The MESS of the CMB

Manuel Alejandro Jaramillo Rodríguez, a,b Antonio Enea Romano a,b,c and Sergio Andrés Vallejo-Peña a,b

aICRANet,
Piazza della Repubblica 10, I–65122 Pescara, Italy
bInstituto de Física, Universidad de Antioquia,
A.A.1226, Medellín, Colombia
cTheoretical Physics Department, CERN,
CH-1211 Geneva 23, Switzerland
E-mail: manuel.jaramillor@udea.edu.co, antonio.enea.romano@cern.ch, sergio.vallejo@udea.edu.co

Received August 23, 2020
Revised October 19, 2020
Accepted November 26, 2020
Published February 17, 2021

Abstract. We analyze cosmic microwave background (CMB) data taking into account the effects of a momentum dependent effective sound speed (MESS). This approach allows to study the effects of primordial entropy perturbations in a model independent way, and its implementation requires a minimal modification of existing CMB fitting numerical codes developed for single scalar field models.

We adopt a phenomenological approach, and study the effects of a local variation of the MESS around the scale where other analysis have shown some deviation from an approximately scale invariant curvature perturbation spectrum. We obtain a substantial improvement of the fit with respect to a model without MESS, showing that primordial entropy perturbations can be an explanation of these deviations.

Keywords: cosmological parameters from CMBR, cosmological perturbation theory, inflation

ArXiv ePrint: 2006.03395
1 Introduction

According to the standard cosmological model primordial curvature fluctuations produced during inflation provided the seeds for the CMB (cosmic microwave background) anisotropies and for the formation of large scale structure (LSS). The simplest models of inflation are based on a slowly rolling single scalar field, whose perturbations evolve according to the Sasaki-Mukhanov equation, producing a nearly scale invariant power spectrum of primordial comoving curvature perturbations, which is consistent with CMB observations. Nevertheless at some scales of the power spectrum of comoving curvature perturbations there is evidence [1, 2] of deviation from scale a power law spectrum. In single scalar field models these deviations could be explained for example by temporary violations of the slow-roll conditions [1, 3–6, 6–29] Other possible explanations of these features of the primordial curvature spectrum are multi-fields models [30, 31], modified gravity theories [32], or a combination of the two. In this paper we will investigate how these features of the spectrum could be explained by primordial entropy perturbations adopting the model independent MESS approach to the study of primordial curvature perturbations, recently proposed in [33]. This method is based on new equation, generalising the Sasaki-Mukhanov equation to any physical system satisfying Einstein’s equation, including multi-fields or modified gravity theories, by introducing two new effective quantities, the momentum dependent effective sound speed (MESS) and the space dependent effective sound speed (SESS).

In this paper we will focus on using the MESS mechanism to solve the low-\(\ell\) anomaly, especially the dip at \(k = 2 \times 10^{-3} M pc^{-1}\) in the CMB anisotropy, which has been previously found [34] analysing the Planck mission data. This MESS approach is valid for any model in which a total effective stress-energy-momentum tensor (EST) can be defined, including the multi-fields and modified gravity cases, under the provision of moving to the r.h.s. of the gravitational field equations the geometrical terms associated to the modification of gravity. One convenient aspect of this approach is the similarity of the equations with the Sasaki-Mukhanov equation, which allows minimal modifications of existing CMB Boltzmann codes.
such as CLASS or CAMB, in order to analyse CMB data in a model independent way. In this paper we will show the results of analyzing CMB data with a modified version of CLASS.

2 MESS approach

For scalar perturbations with respect to a flat FLRW background, according to the scalar-vector-tensor decomposition (SVT), the most general metric and effective stress energy momentum tensor (EST) perturbations take the form

\[
\begin{align*}
 ds^2 &= -(1 + 2A)dt^2 + 2a\partial_i Bdx^i dt + a^2 \{ \delta_{ij}(1 + 2C) + 2\partial_i\partial_j E \} dx^i dx^j, \\
 T^0_0 &= -(\rho + \delta \rho), \quad T^0_i = (\rho + P)\partial_i (v + B), \\
 T^i_j &= (P + \delta P)\delta^i_j + \delta^{ik}\partial_k \partial_j \Pi - \frac{1}{3} \delta^i_j \Delta \Pi,
\end{align*}
\]

where \(v \) is the velocity potential and \(\Delta \equiv \delta^{kl}\partial_k \partial_l \).

For any physical system admitting a Lagrangian formulation we can take the variation with respect to the metric to obtain the corresponding EST. As a consequence all the results derived using eqs. (2.1)–(2.2) are general and can be applied to any theory for which an EST can be computed, including multi-fields and modified gravity.

Note that we have not chosen any gauge in eqs. (2.1)–(2.2). The comoving slices gauge, or simply comoving gauge for brevity, is defined by the condition \((T^0_i)_c = 0\), where we denote with a subscript \(c \) any quantity evaluated in the comoving gauge. The metric and the perturbed EST in the comoving gauge are denoted as

\[
\begin{align*}
 ds^2_c &= -(1 + 2\gamma)dt^2 + 2a\partial_i \mu dx^i dt + a^2 \{ \delta_{ij}(1 + 2R) + 2\partial_i\partial_j \nu \} dx^i dx^j, \\
 (T^0_0)_c &= -(\rho + \beta), \\
 (T^i_j)_c &= (P + \alpha)\delta^i_j + \delta^{ik}\partial_k \partial_j \Pi - \frac{1}{3} \delta^i_j \Delta \Pi,
\end{align*}
\]

where we have defined the gauge invariant quantities \(\alpha = \delta P, \beta = \delta \rho, \gamma = A, \mu = B, R = C, \nu = E \).

For a single scalar field minimally coupled to gravity, the comoving gauge and the uniform field gauge (or unitary gauge) coincide, but they are different for more complex systems.

In order to the study the evolution of cosmological perturbations in the standard approach \cite{35} entropy perturbations \(\Gamma \) are defined according to \cite{36}

\[
\alpha(t, x^i) = c_s(t)^2 \beta(t, x^i) + \Gamma(t, x^i),
\]

where \(c_s \) is interpreted as sound speed and is a function of time only. It was shown \cite{33} that there is an alternative approach which does not require the notion of entropy perturbations, and involves the solution of a single differential equation

\[
\ddot{R} + \frac{\dot{\partial}_i (Z^2)}{Z^2} \dot{R} - \frac{v_s^2}{a^2} \Delta \dot{R} - \frac{v_s^2}{\epsilon} \Delta \Pi + \frac{1}{3Z^2} \dot{\partial}_i \left(\frac{Z^2}{H\epsilon} \Delta \Pi \right) = 0,
\]

where \(Z^2 \equiv \epsilon a^2/v_s^2 \) and an effective space dependent sound speed (SESS) has been defined as

\[
v_s^2(t, x^i) \equiv \frac{\alpha(t, x^i)}{\beta(t, x^i)}.
\]
In this approach the effects of entropy perturbations on curvature perturbations are encoded in the SESS. In fact, we can combine eq. (2.6) and (2.8) to get the relation between entropy and the SESS

\[
v^2_s = c^2_s \left[\frac{1}{2H\epsilon} \frac{\Gamma}{\mathcal{R}^\varphi + \frac{1}{3H\epsilon} \Delta \Pi} \right]^{-1}.
\]

(2.9)

The definition of entropy perturbations given in eq. (2.6) is invariant under the transformations

\[
c^2_s \rightarrow \tilde{c}_s(t)^2 = c^2_s(t)^2 + \Delta c_s(t)^2,
\]

\[
\Gamma \rightarrow \tilde{\Gamma}(t, x^i) = \Gamma(t, x^i) - \Delta c_s(t)^2 \beta(t, x^i),
\]

where \(\Delta c_s(t)^2\) is an arbitrary function of time only. Thus, the definition of entropy is not unique as it is shown by the invariance of eq. (2.6) under these transformations. This ambiguity in the definition of the entropy perturbations and sound speed \(c_s(t)\) also motivates the introduction of the SESS, which is a \textit{uniquely defined} gauge invariant quantity.

The momentum dependent effective sound speed (MESS) \(\tilde{v}_k^2(t)\) is defined according to

\[
\tilde{v}_k^2(t) = \frac{\alpha_k(t)}{\beta_k(t)},
\]

(2.12)

in order to derive a similar equation to eq. (2.7) in momentum space [37]

\[
\ddot{\mathcal{R}}_k + \frac{\partial_i(\tilde{Z}_k^2)}{\tilde{Z}_k^2} \ddot{\mathcal{R}}_k + \frac{\tilde{v}_k^2}{a^2} k^2 \mathcal{R}_k - \frac{\tilde{v}_k^2}{\epsilon} k^2 \Pi_k - \frac{1}{3\tilde{Z}_k^2} \partial_i \left(\tilde{Z}_k^2 k^2 \Pi_k \right) = 0,
\]

(2.13)

where \(\tilde{Z}_k^2 \equiv \epsilon a^3/\tilde{v}_k^2\). Since the product of the Fourier transforms of two functions is the transform of the convolution of the two functions, the MESS \(\tilde{v}_k(t)\) defined in eq. (2.12) is not the Fourier transform of the SESS \(v_s(x^\mu)\) defined in eq. (2.8).

We can also derive the relation between the Fourier transform of entropy perturbations and the MESS defined in eq. (2.12) using a similar approach to the one used to derive eq. (2.9). Combining the Fourier transform of eq. (2.6)

\[
\alpha_k(t) = c_s(t)^2 \beta_k(t) + \Gamma_k(t),
\]

(2.14)

with eq. (2.12) and with the Fourier transform of the perturbed Einstein’s equations in the comoving gauge we obtain

\[
\tilde{v}_k^2(t) = c^2_s \left[1 + \frac{\Gamma_k}{2H\epsilon (\mathcal{R}_k - \frac{\tilde{Z}_k^2}{3H\epsilon} \Pi_k)} \right]^{-1}.
\]

(2.15)

The MESS \(\tilde{v}_k(t)\) obtained in eq. (2.15) is not the Fourier transform of the SESS \(v_s(x^\mu)\) given in eq. (2.9), as expected.

In this paper we will consider the case of an isotropic EST, for which eq. (2.13) reduces to

\[
\ddot{\mathcal{R}}_k + \frac{\partial_i(\tilde{Z}_k^2)}{\tilde{Z}_k^2} \ddot{\mathcal{R}}_k + \frac{\tilde{v}_k^2}{a^2} k^2 \mathcal{R}_k = 0.
\]

(2.16)
It can be shown that the Sasaki-Mukhanov equation can be obtained from eq. (2.16) when \(\tilde{v}_k \) is a function of time only.

It is important to note that the MESS approach can be applied to any system for which an appropriate EST can be obtained, including multiple fields, modified gravity theories, combinations of the two, and supergravity, and is particularly useful for model independent analysis in which the MESS is treated as a phenomenological quantity constrained by the data.

3 Inflationary model

In order to solve the perturbations equation we need to define the evolution of the background. For definiteness we model the background with a single minimally couple scalar field, but we solve the MESS perturbation equation shown in the previous section. The action for a scalar is given by

\[
S = \int dx^4 \sqrt{-g} \left(\frac{R}{16\pi G} + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right) \tag{3.1}
\]

where \(R \) is the Ricci scalar, \(g^{\mu\nu} \) is the FLRW metric and \(V(\phi) \) is the inflation potential. By taking the variation with respect to the metric we can obtain the Friedmann’s equation

\[
H^2 = \left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi G}{3} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) \right), \tag{3.2}
\]

and the variation with respect to the field gives

\[
\ddot{\phi} + 3H \dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0. \tag{3.3}
\]

The slow-roll parameters are defined as

\[
\epsilon \equiv -\frac{\dot{H}}{H^2}, \quad \eta \equiv \frac{\dot{\epsilon}}{\epsilon H} \tag{3.4}
\]

In this paper we will consider background models with a quadratic potential

\[
V(\phi) = V_2 \phi^2 = \frac{1}{2} m^2 \phi^2, \tag{3.5}
\]

where \(m \) is the inflaton mass.

There is no fundamental reason behind the choice of this potential, we just use it as an example for applying the MESS approach, and show that a local variation of the effective sound speed leads to a substantial improvement of the data fitting.

4 Data analysis using the MESS approach

It’s known from the Planck mission \([34]\) data analysis that there are some features in the primordial scalar spectrum at \(k \approx 0.002 Mpc^{-1} \) and \(k \approx 0.0035 Mpc^{-1} \) \([34]\), and in this paper we will show how they can be explained by a local variation of the MESS. In order to study the effects of the MESS on the primordial spectrum we modified the Boltzmann solver code.
CLASS [38] and introduced a local momentum dependency in the MESS around the scale where the main features appear in the primordial spectrum, then used Montepython [39, 40] to for Markov Chain Monte Carlo (MCMC) parameter estimation. The fit with different inflationary models and a more general parametrization of the MESS is left for future works. We use data sets from the Planck collaboration (Planck 2018 data) [41], and since the MESS is affecting scalar perturbations we focus our attention on the temperature spectrum.

We use data sets from the Planck collaboration (Planck 2018 data) [41], and since the MESS is affecting scalar perturbations we focus our attention on the temperature spectrum.

We modify the Primordial module of CLASS, adding a new routine named “primordial_inflation_vk” that computes the MESS and uses it to solve eq. (2.13) for curvature perturbations in absence of anisotropies, for the case when the effective sound speed is not time dependent, which takes the form

$$R''_k + \frac{\partial_\eta(z^2)}{z^2} R'_k + \tilde{v}_k^2 k^2 R_k = 0,$$

$$u''_k + \left(\tilde{v}_k^2 k^2 - \frac{z''}{z} \right) u_k = 0,$$

where the prime denotes derivatives with respect to conformal time τ, and $z^2 = 2a^2 \epsilon$.

The initial conditions for curvature perturbations in presence of MESS are taken according to [33]

$$u_k(\tau_0) = 1, \quad u'_k(\tau_0) = -\tilde{v}_k k \sqrt{2 \kappa \nu_k}.$$

5 Relation between primordial and late time entropy

It is important to observe that the entropy producing the momentum dependency of the MESS is primordial, i.e. it is related to physical phenomena taking place during inflation, before reheating. This entropy is not directly related to the entropy of the CMB plasma, and is only imprinted in the primordial power spectrum which is used as input in the calculation of the CMB spectrum. The CMB codes such as CLASS are also solving equations involving the entropy of the CMB plasma, related to the different species composing it, but since the reheating process can be very complicated, it is not easy to relate the primordial entropy perturbations to the late time plasma entropy. Consequently primordial entropy perturbations can be investigated primarily from its effects on the primordial curvature spectrum, which can be studied in a model independent way using the MESS, independently from the constraints on the late time entropy of the plasma.

The conversion of primordial into late time entropy during reheating goes beyond the scope of this paper, but due to its generality, the MESS approach could also be used to study the evolution of curvature perturbations during reheating, but in this case it would describe the late time entropy of the plasma, not the primordial entropy perturbations. From a mathematical point of view the MESS approach can be applied in the same exact way, but its specific form would be different.

6 MESS parametrization

We fit the data with a local parametrization of the MESS given by

$$\tilde{v}_k = 1 + A_0 e^{-\left(\frac{\eta - \eta_0}{\sigma_0} \right)^2}$$

(6.1)
The effects on the power spectrum of the MESS, as parametrized in eq. (6.1), are shown for different values of A_0, with $k_0 = 2 \times 10^{-3} \text{Mpc}^{-1}$ and $\sigma_0 = 5 \times 10^{-4}$.

Figure 1. The effects on the power spectrum of the MESS, as parametrized in eq. (6.1), are shown for different values of A_0, with $k_0 = 2 \times 10^{-3} \text{Mpc}^{-1}$ and $\sigma_0 = 5 \times 10^{-4}$.

where κ_0 is the scale of the feature, σ_0 and A_0 are the standard deviation and the amplitude of the Gaussian used to model the MESS. When $A_0 = 0$ we recover the standard value of the sound speed $\tilde{v}_k = 1$. Applications of the MESS approach to multifield models were so far studied in the context of classical field trajectories with a constant turning rate [30], and in those cases the momentum dependence is not local. For a non-constant turning rate a local momentum dependence is expected, and an explicit check is under investigation. Another possibility could be a modified gravity theory whose effective entropy has local momentum dependence. In this paper we will not investigate the fundamental origin of the ansatz we are making, but adopt a phenomenological approach, and check how it fits the observational data. We do not fit the scale parameter k_0, and rely on the results of previous model independent analysis of the power spectrum given in [1, 2], where it was used a method based on “piecewise cubic Hermite interpolating polynomials” (PCHIP). This analysis showed there are a dip and a bump at $k = 0.002 \text{Mpc}^{-1}$ and $k = 0.0035 \text{Mpc}^{-1}$, with a statistical significance of about 2σ and 1σ, respectively. Since this paper is the first application of the MESS approach to the analysis of CMB data, and our main goal is to show how to apply general method, we will focus only on the dip located approximately at $k = 0.002 \text{Mpc}^{-1}$, and leave to a future work a more systematic analysis involving more general functional forms of the MESS, testing for variations of the sound speed at any scale.

For the background cosmological parameters, i.e. the current density of baryons Ω_b, the current density of Cold Dark Matter Ω_{cdm}, the reionization optical depth τ, the acoustic angular scale θ and the coefficient of the quadratic term of the potential $V_2 = \frac{1}{2} m_i^2$, we use priors given by the best fit values obtained in Planck data Analysis [42]. We will focus on the main feature of the primordial power spectrum, that is a dip located at $k \approx 0.002 \text{Mpc}^{-1}$, so we fix k_0 to that value.

For $\tilde{v}_k > 1$ we obtain a dip of the primordial spectrum, and for $\tilde{v}_k < 1$ a bump, as shown in figure 1, where the spectra corresponding to different values of A_0 are plotted. In figure 2 are shown the effects of different values of σ_0 on the primordial power spectrum. As can be seen the width of the MESS σ_0 is related to the width of effect on the power spectrum, while the magnitude of the MESS A_0 is related to the amplitude of the effect on the power spectrum.
Figure 2. The effects on the power spectrum of the MESS, as parametrized in eq. (6.1), are shown for different values of σ_0, with $k_0 = 2 \times 10^{-3} \, \text{Mpc}^{-1}$ and $A_0 = 0.1$.

Table 1. The results of the data fitting with and without MESS are shown for the background and MESS parameters, as defined in eq. (6.1). The reduced χ^2 of the model with MESS is improved by about 12 with respect to the model without MESS.

Parameter	Without MESS	MESS
$100\Omega_b$	2.236 ± 0.012	2.238 ± 0.012
Ω_{CDM}	0.119 ± 0.001	0.119 ± 0.001
τ	0.056 ± 0.006	0.057 ± 0.006
θ	1.0403 ± 0.0002	1.0340 ± 0.0002
$10^{12}V_2$	1.5003 ± 0.0196	1.5069 ± 0.0206
$10^5\sigma_0$	—	$2.08^{+0.50}_{-0.61}$
A_0	—	$1.29^{+0.50}_{-0.73}$
χ^2	2789.58	2777.42

7 Results of the data analysis

In table 1 we show the best-fit parameters with and without MESS. The fit with MESS is producing an improvement of the reduced χ^2 of about 12 with respect to the model without it. In figure 3 we show the marginalised contour plots for the background cosmological parameters for the models with and without MESS. As can be seen the effect of the MESS
Figure 3. Comparison of the background parameters for a model with and without MESS. As can be seen the effect of MESS is negligible.

on the estimation of these parameters is negligible. Figure 4 shows that σ_0 and A_0 are approximately inversely proportional, i.e. large values of A_0 are associated to a smaller width of the Gaussian σ_0.

Figure 5 shows the effect of the MESS on the CMB temperature spectrum. From the residuals plot we can see that the MESS is improving significantly the fit around the $l = 20$, with an improvement of the reduced χ^2 of about 12.

8 Conclusions

We have analyzed CMB data with a modified version of the CLASS code, taking into account the effects of a momentum dependent effective sound speed. This approach allows to study the effects of primordial entropy in a model independent way, and its implementation requires a minimal modification of existing codes developed for single scalar field models.
Figure 4. Results of the data fitting analysis for the MESS parameters A_0 and σ_0.

We have considered a local variation of the MESS around the scale where other analysis have shown some deviation from a scalar invariant curvature perturbation spectrum, obtaining a substantial improvement of the fit.

In the future it will be interesting to extend the analysis to other more general parametrizations of the MESS, such as Piecewise Cubic Hermite Interpolating Polynomials to investigate systematically possible variations of the MESS at any scale. It could also be interesting to consider the case when the MESS is time dependent, or other background models.

Acknowledgments

We thank Stefano Gariazzo and Krzysztof Turzyński for interesting discussions. This work was supported by the UDEA Dedicacion exclusiva and Sostenibilidad programs and the CODI projects 2015-4044 and 2016-10945.
Figure 5. In the upper panel it is plotted the CMB temperature spectrum $D_{TT}^l = l(l+1)C_{TT}^l/(2\pi)$, and in the lower panel the relative difference between a model with and without MESS. As can be seen the model with MESS is fitting the data better in the range $10 < l < 30$.

References

[1] S. Gariazzo, C. Giunti and M. Laveder, Light Sterile Neutrinos and Inflationary Freedom, *JCAP* 04 (2015) 023 [arXiv:1412.7405] [inSPIRE].

[2] E. Di Valentino, S. Gariazzo, M. Gerbino, E. Giusarma and O. Mena, Dark Radiation and Inflationary Freedom after Planck 2015, *Phys. Rev. D* 93 (2016) 083523 [arXiv:1601.07557] [inSPIRE].

[3] A. Gallego Cadavid, A.E. Romano and S. Gariazzo, CMB anomalies and the effects of local features of the inflaton potential, *Eur. Phys. J. C* 77 (2017) 242 [arXiv:1612.03490] [inSPIRE].

[4] F. Arroja, A.E. Romano and M. Sasaki, Large and strong scale dependent bispectrum in single field inflation from a sharp feature in the mass, *Phys. Rev. D* 84 (2011) 123503 [arXiv:1106.5384] [inSPIRE].

[5] A.E. Romano and M. Sasaki, Effects of particle production during inflation, *Phys. Rev. D* 78 (2008) 103522 [arXiv:0809.5142] [inSPIRE].

[6] D.J.H. Chung and A. Enea Romano, Approximate consistency condition from running spectral index in slow-roll inflationary models, *Phys. Rev. D* 73 (2006) 103510 [astro-ph/0508411] [inSPIRE].

[7] A.G. Cadavid, Primordial non-Gaussianities produced by features in the potential of single slow-roll inflationary models, Master’s thesis, Antioquia U., 2013 [arXiv:1508.05684] [inSPIRE].
[8] A. Gallego Cadavid, A.E. Romano and S. Gariazzo, Effects of local features of the inflaton potential on the spectrum and bispectrum of primordial perturbations, Eur. Phys. J. C 76 (2016) 385 [arXiv:1508.05687] [nSPIRE].

[9] H. Motohashi and W. Hu, Running from Features: Optimized Evaluation of Inflationary Power Spectra, Phys. Rev. D 92 (2015) 043501 [arXiv:1503.04810] [nSPIRE].

[10] E. Komatsu et al., Non-Gaussianity as a Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift Universe, arXiv:0902.4759 [nSPIRE].

[11] P. Adshead, C. Dvorkin, W. Hu and E.A. Lim, Non-Gaussianity from Step Features in the Inflationary Potential, Phys. Rev. D 85 (2012) 023531 [arXiv:1110.3050] [nSPIRE].

[12] X. Chen, R. Easther and E.A. Lim, Large Non-Gaussianities in Single Field Inflation, arXiv:0801.3295 [nSPIRE].

[13] X. Chen, R. Easther and E.A. Lim, Generation and Characterization of Large Non-Gaussianities in Single Field Inflation, JCAP 06 (2007) 023 [astro-ph/0611645] [nSPIRE].

[14] J.A. Adams, B. Cresswell and R. Easther, Inflationary perturbations from a potential with a step, Phys. Rev. D 64 (2001) 123514 [astro-ph/0102236] [nSPIRE].

[15] J. Chluba, J. Hamann and S.P. Patil, Features and New Physical Scales in Primordial Observables: Theory and Observation, Int. J. Mod. Phys. D 24 (2015) 1530023 [arXiv:1508.01834] [nSPIRE].

[16] X. Chen, Primordial Features as Evidence for Inflation, JCAP 01 (2012) 038 [arXiv:1104.1323] [nSPIRE].

[17] G.A. Palma, Untangling features in the primordial spectra, JCAP 04 (2015) 035 [arXiv:1412.5615] [nSPIRE].

[18] A.A. Starobinsky, Spectrum of adiabatic perturbations in the universe when there are singularities in the inflation potential, JETP Lett. 55 (1992) 489 [nSPIRE].

[19] J. Hamann, L. Covi, A. Melchiorri and A. Slosar, New Constraints on Oscillations in the Primordial Spectrum of Inflationary Perturbations, Phys. Rev. D 76 (2007) 023503 [astro-ph/0701380] [nSPIRE].

[20] D.K. Hazra, A. Shafieloo, G.F. Smoot and A.A. Starobinsky, Primordial features due to a step in the inflaton potential, JCAP 10 (2010) 008 [arXiv:1005.2175] [nSPIRE].

[21] D.K. Hazra, A. Shafieloo, G.F. Smoot and A.A. Starobinsky, Inflation with Whip-Shaped Suppressed Scalar Power Spectra, Phys. Rev. Lett. 113 (2014) 071301 [arXiv:1404.0360] [nSPIRE].

[22] D.K. Hazra, A. Shafieloo, G.F. Smoot and A.A. Starobinsky, Wiggly Whipped Inflation, JCAP 08 (2014) 048 [arXiv:1405.2012] [nSPIRE].

[23] J. Martin, L. Sriramkumar and D.K. Hazra, Sharp inflaton potentials and bi-spectra: Effects of smoothening the discontinuity, JCAP 09 (2014) 039 [arXiv:1404.6093] [nSPIRE].

[24] A. Gallego Cadavid and A.E. Romano, Effects of discontinuities of the derivatives of the inflaton potential, Eur. Phys. J. C 75 (2015) 589 [arXiv:1404.2985] [nSPIRE].

[25] A. Ashoorioon and A. Krause, Power Spectrum and Signatures for Cascade Inflation, hep-th/0607001 [nSPIRE].

[26] A. Ashoorioon, A. Krause and K. Turzynski, Energy Transfer in Multi Field Inflation and Cosmological Perturbations, JCAP 02 (2009) 014 [arXiv:0810.4660] [nSPIRE].

[27] Y.-F. Cai, E.G.M. Ferreira, B. Hu and J. Quintin, Searching for features of a string-inspired inflationary model with cosmological observations, Phys. Rev. D 92 (2015) 121303 [arXiv:1507.05619] [nSPIRE].
[28] A.E. Romano, S. Mooij and M. Sasaki, Global adiabaticity and non-Gaussianity consistency condition, *Phys. Lett. B* **761** (2016) 119 [arXiv:1606.04906] [inSPIRE].

[29] A.E. Romano, S. Mooij and M. Sasaki, Adiabaticity and gravity theory independent conservation laws for cosmological perturbations, *Phys. Lett. B* **755** (2016) 464 [arXiv:1512.05757] [inSPIRE].

[30] A.E. Romano, S.A. Vallejo-Peña and K. Turzyński, The momentum-dependent effective sound speed and multi-field inflation, *arXiv:2006.00969* [inSPIRE].

[31] M. Braglia, D.K. Hazra, L. Sriramkumar and F. Finelli, Generating primordial features at large scales in two field models of inflation, *JCAP* **08** (2020) 025 [arXiv:2004.00672] [inSPIRE].

[32] S.A. Vallejo-Pena and A.E. Romano, Production of primordial black holes induced by the modification of gravity, *arXiv:1911.03327* [inSPIRE].

[33] A.E. Romano and S.A. Vallejo Pena, The MESS of cosmological perturbations, *Phys. Lett. B* **784** (2018) 367 [arXiv:1806.01941] [inSPIRE].

[34] PLANCK collaboration, *Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641* (2020) A10 [arXiv:1807.06211] [inSPIRE].

[35] A. Naruko, A.E. Romano, M. Sasaki and S.A. Vallejo-Peña, The effect of anisotropic stress and non-adiabatic pressure perturbations on the evolution of the comoving curvature perturbation, *Class. Quant. Grav.* **37** (2020) 017001 [arXiv:1804.05005] [inSPIRE].

[36] H. Kodama and M. Sasaki, *Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl.* **78** (1984) 1 [inSPIRE].

[37] A.E. Romano and S.A. Vallejo-Peña, *Work in preparation.*

[38] D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, *JCAP* **07** (2011) 034 [arXiv:1104.2933] [inSPIRE].

[39] T. Brinckmann and J. Lesgourgues, MontePython 3: boosted MCMC sampler and other features, *Phys. Dark Univ.* **24** (2019) 100260 [arXiv:1804.07261] [inSPIRE].

[40] B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, *JCAP* **02** (2013) 001 [arXiv:1210.7183] [inSPIRE].

[41] PLANCK collaboration, Planck 2018 results. I. Overview and the cosmological legacy of Planck, *Astron. Astrophys. 641* (2020) A1 [arXiv:1807.06205] [inSPIRE].

[42] PLANCK collaboration, Planck 2018 results. VI. Cosmological parameters, *Astron. Astrophys. 641* (2020) A6 [arXiv:1807.06209] [inSPIRE].