Influence of the atrio-ventricular delay optimization on the intra left ventricular delay in cardiac resynchronization therapy

Christoph Melzer*1, Fabian Knebel1, Bruno Ismer2, Hansjürgen Bondke2, Christoph A Nienaber2, Gert Baumann1 and Adrian C Borges1

Address: 1Universitätsmedizin Berlin, Medical Clinic for Cardiology, Angiology, Pulmology, Charité Campus Mitte, Germany and 2University of Rostock, Clinic for Internal Medicine, Rostock, Germany

Email: Christoph Melzer* - christoph.melzer@charite.de; Fabian Knebel - fabian.knebel@charite.de; Bruno Ismer - bruno.ismer@med.uni-rostock.de; Hansjürgen Bondke - hansjuergen.bondke@charite.de; Christoph A Nienaber - christoph.nienaber@med.uni-rostock.de; Gert Baumann - gert.baumann@charite.de; Adrian C Borges - adrian.borges@charite.de

* Corresponding author

Abstract

Background: Cardiac Resynchronization Therapy (CRT) leads to a reduction of left-ventricular dyssynchrony and an acute and sustained hemodynamic improvement in patients with chronic heart failure. Furthermore, an optimized AV-delay leads to an improved myocardial performance in pacemaker patients. The focus of this study is to investigate the acute effect of an optimized AV-delay on parameters of dyssynchrony in CRT patients.

Method: 11 chronic heart failure patients with CRT who were on stable medication were included in this study. The optimal AV-delay was defined according to the method of Ismer (mitral inflow and trans-oesophageal lead). Dyssynchrony was assessed echocardiographically at three different settings: AVDOPT, AVDOPT-50 ms and AVDOPT+50 ms. Echocardiographic assessment included 2D- and M-mode echo for the assessment of volumes and hemodynamic parameters (CI, SV) and LVEF and tissue Doppler echo (strain, strain rate, Tissue Synchronisation Imaging (TSI) and myocardial velocities in the basal segments)

Results: The AVD_{OPT} in the VDD mode (atrially triggered) was 105.5 ± 38.1 ms and the AVD_{OPT} in the DDD mode (atrially paced) was 186.9 ± 52.9 ms. Intra-individually, the highest LVEF was measured at AVD_{OPT}. The LVEF at AVD_{OPT} was significantly higher than in the AVD_{OPT-50} setting (p = 0.03). However, none of the parameters of dyssynchrony changed significantly in the three settings.

Conclusion: An optimized AV delay in CRT patients acutely leads to an improved systolic left ventricular ejection fraction without improving dyssynchrony.

Background

Asynchronous myocardial contraction in heart failure is associated with poor prognosis. Recent studies have shown an acute and sustained hemodynamic improvement after biventricular pacing (BVP), reversal of LV-remodelling, an increased quality of life, a reduction of symptoms of heart failure, and an improvement of exercise tolerance [1-7].

Published: 26 January 2006

Cardiovascular Ultrasound 2006, 4:5 doi:10.1186/1476-7120-4-5

Received: 23 December 2005

Accepted: 26 January 2006

This article is available from: http://www.cardiovascularultrasound.com/content/4/1/5

© 2006 Melzer et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The optimization of the AV delay in DDD pacemaker patients is generally recommended and is performed in clinical practice. A variety of invasive and non-invasive methods were assessed in the past [8-15]. Recent studies have shown that also in CRT patients, invasively (dP/dt) [16-19] and non-invasively measured hemodynamic parameters (stroke volume) [20,21] are modified according to the programmed AV delay. A hemodynamically optimal AV delay can be defined.

Ismer’s method of AV delay optimization [22] is validated for biventricular as well as right ventricular DDD pacing.

Tissue Doppler Imaging (TDI) is an evaluated tool in clinical practice to identify myocardial dyssynchrony. TDI (including strain and strain rate) imaging measures regional wall motion velocities and can accurately quantify regional left ventricular function [24].

Strain measures compression and distension of myocardial segments (“deformation imaging”) and strain rate imaging expresses strain changes per time interval [25]. TSI (Tissue Synchronization Imaging) utilizes color-coded time-to-peak tissue Doppler velocities and visualizes segments of dyssynchrony in real-time by superimposing these temporal motion data on 2D echo images. [26,27].

These new techniques could potentially improve patient selection and guidance of implantation and programming of the devices for BVP. There is a variety of methods to determine dyssynchrony as summarized elsewhere [28].

Table 1: Patient characteristics
Age (mean ± SD)
Gender (m/f) (n/%)
Coronary artery disease (n/%)
Dilated Cardiomyopathy (n/%)
Lef-ventricular ejection fraction (mean ± SD)
Interval in months between stress testing and ICD implantation (months) (mean ± SD)
location of the CS – electrode
lateral
posterolateral
anterolateral
diabetes mellitus (n/%)
medication
ACE inhibitors (n/%)
ARB (n/%)
Beta-blockers (n/%)
Digitalis (n/%)
Diuretics (n/%)
spironolactone (n/%)

ARB = Angiotensin-receptor blockers;
CS = coronary sinus

Table 2: Measurement of the components of the optimal AV delay according to Ismer et al. [22]

pacemaker-related interatrial conduction interval (IACT)	VDD pacing: MA-LA measured between right-atrial sense-event marker (MA) and the beginning of left-atrial deflection (LA) in oesophageal electrogram
left-atrial electromechanical action (LA-EAClong)	Measured during unphysiologically long programmed AV delay between the beginning of left-atrial deflection (LA) in oesophageal electrogram and the end of the left-atrial contribution (EAC) in transmitral flow.
left-ventricular electromechanical latency period (Sv-EACshort)	Measured during unphysiologically short programmed AV delay between ventricular pacing stimulus (Sv) and the end of the left-atrial contribution (EAC) in transmitral flow.
Methods

Patients

11 chronic heart failure patients of our clinic were included in this study. All patients had a biventricular ICD (pre-implantation NYHA III-IV, EF < 35%, QRS width > 120 ms). Clinical characteristics are demonstrated in Table 1. Patient exclusion criteria were as follows: atrial fibrillation, pacemaker malfunction and oesophageal diseases, NYHA IV, prosthetic mitral valve replacement.

AV delay: components and optimization

For the AV delay optimization we used the method proposed by Ismer et al [22].

This approach needs the placement of a bi-polar oesophageal electrode to provide a filtered left-atrial electrogram (LAE). We applied a 5F oesophageal electrode (Osypka TO2/5F, order no. TA12991101, Rheinfelden, Germany). Filtered oesophageal electrogram and telemetric real-time pacemaker markers provided by the programmer’s analogue output were superimposed on the display of transmitral flow velocity on the Doppler-echo system (Figure 1). The simultaneous recording of transmitral flow, the left atrial oesophageal electrogram and the real-time sense-event markers, allow determining the components of the optimal AV delay (Table 2, Figure 1 and 2).

Based on these measurements, optimal AV delays were calculated for VDD (atrial-triggered) and DDD (atrial-paced) mode using the equations:

\[
\text{AVD}_{\text{OPT}} \text{ VDD} = \text{MA-LA} + \text{LA-EAC}_{\text{long}} - \text{Sv-EAC}_{\text{short}}
\]

and

\[
\text{AVD}_{\text{OPT}} \text{ DDD} = \text{SA-LA} + \text{LA-EAC}_{\text{long}} - \text{Sv-EAC}_{\text{short}}
\]

Echocardiography

Echocardiography to assess dyssynchrony was performed subsequently under three pacemaker settings: optimal AV delay (AVD_{OPT}), optimal AV delay minus 50 ms (AVD_{OPT-50}), optimal AV delay plus 50 ms (AVD_{OPT+50}).

Echocardiography was performed on the Vivid 5 and Vivid 7 Dimension (GE Vingmed Ultrasound, Horton, Norway) machines. The TDI and strain analysis were performed in an off-line work station. The LVEF was assessed by area-length method in the apical four chamber view. The CI and the SV were calculated from the systolic velocities measured by PW-Doppler in the aortic outflow tract. Strain rate, tissue Doppler velocities were measured in the basal segments of the apical four-, three- and two-chamber views.

Statistics

Values are expressed as mean ± standard deviation (SD). Groups were compared by parametric or non-parametric tests (t-tests and Wilcoxon-Mann-Whitney tests, respectively). Statistical significance was assumed at a value of P < 0.05. Statistical analysis was performed with the SPSS 12 software package (SPSS; Chicago, Ill, USA).

Results

Optimal AV delay

In all patients, we could define an optimal AV delay in the VDD and the DDD modes respectively. The AVD_{OPT} in VDD mode was 105.5 ± 38.1 ms and the AVD_{OPT} in the DDD pacing mode was 186.9 ± 52.9 ms. The results are summarized in Table 3. As expected, the mean optimal AV delay was lower in the VDD than in the DDD mode.
Echocardiography was performed subsequently under three pacemaker settings: AVD OPT, AVD OPT-50, AVD OPT+50. All patients had continuous biventricular stimulation even under AVD OPT+50.

2D and TDI echocardiography

The LVEF with AVD OPT was 28% (± 12%), with an AVD OPT-50 20% (± 7%, p= 0.03 compared to AVD OPT), with an AVD OPT+50 23% (± 7%, p = 0.11 compared to AVD OPT). The heart rate did not change significantly in the different settings (AVD OPT: 65.4/min, AVD OPT-50: 65.6/min, AVD OPT+50: 65.8 ms). The hemodynamics (SVI, CI, LVEF) and the TDI derived data are listed in Table 4. There was no significant difference of the amount of segments with dyssynchrony in TSI in the three settings. The maximal delay in the basal segments in the apical two-, three- and four-chamber views measured by TSI and strain did not differ in the AVD OPT, AVD OPT+50 and AVD OPT-50 setting.

Discussion

Optimal AV delay

To date, Ismer's method for the optimal AV delay was applied to patients with DDD pacemakers and normal left ventricular function [22,23]. This is the first study to assess the optimal AV delay by Ismer's method in patients with reduced left ventricular function. In our CRT patients, an optimal AV delay according to Ismer's method could be defined. This is the only method that allows separate measurement of the three AV-delay components: i.e., the pacemaker-related interatrial conduction time, the left-atrial electromechanical action, and the left-ventricular latency period. The benefits of this method, however, are offset by the necessity for placement of an oesophageal electrode. This requirement explains why only a few medical centres have applied this method in clinical practice and in most cases for purposes of scientific investigation only.

Our results concerning the AVD OPT in the VDD mode (105.5 ± 38.1 ms) are in agreement with the results of other studies on AVD OPT in CRT patients: Butter [16] determined an AVD OPT of 100 ms in 30 patients, Auricchio [17] an AVD OPT of 112 ± 33 ms in 41 patients and Kass [18] an AVD OPT of 125 ± 49 ms. A study that was recently published by Porciani [29] found an AVD OPT during simultaneous biventricular pacing of 97 ± 27 ms.

In the literature, there are no published data on AVD OPT in DDD mode. Therefore, our AVD OPT in DDD mode of 186.9 ± 52.9 ms cannot be compared to other studies.

Table 3: AVD OPT VDD = optimal AV delay for atrially triggered (VDD) and atrially paced (DDD) modes

patient	AVD OPT VDD	AVD OPT DDD
1	60	172
2	78	154
3	96	204
4	92	132
5	92	144
6	122	174
7	136	216
8	144	128
9	180	180
10	252	252
11	300	300

105.5 ± 38.1 ms 186.9 ± 52.9 ms

ARB = Angiotensin-receptor blockers; CS = coronary sinus

Table 4: Hemodynamic and Tissue Doppler Echocardiography parameters in the AVD OPT, AVD OPT-50 and AVD OPT+50 modes.

Hemodynamics	AVD OPT	AVD OPT-50	AVD OPT+50	p
SV [ml]	89.2 (± 27.7)	89.7 (± 36.9)	95.3 (± 36.9)	n.s.
LVEF	0.28 (± 0.12)	0.20 (± 0.07)*	0.23 (± 0.07)**	*0.03 / **0.11
CI	3.0 (± 0.9)	3.2 (± 0.8)	3.4 (± 0.9)	n.s.
HR	65.4 (± 8.8)	65.6 (± 9.4)	65.8 (± 9.4)	n.s.

Tissue Doppler	AVD OPT	AVD OPT-50	AVD OPT+50	p
TDI max. delay in basal segments [ms]	122.9 (± 95.6)	125.0 (± 109.2)	131.7 (± 85.2)	n.s.
TSI segments with asynchrony	2.08 (± 1.24)	2.27 (± 1.19)	2.41 (± 1.43)	n.s.
Strain max. delay in basal segments [ms]	148.3 (± 74.9)	167.5 (± 90.2)	151.7 (± 54.1)	n.s.

Strain [%]	4AC lateral	13.7 (± 6.5)	14.5 (± 9.8)	13.4 (± 9.8)	n.s.
	4 AC septal	15.6 (± 7.3)	13.9 (± 9.3)	15.0 (± 9.8)	n.s.
	A2C anterior	16.8 (± 9.7)	17.2 (± 10.5)	16.1 (± 9.1)	n.s.
	A2C inferior	20.0 (± 11.5)	15.0 (± 11.4)	16.1 (± 9.8)	n.s.
	A3C anterior	19.7 (± 9.5)	12.4 (± 9.7)	18.1 (± 9.8)	n.s.
	A3C interior	19.1 (± 9.8)	14.1 (± 12.7)	19.2 (± 10.1)	n.s.
Hemodynamics
Intra-individually, the patients had the best LVEF under optimal AV-delay compared to the +50 and -50 ms settings. The LVEF is significantly higher in the AVD_{OPT} setting than in the AVD_{OPT} -50 setting. Obviously the formation of "cannon waves" seen with a shorter AV interval (AVD_{OPT} -50) had a more negative hemodynamic effect than the diastolic mitral regurgitation seen with longer AV delays (AVD_{OPT} +50). The hemodynamically unfavourable effects of "cannon waves" are described since the beginning of pacemaker therapy and are also termed "pacemaker syndrome". It is generally accepted that an adequate pacemaker programming can avoid this [30]. Toda et al. [31] could show in his studies that the mean LVEF in AVD_{OPT} is higher than in prolonged AV delays. However, he found no significant difference.

Dyssynchrony
Changes of dyssynchrony can be seen immediately, as seen in studies that have examined on/off comparisons in CRT patients [32]. However, an optimized AV interval does not change the markers of dyssynchrony. The reason for the improved hemodynamic situation under AVD_{OPT} seems to be the better left ventricular filling and not the altered dyssynchrony.

Limitations
This study included only a small number of patients. There was no follow-up examination of the patients.

Conclusion
This study confirmed that an optimized AV delay improves the left ventricular ejection fraction. Acutely, the optimized AV delay does not influence left ventricular dyssynchrony. Whether a long-term AVD_{OPT} leads to changes in left ventricular dyssynchrony via an improved LVEF and reverse remodelling can only be speculated. This has to be addressed in future studies with a long-term observation interval.

Abbreviations
AVD_{OPT} optimal AV delay

AVD_{OPT} -50 optimal AV delay -50 ms

AVD_{OPT} +50 optimal AV delay +50 ms

CRT Cardiac Resynchronization Therapy

DCM Dilated Cardiomyopathy

EMD Electromechanical Delay

IVMD Inter-ventricular mechanical delay

LBBB Left Bundle Branch Block

SRI strain rate imaging

TDI Tissue Doppler Imaging

TSI Tissue Synchronization Imaging

VDD atrially triggered mode

DDD atrially paced mode

EAC the end of the A-wave

LVEF Left ventricular ejection fraction

Competing interests
The author(s) declare that they have no competing interests.

Authors' contributions
CM and FK have equally contributed to this publication. CM, BI, FK and ACB have designed and performed the study and have written the manuscript. HJB, CAN and GB have participated in the study design and coordination and have helped to draft the manuscript. All authors read and approved the final manuscript.

References
1. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, Carson P, DiCarlo L, DeMets D, White BG, DeVries DW, Feldman AM, Comparison of Medical Therapy Pacing and Defibrillation in Heart Failure (COMPANION) Investigators: Cardiac Resynchronization Therapy with or without an Implantable Defibrillator in Advanced Chronic Heart Failure. N Eng J Med 2004, 350:2140-2150.

2. Linde C, Leclercq C, Rex S, Garrigue S, Lavergne T, Cazeau S, McKenna W, Fitzgerald M, Deharo JC, Alonso C, Walker S, Braunsschweig F, Bailleul C, Daubert JC: Long-term benefits of biventricular pacing in congestive heart failure: results from the MULTIsite STimulation in cardiomyopathy (MUSTIC) study. J Am Coll Cardiol 2002, 40:111-118.

3. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, Kocovic DZ, Packer M, Clavell AL, Hayes DL, Elistad M, Trupp RJ, Underwood J, Pickering F, Truex C, Catee P, Messenger J, MIRACLE Study Group: Multicenter InSync Randomized Clinical evaluation. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002, 346:1845-1853.

4. Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C, Garrigue S, Kappenberger L, Haywood GA, Santini M, Bailleul C, Daubert JC, Multisite Stimulation in Cardiomyopathies (MUSTIC) Study Investigators: Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 2001, 344:873-880.

5. Saxon LA, De Marco T, Schafer J, Chatterjee K, Kumar UN, Foster E: VIGOR Congestive Heart Failure Investigators. Effects of long-term biventricular stimulation for resynchronization on echocardiographic measures of remodeling. Circulation 2002, 105:1304-1310.

6. Sundell J, Engblom E, Koistinen J, Ylitalo A, Naum A, Stolen KQ, Kalila Keski R, Nekkola SG, Airaksinen KE, Bax JJ, Knuuti J: The effects of cardiac resynchronization therapy on left ventricular function, myocardial energetics, and metabolic reserve in patients with dilated cardiomyopathy and heart failure. J Am Coll Cardiol 2004, 43(6):1027-1033.
left ventricular function: comparison with magnetic resonance imaging in patients after myocardial infarction. J Am Soc Echocardiogr 2003, 26:245-252.

25. Mele D, Pasanisi G, Heimdal A, Cittani C, Guardigli G, Levine RA, Sutherland G, Ferrari R: Improved recognition of dysfunctioning myocardial segments by longitudinal strain rate versus velocity in patients with myocardial infarction. J Am Soc Echocardiogr 2003, 27:1178-1181.

26. Gercsan J, Kanzaki H, Bazar Z, Dohi K, Schwartzman D: Usefulness of Echocardiographic Tissue Synchronization Imaging to Predict Acute Response to Cardiac Resynchronization Therapy. Am J Cardiol 2004, 93:1786-1790.

27. Yu CM, Zhang Q, Fung JW, Chan HC, Chan YS, Yip GW, Kong SL, Lin H, Zhang Y, Sanderson JE: A novel tool to assess systolic asynchrony and identity responders of cardiac resynchronization therapy by tissue synchronization imaging. J Am Coll Cardiol 2005, 45(5):677-684.

28. Knebel F, Reibis RK, Bondke HJ, Witte J, Walde T, Edelicks S, Baumann G, Borges AC: Tissue Doppler echocardiography and biventricular pacing in heart failure: patient selection, procedural guidance, follow-up, quantification of success. Cardiovasc Ultrasound 2004, 2(1):17.

29. Porciani MC, Dandona C, Maccioce R, Demarchi G, Pieragnoli P, Musilli N, Colella A, Ricciardi G, Michelucci A, Padeletti L: Echocardiographic examination of atrioventricular and interventricular delay optimization in cardiac resynchronization therapy. Am J Cardiol 2005, 95:1108-1110.

30. Schuller H, Brandt E: The pacemaker syndrome: old and new causes. Clin Cardiol 1991, 14:336-340.

31. Toda N, Ishikawa T, Nozawa N, Kobayashi I, Ogihl H, Miyamoto K, Sumita S, Kimura K, Umemura S: Doppler index and plasma level of atrial natriuretic hormone are improved by optimizing atrioventricular delay in atrioventricular block patients with implanted DDD pacemakers. PACE 2001, 24:1660-1663.

32. Breithardt OA, Sinha AM, Schwammenthal E, Bidsaou N, Markus KU, Franke A, Stellbrink C: Acute effects of cardiac resynchronization therapy on functional mitral regurgitation in advanced systolic heart failure. J Am Coll Cardiol 2003, 41(5):765-770.