Effects of orbital occupancies on the neutrinoless $\beta\beta$ matrix element of 76Ge

J. Suhonen a,*, O. Civitarese b

a Department of Physics, University of Jyväskylä, PO Box 35, FIN-40014, Jyväskylä, Finland
b Department of Physics, University of La Plata, c.c. 67, (1900) La Plata, Argentina

A B S T R A C T

In this work we use the recently measured neutron occupancies in the 76Ge and 76Se nuclei as a guideline to define the neutron quasiparticle states in the 1p0f0g shell. We define the proton quasiparticles by inspecting the odd-mass nuclei adjacent to 76Ge and 76Se. We insert the resulting quasiparticles in a proton–neutron quasiparticle random-phase approximation (pnQRPA) calculation of the nuclear matrix element of the neutrinoless double beta ($0\nu\beta\beta$) decay of 76Ge. A realistic model space and effective microscopic two-nucleon interactions are used. We include the nucleon–nucleon short-range correlations and other relevant corrections at the nucleon level. It is found that the resulting $0\nu\beta\beta$ matrix element is smaller than in the previous pnQRPA calculations, and closer to the recently reported shell-model results.

The pnQRPA calculations are based on quasiparticle states [15] produced via a BCS calculation [23]. The BCS method gives occupations of the single-particle orbitals and the occupation amplitudes are connected to the energy differences between orbitals. The customary way to determine the single-particle energy difference is to use the Woods–Saxon mean-field potential [23]. Slight adjustments of the resulting energies can be done based on the data on energy levels of odd-mass nuclei in the neighbourhood of the nucleus where the pnQRPA calculation is done [24].

Recently the single-particle occupancies in the 76Ge and 76Se nuclei were measured by (p,t) reactions [25]. A result, the occupancies in the neutron subspace 1p-0f 5/2-0g9/2, hereafter called the pfg subspace, could be deduced. In this work we exploit this spectroscopic data in pnQRPA calculations of the nuclear wave functions of the 76As nucleus, the intermediate nucleus of the double beta decay of 76Ge. We first produce the $2\nu\beta\beta$ NME to fix the allowed values of the g_{pp} parameter by data on the half-life of the decay. Based on this we finally compute the $0\nu\beta\beta$ NMEs.

Here we assume that the double beta decay of 76Ge proceeds through the virtual states of the intermediate nucleus 76As to the ground state of the final nucleus 76Se. By assuming the neutrino-

* Corresponding author.

E-mail address: jouni.suhonen@phys.jyu.fi (J. Suhonen).

0370-2693/$ – see front matter © 2008 Published by Elsevier B.V.

doi:10.1016/j.physletb.2008.08.056
mass mechanism to be the dominant one, we can write the inverse of the half-life for the 0νββ decay as [3]

\[
[M(0^\nu)]^{-1} = [G_{\nu}]^{-1} \left(\frac{m_\nu}{m_e} \right)^2 (M(0^\nu))^2,
\]

where \(m_\nu \) is the electron mass and \(G_{\nu} \) is the leptonic phase-space factor. The 0νββ nuclear matrix element \(M(0^\nu) \) consists of the Gamow–Teller, Fermi and tensor parts as

\[
M(0^\nu) = M^{GT}_{\nu} - \left(\frac{G_N}{G_F} \right)^2 M^{BF}_\nu + M^{GT}_\nu.
\]

Our numerical calculations verify the shell-model results of [14] and show that the tensor part in (2) is quite small and its contribution can be safely neglected in what follows. The expressions for the phase-space factor, the effective neutrino mass \(m_\nu \) and the matrix elements of (2) are given, e.g., in [1,3,10].

The nuclear-structure calculations are performed as described in [26–28]. As a model space we have used the \(N = 3 \) and \(N = 4 \) oscillator shells and the \(0\pi_{3/2} \) single-quasiparticle orbital, both for protons and neutrons. The starting values of the single-particle energies are obtained from the Coulomb-corrected Woods–Saxon potential, hereafter called WS, with the parametrization of [29]. These energies are presented for the pfg subspace in Table 1. The measured neutron vacancies [25] in this sub-space have been summarized in Table 2. As can be seen from this table, the computed vacancies in the WS basis are far from the measured ones: the critical proton orbit had to be lowered to \(-7.00 \) MeV for \(76\text{Ge} \) and to \(-6.288 \) MeV for \(76\text{Se} \). For completeness, we also give in Table 2 the adjusted matrix elements of Table 3 that correspond nicely to their measured counterparts. The critical proton orbit for the success of the pnMQPM calculation is \(0\pi_{3/2} \). The energy of this orbit had to be lowered to \(-7.1 \) MeV for \(76\text{Ge} \) and to \(-5.3 \) MeV for \(76\text{Se} \) to produce a reasonable one-quasiparticle spectrum. The corresponding energies we call adjusted energies and the computed proton vacancies in this basis are given in Table 3 in the columns called ‘Adj.’

The predicted one-quasiparticle energies of Table 4 correspond to the calculated values in the WS basis. The critical proton orbit for the success of the pnMQPM calculation is \(0\pi_{3/2} \). The energy of this orbit had to be lowered to \(-7.1 \) MeV for \(76\text{Ge} \) and to \(-5.3 \) MeV for \(76\text{Se} \) to produce a reasonable one-quasiparticle spectrum. The corresponding energies we call adjusted energies and the computed proton vacancies in this basis are given in Table 3 in the columns called ‘Adj.’

The main point of the present Letter is to see how the neutron vacancies of the pfg subspace, extracted from experimental data, affect the magnitude of the 0νββ NME’s. As a side line one can also try to relate the measured vacancies to the single-particle energies of this subspace. The WS potential is a global parametrization of the nuclear mean field and is based on data on nuclei close to the beta stability line. This potential produces a smooth and gentle variation of the single-particle energies as a function of the proton and neutron numbers. On the other hand,
the WS potential is just an approximate substitute for the Hartree–Fock (HF) or Hartree–Fock–Bogoliubov (HFB) methods to calculate the self-consistent mean field. The HF and HFB methods can produce results that are very different from those of the WS potential. Their results are also very much dependent on the two-body interaction used in the calculations (for recent articles on these features see [32,33]).

In [32] a discussion of the \(N = 40\) and \(Z = 40\) mean-field gaps between the \(1p_1/2\) and \(0g_{9/2}\) single-particle orbitals was carried out by using the HF method with two different two-body interactions. Let us first discuss the situation for protons. It was found that on the proton side for one of the interactions, VMS (see Fig. 15 of [32]), the gap between the \(1p_1/2\) and \(0g_{9/2}\) orbitals disappears around \(Z = 34\) and the two orbitals become inverted in energy. For the other interaction, JW (see Fig. 16 of [32]), the gap between these two orbitals diminishes when going from \(Z = 26\) to \(Z = 48\) but never disappears. Thus the VMS-computed mean field closely corresponds to our adjusted proton basis where the gap between the \(1p_1/2\) and \(0g_{9/2}\) orbitals disappears.

On the neutron side the VMS based HF calculation from \(N = 24\) to \(N = 48\) produces a clear gap between the \(1p_1/2\) and \(0g_{9/2}\) orbitals, as seen in Fig. 3 of [32]. However, in [32] it was found that the effect of this gap disappeared when the \(T = 1\), \(J = 0\) pairing interaction was added through the HFB method. If one would like to simulate these vacancies in the present simple WS + BCS calculations the WS mean field should be modified such that the gap at \(N = 40\) closes.

At this point it has to be stressed, however, that in the present work we do not have to resort to the details of the underlying mean field and the associated neutron single-particle energies since we have already the experimental vacancies available. Some further insight in the complexity of the self-consistent-mean-field calculations for Ge isotopes is given in [33]. There several standard interactions were used in the Gogny–HF and Skyrme–HF + BCS frameworks and very different results, from triaxial to axially symmetric shapes, were obtained with different interactions for \(76\)Ge. In fact, looking at the simple Nilsson diagram indicates that a tiny oblate deformation would suffice to close the \(N = 40\) gap.

After settling the problem with the occupation amplitudes of the single-particle states we are ready to compute the \(2\nu\beta\beta\) and \(0\nu\beta\beta\) NME's. As usual, we consider the two extreme values of the axial-vector coupling constant, namely the bare value \(g_A = 1.25\) and the strongly quenched value \(g_A = 1.00\). When calculating the \(0\nu\beta\beta\) half-lives it is convenient to remove the \(g_A\) dependence from the phase-space factor by redefining the NME as

\[
\text{NME'} = \text{NME} \left(\frac{g_{\beta\beta}}{g_A} \right)^2, \tag{3}
\]

Table 4

Nucleus	State	\(E(\exp.)\) [MeV]	\(E(\mathrm{th.})\) [MeV]	Main component (%)
\(^{77}\)Ge	1/2	0.160	0.193	\(\nu 1p_1/2 \\uparrow \) (94.7\%)
9/2	0.225	0.000	\(\nu 0g_{9/2} \uparrow \) (97.0\%)	
\(^{77}\)As	3/2	0.000	0.114	\(\pi 1p_1/2 \uparrow \) (95.6\%)
5/2	0.246	0.000	\(\pi 0f_{5/2} \uparrow \) (92.5\%)	
9/2	0.475	0.471	\(\pi 0g_{9/2} \uparrow \) (86.5\%)	
\(^{77}\)Se	1/2	0.000	0.227	\(\nu 1p_1/2 \uparrow \) (93.6\%)
9/2	0.175	0.000	\(\nu 0g_{9/2} \uparrow \) (97.6\%)	
3/2	0.239	0.677	\(\nu 1p_1/2 \uparrow \) (85.5\%)	
5/2	0.250	0.506	\(\nu 0f_{5/2} \uparrow \) (93.0\%)	
\(^{77}\)Br	3/2	0.000	0.083	\(\pi 1p_1/2 \uparrow \) (98.5\%)
9/2	0.106	0.072	\(\pi 0f_{5/2} \uparrow \) (93.3\%)	
5/2	0.162	0.000	\(\pi 0g_{9/2} \uparrow \) (95.3\%)	
1/2	0.167	0.426	\(\pi 1p_1/2 \uparrow \) (87.6\%)	

Table 5

Matrix elements of (3) computed in this work for different values of \(g_A\) and \(g_{\beta\beta}\).

For the short-range correlations both the Jastrow and UCOM prescriptions have been used.

\(g_A\)	\(g_{\beta\beta}\)	Jastrow	UCOM				
\(M^{(0\nu\beta\beta)}\)	\(M^{(0\nu\beta\beta)}\)	\(M^{(0\nu\beta\beta)}\)	\(M^{(0\nu\beta\beta)}\)				
1.25	1.12	2.288	\(-0.772\)	2.779	3.385	\(-1.143\)	4.112
1.00	1.10	1.700	\(-0.579\)	2.279	2.413	\(-0.818\)	3.231

Table 6

Values of the matrix element \(\langle M^{(0\nu\beta\beta)} \rangle\) of (3) obtained in some other recent works.

Here \(J\) stands for Jastrow and \(U\) for UCOM.

\(g_A\)	\(J\)	\(U\)	\(\langle M^{(0\nu\beta\beta)} \rangle\)			
\(1.25\)	\(1.25\)	\(5.355\)	4.68	5.73	2.30	2.81
\(1.00\)	\(1.00\)	\(4.195\)	3.31	3.92	–	–

These redefined nuclear matrix elements are the ones that are listed in Tables 5 and 6.

In Table 5 we list the adopted \(g_{\beta\beta}\) values as extracted by comparing the measured \(2\nu\beta\beta\) half-lives with the computed ones. By using these values of \(g_{\beta\beta}\) we have calculated the \(0\nu\beta\beta\) NME's of (3) and we summarize their values in Table 5. In these calculations we have included the higher-order terms of nucleonic weak currents and the nucleon's finite-size corrections in the way described in [18,34]. We have accounted for the short-range correlations by the Jastrow and UCOM (unitary correlation operator method) correlators, as discussed, e.g. in [26-28].

Our computed results of Table 5 can be compared with the results of other recent works in the field. A selection of recent calculations including the Jastrow and the UCOM correlator is given in Table 6. The second and third columns of this table give the results of [28] where exactly the same methods as here were applied, the only difference being the use of a different set of single-particle energies, where the neutron \(0g_{9/2}\) orbital was shifted a good one MeV to better reproduce the low-energy spectra of \(^{77}\)Ge and \(^{77}\)Se in a BCS calculation. By comparing the results of these two calculations in Tables 5 and 6 one notices a significant reduction in the value of the total \(0\nu\beta\beta\) matrix element \(M^{(0\nu\beta\beta)}\). Furthermore, the Tübingen results [35,36] are consistent with the results of [28].

The results of the shell model [14] are the smallest in Table 6. Interestingly, our present results for the Jastrow correlator, \(M^{(0\nu\beta\beta)}\), and for the UCOM correlator, \(M^{(0\nu\beta\beta)}\), are closer to the shell-model result than the previous values quoted in [28]. The reduction of the magnitude of the pnQRPA calculated NME, which yields a value close to the shell-model result, is significant and deserves the further detailed study performed below.

The reason for the reduction of the magnitude of the \(0\nu\beta\beta\) NME can be summarized by looking at the multipole decompositions of the NME. As an example we use the Jastrow correlated NME's. For the Fermi matrix element the reduction stems from the \(0^+\) intermediate states, as seen in Fig. 1. From Fig. 2 we see that for the Gamow–Teller matrix element \(M^{(0\nu\beta\beta)}\) the significant changes concentrate on the \(1^+\) and \(2^+\) contributions. In the present calculations the \(1^+\) and \(2^+\) contributions are 0.448(1\%) and 0.388(2\%) whereas in the previous work [28] they read 0.712(2\%) and 0.859(2\%). Thus the \(1^+\) contribution has reduced by 37\% and the \(2^+\) contribution by 56\%. In the old calculation the contribution of the \(3^+\) was dominant but now it has reduced below the \(1^+\) contribution. In both calculations the \(1^+\) multipole has several important contributions whereas the \(2^+\) contribution is coming almost solely from the first \(2^+\) state. Hence the wave function of the \(2^+\) state plays a key role when seeking the reason.
for the reduction of the magnitude of the Gamow–Teller matrix element.

The quality of the lowest 2$^-$ state in the intermediate nucleus 76As can be tested by computing the β^- decay $\log ft$ values for transitions from this state to the ground state and one- and two-phonon states in 76Se. The obtained results are compared with the data and the calculations of [28] in Table 7. As can be seen there is a drastic improvement in the $\log ft$ value of the ground-state-to-ground-state transition. This transition tests exclusively the 2_1^- wave function whereas the rest of the transitions depend also on the final-state wave function, built from the 2_1^- collective phonon in the 76Se nucleus. It is worth pointing out that in the present calculation the quasiparticle spectrum is more compressed than in the calculation of Ref. [28]. This increases the collectivity of the 2_1^- state in 76Se and thus results in smaller effective charges when trying to reproduce the data on the $E2$ transition probability from this state.

The single β^- decay is a non-trivial way to check the reduction in the $0\nu\beta\beta$ NME: The β^- NME is reduced by 58% from the old value [28]. This is in nice agreement with the 56% reduction in the 2^- contribution to the $0\nu\beta\beta$ NME. The main component of the wave function driving both transitions is the proton $0f_{5/2}$ orbital coupled to the neutron $0g_{9/2}$ orbital. In the present calculation the wave function of the 2_1^- state is more fragmented and thus reduces the pnQRPA amplitude responsible for the transitions. On the other hand, the occupation of the neutron $0g_{9/2}$ orbital has increased which also reduces the decay amplitudes since they are proportional to the emptiness of $\nu0g_{9/2}$. Similar considerations, though in a more complicated way, apply to the intermediate 1^+ contribution.

Our calculations show that the main contributions to the $0\nu\beta\beta$ NME come from inside the pfg subspace. The implementation of the experimental occupations in the pnQRPA calculation brings the pnQRPA results closer to the shell-model results of [14]. The small contributions from outside the pfg subspace partly explain the deviations from the shell model result. In [37] the effect of expanding the shell-model single-particle basis was examined. Using the pfg subspace plus two-particle–two-hole excitations from the $0f_{7/2}$ orbital it was concluded that these $2p$–$2h$ excitations increase the magnitude of $M^{(0\nu)}$ by at most 20%. It still remains an open question how the differences between the shell-model and pnQRPA matrix elements tie to the omitted single-particle orbitals in the shell model and the shell-model occupations of the pfg subspace.

Finally, our presently computed variations $M^{(0\nu)} \times 2.279-2.779 \text{(Jastrow)}$ and $M^{(0\nu)} \times 3.231-4.112 \text{(UCOM)}$ in the $0\nu\beta\beta$ NME can be converted to the following half-life limits

$$t_{1/2}^{(0\nu)} = (5.36-8.04) \times 10^{24} \text{ yr}/(\langle m_\nu/\text{eV} \rangle)^2 \text{ (Jastrow),}$$

$$t_{1/2}^{(0\nu)} = (2.45-4.00) \times 10^{24} \text{ yr}/(\langle m_\nu/\text{eV} \rangle)^2 \text{ (UCOM).}$$

In this Letter we have performed a pnQRPA calculation of the nuclear matrix elements involved in the neutrinoless double beta decay of 76Ge. We have used a microscopic two-nucleon interaction in a realistic model space, and the calculations exploit the occupation amplitudes extracted from the recently available data on the neutron vacancies in 76Ge and 76As. The subsequently calculated $0\nu\beta\beta$ nuclear matrix elements are smaller in magnitude than the ones obtained in a standard calculation using the Woods–Saxon based single-particle occupations. This stems from the reduction in the contributions of the 0^+, 1^+ and 2^- intermediate states, with a special emphasis on the first 2^- state. These changes are related both to the revised occupations and to the changes in the pnQRPA amplitudes that derive from the revised occupations.

Acknowledgements

This work has been partially supported by the National Research Council (CONICET) of Argentina and by the Academy of Finland under the Finnish Centre of Excellence Programme 2006-2011 (Nuclear and Accelerator Based Programme at JYFL). We thank also the EU IILIAS project under the contract RI3-CT-2004-506222. One of the authors (O.C.) gratefully thanks for the warm hospitality extended to him at the Department of Physics of the University of Jyväskylä, Finland. We acknowledge the very fruitful discussions with Prof. J.P. Schiffer. We also thank Dr. M. Kortelainen and Mr. M.T. Mustonen for making their computer codes available to us.

References

[1] M. Doi, T. Kotani, E. Takasugi, Prog. Theor. Phys. Suppl. 83 (1985) 1.
[2] J.D. Vergados, Phys. Rep. 133 (1986) 1.
[3] J. Suhonen, O. Civitarese, Phys. Rep. 300 (1998) 123.
[4] A. Faessler, F. Šimkovic, J. Phys. G 24 (1998) 2139.
[5] H.V. Klapdor-Kleingrothaus, in: Springer Tracts in Modern Physics, vol. 163, Springer, Berlin, 2000, pp. 69–104.
[6] J.D. Vergados, Phys. Rep. 361 (2002) 1.
[7] V. Tretyak, Y. Zdesenko, At. Data Nucl. Data Tables 80 (2002) 83.
[8] S.R. Elliott, J. Engel, J. Phys. G 30 (2004) R183.
[9] F.T. Avignone III, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80 (2008) 481, arXiv: 0708.1011.
[10] T. Tomoda, Rep. Prog. Phys. 54 (1991) 53.
[11] E. Caurier, et al., Rev. Mod. Phys. 77 (2005) 427.
[12] E. Caurier, F. Nowacki, A. Poves, Int. J. Mod. Phys. E 16 (2007) 552.
[13] E. Caurier, J. Menéndez, F. Nowacki, A. Poves, Phys. Rev. Lett. 100 (2008) 022503.
[14] J. Menéndez, A. Poves, E. Caurier, F. Nowacki, arXiv: 0801.3760 [nucl-th].
[15] J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory, Springer, Berlin, 2007.
[16] J. Toivanen, J. Suhonen, Phys. Rev. Lett. 75 (1995) 410.
[17] J. Toivanen, J. Suhonen, Phys. Rev. C 55 (1997) 2314.
[18] V.A. Rodin, A. Faessler, F. Šimkovic, P. Vogel, Nucl. Phys. A 766 (2006) 107.
[19] P. Vogel, M.R. Zirnbauer, Phys. Rev. Lett. 57 (1986) 3148.
[20] O. Civitarese, A. Faessler, T. Tomoda, Phys. Lett. B 194 (1987) 11.
[21] J. Suhonen, Phys. Lett. B 667 (2005) 87.
[22] O. Civitarese, J. Suhonen, Phys. Lett. B 626 (2005) 80.
[23] J. Suhonen, T. Taigel, A. Faessler, Nucl. Phys. A 761 (2005) 313.
[24] M. Aunola, J. Suhonen, Nucl. Phys. A 602 (1996) 133.
[25] S.J. Freeman, et al., Phys. Rev. C 75 (2007) 051301(R);
J.P. Schiffer, private communication.
[26] M. Kortelainen, O. Civitarese, J. Suhonen, J. Toivanen, Phys. Lett. B 647 (2007) 128.
[27] M. Kortelainen, J. Suhonen, Phys. Rev. C 76 (2007) 024315.
[28] M. Kortelainen, J. Suhonen, Phys. Rev. C 75 (2007) 051303(R);
J. Suhonen, M. Kortelainen, Int. J. Mod. Phys. E 17 (2008) 1.
[29] A. Bohr, B.R. Mottelson, Nuclear Structure, vol. I, Benjamin, New York, 1969.
[30] A. Mariano, J.G. Hirsch, Phys. Rev. C 61 (2000) 054301.
[31] M.T. Mustonen, J. Suhonen, Phys. Lett. B 657 (2007) 38.
[32] K. Kaneko, M. Hasegawa, T. Mizusaki, Y. Sun, Phys. Rev. C 74 (2006) 024321.
[33] Lu Guo, J.A. Maruhn, P.-G. Reinhard, nucl-th/0701095.
[34] F. Šimkovic, G. Pantis, J.D. Vergados, A. Faessler, Phys. Rev. C 60 (1999) 055502.
[35] V.A. Rodin, A. Faessler, F. Šimkovic, P. Vogel, Nucl. Phys. A 793 (2007) 213 [Erratum].
[36] F. Šimkovic, A. Faessler, V. Rodin, P. Vogel, J. Engel, arXiv: 0710.2055 [nucl-th].
[37] E. Caurier, F. Nowacki, A. Poves, Eur. Phys. J. A 36 (2008) 195.