KÄHLER MANIFOLDS WITH NUMERICALLY EFFECTIVE RICCI CLASS AND MAXIMAL FIRST BETTI NUMBER ARE TORI

FUQUAN FANG

Abstract. Let M be an n-dimensional Kähler manifold with numerically effective Ricci class. In this note we prove that, if the first Betti number $b_1(M) = 2n$, then M is biholomorphic to the complex torus T^n_C.

1. Introduction

Let M be a compact complex manifold with a fixed hermitian metric ω. By [DPS93] [DPS94] a holomorphic line bundle L over M is called numerically effective (abb. nef) if for every $\varepsilon > 0$, there is a smooth hermitian metric h_ε on L such that the curvature satisfies

$$\Theta_{h_\varepsilon} \geq -\varepsilon \omega$$

If M is projective, L is nef precisely if $L \cdot C \geq 0$ for all curves $C \subset M$. We say a Kähler manifold M is nef if the anticanonical bundle $-K_M$ is nef. In [DPS93] it is conjectured, for a nef Kähler manifold, both of the following holds:

(A1) the fundamental group $\pi_1(M)$ has polynomial growth.
(A2) the Albanese map $\alpha : M \to Alb(M)$ is surjective.

If M is projective, (A2) was proved by Q. Zhang [Zh]. In [Pa1] Paun proved (A1), assuming a conjecture of Gromov concerning the fundamental group of Riemannian manifold with almost non-negative Ricci curvature (compare [ChCo]).

By the Aubin-Calabi-Yau theorem [Ab][Ya], [DPS93] proved that M is nef if and only if there exist a sequence of Kähler metrics $\{\omega_k\}$ on M such that, for each $k > 0$, the metric ω_k belongs to a fixed cohomology class $\{\omega\}$, and the Ricci curvature of ω_k is bounded from below by $-1/k$.

A Bochner type theorem for the first Betti number was obtained by Paun [Pa2], namely, for every nef Kähler manifold M of complex dimension n it holds that $b_1(M) \leq 2n$. The main result of this note is the following:

Theorem 1.1. Let M be a nef Kähler manifold of dimension n. If the first Betti number $b_1(M) = 2n$, then M is biholomorphic to the complex torus T^n_C.

Supported by NSFC Grant 19925104 and 973 Project for Foundation Science of China.
Theorem 1.1 may be considered as a complex version of a conjecture of Gromov, proved by T. Colding [Co], asserts that a Riemannian n-manifold of almost non-negative Ricci curvature and first Betti number n is homeomorphic to the torus T^n.

Obviously, Theorem 1.1 implies conjecture (A2) in the case of $b_1(M) = 2n$. In the proof of Theorem 1.1, in fact we will prove that there is a uniform upper bound for the diameters. But this does not hold if $b_1(M) = 2n - 2$ (the first Betti number of a Kähler manifold is always even). Since there is a sequence of Kähler metrics on S^2 in the same Kähler class with positive Ricci curvature but converge to a non-compact space of dimension 1, thus the product $T_c^{n-1} \times S^2$ serves as an example.

The following result verifies (A2) for manifold with $b_1(M) = 2n - 2$, provided $G_1/[G_1, G]$ has rank at least two, where $G = \pi_1(M)$, $G_1 = [G, G]$.

Theorem 1.2. Let M be a nef Kähler manifold of dimension n. Let $G = \pi_1(M)$. If the first Betti number $b_1(M) = 2n - 2$, and $G_1/[G_1, G]$ has rank at least two where $G_1 = [G, G]$, then the Albanese map $\alpha : M \to T_c^{n-1}$ is surjective.

Remark 1.3. By Theorems 1.1 one confirms immediately conjecture (A2) for $n = 2$. This was first obtained in [DPS93] using algebraic geometry methods.

The proof of our Theorems uses the deep results in Riemannian geometry, including the equivariant Gromov-Hausdorff convergence [FY], a splitting theorem of Cheeger-Colding for limit spaces [ChCo], and a result of Paun [Pa2]. It would be interesting if Theorem 1.1 could be proved in a way of pure algebraic geometry. Indeed, if the Albanese map α is surjective, by the Poincare-Lelong equation, one obtains easily that a nef Kähler manifold M of dimension n with $b_1(M) = 2n$ is biholomorphic to the complex torus T^n_c (compare [Mo]).

By Campana [Ca] the above conjectures (A1) and (A2) together with Gromov’s celebrated theorem [Gr] implies that the fundamental group of a nef Kähler manifold is almost abelian. By our approach, it seems plausible to prove the following:

Conjecture 1.4. Let M be a nef Kähler manifold of dimension n. If there is an epimorphism $\varphi : \pi_1(M) \to \Gamma$ where Γ is a torsion free nilpotent group of rank at least $2n$, then $\Gamma \cong \mathbb{Z}^{2n}$ and M is biholomorphic to the complex torus T^n_c.
Acknowledgement: The author would like to thank Ngaiming Mok for helpful discussions concerning the Poincare-Lelong equation. The paper is finished during author’s visit to the Max-Plack Institut für Mathematik. The author is very grateful to the institute for financial support.

2. Proof of Theorems 1.1 and 1.2

By [DPS93], a nef Kähler manifold M admits a family of Kähler metrics ω_ε in the same Kähler class $[\omega]$ with Ricci curvature $\text{Ric}.(\omega_\varepsilon) \geq -\varepsilon \omega$, where $\varepsilon \in (0,1)$. The diameters of this family may not have a uniform upper bound. In other words, the pointed Gromov-Hausdorff limit of (M,ω_ε) may not be compact. Because of this, many techniques in metric geometry do not apply to this situation. To overcome this difficulty, [DPS93] obtained the following key lemma.

Lemma 2.1 (DPS93). Let M be a nef Kähler manifold. Let $U \subset \tilde{M}$ (the universal covering of M) be a compact subset. Then, $\forall \delta > 0$, there exists a closed subset $U_{\varepsilon,\delta} \subset U$ such that
\begin{align*}
(2.1.1) \quad \text{vol}_{\omega}(U - U_{\varepsilon,\delta}) < \delta; \\
(2.1.2) \quad \text{diam}_{\omega}(U_{\varepsilon,\delta}) \leq C/\sqrt{\delta}.
\end{align*}
where C is a constant independent of ε and δ.

For convenience let us recall the definition of equivariant Gromov-Hausdorff distance (cf. [FY] for details).

Let \mathfrak{M} (resp. \mathfrak{M}_{eq}) denote the set of all isometry classes of pointed metric spaces (X,p) (resp. triples (X,Γ,p)), such that, for any D, the metric ball $B_p(D,X)$ of radius D is relatively compact and such that X is a length space [GLP][FY] (resp. $(X,p) \in \mathfrak{M}$ and Γ is a closed subgroup of isometries of X).

Let $\Gamma(D) = \{\gamma \in \Gamma : d(\gamma p, p) < D\}$.

Definition 2.2. Let $(X,\Gamma,p),(Y,\Lambda,q) \in \mathfrak{M}_{eq}$. An ε-equivariant pointed Hausdorff approximation stands for a triple (f,φ,ψ) of maps $f : B_p(\frac{1}{\varepsilon},X) \to Y$, $\varphi : \Gamma(\frac{1}{\varepsilon}) \to \Lambda(\frac{1}{\varepsilon})$, and $\psi : \Lambda(\frac{1}{\varepsilon}) \to \Gamma(\frac{1}{\varepsilon})$ such that
\begin{align*}
(2.2.1) \quad f(p) = q; \\
(2.2.2) \quad \text{the } \varepsilon\text{-neighborhood of } f(B_p(\frac{1}{\varepsilon},X)) \text{ contains } B_q(\frac{1}{\varepsilon},Y);
\end{align*}
\[(2.2.3) \text{ if } x, y \in B_p \left(\frac{1}{\varepsilon}, X \right), \text{ then } \]
\[|d(f(x), f(y)) - d(x, y)| < \varepsilon;\]
\[(2.2.4) \text{ if } \gamma \in \Gamma \left(\frac{1}{\varepsilon} \right), x \in B_p \left(\frac{1}{\varepsilon}, X \right), \gamma x \in B_p \left(\frac{1}{\varepsilon}, X \right), \text{ then } \]
\[d(f(\gamma x), \varphi(\gamma)(f(x))) < \varphi;\]
\[(2.2.5) \text{ if } \mu \in \Lambda \left(\frac{1}{\varepsilon} \right), x \in B_p \left(\frac{1}{\varepsilon}, X \right), \psi(\mu)(x) \in B_p \left(\frac{1}{\varepsilon}, X \right), \text{ then } \]
\[d(f(\psi(\mu)(x)), \mu f(x)) < \varepsilon.\]

The equivariant pointed Gromov-Hausdorff distance \(d_{eGH}(\langle X, \Gamma, p \rangle, \langle Y, \Lambda, q \rangle)\) stands for the infimum of the positive numbers \(\varepsilon\) such that there exist \(\varepsilon\)-equivariant pointed Hausdorff approximations from \(\langle X, \Gamma, p \rangle\) to \(\langle Y, \Lambda, q \rangle\) and from \(\langle Y, \Lambda, q \rangle\) to \(\langle X, \Gamma, p \rangle\).

\textbf{Proof of Theorem 1.1.} Let \(\omega_k\) be a sequence of Kähler metrics on \(M\) in the same Kähler class with Ricci curvature \(\geq -\frac{1}{k}\omega\). Let \(\tilde{M}_k\) be the Riemannian covering space of \(M_k\) (the manifold \(M\) with the Kähler metric \(\omega_k\)). Using Lemma 2.1 Paun [Pa2] proved that there is an open subset \(\tilde{U}_k \subset \tilde{M}_k\) of diam \(\omega_k(\tilde{U}_k) \leq C\) such that the homomorphism \(\pi_1(U_k) \to \pi_1(M_k)\) is surjective, where \(U_k\) is the image of \(\tilde{U}_k\) in \(M_k\), \(C\) is a universal constant independent of \(k\).

For convenience let \(G = \pi_1(M)\), and let \(\Gamma = G/[G,G]\). Consider \(\tilde{M}_k = \tilde{M}_k/[G,G]\). By assumption \(\mathbb{Z}^{2n} \subset \Gamma\) acts on \(\tilde{M}_k\) by isometry. By a lemma of Gromov [GLP] (compare [Pa 2]) it follows that there is a finite index torsion free subgroup \(\Gamma_k\) of \(\Gamma\) such that, fixing a base point \(p_k \in \tilde{U}_k \subset \tilde{M}_k\),

\[(2.3.1) \text{ the geometric norm of any non-trivial element of } \Gamma_k \text{ is at least } C.\]

\[(2.3.2) \Gamma_k \text{ is generated by } \gamma_1, \cdots, \gamma_{2n} \text{ so that the geometric norm of every } \gamma_i \text{ is at most } 2C.\]

Since \(\Gamma_k\) acts on \(\tilde{M}_k\) by isometry, the quotient space \(\tilde{M}_k/\Gamma_k\) is a finite Riemannian covering space of \(M_k\). Because the Ricci curvature of \(\tilde{M}_k\) is bounded from below, by the Gromov compactness theorem (cf. [FY]) the pointed spaces converge

\[(\tilde{M}_k, \Gamma_k, p_k) \xrightarrow{d_{eGH}} (X, \Gamma_\infty, q)\]

in the equivariant Gromov-Hausdorff topology when \(k\) tends to infinity. By (2.3.1) it is easy to see that the isometric action of \(\Gamma_\infty\) on \(X\) is discrete and effective. By the splitting theorem [ChCo] the limit space \(X = Y \times \mathbb{R}^{\ell}\), where \(Y\) contains no line. By [GLP] it is well-known the Hausdorff dimension of \(X\) is at most \(2n\), therefore \(\ell \leq 2n\). We first need

\textbf{Lemma 2.3.} \(\Gamma_\infty \cong \mathbb{Z}^{2n}\).
Proof of Lemma 2.3. By definition, there are maps \(\varphi_k : \Gamma_k(k) \to \Gamma_\infty(k) \), \(\psi_k : \Gamma_\infty(k) \to \Gamma_k(k) \) and a \(\frac{1}{k} \)-Hausdorff approximation \(f_k : B_{p_k}(k, \bar{M}_k) \to B_{q}(k, X) \) satisfying (2.2.1)-(2.2.5).

We first claim that \(\varphi_k \) is injective for sufficiently large \(k \). If not, there are two elements \(\gamma_k \neq \lambda_k \in \Gamma_k(k) \) such that \(\varphi(\gamma_k) = \varphi(\lambda_k) \) for any \(k \). Let \(\mu_k = \varphi(\gamma_k) = \varphi(\lambda_k) \). Put \(x = p_k \). By (2.2.4) we get that \(d(f_k(\lambda_k x), \mu_k f_k(x)) < \frac{1}{k} \) and \(d(f_k(\gamma_k x), \mu_k f_k(x)) < \frac{1}{k} \). Therefore, \(d(f_k(\lambda_k x), f_k(\gamma_k x)) < \frac{2}{k} \) and so \(d(\lambda_k \gamma_k^{-1} x, x) = d(\lambda_k x, \gamma_k x) < \frac{4}{k} \) since \(f_k \) is a \(\frac{1}{k} \)-Hausdorff approximation. A contradiction to (2.3.1).

Secondly, we claim that \(\varphi_k(\gamma_i \gamma_j) = \varphi_k(\gamma_i) \varphi_k(\gamma_j) = \varphi_k(\gamma_j) \varphi_k(\gamma_i) \) for any \(\gamma_i, \gamma_j \in \Gamma_k(k) \) so that \(\gamma_i \gamma_j \in \Gamma_k(k) \). In fact, by (2.2.4) again we get that \(d(\varphi_k(\gamma_i \gamma_j) f_k(x), f_k(\gamma_i \gamma_j x)) < \frac{1}{k} \); \(d(\varphi_k(\gamma_i) \varphi_k(\gamma_j) f_k(x), \varphi_k(\gamma_i) f_k(\gamma_j x)) < \frac{1}{k} \) and \(d(f_k(\gamma_i \gamma_j x), \varphi_k(\gamma_i) f_k(\gamma_j x)) < \frac{1}{k} \). Thus, \(d(\varphi_k(\gamma_i \gamma_j) f_k(x), f_k(\gamma_i) \varphi_k(\gamma_j) f_k(x)) < \frac{2}{k} \). For the same reason as above, by (2.3.1) it follows that \(\varphi_k(\gamma_i \gamma_j) = \varphi_k(\gamma_i) \varphi_k(\gamma_j) \). The claim follows.

Similar argument applies to show that \(\varphi_k(\gamma_i^{-1}) = \varphi_k(\gamma_i)^{-1} \), if \(\gamma_i, \gamma_i^{-1} \in \Gamma_k(k) \).

Next we verify that \(\varphi_k : \Gamma_k(k) \to \Gamma_\infty(k) \) is also surjective.

We argue by contradiction. Assume such an element \(\mu_k \in \Gamma_\infty(k) \). By (2.2.5) \(d(f_k(\psi(\mu_k)(x), \mu_k f_k(x)) < \frac{1}{k} \). By (2.2.4) \(d(f_k(\psi(\mu_k)(x), \varphi_k(\psi(\mu_k)) f_k(x)) < \frac{1}{k} \). Therefore, \(d(\varphi_k(\psi(\mu_k)) f_k(x), \mu_k f_k(x)) < \frac{2}{k} \). By (2.3.1) this implies that \(\mu_k = \varphi_k(\psi(\mu_k)) \). A contradiction.

For sufficiently large \(k \), let \(\Gamma_0 \) be the subgroup of \(\Gamma_\infty \) generated by \(\varphi_k(\gamma_1), \ldots, \varphi_k(\gamma_{2n}) \). It may be verified easily that this does not depend on the choice of \(k \). By (2.3.2) and the above \(\Gamma_0 \) is a commutative group of rank \(2n \). Since \(\varphi_k \) is surjective, \(\Gamma_0 = \Gamma_\infty \). The desired result follows. \(\square \)

To continue the proof of Theorem 1.1, we first prove that \(X = \mathbb{R}^{2n} \). It suffices to show that \(\ell = 2n \).

We argue by contradiction. Assume \(\ell < 2n \).

Since \(\Gamma_\infty \) preserves the splitting, there is a well-defined homomorphism \(p : \Gamma_\infty \to \text{Isom}(\mathbb{R}^\ell) \). Let \(\Gamma_{0, \infty} \) denote the kernel of \(p \). By the generalized Bieberbach theorem (cf. [FY]) the image \(p(\Gamma_{0, \infty}) \) has rank at most \(\ell \). By Lemma 2.3 \(\Gamma_{0, \infty} \) has rank \(\geq 1 \). For a nontrivial element of \(\mu \in \Gamma_{0, \infty} \), by (2.2.5) there is a sequence of element \(\gamma_k = \psi_k(\mu) \in \Gamma_k \) (of infinite order) such that the \(\gamma_k \)-action on \(\bar{M}_k \) converges to the action of \(\mu \) on \(Y \times \mathbb{R}^\ell \). Observe that a minimal geodesic representation in \(\bar{M}_k/\Gamma_k \) gives rise to a line in \(\bar{M}_k \), on which \(\gamma_k \) acts by deck transformation. This sequence of lines converges to a line in \(Y \).
on which \(\mu \) acts by translation. Therefore the line lies in \(Y \) since \(\mu \in \Gamma_{0,\infty} \) acts trivially on the factor \(\mathbb{R}^\ell \). A contradiction to the assumption that \(Y \) has no line. Hence \(\ell = 2n \).

Finally, by (2.3.2) we see that \(\mathbb{R}^{2n}/\Gamma_\infty \) is compact. By [FY] Lemma 3.4 \(\tilde{M}_k/\Gamma_k \) converges to \(\mathbb{R}^{2n}/\Gamma_\infty \). This shows that \(\tilde{M}_k/\Gamma_k \) has uniformly bounded diameter. Therefore, \(\tilde{M}_k/\Gamma_k \) has almost non-negative Ricci curvature in Gromov’s sense [GLP]. By [Co] we conclude that \(\tilde{M}_k/\Gamma_k \) is homeomorphic to a torus \(T^{2n} \), and so is \(M \). By Poincare-Lelong equation it follows that the Albanese map has no zeros and is actually a biholomorphism. This completes the proof of Theorem 1.1. \(\square \)

Remark 2.4. The above proof actually shows that a sequence of Kähler metrics on \(T^{2n} \) in the same Kähler class \([\omega]\) with Ricci curvature \(\geq -\varepsilon \omega \) has uniformly bounded diameter, and so the metrics do not collapse.

Let \(G = \pi_1(M) \). Consider the lower central series
\[
\cdots G_2 \subset G_1 \subset G_0 = G
\]
where \(G_1 = [G,G] \) and \(G_2 = [G_1,G] \). Let \(G'_2 \subset G \) be the normal subgroup such that \(G/G'_2 = (G/G_2)/\text{torsion} \). Assume \(H_1(G)/\text{torsion} \cong \mathbb{Z}^{2n-2} \), and \(\text{rank}(G/G'_2) = 2n - 2 + m \). By [Pa2] we may assume elements \(\gamma_1, \ldots, \gamma_{2n-2}; \alpha_1, \ldots, \alpha_m \in G \) which generate a finite index subgroup \(\Gamma'_k \subset G/G'_2 \) and satisfy (2.3.1), (2.3.2) and

(2.5.1) the geometric norms of \(\alpha_1, \ldots, \alpha_m \) are all less than \(2C \).

We warn that it is not true if we require that \(\alpha_1, \ldots, \alpha_m \) satisfy (2.3.2).

Now we start the proof of Theorem 1.2. We will only sketch the main steps since the proof follows the same line as the previous one.

Proof of Theorem 1.2. Let \(\tilde{M}'_k = \tilde{M}_k/G'_2 \). Consider the triple \((\tilde{M}'_k,\Gamma'_k,p_k) \). The pointed spaces converge
\[
(\tilde{M}'_k,\Gamma'_k,p_k) \xrightarrow{d_G} (X,\Gamma'_\infty,q)
\]

Exactly the same argument in the previous proof implies that \(X = Y \times \mathbb{R}^{2n-2} \) and \(Y \) contains at least a line since the group generated by \(\{\alpha_1, \ldots, \alpha_m\} \) converges to a non-trivial isometry group acting on \(X \) acting trivially on \(\mathbb{R}^{2n-2} \), where \(Y \) is a length space of Hausdorff dimension at most two. However, since (2.3.2) is not satisfied for the \(\alpha_i \)'s, the limit group \(\Gamma'_\infty \) may not be discrete (compare [FY] example 3.11). Therefore, \(X = Y_0 \times \mathbb{R}^{2n-1} \) where the Hausdorff dimension of \(Y_0 \) is at most 1.

If \(Y_0 \) is compact, e.g., zero dimensional, by (2.3.2) and (2.5.1) it follows that the limit space \(Y_0 \times \mathbb{R}^{2n-1}/\Gamma'_\infty \) is compact. Therefore, the diameters of the sequence \(\tilde{M}_k/\Gamma_k \).
have a uniform upper bound, so are the diameters of M_k (since M_k is a finite isometric quotient of M_k'/Γ_k'). By [Pa3] it follows that the Albanese map is surjective.

If Y_0 is 1-dimensional and non-compact, clearly, Y_0 has two ends and thus Y_0 contains a line. By [ChCo] once again $Y_0 = \mathbb{R}$. This proves that $X \cong \mathbb{R}^{2n}$. Since $m \geq 2$, the rank of Γ'_∞ is at least $2n$ (may be non-discrete). By the generalized Bieberbach theorem the quotient $\mathbb{R}^{2n}/\Gamma'_\infty$ has to cocompact. For the same reasoning as above the desired result follows.

□

References

[Ab] T. Aubin, Équations du type Monge-Ampère sur les variétés kahlériennes compactes, Bull. Sci. Math. France, 102 (1978), 63-95

[Ca] F. Campana, Remarques sur les groupes de Kähler nilpotents, 28 (1995), 307-316

[ChCo] J. Cheeger; T. Colding, Lower bounds on Ricci curvature and almost rigidity of wrapped products, Ann. Math., 144 (1996), 189-237

[Co] T. Colding, Ricci curvature and volume convergence, Ann. Math., 145 (1997), 477-501

[DPS 93] J.P. Demailly, T. Peternell, M. Schneider, Kähler manifolds with numerically effective Ricci class, Comp. Math., 89 (1993), 217-240

[DPS 94] J.P. Demailly, T. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geometry, 3 (1994), 295-345

[FY] K. Fukaya; T. Yamaguchi, The fundamental groups of almost non-negatively curved manifolds, Ann. of Math. 136 (1992), 253-333

[Gr] M. Gromov, Group of polynomial growth and expanding maps, Publ. Math. I.H.E.S., 53(1981), 53-73

[GLP] M. Gromov, J. Lafontaine; P.Pansu, Structures metriques pour les varietes riemanniennes, CedicFernand Paris, 1981

[Mo] N. Mok, Bounds on the dimension of L^2-holomorphic sections of vector bundles over complete Khler manifolds of finite volume, Math. Z. 191 (1986), 303–317

[Pa1] M. Paun, Sur le groupe fondamental des variétés kählériennes compactes à classe de Ricci numériquement effective, C. R. Acad. Paris, t. 324 (1997), 1249-1254

[Pa2] M. Paun, Sur variétés kählériennes compactes à classe de Ricci numériquement effective, Bull. Sci. Math., 122 (1998), 83-92
[Pa3] M. Paun, *On the Albanese map of compact Kähler manifolds with numerically effective Ricci curvature*, Comm. Anal. Geom. 9(2001), 35-60

[Ya] S. T. Yau, *On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I*, Comm. Pure and Appl. Math., 31(1978), 339-411

[Zh] Q. Zhang, *On projective manifolds with nef anticanonical bundle*, J. reine. angew. Math., 478(1996), 57-60

NANKAI INSTITUTE OF MATHEMATICS, WEIJIN ROAD 94, TIANJIN 300071, P.R.CHINA
E-mail address: ffang@nankai.edu.cn