Extracellular Vesicles Derived from Gut Microbiota, Especially Akkermansia muciniphila, Protect the Progression of Dextran Sulfate Sodium-Induced Colitis

Chil-sung Kang1, Mingi Ban1, Eun-Jeong Choi1, Hyung-Geun Moon1, Jun-Sung Jeon1, Jae-Kyum Kim1, Soo-Kyung Park2, Seong Gyu Jeon1, Tae-Young Roh1, Seung-Jae Myung2, Yong Song Gho1,*, Yoon-Keun Kim1,*, June 5, 2013; Accepted August 31, 2013; Published October 24, 2013

Abstract

Gut microbiota play an important part in the pathogenesis of mucosal inflammation, such as inflammatory bowel disease (IBD). However, owing to the complexity of the gut microbiota, our understanding of the roles of commensal and pathogenic bacteria in the maintenance of immune homeostasis in the gut is evolving only slowly. Here, we evaluated the role of gut microbiota and their secreting extracellular vesicles (EV) in the development of mucosal inflammation in the gut. Experimental IBD model was established by oral application of dextran sulfate sodium (DSS) to C57BL/6 mice. The composition of gut microbiota and bacteria-derived EV in stools was evaluated by metagenome sequencing using bacterial common primer of 16S rDNA. Metagenomics in the IBD mouse model showed that the change in stool EV composition was more drastic, compared to the change of bacterial composition. Oral DSS application decreased the composition of EV from Akkermansia muciniphila and Bacteroides acidificaciens in stools, whereas increased EV from TM7 phylum, especially from species DQ777900_s and AJ400239_s. In vitro pretreatment of A. muciniphila-derived EV ameliorated the production of a pro-inflammatory cytokine IL-6 from colon epithelial cells induced by Escherichia coli EV. Additionally, oral application of A. muciniphila EV also protected DSS-induced IBD phenotypes, such as body weight loss, colon length, and inflammatory cell infiltration of colon wall. Our data provides insight into the role of gut microbiota-derived EV in regulation of intestinal immunity and homeostasis, and A. muciniphila-derived EV have protective effects in the development of DSS-induced colitis.

Introduction

Inflammatory bowel disease (IBD) is a disease referring to the chronic or recurring immune response and inflammation of the intestines [1]. IBD comprises of two major types Crohn’s disease and ulcerative colitis (UC). The cause of IBD has been elusive until recent evidence gave substantial evidence regarding the relationship between gut microbiota and the regulation of intestinal immunity [2]. Currently, the pathogenesis of IBD is attributed to an inappropriate and continuing immune response to normal commensal bacteria in genetically susceptible individuals [3]. Microbiota, a diverse collection of microorganisms, appears to be a source of antigens that the immune system responds to thus inducing inflammation [4]. The specific antigenic properties of microbiota and the exact mechanisms involved have yet to be identified.

In normal individuals, gut microbiota and host create a symbiotic relationship. The intestine is an open ecological system that is constantly exposed to 500 to 1,000 species of commensal bacteria [5]. It provides a suitable environment that accommodates many flourishing gut microbiota communities of approximately $10^{14}$ organisms [6]. In return the microbiota acts as moderators of a healthy epithelial gut barrier by participating in several functions, including metabolic activities involved in salvaging energy and absorbing nutrients, trophic effects on the intestinal epithelial, promotion of gut maturation and integrity, maintenance of intestinal immune homeostasis, and defense against pathogenic bacteria [7]. Through a comprehensive culture-independent metagenomic analysis, increasing evidence has been found that there are significant differences in the composition of microbiota in IBD patients and healthy individuals [8]. Further investigation may present clues to causative and/or protective features of microbiota in relation to IBD.

A key part to the puzzle may lie in the mechanisms of crosstalk between microbiota and host that are involved in both health and disease. Bacteria produce extracellular vesicles (EV), including gut
microbiota [9]. Communication of Gram-negative bacteria is commonly believed to occur through secretion of soluble mediators and EV, also called by outer membrane vesicles (OMV) [10]. Recent evidence also supports Gram-positive bacteria to secrete EV similar to Gram-negative bacteria [11]. Collectively, EV from both Gram-positive and Gram-negative bacteria may have a dualistic character regarding the host, some proving to be beneficial while others detrimental. Accumulating evidence gives support to the hypothesis that EV are involved in the mechanisms of immunity and disease.

To our knowledge, studies on stool-derived EV have not been reported yet. Moreover, there are no tracing data using bacterial metagenomics. In the present study, we hypothesized that the gut microbiota-derived EV are the key in modulating intestinal homeostasis and dysregulation. Here, we provide evidence that shows microbiota-derived EV to play a pivotal role in the pathogenesis of IBD and microbiota-derived EV is an important mediator in the maintenance of gut homeostasis.

Results

Characterization of stool EV from a dextran sulfate sodium (DSS) colitis mouse model

Compared to other strains, C57BL/6 strain of mice shows a higher susceptibility to DSS-induced colitis [12]. We administered 3% DSS solution to female C57BL/6 mice for a period of 5 days, and then evaluated disease phenotypes (Fig. 1A). Starting from the 6th day, mice treated with DSS began to lose weight rapidly so that by day 8, the DSS treated mice showed an approximate 20% loss of their initial body weight; the control mice showed no significant change in weight. Compared to the average control-group colon length of 8 cm, the average colon length of the 3% DSS group, approximately 5 cm, was significantly shorter. Also, disease activity index (DAI) score of the DSS group began to increase from day 4 and rose to value of 3 by day 6. Collectively, effective induction of colitis was achieved by administration of 3% DSS solution to female C57BL/6 mice.

For the characterization of the gut microbe-derived fecal EV, the EV collected daily from day 0 to day 5 were measured using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). TEM demonstrated the vesicular shape of the samples (Fig. 1B). NTA showed that fecal EV constituted from various origins, which explain the slight variation of average size (Fig. 1C). Average protein yield and the protein pattern of stool-derived EV were analyzed for the protein composition. As the days progress from D1 to D5, there was an increase of stool-derived EV protein yield (Fig. 1D) and protein bands in SDS-PAGE changed (Fig. 1E) indicating a change in composition of the fecal EV.

The proportion of bacteria and bacteria-derived EV in stools

Metagenomic analysis was used to evaluate the proportion of bacteria and bacteria-derived EV in large intestines. Stool samples were used to indirectly evaluate the proportion of bacteria and bacteria-derived EV in large intestines. Since fecal EV comprise of both host and bacteria derived EV, we amplified the EV using indigenous 16S rDNA to exclude host cell-derived EV. Then, the bacteria and bacteria-derived EV were assigned operational taxonomic unit (OUT) using the amplified 16S rDNA. Over a 1000 bacterial OTU were detected; however, EV OTU stayed well below 500 (Fig. 2A). This finding suggests that the intestines are host to a great diversity of bacteria but not all these bacteria produce EV, consequently bacteria-derived EV in the stools yielding a lower diversity than its source bacteria.

The composition of fecal bacteria and EV collected on Day 0 and Day 5 were compared at taxonomic levels. In the phylum level (Fig. 2B), there was a minor change in bacterial composition, reflected by 16S rDNA sequencing. Actinobacteria increased from 11.1% to 18.5%, Bacteroidetes decreased from 39.7% to 33.6%, TM7 decreased from 12.0% to 7.9%, and Firmicutes, Proteobacteria, Tenericutes, Verrucomicrobia stayed relatively the same. Interestingly, it was noted that compared to the slight shifts of bacterial composition, stool-derived EV 16S rDNA showed more drastic changes. Bacteroides decreased from 48.0% to 22.6% in the first set and 39.4% to 4.5% in the second set; Verrucomicrobia 26.1% to 0.5% and 28.2% to 0.2%, TM7 increased from 14.3% to 56.5% in the first set and 9.6% to 56.5% in the second set. The following showed less dramatic changes compared to the above: Firmicutes, 8.6% to 6.1% and 0.6% to 0.6%; Proteobacteria 2.6% to 13.8% and 22.0% to 29.2%; Tenericutes 0.2% to 0.4% and 0.0% to 0.8%. Actinobacteria EV showed almost no change. Even though bacteria composition changed with induction of colitis, in comparison the composition of fecal EV showed a more drastic change.

In the level of genus and species, similar to the phylum level, although bacteria showed shifts in composition, the change in bacterial composition was more drastic (Fig. 2C and 2D). For the level of genus and species, the vast diversity made it difficult to indicate all the genus and species thus there was a cut-off of 1% bacterial occupancy. In the genus level (Fig. 2C), bacterial composition that increased in IBD included DQ532165_g, Bifidobacterium, Bacteroides, Akkermansia, Prevotella, and EF406806_g. In contrast, EU381732_g, EU381732_f_uc, Erysipelotrichi_g, EF603943_g, Lactobacillus, DQ268408_f, EF602759_g, EF406830_g, and EF602759_f, were decreased in the disease state. As for the composition of bacteria-derived EV, DSS increased EU381732_g, EU381732_f, EF406830_g, and Brevundimonas in one set; EU381732_g, EU381732_f, and EF406806_g in another set. In contrast, DSS decreased EV from Bacteroides, Akkermansia, and EF602759_g in both sets. In terms of species level (Fig. 2D), DSS increased bacterial composition of Bifidobacterium pseudolongum, A1993113_s, DQ532165_g, and DQ815942_s, whereas decreased that of DQ779900_s, EU381732_g, Erysipelotrichi_g, and EF602759_f. EV 16S rDNA that increased in stools included DQ779900_s, AF400289_s, EU381732_g, EU381732_f, and DQ532165_g in both sets, and Brevundimonas in one set. In contrast, oral application of 3% DSS for 5 days decreased EV from Bacteroides acidifaciens (27.7% to 2.3% and 31.3% to 0.5%), Akkermansia muciniphila (25.1% to 0.4% and 27.4% to 0.2%), and EU503532_s (11.6% to 0.3% and 2.6% to 0.2%) in both sets.

The proportion of bacteria and bacteria-derived EV in small intestinal fluids

For the characterization of EV in the small intestines, EV were isolated from the small intestinal fluids on days 0 and 5. TEM confirmed the vesicular shape of the EV, and protein bands in SDS-PAGE were similar between small intestinal EV on days 0 and 5 (Fig. 3A).

Metagenome analysis was used to evaluate the proportion of bacteria and bacteria-derived EV in small intestines. Over a 500 bacterial OTU were detected; however, EV OTU stayed below 300 (Fig. 3B). This finding suggests that the small intestines are also host to a great diversity of bacteria, but not all these bacteria produce EV. The composition of bacteria and EV in small intestines collected on Day 0 and Day 5 were compared at taxonomic levels. In the phylum level, there was a minor change in bacterial and EV compositions on days 0 and 5; the proportion of Firmicutes, Proteobacteria, and Bacteroides phyla on days 0 and 5
was 57.7% and 64.5%, 20.0% and 21.9%, and 22.0% and 11.4%, respectively; however, the phylum Proteobacteria was the main source of EV (97.1% and 95.5%) on days 0 and 5 (Fig. 3C).

In genus level (Fig. 3D), bacteria showed minor shifts in composition. Predominant bacteria on both days were *Turibacter* (54.2% and 54.1%), *Pseudomonas* (16.5% 15.3%), and EF406806.g
Figure 2. The composition of bacterial and bacteria-derived EV in stools following 3% DSS administration. For all figures, stool bacteria and EV were isolated from mice before (D0) and 5 days (D5) after 3% DSS oral administration (each group = 5). As for EV metagenomics, two independent experiments were performed. (A) Operational taxonomic units (OTUs) using Roche 454 GS FLX Titanium. For figures (B)–(D), the Gut Microbiota EV and IBD

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e76520
Selection of candidate bacteria-derived EV based on metagenomics

In order to visualize the distribution of bacteria and bacteria-derived EV in stools, phylogenetic trees were drawn (Fig. 4A). The branches were divided according to the similarity of their sequences. The distribution and occupation of bacteria-derived 16S rDNA remained relatively unchanged. The level of EV-derived 16S rDNA showed greater differences, compared to bacterial 16S rDNA.

For statistical analysis of significant change in species composition, principal component analysis (PCA) was performed (Fig. 4B). At a confidence interval of 95%, any score outside the dotted line in the graph reflects statistical significance. 15 species were shown to have changed at a statistically significant level. Induction of colitis similar to UC caused a greater shift in composition of bacteria-derived EV in large intestines compared to the minor shifts in composition of bacteria suggesting a stronger association of IBD and EV from the gut microbiota. EV from 7 bacteria higher than a cut-off of 1% occupancy were recorded, whereas EV from species like A. muciniphila, A. pseudoalter, P. trivialis, B. acidifaciens, and E. coli occupied higher than 1% of total EV; among these, EV from P. cedrina decreased, whereas EV from P. extremadurensis, P. panacis, and B. vesicularis mildly increased in the disease state.

Discussion

Recently, we are flooded with evidence linking gut microbiota and intestinal immunity [13–15]. Research shows a causal relationship of dysbiosis of gut microbiota and IBD in genetically susceptible individuals. However, there are currently no studies involving bacteria-derived EV and its role in intestinal immunity and IBD. Our study demonstrates that bacteria-derived EV play an important role as a mediator of gut immunity by presenting the protective characteristic of bacteria EV through our candidate A. muciniphila-derived EV in IBD. We are the first to use metagenomic analysis to evaluate the composition and proportional changes of gut bacteria-derived EV in the progression of colitis. Using metagenomic analysis, we showed that the proportions of gut bacteria-derived EV changes in the course of colitis induced by DSS. In particular, our studies showed an inverse proportion of stool bacteria and bacterial EV is displayed at the phylum (B), genus (C), and species (D) levels. As for genus and species, the proportion less than 1% occupancy is noted as others.
Figure 3. The composition of bacteria and bacteria-derived EV in small intestinal fluids following 3% DSS administration. For all figures, bacteria and EV were isolated from small intestinal fluids of mice before (D0) and 5 days (D5) after 3% DSS oral administration (each group = 5). (A) EV TEM images (×100 k, left panel) and protein profiles through SDS-PAGE by using coomassie brilliant blue G250 dye (right panel). (B) Operational taxonomic units (OTUs) of bacteria and bacterial EV using Roche 454 GS FLX Titanium. For figures (C)–(E), the proportion of bacteria and bacterial EV in small intestinal fluids is displayed at the phylum (C), genus (D), and species (E) levels. As for genus and species, the proportion less than 1% occupancy is noted as others.

doi:10.1371/journal.pone.0076520.g003
Figure 4. Change of stool bacteria and bacterial EV following 3% DSS administration. For all figures, stool bacteria and EV were isolated from mice before (D0) and 5 days (D5) after 3% DSS oral administration (each group = 5). As for EV metagenomics, two independent experiments were performed. (A) Phylogenetic trees of stool bacteria and bacterial EV. (B) Principal component analysis (PCA) of bacterial EV (left panel) and changes of candidate bacteria and bacterial EV following 3% DSS administration (right panel). Blue circle means 95% confidence interval, and green cross means the starting point to diverge each species.

doi:10.1371/journal.pone.0076520.g004
Figure 5. Characterization and immunogenicity of A. muciniphila-derived EV. (A) A TEM image (×100 k) showing a spherical shape of A. muciniphila EV. (B) Size (d.nm) of A. muciniphila EV measured by NTA. (C) Levels of a pro-inflammatory cytokine IL-6. IL-6 was measured 12 h after A. muciniphila-derived EV treated to peritoneal macrophage cell line (Raw264.7, left panel) and colon epithelial cell line (CT26, right panel). LPS: lipopolysaccharide, 75 ng/ml, Ec EV: E. coli-derived EV, 100 ng/ml; Am EV: A. muciniphila-derived EV. (D) In vitro anti-inflammatory effect of A. muciniphila EV. IL-6 levels were measured in supernatants of colon epithelial cells (CT26) after A. muciniphila EV were pre-treated to CT26 for 12 h and then 100 ng/ml of E. coli EV treated for 12 h. **, p<0.01 by ANOVA and test of linearity.

doi:10.1371/journal.pone.0076520.g005
A. muciniphila-derived EV and the severity of colitis, suggesting an important role of A. muciniphila-derived EV in the maintenance of intestinal homeostasis. Our studies show a compositional change in bacteria-derived EV in the course of colitis and suggest bacteria-derived EV profoundly influence host immunity and participate in human health and disease.

A. muciniphila is a mucin-degrader that uses mucin as nutrients [20]. Many mucolytic bacteria like A. muciniphila thrive in healthy gut environment and microbial community structures, it is difficult to understand this host-symbiont relationship. A myriad of reports show that gut microbiota or EV have a protective function in intestinal immunity [17–19]. Our present study showed that compared to the control group (2% DSS treated mice), mice treated with an oral application of 2% DSS and A. muciniphila-derived EV showed a decrease in body weight loss, increase in colon length, a lower DAI score, and histology that revealed a better epithelial stability and less inflammatory cell infiltration of the colon wall. Taken together, gut bacteria-derived EV play an important role in maintenance of immune homeostasis in the gut.

Figure 6. In vivo protective effect of A. muciniphila-derived EV on the development of 2% DSS-induced colitis. For all figures, mice (each group = 5) were ingested by A. muciniphila (Bacteria, 5.0 × 10⁸) or A. muciniphila-derived EV (Am EV, 100 μg), concomitantly with water or 2% DSS. (A) Body weight changes (%). (B) Colon lengths. **, p<0.01. (C) Changes of disease activity index, reflected by body weight, colon length, diarrhea, and stool blood. (D) Histology (upper panel) and histological activity index (lower panel) of colon. Arrows indicate injury area, and histological activity index was measured by epithelial barrier disruption and infiltration depth of inflammatory cells. *, p<0.05 vs. the DSS and DSS+Bacteria groups. doi:10.1371/journal.pone.0076520.g006
In summary, to our knowledge we are the first to use metagenomics analysis for a comprehensive evaluation of the gut microbiota-derived EV composition. Our data provides insight into the role of gut microbiota-derived EV has in regulation of intestinal immunity and homeostasis. In an environment similar to UC calibrated by DSS administration, some gut microbiota-derived EV, like TM7 bacteria, proliferated indicating a pathogenic nature and perhaps even a causal relationship with colitis. Other gut microbiota-derived EV diminished, in particular A. muciniphila- and B. acidifaciens-derived EV. A. muciniphila-derived EV showed to have protective effects that staggered the severity of colitis. Our study demonstrates the possibilities of stool-derived EV as a biomarker and therapeutic agents. Further investigation will lead to a more in depth understanding of the mechanisms underlying complex interactions of microbiota-derived EV and intestinal homeostasis and disease.

**Materials and Methods**

**Ethics Statement**

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institute of Health. The experimental protocols were approved by the Institutional Animal Care and Use Committee at POSTECH, Pohang, Republic of Korea (Permit Number: 2011-01-0027). All animal experiments were planned in order to minimize mice suffering.

**Mice**

Specific pathogen free C57BL/6 mice were purchased from Jackson Laboratories (Bar Harbor, ME, US) and were bred in an animal laboratory at POSTECH Biotech Center. Age-and sex-matched mice were used for animal experiments.

**A mouse model of DSS-induced colitis**

To generate an acute colitis mouse model, DSS (36 k-50 kD; MP Biomedicals, LLC, Illkirch, France) was added to drinking water at a concentration of 2% or 3% (weight/volume) for mice. Mice were exposed to DSS for 5 days. Healthy control animals received the drinking water only. Disease activity index (DAI) was performed in a previously published scoring system [33,34]. The colonic tissues were processed in a paraffin cassette to stain with hematoxylin and eosin (H&E). Histological activity index (HAI) was scored in the previously described method [35]. Duplicate experiments were performed to evaluate the therapeutic effects of bacterial EV on the protection of IBD expression.

**EV isolation and characterization**

EV in small intestinal fluids, stools and culture media of A. muciniphila were isolated by ultracentrifugation at 200,000 g for 2 h at 4°C, as the previously described method [36]. EV was characterized by TEM, NTA, and western blot. More details can be found in Text S1.

**Bacteria culture**

A. muciniphila (ATCC BAA-835) was cultured in an anaerobic condition that was maintained to 90% N2 and 10% CO2, the method previously described [20].
In vitro evaluation of EV immunogenicity

Immunogenicity of EV was evaluated in colon carcinoma cells (CT26 cells) and macrophage cell lines (RAW264.7 cells). More details can be found in Text S1.

Metagenome sequencing

DNA was extracted from bacteria and EV in small intestinal fluids and stools. Metagenomic studies were conducted through high-throughput sequencing after amplification of the isolated DNA using common bacterial 16S rDNA. More details can be found in Text S1.

Bioinformatics

The proportion of bacteria and bacterial EV was evaluated by phylogenetic tree generation from sequence reads. The significance of taxonomic variation was then determined by PCA.

Statistical analysis

To confirm the difference between two groups, unpaired t-tests were performed. For the statistical analysis to several groups, an analysis of variance (ANOVA) and test of linearity were used. The statistical significance was set a priori at p<0.05.

Supporting Information

Text S1  Supporting information.

Acknowledgments

We thank DNA Link, Inc. and Chun Labs., Inc. for the metagenomic analysis. We also thank Seo-Yoon Lim for her providing secretarial assistance and members of the POSTECH animal facility for their experimental expertise.

Author Contributions

Conceived and designed the experiments: CK HM SM YG JK YK. Performed the experiments: CK EC HM JJ DK SP TR. Analyzed the data: CK MB EC HM SJ TR SM YG JK YK. Contributed reagents/materials/analysis tools: TR JK YK. Wrote the paper: CK MB YG JK YK.

References

1. Bouma G, Strober W (2005) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 5: 321–333.
2. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9: 313–323.
3. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448: 427–434.
4. Slack E, Hapfelmeier S, Stecher B, Velykorko Y, Stool M, et al. (2009) Innate and adaptive immunity cooperate flexibly to maintain host-microbiota homeostasis. Science 325: 617–620.
5. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292: 1115–1118.
6. Neish AS (2002) The gut microflora and intestinal epithelial cells: a continuing dialogue. Microbes Infect 4: 309–317.
7. Sanders ME (2011) Impact of probiotics on colonizing microbiota of the gut. J Clin Gastroenterol 45 Suppl: S113–119.
8. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten YK. Materials/analysis tools: TR JK YK. Wrote the paper: CK MB YG JK YK.
9. Performed the experiments: CK EC HM JJ DK SP TR. Analyzed the data: CK MB EC HM SJ TR SM YG JK YK. Contributed reagents/materials/analysis tools: TR JK YK. Wrote the paper: CK MB YG JK YK.