Supplementary Online Content

Feng Q, Wei W-Q, Chaugai S, et al. A genetic approach to the association between PCSK9 and sepsis. *JAMA Netw Open*. 2019;2(9):e1911130. doi:10.1001/jamanetworkopen.2019.11130

eMethods. Cohort Identification and Power Calculations

eTable 1. Event Counts in Each Analysis

eTable 2. Event Counts by Genotypes

eTable 3. Associations Between Comorbidity Score and Sepsis and Related Outcomes

eTable 4. SNPs Included in PCSK9 Genetic Risk Score

eTable 5. SNPs Included in Estimated PCSK9 Expression

eTable 6. Associations Between Median Measured LDL-C Levels and 4 Functional PCSK9 Variants

eTable 7. Associations Between Median Measured LDL-C Levels and PCSK9 GRS

eTable 8. Associations Between Median Measured LDL-C Levels and PCSK9 Expression

eTable 9. Associations Between PCSK9 Candidate SNPs and Sepsis and Related Adverse Outcomes

eTable 10. Associations Between PCSK9 GRS and Sepsis and Related Adverse Outcomes

eTable 11. Associations Between Genetically Estimated PCSK9 Expression Tertiles and Sepsis and Related Adverse Outcomes

eFigure. Algorithm to Identify Sepsis Within Infection Cohort

eReferences.

This supplementary material has been provided by the authors to give readers additional information about their work.
eMethods. Cohort Identification and Power Calculations

Cohort identification

Sepsis was defined as concurrent infection and organ dysfunction occurring within one day of hospital admission (days -1, 0, and +1) using an algorithm to detect sepsis using EHR data\(^1\) with minor modifications. The modifications were as follows: in the definition of sepsis we included (1) septic shock defined by presence of ICD9 codes 995.92 and 785.52, or ICD10 codes R65.20 and R65.21 because these codes are very specific; \(^1\) (2) vasopressor initiation identified by use of levophed (noprepinephrine bitartrate), or use of dobutamine or dopamine and a billing code for administration of a vasopressor (ICD9-CM procedure code 00.17 or ICD10-PCS procedure codes 3E033XZ, 3E043XZ, 3E053XZ and 3E063XZ) because dobutamine or dopamine alone had low specificity for identifying patients in whom it was used as a pressor; (3) we did not use serum lactate levels as a criterion because they were seldom available; (4) we excluded individuals who had scheduled cardiothoracic surgery because the algorithms did not reliably identify the reason for artificial ventilation or ICU admission and some of these patients had an infection and received an antibiotic. The methods used have been described in detail previously.\(^2\)

Associations between LDL-C and (1)4 PCSK9 functional variants (2) PCSK9 GRS and (3) predicted PCSK9 expression

For LDL-C analyses (other than the gene expression analysis), we did not restrict our analysis of the relationships between the genetic instruments and LDL-C to the sepsis cohort (\(n=10922\)) because some patients may only have had LDL-C measured after hospital admission (or during
sickness) which would confound the association test. Instead, we used all available data in BioVU for individuals with LDL-C and PCSK9 genotypes. We have used all BioVU individuals who had both PCSK9 genotypes and an LDL-C measurement. We used the median LDL-C for those with multiple measurements.

The number of individuals in each analysis varies due to data availability in BioVU. Specifically, the 4 functional PCSK9 variants were extracted from genome-wide platforms and the ExomeChip (N=22,995). The 6 SNPs for PCSK9 GRS were not available on the ExomeChip and could not be imputed from it. Therefore, the association between the PCSK9 GRS and measured LDL-C was evaluated within those on genome-wide platforms (n=15,387). For the association between estimated PCSK9 expression and LDL-C, we used the sepsis cohort because gene expression had been calculated in this cohort. Within the sepsis cohort, 3630 individuals had both predicted PCSK9 expression and measured LDL-C.

Power calculations

There was adequate power to detect small differences between the study groups; the detectable odds ratio for sepsis in the loss-of-function (LOF) carriers relative to non-carriers was 1.15. We estimated this detectable difference as a post-hoc calculation using PC software\(^3\) and the following assumptions: (1) 4,965 patients had >= one LOF PCSK9 variant; (2) 5,162 patients did not have any functional variants; and (3) 3,391 patients developed sepsis (31%). This estimation used an uncorrected chi-squared statistic to evaluate the null hypothesis and power of 0.84. The type I error probability associated with this test of the null hypothesis was 0.05.

The figure below illustrates power for a range of true ORs for current cohort.

Patients who were gain-of-function carriers were excluded from this power calculation.
Figure. Statistical power in current study

We adopted the PCSK9 GRS based on LDL-C levels from previous high impact publications.4,5

Specifically, the four functional PCSK9 variants were used in Walley's paper in Science Translation Medicine.4 Although there was no quantification of PCSK9's effect for removal of LPS in vivo, the same genetic instruments demonstrated the relationship between PCSK9 variants and mortality in a cohort of ~500 individuals with septic shock. Furthermore, the GRS used in our manuscript was also significantly associated with both myocardial infarction and type II diabetes mellitus.5
eTable 1. Event Counts in Each Analysis

Predictor	Outcomes	Gender	
		F	M
PCSK9 functional variants (4 SNPs)	sepsis	1485	1906
	cardiovascular failure	308	527
	in hospital death	148	218
PCSK9 GRS	sepsis	1015	1456
	cardiovascular failure	222	424
	in hospital death	90	149
PCSK9 expression	sepsis	826	1152
	cardiovascular failure	189	337
	in hospital death	76	131
eTable 2. Event Counts by Genotypes

N of minor allele	sepsis	cardiovascular failure	inhospital death												
	No	Yes	percent (%)	No	Yes	percent (%)	No	Yes	percent (%)	No	Yes	percent (%)	No	Yes	percent (%)
rs11591147_T	0	7309	68.9	31.1	9803	92.4	7.6	10250	96.6	3.4					
	1	214	71.3	28.7	272	90.7	9.3	292	97.3	2.7					
rs11583680_T	0	5591	69.0	31.0	7471	92.2	7.8	7832	96.6	3.4					
	1	1777	69.1	30.9	2390	93.0	7.0	2489	96.8	3.2					
	2	152	67.6	32.4	205	91.1	8.9	213	94.7	5.3					
rs562556_G	0	5168	69.1	30.9	6920	92.5	7.5	7229	96.6	3.4					
	1	2112	68.5	31.5	2835	92.0	8.0	2986	96.9	3.1					
	2	247	70.6	29.4	325	92.9	7.1	334	95.4	4.6					
rs505151_G	0	6998	68.9	31.1	9390	92.4	7.6	9817	96.6	3.4					
	1	512	69.8	30.2	671	91.5	8.5	713	97.3	2.7					
	2	18	81.8	18.2	22	100.0	0.0	22	100.0	0.0					
eTable 3. Associations Between Comorbidity Score and Sepsis and Related Outcomes

	Odds Ratio	95% confidence interval	P-value
Sepsis	1.27	1.26 - 1.29	<2e-16
Cardiovascular Failure	1.29	1.26 - 1.31	<2e-16
Death	1.39	1.37 - 1.42	<2e-16
eTable 4. SNPs Included in PCSK9 Genetic Risk Score

SNPs	minor allele	effect size mg/dL
rs2479394	G	1.2352
rs11206510	C	-2.6592
rs2479409	G	2.0544
rs10888897	T	-1.6224
rs7552841	T	1.1776
rs562556	G	-2.048

(Ference, B. A. *et al.* Variation in PCSK9 and HMGCR and Risk of Cardiovascular Disease and Diabetes. *N. Engl. J. Med.* **375**, 2144–2153 (2016).)
eTable 5. SNPs Included in Estimated PCSK9 Expression

POS	ID	WEIGHT	ref_allele	eff_allele
1:54677786-54677786	rs17392549	0.04947	G	A
1:56132837-56132837	rs116532018	-0.07378	A	C
1:56073566-56073566	rs112931677	-0.02218	T	C
1:55524661-55524661	rs565436	0.069746	G	A
1:54532687-54532687	rs1777599	-0.11534	A	G
1:54637417-54637417	rs682705	-2.05E-05	G	A
1:55789748-55789748	rs71637889	0.006645	G	A
1:54654129-54654129	rs4244643	-0.05393	G	T
1:54994972-54994972	rs6675210	0.140809	T	C
1:54803850-54803850	rs66916204	-0.10365	A	C
1:54359519-54359519	rs72664136	0.155025	G	A
1:56413577-56413577	rs56375406	-0.20066	G	A
1:55523674-55523674	rs15387071	-0.01967	C	T
1:55442427-55442427	rs12062838	-0.01175	A	G
1:54632658-54632658	rs113535797	0.064701	G	T
1:55499972-54999972	rs565436	0.069746	G	A
1:54803850-54803850	rs66916204	-0.10365	A	C
1:54359519-54359519	rs72664136	0.155025	G	A
1:56413577-56413577	rs56375406	-0.20066	G	A
1:55523674-55523674	rs15387071	-0.01967	C	T
1:55442427-55442427	rs12062838	-0.01175	A	G
1:54632658-54632658	rs113535797	0.064701	G	T

© 2019 Feng Q et al. JAMA Network Open
eTable 6. Associations Between Median Measured LDL-C Levels and 4 Functional PCSK9 Variants

CHR	SNP	BP	A1	BETA	STAT	P
1	rs11591147	55505647	T	-13.03	-1.02E+01	2.87E-24
1	rs11583680	55505668	T	-0.1629	-0.3759	0.707
1	rs562556	55524237	G	-0.6824	-1.75E+00	0.08027
1	rs505151	55529187	G	1.633	2.005	0.04499
eTable 7. Associations Between Median Measured LDL-C Levels and PCSK9 GRS

| predictor | Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|----------|------------|---------|----------|
| PCSK9 GRS (n=15387) | 0.7983 | 0.2593 | 3.079 | 0.00208 |
eTable 8. Associations Between Median Measured LDL-C Levels and PCSK9 Expression

| predictor | Estimate | Std. Error | t value | Pr(|t|) |
|----------------------------------|----------|------------|---------|--------|
| predicted PCSK9 expression (n=3630) | -0.07969 | 0.53808 | -0.148 | 0.882 |
eTable 9. Associations Between PCSK9 Candidate SNPs and Sepsis and Related Adverse Outcomes

CHR	SNP	Location	Minor Allele Frequency	Minor Allele	Amino acid change	Sepsis	Cardiovascular Failure	Death				
						Odds Ratio	P	Odds Ratio	P	Odds Ratio	P	
unadj.												
1	rs11591147	55505647	0.013	T	p.Arg46Leu	0.8903 (0.6909-1.147)	0.3694	1.254 (0.844-1.862)	0.2628	0.7844 (0.3856-1.596)	0.5028	
1	rs11583680	55505668	0.14	T	p.Ala53Val	1.004 (0.9249-1.091)	0.9154	0.9411 (0.8129-1.09)	0.417	1.042 (0.8457-1.285)	0.6974	
1	rs562556	55524237	0.17	G	p.Ile474Val	1.004 (0.9314-1.082)	0.9156	1.039 (0.9125-1.182)	0.5657	1.021 (0.8426-1.237)	0.8321	
1	rs505151	55529187	0.036	G	p.Gly670Glu	0.927 (0.7936-1.083)	0.3386	1.048 (0.8067-1.361)	0.7262	0.759 (0.4857-1.186)	0.2262	
	Any LOF	-	-	-	-	0.9667 (0.8886-1.0516)	0.43	1.0489 (0.9055-1.2150)	0.524	0.8908 (0.7180-1.1041)	0.292	
adj. gender and sex												
1	rs11591147	55505647	0.013	T	p.Arg46Leu	0.8922 (0.692-1.15)	0.379	1.261 (0.8482-1.875)	0.2516	0.7835 (0.3846-1.597)	0.5017	
1	rs11583680	55505668	0.14	T	p.Ala53Val	1.006 (0.9263-1.093)	0.8837	0.9443 (0.8154-1.094)	0.4447	1.046 (0.8489-1.219)	0.6715	
1	rs562556	55524237	0.17	G	p.Ile474Val	1.008 (0.9345-1.086)	0.8441	1.046 (0.9185-1.191)	0.498	1.026 (0.8468-1.244)	0.7919	
1	rs505151	55529187	0.036	G	p.Gly670Glu	0.9269 (0.7933-1.083)	0.339	1.052 (0.8094-1.368)	0.7038	0.771 (0.4921-1.218)	0.2562	
	Any LOF	-	-	-	-	0.9797 (0.8921-1.0561)	0.4894	1.0611 (0.9157-1.2296)	0.43	0.9077 (0.7311-1.1257)	0.3785	
adj. age, sex and comorbidity groups												
1	rs11591147	55505647	0.013	T	p.Arg46Leu	0.8374 (0.6441-1.089)	0.379	1.261 (0.8482-1.875)	0.2516	0.7835 (0.3846-1.597)	0.5017	
1	rs11583680	55505668	0.14	T	p.Ala53Val	1.007 (0.9252-1.097)	0.8648	0.9351 (0.8053-1.086)	0.3786	1.063 (0.8605-1.314)	0.57	
1	rs562556	55524237	0.17	G	p.Ile474Val	0.9912 (0.9171-1.071)	0.8245	1.024 (0.8971-1.169)	0.7264	0.9907 (0.8147-1.205)	0.9257	
1	rs505151	55529187	0.036	G	p.Gly670Glu	0.917 (0.7811-1.077)	0.2896	1.048 (0.8012-1.371)	0.7326	0.9793 (0.801-1.256)	0.3284	
	Any LOF	-	-	-	-	0.9555 (0.8759-1.0423)	0.3047	1.0461 (0.9002-1.2157)	0.5566	0.8919 (0.7158-1.1102)	0.3066	
adj. age, sex, comorbidity groups and 6PCs												
1	rs11591147	55505647	0.013	T	p.Arg46Leu	0.8654 (0.6594-1.136)	0.2976	1.334 (0.887-2.005)	0.1664	0.817 (0.3965-1.683)	0.5836	
1	rs11583680	55505668	0.14	T	p.Ala53Val	1.01 (0.9339-1.095)	0.8244	0.9356 (0.8012-1.092)	0.3997	1.063 (0.8512-1.336)	0.5914	
1	rs562556	55524237	0.17	G	p.Ile474Val	0.9979 (0.9195-1.078)	0.6013	1.037 (0.9038-1.189)	0.6054	1.016 (0.8282-1.246)	0.8802	
1	rs505151	55529187	0.036	G	p.Gly670Glu	0.9184 (0.7765-1.086)	0.3201	1.018 (0.7696-1.346)	0.9014	0.6528 (0.3921-1.087)	0.1011	
	Any LOF	-	-	-	-	0.9642 (0.8801-1.0564)	0.4341	1.0666 (0.9127-1.2465)	0.4175	0.9128 (0.7258-1.1470)	0.4343	

* rs505151 is a gain-of-function variant; other SNPs are loss-of-function variants
eTable 10. Associations Between PCSK9 GRS and Sepsis and Related Adverse Outcomes

PCSK9 Tertiles	Sepsis	Cardiovascular Failure	Death			
	Odds Ratio	P	Odds Ratio	P	Odds Ratio	P
unadj.						
Low	0.9944 (0.8839-1.1188)	0.926	0.9868 (0.8089-1.2038)	0.896	0.8840 (0.6446-1.2103)	0.442
Middle	1.0424 (0.9269-1.1722)	0.489	1.0331 (0.8485-1.2581)	0.746	0.9084 (0.6638-1.2413)	0.546
High	1	-	1	-	1	-
adj. age, sex and comorbidity groups						
Low	0.9892 (0.8759-1.1172)	0.86165	0.9790 (0.7989-1.1997)	0.838029	0.9012 (0.6534-1.2410)	0.52436
Middle	1.0285 (0.9110-1.1611)	0.64959	1.0191 (0.8332-1.2468)	0.853655	0.9285 (0.6744-1.2766)	0.6478
High	1	-	1	-	1	-
adj. age, sex, comorbidity groups, and 6PCs						
Low	0.9884 (0.8750 - 1.1165)	0.85112	0.9739 (0.7944-1.1939)	0.799039	0.8879 (0.6428-1.2243)	0.46866
Middle	1.0275 (0.9100 - 1.1602)	0.66128	1.0179 (0.8320-1.2456)	0.862745	0.9202 (0.6678-1.2665)	0.60988
High	1	-	1	-	1	-
eTable 11. Associations Between Genetically Estimated PCSK9 Expression Tertiles and Sepsis and Related Adverse Outcomes

PCSK9 Tertiles	Sepsis		Cardiovascular Failure		Death	
	Odds Ratio	P	Odds Ratio	P	Odds Ratio	P
unadj.						
Low	0.9977 (0.8742-1.1387)	0.973	1.0618 (0.8468-1.3318)	0.6036	0.9318 (0.6693-1.2957)	0.674
Middle	1.0674 (0.9359-1.2173)	0.331	1.2792 (1.0289-1.5927)	0.0271	0.7830 (0.5533-1.1032)	0.164
High	1	-	1	-	1	-
adj. age, sex and comorbidity groups						
Low	1.0078 (0.8789-1.1556)	0.911203	1.0816 (0.8583-1.3635)	0.506235	0.9492 (0.6772-1.3290)	0.76145
Middle	1.0608 (0.9259-1.2155)	0.394932	1.2637 (1.0112-1.5814)	0.040103	0.7558 (0.5305-1.0722)	0.11809
High	1	-	1	-	1	-
adj. age, sex, comorbidity groups and 6PCs						
Low	1.0071 (0.8782-1.1550)	0.919352	1.0793 (0.8561-1.3613)	0.518633	0.9328 (0.6643-1.3080)	0.68657
Middle	1.0621 (0.9269-1.2171)	0.38602	1.2676 (1.0140-1.5868)	0.037783	0.7496 (0.5256-1.0646)	0.10882
High	1	-	1	-	1	-
eFigure. Algorithm to Identify Sepsis Within Infection Cohort

Infection cohort (N=61502)

Period of interest = days -1, 0 (admission), +1

Septic Shock / Severe Sepsis:
- ICD9 995.92 and 785.52
- ICD10 R65.20 and R65.21

Organ Dysfunction:
- Cardiovascular: use of vasopressors
- Respiratory: Use of ventilation AND ICU admission
- Renal: Doubling or greater increase of baseline creatinine
- Hepatic: Total bilirubin ≥ 34.2 umol/l and doubled from baseline
- Blood: Platelet count <100,000 /microl. and ≥ 50% decline from a baseline that must have been ≥100,000

Sepsis
eReferences.

1. Rhee C, Dantes R, Epstein L, et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014. *JAMA*. 2017;318(13):1241-1249. doi:10.1001/jama.2017.13836

2. Feng Q, Wei W-Q, Chaugai S, et al. Association Between Low-Density Lipoprotein Cholesterol Levels and Risk for Sepsis Among Patients Admitted to the Hospital With Infection. *JAMA Netw Open*. 2019;2(1):e187223. doi:10.1001/jamanetworkopen.2018.7223

3. Dupont WD, Plummer WD. Power and sample size calculations for studies involving linear regression. *Control Clin Trials*. 1998;19(6):589-601. doi:S0197-2456(98)00037-3 [pii]

4. Walley KR, Thain KR, Russell JA, et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. *Sci Transl Med*. 2014;6(258):258ra143-258ra143. doi:10.1126/scitranslmed.3008782

5. Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and Risk of Cardiovascular Disease and Diabetes. *N Engl J Med*. 2016;375(22):2144-2153. doi:10.1056/NEJMoal604304