The intrinsic resistome of bacterial pathogens

Jorge Olivares, Alejandra Bernardini, Guillermo García-León, Fernando Corona, María B. Sanchez and Jose L. Martinez

Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain

Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

Keywords: intrinsic resistance, MDR efflux pump, biofilms, swarming, phenotypic resistance, persistence

Clinical definition of antibiotic resistance is mainly based on the bacterial response to treatment. One microorganism is considered as resistant if there exists a high likelihood of therapeutic failure upon antibiotic treatment. Consequently, resistance has been operationally defined in the basis of breakpoints of the minimal inhibitory concentrations (MICs). More recently, an ecological definition of antibiotic resistance is emerging, which is based in the MIC value identifying the upper limit of the wild-type population (Turnidge et al., 2006). This is defined as the ecological cut off (ECOFF) value and all strains presenting MICs above ECOFF are considered resistant from an ecological point of view, even if they are classified as susceptible in the basis of clinical breakpoints. When defining the intrinsic resistome, we are facing the same situation. Bacteria are considered intrinsically resistant in the basis of the clinical definition, in other words, if their infections cannot be treated with a given antibiotic. Three are the most relevant causes of this intrinsic resistance: lack of the target, activity of chromosomally encoded antibiotic-inactivating enzymes and reduced uptake of the antibiotic, the latter includes reduced permeability of the cellular envelopes and activity of efflux pumps (Nikaido, 1989, 1994; Li et al., 1994; Fernandez and Hancock, 2012). More recently, in the same line of the ecological definition of resistance, the “intrinsic resistome” has been defined as the set of elements that contributes directly or indirectly to antibiotic resistance, and whose presence is independent of previous antibiotic exposure and is not due to horizontal gene transfer (HGT; Fajardo et al., 2008; Wright, 2010).

This definition encompasses all the chromosomally encoded elements that have not been recently acquired as the consequence of the recent human use of antibiotics for therapy and farming purposes. Consequently, for any bacterial species an intrinsic resistome can be defined, irrespective on whether or not this species is classified as intrinsically resistant in the basis of clinical breakpoints. From the studies on the intrinsic resistome, two categories of genes have emerged (Fajardo et al., 2008). Those which inactivation make bacteria more resistant to antibiotics and those which inactivation make bacteria more susceptible. The first ones define elements that are relevant for the acquisition of resistance. For instance, the mutation in a transcriptional repressor of a multidrug (MDR) efflux pump turns the microorganism more resistant to antibiotics (Alonso and Martinez, 1997, 2000, 2001). Mapping these elements is important to define the capability of an organism to evolve toward resistance by mutation (Martinez and Baquerizo, 2000) and is thus relevant for predicting the evolution of resistance (Martinez et al., 2007, 2011a). The other group of elements define the determinants that contribute to the natural phenotype of susceptibility to antibiotics of a given species, and constitute the bona fide intrinsic resistome. Inactivation of these elements make bacteria more susceptible to antibiotics, which may be useful for improving efficacy of current drugs (Martinez, 2012). This has been the situation of inhibitors of plasmid-encoded β-lactamases, which have been demonstrated to be efficient drugs to be used in combination with β-lactams (Reading and Cole, 1977). Similarly, the inhibition of a MDR efflux pump (or another mechanism of intrinsic resistance) might also improve the efficacy of antibiotics currently in use or allow the utilization of others (Lomovskaya et al., 1999; Renaux et al., 1999; Lomovskaya and Waddoups, 2001). For instance, macrolides are not used for treatment of Gram-negative infections because these organisms are intrinsically resistant to this family of antibiotics. However,
the major *Escherichia coli* efflux pump AcrAB extrudes macrolides and its inactivation might increase the susceptibility of *Escherichia coli* to these antibiotics (Chollet et al., 2004). This evidence indicates that macrolides might be useful for treating Gram-negative infections if they are used in combination with an inhibitor of MDR efflux pumps.

As stated above, the main causes of intrinsic resistance from a clinical viewpoint are lack of the target and the inactivation, low uptake and efflux of the antibiotic. However, all bacterial species harbor in their genomes genes encoding MDR efflux pumps, and several present also chromosomally encoded antibiotic-inactivating enzymes, even though they are not classified as intrinsically resistant from the clinical point of view (Saier et al., 1994; Webber and Piddock, 2003; Piddock, 2006; Poole, 2007; Vila and Martinez, 2008; Nikaido, 2009). The study of the intrinsic resistome of bacterial pathogens has shown that in addition to these elements, several others contribute to the phenotype of resistance. Among them, there are the aforementioned classical resistance genes, but there exist also several other elements belonging to all functional categories, including elements of the bacterial general metabolism (Fajardo et al., 2008). These results indicate that the specific phenotype of susceptibility to antibiotics of a given bacterial species is an emergent property consequence of the concerted action of several elements (Girgis et al., 2009). The large functional diversity of the elements of the intrinsic resistome indicates this has not evolved to specifically counteract the activity of the antibiotics. Together with the proposal that antibiotics might be molecular signals at the low concentrations they are likely present in natural ecosystems (Davies, 2006; Linares et al., 2006; Yim et al., 2006, 2007; Fajardo and Martinez, 2008), this situation allows a complementary view to the traditional weapons/shields roles that antibiotics and their resistance genes may have at natural ecosystems (Martinez, 2008; Aminov, 2009, 2010; Fajardo et al., 2009; Martinez et al., 2009a; Allen et al., 2010; Davies and Davies, 2010; Sengupta et al., 2013).

Studying the intrinsic resistome is of relevance for predicting evolution of resistance (Martinez et al., 2007, 2011a), for understanding the linkage between resistance and other bacterial processes as virulence (Martinez and Baquero, 2002; Martinez et al., 2009a,b) or metabolism (Martinez and Rojo, 2011), and for defining novel targets which inactivation make bacteria more susceptible to antibiotics (Martinez et al., 2011b; Martinez, 2012). In this article we present information of those organisms (*Escherichia coli* and *Pseudomonas aeruginosa*) for which more information on their intrinsic resistome is available. We discuss as well some issues concerning transient phenotypic resistance, which also depends on the intrinsic capabilities of the bacteria for evading antibiotics action (Figure 1). Finally, we present updated information on studies on the development of inhibitors of resistance.

METHODS FOR ANALYZING THE INTRINSIC RESISTOME

Genome-wide analysis of the intrinsic resistome of a given microorganism requires using high-throughput technologies. Among them, the use of insertion or deletion libraries, allows determining the contribution of each single gene to the
characteristic phenotype of a given bacteria (Liu et al., 2010). This method is the best suited to determine if the inactivation of a gene changes bacterial susceptibility. However, it does not allow analyzing the effect of mutations that do not fully inactivate a given determinant but changes its activity. Alternatively, the use of plasmid libraries containing each open reading frame of a given genome allows to establish the contribution to resistance of each gene when is overexpressed or when it is transferred to a heterologous host (Soo et al., 2011; Spindler et al., 2013). This method is only useful for analyzing acquired resistance, but not for studying genes which inactivation alters the bacterial susceptibility to antimicrobials. The use of high-throughput sequencing and microarray technologies is also useful for studying intrinsic resistance. These methodologies can be used for comparing populations grown in the absence and in the presence of antibiotics. These populations can be formed by the type of libraries above mentioned (transposon-tagged of expression libraries), in which case the enrichment of mutants or clones in the presence of antibiotics allow defining genes contributing to resistance (Girgis et al., 2009; Zhang et al., 2012; Spindler et al., 2013). While these methods are faster and cheaper than methods based in analyzing the susceptibility of each single mutant/clone, their main drawback is that among all potential determinants that contribute to resistance, only those with lower fitness costs will be enriched and several of the elements that may be detected by classical susceptibility tests would not be detected using enrichment-based technologies. This drawback may be a benefit when the analysis is not made on a library, but using a wild-type strain. In these circumstances, sequencing the evolving population allows in a single step defining the mutations that produce resistance and present the smallest fitness costs among those analyzed, as well as to determine potential compensatory mutations (Guillberg et al., 2011; Toprak et al., 2012). These mutations are the most likely found in clinical isolates (Martínez et al., 2007, 2011a; Shcherbakov et al., 2012).

**THE **

Escherichia coli **INTRINSIC RESISTOME**

Although *Escherichia coli* is traditionally considered a susceptible organism, acquired resistance to antibiotics was first detected in enteric bacteria, *Escherichia coli*, *Shigella*, and *Salmonella*, in the late 1950s to early 1960s (Watson, 1963). Nowadays, *Escherichia coli* accounts for 17.3% of clinical infections requiring hospitalization and is the second most common cause of infection behind *Staphylococcus aureus* (18.8%). Among outpatient infections, *Escherichia coli* is the most common organism (38.6%).

The antibiotic intrinsic resistome of *Escherichia coli* has been studied by testing the susceptibility to several antibiotics of mutants from gene knockout collections (Tamae et al., 2008; Liu et al., 2010) or transposon-tagged mutant libraries (Girgis et al., 2009). The results from these screenings showed that several genes participate in the phenotype of susceptibility to antibiotics in this species. Among them, some are classical resistance genes. Indeed, this bacterium has different known resistance mechanisms; such as the AmpC β-lactamase and MDR efflux systems like AcrAB–ToIC (Lindberg and Normark, 1986; Ma et al., 1993; Lubelski et al., 2007; Jacoby, 2009). In addition, *Escherichia coli* harbors several genes that might be of relevance for its susceptibility to antibiotics as those involved in the repair of DNA damage or cell membrane synthesis and integrity. In addition to those comprehensive analysis, other studies based on the whole-genome sequence of strains evolving in the presence of antibiotics (Toprak et al., 2012) or on the enrichment of specific mutants of transposon-tagged libraries grown with antibiotics have been used to track genes relevant for the development of resistance (Zhang et al., 2012). However, in this type of analysis, mutants are competing one to each other and only those with the highest fitness will be selected.

Escherichia coli as a Gram-negative bacterium presents two cell membranes, and both are non-specific barriers preventing drug influx into the cell. The lipopolysaccharide (LPS) of the outer membrane protects the cell against hydrophobic antibiotics and polycationic compounds such as aminoglycosides and polymyxins. LPS presents anionic groups and it is the first barrier where some antibiotics bind (Hancock, 1980). Because of this, changes in the LPS can alter the susceptibility to antibiotics. For instance, the loss of rfa, a gene encoding an enzyme implicated in the LPS synthesis, increases susceptibility to gentamicin (Tamae et al., 2008). The Enterobacteriaceae common antigen (ECA) is also an intrinsic resistance element that provides protection against organic acids (Baru et al., 2002). In a similar way as happens with the LPS, changes in ECA may alter the susceptibility to antibiotics. In line with this reasoning is the finding that inactivation of the ECA biosynthesis protein Wxe increases *Escherichia coli* susceptibility to nalidixic acid and amikacin (Girgis et al., 2009). Mechanisms that control the negative charge of the outer membrane, as the Yrb system and the Pmr regulon, modulate the bacterial susceptibility to neutral or negatively charged compounds, such as nalidixic acid, lomefloxacin, and doxycycline (Girgis et al., 2009).

The gates of entry of several nutrients through the outer membrane are the porins, which are also used by antibiotics for entering into the cell (Nikaido, 1994). Many *Escherichia coli* strains have developed resistance to antibiotics as β-lactams and quinolones by mutations in the genes that encode porins or regulate their expression (Hlici et al., 1986; Adler et al., 2013). In addition, transient down-regulation of the expression of the porins can also trigger phenotypic resistance (Fernandez and Hancock, 2012). A general mechanism that prevents the cellular accumulation of drugs is their active extrusion from the cell or from the cytoplasmic membrane through MDR efflux pumps (Nikaido, 1998a,b). The AcrAB–ToIC system of *Escherichia coli* is one of the best-characterized MDR transporters (Ma et al., 1993). This system consists of AcrA, a membrane fusion protein; AcrC, a transporter of the RND family; and ToIC, an outer membrane protein. AcrAB–ToIC is a major determinant for drug intrinsic resistance in *Escherichia coli* (Sulavik et al., 2001). Furthermore, its expression is increased in the presence of bile salts, which are present in the habitat of *Escherichia coli*, the gut (Thmanu et al., 1997; Rosenberg et al., 2003). This means that *Escherichia coli* might present a lower susceptibility to antibiotics when is growing inside its host as the consequence of the overexpression of the MDR efflux pump AcrAB–ToIC. Several other MDR transporters provide resistance to a narrow range of compounds. *Escherichia coli* contains five putative ABC-type MDR-like transporters. However,
none of these systems provides an appreciable drug resistance to *Escherichia coli*, excepting YhVZ (macrolide-specific ABC-type efflux carrier), which confers resistance to macrolides composed of 14- and 15-membered lactones, as erythromycin (Kobayashi et al., 2001; Nishino and Yamaguchi, 2001). The EmrAB is another MDR pump that protects the cell from several chemically unrelated antimicrobial agents, e.g., the protonophores carbonyl cyanide m-chlorophenylhydrazone and tetrachlorosalicylic acid (Smith, 2003) is important to prevent damages caused by these antibiotic-inactivating enzymes. It is worth mentioning that whilst MDR efflux pumps usually confer low-level resistance to a wide range of compounds, antibiotic-inactivating enzymes confer frequently high-level resistance to antibiotics belonging to a single structural family. All *Escherichia coli* strains have the chromosomally encoded β-lactamase AmpC. Although it contributes to resistance to antibiotics, it is difficult to assume that this is its original functional role if we take into consideration that the natural habitat of *Escherichia coli* is the gut, which microbiota does not include β-lactam producers. AmpC β-lactamasises hydrolyze broad and extended-spectrum cephalosporins but are not inhibited by β-lactamases inhibitors such as clavulanic acid (Jacoby, 2009). Considering that β-lactams inhibit peptidoglycan transpeptidation, determinants involved in this process might be important for the susceptibility to these antibiotics. This is the case for mltB and slt, which encode membrane-bound lytic murein transglycosylases (von Rechenberg et al., 1996) and of ampG, which encodes a transportor involved in the recycling of murein (Jacobs et al., 1994). These genes are not only relevant for β-lactam susceptibility. They are also important for the regular physiology of *Escherichia coli*, since the loss of mltB, slt, ampG, and ampC is deleterious (Gargas et al., 2009).

Among those determinants involved in the intrinsic resistance of *Escherichia coli*, some deal with the general response to stress, including the repair of damaged DNA. It is known that quinolones produce DNA damage and induce the SOS repair system (Howard et al., 1993). However, other antibiotics with a different mechanism of action as nitrofurantoin and metronidazol can also produce DNA damage and induce the SOS repair system (Howard et al., 1993). Not only is this ability to survive anywhere the cause of the ecological success of this organism. This bacterium also shows high levels of antibiotic resistance which often makes impossible its eradication. Evolutionary forces have built its high resistance, and countless elements contribute to intrinsic and acquired resistance of this bacterium, considered a model organism to study mechanisms of resistance (Poole et al., 1993.

Although the recent acquisition of antibiotic resistance genes has been extensively described in *P. aeruginosa* (Woodford et al., 2011), these acquired elements are not the unique cause of antibiotic resistance in *P. aeruginosa*. Transposon-tagged libraries have demonstrated that the inactivation of several genes cause changes in antibiotic susceptibility. The majority of these genes are not related with the cell envelope or efflux pumps and many of them are involved in bacterial metabolism (Briedenstien et al., 2008; Fajardo et al., 2008; Schurek et al., 2008; Alvarez-Ortega et al., 2010; Fernandez et al., 2010). These genes act in different ways, some of them involved in the stress response. For instance the DksA transcription factor regulates genes involved in double-strand break repair (Middled et al., 2005). However, other determinants are global regulators of basic processes of the bacterial physiology. This is the case of Fur, that is the master regulator in the response to iron availability (Bugg and Neilands, 1987), an environmental cue with relevance for infection (de Lorenzo and Martinez, 1988; Martinez et al., 1996). This indicates that bacterial physiology and the bacterial response to environmental inputs are cornerstones for the phenotype of susceptibility to antibiotics. In addition to genes with known functions, there are several other determinants of the *Escherichia coli* intrinsic resistome which functional role is not known. This is the case of yecR and yfgC. Removal of yfgC decreases the MIC of norfloxacin, rifampicin, and ampicillin (Tamae et al., 2008). yfgC has homology to peptidases, and apparently it is located in the bacterial inner membrane (Gardy et al., 2005). The existence of elements of unknown function conferring resistance to several antibiotics bear witness regarding the complexity and the variety of intrinsic resistance mechanisms encoded in the *Escherichia coli* genome.

THE INTRINSIC RESISTOME OF Pseudomonas aeruginosa

Pseudomonas aeruginosa is one of the most metabolically versatile bacteria described so far (Lister et al., 2009). This particular feature allows it to colonize multiple environments, being isolated from seawater (Levin and Cabelli, 1972), soil (Green et al., 1974), interacting mutuallyistically with plant roots (Green et al., 1974; Walker et al., 2004) as a plant pathogen (Walker et al., 2004; Records, 2011) and infecting animals (Petersen et al., 2002), including humans (Stover et al., 2000). In addition of its role in infections, *P. aeruginosa* has been isolated at hospitals in different inorganic surfaces, from ventilation and intubation equipments, contact-lens and even in hydrotherapy pools (Morales et al., 2012). This versatility and ability to survive on minimum nutritional requirements (Favero et al., 1971) have made this bacterium one of the most successful nosocomial opportunistic pathogens (Lister et al., 2009).

Although the recent acquisition of antibiotic resistance genes has been extensively described in *P. aeruginosa* (Woodford et al., 2011), these acquired elements are not the unique cause of antibiotic resistance in *P. aeruginosa*. Transposon-tagged libraries have demonstrated that the inactivation of several genes cause changes in antibiotic susceptibility. The majority of these genes are not related with the cell envelope or efflux pumps and many of them are involved in bacterial metabolism (Briedenstien et al., 2008; Fajardo et al., 2008; Schurek et al., 2008; Alvarez-Ortega et al., 2010; Fernandez et al., 2010).
Mutants with changes in susceptibility to ciprofloxacin, aminoglycosides, β-lactams, and polymyxin B have been identified using this method.

Ciprofloxacin is a broad-spectrum fluoroquinolone that targets the bacterial enzymes DNA gyrase and topoisomerase IV (Drlica and Zhao, 1997). Thirty-five and 79 mutants with increased and decreased susceptibilities to this antibiotic, respectively (Breidenstein et al., 2008), were identified in a screening of a PA14 mutant transposon library (Liberati et al., 2006). The majority of these mutants demonstrated only twofold changes in susceptibility compared with the respective isogenic strain; just the mutant in fisK was eightfold more susceptible. Mutants in four genes involved in DNA replication and repair (Holliday junction helicase rnuA, the ATP-dependent RNA helicase rnuC, recombinase sreP, and the site specific recombinase ssr) presented increased susceptibility to ciprofloxacin. Additionally, rusA, xerD, and fisK grow slower compared with the wild-type. On the contrary, mutants in genes nuoBGHNJLN that encode a dehydrogenase are less susceptible to ciprofloxacin. These mutants in the nuo operon present decreased susceptibility to tobramycin also (Schurek et al., 2008) supporting the idea that some of the elements involved in intrinsic resistance have not evolved to counteract the activity of a specific antibiotic (Fajardo et al., 2008; Martinez and Rojo, 2011).

Despite this apparent lack of specificity, there is not a common response to all antibiotics, even for those belonging to the same structural family. In a screening using imipenem, meropenem and ceftazidime just one mutant (PA0908) presented reduced susceptibility to all three antibiotics and two (gltK and fisK) showed increased susceptibility to all three antibiotics (Alvarez-Ortega et al., 2008). Even more, the mutant in fisK, which encodes a protein involved in cell division (Lewenza et al., 2005), presents an increased susceptibility to ciprofloxacin too (Breidenstein et al., 2008). In the same way, mutants in many genes that were more susceptible to β-lactams (PA0401, pyrB and pyrD; Alvarez-Ortega et al., 2010) presented decreased susceptibility to polymyxin B (Fernandez et al., 2013). However, this is not a general trend, since mutants in galU, ampf, lprC, arul, wapR, and srf showed decreased susceptibility to β-lactams and they are more susceptible to polymyxin B also (Fernandez et al., 2013). The majority of these genes participate actively in the central metabolism of P. aeruginosa (Stover et al., 2000) reinforcing the idea that genes involved in metabolism can play an important role in the intrinsic resistance to antibiotics of the microorganisms.

The cell membrane is considered one of the principal contributors to intrinsic resistance (Nikaido, 1989). In this way mutations in many genes that take part in the LPS synthesis in P. aeruginosa produce changes of the susceptibility against β-lactams and tobramycin. A mutant in wapB, which encodes a protein involved in the biosynthesis of the LPS core (Poosn et al., 2008), is less susceptible to ceftazidime and meropenem; mutations in adjacent genes (PA0901, PA0902, PA0903, and PA0905) which participate in the LPS synthesis also present reduced susceptibility to ceftazidime and some mutants present cross resistance with meropenem (Alvarez-Ortega et al., 2010). A similar effect was observed in mutants of genes involved in the O-antigen synthesis (smpZ, wbpV, set, wzn, and wbpW). These mutants presented decreased susceptibility to tobramycin, demonstrating the importance of the cellular membrane as a barrier to avoid the entrance of antibiotics inside the cell (Schurek et al., 2008).

Efflux pumps contribute considerably to antibiotic resistance in P. aeruginosa. They are involved in the extrusion of toxic substances, including antibacterial compounds, from inside the cell to the external environment (Webber and Piddock, 2003). In this bacterium, 12 different RND-type efflux systems (Blair and Piddock, 2009) that can eventually contribute to antibiotic resistance have been described. However, only MxrAB-OpmA has shown to play a relevant role on the intrinsic resistance of P. aeruginosa to antibiotics (Kohler et al., 1997). Expression of the other efflux pumps under standard growing conditions is too low to achieve resistance, an issue that is also frequently described for other bacteria (Gzovkovic et al., 2001, 2002). However, MDR efflux pumps can be overexpressed, and hence render resistance, either because of mutations in their regulatory elements or because of the presence of effectors that trigger their expression (Gzovkovic et al., 2001, 2002; Blair and Piddock, 2009; Hernandez et al., 2009, 2011).

Since intrinsic resistance is a multifactorial phenomenon, it might be modulated by global regulators. This is the case of the P. aeruginosa “catabolite repression control” regulator Crc (MacGregor et al., 1991). Crc is a post-transcriptional repressor that regulates the use of preferred carbon sources in nutrient-complex ecosystems (Morales et al., 2004; Moreno et al., 2009). Recent work has shown that inhibition of Crc makes P. aeruginosa less virulent and more susceptible to different antibiotics (Lizarazu et al., 2010), the latter being a consequence of increased expression of transporters and changes in the LPS composition. This shows the existence of networks connecting antibiotic resistance, bacterial virulence and metabolism. The hubs of these networks may be good targets in the search of novel antimicrobials targeting simultaneously resistance, virulence, and bacterial physiology.

PHENOTYPIC RESISTANCE

Most studies on antibiotic resistance are based in the analysis of resistant organisms that have acquired the phenotype of resistance as the consequence of genetic, inheritable, changes, which can be mutations (including gene rearrangements) of the acquisition, through HGT, of resistance genes (Walsh, 2000). However, there are other situations, grouped under the name of phenotypic resistance, in which bacteria present a non-inheritable situation of resistance to the antibiotics (Levin, 2004; Levin and Rozen, 2006). Phenotypic resistance is thus defined as a transient situation in which a bacterial population, usually susceptible to antibiotics, is transiently resistant (Figure 1). The elements contributing to this phenotype are a part of the intrinsic resistome that are only unveiled under specific growing conditions (Martinez et al., 1994). Below, some examples of phenotypic resistance are described.

PERSISTENCE

Persistence is defined as a situation in which a bacterial subpopulation is not killed by a given antibiotic under conditions in which the bulk of the population is inhibited. Once antibiotic is removed and growth resumes, persistent cells behave as antibiotic susceptible as
the original population, which means that persistence is not the consequence of a genetic change. The existence of persister cells into a population is known since 1944, when this phenomenon was first reported for staphylococcal infections treated with penicillin (Bigger, 1944). Currently, persistence has been described for many other bacterial species and antibiotics. As stated, persisters are phenotypic variants that present increased resistance to antibiotics and are genetically identical to the wild-type. The percentage of persisters in a given culture can be as high as 1% of stationary-phase cells.

Persisters are genetically identical to the wild-type. The percentage of persisters that present increased resistance to antibiotics and other bacterial species and antibiotics. As stated, persisters are phenotypic variants that present increased resistance to antibiotics and are genetically identical to the wild-type. The percentage of persisters in a given culture can be as high as 1% of stationary-phase cells.

The percentage of persister cells in infections increase the chance of survival of the bacteria in the presence of antibiotics, an issue particularly relevant in the case of chronic infections. Because of this, the analysis of the genes and mechanisms responsible for the development of a persister phenotype is of relevance to implement novel therapeutic approaches based on the eradication of antibiotic resistant persistent cells.

The first gene described to be involved in the development of persistence was hipA (Moyed and Bertrand, 1983) in Escherichia coli. HipA is a toxin that belongs to the hipRA toxin/antitoxin system (TA systems; Correia et al., 2006), which overexpression inhibits cell growth and induces antibiotic resistance by persister formation. Other TA systems as MqRA (Kim and Wood, 2010) or TisAB (Dorr et al., 2010; Lewis, 2010) have been also associated to the formation of persister cells, indicating that a misbalance in the production of toxin and antitoxin may be in the basis of this phenotype.

Toxin/antitoxin systems are highly distributed among different bacterial species. Usually, these systems are formed by two components, a toxin that inhibits cell growth and an antitoxin that impedes the activity of the toxin. At the moment, three general TA systems have been described. The antitoxins of TA types I and III are small RNAs, whereas the toxins of the type II TA systems are inhibited by protein antitoxins (Gerdes et al., 2012). Recent work has shown that type II TA systems are highly relevant for developing persistence in Escherichia coli and that the simultaneous deletion of 18 TA loci from the chromosome of Escherichia coli reduced the fraction of persistent cells by at least 100-fold (Maisonneuve et al., 2011; Gerdes and Maisonneuve, 2012).

In addition to TA systems, other factors modulate the development of persistence. Among them, elements involved in the regular bacterial metabolism have shown to be relevant. This is the case of phuU, which encodes a negative global regulator that suppresses the cellular metabolic activity, altering expression of several elements with relevance for bacterial physiology, ranking from flagella-encoding genes to genes encoding energy production enzymes (Li and Zhang, 2007).

In depth analysis on the mechanisms of persistence has shown that there are two types of persistant cells (Balaban et al., 2004), which further supports the idea that there exist different routes toward the development of persistence. Type I persisters constitute a pre-existing population of resting cells that are generated at stationary phase. These cells when are inoculated into fresh medium from stationary phase switch back to growing cells with a characteristic extended time lag. An example of genes involved in this phenotype is hipA7 (Moyed and Bertrand, 1983). Type II persisters constitute a subpopulation of slowly growing cells. An example of genes involved in this phenotype is hipQ (Wollison et al., 1990).

In agreement with the potential role that both bacterial metabolism and TA systems may have on the establishment of persistence, transcriptomic analysis of persister cells have shown that persistence is associated with the down-regulation of biosynthetic genes and the up-regulation of several TA modules (RelBE, MazEF, DinYadJ, YgiU; Lewis, 2010). Some of these TA systems are known to affect translation (Christensen et al., 2001; Pedersen et al., 2002), which explains their effect in dormancy and consequently on antibiotic resistance. The SOS response, which up-regulates DNA repair functions, also induces several TA genes in Escherichia coli, whose promoters contain a Lex box: symER, hokE, yqN/yqF and tisAB/istR (Dorr et al., 2010). This means that TA systems, and hence the formation of persister cells, can be activated by factors that trigger the SOS system. It is known that some antibiotics, such as quinolones, induce the emergence of persister cells (Dorr et al., 2010). Since these antibiotics produce DNA damage and activate the SOS system, it is likely possible that the effect of quinolones on persistence is SOS-dependent. The role of other stresses on persistence has been studied. This is the case of oxidative stress that is important during infection due to the immune response. However, this stress only induces persistence against fluoroquinolones but not for other antibiotics such as kanamycin. Surprisingly, this phenotype is due to the overexpression of the MDR efflux pump AcrAB–ToIC (Wu et al., 2012). This indicates that transient expression of classic antibiotic resistance mechanisms forming part of the intrinsic resistome may be of relevance for the establishment of persistence.

One important issue for avoiding persistence would be finding elements which mutation impede the development of persistent cells. However, the analysis of a transposon mutants library of Escherichia coli (Hu and Coates, 2005; Hansen et al., 2008) and of the comprehensive K1 collection (Baba et al., 2006), did not allow identifying any gene which mutation fully impede the phenotype of persistence. These data suggest a great degree of redundancy in the elements and pathways involved in the development of persistence. Even though TA systems could be good candidates to decrease the fraction of persister cells in a given population, their high number, with 671 TA systems already identified in 126 prokaryotic genomes (Pandey and Gerdes, 2005) makes difficult developing drugs directed to reduce persistence by targeting these systems.

Another approach for eliminating persisters can be by shifting their metabolic state. A recent report shows that this is feasible by specific metabolic stimuli that allow the recovery of the proton motive force of persistent cells, enabling their killing by aminoglycosides (Allison et al., 2011).

Biofilm

Biofilm is a structured population of bacteria embedded in a matrix, which is composed by polysaccharides, proteins, and extracellular DNA. It has been shown that cells growing in biofilms are less susceptible to antibiotics than those growing planktonically.
several factors that operate simultaneously. Tides, and the opposite occurs at regions of the biofilms with low cells in these regions are phenotypically resistant to cationic peptides. P. aeruginosa on the oxygen and nutrients availability (Huang et al., 1995; Stern- the antibiotic involved. Different regions of the biofilms contain degree of resistance depends on the region of the biofilm and on the phenotypic resistance of biofilms, it has been shown that the antibiotic resistance phenotype displayed by swarmer cells. (Kim et al., 2003; Overhage et al., 2008b; Lai et al., 2009).

Transcriptomic analyses of P. aeruginosa have shown that several genes change their expression during swarmer cell differ- entiation. Some of these genes encode porins and efflux pumps, such as MexGHI-OpmD. A differential expression of these genes in swarmer cells might be involved in their phenotype of reduced susceptibility to antibiotics (Overhage et al., 2008a). Nevertheless, the reasons for this transient phenotype of antibiotic resistance are still far to be fully understood, since there are other elements that might be involved in the phenotype. For instance, several proteases (Lon, AcrA, Pipl, ClpP, and ClpP) that affect swarming motility are also relevant for the formation of biofilms, and therefore for phenotypic antibiotic resistance (Marr et al., 2007; Kindrachuk et al., 2011; Fernandez and Hancock, 2012).

Quorum-sensing seems to play a key role in swarming differen- tiation. It has been shown that PvdQ, an acylase that hydrolyzes the QS signal 3-oxo-C12-HSL [N-(3-oxo-dodecanoyl)-l-homoserine lactone] is involved in swarming. The analysis of cells either over-expressing or lacking PvdQ showed that PvdQ reduced P. aeruginosa outer membrane permeability, thereby elevating antibiotic resistance under swarming conditions, upon which this protein is up-regulated (Wang et al., 2013). A similar effect of reduced permeability has been shown for Salmonella enterica swarmer cells. In particular the expression of the porin OmpA, which is used for the entrance of nutrients and some antibiotics is low in swarming conditions (Sugasawa and Nikaido, 1992; Kim and Surette, 2004), sug- gesting that changes in the permeability of the cellular envelopes, in response to nutrients’ availability, might be in the basis of the antibiotic resistance phenotype displayed by swarmer cells. There are some common factors that might induce the different situations of phenotypic resistance above described. Changes in the environment as the lack of nutrients or low oxygen levels, which reduce the growth rates, occur in stationary phase and this inducespersisters, which are much more abundant in this growth phase. These nutritional cues also take place in some regions of bacterial biofilms, mainly at their deepest zone, and are relevant for their reduced susceptibility to antibiotics. QS signaling is a relevant system in the basis of biofilm formation, which is also involved in triggering the bacterial physiological reprogramming that occurs in swarmer cells. Expression of TA systems occurs in response to external signaling, and is involved in the generation of persister cells, but also are differentially expressed during biofilm formation, directly or via QS signaling. Cellular damage produced by toxic compounds, antibiotics included, may induce the SOS response, which triggers expression of reparation sys- tems and usually also reduces metabolic activity, a situation that induces the formation of persister cells and is also foreseen in biofilms. It thus seems that bacterial populations have developed a battery of mechanisms to respond to stress and these mechanisms are also useful to transiently resist the activity of antibiotics.

INHIBITORS OF RESISTANCE DETERMINANTS

One of the areas under development in the search for novel drugs to fight infections is the study of inhibitors of resistance (Baquero...
et al., 2011; Martinez et al., 2011b; Martinez, 2012). The use of these drugs in combination with those antibiotics against which the mechanisms of resistance operate, increases bacterial susceptibility to the antimicrobials. The first inhibitors of resistance were developed against mechanisms acquired through HGT in particular plasmid-encoded β-lactamases (Bush, 1988). However, the definition of intrinsic resistome offers the possibility of developing inhibitors that increase susceptibility to all isolates of a given species (Garcia-Leon et al., 2012). For instance, the inhibition of MDR efflux pumps, which makes Gram-negative bacteria susceptible to macrolides, will allow the use of these compounds for treating infections by Gram-negative microorganisms. Although clavulanic acid, the first inhibitor of β-lactamases described more than 40 years ago (Reading and Cole, 1977), few other inhibitors, all of them inhibiting the same type of β-lactamases, are already in the market. Main efforts have focused on the inhibitors of other β-lactamases (Drazew and Bonomo, 2010) and MDR efflux pumps (Lomovskaya and Watkins, 2001). In the case of aminoglycoside-inactivating enzymes, the development of inhibitors is problematic due to the large number and variability of families of these resistance elements. Based on the Ambler’s classification (Ambler et al., 1991), the β-lactamases are divided into four classes: class A, C, and D being serine β-lactamases, and class B being metallo-β-lactamases (MBLs). The commercially available β-lactamase inhibitors (BLIs), clavulanic acid, sulbactam and tazobactam, are only effective against class A β-lactamases. However, their combinations with β-lactam antibiotics are still effective, despite the emergence of resistance, either because of gene-dosage effect (Martinez et al., 1987, 1989; Regueria et al., 1991), either because of mutations that make β-lactamase resistant to inhibition (Blazquez et al., 1993; Canica et al., 1998, 2001; Salverda et al., 2010; Frase et al., 2011; Li et al., 2012). The discovery that carbapenems may inhibit some β-lactamases opened the possibility of finding antibiotics with dual activities, antimicrobial and inhibitor of resistance (Baynak et al., 2006). However, this can be a difficult task, since antibiotics as cefoxitin may either inhibit or induce expression of β-lactamases depending on their concentration (Tsuey-Ching et al., 2012). Because of this, mathematical models are being implemented to establish reliable dosage regimes (Bhagunde et al., 2012) and novel derivatives are being developed to surpass these problems. Among them, N-acetyl β-sulfolactams obtained, by sulfonylation of β-lactams and addition of an acyl group, inhibit Enterobacter cloacae class C β-lactamase (Page et al., 2003). Penicillin and cephalosporin sulphone derivatives are also part of the pipeline of BLIs. LN-1-255 is a penicillin sulphone that is active against OXA-type β-lactamases and is being used as model for further improvements in this type of inhibitors (Partanen et al., 2009; Drazew et al., 2010). In addition to β-lactams that inhibit β-lactamases, there are also non-β-lactams able to inhibit these enzymes. One of the families receiving more attention is the one formed by boronic acids (Kienzer and Waley, 1979), which are potential inhibitors of all types of serine β-lactamases (Sun et al., 2010), and seem to be effective even against penicillin-binding proteins (PBPs) resistant to β-lactams (Gervason et al., 2012). Nevertheless clinical use of these compounds is compromised because of the toxicity of boron. Another class of non-β-lactam BLIs is formed by the diazabicyclooctanes (DBOs). There are two compounds of this family under clinical trials: MK-7655 and NXL104 (avibactam) (Coleman, 2011). MK-7655 is a potent inhibitor of class A and C β-lactamases, that can be used in combination with imipenem to kill AmpC and KPC (Klebsiella pneumoniae carbapenemase) producers (Hirsch et al., 2012). Avibactam is a promising BLI that inhibits class A and C β-lactamases, including BlaC from Mycobacterium tuberculosis (Xu et al., 2012). In combination with ceftazidime, avibactam protects β-lactams from hydrolysis in β-lactamase-producing Enterobacteriaceae and P. aeruginosa (Dubreuil et al., 2012; Levassur et al., 2012). More recently it has been proposed that a triple combination avibactam, cefazidime, and metronidazole will be useful for treating complicated intra-abdominal infections, which may present a mixed population of Enterobacteriaceae and anaerobes (Dubreuil et al., 2012; Lucasti et al., 2013). Finding common inhibitors for all MBLs is a difficult task, due to the diversity of class B β-lactamases (Drazew and Bonomo, 2010). However, different structural families of inhibitors are under development, including tetrahydropyrimidine-2-thione and pyrrole derivatives (Hussein et al., 2012), 3-mercapto-1,2,4-triazoles and N-acylated thiosemicarbazides (Faridooon et al., 2012), N-heterocyclic dicarbonylic acids and pyridylmercaptothiadiazoles (Feng et al., 2012), 2-substituted 4,5-dihydrothiazole-4-carboxylic acids (Chen et al., 2012), or mercaptoacetate (Wachino et al., 2002). Although most inhibitors of β-lactamases target a specific family of these enzymes, efforts have been made to develop drugs capable to inactivate a large range of β-lactamases. Among them single molecules as mercaptoethylpenicillinate (Baynak et al., 2004) or reverse hydroxamates and oximes (Giantis et al., 2009) are under development as well as combinations of compounds as BAL30376, which is a mixture of BAL19764, a siderophore monobactam active to class B BLIs, BAL29880, a bridged monobactam active to class C β-lactamases, and clavulanate (Livermore et al., 2010; Page et al., 2011). In addition to traditional methods in searching enzyme’s inhibitors, information derived from other studies may help in developing β-lactamases inhibitors. In this regard, the finding of a small protein, produced by the same producer of clavulanic acid, Streptomyces clavuligerus (Reading and Cole, 1997; Yuan et al., 2011) and capable to inhibit class A β-lactamases opens the possibility of developing peptides or haptamers capable to inhibit β-lactamases. Similarly, the finding that the active site structures and the catalytic mechanisms of N-terminal nucleophile hydrolase (a component of the bacterial proteasome) and β-lactamases are similar, allows discovering cross-inhibition of both enzymes by compounds as O-arylsulfonylcarbonyl hydroxamates (Pelto and Pratt, 2008) or 1,3,4-oxathiazol-2-ones (Adediran et al., 2012). This opens the possibility of testing already known inhibitors of the bacterial proteasome as inhibitors of β-lactamases. Beta-lactamases inhibitors will be very useful, but only for treating infections by those organisms presenting a β-lactamase. A wider spectrum of activity might have the efflux pumps inhibitors (EPIs). MDR efflux pumps are present in all bacterial species contributing to intrinsic and acquired (when overexpressed) resistance to all family of drugs. Since any single efflux pump

| Antimicrobials, Resistance and Chemotherapy |
| April 2013 | Volume 4 | Article 103 | e

"fnich-04-00103" — 2013/4/28 — 16:52 — page B — #8
can extrude a wide range of antibiotics belonging to different structural families, its inhibition will simultaneously increase the bacterial susceptibility to several antibiotics (Vila and Martínez, 2008). In vitro work has shown that inhibition of efflux pumps makes bacteria more susceptible to antibiotics and also reduces the probability of emergence of antibiotic resistant mutants (Lomovskaya et al., 2001). In addition, since some efflux pumps contribute to the virulence of bacterial pathogens, their inhibition will also impair their capability for producing infections (Hirakata et al., 2009), including the formation of biofilms (Baugh et al., 2012).

Theoretically, there are different alternatives for inhibiting MDR determinants (Fernandez and Hancock, 2012). One that could serve for inhibiting all efflux pumps would be the inhibition of energy sources required for pumps activity. Unfortunately activity of MDR efflux pumps is coupled either to the membrane potential, either to ATP, both of which are key element for any eukaryotic or prokaryotic cell. This means that most of these potential inhibitors will be too toxic to be used. There are, however, some elements that are specific for bacteria and could be used as potential targets. This is the case of TonB, a protein involved in the activity of P. aeruginosa MDR efflux pumps by coupling the energized state of the membrane to the operation of bacterial transporters (Zhao et al., 1998).

Other ways of inhibiting the activity of efflux pumps include the interference with the pump assembly or the blockage of its activity, for instance using antibodies as has been described for SmrA from Stenotrophomonas maltophilia (Al-Hamad et al., 2011), the development of effectors precluding the release of the MDR repressor from its operator DNA, and the competition with antibiotics transported by the efflux pump. One of the first EPIs with potential therapeutic use is the synthetic dipeptide amide phenylalanine-arginyl-β-naphthylamide, which inhibits several Gram-negative efflux pumps (Lomovskaya et al., 2001; Mahamoud et al., 2006), although not all of them (Sanchez et al., 2003). This molecule is a competitive inhibitor that binds to the same site used by the pump to bind the antibiotic. Some efforts have been made in the optimization of diamide-containing EPIs (Watkins et al., 2003). However, it has been shown that the moieties that are responsible for their unfavorable toxicological properties, are also essential for their activity, a situation that impedes their therapeutic use (Lomovskaya and Bostian, 2006).

Pyridopyrimidines and arylpiperazines have also been assayed as EPIs of MDR pumps and major efforts have been performed for their optimization (Nakayama et al., 2004a,b; Yoshida et al., 2006a,b, 2007). Differing to the previously described dipeptide amides, that only impede the action of the antibiotics they compete, pyridopyrimidines increase the susceptibility to all substrates of the efflux pumps, indicating a different mechanism of action (Lomovskaya and Bostian, 2006).

Although some efforts on the development of EPIs against efflux pumps for Gram-positive organisms, as Staphylococcus aureus NorA, have been made (Markham et al., 1999; Heller et al., 2012a; Sabatini et al., 2012), most EPIs so far described inhibit efflux pumps from Gram-negative organisms with some degree of specificity. Among them, pyridopyrimidines inhibit MexAB-OprM of P. aeruginosa (Yoshida et al., 2007), 1-(1-naphthylmethyl)-piperazine reversed multidrug resistance in A. baumannii but not in P. aeruginosa (Pannek et al., 2006), or 13-cyclopentylthio-5-OH tetracycline (13-CPTC), a semisynthetic tetracycline analogue that binds TetB pump of Escherichia coli (Nelson and Levy, 1999).

The finding that plant-produced compounds are substrates and inducers of efflux pumps (Manilla et al., 2007) suggests that these compounds may also inhibit MDR determinants. Indeed, it has been shown that plant extracts contain a variety of EPIs (Tegos et al., 2002; Musuneci et al., 2003; Lewis and Ausubel, 2006; Stavri et al., 2007), which may be useful for increasing the susceptibility to antibiotics of different bacterial species (Guobalcher et al., 2012a,b; Holler et al., 2012a; Roy et al., 2012; Zhou et al., 2012).

In addition of inhibitors targeting specifically classical resistance elements, the study of the intrinsic resistome opens the possibility of looking for inhibitors of targets that contribute to resistance despite they are not classical resistance determinants. This is the case of the P. aeruginosa cytochrome-insensitive terminal oxidase. Mutants defective in this gene are hypersusceptible to antibiotics (Tavaklar et al., 2003). Consequently, inhibition of this component of the respiratory chain will increase the overall susceptibility of P. aeruginosa to antibiotics. Same situation happens with global regulators as the P. aeruginosa Czc post-transcriptional repressor (Morales et al., 2004; Moreno et al., 2009). Mutants defective in this gene are hypersusceptible to different antibiotics (Linares et al., 2010); hence its inhibition will increase susceptibility to these antibiotics.

An interesting approach in the search of inhibitors of resistance is the screening of non-antibiotic compounds, which had been already tested for other diseases, and may be used as helper compounds to improve efficacy of antibiotics (Martins et al., 2008). The benefit of using these compounds is that their use has been already approved, so as novel long and costly toxicological trials are not needed. Among them some anesthetics, antihistaminic, and psychotherapeutic compounds have demonstrated to improve the activity of antibiotics (Kristiansen and Amaral, 1997). Within this group of compounds some of them change the permeability of the bacterial membrane (Martins et al., 2008), as the anti-inflammatory drug diclofenac (Darula et al., 2007) or the anti-psychotic chlorpromazine (Blair and Pidcock, 2009), whereas for others, the mechanism of action is not known.

A more recent approach for improving the activity of the antibiotics is by enhancing the cellular responses associated to the antibiotics induced cell death pathway. It has been proposed that bacterial antibiotics induce a cell pathway that involves the generation of oxygen reactive species (Kohanski et al., 2007, 2010). Understanding this pathway may reveal targets for adjuvants that improve the efficacy of the antibiotics (Farha and Brown, 2013). By using Escherichia coli whole-genome metabolic models and further experimental validation of predicted targets, it has been shown that inactivation of some elements increase susceptibility to oxidants and antibiotics (Stylianides et al., 2012), which opens the possibility of searching a new family of drugs capable to increase the activity of antibiotics.
AKNOWLEDGMENTS

Work in our laboratory is supported by grants BIO2011-25255 from the Spanish Ministry of Science and Innovation, PROMPT from CAM, REPI from the Instituto de Salud Carlos III, and HEALTH-F3-2011-282004 (EVOTAR) and HEALTH-F3-2010-241476 (PAR) from the European Union. Guillermo García-León is the recipient of a FPI fellowship, Alessandra Bernardini is the recipient of a “La Caixa” fellowship and Fernando Corona is the recipient of a JAE predoctoral fellowship.

REFERENCES

Alfano, A. S., Lin, G., Polk, R. B., and Pratt, R. F. (2012). Crossover inhibition as an indicator of convergent evolution of enzyme mechanisms in β-lactamases and a N-terminal malondialdehydebinding. FEBS Lett. 586, 4186–4190.

Adler, M., Anam, M., Anderson, D. I., and Sandgren, L. (2013). Influen- ce of acquired β-lactamases on the evolution of spontaneous carbapenem resistance in Enterobacter cloacae. J. Antimicrob. Chemother. 68, 51–59.

Ahmad, A., Burrell, J., and Upton, M. (2011). Enhancement of antibiotic susceptibility of Stenotrophomonas maltophilia using a polyclonal anti- body developed against an ABC multidrug efflux pump. Can. J. Microbiol. 57, 825–828.

Allen, H. K., Donati, J., Wang, H., H. E., Claud-Hamet, K. A., Deros, J., and Handelmann, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 1140–1142.

Allen, K. L., Brenner, M. P., and Collins, J. J. (2011). Metabolite- enabling eradication of bacterial pathogens by aminoacyl- transfer RNA. Nature 471, 236–239.

Alonso, A., and Martinez, J. L. (1997). Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 41, 1140–1142.

Alonso, A., and Martinez, J. L. (2000). Enhanced expression of multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 44, 3079–3086.

Alonso, A., and Martinez, J. L. (2001). Expression of multidrug efflux pump SmcDE by clinical isolates of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 45, 1079–1083.

Alvaraz-Ortega, C., Wiegand, J., Oliveira, I., Vaisar, J., Hancock, R. E., and Martineau, J. L. (2010). Genetic Determinants involved in the susceptibility to beta-lactam antibiotics. Antimicrob. Agents Chemother. 54, 4179–4187.

Ambühl, B., E. B., Cosined, A. F., Frez, J. M., Gheurut, M., Jost, B., Furrer, M., et al. (1991). A standard numbering scheme for the class A beta-lactamase. Biochem. J. 276(Pt 1), 11–209.

Amar, S., Hettos, A. K., Smith, L. E., and Tavaron, T. S. (2011). Fer- nane landscape of antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 7:e2002298. doi: 10.1371/journal.ppat.1002298.

Aminoff, R. I. (2011). A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol. 2:134. doi: 10.3389/fmicb.2011.00134.

Aminoff, S. K., and Smith, G. B. (2003). Interchangeable parts of the Escherichia coli recombination machinery. Cell 112, 741–746.

Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, T., Baba, M., et al. (2006). Construction of Escherichia coli K- 12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006:0088.

Baxa, T., P. R., and Sandegren, L. (2013). Intrinsic antibiotic resistance efflux pumps in Gram-negative bacteria an update. Curr. Opin. Microbiol. 22, 512–519.

Blázquez, J., Baquero, M. R., Car- ton, R., Alix, J., and Baquero, P. (1993). Characterization of a new TEM-type beta-lactamase-resistant to cefotaxime, sulfadiazine, and tetracycline in a clinical isolate of Escherichia coli. Antimicrob. Agents Chemother. 37, 2059–2061.

Bower, T. R., Salmond, G. P., and Lauzi, B. F. (2011). Balancing at survival’s edge: the structure and adaptive ben- efits of prophylactic toxin-antitoxin partners. Curr. Opin. Struct. Biol. 21, 109–114.

Buchanan, E. E., Khura, B. K., Wiegand, L., Overbeek, J., and Hancock, R. E. (2008). Complex ciprofloxacin resistance revealed by sequencing a Pseudomonas aeruginosa mutant library for altered susceptibil- ity. Antimicrob. Agents Chemother. 52, 4486–4491.

Buynak, M. P., Winkler, J. A., Spina, C. S., Macdonald, J. G., and Collins, J. J. (2013). Potentiating antibacterial activity by predictably enhancing endogenous microbial β-lactam production. Nat. Biotechnol. 31, 165–169.

Bush, K. (1998). Beta-lactamase inhibitors from laboratory to clinic. Clin. Microbiol. Rev. 11, 188–195.

Butyn, J. D. (2008). Understanding the longevity of the beta-lactamase antibiotics and of antibiotics/ beta-lactamase inhibitor combinations. Biochem. Pharmacol. 71, 930–940.

Butyn, J. D., Chen, H., Vogeli, U., Gud- lachchdu, T. B., Buchanan, C. A., Palokall, T., et al. (2004). Pencillillin- derived inhibitors that simultane- ously target both metallo- and serine beta-lactamases. Bioorg. Med. Chem. 12, 509–516.

Canica, M. M., Canica, N., Bartle, J., L., Liu, B., Krahnstover, C., Paal, G., et al. (1998). Phenotypic study of resistance of beta-lactamase inhibitor-resistant TEM-oxazone which differ by naturally occurring variations and its site-directed subtitu- tion at Asp276. Antimicrob. Agents Chemother. 42, 1232–1238.

Chen, P., Horton, L. R., Mikkil, S. B., Luo, D., Stundryl, S., Poobul, T., et al. (2012). 2-substituted 4.5-dihydrothiazolo-4(carboxylic acids are novel inhibitors of metallo-beta-lactamase. Bioorg. Med. Chem. Lett. 22, 6229–6232.

Chetel, K., Chavali, J., Bryka, A., and Pagen, J. M. (2004). The AzAR- TACO pump in involved in macrolide resistance but not in teicoplanin efflux in Staphylococcus aureus and Escherichia coli. Antimicrob. Agents Chemother. 48, 3621–3624.

Christensen, S. K., Mikkilin, M., Hol- emen, K., and Greko, K. (2001). Ralf, a global inhibitor of transla- tion, is activated during nutritional stress. Proc. Natl. Acad. Sci. U.S.A. 98, 14326–14331.

Coleman, K. (2011). Diamblycocci- tides (DBDs): a potent new class of non-beta-lactam beta-lactamase inhibitors. Curr. Opin. Microbiol. 14, 556–559.

Corina, P. E., D’Oliveira, A., Jayne, T., Li, L., Karger, B. L., Makarev, K., et al. (2006). Kinase activity of over expressed HipA is required for growth arrest and nutrient-dependent tol- erance in Escherichia coli. J. Bacteriol. 188, 2173–2179.

Costerton, J. W., Stewart, P. S., and Greenberg, E. P. (1995). Bacterial biofilms: a common cause of persistent infections. Science 248, 158–161.

Darias, J. (2006). Are antibiotics naturally antibacterial? Biochem. Biophys. Res. Commun. 345, 496–499.

Darias, J., and Deros, D. (2010). Ori- gins and evolution of antibiotic resis- tance. Microbiol. Mol. Biol. Rev. 74, 417–430.

de Lorenzo, V., and Martinez, J. L. (1987). Resistance efflux pumps from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 31, 109–123.

Dolgohar, E., and Fernando Corona is the recipient of a JAE predoctoral fellowship.
Fernandez, L., Alvarez-Otto, C., Wiegal, G., Olivos, J., Kociernicka, D., Lam, J. S., et al. (2015). Characterization of the polymyxin B resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother 57, 110–119.

Fernandez, L., and Hancock, R. E. (2012). Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Curr. Op. Microbiol 25, 661–681.

Fraiu, H., Toth, M., Champion, M. M., Antonis, N. E., and Vakalounakis, S. B. (2011). Importance of position 170 in the inhibition of G20-type beta-lactamases by clavulanic acid. Antimicrob Agents Chemother 55, 1596–1592.

Fraiu, G. M., and Hughes, C. (1999). Steering motility. Curr. Op. Microbiol 2, 630–635.

Gatta, S. R., Peroulaz, S., Pagadala, S. R., Samuelsen, O., Sponer, J., Pratt, R. E. et al. (2009). Approaches to the simultaneous inactivation of metallic- and some-beta-lactamases. Bioger Med Chem Lett 19, 1618–1622.

Garcia-Lion, G., Sanchez, M. B., and Martinez, J. L. (2012). The fluidization of intrinsic antibiotic resistance determines the wild strain selection factor for quinolones in Streptococcus mutans. Antimicrob Agents Chemother 56, 6997–6999.

Garrido, L. I., Laird, M. C., Chen, F., Roy, S., Walch, J. C., Ebert, M., et al. (2005). PSEP1β2-β1 expanded prediction of bacterial protein subcellular localization and insights gained from comparative genome analyses. Bioinformatics 21, 617–625.

Gard, E., Christiansen, K., and Lohbom-Olson, A. (2005). Prokaryotic toxin-antitoxin stress response island 170 in the inhibition of G20-type beta-lactamases. Metallo-beta-lactamase from Pseudomonas aeruginosa. J. Antimicrob Chemother 55, 1393–1399.

Gerdes, K., and Maisonneuve, E. (2008). Bacterial persistence and multidrug resistance. Curr. Op. Microbiol 11, 161–167.

Gerdes, K., Martinet-Nie, N., Merceuil, M., Galus, J. C., Ghiyesh, B., and Merceuil, M. (2008). The neglected intrinsic resistance of bacterial pathogens. EMBO Rep 9, 1013–1019.

Gerdes, K., and Saunders, E. (2009). Antisense RNA-regulated translation of intrinsic antibiotic resistance genes. Antimicrob Agents Chemother 53, 1007–1013.

Gervais, H., Hulot, J. B., and Lefebvre, J. (1978). Reversible inhibitors of penicillinases. EMBO J 7, 1013–1015.

Gerdes, K., and Maier, V. (2012). The binding of inclusion to SmcP, the repressor of the multidrug efflux pump SmcP/SmP induces antibiotic resistance in Streptococcus mutans. Appl. Microbiol Biol 83, 2145–2150.

Gervais, K., and Maizel, J. V. (1982). Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother 29, 355–358.

Gerdes, K., and Saukkonen, M. (1986). Outer membrane vesicles as effectors of beta-lactamase induction. EMBO J 5, 4084–4094.

Gervais, K. T., Schwartz, M. S., Motyl, M. K., and Surette, M. G. (2004). Bacterial cell-wall peptidoglycan is required for the extracellular antibiotic resistance of Salmonella enterica. EMBO J 23, 1743–1752.

Ghiyesh, B., Ben, I., and Skurray, R. A. (2002). Regulation of bacterial drug export systems. Annu. Rev. Microbiol 56, 117–124.

Girgis, H. S., Hottes, A. K., and Martin, J. L. (1991). Structural and functional analysis of SmcP, the repressor of the multidrug efflux pump SmcP/SmP in Escherichia coli. J. Mol. Biol 214, 1225–1233.

Goldberg, E., Caro, S., Berg, G. I., Ihle, C., Sandgren, L., Hughes, D., et al. (2011). Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7, e1002158. doi: 10.1371/journal.ppat.1002158.

Hancock, R. E. (1984). Alterations in outer membrane permeability. Annu. Rev. Microbiol 38, 237–264.

Hannan, S., Lewis, K., and Yuake, M. (2008). Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Annu. Rev. Microbiol 62, 2718–2726.

Hernandez, A., Mate, M. J., Sanchez-Diaz, F. C., Romero, A., and Reyes, E. (2008). Structural and functional analysis of SmcP, the repressor of the multidrug efflux pump SmcP/SmP in Escherichia coli. J. Mol. Biol 384, 14405–14408.

Hernandez, A., Ruiz, F. M., Romero, A., and Martinez, J. I. (2011). Involvement of the multidrug efflux pump SmcP/SmP in antibiotic resistance in Pseudomonas aeruginosa. Arch Microbiol 193, 1393–1397.

Hirakata, Y., Kondo, A., Hoshino, K., Aoyama, H., Irikura, K., and Motokawa, T. (2012). Quinolone resistance in enteric bacteria. Clin. Microbiol. Rev. 25, 555–582.
Kohanski, M. A., Dwyer, D. J., and Collins, J. J. (2010). How antibiotics kill bacteria from targets to networks. Nat. Rev. Microbiol. 8, 423–435.
Kohanski, M. A., Dwyer, D. J., and Collins, J. J. (2007). A common mechanism of cellular death induced by bacterial antibiotics. Cell 131, 797–810.

Kohanski, M. A., Dwyer, D. J., Wurzbachsohn, J., Cottarel, G., and Collins, J. J. (2008). Misregulation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690.

Kohanski, M. A., Lomovskaya, O., and Watkins, W. (1997). The potential management of resistant infections with non-antibiotics. J. Antimicrob. Chemother. 40, 318–322.

Lai, S., Traubell, J., and Detal, E. (2009). Steering motility: a multi-cellular behaviour conferring antimicrobial resistance. Environ. Microbiol. 11, 126–136.

Levchenko, A., Gierasch, L., Rapp, N., and Koshland, D. E. (2002). Intrinsic antibiotic resistance. Nat. Rev. Microbiol. 4, 516–522.

Levin, M. A., and Cabelli, V. J. (1972). Membrane filter technique for enumeration of Pseudomonas aeruginosa. Appl. Microbiol. 24, 864–870.

Levchenko, A., Gierasch, L., Rapp, N., and Koshland, D. E. (2000). Genomewide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoE fusion screen. Genome Res. 10, 323–329.

Levchenko, K. (2010). Persister cells. Annu. Rev. Microbiol. 64, 357–372.

Lewicki, M., and Anbel, F. M. (2004). Prospects for plant-derived antimicrobials. Nat. Rev. Microbiol. 2, 1504–1507.

Li, M., Conklin, B. C., Taracila, M. A., Hutton, R. A., and Shabot, M. J. (2012). Substitutions at position 105 in SV0 family beta-lactamases decrease catalytic efficiency and cause inhibitor resistance. Antimicrob. Agents Chemother. 56, 5678–5686.

Li, X. Z., Linares, J. F., Gustafsson, I., Baquero, F., Linares, J. F., Moreno, R., Fajardo, A., and Martinez, J. L. (2006). Antibiotics with novel mechanisms affect resistance in Pseudomonas aeruginosa by modulating the expression of the multidrug resistance pump EmrAB. Antimicrob. Agents Chemother. 45, 1340–1346.

Lomovskaya, O., Lee, A., Hoshino, K., Ishida, H., Moity, A., Worton, M. S., et al. (1999). Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 43, 1540–1546.

Lomovskaya, O., Lewis, K., and Matin, A. (1995). Enroll in a negative regulator of the Escherichia coli multidrug resistance pump EmrEC. J. Bacteriol. 177, 2528–2534.

Lomovskaya, O., Warron, M. S., Lee, A., Galano, J., Frenno, R., Lee, M., et al. (2001). Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother. 45, 105–116.

Lomovskaya, O., and Watkins, W. (2001). Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J. Med. Microbiol. 50, S25–S36.

Lublin, J., Ewing, W. N., and Driessen, A. J. (2007). Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol. Mol. Biol. Rev. 71, 845–976.

Lucani, C., Proposito, I., Romeo, M. K., Lipka, J., and Sible, G. (2015). Comparative study of the efficacy and safety of ceftazidime/avibactam plus tigecycline versus monotherapy in the treatment of complicated intra-abdominal infections in hospitalized adults: results of a randomized, double-blind, Phase II trial. J. Antimicrob. Chemother. 66, 1185–1192.

Lyu, A., Cook, D. N., Alberti, M., Pon, N. G., Nikaido, H., and Hearst, J. E. (1993). Molecular doping and characterization of acrA and acrE encoded resistance mechanisms. Clin. Microbiol. Rev. 22, 382–410.

Ma, D., Cook, D. N., Alberti, M., Pon, N. G., Nikaido, H., and Hearst, J. E. (1995). Genes acrA and acrE encode a stress-induced efflux system of Escherichia coli. Mol. Microbiol. 16, 45–55.

MacGowan, C. H., Wölfle, J. A., Arena, S. K., and Phibbs, P. V. Jr. (1991). Cloning of a catalase repression control (csc) gene from Pseudomonas aeruginosa: expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa. J. Bacteriol. 173, 7204–7212.

Mah, T. F., and O’Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39.

Mahmoud, A., Cherekal, J., Davis, R., Abeji, I., and Page, J. M. (2006). Quinolone derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr. Drug Targets 7, 845–847.

Maiorovitch, E., Shapovalov, L. I., Jorgensen, M. G., and Gorden, K. (2011). Bacterial persistences by RNA endonucleases. Proc. Natl. Acad. Sci. U.S.A. 108, 15206–15211.

Markham, P. N., Nishtar, E., Khadik, K., Johnson, M. E., and Nefak, A. A. (1999). Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob. Agents Chemother. 43, 2404–2408.

Mazz, A. K., Otvosleg, J., Bains, M., Melen, O., and Hancock, R. E. (2007). The Lon protease of Pseudomonas aeruginosa is induced by aminoglycosides and is involved in biofilm formation and motility. Microbiology 153, 478–482.

Martinez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367.

Martinez, J. L. (2012). The antibiotic resistance challenge and opportunity for therapeutic intervention. J. Infect. Dis. 207, 437–449.

Martinez, J. L., and Baquero, F. (2000). Mutation frequencies and antibiotic resistance. Antimicrob. Agents Chemother. 44, 1771–1777.

Martinez, J. L., and Baquero, F. (2002). Interactions among strategies associated with bacterial infection: pathogenicity, epidemiology, and antibiotic resistance. Clin. Microbiol. Rev. 15, 467–479.

Martinez, J. L., Baquero, F., and Anders, D. I. (2007). Predicting antibiotic resistance. Nat. Rev. Microbiol. 5, 958–965.
Intrinsic antibiotic resistance

Martinez, J. L., Baquero, F., and Andreu, D. L. (2011). Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. Curr. Opin. Pharmacol. 11, 439–449.

Martinez et al. (2011). Are nonlethal targets useful for developing novel antimicrobials? Future Microbiol. 6, 405–407.

Martinez, J. L., Reis, F., and Vila, J. (2011b). Are nonlethal targets useful for developing novel antimicrobials? Future Microbiol. 6, 405–407.

Martinez et al. (2011b). Are nonlethal targets useful for developing novel antimicrobials? Future Microbiol. 6, 405–407.

Martinez, J. L., Reis, F., and Baquero, F. (1994). Non-canonical mechanisms of antibiotic resistance. J. Antimicrob. Chemother. 33, 1831–1836.

Martinez, J. L., Blazquez, J., and Rojo, F. (1994). Antibiotic resistance caused by gram-negative multidrug-efflux pumps. Clin. Infect. Dis. 27(Suppl. 1), S3–S41.

Martinez, J. L. (1998b). Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1, 316–323.

Martinez, J. L. (1998a). Antibiotic resistance in bacteria. Annu. Rev. Microbiol. 78, 119–146.

Martinez, J. L. (2005). Multidrug resistance in bacteria. Annu. Rev. Microbiol. 59, 407–415.

Martinez, J. L. (2000). Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Curr. Opin. Microbiol. 13, 382–402.

Martinez, J. L. (2007). Efflux pumps as antimicrobial resistance determinants. Annu. Rev. 39, 182–176.

Martinez, J. L., Baquero, F., and Rojo, F. (1997). Multiple antibiotic resistance in Pseudomonas aeruginosa. Evidence for movement of an efflux operon. J. Bacteriol. 175, 7762–7772.

Martinez, J. L., and Lewenza, S. (2008). Extracellular signals and antibiotic resistance. J. Bacteriol. 190, 2671–2679.

Martinez, J. L., Baquero, F., and Rojo, F. (1996). Intrinsic antibiotic resistance. Antimicrob. Agents Chemother. 41, 1718–1724.

Martinez, J. L., Rojo, F., and Vila, J. (2005). Antibiotic resistance caused by gram-negative multidrug-efflux pumps. Curr. Opin. Microbiol. 8, 498–504.

Martinez, J. L., Rojo, F., and Vila, J. (2004). Beyond multidrug resistance: new mechanisms for antibiotic resistance. FEMS Microbiol. Rev. 28, 485–505.

Martinez, J. L., Rojo, F., and Vila, J. (2003). Antibiotic resistance in Pseudomonas aeruginosa in the absence of multidrug-efflux pumps. J. Bacteriol. 185, 5805–5812.

Martinez, J. L., Rojo, F., and Vila, J. (2002). Novel mechanism of inhibition of a serine beta-lactamase by O-aminophenylboronic hydroxyls. Biochemistry 41, 2507–25086.

Martinez, J. L., Rojo, F., and Vila, J. (2001). Antibiotic resistance caused by gram-negative multidrug-efflux pumps. FEMS Microbiol. Lett. 189, 4223–4235.

Martinez, J. L., Rojo, F., and Vila, J. (2000). Involvement of intrinsic antibiotic resistance in the emergence of resistance to novel antibiotics. Curr. Opin. Microbiol. 3, 383–388.

Martinez, J. L., Rojo, F., and Vila, J. (1999). Novel mechanism of inhibition of a serine beta-lactamase by O-aminophenylboronic hydroxyls. Biochemistry 41, 2507–25086.

Martinez, J. L., Rojo, F., and Vila, J. (1998a). Antibiotic resistance caused by gram-negative multidrug-efflux pumps. FEMS Microbiol. Lett. 189, 4223–4235.

Martinez, J. L., Rojo, F., and Vila, J. (1998b). Antibiotic resistance caused by gram-negative multidrug-efflux pumps. FEMS Microbiol. Lett. 189, 4223–4235.

Martinez, J. L., Rojo, F., and Vila, J. (1997). Efflux pumps as antimicrobial resistance determinants. Annu. Rev. 39, 182–176.

Martinez, J. L., Rojo, F., and Vila, J. (1996). Intrinsic antibiotic resistance. Antimicrob. Agents Chemother. 41, 1718–1724.

Martinez, J. L., Rojo, F., and Vila, J. (1995). Antibiotic resistance caused by gram-negative multidrug-efflux pumps. Curr. Opin. Microbiol. 8, 498–504.

Martinez, J. L., Rojo, F., and Vila, J. (1994). Intrinsic antibiotic resistance. Antimicrob. Agents Chemother. 41, 1718–1724.

Martinez, J. L., Rojo, F., and Vila, J. (1993). Antibiotic resistance caused by gram-negative multidrug-efflux pumps. FEMS Microbiol. Lett. 189, 4223–4235.

Martinez, J. L., Rojo, F., and Vila, J. (1992). Antibiotic resistance caused by gram-negative multidrug-efflux pumps. FEMS Microbiol. Lett. 189, 4223–4235.

Martinez, J. L., Rojo, F., and Vila, J. (1991). Antibiotic resistance caused by gram-negative multidrug-efflux pumps. FEMS Microbiol. Lett. 189, 4223–4235.

Martinez, J. L., Rojo, F., and Vila, J. (1990). Antibiotic resistance caused by gram-negative multidrug-efflux pumps. FEMS Microbiol. Lett. 189, 4223–4235.
Intrinsic antibiotic resistance

Dissanayake et al.

Frontiers in Microbiology | Antimicrobials, Resistance and Chemotherapy

April 2013 | Volume 4 | Article 103 | 14

Mol. Plant Microbe Interact. 24, 752–757.

Ragunathan, J. A., Perez-Diaz, J. C., and Martinez, J. L. (1991). Factors determining resistance to beta-lactam combined with beta-lactamase inhibitors in Escherichia coli. J. Antimicrob. Chemother. 29, 569–579.

Renau, T. E., Leger, R., Flamme, E. M., Sangalang, J. S., Mo, W. Y., Ven, R., et al. (1999). Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibiotic levofloxacin. J. Med. Chem. 42, 4928–4931.

B3 metallo-beta-lactamase, SMB-1, and Shibayama, K. (2012). Structural and functional insights of promiscuous resistance determinants in Escherichia coli. Proc. Natl Acad. Sci. USA 109, 1484–1489.

Studier, F. W., Borys, R. R., Hancock, R. E., and Gill, K. R. (2013). Genome-wide identification of genes conferring related resistance to a synthetic antibiotic Peptidase (Novobiocin). PLoS ONE 8:e59052. doi: 10.1371/journal.pone.0059052

Stover, C. K., Pham, X. Q., Erwin, A., Andersen, J. B., Givskov, M., A., and Hu, R. M. (2012). Cefoxitin is an inhibitor of class A beta-lactamase of Acinetobacter baumannii cmp34 and an inducer of its gene. Res. Microbiol. 163, 418–427.

Stewart, P. S., Davidson, W. M., and Steenbergen, J. N. (2009). Tetracycline rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother. 53, 3091–3097.

Sugawara, E., and Nikaido, H. (1992). Outer membrane vesicles of Stenotrophomonas maltophilia: an extracellular compartment. J. Bacteriol. 174, 254–256.

Sugawara, E., and Nikaido, H. (1997). Active efflux of bile salts by Escherichia coli. J. Bacteriol. 179, 252–258.

Tegos, G., Stermitz, F. R., Lemoszky, O., and Lewis, K. (2002). Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother. 46, 3155–3164.

Thai, T., Heng, L. W., and nikaido, H. (1995). Antimicrob. Agents Chemother. 39, 1247–1250.

Tena, J., Tavankar, G. R., Mossialos, D., and Stewart, P. S. (2005). Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47, 517–523.

Walker, C. (2000). Molecular mechanisms that confer bacterial drug resistance. Nature 406, 775–781.

Watanabe, T. (1993). Inductive herald of multiple drug resistance in bacteria. Rev. Sci. 27, 87–113.

Watkins, W. J., Landaverde, Y., Leger, R., Zemtn, R., Renau, T. E., Williams, N. C., et al. (2005). The relationship between physicochemical properties, in vitro activity and pharmacokinetic values. Clin. Microbiol. 12, 418–422.

Wheeler, M. A., and Piddock, L. J. (2003). The importance of efflux pumps in bacterial antibiotic susceptibility under surviving conditions. Curr. Microbiol. 46, 152–161.

Wendling, N., Tarit, J. F., and Limbert, D. M. (2011). Multiresistant Gram-negative bacteria: the role of virulence factors. Microbiol. Clin. Microbiol. Infect. 17, 42–43.

Williams, H. D. (2003). Mutation or mutagenesis of Escherichia coli. Mol. Microbiol. 47, 317–323.

Wong, L., Zhang, C., Gong, F., Li, H., Xie, X., Xue, C., et al. (2010). Influence of Pseudomonas aeruginosa PRP genes on altering antibiotic susceptibility under surviving conditions. Curr. Microbiol. 59, 88–91.
the beta-lactamase from Mycobacterium tuberculosis. Biochemistry 51, 4551–4557.
Yim, G., Wang, H. H., and Davies, J. (2006). The truth about antibiotics. Int. J. Med. Microbiol. 296, 163–170.
Yim, G., Wang, H. H., and Davies, J. (2007). Antibiotics as signalling molecules. Philos. Trans. R. Soc. B Biol. Sci. 362, 1195–1200.
Yoshida, K., Nakayama, K., Kuru, N., Kehayashi, S., Otomo, M., Takeda, M., et al. (2006a). MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 5: carbon-substituted analogues at the C-2 position. Bioorg. Med. Chem. 14, 1993–2004.
Yoshida, K., Nakayama, K., Ohtsuka, M., Kuru, N., Yokomizo, Y., Sakamoto, A., et al. (2006b). MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 6: exploration of aromatic substituents. Bioorg. Med. Chem. 14, 8506–8518.
Yoshida, K., Nakayama, K., Ohtsuka, M., Kuru, N., Yokomizo, Y., Sakamoto, A., et al. (2007). MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogues. Bioorg. Med. Chem. 15, 7087–7097.
Yuan, J., Chou, D. C., Huang, W., and Paddock, T. (2011). Identification of a beta-lactamase inhibitory protein variant that is a potent inhibitor of Sphingomonas P21 beta-lactamase. J. Biol. Chem. 406, 739–744.
Zervosen, A., Bousilla, A., Herman, A., Atwood, A., Joris, B., Sauvage, E., et al. (2012). Synthesis and evaluation of boronic acids as inhibitors of penicillin-binding proteins of classes A, B, and C. Bioorg. Med. Chem. 20, 3915–3924.
Zhao, Q., Li, X. Z., Mistry, A., Srikanth, R., Zhang, L., Lomovskaya, O., et al. (1998). Influence of the TonB energy-coupling protein on efflux-mediated multiresistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 42, 2225–2231.
Zhou, X., Jia, F., Liu, X., and Wang, Y. (2012). Total alkaloids of Sophora alopecuroides-induced down-regulation of AcrAB-ToLC efflux pump reverses susceptibility to Ciprofloxacin in clinical multidrug resistant Escherichia coli isolates. Phytother. Res. 26, 1657–1665.
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Received: 15 February 2013; accepted: 11 April 2013; published online: 30 April 2013.
Citation: Olivares J, Bernardini A, Garcia-Leon G, Sanchez MB and Martinez JL (2013) The intrinsic resistome of bacterial pathogens. Front. Microbiol. 4:103. doi: 10.3389/fmicb.2013.00103
This article was submitted to Frontiers in Antimicrobials, Resistance and Chemotherapy, a specialty of Frontiers in Microbiology.
Copyright © 2013 Olivares, Bernardini, Garcia-Leon, Sanchez and Martinez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.