Down-Regulation of the Na+-Coupled Phosphate Transporter NaPi-IIa by AMP-Activated Protein Kinase

Miribane Dërmaku-Sopjania,b,f Ahmad Almilajia,f Tatsiana Pakladoka Carlos Munoza,e Zohreh Hosseinzadeha María Blecuaa,d Mentor Sopjania,c Florian Langa

aUniversity of Tübingen, Department of Physiology, Tübingen, Germany; bDepartment of Chemistry, cFaculty of Medicine, University of Prishtina, Prishtinë, Kosova; dFacultad de Biología, Ciencias Ambientales y Química, Edificio Polivalente, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; eInstitute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; fcontributed equally and thus share first authorship

Key Words
Energy depletion • Phosphate transport • Compound C • Kidney

Abstract

\textbf{Background/Aims:} The Na+-coupled phosphate transporter NaPi-IIa is the main carrier accomplishing renal tubular phosphate reabsorption. It is driven by the electrochemical Na+ gradient across the apical cell membrane, which is maintained by Na+ extrusion across the basolateral cell membrane through the Na+/K+ ATPase. The operation of NaPi-IIa thus requires energy in order to avoid cellular Na+ accumulation and K+ loss with eventual decrease of cell membrane potential, Cl− entry and cell swelling. Upon energy depletion, early inhibition of Na+-coupled transport processes may delay cell swelling and thus foster cell survival. Energy depletion is sensed by the AMP-activated protein kinase (AMPK), a serine/threonine kinase stimulating several cellular mechanisms increasing energy production and limiting energy utilization. The present study explored whether AMPK influences the activity of NAPi-IIa.

\textbf{Methods:} cRNA encoding NAPI-IIa was injected into \textit{Xenopus} oocytes with or without additional expression of wild-type AMPK (AMPK\textsubscript{α1-HA}+AMPK\textsubscript{β1-Flag}+AMPK\textsubscript{γ1-HA}), of inactive AMPK\textsubscript{αK45R} (AMPK\textsubscript{α1K45R}+AMPK\textsubscript{β1-Flag}+AMPK\textsubscript{γ1-HA}) or of constitutively active AMPK\textsubscript{γR70Q} (AMPK\textsubscript{α1-HA}+AMPK\textsubscript{β1-Flag}+AMPK\textsubscript{γ1-R70Q}). NaPi-IIa activity was estimated from phosphate-induced current in dual electrode voltage clamp experiments.

\textbf{Results:} In NaPi-IIa-expressing, but not in water-injected \textit{Xenopus} oocytes, the addition of phosphate (1 mM) to the extracellular bath solution generated a current (I\textsubscript{p}), which was significantly decreased by coexpression of wild-type AMPK and of AMPK\textsubscript{γR70Q} but not of
AMPK^{αK45R}. The phosphate-induced current in NaPi-IIa- and AMPK-expressing Xenopus oocytes was significantly increased by AMPK inhibitor Compound C (20 µM). Kinetic analysis revealed that AMPK significantly decreased the maximal transport rate. **Conclusion:** The AMP-activated protein kinase AMPK is a powerful regulator of NaPi-IIa and thus of renal tubular phosphate transport.

Introduction

The AMP-activated protein kinase (AMPK) senses the cytosolic AMP/ATP concentration ratio and thus the energy status of the cell [1, 2]. When activated by energy deficiency, AMPK stimulates several cellular functions serving ATP generation [3], such as cellular glucose uptake, glycolysis, fatty acid oxidation and up-regulation of enzymes required for ATP production [2, 4-6]. AMPK further inhibits energy-utilizing mechanisms including protein synthesis, gluconeogenesis and lipogenesis [2-4]. The kinase thus protects against cell death during energy depletion [3, 7, 8].

In renal proximal tubules, energy is mainly utilized by transepithelial transport [9]. Na⁺-coupled transport processes are driven by the electrochemical gradient for Na⁺, which is maintained by the energy-consuming Na⁺/K⁺ ATPase in the basolateral cell membrane [10]. Energy depletion is expected to impair the activity of the Na⁺/K⁺ ATPase with eventual dissipation of the Na⁺ and K⁺ gradients, depolarization of the cell membrane, cellular accumulation of Cl⁻, osmotic water entry and thus cell swelling [11]. Na⁺-coupled carriers include the Na⁺-coupled phosphate transporter NaPi-IIa (SLC34A1), the most important carrier accomplishing renal tubular phosphate transport across the apical brush border membrane of proximal renal tubules [12-14]. Renal tubular phosphate reabsorption is regulated by a wide variety of parameters, such as dietary phosphate intake, acid-base status, parathyroid hormone, 1,25-(OH)₂ vitamin D₃, FGF-23, insulin and insulin-like growth factor IGF1 [15-21]. Signaling involved in the regulation of NaPi-IIa includes the protein kinases A and C, ERK1/2, Klotho and the PI3K/PKB/GSK3 kinase cascade [22-29]. Nothing is known, however, about the potential regulation of NaPi-IIa by AMPK. The present study thus explored whether AMPK regulates NaPi-IIa.

Materials and Methods

Constructs

For generation of cRNA [30], constructs were used encoding wild-type NaPi-IIa [31], wild-type AMPK (AMPK<sup>α1-HA+AMPK^{β1-Flag}+AMPK^{γ1-HA}) [32, 33], constitutively-active AMPK^{γR70Q-HA} (AMPK<sup>α1-HA + AMPK^{β1-Flag + AMPK^{γ1R70Q}})) [34] and kinase dead mutant AMPK^{αK45R-HA} (AMPK<sup>α1K45R-HA + AMPK^{β1-Flag + AMPK^{γ1-HA}})) [35]. The cRNA encoding wild type NaPi-IIa or encoding AMPK was synthesized as described previously [36].

Voltage clamp in Xenopus oocytes

Dissection of *Xenopus laevis* ovaries, collection and handling of the oocytes have been described elsewhere [37]. Oocytes were injected with 15 ng of cRNA encoding NaPi-IIa on the first day with or without 4.6 ng of cRNA encoding either AMPK^{α-HA+AMPK^{β-Flag}+AMPK^{γ-HA}} (wild-type AMPK), or AMPK^{α-HA + AMPK^{β-Flag + AMPK^{γ-HA}}}, constitutively-active AMPK^{γR70Q-HA} or AMPK^{αK45R-HA + AMPK^{β-Flag + AMPK^{γ-HA}}} (kinase-dead mutant AMPK^{αK45R}) on the second day after preparation of *Xenopus laevis* oocytes [38]. For control, the oocytes were injected with the respective volumes of DEPC-treated water. Therefore, the number of injections and the injected total volume were equal in all oocytes. The electrophysiological experiments were performed at room temperature 3-4 days after the second injection. Where indicated, oocytes were incubated with AMPK activator AICAR (1 mM, Tocris Bioscience, Bristol, UK) or AMPK inhibitor compound C (20 µM, Calbiochem, Bad Soden, Germany) for the last 24 hours before the measurement. Oocytes were maintained at 17°C in ND96-A solution.
containing 88.5 mM NaCl, 2 mM KCl, 1.8 mM CaCl₂, 1 mM MgCl₂, 5 mM HEPES, 0.11 mM tetracycline (Sigma, Schnelldorf, Germany), 4 µM ciprofloxacin (Fresenius Kabi, Graz, Austria), 0.22 mM refobacin (Merck-Serono, Darmstadt, Germany), 0.5 mM theophylline (Takeda, Singen, Germany) as well as 5 mM sodium pyruvate. The pH was adjusted to 7.4 by adding NaOH. Two electrode voltage-clamp recordings were performed at a holding potential of -50 mV. The flow rate of the superfusion was 20 ml/min, and a complete exchange of the bath solution was reached within about 10 s [39, 40]. The data were filtered at 10 Hz and recorded with a Digidata 1322A A/D-D/A converter and Clampex V.4.02 software for data acquisition and analysis (Axon Instruments, Union City, CA, USA). The data were analyzed with Clampfit V. 9.0.1.07 software (Axon Instruments).

Detection of NaPi-IIa cell surface expression by chemiluminescence

Oocytes were incubated for 20 min in ND96 with 1% BSA at 4°C to block nonspecific antibody binding. Then, oocytes were incubated with primary rabbit anti-human SLC34A1 (NaPi-IIa) polyclonal antibody (diluted 1:500, Life Span Biosciences, WA, USA) for 1 h at 4°C and subsequently with secondary, HRP-conjugated goat anti-rabbit IgG antibody (1:1000, Cell Signaling Technology, Frankfurt, Germany). Oocytes were washed 3 times for 5 min in 1% BSA/ND96 and then 3 times in ND96 without BSA for 5 min at 4°C. Individual oocytes were placed in 96 well plates with 20 µl of SuperSignal ELISA Femto Maximum Sensitivity Substrate (Pierce, Rockford, IL, USA) and chemiluminescence of single oocytes was quantified in a luminometer (Walter Wallac 2 plate reader; Perkin Elmer; Juegesheim, Germany) by integrating the signal over a period of 1 s. Results display normalized relative light units. Integrity of the measured oocytes was assessed by visual control after the measurement to avoid unspecific light signals from the cytosol.

Statistical analysis

Data are provided as means ± SEM, n represents the number of oocytes investigated. All experiments were repeated with at least 3 batches of oocytes. In all repetitions qualitatively similar data were obtained. Data were tested for significance using ANOVA, and results with P < 0.05 were considered statistically significant.

Results

In order to test, whether AMP-activated protein kinase (AMPK) regulates the electrogenic phosphate transporter NaPi-IIa, *Xenopus* oocytes were injected with cRNA encoding NaPi-IIa with or without additional injection of cRNA encoding wild-type AMPK. The electrogenic phosphate transport was minimal in water-injected *Xenopus* oocytes (Fig. 1). In *Xenopus* oocytes expressing NaPi-IIa, however, phosphate (1 mM) induced an inward current (Ip) reflecting electrogenic entry of Na⁺ and phosphate. Ip was significantly decreased by additional coexpression of wild-type AMPK (AMPKα1-HA+AMPKβ1-Flag+AMPKγ1-HA; Fig. 1). Accordingly, wild-type AMPK inhibited NaPi-IIa activity.

To further characterize the AMPK effect on the phosphate-induced current in *Xenopus* oocytes, we performed kinetic analysis (Fig. 2). In *Xenopus* oocytes expressing NaPi-IIa alone, the maximal current approached 12.2 ± 0.6 nA (n = 7) and the phosphate concentration needed for halfmaximal current (Kₐ) 33.9 ± 11.2 µM (n = 7). In *Xenopus* oocytes expressing NaPi-IIa together with wild-type AMPK (AMPKα1-HA+AMPKβ1-Flag+AMPKγ1-HA) the maximal transport rate approached 5.5 ± 0.5 nA (n = 7) and the phosphate concentration needed for halfmaximal current (Kₐ) 73 ± 40 µM (n = 7). Accordingly, coexpression of AMPK decreased the maximal transport rate without significantly modifying Kₐ.

Further experiments explored whether the effect of wild type AMPK on NaPi-IIa requires kinase activity. To this end, NaPi-IIa was expressed in *Xenopus* oocytes with or without additional expression of constitutively-active AMPKαR70Q (AMPKα1-HA + AMPKβ1-Flag + AMPKγ1R70Q) or of the catalytically-inactive mutant AMPKαK45R (AMPKα1K45R + AMPKβ1-Flag + AMPKγ1-HA). As shown in Fig. 3, the electrogenic phosphate transport in NaPi-IIa-expressing *Xenopus* oocytes was markedly decreased by the coexpression of constitutively active AMPKαR70Q. In contrast, coexpression of catalytically-inactive AMPKαK45R did not significantly modify Ip in NaPi-IIa expressing *Xenopus* oocytes.
Fig. 1. Coexpression of AMPK downregulated electrogenic phosphate transport in NaPi-IIa-expressing Xenopus oocytes. A: Representative original tracings showing the phosphate (1 mM)-induced current (I_p) in Xenopus oocytes injected with water (1) or expressing NaPi-IIa without (2) or with (3) additional coexpression of wild type AMPK. Following removal of extracellular phosphate, the current gradually returned to basal levels. B: Arithmetic means ± SEM of the normalized phosphate (1 mM)-induced current (I_p) in Xenopus oocytes injected with water (dotted bar, n = 3) or expressing NaPi-IIa without (white bar, n = 11) or with (black bar, n = 11) additional coexpression of wild type AMPK wt. *** indicates statistically significant difference (p < 0.001) from current in Xenopus oocytes expressing NaPi-IIa alone.

In order to investigate whether the AMPK influences NaPi-IIa surface expression, we used chemiluminescence for determination of membrane NaPi-IIa protein abundance. As
shown in Fig. 4, constitutively active AMPK\gamma R70Q significantly decreased NaPi-IIa cell membrane abundance, an effect not mimicked by catalytically-inactive AMPK\alpha K45R.

Finally, we tested whether pharmacological manipulation of AMPK activity similarly influences NaPi-IIa activity. As shown in Fig. 5, a 24 hours exposure of NaPi-IIa-expressing *Xenopus* oocytes to AMPK activator AICAR mimicked the effect of AMPK coexpression. Furthermore, AMPK inhibitor Compound C abrogated the stimulatory effect of AMPK coexpression on NaPi-IIa activity (Fig. 5).
Discussion

The present study reveals a novel regulator of NaPi-IIa, i.e. the AMP-activated protein kinase AMPK. The kinase decreased the electrogenic phosphate transport mediated by NaPi-IIa. The inhibition of NaPi-IIa during energy depletion lowers the Na⁺ uptake across the apical membrane of proximal renal tubules and thus limits the requirement of Na⁺ extrusion by the energy-consuming Na⁺/K⁺ ATPase. Moreover, inhibition of NaPi-IIa decreases the cytosolic phosphate concentration. The decrease of Na⁺ and phosphate entry and the prevention of Na⁺ and Cl⁻ accumulation counteract cell swelling, a consequence of cellular energy depletion [11]. Accordingly, the AMPK-dependent inhibition of NaPi-IIa contributes to the protective effect of AMPK during energy depletion.

The regulation by AMPK adds to the complexity of NaPi-IIa regulation. NaPi-IIa is regulated by a variety of kinases including protein kinase A [41-48], protein kinase B (PKB)/Akt [22, 27], protein kinase C [43, 45, 46], protein kinase G [46], mitogen activated protein (MAP) kinases [23], extracellular receptor kinase (ERK)-1/2 [23] mammalian target of rapamycin mTOR [22, 27], glycogen synthase kinase GSK3 [27], Janus kinase JAK2 [49],
Dërmaku-Sopjani et al.: AMPK-Sensitive NaPi-IIa

oxidative stress response kinase OSR [38], and STE20/SPS1-related proline/alanine-rich kinase SPAK [50]. NaPi-IIa trafficking is dependent on vacuolar H\(^+\) ATPase [51] and stability of NaPi-IIa is further regulated by Klotho [26].

In contrast to phosphate transport, AMPK stimulates glucose uptake [2, 4], an effect due to activation of both, the facilitative glucose carriers GLUT1, GLUT2, GLUT3 and GLUT4 [52-63] and the Na\(^+\)-coupled glucose transporter SGLT1 [64]. The uptake of glucose provides the cell with metabolic fuel. AMPK further stimulates glycolysis, fatty acid oxidation and expression of enzymes required for ATP production [2, 4] and thus counteracts ATP depletion.

Energy generation by glycolysis imposes a proton load on the cell by dissociation of lactic acid, and cytosolic acidification inhibits the rate-limiting enzymes of glycolysis [65]. Accordingly, glycolysis can only be maintained, as long as the generated H\(^+\) ions are extruded. As a matter of fact AMPK has been shown to activate the Na\(^+\)/H\(^+\) exchanger [66].

AMPK is not only stimulated by increase in the AMP/ATP ratio, but as well by Ca\(^2+\) [1], by decrease of O\(_2\) partial pressure [67] and by increase of nitric oxide level [68]. Accordingly, alterations of cytosolic Ca\(^2+\) activity, O\(_2\) supply, and nitric oxide abundance may, at least in theory, modify NaPi-IIa activity and thus renal tubular phosphate transport.

Conclusion

The AMP-activated kinase AMPK decreases the activity of the Na\(^+\)-coupled phosphate transporter NaPi-IIa and thus participates in the regulation of renal tubular phosphate transport.

Conflict of Interests

The authors state that there are no conflicts to declare.

Acknowledgments

The authors acknowledge the meticulous preparation of the manuscript by Lejla Subasic and Tanja Loch. This study was supported by the IZKF of the University of Tübingen (Nachwuchsgruppe to M. F.), the Deutsche Forschungsgemeinschaft, La315/15-1, GRK 1302, SFB 773, La 315/13-3 and the Open Access Publishing Fund of Tuebingen University.

References

1. Towler MC, Hardie DG: AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 2007;100:328-341.
2. Winder WW, Thomson DM: Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 2007;47:332-347.
3. McGee SL, Hargreaves M: AMPK and transcriptional regulation. Front Biosci 2008;13:3022-3033.
4. Carling D: The role of the AMP-activated protein kinase in the regulation of energy homeostasis. Novartis Found Symp 2007;286:72-81.
5. Horie T, Ono K, Nagao K, Nishi H, Kinoshita M, Kawamura T, Wada H, Shimatsu A, Kita T, Hasegawa K: Oxidative stress induces GLUT4 translocation by activation of PI3-K/Akt and dual AMPK kinase in cardiac myocytes. J Cell Physiol 2008;215:733-742.
6. Jensen TE, Rose AJ, Hellsten Y, Wojtaszewski JF, Richter EA: Caffeine-induced Ca\(^2+\) release increases AMPK-dependent glucose uptake in rodent soleus muscle. Am J Physiol Endocrinol Metab 2007;293:E286-E292.
Dërmaku-Sopjani et al.: AMPK-Sensitive NaPi-IIa

7 Foller M, Sopjani M, Koka S, Gu S, Mahmud H, Wang K, Floride E, Schleicher E, Schulz E, Munzel T, Lang F: Regulation of erythrocyte survival by AMP-activated protein kinase. FASEB J 2009;23:1072-1080.

8 Hardie DG: The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 2004;117:5479-5487.

9 Mandel LJ: Metabolic substrates, cellular energy production, and the regulation of proximal tubular transport. Annu Rev Physiol 1985;47:85-101.

10 Lang F, Messner G, Rehwald W: Electrophysiology of sodium-coupled transport in proximal renal tubules. Am J Physiol 1986;250:F953-F962.

11 Lang F, Busch GL, Ritter M, Volk H, Waldeger S, Gulbins E, Haussinger D: Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998;78:247-306.

12 Biber J, Hernando N, Forster I, Murer H: Regulation of phosphate transport in proximal tubules. Pflugers Arch 2009;458:39-52.

13 Murer H, Forster I, Biber J: The sodium phosphate cotransporter family SLC34. Pflugers Arch 2004;447:763-767.

14 Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC: The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol 2009;296:F691-F699.

15 Allon M: Effects of insulin and glucose on renal phosphate reabsorption: interactions with dietary phosphate. J Am Soc Nephrol 1992;2:1593-1600.

16 DeFronzo RA, Goldberg M, Agus ZS: The effects of glucose and insulin on renal electrolyte transport. J Clin Invest 1976;58:83-90.

17 Feld S, Hirschberg R: Insulinlike growth factor I and the kidney. Trends Endocrinol Metab 1996;7:85-93.

18 Jehle AW, Forgo J, Biber J, Lederer E, Krapf R, Murer H: IGF-I and vanadate stimulate Na/Pi-cotransport in OK cells by increasing type II Na/Pi-cotransporter protein stability. Pflugers Arch 1999;437:149-154.

19 Murer H, Hernando N, Forster I, Biber J: Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 2000;80:1373-1409.

20 Nowik M, Picard N, Stange G, Capuano P, Tenenhouse HS, Biber J, Murer H, Wagner CA: Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Pflugers Arch 2008;457:539-549.

21 Picard N, Capuano P, Stange G, Mihailova M, Kaisling B, Murer H, Biber J, Wagner CA: Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch 2010;460:677-687.

22 Kempe DS, Ackermann TF, Boini KM, Klaus F, Umbach AT, Dërmaku-Sopjani M, Judenhofer MS, Pichler BJ, Capuano P, Stange G, Wagner CA, Birnbaum MJ, Pearce D, Foller M, Lang F: Akt2/PKBbeta-sensitive regulation of renal phosphate transport. Acta Physiol (Oxf) 2010;200:75-85.

23 Bhandaru M, Kempe DS, Rotte A, Capuano P, Pathare G, Sopjani M, Alesutan I, Tyan L, Huang DY, Siraskar B, Judenhofer MS, Stange G, Pichler BJ, Biber J, Quintanilla-Martinez L, Wagner CA, Pearce D, Foller M, Lang F: Decreased bone density and increased phosphaturia in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase 3. Kidney Int 2011;80:61-67.

24 Bhandaru M, Kempe DS, Rotte A, Capuano P, Pathare G, Sopjani M, Alesutan I, Tyan L, Huang DY, Siraskar B, Judenhofer MS, Stange G, Pichler BJ, Biber J, Quintanilla-Martinez L, Wagner CA, Pearce D, Foller M, Lang F: Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell Physiol Biochem 2011;28:251-258.

25 Foller M, Kempe DS, Boini KM, Pathare G, Siraskar B, Capuano P, Alesutan I, Sopjani M, Stange G, Mohebbi N, Bhandaru M, Ackermann TE, Judenhofer MS, Pichler BJ, Biber J, Wagner CA, Lang F: PKB/SGK-resistant GSK3 enhances phosphaturia and calcification. J Am Soc Nephrol 2011;22:873-880.

26 Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanke B, Razzague MS, Rosenblatt KP, Baum MG, M K-o, Moe OW: Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 2010;24:3430-3450.
29 Kempe DS, Dermaku-Sopjani M, Frohlich H, Sopjani M, Umbach A, Puchchakayala G, Capasso A, Weiss F, Stubs M, Foller M, Lang F: Rapamycin-induced phosphaturia. Nephrol Dial Transplant 2010;25:2938-2944.

30 Hosseinzadeh Z, Bhavsar SK, Lang F: Down-regulation of the myoinositol transporter SMIT by JAK2. Cell Physiol Biochem 2012;30:1473-1480.

31 Busch AE, Wagner CA, Schuster A, Waldeger S, Biber J, Murer H, Lang F: Properties of electroneutral Pi transport by a human renal brush border Na+/Pi transporter. J Am Soc Nephrol 1995;6:1547-1551.

32 Fraser SA, Gimenez I, Cook N, Jennings I, Katerelos M, Katsis F, Levidiotis V, Kemp BE, Power DA: Regulation of the renal-specific Na+/K(+)-2Cl(-) co-transporter NKCC2 by AMP-activated protein kinase (AMPK). Biochem J 2007;405:85-93.

33 Mia S, Munoz C, Pakladok T, Siraskar G, Voelkl J, Alesutan I, Lang F: Downregulation of Kv1.5 K channels by the AMP-activated protein kinase. Cell Physiol Biochem 2012;30:1039-1050.

34 Hamilton SR, Stapleton D, O’Donnell JB, Jr., Kung JT, Dalal SR, Kemp BE, Witters LA: An activating mutation in the gamma1 subunit of the AMP-activated protein kinase. FEBS Lett 2001;500:163-168.

35 Hallows KR, Kobinger GP, Wilson JM, Witters LA, Foskett JK: Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells. Am J Physiol Cell Physiol 2003;284:C1297-C1308.

36 Hosseinzadeh Z, Bhavsar SK, Lang F: Downregulation of CIC-2 by JAK2. Cell Physiol Biochem 2012;29:737-742.

37 Strutz-Seebohm N, Pusch M, Wolf S, Stoll R, Tapken D, Gerwert K, Attali B, Seebohm G: Structural basis of slow activation gating in the cardiac I Ks channel complex. Cell Physiol Biochem 2011;27:443-452.

38 Pathare G, Foller M, Daryadel A, Mutig K, Bogatikov E, Fajol A, Almilaji A, Michael D, Stange G, Voelld J, Wagner CA, Bachmann S, Lang F: OSR1-sensitive renal tubular phosphate reabsorption. Kidney Blood Press Res 2012;36:149-161.

39 Bogatikov E, Munoz C, Pakladok T, Alesutan I, Shoaieifard M, Seebohm G, Foller M, Palmada M, Bohmer C, Broer S, Lang F: Up-regulation of amino acid transporter SLC6A19 activity and surface protein abundance by PKB/Akt and PIKfyve. Cell Physiol Biochem 2012;30:1538-1546.

40 Henrion U, Zumhagen S, Steinke K, Strutz-Seebohm N, Stallmeyer B, Lang F, Schulze-Bahr E, Seebohm G: Overlapping cardiac phenotype associated with a familial mutation in the voltage sensor of the KCNQ1 channel. Cell Physiol Biochem 2012;30:809-918.

41 Yamada F, Horie D, Nakamura A, Tanimura A, Yamamoto H, Segawa H, Ito M, Miyamoto K, Taketani Y, Takeda E: Role of serine 249 of ezrin in the regulation of sodium-dependent phosphate transporter NaPi-IIa activity in renal proximal tubular cells. J Med Invest 2013;60:27-34.

42 Guo J, Song L, Liu M, Segawa H, Miyamoto K, Bringhurst FR, Kronenberg HM, Juppner H: Activation of a non-cAMP/PKA signaling pathway downstream of the PTH/PTHrP receptor is essential for a sustained hypophosphatemic response to PTH infusion in male mice. Endocrinology 2011;154:1680-1689.

43 Capuano P, Bacic D, Roos M, Gisler SM, Stange G, Wagner CA, Murer H: Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+-phosphate cotransporter NaPi-IIa in Nherf1-deficient mice. Am J Physiol Cell Physiol 2007;292:C927-C934.

44 Lederer ED, Khundmiri SJ, Weinman EJ: Role of NHERF-1 in regulation of the activity of Na-K ATPase and sodium-phosphate co-transporters in epithelial cells. J Am Soc Nephrol 2003;14:1711-1719.

45 Nashiki K, Taketani Y, Takeichi T, Sawada N, Yamamoto H, Ichikawa M, Arai H, Miyamoto K, Takeda E: Role of membrane microdomains in PTH-mediated down-regulation of NaPi-IIa in opossum kidney cells. Tiss Expr Regul 2005;68:1137-1147.

46 Capuano P, Bacic D, Stange G, Hernando N, Kaissling B, Pal R, Kocher O, Biber J, Wagner CA, Murer H: Expression and regulation of the renal Na+phosphate cotransporter NaPi-IIa in a mouse model deficient for the PDZ protein PDZK1. Pflügers Arch 2005;459:392-402.

47 Gisler SM, Madjdpour C, Bacic D, Prbianic S, Taylor SS, Biber J, Murer H: PDZK1: II. an anchoring site for the PKA-binding protein D-AKAP2 in renal proximal tubular cells. Kidney Int 2003;64:1746-1754.
Dërmaku-Sopjani et al.: AMPK-Sensitive NaPi-IIa

50 Pathare G, Foller M, Michael D, Walker B, Hierlemier M, Mannheim JG, Pichler BJ, Lang F: Enhanced FGF23 serum concentrations and phosphaturia in gene targeted mice expressing WNK-resistant SPAK. Kidney Blood Press Res 2012;36:355-364.

51 Ahmad A, Khundmiri SJ, Pribble ML, Merchant ML, Ameen M, Klein JB, Levi M, Lederer ED: Role of vacuolar ATPase in the trafficking of renal type Ila sodium-phosphate cotransporter. Cell Physiol Biochem 2011;27:703-714.

52 Guan F, Yu B, Qi GX, Hu J, Zeng DY, Luo J: Chemical hypoxia-induced glucose transporter-4 translocation in neonatal rat cardiomyocytes. Arch Med Res 2008;39:52-60.

53 Jessen N, Pold R, Buhl ES, Jensen LS, Schmitz O, Lund S: Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT4 content in rat muscles. J Appl Physiol 2003;94:1373-1379.

54 Lei B, Matsuo K, Labinshky V, Sharma N, Chandler MP, Ahn A, Hintze TH, Stanley WC, Recchia FA: Exogenous nitric oxide reduces glucose transporters translocation and lactate production in ischemic myocardium in vivo. Proc Natl Acad Sci USA 2005;102:6966-6971.

55 Li J, Hu X, Selvakumar P, Russell RR, Cushman SW, Holman GD, Young LH: Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle. Am J Physiol Endocrinol Metab 2004;287:E834-E841.

56 Luiken JJ, Coort SL, Koonen DP, van der Horst DJ, Bonen A, Zorzano A, Glutz JF: Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch 2004;448:1-15.

57 MacLean PS, Zheng D, Jones JP, Olson AL, Dohm GL: Exercise-induced transcription of the muscle glucose transporter (GLUT 4) gene. Biochem Biophys Res Commun 2002;292:409-414.

58 Natsuiizaka M, Ozasa M, Darmanin S, Miyamoto M, Kondo S, Kamada S, Shindoh M, Higashino F, Suhara W, Koide H, Aita K, Nakagawa K, Kondo T, Asaka M, Kobayashi M: Synergistic up-regulation of Hexokinase-2, glucose transporters and angiogenic factors in pancreatic cancer cells by glucose deprivation and hypoxia. Exp Cell Res 2007;313:3337-3348.

59 Ojuka EO, Nolte LA, Holloszy JO: Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. J Appl Physiol 2000;88:1072-1075.

60 Park S, Scheffler TL, Gunawan AM, Shi H, Zeng C, Hannon KM, Grant AL, Gerrard DE: Chronic elevated calcium blocks AMPK-induced GLUT-4 expression in skeletal muscle. Am J Physiol Cell Physiol 2009;296:C106-C115.

61 Walker J, Jijon HB, Diaz H, Salehi P, Churchill T, Madsen KL: 5-aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK. Biochim Biophys Acta 2005;1705:485-491.

62 Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO: Activation of AMP-activated protein kinase in increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 2000;88:2219-2226.

63 Zheng D, MacLean PS, Pohnert SC, Knight JB, Olson AL, Winder WW, Dohm GL: Regulation of muscle GLUT-4 transport by AMP-activated protein kinase. J Appl Physiol 2001;91:1073-1083.

64 Sopjani M, Bhavsar SK, Fraser S, Kemp BE, Foller M, Lang F: Regulation of Na+-coupled glucose carrier SGLT1 by AMP-activated protein kinase. Mol Membr Biol 2010;27:137-144.

65 Boiteux A, Hess B: Design of glycolysis. Philos Trans R Soc Lond B Biol Sci 1981;293:5-22.

66 Rotte A, Pasham V, Eichenmuller M, Bhandaru M, Foller M, Lang F: Upregulation of Na+/H+ exchanger by the AMP-activated protein kinase. Biochem Biophys Res Commun 2010;398:677-682.

67 Evans AM, Mustard KM, Wyatt CN, Peers C, Dipp M, Kumar P, Criswell DS: Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? J Biol Chem 2005;280:41504-41511.

68 Lira VA, Soltow QA, Long JH, Betters JL, Sellman JE, Criswell DS: Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am J Physiol Endocrinol Metab 2007;293:E1062-E1068.