Genome evolution of the psammophyte *Pugionium* for desert adaptation and further speciation

Quanjun Hu\(^1\), Yazhen Ma\(^{a,b}\), Terezie Mandáková\(^{c,1}\), Sheng Shi\(^b\), Chunlin Chen\(^c\), Pengchuan Sun\(^a\), Lei Zhang\(^a\), Landi Feng\(^a\), Yudan Zhenga, Xiaoqin Feng\(^a\), Wenjie Yang\(^a\), Jiebei Jianga, Ting Li\(^a\), Pingping Zhou\(^a\), Qiushi Yud, Dongshi Wan\(^a\), Martin A. Lysak\(^c\), Zhenxiang Xia\(^c\), S. Sheng Shib, Chunlin Chena, Pengchuan Suna, Martin A. Lysakc, Zhenxiang Xia,2, Jianquan Liua,b,2, and Jianquan Liua,b,2

“Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; \(^a\)State Key Laboratory of Grassland Agro-Ecosystem, Innovation Institute of Ecology and Life Sciences, Lanzhou University, Lanzhou 730000, China; \(^b\)Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; \(^c\)State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou 730000, China; and \(^d\)Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3498838, Israel

Contributed by Eviatar Nevo, December 28, 2020 (sent for review December 14, 2020; reviewed by Mark A. Beilstein and Linfeng Li)

Deserts exert strong selection pressures on plants, but the underlying genomic drivers of ecological adaptation and subsequent speciation remain largely unknown. Here, we generated de novo genome assemblies and conducted population genomic analyses of the psammophytic genus *Pugionium* (Brassicaceae). Our results indicated that this bispecific genus had undergone an allopolyploid event, and the two parental genomes were derived from two ancestral lineages with different chromosome numbers and structures. The postpolyploid expansion of gene families related to abiotic stress responses and lignin biosynthesis facilitated environmental adaptations of the genus to desert habitats. Population genomic analyses of both species further revealed their recent divergence with continuous gene flow, and the most divergent regions were found to be centered on three highly structurally reshuffled chromosomes. Genes under selection in these regions, which were mainly located in one of the two subgenomes, contributed greatly to the interspecific divergence in microhabitat adaptation.

"Significance"

Plants’ adaptations to and divergence in arid deserts have long fascinated scientists and the general public. Here, we present a genomic analysis of two congeneric desert plant species that clarifies their evolutionary history and shows that their common ancestor arose from a hybrid polyploidization, which provided genomic foundations for their survival in deserts. The whole-genome duplication was followed by translocation-based rearrangements of the ancestral chromosomes. Rapid evolution of genes in these reshuffled chromosomes contributed greatly to the divergences of the two species in desert microhabitats during which gene flow was continuous. Our results provide insights into plant adaptation in the arid deserts and highlight the significance of polyploidy-driven chromosomal structural variations in species divergence.

Author contributions: Q.H., Z.X., E.N., and J.L. designed research; Q.H., Y.M., T.M., S.S., I.Z., Q.Y., D.W., and M.A.L. performed research; Q.H., Y.M., T.M., S.S., C.C., P.S., L.F., Y.Z., X.F., W.Y., J.J., T.L., P.Z., and M.A.L. analyzed data; and Q.H., Y.M., T.M., M.A.L., Z.X., E.N., and J.L. wrote the paper.

Reviewers: M.A.B., The University of Arizona; and L.L., Fudan University. The authors declare no competing interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

To whom correspondence may be addressed. Email: liujq@mwiwjb.cas.cn, nevo@research.haifa.ac.il, or zxi@scu.edu.cn.

This article contains supporting information online at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025711118/-/DCSupplemental.

Published October 14, 2021.
vegetables by local communities (23), both species produce highly lignified roots, stems, and silicles, which have a clear adaptive value in dry and salty deserts. *Pugionium cornutum* has long roots and an erect stem that can be more than 1.5 m tall, while *Pugionium dolabratum* produces short roots and numerous basal “bushy” branches (Fig. I.4). Most populations of the two species have no overlapped distributions, but they do occur rarely in the same site with distinct microhabitat divergence (23) (*SI Appendix, Results*). Furthermore, *P. cornutum* and *P. dolabratum* are confined to the mobile and fixed dunes, respectively (23), and also display differences in leaf and silicle morphology, including the sizes of silicle valves and wings (31). In this study, we first sequenced and assembled genomes of the two *Pugionium* species and then assessed the genomic changes that had taken place during the ancestral adaptation of the genus to the desert environment. Next, we examined the genomic divergence of both species at the population level to investigate how speciation might occur in the desert.

Results

De Novo Genome Assemblies of the Two Species. Our examination of DAPI-stained mitotic chromosome spreads revealed 11 chromosome pairs (2n = 22) in both *Pugionium* species (*SI Appendix, Fig. S1*). The genome sizes were estimated to be 570 and 606 Mb for *P. cornutum* and *P. dolabratum*, respectively (*SI Appendix, Figs. S2 and S3*). A high-quality reference genome of *P. cornutum* was obtained with 81.3 Gb (143x) Nanopore long reads and 44.7 Gb (78x) short reads (*SI Appendix, Table S1*). With the aid of the chromosome conformation capture technique (*SI Appendix, Fig. S4*), the genome of *P. cornutum* was further assembled into 11 chromosomes (Fig. 1B and *SI Appendix, Fig. S5*). The resulting assembly of *P. cornutum* was 550 Mb, with a scaffold N50 of 37.1 Mb and a contig N50 of 311.7 kb (*SI Appendix, Table S2*). For *P. dolabratum*, 211 Gb (356x) short reads and 10.7 Gb (18x) Pacbio long reads were used to de novo assemble the genome into large scaffolds, with scaffold N50 being 357.8 kb and contig N50 being 68.4 kb (*SI Appendix, Tables S3 and S4*). We assessed the quality of genome assemblies using RNA sequencing (RNA-seq) data obtained from roots, stems, leaves, and flowers (*SI Appendix, Table S5*). The results showed that most coding regions were well represented in the assemblies (*SI Appendix, Table S6*). Moreover, 97.9 and 97.4% of the 2,526 eudicot-specific BUSCO genes were identified in the genome assemblies of *P. cornutum* and *P. dolabratum*, respectively (*SI Appendix, Table S7*).

In total, 72.8 and 65.0% of the genome sequences were identified as repetitive elements for *P. cornutum* and *P. dolabratum*, respectively (Fig. 1B and *SI Appendix, Tables S8 and S9*), and the vast majority of repeats were classified as tandem repeats and long terminal repeat (LTR) retrotransposons. An analysis of LTR retrotransposons indicated an increase in the activity during the last three million years (*SI Appendix, Fig. S6*). A total of 31,412 and 30,614 protein-coding genes were predicted for *P. cornutum* and *P. dolabratum*, respectively (*SI Appendix, Table S10*), and 27,982 (89.1%) of these genes were distributed on the assembled chromosomes of *P. cornutum*. In addition, most of these genes were successfully annotated by at least one public database (*SI Appendix, Table S11*), with complete BUSCO scores of 95.1 and 94.2% for *P. cornutum* and *P. dolabratum*, respectively (*SI Appendix, Table S12*), indicating near completion of both the assemblies and annotations.

WGD by Allotetraploidy. Our comparative chromosome painting analyses based on cross-species hybridization, using BAC contigs specific to the chromosomes of *Arabidopsis thaliana*, suggested two copies of genomic blocks (GBs) in the *Pugionium* pachytene chromosome complements (*SI Appendix, Fig. S7*). This pointed to a potential WGD (tetraploidization) that had occurred during the origin of *Pugionium*. This WGD was further confirmed by genome collinearity and synonymous divergences of paralogous gene pairs within collinear blocks (Fig. 1B and *SI Appendix, Figs. S8–S11*). Based on the divergence of paralogous gene pairs, this WGD was estimated to have

Fig. 1. The contrasted habit and morphology of the two *Pugionium* species and genomic structure of *P. cornutum*. (A) Morphological and habitat divergence of the two species (1, 2, and 3 for *P. cornutum* and 4, 5, and 6 for *P. dolabratum*) on the basal branching and stem height, leaf (lobe width), silique morphology (valve and wing length and angle), and habitat (mobile and fixed dunes). (Scale bar: 1 cm.) (B) Collinearity within the *P. cornutum* genome. Color-coded lines in the middle (7) show gene synteny between chromosomes. Histograms from inside to outside show frequencies of tandem repeats (2), LTR/Gypsy retrotransposons (3), LTR/Copia retrotransposons (4), overall repetitive contents (5), and densities of genes (6), respectively.
occurred ~18 Mya (SI Appendix, Fig. S9) when Lineages I and II diverged (30, 32) and was more recent than the family-specific At-α WGD (~43 Mya) (33). Phylogenetic analyses of different datasets were then performed to examine whether the tetraploidy arose from autopolyploidization or allopolyploidization. We first constructed gene trees using six species, that is, *P. cornutum, Arabidopsis lyrata, Capsella rubella, Eutrema salsugineum, Schrenkilla parvula*, and *Aethionema arabicum*, and assessed the pattern of gene tree topologies. For the 5,461 genes that were single copy in each of the six genomes, the placement of *P. cornutum* as sister to Lineage II was supported by 42.0% (bootstrap supports ≥70%) of gene trees, while 17.8% (bootstrap supports ≥70%) placed *P. cornutum* sister to Lineage I plus II (SI Appendix, Fig. S12), suggesting a likely hybrid origin because of the high inconsistent tree topologies. Then, we carried out phylogenetic analyses of the two duplicate paralogs from the At-α polyploidization and the possible homologs in *Pugionium* and *Eutrema*. Most duplicated homologs in *Pugionium* did not cluster into one monophyletic group as expected for autopolyploidization (SI Appendix, Fig. S12). Finally, 8,268 gene trees constructed based on homolog groups that contain one gene from *A. arabicum* and at least one homolog in all other genomes were used to perform multilabeled trees (MUL-trees) analysis, and the optimal MUL-tree also supported the allopolyploid origin of *P. cornutum* (SI Appendix, Fig. S13).

In order to further confirm allopolyploidization and uncover the origin of the two parental *Pugionium* (sub)genomes, the genome of *P. cornutum* was used to examine the association of GBs specific to previously defined ancestral Brassicaceae genomes—ancestral Proto-CALEPINEAE Karyotype (ancPCK, *n* = 8) (29) and Proto-CALEPINEAE Karyotype (PCK, *n* = 7) (27). The conserved association of blocks K-L and M-N on *Pugionium* chromosome 3 indicated that one parental (sub)genome was ancPCK-like (denoted as SG1), Fig. 24 and SI Appendix, Fig. S14). In contrast, the association K-L+Wa on *Pugionium* chromosome 9 pointed to a PCK-like (sub)genome (denoted as SG2). Despite the extensive postpolyploidization shuffling, these comparative analyses have collectively shown that the ancestral *Pugionium* genome originated through an allotetraploid WGD based on hybridization between ancPCK- and PCK-like genomes (Fig. 24). This ancestral allopolyploid genome experienced an extensive postpolyploidization, reducing the chromosome number from *n* = 15 to *n* = 11 (Fig. 24). Among the 11 chromosomes in the *Pugionium* genome, five chromosomes remained conserved (chromosomes 1, 2, 6, 10 and 11), whereas the remaining six chromosomes were greatly reshuffled by translocations and inversions (Fig. 24). Three chromosomes (3, 4, 7) showed high chromosomal structural variations as compared to the ancestral genomes.

Biased Gene Fractionation and Gene Family Expansion. According to their associated gene tree topologies, duplicated GBs in the genome of *P. cornutum* were partitioned into subgenomes SG1 and SG2 (SI Appendix, Figs. S15 and S16 and Table S13). Based on the modeled postpolyploidization interchromosomal rearrangements and loss of chromosomal segments (SI Appendix, Fig. S14), we identified a total of 10,981 and 14,936 protein-coding genes in the subgenome SG1 and SG2, respectively. Here, biased fractionation resulted in the preferential retention of genes from one parental genome (SI Appendix, Table S14). Based on these 14,936 genes, which were phylogenetically closer to Lineage II, the divergence time between subgenome SG2 and *E. salsugineum* was estimated to be ~12 Mya. This suggests that with its related but unsampled genera should have occurred around this age or later. We then examined expression levels of the homeologous gene pairs in order to investigate the presence or absence of the subgenome dominance. Using RNA-seq data from different tissues, we found biased gene expressions between the two subgenomes with genes located in the subgenome SG2 having significantly higher expression than those from SG1 (SI Appendix, Figs. S17 and S18). In addition, around 42.0% of the homeologous gene pairs were estimated to show at least twofold differentiated expressions between the two subgenomes (SI Appendix, Fig. S19).

We next determined gene families experienced expansion and contraction in the *Pugionium* genus based on annotated genomes of the two *Pugionium* species and other species from Brassicaceae (Fig. 2B and SI Appendix, Table S15). Out of the 2,466 gene families specifically expanded in *Pugionium*, 2,143 contained duplicated genes derived from WGD as determined by the presence of collinear blocks. Gene families expanded via WGD were enriched in multiple Gene Ontology categories related to organ developments and stress responses, including “leaf development,” “root development,” “seed development,” “cellular response to salt stress,” and “response to light stimulus,” while those expanded via tandem duplications were overrepresented in functional categories associated with “root meristem growth,” “secondary metabolite biosynthetic process,” and “DNA-(cytosine-5')-methyltransferase activity” (Datasets S1 and S2). We found that 40 out of 58 transcription factor gene families had expanded in *Pugionium* (SI Appendix, Table S16). Most of them are involved in responses to abiotic stress. For example, members of RAV and GRAS gene families were reported to respond to salty and cold stresses. In addition, we found that gene families related to ion and osmotic equilibrium (CIPK and CPDK), drought tolerance (ABF and DREBs), and lignin biosynthetic pathway (PAL and MSBP) were also expanded within *Pugionium* (Fig. 2 C and D and SI Appendix, Figs. S20–S22 and Tables S17–S19). Expansions of these gene families should have supplied genetic foundations for this genus to adapt to the challenging habitats. In addition, we also found that genes located in the subgenome SG2 showed higher expression levels than those in SG1 in these gene families, which further confirmed that the biased gene expression played a likely role for plant adaptation during diploidization after allopolyploidization (SI Appendix, Table S18).

Interspecific Divergence of the Allopolyploid Genome. In addition to morphological differentiation (Fig. 1A), two *Pugionium* species appear to show local adaptation to different microhabitats (*SI Appendix, Figs. S23–S26 and Tables S20–S23*) as found for other closely related desert plants (34). To explore the genetic basis of the divergence, we conducted whole-genome resequencing of five populations (a total of 20 individuals) for each species (Fig. 3A and SI Appendix, Table S24). The linkage disequilibrium of both species decayed to half maximum within 5 kb (Fig. 3B). The principal component (PC) analysis distinguished the two species along PC1 (variance explained 19.1%), PC2 (variance explained 18.0%), and PC3 (variance explained 13.1%), suggesting sympatric or parapatric speciation through microhabitat selections.

We identified a total of 42 genomic regions (50 kb in size) in assembled chromosomes of *P. cornutum* that exhibited high divergence between *P. cornutum* and *P. dolabratum* (i.e., upper 1% of the empirical FST distribution) (SI Appendix, Table S27), which also had significantly elevated *dS* compared to other genomic regions (*P* = 2.1 × 10^-13, Mann–Whitney *U* test; Fig.
lower in these regions for both
Furthermore, nucleotide diversity was found to be significantly
especially for the three chromosomes (SI Appendix S14). Genome-wide

3F). Out of these 42 regions, 27 and 15 were identified in sub-
genome SG1 and SG2, respectively, without biased distributions (P = 0.06) (Fig. 3F and SI Appendix, Table S27). However, 86% of these regions were found to be located on chromo-
somes 3, 4, and 7 (Fig. 3F), which were formed by recombina-
tion among multiple ancestral chromosomes (SI Appendix, Fig. S14). Genome-wide F_{ST} and d_{XY} were positively correlated, especially for the three chromosomes (SI Appendix, Fig. S29). Furthermore, nucleotide diversity was found to be significantly lower in these regions for both P. cornutum (P = 5.3 × 10^{-15}) and P. dolabratus (P < 2.2 × 10^{-16}; Fig. 3F), suggesting that selection might have acted on these regions. A total of 236 genes were identified from these highly divergent regions, and the vast majority of these genes were found to be located on chromosome 4 (68.6%) and 7 (28.8%). The expression of some of these genes in four different tissues showed contrasting dif-
fERENCE between the two species (SI Appendix, Figs. S30 and S31). Using a Hudson–Kreitman–Aguad test, 197 of these genes were inferred to be under selection, and most of them were located in subgenome SG2 (SI Appendix, Table S28).
Homologs of these genes were identified to be involved in root development (BDG1, KUA1, ABCB4, GH3.3), leaf morphogenesis (AS2, KUA1, FL6, GRF3), xylem differentiation (LHL3), seed germination and seedling development (NaC25, MED7B, STM), salt tolerance (BHLH112, GolS1, TSPQ), drought resistance (BDG1, PUB23), oxidative stress response (NUDT2), and flavonoid biosynthesis (MYB12) (Fig. 3F). The two Pugionium species have distinct differences in morphology and habitat, with *P. cornutum* only occurring on mobile dunes, whereas *P. dolabratum* is distributed in fixed or semifixed deserts (Fig. 1). They displayed contrasting patterns in seed germination speed and growth rate in response to salinity stress and desert burial (*SI Appendix*, Figs. S23–S26 and Table S23). Therefore, the divergence selection of those genes might be responsible for morphological differentiation of root, shoot, and leaf and further contributed to local adaptation of the two *Pugionium* species to different microhabitats.

To further test whether copy number variations of specific gene families between the two species contributed to speciation, we used the two de novo genomes to identify the genes of three amino acid loop extension (TALE) and histidine kinases (HKs) gene families between the two species contributed to speciation. Based on comparative chromosome painting analyses (*SI Appendix*, Figs. S32 and S33 and Table S29). In the TALE gene family, we found that *P. dolabratum* contained more copies for *BLH11*, *KNAT2*, and *KNAT6* compared with *P. cornutum*. The BLH11 ortholog from *Medicago truncatula* (PINA1) was identified as a determinacy factor during leaf morphogenesis (35). In *Arabidopsis*, *KNAT2* and *KNAT6* were also confirmed to play essential roles in regulating proximal–distal development of leaves by the repression from AS2 (36), which was also found to have experienced positive selection in the two *Pugionium* species (*SI Appendix*, Table S28). For the HKs gene family, more homologic copies were detected in *P. cornutum* for *AHK2* and *AHK4*, which encode two cytokinin receptors involved in shoot and root development, as well as tolerance to salt and drought stress (37–39). In addition, expression divergence of these gene copies was also detected between the two species (*SI Appendix*, Figs. S32 and S33). Thus, the copy number variations in these gene families may also have contributed to the morphological divergences between the two species as well as the respective adaptations to mobile and stable desert dunes.

Discussion

Based on comparative chromosome painting analyses (*SI Appendix*, Fig. S7) and divergence distributions of the paired paralogs, we inferred the occurrence of a WGD presumably specific to the genus *Pugionium* and clear postpolyploid chromosomal structural variation. Further analyses suggested that this WGD probably involved allopolyploidization rather than autopolyploidization and occurred around 12 Mya or later, postdating the divergence of two ancestral parental lineages (*n* = 8 and 7, respectively; Fig. 2A) ~18 Mya. Similar allopolyploidizations, involving ancPCK- and PCK-like parental genomes, were previously reported in the genus *Ricota* (*n* = 13 and 14) (40) and *Lunaria* (*n* = 14) (41). However, the ancestral allopolyploid *Pugionium* genome experienced more extensive descending dysploidy (from *n* = 15 to *n* = 11) during its postpolyploid diploidization, associated with the origin of three highly rearranged chromosomes (Fig. 2A). The allopolyploid origin of *Pugionium* seems to have facilitated its survival through adaptation to the changing environments of northwest China during their desertification since the early Miocene (21, 42). *Inter alia*, gene families involved in drought tolerance, ionic and osmotic equilibrium, and lignin biosynthesis expanded in the *Pugionium* genomes significantly (*SI Appendix*, Fig. S20 and Table S17).
Genomic evidence indicates that the two species started to diverge around 1.65 Mya, during the Quaternary, when a global increase in aridity (20, 43, 44) might have led to the development of contrasting desert microhabitats, mobile and fixed dunes, thereby promoting the initial divergence of the two species through microhabitat adaptation with parapatric or sympatric distribution (45). This hypothesis is corroborated by our speciation modeling of joint site frequency spectra across the entire genome, which suggests the occurrence of continuous and strong gene flow through their evolutionary divergence history. We further found that the high-divergence regions in the *Pugionium* allopolyploid genome were mainly distributed on three chromosomes with most structural variations generated by translocation-based reshuffling during postpolyploidization diploidization. In addition to copy number variations of genes in these regions, genes with positive selection signals in these regions are highly involved in root development, leaf morphogenesis, and microhabitat adaptation (seed germination and dry/salt tolerance), corresponding well with interspecific divergences in these respects (SI Appendix, Tables S21 and S23). Therefore, our results suggest that polyploid-driven chromosomal structural variation may have played an important role in subsequent speciation and further extensive diversification (45) in addition to well-known rapid differentiations of the duplicated genes and novel genetic interactions (46).

Materials and Methods

Mitotic chromosome spreads were used primarily for chromosome counting and pachytene spreads for comparative chromosome painting analysis. Long reads were generated using GridION and PacBio RS II. Paired-end and mate-pair short reads were generated using the MGISEq 2000 and Illumina HiSeq platforms. Genomes were assembled using MaSuRCA. Transposable elements were identified using Tandem Repeats Finder, RepeatMasker, RepeatModeler, and LTR_Finder. Genes were predicted using AUGUSTUS, GlimmerHMM, PASA, Exonerate, and EvidenceModeler. Collinear gene blocks were identified with MCscanX. Synonymous substitution rates were calculated using PAML. Following genome alignments and chaining by LASTZ, GRAMPA was used to determine the likely mode of polyploidy. Gene expression levels were estimated using Salmon and DESeq. Clean reads from population data were mapped to the *P. cornutum* genome using the bwa-mem algorithm. Genome-wide single nucleotide polymorphisms (SNPs) were called by GATK. ADMIXTURE and Eigensoft were used for population structure analysis. Coalescence-based simulation of speciation patterns was performed in fastsimcoal2. The interspecific reproductive isolation within the genus, and differences between the two species in microhabitat adaptation, were experimentally confirmed at desert sites. Detailed information on all the experimental and analytical procedures is available in SI Appendix.

Data Availability. The whole-genome sequencing data, transcriptome sequencing data, and genome assemblies have been deposited in the National Center for Biotechnology Information Sequence Read Archive (https://www.ncbi.nlm.nih.gov/submit) under accession numbers PRJNA685118 and PRJNA760666.

ACKNOWLEDGMENTS. This work was equally supported by the Second Tibetan Plateau Scientific Expedition and Research program (2019ZX09050), the National Natural Science Foundation of China (91731301, 91331102, and 41711055), and also the Fundamental Research Funds for the Central Universities (SCU2021D006 and 2020SCUNL207). T.M. and M.A.L. were supported by the Central European Institute of Technology 2020 project (LQ1601).

1. M. Dassanayake et al., *The genome of the extremophile crucifer Thellungiella parva.* Nat. Genet. 43, 913–918 (2011).
2. J. S. Boyer, Plant productivity and environment. Science 218, 443–448 (1982).
3. J. T. Anderson, J. H. Willis, T. Mitchell-Olids, Evolutionary genetics of plant adapta- tion. Trends Genet. 27, 258–266 (2011).
4. T. L. Turner, E. C. Bourne, E. J. Von Wettberg, T. H. Hu, S. V. Nuzhdin, Population rese- quencing reveals local adaptation of *Arabidopsis lyrata* to serpentine soils. Nat. Genet. 42, 260–263 (2010).
5. L. F. Li, Y. L. Li, Y. Jia, A. L. Caicedo, K. M. Olsen, Signatures of adaptation in the weedy rice genome. Nat. Genet. 49, 811–814 (2017).
6. Y. Jiao et al., Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).
7. P. S. Sohtis, D. E. Sohtis, Ancient WGD events as drivers of key innovations in angio- sperms. Curr. Opin. Plant Biol. 30, 159–165 (2016).
8. S. Marburger et al., Interspecific introgression mediates adaptation to whole genome duplication. Nat. Commun. 10, 5218 (2019).
9. S. Wu, B. Han, Y. Jiao, Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Mol. Plant 13, 59–71 (2020).
10. M. A. Beilstein et al., Evolution of the telomere-associated protein POT1a in Arabidopsis thaliana is characterized by positive selection to reinforce protein–protein interaction. Mol. Biol. Evol. 32, 1329–1341 (2015).
11. G. L. Stebbins Jr., Types of polyploids; their classification and significance. Adv. Genet. 1, 403–429 (1947).
12. M. S. Barker, N. Arrigo, A. E. Baniaga, Z. Li, D. A. Levin, On the relative abundance of polyploids and allopolploids. New Phytol. 210, 391–398 (2016).
13. M. C. Estep et al., Allopolyploidy, diversification, and the Miocene grassland expand- tion. Proc. Natl. Acad. Sci. U.S.A. 111, 15149–15154 (2014).
14. A. S. Taylor, E. L. Larson, Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).
15. M. Ding, Z. J. Chen, Epigenetic perspectives on the evolution and domestication of polyploid plant crops. Curr. Opin. Plant Biol. 42, 37–48 (2018).
16. G. Huang et al., Genome sequence of *Gossypium herbaceum* and genome updates of *Gossypium arboreum* and *Gossypium hirsutum* provide insights into cotton A-genome evolution. Nat. Genet. 52, 516–524 (2020).
17. T. Marcusen et al., Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 1250092 (2014).
18. B. Chalhoub et al., Early allopolyploid evolution in the post-Neolithic *Brassica* napa oilseed genome. Science 345, 950–953 (2014).
19. J. C. del Pozo, E. Ramirez-Parra, Whole genome duplications in plants: an overview from Arabidopsis. J. Exp. Bot. 66, 6991–7003 (2015).
20. X. Yang, Desert research in northwestern China—A brief review. Geomorphology Rel. Process. Environ. 4, 275–284 (2006).
21. Z. T. Guo et al., A major reorganization of Asian climate by the early Miocene. Clim. Past 14, 153–174 (2018).
40. T. Mandakova, X. Guo, B. Ozdojgu, K. Mummenhoff, M. A. Lysak, Hybridization-facilitated genome merger and repeated chromosome fusion after 8 million years. *Plant J.* 96, 748–760 (2018).

41. X. Guo et al., Linked by ancestral bonds: Multiple whole-genome duplications and reticulate evolution in a Brassicaceae tribe. *Mol. Biol. Evol.* 38, 1695–1714 (2021).

42. X. Liu et al., Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift? *Natl. Sci. Rev.* 2, 403–416 (2015).

43. J. Hövermann, H. Süssenberger, Zur Klimageschichte Hoch- und Ostasiens. *Berl. Geogr. Stud.* 20, 173–186 (1986).

44. J. Huang, H. Yu, X. Guan, G. Wang, R. Guo, Accelerated dryland expansion under climate change. *Nat. Clim. Chang.* 6, 166–171 (2016).

45. N. Walden et al., Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. *Nat. Commun.* 11, 3795 (2020).

46. Y. Van de Peer, T. L. Ashman, P. S. Soltis, D. E. Soltis, Polyploidy: An evolutionary and ecological force in stressful times. *Plant Cell* 33, 11–26 (2021).