Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Global distribution of ACE1 (rs4646994) and ACE2 (rs2285666) polymorphisms associated with COVID-19: A systematic review and meta-analysis

Masoud Keikha a, Mohsen Karbalaei b, *

a Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
b Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran

ARTICLE INFO

Keywords:
ACE2 receptor
COVID-19
SARS-CoV-2
rs4646994
rs2285666

ABSTRACT

Background: Recent studies emphasize the significant impact of the renin-angiotensin aldosterone system (RAAS) as a risk factor associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, according to the literature, the effect of rs4646994 and rs2285666 polymorphisms on susceptibility and progression to severe clinical outcomes is still controversial. Our aim was to investigate the effect of polymorphisms such as rs4646994 and rs2285666 on susceptibility to coronavirus disease-2019 (COVID-19).

Methods: We conducted a comprehensive literature search using databases such as ISI Web of Science, PubMed, Scopus, and Google Scholar to retrieve studies on the effect of two polymorphisms (rs4646994 and rs2285666) of the angiotensin-converting enzyme (ACE) gene on COVID-19. Finally, the effect of each polymorphism on SARS-CoV-2 infection was measured based on the odds ratio with 95% confidence intervals.

Results: Analysis of the rs4646994 polymorphism showed that the frequency of the D allele in patients infected with COVID-19 was higher than that the I allele. Moreover, the authors found that the DD genotype increased the risk of severe disease by 1.7-fold in Asian population, whereas, this was not the case in the Western population. However, the rs4646994 II genotype plays a protective role against COVID-19 in Western countries. In the case of the rs2285666 polymorphism based on patient ethnicity, the C allele had the highest frequency. Interestingly, in people harboring the GG and TT genotypes, the risk of progression to severe disease significantly increased, while people with genotypes such as GA, AA and CC seem to be more resistant to severe Covid-19.

Conclusions: Based on geographical region, the rs4646994 DD genotype may be considered as a predictive biomarker to identify the susceptibility of human to SARS-CoV-2 infection and severe COVID-19 outcomes. We also concluded that individuals with GG and TT genotypes are significantly more susceptible to severe outcomes of disease, while conversely, individuals with GA, AA, and CC genotypes are less susceptible to severe COVID-19.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the causes of atypical pneumonia, which first appeared in December 2019, and due to its global spread, the World Health Organization (WHO) declared a global pandemic of this virus on 11 March 2020 [1]. Nearly two years after the outbreak of this virus, according to the WHO report, so far more than 453 million cases have been infected with SARS-CoV-2, and 6.03 million people have died (https://covid19.who.int/). People infected with coronavirus disease-2019 (COVID-19) show a variety of symptoms, although most people experience mild symptoms or remain asymptomatic carriers, some of them develop into the acute respiratory distress syndrome (ARDS) [2,3]. According to the literature, comorbidities such as male sex, age over 60 years, African-American race, obesity, hypertension, and diabetes are the most common cofactors associated with severe outcomes as well as high mortality [4].

Evidence suggests that the renin-angiotensin aldosterone system (RAAS) is an enzymatic cascade that plays an important role in the pathogenesis of COVID-19 [5]. In this pathway, the angiotensin-converting enzyme (ACE or ACE1) converts angiotensin-1 (Ang-1) to Ang-2; on the other hand, ACE2 converts Ang-2 to Ang-(1-7) [6]. Through binding to AT1 receptor, Ang-2 induces thrombosis, inflammation, fibrosis, and vasoconstriction, while
Ang(1-7) binds to AT2 receptor and hinders the reactions involved in fibrosis, thrombosis, and inflammation [7,8]. Interaction between ACE1/ACE2 predicts the risk of disorders such as hypertension, cardiovascular disease (CVD), and pulmonary diseases, hence, the ACE1/ACE2 axis influences the risk factors involved in COVID-19, and also plays a key role in susceptibility to severe clinical outcomes [9-11]. In addition, SARS-CoV-2 uses its spike protein to bind to the ACE2 receptor and entry into host cells [12]. Recent experiments showed that monoclonal antibodies significantly block SARS-CoV-2 entry into human cells [13].

According to the recent literature, both acquired and inherited factors alter the expression and biological function of RAAS modules and ultimately affect the outcomes of SARS-CoV-2 infection; for example, reduction in ACE2 expression might have a role in hypertension, diabetes mellitus, as well as lung injury in infections caused by influenza virus and SARS-CoV-2 in animal models [14-16]. Furthermore, ACE2 expression reduces with age, especially in men [17]. This may explain why deaths from COVID-19 are lower in older men than in children.

The ACE gene locates on the long arms of chromosome, and contains 26 exons; various studies have investigated the role of insertion/deletion (I/D) of a 287-bp alu repeat sequence in intron 16 (rs4646994) and its relationship with complications caused by SARS-CoV-2 such as heart failure, hypertension, diabetes, kidney failure, and pneumonia [17-21]. Allelic variations of the ACE2 gene are divided into three distinct genotypes including II, ID, and DD; in this regard, individuals carrying the DD genotype have highest ACE blood levels, which in turn increases the risk of stroke and diabetic nephropathy [22,23]. Moreover, high frequency of the DD genotype in Western countries is associated with high mortality of COVID-19 compared to the Asian populations [24].

The ACE2 gene have 22 exons and locates on the X chromosome (Xp22.2); this gene contains several single nucleotide polymorphisms (SNPs), and G to A change at nucleotide +4 of intron 3 (SNP rs2285666) increases the risk of heart failure and hypertension due to increase in the expression of ACE2 receptor [25,26]. Due to the presence of only one X chromosome in men, ACE2 expression is lower in them than in women, which in turn leads to an increase in the severity of COVID-19 in men [27,28]. However, the effect of genetic diversity on RAAS components and susceptibility to SARS-CoV-2 is still unclear. In this study we evaluated the global distribution of the rs4646994 and rs2285666 polymorphisms associated with COVID-19; we also assessed the impact of these polymorphisms on susceptibility to and severity of COVID-19 in patients.

2. Methods

2.1. Search strategy

First, until July 2022, we conducted a systematic literature search using global databases such as ISI Web of Science, PubMed, Scopus, and Google Scholar. All studies on the rs2285666 and rs4646994 polymorphisms associated with SARS-CoV-2 infection were retrieved regardless of language limitation. We used several keywords such as “ACE”, “ACE2”, “Renin-angiotensin aldosterone system”, “Single nucleotide polymorphism”, “genetic variation”, “rs2285666”, “rs4646994”, “SARS-CoV-2”, “COVID-19”, and “acute respiratory distress”. In addition, bibliographies of articles were manually reviewed by two separate authors to avoid missing additional relevant studies.

2.2. Inclusion criteria

The inclusion criteria were: 1) articles as original, cohort, retrospective, perspective, cross-sectional; 2) articles on the effect of the rs2285666 and rs4646994 polymorphisms associated with COVID-19; we also assessed the impact of these polymorphisms on susceptibility to and severity of COVID-19 in patients.

2.3. Exclusion criteria

The exclusion criteria were: 1) letters, case reports, and review articles; 2) studies on other polymorphisms (except rs2285666 and rs4646994) in COVID-19 patients; 3) in vivo or in vitro studies; 4) studies with unclear methods/results.

2.4. Data collection

In the present study, we used the Newcastle-Ottawa Quality Assessment Scale (NOS) to evaluate the quality of studies. According to
the defined criteria, titles, abstracts, and full-text of articles were reviewed by two separate authors. In this meta-analysis, characteristics such as first author, publication year, country, allelic/genotype distribution of rs4646994, and allelic/genotype distribution of rs2285666 were considered as eligible criteria (Table 1) [29–47].

2.5. Statistical analysis

We pooled the eligible studies using Comprehensive Meta-Analysis (CMA) software version 2.2 (Bios tat, Englewood, NJ). The frequency of alleles and genotypes of these two variants (rs4646994 and rs2285666) was measured with event rate corresponding 95% confidence intervals (95% CIs). In addition, using odds ratio (OR), we computed the association between theses polymorphisms and susceptibility to the severe clinical outcomes of SARS-CoV-2 infection. Inter-study heterogeneity was appraised using indexes as I-squared and Cochran Q test. We also pooled the data in significant heterogeneity cases using the DerSimonial and Laird random effects model. Furthermore, publication bias was measured based on Begg’s p value, Egger’s p value, and asymmetry of funnel plot [48].

3. Results

3.1. Characteristics of included studies

Overall, 506 articles were retrieved during the literature search process. After evaluating titles, abstracts, and full-text with our inclusion criteria, 19 eligible articles were selected for statistical analysis (Fig. 1). The main reasons for omitting unrelated studies were: 1) investigating the non-rs2285666 and non-rs4646994 polymorphisms; 2) differences in purposes of studies; 3) lack of sufficient data; 4) article type. After careful review of 19 studies, information on the rs2285666 and rs4646994 polymorphisms in patients with COVID-19 and control individuals was retrieved and listed in Table 1.

3.2. Quality assessment

During the quality evaluation, two authors evaluated the quality of the studies based on three items: selection, comparison and exposure. Of these, 12 had high quality (7–9 stars), whereas, 7 studies had moderate quality. The studies had been conducted in countries such as Iraq, Iran, Mexico, Turkey, Saudi Arabia, the Czech Republic, Spain, Germany, India, China, Egypt, Slovenia, Greece, and Italy. In the present study, we evaluated the data of 4,153 COVID-19 patients and 5,229 healthy individuals.

3.3. The rs4646994 polymorphism and susceptibility to COVID-19

The frequency of D and I alleles in patients infected with SARS-CoV-2 was measured at 66.7% (95% CI: 57.8–74.5; F^2: 89.19; p value: 0.01; Begg’s p value: 0.8; Egger’s p value: 0.4) and 44.5% (95% CI: 38.6–50.6; F^2: 94.34; p value: 0.01; Begg’s p value: 0.18; Egger’s p value: 0.20), respectively. In addition, the distribution of DD, ID, and II genotypes in COVID-19 patients was 35.8% (95% CI: 22.6–51.6; F^2: 89.19; p value: 0.05; Begg’s p value: 0.1; Egger’s p value: 0.2), 21.9% (95% CI: 8.1–34.3; F^2: 89.19; p value: 0.14; Begg’s p value: 0.01; Egger’s p value: 0.01) and 44.5% (95% CI: 38.6–50.6; F^2: 94.34; p value: 0.01; Begg’s p value: 0.18; Egger’s p value: 0.01), respectively.

Our analysis showed that individuals with the D allele and DD genotype are significantly more at risk of contracting COVID-19 (Table 2).

3.4. The rs4646994 polymorphism and severity of SARS-CoV-2 infection

The distribution of D and I alleles in COVID-19 patients with severe clinical outcomes was 52.4% (95% CI: 32.5–71.5; F^2: 93.48; p value: 0.01; Begg’s p value: 0.36; Egger’s p value: 0.49) and 47.0% (95% CI: 34.3–68.0; F^2: 91.36; p value: 0.01; Begg’s p value: 0.5; Egger’s p value: 0.36), respectively. Furthermore, the frequency of II, ID, and DD genotypes was measured at 15.5% (95% CI: 9.5–24.3; F^2: 54.92; p value: 0.10; Begg’s p value: 0.04; Egger’s p value: 0.01), 21.9% (95% CI: 8.1–47.0; F^2:...
93.36; p value: 0.01; Begg’s p value: 0.04; Egger’s p value: 0.03), and 50.0% (95% CI: 29.4–70.6; \(I^2 \): 86.37; p value: 0.01; Begg’s p value: 0.08; Egger’s p value: 0.03), respectively.

This meta-analysis showed that people with the DD genotype are 3.04-fold more susceptible to severe clinical outcomes of COVID-19 than others, while the risk of severe disease in those with II genotype is ~0.6-fold lower (Table 3). According to the subgroup analysis, although the DD genotype increased the severity of SARS-CoV-2 disease by 2.07-fold in Western countries (OR: 2.07; 95% CI: 1.23–3.49; p value: 0.01), no significant relationship was observed in the Asian population (OR: 0.96; 95% CI: 0.55–1.67; p value: 0.88). Moreover, the II genotype reduced the risk of severe clinical outcomes by 0.6-fold (OR: 0.63; 95% CI: 0.34–1.14; p value: 0.03), and no significant association between the rs2285666 and susceptibility to SARS-CoV-2 infection (Table 4). Finally, in individuals carrying the GG genotype, the risk of SARS-CoV-2 infection increased 1.7-fold, but was not significant (OR: 1.76; 95% CI: 0.48–6.46; p value: 0.09).

3.6. The rs2285666 polymorphism and severity of SARS-CoV-2 infection

In association with the rs2285666 polymorphism, the allelic variation is G, A, C and T. The frequency of these alleles was as follows: G, 76.4% (95% CI: 22.0–97.4; \(I^2 \): 97.17; p value: 0.01); A, 23.4% (95% CI: 2.6–77.4; \(I^2 \): 97.11; p value: 0.01); C, 75.4% (95% CI: 53.8–89.0; \(I^2 \): 87.98; p value: 0.01); T, 24.6% (95% CI: 1.1–46.2; \(I^2 \): 87.98; p value: 0.01). In addition, the distribution of genotypes among COVID-19 confirmed cases was also measured as follows: GG, 68.1% (95% CI: 37.5–88.3; \(I^2 \): 95.56; p value: 0.01; Begg’s p value: 0.5; Egger’s p value: 0.76); GA, 14.8% (95% CI: 9.2–23.0; \(I^2 \): 63.86; p value: 0.01; Begg’s p value: 0.5; Egger’s p value: 0.49); AA, 8.1% (95% CI: 1.5–34.4; \(I^2 \): 92.95; p value: 0.01; Begg’s p value: 0.5; Egger’s p value: 0.46); CC, 58.8% (95% CI: 18.8–89.8; \(I^2 \): 97.02; p value: 0.01); CT, 14.3% (95% CI: 7.9–24.6; \(I^2 \): 63.19; p value: 0.31); TT, 12.3% (95% CI: 8.5–17.7; \(I^2 \): 0.00; p value: 0.63).

Our results suggested that there is no meaningful association between the rs2285666 and susceptibility to SARS-CoV-2 infection (Table 4). Finally, in individuals carrying the GG genotype, the risk of SARS-CoV-2 infection increased 1.7-fold, but was not significant (OR: 1.76; 95% CI: 0.48–6.46; p value: 0.09).

3.6. The rs2285666 polymorphism and severity of SARS-CoV-2 infection

In relation to the impact of the rs2285666 polymorphism in the severity of SARS-CoV-2 infection, the frequency of alleles and genotypes was as follows: G allele, 22.4% (95% CI: 14.0–33.9; \(I^2 \): 0.00; p value: 0.9); A allele, 77.6% (95% CI: 66.1–86.0; \(I^2 \): 0.00; p value: 0.9); C allele, 69.3% (95% CI: 39.9–88.5; \(I^2 \): 93.24; p value: 0.01); T allele, 30.7% (95% CI: 11.5–60.1; \(I^2 \): 93.24; p value: 0.01); GG genotype, 88.0% (95% CI: 80.0–93.1; \(I^2 \): 0.00; p value: 0.01); GA genotype, 4.5% (95% CI: 1.1–16.4; \(I^2 \): 0.00; p value: 0.9); AA genotype, 6.8% (95% CI: 2.2–19.1; \(I^2 \): 0.00; p value: 0.9); CC genotype, 52.2% (95% CI: 44.0–60.3; \(I^2 \): 29.10; p value: 0.23); CT genotype 22.8% (95% CI: 14.9–33.4; \(I^2 \): 59.57; p value: 0.1); TT genotype, 20.9% (95% CI: 13.9–30.1; \(I^2 \): 50.29; p value: 0.15). The present meta-analysis showed that in people harboring the GG and TT genotypes, the risk of severe COVID-19 infection was very high, while it seems that the risk of severe disease is low in people with other genotypes such as GA, AA, and CC (Table 5). However, further investigation need to validate the present finding.

3.7. Publication bias

According to the measurements based on Begg’s p value test and Egger’s p value test, a significant publication bias was observed in some cases. In particular, the analytical detection of asymmetry in the funnel plot also confirmed this publication bias (Fig. 4).
4. Discussion

SARS-CoV-2 is considered as one of the highly contagious viruses [49]. This virus binds to ACE2 via the receptor-binding domain (RBD) in its spike glycoprotein and then enters human cells [50]. The mechanism of ACE2 binding in SARS-CoV-2 is quite similar to SARS-CoV-1, but affinity for ACE2 in SARS-CoV-2 is significantly higher than in SARS-CoV-1 [51].

As far as we know, this is the first comprehensive meta-analysis that investigated the polymorphisms of RAAS during the pathogenesis of SARS-CoV-2. Our results suggested that rs4646994 and rs2285666 variations can influence the results of susceptibility as well as progression to the acute respiratory distress depending on patient’s ethnicity.

The rs4646994 DD-genotype could significantly increase the risk of SARS-CoV-2 infection by approximately 1.7-fold in the Asian populations; otherwise, the rs2285666 GG genotype can increase the risk of ARDS in the Western hemisphere.

According to the literature, the imbalance between ACE1 and ACE2 plays a decisive role in the pathogenesis of SARS-CoV-2 [52–54]. The ACE2 receptor counteracts against the proinflammatory and profibrotic effects of Ang-2 by converting it to Ang-(1-7) [34]. Studies show that increased levels of Ang-2 cause severe injury to lung and heart tissues, but in people carrying the rs2285666 A-allele, due to the expression of high levels of ACE2, they are usually protected against the ACE1/ACE2 imbalance [55, 56]. Based on studies, the severity of COVID-19 in patients can be associated with several underlying conditions such as coronary artery disease (CAD), male sex, age over 60 years, obesity, diabetes mellitus (DM), and hypertension [57]. Comprehensive studies on the Mexican population showed that I/D polymorphism of ACE gene is a genetic marker for susceptibility to complications such as CVD.

Table 3
The pooled OR with 95% CI of genetic models of rs4646994 in severe clinical outcomes of COVID-19.

Polymorphisms	Genetic Models	Random-effect models	Heterogeneity
		OR 95% CI p value	I- squared p value
rs4646994 DD	3.04 0.98-9.42	0.05 70.91 0.03	
ID	0.51 0.07-3.47	0.49 80.88 0.02	
I	0.59 0.42-0.82	0.02 0.00 0.59	
ID + II	1.08 0.62-1.89	0.77 0.00 0.99	
DD + ID	2.16 0.83-5.61	0.11 0.00 0.99	
I	0.84 0.62-1.12	0.24 0.00 0.41	
D	1.23 0.89-1.64	0.16 0.00 0.46	

Table 4
The pooled OR with 95% CI of genetic models of rs2285666 in susceptibility to COVID-19 infection.

Polymorphisms	Genetic Models	Random-effect models	Heterogeneity
		OR 95% CI p value	I- squared p value
rs2285666 GG	1.76 0.48-6.46	0.39 91.99 0.01	
GA	0.56 0.21-1.51	0.25 82.21 0.04	
AA	0.76 0.15-3.83	0.74 77.61 0.01	
CC	1.04 0.53-2.04	0.86 0.00 0.9	
CT	0.68 0.29-1.61	0.39 0.00 0.9	
TT	1.41 0.54-3.64	0.47 0.00 0.9	
G	1.59 0.13-18.68	0.7 95.17 0.01	
A	0.61 0.05-6.82	0.6 94.94 0.01	
C	0.92 0.43-1.96	0.83 0.00 0.9	
T	1.27 0.58-2.79	0.53 0.00 0.9	

Table 5
The pooled OR with 95% CI of genetic models of rs2285666 in severe clinical outcomes of COVID-19.

Polymorphisms	Genetic Models	Random-effect models	Heterogeneity
		OR 95% CI p value	I- squared p value
rs2285666 GG	4.88 2.78-8.56	0.01 91.99 0.01	
GA	0.22 0.11-0.42	0.01 0.00 0.5	
AA	0.31 0.13-0.78	0.01 0.00 0.3	
CC	0.35 0.19-0.66	0.01 0.00 0.9	
CT	1.31 0.61-2.80	0.47 0.00 0.9	
TT	3.83 1.64-8.91	0.02 93.76 0.01	
G	1.50 0.89-2.95	0.12 93.76 0.01	
A	2.92 0.83-10.18	0.09 81.47 0.02	
C	0.34 0.17-0.67	0.02 0.00 0.9	
T	3.43 1.68-6.97	0.01 0.00 0.9	

Fig. 2
The forest plot associated with the frequency of the DD genotype and the risk of COVID-19 in the Asian population.

Fig. 3
The forest plot of the role of DD and II genotypes in the severity of COVID-19.
diabetes, and hypertension [58,59]. Individuals harboring polymorphisms in a variety of genes e.g. ACE1, ACE2, TMPRSS2, HLA, CD147, MIF, IFNG, IL6, and IFITM3 are commonly involved in the outcomes of SARS-CoV-2 and other pathogenic coronaviruses [60,61].

In the present study, we analyzed the impact of polymorphisms of ACE1 and ACE2 on the severity of COVID-19. According to our findings, the frequency of D and I alleles in patients infected with SARS-CoV-2 was at 66.7% and 44.5%, respectively. Using subgroup analysis, we found that unlike the Western population, the Asian population carrying rs4646994 DD genotype is significantly susceptible to infection by SARS-CoV-2. On the other hand, based on the results of subgroup analysis, the rs4646994 DD genotype increases the risk of the severity of COVID-19 in patients, but it seems that the II genotype is more resistant to the severity of COVID-19. Regarding the rs2285666 polymorphism, our results revealed that the rs2285666 AA genotype was associated with the non-significant increase in the risk of SARS-CoV-2 infection. On the other hand, in current meta-analysis we realized that in people possessing the rs2285666 GG genotype, the risk of progression to severe COVID-19 was at 66.7% and 44.5%, respectively. Using subgroup analysis, we found that unlike the Western population, the Asian population carrying rs2285666 DD genotype increases the risk of the severity of COVID-19. According to our findings, possessing the rs2285666 GG genotype, the risk of progression to severe COVID-19 is high, while, the rs2285666 GA genotype has a protective role against ARDS. Finally, further studies with larger populations are needed to confirm the present findings.

5. Conclusion

There is ample evidence that RAAS plays a role in the pathogenesis of SARS-CoV-2. According to the literature, RAAS increases the risk of hypertension, diabetes, CVD, which in turn play a crucial role in the clinical outcomes of SARS-CoV-2 infection. Our meta-analysis showed that rs4646994 and rs2285666 polymorphisms could be considered as two potential biomarkers for the diagnosis of susceptibility to COVID-19 as well as the severe clinical outcomes of SARS-CoV-2. We first proposed that these polymorphisms could be helpful in predicting pathogenesis of SARS-CoV-2. The rs4646994 DD genotype increases the risk of susceptibility to COVID-19 by approximately 1.7-fold in the Asian populations, whereas, the rs2285666 GG genotype can increase the risk of ARDS in Western patients. In addition, the rs2285666 GA genotype plays a protective role against ARDS. Finally, further studies with larger populations are needed to confirm the present findings.

CRediT authorship contribution statement

Masoud Keikha: Writing – original draft, Formal analysis. Mohsen Karbalaei: Writing – review & editing.

Declaration of competing interest

Formally, we confirm, there are not conflict of interest.

References

[1] K. Ghazvini, M. Karbalaei, M. Keikha, What are the clinical benefits of tocilizumab for COVID-19 patients? Evidence from available case-control studies, Le Pharmacien Hospitalier & Clinicien 56 (2) (2021) 217.
[2] Z. Wu, J.M. McGowan, Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention, JAMA 323 (13) (2020) 1229-1242.
[3] G. Grasselli, A. Zangrillo, A. Zanella, M. Antonelli, L. Cabrini, A. Castelli, et al., Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. Jama. 323 (16) (2020) 1574–1581.
[38] A. Pati, H. Mahto, S. Padhi, A.K. Panda, ACE deletion allele is associated with COVID-19, N. Engl. J. Med. 382 (17) (2020) 1653–1659.

[39] E. Aladag, Z. Tas, B.S. Ozdemir, T.H. Akbaba, M.G. Akpınar, H. Goker, et al., Human ace D/I polymorphism could affect the clinicobiological course of COVID-19, J. Renin-Angiotensin Aldosterone Syst. JRAAS (2021) 2022.

[40] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271–280.

[41] K. Sriram, P.A. Insel, A hypothesis for pathobiology and treatment of COVID-19: the lung, the heart, the novel coronavirus, and the renin-angiotensin system; the need for clinical trials, Front. Pharmacol. 11 (2020) 29274.

[42] S. Droz, J.-M. PDetroit, M. Branger, J. Shi, M. Tulkens, S. Philippart, et al., ACE and ACE2 gene variants are associated with severe outcomes of COVID-19 in men, Front. Immunol. (2020) 450.

[43] K. Jevnikar, L. Lapajne, D. Petrović, D. Maček, M. Terzić, S. Kamnik, et al., The role of ACE, ACE2, and AGTR2 polymorphisms in COVID-19 severity and acute pulmonary embolism in COVID-19, Viruses 12 (10) (2020) 833.

[44] Z. Zhang, Y. Li, W. Li, L. Wang, J. Yang, D. Zhou, et al., Structural basis for the recognition of SARS-CoV-2 by ACE2, and the cardiovascular consequences, Am. J. Physiol. Heart Circ. Physiol. (2020).

[45] S. Sanche, Y.T. Lin, C. Xu, E. Romero-Severson, N. Hengartner, R. Ke, High-risk BMI is a risk factor for COVID-19 severity: a systematic review and meta-analysis, JAMA Cardiol. 5 (5) (2020) 408–417.

[46] Z.S. Mahmood, H.Y. Fadhil, T.A.A. Hussein, A.H. Aljubouri, I. Kallipolitis, et al., Angiotensin-converting enzyme 2 in children and adults, JAMA 323 (23) (2020) 2427–2429.

[47] M. Sabater Molina, E. Nicolás, O. Valenzuela, A. Hernández-Larrea, L. Amado-Plaza, C. Martinez-Armenta, et al., ACE and ACE2 gene variants are associated with severe outcomes of COVID-19 in women, Front. Immunol. (2020) 450.

[48] K. Sriram, P.A. Insel, A hypothesis for pathobiology and treatment of COVID-19: the lung, the heart, the novel coronavirus, and the renin-angiotensin system; the need for clinical trials, Front. Pharmacol. 11 (2020) 29274.

[49] S. Droz, J.-M. PDetroit, M. Branger, J. Shi, M. Tulkens, S. Philippart, et al., ACE and ACE2 gene variants are associated with severe outcomes of COVID-19 in men, Front. Immunol. (2020) 450.

[50] K. Jevnikar, L. Lapajne, D. Petrović, D. Maček, M. Terzić, S. Kamnik, et al., The role of ACE, ACE2, and AGTR2 polymorphisms in COVID-19 severity and acute pulmonary embolism in COVID-19, Viruses 12 (10) (2020) 833.

[51] Z. Zhang, Y. Li, W. Li, L. Wang, J. Yang, D. Zhou, et al., Structural basis for the recognition of SARS-CoV-2 by ACE2, and the cardiovascular consequences, Am. J. Physiol. Heart Circ. Physiol. (2020).

[52] S. Droz, J.-M. PDetroit, M. Branger, J. Shi, M. Tulkens, S. Philippart, et al., ACE and ACE2 gene variants are associated with severe outcomes of COVID-19 in men, Front. Immunol. (2020) 450.

[53] K. Jevnikar, L. Lapajne, D. Petrović, D. Maček, M. Terzić, S. Kamnik, et al., The role of ACE, ACE2, and AGTR2 polymorphisms in COVID-19 severity and acute pulmonary embolism in COVID-19, Viruses 12 (10) (2020) 833.

[54] Z. Zhang, Y. Li, W. Li, L. Wang, J. Yang, D. Zhou, et al., Structural basis for the recognition of SARS-CoV-2 by ACE2, and the cardiovascular consequences, Am. J. Physiol. Heart Circ. Physiol. (2020).

[55] S. Droz, J.-M. PDetroit, M. Branger, J. Shi, M. Tulkens, S. Philippart, et al., ACE and ACE2 gene variants are associated with severe outcomes of COVID-19 in men, Front. Immunol. (2020) 450.

[56] K. Jevnikar, L. Lapajne, D. Petrović, D. Maček, M. Terzić, S. Kamnik, et al., The role of ACE, ACE2, and AGTR2 polymorphisms in COVID-19 severity and acute pulmonary embolism in COVID-19, Viruses 12 (10) (2020) 833.

[57] E. Klang, G. Kassim, S. Soffer, R. Freeman, M.A. Levin, D.L. Reich, Severe obesity as a risk factor for severe COVID-19: implication and utility for patients admitted to emergency department, Medicina 57 (8) (2021) 844.

[58] G. Vargas-Alarcon, G. Hernandez-Pacheco, J.M. Rodriguez-Perez, N. Perez-Marinero, S. Rodriguez-Alejandro, N. Maca-Meyer, E. Espinosa, J. Blanco, et al., Angiotensin-converting enzyme insertion/deletion (ACE I/D) gene polymorphisms in Iraqi patients, Meta gene 31 (2022), 101014.

[59] J.A. Hubacek, L. Dusek, O. Majek, V. Adamek, T. Cervinkova, D. Dlouha, et al., ACE and ACE2 gene variants and COVID-19 outcome, Gene 762 (2020), 145102.

[60] E. Aladag, Z. Tas, B.S. Ozdemir, T.H. Akbaba, M.G. Akpınar, H. Goker, et al., Human ace D/I polymorphism could affect the clinicobiological course of COVID-19, J. Renin-Angiotensin Aldosterone Syst. JRAAS (2021) 2022.

[61] A. Annunziata, A. Coppola, V. Di Spriro, R. Catteruccio, A. Marotta, P.D. Micco, et al., The angiotensin converting enzyme deletion/deletion genotype is a risk factor for severe COVID-19: implication and utility for patients admitted to emergency department, Medicina 57 (8) (2021) 844.

[62] E. Aladag, Z. Tas, B.S. Ozdemir, T.H. Akbaba, M.G. Akpınar, H. Goker, et al., Human ace D/I polymorphism could affect the clinicobiological course of COVID-19, J. Renin-Angiotensin Aldosterone Syst. JRAAS (2021) 2022.

[63] A. Annunziata, A. Coppola, V. Di Spriro, R. Catteruccio, A. Marotta, P.D. Micco, et al., The angiotensin converting enzyme deletion/deletion genotype is a risk factor for severe COVID-19: implication and utility for patients admitted to emergency department, Medicina 57 (8) (2021) 844.

[64] E. Aladag, Z. Tas, B.S. Ozdemir, T.H. Akbaba, M.G. Akpınar, H. Goker, et al., Human ace D/I polymorphism could affect the clinicobiological course of COVID-19, J. Renin-Angiotensin Aldosterone Syst. JRAAS (2021) 2022.

[65] A. Annunziata, A. Coppola, V. Di Spriro, R. Catteruccio, A. Marotta, P.D. Micco, et al., The angiotensin converting enzyme deletion/deletion genotype is a risk factor for severe COVID-19: implication and utility for patients admitted to emergency department, Medicina 57 (8) (2021) 844.
(ACE) insertion/deletion polymorphism in Mexican populations, Hum. Biol. (2003) 889–896.

[59] S. Palomo-Piñón, M.E. Gutiérrez-Rodríguez, M. Díaz-Flores, R. Sánchez-Barrera, A. Valladares-Salgado, D. Utrera-Barillas, et al., DD genotype of angiotensin-converting enzyme in type 2 diabetes mellitus with renal disease in Mexican Mestizos, Nephrol. Nephrol. 14 (2) (2009) 235–239.

[60] I.G. Ovsyannikova, I.H. Haralambieva, S.N. Crooke, G.A. Poland, R.B. Kennedy, The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity, Immunol. Rev. 296 (1) (2020) 205–219.

[61] S. Suh, S. Lee, H. Gym, S. Yoon, S. Park, J. Cha, et al., A systematic review on papers that study on Single Nucleotide Polymorphism that affects coronavirus 2019 severity, BMC Infect. Dis. 22 (1) (2022) 1–11.

[62] A. Srivastava, A. Bandopadhyay, D. Das, R.K. Pandey, V. Singh, N. Khanam, et al., Genetic association of ACE2 rs2285666 polymorphism with COVID-19 spatial distribution in India, Front. Genet. (2020) 1163.

[63] H. Zheng, J.J. Cao, ACE Gene Polymorphism and Severe Lung Injury in Patients with COVID-19, The American journal of pathology, 2020.

[64] D. Gemmati, V. Tisato, Genetic hypothesis and pharmacogenetics side of renin-angiotensin-system in COVID-19, Genes 11 (9) (2020) 1044.