Large Observed v_2 as a Signature for Deconfinement

W. A. Horowitz1

1 Columbia University, 538 West 120th Street, New York, NY, USA

Abstract. We present a new plot for representing $R_{AA}(\phi)$ data that emphasizes the strong correlation between high-p_\perp suppression and its elliptic anisotropy. We demonstrate that existing models cannot reproduce the centrality dependence of this correlation. Modification of a geometric energy loss model to include thermal absorption and stimulated emission can match the trend of the data, but requires dN_g/dy values inconsistent with the observed multiplicity. By including a small, outward-normal directed surface impulse opposing energy loss, $\Delta p_\perp \hat{n}$, one can account for the centrality dependence of the observed Au + Au elliptic quench pattern. We also present predictions for Cu + Cu reactions.

Keywords: Heavy Ion Collisions, Jet Quenching, Deconfinement, RHIC

PACS: 12.38.Mh; 24.85.+p; 25.75.-q

1. Introduction

A theoretical model for RHIC mid- to high-p_\perp $R_{AA}(\phi)$ should reproduce both the normalization as well as the azimuthal anisotropy of experimental results; its trend must follow the data on a v_2 vs. R_{AA} diagram. This is actually quite difficult due to the anticorrelated nature of R_{AA} and v_2; previous models either oversuppressed R_{AA} or underpredicted v_2 [1][2][3]. In Fig. (a) and (b), we combine STAR charged hadron $R_{AA}(p_\perp)$ and $v_2(p_\perp)$, PHENIX charged hadron $R_{AA}(p_\perp)$ and v_2 centrality, and PHENIX $\pi^0 (p_\perp > 4$ GeV) $R_{AA}(\phi)$ centrality data [4]. We naively averaged the STAR and PHENIX $R_{AA}(p_\perp)$ results to approximately match the p_\perp bins of their corresponding v_2 measurements. We report the R_{AA} and v_2 modes of the PHENIX $\pi^0 R_{AA}(\phi)$ data. The error bars provided are schematic only.

Hydrodynamics cannot be applied to mid- to high-p_\perp particles due to the lack of equilibrium. Moreover, a naive application would highly oversuppress R_{AA} due to the Boltzmann factors. Parton transport theory attempts to extend hydrody-
namics’ range of applicability to higher transverse momenta. The Mólnar parton
cascade (MPC) succeeded in describing the low- and intermediate-p_\perp v_2 results of
RHIC by taking the parton elastic cross sections to be extreme, $\sigma_l \sim 45$ mb \cite{5}. One
sees in Fig. 1 (a) that for the MPC, in this instance run at approximately 30% cen-
trality, no single value of the controlling free parameter, the opacity, $\chi = \int dz \sigma_t \rho_g$,
simultaneously matches the experimental R_{AA} and v_2.

pQCD becomes valid for moderate and higher p_\perp partons, and models based
on pQCD calculations of radiative energy loss have had success in reproducing the
experimental $R_{AA}(p_\perp)$ data \cite{6}. These models use a single, representative path-
length; as such, they give $v_2 \equiv 0$. To investigate the v_2 generated by including
pathlength fluctuations, we use a purely geometric (neglecting gluon number fluc-
tuations) radiative energy loss model (GREL) based on the first order in opacity
(FOO) radiative energy loss equation \cite{7}; it has been shown that including the
second and third order in opacity terms has little effect on the total energy loss \cite{8}.
The asymptotic approximation of this equation is $\Delta E^{(1)}_{rad}/E \propto (dN_g/dy)L^2 \cite{9}$.
We thus use an energy loss scheme similar to \cite{2}: $\epsilon = \Delta E_{rad}/E = \kappa I$. κ is a free
parameter encapsulating the E dependence, etc. of the FOO expression and the pro-
portionality constant between dN_g/dy and ρ_{part}. I represents the integral through
the 1D Bjorken expanding medium, taken to be $I = \int_0^\infty dl \int \rho_{part}(\vec{x}_0 + \hat{n}l)$, where
$l_0 = .2$ fm is the formation time. We consider only 1D expansion here because \cite{10}
showed that including the transverse expansion of the medium has a negligible
effect.

The power law spectrum for partonic production allows the use of the momen-
tum Jacobian ($p_\perp^f = (1 - \epsilon)p_\perp^i$) as the survival probability of hard partons. We
distribute partons in the overlap region according to $\rho_{coll} = T_{AA}$ and isotropically in
azimuth; hence $R_{AA}(\phi; b) = \int dx dy T_{AA}(x, y; b)(1 - \epsilon(x, y, \phi; b))^{n_{coll}}$, where $4 \lesssim n \lesssim 5$. The
difference from using $n = 4$ as opposed to $n = 5$ is less than 10%, and in this paper
we will always use the former value. We evaluate $R_{AA}(\phi)$ at 24 values of ϕ from 0-2π
and then find the Fourier modes R_{AA} and v_2 of this distribution. Another method
for finding v_2, not used here, assumes the final parton distribution is given exactly
by R_{AA} and v_2, and then determines v_2 from the ratio $R_{AA}(0)/R_{AA}(\pi/2)$; this
systematically enhances v_2, especially at large centralities. A hard sphere geometry
is used for all our models, with $R_{HS} = 6.78$ fm ensuring $<r_{LL,W}^2> = <r_{LL,HS}^2>$.

Fig. 1 (a) shows that even with the HS-geometry-enhanced v_2, the GREL cannot
recreate both R_{AA} and v_2 with a single parameter value.

2. Exclusion of Detailed Balance and Success of the Punch

In \cite{9}, Wang and Wang derived the first order in opacity formula for stimu-
lated emission and thermal absorption associated with the multiple scattering of
a propagating parton, and found $\Delta E^{(1)}_{abs}/E \propto (dN_g/dy)L$. To model this we use
$\epsilon = \Delta E^{(1)}_{rad}/E - \Delta E^{(1)}_{abs}/E = \kappa I - kI_2$, where κI is the same as in the GREL model,
k is a free parameter encapsulating the proportionality constants in the absorp-
tion formula, and \(I_2 \) represents an integral through the 1D expanding medium:
\[I_2 = \int_0^\infty dl \frac{1}{\cosh^2 p_{\text{part}}(\vec{x}_0 + \hat{n}l)}. \]
\(I_2 \) has one less power of \(l \) in the integrand; this permits a unique determination of the two free parameters, \(\kappa = .5 \) and \(k = .25 \) fits the 20-30% centrality PHENIX \(\pi^0 \) \(R_{AA}(\phi) \) data point, and allows the model to duplicate the data as seen in Fig. 1 (b). Taking the \(\Delta E/E \) equations seriously, we invert them and solve for \(dN_g/dy; \) thus
\[dN_g^{\text{rad}}/dy \sim \kappa \frac{4E}{9\pi C_R \alpha_s^2 \hat{v}_1 l_0 + L} N_{\text{part}}, \]
and
\[dN_g^{\text{abs}}/dy \sim k \frac{4E^2}{9\pi C_R \alpha_s^2 \hat{v}_2 l_0 + L} N_{\text{part}}, \]
where \(\hat{v}_1 \) and \(\hat{v}_2 \) correspond to the bracketed terms in the energy loss and energy gain approximations of [2]. For our fitted values of \(\kappa \) and \(k, \) the choice of \(E = 6 \) GeV, \(L = 5 \) fm, and \(\alpha_s = 4 \) gives \(dN_g^{\text{rad}}/dy \sim 1000 \) and \(dN_g^{\text{abs}}/dy \sim 3000 \) for most central collisions. For \(E = 10 \) GeV, \(dN_g^{\text{rad}}/dy \sim 1000 \) and \(dN_g^{\text{abs}}/dy \sim 9000. \) The huge increase of \(dN_g^{\text{abs}}/dy \) to values too large to fit the RHIC entropy data reflects the \(E^2 \) dependence of the Detailed Balance absorption. It seems the only way to have a large enough energy gain while maintaining \(dN_g^{\text{abs}}/dy \sim 1000 \) is to increase \(\alpha_s \) above 1. Note that these calculations were performed using a hard sphere nuclear geometry profile, which naturally enhances the produced \(v_2 \) [2].

Fig. 1. (a) STAR \(h^\pm \) data for 0-5%, 10-20%, 20-30%,... , and 40-60%, PHENIX \(h^\pm \) data for 0-20%, 20-40%, and 40-60%, and PHENIX \(\pi^0 \) data for 10-20%, 20-30%,... , 50-60% centralities. Inability of previous models to fit the data. (b) Addition of thermal absorption or momentum punch to GREL; both fit the data, but absorption requires entropy-violatingly large \(dN_g^{\text{abs}}/dy. \) (c) \(Cu + Cu \) predictions for the three models.

Building on the success of radiative energy loss in reproducing \(R_{AA}(p_T), \) and supposing that latent heat, the bag constant, the screening mass, or other deconfinement effects might provide a small (~ 1 GeV) momentum boost to partons in the direction normal to the surface of emission, we created a new model based on the GREL model that includes a momentum “punch,” \(\Delta p_{\perp}. \) After propagating to the edge of the medium with GREL, the parton’s final, “punched-up” momentum and angle of emission are recomputed, giving a new probability of escape. Fitting to a single \((R_{AA}, v_2) \) point provides a unique specification of \(\kappa \) and punch magnitude. The results are astounding: one sees from Fig. 1 (b) that a tiny, .5 GeV, punch on a 10 GeV parton reproduces the data quite well over all centralities. Fitting the PHENIX 20-30% \(\pi^0 \) data sets \(\kappa = .18 \) and the aforementioned \(\Delta p_{\perp} = 5 \) GeV. The size of the representative parton’s initial momentum is on the high side for the displayed RHIC data; however, the important quantity is the ratio \(\Delta p_{\perp}/E. \) Moreover, although the geometry used naturally enhances the \(v_2, \) we feel confident that when this model is implemented for a Woods-Saxon geometry, the necessarily larger final punch magnitude will still be relatively small. We expect the magnitude
of this deconfinement-caused momentum boost to be independent of the parton’s
momentum; hence \(v_2(p_\perp) \) will decrease like \(1/p_\perp \). Moreover, since \(\epsilon \) is larger out
of plane than in, a fixed \(\Delta p_\perp \) enhances \(R_{AA}(\pi/2) \) more than \(R_{AA}(0) \). These are
precisely the preliminary trends shown by PHENIX at QM2005. Keeping the same
values for \(\kappa, k, \Delta p_\perp \), etc. as for \(Au+Au \), we show in Fig. 11(c) the centrality-binned
\(R_{AA} \) and \(v_2 \) results for \(Cu+Cu \) in the three geometric energy loss models.

3. Conclusions

By failing to simultaneously match the \(R_{AA} \) and \(v_2 \) values seen at RHIC we dis-
counted the MPC and pure GREL models. We showed that while including medium-
induced absorption reproduces the \(R_{AA}(\phi) \) phenomena, it does so at the expense
of inconsistent and huge \(dN_g/dy \). But the addition of a mere 5% punch created a
RHIC-following trend. This impulse is small enough to be caused by deconfinement
effects and future calculations should follow the \(p_\perp \) dependence of \(R_{AA}(\phi; p_\perp) \).

Acknowledgments

The author wishes to thank B. Cole, M. Gyulassy, D. Molnár, and I. Vitev for their
valued discussions.

References

1. W. A. Horowitz, M. Gyulassy, and B. A. Cole, in preparation.
2. A. Drees, H. Feng and J. Jia, Phys. Rev. C 71, 034909 (2005).
3. E. V. Shuryak, Phys. Rev. C 66, 027902 (2002); D. d’Enterria, Eur. Phys. J.
 C 43, 295 (2005) [arXiv:nucl-ex/0504001].
4. J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 91, 172302 (2003);
 S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. C 69, 034910 (2004);
 J. Adams et al. [STAR Collaboration] [arXiv:nucl-ex/0409033]; S. S. Adler et
 al. [PHENIX Collaboration], Phys. Rev. Lett. 91, 182301 (2003); B. Cole
 (PHENIX Collaboration), in Hard Probes 2004 (2004).
5. D. Molnar and M. Gyulassy, Nucl. Phys. A 697, 495 (2002) [Erratum-ibid. A
 703, 893 (2002)].
6. K. J. Eskola, H. Honkanen, C. A. Salgado and U. A. Wiedemann, Nucl. Phys.
 A 747, 511 (2005); I. Vitev, arXiv:hep-ph/0503221.
7. M. Gyulassy, P. Levai and I. Vitev, Nucl. Phys. B 594, 371 (2001);
 U. A. Wiedemann, Nucl. Phys. A 690, 731 (2001); X. f. Guo and
 X. N. Wang, Phys. Rev. Lett. 85, 3591 (2000).
8. M. Gyulassy, P. Levai and I. Vitev, Phys. Lett. B 538, 282 (2002).
9. E. Wang and X. N. Wang, Phys. Rev. Lett. 87, 142301 (2001).
10. M. Gyulassy, I. Vitev and X. N. Wang, Phys. Rev. Lett. 86, 2537 (2001).