Sharp upper bounds on the k-independence number in regular graphs

Zhenyu Taoqiu† Suil O∗ Yongtang Shi†

January 23, 2019

Abstract

The k-independence number of a graph G is the maximum size of a set of vertices at pairwise distance greater than k. In this paper, for each positive integer $k \geq 2$ and $r \geq 3$, we prove sharp upper bounds for the k-independence number in an n-vertex r-regular graph.

Keywords: k-independence number, independence number, chromatic number, k-distance chromatic number, regular graphs

AMS subject classification 2010: 05C69

1 Introduction

Throughout this paper, all graphs are simple, undirected, and finite. For a nonnegative integer k, a k-independent set in a graph G is a vertex set $S \subseteq V(G)$ such that the distance between any two vertices in S is bigger than k. Note that the 0-independent set is $V(G)$ and a 1-independent set is an independent set. The k-independence number of a graph G, written $\alpha_k(G)$, is the maximum size of a k-independent set in G.

It is known that $\alpha_1(G) \geq \frac{n}{\chi(G)}$, where $\chi(G)$ is the chromatic number of a graph G. Similarly, by finding the k-distance chromatic number of G, we can find a lower bound for $\alpha_k(G)$. It will be discussed in Section 4. Other graph parameters such as the average distance [4], injective chromatic number [6], packing chromatic number [5], and strong
chromatic index \[9\] are also directly related to the \(k \)-independence number. Lower bounds on the corresponding distance or packing chromatic number can be given by finding upper bounds on the \(k \)-independence number. Alon and Mohar \[2\] asked the extremal value for the distance chromatic number in graphs of a given girth and degree.

Firby and Haviland \[4\] proved an upper bound for \(\alpha_k(G) \) in an \(n \)-vertex connected graph. We give a proof for the upper bound below because with a similar idea, we prove Theorem 3.2 which is one of the main results in this paper.

Theorem 1.1. (\[4\]) If \(G \) is an \(n \)-vertex connected graph with \(\text{diam}(G) \geq k+1 \), and \(G \not\cong K_n \), then

\[
2 \leq \alpha_k(G) \leq \begin{cases}
\frac{2n}{k+2}, & \text{if } k \text{ is odd}, \\
\frac{2n-2}{k+1}, & \text{if } k \text{ is even}.
\end{cases}
\]

Furthermore, bounds are sharp.

Proof. Assume \(S_k \subset V(G) \) is a \(k \)-set of \(G \), if any pair of vertices in \(S_k \) has distance at least \(k \). Because \(\text{diam}(G) \geq k+1 \), there are two vertices \(u, v \in V(G) \), such that \(d_G(u, v) = k+1 \), thus \(u, v \in S(k+1) \). By the definition of \(\alpha_k(G) \), we get that \(\alpha_k(G) = \max |S(k+1)| \geq 2 \).

For the upper bounds, we can prove them by induction.

If \(k \) is odd. When \(k = 1 \), it’s trivial that \(\alpha_k(G) = n \). When \(k = 3 \), \(\forall u, v \in S_3 \), \(d_G(u, v) \geq 3 \), which means \(N(v) \cap N(u) = \emptyset \). Therefore, we have \(|N(S_3)| \geq |S_3| \). While \(|N(S_3)|+|S_3| = n \), so we get that \(|S_3| \leq \frac{n}{2} \). If \(G \) is a comb, then \(\alpha_2(G) = \frac{n}{2} \). For \(S(k+1) \), \(\forall u, v \in S(k+1) \), \(d_G(u, v) \geq k+1 \) and \(N(v) \cap N(u) = \emptyset \), we can get that \(|N(S(k+1))| \geq |S(k+1)| \) and \(N(S(k+1)) \) is a \((k-1) \)-set, which means \(|N(S(k+1))| \leq \frac{2(n-|S(k+1)|)}{k} \). Therefore, we have \(\alpha_k(G) = \max |S(k+1)| \leq \frac{2n}{k+2} \). If \(G \) is a subdivision of a comb \(H \), which is constructed by replacing each pendant edge of \(H \) with a path of length \(\frac{k+1}{2} \), then \(\alpha_k(G) = \frac{2n}{k+2} \).

If \(k \) is even. When \(k = 2 \), \(\forall u, v \in S_2 \), \(d_G(u, v) \geq 2 \), we have \(|S_2| \leq n-1 \). If \(G \) is a star \(K_{1,n-1} \), then \(\alpha_1(G) = n-1 \). For \(S(k+1) \), \(\forall u, v \in S(k+1) \), \(d_G(u, v) \geq k+1 \) and \(N(v) \cap N(u) = \emptyset \), we can get that \(|N(S(k+1))| \geq |S(k+1)| \) and \(N(S(k+1)) \) is a \((k-1) \)-set, which means \(|N(S(k+1))| \leq \frac{2(n-|S(k+1)|)}{k-1} \). Therefore, we have \(\alpha_k(G) = \max |S(k+1)| \leq \frac{2(n-1)}{k+1} \). If \(G \) is a subdivision of a star \(K_{1,\frac{2(n-1)}{k+1}} \), which is constructed by replacing each edge of \(K_{1,\frac{2(n-1)}{k+1}} \) with a path of length \(\frac{k+2}{2} \), then \(\alpha_k(G) = \frac{2n-2}{k+1} \).

In 2000, Kong and Zhao \[7\] showed that for every \(k \geq 2 \), determining \(\alpha_k(G) \) is NP-complete for general graphs. They also showed that this problem remains NP-hard for regular bipartite graphs when \(k \in \{2, 3, 4\} \) \[8\]. It is well-known that for an \(n \)-vertex \(r \)-regular graph \(G \), we have \(\alpha_1(G) \leq \frac{n}{2} \). Also, for \(k = 2 \), we have \(\alpha_2(G) \leq \frac{n}{d+1} \) because for any pair of two vertices \(u, v \) in a 2-independent set, we have \(N(u) \cap N(v) = \emptyset \). For each fixed
integer, \(k \geq 2 \) and \(r \geq 3 \), Beis, Duckworth, and Zito \cite{beis2016sharp} proved upper bounds for \(\alpha_k(G) \) in random \(r \)-regular graphs.

In this paper, for all positive integers \(k \) and \(r \geq 3 \), we prove sharp upper bounds for \(\alpha_k(G) \) in an \(n \)-vertex \(r \)-regular graph. In Section 2, for all positive integers \(k \) and \(r \geq 3 \), we provide infinitely many \(r \)-regular graphs with \(\alpha_k(G) \) attaining the sharp upper bounds. In Section 3, the proof for the bounds will be given. In Section 4, we provide some questions.

For undefined terms, see West \cite{west2015introduction}.

2 Construction

In this section, we construct \(n \)-vertex \(r \)-regular graphs with the \(k \)-independence numbers achieving equalities in the upper bounds in Theorem \cite{beis2016sharp}

Definition 2.1. Assume that \(k = 6l - 4 \) for \(l \in N \).

Let \(V_1 = \{v_{11}, \ldots, v_{1r}\} \) such that for each \(i \in [r] \), the degree of \(v_{1i} \) is \(r \), \(N[v_{1i}] \) induces a copy of \(K_{r+1} - K_2 \), and for each \(i \neq j \in [r] \), \(v_{1i} \) is not adjacent to \(v_{1j} \) and \(N[v_{1i}] \cap N[v_{1j}] = \emptyset \).

Let \(V_2 = \{N(v_{11}), \ldots, N(v_{1r})\} \) such that for each \(i \neq j \in [r] \), \(N(v_{1i}) \) is not adjacent to \(N(v_{1j}) \), and for each \(i \in [r] \) and \(h \in \{1, 2, 3\} \), \(v_{h1}^i \in N(v_{1i}) \) and \(v_{h1}^i \) is not adjacent to \(v_{h2}^i \).

For a positive integer \(1 \leq x \leq l - 1 \), let \(V_{3x} = \{v_{(3x+1)i}, \ldots, v_{(3x)r}\} \) such that for each \(i \in [r] \), \(v_{(3x)i}^h \) is adjacent to \(v_{(3x-1)i}^h \) for \(h \in \{1, 2\} \), \(N[v_{(3x)i}] \setminus v_{(3x-1)i}^h \) induces a copy of \(K_{r-1} \), and for each \(i \neq j \in [r] \), \(v_{(3x)i}^h \) is not adjacent to \(v_{(3x)j}^h \) and \(N[v_{(3x)i}] \cap N[v_{(3x)j}] = \emptyset \).

Let \(V_{3x+1} = \{N(v_{(3x)i}) \setminus v_{(3x-1)i}^1, \ldots, N(v_{(3x)i}) \setminus v_{(3x-1)i}^r\} \) such that for each \(i \neq j \in [r-1] \), \(N[v_{(3x)i}] \setminus v_{(3x-1)i}^j \) is not adjacent to \(N[v_{(3x)j}] \setminus v_{(3x-1)j}^j \).

Let \(V_{3x+2} = \{v_{(3x+2)i}^1, \ldots, v_{(3x+2)i}^r\} \), \(h \in \{1, 2\} \) such that for each \(i \in [r] \), \(v_{(3x+2)i}^1 \) is adjacent to \(v_{(3x+1)i}^2 \) and \(v_{(3x+2)i}^h \) is adjacent to all vertices in \(N[v_{(3x)i}] \setminus v_{(3x-1)i}^h \) for each \(i \neq j \in [r] \), \(v_{(3x+2)i}^h \) is not adjacent to \(v_{(3x+2)j}^h \) except for \(x = l - 1 \).

Let \(H_{r,k}^{1} \) be the resulting graph, let \(G_{r,k,t}^1 = tH_{r,k}^{1} \).

Definition 2.2. Assume that \(r \) is odd and \(k = 6l - 4 \) for \(l \in N \).

Let \(V_1 = \{v_{11}, \ldots, v_{1r}\} \) such that for each \(i \in [r] \), the degree of \(v_{1i} \) is \(r \), \(N[v_{1i}] \) induces a copy of \(K_{r+1} - \frac{r-1}{2} K_2 \), and for each \(i \neq j \in [r] \), \(v_{1i} \) is not adjacent to \(v_{1j} \) and \(N[v_{1i}] \cap N[v_{1j}] = \emptyset \).

Let \(V_2 = \{N(v_{11}), \ldots, N(v_{1r})\} \) such that for each \(i \neq j \in [r] \), \(N(v_{1i}) \) is not adjacent to \(N(v_{1j}) \), and for each \(i \in [r] \) and \(h \in \{1, 2\} \), \(v_{21}^i, v_{2h}^i \in N(v_{1i}) \) and \(v_{2h}^i \) is not adjacent to \(v_{22}^i \).

For a positive integer \(1 \leq x \leq l - 1 \), let \(V_{3x} = \{v_{(3x)i}, \ldots, v_{(3x)r}\} \) such that for each \(i \in [r] \), \(v_{(3x)i} \) is adjacent to \(v_{(3x-1)i} \) for all \(h \in [r-1] \) and for each \(i \neq j \in [r] \), \(v_{(3x)i} \) is not adjacent to \(v_{(3x)j} \).
Let $V_{3x+1} = \{v_{(3x+1)1}, \ldots, v_{(3x+1)r}\}$ such that for each $i \in [r]$, $v_{(3x+1)i}$ is adjacent to $v_{(3x)i}$; $N[v_{(3x+1)i}] \setminus v_{(3x)i}$ induces a copy of K_r and for each $i \neq j \in [r]$, $N[v_{(3x+1)i}] \cap N[v_{(3x+1)j}] = \emptyset$.

Let $V_{3x+2} = \{N(v_{(3x+1)1}) \setminus v_{(3x)1}, \ldots, N(v_{(3x+1)r}) \setminus v_{(3x)r}\}$ such that for each $i \in [r]$, $N(v_{(3x+1)i}) \setminus v_{(3x)i}$ induces a copy of K_{r-1}.

Let $H^2_{r,k}$ be the resulting graph, let $G^2_{r,k,t} = tH^2_{r,k}$.

Definition 2.3. Assume that r is even and $k = 6l - 4$ for $l \in N$.

Let $V_1 = \{v_{11}, \ldots, v_{1r}\}$ such that for each $i \in [r]$, the degree of v_{1i} is r, $N[v_{1i}]$ induces a copy of $K_{r+1} = \frac{r-2}{2}K_2$, and for each $i \neq j \in [r]$, v_{1i} is not adjacent to v_{1j} and $N[v_{1i}] \cap N[v_{1j}] = \emptyset$.

Let $V_2 = \{N(v_{11}), \ldots, N(v_{1r})\}$ such that for each $i \neq j \in [r]$, $N(v_{1i})$ is not adjacent to $N(v_{1j})$, and for each $i \in [r]$ and $h \in \lceil \frac{r-2}{2} \rceil$, $v_{2h}, v_{2h}^h \in N(v_{1i})$ and v_{2h}^h is not adjacent to v_{2h}.

For a positive integer $1 \leq x \leq l - 1$, let $V_{3x} = \{v_{(3x)1}, \ldots, v_{(3x)r}\}$ such that for each $i \in [r]$, $v_{(3x)i}$ is adjacent to $v_{(3x-1)i}$ for all $h \in [r-2]$ and for each $i \neq j \in [r]$, $v_{(3x)i}$ is not adjacent to $v_{(3x)j}$.

Let $V_{3x+1} = \{v_{(3x+1)1}^h, \ldots, v_{(3x+1)r}^h\}$, $h \in \{1, 2\}$ such that for each $i \in [r]$, $v_{(3x+1)i}^h$ is adjacent to $v_{(3x)i}$, $v_{(3x+1)i}^h$ is adjacent to $v_{(3x+1)i}^2$, $N[v_{(3x+1)i}^h] \setminus v_{(3x)i}$ induces a copy of K_{r-1}, and for each $i \neq j \in [r]$, $N[v_{(3x+1)i}^h] \cap N[v_{(3x+1)j}] = \emptyset$, $v_{(3x+1)i}^h$ is not adjacent to $v_{(3x+1)j}$.

Let $V_{3x+2} = \{v_{(3x+2)1}^h, \ldots, v_{(3x+2)r}^h\}$, $h \in [r-2]$ such that for each $i \in [r]$, $v_{(3x+2)i}^h$ is adjacent to $v_{(3x+1)i}^h$ and $v_{(3x+2)i}^2$ induces a copy of K_{r-2}, and for each $i \neq j \in [r]$, $v_{(3x+2)i}^h$ is not adjacent to $v_{(3x+2)j}^h$, except for $x = l - 1$.
Let $H^3_{r,k}$ be the resulting graph, let $G^3_{r,k,t} = tH^3_{r,k}$.

Proposition 2.4. Let $l \in \mathbb{N}$, for $r \geq 3$, $k = 6l - 4$ and $t \geq 1$, the graph $G^i_{r,k,t}$, $i \in \{1, 2, 3\}$ in the definition is r-regular and $\alpha_k(G^i_{r,k,t}) = \frac{n}{l(r+1)}$, where $n = trl(r + 1)$.

5
Definition 2.5. Assume that \(k = 6l - 3 \) for \(l \in N \).

Use the same definition of \(V_1, V_2, V_{3x}, V_{3x+1}, V_{3x+2}, 1 \leq x \leq l - 1 \) in \(H_{r,k}^1 \), and in \(V_{3x+2} \), for each \(i \neq j \in [r], v^h_{(3x+2)i} \) is not adjacent to \(v^h_{(3x+2)j} \) for all \(x \).

Let \(V_{3l} = \{v_{(3l)1}, v_{(3l)2}\} \) such that for each \(i \in [r], v_{(3l)1} \) is adjacent to \(v_{3l-1}^1 \) and \(v_{(3l)2} \) is adjacent to \(v_{(3l-1)}^2 \).

Let \(H_{r,k}^4 \) be the resulting graph, let \(G_{r,k,t}^4 = tH_{r,k}^4 \).

![Figure 4: The graph \(H_{r,k}^4 \)](image)

Proposition 2.6. Let \(l \in N \), for \(r \geq 3, k = 6l - 3 \) and \(t \geq 1 \), the graph \(G_{r,k,t}^4 \) in the definition is \(r \)-regular and \(\alpha_k(G_{r,k,t}^4) = \frac{n}{r(r+1)+2} \), where \(n = tlr(r+1) + 2t \).

Definition 2.7. Assume that \(k = 6l - 2 \) for \(l \in N \).

Use the same definition of \(V_1, V_2, V_{3x}, 1 \leq x \leq l \) and \(V_{3x+1}, V_{3x+2}, 1 \leq x \leq l - 1 \) in \(H_{r,k}^1 \). While in \(V_{3x} \), for each \(i \neq j \in [r], v_{(3x)i} \) is not adjacent to \(v_{(3x)j} \) except for \(x = l \) and in \(V_{3x+2} \), for each \(i \neq j \in [r], v^h_{(3x+2)i} \) is not adjacent to \(v^h_{(3x+2)j} \) for all \(x \).

Let \(H_{r,k}^5 \) be the resulting graph, let \(G_{r,k,t}^5 = tH_{r,k}^5 \).

Proposition 2.8. Let \(l \in N \), for \(r \geq 3, k = 6l - 2 \) and \(t \geq 1 \), the graph \(G_{r,k,t}^5 \) in the definition is \(r \)-regular and \(\alpha_k(G_{r,k,t}^5) = \frac{n}{r(r+1)+1} \), where \(n = tlr(r+1) + tr \).

Definition 2.9. Assume that \(r \) is odd and \(k = 6l - 1 \) for \(l \in N \).
Use the same definition of V_1, V_2, V_{3x}, $1 \leq x \leq l$ and V_{3x+1}, V_{3x+2}, $1 \leq x \leq l - 1$ in $H_{r,k}^2$.

Let $V_{3l+1} = \{v_{(3l+1)1}\}$ such that for each $i \in [r]$, $v_{(3l+1)1}$ is adjacent to $v_{(3l)i}$.

Let $H_{r,k}^6$ be the resulting graph and $G_{r,k,t}^6 = tH_{r,k}^6$.

Figure 5: The graph $H_{r,k}^5$

Figure 6: The graph $H_{r,k}^6$
Definition 2.10. Assume that \(r \) is even and \(k = 6l - 1 \) for \(l \in \mathbb{N} \).

Use the same definition of \(V_1, V_2, V_{3x}, 1 \leq x \leq l \) and \(V_{3x+1}, V_{3x+2}, 1 \leq x \leq l - 1 \) in \(H_{r,k}^3 \).

Let \(V_{3x+1} = \{ v_{(3l+1)1}, v_{(3l+1)2} \} \) such that for each \(i \in [r] \), \(v_{(3l+1)1} \) is adjacent to \(v_{(3l)i} \) and \(v_{(3l+1)2} \) is also adjacent to \(v_{(3l)i} \).

Let \(H_{r,k}^7 \) be the resulting graph and \(G_{r,k,t}^7 = tH_{r,k}^7 \).

Proposition 2.11. Let \(l \in \mathbb{N}, k = 6l - 1 \) and \(t \geq 1 \).

For odd \(r \geq 3 \), the graph \(G_{r,k,t}^6 \) in the definition is \(r \)-regular and \(\alpha_k(G_{r,k,t}^6) = \frac{rn}{(lr+1)(r+1)} \), where \(n = t(lr+1)(r+1) \).

For even \(r \geq 4 \), the graph \(G_{r,k,t}^7 \) in the definition is \(r \)-regular and \(\alpha_k(G_{r,k,t}^7) = \frac{rn}{(lr+1)(r+1)+1} \), where \(n = t(lr+1)(r+1)+t \).

Definition 2.12. Assume that \(r \) is odd and \(k = 6l \) for \(l \in \mathbb{N} \).

Use the same definition of \(V_1, V_2, V_{3x}, 1 \leq x \leq l \) and \(V_{3x+2}, 1 \leq x \leq l - 1 \) in \(H_{r,k}^2 \). While in \(V_{3x+1} \), for each \(i \neq j \in [r] \), \(v_{(3x)i} \) is not adjacent to \(v_{(3x)j} \) except for \(x = l \).

Let \(H_{r,k}^8 \) be the resulting graph and \(G_{r,k,t}^8 = tH_{r,k}^8 \).

Definition 2.13. Assume that \(r \) is even and \(k = 6l \) for \(l \in \mathbb{N} \).
Use the same definition of $V_1, V_2, V_{3x}, V_{3x+1}, 1 \leq x \leq l$ and $V_{3x+2}, 1 \leq x \leq l-1$ in $H_{r,k}^3$. While in V_{3x+1}, for each $i \neq j \in [r]$, $h \in \{1, 2\}$, $v_{(3x+1)i}^h$ is not adjacent to $v_{(3x+1)j}^h$ except for $x = l$.

Let $H_{r,k}^9$ be the resulting graph and $G_{r,k,t}^9 = tH_{r,k}^9$.

Proposition 2.14. Let $l \in N$, $k = 6l$ and $t \geq 1$.
For odd $r \geq 3$, the graph $G_{r,k,t}^8$ in the definition is r-regular and $\alpha_k(G_{r,k,t}^8) = \frac{n}{l(r+1)+2}$, where $n = tl(r+1) + 2tr$.

For even $r \geq 4$, the graph $G_{r,k,t}^9$ in the definition is r-regular and $\alpha_k(G_{r,k,t}^9) = \frac{n}{l(r+1)+3}$, where $n = tl(r+1) + 3tr$.

Definition 2.15. Assume that r is odd and $k = 6l + 1$ for $l \in \mathbb{N}$.

Use the same definition of $V_1, V_2, V_{3x}, V_{3x+1}, 1 \leq x \leq l$ and $V_{3x+2}, 1 \leq x \leq l-1$ in $H_{r,k}^2$.

Let $V_{3l+2} = \{v_{(3l+2)}1, \ldots, v_{(3l+2)(r-1)}\}$ such that for each $i \in [r-1]$ and $j \in [r]$, $v_{(3l+2)i}$ is adjacent to $v_{(3l+1)j}$.

Let $H_{r,k}^{10}$ be the resulting graph and $G_{r,k,t}^{10} = tH_{r,k}^{10}$.

![Figure 10: The graph $H_{r,k}^{10}$](image)

Definition 2.16. Assume that r is even and $k = 6l + 1$ for $l \in \mathbb{N}$.

Use the same definition of $V_1, V_2, V_{3x}, V_{3x+1}, 1 \leq x \leq l$ and $V_{3x+2}, 1 \leq x \leq l-1$ in $H_{r,k}^3$.

Let $V_{3l+2} = \{v_{(3l+2)}1, \ldots, v_{(3l+2)(r-2)}\}$ such that for each $i \in [r-2]$ and $j \in [r]$, $v_{(3l+2)i}$ is adjacent to $v_{(3l+1)j}$.

Let $H_{r,k}^{11}$ be the resulting graph and $G_{r,k,t}^{11} = tH_{r,k}^{11}$.

Proposition 2.17. Let $l \in \mathbb{N}$, $k = 6l + 1$ and $t \geq 1$.

For odd $r \geq 3$, the graph $G_{r,k,t}^{10}$ in the definition is r-regular and $\alpha_k(G_{r,k,t}^{10}) = \frac{rn}{(l+3)(r+1)-4}$, where $n = t(lr+3)(r+1) - 4t$.

10
For even \(r \geq 3 \), the graph \(G_{r,k,t}^{11} \) in the definition is \(r \)-regular and \(\alpha_k(G_{r,k,t}^{11}) = \frac{rn}{(lr+4)(r+1)}-6 \), where \(n = t(lr+4)(r+1) - 6t \).

3 Sharp Upper Bounds

In this section, we prove the sharp upper bounds for \(\alpha_k(G) \) in an \(n \)-vertex \(r \)-regular graph \(G \). First we investigate the relevant properties of \(k \)-independent set of \(G \).

Let \(N^i(S) \) to present the subsequent neighborhood of \(N^{i-1}(S) \), i.e., \(N^i(S) = N(N^{i-1}(S)) \setminus (N^{i-2}(S) \cup N^{i-1}(S)) \). Note that \(N^0(S) = S, N^1(S) = N(S), N^2(S) = N(N(S)) \setminus (S \cup N^1(S)) \), etc.

Lemma 3.1. Let \(G \) be an \(n \)-vertex \(r \)-regular graph and let \(S \) be a \(k \)-independent set of \(G \). If \(N^{i-1}(S), N^i(S), N^{i+1}(S) \) are three consecutive sets of \(G \) as defined, where \(3 \leq i \leq \frac{k}{2} - 1 \), then we have \(|N^{i-1}(S)| + |N^i(S)| + |N^{i+1}(S)| \geq (r+1)|S| \).

Proof. Let \(v_j, v_h \in S, j, h \in \{1, 2, \ldots, |S|\} \), we have \(N^i(v_j) \cap N^i(v_h) = \emptyset \), where \(0 \leq i \leq \frac{k}{2} - 1 \), thus \(N^i(v_j) \geq 1 \) and \(N^i(S) \geq |S| \).

Assume \(|N^i(v_j)| = a \), we have \(d_{N^i(v_j)}(v) \leq a - 1, \forall v \in N^i(v_j) \). For \(G \) is \(r \)-regular, so \(d_{N^{i-1}(v_j) \cup N^{i+1}(v_j)}(v) \geq r - a + 1 \). Then we have \(|N^{i-1}(v_j)| + |N^i(v_j)| + |N^{i+1}(v_j)| \geq r + 1 \), thus \(|N^{i-1}(S)| + |N^i(S)| + |N^{i+1}(S)| \geq (r+1)|S| \). \(\Box \)

Here we give an example when \(a = 5, r = 7 \) in Figure 12.
The lemmas allow us to prove the main result of this section.

Theorem 3.2. Let G be an n-vertex r-regular graph, c be the upper bound of $\alpha_k(G)$, i.e., $\alpha_k(G) \leq c$. Then

$$c = \begin{cases}
\frac{n}{2} & \text{if } k = 1 \\
\frac{n}{l(r+1)} & \text{if } k = 6l - 4 \\
\frac{n}{r(r+1)+2} & \text{if } k = 6l - 3 \\
\frac{n}{l(r+1)+1} & \text{if } k = 6l - 2 \\
\frac{r}{(r+1)(r+1)+1} & \text{if } k = 6l - 1, \text{ } r \text{ is odd} \\
\frac{r}{(r+1)(r+1)+2} & \text{if } k = 6l - 1, \text{ } r \text{ is even} \\
\frac{n}{l(r+1)+3} & \text{if } k = 6l, \text{ } r \text{ is odd} \\
\frac{r}{l(r+1)+3} & \text{if } k = 6l, \text{ } r \text{ is even} \\
\frac{r}{(r+3)(r+1)+4} & \text{if } k = 6l + 1, \text{ } r \text{ is odd} \\
\frac{r}{(r+4)(r+1)+6} & \text{if } k = 6l + 1, \text{ } r \text{ is even}
\end{cases}$$

(1)

Where $l \in \mathbb{N}^+$. The bounds are tight with the constructions we mention before.

Proof. Let S be the k-independent set of G, then $\forall v_j, v_h \in S$, $d(v_j, v_h) \geq k + 1$.

Case 1 $k = 1$

Then for all $v_j, v_h \in S$, $d(v_j, v_h) \geq 2$. In $N^1(S)$, different parts can share vertices, i.e., $N^1(v_j) \cap N^1(v_h) \neq \emptyset$. Then we have $N^1(S) \geq |S|$ and $|S| + |N^1(S)| \leq n$, so $|S| \leq \frac{n}{2}$ with the equality achieved for $G = G_{\frac{n}{2}, \frac{n}{2}}$.

Case 2 $k = 6l - 4$

Figure 12: Example $a = 5$, $r = 7$
Then for all \(v_j, v_h \in S \), \(d(v_j, v_h) \geq 6l - 3 \). For the shortest distance \(6l - 3 \) is odd, so none of the parts can share vertices in the tail set \(N^x(S) \), but there are edges between different parts, i.e., \(N^x(v_j) \cap N^x(v_h) = \emptyset \) and \(N^x(v_j) \sim N^x(v_h) \).

Assume \(P \) is the shortest path between \(v_j \) and \(v_h \), so \(|P| \geq 6l - 3 \). We can get at least one edge from the tail set, and two path \(P_1, P_2 \) respectively from \(N^0(v_j) \to N^x(v_j) \) and \(N^0(v_h) \to N^x(v_h) \), and \(|P_1| + |P_2| = 2x \geq |P| - 1 \), i.e., \(x \geq 3l - 2 \).

By Lemma we have \(N^i(v_j) \cap N^i(v_h) = \emptyset \), where \(0 \leq i \leq \frac{k}{2} \), and \(N^0(S) = |S| \), \(N^1(S) = r|S| \), \(|N^{i-1}(S)| + |N^i(S)| + |N^{i+1}(S)| \geq \left((r + 1)|S|\right) \), \(3 \leq i \leq \frac{k}{2} - 1 \). Assume the three consecutive sets \(N^{i-1}(S), N^i(S), N^{i+1}(S) \) as a unit.

Between \(N^0(S) \) and \(N^1(S) \), we can get one edge and whenever a unit appears, we can get a three length path. As \(3l - 2 = 3(l - 1) + 1 \), we have \(|P| \geq 6l - 2 \). We can get two path \(P_1, P_2 \) respectively from \(N^0(v_j) \to N^x(v_j) \) and \(N^0(v_h) \to N^x(v_h) \), and \(|P_1| + |P_2| = 2x \geq |P| \), i.e., \(x \geq 3l - 1 \).

As \(3l - 1 = 3(l - 1) + 1 \), and between \(N^{x-1}(S) \) and \(N^x(S) \) we can get one edge, so we have \(l - 1 \) units from \(N^2(S) \to N^{3l-2}(S) \), and \(|N^{3l-1}(S)| \geq \frac{2|S|}{r} \). Then \(|S| + r|S| + (l - 1)(r + 1)|S| + \frac{2|S|}{r} \leq n \), i.e., \(|S| \leq \frac{rn}{l(r+1)+2} \). The equality can be achieved when use the construction of \(G^4_{r,k,t} \), \(i \in \{1, 2, 3\} \).

Case 3 \(k = 6l - 3 \)

Then for all \(v_j, v_h \in S \), \(d(v_j, v_h) \geq 6l - 2 \). For the shortest distance \(6l - 2 \) is even, so in the tail set \(N^x(S) \), different parts can share vertices, i.e., \(N^x(v_j) \cap N^x(v_h) \neq \emptyset \).

Assume \(P \) is the shortest path between \(v_j \) and \(v_h \), so \(|P| \geq 6l - 2 \). We can get two path \(P_1, P_2 \) respectively from \(N^0(v_j) \to N^x(v_j) \) and \(N^0(v_h) \to N^x(v_h) \), and \(|P_1| + |P_2| = 2x \geq |P| \), i.e., \(x \geq 3l - 1 \).

As \(3l - 1 = 3(l - 1) + 1 \), and between \(N^{x-1}(S) \) and \(N^x(S) \) we can get one edge, so we have \(l - 1 \) units from \(N^2(S) \to N^{3l-2}(S) \), and \(|N^{3l-1}(S)| \geq \frac{2|S|}{r} \). Then \(|S| + r|S| + (l - 1)(r + 1)|S| + \frac{2|S|}{r} \leq n \), i.e., \(|S| \leq \frac{rn}{l(r+1)+2} \). The equality can be achieved when use the construction of \(G^4_{r,k,t} \).

Case 4 \(k = 6l - 2 \)

Then for all \(v_j, v_h \in S \), \(d(v_j, v_h) \geq 6l - 1 \). For the shortest distance \(6l - 1 \) is odd, so \(N^x(v_j) \cap N^x(v_h) = \emptyset \) and \(N^x(v_j) \sim N^x(v_h) \), where \(N^x(S) \) is the tail set.

Similarly, we can get \(x \geq 3l - 1 \). As \(3l - 1 = 3(l - 1) + 2 \), we can get two length path from \(N^0(S) \to N^2(S) \) and \(l - 1 \) units from \(N^3(S) \to N^{3l-1}(S) \). For \(|N^2(S)| \geq |S| \), we have \(|S| + r|S| + |S| + (l - 1)(r + 1)|S| \leq n \), i.e., \(|S| \leq \frac{rn}{(r+1)(r+1)} \). The equality can be achieved when use the construction of \(G^5_{r,k,t} \).

Case 5 \(k = 6l - 1 \)

Then for all \(v_j, v_h \in S \), \(d(v_j, v_h) \geq 6l \). For the shortest distance \(6l \) is even, so \(N^x(v_j) \cap N^x(v_h) \neq \emptyset \), where \(N^x(S) \) is the tail set.

Similarly, we can get \(x \geq 3l \). As \(3l = 3(l - 1) + 2 + 1 \), we can get one edge between \(N^{x-1}(S) \) and \(N^x(S) \), a two length path from \(N^0(S) \to N^2(S) \), and \(l - 1 \) units from \(N^3(S) \to N^{3l-1}(S) \).

If \(r \) is odd, we have \(|N^{3l}(S)| \geq \frac{|S|}{r} \), then \(|S| + r|S| + (l - 1)(r + 1)|S| + \frac{|S|}{r} \leq n \), i.e., \(|S| \leq \frac{rn}{(r+1)(r+1)} \). The equality can be achieved when use the construction of \(G^6_{r,k,t} \).
If \(r \) is even, we have \(|N^{3l}(S)| \geq \frac{2|S|}{r} \), then \(|S| + r|S| + |S| + (l-1)(r+1)|S| + \frac{2|S|}{r} \leq n \), i.e., \(|S| \leq \frac{rn}{(r+2)(r+1)} \). The equality can be achieved when use the construction of \(G_{r,k,t}^{7} \).

Case 6 \(k = 6l \)

Then for all \(v_j, v_h \in S \), \(d(v_j, v_h) \geq 6l + 1 \). For the shortest distance \(6l + 1 \) is odd, so \(N^x(v_j) \cap N^x(v_h) = \emptyset \) and \(N^x(v_j) \sim N^x(v_h) \), where \(N^x(S) \) is the tail set.

Similarly, we can get \(x \geq 3l \). As \(3l = 3(l-1)+2+1 \), we can get one edge between \(N^{3l-1}(S) \) and \(N^{3l}(S) \), a two length path from \(N^0(S) \rightarrow N^2(S) \), and \(l-1 \) units from \(N^3(S) \rightarrow N^{3l-1}(S) \).

If \(r \) is odd, we have \(|N^{3l}(S)| \geq |S| \), then \(|S| + r|S| + |S| + (l-1)(r+1)|S| + |S| \leq n \), i.e., \(|S| \leq \frac{n}{(r+1)^{2}} \). The equality can be achieved when use the construction of \(G_{r,k,t}^{8} \).

If \(r \) is even, we have \(|N^{3l}(S)| \geq 2|S| \), then \(|S| + r|S| + |S| + (l-1)(r+1)|S| + 2|S| \leq n \), i.e., \(|S| \leq \frac{rn}{(r+3)(r+1)} \). The equality can be achieved when use the construction of \(G_{r,k,t}^{9} \).

Case 7 \(k = 6l + 1 \)

Then for all \(v_j, v_h \in S \), \(d(v_j, v_h) \geq 6l + 2 \). For the shortest distance \(6l + 2 \) is even, so \(N^x(v_j) \cap N^x(v_h) \neq \emptyset \), where \(N^x(S) \) is the tail set.

Similarly, we can get \(x \geq 3l + 1 \). As \(3l + 1 = 3(l-1) + 2 + 1 + 1 \), we can get one edge between \(N^{x-1}(S) \) and \(N^x(S) \), one edge between \(N^{3l-1}(S) \) and \(N^{3l}(S) \), a two length path from \(N^0(S) \rightarrow N^3(S) \), and \(l-1 \) units from \(N^3(S) \rightarrow N^{3l-1}(S) \).

If \(r \) is odd, we have \(|N^{3l}(S)| \geq |S| \) and \(|N^{3l+1}(S)| \geq \frac{(r-1)|S|}{r} \), then \(|S| + r|S| + |S| + (l-1)(r+1)|S| + |S| + \frac{(r-1)|S|}{r} \leq n \), i.e., \(|S| \leq \frac{rn}{(r+3)(r+1)} \). The equality can be achieved when use the construction of \(G_{r,k,t}^{10} \).

If \(r \) is even, we have \(|N^{3l}(S)| \geq 2|S| \) and \(|N^{3l+1}(S)| \geq \frac{(r-2)|S|}{r} \), then \(|S| + r|S| + |S| + (l-1)(r+1)|S| + 2|S| + \frac{(r-2)|S|}{r} \leq n \), i.e., \(|S| \leq \frac{rn}{(r+4)(r+1)-6} \). The equality can be achieved when use the construction of \(G_{r,k,t}^{11} \). \(\square \)

4 Questions

Aida, Cioab˘a, and Tait \[1]\] obtained two spectral upper bounds for the k-independence number of a graph. They constructed graphs that attain equality for their first bound and showed that their second bound compares favorably to previous bounds on the k-independence number. We may ask whether given an independence number, there is an upper or lower bound for the spectral radius (the largest eigenvalue of a graph) in an \(n \)-vertex regular graph.

Question 4.1. Given a positive integer \(t \), what is the best lower bound for the spectral radius in an \(n \)-vertex \(r \)-regular graph to guarantee that \(\alpha_k(G) \geq t + 1 \)?

If \(r \geq 3 \), \(G \) is an \(n \)-vertex \(r \)-regular graph, which is not a complete graph, then \(\alpha_1(G) \geq \frac{n}{\chi(G)} \geq \frac{n}{r} \) by Brooks’ Theorem. For \(k \geq 2 \), it is natural to ask a lower bound for \(\alpha_k(G) \) in an \(n \)-vertex \(r \)-regular graph.
Question 4.2. For \(r \geq 3 \), what is the best lower bound for \(\alpha_k(G) \) in an \(n \)-vertex \(r \)-regular graph?

The \(k \)-th power of the graph \(G \), denoted by \(G^k \), is a graph on the same vertex set as \(G \) such that two vertices are adjacent in \(G^k \) if and only if their distance in \(G \) is at most \(k \). The \(k \)-distance \(t \)-coloring, also called distance \((k, t) \)-coloring, is a \(k \)-coloring of the graph \(G^k \) (that is, any two vertices within distance \(k \) in \(G \) receive different colors). The \(k \)-distance chromatic number of \(G \), written \(\chi_k(G) \), is exactly the chromatic number of \(G^k \). It is easy to see that \(\chi(G) = \chi_1(G) \leq \chi_k(G) = \chi(G^k) \).

It was noted by Skupień that the well-known Brooks’ theorem can provide the following upper bound:

\[
\chi_k(G) \leq 1 + \Delta(G^k) \leq 1 + \Delta \sum_{i=1}^{k} (\Delta - 1)^{k-1} = 1 + \Delta \frac{(\Delta - 1)^{k-1} - 1}{\Delta - 2},
\]

for \(\Delta \geq 3 \). Let \(M =: 1 + \Delta \frac{(\Delta - 1)^{k-1} - 1}{\Delta - 2} \). Consider a \((k, \chi_k(G))\)-coloring. Let \(V_i \) be the vertex set with the color \(i \) for \(i \in [\chi_k(G)] \). Then we have \(\chi_k(G) \alpha_k(G) \geq n \). Thus for \(r \geq 3 \), if \(G \) is an \(n \)-vertex \(r \)-regular graph, then we have \(\alpha_k(G) \geq \frac{n}{\chi_k(G)} \geq \frac{n}{M} \). Since equality in inequality (2) holds only when \(G \) is a Moore graph, the lower bound is not tight. Thus, we might be interested in answering Question 4.2.

References

[1] A. Abiad, S.M. Cioabá, and Tait, Spectral bounds for the \(k \)-independence number of a graph, *Linear Algebra Appl.*, 510 (2016), 160-170.

[2] N. Alon and B. Mohar, The chromatic number of graph powers, *Combin. Probab. Comput.* 11(1) (2002), 1–10.

[3] M. Beis, W. Duckworth, and M. Zito, Large \(k \)-independent sets of regular graphs, *Electron. Notes in Discrete Math.*, 19 (2005), 321–327.

[4] P. Firby and J. Haviland, Independence and average distance in graphs, *Discrete Appl. Math.* 75 (1997), 27–37.

[5] W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, J. M. Harris, and D. F. Rall, Broadcast chromatic numbers of graphs, *Ars Combin.* 86 (2008), 33–49.

[6] G. Hahn, J. Kratochvíl, J. Širáň, and D. Sotteau, On the injective chromatic number ? of graphs, *Discrete Math.* 256 (2002), 179?192.
[7] M. C. Kong and Y. Zhao, On computing maximum k-independent sets, *Congr. Numer.* 95 (1993), 47–60.

[8] M.C. Kong, and Y. Zhao, Computing k-Independent sets for regular bipartite graphs, *Congr. Numer.*, 143 (2000), 65–80.

[9] M. Mahdian, The strong chromatic index of graphs, *MSc thesis*, University of Toronto, 2000.

[10] Z. Skupień, Some maximum multigraphs and edge-vertex distance colourings, *Discuss. Math. Graph Theory*, 15 (1995), 89–106.

[11] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 2001