Genomic and Enzymatic Results Show Bacillus cellulosilyticus Uses a Novel Set of LPXTA Carbohydrases to Hydrolyze Polysaccharides

David Mead1,2,3, Colleen Drinkwater1,3, Phillip J. Brumm2,3*

1 Lucigen Corporation, Middleton, Wisconsin, United States of America, 2 C5-6 Technologies, Middleton, Wisconsin, United States of America, 3 DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America

Abstract

Background: Alkalophilic Bacillus species are intrinsically interesting due to the bioenergetic problems posed by growth at high pH and high salt. Three alkaline cellulases have been cloned, sequenced and expressed from Bacillus cellulosilyticus N-4 (Bcell) making it an excellent target for genomic sequencing and mining of biomass-degrading enzymes.

Methodology/Principal Findings: The genome of Bcell is a single chromosome of 4.7 Mb with no plasmids present and three large phage insertions. The most unusual feature of the genome is the presence of 23 LPXTA membrane anchor proteins; 17 of these are annotated as involved in polysaccharide degradation. These two values are significantly higher than seen in any other Bacillus species. This high number of membrane anchor proteins is seen only in pathogenic Gram-positive organisms such as Listeria monocytogenes or Staphylococcus aureus. Bcell also possesses four sortase D subfamily 4 enzymes that incorporate LPXTA-bearing proteins into the cell wall; three of these are closely related to each other and unique to Bcell. Cell fractionation and enzymatic assay of Bcell cultures show that the majority of polysaccharide degradation is associated with the cell wall LPXTA-enzymes, an unusual feature in Gram-positive aerobes. Genomic analysis and growth studies both strongly argue against Bcell being a truly cellulolytic organism, in spite of its name. Preliminary results suggest that fungal mycelia may be the natural substrate for this organism.

Conclusions/Significance: Bacillus cellulosilyticus N-4, in spite of its name, does not possess any of the genes necessary for crystalline cellulose degradation, demonstrating the risk of classifying microorganisms without the benefit of genomic analysis. Bcell is the first Gram-positive aerobic organism shown to use predominantly cell-bound, non-cellulosomal enzymes for polysaccharide degradation. The LPXTA-sortase system utilized by Bcell may have applications both in anchoring cellulases and other biomass-degrading enzymes to Bcell itself and in anchoring proteins other Gram-positive organisms.

Citation: Mead D, Drinkwater C, Brumm PJ (2013) Genomic and Enzymatic Results Show Bacillus cellulosilyticus Uses a Novel Set of LPXTA Carbohydrases to Hydrolyze Polysaccharides. PLoS ONE 8(4): e61131. doi:10.1371/journal.pone.0061131

Editor: Malcolm James Horsburgh, University of Liverpool, United Kingdom

Received June 13, 2012; Accepted March 8, 2013; Published April 4, 2013

Copyright: © 2013 Mead et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) supporting CD, DM, and PJB. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. All work performed by employees of Lucigen or C5–6 Technologies was performed under and supported by subcontract to the GLBRC. No funds from either corporation was used for this research or to support the researchers during performance of this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and have the following conflicts: Colleen Drinkwater, and David Mead are employed by Lucigen Corp., a manufacturer of research reagents. Phillip Brumm is employed by C5–6 Technologies Corp., an enzyme discovery company. All work reported here was performed under and supported by subcontract to the GLBRC. No funds from either corporation was used for this research or to support the researchers during performance of this work. The commercial affiliations which the authors have declared do not alter their adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: pbrumm@c56technologies.com

Introduction

Alkalophilic Bacillus species are intrinsically interesting due to the problems posed by growth at high pH and high salt [1,2,3]. Proton motive force generation and ATP production is significantly different under these conditions than under neutral pH and low salt conditions [4]. The solutions to these problems that alkalophilic Bacillus have developed are of continuing interest; for example, some species have modified ATP synthases that allow production at high pH [5,6]. In others, a specific S-layer protein is linked to growth at high pH [7].
halodurans [14], amylases from B. halodurans [15,16] B. agaradhaerens [17], B. clarkii 7364 [18], and proteases from B. alkalophilus [19], B. halodurans [20] and other isolates. Three alkaline cellulases have been cloned, sequenced and expressed from novel enzymes found therein. [21,22,23], making it an excellent target for genomic mining of B. clarkii the genome sequence of GenBank: CP001791.1, Gold ID: Gc01337). This work reports General Genomics Results halodurans [14], amylases from halodurans [24]. In spite of the interest in the alkaliphilic organism that is both alkaliphilic and halophilic, has since been determined, and the organism has been given the species name, Bacillus cellulosilyticus, with N-4 (DSM 2522) being the type strain [24]. In spite of the interest in the alkaliphilic Bacillus species, only two of these organisms have had their genomes sequenced, B. halodurans [25] and B. selenitireducens MLS10 (unpublished, GenBank: CP001791.1, Gold ID: Ge01337). This work reports the genome sequence of Bacillus cellulosilyticus DSM 2522 and the novel enzymes found therein.

Results

General Genomics

The Bacillus cellulosilyticus DSM 2522 (Bcell) genome consists of a single, circular chromosome of 4,681,672 base pairs (GenBank: CP002394.1) with a GC content of 36.5%, lower than the 39.6% reported previously [24]. Gene prediction revealed 4,327 protein-coding gene models and 61 pseudogenes (Table 1); 2876 (64.7%) had a function prediction and 1451 (32.7%) had none. A total of eight rRNA operons were found containing ten 5S rRNAs, ten 16S rDNAs, and ten 23S rRNAs. 81 tRNAs covering all 20 protein amino acids were also recovered (GenBank accession:CP002394), as well as 5 other RNA genes. The COGS Functional Groups Predictions (Table 2) show Bcell has the highest percentage of genes assigned to amino acid transport and metabolism (9.5%), carbohydrate transport and metabolism (8.7%), and inorganic ion transport and metabolism (6.8%).

A distance tree based on finished genomes was constructed using Phylogenetic Distance Tree software to determine the relationship of Bcell to other Bacillus species. The tree was created using Blast2Tree (http://bioinfo.unice.fr/blast/) using the blastn alignment of 16S rDNA genes of >1200 nt on the NCBI database and diadast and neighbor tools from the Phylip package (http://evolution.genetics.washington.edu/phylip/doc/). The completed tree was visualized using CLC Sequence Viewer 6 software.

The results (Figure 1) show that based on the 16S rDNA comparison, Bcell is most closely related to the alkalophile B. vedleri, an organism isolated from a bauxite-processing red mud tailing pond [26]. Bcell and B. vederi are then related to two other alkalophiles, B. polygoni [27] and B. clarkii [28]. No genomic sequence information other than the 16S rDNA sequences has been published for these three organisms, making comparison with the Bcell genome impossible. Among the alkalophilic Bacillus species for which whole genome sequences are available, Bcell is distantly related to B. selenitireducens (Bsele) In spite of their apparent lack of relatedness by 16S rDNA comparison, it is of interest to see if these two alkalophilic Bacillus species are related on a whole-genome basis. The Bcell and Bsele genomes were annotated using the subsystem annotation system of the RAST server (Rapid Annotation using Subsystems Technology)[29]; the RAST server identified 3486 genes in Bsele and 4435 genes in Bcell. The annotated genomes were then analyzed to determine the number of homologous and unique proteins using SEED software[30]. Bcell and Bsele share 1084 proteins with >60% identity corresponding to approximately 30% of the genes in each genome. Shared proteins in Bcell and Bsele include ribosomal proteins, DNA and RNA synthetic enzymes, and enzymes of intermediary metabolism. Bcell possesses 1662 proteins without homologues (<10% identity) in Bsele. Of the Bcell unique protein annotations, 70% are to hypothetical proteins; among the identified proteins, approximately 70 proteins are involved in spore formation or germination and approximately 30 are involved in polysaccharide degradation, metabolism, or synthesis. Bsele possesses 1065 proteins without homologues in Bcell Of the Bsele unique protein annotations, 60% are to hypothetical proteins; among the proteins with identified function, a significant number code for proteins involved in anaerobic metabolism and phage proteins. To confirm this analysis, the Bsele protein orthologs of annotated Bcell proteins were determined using the IMG Genome Gene Best Homologs function (http://img.jgi.doe.gov/cgi-bin/w/main.cgi?section = GenomeGeneOrtholog). Of the Bcell proteins predicted by this annotation software, again, only 30% have orthologs in Bsele with ≥60% identity.

Genome Features

Phage. Three phage integration events were identified by BacMap software http://bacmap.wishartlab.com/. The integration events resulted in insertions of phage DNA at 2,383,688 to 2,326,716 (41,209 bp); 2,902,461 to 2,946,144 (43,684 bp); and 3,312,514 to 3,323,401 (10,888 bp). The first two inserts are identified by the software as intact prophage, while the third is identified as an incomplete prophage. A screen of the genome identified an operon coding for MrpA through MrpG (Bcell_1564 through Bcell_1558) as well as a gene encoding for an NhaC antipporter (Bcell_2073). Both of these have been linked to the alkaline and salt tolerance of other alkaliphilic Bacillus species [reviewed in [2]]. The benefits of these features are not obvious if Bcell is truly a soil organism; Bcell’s preferred habitat may actually be a saline and alkaline aequous environ-

Table 1. Nucleotide content and gene count levels of the Bcell genome.

Attribute	Genome (total)	Value	% of total*
Size (bp)	4681672	100.0	
G+C content (bp)	1709838	36.5	
Coding region (bp)	3802981	81.2	
Total genes	4443	100.0	
Pseudo genes	61	1.4	
RNA genes	116	2.6	
Protein-coding genes	4327	97.4	
Genes with function prediction	2876	64.7	
Genes without function prediction	1451	32.7	
Genes in ortholog clusters	3745	84.3	
Genes in paralog clusters	109	2.5	
Genes assigned to COGs	3084	69.4	
Genes with signal peptides	1253	28.2	
Genes with transmembrane helices	1316	29.6	

* The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome.

doi:10.1371/journal.pone.0061131.t001
ment. Similar halophilic organisms have been isolated from soil around Tokyo, Japan [31]; the authors believed that these organisms originated from dust storms carrying material from highly saline environments, such as salt lakes in Mongolia or salterns in Korea.

Carbohydrate Metabolism Pathways. Bcell is reported to produce acid but not gas from a number of substrates including fructose, glucose, mannose, and alpha and beta-linked glucosides such as arbutin, cellobiose, salicin, maltose, maltotriose, sucrose, and lactose [24]. We performed a metabolic reconstruction analysis using the computer program PRIAM [32] which generates KEGG [33] maps. Metabolic pathway reconstruction of Bcell shows a complete set of enzymes for the hydrolysis of alpha and beta-linked glucosides to glucose and a full Embden-Meyerhof-Parnas pathway with enzymes for production of acetate and lactate. The metabolic reconstruction also shows a complete Krebs cycle and oxidative phosphorylation complexes. Metabolism of complex carbohydrates will be discussed below.

Amino acid and Coenzyme Pathways. Metabolic pathway reconstruction of Bcell shows a complete set of enzymes for the synthesis of all twenty amino acids. The reconstruction indicates that Bcell has complete pathways for riboflavin, nicotinate, folate, pantothenate, and heme, but cannot synthesize thiamin, biotin, or pyridoxine.

Antibiotic Production and Resistance. Being a member of the Bacillales, who are well known for their ability to produce antibiotics [34] one would expect that Bcell might possess r antibiotic production genes. B. halodurans, another alkaliphilic halophile, produces a two-peptide antibiotic, haloduricin [35], encoded by an operon containing six genes (BH0450–BH0455). BLAST comparison of these six genes from B. halodurans against the genome of Bcell gave no matches, indicating Bcell does not possess the ability to make this class of antibiotic. A KEGG Metabolic Pathways with PRIAM search of the complete genome revealed no genes for production of type I or type II polyketide backbones, nonribosomal peptide structures, siderophore group nonribosomal peptides, streptomycin, vancomycin, tetracycline, or novobiocin.

While Bcell does not produce identifiable antibiotics, it does possess several mechanisms for detoxifying a number of antibiotics. In culture, Bcell grows in the presence of 12 µg/ml of tetracycline without a lag and to an absorbance comparable to the antibiotic-free controls. Tetracycline resistance in Bacillus species typically utilizes efflux proteins coded for by EmrB/QacA family transporter genes. Bcell possesses four annotated EmrB/QacA

| Table 2. COGS Functional Groups. |

Group	Bcell	Percent	Description
J	191	4.5	Translation, Ribosomal Structure and Biogenesis
K	280	6.6	Transcription
L	159	3.7	DNA Replication, Recombination and Repair
4	3	0.1	Chromatin structure and dynamics
O	136	3.2	Cell Division and Chromosome Partitioning
V	129	3.0	Defense mechanisms
T	217	5.1	Signal Transduction Mechanisms
M	282	6.6	Cell Envelope Biogenesis, Outer Membrane
N	110	2.6	Cell Motility and Secretion
Z	0	0	Cytoskeleton
U	57	1.3	Intracellular trafficking and secretion
O	220	5.1	Posttranslational Modification, Protein Turnover, Chaperones

Metabolism			
C	278	6.5	Energy production and Conversion
G	373	8.7	Carbohydrate Transport and Metabolism
E	407	9.5	Amino Acid Transport and Metabolism
F	122	2.8	Nucleotide Transport and Metabolism
H	242	5.7	Coenzyme Metabolism
I	86	2.0	Lipid Metabolism
P	290	6.8	Inorganic Ion Transport and Metabolism
Q	151	3.5	Secondary metabolites biosynthesis, transport and catabolism

Poorly characterized			
R	525	12.3	General Function Prediction Only
S	291	6.8	Function Unknown

| Gene Count | 4273 |

Data for B. cellulosilyticus obtained from http://genome.ornl.gov/microbial/bcel/21jul10/fun.html
doi:10.1371/journal.pone.0061131.t002
B. cellulosilyticus Genome

family transporter genes, Bccl_0365, Bccl_1274, Bccl_2279, and Bccl_2272, any or all of which may be responsible for tetracycline efflux.

Bcg grows in the presence of 50 μg/ml of ampicillin and carbencillin after a 24 hr lag phase to an absorbance comparable to the antibiotic-free controls. Subcultures of cells grown in media containing either antibiotic have no lag phase. Resistance to ampicillin and carbencillin typically proceeds via beta-lactamase inactivation of the antibiotic. Bcg possesses eight annotated beta-lactamase genes (Bccl_0642, Bccl_0725, Bccl_0931, Bccl_1188, Bccl_0651, Bccl_1334, Bccl_3485, and Bccl_3654) as well as thirteen annotated flagella-related proteins; 24 are located in an operon from Bccl_2483 through Bccl_2506 (2684873 through 2704278); three are located at Bccl_1751 through Bccl_1753 (1943734 through 1943855), three at Bccl_3600 through Bccl_3602 (3838394 through 3860975) and four at Bccl_3622 through Bccl_3625 (3881849 through 3885911). Bcg appears to contain no genes for pilin or pilin assembly.

Sortases and Membrane Anchor Proteins. Sortases are membrane transpeptidases found in gram-positive bacteria that anchor surface proteins to peptidoglycans of the bacterial cell wall envelope. These enzymes catalyze a transpeptidation reaction in which the surface protein substrate is cleaved and covalently linked to peptidoglycan for display on the bacterial surface (recently reviewed in [36]). Sortases are grouped into four different classes (sortase A, B, C, and D) and two subfamilies (sortase D subfamily 4 and 5) based on sequence homology and cleavage site preferences [37,38]. Sortase A molecules recognize LPXTG sequences and anchor as many as twelve different substrates. Sortase B molecules recognize NPXTN sequences and anchor proteins involved in iron acquisition [39]. Sortase C recognize LAXTG sequences and are involved in pilin polymerization [40]. Sortase D subfamily 4 molecules recognize LPXTA sequences while the subfamily 5 molecules recognize LAXTG sequences. Their substrates are predicted to be predominantly enzymes such as 5′-nucleotidases, glycoside hydrolases, and proteases [37], though this has not been confirmed. Sortase D family members are often found adjacent to the postulated substrate for the sortase.

The genome of Bcg reveals the presence of four annotated sortase genes, Bccl_0651, Bccl_1334, Bccl_3485, and Bccl_3654 and BLAST analysis indicates all four are members of the sortase D subfamily 4. There are no members of sortase families A, B, or C. The Bcg sortases group into two families. Bccl_0651 is adjacent to an annotated LPXTA protein, Bccl_0652. Bccl_1334, Bccl_3485, and Bccl_3654 are not adjacent to any proteins containing the LPXTA domain. Bccl_0651 shows low homology to the other three sortase genes of Bcg, but high homology (>70% identity) to sortases identified in B. megaterium, B. halodurans, and B. licheniformis. Bccl_1334, Bccl_3485, and Bccl_3654 show high homology to each other, but low homology (≤40%) to sortases of other Bacillus species.

The Bcg genome contains 27 annotated proteins with a membrane anchor domain (TIGR01167 domain). All 27 contain the conserved LPXTA sequence (Table 3); there are no proteins containing other LPXTG sequences recognized by sortase families A, B, or C. The next two amino acids in the LPXTA sequence appear to be highly conserved also; in 24 of the 27 proteins the sequence is one of the following: LPXTATN, LPXTATS, or LPXTATD. The remaining three proteins have LPXTB (Bccl_0652, LPXTATR (Bccl_0381), or LPXTATD (Bccl_3788) sequences. Preceding the LPXTA sequence is a negatively charged, unorganized linker region connecting the membrane anchor to the highly organized functional domains. Following the LPXTA sequence is a membrane-spanning hydrophobic stretch of amino acids and finally a positively charged C-terminal tail.

The uniqueness of these LPXTAT-anchor proteins can be seen by comparing the number of LPXTAT-anchor proteins in Bcg to the number of total membrane anchor proteins in other Bacillus species. Based on a search for proteins containing the TIGR01167

Figure 1. Phylogenetic tree highlighting the position of Bacillus cellulosilyticus N-4 DSM 2522 within the Bacilli. The strains and their corresponding NCBI accession numbers: Bacillus cellulosilyticus DSM 16731T AB043846; Bacillus halodurans XUJ-2 AB960851; Bacillus akibai ATCC 33210T AB043858; Bacillus macaye ATCC 16346T AY032601; Bacillus alkalidiazotrophicus TIGR01167 domain. All 27 contain membrane anchor domain (TIGR01167 domain). All 27 contain

homology to Bccl_0299. BLAST comparison of Bccl_0299 to the nonredundant protein database showed homology to a number of identified streptomyein 6-phosphotransferase molecules suggesting that Bccl_0299 is responsible for kanomycin resistance in Bcg.
domain, Bcell possesses 27, while the next highest, B. halodurans, possesses only six. B. licheniformis possesses three, and other Bacillus species possess only one or two. The value of 27 for Bcell is closer to that of pathogenic Gram-positive organisms such as Listeria monocytogenes strains (31 to 39 LPXTG proteins) or Staphylococcus aureus strains (10 to 18 LPXTG proteins).

Of the 27 proteins containing the conserved LPXTAT anchor domain, 17 are annotated as being involved in polysaccharide metabolism. Of the remaining nine, two are annotated as nucleic acid-degrading enzymes (Bcell_0513 and Bcell_3820), and are possibly involved in uptake of ssDNA. Three of the remaining four are annotated as hypothetical proteins. Bcell possesses no annotated LPXTA proteases or lipases.

Polysaccharide Degradation by Bcell. Based on the genome annotation, polysaccharide degradation by Bcell appears to utilize a unique combination of LPXTA membrane anchor proteins combined with soluble extracellular enzymes and intracellular enzymes; this combination of enzymes is not found in any other identified Bacillus species. The enzymology of degradation of individual families of carbohydrates will be discussed separately. In all following discussions, BLAST [41] was utilized for functional annotation, SignalP for signal peptide determination [42], and CAZy for glycoside hydrolase (GH) and carbohydrate binding modules [43] (CBM).

Enzymes potentially involved in glucan degradation are shown in Table 4. The organism possesses four glycoside hydrolase family 5 [43] (GH5) and one GH9 secreted endoglucanases/cellulases; all six genes have annotated signal peptides, indicating secretion. Five of these six enzymes possess LPXTA anchors. All five GH5 family members possess carbohydrate binding modules [43] (CBM); the single GH9 family member does not. The CBM families present, CBM5, CBM17, and CBM46 are not associated with crystalline cellulose degradation. CBM5 primarily binds to chitin, CBM17 to amorphous cellulose and cellulose derivatives, and too little is known about CBM46-containing GH5 family members to assign a clear function. CBM1, CBM2, or CBM3 family members are not associated with any of these proteins, indicating that these enzymes are not involved in crystalline cellulose degradation. This confirms observations that cloned Bcell cellulases had strong activity on carboxymethyl cellulose, but low activity on Avicel crystalline cellulose [44]. Potential alternative substrates for GH5 family members include β-1,3-1,4-glucans, mannans and xylglucans; any one or more of these may be the natural substrate for these enzymes. Bcell possesses eight β-glucanase genes, five GH16 (lichenases, 1,3-1,4-β-D-glucanases) and three GH81 (curdlanases, 1,3-β-D-glucanases).

Table 3. Anchor Domain Sequences of LPXTA-motif Proteins

Gene	Blast Prediction	LPXTA Anchor Domain
0305	hypothetical protein	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
0381	internalin-type protein	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
0481	chitinase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
0513	S’ nucleotidase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
0524	β-glucanase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
0541	xylanase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
0652	hypothetical protein	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
0683	β-glucanase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
0690	1,3-β-glucanase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
1033	β-xyllosidase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
1191	cellulase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
1280	1,3-β-glucanase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
1368	β-mannosidase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
2860	surface/cell adhesion protein	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
2962	arabinogalactan endo-1, 4-β-galactosidase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
3370	endoglucanase C	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
3371	endoglucanase C	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
3372	glucose dehydrogenase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
3787	pullulanase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
3788	α-amylase	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
3820	nuclease	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
3829	GLUG domain protein	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
3857	hypothetical protein	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS
3995	hypothetical protein	LPXTATTVYNYLIG1AL1ILA1AGIAFLLW3S1RKK3KADSS

Bold: LPXTAT domain; underline: membrane-spanning region; italics: intracellular positive tail

doi:10.1371/journal.pone.0061313.t003
Six of the eight secretion; four of these eight es). All eight genes have annotated signal peptides, indicating CBM6 bind to a variety of carbohydrate polymers including β-1,4-xylan-β-1,3-glucan, β-1,3-1,4-glucan, and β-1,4-glucan. Binding of CBM 56 has been demonstrated with β-1,3-glucan [45]. Bcell has genes coding for three intracellular β-glucosidases as well as one apparently secreted β-glucosidase gene, Bcell_3759. The organism also possesses genes coding for two cellobiose phosphorylases. This is highly unusual in an organism that does not possess “true” cellulases or degrade cellulose; the function of the cellobiose phosphorylases may be to degrade cellobiose generated in the degradation of β-1,3-1,4-glucan or xylol glucan.

Enzymes potentially involved in xylan degradation are shown in Table 5. The organism possesses two annotated GH10 xylanases, one intracellular, and one secreted with an LPXTA anchor. This is similar to the case in many Bacillus species, which possess both a secreted, non-LPXTA xylanase and an intracellular xylanase. The organism also has an annotated GH30 secreted xylanase and GH8 intracellular annotated xylanase. Completing the enzymes necessary for xylan degradation, Bcell has three secreted β-xylosidases (GH39 and GH43), one with an LPXTA anchor, as well as four intracellular annotated β-xylosidases (GH39 and GH43). Two additional intracellular enzymes may be involved in xyloglucosaccharide degradation, a GH67 α-glucoamylase and a GH30 O-glucoside hydrolase. Two of the secreted enzymes possess CBM modules. The CBM families present, CBM9 and CBM28, are involved in xylan binding, while CBM35 binds to a number of substrates including xylan, mannan, and galactan. Bcell also possesses a total of eleven Carbohydrate Esterase[43] (CE) family members (Table 6), of which 3 CE4 members are annotated as xylan deacetylases; all three have signal peptides and may be involved in extracellular degradation of xylan.

Enzymes potentially involved in starch degradation are shown in Table 7. The organism possesses three annotated GH13 amylases, two secreted with an LPXTA anchor and one remains intracellular. The secreted enzymes both have CBM41 modules; this module is reported to bind to amylose, amylopectin and pullulan, consistent with an amylolytic function. Starch degradation is completed intracellularly by two GH31 α-glucosidases, one with a CBM56.

Enzymes potentially involved in galactan degradation are shown in Table 8. The organism possesses two potential secreted galactan-degrading enzymes, a GH30 and a GH53, both with an LPXTA anchor. The secreted enzymes both also have CBM61 modules that are reported to bind to galactans; in addition, one has a CBM47 and one has a CBM56. Galactan degradation is completed intracellularly by two GH18 α-galactosidases, two GH36 α-galactosidases, four GH2 β-galactosidases and two GH42 β-galactosidases.

Enzymes potentially involved in chitin degradation are shown in Table 9. Bcell possesses one secreted GH18 chitin-degrading enzyme, with a LPXTA anchor and no CBM module. Chitin degradation is completed intracellularly by two GH18 chitinases with CBM50 modules and a GH20 chitobiase with no CBM module. The organism possesses one potential secreted mannan-degrading enzyme, a GH26 family member. The enzyme possesses a LPXTA anchor and CBM23, CBM28 and CBM59 modules. Binding of CBM23 and CBM59 to mannan has been

Table 4. Annotated Glucan-degrading Enzymes.

Protein	Blast Prediction	Signal Peptide	GH	CBM	LPXTA Anchor
Bcell_0524	β-glucanase	yes	GH16	CBM4	CBM4 CBM4 CBM4 yes
Bcell_0683	β-glucanase	yes	GH16	CBM4	CBM4 CBM4 CBM4 yes
Bcell_1191	cellulase	yes	GH5	CBM46	yes
Bcell_1280	1,3 β-glucanase	yes	GH81	CBM4	yes
Bcell_3370	endoglucanase C	yes	GH5	CBM17/28 CBM17/28 yes	
Bcell_3371	endoglucanase C	yes	GH5	CBM17/28 CBM17/28 yes	
Bcell_3391	endoglucanase D	yes	GH9		yes
Bcell_3729	1,3 β-glucanase	yes	GH81	CBM56 CBM56 yes	
Bcell_0437	endoglucanase B	yes	GH5	CBM5	no
Bcell_0438	endoglucanase A	yes	GH5	CBM5	no
Bcell_0690	β-glucanase	yes	GH16	CBM4 CBM4 CBM4 yes	
Bcell_1430	β-glucanase	yes	GH16		no
Bcell_2363	β-glucanase	yes	GH16	CBM6	no
Bcell_4185	1,3 β-glucanase	yes	GH81	CBM6 CBM6 CBM56 no	
Bcell_3759	β-glucosidase	yes	GH3		no
Bcell_0282	β-glucosidase	no	GH1		no
Bcell_0705	β-glucosidase	no	GH3		no
Bcell_4284	β-glucosidase	no	GH3		no
Bcell_0478	cellobiose phosphorlase	no	GH94		no
Bcell_2329	cellobiose phosphorlase	no	GH94		no

correlation: 0.1371 | doi:10.1371/journal.pone.0061131.t004
demonstrated, while CBM28 selectivity is not well-characterized. Surprisingly, Bcell possesses no CAZy [43] pectate lyase family members (PL) or GH28 family members (pectinases), indicating the organism is unable to degrade pectin and related polysaccharides such as rhamnogalacturonans.

Demonstration of Metabolic and LPXTA enzyme activity. To confirm electronic predictions for metabolic pathways, Bcell monosaccharide and polysaccharide utilization was determined in ATCC 661 Alkaline Bacillus Medium using 2.0 g/l of added carbohydrate as described in Methods. Growth was measured by A595 at 24 and 46 hours on duplicate cultures, the complete cultivation experiment was repeated twice, for a total of four replicates. No significant difference in A595 was seen between 24 and 46 hr values, indicating completion of growth at 24 hr. ATCC 661 Medium with no added carbohydrate was used as the control; Bcell grew to A595 0.6 on this carbohydrate-free medium. Glucose, xylose, arabinoxylan, glucomannan, β-glucan, galactan, and xyloglucan strongly stimulated growth (A595 > 6 greater than control). Arabinose, linear arabinan, CMC, chitin, soluble starch, and β-cyclodextrin were less stimulatory, yielding increases of 20% to 50% over control absorbance values. Crystalline cellulose degradation was investigated in a separate series of experiments. Bcell cultures were grown with either 2.0 g/l of added Avicel microcrystalline cellulose or Whatman 1 filter paper. Growth was not significantly enhanced over the control medium, and no change in the amount of cellulose was noted compared to the uninnoculated control, indicating that crystalline cellulose was not a substrate for the organism.

Cultures (5.0 ml) were grown, harvested by centrifugation, washed, and lysed as described in Methods. The cell walls and lysates were separated by centrifugation, the cell walls were washed three times with 50 mM Tris-HCl, pH 9.5, and re-suspended in the same buffer. Aliquots of the lysate and cell walls were spotted on ATCC 661 Alkaline Bacillus Medium agar plates containing 100 mg/L of one of the following substrates: 4-methylumbelliferyl-β-D-cellobiopyranoside (MUC) or 4-methylumbelliferyl-β-D-xylopyranoside (MUX) and incubated for 30 minutes at 37°C. The cell walls showed strong activity on both MUC and MUX; equivalent aliquots of the lysates showed no activity for either of these two substrate (Table 10).

Protein	Blast Prediction	Signal Peptide	CE Family	GH	CBM	LPXTA Anchor
Bcell_0541	xylanase	yes	GH10	CBM9, CBM22, CBM22	yes	
Bcell_1033	β-xylosidase	yes	GH43	no	yes	
Bcell_0821	xylanase	yes	GH30	no	no	
Bcell_1039	β-xylosidase	yes	GH43	no	no	
Bcell_1102	β-xylosidase	yes	GH39	CBM35, CBM35, CBM35	no	
Bcell_0537	xylanase	no	GH48	no	no	
Bcell_0547	xylanase	no	GH10	no	no	
Bcell_0538	β-xylosidase	no	GH39	no	no	
Bcell_0385	β-xylosidase	no	GH43	no	no	
Bcell_0554	β-xylosidase	no	GH43	no	no	
Bcell_1042	β-xylosidase	no	GH43	no	no	
Bcell_0548	α-glucosidase	no	GH67	no	no	
Bcell_0689	O-glycoside hydrolase	no	GH30	no	no	
Bcell_3505	O-glycoside hydrolase	no	GH30	no	no	

Table 6. Carbohydrate Esterases.

Protein	Blast Prediction	Signal Peptide	CE Family	GH	CBM	LPXTA Anchor
Bcell_0165	xylan deacetylase	yes	CE4	no	no	
Bcell_0810	xylan deacetylase	yes	CE4	no	no	
Bcell_1432	xylan deacetylase	yes	CE4	no	no	
Bcell_2338	deacetylase	yes	CE4	no	no	
Bcell_2449	sporulation deacetylase	yes	CE4	no	no	
Bcell_2662	deacetylase	yes	CE4	no	no	
Bcell_4035	deacetylase	yes	CE4	no	no	
Bcell_0236	xylan deacetylase	no	CE4	no	no	
Bcell_3697	NAGphosphate-deacetylase	no	CE9	no	no	
Bcell_1899	deacetylase	no	CE14	no	no	
Bcell_4151	LmE family protein	no	CE14	no	no	

Table 7. Annotated Starch-degrading Enzymes.

Protein	Blast Prediction	Signal Peptide	GH	CBM	LPXTA Anchor
Bcell_3787	pullulanase	yes	GH13	CBM41, CBM41	yes
Bcell_3788	α-amylase	yes	GH13	CBM41, CBM41	yes
Bcell_0491	α-amylase	no	GH13	no	
Bcell_1202	α-glucosidase	no	GH31	no	
Bcell_3789	α-glucosidase	no	GH31	no	

Table 5. Annotated Xylan-degrading Enzymes.

Protein	Blast Prediction	Signal Peptide	GH	CBM	LPXTA Anchor
Bcell_0541	xylanase	yes	GH10	CBM9, CBM22, CBM22	yes
Bcell_1033	β-xylosidase	yes	GH43	yes	
Bcell_0821	xylanase	yes	GH30	no	
Bcell_1039	β-xylosidase	yes	GH43	no	
Bcell_1102	β-xylosidase	yes	GH39	CBM35, CBM35, CBM35	no
Bcell_0537	xylanase	no	GH48	no	
Bcell_0547	xylanase	no	GH10	no	
Bcell_0538	β-xylosidase	no	GH39	no	
Bcell_0385	β-xylosidase	no	GH43	no	
Bcell_0554	β-xylosidase	no	GH43	no	
Bcell_1042	β-xylosidase	no	GH43	no	
Bcell_0548	α-glucuronidase	no	GH67	no	
Bcell_0689	O-glycoside hydrolase	no	GH30	no	no
Bcell_3505	O-glycoside hydrolase	no	GH30	no	no

B. cellulosilyticus Genome
Bcell cultures (50 ml) were grown in media containing galactan, glucomannan, or β-glucan. Cultures were harvested by centrifugation, and the supernatant (S), cell wall (W), and intracellular fractions (I) were recovered as described in Methods. To demonstrate that the LPXTA enzymes were crosslinked to the cell wall, an aliquot of each cell wall sample was pelleted by centrifugation and digested with lysozyme. Insoluble material remaining after lysozyme treatment was removed by centrifugation, yielding a lysozyme-solubilized fraction (WL); aliquots of cell walls treated identically, but without lysozyme (WS) served as a control. Aliquots of each sample equivalent to 20 ml of culture were spotted on either ATCC 661 Alkaline Bacillus Medium agar plates containing either fluorescent or chromogenic substrates at 37°C for 30 minutes. The results (Table 11) show that the majority of MUC, MUX and X-gal activity is present in the cell wall (W) fraction. Only the culture grown on galactan showed weak activity in the supernatant and intracellular fractions; the other two substrates showed no supernatant or intracellular activity. In all three samples, treatment of the cell walls with lysozyme resulted in solubilization of the enzymatic activity (WL); the solubilization controls (WS) all showed no activity.

Bcell growth is stimulated by fungal cell wall polysaccharides. In this work we have demonstrated that Bcell does not degrade and consume crystalline cellulose, after which it was named. Since polysaccharides appear to be the substrate of choice for this organism, a search was conducted to determine a likely substrate for Bcell. Based on the number of chitinases and β-(1,3)-glucanases present in the organism, fungal cell walls seemed a likely source for carbohydrates. To test this hypothesis, *Aspergillus niger* mycelia were grown, harvested, washed, extracted with NaOH, and autoclaved to produce a cell wall fraction. The cell wall fraction was added to ATCC 661 Alkaline Bacillus Medium and autoclaved. Growth was measured by A595 at 24 hours on duplicate cultures. The results showed the *A. niger* cell walls stimulated growth better than the most stimulatory carbohydrates such as arabinoxylan, glucomannan, and galactan; growth was 5-fold higher on cultures containing mycelia versus the control (no mycelia) media. Micrographs were taken of the culture after staining with Live-Dead stain. The micrographs (Figures 2 and 3) show the mycelia (thick, branched rods) covered with adherent bacterial cells (thin, long rods), suggesting that fungal cell wall degradation may also involve attachment of the Bcell cells to the target fungi (fungal mycelia do not stain brightly with the Live-Dead reagent). This attachment to the fungal cell wall would make degradation by the LPXTA enzymes significantly more efficient.

Discussion

Bacillus cellulosilyticus N-4 DSM 2522 (originally *Bacillus* N-4) was originally isolated from soil in a screen for cellulase producers, and three cellulases genes have been cloned from it [21,22,23]. The genome of this organism was sequenced as part of a search for novel, alkaline biomass-degrading enzymes, and revealed Bcell to be an enigmatic organism. Based on the 16S rDNA comparison, Bcell is most closely related to the alkalophile *B. vedderi*, an organism isolated from a bauxite-processing red mud tailing pond.

Table 8. Annotated Galactan-degrading Enzymes.

Protein	Blast Prediction	Signal Peptide	GH	CBM	LPXTA anchor
Bcell_2962	Arabinogalactan endo-1,4-β-galactosidase yes	GH53	CBM47 CBM61	yes	
Bcell_3504	O-glycoside hydrolase yes	GH30	CBM6 CBM61 CBM61	yes	
Bcell_1453	β-galactosidase no	GH4	no		
Bcell_2800	β-galactosidase no	GH4	no		
Bcell_1099	β-galactosidase no	GH36	no		
Bcell_1103	β-galactosidase no	GH36	no		
Bcell_0281	β-galactosidase no	GH2	no		
Bcell_0684	β-galactosidase no	GH2	no		
Bcell_1041	β-galactosidase no	GH2	no		
Bcell_0281	β-galactosidase no	GH2	no		
Bcell_1192	β-galactosidase no	GH2	no		
Bcell_2963	β-galactosidase no	GH2	no		

Table 9. Annotated Chitin-degrading Enzymes.

Gene	Blast Prediction	Signal Peptide	GH	CBM	LPXTA Anchor
Bcell_0481	chitinase yes	GH18			yes
Bcell_2149	chitinase no	GH18	CBM50 CBM50	no	
Bcell_4208	chitinase no	GH18	CBM50 CBM50	no	
Bcell_3703	chitobiase no	GH20	CBM50 CBM50	no	

doi:10.1371/journal.pone.0061131.t008
doi:10.1371/journal.pone.0061131.t009
Among organisms with sequenced genomes, it is moderately related to *B. selenitireducens*, a microaerophile isolated from the anoxic mud of Mono Lake in California [46] based on 16S rDNA and whole genome-based comparisons.

The genome of *Bcell* is a single chromosome of 4.7 M with no plasmids present but three large phage insertions are evident in the genome. The genome contains all genes consistent with its reported carbohydrate metabolism [24] as well as its alkaline and high salt growth. The most unusual feature of the genome is the presence of 27 LPXTA membrane anchor proteins, 17 of which are annotated as involved in polysaccharide degradation. These two values are significantly higher than seen in any other *Bacillus* species. The presence of this large number of LPXTA membrane anchor proteins is also unusual, because *Bcell* possesses no genes containing either LPXTG or NPXTN sequences. This high number of membrane anchor proteins is only seen in pathogenic Gram-positive organisms such as *L. monocytogenes* or *S. aureus*. *Bcell* also possesses four sortase D subfamily 4 enzymes that incorporate LPXTA-bearing proteins into the cell wall; three of these are closely related to each other and unique to *Bcell*. Cell fractionation and enzymatic assay of *Bcell* cultures show that the majority of polysaccharide degradation is associated with the cell wall LPXTA-enzymes, an unusual feature in Gram-positive aerobes. The evolutionary source of these enzymes is unclear, since no close *Bacillus* or *Geobacillus* relatives of *Bcell* utilize this unique method of polysaccharide degradation. Furthermore, a BLAST analysis of the LPXTA enzymes of *Bcell* show they are not closely related to any other enzymes from Gram-positive organisms. Based on genomic comparisons, there is clear evidence that these enzymes are not the result of gene duplication within *Bcell*, nor were their genes laterally transferred to *Bcell* from another organism.

Genomic analysis and growth studies both strongly argue against *Bcell* being a truly cellulolytic organism, in spite of its name [24]. This suggests that a more appropriate name for the organism should be determined based on its true metabolic role in nature. If *Bcell* does not grow on cellulose and cellulosic materials, what is its preferred substrate? One potential answer is that *Bcell* degrades fungal mycelia as a preferred carbon source. This is supported by the large number of annotated chitinases and 1,3 β-glucanases present in the genome. The organism could utilize these enzymes to degrade fungal cell walls. *Bcell* also possesses a wide range of antibiotic resistances, making it resistant to attack. Finally, *Bcell* possesses two annotated LPXTA adhesion proteins *Bcell_0381* and *B. cellulosilyticus* Genome

Table 10. Activity of Cell Wall Fractions from Cultures Grown on Different Carbohydrates.

Carbohydrate Added	MUC Activity of Cell Walls	MUX Activity of Cell Walls
None	++	+
Glucose	+++	+++
Xylose	+++	+++
Arabinose	++	+
Arabinan	+++	+++
Arabinoxylan	++	+
Glucomannan	+++	+++
β-glucan	++	+
Galactan	+++	+++
Xyloglucan	+	+++
CMC	++	+
Chitin	++	+
Soluble Starch	+	+
β-cyclodextrin	+	+

Cultures grown and cell walls prepared and assayed as described in Methods. Legend: - no fluorescence; + weak fluorescence, ++ moderate fluorescence, +++ strong fluorescence.

doi:10.1371/journal.pone.0061131.t010

Figure 2. *Bcell* growth on *A. niger* mycelia. Microscopic images (2000 x magnification) of *Bcell* culture growing on *A. niger* mycelia; same field with transmitted light.

doi:10.1371/journal.pone.0061131.g002

Table 11. Localization of Enzymatic Activity in *Bcell*.

Cell Fraction	β-glucan	Glucomannan	Galactan			
	MUC Activity	MUX Activity	MUC Activity	MUX Activity	MUC Activity	MUX Activity
Supernatant	-	-	-	-	+	+
Intracellular Soluble	-	-	-	-	+	+
Intact Cell Wall	++	++	+++	++	+++	+++
Cell Wall Solubilization Control	-	-	-	-	-	-
Lysozyme-Solubilized Cell Wall	+++	++	+++	++	+++	+++

Cultures grown and cell walls prepared and assayed as described in Methods. Legend: - no fluorescence; + weak fluorescence, ++ moderate fluorescence, +++ strong fluorescence.

doi:10.1371/journal.pone.0061131.t011
and Bcell_2860, as well as several LPXTA hypothetical proteins that may be involved in adhesion to fungi. Future work is needed to determine how Bcell adheres to fungal mycelia and if its isolated enzymes can effectively degrade and consume fungal cell wall components.

While the genomic sequencing did not reveal any new, crystalline cellulose degrading enzymes, the LPXTA-sortase system utilized by Bcell may have application in anchoring cellulases and other biomass-degrading enzymes in other Gram-positive organisms. The possibility that Bcell is capable of degrading fungal cell walls suggest the organism and its enzymes may have potential applications as a biofungicide in clinical and plant protection areas.

Methods

Cultivation and Library Construction

Bacillus cellulosilyticus DSM 2522 was obtained from the American Type Culture Collection as ATCC 21833 (Designation Bacillus sp. N4 [FERM-P 1141]) and cultivated in ATCC 661 Alkaline Bacillus Medium at 37°C. Cells were harvested in log phase by centrifugation. The cell concentrate was lysed using a combination of SDS and proteinase K, and genomic DNA was purified using phenol/chloroform extraction [47]. The genomic DNA was precipitated, treated with RNase to remove residual contaminating RNA. The genomic DNA was submitted to the Joint Genome Institute of the Department of Energy for whole genome sequencing.

DNA Sequencing, Assembly, and Annotation

The genome of Bacillus cellulosilyticus DSM 2522 was sequenced at the Joint Genome Institute [JGI] using a combination of Illumina [48] and 454 technologies [49]. An Illumina GAII shotgun library with reads of 226 Mb, a 454 Titanium draft library with average read length of 256.2+/−194.9 bp bases, and a paired end 454 library with average insert size of 21 Kb were generated for this genome. All general aspects of library construction and sequencing performed at the JGI can be found at http://www.jgi.doe.gov/ . Illumina sequencing results were assembled with VELVET [49], and the consensus sequences were shredded into 1.5 kb overlapped fake reads and assembled together with the 454 sequencing results. Draft assemblies were based on 180.4 Mbp 454 draft data and all of the 454 paired end data. Newbler parameters are “-consed -a 50 -i 350 -g -m -ml 20”. The initial Newbler assembly contained 69 contigs in 5 scaffolds. We converted the initial 434 assembly into a phrap assembly by making fake reads from the consensus, collecting the read pairs in the 454 paired end library. The Phred/phrap/consed software package (www.phrap.com) was used for sequence assembly and quality assessment [50, 51, 52] in the following finishing process. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with gap resolution (Cliff Han, unpublished), Dupfinisher [53], or sequencing cloned bridging PCR fragments with subcloning or transposon bombing (Epigenome Biotechnologies, Madison, WI). Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 627 additional reactions were necessary to close gaps and to raise the quality of the finished sequence. The completed genome was deposited on Dec. 14, 2010 by the US DOE Joint Genome Institute and can be accessed as GenBank: CP002394.1 or NCBI Reference Sequence: NC_014629.1.

Genes were identified using Prodigal [54] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [55]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, Uniprot, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. These data sources were combined to assert a product description for each predicted protein. Non-coding genes and miscellaneous features were predicted using tRNAscan-SE [56], RNAMMER [57], Rfam [58], TMHMM [59], and signalP [42].

Substrate Evaluation and Cell Wall Preparation

Bcell cultures (5 ml) were grown in Alkaline Bacillus Medium at 37°C containing 2% added carbohydrate. Carbohydrates used were glucose, xylose, arabinoxylan, glucomannan, β-glucan, galactan, xyloglucan, arabinose, linear arabinan, CMC, chitin, soluble starch, and β-cyclodextrin. Galactan, galactomannan, arabinoxylan, arabinan, and β-glucan were obtained from Megazyme International (Wicklow, Ireland). Glucose, xylose, arabinose, hyaluronic acid, Celllytic B reagent and carboxymethyl cellulose (CMC) were purchased from Sigma-Aldrich (St. Louis, MO). Polysaccharides were autoclaved in the medium, while monosaccharides were added aseptically after autoclaving to prevent formation of Maillard reaction products at high pH. Cultures were harvested at 24 hours by centrifugation. Pellets were resuspended in 1.0 ml of 50 mM Tris-HCl, pH 9.5 and pelleted; this was repeated three times. The pellets were then lysed by shaking at 37°C for 30 minutes in 1.0 ml of Celllytic B reagent in 50 mM Tris-HCl, pH 9.5. The pellets containing the cell walls were recovered by centrifugation and resuspended in 1.0 ml of 50 mM Tris-HCl, pH 9.5 and pelleted; this was repeated three times. Finally the pellets were resuspended in 1.0 ml of 50 mM Tris-HCl, pH 9.5.

Larger volume Bcell cultures (100 ml) were grown in Alkaline Bacillus Medium at 37°C containing 2% added glucomannan, β-glucan, or galactan and fractionated as described above. For lysozyme treatment, 1.0 ml of cell walls was pelleted by centrifugation, and resuspended in 0.1 ml 50 mM Tris-HCl, pH 8.0; 2.0 μl of 10/mg ml lysozyme in 100 mM Tris-HCl, pH 8.0 was added and incubated overnight at 37°C. A control was used in which 2.0 μl of 100 mM Tris-HCl, pH 8.0 was added.
instead of lysozyme. Solubilized cell wall components were recovered by centrifugation.

Enzymatic Analysis

Qualitative enzyme activity assays were conducted at 37°C on agar plates containing 100 mg/l of substrate. exo-Glucanase, exo-xylanase, and β-galactosidase were determined using either YT or ATCC 661 Alkaline Bacillus Medium plates containing 100 mg/l of 4-methylumbelliferyl-β-D-glucopyranoside (MUC) (cellulase and beta-glucanase) or 4-methylumbelliferyl-β-D-xylopyranoside (MUX) (beta-xylanase), MUC and MUX were obtained from Research Products International Corp. (Mt. Prospect, IL).

Fungal Growth and Lysis

An *Aspergillus niger* culture (1000 ml) was grown for 7 days at 30°C in MRS medium (Thermo-Fisher (Fitchburg, WI)) containing 4% added glucose. The mycelia were recovered by centrifugation, washed with deionized water and recovered by centrifugation. This was repeated for a total of three washes. The mycelia were then suspended in 200 ml of 1.0 M NaOH and stirred for 30 minutes and washed twice with deionized water. Alkaline Bacillus were then suspended in 200 ml of 1.0 M NaOH and stirred for 30 minutes, washed with deionized water and recovered by centrifugation, washed twice with deionized water. Alkaline Bacillus Medium containing 5% added wet weight extracted mycelia was used for growth experiments.

References

1. Krulwich TA, Ito M, Gilmour R, Sturr MG, Guflanina AA, et al. (1996) Energetic problems of extremely alkaliphilic aerobes. Biochimica et biophysica acta 1275: 21–26.
2. Padan E, Bili E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochimica et biophysica acta 1717: 67–88.
3. Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nature reviews Microbiology 9: 330–341.
4. Olson K, Keis S, Morgan HW, Dimroth P, Cook GM (2003) Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2A1. Journal of Bacteriology 185: 461–465.
5. Fujisawa M, Fackmihyj OJ, caolin J, Krulwich TA, Hicks DB (2010) The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant: mutations in the crinal alkaliphile-specific residue Lys-180 and other residues that support alkaliphilic oxidative phosphorylation. The Journal of biological chemistry 285: 32105–32113.
6. McMillan DG, Keis S, Dimroth P, Cook GM (2007) A specific adaptation in the a-subunit of a thermoalkaliphilic FIPO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. The Journal of biological chemistry 282: 17395–17400.
7. Gilmour R, Messner P, Guflanina AA, Kent R, Schebed A, et al. (2000) Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. Journal of Bacteriology 182: 5969–5981.
8. Mamo G, Hatti-Kaul R, Mattasen B (2006) A thermostable alkaline active endo-β-1,4-xylanase from Bacillus halodurans S7. Purification and characterization. Enzyme and Microbial Technology 39: 1492–1496.
9. Kumar V, Satyanarayana T (2011) Applicability of thermo-alkaliphilic and cell-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylodigucosacharides. Biotechnology Letters 33: 2279–2285.
10. Nakamura S, Wakahayashi K, Nakai R, Aoto R, Horikoshi K (1993) Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl Environ Microbiol 59: 2311–2316.
11. Chang P, Tsai WS, Tsai CI, Tseng MJ (2004) Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochemical and Biophysical Research Communications 319: 1017–1025.
12. Hitomi J, Park JS, Nishiyama M, Horinouchi S, Beppu T (1994) Substrate-dependent change in the pH-activity profile of alkaline endo-1,4-beta-glucanase from an alkaline Bacillus sp. Journal of biochemistry 116: 554–559.
13. Hirasaka W, Uchimura K, Washii M, Grant WD, Ito S, et al. (2006) Salt-activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie Van Leeuwenhoek 89: 211–219.
14. Akita M, Kayatama K, Hatada Y, Ito S, Horikoshi K (2005) A novel beta-glucanase gene from Bacillus halodurans C-125. FEBS Microbiology Letters 249: 19–25.
15. Murakami S, Nishimoto H, Toyama Y, Shimamoto E, Takemaki S, et al. (2007) Purification and characterization of two alkaline, thermostable alpha-amylases from Bacillus halodurans 30C-2-1 and expression of the cloned gene in Escherichia coli. Bioscience, biotechnology, and biochemistry 71: 2393–2401.
16. Hashim SO, Delgado O, Hatti-Kaul R, Mulca EJ, Mattasen B (2004) Starch hydrolysing Bacillus halodurans isolates from a Kenyan soda lake. Biotechnology Letters 26: 823–828.
17. Martino RF, Delgado O, Hatti-Kaul R (2003) Sequence analysis of cyclodextrin glycosyltransferase from the alkaliphilic Bacillus agaradhaerens. Biotechnology Letters 25: 1555–1562.
18. Nakagawa Y, Saburi W, Takada M, Hatada Y, Horikoshi K (2006) Gene cloning and enzymatic characteristics of a novel gamma-cyclodextrin-specific cyclodextrinase from alkaliphilic Bacillus clarkii 3764. Biochimica et biophysica acta 1704: 2001–2011.
19. Takii Y, Kuriyama N, Suzuki Y (1990) Alkaline serine protease produced from citric acid by Bacillus alcalophilus subsp. halodurans KP 1239. Applied Microbiology and Biotechnology 34: 57–62.
20. Shirinivas D, Kumar R, Naik GR (2012) Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkaliphilic Bacillus halodurans JB 99 exhibiting dehairing activity. Journal of industrial microbiology & biotechnology 39: 95–98.
21. Sashihara N, Kudo T, Horikoshi K (1984) Molecular cloning and expression of celluolytic genes of alkaliphilic Bacillus sp. strain N-4 in Escherichia coli. Journal of Bacteriology 158: 565–566.
22. Fukumori F, Sashihara N, Kudo T, Horikoshi K (1986) Nucleotide sequences of two cellulase genes from alkaliphilic Bacillus sp. strain N-4 and their strong homology. J Bacteriol 160: 479–485.
23. Fukumori F, Kudo T, Sashihara N, Nagata Y, Ito K, et al. (1989) The third cellulase of alkaliphilic Bacillus sp. strain N-4: evolutionary relationships within the cel gene family. Gene 76: 289–298.
24. Nog Y, Takami H, Horikoshi K (2005) Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. International Journal of Systematic and Evolutionary Microbiology 55: 2309–2315.
25. Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, et al. (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Research 20: 4311–4311.
26. Agnew MD, Koval SF, Jarrell KF (1995) Isolation and Characterization of Novel Alkaliphas from Bauxite-Processing Waste and Description of Bacillus velderi sp. nov., a New Oligophile Alkaliphile. Systematic and Applied Microbiology 18: 221–230.
27. Aimo K, Hirota K, Masuto T, Morita N, Nodassaka Y, et al. (2008) Bacillus polygigoni sp. nov., a moderately halophile, non-motile obligate alkaliphile isolated from indigo balls. International Journal of Systematic and Evolutionary Microbiology 58: 120–124.
28. Nielsen P, Fritze D, Priest FG (1995) Genetic diversity of alkaliphilic 243 Bacillus strains: proposal for nine new species. Microbiology 141: 1745–1761.
29. Aziz RK, Bartels D, Best AA, DeJongh M, D’Souza T, et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
30. Overbeck R, Belye T, Butler RM, Choudhuri JV, Chuan HY, et al. (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Research 33: 5691–5702.

Acknowledgments

The following individuals performed the genome sequencing, assembly and annotation: Natalia N. Ivanova, Natalia Mikhailova, Olga Chertkov, Lynne A. Goodwin, of Los Alamos National Laboratory, and Janet Chang, Loren Hauser, Cynthia D. Jeffries, and Miriam Land of Oak Ridge National Laboratory. AMDG.

Author Contributions

Conceived and designed the experiments: DM PJB. Performed the experiments: CD PJB. Analyzed the data: DM PJB CD. Wrote the paper: PJB DM.
31. Erchaj A, Hino M, Fukushima T, Mizuki T, Kametaka M, et al. (2005) Endo-
32. Chaudel-Remaud C, Chevalet C, Faraut T, Kahn D (2003) Enzyme-specific
33. Kanchisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for
34. Mongkolthanaruk W (2012) Classification of Bacillus beneficial substances
35. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for
36. Hendrickx AP, Budzik JM, Oh SY, Schneewind O (2011) Architects at the
37. Comfort D, Clubb RT (2004) A comparative genome analysis identifies distinct
38. Dramsi S, Trieu-Cuot P, Bierne H (2005) Sorting sortases: a nomenclature
39. MaressO AW, Chapa TJ, Schneewind O (2006) Surface protein IsdC and
40. Budzik JM, Oh SY, Schneewind O (2009) Sortase D forms the covalent bond
41. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped
42. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in
43. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, et al. (2009)
44. Horikoshi K, Nakao M, Kurono Y, Sashihara N (1984) Cellulases of an
45. Yamamoto M, Esume T, Watanabe T, Tanaka H, Aono R (1998) C-terminal
46. Switzer Blam J, Burns Bindi A, Buzze&J, Stolz JF, Oenendal RS (1998) Bacillus
47. Comfort D, Clubb RT (2004) A comparative genome analysis identifies distinct
48. Bennett SE (2004) Pharmacogenomics: 5: 433–438.
49. Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, et al. (2006) Genome-wide
50. Machado M, Magalhães WC, Sene A, Araujo B, Faria-Campos AC, et al. (2011)
51. Sayer DC, Goodridge DM, Christiansen FT (2004) Assign 2.0: software for the
52. Lee WH, Vega VB (2004) Heterogeneity detector: finding heterogeneous
53. Han CS, Chain P (2006) Finishing repeat regions automatically with
54. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, et al. (2010) Prodigal
55. Pati A, Ivanova NN, Mikhailova N, Ochuminova G, Hooper SD, et al. (2010)
56. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of
57. Lagesen K, Hallin P, Rodland ED, Staerfeldt HH, Rogens T, et al. (2007)
58. Griffiths-Jones S, Bateman A, Birney E, Durbin R, Eddy SR et al. (2003) Pfam: a
59. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 305: 567–580.
60. Echigo A, Hino M, Fukushima T, Mizuki T, Kametaka M, et al. (2005) Endo-

B. cellulosilyticus Genome