ON THE CONVERGENCE OF MULTIPLE FOURIER SERIES OF FUNCTIONS OF BOUNDED PARTIAL GENERALIZED VARIATION

USHANGI GOGINAVA AND ARTUR SAHAKIAN

Abstract. The convergence of multiple Fourier series of functions of bounded partial \(\Lambda\)-variation is investigated. The sufficient and necessary conditions on the sequence \(\Lambda = \{\lambda_n\}\) are found for the convergence of multiple Fourier series of functions of bounded partial \(\Lambda\)-variation.

1. Classes of Functions of Bounded Generalized Variation

In 1881 Jordan [10] introduced a class of functions of bounded variation and applied it to the theory of Fourier series. Hereafter this notion was generalized by many authors (quadratic variation, \(\Phi\)-variation, \(\Lambda\)-variation etc., see [10, 15, 14, 11]). In two dimensional case the class BV of functions of bounded variation was introduced by Hardy [9].

Let \(T := [0, 2\pi]\) and \(J^k = (a^k, b^k) \subset T, \quad k = 1, 2, \ldots, d\).

Consider a measurable function \(f(x)\) defined on \(R^d\) and \(2\pi\)-periodic with respect to each variable. For \(d = 1\) we set

\[
f(J^1) := f(b^1) - f(a^1).
\]

If for any function of \(d - 1\) variables the expression \(f(I^1 \times \cdots \times I^{d-1})\) is already defined, then for a function of \(d\) variables the mixed difference is defined as follows:

\[
f(J^1 \times \cdots \times J^d) := f(J^1 \times \cdots \times J^{d-1}, b^d) - f(J^1 \times \cdots \times J^{d-1}, a^d).
\]

Let \(E = \{I_k\}\) be a collection of nonoverlapping intervals from \(T\) ordered in arbitrary way and let \(\Omega\) be the set of all such collections \(E\). We denote by \(\Omega_n\) the set of all collections of \(n\) nonoverlapping intervals \(I_k \subset T\).

For sequences of positive numbers \(\Lambda^j = \{\lambda^j_n\}_{n=1}^\infty, \quad j = 1, 2, \ldots, d\), the \((\Lambda^1, \ldots, \Lambda^d)\)-variation of \(f\) with respect to index set \(D := \{1, 2, \ldots, d\}\) is
defined as follows:

\[V_{\Lambda^1, \ldots, \Lambda^d}^D(f) := \sup_{\{I_{i,j}\}_{i,j=1}^{s} \in \Omega} \sum_{i_1, \ldots, i_d} \frac{|f(I_{i_1}^1 \times \cdots \times I_{i_d}^d)|}{\lambda_{i_1} \cdots \lambda_{i_d}}. \]

For an index set \(\alpha = \{j_1, \ldots, j_p\} \subset D \) and any \(x = (x^1, \ldots, x^d) \in \mathbb{R}^d \) we set \(\bar{x} := D \setminus \alpha \) and denote by \(x^\alpha \) the vector of \(\mathbb{R}^p \) consisting of components \(x^j, j \in \alpha \), i.e.

\[x^\alpha = (x^{j_1}, \ldots, x^{j_p}) \in \mathbb{R}^p. \]

By \(V_{\Lambda^1, \ldots, \Lambda^p}^\alpha(f, x^\bar{x}) \) and \(f(I_{i,j_1}^1 \times \cdots \times I_{i,j_p}^p, x^\bar{x}) \) we denote respectively the \((\Lambda^1, \ldots, \Lambda^p) \)-variation and the mixed difference of \(f \) as a function of variables \(x^{j_1}, \ldots, x^{j_p} \) over the \(p \)-dimensional cube \(T^p \) with fixed values \(x^\bar{x} \) of other variables. The \((\Lambda^1, \ldots, \Lambda^p) \)-variation of \(f \) with respect to index set \(\alpha \) is defined as follows:

\[V_{\Lambda^1, \ldots, \Lambda^p}^\alpha(f) := \sup_{x^{\bar{x}} \in T^{d-p}} V_{\Lambda^1, \ldots, \Lambda^p}^\alpha(f, x^\bar{x}). \]

Definition 1. We say that the function \(f \) has total Bounded \((\Lambda^1, \ldots, \Lambda^d) \)-variation on \(T^d = [0, 2\pi]^d \) and write \(f \in BV_{\Lambda^1, \ldots, \Lambda^d} \), if

\[V_{\Lambda^1, \ldots, \Lambda^d}(f) := \sum_{\alpha \subset D} V_{\Lambda^1, \ldots, \Lambda^p}^\alpha(f) < \infty. \]

Definition 2. We say that the function \(f \) is continuous in \((\Lambda^1, \ldots, \Lambda^d) \)-variation on \(T^d = [0, 2\pi]^d \) and write \(f \in CV_{\Lambda^1, \ldots, \Lambda^d} \), if

\[\lim_{n \to \infty} V_{\Lambda^1, \ldots, \Lambda^{k-1}, \Lambda_n^{k+1}, \Lambda_n^{k+1}, \ldots, \Lambda^p}^\alpha(f) = 0, \quad k = 1, 2, \ldots, p \]

for any \(\alpha \subset D, \alpha = \{j_1, \ldots, j_p\} \), where \(\Lambda_n^{j_k} := \{\lambda_n^{j_k}\}_{s=n}^{\infty} \).

Definition 3. We say that the function \(f \) has Bounded Partial \((\Lambda^1, \ldots, \Lambda^d) \)-variation and write \(f \in PBV_{\Lambda^1, \ldots, \Lambda^d} \) if

\[PV_{\Lambda^1, \ldots, \Lambda^d}(f) := \sum_{i=1}^{d} V_{\Lambda^i}^{(i)}(f) < \infty. \]

In the case \(\Lambda^1 = \cdots = \Lambda^d = \Lambda \) we denote

\[BV_{\Lambda} := BV_{\Lambda^1, \ldots, \Lambda^d}, \quad CV_{\Lambda} := CV_{\Lambda^1, \ldots, \Lambda^d}, \quad PBV_{\Lambda} := PBV_{\Lambda^1, \ldots, \Lambda^d} \]

and

\[CV_{\Lambda} := V_{\Lambda^1, \ldots, \Lambda^d} \cdot CV_{\Lambda}, \quad PV_{\Lambda}(f) := PV_{\Lambda^1, \ldots, \Lambda^d}(f). \]

If \(\lambda_n \equiv 1 \) (or if \(0 < c < \lambda_n < C < \infty, \quad n = 1, 2, \ldots \)) the classes \(BV_{\Lambda} \) and \(PBV_{\Lambda} \) coincide with the Hardy class \(BV \) and \(PBV \) respectively. Hence it is reasonable to assume that \(\lambda_n \to \infty \) and since the intervals in \(E = \{I_i\} \) are...
ordered arbitrarily, we suppose, without loss of generality, that the sequence \(\{\lambda_n\} \) is increasing. Thus,

\[
1 < \lambda_1 \leq \lambda_2 \leq \ldots, \quad \lim_{n \to \infty} \lambda_n = \infty.
\]

When \(\lambda_n = n \) for all \(n = 1, 2, \ldots \) we say Harmonic Variation instead of \(\Lambda \)-variation and write \(H \) instead of \(\Lambda \) (\(BV_H, PBV_H, CV_H \), etc).

Remark 1. The notion of \(\Lambda \)-variation was introduced by Waterman [14] in one dimensional case, by Sahakian [13] in two dimensional case and by Sablin [12] in the case of higher dimensions. The notion of bounded partial variation (class \(PBV \)) was introduced by Goginava in [6, 7]. These classes of functions of generalized bounded variation play an important role in the theory Fourier series.

Observe, that the number of variations in Definition 1 of total variation is \(2d - 1 \), while the number of variations in Definition 2 of partial variation is only \(d \).

The statements of the following theorem are known.

Theorem A. 1) (Dragoshanski [5]) If \(d = 2 \), then \(BV_H = CV_H \).

2) (Bakhvalov [1]) \(CV_H = \bigcup \Gamma BV_\Gamma \) for any \(d \), where the union is taken over all sequences \(\Gamma = \{\gamma_n\}_{n=1}^\infty \) with \(\gamma_n = o(n) \) as \(n \to \infty \).

3) (Goginava, Sahakian [8]) If \(d = 2 \), then \(PBV_\Lambda \subset BV_H \), provided that

\[
\lambda_n \frac{1}{n^2} < \infty, \quad \lambda_n \frac{1}{n^2} \downarrow 0 \quad \text{and} \quad \sum_{n=1}^\infty \frac{\lambda_n}{n^2} < \infty.
\]

Using the third statement of Theorem A, we have proved in [8] the convergence of double Fourier series of functions of any class \(PBV_\Lambda \) with (2).

To obtain similar result for higher dimensions we need stronger result, since the inclusion \(PBV_\Lambda \subset BV_H \) is not enough in this case (see next section for details).

Theorem 1. Let \(\Lambda = \{\lambda_n\}_{n=1}^\infty \) and \(d \geq 2 \). If

\[
\frac{\lambda_n}{n} \downarrow 0 \quad \text{and} \quad \sum_{n=1}^\infty \frac{\lambda_n}{n^2} \frac{\log^{d-2} n}{n^2} < \infty,
\]

then there exists a sequence \(\Gamma = \{\gamma_n\}_{n=1}^\infty \) with

\[
\gamma_n = o(n) \quad \text{as} \quad n \to \infty,
\]

such that \(PBV_\Lambda \subset BV_\Gamma \).

Proof. Choosing the sequence \(\{A_n\}_{n=1}^\infty \) such that

\[
A_n \uparrow \infty, \quad \frac{\lambda_n A_n}{n} \downarrow 0, \quad \sum_{n=1}^\infty \frac{\lambda_n}{n^2} \frac{\log^{d-2} n A_n^d}{n^2} < \infty,
\]

we set

\[
\gamma_n = \frac{n}{A_n}, \quad n = 1, 2, \ldots
\]
We prove that there is a constant $C > 0$ such that

$$
\sum_{i_1, \ldots, i_p} \left| \frac{f(I^{1}_{i_1} \times \cdots \times I^{p}_{i_p}, x^\alpha)}{\gamma_{i_1} \cdots \gamma_{i_p}} \right| < C \cdot PV_\Lambda(f),
$$

for any $f \in PBV_\Lambda$ and $\alpha := \{i_1, \ldots, i_p\} \subset D$, $\{I^j_{i_j} \}_{j=1}^{k_j} \in \Omega$.

To prove (7) observe, that

$$
\sum_{\sigma} \sum_{i_{s(1)} \leq \cdots \leq i_{s(p)}} \left| \frac{f(I^{1}_{i_1} \times \cdots \times I^{p}_{i_p}, x^\alpha)}{\gamma_{i_1} \cdots \gamma_{i_p}} \right| < \infty,
$$

where the sum is taken over all rearrangements $\sigma = \{\sigma(k)\}_{k=1}^{p}$ of the set $\{1, 2, \ldots, p\}$.

Denoting $M = PV_\Lambda(f)$ and using (6), (5) and (3) we obtain:

$$
\sum_{i_1 \leq i_2 \leq \cdots \leq i_p} \left| \frac{f(I^{1}_{i_1} \times \cdots \times I^{p}_{i_p}, x^\alpha)}{\gamma_{i_1} \cdots \gamma_{i_p}} \right| = \sum_{i_1 \leq i_2 \leq \cdots \leq i_{p-1}} A_{i_1} \cdots A_{i_{p-1}} \sum_{i_p \geq i_{p-1}} \left| \frac{f(I^{1}_{i_1} \times \cdots \times I^{p}_{i_p}, x^\alpha)}{\lambda_{i_p}} \right| \frac{\lambda_{i_p} A_{i_p}}{i_p} \leq M \sum_{i_{p-1}=1}^{\infty} \frac{A_{i_{p-1}}^p \lambda_{i_{p-1}}}{i_{p-1}^2} \frac{1}{i_1 \cdots i_{p-2}} \leq M \sum_{i_{p-1}=1}^{\infty} \frac{A_{i_{p-1}}^p \lambda_{i_{p-1}}}{i_{p-1}^2} \left(\frac{i_{p-1}}{i_1} \right)^{\frac{p-2}{2}} \frac{1}{i_1} \leq M \sum_{n=1}^{\infty} A_n^p \lambda_n \log^{d-2} n \frac{n}{n^2} < \infty.
$$

Similarly we can prove that all other summands in the right hand side of (8) are finite. Theorem \square is proved.

In view of Theorem \mathcal{A}, Theorem \square implies

Corollary 1. If the sequence $\Lambda = \{\lambda_n\}_{n=1}^{\infty}$ satisfies \mathcal{B}, then $PBV_\Lambda \subset CV_H$.

Definition 4. The partial modulus of variation $v_i(n, f)$, $i = 1, \ldots, d$ of a function f are defined by

$$
v_i(n, f) := \sup_{x^\beta} \sup_{\{I_j\} \in \Omega_n} \sum_{j=1}^{n} \left| f(I_j, x^\beta) \right|, \quad \beta = D \setminus \{i\}, \quad n = 1, 2, \ldots.
$$
For functions of one variable the concept of modulus of variation was introduced by Chanturia [2].

Theorem 2. Let \(f \) be defined on \(T^d \) and

\[
\sum_{j=1}^{\infty} \frac{\sqrt{v_i (2^j, f)}}{2^{j/d}} < \infty, \quad i = 1, \ldots, d.
\]

Then there exists a sequence \(\Delta = \{\delta_n\}_{n=1}^{\infty} \) with

\[
\delta_n = o(n) \quad \text{as} \quad n \to \infty,
\]

such that \(f \in BV_\Delta \).

Proof. We use induction on dimension \(d \). We have proved in [8], that in the case \(d = 2 \) the condition (9) implies \(f \in BV_H \), which combined with Theorem A proves Theorem 2 for \(d = 2 \).

Supposing Theorem 2 is true if the dimension is less than \(d \), we prove it for the dimension \(d > 2 \).

According to induction hypothesis it is enough to prove that there exists a sequence \(\delta_n = o(n) \) such that

\[
\sup_{\{I_{ij}^k\}_{i,j=1}^{k} \in \Omega} \sum_{i_1, \ldots, i_d} \left| f \left(I_1^{i_1} \times \cdots \times I_d^{i_d} \right) \right| \frac{\delta_{i_1} \cdots \delta_{i_d}}{|\delta_{i_1} \cdots \delta_{i_d}|} < \infty.
\]

Let the sequence \(\{B_{2^j}\}_{j=1}^{\infty} \) be chosen so that

\[
B_{2^j} \uparrow \infty, \quad \sum_{j=1}^{\infty} B_{2^j} \sqrt{v_i (2^j, f)} \frac{2^{j/d}}{2^{j/d}} < \infty, \quad i = 1, \ldots, d.
\]

Defining

\[
B_n = B_{2^N}, \quad \text{for} \quad 2^N \leq n < 2^{N+1}, \quad N = 0, 1, \ldots,
\]

we set

\[
\delta_n = \frac{n}{B_n}, \quad n = 1, 2, \ldots.
\]

Then we can write

\[
\sum_{i_1, \ldots, i_d} \left| f \left(I_1^{i_1} \times \cdots \times I_d^{i_d} \right) \right| \frac{\delta_{i_1} \cdots \delta_{i_d}}{|\delta_{i_1} \cdots \delta_{i_d}|} = \sum_{i_1, \ldots, i_d} B_{i_1} \cdots B_{i_d} \left| f \left(I_1^{i_1} \times \cdots \times I_d^{i_d} \right) \right| \frac{\delta_{i_1} \cdots \delta_{i_d}}{|\delta_{i_1} \cdots \delta_{i_d}|}
\]

\[
= \sum_{r_1=0}^{\infty} \cdots \sum_{r_d=0}^{\infty} \frac{B_{2^{r_1}}}{2^{r_1}} \cdots \frac{B_{2^{r_d}}}{2^{r_d}} \sum_{i_1=2^{r_1}}^{2^{r_1+1}-1} \sum_{i_d=2^{r_d}}^{2^{r_d+1}-1} \left| f \left(I_1^{i_1} \times \cdots \times I_d^{i_d} \right) \right|.
\]
It is easy to show that
\[
\sum_{i_1=2^{r_1}}^{2^{r_1}+1-1} \ldots \sum_{i_d=2^{r_d}}^{2^{r_d}+1-1} \left| f \left(I_{i_1} \times \ldots \times I_{i_d} \right) \right|
\leq c(d) \prod_{k=1}^{d} 2^{r_k} \sup_{x^\beta} \sup_{I_{i_k}^k \in \Omega_{2^{r_k}}} \sum_{i_k=2^{r_k}}^{2^{r_k}+1-1} \left| f \left(I_{i_k}^k, x^\beta \right) \right|
\]
where \(\beta := D \setminus \{ k \}, k = 1, \ldots, d. \)
Consequently,
\[
\sum_{i_1=2^{r_1}}^{2^{r_1}+1-1} \ldots \sum_{i_d=2^{r_d}}^{2^{r_d}+1-1} \left| f \left(I_{i_1} \times \ldots \times I_{i_d} \right) \right|
= \left[\left(\sum_{i_1=2^{r_1}}^{2^{r_1}+1-1} \ldots \sum_{i_d=2^{r_d}}^{2^{r_d}+1-1} \left| f \left(I_{i_1} \times \ldots \times I_{i_d} \right) \right| \right)^{1/d} \right] \prod_{k=1}^{d} 2^{r_k} (1 - 1/d) \left(\sup_{x^\beta} \sup_{I_{i_k}^k \in \Omega_{2^{r_k}}} \sum_{i_k=2^{r_k}}^{2^{r_k}+1-1} \left| f \left(I_{i_k}^k, x^\beta \right) \right| \right)^{1/d}
\]
\[
= c(d) \prod_{k=1}^{d} 2^{r_k} (1-1/d) \mathcal{V} \left(v_k (2^{r_k}, f) \right).
\]
Combining (11) and (12) we obtain

\[
\sum_{i_1, \ldots, i_d} \frac{\left| f \left(I_{i_1} \times \ldots \times I_{i_d} \right) \right|}{\delta_{i_1} \cdots \delta_{i_d}}
\leq c(d) \sum_{r_1=0}^{\infty} \ldots \sum_{r_d=0}^{\infty} \frac{B_{2^{r_1}, v_1 (2^{r_1}, f)}}{2^{r_1/d}} \cdots \frac{B_{2^{r_d}, v_d (2^{r_d}, f)}}{2^{r_d/d}} < \infty.
\]

Theorem 2 is proved. \(\square \)

2. Convergence of Multiple Fourier Series

The Fourier series of function \(f \in L^1 (T^d) \) with respect to the trigonometric system is the series

\[
S[f] := \sum_{n_1, \ldots, n_d = -\infty}^{+\infty} \widehat{f} (n_1, \ldots, n_d) e^{i(n_1 x + \ldots + n_d x_d)},
\]
where

\[
\widehat{f} (n_1, \ldots, n_d) = \frac{1}{(2\pi)^d} \int_{T^d} f(x^1, \ldots, x^d) e^{-i(n_1 x^1 + \ldots + n_d x_d)} dx^1 \cdots dx^d.
\]
are the Fourier coefficients of f. The rectangular partial sums are defined as follows:

$$S_{N_1,\ldots,N_d}(f; x^1, \ldots, x^d) := \sum_{n_1=-N_1}^{N_1} \cdots \sum_{n_d=-N_d}^{N_d} \hat{f}(n_1, \ldots, n_d) e^{i(n_1 x^1 + \cdots + n_d x^d)}$$

$$= \frac{1}{\pi^d} \int_{T^d} f(x_1, \ldots, x_d) \prod_{s=1}^{d} D_{N_s}(x_s) \, dx_1 \cdots dx_d,$$

where $D_N(t) = \frac{\sin(N+\frac{1}{2})t}{2\sin\frac{t}{2}}$ is the Dirichlet kernel.

In this paper we consider convergence of only rectangular partial sums (convergence in the sense of Pringsheim) of d-dimensional Fourier series. We denote by $C(T^d)$ the space of continuous and 2π-periodic with respect to each variable functions with the norm

$$\|f\|_C := \sup_{(x^1, \ldots, x^d) \in T^d} |f(x^1, \ldots, x^d)|.$$

We say that the point $x := (x^1, \ldots, x^d)$ is a regular point of function f if the following limits exist

$$f(x^1 \pm 0, \ldots, x^d \pm 0) := \lim_{t^1, \ldots, t^d \downarrow 0} f(x^1 \pm t^1, \ldots, x^d \pm t^d).$$

For the regular point $x := (x^1, \ldots, x^d)$ we denote

$$f^*(x^1, \ldots, x^d) := \frac{1}{2^d} \sum f(x^1 \pm 0, \ldots, x^d \pm 0).$$

Definition 5. We say that the class of functions $V \subset L^1(T^d)$ is a class of convergence on T^d, if for any function $f \in V$

1) the Fourier series of f converges to $f^*(x)$ at any regular point $x \in T^d$,

2) the convergence is uniform on any compact $K \subset T^d$, if f is continuous on the neighborhood of K.

The well known Dirichlet-Jordan theorem (see [16]) states that the Fourier series of a function $f(x)$, $x \in T$ of bounded variation converges at every point x to the value $[f(x+0) + f(x-0)]/2$. If f is in addition continuous on T, the Fourier series converges uniformly on T.

Hardy [9] generalized the Dirichlet-Jordan theorem to the double Fourier series and proved that BV is a class of convergence on T^2.

The following theorem was proved by Waterman (for $d = 1$) and Sahakian (for $d = 2$).

Theorem WS (Waterman [14], Sahakian [13]). If $d = 1$ or $d = 2$, then the class BV_H is a class of convergence on T^d.

In [1] Bakhvalov showed that the class BV_H is not a class of convergence on T^d, if $d > 2$. On the other hand, he proved the following

Theorem B (Bakhvalov [1]). The class CV_H is a class of convergence on T^d for any $d = 1, 2, \ldots$

Convergence of spherical and other partial sums of double Fourier series of functions of bounded Λ-variation was investigated in details by Dyachenko [3, 4].

The main result of this paper is the following theorem, that we have proved in [8] for $d = 2$.

Theorem 3. Let $\Lambda = \{\lambda_n\}_{n=1}^{\infty}$ and $d \geq 2$.

a) If

$$
\sum_{n=1}^{\infty} \frac{\lambda_n \log^{d-2} n}{n^2} < \infty,
$$

then PBV_{Λ} is a class of convergence on T^d.

b) If

$$
\frac{\lambda_n}{n} = O\left(\frac{\lambda_{[n^\delta]}}{n^\delta}\right)
$$

for some $\delta > 1$, and

$$
\sum_{n=1}^{\infty} \frac{\lambda_n \log^{d-2} n}{n^2} = \infty,
$$

then there exists a continuous function $f \in PBV_{\Lambda}$, the Fourier series of which diverges at $(0, \ldots, 0)$.

Proof of Theorem 2. Part a) immediately follows from Corollary [1] and Theorem B.

To prove part b) we denote

$$
A_{i_1, \ldots, i_d} := \left[\frac{\pi i_1}{N + 1/2}, \frac{\pi (i_1 + 1)}{N + 1/2} \right] \times \cdots \times \left[\frac{\pi i_d}{N + 1/2}, \frac{\pi (i_d + 1)}{N + 1/2} \right],
$$

$$
W := \{(i_1, \ldots, i_d) : i_d < i_s < i_d + m_i, 1 \leq s < d, 1 \leq i_d \leq N_\delta\},
$$

$$
N_\delta = \left[\left(\frac{N}{2} \right)^{\frac{1}{d}} \right], \quad t_j := \left(\sum_{i=1}^{m_j} \frac{1}{\lambda_i} \right)^{-1}, \quad m_j := \left[j^{\delta} \right],
$$

where $[x]$ is the integer part of x.

It is not hard to see, that for any sequence $\Lambda = \{\lambda_n\}$ satisfying (11) the class $C(T^d) \cap PBV_{\Lambda}$ is a Banach space with the norm

$$
\|f\|_{PBV_{\Lambda}} := \|f\|_C + PV_{\Lambda}(f).
$$
Consider the following function

\[
f_N(x_1, \ldots, x_d) := \sum_{(i_1, \ldots, i_d) \in W} t_{i_d} 1_A(x_1, \ldots, x_d) \prod_{s=1}^d \sin \left((N + 1/2) x_s \right),
\]

where \(1_A(x_1, \ldots, x_d)\) is the characteristic function of the set \(A \subset T^d\).

Let \((i_1, \ldots, i_{k-1}, i_{k+1}, \ldots, i_d)\) be fixed \((k = 1, \ldots, d-1)\). Then it is easy to show that

\[
V_k^\Lambda (f_N) \leq C \cdot t_{i_d} \left(\sum_{i_k=i_d+1}^{i_d+m_{i_d}} \frac{1}{\lambda_{i_k-i_d}} \right) \leq C \cdot t_{i_d} \left(\sum_{i_k=1}^{m_{i_d}} \frac{1}{\lambda_{i_k}} \right) \leq C < \infty.
\]

If \((i_1, \ldots, i_{d-1})\) is fixed, the condition \((i_1, \ldots, i_d) \in W\) implies

\[
\max \{i_d(i_s) : 1 \leq s \leq d-1\} < i_d < \min \{i_s : 1 \leq s \leq d-1\},
\]

where

\[
i_d(i_s) := \min \{i_d : i_d + m_{i_d} > i_s\}.
\]

Consequently, by the definition of the function \(f_N\) we obtain that for any \(s = 1, \ldots, d-1\)

\[
V_d^\Lambda (f_N) \leq C \sum_{i_d=i_d(i_s)+1}^{i_s} \frac{t_{i_d}}{\lambda_{i_d-i_d(i_s)}} \leq C \cdot t_{i_d} \left(\sum_{i_k=1}^{i_d(i_s)-i_d(i_k)} \frac{1}{\lambda_{i_k}} \right) \leq C \cdot t_{i_d(i_s)} \sum_{i_d=1}^{m_{i_d(i_s)}} \frac{1}{\lambda_{i_d}} = C < \infty.
\]

Hence \(f_N \in \text{PBV}_\Lambda\) and

\[
\|f_N\|_{\text{PV}_\Lambda} \leq C, \quad N = 1, 2, \ldots.
\]

Observe, that by (15) we have

\[
\frac{1}{t_j} = \sum_{i=1}^{m_j} \frac{1}{\lambda_i} = \sum_{i=1}^{m_j} \frac{i}{\lambda_i} \leq C \frac{m_j}{\lambda_{m_j}} \log m_j \leq C \frac{j \log j}{\lambda_j}.
\]

Hence

\[
t_j \log j \geq c \frac{\lambda_j}{j}.
\]
Consequently,

\begin{equation}
\pi^d S_N,\ldots, N \left(f_N; 0, \ldots, 0 \right) = \int_{T^d} f_N \left(x^1, \ldots, x^d \right) \prod_{s=1}^{d} D_N \left(x^s \right) dx^1 \cdots dx^d
\end{equation}

\begin{align*}
&= \sum_{(i_1, \ldots, i_d) \in W} t_{i_d} \int_{A_{i_1, \ldots, i_d}} \prod_{s=1}^{d} \sin^2 \left(\frac{N + 1/2}{2} x^s \right) \frac{x^1 \cdots x^d}{2 \sin \left(\frac{N x^s}{2} \right)} dx^1 \cdots dx^d \\
&\geq c \sum_{(i_1, \ldots, i_d) \in W} t_{i_d} \frac{1}{i_1 \cdots i_d} \\
&\geq c \sum_{i_d = 1}^{N} \sum_{i_1 = i_d}^{i_{d+m_i}} \sum_{i_{d-1} = i_d}^{i_{d+m_i}} \frac{1}{i_1 \cdots i_{d-1}} \\
&\geq c \sum_{i_d = 1}^{N} t_{i_d} \log^{d-1} \left(\frac{i_d + m_i}{i_d} \right) \\
&\geq c (\delta - 1)^{d-1} \sum_{i_d = 1}^{N} \frac{t_{i_d} \log i_d \log^{d-2} i_d}{i_d}
\end{align*}

as \(N \to \infty \), according to \((16) \).

By Banach-Steinhaus Theorem, \((17) \) and \((18) \) imply the existence of a continuous function \(f \in PBV_\Lambda \) such that

\[\sup_N |S_{N, \ldots, N}[f, (0, \ldots, 0)]| = \infty. \]

\[\square \]

Corollary 2. a) If \(\Lambda = \{ \lambda_n \}_{n=1}^{\infty} \) with

\[\lambda_n = \frac{n}{\log^{d-1+\varepsilon} n}, \quad n = 1, 2, \ldots \]

for some \(\varepsilon > 0 \), then the class \(PBV_\Lambda \) is a class of convergence on \(T^d \).

b) If \(\Lambda = \{ \lambda_n \}_{n=1}^{\infty} \) with

\[\lambda_n = \frac{n}{\log^{d-1} n}, \quad n = 1, 2, \ldots, \]

then the class \(PBV_\Lambda \) is not a class of convergence on \(T^d \).

The second part of Theorem \(2 \) and Corollary \(1 \) imply

Corollary 3. If the sequence \(\Lambda = \{ \lambda_n \}_{n=1}^{\infty} \) satisfies \((17) \) and \((16) \), then \(PBV_\Lambda \nsubseteq CV_H \).
Theorem 2 and Theorems A and B imply Theorem 4. The set of functions

$$\left\{ f : \sum_{j=0}^{\infty} \frac{d}{2^j/d} v_i (2^j, f) < \infty, \; i = 1, \ldots, d \right\}$$

is a class of convergence on T^d.

Corollary 4. The set of functions

$$\left\{ f : v_i (n, f) = O \left(n^{\alpha} \right), \; i = 1, \ldots, d \right\}$$

is a class of convergence on T^d for any $\alpha \in (0, 1)$.

REFERENCES

[1] Bakhvalov, A. N. Continuity in Λ-variation of functions of several variables and the convergence of multiple Fourier series (Russian). Mat. Sb. 193, 12(2002), 3–20; English transl. in Sb. Math. 193, 11-12(2002), no. 11-12, 1731–1748.

[2] Chanturia, Z. A. The modulus of variation of a function and its application in the theory of Fourier series, Soviet. Math. Dokl. 15 (1974), 67-71.

[3] Dyachenko M. I. Waterman classes and spherical partial sums of double Fourier series, Anal. Math. 21(1995), 3-21

[4] Dyachenko M. I. Two-dimensional Waterman classes and u-convergence of Fourier series (Russian). Mat. Sb. 190 (1999), no.7, 23–40; English transl. in Sb. Math. 190 (1999), no.7-8, 955–972.

[5] Dragoshanskii, O. S. Continuity in Λ-variation of functions of several variables. (Russian) Mat. Sb. 194 (2003), no.7, 57–82; English transl. in Sb. Math. 194 (2003), no.7-8, 1009–1034

[6] Goginava U. On the uniform convergence of multiple trigonometric Fourier series. East J. Approx. 3 (1999), no.5, 253-266.

[7] Goginava U. Uniform convergence of Cesàro means of negative order of double Walsh-Fourier series. J. Approx. Theory 124 (2003), no. 1, 96–108.

[8] Goginava U, Sahakian, A. On the convergence of double Fourier series of functions of bounded partial generalized variation. East J. Approx. 16 (2010), no.2, 109-121.

[9] Hardy G. H. On double Fourier series and especially which represent the double zeta function with real and incommensurable parameters. Quart. J. Math. Oxford Ser. 37 (1906), 53-79.

[10] Jordan C. Sur la series de Fourier. C.R. Acad. Sci. Paris. 92(1881), 228-230.

[11] Marcinkiewicz J. On a class of functions and their Fourier series. Compt. Rend. Soc. Sci. Warsouwe, 26 (1934), 71-77.

[12] Sablin A. I. Λ-variation and Fourier series (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1987), 66–68; English transl. in Soviet Math. (Izv. VUZ) 31 (1987).

[13] Sahakian A. A. On the convergence of double Fourier series of functions of bounded harmonic variation (Russian). Izv. Akad. Nauk Armyan. SSR Ser. Mat. 21 (1986), no.6, 517-529; English transl. in, Soviet J. Contemp. Math. Anal. 21 (1986), no.6, 1-13.

[14] Waterman D. On convergence of Fourier series of functions of generalized bounded variation. Studia Math., 44 (1972), no.1, 107-117.

[15] Wiener N. The quadratic variation of a function and its Fourier coefficients. Massachusetts J. Math., 3 (1924), 72-94.

[16] Zygmund A. Trigonometric series. Cambridge University Press, Cambridge, 1959.
U. Goginava, Department of Mathematics, Faculty of Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia
E-mail address: zazagoginava@gmail.com

A. Sahakian, Yerevan State University, Faculty of Mathematics and Mechanics, Alex Manoukian str. 1, Yerevan 0025, Armenia
E-mail address: sart@ysu.am