Recent Charmonium Physics from BES

Frederick A. Harris
for the BES Collaboration

1 Department of Physics and Astronomy, The University of Hawaii
Honolulu, HI 96822

(Received May 16, 2003)

Measurements of branching fractions for $\psi(2S)$ decays into $\omega \pi^+ \pi^-$, $b_1 \pi$, $\omega f_2(1270)$, $\omega K^+ K^-$, $\omega \phi$, $\phi \pi^+ \pi^-$, $\phi f_0(980)$, $\phi K^+ K^-$, and $\phi \eta$ final states, based on a data sample of $(4.02 \pm 0.22) \times 10^6 \psi(2S)$ events collected with the BESI detector at the Beijing Electron-Positron Collider, are reported. Using the same event sample, radiative decays of the radially excited charmonium resonance, $\psi(2S)$, into $\pi \pi$, KK and $\eta \eta$ final states have been measured. The branching ratios $B(\psi(2S) \rightarrow \gamma f_0(1270)) = (2.12 \pm 0.19 \pm 0.32) \times 10^{-4}$ and $B(\psi(2S) \rightarrow \gamma f_0(1710)) \times B(f_0(1710) \rightarrow K^+ K^-) = (3.02 \pm 0.45 \pm 0.66) \times 10^{-5}$ are obtained.

Cross sections for $e^+e^- \rightarrow e^+e^-$, hadrons, $\pi^+ \pi^- J/\psi$, and $\mu^+ \mu^-$ have been measured in the vicinity of the $\psi(2S)$ resonance using the BESII detector. The $\psi(2S)$ total width; partial widths to hadrons, $\pi^+ \pi^- J/\psi$, and muons; and corresponding branching fractions have been determined to be $\Gamma_1 = 264 \pm 27$ keV; $\Gamma_h = 258 \pm 26$ keV, $\Gamma_{\mu} = 2.44 \pm 0.21$ keV, and $\Gamma_{\pi^+ \pi^- J/\psi} = 85.4 \pm 8.7$ keV; and $B_h = (97.79 \pm 0.15)\%$, $B_{\pi^+ \pi^- J/\psi} = (32.3 \pm 1.4)\%$, $B_{\mu} = (0.93 \pm 0.08)\%$, respectively.

Decays of $J/\psi \rightarrow \gamma \eta_c$ are used to determine the mass and width of the η_c using a sample of 58 J/ψ events: $M_{\eta_c} = (2977.5 \pm 1.0 \pm 1.2)$ MeV and $\Gamma_{\eta_c} = (17.0 \pm 3.7 \pm 7.4)$ MeV.

The first observation of χ_{cJ} ($J=0,1,2$) decays to $\Lambda \bar{\Lambda}$ is reported using $\psi(2S)$ data collected with the BESI detector at the BEPC. The branching ratios are determined to be $B(\chi_{c0} \rightarrow \Lambda \bar{\Lambda}) = (4.7^{+1.3}_{-1.2} \pm 1.0) \times 10^{-4}$, $B(\chi_{c1} \rightarrow \Lambda \bar{\Lambda}) = (2.6^{+1.6}_{-0.9} \pm 0.6) \times 10^{-4}$ and $B(\chi_{c2} \rightarrow \Lambda \bar{\Lambda}) = (3.3^{+1.5}_{-1.3} \pm 0.7) \times 10^{-4}$. Results are compared with model predictions.

§1. Introduction

The Beijing Spectrometer (BES) is a general purpose solenoidal detector at the Beijing Electron Positron Collider (BEPC). BEPC operates in the center of mass energy range from 2 to 5 GeV with a luminosity at the J/ψ energy of approximately 5×10^{30} cm$^{-2}$s$^{-1}$. BES (BESI) is described in detail in Ref. 1), and the upgraded BES detector (BESII) is described in Ref. 2). This paper presents some recent results; details can be found in the references.

§2. Hadronic $\psi(2S)$ decays

Both J/ψ and $\psi(2S)$ decays to light hadrons are expected to proceed dominantly via $\psi \rightarrow ggg$, with widths that are proportional to the square of the $c\bar{c}$ wave function at the origin.\(^3\)

This yields the expectation that

$$Q_X = \frac{B(\psi(2S) \rightarrow X_h)}{B(J/\psi \rightarrow X_h)} \approx \frac{B(\psi(2S) \rightarrow e^+e^-)}{B(J/\psi \rightarrow e^+e^-)} \approx 12\%$$
It was first observed by MarkII4) that the vector-pseudoscalar $\rho \pi$ and $K^*\overline{K}$ channels are suppressed with respect to the 12% expectation - the "$\rho \pi$ puzzle". BES finds a $\rho \pi$ suppression factor of ~ 60; this and many other BES $\psi(2S)$ branching ratio results can be found in Refs. 5)-9).

Here, we report measurements of branching fractions for $\psi(2S)$ decays involving an ω or a ϕ, including $\omega \pi^+\pi^-$, $b_1\pi$, $\omega f_2(1270)$, ωK^+K^-, ωpp, $\phi\pi^+\pi^-$, $\phi f_0(980)$, ϕK^+K^-, and ϕpp final states, based on a data sample of $(4.02 \pm 0.22) \times 10^6 \psi(2S)$ events collected with the BESI detector at the Beijing Electron-Positron Collider. Events are selected using particle identification and kinematic fitting. As an example, the K^+K^- invariant mass distribution for candidate $\psi(2S) \rightarrow \phi\pi^+\pi^-$ events is shown in Fig. 1, where a clear ϕ peak can be seen. In Fig. 2, the $\pi^+\pi^-\pi^0$ mass distribution for $\psi(2S) \rightarrow \omega K^+K^-$ events is shown; there is a clear ω peak. We obtain the branching ratios and Q_X values shown in Table I. The branching fractions for $b_1\pi$ and $\omega f_2(1270)$ update previous BES results, while those for other decay modes are first measurements. The ratios of $\psi(2S)$ and J/ψ branching fractions are smaller than the expected 12% rule by a factor of six for $\omega f_2(1270)$, by a factor of two for $\omega \pi^+\pi^-$, ωpp, and ϕK^+K^-, while for other studied channels the ratios are consistent with expectations within errors. For more detail on this analysis, see Ref. 11).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Channel & $B_{\psi(2S) \rightarrow X}$ & $Q_X(\%)$ \\
\hline
X & (10^{-4}) & \\
\hline
$\omega \pi^+\pi^-$ & 4.8 \pm 0.6 \pm 0.7 & 6.7 \pm 1.7 \\
$\phi b_1\pi$ & 3.2 \pm 0.6 \pm 0.5 & 11 \pm 3 \\
$\omega f_2(1270)$ & 1.1 \pm 0.5 \pm 0.2 & 2.4 \pm 1.3 \\
ωK^+K^- & & < 1.5 \\
ωpp & 0.8 \pm 0.3 \pm 0.1 & 6.0 \pm 2.8 \\
$\phi \pi^+\pi^-$ & 1.5 \pm 0.2 \pm 0.2 & 18 \pm 5 \\
$\phi f_0(980) \times (f_0 \rightarrow \pi^+\pi^-)$ & 0.6 \pm 0.2 \pm 0.1 & \\
$\phi f_0(980)$ & 1.1 \pm 0.4 \pm 0.1 & 33 \pm 15 \\
ϕK^+K^- & 0.6 \pm 0.2 \pm 0.1 & 7.3 \pm 2.6 \\
ϕpp & < 0.26 & < 0.58 \\
\hline
\end{tabular}
\caption{Branching fractions of $\psi(2S)$ and Q_X values for $\psi(2S)$ and J/ψ hadronic decays. The $B_{J/\psi}$ are taken from the PDG.10) To determine $B(\phi f_0(980))$, we use $B_{f_0 \rightarrow \pi^+\pi^-} = 0.521 \pm 0.016$ (PDG’96).}
\end{table}

Fig. 1. The K^+K^- invariant mass distribution for candidate $\psi(2S) \rightarrow \phi\pi^+\pi^-$ events.

Fig. 2. The $\pi^+\pi^-\pi^0$ mass distribution for candidate $\psi(2S) \rightarrow \omega K^+K^-$ events.

In perturbative QCD, the radiative J/ψ and $\psi(2S)$ decays should be similar to hadronic decays except instead of decaying into three gluons, the radiative mode
decays via two gluons and one photon. Thus one power of the coefficient α_S is replaced by α_{QED} in the cross section formula, and it is expected that the “12%” rule should also work for radiative decay modes12. Hence the ratio of $B(\psi(2S) \rightarrow \gamma X)$ to $B(J/\psi \rightarrow \gamma X)$ for different final states X should be roughly 12%.

Fig. 3. (a): $M_{\pi^+\pi^-}$ fit result. The four curves presented in the figure are the following: a background curve, a Breit-Wigner function to describe the $f_2(1270)$ on top of the background, a Breit-Wigner function to describe the $f_0(1710)$ on top of the background, and the total of the two Breit-Wigners and the background. The fitting range is 0.9 GeV to 2.5 GeV, since there is some ρ background below 0.9 GeV. The background at higher mass is due to processes such as $\psi(2S) \rightarrow$ neutrals J/ψ, $J/\psi \rightarrow \pi^+\pi^-\pi^0$. (b): $M_{\pi^0\pi^0}$ fit result. The curves shown are a Breit-Wigner to describe the $f_2(1270)$ and a polynomial to describe the background. Here we report measurements of branching fractions for $\psi(2S) \rightarrow \gamma\pi^+\pi^-$, $\gamma\pi^0\pi^0$, γK^+K^-, $\gamma K^0_S K^0_S$, and $\gamma\eta\eta$. The $\pi\pi$ invariant mass distributions for $\psi(2S) \rightarrow \gamma\pi\pi$ are shown in Fig. 3, where a clear $f_2(1270)$ is seen. Results are summarized in Tables II through IV. First measurements of the $\psi(2S) \rightarrow \gamma f_2(1270)$ and $\psi(2S) \rightarrow \gamma f_0(1710) \rightarrow \gamma K^+K^-$ and $\gamma K^0_S K^0_S$ branching fractions are given. A clear $f_0(1710)$ signal in $\psi(2S)$ radiative decay into K^+K^- final states is observed. The results are consistent with the “12%” rule. In addition, first measurements of the branching fractions of χ_{c0} and χ_{c2} decay into $\pi^0\pi^0$, χ_{c0} decay into $\eta\eta$, and an upper limit of the branching fraction of χ_{c2} decay into $\eta\eta$ are reported (see Table IV). For more detail, see Ref. 13.

Final state	$B(\psi(2S) \rightarrow \gamma f_2(1270)) \times 10^{-4}$	$B(\psi(2S))/B(J/\psi)$
$\gamma f_2(1270)$	2.12 ± 0.19 ± 0.32	(15.4 ± 3.1)%
$\gamma f_0(1710) \rightarrow \gamma K^+K^-$	0.302 ± 0.045 ± 0.066	(7.1^{+2.1}_{-2.0})%

Table II. Values for $B(\psi(2S) \rightarrow \gamma f_2(1270))$ and $B(\psi(2S) \rightarrow \gamma f_0(1710) \rightarrow \gamma K^+K^-)$ and comparison with the 12% rule.
The total integrated luminosity was 760 fb$^{-1}$ between 3.67 and 3.71 GeV were scanned.

In 1999, after the R-scan, BES did a careful $\psi(2S)$ scan. The purpose was to improve the accuracies of the $\psi(2S)$ parameters: the total width (Γ_t), and partial widths into hadrons (Γ_h), $\mu^+\mu^-$ (Γ_{μ}), and $\pi^+\pi^-J/\psi$ ($\Gamma_{\pi^+\pi^-J/\psi}$), and the corresponding branching fractions, $B(h)$, $B(\mu)$, and $B(\pi^+\pi^-J/\psi)$. $B(\pi^+\pi^-J/\psi)$ and $B(\mu)$ are important because these decays are used to identify $\psi(2S)$ in B decays ($B \to \psi(2S)K_S^0$).

A total of 24 energy points between 3.67 and 3.71 GeV were scanned. The total integrated luminosity was 760 nb$^{-1}$. We assume $\Gamma_t = \Gamma_h + \Gamma_{\mu} + \Gamma_{\pi^+\pi^-J/\psi}$, along with lepton universality: $\Gamma_{\mu} = \Gamma_{\tau} = \Gamma_{\tau}/0.38847$. The cross sections versus scan point energy and fit curves are shown in Fig. 4, and the fit results are given in Table V. We obtain a first measurement of $\Gamma_{\pi^+\pi^-J/\psi}$, and $B(h)$, $B(\mu)$, and $B(\pi^+\pi^-J/\psi)$ have improved precision compared to the PDG values. The value for Γ_t agrees within errors with a previous BES value of (252 ± 37) keV. A complete description of this work can be found in Ref. 16.

Mode	$B(\times10^{-4})$
$\psi(2S) \to \gamma f_2(1270)$ from $\gamma\pi^+\pi^-$	2.08 ± 0.19 ± 0.33
$\psi(2S) \to \gamma f_2(1270)$ from $\gamma\pi^0\pi^0$	2.90 ± 1.08 ± 1.07
$\psi(2S) \to \gamma f_2(1270)$ from $\gamma\pi\pi$	2.12 ± 0.19 ± 0.32
$\psi(2S) \to \gamma f_0(1710) \to \gamma\pi\pi$ from $\gamma\pi^+\pi^-$	0.301 ± 0.041 ± 0.124
$\psi(2S) \to \gamma f_0(1710) \to \gamma K^+K^-$	0.302 ± 0.045 ± 0.066
$\psi(2S) \to \gamma f_0(1710) \to \gamma K_S^0K_S^0$	0.206 ± 0.094 ± 0.108

Table III. Branching fractions for $\psi(2S) \to \gamma X \to \gamma PP$ modes (P stands for pseudo-scalar).

Mode	$B(\times10^{-4})$	$B \times B(\psi(2S) \to \gamma\chi_{c0,2}) (\times10^{-4})$
$\chi_{c0} \to \pi^0\pi^0$	2.79 ± 0.32 ± 0.57	2.42 ± 0.28 ± 0.44
$\chi_{c2} \to \pi^+\pi^-\gamma$	0.98 ± 0.27 ± 0.56	0.67 ± 0.19 ± 0.38
$\chi_{c0} \to \eta\eta$	2.02 ± 0.84 ± 0.59	1.76 ± 0.73 ± 0.49
$\chi_{c2} \to \eta\eta$	< 1.37	< 0.93

Table IV. The χ_c decay branching fractions for $\chi_{c0,2} \to \pi^0\pi^0$ or $\eta\eta$.

§3. BES $\psi(2S)$ Scan Results

Fig. 4. The cross section for (a) $e^+e^- \to$ hadrons, (b) $e^+e^- \to \pi^+\pi^-J/\psi$, and (c) $e^+e^- \to \mu^+\mu^-$ versus center-of-mass energy. The solid curves represent the results of the fit to the data.
§4. \(\eta_c \) Parameters

The mass and width of the \(\eta_c \) are rather poorly known; the confidence level for the PDG weighted average mass is only 0.001.\(^{10} \) Previously BES measured the \(\eta_c \) mass using the BESI 4.02 M \(\psi(2S) \) sample and obtained \(M_{\eta_c} = (2975.8 \pm 3.9 \pm 1.2) \text{ MeV} \).\(^{17} \) BES also used 7.8 M BESI \(J/\psi \) events and obtained \(M_{\eta_c} = (2976.6 \pm 2.9 \pm 1.3) \text{ MeV} \).\(^{18} \) For the two data sets combined, \(M_{\eta_c} = (2976.3 \pm 2.3 \pm 1.2) \text{ MeV} \) and the total width \(\Gamma_{\eta_c} = (11.0 \pm 8.1 \pm 4.1) \text{ MeV} \).\(^{18} \)

Here, the mass and width have been determined using our BESII 58 M \(J/\psi \) event sample. We use the channels \(J/\psi \to \gamma \eta_c \), with \(\eta_c \to p\bar{p}, K^+K^-\pi^+\pi^- , \pi^+\pi^-\pi^+\pi^- , K^\pm K^\mp \pi^\mp , \) and \(\phi\phi \). Events are selected using particle identification and kinematic fitting. Figs. 5 and 6 show the mass distributions in the \(\eta_c \) mass region for \(J/\psi \to \gamma \eta_c \), \(\eta_c \to p\bar{p} \) and \(\eta_c \to K^+K^-\pi^+\pi^- \), respectively. Combining the five decay channels, we obtain \(M_{\eta_c} = (2977.5 \pm 1.0 \pm 1.2) \text{ MeV} \) and \(\Gamma_{\eta_c} = (17.0 \pm 3.7 \pm 7.4) \text{ MeV} \), to be compared to the current PDG values: \(M_{\eta_c} = (2979.7 \pm 1.5) \text{ MeV} \) and \(\Gamma_{\eta_c} = (16.0^{+3.6}_{-3.2}) \text{ MeV} \).\(^{10} \) The results for the mass and width are compared with previous measurements, including previous BES measurements, in Figs. 7 and 8. The results are in good agreement with previous BES measurements and the PDG fit values. More detail on this analysis can be found in Ref. 19).

\[
\begin{array}{|c|c|c|}
\hline
\text{Value} & \text{BES} & \text{PDG2002} \\
\hline
\Gamma_t (\text{keV}) & 264 \pm 27 & 300 \pm 25 \\
\Gamma_h (\text{keV}) & 258 \pm 26 & \\
\Gamma_{\pi\pi J/\psi} (\text{keV}) & 85.4 \pm 8.7 & \\
\Gamma_{\mu} (\text{keV}) & 2.44 \pm 0.21 & \\
B_t(\%) & 97.79 \pm 0.15 & 98.10 \pm 0.30 \\
B_{\pi\pi J/\psi}(\%) & 32.3 \pm 1.4 & 30.5 \pm 1.6 \\
B_{\mu}(\%) & 0.93 \pm 0.08 & 0.7 \pm 0.09 \\
\hline
\end{array}
\]

Table V. \(\psi(2S) \) scan results and comparison with the PDG2002.\(^{10} \) \(\Gamma_t \) value given using the assumption \(\Gamma_e = \Gamma_{\mu} \).

§5. \(\chi J \to \Lambda \bar{\Lambda} \)

It has been shown both in theoretical calculations and experimental measurements that the lowest Fock state expansion (color singlet mechanism, CSM) of char-
monium states is insufficient to describe P-wave quarkonium decays. Instead, the next higher Fock state (color octet mechanism, COM) plays an important role.\(^\text{20, 21}\) Our earlier measurement\(^\text{21}\) of the total width of the \(\chi_{c0}\) agrees rather well with the COM expectation. The calculation of the partial width of \(\chi_{cJ} \rightarrow p\bar{p}\), by taking into account the COM of \(\chi_{cJ}\) decays and using a carefully constructed nucleon wave function,\(^\text{22}\) obtains results in reasonable agreement with measurements.\(^\text{10}\) The nucleon wave function was then generalized to other baryons, and the partial widths of many other baryon anti-baryon pairs predicted. Among these predictions, the partial width of \(\chi_{cJ} \rightarrow \Lambda\bar{\Lambda}\) is about half of that of \(\chi_{cJ} \rightarrow p\bar{p}\) (\(J=1,2\)).\(^\text{22}\)
clear $\Lambda \bar{\Lambda}$ signal. Selecting events in χ_{cJ} mass region and requiring the mass of $\pi^+ p$ ($\pi^- p$) to be smaller than 1.15 GeV/c^2, the $\pi^- p$ ($\pi^+ p$) mass distribution shown in Fig. 10 is obtained. A clear Λ signal can be seen, and the background below the peak is very small.

After requiring that both the $\pi^+ p$ and the $\pi^- p$ mass lie within twice the mass resolution around the nominal Λ mass, the $\Lambda \bar{\Lambda}$ invariant mass distribution shown in Fig. 11 is obtained. There are clear χ_{c0}, χ_{c1}, and $\chi_{c2} \rightarrow \Lambda \bar{\Lambda}$ signals. The highest peak around the $\psi(2S)$ mass is due to $\psi(2S) \rightarrow \Lambda \bar{\Lambda}$ with a fake photon.

Background from non $\Lambda \bar{\Lambda}$ events is estimated from the Λ mass sidebands, and this can be described in fitting the $\Lambda \bar{\Lambda}$ mass spectrum by a linear background. The background from channels with $\Lambda \bar{\Lambda}$ production, including $\psi(2S) \rightarrow \Lambda \bar{\Lambda}$, $\psi(2S) \rightarrow \Sigma^0 \Sigma^0$, $\psi(2S) \rightarrow \Lambda \bar{\Lambda} + c.c.$, $\psi(2S) \rightarrow \Xi^0 \Xi^0 + c.c.$, $\psi(2S) \rightarrow \gamma\chi_{cJ}$, $\chi_{cJ} \rightarrow \Sigma^0 \Sigma^0 \rightarrow \gamma\gamma \Lambda \bar{\Lambda}$, and $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \rightarrow \pi^+ \pi^- p\bar{p}$, are simulated by Monte Carlo.

Fixing the χ_{c0}, χ_{c1} and χ_{c2} mass resolutions at their Monte Carlo predicted values, and fixing the widths of the three χ_{cJ} states to their world average values, 10 the mass spectrum (Fig. 11) was fit with three Breit-Wigner functions folded with Gaussian resolutions and background, including a linear term representing the non $\Lambda \bar{\Lambda}$ background and a component representing the $\Lambda \bar{\Lambda}$ background. The unbinned maximum likelihood method was used to fit the events with $\Lambda \bar{\Lambda}$ mass between 3.22 and 3.64 GeV/c^2, and a likelihood probability of 27% was obtained, indicating a reliable fit. Fig. 11 shows the fit result, and the fitted masses are (3425.6 ± 6.3) MeV/c^2, (3508.5 ± 3.9) MeV/c^2 and (3560.3 ± 4.6) MeV/c^2 for χ_{c0}, χ_{c1} and χ_{c2}, respectively, in agreement with the world average values. 10 The branching ratios of $\chi_{cJ} \rightarrow \Lambda \bar{\Lambda}$ obtained are

$$B(\chi_{c0} \rightarrow \Lambda \bar{\Lambda}) = (4.7^{+1.3}_{-1.2} \pm 1.0) \times 10^{-4},$$

$$B(\chi_{c1} \rightarrow \Lambda \bar{\Lambda}) = (2.6^{+1.0}_{-0.9} \pm 0.6) \times 10^{-4},$$

$$B(\chi_{c2} \rightarrow \Lambda \bar{\Lambda}) = (3.3^{+1.5}_{-1.3} \pm 0.7) \times 10^{-4},$$

where the first errors are statistical and the second are systematic.

Compared with the corresponding branching ratios of $\chi_{cJ} \rightarrow p \bar{p}$, 10 the branching ratios of χ_{c1} and $\chi_{c2} \rightarrow \Lambda \bar{\Lambda}$ agree with the corresponding branching ratios to $p \bar{p}$ within two sigma. This is somewhat in contradiction with the expectations from Ref. 22), although the errors are large.
As for $\chi_{c0} \to \Lambda\bar{\Lambda}$, the measured value agrees with the $p\bar{p}$ measurements from BES and E835 within 2 standard deviations. One should also note that there is no prediction for $\mathcal{B}(\chi_{c0} \to \Lambda\bar{\Lambda})$. More detail may be found in Ref. 24.

§6. Summary

Branching fractions are determined, many for the first time, using the 4.2 million BESI $\psi(2S)$ event sample. They are used to test the “12 %” rule. Results from a fit to a careful scan in the vicinity of the $\psi(2S)$ are presented. The 58 million BESII J/ψ event sample is used to measure the mass and width of the η_c. Finally, $\Lambda\bar{\Lambda}$ events are observed for the first time in χ_{cJ} decays using the BESII 15 million $\psi(2S)$ event sample, and corresponding branching ratios are determined.

Acknowledgements

The author would like to thank Prof. S. Ishida, Prof. K. Takamatsu, and all the other members of the Sigma Group for their support during the Symposium.

References

1) J. Z. Bai et al., (BES Collab.), Nuc. Inst. Meth. A344, 319 (1994).
2) J. Z. Bai et al., (BES Collab.), Nuc. Inst. Meth. A458, 627 (2001).
3) T. Appelquist and H.D. Politzer Phys. Rev. Lett. 34, 43 (1975); and A. De Rujula and S. L. Glashow, ibid, page 46.
4) M.E.B. Franklyn et al., (MarkII Collaboration), Phys. Rev. Lett. 51, 963 (1983).
5) Y. S. Zhu, Proceedings of the 28th International Conference on High Energy Physcis, ed. Z. Adjud and A. K. Wroblewski, World Scientific, 507 (1997).
6) J. Z. Bai et al., (BES Collab.), Phys. Rev. Lett. 81, 5080 (1998).
7) J.Z. Bai et al., (BES Collab.), Phys. Rev. D58, 097101 (1998).
8) J. Z. Bai et al., (BES Collab.), Phys. Rev. Lett. 83, 1918 (1999).
9) J.Z. Bai et al., (BES Collab.), Phys. Rev. D63, 032002 (2001).
10) K. Hagiwara et al., Phys. Rev. D66, 010001 (2002).
11) J.Z. Bai et al., (BES Collab.), Phys. Rev. D67, 052002 (2003).
12) T. Appelquist, A. De Rujula, H.D. Politzer, S.L. Glashow, Phys. Rev. Lett. 34, 365 (1975); M. Chanowitz, Phys. Rev. D 12, 918 (1975); L. Okun and M. Voloshin, ITEP-95-1976 (unpublished); S.J. Brodsky, T.A. DeGrand, R.R. Horgun, D.G. Coyne, Phys. Lett. 73B, 203 (1978); K. Koller and T. Walsh. Nucl. Phys. B140, 449 (1978).
13) J. Z. Bai et al., (BES Collab.), Phys. Rev. D67, 032004 (2003).
14) J. Z. Bai et al., (BES Collab.), Phys. Rev. Lett. 84, 594 (2000).
15) J. Z. Bai et al., (BES Collab.), Phys. Rev. Lett. 88, 101802 (2002).
16) J. Z. Bai et al., (BES Collab.), Phys. Rev. D65, 052004-1 (2002).
17) J. Z. Bai et al., (BES Collab.), Phys. Rev. D60, 72001 (1999).
18) J.Z. Bai et al., (BES Collab.), Phys. Rev. D 62, 72001 (2000).
19) J.Z. Bai et al., (BES Collab.), Phys. Lett. B555, 174 (2003).
20) See, for example G.T. Bodwin, E. Braaten and G.P. Lepage, Phys. Rev. D51, 1125 (1995); Han-Wen Huang and Kuang-Ta Chao, Phys. Rev. D54, 6850 (1996); J. Bolz, P. Kroll and G. A. Schuler, Phys. Lett. B392, 198 (1997).
21) J. Z. Bai et al., (BES Collab.), Phys. Rev. Lett. 81, 3091 (1998).
22) S. M. Wong, Eur. Phys. J. C14, 643 (2000).
23) S. Bagnasco et al. (E835 Collab.), Phys. Lett. B533, 237 (2002); M. Ambrogiani et al. (E835 Collab.), Phys. Rev. Lett. 83, 2902 (1999).
24) J.Z. Bai et al., (BES Collab.), accepted by Phys. Rev. D, hep-ex/0304012.