L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton Method

A PREPRINT

Bugra Can1, Department of MSIS Rutgers Business School bugra.can@rutgers.edu
Saeed Soori2, Department of Computer Science University of Toronto saeed.soori.sh@gmail.com
Maryam Mehri Dehnavi2, Department of Computer Science University of Toronto mmehride@cs.toronto.edu
Mert Gürbüzbalaban1 Department of MSIS Rutgers Business School mert.gurbuzbalaban@rutgers.edu

ABSTRACT

This work proposes a distributed algorithm for solving empirical risk minimization problems, called L-DQN, under the master/worker communication model. L-DQN is a distributed limited-memory quasi-Newton method that supports asynchronous computations among the worker nodes. Our method is efficient both in terms of storage and communication costs, i.e., in every iteration the master node and workers communicate vectors of size $O(d)$, where d is the dimension of the decision variable, and the amount of memory required on each node is $O(md)$, where m is an adjustable parameter. To our knowledge, this is the first distributed quasi-Newton method with provable global linear convergence guarantees in the asynchronous setting where delays between nodes are present. Numerical experiments are provided to illustrate the theory and the practical performance of our method.

Keywords Quasi Newton Methods · Distributed Optimization · BFGS Methods

1 Introduction

Due to the rapid increase in the size of datasets in the last decade, distributed algorithms that can parallelize the computations to multiple (computational units) nodes connected over a communication network became indispensable. A common communication model in distributed machine learning is the master/worker model in which the master keeps a copy of the global decision variable x and shares it with the workers. Each worker operates locally on its own data and then communicates the results to the master to update the decision variable in a synchronous or asynchronous fashion. In the synchronous setting, the master waits to receive updates from all workers before updating the decision variable, which can lead to a slow execution if the nodes and/or the network is heterogeneous. In the asynchronous setting, coordination amongst workers is not needed (or is more relaxed) and the master can proceed with updates without having to wait for slow worker nodes. As a result, asynchronous setting can be more efficient than synchronous in heterogeneous computing environments.

1. Department of Management Sciences and Information Systems, Rutgers Business School, Piscataway, NJ-08854, USA.
†2 Department of Computer Sciences, University of Toronto, Toronto, Canada.
‡Bugra Can and Mert Gürbüzbalaban acknowledge support from the Office of Naval Research Award Number N00014-21-1-2244, and the grants National Science Foundation (NSF) CCF-1814888, NSF DMS-2053485, NSF DMS-1723085.
In this paper, we consider distributed algorithms for empirical risk minimization, i.e. for solving the finite-sum problem

\[x^* := \arg\min_{x \in \mathbb{R}^d} f(x) := \arg\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(x) \] \hfill (1)

where \(x \in \mathbb{R}^d \) and \(f_i : \mathbb{R}^d \to \mathbb{R} \) is the loss function of node \(i \in \{1, \ldots, n\} \). We consider the master/worker communication model with asynchronous computations. With today’s distributed computing environments, the cost of communication between nodes is considerably higher than the cost of computation, which leads to sharing matrices of size \(O(d^2) \) across nodes to be prohibitively expensive in many machine learning applications. Thus, inspired by prior work (Liu and Nocedal [1989], Mokhtari and Ribeiro [2015], Nash and Nocedal [1991], Skajaa [2010], Bollapragada et al. [2018], Berahas et al. [2019]), we focus on algorithms that communicate between nodes only vectors of size (at most) \(O(d) \). There are a number of distributed algorithms for empirical risk minimization that can support asynchronous computations; the most relevant to our work are the recently proposed DAve-RPG (Mishchenko et al. [2018a] and DAve-QN algorithms [Soori et al. [2019]). DAve-RPG is a delay tolerant proximal gradient method with linear convergence guarantees that also handles a non-smooth term in the objective. However, it is a first-order method that does not estimate the second-order information of the underlying objective, therefore it can be slow for ill-conditioned problems. DAve-QN is a distributed quasi-Newton method with local superlinear convergence guarantees, however it does not admit global convergence guarantees. Furthermore, it relies on BFGS updates on each node, which requires \(O(d^2) \) memory as well as \(O(d^2) \) computations for updating the Hessian estimate at each node. For large \(d \), this can be slow where DAve-QN loses its edge over first-order approaches [Soori et al. [2019]]; furthermore its \(O(d^2) \) memory requirement can be impractical or prohibitively expensive when \(d \) is large, say when \(d \) is on the order of ten thousands or hundred thousands.

Contributions. To remedy the shortcomings of the DAve-QN algorithm, we propose L-DQN, a distributed limited-memory quasi-Newton method that requires less memory and computational work per iteration. More specifically, the per iteration and per node storage and computation of L-DQN are \(O(md) \) and \(O(md) \) respectively, where \(m \) is a configurable parameter and is the number of vectors stored in the memory at every iteration that contains information about the past gradients and iterates. Because of the reduced storage and computation costs, our proposed algorithm scales well for large datasets, it is communication-efficient as it exchanges vectors of size \(O(d) \) at every communication. When the number of nodes is large enough, with an appropriate stepsize, L-DQN has global linear convergence guarantees for strongly convex objectives, even though the computations are done in an asynchronous manner, as opposed to the DAve-QN method which does not provide global convergence guarantees. In practice, we have also observed that L-DQN works well even if the number of nodes \(n \) is not large, for example when \(n = 2 \). To our knowledge, L-DQN is the first distributed quasi-Newton method with provable linear convergence guarantees, even in the presence of asynchronous computations.

Related work. The proposed method can be viewed as an asynchronous distributed variant of the traditional quasi-Newton and limited-memory BFGS methods that have been extensively studied in the optimization community (Goldfarb [1970], Broyden et al. [1973], Dennis and More [1974], Powell [1976]). L-DQN builds on the limited-memory BFGS method (Liu and Nocedal [1989]). Prior work have also investigated incremental gradient (Gürbüzbalaban et al. [2019], 2015), and incremental aggregated gradient algorithms (Roux et al. [2012], Defazio et al. [2014a,b], Mairal [2015], Gürbüzbalaban et al. [2017], Mokhtari et al. [2018a], Vanli et al. [2018], Mokhtari et al. [2018b], Blatt et al. [2007]), which are originally developed for centralized problems. These methods update the global decision variable by processing the gradients of the component functions \(f_i \) in a deterministic fashion in a specific (e.g. cyclic) order. They are applicable to our setting in practice, however, these methods do not provide convergence guarantees in asynchronous settings. The Lazily Aggregated Gradient (LAG) (Chen et al. [2018]) method, which has a convergence rate similar to batch gradient descent in strongly convex, convex, and nonconvex cases as well as its quantized version (Sun et al. [2019]), is an exception, however, LAG is a first-order method that does not use second-order information.

For synchronous settings, the distributed quasi-Newton algorithm proposed by Lee et al. [2018] is globally linearly convergent and can handle non-smooth regularization terms; convergence analysis for the algorithm does not exist for asynchronous settings. In this work, we use the star network topology where the nodes follow a master/slave hierarchy. However, there is another setting known as the decentralized setting which does not have a master node and communication between the nodes is limited to a given fixed arbitrary network topology (Nedic and Ozdaglar [2009], Mansoori and Wei [2017]). Amongst algorithms for this setting, Eisen et al. [2017] proposes a linearly convergent decentralized quasi-Newton method and Mansoori and Wei [2017] develops an asynchronous Newton-based approach that has local superlinear convergence guarantees to a neighborhood of the problem \(f \). There are also distributed second-order methods developed for non-convex objectives. Among these, most relevant to our paper are Simsekli et al. [2018] which proposes a stochastic asynchronous-parallel L-BFGS method and the DINGO method (Crane and Roosta [2019]), which admits linear convergence guarantees to a local minimum for non-convex objectives that satisfy an invexity property.
2.1 Preliminaries

BFGS algorithm. In the following, we provide a brief summary of the BFGS algorithm, see [Nocedal and Wright (2006)] for more detail. Given a convex smooth function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, the BFGS algorithm consists of iterations:

$$x^{t+1} = x^t - \eta_t (B^{t+1})^{-1} \nabla f(x^t),$$

where η_t is a properly chosen stepsize where the matrix $H^{t+1} := (B^{t+1})^{-1}$ is an estimate of the inverse Hessian matrix at x^t and satisfies the secant equation:

$$H^{t+1} y^{t+1} = s^{t+1},$$

where $s^{t+1} := x^t - x^{t-1}$ and $y^{t+1} := \nabla f(x^t) - \nabla f(x^{t-1})$ are the differences of the iterates and the gradients respectively. By Taylor’s theorem, $y^{t+1} = [\int_0^1 \nabla^2 f(x^{t-1} + (t - x^{t-1})) dt] s^{t+1}$, therefore for a small enough stepsize η_t any matrix H^{t+1} solving the secant equation can be considered as an inverse approximate of Hessian $(\nabla^2 f(x^t))^{-1}$ of the function f. In fact, the secant equation (2) has infinitely many solutions and quasi-Newton methods differ in how they choose a particular solution. BFGS chooses the matrix H^{t+1} according to

$$H^{t+1} = \left(I - \frac{s^{t+1}(y^{t+1})^\top}{(y^{t+1})^\top s^{t+1}} \right) H^t \left(I - \frac{s^{t+1}(y^{t+1})^\top}{(y^{t+1})^\top s^{t+1}} \right) + \frac{s^{t+1}(s^{t+1})^\top}{(y^{t+1})^\top s^{t+1}}.$$

The corresponding update for B^{t+1} is

$$B^{t+1} = B^t + U^{t+1} + V^{t+1},$$

$$U^{t+1} = \frac{y^{t+1}(y^{t+1})^\top}{(y^{t+1})^\top s^{t+1}}, \quad V^{t+1} = -\frac{B^t s^{t+1}(s^{t+1})^\top}{(s^{t+1})^\top B^t s^{t+1}} B^t.$$

If function f is strongly convex then $(s^{t+1})^\top y^{t+1} > 0$ so that the denominator in (3) cannot be zero. Note that U^t and V^t are both rank-one therefore these updates require $O(d^2)$ operations. Even though the BFGS algorithm (3) enjoys local superlinear convergence with an appropriate stepsize, its $O(d^2)$ memory requirement to store the matrix B^t and $O(d^2)$ computations required for the updates (3) may be impractical or prohibitively expensive for machine learning problems when d is large.

Limited-memory BFGS (L-BFGS) algorithm. Limited-memory BFGS (L-BFGS) requires less memory compared to BFGS algorithm. Instead of storing the whole B^t matrix, L-BFGS stores up to m pairs $\{s^j, y^j\}$ in memory and uses these vectors to approximate the Hessian. The parameter m is adjustable which results in a memory requirement of $O(md)$. At the start of iteration t, we have access to $\{s^j, y^j\}$ for $j = t - m, \ldots, t - 1$. Since the storage is full[4] the oldest pair $\{s^{t-m}, y^{t-m}\}$ is replaced by the latest pair $\{s^t, y^t\}$. The resulting L-BFGS algorithm has the updates:

$$x^{t+1} = x^t - \eta_t (\tilde{B}^{t+1})^{-1} \nabla f(x^t),$$

where the matrices \tilde{B}^{t+1} are computed according to the following formula

$$\tilde{B}^{t+1} = \gamma^{t+1} I_d + \sum_{j=1}^m \tilde{U}^{t+2-j} + \tilde{V}^{t+2-j},$$

$$\tilde{U}^j = \frac{y^{j+1}(y^{j+1})^\top}{(y^{j+1})^\top s^{j+1}}, \quad \tilde{V}^j = -\frac{\tilde{B}^j s^{j+1}(s^{j+1})^\top}{(s^{j+1})^\top \tilde{B}^j s^{j+1}} \tilde{B}^j.$$

[4]In the beginning of the iterations, when the total number of gradients computed is less than m the storage capacity is not full but the details are omitted for keeping the discussion simpler, see [Nocedal and Wright (2006)] for details.
where γ^{t+1} is a scaling factor. We note that L-BFGS requires $O(md)$ memory which is significantly less compared to $O(d^2)$ for BFGS for a large d.

DAve-QN algorithm. The DAve-QN algorithm [Soori et al. 2019] is an asynchronous quasi-Newton method for solving the optimization problem $\mathbf{1}$ in master/slave communication models. Let x^t be the variable that is kept at the master at time t and z^t_i be the local copy that agent i keeps after its last communication with the master. At time t, an agent i_t communicates with the master and updates its local estimate \tilde{B}^{t}_{i} for the local Hessian $\nabla^2 f_i(x^t)$ with a BFGS update:

$$
\tilde{B}^{t+1}_{i} = \tilde{B}^{t}_{i} + \frac{y^{t+1}_i(\nabla f_i(x^{t+1}) - \nabla f_i(z^t_i))}{\alpha^{t+1}_{i}} - \frac{q^{t+1}_i(\nabla f_i(x^{t+1}) - \nabla f_i(z^t_i))}{\beta^{t+1}_{i}},
$$

where $q^{t+1}_i := \tilde{B}^{t}_{i} \tilde{s}^{t+1}_{i} - \nabla f_i(z^t_i)$, $\alpha^{t+1}_{i} := (y^{t+1}_i)^T \tilde{s}^{t+1}_{i}$, and $\beta^{t+1}_{i} := (\tilde{s}^{t+1}_{i})^T q^{t+1}_i$ are computed using the local copy z^t_i, and the iterate x^{t+1}. Let D^i_t be delay time between information received and send at agent i_t at time t, then agent i_t sends the information $(\tilde{B}^{t}_{i} x^t - B^{t-D^i_t}_{i} z^{t-D^i_t}_{i}, y^{t+1}_i, q^{t+1}_i, \alpha^{t+1}_{i}, \beta^{t+1}_{i})$ to the master after making the update (4). Consequently, the master updates the global decision variable with:

$$
x^t = \left(\sum_{i=1}^{n} \tilde{B}^{t}_{i} \right)^{-1} \left(\sum_{i=1}^{n} B^{t}_{i} z^t_i - \nabla f_i(z^t_i) \right).
$$

In the next section, we introduce the L-DQN method which is a limited-memory version of the DAve-QN algorithm. L-DQN will allow us to improve performance for large dimensional problems. The basic idea is that each agent stores m-many tuples $\{y^t_i, q^t_i, \alpha^t_i, \beta^t_i\}$ requiring $O(md)$ memory instead of storing the $d \times d$ matrix B^t_i and carries out L-BFGS-type updates (4) to compute the Hessian estimate $\nabla^2 f_i(x^t)$.

2.2 A Limited-Memory Distributed Quasi-Newton Method (L-DQN)

In this section, we introduce the L-DQN algorithm on a master/slave communication setting that consists of n workers that are connected to one master with a star topology (see Figure 1). Let d_t^i be the delay time in communication at time t with the i-th worker and the master and D^t_i denote the (penultimate) double delay in communication, i.e. the last exchange between the master and the worker i was at time $t - d^t_i$, and before that the communication took place at $t - d^t_i$ where $D^t_i = d^t_i + d^{t-d^t_i-1}_i + 1$. For example, if the node i communicated with master at times $t = 1, 5$ and $t = 7$, we have $d^1_i = 3, d^5_i = 0, d^7_i = 1, d^6_i = 1, d^8_i = 3$. Let us introduce the notations $T^0_i(t) = t - d^0_i$ with the convention $T^0_i(t) = t$ and $T^n_i(t) = T_i(T^m_i - 1(t))$. We introduce the notation $\tilde{q}^{t+1}_{i_t} := \tilde{B}^{t}_{i_t} \tilde{s}^{t+1}_{i_t}$, $\tilde{\beta}^{t+1}_{i_t} := (\tilde{s}^{t+1}_{i_t})^T \tilde{q}^{t+1}_{i_t}$, and explain the L-DQN updates on worker and master in detail:

Worker Updates: Each agent i_t keeps m-many tuples $\{y^t_i, q^t_i, \alpha^t_i, \beta^t_i\}$ at their local memory $\mathcal{M}_m(i, t)$ at time t and at the end of the m-th iteration, the worker replaces the oldest tuple $\{y^{T^m_i(t)}_i, q^{T^m_i(t)}_i, \alpha^{T^m_i(t)}_i, \beta^{T^m_i(t)}_i\}$ with the new one.
The steps for the master and worker nodes are provided in Algorithm 2. After receiving x^{t-d_i} from the master, worker i computes $\tilde{B}^{t+1}_i x^{t-d_i}$ and sends the copy x^{t-d_i}, then upon receiving x^{t-d_i}, the worker i computes $\tilde{B}^{t+1}_i x^{t-d_i}$, where \tilde{B}^{t+1}_i is computed according to

$$\tilde{B}^{t+1}_i = \tilde{B}^{t+1} I + \sum_{j=1}^{m} U^{T}_i (\tilde{y}_j^{t+1})^\top + \tilde{V}_i^{T}(t+1),$$

$$\tilde{U}_i^t = \frac{y_i^t (y_i^t)^\top}{(y_i^t)^2 s_i^t}, \quad \tilde{V}_i^t = -\frac{\tilde{q}_i^t (\tilde{q}_i^t)^\top}{(s_i^t)^2 \tilde{B} \tilde{s}_i^t},$$

and the scaling factor is chosen as $\gamma_i^{t+1} = \frac{\|y_i^{t+1}\|^2}{(y_i^{t+1})^\top s_i^{t+1}}$.

A number of choices for γ_i^t are proposed in the literature [Nocedal and Wright (2006)]. γ_i^t given above (which is also considered in Mokhtari and Ribeiro (2015)) is an estimate for the largest eigenvalue of Hessian $\nabla^2 f_i(x^{t-d_i})$ and works well in practice, therefore our algorithm analysis is based on given γ_i^t. However, our analysis on the linear convergence of L-DQN can be extended to different choice of γ_i^t’s as well.

Algorithm 1: Compute u given memory $\mathcal{M}_m := \{y^i, \tilde{q}^i, \alpha^i, \tilde{\beta}^i\}_{i=1}^m$

Function: $u = \text{LBFGS}(\gamma, \mathcal{M}_m, x)$

Set $u = \gamma x$

for $i \in \{1, \ldots, m\}$ do

Retract $y_i^t, \tilde{q}_i^t, \alpha_i^t, \tilde{\beta}_i^t$ from \mathcal{M}_m

Set $c_1 = \frac{(y_i^t)^\top}{\gamma_i^2}$ and $c_2 = \frac{(\tilde{q}_i^t)^\top \gamma_i}{\beta_i^2}$

$u = u + c_1 y_i^t - c_2 \tilde{q}_i^t$

end

Return u.

Worker i calls Algorithm 1 to perform the update locally based on its memory $\mathcal{M}_m(i, t)$. Then, the worker sends $\Delta u_{i}^{t+1} := \tilde{B}^{t+1}_i x^t - B^{t} z_{i}^{t-d_i}, y_{i}^{t-d_i}, t-d_i, \tilde{\alpha}_i^{t-d_i}, \tilde{\alpha}_i^{t-d_i}$ and $\tilde{\beta}_i^{t-d_i}$ to the master.

Master Updates: Upon its communication with the worker, the master receives the vectors $\Delta u_{i}^{t+1}, y_{i}^{t}, \tilde{q}_{i}^{t}$, the scalars $\alpha_{i}^{t}, \tilde{\beta}_{i}^{t}$, and computes

$$x^{t+1} = (B^t)^{-1} \left[\sum_{i=1}^{n} B^t_{i} z_i^{t} - \eta_i \sum_{i=1}^{n} \nabla f_i(z_i^{t}) \right],$$

where $B^t := \sum_{i=1}^{n} B^t_{i} = \sum_{i=1}^{n} B^t_{i} z_i^{t-d_i}$ and stepsize η_i determined by the master. Soori et al. have shown in [Soori et al. (2019)] that the computation of B^t and $(B^t)^{-1}$ can be done at master locally by using only vectors send by workers. In particular, if we define $u^t := \sum_{i=1}^{n} \tilde{B}^t_{i} z_i^{t} = \sum_{i=1}^{n} \tilde{B}^{t-d_i}_i z_i^{t-d_i}$ and $g^t := \sum_{i=1}^{n} \nabla f_i(z_i^{t}) = \sum_{i=1}^{n} \nabla f_i(x^{t-d_i})$, then the updates at the master follow the below rules: $B^{t+1} = B^t + (\tilde{B}^{t}_i - \tilde{B}^{t-d_i}_i), u^{t+1} = u^t + \left(\tilde{B}^{t+1}_i x^{t-d_i} - \tilde{B}^{t-d_i}_i x^{t-D_i} \right)$, and $g^{t+1} = g^t + \left(\nabla f_i(x^{t-d_i}) - \nabla f_i(x^{t-D_i}) \right)$. Hence the master only requires \tilde{B}^{t+1}_i and $\nabla f_i(z_i^{t+1})$ to proceed to $t + 1$. Let

$$U^{t+1} := (B^t)^{-1} - \frac{(B^{-1} y_{i}^{t+1})(y_{i}^{t+1})^\top}{(y_{i}^{t+1})^\top s_{i}^{t+1} + (y_{i}^{t+1})^\top (B^t)^{-1} y_{i}^{t+1}},$$

then Sherman-Morrison-Woodbury formula implies

$$\left(\tilde{B}^{t+1} \right)^{-1} = U^{t+1} + \frac{U^{t+1} \left(\tilde{B}^{t-d_i}_i s_{i}^{t+1} + B^{t-d_i}_i s_{i}^{t+1} \right) \top U^{t+1}}{(s_{i}^{t+1})^\top \tilde{B}^{t-d_i}_i s_{i}^{t+1} - \left(\tilde{B}^{t-d_i}_i s_{i}^{t+1} \right) \top U^{t+1} \left(\tilde{B}^{t-d_i}_i s_{i}^{t+1} \right)^\top}.$$

Thus, if the master already has $(B^t)^{-1}$, then $(\tilde{B}^{t+1})^{-1}$ is computed using the vectors y_{i}^{t+1} and \tilde{q}_{i}^{t+1}. The steps for the master and worker nodes are provided in Algorithm 2. After receiving x^t from the master, worker i computes its estimate \tilde{B}^{t+1}_i using the vector x^{t-d_i} received from the master, then updates its memory $\mathcal{M}_m(i, t)$ and sends the vectors $\Delta u_{i}, y_{i}, \tilde{q}_{i}$ together with the scalars $\alpha_{i}, \tilde{\beta}_{i}$ back to the master. Based on (7) and (8), the master
Algorithm 2: L-DQN

Worker i:

Initialize $x_0, y_0, \bar{B}_i, u_{-1} = 0$ and memory $M_m = \emptyset$ with capacity m.

while not interrupted by master do

Receive x from master

$s_t = x - z_t, y_t = \nabla f_t(x) - \nabla f_t(z_t), \gamma_t = \frac{y_t^\top y_t}{s_t^\top y_t}$

Compute $\hat{q}_i = \text{LBFGS}(\gamma_t, M_m, s_t)$

if $|M_m| < m$ then

\[\text{Add } \{y_t, \hat{q}_i, \alpha_i, \beta_i\} \text{ to } M_m \]

else if $|M_m| = m$ then

\[\text{Replace the oldest tuple with } \{y_t, \hat{q}_i, \alpha_i, \beta_i\} \text{ at } M_m \]

Compute $u = \text{LBFGS}(\gamma_t, M_m, x)$

$\Delta u = u - u_{-1}$

$u_{-1} = u, z_t = x$

Send $\Delta u, y_t, \hat{q}_i, \alpha_i, \beta_i$ to the master

Master:

Initialize $x, \eta, \bar{B}_i, g = \sum_{i=1}^n \nabla f_i(x), \tilde{B}^{-1} = (\sum_{i=1}^n \bar{B}_i)^{-1}, u = \sum_{i=1}^n \bar{B}_i x$.

for $t = 1, \ldots, T$ do

If a worker sends an update

Receive $\Delta u, y, \hat{q}, \alpha, \beta$ from worker

$u = u + \Delta u, g = g + y, v = \tilde{B}^{-1} y$

$U = \tilde{B}^{-1} - \frac{\bar{q} + \tilde{B}^{-1} y}{\alpha + \beta y^\top y}$

$w = U \hat{q}, \tilde{B}^{-1} = U + \frac{w \hat{q}^\top w}{\beta - \hat{q}^\top w}$

$x = \tilde{B}^{-1}(u - \eta g)$

Send x to the worker in return

Interrupt all the workers.

Output x^t

computes x^{t+1} using the vectors received from worker i. We define the epochs $\{E_m\}_{m \in \mathbb{N}^+}$ recursively as follows: We set $E_0 = 0$ and define $E_{m+1} = \min\{ t : t - D^t \geq E_m \text{ for all } i = 1, \ldots, n \}$. In other words, E_{m+1} is the first time t such that each machine makes at least 2 updates on the interval $[E_m, t]$. Epochs as defined above satisfy the properties:

- For any $t \in [E_{m+1}, E_{m+2})$ and any $i = 1, 2, \ldots, N$ one has $t - D^t \in [E_m, t)$
- If delays are uniformly bounded, i.e., there exists a constant $d^i_t \leq d$ for all i and t, then for all m we have $E_{m+1} - E_m \leq D := 2d + 1$ and $E_m \leq Dm$.
- If we define average delays as $\bar{d}^i := \frac{1}{N} \sum_{i=1}^n d^i_t$, then $\bar{d}^i \geq (n - 1)/2$. Moreover, assuming that $\bar{d}^i \leq (n - 1)/2 + d$ for all t, we get $E_m \leq 4n(d + 1)m$.

Notice that convergence to optimum x^* is not possible without visiting every function f_i, so measuring performance using epochs where every node has communicated with the master at least once is more convenient than the number of communications, t, for comparison.

3 Convergence Analysis

In this section, we study theoretical results for linear convergence of L-DQN algorithm with a constant stepsizes $\eta_t = \eta$.

Firstly, we assumed that the functions f_i’s and the matrices \bar{B}_i’s satisfy the following conditions:

Assumption 1 The component functions f_i are L-smooth and μ-strongly convex, i.e. there exist positive constants $0 < \mu < L$ such that, for all i and $x, \hat{x} \in \mathbb{R}^p$,

$$
\mu \|x - \hat{x}\|^2 \leq (\nabla f_i(x) - \nabla f_i(\hat{x}))^\top (x - \hat{x}) \leq L \|x - \hat{x}\|^2.
$$

Assumption 2 There exist constants $0 < \epsilon_d < \epsilon_u$ such that the following bounds are satisfied for all $i = 1, \ldots, n$ and $x \in \mathbb{R}^d$ at any $t > 0$:

$$
\epsilon_d I_d \leq (\bar{B}^i_t)^{-1/2} \nabla^2 f_i(x^t)(\bar{B}^i_t)^{-1/2} \leq \epsilon_u I_d.
$$

(9)

Assumption 2 says that \bar{B}^i_t approximates the Hessian $\nabla^2 f_i(x^t)$ up to a constant factor. For example, if the objective is a quadratic function of the form $f_i(x) = \frac{1}{2}(x - x_*)^\top Q_i(x - x_*)$ and $\frac{1}{\epsilon_u} Q_i \preceq \bar{B}^i_t \preceq (1 + c) Q_i$ for some constant $c > 0$ then we would have $\epsilon_d = \frac{1}{\epsilon_u}, \epsilon_u = (1 + c)$ and the ratio $\epsilon = \epsilon_u/\epsilon_d$ satisfies $\epsilon = (1 + c)^2 \geq 1$. In fact, this ratio can be thought as a measure of the accuracy of the Hessian approximation. In the special case when the Hessian approximations are accurate (when $\bar{B}^i_t = Q_i$), we have $c = 0$ and $\epsilon = 1$. Otherwise, we have $\epsilon > 1$.

In particular, if the eigenvalues of \hat{B}_i^t stay in the interval $[\lambda_d, \lambda_u]$, then Assumption 2 holds with $\epsilon_d = \frac{\mu}{\kappa}$ and $\epsilon_u = \frac{L}{\lambda_u}$. We note that in the literature, there exist estimates for λ_u and λ_d (Nocedal and Wright 2006; Mokhtari and Ribeiro 2015). For example, it is known that if we choose $\gamma_i^t = \frac{\|y_i^t\|^2}{(y_i^t)^{\top} s_i^t}$ then we can take $\lambda_u = (m + d)L$, and $\lambda_d = \frac{(\mu)^{m+d}}{(m+d) \mu^{m+d}}$ for memory/storage capacity m (see Mokhtari and Ribeiro 2015 for details). A shortcoming of these existing bounds (Erway and Marcia 2015; Apostolopoulou et al. 2011) is that they are not tight, i.e. with an increasing memory capacity m, the bounds get worse. In our experiments, we have also observed in real datasets that Assumption 2 holds where we estimated the constants ϵ_d and ϵ_u (see the supplementary file for details). These numerical results show that Assumption 2 is a reasonable assumption to make in practice for analyzing L-DQN methods. Before we provide a convergence result for L-DQN, we observe that the iterates $\{x^t\}_{t \in \mathbb{N}^+}$ of L-DQN provided in (6) satisfy the property

$$x^{t+1} - x^* = (\hat{B}_i^t)^{-1} \left[\sum_{i=1}^{n} \hat{B}_i^t (z_i^t - x^*) - \eta_t \sum_{i=1}^{n} \nabla f_i(z_i^t) - \nabla f_i(x^*) \right].$$

(10)

The next theorem uses bounds (9) together with equality (10) to find the condition on fixed step size $\eta := \eta_t$ such that the L-DQN algorithm is linearly convergent on epochs $[E_m, E_{m+1})$ for $m \in \mathbb{N}^+$. The proof can be found in the appendix.

Theorem 1 Suppose Assumptions 7 and 2 hold and accuracy $\epsilon := \epsilon_u/\epsilon_d$ satisfies

$$\epsilon < \frac{1}{2 \kappa} \left[1 + \frac{1}{\kappa} + \sqrt{\left(1 + \frac{1}{\kappa} \right)^2 + \frac{4}{\kappa}} \right],$$

(11)

where $\kappa = \frac{L}{\mu}$ is the condition number of f. Let stepsize $\eta \in (\frac{1}{2 \kappa} [1 - \frac{1}{4 \kappa}], \frac{2}{2 \kappa + 4 \kappa})$, then for each $t \in [E_{m-1}, E_m)$, the iterates x^t generated by L-DQN algorithm (2) converge linearly on epochs $[E_m, E_{m+1})$, i.e. there exists $\rho < 1$ such that $\|x^{t+1} - x^*\| \leq \rho^n \|x^0 - x^*\|$ for all $t \in [E_m, E_{m+1})$.

Theorem 1 says that if the Hessian approximations are good enough, then ϵ is small enough and L-DQN will admit a linear convergence rate. Even though the condition (11) seems conservative on the accuracy of the Hessian estimates, to our knowledge, there exists no other linear convergence result that supports global convergence of asynchronous distributed second-order methods for distributed empirical risk minimization. Also, on real datasets, we observe that L-DQN algorithm performs well even though limited memory updates fail to satisfy the condition (11) on the accuracy.

![Figure 2](image-url)

Figure 2: Expected suboptimality versus time. The first and second numbers adjacent to the dataset names are variables d and n respectively.

4 Numerical Experiments

We tested our algorithm on the multi-class logistic regression problem with L_2 regularization where the objective is

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-b_i a_i^T x)) + \frac{\lambda}{2} \|x\|^2.$$

(12)
and $\lambda > 0$ is the regularization parameter, $x_i \in \mathbb{R}^d$ is a feature vector, and b_i is the corresponding label. We worked with five datasets (SVHN, mnist8m, covtype, cifar10, rcv1) from the LIBSVM repository Chang and Lin [2011] where the covtype dataset is expanded based on the approach in Wang et al. [2018] for large-scale experiments.

We compare L-DQN with the following other recent distributed optimization algorithms:

- **DAve-QN [Soori et al. 2019]**: An asynchronous distributed quasi-Newton method.
- **Distributed Average Repeated Proximal Gradient (DAve-RPG) [Mishchenko et al. 2018b]**: A first-order asynchronous method that performs better compared to incremental aggregated gradient [Gürbüzbalaban et al. 2017] and synchronous proximal gradient methods.
- **Globally Improved Approximate Newton (GIANT) [Wang et al. 2017]**: A synchronous communication-efficient approximate Newton method, for which the numerical experiments in Wang et al. [2017] demonstrate it outperforms DANE [Shamir et al. 2014a] and the Accelerated Gradient Descent [Nesterov 2013].
- **Distributed Approximate Newton (DANE) [Shamir et al. 2014a]**: A well-known second-order method that requires synchronization step among all workers.

All experiments are conducted on the XSEDE Comet resources [Towns et al. 2014] with 24 workers (on Intel Xeon E5-2680v3 2.5 GHz architectures) and with 120 GB Random Access Memory (RAM.) For L-DQN, DAve-RPG, and DAve-QN, we use 17 processes where one as a master and the 16 processes dedicated as workers. DANE and GIANT do not have a master, thus, we use 16 processes are workers with no master. All datasets are normalized to [0, 1] and randomly distributed so the load is roughly balanced among workers. We use Intel MKL 11.1.2 and MVAPICH2/2.1 for BLAS (sparse/dense) operations and MPI programming compiled with mpicc 14.0.2 for optimized communication. Each experiment is repeated five times and the average and standard deviation is reported as error bars in our results.

Parameters: The recommended parameters for each method is used. λ is tuned to ensure convergence for all methods. We use $\lambda = 1$ for mnist8m, and $\lambda = 0.1$ for SVHN, cifar10 and covtype. Other choices of λ show similar performances. For DANE, SVRG [Johnson and Zhang 2013] is used as a local solver; parameters are selected based on experiments in [Shamir et al. 2014b]. DANE has two parameters η and μ which are set to 1 and 3λ respectively based on the recommendation of the authors in [Shamir et al. 2014b]. For DAve-RPG, the number of passes on local data is set to 5 ($p = 5$) and its stepsize is selected using a standard backtracking line algorithm [Schmidt et al. 2015]. For L-DQN, the memory capacity is set as $m = 20$ for covtype, mnist8m and cifar10 where stepsize is $\eta = 0.8$, $\eta = 0.8$ and $\eta = 0.6$ respectively. On SVHN, the parameters of L-DQN are chosen as $m = 25$ and $\eta = 0.9$.

Figure 2 shows the average suboptimality versus time for the datasets mnist8m, SVHN and covtype. We observe that L-DQN converges with a similar rate compared to DAve-QN while it uses less memory. For larger datasets (such as the rcv1 with $d = 47,000$ and $n = 697,000$ at Figure 3), DAve-QN was not able to run due to its memory requirement whereas the other methods run successfully. DAve-RPG demonstrates good performance at the beginning for SVHN compared to other methods due to its cheaper iteration complexity. However, L-DQN becomes faster eventually and outperforms DAve-RPG.

![Figure 3: Expected suboptimality versus time on rcv1 (left) and cifar10 (right)](image-url)
The right panel of Figure 3 shows the suboptimality versus time for the dataset cifar10 where we choose the parameter $\lambda = 0.1$, $m = 20$ and $\eta = 0.6$ for cifar10. DAve-RPG is the fastest on this dataset whereas L-DQN is competitive with DAve-QN with less memory requirements. We conclude that when the underlying optimization problem is ill-conditioned (such as the case of mnist8m dataset), L-DQN improves performance with respect to other methods while being scalable to large datasets. In case of less ill-conditioned problems (such as SVHN and cifar10), first-order methods such as DAve-RPG are efficient where second-order methods may not be necessary.

![Suboptimality comparison without strong convexity assumption on datasets covtype(left) and cifar10(right).](image)

Figure 4: Suboptimality comparison without strong convexity assumption on datasets covtype(left) and cifar10(right).

Figure 4 exhibits the suboptimality results of the algorithms on cifar10 and covtype without regularization parameter which makes the problems more ill-conditioned. Due to its less memory requirement, we can see that the performance of L-DQN algorithm on cifar10 is significantly better than other distributed algorithms including DAve-QN. L-DQN is competitive with DAve-QN and DANE on covtype as well.

![Scaling comparisons of the algorithms on covtype(left) and mnist8m(right) datasets](image)

Figure 5: Scaling comparisons of the algorithms on covtype(left) and mnist8m(right) datasets

In Figure 5 we also compare the strong scaling of the distributed algorithms on different number of workers for mnist8m and covtype. In particular, we look at the improvement in time to achieve the same suboptimality as we increase the number of workers. We see that L-DQN shows a nearly linear speedup and a slightly better scaling compared to DAve-QN. DAve-RPG scales better but considering the total runtime, it is slower than L-DQN.
In addition to suboptimality and scaling, we also compared the performance of these algorithms for different sparsity of the datasets. For the problem of interest (logistic regression), computing the gradient takes $O(nd)$ for dense and $O(n.nnz)$ for sparse datasets where nnz is the number of non-zeros in the dataset. Therefore, L-DQN has $O(n.nnz + nd)$ while DAve-QN has a iteration complexity of $O(nd^2.nnz)$. Similarly, DAve-RPG has a complexity of $O(p.n.nnz + pd)$ where p is number of passes on local data. We observe that L-DQN has a cheaper iteration complexity compared to DAve-QN while in case of very sparse datasets, DAve-RPG has a cheaper iteration complexity compared to L-DQN. This is illustrated over the dataset rcv1 on the left panel of Figure 3. The dataset rcv1 is quite sparse with $\approx 1\%$ non-zeros. We use the parameters $\lambda = 0.01$, $m = 10$, $\eta = 0.95$. For this dataset, DAve-QN fails as it requires more memory than the resources available. GIANT requires each worker to have $|S| > d$ where $|S|$ is the number of local data points on a worker. Hence, GIANT diverges with 16 workers. We observe that DAve-RPG converges faster than DANE and L-DQN because of its cheap iteration complexity.

Figure 6: The effect of dataset sparsity on the performance of distributed optimization methods.

In order to show the effect of sparsity on performance, we design a synthetic dataset based on a similar approach taken in [Shamir et al., 2014b]. First we generate N i.i.d input samples $x \sim N(0, \Sigma)$ where $x \in \mathbb{R}^{2000}$ and the covariance matrix Σ is diagonal with $\Sigma_{ii} = i^{−1.2}$. Then, we randomly choose some entries of all samples and make them zero to add sparsity. We set $z = \langle x, w^* \rangle + \xi, \xi \sim N(0, 0.09)$ and w^* is the vector of all ones. Finally, labels $y \in \{0, 1\}$ are generated based on the probabilities $p = S(z)$ where $S(z) = 1/(1 + \exp(-z))$ is the logistic function. The parameters $\lambda = 0.01$ and $N = 32000$ are chosen for the objective function and for this experiment we have the following $m = 20$ and $\eta = 0.9$. Time to the accuracy of $1e−4$ for all methods is measured and normalized based on L-DQN timing. The results are shown in Figure 6. DAve-RPG and DANE performs poorly for fully dense datasets (sparsity = 0%), however, DAve-RPG and GIANT perform better compared to L-DQN as the dataset sparsity increases. We observe that when above 90% of the data is sparse, DAve-RPG is the most efficient method; whereas for denser datasets GIANT and L-DQN are more efficient on the synthetic data.

5 Conclusion

We proposed the L-DQN method which is an asynchronous limited-memory BFGS method. We showed that under some assumptions, L-DQN admits linear convergence over epochs despite asynchronous computations. Our numerical experiments show that L-DQN can lead to significant performance improvements in practice in terms of both memory requirements and running time.

References

Dimitri P Bertsekas and John N Tsitsiklis. *Parallel and distributed computation: Numerical methods*. Prentice-Hall, Inc., 1989.
Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In *Advances in Neural Information Processing Systems*, pages 693–701, 2011.

Mert Gürbüzbalaban, Asuman Ozdaglar, and Pablo A Parrilo. On the convergence rate of incremental aggregated gradient algorithms. *SIAM Journal on Optimization*, 27(2):1035–1048, 2017.

Nicolas L. Roux, Mark Schmidt, and Francis R. Bach. A stochastic gradient method with an exponential convergence rate for finite training sets. In *Advances in Neural Information Processing Systems*, pages 2663–2671, 2012.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In *Advances in Neural Information Processing Systems*, pages 1646–1654, 2014.

Aaron Defazio, Justin Domke, and Tiberio Caetano. Finito: A faster, permutable incremental gradient method for big data problems. In *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*, pages 1125–1133, 2014.

Julien Mairal. Incremental majorization-minimization optimization with application to large-scale machine learning. *SIAM Journal on Optimization*, 25(2):829–855, 2015.

Aryan Mokhtari, Mert Gürbüzbalaban, and Alejandro Ribeiro. Surpassing gradient descent provably: A cyclic incremental method with linear convergence rate. *SIAM Journal on Optimization*, 28(2):1420–1447, 2018.

N. Denizcan Vanli, Mert Gurbuzbalaban, and Asu Ozdaglar. Global convergence rate of proximal incremental aggregated gradient methods. *SIAM Journal on Optimization*, 28(2):1282–1300, 2018.

Lin Xiao, Adams Wei Yu, Qihang Lin, and Weizhu Chen. DSCVR: Randomized primal-dual block coordinate algorithms for asynchronous distributed optimization. *Journal of Machine Learning Research*, 20(43):1–58, 2019.

Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. ASAGA: Asynchronous parallel SAGA. In Aarti Singh and Jerry Zhu, editors, *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, volume 54 of *Proceedings of Machine Learning Research*, pages 46–54, Fort Lauderdale, FL, USA, 20–22 Apr 2017. PMLR. URL http://proceedings.mlr.press/v54/leblond17a.html.

Z. Peng, Y. Xu, M. Yan, and W. Yin. Arock: An algorithmic framework for asynchronous parallel coordinate updates. *SIAM Journal on Scientific Computing*, 38(5):A2851–A2879, 2016. doi:10.1137/15M1024950 URL https://doi.org/10.1137/15M1024950.

Pascal Bianchi, Walid Hachem, and Franck Iutzeler. A coordinate descent primal-dual algorithm and application to distributed asynchronous optimization. *IEEE Transactions on Automatic Control*, 61(10):2947–2957, 2015.

Raghu Bollapragada, Dheevatsa Mudigere, Jorge Nocedal, Hao-Jun Michael Shi, and Ping Tak Peter Tang. A progressive batching L-BFGS method for machine learning. *arXiv preprint arXiv:1802.05374*, 2018.

Albert S Berahas, Majid Jahani, and Martin Takáč. Quasi-Newton methods for deep learning: Forget the past, just sample. *arXiv preprint arXiv:1901.09997*, 2019.
Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A delay-tolerant proximal-gradient algorithm for distributed learning. In *Accepted to the 35th International Conference on Machine Learning, ICML, Stockholm, Sweden*, 2018a.

Saeed Soori, Konstantin Mischenko, Aryan Mokhtari, Maryam Mehri Dehnavi, and Mert Gürbüzbalaban. DAve-QN: A distributed averaged quasi-Newton method with local superlinear convergence rate. *arXiv preprint arXiv:1906.00506*, 2019.

Donald Goldfarb. A family of quasi-Newton methods derived by variational means. *Mathematics of Computation*, 24(109):23–26, 1970.

Charles George Broyden, JE Dennis Jr, and Jorge J Moré. On the local and superlinear convergence of quasi-Newton methods. *IMA Journal of Applied Mathematics*, 12(3):223–245, 1973.

John E Dennis and Jorge J Moré. A characterization of superlinear convergence and its application to quasi-Newton methods. *Mathematics of Computation*, 28(126):549–560, 1974.

Michael JD Powell. Some global convergence properties of a variable metric algorithm for minimization without exact line searches. *Nonlinear Programming*, 9(1):53–72, 1976.

M Gürbüzbalaban, A Ozdaglar, and PA Parrilo. Convergence rate of incremental gradient and incremental Newton methods. *SIAM Journal on Optimization*, 29(4):2542–2565, 2019.

Mert Gürbüzbalaban, Asuman Ozdaglar, and Pablo Parrilo. A globally convergent incremental Newton method. *Mathematical Programming*, 151(1):283–313, 2015.

Aryan Mokhtari, Mark Eisen, and Alejandro Ribeiro. IQN: An incremental quasi-Newton method with local superlinear convergence rate. *SIAM Journal on Optimization*, 28(2):1670–1698, 2018b.

Doron Blatt, Alfred O Hero, and Hillel Gauchman. A convergent incremental gradient method with a constant step size. *SIAM Journal on Optimization*, 18(1):29–51, 2007.

Tianyi Chen, Georgios Giannakis, Tao Sun, and Wotao Yin. LAG: Lazily aggregated gradient for communication-efficient distributed learning. In *Advances in Neural Information Processing Systems*, pages 5050–5060, 2018.

Jun Sun, Tianyi Chen, Georgios Giannakis, and Zaiyue Yang. Communication-efficient distributed learning via lazily aggregated quantized gradients. In *Advances in Neural Information Processing Systems*, pages 3365–3375, 2019.

Ching-pei Lee, Cong Han Lim, and Stephen J Wright. A distributed quasi-Newton algorithm for empirical risk minimization with nonsmooth regularization. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pages 1646–1655, 2018.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization. *IEEE Transactions on Automatic Control*, 54(1):48, 2009.

Mark Eisen, Aryan Mokhtari, and Alejandro Ribeiro. Decentralized quasi-Newton methods. *IEEE Transactions on Signal Processing*, 65(10):2613–2628, 2017.

Rixon Crane and Fred Roosta. Dingo: Distributed Newton-type method for gradient-norm optimization. *arXiv preprint arXiv:1901.05134*, 2019.

Jorge Nocedal and Stephen Wright. *Numerical Optimization*. Springer Science & Business Media, 2006.

Jennifer B Erway and Roummel F Marcia. On efficiently computing the eigenvalues of limited-memory quasi-Newton matrices. *SIAM Journal on Matrix Analysis and Applications*, 36(3):1338–1359, 2015.

MS Apostolopoulou, DG Sotiropoulos, CA Botsaris, and P Pintelas. A practical method for solving large-scale TRS. *Optimization Letters*, 5(2):207–227, 2011.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 2(3):1–27, 2011.

Shusen Wang, Fred Roosta, Peng Xu, and Michael W Mahoney. Giant: Globally improved approximate Newton method for distributed optimization. In *Advances in Neural Information Processing Systems*, pages 2332–2342, 2018.

Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A delay-tolerant proximal-gradient algorithm for distributed learning. In *International Conference on Machine Learning*, pages 3584–3592, 2018b.

S. Wang, F. Roosta-Khorasani, P. Xu, and M. W. Mahoney. GIANT: Globally Improved Approximate Newton Method for Distributed Optimization. *ArXiv e-prints*, September 2017.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization using an approximate Newton-type method. In *International Conference on Machine Learning*, pages 1000–1008, 2014a.
Appendix

6 Proof of Theorem [1]

Recall the definition of the average Hessian $\bar{G}_i^t = \frac{1}{t} \sum_{j=1}^t \nabla^2 f_j(x^*) - \nabla^2 f_j(x^*) = G_i^t - x^*).$. Hence, the equation (10) implies that iterates x^t admit the bound

$$\|x^t - x^*\|^2 \leq \sum_{i=1}^n \|\Gamma_i^t (\bar{G}_i^t - \eta \bar{G}_i^t)\|^2 \max_{i=1,...,n} \|z_i^t - x^*\|^2$$

(13)

where $\Gamma_i^t = (\bar{B}_i^t)^{-1}$, \bar{B}_i^t is as in (6) and $\|\cdot\|$ denotes the 2-norm of a matrix. Notice that by its definition and from (9), it can be found that Γ_i^t has the bounds $\frac{1}{n\lambda_d} I_d \leq \Gamma_i^t \leq \frac{1}{\lambda_d} I_d$ and hence Γ_i^t is positive definite. So the function $\Psi(A) := A (\Gamma_i^t)^2 A$ defined from the set of symmetric positive-definite matrices S^n to itself is a matrix convex function [Marshall et al., 1979] see E.7.a, that is for any $A, B \in S^n$ and $\alpha \in (0, 1)$ following inequality holds

$$\Psi(\alpha A + (1 - \alpha) B) \leq \alpha \Psi(A) + (1 - \alpha) \Psi(B).$$

(14)

In particular, if $L_A \leq A \leq U_A$ for some positive-definite matrices L_A and U_A, by matrix convexity we have

$$\sup_{L_A \leq A \leq U_A} \Psi(A) \leq \max(\Psi(L_A), \Psi(U_A)).$$

(15)

where the maximum on the right-hand side is in the sense of Loewner ordering, i.e. $\max\{A, B\} = A$ if $B \leq A$ and equals to B otherwise. From the bounds (9), we have $\left(1 - \frac{\eta L}{\lambda_d}\right) \bar{B}_i^t \leq \bar{B}_i^t - \eta \bar{G}_i^t \leq \left(1 - \frac{\eta \mu}{\lambda_d}\right) \bar{B}_i^t$, for each $i = 1, ..., n$. On the other hand, $[\bar{B}_i^t (\Gamma_i^t)^2 \bar{B}_i^t]^{-1} = \left(I_d + \sum_{j=1}^n \bar{B}_j^t (\Gamma_j^t)^2 \bar{B}_j^t\right)^{-1}$ together with (9) imply that $\lambda_{\min}(\bar{B}_i^t (\Gamma_i^t)^2 \bar{B}_i^t) \geq \left(1 + (n - 1) \frac{nK^2}{\lambda_d}\right)^2$, where λ_{\min} is the smallest eigenvalue. This yields to

$$\lambda_{\max}(\bar{B}_i^t (\Gamma_i^t)^2 \bar{B}_i^t) \leq \frac{\lambda_d^2}{(\lambda_d + (n - 1) \lambda_d)\lambda_d^2},$$

(16)

where λ_{\max} denotes the largest eigenvalue. Applying (15) with $A = \bar{B}_i^t - \eta \bar{G}_i^t$ with $L_A = \left(1 - \frac{\eta L}{\lambda_d}\right) \bar{B}_i^t$ and $U_A = \left(1 - \frac{\eta \mu}{\lambda_d}\right) \bar{B}_i^t$ and using (16), we obtain $\lambda_{\max}(\bar{B}_i^t - \eta \bar{G}_i^t) \leq \frac{\lambda_d^2}{(\lambda_d + (n - 1) \lambda_d)^2} \max_{i=1}^n \left\{\left(1 - \frac{\eta L}{\lambda_d}\right)^2, \left(1 - \frac{\eta \mu}{\lambda_d}\right)^2\right\}$ for all $i = 1, ..., n$. Hence,

$$\sum_{i=1}^n \|\Gamma_i^t (\bar{B}_i^t - \eta \bar{G}_i^t)\|^2 \leq \frac{nK^2}{(\kappa + n - 1)^2} \max_{i=1}^n \left\{\left(1 - \frac{\eta L}{\lambda_d}\right)^2, \left(1 - \frac{\eta \mu}{\lambda_d}\right)^2\right\}.$$

(17)

Choosing $\rho^2 = \frac{nK^2}{(\kappa + n - 1)^2} \max_{i=1}^n \left\{\left(1 - \frac{\eta L}{\lambda_d}\right)^2, \left(1 - \frac{\eta \mu}{\lambda_d}\right)^2\right\}$ together with condition on η imply that $\|x^t - x^*\| \leq \rho \max_{i=1,...,n} \|z_i^t - x^*\|$ where $\rho < 1$. Next, we will prove convergence by induction on epoch times E_m. Notice that if $t \in [E_j, E_{j+1})$, it holds that $t - D_j^t \in [E_j - 1, t)$ for any $j \geq 1$, therefore the inequality (17) implies $\|x^t - x^*\| \leq \rho \max_{i=1,...,n} \|z_i^t - x^*\|$ for $t \in [E_0, E_1)$. Suppose for all $0 \leq j \leq m$ the inequality $\|x^t - x^*\| \leq \rho \max_{i=1,...,n} \|z_i^t - x^*\| \leq \rho^m \max_{i=1,...,n} \|z_i^t - x^*\|$. This completes the proof.