Femtosecond 2 + 1 Resonance-Enhanced Multiphoton Ionization Spectroscopy of the C-State in Molecular Oxygen

Published as part of The Journal of Physical Chemistry virtual special issue “Daniel Neumark Festschrift”.

Ana Caballo, Anders J.T.M. Huits, Arno Vredenborg, Michiel Balster, David H. Parker, and Daniel A. Horke*

I. INTRODUCTION

After decades of intensive study, the energy positions, absorption cross sections, and symmetry assignments of most of the one- and two-photon observable excited electronic states of molecular oxygen are now reasonably certain. Since almost all of the numerous excited states of O₂ dissociate directly or indirectly after an absorption, each molecular quantum level (electronic, vibrational, and rotational) can show state-dependent lifetimes and follow specific multiple pathways to the six possible valence dissociation limits that are paired combinations of O(3P), O(1D), and O(1S) fragment atoms. A particularly powerful method for tracing out the optically forbidden ro-vibronic states of O₂ is to scan the photon energy while detecting ions from two-photon resonant, one-photon ionization (2 + 1 REMPI), illustrated schematically in Figure 1 for the energy region of this study.

Normally, in a resonance-enhanced multiphoton ionization (REMPI) study, where O₂ + 3hν → O₂⁺ + e⁻, it makes most sense to mass-selectively detect the O₂⁺ ion. However, a detection of the partner electron can provide additional and readily accessible information on the resonant excited state, which we take advantage of in this work. One disadvantage arising from the detection of electrons is that the intense, short-duration UV laser pulses necessary for this study create electrons from metal surfaces and from any other molecule present in the apparatus. This makes electron detection significantly more challenging, in particular, for weak transitions and for wavelengths within the absorption range of water and other common contaminants. We show here that...
electron-cation coincidence imaging detection successfully extracts the O₂ + 3hν → O₂⁺ + e⁻ process from a significant background, revealing a low-resolution but still informative REMPI spectrum.

Our goal is to trace out the ν = 4 and 5 vibrational levels of the 3s(3Πυg − 1Πfg) states, which are the lowest-lying and most intensively studied Rydberg states of O₂. The spin–orbit mixing of the CΠfg and dΠfg states is significant, making the spin-forbidden d-states observable, especially with nanosecond laser excitation, where the competition of ionization with predissociation favors the detection of longer-lived intermediate states. Because of the rapid predissociation and extremely low Franck–Condon factors for these target states, an intense and tunable laser beam is necessary. Previous work in this wavelength range was performed by Conde et al., who studied the two-photon excitation of O₂ in the 304–220 nm region, with a time-delayed 800 nm ionization to detect remaining O₂⁺ ions. They reported O₂⁺ decay lifetimes for the 3sΠfg (ν = 0–3) states, assuming that their 35 fs pulse duration laser ionizes all levels in the C, d manifold with equal efficiency (measured lifetimes ranged from 24 to 812 fs), so that primarily the spin-allowed C states are excited.

For typical femtosecond REMPI studies, the laser bandwidth is broader than the ro-vibrational envelopes studied, making a spectral assignment of the actual excitation with cation detection impossible. However, the image of electrons created by the ionization step can provide key additional information. We utilized here a pulse-amplified 100 fs duration Ti-sapphire laser, where the fundamental wavelength was tunable in the range of 790–815 nm, corresponding to a tuning range of the third harmonic of 263–271 nm, as indicated in Figure 1. The three-photon ionization at these wavelengths leads to the creation of O₂⁺ XΠfg (ν = 0–8) + e⁻, with theionic vibrational spacing of ~0.22 eV. Since most, but not all, of the excess energy goes into the kinetic energy of the electron, the electron image can show up to nine rings covering the range of 0–1.8 eV. For cation detection, momentum conservation yields an ~0.25 μeV vibrational spacing (ν = 0–1) in the recoiling O₂⁺ partner, which is not resolvable. The recorded electron image therefore yields significant additional information, not only speed and thus which vibrational state of the ion is formed but also angular information on the orbital character of the ionized electron. In particular, we find a strong enhancement via the CΠfg (ν = 8) at 267.33 nm, while no resonance with the dΠfg state was observed within the wavelength range covered here. Although sharp discrete transitions to the Herzberg states are present in the one-photon region of this study, these are very weak and are found not to cause a resonance enhancement of the measured signal.

II. METHODS

Data were collected using a photoelectron-photon coincidence imaging spectrometer, coupled to a femtosecond laser system. The setup has previously been described in detail, and only the main features pertinent to the current experiment are outlined here. The vacuum system consisted of three differentially pumped chambers, separated by molecular beam skimmers placed 2 cm (500 μm diameter) and 14 cm (200 μm diameter) after the source. The continuous molecular beam was produced in a conical nozzle with a ~40 μm pinhole, with a typical O₂ pressure of 1.5 bar. The base pressure in the detection chamber was on the order of 10⁻¹⁰ mbar. Here the molecular beam was crossed by femtosecond laser pulses in the center of a double-sided velocity-map imaging (VMI) spectrometer, equipped with two time- and position-sensitive detectors (DLD40X, RoentDek). Extraction fields in the VMI were switched from electron to ion extraction to ensure optimal imaging conditions for both.

The commercial laser system consisted of a titanium:sapphire oscillator and a regenerative amplifier (Spectra Physics Spitfire Ace), operated at a 3 kHz repetition rate with typical pulse durations of 100 fs. The central wavelength can be tuned in the range from ~790 to 815 nm. Pulses in the UV were produced by a subsequent frequency doubling and tripling in β-barium borate (BBO) crystals, yielding pulses in the range of 263–271 nm with a typical bandwidth (full width at half-maximum (fwhm)) of 3 nm. The pulse duration was estimated to be 170 fs fwhm from the measured cross-correlation of a 266 nm pulse with an additional 400 nm one inside the detection chamber. The UV output was attenuated to ~15 μJ, and it was focused into the interaction region with an f = 500 mm lens. This power density corresponds to a Keldysh parameter of ~26 for O₂, well within the multiphoton ionization regime. The polarization was kept parallel to the imaging detectors.

Data were collected by use of the CoboldPC software (RoentDek), and only events containing a single electron hit in coincidence with a single ion hit were kept for further analysis. Photoelectron images of interest were extracted by only considering electrons detected in coincidence with an O₂⁺ ion. Images were Abel-inverted using the basis set expansion method (basex), as implemented in the PyAbel Python package, calibrated to the well-known vibrational levels of oxygen and normalized with respect to the total measurement time.

III. RESULTS AND DISCUSSION

Photoelectron images were collected for five distinct wavelengths in the region of 263–271 nm, leading to an ionization of O₂ in a three-photon process. The corresponding photoelectron spectra (PES) and two representative photoelectron images are shown in Figure 2. All PES show a clear vibrational structure, which we assign to the ground state of the produced O₂⁺ ion (XΠfg). For the shortest wavelengths employed, vibrational levels up to ν = 8 are accessible, consistent with the known energetics (see the three-photon energy and ion states shown in Figure 1).

With the exception of the PES collected at 267.33 nm, all spectra exhibit a nearly uniform intensity distribution across the observed O₂⁺ ion vibrational levels. This is indicative of a nonresonant three-photon ionization, as might be expected for the ultrafast pulses used in the experiment. The vibrational distributions should in this case reflect the Franck–Condon factor between the neutral ground state XΠfg and the ion ground state XΠfg. Nonetheless, similar intensities are observed for ion vibrational levels ν = 0–8. This behavior could be due to the presence of an autoionizing valence state in the three-photon energy range, which has been previously reported in a study of the CΠfg (ν = 2) state. Tuning the wavelength to 267.33 nm, however, leads to a steep increase in photoelectrons at kinetic energies associated with the ν = 5 level of the ion. This is very evident also in the presented photoelectron images in Figure 2, which are each normalized to the collection time and plotted on the same color scale.

We attribute this increased photoelectron signal to a resonance enhancement through an intermediate state reached.
via a two-photon transition, such that we are now observing a 2 + 1 REMPI process. To confirm the assignment of a two-photon resonance we compare our PES collected through a three-photon process at 267.33 nm to the corresponding single-photon spectrum collected at 89.5 nm (13.85 eV), as shown in Figure 3. This was collected using the DELICIOUS3 coincidence spectrometer of the DESIRS beamline at the SOLEIL synchrotron source. The single-photon spectrum shows an intensity distribution across the vibrational features that is approximately uniform, similar to the nonresonance three-photon spectra shown in Figure 2, and confirms our assignment of a two-photon resonance at 267.33 nm.

Further evidence of a resonant process occurring at 267.33 nm is available from the recorded photoelectron angular distributions (PADs), which were analyzed for each excitation wavelength and ion vibrational level. For the nonresonant wavelengths, they show a general trend of positive anisotropy with β_2 parameters in the range of $\sim 0.5 - 1.0$ at $v = 0$–4 and decreasing toward higher vibrational levels, which are nearly isotropic. The extracted β_2 parameters for the resonance excitation at 267.33 nm are shown in Figure 4. While they exhibit the same trend as the other excitation wavelengths for vibrational ion states $v \neq 5$, a markedly larger anisotropy is observed for $v = 5$, again confirming the contribution of an additional channel. This is consistent with previously reported photoelectron angular distributions for the $C^3\Pi_g$ and $d^1\Pi_g$ states, which showed a large positive beta for $\Delta v = 0$, consistent with an ejection of a $(3)s$ electron into the p-wave continuum. PADs with $\Delta v \neq 0$ were found to be less anisotropic, reflecting increasing effects of autoionization and/or a shape resonance.

To identify the resonant state, Figure 5 shows the employed two-photon energies and the relevant O_2 states in this energy range. At 267.33 nm, the two-photon energy matches that of the $C^3\Pi_g$ ($v = 5$) vibrational state, suggesting this resonance as the process behind the enhancement experimentally observed. If the $d^1\Pi_g$ ($v = 5$) level was also contributing to the resonance.
behavior, one would expect to see a strong resonance enhancement at 264.67 nm, which is not present in our measurements. This suggests that the C3IΠg ← X3Σg− transition is much stronger than the spin-forbidden d3IΠg ← X3Σg−. Additionally, the tail of the laser bandwidth for the longest wavelength employed (271.67 nm) shows an overlap with the C3IΠg (v = 4) state. However, no enhancement of the ion v = 4 level is detected. Although the difference in overlap with the laser pulse complicates the comparison, this might imply that the C3IΠg state absorption is more sensitive to the strong and sharp v = 5 than it is to the v = 4, suggesting that only a small fraction of the excitation pulse is used in the REMPI process and highlighting the importance of the resonance enhancement.

IV. CONCLUSION AND OUTLOOK

Coincidence electron-cation imaging is shown here to reveal a two-photon resonance enhancement channel in the three-photon ionization of molecular oxygen by a femtosecond laser. Although the large laser bandwidth does not allow a full spectroscopic characterization of the resonance state, enhancement occurs only when the laser wavelength is tuned near 266.7 nm, which is consistent with the two-photon energy position of the C3IΠg (v = 5) state. Two-color pump–probe experiments, similar to those of Conde et al. for the C3IΠg (v = 0–3) states, are in progress to record the lifetime of the C3IΠg (v = 5) state for comparison with predictions by theory. The use of ultrafast laser pulses with a ~100 fs duration offers a good compromise between the spectral resolution for a selective REMPI process in small molecules and the time resolution to capture many dynamic processes. The extra information provided by electron imaging should be useful in any ultrafast pump–probe photodissociation dynamics study.

AUTHOR INFORMATION

Corresponding Author
Daniel A. Horke — Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands; orcid.org/0000-0002-9862-8108; Email: d.horke@science.ru.nl

Authors
Ana Caballo — Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
Anders J.T.M. Huits — Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
Arno Vredenborg — Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
Michiel Balster — Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
David H. Parker — Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands; orcid.org/0000-0003-0297-168X

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpca.1c05541

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by The Netherlands Organization for Scientific Research, under Grant No. STU.019.009, as well as the Spectroscopy of Cold Molecules Department and the Institute for Molecules and Materials of Radboud University Nijmegen. We thank the staff of SOLEIL, and, in particular, L. Nahon and G. Garcia, for the smooth running of the facility and for providing beamtime and expert experimental assistance for Project 20150031. We thank Prof. B. van de Meerakker for many fruitful discussions and his continued enthusiasm and support for molecular physics research in Nijmegen.

REFERENCES

(1) Krupenie, P. H. The Spectrum of Molecular Oxygen. J. Phys. Ref. Data 1972, 1, 423–534.
(2) Morrill, J. S.; Ginter, M. L.; Lewis, B. R.; Gibson, S. T. The (X 3Σg−, 17Πg Rydberg States of O2: Spectra, Structures, and Interactions. J. Chem. Phys. 1999, 111, 173–185.
(3) Leahy, J.; Cyr, R.; Osborn, L.; Neumark, D. M. Observation of the Correlated O3P(1/2, 1/2) State Distribution from the Predissociation of O2 B3Σ−g−. Chem. Phys. Lett. 1993, 216, 503.
(4) Leahy, D. J.; Osborn, D. L.; Cyr, R. D.; Neumark, D. M. Predissociation Dynamics of the the O3P(1, 3) State: Vibrational State Dependence of the Product Fine-structure Distribution. J. Chem. Phys. 1995, 103, 2495–2508.
(5) Parker, D. H. Laser Photochemistry of Molecular Oxygen. Acc. Chem. Res. 2000, 33, 563–571.
(6) Vredenborg, A.; Lehmann, C. S.; Irimia, D.; Roerderink, W. G.; Janssen, M. H. M. The Reaction Microscope: Imaging and Pulse Shaping Control in Photodynamics. ChemPhysChem 2011, 12, 1459–1473.
(7) Vredenborg, A.; Roerderink, W. G.; Janssen, M. H. M. A photoelectron–photoion coincidence imaging apparatus for femtosecond time-resolved molecular dynamics with electron time-of-flight resolution of σ = 18 ps and energy resolution ΔE/E = 3.5%. Rev. Sci. Instrum. 2008, 79, 063108.
(8) Conde, A. P.; Montero, R.; Ovejas, V.; Fernández-Fernández, M.; Castaño, F.; Longarte, A. Femtosecond Dynamics of the ns (n = 3, 4) and 3d Rydberg States of O2. Phys. Chem. Chem. Phys. 2013, 15, 4914.
(9) Baumert, T.; Bühler, B.; Thalweiser, R.; Gerber, G. Femtosecond Spectroscopy of Molecular Autoionization and Quaternionization. Phys. Rev. Lett. 1990, 64, 733–736.
(10) Murillo-Sánchez, M. L.; González-Vázquez, J.; Corrales, M. E.; de Naval, R.; Martínez-Núñez, E.; García-Vela, A.; Baïlares, L. Femtosecond Chemistry under Scrutiny: Clocking State-Resolved Channels in the Photodissociation of CH3I in the A–Band. J. Chem. Phys. 2020, 152, 014304.
(11) Stolow, A.; Bragg, A. E.; Neumark, D. M. Femtosecond Time-Resolved Photoelectron Spectroscopy. Chem. Rev. 2004, 104, 1719–1758.
(12) Eppink, A. T. J. B.; Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 1997, 68, 3477–3484.
(13) Hickstein, D. D.; Gibson, S. T.; Yurchak, R.; Das, D. D.; Ryazanov, M. A Direct Comparison of High-Speed Methods for the Numerical Abel Transform. Rev. Sci. Instrum. 2019, 90, 065115.
(14) Miller, P. J.; Li, L.; Chupka, W. A.; Colson, S. D. Shape Resonance and Non-Frank–Condon Behavior in the Photoelectron Spectra of O2 produced by (2 + 1) Multiphoton Ionization via 3σ Rydberg States. J. Chem. Phys. 1988, 89, 3921–3922.
(15) Nahon, L.; de Oliveira, N.; García, G. A.; Gil, J.-F.; Pilette, B.; Marcouillé, O.; Lagarde, B.; Polack, F. DESIRS: A State-of-the-Art VUV Beamline Featuring High Resolution and Variable Polarization for Spectroscopy and Dichroism at SOLEIL. J. Synchrotron Radiat. 2012, 19, 508–520.
(16) García, G. A.; Cunha de Miranda, B. K.; Tia, M.; Daly, S.; Nahon, L. DELICIOUS III: A Multipurpose Double Imaging Particle Coincidence Spectrometer for Gas Phase Vacuum Ultraviolet Photodynamics Studies. Rev. Sci. Instrum. 2013, 84, 053112.
(17) Katsumata, S.; Sato, K.; Achiba, Y.; Kimura, K. Excited-State Photoelectron Spectra of the One-Photon Forbidden C^I\Pi_g Rydberg State of Molecular Oxygen. J. Electron Spectrosc. Relat. Phenom. 1986, 41, 325−335.
(18) Sur, A.; Ramana, C. V.; Chupka, W. A.; Colson, S. D. Rydberg−Valence Interactions in the Π_g states of O_2. J. Chem. Phys. 1986, 84, 69−72.