Parametrically defined differential equations

A D Polyanin1,2,3, A I Zhurov1,4

1 Institute for Problems in Mechanics, Russian Academy of Sciences, 101 Vernadsky Avenue, bldg 1, 119526 Moscow, Russia
2 Bauman Moscow State Technical University, 5 Second Baumanskaya Street, 105005 Moscow, Russia
3 National Research Nuclear University MEPhI, 31 Kashirskoe Shosse, 115409 Moscow, Russia
4 Cardiff University, Heath Park, Cardiff CF14 4XY, UK

E-mail: zhurovai@cardiff.ac.uk

Abstract. The paper deals with nonlinear ordinary differential equations defined parametrically by two relations. It proposes techniques to reduce such equations, of the first or second order, to standard systems of ordinary differential equations. It obtains the general solution to some classes of nonlinear parametrically defined ODEs dependent on arbitrary functions. It outlines procedures for the numerical solution of the Cauchy problem for parametrically defined differential equations.

Keywords: parametrically defined differential equations, nonlinear differential equations, numerical methods, Cauchy problem, exact solutions

1. **Introduction**

1.1. **Preliminary remarks**

Von Mises and Crocco type transformations are used to reduce the order of boundary layer equations and some other nonlinear PDEs [1–6]. Such transformations suggest choosing suitable first- or second-order partial derivatives to be new independent variables. Sometimes, the reduced equations admit exact solutions in parametric form [7]. As a result, finding exact solutions to the original PDEs reduces to integrating parametric ODEs. Moreover, parametrically defined nonlinear differential equations also arise directly in the theory of ODEs [7].

The study [7] describes a few classes of nonlinear parametric ordinary differential equations of the first and second order for which the authors managed to find general solutions. Note that parametric ODEs are non-classical and are not treated in the literature dealing with standard ODEs (e.g., see [8–12]). The general solutions obtained in [7] were further used to construct exact solutions to unsteady axisymmetric boundary-layer equations.

1.2. **Ordinary differential equations defined parametrically**

In general, a parametrically defined nth-order ordinary differential equation is given by two equations of the form [7]

$$
y_x^{(m)} = F(x, y, y', \ldots, y_x^{(m-1)}, t), \quad y_x^{(n)} = G(x, y, y', \ldots, y_x^{(n-1)}, t),
$$

(1)
where \(y = y(x) \) is the unknown function with \(y^{(n)} \) denoting the \(n \)th derivative \(d^n y/dx^n \), \(t = t(x) \) is a functional parameter, and \(n \geq m \). In what follows, we assume that the parameter \(t \) cannot generally be eliminated from Eqs. (1).

2. First-order parametrically defined ODEs

2.1. Reduction to a standard system of ODEs. An example of an exact solution

Consider parametric first-order ODEs defined by

\[
F(x, y, t) = 0, \quad y_x' = G(x, y, t),
\]

(2)

In the theory of differential-algebraic equations (DAEs), equations of the form (2) are referred to as a system of semi-explicit DAEs or ODEs with constraints \([13, 14]\). Normally, such equations are reduced to a standard system of ODEs for \(y = y(x) \) and \(t = t(x) \) by differentiating the first equation in (2) with respect to \(x \) [13]. However, there is a more convenient approach that suggests using an alternative system of ODEs, for \(y = y(t) \) and \(x = x(t) \), which is derived below.

Eqs. (2) can be rewritten in terms of differentials as

\[
F_x dx + F_y dy + F_t dt = 0, \quad dy = G(x, y, t) dx,
\]

(3)

where \(F_x, F_y, \) and \(F_t \) are respective partial derivatives of \(F = F(x, y, t) \). By eliminating \(dy \) and then \(dx \) from (3), we arrive at

\[
(F_x + GF_y)x' + F_t = 0,
\]

(4)

\[
(F_x + GF_y)y' + GF_t = 0.
\]

(5)

Eqs. (4) and (5) represent a standard system of first-order equations for \(x = x(t) \) and \(y = y(t) \). If we manage to solve this system, we automatically obtain a solution to the original equations (2) in parametric form. In some cases, it suffices to use either Eq. (4) or (5) and the first equation in (2).

Example 1. Let us look at the nonlinear first-order ODE defined parametrically

\[
x = f(t)y, \quad y'_x = g(t),
\]

(6)

where \(f = f(t) \) and \(g = g(t) \) are arbitrary functions \((fg - 1 \neq 0)\).

Eq. (6) is a special case of Eq. (2) with \(F = x - f y \) and \(G = g \). Then Eq. (5) becomes

\[
(1 - fg)y'_t = -gf'y = 0.
\]

Integrating this equation in view of the first relation in (6) yields the general solution to Eq. (6) in parametric form

\[
x = C f \exp\left(\int \frac{gf'}{1 - fg} dt \right), \quad y = C \exp\left(\int \frac{gf'}{1 - fg} dt \right).
\]

(7)

where \(C \) is an arbitrary constant.

Remark 1. If equations (4) and (5) are used, isolated solutions satisfying \(F_x + GF_y = 0 \) may be lost; this issue calls for further analysis.

2.2. Cauchy problem. Numerical solution procedure

Consider the Cauchy problem for the parametric first-order ODE (2) with the initial condition

\[
y(x_0) = y_0.
\]

(8)

The initial value of the parameter, \(t = t_0 \), can be found from the algebraic (generally transcendental) equation

\[
F(x_0, y_0, t_0) = 0,
\]

(9)

where \(x_0 \) and \(y_0 \) are the values appearing in the initial condition (8).
Using the technique described in Section 2.1, one first reduces the parametric ODE (2) to the standard system of first-order ODEs (4) and (5) for \(x = x(t) \) and \(y = y(t) \). Then this system, subject to the initial conditions

\[
x(t_0) = x_0, \quad y(t_0) = y_0,
\]

(10)
can be solved numerically by the Runge–Kutta or another suitable method [10, 14–16].

Remark 2. The algebraic (or transcendental) equation (9) can generally have more than one root. In this case, the original problem (2), (8) will have the same number of solutions.

3. Second-order parametrically defined ODEs

3.1. Reduction to a standard system of first-order ODEs

Consider parametric second-order ODEs of the form

\[
y'_x = F(x, y, t), \quad y''_{xx} = G(x, y, t).
\]

(11)

On differentiating the first equation with respect to \(t \), we get \((y'_x)'_t = F_x x'_t + F_y y'_t + F_t\). Taking into account that \(y_t = F x'_t \) and \((y'_x)'_t = x'_t y''_{xx} \), we further obtain

\[
x'_t y''_{xx} = F_x x'_t + F_y x'_t + F_t.
\]

(12)

On eliminating the second derivative \(y''_{xx} \), with the aid of the second equation in (11), we arrive at the first-order equation

\[
(G - F_x - FF_y)x'_t = F_t.
\]

(13)

In view of \(y'_t = F x'_t \), Eq. (13) becomes

\[
(G - F_x - FF_y)y'_t = FF_t.
\]

(14)

Equations (13) and (14) represent a standard system of first-order equations for \(x = x(t) \) and \(y = y(t) \). If we manage to solve this system, we automatically get a solution to the original equation (11) in parametric form. In some cases, it suffices to use either Eq. (13) or (14) and the first equation in (11).

Remark 3. If equations (13) and (14) are used, isolated solutions satisfying \(G - F_x - FF_y = 0 \) may be lost; this issue calls for further analysis (see Example 3, Item 2 below).

Example 2. Consider the nonlinear second-order ODE defined parametrically

\[
y'_x = f(t)y, \quad y''_{xx} = g(t)y,
\]

(15)

where \(f = f(t) \) and \(g = g(t) \) are arbitrary functions \((g - f^2 \neq 0)\).

Eq. (15) is a special case of Eq. (11) with \(F = fy \) and \(G = gt \). Then Eqs. (13) and (14) are independent first order linear equations

\[
(g - f^2)x'_t = f'_t, \quad (g - f^2)y'_t = ff'_t y.
\]

General solution in parametric form:

\[
x = \int \frac{f'_t(t)}{g(t) - f^2(t)} \, dt + C_1, \quad y = C_2 \exp \left[\int \frac{f(t) f'_t(t)}{g(t) - f^2(t)} \, dt \right],
\]

where \(C_1 \) and \(C_2 \) are arbitrary constants.
Example 3. Consider the equation

\[y'_x = f(t)x + g(t), \quad y''_{xx} = h(t). \quad (16) \]

where \(f = f(t), \ g = g(t), \) and \(h = h(t) \) are arbitrary functions.

Eq. (16) is a special case of Eq. (11) with \(F = fx + g \) and \(G = h \). Then Eqs. (13) and (14) take the form

\[
(h - f)x'_t = f'x + g'_t,
(h - f)y'_t = (fx + g)(f'x + g'_t).
\]

1. Suppose \(h - f \neq 0 \). Then the general solution to the first (linear) equation of system (17) has the form

\[
x = C_1E + E \int \frac{g'_t dt}{E(h - f)}, \quad E = \exp \left(\int \frac{f'_t dt}{h - f} \right),
\]

where \(C_1 \) is an arbitrary constant. Substituting this expression of \(x \) into the second equation of the system, we arrive at a separable equation for \(y = y(t) \) (its solution is omitted).

2. Suppose \(h - f \equiv 0 \). On differentiating the first equation in (16) with respect to \(x \) and comparing with the second equation, we see that \(t'_x = 0 \). Hence, \(t = C_1 \), where \(C_1 \) is an arbitrary constant. By replacing \(t \) in the first equation in (16) with \(C_1 \) followed by integrating with respect to \(x \), we obtain the general solution to the original equation

\[
y = \frac{1}{2} f(C_1)x^2 + g(C_1)x + C_2,
\]

where \(C_1 \) and \(C_2 \) are arbitrary constants.

3.2. **Cauchy problem. Numerical solution procedure**

Consider the Cauchy problem for the parametric second-order ODE (11) with the initial conditions

\[
y(x_0) = y_0, \quad y'_x(x_0) = y_1. \quad (18)
\]

The initial value of the parameter, \(t = t_0 \), is determined from the algebraic (generally transcendental) equation

\[
y_1 = F(x_0, y_0, t_0), \quad (19)
\]

where \(x_0, y_0, \) and \(y_1 \) are the values appearing in the initial conditions (18); Eq. (19) follows from the first equation in (11).

Using the technique outlined in Section 3.1, we first reduce the parametric differential equation (11) to the standard system of first-order ODEs (13), (14) for \(x = x(t) \) and \(y = y(t) \). Then this system, subject to the initial conditions (10), can be solved numerically using, for example, the Runge–Kutta or another suitable method [10, 14–16].

Remark 4. The algebraic (transcendental) equation (19) can generally have more than one root. In this case, the original Cauchy problem (11), (18) will have the same number of solutions.
3.3. First boundary value problem. Numerical solution procedure

Let us look at the first boundary value problem for the parametric second-order ODE (11) in the range $x_1 \leq x \leq x_2$ with the boundary conditions

$$y(x_1) = y_1, \quad y(x_2) = y_2.$$ \hfill (20)

Below we present the main idea of a numerical procedure to solve this kind of problem.

Consider two auxiliary Cauchy problems for the equation (see the second equation in Eq. (11))

$$y''_{xx} = G(x, y, t)$$ \hfill (21)

subject to the initial conditions

$$y(x_1) = y_1, \quad y'_{x}(x_1) = F(x_1, y_1, t) \quad \text{(problem 1)};$$ \hfill (22)

$$y(x_2) = y_2, \quad y'_{x}(x_2) = F(x_2, y_2, t) \quad \text{(problem 2)}.$$ \hfill (23)

By choosing a specific value of the parameter, $t = t_k$, we solve the auxiliary Cauchy problems numerically (e.g., by the Runge–Kutta method [10, 14–16]) to obtain $y^1 = y^1(x, t_k)$ and $y^2 = y^2(x, t_k)$, respectively (the superscripts indicate the problem number). To any t_k there corresponds a point (x_k, y_k) in the (x, y) plane at which the curves corresponding to the solutions $y^1 = y^1(x, t_k)$ and $y^2 = y^2(x, t_k)$ intersect. By choosing a different value, t_{k+1}, we find another point, (x_{k+1}, y_{k+1}). The discrete set of points (x_k, y_k) with $k = 0, 1, 2, \ldots$ defines an approximation to the solution $y = y(x)$ of the original boundary value problem (11), (20).

4. Higher-order parametrically defined ODEs. Cauchy problem. Numerical solution procedure

Below we outline a procedure for the numerical solution of the Cauchy problem for a parametric nth-order equation defined by two relations of the form (1), with $n > m$, subject to the initial conditions

$$y(x_0) = y_0, \quad y'_{x}(x_0) = y_1, \quad \ldots, \quad y^{(n-1)}_{x}(x_0) = y_{n-1}.$$ \hfill (24)

By relying on Eqs. (1) directly, let us consider the following two auxiliary Cauchy problems:

$$y^{(m)}_{x} = F(x, y, y'_{x}, \ldots, y^{(m-1)}_{x}, t), \quad y(x_0) = y_0, \quad y'_{x}(x_0) = y_1, \quad \ldots, \quad y^{(m-1)}_{x}(x_0) = y_{m-1} \quad \text{(problem 1)};$$ \hfill (25)

$$y^{(n)}_{x} = G(x, y, y'_{x}, \ldots, y^{(n-1)}_{x}, t), \quad y(x_0) = y_0, \quad y'_{x}(x_0) = y_1, \quad \ldots, \quad y^{(n-1)}_{x}(x_0) = y_{n-1} \quad \text{(problem 2)}.$$ \hfill (26)

Let $y_F = y_F(x, t)$ and $y_G = y_G(x, t)$ denote their respective solutions. We look at the solution difference

$$\Delta(x, t) = y_G(x, t) - y_F(x, t).$$ \hfill (27)

By choosing a specific value of the parameter, $t = t_k$, we find solutions $y_F(x, t_k)$ and $y_G(x, t_k)$ numerically using, for example, the Runge–Kutta method [10, 14–16]. Further, by varying x, we find an x_k such that $\Delta(x_k, t_k) = 0$. To this value of x_k there corresponds a value of the desired function: $y_k = y_F(x_k, t_k) = y_G(x_k, t_k)$. Hence, to each t_k there corresponds a point (x_k, y_k) in the (x, y) plane at which the curves $y_F = y_F(x, t_k)$ and $y_G = y_G(x, t_k)$ intersect.
By choosing a different value t_{k+1}, we find, in the same manner as above, the corresponding point (x_{k+1}, y_{k+1}). The discrete set of points (x_k, y_k), $k = 0, 1, 2, \ldots$, defines an approximation to the solution $y = y(x)$ of the original problem (1), (24).

The initial value of the parameter, $t = t_0$, is determined from the algebraic (transcendental) equation

$$y_m = F(x_0, y_0, y_1, \ldots, y_{m-1}, t_0),$$

where $x_0, y_0, y_1, \ldots, y_m$ are the values appering in the initial conditions (24).

Remark 5. The algebraic (transcendental) equation (28) can generally have more than one root. In this case, the original Cauchy problem (1), (24) will have the same number of solutions.

5. Brief conclusions

For nonlinear parametrically defined ordinary differential equations of the form (1), we have proposed techniques to reduce such equations, of the first and second order, to standard systems of ordinary differential equations, in which x and y are the unknown functions and t is the independent variable. We have constructed the general solution to some classes of equations in question and suggested procedures for the numerical solution of the Cauchy problem for parametrically defined differential equations of the first, second, and higher order.

References

[1] Schlichting H 1981 Boundary Layer Theory (New York: McGraw-Hill)
[2] Loitsyanskiy L G 1995 Mechanics of Liquids and Gases (New York: Begell House)
[3] Saccomandi G 2004 J. Phys. A Math. Gen. 37 7005–17
[4] Polyanin A D and Zhurov A I 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 536–44
[5] Polyanin A D and Zhurov A I 2012 Int. J. Non-Linear Mech. 47 413–7
[6] Polyanin A D and Zaitsev V F 2012 Handbook of Nonlinear Partial Differential Equations, 2nd ed (Boca Raton: CRC Press)
[7] Polyanin A D and Zhurov A I 2016 Appl. Math. Lett. 55 72–80
[8] Murphy G M 1960 Ordinary Differential Equations and Their Solutions (New York: D Van Nostrand)
[9] Kamke E 1977 Differentialgleichungen: Lösungsmethoden und Lösungen I Gewöhnliche Differentialgleichungen (Leipzig: B G Teubner)
[10] Korn G A and Korn T M 2000 Mathematical Handbook for Scientists and Engineers, 2nd ed (New York: Dover Publ.)
[11] Polyanin A D and Zaitsev V F 2003 Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed (Boca Raton–London: Chapman & Hall/CRC Press)
[12] Kudryashov N A 2004 Analytical Theory of Nonlinear Differential Equations (Moscow–Izhevsk: Institute of Computer Science) in Russian
[13] Brenan K E, Campbell S L and Petzold L R 1996 Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (Philadelphia: SIAM)
[14] Ascher U M and Petzold L R 1998 Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (Philadelphia: SIAM)
[15] Schiesser W E 1994 Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs (Boca Raton: CRC Press)
[16] Butcher J C 1987 The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods (New York: Wiley-Interscience)