Antibacterial Resistance in Patients with Hematopoietic Stem Cell Transplantation

Sehnaz Alp¹ and Murat Akova²

¹ Associate Professor, Hacettepe University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ankara, Turkey
² Professor, Hacettepe University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ankara, Turkey

Competing interests: The authors have declared that no competing interests exist.

Abstract. Recipients of hematopoietic stem cell transplantation (HSCT) are at substantial risk of bacterial, fungal, viral, and parasitic infections depending on the time elapsed since transplantation, presence of graft-versus-host disease (GVHD), and the degree of immunosuppression. Infectious complications in HSCT recipients are associated with high morbidity and mortality. Bacterial infections constitute the major cause of infectious complications, especially in the early post-transplant period. The emergence of antibacterial resistance complicates the management of bacterial infections in this patient group. Multidrug-resistant bacterial infections in this group of patients have attracted considerable interest and may lead to significant morbidity and mortality. Empirical antibacterial therapy in patients with HSCT and febrile neutropenia has a critical role for survival and should be based on local epidemiology. This review attempts to provide an overview of risk factors and epidemiology of emerging resistant bacterial infections and their management in HSCT recipients.

Keywords: Hematopoietic stem cell transplantation, antibacterial resistance, resistant bacterial infection.

Introduction. Hematopoietic stem cell transplantation (HSCT) has become the treatment of choice to cure or improve the outcomes of a wide variety of haematological malignancies and disorders.¹⁻⁴ HSCT can be performed by the transfer of hematopoietic stem cells from the donor to the recipient (allogeneic HSCT) or by the return of previously harvested cells of the same individual (autologous HSCT) after administration of conditioning regimens.⁴ Myeloablative (MA) conditioning leads to profound pancytopenia, and also breaks down mucosal barriers, which might result in seeding of residing microorganisms of the gastrointestinal system into the bloodstream. Therefore, infectious complications begin to appear in the early post-transplant period. Nonmyeloablative (NMA) conditioning has the advantages of reduced regimen-related toxicity and transplant-related mortality. Therefore, patients being referred for HSCT but not eligible to receive a myeloablative conditioning may have the opportunity to benefit from HSCT. Recipients of NMA allogeneic HSCT experience a heterogeneous duration and degree of pancytopenia according to the administered regimen. NMA regimens with lower mucosal toxicity and myelosuppression provide a low incidence of infectious complications within the
early period after transplantation. Immune recovery after NMA regimens was shown to be faster than that was seen following MA regimens, and improved immune reconstitution was associated with lower incidence of life-threatening infectious complications. Even though myelosuppressive potential of NMA regimens seems to be milder than MA regimens, the severity and duration of lymphodepletion is assumed to be similar, because of the implementation of immunosuppressive treatment to prevent graft rejection.\(^4\)

Risk factors for bacterial and resistant bacterial infections in patients with HSCT.

Infectious complications are the major contributors of morbidity and mortality, especially within one year following HSCT. In the early post-transplant period, presence of neutropenia and mucosal damage predispose patients to infections. Presence and severity of graft-versus-host disease (GVHD) and immunosuppressive treatment for it have a considerable impact on the degree of overall immunosuppression and risk of infection.\(^4,7\) The frequent use of central venous catheters brings about a substantial risk for severe, often recurrent, and potentially lethal infections.\(^9,11\) Recipient factors such as age, comorbidities, and previous exposure to infectious agents prior to transplant, and the type of transplant, due to the distinct duration required for immune reconstitution, also influence the risk of infectious complications.\(^4\)

Initiating broad-spectrum empirical antibacterial therapy results in decreased mortality in febrile neutropenic HSCT recipients. On the other hand, the use of such therapy has the risk of selection of resistant pathogens.\(^9,12-14\) Fluoroquinolone prophylaxis in haematology settings led emerging fluoroquinolone resistance.\(^15-20\) This prophylaxis has also been associated with emerging methicillin-resistant *Staphylococcus aureus* (MRSA), multidrug-resistant (MDR) *Escherichia coli*, and *Pseudomonas aeruginosa* bacteriaemia, and *Clostridium difficile* infections.\(^21-25\) Consequently, empirical carbapenem use in patients receiving quinolone prophylaxis has increased, a practice may, in turn, result in increased carbapenem-resistant bacterial infections.\(^16,26\) In addition, prolonged and/or repeated hospitalisations, intensive care unit (ICU) stay, severity of illness, healthcare-associated infections, presence of urinary catheter and older age are considered as major risk factors for resistant bacterial infections.\(^12,26-30\) Main risk factors for certain resistant bacterial infections are summarised in the Table 1.

Resistant bacteria	Risk factors
Methicillin-resistant *Staphylococcus aureus*	Previous or prolonged hospital stay; exposure to antibiotics (quinolones, glycopeptides, and cephalosporins); older age (≥65 years); surgical intervention within last 4 weeks; open skin lesions; enteral feeding; skin graft-versus-host disease
Vancomycin-resistant *Enterococcus* spp.	Colonisation with vancomycin-resistant *Enterococcus* spp. on hospital admission; exposure to antibiotics (oral vancomycin, extended-spectrum cephalosporins, and metronidazole); presence of neutropenia more than 7 days; severe mucositis; *Clostridium difficile*-associated diarrhea
Extended-spectrum beta-lactamase-producing Enterobacteriaceae	Prolonged hospital stay (≥21 days); admission to intensive-care unit; central venous catheter; urinary catheter; severe illness; ventilatory assistance; hemodialysis; emergent abdominal surgery; gastrostomy or jejunostomy; gut colonisation; exposure to broad-spectrum antibiotics; travel to endemic area
Carbapenemase-producing Enterobacteriaceae	Exposure to antibiotics (carbapenems); older age (≥65 years); prolonged hospital stay (≥21 days); travel and stay in endemic area
Pseudomonas aeruginosa (Resistant to at least 3 classes of anti-pseudomonal drugs)	Exposure to antibiotics (quinolones, metronidazole, third-generation cephalosporins, carbapenems); acute myeloid leukaemia; endogenous and/or water source
Acinetobacter baumannii (Resistant to more than 2 of the following drug classes: cephalosporins (antipseudomonal); carbapenems (imipenem or meropenem); penicillin (ampicillin-sulbactam); fluoroquinolones (ciprofloxacin or levofloxacin); aminoglycosides (amikacin, gentamicin, tobramycin)	Intravascular catheters; trauma or burns; chronic lung disease; travel and stay in endemic area
Antibacterial resistance in patients with HSCT. The data on epidemiology of bacterial infections and their resistance patterns in HSCT recipients mostly reflect isolates from bloodstream infections (BSIs) which are the most frequent microbiologically documented bacterial infections. The rate of BSIs varies between 20-30% of allogeneic and 5% of autologous HSCT recipients, especially within pre-engraftment phase. Even though bacterial pneumonia and skin and soft tissue infections are also common among these patients, microbial aetiology may remain undocumented.29,31

During 1960s and 1970s, the incidence of gram-negative infections was high in haematology settings. Nevertheless, the incidence of gram-positive pathogens increased during mid-1980s and 1990s as a result of extensive use of indwelling catheters, early-generation fluoroquinolone prophylaxis and broad-spectrum empirical anti-gram-negative antibacterial therapy.12,29,32-34 Afterwards, coagulase-negative staphylococci were reported as the most common bacterial etiologic agents isolated from blood cultures in most centres.10,35 However, recent reports from a number of centres revealed drug-resistant gram-negative pathogens such as ESBL-producing gram-negative bacteria, multidrug resistant (MDR) P. aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, and carbapenemase-producing gram-negative bacteria as the causative agents of increasing numbers of infections.9,12,36-44 In countries where high rates of antibiotic resistance exist, ESBL-producing or MDR gram-negative bacteria contribute up to 13-14% of clinical isolates.26,28,40,45 A significant increase in the prevalence of resistant gram-positive cocci such as MRSA and vancomycin-resistant enterococci (VRE) have also been reported and stated as the overriding resistant pathogens in some centres.46,47 Penicillin-resistant viridans streptococci and penicillin-resistant Streptococcus pneumoniae (PRSP) are less common, yet they may be the causative agents of severe infections.9,10,12,48

The epidemiology of bacterial infections and their resistance patterns show distinct geographic and inter-centre variability. Being aware of the current data on local epidemiology of predominant pathogens and close monitoring of their resistance patterns are of great importance, especially in empirical antibacterial treatment decisions.12,25,49,50 Recent reviews on epidemiology of BSIs in cancer patients, primarily with hematologic malignancies including HSCT recipients, revealed that among all BSI isolates, coagulase-negative staphylococci and Enterobacteriaceae (frequently E. coli) were the most common pathogens followed by P. aeruginosa, S. aureus, viridans streptococci, and enterococci. The approximate rates of these commonly encountered pathogens were: 25% (range: 5-60%) for coagulase-negative staphylococci; 25% (range: 6-54%) for Enterobacteriaceae; 10% (range: 0-30%) for P. aeruginosa; 6% (range: 0-20%) for S. aureus; 5% (range: 0-16%) for viridans streptococci; and 5% (range: 0-38%) for enterococci.29,49,51

A brief information on the epidemiology of global resistance data for gram-positive and gram-negative bacteria is given below in each corresponding title. An online website showing the current drug resistance rates and antimicrobial use worldwide is also available at ‘http://resistancemap.cdc.gov’.

Gram-Negative Bacteria. E. coli is one of the most frequent pathogens causing bacteraemia in patients with cancer and neutropenia.39,51-53 Production of one or more extended spectrum beta-lactamases (ESBLs) is the main resistance mechanism against broad-spectrum penicillins and cephalosporins in enteric gram-negative pathogens. Many ESBL-producing E. coli are also resistant to non-beta-lactam antibiotics including aminoglycosides and quinolones with altered resistance mechanisms.52-54 ESBL-encoding plasmids may also encode resistance to aminoglycosides, tetracyclines, sulphonamides and trimethoprim.52,55 These plasmids frequently encode an inhibitor-resistant beta-lactamase, which confers resistance to beta-lactam-beta-lactamase inhibitor combinations including amoxicillin-clavulanate and piperacillin-tazobactam.52,55,56 Aminoglycoside resistance among E. coli and other gram-negative enteric pathogens is determined by aminoglycoside-modifying enzymes which can be encoded on the same plasmid with ESBLs.52 E. coli was the second most frequent carbapenem-resistant Enterobacteriaceae (CRE) following Klebsiella pneumoniae. In a recent US survey, the incidence of CRE was determined as 2.93 per 100,000 population.52,57
One of the most significant carbapenemases described in Enterobacteriaceae is New Delhi metallo-beta-lactamase-1 (NDM-1). This enzyme is prevalent in the Indian subcontinent, but also frequently reported in Balkans and the Middle East.52,58 The bacteria harbouring this enzyme have spread worldwide and are usually only susceptible to colistin, tigecycline and fosfomycin, although susceptibility to these agents is not universal.52,59 Since \textit{E. coli} infections are very frequent in the outpatient settings, it is feared that a progressive increase in the prevalence of NDM-1 producing \textit{E. coli} may occur.52,58 Plasmid-mediated colistin resistance (via \textit{mer-1} colistin resistance gene) has recently been described in \textit{E. coli} isolates worldwide from mainly livestock and less frequently in human samples.52,60-65 The implications of this finding may be horrendous since the offending plasmid can easily be transferred between \textit{E. coli} strains and to \textit{K. pneumonia} and \textit{P. aeruginosa}.52,66 As a matter of fact, recent reports already noted the presence of this gene from plasmids in \textit{Salmonella} and \textit{K. pneumoniae}.52,67-70

Along with ESBLs as the main resistance mechanism to broad-spectrum penicillins and cephalosporins in enteric gram-negative pathogens, carbapenem resistance has become the most important epidemiologic and therapeutic challenge in \textit{K. pneumoniae}.52,58 There are mainly 3 classes of carbapenemases involved including KPC (Class A), OXA-48 (Class D) and NDM (Class B) for which different epidemiological reservoirs exist.52,58,59,71-74 A specific KPC-2 or KPC-3-producing clone has been widely disseminated worldwide contributing the spread of resistance.52,58 Carbapenem-resistant isolates usually show MDR pattern and are susceptible only to colistin, fosfomycin and tigecycline. However, there is also emergence of resistance against these antibiotics.52,75,76

\textit{P. aeruginosa} strains with high resistance rates to aminoglycosides, ceftazidime, quinolones, piperacillin-tazobactam and carbapenems are usually reported from Southern and Eastern part of Europe.52,77 Several beta-lactamases have been described for causing resistance and these include AmpC, ESBL (particularly PER-1) and metallo-beta-lactamases.52,55 Carbapenem resistance in \textit{P. aeruginosa} is mostly due to porin deficiencies and rarely caused by carbapenemase production.52,78 Emergence of colistin resistance in \textit{P. aeruginosa} has also been reported.52,79

The most frequent Class A ESBLs found in \textit{A. baumannii} are PER-, GES- and VEB-type enzymes. These beta-lactamases confer resistance to extended-spectrum cephalosporins, but inhibited by tazobactam and clavulanic acid.52,78 TEM-, SHV- and CTX-M-type ESBLs are rarely found in \textit{A. baumannii}. Class B beta-lactamases (metalloenzymes) are also reported in \textit{A. baumannii} and include IMP-, VIM- and NDM-type enzymes. These beta-lactamases provide activity against not only to carbapenems, but also to broad-spectrum cephalosporins and penicillins. Class D, OXA-type carbapenemases are the most widespread carbapenemases in \textit{A. baumannii}.52,55 These enzymes cause weak resistance to carbapenems. Thus, high-level resistance usually require other mechanisms involved such as efflux and porin loss.52,78 The ArmA enzyme is the most frequent methylase which is responsible for high-level resistance to all aminoglycosides in \textit{A. baumannii}. The gene responsible for this enzyme is often identified among OXA-23-producing \textit{A. baumannii} strains. Other methylases are also described.52,78 Overexpression of efflux pumps can provide resistance to quinolones. These pumps also use aminoglycosides, tetracyclines, chloramphenicol and trimethoprim as substrates. Thus, quinolone resistance can be selected by non-quinolone antibiotics as well. Usually several of these mechanisms are present in MDR \textit{Acinetobacter} isolates.52

For treatment of MDR gram-negative infections, especially due to carbapenem-resistant Enterobacteriaceae, \textit{Pseudomonas} species, and \textit{Acinetobacter} species, colistin (polymyxin E) has been increasingly used as a therapeutic option, administered as monotherapy or in combination regimens, even though limited data exist on its use in haematology patients and HSCT recipients.26,28,81,82 There are many reports on successful combination regimens for MDR gram-negative infections.26,83-85 Colistin plus rifampicin treatment has shown in vitro and in vivo synergistic activity for \textit{A. baumannii} infections.86,87 However, in a multicentre, randomized clinical trial, colistin plus rifampicin revealed no difference in infection-related mortality and length of hospital stay in the treatment of serious infections due to extensively
drug-resistant *A. baumannii* as compared to colistin alone, but a significant increase in microbiological eradication rate was determined in the colistin plus rifampicin arm.\(^8\) In a recent study, survival benefit with combination therapy (colistin plus carbapenem or tigecycline plus carbapenem) was demonstrated in patients with KPC-producing *K. pneumoniae* bacteraemia.\(^8\)

Gram-Positive Bacteria. Methicillin resistance is the hallmark of antimicrobial resistance in *S. aureus* and coagulase-negative staphylococci.\(^52\) While, vancomycin has long been successfully used for treatment of MRSA infections, emergence of *S. aureus* strains with vancomycin MICs \(\geq 2\) mg/L has coincided with reports of treatment failures.\(^9,90\) Community-acquired MRSA (CA-MRSA) infections have emerged as a global problem since the beginning of the 21\(^{st}\) century.\(^51,90-92\) Although CA-MRSA strains initially caused mainly skin and soft tissue infections in healthy individuals and some certain populations such as homeless and imprisoned people, increased rates of bacteraemia both in community and hospital setting; ventilator associated pneumonia; and surgical site infections have recently been reported.\(^52,94,95\) CA-MRSA isolates usually remain susceptible to many non-beta-lactam antibiotics including clindamycin and trimethoprim-sulfamethoxazole (TMP-SMX).\(^52,96\)

Coagulase-negative staphylococci are the most common cause of nosocomial BSIs and are responsible almost one-third of all healthcare-associated bacteraemia. The incidence is highest in those with cancer and neutropenia and those with catheter- and/or prosthetic device-related infections.\(^29,52,97\) Multiple antibiotic resistance is highly encountered among hospital isolates and usually related with methicillin resistance.\(^52,98\) Resistance to vancomycin is very rare, however a 20.8% resistance to teicoplanin was reported from UK, particularly in *S. haemolyticus*.\(^98\)

Penicillin-resistant pneumococci are more likely to show higher resistance to other classes of antimicrobials. Current figures of resistance in the US include 35% to macrolides, 10% to clindamycin, 30% to TMP-SMX, 18% to doxycycline and 2% to respiratory quinolones.\(^52,99\) Higher rates of macrolide resistance are reported from Europe.\(^52,100\)

Viridans streptococci can cause infective endocarditis, especially in patients with compromised heart valves, and they can also produce bacteraemia and septic shock particularly in patients with neutropenia.\(^51,52,101\) Although these bacteria are susceptible to most antimicrobials, beta-lactam resistance, due to the altered penicillin binding proteins has emerged and may cause a significant problem especially in patients with immunosuppression and bacteraemia.\(^51,52,102\)

Ceftriaxone and cefepime resistance has been reported up to 23 and 25%, respectively in strains isolated from hospitalised or cancer patients.\(^52,103,104\) Vancomycin is highly effective on such strains.\(^52\)

Among all enterococci, *Enterococcus faecium* is the most challenging one in terms of antibacterial resistance and therapy. In the US, enterococci are the second most common bacteria isolated from catheter-related (CR)-BSIs.\(^52,105\) Enterococci are intrinsically resistant to many antimicrobials, but also easily acquire mutations and exogenous genes to develop further resistance.\(^52,106\) While aminopenicillin resistance is rare in *E. faecalis*, it is encountered around 90% of nosocomial *E. faecium* isolates.\(^52,100,106\) Beta-lactamase production is infrequently associated with resistance and can be overcome with the use of beta-lactamase inhibitor compounds. The production of PBPs with low affinity to penicillins is the major culprit for beta-lactam resistance.\(^52,106\) High-level resistance to all aminoglycosides eliminates the synergistic activity of penicillins and vancomycin both of which can enhance activity of aminoglycosides in enterococci with low-to-moderate resistance. High-level aminoglycoside resistance has increased in both *E. faecalis* and *E. faecium* during the last 3 decades.\(^52,100\) Glycopeptide resistance in enterococci is a much bigger problem in the US than in Europe and elsewhere. By 2007, >80% of *E. faecium* isolates in the US hospitals were reported to be resistant to vancomycin whereas in Europe only Ireland reported a resistance rate of >50%.\(^52,100,106,107\) Similarly, MDR enterococci is much more prevalent in the US.\(^52,106\) Enterococci are the third most frequent agents of bacteraemia in haematological cancer patients and HSCT recipients and may affect up to 12% of all transplant patients. On these patient groups, a shift from *E. faecalis* to *E. faecium* has resulted in higher rates of VRE infections.\(^51,52\) However, similar to the general epidemiology, VRE infections constitute a less significant problem in
Western European transplant centres with <5% of enterococci being resistant to vancomycin.52,104 Resistance to linezolid and daptomycin is rarely reported.52,108

Newer agents with activity against glycopeptide non-susceptible gram-positive pathogens, such as daptomycin, linezolid, and tigecycline are being increasingly used in various clinical settings.9,12,27,29,109 One of the major drawbacks of daptomycin is the inactivation of the drug by pulmonary surfactant, which limits its use in treatment of pneumonia. Moreover, treatment failure in staphylococcal central nervous system infection was noticed.26,110 Even though daptomycin had not been evaluated in controlled trials in haematology patients, its efficacy on gram-positive infections in neutropenic patients has been reported.26,111,112 The clinical utility of tigecycline is limited by its low peak-serum concentrations, and increased failure and mortality rates.26,113,114

\textit{C. difficile} infection (CDI) is among the major concerns in patients undergoing HSCT. Risk factors for CDI in HSCT patients are specified as exposure to broad-spectrum antimicrobial agents, receipt of chemotherapy prior to conditioning for HSCT, total body irradiation, presence of acute GVHD, and VRE colonisation.115–118 The outcomes of CDI include increased morbidity and mortality due to increased risk of developing complications such as colitis or toxic megacolon, extended hospital stays, necessity to discontinue the required antibiotics, and increased healthcare costs.119,120 The emergence of an epidemic strain termed as ‘North American PFGE type 1 or NAP1’ is associated with large outbreaks in Europe and the United States. NAP1 has a genetic alteration that results in enhanced toxin production and has been associated with increased severity of CDI, higher relapse and mortality rates.9,121,122

Even though the studies conducted in 1980s and 1990s revealed that orally administered metronidazole and vancomycin showed equal effectiveness for treatment of CDI9,123,124 with the emergence of the epidemic strain, reports of higher rates of treatment failure or delayed treatment responses have appeared with metronidazole as compared to oral vancomycin.125–128 There are variable data on the outcomes of CDI in haematology settings, but treatment response to metronidazole and vancomycin is reported to be similar.26,129–131 While initiation of treatment for CDI, age, white blood cell count, and serum creatinine level should be taken into consideration as indicators for severe or complicated course.122,132 For the initial episode of mild-to-moderate CDI, metronidazole is the drug of choice. Vancomycin should be preferred for an initial episode of severe CDI. In case of existence of ileus, megacolon, hypotension or shock, vancomycin at higher doses (500 mg 4 times per day) plus metronidazole can be administered. In recurrent CDI, the recommendations for first recurrence are the same as for initial episode. However, in second recurrence, vancomycin (in a tapered and/or pulsed regimen) is the drug of choice.132

The data on alternative treatment options for CDI are limited in haematology patients and HSCT recipients. With the use of fidaxomicin, clinical response and recurrence rates were found to be comparable to that of conventional therapy.133 However, fidaxomicin was associated with a lower recurrence rate of CDI associated with NAP1 strains.134 In a recent post hoc analysis, fidaxomicin was found to be superior to vancomycin for treatment of CDI in patients with cancer in terms of shorter time to resolution of diarrhoea, higher cure and sustained response rates, and fewer recurrences.135

\textbf{Screening of MDR Bacteria in Patients with HSCT.} Infection prevention and control measures such as hand hygiene, contact barrier precautions, isolation, and appropriate environmental cleaning are crucial to deal with the spread of MDR bacteria in haematology settings.144,146 Active surveillance can help to identify individuals colonised with MDR pathogens. However, it is not clearly defined whether an active-surveillance for MDR bacteria as an additional strategy to infection control procedures is beneficial to prevent health-care-associated transmission.144,147–149 Colonisation may persist for months in the case of severe underlying disorders, prolonged or recurrent antimicrobial exposure, and presence of invasive devices.144,150 Patient populations for targeted screening, as well as ideal screening method and timing of surveillance, are not definitely determined, but can be chosen among those considered to have risk factors for colonization with MDR pathogens, such as prolonged hospital stay, exposure to antimicrobials, ICU stay or transfer from settings known to have high MDR bacteria rates. Another
approach is to obtain surveillance cultures from each patient admitted to the settings with high prevalence of MDR pathogens. While some centres establish weekly surveillance cultures, others choose to obtain cultures at the time of admission and/or whenever risk factors emerge for colonisation of MDR bacteria.\(^\text{[144,150-153]}\)

Screening for MRSA colonisation is not routinely performed, but can be established if MRSA rates remain to be high despite effective implementation of infection control measures. In such circumstances, MRSA surveillance cultures should be obtained on admission and thereafter (e.g. weekly) with or without concomitant decolonization.\(^\text{[144,154-156]}\) VRE surveillance cultures can be considered in case of ongoing spread of VRE in an HSCT unit to identify colonised patients.\(^\text{[144,152]}\)

Active surveillance cultures for MDR-GNBs can be used in units with high rates of MDR-GNB infections. A point prevalence survey is recommended if previously unnoticed cases with CRE are identified by the review of microbiology reports for the preceding 6-12 months.\(^\text{[144,146]}\) In a retrospective nationwide survey from Italy, documented carbapenem-resistant \textit{K. pneumoniae} (CRKp) colonization before or after HSCT was determined to be followed by infection in 25.8% of autologous HSCT and 39.2% of allogeneic HSCT recipients; and infection-related mortality rates were stated as 16% in autologous HSCT and 64.4% in allogeneic HSCT patients.\(^\text{[44]}\) In endemic settings, screening for CRKp before transplantation prior to hospital admission and weekly after transplantation for those who remain negative in case of isolation of CRKp in that unit is recommended.\(^\text{[157,158]}\) Recent reports have revealed that decolonization with aminoglycosides or colistin could succeed in patients colonised with CRE.\(^\text{[157,159-163]}\) Nevertheless, development of resistance to these agents is of concern, and patients can be colonized after gastrointestinal decolonization.\(^\text{[158,159,164-167]}\)

Management of Febrile Neutropenia in the Era of Resistant Bacterial Infections. For empirical antibacterial treatment in febrile neutropenia, escalation or de-escalation approach can be used. In escalation strategy, initial therapy targets activity against Enterobacteriaceae and \textit{P. aeruginosa}, but, ESBL- and carbapenemase-producing gram-negative bacilli and drug-resistant non-fermentative bacteria remain out of empirical coverage. In case of development of clinical deterioration or isolation of a resistant pathogen from clinical samples, the spectrum of antibacterial coverage must be broadened. In de-escalation strategy, initial regimen targets to cover drug-resistant pathogens, and once the microbiological data become available, therapy is de-escalated to an appropriate narrower spectrum. Escalation strategy may be considered for patients followed in a centre where MDR pathogens are rarely seen at the onset of febrile neutropenia and for those without any specific risk factors for resistant bacterial infections. De-escalation strategy may be used for febrile neutropenic patients having risk factors for resistant bacterial infections, such as previous infection or known colonisation with ESBL-producing gram-negative bacteria, residents of a centre where MDR pathogens are common, and also for those presenting with septic shock and pneumonia. Initial regimen in de-escalation strategy may include monotherapy with a carbapenem or combination therapy with an anti-pseudomonal beta-lactam agent and an aminoglycoside/quinolone or combination therapy with colistin and a beta-lactam agent/rifampicin. If risk factors for resistant gram-positive infections are present, early coverage with a glycopeptide or newer agents (linezolid, daptomycin, tigecycline) with activity against glycopeptide non-susceptible gram-positive pathogens should be considered. Patients with suspicion of catheter-related infection, known colonisation with MRSA, VRE, and PRSP, hemodynamic instability, severe sepsis, septic shock, presence of skin and soft tissue infection and pneumonia are accepted as candidates for additional antibiotics against resistant gram-positive pathogens.\(^\text{[12,27-29,51]}\)

\textbf{Conclusion.} The emergence of infections with resistant bacterial pathogens is associated with trends towards poor outcomes, prolonged hospital stay, more frequent ICU admissions, and increased treatment costs in haematology patients.\(^\text{[26,45,136-138]}\) Moreover, the bacterial resistance complicates the use of standard antimicrobial regimens in febrile HSCT recipients. Antimicrobial treatment approach for neutropenic or chronically immuno-suppressed HSCT recipients with GVHD necessitates careful evaluation of patients; detailed knowledge on local epidemiological data on
antibacterial resistance; close monitoring of the emergence of resistance in bacterial pathogens; and use of robust treatment options in the context of a rational antimicrobial stewardship program.

Convenient infection control measures and appropriate vaccination schedules should be implemented to prevent patients from exposure to pathogens. Besides, effective attempts should be provided in the development of new antibacterial agents and immune augmentation strategies to cope with resistant bacterial pathogens.

References:

1. Giralt S. Allogeneic hematopoietic progenitor cell transplantation for the treatment of chronic myelogenous leukemia in the era of tyrosine kinase inhibitors: lessons learned to date. Clin Lymphoma Myeloma 2007; 7 Suppl 3: S102-4. PMid:17382018

2. Dreger P, Corradini P, Kimyey E, et al. Chronic Leukemia Working Party of the EBMT. Indications for allogeneic stem cell transplantation in chronic lymphocytic leukemia: the EBMT transplant consensus. Leukemia 2007; 21: 12-7. https://doi.org/10.1038/sj.lleu.2404441 PMid:17109028

3. Davies JK, Gunnan EC. An update on the management of severe idiopathic aplastic anemia in children. Pedr J Haematol 2007; 136: 549-64. PMid:17124196

4. Mackall C, Fry T, Gress R, Peggs K, Storek J, Toubert A. Background to hematopoetic cell transplantation, including post transplant immune recovery. Bone Marrow Transplant 2009; 44: 457-62. https://doi.org/10.1038/bmt.2009.255 PMid:19861978

5. Meier E, Dekker AW, Lokhorst HM, Petersen JE, Nieuwenhuis HK, Verdonck LF. Low incidence of infectious complications after nonmyeloablative compared with myeloablative allogeneic stem cell transplantation. Transpl Infect Dis 2004; 6: 171-8. https://doi.org/10.1111/j.1399-3062.2004.00075.x PMid:15762935

6. Junghanss C, Bockeck M, Carter RA, Sandmaier BM, Maris MB, Maloney DG, Chauncey T, McSweeney PA, Little MT, Corey L, Storb R. Incidence and outcome of cytomegalovirus infections following nonmyeloablative compared with myeloablative allogeneic stem cell transplantation, a matched control study. Blood 2002; 99: 1978-85. https://doi.org/10.1182/blood.V99.6.1978 PMid:11877269

7. Junghanss C, Marr KA, Carter RA, Sandmaier BM, Maris MB, Maloney DG, Chauncey T, McSweeney PA, Storb R. Incidence and outcome of bacterial and fungal infections following nonmyeloablative compared with myeloablative allogeneic hematopoietic stem cell transplantation: a matched control study. Biol Blood Marrow Transplant 2002; 8: 512-20. https://doi.org/10.1053/bbmt.2002.v8.21374456 PMid:12377446

8. Baron F, Sandmaier BM. Chimerism and outcomes after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Leukemia 2006; 20: 1690-700. https://doi.org/10.1038/sj.leu.2404335 PMid:16871276

9. Kontoyiannis DP, Lewis RE, Marr K. The burden of viral and viral infections in hematopoietic stem cell transplant. Biol Blood Marrow Transplant 2009; 15(1 Suppl): 128-133. https://doi.org/10.1016/j.bmtt.2008.10.005 PMid:19147091

10. Dettenkofer M, Ebner W, Bertz H, Babikir R, Finke J, Frank U, et al. Surveillance of nosocomial infections in adult recipients of allogeneic and autologous bone marrow and peripheral blood stem cell transplantation. Bone Marrow Transplant 2003; 31: 795-801. https://doi.org/10.1038/sj.bmt.1703920 PMid:12732887

11. Engelhart S, Glaschanger A, Exner M, Kramer MH. Surveillance for nosocomial infections and comparison of unknown origin in adult hematopoietic-oncology patients. Control Infection Hosp Epidemiol 2002; 23: 244-48. https://doi.org/10.1093/cihe/23.4.244 PMid:12026148

12. Alp S, Akova M. Management of febrile neutropenia in the era of bacterial resistance. Ther Adv Infect Dis 2013; 1: 37-43. https://doi.org/10.1177/20499361314375610 PMid:25165543 PMCid:PMC4040719

13. Harbarth S, Harris AD, Carmeli Y, Samore MH. Parallel analysis of individual and aggregated data on antibiotic exposure and resistance in gram-negative bacilli. Clin Infect Dis 2001; 33: 1462-1468. https://doi.org/10.1086/322672 PMid:11588690

14. Mebus J, Goossens H, BernemanZN. Antibiotic management of febrile neutropenia: current developments and future directions. J Chemother 2010; 22: 5-12. https://doi.org/10.1119/10.00000007 PMid:20227985

15. Bousquet A, Maffison JV, Sammartin N, Konopacki J, MacNab C, Souleau B, de Revel T, Elouenness M, Samson T, Soler C, Foissaud V, Martinaud C. An 8-year survey of strains identified in blood cultures in a clinical haematology unit. Clin Microbiol Infect 2014; 20: 0712-17. https://doi.org/10.1111/1469-0691.12924 PMid:23826912

16. Gaurica M, Naviglio FL, Moreira BM, Maionio A, Nucci M. Ciprofloxacin prophylaxis in high risk neutropenic patients: effects on outcomes, antimicrobial therapy and resistance. BMC Infect Dis 2013; 13: 356. https://doi.org/10.1186/1471-2334-13-356 PMid:23899356 PMcid:PMC3729823

17. Therriault BL, Wilson JW, Barreto JN, Estes LL. Characterization of bacterial infections in allogeneic hematopoietic stem cell transplant recipients who received prophylactic levofloxacin with either penicillin or doxycycline. Mayo Clin Proc 2010; 85: 711-8. https://doi.org/10.4065/mcp.2010.0006 PMid:20675508 PMCid:PMC2912731

18. Schelenz S, Nwaka D, Hunter PR. Longitudinal surveillance of bacteriaemia in haematology and oncology patients at a UK cancer centre and the impact of ciprofloxacin use on antimicrobial resistance. J Antimicrob Chemother 2013; 68: 1431-8. https://doi.org/10.1093/jac/dkt002 PMid:23796855

19. Kern WV, Stobe-Bauer M, de Wit K, Reuter S, Bertz H, Frank U, von Baum H. Fluoroquinolone consumption and resistance in haematology-oncology patients: ecological analysis in two university hospitals 1999-2002. J Antimicrob Chemother 2005; 55: 57-60. https://doi.org/10.1093/jac/dkh610 PMid:15574472

20. Castagnola E, Haupt R, Micoczi A, Cavigilia I, Testi AM, Giona F, Parodi S, Girmenia D. Differences in the proportions of fluoroquinolone-resistant gram-negative bacteria isolated from bacteriaemic children with cancer in two Italian centres. Clin Microbiol Infect 2005; 11: 505-7. https://doi.org/10.1111/j.1469-0691.2005.00114.x PMid:15882204

21. Rangaraj G, Granwehr BP, Jiang Y, Hackem R, Raad I. Perils of quinolone exposure in cancer patients: breakthrough bacteremia with multidrug-resistant organisms. Cancer 2010; 116: 967-73. https://doi.org/10.1158/0008-5472.CAN-09-1091 PMid:20052728

22. MacDougall C, Powell JP, Johnson CK, Edmond MB, Polk RE. Hospital and community fluoroquinolone use and resistance in Staphylococcus aureus and Escherichia coli in 17 US hospitals. Clin Infect Dis 2005; 41: 435-440. https://doi.org/10.1086/343056 PMid:16028149

23. Muto CA, Pokrywka M, Shutt K, Mendelsohn AB, Nouri K, Posey AL. Comparison of fluoroquinolone-resistant gram-negative bacteria isolated from patients with Clostridium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use. Infect Control Hosp Epidemiol 2005; 26: 273-280. https://doi.org/10.1086/432056 PMid:15796280

24. Park SY, Kang CI, Joo EJ, Ha YE, Wi YM, Chung DR, et al. A large outbreak of Clostridium difficile-associated disease with an extended-spectrum ß-lactamase positive C. difficile infection in a teaching hospital in South Korea: a retrospective cohort study. J Antimicrob Chemother 2007; 60: 609-14. https://doi.org/10.1093/jac/dkm375 PMid:17598754

25. Pepin J, Saheb N, Coulombe MA, Alary ME, Corriveau MP, Anthier S, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhoea: a cohort study during an epidemic in Quebec. Clin Infect Dis 2005; 41: 1254-1260. https://doi.org/10.1086/496986 PMid:16206099
of Escherichia coli and Klebsiella pneumoniae. Lancet Infect Dis 2016; 16: 287

69. Du H, Chen L, Tang YW, Kreiswirth BN. Emergence of the mcr

68. Tse H, Yuen KY. Dissemination of the mcr

67. Paterson DL, Harris PN. Colistin resistance: a major breach in our

66. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect 2014; 20: 821-30.

65. Cornaglia G, Giannarelli D, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis 2011; 11: 381-93.

64. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou Z, Liu JH, Shen J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16: 161-8.

63. Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agerer Y, Zankari E, Leekitcharoenphong P, Stegger M, Kaas RS, Cavaco LM, Hansen DS, Aarestrup FM, Skov RL. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat. Denmark 2015. Euro Surveill 2015; 20(49).

62. Malhotra-Kumar S, Xavier BB, Das AJ, Lammens C, Hoang HT, Pham NT, Goossens H. Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Euro Surveill 2014; 19(42).

61. Peterson DL, Harris PN. Colistin resistance: a major breach in our

60. Webb HE, Granier SA, Marault M, Millenmann Y, den Bakker HC, Nightingale KK, Bugarel M, Ison SA, Scott HM, Loneragan GH. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 2016; 16: 145-6.

59. Du H, Chen L, Tang YW, Kreiswirth BN. Emergence of the mcr

58. Stoesser N, Mathers AJ, Moore GE, Day MJ, Crook DW. Colistin resistance gene mcr-1 and pHSHP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. Lancet Infect Dis 2016; 16: 285-6.

57. Tse H, Yuen KY. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 2016; 16: 145-6.

56. Webb HE, Granier SA, Marault M, Millenmann Y, den Bakker HC, Nightingale KK, Bugarel M, Ison SA, Scott HM, Loneragan GH. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 2016; 16: 145-6.

55. Livermore DM, Hope R, Mustaq S, Warner M. Orthodox and unorthodox clavulanate combinations against extended-spectrum beta-lactamase producers. Clin Microbiol Infect 2008; 14 Suppl 1: 189-93.

54. Livermore DM, Hope R, Mustaq S, Warner M. Orthodox and unorthodox clavulanate combinations against extended-spectrum beta-lactamase producers. Clin Microbiol Infect 2008; 14 Suppl 1: 189-93.
rapy reduce mortality in gram-negative bacill...Valiquette L, Jacobsson G, PE

ology of Staphylococcus aureus bacteremia. V...

cular

94. Rhee Y, Aroucheva A, Hota B, Weinstein RA, Popovich KJ. https://doi.org/10.1016/j.jhin.2009.07.004

Staphylococcus aureus as a cause of h...

0691.2012.03903.x

19: 465

population

Staphylococcus aureus bloodstream infection: a multinational Surveillance Collaborative. The changing epidemiology of PMid:20610826

https://doi.org/10.1016/S1473-3099(04)01108-9

Martinez JA, Cobos-Triгueгos N, Soriano A, Almila M, Ortega M, Marco F, Pitart C, Sterzik H, Lopez J, Mensa J. Influence of empiric therapy with a beta-lactam alone or combined with an amoxicillin/clavulanate on prognosis of bacteremia due to gram-negative microorganisms. Antimicrob Agents Chemother 2010; 54: 3590-6. https://doi.org/10.1128/AAC.00115-10

PMid:20585123

PMid:29349363

Hogg GM, Barr JG, Webb CH. In vitro activity of the combination of colistin and rifampicin against multidrug-resistant strains of Acinetobacter baumannii. J Antimicrob Chemother 1998; 41: 494-5. https://doi.org/10.1093/acid/41.4.494

PMid:9598783

Petrosilio N, Cinelli P, Proietti MF, Cecchini L, Masala M, Franchi C, Venditti M, Esposito S, Nicastri E. Combined colistin and rifampicin therapy for carbapenem-resistant Acinetobacter baumannii infections: clinical outcome and adverse events. Clin Microbiol Infect 2005; 11: 682-3. https://doi.org/10.1111/j.1469-0018.x

PMid:16008625

Durante-Mangoni E, Signorilli G, Andini R, Mattei A, De Cristoforo M, Murino P, Bassetti M, Malacarne P, Sinisi E. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 2013; 56: 349-58. https://doi.org/10.1093/cid/cits253

PMid:23616495

Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Viscoli C, Zarrelli R, Gallo C, Utiп L. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 2013; 56: 349-58. https://doi.org/10.1093/cid/cits253

PMid:23616495

Tenover FC, Moellering RC Jr. The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin Infect Dis 2007; 44: 1208-1215. https://doi.org/10.1086/s13203

PMid:17407040

Chuang YY, Huang YC. Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Asia. Lancet Infect Dis 2013; 13: 698-708. https://doi.org/10.1016/S1473-3099(13)70136-1

David MZ, Daum RS. Community-associated meticillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010; 23: 617-86. https://doi.org/10.1128/CMR.00081-09

PMid:20610826

PMid:29301661

Laupland KB, Lyтtkainen O, Sgaard M, Kennedy KJ, Knudsen JD, Ostergaard C, Galbraith JC, Valiquette L, Jacobsson G, Popovich KJ. Evolving epidemiology of Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol 2013; 34: 1147-52. https://doi.org/10.1086/s1305976

PMid:24349331

Bennett JE, Dolin R, Blaser MJ. Mandell, Douglas, and Bennett's Principle and Practice of Infectious Diseases. 8th ed. Philadelphia (USA): Elsevier Saunders; 2015. Chapter 201. Streptococcus pneumoniae; p.2310-7.

EARS-Net: European Centre for Disease Prevention and Control (ECDC), Antimicrobial resistance interactive database (Internet), Stockholm (Sweden): ECDC (cited 2015 Oct 22). Available from http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/data Pages/database.aspx.

Sliпczuk L, Codolosа JN, Davila CD, Romero-Coral A, Yun J, Pressman GS, Figueredo VM. Infective endocarditis epidemiology over five decades: a systematic review. PLoS One 2013; 8: e82665. https://doi.org/10.1371/journal.pone.0082665

PMid:2349331

PMid:3857279

Cordonnier C, Buzyn A, Leverger G, Herbrecht R, Hauвul M, Leclercq R, Bastjuг-Garin S; Club de Réflexion sur les Infections Encoмéthologie. Epidemiology and risk factors for gram-positive coccal infections in neutropenia: toward a more targeted antibiotic strategy. Clin Infect Dis 2003; 36: 149-58. https://doi.org/10.1086/s134535

PMid:12522746

Pfпler MA, Jones RN, Marshall SA, Edmond MB, Wenzel RP, Nosocomial streptococcal blood stream infections in the SCOPE Program: species occurrence and antimicrobial resistance. The SCOPE Hospital Study Group. Clin Microbiol Infect 1997; 29: 259-63. https://doi.org/10.1016/S0732-8899(97)00139-4

Pfпler MA, Marshall SA, Jones RN. In vitro activity of cefepime and ceftazidime against 197 nosocomial blood stream isolates of streptococci: a multicenter study. Diagn Microbiol Infect Dis 1997; 29: 273-6. https://doi.org/10.1016/S0732-8899(97)00139-4

Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S. National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol 2013; 34: 1-14. https://doi.org/10.1086/s10667887.2013.2321186

PMid:2321186

Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 2012; 10: 266-78. https://doi.org/10.1038/nrmicro2761

PMid:22421879

PMid:3562121

O’Driscoll TS, Cranck CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist 2015; 8: 217-30. PMid:26244026

PMid:4521680

Cattov J, Leclercq R. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicrob Chemother 2013; 68: 731-42. https://doi.org/10.1093/jac/dks469

PMid:23208830

Mieкt SK. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 2012; 54(Suppl 2): S184-190. https://doi.org/10.1086/s13203

PMid:17712115

Wabйy KA, Alagaden GA. Daptomycin failure in a neutropenic leukemia patient with Staphylococcus aureus meningoencephalitis. Lymphoma 2012; 53: 1610-2. https://doi.org/10.3109/10428194.2012.661051

PMid:22390617

Holston KC, Bessee D, Laronzo M, Yousif S, White P. Daptomycin use in neutropenic patients with documented gram-positive infections. Support Care Cancer 2014; 22: 7-14. https://doi.org/10.1007/s00520-013-1947-8

PMid:23975231

Barber GR, Laurentia J, Saeg R. A febrile neutropenic patient with Enterococcus gallinarum sepsis treated with daptomycin and gentamicin. Pharmacotherapy 2007; 27: 927-32. https://doi.org/10.1592/hincc.27.6.927

PMid:15472774

Yakov D, Lador A, Paul M, Leibovic I. Efficacy and safety of...
tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother 2011; 66: 1963-71. https://doi.org/10.1093/jac/dkr242 PMid:21685488

113. Prasad P, Sun J, Danner RL, Natafson C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis 2012; 54: 1699-709. https://doi.org/10.1093/cid/cis270 PMid:22467668 PMCID:FMC3404716

114. Alonso CD, Treadway SB, Hanna DB, Huff CA, Neofytos D, Carroll KC, Marr KA. Epidemiology and outcomes of Clostridium difficile infections in hematopoietic stem cell transplant recipients. Clin Infect Dis 2012; 54: 1053-63. https://doi.org/10.1093/cid/cis1305 PMid:22142859 PMCID:PMC3309884

115. Willems L, Porcher R, Lafaurie M, Casin I, Robin M, Xhaard A, Andreoli AL, Rodríguez-Otero P, Dhedin N, Socié G, Ribaud P, Perfaut de Latour R. Clostridium difficile infection after allogeneic hematopoietic stem cell transplantation: incidence, risk factors, and outcome. Blood Marrow Transplant 2012; 18: 1295-301. https://doi.org/10.1038/bmt.2012.020 PMid:22387347

116. Trifillo SM, Pj J, Mehta J. Changing epidemiology of Clostridium difficile-associated disease during stem cell transplantation. Blood Marrow Transplant 2013; 19: 405-9. https://doi.org/10.1038/bmt.2012.10.030 PMid:23219779

117. Chakrabarti S, Lees A, Jones SG, Milligan DW. Clostridium difficile infection in allogeneic stem cell transplant recipients is associated with severe graft-versus-host disease and non-relapse mortality. Bone Marrow Transplant 2000; 26: 871-6. https://doi.org/10.1038/sj.bmt.1701387

118. Bergogne-Bérézin E. Treatment and prevention of antibiotic associated diarrhea. Int J Antimicrob Agents 2000; 16: 521-6. https://doi.org/10.1016/S0924-8579(00)00293-5

119. Kyne L, Hansel MB, Polavaram R, Kelly CP. Health care costs and mortality associated with nosocomial diarrhea due to Clostridium difficile. Clin Infect Dis 2002; 34: 346-53. https://doi.org/10.1086/328260 PMid:11774082

120. McDonald LC, Kilgore GE, Thompson A, Owens RC Jr, Kazakova SV, Sambol SP, Johnson S, Gerding DN. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 2005; 353: 353-64. https://doi.org/10.1056/NEJMoa051590 PMid:16322602

121. Loo VG, Forner R, Miller MA, Oughton M, Libman MD, Michaud H, Sun J, Merry L, Khandji A, Mermel LA, Morgan H, Miller MA, Killgore G, Thompson A, Owens RC Jr. Prospective randomised trial of metronidazole versus vancomycin as empiric therapy for Clostridium difficile-associated diarrhea. J Antimicrob Chemother 2005; 55: 602-9. https://doi.org/10.1093/jac/dki391 PMid:15923539

122. Teasley DG, Gerdin DN, Olson MM, Peterson LR, Gebhard RL, Schwartz MJ, Lee JT Jr. Prospective randomised trial of metronidazole versus vancomycin for Clostridium difficile-associated diarrhea and colitis. Lancet 1983; 2: 1043-6. https://doi.org/10.1016/S0140-6736(83)90129-X

123. Wensch C, Parschak B, Hasenbühl M, Hirsch AM, Graninger W. Comparison of vancomycin, teicoplanin, metronidazole, and fusidic acid for the treatment of Clostridium difficile-associated diarrhea. Clin Infect Dis 1996; 22: 813-8. https://doi.org/10.1093/clinids/22.5.813 PMid:8722937

124. Musher DM, Aslam S, Logan N, Nallacheru S, Bhula I, Borchert F, Hamill RJ. Relatively poor outcome after treatment of Clostridium difficile colitis with metronidazole. Clin Infect Dis 2005; 40: 1586-90. https://doi.org/10.1086/403111 PMid:15899354

125. Wany M, Pepin J, Fang A, Kilgore G, Thompson A, Brazier J, Frost E, McDonald LC. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 2005; 366: 1079-84. https://doi.org/10.1016/S0140-6736(05)67420-X

126. Al-Nasser WM, Al-Neaem HG, Al-Nashiri MN, Abu Alwaf A, Al-Matrawny KE, Marzouk M, Donskey CJ. Comparison of clinical and microbiological response to treatment of Clostridium difficile-associated disease with metronidazole and vancomycin. Clin Infect Dis 2008; 47: 56-62. https://doi.org/10.1086/588293 PMid:18491964

127. Zar FA, Bakkanagari SR, Moorthi KM, Davis MB. A comparison of vancomycin versus metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis 2007; 45: 302-7.
142. Boyce JM, Pittet D. Guideline for hand hygiene in health-care settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/ SHEA/APIC/IDSA Hand Hygiene Task Force. Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Infectious Diseases Society of America. MMWR Recomm Rep 2002; 51(RR-16): 1-45, quiz CE1-4.

143. Yokoe D, Casper C, Dubberke E, Lee G, Mu-oz P, Palmore T, Sepkowitz K, Young JA, Donnelly JP; Center for International Blood and Marrow Transplant Research; National Marrow Donor Program; European Blood and Marrow Transplant Group; American Society of Blood and Marrow Transplantation; Canadian Blood and Marrow Transplant Group; Infectious Disease Society of America; Society for Healthcare Epidemiology of America; Association of Medical Microbiology and Infectious Diseases Canada; Centers for Disease Control and Prevention. Infection prevention and control in health-care facilities in which hematopoietic cell transplant recipients are treated. Bone Marrow Transplant 2009; 44: 495-507. https://doi.org/10.1038/bmmt.2009.261 PMid:19861984

144. Sehulster L, Chinn RY; CDC. HICPAC; Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm Rep 2003; 52(RR-10): 1-42. PMid:12836624

145. Centers for Disease Control and Prevention (CDC). Guidance for control of infections with carbapenem-resistant Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep 2009; 58: 256-60. PMid:19300408

146. Tuchô G, Joly LM, Guibert M, Zazzo JF. Detection and treatment of antibiotic-resistant bacterial carriage in a surgical intensive care unit: a 6-year prospective survey. Infect Control Hosp Epidemiol 2005; 26: 161-5. https://doi.org/10.1086/505251 PMid:15756887

147. Reddy P, Malczynski M, Obias A, Reiner S, Jin N, Huang J, Noskin GA. Zembower T. Screening for extended-spectrum beta-lactamase-producing Enterobacteriaceae in high-risk patient and in surgical intensive care units. Int J Antimicrob Agents 2007; 35: 486-52. https://doi.org/10.1016/j.ijantimicag.2007.05.003 PMid:17806048

148. Gardam MA, Burrows LL, Kus JV, Brunton J, Low DE, Conly JM, Humar A. Is surveillance for multidrug-resistant enterobacteriaceae an effective infection control strategy in the absence of an outbreak? J Infect Dis 2002; 186: 1574-60. https://doi.org/10.1086/345921 PMid:12447761

149. Siegel JD, Rhinehart E, Jackson M, Chiarello L; Healthcare Infection Control Practices Advisory Committee. Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control 2007; 35(10 Suppl 2): S165-93. https://doi.org/10.1016/j.ajic.2007.04.018

150. Yeh KM, Sui LK, Chang JC, Chang FY. Vancomycin-resistant enterococci (VRE) carriage and infection in intensive care units. Microb Drug Resist 2004; 10: 177-83. https://doi.org/10.1089/1076629041310091 PMid:15256034

151. Muto CA, Giannetta ET, Durbin LJ, Simonon BM, Farr BM. Cost-effectiveness of perirectal surveillance cultures for controlling vancomycin-resistant Enterococcus. Infect Control Hosp Epidemiol 2002; 23: 429-35. https://doi.org/10.1086/340208 PMid:12186207

152. Jernejan JA, Titus MG, Groselch DH, Getchell WC, Fijen JW, Oostdijk EA, Kesecioglu J, Schultz MJ, Visser CE, de Jonge E, Ahufinger I, Serrano J, Madrtd MG, Barraud A, Ciullo I, Amadori F, Di Paolo A, Ripoli A, Lewis R, Rossolini GM, Tascini C, Lombardini L, Majolino I, Farina C,uzzaro F, Rossolini GM, Rambaldi A, Management of carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in hospital and ICU settings. A randomized clinical consensus statement. Haematologica. 2015; 100: e373-6. https://doi.org/10.3324/haematol.2015.125484 PMid:25862702

153. Metan G, Akova M. Reducing the impact of carbapenem-resistant Enterobacteriaceae on vulnerable patient groups: what can be done? Curr Opin Infect Dis 2016; 29: 555-60. https://doi.org/10.1097/QCO.0000000000000313 PMid:27584888

154. Averbach D, Engelhard D. Gram-Negative Bacterial Infections After Hematopoietic Stem Cell or Solid Organ Transplantation. In: Ljungman P, Snydman D, Boechck E (eds). Transplant Infections. Springer International Publishing, Switzerland. 2016: 357-80. https://doi.org/10.1007/978-3-319-28797-3_21

155. Machuca I, Gutiérrez-Gutiérrez B, Pérez Cortés S, Gracia-Ahuifying I, Serrano J, Madrígao MG, Barcal A, Rodríguez-López F, Rodríguez-Ba-o J, Torre-Cisneros J. Oral decontamination with aminoglycosides is associated with lower risk of mortality and infections in high-risk patients colonized with colistin-resistant, KPC-producing Enterobacteriaceae. https://doi.org/10.1016/j.dcm.2016.07.032 PMid:12173517

156. Oren I, Sprecher H, Finkelstein R, Hadad S, Neuberger A, Husseins K, Raz-Pastreaur A, Lavi N, Saad E, Heng I, Horowitz N, Avivi I, Benyamine N, Fineman R, Orfan Y, Haddad N, Rowe JM, Zuckerman T. Eradication of carbapenem-resistant Klebsiella pneumoniae: a single center experience with oral gentamicin for the eradication of carrier state. Bone Marrow Transplant 2011; 45(12): 1226-30. https://doi.org/10.1038/bmmt.2010.279 PMid:21057549

157. Saudel-Odes L, Polackeh H, Peled N, Riesenberg K, Schlaeffe F, Trabelsi Y, Eskira S, Yousef B, Smolykov R, Codish S, Borer A. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae infection. Control Infec Hosp Epidemiol 2012; 33: 14-9. https://doi.org/10.1086/656206 PMid:22173517

158. Oren I, Sprecher H, Finkelstein R, Hadad S, Neuberger A, Husseins K, Raz-Pastreaur A, Lavi N, Saad E, Heng I, Horowitz N, Avivi I, Benyamine N, Fineman R, Orfan Y, Haddad N, Rowe JM, Zuckerman T. Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: A prospective controlled trial. Cont Infec Hosp Epidemiol 2013; 34: 1167-72. https://doi.org/10.1016/j.ijantimicag.2013.04.018 PMid:24274912

159. Bar-Youoseph H, Hussein K, Braun E, Paul M. Natural history and decolonization strategies for ESBL carbapenem-resistant Enterobacteriaceae carriage: systematic review and meta-analysis. Antimicrob Chemother 2017; 63(12): 2729-39. https://doi.org/10.1128/AAC.02622-17 PMid:27317444

160. Läbbert C, Faucheux S, Becker-Rux D, Laudi S, Dürbeck A, Busch T, Gasteimeier P, Eckmanns T, Rodloff AC, Kaisers UX. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience. Int J Antimicrob Agents 2013; 42: 565-70. https://doi.org/10.1016/j.ijantimicag.2013.08.008 PMid:24100228

161. Oostdijk EA, Kesecioglu J, Schultz MJ, Visser CE, de Jonge E, van Essen EH, Bernards AT, Purmer I, Brinicon M, Bergmans D, van Tiel F, Bosch FH, Mascini E, van Gennip A, Bindels A, Jansz A, van Steveninck FA, van der Zweet CW, Fijen JW, Thijssen S, de Jong R, Oubidt J, Raben A, van der Vorn E, Koeman M, Rathsboth P, Rijkeboer A, Gruteke P, Hart-Sweet H, Peerbooms P, Winsier LJ, van Elsacker-Niele AM, Demmendaal K, Brandenbo M, Smidt A, AM, Strebelt A, MJ. Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: a randomized clinical trial. JAMA 2014; 312: 1429-37. https://doi.org/10.1001/jama.2014.7247 PMid:25271544

162. Boscini C, Shtron F, Flammini S, Tartaglia E, Leonardi A, Ciullo I, Amadon F, Di Paolo A, Ripoli A, Lewis R, Rossolini GM, Menichetti F, GENGUT Study Group. Oral gentamicin gut decontamination for prevention of KPC-producing Klebsiella
pneumoniae infections: relevance of concomitant systemic antibiotic therapy. Antimicrob Agents Chemother 2014; 58: 1972-

6. https://doi.org/10.1128/AAC.02283-13
PMid:24419337 PMCID:PMC4023775