The Critical Temperature of Dilute Bose Gases

Daniel Ueltschi

Department of Mathematics, University of Warwick

Tsaghkadzor, 9 September 2009

Joint work with R. Seiringer (Princeton University)
Program

1. Bose-Einstein condensation
2. Effects of interactions on critical temperature
3. The density bound
4. Feynman-Kac representation
5. Estimates of integral kernels
Quantum many-body system

N particles in box $\Lambda \subset \mathbb{R}^d$
State space is Hilbert space $\bigotimes_{i=1}^N L^2(\Lambda) \cong L^2(\Lambda^N)$

Hamiltonian given by Schrödinger operator

$$H = - \sum_{i=1}^N \Delta_i + \sum_{i<j} U(x_i - x_j)$$

with $\Delta_i = \sum_{\nu=1}^d \frac{\partial^2}{\partial x_{i,\nu}^2}$ the Laplacian and $U \geq 0$ a function with compact support. (Periodic boundary conditions)

System of identical bosons: state space is $L^2_{\text{sym}}(\Lambda^N)$, the space of L^2 functions that are symmetric with respect to N arguments
Bose-Einstein condensation

Understood by Einstein in 1924 for the ideal gas (no interactions)

Fourier space: $\Lambda_* = \frac{1}{L} \mathbb{Z}^d$

$$\ell^2_{\text{sym}}(\Lambda^N_*) \cong \text{span} \left\{ \mathbf{n} \in \mathbb{N}^{\Lambda_*} : \sum_{k \in \Lambda_*} n_k = N \right\}$$

The space spanned by occupation numbers.

Hamiltonian is now a multiplication operator:

$$H|\mathbf{n}\rangle = \sum_{k \in \Lambda_*} 4\pi^2 k^2 n_k |\mathbf{n}\rangle$$
Bose-Einstein condensation

Statistical mechanics: Expectation of observables (i.e. self-adjoint operators on state space) is defined by

$$\langle A \rangle = \frac{\text{Tr } A e^{-\beta H}}{\text{Tr } e^{-\beta H}}$$

where $\beta = 1/T$ is inverse temperature

Let $\rho = N/|\Lambda|$ the particle density, and consider the observable $A = \frac{n_0}{L^3}$

with $n_0 = n_{k=0}$
Bose-Einstein condensation \((d = 3)\): There is a critical density,
\[
\rho_c = \frac{\zeta(3/2)}{(4\pi\beta)^{3/2}} \quad \text{(with } \zeta(3/2) = \sum n^{-3/2} = 2.612... \text{)}
\]
such that
\[
\lim_{L,N \to \infty} \frac{\text{Tr} \frac{n_0}{L^3} e^{-\beta H}}{\text{Tr} e^{-\beta H}} = \begin{cases}
0 & \text{if } \rho \leq \rho_c \\
\rho - \rho_c & \text{if } \rho \geq \rho_c
\end{cases}
\]

Alternatively, there is a critical temperature \(T_c = 4\pi(\rho/\zeta(3/2))^{2/3}\)

Physical manifestations of BEC: superfluidity, superconductivity. Also present in optics and in turbulence.
The **scattering length** a is a number that characterizes the potential function for dilute quantum systems. Hard core potentials: a is the radius of the hard core. For integrable potentials, $a_0 = \frac{1}{8\pi} \int U(x)dx$ is the first Born approximation to the scattering length. Otherwise, let R be larger than the radius R_0 of U, and consider the energy functional

$$
\mathcal{E}_R(\psi) = \int_{B_R} \left(|\nabla \psi(x)|^2 + U(x)|\psi(x)|^2 \right) dx
$$

with B_R the ball of radius R in \mathbb{R}^3. Let ψ_0 be the minimizer of \mathcal{E}_R over H^1 functions that satisfy the boundary condition $\psi_0(x) = 1$ when $|x| = R$. ψ_0 is spherically symmetric and it satisfies the equation

$$
-\Delta \psi_0(x) + U(x)\psi_0(x) = 0
$$

For $R_0 \leq |x| \leq R$, we have

$$
\psi_0(x) = \frac{1 - a/|x|}{1 - a/R}
$$

for a number a, the **scattering length**. Cf Lieb, Seiringer, Solovej, Yngvason, *The Mathematics of the Bose Gas and its Condensation*
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) , \quad U(x) \geq 0 \text{ with scattering length } a \]
Effects of interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) , \quad U(x) \geq 0 \text{ with scattering length } a \]

1953 Feynman: \(\Delta T_c < 0 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j), \quad U(x) \geq 0 \text{ with scattering length } a \]

1953 Feynman: \(\Delta T_c < 0 \)
1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a \rho^{1/3} \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j), \quad U(x) \geq 0 \] with scattering length \(a \)

1953 Feynman: \(\Delta T_c < 0 \)

1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a \rho^{1/3} \)

1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{1/2} \), increases
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j), \quad U(x) \geq 0 \text{ with scattering length } a \]

1953 Feynman: \(\Delta T_c < 0 \)

1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a^{1/3} \)

1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{1/2} \), increases

1964 Huang: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2} \), increases
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j), \quad U(x) \geq 0 \text{ with scattering length } a \]

1953 Feynman: \(\Delta T_c < 0 \)
1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a \rho^{1/3} \)
1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{1/2} \), increases
1964 Huang: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2} \), increases
1971 Fetter & Walecka: \(\frac{\Delta T_c}{T_c} \) decreases
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) \text{, } U(x) \geq 0 \text{ with scattering length } a \]

1953 Feynman: \(\Delta T_c < 0 \)

1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a \rho^{1/3} \)

1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{1/2} \) , increases

1964 Huang: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2} \) , increases

1971 Fetter & Walecka: \(\frac{\Delta T_c}{T_c} \) decreases

1982 Toyoda: \(\frac{\Delta T_c}{T_c} \approx -3.5(a \rho^{1/3})^{1/2} \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j), \quad U(x) \geq 0 \] with scattering length \(a \)

1953 Feynman: \(\Delta T_c < 0 \)

1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a \rho^{1/3} \)

1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2} \), increases

1964 Huang: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2} \), increases

1971 Fetter & Walecka: \(\frac{\Delta T_c}{T_c} \) decreases

1982 Toyoda: \(\frac{\Delta T_c}{T_c} \approx -3.5(a \rho^{1/3})^{1/2} \)

1992 Stoof: \(\frac{\Delta T_c}{T_c} = c a \rho^{1/3} + o(a \rho^{1/3}), \quad c > 0 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j), \quad U(x) \geq 0 \] with scattering length \(a\)

1953 Feynman: \(\Delta T_c < 0\)
1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a^{1/3}\)
1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{1/2}\), increases
1964 Huang: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2}\), increases
1971 Fetter & Walecka: \(\frac{\Delta T_c}{T_c}\) decreases
1982 Toyoda: \(\frac{\Delta T_c}{T_c} \approx -3.5(a \rho^{1/3})^{1/2}\)
1992 Stoof: \(\frac{\Delta T_c}{T_c} = c a^{1/3} + o(a^{1/3}), \quad c > 0\)
1996 Bijlsma & Stoof: \(c = 4.66\)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) , \quad U(x) \geq 0 \] with scattering length \(a \)

1953 Feynman: \(\Delta T_c < 0 \)
1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a \rho^{1/3} \)
1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2} \), increases
1964 Huang: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2} \), increases
1971 Fetter & Walecka: \(\frac{\Delta T_c}{T_c} \) decreases
1982 Toyoda: \(\frac{\Delta T_c}{T_c} \approx -3.5 (a \rho^{1/3})^{1/2} \)
1992 Stoof: \(\frac{\Delta T_c}{T_c} = c a \rho^{1/3} + o(a \rho^{1/3}) , \quad c > 0 \)
1996 Bijlsma & Stoof: \(c = 4.66 \)
1997 Grüter, Ceperley, Laloë: \(c = 0.34 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j), \quad U(x) \geq 0 \text{ with scattering length } a \]

1953 Feynman: \(\Delta T_c < 0 \)
1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a \rho^{1/3} \)
1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{1/2} \), increases
1964 Huang: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2} \), increases
1971 Fetter & Walecka: \(\frac{\Delta T_c}{T_c} \) decreases
1982 Toyoda: \(\frac{\Delta T_c}{T_c} \approx -3.5(a \rho^{1/3})^{1/2} \)
1992 Stoof: \(\frac{\Delta T_c}{T_c} = c a \rho^{1/3} + o(a \rho^{1/3}), \quad c > 0 \)
1996 Bijlsma & Stoof: \(c = 4.66 \)
1997 Grüter, Ceperley, Laloë: \(c = 0.34 \)
1999 Holzmann, Grüter, Laloë: \(c = 0.7 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) \], \(U(x) \geq 0 \) with scattering length \(a \)

1953 Feynman: \(\Delta T_c < 0 \)
1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a \rho^{1/3} \)
1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{1/2} \), increases
1964 Huang: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2} \), increases
1971 Fetter & Walecka: \(\frac{\Delta T_c}{T_c} \) decreases
1982 Toyoda: \(\frac{\Delta T_c}{T_c} \approx -3.5(a \rho^{1/3})^{1/2} \)
1992 Stoof: \(\frac{\Delta T_c}{T_c} = c a \rho^{1/3} + o(a \rho^{1/3}), \quad c > 0 \)
1996 Bijlsma & Stoof: \(c = 4.66 \)
1997 Grüter, Ceperley, Laloë: \(c = 0.34 \)
1999 Holzmann, Grüter, Laloë: \(c = 0.7 \); Holzmann, Krauth: \(c = 2.3 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) , \quad U(x) \geq 0 \text{ with scattering length } a \]

1953 Feynman: \(\Delta T_c < 0 \)
1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a^{1/3} \)
1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a^{1/3})^{1/2} \), increases
1964 Huang: \(\frac{\Delta T_c}{T_c} \sim (a^{1/3})^{3/2} \), increases
1971 Fetter & Walecka: \(\frac{\Delta T_c}{T_c} \) decreases
1982 Toyoda: \(\frac{\Delta T_c}{T_c} \approx -3.5(a^{1/3})^{1/2} \)
1992 Stoof: \(\frac{\Delta T_c}{T_c} = c a^{1/3} + o(a^{1/3}) \), \(c > 0 \)
1996 Bijlsma & Stoof: \(c = 4.66 \)
1997 Grüter, Ceperley, Laloë: \(c = 0.34 \)
1999 Holzmann, Grüter, Laloë: \(c = 0.7 \) ; Holzmann, Krauth: \(c = 2.3 \) ; Baym, B.H.L.V.: \(c = 2.9 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) \text{, } U(x) \geq 0 \] with scattering length \(a \)

1953 Feynman: \(\Delta T_c < 0 \)
1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a \rho^{1/3} \)
1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{1/2} \), increases
1964 Huang: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2} \), increases
1971 Fetter & Walecka: \(\frac{\Delta T_c}{T_c} \) decreases
1982 Toyoda: \(\frac{\Delta T_c}{T_c} \approx -3.5(a \rho^{1/3})^{1/2} \)
1992 Stoof: \(\frac{\Delta T_c}{T_c} = c a \rho^{1/3} + o(a \rho^{1/3}) \), \(c > 0 \)
1996 Bijlsma & Stoof: \(c = 4.66 \)
1997 Grüter, Ceperley, Laloë: \(c = 0.34 \)
1999 Holzmann, Grüter, Laloë: \(c = 0.7 \) ; Holzmann, Krauth: \(c = 2.3 \) ; Baym, B.H.L.V.: \(c = 2.9 \)
1999 Huang: \(\frac{\Delta T_c}{T_c} \approx 3.5(a \rho^{1/3})^{1/2} \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j), \quad U(x) \geq 0 \] with scattering length \(a \)

1953 Feynman: \(\Delta T_c < 0 \)
1958 Lee & Yang: \(\frac{\Delta T_c}{T_c} \sim a \rho^{1/3} \)
1960 Glassgold, Kaufman, Watson: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{1/2} \), increases
1964 Huang: \(\frac{\Delta T_c}{T_c} \sim (a \rho^{1/3})^{3/2} \), increases
1971 Fetter & Walecka: \(\frac{\Delta T_c}{T_c} \) decreases
1982 Toyoda: \(\frac{\Delta T_c}{T_c} \approx -3.5(a \rho^{1/3})^{1/2} \)
1992 Stoof: \(\frac{\Delta T_c}{T_c} = c a \rho^{1/3} + o(a \rho^{1/3}), \quad c > 0 \)
1996 Bijlsma & Stoof: \(c = 4.66 \)
1997 Grüter, Ceperley, Laloë: \(c = 0.34 \)
1999 Holzmann, Grüter, Laloë: \(c = 0.7 \); Holzmann, Krauth: \(c = 2.3 \)
Baym, B.H.L.V.: \(c = 2.9 \)
1999 Huang: \(\frac{\Delta T_c}{T_c} \approx 3.5(a \rho^{1/3})^{1/2} \)
2000 Reppy et. al.: \(c = 5.1 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) , \quad U(x) \geq 0 \text{ with scattering length } a \]

2001 Arnold, Moore: \(c = 1.32 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j), \quad U(x) \geq 0 \text{ with scattering length } a \]

2001 Arnold, Moore: \(c = 1.32 \); Кашурников, Прокофев, Свистунов: \(c = 1.29 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j), \quad U(x) \geq 0 \text{ with scattering length } a \]

2001 Arnold, Moore: \(c = 1.32 \); Кашурников, Прокофев, Свистунов: \(c = 1.29 \)

2003 Kleinert: \(c = 1.14 \)
Effects of interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) \], \(U(x) \geq 0 \) with scattering length \(a \)

2001 Arnold, Moore: \(c = 1.32 \); Кашурников, Прокофев, Свистунов: \(c = 1.29 \)

2003 Kleinert: \(c = 1.14 \)

2004 Kastening: \(c = 1.27 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) , \quad U(x) \geq 0 \text{ with scattering length } a \]

2001 Arnold, Moore: \(c = 1.32 \); Кашурников, Прокофев, Свистунов: \(c = 1.29 \)

2003 Kleinert: \(c = 1.14 \)

2004 Kastening: \(c = 1.27 \); Nho, Ландау: \(c = 1.32 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) , \quad U(x) \geq 0 \text{ with scattering length } a \]

2001 Arnold, Moore: \(c = 1.32 \) ; Кашурников, Прокофев, Свистунов: \(c = 1.29 \)

2003 Kleinert: \(c = 1.14 \)

2004 Kastening: \(c = 1.27 \) ; Nho, Ландау: \(c = 1.32 \)

2009 Betz, U: \(c = -2.33 \)
Effects of particle interactions on critical temperature

\[H = - \sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j), \quad U(x) \geq 0 \] with scattering length \(a \)

2001 Arnold, Moore: \(c = 1.32 \); Кашурников, Прокофев, Свистунов: \(c = 1.29 \)

2003 Kleinert: \(c = 1.14 \)

2004 Kastening: \(c = 1.27 \); Nho, Ландау: \(c = 1.32 \)

2009 Betz, U: \(c = -2.33 \)

A partial but rigorous result:

Theorem (with R. Seiringer, 2009)

There is no BEC when \(\frac{\Delta T_c}{T_c} > 5.09 \sqrt{a \rho^{1/3}} \)
Grand-canonical ensemble

(Laplace transform with respect to N)

$$\langle A \rangle = \frac{1}{Z} \sum_{N \geq 0} z^N \text{Tr}_{L^2_{\text{sym}}(\Lambda^N)} A e^{-\beta H}$$

Parameters are β, Λ, z (z : fugacity)

The density is given by $\rho(z) = \langle N \rangle / |A|$; $\rho(z)$ is increasing in z

FACT: There is no Bose-Einstein condensation when $z < 1$. This holds for any repulsive interaction (see Bratteli-Robinson)

We need information on $\rho(z)$

Known: $\rho^{(0)}(z) = (4\pi\beta)^{-3/2} \sum_{n \geq 1} z^n / n^{3/2}$

Theorem (with R. Seiringer, 2009)

$$\rho(z) \geq \rho^{(0)}(z) - C \frac{a}{\beta^2 \sqrt{-\log z}}$$
The density bound

Illustration

\[
\rho \sim a \beta^{-2}
\]

\[
\rho \sim a^{1/2} \beta^{-7/4}
\]

\[
\rho^{(0)} < \rho < \rho_c
\]

\[
\rho_c^{(0)} < \rho_c < \rho_0
\]

\[
0 < z_0 < 1 < z_c
\]
Feynman-Kac representation for the Bose gas

◊ Allows to get suitable bounds, by dropping certain terms

Let W_{xy}^t be the Wiener measure for the Brownian bridge between x and y in time t. Let $\omega = (x, k, \omega)$ stand for a “winding path” from x to x in time $2\beta k$, and

$$V(\omega) = \frac{1}{2} \sum_{0 \leq \ell < m \leq k-1} \int_0^{2\beta} U(\omega(2\ell \beta + s) - \omega(2m \beta + s)) \, ds$$

Define the measure μ by

$$\int d\mu(\omega) \cdots \equiv \sum_{k \geq 1} \frac{z^k}{k} \int_{\Lambda} dx \int dW_{xx}^{2\beta k}(\omega) \, e^{-V(\omega)} \cdots$$
Feynman-Kac representation for the Bose gas

The partition function $Z = \sum_{N \geq 0} z^N \text{Tr} \ e^{-\beta H}$ is then given by

$$Z = \sum_{n \geq 0} \frac{1}{n!} \int d\mu(\omega_1) \ldots d\mu(\omega_n) e^{-\sum_{1 \leq i < j \leq n} V(\omega_i, \omega_j)}$$

where the two-path interaction is

$$V(\omega, \omega') = \frac{1}{2} \sum_{\ell=0}^{k-1} \sum_{\ell'=0}^{k'-1} \int_0^{2\beta} U(\omega(2\beta \ell + s) - \omega'(2\beta \ell' + s)) ds$$
Feynman-Kac representation

Space-time picture
Feynman-Kac representation for the Bose gas

Similarly, the density \(\rho(z) \) is given by

\[
\rho(z) = \frac{1}{|\Lambda|Z} \sum_{n \geq 1} \frac{1}{(n-1)!} \int d\mu(\omega_1) k_1 \int d\mu(\omega_2) \ldots \int d\mu(\omega_n) e^{-\sum_{1 \leq i < j \leq n} V(\omega_i, \omega_j)}
\]

Since \(V \geq 0 \), one immediately gets the upper bound

\[
\rho(z) \leq \frac{1}{|\Lambda|} \int d\mu(\omega_1) k_1 \leq \rho(0)(z)
\]

For the lower bound, one uses \(e^{-\sum_i V_i} \geq 1 - \sum_i (1 - e^{-V_i}) \) in various ways, to obtain

\[
\rho(z) \geq \rho(0)(z) - \frac{C}{\beta^3 \sqrt{-\log z}} \int K(x,y) dx dy
\]

where \(K(x,y) \equiv \int \left[1 - e^{-\frac{1}{4} \int_0^4 \beta U(\omega(s)) ds} \right] dW_{xy}^{4\beta}(\omega) \) is the integral kernel of \(e^{2\beta \Delta} - e^{\beta(2\Delta - U)} \) (Feynman-Kac formula)
Scattering estimates

It remains to study the quantity

\[a(\beta) \equiv \frac{1}{8\pi\beta} \int K(x, y)dxdy \]

Using \(1 - e^{-u} \leq u\), we have

\[
\int K(x, y)dxdy \leq \frac{1}{4} \int_0^{4\beta} ds \int dy \int dW_{y, 0}^{4\beta}(\omega) \int dx U(\omega(s) + x)
= \beta \int U(z)dz
\]

In scattering theory, \(a_0 = \frac{1}{8\pi} \int U(z)dz\) is called the first Born approximation of the scattering length

Then \(a(\beta) \leq a_0\). OK if potential \(U\) is integrable and small in a suitable sense. One needs another method for more general potentials.
Variational principle

\[
a(\beta) = \frac{1}{8\pi} \inf_{\psi \in H^1(\mathbb{R}^d)} \left[\int_{\mathbb{R}^d} \left(2|\nabla \psi(x)|^2 + U(x)|1 - \psi(x)|^2 \right) dx + \frac{1}{\beta} \langle \psi | f(\beta(-2\Delta + U)) | \psi \rangle \right]
\]

where \(f \) is the decreasing function

\[
f(t) = t \frac{1 - e^{-t}}{t - 1 + e^{-t}}
\]

Notice that \(1 \leq f \leq 2 \). The variational principle shows that \(a(\beta) \) is decreasing in \(\beta \) and that

\[
\lim_{\beta \to 0} a(\beta) = a_0, \quad \lim_{\beta \to \infty} a(\beta) = a
\]

Then \(a \leq a(\beta) \leq a_0 \). One can also show that

\[
a(\beta) = a(1 + O(\sqrt{a\beta^{-1/2}}))
\]
Two more scattering estimates

We also need to estimate the following expressions:

\[a'(\beta) = (8\pi\beta)^{1/2} \int K(x, x)dx \]

\[a''(\beta) = (8\pi\beta)^{1/2} \int K(x, -x)dx \]

Lemma

\[\max\{a'(\beta), a''(\beta)\} \leq 2^{d/2} a(\beta/2) \]

For \(d = 3 \), we can also show that

\[\lim_{\beta \to \infty} a'(\beta) = a, \quad \lim_{\beta \to \infty} a''(\beta) = a \]

We do not control \(a' \) and \(a'' \) as well as we control \(a \), but this is not important for our purpose.
Conclusion

- Rigorous estimates on the change of the critical temperature for Bose-Einstein condensation in $d = 3$
Conclusion

- Rigorous estimates on the change of the critical temperature for Bose-Einstein condensation in $d = 3$
- In addition to exponential decay of off-diagonal correlations, one can prove analyticity of free energy (cf Poghosyan, U '09)
Conclusion

- Rigorous estimates on the change of the critical temperature for Bose-Einstein condensation in $d = 3$
- In addition to exponential decay of off-diagonal correlations, one can prove analyticity of free energy (cf Poghosyan, U ’09)
- Also: results for $d = 2$. One can show exponential decay of correlations when

$$T > \frac{4\pi \rho}{\log |\log(a^2 \rho)|},$$

which is the conjectured critical temperature for superfluidity (to leading order in $a^2 \rho$)
Conclusion

- Rigorous estimates on the change of the critical temperature for Bose-Einstein condensation in $d = 3$
- In addition to exponential decay of off-diagonal correlations, one can prove analyticity of free energy (cf Poghosyan, U ’09)
- Also: results for $d = 2$. One can show exponential decay of correlations when
 \[T > \frac{4\pi \rho}{\log |\log(a^2 \rho)|}, \]
 which is the conjectured critical temperature for superfluidity (to leading order in $a^2 \rho$)
- Estimates obtained using the Feynman-Kac representation, and then a variational principle for certain operator kernel
Conclusion

- Rigorous estimates on the change of the critical temperature for Bose-Einstein condensation in $d = 3$
- In addition to exponential decay of off-diagonal correlations, one can prove analyticity of free energy (cf Poghosyan, U ’09)
- Also: results for $d = 2$. One can show exponential decay of correlations when

$$T > \frac{4\pi \rho}{\log |\log(a^2 \rho)|},$$

which is the conjectured critical temperature for superfluidity (to leading order in $a^2 \rho$)
- Estimates obtained using the Feynman-Kac representation, and then a variational principle for certain operator kernel
- Interacting Bose gas: a rich source of interesting problems for mathematicians

THANK YOU!