The Draft Genome Sequence of European Pear (Pyrus communis L. ’Bartlett’)

David Chagné, Ross N. Crowhurst, Massimo Pindo, Amali Thrimawithana, Cecilia Deng, Hilary Ireland, Mark Fiers, Helge Dzierzon, Alessandro Cestaro, Paolo Fontana, et al.

To cite this version:

David Chagné, Ross N. Crowhurst, Massimo Pindo, Amali Thrimawithana, Cecilia Deng, et al.. The Draft Genome Sequence of European Pear (Pyrus communis L. ’Bartlett’). PLoS ONE, Public Library of Science, 2014, 9 (4), 10.1371/journal.pone.0092644. hal-01209962
The Draft Genome Sequence of European Pear (Pyrus communis L. ‘Bartlett’)

David Chagné1,2,*, Ross N. Crowhurst2,3, Massimo Pindo3, Amali Thrimawithana2, Cecilia Deng2, Hilary Ireland2, Mark Fiers4, Helge Dzierzon1, Alessandro Cestaro3, Paolo Fontana3, Luca Bianco3, Ashley Lu4, Roy Storey2, Mareike Knäbel1,5, Munazza Saeed1,6, Sara Montanari1,3,7, Yoon Kyeho Kim8, Daniela Nicolini3, Simone Larger3, Erika Stefani3, Andrew C. Allan2,5, Judith Bowen2, Isaac Harvey2, Jason Johnston2, Mickael Malnoy3, Michela Troggio3, Laure Perchepied7, Greg Sawyer1, Claudia Wiedow1, Kyungho Won8, Roberto Viola3, Roger P. Hellens2, Lester Brewer9, Vincent G. M. Bus9, Robert J. Schaffer2,5, Susan E. Gardiner1, Riccardo Velasco3

1 Palmerston North Research Centre, The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Palmerston North, New Zealand, 2 Mount Albert Research Centre, Plant & Food Research, Auckland, New Zealand, 3 Istituto Agrario San Michele all’Adige (IASMA) Research and Innovation Centre, Foundation Edmund Mach (FEM), San Michele all’Adige, Trento, Italy, 4 Lincoln Research Centre, Plant & Food Research, Lincoln, New Zealand, 5 School of Biological Sciences, University of Auckland, Auckland, New Zealand, 6 Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand, 7 Institut de Recherche en Horticulture et Semences (IRHS), Institut National en Recherche Agronomique (INRA), Angers, France, 8 National Institute of Horticultural and Herbal Science (NIHIS), Rural Development Administration (RDA), Naju, Republic of Korea, 9 Motueka Research Centre, Plant & Food Research, Motueka, New Zealand, 10 Hawke’s Bay Research Centre, Plant & Food Research, Havelock North, New Zealand

Abstract

We present a draft assembly of the genome of European pear (Pyrus communis) ‘Bartlett’. Our assembly was developed employing second generation sequencing technology (Roche 454), from single-end, 2 kb, and 7 kb insert paired-end reads using Newbler (version 2.7). It contains 142,083 scaffolds greater than 499 bases (maximum scaffold length of 1.2 Mb) and covers a total of 577.3 Mb, representing most of the expected 600 Mb Pyrus genome. A total of 829,823 putative single nucleotide polymorphisms (SNPs) were detected using re-sequencing of ‘Louise Bonne de Jersey’ and ‘Old Home’. A total of 2,279 genetically mapped SNP markers anchor 171 Mb of the assembled genome. Ab initio gene prediction combined with prediction based on homology searching detected 43,419 putative gene models. Of these, 1219 proteins (556 clusters) are unique to European pear compared to 12 other sequenced plant genomes. Analysis of the expansin gene family provided an example of the quality of the gene prediction and an insight into the relationships among one class of cell wall related genes that control fruit softening in both European pear and apple (Malus × domestica). The ‘Bartlett’ genome assembly v1.0 (http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0) is an invaluable tool for identifying the genetic control of key horticultural traits in pear and will enable the wide application of marker-assisted and genomic selection that will enhance the speed and efficiency of pear cultivar development.

Introduction

Pear (genus Pyrus) is one of the oldest temperate tree fruit crops, having been grown since antiquity from both Europe to China. Homer described the pear in the ‘Odyssey’ as a “gift of the gods”. Pear production was approximately 23.9 MT worldwide in 2012 (http://faostat3.fao.org/), with European pear (Pyrus communis L.; 2n = 34) making up about one third of total production. The genus Pyrus is related to apple (Malus) and quince (Cydonia) within the tribe Pyreae [1], which all share the pome fruit structure. Pear has historically been less well researched than other members of the Rosaceae such as apple, peach and strawberry. Recently, whole-genome sequences have been developed for a range of economically important dicotyledonous plants, such as poplar, grape, papaya, cucumber, cocoa, potato, soybean, cannabis, melon and tomato [2–15], including the rosaceous crops apple, strawberry, peach and Chinese pear (P. breitsschneideri) [16–19]. Low to medium density pear genetic maps enriched with apple microsatellite
markers have enabled the alignment of genetic maps of European pear and apple and formulation of the hypothesis that apple and pear have collinear genomes [20–24]. Although this hypothesis was based on few hundred orthologous markers only, the recent comparison of several sequenced rosaceous genomes indicates that even among the more distantly related genomes of apple, peach and strawberry [25,26], synteny is conserved. It might be anticipated that the synteny between apple and pear should be higher than in these cases, as apple and pear are more closely related phylogenetically than apple is to peach and strawberry [1].

We have taken advantage of the current cost and effectiveness of genome sequencing technologies to develop the genome assembly of European pear, with the ultimate goal of developing an understanding of the traits that differentiate the more distantly related rosaceous crops, as well as those more closely related within the Pyreae. European pear has several biological features that differentiate it from apple and Chinese pear, such as traits controlling melting fruit flesh versus crisp flesh, and species-specific susceptibility to pests and pathogens. We wish to compare the European pear genome with that of apple and Chinese pear, for the purpose of developing ultimately an understanding of the evolution of the core traits that differentiate apple and pear, as well as the control of the very different flesh types and flavours between European and Chinese pears.

We chose ‘Bartlett’ (also known as ‘William’s Bon Chrétien’ or ‘William’s pear’) for genome sequencing, not only because of its major role as a cultivar in Europe, but also because it is a founder of most P. communis breeding programmes worldwide. The draft genome assembly of European pear was developed using Roche 454 sequencing technology and spans 577.3 Mb, containing 43,419 putative genes. We tested the integrity of the assembly by examining the expansin gene family, members of which are involved in fruit ripening of pome fruit, as an example of the type of insights into functional biology that can be achieved using this genome sequence.

Methods

Plant material and nucleic acid extraction

DNA was extracted from young leaves of P. communis ‘Bartlett’ grown at the Plant & Food Research (PFR) Motueka research orchard (New Zealand; 41°8′ South, 173°1′ East) and in Field 11.C of Maso Parti at Edmund Mach Foundation-Istituto Agrario di San Michele all’Adige (Italy; 46°12′ North, 11°8′ East) (no permission was required to collect these samples and they are not from endangered or protected species), using the QIAGEN DNeasy Plant Kit (QIAGEN GmbH, Hilden, Germany). DNA quality was assessed by agarose gel electrophoresis to ensure that DNA was not degraded. Expression analysis was undertaken on P. communis ‘Doyenne du Comice’ (‘Comice’) and P. pyrifolia ‘Nijisseki’ pears grown at PFR, Motueka (New Zealand) harvested at standard commercial ripeness (‘Comice’: firmness <5.5 Kg, and partial starch clearance; ‘Nijisseki’: total starch hydrolysis) and stored for 8 weeks at 0.5 °C. Following cold storage, fruit were left at 20 °C for 7 days, to allow the fruit to soften, before harvest into liquid N2 and storage prior to RNA extraction as described in [27] and cleaned with RNeasy cleanup columns (QIAGEN) following the manufacturer’s instructions.

Libraries and 454 pyrosequencing

Two random shotgun ‘genomic’ libraries were generated via fragmentation of 500 ng each of pear genomic DNA employing the GS FLX+ Series XL+ Rapid Library preparation kit, following the manufacturer’s recommendations (Roche, Indianapolis, IN, USA). Three 2 kb and two 7 kb paired-end libraries were constructed from pear genomic DNA using the GS FLX+ Series XLR70 Paired End Rapid Library preparation kit following the manufacturer’s recommendations (Roche). Five and 15 µg of double-stranded genomic DNA was randomly fragmented via hydrodynamic shearing to an average size of 2,000 and 7,000 bp using the HydroShear apparatus (DigiLab, Marlborough, MA, USA). The libraries were quantified by quantitative PCR using the 454 Kapa Library Quantification Kit (Kapa Biosystems, Boston, MA, USA). Long sequencing reads from shotgun ‘genomic’ libraries and paired-end sequencing reads were produced by the GS FLX+ Series, using the GS FLX Titanium Sequencing Kit XL+ (Roche), according to the manufacturer’s recommendations.

mRNA-seq analysis

For each sample, ten micrograms of RNA was sequenced to a depth of ~20M reads using Illumina Hi-Seq contracted through Macrogen (Seoul, Korea; www.macrogen.com). Frequency counts were obtained using Bowtie2 [28] to align reads to the predicted gene models detailed below. Reads Per Kilobase per Million (RPKM) mapped reads were extracted from the BAM files using the ‘Deseq’ library in Bioconductor (www.bioconductor.org) in the statistical software package ‘R’. Quantitative PCR (qPCR) was performed as described in [29], with Actin as a control, using primers MdEXPA2F (TTCCAAGACAGGGTGGCAAG) and MdEXPA2R (TGCCCTCAATGGTTGTCCG) for apple and PpEXP2F (GGCAAGCCCTGTCAGAAAT) and PpEXP2R (GCCCTCAATGGTTGTCCG) for pear.

Genome assembly

GS FLX+ reads were assembled with the Roche GS De Novo Assembler (version 2.7; http://454.com/products/analysis-software/index.asp), using both the large and heterozygous genome modes and 8 CPUs. All other assembler configuration settings were left at their default settings. The completeness of the assembly was estimated by Core Eukaryotic Genes Mapping Approach (CEGMA) analysis (version 2.4.010312) [30].

Genome anchoring

Four segregating populations of pear were genotyped using the apple and pear single nucleotide polymorphism (SNP) array [31,32]. The families consisted of one P. communis intra-specific population and three inter-specific Asian × European pear populations: ‘Old Home’ × ‘Louise de Bonne Jersey’ (297 F1 individuals), NZSelection_pearT003 × ‘Moonglow’ (92 F1 individuals), NZSelection_pearT042 × NZSelection_pearT081 (142 F1 individuals) and NZSelection_pearT052 × NZSelection_pearT003 (91 F1 individuals) [32]. The Asian parents (of complex Chinese and Japanese pear origin involving both P. bretschneideri and P. pyrifolia) and inter-specific hybrid populations were developed and maintained at PFR, Motueka. Three segregating populations of apple (PpT051 and ‘Sciros’ × NZSelection_appleT051) [33] were used to construct the apple genetic maps. These were developed for each parent of the respective populations using Joinmap v3.0 (www.kyazma.nl). Markers were anchored to the ‘Bartlett’ genome assembly v1.0 (Bartlett v1.0) using BLAST-like alignment tool (BLAT) analysis [34] by searching for scaffolds with similarity to the statistical software package ‘R’. Quantitative PCR (qPCR) was performed as described in [29], with Actin as a control, using primers MdEXPA2F (TTCCAAGACAGGGTGGCAAG) and MdEXPA2R (TGCCCTCAATGGTTGTCCG) for apple and PpEXP2F (GGCAAGCCCTGTCAGAAAT) and PpEXP2R (GCCCTCAATGGTTGTCCG) for pear.
Gene prediction and annotation

De novo assembly of ‘Comice’ transcripts was performed using trans-ABySS [v1.3.2] [35]. Briefly, 38,026,953 Illumina HiSeq RNASeq reads were trimmed by 15 bases at their 5’ ends, filtered to remove reads containing ambiguities using an in-house PERL script. The RNASeq reads were subsequently trimmed to a minimum quality score of 20 using the program fastq-mcf from the ca-utils package [http://code.google.com/p/ca-utils/]. Transcript contigs resulting from *de novo* assembly using every second kmer from 35 to 69 were then merged in to a single transcript set with the program abyss-rmdups-iterative from the trans-ABySS software distribution.

Gene prediction used a hybrid prediction approach, combining *ab initio* gene prediction and homology searching. Specifically Augustus (Augustus 2.7) trained using the ‘Comice’ transcripts was employed for gene prediction *ab initio* from European pear scaffolds. Augustus predictions were performed separately on unmasked and repeat masked scaffolds. RepeatMasker (version 4.0-3 [36]) was employed to mask known repeats in the geneic scaffolds using the rosid clade of repeats from RepBase (Update 20120418, RM database version 20120418) and remblast version 2.2.27+ [ftp://ftp.ncbi.nlm.nih.gov/blast/executables/remblast/2.2.27+]. Homology searching was performed by comparison with predicted proteins from other Rosaceae. Predicted proteins were obtained for apple [http://genomics.research.iasma.it/], Chinese pear [http://peargenome.njau.edu.cn:30004/], peach [http://www.rosaceae.org/sites/default/files/peach_genome/Prunus_persica_v1.0_genemark_genome.tar.gz], strawberry [http://www.rosaceae.org/files/strawberry/genome/v1.0/fvesca_v1.0_genemark.tar.gz]. These rosid protein sequences were compared to repeat-masked European Pear scaffolds using TBLASTN [37]. Alignment results were filtered using a modified version of blast92gff3.pl [ftp://iubio.bio.indiana.edu/gmod/tandy/perl/blast92gff3.pl], to identify sequences with greater than 79% identity to and mediate running GeneWise (wise-2.4.1; [38]) on the retrieved region, as well as 1000 bases upstream and downstream of the aligned regions. GeneWise predictions were assessed using evgene [http://marmot.bio.indiana.edu/EvidentialGene/] and the best models (evgene’s ‘okayset’) were retained. Where a model from more than one approach was present at any locus, the model representing the cluster was selected by [48] with a conserved region of similarity corresponding to 83 “euKaryote Orthologous Genes” (KOGs). Multiple sequence alignments were performed using MUSCLE v3.8.31. Well-aligned regions were extracted with GBLOCKS 0.91b. The similarity calculation, in-paralog and co-ortholog analyses were performed using Orthomcl-2.0-3 [43] together with mcl-09-149 [http://micas.org/mcl/]. A visualized summary of ortholog clusters between 13 plant species was generated with in-house PERL and R scripts.

Estimating phylogenetic relationships

Phylogenetic trees were constructed based on protein sequences of 83 “euKaryote Orthologous Genes” (KOGs). Multiple sequence alignments were performed using MUSCLE v3.8.31. Well-aligned regions were extracted with GBLOCKS 0.91b. The maximum-likelihood phylogenetic calculation was performed using PhyML with the Blosum62 amino acid substitution model and 100 rapid bootstrap partitions. The tree was visualized using Figtree 1.4.0.

Expansin gene family analysis

The expansin gene family was chosen for further analysis, to support the completeness of the gene predictions for European pear, as well as to examine the degree of similarity in the gene space between the apple and European pear genomes. Expansin protein sequences from apple and *Arabidopsis* were used to perform a BLASTP search against the apple predicted peptide models, in order to identify putative expansins with a BLAST score >50. The corresponding expansin-like genes from apple were then used in a BLASTP search against the pear peptide models. Protein sequences were aligned in Geneious 6.1.6 [Biomatters Ltd, Auckland, NZ] using Geneious alignment with Blosum45 cost matrix. From this alignment, genes were further filtered by selecting those containing conserved expansin domains as classified by [48] with a conserved region of similarity corresponding to 313 residues and used to create a phylogenetic tree derived using the maximum likelihood Geneious plug-in, PhyML with the JTT
De Novo repeat annotation

The genomic scaffolds of the ‘Bartlett’ v1.0 and the primary assembly of ‘Golden Delicious’ were analysed using RepeatScout [45] to provide de novo a list of repetitive elements independent of repeats identified by repeat masking using RepeatMasker and RepBase. The list was further analysed for redundancy and classified into repeat classes using TEllass [46].

SNP detection

The pipeline used for SNP discovery in European pear was similar to that described for apple [31]. Genomic DNA was extracted from P. communis cultivars ‘Louise Bonne de Jersey’ (LBJ) and ‘Old Home’ (OH) grown at PFR, Motueka (no permission was required to collect these samples and they are not from endangered or protected species) using the QIAGEN DNeasy Plant Kit (QIAGEN) and sequenced using one lane of Illumina® GA II with 75 cycles per read [32]. Reads were aligned to Bartlett v1.0 scaffolds usingSoap2.2.1 [47]. SNPs were detected using SoapSNP (http://soap.genomics.org.cn/soapsnp.html) essentially as described in [48]. Genome partitioning of SNPs was based on the location of predicted gene models.

Results

Genome sequencing and assembly of Bartlett v1.0

In total, 23,058,965 paired-end (43.7%) and non paired-end (56.3%) sequence reads yielded 8.2 Gigabases (Gb) of sequences (Table S1) that were used to develop the P. communis ‘Bartlett’ genome assembly v1.0 (Bartlett v1.0) (Table 1). The estimated genome size based on flow cytometry [49] is approximately 600 Mb of haploid genome, and our data enable estimation of a 11.4 x average coverage. The assembly gave 182,196 contigs of a cumulative length of 507.6 Mb. These contigs were assembled into scaffolds using a combination of Roche 454 2 kb and 7 kb insert library paired-end reads to obtain 142,083 Bartlett v1.0 scaffolds, covering a total of 577.3 Mb, and representing most of the haploid P. communis genome. The longest scaffold was 1.2 Mb long and 50% of the assembled genome was contained in 1,442 scaffolds (L50), with the smallest L50 scaffold comprising 88,114 bp (N50). Only 12.1% of the scaffold sequences were unknown bases. The completeness of the draft genome assembly was tested by searching for 248 Core Eukaryotic Genes (CEGs) [30]. In total, 232 of 248 (95.3%) CEGs were completely present and 244 of 248 CEGs were completely or partially present (98.4%) (Table S2).

Genome anchoring to pear and apple genetic maps

The scaffolds of Bartlett v1.0 were anchored to high density genetic maps constructed for Pyrus [32] and Malus segregating populations [33] using SNP markers from the International RosBreed SNP Consortium (IRSC) apple and pear array [31,32]. The IRSC array contains 7,692 Malus SNPs, as well as 1,096 SNPs developed from P. communis. In total, 2,279 genetically mapped loci (1,391 and 888 apple and pear SNPs, respectively) yielded a significant BLAT hit to 988 unique scaffolds (Table 2), enabling the anchoring of a total of 171.3 Mb of the assembled genome to the 17 Pyrea LGs (Table S3). The largest LG was LG15 (17.6 Mb) and the median number of markers per scaffold was 2.0.

| Table 1. Basic statistics on the Pyrus communis ‘Bartlett’ genome sequence. |
|---------------------------------|---------------------------------|
| **Sequencing data** | |
| Number of bases used for assembly | 8,204,442,728 |
| Sequenced reads used for assembly | 23,058,965 |
| Non paired end | 12,979,485 |
| Paired end | 10,079,480 |
| Estimated average coverage* | 11.4 x |
| **Contigs** | |
| Number of contigs | 182,196 |
| Total size of contigs (bp) | 507,689,959 |
| N50 contig length (bp) | 6,569 |
| Longest contig (bp) | 127,414 |
| Mean contig size (bp) | 2,787 |
| Median contig size (bp) | 1,188 |
| Number of contigs in scaffolds | 47,404 |
| Number of contigs not in scaffolds | 134,792 |
| **Scaffolds** | |
| Number of scaffolds | 142,083 |
| Total size of scaffolds (bp) | 577,335,413 |
| N50 scaffold length (bp) | 88,114 |
| Longest scaffold (bp) | 1,291,680 |
| Shortest scaffold (bp) | 501 |
| Number of scaffolds >1K bp | 69,460 |
| Number of scaffolds >10K bp | 4,916 |
| Number of scaffolds >100K bp | 1,262 |
| Number of scaffolds >1M bp | 4 |
| Number of scaffolds >10M bp | 0 |
| Mean scaffold size (bp) | 4,063 |
| Median scaffold size (bp) | 983 |
| Scaffolds %N | 12.06% |

Figures are given in bp.

*: the assumed genome size of pear is 600 Mb.

doi:10.1371/journal.pone.0092644.t001

Gene prediction

Gene prediction using a combined ab initio prediction and homology searching approach yielded 43,419 putative gene models (Table 3). The number of predicted genes is higher than for most plant species and ~30% greater than in the strawberry genome (34,809 gene models), as might be expected due to the Pyreae whole genome duplication [17]. The average predicted coding region length (1,209 bp) was similar to that in Chinese pear, strawberry and apple (Table 3), as was the average predicted exon length between the predicted protein sets from these four rosaceous species. These similarities are observed in spite of the different gene model prediction methodologies utilized, and which should be taken into account when considering these observations. The number of single exon genes was similar between European and Chinese pears as well as apple, at about twice that of strawberry. The gene density in European pear was estimated to be 7.3 genes per 100 kb which is similar to that for Chinese pear, apple (Table 3), poplar [9.4 [10]], grape [6.6 [12]] and melon [7.3 [3]], but not as dense as observed for strawberry (14.5 [16]), notwithstanding the methodological difference in gene prediction employed for each species.
A phylogenetic tree constructed with 83 euKaryote Orthologous Genes (KOGs) in six rosids, four malvids, and three asteroids (Figure 1) confirmed that European pear is a close relative of Chinese pear and apple and is more distantly related to strawberry.

Comparative analysis of proteomes

A total of 5,350 protein clusters was observed as conserved across all 13 species proteomes, with 14,348 predicted European pear proteins (33% of the 43,419 total predicted protein set; Figure 2). Only 82 protein clusters were not found in European pear compared with all other 12 species, a value less than the number of protein clusters absent from Chinese pear (298), apple (236), strawberry (192), Arabidopsis (246), potato (437), papaya (424), grape (502) and kiwifruit (558), however similar to that of sweet orange (85), clementine (34), tomato (53) and poplar (45) (Table S4). The proteome analysis demonstrates close genome relatedness between Chinese pear, European pear and apple; tomato and potato; sweet orange and Clementine, respectively. More protein clusters were shared between European and Chinese

Table 2. Anchoring of the Pyrus communis ‘Bartlett’ assembly v1.0 genome sequence.

LG	Length anchored (bp)	Number of anchored scaffolds (unique)	Number of anchoring markers	Median number of markers per scaffold
1	8,550,412	46	115	2.0
2	11,234,491	58	194	3.0
3	12,642,036	69	163	2.0
4	8,044,179	40	105	2.0
5	10,949,710	57	159	2.0
6	8,104,341	45	117	1.0
7	8,833,777	53	102	1.0
8	8,189,737	36	92	2.0
9	10,984,512	53	145	2.0
10	9,331,439	54	113	2.0
11	10,224,161	53	134	2.0
12	8,857,939	44	122	2.0
13	10,282,711	38	127	2.5
14	10,094,382	51	117	2.0
15	17,650,274	75	222	2.0
16	8,177,493	44	124	2.0
17	9,204,799	52	128	2.0
Total	171,356,393	868	2,279	2.0

doi:10.1371/journal.pone.0092644.t002

Table 3. Gene prediction summary for Pyrus communis and comparison with P. bretschneideri, Fragaria vesca and Malus × domestica.

	Pyrus communis	Pyrus bretschneideri	Fragaria vesca	Malus × domestica
Predicted genes	43,419	42,812	34,809	54,921
Average gene length	3,320	2,776	2,792	2,802
(including introns)				
Average CDS length	1,209	1,172	1,160	1,155
(nt)				
Exons	221,804	202,169	174,376	273,226
Average exon length	237	248	232	273
Single exon genes	10,909	12,310	5,915	10,378
Intron per gene	178,385	159,357	139,567	218,353
per multi-exon genes	5.49	5.22	4.83	4.90
Average intron length	398	386	409	491
Genes per 100 Kb	7.5	8.4	14.5	7.3

Gene predictions were performed using Augustus for European pear and GeneMark-ES for strawberry. The apple gene models were estimated as the total number of gene predictions minus an estimation of duplications generated by contig overlaps. The redundancy was filtered out using similarity among predictions and positional considerations.

doi:10.1371/journal.pone.0092644.t003
pear (1,771), than those between Chinese pear and apple (764) and between European pear and apple (1,018). There are 1,433 groups of orthologous protein clusters present in all the three species of the Pyreae. These share the highest number of unique ortholog groups in our analysis (5,552 in total), followed by Solanaceae with 3,044 clusters of 6,293 genes in potato and 4,035 genes in tomato, respectively, and by citrus (2,941 sweet orange genes and 2,991 clementine genes in 2,414 clusters). Finally, 556 clusters were unique to European pear and these corresponded to 1,219 proteins (2.8% of the 43,419 total predicted protein set; Table S5).

Repeat analysis

A total of 199.4 Mb of repeated elements was identified in the unmasked Bartlett v1.0 genome scaffolds employing de novo detection followed by a classification made using RepeatMasker (Table 4). The most common repeated elements were long terminal repeat (LTR)/Gypsy (84.6 Mb; 14.1% of the assembled genome) and LTR/Copia (42.9 Mb; 7.1% of the assembled genome), and the most common DNA transposable elements (TEs) were PIF-Harbinger (10.2 Mb; 1.7% of the assembled genome) and hAT-Ac (4.7 Mb; 0.8% of the assembled genome). These results are in agreement with the analysis of the P. bretschneideri genome [18]. The classification of repeated elements using an homology-based search using the Rosaceae clade from RepBase (Table 5) confirms the results obtained by de novo detection, as LTR/Gypsy and LTR/Copia were the most abundant classes of retroelements. In total, 194.8 Mb (32.5%) of the assembled Bartlett v1.0 genome comprised interspersed repeated elements according to the homology-based analysis.

Figure 1. Phylogenetic tree of six rosids, four malvids, and three asterids constructed with 83 euKaryote Orthologous Genes (KOOGs). Bootstrap values are listed on each branch. Nodes represent speciation events and branch length represents the degree of evolutionary changes over time. The unit for the scale bar at the bottom is nucleotide substitutions per site. The high bootstrap values strongly support that the species in Rosaceae cluster together to the exclusion of any other, and that the European pear and Chinese pear separation event happened after apple speciation.

doi:10.1371/journal.pone.0092644.g001
SNP detection

Sequencing of LBJ and OH yielded 25,167,853 and 35,687,533 paired end reads, representing approximately 6.6× and 9.2× coverage per genotype, respectively. A total of 3,893,643 putative SNPs was identified following mapping of LBJ and OH low coverage sequencing data to the Bartlett v1.0 assembly scaffolds. Of these 829,823 (21.3%) passed the filtering condition for stage 1 detection defined in [31]. The average SNP frequency of SNPs passing the filtering conditions was one per 674 bp with 146,585 (17.7%) predicted to be located within exons in the predicted gene models. A further 60,820 (7.53%) and 51,425 (6.37%) SNPs were located within 1,000 bases upstream or downstream of a predicted gene model, respectively.

Insight into the European pear annotated genome: example of the expansin gene family

In total, 49 and 41 apple and pear expansin-like genes were identified respectively in predicted gene sets, and were accepted or rejected for inclusion in the phylogenetic analysis based on previously published expansin classification criteria [48] (Figure 3). Nine apple gene models did not have orthologous gene models in European pear and one additional pear gene model was identified with no apple ortholog (PCP008400). The predicted expansin and expansin-like genes from pear and apple grouped into four major clades, corresponding to the α- and β-expansins (EXPA and EXPB, respectively) and the two expansin-like families, EXPANSIN-LIKE A (EXLA) and EXPANSIN-LIKE B (EXLB) [50] (Figure 3A; Table S6). Homologous genes derived from the Pyrene whole genome duplication were identified for both apple and European pear. Expansin genes within sub-clades showed more similarity between apple and pear orthologs, than between homeologues of the same species, confirming that speciation happened after the genome duplication event (Figure 3B).

For the rapidly softening European pear ‘Comice’ and crisp textured ‘Nijisseki’ (Japanese pear) 18.8M and 19.7M mRNA reads were obtained, respectively. Expression levels of the expansin class of genes determined in cold-stored ‘Comice’ and ‘Nijisseki’ pears that were undergoing rapid softening were aligned to the phylogenetic clusters. These were compared to previously published mRNA-seq data mapped to the apple gene models [17] from mature, ripening ‘Royal Gala’ apples [51] (Figure 3A). It was observed that in most cases orthologous genes were expressed in both apple and pear during fruit ripening; however, the melting texture European ‘Comice’ pears exhibited a considerably higher level of expression than the crisp textured apples and ‘Nijisseki’ Japanese pears, with some genes (such as EXP2) showing over 20-fold higher expression in ‘Comice’ compared with apple and ‘Nijisseki’. qPCR of EXP2 verified the mRNA-seq data and showed that at harvest and during storage, ‘Royal Gala’ exhibited consistently lower levels of EXP2 expression than the pear varieties (Figure 3A).
The draft genome assembly of Pyrus communis and its applications

We have used Roche 454 shotgun sequencing to develop the first draft genome assembly of European pear. European pear (*P. communis*) is the newest addition to the palette of whole genome sequences of Rosaceae fruit species, following apple (*Malus* domestica; [17]), strawberry (*Fragaria vesca*; [16]), peach (*Prunus persica*; [19]) and Chinese pear (*P. bretschneideri* [18]). The Bartlett v1.0 draft genome spans most of the *P. communis* genome and 171 Mb is anchored to high density genetic maps. A total of 829,823 SNPs passed filtering criteria, which corresponds to one SNP every 674 bp. This SNP frequency in *P. communis* is lower than in apple (one SNP every 249 bp [46]), however, this may reflect the smaller set of cultivars used for SNP detection in European pear compared with apple. The development of a whole-genome sequence is a key milestone for research in any organism and the Bartlett v1.0 draft genome assembly will provide a springboard to explore the genetic control of key horticultural characters such as fruit quality, pest and disease resistance, and tree architecture. The genome assembly also enables the development of genetic markers for early selection of seedlings carrying alleles conferring these traits, from breeding germplasm. This genomic resource is now available to fruit researchers at the Genome Database for Rosaceae (http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0).

Table 4. Comparison of *de novo* predicted repeated elements between the European pear, Chinese pear and apple genomes. na: not available from [18].

Class	European Pear	Chinese Pear	Apple			
	Count	Size(bp)	Size(bp)	Count	Size(bp)	
DNA	87,258	16,034,061	19,622,007	62,032	12,036,031	
DNA/CMC-EnSpm	5,245	2,498,065	1,994,298	3,238	1,651,963	
DNA/MULE-MuDR	11,081	1,654,134	2,812,256	8,411	1,299,397	
DNA/PiF-Harbinger	33,920	10,195,913	13,681,892	22,675	6,976,753	
DNA/hAT-Ac	18,863	4,763,497	10,510,482	15,194	5,286,418	
DNA/hAT-Tag1	8,271	1,973,418	2,689,092	10,877	3,050,698	
DNA/hAT-Tip1	9,603	2,394,869	3,298,090	7,398	2,034,152	
LINE/L1	8,410	4,077,094	10,075,654	5,716	3,269,671	
LINE/RTE-BovB	7,697	2,200,632	4,408,634	12,750	10,996,014	
SINE	425	124,106	208,975	2,191	359,108	
SINE/IRNA	20,200	2,863,949	na	13,153	1,805,785	
LTR	37,405	9,249,657	38,166,045	20,479	6,282,994	
LTR/Caulimovirus	2,796	2,550,963	2,625,049	1,227	1,544,695	
LTR/Copia	73,727	42,805,711	86,429,855	46,798	35,591,207	
LTR/Copia-like	110	20,863	na	97	26,513	
LTR/Gypsy	145,766	84,633,023	130,449,009	94,218	68,540,726	
Low_complexity	121,061	5,222,319	na	84,700	3,780,221	
RC/Helitron	6,851	2,104,677	na	5,036	1,448,948	
Satellite	207	30,594	na	350,647	178	40,455
Simple_repeat	63,595	2,428,632	1,131,844	47,558	1,891,325	
Unknown	6,610	1,545,468	4,296,548	4,650	1,079,420	
rRNA	351	100,288	na	158	31,199	
TOTAL	199,471,933	332,750,377	169,023,693			

Table 5. Classification of repeated elements in European pear based on the ‘Rosaceae’ clade from RepBase.

Retroelements	Copies	Assembled (Mb)	Assembly %
LINE/RITE	6,669	1.724	0.30
LINE/L1	7,851	4.300	0.74
LTR/Ty1/Copia	56,724	44.240	7.66
LTR/Gypsy	114,127	85.382	14.79
DNA transposons	173,387	42.058	7.28
hobo-Activator	36,417	10.007	1.73
Tc1-5530-Pogo	107	0.015	0
En-Spm	296	0.278	0
Tourist/Harbinger	30,859	9.770	1.69
Unclassified	11,895	3.427	0.59
Total interspersed repeats	194,830	33.75	
Small RNA	20,415	2.873	0.50
Satellites	186	2.873	0.01
Simple repeats	2,497	0.021	0.04
Low complexity	226	0.000	0.00
TOTAL	197,724	34.14	

doi:10.1371/journal.pone.0092644.t004
doi:10.1371/journal.pone.0092644.t005

Discussion

The draft genome assembly of Pyrus communis and its applications

We have used Roche 454 shotgun sequencing to develop the first draft genome assembly of European pear. European pear (*P. communis*) is the newest addition to the palette of whole genome sequences of Rosaceae fruit species, following apple (*Malus domestica*; [17]), strawberry (*Fragaria vesca*; [16]), peach (*Prunus persica*; [19]) and Chinese pear (*P. bretschneideri* [18]). The Bartlett v1.0 draft genome spans most of the *P. communis* genome and 171 Mb is anchored to high density genetic maps. A total of 829,823 SNPs passed filtering criteria, which corresponds to one SNP every 674 bp. This SNP frequency in *P. communis* is lower than in apple (one SNP every 249 bp [46]), however, this may reflect the smaller set of cultivars used for SNP detection in European pear compared with apple. The development of a whole-genome sequence is a key milestone for research in any organism and the Bartlett v1.0 draft genome assembly will provide a springboard to explore the genetic control of key horticultural characters such as fruit quality, pest and disease resistance, and tree architecture. The genome assembly also enables the development of genetic markers for early selection of seedlings carrying alleles conferring these traits, from breeding germplasm. This genomic resource is now available to fruit researchers at the Genome Database for Rosaceae (http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0). The number of predicted gene models (43,419), the high
A tool for functional characterisation of fruit quality in pome fruit

The variation in fruit texture in pears is considerable, ranging from crisp in Chinese (*P. bretschneideri*) and Japanese (*P. pyrifolia*) pears, to melting in European pears. This melting texture does not occur in other pome fruit, such as apple and quince, which makes the study of comparative genomics of cell wall-related genes within the *Pyreae* very important. The role of expansins in fruit ripening was first demonstrated in tomato, where suppression and over-expression of ripening-specific *LeEXP1* was shown to result in increased fruit firmness and enhanced fruit softening, respectively [52]. In apple and pear, the involvement of expansins in the determination of fruit texture has also been inferred from expression analysis of ripening-related members that correlate with changes in fruit firmness [53,54]. Our analysis of the expansin-like gene family indicated that the European pear and apple expansin gene families are of similar size (41 and 49 genes, respectively), which suggests that clade expansion has not occurred within either species. Only a few α-expansins (EXPα clade) appear to be associated with fruit softening, with one clade containing *PcEXP1*,2 and 3 exhibiting high expression (Figure 3A). The expression analysis presented here confirms previous studies where *PcEXP1* to *PcEXP6*, but not *PcEXP7*, were highly expressed in cold-stored, ripening European pear [53,55], and where *MdEXP3* was found to be the predominant, ripening-related expansin gene in apple [54,56,57]. Surprisingly, quantitative trait locus analysis linked *MdEXP7* to fruit softening in apple and pear [58], although *MdEXP7* expression was subsequently found to be undetectably low in a range of ripening apple genotypes [57]. Similarly in European pear, both in the current study and in [53], *PeEXP7* was one of the members of the family with very low expression (Figure 2A). Further examination of differences among the cultivars chosen for these different studies is required to further elucidate the role of expansins in fruit ripening in the *Pyreae*.

The draft genome assembly of ‘Bartlett’ will contribute to faster delivery of new Pyrus cultivars

In the immediate future, the Bartlett v1.0 draft genome can be used as a reference for re-sequencing in *Pyrus* germplasm, as has been performed for apple [31] and peach [59]. Such germplasm re-sequencing will enable the development of high-throughput genetic marker screening tools for pear breeders, including SNP arrays and will also allow implementation of emerging technologies, such as genotyping by sequencing [60]. Such technologies will in turn enable the implementation of association studies for determination of marker-trait associations, as well as genomic selection (GS). Recent evaluation of genomic selection for fruit quality traits in apple indicates that genetic gains achievable using GS for a combination of traits, will be faster and more efficient than achieved by classical breeding [33,61]. We predict that the availability of the ‘Bartlett’ draft genome sequence will enable the implementation of GS in pear cultivar breeding programmes internationally in the very near future.
Table S1 Raw 454 sequencing data used to construct the Bartlett v1.0 genome sequence.

Table S2 Analysis of the Core Eukaryotic Genes (CEGs; [30]) in the Bartlett v1.0 genome sequence.

Table S3 Number of ortholog groups and genes in 13 plant species.

Table S4 Anchoring of the Bartlett v1.0 genome sequence scaffolds on genetic maps constructed for apple and pear. Segregating populations used for genetic map construction: *Pyrus communis* family: ‘Old Home’ × ‘Louise de Bonne Jersey’; interspecific Asian × European pear populations: NZSelection_pearT009(b) × ‘Moonbow’, NZSelection_pearT042 × NZSelection_pearT061 and NZSelection_pearT052 × NZSelection_pearT009(a); apple segregating populations; PremA153 × NZSelection_appleT031, ‘Fujii’ × NZSelection_appleT051 and ‘Sciros’ × NZSelection_appleT051 [33]. LG: Linkage Group.

Table S5 List of gene models unique to European pear and their putative function.

Table S6 Gene names and GenBank accession numbers for expansin gene models in European pear. LG: Linkage Group.

Acknowledgments

DC thanks Mr Jean-Max and Mr Jean-Pierre Drouillet for giving him his first “joie William’s” job 20 years ago, Drs Tony Conner and Andrew Granger (Plant & Food Research) for originally supporting this project concept, and Drs Jeanne Jacobs, David Brummel (Plant & Food Research), Charles-Eric Durel (INRA) and Pr Francesco Salamin (FEM-IASMA) for comments on the manuscript. We thank Stephen Ficklin and Dorrie Main for making the Bartlett v1.0 data publically available at the Genome Database for Rosaceae (GDR).

Resources

A Genome Browser for Bartlett v1.0 is available through the Genome Database for Rosaceae at http://www.rosaceae.org/gbs/gbrowse/pyrus_communis_v1.0/ and the pear genome page with links to assembly data is at http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0. Genome scaffolds, gene predictions, raw 454 genome sequence data and RNA-seq data are available at NCBI-SRA under project PRJEB5264 (http://www.ncbi.nlm.nih.gov/nuccore/data/view/PRJEB5264).

Author Contributions

Conceived and designed the experiments: DC RNC ACA RJS SEG R. Velasco. Performed the experiments: DC MP HI HI JB DN SL ES. Analyzed the data: DC RNCAT CD HI HM FD AC PF L. Bianco AL. RS MK MS SM YRK GS RS. Contributed reagents/materials/analysis tools: ACA JB JJ MM MT LP CW KJW BR Viola RPH L. Brewer VGMB RJS SEG R. Velasco. Wrote the paper: DC RNC HI ACA RJS SEG.

References

1. Potter D, Erickson T, Evans RC, Oh S, Smedmark JEE, et al. (2007) Phylogeny and classification of Rosaceae. Plant Systematics and Evolution 266: 5–43.
2. Argout X, Salee J, Aury JM, Guiltinan MJ, Droe G, et al. (2011) The genome of *Theobroma cacao*. Nature Genetics 43: 101–108.
3. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, et al. (2012) The genome of melon (*Cucumis melo* L.). Proceedings of the National Academy of Sciences of the United States of America 109: 11872–11877.
4. Huang S, Li R, Zhang Z, Li L, Gu X, et al. (2009) The genome of the cucumber, *Cucumis sativus* L. Nature Genetics 41: 1275–1281.
5. Jaillon O, Aury JM, Noel B, Polletti A, Clepet C, et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463–U1665.
6. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, et al. (2008) The draft genome of the transgenic tropical fruit tree papaya (*Carica papaya* Linnarss). Nature 452: 991–U1997.
7. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, et al. (2009) *A genome and the diversification of grasses*. Nature 457: 531–536.
8. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, et al. (2010) Genome sequence of the palaeopolyploid soybean. Nature 463: 183–183.
9. Tomato Genome C. (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 483: 635–641.
10. Taukan GA, DeFazio S, Janssen S, Boldman J, Grigoriev I, et al. (2006) The genome of black cottonwood, *Populus trichocarpa* (Torr. & Gray). Science 313: 1596–1604.
11. van Bakel H, Stout JM, Core AG, Tallon CM, Sharpe AG, et al. (2011) The draft genome and transcriptome of *Gunnula satis*. Genome Biology 12.
12. Velasco R, Zharkikh A, Troegue M, Cartwright DA, Castro A, et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine *Pisum sativum* × *Pisum sativum* inbred line. Nature 457: 189–U1994.
13. Guo S, Zhang J, Sun H, Salee J, Lucas WJ, et al. (2012) The draft genome of *watermelon* (*Citrullus lanatus*) and resequencing of 20 diverse accessions. Nature 475: 189–U194.
14. Xu X, Chen L-L, Ruan X, Chen D, Zhu A, et al. (2012) The draft genome of sweet orange (*Citrus sinensis*). Nature Genomics advance online publication.
15. Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, et al. (2012) The draft genome of *watermelon* (*Citrullus lanatus*) and resequencing of 20 diverse accessions. Nature Genomics advance online publication.
16. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, et al. (2011) The genome of woodland strawberry (*Fragaria virginiana*). Nature Genomics 43: 109–U131.
17. Velasco R, Zharkikh A, Flook J, Dinhua A, Cestaro A, et al. (2010) The genome of the domesticated apple (*Malus domestica* Borkh.). Nature Genetics 42: 833–4.
18. Wu J, Wang Z, Shi Z, Zhang S, Ming R, et al. (2012) The genome of pear (*Pyrus betulae* Rehd.). Genome Research.
19. Verde I, Abbott AG, Scalabrin S, Jang S, Suh S, et al. (2013) The high-quality draft genome of peach (*Prunus persica*) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet advance online publication.
20. Colton J-M, Chagné D, Tustin SD, Terakami S, Nishitani C, et al. (2009) Update on comparative genome mapping between *Malus* and *Pyrus*. BMC research notes 2: 182–182.
21. Terakami S, Shoda M, Adachi Y, Gouai T, Kasumi M, et al. (2006) Genetic mapping of the pear scab resistance gene *Vph* of Japanese pear cultivar *Kinchaku*. Theoretical and Applied Genetics 113: 743–752.
22. Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kobotski R, et al. (2002) Simple sequence repeats for genetic analysis in pear. Euphytica 124: 129–157.
23. Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, et al. (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theoretical and Applied Genetics 106: 9–18.
24. Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, et al. (2007) Integrated reference genetic linkage maps of *P. betulae* × *P. domestica* inbred lines. Breeding Science 57: 321–329.
25. Iura M, Sargent DJ, Girona EL, Bushakra J, Cestaro A, et al. (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evolutionary Biology 11.
26. Jung S, Cestaro A, Troegue M, Main D, Zheng P, et al. (2012) Whole genome comparisons of *Fusarium, Prunus* and *Malus* reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics 15.
27. Schaffner RF, Friel EN, Souleyre EJF, Böltke K, Thodey K, et al. (2007) A Genomics approach reveals that arena production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiology 144: 1399–1912.
28. Langmead B, Salberg CE, et al. (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357–354.
29. Taeken E, Ireland H, Gunaseelan K, Karunairetnam S, Wang D, et al. (2010) The Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening. Plant Physiology 153: 294–305.
30. Prara G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryote genomes. Bioinformatics 23: 1061–1067.
31. Chagné D, Crookshank RN, Troggio M, Davey MW, Gilmore B, et al. (2012) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One 7.

32. Montanari S, Sared M, Knabel M, Kim Y, Troggio M, et al. (2013) Identification of Pym: single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pym hybrids. PLoS One 8: e77022.

33. Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, et al. (2012) Genomic selection for fruit quality traits in apple (Malus domestica Borkh.). PLoS One 7.

34. Kent WJ (2002) BLAT - The BLAST-like alignment tool. Genome Research 12: 656–664.

35. Robertson G, Schein J, Chiu R, Corbett R, Field M, et al. (2010) De novo assembly and analysis of RNA-seq data. Nature Methods 7: 909–916.

36. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.

37. Birney E, Clamp M, Durbin R. (2004) GeneWise and genomewise. Genome Research 14: 988–995.

38. Kumar S, Chagne´ D, Bink MCAM, Volz RK, Whitworth C, et al. (2012) Genomic selection for fruit quality traits in apple (Malus domestica Borkh.). PLoS One 7.

39. Crowhurst RN, Davy M, Deng C (2006) BioView - an enterprise bioinformatics system for automated analysis and annotation of non-genomic DNA sequence. In: Gardiner S, editor; Napier, New Zealand.

40. Suzuki R, Huang H, McGarvey P, Marzouk R, Wu CH (2007) UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23: 1282–1288.

41. Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, et al. (2002) Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128: 854–864.

42. Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families for eukaryotic genomes. Genome Research 13: 2178–2189.

43. Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: Identification of orthologous groups for eukaryotic genomes. Genome Research 13: 2178–2189.

44. Li RQ, Yu C, Li YR, Lam TW, Yiu SM, et al. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25: 1966–1967.

45. Wang J, Li R, Li Y, Fang X, Feng B, et al. (2008) Genome resequencing and identification of variations by Illumina Genome Analyzer Reads. Protocol Exchange.

46. Schaffer RJ, Ireland HS, Ross JJ, Ling TJ, David KM (2012) SEPALLATA1/2-suppressed mature apples have high auxin and reduced transcription of ripening-related genes. Annals of Botany Plants.

47. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6.

48. Brummell DA, Harper MH, Civeillo PM, Polya JM, Bennett AB, et al. (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11: 2203–2216.

49. Hiwasa K, Rose JKC, Nakano R, Inaba A, Kubo Y (2003) Differential expression of seven alpha-expansin genes during growth and ripening of pear fruit. Physiologia Plantarum 117: 564–572.

50. Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9: 311–314.

51. Wang J, Li R, Li Y, Fang X, Feng B, et al. (2008) Genome resequencing and identification of variations by Illumina Genome Analyzer Reads. Protocol Exchange.

52. Brummell DA, Harper MH, Civeillo PM, Polya JM, Bennett AB, et al. (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11: 2203–2216.

53. Wakasa Y, Hatsuyma Y, Takahashi A, Sato T, Niizuki M, et al. (2003) Divergent expression of six expansin genes during apple fruit ontogeny. European Journal of Horticultural Science 68: 253–259.

54. Wang J, Li R, Li Y, Fang X, Feng B, et al. (2008) Genome resequencing and identification of variations by Illumina Genome Analyzer Reads. Protocol Exchange.

55. Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, et al. (2012) Identification of variations by Illumina Genome Analyzer Reads. Protocol Exchange.

56. Fonseca S, Monteiro L, Barreiro MG, Pais MS (2005) Expression of genes encoding cell wall modifying enzymes is induced by cold storage and reflects changes in pear fruit texture. Journal of Experimental Botany 56: 2029–2036.

57. Brummell DA, Harper MH, Civeillo PM, Polya JM, Bennett AB, et al. (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11: 2203–2216.

58. Montanari S, Saeed M, Kna ¨bel M, Kim Y, Troggio M, et al. (2013) Cloning, characterisation and expression analyses of cDNA clones encoding cell wall modifying enzymes isolated from ripe apples. Postharvest Biology and Technology 80: 37–51.

59. Trujillo DI, Mann HS, Tong CBS (2012) Examination of expansin genes as related to apple fruit crispness. Tree Genetics & Genomes 8: 27–38.

60. Li RQ, Yu C, Li YR, Lam TW, Yiu SM, et al. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25: 1966–1967.

61. Schaffer RJ, Ireland HS, Ross JJ, Ling TJ, David KM (2012) SEPALLATA1/2-suppressed mature apples have high auxin and reduced transcription of ripening-related genes. Annals of Botany Plants.