Effect of peroxiredoxin 6 on total and progressive motility of human spermatozoa after cryopreservation

TIECHENG SUN1,#; LUYANG CHENG2,#; JING MA3,#; SHANJIE ZHOU1; YANDONG ZHANG1; WENDI ZHOU4; SHOULONG DENG5; SHUSONG WANG3,*; TIAN LI1,6,*

1 Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, China
2 Department of Immunology, Basic Medical College, Chengde Medical University, Hebei, 067000, China
3 NHC Key Laboratory of Family Planning and Healthy/Key Laboratory of Reproductive Medicine of Hebei Province, Shijiazhuang, 050051, China
4 Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
5 CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
6 Reproductive Medicine Centre, Peking University Second Affiliated Hospital, Beijing, 100044, China

Key words: Peroxiredoxin 6, cryopreservation, sperm motility, progressive motility

Abstract: Sperm cryopreservation is useful in assisted reproductive technology and male fertility preservation. However, freezing and thawing significantly reduces the total and progressive motility of human spermatozoa. In the present study, we explored the effects of peroxiredoxin 6 (PRDX6) on total and progressive motility of human spermatozoa after cryopreservation. Semen samples of 20 males with normal parameters were collected and frozen in media supplemented with different concentrations of PRDX6 (0 mM, 10^{-5} mM, 10^{-7} mM, and 10^{-9} mM, respectively). Post-thaw total and progressive motility of sperms were measured. The results showed that in comparison with 0 mM, the concentrations of 10^{-5} mM, 10^{-7} mM, and 10^{-9} mM of PRDX6 all significantly improved total motility and progressive motility of sperms (p < 0.05). The 10^{-7} mM of PRDX6 showed the best performance. In conclusion, the supplementation of PRDX6 helps to maintain the total and progressive motility of human spermatozoa.

Introduction

Human sperm cryopreservation is a simple and practical approach that has been widely used in the preservation of male reproductive capacity. It serves as a potential method for some cancer patients who need to preserve their fertility before chemotherapy or radiotherapy (Dohle, 2010). In addition, donor semen stored in human sperm bank is clinically widely used in artificial insemination and in vitro fertilization (Daudin et al., 2015; Nangia et al., 2013). However, cryopreservation has been shown to negatively affect sperm motility/viability, membrane stability, and the fertilization capacity of oocytes (Ferrari et al., 2016; Nijs et al., 2009; O’Connell et al., 2002; Ozkavukcu et al., 2008).

Peroxiredoxins (PRDXs) have been widely used as antioxidant enzymes (Fisher, 2019; Perkins et al., 2015; Rhee, 2016). Peroxiredoxin 6 (PRDX6), as a unique member of the PRDX family, has three enzymatic activities of peroxidase, phospholipase A2 (PLA2), and acyltransferase (Feinstein, 2019; Fisher et al., 2016). It can translocate to damaged mitochondria, especially those with antioxidant and anti-apoptosis features (Fisher, 2019). It is reported that the PRDX6 level and total spermatozoa counts were lower in the seminal plasma of infertile men than those in healthy donors (Gong et al., 2012). Therefore, PRDX6 is a major factor that protects sperm motility, viability, and DNA integrity (O’Flaherty, 2018).

To date, there are few studies about the effects of PRDX6 on sperm quality. The protective effects of PRDX6 on human spermatozoa after thawing have not been reported. This study aims to evaluate the protective effect of PRDX6 on human sperm quality after cryopreservation.

Materials and Methods

Subjects

A total of 20 healthy males from the Reproductive Medical Center in Peking University International Hospital were
enrolled in this study. Semen samples were collected after sexual abstinence for 2–7 days. This study was approved by the Ethics Committees of Peking University International Hospital. All subjects signed informed consent.

Cryopreservation and thawing of human spermatozoa

The samples were subdivided into four groups and cryopreserved in SpermFreeze Medium (Irvine Scientific, USA). Briefly, after semen liquefaction, all samples were diluted 1:1 with SpermFreeze medium supplemented with 0 mM, 10^{-5} mM, 10^{-7} mM, and 10^{-9} mM of PRDX6 (Sigma-Aldrich, USA). The samples were placed 5–10 cm above the surface of liquid nitrogen for 30 min and then kept in liquid nitrogen. After cryopreservation for two weeks, semen samples were taken out, immediately thawed at room temperature for 1 min and then incubated in a water bath at 35 ± 2°C for another 30 s. Finally, total motility, progressive motility (PR), and morphology of sperms were assessed within 30 min after thawing.

Measurement of sperm motility

The sperm motility was analyzed by a computer-assisted sperm analysis program (CASA, WLJY-9000, China), using pre-cryopreservation and post-thaw samples. Briefly, 10 μL of each sample was mixed with the dye and dropped onto the slide. No less than 200 spermatozoa in each sample were counted. The percentage of stained and unstained spermatozoa was calculated on each slide under a phase-contrast microscope (Sun et al., 2018). Sperm motility parameters, including total motility, PR, nonprogressive motility (NP), and immobility (IM), were recorded. Each experiment was repeated at least three times.

Statistical Analyses

SPSS 19.0 software (IBM Corp.) was used for statistical analysis. Data were expressed as mean ± SD and analyzed using Student’s paired t-test. A value of $p < 0.05$ was considered statistically significant.

Results

Characteristics of the study population

The characteristics of 20 males, as well as their fresh semen samples, were presented in Tab. 1. All characteristics of semen (volume, concentration, PR, NP, total motility, normal morphology) were normalized according to the 5th edition of WHO Laboratory Manual for the Examination and Processing of Human Semen (Shu et al., 2013).

Effects of PRDX6 on sperm total motility, PR, and NP after cryopreservation

To explore the effects of PRDX6, we treated the sperm samples with different concentrations of PRDX6 (0 mM, 10^{-5} mM, 10^{-7} mM, and 10^{-9} mM) and tested the sperm activity after cryopreservation. We showed that activities of PR, NP, and total motility, were significantly reduced after cryopreservation compared to the fresh semen ($p < 0.05$) (Tab. 2). Total motility and PR of PRDX6-treated samples were significantly different compared to those of precryopreservation and post-thawing without PRDX6 treatment ($p < 0.05$) (Tab. 2). These results suggest that PRDX6 improves total motility and PR of sperm.

Determination of the optimum concentration of PRDX6 for protecting sperm total motility and PR after cryopreservation

We further investigated the optimum concentration of PRDX6 for protecting sperm total motility and PR after cryopreservation. We found that the difference in sperm total motility at 10^{-7} mM concentration was significant compared to the other two dosages ($p < 0.05$) (Fig. 1). In contrast, there were no statistical differences among 0 mM, 10^{-5} mM, and 10^{-9} mM PRDX6 treatments (Fig. 2). Overall, these results indicate that 10^{-7} mM is the optimum concentration of PRDX6 for protecting sperm total motility and PR after cryopreservation.

Discussion

In the past few decades, semen cryopreservation is usually used in male fertility preservation and assisted reproductive technology. However, sperm motility gets impaired during the freezing-thawing process. Moreover, the freezing-thawing also influences early embryo development and decreases clinical pregnancy rates in assisted reproductive technology (Ferrari et al., 2016; Nijs et al., 2009; O’Connell et al., 2002; Ozkavukcu et al., 2008).

Sperm motility of post-thaw semen is decreased compared to fresh semen (Biagi et al., 2019; Meihaisen et al., 2020; Pariz et al., 2019). The cryopreserved spermatozoa have also been found to adversely affect assisted reproductive outcomes (Depalo et al., 2016; Wang et al., 2009). This study found that PRDX6 had a very good protective effect on human spermatozoa. Our findings show, for the first time, that PRDX6 can act as a cryoprotectant to maintain high total motility and PR of human spermatozoa.

Many studies have shown that the reactive oxygen species (ROS) generation may be the main disadvantage of sperm cryopreservation, which, however, can be relieved by antioxidants (Banihani et al., 2014; Deng et al., 2017). PRDX6 is the only antioxidant present in seminal plasma with wide subcellular distributions (plasma membrane, mitochondria, cytosol, nucleus, and endoplasmic reticulum) (Gong et al., 2012; Rhee et al., 2005; Wood et al., 2003). Therefore, it is an essential component of tissues and cells. In subfertile Prdx6−/− male mice, sperm motility was lower than that in the C57BL/6j wild-type controls due to the inhibition of energy-generating enzymes and the thiol

TABLE 1

Characteristics of the subjects and the semen samples before cryopreservation

Characteristics	Male age (y)	Volume (ml)	Concentration (mM)	Progressive motility, PR (%)	Non-progressive motility, NP (%)	Total motility (%)	Normal morphology (%)
	31.62 ± 4.62	3.15 ± 1.32	76.86 ± 10.45	53.46 ± 15.65	14.71 ± 7.41	68.17 ± 17.98	4.67 ± 1.06

324 TIECHENG SUN et al.
oxidation of tubulin (Moawad et al., 2017). This is also consistent with our observations that PRDX6 exerted its protective effect on total motility and PR of freeze-thawing sperm through its antioxidant properties.

Spermatozoa are sensitive to high levels of ROS that cause lipid peroxidation in sperm (Rao et al., 1989). Many studies showed that both peroxidase and iPLA2 activities of PRDX6 are essential to control ROS levels in human spermatozoa (O’Flaherty, 2014; O’Flaherty and Souza, 2011; Zini et al., 1993). A few other studies revealed the protective role of PRDX6 against ROS in a dose-dependent manner (Fisher, 2019; Moawad et al., 2017; O’Flaherty and Souza, 2011). We observed a similar protective role of PRDX6 in this study, suggesting that PRDX6 might act as a ROS scavenger and a human sperm cryoprotectant. In addition, we found that the optimum concentration of PRDX6 was 10^{-7} mM.

In conclusion, supplementation of PRDX6 to human spermatozoa freezing medium could improve total sperm motility and PR. Further studies regarding the effects of

TABLE 2

Effect of different PRDX6 concentrations on sperm total motility, PR, and NP after cryopreservation

Groups (PRDX6 concentration)	Total motility	Progressive motility (PR)	Non-progressive motility (NP)
Pre-cryopreservation			
Control	67.30 ± 13.55	54.96 ± 10.44	12.35 ± 6.14
Post-thawing			
0 mM	16.07 ± 10.44	13.58 ± 9.90	2.60 ± 1.73
10^{-5} mM	19.96 ± 13.95	16.67 ± 13.16	3.29 ± 1.87
10^{-7} mM	29.06 ± 18.96	23.87 ± 18.38*#	3.9 ± 1.89
10^{-9} mM	24.71 ± 14.02	21.70 ± 12.90	3.01 ± 1.40

The average values for series of experiments are given and showed as means ± SD.

*There is a significant difference between the data of post-thawing and pre-cryopreservation ($p < 0.05$).

**there is a significant difference between the data of post-thawing samples with PRDX6 treatment and post-thawing samples without PRDX6 treatment ($p < 0.05$).

FIGURE 1. Effect of different PRDX6 concentrations on sperm total motility. In the control (fresh) group, the spermatozoa were counted directly without PRDX6 supplementation. The final concentration of PRDX6 were 0, 0.001, 0.01, 0.1, and 1 mM, respectively. Data are the mean ± SD from three separate experiments. *$p < 0.01$ compared to other groups; **$p < 0.05$, compared to 0 mM group.

FIGURE 2. The optimum concentration of PRDX6 on sperm PR and NP after cryopreservation. (A): progressive motility (PR); (B): non-progressive motility (NP). In the 0 mM-group, the spermatozoa were frozen in medium without PRDX6 supplementation. The other groups of PRDX6 were 0.001, 0.01, 0.1, and 1 mM, respectively. Data are the mean ± SD from three separate experiments. *$p < 0.05$ compared to 0 mM group.
PRDX6 on improving the integrity of the plasma membrane and mitochondrial membrane will be conducted to better understanding the mechanisms of PRDX6.

Acknowledgement: We thank Beijing Chunfenglv Biomedical Technologies Inc. for editing this manuscript. We apologize to some authors for not citing their interesting work. Our choice was not intended to be exclusive. The authors also thank Dr. Xi Qin for her continuous support.

Availability of Data and Materials: The datasets used or analyzed during the current study are available from the corresponding authors on reasonable request.

Funding Statement: This work was supported by Peking Post-doctoral Research Fund (EE 2019-50), Peking University International Hospital Research Funds (No. YN2019QN13), and NHC Key Laboratory of Family Planning and Healthy/key laboratory of reproductive medicine of Hebei provincial (SZ-202006).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

References

Banhani S, Agarwal A, Sharma R, Bayachou M (2014). Cryoprotective effect of L-carnitine on motility, vitality and DNA oxidation of human spermatozoa. Andrologia 46: 637–641. DOI 10.1111/and.12130.

Biagi M, Noto D, Corsini M, Baini G, Cerretani D, Cappelucci G, Moretti E (2019). Antioxidant effect of the Castanea sativa Mill. leaf extract on oxidative stress induced upon human spermatozoa. Oxidative Medicine and Cellular Longevity 2019: 1–9. DOI 10.1155/2019/8926075.

Daudin M, Rives N, Walschaerts M, Drouineaud V, Szeriman E, Kosciniski I, Eustache F, Saia-Magnan J, Papaxanthos-Roche A, Cabry-Goubet R, Brugnon F, Le Lannou D, Barthelemy C, Rigot JM, Freour T, Berthaut I, Giscard Koscinski I, Eustache F, Saias-Magnan J, Papaxanthos-Roche A, Cabry-Goubet R, Brugnon F, Le Lannou D, Barthelemy C, Rigot JM, Freour T, Berthaut I, Giscard Koscinski I, Eustache F, Saias-Magnan J, Papaxanthos-Roche A, Cabry-Goubet R, Brugnon F, Le Lannou D, Barthelemy C, Rigot JM, Freour T, Berthaut I, Giscard Koscinski I, Eustache F, Saias-Magnan J, Papaxanthos-Roche A, Cabry-Goubet R, Brugnon F, Le Lannou D, Barthelemy C, Rigot JM, Freour T, Berthaut I, Giscard

Deng SL, Sun TC, Yu K, Wang ZP, Zhang BL, Zhang Y, Wang XX, Lian ZX, Liu YX (2017). Melatonin reduces oxidative damage and upregulates heat shock protein 90 expression in cryopreserved human semen. Free Radical Biology and Medicine 113: 347–354. DOI 10.1016/ijffa.2017.10.324.

Depalo R, Falagario D, Masciandaro P, Nardelli C, Vacca MP, Capuano P, Specchia G, Battaglia M (2016). Fertility preservation in males with cancer: 16-year monocentric experience of sperm banking and post-thaw reproductive outcomes. Therapeutic Advances in Medical Oncology 8: 412–420. DOI 10.1177/1758834016650078.

Dohle GR (2010). Male infertility in cancer patients: review of the literature. International Journal of Urology 17: 327–331. DOI 10.1111/j.1442-2042.2010.02484.x.

Feinstein S (2019). Mouse models of genetically altered peroxiredoxin 6. Antioxidants 8: 77. DOI 10.3390/antiox8040077.

Ferrari S, Paffoni A, Filippi F, Busnelli A, Vegetti W, Somigliana E (2016). Sperm cryopreservation and reproductive outcome in male cancer patients: a systematic review. Reproductive BioMedicine Online 33: 29–38. DOI 10.1016/j.rbmo.2016.04.002.

Fisher AR (2019). Antioxidants special issue: peroxiredoxin 6 as a unique member of the peroxiredoxin family. Antioxidants 8: 107. DOI 10.3390/antiox8040107.

Fisher AR, Dodia C, Sorokina EM, Li H, Zhou S, Raabe T, Feinstein SI (2016). A novel lysophosphatidylcholine acyl transferase activity is expressed by peroxiredoxin 6. Journal of Lipid Research 57: 587–596. DOI 10.1194/jlr.M064758.

Gong S, San Gabriel MC, Zini A, Chan P, O’Flaherty C (2012). Low amounts and high thiol oxidation of peroxiredoxins in spermatozoa from infertile men. Journal of Andrology 33: 1342–1351. DOI 10.2164/androl.111.016162.

Mehaens GMK, Partyka A, Ligocka Z, Nizański W (2020). Cryoprotective effect of melatonin supplementation on post-thawed rooster sperm quality. Animal Reproduction Science 212: 106238. DOI 10.1016/j.anireprosci.2019.106238.

Moawad AR, Fernandez MC, Scarlata E, Dodia C, Feinstein SI, Fisher AB, O’Flaherty C (2017). Deficiency of peroxiredoxin 6 or inhibition of its phospholipase A(2) activity impair the in vitro sperm fertilizing competence in mice. Scientific Reports 7: 1506. DOI 10.1038/s41598-017-13411-2.

Nangia AK, Krieg SA, Kim SS (2013). Clinical guidelines for sperm cryopreservation in cancer patients. Fertility and Sterility 100: 1203–1209. DOI 10.1016/j.fertnstert.2013.08.054.

Njis M, Creemers E, Cox A, Janssen M, Vanheusden E, Castro-Sanchez Y, Thijis H, Ombelet W (2009). Influence of freeze-thawing on hyaluronic acid binding of human spermatozoa. Reproductive BioMedicine Online 19: 202–206. DOI 10.1016/S1472-6483(10)60073-9.

O’Connell M, Mcclure N, Lewis SE (2002). The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Human Reproduction 17: 704–709. DOI 10.1093/humrep/17.3.704.

O’Flaherty C (2014). Peroxiredoxins: hidden players in the antioxidant defence of human spermatozoa. Basic and Clinical Andrology 24: 1. DOI 10.1186/2051-4190-24-1.

O’Flaherty C (2018). Peroxiredoxin 6: the protector of male fertility. Antioxidants 7: 173. DOI 10.3390/antiox7120173.

O’Flaherty C, Souza ARD (2011). Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biology of Reproduction 84: 238–247. DOI 10.1095/ bioirep.110.085712.

Ozkavukcu S, Erdemli E, Isik A, Oztuna D, Karahuseyinoglu S (2008). Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. Journal of Assisted Reproduction and Genetics 25: 403–411. DOI 10.1007/s10815-008-9232-3.

Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA (2015). Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends in Biochemical Sciences 40: 435–445. DOI 10.1016/j.tibs.2015.05.001.
Rao B, Soufi JC, Martin M, David G (1989). Lipid peroxidation in human spermatozoa as related to midpiece abnormalities and motility. *Molecular Reproduction & Development* **24**: 127–134.

Rhee SG (2016). Overview on Peroxiredoxin. *Molecules and Cells* **39**: 1–5. DOI 10.14348/molcells.2016.2368.

Rhee SG, Chae HZ, Kim K (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. *Free Radical Biology and Medicine* **38**: 1543–1552. DOI 10.1016/j.freeradbiomed.2005.02.026.

Shu JH, Feng GX, Li J, Li JX, Gan XY, Zhang B, Zhou H, Liu Y (2013). Predictive value of sperm morphology according to WHO laboratory manual for the examination and processing of human semen (5th Ed.) on the outcomes of IVF-ET. *National Journal of Andrology* **19**: 414.

Sun TC, Zhang Y, Li HT, Liu XM, Yi DX, Tian L, Liu YX (2018). Sperm DNA fragmentation index, as measured by sperm chromatin dispersion, might not predict assisted reproductive outcome. *Taiwanese Journal of Obstetrics and Gynecology* **57**: 493–498. DOI 10.1016/j.tjog.2018.06.003.

Wang JG, Douglas NC, Prosser R, Kort D, Choi JM, Sauer MV (2009). Optimization of IVF pregnancy outcomes with donor spermatozoa. *Journal of Assisted Reproduction and Genetics* **26**: 83–91. DOI 10.1007/s10815-008-9291-5.

Wood ZA, Poole LB, Karplus PA (2003). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. *Science* **300**: 650–653. DOI 10.1126/science.1080405.

Zini A, Lamirande ED, Gagnon C (1993). Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. *International Journal of Andrology* **16**: 183–188. DOI 10.1111/j.1365-2605.1993.tb01777.x.