Cognitive and Psychological Impacts of Different Treatment Options for Prostate Cancer: A Critical Analysis

Konstantina G. Yiannopoulou, Aikaterini I. Anastasiou, Konstantinos Kontoangelos, Charalambos Papageorgiou, Ioannis P. Anastasiou

Department of Neurology, "Henry Dunant" Hospital Center; Medical School of Athens, National and Kapodistrian University of Athens; 1st Department of Psychiatry, Medical School, National & Kapodistrian University of Athens, Eginition Hospital; 1st Urology Department, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece

Abstract

Objectives: Psychological morbidity as well as cognitive impairment are increasingly reported in prostate cancer (PCa) patients. However, despite growing numbers of PCa survivors and the well estimated negative impact of cognitive decline and emotional distress on survivors' quality of life, no study has assessed the whole range of cognitive and psychological sequelae as a response to treatment options for PCa. The objective of the present review was to systematically characterize the types and estimate the prevalence of the cognitive impairment and emotional burdens that were found in PCa survivors secondary to different treatment options. Methods: Systematic, general reviews, meta-analysis, and overviews of review studies in English, that were published in PubMed during the last 10 years until August 2019 and that reported psychological distress, anxiety, depression, cognitive decline, or dementia among individuals with PCa exposed to a particular treatment option were analyzed. Results: A total of 21 articles were reviewed. Some of the studies described one or more cognitive or psychological consequences of only one therapeutic strategy while others compared the psychological impacts among different strategies. Most of these studies suggested that either radical prostatectomy or active surveillance and radiotherapy were well-tolerated treatments in terms of psychological modifications. However, many of these patients may require additional emotional support. There is also increasing evidence that androgen deprivation therapy may be associated with depression, while controversy surrounding the association between cognitive dysfunction, dementia, and androgen deprivation therapy remains ambivalent. Conclusion: Emotional distress and cognitive decline may accompany every PCa treatment option to different degrees. Accurate information on the short- and long-term effect of treatments on cognitive and psychological aspects should be provided to patients during treatment decision-making. There is also a need to develop well-targeted psychological and neurological interventions that could help those experiencing ongoing post-treatment difficulties.

Introduction

Prostate cancer (PCa) is the most common non-skin cancer in males over 70 years of age in Europe. It is one of the major health concerns in developed countries. The incidence is highest in Northwestern Europe (> 200 per...
100,000 men), while global rates have shown a continuous increasing tendency in the last 20 years. This fact is probably secondary to a progressive aging population and to the ongoing use of the prostate-specific antigen test and subsequent biopsy that contribute to a significant increase in the diagnosis of PCa [1].

Given the longevity associated with the PCAs (over 70% of patients with PCAs can expect to live for 10 years or more from the time of diagnosis), the management of survivorship issues within this population assumes paramount importance. Such issues revolve around the effective maintenance of the quality of life (QoL) throughout post-treatment survivorship. Specific psychological and cognitive concerns associated with the painful cancer journey should be better addressed [2, 3].

Both PCAs diagnosis and treatment options for PCAs have a negative impact on psychological and mental well-being, and are associated with a decreased QoL [3]. Over recent decades, numerous studies of PCAs have demonstrated a significant association between specific treatment methods and the incidence of complications [4].

The most common psychological symptoms experienced by PCAs patients are anxiety and depression [4]. Furthermore, recent studies indicated that the high fear of cancer recurrence (FCR) is an understudied topic in PCAs survivors [5].

There is also increasing controversy surrounding the association between cognitive dysfunction and certain PCAs treatment options [6].

Even patients diagnosed with the milder form of the disease, localized PCAs, have to choose among the available treatment options while every one of them has its own efficacy rate as well as its own set of complications, side effects and financial costs. They usually have to undergo either multiple surgical approaches to prostatectomy, or various forms of external-beam and interstitial radiation. There is also the option of a growing list of energy ablative technologies and the option of expectant management, which is separated into watchful waiting (WW) and active surveillance (AS) [7, 8]. Androgen deprivation therapy (ADT) has been an essential treatment option initially restricted to more advanced stages of the disease, and recently extended to earlier stages [7, 8]. Accurate information on the short- and long-term effects of treatments on cognitive and psychological aspects should be provided to patients during treatment decision-making.

The aim of the present review was to systematically characterize the types and estimate the prevalence of the cognitive impairment and emotional burdens that are found in PCAs survivors secondary to different treatment options.

Materials and Methods

PubMed was queried in August, 2019. Eligible studies were systematic, general reviews, meta-analysis, and overviews of review studies in English that were published during the last 10 years and that reported psychological distress, anxiety, depression, cognitive decline, or dementia among individuals with PCAs exposed to a particular treatment option. The following search terms were used: “prostate cancer”, “active surveillance”, “radical prostatectomy”, “radiotherapy”, “hormonal therapy”, “androgen deprivation therapy”, “anxiety”, “distress”, “depression”, “cognitive impairment”, and “dementia”.

Some studies analyzed one or more cognitive and psychological consequences of only one therapeutic strategy while others compared the cognitive and psychological impacts among different strategies. Overall, 21 review articles were examined. There were 6 studies analyzed the psychological consequences of AS, 13 studies reported the cognitive and psychological consequences of ADT, and 2 additional review studies compared the cognitive and psychological impacts among different treatment strategies.

Results

Cognitive and Psychological Burdens Following Expectant Management (WW and AS)

AS is the most conservative management approach, conducted for those patients with “low-risk” or “favorable-risk” disease, which is supposed to avoid long-term adverse effects on the patient’s QoL. It is characterized by a routine protocol of close monitoring with digital rectal examination, periodic prostate biopsy, and serial prostate-specific antigen testing [9].

However, there are concerns that this method may potentially harm patients’ well-being through living with the knowledge of untreated PCAs [10]. On the contrary, this option may be under-used, because of fears of psychological adverse events in those accepting AS [11].

The first systematic review about psychological impacts of AS by van den Bergh et al. [12] analyzed scarce observations derived from non-randomized studies with a limited follow-up after diagnosis. Nevertheless, it concluded that AS does not cause much anxiety or distress in the short term in men who follow this strategy.

The men who were on AS according to the systematic review by Bellardita et al. [10] usually reported good levels of well-being and did not appear to suffer major negative psychological impacts. The research findings
suggested little presence of anxiety and depression and high overall QoL related to their disease. However, the authors underlined that there are few long-term studies, so more well-designed research is needed to make definitive recommendations.

In accordance to the previous study, the systematic review by Carter et al. [11] supported that patients can be informed that AS involves no greater threat to their psychological well-being as part of the informed consent process, and clinicians need not limit access to AS based on a prejudice of adverse sequelae on overall psychological well-being.

An additional recent systematic review by Dickey et al. [13] reassured that the majority of articles indicated low levels of anxiety and depression among men undergoing AS. At the same time, this review highlighted that the results of clinical trials indicated that additional research is needed to determine the exact psychological impact among men undergoing AS on a longitudinal basis.

On the contrary, another review study by Kazer et al. [14] highlighted the psychological burden of living with PCa in AS due to high levels of anxiety and uncertainty secondary to this method and suggested that effective clinician education and counseling, as well as referral of the patients for adjuvant support services must be integrated in clinical practice. In support of the previous point of view, a more recent review by Ruane-McAteer et al. [15] suggested that many quantitative studies may not provide a precise estimation of the psychological burden of AS due to methodological concerns. Further studies of combined high quality methods are necessary to provide clarity on the psychological impact of AS. Consequently, they warn that clinicians should be aware that despite conclusions of previous reviews, patients may require additional emotional support.

Additionally, a qualitative systematic review about WW or AS as therapeutic options for PCa and other chronic clinical entities by Rittenmeyer et al. [16] concluded that the whole process of making the decision to choose WW is complex. A total of 16 studies, critically assessed by 2 independent reviewers and deemed to be of high quality, were included in the final review. The review suggested that patients experience a plethora of emotions that often lead to uncertainty and anxiety. An empathic, reassuring relationship with the healthcare practitioner eases the burden of this treatment option and is highly recommended, as well as more future studies of high quality.

Overall, 4 systematic reviews supported that AS is not a threat for the psychological well-being of PCa patients [10–13] while 2 reviews warned practitioners of the possibility of increased psychological distress in their patients despite findings of many other reviews [14, 15]. Furthermore, a more general qualitative systematic review about WW or AS in different chronic diseases including PCa concluded that patients following this process experience high levels of distress [16]. All of the studies recommended further longitudinal studies of high-quality methodology (table 1).

Table 1. Reviews on the cognitive and psychological burdens of AS

Study	Design	Results
van den Bergh et al. [12], 2012	non-randomized studies	no significant anxiety or distress prevalence
Bellardita et al. [10], 2015	six cross-sectional studies and 4 cohorts	no significant anxiety or distress prevalence
Carter et al. [11], 2015	review of 34 articles: 24 observational, 8 RCTs, and 2 interventional studies	no significant anxiety or distress prevalence
Dickey et al. [13], 2019	review of 11 articles: 8 quantitative non-RCT studies, 1 with mixed methods, 1 quantitative cross-sectional questionnaire survey, and 1 systematic review	no significant anxiety or distress prevalence
Kazer et al. [14], 2013	review of 14 non-randomized studies	underestimated anxiety and uncertainty prevalence in the literature
Ruane-McAteer et al. [15], 2017	review of 23 articles: 20 quantitative and 3 qualitative	no significant anxiety or distress prevalence in the literature; however, caution because of the low quality of the research
Rittenmeyer et al. [16], 2016	review of 16 selected studies	no clear prevalence of uncertainty and anxiety

RCT = Randomized controlled trial.
Cognitive and Psychological Burdens Following ADT

Depression in ADT Patients There is increasing evidence that ADT may be associated with depression according to review articles by Casey et al. [17], Donovan et al. [18], Rhee et al. [19], and a systematic review and meta-analysis by Nead et al. [20]. It was further reported by Cherrier et al. [21] that when ADT patients are estimated by a diagnostic depression instrument, approximately 12.8% meet clinical criteria for depression. Also, certain depressive symptoms (poor appetite, disrupted sleep, worry, intrusive thoughts, and low mood) can also adversely impact intact cognitive functioning [20].

Anxiety and other Mood Changes in ADT Patients Cherrier et al. [21] also reported that men undergoing ADT often present a broad symptomatology of mood changes beyond depression. This can include fatigue, moodiness, irritability, tension, anxiety, and apathy.

Cognitive Impairment in ADT Patients There is also increasing controversy surrounding the association between cognitive dysfunction and the receipt of ADT, with some evidence suggesting an increased risk of dementia.

According to an overview of reviews by Treanor et al. [22] about cognitive impairment among PCa patients on ADT, prevalence rates varied between 10 and 69%. Cognitive domains impaired by ADT included: verbal memory, visuospatial ability, and executive functions. It was highlighted by the authors that there is a need to agree on a definition of cognitive impairment in the clinical epidemiology of cancer and to standardize the selection of measures in order to aid accurate assessment and fair comparisons across studies regarding the prevalence of cognitive impairment among PCa patients.

Another review by Mundell et al. [23] reported a similar impact of ADT on the same cognitive domains and recommended routine assessment of cognitive function in these men. Two previous systematic reviews by McGinty et al. [24] and Jamadar et al. [25] supported that PCa patients who received ADT performed significantly worse specifically on visual-motor tasks compared to non-cancer control groups.

On the contrary, a systematic review and meta-analysis by Sun et al. [26] concluded that analysis between overall cognitive impairment and use of ADT defined according to International Cognition and Cancer Task Force criteria in a pooled analysis were inconclusive. This study supported that in retrospective cohort studies the risk of overall cognitive impairment after ADT was not significant and suggested that better prospective longitudinal studies need to be designed for the assessment of this end point.

Other reviews (McHugh et al. [6] and Wu et al. [27]) were somewhere between suggesting cognitive impairment may or may not occur in PCa patients in ADT. However, because of methodological shortcomings and heterogeneity of clinical studies, conclusions regarding the effects of hormone therapy on cognitive functions remain ambivalent. They also supported the need of larger scale neuropsychological studies that also evaluate the impact of impairments on activities of daily living. Furthermore, it was recommended [6] that recent studies do not form a body of work that can independently support a conclusion or change in practice.

The most recent review about ADT impact on cognition by Cherrier et al. [21] highlighted the uncertainty and controversy in different studies and the factors that may contribute to variations in findings. These factors include the specific method of ADT treatment (continuous vs. intermittent), methods of achieving androgen deprivation (orchiectomy vs. gonadotropin-releasing hormone agonists or other therapeutic options), the timing of cognitive assessment (only on ADT vs. comparing pre-ADT baseline to treatment), the presence of concomitant treatments (e.g., radiation), and use of control groups (healthy controls vs. men with PCa not on ADT). Nonetheless, it concluded that well-designed prospective longitudinal studies completed to date suggested that ADT can adversely impact cognition for some men and future research should address the factors that can make these men more susceptible to cognitive decline from ADT.

Dementia in ADT Patients Even more ambivalent is the controversy in the literature about the increased risk of dementia among PCa patients under ADT.

The first systematic review and meta-analysis on ADT for PCa and dementia risk by Nead et al. [28] included 9 studies and concluded that the currently available combined evidence suggested that ADT in the treatment of PCa may be associated with an increased dementia risk. It was recommended that the potential for neurocognitive deficits secondary to ADT should be discussed with patients and prospectively evaluated.

According to the next general review study on the topic by McHugh et al. [6] propelling the public concerns about an association between ADT use and dementia was a recent single institution, retrospective study undertaken at Stanford University [28], that revealed a 4.4% absolute increased dementia risk in ADT users (3.5% in non-users vs. 7.9% in users). In addition to being a retrospective, single institution study, this study was not adequately powered to analyze the dementia risk by type of ADT, nor could the disease state for ADT use be characterized.
The same general review [6] also presented three recent population-based studies (one from the UK and two from Taiwan) [29–31] where the use of ADT was not associated with an increased risk of dementia.

The recommendation of this review study [6] to physicians was that until prospective, randomized controlled studies with close and long periodic follow-ups are completed, they might discuss the possible association of ADT and cognitive impairment prior to the initiation of ADT with their patients. Once ADT is started, these patients can be routinely assessed during follow-up for mild cognitive changes; with early specialist referral should cognitive impairment emerge.

Although the last review about ADT and dementia by Cherrier et al. [21] underlined that ADT was shown to disrupt and reduce brain metabolism in brain regions that overlap with regions of metabolic disruption in Alzheimer’s disease (AD) as measured by positron emission tomography concluded that the results of studies examining the onset of AD and/or dementia suggest that this connection exists for some but not all men undergoing ADT.

Overall, there is increasing evidence that ADT may be associated with depression in a high prevalence of approximately 12.8% while other emotional distress indicators such as anxiety and irritability can be present [20].

On the contrary, controversy surrounding the association between cognitive dysfunction, dementia, and ADT remains contradictory. Most of the review studies concluded that recent clinical studies did not form a body of work that can independently support a conclusion or change in practice. In support of this ambivalence, the two most recent retrospective cohort clinical studies provided opposite conclusions. The study by Jayadevappa et al. [33] assessed 62,330 men who received ADT within 2 years of PCa diagnosis, and 91,759 men with PCa who did not receive ADT. They concluded that ADT was associated with subsequent diagnosis of dementia or AD over a follow-up period of at least 10 years. On the contrary, Robinson et al. [34] studied 18,758 PCa patients in ADT, 7,209 PCa patients in WW, and 121,018 matched controls and concluded that their study did not support previous observations of an increased risk of AD for men on ADT. They observed only a small upward tendency in risk of non-AD dementia.

The only slight difference for physicians might be to discuss the possible – though not certain – association of

Study	Design	Results
Casey et al. [17], 2012	review of 9 studies on neuropsychological symptoms: 4 quantitative non-RCTs, 3 reviews, and 1 cohort study	significant prevalence of dementia and cognitive decline
Donovan et al. [18], 2015	review of 12 studies on neuropsychological symptoms: 8 quantitative non-RCTs, 3 reviews, and 1 cohort study	significant prevalence of dementia and cognitive decline
Rhee et al. [19], 2015	review of 4 studies on neuropsychological symptoms: 1 quantitative non-RCTs, 1 review, and 2 RCTs	significant prevalence of dementia and cognitive decline
Cherrier et al. [21], 2020	review of 47 studies on neuropsychological symptoms: 32 quantitative non-RCTs, 7 reviews, 2 RCTs, 3 cohort studies, and 1 qualitative study	significant prevalence of depression, equivocal prevalence of dementia and cognitive decline
Treanor et al. [22], 2017	review of 28 studies	significant prevalence (10–69%) of cognitive decline
Mundell et al. [23], 2017	review of 11 longitudinal studies	significant prevalence of decline in multiple cognitive domains in many studies
McGinty et al. [24], 2014	review of 14 longitudinal comparative studies with objective neuropsychological data	significant cognitive deficits only in visuomotor tasks
Sun et al. [26], 2018	review of 26 studies: 2 prospective and 4 retrospective studies were analyzed	no significant prevalence of cognitive decline
Jamadar et al. [25], 2012	review of 11 studies: 1 RCT, 1 observational study, and 9 non-RCT quantitative studies	significant cognitive deficits only in spatial memory, and perhaps verbal memory
Wu et al. [27], 2017	review of 6 studies: 4 review studies and 2 RCTs	possible cognitive deficits
McHugh et al. [6], 2018	review of 7 studies for cognitive impairment (1 RCT and 6 non-RCTs) and 4 observational studies for dementia	possible cognitive deficits
Nead et al. [20], 2017	review of 9 comparative studies	possible increased dementia risk

RCT = Randomized controlled trial.
ADT and cognitive impairment prior to the initiation of ADT with their patients, and to assess them for memory and functional deficits, with early specialist referral if cognitive impairment emerges (table 2).

Cognitive and Psychological Burdens Following Radiotherapy or Radical Prostatectomy (RP)

There are no review studies about cognitive or psychological sequelae exclusively following radiotherapy or RP.

Cognitive and Psychological Burdens following AS, RP, Radiotherapy, or ADT

There were 2 review studies that compared some psychological consequences of particular therapeutic options for PCa.

The review article by Klaassen et al. [35] analyzed the current literature and addressed the relationship among different profiles of PCa patients, depression, and suicidal ideation. It concluded that PCa patients at increased risk for suicide are men with distant disease and especially survivors more than 15 years after diagnosis. Additionally, patients that received ADT are 23% more likely to develop depression compared to those without ADT. The study warned that the outcome of these high-risk patients might be tragic. Hence, it should be optimized by screening for depression and suicidal ideation and timely psychiatric referral.

Overall, 18 studies were included and critically evaluated by a recent critical analysis (Maggi et al. [36]) on the psychological impact of different primary treatments for PCa.

Four of these studies were particularly focused on AS. Three of them (Anderson et al. [37], van den Bergh et al. [38], and Wilcox et al. [39]) concluded that AS was associated with favorable levels of anxiety and depression. On the contrary, one study (Watts et al. [40]) showed that AS patients experienced higher rates of anxiety and depression (23 and 12%, respectively) than those expected in the general population.

Ten of the selected studies analyzed RP cases. All showed 5% of cases or less with moderate or severe anxiety or depression after surgery with stable results during follow-up [41–51]. Five studies analyzed radiotherapy cases [46–50].

Most showed post-radiotherapy stable percentages of anxiety in 12–14% of the cases. Lower and stable results (7% of cases) were found for depression.

Three studies compared the three different treatments (AS, RP, and radiotherapy). Venderbos et al. [50] concluded that AS in the long-term does not cause anxiety when compared to radiotherapy and RP. However, the percentages of highly anxious cases were not dramatically different in all 3 groups (AS 8%, radiotherapy 12%, and RP 13%). In the post-treatment follow-up, anxiety was similarly distributed among the 3 treatments (13–16% of cases) while depression showed a lower percentage (5–7%) according to Donovan et al. [18]. Sciarra et al. [52] showed that cases with RP and AS maintained low and stable percentages of anxiety and depression. On the contrary, cases with radiotherapy showed a significant increase in the percentage of suspicious anxiety (57%) and depression (58%) at a 1-month interval. At a 12-month interval, no cases with RP showed anxiety and depression, whereas 5.3% of cases with AS reported a suspicious depression, and 5.9 and 3.9% with radiotherapy showed a suspicious or definite anxiety and depression, respectively. In conclusion, all of the selected treatment options (AS, RP, and radiotherapy) were well tolerated in terms of definite anxiety and depression during the post-treatment follow-up.

Table 3. Reviews of cognitive and psychological burdens on different therapeutic options in PCa patients

Study	Design	Results
Klaassen et al. [35], 2018	review of 15 studies for depression and suicidal ideation in PCa patients after AS, RP, and radiotherapy, ADT treatment: 5 cohort and 10 non-RTCs	ADT patients: 23% more likely to develop depression compared to those without ADT; high risk group for suicidal ideation
Maggi et al. [36], 2019	review of 18 studies for anxiety and depression in PCa patients after AS, RP, and radiotherapy, treatment: 2 multi-center randomized studies, 8 multi-center but non-randomized studies, and 8 single-center study controls; 10 studies comparatively considered the different treatments for PCa and 8 studies analyzed only one treatment	AS, RP, and radiotherapy are tolerated in terms of definite anxiety and depression

RCT = Randomized controlled trial.
To sum up, these 2 multiple review studies further supported the high prevalence of depression in ADT patients and they added the suspicion of suicidal ideation in this particular group of patients, especially for those who were diagnosed with PCa for more than 15 years.

Anxiety in AS still remains a vague issue that seems mild and well tolerated but needs alertness from the physicians and further research. Anxiety or depression after RP shows a 5% prevalence that seems stable during follow-up.

Post-radiotherapy percentages of anxiety remained stable in 12–14% of the cases. Lower and stable results (7% of cases) were found for depression in this patient population.

In conclusion, all of the primary treatments for PCa (AS, RP, and radiotherapy) were well tolerated in terms of definite anxiety and depression during the post-treatment follow-up (table 3).

Discussion

Despite growing numbers of PCa survivors, there is little research regarding factors that contribute to psychological adjustment and cognitive stability in PCa patients, while different mental and emotional consequences of every treatment option are hypothesized to play a role in men’s neurological and psychological health [4, 39]. This lack of evidence makes it very difficult for physicians working with PCa patients to interpret psychological data in clinical practice. Patients and clinicians might wish to know how cognitive and psychological aspects may be differently influenced by treatment choice. Information on the short- and long-term effects of treatments on cognitive and psychological aspects should be provided to patients during treatment decision-making.

Furthermore, knowledge of the presence of the psychological burden and/or cognitive decline in PCa patients is important because research to generate models of causality, prognosis, and treatment effects depend on the accurate determination of prevalence and also the need to develop well-targeted psychological and neurological interventions that could help those experiencing ongoing post-treatment difficulties.

It is obvious that the vaguest area in PCa treatment options’ sequelae is the risk of cognitive decline following ADT. It was highlighted by previous authors that there is a need to agree on a definition and a standardized assessment of cognitive impairment among PCa patients [21]. It is also well recognized that better prospective studies need to be designed for the assessment of this end point [25].

We also suggest that selected elements of the current guidance provided by the US Food and Drug Administration for clinical trials in AD [53] and of the new research framework proposed by the National Institute on Aging and the Alzheimer’s Association [54], could be integrated in prospective randomized clinical trials for the prevalence of mild cognitive impairment, AD, or other forms of dementia in PCa patients following ADT. In addition to basic neuropsychological assessment and brain magnetic resonance imaging for every PCa patient before ADT, APOE4 genotyping could help to detect asymptomatic subjects at risk of developing AD [55].

Key Points

- Either RP or AS and radiotherapy are well-tolerated treatments in terms of psychological modifications. However, clinicians should be aware that despite findings of previous reviews, patients may require additional emotional support. An empathic, reassuring relationship with the healthcare practitioner eases the burden of any possible psychological distress and is highly recommended.
- There is increasing evidence that ADT may be associated with mild or major depression while controversy surrounding the association between cognitive dysfunction, dementia, and ADT remains ambivalent.
- Recent studies on cognitive or psychological consequences of ADT do not form a body of work that can independently support a conclusion or change in practice for ADT patients. Nevertheless, physicians might discuss the possible – though not certain – association of ADT and depression or cognitive impairment prior to the initiation of ADT with their patients, and to assess them for temporal neuropsychological changes, with early specialist referral if mood changes or cognitive impairment emerge.
References

1. Arnold M, Karim-Kos HE, Coebergh JW, Byrnes G, Antilla A, Ferlay J, Renehan AG, Forman D, Soerjomataram I: Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory. Eur J Cancer 2015;51:1164–1187.

2. Watts S, Leydon G, Birch B, Prescott P, Lai L, Eardley S, Lewish G: Depression and anxiety in prostate cancer: a systematic review and meta-analysis of prevalence rates. BMJ Open 2014;4:e003901.

3. Park JH, Jung YS, Jung YM, Bae SH: The role of depression in the relationship between cognitive decline and quality of life among breast cancer patients. Support Care Cancer 2019;27:2707–2714.

4. Jarzembski P, Brzoszczyn B, Popiolek A, Stachowicz-Karpia ska A, Golota S, Bieli ski M, Borkowska A: Cognitive function, depression, and anxiety in patients undergoing radical prostatectomy with and without adjuvant treatment. Neuropsychiatr Dis Treat 2019;15:819–829.

5. van de Wal M, van Oort I, Schouten J, Thewes B, Gielissen M, Prins J: Fear of cancer recurrence in prostate cancer survivors. Acta Oncol 2016;55:821–827.

6. McHugh DJ, Root JC, Nelson CJ, Morris MJ: Androgen-deprivation therapy, dementia, and cognitive dysfunction in men with prostate cancer: how much smoke and how much fire? Cancer 2018;124:1326–1334.

7. Lavery HJ, Cooperberg MR: Clinically localised prostate cancer in 2017: a review of comparative effectiveness. Urol Oncol 2017;35:40–41.

8. Filson CP, Marks LS, Litwin MS: Expectant management for men with early stage prostate cancer. CA Cancer J Clin 2015;65:265–282.

9. Garisto JD, Klotz L: Active surveillance for prostate cancer: how to do it right. Oncology (Williston Park) 2017;31:333–340.

10. Bellardita L, Valdagni R, van den Bergh R, Randsdorp H, Repetto C, Venderbos LD, Lane JA, Korfage IJ: How does active surveillance for prostate cancer affect quality of life? A systematic review. Eur Urol 2015;67:637–645.

11. Carter G, Clover K, Britton B, Mitchell AJ, White M, McLeod N, Denham J, Lambert SD: Wellbeing during active surveillance for localised prostate cancer: a systematic review of psychological morbidity and quality of life. Cancer Treat Rev 2015;41:46–60.

12. van den Bergh RC, Korfage IJ, Bangma CH: Psychological aspects of active surveillance. Curr Opin Urol 2012;22:237–242.

13. Dickey SL, Grayson CJ: The quality of life among men receiving active surveillance for prostate cancer: an integrative review. Healthcare (Basel) 2019;7:E14.

14. Kazer MW, Psutka SP, Latini DM, Bailey DE Jr: Psychosocial aspects of active surveillance. Curr Opin Urol 2013;23:273–277.

15. Ruane-McAteer E, Porter S, O’Sullivan JM, Santin O, Prue G: Active surveillance for favorable-risk prostate cancer: is there a greater psychological impact than previously thought? A systematic, mixed studies literature review. Psychooncology 2017;26:1411–1421.

16. Rittenleeyer L, Huffman D, Alagna M, Moore E: The experience of adults who choose watchful waiting or active surveillance as an approach to medical treatment: a qualitative systematic review. JBI Database System Rev Implement Rep 2016;14:174–255.

17. Casey RG, Corcoran NM, Goldberg SL: Quality of life issues in men undergoing androgen deprivation therapy: a review. Asian J Androl 2012;14:226–231.

18. Donovan KA, Walker LM, Wassersug RJ, Thompson LM, Robinson JW: Psychological effects of androgen-deprivation therapy on men with prostate cancer and their partners. Cancer 2015;121:4286–4299.

19. Rhee H, Gunter JH, Heathcote P, Ho K, Stricker P, Corcoran NM, Nelson CC: Adverse effects of androgen-deprivation therapy in prostate cancer and their management. BJU Int 2015;115(Suppl 5):3–13.

20. Nead KT, Sinha S, Yang DD, Nguyen PL: Association of androgen deprivation therapy and depression in the treatment of prostate cancer: a systematic review and meta-analysis. Urol Oncol 2017;35:664.e1–e9.

21. Cherrier MM, Higano CS: Impact of androgen deprivation therapy on mood, cognition, and risk for AD. Urol Oncol 2020;38:53–61.

22. Treanor CJ, Li J, Donnelly M: Cognitive impairment among prostate cancer patients: an overview of reviews. Eur J Cancer Care (Engl) 2017;26:e12642.

23. Mundell NL, Daly RM, Macpherson H, Fraser S: Cognitive decline in prostate cancer patients undergoing ADT: a potential role for exercise training. Endocr Relat Cancer 2017;24:R145–155.

24. McGinty HL, Phillips KM, Jim HS, Cessna JM, Asvat Y, Cases MG, Small BJ, Jacobsen PB: Cognitive functioning in men receiving androgen deprivation therapy for prostate cancer: a systematic review and meta-analysis. Support Care Cancer 2014;22:2271–2280.

25. Jamalad RJ, Winters MJ, Maki PM: Cognitive and risk for AD. Urol Oncol 2017;35:664.e1–e9.

26. Sun M, Cole AP, Hanna N, Mucci LA, Berry DL, Basaria S, Ahern DK, Kibel AS, Choueiri TK, Trinh QD: Cognitive impairment in men with prostate cancer treated with androgen deprivation therapy: a systematic review and meta-analysis. J Urol 2018;199:1417–1425.

27. WU LM, Amidi A: Cognitive impairment following hormone therapy: current opinion of research in breast and prostate cancer patients. Curr Opin Support Palliat Care 2017;11:38–45.

28. Nead KT, Sinha S, Nguyen PL: Androgen deprivation therapy for prostate cancer and dementia risk: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 2017;20:259–264.

29. Nead KT, Gaskin G, Chester C, Swisher-McClure S, Leeper NJ, Shah NH: Association between androgen deprivation therapy and risk of dementia. JAMA Oncol 2017;3:49–55.

30. Khosrow-Khavar F, Rej S, Yin H, Aprikian A, Azoulai L: Androgen deprivation therapy and the risk of dementia in patients with prostate cancer. J Clin Oncol 2017;35:201–207.

31. Chun SD, Lin HC, Tsai MC, Kao LT, Huang CY, Chen KC: Androgen deprivation therapy did not increase the risk of Alzheimer’s and Parkinson’s disease in patients with prostate cancer. Andrology 2016;4:481–485.

32. Kao LT, Lin HC, Chung SD, Huang CY: No increased risk of dementia in patients receiving androgen deprivation therapy for prostate cancer: a 5-year follow-up study. Asian J Androl 2017;19:414–417.

33. Jayaveddappa R, Chhatre S, Malkowicz SB, Parikh RB, Guzzo T, Wein AJ: Association between androgen deprivation therapy use and diagnosis of dementia in men with prostate cancer. JAMA Netw Open 2019;2:e196562.

34. Robinson D, Garino H, Van Hemelrijck M, Damber JE, Bratt O, Holmberg L, Wahlund LO, Stattn P, Adolfsion J: Androgen deprivation therapy for prostate cancer and risk of dementia. BJU Int 2019;124:87–92.

35. Klaassen Z, Arora K, Wilson SN, King SA, Madi R, Neal DE Jr, Kurydak P, Kularki GS, Lewis RW, Terris MK: Decreasing suicide risk among patients with prostate cancer: implications for depression, erectile dysfunction, and suicidal ideation screening. Urol Oncol 2018;36:60–66.

36. Maggi M, Gentilucci S, Salciccia S, Gatto A, Gentile V, Colarieti A, Von Heland M, Busetto GM, Del Giudice F, Sciarr a A: Psychological impact of different primary treatments for prostate cancer: a critical analysis. Androl ogia 2019;51:e13157.

37. Anderson J, Burney S, Brooker JE, Ricciardielli LA, Fletcher JM, Satusivam P, Frydenberg M: Anxiety in the management of localised prostate cancer by active surveillance. BJU Int 2014;114(Suppl 1):55–61.

38. van den Bergh RC, Korfage IJ, Borsboom GJ, Steyerberg EW, Essink-Bot ML: Prostate cancer-specific anxiety in Dutch patients on active surveillance: validation of the mor al anxiety scale for prostate cancer. Qual Life Res 2009;18:1061–1066.

39. Wilcox CB, Gilbourd D, Louie-Johnsun M: Anxiety and health-related quality of life (HRQL) in patients undergoing active surveillance for prostate cancer in an Australian centre. BJU Int 2014;113(Suppl 2):64–68.

40. Watts S, Leydon G, Eyles C, Moore CM, Richardson A, Birch B, Prescott P, Powell C, Le-
with G: A quantitative analysis of the prevalence of clinical depression and anxiety in patients with prostate cancer undergoing active surveillance. BMC Cancer 2015;5:e006674.

41 Bill-Axelson A, Garmo H, Holmberg L, Johansson JE, Adamo HO, Steineck G, Johansson E, Rider JR: Long-term distress after radical prostatectomy versus watchful waiting in prostate cancer: a longitudinal study from the Scandinavian Prostate Cancer Group-4 randomized clinical trial. Eur Urol 2013;64:920–928.

42 Ene KW, Nordberg G, Johansson FG, Sjöström B: Pain, psychological distress and health-related quality of life at baseline and 3 months after radical prostatectomy. BMC Nurs 2006;5:8.

43 Johansson E, Steineck G, Holmberg L, Johansson JE, Nyberg T, Ruutu M, Bill-Axelson A, SPCG-4 Investigators: Long-term quality-of-life outcomes after radical prostatectomy or watchful waiting: the Scandinavian Prostate Cancer Group-4 randomized trial. Lancet Oncol 2011;12:891–899.

44 Köhler N, Friedrich M, Gansera L, Holze S, Thiel R, Roth S, Rebmann U, Stolzenburg JU, Truss MC, Fahlenkamp D, Scholz HJ, Brähler E: Psychological distress and adjustment to disease in patients before and after radical prostatectomy. Results of a prospective multi-centre study. Eur J Cancer Care (Engl) 2014;23:795–802.

45 Meissner VH, Herkommer K, Marten-Mittag B, Gschwend JE, Dinkel A: Prostate cancer-related anxiety in long-term survivors after radical prostatectomy. J Cancer Surviv 2017;11:800–807.

46 Orom H, Biddle C, Underwood W 3rd, Nelson CJ: Worse urinary, sexual, and bowel function cause emotional distress and vice versa in men treated for prostate cancer. J Urology 2018;199:1464–1469.

47 Pastore AL, Mir A, Maruccia S, Pallecchi G, Carbone A, Lopez C, Camps N, Palou J: Psychological distress in patients undergoing surgery for urological cancer: a single centre cross-sectional study. Urologic Oncology 2017;35:673.e1–673.e7.

48 Taoika R, Matsunaga H, Kubo T, Suzuki T, Yamamoto S: Impact of trait anxiety on psychological well-being in men with prostate cancer. Int Brazil J Urol 2014;40:620–626.

49 Van Andel G, Visser AP, Zwinderman AH, Hulshof MC, Horenblas S, Kurth KH: A prospective longitudinal study comparing the impact of external radiation therapy with radical prostatectomy on health related quality of life (HRQOL) in prostate cancer patients. Prostate 2004;58:354–365.

50 Venderbos LDF, Aluwini S, Roobol MJ, Bokhorst LP, Oomens EHM, Bangma CH, Korfage IJ: Long-term follow-up after active surveillance or curative treatment: quality-of-life outcomes of men with low-risk prostate cancer. Qual Life Res 2017;26:1635–1645.

51 Wagner W, Bölling T, Hambrecht C, Hartlapp J, Krukemeyer MG: Patients’ satisfaction with different modalities of prostate cancer therapy—a retrospective survey among 634 patients. Anticancer Res 2011;31:3903–3908.