Supporting Information

Nitric Oxide Synthase Inhibitors that Interact with both Heme Propionate and H₄B show High Isoform Selectivity

Soosung Kang†, Wei Tang†, Huiying Li†, Georges Chreifi‡, Pavel Martásek§, Linda J. Roman§, Thomas L. Poulos‡,*, Richard B. Silverman†*

† Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States; ‡ Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States; § Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78384-7760, United States

Table of contents

1. Synthesis of 28...S2
2. Inhibitor complex crystal reparation...S3
3. X-ray Diffraction Data Collection, Data Processing, and Structural Refinement.................................S3
4. Table S1. Crystallographic data collection and refinement statistics..S4
5. ¹H and ¹³C spectrum of 3..S7
6. ¹H and ¹³C spectrum of 5..S8
7. ¹H and ¹³C spectrum of 6..S9
8. ¹H and ¹³C spectrum of 7..S10
9. ¹H and ¹³C spectrum of 8..S11
1. Synthesis of 28

Scheme S1. Synthesis of 28.

2-Bromo-6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridine (S2). To a dry 20 mL microwave vial equipped with a magnetic stir bar was added 6-bromo-4-methyl-pyridin-2-ylamine (935 mg, 5.0 mmol) dissolved in toluene (15 mL). 2,5-Hexadione (687 mg, 6.0 mmol) and p-toluenesulfonic acid (0.20 g) were then added, and the vial was capped with a rubber septum. The vial was heated in the microwave irradiator for 60 min at 150 °C. The reaction mixture was cooled, concentrated in vacuo, and purified by flash column chromatography to give the title product (1.09 g, 82%).

1H NMR (500 MHz, CDCl₃) δ 7.35 (s, 1H), 7.01 (s, 1H), 5.90 (s, 2H), 2.44 (s, 3H), 2.17 (s, 6H); 13C NMR (126 MHz, CDCl₃) δ 151.85, 151.67, 140.60, 128.63, 127.19, 121.43, 107.34, 20.81, 13.29. MS (ESI) m/z 265.5 [M + H]+.

2-(2,5-Dimethyl-1H-pyrrol-1-yl)-6-ethynyl-4-methylpyridine (28). The reaction mixture of S2 (1.0 g, 3.77 mmol), Pd(PPh₃)₂Cl₂ (134 mg, 0.2 mmol), CuI (37 mg, 0.2 mmol), PPh₃ (200 mg, 0.75 mmol), trimethylsilylacetylene (0.59 mL, 4.2 mmol), diethylamine (7 mL), and DMF (7 mL) were heated at 120 °C for 20 min in the microwave cavity. Then the reaction mixture was treated with diethyl ether, filtered, and concentrated in vacuo. After being stirred with 1N NaOH (10 mL) and MeOH (30 mL) for 30 min, the reaction mixture was diluted with water (50 mL) and ethyl acetate. The organic layer was partitioned, dried over MgSO₄, concentrated in vacuo, and then purified using silica gel column chromatography to give 28 (756 mg, 95%) as a pale brown solid. 1H NMR (500 MHz, CDCl₃) δ 7.46 – 7.31 (m, 1H), 7.04 (dd, J = 1.4, 0.8 Hz, 1H), 5.89 (s, 2H), 3.16 (s, 1H), 2.44 (d, J = 0.8 Hz, 3H), 2.15 (s, 7H); 13C NMR (126 MHz, CDCl₃) δ 152.21, 149.87, 141.51, 128.55, 127.06, 122.89, 106.93, 82.30, 20.90, 13.22; MS (ESI) m/z 443.08 [2M + Na].
2. Inhibitor Complex Crystal Preparation. The rat nNOS or bovine eNOS heme domain proteins used for crystallographic studies were produced by limited trypsin digest from the corresponding full length enzymes and further purified through a Superdex 200 gel filtration column (GE Healthcare) as described previously. The nNOS heme domain (at 9 mg/mL containing 20 mM histidine), or the eNOS heme domain (at 12 mg/mL containing 2 mM imidazole) was used for the sitting drop vapor diffusion crystallization setup under conditions previously reported. Fresh crystals (1-2 days old) were first passed stepwise through cryoprotectant solutions and then soaked with 10 mM inhibitor for 4-6 h at 4 °C before being flash cooled with liquid nitrogen.

3. X-ray Diffraction Data Collection, Data Processing, and Structural Refinement. The cryogenic (100 K) X-ray diffraction data were collected remotely at the Stanford Synchrotron Radiation Lightsource (SSRL) or Advanced Light Source (ALS) through the data collection control software Blu-Ice and a crystal mounting robot. When a Q315r CCD detector was used, 90-100° of data were typically collected with 0.5° per frame. If a Pilatus pixel array detector was used, 140-160° of fine-sliced data were collected with 0.2° per frame. Raw CCD data frames were indexed, integrated, and scaled using HKL2000, but the pixel array data were processed with XDS and scaled with Aimless. The binding of inhibitors was detected by the initial difference Fourier maps calculated with REFMAC. The inhibitor molecules were then modeled in COOT and refined using REFMAC. Disordering in portions of inhibitors bound in the NOS active sites was often observed, sometimes resulting in poor density quality. However, partial structural features usually could still be visible if the contour level of the sigmaA weighted 2m|Fo| – D|Fc| map dropped to 0.5 σ, which afforded the building of reasonable models into the disordered regions. Water molecules were added in REFMAC and checked by COOT. The TLS protocol was implemented in the final stage of refinements with each subunit as one TLS group. The omit Fo – Fc density maps were calculated by repeating the last round of TLS refinement with inhibitor coordinate removed from the input PDB file to generate the map coefficients DELFWT and PHDELWT. The refined structures were validated in COOT before deposition in the RCSB protein data bank. The crystallographic data collection and structure refinement statistics are summarized in Table S1 of the Supporting Information, with the PDB accession codes included.
4. Table S1. Crystallographic data collection and refinement statistics

Data set	nNOS-3(3S)	nNOS-3R	nNOS-4	nNOS-5(5S)
Data collection				
PDB code	4CTP	4CTQ	4CTR	4CTT
Space group	P2₁P₂₁	P2₁P₂₁	P2₁P₂₁	P2₁P₂₁
Cell dimensions	51.9 111.0 163.4	52.0 111.2 164.2	51.5 111.4 164.3	51.7 111.3 164.3
a, b, c (Å)				
Detector	CCD	CCD	CCD	CCD
Resolution (Å)	2.05 (2.09-2.05)	2.00 (2.03-2.00)	2.20 (2.24-2.20)	2.30 (2.34-2.30)
Rmerge	0.065 (0.708)	0.065 (0.721)	0.070 (0.728)	0.065 (0.754)
Rpim	n/c	n/c	n/c	n/c
CC 1/2	n/c	n/c	n/c	n/c
I / σI	24.7 (2.1)	25.7 (2.0)	23.0 (1.9)	21.3 (1.5)
No. unique reflections	59,681	64,775	48,715	43,742
Completeness (%)	99.9 (99.9)	99.4 (99.1)	99.5 (100.0)	99.9 (100.0)
Redundancy	4.1 (4.0)	4.0 (3.6)	4.0 (3.8)	3.6 (3.6)
Refinement				
Resolution (Å)	2.05	2.00	2.20	2.30
No. reflections used	56,652	61,524	46,205	40,927
R_work / R_free²	0.184/0.224	0.186/0.225	0.198/0.262	0.195/0.249
No. atoms				
Protein	6665	6669	6662	6654
Ligand/ion	183	183	183	181
Water	315	261	124	124
R.m.s. deviations				
Bond lengths (Å)	0.010	0.012	0.012	0.011
Bond angles (deg)	1.93	1.49	2.05	2.00
Data set	nNOS-6	nNOS-7	nNOS-8(8R)	nNOS-8S
----------	--------	--------	------------	--------
Data collection				
PDB code	4CTU	4CTV	4CTW	4CTX
Space group	P2\(_1\)2\(_1\)2\(_1\)	P2\(_1\)2\(_1\)2\(_1\)	P2\(_1\)2\(_1\)2\(_1\)	P2\(_1\)2\(_1\)2\(_1\)
Cell dimensions (Å)	51.8 110.5 164.0	51.9 111.1 164.5	52.2 110.8 164.1	51.9 111.0 164.0
Detector	CCD	Pixel array	CCD	CCD
Resolution (Å)	2.16 (2.20-2.216)	1.78 (1.88-1.78)	1.90 (1.96-1.90)	1.83 (1.86-1.83)
Rmerge	0.064 (0.736)	0.053 (1.412)	0.057 (0.366)	0.075 (>1.000)
Rpim	n/c	0.025 (0.664)	0.045 (0.310)	0.040 (0.669)
CC 1/2	n/c	n/c (74.2)	n/c (50.0)	n/c (61.0)
I / σI	21.5 (2.1)	17.8 (1.3)	10.8 (2.3)	18.3 (0.6)
No. unique reflections	50,182	91,044	74,707	83,379
Completeness (%)	97.2 (97.3)	99.8 (99.8)	99.9 (99.6)	98.0 (84.8)
Redundancy	3.4 (3.3)	5.5 (5.4)	3.5 (3.4)	4.7 (2.9)
Refinement				
Resolution (Å)	2.16	1.78	1.90	1.83
No. reflections used	47,507	86,616	70,939	79,050
R\(_{work}\) / R\(_{free}\)	0.185/0.234	0.200/0.239	0.189/0.228	0.186/0.226
No. atoms				
Protein	6655	6681	6682	6683
Ligand/ion	185	185	185	185
Water	233	316	443	341
R.m.s. deviations				
Bond lengths (Å)	0.010	0.015	0.010	0.010
Bond angles (deg)	1.93	1.79	1.37	1.38
Data set

Data set	eNOS-3R	eNOS-5(S)	eNOS-8(8R)	eNOS-8S	
Data collection					
PDB code	4CTY	4CTZ	4CU0	4CU1	
Space group	P2₁,2₁,2₁	P2₁,2₁,2₁	P2₁,2₁,2₁	P2₁,2₁,2₁	
Cell dimensions	a, b, c (Å)	57.8 106.5 156.8	58.0 106.7 158.4	57.9 106.4 156.9	57.3 105.2 155.0
Detector	CCD	CCD	CCD	CCD	
Resolution (Å)	2.30 (2.34-2.30)	2.00 (2.03-2.00)	2.09 (2.13-2.09)	1.90 (1.93-1.90)	
Rmerge	0.090 (0.761)	0.058 (0.566)	0.063 (0.703)	0.085 (>1.000)	
Rpim	n/c	n/c	n/c	0.046 (0.724)	
CC 1/2	n/c	n/c	n/c	n/c (53.8)	
I / σI	15.7 (1.9)	34.8 (2.2)	26.1 (2.1)	28.5 (1.2)	
No. unique reflections	43,670	65,590	57,825	74,481	
Completeness (%)	98.9 (99.8)	98.5 (100.0)	99.3 (100.0)	99.0 (99.8)	
Redundancy	3.7 (3.7)	4.1 (4.3)	3.6 (3.6)	4.7 (4.2)	
Refinement					
Resolution (Å)	2.30	2.01	2.09	1.90	
No. reflections used	41,276	62,115	55,687	70,704	
R_{work} / R_{free}	0.161/0.219	0.165/0.205	0.166/0.214	0.170/0.205	
No. atoms					
Protein	6454	6446	6438	6438	
Ligand/ion	207	197	193	200	
Water	333	271	291	295	
R.m.s. deviations					
Bond lengths (Å)	0.015	0.019	0.019	0.011	
Bond angles (deg)	1.72	1.97	1.96	1.55	

¹ See Figure1 for the inhibitor chemical formulas.
² R_{free} was calculated with the 5% of reflections set aside throughout the refinement. The set of reflections for the R_{free} calculation were kept the same for all data sets of each isoform according to those used in the data of the starting model.
5. 1H and 13C spectrum of 6-(2-Amino-2-(3-(2-(6-amino-4-methylpyridin-2-yl)ethyl)phenyl)ethyl)-4-methylpyridin-2-amine (3S and 3R)
6. 1H and 13C spectrum of 2-(6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)-1-(3-(2-(4-methylpyridin-2-yl)ethyl)phenyl)ethan-1-amine (5S, 5R)
7. 1H and 13C spectrum of 6-(3-Amino-2-(2-(6-amino-4-methylpyridin-2-yl)ethyl)phenyl)propyl)-4-methylpyridin-2-amine (6)
8. 1H and 13C spectrum of 6-(3-amino-2-(6-(2-(6-amino-4-methylpyridin-2-yl)ethyl)pyridin-2-yl)propyl)-4-methylpyridin-2-amine (7)
9. 1H and 13C spectrum of (S)-6-(3-amino-2-(5-(2-(6-amino-4-methylpyridin-2-yl)ethyl)pyridin-3-yl)propyl)-4-methylpyridin-2-amine (8S, and 8R)
References

1 Li, H.; Shimizu, H.; Flinspach, M.; Jamal, J.; Yang, W.; Xian, M.; Cai, T.; Wen, E. Z.; Jia, Q.; Wang, P. G.; Poulos, T. L. The novel binding mode of N-alkyl-N'-hydroxyguanidine to neuronal nitric oxide synthase provides mechanistic insights into NO biosynthesis. *Biochemistry.* **2002**, *41*, 13868–13875. *Biochemistry* **2002**, *41*, 13868-13875.

2 Raman, C.S.; Li, H.; Martásek, P.; Král, V.; Masters, B.B.S; Poulos, T. L. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. *Cell* **1998**, *95*, 939-950.

3 McPhillips, T. M.; McPhillips, S. E.; Chiu, H. J.; Cohen, A. E.; Deacon, A. M.; Ellis, P. J.; Garman, E.; Gonzalez, A.; Sauter, N. K.; Phizackerley, R. P.; Soltis, S. M.; Kuhn, P. BluCIce and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. *J. Synchrotron Radiat.* **2002**, *9*, 401-406.

4 Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. In *Methods in Enzymology*. **1997**, *276*, 307-326.

5 Kabsch, W. XDS. *Acta Cryst. D.* **2010**, *66*, 125-132.

6 Evans, P.R.; Murshudov, G.N. How good are my data and what is the resolution? *Acta Cryst. D.* **2013**, *69*, 1204-1214.

7 Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. *Acta Crystallogr.* **1997**, *D53*, 240-255.

8 Emsley, P.; Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr.* **2004**, *D60*, 2126-2132.

9 Winn, M. D.; Isupov, M. N.; Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. *Acta Crystallogr.* **2001**, *D57*, 122-133.