A Proof On Arnold’s Chord Conjecture On Cotangent Bundles *

Renyi Ma
Department of Mathematics
Tsinghua University
Beijing, 100084
People’s Republic of China
rma@math.tsinghua.edu.cn

Abstract

In this article, we prove that there exists at least one chord which is characteristic of Reeb vector field connecting a given Legendre submanifold in a contact manifolds of induced type in the cotangent bundles of any smooth open manifolds which confirms the Arnold conjecture in cotangent bundles.

Keywords J-holomorphic curves, Legendre submanifolds, Reeb chord.
2000 MR Subject Classification 32Q65, 53D35, 53D12

1 Introduction and results

Let Σ be a smooth closed oriented manifold of dimension $2n - 1$. A contact form on Σ is a 1–form such that $\lambda \wedge (d\lambda)^{n-1}$ is a volume form on Σ. Associated to λ there is the so-called Reeb vectorfield X_λ defined by

\[
i_X \lambda \equiv 1, \quad i_X d\lambda \equiv 0.
\]

*Project 19871044 Supported by NSF
Concerning the dynamics of Reeb flow, there is a well-known conjecture raised by Arnold in [2] which concerned the Reeb orbit and Legendre submanifold in a contact manifold. If \((\Sigma, \lambda)\) is a contact manifold with contact form \(\lambda\) of dimension \(2n - 1\), then a Legendre submanifold is a submanifold \(L\) of \(\Sigma\), which is \((n - 1)\)-dimensional and everywhere tangent to the contact structure \(\ker \lambda\). Then a characteristic chord for \((\lambda, L)\) is a smooth path \(x : [0, T] \to \Sigma, T > 0\) with \(\dot{x}(t) = X_\lambda(x(t))\) for \(t \in (0, T), x(0), x(T) \in L\). Arnold raised the following conjecture:

Conjecture 1 (see [2]). Let \(\lambda_0\) be the standard tight contact form \(\lambda_0 = \frac{1}{2}(x_1 dy_1 - y_1 dx_1 + x_2 dy_2 - y_2 dx_2)\) on the three sphere \(S^3 = \{(x_1, y_1, x_2, y_2) \in \mathbb{R}^4 | x_1^2 + y_1^2 + x_2^2 + y_2^2 = 1\}\). If \(f : S^3 \to (0, \infty)\) is a smooth function and \(L\) is a Legendre knot in \(S^3\), then there is a characteristic chord for \((f \lambda_0, L)\).

This conjecture was completely solved in [16, 17].

In this paper we improve the Gromov’s proof on that there exists at least one intersection point for the weakly exact Lagrangian submanifold under the weakly Lagrangian isotopy [10, 23, B3−4] to prove:

Theorem 1.1 Let \((\Sigma, \lambda)\) be a contact manifold with contact form \(\lambda\) of induced type or Weinstein type in the cotangent bundles of any open smooth manifold with symplectic form \(\sum_{i=1}^n dp_i \wedge dq_i\) induced by Liouville form \(\alpha = \sum_{i=1}^n p_i dq_i\), i.e., there exists a transversal vector field \(Z\) to \(\Sigma\) such that \(L_Z \omega = \omega, \lambda = i_Z \omega\). Let \(X_\lambda\) its Reeb vector field and \(L\) a closed Legendre submanifold. Then \(p_i dq_i - \lambda\) defines an element \([p_i dq_i - \lambda] \in H^1(\Sigma)\). If \([p_i dq_i - \lambda] = 0\), then there exists at least one characteristic chord for \((X_\lambda, L)\).

Sketch of proofs: We work in the framework as in [10, 16]. In Section 2, we study the linear Cauchy-Riemann operator and sketch some basic properties. In section 3, first we construct a Lagrangian submanifold \(W\) under the assumption that there does not exist Reeb chord connecting the Legendre submanifold \(L\); second, we study the space \(D(V, W)\) consisting of contractible disks in manifold \(V\) with boundary in Lagrangian submanifold \(W\) and construct a Fredholm section of tangent bundle of \(D(V, W)\). In section 4, following [10], we construct a non-proper Fredholm section by using a special anti-holomorphic section as in [10, 16]. In section 5, we transform the non-homogenous Cauchy-Riemann equations to \(J\)-holomorphic curves. In section 6, we finish the proof of Theorem 1.1. as in [10].

2 Linear Fredholm Theory

For \(100 < k < \infty\) consider the Hilbert space \(V_k\) consisting of all maps \(u \in H^{k,2}(D, C^n)\), such that \(u(z) \in R^n \subset C^n\) for almost all \(z \in \partial D\). \(L_{k-1}\)
denotes the usual Hilbert L_{k-1}-space $H_{k-1}(D,C^n)$. We define an operator
\[\partial : V_p \mapsto L_p \]
by
\[\partial u = u_s + iu_t \quad (2.1) \]
where the coordinates on D are $(s,t) = s+it$, $D = \{ z \parallel z \parallel \leq 1 \}$. The following result is well known (see [4, 21]).

Proposition 2.1 $\partial : V_p \mapsto L_p$ is a surjective real linear Fredholm operator of index n. The kernel consists of the constant real valued maps.

Let $(C^n, \sigma = -\text{Im}(\cdot, \cdot))$ be the standard symplectic space. We consider a real n-dimensional plane $R^n \subset C^n$. It is called Lagrangian if the skew-scalar product of any two vectors of R^n equals zero. For example, the plane $\{(p,q) | p = 0\}$ and $\{(p,q) | q = 0\}$ are Lagrangian subspaces. The manifold of all (nonoriented) Lagrangian subspaces of R^{2n} is called the Lagrangian-Grassmanian $\Lambda(n)$. One can prove that the fundamental group of $\Lambda(n)$ is free cyclic, i.e. $\pi_1(\Lambda(n)) = \mathbb{Z}$. Next assume $\Gamma(z)$ is a smooth map associating to a point $z \in \partial D$ a Lagrangian subspace $\Gamma(z)$ of C^n, i.e. $(\Gamma(z))_{z \in \partial D}$ defines a smooth curve α in the Lagrangian-Grassmanian manifold $\Lambda(n)$. Since $\pi_1(\Lambda(n)) = \mathbb{Z}$, one have $[\alpha] = ke$, we call integer k the Maslov index of curve α and denote it by $m(\alpha)$, see ([2]).

Now let $z : S^1 \mapsto R^n \subset C^n$ be a smooth curve. Then it defines a constant loop α in Lagrangian-Grassmanian manifold $\Lambda(n)$. This loop defines the Maslov index $m(\alpha)$ of the map z which is easily seen to be zero.

Now let (V, ω) be a symplectic manifold and $W \subset V$ a Lagrangian submanifold. Let $u : (D, \partial D) \to (V,W)$ be a smooth map homotopic to constant map $u_0 : (D, \partial D) \to p \in W$. Then u^*TV is a symplectic vector bundle and $(u|_{\partial D})^*TW$ be a Lagrangian subbundle in u^*TV. Since u is homotopic to u_0 by $h(t,z)$ with $h(0,\cdot) = u_0$ and $h(1,\cdot) = u$, we can take a trivialization of h^*TV as

\[\Phi(h^*TV) = [0,1] \times D \times C^n \]

and

\[\Phi(h|_{\partial D})^*TW \subset [0,1] \times S^1 \times C^n. \]

Let
\[\pi_2 : [0,1] \times D \times C^n \to C^n \]
then
\[h : (t,z) \in [0,1] \times S^1 \to \pi_2 \Phi(h|_{\partial D})^*TW \mid (t,z) \in \Lambda(n). \]

Lemma 2.1 Let $u : (D^2, \partial D^2) \to (V,W)$ be a C^k-map $(k \geq 1)$ as above. Then,
\[m(\bar{u}) = 0 \]
Proof. Since the homotopy $h(t, z)$ induces a homotopy \bar{h} in Lagrangian-Grassmanian manifold. Note that $m(\bar{h}(0, \cdot)) = 0$. By the homotopy invariance of Maslov index, we know that $m(\bar{u}) = 0$.

Consider the partial differential equation
\[
\bar{\partial}u + A(z)u = 0 \text{ on } D
\]
\[
u(z) \in \Gamma(z)R^n \text{ for } z \in \partial D
\]
\[
\Gamma(z) \in GL(2n, R) \cap Sp(2n)
\]
\[
m(\Gamma) = 0
\]

For $100 < k < \infty$ consider the Banach space \bar{V}_k consisting of all maps $u \in H^{k,2}(D, C^n)$ such that $u(z) \in \Gamma(z)$ for almost all $z \in \partial D$. Let L_{k-1} the usual Hilbert space $H_{k-1}(D, C^n)$.

We define an operator $P: \bar{V}_k \to L_{k-1}$ by
\[
P(u) = \bar{\partial}u + Au
\]

where D as in (2.1).

Proposition 2.2 $\bar{\partial}: \bar{V}_k \to L_{k-1}$ is a real linear Fredholm operator of index n.

Proof: see [4, 10, 21].

3 Nonlinear Fredholm Theory

3.1 Construction of Lagrangian Submanifold

Let M be an open manifold and $(T^*M, p_i dq_i)$ be the cotangent bundle of open manifold with the Liouville form $p_i dq_i$. Since M is open, there exists a function $g : M \to R$ without critical point. The translation by $tTd\bar{g}$ along the fibre gives a hamiltonnian isotopy of T^*M:

\[
h^T_i(q, p) = (q, p + tTd\bar{g}(q))
\]
\[
h^{T^*}_i(p_i dq_i) = p_i dq_i + tTd\bar{g}.
\]

Lemma 3.1 For any given compact set $K \subset T^*M$, there exists $T = T_K$ such that $h^T_1(K) \cap K = \emptyset$.

\[4 \]
Proof. Similar to [10, 15]

Let \(\Sigma \subset T^*M \) be a closed hypersurface, if there exists a vector field \(V \) defined in the neighbourhood \(U \) of \(\Sigma \) transversal to \(\Sigma \) such that \(L_V \omega = \omega \), here \(\omega = dp_i \wedge dq_i \) is a standard symplectic form on \(T^*M \) induced by the Liouville form \(p_i dq_i \), we call \(\Sigma \) the contact manifold of induced type in \(T^*M \) with the induced contact form \(\lambda = i_V \omega \).

Let \((\Sigma, \lambda) \) be a contact manifold of induced type or Weinstein’s type in \(T^*M \) with contact form \(\lambda \) and \(X \) its Reeb vector field, then \(X \) integrates to a Reeb flow \(\eta_s \) for \(s \in R \).

By using the transversal vector field \(V \), one can identify the neighbourhood \(U \) of \(\Sigma \) foliated by flow \(f_t \) of \(V \) and \(\Sigma \), i.e., \(U = \cup_t f_t(\Sigma) \) with the neighbourhood of \(\{0\} \times \Sigma \) in the symplectization \(R \times \Sigma \) by the exact symplectic transformation(see[16]).

Consider the form \(d(e^a \lambda) \) at the point \((a, x) \) on the manifold \((R \times \Sigma) \), then one can check that \(d(e^a \lambda) \) is a symplectic form on \(R \times \Sigma \). Moreover One can check that

\[
\begin{align*}
 i_X(e^a \lambda) &= e^a \\
 i_X(d(e^a \lambda)) &= -de^a
\end{align*}
\]

So, the symplectization of Reeb vector field \(X \) is the Hamilton vector field of \(e^a \) with respect to the symplectic form \(d(e^a \lambda) \). Therefore the Reeb flow lifts to the Hamilton flow \(h_s \) on \(R \times \Sigma \)(see[3, 6]).

Let \(L \) be a closed Legendre submanifold in \((\Sigma, \lambda) \), i.e., there exists a smooth embedding \(Q : L \to \Sigma \) such that \(Q^*\lambda|_L = 0 \). Let

\[
(V', \omega') = (T^*M, dp_i \wedge dq_i)
\]

and

\[
W' = L \times R, \quad W'_s = L \times \{s\}
\]

define

\[
G' : W' \to V' \quad \quad G'(w') = G'(l, s) = (0, \eta_s(Q(l)))
\]

Lemma 3.2 There does not exist any Reeb chord connecting Legendre submanifold \(L \) in \((\Sigma, \lambda) \) if and only if \(G'(W'(s)) \cap G'(W'(s')) \) is empty for \(s \neq s' \).

Proof. Obvious.

Lemma 3.3 If there does not exist any Reeb chord for \((X_\lambda, L) \) in \((\Sigma, \lambda) \) then there exists a smooth embedding \(G' : W' \to V' \) with \(G'(l, s) = (0, \eta_s(Q(l))) \) such that

\[
G'_K : L \times (-K, K) \to V'
\]
is a regular open Lagrangian embedding for any finite positive K.

Proof. One check

$$G'^* (d(e^\alpha \lambda)) = \eta(\cdot, \cdot)^* d\lambda = (\eta^*_s d\lambda + i_X d\lambda \wedge ds) = 0$$

(3.8)

This implies that G' is a Lagrangian embedding, this proves Lemma3.3.

Note that $d\lambda = dp_i \wedge dq_i$ on Σ by the definition of induced contact type and by assumption $[p_i dq_i - \lambda] = 0 \in H^1(\Sigma)$, we know that

$$p_i dq_i = \lambda + d\beta(\sigma) \text{ on } \Sigma$$

(3.9)

Then by the proof of Lemma3.3, one computes

$$G'^* (p_i dq_i) = G'^* (\lambda) + G'^* (\eta^*_s ds + d\eta^* \beta) = ds + d\beta$$

here we also use β denote the $\eta^* \beta$.

All above construction is contained in [16]. Now we introduce the upshot construction in [17]:

$$F'_0 : \mathcal{L} \times R \times R \to (R \times \Sigma)
F'_0(((l, s, a) = (a, \eta_s(l))))$$

(3.10)

Now we embed an elliptic curve E long along $s-axis$ and thin along $a-axis$ such that $E \subset [-K, K] \times [0, \varepsilon]$. We parametrize the E by $t' \in S^1$.

Lemma 3.4 If there does not exist any Reeb chord in (Σ, λ), then

$$F_0 : \mathcal{L} \times S^1 \to (R \times \Sigma)
F_0(l, t') = (a(t'), \eta_s(l))$$

(3.11)

is a compact Lagrangian submanifold. Moreover

$$l(R \times \Sigma, F_0(\mathcal{L} \times S^1), d(e^\alpha \lambda))
= \inf \{ \int_D f^* d\alpha \lambda > 0 | f : (D, \partial D) \to (R \times \Sigma, F_0(\mathcal{L} \times S^1)) \}
= \text{area}(E)$$

(3.12)

Proof. We check that

$$F_0^* (e^\alpha \lambda) = e^{a(t')} ds(t')$$

(3.13)

So, F_0 is a Lagrangian embedding.
If the circle C_1 homotopic to $C_1 \subset L \times s_0$ then we compute
\[
\int_C F_0^* (e^a \lambda) = \int_{C_1} F_0^* (e^a \lambda) = 0. \tag{3.14}
\]
since $\lambda|_{C_1} = 0$ due to $C_1 \subset L$ and L is Legendre submanifold.

If the circle C homotopic to $C_1 \subset l_0 \times S^1$ then we compute
\[
\int_C F_0^* (e^a \lambda) = \int_{C_1} F_0^* (e^{a(t')}) ds(t') = n(\text{area}(E)). \tag{3.15}
\]
This proves the Lemma.

Now we modify the above construction as follows:

\[
F' : L \times R \times R \to ([0, \varepsilon] \times \Sigma) \subset T^* M

F'(l, s, a) = (a, \eta_s(l)) \tag{3.16}
\]

Now we embed a elliptic curve E long along s–axis and thin along b–axis such that $E \subset [-s_1, s_2] \times [0, \varepsilon]$. We parametrize the E by t'.

Lemma 3.5 If there does not exist any Reeb chord in (Σ, λ), then

\[
F : L \times S^1 \to ([0, \varepsilon] \times \Sigma) \subset T^* M

F(l, t') = (a(t'), \eta_s(t')(l)) \tag{3.17}
\]

is a compact Lagrangian submanifold. Moreover

\[
l(V', F(L \times S^1), d(p_i dq_i)) = \text{area}(E) \tag{3.18}
\]

Proof. We check that

\[
F^*(p_i dq_i) = F^*(e^a \lambda + d\beta). \tag{3.19}
\]

This proves the Lemma.

Now we construct an isotopy of Lagrangian embeddings as follows:

\[
F' : L \times S^1 \times [0, 1] \to V'

F'(l, t', t) = h_t^T (a(t'), \eta_s(t')(l))

F'_t(l, t') = F'(l, t', t). \tag{3.20}
\]

Lemma 3.6 If there does not exist any Reeb chord for X_{λ} in (Σ, λ) then F' is an weakly exact isotopy of Lagrangian embeddings. Moreover for the choice of $T = T_\Sigma$ satisfying $[0, \varepsilon] \times \Sigma \cap h_T^T ([0, \varepsilon] \times \Sigma) = \emptyset$, then $F_0^*(L \times S^1) \cap F'_1(L \times S^1) = \emptyset$.

7
Proof. By Lemma 3.1-3.5 and below.

Let $(V', \omega') = (T^*M, dp_i \wedge dq_i)$, $W' = F(\mathcal{L} \times S^1)$, and $(V, \omega) = (V' \times C, \omega' \oplus \omega_0)$. As in [10], we use figure eight trick invented by Gromov to construct a Lagrangian submanifold in V through the Lagrange isotopy F' in V'. Fix a positive $\delta < 1$ and take a C^∞-map $\rho : S^1 \to [0, 1]$, where the circle S^1 is parametrized by $\Theta \in [-1, 1]$, such that the δ–neighborhood I_0 of $0 \in S^1$ goes to $0 \in [0, 1]$ and δ–neighbourhood I_1 of $\pm 1 \in S^1$ goes 1 in $[0, 1]$. Let $h^T_{\rho}(t, w') = h^T_{\rho(0)}(w')$ and

$$\tilde{l} = h^T_{\rho}(p, dq_i) = p, dq_i - \rho(\Theta) T dg$$

$$= e^{a(t')} ds(t') + d\beta - \rho T dg = e^{a(t')} ds(t') + d\beta + d\rho T g + T g dp$$

$$= e^{a(t')} ds(t') + d\beta + d\rho T g - T g \rho'(\Theta) d\Theta$$

$$= e^{a(t')} ds(t') + d\beta + d\rho T g - \Phi d\Theta$$

be the pull-back of the form $\tilde{l} = e^{a(t')} ds(t') + d\beta + d\rho T g - \psi(s, t) dt$ to $W' \times S^1$ under the map $(w', \Theta) \to (w', \rho(\Theta))$ and assume without loss of generality Φ vanishes on $W' \times (I_0 \cup I_1)$. Since $[\tilde{l}]|W' \times \{t\} = [e^{a(t')} ds(t')]$ is independent of t, so F' is weakly exact. It is crucial here $| - \psi(s, t)| \leq M_0$ and M_0 is independent of $area(E)$.

Next, consider a map α of the annulus $S^1 \times [\Phi_-, \Phi_+]$ into R^2, where Φ_- and Φ_+ are the lower and the upper bound of the function Φ correspondingly, such that

(i) The pull-back under α of the form $dx \wedge dy$ on R^2 equals $-d\Phi \wedge d\Theta$.

(ii) The map α is bijective on $I \times [\Phi_-, \Phi_+]$ where $I \subset S^1$ is some closed subset, such that $I \cup I_0 \cup I_1 = S^1$; furthermore, the origin $0 \in R^2$ is a unique double point of the map α on $S^1 \times 0$, that is

$$0 = \alpha(0, 0) = \alpha(\pm 1, 0),$$

and α is injective on $S^1 \times 0$ minus $\{0, \pm 1\}$.

(iii) The curve $S^0 = \alpha(S^1 \times 0) \subset R^2$ “bounds” zero area in R^2, that is $\int_{S^0} xdy = 0$, for the 1–form xdy on R^2.

Proposition 3.1 Let V', W' and F' as above. Then there exists an exact Lagrangian embedding $F : W' \times S^1 \to V' \times R^2$ given by $F(w', \Theta) = (F'(w', \rho(\Theta)), \alpha(\Theta, \Phi))$. Denote $F(W' \times S^1)$ by W. $W \subset T^*M \times B_{r_0}(0)$ with $4\pi r_0^2 = 8M_0$.

Proof. Similar to [10, 2.3B_3].

3.2 Formulation of Hilbert manifolds

Let (Σ, λ) be a closed $(2n - 1)$–dimensional manifold with a contact form λ of induced type in T^*M, it is well-known that T^*M is a Stein manifold, so it is

8
exhausted by a proper pluri-subharmonic function. In fact since M is an open manifold one can take a proper Morse function g on M and let $f = \frac{|p|^2}{2} + \pi^* g$. Then f is pluri-subharmonic function on T^*M for some complex structure J' on T^*M tamed by $dp_i \wedge dq_i$ (see [5]). Since Σ is compact and $W' = G'((L \times R)$ is contained in Σ, by our construction we have W' is contained in a compact set f_c for c large enough.

Let $V' = T^*M$ and we choose an almost complex structure J' on T^*M tamed by $\omega' = dp_i \wedge dq_i$ and the metric $g' = \omega'(\cdot, J'^{\cdot})$ (see [10]). By above discussion we know that all mechanism such as W' or Σ contained in f_c for c large enough, i.e., contained in a compact set V'_c in T^*M. Then we expanding near $\partial f^{-1}(c)$ to get a complete exact symplectic manifold with a complete Riemann metric with injective radius $r_0 > 0$(see [16]).

In the following we denote by $(V, \omega) = (V' \times R^2, dp_i dq_i \oplus dx \wedge dy)$ with the metric $g = g' \oplus g_0$ induced by $\omega(\cdot, J^{\cdot})(J = J' \oplus i$ and $W \subset V$ a Lagrangian submanifold which was constructed in section 3.1, moreover we can slightly perturb the $J' \oplus i$ near p such that $J \oplus i$ is integrable near p.

Let

$$D^k(V, W, p) = \{ u \in H^k(D, V) | u(x) \in W \, a.e \, for \, x \in \partial D \, and \, u(1) = p \}$$

for $k \geq 100$.

Lemma 3.7 Let W be a Lagrangian submanifold in V. Then,

$$D^k(V, W, p) = \{ u \in H^k(D, V) | u(x) \in W \, a.e \, for \, x \in \partial D \, and \, u(1) = p \}$$

is a pseudo-Hilbert manifold with the tangent bundle

$$TD^k(V, W, p) = \bigcup_{u \in D^k(V, W, p)} \Lambda^{k-1}(u^*TV, u^*|_{\partial D}TW, p) \quad (3.22)$$

here

$$\Lambda^{k-1}(u^*TV, u^*|_{\partial D}TW, p) = \{ H^{k-1} - sections of (u^*(TV), (u^*)|_{\partial D}^*TL) which \, vanishes \, at \, 1 \}$$

Proof: See [4, 14].

Now we consider a section from $D^k(V, W, p)$ to $TD^k(V, W, p)$ follows as in [4, 10], i.e., let $\bar{\partial} : D^k(V, W, p) \to TD^k(V, W, p)$ be the Cauchy-Riemann section

$$\bar{\partial} u = \frac{\partial u}{\partial s} + J \frac{\partial u}{\partial t} \quad (3.23)$$

for $u \in D^k(V, W, p)$.

9
Theorem 3.1 The Cauchy-Riemann section $\bar{\partial}$ defined in (3.23) is a Fredholm section of Index zero.

Proof. According to the definition of the Fredholm section, we need to prove that $u \in \mathcal{D}^k(V, W, p)$, the linearization $D\bar{\partial}(u)$ of $\bar{\partial}$ at u is a linear Fredholm operator. Note that

$$D\bar{\partial}(u) = D\bar{\partial}_{[u]}$$

(3.24)

where

$$(D\bar{\partial}_{[u]})v = \frac{\partial v}{\partial s} + J\frac{\partial v}{\partial t} + A(u)v$$

(3.25)

with

$$v|_{\partial D} \in (u|_{\partial D})^*TW$$

here $A(u)$ is $2n \times 2n$ matrix induced by the torsion of almost complex structure, see [4, 10] for the computation.

Observe that the linearization $D\bar{\partial}(u)$ of $\bar{\partial}$ at u is equivalent to the following Lagrangian boundary value problem

$$\frac{\partial v}{\partial s} + J\frac{\partial v}{\partial t} + A(u)v = f, \quad v \in \Lambda^k(u^*TV)$$

$$v(t) \in T_{u(t)}W, \quad t \in \partial D$$

(3.26)

One can check that (3.26) defines a linear Fredholm operator. In fact, by Proposition 2.2 and Lemma 2.1, since the operator $A(u)$ is a compact, we know that the operator $\bar{\partial}$ is a nonlinear Fredholm operator of the index zero.

Definition 3.1 Let X be a Banach manifold and $P : Y \to X$ the Banach vector bundle. A Fredholm section $F : X \to Y$ is proper if $F^{-1}(0)$ is a compact set and is called generic if F intersects the zero section transversally, see [4, 7, 10].

Definition 3.2 $\deg(F, y) = \sharp\{F^{-1}(0)\}\mod 2$ is called the Fredholm degree of a Fredholm section (see [4, 7, 10]).

Theorem 3.2 The Fredholm section $F = \bar{\partial} : \mathcal{D}^k(V, W, p) \to T(\mathcal{D}^k(V, W, p))$ constructed in (3.23) is proper near $F^{-1}(0)$ and

$$\deg(F, 0) = 1$$

Proof: We assume that $u : D \to V$ be a J–holomorphic disk with boundary $u(\partial D) \subset W$ and by the assumption that u is homotopic to the constant map $u_0(D) = p$. Since almost complex structure J tamed by the symplectic form ω, by stokes formula, we conclude $u : D \to V$ is a constant map. Because
\(u(1) = p \). We know that \(F^{-1}(0) = p \) which implies the properness. Next we show that the linearization \(DF(p) \) of \(F \) at \(p \) is an isomorphism from \(T_pD(V,W,p) \) to \(E \). This is equivalent to solve the equations

\[
\frac{\partial v}{\partial s} + J \frac{\partial v}{\partial t} + Av = f
\]

\[v|_{\partial D} \subset T_pW \]

(3.27)

where \(J = J(p) = i \) and \(A(=0) \) a constant zero matrix. By Lemma 2.1, we know that \(DF(p) \) is an isomorphism. Therefore \(\deg(F,0) = 1 \).

4 Non-properness of a Fredholm section

In this section we shall construct a non-proper Fredholm section \(F_1 : D \rightarrow E \) by perturbing the Cauchy-Riemann section as in [4, 10].

4.1 Anti-holomorphic section

Let \((V',\omega') = (T^*M,\omega_M)\) and \((V,\omega) = (V' \times C, \omega' \oplus \omega_0)\), and \(W \) as in section 3 and \(J = J' \oplus i \), \(g = g' \oplus g_0 \), \(g_0 \) the standard metric on \(C \).

Now let \(c \in C \) be a non-zero vector. We consider the equations

\[v = (v', f) : D \rightarrow V' \times C \]

\[\bar{\partial}_v v' = 0, \bar{\partial} f = c \]

\[v|_{\partial D} : \partial D \rightarrow W \]

(4.1)

here \(v \) homotopic to constant map \(\{p\} \) relative to \(W \). Note that \(W \subset V' \times B_{r_0}(0) \).

Lemma 4.1 Let \(v \) be the solutions of (4.1), then one has the following estimates

\[
E(v) = \int_D (g'(\frac{\partial v'}{\partial x}, J' \frac{\partial v'}{\partial y}) + g'(\frac{\partial v'}{\partial y}, J' \frac{\partial v'}{\partial y})
\]

\[+g_0(\frac{\partial f}{\partial x}, i \frac{\partial f}{\partial y}) + g_0(\frac{\partial f}{\partial y}, i \frac{\partial f}{\partial y}))d\sigma \leq 4\pi r_0^2. \]

(4.2)

Proof: Since \(v(z) = (v'(z), f(z)) \) satisfy (4.1) and \(v(z) = (v'(z), f(z)) \in V' \times C \) is homotopic to constant map \(v_0 : D \rightarrow \{p\} \subset W \) in \((V, W)\), by the Stokes formula

\[\int_D v^*(\omega' \oplus \omega_0) = 0 \]

(4.3)
Note that the metric g is adapted to the symplectic form ω and J, i.e.,

$$g = \omega(\cdot, J \cdot)$$ \hspace{1cm} (4.4)

By the simple algebraic computation, we have

$$\int_D v^*\omega = \frac{1}{4} \int_{D^2} (|\partial v|^2 - |\bar{\partial} v|^2) = 0$$ \hspace{1cm} (4.5)

and

$$|\nabla v|^2 = \frac{1}{2}(|\partial v|^2 + |\bar{\partial} v|^2)$$ \hspace{1cm} (4.6)

Then

$$E(v) = \int_D |\nabla v|^2$$

$$= \int_D \left\{ \frac{1}{2}(|\partial v|^2 + |\bar{\partial} v|^2) \right\} d\sigma$$

$$= \frac{\pi |e|^2}{g_0}$$ \hspace{1cm} (4.7)

By the equations (4.1), one get

$$\bar{\partial} f = c \text{ on } D$$ \hspace{1cm} (4.8)

We have

$$f(z) = \frac{1}{2}c \bar{z} + h(z)$$ \hspace{1cm} (4.9)

here $h(z)$ is a holomorphic function on D. Note that $f(z)$ is smooth up to the boundary ∂D, then, by Cauchy integral formula

$$\int_{\partial D} f(z)dz = \frac{1}{2}c \int_{\partial D} \bar{z}dz + \int_{\partial D} h(z)dz$$

$$= \frac{1}{\pi i c} \int_{\partial D} \bar{z}dz$$ \hspace{1cm} (4.10)

So, we have

$$|c| = \frac{1}{\pi} \left| \int_{\partial D^2} f(z)dz \right|$$ \hspace{1cm} (4.11)

Therefore,

$$E(v) \leq \pi |c|^2 \leq \frac{1}{\pi} \left| \int_{\partial D} f(z)dz \right|^2$$

$$\leq \frac{1}{\pi} \left| \int_{D^2} |f(z)||dz|^2 \right|$$

$$\leq 4\pi |\text{diam}(pr_2(W))|^2$$

$$\leq 4\pi r_0^2.$$ \hspace{1cm} (4.12)

This finishes the proof of Lemma.
Proposition 4.1 For $|c| \geq 3r_0$, then the equations (4.1) has no solutions.

Proof. By (4.11), we have
\[
|c| \leq \frac{1}{\pi} \int_{\partial D} |f(z)||dz| \\
\leq \frac{1}{2} \int_{\partial D} \text{diam}(pr_2(W))|dz| \\
\leq 2r_0.
\] (4.13)

It follows that $c = 3r_0$ can not be obtained by any solutions.

4.2 Modification of section c

Note that the section c is not a section of the Hilbert bundle in section 3 since c is not tangent to the Lagrangian submanifold W, we must modify it as follows:

Let c as in section 4.1, we define
\[
c_{\chi,\delta}(z, v) = \begin{cases}
 c & \text{if } |z| \leq 1 - 2\delta, \\
 0 & \text{otherwise}
\end{cases}
\] (4.14)

Then by using the cut off function $\varphi_h(z)$ and its convolution with section $c_{\chi,\delta}$, we obtain a smooth section c_δ satisfying
\[
c_\delta(z, v) = \begin{cases}
 c & \text{if } |z| \leq 1 - 3\delta, \\
 0 & \text{if } |z| \geq 1 - \delta.
\end{cases}
\] (4.15)

for h small enough, for the convolution theory see [12].

Now let $c \in C$ be a non-zero vector and c_δ the induced anti-holomorphic section. We consider the equations
\[
v = (v', f) : D \rightarrow V' \times C \\
\bar{\partial}_J v' = 0, \bar{\partial}f = c_\delta \\
v|_{\partial D} : \partial D \rightarrow W
\] (4.16)

Note that $W \subset V \times B_{r_0}(0)$. Then by repeating the same argument as section 4.1., we obtain

Lemma 4.2 Let v be the solutions of (4.16) and δ small enough, then one has the following estimates
\[
E(v) \leq 4\pi r_0^2.
\] (4.17)

and

Proposition 4.2 For $|c| \geq 3r_0$, then the equations (4.16) has no solutions.
4.3 Modification of $J \oplus i$

Let (Σ, λ) be a closed contact manifold with a contact form λ of induced type in T^*M. Let J_M be an almost complex structure on T^*M and $J_1 = J_M \oplus i$ the almost complex structure on $T^*M \times \mathbb{R}^2$ tamed by $\omega' \oplus \omega_0$. Let J_2 be any almost complex structure on $T^*M \times \mathbb{R}^2$.

Now we consider the almost complex structure on the symplectic fibration $D \times V \to D$ which will be discussed in detail in section 5.1., see also [10].

\[
J_{x,\delta}(z, v) = \begin{cases}
 i \oplus J_M \oplus i & \text{if } |z| \leq 1 - 2\delta, \\
 i \oplus J_2 & \text{otherwise}
\end{cases} \quad (4.18)
\]

Then by using the cut off function $\varphi_h(z)$ and its convolution with section $J_{x,\delta}$, we obtain a smooth section J_δ satisfying

\[
J_\delta(z, v) = \begin{cases}
 i \oplus J_M \oplus i & \text{if } |z| \leq 1 - 3\delta, \\
 i \oplus J_2 & \text{if } |z| \geq 1 - \delta.
\end{cases} \quad (4.19)
\]

as in section 4.2.

Then as in section 4.2, one can also reformulation of the equations (4.16) and get similar estimates of Cauchy-Riemann equations, we leave it as exercises to reader.

Theorem 4.1 The Fredholm sections $F_1 = \bar{\partial} + c_\delta : \mathcal{D}_k(V, W, p) \to T(\mathcal{D}_k(V, W, p))$ is not proper for $|c|$ large enough.

Proof. See [4, 10].

5 J–holomorphic section

Recall that $W \subset T^*M \times B_{r_0}(0)$ as in section 3. The Riemann metric g on $M \times \mathbb{R}^2$ induces a metric $g|W$.

Now let $c \in C$ be a non-zero vector and c_δ the induced anti-holomorphic section. We consider the nonlinear inhomogeneous equations (4.16) and transform it into J–holomorphic map by considering its graph as in [4, 10].

Denote by $Y^{(1)} \to D \times V$ the bundle of homomorphisms $T_s(D) \to T_v(V)$. If D and V are given the disk and the almost Kähler manifold, then we distinguish the subbundle $X^{(1)} \subset Y^{(1)}$ which consists of complex linear homomorphisms and we denote $\hat{X}^{(1)} \to D \times V$ the quotient bundle $Y^{(1)}/X^{(1)}$.

Now, we assign to each C^1-map $v : D \to V$ the section $\bar{\partial}v$ of the bundle
over the graph $\Gamma_v \subset D \times V$ by composing the differential of v with the quotient homomorphism $Y^{(1)} \to \bar{X}^{(1)}$. If $c_\delta : D \times V \to \bar{X}$ is a H^k- section we write $\bar{\partial}v = c_\delta$ for the equation $\bar{\partial}v = c_\delta|_{\Gamma_v}$.

Lemma 5.1 (Gromov[10]) There exists a unique almost complex structure J_g on $D \times V$ (which also depends on the given structures in D and in V), such that the (germs of) $J_\delta-$holomorphic sections $v : D \to D \times V$ are exactly and only the solutions of the equations $\bar{\partial}v = c_\delta$. Furthermore, the fibres $z \times V \subset D \times V$ are $J_\delta-$holomorphic (i.e. the subbundles $T(z \times V) \subset T(D \times V)$ are $J_\delta-$complex) and the structure $J_\delta|z \times V$ equals the original structure on $V = z \times V$. Moreover J_δ is tamed by $k\omega_0 \oplus \omega$ for k large enough which is independent of δ.

6 Proof of Theorem 1.1

Theorem 6.1 There exists a non-constant $J-$holomorphic map $u : (D, \partial D) \to (T^*M \times C, W)$ with $E(u) \leq 4\pi r_0^2$.

Proof. By Gromov’s C^0-convergence theorem and the results in section 4 shows the solutions of equations (4.16) must denegerate to a cusp curves, i.e., we obtain a Sacks-Uhlenbeck’s bubble, i.e., $J-$holomorphic sphere or disk with boundary in W, the exactness of the symplectic form on $T^*M \times R^2$ rules out the possibility of $J-$holomorphic sphere. For the more detail, see the proof of Theorem 2.3.B in [10].

Proof of Theorem 1.1. By Theorem 6.1, we know that

\[
l(V', F(\mathcal{L} \times S^1), d(p_i dq_i)) = area(E) \leq 4\pi r_0^2
\]

But if K large enough, $area(E) > 8\pi r_0^2$. This implies the assumption that \mathcal{L} has no self-intersection point under Reeb flow does not hold.

References

[1] Abbas, C., Finite energy surfaces and the chord problem, Duke Math. Journ., Vol96, No.2(1999), 241-316.

[2] Arnold, V. I., First steps in symplectic topology, Russian Math. Surveys 41(1986),1-21.

[3] Arnold, V.& Givental, A., Symplectic Geometry, in: Dynamical Systems IV, edited by V. I. Arnold and S. P. Novikov, Springer-Verlag, 1985.
[4] Audin, M & Lafontaine, J., eds.: Holomorphic Curves in Symplectic Geometry. Progr. Math. 117, (1994) Birkhaüser, Boston.

[5] Eliashberg, Y & Gromov, M., Convex symplectic manifolds, Pro. of Sym. in Pure Math., vol. 52(1991), Part2, 135-162.

[6] Eliashberg, Y & Gromov, M., Lagrangian Intersection Theory: Finite-Dimensional Approach, Amer. Math. Soc. Transl. 186(1998): 27-118.

[7] Floer, A., Hofer, H & Viterbo, C., The Weinstein conjecture in $P \times C^d$, Math. Z. 203(1990)469-482.

[8] Givental, A. B., Nonlinear generalization of the Maslov index, Adv. in Sov. Math., V.1, AMS, Providence, RI, 1990.

[9] Gray, J.W., Some global properties of contact structures. Ann. of Math., 2(69): 421-450, 1959.

[10] Gromov, M., Pseudoholomorphic Curves in Symplectic manifolds. Inv. Math. 82(1985), 307-347.

[11] Hofer, H., Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Inventions Math., 114(1993), 515-563.

[12] Hörmander, L., The Analysis of Linear Partial Differential Operators I, Springer-Verlag, 1983.

[13] Jost, J., Two-Dimensional Geometric Variational Problems, A Wiley-Interscience Publication.

[14] Klingenberg, K., Lectures on closed Geodesics, Grundlehren der Math. Wissenschaften, vol 230, Spinger-Verlag, 1978.

[15] Lalonde, F & Sikorav, J.C., Sous-Varitèes Lagrangiennes et lagrangiennes exactes des fibrès cotangents, Comment. Math. Helvetici 66(1991) 18-33.

[16] Ma, R., Legendrian submanifolds and A Proof on Chord Conjecture, Boundary Value Problems, Integral Equations and Related Problems, edited by J K Lu & G C Wen, World Scientific, 135-142,2000.

[17] Mohnke, K.: Holomorphic Disks and the Chord Conjecture, Annals of Math., (2001), 154:219-222.

[18] Sacks, J. and Uhlenbeck,K., The existence of minimal 2-spheres. Ann. Math., 113:1-24, 1983.
[19] Smale, S., An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87: 861-866, 1965.

[20] Thurston, W., The theory of foliations in codimension greater than one, Comm. Math. Helv. 214-231, 49(1974).

[21] Wendland, W., Elliptic systems in the plane, Monographs and studies in Mathematics 3, Pitman, London-San Francisco, 1979.