Human T Cells Respond to Mouse Mammary Tumor Virus-encoded Superantigen: Vβ Restriction and Conserved Evolutionary Features

By Nathalie Labrecque,* Helen McGrath,* Meena Subramanyam,§ Brigitte T. Huber,§ and Rafick-Pierre Ségaly*‡

From the *Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, H2W 1R7; the ‡Département de Microbiologie et Immunologie, Université de Montréal, Montréal, H3C 3J7, Canada; and the §Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111

Summary

Mouse mammary tumor virus (MMTV)-encoded superantigens (SAGs) influence the murine T cell repertoire and stimulate a strong mixed lymphocyte response in vitro. These SAGs are encoded by the open reading frame of the 3' long terminal repeat of MMTV, termed MMTV SAGs. The T cell response to MMTV SAGs is Vβ restricted and requires expression of the class II molecules of the major histocompatibility complex (MHC) on the presenting cells. While human T cells respond to bacterial SAGs, it is not known if human T cells or human MHC class II molecules can interact with MMTV SAGs. A fibroblastic cell line expressing the human MHC class II molecule HLA-DR1 and the Mtv-7 sag gene encoding Mls-1 was used to stimulate human T cells. We show here that human T cells efficiently proliferate in response to Mls-1 presented by HLA-DR1. This T cell response was inhibited by mAbs directed against CD4 or MHC class II molecules but not by mAbs specific for CD8 or MHC class I molecules. Moreover, the response to Mls-1 was limited to human T cells expressing a restricted set of T cell receptor Vβ chains. Human T cells expressing Vβ12, 13, 14, 15, and 23 were selectively amplified after Mtv-7 sag stimulation. Interestingly, these human Vβs share the highest degree of homology with the mouse Vβs interacting with Mls-1. These results show a strong evolutionary conservation of the structures required for the presentation and the response to retrovirally encoded endogenous SAGs, raising the possibility that similar elements operate in humans to shape the T cell repertoire.

Superantigens (SAGs) are a new class of Ags that stimulate a large number of human and mouse T cells expressing specific variable regions of the TCR β chain (1-3). The response of T cells to SAG requires the expression of MHC class II molecules on the cell surface of the APCs (1, 4, 5). Unlike nominal antigens, SAGs are not processed into peptides by APCs. Two sets of molecules have been shown to exhibit the properties of SAGs. Bacterial toxins expressed by Staphylococcus and Streptococcus bacteria stimulate large number of T cells after their interaction with MHC class II molecules. More recently, protein products encoded within the 3' LTR of mouse mammary tumor virus (MMTV) were shown to be directly associated with Mls SAG reactivity (6-12).

In the mouse, molecules of the Mls loci are directly involved in shaping the TCR repertoire (13-15). Genetic analysis of recombinant mouse strains established a direct correlation between endogenous MMTV integrants and the expression of Mls Ags (6-8). Moreover, exogenous MMTVs were also shown to be directly responsible for the deletion of specific sets of Vβs (9-12). Transfection of class II+ cells with the sag gene of endogenous or infectious MMTVs is sufficient to stimulate T cells expressing particular Vβs (16-18). Mtv-7 sag encodes Mls-1, which stimulates in vitro and deletes in vivo T cells expressing the murine Vβ6, 7, 8.1, and 9 chains (14, 15, 19).

Retroviruses of the MMTV family are responsible for mammary tumors (20). Recent reports have shown that the SAG encoded by infectious MMTV is directly responsible for mammary tumors (21). Other reports have suggested a role for SAGs in autoimmune diseases and immunodeficiencies both in mouse and in human (22-26). While human T cells readily respond to bacterial SAGs, little is known about their capacity to respond to virally encoded SAGs. One recent report has suggested that the rabies virus nucleoprotein can stimulate human T cells in a Vβ-specific fashion (27). It becomes important to determine whether human MHC class II mole-

1 Abbreviations used in this paper: MMTV, mouse mammary tumor virus; RT, reverse transcriptase; SAG, superantigen.
cules can present or human TCR β chains can respond to retrovirally encoded SAGs.

To analyze this question, we have used murine fibroblasts expressing the human MHC class II molecule HLA-DR1 and the Mtv-7 sag Mls-1 to stimulate human T cells in vitro. Specific stimulation of human T cells bearing a restricted number of Vβ gene segments was shown. Moreover, the TCR Vβs expressed on the human T cells responding to Mls-1 exhibited a strong degree of homology to the mouse Vβs, which are stimulated by Mls-1.

Materials and Methods

**Antibodies.** mAbs against the human TCR β chain used in this study were S511 (VB12.2) (28), 3D11 (VB5) (29), Hut-78 (VB1) (O. Kanagawa, personal communication), MX6 (VB8) (29), OT145 (Vβ6.7a) (30, 31), MKB-1 (Vβ9) (O. Kanagawa, personal communication), C1 (Vβ17) (32) and MH3-2 (Vβ5) (O. Kanagawa, personal communication).

L243 is an anti-HLA-DR mAb, BL4 and OKT4 are anti-human CD4 mAbs, W6-32 in an anti-human MHC class I mAb, OKT8 is an anti-human CD8, and Leu-4 is a human CD3-specific mAb. Hybridomas were obtained from American Type Culture Collection (Rockville, MD).

**Human T Cell Purification.** T cells were purified from peripheral blood of DR1* individuals using rosetting with SRBC (Quelab, Montréal, Québec, Canada). Briefly, peripheral blood was diluted in PBS and underlayered with Ficol-Hypaque (Pharmacia, LKB Biotechnology AB, Uppsala, Sweden). After centrifugation, the interface was collected and diluted with an equal volume of PBS. Cells were washed and resuspended at 5 x 10^6 cells/ml in PBS. They were then incubated at 1:1 (vol/vol) ratio with FCS (Gibco Laboratories, Grand Island, NY) preabsorbed with SRBC and 2-aminopyridine to block detergent (Sigma Chemical Co., St. Louis, MO) treated SRBC (1:20) for 10 min at 37°C. Cells were then spun down and incubated for an additional 1 h on ice. The supernatant was aspirated and the pellet was resuspended in 4 ml of RPMI (Gibco Laboratories) supplemented with 10% FCS (Gibco Laboratories). Cells were separated on Ficoll. SRBC within the T cell pellet were lysed with 5 ml of buffer containing 0.15 M NH₄Cl, 9.4 M Na₂CO₃, 0.1 mM EDTA for 2-5 min at room temperature. Cell suspensions were then washed and diluted. The Ficoll interface was kept to be used as a source of autologous feeder cells.

The T cell and non-T cell fractions were stained with anti-CD3 (Leu-4-FITC) and anti-HLA-DR (L243-bio) mAbs to determine the degree of purity. T cell purity was always >98%, while the non-T cell fraction contained <20% of T cells as confirmed by FACS® analysis (Becton Dickinson & Co., Mountain View, CA).

**Transfection of Mtv-7 sag in DAP DR1 Fibroblasts.** Fibroblasts expressing HLA-DR1 molecules were transfected using the calcium phosphate precipitation technique (33) with the Mtw7 sag gene cloned into the eukaryotic expression vector pHA~Aprl-neo (Gibco Laboratories). Cells were separated on Ficoll. SRBC within the T cell pellet were lysed with 5 ml of buffer containing 0.15 M NH₄Cl, 9.4 M Na₂CO₃, 0.1 mM EDTA for 2-5 min at room temperature. Cell suspensions were then washed and diluted. The Ficoll interface was kept to be used as a source of autologous feeder cells.

The T cell and non-T cell fractions were stained with anti-CD3 (Leu-4-FITC) and anti-HLA-DR (L243-bio) mAbs to determine the degree of purity. T cell purity was always >98%, while the non-T cell fraction contained <20% of T cells as confirmed by FACS® analysis (Becton Dickinson & Co., Mountain View, CA).

**Transfection of Mtv-7 sag in DAP DR1 Fibroblasts.** Fibroblasts expressing HLA-DR1 molecules were transfected using the calcium phosphate precipitation technique (33) with the Mtv-7 sag gene cloned into the eukaryotic expression vector pHA~Aprl-neo (Gibco Laboratories). Cells were separated on Ficoll. SRBC within the T cell pellet were lysed with 5 ml of buffer containing 0.15 M NH₄Cl, 9.4 M Na₂CO₃, 0.1 mM EDTA for 2-5 min at room temperature. Cell suspensions were then washed and diluted. The Ficoll interface was kept to be used as a source of autologous feeder cells.

**Human T Cell Stimulation with Mtv-7 sag.** Purified human T cells were stimulated with DAP DR1 fibroblasts expressing the cDNA encoding the 3' open reading frame (ORF) of Mtv-7 in the presence or absence of autologous feeder cells. Controls included DR1 cells that had not been transfected with the gene encoding Mtv-7 sag. 6 x 10^5 T cells were cultured with mitomycin C (Sigma Chemical Co.) -treated DR1* or DR1* Mtv-7 sag* DAP fibroblasts (100 µg/ml of mitomycin C for 10^5 cells, 1 h at 37°C) at different effector/stimulator ratios in 96-well round-bottomed plates. Cultures were carried out at 37°C, 5% CO₂ in complete RPMI supplemented with 10% FCS. Usually, 5 x 10^5 autologous irradiated feeder cells (5,000 rad) were added in each well. After 3 d of coculture, 1 µCi of [3H]Tdr (DuPont Co.-New England Nuclear, Boston, MA) was added for 18 h. Cells were harvested and [3H]Tdr incorporation was determined using a β plate counter (Pharmacia, LKB Biotechnology AB).

**mAb Inhibition of Mls-1 Stimulation.** 6 x 10^5 T cells were cocultured with 2 x 10^5 mitomycin C-treated DR1* Mls-1* 3A5 DAP cells in the presence of 5 x 10^5 autologous irradiated (5,000 rad) feeder cells. mAbs against CD4 (BL4), CD8 (OKT8), HLA-DR (L243), or MHC class I (W6-32) were added at 2, 0.2, and 0.02 µg/ml. T cell proliferation was measured after 72 h incubation by [3H]Tdr incorporation as described above. All of the mAbs used in these experiments were purified on protein G columns (Pharmacia, LKB Biotechnology AB).

**Cell Expansion after Mls-1 or PHA Stimulation.** Mls-1 stimulation was performed as described in the previous section at an effector/stimulator ratio of 3:1. For PHA stimulation, 10^6 T cells were cultured with 2 x 10^5 irradiated autologous feeder cells and 1 µg/ml PHA (Wellmark Diagnostics, Guelph, Ontario, Canada) in a final volume of 2 ml in 24-well plates. After 3-4 d of stimulation, recombinant human IL-2 (10 U/ml) (Cetus Corp., Emoryville, CA) was added. T cells were expanded in recombinant IL-2 for 10-14 d.

**Cytometric Analysis of the Vβ Repertoire after Mls-1 or PHA Stimulation.** Two-color flow cytometric analysis was performed, 10 d after stimulation, using CD4+ and TCR Vβ-specific mAbs. Briefly, 2.5 x 10^6 cells were first incubated with saturating concentrations of anti-Vβ mAbs for 30 min at 4°C in complete medium. Cells were then washed with PBS and stained using a 1:100 dilution of goat anti-mouse Ig coupled to PE (GAMPE, Southern Biotechnology Associates, Inc., Birmingham, AL). Cells were incubated for 30 min at 4°C and washed in PBS. Normal mouse serum was then added for 15 min at 4°C to block the GAMPE antibodies. Cells were washed and counterstained with FITC-conjugated anti-CD4 mAb (OKT4-FITC, 1/200 dilution) for 30 min at 4°C. Stainings were analyzed on a FACSscan® (Becton Dickinson & Co.) using two-color cytofluorometry. 10^5 live cells were gated using forward and 90° light scatter. Results are expressed on a four-decade logarithmic scale for each two-color histogram.

PCR Primers. PCR primers were synthesized on an oligonucleotide synthesizer (Applied Biosystem Canada Inc., Mississauga, Ontario, Canada). Primer sequences of the TCR Vβ-specific oligonucleotides are listed in Fig. 1. The G-C content was ∼40-60%. The specificity of the different Vβ oligonucleotides was determined by crosshybridization. The oligonucleotide sequences of the primers for the TCR α and β chain constant regions are: 3' Cβ, 5' TCT ACC CCA GGC CTC GGC GCT GAC GAT 3'; 5' Cc~

ACC CCA GGC CTC GGC GCT GAC GAT 3'; 3' Ccr 5' AGC GGC CTC GGC GCT GAC GAT 3'; 5' Cc~

CGC AGC GTC ATG AGC AGA TTA AAC CCG 3'; 5' Cc~

for the TCR αL and fl chain constant regions are: 3' Cfl, 5' TCT ACC CCA GGC CTC GGC GCT GAC GAT 3'; 5' Cc~

3' Ccr 5' AGC GGC CTC GGC GCT GAC GAT 3'; 5' Cc~

CGC AGC GTC ATG AGC AGA TTA AAC CCG 3'; 5' Cc~

GTA TCT CCA AAC GCC TGC TCA TAC AAC CCG 3'; 5' Cc~

PCR Analysis of the Expressed Vβs Repertoire.** T cells were pelleted for RNA extraction 10 d after stimulation and expansion in recombinant IL-2 (Cetus Corp.). Total RNA was prepared using RNAzol (Cinna-Biotec, Houston, TX). 10 µg of total RNA was boiled 2-5 min and used to synthesize the first-strand cDNA by adding 5 µg of random hexamer oligonucleotides and 60 U of Moloney leukemia virus reverse transcriptase (RT) (Life Sciences,
Inc., St. Petersburg, FL). The RT reaction was performed in the presence of RNase inhibitor, 1 μM dNTPs (Pharmacia, LKB Biotechnology AB) in a buffer containing 10 mM Tris-HCl (pH 8.3), 6 mM MgCl₂, and 40 mM KCl at 42°C for 45 min. RT and nucleotides were then added and followed by a second incubation period of 45 min. The RT reaction was stopped by heating the mixture at 65°C for 10 min. The CDNA preparation was precipitated and used for PCR Vβ analysis. The different Vβs were amplified using a 5’ Vβ-specific primer and a common 3’ CB primer. 5’ and 3’ CaX primers were included in each reaction tube as internal control. The 3’ CB and 3’ CaX primers were radiolabeled with γ-[32P]ATP (30,000 Ci/mmol); 50 pmol of oligonucleotide was incubated with 4 μl of γ-[32P]ATP and 20 μl of T4 polynucleotide kinase (Pharmacia, LKB Biotechnology AB) in the manufacturer’s buffer for 1 h at 37°C. Free nucleotides were eliminated using a G-25 superfine Sephadex column. PCR amplification was performed with 25 pmol of 5’ Vβ, 5’ CaX, and a mixture of cold and radiolabeled 3’ CB (22 pmol of cold and 3 pmol of radiolabeled oligonucleotide) and 3’ CaX (25 pmol of cold and 0.3 pmol of radiolabeled oligonucleotide). The PCR reaction was carried out using 200 μM dNTPs, 2 μM Taq polymerase (Perkin-Elmer Corp., Norwalk, CT) in 1x Taq buffer (10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl₂, and 0.01% [wt/vol] gelatin) in a final volume of 100 μl. Amplification was performed for 30 s at 94°C, 45 s at 55°C, and 60 s at 72°C for 25 cycles. Half the volume of each PCR reaction was loaded and separated on a 10% PAGE containing 7 M urea. Gels were exposed overnight on Phosphorlmager screens (Molecular Dynamics, Inc., Sunnyvale, CA). Quantitation of the radioactive signal for each Vβ was carried out using the Imagequant software and the Phosphorlmager (Molecular Dynamics, Inc.).

![Figure 1](https://via.placeholder.com/150)

**Figure 1.** Description and sequence of human TCR Vβ-specific oligonucleotide primers. *From reference 44.

### Results

**Mls-1-expressed DR1⁺ DAP Fibroblasts Stimulate the Proliferation of Human T Cells.** To determine whether human T cells are able to respond to Mtv-7 SAG Mls-1, the Mtv-7 sag gene was transfected into DR1⁺ DAP fibroblasts. Expression of Mtv-7 sag transcripts was confirmed by Northern blot analysis (Subramanyam, M., B. McLellan, N. Labrecque, R.-P. Sekaly, and B. T. Huber, manuscript submitted for publication). The human MHC class II molecule HLA-DR1 efficiently presented the Mtv-7 SAG to murine T cell hybridomas expressing the appropriate TCR Vβs (Vβ6 and 8.1) (Subramanyam, M., et al., manuscript submitted for publication). These DAP cells were then used to stimulate purified populations of human T cells obtained from HLA-DR1⁺ individuals. Fig. 2 A shows a 30-fold increase in [3H]Tdr incorporation 72 h after the addition of purified human T cells to mitomycin C-treated DR1⁺ Mls-1⁺ DAP transfectants. T cells cultured in the presence of DAP cells expressing only DR1 did not show such an increase. Proliferation, after 72 h of coculture, was dependent on the number of DR1⁺ Mls-1⁺ APCs. Significant proliferation, fivefold over DAP DR1 stimulation, was still observed at the lowest effector/stimulator cell ratio tested (10:1).

![Figure 2](https://via.placeholder.com/150)

**Figure 2.** Stimulation of human purified T cells by DR1⁺ Mls-1⁺ DAP cells. (A) and (B) Proliferative response of human T cells stimulated with DR1⁺ (DAP cells transfected with HLA-DR1) and DR1⁺ Mls-1⁺ 3A5 (DAP cells transfected with HLA-DR1 as well as mtv-7 sag gene). Stimulation was performed in the presence (A) or absence (B) of 10² irradiated autologous feeder cells at different effector/stimulator ratios. (C) Kinetics of human T cell response to Mls-1. Proliferative response of human T cells stimulated with DR1⁺ alone, DR1⁺ Mls-1⁺ 3A5 (DR1 mtv-7 3A5), or DR1⁺ Mls-1⁺ 3B2 (DR1 mtv-7 3B2) DAP cells (effector/stimulator ratio, 1:3) in the presence of 10² irradiated autologous feeder cells, measured after 48 and 72 h. Bars represent the mean of triplicate values of [3H]Tdr incorporation.
DAP cells transfected with class II molecules are poor stimulator cells for both allogeneic and xenogeneic responses (35). For this purpose, human autologous irradiated non-T cells were added to the coculture, which increased human T cell proliferation by at least twofold (Fig. 2 B). The kinetics of the human T cell response to Mls-1 are comparable to what is observed when the same human T cells are stimulated with bacterial SAGs (data not shown). After 48 h of stimulation the T cell response was very low (fivefold), however, a considerable increase (30-fold) is observed by 72 h (Fig. 2 C). Similar kinetics were observed when two different DR1+ Mls-1+ DAP transfectants were used (Fig. 2 C).

Presentation of Mtv-7 SAG to Human T Cells Is Inhibited by Anti-CD4 and Anti-HLA-DR but Not by Anti-CD8 and Anti-MHC Class I mAbs. In the murine system, the Mls response is blocked by antibodies directed to MHC class II molecules (36, 37). To further confirm the similarity of the human T cell response to Mls-1, mAb inhibition experiments were performed. Anti-HLA-DR mAb (L-243) completely inhibited T cell proliferation. This inhibition occurred in a dose-dependent fashion, as shown in Fig. 3, confirming the requirement for MHC class II molecules for an Mtv-7 SAG-specific response. Murine T cells responding to Mls-1 are mostly CD4+, and CD4-specific mAbs significantly inhibit this response (5). The human T cell response to DR1+ Mls-1+ cells was inhibited in a dose-dependent manner when anti-CD4 (BL-4) mAb was added to the culture (see Fig. 3). However, T cell proliferation was still observed (fourfold over background) at the highest concentration of CD4-specific mAb (2 μg/ml), suggesting that CD4+ T cells were also responding to Mls-1. Recent reports have demonstrated that murine CD8+ T cells can also proliferate in response to Mls-1 (38, 39). Interestingly, anti-CD8 (OKT8) mAb does not affect the T cell response (Fig. 3), as was previously shown to be the case for murine CD8+ T cells responding to Mls-1 (H. R. McDonald, personal communication). As predicted, anti-MHC class I (W6-32) mAb had no effect on Mls-1 stimulation of human T cells (Fig. 3). These results further confirm the parallel between human and murine T cell responses to retroviral SAGs.

Mls-1 Presentation by DR1+ DAP Fibroblasts to Human T Cells Increases the Number of TCR Vβ12-expressing T Cells. The T cell response to bacterial and retroviral SAGs is restricted to T cells expressing only specific sets of Vβ regions. To confirm that the response of human T cells to Mtv-7 sag was characteristic of a SAG response, human T cells responding to Mls-1 presented by DR1+ DAP were stained with a panel of TCR Vβ-specific mAbs. Human T cells were purified from peripheral blood of DR1+ individuals to avoid an allogeneic response. Figs. 4 and 5 represent the results of the cytofluorometric analysis of the Vβ usage after stimulation with PHA, DR1+ DAP, DR1+ Mls-1+ 3A5 DAP, and

Figure 3. mAb inhibition of Mls-1 stimulation. Mls-1 stimulation of human T cells is inhibited by anti-CD4 and anti-MHC class II mAbs, but not by anti-CD8 and anti-MHC class I mAbs. T cells were stimulated with DR1+ Mls-1+ 3A5 DAP cells at an effector/stimulator ratio of 1:3 in the presence or absence of anti-CD4 (BL-4) anti-CD8 (OKT8), anti-HLA-DR (L-243), or anti-MHC class I (W6-32)-specific mAbs. mAb concentrations ranged between 0.02 and 2 μg/ml. Bars represent the mean of triplicate values of [3H]TdR incorporation.

Figure 4. Cytofluorometric analysis of TCR Vβ usage by human T cells in response to Mls-1 presented by DR1+ DAP APCs. T cells were stained with a panel of human Vβ-specific mAbs, followed by goat anti-mouse Ig antiserum (PE conjugated), and then counterstained with an anti-CD4-specific mAb (FITC conjugated) (OKT4). For simplification only contour graphs for CD3, Vβ12, and Vβ6.7a are shown. Contour graphs represent Vβ expression on CD4+ and CD4- T cells after PHA (A-C), DR1+ (D-F), DR1+ Mls-1+ 3A5 (G-I), and DR1+ Mls-1+ 3B2 stimulation (J-L). The percentage of CD4+ (top right) and CD4- (top left) are indicated. 105 viable cells, gated by light scatter, were accumulated for each contour graph. Results are illustrated on a four-decade logarithmic scale.
DR1+ Mls-1+ 3B2 DAP. A similar profile in Vβ usage was observed when T cells were stimulated with PHA (Fig. 4, A-C) or with DR1+ fibroblasts (Fig. 4, D-F). For simplification only the CD3, Vβ12, and Vβ6.7 stainings are shown in Fig. 4. Most if not all the Vβs were expressed at similar levels when purified T cells were stimulated with PHA or cocultured with DAP DR1 cells. Moreover, there was little difference in the Vβ profile in PHA-stimulated cells before IL-2 expansion (T cells were stained with the same mAbs 36 h after PHA stimulation) and after 10-14 d after expansion with IL-2 (data not shown). In contrast, flow cytometric analysis of Vβs expressed in human T cells stimulated with two independent clones of DR1+ Mls-1+ DAP transfected cells (Fig. 4, G-I and J-L) showed a significant increase in CD4+ Vβ12+ cells and in CD4+Vβ12+ cells (10-fold). This increase in Vβ12-expressing cells was accompanied by a decrease in the representation of the other TCR Vβs analyzed (Fig. 4 and 5).

This selective expansion of human T cells expressing TCR Vβ12 was reproducible in four separate experiments using two different clones of DR1+ Mls-1+ DAP transfected cells (see Fig. 5). The increase in Vβ12-expressing T cells ranged between 3- and 10-fold in these experiments. There was no detectable increase in any of the other Vβs analyzed in these four experiments, strongly confirming the specificity of the Vβ12 response. Fig. 6 illustrates the number of Vβ12+ CD4+ and Vβ12+CD4− cells responding to the two independently derived DR1+ Mls-1+ DAP transfected cells. Both CD4+ and CD4− Vβ12+ cells proliferated to the DR1+ Mls-1+ clones (Fig. 6), confirming previous results in the mouse. In three separate experiments the increase in CD4+ T cells was always higher than the one observed in CD4− T cells. This increase in CD4+ T cells was never greater than sixfold, while as previously mentioned, CD4+Vβ12+ cells were increased by up to 10-fold.

This relative increase in Vβ12+ cells was also accompanied by a highly significant increase in the absolute number of T cells. Hence, while T cells cocultured together with DR1+ DAP cells and IL-2 proliferated marginally (threefold increase in cell number), there was a reproducible and strong proliferation to both DR1+ Mls-1+ transfectants (10-33-fold increase in cell number). This increase in cell number was almost parallel to the one observed in T cells stimulated with PHA (10-35 fold).

Selected Vβs Are Amplified after Mls-1 Stimulation as Determined by PCR Analysis of the TCR Repertoire. Flow cytometric analysis indicated that >90% of T cells responding to DR1+ Mls-1+ fibroblasts in IL-2-expanded cultures expressed the CD3 molecule on their surface. Since the total sum of Vβs expressed, as determined by flow cytometry, did not reflect the number of CD3+ cells observed, this suggested that other Vβs are responding to Mls-1. To further characterize the Vβs expressed by the T cells responding to DR1+ Mls-1+ DAP cells, a quantitative PCR analysis of the
whole Vβ repertoire was performed. Oligonucleotides specific for the 24 known Vβ families were used to analyze the expressed Vβ repertoire (see Fig. 1). This assay was carried out on PHA-stimulated T cells and on T cells cocultured with the two independently derived DR1+ Mls-1+ transfectants. Fig. 7 A shows the PCR Vβ profile of T cells stimulated with PHA and IL-2. Most of the Vβs are expressed. A different picture emerges from the analysis of the Vβ repertoire of T cells responding to the DR1+ Mls-1+ DAP clones, 3A5 (Fig. 7 B) and 3B2 (Fig. 7 C). Autoradiograms of the quantitative PCR analysis clearly show a strong amplification of a restricted number of Vβs (Vβ12, 13, 14, 15, 16, and 23) only in samples of T cells, stimulated with DR1+ Mls-1+. Most of the other Vβs, which were present in PHA-stimulated cells, were not amplified, demonstrating the preferential and specific expansion of T cells expressing the above-mentioned Vβs. Quantitative PCR analysis confirms results illustrated in Figs. 4–6, showing the increase in relative numbers of Vβ12+ cells. A 3–10-fold increase in the relative expression of the above Vβs was noted after coculture with DR1+ Mls-1+ cells.

Amplification of Vβ12, 13, 14, 15, and 23 was consistently seen in three different experiments using human T cells purified from three different DR1+ donors (see Fig. 8, B, D, and F) when compared with PHA (Fig. 8, A, C, and E). A 3–10-fold increase in the relative expression of the different Vβs was noted in three different individuals tested. Moreover, the two DR1+ Mls-1+ DAP clones reproducibly yielded a selective amplification of Vβ12, 13, 14, 15, and 23 (data not shown).

Discussion

In this report, we demonstrate specific stimulation of human T cells to the Mtv-7 sag presented by DR1+ DAP fibroblasts. This T cell stimulation was due to Mls-1 recognition since no T cell proliferation was seen in response to untransfected DR1+ fibroblasts. T cell responses were enhanced by the presence of autologous feeder cells. These cells may provide additional cytokines that help T cell responses. The response of human T cells bears all the characteristics of an Mls-1 stimulation (1); it is inhibited by anti-CD4 and anti-class II mAbs but not by anti-CD8 and anti-class I mAbs. Both CD4+ and CD4− T cells respond to DR1+ Mls-1+ DAP cells; however, unlike antigen-specific responses, proliferation of both T cell subsets is inhibited by DR-specific mAbs, while mAbs to CD8 and to MHC class I do not have an effect. Similar observations have already been described in human and murine T cell responses to bacterial SAGs (1, 40). The strong primary proliferative response of the human T cells to DR1+ Mls-1+ cells further confirms the parallel with a SAG response.

The hallmark of the response to a SAG is the TCR Vβ restriction of the responding T cells. Indeed, the human T cell response to Mtv-7 SAG presented by the human MHC class II molecules, HLA-DR1, is restricted to T cells expressing a limited set of Vβs, further confirming the parallel between human and murine T cell responses to this retrovirally encoded SAG. Cytofluorometric analysis, using a restricted set of TCR Vβ-specific mAbs, has enabled us to demonstrate that CD4+ Vβ12+ and CD4− Vβ12+ cells respond to DR1+ Mls-1+ cells. Quantitative PCR analysis of the TCR

![Figure 7](image-url)
Figure 8. Relative percentage of TCR Vβ usage as determined by PCR analysis. PCR Vβ reactions were subjected to electrophoresis and exposed on a PhosphorImager screen overnight. Radioactive signals were quantitated using a PhosphorImager. The raw PCR value is represented as ratio of the numerical value of the Vβ to the Cα signal (100x). The sum of raw PCR values for each Vβ/Cα combination was determined and used to calculate the relative percent of each Vβ. Represented is the relative percent of TCR Vβ usage after stimulation with PHA (A, C, and E) or DR1 + Mls-1 + 3βDAP (B, D, and F). A and B, C and D, and E and F represent pairwise quantitative PCR values of PHA- and Mls-1-stimulated cells from three different individuals.

repertoire confirmed that Vβ12 cells were expanded in T cells stimulated by DR1⁺ Mls-1⁺ cells. Moreover, other Vβs were also significantly expanded, i.e., Vβ13, 14, 15, and 23. As previously mentioned, the expansion ranged from 3- to 10-fold and was reproducible in three different individuals irrespective of their MHC haplotype. Interestingly, Vβ12 and Vβ17 were amplified by PCR only in two of the three individuals tested. Since the Vβ17 family contains only one member, it is possible that polymorphisms in Vβ17 genes analogous to the polymorphisms previously described for the murine Vβ8 and Vβ17 genes (41, 42) confer to some individuals the capacity to respond to Mls-1.

The human TCR Vβ gene products that recognize Mls-1 share the highest homology with the mouse Vβ chains known to be selectively expanded in Mls-1 stimulation (Vβ6, 7, 8.1, and 9). The human Vβ12 and 13 genes share ~70% homology in nucleotide sequences with the mouse Vβ1 gene, while the human Vβ15 gene is 70% homologous to the mouse Vβ7 gene (43). Only the human Vβ23 gene product does not possess strong homology (44–56%) with Mls-1-reactive murine Vβs (44). The homology of the human Vβs responding to Mls-1 with other murine Vβs that do not respond to Mls-1 varies between 40 and 55% (43).

The CDR4 of the TCR Vβ chain encompasses critical residues for the Mls-1 recognition. Critical residues for Mls-1 recognition include amino acids 73 and 74, as shown from Vβ polymorphisms in wild mice and by site-directed mutagenesis studies (41, 42, 45). Moreover, residue N74 in an Mls-1-nonreactive Vβ chain carries a potential glycosylation site. Interestingly, none of the Mls-1-reactive human Vβs have potential glycosylation sites in the CDR4. A consensus was derived that clearly shows that two residues, S68 and R69, are conserved in 13 of 14 Mls-1-reactive Vβs. A third highly conserved amino acid (F75) is present in almost all other Vβ sequences. In contrast, only 7 of 38 Mls-1-nonreactive Vβs bear these residues. The human Vβ23, which in our experiments responds very efficiently to DR1 Mtv-7 sag fibroblasts, does not carry these two residues in its CDR4 sequence. Since only one Vβ23 sequence is published so far, it is likely that polymorphisms in this Vβ gene could modify the reported Vβ23 sequence and conferring reactivity of Vβ23 to Mls-1.

The results presented here clearly indicate that human T cells carry all the structural features required for an efficient response to murine retrovirally endogenous encoded SAGs. Moreover, this response involves similar mechanisms to those required for the response of murine T cells to Mls-1. The ability of human T cells to respond to the Mtv-7 SAG and the efficient presentation of this SAG by human MHC class II molecules suggest the possibility that the human genome may contain such SAGs. Several reports have suggested polymorphisms within the human Vβ locus at the genomic level.
using Southern blots and Vβ-specific probes (30, 46, 47).

Some of these polymorphisms have been associated with disease (48). Using human T cell stimulation with Mls-1, it will be interesting to verify if the presence of polymorphisms or lack thereof in the coding sequence of Vβs is correlated with the response to viral SAGs. Such a demonstration would provide functional evidence for the role of polymorphisms within the TCR Vβ genes in the deletion of self-reactive Vβs or in the association of specific sets of TCR Vβs with autoimmune diseases. Indeed, Vβ14 has been associated in one study with rheumatoid arthritis (22), while other groups have failed to observe such a correlation (49–51). It is possible that polymorphisms in the Vβ14 gene could confer to certain individuals the capacity to respond to SAGs encoded by pathogens involved in rheumatoid arthritis. Our experiments provide a model that could be used to identify such functional polymorphisms in TCR Vβ chains.

References

1. Janeway, C.A., J. Yagi, P.J. Conrad, M.E. Katz, B. Jones, S. Vroegop, and S. Buxser. 1989. T-cell responses to Mls and bacterial proteins that mimic its behavior. Immunol. Rev. 107:61.
2. Herman, A., J.W. Kappler, P. Marrack, and A.M. Pullen. 1991. Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu. Rev. Immunol. 9:745.
3. Acha-Orbea, H., and E. Palmer. 1991. Mls-a retrovirus exploits the immune system. Immunol. Today. 12:356.
4. DeKruyff, R.H., S.-T. Ju, J. Laning, H. Cantor, and M.E. Dorf. 1986. Activation requirements of cloned inducer T cells. III. Need for two stimulator cells in the response of a cloned line to Mls determinants. J. Immunol. 137:1109.
5. Katz, M.E., and C.A. Janeway, Jr. 1985. The immunobiology of T cell responses to Mls locus disparate stimulator cells. II. Effects of Mls locus disparate stimulator cells on cloned, protein antigen specific, Ia restricted T cell lines. J. Immunol. 134:2064.
6. Frankel, W.N., C. Rudy, J.M. Coffin, and B.T. Huber. 1991. Linkage of Mls genes to endogenous mammary tumour viruses of inbred mice. Nature (Lond.). 349:526.
7. Dyson, P.J., A.M. Knight, S. Fairchild, E. Simpson, and K. Tomonari. 1991. Genes encoding ligands for deletion of Vβ11 T cells cosegregate with mammary tumour virus genomes. Nature (Lond.). 349:531.
8. Woodland, D.L., M. Pat Happ, K.J. Gollob, and E. Palmer. 1991. An endogenous retrovirus mediating deletion of αβ T cells? Nature (Lond.). 349:529.
9. Marrack, P., E. Kusznir, and J. Kappler. 1991. A maternally inherited superantigen encoded by a mammary tumour virus. Nature (Lond.). 349:524.
10. Held, W., A.N. Shaklov, G. Waanders, L. Scarpellino, R. Luetthy, J.-P. Kraehenbuhl, H.R. MacDonald, and H. Acha-Orbea. 1992. An exogenous mouse mammary tumor virus with properties of Mls-1 (Mtv-7). J. Exp. Med. 175:1623.
11. Papiernik, M., M. Pontoux, and S. Gisselbrecht. 1992. Acquired Mls-1-like clonal deletion in Mls-1 mice. J. Exp. Med. 175:453.
12. Acha-Orbea, H., A.N. Sharkhov, L. Scarpellino, E. Kolb, V. Muller, A. Vessaz-Shaw, R. Fuchs, K. Blochlinger, P. Rollini, J. Billotte, M. Sarafidou, H.R. MacDonald, and H. Diggelmann. 1991. Clonal deletion of Vβ14-bearing T cells in mice transgenic for mammary tumor virus. Nature (Lond.). 350:207.
13. Festenstein, H. 1973. Immunogenetic and biological aspects of in vitro lymphocyte allotransformation (MLR) in the mouse. Transplant. Rev. 15:62.
14. Kappler, J.W., U. Staerz, J. White, and P.C. Marrack. 1988. Self-tolerance eliminates T cells specific for Mls-modified products of the major histocompatibility complex. Nature (Lond.). 332:35.
15. MacDonald, H.R., R. Schneider, R.K. Lees, R.C. Howe, H. Acha-Orbea, H. Festenstein, R.M. Zinkernagel, and H. Hengartner. 1988. T-cell receptor Vβ use predicts reactivity and tolerance to Mls-encoded antigens. Nature (Lond.). 332:40.
16. Beutner, U., W.N. Frankel, M.S. Cote, J.M. Coffin, and B.T. Huber. 1992. Mls-1 is encoded by the long terminal repeat of mouse mammary tumor provirus mtv-7. Proc. Natl. Acad. Sci. USA. 89:5432.
17. Choi, Y., J.W. Kappler, and P. Marrack. 1991. A superantigen encoded in the open reading frame of the 3' long terminal repeat of mouse mammary tumor provirus mtv-7. J. Exp. Med. 174:1255.
18. Woodland, D.L., F.E. Lund, M.P. Happ, M.A. Blackman, E. Palmer, and R.B. Corley. 1991. Endogenous superantigen expression is controlled by mouse mammary tumor proviral loci. J. Exp. Med. 174:1255.
19. Happ, M.P., D. Woodland, and E. Palmer. 1989. A third T cell receptor Vβ gene encodes reactivity to Mls-1 gene prod-
ucts. Proc. Natl. Acad. Sci. USA. 86:6293.
20. Heston, W.E., M.K. Deringer, and B. Andervont. 1945. Gene-milk agent relationship in mammary tumour development. J. Natl. Cancer Inst. 5:289.
21. Golovkina, T.V., A. Chervonsky, J.P. Dudley, and S.R. Ross. 1992. Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell. 69:637.
22. Paliard, X., S.G. West, J.A. Lafferty, J.R. Clements, J.W. Kappler, P. Marrack, and B.L. Kotzin. 1991. Evidence for the effects of a superantigen in rheumatoid arthritis. Science (Wash. DC). 253:325.
23. Imberti, L., A. Sottini, A. Bettinardi, M. Puoti, and D. Priml. 1991. Selective depletion in HIV infection of T cells that bear specific T cell receptor VB sequences. Science (Wash. DC). 254:860.
24. Laurence, J., A.S. Hodtsev, and D.N. Posnett. 1992. Superantigen implicated in dependence of HIV-1 replication in T cells on TCR VB expression. Nature (Lond.). 358:255.
25. Kanagawa, O., B.A. Nussrallah, M.E. Wiebenga, K.M. Murphy, H.C. Morse III, and F.R. Carbone. 1992. Murine AIDS superantigen reactivity of the T cells bearing VB5 T cell antigen receptor. J. Immunol. 149:9.
26. Hugin, A.W., M.S. Vaccihio, and H.C. Morse III. 1991. A virus-encoded "superantigen" in a retrovirus-induced immunodeficiency syndrome of mice. Science (Wash. DC). 252:424.
27. Lafon, M., M. Lafage, A. Martinez-Arends, R. Ramitez, F. Vuillier, D. Charron, V. Lottuet, and D. Scott-Alagara. 1992. Evidence for a viral superantigen in human. Nature (Lond.). 358:507.
28. Kappler, J., B. Kotzin, L. Herron, E.W. Gelfand, R.D. Bigler, A. Boylston, S. Carrel, D.N. Posnett, Y. Choi, and P. Marrack. 1989. VB-specific stimulation of human T cells by staphylococcal toxins. Science (Wash. DC). 244:811.
29. Carrel, S., P. Isler, M. Schreyer, A. Vacca, S. Salvi, L. Guiffre, and J.P. Mach. 1986. Expression of the idiotypic structure (Ti) from two leukemia T cell lines Jurkat and HPB-ALL. Eur. J. Immunol. 16:649.
30. Li, Y., P. Szabo, M.A. Robinson, B. Dong, and D.N. Posnett. 1990. Allelic variations in the cell receptor VB6.7 gene products. J. Exp. Med. 171:221.
31. Posnett, D.N., C.Y. Wang, and S.M. Friedman. 1986. Inherited polymorphism of the human T-cell antigen receptor detected by a monoclonal antibody. Proc. Natl. Acad. Sci. USA. 83:7888.
32. Friedman, S.M., M.K. Crow, J.R. Tumang, M. Tumang, Y. Xu, A.S. Hodtsev, B.C. Cole, and D.N. Posnett. 1991. Characterization of human T cells reactive against V817, the T cell receptor gene product expressed by a large fraction of MAM-reactive human T cells. J. Exp. Med. 174:891.
33. Graham, F.L., and A.J. van der Eb. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 52:456.
34. Gunning, P., J. Leavitt, G. Muscat, S.-Y. Ng, and L. Kedes. 1987. A human β-actin expression vector system directs high-level accumulation of antisense transcripts. Proc. Natl. Acad. Sci. USA. 84:4831.
35. Lechler, R.I., M.A. Norcross, and R.N. Germain. 1985. Qualitative and quantitative studies of antigen-presenting-cell function by using I-A-expressing L cells. J. Immunol. 135:2914.
36. Janeway, C.A., Jr., E.A. Lerner, J.M. Jason, and B. Jones. 1980. T lymphocytes responding to Mls locus antigens are Lyt-1-, 2- and I-A restricted. Immunogenetics. 10:481.
37. Debeul, P.C., D.H. Caillol, and F.A. Lemonnier. 1982. Analysis of unexpected inhibitions of T lymphocyte proliferation to a soluble antigen, allotagnt, and mitogen by unfragmented anti-1-Ak or anti-1-E/Ck monoclonal antibodies. J. Immunogenet (Oxf.). 9:11.
38. Webb, S.R., and J. Sprent. 1990. Response of mature unprimed CD8+ T cells to Mls+ determinants. J. Exp. Med. 171:953.
39. MacDonald, H.R., R.K. Lees, and Y. Chvatchko. 1990. CD8+ T cells respond clonally to Mls-1-encoded determinants. J. Exp. Med. 171:1381.
40. Marrack, P., and J. Kappler. 1990. The Staphylococcus enterotoxins and their relatives. Science (Wash. DC). 248:705.
41. Cazenave, P.-A., P.N. Marche, E. Jouvin-Marche, D. Voegtlé, F. Bonhomme, D. Bandeira, and A. Coutinho. 1990. VB17 gene polymorphism in wild-derived mouse strains: two amino acid substitution in the VB17 region greatly alter T cell receptor specificity. Cell. 63:717.
42. Pullen, A.M., T. Wade, P. Marrack, and J.W. Kappler. 1990. Identification of the region of T cell receptor β chain that interacts with the self-superantigen Mls-l. Cell. 61:1365.
43. Wilson, R.K., E. Lai, P. Concannon, R.K. Barth, and L.E. Hood. 1988. Structure, organization and polymorphism of murine and human T-cell receptor α and β chain gene families. Immunol. Rev. 101:149.
44. Ferradini, L., S. Roman-Roman, J. Azocar, H. Michalaki, F. Triebl, and T. Hercend. 1991. Studies on the human T cell receptor β variable region genes. II. Identification of four additional VB subfamilies. Eur. J. Immunol. 21:935.
45. Pullen, A.M., J. Bill, R.T. Kubo, P. Marrack, and J.W. Kappler. 1991. Analysis of the interaction site for the self-superantigen Mls-l+ on T cell receptor VB. J. Exp. Med. 173:1183.
46. Robinson, M.A. 1989. Allelic sequence variations in the hypervariable region of a T-cell receptor β chain: correlation with restriction fragment length polymorphism in human families and populations. Proc. Natl. Acad. Sci. USA. 86:9422.
47. Seboun, E., M.A. Robinson, T.J. Kindt, and S.L. Hauser. 1989. Insertion/deletion-related polymorphisms in the human T cell receptor β gene complex. J. Exp. Med. 170:1270.
48. Seboun, E., M.A. Robinson, T.H. Doolittle, T.A. Ciulla, T.J. Kindt, and S.L. Hauser. 1989. A susceptibility locus for multiple sclerosis is linked to the T cell receptor β chain complex. Cell. 57:1095.
49. Howell, M.D., J.P. Diveley, K.A. Lundeen, A. Esty, S.T. Winters, D.J. Carlo, and S.W. Brostoff. 1991. Limited T-cell receptor β chain heterogeneity among interleukin 2 receptor-positive synovial T cells suggests a role for superantigen in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA. 88:10921.
50. Sottini, A., L. Imberti, R. Gorla, R. Cattaneo, and D. Priml. 1991. Restricted expression of the T cell receptor VB not Vα genes in rheumatoid arthritis. Eur. J. Immunol. 21:461.
51. Uematsu, Y., H. Wège, A.L. Straus, M. Ott, W. Banwarth, J. Lanchbury, G. Panayi, and M. Steinmetz. 1991. The T cell receptor repertoire in the synovial fluid of a patient with rheumatoid arthritis is polyclonal. Proc. Natl. Acad. Sci. USA. 88:8534.