The Implementation of the Electric Auto-Vehicle in North America: An Issue of Power Generating Capability and Power Quality

Florian Misoc*

Department of Electrical and Computer Engineering Technology, Kennesaw State University, GA, USA

Abstract

From the first electric automobile built in 1888 (Flocken Elektrowagen) to the present electric cars build by Nissan, Chevrolet, or Tesla Motors, the need to periodically recharge the vehicles' batteries is still a challenge. Besides the battery charging process, recharging stations and the power electronics needed to optimize the energy transfer to the electric vehicles' batteries, the question of electric power availability is inevitable.

The authors of this study do not intend to emphasize the approaching end of petroleum and coal resources, facts already known; instead it is focused on the electric energy generation and consumption. The energy cycle of supply and demand has currently reached a dangerous level. Aside from the well-known fact that the world's oil resources are nearly exhausted, the feasibility of a complete electrification in transportation is questionable. This study is based solely on the official data, publicly available, and considers the best-case scenario, as well as the worst-case scenario, with regard to implementation of electric vehicles as sole mode of transportation.

The predicted electric power demand is factored in, based on national statistics and demographic trends, as the comparative study explores the possible changes in the transportation industry, based on current state of the art technology.

The authors of this study refrain from making any predictions or prognosis vis-à-vis economic impact based solely on the conclusions expressed in this herein.

Keywords: Electric vehicles; Power generation; Battery recharge rate; Battery charging condition

Introduction

Considering the increase consumption of petroleum-based fuels world-wide over the last decade, due in part to world population increase and in part to improvements in the standard of living in many countries, the supply and demand balance of petroleum has reach a critical point. As the petroleum resources have been substantially reduced, the need for alternative methods of transportation has become clear. One a possible solution is the electric vehicle. Thus, it is crucial to determine the feasibility of large-scale implementation of a wide range of electric vehicle types (motorcycles, passenger cars, busses, and trucks), as substitute for the internal combustion-powered vehicles, in the near future [1].

The main objective of this study was to determine the equivalent electric energy necessary to replace the petroleum-based energy for road vehicles; automobiles, trucks, and busses in the United States. To achieve this goal, the maximum installed electric power generation in the United States was explored over a ten-year period then extrapolated until the year 2030, as well as an estimation of the total number of electric vehicles for the time frame 2010-2030 was done, using the same approach [1,2].

This research was limited by the accuracy of the available data, made public by the United States government offices, specifically the vehicle registration data, and by the United Nations office for the installed power data. This research explores the feasibility of replacing the entire fleet of internal combustion-driven vehicles with a fleet of electric-driven vehicles in the United States of America. No evaluation or speculation of available fossil fuel resources is made, explicitly or implied.

The best-case scenario assumes a grid-power utilization of 5/100, meaning: 5% of all electric vehicles are charging at any given time, utilizing power from the electric grid, while the worst-case scenario, assumes a grid-power utilization of 20/100, meaning: 20% of all electric vehicles are charging at any given time, utilizing power from the electric grid.

Installed Power Statistics

During the period of time 2000-2009, the installed power growth is characterized by an increase of 26.36% in the power generation capability in the United States, to accommodate the electricity needs for industrial and residential customers [3], which is considered in this study as a realistic “best case scenario”, or very optimistic growth. However, this power generation increase was not sufficient to offset the power demand in the US, hence substantial power (25 billion kilowatt-hour/year) is imported, generally from Canada [4].

The total installed power in the US, shown in Table 1, presents an increase in the installed power over the ten-year period 2000-2010, where the slowest growth is recorded for 2005-2006 time frame, with only 8,415 Mega Watt additional installed power, or a 0.86% increase [3], which is considered in this study as a realistic conservative growth-rate, or the “worst case scenario”.

Conventional power generation technology was characterized by a nearly stagnant trend in the nuclear and hydro-electric power

*Corresponding author: Florian Misoc, Associate Professor, Department of Electrical and Computer Engineering Technology, Kennesaw State University, GA, USA, Tel: (678) 915-7423; E-mail: fmisoc@kennesaw.edu

Received December 18, 2016; Accepted December 22, 2016; Published December 29, 2016

Citation: Misoc F (2016) The Implementation of the Electric Auto-Vehicle in North America: An Issue of Power Generating Capability and Power Quality. J Electr Electron Syst 5: 211. doi:10.4172/2332-0796.1000211

Copyright: © 2016 Misoc F. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
generation, while the thermo-electric power generation technology exhibited an increase in the installed power for the period 2000-2005, and it stagnated thereafter.

However, in the renewable energy industry, a dramatic increase in the installed power was exhibited by the wind-energy technology, with the solar and geothermal-energy technology stagnant, as shown in Table 1 [3]. Meanwhile, the population in United States has continuously increased, and incidentally, the demand for more electric energy has grown accordingly.

Auto-Vehicles in North America

Registered auto-vehicles in the United States

Vehicle registration, by state, is reported annually to the US Department of Transportation, which keeps a rigorous evidence of all registered vehicles in the US [5-14]. The number of vehicles, per categories was compiled in Table 2, spanning over a period of ten years, from 2000 to 2010 inclusive.

As indicated in Table 2, the number of cars registered in the US over the period 2000-2010 was relatively constant, with an increase of 1,258,180 cars in an eleven-year time frame, or an average annual rate increase of 0.9% (less than 1% per year). The number of trucks has steadily increased, over the same period, at an average annual rate of 2.7% [5-14].

Data recorded in Table 2, indicates a low increase rate of busses registered in the time frame 2000-2010, with an increase of 95,868, equivalent to an average annual rate increase of 1.28% [5-14]. The number of motorcycles registered in the same time frame increased at an average annual rate of 8.24% [5-14].

Types of electric auto-vehicles registered in the United States

For this study, the performance characteristics of four representative electric vehicles were considered: the ZERO-S-ZF-11.4 motorcycle, the NISSAN LEAF-S compact car, shown in Figure 1, the BYD-eBus, and the SMITH-NEWTON truck, shown in Figure 2. The electric vehicle selection was based on current manufacturing volume, and on vehicles’ marketability (name recognition). Vehicles specifications are compiled in Table 3, for all four selected electric vehicles [15-18].

Based on the available data, dependent on the population growth in the United States, a predicted fleet size was computed for each class of vehicles, as shown in Figure 3.

Characteristics of electric auto-vehicle

The sharp increase in the number of trucks that is predicted to be registered in the US is, to great extent, due to the vehicle classification method in the US, which includes pick-up trucks, vans, sport-utility vehicles (SUVMs), and motor-homes. Thus, the total number of “trucks” will include also the following industrial-purpose vehicles: tractor-semitrailers, straight-trucks, and delivery-trucks. As shown in Table 3, the battery charging time varies between 6 hours to 8 hours, or an average of 7 hours. This translates in almost one third of a 24-hour cycle (one day).

Miles traveled; statistics and future trends

United States Department of Transportation; Federal Highway Administration (FHWA) collects annually information on the average distance traveled by vehicles registered in the US, per categories, i.e., motorcycles passenger vehicles, etc. From this information, relevant data was selected to compile graphical representations, shown in Figure 4, where the available data (until 2010) was publicly disclosed, in which the average mile traveled is represented as related to the number of vehicles registered in the United States. Given the large difference in the number of cars and commercial trucks registered in

Year	Thermal	Nuclear	Hydro	Wind	Solar	Geothermal	Total
2000	610,124	97,860	98,881	2,377	595	2,793	812,630
2001	645,044	98,159	98,580	3,864	459	2,216	848,322
2002	699,851	99,216	99,729	4,417	457	2,252	905,363
2003	741,496	99,988	99,282	5,995	681	2,133	948,730
2004	755,916	98,657	99,729	6,456	751	2,152	963,308
2005	767,792	98,887	99,282	8,706	881	2,285	978,539
2006	772,636	100,334	99,282	11,329	1,099	2,274	986,954
2007	775,674	100,266	99,771	16,515	1,439	2,214	995,879
2008	782,214	100,755	99,788	24,651	1,618	2,229	1,011,255
2009	786,425	101,004	100,678	34,296	2,086	2,382	1,026,871
2010	793,898	101,167	101,023	39,134	3,373	2,405	1,041,000

Table 1: Net installed power (Mega Watt) in the United States of America (2000-2010).

Year	Nr. of Cars	Nr. of Trucks	Nr. of Buses	Nr. of Motorcycles	Total Vehicles
2000	133,621,420	87,107,628	746,125	4,346,068	225,821,241
2001	137,633,467	92,045,311	749,548	4,903,056	235,331,382
2002	135,920,677	92,938,585	760,717	5,004,156	234,624,135
2003	135,669,897	94,943,551	776,550	5,370,035	236,760,033
2004	136,430,651	100,016,691	795,274	5,780,870	243,023,486
2005	136,568,083	103,818,838	807,053	6,227,146	247,421,120
2006	135,399,945	107,943,782	821,959	6,878,958	250,844,644
2007	135,932,930	110,497,239	834,436	7,138,476	254,403,081
2008	137,079,843	110,241,587	843,308	7,752,926	255,917,664
2009	134,879,600	110,561,293	841,993	7,929,724	254,212,610
2010	141,743,935	99,470,559	846,051	8,009,503	250,070,048

Table 2: Registered motor-vehicles in the United States of America (2000-2009).
Figure 1: ZERO-S- ZF-11.4 motorcycle & NISSAN LEAF-S car.

Figure 2: BYD-eBus & SMITH-NEWTON truck.

Table 3: Electric vehicle types and their characteristics [15-18].

Vehicle type	Range City/highway	Motor Max. Power	Battery type capacity	Charging time (100%)	Equivalent efficiency
Motorcycle					
ZERO-S-ZF-11.4	137/85 miles	DC-brushless	Li-ion 11.4 kWh	7.9 hours	463/246 MPGe 0.5/1.0 Le/100 km
	220/137 km	40 kW	54 HP		
Car					
NISSAN LEAF-S	70/105 miles	PM-synch	Li-ion 24 kWh	7.58 hours	130/102 MPGe 55.05/43.2 Le/100 km
	110/169 km	79.78 kW	107 HP		
Bus					
BYD-eBus	155 miles	PM-synch	Fe 300 kWh	6 hours	27.74 MPGe 13.69 Le/100 km
	249.4 km	160 kW	214.6 HP		
Truck					
SMITH-NEWTON	150 miles	DC-brushless	Li-ion 120 kWh	7.7 hours	23.6 MPGe 10 Le/100 km
	190 km	134 kW	180 HP		

Figure 3: Average miles travelled, cars and commercial trucks (2000-2010).
the United States, as compared to the motorcycles and busses, of two orders of magnitude, two separate graphs were compiled, to illustrate the number progression over the period considered. Numerical values for miles traveled per year, for the time frame 2000-2010, are compiled in Table 4.

The average miles traveled by cars and by commercial trucks, each year, have remained virtually constant over the ten-year period, as shown in Figure 3, while the miles traveled by motorcycle and by bus have shown an increase during the 2006-2008 time frame, as shown in Figure 4.

Thus, the average traveled miles by all vehicles combined, over the time-frame 2000-2010 has remained virtually constant, although the number of vehicles, in all four classes, registered in the United States has increased over the same period, as shown in Table 4.

Therefore, the average miles travelled per vehicle exhibited a slight decrease over the ten-year period 2000-2010, for all types of vehicles combined.

Average daily consumption of equivalent electric power

Considering the average miles traveled daily by each type of vehicle, as well as the average operating range specific to each type of vehicle, a coefficient of battery recharge can be easily computed:

\[
\text{recharge rate} = \frac{\text{miles traveled daily}}{\text{vehicle range}} \times \frac{\text{number of days per year}}{\text{total number of vehicles}} \times \frac{\text{total miles traveled per year}}{\text{vehicle range}}
\]

(1)

For cars, this study uses one of the most popular electric vehicles in the United States: Nissan Leaf, with a maximum range of 70 miles (city) and 105 miles (highway), as shown in Table 3.

Thus, the two rate of recharge for electric cars in the year 2010 were:

\[
\text{recharge rate(city)} = \frac{1.66525 \times 141.743,935}{70} = 51.156 \times 0.73
\]

(2)

Thus, the battery needs to be recharged approximately three (3) times in four (4) days period.

\[
\text{recharge rate(highway)} = \frac{1.66525 \times 141.743,935}{105} = 31.156 \times 0.487
\]

(3)

As such, the battery needs to be recharged once every two (2) days.

Through similar computations, all recharge rates are computed and shown in Table 5.

Thus, the proportion of vehicles under “battery charging condition” \(\gamma \) can be determined as:

\[
\gamma = \frac{\text{recharge rate}}{24 \text{ hours}} \times (\text{battery charging time}) \times 100\%
\]

(4)

Table 6 compiles all charging conditions for all types of vehicles during the time-frame considered in this study.
Therefore, the maximum charging condition factor γ is a weighted figure, representing the average number of vehicles connected to battery charging stations at any given time Table 7, and is:

$$\gamma_{\text{average}} \sum \left(\frac{\text{Recharge rate}}{\text{charging condition}} \right)$$ \hspace{1cm} (5)

Thus, to account for eventual erroneous data, the two extreme charging condition factors were considered as 5% for the low charging condition factor, and 20% for the high charging condition factor. This way, a more realistic image of driving behavior is used to model future trends, especially in the case of electric vehicles’ characteristic low-cost per mile, implying a possible increase in the number of miles traveled.

Feasibility Analysis

Predicted installed power

Year	City-rate motorcycles	Highway-rate motorcycles	City-rate cars	Highway-rate cars	Rate buses	Rate trucks
2000	0.077	0.048	0.738	0.492	0.179	0.043
2001	0.063	0.039	0.730	0.486	0.166	0.041
2002	0.061	0.038	0.755	0.503	0.158	0.042
2003	0.057	0.035	0.765	0.510	0.154	0.041
2004	0.056	0.034	0.781	0.521	0.151	0.040
2005	0.054	0.033	0.767	0.524	0.152	0.039
2006	0.058	0.036	0.801	0.534	0.145	0.037
2007	0.096	0.059	0.774	0.516	0.307	0.050
2008	0.086	0.053	0.750	0.500	0.310	0.051
2009	0.084	0.052	0.762	0.508	0.301	0.047
2010	0.074	0.046	0.730	0.487	0.287	0.052

Table 5: Batteries recharging rates.

Year	City motorcycles	Highway motorcycles	City cars	Highway cars	Buses	Trucks
2000	2.53%	1.58%	23.30%	15.53%	4.47%	1.37%
2001	2.07%	1.28%	23.05%	15.34%	4.15%	1.31%
2002	2.01%	1.25%	23.84%	15.88%	3.95%	1.34%
2003	1.87%	1.15%	24.16%	16.10%	3.85%	1.31%
2004	1.84%	1.12%	24.66%	16.45%	3.77%	1.28%
2005	1.77%	1.08%	24.85%	16.54%	3.8%	1.25%
2006	1.91%	1.18%	25.29%	16.68%	3.62%	1.18%
2007	3.16%	1.94%	24.44%	16.29%	7.67%	1.60%
2008	2.83%	1.74%	23.68%	15.79%	7.75%	1.63%
2009	2.76%	1.71%	24.06%	16.04%	7.52%	1.50%
2010	2.43%	1.51%	23.05%	15.36%	7.17%	1.66%

Table 6: Battery charging condition factor for each type of electric vehicle.

Based on available data, and considering the average increase in installed power over a period of ten years, a predicted installed power was computed over the following twenty years, including the year 2030, as shown in Figure 5.

Predictions on the electric auto-vehicles

The available data, compiled in Table 2, was used to estimate the number of auto-vehicles that will be registered in the United States over the following twenty years, including the year 2030, as shown in Figure 6. Eventual demographic variations or population fluctuations, due to immigration policies were not considered. Thus, this is only an estimate, not intended to be a measuring gauge of population growth in the United States.

Comparison of future power generated vs. future power demand

(You have not attempted to predict the adoption rate of electric vehicles and the associated abandonment of internal combustion...
vehicles. We could look at the half-life of a typical vehicle, and then assume each will be replaced by an electric type. Otherwise, you should explain that, for analysis purposes, for computation purposes, the data in Figure 7 assumes all vehicles since 2010 forward are electric. In other words, had all vehicles in 2010 been electric, the power needed to power 20% of the vehicles charging at any one time, a little over 5 million Megawatts would be needed from the grid. This would have exceeded the total electrical output in 2010 by 5 times. This need grows to 8.2 Million Megawatts by 2030, which exceeds the predicted best case power base by 4.5 times. This shows that installed power growth may catch up with the growing needs of transportation given enough time. This assumes residential and industrial power demand stays flat.

We make no prediction on the adoption rate of electric vehicles. To illustrate the power needed and relative growth rates, we assume all vehicles since 2010 have electric powered. This shows total transportation energy needed should that power all be drawn from the electric grid. As shown in Figure 7, the best-case scenario, with only 5% of the electric vehicles parked and charging, the power demand exceeds the predicted installed power for the best-case scenario trend (an annual increase in capacity at a rate of 2.6%). This analysis does not account for the residential and industrial demand of electric power. Thus, the installed electric power, during the next twenty years, will be offset by the demand of electric power due solely to a shift in the transportation technology, focused exclusively on the electric vehicle.

In the worst-case scenario, the predicted electric power demand to charge the batteries of future electric vehicles fleet, with 20% of electric vehicles parked and charging, far exceeds the best-case scenario of predicted installed power. Based on this analysis, the demand of electric power in the year 2030 will be between 2.038 and 8.152 Terra Watt, while the predicted installed power will be between 1.229 and 1.773 Terra Watt. The best-case scenario of 5% of entire electric vehicle

![Figure 5: Predicted installed power in the US (2010 – 2030).](image1)

![Figure 6: Predicted number of registered vehicles in the US.](image2)
fleet exceeds the predicted best-scenario installed power in the United States, over the entire time-frame considered in the study.

Conclusions and Future Work

Based on the numerical analysis of the extrapolated data, it is highly improbable that the electric vehicle alone will be able to replace the internal combustion-powered vehicles in the United States. Compounded to the shortage of petroleum, the coal resources are not inexhaustible; limiting the available power provided by thermoelectric power generation units in the future. It is thus concluded, that only an aggressive and speedy implementation of renewable energy infrastructure could balance the supply-and-demand energy crisis. However, with the undeniable exhaustion of petroleum reserves throughout the world, a solution for the future transportation method is not yet clearly defined, and remains an open subject with unpredictable outcomes.

It is known that the internal combustion engine is limited by the fuels it can operate with, requiring a minimum octane number (87-92), for those operating as Otto cycle, or a minimum cetane number for Diesel engines (46-60). The efficiency of each type of engine is well understood, and is limited by the practical compression ratios of each engine’s thermodynamic cycle: 25-30% thermal efficiency for gasoline engines (Otto cycle), and 40-50% thermal efficiency for Diesel engines. In general, the actual drive-train efficiency is lower than the engine’s thermal efficiency, due to the multiple stage gear ratios in the transmission and differential gear boxes. Currently, the most efficient traction-electric motor is the brushless DC motor (85-90%, and as high as 96.5%), which presents the benefit of regenerative braking, thus improving a vehicle’s overall energy efficiency. Based on these facts, future exploration on how to optimize highway transportation, focused on hybrid-electric or electric vehicle, is paramount.

References

1. Misoc F, Gosav M, C Muntenu, Puiu M (2013) Feasibility Analysis for the Full-Scale Implementation of the Electric Vehicle: A Study in Progress for the USA. Troisième Colloque francophone PLUridisciplinaire sur les Matériaux, l’Environnement et l’Electronique, Bacau, Romania.
2. Puiu-Berezintu M, Misoc F (2013) An Analysis of Transportation Transition to Electric Vehicles in Romania and its Impact on the National Electric Grid. Troisième Colloque francophone PLUridisciplinaire sur les Matériaux, l’Environnement et l’Electronique, Bacau, Romania.
3. United Nations Statistics Division, Energy Statistics Database Electricity (2010), Net Installed Capacity of Electric Power Plants; United States, 2000-2010.
4. http://www.eia.gov/electricity/annual/html/epa_02_13.html
5. US Department of Transportation, Federal Highway Administration (2000) State Motor Vehicle Registrations-2000.
6. US Department of Transportation, Federal Highway Administration (2001) State Motor Vehicle Registrations-2001.
7. US Department of Transportation, Federal Highway Administration (2002) State Motor Vehicle Registrations-2002.
8. US Department of Transportation, Federal Highway Administration (2003) State Motor Vehicle Registrations-2003.
9. US Department of Transportation, Federal Highway Administration (2004) State Motor Vehicle Registrations-2004.
10. US Department of Transportation, Federal Highway Administration (2005) State Motor Vehicle Registrations-2005.
11. US Department of Transportation, Federal Highway Administration (2006) State Motor Vehicle Registrations-2006.
12. US Department of Transportation, Federal Highway Administration (2007) State Motor Vehicle Registrations-2007.
13. US Department of Transportation, Federal Highway Administration (2008) State Motor Vehicle Registrations-2008.
14. US Department of Transportation, Federal Highway Administration (2009) State Motor Vehicle Registrations-2009.
15. http://www.zeromotorcycles.com/
16. https://www.nissanusa.com/electric-cars/leaf/
17. Build Your Dreams (BYD) Company, “BYD-eBus; Feature and Performance”.
18. Smith Electric Company, “Smith-Newton, Specifications”.

Figure 7: Predicted Installed power vs. predicted power demand through EV in the US.