A geometric estimate for a periodic Schrödinger operator whose potential is the curvature of a spherical curve. *

THOMAS FRIEDRICH (Berlin)

March 30, 2022

Abstract

We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator \(-4\frac{d^2}{ds^2} + \kappa^2(s)\) with potential given by the curvature of a closed curve.

Subj. Class.: Differential geometry.

1991 MSC: 58G25, 53A05.

Keywords: Dirac operator, spectrum, surfaces, Schrödinger operators, Fenchel inequality.

1 Introduction

Let \(X^3(c)\) be a 3-dimensional space form of constant curvature \(c = 0\) or \(1\) and admitting a real Killing spinor with respect to some spin structure. Consider a compact, oriented and immersed surface \(M^2 \subset X^3(c)\) with mean curvature \(H\). The spin structure of \(X^3(c)\) induces a spin structure on \(M^2\). Denote by \(D\) the corresponding Dirac operator acting on spinor fields defined over the surface \(M^2\). The first eigenvalue \(\lambda_1^2(D)\) of the operator \(D^2\) and the first eigenvalue \(\mu_1\) of the Schrödinger operator \(\Delta + H^2 + c\) are related by the inequality

\[\lambda_1^2(D) \leq \mu_1(\Delta + H^2 + c). \]

Equality holds if and only if the mean curvature \(H\) is constant (see [1], [5]). Moreover, the Killing spinor defines a map \(f \mapsto \Phi(f)\) of the space \(L^2(M^2)\) of functions into the space \(L^2(M^2; S)\) of spinors such that

\[||D(\Phi(f))||^2_{L^2} = \langle \Delta f + H^2 f + cf, f \rangle_{L^2}. \]

In particular, the mentioned inequality holds for all eigenvalues, i.e.,

*Supported by the SFB 288 of the DFG.
\[\lambda_k^2(D) \leq \mu_k(\Delta + H + c). \]

This inequality was used in order to estimate the first eigenvalue of the Dirac operator defined on special surfaces of Euclidean space (see [1]). On the other hand, in case we know \(\lambda_k^2(D) \), the inequality yields a lower bound for the spectrum of the Schrödinger operator \(\Delta + H^2 + c \). For example, for any Riemannian metric \(g \) on the 2-dimensional sphere \(S^2 \) the inequality

\[\lambda_1^2(D) \geq \frac{4\pi}{\text{vol}(S^2, g)} \]

holds (see [2], [6]). Consequently, we obtain

\[\frac{4\pi}{\text{vol}(M^2, g)} \leq \mu_1(\Delta + H^2) \]

for any surface \(M^2 \hookrightarrow \mathbb{R}^3 \) of genus zero in Euclidean space \(\mathbb{R}^3 \). In this note we expose the described idea and, in particular, we estimate the spectrum of special periodic Schrödinger operators where the potential is given by the curvature \(\kappa \) of a spherical curve.

2 The one-dimensional case

First of all, let us consider the 1-dimensional case, i.e., a curve \(\gamma \) of length \(L \) in a two-dimensional space form \(X^2(c) \). Let \(\Phi \) be a Killing spinor of length one on \(X^2(c) \):

\[\nabla_T \Phi = \frac{1}{2} c \cdot T \cdot \Phi. \]

The restriction \(\varphi = \Phi|_{\gamma} \) defines a pair of spinors on \(\gamma \) and the spinor field \(\psi = f \cdot \varphi \) satisfies the equation:

\[|D\psi|^2 = |\dot{f}|^2 + f^2 \left(\frac{c}{4} + \frac{1}{4} \kappa_g^2 \right), \]

where \(\kappa_g \) is the curvature of the curve \(\gamma \) in \(X^2(c) \). Therefore, we obtain

\[\lambda_k^2(D) \leq \mu_k \left(-\frac{d^2}{ds^2} + \frac{c}{4} + \frac{1}{4} \kappa_g^2 \right). \]

Suppose now that the spin structure on \(\gamma \) induced by the spin structure of \(X^2(c) \) is non-trivial. Then we have \(\lambda_{k+1}^2(D) = \frac{4\pi^2}{L^2}(k + 1/2)^2 \) (see [4]) and, in particular, we obtain

\[\frac{4\pi^2}{L^2} \left(k + \frac{1}{2} \right)^2 \leq \mu_{k+1} \left(-\frac{d^2}{ds^2} + \frac{c}{4} + \frac{1}{4} \kappa_g^2 \right). \]

Theorem 1: Let \(\gamma \subset \mathbb{R}^3 \) be a plane or spherical curve and denote by \(\kappa^2 = c + \kappa_g^2 \) the square of its curvature. Suppose that the induced spin structure on \(\gamma \) is non-trivial, i.e., the tangent vector field has an odd rotation number. Then the inequality
\[\frac{4\pi^2}{L^2} \leq \mu_1 \left(-4 \frac{d^2}{ds^2} + \kappa^2 \right) \]

holds, where \(\mu_1 \) is the first eigenvalue of the periodic Sturm-Liouville operator on the interval \([0, L]\). Moreover, equality occurs if and only if the curvature is constant.

Remark: No geometric lower bound for the Sturm-Liouville operator \(-4 \frac{\partial^2}{\partial x^2} + \kappa^2\) with potential defined by the square of the curvature \(\kappa(s)\) of a closed curve \(\gamma\) in Euclidean space seems to be known. We conjecture that the estimate given in Theorem 1 holds for any closed curve in \(\mathbb{R}^3\). Let us compare this inequality with the well-known Fenchel-Milnor inequality

\[2\pi \leq \oint \kappa. \]

Thus, by the Cauchy-Schwarz inequality we obtain

\[\frac{4\pi^2}{L^2} \leq \frac{1}{L} \oint \kappa^2. \]

Moreover, using the test function \(f \equiv 1\), we have

\[\mu_1 \left(-4 \frac{d^2}{ds^2} + \kappa^2 \right) \leq \frac{1}{L} \oint \kappa^2. \]

Suppose that \(\gamma\) is a simple curve in \(\mathbb{R}^3\) and denote by \(\rho\) the minimal number of generators of the fundamental group \(\pi_1(\mathbb{R}^3 \setminus \gamma)\). Then we have

\[2\pi \rho \leq \oint \kappa. \]

In the spirit of this remark one should be able to prove the stronger inequality

\[\frac{4\pi^2}{L^2} \rho^2 \leq \mu_1 \left(-4 \frac{d^2}{ds^2} + \kappa^2 \right) \]

in case of a simple curve in \(\mathbb{R}^3\).

Examples: We calculated the eigenvalue \(\mu_1\) for some classical curves in \(\mathbb{R}^3\):

a.) The lemniscate: \(x = \sin(t), \quad y = \cos(t) \sin(t)\).
\[4\pi^2/L^2 = 1.06193, \quad \mu_1 = 3.7315, \quad \frac{1}{L} \oint \kappa^2 = 4.36004. \]

b.) The trefoil: \(x = \sin(3t) \cos(t), \quad y = \sin(3t) \sin(t)\).
\[4\pi^2/L^2 = 0.221, \quad \mu_1 = 5.21, \quad \frac{1}{L} \oint \kappa^2 = 8.16. \]
c.) Viviani’s curve: \(x = 1 + \cos(t), \quad y = \sin(2t), \quad z = 2\sin(t) \).
\[
4\pi^2/L^2 = 0.169071, \quad \mu_1 = 0.5335, \quad \frac{1}{L} \int_\gamma \kappa^2 = 0.567803.
\]

d.) Torus knot: \(x = (8 + 3\cos(5t)) \cos(2t), \quad y = (8 + 3\cos(5t)) \sin(2t), \quad z = 5\sin(5t) \).
\[
4\pi^2/L^2 = 0.00146034, \quad \mu_1 = 0.03232, \quad \frac{1}{L} \int_\gamma \kappa^2 = 0.0333803.
\]

e.) The spherical spiral: \(x = \cos(t) \cos(4t), \quad y = \cos(t) \sin(4t), \quad z = \sin(t) \).
\[
4\pi^2/L^2 = 0.127036, \quad \mu_1 = 1.744, \quad \frac{1}{L} \int_\gamma \kappa^2 = 4.93147.
\]

3 The two-dimensional Schrödinger operator

We generalize this inequality to the case of the two-dimensional periodic Schrödinger operator

\[
P_{A,L} = -\left(1 + \frac{A^2}{L^2}\right) \frac{\partial^2}{\partial t^2} - 4 \frac{A \partial}{L \partial t} \partial + \kappa^2(s)
\]

defined on \([0, 2\pi] \times [0, L] \):

Theorem 2: Let \(\gamma \subset S^2 \subset \mathbb{R}^3 \) be a closed, simple curve of length \(L \) bounding a region of area \(A \), and denote by \(\kappa \) its curvature. Then the spectrum of the two-dimensional periodic Schrödinger operator \(P_{A,L} \) is bounded by

\[
\frac{4\pi^2}{L^2} \leq \mu_1(P_{A,L}).
\]

Equality holds if and only if the curvature of \(\gamma \) is constant.

In general, let us consider a Riemannian manifold \((Y^n, g)\) of dimension \(n \) as well as an \(S^1 \)-principal fibre bundle \(\pi : P \rightarrow Y^n \) over \(Y^n \). Denote by \(\vec{V} \) the vertical vector field on \(P \) induced by the action of the group \(S^1 \) on the total space \(P \), i.e.,

\[
\vec{V}(p) = \frac{d}{dt} \left(p \cdot e^{it}\right)_{t=0}, \quad p \in P.
\]

A connection \(Z \) in the bundle \(P \) defines a decomposition of the tangent bundle \(T(P) = T^v(P) \oplus T^h(P) \) into its vertical and horizontal subspace. We introduce a Riemannian metric \(g^* \) on the total space \(P \), requiring that

a) \(g^*(\vec{V}, \vec{V}) = 1 \),

b) \(g^*(T^v, T^h) = 0 \),

c) the differential \(d\pi \) maps \(T^h(P) \) isometrically onto \(T(Y^n) \).
A closed curve $\gamma : [0, L] \to Y^n$ of length L defines a torus $H(\gamma) := \pi^{-1}(\gamma) \subset P$ and we want to study the isometry class of this flat torus in P. Let $\alpha = e^{i\Theta} \in S^1$ be the holonomy of the connection Z along the closed curve γ. Consider a horizontal lift $\hat{\gamma} : [0, L] \to P$ of the curve γ. Then

$$\hat{\gamma}(L) = \hat{\gamma}(0)e^{i\Theta}$$

holds. Consequently, the formula

$$\Phi(t, s) = \hat{\gamma}(s)e^{-i\Theta s/L}e^{it}$$

defines a parametrization $\Phi : [0, 2\pi] \times [0, L] \to H(\gamma)$ of the torus $H(\gamma)$. Since

$$\frac{\partial \Phi}{\partial t} = \tilde{V}, \quad \frac{\partial \Phi}{\partial s} = dR e^{i\Theta s/L}(\hat{\gamma}(s)) - \frac{\Theta}{L}\tilde{V},$$

we obtain

$$g^*(\frac{\partial \phi}{\partial t}, \frac{\partial \phi}{\partial t}) = 1, \quad g^*(\frac{\partial \phi}{\partial t}, \frac{\partial \phi}{\partial s}) = -\frac{\Theta}{L}, \quad g^*(\frac{\partial \phi}{\partial s}, \frac{\partial \phi}{\partial s}) = 1 + \frac{\Theta^2}{L^2},$$

i.e., the torus $H(\gamma)$ is isometric to the flat torus $(\mathbb{R}^2/\Gamma_o, g^*)$, where Γ_o is the orthogonal lattice $\Gamma_o = 2\pi \cdot \mathbb{Z} \oplus L \cdot \mathbb{Z}$ and the metric g^* has the non-diagonal form

$$g^* = \begin{pmatrix}
1 & -\frac{\Theta}{L} \\
-\frac{\Theta}{L} & 1 + \frac{\Theta^2}{L^2}
\end{pmatrix}.$$

Using the transformation

$$x = -\frac{\Theta}{L}s + t, \quad y = s,$$

we see that $H(\gamma)$ is isometric to the flat torus $(\mathbb{R}^2/\Gamma, dx^2 + dy^2)$, where the lattice Γ is generated by the two vectors

$$v_1 = \begin{pmatrix} 2\pi \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} \Theta \\ L \end{pmatrix}.$$

In case the closed curve $\gamma : [0, L] \to Y^n$ is the oriented boundary of an oriented compact surface $M^2 \subset Y^n$, we can calculate the holonomy $\alpha = e^{i\Theta}$ along the curve γ. Indeed, let Ω^Z be the curvature form of the connection Z. Ω^Z is a 2-form defined on the manifold Y^n with values in the Lie algebra of the group S^1, i.e., with values in $i \cdot \mathbb{R}^1$. The parameter Θ is given by the integral

$$\Theta = i \int_{M^2} \Omega^Z.$$

Let us consider the Hopf fibration $\pi : S^3 \to S^2$, where

$$S^3 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1\}$$

is the 3-dimensional sphere of radius 1. The connection Z is given by the formula

5
\[Z = \frac{1}{2} \{ \bar{z}_1 dz_1 - z_1 d\bar{z}_1 + \bar{z}_2 dz_2 - z_2 d\bar{z}_2 \} \]

and its curvature form \((\omega = z_1/z_2)\)

\[\Omega^Z = -\frac{d\omega \wedge d\bar{\omega}}{(1 + |\omega|^2)^2} = -\frac{i}{2} dS^2 \]

essentially coincides with one half of the volume form of the unit sphere \(S^2\) of radius 1. However, the differential \(d\pi : T^h(S^3) \to T(S^2)\) multiplies the length of a vector by two, i.e., the Hopf fibration is a Riemannian submersion in the sense described before if we fix the metric of the sphere \(S^2(\frac{1}{\sqrt{2}}) = \{ x \in \mathbb{R}^3 : |x| = \frac{1}{\sqrt{2}} \}\) on \(S^2\). Consequently, in case of a closed simple curve \(\gamma \subset S^2\) bounding a region of area \(A\), the Hopf torus \(H(\gamma) \subset S^3\) is isometric to the flat torus \(\mathbb{R}^2/\Gamma\) and the lattice \(\Gamma\) is generated by the two vectors

\[v_1 = \begin{pmatrix} 2\pi \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} A/2 \\ L/2 \end{pmatrix}. \]

The mean curvature \(H\) of the torus \(H(\gamma) \subset S^3\) coincides with the geodesic curvature \(\kappa_g\) of the curve \(\gamma \subset S^2 \subset \mathbb{R}^3\) (see [7], [8]). We apply now the inequality

\[\lambda_1^2(D) \leq \mu_1 (\Delta + H^2 + 1) \]

to the Hopf torus \(H(\gamma) \subset S^3\). Then we obtain the estimate

\[\lambda_1^2(D) \leq \mu_1 (\text{P}_{A,L}), \]

where \(D\) is the Dirac operator on the flat torus \(\mathbb{R}^2/\Gamma\) with respect to the induced spin structure. All spin structures of a 2-dimensional torus are classified by pairs \((\varepsilon_1, \varepsilon_2)\) of numbers \(\varepsilon_i = 0, 1\). If \(\gamma\) is a simple curve in \(S^2\), the induced spin structure on the Hopf torus \(H(\gamma)\) is non-trivial and given by the pairs \((\varepsilon_1, \varepsilon_2) = (0, 1)\). The spectrum of the Dirac operator for all flat tori is well-known (see [4]): The dual lattice \(\Gamma^*\) is generated by

\[v_1^* = \begin{pmatrix} 1 \\ 2\pi \\ -A \\ 2\pi L \end{pmatrix}, \quad v_2^* = \begin{pmatrix} 0 \\ 2 \end{pmatrix}. \]

and the eigenvalues of \(D^2\) are given by

\[\lambda^2(k,l) = 4\pi^2 \left\| kv_1^* + \left(l + \frac{1}{2} \right) v_2^* \right\|^2 = k^2 + \frac{4\pi^2}{L^2} \left(2l + 1 \right)^2 - \frac{k^4}{4\pi^2}. \]

We minimize \(\lambda^2(k,l)\) on the integral lattice \(\mathbb{Z}^2\). The isoperimetric inequality \(4\pi A - A^2 \leq L^2\) and \(A \leq \text{vol} (S^2) = 4\pi\) yield the result that \(\lambda^2(k,l)\) attains its minimum at \((k,l) = (0, 1)\), i.e.,
Remark 1: We replace the Hopf fibration by the S^1-principal fibre bundle of Chern class $m \geq 0$. The corresponding total space is the Lens space $L(m, 1)$ and we have the commutative diagram

$$
\begin{array}{c}
S^3 \\
\pi \\
S^2
\end{array}
\begin{array}{c}
\rightarrow
\\
\rightarrow
\\
\rightarrow
\end{array}
\begin{array}{c}
L(m, 1) \\
\pi_m
\end{array}

Let $H_m(\gamma) \subset L(m, 1)$ be the Hopf torus. $H_m(\gamma)$ is isometric to \mathbb{R}^2/Γ_m, where the lattice Γ_m is generated by the vectors

$$v_1 = \left(\frac{2\pi}{m}, 0 \right), \quad v_2 = \left(\frac{A}{2}, \frac{L}{2} \right).$$

Moreover, the Lens space $L(m, 1)$ admits a unique spin structure with a Killing spinor (see [3]). Even in case of $m \neq 1$, the induced spin structure on $H_m(\gamma)$ is described by the parameters $(\varepsilon_1, \varepsilon_2) = (0, 1)$. Since the local geometry of $H_m(\gamma)$ in $L(m, 1)$ essentially coincides with the geometry of $H(\gamma)$ in S^3, we obtain the inequality

$$\frac{4\pi^2}{L^2} = \min_{(k,l)} \left\{ k^2 m^2 + \frac{4\pi^2}{L^2} \left((2l + 1) - k \frac{mA}{2\pi} \right)^2 \right\} \leq \mu_1 \left(-\frac{4d^2}{ds^2} + \kappa^2 \right).$$

Consequently, the investigation of the two-dimensional Schrödinger operator in case of $m \neq 1$ yields the same result for the Sturm-Liouville operator as above.

Remark 2: Suppose now that equality holds for some curve $\gamma \subset S^2$. We consider the corresponding Hopf torus $H(\gamma) \subset S^3$ and then we obtain

$$\lambda_1^2(D) = \mu_1(\Delta + H^2 + 1).$$

Therefore, the mean curvature $H = \kappa$ is constant, i.e., γ is a curve on S^2 of constant curvature κ. Consequently, γ is a circle in a 2-dimensional plane. Denote by r its radius. Then

$$\kappa^2 = \frac{1}{r^2}, \quad L = 2\pi r, \quad A = 2\pi(1 - \sqrt{1 - r^2}),$$

and the inequality

$$\frac{4\pi^2}{L^2} \leq \kappa^2$$

is an equality for all $r \neq 0$.

7
References

[1] I. Agricola, Th. Friedrich. Upper bounds for the first eigenvalue of the Dirac operator on surfaces, Journ. Geom. Phys. 30 (1999), 1-22.

[2] Chr. Bär. Lower eigenvalues estimates for Dirac operators, Math. Ann. 293 (1992), 39-46.

[3] Th. Friedrich. Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117-146.

[4] Th. Friedrich. Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur, Coll. Math. vol. XLVIII (1984), 57-62.

[5] Th. Friedrich. On the spinor representation of surfaces in Euclidean 3-spaces, Journ. Geom. Phys. 28 (1998), 143-157.

[6] J. Lott. Eigenvalue bounds for the Dirac operator, Pac. Journ. Math. 125 (1986), 117-128.

[7] U. Pinkall. Hopf tori in S^3, Invent. Math. 81 (1985), 379-386.

[8] T.J. Willmore. Riemannian Geometry, Clarendon Press Oxford 1996.

THOMAS FRIEDRICH
Humboldt-Universität zu Berlin, Institut für Mathematik, Sitz: Ziegelstraße 13a,
Unter den Linden 6, D-10099 Berlin
e-mail: friedric@mathematik.hu-berlin.de