Regular accelerating universe without dark energy in Poincaré gauge theory of gravity

A V Minkevich¹,², A S Garkun¹ and V I Kudin³

¹ Department of Theoretical Physics, Belarussian State University, Belarus
² Department of Physics and Computer Methods, Warmia and Mazury University in Olsztyn, Poland
³ Department of Technical Physics, Belarussian National Technic University, Belarus

E-mail: minkav@bsu.by and garkun@bsu.by

Received 8 June 2007, in final form 9 October 2007
Published 21 November 2007
Online at stacks.iop.org/CQG/24/5835

Abstract
Homogeneous isotropic cosmological models with two torsion functions filled with scalar fields and usual gravitating matter are built and investigated in the framework of the Poincaré gauge theory of gravity. It is shown that by certain restrictions on indefinite parameters of gravitational Lagrangian the cosmological equations at asymptotics contain an effective cosmological constant that can explain observable acceleration of cosmological expansion. The behavior of inflationary cosmological solutions at extremely high energy densities is analyzed and regular bouncing solutions are obtained. The role of the spacetime torsion provoking the acceleration of cosmological expansion is discussed.

PACS numbers: 04.50.+h, 98.80.Cq, 11.15.−q, 95.36.+x

1. Introduction

The discovery of the acceleration of cosmological expansion at present epoch is the most principal achievement of observational cosmology at last time [1]. By using Friedmann cosmological equations of General Relativity theory (GR), the notion of dark energy (or quintessence) was introduced in cosmology in order to explain accelerating cosmological expansion. According to obtained estimations, approximately 70% of energy in our Universe is related to some hypothetical form of gravitating matter with negative pressure—‘dark energy”—of unknown nature. Previously a number of investigations devoted to dark energy problem were carried out (see review [2]). According to widely known opinion, the dark energy is associated with the cosmological term. If the cosmological term is related to the vacuum energy density, it is necessary to explain why it has a value close to critical energy density at the present epoch (see for example [3]).
The present paper is devoted to the investigation of the ‘dark energy’ problem in the framework of the Poincaré gauge theory of gravity (PGTG), which is a natural generalization of Einsteinian GR by applying the gauge approach to the theory of gravitational interaction (see for example [4]). In fact the generalization of GR leading to the PGTG is necessary, if one supposes that the Lorentz gauge field corresponding to fundamental group in physics—the Lorentz group—exists in nature (see [5]). According to PGTG the physical spacetime possesses the structure of Riemann–Cartan continuum with curvature and torsion. The investigation of isotropic cosmology built in the framework of PGTG (see [5–7] and references herein) shows that the gravitational interaction in PGTG, unlike GR and Newton’s gravitation theory, can have repulsive character in the case of gravitating systems with positive energy densities and pressures satisfying energy dominance condition. So, the gravitational repulsion effect takes place at extreme conditions (extremely high energy densities and pressures) preventing the appearance of cosmological singularity in homogeneous isotropic models (HIM) [6]. According to generalized cosmological Friedmann equations (GCFE) for HIM deduced in the framework of PGTG, all cosmological solutions including inflationary solutions are regular in metrics, Hubble parameter, its time derivative and have a bouncing character. Properties of discussed HIM in PGTG coincide practically with those of GR at sufficiently small energy densities, which are much less in comparison with limiting (maximum) energy density for such models. By including the cosmological term of corresponding value to GCFE, we can obtain regular cosmological solutions with observable accelerating expansion stage. However, like GR, the problem of dark energy in such a theory is not solved.

From a geometrical point of view, the structure of HIM in PGTG can be more complicated in comparison with models described by GCFE. In fact in the case of homogeneous isotropic models, the torsion tensor \(S_{\lambda\mu\nu} = -S_{\lambda\nu\mu} \) can have the following non-vanishing components [8, 9]: \(S_{10}^1 = S_{20}^2 = S_{30}^3 = S_1(t), \ S_{123} = S_{231} = S_{312} = S_2(t) \frac{\rho^{2/3}}{\sqrt{1-kr^2 \sin^2 \theta}}, \) where \(S_1 \) and \(S_2 \) are two torsion functions of time, spatial spherical coordinates are used. The functions \(S_1 \) and \(S_2 \) have different properties with respect to transformations of spatial inversions, namely, the function \(S_2(t) \) has a pseudoscalar character. The GCFE follow from gravitational equations of PGTG for HIM together with \(S_2 = 0 \). Obtained physical consequences of GCFE have a principal character. However, it is necessary to note that gravitational equations of the PGTG for HIM also have other solutions with non-vanishing function \(S_2 \).

The HIM with two torsion functions filled with scalar fields and usual gravitating matter are studied below in the frame of PGTG in connection with the dark energy problem. Following [10], in section 2 cosmological equations for such HIM are introduced. In section 3 the solution asymptotics of cosmological equations is analyzed. In section 4 the bouncing character of inflationary cosmological solutions is examined.

2. Cosmological equations for HIM with two torsion functions in PGTG

First, let us mention some general relations of the PGTG. The gravitational field is described in the frame of PGTG by means of the orthonormalized tetrad \(h^i_{\mu} \) and anholonomic Lorentz connection \(A_{[i}^{\mu} \) (tetrad and holonomic indices are denoted by latin and greek respectively); corresponding field strengths are torsion \(S^i_{\mu\nu} \) and curvature \(F^{ik}_{\mu\nu} \) tensors defined as

\[
S^i_{\mu\nu} = \partial_{[i}h^t_{\mu]} - R_{[\mu\nu]}A^{ik}_{\nu]},
\]

\[
F^{ik}_{\mu\nu} = 2\partial_{[\mu}A^{ik}_{\nu]} + 2A^{it}_{[\nu}A^{k}_{i]\nu]}.
\]
We will consider the PGTG based on the following general form of gravitational Lagrangian
\[\mathcal{L}_G = \hbar \left[f_0 F + F^{\mu\nu}(f_1 F_{\mu\rho\nu} + f_2 F_{\mu\nu\rho} + f_3 F_{\mu\nu\rho\sigma}) + F_{\mu\nu}(f_4 F_{\mu\nu} + f_5 F_{\mu\rho}) + f_6 F^2 \right. \\
\left. + S^{\mu\nu}(a_1 S_{\mu\nu} + a_2 S_{\nu\mu}) + a_3 S^\alpha_{\mu\nu} S^\alpha_{\mu\nu} \right], \tag{1} \]
where \(h = \det (h'_{\mu}), F_{\mu\nu} = F^\alpha_{\mu\nu}, F = F^\alpha_{\mu\nu}, f_1 = (16\pi G)^{-1}, G \) is Newton’s gravitational constant. Gravitational equations of PGTG obtained from the action integral
\[I = \int (\mathcal{L}_G + \mathcal{L}_m) \, d^4x, \]
where \(\mathcal{L}_m \) is the Lagrangian of matter, contain the system of 16 + 24 equations corresponding to gravitational variables \(h'_{\mu} \) and \(A^{ik}_{\mu} \).

Any homogeneous isotropic gravitating system in PGTG is characterized in general case by three functions of time: the scale factor of Robertson–Walker metrics \(S \) and two torsion functions \(S_1 \) and \(S_2 \). Below the spherical coordinate system is used and the tetrad is taken in the diagonal form. Then the curvature tensor has the following non-vanishing tetrad components denoted by means of the sign °°°°:
\[F_{01} = F_{02} = F_{03} = A_1, \quad F_{12} = F_{13} = F_{23} = A_2, \quad F_{0\hat{0}} = F_{1\hat{0}} = F_{2\hat{0}} = A_4, \]
with
\[A_1 = \dot{H} + H^2 - 2HS_1 - 2S_1, \]
\[A_2 = \frac{k}{R^2} + (H - 2S_1)^2 - S_2^2, \]
\[A_3 = 2(H - 2S_1)S_2, \]
\[A_4 = S_2 + HS_2, \]
where \(H = \dot{R}/R \) is the Hubble parameter and a dot denotes the differentiation with respect to time.

The Bianchi identities in this case are reduced to following two relations:
\[A_2 + 2H(A_2 - A_1) + 4S_1A_1 + 2S_2A_4 = 0, \]
\[A_3 + 2H(A_3 - A_4) + 4S_1A_4 - 2S_2A_1 = 0. \tag{3} \]

The system of gravitational equations for HIM corresponding to gravitational Lagrangian (1) has the following form
\[a (H - S_1)S_1 - 2bS_2^2 - 2f_0A_2 + 4f(A_1^2 - A_2^2) + 2q_2 (A_2^2 - A_3^2) = -\frac{\rho}{3}, \tag{4} \]
\[a (S_1 + 2HS_1 - S_1^2) - 2bS_2^2 - 2f_0(2A_1 + A_2) - 4f(A_1^2 - A_2^2) - 2q_2 (A_2^2 - A_3^2) = p, \tag{5} \]
\[f[A_1 + 2H(A_1 - A_2) + 4S_1A_2] + q_2S_2A_3 - q_1S_2A_4 + \left(f_0 + \frac{a}{3} \right) S_1 = 0, \tag{6} \]
\[q_2[A_4 + 2H(A_4 - A_3) + 4S_1A_3] - 4fS_2A_2 - 2q_1S_2A_1 - (f_0 - b)S_2 = 0, \tag{7} \]
where
\[a = 2a_1 + a_2 + 3a_1, \quad b = a_2 - a_1, \]
\[f = f_1 + \frac{f_2}{2} + f_3 + f_4 + f_5 + 3f_6, \]
\[q_1 = f_2 - 2f_3 + f_4 + f_5 + 6f_6, \quad q_2 = 2f_1 - f_2. \]
\(\rho \) is the energy density and \(p \) is the pressure and the average of spin distribution of gravitating matter is supposed to be equal to zero. Equations (4)–(5) lead to generalization of Friedmann...
cosmological equations of GR, which does not contain high derivatives for the scale factor R, if $a = 0$ (see below). Moreover, equations (6)–(7) take a more symmetric form, if $2f = q_1 + q_2$. Then by using the Bianchi identities (3), the system of gravitational equations for HIM takes the following form:

$$-2b S_2^2 - 2f_0 A_2 + 4f (A_1^2 - A_2^2) + 2q_2 (A_1^2 - A_2^2) = -\frac{1}{2}\rho, \quad (8)$$

$$-2b S_2^2 - 2f_0 (2A_1 + A_2) - 4f (A_1^2 - A_2^2) - 2q_2 (A_1^2 - A_2^2) = \rho, \quad (9)$$

$$f[A_1 + A_2] + 4S_1 (A_1 + A_2)] + q_2 S_2 (A_3 + A_4) + f_0 S_1 = 0, \quad (10)$$

$$q_2 [(A_3 + A_4) + 4S_1 (A_3 + A_4)] - 4f S_2 (A_1 + A_2) - (f_0 - b) S_2 = 0. \quad (11)$$

The system of equations (8)–(11) together with the definition of curvature functions (2) is the base of our investigation of HIM below. Note also that the conservation law for spinless matter has the usual form:

$$\dot{\rho} + 3H (\rho + p) = 0. \quad (12)$$

In order to investigate inflationary cosmological models, we will consider below HIM filled with non-interacting scalar field ϕ minimally coupled with gravitation and gravitating matter with equation of state in the form $p_m = p_m(\rho_m)$ (values of gravitating matter are denoted by means of index ‘m’). Then the energy density ρ and the pressure p take the form

$$\rho = \frac{1}{2} \dot{\phi}^2 + V + \rho_m \quad (\rho > 0), \quad p = \frac{1}{2} \dot{\phi}^2 - V + p_m, \quad (13)$$

where $V = V(\phi)$ is a scalar field potential. By using the scalar field equation in homogeneous isotropic space

$$\dot{\phi} + 3H \phi = -\frac{3V}{\partial \phi} \quad (14)$$

we obtain from (12) and (13) the conservation law for gravitating matter

$$\dot{\rho}_m + 3H (\rho_m + p_m) = 0. \quad (15)$$

From (8) and (9) follows that

$$A_1 + A_2 = \frac{1}{12f_0} (\rho - 3p) - \frac{b}{f_0} S_2^2, \quad (16)$$

By using (16) and the formula following from definition of curvature functions A_3 and A_4

$$A_3 - A_4 = 4A_2 S_2^2 - 4 \left[\frac{k}{R^2} - S_2^2\right] S_2^2 - (HS_2 + S_2)^2, \quad (17)$$

we find from gravitational equations (8) and (9) the following expressions for A_1 and A_2:

$$A_1 = -\frac{1}{12f_0 Z} \left[\rho + 3p - \frac{\alpha}{2} (\rho - 3p - 12b S_2^2)^2\right]$$

$$-\frac{\alpha \epsilon}{Z} (\rho - 3p - 12b S_2^2) S_2^2 + \frac{3\alpha \epsilon f_0}{Z} \left[(HS_2 + S_2)^2 + 4 \left(\frac{k}{R^2} - S_2^2\right) S_2^2\right], \quad (17)$$

$$A_2 = \frac{1}{6f_0 Z} \left[\rho - 6b S_2^2 + \frac{\alpha}{4} (\rho - 3p - 12b S_2^2)^2\right]$$

$$-\frac{3\alpha \epsilon f_0}{Z} \left[(HS_2 + S_2)^2 + 4 \left(\frac{k}{R^2} - S_2^2\right) S_2^2\right], \quad (18)$$
where $Z \equiv 1 + \alpha \left(\rho - 3p - 12(b + \varepsilon f_0)S_2^2 \right) = 1 + \alpha \left(4V - \dot{\phi}^2 + \rho_m - 3p_m - 12(b + \varepsilon f_0)S_2^2 \right)$,
\[\alpha \equiv f / \left(3 f_0^2\right), \quad \varepsilon \equiv q_2 / f \text{ (hence, } q_2 = 3\alpha \varepsilon f_0^2)\]. By using (13)–(16) and the following relation obtained from definition of A_3 and A_4

\[A_3 + A_4 = \dot{S}_2 + 3HS_2 - 4\dot{S}_1 S_2, \quad (19)\]

we find for the torsion function S_1 from (10) the following expression:

\[S_1 = -\frac{3\alpha}{4Z} \left[\frac{\partial V}{\partial \phi} + H(Y + 2\dot{\phi}^2) - 4(2b - \varepsilon f_0) S_2 S_3 \right], \quad (20)\]

where

\[Y \equiv (\rho_m + p_m) \left(\frac{3d\rho_m}{d\rho_m} - 1 \right) + 12\varepsilon f_0 S_2^2.\]

Then by using formulae (16) and (19), we find from (11) the following second order differential equation for the torsion function S_2:

\[\varepsilon \left[\dot{S}_2 + 3HS_2 + 3HS_2 - 4\left(\dot{S}_1 - 3HS_1 + 4S_1^2 \right) S_2 \right]

\[= -\frac{1}{3f_0} \left(\rho - 3p - 12b S_2^2 \right) S_2 - \frac{(f_0 - b)}{f} S_2 = 0. \quad (21)\]

The obtained expressions (17) and (18) for curvature functions A_2 and A_1 together with their definition (2) give the generalization of cosmological Friedmann equations for HIM:

\[\frac{k}{R^2} + (H - 2S_1)^2 = \frac{1}{6f_0 Z} \left[\rho + 6(f_0 Z - b) S_2^2 + \frac{\alpha}{4} (\rho - 3p - 12b S_2^2)^2 \right]

\[= -\frac{3\alpha f_0}{Z} \left(H S_2 + S_2 \right)^2 + 4 \left(\frac{k}{R^2} - S_2^2 \right) S_2^2, \quad (22)\]

\[H + H^2 - 2HS_1 - 2S_1 = -\frac{1}{12f_0 Z} \left[\rho + 3p - \frac{\alpha}{2} (\rho - 3p - 12b S_2^2)^2 \right]

\[= -\frac{\alpha f_0}{Z} \left(\rho - 3p - 12b S_2^2 \right) S_2^2 + \frac{3\alpha f_0}{Z} \left(H S_2 + S_2 \right)^2 + 4 \left(\frac{k}{R^2} - S_2^2 \right) S_2^2. \quad (23)\]

These equations contain the torsion function S_1 determined by (20) and the torsion function S_2, satisfying equation (21). Obtained equations contain three indefinite parameters: indefinite parameter α determining the scale of extremely high energy densities [5], parameter b with dimension of parameter f_0 and parameter ε without dimension. We have to analyze all these equations in order to investigate HIM with a pseudoscalar torsion function in the frame of PGTG.

3. Asymptotics of cosmological solutions for HIM with the pseudoscalar torsion function

The structure of obtained equations (20)–(23) describing HIM with two torsion functions is essentially more complicated in comparison with the case of HIM with vanishing function S_2. Note that if $S_2 = 0$, equation (21) vanishes and the cosmological equations (22) and (23) are transformed to GCFFE containing the only indefinite parameter α [5, 6].

Now we will analyze the following question: by what restrictions on indefinite parameters the cosmological solutions for HIM with the pseudoscalar torsion function have the asymptotics in agreement with actual observations. By taking into account that various
parameters of HIM have to be small at asymptotics, when values of energy density are sufficiently small, we see from (21), that if $|\varepsilon| \ll 1$, the pseudoscalar torsion function has at asymptotics the following value:

$$S_2^2 = \frac{f_0 (f_0 - b)}{4fb} + \frac{\rho - 3p}{12b}.$$

(24)

Then we have at asymptotics $Z \to (b/f_0)$, $S_1 \to 0$ and the cosmological equations (22) and (23) at asymptotics take the form of cosmological Friedmann equations with cosmological constant:

$$k \frac{R^2}{a^2} + H^2 = \frac{1}{6b} \left[\rho + \frac{3(f_0 - b)^2}{4f} \right],$$

(25)

$$H + \frac{H^2}{2} = -\frac{1}{12b} \left[\rho + 3p - \frac{3(f_0 - b)^2}{2f} \right].$$

(26)

From equations (25) and (26) we see that parameter b has to be very close to f_0, but smaller than f_0. The value of b leading to observable acceleration of cosmological expansion depends on the scale of extremely high energy density defined by α^{-1}. If we take into account that the value of $\frac{3}{4}(f_0 - b)^2/f = \frac{3}{4}\alpha^{-1}(1 - b/f_0)^2$ is approximately equal to $0.7\rho_0$ (the critical energy density is $\rho_0 = 6f_0H_0^2$, where H_0 is the value of the Hubble parameter at present epoch), then we obtain that $b = [1 - (2.8\rho_0\alpha)^{1/2}]f_0$. If we suppose that the scale of extremely high energy densities is larger than the energy density for quark–gluon matter, but less than the Planckian energy density, then we obtain the corresponding estimation for b, which is very close to f_0. Obtained restrictions on indefinite parameters will be used below for the investigation of inflationary cosmological solutions.

4. Regular inflationary cosmological solutions with two torsion functions

To obtain a cosmological solution by integrating cosmological equations, we have to use the equation of state of gravitating matter, which is different at different stages of cosmological evolution. So, at asymptotics one usually uses the equation of state for dust matter ($p = 0$). At the same time, in order to obtain a cosmological solution for inflationary HIM, we will use at the beginning of cosmological expansion expressions (13) for energy density and pressure by including the scalar field as one component of gravitating matter. Like GR, the inflationary stage appears, if the value of scalar fields at the beginning of cosmological expansion is sufficiently large ($\phi > 1M_p$, M_p is Planckian mass) [11].

In order to investigate inflationary cosmological solutions at extremely high energy densities, by using (13)–(15) and (20) we transform cosmological equations (22) and (23) and equation (21) for S_2-function to the following form:

$$H^2 \left[\left(Z + \frac{3}{2}\alpha(Y + 2\phi) \right)^2 + 3\varepsilon f_0 S_2^2 Z \right]$$

$$+ 6\alpha H \left[\left(Z + \frac{3}{2}\alpha(Y + 2\phi^2) \right) \left(\frac{\partial V}{\partial \phi} \phi - 2(2b - \varepsilon f_0) S_2 S_2 \right) + \varepsilon f_0 S_2 S_2 \right]$$

$$+ 9\alpha^2 \left[\frac{\partial V}{\partial \phi} \phi - 2(2b - \varepsilon f_0) S_2 S_2 \right]^2 + 3\varepsilon f_0 \left[S_2^2 + 4 \left(\frac{k}{R^2} - S_2^2 \right) S_2 \right] Z.$$
\[
- \frac{1}{6f_0} \left[\rho_m + \frac{1}{2}\phi + V - 6b\dot{S}_2^2 + \frac{1}{4}\alpha (\rho_m - 3p_m + 4V - \phi^2 - 12b\dot{S}_2^2)^2 \right] Z \\
+ \left(\frac{k}{R_2^2} - S_1^2 \right) Z^2 = 0.
\] (27)

\[
H \left[1 + \frac{3\alpha}{2Z} (Y + 2\phi^2) \right] + H^2 \left[1 + \frac{3\alpha}{2Z} (Y + 2\phi^2) - \frac{9\alpha^2}{2Z^2} (Y + 2\phi^2) \right] (Y + 2\phi^2 - 12\varepsilon f_0 S_2^2) \\
- \frac{9\alpha}{2Z} \left[3\frac{d^2 p_m}{d\rho_m^2} (\rho_m + p_m)^2 + \left(3\frac{d p_m}{d\rho_m} - 1 \right) \left(1 + \frac{d p_m}{d\rho_m} \right) (\rho_m + p_m) + 4\phi^2 \right] \right] \\
- \frac{3\alpha}{Z} H \left[4 \frac{\partial V}{\partial \phi} \phi + 2 (2b - 7\varepsilon f_0) \dot{S}_1 \dot{S}_2 \right] + \frac{3\alpha}{Z} \left[\left(\frac{\partial V}{\partial \phi} \phi - 2 (2b - \varepsilon f_0) S_1 \dot{S}_2 \right) X \right. (Y + 2\phi^2 - 12\varepsilon f_0 S_2 \dot{S}_2) \\
+ \left. \left(\frac{\partial V}{\partial \phi} \phi - 4 (b + \varepsilon f_0) \dot{S}_1 \dot{S}_2 \right) + (Y + 2\phi^2) \left(\frac{\partial V}{\partial \phi} \phi - 4 (b + \varepsilon f_0) \dot{S}_1 \dot{S}_2 \right) \right] \\
+ \frac{3\alpha}{Z} \left(\frac{\partial^2 V}{\partial \phi^2} \phi^2 - \left(\frac{\partial V}{\partial \phi} \right)^2 \right) \\
- \frac{6\alpha}{Z} \left(\frac{\partial V}{\partial \phi} \phi - 2 (2b - \varepsilon f_0) \dot{S}_1 \dot{S}_2 \right) \left(\frac{\partial V}{\partial \phi} \phi - 4 (b + \varepsilon f_0) \dot{S}_1 \dot{S}_2 \right) \\
- 2(2b - \varepsilon f_0) \left(S_2^2 + \dot{S}_2 \dot{S}_2 \right) \right] \\
= - \frac{1}{12f_0 Z} \left[\rho_m + 3p_m - 2(V - \phi^2) - \frac{1}{2}\alpha (\rho_m - 3p_m + 4V - \phi^2 - 12b\dot{S}_2^2)^2 \right] \\
- \frac{\alpha\varepsilon}{Z} (\rho_m - 3p_m + 4V - \phi^2 - 12b\dot{S}_2^2) S_2^2 \\
+ \frac{3\alpha\varepsilon f_0}{Z} \left[(HS_2^2 + \ddot{S}_2)^2 + 4 \left(\frac{k}{R_2^2} - S_1^2 \right) S_2^2 \right]. \] (28)
\[-9a^2 Z^2 S_2 \left[H(Y + 2\phi^2) + 2 \left(\frac{\partial V}{\partial \phi} - 2(2b - \varepsilon f_0) S_2 S_2 \right) \right]^2 \]

\[-6a Z S_2 \left(\frac{\partial V}{\partial \phi} \right)^2 - \frac{\partial^2 V}{\partial \phi^2} \phi^2 + 2(2b - \varepsilon f_0) S_2^2 \]

\[+ \frac{6a}{Z} \left(\frac{\partial V}{\partial \phi} \phi - 2(2b - \varepsilon f_0) S_2 S_2 \right) \left(\frac{\partial V}{\partial \phi} \phi - 4(b + \varepsilon f_0) S_2 S_2 \right) \]

\[-\frac{1}{\varepsilon} \left[\frac{1}{3f_0} (\rho_m - 3p_m + 4V - \phi^2 - 12bS_2^2) + \frac{f_0 - b}{f} \right] S_2 = 0. \quad (29)\]

Equation (27) can be written as

\[AH^2 + 2BH + C = 0, \quad (30)\]

where

\[A = \left[Z + \frac{3}{2}a(Y + 2\phi^2) \right]^2 + 3ae f_0 S_2^2 Z, \]

\[B = 3a \left[\left[Z + \frac{3}{2}a(Y + 2\phi^2) \right] \left(\frac{\partial V}{\partial \phi} \phi - 2(2b - 2\varepsilon f_0) S_2 S_2 \right) + \varepsilon f_0 S_2 S_2 Z \right], \]

\[C = 9a^2 \left[\frac{\partial V}{\partial \phi} \phi - 2(2b - \varepsilon f_0) S_2 S_2 \right]^2 + 3ae f_0 \left[S_2^2 + 4 \left(\frac{k}{R^2} - S_2^2 \right) S_2^2 \right] Z \]

\[-\frac{1}{6f_0} \left[\rho_m + \frac{1}{2} \phi^2 + V - 6bS_2^2 + \frac{1}{4a} (\rho_m - 3p_m + 4V - \phi^2 - 12bS_2^2) \right] Z \]

\[+ \left(\frac{k}{R^2} - S_2^2 \right) Z^2. \]

From (30) we obtain two \(H_\pm\)-solutions for the Hubble parameter

\[H_\pm = \frac{-B \pm \sqrt{D}}{A}, \quad (31)\]

where \(D = B^2 - 4AC\).

At asymptotics \(H_\pm\)-solutions and \(H_\pm\)-solutions describe the stages of cosmological compression and expansion respectively [5]. The transition from \(H_\pm\)-solution to \(H_\pm\)-solution takes place when \(D = 0\).

Now we will analyze extremum surfaces in space of independent variables \(\phi, \phi, S_2, S_2, \rho_m\), at the points where the Hubble parameter vanishes, \(H = 0\). Extremum surfaces depend on indefinite parameters \(a, \varepsilon, b\) and in the case of open and closed models also on the scale factor \(R\). By denoting values of variables on extremum surfaces by means of index 0, we obtain from (30) the following equation for such surfaces

\[\frac{1}{6f_0} \left[\rho_{m0} + \frac{1}{2} \phi_0^2 + V_0 - 6bS_{20}^2 + \frac{1}{4a} (\rho_{m0} - 3p_{m0} + 4V_0 - \phi_0^2 - 12bS_{20}^2) \right] Z_0 \]

\[-9a^2 \left[\left(\frac{\partial V}{\partial \phi} \right)_0 \phi_0 - 2(2b - \varepsilon f_0) S_{20} S_{20} \right]^2 \]

\[-3ae f_0 \left[S_{20}^2 + 4 \left(\frac{k}{R_0^2} - S_{20}^2 \right) S_{20}^2 \right] Z_0 - \left(\frac{k}{R_0^2} - S_{20}^2 \right) Z_0^2 = 0. \quad (32)\]
where
\[Z_0 = 1 + \alpha \left[\rho_{m0} - 3 p_{m0} + 4 V_0 - \phi_0^2 - 12 \left(b + \varepsilon f_0 \right) S_{20}^2 \right]. \]

The derivative of the Hubble parameter on extremum surfaces obtained from (28) and (29) is determined as
\[
H_0 Z_0^2 \left\{ 1 + \alpha \left[\rho_{m0} - 3 p_{m0} + \frac{3}{2} \left(3 \left(\frac{d p_m}{d \rho_m} \right)_0 - 1 \right) \left(\rho_{m0} + p_{m0} \right) + 4 V_0 + 2 \phi_0^2 \right] \right\}
= \left[1 + \alpha \left(\rho_{m0} - 3 p_{m0} + 4 V_0 - \phi_0^2 - 36 b S_{20}^2 \right) \right] \left[\frac{Z_0}{2f_0} \left[\frac{1}{2} \left(\rho_{m0} - p_{m0} \right) + V_0 \right] - 4 b S_{20}^2 + \frac{1}{4} \alpha \left(\rho_{m0} - 3 p_{m0} + 4 V_0 - \phi_0^2 - 12 b S_{20}^2 \right) \right] + 3 \alpha Z_0 \left[\left(\frac{\partial V}{\partial \phi} \right)_0^2 - \left(\frac{\partial^2 V}{\partial \phi^2} \right)_0 \phi_0^2 + (4 b - 3 \varepsilon f_0) S_{20}^2 - 4 \varepsilon f_0 \left(\frac{k}{R_0^2} - S_{20}^2 \right) S_{20}^2 \right]
- \frac{1}{3} \varepsilon \left(\rho_{m0} - 3 p_{m0} + 4 V_0 - \phi_0^2 - 12 b S_{20}^2 \right) S_{20}^2 - 2 \left(\frac{k}{R_0^2} - S_{20}^2 \right) Z_0^2
- 108 \alpha^2 \varepsilon f_0 S_{20} \left[\left(\frac{\partial V}{\partial \phi} \right)_0 \phi_0 - 2 \left(2 b - \varepsilon f_0 \right) S_{20} \right]
+ 6 \alpha \left(2 b - \varepsilon f_0 \right) S_{20}^2 \left[72 \alpha^2 \left(\frac{\partial V}{\partial \phi} \right)_0 \phi_0 - 2 \left(2 b - \varepsilon f_0 \right) S_{20} \right] + 6 \alpha Z_0 \left[\left(\frac{\partial V}{\partial \phi} \right)_0^2 - \left(\frac{\partial^2 V}{\partial \phi^2} \right)_0 \phi_0^2 \right]
+ 2 \left(2 b - \varepsilon f_0 \right) S_{20}^2 + \frac{1}{\varepsilon} Z_0^2 \left[\frac{1}{3 f_0} \left(\rho_{m0} - 3 p_{m0} + 4 V_0 - \phi_0^2 - 12 b S_{20}^2 \right) + \frac{f_0 - b}{f} \right] \right\}. \tag{33} \]

In the case of HIM without the pseudoscalar torsion function \(S_2 \), equation (32) and formula (33) simplify and take the form obtained in [5]. As was noted in [5, 7], in this case the most part of extremum surfaces play the role of bounce surfaces \((H_0 > 0) \) for scalar field potentials applying in the theory of chaotic inflation. A different situation is considering the case of extremum surfaces (32). By given values of parameters \(\alpha \) and \(\varepsilon \) the bounce \((H_0 > 0) \) takes place only in a limited domain of extremum surfaces (32) with negligibly small values of \(S_{20} \). In the case \(S_{20} = 0 \) the equation of extremum surface (32) and the expression (33) of derivative \(H_0 \) are simplified and take the following form:
\[
\frac{1}{6 f_0} \left[\rho_{m0} + \frac{1}{2} \phi_0^2 + V_0 + \frac{1}{4} \alpha \left(\rho_{m0} - 3 p_{m0} + 4 V_0 - \phi_0^2 \right) \right] Z_0
- 9 \alpha^2 \left(\frac{\partial V}{\partial \phi} \right)_0^2 \phi_0^2 - \frac{k}{R_0^2} Z_0^2 = 3 \alpha \varepsilon f_0 S_{20} Z_0. \tag{34} \]

According to the conclusion obtained in section 3, the parameter \(b \) is very close to \(f_0 \). As a result we put below for numerical calculations \(b = f_0 \).
\[H_0 = \left\{ \frac{1}{2} f_0 \left[\frac{1}{2} (\rho_{m0} - p_{m0}) + V_0 + \frac{1}{4} \alpha (\rho_{m0} - 3 p_{m0} + 4 V_0 - \phi_0^2) \right] \right. \]
\[
+ 3 \alpha \left[\left(\frac{\partial V}{\partial \phi} \right)_0^2 - \left(\frac{\partial^2 V}{\partial \phi^2} \right)_0^2 \phi_0^2 + (4b - 3 \epsilon f_0) \dot{S}^2_{20} \right] - \frac{2k}{R_0^2} Z_0 \right\} \times \left\{ 1 + \alpha \left[(\rho_{m0} - 3 p_{m0} + 3 \left(\frac{\partial p_m}{\partial \rho_m} \right)_0^2 - 1 \right) (\rho_{m0} + p_{m0}) + 4 V_0 + 2 \phi_0^2 \right\}^{-1}. \tag{35} \]

We see from (35) that the presence of \(\dot{S}_{20} \) in this expression does not prevent the bounce realization. Moreover, if we put \(\phi = 0 \) and \(k = 0 \), from (34) follows that \(\epsilon > 0 \).

As an example of inflationary cosmological solutions, we will consider below flat HIM filled with ultrarelativistic matter \(p_m = \frac{1}{3} \rho_m \) and scalar field with quadratic potential \(V = \frac{1}{2} m^2 \phi^2 \). For numerical calculations we will use \(m = 10^{-6} M_P \) and \(\alpha^{-1} = 1.2 \times 10^{-13} M_P^4 \).

To perform the numerical integration of equations (14) and (15), (28) and (29) it is convenient to transform all variables and parameters entering these equations to dimensionless units marked by \(\tilde{\text{t}} \) and \(\tilde{\text{t}} \).

The explicit form of equations (14) and (15), (28) and (29) after this transformation is similar to the original form except for the fact that parameters \(\alpha \) and \(f_0 \) are cancelled in the obtained equations. A particular numerical solution was found under the following value of indefinite parameter \(\epsilon = 10^{-4} \). Initial conditions for \(\tilde{H}, \tilde{\phi}, \tilde{S}_2, \tilde{S}_2^\prime, \rho_m \) were taken at a bounce as follows

\[\tilde{H}_0 = 0, \quad \tilde{\phi}_0 = 25, \quad \tilde{S}_{20} = 0, \quad \tilde{S}_{20}^\prime = 0.001, \quad \tilde{\rho}_{m0} = 0.4. \]
where the prime denotes differentiation with respect to \tilde{t}. Initial condition for $\tilde{\phi}'_0$ was taken to satisfy (34). The obtained solution is given in figures 1–4 and includes four stages: the
compression stage (figure 1), the transition stage from compression to expansion (figure 2),
the inflationary stage (figure 3) and the postinflationary stage (figure 4). The distinguishing
features of the obtained solution are its completely regular character. Note, that during the
inflationary stage the number of e-folds for the scale factor is equal approximately to 76.

Similar to GR, the transition to the radiation dominated stage can be realized by
transformation of oscillating scalar fields (see figure 4) into particles [12]. Details of
such transition in the considered theory require further investigation. In particular, the presence
of the oscillations of the Hubble parameter H (figure 4) can lead to some distinguishing features
of the inflationary scenario in the considered theory in comparison with the inflationary
scenario in GR.

After transition to the matter dominated stage, the further evolution of the Universe in
this theory is the same as in the frame of standard cosmological scenario. The transition to
the accelerating expansion takes place, when the value of effective cosmological constant is
greater than the matter energy density.

5. Conclusion

As shown, in the framework of PGTG the gravitational interaction in the case of usual
gravitating systems can have repulsive character not only at extreme conditions [5, 6], but also
at sufficiently small energy densities. The pseudoscalar torsion function in HIM provokes the
appearance of an effective cosmological constant at asymptotics of cosmological solutions
that can lead to observable accelerating cosmological expansion. Quantitative agreement
of the obtained result with observations depends on corresponding restrictions on indefinite
parameters α, b and ε from section 3. The numerical solution for the inflationary cosmological
model presented in figures 1–4 conserves its qualitative behavior by relatively small variations
of indefinite parameters and initial conditions.
The effect of acceleration of cosmological expansion in PGTG has a geometrical nature and is connected with the geometrical structure of physical spacetime. Hence, from the point of view of the considered theory the hypothetical form of gravitating matter—dark energy—is fiction.

References

[1] Riess A G et al 1998 Astron. J. 116 1009–38 (Preprint astro-ph/9805201)
Perlmutter S J et al 1999 Astrophys. J. 517 565–86 (Preprint astro-ph/9812133)
Knop R A et al 2003 Astrophys. J. 598 102–37 (Preprint astro-ph/0309368)
[2] Sahni V and Starobinsky A 2006 Int. J. Mod. Phys. D 15 2105–32 (Preprint astro-ph/0610026)
[3] Padmanabhan T 2006 AIP Conf. Proc. 861 179–96 (Preprint astro-ph/0603114)
[4] Blagojevi ´c M 2002 Gravitation and Gauge Symmetries (Bristol: IOP)
[5] Minkevich A V 2006 Grav. Cosmol. 12 11–21 (Preprint gr-qc/0506140)
[6] Minkevich A V 2007 Acta Phys. Polonika B 38 61–72 (Preprint gr-qc/0512123)
[7] Minkevich A V and Garkun A S 2006 Class. Quantum Grav. 23 4237–47 (Preprint gr-qc/0512130)
[8] Minkevich A V 1980 Phys. Lett. A 80 232–34
[9] Kudin V I, Minkevich A V and Fedorov F I 1981 Vestsi Akad. Nauk. BSSR. Ser. Fiz.-Mat.Nauk 4 59–67
[10] Minkevich A V Garkun A S and Kudin V I 2006 Proc.of 5th Int. Conf. Boyai–Gauss–Lobachevsky; Methods of Non-Euclidian Geometry in Modern Physics (Minsk: Inst. of Physics NAN Belarus) pp 150–7 (Preprint gr-qc/0612116)
[11] Linde A 1990 Physics of Elementary Particles and Inflationary Cosmology (Chur: Harwood) p 270
[12] Mukhanov V 2005 Physical Foundations of Cosmology (New York: Cambridge University Press)