COMMUNICATION

RETROSPECTIVE STUDY ON EPIDEMIOLOGY OF SNAKEBITES IN SARPANG DISTRICT, SOUTHERN BHUTAN

Bal Krishna Koirala, Jaganath Koirala & Sunil Sapkota

26 November 2018 | Vol. 10 | No. 13 | Pages: 12749–12754
10.11609/jott.3882.10.13.12749-12754
Bal Krishna Koirala 1, Jaganath Koirala 2 & Sunil Sapkota 3

1 Jigme Dorji National Park, Department of Forests and Park Services, P.O. box 13001, Gasa 13001, Bhutan
2 Sherubtse College, School of Life Science, Royal University of Bhutan, P.O. box 42002, Kanguing, Tashigang 42002, Bhutan
3 College of Natural Resources, Department of Forestry, Lobesa, P.O box 13001, Kuruthang, Punakha 13001, Bhutan
bkgelephu@gmail.com (corresponding author), koiralakoirala08@gmail.com, sunilsapkota11@gmail.com

Abstract: Although snake bite envenomation is considered as a medical emergency with significant morbidity and mortality, accurate figures on snakebite envenomation remains scarce. We conducted a retrospective study to evaluate the snakebite epidemiology in Sarpang District located in the subtropical zone of southern Bhutan. In this study, 78 snakebite cases treated in Gelephu Referral Hospital over a period of three years from 2013 to 2015 were evaluated based on the statistical record maintained by the medical administration. Twenty-eight (35.89%) cases developed signs and symptoms of envenomation and the remaining 50 (64.01%) were found to be cases of non-venomous bites. Forty-four males and 34 females were found to be affected by snakebites within the period. While snakebites were observed in all age groups, the large majority (n=51, 65.38%) were in adults aged between 21 and 50 years. Most of the venomous bites (68%) occurred during the monsoon season, particularly between May and August. It was found that adults in the economically productive age group were the ones most affected by poisonous bites. There is an urgent need for development and adoption of snakebite management guidelines and awareness among the vulnerable sections of the population, improvement of medical facilities in referral hospitals and rural health centres, and reduction of the morbidity and mortality associated with snakebites.

Keywords: Bhutan, envenomation, epidemiology, Sarpang District, snakebite, venomous snakes, victims.
INTRODUCTION

Since the dawn of human civilization, snakes have appeared in many tales and myths as they are deeply rooted in man-human tradition and culture. Despite snakes having occupied an important place in ethnozoology, snakebite envenomation is an important and life-threatening medical emergency. Snakebite is one of the most neglected public health issues in poor rural communities living in the tropics (Alirol et al. 2010). Southern Asian, southeastern Asian, and sub-Saharan African countries are the regions with the highest number of snakebite cases (Kasturiratne et al. 2008). It has been estimated that 4,000,000 snakebites occur each year in Asia alone, of which approximately 50% are envenomed, resulting in 100,000 annual deaths (Chippaux 1998). The existing epidemiological data, however, remain limited and the actual impact of snakebites is very likely underestimated. The current literature on snakebite epidemiology highlights the inadequacy of the available data on this neglected tropical injury (Warrell 2010). Moreover, this is the first snakebite epidemiological study in Bhutan as the existing epidemiological data on snakebites in Bhutan remain limited. Fatal injuries from snakebites are principally caused by a relatively small group of snakes, most of which are adapted to human-modified landscapes or live in close proximity to human inhabitations.

Among the 3,509 extant species of snakes in the world (Pincheira-Donoso et al. 2013), around 300 are venomous and 200 are medically important (Warrell 2010). In Bhutan, a total of 69 species belonging to five families are known to occur, out of which venomous snakes are represented by 15 species belonging to two families, Elapidae and Viperidae (Wangyal & Gurung 2017). The most commonly found venomous snakes include two species of krait Bungarus niger & B. fasciatus, three species of cobra Naja kaouthia, N. naja & Ophiophagus hannah, four species of viper Ovophis monticola, Protobothrops himalayanus, Trimeresurus erythrurus & T. albolabris, and one species of coral snake Sinomicrus maccellandi. Among all 15 venomous snakes reported from Bhutan (Wangyal & Gurung 2017), only five species that are capable of delivering fatal injuries were observed in the present study location: B. niger, B. fasciatus, N. kaouthia, N. naja, and O. hannah.

Although the episodes of human mortality caused by snake envenomation are frequently reported in national news media and heard from oral testimonies of local people, it is difficult to know the actual number of morbidity and mortality of snakebites as these incidences are not systematically documented and studied in Bhutan. Very often, instead of going to the nearest hospital, villagers approach traditional healers who are often quacks. Though it is known that snakebites occur frequently in Sarpang District in the subtropical belt of southern Bhutan, the incidences are not documented despite the fact that the condition is a recognized medical emergency. Therefore, this study aimed to evaluate the human health issues associated with snakebite in Sarpang District through hospital-based statistics.

MATERIALS AND METHODS

Much of Sarpang consists of environmentally protected areas. Its far western region encloses a part of the uninhabited Phibsoo Wildlife Sanctuary along the India border. Northern Sarpang is part of the Jigme Singye Wangchuck National Park and its eastern and southeastern regions lie within the Royal Manas National Park. The district is divided into 12 local administrative blocks (Fig. 1).

The vegetation types here are characterized by subtropical broad-leaved forests with thick undergrowth. While its southern region is more or less topographically dominated by plains, gentle slopes dominate its northern region. The altitude ranges from 180 to 600 m and the annual rainfall varies from 2,500 to 5,500 mm with an annual average temperature of 23.8°C (National Statistics Bureau 2016).

The study was done retrospectively in Gelephu Referral Hospital (GRH) in Sarpang district, covering a three-year period (2013–2015). This government-owned hospital is situated near Gelephu Town and not only caters to the people of Gelephu alone but also acts as a tertiary care hospital and referral centre for four other districts of southern Bhutan, namely, Tsirang, Dagana, Zhemgang, and Pemagatshel.

All patients treated for snakebites in GRH (78 patients) from 2013 to 2015 were included in the study. Basic data such as cause for admission and dates of admission and discharge for each case were obtained from the general records kept in the administrative and recordkeeping sections of the hospital. The information was used to trace the relevant case files in the archives from which the necessary data were collected. In extracting data from the case notes, special consideration was given to the time and season of biting, the occupation, age and sex of victims, the species involved, if identified by medical personnel or mentioned in the record, and the
duration of stay in the hospital, if admitted. Information on clinical management of patients and types of anti-venoms administered were also recorded.

The overall data were classified into different categories: the number of victims under each specific age group, gender group, and outdoor and admitted patients. The age groups 1–20 and 61–70 years were classified as economically unproductive while the age-group 21–60 years was classified as economically productive based on the population structure of Bhutan.

Statistical analyses

Statistical tools such as the statistical package for the social sciences (SPSS) (version 16.0 For Windows) and Microsoft Excel 2010 were used to perform data analyses. An Independent sample t-test was performed to access the significance of the difference between both age and gender groups in relation to snakebites. A relative vulnerability with 95% confidence intervals was calculated for assessing the risk of snake bites by different characteristics of exposure.

Figure 1. Map of the study area, Sarpang District in southern Bhutan
RESULTS

In this retrospective study from June 2013 to July 2015, a total of 78 snakebite cases that were registered in GRH were analyzed (Table 1).

Out of the 78 cases registered, 28 (35.89%) developed signs and symptoms of envenomation and were admitted to the hospital for an extended period of time considering the magnitude of complication. The mean duration of the hospital stay was 3.85 days, ranging from two to 10 days. The remaining (n=50, 64.01%) patients received only outpatient treatment as the cases were not considered medical emergencies. While snakebite was observed in all age groups, the large majority of victims (n=51, 65.38%) were adults aged between 21 and 50 years (Fig. 2).

The outdoor patients (n=50) with minor snakebite injuries were kept under observation for a day or less to evaluate the manifestations of any clinical symptoms. Subsequently, the cases were verified, treated, and discharged.

Out of the 78 cases registered, 44 were of males and 34 were of females (Table 2). The results demonstrated that there was a slight difference between number of male and female victims (1.3:1, 56% vs 44%). An independent-samples t-test conducted to compare the vulnerability of gender groups to snakebites suggested that there was no significant difference between male (M=7.33, SD=2.80) and female (M=5.67, SD=3.93) victims; t(10)=0.84, p>0.05. On the other hand, statistical results suggest that there was a significant difference between the unproductive age group (M=0.94, SD=0.99) and the productive age group (M=2.54, SD= 0.97) in incidences of snakebites; t(40)=-2.88, p<0.05.

Out of the 28 cases of poisonous bites, the highest incidence (28.57%) of cases of envenomation occurred in the age range between 41 and 50 years while adults between 21 and 50 years accounted for 64.28% of the victims. Of the 28 hospitalized victims, two fatal cases were observed due to severe envenomation, which resulted in irreversible complications. The majority of snakes responsible for bites in the study were unidentified. The victims who succumbed to envenomation were suspected to be bitten either by kraits or cobras. Cobras and kraits are the two major groups of medically important species found in the study.

Year	2013	2014	2015	Total			
Age-group	Male	Female	Male	Female	Male	Female	
1-10	0	1	0	1	2	1	5
11-20	3	2	1	2	0	2	10
21-30	4	3	3	2	4	3	19
31-40	3	2	5	2	3	2	17
41-50	3	3	1	3	3	2	15
51-60	2	1	2	1	4	1	11
61-70	0	0	0	0	1	0	1

Figure 2. Age and sex distribution of the victims of snakebites in Gelephu Referral Hospital, southern Bhutan, during the study period
area. A relatively low mortality rate (n=2, 0.02%) in 78 cases was observed during the three-year period in GRH, Sarpang.

Anti-snake venom (ASV) was administered to patients showing signs of systemic envenomation like clinically important coagulation abnormality or systemic affects such as ptosis or respiratory weakness caused by neurotoxicity. All patients were treated with recommended doses of ASV following the guideline of World Health Organization (W.H.O) (Warrell 2010); lyophilized, polyvalent enzyme refined equine immunoglobulin, supplied with 10ml sterile water for injections I.P., manufactured by Premium Serum and Vaccines Pvt. Ltd., Junnar Taluk, Pune District, Maharashtra 410504, India, is currently used as ASV in GRH. The timely administration of ASV remains the mainstay to reduce the morbidity and mortality associated with snakebites. Polyvalent ASV was the most important drug used to treat the patients and its administration showed excellent outcomes with only two cases of mortality out of the 28 envenomation cases enrolled. According to Pore et al. (2015), however, polyvalent ASV cannot be assumed to be uniformly effective for all poisonous snake bites as several factors affect region-specific observation of ASV use.

The present study also revealed that relatively large proportions of snakebite incidences are experienced by farmers when compared to other occupational groups. Combining both venomous and non-venomous snakebites, the farmer group accounted for 62% cases (n=48). This was followed by cases that involved students (n=16, 21%), unspecified (n=9, 12%), and armed force personnel (n=4, 5%) (Fig. 3).

Most of the venomous bites (68%) occurred in the monsoon season, particularly between May and August. The event of snakebites showed a sudden escalation in May while the maximum incidence occurred in June (21.42%); a decreasing trend of snakebite cases was observed towards late autumn and winter months. Cold season, particularly between November and February, represented the minimum incidences of snakebites (Fig. 4).

DISCUSSION

In this study, the majority of the snakebite victims were adults, which signified that an active population is at higher risk of snakebites. The high incidence of snakebites in the vulnerable age group of 21–50 years could be due to occupational exposure, being the economically productive age group. There was only a slight difference between number of male and female victims (1.3:1, 56% vs 44%), which suggests that both males and females are equally likely to be bitten by snakes. A similar finding was also reported by Pandey (2016) and Poudyal et al. (2016) from Nepal. This could be because of the equal exposure of both genders to outdoor activities, as the majority of the population in the study area is represented by an agrarian society.

The majority of victims (n=50, 64%) did not demonstrate signs and symptoms of envenomation. These patients were treated and discharged within a day or less. This finding suggests that a relatively large proportion of snakebite cases are attributed to non-venomous snakes. It is also likely that victims are exposed to dry bites. The relatively large proportion of incidences of non-venomous snakebites observed in this study agree with the general statement of Das (2012), who admitted that majority of the southeastern Asian snakes are non-venomous and, according to Holve (2007), out of the roughly 3,000 known species of snakes, only 15% are considered dangerous to humans.

The study found that more famers were bitten by snakes as compared to other occupational groups. This

Year	Male	%	Female	%
2013	15	19.23%	12	15.38%
2014	12	15.38%	11	14.10%
2015	17	21.80%	11	14.10%
Total	44	56.42%	34	44.58%
Snakebites in southern Bhutan

Koirala et al.

corresponds to the early to peak monsoon season during the months of May, June, July, and August, which
professionals in species identification.

victim could see it, misleading descriptions provided
when provoked. This could be due to the occurrence
of incidences at night, vanishing of the snake before the
victim could see it, misleading descriptions provided
by the victim, or inadequate knowledge of medical
professionals in species identification.

Most of the venomous bites (around 68%) occurred
during the months of May, June, July, and August, which
corresponds to the early to peak monsoon season in
Bhutan with average temperature and rainfall of
26.48°C and 1,002.55mm, respectively. This season is
characterized by increased humidity and temperature
that introduce conducive climatic conditions for snakes
to emerge out of their shelters in search of food and
other ecological requirements. This findings agree with
Pandey (2006) and Joshi (2010), who also observed the
occurrence of such seasonal patterns in cases of snake
envenomation. This is a peak season for agricultural
activity, where the economically productive portion of
the population spends considerable time in the fields,
which also increases the probability of snakebites. The
incidences of snakebites are higher during the rainy
season and during periods of intense agricultural activity
(Suleman et al. 1998; Ariaratnam et al. 2008).

CONCLUSION

Since this study is the first of its kind in the country,
the true incidence of snakebites in rural Bhutan is
largely unknown. The present available data are entirely
based on hospital statistics that constitute a very small
percentage of cases of snakebites. The present study,
however, evidently revealed that snakebites were more
common in rural areas and that, more importantly,
people who were largely engaged in agricultural
activities were those mostly affected by poisonous
snakebites. The development and adoption of snakebite
management guidelines, raising awareness among the
vulnerable sections of the population, improvement of
medical facilities in referral hospitals and rural
health centers, and proper management and transfer
of snakebite victims to hospitals are recommended in
reducing the morbidity and mortality associated with
snakebite incidences.

REFERENCES

Alirol, E., S.K. Sharma, H.S. Bawaskar, U. Kuch & F. Chappuis (2010).
Snake bite in south Asia: a review. PLoS Neglected Tropical Diseases
4(1): e603; https://doi.org/10.1371/journal.pntd.0000603

Ariaratnam, C.A., M.H. Sheffir, R.D. Thomaston & D.A. Warrell (2008).
Distinctive epidemiologic and clinical features of Common Krait
(Bungarus caeruleus) bites in Sri Lanka. The American Journal of
Tropical Medicine and Hygiene 79: 458–462.

Chippaux, J.P. (1998). Snake bites: appraisal of the global situation.
Bulletin of the World Health Organization 76(5): 515–524.

Das, I. (2012). A Naturalist's Guide to the Snakes of southeast Asia:
Malaysia, Singapore, Thailand, Myanmar, Borneo, Sumatra, Java
and Bali. John Beaufoy Publishing Ltd., Oxford, 175pp.

Holve, S. (2007). Envenomations, pp. 2932–2935. In: Behrman, R.E.,
R.M. Kleigman, H.B. Jenson & B.F. Stanton (eds.). Nelson Textbook of
Pediatrics, 18th Edition. W.B. Saunders Company, 3200pp.

Joshi, D.D. (2010). An epidemiological study of snake bite cases in
children of Nepal. Journal of the Nepal Paediatric Society 30(3):
135–140.

Kasturiratne, A., A.R. Wickremasinghe, N. de Silva, N.K. Gunawardena
& A. Pathmeswaran (2008). The global burden of snakebite: a
literature analysis and modelling based on regional estimates of
envenoming and deaths. PLoS Med 5(11): 218; https://doi.
org/10.1371/journal.pmed.0050218

National Statistics Bureau (2016). Statistical Yearbook of Bhutan.
Royal Government of Bhutan. Kuensel Corporation Ltd., Thimphu,
vi+325pp.

Pandey, D.P. (2006). Epidemiology of snake bites based on hospital
survey in Chitwan and Nawalparasi districts. Journal of Nepal Health
Research Council 4(2): 51–57.

Pincheira-Donoso D., A.M. Bauer, S. Meiri & P. Uetz (2013).
Global taxonomic diversity of living reptiles. PLoS ONE 8(3):
e59741; https://doi.org/10.1371/journal.pone.0059741

Pore, S.M., S.J. Ramanand, P.T. Patil, A.D. Gore, M.P. Pawar, S.L.
Gaidhankar & R.R. Ghanghas (2015). A retrospective study of use
of polyvalent anti-snake venom and risk factors for mortality from
snake bite in a tertiary care setting. Indian Journal of Pharmacology
47(3): 270–274; http://doi.org/10.4103/0253-7613.157117

Poudyal, V.P., K.M. Paudel, N.B. Rana & S. Adhikari (2016). A hospital
based study on snake bite poisoning in adults in the western region
of Nepal. Journal of Chitwan Medical College 6(3): 33–38; https://
doi.org/10.3126/jcmc.v6i3.16697

Suleman, M.M., S. Shahab & M.A. Rab (1998). Snake bite in the Thar
Desert. Journal of Pakistan Medical Association 48(10): 306–308.

Wangyal, J.T. & D.B. Gurung (2017). Reptiles of Bhutan, pp. 39–55. In:
Katel, O. & D.B. Gurung (eds.). An Introduction to the Biodiversity
of Bhutan in the Context of Climate Change and Economic
Development. Centre for Rural Development Studies, College of
Natural Resources, Lobesa, Punakha, 200pp.

Warrell, D.A. (2010). Guidelines for the Management of Snake-bites.
World Health Organization, Regional Office for Southern East Asia,
Indraprastha Estate, Mahatma Gandhi Marg, New Delhi, vii+162pp.
The pattern of bird distribution along the elevation gradient of the Sutlej River basin, western Himalaya, India
-- Balraj Santhakumar, P. Ramachandran Arun, Ramapurath Kozhummal Sony, Maruthakutti Murugesan & Chinnasamy Ramesh, Pp. 12715–12725

Morphological variations in marine pufferfish and porcupinefish (Teleostei: Tetraodontiformes) from Tamil Nadu, southeastern coast of India
-- K. Kalesh Kumar, R. Rajaram, P. Purushothaman & G. Arun, Pp. 12726–12737

Communications

Possible range decline of Ganges River Dolphin Platanista gangetica (Mammalia: Cetartioida; Platanistidae) in Indian Sundarban
-- Sangita Mitra & Mahua Roy Chowdhury, Pp. 12738–12748

Retrospective study on epidemiology of snakebites in Sarpang District, southern Bhutan
-- Bal Krishna Koirala, Jaganath Koirala & Sunil Sapkota, Pp. 12749–12754

Individual identification of Duttaphrynus melanostictus (Schneider, 1799) (Amphibia: Anura: Bufonidae) based on dorsal wart patterns
-- Sanjita Mitra & Mahua Roy Chowdhury, Pp. 12755–12768

A preliminary checklist of butterflies from the northern Eastern Ghats with notes on new and significant species records including three new reports for peninsular India
-- Rajkamal Goswami, Ovee Thorat, Vikram Aditya & Seena Narayanan Karimbunkara, Pp. 12769–12791

Aquatic and semi aquatic Hemiptera community of Sonebeel, the largest wetland of Assam, northeastern India
-- Anupama Saha & Susmita Gupta, Pp. 12792–12799

Short Communications

First record of colour aberration in Basra Reed Warbler Acrocephalus griseldis (Hartlaub, 1891) (Passeriformes: Acrocephalidae) from Central Marshes of southern Iraq, with notes on its intraspecific/interspecific behavior
-- Omar F. Al-Sheikhly, Mukhtar K. Haba, Nadheer A. Faza’a & Ra’ad H. Al-Asady, Pp. 12800–12804

Avian fauna of Amboli Ghat, Sindhudurg District, Maharashtra State, India
-- Varun Satose, Vikrant Choursiya, Rakesh Deulkar & Sasikumar Menon, Pp. 12805–12816

DNA barcoding and morphological characterization of moth Antoculeora ornatissima (Walker, 1858) (Lepidoptera: Noctuidae), a new range record from western Himalayan region of India
-- Twinkle Sinha, P.R. Shashank & Pratima Chaudhuri Chattopadhyay, Pp. 12817–12820

Notes

First photographic record of tiger presence at higher elevations of the Mishmi Hills in the Eastern Himalayan Biodiversity Hotspot, Arunachal Pradesh, India
-- Aisho Sharma Adhikarimayum & G.V. Gopi, Pp. 12833–12836

An old collection reveals an additional distribution record of the Greater Long-tongued Fruit Bat MacroGLOSSUS SOBRINUS K. Anderson, 1911 (Chiroptera: Pteropodidae) from southern West Bengal, India
-- Tauseef Hamid Dar, M. Kalalakannan, C. Venkatraman & Kailash Chandra, Pp. 12837–12839

Breeding reports and conservation implications of the Endangered Black-bellied Tern STERNA ACUTICAUDA I.E. Gray, 1831 (Aves: Charadriiformes: Laridae) in Odisha, eastern India
-- Tuhiamsu Kar, Himanshu Shekhar Palei & Subrat Debata, Pp. 12840–12843

A first record of the Redbelly Yellowtail Fusilier Caesio cuning (Bloch, 1791) (Teleostei: Caesionidae) from Visakhapatnam coastal waters, India
-- Muddula Krishna Naranji, Govinda Rao Velamala & Kondamudi Ramesh Babu, Pp. 12844–12846

A record after 92 years, and a first report of the moth MECODINA METAGRAPTA Hampson, 1926 (Lepidoptera: Erebidae: Againae) from the Western Ghats’ part of Maharashtra, India
-- Aparna Sureshchandra Kalawate, Pp. 12847–12849

A new record of the Malay Cardamom Amomum aculeatum Roxb. (Zingiberaceae) for mainland India
-- Sameer Chandrakant Patil & P. Lakshminarasimhan, Pp. 12850–12853

New distribution records of the leopard plants Amomum aculeatum (L.) Cass. (Asteraceae) in the Indian Himalaya
-- Bikarma Singh, Sumit Singh & Bishander Singh, Pp. 12854–12858

Miscellaneous

National Biodiversity Authority

The Journal of Threatened Taxa is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction, and distribution by providing adequate credit to the authors and the source of publication.

ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)

November 2018 | Vol. 10 | No. 13 | Pages: 12715–12858
Date of Publication: 26 November 2018 (Online & Print)
DOI: 10.11609/jott.2018.10.13.12715-12858