SUPPLEMENTARY MATERIAL

A New Butenolide Derivative from the Deep-sea Fungus Aspergillus terreus SCSIO FZQ028

Qi Zenga,b, Wei-mao Zhonga,b, Yu-chan Chenc, Yao Xianga,b, Xia-yu Chena,b, Xin-peng Tiana, Wei-min Zhangc, Si Zhanga and Fa-zuo Wanga*

a CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of sciences, Guangzhou 510301, P.R. China

b University of Chinese Academy of Sciences, Beijing 100049, P.R. China

c State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, P.R. China

Abstract: A new butenolide derivative (±)-asperteretal F (1) and related congener (2) recently reported containing an unusual 2-benzyl-3-phenyl substituted lactone core, together with five known compounds (3–7) were isolated and characterized from the fungus Aspergillus terreus. SCSIO FZQ028 derived from a deep-sea sediment of South China Sea. Their chemical structures were established on the basis of 1D- and 2D-NMR spectroscopic data, and HR-ESI-MS analysis. Additionally, all the compounds were evaluated for the antioxidative activities against DPPH, cytotoxic activities against two tumor cell lines (SF-268 and HepG-2), and antimicrobial activities. Compounds 2-4, and 7 showed significant activities against DPPH with IC\textsubscript{50}
ranging from 5.89 to 10.07 μg/mL. Compounds 2 and 4 showed moderate antimicrobial activities against all four tested bacteria.

Keywords: butenolide derivative; antioxidative activity; cytotoxic activity; antimicrobial activity; deep-sea fungus

Table S1. 1H and 13C NMR Data of 1 in CDCl$_3$ (700MHz, TMS, δ in ppm, J in Hz).

Position	δ_H (mult, J in Hz)	δ_C	HMBC	COSY
1	175.2			
2	125.7			
3	158.5			
4	6.46 (s, 1H)	99.2	C-1, C-2	
5	3.74 (s, 2H)	29.9	C-1, C-2, C-3, C-2''	
1'	123.3			
2'/6'	7.47 (d, 8.8 Hz, 2H)	131.7	C-3, C-4', C-3'/5'	H-3'/5'
3'/5'	6.82 (d, 8.8 Hz, 2H)	116.7	C-1', C-4'	H-2'/6'
4'	160.9			
1''	130.6			
2''	6.90 (s, 1H)	130.3	C-5, C-4'', C-6'', C-1''	
3''	121.4			
4''	152.9			
5''	6.64 (d, 8.3 Hz, 2H)	118.1	C-1'', C-3'', C-4''	H-6''
6''	6.93 (d, 8.3 Hz, 2H)	128.2	C-2'', C-4''	H-5''
1'''	2.64 (d, 16.7, 5.3 Hz, 1H)	32.1	C-2'', C-3'', C-4'',	H-2'''
2''''	2.92 (d, 16.6, 7.3 Hz, 1H)		C-2'', C-3''	
2'''	3.71 (m, 1H)	70.5	C-3'', C-4'', C-5'''	H-1'''
3'''	77.9			
4'''	1.28 (s, 3H)	25.8	C-2'', C-3'', C-5'''	
5'''	1.21 (s, 3H)	21.2	C-2'', C-3'', C-4'''	
Table S2. Antioxidative activities of compounds 1-7 (IC$_{50}$, μg/mL).

Nos.	1	2	3	4	5	6	7	Vc
IC$_{50}$	75.04	6.43	10.07	9.50	73.64	360.87	5.89	5.13

Table S3. Antibacterial activities of compounds 1-7.

Nos./ zone of inhibition (mm)	S. aureus	B. thuringiensis	B. subtilis	E. coli
1	7.68	8.81	7.54	NA
2	8.94	9.77	7.98	7.53
3	7.59	7.81	7.13	NA
4	8.16	9.13	7.49	7.64
5	NA	7.56	NA	NA
6	7.83	7.42	NA	7.16
7	7.88	NA	NA	7.35
positive control (Chl)	16.46	13.87	17.53	12.44

NOTE: NA=no activity (<7 mm)

Figure S1. Key 1H-1H COSY and HMBC correlations of compound 1.
Figure S2. 1H NMR spectrum of (±)-asperteretal F (1) (CDCl$_3$)

Figure S3. 13C NMR and DEPT spectrum of (±)-asperteretal F (1) (CDCl$_3$)
Figure S4. HSQC spectrum of (±)-asperteretal F (1) (CDCl₃)

Figure S5. HMBC spectrum of (±)-asperteretal F (1) (CDCl₃)
Figure S6. 1H-1H COSY spectrum of (±)-asperteretal F (I) (CDCl$_3$)

Figure S7. HRESIMS spectrum of (±)-asperteretal F (I)
Figure S8. UV spectrum of (±)-asperteretal F (1)

Figure S9. IR spectrum of (±)-asperteretal F (1)
Figure S10. UV and CD spectrum of (±)-asperteretal F (I)
Figure S11. 1H NMR spectrum of asperteretal E (2) (CDCl$_3$)

Figure S12. 13C NMR and DEPT spectrum of asperteretal E (2) (CDCl$_3$)
Figure S13. HSQC spectrum of asperteretal E (2)

Figure S14. HMBC spectrum of asperteretal E (2) (CDCl₃)
Figure S15. 1H 1H COSY spectrum of asperteretal E (2) (CDCl$_3$)

Figure S16. HRESIMS spectrum of asperteretal E (2)
Figure S17. UV and CD spectrum of asperteretal E (2)
The physicochemical data of the known compounds

Asperterat E (2): Pale yellow oil; HRESIMS ([M-H]⁻ m/z 365.1387, calcd for C_{22}H_{32}O_{3}⁻, 365.1394). \(^1H\) NMR (700 MHz, CDCl₃): δ_H 7.48 (2H, d, J=8.8 Hz, H-2'/6'), δ_H 7.00 (1H, d, J=8.3 Hz, H-6'), δ_H 6.90 (2H, d, J=8.8 Hz, H-3'/5'), δ_H 6.82 (H, s, H-2'), δ_H 6.43 (H, brs, H-4), δ_H 3.79 (2H, m, H-5), δ_H 2.72 (2H, t, J=6.7 Hz, H-1'), δ_H 1.78 (2H, t, J=6.7 Hz, H-2''), δ_H 1.35 (6H, s, H-4''/5''). \(^13C\) NMR (700 MHz, CDCl₃): δ_C 172.3 (qC, C-1), δ_C 126.1 (qC, C-2), δ_C 155.7 (qC, C-3), δ_C 97.2 (CH, C-4), δ_C 29.2(CH₂, C-5), δ_C 122.9 (qC, C-1'), δ_C 130.6 (CH, C-2'/6'), δ_C 116.2 (CH, C-3'/5'), δ_C 157.9 (qC, C-4'), δ_C 122.1 (qC, C-1''), δ_C 127.6 (CH, C-2''), δ_C 123.1 (qC, C-3'), δ_C 148.8 (qC, C-4'), δ_C 116.2 (CH, C-5''), δ_C 127.6 (CH, C-6''), δ_C 22.9 (CH₂, C-1''), δ_C 32.7 (CH₂, C-2''), δ_C 75.7(qC, C-3''), δ_C 26.9 (CH₃, C-4''''), δ_C 26.9 (CH₃, C-5''').

Butyro lactone III (3): Pale yellow oil; HRESIMS ([M-H]⁻ m/z 439.1399, calcd for C_{24}H_{35}O_{4}⁻, 439.1398). [α]_D^{25} = +73.2 (c 0.2 CH₂CH₂OH); UV (CH₃CH₂OH) λ_{max} nm:306.60, 226.80, 205.40. \(^1H\) NMR (700 MHz, MeOH): δ_H 7.58 (2H, d, J=7.5 Hz, H-2'/6'), δ_H 6.56 (1H, d, J=8.4 Hz, H-6'), δ_H 6.86 (2H, d, J=7.8 Hz, H-3'/5'), δ_H 6.46 (H, s, H-2'), δ_H 6.47 (H, brs, H-5), δ_H 3.44 (2H, m, H-5), δ_H 2.77 (2H, m, H-1''), δ_H 3.66 (1H, dd, J=5.5, 7.4 Hz, H-2''), δ_H 1.26 (3H, s, H-4''), δ_H 1.16 (3H, s, H-5'''). \(^13C\) NMR (700 MHz, MeOH): δ_C 171.5 (qC, C-1), δ_C 141.5 (qC, C-2), δ_C 127.7 (qC, C-3), δ_C 86.8 (qC, C-4), δ_C 39.5 (CH₂, C-5), δ_C 171.9 (qC, C-6), δ_C 53.8 (OCH₂, C-7), δ_C 123.8 (qC, C-1'), δ_C 130.1 (CH, C-2'/6'), δ_C 116.5 (CH, C-3'/5'), δ_C 158.5 (qC, C-4'), δ_C 120.5 (qC, C-1''), δ_C 132.9 (CH, C-2''), δ_C 126.3 (qC, C-3''), δ_C 153.3 (qC, C-4'''), δ_C 117.2 (CH, C-5''), δ_C 130.5 (CH, C-6''), δ_C 32.0 (CH₂, C-1''), δ_C 70.5 (CH, C-2''), δ_C 77.9 (qC, C-3''), δ_C 25.9 (CH₃, C-4''), δ_C 20.8 (CH₃, C-5''').

Aspernolides A (4): Pale yellow oil; HRESIMS ([M-H]⁻ m/z 423.1467, calcd for C_{24}H_{34}O_{4}⁻, 423.1449). [α]_D^{25} = +80.76 (c 2.58 CHCl₃). \(^1H\) NMR (700 MHz, CDCl₃): δ_H 7.61 (2H, d, J=8.9 Hz, H-2'/6'), δ_H 6.53 (1H, d, J=8.4 Hz, H-6'), δ_H 6.93 (2H, d, J=8.9 Hz, H-3'/5'), δ_H 6.90 (H, s, H-2'), δ_H 6.49 (H, brs, H-5''), δ_H 3.75 (3H, s, H-7'), δ_H 3.54 (2H, m, H-5), δ_H 2.56 (2H, m, H-1''), δ_H 1.69 (2H, t, J=6.7 Hz, H-2''), δ_H 1.25 (3H, s, H-4'''), δ_H 1.24 (3H, s, H-5'''). \(^13C\) NMR (700 MHz, CDCl₃): δ_C 169.5 (qC, C-1), δ_C 137.4 (qC, C-2), δ_C 128.6 (qC, C-3), δ_C 86.2 (qC, C-4), δ_C 38.7(CH₂, C-5), δ_C 169.9(qC, C-6), δ_C 53.6 (OCH₂, C-7), δ_C 121.9 (qC, C-1'), δ_C 129.6 (CH, C-2'/6'), δ_C 116.1 (CH, C-3'/5'), δ_C 157.2 (qC, C-4'), δ_C 123.8 (qC, C-1''), δ_C 131.7 (CH, C-2''), δ_C 120.4 (qC, C-3''),δ_C 153.0 (qC, C-4''), δ_C 116.7 (CH, C-5''), δ_C 129.2 (CH, C-6''), δ_C 22.2 (CH₂, C-1''), δ_C 32.5 (CH₂, C-2''), δ_C 74.4 (qC, C-3''), δ_C 26.8 (CH₃, C-4''), δ_C 26.8 (CH₃, C-5''').

Butyro lactone-IV (5): Pale yellow oil; HRESIMS ([M-H]⁻ m/z 439.1399, calcd for C_{24}H_{35}O_{4}⁻, 439.1398). [α]_D^{25} = +20.11 (c 0.09 CH₂CH₂OH); UV (CH₃CH₂OH) λ_{max} nm:305.60, 294.80, 228.80, 207.20. \(^1H\) NMR (700 MHz, CDCl₃): δ_H 7.61 (2H, d, J=8.7 Hz, H-2'/6'), δ_H 6.50 (1H, d, J=8.2 Hz, H-6'), δ_H 6.91 (2H, d, J=8.6 Hz, H-3'/5'), δ_H 6.65 (H, s, H-2'), δ_H 6.56 (H, brs, H-5'), δ_H 3.77 (3H, s, H-7), δ_H 3.56 (2H, m, H-5), δ_H 3.03 (2H, m, H-1''), δ_H 4.52 (1H, t, J=8.9 Hz, H-2''), δ_H 1.66 (3H, s, H-4''), δ_H 1.57 (3H, s, H-5'''). \(^13C\) NMR (700 MHz, CDCl₃): δ_C 169.4 (qC, C-1), δ_C
137.5 (qC, C-2), δC 126.9 (qC, C-3), δC 86.3 (qC, C-4), δC 39.0 (CH2, C-5), δC 169.9(qC, C-6), δC 53.7 (OCH3, C-7), δC 122.4 (qC, C-1’), δC 129.7 (CH, C-2’/6’), δC 116.2 (CH, C-3’/5’), δC 158.4 (qC, C-4’), δC 124.9 (qC, C-1’’), δC 130.2 (CH, C-2’’), δC 128.2 (qC, C-3’’), δC 158.9 (qC, C-4’’), δC 108.6 (CH, C-5’’), δC 127.1 (CH, C-6’’), δC 30.6 (CH2, C-1”), δC 89.3 (CH, C-2”), δC 72.5 (qC, C-3”), δC 26.0 (CH3, C-4”), δC 23.9 (CH3, C-5”).

Butyrolactone I (6): Pale yellow oil; LRESIMS [M-H]⁻ m/z 423.1; [2M-H]⁻ m/z 847.1. [α]D25 =+43.43 (c 0.07 MeOH); UV (MeOH) λmax nm:287.20, 209.40. ¹H NMR (700 MHz, MeOH): δH 7.62 (2H, d, J=7.5 Hz, H-2’/6’), δH 6.54 (1H, d, J=8.4 Hz, H-6”), δH 6.85 (2H, d, J=7.8 Hz, H-3’/5’), δH 6.46 (H, s, H-2”), δH 6.42 (H, brs, H-5”), δH 3.75 (3H, s, H-7), δH 3.46 (2H, m, H-5), δH 3.06 (2H, d, J=7.4 Hz, H-1”), δH 5.07 (1H, m, H-2”), δH 1.66 (3H, s, H-4”), δH 1.57 (3H, s, H-5”). ¹C NMR (700 MHz, MeOH): δC 172.4 (qC, C-1), δC 138.1 (qC, C-2), δC 127.6 (qC, C-3), δC 86.8 (qC, C-4), δC 39.8 (CH2, C-5), δC 172.4(qC, C-6), δC 53.7 (OCH3, C-7), δC 123.6 (qC, C-1”), δC 129.8 (CH, C-2’/6’), δC 116.4 (CH, C-3’/5’), δC 158.4 (qC, C-4”), δC 125.5 (qC, C-1”), δC 132.5 (CH, C-2”), δC 128.3 (qC, C-3”), δC 154.9 (qC, C-4”), δC 115.0 (CH, C-5”), δC 129.8 (CH, C-6”), δC 28.7 (CH2, C-1”), δC 123.6 (CH, C-2”), δC 132.9 (qC, C-3”), δC 25.9 (CH3, C-4”), δC 17.8 (CH3, C-5”).

Aspernolides B (7): Pale yellow oil; LRESIMS [M-H]⁻ m/z 441.1; [2M-H]⁻ m/z 883.1. [α]D25 =+98.1 (c 0.2 MeOH);UV (MeOH) λmax nm:306.80, 207.00. ¹H NMR (700 MHz, MeOH): δH 7.59 (2H, d, J=7.4 Hz, H-2’/6’), δH 6.50 (1H, d, J=8.0 Hz, H-6”), δH 6.86 (2H, d, J=7.8 Hz, H-3’/5’), δH 6.45 (H, s, H-2”), δH 6.47 (H, d, J=8.0 Hz, H-5”), δH 3.78 (3H, s, H-7), δH 3.46 (2H, m, H-5), δH 2.43 (2H, m, H-1”), δH 1.52 (2H, t, H-2”), δH 1.19 (3H, s, H-4”), δH 1.18 (3H, s, H-5”). ¹C NMR (700 MHz, MeOH): δC 171.1 (qC, C-1), δC 141.5 (qC, C-2), δC 127.7 (qC, C-3), δC 86.9 (qC, C-4), δC 39.6 (CH2, C-5), δC 171.9 (qC, C-6), δC 53.8 (OCH3, C-7), δC 123.6 (qC, C-1”), δC 130.3 (CH, C-2’/6’), δC 116.6 (CH, C-3’/5’), δC 159.1 (qC, C-4”), δC 129.6 (qC, C-1”), δC 132.9 (CH, C-2”), δC 125.3 (qC, C-3”), δC 155.2 (qC, C-4”), δC 115.2 (CH, C-5”), δC 129.7 (CH, C-6”), δC 25.8 (CH2, C-1”), δC 44.7 (CH2, C-2”), δC 71.5 (qC, C-3”), δC 29.3 (CH3, C-4”), δC 29.1 (CH3, C-5”).