Synthesis, structural characterization and antibacterial studies of Fluoroquinolone Drug-Ciprofloxacin

Md. ATHAR SHADIQUE¹, PANSHU PRA¹TIK² and PRAPHULLA KUMAR SINGH³

¹Univ. Dept. of Chemistry LNMU Darbhanga Bihar (India)
²Dept. of chem. MLSM College LNMU Darbhanga Bihar (India)
³Univ. Dept. of chemistry LNMU Darbhanga Bihar (India)

Corresponding author’s e-mail: athar.shadique942@gmail.com
http://dx.doi.org/10.22147/juc/160502

Acceptance Date 07th October, 2020, Online Publication Date 19th October, 2020

Abstract

The vibrational spectroscopy, such as FTIR has been used to measure the vibrational modes of fluoroquinolones, provides information about structural differences of its individual members. From the interpreted spectral data Ciprofloxacin has been distinguished by the presence of different substituents in their parent nucleus.

FTIR study provides the most direct and definitive identification of fluoroquinolone and offer a means for qualitative analysis of newly synthesized fluoroquinolone drug-Ciprofloxacin.

Ciprofloxacin is an antibiotic used to treat a number of bacterial infections. This includes bone and joints infection intra abdominal infection certain types of infectious diarrhea, respiratory tract infection skin infections, typhoid fever and urinary tract infections.

Key words : Fluoroquinolones, Ciprofloxacin, Bronchitis, Bacterial Gasteroenteritis, Spectrum.

Introduction

Fluoroquinolones have been associated with a significant number of serious adverse drug reactions such as tendon damage and peripheral neuropathy¹, such as reactions may manifest long after therapy had been completed and in severe cases may result in lifelong disabilities². They are associated with severe psychiatric³,⁴ adverse reaction. The reaction was detailed within Stephen fried’s book Bitter Pills (1999). Hepatotoxicity has also been reported with the use of some fluoroquinolones⁵,⁶.

Ciprofloxacin is one of the synthetic chemotherapeutic fluoroquinolone antibiotics. Ciprofloxacin is an agent of choice for the treatment of bacterial gastroenteritis⁷ caused by gram negative

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/)
bacilli such as enteropathogenic E. coli, salmonella (including S. typhi), Shigella spp., Vibrio spp. and Aeromonas hydrophilla. It is widely used for the treatment of respiratory tract infections and is particularly effective for controlling bronchitis and pneumonia caused by Gram-negative bacteria.

Ciprofloxacin is an antibiotic used to treat a number of bacterial infections. This includes bone and joints infection intra abdominal infection certain types of infectious diarrhea, respiratory tract infection skin infections, typhoid fever and urinary tract infections. For some infections it is used in Ciprofloxacin is a first generation fluoroquinolone that has been available for treatment of bacterial infections for many years. Like other fluoroquinolones, Ciprofloxacin is active against a wide range of aerobic gram positive and gram negative organism and is believed to act by inhibition of bacterial DNA gyrase and tropoisomerase IV that are required for synthesis of bacterial mRNA (transcription) and DNA replication. In contrast DNA gyrases are not present in human and other eukaryotic cells and the equivalent tropoisomerases are not sensitive to fluoroquinolone inhibition.

In ciprofloxacin carbon atoms of both ketonic carbonyl and carboxyl carbonyl groups are sp\(^2\) hybridised. Hence, they are planar. Further, the both carbonyl groups are coplanar with each other. This coplanarity of both carbonyl groups gives rise to antibacterial property to ciprofloxacin. Further, the presence of piperazine ring also contributes the antibacterial to ciprofloxacin. Conclusively, the antibacterial property of ciprofloxacin depends on the coplanarity of both carbonyl groups and piperazine ring.

Materials and Methods

All chemicals are of analytical grade and purchased from CDH and Merck. Melting points are determined in an open capillary tube and are uncorrected. An infrared spectrum has been recorded in KBr on Perkin-Elmer RXI spectrometer at CDRI, Lucknow. The \(^1\)H-NMR were measured in CDCl3 solution on a brucker DRX-300 MHz spectrometer using tetramethyl silane (TMS) as an internal reference and chemical shift in ppm at CDRI, Lucknow. Elemental analyses were carried out with elementar vario El, III elemental analyser at department of biotechnology IIT, Kharagpur.

Table - 1

	C	H	N
Found	61.57	5.43	12.68
Calculated	61.37	5.31	12.42

Pure sample of Ciprofloxacin (C\(_{17}\)H\(_{18}\)FN\(_3\)O\(_3\)) were obtained from external agency. The drug were 99.8% to 98.0% pure. FTIR spectroscopy is an important analytical technique which detects various characteristics of functional groups in molecule on interaction of an infrared light with the matter chemical bonds would, stretch, contract and bond as a result each chemicals functional group tend to absorb infrared radiation in a specific wavelength range regardless of the structure of the rest molecule. Based
on this principle functional groups present in composite materials are identified. It is performed in a FTIR spectro photometer interfaced with infrared (IR) microscope operated in reflectance mode. IR spectrum of fluoroquinolone drug-Ciprofloxacin has been recorded in the range 4000-400 cm\(^{-1}\). The spectrum was interpreted considering few main peaks observed.

Results and Discussion

Ciprofloxacin is the yellowish to light yellow crystalline substance with molecular mass 385.8 g/mol and empirical formula (C\(_{17}\)H\(_{18}\)FN\(_3\)O\(_3\)).

IR spectra were recorded as KBr pellets in the region of 4000-400 cm\(^{-1}\) on a Perkin-Elmer Spectrophotometer.

IR spectrum of fluoroquinolone drug-Ciprofloxacin has been recorded in the range 4000-400 cm\(^{-1}\). The spectrum was interpreted considering few main peaks observed.

The \(^1\)H-NMR spectra were recorded on a Hitachi FT–NMR model R-600 spectrometer using CDCl\(_3\) as the solvent. The chemical shifts are given in ppm relative to tetramethylsilane.

The electron impact (EI) spectrum of ciprofloxacin is recorded using a shimadzu PQ-5000 GC-MS spectrometer and the spectrum shows peak at (M/Z)\(^+\) 332 and a base peak at (M/Z)\(^+\) 288 resulting from the group, which corresponds to the molecular formula C\(_{17}\)H\(_{18}\)FN\(_3\)O\(_3\) which is the molecular formula of Ciprofloxacin.

The IR spectrum of ciprofloxacin shows an absorption band at 3028 cm\(^{-1}\) indicating the presence of aromatic C==C–H proton. It shows a characteristics band at 1043 cm\(^{-1}\), which indicates the presence of C–F group in the molecules. The compound shows a characteristic band at 1610 cm\(^{-1}\) and 1485 cm\(^{-1}\), those are responsible for benzene ring. The band at 1636 cm\(^{-1}\) indicates the presence of olefinic C=C. It shows a band at 3035 cm\(^{-1}\) indicating the presence of C=C–H linkage. It also shows a frequency at 1675 cm\(^{-1}\), which indicates the presence of conjugated C=O group. The absorption bands appear at 1214 cm\(^{-1}\) and 1085 cm\(^{-1}\) indicating the presence of carboxyl (COOH) group. The band appears at 1050 cm\(^{-1}\) indicating the presence of –O– linkage. The compound shows absorption bands at 2890 cm\(^{-1}\) and 1433 cm\(^{-1}\). These bands indicate the presence of CH\(_2\) and CH group respectively.

The compound ciprofloxacin shows singlet peak in \(^1\)H-NMR spectrum at \(\delta\)7.2, which indicates the molecule contains aromatic CH proton. The spectrum of compound contains a singlet peak at 6.8 indicating the C=CH group49. It shows a triplet peak at \(\delta\)4.3 ppm indicating the presence of two equivalent protons at its adjacent position in the molecule. It also shows a doublet peak at 3.15 ppm for CH\(_2\) group. The spectrum of ciprofloxacin shows a singlet peak at 3.0 ppm for CH\(_2\). The NMR signal of –OH group appears at \(\delta\)11.3 indicating its highly deshielded nature.
Antibacterial Studies:

In ciprofloxacin carbon atoms of both ketonic carbonyl and carboxyl carbonyl groups are sp^2 hybridised. Hence, they are planar. Further, the both carbonyl groups are coplanar with each other. This coplanarity of both carbonyl groups gives rise to antibacterial property to ciprofloxacin. Further, the presence of piperazine ring also contributes the antibacterial to ciprofloxacin. Conclusively, the antibacterial property of ciprofloxacin depends on the coplanarity of both carbonyl groups and piperazine ring.

Ciprofloxacin is an antibiotic used to treat a number of bacterial infections. This includes bone and joints infection intra abdominal infection certain types of infectious diarrhea, respiratory tract infection skin infections, typhoid fever and urinary tract infections.

A wide range of techniques is available which correspond to those used in other forms of microbiological assay. The principal of these tests is similar, namely the preparation of a concentration gradient of the antibiotic in a nutrient medium and the observation of whether or not growth takes place when the medium is seeded with the indicator bacterium and incubated. The concentration gradient may be continuously varied or discontinuously varied as in a series of tubes of liquid medium or plates of agar medium. In tests to determine the sensitivity of a newly isolated bacterium, known amounts of antibiotics are added to the medium. In assays or titrations of antibiotics, (e.g. in blood fluids) a bacterium of known sensitivity to the antibiotic is used as an indicator.

In the present research work, in order to antibacterial studies two gram positive say Escheria coli and Salmonella typhi and two gram negative bacteria say Klebsiella pneumoniae and Bacillus dysenteriae were selected:

The conventional disc-diffusion was followed. The results will be available only after 24 h.

The MIC of any antibiotic for a bacterial isolate can be estimated from a measurement of the zone of inhibition in the disc test by reference to standard graph (previously prepared), which relates the MIC to the zone diameter for a standard.

Table - 2
Table: Antibacterial Screening
Concentration
10^{-3}
Escheria coli
Salmonella typhi
Klebsiella pneumoniae
Bacillus dysenteriae

Conclusion

The contents of the paper deal with the cyclisation of several substituted aromatic ring, which were obtained by means of standard method.

During the work ciprofloxacin antibiotics have been synthesized. During the synthetic processes we have prepare different intermediate compounds through which it is clear that how conjugation affects the reactivity, what happens to a carbonyl group when it is conjugated with double bond. How the double bond becomes electrophile and can be attacked by nucleophile. Through the synthesis one arrives at electron deficient ring that allows substitution reactions with nucleophiles rather than the usual electrophiles.

Co planarity of carbonyl group at C-6 and C-7 and piprazine rings are generally responsible for the antibacterial activity of the ciprofloxacin. The approach of synthesis of the drugs and their derivatives may changes its assay. This should be topic studies as it has become interest for research one.

Scope of future work of to studies of new approach for the synthesis of some other quinolone life ciprofloxacin, antibacterial studies which depends on co planarity of carbonyl group at C-6 and C-7 and piprazine rings shall be done after the synthesis of the some well known fluoroquinolone drugs and their derivatives.

On the basis of FTIR spectral analysis of Ciprofloxacin, the structure of Fluoroquinolone-Ciprofloxacin may be drawn as
References

1. Clayden, Greeves, Warren; Wothers, *Organic Chemistry*. P. 65-66, 1st Ed. (2001).
2. J. Aihara., *Journal of American Chemical society*. 103, 5704 (1981).
3. Enzmann, H. c. Wiemann, H.J. Ahr, and Schluter, G.H., *Mutat. Res.* 425(2), 213-24 (1999).
4. J. R. Dyer, – *Applications of Absorption Spectroscopy of Organic Compounds* – p.22-23 (2002).
5. Blum, A., *Southern Medical Journal*, 84 (9), 458 (1991).
6. R. C. Haddon; K. Raghavachari, *Journal of American Chemical society*. 107, 289 (1985).
7. Peter Atkins; J. D. Paula, *Physical Chemistry*. 9th ed. P.465-467 (2010).
8. M. Jones, *Journal of Organic Chemistry*. P. 699 (1997).
9. S. Kuwajima; Z. G. Soos, – *Journal of American Chemical society*. 107-109 (1987).
10. W. Kemp, *Organic spectroscopy* 3rd ed., Palgrave, p.-109 – 110 (2004).
 a. L. Finar: 1997. *Organic Chemistry*, Vol – 2, 5th Edition. ELBS Longman, p-29.
11. M. Jones, *Journal of Organic chemistry*. P.709-713 (1997).
12. M. K. Wilson, *Infrared and Raman Spectroscopy*, Chapt. 3, Vol. 2 (1998).
13. C. N. Banwell; E. M. McCash, *Fundamentals of Molecular Spectroscopy*, p.71, 4th Ed. (2002).
14. Clayden, Greeves, Warren; Wothers, *Organic Chemistry*. P. 65-66, 1st Ed. (2001).
15. Peter Atkins; Julio de Paula:, *Elements of physical chemistry*, 4th ed., p-547 (2005).
16. M. Glukhovtsev: *Chem. Educ*. 74, 132 (1997).
17. D. lloyd: *Journal of Chem. Inf. Comput. Sci*. 36, 442(1996).
18. C. N. Banwell; E. M. McCash, *Fundamentals of Molecular Spectroscopy*, p.5, 4th Ed. (2002).
19. Bloomberg: biotechnology over view of biovel life sciences(P) limited. https//www.bloomberg.com/research/stock (2019).
20. M. Bagharniga et al., Again research reviews (2018).