An $SL_2(\mathbb{R})$-Casson invariant and Reidemeister torsions

Takefumi Nosaka

Abstract

We define an $SL_2(\mathbb{R})$-Casson invariant of closed 3-manifolds. Moreover, we describe a procedure for computing the invariant in terms of a Reidemeister torsion and discuss approaches to giving the Casson invariant some gradings.

Keywords

Casson invariant, Reidemeister torsion, 3-manifolds, Chern-Simons class

1 Introduction

In a series of lectures [Cas], Casson defined a \mathbb{Z}-valued topological invariant of an integral homology 3-sphere M. Choose a Heegaard splitting $M = W_1 \cup_\Sigma W_2$, where Σ is a connected closed surface. Roughly speaking, the Casson invariant counts equivalent classes of irreducible representations $\pi_1(M) \to SU(2)$, in contrast to $\pi_1(\Sigma) \to SU(2)$. Several topologists (see, e.g., [Ati, BN]) have generalized the invariant to count representations in a number of other Lie groups G; see [Cur1, Cur2, BH] for the cases $G = SO(3), U(2), SO(4), SL_2(\mathbb{C}), SU(3)$. The Casson invariant is a landmark topic in low-dimensional topology, and it has been studied from many viewpoints, including through Chern-Simons theory; see, e.g., [AM, Sav].

This paper is inspired by the note of Johnson [John]. A difficult point of the Casson invariants is to explicitly determine appropriate weights appearing in the counts of representations. To solve this problem, he suggested a procedure for computing the weights from Reidemeister torsions under a certain condition; see Theorem B.2. Since the note is unpublished, we give a proof of the theorem, where we essentially use results of Stanford and Witten [SW, Wit]; see Appendix B.

In this paper, we mainly address the case $G = SL_2(\mathbb{R})$. Of particular interest to us is the relation to Reidemeister torsion and the Chern-Simons invariant. Since $SL_2(\mathbb{R}) = SU(1, 1)$ is over \mathbb{R} and non-compact, we need a sensitive treatment, as in [Lab, SW, Wit]; e.g., we focus on the Zariski density instead of the irreducibility of representations. Then, in an analogous way to the previous Casson invariants, we define an $SL_2(\mathbb{R})$-Casson invariant for closed 3-manifolds (Definition 2.1). In addition, similar to Theorem B.2, we give an approach to determining the weight from the Reidemeister torsions of M (Theorem 3.2); as an application, we compute the $SL_2(\mathbb{R})$-Casson invariants of some Brieskorn manifolds; see §3.3. In §3, we further discuss a grading of weights appearing in the counts of representations $\pi_1(M) \to SL_2(\mathbb{R})$, and define a graded $SL_2(\mathbb{R})$-Casson invariant; see Section 4.1. Here, the grading is obtained from Reidemeister torsions or the Chern-Simons 3-class of the Pontryagin class p_1; see Section 4.3 for some examples.

This paper is organized as follows. We introduce the $SL_2(\mathbb{R})$-Casson invariant in §2 and discuss some computations of the invariants in §3. In §4, we discuss approaches to giving the
Conventional notation. By M, we mean a connected closed 3-manifold with an orientation, and by Σ, we mean an oriented closed surface. Let $g \in \mathbb{N}$ denote the genus of Σ.

Acknowledgments

The author sincerely expresses his gratitude to Teruaki Kitano and Susumu Hirose for their valuable comments.

2 Definition: $SL_2(\mathbb{R})$-Casson invariant

We will define the $SL_2(\mathbb{R})$-Casson invariants by following the definition of the $SU(2)$-Casson invariant (see Appendix B for the definition).

As a preliminary, let us explain the diagram below (1). Let (W_1, W_2, Σ) be a Heegaard splitting of M, where W_i is a handlebody with $\partial W_i = \Sigma$ and $M = W_1 \cup_\Sigma W_2$. For a Lie group G and a connected CW complex Z of finite type, we mean by $\text{Hom}(\pi_1(Z), G)$ the set of homomorphisms $\pi_1(Z) \to G$ with compact-open topology, and by $\text{Hom}(\pi_1(Z), G)/G$ the quotient space of $\text{Hom}(\pi_1(Z), G)$ by the conjugate action. Then, the pushout diagram

$$
\begin{array}{ccc}
\pi_1(\Sigma) & \xrightarrow{i_1} & \pi_1(W_1) \\
\downarrow{i_2} & & \downarrow{j_1} \\
\pi_1(W_2) & \xrightarrow{j_2} & \pi_1(M)
\end{array}
$$

of surjections of fundamental groups induces a commutative diagram

$$
\begin{array}{ccc}
\text{Hom}(\pi_1(\Sigma), G)/G & \xrightarrow{i_1} & \text{Hom}(\pi_1(W_1), G)/G \\
\downarrow{i_2} & & \downarrow{j_1} \\
\text{Hom}(\pi_1(W_2), G)/G & \xrightarrow{j_2} & \text{Hom}(\pi_1(M), G)/G
\end{array}
$$

of inclusions. Here, we should notice that $\text{Hom}(\pi_1(M), G)/G = \bigcap_{i=1}^2 \text{Hom}(\pi_1(W_i), G)/G$.

In what follows, let G be $SL_2(\mathbb{R})$, and \mathfrak{g} be the Lie algebra of G.

Next, let us describe an open subset of $\text{Hom}(\pi_1(Z), G)/G$ in terms of the Zariski-density. Regarding $SL_2(\mathbb{R})$ as a real affine algebraic variety in \mathbb{R}^4, we canonically equip $SL_2(\mathbb{R})$ with a Zariski topology. Let Λ be an infinite group of $SL_2(\mathbb{R})$ generated by $\{a_1, \ldots, a_n\}$. Then, as is known (see, e.g., [Lab, Proposition 5.3.4]), Λ is Zariski-dense in $SL_2(\mathbb{R})$ if and only if

$$
\bigcap_{i: i \leq n} \{W \in \text{Gr}_k(\mathfrak{g}) \mid a_i.W = W\} = \emptyset
$$

for any $k < 3$, where $\text{Gr}_k(\mathfrak{g})$ denotes the Grassmannian manifold of k-planes in \mathfrak{g}. Thus, the subset

$$
\text{Hom}(\pi_1(Z), G)^{zd} := \{\rho \in \text{Hom}(\pi_1(Z), G) \mid \text{Im}(\rho) \subset G \text{ is Zariski-dense}\}
$$
is Zariski-open in $\text{Hom}(\pi_1(Z), G)$. It is known (see, e.g., [Lab, Theorem 5.2.6]) that if Z is a manifold with $\text{Genus}(\Sigma) \geq 2$, then the conjugacy action of $PSL_2(\mathbb{R})$ on $\text{Hom}(\pi_1(\Sigma), G)$ is proper and free, and the quotient $\text{Hom}(\pi_1(\Sigma), G)/G$ is an open manifold of dimension $6g - 6$, and the tangent space at $\rho \in \text{Hom}(\pi_1(Z), G)$ is identified with the cohomology $H^1_\rho(\Sigma; g)$ with local coefficients by ρ. Here, we should notice that

$$H^0_\rho(\Sigma; g) = H^2_\rho(\Sigma; g) = 0, \quad H^1_\rho(\Sigma; g) \cong \mathbb{R}^{6g-6}, \quad \text{for any} \ \rho \in \text{Hom}(\pi_1(Z), G)$$

by considering the Euler characteristic. Further, recall from [G1] the symplectic structure on $\text{Hom}(\pi_1(\Sigma), G)/G$; precisely, the cohomology $H^1_\rho(\Sigma; g)$ admits the alternating non-degenerate bilinear form defined by the composite,

$$H^1_\rho(\Sigma; g)^2 \xrightarrow{\cup [\Sigma]} H^2_\rho(\Sigma; g \otimes g) \xrightarrow{\bullet \cap [\Sigma]} g \otimes g \xrightarrow{\text{Killing form}} \mathbb{R},$$

where \cup is the cup product, and $\bullet \cap [\Sigma]$ is the pairing with the orientation class $[\Sigma] \in H_2(\Sigma; \mathbb{Z})$. In particular, $\text{Hom}(\pi_1(Z), G)/G$ is oriented.

Next, let us consider the case $Z = W_i$. Since $\pi_1(W_i)$ is the free group of rank g, $\text{Hom}(\pi_1(W_i), G)$ is identified with G^g, and the conjugacy action of $PSL_2(\mathbb{R})$ on G^g is also proper and free. Furthermore, the action preserves the Haar measure of G^g; thus, it preserves the orientation as well. Therefore, the restricted action of the open set $\text{Hom}(\pi_1(W_i), G)/G$ is proper and free, and it preserves the orientation. In particular, the quotient $\text{Hom}(\pi_1(W_i), G)/G$ is an oriented open manifold of dimension $3g - 3$.

Let us denote $\text{Hom}(\pi_1(Z), G)/G$ by $R^{ad}(Z)$. Then, the restriction of $R^{ad}(\Sigma)$ can be written as

$$R^{ad}(\Sigma) \xrightarrow{i^*_1} R^{ad}(W_1) \xrightarrow{i^*_2} R^{ad}(W_2) \xrightarrow{j^*_2} R^{ad}(W_1) \cap R^{ad}(W_2) \subset R^{ad}(M).$$

Let us consider the union of 0-dimensional components in the intersection $\text{Im}(i^*_1) \cap \text{Im}(i^*_2)$ and denote the union by $\mathcal{I}_{0\text{-dim}}$, which is not always of finite order (This problem appears in $SL_2(\mathbb{C})$-case; see [CurI]). Notice that the inclusion $SL_2(\mathbb{R}) \hookrightarrow SL_2(\mathbb{C})$ canonically gives rise to $\iota: R^{ad}(\Sigma) \hookrightarrow \text{Hom}(\pi_1(\Sigma), SL_2(\mathbb{C}))/SL_2(\mathbb{C})$. Define

$$\mathcal{I}_{\text{comp}} := \{ P \in \mathcal{I}_{0\text{-dim}} \mid \iota(P) \text{ is a 0-dimensional component in } \text{Im}(i^*_1 \otimes \mathbb{C}) \cap \text{Im}(i^*_2 \otimes \mathbb{C}) \}.$$

We claim that $\mathcal{I}_{\text{comp}}$ is of finite order, and there is its open tubular neighborhood of $\mathcal{I}_{\text{comp}}$ which does not meet any other higher dimensional components of $\text{Im}(i^*_1) \cap \text{Im}(i^*_2)$. Indeed, as is shown in [CurI, §2], the complexification of $\mathcal{I}_{0\text{-dim}}$ is of finite order and admits its open tubular neighborhood that does not meet any higher dimensional component of the intersection, and $\iota(R^{ad}(W_1))$ meets $R^{ad}(W_2)$ transversally in $\text{supp}(h)$.
Definition 2.1. Let \((W_1, W_2, \Sigma)\) be a Heegaard decomposition of \(M\) with \(g > 1\), and \(h\) be the isotopy as above. Then, we define the \(SL_2(\mathbb{R})\)-Casson invariant by the formula,

\[
\lambda_{SL_2(\mathbb{R})}(M) := \sum (-1)^g \varepsilon_f \in \mathbb{Z},
\]

where the sum runs over \(f\) of \(h(R^{ed}(W_1)) \cap R^{ed}(W_2) \cap \mathcal{I}_{\text{comp}}\). In addition, \(\varepsilon_f\) equals \(\pm 1\), depending on whether the orientations of the spaces \(T_f h(R^{ed}(W_1)) \oplus T_f(R^{ed}(W_2))\) and \(T_f(R^{ed}(\Sigma))\) agree. If \(g \leq 1\), we define \(\lambda_{SL_2(\mathbb{R})}(M)\) to be zero.

In §5.1 we later show the topological invariance of \(\lambda_{SL_2(\mathbb{R})}(M)\). To be precise,

Theorem 2.2. The invariant \(\lambda_{SL_2(\mathbb{R})}(M) \in \mathbb{Z}\) depends only on the homeomorphism class of the 3-manifold \(M\).

3 Computation of \(SL_2(\mathbb{R})\)-Casson invariants

The purpose of this section is to give a procedure for computing the \(SL_2(\mathbb{R})\)-Casson invariant by means of Reidemeister torsions. As indicated in Appendix [John] the idea basically arises from the the work of [John] in the case \(G = SU(2)\). We will begin by reviewing the torsions in §3.1.

3.1 Review: Reidemeister torsions

Let us review algebraic torsions for cochain complexes. Let \(\mathbb{F}\) be a commutative field of characteristic zero. Consider a cochain complex of length \(m\),

\[
C^*: 0 \to C^0 \xrightarrow{\partial^0} C^1 \xrightarrow{\partial^1} \cdots \xrightarrow{\partial^{m-2}} C^{m-1} \xrightarrow{\partial^{m-1}} C^m \to 0,
\]

where \(C^i\) is a vector \(\mathbb{F}\)-space of finite dimension. Let us select a basis \(c_i\) for \(C^i\), a basis \(b_i\) for the boundaries \(B^i\), and a basis \(h_i\) for the cohomology \(H^i\), where we sometimes regard \(h_i\) as elements, \(\tilde{h}_i\), of \(C^i\) by lifts. In addition, we choose a lift, \(\tilde{b}_{i+1} \in C^i\), of \(b_{i+1}\), with respect to \(\partial_i : C^i \to B^{i+1}\). By \(\tilde{b}_i \tilde{h}_i \tilde{b}_{i+1}\), we mean the collection of elements given by \(b_i, \tilde{h}_i, \text{ and } \tilde{b}_{i+1}\). This set, \(b_i h_i b_{i+1}\), is indeed a basis for \(C^i\). For bases \(d, e\) of a finite-dimensional \(\mathbb{F}\)-space, we denote the invertible matrix of a basis change by \([d/e]\), i.e. \([d/e] = (a_{ij})\) where \(d_i = \sum_j a_{ij} e_j\). Then, the *algebraic torsion* (of the based complex \((C^*, c_i, h_i)\)) is defined to be the alternating product,

\[
\mathcal{T}(C^*, c, h) := \frac{\prod_{i} \det [b_2 \tilde{h}_2 \tilde{b}_{2i+1}/c_{2i}]}{\prod_{i} \det [b_{2i-1} \tilde{h}_{2i-1} \tilde{b}_{2i}/c_{2i-1}]} \in \mathbb{F}^\times.
\]

It is well-known that \(\mathcal{T}(C^*, c, h)\) is independent of the choices of \(b_i\) and \(\tilde{b}_{i+1}\), but it does depend on the choices of \(c_i\) and \(h_i\). More precisely, if we select such other bases \(c'_i\) and \(h'_i\), we can verify that

\[
\mathcal{T}'(C^*, c', h') = \mathcal{T}(C^*, c, h) \prod_{j \geq 0} (\det [c_j/c'_j] \det [h'_j/h_j])^{(-1)^{j+1}} \in \mathbb{F}^\times.
\]

If \(C^*\) is acyclic, we will often write \(\mathcal{T}(C^*, c)\) instead of \(\mathcal{T}(C^*, c, h)\).

Next, let us review Reidemeister torsions. Let \(X\) be a connected finite CW-complex. Take an \(SL_n\)-representation \(\rho : \pi_1(X) \to SL_n(\mathbb{F})\), and regard \(\mathbb{F}^n\) as a left \(\mathbb{Z}[\pi_1(X)]\)-module. Let \(\tilde{X}\)
be the universal covering space of X as a CW complex and $C_*(\tilde{X};\mathbb{Z})$ be the cellular complex associated with the CW complex structure. This $C_*(\tilde{X};\mathbb{Z})$ can be considered to be a left free $\mathbb{Z}[\pi_1(X)]$-module by Deck transformations. The cochain complex with local coefficients is defined on

$$C^*_\rho(X;\mathbb{F}^n) := \text{Hom}_{\mathbb{Z}[\pi_1(X)]-\text{mod}}(C_*(\tilde{X};\mathbb{Z}),\mathbb{F}^n).$$

Let us choose orientations, c_X, of the cells of X and take the canonical basis of \mathbb{F}^n. If we regard a lift of c_X as a basis of $C_*(\tilde{X};\mathbb{Z})$, then $C^*_\rho(X;\mathbb{F}^n)$ is a based chain complex over \mathbb{F}. Furthermore, by choosing a basis h_i of the cohomology $H^i_\rho(X;\mathbb{F}^n)$, the Reidemeister torsion of (X,ρ) is defined to be

$$\mathcal{T}(C^*_\rho(X;\mathbb{F}^n),c_X,h) \in \mathbb{F}^\times.$$

From [5], if two representations ρ and ρ' are conjugate, the resulting torsions are equal. However, the discussion of the signs is subtle, and this torsion does depend on the CW-complex.

Before we obtain the topological invariants, let us review the refined torsions by Turaev [Tur Chapter 3] or [Dub1 Dub2]. Let $H^*(X;\mathbb{R})$ be the ordinary cohomology over \mathbb{R}. Suppose an orientation of $\oplus_{i\geq 0} H^i(X;\mathbb{R})$. Moreover, choose a basis $h_i^\mathbb{R} \subset H^i(X;\mathbb{R})$ such that the sequence $(h_0^\mathbb{R}, h_1^\mathbb{R}, \ldots)$ is a positive basis in the oriented vector space $H^*(X;\mathbb{R})$. Now let us define

$$\tilde{\tau}(C^*(X;\mathbb{R}), c_X, h^\mathbb{R}) := (-1)^{N(X)} \mathcal{T}(C^*(X;\mathbb{R}), c_X, h^\mathbb{R}) \in \mathbb{R}^\times,$$

where

$$N(X) = \sum_{i=0}^{\dim(X)} \left(\sum_{j=0}^{\dim(X) - i} \dim H^{\dim(X) - j}(X;\mathbb{R}) \sum_{j=0}^{\dim(C^{\dim(X) - j}(X;\mathbb{R}))} \right) \in \mathbb{Z}/2\mathbb{Z}.$$

(6)

Then, the refined torsion is defined to be

$$\tau^0_\rho(X, h) := \text{sign}(\tilde{\tau}(C^*(X;\mathbb{R}), c_X, h^\mathbb{R})) \cdot \mathcal{T}(C^*_\rho(X;\mathbb{F}^n), c_X, h) \in \mathbb{F}^\times.$$

Theorem 3.1 (see [Tur Chapter 18] or [Dub1 Chapter 2]). If n is even (resp. odd), the torsion $\mathcal{T}(C^*_\rho(X;\mathbb{F}^n), c_X, h)$ (resp. refined torsion $\tau^0_\rho(X, h)$) is independent of the order of the cells of X, their orientation, and choice of $h^\mathbb{R}$ (however, it does depend on the choice of h). Moreover, the torsion is invariant under simple homotopy equivalences preserving the homology orientation.

Recall that any two triangulations of an oriented C^∞-manifold N are simple homotopy equivalent (see, e.g., [Tur §II.8]); consequently, if X is a triangulation of N, the refined torsion gives a topological invariant of N associated with $\rho : \pi_1(N) \to SL_n(\mathbb{F})$ and h.

3.2 Statement

In this subsection, we give a procedure for computing the $SL_2(\mathbb{R})$-Casson invariants. For this, we shall develop methods of analyzing the computation of ε_f, as an analog to Theorem 3.2.

Theorem 3.2. We assume $H_*(M;\mathbb{Q}) \cong H_*(S^3;\mathbb{Q})$, i.e., M is a rational homology 3-sphere, and that, for any $f \in \mathcal{I}_{\text{comp}}$, the intersection of $\text{Im}(i_1^*)$ and $\text{Im}(i_2^*)$ at f is transverse. Then,
the equality $\varepsilon_f = (-1)^q \cdot \sign(\tau_J^0(M))$ holds for any $f \in I_{\text{comp}}$. In particular,

$$\lambda_{SL_2(\mathbb{R})}(M) = \sum_{f \in I_{\text{comp}}} \sign(\tau_J^0(M)). \quad (7)$$

Since the proof is technical, we will put it in §5.3. The assumption is characterized by the following lemma.

Lemma 3.3. Take $f \in I_{\text{comp}}$. Then, the intersection of $\im(i_1^*)$ and $\im(i_2^*)$ at f is transverse if and only if $H_f^1(M; g) = H_f^2(M; g) = 0$.

Proof. Consider the Mayer-Vietoris sequence from (Σ, W_1, W_2):

$$H_f^0(\Sigma; g) \to H_f^1(M; g) \to H_f^1(W_1; g) \oplus H_f^1(W_2; g) \xrightarrow{i_1^* \oplus i_2^*} H_f^1(\Sigma; g) \to H_f^2(M; g) \to 0.$$

Notice that $H_f^0(\Sigma; g) = 0$ because of $f \in R^{ad}(\Sigma)$. Since the intersection is transverse if and only if $i_1^* \oplus i_2^*$ is an isomorphism, we get the desired result.

3.3 Examples; some Brieskorn manifolds

Using Theorem 3.2, we will compute the $SL_2(\mathbb{R})$-Casson invariants of some Brieskorn 3-manifolds.

Let us review the Brieskorn 3-manifolds. Fix integers $m, p, q, d \in \mathbb{N}$ such that m, p, q are relatively prime and $m, p \geq 3$, $q = dp + 1$. Then, the Brieskorn 3-manifold

$$\Sigma(m, p, q) := \{(x, y, z) \in \mathbb{C}^3 \mid x^m + y^p + z^q = 0, \ |x|^2 + |y|^2 + |z|^2 = 1\}$$

is a homology 3-sphere, and $\Sigma(m, p, q)$ is an Eilenberg-MacLane space if $1/m + 1/p + 1/q < 1$. Furthermore, consider the group presentation $\langle x_1, x_2, \ldots, x_m \mid r_1, \ldots, r_m \rangle$ with

$$r_i := x_i x_{i+q} x_{i+2q} \cdots x_{i+(q-1)dq} x_{i+1} x_{i+q+1} \cdots x_{i+(q-1)dq} x_{i+2q+1} x_{i+(q-1)dq+1}^{-1},$$

where the subscripts are taken by mod m. According to [CHK], this group is isomorphic to $\pi_1(\Sigma(m, p, q))$, and this presentation is derived from a genus m Heegaard decomposition of $\Sigma(m, p, q)$.

Let \tilde{X} be the universal covering of $\Sigma(m, p, q)$ as a contractible space, and let π_1 be $\pi_1(\Sigma(m, p, q))$ for short. We now address the cellular complex of \tilde{X}. By the Heegaard decomposition, the cellular complex is described as

$$C_*(\tilde{X}; \mathbb{Z}) : 0 \to \mathbb{Z}[\pi_1] \xrightarrow{\partial_3} \mathbb{Z}[\pi_1]^m \xrightarrow{\partial_2} \mathbb{Z}[\pi_1]^m \xrightarrow{\partial_1} \mathbb{Z}[\pi_1] \to 0 \quad \text{(exact).}$$

Then, through a similar discussion to the one in [Ko], we can verify that the boundary maps ∂_* have matrix presentations of the forms,

$$\partial_3 = (1 - x_1^{+d_q - d_q} - x_1^{+d_q - d_q} \cdots x_1, 1 - x_2^{+d_q - d_q} - x_2^{+d_q - d_q} \cdots x_2, \ldots, 1 - x_m^{+d_q - d_q} - x_m^{+d_q - d_q} \cdots x_m) \in \text{Mat}(m \times 1; \mathbb{Z}[\pi_1]),$$

$$\partial_2 = \left\{ \left[\frac{\partial r_i}{\partial x_j} \right]_{1 \leq i, j \leq m} \right\} \in \text{Mat}(m \times m; \mathbb{Z}[\pi_1]), \quad (8)$$
\[\partial_i = (1 - x_1, 1 - x_2, 1 - x_3, \ldots, 1 - x_m)^\text{transpose}. \]

Here, \(\frac{\partial_r}{\partial x_i} \) is the Fox derivative of \(r_j \) with respect to \(x_i \). As is known \cite{Cur, KY, Sav}, if \(G = SL_2(\mathbb{R}) \), then \(R^{ad}(W_1) \cap R^{ad}(W_2) = R(\Sigma(m, p, q)) \) is true as a finite set, and it satisfies the assumption in Theorem 3.2. Given concrete \(m, p, q \in \mathbb{N} \) and a non-trivial Zariski-dense representation \(f : \pi_1(\Sigma(m, p, q)) \to SL_2(\mathbb{R}) \), by the definition of torsion, we can compute the torsion \(\tau_f^0(\Sigma(m, p, q)) \) (Here, Theorem 2.2 in \cite{Tur} makes the computation easier). When \(m, p, q \leq 9 \) or \((m, p, q) = (m, 2, 3) \) with \(m < 25 \), we can verify that \(\tau_f^0(\Sigma(m, p, q)) < 0 \) with the help of a computer program in Mathematica. Therefore, we suggest a conjecture.

Conjecture 3.4. Let \(m, p, q \in \mathbb{Z} \) be as above. Then, \((-1)^g \text{sign}(\tau_f^0) = \epsilon_f \in \{\pm 1\} \) would be negative for any \(f \in R^{ad}(W_1) \cap R^{ad}(W_2) = R^{ad}(\Sigma(m, p, q)) \). In particular, Theorem 3.2 implies that the invariant \(\lambda_{SL_2(\mathbb{R})}(\Sigma(m, p, q)) \in \mathbb{Z} \) would be \(-|R^{ad}(\Sigma(m, p, q))|\).

Remark 3.5. If we replace \(SL_2(\mathbb{R}) \) by \(SU(2) \), then \(\epsilon_f = -1 \) is known; see \cite{Sav}. Furthermore, as has been shown \cite{KY} Corollary 1.4, the order of \(R^{ad}(\Sigma(m, p, q)) \) is equal to

\[
\frac{(m - 1)(p - 1)(q - 1)}{4} - 2\# \left\{ (s, t, u) \in \mathbb{N}_{>0}^3 \mid s < m, t < p, u < q, \frac{s}{m} + \frac{t}{p} + \frac{u}{q} < 1 \right\}.
\]

4 Invariants graded by the Chern-Simons invariant

Now let us discuss graded \(SL_2(\mathbb{R}) \)-Casson invariants.

4.1 Discussion; grading the invariant

In order to give a grading of the \(SL_2(\mathbb{R}) \)-Casson invariant, we first reconsider the isotopy \(h \) in \(\mathcal{I} \). Since \(3g - 3 \geq 3 \), we can apply a Whitney trick when constructing \(h \). Hence, for any \(f \in \mathcal{I}_{\text{comp}} \), we can choose \(h \) such that \(h(f) = f \) if the local intersection number at \(f \) is \(\pm 1 \), and \(h(f) \) is not contained in \(\mathcal{I}_{\text{comp}} \) if the intersection number is 0. Therefore, if we have a map \(F : \text{Hom}(\pi_1(M), SL_2(\mathbb{R}))/SL_2(\mathbb{R}) \to K \) for some group \(K \), we can verify that the sum

\[
\lambda_{SL_2(\mathbb{R})}^F(M) := (-1)^g \sum_{f \in h(R^{ad}(W_1)) \cap R^{ad}(W_2) \cap \mathcal{I}_{\text{comp}}} \epsilon_f F(f) \in \mathbb{Z}[K]
\]

in the group ring is a topological invariant; the proof is similar to that of Theorem 2.2. As examples of \(F \), the Reidemeister torsion and the Chern-Simons invariant are invariant with respect to the conjugacy action.

Now we will explain the definition of the Chern-Simons invariant in detail. For a group \(G \), let \(BG \) be the Eilenberg-MacLane space. The classifying map \(c_M : M \to B\pi_1(M) \) gives rise to \((c_M)_* : H_3(M; \mathbb{R}) \to H_3(B\pi_1(M); \mathbb{Z}) \). As is shown \cite{Dup}, the \((p_1-)\)-Chern-Simons class, \(P_1 \), is a representative 3-cocycle in the third cohomology \(H^3(BSL_2(\mathbb{R}); \mathbb{R}/\mathbb{Z}) \); see Theorem 4.1 below. Let \([M] \in H_3(M; \mathbb{Z})\) be the orientation 3-class of \(M \). Then, given a representation \(f : \pi_1(M) \to SL_2(\mathbb{R}) \), the **Chern-Simons invariant** is defined to be the pairing,

\[
\langle P_1, f_* \circ (c_M)_*[M] \rangle \in \mathbb{R}/\mathbb{Z}.
\]
Moreover, as is well-known, the Chern-Simons invariant is invariant with respect to the conjugacy action and is locally constant on $\text{Hom}(\pi_1(M), SL_2(\mathbb{R}))/SL_2(\mathbb{R})$.

In addition, when M is an integral homology 3-sphere, we can give an \mathbb{R}-valued lift of the invariant as follows. Let $\tilde{G} \to PSL_2(\mathbb{R})$ be the universal covering of $SL_2(\mathbb{R})$ associated with $\pi_1(SL_2(\mathbb{R})) \cong \mathbb{Z}$, which is a central extension of the fiber \mathbb{Z}. Notice that every homomorphism $f \in \pi_1(M) \to SL_2(\mathbb{R})$ uniquely admits a lift $\tilde{f} : \pi_1(M) \to \tilde{G}$, since $H_1(M; \mathbb{Z}) = H_2(M; \mathbb{Z}) = 0$. Moreover, as in [Dup], §1 and §4 (and this has also been noted by others), as a lift of P_1, there is a 3-cocycle $\tilde{P}_1 \in H^3(B\tilde{G}; \mathbb{R})$. To summarize, the sum

$$\sum \epsilon_f \{\langle \tilde{P}_1, \tilde{f} \ast (c_M)_s[M] \rangle \} \in \mathbb{Z}[\mathbb{R}]$$

(12)

\[\sum_{i \leq j \leq n} \epsilon_f \{\langle \tilde{P}_1, \tilde{f} \ast (c_M)_s[M] \rangle \} \in \mathbb{Z}[\mathbb{R}] \]

gives a topological invariant of integral homology 3-spheres, as a graded $SL_2(\mathbb{R})$-Casson invariant.

4.2 Computation of the graded invariant

Here, we give a procedure for computing the \mathbb{R}/\mathbb{Z}-valued invariant (11), if M is an Eilenberg-MacLane space.

First, let us recall the (normalized) definition of group (co-)homology. For a group G, the group homology, $H_\ast(G; \mathbb{Z})$, is defined to be $\text{Tor}_n^G(\mathbb{Z}, \mathbb{Z})$. For example, if we let $C^n_{\text{Nor}}(G; \mathbb{Z})$ be the quotient \mathbb{Z}-free module of $\mathbb{Z}\langle G^{n+1} \rangle$ subject to the relation $(g_0, \ldots, g_n) \sim 0$ if $g_i = g_{i+1}$ for some i, the complex $C^n_{\text{Nor}}(G; \mathbb{Z})$ with boundary map,

$\partial(g_0, \ldots, g_n) = \sum_{i=0}^n (-1)^i(g_0, \ldots, g_{i-1}, g_{i+1}, \ldots, g_n)$,

is acyclic and the homology of $C^n_{\text{Nor}}(G; \mathbb{Z}) \otimes_{\mathbb{Z}[G]} \mathbb{Z}$ is isomorphic to $H_n(G; \mathbb{Z})$. Dually, for an abelian group M, we can define a coboundary map on $\text{Map}(G^{n+1}, M)$ and define the cohomology $H^\ast(G; M)$. Any cohomology class of $H^n(G; M)$ can be represented by a map $G^{n+1} \to M$. As is well-known, $H_\ast(G; \mathbb{Z}) \cong H_\ast(BG; \mathbb{Z})$ and $H^\ast(BG; M) \cong H^\ast(G; M)$.

Let us recall from [Dup] the 3-cocycle, which represents the P_1 in detail. Given 4-tuples of distinct points $\{a_0, a_1, a_2, a_3\}$ in $P\mathbb{R}^1$, the cross ratio is defined by

$$\{a_0, a_1, a_2, a_3\} := \frac{a_0 - a_2}{a_0 - a_3} \cdot \frac{a_1 - a_3}{a_1 - a_2} \in \mathbb{R} \setminus \{0, 1\}.$$

For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$, we define $g \infty$ by b/d if $d \neq 0$, and by a/c if $d = 0$. In addition, consider the real Rogers’ L-function,

$$L(x) := -\frac{\pi^2}{6} - \frac{1}{2} \int_0^x \left(\frac{\log(1-t)}{t} + \frac{\log(1-t)}{1-t} \right) dt$$

for $0 \leq x \leq 1$, which is extended to \mathbb{R} by

$$L(x) := \begin{cases} -L(1/x) & \text{for } x > 1, \\ L(1 - 1/x) & \text{for } x < 0. \end{cases}$$
Theorem 4.1 ([Dup] Theorem 1.11). Take the map $l : SL_2(\mathbb{R})^4 \to \mathbb{R}/\mathbb{Z}$ defined by

$$l(g_0, g_1, g_2, g_3) := -\frac{1}{4\pi^2}L(\{0, g_0^{-1}g_1 \infty, g_0^{-1}g_2 \infty, g_0^{-1}g_3 \infty\}).$$

Here, we put $l(\{a_0, a_1, a_2, a_3\}) = 0$ whenever there are two equal among $a_0, a_1, a_2, a_3 \in P\mathbb{R}^1$.

Then, l is a 3-cocycle, and it coincides with the Chern-Simons 3-class associated with the first Pontryagin class modulo 1/24. That is, $24l$ and $24P_1$ are equal in $H^3(SL_2(\mathbb{R}); \mathbb{R}/\mathbb{Z})$.

Next, we will discuss an algorithm to describe the fundamental 3-class in the group complex $C_3(\pi_1(M); \mathbb{Z})$. Take a genus-$g$ Heegaard decomposition of M. Since the 1-skeleton consists of g one-handles, we have a presentation $\langle x_1, \ldots, x_g | r_1, \ldots, r_g \rangle$ of $\pi_1(M)$. Then, since M is an Eilenberg-MacLane space, the cellular complex of the universal cover \widetilde{M} is described as

$$C_\ast(\widetilde{M}) : 0 \to \mathbb{Z}[\pi_1(M)] \xrightarrow{\partial_1} \mathbb{Z}[\pi_1(M)]^g \xrightarrow{\partial_2} \mathbb{Z}[\pi_1(M)]^g \xrightarrow{\partial_3} \mathbb{Z}[\pi_1(M)] \to \mathbb{Z} \quad \text{(exact)}.$$

Here, according to [Lyn], the boundary maps ∂_2 and ∂_3 are given by (S) and (D), respectively. Denote the basis of $C_3(\widetilde{M})$ by $\{O_{g, n}\}$. Then, if we can construct a chain map $c_* : C_\ast(\widetilde{M}) \to C_\ast(\pi_1(M); \mathbb{Z})$ as a $\mathbb{Z}[\pi_1(M)]$-homomorphism which is unique up to homotopy, then $[c_3(O_M)] \in C_3^{\text{Nor}}(\pi_1(M); \mathbb{Z}) \otimes \mathbb{Z}^{[\pi_1(M)]} \mathbb{Z}$ means the fundamental 3-class.

The chain map c_* can be constructed as follows. Let $A \in G$ be any element. Define $c_1(Ax_i) := (A, Ax_i)$. If r_i is expanded as $x_{i_1}^{\epsilon_1}x_{i_2}^{\epsilon_2} \cdots x_{i_m}^{\epsilon_m}$ for some $\epsilon_k \in \{\pm 1\}$, we define $c_2(Ar_i)$ to be

$$\sum_{m:1 \leq m \leq n} \epsilon_m(A, Ax_{i_1}^{\epsilon_1}x_{i_2}^{\epsilon_2} \cdots x_{i_{m-1}}^{\epsilon_{m-1}}x_{i_m}^{(\epsilon_m-1)/2}, Ax_{i_1}^{\epsilon_1}x_{i_2}^{\epsilon_2} \cdots x_{i_{m-1}}^{\epsilon_{m-1}}x_{i_m}^{(\epsilon_m+1)/2}) \in C_2^{\text{Nor}}(\pi_1(M); \mathbb{Z}).$$

Then, we can easily verify $\partial_3^A \circ c_1 = c_0 \circ \partial_1$ and $\partial_2^A \circ c_2 = c_1 \circ \partial_2$. Notice that $\partial_3^A \circ c_2 \circ \partial_3(O_M) = \partial_3^A \circ \partial_2 \circ \partial_3(O_M) = 0$, that is, $\partial_3 \circ \partial_3(O_M)$ is a 2-cycle. If we expand $c_2 \circ \partial_3(O_M)$ as $\sum n_i(g_0^i, g_1^i, g_2^i)$ for some $n_i \in \mathbb{Z}, g_j^i \in G$, then $O_M := -\sum n_i(1, g_0^i, g_1^i, g_2^i)$ satisfies $\partial_3^O(O_M) = c_2 \circ \partial_3(O_M)$. Therefore, the correspondence $O_M \mapsto O'_M$ gives rise to a chain map $c_* : C_\ast(\widetilde{M}) \to C_\ast(\pi_1(M); \mathbb{Z})$, as desired. In conclusion, the above discussion can be summarized as follows:

Proposition 4.2. For $f : \pi_1(M) \to SL_2(\mathbb{R})$, the composite $l(f_\ast(O'_M)) \in \mathbb{R}/\mathbb{Z}$ is equal to the pairing $(P_1, f_\ast(c_M)_\ast[M])$ modulo 1/24. In particular, the graded $SL_2(\mathbb{R})$-Casson invariant is computed as

$$\lambda^{24P_3}_{SL_2(\mathbb{R})}(M) = \sum \varepsilon_f \{24l(f_\ast(O'_M))\} \in \mathbb{Z}[\mathbb{R}/\mathbb{Z}].$$

4.3 Examples; some Seifert manifolds

For odd numbers $m, n \in \mathbb{Z}$, let us consider the Seifert manifolds $M_{m,n} := \Sigma((m, 1), (n, 1), (2, -1))$ over S^2, where the three singular fibers are characterised by the integral surgery coefficients $(m, 1), (n, 1)$ and $(2, -1)$. Then, if $1/m + 1/n < 1/2$, the manifold is an Eilenberg-MacLane space and admits a genus-two Heegaard diagram; see, e.g., [Sav] §6. The fundamental group is presented as

$$\langle x, y | r_1 := y^n(xy)^{-2}, r_2 := x^m(yx)^{-2} \rangle.$$

Furthermore, we can verify that $\partial_3(O_M)$ is given by $(1 - y)r_1 + (1 - x)r_2 \in C_2(\widetilde{M})$. Therefore, by the above construction of O'_M, we can easily verify that

$$O'_M = -(1, x, 1, y) - (1, x, y, xy) - (1, x, yx, xyx) - (1, y, 1, x) - (1, y, x, xy)$$
\[-(1, y, xy, xyx) + \sum_{j: 0 \leq j \leq m - 2} (1, x, x^j, x^{j+1}) + \sum_{j: 0 \leq j \leq n - 2} (1, y, y^j, y^{j+1}).\]

Furthermore, it is not difficult to classify all the \(SL_2\)-representations of \(M_{m,n}\). Precisely,

Lemma 4.3. For \(k, \ell \in \mathbb{N}\) with \(k \leq n/2\) and \(\ell \leq m/2\), take

\[
\beta_k := \exp(2\pi k \sqrt{-1}/n) + \exp(-2\pi k \sqrt{-1}/n), \quad \gamma_\ell := \exp(2\pi \ell \sqrt{-1}/m) + \exp(-2\pi \ell \sqrt{-1}/m).
\]

When \(\beta_k^2 + \gamma_\ell^2 > 4\), let us consider the correspondence,

\[
f_{k,\ell}(y) = \left(\frac{\beta_k/2}{(\gamma_\ell + \sqrt{\beta_k^2 + \gamma_\ell^2 - 4})/2}, \frac{(-\gamma_\ell + \sqrt{\beta_k^2 + \gamma_\ell^2 - 4})/2}{\beta_k/2}\right), \quad f_{k,\ell}(xy) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.\]

This gives rise to a homomorphism \(f_{k,\ell} : \pi_1(M_{m,n}) \to SL_2(\mathbb{R})\). Furthermore, the map \((k, \ell) \mapsto f_{k,\ell}\) yields a bijection,

\[
\{ (k, \ell) \in \mathbb{Z}_>^2 \mid k \leq \frac{n}{2}, \ell \leq \frac{m}{2}, \beta_k^2 + \gamma_\ell^2 > 4 \} \longleftrightarrow \text{Hom}(\pi_1(M_{m,n}), SL_2(\mathbb{R}))^{zd}/SL_2(\mathbb{R}).
\]

In summary, since \(O'_M\) and \(f_{k,\ell}\) are explicitly described, for small \(k, \ell\) we can numerically compute the pairings \(24l(f_*(O'_M))\) with the help of a computer program. Here, in a similar fashion to §3.3 we can verify that \(\varepsilon_{f_{k,\ell}} < 0\) for any \(k, \ell\). We give some examples below.

Example 4.4. (I) The case of \(m = 3\) and \(n \leq 15\). The set consists of \(\{f_{1,(n-1)/2}\}\). With the help of a computer program, the resulting computations of the pairing are listed as

\(n\)	7	9	11	13	15
Pairing \(\in \mathbb{R}/\mathbb{Z}\)	0.100637\ldots	0.826310\ldots	0.660662\ldots	0.549320\ldots	0.950164\ldots

(II) The case of \(m = 5\) and \(n \leq 11\). The resulting computations of the pairing \(24l(f_*(O'_M))\) are listed as

\((n, k, \ell)\)	(7,2,1)	(7,2,3)	(9,2,1)	(9,2,4)
Pairing \(\in \mathbb{R}/\mathbb{Z}\)	0.562345\ldots	0.275253\ldots	0.906666\ldots	0.979077\ldots

\((n, k, \ell)\)	(11,1,5)	(11,2,1)	(11,2,4)	(11,2,5)
Pairing \(\in \mathbb{R}/\mathbb{Z}\)	0.658563\ldots	0.456043\ldots	0.111275\ldots	0.942540\ldots

As the examples imply, one may hope that if \(\pi_1(M)\) has a non-trivial \(SL_2(\mathbb{R})\)-representation, the graded invariant \(\lambda_{SL_2(\mathbb{R})}^{P_1/24}(M)\) is a strong invariant. In addition, the author [Nos] gave many examples of other 3-manifolds such that the boundary maps \(\partial_*\) are concretely described; therefore, we can compute the \(SL_2(\mathbb{R})\)-invariants in a similar way.

5 Proofs of the theorems

Here, we give the proofs of Theorems 2.2 and 3.2. Throughout this section, we let \(G = SL_2(\mathbb{R})\).
5.1 Proofs of Theorem 2.2

Proof of Theorem 2.2: The proof is almost the same as the discussion in [AM], Chapter IV or [Sav], §16.3. First, consider the case where M is one of the lens spaces, S^3 and $S^1 \times S^2$. Then, $R^{zd}(M)$ is empty for any Heegaard decomposition of M. Hence, $\lambda_{SL_2(\mathbb{R})}(M) = 0$ by definition, and we may assume $M \neq S^3$ and $g > 1$ in what follows.

Let (W'_1, W'_2, Σ') be another Heegaard decomposition of M. If (W_1, W_2, Σ) and (W'_1, W'_2, Σ') are isotopic, we can easily verify the invariance of $\lambda_{SL_2(\mathbb{R})}(M)$. Thanks to the famous theorem of Reidemeister, it is enough to show the invariance of $\lambda_{SL_2(\mathbb{R})}$ if (W_1, W_2, Σ) is a Heegaard decomposition obtained from (W_1, W_2, Σ) by attaching an unknotted handle; see Figure IV. Then, we have the identifications $\pi_1(W'_1) = \mathbb{Z} \ast \pi_1(W_1)$ and $\pi_1(W'_2) = \mathbb{Z} \ast \pi_1(W_2)$, where the \mathbb{Z} are generated by the loops a_0 and b_0 in Figure IV.

Let $\Sigma_0 = \Sigma \setminus D^2$ and $\Sigma'_0 := \Sigma' \setminus D^2$, where D^2 is the 2-disc removed in the handle-attaching; see Figure IV. Then, $\pi_1(\Sigma'_0) = \mathbb{Z} \ast \mathbb{Z} \ast \pi_1(\Sigma_0)$, where the factor $\mathbb{Z} \ast \mathbb{Z}$ is freely generated by a_0, b_0. Accordingly, we get the identifications

$$R(W'_k) = G \times R(W_k), \quad R(\Sigma'_0) = G \times G \times R(W_k).$$

Consider the inclusions,

$$G \times \text{Hom}(\pi_1(W_1), G) \hookrightarrow G \times G \times \text{Hom}(\pi_1(\Sigma_0), G); \quad (a, \alpha) \mapsto (a, 1, \alpha),$$

$$G \times \text{Hom}(\pi_1(W_2), G) \hookrightarrow G \times G \times \text{Hom}(\pi_1(\Sigma_0), G); \quad (b, \alpha) \mapsto (1, b, \alpha),$$

which factor through $\text{Hom}(\pi_1(\Sigma'), G)$. Then, we have the following identifications:

$$\text{Hom}(\pi_1(W'_1), G) \cap \text{Hom}(\pi_1(W'_2), G) = 1 \times 1 \times \text{Hom}(\pi_1(W_1), G) \cap \text{Hom}(\pi_1(W_2), G)$$

$$= 1 \times 1 \times \text{Hom}(\pi_1(M), G).$$

We see that

$$\text{Hom}(\pi_1(W'_1), G)^{zd} \cap \text{Hom}(\pi_1(W'_2), G)^{zd} = 1 \times 1 \times (\text{Hom}(\pi_1(W_1), G)^{zd} \cap \text{Hom}(\pi_1(W_2), G)^{zd}).$$

Since these identifications are equivariant with respect to the conjugacy $\text{PSL}_2(\mathbb{R})$-action, we have

$$R^{zd}(W'_1) \cap R^{zd}(W'_2) = 1 \times 1 \times (R^{zd}(W_1) \cap R^{zd}(W_2)).$$

Now let us discuss the isotopy h. A similar discussion to the one on [AM], pages 70–78 enables us to verify that there is an isotopy $\tilde{h} : R^{zd}(\Sigma') \rightarrow R^{zd}(\Sigma')$ such that

$$\tilde{h}(R^{zd}(W'_1)) \cap R^{zd}(W'_2) = 1 \times 1 \times (h(R^{zd}(W_1)) \cap R^{zd}(W_2)).$$

Therefore, we have

$$\lambda_{SL_2(\mathbb{R})}(M)' = (-1)^{g+1} \sum_f \varepsilon'_f, \quad \lambda_{SL_2(\mathbb{R})}(M) = (-1)^g \sum_f \varepsilon_f. \quad (13)$$

Hence, it is enough to show $\varepsilon'_f = -\varepsilon_f$ for any f. However, the proof is the same as in the case $G = SU(2)$; see, e.g., [Sav], pages 155–156. Thus, we will omit the details.

\square
5.2 Proof of Theorem 3.2

Next, to prove Theorem 3.2, let us review a theorem of Milnor [Mil1]. Consider a short exact sequence $0 \rightarrow C^* \rightarrow k \rightarrow C^* \rightarrow 0$, in the category of bounded chain complexes and chain mappings over \mathbb{F}. Then, the long exact homology sequence

$$H^*: H^0 \rightarrow H^1 \rightarrow \cdots \rightarrow H^m \rightarrow H^{m+1} \rightarrow \cdots$$

(14)

can be thought of as an acyclic chain complex of length $3m + 3$. Hence, if we fix bases h, h, h of H^*, H^*, H^*, respectively, we can define the torsion $T(H_*, h \cup h \cup h)$. Theorem 5.1 ([Mil1, Theorem 3.2]). Now let us assume that C^*, C^*, C^* have distinguished bases c_i, c_i, c_i such that $\det[c_i/c, c_i] = 1$ for all i. Then, there is $\eta \in \mathbb{Z}/2$ such that

$$(-1)^\eta T(C^*, c, h) = T(C^*, h) T(C^*, c, h) T(H_*, h \cup h \cup h) \in \mathbb{F}^\times.$$

Remark 5.2. The original paper does not clarify η. However, by thoughtfully following the proofs of [Tur, Theorem 1.5] and [Mil1, Theorem 3.2], we can verify that η is formulated as

$$\eta = \sum_{i=0}^m \dim(\text{Im}(j_i)) \dim B_i + \dim(\text{Im}(k_i)) \dim B_{i+1} + \dim B_{i+1} \dim B_i \in \mathbb{Z}/2.$$

The same equality is also written in [Dub2, Chapter 7].

Moreover, let us discuss the refined torsions on closed surfaces. Recall from (3) that, for any representation $\rho \in R^{zd}(\Sigma)$, the cohomology $H^1(\Sigma; g) \cong \mathbb{R}^{6g-6}$ admits a symplectic structure; we can choose a symplectic basis $h_{\text{sym}} \subset H^1(\Sigma; g)$. Moreover, concerning ordinary cohomology, choose a symplectic basis $h_{\text{sym}} \subset H^1(\Sigma; R) \cong \mathbb{R}^{2g}$, which is compatible with the orientation of $H^*(\Sigma; R)$. Then, we can define the refined torsion,

$$\tau_\rho^0(\Sigma, h_{\text{sym}}) \in \mathbb{R}^\times.$$

By (5) and the symplecticity of h_{sym}, this torsion does not depend on the choice of h_{sym}.
Remark 5.3. In [SW, Section 3.4.4] (see also [Lab, Proposition 4.3.6] or [Wit, §4.5]), the function $R^{sd}(\Sigma) \to \mathbb{R}^\times$ which takes ρ to $\tau^0_\rho(\Sigma, h_{\text{sym}})$ is mathematically shown to be constant on each connected component of $R^{sd}(\Sigma)$. The following proposition lets us finish the proof of Theorem 5.2.

Proposition 5.4 (cf. [SW, Wit]). For any $\rho \in R^{sd}(\Sigma)$, the torsion $\tau^0_\rho(\Sigma, h_{\text{sym}})$ equals $1/2^{g-1}$.

Proof of Theorem 5.2. Let $G = SL_2(\mathbb{R})$. We will apply two situations to Theorem 5.1. The first one is

$$C^* := C^*_f(\Sigma; g), \quad \overline{C}^* := C^*_f(W_1; g) \oplus C^*_f(W_2; g), \quad C^* := C^*_f(M; g).$$

Here, let c, \overline{c}, c be the basis obtained from the orientations of the cellular structure of $M, W_1 \cup W_2, \Sigma$, respectively. Then, from the proof of Lemma 5.3, the acyclic complex \mathcal{H}_κ in (14) is equivalent to the isomorphism $i_1^* \oplus i_2^* : H_f^1(W_1; g) \oplus H_f^1(W_2; g) \to H_f^1(\Sigma; g)$. Let h be \emptyset, \overline{h} be $h_{\text{sym}}, h_1 \in H_f^1(W_i; g)$ be bases which gives the orientation of $R^{sd}(W_i)$, and \overline{h} be $h_1 \cup h_2$. Then, by definition of ε_f, we have

$$\varepsilon_f = \text{sign}(\det(i_1^* \oplus i_2^*)) = \text{sign}(\mathcal{T}(\mathcal{H}_\kappa, h \cup \overline{h} \cup \overline{\overline{h}})) \in \{\pm 1\}.$$

The other situation is given by the ordinary cellular complexes of the forms,

$$C^* := C^*(\Sigma; \mathbb{R}), \quad \overline{C}^* := C^*(W_1; \mathbb{R}) \oplus C^*(W_2; \mathbb{R}), \quad C^* := C^*(M; \mathbb{R}).$$

Here, let the 1-dimensional parts of $h^\mathbb{R}, \overline{h}^\mathbb{R}$ be the dual bases represented by the curves $a_1, b_1, \ldots, a_g, b_g$ in Figure 1. Then, since $H^*(M; \mathbb{R}) \cong H^*(S^3; \mathbb{R})$, we can easily check that $\mathcal{T}(\mathcal{H}_\kappa, h^\mathbb{R} \cup \overline{h}^\mathbb{R} \cup \overline{\overline{h}}^\mathbb{R})$ is equal to 1. Furthermore, we give some examples of the number $N(X)$ in (6):

$$N(D) = N(S^1) = 1, \quad N(\Sigma) = N(\Sigma_0) = 0, \quad N(W_i) = N(M) = g \in \mathbb{Z}/2,$$

where the cellular complexes of Σ, Σ_0, W_i, M are canonically obtained from the Heegaard decomposition of M.

Next, by considering the ratio of the applications from the two situations of Theorem 5.1, we have

$$(-1)^g \cdot \tau^0_f(W_1, h_1) \tau^0_f(W_2, h_2) = \tau^0_f(\Sigma, h_{\text{sym}}) \tau^0_f(M) \det(i_1^* \oplus i_2^*) \in \mathbb{R}^\times. \quad (15)$$

Note $\tau^0_f(\Sigma, h_{\text{sym}}) = 1/2^{g-1} > 0$ from Proposition 5.4. Therefore, if $\text{sign}(\tau^0_f(W_1, h_1)) = \text{sign}(\tau^0_f(W_2, h_2))$, the signs of (15) lead to the the desired result, (7).

Finally, it suffices to show $\text{sign}(\tau^0_f(W_1, h_1)) = \text{sign}(\tau^0_f(W_2, h_2))$. Note that the function $\tau^0_*(W_i, h_i)$ is a continuous one on the connected space $R^{sd}(W_i)$ by Lemma 5.5 below. From the duality of the handle attaching of M, there are $f_1 \in R^{sd}(W_1)$ and $f_2 \in R^{sd}(W_2)$ such that $\tau^0_f(W_1, h_1) = \tau^0_f(W_2, h_2)$, which implies the desired $\text{sign}(\tau^0_f(W_1, h_1)) = \text{sign}(\tau^0_f(W_2, h_2))$ by connectivity.

Lemma 5.5. $\text{Hom}(\pi_1(W_i), G)^{sd}$ is connected.
Proof. Let \(C \subset \text{Hom}(\pi_1(W_i), G) = G^g \) be the complement of \(\text{Hom}(\pi_1(W_i), G)^{ad} \). For the proof, it is enough to show that \(C \) is of codimension > 1 over \(\mathbb{R} \).

For this, recall the classification theorem of algebraic subgroups \(K \) of \(SL_2(\mathbb{R}) \) with \(\dim(K) < 3 \). More precisely,

- If \(\dim(K) = 2 \), \(K \) is isomorphic to either \(\mathbb{R} \times \mathbb{R}^\times \) or \(\mathbb{R} \times \mathbb{R}^\times_0 \).
- If \(\dim(K) = 1 \), \(K \) is either abelian or isomorphic to \(\mathbb{R} \times \{ \pm 1 \} \).
- If \(\dim(K) = 0 \), \(K \) is a cyclic group.

The conjugacy action of \(G \) on \(K \) has a stabilizer subgroup whose dimension is more than zero. Therefore, if \(f \in C \), the orbits of \(f \) in \(\text{Hom}(\pi_1(W_i), G) \) are of dimension < 3. Notice that the quotient \(C/G \) by the conjugacy action is a union of real varieties of dimension < \(3g - 3 \). Hence, the dimension of \(C \) is at most \(3g - 1 \), as required. \(\square \)

5.3 Proof of Proposition 5.4

In this proof, we will often use theorem 5.6 below. To describe the theorem, for a \(PSL_2(\mathbb{R}) \)-representation \(\phi : \pi_1(\Sigma) \to PSL_2(\mathbb{R}) \), consider the associated \(P^1\mathbb{R} \)-bundle over \(\Sigma \), and let \(e(\phi) \in H^2(\Sigma; \mathbb{Z}) \cong \mathbb{Z} \) be the Euler class. Furthermore, let \(p : SL_2(\mathbb{R}) \to PSL_2(\mathbb{R}) \) be the projection. Then, for an \(SL_2 \)-representation \(f : \pi_1(\Sigma) \to SL_2(\mathbb{R}) \), the Euler class \(e(p \circ f) \) is known to be even (see (16) below).

Theorem 5.6 ([G2 Theorems A, B, and D]). The connected components of \(\text{Hom}(\pi_1(\Sigma), PSL_2(\mathbb{R}))/PSL_2(\mathbb{R}) \) are in 1:1-correspondence with \(\{ m \in \mathbb{Z} | 2g - 2 \geq |m| \} \) through the map \(\phi \mapsto e(\phi) \).

Moreover, \(|e(\phi)| = 2g - 2 \) if and only if \(\phi : \pi_1(\Sigma) \to PSL_2(\mathbb{R}) \) is a discrete and faithful representation.

Furthermore, we will explain how to compute the Euler classes \(e(\phi) \), for \(\phi : \pi_1(\Sigma) \to PSL_2(\mathbb{R}) \). Let \(\tilde{G} \to PSL_2(\mathbb{R}) \) be the universal covering associated with \(\pi_1(PSL_2(\mathbb{R})) \cong \mathbb{Z} \), which is a central extension of the fiber \(\mathbb{Z} = \{ z^m \}_{m \in \mathbb{Z}} \). Choose a set-theoretical lift \(\phi(a_i) \in \tilde{G} \) of \(\phi(a_i) \). Then, Milnor [Mi2, p. 218–220] showed the equality,

\[
[\phi(b_1), \phi(b_2)] [\phi(b_3), \phi(b_4)] \cdots [\phi(b_g), \phi(b_g)] = z^{e(\phi)}.
\]

(16)

In particular, the left hand side is independent of the choice of the lifts.

Proof of Proposition 5.4 The proof will be divided into four steps.

(Step 1) First, we consider the cases \(g = 2, 3 \). Then, given even \(N \) with \(|N| \leq 2g - 2 \), we can concretely construct \(\phi_N : \pi_1(\Sigma) \to SL_2(\mathbb{R}) \) with \(e(p \circ \phi_N) = N \). For such \(\phi_N \), we can use Proposition 5.2 to verify that \(\tau_{\phi_N}^0(\Sigma, h_{\text{sym}}) = 1/2^{g-1} \) with the help of a computer, although the program is a bit intricate. Thanks to Remark 5.3 for any \(\rho : \pi_1(\Sigma) \to SL_2(\mathbb{R}) \), we directly have \(\tau_{\rho}^0(\Sigma, h_{\text{sym}}) = 1/2^{g-1} \), as required.

(Step 2) Recall the notation \(D \subset \Sigma, \Sigma' \), and \(\Sigma_0, \Sigma_0' \) in 5.1. Let \(T \) be the torus with two circle boundaries such that \(\Sigma_0 = T \cup S^1; \Sigma_0' \); see Figure 1. Let \(h_{S^1} \cup h_{S^1} \) be a basis of \(H^*(\partial T; \mathbb{R}) \otimes g \cong H^*(S^1; g)^2 \cong H^*(S^1; \mathbb{R}) \otimes g^2 \) as 6-copies of the dual of the orientation class \([S^1] \). When \(\rho_T : \pi_1(T) \to SL_2(\mathbb{R}) \) is trivial, we will show that \(\tau_{\rho_T}^0(T, h_{\text{sym}}|T \cup h_{S^1} \cup h_{S^1}) = 1/2 \).
Consider $\Sigma = \Sigma_0 \cup S_1 \cdot D$. By the Mayer-Vietoris argument and Theorem 5.1, we notice that
\[
\tau^0_f(D, h_D)\tau^0_f(\Sigma, h_{sym}) = \tau^0_f(\Sigma_0, h_{sym} \cup h_{S_1})\tau^0_f(S^1, h_{S_1})T(\mathcal{H}_*, h \cup h \cup \overline{h}),
\]
\[
\tau^0_f(D', h_{D'})\tau^0_f(\Sigma', h'_{sym}) = \tau^0_f(\Sigma_0', h'_{sym} \cup h_{S_1})\tau^0_f(S^1, h_{S_1})T(\mathcal{H}'_*, h \cup h \cup \overline{h}).
\]
We can easily see that $\tau^0_f(D, h_D) = \tau^0_f(S^1, h_{S_1}) = -1$ by definition. Furthermore, we can verify that $\mathcal{T}(\mathcal{H}_*)$ and $\mathcal{T}(\mathcal{H}'_*)$ are equal to 1 from the choice of the bases h_{sym}, h_{S_1}, h_D. Therefore, the two equalities can be rewritten as
\[
\tau^0_f(\Sigma, h_{sym}) = \tau^0_f(\Sigma_0, h_{sym} \cup h_{S_1}), \quad \tau^0_f(\Sigma', h'_{sym}) = \tau^0_f(\Sigma_0', h'_{sym} \cup h_{S_1}).
\]
By Step 1, these terms are 1/2 and 1/4, respectively, if $g = 2$. Let ρ_T be the restriction f_T. Therefore, the Mayer-Vietoris sequence together with Theorem 5.1 gives rise to
\[
\tau^0_f(T, h_T)/2 = \tau^0_f(\Sigma_0, h_{sym} \cup h_{S_1})\tau^0_{\rho_T}(T, h_T \cup h_{S_1} \cup h_{S_1})
\]
\[
= -\tau^0_f(\Sigma_0', h'_{sym} \cup h_{S_1} \cup h_{S_1})\tau^0_f(S^1, h_{S_1}) = \tau^0_f(\Sigma_0', h'_{sym} \cup h_{S_1}) = 1/4.
\]
Hence, $\tau^0_{\rho_T}(T, h_{sym}|_T \cup h_{S_1} \cup h_{S_1}) = 1/2$ as required.

Step 3 We suppose that Proposition 5.4 is true if $k = g$. First, consider the case of $|e(p \circ f')| \leq 2k - 4$, where $f' : \pi_1(\Sigma') \to SL_2(\mathbb{R})$. By Theorem 5.6 there is $f_0 : \pi_1(\Sigma') \to SL_2(\mathbb{R})$ such that f_0 and f' lie in the same connected components of $\text{Hom}(\pi_1(\Sigma'), SL_2(\mathbb{R}))$ and the restriction $f_0|_{\pi_1(T)}$ is constant. Since $\tau^0_f(S^1, h_{S_1} \cup h_{S_1}) = 1/2$ by Step 2, a similar Mayer-Vietoris argument shows that
\[
\tau^0_{f_0}(\Sigma', h_{sym}) = \tau^0_f(\Sigma, h_{sym})\tau^0_f(T, h_{sym}|_T) = \frac{1}{2^k}\frac{1}{2} = \frac{1}{2^{k+1}}.
\]
Hence, we can complete the proof with $|e(p \circ f')| \leq 2g - 4$ by induction on g.

Step 4 Here, consider the case $g = k + 1$ and $|e(p \circ f)| = 2g - 2$. By Theorem 5.6 again, $f : \pi_1(\Sigma') \to SL_2(\mathbb{R})$ is a faithful discrete representation. Let $h'_{S_1} \cup h''_{S_1}$ be a basis of $H^*(\partial T, g)$ $\cong H^*(S^1; \mathbb{R})$ as 2-copies of the dual of the orientation class $[S^1]$. In a similar way to Step 2, we can show that $\tau^0_{\rho_T}(T, h_{sym}|_T \cup h'_{S_1} \cup h''_{S_1}) = 1/2$ as well. Hence, as in Step 3, we can prove Proposition 5.4 with $|e(p \circ f)| = 2g - 2$ by induction on g.

A Computation of the symplectic structures on flat moduli spaces

Here, we give an algebraic description of the non-degenerate alternating 2-form in (4). Although a similar discussion is presented in [GT] §3.10, it contains minor errors; here, we reformulate the description in a simplified way.

Take the standard presentation $\pi_1(\Sigma) = \langle a_1, b_1, \ldots, a_g, b_g \rangle$, where $r = [a_1, b_1] \cdots [a_g, b_g]$. Since Σ is an Eilenberg-MacLane space, the cellular complex of the universal covering space can be expressed by a complex of group homology:
\[
C_* : 0 \to \mathbb{Z}[\pi_1(\Sigma)] \xrightarrow{\partial_2} \mathbb{Z}[\pi_1(\Sigma)]^{2g} \xrightarrow{\partial_1} \mathbb{Z}[\pi_1(\Sigma)] \xrightarrow{\epsilon} \mathbb{Z} \to 0 \quad \text{(exact)}.
\]
Let us fix the canonical basis of C_2 and C_1 by R and $x_1, y_1, \ldots, x_g, y_g$, respectively. Then, the boundary maps are known to be
\[
\partial_1(x_i) = 1 - a_i, \quad \partial_1(y_i) = 1 - b_i \quad \text{and} \quad \partial_1(aR) = a \sum_{i=1}^g \frac{\partial r}{\partial a_i} x_i + \frac{\partial r}{\partial b_i} y_i,
\]
for \(a \in \mathbb{Z}[\pi_1(\Sigma)] \). Here, \(\frac{\partial \psi}{\partial y} \) is the Fox derivative. Then, given a left \(\mathbb{Z}[\pi_1(\Sigma)] \)-module \(M \), any 1-cocycle in a local coefficient \(M \) can be regarded as a left \(\mathbb{Z}[\pi_1(\Sigma)] \)-homomorphism \(f : \mathbb{Z}[\pi_1(\Sigma)]^2g \rightarrow M \) satisfying \(\sum_{i=1}^g \frac{\partial \psi}{\partial y_i} f(x_i) + \frac{\partial \psi}{\partial y_i} f(y_i) = 0 \).

Next, we will give a description of the cup product \(H^1 \otimes H^1 \rightarrow H^2 \). Let \(F \) be the free group \(\langle a_1, b_1, \ldots, a_g, b_g \rangle \). Consider the function,

\[
\kappa : F \times F \rightarrow \mathbb{Z}[\pi_1(\Sigma)]^2g \otimes \mathbb{Z}[\pi_1(\Sigma)]^2g; \quad (u, v) \mapsto \alpha(u) \otimes u\alpha(v).
\]

Here, \(\alpha(w) \) is defined as \(\sum_{i=1}^g \frac{\partial \psi}{\partial y_i} x_i + \frac{\partial \psi}{\partial y_i} y_i \). Then, according to [Tro], Lemma in §2.3, there is a unique map \(\Upsilon : F \rightarrow \mathbb{Z}[\pi_1(\Sigma)]^2g \otimes \mathbb{Z}[\pi_1(\Sigma)]^2g \) satisfying

\[
\Upsilon(uv) = \Upsilon(u) + u\Upsilon(v) + \kappa(u, v), \quad \Upsilon(1) = \Upsilon(a_i) = \Upsilon(b_i) = 0, \quad \text{for any } u, v \in F.
\]

Proposition A.1 (A special case of [Tro] §2.4). Let \(\rho : \mathbb{Z}[\pi_1(\Sigma)] \rightarrow \text{End}(M) \) be a homomorphism, and regard \(M \) as a left \(\mathbb{Z}[\pi_1(\Sigma)] \)-module. For any two 1-cocycles \(f, f' : \mathbb{Z}[\pi_1(\Sigma)]^2g \rightarrow M \), the cup product \(f \smile f' \) as a 2-cocycle is represented by a map \(\mathbb{Z}[\pi_1(\Sigma)] \rightarrow M \otimes M \) give by

\[
f \smile f' = f(a \cdot R) = (f \otimes f')((a \otimes a) \cdot \Upsilon(r)), \quad \text{for } a \in \mathbb{Z}[\pi_1(\Sigma)].
\]

As a special case, consider a bilinear map \(\psi : M \otimes M \rightarrow A \) which is diagonally invariant with respect to \(\mathbb{Z}[\pi_1(\Sigma)] \). Then,

Proposition A.2. Let \(M \) be as above and \(f, f' \) be 1-cocycles. Suppose \(\psi(a, b) = \psi(\rho(g)a, \rho(g)b) \) for any \(a, b \in M \) and \(g \in \pi_1(\Sigma) \). Then, the composite of \(\psi \) and the cup product,

\[
H^1(\pi_1(\Sigma); M)^{\otimes 2} \xrightarrow{\sim} H^2(\pi_1(\Sigma); M^{\otimes 2}) \cong M^{\otimes 2} \xrightarrow{\psi} A
\]

are represented by the map \(\mathbb{Z}[\pi_1(\Sigma)]^{2g} \otimes \mathbb{Z}[\pi_1(\Sigma)]^{2g} \rightarrow A \) which sends \((\sum_{i=1}^g k_i x_i + \ell_i y_i) \otimes (\sum_{j=1}^g k'_j x'_j + \ell'_j y'_j) \) to

\[
\sum_{i=1}^g \psi(f(k_i x_i), \rho(a_i + b_i - a_i b_i a_i^{-1} b_i^{-1}) f'(\ell'_i y_i)) - \psi(f(\ell_i y_i), \rho(b_i a_i^{-1} f(k'_i x_i)))
\]

\[
+ \psi(f(k_i x_i), \rho(1 - a_i b_i a_i^{-1}) f'(k'_i x_i)) + \psi(f(\ell_i y_i), \rho(1 - b_i a_i^{-1} b_i^{-1}) f'(\ell'_i y_i))
\]

\[
+ \sum_{m: 1 \leq m < i} \psi(\rho(I_m - I_m a_m b_m a_m^{-1}) f(k_m x_m) + \rho(I_m a_m - I_{m+1}) f(\ell_m y_m), \rho(I_i - I_i a_i b_i a_i^{-1}) f'(k'_i x_i) + \rho(I_i a_i - I_{i+1}) f'(\ell'_i y_i)),
\]

where \(k_i, k'_i, \ell_j, \ell'_j \in \mathbb{Z}[\pi_1(\Sigma)] \) and \(I_i = [a_1, b_1] \cdots [a_{i-1}, b_{i-1}] \).

Thanks to Proposition A.1, this proposition can be proven by directly computing \(\Upsilon \).

B The work of Johnson [John]

In this appendix, we explain the work of Johnson [John] (see Theorem B.2), which gives a way of computing the \(SU(2) \)-Casson invariant under a certain assumption. Let \(G \) be \(SU(2) \) hereafter. We will suppose that the reader has read §§2 and 3.1.

First, we will briefly review the \(SU(2) \)-Casson invariant of an integral homology 3-sphere \(M \). Let \(\text{Hom}(\pi_1(Z), G)^{\text{irr}} \) be the open subset consisting of irreducible representations \(\pi_1(Z) \rightarrow SU(2) \).
Denote the conjugacy quotient $\operatorname{Hom}(\pi_1(Z), G)^{irr}/G$ by $R^{irr}(Z)$. It is known (see, e.g., [AM] and [Sav]) that if Z is Σ with $g \geq 2$, then the conjugacy action of $\operatorname{PSU}(2)$ on $\operatorname{Hom}(\pi_1(\Sigma), G)^{irr}$ is proper and free, the quotient R^{irr} is an oriented manifold of dimension $6g - 6$, and the tangent space at $p \in R^{irr}$ is identified with the first cohomology $H^1_\rho(\Sigma; g)$ with local coefficients by ρ. Furthermore, $R^{irr}(W_k)$ is known to be an oriented manifold of dimension $3g - 3$. To summarize, the restriction of (1) can be written as

$$
\begin{array}{c}
R^{irr}(\Sigma) \\
\downarrow \iota^1 \\
R^{irr}(W_1) \\
\downarrow \iota^2 \\
R^{irr}(W_2) \\
\downarrow j^2 \\
\end{array}
\quad \begin{array}{c}
\iota^1 \quad \iota^2 \\
\downarrow \\
\uparrow \\
\end{array}
\begin{array}{c}
R^{irr}(W_1) \cap R^{irr}(W_2) \subset R^{irr}(M),
\end{array}
$$

of C^∞-embeddings. The intersection $R^{irr}(W_1) \cap R^{irr}(W_2)$ is compact, but not always transverse. If it is not transverse, by the Transversality theorem, we can choose an isotopy $h : R^{irr}(\Sigma) \to R^{irr}(\Sigma)$ such that h is supported in a compact neighborhood of $R^{irr}(W_1) \cap R^{irr}(W_2)$ and $h(R^{irr}(W_i))$ meets $R^{irr}(W_2)$ transversally in $\operatorname{supp}(h)$.

Then, the $\operatorname{SU}(2)$-Casson invariant, $\lambda_{\operatorname{SU}(2)}(M)$, is defined to be $(-1)^g \sum \varepsilon_f$. Here, the sum runs over $h(R^{irr}(W_1)) \cap R^{irr}(W_2)$, and the number ε_f equals ± 1 depending on whether the orientations of the spaces $T_f h(R^{irr}(W_1)) \oplus T_f R^{irr}(W_2)$ and $T_f R^{irr}(\Sigma)$ agree. It is known that $\lambda_{\operatorname{SU}(2)}(M)$ is a topological invariant of M.

While it is not so easy to compute ε_f, Johnson [John] suggested a procedure for computing ε_f from Reidemeister torsions. For this, we shall mention a proposition similar to that of Lemma 3.3.

Proposition B.1 ([Sav] Theorem 16.4). Take $f \in R^{irr}(W_1) \cap R^{irr}(W_2)$. Then, the intersection of $R^{irr}(W_1) \cap R^{irr}(W_2)$ at f is transverse if and only if $C^*_f(\rho; g)$ is acyclic, i.e., $H^1_f(\rho; g) = 0$.

Thus, under the transversality, by definition, in order to compute the invariants, it is enough to compute the sign ε_f with respect to $f \in R^{irr}(M)$, since the isotopy h may be the identity. In the note [John], Johnson gave the following theorem:

Theorem B.2 ([John]). Suppose $H_\ast(M; \mathbb{Z}) \cong H_\ast(S^3; \mathbb{Z})$ and that, for any $f \in R^{irr}(W_1) \cap R^{irr}(W_2)$, the intersection of $\operatorname{Im}(i^1_f)$ and $\operatorname{Im}(i^2_f)$ at f is transverse.

Then, the $\operatorname{SU}(2)$-Casson invariant is formulated as

$$\lambda_{\operatorname{SU}(2)}(M) = \sum_{f \in R^{irr}(W_1) \cap R^{irr}(W_2)} \operatorname{sign}(\tau^0_f(M)).$$

(17)

This theorem might be a folklore; however, since the note [John] is unpublished, we now give a proof of this theorem:

Proof. The proof is almost the same as the proof of Theorem 3.2, so we will suppose that the reader has read 3.2. Let G be $\operatorname{SU}(2)$, and g be $\mathfrak{su}(2)$.

By (3), we have a symplectic structure on $H^1_\rho(\Sigma; g) \cong \mathbb{R}^{6g-6}$ for any $\rho \in R^{irr}(\Sigma)$. With the choice of a symplectic basis $h_{\text{sym}} \subset H^1_\rho(\Sigma; g)$, we can also define the refined torsion: $\tau^0_\rho(\Sigma, h_{\text{sym}}) \in \mathbb{R}^\times$. By (5) and symplecticity of h_{sym}, this torsion does not depend on the choice of h_{sym}.

In a similar way to (15), we obtain
\[(-1)^g \cdot \tau_f^0(W_1, h_1)\tau_f^0(W_2, h_2) = \tau_f^0(\Sigma, h_{\text{sym}})\tau_f^0(M)\det(i_1^* \oplus i_2^*) \in \mathbb{R}^\times. \] (18)

We can show that \(\text{sign}(\tau_f^0(W_1, h_1)) = \text{sign}(\tau_f^0(W_2, h_2)) \) as in Lemma 5.5. These equalities can be proven in the same way as in §5.2 so we will omit the details.

From the construction, the function \(R^{\text{irr}}(\Sigma) \to \mathbb{R}^\times \) which takes \(\rho \) to \(\tau_f^0(\Sigma, h_{\text{sym}}) \) is continuous. Hence, it is sufficient to show \(\tau_{f_0}^0(\Sigma, h_{\text{sym}}) > 0 \) in the case \(G = SU(2) \). For this, note a well known fact that the open set \(R^{\text{irr}}(\Sigma) \) is connected; see, e.g., [GX]. Therefore, we may show \(\tau_{f_0}^0(\Sigma, h_{\text{sym}}) > 0 \) for appropriate \(f_0 \in R^{\text{irr}}(\Sigma) \). Moreover, a discussion similar to the one in §5.3 means that we only have to consider the case \(g = 2 \). For this, let us consider \(f_0 \) defined by

\[
\begin{align*}
\tau_{f_0}^0(a_1) &= \left(\frac{2\sqrt{-1} + 2\sqrt{10}}{6}, \frac{-2 + \sqrt{12}}{\sqrt{6}} \right), \\
\tau_{f_0}^0(b_1) &= \left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \right), \\
\tau_{f_0}^0(a_2) &= \left(\frac{1 - \sqrt{-1}}{2}, \frac{-1 + \sqrt{-1}}{2} \right), \\
\tau_{f_0}^0(b_2) &= \left(\frac{\sqrt{2}}{2}, \frac{-\sqrt{2}}{2} \right).
\end{align*}
\]

By Proposition [A.2] and with the help of a computer, we can verify that \(\tau_{f_0}^0(\Sigma, h_{\text{sym}}) > 0 \), as desired.

Remark B.3. In the \(SU(2) \) case, we can show that \(\tau_f^0(\Sigma, h_{\text{sym}}) = 1 \) for any \(g > 1 \) and any irreducible representation \(f : \pi_1(\Sigma) \to SU(2) \). The proof follows that of Proposition 5.4.

References

[Ati] M. F. Atiyah, *New invariants 3- and 4-dimensional manifolds*, Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc, Providence, R.I., 1988, pp. 285–299.

[AM] S. Akbulut, J. D. McCarthy, *Casson’s invariant for oriented homology 3-spheres, an exposition*, Mathematical Notes 36, Princeton University Press, Princeton (1990).

[BH] H. Boden, C. Herald, *The SU(3) Casson invariant for integral homology 3-spheres*, J. Differential Geom. 50 (1998), 147–206.

[BN] S. Boyer, A. Nicas, *Varieties of group representations and Casson’s invariant for rational homology 3-spheres*, Trans. Amer. Math. Soc. 322 (1990), 507–522.

[Cas] A. Casson, *Lectures at MSRI*, 1985.

[CHK] A. Cavicchioli, F. Hegenbarth, A. Kim, *On cyclic branched coverings of torus knots*, Journal of Geometry, 64 (1999), 55–66.

[Cur1] C. L. Curtis, *An intersection theory count of the SL(2,C)-representations of the fundamental group of a 3-manifold*, Topology 40 (2001), 773–787.

[Cur2] C. L. Curtis, *Generalized Casson invariants for SO(3), U(2), Spin(4), and SO(4)*, Trans. Amer. Math. Soc. 343(1): 49–86, 1994.

[Dub1] J. Dubois, *Torsion de Reidemeister non abélienne et forme volume sur l’espace des représentations du groupe d’un nud*, Ph.D. thesis, Université Blaise Pascal, http://tel.ccsd.cnrs.fr/documents/archives0/00/00/37/82, 2003.

[Dub2] J. Dubois, *Non Abelian Reidemeister Torsion and Volume Form on the SU(2)- Representation Space of Knot Groups*, Ann. Institut Fourier 55 (2005), 1685–1734.
[Dup] J. L. Dupont. The dilogarithm as a characteristic class for flat bundles. In Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), volume 44, pages 137–164, 1987.

[G1] W. M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984) 200–225.

[G2] W. M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), no. 3, 557–607.

[GX] W. M. Goldman, E. Z. Xia, Ergodicity of mapping class group actions on SU(2)-character varieties. In Geometry, rigidity, and group actions, Chicago Lectures in Math., pages 591–608.

[John] D. Johnson, A geometric form of Casson’s invariant and its connection to Reidemeister torsion, unpublished lecture notes

[Kit] T. Kitano, Reidemeister torsion of Seifert fibered spaces for SL(2; C)-representations, Tokyo J. Math. 17 (1994), 59–75.

[KY] T. Kitano, Y. Yamaguchi, SL(2; R)-representations of a Brieskorn homology 3-sphere, ArXiv e-prints, February 2016.

[Ko] Y. Koda, Spines, Heegaard splittings and the Reidemeister-Turaev torsion of Euler structure. Tokyo J. Math. 30 (2007), 417–439.

[Lab] F. Labourie, Lectures on representations of surface groups, European Mathematical Society (EMS), Zürich, (2013), Zürich Lectures in Advanced Mathematics

[Lyn] R. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. 52 (1950), 650–665.

[Mil1] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.

[Mil2] J. Milnor, On the existence of a connection of curvature zero, Comm. Math. Helv. 21, 215–223 (1958)

[Nos] T. Nosaka, Cellular chain complexes of universal covers of some 3-manifolds. J. Math. Sci. Univ. Tokyo 29 (2022), no. 1, 89–113.

[Rei] K. Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9 (1933), 189–194.

[Sav] N. Saveliev, Invariants for homology 3-spheres, Encylopaedia of Math. Sci. 140, SpringerVerlag, Berlin Heidelberg (2002).

[SW] D. Stanford, E. Witten, JT Gravity and the Ensembles of Random Matrix Theory, preprint

[Tro] H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of Math. 76 (1962), 464–498.

[Tur] V. Turaev, Introduction to combinatorial torsions, Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, 2001. MR 2001m:57042 Zbl 0970.57001

[Wit] E. Witten, On quantum gauge theories in two dimensions, Commun. Math. Phys. 141 (1991) 153–209.

Department of Mathematics, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan