CHIRAL PERTURBATION THEORY
AND KAON PHYSICS*

Gerhard Ecker

Inst. Theor. Physik, Univ. Wien
Boltzmanng. 5, A-1090 Wien, Austria

Abstract
A brief survey of applications of chiral perturbation theory to both semileptonic and nonleptonic kaon decays is presented. Special emphasis is given to recent theoretical advances related to semileptonic decays, in particular pion pion scattering and K_{e4} decays. The systematic approach for including isospin violation and electromagnetic corrections in semileptonic kaon decays is discussed for K_{l3} decays.

To appear in the Proceedings of
KAON 2001, Pisa, Italy, June 12 - 17, 2001

* Work supported in part by TMR, EC-Contract No. ERBFMRX-CT980169 (EURODAΦNE).
1 Survey

Chiral perturbation theory (CHPT) sets in where the operator product expansion (OPE) stops (Table 1). Hadronic matrix elements of quark operators are calculated with an effective field theory directly in terms of hadron fields. The theory shares the symmetries of the effective theory of three light quarks, gluons, photon and leptons derived from the Standard Model via the OPE at a scale of the order of m_c. The step from m_c down to M_K entails an enormous loss of information that is encoded in the coupling constants (LECs) of the effective chiral Lagrangian $\mathcal{L}_{\text{eff}}^{\text{SM}}$ in Table 2. All the Lagrangians in Table 2 are used in present-day CHPT calculations of kaon decays.

The OPE leads to the standard classification of K decays: nonleptonic decays correspond to four-quark operators and semileptonic decays are governed by matrix elements of mixed quark-lepton operators. For the actual decays, this correspondence is however not one-to-one. The standard classification applies directly to decays of the type $K \to n\pi$ (nonleptonic; $\mathcal{L}_{G_{FP}^p}^{\Delta S=1}$) and $K \to n\pi + W^*(\to l\nu)$ (semileptonic; \mathcal{L}_{γ^n}). On the other hand, decays of the type $K \to n\pi + \bar{l}l$ (with l either a charged lepton or a neutrino) make up an additional class. In this case, both semileptonic and nonleptonic operators may contribute via their respective effective Lagrangians. To illustrate this class of decays, I consider two prominent examples.

For the decays $K \to \pi\nu\bar{\nu}$, the nonleptonic decay chain $K \to \pi Z^*(\to \nu\bar{\nu})$ induced by $\mathcal{L}_{G_{FP}^p}^{\Delta S=1}$ is strongly suppressed: these decays are almost exclusively given by matrix elements of semileptonic operators and are therefore classified as short-distance dominated. The situation is different for the decays $K \to \pi l^+l^-$ where the nonleptonic mechanism $K \to \pi \gamma^*(\to l\bar{l})$ is important (long-distance...
Table 2: Effective chiral Lagrangian $L_{\text{SM}}^{\text{eff}}$ of the SM relevant for kaon physics. The numbers in brackets denote the numbers of low-energy constants.

$L_{\text{chiral order}}$ (# of LECs)	loop order
$L_{p^2}^2(2) + L_{p^4}^{\text{odd}}(0)$	$L = 0$
+ $L_{G_{p^2}p^2}^{\Delta S=1}(2)$	
+ $L_{e^2p}^{\text{em}}(1) + L_{G_{e^2p}p^4}^{\text{emweak}}(1)$	
+ $L_{p^4}^\text{even}(10) + L_{p^6}^{\text{odd}}(32)$	$L = 1$
+ $L_{G_{s^2p^2}p^4}^{\Delta S=1}(22) + L_{G_{s^2p^2}27p^4}^{\Delta S=1}(23)$	
+ $L_{e^2p}^{\text{emweak}}(14) + L_{G_{e^2p}p^6}^{\text{emweak}}(15) + L_{e^2p}^{\text{leptons}}(4)$	
+ $L_{p^6}^{\text{even}}(90)$	$L = 2$

dominance). Matrix elements of the corresponding semileptonic operators are only relevant for CP violation.

Current CHPT activities in kaon physics

- Systematic higher-order calculations including two-loop amplitudes for semileptonic decays (\rightarrow Sec. 3).
- Dispersion theoretic methods for nonleptonic decays (\rightarrow Colangelo, Paschos).
- Methods for determining low-energy constants (\rightarrow D’Ambrosio, de Rafael).
- CHPT and lattice (\rightarrow Golterman).
- Systematic inclusion of isospin violation and electromagnetic corrections, both for semileptonic (\rightarrow Sec. 3) and nonleptonic decays (\rightarrow Donoghue, Gardner).

Although I will concentrate in the following on semileptonic decays, I want to emphasize the importance of isospin violation and electromagnetic corrections for the dominant (nonleptonic) decays $K \rightarrow 2\pi, 3\pi$. Isospin breaking is estimated to be of the following size in K decays:

1For lack of space, references to the original work are omitted here; instead, I refer to corresponding contributions to these Proceedings.
The effects of $O(m_u - m_d)$ and $O(\alpha)$ are comparable in size and they are small. However, there is a possible strong enhancement in the subdominant $\Delta I = 3/2$ amplitudes because of the $\Delta I = 1/2$ rule, e.g., in the $K \to \pi\pi$ amplitude A_2:

$$A_2^{\text{ind}}/A_2 \sim \frac{M_{K^0}^2 - M_{K^+}^2}{M_K^2} \cdot \frac{A_0}{A_2} \sim 0.35.$$ \hfill (1)

Here, the standard ratio $A_0/A_2 \simeq 22$ (assuming isospin conservation) is used.

In this connection, I want to comment on a recent reanalysis of $K \to 2\pi, 3\pi$ by Cheshkov \cite{1} on the basis of the CHPT amplitudes to $O(p^4)$ \cite{2}. Both the (experimental) isospin amplitudes and slope parameters and the corresponding CHPT quantities assume isospin conservation. Therefore, the observed impressive agreement \cite{1} between theory and experiment may be somewhat elusive and certainly does not imply that isospin violation is negligible. On the contrary, the neglect of isospin breaking probably hides interesting physics in the subdominant $\Delta I = 3/2$ quantities.

2 Semileptonic decays: K_{l4} and $\pi\pi$ scattering

2.1 $\pi\pi$ scattering

The final state interaction of the two pions in K_{e4} decays allows for the extraction of the phase shift difference $\delta_0^0(s) - \delta_1^1(s)$. Recent theoretical work and new experimental results have led to major improvements.

The CHPT amplitudes to $O(p^6)$ have been known for some time \cite{3}. The more recent dispersion theoretic analysis \cite{4} (Roy equations) is a priori completely independent of QCD. With high-energy ($\sqrt{s} \geq 0.8$ GeV) scattering data as input, it yields S and P waves at low energies in terms of only two subtraction constants that can be chosen as the S-wave scattering lengths a_0^0, a_0^2. The phase shifts ($l \leq 1$) and the remaining threshold parameters are then predicted \cite{4} with amazing accuracy in terms of a_0^0, a_0^2.

In the next step, Colangelo et al. \cite{5} matched the Roy solutions to the CHPT amplitudes. With some additional input (most importantly, the LECs l_3, l_4 of $O(p^4)$), the S-wave scattering lengths were determined as

\[
\begin{align*}
 a_0^0 &= 0.220 \pm 0.005 \\
 a_0^2 &= -0.0444 \pm 0.0010
\end{align*}
\] \hfill (2, 3)

fixing in turn the phase shifts at low energies. Comparing successive orders, one finds that the chiral expansion of the $\pi\pi$ amplitude “converges” well. The weak
link in this argument was the standard CHPT value for l_3 that is not beyond discussion. To close this loophole, l_3 was taken as a free parameter to be determined from a fit to the new data from BNL-E865. Including the old data of the Geneva-Saclay experiment, the best fit value for a_0^0 was found to be $a_0^0 = 0.221$, in complete agreement with (2). The dependence on a_0^0 is shown in Fig. 1 together with the available experimental results for the phase shift difference. This agreement in turn corroborates the usual value of l_3 and the standard low-energy expansion scheme corresponding to a large quark condensate. At least for chiral $SU(2)$, the motivation for a generalized scheme with a substantially smaller quark condensate has evaporated.

![Figure 1: Phase shift difference $\delta_0^0 - \delta_1^1$ for different values of a_0^0.](image)

With the level of accuracy reached (both in CHPT and in the dispersive analysis), isospin breaking must be included. This is partly available for $\pi\pi$ scattering but not yet for the actual K_{e4} decays.

2.2 K_{e4} form factors

Whereas the vector form factor H is dominated by the leading contribution of $O(p^4)$ due to the chiral anomaly, there are substantial corrections of $O(p^6)$ to the axial form factors F, G. The impact of those corrections can be seen in the updated values of some of the LECs of $O(p^4)$ collected in Table 3. Although the errors in the last column do not include theoretical uncertainties it is clear that the $O(p^6)$ corrections induce sizable shifts in some of the LECs (L_2, L_5, L_8).
Table 3: Phenomenological values of $L_i^r(M_\rho) \times 10^3$. The new values in the last column are from the work of Amoros et al. [11].

i	1995	ABT 2001
1	0.4 ± 0.3	0.43 ± 0.12
2	1.35 ± 0.3	0.73 ± 0.12
3	−3.5 ± 1.1	−2.35 ± 0.37
5	1.4 ± 0.5	0.97 ± 0.11
7	−0.4 ± 0.2	−0.31 ± 0.14
8	0.9 ± 0.3	0.60 ± 0.18

3 Isospin violation and electromagnetic corrections in K_{l3} decays

The most precise determination of the CKM matrix element V_{us} comes from K_{e3} decays. The present status [12] indicates a possible problem (2.2 σ) for three-generation mixing:

| K_{l3} | $|V_{us}|$ |
|----------|---------------------|
| V_{ud} + unitarity | 0.2196 ± 0.0023 |
| V_{ud} | 0.2287 ± 0.0034 |

Isospin breaking is an essential ingredient [13] for the extraction of V_{us}. However, a complete calculation to $O(p^4, (m_u - m_d)p^2, e^2p^2)$ has been undertaken only recently [14]. The relevant Lagrangians of Table 2 are $L_{pr}^m (n \leq 4)$ and L_{leptons}^{lep}. The calculation of isospin conserving corrections of $O(p^6)$ is also under way [16].

Let me concentrate here on the radiative corrections for K_{l3}^+ decays [14]. For $\alpha = 0$, the decay distribution takes the form

$$A_1^{(0)}(t, u) f_+(t)^2 + A_2^{(0)}(t, u) f_+(t) f_-(t) + A_3^{(0)}(t, u) f_-(t)^2$$

with kinematical functions $A_i^{(0)}(t, u)$ and form factors $f_\pm(t)$ in terms of the Dalitz variables $t = (p_K - p_\pi)^2$, $u = (p_K - p_l)^2$.

Radiative corrections involve the diagrams of Fig. 2 and Bremsstrahlung of soft photons. The final result is a decay distribution of the same form as (4) with

$$f_\pm(t) \rightarrow f_\pm(t, u) \quad f_\pm(t) \rightarrow f_\pm(t, u)$$

$$A_i^{(0)}(t, u) \rightarrow A_i(t, u)$$
The structure dependent corrections involving the interplay of QCD and QED are contained in \(f_\pm(t, u) \) whereas the universal QED corrections (Coulomb part of loop corrections + Bremsstrahlung) appear in the modified kinematical functions \(A_i(t, u) \). The latter depend of course on the experimental conditions.

Using this representation \[14\], the form factors \(f_\pm(t, u) \) can be extracted from the experimental data in a model independent way. This will allow for a more reliable determination of the form factors (\(f_- \) is still poorly known) and also, as a consequence, of the CKM matrix element \(V_{us} \). Numerical results will be available \[14\] when these Proceedings appear in print.

\[\begin{align*}
\text{Figure 2: Radiative corrections for } K_{i3}^+ \text{ decays.}
\end{align*}\]

4 Conclusions

The combination of OPE and CHPT provides a comprehensive framework for the analysis of all \(K \) decays:

- The structure and the renormalization of \(L_{\text{eff}}^{\text{SM}} \) are well understood including electromagnetic corrections.
- Significant advances have been achieved in the analysis of \(\pi\pi \) scattering (related to \(K_{e4} \) decays).
- \(O(\rho^6) \), isospin breaking and electromagnetic corrections are being completed for semileptonic decays.
- More work is needed to determine many of the LECs in order to make the scheme even more predictive.
5 Acknowledgements

I thank Vincenzo Cirigliano and Helmut Neufeld for information about their unpublished work [14].

References

[1] C. Cheshkov, hep-ph/0105131.
[2] J. Kambor, J. Missimer and D. Wyler, Nucl. Phys. B346, 17 (1990); Phys. Lett. B261, 496 (1991).
[3] J. Bijnens et al., Phys. Lett. B374, 210 (1996); Nucl. Phys. B508, 263 (1997).
[4] B. Ananthanarayan et al., hep-ph/0005297.
[5] G. Colangelo, J. Gasser and H. Leutwyler, Nucl. Phys. B603, 125 (2001).
[6] G. Colangelo, J. Gasser and H. Leutwyler, Phys. Rev. Lett. 86, 5008 (2001).
[7] S. Pislak et al. (BNL-E865), hep-ex/0106071; M. Zeller, these Proceedings.
[8] L. Rosselet et al. (Geneva-Saclay), Phys. Rev. D15, 574 (1977).
[9] J. Stern, Nucl. Phys. Proc. Suppl. 64, 232 (1998) and Refs. therein.
[10] M. Knecht and R. Urech, Nucl. Phys. B519, 329 (1998); U.-G. Meißner, G. Müller and S. Steininger, Phys. Lett. B406, 154 (1997) and Err. B407, 454 (1997).
[11] G. Amoros, J. Bijnens and P. Talavera, Nucl. Phys. B585, 293 (2000) and Err. B598, 665 (2001); Nucl. Phys. B602, 87 (2001).
[12] Particle Data Group, Eur. Phys. J. C15, 1 (2000).
[13] H. Leutwyler and M. Roos, Z. Phys. C25, 91 (1984).
[14] V. Cirigliano, H. Neufeld et al., in preparation.
[15] M. Knecht et al., Eur. Phys. J. C12, 469 (2000).
[16] J. Bijnens et al., in preparation.