A polynomial expansion line search for large-scale unconstrained minimization of smooth L_2-regularized loss functions, with implementation in Apache Spark*

Michael B Hynes† Hans De Sterck‡

Abstract

In large-scale unconstrained optimization algorithms such as limited memory BFGS (LBFGS), a common subproblem is a line search minimizing the loss function along a descent direction. Commonly used line searches iteratively find an approximate solution for which the Wolfe conditions are satisfied, typically requiring multiple function and gradient evaluations per line search, which is expensive in parallel due to communication requirements. In this paper we propose a new line search approach for cases where the loss function is analytic, as in least squares regression, logistic regression, or low rank matrix factorization. We approximate the loss function by a truncated Taylor polynomial, whose coefficients may be computed efficiently in parallel with less communication than evaluating the gradient, after which this polynomial may be minimized with high accuracy in a neighbourhood of the expansion point. The expansion may be repeated iteratively in a line search invocation until the expansion point and minimum are sufficiently accurate. Our Polynomial Expansion Line Search (PELS) was implemented in the Apache Spark framework and used to accelerate the training of a logistic regression model on binary classification datasets from the LIBSVM repository with LBFGS and the Nonlinear Conjugate Gradient (NCG) method. In large-scale numerical experiments in parallel on a 16-node cluster with 256 cores using the URL, KDD-A, and KDD-B datasets, the PELS approach produced significant convergence improvements compared to the use of classical Wolfe approximate line searches. For example, to reach the final training label prediction accuracies, LBFGS using PELS had speedup factors of 1.8–2 over LBFGS using a Wolfe approximate line search, measured by both the number of iterations and the time required, due to the better accuracy of step sizes computed in the line search. PELS has the potential to significantly accelerate widely-used parallel large-scale regression and factorization computations, and is applicable to important classes of continuous optimization problems with smooth loss functions.

1 Introduction.

In large-scale optimization and machine learning, a common problem is the minimization of a loss function $\mathcal{L}(w)$ with parameter vector $w \in \mathbb{R}^m$. For a set of n observations $\mathcal{R} = \{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$, $\mathcal{L}(w)$ is expressed as the mean of the individual losses $\{f(w; x_i, y_i)\}$ evaluated at each observation with an additional regularization term $\lambda R(w)$:

$$\mathcal{L}(w) = \lambda R(w) + \frac{1}{n} \sum_{i=1}^n f(w; x_i, y_i).$$

Here, λ is a fitting parameter that tunes the magnitude of the regularization penalty relative to the losses f. Often the regularization is an L_2 penalty, $\frac{1}{2}\|w\|_2^2$, such that $R(w)$ is smooth with respect to w. The optimization problem for minimizing (1.1) is

$$w^* = \arg \min_w \mathcal{L}(w),$$

for which any unconstrained optimization algorithm may be applied. The use of nonsmooth regularization such as L_1 penalties that induce sparsity is also an active research topic, however L_2 penalties are commonly used for many practical problems [3] and improving algorithmic performance in this case remains of significant interest.

The present work is situated in the context of batch or minibatch optimization algorithms that solve (1.2) through iterative updates with line searches, such as Gradient Descent (GD), LBFGS, truncated Newton algorithms, or the Nonlinear Conjugate Gradient (NCG) method (for a description of these methods, see e.g. Nocedal and Wright [4]). These algorithms have an update for the approximate solution w_k in the kth iteration as

$$w_{k+1} = w_k + \alpha_k p_k$$

where $p_k \in \mathbb{R}^m$ is the search direction and the scalar α_k is a step size such that $\mathcal{L}(w_{k+1})$ is either exactly or approximately minimized in a univariate line search along the ray $w_k + \alpha p_k$ with $\alpha > 0$. Approximate solutions that satisfy the Wolfe conditions are sought in practice at the expense of poorer convergence, since an exact line search cannot in general be expected to perform better than an exact line search [4]. Since many commonly used univariate line search algorithms require evaluating both \mathcal{L} and $\nabla \mathcal{L}$ in each line search iteration, they can be an expensive component of batch optimization algorithms.

Our main idea in this paper is simple but powerful: when (1.1) is smooth (infinitely differentiable), we propose to approximate $\mathcal{L}(w + \alpha p)$ in a univariate line search by a low-degree polynomial expansion, and show that the coefficients of this polynomial may be computed in a single pass over the dataset with modest communication requirements, after which the polynomial approximation may be minimized with high accuracy. In each line search invocation, the expansion may

*Supported in part by the National Sciences and Engineering Research Council through a Canada Graduate Scholarship
†Department of Applied Mathematics, University of Waterloo, Waterloo, Canada. Email: mbhynes@uwaterloo.ca
‡School of Mathematical Sciences, Monash University, Melbourne, Australia. Email: hans.desterck@monash.edu
be repeated iteratively until the expansion point and minimum are sufficiently accurate. The advantages of our Polynomial Expansion Line Search (PELS) stem from two main improvements. Firstly, the PELS technique can obtain more accurate minima when the high intrinsic potential accuracy of the polynomial expansion is realized, which may lead to significantly fewer iterations of the optimization method to reach a desired accuracy than with classical approximate line searches. Secondly, if multiple iterations are required in a line search, the PELS method is much more efficient in terms of parallel computation than the iterations in approximate line searches that seek to impose the Wolfe conditions and require evaluating ∇L in each line search iteration: aggregating the polynomial coefficients requires much less computation than aggregating the m-dimensional gradient vectors $\{\nabla f(w; x_i, y_i)\}$. Additionally, when f is polynomial, the PELS expansion can be made exact with a sufficiently large degree.

The contributions of this paper are organized as follows. In §2 the PELS algorithm is presented for smooth loss functions, and a detailed example is given for L_2-regularized logistic regression. In §3 we detail an implementation in the Apache Spark framework. §3 also contains a description of the algorithms for approximating (WA) line search. Most successful WA algorithms are variants of the following classic interpolation scheme, summarized in Alg.1. In each jth iteration of the line search, an interval $I_j = [\alpha_l, \alpha_u]$ containing α^* is determined, and the next α_{j+1} is generated by the minimization of an interpolated cubic polynomial $P_j(\alpha)$ with control points $\phi(\alpha_l), \phi(\alpha_u), \phi'(\alpha_l), \phi'(\alpha_u)$, etc. The next interval I_{j+1} is computed such that the endpoints are closer to α^*, and methods such as bisection, sequential, and dual interpolation/minimization can be used to shrink the interval. Each evaluation of $\phi(\alpha)$ and $\phi'(\alpha)$ requires an $O(n)$ pass over R, and it is typically in publicly available codes to structure optimization routines with a function that computes both $\phi(\alpha)$ and $\phi'(\alpha)$ simultaneously by evaluating $L(w + \alpha p)$ and $\nabla L(w + \alpha p)$, explicitly returning a scalar and an m-dimensional vector such that, if the current step size is accepted, the computed value of $\nabla L(w + \alpha p)$ provides $\nabla L(w_{k+1})$ for the next iteration. Note, however, that if the initial α_0 in Alg.1 satisfies (2.5) and (2.6), it is accepted as the solution to (2.4) without constructing and minimizing $P_0(\alpha)$, regardless of the accuracy of α_0.

2.1 Line Search Formulation.

A univariate line search is the unconstrained minimization problem of determining a step size α^* that minimizes $L(w)$ along a fixed descent direction p, formulated as

$$\alpha^* = \arg \min_{\alpha > 0} L(w + \alpha p) = \arg \min_{\alpha > 0} \phi(\alpha).$$

Since computing $L(w + \alpha p)$ in (2.4) is an expensive operation for the $\alpha > 0$ that verifies evaluating $f(w + \alpha p; x_i, y_i)$ for each observation (x_i, y_i), an approximate solution to (2.4) is often sought instead of an exact solution in order to reduce the number of function evaluations required in the line search. Approximate line searches compute a sequence of iterates $\{\alpha_j\}_{j \geq 0}$ until convergence criteria are satisfied, which are normally the Strong Wolfe conditions (4). These conditions are a set of two inequalities guaranteeing (i) sufficient decrease as

$$\phi(\alpha) \leq \phi(0) + \nu_1 \alpha \phi'(0),$$

and (ii) a curvature condition requiring

$$|\phi'(\alpha)| \leq \nu_2 |\phi'(0)|$$

for $0 < \nu_1 < \nu_2 < 1$ (where $\nu_1 \approx 10^{-4}$ and $\nu_2 \approx 0.9$ (4)).

There are a multitude of widely-used inexact univariate line search algorithms for satisfying (2.5) and (2.6) for general $L(w)$ (see e.g. (6, 7, 8, 9)), and we refer to an algorithm in this class as a Wolfe approximate (WA) line search. Most successful WA algorithms are variants of the following classic interpolation scheme, summarized in Alg.1. In each jth iteration of the line search, an interval $I_j = [\alpha_l, \alpha_u]$ containing α^* is determined, and the next α_{j+1} is generated by the minimization of an interpolated cubic polynomial $P_j(\alpha)$ with control points $\phi(\alpha_l), \phi(\alpha_u), \phi'(\alpha_l), \phi'(\alpha_u)$, etc. The next interval I_{j+1} is computed such that the endpoints are closer to α^*, and methods such as bisection, sequential, and dual interpolation/minimization can be used to shrink the interval. Each evaluation of $\phi(\alpha)$ and $\phi'(\alpha)$ requires an $O(n)$ pass over R, and it is typical in publicly available codes to structure optimization routines with a function that computes both $\phi(\alpha)$ and $\phi'(\alpha)$ simultaneously by evaluating $L(w + \alpha p)$ and $\nabla L(w + \alpha p)$, explicitly returning a scalar and an m-dimensional vector such that, if the current step size is accepted, the computed value of $\nabla L(w + \alpha p)$ provides $\nabla L(w_{k+1})$ for the next iteration. Note, however, that if the initial α_0 in Alg.1 satisfies (2.5) and (2.6), it is accepted as the solution to (2.4) without constructing and minimizing $P_0(\alpha)$, regardless of the accuracy of α_0.

2.2 Polynomial Expansion Line Search.

Our goal with the PELS method is to solve (2.4) accurately with as few distributed operations as possible when both $R(w)$ and $f(w; x_i, y_i)$ are smooth with respect to w. In this case, we consider the Taylor expansion of $\phi(\alpha) = L(w + \alpha p)$ in terms of α, which requires summing the Taylor expansions of each $f(w; x_i, y_i)$ in (1.1) in addition to an expansion for $R(w)$. For an expansion about a step size α_j, we have

$$L(w + \alpha p) = Q_\lambda(\alpha) \alpha_j + \sum_{i=1}^{n} \sum_{\ell=0}^{\infty} b_{i,\ell} (\alpha - \alpha_j)^\ell$$

where $Q_\lambda(\alpha)$ is the quadratic term, $b_{i,\ell}$ are the Taylor coefficients, and ℓ is the order of the Taylor expansion.
where $Q_\alpha(\alpha)|_{\alpha_j}$ is a polynomial expansion of $\lambda R(w)$, and $\{b_{\ell,i}\}_{\ell=0}^{\infty}$ are the coefficients in the expansion of $f(w; x_i, y_i)$ that depend explicitly on (x_i, y_i). To make this representation amenable to a distributed setting, we reorder the summations and write the degree-d approximation to $L(w + \alpha p)$ as

\begin{equation}
W(\alpha; w, p)|_{\alpha_j} = Q_\alpha(\alpha)|_{\alpha_j} + \sum_{\ell=0}^{d} c_\ell (\alpha - \alpha_j)^\ell,
\end{equation}

which has a truncation error $\varepsilon_{d+1}(\alpha)|_{\alpha_j}$

\begin{equation}
W(\alpha; w, p)|_{\alpha_j} = L(w + \alpha p) - \varepsilon_{d+1}(\alpha)|_{\alpha_j},
\end{equation}

This error is an $O((\alpha - \alpha_j)^{d+1})$ term and hence small for α near α_j. Each coefficient c_ℓ in (2.7) contains a summation over the dataset as

\begin{equation}
c_\ell = \sum_{i=1}^{n} b_{\ell,i} = \sum_{i=1}^{n} F_{\ell}(r, p; x_i, y_i),
\end{equation}

where $r = w + \alpha p$, and the functions $\{F_{\ell}\}_{\ell=0}^{d}$ compute the coefficients for the ℓth terms for a single observation.

The PELS algorithm minimizes the number of distributed operations required to solve (2.4) by exploiting the following facts: (i) computing the coefficients in (2.9) is a parallelizable operation, and (ii) once the $\{c_\ell\}$ are computed, $W(\alpha)|_{\alpha_j}$ is a useful approximation in a neighborhood of α_j. The PELS method proceeds as follows. Starting from the iterate α_j, a polynomial approximation $W(\alpha)|_{\alpha_j}$ is constructed by computing the coefficients $\{c_\ell\}$ in parallel, after which the subsequent iterate is determined as

\begin{equation}
\alpha_{j+1} = \arg \min_{\alpha > 0} W(\alpha; w, p)|_{\alpha_j}.
\end{equation}

Solving (2.10) is a subproblem that will generate further iterates in a minimization routine, however, since the coefficients of $W(\alpha)|_{\alpha_j}$ are fixed, the minimization problem requires no further distributed operations. In addition, computing the first and second derivatives $W'|_{\alpha_j}$ and $W''|_{\alpha_j}$ are inexpensive $O(d+1)$ operations in a minimization routine when performed with Horner’s rule. If the truncation error $\varepsilon_{d+1}(\alpha_{j+1})|_{\alpha_j}$ in (2.8) is determined to be too large, then α_{j+1} is likely a poor approximation to α^*, and the process repeats iteratively: α_{j+1} is chosen as the new expansion point, and the coefficients of $W(\alpha)|_{\alpha_{j+1}}$ are computed. This general form of the PELS algorithm is summarized in Alg. 2 where the coefficients for $W(\alpha)|_{\alpha_j}$ are denoted by the vector $c_j = [c_1, c_2, \ldots, c_d]^T$, and the procedure CALC_COEFFS will be described in Alg. 3.

As a termination condition at step 7 of Alg. 2 we use an approximation to the fractional error in the value of $W(\alpha_{j+1})|_{\alpha_j}$. To estimate the term $\varepsilon_{d+1}(\alpha_{j+1})|_{\alpha_j}$ in the fractional error, we note that the truncation error in the degree-d Taylor polynomial is heuristically bounded above by the error in the polynomial of degree d; that is, in a relevant neighborhood of the expansion point α_j, $|\varepsilon_d(\alpha_j)| \approx |c_d(\alpha - \alpha_j)^d| \geq |\varepsilon_{d+1}(\alpha)|$. Hence, we approximate $\varepsilon_{d+1}(\alpha_{j+1})|_{\alpha_j}$ by $c_d(\alpha_{j+1} - \alpha_j)^d$ at step 5 of Alg. 2.

When $L(w)$ is itself polynomial, such as for least squares regression and low-rank matrix factorization as formulated by e.g. Gemulla et al. [10], then $\varepsilon_{d+1}(\alpha) = 0$ for sufficiently large d, and Alg. 2 can solve (2.4) exactly in a single step without further coefficient computations. For the more general case of analytic $L(w)$, the advantages of Alg. 2 over Alg. 1 are twofold. Firstly, the communication costs are lesser in the distributed operations: the summation in (2.9) to compute the coefficients $\{c_\ell\}$ requires communicating $d+1$ scalar values for each (x_i, y_i), whereas the distributed computation of ∇L in Alg. 1 communicates the m-dimensional gradient vectors $\{\nabla f(w; x_i, y_i)\}$. The second—and most important—reason is that, unlike standard line searches that compute values for L and ∇L for only a single α_j, the distributed operation computing the $\{c_\ell\}$ in PELS produces a model which is valid for an entire neighborhood of α_j: thus, if α_j is close to α^*, the PELS method can compute a very accurate approximation to α^* with only a single $O[n]$ pass over the dataset to evaluate the polynomial coefficients. This is illustrated in Fig. 1 where both Alg. 1 and Alg. 2 have been applied to the function $\phi(\alpha) = \alpha e^\alpha + e^{-(\alpha-4)}$. In Fig. 1(a), iterates produced by Alg. 1 (implemented as in [9] with $\nu_1 = 10^{-4}$ and $\nu_2 = 0.9$) are shown, however only a single iterate
has been generated since \(2.5\) and \(2.6\) are satisfied at the input \(\alpha_0 = 1\); as such, the algorithm terminates with a relatively inaccurate minimum, rather than compute \(\nabla \mathcal{L}\) with an \(O[n]\) pass over the data for another step \(\alpha_1\). On the other hand, Fig. 1h shows PELS with a degree-3 polynomial approximation \(W|_{\alpha_0}\) to \(\phi(\alpha)\) for the same \(\alpha_0 = 1\). Here, \(\alpha_1\) is determined as the solution to \(2.10\), and is visibly more accurate than \(\alpha_0\) in Fig. 1h (only \(d = 3\) is shown since \(W|_{\alpha_0}\) could not be distinguished from \(\phi(\alpha)\) at this scale for larger degrees).

This example is not a toy problem, but a case that we have often observed experimentally for the LBFGS algorithm: though the initial step size \(\alpha_0 = 1\) is frequently accepted in Alg. 1 \(\alpha_0\) is an inaccurate solution to \(2.4\).

In our implementation of PELS, we used the NR method as the optimization routine for minimizing the polynomial \(W|_{\alpha_0}\) in step 4 of Alg. 2 which is equivalent to solving for the roots of \(W|_{\alpha_0}\). However, it is possible that \(W|_{\alpha_0} < 0\) for \(\alpha > 0\) if \(a_j\) is far from \(\alpha^*\) (i.e. \(W|_{\alpha_0}\) has no relevant real roots). In this case, instead of using a minimization routine, \(\alpha_{j+1}\) was determined by NR iteration at \(\alpha_j\) as

\[
\alpha^{NR} = \alpha_j - \frac{\phi'(\alpha_j)}{\phi''(\alpha_j)} = \alpha_j - \frac{c_1}{2c_2},
\]

where only the coefficients \(c_1\) and \(c_2\) appear since \(\phi(\alpha_j) = W(\alpha_j)|_{\alpha_j}\). Since in practice, NR iteration converged within machine precision to a stationary point of \(W|_{\alpha_0}\) in very few iterations, \(2.11\) was used as a default whenever the NR method starting from \(\alpha_j\) failed to compute a zero gradient within a tolerance of \(10^{-15}\) in fewer than 10 iterations. Equation \(2.11\) also indicates that very fast convergence is expected for PELS when \(\alpha_j\) is close to \(\alpha^*\), since NR iteration is equivalent to using only a \(d = 2\) approximation, whereas the PELS method can utilize arbitrary \(d > 2\). Finally, note that NR iteration for step 4 may not be convergent for some initial guesses. Naturally, other minimization algorithms (e.g. bisection or backtracking) may be applied to \(W|_{\alpha_0}\), however empirically we have found that a simple step size selection method (described in \(2.2\)) to generate guesses for \(\alpha_0\) in each invocation of PELS produces stable results.

2.3 Logistic Regression

Consider a logistic regression model with \(L_2\)-regularization for binary classification of each \(x_i \in \mathbb{R}^n\) with group label \(y_i \in \{0, 1\}\). The loss function is derived from the maximum log likelihood of the probability \(\Pr[y_i = 1|x_i, w]\) as

\[
\mathcal{L}(w) = \frac{\lambda}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^{n} \left(\log(e^{-w^T x_i} + 1) + N(y_i)w^T x_i \right)
\]

where \(N(y_i) = 1 - \mathbb{I}(y_i)\) and \(\mathbb{I}(y_i)\) is a boolean indicator function equal to 1 only if \(y_i \neq 0\). It can be shown that \(2.12\) is strictly convex and has a unique global minimizer \([11]\). Since \(2.12\) is infinitely differentiable, we may use a Taylor expansion about \(\alpha_0\) for \(\phi(\alpha) = \mathcal{L}(w + \alpha p)\). Denoting the ray \(w + \alpha p\) by \(r\), and using the simplifications \(p_i = p^T x_i\) and \(r_i = e^{-r^T x_i}\), the expansion up to 4th order is

\[
\phi(\alpha) = \frac{1}{n} \sum_{i=1}^{n} \left(\log(r_i + 1) + N(y_i)r_i^2 x_i \right) + \lambda p^T r
\]

\[
+ (\alpha - \alpha_0) \left[\frac{1}{n} \sum_{i=1}^{n} p_i \left(N(y_i) - \frac{r_i}{r_i + 1} \right) \right]
\]

\[
+ (\alpha - \alpha_0)^2 \left[\frac{1}{n} \sum_{i=1}^{n} p_i^2 r_i^2 \left(\frac{1}{2(r_i + 1)^2} + \frac{\lambda}{2} \|p\|^2 \right) \right]
\]

\[
+ (\alpha - \alpha_0)^3 \left[\frac{1}{n} \sum_{i=1}^{n} p_i^3 r_i (r_i - 1) \right]
\]

\[
+ (\alpha - \alpha_0)^4 \left[\frac{1}{6} \left(r_i + 1 \right)^3 \right]
\]

The terms \(p_i\) and \(r_i\) in coefficients of \(2.13\) can be computed in parallel for each instance, \((x_i, y_i)\). Furthermore, higher order coefficients in \(2.13\) depend only on the scalars \(p_i\) and \(r_i\). Therefore, the only vector operations required in parallel are \(p^T x_i\) and \(r^T x_i\).

2.4 Apache Spark

Apache Spark is a fault-tolerant, in-memory cluster computing framework designed to supersede MapReduce by maintaining program data in memory as much as possible between distributed operations. The Spark environment is built upon two components: a data abstraction, termed a resilient distributed dataset (RDD) \([8]\), and the task scheduler, which uses a delay scheduling algorithm \([12]\). A Spark cluster is composed of a set of (slave) executor programs running on \(n_p\) compute nodes, and a master program running on a master node that is responsible for scheduling and allocating tasks to the compute nodes based on data locality. We describe the fundamental aspects of RDDs and the scheduler below.
RDDs are immutable, distributed datasets that are evaluated lazily via their provenance information—that is, their functional relation to other RDDs or datasets in stable storage. To describe an RDD, consider an immutable distributed dataset D of n records with homogeneous type: $D = \bigcup_i d_i$ with $d_i \in D$. The distribution of D across a computer network of n_p nodes $\{v_i\}$, such that d_i is stored in memory or on disk on node v_i, is termed its partitioning according to a partition function $P(d_i) = v_i$. If D is expressible as a finite sequence of deterministic operations on other datasets D_1, \ldots, D_l that are either RDDs or persistent records, then its lineage may be written as a directed acyclic graph L formed with the parent datasets $\{D_i\}$ as the vertices, and the operations along the edges. Thus, an RDD of type D (written $\text{RDD}[D]$) is the tuple (D, P, L).

Physically computing the records $\{d_i\}$ of an RDD is termed its materialization, and is managed by the Spark scheduler program. To allocate computational tasks to the compute nodes, the scheduler traverses an RDD’s lineage graph L and divides the required operations into stages of local computations on parent RDD partitions. Suppose that $R_0 = (\bigcup x_i, P_0, L_0)$ were an RDD of numeric type $\text{RDD}[\mathbb{R}]$, and let $R_1 = (\bigcup y_i, P_1, L_1)$ be the RDD resulting from the application of a function $f : \mathbb{R} \rightarrow \mathbb{R}$ to each record of R_0. To compute $\{y_i\}$, R_1 has only a single parent in the graph L_1, and hence the set of tasks to perform is $\{f(x_i)\}$. This type of operation is termed a map operation, and has a narrow lineage dependency: $P_1 = P_0$, and the scheduler would allocate the task $f(x_i)$ to a node that stores x_i since each y_i may be computed locally from x_i.

Stages consist only of local map operations, and are bounded by shuffle operations that require communication and data transfer between the compute nodes. For example, shuffling is necessary to perform reduce operations on RDDs, wherein a scalar value is produced from an associative binary operator applied to each element of the dataset. In implementation, a shuffle is conducted by writing the results of the tasks in the preceding stage, $\{f(x_i)\}$, to a local file buffer. These shuffle files may or may not be written to disk, depending on the operating system’s page table, and are fetched by remote nodes as needed in the subsequent stage via a TCP connection. Shuffle file fetches occur asynchronously, and multiple connections between compute nodes to transfer information are made in parallel. In addition, map tasks on the previous stage’s results that are stored locally by a compute node will occur concurrently with remote fetches.

A reduce operation on an RDD of type $\text{RDD}[\mathbb{A}]$ produces a scalar value of type \mathbb{A} by an application of an associative binary operator $\oplus : \mathbb{A} \times \mathbb{A} \rightarrow \mathbb{A}$ to all of the elements $\{a_i\}$ as $\bigoplus_{i=1}^n a_i = a_1 \oplus a_2 \oplus \cdots \oplus a_n$. Reduce operations require first performing local reductions on the partitions stored locally by each node before communicating the nodes’ results to the driver. The local reduction of the partition of $\{a_i\}$ stored on node v_i is written $a[i]$ and computed as $a[i] = \bigoplus_{i \in L_i} a_i$ for $L_i = \{i : P(a_i) = v_i\}$ and requires no communication between nodes. The full reduction for multiple nodes is then $\bigoplus_{i=1}^{n_p} a[i]$, which incurs communication costs dependent on n_p and the size (in bytes) of an element in \mathbb{A}: reducing scalars ($\mathbb{A} = \mathbb{R}$) is cheaper than reducing vectors ($\mathbb{A} = \mathbb{R}^p$). Additionally, reduce operations on an RDD may be performed in two ways: either through an all-to-one communication pattern (Fig. 2a) in which all n_p local results from the compute nodes are communicated to the host machine on which the driver program is running, or through a multi-level tree communication [13] where intermediary (locally reduced) results are aggregated by compute nodes in n_l levels before being transferred to the driver [13] (Fig. 2b).

3 PELS Implementation & Performance Tests.

3.1 PELS Implementation In Apache Spark.

The PELS method in Alg. 2 was implemented in Apache Spark based on the LBGFS implementation in the Spark 1.5 codebase. The observations $R = \{(x_i, y_i)\}$ were stored in an RDD with type $\text{RDD}[\mathbb{R}^p, \mathbb{R}]$, where the vectors $\{x_i\}$ were either sparse or dense vectors with double precision. The parameter and search direction vectors $\{w_k\}$ and $\{p_k\}$ were not partitioned over the compute nodes, but stored as dense vector objects on the master node. Communicating the vectors p_k and $r_k = w_k + \alpha_j p_k$ to the compute nodes in the cluster for any α_j in the line search was performed via a broadcast operation [14]. To compute the coefficient vector c_j in any PELS iteration, the functions $\{f_\ell(r_k, p_k; x_l, y_l)\}$ were calculated as parallel map operations on the RDD of R, and the resulting $c_j \in \mathbb{R}^{d+1}$ was summed via a multi-level reduce operation (as in Fig. 2b), where the operator \oplus was vector addition. The L_2 regularization terms were computed by the master node as the vector $c_\Lambda = \frac{1}{\lambda} \|r_k\|_2^2 = 2r_k^T p_k \|p_k\|_2^2, 0, 0, \ldots \|$ (with zeros appended so $c_\Lambda \in \mathbb{R}^{d+1}$) and added to c_j. This is detailed in procedure \text{COMPUTE-COEFFS} in Alg. 2 in which the local and global reductions occur at steps 5 and 7, respectively.

![Figure 2: Comparison of an (a) all-to-one communication where every node, depicted by circles, communicates results with the driver (bottom circle), and a (b) multi-level scheme with $n_l = 2$, such that the final reduction to the driver requires communication with only 2 nodes.](image-url)
3.2 PELS for LBFGS, NCG, & GD. The PELS algorithm with $d = 5$ was used to accelerate the following algorithms in Apache Spark for unconstrained optimization of smooth L_2-regularized loss functions: (i) LBFGS, (ii) NCG, and (iii) GD. The implementations using PELS will be henceforth denoted with a suffix -P as LBFGS-P, NCG-P, and GD-P. For LBFGS-P, NCG-P, and GD-P, once the search direction p_k was determined at w_k in the kth iteration, Alg. 2 was used to solve \[\begin{align*} \alpha_k &= \min \left\{ \alpha \mid \alpha \leq \frac{1}{\| p_k - \alpha p_{k-1} \|^2}, \right. \\ & \quad \left. \frac{\nabla L(w_{k-1})^T p_{k-1}}{\nabla L(w_k)^T p_k} \right\}. \end{align*} \] where α_{k-1} is the accepted step size from the previous iteration as in (2.3), and $\alpha_k = 1$ for $k = 0$. For NCG-P and GD-P, the search directions used to compute the coefficients in PELS and subsequently update w_k were normalized as $p_k \leftarrow p_k / \| p_k \|_2$. The NCG-P update rule was the positive Polak-Ribiére formula \[\theta \] with a Powell restart condition \[17 \]. For LBFGS-P, the initial inverse Hessian approximation in each iteration used Liu and Nocedal’s M3 scaling \[15 \] as in the LBFGS code for Spark version 1.5.

3.3 Algorithm Performance Tests. To evaluate the efficacy of PELS, performance tests were conducted with a logistic regression model as in (2.12) that compared the LBFGS-P, NCG-P, and GD-P implementations with LBFGS, NCG, and GD using the WA cub interpolating line search \[2 \] in the Breeze library \[18 \] with $\nu_1 = 10^{-4}$ and $\nu_2 = 0.9$, which is used in Spark’s LBFGS implementation. The LBFGS, NCG, and GD algorithms using a WA line search were implemented such that all vector operations other than the line search were identical to those in the LBFGS-P, NCG-P and GD-P implementations, respectively. The Powell restart threshold in NCG-P was 0.2, however NCG had a restart threshold of 1.0 since smaller values often triggered restarts in every iteration, reverting the method to GD. For both LBFGS and LBFGS-P, a history of 5 corrections was used in our tests, as recommended for large problems \[15 \].

The logistic regression models were trained on binary classification datasets procured from the LIBSVM repository \[19 \], which are listed in Tab. 1. This table also gives summary information about the datasets’ respective sizes of n and m, mean number of nonzero elements in x_i, ratio of the number of true (nonzero) y_i labels to false y_i labels as $n_+ : n_-$, and magnitudes of λ used in (2.12). The dense $\{x_i\}$ in the Epsilon dataset represented by contiguous dense vectors, while the other datasets’ instances were stored in compressed sparse vector format. All x_i were further augmented as $x_i^T \leftarrow [x_i^T 1]^T$ to implicitly include a constant offset term in the inner product $w^T x_i$. For all datasets, each algorithm was run with $w_0 = 0$. In each iteration, computed values of $L(w_k)$ and $\| \nabla L(w_k) \|_2$ were written to the standard output filestream. The values of θ used in Alg. 2 were $\theta = 10^{-4}$ (approximately 0.01% error), except for the Epsilon and KDD-\lambda datasets, on which 10^{-6} was used. While smaller θ generated more accurate step sizes, the additional PELS iterations increased the computational time; values of $\theta \in [10^{-6}, 10^{-4}]$ were a good compromise between accuracy and speed.

All performance tests were performed on a computing cluster composed of: 16 homogeneous compute nodes, 1 storage node hosting a network filesystem, and 1 master node. The nodes were interconnected by a 10 Gb ethernet managed switch (PowerConnect 8164; Dell). Each compute node was a 64 bit rack server (PowerEdge R620; Dell) running Linux kernel 3.13 with two 8-core 2.60 GHz processors (Xeon E5-2670; Intel) and 200 GB of SDRAM. The master node had identical processor specifications and 512 GB of RAM. Compute nodes were equipped with six ext4-formatted 600 GB SCSI hard disks, each with 10,000 RPM nominal speed. The storage node (PowerEdge R720; Dell) contained two 6-core 2 GHz processors (Xeon E5-2690; Intel), 64 GB of memory, and a hard drive speed of 7,200 RPM.

Our Apache Spark assembly was built from a snapshot of the version 1.5 master branch using Oracle’s Java 7 distribution, Scala 2.10, and Hadoop 2.0.2. Input files to Spark programs were stored on the storage node in plain text. The compute nodes’ local SCSI drives were used for both Spark spilling directories and Java temporary files. Shuffle files were consolidated into larger files, as recommended for ext4 filesystems \[20 \], and Kryo serialization was used. In our experiments, the Spark driver was executed on the master node

Dataset	n	m	$n_+ : n_-$	λ
Epsilon	400,000	2,001	1.0 : 1.0	10^{-8}
RCV1 (test)	677,399	47,237	1.1 : 1.0	10^{-7}
URL	2,396,130	3,231,962	117 : 17	10^{-8}
KDD-A	8,407,752	20,216,831	37 : 9	10^{-9}
KDD-B	19,264,097	29,890,095	29 : 6	10^{-9}
in standalone client mode, and a single instance of a Spark executor was created on each compute node. All RDDs had 256 partitions, corresponding to 1 partition per available physical core; performance decreased in general as more partitions were used. Finally, n_t was set to $\log_2 16$ in all tree aggregations; empirically, this was faster for large datasets than the default of $n_t = 2$.

4 Results & Discussion.

Our performance results are presented in two parts. In our initial tests, we are interested purely in the convergence improvements possible with PELS, and hence consider the Epsilon and RCV1 datasets that have little noise and are well-posed with $m \ll n$. In these tests, we present high-accuracy convergence traces since $\mathcal{L}(\mathbf{w}^*)$ may be computed to machine precision. By contrast, real-life machine learning applications are often ill-posed and have statistical errors in the model or instances that exceed the numerical optimization error, such that \mathbf{w}^* is computed to only a few significant digits until the training loss ceases to decrease appreciably [21]. To demonstrate that PELS is effective in this practical setting as well, we present results on the large and ill-posed URL, KDD-A, and KDD-B datasets, and compute the acceleration in reaching terminal values of the training label prediction accuracy, $\exp\{-\mathcal{L}(\mathbf{w}_k)\}$, achievable by using PELS.

For the Epsilon and RCV1 datasets, respectively, Fig. 3 and Fig. 4 show the traces of $|\mathcal{L}(\mathbf{w}_k) - \mathcal{L}(\mathbf{w}^*)|$ as a function of (a) iterations and (b) clock time for the algorithms considered in [21]. In both plots, $\mathcal{L}(\mathbf{w}^*)$ was determined as the minimal loss computed by any algorithm within the maximum number of iterations. That \mathbf{w}^* was computed accurately is evinced by the gradient norm at \mathbf{w}^*: $\|\nabla \mathcal{L}(\mathbf{w}^*)\|_2$ was 1.3×10^{-11} for the Epsilon dataset and 8.7×10^{-12} for the RCV1 dataset, as computed by NCG-P. It is notable in both plots that NCG-P has drastically outperformed both the NCG and LBFGS algorithms that use a standard WA line search. LBFGS-P outperforms LBFGS in iterations and time for the Epsilon dataset, and performs similarly to LBFGS on the RCV1 dataset. GD-P and GD are virtually indistinguishable at the scale of Fig. 3 and Fig. 4 since there is little substantive difference in the two algorithms’ traces.

The convergence traces for the large URL, KDD-A, and KDD-B datasets are shown in Fig. 5, Fig. 6 and Fig. 7 respectively (traces for GD and GD-P have been omitted from these plots since these algorithms made little progress towards the solution). These datasets required considerably more iterations and training time, and the LBFGS-P and NCG-P algorithms have outperformed their counterparts by multiple decimal digits in accuracy. However, since in many machine learning applications, the training procedure is halted once $\exp\{-\mathcal{L}(\mathbf{w}_k)\}$ reaches a plateau, only $\log_{10} |\mathcal{L}(\mathbf{w}_k) - \mathcal{L}(\mathbf{w}^*)|$ ≈ -3 may be necessary in practice. Bearing this, the speedup factors as a function of
the speedup in clock time of the PELS method in a dis-
tributional setting. Tab. 2 presents timing measurements
for the distributed operations, averaged for each algo-
rithm over all iterations. The quantity \(\tau_\text{fg} \) represents
the mean clock time required to evaluate \(\mathcal{L} \) and \(\nabla \mathcal{L} \)
through a map operation on the RDD of \(\mathcal{R} \) with a
subsequent aggregation. However, since \(\mathcal{L} \) does not
need to be computed explicitly in the PELS method,
\(\tau_\text{fg} \) denotes the time required to compute only \(\nabla \mathcal{L} \)
for LBFGS-P, NCG-P, and GD-P (although evaluating \(\nabla \mathcal{L} \)
alone takes as much time as evaluating \(\mathcal{L} \) and \(\nabla \mathcal{L} \) si-
multaneously). For the algorithms using the PELS
method, \(\tau_\text{es} \) gives the mean time to both compute and
aggregate the coefficient vector \(c_j \). The quantity \(n_c \)
represents the average number of iterations per line
search in the respective manners in which they were
conducted: for the WA algorithms, \(n_c \) is the mean
number of function evaluations per line search, and
for the PELS algorithms, it represents the mean
number of coefficient evaluations performed in Alg. 2 per
line search. Thus, in each outer iteration of the opti-
mization method, PELS algorithms perform 1 gradient
computation taking \(\tau_\text{fg} \) seconds and then \(n_c \) opera-
tions lasting \(\tau_\text{es} \) seconds, while WA algorithms perform \(n_c \) oper-
tions taking \(\tau_\text{fg} \) seconds. The total time per iteration
is shown as \(\tau_\text{tot} \). All uncertainty bounds show the stand-
ard deviation about the mean value; no uncertainty is
given for \(n_c \) since it was taken as the ratio of the total
number of line search calls to outer iterations.

The advantage of PELS for accurate large-scale dis-
tributed line searches is apparent when comparing \(\tau_\text{es} \)
to \(\tau_\text{fg} \) in Tab. 2 as well as the difference in \(n_c \) between
PELS and WA algorithms. For all datasets, \(\tau_\text{es} < \tau_\text{fg} \),
however when the problem size is large, such as for the
KDD-A and KDD-B datasets, computing the PELS co-
deeficients took only a quarter of the time required to
compute \(\nabla \mathcal{L} \). For all problems, LBFGS-P and NCG-P
required a lower number of \(n_c \) evaluations in the line
search than LBFGS and NCG, respectively, which en-
tailed that the average \(\tau_\text{tot} \) was approximately the same
for both PELS and WA implementations, despite the

Table 2: Mean clock times for each iteration (\(\tau_\text{tot} \)), evalu-
ating \(\mathcal{L} \) and \(\nabla \mathcal{L} \) (\(\tau_\text{fg} \)), and computing \(c_j \) (\(\tau_\text{es} \)). The average
number of function calls or line search iterations per outer
iteration of the optimization algorithms are given by \(n_c \).

Alg.	\(\tau_\text{tot} \) (s)	\(\tau_\text{fg} \) (s)	\(\tau_\text{es} \) (s)	\(n_c \)
LBFGS	0.5 ± 0.2	0.42 ± 0.09	1.13	9.92
NCG	4 ± 2	0.43 ± 0.08	0.61	0.31
GD	0.42 ± 0.10	0.42 ± 0.08	1.01	0.06
LBFGS-P	0.7 ± 0.1	0.42 ± 0.07	0.32 ± 0.06	1.00
NCG-P	0.7 ± 0.1	0.42 ± 0.07	0.32 ± 0.06	1.00
GD-P	0.7 ± 0.1	0.42 ± 0.07	0.32 ± 0.06	1.00
NCG-P	0.8 ± 0.2	0.45 ± 0.07	0.29 ± 0.06	1.05
GD-P	0.8 ± 0.1	0.45 ± 0.07	0.29 ± 0.06	1.06

Figure 7: Convergence traces in regularized loss for the
KDD-B dataset in (a) iterations and (b) elapsed time.

Figure 8: Speedup of LBFGS-P over LBFGS as a function
of approximate training accuracy, computed for (a) iter-
ations and (b) time.
fact that additional work was performed in computing the Taylor coefficients. In addition, note that \(n_e \approx 1 \) for all PELS algorithms on the datasets considered, which is particularly effective when contrasted with NCG on the Epsilon, RCV1, and URL datasets: on these problems, NCG produced poorly scaled search directions requiring many line search iterations. While preconditioning in the NCG algorithm can be used to mitigate the poor scaling, it requires additional matrix-vector operations in each iteration, often constructing an approximation to the Hessian with LBFGS-type updates \[22\]; we thus find it notable that NCG-P often had better performance than LBFGS, \emph{without} the need for preconditioning. In contrast to NCG, LBFGS generally had \(n_e \approx 1 \) in Tab.\[2\] as such, the performance gains of LBFGS-P over LBFGS stem principally from reducing the total number of required iterations by computing more accurate minima in each line search invocation.

5 Conclusion.

In this paper, we have presented the Polynomial Expansion Line Search method for large-scale batch and mini-batch optimization algorithms, applicable to smooth loss functions with \(\ell_2 \)-regularization such as least squares regression, logistic regression, and low-rank matrix factorization. The PELS method constructs a truncated Taylor polynomial expansion of the loss function that may be minimized quickly and accurately in a neighbourhood of the expansion point, and additionally has coefficients that may be evaluated in parallel with little communication overhead. Performance tests with our implementations of LBFGS, NCG, and GD with PELS in the Apache Spark framework were conducted with a logistic regression model on large classification datasets on a 16 node cluster with 256 processing cores. It was found, perhaps surprisingly, that NCG with PELS often exhibited better convergence and faster performance than LBFGS with a standard Wolfe approximate line search. For large datasets, the PELS technique also significantly reduced the number of iterations and time required by the LBFGS algorithm to reach high training accuracies by factors of 1.8–2. The PELS technique may be used accelerate parallel large-scale regression and matrix factorization computations, and is applicable to important classes of smooth optimization problems. All computer code for this paper is available through a \texttt{github} repository.

References

[1] T. Hastie, R. Tibshirani, and J. Friedman, \textit{The Elements of Statistical Learning: Data Mining, Inference, and Prediction}. Springer, 2001.

[2] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “Recent advances of large-scale linear classification,” \textit{P IEEE}, vol. 100, no. 9, pp. 2584–2603, 2012.

[3] G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, “A comparison of optimization methods and software for large-scale \(\ell_1 \)-regularized linear classification,” \textit{J Mach Learn Res}, vol. 11, pp. 3183–3234, 2010.

[4] J. Nocedal and S. Wright, \textit{Numerical Optimization}. Springer Science & Business Media, 2006.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing,” in \textit{P Conf Net Sys Des Impl}, pp. 15–39, USENIX, 2012.

[6] J. J. Moré and D. J. Thuente, “Line search algorithms with guaranteed sufficient decrease,” \textit{ACM T Math Software}, vol. 20, no. 3, pp. 286–307, 1994.

[7] M. Al-Baali and R. Fletcher, “An efficient line search for nonlinear least squares,” \textit{J Optimiz Theory App}, vol. 48, no. 3, pp. 359–377, 1986.

[8] W. Hager, “A derivative-based bracketing scheme for univariate minimization and the conjugate gradient method,” \textit{Comput Math Appl}, vol. 18, no. 9, pp. 779–795, 1989.

[9] W. Hager and H. Zhang, “A new conjugate gradient method with guaranteed descent and an efficient line search,” \textit{SIAM J Optimiz}, vol. 16, no. 1, pp. 170–192, 2005.

[10] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Siemans, “Large-scale matrix factorization with distributed stochastic gradient descent,” in \textit{P SIGKDD}, pp. 69–77, ACM, 2011.

[11] C.-J. Lin, R. C. Weng, and S. S. Keerthi, “Trust region Newton method for logistic regression,” \textit{J Mach Learn Res}, vol. 9, pp. 627–650, 2008.

[12] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling,” in \textit{P Euro Conf Comp Sys}, pp. 265–278, ACM, 2010.

[13] A. Agarwal, O. Chapelle, M. Dudík, and J. Langford, “A reliable effective terascale linear learning system,” \textit{J Mach Learn Res}, vol. 15, no. 1, pp. 1111–1133, 2014.

[14] B. Yavuz and X. Meng, “Performance improvements in MLlib,” \url{https://databricks.com/blog/2014/09/22/spark-1-1-mllib-performance-improvements.html} 2014.

[15] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” \textit{Math Program}, vol. 45, no. 1–3, pp. 503–528, 1989.

[16] J. C. Gilbert and J. Nocedal, “Global convergence properties of conjugate gradient methods for optimization,” \textit{SIAM J Optimiz}, vol. 2, no. 1, pp. 21–42, 1992.

[17] M. J. Powell, “Restart procedures for the conjugate gradient method,” \textit{Math Program}, vol. 12, no. 1, pp. 241–254, 1977.

[18] D. Hall, “Breeze: numerical processing library for Scala.” \url{https://github.com/scalanlp/breeze}

[19] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” \textit{ACM Trans Intel Sys Tech}, vol. 2, no. 3, p. 27, 2011.

[20] A. Davidson and A. Or, “Optimizing shuffle performance in Spark,” \textit{UC Berkeley, Dept Elec Eng & Comp Sci}, 2013.

[21] O. Bousquet and L. Bottou, “The tradeoffs of large scale learning,” in \textit{Adv Neur In}, pp. 161–168, 2008.

[22] W. W. Hager and H. Zhang, “A survey of nonlinear conjugate gradient methods,” \textit{Pac J Optim}, vol. 2, no. 1, pp. 35–58, 2006.