The interdependence of antibody C and V regions on specificity and affinity
Significant implications for the engineering of therapeutic antibodies

Joshua D Nosanchuk
Departments of Medicine and Microbiology & Immunology; Albert Einstein College of Medicine; Bronx, NY USA

Keywords: antibody, isotope, therapeutics, Bacillus anthracis, C region, V region

Since Paul Ehrlich coined the term “antibody” in 1891,1 the study of these molecules has led to remarkable scientific discoveries that have revolutionized our therapeutic approach to patients. However, we clearly have much left to learn about the structure-function of these remarkable glycoproteins. A rich and exciting emerging area of investigation is breaking down a long-held belief that the variable (V) and constant (C) regions composing an immunoglobulin molecule are functionally independent.

What is the evidence for their historic consideration as distinct functional entities? RR Porter’s 1959 paper applying papain to the characterization of immunoglobulin was the first to separate the molecule into what we know refer to as Fab and Fc domains2 and this work, in part, led to the discovery of isotype switching.3 Most significantly, variants to dansyl (5-dimethylaminonaphthalene-1-sulfonyl).3 Most significantly, investigators of function between the V and C regions, especially the fact that the specificity of an antibody was not seen as being impacted by isotype switching.

What is the evidence that the C region can influence affinity and specificity? This remarkable story was initiated by a 1991 paper by Kato and colleagues that applied 13C NMR to the study of antibody switch variants to dansyl (5-dimethylaminonaphthalene-1-sulfonyle).4 Most significantly, their data on antigen binding by switch variants with or without C region deletions strongly suggested that alterations in the C region impacted the conformation of both the heavy (VH) and light (VL) domains in the V region. In a 1993 paper assessing the role of heavy chain constant (CH) domains in isotype switch antibodies to N-acetyl-glucosamine (GlcNAc) residues in polysaccharide from group A streptococcus, Cooper and colleagues carefully described that IgG3 antibody bound more efficiently than IgG1 or IgG2a antibodies with identical V regions.4 Along this line, in 2003, Michaelsen and colleagues described V region homologous isotype variable antibodies to Neisseria meningitidis with different binding activities that translated to significant differences in antibacterial potency.5 Isotype has also been found to impact specificity, affinity, and antimicrobial activity in V region identical antibodies against fungi6 and, most recently, HIV.7 In studies on tubulin binding, Pritsch and coworkers identified four different isotype antibodies from a lymphoma patient with identical V regions that bound the same epitope, but were significantly different in affinity.8 Hence, there is strong evidence that affinity and specificity can be significantly impacted by the C region.

However, the most extensive evidence for the C region impacting antibody affinity and specificity comes from Casadevall’s group in a collection of papers clearly demonstrating that antibody interactions with the polysaccharide of Cryptococcus neoformans are affected by the C region.9-14 Moreover, this work has provided a key mechanistic insight into the impact of isotype switched, V region identical antibodies. They applied NMR spectroscopy and fluorescence emission spectroscopy to probe the binding of a panel of antibodies to 15N labeled peptides mementics to prove that the C region can alter the paratope and impact specificity.15 In another study using small angle X-ray scattering, they demonstrated that isotype switch antibodies have significantly different domain orientations, which could affect antigen binding.16 Independently, Correa and colleagues similarly found structural differences between V region identical, human IgA and IgG antibodies by crystallographic analyses.16 The Casadevall group also found that C regions of DNA-binding antibodies impacted specificity and affected the secondary structure of the antibodies.17,18

The paper by Hubbard and colleagues is notable in that they extend the impact of the C region to chimeric mouse–human engineered antibodies to complex, multivalent antigens.19 This group recently characterized affinity and protection efficacies of isotype switch variants of F26G3,20 a murine IgG3 antibody to poly-glutamic acid (PGA) from the capsule of Bacillus anthracis.21 In addition to certain toxins, PGA is an essential virulence factor of B. anthracis. In generating murine isotype switch variants, the Nevada group determined that altering the IgG3 to IgG1, IgG2a, or IgG2b
changed antibody binding, affinity, and protective efficacy. Subsequently, in order to develop F26G3 for therapeutic use, chimeric IgG subclasses were engineered and characterized. Significantly, the affinity of each isotype chimeric to PGA was reduced 9- to 20-fold compared with F26G3 and the pattern of binding to intact capsule was also significantly altered. There is remarkably little previously published demonstrating the impact of human C regions on the biological activities of chimeric antibodies to multivalent antigens such as PGA; however, the report on these antibodies to B. anthracis are consistent with that reported for chimerics to C. neoformans polysaccharide in 2007 and to tumor-associated glycoprotein 72 (TAG72) in 1996. Hence, there is sufficient data to consider that there is indeed a dynamic cooperative interplay between the C and V regions in regards to biological functions such as affinity and specificity.

It is thus essential that there be increased focus on the function of specific C regions in developing antibody therapeutics. This is further supported, for example, by Beehouwer and coworkers demonstrating that V region identical human antibodies of different isotypes have significant differences in biological activity, particularly protective efficacy, against C. neoformans. The areas of potential research are rich and varied, and include questions such as what are the key residues in the C region that affect V region biology, whether the V region influences C region biology (such as Fc engagement with receptors or complement activation), which portions of an antibody are especially important for protecting against or inducing autoimmunity, and does the C region influence isotype restriction? Given the interest in antibody-based therapeutics such questions are indeed important and their pursuit will surely result in exciting new fundamental and highly translational information.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References
1. Ehrlich P. Experimentelle Untersuchungen uber Immunitat. II. Ueber Abrin. Dtsch Med Wochenschr. 1891;18:289-91; http://dx.doi.org/10.1055/s-0029-1206825
2. Porter RR. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J 1959;73:119-26; PMID:14454282
3. Katze K, Matsuzaka C, Odaka A, Yamato S, Takaha W, Shimada I, Arata Y, Carbon-13 NMR study of switch variant anti-danydol antibodies: antigen binding- and domain-domain interactions. Biochemistry 1991;30:6006-14; PMID:20545358; http://dx.doi.org/10.1021/bi00240a003
4. Cooper LJ, Shalleng AR, Glass DD, Kangisser D, Cunningham MW, Greenspan NS. Role of heavy chain constant domains in antibody-antigen interaction. Apparent specificity differences among streptococal IgG antibodies expressing identical variable domains. J Immunol 1993;150:2231-42; PMID:7680687
5. Michaeelen TE, Ille O, Beckstremen KJ, Hestrad R, Sandin RH, Kolberg J, Aase B. Binding properties and anti-bacterial activities of V-region identical, human IgG and IgM antibodies, against group B Neisseria meningitidis. Biochem Soc Trans 2003;31:1032-5; PMID:14505574; http://dx.doi.org/10.1042/BST0311032
6. Torosantucci A, Chiuni P, Bromuro C, De Bernardis P, Aluina F, Palmis A, Li, Mignogna G, Maras B, Colone M, Stringata A, et al. Protection by anti-beta-glu can antibodies is associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS One 2009;4:e5392; PMID:19939183; http://dx.doi.org/10.1371/journal.pone.0005526
7. Tuder D, Yu H, Maupretier J, Dreller AS, Boweche T, Schwartz-Conil R, Lopalo L, Tuffery P, Boms M. Isotype modulates epitope specificity, and antiviral activities of anti-HIV-1 human broadly neutralizing 2F3 antibody. Proc Natl Acad Sci U S A 2012;109:12680-5; PMID:22723560; http://dx.doi.org/10.1073/pnas.1200024109
8. Prisch O, Magnac C, Dumas G, Bouvet JP, Alzari P, Dighiero G. Can isotype switch modulate antigen-binding affinity and influence clonal selection? Eur J Immunol 2007;37:1379-86; PMID:17423517; http://dx.doi.org/10.1002/eji.200636505
9. Benhuard M, Hubbel MA, Aucupin DP. Constant domains influence binding of mouse-human chimeric antibodies to the capsular polysaccharide of Bacillus anthracis. Virulence 2013;4:483-8; PMID:23863605; http://dx.doi.org/10.4161/viru.25711
10. Natividad MA, Hubbel MA, Aucupin DP, Reed DE, Welch WH, Lyons CR, Lovchik JA, Kozel TR. IgG subclass and heavy chain domains contribute to binding and protection by mAbs to the poly γ-D-glutamic acid capsular antigen of Bacillus anthracis. PLoS Pathog. 2013;9:e1003386; PMID:23637599; http://dx.doi.org/10.1371/journal.ppat.1003386
11. Xia Y, Paul JD, Nakouzi AS, Hezler L, Broder A, Liu K, Golov B, Fan M, Wang L, Li QZ, et al. The constant region contributes to the antigenic specificity and renal pathogenicity of murine anti-DNA antibodies. J Autoimmun 2012;39:398-411; PMID:22841793; http://dx.doi.org/10.1016/j.jaut.2012.06.005
12. Hubbard MA, Thorkildson P, Kozel TR, Aucupin DP. Can isotype switch modulate antigen-binding affinity and influence clonal selection? Eur J Immunol 2007;37:1379-86; PMID:17423517; http://dx.doi.org/10.1002/eji.200636505
13. Torres M, Fernandez-Fuentes N, Fiser A, Casadevall A. Exchanging murine and human immunoglobulin constant chains affects the kinetics and thermodynamics of antigen binding and chimeric antibody autoreactivity. PLoS One 2007;2:e1310; PMID:18074033; http://dx.doi.org/10.1371/journal.pone.0001310
14. Torres M, May R, Scharff MD, Casadevall A. Variable-region-identical antibodies differing in isotype demonstrate differences in fine specificity and idiotype. J Immunol 2005;174:2132-2; PMID:15699144
15. Janda A, Eryilmaz E, Nakouzi A, Cowburn D, Casadevall A. Variable region identical immunoglobulins differing in isotype express different paratopes. J Biol Chem 2012;287:35409-17; PMID:22930758; http://dx.doi.org/10.1074/jbc.M112.404843
16. Correa A, Trajenfeng E, Obal G, Pritsch O, Dighiero G, Oppezzo P, Buschiazzo A. Structure of a human IgG1 Fab fragment at a 1.5 Å resolution: potential effect of the constant domains on antigen-affinity modulation. Acta Crystallogr D Biol Crystallogr 2013;69:388-97; PMID:23919444; http://dx.doi.org/10.1107/S0907444912048664
17. Xia Y, Janda A, Eryilmaz E, Casadevall A, Puttermen C. The constant region affects antigen binding of antibodies to DNA by altering secondary structure. Mol Immunol 2013;56:28-37; PMID:23665381; http://dx.doi.org/10.1016/j.molimm.2013.04.004
18. Xia Y, Paur JD, Nakouzi AS, Hezler L, Broder A, Liu K, Golov B, Fan M, Wang L, Li QZ, et al. The constant region contributes to the antigenic specificity and renal pathogenicity of murine anti-DNA antibodies. J Autoimmun 2012;39:398-411; PMID:22841793; http://dx.doi.org/10.1016/j.jaut.2012.06.005
19. Hubbell MA, Thorkildson P, Kozel TR, Aucupin DP. Constant domains influence binding of mouse-human chimeric antibodies to the capsular polysaccharide of Bacillus anthracis. Virulence 2013;4:483-8; PMID:23863605; http://dx.doi.org/10.4161/viru.25711
20. Vowden M, Hubbell MA, Aucupin DP, Thorlindson P, Reed DE, Welch WH, Lyons CR, Lovchik JA, Kozel TR. IgG subclass and heavy chain domains contribute to binding and protection by mAbs to the poly γ-D-glutamic acid capsular antigen of Bacillus anthracis. PLoS Pathog. 2013;9:e1003386; PMID:23637599; http://dx.doi.org/10.1371/journal.ppat.1003386
21. Kozel TR, Murphy WJ, Brandt S, Blazar BR, Lovchik JA, Thorlindson P, Percival A, Lyons CR, mAbs to Bacillus anthracis capsular antigen for immunoprotection in anthrax and detection of antigenemia. Proc Natl Acad Sci U S A 2004;101:5042-7; PMID:15051894; http://dx.doi.org/10.1073/pnas.0401351101
22. McClade R, Turner MW, Steffner P, Owens R, Goldblatt D. Human constant regions influence the antibody binding characteristics of mouse-human chimeric IgG subclasses. Immunology 1996;88:169-73; PMID:8609447; http://dx.doi.org/10.1111/j.1365-2567.1996.tb00801.x
23. Beehouwer DO, Yoo EM, Lai CW, Rocha MA, Morrison SL. Human immunoglobulin G2 (IgG2) and IgG4, but not IgG1 or IgG3, protect mice against Cryptococcus neoformans infection. Infect Immun 2007;75:1424-5; PMID:17723057; http://dx.doi.org/10.1128/IAI.01161-06

440 Virulence Volume 4 Issue 6