The Course of Congenital Hydronephrosis in Infancy
Süt Çocukluğu Döneminde Konjenital Hidronefrozun Seyri

Serkan TURSUN¹, Ayşegül ALPCAN¹, Yaşar KANDUR², Banu CELIKEL ACAR³

¹Kırıkkale University, Faculty of Medicine, Department of Pediatrics, Kırıkkale, Turkey
²Kırıkkale University, Faculty of Medicine, Department of Pediatric Nephrology, Kırıkkale, Turkey
³University of Health Sciences, Faculty of Medicine, Department of Pediatric Rhomatology, Ankara, Turkey

ABSTRACT
Objective: The aim of our study is to examine the spontaneous resolution rates of congenital hydronephrosis from a recent perspective.

Material and Methods: Sixty-nine pediatric patients (M/F=46/23) with congenital hydronephrosis were enrolled in this study.

Results: The mean age at the first postnatal examination was 10.8±7.6 days, and the mean age at the time of the final examination was 9.5±3.2 months. Forty-eight patients’ renal anteroposterior diameters (APD) (69.5%) improved while 8 (11.6%) patients’ APDs worsened during the follow-up period. However, MAG3 of these 8 patients was normal. The remaining thirteen (18.9%) patients had congenital anomalies of the kidney and the urinary tract (8 vesicoureteral reflux, 5 cases of ureteropelvic junction obstruction). The mean baseline APD was 9.1±2.8 mm in the group with reduced APD, and 9.7±2.8 mm in the one with increased APD (p=0.461). The mean APD at the final visit was significantly lower in the group with reduced APD than that in the group with increased APD (5.1±1.8 mm vs 17.9±12.6 mm; p=0.001). The anteroposterior diameter of 26 (81.25%) patients with left-sided hydronephrosis and 10 (71.4%) patients with right-sided hydronephrosis regressed spontaneously. The rate of spontaneous resolution was relatively low in patients with bilateral hydronephrosis (n=13; 56.5%) compared to unilateral ones.

Conclusion: Our study indicates that an initially mild hydronephrosis does not exclude a pathological course in cases of congenital hydronephrosis. Therefore, in such patients, routine ultrasonography should be done regularly.

Key Words: Antenatal, Congenital hydronephrosis, Infant, Renal pelvic diameter

ÖZ
Amaç: Çalışmamızın amacı, konjenital hidronefroz vakalarında spontan düzelmeyi güncel bir bakış açısıyla incelermektir.

Gereç ve Yöntemler: Konjenital hidronefroz tanılı 69 hasta (E/K=46/23) çalışmaya dahil edildi.

Bulgular: Doğum sonrası ilk kontrolde bebeklerin ortalama yaşta 10.8 ± 7.6 gün iken çalışmada sonunda yaşları 9.5±3.2 ay’i. Takipte 48 (%69.5) hastanın renal pelvis anteriyör-posteriyör çapı düzelmİŞken, 8 (%11.6) hastanın APD’si kötüleşti. En azından üçte bir (18.9%) hastanın nedeni bilinen bir benzeri olmayan troublöjler (8 vesikoureteral refleks, 5 nördürtgen lenfollu dokulanan). Basınç APD 9.1±2.8 mm'di ve artmış APD 9.7±2.8 mm'di p=0.461. Basınç APD artmış hastaların APD farkı sonraki ziyarette 5.1±1.8 mm'den 17.9±12.6 mm’ye, p=0.001. Sol tarafından hydronefrozün 26 (81.25%) hastaları ve sağ tarafından hydronefrozun 10 (71.4%) hastaları otomatik olarak düzelmis. Bilateral hydronefroz hastalarında (n=13; 56.5%) bu oranın tek tarafından hastalara oranla daha az olduğu görüldü.

Sonuç: Çalışmamız, ilk derecedeki kritik hydronefrozun bir patolojik yolculuğunu reddetmekle beraber doğrudan ilgili bir suçlamayla bitmemektedir.

Anahtar Kelimeler: Antenatal, Patolojik hydronefroz, Bebek, Nefrogram diameter

Conflict of Interest / Cıkar Çatışması: On behalf of all authors, the corresponding author states that there is no conflict of interest.

Contribution of the Authors / Yazanların katkısı: TURSUN S: Constructing the hypothesis or idea of research and/or article, Planning methodology to reach the Conclusions, Organizing, supervising the course of progress and taking the responsibility of the research/study. Taking responsibility in patient follow-up, collection of relevant biological materials, data management and reporting, execution of the experiments, Taking responsibility in logical interpretation and conclusion of the results, Taking responsibility in necessary literature review for the study.

ALPCAN A: Constructing the hypothesis or idea of research and/or article, Planning methodology to reach the Conclusions, Taking responsibility in patient follow-up, collection of relevant biological materials, data management and reporting, execution of the experiments, Taking responsibility in logical interpretation and conclusion of the results, Taking responsibility in necessary literature review for the study.

KANDUR Y: Constructing the hypothesis or idea of research and/or article, Planning methodology to reach the Conclusions, Taking responsibility in patient follow-up, collection of relevant biological materials, data management and reporting, execution of the experiments, Taking responsibility in logical interpretation and conclusion of the results, Taking responsibility in necessary literature review for the study.

CELIKEL ACAR B: Constructing the hypothesis or idea of research and/or article, Planning methodology to reach the Conclusions, Taking responsibility in patient follow-up, collection of relevant biological materials, data management and reporting, execution of the experiments, Taking responsibility in logical interpretation and conclusion of the results, Taking responsibility in necessary literature review for the study.

How to cite / Adı yazım şekli: Tursun S, Alpcan A, Kandur Y, Celikel A. The Course of Congenital Hydronephrosis in Infancy. Turkish J Pediatr Dis 2021;15:222-225.
The prevalence of Congenital Hydronephrosis (CH) is 1-5% in the neonatal period (1). Most cases ultimately resolve during follow-up. However, congenital anomalies of the kidney and urinary tract (CAKUT), such as ureteropelvic junction obstruction (UPJO) and vesicoureteral reflux (VUR), are the most common underlying conditions in CH (2). In the last decade, the ultrasonographic examination has become more widely available in comparison to previous years. Hence, we expect to diagnose CH more often than before. The aim of our study is to examine the follow-up period of CH by a routine ultrasonographic examination and to evaluate spontaneous resolution rates in infants from a recent perspective.

MATERIALS and METHODS

This retrospective study was conducted at Kırıkkale University Faculty of Medicine Department of Pediatrics between January 2015 and December 2017. All newborn patients born in our center who had a prenatal history of congenital hydronephrosis were included. The exclusion criteria included the presence of neurological lesions, bilateral small kidneys, horseshoe kidneys, or multi-cystic dysplastic kidneys. Infants were followed with serial ultrasonographic examinations and adjunctive imaging studies. All patients were followed up until 12 months of age. During the study period, ultrasonography (US) was repeated four times, with the first being performed in the first month of life and the last at the twelfth month of life. The second and third USs were performed at 3-4 months intervals. Antenatal hydronephrosis was defined as a dilatation of the renal pelvicalyceal system so that the anteroposterior diameter (APD) exceeded 7 mm in the third trimester; the maximum axial length observable at the level of the renal hilum was also recorded (3,4). Of note, the greater one of the two APD measurements was chosen for comparison in patients with bilateral hydronephrosis. A urinary tract infection (UTI) was diagnosed on the basis of positive nitrite and leukocyte esterase in a urine sample combined with a positive urine culture during the course of illness (5). Voiding cystourethrography (VCUG) was performed according to the standard protocols and indications described by the NICE guidelines (6,7). Bladder catheterization was performed by a physician. Contrast material is infused into the bladder through the catheter and as the bladder fills, x-rays are taken in different positions and times; especially during urination. Voiding cystourethrogramy was performed and interpreted by an experienced radiologist, and diuretic renography with 99mTc-MAG-3 (mercaptoacetyltriglycine) was performed and interpreted by an experienced nuclear medicine consultant; both of these clinicians were blinded to all other clinical and imaging data.

The ethics committee approval of the study was obtained from Kırıkkale University Clinical Research Ethics Committee (Date: 01.10.2018, No:15/05).

Statistical Analysis

Study data were analyzed by SPSS (Statistical Package for Social Science) 16.0 software package. Statistical analyses were performed with the Mann Whitney–U test. Cox regression analysis was used to assess the association between baseline APD and disease progress. Associations are presented as Odd’s ratios with their corresponding 95% confidence intervals (CIs). The level of significance was set at p<0.05.

RESULT

Sixty-nine pediatric patients (M/F=46/23) with CH were enrolled in this study. The mean age at the first postnatal examination was 10.8±7.6 days, and the mean age at the time of the final examination was 9.5±3.2 months. Fourteen (20.3%) patients had right-sided hydronephrosis; 32 (46.4%) patients had left-sided hydronephrosis; and 23 (33.3%) patients had bilateral hydronephrosis. Forty-eight patients’ APDs (69.5%) improved during the follow-up period. MAG-3 of these 8 patients was normal. The remaining thirteen (18.9%) patients had CAKUT (8 cases of VUR, 5 cases of UPJO). None of the patients with reduced APD had any type of CAKUT. Four (17.3%) patients with bilateral hydronephrosis had VUR; 2 patients with right-sided and 2 patients with left-sided hydronephrosis had VUR (Table I). Eleven (15.9%) patients had a history of urinary tract infection, four of whom...
had CAKUT. Two of the 4 patients with bilateral hydronephrosis and VUR had no history of urinary tract infection.

The mean baseline APD level was 9.1±2.8 mm in the group with reduced APD and 9.7±2.8 mm in the one with increased APD (p=0.461). However, the mean APD at the final examination was significantly smaller in the group with reduced APD than that measured in the group with increased APD. (5.1±1.8 mm vs 17.9±12.6 mm; p=0.001).

The mean baseline APD was greater in girls than boys although the difference did not reach statistical significance (9.8±2.1 mm vs 9.0±3.0 mm; p=0.176) but the final APD was significantly greater in girls (10.1±2.5 mm vs 7.0±4.5 mm; p=0.001). Two patients with VUR and 4 patients with UPJO were boys; the remaining 7 patients were girls.

The APD of twenty-six (81.25%) patients with left-sided hydronephrosis and 10 (71.4%) patients with right-sided hydronephrosis regressed spontaneously. In comparison, the rate of the spontaneous resolution was relatively low in patients with bilateral hydronephrosis (n=13, 56.5%).

The regression analysis showed that a greater baseline APD is a risk factor for a greater follow-up APD (OR=0.353, 95% CI: 0.044-0.204; p=0.003).

DISCUSSION

Postnatal evaluation of CH is an advancing field in recent years. This study describes our experience in the evaluation of CH in the postnatal period. The majority of cases of hydronephrosis are transient or ultimately resolve with conservative management or during follow-up, meaning that a considerable proportion (60-90%) of CH eventually regresses (8, 9). Herein, we reached a similar conclusion. The spontaneous resolution rate in our patients was 69.5%. The finding that we particularly stress is that a mild baseline hydronephrosis does not exclude a pathological underlying condition.

In our cohort study, males were more commonly affected by CH than females, with a ratio of 46/23. This gender bias confirms the high prevalence of fetal urinary tract obstruction in males as reported previously in the literature (10).

Most studies suggest that patients with bilateral hydronephrosis should undergo VCUG (11-13). Our study showed a VUR prevalence of 17.6% that cannot be ignored in patients with bilateral hydronephrosis. Thus, we also recommend that VCUG be performed in patients with bilateral hydronephrosis even in the absence of a history for urinary tract infections. Vesicoureteral reflux is detected in 20% to 30% of neonates with CH (14). We found approximately the same rate.

The predictive value of APD is also an important issue to mention. The authors use APD to determine patients in need of close follow-up. An APD of 15–30 mm is an indication for a close follow-up (15). Kandur et al. (16) reported that an APD threshold of 20 mm can be used for predicting future obstruction and a low differential renal function (DRF). However, they showed that an APD of 15 mm was not a risk factor for a future low DRF. It can be concluded that an APD above 20 mm should alert clinicians about future obstruction and functional loss. In our study, mean baseline APD was not significantly different between the groups with regressed and increased hydronephrosis. Thus, every case of hydronephrosis should be carefully followed as a potential CAKUT.

The primary limitation of our study is the lack of the analysis of the correlation between APD and the Society for Fetal Urology (SFU) grade. There is a great variety of terms used to describe urinary tract dilation using the SFU grading system and APD of the renal pelvis.

CONCLUSION

Our study indicates that an initially mild CH does not exclude a pathological course. Even if renal pelvis APD is small in the first postnatal US imaging, it is essential to continue serial US process examinations at regular intervals. Therefore, in such patients, routine US should be done regularly.
REFERENCES

1. Davenport MT, Merguerian PA, Koyle M. Antenatally diagnosed hydronephrosis: current postnatal management. Pediatr Surg Int 2013;29: 207–14.

2. Phan V, Traubici J, Hershfield B, Stephens D, Rosenblum ND, Geary DF. Vesicoureteral reflux in infants with isolated antenatal hydronephrosis. Pediatr Nephrol 2003;18:1224–8.

3. Fernbach SK, Maizels M, Conway JJ. Ultrasound grading of Hydronephrosis: introduction to the system used by the society for fetal urology. Pediatr Radiol 1993;23: 478–80.

4. Sinha A, Bagga A, Krishna A, Bajpai M, Srinivas M, Upal R, et al. Revised guidelines on management of antenatal hydronephrosis. Indian J Nephrol 2013;23:83–97.

5. JL Robinson, JC Finlay, ME Lang, R Bortolussi, Canadian Paediatric Society, Infectious Diseases and Immunization Committee, Community Paediatrics Committee. Urinary tract infections in infants and children: Diagnosis and management. Paediatr Child Health 2014;19: 315–9.

6. National Institute for Health and Clinical Excellence. Urinary tract infection in children. National Institute for Health and Clinical Excellence, London 2007. http://guidance.nice.org.uk/cg054.

7. Johnin K, Kobayashi K, Tsuru T, Yoshida T, Kageyama S, Kawauchi A. Pediatric voiding cystourethrography: An essential examination for urologists but a terrible experience for children. Int J Urol 2019;26:160–71.

8. Vandervoort K, Lasky S, Sethna C, Frank R, Vento S, Choi-Rosen J, et al. Hydronephrosis in infants and children: natural history and risk factors for persistence in children followed by a medical service. Clin Med Pediatr 2009;3:63–70.

9. Nguyen HT, Benson CB, Bromley B, Campbell JB, Chow J, Coleman B, et al. Multidisciplinary consensus on the classification of prenatal and postnatal urinary tract dilation (UTD classification system). J Pediatr Urol 2014;10: 982–98.

10. Wiener JS, O’Hara SM. Optimal timing of initial postnatal ultrasonography in newborns with prenatal hydronephrosis. J Urol 2002;168:1826–9.

11. Yie J, Wilcox D. Management of fetal hydronephrosis. Pediatr Nephrol 2008;23: 347–53.

12. de Bruyn R, Marks SD. Postnatal investigation of fetal renal disease. Semin Fetal Neonatal Med 2008;3:133–41.

13. Misra D, Kempley ST, Hird MF. Are patients with antenatally diagnosed hydronephrosis being over-investigated and overtreated? Eur J Pediatr Surg 1999;5:303–30.

14. Arant BS Jr. Vesicoureteric reflux and renal injury. Am J Kidney Dis 1991;17:491–511.

15. Piepsz A, Gordon I, Brock J, Koff S. Round table on management of renal pelvic dilatation in children. J Pediatr Urol 2009;5:437–44.

16. Kandur Y, Salan A, Guler AG, Tuten F. Diuretic renography in hydronephrosis: a retrospective single-center study. Int Urol Nephrol 2018; 50:1199–204.