Freeing land from biofuel production through microalgal cultivation in the Neotropical region

Diego F Correa,1,2,3,6 Hawthorne L Beyer,2 Hugh P Possingham2,4, John García-Ulloa,5 Jaboury Ghazoul5 and Peer M Schenk1

1 Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
2 Centre for Biodiversity and Conservation Science CBCS, The University of Queensland, Brisbane, QLD 4072, Australia
3 Laboratorio de Ecología de Bosques Tropicales y Primatología, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
4 The Nature Conservancy, Arlington, VA 22203, United States of America
5 Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, 8092, Zürich, Switzerland
6 Author to whom any correspondence should be addressed. E-mail: diegofelipecorrea@gmail.com

Keywords: biofuel, microalgae, oil palm, sugarcane, biodiversity, land-use change

Abstract

Biofuel production is a key strategy for reducing CO₂ emissions globally and is expected to increase substantially in the coming decades, particularly in tropical developing countries. The adoption of sustainable biofuel production technologies that do not place large demands on agricultural or forested lands, has the potential to make a substantial contribution to decreasing greenhouse gas emissions while reducing biodiversity losses and degradation of native ecosystems resulting from high demand for land. With their high productivity per unit area and ability to grow on non-arable lands, microalgal biofuel production systems could become a major sustainable alternative to biofuel production from food crops (first-generation biofuels). However, the potential impacts of microalgal biofuels on food production, biodiversity, and carbon storage, compared to other biofuel production alternatives, are largely unknown. In the present study, the most suitable areas for siting microalgal production farms to fulfill 30% of future transport energy demands were determined within four Neotropical countries with high population densities and high importance for agricultural expansion and biodiversity conservation globally (Colombia, Ecuador, Panama, and Venezuela). These results were contrasted with the best areas for siting oil palm and sugarcane crops to fulfill the same target in future transport energy demands. Microalgal production systems offer the most sustainable alternative for future biofuel production within the Neotropics. Meeting 30% of future transport energy demands with microalgal biofuels reduced land area requirements by at least 52% compared to oil palm and sugarcane. Furthermore, microalgal biofuel production reduced direct competition with agricultural lands, biodiverse areas, and carbon-rich systems within countries, with little overlap with the biodiverse and carbon-rich rainforests. This study can guide decision making towards the identification and adoption of more sustainable biofuel production alternatives in the Neotropics, helping in avoiding unnecessary environmental impacts from biofuel expansion in the region.

1. Introduction

Renewable energy sources have strong potential to replace fossil fuels and meet future energy demands (Jacobson and Delucchi 2011, IEA 2017, Obama 2017), thereby mitigating global warming and its negative socioeconomic and environmental impacts (Pecl et al 2017, Nunez et al 2019). Among renewable energy sources, liquid biofuels could offset substantial amounts of fossil fuels (Smith et al 2014, Creutzig et al 2015), particularly in the transport sector, which will continue to need liquid fuels in ships, airplanes,
and long-haul trucks (Fulton et al 2015). Biofuel production could increase from 1.7 to 8.1 million Barrels of Oil Equivalent (BOE) day$^{-1}$ between 2016 and 2040, under the implementation of policies that favor the adoption of renewable energy sources for limiting global warming well below 2 °C in comparison to pre-industrial levels (IEA 2017) and under the Paris Agreement (IPCC 2015).

Biofuel production is currently based on food crops (i.e. first-generation biofuels) that compete with suitable land for agriculture (Lambin and Meyfroidt 2011). This drives direct and indirect land-use changes, often in biodiverse areas (Immerzeel et al 2014, Correa et al 2017). As a result, first-generation biofuels have been linked to habitat losses for native species (Danielsen et al 2009, Immerzeel et al 2014, Elshout et al 2019) and increases in greenhouse gas emissions when carbon-rich ecosystems (e.g. tropical forests and savannas) are transformed into monocultures for biofuel production (Fargione et al 2008, Searchinger et al 2008, 2015). Despite the high biodiversity (Antonelli et al 2018, Rull 2020) and carbon contents found in tropical areas of the world (Avitabile et al 2016), future biofuel production will expand within the tropical region, where large tracts of undeveloped and highly suitable lands for agriculture remain (Laurance et al 2014, Laurance 2015). The expansion of first-generation biofuels is likely to exacerbate competition with food production within the tropics (Smith et al 2014, Correa et al 2019a) and trigger biodiversity losses and CO$_2$ emissions as forests and savannas are replaced (Searchinger et al 2015, Elshout et al 2019).

Biofuel production alternatives that avoid direct or indirect land-use changes in agricultural areas and biodiverse lands can increase the sustainability in biofuel production while achieving future targets in energy demands (Tilman et al 2009, Correa et al 2019a). Microalgal biofuel production systems (i.e. third-generation biofuels) constitute a more sustainable alternative to first-generation biofuels, as they do not require fertile soils, and are thus not expected to directly compete with food production (Schenk et al 2008, Correa et al 2017). Microalgal cultivation requires sun, water (fresh, brackish, or saltwater), and nutrients (Schenk et al 2008, Anto et al 2020). Cultivation systems consist on open ponds or enclosed culture devices (i.e. plates, tubes, bags, columns, or domes that are arranged to maximize sunlight uptake denominated photobioreactors) (Anto et al 2020) set over flat lands to reduce capital costs (Lundquist et al 2010). Open raceway ponds, in which algae and growth media are mixed by paddlewheels in closed recirculation channels with a depth between 15 and 30 cm (Schenk et al 2008, Anto et al 2020), are considered the most cost-effective cultivation system to date (Slade and Bauen 2013, Fasaei et al 2018); nevertheless, microalgae can be initially grown in photobioreactors to avoid contamination from other microorganisms and then cultivated in open ponds (i.e. hybrid microalgal cultivation systems) (Schenk et al 2008, Acién et al 2017b, Dickinson et al 2017). Microalgal cultivation does not require rainfall, which would decrease competition with areas more suited for agricultural production or biodiversity conservation (Correa et al 2017, 2019b). Furthermore, microalgal production systems have lower freshwater footprint per unit of energy produced compared to food crops, particularly when recycling water from microalgal cultivation (Gerbens-Leenes 2018). Additionally, microalgae can be co-located with wastewater systems (Acién et al 2018, Mathimani and Pugazhendhi 2019, Jacob et al 2020) and CO$_2$ pollution sources (e.g. industries) (Razzak et al 2017, Collotta et al 2018), helping in water remediation and CO$_2$ uptake while production costs decrease (Judd et al 2017).

Yet, little is known about the most suitable areas for siting microalgal biofuels production within countries to achieve high production and profits while decreasing environmental impacts, particularly in the tropics (Sharma et al 2015). Furthermore, spatial analyses comparing microalgal biofuel production systems with major biofuel production alternatives, are missing to date. These analyses can reduce unnecessary environmental impacts resulting from unplanned biofuel expansion in tropical areas of the world (Williams et al 2019) and before microalgal biofuels are implemented at larger scales (Khan et al 2018, Correa et al 2019a), provided reductions in production costs compared to fossil fuels and first-generation biofuels (Acién et al 2017a, Chen et al 2018).

The Neotropical region is considered promising to meet increasing global food demands (Laurance et al 2014), as a result of the presence of vast areas of undeveloped lands with high agricultural potential (Flachsbart et al 2015). The Neotropics also harbors several of the most important areas for biodiversity conservation (Antonelli et al 2018, Rull 2020), containing several of the best-protected ecoregions with high conservation priority (Dinerstein et al 2017) and one of the last global wilderness areas globally (i.e. the Amazon rainforest) (Venter et al 2016, Watson et al 2018). Increased interest in replacing fossil fuels with low-cost and sustained production of energy has led to higher governmental support for biofuel production within Neotropical countries (Saravia-Matus et al 2018, Trindade et al 2019), even within countries with large fossil fuel reserves (e.g. Venezuela) (Ansari and Holz 2020). Nevertheless, poor spatial planning could intensify conflicts with agricultural lands, biodiversity, and carbon storage, driving further competition with food production, biodiversity losses, and increased CO$_2$ emissions if native ecosystems are replaced by biofuel crops in the region.

In the Neotropics, oil palm and sugarcane are considered the most cost-effective and productive
crops for biodiesel and bioethanol production, respectively, and as a result, future biofuel demands have been projected to be met based on their expansion (Furumo and Aide 2017, Jaiswal et al 2017, de Andrade Junior et al 2019). In the present study, a comparative assessment of best areas for siting three different biofuel production alternatives (i.e. microalgae, oil palm, and sugarcane) to meet a 30% target in domestic transport energy demands by 2050, was developed within four Neotropical countries (Colombia, Ecuador, Panama, and Venezuela), aiming at minimizing direct impacts on high-value agricultural lands and biodiverse areas. These countries represent around 15% of transport energy demands in the Americas (after excluding Canada and the USA) and three of them are considered megadiverse in terms of total and endemic number of species (Mittermeier 1997). In contrast to Correa et al (2019b), biofuel feedstocks were assumed to be produced within each country’s boundaries to guarantee national energy security targets without imports and favor the creation of local jobs (Fragkos and Parousios 2018, Uría-Martínez et al 2018). Then, how each production alternative would compete with agricultural lands, biodiversity, and areas of high contents of aboveground biomass among countries, was analyzed. This novel spatially-explicit analysis can help in understanding how biofuel production alternatives compare to each other in the Neotropical region, in terms of impacts on food production, biodiversity, and carbon storage. The analysis can guide decision making towards the implementation of more sustainable biofuel production alternatives in a priority region for agricultural expansion and biodiversity conservation globally.

2. Methods

2.1. Development of optimization model for biofuel production alternatives

This study was developed in four densely populated Neotropical countries with high priority for agricultural expansion and biodiversity conservation (Colombia, Ecuador, Panama, and Venezuela). For each biofuel feedstock (microalgae, oil palm, and sugarcane) the best production areas to satisfy a 30% target of each country’s future transport energy demands (i.e. 7.4, 3.9, 1.1, and 9.5 million tonnes of oil equivalent for Colombia, Ecuador, Panama, and Venezuela, respectively, by 2050), while avoiding areas of high agricultural and biodiversity value, were determined. The analysis modified the framework developed by Correa et al (2019b) to select best areas for microalgal biofuel production globally based on integer linear programming (Beyer et al 2016), aiming at maximizing microalgal biofuel profitability and minimizing the overlap with pixels of high agricultural and biodiversity value with a spatial resolution of 5 × 5 km. In the present study, the objective function was applied to each country assuming that biofuel feedstocks (i.e. microalgae, oil palm, and sugarcane) should be cultivated within each country’s boundaries to fulfill 30% of their future domestic transport energy demands. This led to the development of eight models on best microalgal biofuel production areas based on two microalgal cultivation scenarios within each of the four countries, and the development of eight models on best oil palm and sugarcane biofuel production areas based on the cultivation of these two biofuel feedstocks within each country. The maximum percentage of each pixel that could be converted to microalgal cultivation was set to 80%, assuming that 20% must be reserved for associated infrastructure (Wigmasta et al 2011). For oil palm and sugarcane, which can be more densely produced, the maximum percentage of conversion was set to 90%. Following Correa et al (2019b) these percentages were set after excluding water bodies (Lehner and Döll 2004), protected areas (UNEP-WCMC 2016), Key Biodiversity Areas (KBA) (BirdLife International 2016), and urban areas (Schneider et al 2009).

2.2. Development of profitability model under climate change scenarios

For microalgae, two cultivation scenarios were considered. Scenario 1: Cultivation using fresh, brackish, or saltwater sources, and Scenario 2: Cultivation using seawater that does not compete with freshwater (assuming the cultivation of microalgal strains tolerant to a wide range of salinity conditions, thereby avoiding the use of freshwater to maintain salinity as water evaporates) (Ishika et al 2017). The profitability was estimated by overlaying water availability, microalgal lipid productivity, availability of flat lands, and proximity to main transport networks (i.e. main roads and railroads) (See Supplementary Information for details (stacks.iop.org/ERL/15/094094/mmedia)). Future potential mean annual precipitation, mean annual potential evapotranspiration and mean annual temperature, which affect water availability and lipid productivities, were calculated for 2050, based on ensembles models for the climate change Representative Concentration Pathway (RCP) 8.5 (i.e. high emissions climate change scenario) (Riahi et al 2011). These ensemble models were constructed by averaging mean annual and monthly temperatures, minimum monthly temperatures, maximum monthly temperatures, and mean annual precipitation values among the General Circulation Models (GCMs) BCC-CSM1-1, CCSM4, GISS-E2-R, IPSL-CM5A-LR, HadGEM2-ES, MIROC-ESM-CHEM, MRI-CGCM3, and NorESM1-M (Hijmans et al 2005).

Oil palm and sugarcane profitability was estimated by overlaying water availability, agro-climatically attainable yield in dry weight by 2050 (IIASA/FAO 2012), the availability of flat lands, the proximity...
Table 1. Land covers potentially replaced for fulfilling 30% of transport energy demands by 2050 in four Neotropical countries (Colombia, Ecuador, Panama, and Venezuela) by using microalgae, oil palm, and sugarcane. Land covers were obtained from the MODIS derived global mosaic for 2012 at a resolution of 5 arcminutes (Channan et al. 2014). Microalgal cultivation scenario 1: use of fresh, brackish, or saltwater sources; microalgal cultivation scenario 2: use of seawater.

Land Cover	Scenario 1 (microalgae)	Scenario 2 (microalgae)	Oil palm	Sugarcane				
	Area (km²)	Area (%)						
Cropland/Natural vegetation mosaic	6837.2	28.5	5994.7	24.9	17686.9	35.0	25687.5	35.6
Savannas	4929.2	20.5	4683.7	19.5	10038.8	19.9	13169.5	18.3
Grasslands	2582.6	10.8	2518.6	10.5	97.8	0.2	1712.5	2.4
Croplands	2543.1	10.6	3159.3	13.1	2912.8	5.8	1823.0	2.5
Open shrublands	1842.1	7.7	1888.4	7.9	890.6	1.8	5492.1	7.6
Woody savannas	1710.7	7.1	1753.8	7.3	190.4	0.0	0.0	
Evergreen broadleaf forest (tropical rain-forest)	1034.9	4.3	1267.2	5.3	16373.1	32.4	22017.2	30.5
Deciduous broadleaf forest (tropical dry-forest)	110.8	0.5		0.0	190.4	0.4	0.0	
Others	2409.5	10.0	2784.1	11.6	2334.9	4.6	2173.1	3.0
Total	24000.0	100.0	24050.0	100.0	50525.0	100.0	72075.0	100.0

to main transport networks (i.e. main roads and railroads), and the proximity to current cultivation areas (You et al. 2014, Furumo and Aide 2017). Water availability included the proximity to rivers, irrigation dams, and fresh groundwater sources after taking into account water depletion within watersheds (Brauman et al. 2016), along with the aridity index (Trabucco and Zomer 2009). While freshwater availability is fundamental for oil palm and sugarcane cultivation (Arshad 2014; FAO 2018), high agro-climatically attainable yields and flat lands (which favor farming intensification) increase profitability (Garnett et al. 2013), the proximity to main transport networks facilitates access to fertilizers and markets (Laurence and Arrea 2017), and the proximity to current plantations facilitates the establishment of new cultivation areas (García-Ulloa et al. 2012). The agro-climatically attainable yields by 2050 were obtained from the Global Agro-Ecological Zones GAEZ database (IIASA/FAO 2012) by averaging the yields among the following climate change models for 2050: CCCma CGCM2 A2, CSIRO Mk2 A2, Hadley CM3 A2, and MPI ECHAM4 A2, which are representative of the high-emissions RCP 8.5 scenario used for future microalgal cultivation (Riahi et al. 2011). It was assumed that freshwater can be readily obtained for crop cultivation and that a high level of intensification for crop production will be achieved.

2.3. Estimation of future transport energy demands and overlapping with areas of high biodiversity, agricultural value, and soil carbon contents

Future transport energy demands were calculated for each country based on current transport energy demands (IEA 2018) and an estimated annual increase in transport energy consumption at 2.5% for non-OECD Americas (EIA 2016). Land-covers potentially replaced by microalgae, oil palm, and sugarcane (Channan et al. 2014) were estimated by overlapping them with proposed cultivation areas. Non-parametric Dunn’s tests with Bonferroni corrections (Dino 2017) were performed to detect test differences among biofuel production alternatives per country, considering agricultural and biodiversity value, and aboveground biomass. Potential conflicts among each biofuel production alternative, agricultural value, biodiversity value, and aboveground biomass, were mapped.

3. Results

To fulfill 30% of each country’s transport energy demands by 2050 would require three times as much land (based on sugarcane) and twice as much land (based on oil palm) as microalgal systems (table 1). Best areas for microalgal biofuel production at the lowest direct competition with high-value agricultural lands and biodiversity would correspond to drier lowlands (figure 1). For Scenarios 1 (use of fresh, brackish, or saltwater) and 2 (use of seawater), main cultivation areas would be located in the Colombian Caribbean region (i.e. mostly in the Guajira desert) and inter-Andean valleys (i.e. mainly in the Alto Magdalena Valley), in the Ecuadorian coastal region (i.e. mainly in the provinces of Santa Elena, Manabi, and Guayas), in the Panamanian Pacific coast (i.e. mainly in the provinces of Veraguas and Coclé), and in the Venezuelan Caribbean coastline (i.e. around the Gulf of Venezuela in the state of Zulia). Based on these cultivation scenarios, estimated replaced land-covers would correspond to cropland/natural vegetation mosaics (24.9–28.5%), followed by savannas (19.5–20.5%), grasslands (10.5–10.8%), croplands (10.6–13.1%), open
Figure 1. Production areas for fulfilling each country’s 30% transport energy demands by 2050 based on: (a) microalgae (i.e. use of fresh, brackish, or saltwater), (b) microalgae (i.e. use of seawater), (c) oil palm, and (d) sugarcane. The maximum proportion (Prop.) of cultivation area per pixel corresponds to 0.8 for microalgae and 0.9 for oil palm and sugarcane.

Best areas for oil palm production at the lowest direct competition with high-value agricultural lands and biodiversity would be mainly located in humid areas within the Colombian Caribbean and Catatumbo regions and Middle Magdalena Valley, the Ecuadorian Pacific lowlands (i.e. mainly in the provinces of Esmeraldas, Pichincha, Manabi, Los Ríos, and Guayas), the Panamanian Pacific coast (i.e. mainly in the province of Chiriquí), and the Venezuelan northern lowlands (i.e. mainly in the states of Zulia, Táchira, Monagas, and Delta Amacuro). Areas for sugarcane production at the lowest direct competition with high-value agricultural lands and biodiversity would be located in humid foothills, mainly in the Colombian Cauca and Magdalena valleys, the Ecuadorian Pacific lowlands (i.e. mainly in the provinces of Pichincha, Los Ríos, Manabi, and Guayas), the Panamanian Pacific coast (i.e. mainly in the provinces of Chiriqui and Veraguas), and the Venezuelan northern foothills (i.e. mainly in the states of Lara, Falcón, Guárico, and Sucre). Land-covers potentially replaced by oil palm and sugarcane include cropland/natural vegetation mosaics (35% and 35.6% for oil palm and sugarcane, respectively), followed by evergreen broadleaf forests (32.4% and 30.5% for oil palm and sugarcane, respectively), and savannas (19.9% and 18.3% for oil palm and sugarcane, respectively).

Microalgal cultivation would lead to lower competition with high-value agricultural lands in Ecuador (compared to sugarcane), Panama and Venezuela (compared to oil palm and sugarcane) (figure 2). Microalgal cultivation would consistently lead to lower competition with biodiversity and aboveground biomass (figures 3, 4). Higher targets in biofuel demands would increase competition with areas of higher agricultural and biodiversity value and larger aboveground biomass within countries (figures 5, 6, 7).
Based on our analysis, microalgal biofuel production systems would require between 48% and 33% of the land area compared to oil palm and sugarcane, respectively, to fulfill 30% of transport energy demands by 2050. This arises because of the higher microalgal biofuel production efficiencies per unit area, compared to any other biofuel crop (Carneiro et al 2017, Correa et al 2017, 2019a). Even if future oil palm and sugarcane biofuel productivities increase as a result of better management practices and the development of more productive varieties (Murphy 2009, Jaiswal et al 2017), they are unlikely...
to approach the production efficiency of microalgal production systems, with estimated maximum oil yields at 136 900 l ha\(^{-1}\) (Chisti 2007). Furthermore, an increase in microalgal productivity can be achieved through technological improvements that maximize biomass and lipid production, including the use of photobioreactors, nutrient starvation techniques (Leong et al. 2018, Anto et al. 2019), and control in pH and salinity conditions (Sharma et al. 2018) coupled with the selection of highly productive microalgal strains (Sharma et al. 2019).

Microalgal production systems would additionally offer a more adaptable alternative for maintaining biofuel productivity while coping with increasing temperatures and changes in rainfall patterns in the Neotropics. This is because many microalgal strains thrive in areas with higher mean annual temperatures (Moody et al. 2014), microalgal cultivation does not depend on rainfall (particularly if cultivating seawater species) (Ishika et al. 2017), and there are a wide range of microalgal strains that could be rapidly developed to cope with evolving cultivation conditions (Aslam et al. 2017, Lim and Schenk 2017). Thus, increases in mean annual temperature and changes in precipitation patterns within the study region would not significantly alter best areas for siting microalgal production farms. In contrast, oil palm and sugarcane can be cultivated within a more limited temperature range and as rainfall is usually required for their production, the best areas for microalgal cultivation are expected to change with global warming. Unless new varieties tolerant to higher mean annual temperatures and drought are developed in the near future (Paterno et al. 2015, Linnenluecke et al. 2018), oil palm and sugarcane cultivation will likely shift to higher altitudes (IIASA/FAO 2012), competing with areas of high agricultural and biodiversity value in inter-Andean valleys and mid-altitude areas.

4.1. Competition with high-value agricultural lands, biodiversity, and aboveground biomass among biofuel production systems

As in Correa et al. (2019b) our analyses indicate that microalgal cultivation should be prioritized in dry lowlands (i.e. areas with median rainfall values equal than 547 and 498 mm for Scenarios 1 and 2 in the present study, respectively, which correspond to semi-arid lands) while oil palm and sugarcane would require humid areas (i.e. areas with median rainfall values equal to 1607 and 1382 mm for oil palm and sugarcane, respectively). In general, dry lands are considered less suited for agriculture (Li et al. 2017, Taylor 2018), and additionally hold lower biodiversity values (Neves et al. 2020) and lower aboveground biomass contents (Álvarez-Dávila et al. 2017) than more humid areas. As a result, competition with food production, biodiversity, and aboveground biomass among countries would, in general, decrease if biofuel production is based on microalgae, compared to oil palm and sugarcane. Notwithstanding, dry ecosystems hold unique species (Brito et al. 2014), provide valuable ecosystem services (e.g. tourism and desertification control) (Dudley et al. 2014), and are considered at risk in the Neotropics (Etter...
Overlapping between profitability and agricultural value (A value in USD ha\(^{-1}\)) for (a) microalgal cultivation scenario 1: use of fresh, brackish, or saltwater sources, (b) microalgal cultivation scenario 2: use of seawater, (c) oil palm, and (d) sugarcane. Red colors show areas with high potential profitabilities and high potential conflicts with food production. Cultivation areas for fulfilling each country’s 30% transport energy demands by 2050 are delineated in black.

Figure 5. Overlapping between profitability and agricultural value (A value in USD ha\(^{-1}\)) for (a) microalgal cultivation scenario 1: use of fresh, brackish, or saltwater sources, (b) microalgal cultivation scenario 2: use of seawater, (c) oil palm, and (d) sugarcane. Red colors show areas with high potential profitabilities and high potential conflicts with food production. Cultivation areas for fulfilling each country’s 30% transport energy demands by 2050 are delineated in black.

Our analyses limited microalgal cultivation to human-transformed dry areas (Venter et al. 2016), however, even in these lands microalgal cultivation should reduce impacts on biodiversity and ecosystem services by limiting the removal of habitat patches for native species (Correa et al. 2019b) and by avoiding pollution (e.g. through the recycling of microalgal cultivation effluents) (González-González et al. 2018).

Furthermore, less than 5.3% of microalgal production areas (i.e. around 1267 km\(^2\)) would occur within the highly biodiverse and carbon-rich rainforests, in contrast to oil palm and sugarcane that would occur within rainforests in between 30.5–32.4% of their estimated cultivation areas (i.e. 16 373 and 22 017 km\(^2\), respectively). Zoning the cultivation in areas of lower biodiversity value and lower carbon contents, such as pastures and transformed/degraded lands for oil palm (García-Ulloa et al. 2012, Castiblanco et al. 2013, Ocampo-Peñuela et al. 2018) and sugarcane (Gilroy et al. 2015, Rueda Ordoñez et al. 2018), could reduce potential deforestation if expanding food crops for biofuel production. However, in doing so biofuel productivities per unit area would also be reduced (as pixels with lower potential productivities would need to be selected), thereby increasing the land footprint required to meet energy targets.

The use of seawater for microalgal cultivation could reduce competition with freshwater—provided that microalgal strains that tolerate a wide range of salinity conditions are cultivated (Ishika et al. 2017)—and become the best alternative in dry areas with compromised water security (Vorosmarty et al. 2010). However, a trade-off among seawater availability, agricultural value, and biodiversity value, would
Figure 6. Overlapping between profitability and biodiversity value (B value ranging from 0 to 1) for (a) microalgal cultivation scenario 1: use of fresh, brackish, or saltwater sources, (b) microalgal cultivation scenario 2: use of seawater, (c) oil palm, and (d) sugarcane. Red colors show areas with high potential profitabilities and high potential conflicts with biodiversity. Cultivation areas for fulfilling each country’s 30% transport energy demands by 2050 are delineated in black.

occur in the Colombian Caribbean region, where suitable areas for food production and with high biodiversity are located near the coasts. Reducing future targets in microalgal biofuel production (e.g. from 30% to 20% of total transport energy demands) would become a more sustainable option to limit potential direct land-use change of high-value lands for agriculture or biodiversity conservation in the Colombian Caribbean.

While microalgal cultivation would be the preferable alternative for biofuel production within the study region, the co-location of microalgal production systems with existing oil palm (Cheah et al 2018) and sugarcane crops (Santana et al 2017) has been recently explored as a mean to increase the overall sustainability and profitability of biofuel production. Oil palm and sugarcane industrial operations can offer CO₂ and nutrients that facilitate microalgal productivity, as well as electrical energy that can be used during microalgal cultivation and harvesting (Klein et al 2018).

4.2. Increases in transport energy demands

Following the success of Brazil in bioethanol production from sugarcane, several Neotropical countries aim to increase mandatory biofuel blends (Gonzalez-Salazar et al 2017, Cutz and Nogueira 2018). Furthermore, high demands for biofuels in developed economies can promote biofuel’s exports from Neotropical countries (Acharya and Perez-Pena 2020). Increasing targets in biofuel production, either for the domestic production of biofuel blends or for exports, would intensify conflicts with food production, biodiversity, and carbon storage in the region. Even for microalgal production systems, environmental impacts would increase as areas with lower
productivity per unit area, or with higher agricultural, biodiversity, and aboveground biomass values are considered suitable to reach higher biofuel production targets. Limiting targets in biofuel production could thus reduce environmental impacts in the Neotropical region.

Encouraging biofuel production outside priority areas for biodiversity and carbon storage (e.g. tropical rainforests) can reduce the overall environmental impacts of biofuel production in the Neotropical region. This could be achieved through the implementation of policies and frameworks (e.g. sustainability certification schemes) that prevent deforestation and promote sustainable biofuel production practices (De Man and German 2017). The implementation of microalgal production systems can derive from the development of taxation schemes that discourage less sustainable alternatives while subsidies and technological improvements increase their profitability (Saravanan et al 2018, Correa et al 2019a). These technological improvements include the development of biorefinery systems in which high-value co-products such as protein and pigments (Su et al 2017, Mathimani and Pugazhendhi 2019) are extracted along with biofuels (Moreno-Garcia et al 2017, Chia et al 2018), the recycling of water and nutrients from cultivation (e.g. through anaerobic digestion) (González-González et al 2018), the development of more efficient harvesting techniques (Fasaei et al 2018, Singh and Patidar 2018), and the co-location with free sources of nutrients or CO2 from industries (Judd et al 2017).

5. Conclusions

Even in countries with large fossil fuel reserves (e.g. Venezuela), biofuel production is projected to increase to fulfill future transport demands,
decreasing the uncertainties associated with future fossil fuel markets (Ansari and Holz 2020) while climate change is mitigated (Binsted et al. 2019). Microalgal production systems offer the most sustainable alternative for future biofuel production within the Neotropical region. Compared to oil palm and sugarcane, microalgal production systems can be implemented in areas with lower value for food production, biodiversity, and carbon storage, as they can overlap drier lowlands within countries. Furthermore, to fulfill 30% of each country’s transport energy demands, less than 5.3% of their estimated cultivation areas would overlap rainforests, in contrast to oil palm and sugarcane, which would overlap rainforests in at least 30% of their estimated cultivation areas. Additionally, microalgal production systems could reduce land area requirements by at least 52% compared to oil palm and 67% compared to sugarcane. Decreasing targets in biofuel production (either for domestic production or for exports) would further limit potential environmental impacts associated with the expansion of microalgal biofuels.

Acknowledgments

We acknowledge financial support from the Cooperative Research Centre-Project CRC-P50538 and the Advance Queensland Biofutures Commercialisation Program (AQBCP00516-17RD1). Diego F Correa acknowledges financial support from the Colombian institution COLCIENCIAS (Convocatoria 529 para estudios de Doctorado en el exterior), the University of Queensland (APA scholarship), and the Australian Government (Endeavor Research Fellowship). We thank Andres Etter at the Pontificia Universidad Javeriana for his valuable comments of previous versions of the manuscript.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon request.

References

Acharya R N and Perez-Pena R 2020 Role of comparative advantage in biofuel policy adoption in Latin America Sustainability 12 1411

Acien F, Molina E, Fernandez-Sevilla J, Barbosa M, Gouveia L, Sepulveda C, Badazs J and Arrib Z 2017a Economics of microalgae production Microalgae-Based Biofuels and Bioproducts, ed R Muñoz and C González-Fernandez (Amsterdam: Elsevier) 485–503

Acien F, Molina E, Reis A, Torillo G, Zittelli G, Sepulveda C and Masojde J 2017b Photobioreactors for the production of microalgae Microalgae-Based Biofuels and Bioproducts ed R Muñoz and C González-Fernandez (Amsterdam: Elsevier) pp 1–44

Acien F, Gómez-Serrano C and Fernández-Sevilla J M 2018 Recovery of nutrients from wastewaters using microalgae Front. Sustain. Food Syst. 2 59

Álvarez-Dávila E, Cayuela L, González-Caro S, Aldana A M, Stevenson P R, Phillips O, Cogollo A, Periuela M C, von Hildebrand P and Jiménez E 2017 Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature PLoS One 12 e0171072

Ansari D and Holz F 2020 Between stranded assets and green transformation; fossil-fuel-producing developing countries towards 2055 World Dev. 130 105947

Anto S, Mukherjee S S, Mathappa R, Mathimani T, Deviram G, Kumar S S, Verma T N and Pugazhendhi A 2020 Algae as green energy resource: technological outlook on biofuel production Chemosphere 242 125079

Anto S, Pugazhendhi A and Mathimani T 2019 Lipid enhancement through nutrient starvation in Chlorella sp. and its fatty acid profiling for appropriate bioenergy feedstock Biocatal. Agric. Biotechnol. 20 101179

Antonelli A, Zizka A, Carvalho F A, Scharn R, Bacon C D, Silvestro D and Condamin F L 2018 Amazonia is the primary source of Neotropical biodiversity Proc. Natl Acad. Sci. 115 6034–9

Arshad A M 2014 Crop evapotranspiration and crop water requirement for oil palm in Peninsular Malaysia J. Biol. Agric. Healthcare 4 23–28

Aslanta A, Thomas-Hall S R, Mughal T A and Schenk P M 2017 Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas Bioresour. Technol. 233 271–83

Avitabile V et al 2016 An integrated pan-tropical biomass map using multiple reference datasets Glob. Change Biol. 22 1406–20

Beyer H L, Dujardin Y, Watts M E and Possingham H P 2016 Solving conservation planning problems with integer linear programming Ecol. Model. 328 14–22

Binsted M, Iyer G C, Edmonds J J, Vogl-Schilb A, Arguello R, Caden A, Delgado R, Feijoo F, Lucena A F and Miecen H C 2019 Stranded asset implications of the Paris agreement in Latin America and the Caribbean Environ. Res. Lett. 15 044026

BirdLife International 2016 World database of key biodiversity areas (KBA Partnership)

Brauman K A, Richter B D, Postel S, Maloy M and Flörke M 2016 Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments Elem. Sci. Anth. 4 000083

Brito J C, Godinho R, Martinez-Freiria F, Pleguezuelos J M, Rebelo H, Santos X, Vale C G, Velo-Antón G, Boratyński Z and Carvalho S B 2014 Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel Biol. Rev. 89 215–31

Carneiro M J N, Pradelle E, Braga S L, Gomes M S P, Martins A R F, Turkovics F and Pradelle R N 2017 Potential of biofuels from algae: comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA) Renew. Sustain. Energy Rev. 73 632–53

Castilblando C, Etter A and Aide T M 2013 Oil palm plantations in Colombia: a model of future expansion Environ. Sci. Policy 27 172–83

Channan S, Collins K and Emanuel W R 2014 Glob. Mosaics of the Standard MODIS Land Cover Type Data 30 (College Park, MD: University of Maryland and the Pacific Northwest National Laboratory)

Cheah W Y, Show P L, Iyer G C, Edmonds J J, Vogl-Schilb A, Arguello R, Caden A, Delgado R, Feijoo F, Lucena A F and Miecen H C 2017 Water requirements for oil palm in Peninsular Malaysia Energ. Convers. Manag. 174 450–8

Chen J, Li J, Dong W, Zhang X, Tyagi R D, Drogui P and Surampalli R Y 2018 The potential of microalgae in biodiesel production Renew. Sustain. Energy Rev. 90 336–46

Chia S B, Chew K W, Show P L, Yap Y J, Ong H C, Ling T C and Chang J S 2018 Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: a review Biotechnol. J. 13 1700618

Chisti Y 2007 Biodiesel from microalgae Biotechnol. Adv. 25 294–306
Collotta M, Champagne P, Mabee W and Tomasoni G 2018 Wastewater and waste CO2 for sustainable biofuels from microalgae Algal Res. 29 12–21
Correa D F, Beyer H L, Fargione J E, Hill J D, Possingham H P, Thomas-Hall S R and Schenk P M 2019a Towards the implementation of sustainable biofuel production systems Renew. Sustain. Energy Rev. 107 250–63
Correa D F, Beyer H L, Possingham H P, Thomas-Hall S R and Schenk P M 2017 Biodiversity impacts of bioenergy production: microalgae vs. first generation biofuels Renew. Sustain. Energy Rev. 74 1131–46
Correa D F, Beyer H L, Possingham H P, Thomas-Hall S R and Schenk P M 2019b Global mapping of cost-effective microalgal biofuel production areas with minimal environmental impact Glob. Change Biol. Bioenergy 11 914–29
Creutzig F et al 2015 Bioenergy and climate change mitigation: an assessment Glob. Change Biol. Bioenergy 7 916–44
Cutz L and Nogueira L A H 2018 12 The potential of bioenergy from sugarcane in Latin America, the Caribbean and Southern Africa Sugarcane Bioenergy for Sustainable Development: Expanding Production in Latin America and Africa ed L A B Cortez, M Regis, L V Leal and I A Horta (London: Routledge) pp 141–53
Daniaelsen F et al 2009 Biofuel plantations on forested lands: double jeopardy for biodiversity and climate Conserv. Biol. 23 348–58
de Andrade M A U Jr, Valin H, Soterroni A C, Ramos F M and Halog A 2019 Exploring future scenarios of ethanol demand in Brazil and their land-use implications Energy Policy 134 110958
De Man R and German L 2017 Certifying the sustainability of biofuels: promise and reality Energy Policy 109 871–83
Dickinson S, Mientus M, Frey D, Amini-Hajibashi A, Ozturk S, De Man R and German L 2017 Certifying the sustainability of biofuels: promise and reality Energy Policy 109 871–83
Dino A 2017 Package ‘dunn.test’ v. 1.3.5. CRAN R project
Etter A, Andrade A, Saavedra K, Amaya P and Ar 2016 EIA 2016
Fasaei F, Bitter J, Slegers P and Van Boxtel A 2018 Techno-economic evaluation of microalgae harvesting and dewatering systems Algal Res. 31 347–62
Flachsbarth I, Willaarts B, Dinkelaker B, Finger G, Mueller N D, Ringler C and Garrido A 2015 The role of Latin America’s land and water resources for global food security: environmental trade-offs of future food production pathways PLoS One 10 e0116753
Fragkos P and Paroussos L 2018 Employment creation in EU related to renewables expansion Appl. Energy 230 935–45
Fulton L M, Lynd L R, Körner A, Greene N and Tonacheli L R 2015 The need for biofuels as part of a low carbon energy future Biofuels, Bioprod. Biorefin. 9 476–83
Furumo P R and Aide T M 2017 Characterizing commercial oil palm expansion in Latin America: land use change and trade Environ. Res. Lett. 12 024008
García-Ulloa J, Sloan S, Pacheco P, Ghazoul J and Koh L P 2012 Lowering environmental costs of oil-palm expansion in Colombia Conserv. Lett. 5 366–75
Garnett T, Appleby M C, Balmford A, Bateman I J, Benton T G, Bloomer P, Burlingame B, Dawsins M, Dolan L and Fraser D 2013 Sustainable intensification in agriculture: premises and policies Science 341 33–34
Gerbens-Leenes P 2018 Green, blue and grey bioenergy water footprints, a comparison of feedstocks for bioenergy supply in 2040 Environ. Processes 5 167–80
Gilew J Y, Prescott G W, Cardenas J S, Castaneda P G, Sanchez A, Rojas-Murcia L E, Medina Urbe C A, Haaguenas T and Edwards D P F 2015 Minimizing the biodiversity impact of Neotropical oil palm development Glob. Change Biol. 21 1531–40
González-González L M, Correa D F, Ryan S, Jensen P D, Pratt S and Schenk P M 2018 Integrated biodiesel and biogas production from microalgae: towards a sustainable closed loop through nutrient recycling Renew. Sustain. Energy Rev. 82 1157–88
González-Salazar M A, Venuturini M, Poggiinieta W R, Finkenrath M and Leal M R L 2017 Combining an accelerated deployment of bioenergy and land use strategies: review and insights for a post-conflict scenario in Colombia Renew. Sustain. Energy Rev. 73 159–77
Hijmans R J, Cameron S E, Parra J L, Jones P G and Jarvis A 2005 Very high resolution interpolated climate surfaces for global land areas Int. J. Climatol. 25 1965–78
IEA 2017 World Energy Outlook 2017 (Paris, France: IEA Publications)
IEA 2018 World Energy Balances 2018 (Paris, France: IEA Publications)
IIASA/FAO 2012 Global Agroecological Zones (GEAZ v3.0) (Laxenburg and Rome: International Institute for Applied Systems Analysis and Food and Agriculture Organization of the United Nations)
Immerzeel D J, Verweij P, Hilf F and Faaji A P 2014 Biodiversity impacts of bioenergy crop production: a state-of-the-art review Glob. Change Biol. Bioenergy 6 183–209
IPCC 2015 Climate Change 2014: Mitigation of Climate Change (Cambridge: Cambridge University Press)
Jahnsen J H, Schenk P M 2019a Towards the economic globalization, and the looming land scarcity Proc. Natl Acad. Sci. USA 108 3465–72
Laurance W F 2015 Emerging threats to tropical forests. Ann. Missouri Bot. Garden 100 159–69
Laurance W F and Arrea I B 2017 Roads to riches or ruin? Science 358 442–4
Laurance W F, Sayer J and Cassman K G 2014 Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29 107–16
Lehner B and Doll P 2004 Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296 1–22
Leong W-H, Lim J-W, Lam M-K, Uemura Y and Ho Y-C J I 2018 Third generation biofuels: A nutritional perspective in enhancing microbial lipid production. Renew. Sustain. Energy Rev. 91 950–61
Li J, Liu Z, He C, Yue H and Guo S 2017 Water shortages raised a legitimate concern over the sustainable development of the drylands of northern China: evidence from the water stress index. Sci. Total Environ. 590 739–50
Lim D K and Schenk P M 2017 Microalgae selection and improvement as oil crops: GM vs non-GM strain engineering. AIMS Bioeng. 4 151–61
Linnenluecke M K, Nucifora N and Thompson N 2018 Implications of climate change for the sugarcane industry. Wiley Interdiscip. Rev. Clim. Change 9 e1938
Lundquist T J, Woertz I C, Quinn N and Benemann J R 2010 A Realistic Technology and Engineering Assessment of Algae Biofuel Production (Berkeley, CA: Energy Biosciences Institute).
Mathimani T and Pugazhendhi A 2019 Utilization of algae for biofuel, bio-products and bio-remediation. Biocatal. Agric. Biotechnol. 17 526–30
Mittermeier R A and Mittermeier C G 1997 Megadiversity: Earth’s Biologically Wealthiest Nations (San Pedro Garza García, Mexico: CEMEX).
Moody J W, McGinty C M and Quinn J C 2014 Global evaluation of biofuel potential from microalgae. Proc. Natl. Acad. Sci. USA 111 8691–6
Moreno-Garcia L, Adjall K, Barnabé S and Raghavan G 2017 Microalgae biomass production for a bioirefinery system: recent advances and the way towards sustainability. Renew. Sustain. Energy Rev. 76 493–506
Murphy D J 2009 Oil palm: future prospects for yield and quality improvements. Lipid Technol. 21 257–60
Nevs D M, Dexter K G, Baker T R, de Souza F C, Oliveira-Filho A T, Queiroz L P, Lima H C, Simon M F, Lewis G P and Segovia R A 2020 Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 10 1–7
Nunez S, Arets E, Alkemade R, Verwer C and Leemans R 2019 Assessing the impacts of climate change on biodiversity: is below 2°C enough? Clim. Change 154 351–65
Obama B 2017 The irreversible momentum of clean energy. Science 355 126–9
Ocampo-Penuela N, Garcia-Ulloa J, Ghazoul J and Etter A 2018 Quantifying impacts of oil palm expansion on Colombia’s threatened biodiversity. Biol. Conserv. 224 117–21
Paterson R R M, Kumar L, Taylor S and Lima N 2015 Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia. Sci. Rep. 5 14457
Pec G T, Araújo M B, Bell D J, Blanchard J, Bonebrake T C, Chen I-C, Clark T D, Colwell R K, Danielsen F and Evengård B 2017 Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355 eaat9214
Ramesh Kumar B, Deviriam G, Mathimani T, Duc P A and Pugazhendhi A 2019 Microalgae as rich source of polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 17 583–8
Razzak S A, Ali S A M, Hossain M M and Delasa H 2017 Biological CO2 fixation with production of microalgae in wastewater—a review. Renew. Sustain. Energy Rev. 76 379–90
Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N and Rafai P 2011 RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 109 33–57
Rueda Ordoñez D A, Leal M R, Bonomi A and Barbosa Cortez I. A 2018 Expansion assessment of the sugarcane and ethanol production in the Llanos Orientales region in Colombia. Biofuels, Bioprod. Biorefin. https://doi.org/10.1002/bbb.1898
Rull V 2020 Neotropical diversification: historical overview and conceptual insights. Neotropical Diversification: Patterns and Processes ed V Rull and A C Carnaval (Cham: Springer) pp 13–49
Santana H, Cereijo C R, Teles V C, Nascimento R C, Fernandes M S, Brunale P, Campanha R C, Soares I P, Silva F C and Sabaini P S 2017 Microalgae cultivation in sugarcane vinasse: selection, growth and biochemical characterization. Bioreour. Technol. 228 133–40
Saravanan A P, Mathimani T, Deviriam G, Rajendran K and Pugazhendhi A 2018 Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. J. Clean. Prod. 193 734–47
Saravia-Matus S, Matus J S, Sotomayor O and Rodriguez A 2018 Investment strategies in the Latin American agri-business sub-sectors of agricultural commodities, biofuels and meat chains. J. Agribus. Dev. Emerg. Econ. 8 320–38
Schenk P M, Thomas-Hall S R, Stephens E, Marx U C, Mussgnug J H, Posten C, Kruse O and Hankamer B 2008 Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 1 20–43
Schneider A, Friedli M A and Potere D 2009 A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4 044003
Searchinger T, Heimlich R, Houghton R A, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D and Yu T-H 2008 Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319 1238–40
Searchinger T D, Estes L, Thornton P K, Beringer J, Notenbaert A, Rubenstein D, Heimlich R, Licker R and Herrero M 2015 High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nat. Clim. Change 5 481–6
Sharma B, Brandes E, Khanchi A, Birrell S, Heaton E and Miguel F E 2015 Evaluation of microalgae biofuel production potential and cultivation sites using Geographic information systems: A review. Bioenergy Res. 8 1714–34
Sharma J, Kumar S S, Bishnoi N R and Pugazhendhi A 2018 Enhancement of lipid production from algal biomass through various growth parameters. J. Mol. Liq. 269 712–20
Sharma J, Kumar S S, Bishnoi N R and Pugazhendhi A 2019 Assessment of enhancement of high lipid producing microalgal consortia. Photochem. Photobiol. B 192 8–12
Singh G and Patidar S 2018 Microalgae harvesting techniques: A review. Environ. Manage. 217 499–508
Slade R and Bauen A 2013 Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53 29–38
Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elshidrawy A, Fasih F, Harpur H, House R J and Irfan M 2014 Agriculture, forestry and other land use (AFOLU) Climate change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press) pp 811–922
Su Y, Song K, Zhang P, Su Y, Cheng J and Chen X 2017 Progress of microalgae biofuel’s commercialization. Renew. Sustain. Energy Rev. 74 402–11
Taylor M 2018 Climate-smart agriculture: what is it good for? J. Peasant Stud. 45 89–107
Tilman D, Soccolow R, Foley J A, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T and Somerville C 2009 Beneficial biofuels—the food, energy, and environment trilemma. Science 325 270–1
Trabucco A and Zomer R 2009 Global Aridity Index (Global-aridity) and Global Potential Evapo-transpiration.
(Global-pet) Geospatial Database (CGIAR Consortium for Spatial Information)
Trindade S C, Nogueira L A H and Souza G M 2019
Relevance of LACAf biofuels for global sustainability
Biofuels 1–11
UNEP-WCMC 2016 World Database on Protected Areas User Manual 1.2 (Cambridge: UNEP-WCMC)
Uría-Martínez R, Leiby P N and Brown M L 2018 Energy security role of biofuels in evolving liquid fuel markets Biofuels, Bioprod. Biorefin. 12 802–14
Venter O et al 2016 Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation Nat. Commun. 7 12558
Vorosmarty C J et al 2010 Global threats to human water security and river biodiversity Nature 467 555–61

Watson J E, Venter O, Lee J, Jones K R, Robinson J G, Possingham H P and Allan J R 2018 Protect the last of the wild Nature 563 27–30
Wigmosta M S, Coleman A M, Skaggs R J, Huesemann M H and Lane L J 2011 National microalgae biofuel production potential and resource demand Water Resour. Res. 47 W06H04
Williams B A, Grantham H S, Watson J, Alvarez S J, Simmonds J S, Rogeliz C A, Da Silva M A, Forero-Medina G, Etter A and Nogales J 2019 Minimising the loss of biodiversity and ecosystem services in an intact landscape under risk of rapid agricultural development Environ. Res. Lett. 15 014001
You L, Wood S, Wood-Sichra U and Wu W 2014 Generating global crop distribution maps: from census to grid Agric. Syst. 127 53–60