基于生物信息学鉴定和分析SNP突变基因在胃癌中的预后和应用价值

李晖*, 吴昊*, 马英骥, 梁志威, 王功竣, 齐卫卫#, 邱文生#

青岛大学附属医院, 山东 青岛
Email: lh0413dd@163.com, 2233251473@qq.com, 15192011682@163.com, 18363992605@163.com, wgjfengzi@126.com, *qwwsci@126.com, #wsqiusci@126.com

收稿日期: 2020年11月2日；录用日期: 2020年11月23日；发布日期: 2020年11月30日

摘要
背景：胃癌是全球最常见的恶性肿瘤之一。尽管近年来对该疾病的诊断和治疗已有实质性改善，但由于局部复发和远处转移，胃癌的五年生存率仍然较低。对胃癌分子发病机理及相关预后标志物的深入研究将有助于改善胃癌患者的生活质量和预后。这项研究的目的是鉴定和验证具有胃癌预后价值的SNP突变基因并探索其在胃癌中的应用价值。方法：从癌症基因组图谱(TCGA)数据库中获得胃癌患者的SNP相关数据，并使用DAVID软件分析突变基因的功能和下游通路。使用STRING数据库构建蛋白质–蛋白质相互作用(PPI)网络，并通过Cytoscape软件可视化。分子复合物检测(MCODE)用以筛选PPI网络以提取重要的突变基因，使用cytoHubba鉴别出了10个中枢基因，并通过UALCAN和Kaplan-Meier Plotter网站确定了中枢基因的表达水平和预后。最后，定量PCR和蛋白质印迹实验被用来验证中枢基因在胃癌细胞中的表达。结果：从数据库中鉴定出超过25个样本中的945个SNP突变基因。PPI网络具有360个节点和1616个边缘。最后，cytoHubba鉴定了六个关键基因(TP53, HRAS, BRCA1, PIK3CA, AKT1和SMARCA4)，它们的表达水平与胃癌患者的生存率密切相关。结论：我们的结果表明，SNP突变相关基因TP53, HRAS, BRCA1, PIK3CA, AKT1和SMARCA4可能是胃癌发展和预后的关键基因。本研究为进一步探索胃癌的分子发病机制和评估患者预后提供了重要的生物信息学基础和相关的理论基础。

关键词
胃癌, 单核苷酸多态性, 生物标志物, 预后, 生物信息学分析

*共同第一作者。
#共同通讯作者。

文章引用: 李晖, 吴昊, 马英骥, 梁志威, 王功竣, 齐卫卫, 邱文生. 基于生物信息学鉴定和分析SNP突变基因在胃癌中的预后和应用价值[J]. 临床医学进展, 2020, 10(11): 2832-2847. DOI: 10.12677/acm.2020.1011430
Identification and Validation of SNP-Containing Genes with Prognostic Value in Gastric Cancer via Integrated Bioinformatics Analysis

Hui Li*, Hao Wu*, Yingji Ma, Zhiwei Liang, Gongjun Wang, Weiwei Qi*, Wensheng Qiu#

The Affiliated Hospital of Qingdao University, Qingdao Shandong
Email: lh0413dd@163.com, 2233251473@qq.com, 15192011682@163.com, 18363992605@163.com, wgjfangzhiying@163.com, *qwwsci@126.com, *wsqiusc@126.com

Received: Nov. 2nd, 2020; accepted: Nov. 23rd, 2020; published: Nov. 30th, 2020

Abstract

Gastric cancer is one of the most common malignancies worldwide. An in-depth study of the molecular pathogenesis of gastric cancer and related prognostic markers will help improve the quality of life and prognosis of patients with this disease. The purpose of this study was to identify and verify key SNPs in genes with prognostic value for gastric cancer. SNP-related data from gastric cancer patients were obtained from The Cancer Genome Atlas (TCGA) database, and the functions and pathways of the mutated genes were analyzed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) software. A protein-protein interaction (PPI) network was constructed using the STRING database and visualized by Cytoscape software, and molecular complex detection (MCODE) was used to screen the PPI network to extract important mutated genes. Ten hub genes were identified using cytoHubba, and the expression levels and the prognostic value of the central genes were determined by UALCAN and Kaplan-Meier Plotter. Finally, quantitative PCR was used to verify the expression of the hub genes in gastric cancer cells. From the database, 945 genes with mutations in more than 25 samples were identified. CytoHubba identified six key SNP-containing genes (TP53, HRAS, BRCA1, PIK3CA, AKT1, and SMARCA4), and their expression levels were closely related to the survival rate of gastric cancer patients. Our research provides an important bioinformatics foundation and related theoretical foundation for further exploring the molecular pathogenesis of gastric cancer and evaluating the prognosis of patients. Further investigations of SNP-containing genes in gastric cancer may contribute to therapeutic advances.

Keywords

Gastric Cancer, Single Nucleotide Polymorphisms, Biomarkers, Prognosis, Bioinformatics Analysis

Copyright © 2020 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
1. 介绍

胃癌是全球第五大最常见的恶性肿瘤，也是癌症相关死亡的第二大主要原因[1]。尽管近年来胃癌的治疗策略已得到实质性改善，但由于各种遗传突变和导致该病发展的异常信号通路，胃癌的死亡率仍然很高[2]。作为一种复杂的疾病，其发生和发展涉及一系列遗传，表观遗传和表型变化。涉及多种生物学途径的基因多态性已被确定为胃癌的潜在危险因素[3]。鉴于胃癌的高发病率和死亡率，确定其潜在的分子机制和遗传特征以及阐明用于诊断和预后的生物学指标对于胃癌患者的个性化和精确治疗至关重要。

基于高通量测序的生物信息学分析是探索肿瘤发病机理的分子机制、鉴定可用于早期诊断的生物标志物以及发现治疗靶标的重要方法。单核苷酸多态性(SNP)是生物体基因组中常见的核苷酸多态性。在不同物种的个体中，基因组DNA序列相同位置的单个核苷酸会发生取代、插入或缺失以及其他突变，从而导致该位点的单个核苷酸发生变化[4]。SNP通常被认为是导致个体易感性差异的遗传基础和潜在的癌症标志物。包含SNP的基因的分析对于癌症的早期诊断和个性化靶向治疗很重要。

癌症基因组图谱(TCGA)数据库可用于高通量基因组分析。为了进一步探讨含有SNP的基因在胃癌的诊断和预后中的生物学意义，我们从TCGA数据库下载了胃癌相关的SNP数据，并使用了生物信息学分析方法，包括突变分析、功能和途径富集分析、蛋白质-蛋白质相互作用(PPI)网络分析等。我们的目的是探索与胃癌的诊断和预后密切相关的SNP突变基因，并为胃癌的个体化和精准治疗提供科学的理论基础。

2. 材料和方法

2.1. 数据处理与分析

TCGA数据均已被转移到新建立的基因组数据共享平台(https://gdc.cancer.gov/)[5]。由于TCGA中有关SNP的原始数据尚未公开，因此我们下载了已处理的胃癌SNP相关数据和原始mRNA表达数据。从413个样本(包含32个正常样本和381个癌症样本)中收集了mRNA数据。突变的基因是从下载的胃癌样品的SNP数据中获得的。使用edgeR软件包对下载的mRNA原始数据进行整合和标准化，并进行分析以获得差异表达的基因及其表达水平。TCGA提供的mRNA数据是公开可用的。

2.2. 突变基因的功能富集和途径分析

为了阐明由这些突变基因引起的功能障碍，我们使用了DAVID(http://www.DAVID.org)[6]数据库来进行基因本体论(GO)以及京都基因与基因组百科全书(KEGG)上的基因分析。作为开放源代码平台，DAVID可用于确定目标分子之间的结合。通过选择GO项和KEGG途径，并使用P<0.05作为临界值，我们鉴定了突变基因的分子功能(Molecular Function)，生物过程(Biological Process)，细胞成分(Cellular Components)和所涉及的下游通路。

2.3. 突变基因PPI网络的构建和基因表达分析

在这项研究中，使用STRING数据库[7]对选定的包含SNP的基因进行PPI网络分析，然后使用Cytoscape可视化，以置信度得分>0.4作为截止标准[8]。Cytoscape插件cytoHubba[9]用于通过从12种拓扑分析方法中找到前30个基因的交点，然后使用分子复合物检测(MCODE)来建立PPI网络的模块，进而识别中心基因。

2.4. 突变基因的Kaplan-Meier生存曲线和预后生物标志物的筛选

Kaplan-Meier Plotter(https://kmplot.com/analysis/)可以使用基因表达数据评估乳腺癌，肺癌，胃癌和卵巢癌患者的生存率[10]。无复发生存期(RFS)和总生存期(OS)数据可从GEO (仅Affymetrix微阵列)、EGA
和 TCGA 下载。该工具的主要目的是基于荟萃分析的生物标志物评估[11]。使用 Kaplan-Meier 图表，我们评估了 SNP 突变基因对胃癌患者预后的影向，并最终确定了可用作该疾病预后生物标志物的关键基因。

2.5. 通过 UALCAN 验证中枢基因

UALCAN (http://ualcan.path.uab.edu/)可以基于 3 级 RNA 序列和 TCGA 数据库中 31 种癌症类型的临床数据进行标准化分析[12]。在这项研究中，使用 UALCAN 数据库来验证中枢基因在正常和癌症样本之间的表达。我们选择 P < 0.05，倍数变化 > 2 作为阈值。

2.6. 通过 cBioPortal 分析癌症基因组学数据

cBioPortal for Cancer Genomics (http://cbioportal.org)提供了可视化和分析多维癌症基因组学数据的资源[13]。在该项研究中，基于四种选定的胃癌亚型的突变和 DNA 拷贝数的变化，我们对关键基因的基因组变化进行了分析。

2.7. 细胞培养和抗体

AGS, HGC27 和 GES-1 细胞系购自中国科学院细胞研究所，并在含有 10% 胎牛血清 (FBS) 的 RPMI-1640 培养基中培养。FBS 和 RPMI-1640 购自 Gibco (美国纽约)，将细胞置于 37℃ 的培养箱中，CO2 混合气为 5%。TP53 (#2527), BRCA1 (#14823), PIK3CA (#4255), AKT1 (#2938) 和 SMARCA4 (#49360) 的抗体购自 Cell Signaling Technology (美国马萨诸塞州贝弗利)。针对 HRAS 的抗体(434958)和 β 肌动蛋白抗体(abs137096)获自 Absin (中国上海)。本研究中使用的二抗包括山羊抗小鼠 IgG-HRP (abs20001) 和山羊抗兔 IgG-HRP (abs20002)，两者均从 Absin 获得。

2.8. qPCR 检测中枢基因的表达水平

根据制造商的说明，使用 TRIzol 试剂 (TaKaRa，中国北京) 从细胞中分离总 RNA，并使用 PrimeScript RT Master Mix 试剂(TaKaRa，中国北京)反转录为 cDNA。使用 ABI 7500HT 快速实时 PCR 系统 (美国加利福尼亚州 Applied Biosystems) 进行实时定量 PCR (qRT-PCR)，然后进行熔解曲线分析。使用以下循环条件: 95℃ 5 分钟，然后进行 40 个循环，分别是 95℃ 20 秒和 60℃ 30 秒。我们使用 2-ΔΔCt 方法(以 GAPDH 作为内部对照)来确定 mRNA 表达的平均相对倍数变化。引物如表 1 所示。

Primer name	Sense	Antisense
TP53	GAGTTGGCTCTGACTGTACC	TCCGTCCCACTGAGATACCC
HRAS	GAGGTGCTGTGTTGACATC	CTTACACCGTTTTGCTGTC
BRCA1	GAAACCGTGCCAAGAGACTTC	CCAAGTTAGAGGTGACAC
PIK3CA	AGTAGGCAACAGTTGAGAAAAG	GAGGGTAGAATGGAGGTCCAAG
AKT1	AGCGACGTGGCTATTGTGAGAAG	GCCATCATCTCTTGAGGAGGAAG
SMARCA4	GAAACAAAGACGACTTTGTGACCT	CTTCACGTTGCTAAGG

3. 结果

3.1. 数据处理与分析

使用 VarScan 方法从 TCGA 数据库的第二代测序数据中提取胃癌样品的生殖/体细胞突变数据作为 SNP 数据，选择了 945 个具有 SNP 突变的基因。在大于 50 个样本中有 96 个基因发生了突变(图 1)。从 TCGA 数据库中获得了 413 份具有胃癌基因表达数据的样本，包括 32 份正常组织样本和 381 份癌组
织样本。使用 EdgeR 软件包分析胃癌和正常组织样品之间的差异表达 (图 2)，以 $|\log FC| > 2$ 和 $P < 0.01$ 为截止标准。我们进一步分析了胃癌中 SNP 突变基因和差异表达的基因，以探讨由基因突变和异常表达引起的功能障碍。

Figure 1. Waterfall plot of 10 genes mutated in more than 90 samples

图 1. 在 90 多个样本中突变的 10 个基因的瀑布图

Figure 2. A volcanic map of differential gene expression

图 2. 差异基因表达的火山图
3.2. 突变基因的功能富集和途径分析

为了进一步阐明突变基因在胃癌中的功能，我们使用了 DAVID 在线软件对 945 个突变基因进行了功能富集分析和通路分析。功能富集分析表明，在生物过程类别中，SNP 突变基因主要集中在通过质膜粘附分子的同性细胞粘附，动作电位和神经元动作电位的膜去极化。在细胞组分类别中，突变基因主要分类在质膜，蛋白质细胞外基质和电压门控钠通道复合物中。在分子功能类别中，这些基因主要富含钙离子结合，细胞外基质结构成分和电压门控钠通道活性(表 2)。通路富集分析揭示了与癌症相关的许多信号传导途径中均含有 SNP 基因的富集，包括磷脂酰肌醇 3 激酶(PI3K)/Akt 信号传导途径，钙信号传导途径和环状鸟苷单磷酸(cGMP)-PKG 信号传导途径(图 3)。

表 2. 胃癌中 945 个基因的生物学功能分析

Category	Term	Count	P value
GOTERM_BP_DIRECT	homophilic cell adhesion via plasma membrane adhesion molecules	54	1.13E−35
	negative regulation of transcription from RNA polymerase II promoter	33	0.0075481
	intracellular signal transduction	26	0.0033163
	cell adhesion	23	2.98E−06
	membrane depolarization during action potential	18	8.42E−15
	axon guidance	17	1.11E−05
	heart development	16	2.29E−04
	cell migration	13	0.0085702
	neuronal action potential	12	0.0337519
	microtubule cytoskeleton organization	12	1.60E−09
	GO:0005509–calcium ion binding	99	3.414E−26
	GO:0005524–ATP binding	99	1.153E−06
	GO:0008270–zinc ion binding	65	0.0263632
	GO:0003677–DNA binding	42	0.0361054
	GO:0003682–chromatin binding	25	0.0180564
	GO:0044212–transcription regulatory region DNA binding	18	9.495E−06
	GO:0005096–GTPase activator activity	18	0.0093759
	GO:0016887–ATPase activity	16	5.068E−05
	GO:0004842–ubiquitin-protein transferase activity	15	0.0201426
	GO:0004725–protein tyrosine phosphatase activity	14	9.479E−09
GOTERM_MF_DIRECT	integral component of membrane	197	0.0385191
	plasma membrane	133	2.329E−12
	integral component of plasma membrane	54	0.0021151
	proteinaceous extracellular matrix	32	6.187E−12
	cell surface	32	0.0006393
	focal adhesion	31	0.0002001
	dendrite	22	8.302E−07
	neuronal cell body	18	6.336E−05
	voltage-gated potassium channel complex	15	6.437E−07
	postsynaptic density	14	2.216E−07
选择了具有最低 P 值的前 20 个通路。

Figure 3. Pathways enrichment map of 945 mutant genes

图 3. 945 个突变基因的通路富集图

3.3. 构建突变基因的 PPI 网络

为了进一步研究突变基因之间的潜在关系，我们使用了 STRING 在线数据库来挖掘这些基因之间的相互作用。Cytoscape 软件用于可视化复杂的 PPI 网络，该网络包括 360 个节点和 1616 个边缘（图 4(a)）。MCODE 用于从 PPI 网络获取重要模块，包括 25 个节点和 245 个边缘（图 4(b)）。功能和 KEGG 通路富集分析表明，重要模块的生物过程类别主要包括生物调节和细胞通讯。细胞组分类别包括细胞核，膜封闭腔和蛋白质复合物；分子功能类别主要包括蛋白质结合，离子结合和转移酶活性（图 4(c)）。KEGG 通路富集分析表明，重要的模块基因主要富集在 FoxO 信号通路和甲状腺激素信号通路中（图 5）。

3.4. 关键基因的筛选和生存分析

使用 cytoHubba 的 12 种算法中前 30 个基因的交集，我们确定了 10 个中枢基因：TP53, EP300, AKT1, HRAS, PTEN, PIK3CA, SMARCA4, CREBBP, BRC1 和 ATM（图 6(A)）。使用 Metascape 工具来分析关键基因的通路和生物过程富集。我们观察到中枢基因主要富集在 PID-P53 下游，细胞凋亡，调节细胞对应激的反应等通路中（图 6(B), 6(C)）。eBioPortal 在线平台提供了中枢基因遗传变异的图形分析。如图所示，在胃癌中，有 10 个关键 SNP 基因均显示出高突变率，基因组变化率在8%至45%之间（图 6(D)）。为了确定所选的中枢基因是否具有临床相关性，我们使用 Kaplan-Meier 曲线分析了这些基因的单变量存活率，发现 TP53, HRAS, BRC1, PIK3CA, AKT1 和 SMARCA4 的表达与预后相关（图 7）。因此，这些关键基因可作为胃癌的预后指标。

3.5. 通过 UALCAN 验证集线器基因

UALCAN 是一种在线工具，具有 TCGA 和 GTEx 的数据，用于验证这些关键基因在胃癌中的表达。在这项研究中，根据来自 TCGA 数据库的 RNA 序列数据，比较了胃肿瘤样品和邻近的正常组织中 6 个基因（TP53, HRAS, BRC1, PIK3CA, AKT1, SMARCA4）的 mRNA 表达水平。发现这六个基因在 415 个胃癌组织中与 34 个正常组织相比在转录水平上高表达（图 8）。我们选择 P < 0.05, 倍数变化 > 2 作为阈值。
(a) Cytoscape 用于构建 945 个突变基因的 PPI 网络，包括 360 个结点和 1616 个边缘。使用 MCODE 从 PPI 网络中获得了一个具有 25 个节点和 245 个边缘的重要模块。重要模块的功能直方图。每个生物过程、细胞组分和分子功能类别分别由红色、蓝色和绿色条表示。

Figure 4. Construction of the PPI network for the mutated genes and analysis of important modules
图 4. 突变基因的 PPI 网络的构建和重要模块的分析
Figure 6. Selection and analysis of pivotal genes

(A) 使用 Cytoscape 软件插件 cytoHubba 鉴定 10 个最重要的中心基因。(B) 使用 Metascape 工具分析集线器基因的通路和生物过程富集。(C) 基因的蛋白质-蛋白质相互作用网络和 MCODE 组件。(D) 关键基因遗传改变的图形分析。
Figure 7. Univariate survival analysis of the key genes using Kaplan-Meier curves

与正常组织相比，六个关键基因在胃癌组织中高表达。

(A) TP300 (B) HRAS (C) BRCA1 (D) PIK3CA (E) AKT1 (F) SMARCA 4.

Figure 8. Analysis of the expression of key mutated genes

(A) TP300 (B) HRAS (C) BRCA1 (D) PIK3CA (E) AKT1 (F) SMARCA 4.
3.6. 预后相关基因的基因组变化

我们使用 cBioPortal 工具从 TCGA 数据库中选择了 478 个样品，并研究了六个预后相关基因的基因组特异性变化。对癌症类型的汇总分析显示，在 TCGA 的胃癌数据集（包括粘液性胃腺癌，弥漫型胃腺癌，胃腺癌，和肾小管腺癌）中，这 6 个基因的基因组改变频率范围为 12.66% 至 51.90% (图 9)。

(A) 所有关键基因 (B) TP53 (C) HRAS (D) BRCA1 (E) PIK3CA (F) AKT1 (G) SMARCA 4。每行代表一个基因，每列代表一个肿瘤样品。

Figure 9. Genome-specific changes in the pivotal genes in 5 gastric cancer data sets

图 9. 5 个胃癌数据集中关键基因的基因组特异性变化

3.7. 胃癌中六个基因的基因表达水平

使用 qRT-PCR 分析胃癌中 TP53，HRAS，BRCA1，PIK3CA，AKT1，SMRACA4 的表达。结果表明，与胃正常细胞 GES-1 相比，6 个基因在胃癌细胞 AGS 和 HGC27 中的表达上调(图 10)。

4. 讨论

胃癌是一种复杂的疾病，是全球第五大最常见的恶性肿瘤，也是与癌症相关的第二大死亡原因[14]。为了提高患者的生活质量和预后并延长其生存时间，研究人员必须进一步阐明导致胃癌恶性生物学行为的分子机制。根据以前的报道，遗传多态性将增加患癌症的风险，被认为是各种癌症预后不良的指标和潜在的致癌标志物。因此，对 SNP 突变基因的鉴定分析可为治疗胃癌患者的个体化精准治疗和预测临床预后提供新思路。
在这项研究中，我们对TCGA数据库中与胃癌相关的数据进行了一系列生物信息学分析，以筛选和鉴定与SNP相关的预后生物标志物。我们对这些基因进行了功能和通路富集分析，发现这些基因在细胞核和蛋白质复合物中富集，主要调节多细胞生物学过程，发育过程和代谢过程。通路分析表明，胃癌中SNP突变基因主要参与PI3K-AKT通路，CGMP-PKG通路，钙信号通路和许多其他与癌症相关的通路。功能和通路富集分析揭示SNP基因在癌症发展中的分子机制。

我们筛选了与胃癌的发生和发展密切相关六个突变基因，TP53，AKT1，HRAS，PTEN，PIK3CA，SMARCA4，BRCA1。生存分析表明这六个基因的高表达与胃癌预后不良有关。使用UALCAN在线分析，我们发现这6个基因在胃癌组织中的表达明显高于正常组织。随后的细胞实验证实了这一结果。此外，我们还使用了cBioPortal工具从TCGA数据库中研究了胃癌患者6个关键基因的基因组变化。我们发现这些基因在管状胃腺癌中的突变频率最高。六个基因的基因组改变率在12.66%至51.90%之间。

TP53(肿瘤蛋白p53)是胃癌中突变频率最高的基因(约50%)，也是人类癌症中最常见的突变基因。该基因在细胞周期停滞，细胞衰老，凋亡，分化和代谢中起重要作用[15]。作为肿瘤分子生物学领域的研究热点，该基因的突变与多种癌症的预后不良有关[16]。多数TP53突变是错义突变和由单个核苷酸取代引起的基因缺失，从而导致TP53活性发生变化。p53突变蛋白不仅失去野生型p53蛋白的抗肿瘤作用，而且还增强了肿瘤细胞的活性，促进侵袭和转移以及肿瘤的发生发展[17]。先前的研究已证明TP53与胃癌之间的关系[18]。Ando等人研究了182例胃癌的临床样本，发现TP53阳性肿瘤比其他肿瘤具有更深的侵袭和更多的淋巴结转移和肝转移，并且某些基因(PICT1，RPL11)参与了通过TP53进行的癌症进展[19]。TP53突变发生在胃癌发生的晚期，有助于最终转变为癌症[20]。另有研究发现TP53突变可抑制胃癌的肿瘤免疫力[21]。根据我们的分析结果，TP53基因的突变程度在10个中心基因中最高，其表达增加与胃癌的5年生存率负相关，这进一步证实了这项研究的有效性。TP53突变基因型的进一步探索将有助于揭示胃癌发生和发展的分子机制。
HRAS 是 RAS 基因家族的成员，其参与 RAS 蛋白信号转导的激活。RAS 蛋白是一种 GDP/GTP 结合蛋白，主要调节野生型细胞的增殖、分化和衰老[22]。HRAS 在激活后起癌基因的作用，激活通常通过突变(SNP，插入，易位)和表达增加而发生[23]。与 HRAS 相关的疾病包括乳腺癌，肝癌，甲状腺癌和膀胱癌[24] [25] [26] [27]。HRAS 的异位表达可促进胃癌细胞的增殖，迁移，侵袭，血管生成和克隆形成[28]。我们的结果表明，HRAS 在胃癌的诊断和治疗中可能起重要作用。

乳腺癌敏感性基因(BRCA1)属于一类具有高渗透率的抑癌基因，在对 DNA 损伤(包括 DNA 双链断裂)的反应中起着重要的作用[29]。BRCA1 蛋白可以与各种蛋白结合以调节基因转录，从而保持基因组的完整性。BRCA1 基因突变导致 DNA 复制错误和突变，从而促进异常细胞增殖并导致肿瘤发生[30]。越来越多的证据表明，BRCA1 与乳腺癌，卵巢癌和结肠癌广泛相关[31] [32]。有趣的是，据报道 BRCA1 在胃癌细胞中的表达上调，这与晚期肿瘤的不良预后有关[33]。BRCA1 基因突变导致 DNA 复制错误和突变，从而促进异常细胞增殖并导致肿瘤发生[34] [35]。我们的研究表明，BRCA1 在胃癌的表达高于正常胃组织，且其高表达与预后不良有关，这表明 BRCA1 在不同类型的肿瘤中可能起相反作用，而 BRCA1 在胃癌中的作用值得我们进一步探索。

PI3K-Akt 信号转导通路在肿瘤发生，发展，治疗和预后中起着重要作用[36]。PIK3CA 编码 PI3K 的 p110α 亚基。它在肿瘤细胞的增殖，分化，转移和代谢中起重要作用[37]。PIK3CA 在细胞质中的表达上调，PIK3CA 在细胞核中的表达下调，这与晚期肿瘤的不良预后有关[38]。PIK3CA 突变与 T 期高，分化差和微卫星不稳定性相关[39]。我们的研究中，相关分析表明，PIK3CA 在肿瘤组织中的表达明显高于正常组织。OS 分析表明，胃癌预后差与 PIK3CA 高表达有关，提示 PIK3CA 可作为胃癌预后的潜在生物标志物。

AKT 是 PIK3 的直接下游靶蛋白。越来越多的证据表明，AKT 蛋白的激活在癌症的发展中起着重要的生物学作用[40]。AKT1 是 AKT 的子类型之一。活化的 AKT1 使许多下游底物磷酸化，并参与细胞生长，代谢，增殖，凋亡和其他过程的调控[41]。Petreti 等人发现 AKT1 在胃癌中过表达的患者预后较差，提示 AKT1 可作为胃癌预后的潜在生物标志物[42]。Ghatak 等发现 AKT1 突变与胃癌的异常细胞周期和 DNA 复制有关[43]。在此研究中，相关分析表明，AKT1 对于胃癌组织的表达明显高于正常组织。通路分析表明，AKT1 涉及 PI3K-AKT，MAPK 和其他与癌症密切相关的其他途径，这表明编码 AKT1 的基因在癌症的发展中具有重要的生物学功能。

ATP 依赖的染色质重塑在癌症的发生和发展中起着重要作用，几乎参与了 DNA 代谢的所有方面，例如转录，重组，DNA 修复和 DNA 复制[44]。SWI/SNF 复合物(BAF 复合物)是染色质重塑的第二个发现机制。SMARCA4 编码的蛋白质(也称为 BGR1)是 SWI/SNF 家族的成员，具有解旋酶和 ATP 酶活性，并通过改变染色质的结构来调节转录[45]。SMARCA4 通常被认为是肿瘤抑制基因[46]。最近的一些报道表明，SMARCA4 在某些类型的癌症中对细胞存活和增殖起着重要作用[47]。Martinez 等发现 SMARCA4 在包括胃癌在内的 11 种肿瘤组织中高表达，并且与不良预后有关[48]。这反映了 SMARCA4 在癌症中的双重作用。在我们的研究中，SMARCA4 在胃癌细胞中的表达高于正常细胞。OS 分析表明 SMARCA4 的高表达与不良预后有关，这与以前的研究一致，并进一步证实了我们的结果。当 SMARCA4 在胃癌中发生突变时，我们的数据表明 SMARCA4 并不能作为肿瘤抑制因子发挥作用，这可能是由于 SWI/SNF 复合物的病理活性所致。

5. 结论

在该项研究中，通过生物信息学和实验分析，我们发现六个 SNP 突变基因(TP53，AKT1，HRAS，
PTEN, PIK3CA, SMARCA4, BRCA1)可能是胃癌发生发展及预后的关键因素，并且参与了许多与癌症发展有关的信号通路。因此应进行进一步的研究以检测这些基因的多态性位点并探索其相应的表达水平，从而用于预测患者的预后。我们下一步将在大规模临床研究中进行验证，以确定其在肿瘤发生中的准确性和敏感性，并指导患者的个体化精准治疗。本研究的重点是通过生物信息学分析为临床诊断和预后评估提供新的思路，我们的研究结果为指导胃癌的后续研究提供了重要的生物信息学基础和相关的理论基础。

参考文献

[1] Ang, T.L. and Fock, K.M. (2014) Clinical Epidemiology of Gastric Cancer. Singapore Medical Journal, 55, 621-628. https://doi.org/10.11622/smedj.2014174

[2] Lazar, D.C., Taban, S., Cornianu, M., Faur, A. and Goldis, A. (2016) New Advances in Targeted Gastric Cancer Treatment. World Journal of Gastroenterology, 22, 6776-6799. https://doi.org/10.3748/wjg.v22.i30.6776

[3] Peddanna, N., Holt, S. and Verma, R.S. (1995) Genetics of Gastric Cancer. Anticancer Research, 15, 2055-2064.

[4] Zhang, Z. and Hao, K. (2018) Using SAAS-CNV to Detect and Characterize Somatic Copy Number Alterations in Cancer Genomes from Next Generation Sequencing and SNP Array Data. In: Bickhart, D., Ed., Copy Number Variants. Methods in Molecular Biology, Vol. 1833, Humana Press, New York, 29-47. https://doi.org/10.1007/978-1-4939-8666-8_2

[5] Tomczak, K., Czerwinska, P. and Wiznerowicz, M. (2015) The Cancer Genome Atlas (TCGA): An Immeasurable Source of Knowledge. Contemporary Oncology (Pozn), 19, A68-A77. https://doi.org/10.5114/wo.2014.47136

[6] Huang da W, Sherman, B.T. and Lempicki, R.A. (2009) Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nature Protocols, 4, 44-57. https://doi.org/10.1038/nprot.2008.211

[7] Tomczak, K., Czerwinska, P. and Wiznerowicz, M. (2015) The Cancer Genome Atlas (TCGA): An Immeasurable Source of Knowledge. Contemporary Oncology (Pozn), 19, A68-A77. https://doi.org/10.5114/wo.2014.47136

[8] Shotton, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13, 2498-2504. https://doi.org/10.1101/gr.1239303

[9] Chin, C.H., Chen, S.H., Wu, H.H., Ho, C.W., Ko, M.T. and Lin, C.Y. (2014) cytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Systems Biology, 8, Article No. S11. https://doi.org/10.1186/1752-0509-8-S4-S11

[10] Bader, G.D. and Hogue, C.W. (2003) An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks. BMC Bioinformatics, 4, Article No. 2. https://doi.org/10.1186/1471-2105-4-2

[11] Lancer, D., Nagy, A., Bottili, G., Munkacey, G., Szabo, A., Santarina, L., et al. (2016) miP: A Web-Tool to Validate Survival-Associated miRNAs Utilizing Expression Data from 2178 Breast Cancer Patients. Breast Cancer Research and Treatment, 160, 439-446. https://doi.org/10.1007/s10549-016-4013-7

[12] Chandrashekar, D.S., Bashel, B., Balasubramanya, S.A.H., Creighton, C.J., Ponce-Rodriguez, I., Chakravarthi, B., et al. (2017) UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia, 19, 649-658. https://doi.org/10.1016/j.neo.2017.05.002

[13] Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., et al. (2013) Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the eBioPortal. Science Signaling, 6, 11. https://doi.org/10.1126/scisignal.2004088

[14] Zhao, X., Li, M., Chen, S., Hu, J., Guo, Q., Liu, R., et al. (2018) Endoscopic Screening in Asian Countries Is Associated with Reduced Gastric Cancer Mortality: A Meta-analysis and Systematic Review. Gastroenterology, 155, 347-354 e9. https://doi.org/10.1016/j.gastro.2018.04.026

[15] Soussus, T. (2011) TP53 Mutations in Human Cancer: Database Reassessment and Prospects for the Next Decade. Advances in Cancer Research, 110, 107-139. https://doi.org/10.1016/B978-0-12-386469-7.00005-0

[16] Li, V.D., Li, K.H. and Li, J.T. (2019) TP53 Mutations as Potential Prognostic Markers for Specific Cancers: Analysis of Data from the Cancer Genome Atlas and the International Agency for Research on Cancer TP53 Database. Journal of Cancer Research and Clinical Oncology, 145, 625-636. https://doi.org/10.1007/s00432-018-2817-2

[17] Wang, M., Yang, C., Zhang, X. and Li, X. (2018) Characterizing Genomic Differences of Human Cancer Stratified by the TP53 Mutation Status. Molecular Genetics and Genomics, 293, 737-746.
https://doi.org/10.1007/s00438-018-1416-7

18. Ando, K., Oki, E., Zhao, Y., Ikawa-Yoshida, A., Kitao, H., Saeki, H., et al. (2014) Mortalin Is a Prognostic Factor of Gastric Cancer with Normal p53 Function. *Gastric Cancer*, 17, 255-262. https://doi.org/10.1007/s10120-013-0279-1

19. Uchi, R., Kogo, R., Kawahara, K., Sudo, T., Yokobori, T., Eguchi, H., et al. (2013) PICT1 Regulates TP53 via RPL11 and Is Involved in Gastric Cancer Progression. *British Journal of Cancer*, 109, 2199-2206. https://doi.org/10.1038/bjc.2013.561

20. Lin, Y., Wu, Z., Guo, W. and Li, J. (2015) Gene Mutations in Gastric Cancer: A Review of Recent Next-Generation Sequencing Studies. *Tumor Biology*, 36, 7385-7394. https://doi.org/10.13772/journal.tumorbiology.2015.07.012

21. Jiang, Z., Liu, Z., Li, M., Chen, C. and Wang, X. (2018) Immunogenomics Analysis Reveals that TP53 Mutations Inhibit Tumor Immunity in Gastric Cancer. *Translational Oncology*, 11, 1171-1187. https://doi.org/10.1016/j.tranon.2018.07.012

22. Li, S., Balmain, A. and Counter, C.M. (2018) A Model for RAS Mutation Patterns in Cancers: Finding the Sweet Spot. *Nature Reviews Cancer*, 18, 767-777. https://doi.org/10.1038/s41568-018-0076-6

23. Chen, S., Li, F., Xu, D., Hou, K., Fang, W. and Li, Y. (2019) The Function of RAS Mutation in Cancer and Advances in its Drug Research. *Current Pharmaceutical Design*, 25, 1105-1114. https://doi.org/10.2174/1381612825666190506122228

24. Geyer, F.C., Li, A., Papanastassiou, A.D., Smith, A., Selenica, P., Burke, K.A., et al. (2018) Recurrent Hotspot Mutations in HRAS Q61 and PI3K-AKT Pathway Genes as Drivers of Breast Adenomyoepitheliomas. *Nature Communications*, 9, 1816. https://doi.org/10.1038/s41467-018-04128-5

25. Pecenka, V., Pajer, P., Karafiat, V., Kasparova, P., Dudlova, J. and Dvorak, M. (2017) HRAS, EGFR, MET, and RON Genes Are Recurrently Activated by Provirus Insertion in Liver Tumors Induced by the Retrovirus Myeloblastosis-Associated Virus 2. *Journal of Virology*, 91(20). https://doi.org/10.1128/JVI.00467-17

26. Zhang, X. and Zhang, Y. (2015) Bladder Cancer and Genetic Mutations. *Cell Biochemistry and Biophysics*, 73, 65-69. https://doi.org/10.1007/s12013-015-0574-z

27. Untch, B.R., Dos Anjos, V., Garcia-Rendueles, M.E.R., Smith, A., Selenica, P., Burke, K.A., et al. (2018) Tipifarnib Inhibits HRAS-Driven Dedifferentiated Thyroid Cancers. *Cancer Research*, 78, 4642-4657. https://doi.org/10.1158/0008-5472.CAN-17-1925

28. Wu, X.Y., Liu, W.T., Wu, Z.F., Chen, C., Liu, J.Y., Wu, G.N., et al. (2016) Identification of HRAS as Cancer-Provoking Gene in Gastric Carcinoma Cell Aggressiveness. *American Journal of Cancer Research*, 6, 1935-1948.

29. Jhanwar-Uniyal, M. (2003) BRCA1 in Cancer, Cell Cycle and Genomic Stability. *Frontiers in Bioscience*, 8, s1107-s1117. https://doi.org/10.2741/1131

30. Somasundaram, K. (2003) Breast Cancer Gene 1 (BRCA1): Role in Cell Cycle Regulation and DNA Repair—Perhaps through Transcription. *Journal of Cellular Biochemistry*, 88, 1084-1091.

31. Paul, A. and Paul, S. (2014) The Breast Cancer Susceptibility Genes (BRCA) in Breast and Ovarian Cancers. *Frontiers in Bioscience (Landmark Ed)*, 19, 605-618.

32. Oh, M., McBride, A., Yun, S., Bhattacharjee, S., Slack, M., Martin, J.R., et al. (2018) BRCA1 and BRCA2 Gene Mutations and Colorectal Cancer Risk: Systematic Review and Meta-Analysis. *Journal of the National Cancer Institute*, 110, 1178-1189. https://doi.org/10.1093/jnci/djy148

33. Wang, G.H., Zhao, C.M., Huang, Y., Wang, W., Zhang, S. and Wang, X. (2018) BRCA1 and BRCA2 Expression Patterns and Prognostic Significance in Digestive System Cancers. *Human Pathology*, 71, 135-144. https://doi.org/10.1016/j.humpath.2017.10.032

34. Chen, X.R., Zhang, W.Z., Lin, X.Q. and Wang, J.W. (2006) Genetic Instability of BRCA1 Gene at Locus D17S855 Is Related to Clinicopathological Behaviors of Gastric Cancer from Chinese Population. *World Journal of Gastroenterology*, 12, 4246-4249. https://doi.org/10.3748/wjg.v12.i26.4246

35. Shim, H.J., Yun, J.Y., Hwang, J.E., Bae, W.K., Cho, S.H., Lee, J.H., et al. (2010) BRCA1 and XRCC1 Polymorphisms Associated withSurvival in Advanced Gastric Cancer Treated with Taxane and Cisplatin. *Cancer Science*, 101, 1247-1254. https://doi.org/10.1111/j.1349-7006.2010.01514.x

36. Noorolayai, S., Shahjari, N., Baghbani, E., Sadreddini, S. and Baradaran, B. (2019) The Relation between PI3K/AKT Signalling Pathway and Cancer. *Gene*, 698, 120-128. https://doi.org/10.1016/j.gene.2019.02.076

37. Mayer, I.A. and Arteaga, C.L. (2016) The PI3K/AKT Pathway as a Target for Cancer Treatment. *Annual Review of Medicine*, 67, 11-28. https://doi.org/10.1146/annurev-med-062913-051343

38. Liu, X., Xu, Y., Zhou, Q., Chen, M., Zhang, Y., Liang, H., et al. (2018) PI3K in Cancer: Its Structure, Activation Modes and Role in Shaping Tumor Microenvironment. *Future Oncology*, 14, 665-674. https://doi.org/10.2217/fon-2017-0588

39. Sobral-Leite, M., Salomon, I., Opdam, M., Kruger, D.T., Beelen, K.J., van der Noort, V., et al. (2019) Cancer-Immune
Interactions in ER-Positive Breast Cancers: PI3K Pathway Alterations and Tumor-Infiltrating Lymphocytes. *Breast Cancer Research*, 21, Article No. 90. https://doi.org/10.1186/s13058-019-1176-2

[40] Stachler, M.D., Rinehart, E.M., Garcia, E. and Lindeman, N.I. (2016) PIK3CA Mutations Are Common in Many Tumor Types and Are Often Associated with Other Driver Mutations. *Applied Immunohistochemistry & Molecular Morphology*, 24, 313-319. https://doi.org/10.1097/PAI.0000000000000195

[41] Alvarez-Cubero, M.J., Martinez-Gonzalez, L.J., Robles-Fernandez, I., Martinez-Herrera, J., Garcia-Rodriguez, G., Pascual-Geler, M., et al. (2017) Somatic Mutations in Prostate Cancer: Closer to Personalized Medicine. *Molecular Diagnosis & Therapy*, 21, 167-178. https://doi.org/10.1007/s40291-016-0248-6

[42] Huang, D., Sun, W., Zhou, Y., Li, P., Chen, F., Chen, H., et al. (2018) Mutations of Key Driver Genes in Colorectal Cancer Progression and Metastasis. *Cancer and Metastasis Reviews*, 37, 173-187. https://doi.org/10.1007/s10555-017-9726-5

[43] Liu, S., Tang, Y., Yan, M. and Jiang, W. (2018) PIK3CA Mutation Sensitizes Breast Cancer Cells to Synergistic Therapy of PI3K Inhibition and AMPK Activation. *Investigational New Drugs*, 36, 763-772. https://doi.org/10.1007/s10637-018-0563-3

[44] Zhang, H. and Zhou, L. (2019) Single Nucleotide Polymorphism of PIK3CA and Its Interaction with the Environment Are Risk Factors for Chinese Han Ovarian Cancer. *Pathology—Research and Practice*, 215, 152520. https://doi.org/10.1016/j.prp.2019.152520

[45] Jang, S.H., Kim, K.J., Oh, M.H., Lee, J.H., Lee, H.J., Cho, H.D., et al. (2016) Clinicopathological Significance of Elevated PIK3CA Expression in Gastric Cancer. *Journal of Gastric Cancer*, 16, 85-92. https://doi.org/10.5230/jgc.2016.16.2.85

[46] Polom, K., Marrelli, D., Roviello, G., Pascale, V., Voglino, C., Vindigni, C., et al. (2018) PIK3CA Mutation in Gastric Cancer and the Role of Microsatellite Instability Status in Mutations of Exons 9 and 20 of the PIK3CA Gene. *Advances in Clinical and Experimental Medicine*, 27, 963-969.

[47] Shen, X., Zhao, Y., Chen, X., Sun, H., Liu, M., Zhang, W., et al. (2019) Associations of PIK3CA Mutations with Clinical Features and Prognosis in Gastric Cancer. *Future Oncology*, 15, 1019-1031. https://doi.org/10.2217/fon-2018-0335

[48] Song, M., Bode, A.M., Dong, Z. and Lee, M.H. (2019) AKT as a Therapeutic Target for Cancer. *Cancer Research*, 79, 1019-1031. https://doi.org/10.1158/0008-5472.CAN-18-2738

[49] LoPiccolo, J., Granville, C.A., Gills, J.J. and Dennis, P.A. (2007) Targeting Akt in Cancer Therapy. *Anticancer Drugs*, 18, 861-874.

[50] Petri, I., Lencingoni, M., Vasile, E., Fornaro, L., Belluomini, L., Pasquini, G., et al. (2018) EGFR and AKT1 Overexpression Are Mutually Exclusive and Associated with a Poor Survival in Resected Gastric Adenocarcinomas. *Cancer Biomarkers*, 21, 731-741. https://doi.org/10.3233/CBM-170865

[51] Ghatak, S., Lalnunhlimi, S., Lalrohlui, F., Pautu, J.L., Zohmingthanga, J., Kunnumakkara, A.B., et al. (2018) Novel AKT1 Mutations Associated with Cell-Cycle Abnormalities in Gastric Carcinoma. *Personalized Medicine*, 15, 79-86. https://doi.org/10.2217/pme-2017-0053

[52] Hargreaves, D.C. and Crabtree, G.R. (2011) ATP-Dependent Chromatin Remodeling: Genetics, Genomics and Mechanisms. *Cell Research*, 21, 396-420. https://doi.org/10.1038/cr.2011.32

[53] Khavari, P.A., Peterson, C.L., Tamkun, J.W., Mendel, D.B. and Crabtree, G.R. (1993) BRG1 Contains a Conserved Domain of the SWI2/SNF2 Family Necessary for Normal Mitotic Growth and Transcription. *Nature*, 366, 170-174. https://doi.org/10.1038/366170a0

[54] Glaros, S., Cirrincione, G.M., Palanca, A., Metzger, D. and Reisman, D. (2008) Targeted Knockout of BRG1 Potentiates Lung Cancer Development. *Cancer Research*, 68, 3689-3696. https://doi.org/10.1158/0008-5472.CAN-07-6652

[55] Buscarlet, M., Krasteva, V., Ho, L., Simon, C., Hebert, J., Wilhelm, B., et al. (2014) Essential Role of BRG, the ATPase Subunit of BAF Chromatin Remodeling Complexes, in Leukemia Maintenance. *Blood*, 123, 1720-1728. https://doi.org/10.1182/blood-2013-02-483495

[56] Wu, Q., Madany, P., Akech, J., Dobson, J.R., Douthwright, S., Browne, G., et al. (2015) The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation. *Journal of Cellular Physiology*, 230, 2683-2694.

[57] Laourmette, P., Coassolo, S., Davidson, G., Michel, I., Gambi, G., Yao, W., et al. (2020) Chromatin Remodellers Brdg1 and Bptf Are Required for Normal Gene Expression and Progression of Oncogenic Braf-Driven Mouse Melanoma. *Cell Death & Differentiation*, 27, 29-43. https://doi.org/10.1038/s41418-019-0333-6