High precision studies of soft dipole mode in two-neutron halo nuclei: 6He case

L.V. Grigorenko,1,2,3,4 N.B. Shulgina,3,4 and M.V. Zhukov5

1Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia
2National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
3National Research Centre “Kurchatov Institute”, Kurchatov sq. 1, 123182 Moscow, Russia
4Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
5Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden

(Dated: March 31, 2020)

The “soft dipole” E1 strength function is calculated for the transition from the 6He 0^+ ground state to the 1^- continuum 6He+$n+n$. The calculations were performed within the hyperspherical harmonics formalism. The sensitivity of the results to the 6He ground state structure and to final state interactions, are analyzed. The large-basis calculations show the reliably converged results for soft dipole strength function and for momentum correlations of the 6He \rightarrow 4He+$n+n$ dissociation products. Transition mechanisms are analyzed based on the momentum correlations. The comparison with experimental data is provided.

I. INTRODUCTION

The basic idea of the Soft Dipole Mode (SDM) is quite simple. Wave function (WF) of weakly bound state has long asymptotic tail spreading in the classically forbidden region (nucleon halo). Acting on such a WF by electromagnetic operator (with a power dependence on radius) further enhances the asymptotic region and we get a very long range “source”, which populates the continuum. In this situation the transition matrix element may get noticeable low-energy enhancement even in the case of smooth (nonresonant) continuum in the final state. For one-neutron halos this scenario becomes important for binding energies smaller than 1 MeV, providing the peak in the E1 strength function (SF) at decay energies smaller than 1 MeV.

We would like to begin this work with some terminological note, which in reality is deeply connected with the essence of the discussed problem. There exists certain controversy about the idea of the SDM on which we would like to dwell a little. Sometimes this phenomenon is characterized as “soft dipole resonance”. Such a notion contradicts the standard vision of “resonance” as an entity, which is totally independent on the population mechanism. It stems, however, from vision of the SDM as a “low-energy offspring” of the Giant Dipole Resonance (GDR). The GDR phenomenon is not, strictly speaking, resonance itself, but it unifies resonances of certain collective nature clustering in the certain energy range. The two-body SDM evidently does not belong to this realm being a single-particle “geometric” phenomenon. In contrast, the Pigmii Dipole Resonance (PDR) 1 2 can be seen as a true collective excitation connected with several neutrons contributing to formation of neutron skin. In any case it should be understood that the existence of both the SDM and the PDR excitations is based on the separation of scales in the nucleon WF. These are radial scales of halo nucleon (or skin nucleons) WF and radial scale of the “bulk” of nucleons. The bulk of nucleons contributes to GDR formation, while the nucleons of halo (or skin) produce the sizable low-energy enhancement in the E1 strength function — SDM (or PDR).

In contrast to one-neutron halo case, the SDM in the case of three-cluster systems (two-nucleon halos) is quite complicated. (i) The SDM in the three-cluster systems can not be attributed entirely to initial state geometry as in the two-body case. The continuum dynamics in this case can not be neglected if we would like to produce a decent approximation to the real situation. (ii) The continuum dynamics in this case is an entangled mixture of resonant and nonresonant dynamics. Qualitatively, in the odd-parity continuum one of the nucleons populations a “natural” parity state where it has strong resonating interaction with core ($l = 1$ for 6He), while the other nucleon is in nonresonating “non-natural” parity state (e.g. $l = 0$, 2 for 6He), see Fig. 1 (b) for illustration. Thus the three-body SDM can be seen as a collective phenomenon with only valence nucleons involved in the collective motion. This form of continuum dynamics is

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{(Color online) (a) Energy levels of 6He (left), 8He (middle), and (right) population mechanisms for the soft dipole excitation in 6He at different energies. (b) Population of the major configurations of the SDM source (10) from the major configurations of the 6He g.s. WF (5).}
\end{figure}
II. THEORETICAL MODEL

The soft dipole excitations of ^6He were studied theoretically by different methods \cite{3,11}. Shortcomings of these studies will be discussed later in present paper. We obtain accurately fully converged results for E1 SF and well converged results for three-body correlations. Reliable convergence allows to understand a lot of problematic issues of the previous studies. An important aspect of the analysis illustrated in Fig. 1 (a) is the tran-

sition from three-body dynamics of SDM at low energies ($E_T < 1 \text{ MeV}$) to semi-sequential dynamics at high energies ($E_T > 2.5 \text{ MeV}$); three-body energy E_T is defined relative to the three-body breakup threshold.

The only experimental data available for the $^6\text{He} \rightarrow ^4\text{He} + n + n$ dissociation is the studies of Ref. \cite{12}. This material was further elaborated in the review paper \cite{13}. The three-body correlation aspect of these data was analyzed in Ref. \cite{14}. The data are over 20 years old and quality of them are not very high. It is also important to note that a lot of experimental efforts were dedicated to the SDM in ^{11}Li. The general experimental situation regarding the Coulomb dissociation of ^{11}Li is quite controversal \cite{15} and Refs. therein]. More recent experimental results on different inelastic excitations of ^{11}Li \cite{16,17} support the idea of very pronounced SDM in ^{11}Li but do not allow full quantitative description. The ^6He nucleus could have been a reference case for SDM studies in the three-cluster systems, but very detailed and accurate experimental data are needed, which are not available so far.

The interest to studies of SDM (or/and PDR) is partly based on the common nowadays idea that the radiative capture rates for the three-body capture processes can be based on the experimentally measured Coulomb dissociation cross sections. The procedure can not be absolutely straightforward because it involves an extrapolation from intermediate energies (available experimentally) to quite low energies (contributing to the astrophysical capture rates at temperatures of astrophysical interest). The prerequisite of such an extrapolation is, of course, an accurate treatment of the E1 SF. Problems of this treatment were discussed in the papers \cite{18,19} for the case of the $^{15}\text{O} + p + p \rightarrow ^{17}\text{Ne} + \gamma$ process. A discussion of low-energy behavior of the E1 SF for the case of the $^{4}\text{He} + n + n \rightarrow ^{6}\text{He} + \gamma$ process will be given in the forthcoming paper \cite{20}.

The soft dipole excitations of ^6He were studied theoretically by different methods \cite{3,11}. Shortcomings of these studies will be discussed later in present paper. We obtain accurately fully converged results for E1 SF and well converged results for three-body correlations. Reliable convergence allows to understand a lot of problematic issues of the previous studies. An important aspect of the analysis illustrated in Fig. 1 (a) is the transition from three-body dynamics of SDM at low energies ($E_T < 1 \text{ MeV}$) to semi-sequential dynamics at high energies ($E_T > 2.5 \text{ MeV}$); three-body energy E_T is defined relative to the three-body breakup threshold.

The only experimental data available for the $^6\text{He} \rightarrow ^4\text{He} + n + n$ dissociation is the studies of Ref. \cite{12}. This material was further elaborated in the review paper \cite{13}. The three-body correlation aspect of these data was analyzed in Ref. \cite{14}. The data are over 20 years old and quality of them are not very high. It is also important to note that a lot of experimental efforts were dedicated to the SDM in ^{11}Li. The general experimental situation regarding the Coulomb dissociation of ^{11}Li is quite controversal \cite{15} and Refs. therein]. More recent experimental results on different inelastic excitations of ^{11}Li \cite{16,17} support the idea of very pronounced SDM in ^{11}Li but do not allow full quantitative description. The ^6He nucleus could have been a reference case for SDM studies in the three-cluster systems, but very detailed and accurate experimental data are needed, which are not available so far.

The interest to studies of SDM (or/and PDR) is partly based on the common nowadays idea that the radiative capture rates for the three-body capture processes can be based on the experimentally measured Coulomb dissociation cross sections. The procedure can not be absolutely straightforward because it involves an extrapolation from intermediate energies (available experimentally) to quite low energies (contributing to the astrophysical capture rates at temperatures of astrophysical interest). The prerequisite of such an extrapolation is, of course, an accurate treatment of the E1 SF. Problems of this treatment were discussed in the papers \cite{18,19} for the case of the $^{15}\text{O} + p + p \rightarrow ^{17}\text{Ne} + \gamma$ process. A discussion of low-energy behavior of the E1 SF for the case of the $^{4}\text{He} + n + n \rightarrow ^{6}\text{He} + \gamma$ process will be given in the forthcoming paper \cite{20}.

The formalism we apply here has already been used for studies of the soft dipole excitation of ^{17}Ne in Ref. \cite{18} and for the isovector soft dipole excitation of ^{9}Be in Ref. \cite{21}. However, it was given there briefly, so adding some more technical details is preferable. The hyperspherical harmonics (HH) method itself has already been described in our previous works \cite{22,24}, and the details are provided here more for completeness of the description.

A. Model for the $^6\text{He} E1$ dissociation process

The bound ^6He g.s. wave function is obtained in a $^4\text{He} + n + n$ model by solving the three-body Schrödinger equation (SE) :

$$
\hat{H}_3 + \hat{V}_3(\rho) - E_T \Psi_{M_1, M_2}^{J^P} = 0 ,
$$

$$
\hat{H}_3 = \hat{T}_3 + V_{c_{n1}}(r_{c_{n1}}) + V_{c_{n2}}(r_{c_{n2}}) + V_{n_1 n_2}(r_{n_1 n_2}) ,
$$

The bound ^6He g.s. wave function is obtained in a $^4\text{He} + n + n$ model by solving the three-body Schrödinger equation (SE) :

$$
\hat{H}_3 + \hat{V}_3(\rho) - E_T \Psi_{M_1, M_2}^{J^P} = 0 ,
$$

$$
\hat{H}_3 = \hat{T}_3 + V_{c_{n1}}(r_{c_{n1}}) + V_{c_{n2}}(r_{c_{n2}}) + V_{n_1 n_2}(r_{n_1 n_2}) ,
$$

see also papers \cite{22,23,25,26}. The ideology of our approach is that the three-body formalism theoretically “extrapolates” the properties of the two-body subsystems (these are introduced via the phenomenologically defined pairwise potentials $V_{ij}(r_{ij})$) to the properties of the “composite” three-body systems. This works well for systems with developed clusterization and strongly bound clusters. ^4He is one of the best systems appropriate for such theoretical studies. Nevertheless, this description is never perfect and for careful calculations of certain observables we need to fit the basic properties of the three-body system (binding energy for the g.s.) to the experimental ones. For this reason phenomenological three-body potential $V_3(\rho)$ depending on the hyperradius only is added to the Schrödinger equation.

To obtain the E1 strength function we solve the following equations

$$
\left[\hat{H}_3 + \hat{V}_3(\rho) - E_T \right] \Psi_{M_1, M_2}^{J^P} = \mathcal{O}_{E1,m} \Psi_{gs}^{J^P} .
$$

The phenomenological three-body potential which is appropriate for the continuum is expected to be different from that for the ground state and also somehow smaller ($\langle V_3 \rangle \lesssim \langle V_3 \rangle$).

Within the hyperspherical method the three-body Jacobi vectors

$$
\{ X, Y \} = \{ X, \Omega_x, Y, \Omega_y \} ,
$$

and corresponding hyperspherical variables in coordinate space

$$
\{ \rho, \Omega \} , \quad \Omega = \{ \theta_\rho, \Omega_x, \Omega_y \}
$$

are defined as

$$
X = r_1 - r_2 , \quad Y = \frac{A_1 r_1 + A_2 r_2}{A_1 + A_2} - r_3 ,
$$

$$
\rho^2 = \frac{A_1 A_2}{A_1 + A_2} \bigg[\frac{X^2 + (A_1 + A_2) A^2 Y^2}{A} \bigg] - (A_1 A_2 r_{12}^2 + A_2 A_3 r_{23}^2 + A_3 A_1 r_{31}^2) / A ,
$$

$$
\theta_\rho = \arctan \left(\frac{A_1 A_2 X}{A_3 (A_1 + A_2)^2 Y} \right) .
$$
where \(A = A_1 + A_2 + A_3 \). The three-body Schrödinger equations for core+\(N + N \) systems are solved in the so-called “T” Jacobi system (core is particle number 3). Jacobi vectors and hyperangle \(\theta_3 \) in the other Jacobi systems can be obtained by cyclic permutations of the cluster coordinates and mass numbers. The hyperradius \(\rho \) is invariant under permutations, see Eq. (4).

The E1 transition operator has the following definition and relation to the dipole operator

\[
\mathcal{O}_{E1,m} = e \sum_{i=1,3} Z_i r_i Y_{1m}(\vec{r}_i) = \frac{3}{4\pi} D_m,
\]

where \(D = \sum_{i=1,3} e Z_i r_i \). Attention should be paid on a misprint in the definition of this operator in the paper [10], which, however, did not affect the results of this paper. For two-neutron halo case of \(^{\text{\text{\text{\text{He}}}}}\) the dipole operator acts on the core particle only

\[
\mathcal{O}_{E1,m} = e Z_3 r_3 Y_{1m}(\vec{r}_3) = Z_{\text{\text{\text{\text{eff}}}}} \rho \cos(\theta_3) Y_{1m}(\hat{y}),
\]

\[
Z_{\text{\text{\text{\text{eff}}}}} = \frac{e^2 Z_3^2 (A_1 + A_2)}{A_3 (A_1 + A_2 + A_3)} = \frac{e^2}{3}.
\]

For two-proton case this is also true, but with effective core charge

\[
Z_3 \to A_3 - Z_3,
\]

because in the center-of-mass we have the relation \(A_1 \mathbf{r}_1 + A_2 \mathbf{r}_2 \equiv -A_3 \mathbf{r}_3 \).

The three-body continuum WF \(\Psi^{JM(+)}_{M_i, m} \) and the initial bound state WF \(\Psi^{J,M_i}_{\text{\text{\text{\text{gs}}}}} \) are defined as

\[
\Psi^{JM(+)}_{M_i, m} = C^{JM}_{J_i, M_i, m} \rho^{-5/2} \sum_{K\gamma} \chi^{(+)}_{JK\gamma}(\rho) J^{JM}_{K\gamma}(\Omega_\rho),
\]

\[
\Psi^{J,M_i}_{\text{\text{\text{\text{gs}}}}} = \rho^{-5/2} \sum_{JK\gamma} \chi_{J_i K\gamma_i}(\rho) J^{M_i}_{JK\gamma_i}(\Omega_\rho).
\]

The functions \(J^{JM}_{K\gamma}(\Omega_\rho) \) are hyperspherical harmonics coupled with spin functions to total spin \(J \). “Multinuclear” \(\gamma \) denotes the complete set of three-body quantum numbers except the principal quantum number \(K \); for spinless core cluster \(\gamma = \{L, S, l_x, l_y\} \).

For these WFs the Schrödinger equation (2) is reduced to a set of coupled inhomogeneous differential equations

\[
\left[\frac{d^2}{dp^2} - \frac{\mathcal{L}(\mathcal{L} + 1)}{p^2} - 2M(E_T - V_{K\gamma,K\gamma}(\rho)) \right] \chi_{JK\gamma}(\rho) = 2M \sum_{K'\gamma' : \not= K\gamma} V_{K'\gamma',K\gamma}(\rho) \chi_{JK'\gamma'}(\rho) + 2M \phi_{K\gamma}(\rho).
\]

The generalized angular momentum is defined by the principal hyperspherical quantum number \(K \) as

\[
\mathcal{L} = K + 3/2.
\]

The partial wave decomposition of the SDM source is given by

\[
\phi_{K\gamma}(\rho) = Z_{\text{\text{\text{\text{eff}}}}} \sum_{K_i\gamma_i} \langle K\gamma | \cos(\theta_3) | K_i\gamma_i \rangle
\]

\[
\times \langle J\gamma | Y_{i}(\hat{y}) | J_i\gamma_i \rangle \rho \chi_{J_iK_i\gamma_i}(\rho).
\]

The hyperspherical and reduced angular matrix elements are

\[
\langle K\gamma | \cos(\theta_3) | K\gamma_i \rangle = \int_0^{\pi/2} d\theta_3 \psi^K_{K\gamma}(\theta_3) \psi^{K_i}_{K\gamma_i}(\theta_3) \sin^2(\theta_3) \cos^2(\theta_3),
\]

\[
\langle J\gamma | Y_{i}(\hat{y}) | J_i\gamma_i \rangle = \left\{ \begin{array}{c} \ell_i \ell_i \ell_i L^i \left\{ \begin{array}{c} \ell_i \ell_i \ell_i \ell_i \ell_i \ell_i L \end{array} \right. \\
\ell_i \ell_i \ell_i L \end{array} \right\}
\]

\[
\chi_{J_iK_i\gamma_i}(\rho) = A_{JK\gamma} H_{\mathcal{L}}^{\mathcal{L}_C}(x_{JK\gamma})(\rho).
\]

Here \(H_{\mathcal{L}}^{\mathcal{L}_C}(x_{JK\gamma}) \) are the Riccati-Bessel functions of half-integer index \(\mathcal{L}_C \), with the long-range asymptotics \(\sim \exp(\pm x_{JK\gamma}) \), describing the in- and outgoing three-body spherical waves. The outgoing flux through the hypersphere of a large radius is

\[
\mathcal{J}_E = \frac{\mathcal{N}_\mathcal{L}}{M} \sum_{K\gamma} |A_{JK\gamma}|^2 = \frac{1}{2\pi} \sum_{J} \frac{2J + 1}{2J + 1} j_J.
\]

Let’s also establish a connection with more ordinary formalism expressing the E1 strength function in terms of the matrix elements of the dipole operator. Within the Green’s function formalism for coupled channel differential equations the asymptotic coefficient can be expressed as

\[
A_{JK\gamma} = -\frac{2M}{\mathcal{L}_C} \int d\rho \sum_{K'\gamma'} \chi_{JK\gamma,K'\gamma'}(\rho) \phi_{K'\gamma'}(\rho),
\]

where \(\chi_{JK\gamma,K'\gamma'} \) is solution of the homogeneous part of equations (9) diagonalizing the \(3 \to 3 \) elastic scattering S-matrix

\[
S_{K\gamma,K'\gamma'} = \exp[2i\delta_{K\gamma,K'\gamma'}],
\]

\[
\chi_{JK\gamma,K'\gamma'}(\rho) = \exp[i\delta_{K\gamma,K'\gamma'}] \times [J_{\mathcal{L}_C}(x_{JK\gamma}) \cos(\delta_{K\gamma,K'\gamma'}) + N_{\mathcal{L}_C}(x_{JK\gamma}) \sin(\delta_{K\gamma,K'\gamma'})].
\]

Then with definitions

\[
A_{JK\gamma} = -\frac{2M}{\mathcal{L}_C} \sqrt{\frac{\mathcal{N}_\mathcal{L}}{2}} M_{JK\gamma},
\]

\[
M_{JK\gamma} = \sum_{K'\gamma'} \langle K'\gamma' | \cos(\theta_3) | K\gamma_i \rangle \langle J\gamma | Y_{i}(\hat{y}) | J_i\gamma_i \rangle
\]

\[
\times \int d\rho \sqrt{\frac{2}{\mathcal{N}_\mathcal{L}}} \chi_{JK\gamma,K'\gamma'}(\rho) \rho \chi_{J_iK_i\gamma_i}(\rho).
\]
one gets the conventional expression for the E1 strength function
\[\frac{dE_{E1}}{dE_T} = \sum_j \frac{2j+1}{2j+1} \sum_{\kappa\gamma} \sqrt{\frac{M}{2E_T}} |M_{jk\gamma}|^2, \]
which is equivalent to Eq. (11). However, the solution of inhomogeneous set of equations (9) is found to be technically preferable.

It is easy to find out that energy integrated value of the E1 strength function is connected with the ground state rms value of the core distance \(\langle r_3^2 \rangle \) from the cms of the whole three-body system.
\[\int \frac{dE_{E1}}{dE_T} dE_T = \frac{3}{4\pi} e^2 Z^2 \langle r_3^2 \rangle. \]
This is so-called non-energy-weighted (NEW) E1 sum rule, which can be used for cross-check of the theoretical calculations as well as for determination of the ground state geometry from experimental data.

B. Momentum distributions

To define momentum distributions of the three-body decay products we should introduce Jacobi vectors \(\{k_x, k_y \} \) in the momentum space and hyperspherical variables \(\{\nu, \Omega_x\} \)
\[k_x = \frac{A_1}{A_1 + A_2} k_1 - \frac{A_2}{A_1 + A_2} k_2, \]
\[k_y = \frac{A_3}{A} (k_1 + k_2) - \frac{A_1 + A_2}{A} k_3, \]
\[\nu^2 = 2ME_T = 2(ME_x + E_y), \]
\[\Omega_x = \{\theta_k, \Omega_{k_x}, \Omega_{k_y}\}, \quad \theta_k = \arctan[E_x/E_y]. \]

For the fixed decay energy, the three-body correlations are defined by five parameters of \(\Omega_x \). It is more practical to split the correlation space into “internal” correlations (relative motion of three particles) and “external” correlations (orientation of the decay plane in the space). It is convenient to describe internal correlations with two parameters \(\{\varepsilon, \cos(\theta_k)\} \), where \(\varepsilon \) is the energy distribution between \(X \) and \(Y \) subsystems and \(\theta_k \) is the angle between the Jacobi momenta:
\[\varepsilon = E_x/E_T, \quad \cos(\theta_k) = \frac{k_x k_y}{k_x k_y}. \]

These parameters can be constructed in any of three Jacobi systems. The correlations constructed in different Jacobi systems are just different representations of the same physical picture. However, different aspects of the correlations may be better revealed in a particular Jacobi system. For the core+\(N+N \) systems there are two “irreducible” Jacobi systems: “\(T \)” and “\(Y \)” (the correlation information for the second “\(Y \)” system is the same).

The external correlations are connected with spin alignment of three-body systems populated in reactions. Practical significance of such studies for the three-body systems is discussed in the papers \[27, 30 \] and in the review \[31 \]. No information of this kind is available for the electromagnetic dissociation (EMD) of three-body systems and no further discussion of this topic will be provided here. However, we should emphasize that the relevant theoretical methods are already well developed and have proven to be useful in many experimental situations. So, the application of the corresponding analysis to the prospective EMD dissociation data is encouraged.

C. Potentials

We follow potential prescription for \(A = 6 \) systems which has shown to be efficient in Refs. \[22, 24, 25, 32 \].

The NN potential is taken either as a simple s-wave single-Gaussian form BJ (from the book of Brown and Jackson \[33 \])
\[V_{nn}(r) = V_0 \exp(-r^2/r_0^2), \]
with \(V_0 = -31 \) MeV and \(r_0 = 1.8 \) fm, or the realistic “soft-core” potential GPT (Gogny-Pires-de Tourreil \[34 \]).

In the \(\alpha-n \) channel we use an \(\ell \)-dependent potential SBB (Sack-Biedenharn-Breit \[35 \])
\[V_{\alpha n}(r) = V^{(\ell)}_C \exp(-r^2/r_0^2) + (\ell \cdot \mathbf{s}) V_{ts} \exp(-r^2/r_0^2), \]
where \(r_0 = 2.30 \) fm, \(V^{(0)}_C = 50 \) MeV, \(V^{(1)}_C = -47.32 \) MeV, \(V^{(2)}_C = -23 \) MeV, and \(V_{ts} = -11.71 \) MeV.

To get the phenomenological binding-energy correction for \(^6\text{He} \) g.s. an additional short-range three-body potential \(\mathcal{V}_3 \) in Eq. (1) is used in the form
\[V_3(\rho) = \delta_{K\gamma,K'^{'}\gamma'} V_3^{(0)}/[1 + \exp((\rho - \rho_0)/d_3)], \]
where \(\rho_0 = 2.5 \) fm and \(d_3 = 0.4 \) fm. This “short-range” three-body potential (note also the small diffuseness) does not distort the interactions in the subbarrier region which was found to be important for consistent studies of the asymptotic WF properties, see, e.g., the discussion in Ref. \[36 \].

We do not have clear physical motivation for introducing \(\mathcal{V}_3 \) in Eq. (2). However, arbitrary variation of this potential is used in Sec. \[V \] for studies of characteristic sensitivities of the theoretical model.

D. \(^6\text{He} \) ground state wave function

Different aspect of the \(^6\text{He} \) g.s. WF was studied in the hyperspherical harmonics method several times \[22, 25 \]. The obtained \(^6\text{He} \) and \(^6\text{Li} \) g.s. WF were tested against various observables in several works \[3, 22, 26, 32, 37 \].
They are known to provide consistent description of various “long-range” observables for the 6He and 6Li nuclei. The detailed account of the isotopic symmetry of 6He and 6Be g.s. can be found in the paper [24]. For that reason we give here the most basic information about 6He g.s. and properties of the source function induced by the dipole operator, see Fig. 2 and Table I. In Sec. VI the impact of the 6He g.s. WF variation on the E1 SF is studied. In this section the additional information about 6He g.s. WF can be found, see Table II.

III. CONVERGENCE OF SDM STRENGTH FUNCTION

The value K_{max} truncates the hyperspherical expansion in the system Eq. (9). For each K value all the possible basis states, namely all the possible combinations of $l_x + l_y \leq K$, are included in the HH expansion.

The SE are solved up to $\rho_{\text{max}} = 400$ fm. The matching of the momentum distribution is performed at $\rho_{\text{max}} = 70–90$ fm. At larger distances the artefacts of the boundary conditions begin to arise. At $K_{\text{max}} = 25$ the number of channels reaches 260, making further direct basis increase problematic. The basis size can be effectively increased using the adiabatic procedure based on the so-called Feshbach reduction (FR) [24] [30]. Feshbach reduction eliminates from the total WF $\Psi = \Psi_p + \Psi_q$, an arbitrary subspace q using the Green’s function of this subspace:

$$H_p = T_p + V_p - V_{pq}G_qV_{pq}.$$ \hspace{1cm} (18)

In an adiabatic approximation, we can assume that the kinetic energy term is small compared to the centrifugal barrier in the channels where this barrier is large (these are evidently the channels with large K values) and can be approximated by a constant (“Feshbach energy” E_f). In this approximation the Green’s function for the q subspace can be defined by matrix inversion from

$$(H - E_T)_{K\gamma,K'\gamma'} = \left[E_f - E_T + \frac{L(L+1)}{2M\rho^2} \right] \delta_{K\gamma,K'\gamma'} + V_{K\gamma,K'\gamma'} = G_{K\gamma,K'\gamma'}^{-1}.$$ \hspace{1cm} (19)

In this way the FR procedure is reduced to the construction of effective three-body interactions

$$V_{K\gamma,K'\gamma'}^\text{eff} = V_{K\gamma,K'\gamma'} - \sum_{K\hat{\gamma},K'\hat{\gamma}'} V_{K\gamma,K\hat{\gamma}}G_{K\hat{\gamma},K'\hat{\gamma}'}V_{K'\hat{\gamma}',K'\gamma'}.$$ \hspace{1cm} (20)

Summations over indexes with the bar are carries out for the eliminated channels (the q subspace). Technically, we eliminate all the channels with $K > K_{FR}$, and the K_{FR} value defines the sector of the HH basis where the calculations remains fully dynamical. We take $E_f \equiv E_T$ in our calculations as no significant sensitivity to this parameter in a broad variation range was found.

There are two forms of convergence to be studied to control the reliability of the FR procedure. (i) One can
gradually reduce K_{max} value for the fixed K_{FR} value taken as maximum attainable in the dynamic calculations. (ii) For the maximum achieved K_{max} value one can gradually reduce K_{FR} value (using smaller and smaller dynamic basis size). The calculations of the strength function for wide E_T energy range is defined entirely by the K_{max} value. The basis size for the dynamical calculations can be taken as very modest $K_{FR} = 13 - 15$ without deterioration of the SF quality. However, the majority of the presented calculations were performed with $K_{FR} = 25$ which is very reliable value. The largest basis size is really needed (for $E_T > 0.4$ MeV) for calculations of the correlation patterns in the $\alpha+n+n$ continuum since the convergence for the correlations appears to be essentially slower than for the strength function. These aspects of the convergence is discussed in Section IV.B.2.

The convergence trends for small and large basis sizes are illustrated in Figs. 3 and 4. We may see the following important trends in the convergence patterns.

(i) The easiest task to get converged calculations is to remove FSI. The convergence here is defined by convergence of the source function expansion which is practically achieved at $K_{\text{max}} = 5 - 7$, see Table 1.

(ii) The convergence of test calculations with $n-n$ FSI switched off is achieved at $K_{\text{max}} = 30 - 40$. The conditions for calculations with full three-body FSI is much worse, and complete convergence is achieved at $K_{\text{max}} = 60 - 70$. The maximum basis size used in the calculations $K_{\text{max}} = 101$ which is very safe value for the SF calculations at $E_T > 0.4$ MeV.

(iii) There is some form of systematic wavy behavior of the strength function in the process of convergence. It seems that for small basis sizes the SF oscillates around the final converged value. When the basis is increased, these oscillations are shifted toward smaller energies and the magnitude of the oscillations decreases. This form of the wavy behavior can be connected with some kind of internal reflections in the system of three particles which arise as an artefact of boundary conditions treatment in the situation of the basis truncation.

(iv) Analogous picture of convergence spoiling the low-energy part of the E1 SF was observed in the three-body calculations of SDM in 17Ne [18]. The cure for this problem was found in use of a model with simplified Hamiltonian (without $n-n$ FSI) which allowed to use the exact three-body Green’s function providing precise SF treatment [18, 19]. Application of such a model is based on the fact that $n-n$ FSI was found to be not important for the low-energy E1 SF calculations. In 6He this option is evidently not available, since there is very large difference between calculations with and without $n-n$ FSI.

(v) Although the wavy behavior can be seen in Fig. 9 the position of peak in SF and the behavior of the SF low-energy slope visually stabilize at $K_{\text{max}} \sim 30$. For the basis sizes achieved, these artificial waves are shifted to $E_T < 0.4$ MeV The aspect of the low-energy SF convergence is quite intriguing and discussed separately in Ref. 20.

Comparison of calculations performed with quasirationalistic GPT $n-n$ potential and with simple central BJ $n-n$ potential provides very close results. This is clear consequence of an extreme peripheral character of the SDM dynamics. However, the convergence of calculations with GPT potential is much slower. For that reason the largest-basis calculations were performed with the central $n-n$ potential only.

IV. SDM DECAY DYNAMICS

The partial wave decomposition of the 6He SDM SF is shown in Fig. 5. The low-energy part of the SF below $E_T = 1$ MeV is strongly dominated by the lowest hyperspherical component $\{K, \gamma\} = \{11001\}$. Sometimes this fact is interpreted as an opportunity to use only one channel (lowest possible channel with $K = 1$) in calculations of SDM. However, this is not the case: although the relative weights of higher-K channels are small, their cumulative effects to a large extent determine the “magnitude” of the $K = 1$ component in the low-energy domain.
The decay dynamics of the soft dipole mode can be clarified by momentum distribution analysis of the decay products. The energy evolution of the complete (energy-angular) three-body correlation patterns for 6He SDM is illustrated in Fig. 6 for different decay energies. The inclusive energy distributions are shown in Figs. 6, 7, 8, and 12. It can be found that correlation patterns are qualitatively different in three regions: (i) $E_T \lesssim 1$ MeV, (ii) $1 \lesssim E_T \lesssim 2.5$ MeV, (iii) $2.5 \lesssim E_T$ MeV.

A. True three-body decay dynamics

The region (i) with $E_T \lesssim 1$ MeV corresponds to so-called true three-body emission. This is a situation of essentially collective three-body motion. Technically, it is expected that such a motion is well described by a small number of HH terms. In the low-energy limit it should be just one term with $K = K_{\text{min}} = l_x(\text{min}) + l_y(\text{min})$, most likely, the lowest hyperspherical term (or, possibly, terms for $K_{\text{min}} > 0$). The corresponding correlation pattern is called “three-body phase volume” and it has meaning of phase volume corrected for angular momenta. For single HH with definite l_x and l_y values the three-body phase space is

$$dW/d\varepsilon \sim \varepsilon^{1/2 l_x (1 - \varepsilon)^{1/2 l_y}}. \quad (21)$$

It can be seen in Fig. [a] that in the low-energy limit the energy distribution in the Jacobi “T” system tends to phase volume for [sp] configuration with $l_x = 0$ and $l_y = 1$

$$dW/d\varepsilon \sim \varepsilon(1 - \varepsilon)^3. \quad (22)$$

For the “no n-n FSI” calculations this is exactly true for $E_T \lesssim 0.3$ MeV. In full three-body case there is a strong enhancement of the low-energy part of the distribution due to the “dineutron” FSI. This effect is important even at energy as low as $E_T \sim 0.04$ MeV and only for $E_T \lesssim 5$ keV the three-body phase volume behavior is retained.

In a “Y” Jacobi system the corresponding three-body phase volume behavior is defined by symmetry property
of identical valence nucleons which leads to \([sp] + [ps]\) configuration mixing with almost equal weights

\[
dW/d\varepsilon \sim \sqrt{\varepsilon/(1-\varepsilon)} + \sqrt{\varepsilon(1-\varepsilon)^3} = \sqrt{\varepsilon(1-\varepsilon)}. \tag{23}
\]

This expression is equivalent to the most trivial three-body \(s\)-wave phase volume \((l_x=0 \text{ and } l_y=0 \text{ case})\). It can be found in Fig. 8 that this simplistic expectation is well justified for \(E_T \lesssim 0.3\) MeV. For energies \(E_T \lesssim 1\) MeV and above the energy distribution in the “Y” Jacobi system tend to relatively symmetric profiles with maximum at \(\varepsilon \sim 0.5\), which are typical for “democratic” decays of light 2\(p\) emitters \[39, 40\].

B. Sequential decay dynamics

In the region (iii) with \(2.5 \lesssim E_T\) MeV the decay regime is sequential: the emission of nucleons proceed via population of the intermediate \(p_{3/2}\) resonance in the \(^5\)He. This can be well seen in Fig. 8 as the two-hump structure of distributions for \(E_T \gtrsim 2.5\) MeV. The sequential decay peak drifts to lower \(\varepsilon\) with \(E_T\) increase. However, it can be found from distributions of Fig. 8 that the peak with lower \(\varepsilon\) value always takes place at the same energy \(E_r = 0.84 - 0.86\) MeV. Where this energy \(E_r\) is coming from?

1. Sequential peak energy

The information on the \(^5\)He \(p_{3/2}\) resonance, governing the properties of the sequential decay, is given in Fig. 10 (a). The standard description of the resonance is represented by the elastic phase shift and the corresponding elastic cross section. The elastic cross section for the potential used in our calculations has the peak value at \(E_r = 0.95\) MeV. However, this resonance is quite broad and we may question another continuum responses. Fig. 10 (b) shows also the internal normalization

\[
N_i(E) = \int_0^{r_{\text{norm}}} dr |f_i(kr)|^2, \tag{24}
\]

and continuum formfactor

\[
F_i(E) = \int_0^\infty dr f_i(kr)\phi(r). \tag{25}
\]

Function \(f_i(kr)\) is two-body scattering WF normalized as \(\sin \sin(kr + l\pi/2 + \delta_i)\) and the “source” WF \(\phi(r)\) taken in a simple analytical form (so-called Hulten Ansatz)

\[
\phi(r) = \sqrt{\frac{2(r_{01} + r_{02})}{(r_{01} - r_{02})^2}} \left(\exp[-r/r_{01}] - \exp[-r/r_{02}]\right). \tag{26}
\]

Here we use \(r_{01} = 0.5\) fm and vary \(r_{02}\) to get different rms radii for \(\phi(r)\). It can be seen in Fig. 10 (b) that the energies of the peak both for internal normalization and for formfactors are considerably different from the peak energy of elastic cross section. The \(^5\)He peak energy \(E_r = 0.84 - 0.87\) MeV inferred from Fig. 10 (b) is very stable — it has a small variation when changing the parameters in a broad range of “reasonable” values. This range exactly corresponds to the stable peak energies observed for different \(E_T\) in Fig. 9.
2. Convergence of momentum distributions

Basing on our results which we have obtained from the studies of two-nucleon emission and two-proton radioactivity we can conclude that for the energies of the resonant states the convergence is fastest, for width of this states is it slower, and for momentum correlations the convergence is the slowest. We can find in Figs. 3 and 4 that the convergence of strength function is very good for \(K_{\text{max}} > 50 \) in a broad energy domain. If we look at the high energy part of SF with \(E_T > 5 \) MeV, the result is well converged already at very small basis sizes \(K_{\text{max}} \sim 13 - 15 \). In contrast, the convergence of the momentum distributions for the high-energy part of the E1 strength function is found to be most challenging issue: here we need to describe the long-range formation of the peaks in the distribution for sequential decay mode via the \(p_{3/2} \) resonant g.s. of \(^5\text{He}\). Extremely large basis sizes are required for that. It can be seen in Fig. 11 that the convergence is reasonably good, but not absolutely complete yet. This figure illustrates \(E_T = 7 \) MeV case; for \(E_T = 3 - 5 \) MeV the convergence is much better and it is perfect for the lower energies.

3. “Anti-dineutron” correlation

The energy correlations in the Jacobi “T” system at energies \(E_T \gtrsim 2.5 \) MeV are shown in Fig. 12. We can see that in contrast to the “dineutron” peak in the energy distribution at low \(E_T \), a peculiar repulsive anti-correlation takes place here between neutrons. In the calculations without \(n-n \) FSI there is strong suppression of probability for \(\varepsilon \lesssim 0.2 \). In full three-body calculation the \(n-n \) FSI “try” to compensate this effective repulsion somehow. The energy distribution even has a sharp increase at \(\varepsilon \to 0 \). However, the intensity of the \(n-n \) FSI is not sufficient to overcome the overall repulsive trend: the probability for \(\varepsilon \lesssim 0.2 - 0.3 \) is still seriously suppressed.

C. Transitional decay dynamics

In the region (ii) with \(1 \lesssim E_T \lesssim 2.5 \) MeV the transition from true three-body to sequential emission dynamics is taking place. Estimates show that from the penetrability point of view the turnover to sequential emission regime (via the \(p_{3/2} \) resonance in the \(^5\text{He}\)) should take place at \(E_T \gtrsim 1.2 - 1.5 \) MeV. However, at energies \(E_T \sim 1.8 \) MeV, the energies of the “first” and the “second” emitted neutrons with respect to the \(\alpha \)-core are nearly equal, and,
thus, both these nucleons can well populate the \(^5\)He \(p_{3/2}\) resonance via its broad “wings”. For that reason the sequential decay can not be formed up to \(E_T \sim 2.5\) MeV and the emission has complex three-body character. The major trends of transitional dynamics were discussed in the paper [10]. The forms of transition we face here looks analogous to transitional dynamics observed in the light 2p emitters, such as \(^{13}\)Be \([93]\) and \(^{16}\)Ne \([41, 42]\) (so-called “democratic decay”).

The transition from the three-body to sequential regime is characterized by a rapid qualitative change of the correlation patterns, see Fig. 6. This is well illustrated by energy distribution changes in Figs. 7 and 8. Two most important effects are taking place in the transitional energy range.

(i) The “dineutron” correlation between emitted neutrons (enhancement at low \(\varepsilon\) values) typical for the low-energy \(E_T\) range is “dissolved”, and replaced with “anti-dineutron” correlation (depression at low \(\varepsilon\) values), as discussed above in Sec. VI B3.

(ii) The sequential decay patterns for population of the intermediate \(p_{3/2}\) resonance in \(^5\)He are formed: we start from distribution with one peak at \(\varepsilon \sim 0.5\) and end with sequential two-peak correlation pattern.

V. WHAT CAN WE CHANGE?

Before we discuss the previous theoretical results, we ask ourselves a natural question: how stable are our predictions for E1 SF. To understand it we investigated (i) the impact of the \(^6\)He g.s. WF variation and (ii) the impact of the three-body potential \(V_3\) variation, see Eq. (2). The variations are not necessarily realistic: our aim is to find out which variations of the E1 SF in \(^6\)He are, in principle, attainable.

The basic information about different versions of the \(^6\)He g.s. WFs is provided in the Table I. The most restrictive observables are the Coulomb displacement energy in \(A = 6\) isobar and the charge radius. The \(\Delta E_{\text{Coul}}\) value is reproduced nicely by our main calculation. The charge radius is a bit underestimated. However, we can not improve agreement for this characteristic without coming to contradiction. If we somehow expand the system to get correct charge radius, the agreement for \(\Delta E_{\text{Coul}}\) will get worse. It should be also understood that calculation of this value in the cluster model depends on a number of parameters, and not all of them are confidently defined. We use the following ingredients: \(r_{\text{ch}}(p) = 0.84\) fm, \(r_{\text{ch}}(n) = 1.68\) fm, \(r_{\text{ch}}^2(n) = 0.1161\) fm, also leading to the rms matter radius of the core cluster \(r_{\text{mat}}(\alpha) = 1.495\) fm. The matter radius of \(^6\)He is then obtained as

\[6 r_{\text{mat}}^2(\alpha) = \langle \rho \rangle^2 + 4 r_{\text{mat}}^2(\alpha).\]

The E1 SFs corresponding to different calculation options are collected in Fig. 13.

(i) The “old” \(^6\)He g.s. WF from Ref. [22] produces the thick gray curve in Fig. 13.

(ii) A strong variation of the \(V_3\) potential was performed, see Eq. (2). The orange dotted curves correspond to \(V_3(0) = 32\) MeV (lower) and \(V_3(0) = -32\) MeV (upper). The scale of this variation is unrealistically large. For example, for the \(^6\)He g.s. calculations the parameter \(V_3(0) = -13.5\) MeV is used to adjust the binding energy to have exactly experimental value.

The binding energy \(E_b\) of \(^6\)He was varied as a result of a change in the potential of \(V_3\)

(iii) The binding energy \(E_b\) of \(^6\)He was varied by changing \(V_3\) potential, see Eq. (1). The blue dashed curves correspond to \(E_b = 1.1\) MeV (lower) and \(E_b = 0.85\) MeV (upper).

(iv) The geometry of the \(^6\)He g.s. WF has been modified using stronger and weaker \(V_{\text{nn}}\) potentials. Red dash-dotted curves show the results with \(^6\)He WF obtained with BJ potential [see Eq. (13)] with \(V_0 = -21\) MeV (lower) and \(V_0 = -36\) MeV (upper), instead of the standard value \(V_0 = -31\) MeV. The average angle between neutrons (as “seen” from the a-core) can be calculated as \(60^\circ\), \(66^\circ\), and \(74^\circ\) for strong, normal, and weak \(n-n\) potentials.

It can be understood from Fig. 13 and Table II that the result for E1 SF is quite stable. For variations (i) – (iii) of parameters far beyond realistic we get a modest change in the SF, which is majorly just scaling within \(\pm (10 - 15)\%\). To “change” the theoretical prediction considerably [case (iv)], we need to change basic geometry of the \(^6\)He g.s. WF. This can hardly be compatible with our common understanding of structure, reactions, and observables for \(A = 6\) isobar.

VI. DISCUSSION OF PREVIOUS THEORETICAL RESULTS

Comparison of the results for the \(^6\)He E1 SF obtained in this work with the previous calculations is given in
TABLE II. Properties of different versions of the 6He g.s. WFs. Energies are in MeV, radii are in fm. $\langle r_n \rangle \equiv \langle r_\alpha \rangle$ is the rms distance from α cluster to 4He c.m. The experimental value of Coulomb displacement energy between 4He and 6Be g.s. is $\Delta E_{\text{Coul,(exp)}} = 2.344$ MeV. The experimental value of the 6He charge radius $r_{\text{ch,(exp)}} = 2.054(14)$ fm. The last two columns show the E1 NEW sum rule value for $E_T < 3$ MeV and the total value.

Calculation	E_b	$\langle \rho \rangle$	$\langle r_\alpha \rangle$	$\langle r_{\text{rms}} \rangle$	ΔE_{Coul}	r_{mat}	r_{ch}	$S_{\text{NEW}}^{(3)}$	$S_{\text{NEW}}^{(\infty)}$
GPT $n-n$	0.973	5.16	1.17	4.50	2.302	2.43	2.019	0.568	1.307
GPT $n-n$, strong V_3	1.1	5.02	1.14	4.41	2.400	2.39	2.002	0.514	1.241
GPT $n-n$, weak V_3	0.85	5.24	1.19	4.57	2.251	2.46	2.031	0.630	1.352
BJ $n-n$	0.973	5.10	1.15	4.48	2.345	2.41	2.008	0.562	1.098
Mod. strong BJ $n-n$	0.973	5.53	1.31	4.52	2.095	2.57	2.103	0.854	1.639
Mod. weak BJ $n-n$	0.973	4.66	0.99	4.44	2.680	2.26	1.922	0.317	0.936
As in Ref. [22]	0.973	5.49	1.23	4.88	2.111	2.54	2.048	0.672	1.445

Fig. [14]

Calculations [3] were performed by members of our collaboration in a very similar formalism, but with numerical limitations natural to a situation twenty years ago. The “wavy” profile of the SF is analogous to the results obtained in present work with limited basis $K_{\text{max}} = 21$, see Fig. [3]. The strength function do not match exactly ours obtained within the same limitations, because the Pauli principle treatment in the core-n channel is different in [3] (so-called “Pauli projection” method). Also the 6He g.s. WF used in [3] is somewhat different from ours.

The calculations of Refs. [4] show the same “wavy” behavior which, as we demonstrate in this work, is a symptom of insufficient convergence. The computational methods of [4] and of present work are different, but both rely on hyperspherical expansion of WF. Therefore, we may still expect some analogy in convergence trends. The behavior of the strength function in Refs. [4] on the left slope of the peak ($E_T \sim 0.2 - 0.8$ MeV) is very close to the behavior of our strength function. Basing on our experience, we do not expect that this aspect of the SF [4] changes noticeably in the case of the complete convergence.

The HH calculations of Ref. [5] again show the “wavy” behavior discussed above. Several calculations were presented in this work, divided in two groups by treatment of the Pauli principle in the α-core channel: (i) “Pauli projection” and (ii) “supersymmetric transformation” techniques. We have selected the upper and lower results from group (i) and the lower from group (ii) — the other results from this group look a bit unrealistic.

It can be seen in Fig. [14] (a) that all the presented results from [6] (actually all the results of HH-based methods) are a kind of oscillating around the “mean value” represented by our fully converged calculations. On the other hand, it should be noted that all these methods give qualitatively very similar SFs in the low-energy range, conforming the expected

$$\frac{dB_{\text{E1}}}{dE_T} \sim E_T^3,$$

behavior of the E1 SF for 6He. Having this correct low-energy asymptotics is the natural feature of the HH method.

The theoretical methods collected in Fig. [14] (b) are based on different forms of the continuum discretization. The calculations of [11] give a peak in the E1 SF at about 2.5 MeV, which is too different from the “mainstream” value of 1.0 – 1.1 MeV.

The strength function obtained in Ref. [3] has a peak at considerably higher energy ($E_T \sim 1.25$ MeV) than in present work and in the papers Ref. [4,6] ($E_T \sim 0.9 – 1.1$ MeV). This could be a result of incomplete accounting of the $n-n$ FSI. The peak energy in [3] is close to 1.4 MeV.

FIG. 14. Comparison of the results for the 6He E1 SF obtained in present work with the previous calculations. Panel (a) shows the results of HH and HH-based methods [3,4,5]. Panel (b) shows the results of methods based on continuum discretization [3,4,11].
The center of mass in the 6He is 1.37 fm rms distance of α cluster from the center of mass in the 6He g.s. This is considerably larger than $r_n = 1.17$ fm for 6He WF used in the present work (similar radial properties of 6He WF were used also in the calculations [4, 7]). The rms matter radius of the 6He is $r_{\text{mat}} = 2.43$ fm in our work (based on the 1.495 fm rms matter radius of α-cluster) and the corresponding $r_{\text{mat}} = 2.46$ fm can be found in [4]. The difference here is not that large. Thus we have to presume very different geometry of 6He in the work [4]: the rms distance between two neutrons recalculated from r_n and r_{mat} is $r_{nn} = 3.11$ fm. This is drastically smaller than the value $r_{nn} = 4.49$ fm used in present work. In general, the values $r_{nn} > 4.3$ fm are typically found in all other model calculations of 6He.

The 6He E1 SF of [7, 8] noticeably differs from our SF and from SF in Refs. [4, 5]. Namely, the low-energy behavior of the SF in [4, 8] is strongly enhanced compared to the HH-based works. Such a behavior is very difficult to reproduce in realistic calculations. This is an important issue since astrophysical capture rates are very sensitive to the low-energy behavior of the SF in a broad range of temperatures of interest. Therefore, we will return to this problem in the forthcoming publication Ref. [20]. It seems that all the methods collected in Fig. 14(b) have problems with correct treatment of the low-energy part of the E1 SF in 6He. All these SFs tend at $E_T \rightarrow 0$ either to constant, or to something visually different from the expected behavior of Eq. (27), see Fig. 14(a).

The correlation aspect of the SDM in 6He has been fragmentarily discussed in papers [5, 10]. The results of [5] we discuss below when comparing with experimental data. In paper [10] the inclusive E_{n-n} and $E_{\text{core}-n}$ distributions were constructed for the Coulomb breakup reaction. No comparison of this information with our results is possible.

VII. COMPARISON WITH EXPERIMENTAL DATA

The results of the 6He E1 dissociation calculations are compared with available experimental data in Fig. 16 for SF and in Figs. 16 and 17 for fragment correlations. Our SF, as well as other predictions [4, 5], are consistent with each other and with experimental data [12] for $E_T > 2$ MeV. However, for lower energies there is strong disagreement between experiment and all the calculations. There are certain differences in details which we discussed above, but all the theoretical calculations in Fig. 16 predict a pronounced peak of E1 SF in 6He at $E_T \sim 0.9 - 1.25$ MeV with peak values in the range $\sim 0.27 - 0.33$ e2fm2/MeV. This feature of all the existing calculations disagrees with data far beyond the experimental uncertainty declared in [12].

Let as take a look at the correlation patterns observed for the E1 dissociation of 6He in the experiment Ref. [12] and later published in Ref. [14]. It should be understood that the theoretical distributions are shown together with experimental data “as is”, without any accounting for the experimental bias, so this comparison can not be truly quantitative. Nevertheless, in Figs. 16 and 17 we may see that the agreement of the theoretical correlations with experimental data significantly improves, compared
FIG. 17. The same as in Fig. 16 but for the continuum energy region $E_T = 3 - 6$ MeV.

to the predictions of Ref. [3]. For example, there was a strong qualitative disagreement between theory of [3] and experiment in Fig. 16 (b,c), which is “cured” in our modern calculations.

There is, however, a considerable disagreement with the experimental data in correlations, which we should emphasize. The data is much smaller than theory in the experimental data in correlations, which we should modern calculations.

FIG. 16 (a) for $\varepsilon < 0.3$ and in the angular distribution Fig. 16 (d) for $\cos(\theta_k) < -0.6$. Both these ranges correspond to the same physical situation of low momentum between two neutrons. One may see in Fig. 2 (a) that the energy distribution around $E_T \sim 1$ MeV has a pronounced low-energy n-n peak (at higher E_T energies the low-energy n-n correlation is suppressed, see also Fig. 12). If we assume that the efficiency of the registration of the low-energy two-neutron events was underestimated in the data treatment of [12], then both of these disagreements in correlations and the absence of the $E_T \sim 1$ MeV peak in experimental reconstructed strength function in Fig. 13 gets explanation. To clarify this issue new high precision experiments dedicated to SDM in 6He are necessary.

VIII. CONCLUSIONS

Accurate calculations of the E1 strength function (or soft dipole mode) for 6He are presented in this work. The results of these calculations significantly improved the older results of the same collaboration Ref. [3]. Both the E1 strength function and three-body decay correlation pattern are found to be fully converged for $E_T > 0.1$ MeV. Fully converged results of this work allow to understand weird “wavy” behavior of the E1 SF predicted in theoretical papers [3, 4, 5] and corresponding strong disagreement among them. For the first time we are able to get insight for the decay dynamics for the soft dipole excitations. The transition from “true” three-body decay dynamics to sequential decay mechanism is taking place in the energy range $E_T = 1.0 - 2.5$ MeV which is reflected in the evolution of the correlation patterns.

It was demonstrated that the SDM results, obtained in this work, have important advantages compared to the other available theoretical calculations. However, the interpretation of the soft dipole excitation is a “fragile” issue, very sensitive to details of the models. Therefore the theoretical results have to be confirmed by the experimental data. Unfortunately, there is no agreement between E1 SF for 6He obtained in the calculations and the E1 strength function extracted from the 6He Coulomb dissociation cross section on the heavy target for the low-energy range $E_T < 2$ MeV. This is true not only for our calculations, but for all the theoretical results available so far. Such a situation is unsatisfactory, since the radiative capture rates in nuclear astrophysics can be obtained only by the extrapolation based on the Coulomb dissociation cross section data. This is exactly the low-energy range, where the quality of the data are crucial for extrapolation to energies of astrophysical interest.

Intensive 6He beams are easily accessible at the modern RIB facilities, so it would be expected that the measurements with 6He should become a benchmark case for all the studies of this kind. So, highly precise measurements of the E1 SF in 6He with modern techniques, as well as scrupulous comparison with theoretical calculations, taking the experimental bias into account, are very desirable.

Acknowledgments. — LVG and NBS were supported in part by the Russian Science Foundation grant No. 17-12-01367.

[1] N. Paar, D. Vretenar, E. Khan, and G. Colò, Reports on Progress in Physics 70, 691 (2007).
[2] D. Savran, T. Aumann, and A. Zilges, Progress in Particle and Nuclear Physics 70, 210 (2013).
[3] B. V. Danilin and M. V. Zhukov, Phys. At. Nucl. 56, 460 (1993).
[4] A. Cobis, D. Fedorov, and A. Jensen, Phys. Rev. Lett. 79, 2411 (1997).
[36] L. V. Grigorenko and M. V. Zhukov, Phys. Rev. C 76, 014008 (2007).
[37] B. V. Danilin and N. B. Shulgina, Izv. Acad. Nauk SSSR and Ser. Fiz. 5, 908 (1991), different models for 6He beta decay.
[38] L. V. Grigorenko and N. B. Shulgina, Phys. Atomic Nuclei 61, 1472 (1998), Yad. Fiz. 61 (1998) 1582-1588.
[39] I. A. Egorova, R. J. Charity, L. V. Grigorenko, Z. Chajecki, D. Coupland, J. M. Elson, T. K. Ghosh, M. E. Howard, H. Iwasaki, M. Kilburn, J. Lee, W. G. Lynch, J. Manfredi, S. T. Marley, A. Sanetullaev, R. Shane, D. V. Shetty, L. G. Sobotka, M. B. Tsang, J. Winkelbauer, A. H. Wuosmaa, M. Youngs, and M. V. Zhukov, Phys. Rev. Lett. 109, 202502 (2012).
[40] T. Golubkova, X.-D. Xu, L. Grigorenko, I. Mukha, C. Scheidenberger, and M. Zhukov, Physics Letters B 762, 263 (2016).
[41] K. W. Brown, R. J. Charity, L. G. Sobotka, Z. Chajecki, L. V. Grigorenko, I. A. Egorova, Y. L. Parfenova, M. V. Zhukov, S. Bedoor, W. W. Buhro, J. M. Elson, W. G. Lynch, J. Manfredi, D. G. McNeel, W. Reviol, R. Shane, R. H. Showalter, M. B. Tsang, J. R. Winkelbauer, and A. H. Wuosmaa, Phys. Rev. Lett. 113, 232501 (2014).
[42] K. W. Brown, R. J. Charity, L. G. Sobotka, L. V. Grigorenko, T. A. Golubkova, S. Bedoor, W. W. Buhro, Z. Chajecki, J. M. Elson, W. G. Lynch, J. Manfredi, D. G. McNeel, W. Reviol, R. Shane, R. H. Showalter, M. B. Tsang, J. R. Winkelbauer, and A. H. Wuosmaa, Phys. Rev. C 92, 034329 (2015).