RIESZ TRANSFORMS ON Q-TYPE SPACES WITH APPLICATION TO QUASI-GEOSTROPHIC EQUATION

Pengtao Li and Zhichun Zhai

Abstract. By an equivalent characterization of Morrey space associated with the fractional heat semigroup, we establish a relation between the generalized Q-type spaces and Morrey spaces. By this relation, in this paper, we prove the boundedness of the singular integral operators on the Q-type spaces $Q^\beta_\alpha(\mathbb{R}^n)$. As an application, we get the well-posedness and regularity of the quasi-geostrophic equation with initial data in $Q^{\beta-1}_\alpha(\mathbb{R}^n)$.

1. INTRODUCTION

In this paper, we consider the boundedness of a class of singular integral operators on the Q-type space $Q^\beta_\alpha(\mathbb{R}^n)$. Here $Q^\beta_\alpha(\mathbb{R}^n)$ is a space defined as the set of all measurable functions with

$$
\sup_I (l(I))^{2\alpha-n+2\beta-2} \int_I \int_I \frac{|f(x) - f(y)|^2}{|x-y|^{n+2\alpha-2\beta+2}} \, dx \, dy < \infty,
$$

where $\alpha \in (0, 1)$, $\beta \in (1/2, 1)$, the supremum is taken over all cubes I with the edge length $l(I)$ and the edges parallel to the coordinate axes in \mathbb{R}^n. This space is introduced in [18] to study the well-posedness of the generalized Naiver-Stokes equations. For $\beta = 1$, $Q^\beta_\alpha(\mathbb{R}^n)$ coincides with the classical space $Q_\alpha(\mathbb{R}^n)$ which is introduced in [13]. Furthermore, if $\alpha = 0$, $\beta = 1$, $Q^\beta_\alpha(\mathbb{R}^n) = BMO(\mathbb{R}^n)$.

As a new space between $W^{1,n}(\mathbb{R}^n)$ and $BMO(\mathbb{R}^n)$, $Q_\alpha(\mathbb{R}^n)$ has been studied extensively by many authors since 1990s. In 1995, on the unit disk \mathbb{D} in the complex plane \mathbb{C}, R. Aulaskari, J. Xiao and R. Zhao first introduced a class of M"{o}bius invariant analytic function spaces, $Q_p(\mathbb{D})$, $p \in (0, 1)$. The class $Q_p(\mathbb{D})$, $p \in (0, 1)$ can be
Rewritten text: seen as subspaces and subsets of $BMOA$ and UBC on D. Since then, many studies on $Q_p(D)$ and their characterization have been done. We refer the readers to [1], [2], [21] and [29] and the reference therein. In order to generalize $Q_p(D)$, $p \in (0, 1)$ to \mathbb{R}^n, in [13], M. Essen, S. Janson, L. Peng and J. Xiao introduced a class of Q-type spaces of several real variables, $Q_\alpha(\mathbb{R}^n)$, $\alpha \in (0, 1)$. Later, in [12], G. Dafni and J. Xiao established the Carleson measure characterization of $Q_\alpha(\mathbb{R}^n)$, $\alpha \in (0, 1)$. For more information of the spaces $Q_\alpha(\mathbb{R}^n)$ and their application, we refer to [28], [12] and [13]. For the generalization of $Q_\alpha(\mathbb{R}^n)$, we refer to [18] and [30].

It is easy to see that a function $f(x)$ belongs to $BMO(\mathbb{R}^n)$ if and only if

$$\sup_{l(I)\neq 0}(l(I))^{-2n} \int_I \int_I |f(x) - f(y)|^2 \, dx \, dy < \infty.$$

It can be also proved that if $\alpha \in (-\infty, 0)$ and $\beta = 1$, $Q_\alpha^\beta(\mathbb{R}^n) = BMO(\mathbb{R}^n)$. The similarity on the structure of $Q_\alpha^\beta(\mathbb{R}^n)$ and $BMO(\mathbb{R}^n)$ shows that the two spaces share some common properties. It is well-known that the singular integral operators associated to the fractional heat semigroup $e^{-t(-\Delta)^\alpha}$ and establish a relation between $Q_\alpha^\beta(\mathbb{R}^n)$ and Morrey spaces $L_{p,\lambda}(\mathbb{R}^n)$. For $\beta = 1$ and $\alpha \in (0, 1)$, such relation was established by Z. Wu and C. Xie in [27]. In [28], J. Xiao gave another proof which is based on the Carleson measure characterization of $Q_\alpha, \alpha \in (0, 1)$ and Morrey spaces. Hence our result can be seen as a generalization of those in [27] and [28]. By this relation, the boundedness of T on $Q_\alpha^\beta(\mathbb{R}^n)$ can be deduced by that on $L_{p,\lambda}(\mathbb{R}^n)$. See Section 3.

As an application, we consider the well-posedness and regularity of the quasi-geostrophic equations with initial data in $Q_\alpha^{\beta - 1}(\mathbb{R}^n)$. In recent years, Q-type spaces have been applied to the study of the fluid equations by several authors. For example, in [28], J. Xiao introduced a new critical space $Q_\alpha^{-1}(\mathbb{R}^n)$ which is derivatives of $Q_\alpha(\mathbb{R}^n)$, $\alpha \in (0, 1)$ and got the well-posedness of Naiver-Stokes equations with initial data in $Q_\alpha^{-1}(\mathbb{R}^n)$. When $\alpha = 0$, $Q_\alpha^{-1}(\mathbb{R}^n) = BMO^{-1}(\mathbb{R}^n)$, his result generalized the well-posedness obtained by Koch and Tataru in [17]. In [18], inspiring by [28] and the scaling invariance, we introduced a new Q-type space $Q_\alpha^\beta(\mathbb{R}^n)$ with $\alpha > 0$, $\max\{\frac{1}{2}, \alpha\} < \beta < 1$ such that $\alpha + \beta - 1 \geq 0$. We proved the well-posedness and regularity of the generalized Naiver-Stokes equations with some initial data in the space $Q_\alpha^{\beta - 1}(\mathbb{R}^n)$. For $\beta = 1$, our space $Q_\alpha^{\beta - 1}(\mathbb{R}^n)$ becomes $Q_\alpha^{-1}(\mathbb{R}^n)$ in [28]. So our result can be regarded as a generalization of those of [17] and [28].
In Section 4, we consider the two-dimensional subcritical quasi-geostrophic dissipative equations \((DQG)_\beta\) with small initial data in \(Q^{\beta,1}_{\alpha} (\mathbb{R}^n)\),

\[
\begin{cases}
\partial_t \theta + (-\Delta)^\beta u + (u \cdot \nabla) \theta = 0 & \text{in } \mathbb{R}^2 \times \mathbb{R}^+, \alpha > 0; \\
u = \nabla^\perp (-\Delta)^{-1/2} \theta; \\
\theta(0, x) = \theta_0 & \text{in } \mathbb{R}^2,
\end{cases}
\]

where \(\beta \in (\frac{1}{2}, 1)\), the scalar \(\theta\) represents the potential temperature, and \(u\) is the fluid velocity.

The equations \((DQG)_\beta\) are important models in the atmosphere and ocean fluid dynamics. It was proposed by P. Constantin and A. Majda, etc. that the equations \((DQG)_\beta\) can be regarded as low dimensional model equations for mathematical study of singularity in smooth solutions of unforced incompressible three dimensional fluid equations. See e.g. [10, 14, 15, 22, 23] and the references therein.

Owing to the importance in mathematical and geophysical fluid dynamics mentioned above, the equations \((DQG)_\beta\) have been intensively studied. Some important progress has been made. We refer the readers to [4, 5, 6, 7, 8, 11, 16, 25, 26] etc. for details.

In [19], F. Marchand and P. G. Lemarié-Rieusset get the well-posedness of the solutions to the equation \((DQG)_1\) with the initial data in \(BMO^{-1}(\mathbb{R}^2)\). However, because the space \(BMO^{-1}(\mathbb{R}^2)\) is invariant under the scaling: \(u_{0, \lambda}(x) = \lambda u_0(\lambda x)\), we see that under the fractional scaling associated to \(0 < \beta < 1\),

\[
\theta_{\lambda}(t, x) = \lambda^{2\beta-1} \theta(\lambda^{2\beta} t, \lambda x) \text{ and } \theta_{0, \lambda}(x) = \lambda^{2\beta-1} \theta_0(\lambda x),
\]

the space \(BMO^{-1}\) is not invariant.

The above observation implies that if we want to generalize the result in [19] to the general case \(\beta < 1\), we should choose a new space \(X^\beta\) which satisfies the following two properties. At first, the space \(X^\beta\) should be invariant under the scaling (1.2).

Secondly, \(BMO^{-1}\) is a “special” case of \(X^\beta\) for \(\beta = 1\).

It is proved in [18] that the space \(Q^{\beta, -1}_{\alpha} (\mathbb{R}^n)\) is exactly such a space. Therefore we could apply the approach in [18] to the equations \((DQG)_\beta\) and get the well-posedness and regularity of the solution to the equations \((DQG)_\beta\) with \(\beta > 1/2\).

It should be pointed out that the scope of \(\beta\) in the equations \((DQG)_\beta\) is depended upon the definition of \(Q^{\beta, -1}_{\alpha} (\mathbb{R}^n)\). In [18], we proved that the parameters \(\{\alpha, \beta\}\) should satisfy the condition: \(\max\{\alpha, \frac{1}{2}\} < \beta < 1\) and \(\alpha < \beta\) with \(\alpha + \beta - 1 \geq 0\). It is easy to see that \(\beta > \frac{1}{2}\).

In [24], the authors proved the global existence of the solutions of the subcritical quasi-geostrophic equations with small size initial data in the Besov norms spaces \(B^{1-2\beta, \infty}_{\infty}\). However our result cannot be deduced by the existence result in [24]. In addition, by the method in [18], we consider the regularity of the solutions to the equations \((DQG)_\beta\).
The organization of this paper is as follows. In Section 2 we state some preliminary knowledge, notation and terminology that will be used throughout this paper. In Section 3 we consider the boundedness of a class of singular integral operators on $Q^{\beta}_{\alpha}(\mathbb{R}^n)$. In Section 4 we give a well-posedness of the equations $(DQG)^{\beta}$ with the initial data in the spaces $Q^{\beta}_{\alpha} - 1(\mathbb{R}^n)$.

2. Preliminaries

In this paper the symbols \mathbb{C}, \mathbb{Z} and \mathbb{N} denote the sets of all complex numbers, integers and natural numbers, respectively. For $n \in \mathbb{N}$, \mathbb{R}^n is the n–dimensional Euclidean space, with Euclidean norm denoted by $|x|$ and the Lebesgue measure denoted by dx. \mathbb{R}^{n+1}_{+} is the upper half-space $\{ (t, x) \in \mathbb{R}^{n+1}_{+} : t > 0, x \in \mathbb{R}^n \}$ with Lebesgue measure denoted by $dtdx$.

A ball in \mathbb{R}^n with center x and radius r will be denoted by $B = B(x, r)$; its Lebesgue measure is denoted by $|B|$. A cube in \mathbb{R}^n will always mean a cube in \mathbb{R}^n with sides parallel to the coordinate axes. The sidelength of a cube I will be denoted by $l(I)$. Similarly, its volume will be denoted by $|I|$.

The characteristic function of a set A will be denoted by 1_A. For $\Omega \subset \mathbb{R}^n$, the space $C^\infty_0(\Omega)$ consists of all smooth functions with compact support in Ω. The Schwartz class of rapidly decreasing functions and its dual will be denoted by $S(\mathbb{R}^n)$ and $S'(\mathbb{R}^n)$, respectively. For a function $f \in S(\mathbb{R}^n)$, \hat{f} means the Fourier transform of f.

The generalized Q–type spaces $Q^{\beta}_{\alpha}(\mathbb{R}^n)$ are introduce as a substitute of the classical $Q^{\alpha}(\mathbb{R}^n)$ under the fractional dilation: $f_\lambda(x) = \lambda^{2\beta - 1} f(\lambda x)$, $0 < \beta < 1$. This space is defined as follows.

Definition 2.1. Let $-\infty < \alpha$ and $\max\{\alpha, 1/2\} < \beta < 1$. Then $f \in Q^{\beta}_{\alpha}(\mathbb{R}^n)$ if and only if

$$
sup_I (l(I))^{2\alpha - n + 2\beta - 2} \int_I \int_I \frac{|f(x) - f(y)|^2}{|x - y|^{n+2\alpha - 2\beta + 2}} dxdy < \infty,$$

where the supremum is taken over all cubes I with the edge length $l(I)$ and the edges parallel to the coordinate axes in \mathbb{R}^n.

For $\beta = 1$ and $\alpha > -\infty$, the above space becomes $Q_{\alpha}(\mathbb{R}^n)$, which was introduced by M. Essen, S. Janson, L. Peng and J. Xiao in [13]. In 2004, G. Dafni and J. Xiao give the Carleson measure characterization of $Q^{\beta}_{\alpha}(\mathbb{R}^n)$ using a new type of tent spaces in [12]. Following the same idea, in order to study the Q_{α} initial data problem for the
generalized Naiver-Stokes equations, we consider the Carleson measure characterization of $Q^\beta_\alpha(\mathbb{R}^n)$ in [18]. Precisely, we get the following result.

Let $\phi(x)$ be a C^∞ real-valued function on \mathbb{R}^n satisfying the properties

\begin{equation}
\phi(x) \in L^1(\mathbb{R}^n), \quad |\phi(x)| \lesssim (1+|x|)^{-(n+1)}, \quad \int_{\mathbb{R}^n} \phi(x)dx = 0, \quad \phi_t(x) = t^{-n} \phi\left(\frac{x}{t}\right).
\end{equation}

In [18], we proved that $Q^\beta_\alpha(\mathbb{R}^n)$ has the following Carleson measure characterization.

Theorem 2.2. ([18, p. 2462]). Given ϕ be a function satisfying the above conditions (2.1). Let $\alpha > 0$ and $\max\{\alpha, 1/2\} < \beta < 1$ with $\alpha + \beta - 1 \geq 0$. $f \in Q^\beta_\alpha(\mathbb{R}^n)$ if and only if

$$\sup_{x \in \mathbb{R}^n, r \in (0, \infty)} r^{2\alpha-n+2\beta-2} \int_0^r \int_{|y-x| < r} |f \ast \phi_t(y)|^2 t^{-(1+2(\alpha-\beta+1))} dtdy < \infty,$$

that is, $d\mu_{f, \phi, \alpha, \beta}(t, x) = |(f \ast \phi_t(x)|^2 t^{1-2(\alpha-\beta+1)} dtdx$ is a $1 - 2(\alpha + \beta - 1)/n -$ Carleson measure.

The main tool for the Carleson measure characterization of $Q^\beta_\alpha(\mathbb{R}^n)$ is the following fractional tent spaces.

Definition 2.3. For $\alpha > 0$ and $\max\{\alpha, 1/2\} < \beta < 1$ with $\alpha + \beta - 1 \geq 0$, we define $T^\infty_{\alpha, \beta}$ be the class of all Lebesgue measurable functions f on \mathbb{R}^{n+1} with

$$\|f\|_{T^\infty_{\alpha, \beta}} = \sup_{B \subset \mathbb{R}^n} \left(\frac{1}{|B|^{1-2(\alpha+\beta-1)/n}} \int_{T(B)} |f(t, y)|^2 \frac{dtdy}{t^{1+2(\alpha-\beta+1)}} \right)^{1/2} < \infty.$$

In order to define the dual of $T^\infty_{\alpha, \beta}$, we need the following $T^1_{\alpha, \beta}$-atoms.

Definition 2.4. For $\alpha > 0$ and $\max\{\alpha, 1/2\} < \beta < 1$ with $\alpha + \beta - 1 \geq 0$, a function a on \mathbb{R}^{n+1} is said to be a $T^1_{\alpha, \beta}$-atom provided there exists a ball $B \subset \mathbb{R}^n$ such that a is supported in the tent $T(B)$ and satisfies

$$\int_{T(B)} |a(t, y)|^2 \frac{dtdy}{t^{1-2(\alpha-\beta+1)}} \leq \frac{1}{|B|^{1-2(\alpha+\beta-1)/n}}.$$

We denote by $dA_{n-2(\alpha+\beta-1)}^\infty$ the $n-2(\alpha+\beta-1)$ dimensional Hausdorff capacity of a set E and refer to [12] for the details of the Hausdorff capacity. For $x \in \mathbb{R}^n$, let $\Gamma(x) = \{(y, t) \in \mathbb{R}^{n+1}_+: |x - y| < t\}$ be the cone at x. Define the non-tangential maximal function $N(f)$ of a measurable function f on \mathbb{R}^{n+1} by

$$N(f)(x) := \sup_{(y, t) \in \Gamma(x)} |f(y, t)|.$$

The dual of $T^\infty_{\alpha, \beta}$ is defined as follows.
Definition 2.5. For $\alpha > 0$ and $\max\{\alpha, 1/2\} < \beta < 1$ with $\alpha + \beta - 1 \geq 0$, the space $T_{\alpha, \beta}^1$ consists of all measurable functions f on \mathbb{R}_+^{n+1} with

$$
\|f\|_{T_{\alpha, \beta}^1} = \inf_{\omega} \left(\int_{\mathbb{R}_+^{n+1}} |f(x, t)|^2 \omega^{-1}(x, t) \frac{dtx}{t^{1-2(\alpha-\beta+1)}} \right)^{1/2} < \infty,
$$

where the infimum is taken over all nonnegative Borel measurable functions ω on \mathbb{R}_+^{n+1} with $\int_{\mathbb{R}^n} N\omega d\Lambda_{n-2(\alpha+\beta-1)} \leq 1$ and with the restriction that ω is allowed to vanish only where f vanishes.

The above tent spaces and their dualities can be seen as the generalization of the usual one. For $\beta = 1$, $T_{\alpha, \beta}^\infty$ and $T_{\alpha, 1}^1$ coincide with T_{α}^∞ and T_{α}^1, respectively which are introduced in [12]. For $\alpha = 0$ and $\beta = 1$, $T_{0, \beta}^\infty$ becomes the classical tent space T_{β}^∞ in [9].

Let ϕ satisfy the conditions (2.1). For a function F on \mathbb{R}_+^{n+1}, denote by Π_{ϕ} the operator

$$
(2.2) \quad \Pi_{\phi}(F) = \int_0^\infty F(\cdot, t) * \phi_t \frac{dt}{t}.
$$

In [18], we proved that Π_{ϕ} is a bounded and surjective operator from $T_{\alpha, \beta}^\infty$ to $Q_{\alpha, \beta}^\infty$.

Theorem 2.6. ([18, Theorem 3.20]). Consider the operator Π_{ϕ} defined by (2.2). The operator Π_{ϕ} is a bounded and surjective operator from $T_{\alpha, \beta}^\infty$ to $Q_{\alpha, \beta}^\infty(\mathbb{R}^n)$. More precisely, if $F \in T_{\alpha, \beta}^\infty$ then the righthand side of the above integral converges to a function $f \in Q_{\alpha, \beta}^\infty(\mathbb{R}^n)$, $\|f\|_{Q_{\alpha, \beta}^\infty} \lesssim \|F\|_{T_{\alpha, \beta}^\infty}$, and any $f \in Q_{\alpha, \beta}^\infty(\mathbb{R}^n)$ can be thus represented.

3. BOUNDEDNESS OF THE SINGULAR INTEGRAL OPERATORSON Q-TYPE SPACES Q_{α}^β

In this section, we will prove a class of singular integral operators are bounded on Q-type spaces $Q_{\alpha}^\beta(\mathbb{R}^n)$. Our method is based on the characterizations of $Q_{\alpha}^\beta(\mathbb{R}^n)$ and the Morrey space $L_{2, \lambda}$ associated to the fractional heat semigroup $e^{-t(-\Delta)^{\beta}}$. Before we state the main results in this section, we give a relation between $Q_{\alpha}^\beta(\mathbb{R}^n)$, a class of conformally invariant Sobolev spaces and the fractional BMO type space $BMO^\beta(\mathbb{R}^n)$.

Definition 3.1. Let $\beta \in (1/2, 1)$. Then $f \in BMO^\beta(\mathbb{R}^n)$ if and only if

$$
\sup_I \left((l(I))^{4\beta-4-2n} \int_I \int_I |f(x) - f(y)|^2 dxdy \right)^{1/2} < \infty,
$$

where the supremum is taken over all cubes I with the edge length $l(I)$ and the edges parallel to the coordinate axes in \mathbb{R}^n.
In [28], J.Xiao proved that $Q_α(\mathbb{R}^n)$ is a space between the Sobolev space $W^{1,n}(\mathbb{R}^n)$ and $BMO(\mathbb{R}^n)$. In this section we prove that a similar relation holds for $Q_α^2(\mathbb{R}^n)$ and $BMO^β(\mathbb{R}^n)$. For this purpose, we introduce a conformally invariant Sobolev space $CIS_β(\mathbb{R}^n)$.

Definition 3.2. Let $β \in (1/2,1)$ and $f \in C^1(\mathbb{R}^n)$. $f \in CIS_β(\mathbb{R}^n)$ if

$$\|f\|_{CIS_β} = \sup_I \left(|I|^{\frac{4β-2-n}{n}} \int_I |\nabla f(x)|^2 dx \right)^{1/2} < \infty,$$

where the supremum is taken over all cubes I with the edge length $l(I)$ and the edges parallel to the coordinate axes in \mathbb{R}^n.

Theorem 3.3. Let $n \geq 2$ and $\max\{α,1/2\} < β < 1$ with $α + β - 1 \geq 0$. If

$$E_β(\mathbb{R}^n) = \left\{ f \in C^1(\mathbb{R}^n) : \|f\|_{E_β} = \left(\int_{\mathbb{R}^n} |\nabla f(x)|^{\frac{2n}{n-1}} dx \right)^{\frac{n}{2}} \right\},$$

then

$$E_β(\mathbb{R}^n) \subseteq CIS_β(\mathbb{R}^n) \subseteq Q_α^2(\mathbb{R}^n) \subseteq BMO^β(\mathbb{R}^n).$$

Proof. If $n \geq 2$, by Hölder’s inequality, we have for any cube $I \subset \mathbb{R}^n$,

$$\int_I |\nabla f(x)|^2 dx \leq \left(\int_I |\nabla f(x)|^{\frac{2n}{n-1}} dx \right)^{\frac{n-1}{n}} |I|^{\frac{4β-2-n}{n}}.$$

This implies $E_β(\mathbb{R}^n) \subseteq CIS_β(\mathbb{R}^n)$.

Now we prove $CIS_β(\mathbb{R}^n) \subseteq Q_α^2(\mathbb{R}^n)$. For a cube $I \subset \mathbb{R}^n$, denote by cI the cube with volume being $c^n |I|$ and the center of I. For $f \in CIS_β(\mathbb{R}^n)$, we have

$$|f(z + y) - f(y)| \leq \int_0^1 |\nabla f(y + tz)| |z| dt.$$

Hence we can get

$$\left(\int_I \int_I \frac{|f(x) - f(y)|^2}{|x - y|^{n+2α-2β+2}} dxdy \right)^{1/2}$$

$$= \left(\int_I \int_I \left(\frac{|f(x) - f(y)|}{|x - y|} \right)^2 \frac{1}{|x - y|^{n+2α-2β}} dxdy \right)^{1/2}$$

$$\leq \left(\int_I \int_{|x - y| < \sqrt{n} |I|^{1/n}} \frac{|f(x) - f(y)|^2}{|x - y|} |x - y|^{2β-n-2α} dxdy \right)^{1/2}$$

$$\leq \left(\int_I \int_{|z| < \sqrt{n} |I|^{1/n}} \frac{|f(z + y) - f(y)|^2}{|z|} |z|^{2β-n-2α} dzdy \right)^{1/2}$$

Riesz Transform on Q-type Space
We see that if \(H \) and \(e \) are such that

\[
\begin{align*}
\text{Theorem 3.3.} & \quad \text{we know that} \\
\text{By Definition 2.1,} & \quad \text{we have} \\
\text{Relation between} & \quad L_{\beta,n}(\mathbb{R}^n) \text{ is a special case of} \quad Q_{\alpha}(\mathbb{R}^n). \\
\end{align*}
\]

Because

\[
\int_{|z|<\sqrt{m}I} |z|^{2\beta-2\alpha-n} \, dz \leq \int_{|z|<\sqrt{m}I} |z|^{2\beta-2\alpha-1} \, dz \leq C |I|^{\frac{2\beta-2\alpha}{n}},
\]

we have

\[
\left(\int_I \int_I |x-y|^{n+2\alpha-2\beta-2} \, dx \, dy \right)^{1/2} \leq C \int_0^1 \left[\int_{(1+\sqrt{m})I} |\nabla f(\omega)|^2 |I|^{\frac{2\alpha-2\beta}{n}} \, d\omega \right]^{1/2} \, dt \\
= C |I|^{\frac{\beta-\alpha}{n}} \left(\int_{(1+\sqrt{m})I} |\nabla f(\omega)|^2 \, d\omega \right)^{1/2}.
\]

Hence we get

\[
\left(|I|^{\frac{2\alpha-n+2\beta-2}{n}} \int_I \int_I \frac{|f(x) - f(y)|^2}{|x-y|^{n+2\alpha-2\beta+2}} \, dx \, dy \right)^{1/2} \\
\leq |I|^{\frac{2\alpha-n+2\beta-2}{2n}} |I|^{\frac{\beta-\alpha}{2n}} \left(\int_{(1+\sqrt{m})I} |\nabla f(\omega)|^2 \, d\omega \right)^{1/2} \\
\leq |I|^{\frac{4\beta-n-2}{2n}} \left(\int_{(1+\sqrt{m})I} |\nabla f(\omega)|^2 \, d\omega \right)^{1/2}.
\]

By Definition 2.1, we know that \(CIS_{\beta}(\mathbb{R}^n) \subseteq Q_{\alpha}(\mathbb{R}^n) \). This completes the proof of Theorem 3.3. \(\blacksquare \)

Recall that Morrey space \(L_{p,\lambda}(\mathbb{R}^n) \) is defined as follows.

\[
\| f \|_{L_{p,\lambda}} = \sup_I \left(\frac{1}{(I(I))^{-\lambda}} \int_I |f(x) - f_I|^p \, dx \right)^{1/p} < \infty.
\]

We see that if \(\lambda = n \), \(L_{p,\lambda}(\mathbb{R}^n) = BMO(\mathbb{R}^n) \) by John-Nirenberg inequality. Owing to \(BMO(\mathbb{R}^n) \) is a special case of \(Q_{\alpha}(\mathbb{R}^n) \), it is natural to ask if there exists a general relation between \(L_{p,\lambda}(\mathbb{R}^n) \) and \(Q_{\alpha}(\mathbb{R}^n) \). In [28], by a characterization of \(L_{p,\lambda}(\mathbb{R}^n) \)
associated to the semigroup $e^{-t(-\Delta)}$, J. Xiao established such a relation. Precisely he proved that for $\alpha \in (0, 1)$, $Q_\alpha(R^n) = (-\Delta)^{-\frac{\alpha}{2}}L_{2,n-2\alpha}(R^n)$.

Following Xiao’s idea in [28], we will prove that a similar result holds for the space $Q_\alpha(R^n)$. At first we prove an equivalent characterization of $L_{2,n-2\alpha}(R^n)$ via the semigroup $e^{-t(-\Delta)^\alpha}$. Here $e^{-t(-\Delta)^\alpha}$ denotes the convolution operator defined by Fourier transform:

$$
e^{-t(-\Delta)^\alpha}f(\xi) = e^{-t|\xi|^{2\alpha}}\widehat{f}(\xi).$$

Lemma 3.4. Given $\gamma \in (0, 1)$. Let f be a measurable complex-valued function on \mathbb{R}^n. Then $f \in L_{2,n-\gamma}(\mathbb{R}^n)$ if and only if

$$\sup_{x \in \mathbb{R}^n, r \in (0, \infty)} r^{2\gamma-n} \int_0^r \int_{|y-x|<r} \left| \nabla e^{-t(-\Delta)^\alpha}f(y) \right|^2 \, t \, dy \, dt < \infty.$$

Proof. Take $(\psi_0)_t(x) = t\nabla e^{-t^2(-\Delta)^\alpha}(x, 0)$ with the Fourier symbol $(\widehat{\psi_0})_t(x)(\xi) = t|\xi|^{2\alpha}e^{-t|\xi|^{2\alpha}}$. For a ball $B = \{y \in \mathbb{R}^n : |y-x|<r\}$, the mean of f on $2B$ is defined by $f_{2B} = \frac{1}{|2B|} \int_{2B} f(x) \, dx$. We split f into $f = f_1 + f_2 + f_3$, where $f_1 = (f - f_{2B})1_{2B}$, $f_2 = (f - f_{2B})1_{(2B)^C}$ and $f_3 = f_{2B}$. Because

$$\int (\psi_0)_t(x) \, dx = \int t\nabla e^{-t^2(-\Delta)^\alpha}(x, 0) \, dx = 0,$$

we have

$$t\nabla e^{-t^2(-\Delta)^\alpha}f(y) = (\psi_0)_t * f(y) = (\psi_0)_t * f_1(y) + (\psi_0)_t * f_2(y).$$

It is easy to see that

$$\int_0^r \int_B |(\psi_0)_t * f_1(y)|^2 \frac{dy \, dt}{t} \lesssim \int_0^r \int_{\mathbb{R}^n} |(\psi_0)_t * f_1(y)|^2 \frac{dy \, dt}{t} = \left\| \left(\int_0^\infty |(\psi_0)_t * f_1(y)|^2 \frac{dt}{t} \right)^{1/2} \right\|_{L^2(dy)}.$$

Because $(\psi_0)_t = \nabla e^{-t(-\Delta)^\alpha}$, we have $\int (\psi_0)_1(x) \, dx = 1$ and $(\psi_0)_1$ belongs to the Schwartz class S. Also the function

$$G(f) = \left(\int_0^\infty |(\psi_0)_t * f_1(y)|^2 \frac{dt}{t} \right)^{1/2}$$

is a Littlewood-Paley g-function. So we can get

$$\int_0^r \int_B |(\psi_0)_t * f_1(y)|^2 \frac{dy \, dt}{t} \lesssim \int_{2B} |f(y) - f_{2B}|^2 \, dy \lesssim r^{-n-2\gamma} \|f\|^2_{L_{2,n-2\gamma}}.$$
Now we estimate the term associated with $f_2(y)$. Because

$$| (\psi_0)_t * f_2(y) | \leq \int_{\mathbb{R}^n} t | \nabla e^{-t\Delta} (y-z) f_2(z) | dz$$

$$\leq \int_{\mathbb{R}^n \setminus 2B} t | \nabla e^{-t\Delta} (y-z) | f(z) - f_{2B} | dz$$

$$\lesssim \int_{\mathbb{R}^n \setminus 2B} \frac{t | f(z) - f_{2B} |}{(1 + t^{-\frac{1}{2\beta}} | z - y |)^{n+1}} dz,$$

where in the last inequality we have used the following estimate:

$$| \nabla e^{-t\Delta} (x,y) | \lesssim \frac{1}{t^{\frac{1}{2\beta}}} \frac{1}{(1 + t^{-\frac{1}{2\beta}} | x - y |)^{n+1}}.$$

Set $B_k = B(x,2^k)$. For every $(t,y) \in (0,r) \times B(x,r)$, we have $0 < t < r$ and $|x-y| < r$. If $z \in B_{k+1} \setminus B_k$, we have $|x-y| < |x-z|/2$ and

$$| (\psi_0)_t * f_2(y) | \lesssim \int_{\mathbb{R}^n \setminus 2B} \frac{t | f(z) - f_{2B} |}{(t + |x-z|)^{n+1}} dz$$

$$\lesssim t \sum_{k=1}^{\infty} \frac{(2^k+1)^n}{(2^k r)^{n+1}} \left(\frac{1}{(2^{k+1}r)^n} \int_{2^{k+1}B} | f(z) - f_{2B} |^2 dz \right)^{1/2}$$

$$\lesssim t \sum_{k=1}^{\infty} \frac{1}{2^k r} \left(\frac{1}{(2^{k+1}r)^n} \int_{2^{k+1}B} | f(z) - f_{2^{k+1}B} |^2 dz \right)^{1/2}$$

$$+ \sum_{k=1}^{\infty} \frac{1}{2^k r} | f_{2^{k+1}B} - f_{2B} |$$

$$= t(S_1 + S_2).$$

For S_1, we have

$$S_1 = t \sum_{k=1}^{\infty} \frac{1}{2^k r} \left(\frac{(2^{k+1}r)^{n-2\gamma}}{(2^k r)^n} \frac{1}{(2^{k+1}r)^n} \int_{2^{k+1}B} | f(z) - f_{2^{k+1}B} |^2 dz \right)^{1/2}$$

$$\lesssim t \sum_{k=1}^{\infty} \frac{1}{2^k r} r^{-\gamma} \| f \|_{L^{2,n-2\gamma}}$$

$$\lesssim tr^{-1-\gamma} \| f \|_{L^{2,n-2\gamma}}.$$

For S_2, we have

$$S_2 \lesssim t \sum_{k=1}^{\infty} \frac{1}{2^k r} \left[| f_{2B} - f_{4B} | + \cdots + | f_{2^kB} - f_{2^{k+1}B} | \right].$$
For any j with $2 \leq j \leq k$, it is easy to see that

$$|f_{2jB} - f_{2j+1B}| \lesssim \frac{1}{|2jB|} \int_{2jB} |f(z) - f_{2j+1B}|dz$$

$$\lesssim \left(\frac{1}{|2jB|} \int_{2jB} |f(z) - f_{2j+1B}|^2dz \right)^{1/2}$$

$$\lesssim r^{-\gamma} \|f\|_{L^2_{2,n-2\gamma}}.$$

Then we have

$$S_2 \lesssim \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot r^{-\gamma} \|f\|_{L^2_{2,n-2\gamma}} \lesssim tr^{-1-\gamma} \|f\|_{L^2_{2,n-2\gamma}}.$$

Therefore, we can get

$$\int_0^r \int_B |(\psi_0)_{t + f_2(y)}|^2 {}^t t^{-1}dtdydt \lesssim \int_0^r \int_B t^2 r^{-2\gamma-2} \|f\|_{L^2_{2,n-2\gamma}}^2 dydt$$

$$\lesssim \|f\|_{L^2_{2,n-2\gamma}}^2 r^{-2\gamma-2} |B| \int_0^r tdt$$

$$\lesssim r^{\gamma-2} \|f\|_{L^2_{2,n-2\gamma}}^2.$$

For the converse, let $S(I) = \{(t, x) \in \mathbb{R}^{n+1}_+, 0 < t < l(I), x \in I\}$ if f such that

$$\sup_I [l(I)]^{2\gamma-n} \int_{S(I)} \left| t \nabla e^{-t^{2\beta}(-\Delta)^{\beta}} f(y) \right|^2 \frac{dydt}{t}$$

$$= \sup_I [l(I)]^{2\gamma-n} \int_{S(I)} \left| \nabla e^{-t^{2\beta}(-\Delta)^{\beta}} f(y) \right|^2 tdydt < \infty.$$

Denote

$$\Pi_{\psi_0} F(x) = \int_{\mathbb{R}^{n+1}_+} F(t, y)(\psi_0)t(x - y) \frac{dydt}{t}.$$

We will prove that if

$$\|F\|_{C_\gamma} = \sup_I \left([l(I)]^{2\gamma-n} \int_{S(I)} |F(t, y)|^2 \frac{dydt}{t} \right)^{1/2} < \infty,$$

then for any cube $J \subset \mathbb{R}^n$,

$$\int_J |\Pi_{\psi_0} F(x) - (\Pi_{\psi_0} F)_J|^2 dx \lesssim [l(J)]^{n-2\gamma} \|F\|_{L^2_{2,n-2\gamma}}^2.$$

For this purpose, we split F into $F = F_1 + F_2 = F|_{S(2J)} + F|_{\mathbb{R}^{n+1}\setminus S(2J)}$ and get
\[\int_J |\Pi_{\psi_0} F_1(x)|^2 \, dx \leq \int_J |\Pi_{\psi_0} F_1(x)|^2 \, dx \]
\[\leq \int_{S(2J)} |F(t, y)|^2 \frac{dy dt}{t} \]
\[\lesssim [l(J)]^{n-2\gamma} \|F\|_{l_2}^2. \]

Now we estimate the term associated with \(F_2 \). We have
\[\int_J |\Pi_{\psi_0} F_1(x)|^2 \, dx = \int_J \left(\int_{R^{n+1}} (\psi_0)_y(x-y) F_2(t, y) t^{-1} \, dy dt \right)^2 \, dx \]
\[\lesssim \int_J \left(\int_{R^{n+1} \setminus S(2J)} |(\psi_0)_y(x-y)||F_2(t, y)| \frac{dy dt}{t} \right)^2 \, dx \]
\[= \int_J \left(\sum_{k=1}^{\infty} \int_{S(2^{k+1}J) \setminus S(2^kJ)} |(\psi_0)_y(x-y)||F_2(t, y)| \frac{dy dt}{t} \right)^2 \, dx. \]

Because \((\psi_0)_t\) satisfies the estimate
\[|(\psi_0)_t(x-y)| \lesssim \frac{t}{t^{n+1} (1 + t^{-1}|x-y|)^{n+1}}, \]
we have
\[\int_J |\Pi_{\psi_0} F_2(x)|^2 \, dx \lesssim \int_J \left(\sum_{k=1}^{\infty} \int_{S(2^{k+1}J) \setminus S(2^kJ)} \frac{t}{[l + 2^k l(J)]^{n+1}} |F_2(t, y)| \frac{dy dt}{t} \right)^2 \, dx \]
\[\lesssim \int_J \left(\sum_{k=1}^{\infty} 2^{k(l(J))} t^{-(n+1)} \int_{S(2^{k+1}J) \setminus S(2^kJ)} |F_2(t, y)| \, dy dt \right)^2 \, dx \]
\[\lesssim \|F\|_{l_2}^2 [l(J)]^{n-2\gamma}. \]

Therefore, we get
\[\int_J |\Pi_{\psi_0} F(x) - (\Pi_{\psi_0} F)_J|^2 \, dx \leq \int_J |\Pi_{\psi_0} F(x)|^2 \, dx \]
\[\lesssim \int_J |\Pi_{\psi_0} F_1(x)|^2 \, dx + \int_J |\Pi_{\psi_0} F_2(x)|^2 \, dx \]
\[\lesssim \|F\|_{l_2}^2 [l(J)]^{n-2\gamma}. \]

Because
\[\Pi_{\psi_0} F(x) = \int (\psi_0)_z * (\psi_0)_t * f \frac{dt}{t}, \]
by Calderón’s reproducing formula, we have \(\Pi_{\psi_0} F(x) = f(x) \), that is, \(f(x) = \Pi_{\psi_0} F(x) \in \mathcal{L}_{2-n-2\gamma} \). This completes the proof of Lemma 3.4. \(\blacksquare \)
Theorem 3.5. For $\alpha > 0$, $\max\{\alpha, 2\beta\} < \beta < 1$ with $\alpha + \beta - 1 \geq 0$, we have

$$Q^\beta_\alpha(\mathbb{R}^n) = (-\Delta)^{-\frac{\alpha-\beta+1}{2}} L_{2, n-2(\alpha+\beta-1)}(\mathbb{R}^n).$$

Proof. For $f \in L_{2, n-2(\alpha+\beta-1)}$, let $F(t, y) = t^{\alpha-\beta+1} t \nabla e^{-t^{2\beta}(-\Delta)^{\beta}} f(y)$. By Lemma 3.4, we have

$$r^{2(\alpha+\beta-1)-n} \int_0^r \int_{|y-x|<r} |F(t, y)|^2 \frac{dydt}{t^{1+2(\alpha-\beta+1)}} \lesssim r^{2(\alpha+\beta-1)-n} \int_0^r \int_{|y-x|<r} |t^{\alpha-\beta+1} t \nabla e^{-t^{2\beta}(-\Delta)^{\beta}} f(y)|^2 \frac{dydt}{t^{1+2(\alpha-\beta+1)}} \lesssim r^{2(\alpha+\beta-1)-n} \int_0^r \int_{|y-x|<r} |t \nabla e^{-t^{2\beta}(-\Delta)^{\beta}} f(y)|^2 \frac{dydt}{t} \lesssim \|f\|_{L_{2, n-2(\alpha+\beta-1)}}.$$

This implies $F \in T_{\alpha, \beta}^\infty$. By Theorem 2.6, Π_{ψ_0} is bounded from $T_{\alpha, \beta}^\infty$ to $Q^\beta_\alpha(\mathbb{R}^n)$. Therefore we have

$$\|f\|_{Q^\beta_\alpha} = \|\Pi_{\psi_0} F\|_{Q^\beta_\alpha} \lesssim \|F\|_{T_{\alpha, \beta}^\infty}.$$

Because $\widehat{F}(t, \xi) = t^{\alpha-\beta+2} |\xi| e^{-t^{2\beta} |\xi|^2 \widehat{f}(\xi)}$, we have

$$\Pi_{\psi_0} \widehat{F}(\xi) = \int_0^\infty \widehat{F}(t, \xi) (\psi_0)(t) \frac{dt}{t} = \int_0^\infty t^{\alpha-\beta+2} |\xi| e^{-t^{2\beta} |\xi|^2 \widehat{f}(\xi)} \frac{dt}{t} = |\xi|^2 \widehat{f}(\xi) \int_0^\infty t^{\alpha-\beta+2} e^{-t^{2\beta} |\xi|^2} dt.$$

Set $t^{2\beta} = s$ and $|\xi|^{2\beta} s = u$. We can get

$$\Pi_{\psi_0} \widehat{F}(\xi) = \int_0^\infty s^{-\frac{\alpha+1}{2\beta}} e^{-2s |\xi|^{2\beta}} s^{\frac{1}{2\beta} - 1} ds \widehat{f}(\xi) |\xi|^2 = \widehat{f}(\xi) |\xi|^2 \int_0^\infty (u |\xi|^{-2\beta})^{-\frac{\alpha-\beta+3}{2\beta} - 1} e^{-u |\xi|^{-2\beta}} du = \widehat{f}(\xi) |\xi|^2 |\xi|^{-\frac{\alpha+1}{\beta} + 2\beta - 2\beta} \int_0^\infty u^{-\frac{\alpha+1}{2\beta} - 1} e^{-2u} du.$$

Because $\frac{1}{2} < \beta < 1$ and $0 < \alpha < \beta$, the integral $\int_0^\infty u^{-\frac{\alpha+1}{2\beta} - 1} e^{-2u} du < \infty$. We denote it by $C_{\alpha, \beta}$ and get

$$\Pi_{\psi_0} \widehat{F}(\xi) = C_{\alpha, \beta} \widehat{f}(\xi) |\xi|^{-\frac{\alpha+1}{\beta} + 2\beta - 2\beta}.$$

By the inverse Fourier transform, we have
\[
\Pi_{\psi_0} F(x) = C_{\alpha,\beta}(-\Delta)^{-\frac{\alpha-\beta+1}{2}} f(x).
\]
Conversely, suppose \(g \in Q_\beta^\alpha(\mathbb{R}^n) \). Set \(G(t, y) = t^{1-(\alpha-\beta+1)} \nabla e^{-t^{2\beta}(-\Delta)^\beta} g(y) \). We have, by the equivalent characterization of \(Q_\beta^\alpha(\mathbb{R}^n) \) (see [18] for details),
\[
\left([l(I)]^{2(\alpha+\beta-1)} \int_{S(I)} \left| t^{1-2(\alpha-\beta+1)} \nabla e^{-t^{2\beta}(-\Delta)^\beta} g(y) \right|^2 dy dt \right)^{1/2} \leq \int_{\mathbb{R}^n} |t^{1+2(\alpha-\beta+1)}| dy dt.
\]
Hence we get
\[
\hat{f}(\xi) = \Pi_{\psi_0} \hat{G}(t, \xi) = \int_0^\infty \left| t^{1-2(\alpha-\beta+1)} \nabla e^{-t^{2\beta}(-\Delta)^\beta} g(y) \right|^2 dy dt = C_{\alpha,\beta} |\xi|^{1+(\alpha-\beta)} \hat{g}(\xi) = C_{\alpha,\beta}((-\Delta)^{-\frac{\alpha-\beta+1}{2}} g)(\xi).
\]
Then \(f(x) = C_{\alpha,\beta}(-\Delta)^{-\frac{\alpha-\beta+1}{2}} g \). This completes the proof of this theorem.

Based on the above theorem, we can deduce the boundedness of the convolution singular integral operators on \(Q_\beta^\alpha(\mathbb{R}^n) \) directly and state this result as the following theorem.

Theorem 3.6. Let \(T \) be a singular operator defined by
\[
Tf(x) = \int_{\mathbb{R}^n} K(x - y) f(y) dy,
\]
where the kernel \(K(x) \) satisfies
\[
|\partial_\xi^\gamma K(x)| \leq A_\gamma |x|^{-n-\gamma}, \quad (\gamma > 0).
\]
Or equivalently, let \(\hat{T}\hat{f}(\xi) = m(\xi) \hat{f}(\xi) \), where the symbol \(m(\xi) \) satisfies
\[
|\partial_\xi^\gamma m(\xi)| \leq A_\gamma |\xi|^{-\gamma}
\]
for all \(\gamma \). Suppose \(\alpha > 0 \), \(\max\{\alpha, \frac{1}{2}\} < \beta < 1 \) with \(\alpha + \beta - 1 \geq 0 \). We have \(T \) is bounded on the \(Q \)-type spaces \(Q_\beta^\alpha(\mathbb{R}^n) \).
Proof. It is well-known that the singular integral operator \(T \) is bounded on the Morrey space \(L_{2, n-2(\alpha+\beta-1)}(\mathbb{R}^n) \). Moreover as a convolution operator, \(T \) can commutate with the fractional Laplace operator \((−Δ)^{-\frac{(\alpha−\beta+1)}{2}}\). By Theorem 3.5, we complete the proof of this theorem.

Specially, taking \(T = R_j, j = 1, 2, \cdots, n \) as the Riesz transforms, we have the following corollary.

Corollary 3.7. Suppose \(\alpha > 0, \max\alpha, \frac{1}{2} < \beta < 1 \) with \(\alpha + \beta - 1 \geq 0 \). For \(j = 1, 2, \cdots, n \), the Riesz transforms \(R_j = \partial_j(-Δ)^{-1/2} \) are bounded on the \(Q-\)type spaces \(Q^β_α(\mathbb{R}^n) \).

Remark 3.8. There exists another method to prove Theorem 3.6. In fact we can get the boundedness of \(T \) on \(Q^β_α(\mathbb{R}^n) \) directly by its characterization associated to \(e^{-t(-Δ)^β} \). In Section 4, this method can be applied to study the well-posedness of the equations \((DQG)_β\) with the initial data in \(Q^β_α(\mathbb{R}^n) \). See Lemma 4.5.

4. WELL-POSEDNESS AND REGULARITY OF QUASI-GEOSTROPHIC EQUATION

In this section, we study the well-posedness and regularity of quasi-geostrophic equation with initial data in the space \(Q^β_α(\mathbb{R}^2) \). We introduce the definition of \(X^β_α(\mathbb{R}^n) \).

Definition 4.1. The space \(X^β_α(\mathbb{R}^n) \) consists of the functions which are locally integrable on \((0, \infty) \times \mathbb{R}^2\) such that \(\sup_{t>0} t^{-\frac{1}{\beta}} \|f(t, \cdot)\|_{\mathbb{B}^0_{\alpha, 1}} < \infty \) and

\[
\sup_{x \in \mathbb{R}^2, r > 0} r^{2-\alpha-2n+2\beta-2} \int_0^r \int_{|y-x_0| < r} |f(t, y)|^2 + |R_1 f(t, y)|^2 + |R_2 f(t, y)|^2 \frac{dydt}{t^{\alpha/\beta}} < \infty,
\]

where \(R_j, j = 1, 2 \) denote the Riesz transforms in \(\mathbb{R}^2 \).

For the quasi-geostrophic dissipative equations

\[
\begin{align*}
\partial_t \theta &= -(-Δ)^β + \partial_1(\theta R_2 \theta) - \partial_2(\theta R_1 \theta), \\
\theta(0, x) &= \theta_0(x),
\end{align*}
\]

where \(\beta \in (\frac{1}{2}, 1) \). The solution to equations (4.1) can be represented as

\[
u(t, x) = e^{-t(-Δ)^β} u_0 + B(u, u),
\]

where the bilinear form \(B(u, v) \) is defined by

\[
B(u, v) = \int_0^t e^{-(t-s)(-Δ)^β} (\partial_1(v R_2 u) - \partial_2(v R_1 u)) ds.
\]

In order to prove the well-posedness, we need the following preliminary lemmas. For their proofs, we refer the readers to Lemma 4.8 and Lemma 4.9 in [18].
Lemma 4.2. ([18, Lemma 4.8]). Given $\alpha \in (0, 1)$. For a fixed $T \in (0, \infty]$ and a function $f(t, x)$ on \mathbb{R}^{1+n}, let $A(t) = \int_0^t e^{-(t-s)(-\triangle)\beta}(-\triangle)^{\beta}f(s, x)ds$. Then

$$
\int_0^T \|A(t, \cdot)\|_{L^2}^2 \frac{dt}{t^{\alpha/\beta}} < \int_0^T \|f(t, \cdot)\|_{L^2}^2 \frac{dt}{t^{\alpha/\beta}}.
$$

Lemma 4.3. ([18, Lemma 4.9]). For $\beta \in (1/2, 1)$ and $N(t, x)$ defined on $(0, 1) \times \mathbb{R}^n$, let $A(N)$ be the quantity

$$
A(\alpha, \beta, N) = \sup_{x \in \mathbb{R}^n, r \in (0, 1)} r^{2\alpha-n+2\beta-2} \int_0^{2\beta} \int_{|y-x|<r} |f(t, x)| \frac{dxdt}{t^{\alpha/\beta}}.
$$

Then for each $k \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ there exists a constant $b(k)$ such that the following inequality holds:

$$
\int_0^1 \left\| (-\triangle)^{\frac{k+1}{2}} e^{-t(-\triangle)^{\beta}} \int_0^t N(s, \cdot)ds \right\|_{L^2}^2 \frac{dt}{t^{\alpha/\beta}} \leq b(k) A(\alpha, \beta, N) \int_0^1 \int_{\mathbb{R}^n} |N(s, x)| \frac{dxds}{s^{\alpha/\beta}}.
$$

Remark 4.4. Similarly when $k = 0$, we can prove the following inequality:

$$
\int_0^1 \left\| (-\triangle)^{\frac{1}{2}} e^{-t(-\triangle)^{\beta}} \int_0^t N(s, \cdot)ds \right\|_{L^2}^2 \frac{dt}{t^{\alpha/\beta}} \leq A(\alpha, \beta, N) \int_0^1 \int_{\mathbb{R}^n} |N(s, x)| \frac{dxds}{s^{\alpha/\beta}}.
$$

Lemma 4.5. Assume $\alpha > 0$ and $\max\{\alpha, 1/2\} < \beta < 1$ with $\alpha + \beta - 1 \geq 0$. Let $R_j, j = 1, 2$ be the Riesz transforms. Then for any $x_0 \in \mathbb{R}^n$,

$$
\left(\sup_{r>0} r^{2\alpha-n+2\beta-2} \int_0^{2\beta} \int_{|y-x_0|<r} |R_j f(t, y)|^2 \frac{dydt}{t^{\alpha/\beta}} \right)^{1/2} \leq \left(\sup_{x \in \mathbb{R}^n, r>0} r^{2\alpha-n+2\beta-2} \int_0^{2\beta} \int_{|y-x_0|<r} |f(t, y)|^2 \frac{dydt}{t^{\alpha/\beta}} \right)^{1/2}.
$$

Proof. We split $f(t, y)$ into

$$
f(t, y) = f_0(t, y) + \sum_{k=1}^{\infty} f_k(t, y),
$$

where $f_0(t, y) = f(t, y) \chi_{B(x_0, 2r)}(y)$ and $f_k(t, y) \chi_{B(x_0, 2^{k+1}r) \setminus B(x_0, 2^kr)}(y)$. We have
Riesz Transform on Q-type Space

$$\left(r^{2\alpha-n+2\beta-2} \int_0^{r^{2\beta}} \int_{|y-x_0|<r} |R_j f(t,y)|^2 \frac{dydt}{t^{\alpha/\beta}} \right)$$

$$\leq \left(r^{2\alpha-n+2\beta-2} \int_0^{r^{2\beta}} \int_{|y-x_0|<r} |R_j f_0(t,y)|^2 \frac{dydt}{t^{\alpha/\beta}} \right)$$

$$+ \sum_{k=1}^{\infty} \left(r^{2\alpha-n+2\beta-2} \int_0^{r^{2\beta}} \int_{|y-x_0|<r} |R_j f_k(t,y)|^2 \frac{dydt}{t^{\alpha/\beta}} \right)$$

$$=: M_0 + \sum_{k=1}^{\infty} M_k.$$

By the L^2 boundedness of Riesz transforms R_j, $j = 1, 2$, we have

$$M_0 \lesssim \left(r^{2\alpha-n+2\beta-2} \int_0^{r^{2\beta}} \int_{|y-x_0|<r} |f(t,y)|^2 \frac{dydt}{t^{\alpha/\beta}} \right)$$

$$\lesssim C \sup_{x \in \mathbb{R}^n, r>0} \left(r^{2\alpha-n+2\beta-2} \int_0^{r^{2\beta}} \int_{|y-x_0|<r} |f(t,y)|^2 \frac{dydt}{t^{\alpha/\beta}} \right).$$

Now we estimate the terms M_k. We only need to estimate the integral as follows.

$$I = \int_{|y-x_0|<r} |R_j f_k(t,y)|^2 dy.$$

As a singular integral operator,

$$R_j g(x) = \int_{\mathbb{R}^n} \frac{x_j - y_j}{|x_j - y_j|^{n+1}} g(y) dy.$$

By Hölder’s inequality, we can get

$$I = \int_{|y-x_0|<r} \left| \int_{2^k r \leq |z-x_0| < 2^{k+1} r} \frac{y_j - z_j}{y - z |^{n+1}} f(t,z) dz \right|^2 dy$$

$$\lesssim \int_{|y-x_0|<r} \left(\frac{1}{(2^k r)^n} \int_{|z-x_0|<2^{k+1} r} |f(t,z)|^2 dz \right) dy$$

$$\lesssim \frac{1}{2^{kn}} \int_{|z-x_0|<2^{k+1} r} |f(t,z)|^2 dz.$$

So we have

$$M_k = \left(r^{2\alpha-n+2\beta-2} \int_0^{r^{2\beta}} \int_{|y-x_0|<r} |R_j f_k(t,y)|^2 \frac{dydt}{t^{\alpha/\beta}} \right)^{1/2}.$$
Therefore we can get
\[\frac{1}{2} \sum_{k=1}^{\infty} M_k \]
\[\lesssim \left[1 + \sum_{k=1}^{\infty} 2^{-k(\alpha+\beta-1)} \right] \sup_{x_0 \in \mathbb{R}^n, r > 0} \left(\int_0^2 \int_{|x-x_0| < r} |f(t, z)|^2 dy dt \right)^{1/2} \]
This completes the proof of Lemma 4.5.

Now we give the main result of this section.

Theorem 4.6. (Well-posedness).

(i) The subcritical quasi-geostrophic equation (4.1) has a unique small global mild solution in $(X_\alpha^\beta(\mathbb{R}^2))^2$ for all initial data b_0 with $\nabla \cdot b = 0$ and $\|b_0\|_{Q_{\alpha,-1}^\beta}$ being small.

(ii) For any $T \in (0, \infty)$, there is an $\varepsilon > 0$ such that the quasi-geostrophic equation (4.1) has a unique small mild solution in $(X_\alpha^\beta(\mathbb{R}^2))^2$ on $(0, T) \times \mathbb{R}^2$ when the initial data b_0 satisfies $\nabla \cdot b_0 = 0$ and $\|b_0\|_{Q_{\alpha,-1}^\beta}$ \(\leq \varepsilon\). In particular, for all $b_0 \in (VQ_{\alpha,-1}^\beta)^2$ with $\nabla \cdot b_0 = 0$, there exists a unique small local mild solution in $(X_\alpha^\beta(\mathbb{R}^2))^2$ on $(0, T) \times \mathbb{R}^2$.

Proof. By the Picard contraction principle we only need to prove the bilinear form $B(u, v)$ is bounded on X_α^β. We split the proof into two parts.

Part I. $B_{\infty,0}^{0,1}$—boundedness. The proof of this part has been given in [19]. For completeness, we give the details. We have
\[\|B(u, v)\|_{B_{\infty,0}^{0,1}} \lesssim \int_0^t \|e^{-(t-s)}(-\Delta)^{\beta/2} (\partial_1 (gR_2 f) - \partial_2 (gR_1 f))\|_{B_{\infty,0}^{0,1}} ds \]
\[\lesssim \int_0^t (t-s)^{\frac{1}{2\gamma}} \frac{C_\beta}{s^{1+1/\gamma}} \|u\|_{B_{\infty,0}^{\alpha,1}} \|v\|_{B_{\infty,0}^{0,1}} ds \]
\[\lesssim \|u\|_{X_\alpha^\beta} \|v\|_{X_\alpha^\beta} \int_0^t \frac{ds}{(t-s)^{1+1/\gamma}}. \]
Because when $\frac{1}{2} < \beta < 1$,
\[
\int_0^{t/2} \frac{1}{(t-s)^{1+(1-\beta)/2}} ds \lesssim t^{1-\beta-1}
\]
and
\[
\int_{t/2}^{t} \frac{1}{(t-s)^{1+(1-\beta)/2}} ds \lesssim t^{-2+\frac{1}{\beta}} \int_{t/2}^{t} \frac{1}{(t-s)^{1/\beta}} ds \lesssim t^{1-\beta-1}.
\]
Then we can get
\[
t^{1-\frac{1}{\beta}} \|B(u, v)\|_{\dot{B}_{\infty,1}^0} \lesssim \|u\|_{X_{\alpha}^\beta} \|v\|_{X_{\alpha}^\beta},
\]
where in the above estimates we have used the fact that $\|R_j f\|_{\dot{B}_{\infty,1}^0} \lesssim \|f\|_{\dot{B}_{\infty,1}^0}$ for $f \in \dot{B}_{\infty,1}^0$. In fact by Bernstein’s inequality, we have
\[
\sum_l \|\Delta_l R_j f\|_{L^{\infty}} = \sum_l \|\partial_j (-\Delta)^{-1/2} \Delta_l f\|_{L^{\infty}} \lesssim \sum_l 2^l \|(-\Delta)^{-1/2} \Delta_l f\|_{L^{\infty}} \lesssim \sum_l 2^l 2^{-l} \|\Delta_l f\|_{L^{\infty}} \lesssim \|f\|_{\dot{B}_{\infty,1}^0}.
\]
On the other hand, by Young’s inequality, we have
\[
t^{1-\frac{1}{\beta}} \|e^{-t(-\Delta)^\beta} u_0\|_{\dot{B}_{\infty,1}^0} \lesssim \|u_0\|_{\dot{B}_{\infty,1}^{1-2\beta,\infty}} \lesssim \|u_0\|_{Q_{\alpha}^{\beta,-1}}.
\]

Part II. \(L^2\)-boundedness. This part contributes to the operation of \(B(u, v)\) on the Carleson part of \(X_{\alpha}^\beta\). We split again the estimate into two steps.

Step I. We want to prove the following estimate:
\[
r^{2\alpha - 2 + 2\beta - 2} \int_0^{r^{2\beta}} \int_{|x-y|<r} |B(u, v)|^2 \frac{dydt}{t^{\alpha/\beta}} \lesssim \|u\|_{X_{\alpha}^{\beta}} \|v\|_{X_{\alpha}^{\beta}}.
\]
By symmetry, we only need to deal with the term
\[
\int_0^t e^{-(t-s)(-\Delta)^\beta} [\partial_1 (v R_1 u)] ds = B_1(u, v) + B_2(u, v) + B_3(u, v),
\]
where
\[
B_1(u, v) = \int_0^t e^{-(t-s)(-\Delta)^\beta} \partial_1 [(1 - 1_{r,x}) v R_1 u] ds,
\]
\[
B_2(u, v) = (-\Delta)^{-1/2} \partial_1 \int_0^t e^{-(t-s)(-\Delta)^\beta} (-\Delta)(y) (-\Delta)^{1/2} (1 - e^{-s(-\Delta)^\beta})(1_{r,x}) v R_1 u) ds
\]
and
\[B_3(u, v) = (-\Delta)^{-1/2} \partial_t \int_0^t (1_{r,x}) v R_1 u ds. \]

For \(B_1 \), it can be proved that the fractional heat kernel satisfies the following estimate (\([20]\)):
\[
|\nabla e^{-t(-\Delta)}(x, y)| \lesssim \frac{1}{t^{n/2}} \left(\frac{1}{1 + \frac{|x-y|}{10t^{2/3}}} \right)^{n+1} \lesssim \frac{1}{(t^{2/3} + |x-y|)^{n+1}}.
\]

For \(0 < t < r^{2\beta} \), taking \(n = 2 \) in (4.5), we have
\[
|B_1(u, v)(t, x)| \lesssim \int_0^t \int_{|z-s| \geq 10r} |R_1 u(s, z)||v(s, z)| ds dz ds
\]
\[
\lesssim \left(\int_0^{r^{2\beta}} \int_{|z-s| \geq 10r} |R_1 u(s, z)|^2 ds dz ds \right)^{1/2} \left(\int_0^{r^{2\beta}} \int_{|z-s| \geq 10r} |v(s, z)|^2 ds dz ds \right)^{1/2}
\]
\[
:= I_1 \times I_2.
\]

For \(I_1 \), we have
\[
I_1 \lesssim \left(\sum_{k=3}^{\infty} \frac{1}{(2^k r)^3} \int_0^{r^{2\beta}} \int_{|z-s| \leq 2^{k+1} r} |R_1 u(s, x)|^2 ds dx \right)^{1/2}
\]
\[
\lesssim \left(\sum_{k=3}^{\infty} \frac{1}{(2^k r)^3} (2^k r)^{2\alpha+2\beta-2} (2^k r)^{2-2\beta} \int_0^{r^{2\beta}} \int_{|z-s| \leq 2^{k+1} r} |R_1 u(s, x)|^2 ds dx \right)^{1/2}
\]
\[
\lesssim \|u\|_{X_\alpha^{\beta}} \left(\sum_{k=3}^{\infty} \frac{1}{(2^k r)^{2\beta-1}} \right)^{1/2}
\]
\[
\lesssim \left(\frac{1}{r^{2\beta-1}} \right)^{1/2} \|u\|_{X_\alpha^{\beta}}.
\]

Similarly, we can get \(I_2 \lesssim \left(\frac{1}{r^{2\beta-1}} \right)^{1/2} \|v\|_{X_\alpha^{\beta}} \) and \(|B_1(u, v)| \lesssim \frac{1}{r^{2\beta-1}} \|u\|_{X_\alpha^{\beta}} \|v\|_{X_\alpha^{\beta}} \).

Then we have
\[
\int_0^{r^{2\beta}} \int_{|x-y| < r} |B_1(u, v)|^2 dy dt \lesssim \frac{1}{r^{4\beta-2}} \int_0^{r^{2\beta}} dt \left(\frac{1}{t^{2\beta}} \right)^2 \|u\|_{X_\alpha^{\beta}}^2 \|v\|_{X_\alpha^{\beta}}^2
\]
\[
\lesssim \frac{1}{r^{4\beta-2}} r^{2\beta-2\alpha} \|u\|_{X_\alpha^{\beta}}^2 \|v\|_{X_\alpha^{\beta}}^2
\]
\[
\lesssim r^{2-2\alpha-2\beta+2} \|u\|_{X_\alpha^{\beta}}^2 \|v\|_{X_\alpha^{\beta}}^2,
\]

where in the second inequality we have used the fact \(0 < \alpha < \beta \). That is to say
For B_2, by the L^2-boundedness of Riesz transform, we have

\[
\int_0^{r^{2\beta}} \int_{|x-y|<r} |B_2(u, v)(t, y)|^2 \frac{dy dt}{t^{\alpha/\beta}} \lesssim \|u\|_{\dot{X}^\alpha_\beta}^2 \|v\|_{\dot{X}^\alpha_\beta}^2.
\]

On the other hand, we have, by H"older’s inequality, we get

\[
\int_0^{r^{2\beta}} \int_{|x-y|<r} |B_2(u, v)(t, y)|^2 \frac{dy dt}{t^{\alpha/\beta}} \lesssim \|u\|_{\dot{X}^\alpha_\beta}^2 \|v\|_{\dot{X}^\alpha_\beta}^2.
\]

For B_3, by the L^2–boundedness of Riesz transform, we have

\[
\int_0^{r^{2\beta}} \int_{|x-y|<r} |B_3(u, v)(t, y)|^2 \frac{dy dt}{t^{\alpha/\beta}} \lesssim r^{2-2\alpha-2\beta+2} \|u\|_{\dot{X}^\alpha_\beta}^2 \|v\|_{\dot{X}^\alpha_\beta}^2.
\]

For $B_3(u, v)$, we have
Then we have
\[
\int_0^{r^{2\beta}} \int_{|y-x|<r} |B_3(u, v)(t, y)| \frac{dydt}{t^{\alpha/\beta}} = \int_0^{r^{2\beta}} \int_{|y-x|<r} (-\Delta)^{-1/2} \partial_t (-\Delta)^{1/2} e^{-t(-\Delta)^{\beta}} \left(\int_0^t (1_{r,x}) v R_1 udh \right) \frac{dydt}{t^{\alpha/\beta}}
\]
\[
\lesssim \int_0^{r^{2\beta}} \left\| (-\Delta)^{1/2} e^{-t(-\Delta)^{\beta}} \left(\int_0^t (1_{r,x}) v R_1 udh \right) \right\| \frac{dt}{t^{\alpha/\beta}}
\]
\[
\lesssim r^{2-2\alpha+6\beta-2} \left(\int_0^t \||M(r^{2\beta} s, r \cdot)||_{L^1} \frac{ds}{s^{\alpha/\beta}} \right) C(\alpha, \beta, f)
\]
\[
\lesssim r^{2-2\alpha+6\beta-2} r^{2-4\beta} r^{2-4\beta} \|u\|_{X_\alpha^2} \|v\|_{X_\alpha^2}
\]
\[
\lesssim r^{2-2\alpha-2\beta+2} \|u\|_{X_\alpha^2} \|v\|_{X_\alpha^2}.
\]

Step II. For $j = 1, 2$, we want to prove
\[
(4.6) \quad r^{2\alpha-2+\beta-2} \int_0^{r^{2\beta}} \int_{|x-y|<r} |A_i B(u, v)| \frac{dydt}{t^{\alpha/\beta}} \lesssim \|u\|_{X_\alpha^2} \|v\|_{X_\alpha^2},
\]
where R_j are the Riesz transforms $\partial_j (-\Delta)^{-1/2}$. Similar to Step I, we can split $B(u, v)$ into $B_i(u, v), i = 1, 2, 3$. We denote by $A_i, i = 1, 2, 3$

\[
(4.7) \quad A_i := r^{2\alpha-2+\beta-2} \int_0^{r^{2\beta}} \int_{|x-y|<r} |A_i B(u, v)| \frac{dydt}{t^{\alpha/\beta}} \lesssim \|u\|_{X_\alpha^2} \|v\|_{X_\alpha^2}.
\]

In order to estimate the term A_1, we need the following lemma.

Lemma 4.7. For $\beta > 0$, if we denote by K_j^{β} the kernel of the operator $e^{-t(-\Delta)^{\beta}} R_j$, we have
\[
(1 + |x|)^{n+|\alpha|} \partial^\alpha e^{-t(-\Delta)^{\beta}} R_j \in L^\infty.
\]

Proof. By the Fourier transform, we have $K_j^{\beta} = F^{-1} \left(\frac{\xi_j}{|\xi|} e^{-|\xi|^2} \right)$, where F^{-1} denotes the inverse Fourier transform. Because
\[
\left[\partial^\alpha K_j^{\beta}(x) \right](\xi) = \frac{\xi_j}{|\xi|} |\xi|^{\alpha} e^{-|\xi|^2} \in L^1,
\]
we have
\[
|\partial^\alpha K_j^{\beta}(x)| \leq \int_{\mathbb{R}^2} \left| \frac{\xi_j}{|\xi|} |\xi|^{\alpha} e^{-|\xi|^2} \right| d\xi \leq C.
\]
Then $\partial^\alpha K_j^{\beta}(x) \in L^\infty$. If $|x| \leq 1$, we have
\[
(1 + |x|)^{n+|\alpha|} |K_j^{\beta}(x)| \lesssim C |K_j^{\beta}(x)| \lesssim C.
\]
If \(|x| > 1\), by Littlewood-Paley decomposition and write

\[K_j^\beta(x) = (Id - S_0)K_j^\beta + \sum_{l < 0} \Delta_l K_j^\beta, \]

where \((Id - S_0)K_j^\beta \in S(\mathbb{R}^n)\) and \(\Delta_l K_j^\beta = 2^{2l}\omega_{j,l}(2^{l}x)\) where \(\omega_{j,l}(\xi) = \psi(\xi)\xi_j e^{-|2^l \xi|^{2\beta}}\in L^1\). Then \(\omega_{j,l}(x)_{(l < 0)}\) are a bounded set in \(S(\mathbb{R}^n)\). So we have

\[
(1 + 2|\xi|)^{N\delta(2+|\alpha|)}|\partial^\alpha \Delta_l K_j^\beta(x)| \lesssim C_N
\]

and

\[
|\partial^\alpha S_0 K_j^\beta(x)| \lesssim C \sum_{2^{|x|} \leq 1} 2^{l(2+|\alpha|)} + \sum_{2^{|x|} > 1} 2^{l(2+|\alpha|) - N}|x|^{-N}
\]

\[
\lesssim C|x|^{-(2+|\alpha|)}.
\]

This completes the proof of Lemma 4.7.

Now we complete the proof of Theorem 4.6. In Lemma 4.7, we take \(\alpha = 1\) and get

\[
\left| \partial_x R_j e^{-t(-\Delta)^{\beta}}(x,y) \right| \lesssim \frac{1}{(t^{\frac{2\beta}{\alpha}} + |x-y|)^{n+1}}.
\]

Similar to the proof in Part I, we can get

\[
A_1 := r^{2\alpha-2+2\beta-2}\int_0^{r^{2\beta}} \int_{|x-y| < r} |R_j B_1(u,v)|^2 \frac{dydt}{t^{\alpha/\beta}} \lesssim \|u\|_{X^\alpha_\beta} \|v\|_{X^\alpha_\beta}.
\]

By Lemma 4.5, we know

\[
r^{2\alpha-2+2\beta-2}\int_0^{r^{2\beta}} \int_{|y-x| < r} |R_j f(t,y)|^2 \frac{dydt}{t^{\alpha/\beta}}
\]

\[
\lesssim \sup_{r > 0, x \in \mathbb{R}^n} r^{2\alpha-2+2\beta-2}\int_0^{r^{2\beta}} \int_{|y-x| < r} |f(t,y)|^2 \frac{dydt}{t^{\alpha/\beta}}.
\]

By the above estimate, we have

\[
A_i := r^{2\alpha-2+2\beta-2}\int_0^{r^{2\beta}} \int_{|x-y| < r} |R_j B_i(u,v)|^2 \frac{dydt}{t^{\alpha/\beta}}
\]

\[
\lesssim r^{2\alpha-2+2\beta-2}\int_0^{r^{2\beta}} \int_{|x-y| < r} |B_i(u,v)|^2 \frac{dydt}{t^{\alpha/\beta}},
\]

where \(i = 2, 3\). Following the estimate to \(B_i\), \(i = 2, 3\), we can get

\[
A_i := r^{2\alpha-2+2\beta-2}\int_0^{r^{2\beta}} \int_{|x-y| < r} |R_j B_i(u,v)|^2 \frac{dydt}{t^{\alpha/\beta}} \lesssim \|u\|_{X^\alpha_\beta} \|v\|_{X^\alpha_\beta}.
\]
This completes the proof of Theorem 4.6.

Following the method applied in Section 5 of [18], we can easily get the regularity of the solution to the quasi-geostrophic equations (4.1). So we only state the result and omit the details of the proof. For convenience of the study, we introduce a class of spaces X^β,k_α as follows.

Definition 4.8. For a nonnegative integer k and $\beta \in (1/2, 1]$, we introduce the space X^β,k_α which is equipped with the following norm:

$$\|u\|_{X^\beta,k_\alpha} = \|u\|_{N^\beta,k_\alpha,\infty} + \|u\|_{N^\beta,k_\alpha,C},$$

where

$$\|u\|_{N^\beta,k_\alpha,\infty} = \sup_{\alpha_1 + \ldots + \alpha_n = k} \sup_t \int_0^t \frac{2^{\beta-1+k}}{t^{\beta}} \|\partial_{x_1}^{\alpha_1} \ldots \partial_{x_n}^{\alpha_n} u(\cdot, t)\|_{B^\beta_{\infty,1}},$$

$$\|u\|_{N^\beta,k_\alpha,C} = \sup_{\alpha_1 + \ldots + \alpha_n = k} \sup_{x_0, r} \left(\frac{r^{2\alpha-2n+2\beta-2}}{2} \int_0^{r^{2\beta}} \int_{|y-x_0|<r} \left| \frac{k}{\pi^\beta t^{\alpha/\beta}} \partial_{x_1}^{\alpha_1} \ldots \partial_{x_n}^{\alpha_n} u(t, y) \right|^2 \frac{dy dt}{t^{\alpha/\beta}} \right)^{1/2},$$

$$+ \sum_{j=1}^{2^k} \sup_{\alpha_1 + \ldots + \alpha_n = k} \sup_{x_0, r} \left(\frac{r^{2\alpha-2n+2\beta-2}}{2} \int_0^{r^{2\beta}} \int_{|y-x_0|<r} \left| R^k_j \frac{k}{\pi^\beta t^{\alpha/\beta}} \partial_{x_1}^{\alpha_1} \ldots \partial_{x_n}^{\alpha_n} u(t, y) \right|^2 \frac{dy dt}{t^{\alpha/\beta}} \right)^{1/2}.$$

Now we state the regularity result.

Theorem 4.9. Let $\alpha > 0$ and $\max \{\alpha, 1/2\} < \beta < 1$ with $\alpha + \beta - 1 \geq 0$. There exists an $\varepsilon = \varepsilon(n)$ such that if $\|u_0\|_{Q^{2\beta-1}_\infty} < \varepsilon$, the solution u to equations (4.1) verifies:

$$t^{\frac{k}{\pi^\beta}} \nabla^k u \in X^\beta_{\alpha,0}$$

for any $k \geq 0$.

Acknowledgments

We would like to thank our supervisor Professor Jie Xiao for discussion on this topic and kind encouragement.

References

1. R. Aulaskari, D. A. Stegenga and J. Xiao, Some subclasses of BMOA and their characterization in terms of Carleson measure, *Rocky Mountain J. Math.*, 26(2) (1996), 485-506.
2. R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC, *Analysis*, 15 (1995), 101-121.

3. M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, in: *Handbook of Mathematical Fluid Dynamics*, Vol. 3, (S. Friedlander and D. Serre, eds.), Elsevier, 2004, pp. 161-244.

4. D. Chae, The Quasi-Geostrophic Equation in the Triebel-Lizorkin Spaces, *Nonlinearity*, 16 (2003), 479-495.

5. D. Chae and J. Lee, Global well-posedness in the super-critical dissipative quasi-geostrophic Equations, *Comm. Math. Phys.*, 233(2) (2003), 297-311.

6. Q. Chen, C. Miao and Z. Zhang, A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation, *Comm. Math. Phys.*, 271 (2007), 821-838.

7. P. Constantin, Geometric statistics in turbulence, *SIAM Rev.*, 36(1) (1994), 73-98.

8. P. Constantin, D. Cordoba and J. Wu, On the critical dissipative quasi-geostrophic equations, *Indiana Univ. Math. J.*, 50 (2001), 97-107.

9. R. R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, *J. Funct. Anal.*, 62 (1985), 304-335.

10. P. Constantin, A. Majda and E. Tabak, Formation of strong fronts in 2-D quasi-geostrophic thermal active scalar, *Nonlinearity*, 7 (1994), 1495-1533.

11. P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, *SIAM J. Math. Anal.*, 30 (1999), 937-948.

12. G. Dafni and J. Xiao, Some new tent spaces and duality theorem for fractional Carleson measures and $Q_\alpha(\mathbb{R}^n)$, *J. Funct. Anal.*, 208 (2004), 377-422.

13. M. Essen, S. Janson, L. Peng and J. Xiao, Q space of several real variables, *Indiana Univ. Math. J.*, 49 (2000), 575-615.

14. I. Held, R. Pierrehumbert, S. Garner and K. Swanson, Surface quasi-geostrophic dynamics, *J. Fluid Mech.*, 282 (1995), 1-20.

15. N. Ju, The 2D quasi-geostrophic equations in Sobolev space, *Contemporary Mathematics*, 428 (2007), 75-92.

16. N. Ju, On the two dimensional quasi-geostrophic equations, *Indiana Univ. Math. J.*, 54(3) (2005), 897-926.

17. H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, *Adv. Math.*, 157 (2001), 22-35.

18. P. Li and Z. Zhai, Well-posedness and regularity of generalized Naiver-Stokes equations in some critical Q-spaces, *J. Funct. Anal.*, 259 (2010), 2457-2519.

19. F. Marchand and P. G. Lemarié-Rieusset, Solutions auto-similaires non radiales pour l’équation quasi-géostrophique dissipative critique, *C. R. Acad. Sci. Pairs, Ser. I*, 341 (2005), 535-538.
20. C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, *Nonlinear Anal. TMA*, **68** (2008), 461-484.

21. A. Nicolau and J. Xiao, Bounded functions in Möbius invariant Dirichlet spaces, *J. Funct. Anal.*, **150** (1997), 383-425.

22. K. Ohkita and M. Yamada, Inviscid and inviscid limit behavior of a surface quasi-geostrophic flow, *Phys. Fluids*, **9** (1997), 876-882.

23. J. Pedlosky, *Geophysical Fluid Dynamics*, Springer-Verlag, New York, 1987.

24. M. Ramzi and Z. Ez-zeddine, Global existence of solutions for subcritical quasi-geostrophic equations, *Communications on Pure and Applied Analysis*, **7** (2008), 1179-1191.

25. J. Wu, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, *SIAM J. Math. Anal.*, **36** (2004/05(3)), 1014-1030.

26. J. Wu, The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation, *Nonlinearity*, **18**(1) (2005), 139-154.

27. Z. Wu and C. Xie, Q spaces and Morrey spaces, *J. Funct. Anal.*, **201** (2003), 282-297.

28. J. Xiao, Homothetic variant of fractional Sobolev space with application to Navier-Stokes system, *Dynamic of PDE.*, **2** (2007), 227-245.

29. J. Xiao, Holomorphic Q Class, *Lecture Notes in Math.*, **1767**, Springer, Berlin, 2001.

30. D. Yang and W. Yuan, A new class of function spaces connecting Triebel-Lizorkin spaces and Q spaces, *J. Funct. Anal.*, **255** (2008), 2760-2809.

Pengtao Li
Department of Mathematics
Shantou University
Shantou, Guangdong 515063
P. R. China
E-mail: ptli@stu.edu.cn

Zhichun Zhai
Department of Mathematical and Statistical Sciences
632 CAB
University of Alberta Edmonton
Alberta T6G 2G1
Canada
E-mail: zhichun1@ualberta.ca