In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region

Nawal M Al-Musayeib1, Ramzi A Mothana1*, An Matheeussen2, Paul Cos2 and Louis Maes2

Abstract

Background: Worldwide particularly in developing countries, a large proportion of the population is at risk for tropical parasitic diseases. Several medicinal plants are still used traditionally against protozoal infections in Yemen and Saudi Arabia. Thus the present study investigated the in vitro antiprotozoal activity of twenty-five plants collected from the Arabian Peninsula.

Methods: Plant materials were extracted with methanol and screened in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxic activity was determined against MRC-5 cells to assess selectivity. The criterion for activity was an IC50 < 10 μg/ml (< 5 μg/ml for T. brucei) and selectivity index of > 4.

Results: Antiplasmodial activity was found in the extracts of Chrozophora oblongifolia, Ficus ingens, Lavandula dentata and Plectranthus barbatus. Amastigotes of T. cruzi were affected by Grewia erythraea, L. dentata, Tagetes minuta and Vernonia leopoldii. Activity against T. brucei was obtained in G. erythraea, L. dentata, P. barbatus and T. minuta. No relevant activity was found against L. infantum. High levels of cytotoxicity (MRC-5 IC50 < 10 μg/ml) and hence non-specific activities were noted in Cupressus sempervirens, Kanahia laniflora and Kniphofia sumarae.

Conclusion: The results endorse that medicinal plants can be promising sources of natural products with antiprotozoal activity potential. The results support to some extent the traditional uses of some plants for the treatment of parasitic protozoal diseases.

Background

Today over one billion people worldwide are at risk for tropical diseases caused by parasitic organisms. The World Health Organization (WHO) now classifies many as neglected tropical diseases, having an enormous impact on socioeconomic development and quality of life at all levels particularly in developing countries [1]. At present, a lot of research is committed to leishmaniasis, malaria, Chagas disease and sleeping sickness, not only because they are major killing diseases but also because disease control becomes more difficult due to a number of factors that limit the utility of current drugs in resource-poor settings, such as high cost, poor compliance, drug resistance, low efficacy and poor safety [2]. Hence, the search for new and preferably cheap drugs needs to be continued [3].

Natural products are still major potential sources of innovative therapeutic agents for various conditions, including infectious diseases as they represent an unmet source of chemical diversity [4]. Indeed, several antiparasitic drugs have been derived directly from natural sources, such as quinine, artemisinin and atovaquone as antimalarials and amphotericin B as antileishmanial drug.

It is estimated that two thirds of the world population still rely on traditional medical remedies, mainly plants, because of limited availability and affordability of pharmaceutical medicines [5]. This explains why a lot of current research focuses on natural molecules and plant-derived products as they can be sourced easily, are locally available
and can be selected on the basis of their ethnomedicinal use [6].

In this study, 25 plants were selected from the flora of Yemen and Saudi Arabia, and subjected to a broad panel of in vitro antiparasitic assays in an attempt to identify plant species with a promising antiprotozoal in vitro activity profile and could be subject for further investigations.

Table 1 List of plants screened and their traditional uses

Plant species	Voucher specimen no.	Family	Part used	Traditional uses
Ajuga bracteosa Wall. ex Benth.	Mo-I10a	Labiatae	L, F	As antiseptic and for teeth pains, stimulant, diuretic in treatment of rheumatism, gout, palsy, amenorrhea and malaria a,b
Caralluma quadrangula (Forssk.)	Mo-H02a	Asclepiadaceae	L	For diabetes, stomachic ulcer and smallpox a,c
Centaurea pseudosinica Czerep.	Mo-S11a	Asteraceae	L, T	For wounds and kidney diseases a
Crochophora oblongifolia (Del.) A.Juss. ex Spreng.	Mo-P02a	Euphorbiaceae	L, S	As antiseptic for wounds, antimicrobial, cathartic, emetic and hypoglycemic and for hemorrhoids a, d
Costus arubicus L.	Mo-P05a	Zingiberaceae	R	For cancers a
Cupressus sempervirens L.	Mo-S25a	Cupressaceae	L	As expectorant, astringent and for wounds, diarrhea, hemorrhoids a, c
Dodonaea viscosa (L.) Jacq.	Mo-T01a	Sapindaceae	L, S	For malaria, wounds and burns, gout, rheumatism and as anesthetic, laxative and tonic a, c, e, f
Dorsteniabamimiana Schweinf.	Mo-P09	Moraceae	L, S	For the treatment of fungul and skin diseases a, c
Enicostemma verticillare (Retz.) Baill.	Mo-I06a	Gentianaceae	L	For diabetes a
Ficus cordata ssp. Salicifolia	15133	Moraceae	L, S	For the treatment of filariais, diarrheal infections, tuberculosis and oral infections a, c
Ficus ingens (Miq.)	15187	Moraceae	L, S	For Piles, diarrhea, and as diuretic a
Ficus palmata Forssk.	15167	Moraceae	L, S	For constipation and lungs and bladder diseases a, c
Grewia erythreaa Schweinf.	Mo-S07a	Tiliaceae	L, S	As Diuretic and haemostatic and for kidney diseases a
Iris albicans Lange	Mo-P02a	Iridaceae	R	For rheumatism and gout a
Kanahia laniflora (Forsk.) R. Br.	Mo-I19a	Asclepiadaceae	L, T	For tumors, skin diseases, scabies and itching a, c, h
Kniphofia sumareae Deflers	Mo-I10a	Liliaceae	R	For malaria a
Lavandula dentata L.	Mo-I11a	Labiatae	L, F	For wounds, rheumatism, urine retention, and kidney stones and as antiseptic a, d
Leucas inflata Benth.	Mo-I05a	Labiatae	L, F	For kidney diseases and tooth ache a
Pucaria inuloides DC.	Mo-M05a	Asteraceae	L, F	For wounds and as antiseptic a
Plectranthus barbatus Andr.	15732a	Labiatae	L, S	For stomachache, nausea, gastritis, intestinal spasms, burns, wounds, sores, insect bites, allergies, ringworms, infections, malaria and break fevers a, f
Rhus retinorrhoea Steud. ex Oliv.	Mo-T22a	Anacardiaceae	L	General and for painful joints a
Tagetes minuta L.	YT-20a	Astersaceae	L, S	As antimicrobial, antihelmintic, diuretic, and antispasmodic agent a, f
Tarconanthus camphoratus L.	Mo-S15a	Astersaceae	L, T	For wounds and for urinary tract infections a
Teucrum yemense Deflers	Mo-S17a	Liliaceae	L	For kidney diseases, rheumatism and diabetes a, d
Vernonia leopoldi Vatke	Mo-T16a	Astersaceae	L, F	For cough, colic and skin diseases a, h

F Flower, L Leaves, R Roots or rhizomes, S Stems, T Fruits.

a information has been taken from native people.
b Chandel S, Bagai U, 2010 [7].
c Al-Dubai and Al-Khulaidi (1996) [8].
d Atiqur-Rahman et al., (2004) [9].
e Mossa et al., (1987) [10].
f Ali et al., (2004) [11].
g Fleurentin and Pelt (1982) [12].
h Schopen (1983) [13].
knowledge. Voucher specimens were deposited at departments. The botanical names, plant part used and the traditional uses of the plants in the collected areas are presented in Table 1.

Extraction of plant materials

The air-dried and powdered plant material (50 g) was extracted with 500 ml methanol (CH$_3$OH) by using a Soxhlet apparatus for 8 hours. The obtained methanol extract was filtered and evaporated by using a rotatory evaporator and freeze dryer. The dried extracts were stored at -20°C until used. Stock solutions were prepared in 100% DMSO at 20 mg/ml just prior to screening.

Reference drugs

For the different tests, appropriate reference drugs were used as positive control: tamoxifen for MRC-5, chloroquine for *P. falciparum*, miltefosine for *L. infantum*, benznidazole for *T. cruzi* and suramin for *T. b. brucei*. All reference drugs were either obtained from the fine chemical supplier Sigma or from WHO-TDR.

Biological assays

The integrated panel of microbial screens and standard screening methodologies were adopted as previously described [14]. All assays were performed in triplicate (first test in duplicate and a single independent repeat) at the Laboratory of Microbiology, Parasitology and Hygiene at the University of Antwerp, Belgium. Plant extracts were tested at 5 concentrations (64, 16, 4, 1 and 0.25 μg/ml) to establish a full dose-titration and determination of the IC$_{50}$ (inhibitory concentration 50%). The concentration of DMSO did not exceed 0.5%. The selectivity of action was assessed by simultaneous evaluation of cytotoxicity on a fibroblast (MRC-5) cell line. The criterion for activity was an IC$_{50}$ < 10 μg/ml (< 5 μg/ml for *T. brucei*) and a selectivity index of ≥ 4.

Antileishmanial activity

Leishmania MHOM/MA(BE)/67 amastigotes were collected from the spleen of an infected donor hamster and used to infect primary peritoneal mouse macrophages. To determine *in vitro* antileishmanial activity, 3 × 107 macrophages were seeded in each well of a 96-well plate. After 2 days outgrowth, 5 × 105 amastigotes/well were added and incubated for 2 h at 37°C. Pre-diluted plant extracts were subsequently added and the plates were further incubated for 5 days at 37°C and 5% CO$_2$. Parasite burdens (mean number of amastigotes/macrohage) were microscopically assessed after Giemsa staining, and expressed as a percentage of the blank controls without plant extract.

Antiplasmodial activity

Chloroquine-resistant *P. falciparum* 2/K 1-strain was cultured in human erythrocytes O+ at 37°C under a low oxygen atmosphere (3% O$_2$, 4% CO$_2$, and 93% N$_2$) in RPMI-1640, supplemented with 10% human serum. Infected human red blood cells (200 µl, 1% parasitaemia, 2% haematocrit) were added to each well and incubated for 72 h. After incubation, test plates were frozen at -20°C. Parasite multiplication was measured by the Malstat method [14,15].

Antitrypanosomal activity

Trypanosoma brucei Squib-427 strain (suramin-sensitive) was cultured at 37°C and 5% CO$_2$ in Hirumi-9 medium [16], supplemented with 10% fetal calf serum (FCS). About 1.5 × 105 trypmastigotes/well were added to each well and parasite growth was assessed after 72 h at 37°C by adding resazurin [17]. For Chagas disease, *T. cruzi* Tulahuen CL2 (benznidazole-sensitive) was maintained on MRC-5 cells in minimal essential medium (MEM) supplemented with 20 mM L-glutamine, 16.5 mM sodium hydrogen carbonate and 5% FCS. In the assay, 4 × 103 MRC-5 cells and 4 × 104 parasites were added to each well and after incubation at 37°C for 7 days, parasite growth was assessed by adding the β-galactosidase substrate chlorophenol red β-D-galactopyranoside [18]. The color reaction was read at 540 nm after 4 h and absorbance values were expressed as a percentage of the blank controls.

Cytotoxicity assay

MRC-5 SV2 cells were cultivated in MEM, supplemented with L-glutamine (20 mM), 16.5 mM sodium hydrogen carbonate and 5% FCS. For the assay, 104 MRC-5 cells/well were seeded onto the test plates containing the pre-diluted sample and incubated at 37°C and 5% CO$_2$ for 72 h. Cell viability was assessed fluorimetrically after 4 hours of addition of resazurin. Fluorescence was measured (excitation 550 nm, emission 590 nm) and the results were expressed as % reduction in cell viability compared to control.

Results

Crude methanol extracts from 25 plant species belonging to 18 families that are used in Arabian traditional medicine, were evaluated in the integrated *in vitro* screen for antileishmanial, antiplasmodial and antitrypanosomal potential (Table 2). Only 7 extracts exhibited relevant activity (acceptable potency and selectivity) in one or more models (Table 2).

Antimalarial activity

In this study, the methanol extract of *Chrozophora oblongifolia* exhibited the greatest activity against *P. falciparum* with an IC$_{50}$ value of 5.0 μg/ml and a high SI value of 12.8. Furthermore, the extract of three other plants (*Ficus ingens*, *Al-Musayeib et al. BMC Complementary and Alternative Medicine 2012, 12:49 Page 3 of 7 http://www.biomedcentral.com/1472-6882/12/49*)
Lavandula dentata and Plectranthus barbatus) showed activity against P. falciparum with IC\(_{50}\) 8.4, 7.1 and 6.5 μg/ml respectively. These extracts exhibited moderate SI values of 3.8, 4.1 and 5.1, respectively.

Antileishmanial activity
No relevant results were found against L. infantum. A very marginal activity was observed for C. oblongifolia, Costus arabicus, Grewia erythraea, L. dentata, P. barbatus, and Vernonia leopoldii with IC\(_{50}\) values between 20.3 and 27.3 μg/ml and low SI values between 1.0 and 2.5.

Table 2 Antiprotozoal activity of the methanol extracts of the investigated plants and their cytotoxicity against MRC-5 cell lines

Plant species	P. falciparum IC\(_{50}\)	L. infantum IC\(_{50}\)	T. cruzi IC\(_{50}\) (μg/ml)	T. brucei IC\(_{50}\)	MRC-5 IC\(_{50}\)
Ajuga bracteosa	>6.40	>1	>6.40	>1	>6.40
Caralluma quadrangularis	27.5 ± 4.3	>2.33	>6.40	>1	>6.40
Centaurea pseudosinica	48.2 ± 9.8	32.5 ± 3.5	31.0 ± 0.7	9.1 ± 0.8	1.76
Chrozophora oblongifolia	5.0 ± 1.2	27.3 ± 2.8	32.0 ± 5.8	>2	10.8 ± 2.1
Costus arabicus	14.5 ± 1.8	27.3 ± 2.1	13.8 ± 2.1	2.79	30.0 ± 4.9
Capparis sepervirens	7.6 ± 2.4	2.0 ± 0.4	8.3 ± 1.9	1.29	2.1 ± 0.2
Dorstenia baritamiana	34.2 ± 8.7	>6.40	29.6 ± 3.9	>1.67	22.6 ± 5.8
Dodonaea viscosa	46.7 ± 11.8	>1.37	45.3 ± 11.8	>1.41	11.1 ± 1.8
Enicostemma verticillare	>6.40 ± 1	>1	>6.40	>1	>6.40
Ficus cordata sps.salicifolia	27.0 ± 6.9	27.3 ± 6.1	26.3 ± 3.2	1.24	8.2 ± 1.9
Ficus sapessa	8.4 ± 2.3	32.5 ± 7.2	31.2 ± 4.3	1.04	8.0 ± 2.2
Ficus palmata	14.5 ± 3.8	2.60	>6.40	>1.67	8.1 ± 2.6
Grewia erythraea	11.7 ± 3.5	2.32	24.1 ± 3.8	3.32	2.6 ± 0.9
Iris albicans	55.5 ± 6.2	>1.15	>6.40	>1	>6.40
Kamalia lanitifora	27.9 ± 4.9	>6.40	0.4 ± 0.2	2.00	9.6 ± 3.0
Kniphofia sumareae	1.3 ± 0.6	5.69	32.5 ± 4.9	31.4 ± 3.4	5.9 ± 2.8
Lavandula dentata	7.1 ± 1.4	4.17	20.3 ± 3.5	1.46	7.9 ± 0.5
Leucas inflata	44.6 ± 6.3	>6.40	>6.40	>1.41	26.3 ± 1.8
Plectranthus barbatus	6.5 ± 2.0	5.06	24.1 ± 2.9	1.37	23.3 ± 2.9
Pulicaria inuloides	21.6 ± 3.8	>2.96	45.3 ± 8.3	1.41	31.7 ± 4.0
Rhus retinorhsea	37.1 ± 4.9	1.43	>6.40	>2.13	30.5 ± 3.9
Tagetes minuta	14.0 ± 2.8	4.57	30.1 ± 4.6	>2.13	9.2 ± 1.9
Tarconanthus camphoratus	>6.40	>1	>6.40	>1	>6.40
Teucrium yemense	12.5 ± 2.6	2.18	32.5 ± 6.6	>2.13	30.5 ± 2.9
Vernonia leopoldii	41.9 ± 7.9	27.3 ± 5.1	9.2 ± 1.2	3.27	8.0 ± 2.9
Chloroquine	0.3 ± 0.1	-	-	-	-
Miltefosine	-	3.32 ± 0.7	-	-	-
Benznidazole	-	2.2 ± 0.5	-	-	-
Suramin	-	-	0.03 ± 0.02	-	-
Tamoxifen	-	-	-	-	11.0 ± 2.3

IC\(_{50}\) values of reference drugs are expressed in μM/ml concentrations.

Antitrypanosomal activity
Our screen demonstrated that T. b. brucei is more sensitive than T. cruzi towards the investigated plant extracts (Table 2). The results revealed that the extract of G. erythraea showed activity against T. cruzi (IC\(_{50}\) 8.2 μg/ml) and T. brucei (IC\(_{50}\) 2.6 μg/ml). Additionally, L. dentata demonstrated activity against T. cruzi and T. brucei with IC\(_{50}\) values of 7.9 and 3.0 μg/ml respectively. Meanwhile, the extract of Tagetes minuta showed less activity against T. cruzi with an IC\(_{50}\) value of 9.2 (SI = 6.9) and higher activity against T. brucei with an IC\(_{50}\) value of 2.2 μg/ml and the highest SI value of >29.1. On the other hand, the methanol extract of P. barbatus, showed antitrypanosomal activity only
against *T. brucei* (IC$_{50}$ 2.6 μg/ml) with high SI value of 12.6, while the extract of *V. leopoldii* showed activity against both *T. cruzi* and *T. brucei* (IC$_{50}$ 9.2 and 8.0 μg/ml) with low SI values of 3.2 and 3.7 respectively.

Cytotoxicity assay

The highest cytotoxic effect against MRC-5 cells was obtained with the methanol extract of *Kanahia laniflora* (IC$_{50}$ of 0.83 μg/ml). The extracts of *Kniphofia sumarae* and *Cupressus sempervirens* also exhibited a noticeable cytotoxic effect with IC$_{50}$ values of 7.7 and 10.7 μg/ml respectively (Table 2).

Discussion

The scientific evaluation of medicinal plants used in the preparation of folk remedies has provided modern medicine with several effective pharmacological treatments for the treatment of diseases caused by protozoan parasites [19,20]. As a result of this, during the last two decades numerous studies from various parts of the world on antiprotozoal activity of medicinal plants have been reported [21-26].

In continuation of our search for substances of plant origin with pharmacological effects, we have screened 25 plants collected from Saudi Arabia and Yemen for their antiprotozoal, antileishmanial and antitrypanosomal activities. It is important to mention that at the best of our knowledge, this study represents the first report on antiprotozoal activities for most part of the investigated plants. Although few plants are partly investigated, existing knowledge remains in many cases very limited. Based on the activity (IC$_{50}$) and selectivity, seven plant extracts could be considered as promising and interesting enough to engage in further purification and evaluation.

During the course of screening, it was found that the methanol extract of the *C. oblongifolia*, collected from Yemen, exhibited the greatest antiprotozoal activity. Our result is in agreement with data reported recently by Abdel-Sattar et al. (2010) [27], which showed antiprotozoal activity for this species collected from Saudi Arabia (IC$_{50}$ 4.8 μg/ml) with a better selectivity (SI > 13.2). Moreover, Benoit-Vical et al. (2008) [28] reported that the water extract of *Chrozophora senegalensis* showed a remarkable in vitro antimalarial activity (IC$_{50}$ 1.6 μg/ml).

Another interesting plant was *G. erythraea*, which demonstrated considerable antimalarial and antitrypanosomal activities. Our data are in agreement with literature data of other *Grewia* species such as *G. hexaminta* and *G. bilamellata* [32,33]. Ma et al., (2006) [32] demonstrated that some triterpenoids e.g. 3α,20-lupandiol, gregwin, nitidanin and 2α,3β-dihydroxy-12-en-28-oic acid isolated from *G. bilamellata* are responsible for the antimalarial effect and showed varying degrees of in vitro activity against *P. falciparum*. The presence of such terpenoids in our *G. erythraea* may explain the biological effects seen in our screen.

Moreover, one of the most interesting plants was *L. dentata* collected from Yemen. Our antiparasitic screening revealed remarkable in vitro antiprotozoal and antitrypanosomal activity observed for *L. dentata* but with moderate SI of 4.1 and 9.8. These findings are in agreement with literature data published recently by Abdel-Sattar et al. (2010) [27] who reported the antiparasitic activity of the methanol extract of *L. dentata* growing in Saudi Arabia. The extract of *L. dentata* growing in Saudi Arabia showed better selectivity for *P. falciparum* (SI = 32.1) as compared with our results. This can be attributed to variation in the area of collection and ecological factors, which has a great impact on the quality and quantity of plants constituents. Apparently the activity of this species is mostly attributed to the presence of essential oil which was revealed to be responsible for antiparasitic and antibacterial activities [34,35].

Tempone et al., (2008) [36] investigated the antileishmanial activity of some Brazilian flora extracts, including *P. barbatus* which showed activity against *L. chagasi* with EC$_{50}$ value of 54.5 μg/mL. In earlier studies, several *Plectranthus* species showed antiprotozoal activity against *P. falciparum* 3D7 strain [37,38]. The results obtained in the present screen are in agreement with the literature data found and hence justifies the folkloric use. In addition to that, Van Zyl et al., (2008) [38] attributed the antiprotozoal activity of these *Plectranthus* species to the presence of abietane diterpenes.

Whereas the crude extract of *T. minuta* showed a remarkable antitrypanosomal activity against both trypanosome species, no effect was found against *P. falciparum*. Obviously our results of the antiprotozoal activity of *T. minuta* were not in agreement with the antimalarial effect noted recently by Lacroix et al., (2011) and Shahzadi et al., (2010) [39,40]. It was demonstrated that the ethyl acetate as well as n-hexane extract exhibited a notable antimalarial activity at 2.78 μg/ml against *P. falciparum* 3D7 strain. Apparently these findings are attributed to the presence of essential oil as well as sesquiterpene lactones.

In our screen *A. bracteosa* didn’t show any interesting antiprotozoal activity. These results are not in agreement with those recently reported by Chandel and Bagai (2010) [7]. In contrast to several reports on *Vernonia*
species e.g. V. amygdalina, V. brachycalyx, V. cinerea and V. colorata indicating in vitro and in vivo antiparasomal activity [41–43], our extract of V. leopoldii showed no antiparasomal activity. On the other hand, V. leopoldii showed a notable antitypansomal activity, which was in agreement with the results obtained by Hoet et al. (2004) [44] who attributed the antitypansomal activity to the presence of stigmastane-type steroids e.g. vernoguinosterol and vernoguinol, which were isolated from the stem bark of V. guineensis. Such compounds could also be responsible for the observed effect of V. leopoldii.

Conclusion
In conclusion, the results show that scientific studies carried out on medicinal plants having traditional claims of effectiveness can yield fruitful results. The present work led to the identification of seven plant extracts exhibiting relevant antiprotozoal potential namely C. oblongifolia, F. ingens, G. erythraea, L. dentata, P. barbatus, T. minuta and V. leopoldii. Moreover, the results in the present study support to some extent the traditional uses of some plants for the treatment of parasitic diseases. Studies aimed at the isolation and structure elucidation of antiprotozoal active constituents from some investigated plants are now in progress.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
RAM and NMA carried out the study design, plant collection and extraction, part of the experimental work, data collection and interpretation, literature search and manuscript preparation. AM carried out the in vitro assays, PC and LM evaluated the data and corrected the manuscript for publication. All authors read and approved the final manuscript.

Acknowledgements
The authors extend their appreciation to the NPST program by King Saud University for funding the work through the project number (10-MED1288-02). The authors gratefully acknowledge that financial support.

Author details
1Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia. 2Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Universiteitsplein 1, 2610, Wilrijk-Antwerp, Belgium.

Received: 21 December 2011 Accepted: 13 April 2012 Published: 20 April 2012

References
1. World Health Organization. Working to overcome the global impact of neglected tropical diseases: First WHO report on neglected tropical diseases. No. 1, 2010.
2. Nwaka S, Ridley RG. Virtual drug discovery and development for neglected diseases through public private partnerships. Nat Rev Drug Discov 2003; 2:919–928.
3. Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 2006; 5:941–955.
4. Clardy J, Walsh C. Lessons from natural molecules. Nature 2004; 432:829–837.
5. Tagboto S, Townson S. Antiparasitic properties of medicinal plants and other naturally occurring products. Adv Parasitol 2001; 50:199–295.
6. Verpoorte R, Choi YH, Kim HK. Ethnopharmacology and systems biology: A perfect holistic match. J Ethnopharmacol 2005; 100:53–56.
7. Chandel S, Bagai U. Antiplasmodial activity of Ajuga bracteosa against Plasmodium berghei infected BALB/c mice. Indian J Med Res 2010, 131:440–444.
8. Al-Dubai AS, Al-Khulaidi AA. Medicinal and Aromatic Plants of Yemen (in Arabic). Sana’a, Yemen: Obadai Center for studies and Publishing; 1996.
9. Atigur-Rahman M, Mossa JS, Al-Said MS, Al-Yahya MA. Medicinal Plant Diversity in the Flora of Saudi Arabia 1: A Report on Seven Plant Families. Fitoterapia 2004, 75:149–161.
10. Mossa JS, Al-Yahya MA. Medicinal Plants of Saudi Arabia. Riyadh, Saudi Arabia: King Saud University; 1987.
11. Al AA, Al-rahwi K, Lindequist U. Some Medicinal Plants Used in Yemeni Herbal Medicine to Treat Malaria. Afr J Trad Complement Altern Med 2004, 1:72–76.
12. Fleurentin J, Pelt JM. Repertory of drugs and medicinal plants of Yemen. J Ethnopharmacol 1982, 6:85–108.
13. Schopen A. Traditionelle Heilmittel in Jemen. Berlin: Franz Steiner Verlag GmbH; 1983.
14. Mortinck AJ, Berghove DG, Mars L. Anti-inflammatory potential of natural products: How to develop a stronger in vitro proof-of-concept. J Ethnopharmacol 2006, 106:290–302.
15. Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Hinrichs DJ. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg 1995, 48:739–741.
16. Hirumi H, Hirumi K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol 1989, 75:985–989.
17. Raz B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense, T. b. gambiense) in vitro. Acta Trop 1997, 68:259–2597.
18. Buckner FS, Verinde CL, La Flarrieme AC, Van Voorhis WC. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother 1996, 40:2592–2597.
19. Phillipson JD, Wright CW. Antiprotozoal agents from plant sources. Planta Med 1991, 57:53–59.
20. Chan-Bacab MJ, Peña-Rodríguez LM. Plant natural products with antileishmanial activity. Nat Prod Rep 2004, 21:674–688.
21. Maes L, Gernonprez N, Quirinlen L, Van Puyvelde L, Cos P, Vanden Berge D. Comparative activities of the triterpene saponin Maesaebalide-III and liposomal amphotericin-B (AmBisome) against Leishmania donovani in hamsters. Antimicrob Agents Chemother 2004, 48:2056–2060.
22. Rocha LG, Almeida JRG, Macêdo RO, Barbosa-Filho JM. A review of natural products with antileishmanial activity. Phytomedicine 2005, 12:134–135.
23. Chianese G, Yerbanza SR, Lucantoni L, Haberkatzen A, Basilio N, Tarantelli D, Fatousos E, Tagliatela-Scafati O. Antiplasmodial triterpenoids from the fruits of neem, Azadirachta indica. J Nat Prod 2010, 73:1448–1452.
24. García M, Monzote L, Montalvo AM, Scull R. Screening of medicinal plants against Leishmania amazonensis. Pharm Biol 2010, 48:1053–1058.
25. Wright CW. Recent developments in research on terrestrial plants used for the treatment of malaria. Nat Prod Rep 2010, 27:961–968.
26. Wube AA, Bucar F, Gibbons S, Ares K, Rattray L, Croft SL. Antiprotozoal activity of drimane and coloranate sesquiterpenes towards Trypanosoma brucei rhodesiense and Plasmodium falciparum in vitro. Phytother Res 2010, 24:1468–1472.
27. Abdell-Sattar E, Maes L, Salama MM. In Vitro Activities of Plant Extracts from Saudi Arabia against Malaria, Leishmaniasis, Sleeping Sickness and Chagas Disease. Phytother Res 2010, 24:1322–1328.
28. Benoit-Vical F, Soh PN, Selaey M, Harguem R, Poupalt C, Ngononierma R. Evaluation of Senegalese plants used in malaria treatment: focus on Chrozophora senegalensis. J Ethnopharmacol 2008, 124:43–48.
29. Antoniu MD, Ramos Z, Vazquez J, Oquendo I, Proctor GR, Gerena L, Franzblau SG. Evaluation of the flora of Puerto Rico for in vitro antiparasomidal and anticycobacterial activities. Phytother Res 2001, 15:638–642.
30. Zhang H, Tamez PA, Aydogmus Z, Tan GT, Sakawa Y, Hashimoto K, Nakata M, Hung NV, Xuan LT, Cuong NV, Soejarto DD, Pezzuto JM, Fong HH. Antimalarial agents from plants. III. Trichotheceines from Ficus fistulosa and Rhaphiodora decursiva. Planta Med 2002, 68:1088–1091.
in Kisii, Kenya against malaria and their chloroquine potentiation effects. J Ethnopharmacol 2003, 84:235–239.

32. Ma C, Zhang HJ, Tan GT, Hung NV, Cuong NM, Soejarto DD, Fong HH: Antimalarial compounds from Grewia bilamellata. J Nat Prod 2006, 69:346–350.

33. Nguta JM, Mbita JM, Gakuya DW, Gathumbi PK, Kiama SG: Antimalarial herbal remedies of Mtambweni, Kenya. J Ethnopharmacol 2010, 24: 424–432.

34. Moon T, Wilkinson JM, Cavanagh HM: Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitol Res 2006, 99:722–728.

35. Mohamed SB, Eddine AD: Antibacterial activity of essential oils of some Algerian aromatic plants against multidrug resistant bacteria. J Essent Oil-Bear Plants 2010, 13:362–370.

36. Tempone AG, Sartorelli P, Teixeira D, Prado FO, Calixto IA, Lorenzi H, Melhem MS: Brazilian flora extracts as source of novel antileishmanial and antifungal compounds. Mem Inst Oswaldo Cruz 2008, 103:443–449.

37. Lukhoba CW, Simmonds MSJ, Paton AJ: Plectranthus: A review of ethnobotanical uses. J Ethnopharmacol 2006, 103:1–24.

38. Van Zyl RL, Khan F, Edwards TJ, Drewes SE: Antiplasmodial activities of some abietane diterpenes from the leaves of five Plectranthus species. S Afr J Sci 2008, 104:62–64.

39. Lacroix D, Prado S, Kamoga D, Kasenenje J, Namukobe J, Krief S, Dumontet V, Moruy E, Bodo B, Brunctis F: Antiplasmodial and cytotoxic activities of medicinal plants traditionally used in the village of Kiohima, Uganda. J Ethnopharmacol 2011, 133:850–855.

40. Shahzadi I, Hassan A, Khan UW, Shah MM: Evaluating biological activities of the seed extracts from Tagetes minuta L. found in Northern Pakistan. J Med Plants Res 2010, 4:2108–2112.

41. Clarkson C, Maharaj VJ, Crouch NR, Grace OI, Pillay P, Matsabisa MG, Bhagwandin N, Smith PJ, Folb PI: In vitro antiparasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol 2004, 92:177–191.

42. Pillay P, Maharaj VJ, Smith PJ: Investigating South African plants as a source of new antimalarial drugs. J Ethnopharmacol 2008, 119:438–454.

43. Magadula JJ, Ersato P: Bioactive natural products derived from the East African flora. Nat Prod Rep 2009, 26:1535–1554.

44. Hoet S, Opperdoes F, Bruin R, Quettin-Leclercq J: Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep 2004, 21:353–364.