A N-body problem with weak force potential through Hamilton-Jacobi equation approach

Putian Yanga and Shiqing Zhanga

aDepartment of mathematics, Sichuan University

May 13, 2022

Abstract

This paper we consider for the N-body problem with potential $1/r^{\alpha}$ ($0 < \alpha < 1$) the existence of hyperbolic motions for any prescribed limit shape and any given initial configuration of the bodies. Here E is the Euclidean space where the bodies moving and $\| \cdot \|_E$ is the norm induced by the inner product. The energy level $h > 0$ of the motion can also be chosen arbitrarily. We use the global viscosity solutions for the Hamilton-Jacobi equation $H(x, d_x u) = h$ and geodesics.

Keywords: Hamilton-Jacobi equations, weak force potential, N-body problem, geodesics

Contents

1 Introduction 2
2 The existence and properties of free-time minimizers 6
3 Some preparations for geometric objects 6
Reference 8

*Corresponding author: yangputian@stu.scu.edu.cn
1 Introduction

Before we describe the background and main issue of this paper, we firstly present some of notations about our working space \(E = \mathbb{R}^n, (n \geq 2) \). \(\langle \cdot, \cdot \rangle \) is the standard inner product of \(E \), \(|\cdot| \) is its induced norm. We also write the inner product of configuration space \(E^N \) as

\[
\langle x, y \rangle = \left(\frac{1}{2} \sum_{i=1}^{N} \sqrt{m_i m'_i \langle x_i, y_i \rangle} \right)^{1/2}
\]

for \(x = (x_1, \ldots, x_N), y = (y_1, \ldots, y_N) \in E^N \) where \(m_i \) and \(m'_i \) are mass of \(i \)-th body of configurations \(x \) and \(y \) respectively, and \(x_i, y_i \in E, (1 \leq i \leq N) \). The induced norm of configuration space \(E^N \) is denoted as \(\| \cdot \| \) and defined as

\[
\| x \| = \left(\frac{1}{2} \sum_{i=1}^{N} m_i |x_i|^2 \right)^{1/2}.
\]

Write

\[
S_\lambda := \{(x, y) \in E \times E \mid |x - y| < \lambda \}.
\]

We study \(N \)-body problem in \(E \) with potential

\[
U(x) = \sum_{1 \leq i < j \leq N} \frac{m_i m_j}{|x_i - x_j|^\alpha}
\]

where \(x = (x_1, \ldots, x_N) \in E^N, (x_i \in E) \) is the configuration, \(m_i \) is the mass of \(i \)-th body of \(x \).

Our main task is to find the hyperbolic motions of our stated \(N \)-body problem by measure of construction, and the motion satisfies

\[
\ddot{x}_i = \nabla_{x_i} U(x) = \alpha \sum_{j=1, j \neq i}^{N} \frac{x_j - x_i}{|x_j - x_i|^\alpha+2}.
\]

i.e.,

\[
\ddot{x} = \nabla U(x)
\]

(1.1)

Now we give some notations frequently used in this paper.

1. Denote \(\Omega \) be the subset of configurations with non-collision, i.e.,

\[
\Omega = \{x \in E^N \mid x_i \neq x_j, \forall 1 \leq i < j \leq N\}.
\]

write \(\sum := E^N \setminus \Omega \).

2. Denote \(r(x) = \min\{|x_i - x_j|\}_{1 \leq i < j \leq N} \), this is a essential data for the judgement of collision of a configuration is the minimal distance among its bodies, meaning that for \(x \in E^N \), \(r(x) > 0 \) if and only if \(x \in \Omega \). Similarly we denote \(R(x) = \max\{|x_i - x_j|\}_{1 \leq i < j \leq N} \).

3. Denote several line segment as follows:

\[
[xy] = \{tx + (1-t)y \mid x, y \in E^N; 0 \leq t \leq 1\}
\]

(1.2)
\[
\overline{xy} = \{tx + (1-t)y \mid x, y \in E^N; 0 < t < 1\} \quad (1.3)
\]

\[
\overline{xy\infty} = \{x + ty \mid x, y \in E^N; t > 0\}
\]

\[
\overline{|xy\infty|} = \{x + ty \mid x, y \in E^N; 0 \leq t \leq +\infty\}. \quad (1.5)
\]

4. Denote \(d(x, W) = \inf \{\|x - y\| \mid y \in W\}\) as the distance of a configuration \(x \in E^N\) to some subset \(W \subset E^N\).

5. Denote

\[
C(x, y, T) := \{\gamma : [\alpha, \beta] \to E^N \text{ for some } [\alpha, \beta] \subset \mathbb{R} \mid \gamma(\alpha) = x, \gamma(\beta) = y, \beta - \alpha = T\}
\]

and

\[
C(x, y) = \bigcup_{T > 0} C(x, y, T),
\]

without loss of generality, we can always assume \(\alpha = 0, \beta = T > 0\) for \(T\) under determined.

6. Denote

\[
l(\gamma) := \int_0^T |\dot{\gamma}(t)| dt
\]

as the Euclidean length of \(\gamma \in C(x, y)\).

7. Denote \(\angle(x, y)\) as the angle between \(x, y \in E\), i.e.,

\[
\cos \angle(x, y) := \frac{\langle x, y \rangle}{\|x\|\|y\|}.
\]

Similarly, if \(x, y \in E^N\),

\[
\cos \angle(x, y) := \frac{\langle x, y \rangle}{\|x\|\|y\|}.
\]

8. Denote \(S^{nN-1} = \{x \in E^N \mid \|x\| = 1\}\) where \(n = \dim E\), we find that for \(x, y \in S^{nN-1}\),

\[
\frac{1}{2}\|x - y\| = \sin \frac{1}{2}\angle(x, y)
\]

9.

We give several assumption that is for simplicity throughtout the artical.

1. We assume \(\min\{m_i\}_{1 \leq i \leq N} = 1\).

Now we can present the main thereom as our main issue
When a satisfies a collision, i.e., if

Theorem 1.3. (2002, Marchal [3]). If \(\gamma \in C(x, y) \) is defined on some interval \([a, b] \), and satisfies \(A_L(\gamma) = \phi(x, y, b - a) \), then \(\gamma(t) \in \Omega \) for all \(t \in (a, b) \).

Here in our paper we need to know the absence of collision of potential with homogeneity \(-\alpha < 0\), they are studied, see[] for the convenience we restate here.

Theorem 1.4. When \(U(x) = \sum_{1 \leq i < j \leq N} \frac{m_i m_j}{|x_i - x_j|^\alpha} \) All minimizers of \(\phi_E \) are experience no collision, i.e., if \(A_E(\gamma) = \phi_E(x, y) \) where \(\gamma \in A(x, y, T) \) for some \(T > 0 \), then \(\gamma(t) \in \Omega, t \in (0, T) \)
We also have to list the very important Hamilton’s principle of least action as the following theorem which we will use and its proof is put later.

Theorem 1.5. For any \(E > 0 \), suppose \(\gamma \in \mathbf{C}(x, y, T) \) (\(T \) can be \(+\infty\) is a free time minimizer of \(A_E \) and \(\gamma|_{(0,T)} \subset \Omega \), then \(\gamma \) is a solution of 1.1 in \((0, T)\).

There is another result of \(\phi_E(\cdot, \cdot) \).

Proposition 1.6. \(\phi_E(\cdot, \cdot) \) is a distance function in \(\Omega \)

Proof. We first notice \(\phi_E \) meets triangular inequality.

For any \(x, y, z \in \Omega \), any \(\gamma_1, \gamma_2 \in \mathbf{C}(x, y) \) defined in \([0, T_1]\) and \([0, T_2]\) respectively, we set

\[
\gamma(t) := \begin{cases}
\gamma_1(t) & 0 \leq t \leq T_1 \\
\gamma_2(t - T_1) & T_1 \leq t \leq T_1 + T_2
\end{cases}
\]

(1.14)

thus

\[
\phi_E(x, z) = \inf \{ A_E(\eta) \mid \eta \in \mathbf{C}(x, z) \} \leq A_E(\gamma) \leq A_E(\gamma_1) + A_E(\gamma_2).
\]

(1.15)

Since \(\gamma_1, \gamma_2 \) are arbitrary, we have \(\phi_E(x, z) \leq \phi_E(x, y) + \phi_E(y, z) \).

Second, we verify that \(\phi_E(x, y) = 0 \) makes \(x = y \).

For any \(x = (x_1, \ldots, x_N), y = (y_1, \ldots, y_N) \in E^N \) and \(\gamma = (\gamma_1, \ldots, \gamma_N) \in \mathbf{C}(x, y) \) defined on \([0, T]\). There is a \(T' \in (0, T] \) s.t.

\[
\max \{|\gamma_i(T') - x_i| \mid 1 \leq i \leq N\} = \max \{|x_i - y_i| \mid 1 \leq i \leq N\},
\]

and

\[
\max \{|\gamma_i(t) - x_i| \mid 1 \leq i \leq N\} \leq \max \{|x_i - y_i| \mid 1 \leq i \leq N\}
\]

for \(t \in [0, T'] \). Then there exists \(i_0 \) s.t.

\[
\max \{|x_i - y_i| \mid 1 \leq i \leq N\} = |\gamma_{i_0}(T') - x_{i_0}| \leq \int_0^{T'} |\dot{\gamma}_{i_0}| dt \leq \sqrt{T'} \left(\int_0^{T'} |\dot{\gamma}_{i_0}|^2 dt \right)^{1/2}.
\]

(1.16)

Hence

\[
A_E(\gamma) \geq A_E(\gamma|_{[0,T']}) \geq \int_0^{T'} \|\dot{\gamma}(t)\|^2 + U(\gamma(t)) + Edt \geq \frac{1}{2} \int_0^{T'} \sum m_i |\dot{\gamma}_i(t)|^2 dt \geq \frac{m_{i_0}}{2} \int_0^{T'} |\dot{\gamma}_{i_0}(t)|^2 dt \geq \frac{1}{2T'} \max \{|x_i - y_i| \mid 1 \leq i \leq N\}.
\]

(1.17)

So eventually \(\phi_E(x, y) = 0 \) makes \(\max \{|x_i - y_i|\}_i = 0 \), which means \(x = y \).

It is not difficult to see \(\phi_E(x, x) = 0 \). \qed
2 The existence and properties of free-time minimizers

3 Some preparations for geometric objects

Based on the elementary computing, we can verify the following essential geometric facts in Euclidean space E^N.

Lemma 3.1. For any $x \in E^N$, we must have $|x_i| \leq \sqrt{2} \|x\|$ and $|x_i - x_j| < 3 \|x\|$ for $1 \leq i < j \leq N$, hence $r(x) < 3 \|x\|$.

Proof. By the definition of $\|x\|$, we have $\sum |x_i|^2 = \sum m_i |x_i|^2 = 2 \|x\|^2$, thus $|x_i| \leq \sqrt{2} \|x\|$ for any i and $|x_i - x_j| \leq 2 \sqrt{2} \|x\| < 3 \|x\|$.

Theorem 3.2. For $a \in S^{nN-1}$, $r(a) > 0$, $x, x' \in E^N$, the following statements are valid.

1. $\frac{\|x + ta\|}{\|x + ta\|} - a \leq \frac{1}{30} r(a)$

 \[r(x + ta) \geq \frac{67}{70} r(a) t > 67 \] \hfill (3.2)

 for any $t > \frac{1 + \|x\|}{r(a)}$

2. $r(x') > r(a) - 2 \|x' - a\| \geq (1 - 3\lambda)r(a)$

 \[\cos \angle(x'_i - x'_j, a_i - a_j) \geq 1 - 6\lambda, 1 \leq i < j \leq N \] \hfill (3.4)

 for $\|x' - a\| \leq \lambda r(a), \lambda \in (0, 1/2)$

3. If $\|x'\| = 1$ then

 \[\cos \angle(a, x') = \langle a, x' \rangle \geq 1 - \frac{9}{2} \lambda^2 \] \hfill (3.5)

Corollary 3.3.

Proof. Since $t > 70 \frac{1 + \|x\|}{r(a)}$, we have $t > 70 \frac{\|x\|}{r(a)} t < \frac{r(a)}{70}$ and $r(a) t > 70$.

1. Since $t > 70 \frac{\|x\|}{r(a)}$, and by lemma 1.1 we know that $r(a) < 3 \|a\| = 3$, we have $t - \|x\| > \frac{70 - 3 \|x\|}{\frac{r(a)}{70} \|x\|}$ hence $\frac{\|x\|}{t - \|x\|} < \frac{r(a)}{60}$.

 \[\frac{\|x + ta\|}{\|x + ta\|} - a \leq \frac{1}{\|x - ta\|} \|x + ta - \|x + ta\| a\| \] \hfill (3.6)

 \[\leq \frac{1}{\|x + ta\|} (\|x\| + \|\|ta\| - \|x + ta\|\|) \leq \frac{2 \|x\|}{\|x + ta\|} \] \hfill (3.7)

 \[\leq \frac{2 \|x\|}{t - \|x\|} \leq \frac{r(a)}{30}. \] \hfill (3.8)
\[|x_i + ta_i - (x_j + ta_j)| = |t(a_i - a_j) + x_i - x_j| \]
\[\geq t|a_i - a_j| - |x_i - x_j| \]
\[\geq r(a)t - 3\|x\| > r(a)t - 2\frac{r(a)}{70}t = 67\frac{r(a)}{70}t > 67. \]

2. First we have
\[|a_i - a_j| \leq |a_i - x'_i| + |x'_i - x'_j| + |x'_j - a_j|. \]
thus
\[|x'_i - x'_j| \geq |a_i - a_j| - |x'_i - a_i| - |x'_j - a_j| > |a_i - a_j| - 3\|x' - a\|, \]
hence
\[r(x') > r(a) - 3\|x' - a\| > (1 - 3\lambda)r(a). \]
On the other hand
\[\langle a_i - a_j, x'_i - x'_j \rangle = \langle a_i - a_j, a_i - a_j \rangle + \langle a_i - a_j, x'_i - a_i - x'_j + a_j \rangle \]
\[= |a_i - a_j|^2 + \langle a_i - a_j, (x'_i - a_i) - (x'_j - a_j) \rangle \]
\[\geq |a_i - a_j|^2 - |a_i - a_j||(x'_i - a_i) - (x'_j - a_j)| \]
\[\geq |a_i - a_j|^2 - |a_i - a_j|3\|x' - a\| \]
\[= |a_i - a_j|(|a_i - a_j| - 3\|x' - a\|). \]
\[|x'_i - x'_j| \leq |x'_i - a_i| + |a_i - a_j| + |a_j - x'_j| \leq |a_i - a_j| + 3\|x' - a\|. \]
So we eventually have
\[\frac{\langle a_i - a_j, x'_i - x'_j \rangle}{|a_i - a_j||x'_i - x'_j|} \geq |a_i - a_j| - 3\|x' - a\| \]
\[\geq |a_i - a_j| + 3\|x' - a\| \]
\[\geq 1 - \frac{6\|x' - a\|}{r(a)} \geq 1 - 6\lambda. \]

3. For \(\|x'\| = 1 \)
\[2 - 2\langle x', a \rangle = \|x' - a\|^2 \leq \lambda^2 r(a)^2. \]

hence
\[\langle x', a \rangle = 1 - \frac{1}{2}\|x' - a\|^2 \geq 1 - \frac{\lambda^2}{2}r(a)^2 = 1 - \frac{9}{2}\lambda^2 \]
\[\square \]
References

[1] Gonzalo Contreras and Renato Iturriaga. Global minimizers of autonomous lagrangians. 1999.

[2] Adriana da Luz and Ezequiel Maderna. On the free time minimizers of the newtonian n-body problem. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 156, pages 209–227. Cambridge University Press, 2014.

[3] Ch Marchal. How the method of minimization of action avoids singularities. Celestial Mechanics and Dynamical Astronomy, 83(1):325–353, 2002.

[4] John N Mather. Action minimizing invariant measures for positive definite lagrangian systems. Mathematische Zeitschrift, 207(1):169–207, 1991.