BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open’s open peer review process please email info.bmjopen@bmj.com
Incidence, trends and risk factors for obstetric massive blood transfusion in China from 2012-2019: a facility-based study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047983
Article Type:	Original research
Date Submitted by the Author:	15-Dec-2020
Complete List of Authors:	Xie, Yanxia; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China Liang, Juan; Sichuan University, Department of Obstetrics; Sichuan University, Department of Obstetrics Mu, Yi; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China Liu, Zheng; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China Wang, Yanping; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China Dai, Li; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China; Sichuan University, Medical Big Data Center Li, Xiaohong; Sichuan University West China Second University Hospital Li, Qi; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China Li, Mingrong; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China Chen, Peiran; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China Zhu, Jun; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China; Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Wang, Xiaodong; Sichuan University West China Second University Hospital, Department of Obstetrics
Keywords:	Maternal medicine < OBSTETRICS, Fetal medicine < OBSTETRICS, PUBLIC HEALTH

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Title page

Title: Incidence, trends and risk factors for obstetric massive blood transfusion in China from 2012-2019: a facility-based study

Short Title: obstetric massive blood transfusion in China

Yanxia Xie MPH 1#, Juan Liang MD 1,2#, Yi Mu PhD 1, Yanping Wang MD 1, Li Dai PhD 1,4, Xiaohong Li PhD 1, Qi Li MSE 1, Mingrong Li MD 1, Peiran Chen MPH 1, Jun Zhu MD 1,3*, Xiaodong Wang MD 2*

Author Affiliations

1. National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China

2. Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China

3. Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education

4. Medical Big Data Center, Sichuan University, Chengdu, Sichuan, China

These authors contributed equally

* These authors contributed equally

*Corresponding author:

Jun Zhu, MD

Affiliation1: National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China

Affiliation2: Key Laboratory of Birth Defects and Related Diseases of Women and Children
(Sichuan University), Ministry of Education

Full address:

Ren Min South Road Section 3 No.17

Chengdu

Sichuan

China

P: +86 13608058108

E: zhujun028@163.com

Xiaodong Wang

Affiliation: Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China

Full address:

Ren Min South Road Section 3 No.17

Chengdu

Sichuan

China

P: +86 18180622565

E: drwangxiaodong@126.com
Abstract

Objectives: To ascertain the incidence and trends of obstetric massive blood transfusion (MBT) from 2012-2019 in China and determine its risk factors and clinical outcomes.

Design: Retrospective hospital-based cohort study.

Settings: 326 districts or counties throughout 30 provinces of China.

Participants: 11,667,406 women who had given birth or ended their pregnancy during 2012-2019

Results: Obstetric MBT occurred in 27,626 cases, corresponding to an incidence of 23.68 per 10,000 maternities, which exhibited an increasing trend in China during 2012-2019 (14.03 to 29.59 per 10,000 maternities, \(p \) for trend < 0.001). Obstetric MBT was mainly associated with amniotic fluid embolism, uterine atony, abnormal placenta, severe anemia, ectopic pregnancy, abortion, caesarean section, advanced maternal age, and multiparous from biological effect. While from sociological effects, uterine atony, severe anemia, and placenta previa are the top three complications which more likely to undergo obstetric MBT in the Chinese population.

Conclusion: To minimize the incidence of obstetric MBT, more attention should be paid to females who are multiparous and have an advanced age, amniotic fluid embolism, uterine atony, severe anemia, and placenta previa.

Key words: obstetric, massive blood transfusion, secular trends, amniotic fluid embolism, severe anemia, ectopic pregnancy, uterine atony, placenta abnormal, multiparous, population etiologic fraction.
Strengths and limitations of this study

- The study covers the most geographically extensive pregnancy population in mainland China, the data are from 326 districts or counties throughout 30 provinces.

- The study provides describes the incidence, trends, risk factors, and main reasons of obstetric MBT in China from 2012 to 2019.

- Obstetric massive blood transfusion is a binary variable, and the lack of a specific blood transfusion volume limits our ability to conduct additional analyses.
Background

Obstetric hemorrhage remains a common obstetric emergency and is the leading cause of maternal deaths worldwide\(^1\), similarly in China\(^2\). In addition to strengthening the patient's uterus contractions, drug hemostasis, surgery, etc., massive blood transfusion (MBT) also plays a key role in the treatment of obstetric hemorrhage\(^3\)-\(^6\). MBT occurs when large volumes of blood products are administered over a short period of time, as a ‘maternal near miss event’, it signifies major obstetric hemorrhage and requires extensive coordination of the obstetric, anesthesia, and blood bank teams.\(^7\)\(^8\).

The incidence of MBT in relation to delivery or postpartum hemorrhage (PPH) has been reported to be 2.3-10.0 per 10,000 maternities in high-resource countries\(^9\)-\(^13\), and an increasing trend in the rate of MBT postpartum has been reported in Sweden\(^10\). However, only two small studies focused on obstetric MBT in China\(^14\)-\(^15\). One study concluded that the incidence of MBT in relation to PPH was stable (25-27 per 10,000 maternities) during 2006-2015\(^15\). Another reported that the MBT rate attributed to PPH was 0.31% in women undergoing cesarean delivery\(^14\). China’s universal two-child policy was announced in October 2015\(^16\). Due to the new policy, the characteristics of mothers in China have changed greatly; for example, the monthly percentage of multiparous mothers increased by 9.1% from a baseline mean level of 46.4%, and the monthly mean percentage of older women grew from 8.5% to 13.5%\(^17\). However, there is no research on obstetrics MBT after the policy was implemented in China. In addition, current studies on MBT are generally limited to PPH, cesarean section, or maternal delivery after a certain gestational age\(^10\)\(^11\)\(^13\)\(^14\)\(^18\). There are
many other obstetric diseases, such as abortion and ectopic pregnancy, that require MBT, and MBT is not performed only after a specific gestational age\(^{19, 20}\). Emergency MBT is often needed to save these women. Therefore, exploring the current status, characteristics and potential risk factors for obstetric MBT can be extremely helpful for formulating an emergency plan that involves multidisciplinary cooperation for preventing adverse outcomes. The specific aims of our present study were 1) to determine the incidence and trends of obstetric MBT during 2012-2019; 2) to determine the risk factors and main reasons for obstetric MBT; and 3) to determine the outcomes after obstetric MBT.

Materials and methods

Data sources

Individual-level data were collected from China’s National Maternal Near Miss Surveillance System (NMNMSS) from 1 January 2012 to 31 December 2019. The NMNMSS system was first established in 2010 and covers 441 health facilities that treated more than 1000 deliveries annually. The included hospitals are located in 326 districts or counties throughout 30 provinces in mainland China, excluding Tibet. The detailed sample methods have been described elsewhere\(^ {21-23}\). Within each hospital, sociodemographic and obstetric information were collected from all the pregnant or postpartum women admitted to the obstetric department. The doctors responsible for patient care collected the data, which included the date of delivery, the number of antenatal visits, the maternal education and marital statuses, the maternal age, the gestational age at delivery, the mode of delivery, the number of fetuses, and the maternal complications (at any time during hospitalization).
Institutional data were collected from each hospital through the NMNMSS in 2012, 2015, and 2018, including information on the hospital (hospital level, type), human resources (number, titles and degrees of the obstetricians) and service capability (whether there is safe blood storage in the hospital, etc.).

Definitions

The usual definitions of maternal age, marital status, number of antenatal care visits, educational level, delivery method, history of cesarean section, and parity were used, as detailed elsewhere. Based on the hospital’s location, we classified regions as eastern, central or western, and the hospital level (level 1–3) was defined based on the size of hospital (number of beds, number of doctors and number of equipment) and the medical service capacity. Level 1 represents the smallest hospitals and level 3 the largest.

MBT was defined as the transfusion of ≥5 units of red blood cells or ≥1000 ml of whole blood. The definition used in our study is consistent with that used in the World Health Organization (WHO) multi-country survey on maternal and newborn health. Definition of pregnancy complications reference to Obstetrics and Gynecology textbooks (8 edition) used in China. Major complications associated with obstetric MBT were identified based on previously published studies, including obstetric hemorrhage-related conditions and complications that may cause obstetric hemorrhage. The obstetric hemorrhage-related conditions were abortion, ectopic pregnancy, placenta previa, placenta accreta, placenta abruptio, placenta retained, uterine atony, uterine rupture, and soft birth canal lacerations. Complications that may cause obstetric hemorrhage include hypertensive disorders in pregnancy, HELLP syndrome, puerperal infection, amniotic fluid embolism (AFE), and...
severe anemia\(^3\). Severe anemia was defined as hemoglobin concentration of \(< 70 \text{ g/L}\) and its definition excluded postpartum hemorrhage.

In addition, the percentage of safe blood storage was defined as the amount of stored blood that can be guaranteed for general emergency blood use within the time period when the blood sent to the bank or delivered by the blood bank, is generally not less than that needed for 3 days of use\(^2\).

Statistical methods

In the study, multiple pregnancies were treated as one case. All statistical calculations were performed using Stata software, version 16.0 (Stata Corp LP., College Station, United States of America). A 2-sided \(p\) value of less than 0.05 was considered statistically significant.

The discrete data were summarized as frequencies and percentages. The \(p\) for trends were determined by logistic regression. Then, we used the \(\chi^2\)-test to examine the differences in distribution between the nulliparous and multiparous women.

Multivariable logistic regression was used to examine the associations between the maternal characteristics, relevant clinical factors and proportion of cases needing obstetric MBT. The findings from two models were reported. Model 1 presented the crude odds ratios (ORs) and 95% confidence intervals (CIs), considering the clustering of births within hospitals. Model 2 further provided the adjusted ORs and 95% CIs after the model was adjusted for (i) the clustering of births within hospitals; (ii) the hospital region, birth location (urban/rural), and hospital level; (iii) the mother’s education level, marital status, age, parity, antenatal care, gestational week, multiple gestations, the presence of uterine scarring, and the delivery method; and (iv) other major morbidities associated with obstetric MBT.
To identify the main causes of the obstetric MBT incidence at the population level, we calculated the population etiologic fraction (PEF):

\[
\text{Population etiologic fraction} = \frac{P(aOR - 1)}{[P(aOR - 1) + 1]} \times 100\%
\]

where \(P \) is the proportion of cases that are exposed to pregnancy complications and \(aOR \) is the adjusted OR for the effect on obstetric MBT incidence.

Ethics approval and consent to participate

Ethical approval for the NMNMSS was provided by the Ethics Committee of West China Second University Hospital, Sichuan University, China. Informed consent from the patient was waived from the Ethics Committee, as the data used in this study were obtained from a national routine surveillance system established by the government. Data use was authorized by the National Health Commission, and data provided to us were de-identified.

Patient and public involvement

Patients and members of the public were not involved in the design of this study.

Results

1. *Overall incidence and trends of obstetric MBT*

From 2012 to 2019, 11,667,406 women who had given birth or ended their pregnancy were included in the present study. Obstetric MBT occurred in 27,626 cases, corresponding to an incidence of 23.68 per 10,000 maternities. As shown in *Figure 1*, the incidence of obstetric MBT increased from 14.03 per 10,000 maternities in 2012 to 29.59 per 10,000 maternities in 2019 (\(p \) for trend < 0.001). Similar trends were observed in the east, central, and west of
China. In addition, 350 health facilities had reported the institutional data for 2012, 2015 and 2018. The overall percentage of safe blood storage increased from 2012 to 2018 (77.71% to 82.57%), and this increase remained after the data were stratified by hospital level (level 1: 30.61% to 38.8%; level 2: 78.95% to 84.74%; level 3: 96.40% to 98.20%) (Figure 2).

2. Subgroup incidence and risk factors

Table 1 displays the incidence and risk of needing obstetric MBT according to different maternal characteristics. As shown, being elderly, a lower level of education, a history of fewer antenatal treatments, uterine scarring, multiparity, having a small gestational age delivery, cesarean section and multiple gestations were associated with a higher risk of needing obstetric MBT. Furthermore, the association between abortion and MBT was strong, with an aOR of 1.77 (95% CI: 1.42–2.21).

As Table 2 shows, AFE (411.42 per 1,000 maternities), placenta accrete (157.53 per 1,000 maternities) and HELLP syndrome (92.36 per 1,000 maternities) had the 3 highest incidence values for obstetric MBT. The main risk factor for obstetric MBT was amniotic fluid embolism, which led to a 127-fold increased risk, with an aOR of 126.85 (95% CI: 96.88–166.10). Women who had severe anemia or uterine atony were nearly 36 times (severe anemia: aOR: 36.00, 95% CI: 32.09–40.41; uterine atony: aOR: 36.45, 95% CI: 30.88–43.04) more likely to undergo obstetric MBT. We also found abnormal placenta to represent a major risk factor, with an aORs of 6.93 (95% CI: 6.05–7.94) for placenta previa, 11.65 (95% CI: 9.48–14.31) for placenta accrete, 6.53 (95% CI: 5.73–7.45) for placenta abruptio and 3.01 (95% CI: 2.48–3.65) for placenta retained. In addition, compared with non-HELLP syndrome, maternal HELLP syndrome led to a higher risk of needing obstetric MBT, with an
aOR of 13.02 (95% CI: 10.58–16.02). Furthermore, the association between ectopic pregnancy and uterine rupture and obstetric MBT was strong, with aORs of 9.70 (95% CI: 7.57–12.42) and 5.05 (95% CI: 3.67–6.95), respectively. Moreover, preeclampsia or eclampsia, soft birth canal lacerations and puerperal infection were also associated with the incidence of obstetric MBT.

3. Characteristics of multiparous women

We further compared the differences in obstetric MBT-related risk factors in addition to hysterectomy and MMR during hospitalization between the nulliparous and multiparous women. An advanced maternal age, a lower education level, less antenatal care, abortion, ectopic pregnancy, placental abnormalities, severe anemia, uterine rupture, amniotic fluid embolism, hysterectomy and mortality during hospitalization were more likely to occur in women who were multiparous (Table 3).

4. Population etiologic fraction for complications

We calculated the PEF for the different complications to identify the main reasons for obstetric MBT at the population perspective. As Table 4 presents, the three highest PEFs were 42.28% for uterine atony, 12.33% for severe anemia and 6.08% for placenta previa.

5. Clinical outcomes and trends in the MBT population

Of the 27,626 women, 4,010 underwent hysterectomy, and 376 died during hospitalization. The secular trends of hysterectomy incidence (25.07% to 9.92%) and MMR during hospitalization (21.41‰ to 7.48‰) from 2012-2019 among women who underwent MBT showed decreasing trends (p for trend < 0.001) (Figure 3).

Discussion

The incidence of obstetric MBT during 2012-2019 was 23.66 per 10,000 maternities, and there was an increasing trend in China. An advanced maternal age, uterine scarring, a multiparous status, and multiple gestations were associated with a higher risk of needing obstetric MBT. AFE, uterine atony, and severe anemia were major complications associated with obstetric MBT. The top three PEFs were 42.28% for uterine atony, 12.33% for severe anemia and 6.08% for placenta previa.

Obstetric MBT has been internationally reported in recent years. However, due to differences in the definition of MBT, the incidence of MBT varies greatly across countries; for example, the incidence is 5.3 per 10,000 maternities in Sweden, 10.0 per 10,000 maternities in New York, 6.5 per 10,000 births in the Netherlands, and 2.3 per 10,000 maternities in the UK. The definition of MBT is generally limited to 24 hours after giving birth. However, different amounts of blood, typically 5-10 units of red blood cells, have been used. MBT involves ≥10 units of red blood cells in Sweden and New York, ≥8 units of red blood cells in the UK and Netherlands. In our study, obstetric MBT was defined as the transfusion of ≥5 units of red blood cells or ≥1000 ml of whole blood. Despite these differences in the incidence of MBT, the increasing trend is consistent across countries, except in the Netherlands. The incidence of obstetric MBT also showed an increasing trend from 2012 to 2019 in China (14.03 per 10,000 maternities to 29.59 per 10,000 maternities). Regarding excessive maternal bleeding, if there are no adequate blood resources, it is difficult to save the mother’s life. Our results showed that the percentage of safe blood storage at level 3 hospitals in 2012 was 96.4%, while that at level 1 hospitals was...
30.6%. In recent years, primary medical institutions have been increasingly constructed in China. In addition, the rate of blood supply in China showed a steadily increasing trend (from 1.23 to 1.74 units per 1,000 population) from 2012-2014. As a result, the percentage of safe blood storage increased the most in level 1 hospitals increasing from 30.6% to 38.8% during 2012-2018.

The increased incidence of MBT plays a key role in reducing adverse outcomes in pregnancies. On the one hand, it is possible to prevent the occurrence of maternal deaths. From 2012 to 2019, the MMR due to obstetric hemorrhage with MBT in nationwide hospitals showed a decreasing trend (decreased by 68.8%), and the magnitude of decrease was larger than that in the population-based obstetric hemorrhage MMR reported by National Maternal Death Monitoring during the same period (54.6%). On the other hand, the uterus can be saved by timely MBT. When severe obstetric hemorrhage fails to respond to other treatments, hysterectomy is usually performed. Although an increased hysterectomy rate was found among the MBT women in Sweden, we found a decreasing trend in Chinese women. Retaining the uterus can not only realize their dream of becoming a mother but also preserve their quality of life.

Every woman who needs obstetric MBT might have a fatal obstetric hemorrhage, and the slightest error in treatment can kill them before they undergo blood transfusion. Therefore, recognizing the possible risk factors for MBT and preventing their occurrence are effective strategies to ensure the safety of women. We found that higher parity is associated with an increased risk of needing obstetric MBT. In our study, advanced maternal age, lower education level, less antenatal care, and obstetric hemorrhage-related conditions were more
likely to occur in women who were multiparous. Of course, these factors are also positively associated with obstetric MBT. Due to the new fertility policy, the characteristics of Chinese maternal population have changed greatly. In our study, 44.99% of women were multiparous, among whom 36.35% had uterine scars, which may be related to the high cesarean section rate during the one-child policy (46.2%)32. Uterine scarring is associated with an increase in the risk of abnormal placenta, infection, and uterine rupture33, 34. Women with these complications may experience extremely large volumes of blood loss during or soon after delivery, ranging from 2000 to 6000 m335, 36.

In agreement with previous studies, we found that uterine atony, abnormal placenta, uterine rupture, and preeclampsia were strongly associated with obstetric MBT9, 10. However, we also found that AFE was the main risk factor for obstetric MBT (aOR: 126.85, 95% CI: 96.88–166.10). AFE, although rare, remains one of the leading direct causes of maternal mortality in high-income countries, and its management principles include the active correction of coagulation disorders, the aggressive treatment of uterine atony and the use of high-dose glucocorticoids as early as possible37, 38. The total incidence of AFE was 13.4 per 100,000 maternities in our study, which was higher than that previously reported (1.7–7.7 per 100,000 maternities)37, 39. This finding may explain why AFE is considered the primary risk factor for obstetric MBT in our study.

Our study also showed that women with severe anemia, abortion, or ectopic pregnancy were at a higher risk of needing obstetric MBT. Severe anemia has been associated with an increased prevalence of postpartum hemorrhage40, 41. Similarly, our study showed that severe anemia increases the risk of needing obstetric MBT by 36-fold (OR: 36.00, 95% CI:}
32.09–40.41). No studies have focused on ectopic pregnancy, abortion. We found that the association between ectopic pregnancy and MBT was strong, with an aOR of 9.70 (95% CI: 7.57–12.42), and maternal abortion showed a relatively weaker association with the risk of needing obstetric MBT (aOR: 1.77, 95% CI: 1.42–2.21). Both of them often occur at young gestational ages and may put the woman at risk of intraperitoneal bleeding or related complications in the short term and can even lead to death.42

However, the OR reflects only the biological effect of a certain disease, while PEF integrates information about the effect estimate’s magnitude with information about the prevalence of the disease and can reflect sociological effects. Our data were retrieved from a facility-based surveillance system, which covered almost all of China, excluding Tibet. Routinely calculating complication-specific PEFs will allow us to identify the populations most affected for targeted interventions. The top three complications according to the PEFs were uterine atony, severe anemia, and placenta previa in the Chinese population. Women with such complications should be highly concerned because these complications have a high prevalence in Chinese mothers, and they also lead to a high risk of needing obstetric MBT. Although AFE leads to the highest risk of obstetric MBT, its PEF was low due to its relatively low maternal incidence. Our findings indicated that it is necessary to focus on the tertiary prevention of uterine atony, severe anemia, and placenta previa to reduce the risk of needing obstetric MBT in China and minimize the occurrence of adverse maternal outcomes.

The main strength is that we included all women who had given birth or ended their pregnancy during 2012-2019 from the nationwide data in China. One major limitation of our retrospective study was that the MBT variable we assessed is a binary variable, and the lack
of a specific blood transfusion volume limits our ability to conduct additional analyses. In addition, although we recorded the types of blood transfusions performed, we could not use the data for analysis due to the lack of quantitative information.

Conclusion

The incidence of obstetric MBT is increasing in China, but the hysterectomy rate and MMR are decreasing among women undergoing MBT. To minimize the incidence of obstetric MBT, more attention should be paid to multiparous women with an advanced age, AFE, uterine atony, severe anemia, and placenta previa. Appropriate blood transfusion preparations and the antenatal identification for high-risk women might improve the outcomes and reduce the adverse outcomes.

Acknowledgments

We thank the institutions and staff of the National Maternal Near Miss Surveillance System for data collection.

Contributorship statement

All authors have contributed to the conduction of this study. YX., XW, JL and JZ developed the study design with contributions from all authors. YX., and XW performed the statistical analysis and drafted the manuscript with support from JZ and JL, YM, ML, YW., LD, XL., ML., QL, ZL and PC. participated in reviewing, editing, and revising the manuscript.

Competing interests

The authors declare no conflicts of interest.

Funding

This study was supported by the National Key R&D Program of China (Grant No.
2019YFC1005100), the National Health Commission of the People’s Republic of China, the
China Medical Board (Grant No. 11-065), the WHO (Grant No. CHN-12-MCN-004888), and
UNICEF (Grant No. 2016EJH016).

Data sharing statement

The datasets generated and/or analysed during the current study are not publicly available due
to the terms of our contract with the Chinese National Health Commission but are available
from the corresponding author on reasonable request.

References:

1. Say L, Chou D, Gemmill A, et al. Global causes of maternal death: a WHO systematic
analysis. *Lancet Glob Health* 2014;2(6):e323-33. doi: 10.1016/s2214-109x(14)70227-x
[published Online First: 2014/08/12]

2. Yang YY, Fang YH, Wang X, et al. A retrospective cohort study of risk factors and
pregnancy outcomes in 14,014 Chinese pregnant women. *Medicine (Baltimore)*
2018;97(33):e11748. doi: 10.1097/MD.0000000000011748 [published Online First:
2018/08/17]

3. Dahlke JD, Mendez-Figueroa H, Maggio L, et al. Prevention and management of
postpartum hemorrhage: a comparison of 4 national guidelines. *Am J Obstet Gynecol*
2015;213(1):76 e1-76 e10. doi: 10.1016/j.ajog.2015.02.023 [published Online First:
2015/03/04]

4. Pacheco LD, Saade GR, Costantine MM, et al. The role of massive transfusion protocols in
obstetrics. *Am J Perinatol* 2013;30(1):1-4. doi: 10.1055/s-0032-1322511 [published Online
First: 2012/07/28]

5. Pacheco LD, Saade GR, Costantine MM, et al. An update on the use of massive
transfusion protocols in obstetrics. *Am J Obstet Gynecol* 2016;214(3):340-4. doi:
10.1016/j.ajog.2015.08.068 [published Online First: 2015/09/09]
6. Kogutt BK, Vaught AJ. Postpartum hemorrhage: Blood product management and massive transfusion. *Semin Perinatol* 2019;43(1):44-50. doi: 10.1053/j.semperi.2018.11.008 [published Online First: 2018/12/12]

7. Donaldson MD, Seaman MJ, Park GR. Massive blood transfusion. *Br J Anaesth* 1992;69(6):621-30. doi: 10.1093/bja/69.6.621 [published Online First: 1992/12/01]

8. Zatta AJ, McQuilten ZK, Mitra B, et al. Elucidating the clinical characteristics of patients captured using different definitions of massive transfusion. *Vox Sang* 2014;107(1):60-70. doi: 10.1111/vox.12121 [published Online First: 2014/04/05]

9. Mhyre JM, Shilkrut A, Kuklina EV, et al. Massive blood transfusion during hospitalization for delivery in New York State, 1998-2007. *Obstet Gynecol* 2013;122(6):1288-94. doi: 10.1097/AOG.0000000000000221 [published Online First: 2013/11/10]

10. Thurn L, Wikman A, Westgren M, et al. Massive blood transfusion in relation to delivery: incidence, trends and risk factors; a population-based cohort study. *BJOG* 2019;126(13):1577-86. doi: 10.1111/1471-0528.15927 [published Online First: 2019/09/05]

11. Green L, Knight M, Seeney FM, et al. The epidemiology and outcomes of women with postpartum haemorrhage requiring massive transfusion with eight or more units of red cells: a national cross-sectional study. *BJOG* 2016;123(13):2164-70. doi: 10.1111/1471-0528.13831 [published Online First: 2015/12/24]

12. Halmin M, Chiesa F, Vasan SK, et al. Epidemiology of Massive Transfusion: A Binational Study From Sweden and Denmark. *Crit Care Med* 2016;44(3):468-77. doi: 10.1097/CCM.0000000000001410 [published Online First: 2016/02/24]

13. Ramler PI, van den Akker T, Henriquez D, et al. Women receiving massive transfusion due to postpartum hemorrhage: A comparison over time between two nationwide cohort studies. *Acta Obstet Gynecol Scand* 2019;98(6):795-804. doi: 10.1111/aogs.13542 [published Online First: 2019/01/23]

14. Bao Y, Xu C, Qu X, et al. Risk factors for transfusion in cesarean section deliveries at a tertiary hospital. *Transfusion* 2016;56(8):2062-8. doi: 10.1111/trf.13671 [published Online First: 2016/05/31]

15. Hu J, Yu ZP, Wang P, et al. Clinical Analysis of Postpartum Hemorrhage Requiring
Massive Transfusions at a Tertiary Center. *Chin Med J (Engl)* 2017;130(5):581-85. doi: 10.4103/0366-6999.200545 [published Online First: 2017/02/24]

16. Zeng Y, Hesketh T. The effects of China's universal two-child policy. *Lancet* 2016;388(10054):1930-38. doi: 10.1016/s0140-6736(16)31405-2 [published Online First: 2016/10/19]

17. Li HT, Xue M, Hellerstein S, et al. Association of China's universal two child policy with changes in births and birth related health factors: national, descriptive comparative study. *Bmj* 2019;366:l4680. doi: 10.1136/bmj.l4680 [published Online First: 2019/08/23]

18. Akinlusi FM, Rabiu KA, Durojaiye IA, et al. Caesarean delivery-related blood transfusion: correlates in a tertiary hospital in Southwest Nigeria. *BMC Pregnancy and Childbirth* 2018;18(1) doi: 10.1186/s12884-017-1643-7

19. Jurkovic D, Overton C, Bender-Atik R. Diagnosis and management of first trimester miscarriage. *Bmj* 2013;346:f3676. doi: 10.1136/bmj.f3676 [published Online First: 2013/06/21]

20. Diagnosis and Management of Ectopic Pregnancy: Green-top Guideline No. 21. *Bjog* 2016;123(13):e15-e55. doi: 10.1111/1471-0528.14189 [published Online First: 2016/11/05]

21. Mu Y, Wang X, Li X, et al. The national maternal near miss surveillance in China: A facility-based surveillance system covered 30 provinces. *Medicine (Baltimore)* 2019;98(44):e17679. doi: 10.1097/MD.0000000000017679 [published Online First: 2019/11/07]

22. Liang J, Mu Y, Li X, et al. Relaxation of the one child policy and trends in caesarean section rates and birth outcomes in China between 2012 and 2016: observational study of nearly seven million health facility births. *Bmj* 2018;360:k817. doi: 10.1136/bmj.k817 [published Online First: 2018/03/07]

23. Xiong T, Mu Y, Liang J, et al. Hypertensive disorders in pregnancy and stillbirth rates: a facility-based study in China. *Bull World Health Organ* 2018;96(8):531-39. doi: 10.2471/blt.18.208447 [published Online First: 2018/08/15]

24. Zhu J, Liang J, Mu Y, et al. Sociodemographic and obstetric characteristics of stillbirths in China: a census of nearly 4 million health facility births between 2012 and 2014. *Lancet*
25. Souza JP, Gülmezoglu AM, Vogel J, et al. Moving beyond essential interventions for reduction of maternal mortality (the WHO Multicountry Survey on Maternal and Newborn Health): a cross-sectional study. *The Lancet* 2013;381(9879):1747-55. doi: 10.1016/s0140-6736(13)60686-8

26. Surveillance TNOoMaCH. Monitoring Work Manual of China Maternal Near Miss Surveillance System 2016 [Available from: https://wzycf.mchscn.cn/Main.aspx accessed 10 August 2020.

27. Souza JP, Gülmezoglu AM, Carroli G, et al. The world health organization multicountry survey on maternal and newborn health: study protocol. *BMC Health Serv Res* 2011;11:286. doi: 10.1186/1472-6963-11-286 [published Online First: 2011/10/28]

28. Tanaka H, Matsunaga S, Yamashita T, et al. A systematic review of massive transfusion protocol in obstetrics. *Taiwan J Obstet Gynecol* 2017;56(6):715-18. doi: 10.1016/j.tjog.2017.10.001 [published Online First: 2017/12/16]

29. Mukamel DB, Zwanziger J, Bamezai A. Hospital competition, resource allocation and quality of care. *BMC Health Serv Res* 2002;2(1):10. doi: 10.1186/1472-6963-2-10 [published Online First: 2002/06/08]

30. Liang XH, Zhou SH, Fan YX, et al. A survey of the blood supply in China during 2012-2014. *Transfus Med* 2019;29(1):28-32. doi: 10.1111/tme.12492 [published Online First: 2017/12/13]

31. Commission NH. National Health Statistics Yearbook 2020. Beijing: Peking Union Medical College Press 2020.

32. Lumbiganon P, Laopaiboon M, Gülmezoglu AM, et al. Method of delivery and pregnancy outcomes in Asia: the WHO global survey on maternal and perinatal health 2007-08. *Lancet* 2010;375(9713):490-9. doi: 10.1016/s0140-6736(09)61870-5 [published Online First: 2010/01/15]

33. Dodd JM, Crowther CA, Huertas E, et al. Planned elective repeat caesarean section versus planned vaginal birth for women with a previous caesarean birth. *Cochrane Database*
34. Marshall NE, Fu R, Guise JM. Impact of multiple cesarean deliveries on maternal morbidity: a systematic review. *Am J Obstet Gynecol* 2011;205(3):262.e1-8. doi: 10.1016/j.ajog.2011.06.035 [published Online First: 2011/11/11]

35. Shainker S, Shamshirsaz A, Haviland M, et al. Utilization and outcomes of massive transfusion protocols in women with and without invasive placentation. *J Matern Fetal Neonatal Med* 2019;1-5. doi: 10.1080/14767058.2019.1581168 [published Online First: 2019/03/02]

36. Wright JD, Pri-Paz S, Herzog TJ, et al. Predictors of massive blood loss in women with placenta accreta. *Am J Obstet Gynecol* 2011;205(1):38.e1-6. doi: 10.1016/j.ajog.2011.01.040 [published Online First: 2011/03/23]

37. Fitzpatrick KE, Tuffnell D, Kurinczuk JJ, et al. Incidence, risk factors, management and outcomes of amniotic-fluid embolism: a population-based cohort and nested case-control study. *BJOG* 2016;123(1):100-9. doi: 10.1111/1471-0528.13300 [published Online First: 2015/02/17]

38. Society for Maternal-Fetal Medicine . Electronic address pso, Pacheco LD, Saade G, et al. Amniotic fluid embolism: diagnosis and management. *Am J Obstet Gynecol* 2016;215(2):B16-24. doi: 10.1016/j.ajog.2016.03.012 [published Online First: 2016/03/19]

39. Knight M, Berg C, Brocklehurst P, et al. Amniotic fluid embolism incidence, risk factors and outcomes: a review and recommendations. *BMC Pregnancy Childbirth* 2012;12:7. doi: 10.1186/1471-2393-12-7 [published Online First: 2012/02/14]

40. Rukuni R, Bhattacharya S, Murphy MF, et al. Maternal and neonatal outcomes of antenatal anemia in a Scottish population: a retrospective cohort study. *Acta Obstet Gynecol Scand* 2016;95(5):555-64. doi: 10.1111/aogs.12862 [published Online First: 2016/02/06]

41. Daru J, Zamora J, Fernández-Félix BM, et al. Risk of maternal mortality in women with severe anaemia during pregnancy and post partum: a multilevel analysis. *Lancet Glob Health* 2018;6(5):e548-e54. doi: 10.1016/s2214-109x(18)30078-0 [published Online First: 2018/03/25]
Table 1. The incidence and risk of massive blood transfusion (MBT) among different maternal characteristics (N=11,667,406).

Characteristics	Case / Total deliveries	Incidence of MBT (1/10,000)	Crude OR* (95% CI)	Adjusted OR** (95% CI)
Age(years)				
<20	473/287790	16.44	1.15(1.03–1.28)	1.09(0.97–1.21)
20-24	3030/2114730	14.33	reference	reference
25-29	8024/4642235	17.28	1.21(1.12–1.30)	0.99(0.94–1.06)
30-34	8116/2900510	27.98	1.96(1.77–2.16)	1.05(0.97–1.13)
35-39	5151/1125337	45.77	3.20(2.89–3.55)	1.13(1.03–1.24)
>=40	1860/278675	66.74	4.68(4.23–5.19)	1.24(1.10–1.40)
Missing	972/318129	30.55	2.14(1.62–2.81)	1.30(1.07–1.56)
Education				
College or higher	7977/4315935	18.48	reference	reference
High school	7264/3118196	23.30	1.26(1.08–1.48)	1.25(1.11–1.40)
Middle school	9186/3581050	25.65	1.39(1.07–1.80)	1.59(1.33–1.91)
Primary school	1552/344874	45.00	2.44(1.97–3.02)	1.59(1.38–1.84)
Illiteracy	412/60294	68.33	3.72(2.76–5.01)	1.94(1.56–2.40)
Missing	1235/247057	49.99	2.71(1.24–5.95)	1.27(0.76–2.12)
Marital status				
Unmarried	639/196743	32.48	1.38(1.17–1.63)	1.15(0.95–1.39)
Married	26979/11468023	23.53	reference	reference
Missing	8/2640	30.30	1.29(0.58–2.86)	1.07(0.50–2.30)
Parity				
Nulliparous	9788/6400896	15.29	reference	reference
1	12628/4438595	28.45	1.86(1.72–2.02)	1.19(1.12–1.26)
2	5142/810139	63.47	4.17(3.64–4.78)	1.83(1.65–2.03)
Missing	68/17776	38.25	2.51(0.53–11.91)	0.66(0.13–3.48)
Antenatal care				
None	1802/253698	71.03	4.45(3.00–6.61)	1.99(1.40–2.82)
1–3	3512/947952	37.05	2.32(1.75–3.06)	1.49(1.18–1.88)
4–6	7217/3193661	22.60	1.41(1.14–1.74)	1.44(1.23–1.69)
7–9	7038/3390343	20.76	1.30(1.06–1.58)	1.31(1.11–1.54)
Birth location	N	OR	95% CI	Reference
----------------	----	-----	---------	-----------
City	20316/6985253	29.08	1.87(1.43~2.43)	1.36(1.04~1.78)
Rural	7310/4682153	15.61	2.45(0.75~8.00)	1.30(0.74~2.27)

Previous scar	N	OR	95% CI	Reference
No	17804/9736123	18.29	1.23(0.85~1.79)	1.75(1.29~2.37)
Yes	9719/1908222	50.93	2.79(2.54~3.08)	1.35(1.24~1.46)

Region	N	OR	95% CI	Reference
East	8762/3366371	26.03	1.23(0.85~1.79)	1.75(1.29~2.37)
Central	11075/4621694	23.96	1.13(0.84~1.53)	1.75(1.31~2.33)

Hospital level	N	OR	95% CI	Reference
Level 1	1225/1297341	9.44	1.23(0.85~1.79)	1.75(1.29~2.37)
Level 2	8940/5298378	16.87	1.79(1.31~2.44)	1.22(0.85~1.73)

Multiple gestations	N	OR	95% CI	Reference
No	24973/11422786	21.86	4.83(4.31~5.43)	1.54(1.35~1.75)

Gestational week	N	OR	95% CI	Reference
<28	3048/490420	62.15	4.25(3.57~5.06)	2.06(1.59~2.66)
28-32	2313/167840	137.81	9.49(8.44~10.67)	2.21(1.94~2.51)

Mode of delivery:

N	OR	95% CI	Reference	
Vaginal	5676/6167464	9.20	4.04(3.93~4.17)	2.08(1.89~2.28)
CS	18551/4998004	37.12	7.35(7.04~7.67)	1.77(1.42~2.21)

Missing	N	OR	95% CI	Reference
50/3795	131.75	14.49(10.95~19.18)	0.73(0.34~1.57)	

CI, confidence interval; CS, caesarean section; OR, odds ratio.

* Adjusted for the clustering of births within hospitals.

** Adjusted for: the clustering of births within hospitals; region; hospital level; antenatal care; birth location; multiple gestations; gestational week; mother’s education, marital status, age and parity; the delivery method and other factors thought to be associated with massive blood transfusion, such as a placenta previa; placenta accrete; placenta abruptio; placenta retained; all hypertensive disorders in pregnancy; HELLP syndrome; severe anemia; uterine atony; ruptured uterus; soft birth canal lacerations; puerperal infection and amniotic fluid embolism.
Table 2. The incidence and risk of mass transfusion (MBT) among different complications (N=11,667,406).

Characteristics	Cases	Incidence of MBT (1/1000)	Crude OR* (95% CI)	Adjusted OR** (95% CI)
Ectopic pregnancy†	45648	33.52	15.41(12.02~19.76)	9.70(7.57~12.42)
Placenta abnormal				
Placenta praevia†	126105	61.56	38.054(33.79~42.85)	6.93(6.05~7.94)
Placenta accreta†	21545	157.53	89.68(70.31~114.39)	11.65(9.48~14.31)
Placenta abruptio†	54460	47.26	22.95(19.45~27.07)	6.53(5.73~7.45)
Placenta retained‡	141113	24.83	12.14(9.93~14.85)	3.01(2.48~3.65)
Hypertensive disorders				
Chronic hypertension†	37732	4.51	1.91(1.59~2.29)	1.27(1.04~1.55)
Gestational hypertension†	158526	4.88	2.10(1.89~2.32)	1.62(1.46~1.79)
Superimposed preeclampsia†	11951	8.53	3.64(2.90~4.56)	1.32(0.99~1.74)
Preeclampsia or eclampsia†	257096	10.53	4.86(4.43~5.33)	2.23(2.05~2.43)
HELLP syndrome†	6702	92.36	43.83(36.12~53.19)	13.02(10.58~16.02)
Severe anemia‡	46898	76.17	39.75(35.30~44.75)	36.00(32.09~40.41)
Uterine atony‡	240063	49.65	37.95(31.97~45.05)	36.45(30.88~43.04)
Uterine rupture‡	22748	36.09	16.23(11.76~22.39)	5.05(3.67~6.95)
Soft birth canal lacerations‡	127320	7.61	3.31(2.36~4.65)	4.28(3.31~5.54)
Puerperal infection‡	13468	33.71	14.93(12.25~18.20)	3.47(2.78~4.34)
Amniotic fluid embolism‡	1558	411.42	301.49(245.43~370.37)	126.85(96.88~166.10)

CI, confidence interval; OR, odds ratio.

* Adjusted for the clustering of births within hospitals.

** Adjusted for: the clustering of births within hospitals; region; hospital level; antenatal care; birth location; multiple gestations; gestational week; mother’s education, marital status, age and parity; the delivery method and other factors thought to be associated with massive blood transfusion, such as a placenta previa; placenta accrete; placenta abruptio; placenta retained; all hypertensive disorders in pregnancy; HELLP syndrome; severe anemia; uterine atony; ruptured uterus; soft birth canal lacerations; puerperal infection and amniotic fluid embolism.
embolism.
Table 3. Distribution of population characteristics among nulliparous and multiparous.

Age(years)	Nulliparous (n=6400896)	Multiparous (n=5248734)	p value
<20	251758	35758	0.68
20-24	1579681	533099	10.16
25-29	2974516	1662322	31.67
30-34	1163423	1731286	<0.001
35-39	225639	896562	17.08
>=40	37056	240833	4.59
Missing	168823	148874	2.4

Education	Nulliparous (n=6400896)	Multiparous (n=5248734)	p value
College or higher	2958476	1356322	25.84
High school	1678091	1439229	27.42
Middle school	1493516	2086280	39.75
Primary school	92973	251616	4.79
Illiteracy	18019	42232	0.80
Missing	159821	73055	1.39

Marital status	Nulliparous (n=6400896)	Multiparous (n=5248734)	p value
Unmarried	144904	51496	0.98
Married	6254591	5196325	99.00
Missing	1401	913	0.02

Antenatal care	Nulliparous (n=6400896)	Multiparous (n=5248734)	p value
None	105550	147720	2.81
1~3	384122	563520	10.74
4~6	1545500	1647691	31.39
7~9	1902485	1487130	28.33
>=10	2263094	1241147	23.65
Missing	200145	161526	3.08

Gestational week	Nulliparous (n=6400896)	Multiparous (n=5248734)	p value
<28	193739	294731	5.62
28-32	85754	80828	1.54
33-36	349958	303554	5.78
37-41	5711544	4507546	85.88
>=41	40410	34812	0.66
Missing	19491	27263	0.52

Previous CS	Nulliparous (n=6400896)	Multiparous (n=5248734)	p value
0	1907972	36.35	<0.001
Abortion	196141	299465	5.71
Ectopic pregnancy	12529	33000	0.63

Placenta abnormal	Nulliparous (n=6400896)	Multiparous (n=5248734)	p value	
Placenta praevia	50169	75112	1.43	
Placenta accreta	7229	14267	0.27	
Placenta abruptio	27828	26568	0.51	
Placenta retained	70442	70483	1.34	
Hypertensive disorders	Event 1	Event 2	Event 3	p-value
--	---------	---------	---------	---------
Chronic hypertension	18671	0.29	18894	<0.001
Gestational hypertension	88443	1.38	69688	<0.001
Superimposed preeclampsia	4946	0.08	6996	<0.001
Preeclampsia or eclampsia	150558	2.35	105218	<0.001
HELLP syndrome	3159	0.05	3435	<0.001
Severe anemia	20511	0.32	26363	<0.001
Uterine atony	138065	2.16	101834	<0.001
Uterine rupture	1777	0.03	20844	<0.001
Soft birth canal lacerations	72098	1.13	55186	<0.001
Puerperal infection	8476	0.13	4941	<0.001
Amniotic fluid embolism	637	0.01	918	<0.001
Hysterectomy	1278	0.02	4735	<0.001
Died during hospitalization	431	0.01	505	<0.001
Table 4. Population etiologic fraction (PEF) for complications.

Condition	Num.	P (1/10,000)	PEF (95%CI)
Abortion	498143	426.95	3.18% (1.76~4.91%)
Ectopic pregnancy	45648	39.12	3.29% (2.51~4.28%)
Placenta praevia	126105	108.08	6.08% (5.18~6.98%)
Placenta accreta	21545	18.47	1.93% (1.54~2.41%)
Placenta abruptio	54460	46.68	2.52% (2.16~2.92%)
Placenta retained	141113	120.95	2.37% (1.76~3.09%)
Chronic hypertension	37732	32.34	0.09% (0.01~0.18%)
Gestational hypertension	158526	135.87	0.84% (0.62~1.06%)
Superimposed preeclampsia	11951	10.24	0.03% (0%~0.08%)
Preeclampsia or eclampsia	257096	220.35	2.64% (2.26~3.05%)
HELLP syndrome	6702	5.74	0.69% (0.55~0.86%)
Severe anaemia	46898	40.20	12.33% (11.11~13.67%)
Uterine atony	240063	205.76	42.28% (38.07~46.38%)
Uterine rupture	22748	19.50	0.78% (0.52~1.15%)
Soft birth canal lacerations	127320	109.12	3.46% (2.46~4.72%)
Puerperal infection	13468	11.54	0.28% (0.21~0.38%)
Amniotic fluid embolism	1558	1.34	1.65% (1.26~2.16%)
Figure legends:

Figure 1 The secular trends and incidence of massive blood transfusion (1/10,000) during 2012-2019.

Figure 2 Changes in the proportion of safe blood storage (%) in different health facilities (level 1, level 2 and level 3).

Figure 3 The secular trends and incidence of hysterectomy (%) (a) and maternal mortality ratio during hospitalization (‰) (b) among MBT population during 2012-2019.
Figure 1 The secular trends and incidence of massive blood transfusion (1/10,000) during 2012-2019.
Figure 2 Changes in the proportion of safe blood storage (%) in different health facilities (level 1, level 2 and level 3).

166x94mm (150 x 150 DPI)
Figure 3 The secular trends and incidence of hysterectomy (%) (a) and maternal mortality ratio during hospitalization (‰) (b) among MBT population during 2012-2019.

158x53mm (220 x 220 DPI)
Incidence, trends and risk factors for obstetric massive blood transfusion in China from 2012-2019: an observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047983.R1
Article Type:	Original research
Date Submitted by the Author:	19-Aug-2021
Complete List of Authors:	Xie, Yanxia; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China
	Liang, Juan; Sichuan University, Department of Obstetrics; Sichuan University, Department of Obstetrics
	Mu, Yi; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China
	Liu, Zheng; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China
	Wang, Yanping; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China
	Dai, Li; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China; Sichuan University, Medical Big Data Center
	Li, Xiaohong; Sichuan University West China Second University Hospital
	Li, Qi; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China
	Li, Mingrong; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China
	Chen, Peiran; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China
	Zhu, Jun; Sichuan University West China Second University Hospital, National Office for Maternal and Child Health Surveillance of China; Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)
	Wang, Xiaodong; Sichuan University West China Second University Hospital, Department of Obstetrics
Primary Subject Heading:	Obstetrics and gynaecology
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	Maternal medicine < OBSTETRICS, Fetal medicine < OBSTETRICS, PUBLIC HEALTH
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Title page

Title: Incidence, trends and risk factors for obstetric massive blood transfusion in China from 2012-2019: an observational study

Short Title: obstetric massive blood transfusion in China

Yanxia Xie MPH 1, Juan Liang MD 1,2, Yi Mu PhD 1, Zheng Liu MSE 1, Yanping Wang MD 1, Li Dai PhD 1,4, Xiaohong Li PhD 1, Qi Li MSE 1, Mingrong Li MD 1, Peiran Chen MPH 1, Jun Zhu MD1,3*, Xiaodong Wang MD 2*

Author Affiliations

1. National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China

2. Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China

3. Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education

4. Medical Big Data Center, Sichuan University, Chengdu, Sichuan, China

* These authors contributed equally

*Corresponding author:

Jun Zhu, MD

Affiliation1: National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China

Affiliation2: Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
Full address:
Ren Min South Road Section 3 No.17
Chengdu
Sichuan
China
P: +86 13608058108
E: zhujun028@163.com

Xiaodong Wang
Affiliation: Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China Full address:
Ren Min South Road Section 3 No.17
Chengdu
Sichuan
China
P: +86 18180622565
E: drwangxiaodong@126.com
Abstract

Objectives: This study aims to use the high-quality national monitoring data from the China’s National Maternal Near Miss Surveillance System (NMNMSS) to ascertain the incidence, trends, and risk factors of obstetric massive blood transfusion (MBT) from 2012-2019 in China and determine its clinical outcomes.

Settings: Observational study of hospitalized pregnancies who had given birth or ended their pregnancy among member hospitals of NMNMSS.

Participants: 11,667,406 women were included in the present study.

Primary and secondary outcome measures: We screened for the incidence, trends, risk factors, and main reasons for obstetric MBT, and the outcomes after obstetric MBT. MBT was defined as the transfusion of ≥5 units of red blood cells or ≥1000 ml of whole blood. The incidence of MBT was defined as the MBT cases per 10,000 pregnancies.

Results: Obstetric MBT occurred in 27,626 cases, corresponding to an incidence of 23.68 per 10,000 maternities, which exhibited an increasing trend in China during 2012-2019 (14.03 to 29.59 per 10,000 maternities, \(p \) for trend < 0.001). Obstetric MBT was mainly associated with amniotic fluid embolism, uterine atony, abnormal placenta, severe anemia, ectopic pregnancy, abortion, caesarean section, advanced maternal age, and multiparous from biological effect. While from sociological effects, uterine atony, severe anemia, and placenta previa are the top three complications which more likely to undergo obstetric MBT in the Chinese population. Overall, the secular trends of hysterectomy incidence (25.07% to 9.92%) and MMR during hospitalization (21.41 ‰ to 7.48 ‰) among women who underwent MBT showed decreasing trends (\(p \) for trend < 0.001).
Conclusion: To minimize the incidence of obstetric MBT, more attention should be paid to education on the importance of the antenatal visit, evidence-based transfusion practice, and females who are multiparous and have an advanced age, amniotic fluid embolism, uterine atony, severe anemia, and placenta previa.

Key words: obstetric, massive blood transfusion, risk factors, hysterectomy, maternal mortality rate
Strengths and limitations of this study

- Study was based on a national surveillance data covering 441 hospitals across 30 provinces.

- This study firstly evaluated the incidence, trends, risk factors, and main reasons of obstetric massive blood transfusion (MBT) at national level in China.

- Limitation include the obstetric MBT is a binary variable, which does not allow us for additional analyses.

- Our analysis was also limited to information presented in the National Maternal Near Miss Surveillance System (NMNMSS) record.
Obstetric hemorrhage remains a common obstetric emergency and is the leading cause of maternal deaths worldwide\(^1\), similarly in China\(^2\). In addition to strengthening the patient's uterus contractions, drug hemostasis, surgery, etc., massive blood transfusion (MBT) also plays a key role in the treatment of obstetric hemorrhage\(^3-6\). MBT occurs when large volumes of blood products are administered over a short period of time, as a ‘maternal near miss event’, it signifies major obstetric hemorrhage and requires extensive coordination of the obstetric, anesthesia, and blood bank teams\(^7 8\).

The incidence of MBT in relation to delivery or postpartum hemorrhage (PPH) has been reported to be 2.3-10.0 per 10,000 maternities in high-resource countries\(^9-13\), and an increasing trend in the rate of MBT postpartum has been reported in Sweden\(^10\). However, only two small studies focused on obstetric MBT in China\(^14 15\). One study concluded that the incidence of MBT in relation to PPH was stable (25-27 per 10,000 maternities) during 2006-2015\(^15\). Another reported that the MBT rate attributed to PPH was 0.31% in women undergoing cesarean delivery\(^14\). China’s universal two-child policy was announced in October 2015\(^16\). Due to the new policy, the characteristics of mothers in China have changed greatly; for example, the monthly percentage of multiparous mothers increased by 9.1% from a baseline mean level of 46.4%, and the monthly mean percentage of older women grew from 8.5% to 13.5%\(^17\). However, there is no research on obstetrics MBT after the policy was implemented in China. In addition, current studies on MBT are generally limited to PPH, cesarean section, or maternal delivery after a certain gestational age\(^10 11 13 14 18\). There are many other obstetric diseases, such as abortion and ectopic pregnancy, that require MBT, and MBT is not performed only after a specific gestational age\(^19 20\). Emergency MBT is often
needed to save these women. Therefore, it would be extremely helpful for establishing an emergency plan aims to prevent adverse outcomes by exploring the current status, characteristics, and potential risk factors of obstetric MBT.

We aim to use the high-quality national monitoring data from the China’s National Maternal Near Miss Surveillance System (NMNMSS) during 2012-2019 to determine the incidence and trends of obstetric MBT, the risk factors and main reasons for obstetric MBT, and the adverse outcomes after obstetric MBT.

Materials and methods

Data sources

Individual-level data were collected from NMNMSS from 1 January 2012 to 31 December 2019. The NMNMSS system was first established in 2010 and covers 441 health facilities that treated more than 1000 deliveries annually. The included hospitals are located in 326 districts or counties throughout 30 provinces in mainland China, excluding Tibet. The detailed sample methods have been described elsewhere. Within each hospital, sociodemographic and obstetric information were collected from all the pregnant or postpartum women admitted to the obstetric department. The doctors responsible for patient care collected the data, which included the date of delivery, the number of antenatal visits, the maternal education and marital statuses, the maternal age, the gestational age at delivery, the mode of delivery, the number of fetuses, and the maternal complications (at any time during hospitalization), and maternal near miss, including whether obstetric MBT have occurred. The inclusion criteria included the hospitalized pregnancies who had given birth or ended
their pregnancy among member hospital of NMNMSS.

Institutional data were collected from each hospital through the NMNMSS in 2012, 2015, and 2018, including information on the hospital (hospital level, type), human resources (number, titles and degrees of the obstetricians) and service capability (whether there is safe blood storage in the hospital, etc.).

Definitions

The usual definitions of maternal age, marital status, number of antenatal care visits, educational level, delivery method, history of cesarean section, and parity were used, as detailed elsewhere. Based on the hospital’s location, we classified regions as eastern, central or western, and the hospital level was defined based on the size of hospital (number of beds, number of doctors and number of equipment), medical service capacity (clinical service and clinical expert available, etc.), and the management level of the hospital. Level 1 represents the smallest hospitals and level 3 the largest.

We defined MBT as the transfusion of \(\geq 5 \) units of red blood cells or \(\geq 1000 \) ml of whole blood, which is consistent with that used in the World Health Organization (WHO) multi-country survey on maternal and newborn health, listed in the appendix. Multiple blood component transfusions require transfusion volume conversion, the conversion standard is 200 ml of plasma / whole blood = 1 units of red blood cells, while the other blood components were not included in the calculation of total blood transfusion.

Definition of pregnancy complications reference to Obstetrics and Gynecology textbooks (8 edition) used in China. Major complications associated with obstetric MBT were identified based on previously published studies, including obstetric hemorrhage-related conditions and
complications that may cause obstetric hemorrhage9-11 15. Abortion, ectopic pregnancy, placenta previa, placenta accreta, placenta abruptio, placenta retained, uterine atony, uterine rupture, and soft birth canal lacerations were included in the obstetric hemorrhage-related conditions, while hypertensive disorders in pregnancy, HELLP syndrome, puerperal infection, amniotic fluid embolism (AFE), and severe anemia3 were included in the complications. Severe anemia was defined as hemoglobin concentration of < 70 g/L and its definition excluded postpartum hemorrhage.

In addition, the percentage of safe blood storage was defined as the amount of stored blood that can be guaranteed for general emergency blood use within the time period when the blood sent to the bank or delivered by the blood bank, is generally not less than that needed for 3 days of use27.

Statistical methods

In the study, multiple pregnancies were treated as one case. All statistical calculations were performed using Stata software, version 16.0 (Stata Corp LP., College Station, United States of America). A 2-sided \(p \) value of less than 0.05 was considered statistically significant.

The discrete data were summarized as frequencies and percentages. The \(p \) for trends were determined by logistic regression. Then, we used the \(\chi^2 \)-test to examine the differences in distribution between the nulliparous and multiparous women.

Multivariable logistic regression was used to examine the associations between the maternal characteristics, relevant clinical factors and proportion of cases needing obstetric MBT. The findings from two models were reported. Model 1 presented the crude odds ratios (ORs) and 95% confidence intervals (CIs), considering the clustering of births within hospitals. Model 2
further provided the adjusted ORs and 95% CIs after the model was adjusted for (i) the clustering of births within hospitals; (ii) the hospital region, birth location (urban/rural), and hospital level; (iii) the mother’s education level, marital status, age, parity, antenatal care, gestational week, multiple gestations, the presence of uterine scarring, and the delivery method; and (iv) other major morbidities associated with obstetric MBT.

To identify the main causes of the obstetric MBT at the sociological level, we calculated the population etiologic fraction (PEF).

\[
\text{Population etiologic fraction (PEF)} = \frac{P(aOR - 1)}{P(aOR - 1) + 1} * 100\%
\]

where \(P \) is the proportion of cases that are exposed to pregnancy complications and aOR is the adjusted OR for the effect on obstetric MBT incidence.

Patient and public involvement

Patients and members of the public were not involved in the design of this study.

Results

1. **Overall incidence and trends of obstetric MBT**

From 2012 to 2019, 11,667,406 women who had given birth or ended their pregnancy were included in the present study. Obstetric MBT occurred in 27,626 cases, corresponding to an incidence of 23.68 per 10,000 maternities. As shown in Figure 1, the incidence of obstetric MBT increased from 14.03 per 10,000 maternities in 2012 to 29.59 per 10,000 maternities in 2019 (\(p \) for trend < 0.001). Similar trends were observed in the east, central, and west of China. In addition, 350 health facilities had reported the institutional data for 2012, 2015 and...
2018. The overall percentage of safe blood storage increased from 2012 to 2018 (77.71% to 82.57%), and this increase remained after the data were stratified by hospital level (level 1: 30.61% to 38.8%; level 2: 78.95% to 84.74%; level 3: 96.40% to 98.20%) (Figure 2).

2. Subgroup incidence and risk factors of obstetric MBT

Table 1 displays the incidence and risk of obstetric MBT according to maternal characteristics. Being elderly, a lower level of education, a history of fewer antenatal treatments, uterine scarring, multiparity, having a small gestational age delivery, cesarean section and multiple gestations were associated with a higher risk of needing obstetric MBT. Furthermore, the association between abortion and MBT was strong, with an aOR of 1.77 (95% CI: 1.42~2.21).

As Table 2 shows, AFE, placenta accrete and HELLP syndrome had the 3 highest incidence values for obstetric MBT. The main risk factor for obstetric MBT was amniotic fluid embolism, which led to a 127-fold increased risk, with an aOR of 126.85 (95% CI: 96.88~166.10). Women who had severe anemia or uterine atony were nearly 36 times more likely to undergo obstetric MBT. We also found abnormal placenta to represent a major risk factor, with an aORs of 6.93 (95% CI: 6.05~7.94) for placenta previa, 11.65 (95% CI: 9.48~14.31) for placenta accrete, 6.53 (95% CI: 5.73~7.45) for placenta abruptio and 3.01 (95% CI: 2.48~3.65) for placenta retained. In addition, compared with non-HELLP syndrome, maternal HELLP syndrome led to a higher risk of needing obstetric MBT. Furthermore, the association between ectopic pregnancy and uterine rupture and obstetric MBT was strong. Moreover, preeclampsia or eclampsia, soft birth canal lacerations and puerperal infection were also associated with the incidence of obstetric MBT.
3. Characteristics of multiparous women

We further compared the differences in obstetric MBT-related risk factors in addition to hysterectomy and MMR during hospitalization between the nulliparous and multiparous women. An advanced maternal age, a lower education level, less antenatal care, abortion, ectopic pregnancy, placental abnormalities, severe anemia, uterine rupture, amniotic fluid embolism, hysterectomy and mortality during hospitalization were more likely to occur in women who were multiparous (Appendix Table).

4. Population etiologic fraction for complications

We calculated the PEF for the different complications to identify the main reasons for obstetric MBT at the population perspective. As Table 3 presents, the three highest PEFs were 42.28% for uterine atony, 12.33% for severe anemia and 6.08% for placenta previa.

5. Clinical outcomes and trends in the MBT population

Of the 27,626 women, 4,010 underwent hysterectomy, and 376 died during hospitalization. As Figure 3 shows, the trends of hysterectomy (25.07% to 9.92%) and MMR during hospitalization (21.41‰ to 7.48‰) from 2012-2019 among women who underwent MBT was decrease (p for trend < 0.001). A decrease trend in hysterectomy and the MMR during hospitalization in level 1 and level 2 hospitals as well as in level 3 hospitals were also observed. As appendix Figure shows, a greater decline in level hospital and level 2 hospitals for hysterectomy, and a greater decline in level 2 hospitals for maternal mortality rate was observed.

Discussion
The incidence of obstetric MBT during 2012-2019 was 23.66 per 10,000 maternities, and there was an increasing trend in China. An advanced maternal age, uterine scarring, a multiparous status, and multiple gestations were associated with a higher risk of needing obstetric MBT. AFE, uterine atony, and severe anemia were major complications associated with obstetric MBT. The top three PEFs were 42.28% for uterine atony, 12.33% for severe anemia and 6.08% for placenta previa.

Obstetric MBT has been internationally reported in recent years9-13. However, due to differences in the definition of MBT, the incidence of MBT varies greatly across countries; for example, the incidence is 5.3 per 10,000 maternities in Sweden10, 10.0 per 10,000 maternities in New York9, 6.5 per 10,000 births in the Netherlands13, and 2.3 per 10,000 maternities in the UK11. The definition of MBT is generally limited to 24 hours after giving birth. However, different amounts of blood, typically 5-10 units of red blood cells, have been used. MBT involves \geq10 units of red blood cells in Sweden and New York9,10 and \geq8 units of red blood cells in the UK and Netherlands11,13. In our study, obstetric MBT was defined as the transfusion of \geq5 units of red blood cells or \geq1000 ml of whole blood.28 Despite these differences in the incidence of MBT, the increasing trend is consistent across countries, except in the Netherlands10,13. The incidence of obstetric MBT also showed an increasing trend from 2012 to 2019 in China (14.03 per 10,000 maternities to 29.59 per 10,000 maternities). Regarding excessive maternal bleeding, if there are no adequate blood resources, it is difficult to save the mother’s life.29 Our results showed that the percentage of safe blood storage at level 3 hospitals in 2012 was 96.4%, while that at level 1 hospitals was 30.6%. In recent years, primary medical institutions have been increasingly constructed in
China. In addition, the rate of blood supply in China showed a steadily increasing trend (from 1.23 to 1.74 units per 1,000 population) from 2012-2014. As a result, the percentage of safe blood storage increased the most in level 1 hospitals increasing from 30.6% to 38.8% during 2012-2018. In addition, educational awareness to patients and clinicians on optimal blood utilization practices, and relatively better access to blood products or implementation of a protocol for the management of massive obstetric hemorrhage both contributed to the rising trend of MBT.

The increased incidence of MBT plays a key role in reducing adverse outcomes in pregnancies. On the one hand, it is possible to prevent the occurrence of maternal deaths. From 2012 to 2019, the MMR due to obstetric hemorrhage with MBT in nationwide hospitals showed a decreasing trend (decreased by 68.8%), and the magnitude of decrease was larger than that in the population-based obstetric hemorrhage MMR reported by National Maternal Death Monitoring during the same period (54.6%). On the other hand, the uterus can be saved by timely MBT. When severe obstetric hemorrhage fails to respond to other treatments, hysterectomy is usually performed. Although an increased hysterectomy rate was found among the MBT women in Sweden, we found a decreasing trend in Chinese women. Retaining the uterus can not only realize their dream of becoming a mother but also preserve their quality of life. This trend was observed at all three levels (level1-level3).

Every woman who needs obstetric MBT might have a fatal obstetric hemorrhage, and the slightest error in treatment can kill them before they undergo blood transfusion. Therefore, recognizing the possible risk factors for MBT and preventing their occurrence are effective strategies to ensure the safety of women. We found that higher parity is associated with an
increased risk of needing obstetric MBT. In our study, advanced maternal age, lower education level, less antenatal care, and obstetric hemorrhage-related conditions were more likely to occur in women who were multiparous. Of course, these factors are also positively associated with obstetric MBT. Due to the new fertility policy, the characteristics of Chinese maternal population have changed greatly. In our study, 44.99% of women were multiparous, among whom 36.35% had uterine scars, which may be related to the high cesarean section rate during the one-child policy (46.2%). Uterine scarring is associated with an increase in the risk of abnormal placenta, infection, and uterine rupture. Women with these complications may experience extremely large volumes of blood loss during or soon after delivery, ranging from 2000 to 6000 ml.

In agreement with previous studies, we found that uterine atony, abnormal placenta, uterine rupture, and preeclampsia were strongly associated with obstetric MBT. However, we also found that AFE was the main risk factor for obstetric MBT (aOR: 126.85, 95% CI: 96.88–166.10). AFE, although rare, remains one of the leading direct causes of maternal mortality in high-income countries, and its management principles include the active correction of coagulation disorders, the aggressive treatment of uterine atony and the use of high-dose glucocorticoids as early as possible. The total incidence of AFE was 13.4 per 100,000 maternities in our study, which was higher than that previously reported (1.7-7.7 per 100,000 maternities). This finding may explain why AFE is considered the primary risk factor for obstetric MBT in our study.

Our study also showed that women with severe anemia, abortion, or ectopic pregnancy were at a higher risk of needing obstetric MBT. Severe anemia has been associated with an
increased prevalence of postpartum hemorrhage. Similarly, our study showed that severe anemia increases the risk of needing obstetric MBT by 36-fold (OR: 36.00, 95% CI: 32.09–40.41). No studies have focused on ectopic pregnancy, abortion. We found that the association between ectopic pregnancy and MBT was strong, with an aOR of 9.70 (95% CI: 7.57–12.42), and maternal abortion showed a relatively weaker association with the risk of needing obstetric MBT (aOR: 1.77, 95% CI: 1.42–2.21). Both of them often occur at young gestational ages and may put the woman at risk of intraperitoneal bleeding or related complications in the short term and can even lead to death.

However, the OR reflects only the biological effect of a certain disease, while PEF integrates information about the effect estimate’s magnitude with information about the prevalence of the disease and can reflect sociological effects. Our data were retrieved from a facility-based surveillance system, which covered almost all of China, excluding Tibet. Routinely calculating complication-specific PEFs will allow us to identify the populations most affected for targeted interventions. The top three complications according to the PEFs were uterine atony, severe anemia, and placenta previa in the Chinese population. Women with such complications should be highly concerned because these complications have a high prevalence in Chinese mothers, and they also lead to a high risk of needing obstetric MBT. Although AFE leads to the highest risk of obstetric MBT, its PEF was low due to its relatively low maternal incidence. Our findings indicated that it is necessary to focus on the tertiary prevention of uterine atony, severe anemia, and placenta previa to reduce the risk of needing obstetric MBT in China and minimize the occurrence of adverse maternal outcomes.

The main strength is that we included all women who had given birth or ended their
pregnancy during 2012-2019 from a large nationwide data in China. However, the retrospective nature of the study by itself is a limiting factor as access to all clinical and transfusion variables are not possible. The major limitation is the lack of availability of data on many confounding variables that may influence the MBT or adverse outcomes, and the lack of a specific blood transfusion volume limits our ability to conduct additional analyses. In addition, although we recorded the types of blood transfusions performed, we could not use the data for analysis due to the lack of quantitative information.

Conclusion

The incidence of obstetric MBT is increasing in China, but the hysterectomy rate and MMR are decreasing among women undergoing MBT. To minimize the incidence of obstetric MBT, more attention should be paid to education on the importance of the antenatal visit, evidence-based transfusion practice, multiparous women with an advanced age, AFE, uterine atony, severe anemia, and placenta previa. Appropriate blood transfusion preparations and the antenatal early identification for high-risk women might improve the outcomes and reduce the adverse outcomes.

Acknowledgments

We thank the institutions and staff of the National Maternal Near Miss Surveillance System for data collection.

Contributors

All authors have contributed to the conduction of this study. YX., XW, JL and JZ developed the study design with contributions from all authors. YX. performed the statistical analysis
and drafted the manuscript with support from JZ XW., and JL, YM, ML, YW., LD, XL., ML., QL, ZL and PC. participated in reviewing, editing, and revising the manuscript.

Competing interests

The authors declare no conflicts of interest.

Funding

This study was supported by the National Key R&D Program of China (Grant No. 2019YFC1005100), the National Health Commission of the People’s Republic of China, the China Medical Board (Grant No. 11-065), the WHO (Grant No. CHN-12-MCN-004888), and UNICEF (Grant No. 2016EJH016).

Data sharing statement

The datasets generated and/or analysed during the current study are not publicly available due to the terms of our contract with the Chinese National Health Commission but are available from the corresponding author on reasonable request.

Ethics statements

Ethical approval for the NMNMSS was provided by the Ethics Committee of West China Second University Hospital, Sichuan University, China. Informed consent from the patient was waived from the Ethics Committee, as the data used in this study were obtained from a national routine surveillance system established by the government. Data use was authorized by the National Health Commission, and data provided to us were de-identified.
References:

1. Say L, Chou D, Gemmill A, et al. Global causes of maternal death: a WHO systematic analysis. *Lancet Glob Health* 2014;2(6):e323-33. doi: 10.1016/s2214-109x(14)70227-x [published Online First: 2014/08/12]

2. Yang YY, Fang YH, Wang X, et al. A retrospective cohort study of risk factors and pregnancy outcomes in 14,014 Chinese pregnant women. *Medicine (Baltimore)* 2018;97:e11748.

3. Dahlke JD, Mendez-Figueroa H, Maggio L, et al. Prevention and management of postpartum hemorrhage: a comparison of 4 national guidelines. *Am J Obstet Gynecol* 2015;213:76 e1-76 e10.

4. Pacheco LD, Saade GR, Costantine MM, et al. The role of massive transfusion protocols in obstetrics. *Am J Perinatol* 2013;30:1-4.

5. Pacheco LD, Saade GR, Costantine MM, et al. An update on the use of massive transfusion protocols in obstetrics. *Am J Obstet Gynecol* 2016;214:340-4.

6. Kogutt BK, Vaught AJ. Postpartum hemorrhage: Blood product management and massive transfusion. *Semin Perinatol* 2019;43:44-50.

7. Donaldson MD, Seaman MJ, Park GR. Massive blood transfusion. *Br J Anaesth* 1992;69:621-30.

8. Zatta AJ, McQuilten ZK, Mitra B, et al. Elucidating the clinical characteristics of patients captured using different definitions of massive transfusion. *Vox Sang* 2014;107:60-70.

9. Mhyre JM, Shilkret A, Kuklina EV, et al. Massive blood transfusion during hospitalization for delivery in New York State, 1998-2007. *Obstet Gynecol* 2013;122:1288-94.

10. Thurn L, Wikman A, Westgren M, et al. Massive blood transfusion in relation to delivery:
incidence, trends and risk factors: a population-based cohort study. *BJOG* 2019;126:1577-86.

11. Green L, Knight M, Seeney FM, et al. The epidemiology and outcomes of women with postpartum haemorrhage requiring massive transfusion with eight or more units of red cells: a national cross-sectional study. *BJOG* 2016;123:2164-70.

12. Halmin M, Chiesa F, Vasan SK, et al. Epidemiology of Massive Transfusion: A Binational Study From Sweden and Denmark. *Crit Care Med* 2016;44:468-77.

13. Ramler PI, van den Akker T, Henriquez D, et al. Women receiving massive transfusion due to postpartum hemorrhage: A comparison over time between two nationwide cohort studies. *Acta Obstet Gynecol Scand* 2019;98:795-804.

14. Bao Y, Xu C, Qu X, et al. Risk factors for transfusion in cesarean section deliveries at a tertiary hospital. *Transfusion* 2016;56:2062-8.

15. Hu J, Yu ZP, Wang P, et al. Clinical Analysis of Postpartum Hemorrhage Requiring Massive Transfusions at a Tertiary Center. *Chin Med J (Engl)* 2017;130:581-85.

16. Zeng Y, Hesketh T. The effects of China’s universal two-child policy. *Lancet* 2016;388:1930-38.

17. Li HT, Xue M, Hellerstein S, et al. Association of China’s universal two child policy with changes in births and birth related health factors: national, descriptive comparative study. *Bmj* 2019;366:l4680.

18. Akinlusi FM, Rabiu KA, Durojaiye IA, et al. Caesarean delivery-related blood transfusion: correlates in a tertiary hospital in Southwest Nigeria. *BMC Pregnancy and Childbirth* 2018;18(1):24

19. Jurkovic D, Overton C, Bender-Atik R. Diagnosis and management of first trimester
miscarriage. *Bmj* 2013;346:f3676.

20. Diagnosis and Management of Ectopic Pregnancy: Green-top Guideline No. 21. *Bjog* 2016;123:e15-e55.

21. Mu Y, Wang X, Li X, et al. The national maternal near miss surveillance in China: A facility-based surveillance system covered 30 provinces. *Medicine (Baltimore)* 2019;98:e17679.

22. Liang J, Mu Y, Li X, et al. Relaxation of the one child policy and trends in caesarean section rates and birth outcomes in China between 2012 and 2016: observational study of nearly seven million health facility births. *Bmj* 2018;360:k817.

23. Xiong T, Mu Y, Liang J, et al. Hypertensive disorders in pregnancy and stillbirth rates: a facility-based study in China. *Bull World Health Organ* 2018;96:531-39.

24. Zhu J, Liang J, Mu Y, et al. Sociodemographic and obstetric characteristics of stillbirths in China: a census of nearly 4 million health facility births between 2012 and 2014. *Lancet Glob Health* 2016;4:e109-18.

25. Souza JP, Gülmezoglu AM, Vogel J, et al. Moving beyond essential interventions for reduction of maternal mortality (the WHO Multicountry Survey on Maternal and Newborn Health): a cross-sectional study. *The Lancet* 2013;381:1747-55.

26. Say L, Souza JP, Pattinson RC. Maternal near miss--towards a standard tool for monitoring quality of maternal health care. *Best Pract Res Clin Obstet Gynaecol* 2009;23:287-96.

27. Surveillance TNOoMaCH. Monitoring Work Manual of China Maternal Near Miss Surveillance System 2016 [Available from: https://wzycf.mchscn.cn/Main.aspx accessed 10 August 2020.

28. Souza JP, Gülmezoglu AM, Carroli G, et al. The world health organization multicountry
survey on maternal and newborn health: study protocol. *BMC Health Serv Res* 2011;11:286.

29. Tanaka H, Matsunaga S, Yamashita T, et al. A systematic review of massive transfusion protocol in obstetrics. *Taiwan J Obstet Gynecol* 2017;56:715-18.

30. Mukamel DB, Zwanziger J, Bamezai A. Hospital competition, resource allocation and quality of care. *BMC Health Serv Res* 2002;2:10.

31. Liang XH, Zhou SH, Fan YX, et al. A survey of the blood supply in China during 2012-2014. *Transfus Med* 2019;29:28-32.

32. Commission NH. National Health Statistics Yearbook 2020. Beijing: Peking Union Medical College Press 2020.

33. Lumbiganon P, Laopaiboon M, Gülmezoglu AM, et al. Method of delivery and pregnancy outcomes in Asia: the WHO global survey on maternal and perinatal health 2007-08. *Lancet* 2010;375:490-9.

34. Dodd JM, Crowther CA, Huertas E, et al. Planned elective repeat caesarean section versus planned vaginal birth for women with a previous caesarean birth. *Cochrane Database Syst Rev* 2013:Cd004224.

35. Marshall NE, Fu R, Guise JM. Impact of multiple cesarean deliveries on maternal morbidity: a systematic review. *Am J Obstet Gynecol* 2011;205:262.e1-8.

36. Shainker S, Shamshirsaz A, Haviland M, et al. Utilization and outcomes of massive transfusion protocols in women with and without invasive placentation. *J Matern Fetal Neonatal Med* 2019:1-5.

37. Wright JD, Pri-Paz S, Herzog TJ, et al. Predictors of massive blood loss in women with placenta accreta. *Am J Obstet Gynecol* 2011;205:38.e1-6.
38. Fitzpatrick KE, Tuffnell D, Kurinczuk JJ, et al. Incidence, risk factors, management and outcomes of amniotic-fluid embolism: a population-based cohort and nested case-control study. *BJOG* 2016;123:100-9.

39. Society for Maternal-Fetal Medicine. Electronic address pso, Pacheco LD, Saade G, et al. Amniotic fluid embolism: diagnosis and management. *Am J Obstet Gynecol* 2016;215:B16-24.

40. Knight M, Berg C, Brocklehurst P, et al. Amniotic fluid embolism incidence, risk factors and outcomes: a review and recommendations. *BMC Pregnancy Childbirth* 2012;12:7.

41. Rukuni R, Bhattacharya S, Murphy MF, et al. Maternal and neonatal outcomes of antenatal anemia in a Scottish population: a retrospective cohort study. *Acta Obstet Gynecol Scand* 2016;95:555-64.

42. Daru J, Zamora J, Fernández-Félix BM, et al. Risk of maternal mortality in women with severe anaemia during pregnancy and post partum: a multilevel analysis. *Lancet Glob Health* 2018;6:e548-e54.

43. Mummert T, Gnugnoli DM. Ectopic Pregnancy. StatPearls. Treasure Island (FL): StatPearls Publishing

Copyright © 2020, StatPearls Publishing LLC. 2020.
Table 1. The incidence and risk of massive blood transfusion (MBT) among different maternal characteristics (N=11,667,406).

Characteristics	Case / Total deliveries	Incidence of MBT (1/10,000)	Crude OR* (95% CI)	Adjusted OR** (95% CI)
Age(years)				
<20	473/287790	16.44	1.15(1.03~1.28)	1.09(0.97~1.21)
20-24	3030/2114730	14.33	Reference	Reference
25-29	8024/4642235	17.28	1.21(1.12~1.30)	0.99(0.94~1.06)
30-34	8116/2900510	27.98	1.96(1.77~2.16)	1.05(0.97~1.13)
35-39	5151/1125337	45.77	3.20(2.89~3.55)	1.13(1.03~1.24)
>=40	1860/278675	66.74	4.68(4.23~5.19)	1.24(1.10~1.40)
Missing	972/318129	30.55	2.14(1.62~2.81)	1.30(1.07~1.56)
Marital status	Unmarried	Married	Missing	
----------------------	----------------------------	------------------------------	--------------------------	
	639/196743	26979/11468023	8/2640	
	32.48	23.53	30.30	
	1.38(1.17~1.63)	reference	reference	
	1.25(1.11~1.39)	reference	reference	
Parity	Nulliparous 9788/6400896	reference	reference	
	15.29	reference	reference	
	4.45(3.00~6.61)	1.99(1.40~2.82)		
	28.45	1.86(1.72~2.02)	1.19(1.12~1.26)	
	63.47	4.17(3.64~4.78)	1.83(1.65~2.03)	
	38.25	2.51(0.53~11.91)	0.66(0.13~3.48)	
	2436/376782	64.65		
	1.87(1.43~2.43)	1.36(1.04~1.78)		
	17804/9736123	18.29		
	2261/1908222	50.93		
	68/17776	16.04		
	24973/11422786	21.86		
	2261/215694	104.82		
	392/28926	135.52		
	20316/6985253	29.08		
	7310/4682153	15.61		
	17804/9736123	18.29		
	24973/11422786	21.86		
	2261/215694	104.82		
	392/28926	135.52		
	20316/6985253	29.08		
	7310/4682153	15.61		
	17804/9736123	18.29		
	24973/11422786	21.86		
	2261/215694	104.82		
	392/28926	135.52		
	20316/6985253	29.08		
	7310/4682153	15.61		
	17804/9736123	18.29		
	24973/11422786	21.86		
	2261/215694	104.82		
	392/28926	135.52		
	20316/6985253	29.08		
	7310/4682153	15.61		
	17804/9736123	18.29		
	24973/11422786	21.86		
	2261/215694	104.82		
	392/28926	135.52		
	20316/6985253	29.08		
	7310/4682153	15.61		
	17804/9736123	18.29		
	24973/11422786	21.86		
Mode of delivery	Cases	Incidence of MBT (1/1000)	Crude OR* (95% CI)	Adjusted OR** (95% CI)
---------------------------	--------------	---------------------------	--------------------	------------------------
Vaginal	5676/6167464	9.20	reference	reference
CS	18551/4998004	37.12	4.04 (3.93~4.17)	2.08 (1.89~2.28)
Abortion	3349/498143	67.23	7.35 (7.04~7.67)	1.77 (1.42~2.21)
Missing	50/3795	131.75	14.49 (10.95~19.18)	0.73 (0.34~1.57)

CI, confidence interval; CS, caesarean section; OR, odds ratio.

* Adjusted for the clustering of births within hospitals.

** Adjusted for: the clustering of births within hospitals; region; hospital level; antenatal care; birth location; multiple gestations; gestational week; mother’s education, marital status, age and parity; the delivery method and other factors thought to be associated with massive blood transfusion, such as a placenta previa; placenta accrete; placenta abruptio; placenta retained; all hypertensive disorders in pregnancy; HELLP syndrome; severe anemia; uterine atony; ruptured uterus; soft birth canal lacerations; puerperal infection and amniotic fluid embolism.

Table 2. The incidence and risk of mass transfusion (MBT) among different complications (N=11,667,406).
Condition	N	CI	OR	95% CI	95% CI
Gestational hypertension†	158526	4.88	2.10	1.89–2.32	1.62–1.79
Superimposed preeclampsia†	11951	8.53	3.64	2.90–4.56	1.32–0.99
Preeclampsia or eclampsia†	257096	10.53	4.86	4.43–5.33	2.23–2.43
HELLP syndrome†	6702	92.36	43.83	36.12–53.19	13.02–16.02
Severe anemia†	46898	76.17	39.75	35.30–44.75	36.00–40.41
Uterine atony‡	240063	49.65	37.95	31.97–45.05	36.45–43.04
Uterine rupture‡	22748	36.09	16.23	11.76–22.39	5.05–3.67
Soft birth canal lacerations‡	127320	7.61	3.31	2.36–4.65	4.28–3.31
Puerperal infection‡	13468	33.71	14.93	12.25–18.20	3.47–2.78
Amniotic fluid embolism‡	1558	411.42	301.49	245.43–370.37	126.85–166.10

CI, confidence interval; OR, odds ratio.

* Adjusted for the clustering of births within hospitals.

** Adjusted for: the clustering of births within hospitals; region; hospital level; antenatal care; birth location; multiple gestations; gestational week; mother’s education, marital status, age and parity; the delivery method and other factors thought to be associated with massive blood transfusion, such as a placenta previa; placenta accrete; placenta abruptio; placenta retained; all hypertensive disorders in pregnancy; HELLP syndrome; severe anemia; uterine atony; ruptured uterus; soft birth canal lacerations; puerperal infection and amniotic fluid embolism.
Complication	Num.	P (1/10,000)	PEF (95%CI)
Abortion	498143	426.95	3.18% (1.76~4.91%)
Ectopic pregnancy	45648	39.12	3.29% (2.51~4.28%)
Placenta praevia	126105	108.08	6.08% (5.18~6.98%)
Placenta accreta	21545	18.47	1.93% (1.54~2.41%)
Placenta abruptio	54460	46.68	2.52% (2.16~2.92%)
Placenta retained	141113	120.95	2.37% (1.76~3.09%)
Chronic hypertension	37732	32.34	0.09% (0.01~0.18%)
Gestational hypertension	158526	135.87	0.84% (0.62~1.06%)
Superimposed preeclampsia	11951	10.24	0.03% (0%~0.08%)
Preeclampsia or eclampsia	257096	220.35	2.64% (2.26~3.05%)
HELLP syndrome	6702	5.74	0.69% (0.55~0.86%)
Severe anaemia	46898	40.20	12.33% (11.11~13.67%)
Uterine atony	240063	205.76	42.28% (38.07~46.38%)
Uterine rupture	22748	19.50	0.78% (0.52~1.15%)
Soft birth canal lacerations	127320	109.12	3.46% (2.46~4.72%)
Puerperal infection	13468	11.54	0.28% (0.21~0.38%)
Amniotic fluid embolism	1558	1.34	1.65% (1.26~2.16%)
Figure legends:

Figure 1 The secular trends and incidence of massive blood transfusion (1/10,000) during 2012-2019.

Figure 2 Changes in the proportion of safe blood storage (%) in different health facilities (level 1, level 2 and level 3).

Figure 3 The secular trends and incidence of hysterectomy (%) (a) and maternal mortality ratio during hospitalization (‰) (b) among MBT population during 2012-2019.

Appendix Figure The secular trends and incidence of hysterectomy (%) (a) and maternal mortality ratio during hospitalization (‰) (b) among MBT population in different levels of hospitals during 2012-2019.
Figure 1 The secular trends and incidence of massive blood transfusion (1/10,000) during 2012-2019.

155x97mm (150 x 150 DPI)
Figure 2 Changes in the proportion of safe blood storage (%) in different health facilities (level 1, level 2 and level 3).
Figure 3 The secular trends and incidence of hysterectomy (%) (a) and maternal mortality ratio during hospitalization (‰) (b) among MBT population during 2012-2019.

158x53mm (220 x 220 DPI)
The secular trends and incidence of hysterectomy (%) (a) and maternal mortality ratio during hospitalization (‰) (b) among MBT population in different levels of hospitals during 2012-2019.
Appendix Table. Distribution of population characteristics among nulliparous and multiparous.

	Nulliparous(n=6400896)	Multiparous(n=5248734)	p value		
Age(years)					
<20	251758	35758	0.68		
20-24	1579681	533099	10.16		
25-29	2974516	1662322	31.67		
30-34	1163423	1731286	32.98		
35-39	225639	896562	17.08		
>=40	37056	240833	4.59		
Missing	168823	148874	2.84		
Education					
College or higher	2958476	1356322	25.84		
High school	1678091	1439229	27.42		
Middle school	1493516	2086280	39.75		
Primary school	92973	251616	4.79		
Illiteracy	18019	42232	0.80		
Missing	159821	73055	1.39		
Marital status					
Unmarried	144904	51496	0.98		
Married	6254591	5196325	99.00		
Missing	1401	913	0.02		
Antenatal care					
None	105550	147720	2.81		
1-3	384122	563520	10.74		
4-6	1545500	1647691	31.39		
7-9	1902485	1487130	28.33		
>=10	2263094	1241147	23.65		
Missing	200145	161526	3.08		
Gestational week					
<28	193739	294731	5.62		
28-32	85754	80828	1.54		
33-36	349958	303554	5.78		
37-41	5711544	4507546	85.88		
>=41	40410	34812	0.66		
Missing	19491	27263	0.52		
Previous CS	0	1907972	36.35		
Abortion	196141	299465	5.71		
Ectopic pregnancy	12529	33000	0.63		
Placenta abnormal			<0.001		
Placenta praevia	50169	75112	1.43		
Placenta accreta	7229	14267	0.27		
Placenta abruptio	27828	26568	0.51		
Placenta retained	70442	70483	1.34		
Hypertensive disorders					
--	---	---	---		
Chronic hypertension	18671	0.29	18894	0.36	<0.001
Gestational hypertension	88443	1.38	69688	1.33	<0.001
Superimposed preeclampsia	4946	0.08	6996	0.13	<0.001
Preeclampsia or eclampsia	150558	2.35	105218	2.00	<0.001
HELLP syndrome	3159	0.05	3435	0.07	<0.001
Severe anemia	20511	0.32	26363	0.50	<0.001
Uterine atony	138065	2.16	101834	1.94	<0.001
Uterine rupture	1777	0.03	20844	0.40	<0.001
Soft birth canal lacerations	72098	1.13	55186	1.05	<0.001
Puerperal infection	8476	0.13	4941	0.09	<0.001
Amniotic fluid embolism	637	0.01	918	0.02	<0.001
Hysterectomy	1278	0.02	4735	0.09	<0.001
Died during hospitalization	431	0.01	505	0.01	<0.001
STROBE Statement—checklist of items that should be included in reports of observational studies

Item No	Recommendation	Page No
Title and abstract		
1	(a) Indicate the study’s design with a commonly used term in the title or the abstract	1
2	(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction		
2	Explain the scientific background and rationale for the investigation being reported	6
Objectives		
3	State specific objectives, including any prespecified hypotheses	7
Methods		
4	Present key elements of study design early in the paper	7
5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
6	(a) **Cohort study**—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up **Case-control study**—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls **Cross-sectional study**—Give the eligibility criteria, and the sources and methods of selection of participants	8
7	(b) **Cohort study**—For matched studies, give matching criteria and number of exposed and unexposed **Case-control study**—For matched studies, give matching criteria and the number of controls per case	None
8	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8-9
8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8-9
9	Describe any efforts to address potential sources of bias	9
10	Explain how the study size was arrived at	9-10
11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9-10
12	(a) Describe all statistical methods, including those used to control for confounding	9-10
12	(b) Describe any methods used to examine subgroups and interactions	9-10
12	(c) Explain how missing data were addressed	9-10
12	(d) **Cohort study**—If applicable, explain how loss to follow-up was addressed **Case-control study**—If applicable, explain how matching of cases and controls was addressed **Cross-sectional study**—If applicable, describe analytical methods taking account of sampling strategy	None
12	(e) Describe any sensitivity analyses	None

Continued on next page
Results

Participants 13*
(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed 11
(b) Give reasons for non-participation at each stage 11
(c) Consider use of a flow diagram 11

Descriptive data 14*
(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders 11
(b) Indicate number of participants with missing data for each variable of interest 11
(c) Cohort study—Summarise follow-up time (eg, average and total amount) 11

Outcome data 15*
Cohort study—Report numbers of outcome events or summary measures over time 11
Case-control study—Report numbers in each exposure category, or summary measures of exposure 11
Cross-sectional study—Report numbers of outcome events or summary measures 11

Main results 16
(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included 11-12
(b) Report category boundaries when continuous variables were categorized None
(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period none

Other analyses 17
Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 12-13

Discussion

Key results 18
Summarise key results with reference to study objectives 13

Limitations 19
Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 17

Interpretation 20
Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 13-17

Generalisability 21
Discuss the generalisability (external validity) of the study results 17

Other information

Funding 22
Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 18

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.