A and Stepanov S A 2011 Design of the double-telecentric high-aperture diffractive–refractive objectives Applied Optics 50 3254-3258
[20] Ezhov E G, Greisukh G I and Stepanov S A 2005 Calculation of combined optical heads for reading and recording digital disks of different formats Computer Optics 27 29-31

[21] Greisukh G I, Stepanov S A and Ezhov E G 2003 Diffractive and homogeneous-lens compensator for correcting aberrations of gradient endoscope Computer Optics 25 54-58

[22] Ezhov E G, Stepanov S A and Greisukh G I 2004 Aberration correction of rigid gradient endoscope Autometering 40(3) 100-105

[23] Greisukh G I, Ezhov E G and Stepanov S A 2005 Aberration correction of needle-shaped rigid gradient endoscope optical system Autometering 41(2) 115-123

[24] Ezhov E G, Greisukh G I and Stepanov S A 2007 Diffractive optical elements for projection displays Computer Optics 31(1) 22-26

[25] Greisukh G I, Ezhov E G, Stepanov S A, Bezus E A and Bykov D A 2009 Diffraction elements in the optical systems of modern optoelectronics J. Opt. Technol. 76 395-398

[26] Greisukh G I, Ezhov E G, Stepanov S A 2016 Design of a holographic combiner for a virtual display Computer Optics 40(2) 188-193

[27] Greisukh G I, Ezhov E G, Sidyakina Z A and Stepanov S A 2013 Design of plastic diffractive–refractive compact zoom lenses for visible–near-IR spectrum Applied Optics 52(23) 5843-5850

[28] Greisukh G I, Ezhov E G, Levin I A and Stepanov S A 2010 Design of achromatic and apochromatic plastic microobjectives Applied Optics 49(23) 4379-4384

[29] Greisukh G I, Ezhov E G, Levin I A and Stepanov S A 2011 Design of plastic-lens micro-objectives superachromats Computer Optics 35(4) 473-479

[30] Greisukh G I, Ezhov E G, Kalashnikov A V and Stepanov S A 2012 Diffractive–refractive correction units for plastic compact zoom lenses Applied Optics 51 4597-4604

[31] Greisukh G I, Ezhov E G, Levin I A, Kalashnikov A V and Stepanov S A 2012 Modelling and research of superachromatization of refractive and refraction–diffractive optical systems Computer Optics 36(3) 395-404

[32] Greisukh G I, Ezhov E G, Sidyakina Z A and Stepanov S A 2013 Design and analysis of the compact plastic refractive-diffractive zoom lens Computer Optics 37(2) 208-214

[33] Greisukh G I, Ezhov E G, Kazin S V and Stepanov S A 2016 Layout and design of a periscope-type refraction–diffraction objective for a mobile communication device Journal of Optical Technology 83(11) 687-691

[34] Greisukh G I, Ezhov E G, Kazin S V and Stepanov S A 2017 Diffractive elements for imaging optics of mobile communication devices Computer Optics 41(4) 581-584 DOI: 10.18287/2412-6179-2017-41-4-581-584

[35] Antonov A I, Greisukh G I, Ezhov E G and Stepanov S A 2017 Diffractive elements for an imaging optical systems Optoelectronics, Instrumentation and Data Processing 53(5) 4-16

[36] Greisukh G I, Ezhov E G, Levin I A, Kazin S V and Stepanov S A 2015 Diffractive Elements in the Optical System: Successes, Challenges, and Solutions Radiophysics and Quantum Electronics 57(8-9) 610-618

[37] Greisukh G I, Ezhov E G, Levin I A and Stepanov S A 2011 Diffractive-refractive achromatic objectives for EUV-range Computer Optics 35(1) 29-35

[38] Greisukh G I, Ezhov E G, Kazin S V and Stepanov S A 2011 Achromatic x-ray diffractive and diffractive-refractive optical systems Computer Optics 35(2) 188-195

[39] Greisukh G I, Ezhov E G, Kazin S V and Stepanov S A 2012 Potentialies of Achromatized Diffractive and Diffractive-Refractive X-Ray Focusing Systems Technical Physics 57(3) 410-414

[40] Greisukh G I, Ezhov E G, Kazin S V and Stepanov S A 2017 Single-layer kinoforms for cameras and video cameras of mobile communication devices Computer Optics 41(2) 218-226 DOI: 10.18287/0134-2452-2017-41-2-218-226

[41] Greisukh G I, Besuz E A, Bykov D A, Ezhov E G and Stepanov S A 2009 Suppression of spectral selectivity of two-layered relief-phased diffractive structures Optics and Spectroscopy 106(4) 694-699
[42] Greisukh G I, Ezhov E G, Kalashnikov A V, Levin I A and Stepanov S A 2012 The efficiency of relief-phase diffractive elements at a small number of Fresnel zones *Optics and Spectroscopy* **113**(4) 425-430

[43] Greisukh G I, Danilov V A, Ezhov E G, Levin I A, Stepanov S A and Usievich B A 2015 Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth *Optics Communication* **338** 54-57

[44] Greisukh G I, Ezhov E G, Stepanov S A, Danilov V A and Usievich B A 2015 Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure *Journal of Optical Technology* **82**(5) 308-311

[45] Greisukh G I, Danilov V A, Ezhov E G, Stepanov S A and Usievich B A 2015 Spectral and Angular Dependences of the Efficiency of Relief-Phase Diffractive Lenses with Two- and Three-Layer Microstructures *Optics and Spectroscopy* **118**(6) 964-970

[46] Greisukh G I, Danilov V A, Stepanov S A, Antonov A I and Usievich B A 2018 Spectral and Angular Dependences of the Efficiency of Three-Layer Relief-Phase Diffraction Elements of the IR Range *Optics and Spectroscopy* **125**(1) 60-64

[47] Greisukh G I, Danilov V A, Antonov A I, Stepanov S A and Usievich B A 2018 Spectral and angular dependence of the efficiency of a two-layer and single-relief sawtooth microstructure *Computer Optics* **42**(1) 38-43 DOI: 10.18287/2412-6179-2018-42-1-38-43

[48] Greisukh G I, Stepanov S A and Antonov A I 2018 Comparative analysis of the Fresnel lens and the kinoform lens *Computer Optics* **42**(3) 369-376 DOI: 10.18287/2412-6179-2018-42-3-369-376

[49] Kazanskiy N L 2017 Editorial: Advances of the journal of Computer Optics *Computer Optics* **41**(1) 139-141 DOI: 10.18287/2412-6179-2017-41-1-139-141

[50] Kharitonov S I, Volotovskiy S G and Khonina S N 2016 Geometric-optical calculation of the focal spot of a harmonic diffractive lens *Computer Optics* **40**(3) 331-337 DOI: 10.18287/2412-6179-2016-40-3-331-337

[51] Kazanskiï N L, Khonina S N, Skidanov R V, Morozov A A, Kharitonov S I and Volotovskiy S G 2014 Formation of images using multilevel diffractive lens *Computer Optics* **38**(3) 425-434

[52] Khonina S N, Volotovskiy S G, Ustinov A V and Kharitonov S I 2017 Analysis of focusing light by a harmonic diffractive lens taking into account the refractive index dispersion *Computer Optics* **41**(3) 338-347 DOI: 10.18287/2412-6179-2017-41-3-338-347

[53] Kazanskiy N L 2018 Modeling diffractive optics elements and devices *Proc. SPIE* **10774** 107740O DOI: 10.1117/12.2319264