Time series of high resolution spectra of SN 2014J observed with the TIGRE telescope

D. Jack, M. Mittag, K.-P. Schröder, J. H. M. M. Schmitt, A. Hempelmann, J. N. González-Pérez, M. A. Trinidad, G. Rauw and J. M. Cabrera Sixto

1 Departamento de Astronomía, Universidad de Guanajuato, A.P. 144, 36000 Guanajuato, GTO, Mexico
2 Hamburger Sternwarte, University of Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany
3 Groupe d’Astrophysique des Hautes Energies, Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août, Bât B5c, 4000 Liège, Belgium
4 Universidad de Guanajuato, Lascurdín de Retana No 5, C.P. 36000 Guanajuato, GTO, Mexico

ABSTRACT

We present a time series of high resolution spectra of the Type Ia supernova 2014J, which exploded in the nearby galaxy M82. The spectra were obtained with the HEROS échelle spectrograph installed at the 1.2 m TIGRE telescope. We present a series of 33 spectra with a resolution of \(R \approx 20,000 \), which covers the important bright phases in the evolution of SN 2014J during the period from January 24 to April 1 of 2014. The spectral evolution of SN 2014J is derived empirically. The expansion velocities of the Si II P-Cygni features were measured and show the expected decreasing behaviour, beginning with a high velocity of 14,000 km/s on January 24. The Ca II infrared triplet feature shows a high velocity component with expansion velocities of > 20,000 km/s during the early evolution apart from the normal component showing similar velocities as Si II. Further broad P-Cygni profiles are exhibited by the principal lines of Ca II, Mg II and Fe II. The TIGRE SN 2014J spectra also resolve several very sharp Na I D doublet absorption components. Our analysis suggests interesting substructures in the interstellar medium of the host galaxy M82, as well as in our Milky Way, confirming other work on this SN. We were able to identify the interstellar absorption of M82 in the lines of Ca II H & K at 3933 and 3968 Å as well as K I at 7664 and 7698 Å. Furthermore, we confirm several Diffuse Interstellar Bands, at wavelengths of 6196, 6283, 6376, 6379 and 6613 Å and give their measured equivalent widths.

Key words: supernovae: individual: SN 2014J – galaxies: individual: M82 – galaxies: ISM – ISM: lines and bands.

1 INTRODUCTION

Supernovae of Type Ia (SN Ia) are of special interest for cosmology since the discovery that the expansion of the universe is actually accelerated [Riess et al. 1998, Perlmutter et al. 1999]. But despite being widely used as a calibratable “standard candle” [Phillips 1993, Riess et al. 1996, Phillips et al. 1999, Goldhaber et al. 2001] this type of supernovae remains poorly understood. See Parrent et al. (2014) for a recent review on SNe Ia and their properties. The physical nature of a Type Ia supernova progenitor is still under discussion [Levanon et al. 2015] as well as the explosion mechanism. Several different explosion models have been suggested and calculated [Nomoto 1984, Khokhlov 1991, Plewa et al. 2004, Jordan et al. 2008, Pakmor et al. 2012, 2013, Rosswog et al. 2009, Kushnir et al. 2013]. A well-resolved time series of spectra of SNe Ia may shed some light on the physical properties of the expanding envelope and, therefore, might reveal some vital clues about the nature of SN Ia explosions.

So far, however, no such detailed time series of SNe Ia spectra exist. The most detailed time series obtained of SN 2011fe has only a relatively low spectral resolution and some gaps in the coverage [Pereira, R. et al. 2013]. The nearby and, therefore, quite bright supernova 2014J provided an excellent opportunity for observing a SN Ia very closely and obtaining quite high resolution spectra.

SN 2014J was discovered in the starburst galaxy MS2 (Fossey et al. 2014) during the night of January 21, in an early stage of its outburst. Only two weeks later, around February 4, the maximum \(V \)-magnitude was reached with \(V = 10.5 \). By mid-march, SN 2014J had faded below 12.0
The TIGRE telescope is a fully automated telescope with an aperture of 1.2 m, situated near the city of Guanajuato in Central Mexico. It is equipped with the HEROS échelle spectrograph, which has a resolution of $R \approx 20,000$. Spectra are recorded simultaneously in two channels, blue and red, covering the large wavelength range from 3800 to 8800 Å with just a small gap of 130 Å around 5800 Å. Like operations, the data reduction pipeline is also fully automatic.

Originally designed to monitor point-like objects down to about 10th magnitude with high-quality spectra, SN 2014J presented a challenge as much as an opportunity for this relatively small telescope. For a more detailed technical description of the TIGRE instrumentation and its capabilities, see Schmitt, J. H. M. M. et al. (2014).

2.2 Time series of SN 2014J spectra

Our monitoring of the supernova 2014J started very shortly after its discovery on January 21. We obtained high-resolution spectra with a good signal to noise (S/N) of around 60 in the red channel in almost every night until March 2. Due to some technical problems with the telescope we were only able to take two late time spectra on March 31 and April 1. In the blue channel the S/N has lower values of around 20, because SN 2014J suffered from a significant interstellar absorption and reddening. Therefore, all spectra presented in Fig. 1 have been dereddened with the values $E(B-V) = 1.33$ and $R_V = 1.3$ found by Amanullah R. et al. (2014) in their study of the extinction law of SN 2014J. Furthermore, since the full resolution is not necessary for a study of the broad spectral features of supernova ejecta, we binned our spectra to a resolution of $\Delta \lambda = 10$ Å for this purpose. Hence, the S/N was further improved and the spectra smoothed, also reducing the visibility of some telluric lines inherent to ground based observations.

Figure 1 shows the complete set of SN 2014J spectra observed with the TIGRE telescope. We combined the observations of the blue and the red channel to present the full spectra in the whole wavelength range from 3800 to 8800 Å except for the small gap of the spectrograph around 5800 Å. The dates at the right hand side mark the observation date in 2014 in Universal Time (UT). Because of the strong interstellar reddening of SN 2014J, the later spectra in the blue channel have a poor S/N and one cannot clearly distinguish features any more.

The very first spectrum was observed on January 24 UT and, therefore, still about 10 days before maximum light. This spectrum already shows the prominent P-Cygni profile of the Si II feature at around 6300 Å, which usually identifies a SN as a Type Ia. A high expansion velocity feature of the Ca II triplet is also present in the early spectra of SN 2014J at a wavelength of around 8000 Å. We were able to observe a spectrum almost every night until March 2 UT. In this time, 31 spectra were obtained. Then, due to a simple technical problem with the telescope mount, which caused some out-time for repair work, we could only obtain two more late-time spectra of SN 2014J, on March 31 and April 1 UT.
Figure 1. Spectral time series of SN 2014J observations obtained with the TIGRE telescope in both the red and blue channel of the HEROS spectrograph. The dates are given for the observations in early 2014.
A SN Ia spectrum at early times is supposed to be quite flat and should not show many clear features. This is clearly consistent with the appearance of our early-time spectra of SN 2014J. For clarity, the latest spectrum shown in Fig. 1 is the one observed on March 2, which corresponds to about 1 month after maximum light. The small "lines" in some parts of the spectra stem from a few, more noticeable telluric lines.

The here presented time series reveals the changing shape, on an almost daily schedule with some features. The general trend, the P-Cygni extrema moving towards the redder part of the spectrum, is consistently observed in the Si II line and some other features. This means that the observed expansion velocities change during the evolution. The reason for that is the expansion of the envelope, which decreases the mass densities and, therefore, decreases all opacities. Hence, with ongoing expansion, ever deeper and slower layers of the expanding envelope become visible in the spectra. In other words, the quasi-photosphere moves inwards into less fast expanding shell material.

Another strong feature in SN Ia spectra is caused by the Ca II IR triplet at around 8500 Å which already appears during the early phases at around maximum light. It can be observed throughout the whole evolution until the latest spectrum shown in Fig. 1. At early times it shows a high velocity component.

At later phases an Fe II emission feature appears about where the prominent Si II line was observed earlier. Another Fe II feature then appears at around 5000 Å. Indeed, it is true of evolved type Ia SNe to show more spectral features in general. Eventually, these go into emission, as the late, optically thin phase of the expanding envelope has been reached. At the same time, one sees the inner layers, which are rich of iron peak elements, causing the above-mentioned rise of Fe II features. In the following section, we present a more detailed picture of the evolution of selected spectral features.

2.3 Detailed spectral evolution of important features

In Fig. 2, we compare a selection of only four spectra from the blue channel of the HEROS spectrograph, representative of four different epochs in the evolution of SN 2014J. Due to the strong interstellar reddening of the light of SN 2014J, the later spectra have only poor S/N.

The first spectrum from above in Fig. 2 was obtained on January 25. It shows the typical features of a SN Ia spectrum during maximum light. We can see the typical S II feature in form of a W between wavelengths of, roughly, 5000 and 5500 Å. At shorter wavelengths a clear Fe II feature can be seen at around 4500 to 5000 Å. Furthermore, around wavelengths of about 4000 to 4500 Å a clear feature of Mg II is present in the spectrum of SN 2014J. Below 4000 Å one can see the drop in flux towards the Ca II H & K feature, although it is not fully covered in the shown spectrum and the S/N is already quite low in that part of the spectrum. We should stress that spectra of SNe Ia are a blend of millions of lines, so that one cannot always assign one specific element to each observed feature.

The spectrum of February 4, which corresponds to maximum light, shows similar spectral features, when compared to the spectrum of January 25. However, the line profiles have already changed a bit. Additionally, this spectrum shows consistently lower expansion velocities, in all of its features. The further two spectra shown in Fig. 2 of February 18 and the one of March 1, suffer already from poorer S/N. Nevertheless, these spectra show the expected emission features of Fe II.

2.3.1 Evolution of the Si II line profile

The broad Si II P-Cygni line profile is shaped by the ejecta of the supernova, its dynamics and its opacity evolution, in a most representative way, since this is the strongest feature observed in the SN Ia spectra at 6355 Å during maximum light.

A time series of the wavelength range of this Si II feature is shown in Fig. 3. A set of 10 spectra was selected, which best represent the evolution and its chronology here. All these spectra are shown in their full spectral resolution. They are normalized in flux, and their wavelength scales were transformed onto a barycentric velocity scale (with respect to 6355 Å).

In the first spectra, the Si II feature exhibits a typical P-Cygni profile, which is expected for a rapidly expanding, optically thick envelope. Hence, the emission is still much less prominent than the absorption part of the profile. Furthermore, it is clearly seen from the individual line profiles, how fundamentally the absorption part changes. At the beginning, this is just one consistent broad absorption, as of a typical P Cygni profile. Its minimum is located at an expansion velocity of around $\approx -14,000$ km/s. This characteristic expansion velocity then shifts slightly to $\approx -11,000$ km/s until the day of February 20. By February 26, however, the Si II absorption has changed its nature significantly, because a small emission feature appears inside of the Si II P-Cygni absorption feature. By April 1, the Si II feature has come close to disappearance.

During the later phase an Fe II emission feature arises in the wavelength range of the Si II feature. During the ongoing expansion the envelope becomes thinner and allows that deeper parts of it shape the spectra. In this way, the iron peak elements from the inner envelope of the expanding SN Ia envelope become visible. By the day of February
26 a small emission feature at around ≈ -7000 km/s has appeared in the absorption trough of the P-Cygni profile of the Si II feature. The emission feature to the right at $\approx +9000$ km/s is an Fe II feature, which becomes stronger until April 1. By that time the envelope has become optically thin.

2.4 Expansion velocities of Si II and Ca II

Since we obtained a well resolved time series of SN 2014J spectra, we were able to study the expanding envelope in some detail. For that, we measured the evolution of the expansion velocities of the Si II feature at around 6300 Å and the Ca II IR triplet feature at around 8500 Å.
Figure 4. Measured expansion velocities of the Si II feature at 6000 Å.

Figure 5. Measured expansion velocities of the Ca II feature at 8500 Å. During the early phase it shows a high velocity component.

Figure 6. Full resolution capture of the complex IS absorption in the sodium D-line doublet, from the superposition of the 32 best spectra.

Figure 5 shows the change in the expansion velocity of the prominent Si II feature. Starting from a high expansion velocity of 14,000 km/s on January 24, the expansion velocities decrease while the envelope is expanding. Hence, the deeper parts are revealed in the spectra, which have slower expansion velocities. When the Si II is about to disappear, the expansion velocity is about 12,000 km/s. The photosphere has then passed the layers with abundant silicon.

In Fig. 6 we show the measured expansion velocities of the Ca II feature at around 8500 Å. Thanks to our early observations, we could study the evolution of a high velocity component of the Ca II feature. Its expansion velocity decreases from 24,000 km/s in our first spectrum down to about 20,000 km/s in the spectrum 6 days later. In their study of near infrared spectra of SN 2014J, Marion, G. H. et al. (2015) found a similar behaviour for the Ca II IR triplet expansion velocities. They measured values for the high expansion velocity feature between 26,000 km/s and 20,000 km/s. Like in our study, they did not detect a clear high velocity component of the Si II feature. All these observations are consistent with the study of high velocity components in other type Ia supernova performed by Silverman et al. (2013). Observing a high velocity component of Ca II is much more common than one of Si II.

The main component of the Ca II feature starts with an expansion velocity of roughly 14,500 km/s and decreases to a value of 12,000 km/s. As expected in SNe Ia, the observed expansion velocities of the Ca II feature are similar to those measured for the Si II feature.

3 THE INTERSTELLAR ABSORPTION COMPONENTS OF THE SODIUM D-LINES

As can be seen in Fig. 6, the D-line doublet of Na I at 5889.95 Å and 5895.92 Å shows a complex, multi-component absorption line structure due to distinctly different contributions. The telluric absorption lines were not removed in the presented spectra. We here study and discuss this very valuable information and offer an interpretation in terms of different origins. Within the noise of individual spectra, the D-line absorption features appeared invariable over the two months or so we succeeded with the spectroscopic monitoring. To minimize noise, we superimposed the 32 best SN spectra in the vicinity of the Na D doublet (see Fig. 6), after a barycentric correction was applied to the laboratory wavelength scale of each spectrum.

There are essentially four absorption components or groups of even narrower absorption features, as have also been seen by other groups in even higher spectral resolution (see Graham, M. L. et al. (2014); Welty et al. (2014); Ritchey et al. (2015)): (a) is a small absorption (the rightmost feature in Fig. 6) at a radial velocity shift of +245 km/s (barycentric), which is clearly seen in the longer-wavelength Na I D-line but is blended (see below) in the left one. (b) is a very broad and saturated absorption trough, prominent in both D-lines. Its distinct, asymmetric profile in both D-lines suggests an interesting velocity and density structure, which reaches from a sharp edge at +50 km/s to beyond +200 km/s, close to component (a). Component (c) is a sharp, medium-strong component well visible in both D-
lines at -5 km/s, while (d) is a 4 times weaker (by equivalent width) component, equally sharp and distinct, at -60 km/s. It is well visible only for the shorter-wavelength D-line, while its longer-wavelength counterpart (d') falls into component (a) of the shorter-wavelength D-line.

The uncertainties of the equivalent widths, as measured in the integrated spectrum are about 0.015 Å for the weak lines (components a, c and d, see below) and 0.05 to 0.1 Å for the broad component b. Individual spectra yielded uncertainties about 6 times as large. Consequently, the weak components were well resolved but much affected by noise. Any hidden temporal changes, if any, would have had to be smaller than about 25% of the absorption of the weak components.

3.1 Components (c) and (d): distinct ISM clouds

For component (c) the obvious absorber candidate is galactic components. It is well visible only for the shorter-wavelength D-line, while its longer-wavelength counterpart (d') falls into component (a) of the shorter-wavelength D-line.

The analysis of pure absorption lines was formerly applied by us to special problems in the field of stellar atmospheres. See [Schroeder et al. (1994)](#) and references given there for a brief summary of the simple theory. Given well-known transition probabilities (for the Na I D-line doublet we use the f and g values given by [Wiese et al. (1969)]) the equivalent width of a weak, unsaturated line is a linear function of only the column number density N of the absorber. However, once saturation sets in, at least two lines of the same multiplet and with much different transition probability f are required to solve for both, N and the line-broadening velocity. We here use the same simple computer code as [Schroeder et al. (1994)](#), to calculate the profiles of pure absorption lines and their equivalent widths for any such parameter pair.

In the case of the two Na I D (c) components, we find a best-matching solution for $N_{Na} = 3.3(\pm 0.7) \times 10^{12} \text{ cm}^{-2}$ and $v_{\text{disp}} = 3.5(\pm 0.2) \text{ km/s}$. This small velocity dispersion matches the lower end of what [Wilson, C. D. et al. (2011)](#) (see their Table 1) find for whole galaxy disks, and presumably we indeed see just a single cloud in our own Milky Way. We should note, however, that a possibly smaller velocity dispersion naturally allows for a larger column density due to saturation effects. In fact, [Ritchey et al. (2013)](#) find $9.5 \times 10^{12} \text{ cm}^{-2}$ at 2.0 km/s for this component. The sodium column density only gives us a lower limit for neutral hydrogen of $N_{H} = 2.1(\pm 0.5) \times 10^{18} \text{ cm}^{-2}$, when using a relative sodium abundance of $10^{-5.8}$, since IS sodium is much more prone to ionization (much lower ionization potential) than hydrogen. The true value may be almost two orders of magnitude higher (see [Ritchey et al. (2015)])).

Apparent, the distinct, small and sharp component (d) is of a similar nature (single cloud) as component (c). Even with the same small broadening velocity, it would not suffer much from saturation, as the equivalent width is only 0.05 Å. Accordingly, for its column density we obtain $N_{Na} \approx 3 \times 10^{11} \text{ cm}^{-2}$. At -60 km/s barycentric radial velocity, it may appear not very likely to be of a galactic origin, but the Leiden/Argentine/Bonn (LAB) H 21cm Survey does show galactic IS hydrogen here (see [Ritchey et al. (2012)](#)).

3.2 The signatures of cool ISM in the M82 disk

Now, can the remaining D-line absorption components (a) and (b) be attributed to the M82-internal ISM? And is the observed D-line absorption consistent with the IS extinction in the line of sight towards SN 2014J, which mainly arises in the disk of M82? (as the line of sight stays clear of most of the galactic IS absorption?) The maximum magnitude of SN 2014J of $V = 10.5\text{ mag}$ suggests $A_{V} \approx 1.9\text{ mag}$ (with $M - m = 27.8\text{ mag}$ at 3.6 Mpc distance and $M_{V,max} = -19.2\text{ mag}$ for a typical SN type Ia). The large reddening (see above) seems to suggest even a larger IS absorption.

Using the relation given by [Güver & Özel (2004)](#), i.e. $N_{Na}/(\text{cm}^{-2}) = 2.2 \times 10^{21}A_{V}/(\text{mag})$, a neutral hydrogen column density of N_{H} of about $4 \times 10^{21} \text{ cm}^{-2}$ should be expected. The respective sodium column density would be limited to $N_{Na} < 6 \times 10^{15} \text{ cm}^{-2}$. Due to ionization, the true value could be nearly two orders of magnitude lower.

The (here clearly not given) case of an optically thin absorption translates the equivalent width of all D-line absorption, nearly 4 Å, into a lower limit for N_{Na} of only $\approx 2 \times 10^{13} \text{ cm}^{-2}$. Hence, this is indeed fully consistent with an IS absorption of about 2 mag (or more). Nevertheless, from a profile analysis of a much better spectral resolution, [Ritchey et al. (2015)](#) find only $1.8 \times 10^{14} \text{ cm}^{-2}$.

M82 as a whole has a radial velocity of +203 km/s [Chynoweth et al. (2008)]. With respect to any Na D absorption components, however, only ISM, which lies in front of SN 2014J, becomes visible. SN 2014J is located in the western disk-half, 58° away from the galaxy nucleus. Here, the ISM rotates towards us with (in the rest-frame of M82) $v_{\text{rot}} \approx -100$ to -150 km/s (see [Mayya & Carrasco (2009)](#)). For this reason, the D-line absorption should appear between (barycentric) radial velocities of $+50\text{ km/s}$ to $+100\text{ km/s}$. Remarkably, the broad component (b) features a sharp blue edge at $+50\text{ km/s}$, but then reaches out with a red wing to component (a) at $+245\text{ km/s}$ (barycentric). That material is clearly not participating in the general disk rotation but (in the rest-frame of M82) moves backwards, towards the SN 2014J.

An answer to such diverse dynamics may be given by the hot superbubble discovered by [Nielsen et al. (2011)](#). Its X-ray emission appears to coincide with the site of SN 2014J. The bubble has been inflated to about 200 pc in diameter by the action (hot winds and SNe) of some very massive stars formed there perhaps 50 Myrs ago. We suggest that...
the fully saturated part of component (b) between +50 and about +140 km/s (barycentric) traces the swept-up, cold ISM gas in front of that superbubble. In the rest-frame of M82, it moves with about −150 km/s to −60 km/s. Part of this gas is pushed towards us by the still expanding superbubble, in addition to being rotating towards us with the disk of M82. In particular, this would explain the sharp blue edge of component (b): this is the cool material closest to the bubble-shockfront approaching us.

The backward moving ISM found in the red wing of component (b) and in component (a) could be explained, if SN 2014J was not located inside the superbubble, but instead a bit behind it, placing the superbubble at +150 km/s (barycentric), that is, in co-rotation with the disk, and have its shockfront still expanding at about 100 km/s. In this scenario, SN 2014J would also probe some ISM pushed out away from us, towards it and so moving against disk rotation. The small but distinct component (a) at about +40 km/s in the rest-frame of M82 would mark this cold ISM closest to the far-side bubble-shockfront. However, the highly complex substructure of the IS absorption resolved by [Graham, M. L. et al.] (2015) leaves, as intriguing as our proposal is, alternative explanations, e.g. by a number of individual structures in the long line of sight. And component (a) may also match the western HI streamer found by [Yun et al. (1993), see Ritchey et al. (2015)].

3.2.1 Other IS absorption signatures: K I, Ca II and DIBs

Interstellar absorption, mostly of component (b) belonging to the galaxy M82, is visible in several other lines as well, foremost in the Ca II doublet. Figure 7 shows two absorption features corresponding to Ca II H and K at wavelengths of 3933.66 Å and 3968.5 Å. Since these lines are at the lower end of the blue channel, the spectra at that wavelength range have low S/N. Obviously, one cannot do a very detailed study. However, both absorption features are broad, ranging between +50 and +200 km/s, much like component (b) of the D-lines of the Na I doublet. We were also able to detect two ISM absorption feature of K I at 7698.96 Å and at 7664.9 Å as shown in Fig. 8. Note that telluric absorption lines have not been removed from the observed spectra. These feature also show the broad absorption at around +100 km/s corresponding to the broad IS absorption feature of the sodium D-line doublet. This broad feature is due to absorption of ISM in M82. We were also able to detect CH+ at a wavelength of 4232 Å.

The high resolution of our spectra allows us to check even for unidentified interstellar absorption features, the so-called Diffuse Interstellar Bands (DIB). So far, the responsible elements or molecules have not been identified, which is a motivation for further high-quality observations of DIBs. We were able to detect a few of them in our best high resolution spectra of the supernova SN 2014J. Since the DIB features are present in all our spectra, we again added them up to obtain just one final spectrum with further improved S/N. As shown in Fig. 9, we find two DIBs at wavelengths of 6196 Å and 6613 Å. The DIB wavelengths

![Figure 7. Detection of absorption by ISM for the Ca II 3933 and Ca II 3968 lines in the high resolution spectra of SN 2014J.](image)

![Figure 8. Detection of absorption by ISM for the K I and K I 7698 lines in the high resolution spectra of SN 2014J. The three narrow lines at the left hand side are telluric lines.](image)

![Figure 9. Two features of DIBs observed in the high resolution spectra of SN 2014J. The left hand side shows the feature at 6196 Å, and on the right hand side the DIB 6613 Å.](image)
Figure 10. Three more features of DIBs observed in the high resolution spectra of SN 2014J. We found DIB features at 6283 Å, as shown on the left hand side, and on the right hand side two features at 6376 and 6379 Å.

Table 1. Measured equivalent widths of the ISM and DIB features observed in the spectra of SN 2014J.

Feature	Equivalent Width [Å]
DIB 6283	0.27 ± 0.04
DIB 6376	0.065 ± 0.013
DIB 6379	0.037 ± 0.007
DIB 6613	0.2 ± 0.01
K I 7664	0.35 ± 0.05
K I 7698	0.28 ± 0.05

have been taken from the study of Hobbs, L. M. et al. (2009). Again, the plot indicates velocities in the range of roughly +50 km/s to +200 km/s, as found in the broad (b) absorption feature of the Na D doublet.

In this combined spectrum of SN 2014J, we also found several other DIBs. Figure 10 shows the DIB of 6283 Å and the double feature of DIBs at 6376 Å and 6379 Å, in the same range of +50 km/s to +200 km/s. All these feature were also observed by Welty et al. (2014) and several other authors from high resolution spectra of SN 2014J. We were unable to detect the 5780 and 5797 Å DIBs since these features unfortunately lie exactly in the wavelength gap of the HEROS spectrograph.

In Table 1 we present the measured equivalent widths of the ISM and DIB features observed in our spectra of SN 2014J. The spectra in the wavelength range of the Ca II H & K absorption lines are too noisy to able to obtain reasonable equivalent widths. Our measured values for the equivalent widths of the DIBs are in the same range as found by Welty et al. (2014) and Graham, M. L. et al. (2013). However, for the DIB 6283 Å, the strongest of the observed DIBs in our spectra, Welty et al. (2014) found a much higher value for its equivalent width, while Graham, M. L. et al. (2013) found a value comparable to our. The reason might be the broad wings of this line as seen in the spectra of Welty et al. (2014). In our spectra, the telluric lines make it difficult to measure equivalent widths including the broad wings (see Fig. 10). The IS absorption in both lines of K I are stronger than the DIBs.

4 CONCLUSIONS AND DISCUSSION

We presented a time series of 33 high resolution spectra of the Type Ia supernova 2014J in M82 observed with the TIGRE telescope. We obtained these spectra with the HEROS échelle spectrograph, which covers the wavelength range from 3800 Å to 8800 Å, with only a small gap at around 5800 Å. The long monitoring period of about two months, well including maximum light of SN 2014J, in combination with the high quality of the spectra, enables us to empirically describe the spectral evolution of this supernova Ia in detail. By its spectral features and their behaviour SN 2014J is very typical for a Type Ia SN.

During maximum light, red-channel SN 2014J spectra show broad P-Cygni profiles caused by the strongest lines of Si II and Ca II. In the blue channel we observed the typical features of S II, Mg II, Fe II and Ca II. We studied the evolution of the prominent P-Cygni profile features of Si II at around 6300 Å in some detail. It shows a decrease in the expansion velocity in time as it is expected from rapidly expanding SN envelopes. The first spectrum from January 24 shows a minimum in the absorption trough at an expansion velocity of ≈ −14,000 km/s. The expansion velocity decreases, and on February 20 it has dropped to a value of ≈ −12,000 km/s.

The Ca II infrared triplet feature at about 8500 Å shows a high expansion velocity component during the first days of observation with expansion velocities of 24,000 km/s measured on January 24 decreasing to 20,000 km/s right before this component disappears. The main expansion velocity component shows a similar behaviour as the Si II feature. The expansion velocities decreases from an initial value of 14,500 km/s down to 11,000 km/s during the later phases of the expansion of the envelope.

Due to the significant amount of interstellar absorption and reddening of SN 2014J, the later blue-channel spectra suffer from a quite low S/N. In the well-exposed red channel, however, those later spectra document the transition from the optically thick to the thin phase of the expanding envelope very well. Now, emission features are dominated by Fe II lines from deeper layers. At the same time, in the red channel, the Si II feature disappears, while a Fe II feature arises in the respective wavelength region.

The reason for the rise of these Fe II lines lies in the layered structure of the SN debris, combined with a decreasing opacity: the quasi-photosphere moves inwards and passes from the outer layers of intermediate mass elements like silicon and sulfur to deeper layers with iron peak elements, stemming from the inner envelope of the exploded progenitor White Dwarf. In this way our dense time series allows us to basically scan the abundance properties of the entire SN envelope, especially its abundances structure.Achieving this requires, of course, a huge amount of modeling work. Every spectrum of the series needs to be analyzed and/or modeled with a suitable (1D or even 3D, non-LTE, dynamic) atmospheric code. In a future work, using the PHOENIX code (Hauschildt 1992, Hauschildt & Baron 1999), we will do this work for the whole time-series of spectra, in order to obtain
a detailed and quantitative abundance structure of the envelope of SN 2014J as a case study for a SN of Type Ia. Since the different explosion models predict slightly different abundances and also a differently layered abundance structure, this detailed abundance determination might exclude or favor one or some of the suggested explosion mechanism for a supernova of Type Ia. Some of the here presented spectra have already been used to identify the feature, which causes the secondary maximum in the I-band light curve of Type Ia supernovae (Jack et al.2013).

Furthermore, the high resolution of $R \approx 20,000$ of the obtained spectra allows for a study of the sharp ISM absorption features in the SN 2014J spectra. The Na I D doublet shows different substructures in the ISM of our galaxy, as well as of the host galaxy M82. There is a small feature of ISM of M82 at a high velocity of about $+245$ km/s. A very broad absorption feature at velocities of $+50$ km/s to $+200$ km/s is apparently caused by ISM in M82, perhaps even related to the expanding environment around a superbubble just in front of the SN. We also found two sharp absorption features at velocities of about -5 km/s and -60 km/s, both are of a galactic origin. We are also able to identify the same broad ISM absorption of M82 between $+50$ km/s and $+200$ km/s in the principal lines of Ca II H & K at 3934 and 3968 Å and $+50$ km/s and -60 km/s.

Thanks to the high quality of the spectra, we also identified a few DIBs in the spectra of SN 2014J, confirming other results. We found signatures of these features at wavelengths of 6196, 6283, 6376, 6379 and 6613 Å and measured the equivalent widths of these features. Hence, we can fully confirm the observations made by Welty et al. (2014) in their analysis of high resolution SN 2014J spectra. The radial velocities of the observed DIBs again are fully consistent with the broad Na D absorption feature of M82 in the range of velocities of $+50$ km/s to $+200$ km/s.

ACKNOWLEDGMENTS

Our collaboration and work was much helped by travel money from bilateral (Conacyt-DFG) project grant No. 192334, as well as by Conacyt mobility grant No. 207662. Furthermore, we are very grateful for the technical support of TIGRE (infrastructure, Internet connection, maintenance of hardware and software) by, namely, the DA-UG engineers Filiberto González and Irán Montes, as well as by UG’s general technical support (namely by colleagues at DSTI and Informática). We would also like to thank the anonymous referee for many very helpful comments and suggestions.

REFERENCES

Amanullah R. et al., 2014, ApJ, 788, L21
Ashall C., Mazzali P., Bersier D., Hachinger S., Phillips M., Percival S., James P., Maguire K., 2014, MNRAS, 445, 4424
Chynoweth K. M., Langston G. I., Yun M. S., Lockman F. J., Rubin K. H. R., Snoes S. A., 2008, AJ, 135, 1983
Cox N. L. J., Corderer M. A., Cami J., Foing B. H., Sarre P. J., Kaper L., Ehrenfreund P., 2004, A&A, 447, 991
Cox N. L. J., Patat F., 2008, A&A, 485, L9
Cox N. L. J., Patat F., 2014, A&A, 565, A61
Cox, N. L. J. et al., 2007, A&A, 470, 941
de Boer K. S., Richtler T., Savage B. D., 1987, in Danziger I. J., ed., European Southern Observatory Conference and Workshop Proceedings Vol. 26 of European Southern Observatory Conference and Workshop Proceedings, On the interstellar medium in the LMC near SN1987A. pp 549–554
D’Odorico S., di Serego Alighieri S., Pettini M., Magain P., Nissen P. E., Panagia N., 1989, A&A, 215, 21
Ehrenfreund, P. et al., 2002, ApJ, 576, L117
Foley, R. J. et al., 2014, MNH, 443, 2887
Fossey J., Cooke B., Pollack G., Wilde M., Wright T., 2014, Central Bureau Electronic Telegrams, 3792, 1
Goldhaber G. et al., 2001, ApJ, 558, 359
Graham, M. L. et al., 2015, ApJ, 801, 136
Güver T., Özel F., 2009, MNRAS, 400, 2050
Hauschildt P. H., 1992, J. of Quant. Spectrosc. and Radiative Transfer, 47, 433
Hauschildt P. H., Baron E., 1999, J. Comp. Applied Math., 109, 41
Herbig G. H., 1995, ARA&A, 33, 19
Hobbs, L. M. et al., 2009, ApJ, 705, 32
Jack D., Baron E., Hauschildt P. H., 2015, MNRAS, 449, 3581
Jordan G. C., Fisher R., Townsley D., Calder A., Graziani C., Asida S., Lamb D., Truran J., 2008, ApJ, 681, 1448
Khokhlov A., 1991, A&A, 245, 114
Kushnir D., Katz B., Dong S., Livne E., Fernández R., 2013, ApJ, 778, L37
Levanon N., Sokor N., García-Berro E., 2015, MNRAS, 447, 2803
Margutti R., Parrent J., Kamble A., Soderberg A. M., Foley R. J., Milisavljevic D., Drout M. R., Kirshner R., 2014, ApJ, 790, 52
Marion, G. H. et al., 2015, ApJ, 798, 39
Mayya Y. D., Carrasco L., 2009, in Revista Mexicana de Astronomía y Astrofisica Conference Series Vol. 37 of Revista Mexicana de Astronomía y Astrofisica Conference Series, M82 as a Galaxy: Morphology and Stellar Content of the Disk and Halo. pp 44–55
Mohran R., Dwarkanath K. S., Srinivasan G., 2004, Journal of Astrophysics and Astronomy, 25, 185
Nielsen M. T. B., Gilfanov M., Bogdán Á., Woods T. E., Nelemans G., 2014, MNRAS, 442, 3400
Nomo K., 1984, ApJ, 277, 791
Pakmor R., Kromer M., Taubenberger S., Sim S. A., Röpke F. K., Hillebrandt W., 2012, ApJ, 747, L10
Pakmor R., Kromer M., Taubenberger S., Springel V., 2013, ApJL, 770, L8
Parrent J., Friesen B., Partheros M., 2014, Ap&SS, 351, 1
Pereira, R. et al., 2013, A&A, 554, A27
Pérez-Torres, M. A. et al., 2014, ApJ, 792, 38
Perlmutter S., et al., 1999, ApJ, 517, 565
Phillips M. M., 1993, ApJ, 433, L105
Phillips M. M., Lira P., Suntzeff N. B., Schommer R. A., Hamuy M., Maza J., 1999, AJ, 118, 1766
Plewa T., Calder A. C., Lamb D. Q., Truran J., 2008, ApJ, 681, 1448
Pereira, R. et al., 2013, A&A, 554, A27
Perez-Torres, M. A. et al., 2014, ApJ, 792, 38
Perlmutter S., et al., 1999, ApJ, 517, 565
Phillips M. M., 1993, ApJ, 433, L105
Phillips M. M., Lira P., Suntzeff N. B., Schommer R. A., Hamuy M., Maza J., 1999, AJ, 118, 1766
Plewa T., Calder A. C., Lamb D. Q., 2004, ApJ, 612, L37
Riess, A. et al., 1998, AJ, 116, 1009
Riess A. G., Press W. H., Kirshner R. P., 1996, ApJ, 473, 88

D. Jack et al.
Time series of SN 2014J spectra with TIGRE

Ritchey A. M., Wallerstein G., 2015, PASP, 127, 223
Ritchey A. M., Welty D. E., Dahlstrom J. A., York D. G., 2015, ApJ, 799, 197
Rosswog S., Kasen D., Guillochon J., Ramirez-Ruiz E., 2009, ApJ, 705, L128
Schmitt, J. H. M. M. et al., 2014, Astronomische Nachrichten, 335, 787
Schroeder K.-P., Griffin R. E. M., Hunsch M., 1994, A&A, 288, 273
Silverman J. M., Vinko J., Marion G. H., Wheeler J. C., Barna B., Szalai T., Mulligan B., Filippenko A. V., 2015, arxiv:1502.07278
Sollerman J., Cox N., Mattila S., Ehrenfreund P., Kaper L., Leibundgut B., Lundqvist P., 2005, A&A, 429, 559
Telesco, C. M. et al., 2015, ApJ, 798, 93
Vladilo G., Crivellari L., Molaro P., Beckman J. E., 1987, A&A, 182, L59
Welty D. E., Federman S. R., Gredel R., Thorburn J. A., Lambert D. L., 2006, ApJS, 165, 138
Welty D. E., Ritchey A. M., Dahlstrom J. A., York D. G., 2014, ApJ, 792, 106
Wiese W. L., Smith M. W., Miles B. M., 1969, National Standard Reference Data Series - National Bureau of Standards, 22, 268
Wilson, C. D. et al., 2011, MNRAS, 410, 1409
Yun M. S., Ho P. T. P., Lo K. Y., 1993, ApJ, 411, L17