The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/177473

Please be advised that this information was generated on 2020-03-10 and may be subject to change.
Successful treatment of azole-resistant invasive aspergillosis in a bottlenose dolphin with high-dose posaconazole

Paulien E. Bunskoka, Seyedmojtaba Seyedmousavib,1, Steven J.M. Gansc, Peter B.J. van Vierzena, Willem J.G. Melcherc,d, Cornelis E. van Elka, Johan W. Moutone, Paul E. Verweijb,d,⁎

a Veterinary Department, Dolfinarium, Harderwijk, The Netherlands
b Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
c Departments of Pulmonology and Radiology, St Jansdal Hospital, Harderwijk, The Netherlands
d Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
e Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands

ARTICLE INFO

Keywords:
Aspergillus fumigatus
Azole resistance
Posaconazole
Bottlenose dolphin
Antifungal therapy

ABSTRACT

Invasive aspergillosis due to azole-resistant Aspergillus fumigatus is difficult to manage. We describe a case of azole-resistant invasive aspergillosis in a female bottlenose dolphin, who failed to respond to voriconazole and posaconazole therapy. As intravenous therapy was precluded, high dose posaconazole was initiated aimed at achieving trough levels exceeding 3 mg/l. Posaconazole serum levels of 3–9.5 mg/l were achieved without significant side-effects. Follow-up bronchoscopy and computed tomography showed complete resolution of the lesions.

1. Introduction

Azoles remain the corner-stone of prevention and treatment of aspergillus diseases, including acute invasive aspergillosis (IA) [1]. However, the clinical use of azoles is threatened by the emergence of azole resistance in Aspergillus fumigatus, the primary cause of IA in many regions of the world [2]. Resistance that arises through the environmental use of azole fungicides is believed to be an important driver of azole-resistant cases [3]. This route of resistance development proves a clinical challenge with cases of azole-resistant IA occurring in patients without previous azole therapy [4,5], and cases of azole-susceptible and azole-resistant A. fumigatus co-infection [6]. Resistance mutations commonly confer resistance to multiple azole drugs, including the recently clinically-licensed isavuconazole [7]. However, based on in vitro and experimental models it was hypothesized that low-level azole-resistant A. fumigatus infection might be successfully treated with voriconazole or posaconazole provided that the treatment dose and exposure could be increased [8].

We describe a case of azole-resistant IA in a bottlenose dolphin that was successfully managed by increasing posaconazole exposure.

2. Case

A 10 year old female captive bottlenose dolphin (Tursiops truncatus), weighing 175 kg, was treated with antibiotics for bacterial pneumonia caused by Vibrio alginolyticus. Treatment follow-up was conducted with blood samples, CT-scans, bronchoscopies, and protected brush samples from the tracheal and/or bronchial mucosa for histopathology and bacterial and fungal culture (Fig. 1).

The bacterial pneumonia required long-term antibiotic treatment and 6 months into therapy she developed multiple white, raised lesions in the trachea and bronchi, one of which was sampled with protected brush during bronchoscopy. No fungi were cultured but based on the bronchoscopic appearance of the lesions a Candida infection was suspected. Treatment with oral voriconazole with a loading dose of 5.5 mg/kg per day during 3 days and a maintenance dose of 5.5 mg/kg per week (given in one single dose) was started. Follow-up bronchoscopies were performed one, two and three months after voriconazole treatment was started, showing no improvement. Fungal culture of a protected brush sample, taken at one and two months of voriconazole therapy remained negative, but at three months A. fumigatus was cultured. Retrospective analysis of a serum sample indicated the presence of circulating galactomannan (GM; GM-index 6.5). The A. fumigatus isolate was sent to the Mycology Reference Laboratory and...
Y121F/T289A resistance mutation was identified in the serum at diagnosis. Although GM was visualized through bronchoscopy, and computed tomography showed the bottlenose dolphin that was complicated by azole resistance. The isolate recovered from the dolphin was identified with bronchoscopy showing the presence of circulating GM would help to diagnose Aspergillus infection and possibly be useful for monitoring of treatment response. GM however does not identify the species of Aspergillus that is causing the fungal pneumonia, nor does it provide information regarding the presence of resistance. Additional tests would be required either through culture or molecular tests of respiratory specimens. PCR-tests that identify the most prevalent Aspergillus species as well as the presence of azole resistance mutations are commercially available. In humans such assays enabled the detection of azole-resistant A. fumigatus directly in BAL-fluid. The A. fumigatus strain recovered from our case harbored a resistance mutation that is associated with environmental resistance selection, indicating that the dolphin inhaled A. fumigatus conidia that were already azole-resistant.

Treatment options in humans and animals with azole-resistant IA are limited. Experts recommended to move away from azole monotherapy when resistance is documented, switching to liposomal amphotericin B or voriconazole and echinocandin combination therapy. In vitro and in vivo studies indicate that the activity of polyenes and echinocandins are not affected by the presence of azole resistance mutations. Furthermore, voriconazole and anidulafungin combination therapy was shown to be effective in an animal model of disseminated IA due to A. fumigatus with low-level voriconazole resistance (MIC of 4 mg/l). However, the efficacy of the combination against voriconazole high-level resistant A. fumigatus has not been studied. There is concern that voriconazole will not be effective in high-level resistant A. fumigatus infection and combination therapy will solely rely on anidulafungin efficacy, which is suboptimal.

As intravenous therapy was no option in treating the dolphin, it was decided to increase the exposure of posaconazole. Using results of pharmacokinetic and pharmacodynamic in vitro and in vivo models we have previously attempted to bridge these experimental results to human infection by calculating which posaconazole exposure would be required in relation to the A. fumigatus MIC to treat successfully. For each MIC the corresponding posaconazole exposure and plasma level were determined. Based on our analysis a posaconazole plasma-level of 3.09–3.33 mg/l would be required to treat an infection with a posaconazole MIC of 0.5 mg/l and 6.18–6.66 mg/l for a MIC of 1.0 mg/l. Indeed when a plasma level of > 3 mg/l was achieved in the dolphin, gradual clinical response was documented without significant toxicity ultimately leading to clinical cure.

In the dolphin very high drug exposures were achieved using the oral solution formulation, but in humans posaconazole drug levels above 3 mg/l could not be achieved due to limited bioavailability associated with the oral suspension. However, phase I and phase II pharmacokinetic studies indicate that a posaconazole plasma level above 3 mg/l can be achieved using the new intravenous and tablet formulations, without significant side-effects. As intravenous therapy was no option in treating the dolphin, it was decided to increase the exposure of posaconazole. Using results of pharmacokinetic and pharmacodynamic in vitro and in vivo models we have previously attempted to bridge these experimental results to human infection by calculating which posaconazole exposure would be required in relation to the A. fumigatus MIC to treat successfully. For each MIC the corresponding posaconazole exposure and plasma level were determined. Based on our analysis a posaconazole plasma-level of 3.09–3.33 mg/l would be required to treat an infection with a posaconazole MIC of 0.5 mg/l and 6.18–6.66 mg/l for a MIC of 1.0 mg/l. Indeed when a plasma level of > 3 mg/l was achieved in the dolphin, gradual clinical response was documented without significant toxicity ultimately leading to clinical cure.

In the dolphin very high drug exposures were achieved using the oral solution formulation, but in humans posaconazole drug levels above 3 mg/l could not be achieved due to limited bioavailability associated with the oral suspension. However, phase I and phase II pharmacokinetic studies indicate that a posaconazole plasma level above 3 mg/l can be achieved using the new intravenous and tablet formulations, without significant side-effects. As intravenous therapy was no option in treating the dolphin, it was decided to increase the exposure of posaconazole. Using results of pharmacokinetic and pharmacodynamic in vitro and in vivo models we have previously attempted to bridge these experimental results to human infection by calculating which posaconazole exposure would be required in relation to the A. fumigatus MIC to treat successfully. For each MIC the corresponding posaconazole exposure and plasma level were determined. Based on our analysis a posaconazole plasma-level of 3.09–3.33 mg/l would be required to treat an infection with a posaconazole MIC of 0.5 mg/l and 6.18–6.66 mg/l for a MIC of 1.0 mg/l. Indeed when a plasma level of > 3 mg/l was achieved in the dolphin, gradual clinical response was documented without significant toxicity ultimately leading to clinical cure.

In the dolphin very high drug exposures were achieved using the oral solution formulation, but in humans posaconazole drug levels above 3 mg/l could not be achieved due to limited bioavailability associated with the oral suspension. However, phase I and phase II pharmacokinetic studies indicate that a posaconazole plasma level above 3 mg/l can be achieved using the new intravenous and tablet formulations, without significant side-effects. As intravenous therapy was no option in treating the dolphin, it was decided to increase the exposure of posaconazole. Using results of pharmacokinetic and pharmacodynamic in vitro and in vivo models we have previously attempted to bridge these experimental results to human infection by calculating which posaconazole exposure would be required in relation to the A. fumigatus MIC to treat successfully. For each MIC the corresponding posaconazole exposure and plasma level were determined. Based on our analysis a posaconazole plasma-level of 3.09–3.33 mg/l would be required to treat an infection with a posaconazole MIC of 0.5 mg/l and 6.18–6.66 mg/l for a MIC of 1.0 mg/l. Indeed when a plasma level of > 3 mg/l was achieved in the dolphin, gradual clinical response was documented without significant toxicity ultimately leading to clinical cure.

In the dolphin very high drug exposures were achieved using the oral solution formulation, but in humans posaconazole drug levels above 3 mg/l could not be achieved due to limited bioavailability associated with the oral suspension. However, phase I and phase II pharmacokinetic studies indicate that a posaconazole plasma level above 3 mg/l can be achieved using the new intravenous and tablet formulations, without significant side-effects. As intravenous therapy was no option in treating the dolphin, it was decided to increase the exposure of posaconazole. Using results of pharmacokinetic and pharmacodynamic in vitro and in vivo models we have previously attempted to bridge these experimental results to human infection by calculating which posaconazole exposure would be required in relation to the A. fumigatus MIC to treat successfully. For each MIC the corresponding posaconazole exposure and plasma level were determined. Based on our analysis a posaconazole plasma-level of 3.09–3.33 mg/l would be required to treat an infection with a posaconazole MIC of 0.5 mg/l and 6.18–6.66 mg/l for a MIC of 1.0 mg/l. Indeed when a plasma level of > 3 mg/l was achieved in the dolphin, gradual clinical response was documented without significant toxicity ultimately leading to clinical cure.

In the dolphin very high drug exposures were achieved using the oral solution formulation, but in humans posaconazole drug levels above 3 mg/l could not be achieved due to limited bioavailability associated with the oral suspension. However, phase I and phase II pharmacokinetic studies indicate that a posaconazole plasma level above 3 mg/l can be achieved using the new intravenous and tablet formulations, without significant side-effects. As intravenous therapy was no option in treating the dolphin, it was decided to increase the exposure of posaconazole. Using results of pharmacokinetic and pharmacodynamic in vitro and in vivo models we have previously attempted to bridge these experimental results to human infection by calculating which posaconazole exposure would be required in relation to the A. fumigatus MIC to treat successfully. For each MIC the corresponding posaconazole exposure and plasma level were determined. Based on our analysis a posaconazole plasma-level of 3.09–3.33 mg/l would be required to treat an infection with a posaconazole MIC of 0.5 mg/l and 6.18–6.66 mg/l for a MIC of 1.0 mg/l. Indeed when a plasma level of > 3 mg/l was achieved in the dolphin, gradual clinical response was documented without significant toxicity ultimately leading to clinical cure.
Fig. 2. Evolution of pulmonary lesions on consecutive CT-scans of the lung at the level of the heart. Panel A, Axial CT image, taken before high-dose posaconazole treatment was started, showing small granulomas and some infiltrates at the left side; Panel B, At 6 weeks of high dose posaconazole therapy. The CT image shows a progression of the granulomas at the left side and some infiltrates at both sides; Panel C, After 14 weeks of posaconazole high-dose therapy, showing a substantial reduction of the granulomas and infiltrates; Panel D, CT imaging after 22 weeks of high-dose posaconazole treatment showing complete resolution of the granulomas. Some residual peribronchial lesions are visible.

Fig. 3. Posaconazole dose (lower panel), posaconazole trough plasma levels (mg/l; middle panel) and consecutive bronchoscopy images of Aspergillus trachea lesions (upper panel). Green indicates the area of posaconazole exposure calculated to be sufficient to successfully treat posaconazole low-resistant A. fumigatus (MIC 0.5 mg/l), while the red area represents insufficient posaconazole exposure. Day 0 indicates the first day of posaconazole therapy. Posaconazole treatment was interrupted for 11 days (day 445–455) because the dolphin was clinically poor and a possible side effect of high-dose posaconazole needed to be ruled-out. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
Acknowledgements

We thank Henrich van der Lee and Ton Rijs for their technical support.

References

[1] T.F. Patterson, G.R. Thompson 3rd, D.W. Denning, J.A. Fishman, S. Hadley, R. Herbrecht, et al., Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 63 (2016) e1–e60.

[2] P.E. Verweij, A. Chowdhary, W.J.G. Melchers, J.F. Meis, Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin. Infect. Dis. 62 (2016) 362–368.

[3] P.E. Verweij, E. Snelders, G.H. Kema, E. Mellado, W.J. Melchers, Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect. Dis. 9 (2009) 789–795.

[4] J.W.M. Van der Linden, E. Snelders, G.A. Kampinga, R.J.A. Rijnders, E. Mattsson, V.J. Debiets-Osenkopp, et al., Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009, Emerg. Infect. Dis. 17 (2011) 1846 (54).

[5] J.W.M. van der Linden, S.M.T. Camps, G.A. Kampinga, J.P.A. Arends, Y.J. Debets-Ossenkopp, P.J.A. Haas, et al., Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles, Clin. Infect. Dis. 57 (2013) 513–520.

[6] E. Kolwijck, H. van der Hoeven, R.G.L. de Sévaux, J. ten Oever, L.L. Rijstenberg, H.A.L. van der Lee, et al., Voriconazole-susceptible and voriconazole-resistant Aspergillus fumigatus co-infection, Am. J. Resp. Crit. Care Med. 193 (2016) 927–929.

[7] S.J. Howard, C. Lass-Flörl, M. Cuenca-Estrella, A. Gomez-Lopez, M.C. Arendrup, Determination of isavuconazole susceptibility of Aspergillus and Candida species by the EUCAST method, Antimicrob. Agents Chemother. 57 (2013) 5426–5431.

[8] S. Seyedmousavi, J.W. Mouton, W.J. Melchers, R.J. Brüggemann, P.E. Verweij, The role of azoles in the management of azole-resistant aspergillosis: from the bench to the bedside, Drug Resist. Updat. 17 (2014) 37–50.

[9] M.M. Leeflang, Y.J. Debiets-Osenkopp, C.E. Visser, R.J. Scholten, L. Hooff, H.A. Bijlmer, et al., Galactomannan detection for invasive aspergillosis in immuno-compromized patients, Cochrane Database Syst. Rev. (2008) 4 (CD007394).

[10] M.H. Miceli, M.L. Grazziutti, G. Woods, W. Zhao, M.H. Kocoglu, B. Barlogie, et al., Strong correlation between serum aspergillus galactomannan index and outcome of aspergillosis in patients with hematological cancer: clinical and research implications, Clin. Infect. Dis. 46 (2008) 1412–1422.

[11] M.A. Delaney, K.A. Terio, K.M. Colegrove, M.B. Briggs, M.J. Kinsel, Occlusive fungal tracheitis in 4 captive bottlenose dolphins (Tursiops truncatus), Vet. Pathol. 50 (2013) 172–176.

[12] B.E. Joseph, L.H. Cornwell, G. Migaki, L. Griner, Pulmonary aspergillosis in three species of dolphin, Zoo Biol. 5 (1996) 301–308.

[13] T.P. Lipscomb, S. Kennedy, D. Moffett, A. Kraft, B.A. Klaunberg, J.H. Lichy, et al., Morbilliviral epizootic in bottlenose dolphins of the Gulf of Mexico, J. Vet. Diagn. Invest. 8 (1996) 283–290.

[14] G.L. Chong, W.W. van de Sande, G.J. Dingemann, G.R. Gaaflaen, A.G. Vonk, M.P. Hayette, et al., Validation of a new Aspergillus real-time PCR assay for direct detection of Aspergillus andazole resistance of Aspergillus fumigatus on bronchoalveolar lavage fluid, J. Clin. Microbiol. 53 (2015) 868–874.

[15] G.M. Chong, M.T. van der Beek, P.A. von dem Borne, J. Boelen, E. Steel, G.A. Kampinga, et al., PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: a multcentre validation of the AsperGenius assay® in 201 patients with haematological disease suspected for invasive aspergillosis, J. Antimicrob. Chemother. 71 (2016) 3528–3535.

[16] P.E. Verweij, M. Andana-Rajah, D. Andes, M.C. Arendrup, R.J. Brüggemann, A. Chowdhary, et al., International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus, Drug Resist. Updat. 21–22 (2015) 30–40.

[17] J. van Ingen, H.A. van der Lee, T.A. Rijs, J. Zoll, T. Leenstra, W.J. Melchers, et al., A. Chowdhary, et al., Azole, polyene and echinocandin MIC distributions for wild-type, TR34/L98H and TR46/Y121F Aspergillus fumigatus isolates in the Netherlands, J. Antimicrob. Chemother. 70 (2015) 178–181.

[18] S. Seyedmousavi, R.J. Brüggemann, W.J. Melchers, A.J. Rijs, P.E. Verweij, J.W. Mouton, Efficacy and pharmacodynamics of voriconazole combined with anidulafungin in azole-resistant invasive aspergillosis, J. Antimicrob. Chemother. 68 (2013) 385–393.

[19] S. Seyedmousavi, Rijs AJMM, Melchers, W.J.G. Mouton, J.W. Verweij, PE. Pharmacodynamics and dose-response relationships of liposomal amphotericin B against different azole-resistant Aspergillus fumigatus isolates in a murine model of disseminated aspergillosis, Antimicrob. Agents Chemother. 57 (2013) 1866–1871.

[20] A.J. Guarascio, D. Slain, Review of the new delayed-release oral tablet and intravenous dosage forms of posaconazole, Pharmacotherapy 35 (2015) 208–219.