Corrosion behaviour of \textit{in-situ} Zirconium Diboride (ZrB$_2$) reinforced by Aluminium-Copper (Al-Cu) alloy metal matrix composite

N H Mustafa1, M M Mahat1, S M Yahaya2 and R Rosmamuhadami1

1Materials Technology Programme, School of Physics and Materials Studies, Faculty of Applied Science, Universiti Teknologi MARA, 40450 Shah Alam Selangor, Malaysia.

2Chemistry Programme, School of Chemistry and Environment, Faculty of Applied Science, Universiti Teknologi MARA, 40450 Shah Alam Selangor, Malaysia.

*rosma614@uitm.edu.my

Abstract. Aluminium matrix composites (AMCs) through the medium of \textit{in-situ} counteraction has crop up under the name of preference contributively prior to lay out weak point as well as defects reside within \textit{ex-situ} MMC. In contemporary work, aluminium-copper-zirconium diboride (Al-Cu-ZrB$_2$) composite have been plug through \textit{in-situ} reaction which promote mechanical abilities on top of dispersion strengthening together with grain refinement accessed by continuation of particular particulates inside the melt for the time being of solidification. Aluminium-copper (Al-Cu) reinforced which was surrounded by various proportion of zirconium diboride (ZrB$_2$) which were 0, 3 and 6 wt. % synthesized applying \textit{in-situ} fabrication at 800 °C of molten Al-Cu alloys by inorganic salts potassium hexaflourotitanate (K$_2$ZrF$_6$) mixed with potassium tetraflouroborate (KBF$_4$). The amalgam itemized using Potential-Dynamic Polarization (PDP) test on suitably segment which were metallographically qualified surface to criticize and inspect the corrosion rate itself. Microstructural investigation discovered the homogeneous and persistent allocation of second phase particles, clean interface together with favourable bonding. It is promoting that zirconium diborate (ZrB$_2$) molecules are altogether in nano size amidst hexagonal either tetragonal shape, yet minor molecules in micron size were also noticed. For that intention, composite synthesized using \textit{in-situ} techniques indicated homogeneous disposal of reinforcing influenced to be superlative associated within pure interface al over metallic matrix. Outcome of dissimilar ZrB$_2$ percentages all over surface morphology, surface roughness, grain size, crystalline texture and of Al-Cu alloy were also inspected. Results displayed grain size drop off upon an increase of ZrB$_2$ content in the Al-Cu alloy. Furthermore, the surface roughness was seen to decrease alongside greater ZrB$_2$ concentration of the deposited alloy.

1. Introduction

Aluminium matrix composites (AMCs) have been abundantly used up as performances of contact backing, frictional break components, by virtue of their high-calibre intermediary of great mechanical strength together with thermal conductivity. Synthesis of not either heavy weight, environmental resistance as well as satisfy mechanical quality which are strength along with impact resistance has manipulated aluminium alloys well functional for bring into as matrix component [1]. In such status, AMC are periodically formulated by liquid metallurgy using route of \textit{ex-situ} fabrication, in whichever earlier conceived reinforcements then hooked up into molten alloy which is that one may magnify and build up mechanical endurance of matrix.
Advancement leaning have been dominated related particular reinforcements like titanium diboride (TiB$_2$) [2], boron carbide, titanium oxide (TiO$_2$) together with scandium [1,10] considering fabrications of polymer matrix composites (PMMCs). Circumscribed by multifarious reinforcements inspected till date, zirconium diboride (ZrB$_2$) stay the course as a trendy and outstanding element within firm binded, extraordinarily melting point, superior hardness all along with strength and superlative thermal conductivity and thermal shock barrier, to get along as convenient applicant in demanding conditions related manually with aerospace industry [3]. TiB$_2$ and ZrB$_2$ have been wide-ranging actived as reinforcements seeing that their high thermodynamic cohesion with aluminium [2,4]. Formation ZrB$_2$ have turned out enhanced wear barrier together with hardness inside some other alloy component. ZrB$_2$ particulate is an appropriate alternative of election in order to strengthen AMCs due to outstanding melting point and hardness [5].

Very limited facts were reachable upon fabrication of aluminium based applying aluminium-zirconium (Al-Zr) together with aluminium-boron (Al-B) alloys through the medium of in-situ reaction. Because of that, this research has significant with MMCS particularly on AMCs. In-situ approaches have been try-out to manufacture AMCs, where possibility aid to greater adhesion interface together with favoured mechanical features. In-situ aluminium-based composites expending to embellish mechanical features along dispersion strengthening together with grain refinement acquired by existence of particulates within the melt all along solidification [3].

Each and every metals and alloys submitted to corrosion, where represent as destructive tackles of a metal through chemicals, environment, or electrochemical alteration [3,6]. The driving force is free energy withdrawal of metal to build up; a metal oxide. Considering corrosion counterbalance take place over metal outer surface, called as interfacial action. Corrosion present itself at metal medium phase boundary where heterogeneous response in network of metal surface have essential function. Metallurgical aspects that might alter corrosion in alloy consist of: crystallography, grain size together with shape, grain heterogeneity, impurity inclusions, all along residual stress due to cold work.

The purpose of this research was to set up and authorize modish and exclusive AMCs that exceedingly outstanding intensity in operations together with applications. For this outlook, an attempt has been accomplished to simulate Al-Cu-ZrB$_2$ in-situ composite practicing casting fabrication form K$_2$ZrF$_6$ mixed with KBF$_4$ as origin constituents. Microstructural traits and mechanical ability were examined in specific aspects.

2. Experimental

Al-Cu alloy made up of a pair of inorganic salts as known as K$_2$ZrF$_6$ and KBF$_4$ were applied as raw ingredients to devise compounds with 3 and 6 wt. % ZrB$_2$. Inorganic salts were dehydrated first in order to cut out wetness. Contrivance of K$_2$ZrF$_6$ mixed with KBF$_4$ were bring in into molten alloy at 720 °C. Afterwards stirred using graphite stirrer about 800 °C in 30 minutes as well as degassing using hexachloroethane (C$_2$Cl$_6$), molten compound cast inside a pre-heated stainless-steel mould in favours of synthesized ZrB$_2$ using in-situ methods at 250 °C.

Liquid molten habitually stirred to minimized segregation reinforcement components which is to simplify in-situ fabrication. Afterwards, molten aluminium poured inside to preheat die as shown in Figure 1. Casting were taken with specific volume of ZrB$_2$ which are 0, 3, 6 wt. %. Specimens from castings machined down to convenient dimension to meet with corrosion together with mechanical testing. Specimens grounded before been polished using standard metallographic techniques; 200 grits silicon carbide (SiC) paper until 1200 grit paper and fine polished using diamond suspension before etched with Keller’s reagent.
Mild steel was applied as cathode substrate throughout the process. The measurement of substrates was (75 x 20 x 4) mm. The substrates were grinded using a grinder with 120 grit to clear away oxide layer covering the surface. All samples polished to attained clean together with flat surface finish. All test was performed using a freshly polished sample and fresh solution in each case. All electrochemical measurement was executed with Gamry model G300 potentiostat which adjusted by software provided by Gamry Instruments Company. PDP test operated when open circuit polarization (OCPs) become approximately balanced and constant afterwards immersion about 1 hour. PDP scan was get going form -0.5V subordinate \(E^\circ \) continuously to +0.5V using scan rate mVs\(^{-1}\).

3. Results and Discussions

3.1. Formations of Al-Cu-ZrB\(_2\) composite

The formulated composites endorsed a preeminent evolution of metal composite and that ZrB\(_2\) grains were specifically discernible. Synthetical kick-back evolveed at intervals of molten aluminium together with inorganic salts: K\(_2\)ZrF\(_6\) and KBF\(_4\) invented ZrB\(_2\) particulates.

\[
\begin{align*}
\text{K}_2\text{ZrF}_6 + 13\text{Al} &\rightarrow 3\text{Al}_3\text{Zr} + 4\text{AlF}_3 + 6\text{KF} \\
\text{KBF}_4 + 3\text{Al} &\rightarrow \text{AlB}_2 + 2\text{AlF}_3 + 2\text{KF} \\
\text{Al}_3\text{Zr} + \text{AlB}_2 &\rightarrow \text{ZrB}_2 + 4\text{Al}
\end{align*}
\]

The authorization conception of ZrB\(_2\) are sum up as below: [1,7]

- Inclusion K\(_2\)ZrF\(_6\) mixed with KBF\(_4\) to melted aluminum explicit formulated intermetallic Al\(_3\)Zr plus AlB\(_2\). Both admixtures are point of sources regarding Zr together with B grain.
- Boron disintegrate parts attracted to Al\(_3\)Zr granular.
- Responses proposed inside Zr together with B atoms to create ZrB\(_2\). Some breaks all over surface layer of Al\(_3\)Zr locate stage of reaction. The miniature sizes of boron facilitate it spread out in every place ZrB\(_2\) particulates
- Evolution and expansion of ZrB\(_2\) particulates is boosted up according to dissolution of Al\(_3\)Zr particulates by fragmentation along with common cracking.
- ZrB\(_2\) grains perfectly created afterwards reaction are accomplished.
3.2 Potential-Dynamic Polarization Corrosion Characterization

Polarization analysis were executed in antacid medium consist of 0.1 M of natrium hydroxide (NaOH) solution. The scan setting out starting from cathodic potential region including farther extended to anodic domain. Figure 2 reveals an emblematic polarization curves achieved from reading that had been summarized in Table 1. It might be remarks that polarization curves all specimens have customarily equivalent performances which is accommodated quintessential active-passive-trans passive behaviour.

Figure 2. Potential-Dynamic Polarization curves on Al-Cu alloy reinforced by ZrB\textsubscript{2}

Element	E_{corr} [mV]	I_{corr} [Acm$^{-2}$] (10^{-6})	CR [mmy$^{-1}$] (10^{-3})
Al-Cu	-385	7.29	6.67
Al-Cu-3ZrB\textsubscript{2}	-290	1.52	2.85
Al-Cu-6ZrB\textsubscript{2}	-321	1.81	0.36

Corrosion potential diminished with rising ZrB\textsubscript{2} content in the alloys. The corrosion current and corrosion rate reveals an exemplary value at 6 wt. % ZrB\textsubscript{2}. Inclusion of ZrB\textsubscript{2} has an effective alteration on corrosion barrier in Al-Cu. This action might be associated to beneficial influence of ZrB\textsubscript{2} inclusion on grain size refinement. The fine-grained materials have more conveniences behaviour with account to corrosion together with oxidation have been established [8,18]. From figure 2 above, Al-Cu alloy with 6wt.%ZrB\textsubscript{2} displayed the optimum corrosion barrier compare to other compositions. Value of corrosion rate at 3 wt.% ZrB\textsubscript{2} was 2.85×10^{-3} mmy$^{-1}$, then decreased to 0.36×10^{-3} mmy$^{-1}$ for Al-Cu with 6wt.%ZrB\textsubscript{2}. The susceptibility of the Al-Cu alloys towards corrosion decreases in the order of:
Al-Cu-6wt.%ZrB$_2$ > Al-Cu-3ZrB$_2$ > Al-Cu The least value of corrosion rate demonstrated the alloy has a favourable trait to endure corrosion [9,17].

3.3 Surface Roughness

Figure 3 displays histogram of average surface roughness (R_a) with dissimilar composition of reinforcement ZrB$_2$ all over Al-Cu alloy. The maximal R_a inscribed was found on pure Al-Cu alloy where surface roughness was 1.749. A very slight difference in surface roughness was achieved from reinforcement 6 wt. % ZrB$_2$ which is 1.446 respectively.

![Figure 3. Histogram of surface roughness with variation of ZrB$_2$ contents](image)

Ordinarily, corrosion of metals committed electrochemical reaction with electron transfer [10]. With oxide layer formation, it could be resistance for electron or ion transfer where will automatically acting as protective layer. Figure 4 shows the resulting mud crack of oxide layer was obtained in pure Al-Cu alloy and less present in Al-Cu that containing ZrB$_2$ [11]. This is because connections along particles in clusters are fragile which results in poor mechanical characterization [12,13]. But particles in clusters formed by in-situ reaction which is Al-Cu that had been reinforced with ZrB$_2$ proved superior connections. This is because exothermal in-situ reaction formed excellent bonding among grains inside the clusters and automatically provide a superior oxidation layer without cracking [14].

Specific aspects regression figured out as concerned the roughness details declared that there is a comparatively positive degree of linear correlation enclosed by surface roughness. The outcomes established that roughness rate is regulated and controlled by grain size in alloy. The correlation among roughening rate with grain size make an appearance to be linear [15]. Ultimate median value on R_a recorded for Al-Cu alloy with 0 wt. % of ZrB$_2$ is due to presence of voids or some crack that has been disclosed by preceding research [16,19] In other respects, reduction average rate of surface roughness due to evaluation primary cluster that have smaller particle dimension with dense population which cropped up whereas rise of nucleation density.
Figure 4. FESEM micrograph showing oxide later mud cracking on Al-Cu reinforced by 3 wt.% ZrB₂

4. Conclusions
Originating at the research, we could establish proportionate conclusions which are;

i. In-situ Al-Cu alloy composites enclosed various weight fractions of ZrB₂ phase were amalgamated successfully by salt-metal reaction technique together with the particles were disseminated evenly in matrix.

ii. The perceptivity of Al-Cu alloys approaching corrosion decreases in the order of: Al-Cu-6wt.% ZrB₂ > Al-Cu-3 wt.% ZrB₂ > Al-Cu

iii. The composition of 6wt.%ZrB₂ provide the most outstanding corrosion barrier in comparison to cast Al-Cu alloy which were 2.85 x 10⁻³ mmy⁻¹ then decreased to 0.36 x 10⁻³ mmy⁻¹

iv. Al-Cu without reinforcement has the higher Rα which was 1.749.

Acknowledgments
The authors would like to thank to Faculty of Applied Sciences for the financial support and facilities, and Research Management Institute (RMI) for the financial support (LESTARI 148/2017).

References
[1] Rosmamuhamadani R Ibrahim R E Talari M K Sabrina M Y Sulaiman S and Ismail M I S 2018 Characterization of Aluminium-Silicon (Al-Si) Cast alloy refined with Titanium Diboride (TiB₂) and Scandium (Sc) J. of Mech. Eng. 5, p. 62-70.
[2] Babalola P O Bolu C A Inegbenebor A O and Odunfa K M 2014 Development of aluminum matrix composites Online Int. J. of Eng. and Tech. Research 2, p. 1-11.
[3] Madhusudan S Sarcar M M and Mohan N R 2016 Mechanical properties of aluminium-copper composite metallic materials J. of Appl. Research and Tech. 14, p. 293-299.
[4] Rosmamuhamadani R Talari M K Yahaya S M Sulaiman S Ismail M I S and Hanim M A A 2018 Corrosion characterization of In-Situ Titanium Diboride (TiB₂) reinforced by Aluminium-Copper (Al-Cu) alloy by two method: Salt Spray Fog and Linier Polarization Resistance 8th Int. Conf. on Nanoscience and Nanotech.
[5] Basir N N A Ibrahim R E Mustafa N H Rosmanumahadani R Talari M K Mahat M M and Yahaya S M 2018 Microstructure phase distribution analysis of Al-Si-TiB₂-Sr-Sc composite fabricated by casting technique Pro. of the 4th Int. Conf. on Green Design and Manufacture 2030, 1 020131.
[6] Kai X Tian K Wang C Jiao L Chen G and Zhao Y 2016 Effects of ultrasonic vibration on the
microstructure and tensile properties of the Nano ZrB2/2024Al composites synthesized by direct melt reaction J. Alloys Compd. 668, p. 121-127.

[7] Ibrahim R E Rosmamuhamadani R Talari M K Yahaya S M Sulaiman S and Ismail M I S 2017 Preliminary study on properties of Aluminium-Silicon (Al-Si) alloys reinforced by in-situ Titanium Diboride (TiB2) Key Eng. Mater. 737, p. 11-15.

[8] Asla M S Kakroudia M G Rezvani M and Fard F G 2015 The microstructure and densification behaviour of Zirconium Diboride Int. J. Refract. Met. Hard. Mater. 50, p. 140-145.

[9] Rosmamuhamadani R Sulaiman S Azmah Hanim M A Ismail M I S Talari M K and Yahaya S M 2016 Corrosion characterization of Al-Cu reinforced In-Situ TiB2 MATEC Web of Conferences 78 01001.

[10] Pramod S L Bakshi S R and B S Murty 2015 Aluminium based cast in-situ composites J.Mater. Eng. Perform 24, p. 2185-2207.

[11] Sun J Zhang X Zhang Y Ma N and Wang H 2015 Effect of alloy elements on the morphology transformation of TiB2 particles in Al matrix Micron 70, p. 21-25.

[12] Sanil, B Sumit B Vaibhav G and Suraj R 2017 Investigations on microstructure and mechanical properties of TiB2 reinforced aluminium matrix composites Int. J. of Eng. Sci. and Management 7, p. 286-289.

[13] Rosmamuhamadani R Sulaiman S Azmah Hanim M A Ismail M I S and Talari M K 2016 Mechanical and microstructure characterization of Aluminium-Copper (Al-Cu) reinforced with in-situ Titanium Diboride (TiB2) Key Eng. Mater. 673, p. 117-127.

[14] Anis A L Rosmamuhamadani R Darham W Zakaria A and Talari M K 2016 Microstructure and mechanical properties investigation of In Situ TiB2 and ZrB2 reinforced Al-4Cu composites IOP Conference Series: Mater. Sci. and Eng., 114, 1 012120.

[15] Rosmamuhamadani R Sulaiman S Shah Ismail M I Mohamed Arif A and Talari M K 2015 Wear properties of metal matrix composite Al-Cu and Al-Cu-TiB2 Mater. Sci. Forum 819, p. 268-273.

[16] Mustafa N H Basir N N A Ibrahim R E Mahat M M Bonia N N Sabrina M Y and R Rosmamuhamadani 2018 Characterization of in situ Zirconium Diboride (ZrB2) reinforced by Aluminium-Copper (Al-Cu) metal matrix composites Int. J. of Eng. & Tech. 7, p. 406-410.

[17] Omar A A Z Rosmamuhamadani R Talari M K and Tripathy M 2011 Effect of titanium addition on mechanical properties of hydroxyapatite-titanium nanocomposite IEEE Colloquium on Humanities, Sci. and Eng. p. 533-536.

[18] Al-amiery A A Kadhum A A H Alobaidy A H M Mohamad A B and Hoon P S 2014 Effect of titanium addition on mechanical properties of hydroxyapatite-titanium nanocomposite Molecules 22, p. 662-682.

[19] Kamga H K Larouche D Bourname M and Rahem A 2012 mechanical properties of Aluminium-Copper B2076 alloys with iron and silicon additions Int J. of Cast Metal Research, 25, p. 15-25.