Körbes, Daiane; Ferreira da Silveira, Aron; Hyppolito, Miguel Ângelo; Munaro, Gisiane

Ottotoxicidade por organofosforados: descrição dos aspectos ultraestruturais do sistema vestibulococlear de cobaias

Brazilian Journal of Otorhinolaryngology, vol. 76, núm. 2, março-abril, 2010, pp. 238-244
Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial
São Paulo, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=392437893015
Ototoxicidade por organofosforados: descrição dos aspectos ultraestruturais do sistema vestibulococlear de cobaias

Daiane Körbes 1, Aron Ferreira da Silveira 2, Miguel Ângelo Hyppolito 3, Gisiane Munaro 4

Resumo / Summary

Os agrotóxicos organofosforados são amplamente utilizados na agricultura, e atualmente fazem parte do grupo de agentes químicos que podem levar à perda auditiva, no qual já estavam incluídos os solventes, os metais e os asfixiantes.

Objetivo: Analisar a ação ototóxica aguda de um agrotóxico do grupo dos organofosforados na citoarquitetura do sistema vestibulococlear. Trata-se de um estudo experimental prospectivo.

Material e Método: Foram utilizadas cobaias albinas machos, divididas em três grupos, nos quais se administrou água destilada (grupo 1 - controle), agrotóxico - 0,3mg/Kg/dia (grupo 2), agrotóxico - 3 mg/Kg/dia (grupo 3), durante sete dias consecutivos. O agrotóxico utilizado foi Tamaron BR (metamidofós). A avaliação anatômica da cóclea, sáculo e utrículo foi realizada através da microscopia eletrônica de varredura, após o período de aplicação do agrotóxico.

Resultados: As cobaias submetidas ao organofosforado apresentaram alterações morfológicas cocleares, com lesões nas três espiras analisadas, bem como alterações ciliares de sáculo e utrículo, intensificadas de acordo com a dosagem recebida do agente.

Conclusão: As alterações morfológicas observadas nas células ciliadas nos grupos expostos a doses diárias de organofosforado promovem evidências de um efeito agudo degradante dos agrotóxicos no sistema vestibulococlear.

Palavras-chave: células ciliadas auditivas, cóclea, inseticidas organofosforados, microscopia eletrônica de varredura, vestibulo do labirinto.

Keywords: microscopy, labyrinth, insecticides, vestibule, organophosphates.

Organophosphate-related ototoxicity: Description of the vestibulocochlear system ultrastructural aspects of guinea pigs

Organophosphate toxic agents are used in agriculture and are currently part of the group of toxic agents which can lead to hearing loss, in which we have solvents, metals and asphyxiation agents. Aim: to analyze the acute ototoxic action of a group of organophosphate agents in the vestibulocochlear system. This is a prospective experimental study.

Materials and Methods: we used male albino guinea pigs, broken down into three groups, to which we provided distilled water (group 1 - control), agrotoxic agent - 0,3mg/Kg/day (group 2), agrotoxic - 3 mg/Kg/day (group 3), during 7 seven consecutive days. The most used agrotoxic agent was Tamarón BR (metamidofos). The anatomical evaluation of the cochlea, sacculus and utricle was carried out by means of electronic scanning microscopy after the use of the agrotoxic agent. Results: the guinea pigs submitted to the organophosphate presented cochlear morphological alterations with lesions on the three turns analyzed, as well as cilia alterations in the sacculus and utricle, intensified according to the agent dosage. Conclusion: the morphological alterations seen in the hair cells exposed to daily doses of organophosphate promote evidences of an acute deleterious effect of agrotoxic agents on the vestibulocochlear system.

Palavras-chave: células ciliadas auditivas, cóclea, inseticidas organofosforados, microscopia eletrônica de varredura, vestibulo do labirinto.

Keywords: microscopy, labyrinth, insecticides, vestibule, organophosphates.
INTRODUÇÃO

O trabalhador agrícola está exposto a vários agentes nocivos à saúde, incluindo ruidos, vibrações e produtos químicos específicos, como agrotóxicos. A ação destes agentes pode ser simultânea, favorecendo o comprometimento da audição. Na maioria das vezes, os trabalhadores agrícolas que estão em contato com diversos tipos de agrotóxicos, não têm acompanhamento periódico no que diz respeito principalmente à saúde auditiva. Pela influência destes fatores no sistema auditivo, é possível que esses indivíduos sejam candidatos a apresentarem alterações na audição.

Recentemente, os agrotóxicos organofosforados foram introduzidos no grupo de alta prioridade para pesquisa relacionada à ototoxicidade devido à exposição ocupacional, da qual já faziam parte os solventes industriais, além de metais pesados, e outros compostos, de natureza química diversa, que comumente apresentam ação asfixiante, caso do monóxido de carbono e cianeto de hidrogênio.

A intoxicação pode ocorrer por inalação, pela ingestão ou através da pele. Uma série de manifestações clínicas pode ser observada em decorrência da ação deletérias dos agrotóxicos sobre a saúde humana, tais como náuseas, tonturas, zumbido, fraqueza, falta de apetite, nervosismo, dores de cabeça, alergias, lesões renais e hepáticas, câncer. Em decorrência da inspecificidade dos sintomas relacionados à intoxicação, sendo estes comuns a múltiplos fatores etiológicos, torna-se difícil, muitas vezes, estabelecer a manipulação do organofosforado com o nexo causal.

No sistema vestibulococlear, o efeito de agentes ototóxicos pode manifestar-se em lesões de células ciliadas externas (CCE), lesões do VIII par craniano, alterações no sistema vestibular e alterações no sistema nervoso central (SNC). A ação neurotóxica de algunas substâncias químicas encontradas nos ambientes de trabalho pode afetar não somente a audição e o equilíbrio, mas também o tronco cerebral e via auditivas centrais. Há evidências de que a alteração auditiva possa ser uma manifestação precoce de intoxicação por organofosforados.

É de conhecimento científico as inúmeras alterações provocadas pela intoxicação por organofosforados no ser humano, levando-se em consideração todos os sistemas e órgãos que o compõe. Apesar de a literatura concordar a respeito da associação existente entre a exposição a agrotóxicos e a ocorrência de alterações auditivas, são escassos os estudos que avaliam as alterações histológicas especificamente relacionadas ao sistema vestibulococlear.

Haja vista a semelhança anatomofisiológica existente entre o sistema auditivo periférico de humanos e de cobaias, pesquisas realizadas com estes animais de laboratório são deveras importante, uma vez que os achados podem ser correlacionados com a população humana, e servir assim, de alerta para os possíveis comprometimentos auditivos ocasionados pelo contato com agrotóxicos organofosforados.

Em razão do exposto, buscou-se analisar a ação ototóxica aguda de um agrotóxico do grupo dos organofosforados na citoarquitetura do sistema vestibulococlear de cobaias.

MATERIAIS E MÉTODOS

Para o estudo foram utilizadas 15 cobaias albinas machos. Os animais foram selecionados no Biotério Central da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP). Os cuidados seguiram as diretrizes do Manual sobre Cuidados e Uso de Animais de Laboratório do Institute of Laboratory Animal Resources. O protocolo experimental seguiu ainda os princípios éticos do Colégio Brasileiro de Experimentação Animal (COBEA).

Para a intoxicação das cobaias, administrou-se o organofosforado TAMARON (metamidophos), comercializado pela Bayer CropScience Ltda.

A pesquisa foi aprovada pela Comissão de Ética em Experimentação Animal (CETEA) da FMRP-USP, sob o protocolo número 100/2008.

Os animais foram selecionados no Biotério Central da FMRP-USP, com peso entre 300 e 500g, através da presença do Reflexo de Preyer.

Após a seleção, as cobaias foram submetidas à otoscopia externa através da visualização do meato acústico externo (MAE). Os animais que apresentaram sinais de otite externa ou média aguda, cerúmen de difícil remoção, alterações inflamatórias do MAE ou mesmo conduto auditivo muito estreito para adequar a sonda dos equipamentos, foram descartados do experimento. De acordo com a literatura, as otites médias tornam o osso mais rígido, o que dificulta a abertura da bula timpânica para a fixação e facilita o dano a outras estruturas, como a cóclea, sistema vestibular e ossículos.

Os animais foram mantidos no Biotério do Laboratório de Cirurgia Experimental do Departamento de Cirurgia da FMRP-USP.

As cobaias foram divididas em três grupos:

GRUPO 1: três animais - seis cócleas, sáculos e utrículos, com administração de água destilada intraperitoneal em dose única diária, no mesmo volume correspondente à dose de agrotóxico para o peso da coaba, durante sete dias.

GRUPO 2: Seis animais - doze cócleas, sáculos e utrículos, com administração intraperitoneal de agrotóxico na dose única diária de 0,3mg/Kg/dia durante sete dias consecutivos.

GRUPO 3: Seis animais - doze cócleas, sáculos e utrículos, com administração intraperitoneal de agrotóxi-
co na dose única diária de 3mg/Kg/dia durante sete dias consecutivos.

Para a estimativa correta das doses, as cobaias eram pesadas diariamente, imediatamente antes da administração das drogas.

Em virtude da importância dos equipamentos de proteção individual para evitar contato com o agrotóxico, no momento da aplicação das doses diárias nos animais do experimento foram adotadas medidas de precaução, conforme prescrito na bula do produto.

No dia seguinte à última dose da droga ou da água destilada administrada em cada um dos grupos, os animais foram anestesiados com cloridrato de xilasina 2% e cloridrato de ketamina 10%, via intramuscular, e sacrificados pelo método de decapitação. As bulas foram imediatamente retiradas bilateralmente e abertas, expondo-se as estruturas do sistema vestibulococlear.

Em seguida, foi injetada solução de fixação de glutaraldeído a 2,5% através da janela redonda da cóclea. Após esta fixação inicial com glutaraldeído, o material foi submetido a cinco lavagens com solução tampão-fosfato a 0,1M e submetido à microdissecção expondo-se as espiras ciliadas. Então foi novamente imerso em tampão-fosfato a 0,1M por 12 horas depois de lavado com a mesma solução. Fora realizada a refixação em solução constituída de tetróxido de ósmio a 1% em tampão-fosfato a 0,1M durante 1 hora a 4ºC. Em seguida o material foi lavado em 3 banhos de água destilada por 2 a 3 minutos cada e então imerso em solução de ácido tânico aquoso 1% por 1 hora também a 4ºC.

A desidratação das estruturas foi realizada com banhos sucessivos de etanol em concentrações crescentes de 50%, 70%, 90% e 95% durante 10 minutos cada. A seguir utilizou-se etanol a 100% em 3 banhos de 20 minutos cada, deixando-se as estruturas imersas no último banho à temperatura ambiente por 12 horas.

A secagem da água ainda presente nas amostras foi realizada utilizando-se o equipamento BAL-TEC - CD 030 - Critical Point Dryer (Balzers, Liechtenstein), através do processo de ponto crítico, sendo as amostras transferidas à temperatura ambiente por 12 horas.

A avaliação anatômica do grupo 2, no qual foi administrado doses de 0,3 mg/Kg/dia, mostrou lesão de CCE em nível da espíra 3 (E3), caracterizada por distorção ciliar com desarranjo no padrão em “V” e encurtamento dos cílios, ou ainda, ausência dos mesmos. As alterações foram observadas nas 2ª e 3ª fileiras, mais evidentes nesta última. Já as CCI apresentaram alterações nas fileiras do cócleo E3, com cílios presentes, porém, desarranjados.

Nas estruturas do vestibulo do labirinto das cobaias do grupo 2, as alterações estruturais observadas foram um padrão de toxicidade, alterações ciliares tanto no sáculo como no utrículo das cobaias e nos ciclos do utrículo em 83% delas.

A análise morfológica encontrada no grupo 3, que recebeu doses de 3 mg/Kg/dia do agrotóxico, foram mais extensas e caracterizadas por ausência de ciclos das CCE, desarranjo no padrão em “V”, cílios dobras e ausência parcial de um dos braços do “V”. As alterações morfológicas encontradas na espíra basal acometeram somente a 3ª fileira das CCE, enquanto que na E2 a 2ª e 3ª fileiras foram mais atingidas. Já na E3 observou-se lesão severa nas três fileiras das CCE. Os ciclos da CCI também foram consideradas lesadas nos três espiras analisadas.

RESULTADOS

Nas cobaias do grupo 1, observou-se a manutenção da arquitetura normal das CCE e CCI, bem como ausência de alterações ciliares em sáculo e utrículo.

Quanto à MEV dos grupos nos quais foram administradas doses de agrotóxico, observou-se alterações morfológicas em 83,3% das cócleas do grupo 2 e em 100% das cócleas do grupo 3, sendo as lesões mais extensas neste último grupo. No que se refere ao labirinto vestibular, observou-se uma frequência de 50% de alterações ciliares tanto no sáculo como no utrículo das cobaias do grupo 2. Já no grupo 3, foram evidenciadas alterações nos ciclos do cócleo em 90% das cobaias e nos ciclos do utrículo em 83% delas.

As alterações morfológicas encontradas no grupo 3, que recebeu doses de 3 mg/Kg/dia do agrotóxico, foram mais extensas e caracterizadas por ausência dos ciclos das CCE, desarranjo no padrão em “V”, ciclos dobrados e ausência parcial de um dos braços do “V”. As alterações morfológicas encontradas na espíra basal acometeram somente a 3ª fileira das CCE, enquanto que na E2 a 2ª e 3ª fileiras foram mais atingidas. Já na E3 observou-se lesão severa nas três fileiras das CCE. Os ciclos das CCI também foram consideradas lesadas nos três espiras analisadas.
Figura 1. Fotomicrografia de órgão de Corti de cobaia do grupo 2, evidenciando a E3. Aumento de 750 vezes.

Figura 2. Fotomicrografia da mácula sacular de cobaia do grupo 2. Aumento de 3.500 vezes.

Figura 3. Fotomicrografia de mácula utricular de cobaia do grupo 2. Aumento de 3.500 vezes.

Figura 4. Fotomicrografia de órgão de Corti de cobaia do grupo 3, evidenciando a E3. Aumento de 750 vezes.

Figura 5. Fotomicrografia de mácula sacular de cobaia do grupo 3. Aumento de 3.500 vezes.

Figura 6. Fotomicrografia de mácula utricular de cobaia do grupo 3. Aumento de 3.5000 vezes.
Na Figura 4 podem ser observadas as alterações cocleares. No labirinto vestibular, as alterações ciliares encontradas caracterizaram-se por encurtamento dos cílios, bem como presença de fusão ciliar e apoptose destas estruturas. As alterações encontradas no sêculo e no utrículo encontram-se ilustradas nas Figuras 5 e 6, respectivamente.

**DISCUSSÃO**

Os efeitos adversos observados no organismo decorrentes da intoxicação por agrotóxicos vêm sendo descritos na literatura. Em pesquisas realizadas em animais de laboratório buscando analisar os efeitos do agrotóxico no SNC, observou-se que, em exposições crônicas, o organofosforado provoca hipotrofia da camada molecular do córtex cerebral, e pode levar também à perda ou afilamento de ramificações neuronais. Já na intoxicação aguda, foi observada alteração estrutural no cerebelo após aplicação de dose única do organofosforado, caracterizada por apoptose nas células de Purkinge e dano estrutural no cítoesqueleto dos animais sobreviventes. Em outro estudo, ainda, no qual foram aplicados dois inseticidas organofosforados em ratas durante o período gestacional e de lactação, os autores observaram que os animais nascidos apresentaram alterações no período de desenvolvimento dos dentes, pelos e orelhas, bem como nos reflexos postural, palmar e startle.

Na pesquisa otoral os animais que são mais frequentemente utilizados são a cobaia e o rato devido à semelhança anatômica e fisiológica do sistema auditivo, visto que a mesma apresenta uma configuração de desarranjo celular. A presença de alterações anatômicas nas estruturas do sistema vestibulococlear analisadas neste estudo foi avaliada em cílios de CCE normais do que na E3. As alterações estruturais foram mais intensas na primeira fileira de CCE, seguidas pela segunda fileira. Estes achados concordam com dados obtidos por outros pesquisadores, que referiram que os aminoglicosídeos provocam lesões no órgão de Corti predominantemente nas CCE, com progressão da agressão da base para o ápice da cóclea, sendo a primeira fileira de CCE a primeira a ser lesada, seguindo-se para a segunda e terceira fileiras.

Em pesquisas realizadas com cisplatina, autores descreveram lesões extensas das CCE na porção basal da cóclea, concordando com outro estudo, segundo os quais as alterações mais evidentes também foram verificadas na espira apical, com ausência de cílios nas três fileiras de CCE, seguida pela E2 e E3, respectivamente. Em nível de CCI também foram observadas modificações ciliares, com cílios presentes, porém em padrão de desarranjo.

Quanto ao padrão de lesão encontrado neste estudo, a análise morfológica mostrou como alterações predominantes a ausência de estereócilios e deformidades na conformação em “V” dos mesmos, observações encontradas também nas pesquisas realizadas por outros estudiosos.

A presença de alterações anatômicas nas estruturas do sistema vestibulococlear analisadas neste estudo confirmam a otoxicidade do agrotóxico organofosforado, que até então havia sido comentada somente por pesquisas nas quais se verificaram alterações funcionais nos sistemas auditivo e vestibular.

Diversos autores evidenciaram em suas pesquisas casos de perda auditiva neurosensorial decorrentes da exposição aos agrotóxicos, cujo grau varia de leve a moderado, podendo até ser observada perda auditiva bilateral profunda ocasionada por intoxicação aguda ao organofosforado. A literatura refere maior incidência de comprometimento dos limiares auditivos das altas frequências, no entanto autores citam ainda alterações observadas nas frequências de 1.000 e 2.000 Hz.

Estudos realizados com trabalhadores rurais demonstram que a ação prejudicial do agrotóxico pode
CONCLUSÃO

A observação de alterações morfológicas na cóclea, sálculo e útriculo de cobaias pertencentes aos grupos expostos a doses diárias de organofosforado promove evidências de um efeito degradante dos agrotóxicos no sistema vestibulococlear.

AGRADECIMENTOS

Agradecemos às equipes do Laboratório de Técnica Cirúrgica e Cirurgia Experimental do Departamento de Cirurgia e Anatomia e do Laboratório de Microscopia Eletrônica do Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo.

REFERÊNCIAS BIBLIOGRÁFICAS

1. Manjabosco CAW, Morata TC, Marques SJM. Perfíl auditométrico de trabalhadores agropecuários. Arq Int Otorrinolaringol. 2004;8(4):284-95.
2. Morata TC. Chemical exposure as a risk factor for hearing loss. J Occup Environ Med. 2003;45(7):676-82.
3. Azevedo APM. Efeito de produtos químicos e ruido na gênese de perda auditiva ocupacional [dissertação]. Rio de Janeiro (RJ): Fundação Oswaldo Cruz - Escola Nacional de Saúde Pública;2004.
4. Mello AP, Waismann W. Exposição ocupacional ao ruido e químicos industriais e seus efeitos no sistema auditivo: revisão de literatura. Arq Int Otorrinolaringol. 2004;83(3):226-34.
5. Lemus R, Abdelghani A. Chlorpyriphos: an unwelcome pesticide in agriculture. J Occup Health. 2000;42(4):421-33.
6. Lima FJC, Marques PRBQ, Nunes GS, Tanaka SMCN. Inseticida organofosforado metamídofos: aspectos toxicológicos e analíticos. Rev Ecotoxicol Meio Ambiente. 2001;11:17-34.
7. Ames RG, Steeland K, Jenkins B, Christl D, Russo J. Chronic neurotoxicological sequelae to cholinesterase inhibition among agricultural pesticide applicators. Arch Environ Health. 1995;50:440-4.
8. Pires DX, Caldas ED, Recena MCP. Intoxicações provocadas por organofosforados de uso agrícola na microrregião de Dourados, Mato Grosso do Sul, Brasil, no Período de 1992 a 2002. Cad Saude Publica. 2005;21(3):804-14.
9. Delgado IF, Paumgartten FJR. Intoxicações e uso de pesticidas por agricultores do Município de Paty do Alferes, Rio de Janeiro, Brasil. Cad Saude Publica. 2004;20(1):180-6.
10. Soares WL, Freitas EAV, Coutinho JAG. Trabalho rural e saúde: intoxicações por agrotóxicos no município de Teresópolis/RJ. Rev Social Rural. 2005;36(6):887-901.
11. Hoshino ACH, Paracheco-Ferreira H, Taguchi CK, Tomita S, Miranda MF. Estudo da ototoxicidade em trabalhadores expostos a organofosforados. Braz J Otorrinolaringol. 2008;74(6):912-8.
12. Bernardi APA. Testes utilizados na avaliação de trabalhadores expostos a níveis de pressão sonora elevados e solventes. Em: Bernardi APA. Conhecimentos essenciais para atuar bem em empresas: audiologia ocupacional. Coleção CEFAC. São José dos Campos: Pulse;2003, p. 67-80.
13. Institute of Laboratory Animal Resources, Comission on Life Sciences, National Research Council. Manual sobre cuidados e uso de animais de laboratório. Goiânia, GO, 2003.
14. Albuquerque AAS, Rossato M, Oliveira JAA, Hyppolito MA. Conhecimento da anatomia da orelha de cobaias e ratos e sua aplicação na pesquisa otológica básica. Braz J Otorhinolaringol. 2009;75(1):43-9.
15. Oliveira JAA, Camed DM, Rossato M. Autodefesa contra a ototoxicidade de antibióticos aminoglicosídeos. Rev Bras Otorrinolaringol. 2002;68(1):7-13.
16. Hyppolito MA, Oliveira JAA, Camed DM, Rossato M, Holanda F. Ototoxicidade da císpatina e otoproteção pelo extrato de ginkgo biloba às células ciliadas externas: estudo anatômico e eletroradiológico. Rev Bras Otorrinolaringol. 2003;69(4):504-11.
17. Aquino TJM. Ototoxicidade e otoproteção em orelha interna de cobaias utilizando gentamicina e amicacina: aspectos ultra-estruturais e funcionais [tese]. Ribeirão Preto (SP): Universidade de São Paulo; 2007.
18. Oliveira JAA, Bernal TMO. Ototoxicidade de aminoglicosídeos e otoproteção. Em: Campos CAH, Costa HGO. Tratado de Otorrinolaringologia. São Paulo: Roca; 2003. p. 148-67.
19. Hyppolito MA, Oliveira JAA. Camed DM, Rossato M, Holanda F. Ototoxicidade da císpatina e otoproteção pelo extrato de ginkgo biloba às células ciliadas externas: estudo anatômico e eletroradiológico. Rev Bras Otorrinolaringol. 2003;69(4):504-11.
20. Pelegrino JR, Calore EE, Saldiva PHN, Almeida VF, Peres NM, Villela-de-Almeida L. Morphometric studies of specific brain regions of rats chronically intoxicated with the organophosphate methamidophos. Ecotoxicol Environ Saf. 2006;64(2):251-5.
21. Perez NM, Calore EE, Villela-de-Almeida L, Narciso ES, Puga FR. Aspectos morfológicos e morfométricos do cérebro de ratos intoxicados com organofosforados. Rev Inst Adolfo Lutz. 2006;65(1):50-3.
22. Quiñóldrán J, Miranda JP, Jiménez L. Efecto del agropesticida Cipermetrina en dosis única intraperitoneal sobre el cerebelo del ratón. Int J Morphol. 2006;24:5-113.
23. Godinho AF, Silva DAF, Mercadante A, Sartori AMA. Neonatal rat exposure to pyrethroid and organophosphate insecticides: a physiological and biochemical trial of progeny. Rev Cienc Farm. 2003;2(4):159-67.
24. Oliveira JAA. Audio-vestibular toxicity of drugs. Florida: CRC Press;1989. p. 560.
25. Kasse CA, Cruz OLM, Ilha LCN, Costa HO, Lopes EC, Coelho F. O uso de Maytenus ilicifolia na prevenção da ototoxicidade induzida pela cisplatina. Braz J Otorhinolaringol. 2008;74(5):712-7.
26. Aquino TJM, Oliveira JAA, Rossato M. Ototoxicidade e otoproteção em orelha interna de cobaias utilizando gentamicina e amicacina: aspectos ultra-estruturais e funcionais. Braz J Otorhinolaringol. 2008;74(6):843-52.
27. Ernest K. Delayed effects of exposure to organophosphorus compound. Indian J Med Res. 1995;101:81-4.
28. Beckett W, Chamberlain D, Hallman EA. Hearing conservation for farmers: source apportionment of occupational and environment factors contributing to hearing loss. J Occup Environ Méd. 2000;42: 806-13.

29. Harell M, Shea JJ, Ermett JR. Bilateral sudden deafness following combined insecticide poisoning. Laryngoscope. 1987;88:1348-51.

30. Teixeira CF, Brandão MFA. Efeitos dos agrotóxicos no sistema auditivo dos trabalhadores rurais. Cad Inf Prev Acid. 1998;19:46-52.

31. Sack D, Linz R, Shaka C, Rice A, Bhattacharya A, Suskind R. Health status of pesticide applicators: postural stability assessments. J Occup Méd. 1993;35:1196-202.

32. Yokoyama K, Araki S, Murata K, Nishikitani M, Okumura T, Ishimatsu S, Nakasu NA. Preliminary study on delayed vestibulo-cerebellar effects of Tokyo subway Sarin poisoning in relation to gender difference: frequency analysis of postural sway. J Occup Environ Med. 1998;40:17-21.

33. Dick RB, Steenland K, Krieg EF, Hines CJ. Evaluation of acute sensory-motor effects and test sensitivity using termicide workers exposed to chlorpyriphos. Neurotoxicol Teratol. 2001;23:381-93.