Identification of *Fusarium solani f. sp. pisi* (Fsp) responsive genes in *Pisum sativum*

Authors

Bruce A. Williamson-Benavides¹, Richard Sharpe², Grant Nelson¹, Eliane T. Bodah³, Lyndon D. Porter⁴ and Amit Dhingra¹,²§

¹Molecular Plant Sciences, Washington State University, Pullman, WA - 99164
²Department of Horticulture, Washington State University, Pullman, WA – 99164
³Pure Line Seeds Inc., Warden, WA
⁴USDA-ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA – 99350

§Correspondence:

Amit Dhingra

ad Gingra@wsu.edu

Keywords: pea, root rot, tolerance, susceptible, RNAsseq, transcriptomics, gene expression

Abstract

Pisum sativum (pea) is rapidly emerging as an inexpensive and major contributor to the plant-derived protein market. Due to its nitrogen-fixation capability, short life cycle, and low water usage, pea is a useful cover-and-break crop that requires minimal external inputs. It is critical for sustainable agriculture and indispensable for future food security. Root rot in pea, caused by the fungal pathogen *Fusarium solani f. sp. pisi* (Fsp), can result in a 15-60% reduction in yield. It is urgent to understand the molecular basis of Fsp interaction in pea to develop root rot tolerant cultivars. A complementary genetics and gene expression approach was undertaken in this study to identify Fsp-responsive genes in four tolerant and four susceptible pea genotypes. Time course RNAsseq was performed on both sets of genotypes after Fsp challenge. Analysis of the transcriptome data resulted in the identification of 42,905 differentially expressed contigs (DECs). Interestingly, the vast majority of DEC$s were overexpressed in the susceptible genotypes at all sampling time points, rather than in the tolerant genotypes. Gene expression and GO enrichment analyses revealed genes coding for receptor-mediated endocytosis, sugar transporters, salicylic acid synthesis and signaling, and cell death were overexpressed in the susceptible genotypes. In the tolerant genotypes, genes involved in exocytosis, and secretion by cell, the anthocyanin synthesis pathway, as well as the DRR230 gene, a pathogenesis-related (PR) gene, were overexpressed. The complementary genetic and RNAsseq approach has yielded a set of potential genes that could be targeted for improved tolerance against root rot in *P. sativum*. Fsp challenge produced a futile transcriptomic response in the susceptible genotypes. This type of response is hypothesized to be related to the speed at which the pathogen infestation advances in the susceptible genotypes, and the preexisting level of disease-preparedness in the tolerant genotypes.
Introduction

The food industry contributes significantly to the world’s total greenhouse gas emissions (Poore and Nemecek, 2018). About 18% of the global greenhouse gas emissions are caused by livestock production, which supplies the majority of the dietary protein (Stehfest et al., 2009). Proposed mitigation efforts include a shift to plant-based protein as it is an environmentally sustainable option. The demand for plant-based protein is on the rise due to its health benefits (World Health Organization, 2015), as well as due to the ethical concerns related with exploiting animals as a source of protein (Johansson, 2019). The global plant-based protein market is expected to keep growing at a compound annual growth rate of 8.1% from 2019 to 2025 (Research and Markets, 2019). Popular plant-based meats from Impossible Foods and Beyond Meat have already reached some of the biggest food and retail brands in the US.

Pea (Pisum sativum L.; Family Fabaceae) is a major contributor to this plant-derived protein market and has gained particular interest lately due to its high content of lysine and tryptophan, overall high nutritional value and relatively low cost (do Carmo et al., 2016; Peng et al., 2016; Xiong et al., 2018). The market for pea protein is expected to be $34.8 million in 2020 due to growing consumer interest in plant-based proteins as an alternative to animal-derived protein (Grand View Research, 2015; Pietrysiak et al., 2018). Pea also plays a critical role in sustainable agriculture, due to its nitrogen-fixing capability, short life cycle, and low water usage; all of which make it a useful cover-and-break crop requiring minimal external inputs.

The US is one of the world’s major pea producers. In the US, harvested area of peas has increased by over 300% during the last 25 years; however, the yields have decreased an average of 7.5% throughout this timespan (Vandemark et al., 2014). Sustainable production of pea has been negatively affected by several diseases, predominantly root rots (Akhtar and Azam, 2014; Bodah et al., 2016). Root rots are the diseases of greatest impact to crop production worldwide (Kumari and Katoch, 2020). Frequently, root rot diseases involve more than one pathogen; therefore, the disease is known as root rot complex. Pathogens such as bacteria, oomycetes and fungi are commonly involved in this root rot complex (Xu et al., 2012; Chittem et al., 2015; Gossen et al., 2016).

One of the predominant causal agent of root rots in P. sativum is the soil fungus, Fusarium solani f. sp. pisi (Fsp). F. solani is a fungal soil-borne facultative parasite that is present worldwide (Zhang et al., 2006). The yields of P. sativum cultivars can be reduced by 15-60% by Fsp (Seaman, 1976; Grünewald et al., 2003; Porter et al., 2014). Over the years, hundreds of pea cultivars and germplasm core collections have been screened for Fsp resistance, and lines have been developed that demonstrate partial resistance to selected Fsp races (Coyne et al., 2008). An effort to identify tolerance to root rot in wild pea germplasm resulted in the identification of eight accessions with high levels of partial resistance (Porter, 2010). These accessions have been utilized for developing new cultivars. However, in tests replicated in the greenhouse and/or the field with derived selections, complete tolerance to Fsp has not been obtained (Grünewald et al., 2003; Porter et al., 2014; Bodah et al., 2016).

Understanding the genetic basis of tolerance to Fsp in a wide array of different pea breeding lines and cultivars has been pursued in several studies. The first QTL for Fsp tolerance
was reported from a field study utilizing various parental lines that showed resistance to multiple
root rots (Kraft, 1992; Feng et al., 2011). Recent studies conducted under controlled conditions
have reported three QTLs; QTL Fsp-Ps 2.1 explains 44.4 – 53.4% of the phenotypic variance
within a 1.2 cM confidence interval. The other two QTLs, Fsp-Ps 3.2 and Fsp-Ps 3.3 explain
3.6-4.6% of the phenotypic variance related Fsp root rot tolerance (Coyne et al., 2015, 2019).
While, the genes underlying these QTLs have not yet been identified, there is reason for
optimism given the recent release of the pea reference genome (Kreplak et al., 2019). It is
expected to facilitate characterization of potential transcription factors, stress-associated
phytohormone genes, Pathogenesis-related (PR) proteins, or pea phytoalexin Pisatin (Kendra and
Hadwiger, 1984) in the interaction between pea and Fsp.

While genetic approaches for identifying disease tolerance or resistance genes are
common, gene expression approaches to identify key genes in response to pathogen challenge
remain scarce. A report of Aphanomyces euteiches-mediated root rot of pea was investigated
using a gene expression approach, and novel genes responsive during the pathogenic interaction
with Medicago truncatula were reported (Nyamsuren et al., 2003). Besides the expected
induction of pathogenesis-related (PR) and defense genes, several novel genes were also reported
to be overexpressed during the plant-pathogen interaction.

To the best of our knowledge, a gene expression approach to identify genes involved in
Fsp tolerance in pea is yet to be reported. For gaining a comprehensive insight into the
transcriptomic responses during Fsp challenge, a comparative time-course RNAseq expression
analysis was performed on four tolerant and four susceptible P. sativum genotypes that were
selected from a preceding study (Bodah et al., 2016). Data analysis reaffirmed the role of
Disease-Resistance Response 230 (DRR230) and sugar transporters, as well as expression
patterns of genes associated with receptor-mediated endocytosis and exocytosis, cell death, and
anthocyanin synthesis. Interestingly, several previously uncharacterized genes were also
identified to be differentially expressed in both tolerant and susceptible genotypes, which may
help illuminate novel mechanism of pea-Fsp interaction.

Materials and methods

Plant material and Fsp isolates

A total of eight, white-flowered pea genotypes were selected for pathogen challenge
(Table 1). Four tolerant genotypes—00-5001, 00-5003, 00-5004, and 00-5007—were selected
from the Fsp tolerant 5000 series (Porter et al., 2014). Four susceptible genotypes—‘Aragorn’,
‘Banner’, ‘Bolero’, and ‘DSP’—were identified among frequently used commercial pea
varieties. These eight genotypes were selected based on their root disease severity index reported
in a preceding study (Bodah et al., 2016).

The Fsp isolates Fs 02, Fs 07, and Fs 09, were obtained from the Palouse Region of WA
and ID, US soils by Dr. Lyndon Porter, USDA-ARS Vegetable and Forage Crops Research Unit,
Prosser, WA. The three isolates were grown on pentachloronitrobenzene (PCNB) selective
media for six days (Nash and Snyder, 1962). Cultures were transferred to KERR’s media (Kerr,
1963), and incubated on a shaker at 120 rpm under continuous light for six days at 23 to 25°C.
The spore concentration of each isolate was determined using a hemocytometer and diluted to
1x10^6 spores/ml of water. A spore suspension inoculum containing equal parts by volume of each of the three isolates was created.

Fsp disease challenge

Seeds of each pea genotype were sterilized in a 0.6% sodium hypochlorite solution and rinsed in sterile distilled H2O. Seeds were then soaked for 16 hours in either the Fsp spore suspension (inoculated set) or in sterile H2O (control set). After the challenge with the spore suspension, seeds were harvested at specific time points of 0, 6, 12 hours (hr). The 0 hr time point began at the termination of the 16 hr inoculation period. Six hundred seeds were harvested per genotype per time point, immediately frozen under liquid nitrogen and transferred to storage at -80 °C for subsequent RNA extraction. The experiment was repeated three times.

RNA isolation, cDNA library construction and sequencing

The frozen seed material was pulverized in a SPEX SamplePrep 6870 FreezerMill (SPEX SamplePrep, NJ, USA) for five cycles. Each cycle consisted of cooling for two minutes and grinding at 15 counts per second for four minutes. Total RNA was isolated from the pulverized tissue using the RNeasy Plant RNA Extraction Kit (Qiagen, Hilden, Germany). A Nanodrop ND-8000 Spectrophotometer (ThermoFisher, MA, USA) and a Qubit Fluorometer (Life Technologies, CA, USA) were used to quantify the extracted RNA. Contaminating DNA was removed using the TURBO DNA-free™ Kit (Life Technologies, CA, USA) using the manufacturer’s instructions. RNA quality was verified via electrophoresis on a 1% agarose gel.

Equimolar amounts of RNA samples from tolerant and susceptible genotypes were bulked for each time point prior to the construction of RNAseq libraries. RNAseq libraries were constructed using 1 μg of RNA, and the Illumina TruSeq kits (Illumina Inc. San Diego, CA, USA). RNA was purified with an Oligo(dT) cellulose affinity matrix, and subsequently fragmented into short pieces of an average size of 450 base pairs with Ampure XP beads (Beckman Coulter, CA, USA). All libraries were quantified on a Qubit Fluorometer (Life Technologies, CA, USA) and analyzed on an Agilent BioAnalyzer (Agilent Technologies, CA, USA) to determine concentration, final size and purity of the library. A total of 24 libraries were sequenced using the HiSeq2000 configuration 100 PE (Illumina Inc. CA, USA) at the Michigan State University Genomics core laboratory.

RNAseq data processing and statistical analysis

The generated fastq files were analyzed for quality with CLC Bio Genomics Workbench 6.0.1 (CLC Bio, Aarhus, Denmark) and trimmed with trimmomatic (Bolger et al., 2014). *De novo* RNAseq assembly was performed using data from all 24 samples to obtain a master assembly with the software Trinity v2.8.4 (Grabherr et al., 2011). Dependencies for Trinity, Bowtie2 v1.2.3 (Langmead and Salzberg, 2012), Salmon v0.12.0 (Patro et al., 2017), and JELLYFISH v2.2.3 (Marçais and Kingsford, 2011), were used during assembly. Bowtie2 and Salmon were used for abundance estimation, and JELLYFISH was used as a k-mer counting software.

The software Kalisto was used for transcript quantification (Bray et al., 2016). The reads were quantified for each of the two biological replicates of the tolerant or susceptible genotypes at three time points, 0, 6, 12 hr. after inoculation, and for each control or treatment. This analysis resulted in 24 separate quantification groups that were used for comparison. Using Baggerley’s test, differentially expressed contig (DECs) with p value of <0.001 and a greater than 2-fold
change in expression were identified. The RPKM (Reads Per Kilobase of transcript per Million mapped reads) expression values were also ascertained for each contig. Heat maps showing fold-change of RPKM values between control (C) and inoculated (I) sets and among genotypes were created in Microsoft Excel 365 ProPlus (Microsoft Corporation, WA, US).

Functional annotation, Statistical GO enrichment and pathway analysis

Functional annotation of the master assembly and DECs was conducted via BLAST in BLAST2GO v. 3.3. (Conesa and Götz, 2008). Default parameters were used for the functional annotation, as well as for GO mapping, and InterPro Scan. The two-tailed Fisher’s exact test (FDR < 0.05) was used to ascertain over- and under-represented functions during *Fsp* challenge. A heat map representing ‘biological process’ GO terms over-represented in the *Fsp* inoculated treatment was created in Microsoft Excel 365 ProPlus (Microsoft Corporation, WA, US). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to identify pathways represented by the set of DECs for each time point and genotype.

Real-time quantitative PCR

RNA was extracted utilizing the RNeasy Plant DNA Extraction Kit (Qiagen, Mainz, Germany) from the same sampled tissues utilized for the RNAseq analysis. After DNase treatment, equimolar amounts of RNA from the tolerant and susceptible genotypes were bulked for each time point. First-strand cDNA synthesis was performed using 1,500 ng of each bulked RNA sample with the SuperScript® Vilo kit (ThermoFisher Scientific, MA, US). Nine genes were randomly selected from the list of DECs for RT-qPCR analysis (Table S1). Primers for RT-qPCR were designed with the Primer3 software (Rozen and Skaletsky, 2000) with the corresponding transcriptome contig as the query sequence for each primer set. The *Pisum sativum* root border cell specific protein (GenBank accession AF1139187.1) was used as an internal reference control as it showed invariant expression across genotypes and treatments in the RNAseq data.

The QUBIT 3.0 fluorometer (Invitrogen, CA, US) was used to quantify cDNA library concentration. For each reaction, 16ng of cDNA was used with the iTaq™ Universal SYBR® Green Supermix (BIO-RAD, CA, US). Each RT-qPCR reaction was performed in triplicate for each of the three biological replicates using the Stratagene Mx3005P (ThermoFisher Scientific, MA, US). The amplification profile consisted of an initial denaturation at 95 °C for 150 seconds, 40 cycles of 20 seconds at 95 °C for denaturation, 20 seconds at 60 °C for annealing, and 20 seconds at 72 °C for extension. A melting curve analysis was performed post amplification to ensure the presence of a unique amplicon and performed with an initial denaturation at 95 °C for 1 min and a decrease of temperature to 50°C for annealing. Temperature was then increased in 0.5°C increments at 5 sec/step from 50 °C to 95 °C for fluorescence readings. Raw fluorescence data was used as input for crossover threshold (Ct) calculations and reaction efficiencies adjusted with LinRegPCR 2012.0 software (Ruijter et al., 2009). The ΔΔCt method offered by PE Applied Biosystems (Perkin Elmer, Forster City, CA) was used to obtain relative differential expression values after reaction efficiencies were adjusted with the LinRegPCR 2012.0 software (Pfaffl, 2001).

Functional annotation of QTL associated with *Fsp* tolerance in pea

Fsp-Ps 2.1, the major QTL found to be associated with *Fsp* tolerance in pea (Coyne et al., 2019), was annotated using the transcriptome data generated in this study to determine if there
are any differentially expressed genes located in the selected genomic region. *Fsp-Ps 2.1*

explains 44.4 – 53.4% of the phenotypic variance and it is located on chromosome II within a 1.2

cM confidence interval of maker Ps900203 (Duarte et al., 2014; Coyne et al., 2019). The

genomic sequence of the *Fsp-Ps2.1 ± 1.2 cM* (±201,800 nt) was obtained from the pea genome

(Kreplak et al., 2019). The length of the QTL sequence was calculated based on the distance

between the Ps900203 and Ps000075 markers. Marker Ps000075 is 0.6 cM=168,166 nt away

from Ps900203. The transcriptome data from this study, was aligned via BLAST against the *Fsp-

Ps2.1 ± 1.2 cM* sequence in CLC Bio Genomics Workbench 6.0.1 (CLC Bio, Aarhus, Denmark).

Results and Discussion

Assembly of transcriptome data and identification of Differentially Expressed Contigs

(DECs)

A total of 850 million reads were generated after sequencing of the 24 libraries (Table S2). For these 24 libraries, the mean Q score ranged from 34.00 to 34.88; these Q scores validate the quality of the assay (Table S2). After QC and trimming of low-quality reads, 69.49% of reads were used for assembly of the master transcriptome. The master transcriptome, generated in this study, was composed of 185,721 contigs (Table S3), which had a mean contig length of 1503.15 nucleotides (nt) with a length range of 184–18,990 nt.

Mapping of reads to the master assembly showed a different number of contigs with zero mapped reads for each time point (0, 6, 12 hr.) and genotype (tolerant and susceptible). After expunging contigs with zero mapped reads, the total number of contigs ranged from 102,382 to 141,530, or 55.13 to 76.21% of the total 185,721 contigs, respectively (Table S2). The total number of reads mapped to each contig for each time point and genotype, and RPKM values are summarized in Table S3.

For each contig, twelve pairwise comparisons were performed (Table S4 and Table S3). In order to identify which genes were differentially expressed in response to the *Fsp* challenge, six comparisons, as listed in Table S4-comparisons 1 to 6, were performed (Fig 1a). In order to identify which genes responded differentially to *Fsp* between the tolerant and susceptible genotypes, six additional pairwise comparisons were performed and are summarized in Table S4-comparisons 7 to 12 (Fig 1b). The twelve pairwise comparisons resulted in the identification of 42,905 DECs out of the 185,721 contigs.

Pairwise comparisons 1 to 6, yielded the number of upregulated DECs obtained for each time point (Fig 2). For the *Fsp* inoculated tolerant genotypes, the number of upregulated DECs varied between 1,200 and 1,460 DECs across 0, 6 and 12 hr time points. The number of suppressed (under-expressed) DECs in the inoculated tolerant genotypes was larger (2795-4453 DECs). For the *Fsp* inoculated susceptible genotypes, the total number of upregulated DECs was 5-7 times larger than the total number for the *Fsp* inoculated tolerant genotypes (Fig 2). The number of suppressed genes in both sets of genotypes was similar at 0 hr. However, for the susceptible genotypes, these numbers were 1.34 and 2.21 times larger than the tolerant genotypes at 6 and 12 hr, respectively. A total of 5.7 and 5.4% of the DECs were shared across the three time points for the tolerant and susceptible genotypes, respectively.

The larger number of upregulated DECs represented a more diverse and higher number of transcriptionally regulated genes in the susceptible genotypes, in contrast to the tolerant genotypes. This higher number of upregulated DECs in the susceptible genotypes may be due to involvement of various biological processes associated with successful *Fsp* infection in pea.
embryonic tissue. This observation is consistent with previous studies, which showed that pathogen attack engages a broader range of pathways and a larger proportion of genes in the susceptible genotypes compared to the resistant ones (Bagnaresi et al., 2012; Zheng et al., 2013; Matić et al., 2016).

From the total upregulated DECs in the Fsp inoculated sets, only 10 (0.10%), 48 (0.52%), and 12 (0.12%) DECs are shared among the tolerant and susceptible genotypes at the 0, 6, and 12 hr time points, respectively. Therefore, the response mechanisms involved in the Fsp challenge were divergent between the tolerant and susceptible genotypes. The large difference in overexpressed DECs could explain the difference in tolerance between these sets of genotypes. The genes that were overexpressed in susceptible genotypes were numerically different from the ones in the tolerant genotypes.

Functional annotation of DECs and GO-term Enrichment

From the 185,721 contigs of the master assembly, 120,132 returned positive BLAST hits when queried to the NCBI database (National Center for Biotechnology Information). A total of 4,734 contigs, or 2.55% of the total contigs were annotated as proteins of unknown function or hypothetical proteins. The top BLAST hits showed similarity to *Medicago truncatula*, *Trifolium pratense*, *Cicer arietinum*, and *Trifolium subterraneum* with a distribution of 34.0%, 16.1%, 16.0, and 14.6% respectively. *Pisum sativum*, with a 3.6% match, was fifth in the rankings. The low percentage of hits to *P. sativum* was most likely due to the relatively scarce number, in comparison to the crops mentioned previously, of transcriptomic studies of *P. sativum* represented in the NCBI database. Of the 42,905 DECs, 36,923 (86.1%) returned positive BLAST hits when aligned to the NCBI database. Interestingly, 33 contigs (0.09%) of the 36,923 hits were classified as proteins of unknown function or hypothetical proteins, which could be useful candidates for understanding the pea-Fsp interaction.

The GO enrichment analysis identified significant over- and under-represented GO terms for each of the three Fsp inoculated time points (Table S5). GO terms related to routine DNA processes, such as DNA metabolic process, DNA biosynthetic process, and DNA integration, were significantly underrepresented at different time points in the tolerant and susceptible genotypes. DNA integration and DNA metabolic process terms were underrepresented across the three times in the susceptible genotypes, but only at 0 and 6 hr for the tolerant genotypes. Nucleic acid phosphodiester bond hydrolysis was also underrepresented only during certain times points in the susceptible genotypes but not in the tolerant genotypes.

Figure 3 represents a heat map with overrepresented biological process GO terms for each time point in the inoculated treatment for the tolerant and susceptible genotypes. These terms provide a comparative perspective of biological processes that responded to Fsp in the two subsets of genotypes. Common terms related to basic plant metabolism, such as gene expression, regulation of primary metabolism, transcription, and protein synthesis were over-represented at the 0 hr time point in the tolerant genotypes. Conversely, these terms were upregulated in at least 2 time points in the susceptible genotypes. Therefore, these results showed the tolerant genotypes may have moved towards a basal metabolic state after the 0 hr time point while the susceptible genotypes were responding to Fsp throughout the entire time course presented in this study.

GO terms such as ribosome biogenesis, protein export from nucleus, exocytosis, and secretion by cell were over-represented at 0 hr in the tolerant genotypes. Plants are known to transport antimicrobial molecules, such as peptides and/or secondary metabolites, outside the cell to function in plant immunity (Kwon and Yun, 2014). In contrast, the susceptible genotypes
seemed to be importing substances inside the cell since terms such as receptor-mediated endocytosis and import to cell were over-represented. Endocytosis seems not only to play a role in pathogen-associated molecular patterns (PAMP)-triggered immunity and effector-triggered immunity but also in susceptibility. Vesicle endocytosis can be manipulated by pathogens and can import pathogen-derived effectors into the plant cell (Driouich et al., 1997; Kwon and Yun, 2014). In this study, while the tolerant genotypes seemed to export antimicrobial molecules potentially to counter Fsp, the susceptible genotypes seemed to import substances. Thus, it is hypothesized that the suppression of exocytosis mechanisms in the susceptible genotypes might block or delay the transport and release of antimicrobial substances against pathogens.

GO terms in the cell signaling and response to biotic stress categories also showed an early and unique response at 0 hr in the tolerant genotypes, while this response was present throughout the entire experiment (0, 6 and 12 hr) or at later stages (6 or 12 hr) in susceptible genotypes. Several studies have analyzed how pea responds to Fsp and the non-host pathogen F. solani f. sp. phaseoli (Fsph). These studies concluded that the major difference is the speed at which the pea plants react. The type of response exhibited by pea varies with the rate of induction of PR genes and other associated biochemical pathways. In the case of either Fsph or Fsp infection, the fungus releases DNAses, which localize to the host nuclei and digest the nuclear DNA (Hadwiger and Adams, 1978; Hadwiger, 2008, 2015). Fungal DNases can also impact the nuclei in the fungal mycelia and trigger their deterioration (Hadwiger, 2008). In the case of a compatible interaction (successful infection leading to disease) between Fsp and pea, the slower reaction rate of the pea host allows Fsp to protect a small number of its own nuclei from fungal DNAses. The slower reaction allows the growth of Fsp to resume after 12 hours post-inoculation (Klosterman et al., 2001; Hadwiger, 2015). In contrast, the relatively rapid response generated in the host against Fsph terminates the growth of the fungi at 6 hrs. post-inoculation (Hadwiger, 2008, 2015). Given this information, it is hypothesized the speed of reaction to the pathogen may be one of the mechanisms of tolerance in the tolerant genotypes.

The GO terms associated with salicylic acid and cell death category were, in most cases, overrepresented only in the susceptible genotypes. Therefore, the susceptible genotypes were expected to have a more intense response to Fsp through induced systemic resistance, host programmed cell death, and plant-type hypersensitive response.

The GO terms associated with the production of flavanones, flavones, flavonols, proanthocyanidins, and anthocyanins showed over-representation in both genotypes. In the tolerant genotypes, these terms were only over-represented at 6 hrs. In the susceptible genotypes, GO terms from this category were overrepresented at the 0, 6 and 12 hr time points, indicating a more intense response. GO terms associated with the jasmonate pathway, phytoalexin synthesis, toxin metabolism and lipid metabolism were overrepresented only in the susceptible genotypes at all timepoints (Figure 3 and Table S5).

Quantitative RT-PCR Verification
To verify the expression results obtained from RNAseq data, RT-qPCR analysis was performed on nine randomly selected genes at all time points for the tolerant and susceptible genotypes. The expression trends of eight out of nine genes (89%) correlated with the RPKM values indicating the robustness of RNAseq results (Fig 4). The internal reference control (GenBank accession AF1139187.1) showed invariant expression across genotypes and treatments in this RT-qPCR analysis.
Fsp-induced differential gene expression

When a pathogen begins an interaction with a plant, several interconnected signaling and defense pathways are activated. The molecular response to Fusarium–plant interaction is diverse, with variations in interactions depending upon the specific host genotype involved in the process. A closer look at the 42,905 DECs showed that most of these genes are known to participate in defense responses and might play a significant role against the *Fsp* pathogenicity in pea. These genes were placed into seven broad categories: 1. Expression of signaling-related genes, 2. Genes involved in transcriptional regulation, 3. Pathogenesis-related (PR) genes, 4. Anthocyanin and lignin biosynthetic pathway genes, 5. Sugar metabolism, 6. Phytohormones, 7. Cell wall and membrane metabolism, and toxin metabolism.

1. **Expression of signaling-related genes**

Plants detect pathogens via host sensors known as pattern-recognition receptors (PRR), which act by detecting PAMPs. PAMPs are molecules shared by groups of related pathogens. These molecules are characteristic of a pathogen and are essential for the survival of those organisms, and are not found associated with plant cells (Moffett et al., 2002; Beck et al., 2012; Ao et al., 2014). After the detection of PAMPs, PRRs induce PAMP-triggered immunity (PTI).

To date, the identified PRRs are mainly single pass transmembrane proteins that carry leucine-rich repeats (LRRs) or a lysin motif (LysM). Both types of PRRs are receptor-like kinases (RLKs), which carry a cytosolic kinase domain; or receptor-like proteins (RLPs), which have a short cytoplasmic tail without a kinase domain (Beck et al., 2012). Beck et al., (2012) identified three PRRs that have been proven to be specific to fungi: the Chitin Elicitor Binding Protein (CEBiP), the chitin elicitor receptor kinase I (CERK1), and the ethylene-inducing xylanase (Eix2). CEBiP and CERK1 cooperatively regulate chitin elicitor signaling to activate plant defense system (Hayafune et al., 2014). Interestingly, CEBiP was not identified in this study. Contigs corresponding to CERK1 and Eix2 genes were identified, however they were not differentially expressed in any of the genotypes.

In this study, several LRR-RLK receptors were found to be differentially expressed in response to *Fsp* challenge (Table S3). Most of these genes were upregulated in the susceptible rather than in the tolerant genotypes. The L-type lectin-domain containing receptor kinase, proline-rich receptor-like protein kinase, cysteine-rich receptor-like protein kinase and the wall-associated receptor kinases are also upregulated in the susceptible genotypes, following the same trend as above. The activity of Mitogen-activated protein kinases (MAPK), MAPK kinases (MAPKK), and MAPKK kinases (MAPKKK) were, in most cases, upregulated in the tolerant and susceptible genotypes after the challenge with *Fsp* when compared to the control. However, the expression was, in most cases, significantly higher in the susceptible genotypes throughout the time-course when compared to the tolerant genotypes.

Two contigs identified as receptors were found to change significantly in expression after the *Fsp* challenge in the susceptible genotypes only. Contig DN1290_c0_g1_i9 and Contig DN7023_c0_g2_i5 were identified as a receptor-like cytoplasmic kinase 176 and CC-NBS-LRR resistance protein (Table S3), respectively. The receptor-like cytoplasmic kinase 176 acts downstream of the CERK1 gene in the fungal chitin signaling pathways that mediate innate immunity responses such as reactive oxygen species generation, defense gene expression, and callose deposition (Ao et al., 2014). The CC–NBS–LRR proteins initiate a resistance response that often includes a type of cell death known as the hypersensitive response (HR) (Moffett et al., 2002). In the susceptible genotypes, contig DN1290_c0_g1_i9 was significantly overexpressed.
at 6 hr (FC=3.19) after the Fsp challenge. Expression of Contig DN7023_c0_g2_i5 was found to be lowered at 12 hr (FC=-3.59) after the Fsp challenge. Interestingly, no change was observed in the expression of the two contigs in the tolerant genotypes. These two contigs also showed higher expression in the susceptible genotypes when compared to their expression in the tolerant genotypes. Contigs DN1290_c0_g1_i9 and DN7023_c0_g2_i5 were significantly upregulated at 0 (FC=3.49), 6 (FC=5.08), and 12 hr (FC=6.77), and 6 hr (FC=71.69), respectively, in the inoculated treatments of the susceptible genotypes when their expression values were compared to the tolerant genotypes. The data on the observed induction of genes coding for receptor-like cytoplasmic kinase 176 and CC-NBS-LRR resistance protein in the susceptible genotypes is intriguing. It suggests that the pathogen likely recruits oxygen species generation, hypersensitive response, defense gene expression, and callose deposition to establish infection. It raises a question if loss of function mutation in these genes in the susceptible genotypes could confer tolerance to Fsp. A loss-of-function mutation in receptor-like cytoplasmic kinases and CC-NBS-LRRs genes has proven to confer tolerance to different pathogens (Lorang et al., 2007; Sweat and Wolpert, 2007; Zhang et al., 2019).

2. Genes involved in transcriptional regulation

Activation of the expression of disease-related transcription factors (TFs) plays a crucial role in disease resistance or susceptibility against pathogens (Berrocal-Lobo et al., 2002; Eulgem and Somssich, 2007). The following TFs were found to be differentially expressed between the tolerant and susceptible genotypes and/or were influenced by Fsp challenge: bZIP, ERF, MYB, GATA, MADS-box, NAC, PLATZ, KAN2, PosF21, WRKY, C2H2, bHLH, DIVARICATA, E2F, GLABRA, ICE, IIIB, Jumonji, PIF, RF2a, SRM1, TCP19, TGA, UNE12, and HMG. From this list of TFs, bZIP, ERF, MYB, MADS-box, NAC, WRKY, C2H2, bHLH, E2F, Jumonji, PIF, RF2a, TCP19, TGA, and HMG have been reported to be master regulators of defense responses against pathogens (Pontier et al., 2001; Vailleau et al., 2002; Dong et al., 2003; Pré et al., 2008; Wang et al., 2009; Isaac et al., 2009; Kielbowicz-Matuk, 2012; Alves et al., 2013; Song et al., 2013; Li et al., 2013; Chandran et al., 2014; Khong et al., 2015; Li, 2015; Paik et al., 2017; Im et al., 2019). However, the involvement of following TFs in response to pathogen challenge has not been reported previously – GATA, PLATZ, KAN2, PosF21, DIVARICATA, GLABRA, ICE, IIIB, SRM1, UNE1.

In the tolerant genotypes, TFs were either not differentially expressed when the control and inoculated samples were compared, or their expression was significantly suppressed after Fsp challenge. In the susceptible genotypes, however, the expression of TFs remained the same or increased after Fsp challenge. When the inoculated treatments in the tolerant and the susceptible genotypes were compared at either time point, TFs were overexpressed in the susceptible genotypes (Figure 5).

The higher expression of TFs in the susceptible genotypes implies their role in susceptibility to Fsp. Indeed, it is well documented that overexpression of certain TFs causes susceptibility to certain pathogens (Kim et al., 2006; Lai et al., 2008; Thatcher et al., 2012). Some examples include the enhanced susceptibility of the WRKY7-overexpressing Arabidopsis plants to Pseudomonas syringae infection. Overexpression of WRKY7 results in reduced expression of defense-related genes and a higher accumulation of salicylic acid (Kim et al., 2006). Similarly, overexpression of the AtWRKY4 gene in Arabidopsis enhances susceptibility towards the biotrophic bacterium P. syringae (Lai et al., 2008). In a disease screen with F. oxysporum, it was found that disruption of the LATERAL ORGAN BOUNDARIES (LOB)
3. Pathogenesis-related (PR) Genes

Pathogenesis-related (PR) proteins are expressed at basal levels in healthy plant tissues. Accumulation of PR proteins occurs only during a plant-pathogen interaction (Sels et al., 2008; Saboki Ebrahim and Singh, 2011). Plant PR proteins are low molecular weight and protease-resistant proteins, and have been categorized into 17 families according to their properties and functions such as glucanases, chitinases, ribosome-inactivating proteins, and defensins (Sels et al., 2008; Saboki Ebrahim and Singh, 2011). The inoculation of the tolerant and susceptible genotypes with *Fsp* generated changes in the expression of PR genes. Figure 6 shows DEC-PR genes identified in this study with their respective functions.

All the PR protein encoding genes that were identified in this experiment were overexpressed in the susceptible genotypes over the tolerant genotypes except one. The contig DN5959_c0_g1_i3 was identified as a defensin named *P. sativum* pl230 mRNA (e-value:0.0, percentage identity: 97.23%). The expression of the DN5959_c0_g1_i3 contig was significantly higher in the tolerant genotypes over the susceptible genotypes under control conditions at 0 hr (FC=-69.21) and 6 hr (FC=-151.78), and under inoculated conditions at 0 (FC=-7.93) and 12 hr (FC=-43.5). The pl230 mRNA is the precursor for the DRR230 protein, which is a disease resistance response protein identified previously in *P. sativum*. DRR230 defensin was first identified in pea pods in response to infection by *Fsp* (Chiang and Hadwiger, 1991). This gene was found to be overexpressed in pea in the presence of *Micosphaerella pinodes*, a necrotrophic fungus (Fondevilla et al., 2011). This defensin was also found to co-localize with a major QTL (mpIII-4) involved in resistance to *M. pinodes* in pea (Prioul-Gervais et al., 2007). DRR230
was isolated by Almeida et al., (2000) and characterized as a small cysteine-rich polypeptide. Almeida et al., (2000) also determined that DRR230 is very effective as a fungal growth inhibitor against *Aspergillus niger*, *A. vesicolor*, *Fsph*, and *Neurospora crassa*. While the QTL Fsp-Ps3.3 reported for Fsp tolerance (Coyne et al., 2019) is localized on chromosome 5 at 63 million bp position, the location of DRR230 at position 487 million bp makes it an unlikely candidate gene.

The specific function of DRR230 is not yet known, however plant defensins form a characteristic structure known as the cysteine-stabilized α/β motif, a feature that is also shared by several toxins from insects, scorpions, honeybees, and spider venoms (Hadwiger, 2008). Defensins can induce membrane destabilization and inhibit protein synthesis, enzyme activity, and ion channels (Lay and Anderson, 2005; Hadwiger, 2008). The pea DRR230 was overexpressed in canola, and extracts of these plants inhibited the *in vitro* germination of *Leptosphaeria maculans*, a hemibiotrophic fungus (Wang et al., 1999). Canola plants transformed with DRR230 were significantly more resistant to *Leptosphaeria maculans*. The transcriptome analysis presented in this study reinforces recent and preceding studies that suggests that DRR230 may play a key role in resistance or tolerance to Fsp induced root rot.

4. Anthocyanin and lignin biosynthetic pathway genes.

Pea genotypes with pigmented seed coats and flowers demonstrate highest level of tolerance to Fsp (Bodah et al., 2016). It has been hypothesized that genes involved in anthocyanin pigmentation are directly involved in resistance to Fsp (Weeden and Porter, 2007; Coyne et al., 2019). However, it was found that the pigmented flowered genotype PI 180693 was susceptible to Fsp (Bodah et al., 2016). This result suggests that other genes are potentially involved in the resistance exhibited by pigmented-flowered lines or that several proteins in the anthocyanin pathway could play a role in the production of a colorless metabolite that confers this resistance.

The germplasm utilized in this study consisted of white-flowered lines that present partial tolerance to Fsp. RNAseq analysis showed that the white-flowered lines contain a large set of DECs that participate in the anthocyanin biosynthetic pathway (Fig 7). Genes coding for enzymes in the phenylalanine ammonia lyase (PAL) to chalcone isomerase (CHI) biochemical pathway were upregulated in the inoculated treatments in both the tolerant and susceptible genotypes. Furthermore, some of these enzymes were either overexpressed in the susceptible genotypes or were expressed at a similar level between the tolerant and susceptible genotypes (Figure 7).

The expression patterns were more variable for genes coding for enzymes from the flavanone-3-hydroxylase (F3H) to LDOX (leucoanthocyanidin dioxygenase), as well as for the flavonoid 3′,5′-hydroxylase (F3′5′), UDP glucose-flavonoid 3-O-glucosyl transferase (UF3GT), and flavonol synthase (FLS) enzymes (Fig 7a, b). Some isoforms of F3H were overexpressed in the susceptible genotypes but also some other isoforms were overexpressed in the tolerant genotypes. F3′H, UF3GT, and FLS were upregulated in the susceptible genotypes, but most or all isoforms of LDOX, and F3′5′ were upregulated in the tolerant genotypes. In the susceptible genotypes, expression of some isoforms of LDOX was suppressed after challenge with Fsp (Fig 7a, b).

Coyne et al., (2019) reported a significant QTL (*Fsp-Ps2.1*) that accounts for 44.4 to 53.4% of the phenotypic variance for resistance to Fsp and this QTL shows a confidence interval of 1.2 cM. This QTL was found in a population obtained from a cross between a pigmented and a
white flower line. *Fsp-Ps2.1* was mapped within the interval of the pigmented flower/anthocyanin pigmentation gene called as gene A in that study. However, the gene was mapped in a white flower cross. One hypothesis is that the resistance gene(s) responsible for the *Fsp-Ps2.1* effect may not necessarily be gene A since *Fsp-Ps2.1* was originally identified in a white-flowered (a) cross. The R gene may have been linked in the genome with gene A in the pigmented lines. The white-flowered, resistant parent may have been obtained through a linkage break between *Fsp-Ps2.1* and A. Alternatively, a metabolite, possibly a colorless one, in the anthocyanin pathway might be the one that provides this resistance. Fine mapping or gene knockouts are necessary to test this hypothesis.

The transcriptome data, generated in this study, was aligned via BLAST against the *Fsp-Ps2.1* ± 1.2 cM sequence (Table S6). This QTL region was identified in the pea genome (Kreplak et al., 2019) and is approximately 403,600 nt in length. BLAST analysis returned 500 positive blast hits when queried to the transcriptome data. A total of 156 contigs showed differential expression after *Fsp* challenge or when the tolerant and susceptible genotypes expression values are compared (Table S6). A total of 22 of the 156 contigs were annotated as proteins of unknown function or hypothetical proteins. Only the contig TRINITY_DN4823 was identified as a disease related gene, soyasaponin III rhamnosyltransferase. However, this contig was overexpressed in the susceptible genotypes when compared to the tolerant genotypes. No genes associated with pigmentation were identified at the *Fsp-Ps2.1* region during this analysis.

Figure 7c also shows the differential expression of genes at each time point, treatment, and genotype in this study. Early steps in the phenylpropanoid pathway such as phenylalanine biosynthesis, phenylalanine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis are active in the control replicates of the tolerant genotypes at the three times points. In the susceptible controls, fewer, or none of the enzymes were overexpressed. This observation suggests that the tolerant genotypes had a higher level of expression of genes in the phenylpropanoid pathway under the basal conditions and, therefore, it was potentially better prepared to defend against *Fsp*.

Legumes contain the isoflavone synthase enzyme, which redirects phenylpropanoid pathway intermediates, such as naringenin, to the synthesis of isoflavonoid phytoalexins (Sreevidya et al., 2006). The isoflavonoid phytoalexins are low molecular weight antimicrobial compounds. Accumulation of these isoflavonoids is often enhanced following infection (Smith and Banks, 1986; Jeandet et al., 2014). Pisatin is an extensively studied phytoalexin from pea. In pea, the presence of *Fsp*, *Fsph*, and chitosan increases the production of pisatin (Hadwiger and Beckman, 1980). The 6a-hydroxymaackiain-3-O-methyltransferase, enzyme directly upstream from the synthesis of pisatin, was expressed in both the tolerant and susceptible genotypes but overexpressed only in the susceptible genotypes at 0 hrs. Mackintosh et al., (1989) found that the more virulent the *Fsp* isolates are, the more easily they degrade pisatin. The enzyme pisatin demethylase (PDA) demethylates pisatin to produce a less toxic compound. *Fsp* isolates incapable of demethylating pisatin are low in virulence and susceptible to pisatin (Mackintosh et al., 1989; Hadwiger, 2008). Therefore, demethylation of pisatin is an important mechanism by which *Fsp* resists pisatin and a crucial factor in the pathogenicity of *Fsp* in pea. However, based on the results in this and previous studies, pisatin does not seem to play a role in the tolerance to *Fsp* (Mackintosh et al., 1989; Hadwiger, 2008).

The biosynthesis and deposition of lignin in cell walls is developmentally programmed and plays an important role in preventing pathogen invasion (Miedes et al., 2014). The lignin biosynthetic pathway involves the central phenylpropanoid biosynthetic pathway. Genes
involved in the lignin biosynthetic pathway, such as PAL, 4CL, trans-cinnamate 4-
monooxygenase (C4M) and caffeoyl-o-methyltransferase (COMT), were overexpressed upon
Fsp inoculation in both genotypes but at a significantly higher level and more consistently in the
susceptible genotypes. It is well documented that the lignin biosynthetic pathway produces lignin
rapidly in response to cell wall structure perturbations (Caño-Delgado et al., 2003; Tronchet et
al., 2010; Sattler and Funnell-Harris, 2013; Miedes et al., 2014). Therefore, it seems the
susceptible genotypes are responding to the aggressive *Fsp* invasion with a late and futile effort
that involves a higher level of lignin synthesis and deposition.

5. Sugar metabolism

Activation of defense responses upon pathogen infection is usually accompanied by a
rapid response in the induction of sink metabolism (Heil and BOSTOCK, 2002; Lanubile et al.,
2015). This shift in metabolism is due to the increased demand for carbohydrates as an energy
source to sustain the immune responses; however, sugars from the host can also benefit the
pathogens in their infection. This study identified DECs involved in sugar transport such as sugar
transporter ERD6-like 6, sugar carrier protein C-like, sucrose transport protein SUC3, sugar
transport protein 13, probable alkaline/neutral invertase D, bidirectional sugar transporter
SWEET2-like, and invertase inhibitor-like protein. These sugars transporters are upregulated in
the susceptible genotypes (Table S3). Certain pathogens are known to manipulate plant
carbohydrate metabolism for their own needs (Voegele et al., 2001; Lanubile et al., 2015). These
pathogens are known to modulate the expression and activity of sugar transporters during their
interaction with the plant host. Sugars are used by the pathogen for their own development.
Bacterial and fungal pathogens induce the overexpression of different sugar efflux
transporters, such as the SWEET genes; this overexpression results in sucrose accumulating in
the apoplast for use in pathogen nutritional gain and growth (Chen et al., 2010; Lanubile et al.,
2015). Results of this study are in concordance with the literature, suggesting that the active
mobilization of sucrose in the *Fsp*-inoculated susceptible genotypes supported successful
infection by *Fsp*. Of all the DECs identified in the susceptible genotypes, 78% (25 genes) were
overexpressed and only 22% (7 genes) were suppressed after *Fsp* challenge. In the tolerant
genotypes, 15% (3 genes) were overexpressed and 85% (17 genes) were suppressed after *Fsp*
challenge. These data would support the scenario explained previously; *Fsp* is either
manipulating sugar metabolism or taking advantage of the active mobilization of sucrose in the
susceptible genotypes.

6. Phytohormones

A large group of DECs were identified that were involved in the synthesis and signaling
of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The GO enrichment analysis also
showed overrepresented GO terms related to the synthesis and signaling of these three hormones.
From this set of DECs, a few were overexpressed in the tolerant genotypes, but the vast majority
were overexpressed in the susceptible genotypes after *Fsp* challenge.

After pathogen attack, activation of SA- or JA/ET-mediated signaling pathways is known
to occur along with induction of expression of pathogenesis-related (*PR*) genes. Some *PR*
genes are expressed in response to SA, whereas others in response to JA (Takahashi et al., 2004;
Glazebrook, 2005). It is well documented that SA and JA/ET act antagonistically during
pathogenesis and other defense-related responses (Clarke et al., 2000; Gupta et al., 2000;
Kachroo et al., 2001; Kloek et al., 2001; Shah et al., 2001; Takahashi et al., 2004; Glazebrook,
interactions among SA, JA, and ET further fine tunes plant defense responses (Feyns and Parker, 2000; Kunkel and Brooks, 2002). It is generally assumed that the trophic nature of the pathogen determines which signal transduction pathway (SA or JA/Et) becomes activated in the plant host (Halim et al., 2006). Biotrophic pathogens generally elicit the defense responses via the salicylic acid signaling pathway, while necrotrophs activate a JA-dependent defense response (McDowell and Dangl, 2000; Dangl and Jones, 2001; Thomma et al., 2001; Van Wees et al., 2003; Grant and Lamb, 2006; Halim et al., 2006; Trusov et al., 2009; Rahman et al., 2012).

SA production promotes cell death and that in turn promotes additional SA production. SA-signaling travels through the plant activating systemic acquired resistance (SAR) (Glazebrook, 2005). Necrotrophic pathogens have been shown to hijack plant defense responses to produce SA to further promote disease development. The necrotrophic fungi, Botrytis cinerea and Alternaria solani, use the SA-signaling pathway to exacerbate the disease in tomato (Rahman et al., 2012). Both pathogens use the SA-signaling pathway through NPR1, a master regulator of SA signaling, and TGA1a TF to promote disease development in tomato. NPR1 and TGA1a suppress the expression of proteinase inhibitors, which in turn suppress the expression of two JA-dependent defense genes (Rahman et al., 2012). The Clover yellow vein virus (ClYVV) also induces cell death via the activation of the salicylic acid (SA) signaling pathway. SA signaling and cell death enhance ClYVV virulence in susceptible pea cultivars (Atsumi et al., 2009).

In this study, differential expression of genes associated with SA synthesis and signaling, cell death and HR in both the tolerant and susceptible genotypes was observed. However, when comparisons were made between the tolerant and susceptible genotypes, these DECs were observed to be overexpressed in the susceptible genotypes. The contig DN5429 in this study was identified as TGA1.a transcription factor (involved in SA signaling) and its isoform DN5429_c0_g1_i1 was overexpressed 6.82-fold in the susceptible genotypes over the tolerant genotypes. These are important observations, at least at the gene expression level, since the current understanding portends that overexpression of SA-related genes should not be observed in interactions between Fsp and pea, as cell death in plant hosts does not limit pathogen growth (Glazebrook, 2005). SA-dependent responses and SAR are not predicted to play a role in tolerance against Fsp, whereas responses mediated by JA and ET are expected to do so.

The overexpression of genes associated with JA/ET synthesis and signaling also happen in both the tolerant and susceptible genotypes. When comparisons were made between the tolerant and susceptible genotypes, 22 DECs (80% of JA/ET-associated genes) were observed to be overexpressed in the susceptible genotypes. Based on these data, it is difficult to draw conclusions on the effect of SA and/or JA/ET in the response of the tolerant and susceptible genotypes to Fsp. However, a comparison was made using the number of DECs associated with the SA and JA/ET biosynthetic and signaling pathway in the tolerant and susceptible genotypes after Fsp challenge (Fig 8). The susceptible genotypes showed an upsurge in the overexpression of genes related to SA biosynthesis and signaling (Fig 8). Alternatively, in the tolerant genotypes, the majority of genes related to SA biosynthesis and signaling were suppressed after Fsp challenge. These changes related to the SA-pathway genes in the susceptible genotypes might have 1-) deteriorated the action of the JA-signaling pathway, 2-) increased the cell death, and therefore, 3-) facilitated successful infection by Fsp

These results suggest that the SA-signaling pathway might be involved in the development of root rot disease caused by Fsp in the susceptible genotypes. However, genetic
mapping or gene knockouts are needed to evaluate this proposal. Some potential targets for gene
knockout experiments would be NPR1 and TGA1.a. Targeting of these genes would provide
more insights into the possible manipulation of the SA signaling pathway by Fsp in susceptible
genotypes.

7. Others: Cell wall and membrane metabolism, and toxin metabolism.

Cell wall and membranes play important roles in plant defense as they act as a barrier that
prevents pathogen invasion. Both also maintain a reservoir of antimicrobial compounds, which
are released during pathogen infection (Vorwerk et al., 2004). Cell wall and membrane
modifications are carried out by the plant during pathogen attack. For instance, deposition of
callose, which is enriched with Beta-glucan, forms a stronger and thicker barrier at the sites of
pathogen attack (Miedes et al., 2014). The formation of this callose appears to be a common
mechanism in all plants. However, this response has not been studied in the context of Pea-Fsp
interaction.

In this study, genes related to cell wall and membrane modification, and callose
deposition, were mostly upregulated in the susceptible genotypes (Fig 9). The genes for cell
membrane transporters, proteins that work on the detoxification (antporter activity) of
substances, and proteins that break down toxins accumulated in the plant host were also
overexpressed in the susceptible genotypes (Fig 9). Interestingly, after Fsp challenge, the
majority of genes associated with cell wall metabolism, toxin metabolism and transport were
suppressed in the tolerant genotypes, while they were overexpressed in the susceptible genotypes
(Fig. 9). These responses, at least at the gene expression level, indicate that the response of the
susceptible genotypes was delayed as the pathogen had already infested the tissues, and
therefore, the host made a futile effort in response to the pathogen attack. Most likely the tolerant
genotypes already possessed physical and biochemical barriers and the expression of the genes
related to these pathways were actually being suppressed.

Conclusions

The time course RNAseq results presented in this study provided a comprehensive insight
into the transcriptomic changes that accompany Fsp infection in tolerant and susceptible P.
sativum genotypes. The observed changes in expression of genes are associated with various
physiological and biochemical processes that are known to be involved in plant disease response
against pathogens. Fsp challenge produced a more intense and diverse overexpression of genes,
across the entire time-course, in the susceptible genotypes compared to the tolerant genotypes.
This type of response is hypothesized to be related to the speed at which the pathogen
infestations advances in the susceptible genotypes, and the preexisting level of disease-
preparedness in the tolerant genotypes. The transcriptomic effort demonstrated by the susceptible
genotypes seems futile and lacked key specific responses that were present in the tolerant
genotypes. In contrast, the tolerant genotypes showed a fine-tuned response: fewer changes in
the expression of defense-related genes that helps preserve energy, and a faster reset to a basal
metabolic state.

This RNAseq analysis helped identify alternate strategies and potential genes that could
be evaluated to confer improved tolerance against root rot in P. sativum. Specific genes or
pathways that might have a key role in tolerance or susceptibility to Fsp are: receptor-like
cytoplasmic kinase 176, CC-NBS-LRR resistance protein, WRKY7 TF, WRKY4 TF, LBD TF,
HMG A TF, anthocyanin biosynthetic pathway, SWEET genes, JA/ET-signaling pathway, cell
death, NPR1 and TGA1a. SA-signaling genes, and most importantly the DRR230 protein. Functional characterization of these genes is expected to provide mechanistic information regarding pea-Fsp interaction and provide targets to incorporate resistance via molecular breeding (Bodah et al., 2016) or gene editing (Ghogare et al., 2019) for improving root rot resistance in a crop that is rapidly becoming a meat alternative at the same time as it contributes to sustainability.

Figure legends:

Figure 1. Venn diagrams representing number of DECs (Differentially Expressed Contigs) for the twelve pairwise comparisons. (a) Number of DECs for pairwise comparisons between control and inoculated samples collected at 0, 6 and 12 hr time points for the tolerant and the susceptible genotypes. (b) Number of DECs for pairwise comparisons between the tolerant and susceptible genotypes for each time point (0, 6 and 12 hr) for control and inoculated conditions.

Figure 2. Total number of overexpressed and underexpressed DECs in the inoculated treatments for tolerant and susceptible genotypes at each time point in response to *Fsp* challenge.

Figure 3. Biological process-GO terms over-represented in the *Fsp* inoculated treatment for a tolerant and susceptible genotypes at 0, 6, and 12 hr time points. The tone of colors in the heatmap denotes the p-value of the fold-change in expression, as indicated in the key. Significantly over-represented GO terms showed a p>0.05.

Figure 4. RT-qPCR validation of select genes in control (C) and *Fsp* inoculated (I) plants. The grey and black bars represent relative gene expression for the tolerant and susceptible genotypes, respectively. First column: RT-qPCR data show the average relative expression of three biological samples with three technical replicates each. Second column: RPKM values calculated for each gene. The error bars represent the standard error between replicates in RT-qPCR analysis. Gene 1: TRINITY_DN2419_c0_g1_i5 (BLAST accession: XM_003592027.3), Gene 2: TRINITY_DN2754_c0_g1_i11 (BLAST accession: XM_004502933.3), Gene 3: TRINITY_DN5727_c0_g1_i1 (BLAST accession: MK618561.1), Gene 4: TRINITY_DN6240_c0_g1_i9 (BLAST accession: XM_003592048.3), Gene 5: TRINITY_DN2169_c1_g1_i2 (BLAST accession: XM_004506541.3), Gene 6: TRINITY_DN1232_c0_g1_i11 (BLAST accession: XM_004504351.3), Gene 7: TRINITY_DN5529_c0_g1_i9 (BLAST accession: XM_024782286.1), Gene 8: TRINITY_DN8631_c0_g1_i1 (BLAST accession: XM_013611166.2), Gene 9: TRINITY_DN1795_c0_g1_i2 (BLAST accession: XM_004514502.3).

Figure 5. Differentially expressed transcription factors in tolerant and susceptible pea genotypes in response to *Fsp* challenge. The color key denotes fold-change. Pairwise comparisons that displayed greater than 2-fold difference (p> 0.005) in expression were identified with a color that ranges from light yellow (fold change>2) to dark red (fold change>10).

Figure 6. Key differentially expressed Pathogenesis-related contigs in tolerant and susceptible pea genotypes in response to *Fsp* challenge. The color key denotes fold-change. Pairwise comparisons that displayed greater than 2-fold difference (p>0.005) in expression were identified with a color that ranges from light yellow (fold change>2) to dark red (fold change>10).

Figure 7. Heatmap representation of changes in the expression of genes associated with the anthocyanin biosynthetic pathway in tolerant and susceptible pea genotypes after *Fsp*
challenge. (a) Subset of differentially expressed genes involved in the anthocyanin biosynthetic pathway in tolerant and susceptible pea genotypes after *Fsp* challenge. The color key denotes fold-change. Pairwise comparisons that displayed greater than 2-fold difference (p > 0.005) in expression were identified with a color that ranges from light yellow (fold change > 2) to dark red (fold change > 10). (b) Anthocyanin biosynthesis pathway (Adapted from Solfanelli et al., 2006). (c) KEGG pathway analysis of metabolic processes related to the anthocyanin biosynthetic pathway. Abbreviations (Abbr.) PAL = phenylalanine ammonia lyase, CHS = chalcone synthase, CHI = chalcone isomerase, F3H = flavanone-3-hydroxylase, F3’H = flavonoid 3’-hydroxylase, DFR = dihydroflavonol 4-reductase, LDOX = leucoanthocyanidin dioxygenase, UF3GT = UDP glucose-flavonoid 3-O-glucosyl transferase, FLS = Flavonol synthase, F3’5’H = Flavonoid 3’,5’-hydroxylase.

Figure 8. Number of DECs associated with the salicylic (SA) and jasmonate/ethylene (JA/ET) biosynthetic and signaling pathway in a pea tolerant and susceptible genotype after *Fsp* challenge. (a) DECs associated with the salicylic (SA) biosynthetic and signaling pathway. (b) DECs associated with the jasmonate/ethylene (JA/ET) biosynthetic and signaling pathway.

Figure 9. Heatmap representation of differentially expressed genes associated with cell wall metabolism, toxin metabolism and transport in tolerant and susceptible pea genotypes in response to *Fsp* challenge. The color key denotes fold-change. Pairwise comparisons that displayed greater than 2-fold difference (p > 0.005) in expression were identified with a color that ranges from light yellow (fold change > 2) to dark red (fold change > 10).

Tables

Table 1: Selected white-flowered pea genotypes for time course transcriptome analysis in response to *Fusarium solani f. sp. pisi* (*Fsp*) challenge. The table summarizes pea genotypes, source, Fsp tolerance level, other disease resistance, 100 seed weight, leaf type, and market class.

Genotype	Source a	*Fsp* resistance level b	Other disease resistance c	100 seed weight	Leaf type d	Market Class
00-5001	USDA-ARS VFCRU	*	Fop races 1, 2 and 5	22.7	af	Green fresh
00-5003	USDA-ARS VFCRU	*	Fop races 1, 2 and 5	15.9	af	Green fresh
00-5004	USDA-ARS VFCRU	*	Fop races 1, 2 and 5	20.8	af	Green fresh
00-5007	USDA-ARS VFCRU	*	Fop races 1, 2 and 5	22.2	P	Green fresh
Aragorn'	ProGene	***	Fop races 1, 2; PSBMV	19.5	af	Green dry
Variety	Supplier	Rating	Disease	Rating	Type	
---------	---------------------------	--------	----------	--------	----------	
Banner'	ProGene	***	Fop race 2, PM	18.7	af	Green dry
Bolero'	AsGrow	****	Fop race 1, PM, Pythium, EMV	20.12	P	Green fresh
DSP'	Canner Seed	***	-	20.9	P	Green fresh

Notes:
- AsGrow = AsGrow Seed Co., San Juan Bautista, CA; Canner Seed = Canner Seed Co., Idaho Falls, ID; ProGene = ProGene LLC Plant Research, Othello, WA; USDA-ARS VFCRU = USDA-ARS, Vegetable and Forage Crops Research Unit, Prosser, WA.
- Fsp tolerance (Bodah et al. 2016)
- Fop = Fusarium oxysporum; PSBMV = Pea Seed-Borne Mosaic Virus, PM = Powdery Mildew; EMV = Enation Mosaic Virus
- af (Afila) = semi-leafless; P (Perfection) = normal leaf type

Author Contributions: AD, RS, and BWB designed the study. AD supervised the study. BWB and EB performed the experiments and generated the data. BWB and GN analyzed the data. LP provided the tolerant pea genotypes and Fsp isolates. All authors read and approved the final manuscript.

Funding: Work in the Dhingra lab was supported in part by Washington State University Agriculture Research Center Hatch Grant WNP000111, USA Dry Pea and Lentil Commission, and generous support from ProGene. BWB acknowledges graduate research assistantship support from Washington State University Graduate School, and ProGene Plant Research.

Acknowledgements: The authors are grateful to Kurt Braunwart, CEO, ProGene Plant Research for critical discussions and his support for the project.

Data Availability: The raw sequencing data from RNAseq analysis were deposited in the NCBI Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra) under the accession number SRP260465.

Bibliography

Akhtar, M. S., and Azam, T. (2014). Effects of PGPR and antagonistic fungi on the growth, enzyme activity and fusarium root-rot of pea. *Arch. Phytopathol. Plant Prot.* 47, 138–148.

Almeida, M. S., Cabral, K. M. S., Zingali, R. B., and Kurtenbach, E. (2000). Characterization of two novel defense peptides from pea (Pisum sativum) seeds. *Arch. Biochem. Biophys.* 378, 278–286.

Alves, M. S., Dadalto, S. P., Gonçalves, A. B., De Souza, G. B., Barros, V. A., and Fietto, L. G. (2013). Plant bZIP transcription factors responsive to pathogens: a review. *Int. J. Mol. Sci.* 14, 7815–7828.

Ao, Y., Li, Z., Feng, D., Xiong, F., Liu, J., Li, J., et al. (2014). Os CERK 1 and Os RLCK 176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. *Plant J.* 80, 1072–1084.

Atsumi, G., Kagaya, U., Kitazawa, H., Nakahara, K. S., and Uyeda, I. (2009). Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars. *Mol. plant-microbe Interact.* 22, 166–175.

Bagnaresi, P., Biselli, C., Orrù, L., Urso, S., Crispino, L., Abbruscato, P., et al. (2012).
Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. *PLoS One* **7**.

Beck, M., Heard, W., Mbengue, M., and Robatzek, S. (2012). The INs and OUTs of pattern recognition receptors at the cell surface. *Curr. Opin. Plant Biol.* **15**, 367–374.

Berrocal-Lobo, M., Molina, A., and Solano, R. (2002). Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. *Plant J.* **29**, 23–32.

Bodah, E. T., Porter, L. D., Chaves, B., and Dhingra, A. (2016). Evaluation of pea accessions and commercial cultivars for fusarium root rot resistance. *Euphytica* **208**.

doi:10.1007/s10681-015-1545-6.

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114–2120.

Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. *Nat. Biotechnol.* **34**, 525–527.

Buxdorf, K., Rahat, I., Gafni, A., and Levy, M. (2013). The epiphytic fungus *Pseudozyma aphidis* induces jasmonic acid-and salicylic acid/nonexpressor of PR1-independent local and systemic resistance. *Plant Physiol.* **161**, 2014–2022.

Caño-Delgado, A., Penfield, S., Smith, C., Catley, M., and Bevan, M. (2003). Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. *Plant J.* **34**, 351–362.

Chandran, D., Rickert, J., Huang, Y., Steinwand, M. A., Marr, S. K., and Wildermuth, M. C. (2014). Atypical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid. *Cell Host Microbe* **15**, 506–513.

Chen, L.-Q., Hou, B.-H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X.-Q., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. *Nature* **468**, 527–532.

Chiang, C. C., and Hadwiger, L. A. (1991). The Fusarium solani-induced expression of a pea gene family encoding high cysteine content proteins. *Mol. plant-microbe Interact. MPMI* **4**, 324–331.

Chittem, K., Mathew, F. M., Gregoire, M., Lamppa, R. S., Chang, Y. W., Markell, S. G., et al. (2015). Identification and characterization of Fusarium spp. associated with root rots of field pea in North Dakota. *Eur. J. Plant Pathol.* doi:10.1007/s10658-015-0714-8.

Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M., and Dong, X. (2000). Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. *Plant Cell* **12**, 2175–2190.

Conesa, A., and Götz, S. (2008). Blast2GO: a comprehensive suite for functional analysis in plant genomics. *Int. J. Plant Genomics* **2008**.

Coyne, C. J., Pilet-Nayel, M., McGee, R. J., Porter, L. D., Smýkal, P., and Grünwald, N. J. (2015). Identification of QTL controlling high levels of partial resistance to Fusarium solani f. sp. pisi in pea. *Plant Breed.* **134**, 446–453.

Coyne, C. J., Porter, L. D., Boutet, G., Ma, Y., McGee, R. J., Lesné, A., et al. (2019). Confirmation of Fusarium root rot resistance QTL Fsp-Ps 2.1 of pea under controlled conditions. *BMC Plant Biol.* **19**, 98.

Coyne, C. J., Porter, L. D., Inglis, D. A., Grünwald, N. J., McPhee, K. E., and Muehlbauer, F. J. (2008). Registration of W6 26740, W6 26743, and W6 26745 Green Pea Germplasm Resistant to Fusarium Root Rot. *J. Plant Regist.* doi:10.3198/jpr2007.12.0674crg.
Dangl, J. L., and Jones, J. D. G. (2001). Plant pathogens and integrated defence responses to infection. *Nature* 411, 826–833.

do Carmo, C. S., Nunes, A. N., Silva, I., Maia, C., Poejo, J., Ferreira-Dias, S., et al. (2016). Formulation of pea protein for increased satiety and improved foaming properties. *RSC Adv.* 6, 6048–6057.

Dong, J., Chen, C., and Chen, Z. (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. *Plant Mol. Biol.* 51, 21–37.

Driouich, A., Jauneau, A., and Staehelin, L. A. (1997). 7-Dehydrobrefeldin A, a naturally occurring brefeldin A derivative, inhibits secretion and causes a cis-to-trans breakdown of Golgi stacks in plant cells. *Plant Physiol.* 113, 487–492.

Duarte, J., Rivièrè, N., Baranger, A., Aubert, G., Burstin, J., Cornet, L., et al. (2014). Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. *BMC Genomics* 15, 126.

Eulgem, T., and Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling. *Curr. Opin. Plant Biol.* 10, 366–371.

Feng, J., Hwang, R., Chang, K. F., Conner, R. L., Hwang, S. F., Strelkov, S. E., et al. (2011). Identification of microsatellite markers linked to quantitative trait loci controlling resistance to Fusarium root rot in field pea. *Can. J. Plant Sci.* 91, 199–204.

Feys, B. J., and Parker, J. E. (2000). Interplay of signaling pathways in plant disease resistance. *Trends Genet.* 16, 449–455.

Fondevilla, S., Küster, H., Krajinski, F., Cubero, J. I., and Rubiales, D. (2011). Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. *BMC Genomics* 12, 28.

Ghogare, R., Williamson-Benavides, B., Ramírez-Torres, F., and Dhingra, A. (2019). CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement. *Transgenic Res.*, 1–35.

Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. *Annu. Rev. Phytopathol.* 43, 205–227.

Gossen, B. D., Conner, R. L., Chang, K. F., Pasche, J. S., McLaren, D. L., Henriquez, M. A., et al. (2016). Identifying and managing root rot of pulses on the northern great plains. *Plant Dis.* doi:10.1094/PDIS-02-16-0184-FE.

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29, 644.

Grand View Research (2015). Pea protein market by type (isolates, concentrates, textured), application, textured pea protein by form (dry, wet), & by region - global trends & forecast to 2020. Available at: http://www.researchandmarkets.com/research/b8x63n/pea_protein.

Grant, M., and Lamb, C. (2006). Systemic immunity. *Curr. Opin. Plant Biol.* 9, 414–420.

Grünwald, N. J., Coffman, V. A., and Kraft, J. M. (2003). Sources of partial resistance to Fusarium root rot in the Pisum core collection. *Plant Dis.* 87, 1197–1200.

Gupta, V., Willits, M. G., and Glazebrook, J. (2000). Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. *Mol. Plant-Microbe Interact.* 13, 503–511.

Hadwiger, L. A. (2008). Pea–Fusarium solani interactions contributions of a system toward understanding disease resistance. *Phytopathology* 98, 372–379.

Hadwiger, L. A. (2015). Anatomy of a nonhost disease resistance response of pea to Fusarium...
solani: PR gene elicitation via DNase, chitosan and chromatin alterations. *Front. Plant Sci.* 6, 373.

Hadwiger, L. A., and Adams, M. J. (1978). Nuclear changes associated with the host-parasite interaction between *Fusarium solani* and peas. *Physiol. Plant Pathol.* 12, 63–72.

Hadwiger, L. A., and Beckman, J. M. (1980). Chitosan as a component of pea-*Fusarium solani* interactions. *Plant Physiol.* 66, 205–211.

Halim, V. A., Vess, A., Scheel, D., and Rosahl, S. (2006). The role of salicylic acid and jasmonic acid in pathogen defence. *Plant Biol.* 8, 307–313.

Hayafune, M., Berisio, R., Marchetti, R., Silipo, A., Kayama, M., Desaki, Y., et al. (2014). Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. *Proc. Natl. Acad. Sci.* 111, E404–E413.

Heil, M., and BOSTOCK, R. M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. *Ann. Bot.* 89, 503–512.

Im, J. H., Lee, S. G., Lee, E., Park, S. R., Ahn, I., and Hwang, D.-J. (2019). OsbZIP75 positively regulates plant defense against the bacterial leaf blight pathogen *Xanthomonas oryzae* pv. *oryzae*. *Plant Biotechnol. Rep.* 13, 645–651.

Isaac, J., Hartney, S. L., Druffel, K., and Hadwiger, L. A. (2009). The non-host disease resistance response in peas; alterations in phosphorylation and ubiquitination of HMG A and histones H2A/H2B. *Plant Sci.* 177, 439–449.

Jeandet, P., Hébrard, C., Deville, M.-A., Cordelier, S., Dorey, S., Aziz, A., et al. (2014). Deciphering the role of phytoalexins in plant-microorganism interactions and human health. *Molecules* 19, 18033–18056.

Johansson, M. (2019). Pea protein-systems for plant based protein products, The effect of insoluble and soluble lentil fractions on rheology, microstructure and gelation properties of heat induced pea protein gels.

Kachroo, P., Shanklin, J., Shah, J., Whittle, E. J., and Klessig, D. F. (2001). A fatty acid desaturase modulates the activation of defense signaling pathways in plants. *Proc. Natl. Acad. Sci.* 98, 9448–9453.

Kendra, D. F., and Hadwiger, L. A. (1984). Characterization of the smallest chitosan oligomer that is maximally antifungal to *Fusarium solani* and elicits pisatin formation in *Pisum sativum*. *Exp. Mycol.* doi:10.1016/0147-5975(84)90013-6.

Kerr, A. (1963). The root rot-*Fusarium* wilt complex of peas. *Aust. J. Biol. Sci.* 16, 55–69.

Khong, G. N., Pati, P. K., Richaud, F., Parizot, B., Bidzinski, P., Mai, C. D., et al. (2015). *OsMADS26* negatively regulates resistance to pathogens and drought tolerance in rice. *Plant Physiol.* 169, 2935–2949.

Kielbowicz-Matuk, A. (2012). Involvement of plant C2H2-type zinc finger transcription factors in stress responses. *Plant Sci.* 185, 78–85.

Kim, K.-C., Fan, B., and Chen, Z. (2006). Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to *Pseudomonas syringae*. *Plant Physiol.* 142, 1180–1192.

Kloek, A. P., Verbsky, M. L., Sharma, S. B., Schoelz, J. E., Vogel, J., Klessig, D. F., et al. (2001). Resistance to *Pseudomonas syringae* conferred by an Arabidopsis thaliana coronatine-insensitive (coil) mutation occurs through two distinct mechanisms. *Plant J.* 26, 509–522.

Klosterman, S. J., Chen, J., Choi, J. J., Chinn, E. E., and Hadwiger, L. A. (2001). Characterization of a 20 kDa DNase elicitor from *Fusarium solani f. sp. phaseoli* and its
expression at the onset of induced resistance in Pisum sativum. *Mol. Plant Pathol.* 2, 147–158.

Klosterman, S. J., Choi, J. J., and Hadwiger, L. A. (2003). Analysis of pea HMG-I/Y expression suggests a role in defence gene regulation. *Mol. Plant Pathol.* 4, 249–258.

Kraft, J. M. (1992). Registration of 90-2079-2131, and 90-2322 PEA Germplasms. *Crop Sci.* doi:10.2135/cropsci1992.0011183x003200040063x.

Kreplak, J., Madoui, M. A., Cápal, P., Novák, P., Labadie, K., Aubert, G., et al. (2019). A reference genome for pea provides insight into legume genome evolution. *Nat. Genet.* doi:10.1038/s41588-019-0480-1.

Kumari, N., and Katoch, S. (2020). “Wilt and Root Rot Complex of Important Pulse Crops: Their Detection and Integrated Management,” in *Management of Fungal Pathogens in Pulses* (Springer), 93–119.

Kunkel, B. N., and Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. *Curr. Opin. Plant Biol.* 5, 325–331.

Kwon, C., and Yun, H. S. (2014). Plant exocytic secretion of toxic compounds for defense. *Toxicol. Res.* 30, 77–81.

Lai, Z., Vinod, K. M., Zheng, Z., Fan, B., and Chen, Z. (2008). Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. *BMC Plant Biol.* 8, 68.

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat. Methods* 9, 357.

Lanubile, A., Muppirala, U. K., Severin, A. J., Marocco, A., and Munkvold, G. P. (2015). Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum. *BMC Genomics* 16, 1089.

Lay, F. T., and Anderson, M. A. (2005). Defensins-components of the innate immune system in plants. *Curr. Protein Pept. Sci.* 6, 85–101.

Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Körbes, A. P., Memelink, J., et al. (2010). Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. *Mol. Plant-Microbe Interact.* 23, 187–197.

Li, S. (2015). The Arabidopsis thaliana TCP transcription factors: a broadening horizon beyond development. *Plant Signal. Behav.* 10, e1044192.

Li, T., Chen, X., Zhong, X., Zhao, Y., Liu, X., Zhou, S., et al. (2013). Jumonji C domain protein JMJ705-mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice. *Plant Cell* 25, 4725–4736.

Lorang, J. M., Sweat, T. A., and Wolpert, T. J. (2007). Plant disease susceptibility conferred by a “resistance” gene. *Proc. Natl. Acad. Sci.* 104, 14861–14866.

Mackintosh, S. F., Matthews, D. E., and VanEtten, H. D. (1989). Two additional genes for pisatin demethylation and their relationship to the pathogenicity of Nectria haematococca on pea. *Mol. Plant-Microbe Interact.* 2, 354–362.

Marçais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. *Bioinformatics* 27, 764–770.

Matić, S., Bagnaresi, P., Biselli, C., Carneiro, G. A., Siciliano, I., Valé, G., et al. (2016). Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi. *BMC Genomics* 17, 608.

McDowell, J. M., and Dangl, J. L. (2000). Signal transduction in the plant immune response. *Trends Biochem. Sci.* 25, 79–82.

Miedes, E., Vanholme, R., Boerjan, W., and Molina, A. (2014). The role of the secondary cell
wall in plant resistance to pathogens. Front. Plant Sci. 5, 358.

Moffett, P., Farnham, G., Peart, J., and Baulcombe, D. C. (2002). Interaction between domains of a plant NBS–LRR protein in disease resistance-related cell death. EMBO J. 21, 4511–4519.

Nash, S. M., and Snyder, W. C. (1962). Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52.

National Center for Biotechnology Information Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. 2020. Available at: https://www.ncbi.nlm.nih.gov/.

Nyamsuren, O., Colditz, F., Rosendahl, S., Tamasloukht, M., Bekel, T., Meyer, F., et al. (2003). Transcriptional profiling of Medicago truncatula roots after infection with Aphanomyces euteiches (oomycota) identifies novel genes upregulated during this pathogenic interaction. Physiol. Mol. Plant Pathol. doi:10.1016/j.pmpp.2003.09.001.

Paik, I., Kathare, P. K., Kim, J.-I., and Huq, E. (2017). Expanding roles of PIFs in signal integration from multiple processes. Mol. Plant 10, 1035–1046.

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417.

Peng, W., Kong, X., Chen, Y., Zhang, C., Yang, Y., and Hua, Y. (2016). Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocoll. 52, 301–310.

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, e45–e45.

Pietrysiak, E., Smith, D. M., Smith, B. M., and Ganiyal, G. M. (2018). Enhanced functionality of pea-rice protein isolate blends through direct steam injection processing. Food Chem. 243, 338–344.

Pontier, D., Miao, Z., and Lam, E. (2001). Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses. Plant J. 27, 529–538.

Poore, J., and Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science (80-.). 360, 987–992.

Porter, L. (2010). Identification of tolerance to Fusarium root rot in wild pea germplasm with high levels of partial resistance. Pismu Genet.

Porter, L. D., Kraft, J. M., and Grünwald, N. J. (2014). Release of pea germplasm with Fusarium resistance combined with desirable yield and anti-lodging traits. J. Plant Regist. 8, 191–194.

Pré, M., Atallah, M., Champion, A., De Vos, M., Pieterse, C. M. J., and Memelink, J. (2008). The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 147, 1347–1357.

Prioul-Gervais, S., Deniot, G., Receveur, E. M., Frankewitz, A., Fourmann, M., Rameau, C., et al. (2007). Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor. Appl. Genet. 114, 971–984.

Rahman, T. A. El, Oirdi, M. El, Gonzalez-Lamothe, R., and Bouarab, K. (2012). Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. Mol. Plant-Microbe Interact. 25, 1584–1593.

Research and Markets (2019). Plant Based Protein Market by Type (Soy Protein, Wheat Protein, Pea Protein, Potato Protein, Rice Protein, Corn Protein) and Application (Foods and Beverage, Animal Feed, Nutrition and Health Supplements, Pharmaceuticals) - Global Forecast to 2025. Available at: https://www.researchandmarkets.com/reports/4828547/plant-based-protein-market-by-type-
soy-protein?utm_source=CI&utm_medium=PressRelease&utm_code=ssspc5&utm_campaign=1292717+-
+Global+Plant+Based+Protein+Market+Forecast+to+2025&utm_exec=chdo54prd.
Rozen, S., and Skaletsky, H. (2000). “Primer3 on the WWW for general users and for biologist
programmers,” in Bioinformatics methods and protocols (Springer), 365–386.
Ruijter, J. M., Van der Velden, S., and Ilgun, A. (2009). LinReg PCR (11.0). Anal. Quant.
Saboki Ebrahim, K. U., and Singh, B. (2011). Pathogenesis related (PR) proteins in plant defense
mechanism. Sci. against Microb. Pathog.
Sattler, S., and Funnell-Harris, D. (2013). Modifying lignin to improve bioenergy feedstocks:
strengthening the barrier against pathogens? Front. Plant Sci. 4, 70.
Seaman, W. L. (1976). Yield loss conversion factors for fusarium root rot of peal. Can. Plant
Dis. Surv. 56, 25–32.
Sels, J., Mathys, J., De Coninck, B. M. A., Cammue, B. P. A., and De Bolle, M. F. C. (2008).
Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol. Biochem.
46, 941–950.
Shah, J., Kachroo, P., Nandi, A., and Klessig, D. F. (2001). A recessive mutation in the
Arabidopsis SS12 gene confers SA-and NPR1-independent expression of PR genes and
resistance against bacterial and oomycete pathogens. Plant J. 25, 563–574.
Shang, J., Xi, D.-H., Xu, F., Wang, S.-D., Cao, S., Xu, M.-Y., et al. (2011). A broad-spectrum,
efficient and nontransgenic approach to control plant viruses by application of salicylic acid
and jasmonic acid. Planta 233, 299–308.
Smith, D. A., and Banks, S. W. (1986). Biosynthesis, elicitation and biological activity of
isoflavonoid phytoalexins. Phytochemistry 25, 979–995.
Song, S., Qi, T., Fan, M., Zhang, X., Gao, H., Huang, H., et al. (2013). The bHLH subgroup IIId
factors negatively regulate jasmonate-mediated plant defense and development. PLoS
Genet. 9.
Sreevidya, V. S., Srinivasa Rao, C., Sullia, S. B., Ladha, J. K., and Reddy, P. M. (2006).
Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation
gene expression in rhizobia. J. Exp. Bot. 57, 1957–1969.
Stehfest, E., Bouwman, L., Van Vuuren, D. P., Den Elzen, M. G. J., Eickhout, B., and Kabat, P.
(2009). Climate benefits of changing diet. Clim. Change 95, 83–102.
Sweat, T. A., and Wolpert, T. J. (2007). Thioredoxin h5 is required for victorin sensitivity
mediated by a CC-NBS-LRR gene in Arabidopsis. Plant Cell 19, 673–687.
Takahashi, H., Kanayama, Y., Zheng, M. S., Kusano, T., Hase, S., Ikegami, M., et al. (2004).
Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis
modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic
virus. Plant cell Physiol. 45, 803–809.
Thatcher, L. F., Powell, J. J., Aitken, E. A. B., Kazan, K., and Manners, J. M. (2012). The lateral
organ boundaries domain transcription factor LBD20 functions in Fusarium wilt
susceptibility and jasmonate signaling in Arabidopsis. Plant Physiol. 160, 407–418.
Thomma, B. P. H. J., Penninckx, I. A. M. A., Cammue, B. P. A., and Broekaert, W. F. (2001).
The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13, 63–68.
Tronchet, M., Balague, C., Kroj, T., Jouanin, L., and Roby, D. (2010). Cinnamyl alcohol
dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in
disease resistance in Arabidopsis. Mol. Plant Pathol. 11, 83–92.
Trusov, Y., Sewelam, N., Rookes, J. E., Kunkel, M., Nowak, E., Schenk, P. M., et al. (2009). Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene-and abscisic acid-mediated defense signaling. *Plant J.* 58, 69–81.

Vailleau, F., Daniel, X., Tronchet, M., Montillet, J.-L., Triantaphylides, C., and Roby, D. (2002). A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. *Proc. Natl. Acad. Sci.* 99, 10179–10184.

Van Wees, S. C. M., Chang, H.-S., Zhu, T., and Glazebrook, J. (2003). Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. *Plant Physiol.* 132, 606–617.

Wang, Y., Nowak, G., Culley, D., Hadwiger, L. A., and Fristensky, B. (1999). Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). *Mol. plant-microbe Interact.* 12, 410–418.

Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., and Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. *Food Res. Int.* 109, 260–267.

Xu, L., Ravnskov, S., Larsen, J., and Nicolaisen, M. (2012). Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum. *FEMS Microbiol. Ecol.* doi:10.1111/j.1574-6941.2012.01445.x.

Zhang, N., O’Donnell, K., Sutton, D. A., Nalim, F. A., Summerbell, R. C., Padhye, A. A., et al. (2006). Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. *J. Clin. Microbiol.* 44, 2186–2190.

Zhang, Y., Liu, Q., Zhang, Y., Chen, Y., Yu, N., Cao, Y., et al. (2019). LMM24 Encodes Receptor-Like Cytoplasmic Kinase 109, Which Regulates Cell Death and Defense Responses in Rice. *Int. J. Mol. Sci.* 20, 3243.

Zheng, W., Ma, L., Zhao, J., Li, Z., Sun, F., and Lu, X. (2013). Comparative transcriptome analysis of two rice varieties in response to rice stripe virus and small brown planthoppers during early interaction. *PLoS One* 8.
Figure 1. Venn diagrams representing number of DECs (Differentially Expressed Contigs) for the twelve pairwise comparisons. (a) Number of DECs for pairwise comparisons between control and inoculated samples collected at 0, 6 and 12 hr time points for the tolerant and the susceptible genotypes. (b) Number of DECs for pairwise comparisons between the tolerant and susceptible genotypes for each time point (0, 6 and 12 hr) for control and inoculated conditions.
Figure 2. Total number of overexpressed and underexpressed DECs in the inoculated treatments for tolerant and susceptible genotypes at each time point in response to Fsp challenge.
Tolerant 0 hr/6 hr/12 hr	Susceptible 0 hr/6 hr/12 hr	GO Term Name	GO ID	Category
Gene expression	GO:0010467			
Regulation of primary metabolic process	GO:0080090			
Regulation of transcription, DNA-templated	GO:0006355			
Regulation of protein modification process	GO:0031399			
Ribosome biogenesis	GO:0042254			
Protein transport	GO:0015031			
Protein export from nucleus	GO:006687			Plant Metabolism
Exocytosis	GO:006887			
Vesicle docking	GO:0048278			
Membrane docking	GO:0022406			
Secretion by cell	GO:0032940			
Receptor-mediated endocytosis	GO:006898			
Import into cell	GO:0098657			
Cell communication	GO:0007154			Cell Signalling
Integrin-mediated signaling pathway	GO:0007229			
Cell surface receptor signaling pathway	GO:007166			
Positive regulation of cell communication	GO:0010647			
Cellular response to chemical stimulus	GO:0070887			Response to biotic stress
Response to stress	GO:0036950			
Interspecies interaction between organisms	GO:0044419			
Multi-organism process	GO:0051704			
Defense response	GO:0006952			
Response to fungus	GO:0095620			
Response to chitin	GO:0010200			
Chitin catabolic process	GO:0006032			
Response to wounding	GO:0009611			
Innate immune response	GO:0045087			
Phenylpropanoid biosynthetic process	GO:0009699			Anthocyanin pathway
Chalcone biosynthetic process	GO:0009715			
Flavonoid biosynthetic process	GO:0009813			
Isoflavonoid biosynthetic process	GO:0009717			
Response to oxidative stress	GO:0006979			
Hydrogen peroxide metabolic process	GO:0042743			
Induced systemic resistance	GO:0009682			
Programmed cell death induced by symbiont	GO:0034050			
Plant-type hypersensitive response	GO:0009626			
Programmed cell death	GO:0012501			
Regulation of salicylic acid metabolic process	GO:0010337			
Toxin biosynthetic process	GO:0009403			Toxin metabolism
Response to toxic substance	GO:0009636			
Cellular response to toxic substance	GO:0097237			
Cellular oxidant detoxification	GO:0098869			
Oxylin biosynthetic process	GO:0031408			Jasmonate
Jasmonic acid biosynthetic process	GO:0009695			
Regulation of jasmonic acid metabolic process	GO:0080140			
Ethylene biosynthetic process	GO:0009693			
Response to lipid	GO:0033993			
Lipid metabolic process	GO:0006629			Lipid and cell wall metabolism
Glycerolipid catabolic process	GO:0046503			
Lipid catabolic process	GO:0016042			
Regulation of membrane lipid distribution	GO:0097035			
Cell wall modification	GO:0042545			
Phytoalexin biosynthetic process	GO:0052315			Phytoalexins
Camalexin biosynthetic process	GO:0010120			
Indole phytoalexin biosynthetic process	GO:0009700			
Isoflavonoid phytoalexin biosynthetic process	GO:0009701			
Aldehyde catabolic process	GO:0046185			Other
Terpenoid metabolic process	GO:0006721			

Figure 3. Biological process-GO terms over-represented in the *F. sp* inoculated treatment for a tolerant and susceptible genotypes at 0, 6, and 12 hr time points. The tone of colors in the heatmap denotes the p-value of the fold-change in expression, as indicated in the key. Significantly over-represented GO terms showed a p>0.05.
Tolerant	Susceptible	Inoculated	Description	Contig name
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Ethylene-responsive transcription factor 1A DN8953_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Ethylene-responsive transcription factor 4 DN9927_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Ethylene-responsive transcription factor 5 DN1066_c0_g1_i5
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Ethylene-responsive transcription factor ERF110 DN2419_c0_g1_i5
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Ethylene-responsive transcription factor RAP2-1 DN23397_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	MYB family transcription factor EFM-like DN8_e0_g1_i4
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	MYB transcription factor DN295_c0_g2_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Putative transcription factor MYB/SANT family DN4287_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor JAMYB-like DN13292_c0_g1_i3
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor MYB1 DN3349_c0_g1_i2
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor bHLH122 DN969_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor bHLH121-like DN3347_c0_g1_i4
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor bHLH121-like DN3347_c0_g1_i5
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor bHLH128 DN945_c2_g1_i3
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor bHLH49 DN266_c0_g1_i4
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	LOB domain-containing protein 38 DN6791_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	LOB domain-containing protein 38-like DN7968_c0_g1_i2
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	LOB domain-containing protein 41 DN3004_c0_g1_i2
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	LOB domain-containing protein 41 DN3395_c0_g1_i5
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor Jumonji (JmjC) DN4538_c0_g1_i5
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor Jumonji (JmjC) DN21364_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor TGA1-like isoform X1 DN5429_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor TGA9-like isoform X3 DN6794_c0_g1_i5
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor UNE12 DN4926_c0_g1_i4
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor UNE12 DN5897_c0_g2_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	HMG1/2-like protein DN9731_c0_g1_i2
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	HMG1/2-like protein isoform X1 DN3053_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	HMG1/2-like protein isoform X1 DN3053_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	HMG-I-related protein A-like DN4895_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor E2FA DN3610_c0_g3_i7
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor E2FB DN3610_c0_g1_i8
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor E2FB-like DN3610_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	WRKY transcription factor DN9836_c0_g2_i6
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	WRKY transcription factor WRKY24 DN9836_c0_g2_i4
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	WRKY transcription factor WRKY24 DN9836_c0_g2_i4
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	NAC transcription factor 29 DN4197_c0_g1_i1
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	NAC transcription factor 47 DN1528_c0_g1_i3
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	NAC transcription factor-like protein DN703_c0_g1_i5
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	L10-interacting MYB domain-containing protein DN4695_c0_g1_i6
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	MADS-box transcription factor 1 DN2927_c0_g1_i10
0 hr	6 hr	12 hr	C vs. I C vs. I C vs. I T vs. S T vs. S T vs. S	Transcription factor SRM1 DN3449_c0_g1_i10

Figure 5. Differentially expressed transcription factors in tolerant and susceptible pea genotypes in response to *Fsp* challenge. The color key denotes fold-change. Pairwise comparisons that displayed greater than 2-fold difference (p< 0.005) in expression were identified with a color that ranges from light yellow (fold change>2) to dark red (fold change>10).
Figure 6. Key differentially expressed Pathogenesis-related contigs in tolerant and susceptible pea genotypes in response to *Fsp* challenge.

The color key denotes fold-change. Pairwise comparisons that displayed greater than 2-fold difference ($p > 0.005$) in expression were identified with a color that ranges from light yellow (fold change > 2) to dark red (fold change > 10).
Figure 7. Heatmap representation of changes in the expression of genes associated with the anthocyanin biosynthetic pathway in tolerant and susceptible pea genotypes after Fsp challenge. (a) Subset of differentially expressed genes involved in the anthocyanin biosynthetic pathway in tolerant and susceptible pea genotypes after Fsp challenge. The color key denotes fold-change. Pairwise comparisons that displayed greater than 2-fold difference (p< 0.005) in expression were identified with a color that ranges from light yellow (fold change<2) to dark red (fold change>10). (b) Anthocyanin biosynthesis pathway (Adapted from Sofanelli et al., 2006). (c) KEGG pathway analysis of metabolic processes related to the anthocyanin biosynthesis pathway. Abbreviations (Abbr.) PAL= phenylalanine ammonia lyase, CHS= chalcone synthase, CHI= chalcone isomerase, F3H= flavanone-3-hydroxylase, F3’H= flavonoid 3’-hydroxylase, DFR= dihydroflavonol 4-reductase, LDOX= leucoanthocyanidin dioxygenase, UF3GT= UDP-glucose-flavonoid 3-o-glucosyl transferase, FLS= Flavonol synthase, F3’5’H= Flavonoid 3’,5’- hydroxylase.
Figure 8. Number of DEC associated with the salicylic (SA) and jasmonate/ethylene (JA/ET) biosynthetic and signaling pathway in a pea tolerant and susceptible genotype after Fsp challenge. (a) DEC associated with the salicylic (SA) biosynthetic and signaling pathway. (b) DEC associated with the jasmonate/ethylene (JA/ET) biosynthetic and signaling pathway.
Figure 9. Heatmap representation of differentially expressed genes associated with cell wall metabolism, toxin metabolism and transport in tolerant and susceptible pea genotypes in response to Fsp challenge. The color key denotes fold-change. Pairwise comparisons that displayed greater than 2-fold difference (p> 0.005) in expression were identified with a color that ranges from light yellow (fold change>2) to dark red (fold change>10).