Screening of significant biomarkers with poor prognosis in hepatocellular carcinoma via bioinformatics analysis

Quanquan Sun, MDa,b,c,d, Peng Liu, MDa,b,c,d, Bin Long, MDa,e, Yuan Zhu, MDa,b,c,d, Tongxin Liu, MDa,b,c,d,*

Abstract

Hepatocellular carcinoma (HCC) is a malignant tumor with unsatisfactory prognosis. The abnormal genes expression is significantly associated with initiation and poor prognosis of HCC. The aim of the present study was to identify molecular biomarkers related to the initiation and development of HCC via bioinformatics analysis, so as to provide a certain molecular mechanism for individualized treatment of hepatocellular carcinoma.

Three datasets (GSE101685, GSE112790, and GSE121248) from the GEO database were used for the bioinformatics analysis. Differentially expressed genes (DEGs) of HCC and normal liver samples were obtained using GEO2R online tools. Gene ontology term and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis were conducted via the Database for Annotation, Visualization, and Integrated Discovery online bioinformatics tool. The protein–protein interaction (PPI) network was constructed by the Search Tool for the Retrieval of Interacting Genes database and hub genes were visualized by Cytoscape. Survival analysis and RNA sequencing expression were conducted by UALCAN and Gene Expression Profiling Interactive Analysis.

A total of 115 shared DEGs were identified, including 30 upregulated genes and 85 downregulated genes in HCC samples. P53 signaling pathway and cell cycle were the major enriched pathways for the upregulated DEGs whereas metabolism-related pathways were the major enriched pathways for the downregulated DEGs. The PPI network was established with 105 nodes and 249 edges and 3 significant modules were identified via molecular complex detection. Additionally, 17 candidate genes from these 3 modules were significantly correlated with HCC patient survival and 15 of 17 genes exhibited high expression level in HCC samples. Moreover, 4 hub genes (CCNB1, CDK1, RRM2, BUB1B) were identified for further reanalysis of KEGG pathway, and enriched in 2 pathways, the P53 signaling pathway and cell cycle pathway.

Overexpression of CCNB1, CDK1, RRM2, and BUB1B in HCC samples was correlated with poor survival in HCC patients, which could be potential therapeutic targets for HCC.

Abbreviations: DAVID = Database for Annotation, Visualization, and Integrated Discovery, DEGs = differentially expressed genes, FC = fold change, GO = gene ontology, HCC = hepatocellular carcinoma, KEGG = Kyoto Encyclopedia of Gene and Genome, MCODE = molecular complex detection, PPI = protein–protein interaction, STRING = Search Tool for the Retrieval of Interacting Genes, TCGA = The Cancer Genome Atlas.

Keywords: cluster analysis, critical pathways, hepatocellular carcinoma
1. Introduction

Currently, the incidence and mortality rates of cancer overall are declining year by year, whereas for liver cancer, both incidence and mortality rates are increasing.\[11\] Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer.\[2\] Although great progress has been made in the treatment of HCC in recent years, the prognosis of HCC remains unsatisfactory. It is estimated that 5 million deaths worldwide between 2015 and 2030 will be attributable to HCC due to its difficulty in early diagnosis, relapse, and metastasis.\[2\] Accumulating evidence indicated that the abnormal gene expression is associated with initiation and poor prognosis of HCC,\[3,4\] and numerous studies have been performed to search for suitable biomarkers of early detection, prognosis prediction, and better understanding of the potential mechanism of HCC.

In the last decades, genome-wide molecular profiling has played crucial roles in quickly detecting differentially expressed genes that were involved in the tumorigenesis and progression and has proved to be a reliable technique to identify core genes.\[8,9\] In this study, we aim to identify molecular biomarkers related to the initiation and development of hepatocellular carcinoma via bioinformatics analysis, so as to provide a certain molecular mechanism for individualized treatment of hepatocellular carcinoma in the future.

2. Methods

2.1. Microarray data

In this study, we obtained the 3 independent gene expression profiles of HCC (GSE101685, GSE112790, and GSE121248) from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). All of these 3 microarray data were based on GPL570 Platforms ([HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array), which included 24 HCC samples and 8 normal liver samples, 183 HCC samples, and 15 normal liver samples and 70 HCC samples and 37 normal liver samples, respectively. Ethical approval was not necessary as this study is bioinformatics analysis.

2.2. Identification of differentially expressed genes (DEGs)

GEO2R online tools\[10\] were used to identify the DEGs between HCC samples and normal liver samples. The genes with |logFC (fold change)| > 2 and adjust P value < .05 were considered as the DEGs. Venny online software (https://bioinfogp.cnb.csic.es/tools/venny/) was used to identify the shared upregulated and downregulated DEGs among the 3 datasets.

2.3. Gene ontology term and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis

To investigate the function of commonly DEGs, the Database for Annotation, Visualization, and Integrated Discovery online bioinformatics tool (DAVID, https://david.ncifcrf.gov/) were used to conduct functional and pathway enrichment analysis. GO analysis, including the biological process, cellular component, and molecular function, and KEGG pathway analysis, were performed for the shared DEGs via DAVID. P value less than .05 was considered statistical significance.

2.4. Protein–protein interaction (PPI) network and module analysis

To construct PPI network for the commonly DEGs, an online biological database, the Search Tool for the Retrieval of Interacting Genes (STRING; https://string-db.org/), was used. Then, the potential correlation between these DEGs was evaluated by STRING app in Cytoscape.\[11\] Furthermore, the modules of the PPI network were explored by Molecular Complex Detection (MCODE) app in Cytoscape (degree cutoff = 2, K-Core = 4, Depth = 100, and node score cutoff = 0.2).

2.5. Survival analysis and RNA sequencing expression

The analysis of patient survival of the hub genes was performed via UALCAN (http://ualcan.path.uab.edu/), a comprehensive, widely used online bioinformatics tool, which provide graphs and plots depicting gene expression and patient survival information based on The Cancer Genome Atlas (TCGA) database and METS00 transcriptome sequencing.\[12\] To validate these hub genes, Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/) was applied to assess the RNA sequencing expression of candidate genes from the TCGA database and Genotype-Tissue Expression Projects.\[13\]

3. Results

3.1. Identification of DEGs in HCC

In this study, there were 277 HCC samples and 60 normal liver samples. By using GEO2R online tools, 459, 325, and 145 DEGs were extracted from GSE101685, GSE112790, and GSE121248, respectively. Then, Venny online software was used to identify the shared upregulated and downregulated DEGs among the 3 datasets. As shown in Fig. 1 and Table 1, a total of 115 shared DEGs were identified, including 30 upregulated genes and 85 downregulated genes in HCC samples.

3.2. Functional enrichment analysis of DEGs genes

To further demonstrate the biological functions of the DEGs, Gene ontology in DAVID software was performed. As shown in Table 2, for biological process, the upregulated DEGs were mainly involved in mitotic nuclear division, regulation of attachment of spindle microtubules to kinetochore, G2/M transition of mitotic cell cycle, negative regulation of ubiquitin–protein ligase activity involved in mitotic cell cycle, and positive regulation of ubiquitin–protein ligase activity involved in regulation of mitotic cell cycle. Whereas the downregulated DEGs were significantly involved in epoxygenase P450 pathway, oxidation-reduction process, exogenous drug catabolic process, xenobiotic metabolic process, and monocarboxylic acid metabolic process. For cellular component, the upregulated DEGs were mainly involved in midbody, cytoplasm, mitotic spindle, central spindle, and cytosol. Whereas the downregulated DEGs were significantly enriched in extracellular region, organelle membrane, insulin-like growth factor ternary complex, extracellular space, and insulin-like growth factor binding protein complex. About molecular function, the upregulated DEGs were mainly involved in protein binding, histone kinase activity, protein kinase activity, and protein serine/threonine kinase. Whereas the downregulated DEGs were significantly enriched in heme binding, iron ion binding, oxidoreductase activity, and glutathione peroxidase activity.
activity, acting on paired donors, with incorporation or reduction of molecular oxygen, arachidonic acid epoxygenase activity and oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as 1 donor, and incorporation of 1 atom of oxygen.

KEGG analysis indicated that the upregulated DEGs were significantly enriched in P53 signaling pathway and cell cycle. While downregulated DEGs were mainly involved in retinol metabolism, caffeine metabolism, and drug metabolism—cytochrome P450, etc (Table 3).

3.3. PPI network and module analysis

To investigate the relationship between the identified DEGs in the HCC, we constructed the PPI network via online database STRING and displayed it via Cytoscape software.[11] As shown in Fig. 2A, there were 105 nodes and 249 edges. In addition, 3 significant modules were identified via MCODE. All of the 15 nodes were upregulated DEGs in the module 1 (Fig. 2B). Whereas in the module 2, the other 8 nodes were downregulated DEGs except SPP1 (Fig. 2C). In the module 3, all of the 6 nodes were downregulated DEGs (Fig. 2D). Interestingly, most of the upregulated genes have the highest connectivity with each other (Fig. 2B).

3.4. Survival analysis of hub genes

UALCAN was utilized to identify 30 hub genes survival data from 3 modules mentioned above. As shown in Fig. 3, 17 candidate genes were significantly correlated with HCC patient survival outcome.

Table 1

DEGs	Genes name
Upregulated	ROBO1, CINRDE, RBM24, IGF2BP3, CAP2, HMMR, SULT1C2, CDK1, CDL15A1, ACSV4, TOP2A, SPN1, DTL, CT4HC1, PEG10, DUXAP10, CDKN3, RACAP1, PRC1, CENB1, ECT2, BUB1B, PBK, RRIM2, AKIN1, NEK2, ASPM, GPC3, SPINK1
Downregulated	LINC01093, CNDP1, CXCL14, KCNN2, FCN3, SLC0183, CYP1A2, OIT1, BC02, CLEC18B, FCN2, HAMP, SLC22A1, DCN, ADH4, ESR1, CLEC4M, THSEP, CYP39A1, C9, C7, FAM134B, CXCL12, TTC36, CLEC4G, LOC101928916, NNMT, GYS2, CYP1B1, GBA3, LINC00844, CYP26A1, DNASE1L3, BBOX1, CYP2B6, CYP2A6, CYP2B7, CYP2B2, SLC25A47, HGF, ACAC, BCHE, SRP1, MT1M, HHR, GLYAT, HA2, HGF, NAT2, LIAP, ADR1A, CLEC9, ADDRG7, AKIN1, IL1RAP, PDGFRB, GPM6A, ALDOB, IGFI, GHR, APOF, CYPA22, CYPA44, C3P1, CYP209, CYP2A7, CCL2, CNTN3, TMEM27, WT1, PLAC8, KMO, FOS, IGBP3, LCAT, PGLYRP2, GLS2, ACSM3, SERPINE1, MFSD2A, SRD5A2, IDO2, FLJ22763, EGR1, FOLH1B, FOSB, IGFLS, SULT1E1
Table 3
KEGG pathway analysis of DEGs in hepatocellular carcinoma.

Pathway ID	Name	Count	P value	Genes
	Upregulated DEGs			
hsa04115	PS3 signaling pathway	3	4.0E-3	CCNB1, CDK1, RRM2
hsa04110	Cell cycle	3	1.3E-3	CCNB1, CDK1, BUB1B
hsa04060	Cytokine–cytokine receptor interaction	6	2.6E-2	CXCL14, CXCL2, IL1RAP, LIFR, CXCL12, GHR
hsa00388	Tryptophan metabolism	3	3.1E-2	IDO2, KMO, CYPIA2
	Downregulated DEGs			
hsa02881	Retinol metabolism	6	7.5E-5	CYP2B6, CYP2C, ADH4, CYP26A1, CYP2A6, CYP1A2
hsa02000	Oligosaccharide metabolism	5	1.2E-3	CYP2B6, CYP2C, ADH4, CYP26A1, CYP2A6, CYP1A2
hsa02004	Phosphorous metabolism	5	1.2E-3	CYP2B6, CYP2C, ADH4, CYP26A1, CYP2A6, CYP1A2
hsa03010	Metabolism of xenobiotics by cytochrome P450	5	1.2E-3	CYP2B6, CYP2C, ADH4, CYP26A1, CYP2A6, CYP1A2
hsa00410	Sterol hormone biosynthesis	4	7.5E-5	SULT1E1, SRS5A2, CYP1A2, AKR1D1
hsa02224	Metabolic pathways	16	1.6E-2	CNDP1, CYP2B6, CYP2C, ADH4, ALDOB, D2, CYP26A1, KMO, CYPIA2, ACSM3, GLS2, GB3, ADH4, HAO2, CYP2A6, AKR1D1

Table 2
The top 5 pathways in gene ontology analysis of DEGs in hepatocellular carcinoma.

Category	Term	Count	P value
Upregulated DEGs			
GOTERM_BP_DIRECT GO:0007067–Mitotic nuclear division	6	4.2E-5	
GOTERM_BP_DIRECT GO:00051988–Regulation of attachment of spindle microtubules to kinetochore	3	5.2E-5	
GOTERM_BP_DIRECT GO:00000862–G2/M transition of mitotic cell cycle	4	1.3E-3	
GOTERM_BP_DIRECT GO:0051436–Negative regulation of ubiquitin–protein ligase activity involved in mitotic cell cycle	3	5.8E-3	
GOTERM_BP_DIRECT GO:0051437–Positive regulation of ubiquitin–protein ligase activity involved in regulation of mitotic cell cycle	3	6.6E-3	
Downregulated DEGs			
GOTERM_BP_DIRECT GO:0060067–Interphase spindle	6	1.2E-6	
GOTERM_BP_DIRECT GO:0060737–Cytoplasm	19	4.6E-5	
GOTERM_BP_DIRECT GO:0060739–Metaphase spindle	3	1.7E-3	
GOTERM_BP_DIRECT GO:0009749–Centrosomal complex	2	4.4E-3	
GOTERM_BP_DIRECT GO:0009829–Cytosol	12	5.2E-3	
GOTERM_BP_DIRECT GO:0009515–Protein binding	22	5.5E-3	
GOTERM_BP_DIRECT GO:0035173–Histone kinase activity	2	6.4E-3	
GOTERM_BP_DIRECT GO:0004672–Protein kinase activity	4	1.9E-2	
GOTERM_BP_DIRECT GO:0004674–Protein serine/threonine kinase	4	2.2E-2	

Sun et al. Medicine (2020) 99:32

Medicine
Figure 3. Overall survival validation of hub genes in HCC patients. HCC = hepatocellular carcinoma.
survival. Briefly, 14 of the 15 genes in module 1 experienced poor survival; no significant difference between PRC1 expression and survival in HCC patients. In the module 2, HCC patients with higher SPP1 or lower ESR1 expression exhibited worse survival. However, the upregulation of SERPINE1 gene is correlated with poor survival, which is contrary to the results of the microarray data. The other 6 genes had no significant. In the module 3, the upregulation of CYP2C9 gene is correlated with better survival, whereas the other 5 genes had no significant. Next, GEPIA was applied to assess the RNA sequencing expression of 17 candidate genes. Results demonstrated that 15 of 17 genes exhibited high expression level in HCC samples and 2 of 17 genes reflected low expression level in HCC samples compared with normal liver samples (Fig. 4), which is consistent with the microarray array data.

3.5. Reanalysis of 17 selected genes for pathway enrichment

To investigate the possible pathway of these 17 hub genes, DAVID software was used to reanalyze the pathway enrichment. As shown in Table 4 and Fig. 5, 4 genes were enriched in 2 pathways, the P53 signaling pathway and cell cycle (all P value less than 0.05).

4. Discussion

In the present study, a total of 115 shared DEGs were identified from 3 independent gene expression profiles via bioinformatics analysis, including 30 upregulated genes and 85 downregulated genes in HCC samples. Upregulated DEGs were mainly enriched in mitotic nuclear division and cell cycle related functional terms, whereas downregulated DEGs were mainly enriched in multiple metabolic-related functional terms. Among these DEGs, 3 modules and 30 vital genes were screened from the PPI network complex. In addition, through survival analysis of these 30 vital genes, we found that 15 upregulated genes and 2 downregulated genes were significantly associated with worse survival of HCC patients. Furthermore, reanalysis of 17 selected genes for KEGG pathway enrichment clarified that 4 hub genes (CCNB1, cyclin-dependent kinases [CDK1], RRM2, BUB1B) enriched in P53 signaling pathway and cell cycle, and all of these 4 hub genes were upregulated in the HCC samples compared with normal liver samples, indicating the “driver” function of these genes in HCC development.

Previous studies indicated that cell cycle dysregulation is a hallmark of cancer,[14] and target cell cycle could be an effective therapeutic strategy in the treatment of cancer. Increasing evidence indicated that cell cycle-related genes such as CCNB1, CDK1, and BUB1B, which were also screened in this study, are involved in the initiation and progression of cancers.[15–18] CCNB1 is overexpressed in many cancers and correlated with worse survival such as pancreatic cancer,[19] breast cancer,[20] and prostate cancer[21] and could promote the G2/M transition of

Pathway ID	Name	Count	P value	Genes
hsa04115	P53 signaling pathway	3	1.3E-3	CCNB1, CDK1, RRM2
hsa04110	Cell cycle	3	4.7E-3	CCNB1, CDK1, BUB1B
the cell cycle by regulating and forming a complex with CDK1. The transcription factor p53, located on chromosome 17p, plays an essential role in regulating cell cycle, DNA repair, and apoptosis and acts as a powerful tumor suppressor.

However, in most tumors, p53 gene is inactivated by mutation or degradation of its associated pathway. Zhang et al. have demonstrated that CCNB1 silencing could suppress pancreatic cancer cell proliferation and promote apoptosis through activating the p53 signaling pathway. Chai et al. have reported that FOXM1 could promote proliferation of HCC cells via transcriptional activation of CCNB1. These reports are in line with our present demonstration that CCNB1 was overexpressed in HCC samples, which was correlated with worse survival of HCC patients.

Accumulating studies demonstrated that CDKs play essential roles in the regulation of cell cycle. A recent study indicated that karyopherin subunit-a2 could promote cell proliferation and induce cell cycle arrest via upregulating CDK1 and CCNB2 in HCC. Another report revealed that miR-582–5p inhibited the HCC progression in vitro via targeting CDK1 and AKT3. In other tumors, suppressing the expression of CDK1 could significantly inhibit cell proliferation and induce apoptosis in breast cancer.

In addition, overexpression of miR-31–5p significantly inhibited renal cell carcinoma progression in vitro through targeting CDK1. Similar association was identified in the present study that CDK1 was upregulated in HCC and higher expression of CDK1 correlated with worse survival of HCC patients. Taken together, these data indicated that CDK1 may act as a potential biomarker for predicting the survival in HCC.

Mitotic checkpoint serine/threonine kinase B (BUB1B), known also as BubR1, encodes a spindle checkpoint-related kinase and plays an important role in the proper chromosome segregation. Accumulating data reveal that BUB1B acts as an essential role in the development and progression of many forms of cancer including breast, prostate, lung, and liver cancer. A recent investigation revealed that high level of BUB1B was associated with worse survival in HCC patients, which is in agreement with our present study.

Human ribonucleotide reductase (RR) is the rate-limiting enzyme catalyzing the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates in cells. RR is composed of 2 identical subunits, RRM1 and RRM2. The expression level of RRM1 is relatively stable during the course of cell cycle, while the expression of RRM2 only occurred in the late G1 and early S phase and functioned as an essential role in DNA synthesis and repair. Therefore, RRM2 is identified as an important anticancer target. Several investigations demonstrated that the hepatitis B virus (HBV) could induce RRM2 expression through activating DNA damage response and targeting RRM2 could effectively inhibit HBV replication. These studies indicated that RRM2 may be identified as a therapeutic target in HBV-related HCC.

In brief, our bioinformatics analysis identified 4 hub genes (CCNB1, CDK1, RRM2, BUB1B) which were correlated with poor survival in HCC patients. However, the specific mechanism of these hub genes involved in regulating the occurrence, development, and prognosis of HCC still needs to be further explored.

Author contributions

Conceptualization: Tongxin Liu.
Formal analysis: Peng Liu.
Funding acquisition: Tongxin Liu, Peng Liu.
Investigation: Bin Long.
Methodology: Quanquan Sun.
Writing-original draft: Quanquan Sun.
Writing-review & editing: Yuan Zhu.

References

[1] Ryerson AB, Eheman CR, Altekruse SF, et al. Annual Report to the Nation on the Status of Cancer, 1975-2012, featuring the increasing incidence of liver cancer. Cancer 2016;122:1312–37.
[2] Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019;16:589–604.
[3] Feng H, Fang F, Yuan L, et al. Downregulated expression of CFHL1 is associated with unfavorable prognosis in postoperative patients with hepatocellular carcinoma. Exp Ther Med 2019;17:4073–9.
[4] Cao H, Xu Z, Wang J, et al. Functional role of SGK3 in PIIK/Pten driven liver tumor development. BMC Cancer 2019;19:343.
[5] Ayoub WS, Steggerda J, Yang JD, et al. Current status of hepatocellular carcinoma detection: screening protocols and novel biomarkers. Ther Adv Med Oncol 2019;11:432:483:316.

[6] Di Stefano JK, Davis B. Diagnostic and prognostic potential of AKR1B10 in human hepatocellular carcinoma. Cancers (Basel) 2019;11:1.

[7] Kern SE. Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res 2012;72:6097–101.

[8] Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science 2013;339:1546–58.

[9] Tinker AV, Boussioutas A, Bowtell DD. The challenges of gene expression microarrays for the study of human cancer. Cancer Cell 2006;9:333–9.

[10] Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007;23:1846–7.

[11] Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–504.

[12] Chandrashekar DS, Bashel B, Balasubramanya S, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017;19:649–57.

[13] Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017;45:W98–102.

[14] Dominguez-Brauer C, Thu KL, Mason JM, et al. Targeting mitosis in cancer: emerging strategies. Mol Cell 2015;60:524–36.

[15] Pan XW, Chen L, Hong Y, et al. EIF3D silencing suppresses renal cell carcinoma tumorigenesis via inducing G2/M arrest through down-regulation of Cyclin B1/CDK1 signaling. Int J Oncol 2016;48:2580–90.

[16] Ravidran MD, Luo Y, Arcaroli JJ, et al. CDK1 interacts with Sox2 and promotes tumor initiation in human melanoma. Cancer Res 2018;78:6561–74.

[17] Ma Q, Liu Y, Shang L, et al. The FOXM1/BUB1B signaling pathway is essential for the tumorigenicity and radioresistance of glioblastoma. Oncol Rep 2017;38:3367–75.

[18] Fu X, Chen G, Cai ZD, et al. Overexpression of BUB1B contributes to progression of prostate cancer and predicts poor outcome in patients with prostate cancer. Oncol Targets Ther 2016;9:2211–20.

[19] Zhou L, Li J, Zhao YP, et al. The prognostic value of Cyclin B1 in hepatocellular carcinoma by targeting CDK1 and AKT3. Tumour Biol 2015;36:8309–16.

[20] Liu Y, Zhu YH, Mao CQ, et al. Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles. J Control Release 2014;192:114–21.

[21] Li Y, Quan J, Chen F, et al. MiR-315p acts as a tumor suppressor in renal cell carcinoma by targeting cyclin-dependent kinase 1 (CDK1). Biomed Pharmacother 2019;111:517–26.

[22] Zhang M, Mendez BL, Sedgwick GG, et al. Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation. Nat Commun 2016;7:12256.

[23] Mukherjee A, Joseph C, Craze M, et al. The role of BUB and CDC proteins in low-grade breast cancers. Lancet 2015;385(suppl 1):572.

[24] Tian JH, Mu LJ, Wang MY, et al. BUB1B promotes proliferation of prostate cancer via transcriptional regulation of MELK. Anticancer Agents Med Chem 2020;20:8.

[25] Chen H, Lee J, Kljavin NM, et al. Requirement for BUB1B/BUBR1 in tumor progression of lung adenocarcinoma. Genes Cancer 2015;6:106–18.

[26] Zhuang L, Yang Z, Meng Z. Upregulation of BUB1R, CCNB1, CDC7, CDC20, and MCM3 in tumor tissues predicted worse overall survival and disease-free survival in hepatocellular carcinoma patients. Biomed Res Int 2018;2018:7897346.

[27] D’Angioletta V, Donato V, Forrester FM, et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 2012;149:1023–34.

[28] Engstrom Y, Eriksson S, Jildevik I, et al. Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. J Biol Chem 1993;268:9114–6.

[29] Shao J, Liu X, Zhu L, et al. Targeting ribonucleotide reductase for cancer therapy. Expert Opin Ther Targets 2013;17:1423–37.

[30] Ricardo-Lax I, Ramanan V, Michailidis E, et al. Hepatitis B virus induces RNR-R2 expression via DNA damage response activation. J Hepatol 2015;63:789–96.

[31] Liu X, Xu Z, Hou C, et al. Inhibition of hepatitis B virus replication by targeting ribonucleotide reductase M2 protein. Biochem Pharmacol 2016;103:118–28.

[32] Lee B, Ha SY, Song DH, et al. High expression of ribonucleotide reductase subunit M2 correlates with poor prognosis of hepatocellular carcinoma. Gut Liver 2014;8:662–8.