Evaluating Language Tools for
Fifteen EU-official Under-resourced Languages

Diego Alves, Gaurish Thakkar, Marko Tadić
University of Zagreb, Faculty of Humanities and Social Sciences
Ivana Lučića 3, 10000 Zagreb, Croatia
dfvalio@ffzg.hr, gthakkar@m.ffzg.hr, marko.tadic@ffzg.hr

Abstract

This article presents the results of the evaluation campaign of language tools available for fifteen EU-official under-resourced languages. The evaluation was conducted within the MSC ITN CLEOPATRA action that aims at building the cross-lingual event-centric knowledge processing on top of the application of linguistic processing chains (LPCs) for at least 24 EU-official languages. In this campaign, we concentrated on three existing NLP platforms (Stanford CoreNLP, NLP Cube, UDPipe) that all provide models for under-resourced languages and in this first run we covered 15 under-resourced languages for which the models were available. We present the design of the evaluation campaign and present the results as well as discuss them. We considered the difference between reported and our tested results within a single percentage point as being within the limits of acceptable tolerance and thus consider this result as reproducible. However, for a number of languages, the results are below what was reported in the literature, and in some cases, our testing results are even better than the ones reported previously. Particularly problematic was the evaluation of NERC systems. One of the reasons is the absence of universally or cross-lingually applicable named entities classification scheme that would serve the NERC task in different languages analogous to the Universal Dependency scheme in parsing task. To build such a scheme has become one of our the future research directions.

Keywords: language processing chains, under-resourced languages, evaluation

1. Introduction

The goal of the Marie Skłodowska-Curie Innovative Training Network CLEOPATRA (Cross-lingual Event-centric Open Analytics Research Academy)\(^1\) is to offer a unique interdisciplinary and cross-sectoral research and training programme, which will explore how we can begin to analyse and understand major events and their relations presented in digital media. It will facilitate advanced cross-lingual processing of textual and visual information related to key contemporary events at scale and will develop innovative methods for efficient and intuitive user access and interaction with multilingual information. This ambitious goal heavily relies on the necessary prerequisite: the establishment of online available language processing chains (LPCs) for at least 24 EU-official languages of which many are also under-resourced. The components of LPCs all belong to the BLARK-modules (Krauwer, 2003) and cover tokenisation, sentence splitting, PoS/MSD-tagging, lemmatisation, named entity recognition and classification (NERC) and dependency parsing. On the results of LPCs regularly applied to the sets of large publicly available text streams (news, blogs, posts, etc.), the CLEOPATRA knowledge processing pipeline will build upon and provide additional value such as knowledge graphs, entity linking with LOD, RDF triples, other Semantic Web processing, etc. We expect that one of the final results of CLEOPATRA relevant to the NLP community will be the enhancement of the availability and performance of human language technologies for under-resourced languages.

In order to get the clear(er) picture of currently available tools and training/testing resources for under-resourced languages, this paper concentrated on under-resourced languages only and aims to find and test these tools to verify their performance.

The paper is composed as follows: Section 2 discusses the selection of language tools and languages that were used in this evaluation; Section 3 describes the design of the evaluation campaign; Section 4 lists the processing tasks and their individual results; in Section 5 we discuss some results and in Section 6 we provide conclusions and possible future directions for research.

2. Tools and Languages Selection

The main objective of this study is to produce an overview of the current state of available language tools and respective needed training and testing resources for under-resourced EU-official languages, while also checking whether the results in the real-life comply with reported in the literature.

Our aim is to analyse the whole language processing chain, from raw text to CoNLL-U file and for that reason we have selected three platforms (or frameworks) with existing trained models available for most of the European languages, thus including the fifteen under-resourced languages in our focus. These are listed in Table 1.

Platform	Version	License
Stanford CoreNLP	3.9.2	GNU General Public License v3
NLP Cube	-	Apache v2
UDPipe	1.2.0	Mozilla Public License 2.0

Table 1: Selected Natural Language Processing Platforms.

\(^1\) http://cleopatra-project.eu
In this paper, our focus is on under-resourced EU-official languages and the selection of languages has been made according to the classification presented by the META-NET Language Whitepaper series (Rehm et al. 2012). The chosen languages are classified by META-NET as either “Fragmentary” or “Weak/No” support. The other criteria for language selection were the existence of quality datasets (Universal Dependencies framework version 2.4 released on May 15, 2019) and the availability of trained models for the three selected platforms.

Therefore, from the twenty-four official European Union languages, for this study we have chosen the following fifteen: Croatian, Czech, Danish, Estonian, Finnish, Greek, Hungarian, Irish, Latvian, Polish, Portuguese, Romanian, Slovak, Slovene, Swedish, Maltese, although being heavily under-resourced EU-official language, could not be included in this evaluation since trained models do not exist for all three selected platforms.

As NERC is also a crucial part of LPCs, for each of the fifteen languages listed above, we also conducted research on existing tools and data to complete our LPC overview. Due to the lack of resources, we have excluded Irish, Latvian, and Slovak from this part of our study.

3. Campaign Design

Unlike the shared task campaigns where different tools are being tested on the same data from different, often competing, centres, here we execute a post-hoc evaluation of what has been already presented. Our objective is to check whether published results are reproducible and to compare platforms’ performance in terms of NLP metrics and processing speed.

For each language, we selected the available trained models downloadable from the official website of each platform. All of them used training data from the Universal Dependencies framework. UDPipe and StanfordNLP detail in which the exact UD corpus has been used and the respective UD version (v2.4 for UDPipe and v2 for StanfordNLP). NLP-Cube website does not provide precise information on the exact corpus used for the available trained models, although it confirms that models that have been generated using UD v2.2 datasets. Borosch et al. (2018) present more detailed information about trained models using UD datasets, however, results in many cases are different from those displayed on the official website.

Each model, trained with a specific UD training corpus and downloaded from the official platforms’ websites, was tested by processing the raw testing text coming from the same UD repository (v2.4). The final processed file was directly compared to the available test standard provided by UD framework in terms of Precision, Recall and F1 measure for several NLP metrics.

As the UD datasets have no resources for NERC, we analysed the performance of the models on other publicly available datasets.

Only the datasets which were not used for the training of the models were selected for testing.

4. Processing and Results

For each one of the chosen fifteen languages, we have processed the raw testing texts (UD 2.4) with the three mentioned platforms using the existing models available on their website by using the standard configuration proposed by each platform.

With these three platforms and starting from raw text, we have performed: sentence splitting, tokenisation, PoS/MSD-tagging, lemmatisation, and dependency parsing. The annotated files obtained were then evaluated and compared to the CoNLL-U standard test files from UD framework by using the python script proposed by the CoNLL 2018 Shared Task, which calculates the Precision, Recall and F1 Measure for the following metrics: Tokens, Sentences, Words, UPOS, XPOS, UFEATS, ALLTAGS, LEMMAS, UAS, LAS, CLAS, MLAS, and BLEX.

The tables presented in the next sections focus on the F1 Measure. The CoNLL-U standard test files were used exactly as they are presented in the UD framework, with their original tag sets and size (varying from one corpus to the others).

For each test, we have also measured the processing time in seconds and, subsequently, calculated processing speed by dividing the number of tokens and sentences of the test file by it (results in subsection 4.6).

All three platforms present in their official website evaluation metrics for the existing trained models of each one of the fifteen languages. Nevertheless, no information on the standard deviation or variance is available. Therefore, in order to evaluate the reproducibility of the official published results, we have checked the delta between the obtained metrics and the values present in the platforms’ websites. Reproducibility is attested if the delta value is lower than 1% point, the value chosen as a first approach to highlight the main differences between published and tested results. However, NLP-Cube official results on the platform website do not come only from raw text processing, for this platform PoS/MSD-tagging and dependency parsing was conducted over a pre-segmented text.

For NERC, no pre-processing was performed on the tested texts. Most of the time the datasets were available in CoNLL format. Since different datasets had different numbers of tags, therefore the number of tags has been reduced to 3 namely LOCATION, PERSON, ORGANISATION, which are the ones available in all datasets. The remaining tags were replaced with the tag OTHER.

The following methodology was adopted for each language:

- Shortlist candidate datasets and available NERC tools.

2. https://universaldependencies.org/
3. https://universaldependencies.org/conll18/evaluation.html
4. Cross-check whether the dataset used for training of a particular NERC tool is available.
5. If present, check if the corresponding test set is available. If the test set is unavailable the whole dataset is removed. We perform this step in order to prevent reporting of train accuracy rather than test accuracy, which might occur when we sample from the whole dataset.
6. If no test set is available, we sample a small corpus from another candidate corpus.
7. The test set is passed through the NERC tool which performs prediction by tagging every token of the input with a named entity class tag.
8. We employ the script proposed in (Luz et al., 2018), which computes Precision, Recall, F1 measure based on individual tokens. The same script is used for all tests.
9. In no scenario, a new model was trained from scratch.

The tables with all the obtained results from this evaluation campaign couldn’t be presented within the technical limits of this paper stylesheet, so we decided to present them fully in the digital form and hosted online4. They represent an integral part of this research and could be consulted for more detailed insight whenever needed. In the next subsections, we display in tables the cases for which we have observed a discrepancy between our data and the officially reported values.

In the following subsections, the tables present for each language first the result reported by the platform, followed by the results obtained in our tests. The cell/column names indicate whether the result is coming from the tool publication (“Source”) or our experiment (“Test”). For NLP-Cube, as the official results are not coming from complete raw text processing and as there is no information about the origin of the testing data, our values are not comparable to theirs in our reproducibility analysis. The values we obtained for POS/MSD-tagging and dependency parsing for NLP-Cube are in all cases inferior to the announced results, which can be explained by our way of testing (from the raw text). NLP-Cube obtained results are also considerably lower than the ones from the other two platforms.

4.1 Tokenisation

For the tokenisation task, all results were coherent with the published ones from StanfordNLP and UDPipe, i.e. all results of our testing were within 1% point from the reported values. In the NLP Cube case, tokenisation is reproducible only for some test sets, which may indicate the provenience of the training data.

In Table 2, we present the comparative results for the tokenisation task between what has been published in the official NLP Cube platform website and what we obtained in our tests. The reported results correspond to the lines identified as “NLP-Cube Test Corpus”.

Language	Model	Test corpus	TOKENS	
Croatian	hr-1.1	NLP-Cube Test Corpus	99.55	
	hr_set_ud-tset		99.86	
Czech	cs-1.1	NLP-Cube Test Corpus	99.99	
	cs_cac_ud-test		99.97	
	cs_ect_ud-test		9.39	
	cs_fiicre_ud-test		99.58	
	cs_pjdon_ud-test		99.47	
	cs_pud_ud-test		99.59	
Danish	da-1.1	NLP-Cube Test Corpus	99.82	
	de_dck_ud-test		99.78	
Estonian	et-1.1	NLP-Cube Test Corpus	99.91	
	et_edt_ud-test		99.83	
	et_test_ud-test		98.3	
Finnish	fi-1.1	NLP-Cube Test Corpus	99.63	
	fi_flb_ud-test		99.97	
	fi_id1_ud-test		99.6	
	fi_pud_ud-test		99.61	
Greek	el-1.1	NLP-Cube Test Corpus	99.88	
	el_gtd_ud-test		99.91	
Hungarian	hu-1.1	NLP-Cube Test Corpus	99.88	
	hu_szeged_ud-test		98.41	
Irish	ge-1.0	NLP-Cube Test Corpus	99.56	
	ge_iaid_ud-test			-
Latvian	lv-1.0	NLP-Cube Test Corpus	99.66	
	lv_lvbud_ud-test		99.73	
Polish	pl-1.1	NLP-Cube Test Corpus	99.61	
	plpdb_ud-test		98.01	
	pl_pud_ud-test		97.59	
Portuguese	pt-1.1	NLP-Cube Test Corpus	99.75	
	pt_busque_ud-test		99.79	
Romanian	ro-1.1	NLP-Cube Test Corpus	99.71	
	ro_mr_ud-test		99.66	
Slovak	sk-1.1	NLP-Cube Test Corpus	99.55	
	sk_smk_ud-test		99.95	
Slovene	sl-1.1	NLP-Cube Test Corpus	99.87	
	sl_saj_ud-test		99.55	
Swedish	sv-1.1	NLP-Cube Test Corpus	99.36	
	sv_knes_ud-test		99.97	
	sv_pud_ud-test		98.24	
	sv_talkbanken_ud-test		99.36	

Table 2: Tokenisation results for the NLP Cube platform. NLP-Cube Test Corpus indicates the reported values from the platform website. The other results come from our tests.

4https://tinyurl.com/wbp9wfq
4.2 Lemmatisation

Table 3 shows the results of the lemmatisation task for which the difference between the published results differs from the values obtained in our tests is larger than 1% point.

Language	Source	Model	Test corpus	LLMMAS
Croatian	StanfordNLP	hr.set	hr.set-ud-test	95.40
Test	hr.set	hr.set-ud-test	97.21	
Finnish	UDPipe	finnish-fi	fl.fib-ud-test	91.80
Test	finnish-fi	fl.fib-ud-test	85.32	
Greek	StanfordNLP	el.gdt	el.gdt-ud-test	95.60
Test	el.gdt	el.gdt-ud-test	91.96	
Latvian	StanfordNLP	lv.lsvb	lv.lsvb-ud-test	92.20
Test	lv.lsvb	lv.lsvb-ud-test	89.03	
Polish	StanfordNLP	pl_sx	pl.sdx-ud-test	92.85
Test	pl_sx	pl.sdx-ud-test	94.65	
Portuguese	StanfordNLP	pt_bosque	pt_bosque-ud-test	96.88
Test	pt_bosque	pt_bosque-ud-test	85.60	

Table 3: Lemmatisation results in cases where the discrepancy between published results and our tests is larger than 1% point. “Source” indicates whether the results come from the literature or our experiment.

4.3 POS/MSD-Tagging

For the evaluation of the reproducibility of the PoS/MSD-tagging, we present in Table 4 below the results for the ALLTAGS metric as described in the CoNLL 2018 Shared Task which takes into consideration UPOS, XPOS and UFEATS.

Language	Source	Model	Test corpus	ALLTAGS
Croatian	StanfordNLP	hr.set	hr.set-ud-test	91.14
Test	hr.set	hr.set-ud-test	0.00	
Finnish	UDPipe	finnish-fi	fl.fib-ud-test	83.80
Test	finnish-fi	fl.fib-ud-test	89.67	
Greek	StanfordNLP	el.gdt	el.gdt-ud-test	91.27
Test	el.gdt	el.gdt-ud-test	89.67	
Latvian	StanfordNLP	lv.lsvb	lv.lsvb-ud-test	91.27
Test	lv.lsvb	lv.lsvb-ud-test	86.59	
Polish	StanfordNLP	pl_sx	pl.sdx-ud-test	91.70
Test	pl_sx	pl.sdx-ud-test	97.77	
Portuguese	StanfordNLP	pt_bosque	pt_bosque-ud-test	91.77
Test	pt_bosque	pt_bosque-ud-test	91.35	

Table 4: PoS/MSD-Tagging results in cases where the discrepancy between published results and our tests is larger than 1% point. “Source” indicates whether the results come from the literature or our experiment.

4.4 Dependency Parsing

In terms of dependency parsing, we present in Table 5 the UAS and LAS obtained values compared to the ones from the official websites platforms when the difference for LAS is larger than 1% point.

Language	Source	Model	Test corpus	UAS	LAS
Croatian	StanfordNLP	hr.set	hr.set-ud-test	99.93	99.21
Test	hr.set	hr.set-ud-test	99.84	98.27	
Czech	StanfordNLP	cs-finetee	cs-finetee-ud-test	82.36	80.35
Test	cs-finetee	cs-finetee-ud-test	83.20	89.80	
Finish	StanfordNLP	fl.fib	fl.fib-ud-test	88.57	86.96
Test	fl.fib	fl.fib-ud-test	88.59	85.88	

Table 5: Dependency parsing results in cases where the discrepancy between published LAS results and our tests is larger than 1% point. “Source” indicates whether the results come from the literature or our experiment.

4.5 Processing Speed

In the following table, we present the mean processing speed for each platform and the associated standard deviation. The mean value was calculated by dividing the sum of the testing processing speeds by the number of conducted tests. The machine used for all tests has 8GB RAM and the Intel Pentium Quad-Core Processor N3710. All tests were conducted with the standard commands provided in the user’s manual of each platform, no test was conducted by changing advanced testing parameters.

Table 6: Mean processing speeds and standard deviation of each tested platform in terms of tokens and sentences per second.

Platform	Mean Processing Speed (Tokens/s)	Standard Deviation	Mean Processing Speed (Sentences/s)	Standard Deviation
StanfordNLP	53.2	24.6	23.5	1.7
NLP-Cube	5.6	0.7	0.3	0.1
UDPipe	381.1	45.2	24.6	9.8

Table 6: Mean processing speeds and standard deviation of each tested platform in terms of tokens and sentences per second.

4.6 Named Entity Recognition

Table 7 on the next page describes the available selected resources for the twelve languages that made through our shortlisting criteria.
Table 7: Description of selected datasets in terms of entities tags and size.

And the following table describes the various models along with the dataset and their Precision, Recall and F1 measure for the average of the 3 classes.

Table 8: Performance scores of NERC selected tools.

Language	Tool	Dataset	P (%)	R (%)	F1 (%)
Croatian	Polyglot	Hr500k	74.3	51.4	62.2
	Polyglot	Vjesnik	42.3	69.2	52.5
Czech	NER BERT	Czech Named Entity Corpus 2.0	81.0	54.7	65.4
Danish	Stanford Dater	DDT	58.4	71.6	64.3
	Stanford Dater	Vjesnik	56.7	31.3	40.7
Estonian	ESNLIK	NER-tagger corpus	11.7	73.4	20.7
Finnish	Fines-data	Fines-data	90.9	86.7	88.7
Greek	Polyglot	Spacy Greek Dataset	28.8	75.3	41.7
Hungarian	Polyglot	Hungarian	78.0	35.6	48.2
Hungarian	polydepse- bign-300	Polyner 2018	87.1	77.7	82.2
Polish	Spacy Greek	Greek Legislation Corpus	12.4	10.6	11.4
Portuguese	polydepse- bign-300-mc50	Polynizer 2018	86.7	79.1	82.7
Romanian	Polyglot	Ronec	13.9	76.0	90.0
Slovenian	BILSTM CRF	LeNER-Br	90.2	86.3	88.4
Swedish	BILSTM CRF	FirstHarem	59.1	37.9	46.2
	Sigarra	BILSTM CRF	39.9	58.4	47.5
Portuguese	Spacy	LeNER-Br	26.7	60.0	37.1
Romanian	Polyglot	Ronec	1.4	23.0	19.7
Slovenian	Stanford Model	Slovene News Corpus	79.8	52.6	65.2
Swedish	Stagger	Swedish NER Corpus	82.0	85.4	83.6
	Swener	Swedish NER Corpus	89.1	85.4	87.2
5. Discussion

Compared to what has been reported in the literature, we can analyse separately each platform tested.

In the case of StanfordNLP, we have found discrepant results for 6 languages: Croatian, Czech, Finnish, Greek, Latvian and Polish. Our results are worse than the reported ones for lemmatisation, PoS/MSD-tagging and dependency parsing for Greek, Polish and Portuguese. The latter being the one with higher differences (more than 10% points for LAS, for example). For Finnish and Latvian, only two tasks showed some negative difference, PoS/MSD-tagging and dependency parsing for the first and lemmatisation and PoS/MSD-tagging for the other one. For the Czech language, our LAS and UAS values are lower than the ones from the literature for two different corpora: Fictree and PDT. Croatian is the only case for which we have a better result for both lemmatisation and dependency parsing, even though we obtained inferior values for metrics concerning PoS/MSD-tagging for this language as StanfordNLP did not annotate the text in terms of morphosyntax (the XPOS test value and therefore ALLTAGS value) was zero. For the other 9 languages, results were very similar.

For the UDPipe platform, results are reproducible in all tasks for almost all the fifteen tested languages and for all existing models and corpora. The only exceptions concern worse result for PoS/MSD-tagging for Croatian, better result in this metric and in the dependency parsing evaluation for Latvian, and some discrepancy for both FTB and TDT corpora for Finnish: worse results in terms of lemmatisation metric, better results in the PoS/MSD-tagging task for FTB but worse for TDT and inferior results for LAS and UAS for TDT.

As mentioned before, NLP-Cube results were not reproducible as the published results on the platform website do not consider the whole processing chain starting from raw text. Boros et al. (2018) propose more detailed results from raw text to CoNLL-U files for NLP-Cube models, however, there is no explicit correspondence between the models described in the article and the ones available in the platform website.

In terms of processing speed, we can observe that UDPipe is the fastest platform (almost sixty-eight times faster than NLP-Cube and seven times faster than StanfordNLP). UDPipe also has the highest standard deviation values, however, in terms of percentage of the mean speed they represent less than what is observed for StanfordNLP, which is the platform with the most significant deviation and, therefore, with higher dependency on the model and test data used.

StanfordNLP has usually relatively better metrics results compared to UDPipe and NLP Cube, however, it is slower than UDPipe in terms of processing speed. When choosing a platform one must decide if the priority will be its speed or accuracy.

Croatian, Finnish and Latvian languages are the ones with discrepancies in both UDPipe and StanfordNLP platforms, further investigation on the reasons of these differences should be conducted, also, with a detailed analysis to explain the strong differences concerning Portuguese when using StanfordNLP. Training models from StanfordNLP and NLP-Cube come from different versions of UD, therefore a detailed comparative analysis about possible existing differences inside the training and test sets between these versions could provide some input on the observed discrepancies.

In the case of Croatian for the NERC track, we compare the performance of Polyglot (Al-Rfou et al. 2015) which is built using Wikipedia and Freebase. There was no F1-score reported for the Croatian language by the author using this tool. We found it to be 52% and 62% for the datasets. Two NER models have been reported by Ljubešić et al 2013 which have 89.9% for 3-class and 63.6% for the 4-class scenario. For Croatian, we also tested the system which is FST-based (Bekavac and Tadić, 2007) and the results were in the range of 64-65% for the test set. As per our experiments, this model performed better than the polyglot model for the news domain.

For Czech, we used the BERT-NER (Arkhipov et al. 2019) with a multilingual model which has been reported as 93.9% partial relaxed F-1 for 5 entities. But on CNEC 2.0 the value obtained is 77.8%. The tool NameTag (Straková et al. 2013) already trained in CNEC reports a value of 82.82% F1 measure. Danish was tested on Stanford based Daner using Danish Dependency Treebank (Buch-Kromann et al. 2003) and WikiANN (Pan et al. 2017). The Multilingual BERT trained by MITP is reported to have a score of 80.37% for 3-class recognition. ESTNLTK (Orasmaa et al. 2016) had a high recall but low precision resulting in poor F1.

For Finnish, we tested the finnish-tagtools-1.4.0 which is a HFST based tool that has decent performance compared to the rest of the available tools. For Greek, polyglot performed badly both on the News documents as well as the legislation documents. HunnerWiki on Polyglot has low recall but high precision. PolDeepNer for 3 different models was tested on the dataset provided as part of the PolEval-2018 shared task and the results matched the reported figures. The Bi-LSTM CRF model trained on Portuguese (pt) Legal documents were used for NERC on pt-news corpus. As expected it did not perform well on the test set but its performance was well within the range that authors claim on legal documents. But the spaCy Portuguese model trained on WikiNER did not perform well on the News genre.

The worst performing model was Polyglot on the Romanian dataset which is part of the Romanian spaCy Model. As for Slovene, a 4-class Stanford model along with Polyglot was tested on News Corpus and was found to have scores of 63% and 41% F-1 respectively.

https://mipt.ru/english/
https://github.com/hfst/hfst/tree/master/scripts/finnish-tag tools
For Swedish, we used the Swedish NERC Corpus on Stagger and Sweener. Swener is a HFST based tool and as expected it performs well on the test set.

Coming to the datasets used from various sources, not all were single standardized forms. They are either in CONLL or inline XML. Datasets like Czech Dependency Treebank which had nested hierarchy were converted to CoNLL format with the aid of a script. So, the CoNLL format could be employed for representing all NERC datasets. Next, most of the time, there are no direct ways to reimplement or verify the claims about the official published results, as train, development and test sets are not provided. Lastly, every language presents a different set of tags. These tags can be standardized by employing a NERC hierarchy system (Sekine 2002, Sekine et al. 2004) which can vary from coarse to a fine level.

6. Conclusions and Future Directions
We have presented the evaluation campaign for fifteen EU-official under-resourced languages which was conducted for testing the existing LPCs in three different platforms (Stanford CoreNLP, NLP Cube, UDPipe). The integral tasks of LPCs for each language were tokenisation, sentence splitting, PoS/MSD-tagging, lemmatisation, NERC, dependency parsing. We presented the whole results in an online available full material and in this paper only the selected data where the reproducibility of the results was in question. The criterion for this was the discrepancy that would differ for more than one percentage point from the previously reported results.

Regarding future plans, our project obligation is to enlarge the campaign to the remaining EU-official languages with special emphasis on the under-resourced ones (e.g. Maltese or Lithuanian) and to build LPCs for under-resourced languages that would respect the state-of-the-art. However, we could also apply the same approach to some languages outside of planned 24 with possible candidates selected from the list of larger languages (e.g. Russian, Chinese, Farsi, Arabic, Swahili, etc.).

Since we have observed the difficulties with evaluation of the NERC task for different languages, mainly due to the absence of universally or cross-lingually applicable named entities classification scheme, that could serve the NERC task in different languages analogous to the Universal Dependency scheme in parsing task, we decided to build such a cross-lingually usable NERC classification scheme, as one of our future research directions, and it is presented in (Alves et al., in press).

7https://nlp.fi.muni.cz/en/AdvancedNlpCourse/NamedEnti

tyRecognition

from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 812997 and under the name CLEOPATRA (Cross-lingual Event-centric Open Analytics Research Academy).

8. Bibliographical References
Al-Rfou, R., Kulkarni, V., Perozzi, B., & Skiena, S. (2015, June). Polyglot-NER: Massive multilingual named entity recognition. In Proceedings of the 2015 SIAM International Conference on Data Mining (pp. 586-594). Society for Industrial and Applied Mathematics.

Alves, D., Kaculo, T., Amaral, G., Thakkar, G., Tadić, M. (in press) UNER: Universal Named-Entity Recognition Framework, In Proceedings of the 1st international workshop on cross-lingual, event-centric open analytics, European Semantic Web Conference (ESWC2020).

Arkhipov, M., Trofimova, M., Kuratov, Y., & Sorokin, A. (2019, August). Tuning Multilingual Transformers for Language-Specific Named Entity Recognition. In Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing (pp. 89-93).

Bekavac, B., & Tadić, M. (2007, June). Implementation of Croatian NERC system. In Proceedings of the Workshop on Balto-Slavonic Natural Language Processing: Information Extraction and Enabling Technologies (pp. 11-18). Association for Computational Linguistics.

Boroš, T., Dumitrescu, S. D., & Burtica, R. (2018, October). NLP-Cube: End-to-end raw text processing with neural networks. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies (pp. 171-179), 2018.

Kromann, M. T., Mikkelsen, L., & Lyenge, S. K. (2003). Danish dependency treebank. In Proc. TLT (pp. 217-220).

Dumitrescu, S. D., & Avram, A. M. (2019). Introducing RONEC—the Romanian Named Entity Corpus. arXiv preprint arXiv:1909.01247.

Nemeskey, D. M., & Simon, E. (2012, July). Automatically generated NE tagged corpora for English and Hungarian. In Proceedings of the 4th Named Entity Workshop (pp. 38-46). Association for Computational Linguistics.

Laur, S. (2013, April 24). Nimeüksuste korpus. Center of Estonian Language Resources. https://doi.org/10.15155/1-00-0000-0000-0000-000073L.

Ljubešić, N., Stupar, M., Jurčić, T., & Agić, Ž. (2013). Izgradnja modelov za prepoznavanje imenskih entitet za hrvaščino in slovenščino. Slovenščina 2.0: empirical, applied and interdisciplinary research, 1(2), 35-57.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014, June). The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations (pp. 55-60)
Nemeskey, D. M., Eszter, S. (2013). Automatikus korpuszépítés tulajdonmé-felismerés céljára. IX. Magyar Számítógépes Nyelvészeti Konferencia, pp. 106-117.

Orasmaa, S., Petmanson, T., Tkachenko, A., Laur, S., & Kaalep, H. J. (2016, May). Estnltk-nlp toolkit for estonian. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16) (pp. 2460-2466).

Östling, R. (2013) Stagger: an Open-Source Part of Speech Tagger for Swedish. Northern European Journal of Language Technology, 2013, Vol. 3, pp 1–18.

Pan, X., Zhang, B., May, J., Nothman, J., Knight, K., & Ji, H. (2017). Cross-lingual name tagging and linking for 282 languages. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (Vol. 1, pp. 1946-1958).

Rehm, G. et al. (2012) META-NET White Paper Series, available at http://www.meta-net.eu/whitepapers/overview.

Sekine, S., & Nobata, C. (2004, May). Definition, Dictionaries and Tagger for Extended Named Entity Hierarchy. In LREC (pp. 1977-1980).

Satoshi Sekine, Kiyoshi Sudo, and Chikashi Nobata. 2002. Extended named entity hierarchy. In Proc. of the Third International Conference on Language Resources and Evaluation (LREC-2002), pages 1818–1824.

Straková, J., Straka, M., & Hajič, J. (2013). A new state-of-the-art Czech named entity recognizer. In International Conference on Text, Speech and Dialogue (pp. 68-75). Springer, Berlin, Heidelberg.

Straka, M., & Straková, J. (2017). Tokenizing, pos tagging, lemmatizing and parsing ud 2.0 with udpipe. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies (pp. 88-99).

Zeman, D., Hajič, J., Popel, M., Potthysersast, M., Straka, M., Ginter, F., Nivre, J., and Petrov, S. (2018). Conll 2018 shared task: Multilingual parsing from raw text to universal dependencies. Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics, pp. 1–21.

9. Language Resource References

DKIE - Derczynski et al. (2014). "DKIE: Open Source Information Extraction for Danish". In Proceedings of EACL, available at https://github.com/ITUinlp/daner

Kokkinakis, Dimitrios, et al. "HFST-SweNER–A New NER Resource for Swedish." Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14). European Language Resources Association (ELRA), 2014.

Luz de Araujo, LeNER-Br, (2018), [software], available at https://cic.unb.br/~teodecampos/LeNER-Br/

Ljubešić, N.; Stupar, M.; Jurić, T.; Agić, Ž. (2013). Combining Available Datasets for Building Named Entity Recognition Models of Croatian and Slovene. In Slovenščina 2.0: empirical, applied and interdisciplinary research, in press.

Marciańczuk, 2018, poldeeper, [Github Repository] available at https://github.com/CLARIN-PL/PolDeepNer

Orasmaa, Siim, et al. "Estnltk-nlp toolkit for estonian." Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16). 2016. available at https://github.com/estnltk/estnltk

Rami, Al-Rfou, Polyglot, (2019), GitHub repository, available at https://github.com/aboSamoor/polyglot

Robert Ostling (2013) Stagger: an Open-Source Part of Speech Tagger for Swedish. Northern European Journal of Language Technology, 2013, Vol. 3, pp 1–18 available at DOI 10.3384/nejlt.2000-1533.1331

Sam Hardwick, finnish-tagtools-1.4.0,[Software],available at https://korp.csc.fi/download/finnish-tagtools/v1.4/