Rafael Batista Louzada

Revisão taxonômica e filogenia de *Orthophytum* Beer (Bromeliaceae, Bromelioideae)

Taxonomic revision and phylogeny of *Orthophytum* Beer (Bromeliaceae, Bromelioideae)

Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências Biológicas, na área de Botânica.

Orientadora: Dra. Maria das Graças Lapa Wanderley

São Paulo
2012
Ficha Catalográfica

Louzada, Rafael Batista

Revisão taxonômica e filogenia de Orthophytum Beer (Bromeliaceae, Bromelioidae)

Número de páginas: xv, 186

Tese (Doutorado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Botânica.

1. Bromeliaceae, 2. Orthophytum, 3. Filogenia

I. Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica.

Banca examinadora:

_____________________________ ______________________________
Prof(a). Dr(a). Prof(a). Dr(a).

_____________________________ ______________________________
Prof(a). Dr(a). Prof(a). Dr(a).

Prof(a). Dr(a).

Prof(a). Dr(a).

Prof(a). Dr(a).

Prof(a). Dr(a).

Prof(a). Dr(a).

Prof(a). Dr(a).

Profa. Dra. Maria das Graças Lapa Wanderley

Orientadora
Com amor à Maria Cláudia, aos meus pais Paulo e Regina, irmão Décio e tia Vera, dedico.
Agradecimentos

É com muito prazer que agradeço à minha orientadora e amiga Dra. Maria das Graças Lapa Wanderley, a quem devo toda minha formação em Botânica. Muito obrigado pelo respeito, amizade, carinho, incentivo, críticas e pela companhia no laboratório, nas viagens de coleta e nas visitas aos herbários nos EUA.

Agradeço às instituições que tornaram esse trabalho possível. À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pela bolsa de doutorado concedida, ao Deutscher Akademischer Austausch Dienst (DAAD) pelo auxílio financeiro durante o estágio no exterior, à International Association for Plant Taxonomy (IAPT) por financiar parte da visita aos herbários dos EUA e à Bromeliad Society International pelo auxílio concedido para parte do trabalho de campo. Ao Instituto Senckenberg e Museu de História Natural de Frankfurt am Main pelo auxílio financeiro durante o estágio no exterior. Ao IBAMA e ao IEF-MG pelas autorizações de coleta.

Ao Dr. Georg Zizka, pela orientação durante o estágio no exterior e à Dra. Katharina Schulte pela colaboração e orientação.

À Dra. Clarisse Palma Silva pela colaboração e orientação no estudo filogenético.

À Dra. Ana Maria Benko-Iseppon por gentilmente abrir seu laboratório e pela companhia nas expedições de coleta.

Agradeço ao Instituto de Botânica, onde desenvolvi a maior parte dessa tese e onde eu me sinto em casa. À curadora Dra. Maria Cândida Henrique Mamede, e à Ana Célia Calado pela ajuda com a logística de herbário.

Ao ilustrador botânico Klei Souza, pelo ótimo trabalho realizado com os Orthophytum.

Ao Dr. Jefferson Prado pela ajuda com as dúvidas nomenclaturais.

Ao Dr. Tarciso Filgueiras pelos ensinamentos em taxonomia e pela ajuda com a edição do inglês do capítulo 3 e com o Latim.

À Dra. Lisa Campbell pela ajuda com a edição do inglês e pelas sugestões no capítulo 1.

Aos meus amigos do herbário: Fábio Pinheiro, Talisson Capistrano, Marília Duarte, Gisele Silva, Bia Caruzo, Juliana Guedes, Fátima de Souza-Buturi, Pedro Schwatsburr, Renata Sebastiani, Cíntia Vieira, Marcos Enoque, Regina Hirai, Cátnia Takeuchi, Victor Gonzalez, Rodrigo Rodrigues, Allan Pscheidt, Rafael Almeida, Rebeca Romanini, Susana Martins.
Aos meus dois grandes amigos recifenses Diego Sotero e Geyner Alves pela ajuda na extração de DNA, companhia nas coletas, amizade e pelo maravilhoso carnaval proporcionado. Valeu Brothers!!

Aos amigos de Frankfurt em especial Daniele Silvestro, Ingo Michalak, Jan Schnitzler, Gaelle Bocksberger, Daniel Cáceres, Fernando Fernandez, Marco Schimdt. Grazie, Vielen Dank, Merci, Gracias!

Ao Pedrinho e à Nara, por sempre estarem prontos a ajudar, seja nas coletas ou nos recebendo em Belo Horizonte.

Ao Rodrigo e ao Cézar pela ajuda no laboratório no Instituto de Botânica e à Carmen Jung pela ajuda no laboratório de biologia molecular do Instituto Senckenberg.

À todos os que me auxiliaram durante as expedições de coleta: Dra. Ana Paula Prata, Daniel Melo, Marlon Machado, Cecília Azevedo, Gisele Silva, Cíntia Vieira, Kátia Takeuchi, Rodrigo Oliveira, Bruno Amorim, Adalton Apro, Flávio Carmo, Oscar Ribeiro.

Aos professores: Dra. Helenice Mercier, Dr. Paulo Sano e Dr André Simões pelas sugestões durante o exame de qualificação.

Aos funcionários e pesquisadores do Instituto de Botânica: Ana Célia Calado, Cíntia Kameyama, Claudinéia Inácio, Gerlene L. Esteves, Inês Cordeiro, Jefferson Prado, Lucia Rossi, Maria Margarida R.F. Melo, Marie Sugiyama, Rosângela Bianchini e Sonia Aragaki.

Ao Desembargador Elton Leme pelas plantas, bibliografias e fotografias cedidas.

Aos meus pais Regina e Paulo, meu irmão Décio, minha tia Vera por todo incentivo, amor e carinho.

Por fim, à minha esposa Maria Cláudia por toda ajuda durante esses intermináveis quatro anos, além de todo amor, carinho, incentivo e paciência. Te amo!
4. Orthophytum zononii ... 64
5. Orthophytum diamantinense .. 69
6. Orthophytum eddie-estevesii .. 71
7. Orthophytum graomogolense .. 73
8. Orthophytum mello-barretoi .. 75
9. Orthophytum piranianum ... 77
10. Orthophytum schulzianum .. 80
11. Orthophytum alvimii ... 86
12. Orthophytum duartei ... 88
13. Orthophytum fosterianum ... 89
14. Orthophytum grossiorum ... 91
15. Orthophytum gurkenii ... 93
16. Orthophytum lanuginosum .. 95
17. Orthophytum magalhaesii ... 96
18. Orthophytum boudetianum ... 103
19. Orthophytum estevesii .. 104
20. Orthophytum guaratingense .. 106
21. Orthophytum pseudostoloniferum ... 107
22. Orthophytum stratiforme ... 108
23. Orthophytum sucrei ... 110
24. Orthophytum baranhense ... 116
25. Orthophytum elegans ... 117
26. Orthophytum glabrum ... 118
27. Orthophytum horridum ... 122
28. Orthophytum leprosum ... 124
29. Orthophytum argentum ... 130
30. Orthophytum atalaiense .. 133
31. Orthophytum braunii ... 134
32. Orthophytum cearense .. 136
33. Orthophytum conquistense .. 137
34. Orthophytum disjunctum ... 139
35. Orthophytum erigens ... 141
36. Orthophytum falconii ... 143
37. Orthophytum harleyi ... 144
38. Orthophytum jabrense ... 146
39. Orthophytum jacaracense ... 147
40. Orthophytum lemei .. 148
41. Orthophytum macroflorum .. 151
42. Orthophytum maracasense .. 152
43. Orthophytum riocontense .. 155
44. Orthophytum saxicola ... 157
45. Orthophytum toscanoi ... 159
46. Orthophytum triunfense ... 160
Espécies duvidosas .. 169
Lista de coletores ... 171
CONSIDERAÇÕES FINAIS ... 176
APÊNDICES .. 179
LISTA DE FIGURAS

INTRODUÇÃO GERAL

Fig. 1. Árvore de consenso estrito da análise de Máxima Parcimônia de Givnish et al. (2007) baseado em sequências de ndhF, com a proposta das relações entre as subfamílias. Números acima dos ramos são valores de bootstrap; números entre parêntese indicam o número de táxons utilizados na análise (extraído de Givnish et al. 2011).

CAPÍTULO 1

Fig. 1. A-U. Diversity of Orthophytum. A. O. argentum. B. O. leprosum. C. O. boudetianum. D. O. braunii. E. O. maracasense. F. O. albopictum. G. O. conquistense. H. O. humile. I. O. disjunctum. J. O. eddie-estevessi. K. O. foliosum. L. O. magalhaesii. M. O. glabrum. N. O. hatschbachii. O. O. ophiuroides. P. O. ulei. Q. O. graomogolense. R. O. grossiorum. S. O. horridum. T. O. sucrei. U. O. lanuginosum (Fotos R.B. Louzada).

Fig. 2. Phylogram of combined PHYC, trnL-trnF and psbA-trnH data. Numbers above the branches represent posterior probabilities (PP) and below these branches are bootstrap values (BS).

Fig. 3. Cladogram of Lapanthus/Cryptanthus/Orthophytum mapping the presence and absence of a peduncle.

CAPÍTULO 3

Fig. 1. A-B. Lapanthus vidaliorum. A. Habitat. B. Habitat in the wild. C. Lapanthus duartei in the wild. D. Lapanthus itambensis (Photo: A-B Otávio Ribeiro).

Fig. 2. Holotype of Lapanthus vidaliorum.

Fig. 3. Distribution map of Lapanthus vidaliorum, Lapanthus duartei, e Lapanthus itambensis.

CAPÍTULO 4

Fig. 1. Mapa de distribuição de geográfica de Orthophytum.
Fig. 2. A–L. *Orthophytum foliosum*. A. Hábito. B. Glomérulo. C. Bráctea primária inferol. D. Bráctea primária superior. E. Bráctea floral carenada. F. Flor completa. G. Sépala anterior. H. Sépala lateral carenada. I. Sépala lateral com estame unido à base. J. pétala mostrando os apêndices petalíneos, calosidades laterais e estame adnato. K. Ovário com placentação axial, estilete e estigma. L. detalhe do estigma. *(Louzada et al. 13).*

Fig. 3. A–J. *Orthophytum zanonii*. A. Hábito. B. Bráctea floral. C. Glomérulo com duas flores. D. Flor completa. E. Sépala. F. Sépala mostrando estame unido pela base. G. Pétala mostrando os apêndices petalíneos e as calosidades laterais aos estames. H. detalhe dos apêndices petalíneos. I. Estilete e estigma. J. Detalhe do estigma. *(Louzada et al. 18).*

Fig. 4. A. *Orthophytum foliosum*. B. *O. pseudovagans* (Foto L.F. Magnago). C. *O. zanonii*. .. 67

Fig. 5. Mapa de distribuição geográfica de *Orthophytum foliosum, O. pseudovagans* e *O. zanonii.* 68

Fig. 6. A–E. *Orthophytum eddie-estevesii*. A. Hábito. B. Flor completa. C. Vista lateral da sépala anterior. D. Vista lateral da sépala posterior. E. Pétala com ápice obtuso-cuculado, mostrando os apêndices petalíneos fimbriados, duas calosidades laterais e estame adnato. F–K. *O. mello-barretoi*. F. Hábito. G. Detalhe do ovário glabro, estilete e estigma. H. Bráctea floral com ápice lanoso-lepidoto. K. Pétala com ápice obtuso-cuculado, mostrando os apêndices petalíneos fimbriados, duas calosidades laterais e estame adnato. L–P. *O. piranianum*. L. Hábito. M. Bráctea floral sem carena. N. Bráctea floral carenada. O. Pétala com ápice obtuso-cuculado, mostrando os apêndices petalíneos fimbriados, duas calosidades laterais e estame adnato. P. Ovário lanoso-lepidoto. *(A–E, Louzada s.n. SP 440868; F–K, Louzada & Medeiros 84; L–P, Rapini et al. 1096).*

Fig. 7. A–E. *Orthophytum graomogolense*. A. Hábito. B. Bráctea floral. C. Flor completa. D. Sépala anterior. E. Sépala lateral. F–L. *O. diamantinense*. F. Hábito. G. Bráctea floral. H. Flor completa. I. Sépala anterior. J. Sépala lateral. K. Pétala com ápice obtuso-cuculado, mostrando os apêndices petalíneos fimbriados, duas calosidades laterais e estame adnato. L–P. *O. piranianum*. L. Hábito. M. Bráctea floral sem carena. N. Bráctea floral carenada. O. Pétala com ápice obtuso-cuculado, mostrando os apêndices petalíneos fimbriados, duas calosidades laterais e estame adnato. P. Ovário lanoso-lepidoto. *(A–E, Louzada et al. 65; F–L, Louzada et al. 163).*

Fig. 8. A. *Orthophytum eddie-estevesii*. B. *O. graomogolense*. C. *O. mello-barretoi*. D. *O. piranianum*. E. *O. diamantinense*. .. 83

Fig. 9. Mapa de distribuição geográfica de *Orthophytum diamantinense, O. eddie-estevesii, O. graomogolense, O. mello-barretoi, O. piranianum e O. schulzianum.* .. 84

Fig. 10. A–C. *Orthophytum alvimii*. A. Folha. B. Bráctea floral. C. Flor completa. D–F. *O. fosterianum*. D. Folha. E. Bráctea floral. F. Flor completa. G–J. *O. grossorum*. G. Hábito. H. Folha. I. Bráctea floral. J. Flor completa. K–M. *O. gurkenii*. K. Folha. L. Bráctea floral. M. Flor completa. N–Q. *O. lanuginosum*. N. Hábito. O. Folha. P. Bráctea floral. Q. Flor completa. R–T. *O. magalhaesii*. R. Folha.
Fig. 11. A–C. Orthophytum alvimii. A. Detalhe da inflorescência. B. Hábito em cultivo. C. Hábito na natureza. D–E. O. fosterianum. D. Hábito em cultivo. E. Habitat. F–G. O. gurkenii. F. Hábito estéril, indivíduos verdes e vermelhos. G. Hábito em cultivo. H–I. O. lanuginosum. H. Hábito na natureza. I. Detalhe da inflorescência. J. O. grossiorum. K–L. O. magalhaesii. K. Hábito na natureza. L. Detalhe da inflorescência.

Fig. 12. Mapa de distribuição geográfica de Orthophytum alvimii, O. duartei, O. fosterianum, O. grossiorum, O. gurkenii, O. lanuginosum e O. magalhaesii.

Fig. 13. A–E. Orthophytum boudetianum. A. Hábito. B. Bráctea floral. C. Detalhe do indumento lepidoto na face abaxial da lâmina foliar. D. Sépala anterior. E. Sépala lateral. F–I. O. estevesii. F. Hábito. G. Bráctea floral. H. Sépala lateral. I. Sépala anterior. J–M. O. striatifolium. J. Hábito. K. Bráctea floral. L. Sépala anterior. M. Sépala lateral. N–S. O. sucrei. N. Hábito. O. Bráctea floral. P. Vista lateral da sépala anterior com estame oposto. Q. Sépala lateral. R. Pétala com ápice obtuso, mostrando os apêndices petalíneos fimbriados, duas calosidades laterais e estame adnato. S. Detalhe do estigma. (A–E, Louzada 135; F–I, Pereira s.n. HB 79629; J–M, Louzada et al. 15; N–S, Louzada 136).

Fig. 14. A–B. Orthophytum boudetianum. A. Hábito na natureza. B. detalhe da inflorescência. C. O. striatifolium. D. O. estevesii. E–F. O. sucrei. E. Habitat. F. detalhe da inflorescência. (Foto: D. Elton M.C. Leme).

Fig. 15. Mapa de distribuição geográfica de O. boudetianum, O. estevesii, O. pseudostoloniferum, O. striatifolium, O. sucrei e O. guaratingense.

Fig. 16. A–E. Orthophytum glabrum. A. Hábito. B. Espiga. C. Bráctea floral. D. Sépala anterior. E. Sépala lateral. F–J. O. horridum. F. Hábito. G. Bráctea floral. H. Sépala anterior. I. Sépala lateral. J. Pétala, mostrando apêndices petalíneos fimbriados, duas calosidades laterais e estame adnato. K–N. O. leprosum. K. Hábito. L. Bráctea floral. M. Sépala anterior. N. Sépala lateral. (A–E, Louzada & Medeiros 139; F–J, Louzada et al. 89; K–N, Louzada & Medeiros 141).

Fig. 17. A–B. Orthophytum glabrum. A. Detalhe da inflorescência. B. Hábito na natureza. C–D. O. horridum. C. Hábito na natureza. D. Detalhe da inflorescência. E–F. O. leprosum. E. Hábito na natureza. F. Detalhe da inflorescência.

Fig. 18. Mapa de distribuição geográfica de Orthophytum buranhense, O. elegans, O. glabrum, O. horridum e O. leprosum.

Fig. 19. A–I. Orthophytum argentum. A. Hábito. B. Flor completa com bráctea floral. C. Bráctea floral. D. Sépala anterior. E. Sépala lateral carenada. F. Sépala lateral com estame oposto. G. Pétala.
com estame adnato, calosidades laterais e apêndices petalíneos. H. Corte longitudinal da flor mostrando a sépala lateral com estame oposto, pétala com estame adnato, calosidades laterais e apêndices petalíneos, e gineceu mostrando o estilete, estigma e ovário com placentação axial. I. Detalhe do estigma. (Louzada et al. 110).

Fig. 20. Fig. 20. A–C. Orthophytum braunii. A. Hábito. B. Sépala anterior. C. Sépala lateral. D–G. O. conquistense. D. Hábito. E. Flor completa. F. Sépala anterior. G. Sépala lateral. H–K. O. saxicola. H. Hábito. I. Bráctea floral subtendendo um botão floral. J. Sépala anterior. K. Sépala lateral. (A–C, Machado & Oliveira 50; D–G, Machado 277; H–K, Louzada et al. 122).

Fig. 21. A–D. Orthophytum falconii. A. Hábito. B. Bráctea floral. C. Sépala anterior. D. Sépala lateral. E–I. O. lemei. E. Hábito. F. Bráctea floral. G. Sépala lateral. H. Sépala lateral. I. Pétala com ápice obtuso, mostrando os apêndices petalíneos fimbriados, duas calosidades laterais e estame adnato. J–M. O. jabrense. J. Hábito. K. Bráctea floral. L. Sépala anterior. M. Sépala lateral. (A–D, Reys & Falcon s.n. HB 89876; E–I, Louzada et al. 186; J–M. Pontes 155).

Fig. 22. A–F. Orthophytum macroflorum. A. Hábito. B. Bráctea floral. C. Sépala lateral. E. Pétala com ápice obtuso, mostrando os apêndices petalíneos fimbriados, duas calosidades laterais e estame adnato. F. Detalhe do estigma. G–J. O. maracasense. G. Hábito. H. Sépala anterior. I. Sépala lateral. J. Pétala com ápice obtuso, mostrando os apêndices petalíneos fimbriados, duas calosidades laterais e estame adnato. (A–F, Machado s.n. SP 441733; G–J, Louzada et al. 150).

Fig. 23. A. Orthophytum argentum na natureza. B. O. braunii em cultivo. C. O. disjunctum na natureza. D. O. conquistense em cultivo. E. O. harleyi em cultivo. F. O. lemei na natureza. G. O. macroflorum em cultivo.

Fig. 24. Mapa de distribuição geográfica de Orthophytum atalaiense, O. cearense, O. disjunctum, O. jabrense, O. maracasense e O. triunfense.

Fig. 25. Mapa de distribuição geográfica de Orthophytum argentum, O. braunii, O. conquistense, O. erigens, O. falconii, O. harleyi, O. jacaraciense, O. lemei, O. macroflorum, O. riocontense e O. saxicola.
LISTA DE TABELAS

CAPÍTULO 1

Table 1. Studied material. Abbreviations: B, Herbarium of Botanical Garden of Berlin; FR, Herbarium Senckenbergianum; HB, Herbarium Bradeanum; IBt, Instituto de Botânica; K, Herbarium of Royal Botanical Garden, Kew; MBML, Herbarium of Museu de Biologia Melo Leitão; SP, Herbarium of Instituto de Botânica; WU, Herbarium of Vienna University. 26

CAPÍTULO 3

Table 1. Comparison of diagnostic characters in Lapanthus species. .. 44
RESUMO

Louzada, R.B. Revisão taxonômica e filogenia de Orthophytum Beer (Bromeliaceae, Bromelioideae).

Orthophytum Beer, inclui 46 espécies distribuídas no leste do Brasil desde o estado do Ceará ao norte até os estados de Minas Gerais e Espírito Santo ao sul. Suas espécies são caracterizadas por serem plantas rupícolas, raramente terrícolas, crescendo sobre afloramentos rochosos graníticos ou quartzíticos. O presente estudo teve como objetivos reconstruir a filogenia e realizar a revisão taxonômica do gênero, sendo os resultados apresentados em quatro capítulos. O primeiro capítulo conta com um estudo filogenético baseado em sequencias de DNA do cloroplasto (psbA-trnH e trnL-trnF) e nuclear (phytochrome C) de 40 espécies de Orthophytum, oito de Cryptanthus e duas de Lapanthus. A análise dos dados combinados não foi suficientemente informativa para determinar o monofiletismo do gênero, contudo, foi possível testar grupos informais infragenéricos. Além disso, é discutida a importância taxonômica do padrão de inflorescência para o gênero Orthophytum. O segundo capítulo apresenta o restabelecimento do gênero Sincoraea, baseado no monofiletismo e na morfologia das espécies que compõem esse gênero. Ademais, são apresentadas novas combinações e um sinônimo novo. O terceiro capítulo, apresenta a combinação nova de O. vidaliorum no recém descrito gênero Lapanthus. Por fim, o quarto capítulo apresenta a revisão taxonômica das 46 espécies reconhecidas para Orthophytum. O tratamento taxonômico conta com descrições para o gênero e espécies, chave de identificação e comentários taxonômicos. Foram ainda confeccionados mapas de distribuição geográfica e pranchas de ilustração, incluindo desenhos esquemáticos e fotografias.

Palavras chave: Endemismo, Cadeia do Espinhaço, Sincoraea, Sistemática, Taxonomia
Louzada, R.B. Taxonomic revision and phylogeny of Orthophytum Beer (Bromeliaceae, Bromelioidae).

The genus Orthophytum Beer (Bromeliaceae) comprises 46 species geographically distributed in eastern Brazil extending from the state of Ceará in the North, to Minas Gerais and Espírito Santo in the South. The growth form of these plants is typically lithophytic, only rarely terrestrial, and granitic or quartzitic rocky outcrops constitute their favorite substrates. This work focuses on reconstructing the phylogeny of Orthophytum to clarify its relationships with closely related bromeliads, and to perform a taxonomic revision of the genus. This dissertation is structured in four chapters. The first chapter shows a phylogenetic analysis based on a molecular data set of two plastid markers (psbA-trnH e trnL-trnF) and one nuclear (phytochrome C) that includes 40 species of Orthophytum, eight of Cryptanthus and two of Lapanthus. The combined analyses were not conclusive to elucidate the monophyly of Orthophytum, however it was possible to test the infrageneric groups. The second chapter presents a reestablishment of Sicoraea genus, based on the results of the molecular analyses and on a careful evaluation of the morphological traits characterizing this group. In the third chapter, morphological characters are used to assign the species O. vidaliorum to the newly described genus Lapanthus. Finally, in the fourth chapter shows a taxonomic revision of the 46 recognized species of Orthophytum is presented. The taxonomic treatment includes descriptions of the genus and species and an identification key combined with distribution maps, detailed drawings and photo plates.

Key words: Endemism, Espinhaço Range, Sicoraea, Systematics, Taxonomy
INTRODUÇÃO GERAL

Caracterização geral de Bromeliaceae

Bromeliaceae apresenta cerca de 3200 espécies, distribuídas em 58 gêneros (Luther, 2008). É considerada a maior família de monocotiledôneas com distribuição predominantemente Neotropical, ocorrendo desde o leste do estado da Virgínia ao Texas nos EUA, passando pelo México, América Central, Caribe e América do Sul, chegando à região central da Argentina e Chile (Mez, 1934). *Pitcairnia feliciana* (A. Chev.) Harms & Mildbr., é a única exceção quanto à distribuição geográfica da família, ocorrendo na costa oeste do continente africano, resultado de uma provável dispersão à longa distância. (Smith & Downs 1974, Jaques-Felix 2000, Givnish *et al.* 2004).

A família é um exemplo de radiação adaptativa em plantas, ocupando diversos habitats, desde o nível do mar até 4000 m de elevação, com alta capacidade de colonizar ambientes mesófilos ou xéricos (Smith & Downs, 1974; Benzing, 2000; Crayn *et al.*, 2004). A grande diversidade das bromélias e a capacidade de explorar ambientes sob condições adversas estão associadas às características-chave como tricomas epidérmicos especializados na absorção de água, presença de fitotelmata, suculência e a ocorrência do mecanismo fotossintético do tipo CAM em vários representantes da família (Crayn *et al.*, 2004).

Dois grandes centros de diversidades são observados para Bromeliaceae, sendo um no Escudo das Guianas, onde se destacam gêneros relacionados à vegetação aberta, especialmente as linhagens mais plesiomórficas e o outro, na costa leste do Brasil, com predomínio de grupos associados a ambientes florestais (Smith, 1955; 1979; Givnish *et al.*, 2007).

Breve histórico taxonômico de Bromeliaceae

Bromeliaceae foi estabelecida por Jussieu (1789), no entanto a primeira monografia para a família foi proposta por Beer (1857). Essa obra antecedeu clássicas monografias, realizadas também no século XIX nas quais ocorreram várias mudanças taxonômicas (Wittmack 1888, Baker 1889).

Mez (1892), na monografia de Bromeliaceae para a *Flora Brasiliensis*, apresentou a descrição de 31 gêneros e 405 espécies para a família, distribuídas em três tribos: Bromelieae com 214 espécies distribuídas em 19 gêneros, Pitcairnieae com 89 espécies em oito gêneros e Tillandsieae com 102 espécies, reunidas em quatro gêneros. Posteriormente Mez (1896, 1934), publicou os trabalhos *Monographiae Phanerogamarum* e *Das Plazenreich*, respectivamente.

Outras importantes contribuições foram feitas por Harms (1930), na série *Die Naturlichen Pflanzenfamilien*, e por Smith (1955), na obra *Bromeliaceae of Brazil*. Smith & Downs (1974, 1977, 1979) publicaram o mais completo tratamento taxonômico sobre a família, reunidos em três volumes na
série *Flora Neotropica*. Nessa obra, Bromeliaceae é tratada seguindo a mesma proposta taxonômica de Mez (1934), utilizando as três subfamílias (Pitcairnioideae, Tillandsioideae e Bromelioideae), entretanto sem a divisão em tribos.

Histórico dos estudos filogenéticos em Bromeliaceae

Bromeliaceae apresenta características morfológicas muito peculiares, sendo por muito tempo considerada a única família da ordem Bromeliales (Cronquist, 1981; Dalhgren *et al*., 1985). Entretanto, a família é considerada monofilética com base nas análises morfológicas (Gilmartin & Brown, 1987) e moleculares (Crayn *et al*., 2004; Janssen & Bremer, 2004; Linder & Rudall, 2005; Givnish *et al*., 2007, 2010, 2011), inserida na ordem Poales (APG III, 2009).

O grupo-irmão de Bromeliaceae sempre foi muito discutido, sendo apresentadas diferentes famílias, como Velloziaceae (Gilmartin & Brown, 1987), Mayacaceae (Givnish *et al*., 2000) e Rapateaceae (Clark *et al*., 1993). Contudo, análises filogenéticas moleculares mais recentes, indicam o clado Typhaceae-Sparganiaceae como grupo-irmão de Bromeliaceae (Bremer, 2002; Davis *et al*., 2004; Givnish *et al*., 2007; Soltis *et al*., 2011). Este posicionamento é ainda controverso, como observado por Janssen & Bremer (2004) apresentando Bromeliaceae mais intimamente relacionada com o clado das famílias Xyridaceae, Eriocaulaceae e Poaceae. Givnish *et al*., (2010) entretanto, apresenta uma filogenia molecular, onde Bromeliaceae emerge fortemente sustentada como a primeira família divergente de Poales, grupo irmão das demais famílias da ordem.

Tradicionalmente Bromeliaceae é subdividida em três subfamílias (Pitcairnioideae, Tillandsioideae, Bromelioideae), classificação proposta por Harms (1930) e seguida por Smith & Downs (1974, 1977, 1979) na monumental monografia da família na Flora Neotropica. As relações filogenéticas entre as três subfamílias foram o foco de muitos estudos em Bromeliaceae no final do século XX (e.g. Gilmartin & Brown, 1987; Ranker *et al*., 1990). Porém, Terry *et al*., (1997) baseados em dados moleculares, foram os primeiros a questionar o monofiletismo das subfamílias, apresentando uma filogenia onde Pitcairnioideae emerge como um grupo polifilético.

Atualmente, com base nos novos estudos filogenéticos, foi proposta a divisão da família em oito subfamílias, resultado do desmembramento de Pitcairnioideae em seis subfamílias (Fig. 1; Givnish *et al*., 2007, 2011).

Caracterização morfológica de Bromeliaceae

A família é caracterizada por apresentar plantas herbáceas, epífitas, rupícolas ou terrícolas, com caule geralmente curto ou, mais raramente, desenvolvido. As folhas são alternas, polísticas, em geral, formando roseta. A bainha foliar é geralmente alargada, com a superfície recoberta por
tricomas especializados. Essas estruturas típicas da família são denominadas de escamas, desempenhando importante papel ecológico e fisiológico.

As folhas possuem margens inteiras, serrilhadas ou espinescentes. A inflorescência é simples ou composta, terminal ou lateral, reunindo poucas a numerosas flores dispostas em panículas, racemos ou espigas. Apresenta forma variada como capituliforme, cilíndrica, piramidal, etc. O pedúnculo pode ser longo, curto ou ausente, portando brácteas, em geral coloridas e vistosas. As flores são bissexuadas, raramente funcionalmente unissexuadas, actinomorfas a zigomorfas, trímeras, hipóginas a epíginas, geralmente subtendidas por uma bráctea vistosa (Cronquist, 1981; Dahlgren et al., 1985; Wanderley & Martins, 2007).

As sépalas são verdes ou de diferentes cores e tons (amarelas, vermelhas, róseas) até brancas, completamente livres a alto conatas. As pétalas são livres ou conatas, em geral coloridas, azuis, violeta, vermelhas, amarelas, esverdeadas a brancas. Alguns táxons apresentam na face interna das pétalas, lateralmente aos filetes dos estames, um par de apêndices petalíneos, acompanhados ou não de duas calosidades. Os estames (3+3) apresentam filetes livres ou adnatos às pétalas, ocorrendo em alguns gêneros fusão dos filetes em um tubo. As anteras são tetrasporangiadas, bitécas com deiscência rímosa (Cronquist, 1981; Dahlgren et al., 1985; Wanderley & Martins, 2007).

O grão de pólen é amplamente variável quanto ao padrão de abertura, sendo porado (duas a muitas aberturas), monocolpado ou inaperturado (Smith & Downs, 1974; Wanderley & Melhem, 1991; Moreira, 2007). O ovário varia de súpero a infero, tricarpelar, trilocular, com estilete terminal.
trífido. O estigma pode ser simples ereto, espiral-conduplicado ou lámina convoluta, ocorrendo padrões intermediários entre estes. Os óvulos são escassos ou numerosos com placentação axial, anátropos ou raramente campilótopos, crassinucelados, bitemplados com endosperma de desenvolvimento helobial. Os frutos são cápsulas septicidas ou raramente loculícidas ou bagas. No gênero *Ananas*, ocorre fruto composto. As sementes são pequenas, inapendiculadas ou com apêndices que podem ser alados ou plumosos. O embrião é em geral pequeno, cilíndrico e basal, periférico ou axilar em relação ao endosperma, sendo este rico em grãos de amido e apresenta lipídios e aleurona na periferia (Cronquist, 1981; Brown & Gilmartin, 1984; Dahlgren *et al*., 1985; Wanderley & Martins, 2007).

A polinização por pássaros é a mais referida para a família, em função do colorido das flores. Ocorre também na família polinização por morcegos, insetos ou vento como no gênero *Navia* (Kaehler *et al*., 2005).

A família é considerada monofilética pelas seguintes sinapomorfias morfológicas e citogenéticas: presença de tricomas peltados (escamas) e o número básico de cromossomos x=25 (Brown & Gilmartin, 1984, 1988, 1989).

O gênero *Orthophytum* Beer

Orthophytum é um gênero restrito ao Brasil, ocorrendo nos estados do Ceará, Paraíba, Pernambuco, Alagoas, Sergipe, Bahia, Minas Gerais e Espírito Santo. Suas espécies são encontradas vegetando como rupícolas em afloramentos quartzíticos nos campos rupestres da Cadeia do Espinhaço e em afloramentos graníticos no Domínio da Mata Atlântica e Caatinga. Raramente são encontradas como terrícolas entre a vegetação típica da Caatinga ou mesmo em solos arenosos dos campos rupestres de Minas Gerais (Louzada & Wanderley, 2008, 2010, 2011).

Na circunscrição atual o gênero apresenta dois grupos morfológicos de espécies, o primeiro é caracterizado pela inflorescência séssil e o segundo pela presença de um pedúnculo sustentando a inflorescência (Louzada & Wanderley, 2010). Os grupos morfológicos anteriormente mencionados foram também reconhecidos por Leme (2004), que os chamou de complexos e subdividiu em subcomplexos com base na morfologia das espécies.

Embora recentemente tenha sido publicada a revisão taxonômica para as espécies de inflorescência séssil de *Orthophytum*, os estudos no gênero são ainda incipientes, restringindo apenas às descrições de espécies novas. Ademais, as relações infragenéricas de *Orthophytum* são desconhecidas, uma vez que o gênero quando amostrado nas filogenias recentes, é representado por poucos indivíduos, impossibilitando a criação de hipóteses filogenéticas (e.g. Schulte *et al*., 2009).
Nesse contexto, o objetivo geral do presente estudo foi reconstruir a filogenia do gênero, afim de testar seu monofilietismo e estabelecer a relação filogenética com gêneros relacionados, além de testar o monofilietismo de grupos morfológicos infragenéricos e realizar a revisão taxonômica do gênero.

REFERÊNCIAS BIBLIOGRÁFICAS

APG III, 2009. An updated of the Angiosperm Phylogeny Group classification for the orders and families of flowering plasts: APG III. *Botanical Journal of the Linnean Society* 161: 105–121

Baker, J. 1889. *Handbook of the Bromeliaceae*. London. George Bell & Sons.

Beer, J.G. 1857. *Die Familie der Bromeliaceen*. Wien. Tender & Co.

Benzing, D.H. 2000. *Bromeliaceae: profile of an adaptive radiation*. Cambridge. University Press.

Bremer, K. 2002. Gondwanan evolution of the grass alliance of families (Poales). *Evolution* 56: 1374–1387

Brown, G.K. & Gilmartin, A.J. 1984. Stigma, structure and variation in Bromeliaceae – neglected taxonomic characters. *Brittonia* 36: 364–374

Brown, G.K. & Gilmartin, A.J. 1988. Comparative ontogeny of Bromeliaceae stigmas. *In* P. Leins, S.C. Tucker, P.K. Endress (eds.). *Aspects of floral development*. Berlin, Stuttgart.

Brown, G.K. & Gilmartin, A.J. 1989. Stigma types in Bromeliaceae – a systematic survey. *Systematic Botany* 14: 110–132.

Clark, W.D., Gaut, B.S., Duvall, M.R. & Clegg, M.T. 1993. Phylogenetic Relationships of the Bromeliiflorae-Commeliniflorae Zingiberiflorae Complex of Monocots Based on rbcL sequence comparisons. *Annals of the Missouri Botanical Garden* 80: 987–998.

Crayn, D.M., Winter, K. & Smith, A.C. 2004. Multiple origins of crassulacean acid metabolism and the epiphytic habitat in the Neotropical family Bromeliaceae. *Proceedings of the National Academy of Sciences* 102: 3703–3708.

Cronquist, A. 1981. *An integrated system of classification of flowering plants*. 2nd ed. New York Botanical Gardens, New York, 1262 pp.

Dahlgren, R., Clifford, T.H. & Yeo PE. 1985. *The families of the monocotyledons: Structure, evolution and taxonomy*. Springer-Verlag. Berlin.

Davis, J.I., Stevenson, D.W., Petersen, G., Seberg, O., Campbell, L.M., Freudenstein, J.V., Goldman, D.H., Hardy, C.R., Michelangeli, F.A., Simmons, M.P., Specht, C.D., Vergara-Silva, F. & Gandolfo, M. 2004. A Phylogeny of the Monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating Jackknife and Bootstrap values. *Systematic Botany* 29: 467–510.
Gilmartin, A.J. & Brown, G.K. 1987. Bromeliales, related monocots, and resolution of relationships among Bromeliaceae subfamilies. *Systematic Botany* 12: 493–500.

Givnish, T.J., Evans, T.M., Zjhra, M.L., Patterson, T.B., Berry, P.E. & Sytsma KJ. 2000. Molecular evolution, adaptive radiation, and geographic diversification in the amphiatlantic family Rapateaceae: Evidence from ndhF sequences and morphology. *Evolution* 54: 1915–1937.

Givnish, T.J., Ames, M., McNeal, J.R., McKain, M.R., Steele, P.R., dePamphilis, C.W., Graham, S.W., Pires, J.C., Stevenson, D.W., Zomlefer, W.B., Briggs, B.G., Duvall, M.R., Moore, M.J., Heaney, J.M., Soltis, D.E., Soltis, P.S., Thiele, K. & Leebs-Mack, J.H. 2010. Assembling the tree of the Monocotyledons: Plastome sequence phylogeny and evolution of Poales. *Annals of the Missouri Botanical Garden* 97: 584–616.

Givnish, T.J., Millam, K.C., Evans, T.M., Hall, J.C., Pires, J.C., Berry, P.E. & Sytsma KJ. 2004. Ancient vicariance or recent long-distance dispersal? Inferences about phylogeny and South American-African disjunctions in Rapateaceae and Bromeliaceae based on ndhF sequence data. *International Journal of Plant Science* 165: S35–S54.

Givnish, T.J., Millam, K.C., Berry, P.E. & Sytsma KJ. 2007. Phylogeny, adaptive radiations, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Pp. 3–26. In: Columbus, J.T., Friar, E.A., Porter, J.M., Prince, L.M. & Simpson, M.G. (eds.) *Monocots: Comparative Biology and Evolution – Poales*. Rancho Santa Ana Botanic Garden, Claremont, CA.

Givinish, T.J., Barfuss, M.H., Van Ee, B., Riina, R., Schulte, K., Horres, R., Gonsiska, P.A., Jabaily, R.S., Crayn, D.M., Smith, A.C., Winter, K., Brown, G.K., Evans, T.M., Holst, B.K., Luther, H., Till, W., Zizka, G., Berry, P., Sytsma, K.J. 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from eight-locus plastid phylogeny. *American Journal of Botany* 98: 872–895.

Harms, H. 1930. Bromeliaceae. In: Engler, H.G.A. & Prantl, K.A.E.. *Die natürlichen Pflazenfamilien*. 2 Aufl. 15a: 65–159. Leipzig.

Janssen, T. & Bremer, K. 2004. The age of major monocot groups inferred from 800+ rbcL sequences. *Botanical Journal of the Linnean Society* 146: 385–398.

Jaques-Felix, H. 2000. The discovery of a bromeliad in Africa: *Pitcairnia feliciana*. *Selbyana* 21: 118–124.

Jussieu, A.L. 1789. *Genera Plantarum*. Pp.49–50.

Kaehler, M., Varassin, I.G. & Goldenberg, R. 2005. Polinização emu ma comunidade de bromélias em Floresta Atlântica Alto-montana no Estado do Paraná, Brasil. *Revista Brasileira de Botânica* 28: 219–228.
Leme, E.M.C. 2004. Studies on Orthophytum, an endemic genus of Brazil – Part I. *Journal of the Bromeliad Society* 54: 36–43.

Linder, H.P. & Rudall, P.J. 2005. Evolutionary history of Poales. *Annual Review of Ecology, Evolution, and Systematics* 36: 107–124.

Louzada, R.B. & Wanderley, M.G.L. 2008. Uma nova espécie de Orthophytum Beer (Bromeliaceae) relacionada a *Orthophytum navioides* (L.B. Sm.) L.B. Sm. *Hoehnea* 35: 405–410.

Louzada, R.B. & Wanderley, M.G.L. 2010. Revision of *Orthophytum* (Bromeliaceae): species with sessile inflorescences. *Phytotaxa* 13: 1–26.

Louzada, R.B. & Wanderley, M.G.L. 2011. A new species of *Orthophytum* (Bromeliaceae) from Chapada Diamantina, Bahia, Brazil. *Phytotaxa* 28: 27–30.

Luther, H.E. 2008. *An Alphabetical List of Bromeliad Binomials*, 10th ed. The Bromeliad Society International, Sarasota, 110 pp.

Mez, C. 1892. Bromeliaceae. In: von Martius, C.P.F., Eichler, A.W. & Urban, I. (eds). *Flora brasiliensis* v.3. Leipzig, pp. 281–430. F. Fleischer, Leipzig.

Mez, C. (1896) Bromeliaceae. In: Candolle, A.L.P.P. de (ed.). *Monographie Phanerogamarum* vol. 9. Sumptibus Masson & Cia., Paris, pp. 1–990.

Mez, C. 1934. Bromeliaceae. In: Engler, H.G.A. (ed.). *Das Pflanzenreich*. Heft 100, IV (32): 1–667. Stuttgart.

Moreira, B.A. 2007. *Palinotaxonomia da família Bromeliaceae do Estado de São Paulo*. Tese de doutorado, Instituto de Botânica, São Paulo, pp. 152.

Schulte, K., Barfuss, M.H.J. & Zizka, G. 2009. Phylogeny of Bromelioideae (Bromeliaceae) inferred from nuclear and plastid DNA loci reveals the evolution of the tank habit within the subfamily. *Molecular Phylogenetics and Evolution* 51: 327–339.

Smith, L.B. 1955. The Bromeliaceae of Brazil. *Smithsonian Miscellaneous Collection* 126: 1–290.

Smith, L.B. & Downs, R.J. 1974. Pitcairnioideae (Bromeliaceae). *Flora Neotropica Monograph* 14: 1–660. Hafner Press, New York.

Smith, L.B. & Downs, R.J. 1977. Tillandsioideae (Bromeliaceae). *Flora Neotropica Monograph* 14: 661–1492. Hafner Press, New York.

Smith, L.B. & Downs, R.J. 1979. Bromelioidae (Bromeliaceae). *Flora Neotropica Monograph* 14: 1493–2141. Hafner Press, New York.
Donoghue, M.J., & Soltis, P.S. 2010. Angiosperm Phylogeny: 17 Genes, 640 Taxa. *American Journal of Botany* 98: 704–730.

Terry R.G., Brown G.K., Olmstead R.G. 1997. Examination of subfamilial phylogeny in Bromeliaceae using comparative sequencing of the plastid locus *ndhF*. *American Journal of Botany* 84: 664-670.

Wanderley, M.G.L. & Melhem, T.S. 1991. Flora polínica da reserva do Parque Estadual das Fontes do Ipiranga (São Paulo, Brasil). Família: 178-Bromeliaceae. *Hoehnea* 18: 5–42.

Wanderley, M.G.L. & Martins S.E. coords. 2007. Bromeliaceae. *In: Wanderley, M.G.L., Shepherd, G.J., Melhem, T.S., Giuliani, A.M.,* (eds.) *Flora Fanerogâmica do Estado de São Paulo*. v. 5, pp. 39–161.

Wittmack, L. 1888. Bromeliaceae. Pp. 32–48 in *Die Naturlichen Pflanzenfamilie nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen, bearbeitet unter Mitwirkung zahlreicher hervorragender Fachgelehrten*, ed. 4 bei 2, eds. A. Engler, and K. Prantl. Leipzig: Wilhelm Endelmann.
Molecular phylogeny of the genus *Orthophytum* (Bromeliaceae) demonstrates the taxonomic significance of the inflorescence type.

*Manuscrito a ser submetido ao periódico Molecular Phylogenetics and Evolution
Ilustrações: Acima, *Orthophytum magalhaesii*; abaixo, *Orthophytum mucugense* (Fotos R.B. Louzada).
ABSTRACT

The saxicolous genus *Orthophytum* (~ 60 species, Bromeliaceae) is endemic to eastern Brazil and diversified in xeric habitats of the, Caatinga, and *campos rupestres*. Within the genus, two main complexes are discerned based on the presence or absence of a pedunculate inflorescence, and include several morphological subcomplexes. However, these systematic hypotheses have not been tested in a molecular phylogenetic framework yet. Here we present the first phylogenetic analysis of *Orthophytum* using nuclear and plastid markers (phytochrome C, and *psbA-trnH* and *trnL-trnF* spacers). Forty species representing the two main complexes and all subcomplexes of *Orthophytum*, and the related genera *Cryptanthus* (8 spp.) and *Lapanthus* (2 spp.) were analysed. The phylogenetic reconstruction revealed a well supported clade termed Eu-Orthophytum, containing species with pedunculate inflorescences only. The sessile inflorescence *Orthophytum* species were resolved as two clades: 1) the morphological amoenum complex, and 2) the morphological vagans complex plus *O. foliosum*, the only pedunculate *Orthophytum* species found outside Eu-Orthophytum. The vagans clade was placed in sister group position to Eu-Orthophytum. Within the latter, the subcomplex mello-barretoi was sister to the most diversified clade, termed Core Orthophytum. The results demonstrate the taxonomic utility of the inflorescence type within the genus, and elucidate the evolution of *Orthophytum*.

Keywords: Bromelioidae, bromeliads, Espinhaço Range, phytochrome C, PHYC, *psbA-trnH* spacer, *trnL-trnF* spacer.
INTRODUCTION

Bromeliaceae (ca. 3200 spp.; Luther, 2008) is an almost exclusively neotropical family, with only one species (*Pitcairnia feliciana* (A. Chev.) Harms & Mildbraed) occurring in West Africa. The family has traditionally been divided in three subfamilies: Pitcairnioideae, Bromelioideae and Tillandsioideae (Smith and Downs, 1974, 1977, 1979; Smith and Till, 1998). The monophyly of Pitcairnioideae has been questioned in several molecular phylogenetic studies (e.g. Horres et al., 2000; Terry et al., 1997; Crayn et al., 2004. Givnish et al. 2007) in a molecular cladistic analysis based on the gene ndhF presented a new classification for Bromeliaceae divided in eight subfamilies (Brocchinioideae, Lindmanioideae, Tillandsioideae, Hecthioideae, Navioideae, Pitcairnioideae, Puyioideae and Bromelioideae), and a recent eight-locus plastid phylogeny supported the new classification with generally higher support levels for the subfamilies (Givnish et al., 2011).

Bromelioideae comprises 33 genera and approximately 800 species distributed in the tropical and subtropical America with a center of diversity in the southeastern Brazil (Smith and Downs, 1979; Luther 2008). The monophyly of the subfamily is supported by both morphological and molecular evidence, with *Puya* as sister group (Terry et al., 1997; Horres, 2000; Givnish et al., 2004, 2007, 2011; Crayn et al., 2004; Schulte et al., 2005, 2009; Horres et al., 2007; Schulte and Zizka, 2008). Nevertheless the inter- and infrageneric relationships within the subfamily are poorly understood (Brown and Leme, 2000; Schulte et al., 2009). Recent molecular studies based on plastid and nuclear data identified several basal lineages within the subfamily (*Greigia* Regel, *Ochagavia* Phil., *Fascicularia* Mez, *Deinacanthon* Mez, *Bromelia* Juss.) (Schulte et al., 2005, 2009; Schulte and Zizka, 2008). *Fernseea* Baker was reported as sister to a clade comprising the remainder of the subfamily, termed Eu-Bromelioideae (Schulte and Zizka, 2008; Schulte et al., 2009). Among the latter, the genera *Orthophytum* Beer, *Cryptanthus* Otto & A. Dietr., *Ananas* Mill., *Neoglaziovia* Mez., and *Acanthostachys* Klotzsch were identified as early divergent lineages (basal eu-bromelioids) whereas the more advanced bromelioids, characterized by the tank habit (a central water collecting tank formed by the leaf sheaths), formed a moderately supported clade, termed the core bromelioids (Schulte and Zizka, 2008; Schulte et al., 2009; Sass and Specht, 2010; Givnish et al., 2011). Whereas core bromelioids comprise the majority of species and epiphytes, the more basal lineages lack a central external water reservoir and are mainly terrestrial or lithophytes.

Orthophytum is a saxicolous (rarely terrestrial) genus endemic to eastern Brazil where it underwent considerable diversification. The species generally inhabit the top of granitic-gneiss *inselbergs* in the regions of the Atlantic Rainforest and the Caatinga, and quartzitic-sandstone outcrops in the Brazilian *campos rupestres* (‘rocky fields’) along the Espinhaço Range. Two centers of
diversity can be recognized, one in the Espinhaço Range and the other in the Atlantic Rain Forest area in the Brazilian states of Minas Gerais and Espírito Santo (Louzada and Wanderley, 2010).

The genus was described by Beer (1854) based on one unnamed collection of a pedunculate species known today as *Orthophytum glabrum* (Mez) Mez (Louzada and Wanderley, 2010). Ule (1908) described two new genera from Brazil (*Sincoraea* Ule and *Cryptanthopsis* Ule), both with sessile inflorescences, which were subsequently regarded as synonyms of *Orthophytum* (Smith, 1955; Smith and Downs, 1979). In the monumental taxonomic treatment for Bromeliaceae in Flora Neotropica (Smith and Downs, 1979), 17 species of *Orthophytum* were recognized. Today the genus comprises about 60 species (Louzada and Wanderley, 2011), the majority described in the last two decades, and a taxonomic revision of the group is urgently needed to assess the conservation status of the species.

Within *Orthophytum* two main morphological groups are traditionally recognized based on the presence or absence of a peduncle (or stalk, sometimes in bromeliads also called a scape; Wanderley, 1990; Leme 2004; Wanderley and Conceição, 2006; Louzada and Wanderley, 2010). The first group comprises the majority of species and is termed the “complex with scapose inflorescence” which is divided into three subcomplexes: disjunctum, leprosum, and mello-barretoi (Leme, 2004). The other group is the “complex with sessile inflorescence” which comprises three subcomplexes: amoenum, vagans, and supthutii (Leme, 2004). Recently, a new genus was established (*Lapanthus* Louzada & Versieux) to better accommodate the species of the supthutii subcomplex (Louzada and Versieux, 2010). Nevertheless, the validity of these taxonomic hypotheses has not been tested in a molecular phylogenetic framework yet.

In previous phylogenetic studies on Bromelioidae, *Orthophytum* has usually been represented by only a few taxa (Ramírez-Morillo, 1996; Schulte et al., 2005, 2009; Schulte and Zizka, 2008) and the genus was found to be as sister group to *Cryptanthus*. However, due to the low taxon sampling the hypotheses outlined above and the monophyly of the genus could not be properly tested. Therefore, a more comprehensive phylogenetic study is needed to clarify inter and intrageneric relationships of *Orthophytum*.

Here we present a molecular phylogeny of *Orthophytum* and related genera based on the plastid intergenic spacer regions *trnL-trnF* and *trnH-psbA*, and the low-copy nuclear gene *phytochrome C* (PHYC). The objectives were (1) to assess the phylogenetic relationships between *Orthophytum*, *Cryptanthus*, and *Lapanthus*, and the monophyly of the genera, (2) to elucidate infrageneric relationships in *Orthophytum*, (3) to investigate the evolution and taxonomic significance of morphological characters previously used in the taxonomy of *Orthophytum*.
Material and Methods

Taxon sampling — In the present study a molecular data set of 54 species from six genera (Table 1) was analyzed. In Orthophytum, 40 of the about 60 recognized species (i.e. 67% of the genus’ diversity) were included to investigate all of the morphological complexes and subcomplexes described by Leme (2004) including the two species of the “supthutii subcomplex” today recognized as the genus Lapanthus (Louzada and Versieux, 2010). In addition, eight species of the genus Cryptanthus comprising the two subgenera and six of eight sections described by Ramírez-Morillo (1996) were included in the data set. Outgroup species were included from early diverging genera of Bromelioidae: Bromelia (2), Ochagavia (1) and from the mono-generic subfamily Puyoideae (1) based on Schulte et al. (2009) and Givnish et al. (2011).

DNA extraction, amplification and sequencing — Total genomic DNA was extracted from leaf material using a cetyltrimethylammonium bromide (CTAB) procedure (Doyle and Doyle, 1987) modified by Horres et al. (2000). The phytochrome C (PHYC) gene was amplified using primers phyc515f AAG CCC TTY TAC GCT ATC CTG CAC CG and phyc1699r ATW GCA TCC ATT TCA ACA TCT CC TCC CA. Internal primers were used for sequencing (phyc974f GCT CCT CAC GGC TGC CAC GCT CA and phyc1145r CCT GMA RCA RGA ACT CAC AAG CAT ATC). The trnL-F and psbA-trnH region were amplified using universal primers described in Shaw et al. (2005) and Sang et al. (1997) respectively. The amplification was performed with 10 µL reactions containing 1 µL Taq buffer (10x), 0.8 µL MgCl2, 0.3 µL dNTPs 10mM, 1 µL of each primer (10 pmol/µ), 0.1 µL Taq DNA polymerase (Fermentas) and 1 µL DNA template in a Veriti Thermal Cycler (Applied Biosystem Corp., Foster City, California) using an initial 2 min denaturation at 95°C followed by 35 cycles of 95°C denaturation for 30 s, 30 s annealing at 59°C, and 2 min extension at 70°C. The PCR products were cleaned using ExoSAP-IT (USB Corp., Cleveland, Ohio) following the manufacturer’s protocol. Cycle sequencing was carried out with the Big Dye Terminator kit v.3.1 (Applied Biosystem Corp., Foster City, California) using an initial 60 s denaturation at 95°C, followed by 30 cycles at 96°C denaturation for 10 s, 10 s annealing at 50°C, and 2 min extension at 60°C. The sequences were generated on an ABI 3730 DNA Analyser sequencer.

Alignment of sequences and data congruence — The sequences were assembled and edited in Geneious 5.1.7 software (Drummond et al., 2011) and initially aligned with MAFFT (Kazutaka et al., 2002) followed by manual adjustments in Geneious. Congruence among data partitions of the two plastid and one nuclear marker was tested using the incongruence length difference (ILD) test.
(Farris et al., 1994) implemented in PAUP*4.0b10 (Swofford, 2002) employing 100 replicates (heuristic search, 10 random addition replicates, TBR branch swapping), saving a maximum of 1,000 most parsimonious trees per replicate.

Phylogenetic analysis — A maximum parsimony (MP) analysis was performed in PAUP*4.0b10. Heuristic searches were conducted with 10,000 random taxon addition replicates and tree-bisection-reconnection (TBR) branch swapping. The statistical support was estimated by bootstrap analysis with 1,000 pseudoreplicates each with 10 random taxon addition replicates and TBR branch swapping. The degree of homoplasy was estimated using consistency (CI) and retention (RI) indices.

Bayesian inference analyses (BI) were run in MrBayes 3.2 (Ronquist et al. 2012). The best-fit model for the combined dataset (GTR+I+G) was determined using the Akaike Information Criterion (Akaike, 1973) as implemented in MrModeltest 2.2 (Nylander, 2004). Four simultaneous Markov chains Monte Carlo (MCMC) were run for 10,000,000 generations sampling every 1,000 generation. After examining the MCMC convergence using Tracer (Rambaut and Drummond, 2007), the initial 2,000,000 generations from each run were discarded from the analysis as burn-in while the remaining were used to construct a consensus tree with posterior probabilities (PP) assessing the statistical support to each branch. Two partitioning schemes were tested, one unlinking the model parameters between nuclear and plastid regions, the other unlinking all markers (i.e. three partitions). The fit of the models was estimated by harmonic mean and used to choose the best partitioning scheme.

RESULTS

Phylogenetic relationship — Sequences for the two plastid and one nuclear loci were generated for 54 accessions of *Orthophytum*, *Cryptanthus*, *Lapanthus*, *Bromelia*, *Ochagavia* and *Puya* (Table 1). The final alignment comprised 605 positions for *trnH-psbA*, 851 for *trnL-trnF* intergenic spacer regions, and 1,124 for the nuclear gene PHYC. The combined dataset yielded an alignment of 2,580 characters in length with 273 variable characters. The number of parsimony informative characters was 105 (4.1 %) for the ingroup (*Orthophytum*, *Cryptanthus*, and *Lapanthus*), and 78 (3.0 %) for *Orthophytum* alone.

The partition homogeneity test indicated that the different data partitions of the combined matrix (PHYC vs. two plastid regions) are not significantly incongruent (P-value = 0.067). Thus, in the following we discuss the phylogenetic relationships among Orthophytum and related genera using the combined data phylogeny. On the other hand a comparison of the two partitioning
schemes showed that the model with three unlinked partitions outperforms the model with two partitions (harmonic means of the log-likelihood: -6430.35 and -6441.70 respectively). The former scheme is therefore taken as reference in the results below.

In the MP analysis 130,093 most parsimonious trees of 392 steps in length were found (CI = 0.75; RI = 0.89). The MP and the BI consensus trees of the combined data set show a moderate to highly supported clade containing the genera *Orthophytum*, *Cryptanthus* and *Lapanthus* (BS 71, PP 1). That group comprises three main clades (1–3) in the BI (Fig. 2).

The first main clade receives moderate to high statistical support (BS 66, PP 1) and unifies the species of the amoenum subcomplex sensu Leme (2004). The clade comprises seven of the ten investigated *Orthophytum* species with sessile inflorescences (Fig. 2, 3). Within the first main clade, *O. heleniceae*, *O. ulei*, *O. burle-marxii* and *O. ophiuroides* form a moderately to highly supported clade (BS 69, PP 1) in which the sister group relationship between *O. burle-marxii* and *O. ophiuroides* receives a moderately to high statistical support (BS 66, PP 0.99).

In the second main clade, the two species of *Lapanthus* are forming a strongly supported clade (BS 97, PP 1), which is found as the sister group to *Cryptanthus tiradentensis* and which is sister to a highly supported clade comprising five species of *Cryptanthus* subg. *Cryptanthus* sensu Ramírez-Morillo (1996) (BS 100, PP 1). Nevertheless, the sister group relationship receives no statistical support in the BI analysis and the node collapses in the strict consensus of the MP analysis. Within the *Cryptanthus* subg. *Cryptanthus* clade, the first divergent lineage is *C. bahianus* (sect. *Bahianae*), sister group to a moderately to well supported clade (BS 84, PP 0.99) with *C. warren-loosei* (sect. *Bahianae*), *C. diamantinesis* (sect. *Bahianae*), *C. colnagoi* (sect. *Cryptanthus*), and *C. zonatus* (sect. *Zonatae*).

The third main clade shows a highly supported lineage with two long caulescent species with sessile inflorescences of *Cryptanthus* subg. *Hoplocryptanthus* (*C. odoratissimus, C. microglaizovii*; Fig. 3) (BS 95, PP 1) sister group to a large, highly supported clade comprising the remaining species of *Orthophytum* (BS 96, PP 1). Nevertheless, the sister group relationship between the latter and the *Cryptanthus* subg. *Hoplocryptanthus* clade does not receive statistical support.

The first diverging clade (A) within the large *Orthophytum* clade is well supported (BS 91, PP 1) and consists of three species with sessile inflorescences which constitute the vagans subcomplex (*O. zanonii, O. vagans, O. pseudovagans*) sensu Leme (2004), plus a pedunculate species (*O. foliosum*) nested within the vagans subcomplex. Thus, the clade includes members of the two main morphological groups (sessile and pedunculate inflorescences; Fig. 2). Within the vagans clade, *O. zanonii* is sister to a well supported clade with *O. vagans, O. pseudovagans* and *O. foliosum* (BS 86, PP 0.98).

Next diverging is a highly supported clade (BS 100, PP 1) that comprises all species with pedunculate inflorescences, termed Eu-Orthophytum clade in the following. Its sister group
relationship to the vagans clade is well supported (BS 91, PP 1). The Eu-Orthophytum clade splits into two highly supported clades (B, C) and relationships between the two clades receive high statistical support (Fig. 2). Clade B consists of the species of the mello-barretoi subcomplex (BS 96, PP 1), represented with four out of six species in our sampling and covering the almost whole geographic distribution of the subcomplex. The BI tree shows Orthophytum mello-barretoi as sister species of O. schulzianum (BS 75, PP 0.96), both forming a sister group to O. graomogolense and O. diamantinense. In the MP strict consensus tree the phylogenetic relationships within the mello-barretoi subcomplex remain unresolved.

Clade C, in the following termed the Core Orthophytum clade, is strongly supported (BS 100, PP 1) and comprises the majority of Orthophytum species, all possessing pedunculate inflorescences in lax spikes of spikes or head-like spikes densely arranged (Fig. 4) and petal apices obtuse to subacute. Several subclades receive moderate to high support but relationships between these subclades remain largely unclear due to a lack of resolution or statistical support. Noteworthy groups of the Core Orthophytum clade are the Fosterianum clade, the Sucrei clade, the Saxicola clade (BS 93, PP 1), and the Glabrum clade (PP 0.97) (Fig. 2). The latter includes Orthophytum glabrum, the type-species of the genus.

DISCUSSION

In Bromelioideae, the reconstruction of infrageneric relationships based on DNA sequence data has proven difficult due to low sequence divergence of molecular markers used so far, yielding phylogenetic reconstructions with generally low resolution and support values (e.g. Sousa et al., 2007; Sousa, 2011; Versieux et al. 2012). These studies were conducted with genera of the more advanced Eu-Bromelioideae, the core bromelioids, which are characterized by the presence of a central water collecting tank and which apparently underwent a rapid radiation starting around 5.5 Ma mainly in a largely continuous habitat, the Brazilian Atlantic rainforest (Schulte et al., 2005, 2009; Givnish et al., 2011). In contrast, Orthophytum represents an early diverging lineage within the Eu-Bromelioideae that diversified extensively in xeric vegetation types in Southeast and Northeast Brazil, the campos rupestres and Caatinga, with their vast diversity of naturally isolated microhabitats (the inselbergs), which promoted genetic isolation and thus fostered the evolution of numerous microendemics in Orthophytum (Smith and Downs, 1977). Here we present the first molecular phylogeny of the genus based on a comprehensive sampling of its known diversity. This allowed us to identify several highly supported lineages within the genus, to elucidate infrageneric phylogenetic relationships, and to highlight critical issues for future research.
Phylogenetic relationship within Orthophytum and related genera — The phylogenetic reconstruction depicts a well supported clade unifying the Orthophytum species with pedunculate inflorescences plus the vagans clade which comprises three species with sessile inflorescences and one species with a pedunculate inflorescence (O. foliosum) (Fig. 2, 3). Nevertheless, several deeper nodes of the phylogeny remained unresolved and thus do not provide sufficient information to reliably assess the putative monophyly of Orthophytum, and of the closely related genera Cryptanthus and Lapanthus.

The species belonging to the amoenum subcomplex sensu Leme (2004) formed a well supported clade (Fig. 2), thus supporting Leme’s concept. The subcomplex is characterized by sessile inflorescences (Fig. 3), short and inconspicuous stems, inner leaves and primary bracts contrasting with the outer leaves in color, and white petals with a pair of sacciform appendages inserted laterally to the antepetalous stamens (Lemes 2004; Louzada and Wanderley, 2010). Leme (2007) also noticed a morphological affinity between Cryptanthus subgen. Cryptanthus sect. Schwackeanae and Orthophytum, stating that species of this section is morphologically more similar to the species of Orthophytum than any other Cryptanthus species. This morphological similarity is especially pronounced among species of the amoenum subcomplex and Cryptanthus subgen. Cryptanthus sect. Schwackeanae (here represented by C. tiradentenis), which mainly differ in the presence or absence of petal appendages.

Lapanthus, a genus recently published to accommodate two aberrant species (L. itambensis and L. duartei) formerly placed within the sessile inflorescence group of Orthophytum (Louzada and Versieux, 2010), forms a well supported monophyletic clade in sister group to Cryptanthus tiradentensis (subg. Hoplocryptanthus), and a highly supported clade uniting the species of Cryptanthus subgen. Cryptanthus, however this sister group relationship is not supported. The species of Cryptanthus subg. Cryptanthus are andromonoecious, usually short caulescent with sessile inflorescences, never pseudopedunculate, and usually without petal appendages or calli (Ramírez-Morillo, 1996). In Bromeliaceae, andromonoecy is only present in Cryptanthus subg. Cryptanthus (Ramírez-Morillo, 1996), therefore this feature represents a synapomorphy for the clade. Lapanthus is morphologically more similar to Cryptanthus subg. Hoplocryptanthus sect. Schwackeanae (here represented by C. tiradentenis; Fig. 2) because both groups possess scented and hermaphroditic flowers (Ramírez-Morillo, 1996; Louzada and Versieux, 2010). Moreover, the species of Lapanthus and Cryptanthus sect. Schwackeanae share a similar habitat in the southern portion of the Espinhaço Range, inhabiting quartzite-sandstone rocky outcrops.

In clade 3, the first divergent lineage and sister group of the remaining Orthophytum species comprises Cryptanthus odoratissimus and C. microglaziowii which belong to the subg. Hoplocryptanthus, sections Mesophyticae and Hoplocryptanthus, respectively. The usually long caulescent habit, sometimes
short caulescent, sessile inflorescences, and hermaphroditic flowers, morphologically characterize this subgenus.

The species of the next diverging clade unifies the three species of the vagans subcomplex sensu Leme (2004) plus Orthophytum foliosum (Fig. 2). The species of the vagans subcomplex possess an interesting morphological affinity to Cryptanthus odoratissimus and C. microglaziovii. They have a long caulescent habit with a sessile inflorescence (Fig. 3), which is rare in Orthophytum but not in Cryptanthus subg. Hoplocryptanthus sect. Hoplocryptanthus, including C. microglaziovii. The molecular phylogeny indicates that the vagans subcomplex in its original circumscription may constitute a paraphyletic lineage, and that Orthophytum foliosum may need to be included. The latter species has a pedunculate inflorescence and was placed in the disjunctum subcomplex by Leme (2004).

The outlined morphological affinities between the well supported clades outside the Eu-Orthophytum clade revealed in the molecular phylogeny lead us to the conclusion that the generic boundaries of Orthophytum, Cryptanthus, and Lapanthus need to be carefully revised as in their current circumscription they may not constitute monophyletic lineages. To this aim, a broader sampling of the genus Cryptanthus appears vital as well as the inclusion of further molecular markers. Traditionally, the genera Orthophytum and Cryptanthus have been separated based on the presence or absence of petal appendages (Orthophytum: present, Cryptanthus: absent). The taxonomic utility of this character for the delimitation of genera in Bromeliaceae has been questioned repeatedly (Brown and Terry, 1992; Zizka et al., 1999), and a recent molecular phylogenetic study demonstrated that this character is homoplastic in subfamily Bromelioideae (Schulte and Zizka, 2008). Although, the chromosome number 2n=50 prevails in the Bromeliaceae (Lindschau, 1933; Gauthé, 1965; Weiss, 1965; Marchant, 1967; Sharma and Ghosh, 1973; McWilliams, 1974; Brown et al., 1984, 1997; Varadajan and Brown, 1985; Brown and Gilmartin, 1986, 1989; Lin et al., 1987; Cotias-de-Oliveira et al., 2000, 2004; Ramírez-Morillo and Brown, 2001; Palma-Silva et al., 2004; Bellintani et al., 2005; Gitai et al., 2005; Louzada et al., 2010), Cryptanthus species studied so far exhibited lower chromosome counts 2n=34, 36 or 54 (e.g. Lindshau, 1933; Sharma and Gosh. 1971; Ramírez-Morillo, 1996; Cotias-de-Oliveira et al., 2000; Ramírez-Morillo and Brown, 2001; Ceita et al., 2008) whereas in Orthophytum a polyploidy series of 2n=50, 100, and 150 have been reported (Cotias-de-Oliveira et al., 2000; Louzada et al., 2010). Therefore, a potentially useful character to delimit Cryptanthus from Orthophytum/Lapanthus may be their chromosome numbers if the reduction of chromosome numbers was the initial isolating event that preceded the evolution of Cryptanthus, and then chromosome numbers might serve as a character to delimit this genus. Nevertheless, this hypothesis remains to be tested in a phylogenetic framework. So far, chromosome counts for Cryptanthus are available only for a handful of species (9 spp. Ramírez-Morillo and Brown, 2001).
Phylogenetic relationships in Eu-Orthophytum — The first diverging lineage within the Eu-Orthophytum clade represents the mello-barretoi subcomplex sensu Leme (2004, 2008), thus supporting the monophyly of the subcomplex. These species are characterized by pedunculate inflorescences with basal primary bracts narrowly triangular and elongate, the bracts usually red, inflorescences in congested spikes of glomerules (Fig. 4), petals green with obtuse-cucullate apices. It remains to be evaluated if the subcomplex should be recognized as a formal status within the genus (Leme and Paula, 2008) but this should await the inclusion of the northernmost species of the group, *O. eddie-estevesii*, in the phylogenetic analysis.

Core Orthophytum (Fig. 2) arise as sister group to the subcomplex mello-barretoi and comprises the majority of *Orthophytum* species, morphologically characterized by lax inflorescences in spikes of spikes or head-like spikes (Fig. 4), greenish-white petals with white lobes, and obtuse to subacute apices. Within Core Orthophytum four lineages were found with species that, according to their features, may be included in the leprosum and the disjunctum subcomplexes sensu Leme (2004). The leprosum subcomplex is mainly characterized by leaves that do not form a distinct rosette before and at anthesis, and the disjunctum subcomplex by possessing a distinct rosette before and after anthesis. The first lineage comprises *O. boudetianum* sister to *O. sucrei* (BS 84, PP 1), and *O. estevesii* sister to *O. pseudostoloniferum* (BS 82, PP 1). These are small sized species with inflorescences that are head-like spikes (Fig. 4) inhabiting granitic-gneiss rocky outcrops in central region of the Brazilian state of Espírito Santo.

The fosterianum clade comprises six pedunculate species (*O. alvimii, O. fosterianum, O. grossiorum, O. gurkenii, O. lanuginosum, O. magalhaesii*) with inflorescences in lax spikes of spikes, leaves and primary bracts with lepidote-lanate indumentum, the latter represents the morphological synapomorphy of the group (Leme and Paula, 2003, 2005; Hutchinson, 1983).

A highly supported clade unifies two other groups termed the glabrum and saxicola clades. The glabrum clade shelters four species including *Orthophytum glabrum*, which is the type-species of the genus *Orthophytum* (Smith, 1955). *Orthophytum leprosum* occurs as sister to a clade with *O. glabrum*, *O. horridum* and *O. lucidum*, and according Leme (2004) the first two species are placed in the leprosum subcomplex, and the other two other species are placed in the disjunctum subcomplex. Based on the present analysis we conclude that the leprosum subcomplex is not monophyletic, first due to *O. glabrum* being closely related to *O. lucidum* and *O. horridum* and not *O. leprosum*, and second by the placement of *O. falconii* (leprosum subcomplex) in the saxicola group. The combination of features such as stiff coriaceous leaves being glabrous or lepidote with adpressed scales, can characterize the species included in the glabrum clade, however, more morphological studies are necessary in order to better define the group.
The last diverging clade is a highly supported group termed the saxicola clade which includes the terrestrial species Orthophytum falconii in sister group position to the remaining species of Orthophytum. Orthophytum falconii is known only by the type-collection and resembles morphologically O. benzingii (= O. leprosum) due the absence of a rosette at the anthesis (Leme, 2003). For that reason, it was recognized in the leprosum subcomplex (Leme, 2004).

The saxicola clade certainly represents the most diversified group within Core Orthophytum with the dwarf O. saxicola and the robust O. riocontense. As with the glabrum clade, to define one or more morphological features, which characterize the saxicola clade is a challenging task. In contrast to the other subclades within Core Orthophytum, in the saxicola clade both inflorescences types (head-like spikes or lax spikes of spikes; Fig. 4) can be found in different species, for example head-like spikes are observed in O. saxicola and O. harleyi whereas lax spikes of spikes are present in O. argentum and O. toscanoi or even the two inflorescence types can be found in the same species (e.g. O. conquistense).

Taxonomic utility of the inflorescence type and the evolution of Orthophytum — In the past, the genus Orthophytum was informally subdivided into two major groups according to the inflorescence type, the sessile and the pendunculate inflorescence group (Wanderley, 1990; Leme, 2004). Mapping this character onto the obtained phylogeny revealed that pedunculate inflorescences evolved twice within Orthophytum, once within the vagans clade (O. foliosum) and in a clade that entirely consists of representatives with pedunculate inflorescences, termed Eu-Orthophytum clade, which comprises the majority of species within the genus. In contrast, the Orthophytum species with sessile inflorescences were found in two clades: the amoenum and the vagans clade, which both received moderate to high support values (Fig. 2, 3). Relationships between these two clades remain unclear due to a lack of resolution in the deeper nodes of the phylogeny. Besides these two clades, the genera Cryptanthus and Lapanthus both consist of species with sessile inflorescences. Mapping the inflorescence type onto the phylogeny showed that sessile inflorescences can be regarded as the plesiomorphic condition in Orthophytum, and pedunculate inflorescences as the derived one (Fig. 2). Although pedunculate inflorescences apparently arose twice within the genus, the character state possesses a valuable phylogenetic signal as it characterizes a major lineage, the Eu-Orthophytum clade.

The vagans clade and the Cryptanthus subg. Hoplocryptanthus clade, possess an interesting long caulescent habit due the elongation of the vegetative stem and the sessile inflorescence, characterizing probably an intermediate stage in the evolution of Orthophytum. Although three of four species included in the vagans clade have sessile inflorescences and one pedunculate, all are
composed of congest spikes of glomerules, the same inflorescence branching type found in the next diverging clade mello-barretoi. Moreover, *O. pseudowagens*, *O. vagans* and *O. zanoni* have petals with obtuse-cuculate apices, only present in these two clades, reinforcing the hypothesis of an intermediate clade.

REFERENCES

Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. Proceedings of the second international symposium on information theory, pp. 267-281. Akademiai Kiado, Budapest.

Beer, J.G. 1854. Versuch einer Eintheilung der Familie der Bromeliaceen nach ihrem Blüthenstande. Flora 37, 346–349.

Bellintani, M.C., Assis, J.G.A., Cotias–de–Oliveira, A. L. P., 2005. Chromosomal evolution of Bromeliaceae. Cytologia 70, 129–133.

Brown, G.K., Varadarajan, G.S., Gilmartin, A.J., 1984. Chromosome Number Reports LXXXV. Taxon 33, 756–760.

Brown, G.K., Palaci, C.A., Luther, H.E., 1997. Chromosome numbers in Bromeliaceae. Selbyana 18, 85–88.

Brown, G.K., Gilmartin, A.J., 1986. Chromosomes of the Bromeliaceae. Selbyana 9, 88–93.

Brown, G.K., Gilmartin, A.J., 1989. Chromosome numbers in Bromeliaceae. Amer. J. Bot. 76, 657–665.

Brown, G.K., Leme, E.M.C., 2000. Cladistic analysis in the Nidularioid complex. in: Leme, E.M.C. (Ed.), Nidularium - Bromeliads of the Atlantic Forest. Sexante Artes, Rio de Janeiro, pp. 240–247.

Brown, G.K. & Terry, R.G. 1992. Petal appendages in Bromeliaceae. Am. J. Bot. 79, 1051–1071.

Ceita, G.O., Assis, J.G.A., Guedes, M.L.S., Cotias-de-Oliveira, A.L.P. 2008. Cytogenetics of Brazilian species of Bromeliaceae. Bot. J. Linn. Soc. 158, 189–193.

Cotias–de–Oliveira, A.L., Assis, J.G.A., Bellintani, M.C., Andrade, J.C., Guedes, M.L.S., 2000. Chromosome numbers in Bromeliaceae. Gen. Molec. Biol. 23, 173–177.

Cotias–de–Oliveira, A.L., Assis, J.G.A., Ceita, G., Palmeira, A.C.L., Guedes, M.L.S., 2004. Chromosome number for Bromeliaceae species occurring in Brazil. Cytologia 69, 161–166.

Crayn, D.M., Winter, K., Smith, J.A.C., 2004. Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc. Natl. Acad. Sci. U.S.A. 101, 3703–3708.
Doyle, J.A., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.

Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T., Wilson, A., 2011. Geneious v. 5.4. Available from http://www.geneious.com/

Farris, J.S., Kallersjo, M., Kluge, A.G., Bult, C., 1994. Testing significance on incongruence. Cladistics 10, 315–319.

Gauthé, J., 1965. Contribution à l’étude caryologique des Tillandsées. Mém. Mus. Natl. Hist. Nat. 16, 39–59.

Gitaí, J., Horres, R., Benko-Iseppon, A.M. 2005. Chromosomal features and evolution of Bromeliaceae. Pl. Syst. Evol. 253, 65–80

Givnish, T.J., Milliam, T.M., Evans, T.M., Hall, J.C., Berry, P.E., Terry, R.G., 2004. Ancient vicariance or long-distance dispersal? Inferences about phylogeny and South American-African disjunctions in Rapateaceae and Bromeliaceae based on ndhF sequence data. Int. J. Plant Sci. 165 (4, Suppl.), 35–54.

Givnish, T.J., Milliam, K.C., Berry, P.E., Sytsma, K.J., 2007. Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23, 3–26.

Givnish, T.J., Barfuss, M.H., Van Ee, B., Riina, R., Schulte, K., Horres, R., Gonsiska, P., Jabaily, R., Crayn, D., Smith, J., Winter, K., Brown, G., Evans, T., Holst, B., Luther, H., Till, W., Zizka, G., Berry, P., Sytsma, K., 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight-locus plastid phylogeny. Am. J. Bot. 98, 872–895.

Horres, R., Zizka, G., Kahl, G., Weising, K., 2000. Molecular phylogenetics of Bromeliaceae: evidence from trnL(UAA) intron sequences of the chloroplast genome. Plant Biol. 2, 306–315.

Horres, R., Schulte, K., Weising, K., Zizka, G., 2007. Systematics of Bromelioidae (Bromeliaceae) – evidence from molecular and anatomical studies. Aliso 23, 27–43.

Hutchinson, P.C., 1983. Orthophyllum gurkenii sp. nov. (Bromeliaceae). Phytologia 52, 373–375.

Kazutaka, K., Misawa, K., Kuma, K., Miyata, T., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl. Acids Res. 30, 3059–3066.

Leme, E.M.C., 2003. Two new Orthophyllum species from Bahia, Brazil. J. Bromeliad. Soc. 53, 20–28.

Leme, E.M.C., 2007. Three subtle new Cryptanthus species from Espinhaço Range, Minas Gerais, Brazil. J. Bromeliad. Soc. 57, 259–271.
Leme, E.M.C., 2008. Studies on Orthophytum – Part IX. The "subcomplex mello-barretoi" and another new species. J. Bromeliad. Soc. 58, 257–261.

Leme, E.M.C., Paula, C. C., 2003. Uma nova espécie de Orthophytum de Minas Gerais, Brasil. Vidalia 1, 1–5.

Leme, E.M.C., Paula, C.C., 2005. Studies on Orthophytum – Part III: Three new long-scapose species. J. Bromeliad. Soc. 55, 156–165.

Leme, E.M.C., Paula, C.C., 2008. Studies on Orthophytum – Part VIII: Two new species from Grão Mogol State Park, Minas Gerais, Brazil. J. Bromeliad. Soc. 58, 106–117.

Lin, B., Ritschel, P.S., Ferreira, F.R., 1987. Número cromossômico de exemplares da família Bromeliaceae. Revista Brasil. Frut. 9, 49–55.

Lindschau, M., 1933. Beiträge zur zytologie der Bromeliaceae. Planta 20, 506–530.

Leme, E.M.C. 2004. Studies on Orthophytum, an endemic genus of Brazil – Part I. J. Bromeliad Soc. 54, 36–43.

Louzada, R.B., Palma-Silva, C., Corrêa, A. M., Kaltchuk-Santos, E., Wanderley, M. G. L., 2010. Chromosome number of Orthophytum species (Bromeliaceae). Kew Bull. 65, 53–58.

Louzada, R.B., Versieux, L., 2010. Lapanthus (Bromeliaceae, Bromelioidae): A new genus from the southern Espinhaço Range, Brazil. Syst. Bot. 35, 497–503.

Louzada, R.B., Wanderley, M.G.L. 2010. Revision of Orthophytum (Bromeliaceae): species with sessile inflorescences. Phytotaxa 13, 1–26.

Louzada, R.B., Wanderley, M.G.L., 2011. A new species of Orthophytum (Bromeliaceae) from Chapada Diamantina, Bahia, Brazil. Phytotaxa 28, 27–30.

Luther, H.D., 2008. An Alphabetical List of Bromeliad Binomials. The Bromeliad Society International, Sarasota, Florida, pp. 1–110.

Marchant, C.J., 1967. Chromosome evolution in Bromeliaceae. Kew Bull. 21, 161–170.

McWilliams, E.L., 1974. Chromosome number and evolution. in: Smith, L.B., Downs, R.J. (Eds.), Pitcairnioideae (Bromeliaceae). Fl. Neotrop. Monogr. 14, 33–40

Nylander, J.A.A., 2004. MrModeltest: Available from http://www.abc.se/~nylander/.

Palma-Silva, C., Santos, D.G., Kaltchuk-Santos, E. & Bodanese-Zanetini, M.H., 2004. Chromosome numbers, meiotic behavior, and pollen viability of species of Vriesea and Aechmea genera (Bromeliaceae) native to Rio Grande do Sul, Brazil. Amer. J. Bot. 9, 804–807.

Rambaut, A., Drummond, A.J., 2007. Tracer: Available from http://beast.bio.ed.ac.uk/tracer.

Ramírez-Morillo, I., 1996. Systematics, Phylogeny and Chromosome Number Evolution in Cryptanthus (Bromeliaceae). Ph.D. Thesis, University of Missouri–St. Louis, pp. 1–263.
Ramírez-Morillo, I., Brown, G.K., 2001. The origin of the low chromosome number in Cryptanthus (Bromeliaceae). Syst. Bot. 26, 722–726.

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Hönna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J. 2012. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol., doi: 10.1093/sysbio/sys029.

Sang, T., Crawford, D.J., Stuessy, T.F., 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84, 1120–1136.

Sass, C., Specht, C.D., 2010. Phylogenetic estimation of the core bromelioids with an emphasis on the genus Aechmea. Molecular Phylogenetics and Evolution 55, 559–571.

Schulte, K., Zizka, G., 2008. Multi locus plastid phylogeny of Bromelioideae (Bromeliaceae) and the taxonomic utility of petal appendages and pollen characters. Candollea 63, 209–255.

Schulte, K., Horres, R., Zizka, G., 2005. Molecular phylogeny of Bromelioideae and its implications on biogeography and the evolution of CAM in the family (Poales, Bromeliaceae). Senckenbergiana Biol. 85, 113–125.

Schulte, K., Barfuss, M.H.J., Zizka, G., 2009. Phylogeny of Bromelioideae (Bromeliaceae) inferred from nuclear and plastid DNA loci reveals the evolution of the tank habit within the subfamily. Mol. Phylogen. Evol. 51, 327–339.

Sharma, A.K., Ghosh, I., 1971. Cytotaxonomy of the family Bromeliaceae. Cytologia 36, 237–247.

Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E., Small, R.L., 2005. The tortoise and the rare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92, 142–166.

Smith, L.B., 1955. The Bromeliaceae of Brazil. Smithsonian Miscellaneous Collection 126, 1–290.

Smith, L.B., Downs, R.J., 1974. Flora Neotropica Monograph No. 14 Part 1: Pitcairnioideae (Bromeliaceae). Flora Neotropica. Organization for Flora Neotropica, Hafner, New York, pp. 1–658.

Smith, L.B., Downs, R.J., 1977. Flora Neotropica Monograph No. 14 Part 2: Tillandsioideae (Bromeliaceae). Flora Neotropica. Organization for Flora Neotropica, Hafner, New York, pp. 659–1492.

Smith, L.B., Downs, R.J., 1979. Flora Neotropica Monograph No. 14 Part 3: Bromelioideae (Bromeliaceae). In: Rogerson, C.T. (Ed.), Flora Neotropica. Organization for Flora Neotropica, New York Botanical Garden, New York, pp. 1493–2142.

Smith, L.B., Till, W., 1998. Bromeliaceae. In: Kubitzki, K. (Ed.), The Families and Genera of Vascular Plants. Springer, Berlin, pp. 74–100.
Sousa, L.O.F., 2011. Revisão taxonômica e filogenia de Aechmea Ruiz & Pav. subgênero Lamprococcus (Beer) Baker, Bromelioidae: Bromeliaceae. Universidade Federal do Rio de Janeiro, Museu Nacional, Rio de Janeiro. pp. 1-160.

Sousa, L.O.F., Wendt, T., Brown, G.K., Tuthill, D.E., Evans, T. M., 2007. Monophyly and phylogenetic relationships in Lymania (Bromeliaceae: Bromelioidae) based on morphology and chloroplast DNA sequences. Systematic Botany 32, 264–270.

Swofford, D.L., 2002. PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts, USA.

Terry, R.G., Brown, G.K., Olmstead, R.G., 1997. Examination of subfamilial phylogeny in Bromeliaceae using comparative sequencing of the plastid locus ndhF. Am. J. Bot. 84, 664–670.

Ule, E., 1908 Beiträge zur Flora von Bahia. Bot. Jahrb. Syst. 42, 191–238.

Varadarajan, G.S., Brown, G.K., 1985. Chromosome number reports LXXXIX. Taxon 34, 727–730.

Versieux, L.M., Barbará, T., Wanderley, M.G.L., Calvente, A., Fay, M.F., Lexer, C., 2012. Molecular phylogenetics of the Brazilian giant bromeliads (Alcantarea, Bromeliaceae): implications for morphological evolution and biogeography. Mol. Phylogenet. Evol. 64, 177-189.

Wanderley, M.G.L., 1990. Diversidade e distribuição geográfica das espécies de Orthophytum (Bromeliaceae). Acta Bot. Bras. 4, 169–175.

Wanderley, M.G.L., Conceição, A.A., 2006. Notas taxonômicas e uma nova espécie do gênero Orthophytum Beer (Bromeliaceae) da Chapada Diamantina, Bahia, Brasil. Sitientibus ser. Ci. Biol. 6, 3–8.

Weiss, H.E., 1965. Étude caryologique et cyto-taxonomique de quelques Broméliaceés. Mém. Mus. Natl. Hist. Nat. 16, 9–38.

Zizka, G., Horres, R., Nelson, E.C., Weising, K. 1999. Revision of the genus Fascicularia Mez (Bromeliaceae). Bot. J. Linn. Soc. 129, 315–332.
Table 1. Studied material. Abbreviations: B, Herbarium of Botanical Garden of Berlin; FR, Herbarium Senckenbergianum; HB, Herbarium Bradeanum; IBt, Instituto de Botânica; K, Herbarium of Royal Botanical Garden, Kew; MBML, Herbarium of Museu de Biologia Melo Leitão; SP, Herbarium of Instituto de Botânica; WU, Herbarium of Vienna University.

Taxa	Locality	Voucher	
Bromelia pinguin L.	ex cult.	Schulte 300508-10 (FR)	
Bromelia serra Griseb.	ex cult.	Horres 029 (FR)	
Cryptanthus bahianus L.B. Sm.	ex cult.	Gartenherbar 11060a (B)	
Cryptanthus colnagoi Rauh & Leme	ex cult.	HBV 7103 (WU)	
Cryptanthus diamantinense Leme	ex cult.	Leme 3813 (HB)	
Cryptanthus microgaziovii I. Ramirez	Brazil, ES, Santa Leopoldina	Louzada et al. 12 (SP)	
Cryptanthus odoratissimus Leme	ex cult.	Kautsky et al. s.n. (HB)	
Cryptanthus tiradentensis Leme	Brazil, MG, Tiradentes	Louzada et al. 158 (SP)	
Cryptanthus warren-loosei Leme	ex cult.	0013741 (WU)	
Cryptanthus zonatus (Vis.) Beer	Brazil, PE, Recife	IBT living collection	
Lapanthus duartei (L.B. Sm.) Louzada & Versieux	Brazil, MG, Conceição do Mato Dentro	Louzada et al. 28 (SP)	
Lapanthus itambensis (Versieux & Leme)	Brazil, MG, Santo Antonio do Itambé	Louzada et al. 30 (SP)	
Ochagavia litoralis (Phil.) Zizka, Trumpler & Zoellner	ex cult.	Horres 015a (FR)	
Orthophytum alvinii W. Weber	Brazil, MG, Teófilo Otoni	Louzada et al. 90 (SP)	
Orthophytum argentum Louzada & Wand.	Brazil, BA, Rio de Contas	Louzada et al. 110 (SP)	
Orthophytum boudetianum Leme & L. Kollmann	Brazil, ES, Afonso Cláudio	Louzada 135 (SP)	
Orthophytum braunii Leme	Brazil, BA, Seabra	Machado 50 (SP)	
Orthophytum burle-marxii L.B. Sm. & Read	Brazil, BA, Lençóis	Louzada & Moreira 45 (SP)	
Orthophytum conquistense Leme & M. Machado	Brazil, BA, Vitória da Conquista	Machado 277 (SP)	
Orthophytum diamantinense Leme	Brazil, BA, Diamantina	Louzada & Ribeiro 146 (SP)	
Orthophytum estvesii (Rauh) Leme	Brazil, ES, Santa Teresa	Fontana et al. 2959 (MBML)	
Orthophytum falconii Leme	Brazil, BA, Candido Sales	Reis & Falcon s.n. (HB 89876)	
Orthophytum foliosum L.B. Sm.	Brazil, ES, Santa Teresa	Louzada et al. 13 (SP)	
Orthophytum fosterianum L.B. Sm.	Brazil, ES, Cotalina	Louzada et al. 17 (SP)	
Orthophytum glabrum (Mez) Mez	Brazil, MG, Itaobim	Louzada & Medeiros 139 (SP)	
Orthophytum graonogolense Leme & C.C. Paula	Brazil, MG, Grão Mogol	Louzada & Moreira 42 (SP)	
Orthophytum grossiorum Leme & C.C. Paula	Brazil, MG, Carlos Chagas	Louzada s.n. (IBt living collection)	
Orthophytum gurkenii Hutchison	Brazil, ES, Baixo Guandu	Louzada 133 (SP)	
Orthophytum harleyi Leme & M. Machado	Brazil, BA, Érico Cardoso	Louzada et al. 108 (SP)	
Orthophytum hatchesbachii Leme	Brazil, BA, Rio de Contas	Louzada et al. 104 (SP)	
Orthophytum heleniceae Leme	Brazil, BA, Andarai	Wanderley et al. 2544 (SP)	
Orthophytum horridum Leme	Brazil, MG, Pedra Azul	Louzada & Medeiros 138 (SP)	
Orthophytum humile L.B. Sm.	Brazil, MG, Grão Mogol	Louzada & Moreira 41 (SP)	
Orthophytum lanuginosum Leme & C.C. Paula	Brazil, MG, Teófilo Otoni	Louzada & Medeiros 143 (SP)	
Orthophytum lemei E. Pereira & L.A. Penna	Brazil, BA, Morro do Chapéu	Louzada et al. 186	
Orthophytum leprosum (Mez) Mez	Brazil, MG, Jacinto	Louzada & Medeiros 141 (SP)	
Orthophytum lucidum Leme & H. Luther	Brazil, BA, Jequitinhonha	Louzada & Medeiros 142 (SP)	
Species	Location	Collector(s)	Institution
--------------------------------------	--------------------------------------	-------------------------	----------------
Orthophytum macroflorum	Brazil, BA, Licínio de Almeida	Machado s.n. (SP 441733)	
Orthophytum magalhaesii	Brazil, ES, Vila Pavão	Louzada 131 (SP)	
Orthophytum pseudostoloniferum	Brazil, ES, Santa Teresa	Leme et al. 6915 (MBML)	
Orthophytum mello-barretoi	Brazil, MG, Santana do Riacho	Louzada & Medeiros 84 (SP)	
Orthophytum mucugense	Brazil, BA, Mucugê	Louzada & Moreira 58 (SP)	
Orthophytum ophiuroides	Brazil, BA, Lençóis	Louzada & Wanderley 88 (SP)	
Orthophytum pseudovagans	Brazil, ES, Água Branca	Demuner et al. 3464 (MBML)	
Orthophytum riocontense	Brasil, BA, Abaíra	Machado 1206 (SP)	
Orthophytum saxicola	Brazil, BA, Itaberaba	Louzada et al. 122 (SP)	
Orthophytum shulzianum	Brazil, MG, Diamantina	Machado 1218 (SP)	
Orthophytum sucrei	Brazil, ES, Afonso Cláudio	Machado 136 (SP)	
Orthophytum toscanoi	Brazil, BA,	Machado 1213 (SP)	
Orthophytum ulei	Brazil, BA, Mucugê	Louzada & Wanderley 91 (SP)	
Orthophytum vagans	ex cult.	Louzada s.n. (SP 442925)	
Orthophytum zanonii	Brazil, ES, Pancas	Louzada et al. 18 (SP)	
Orthophytum sp.	Brazil, BA, Jabaraci	Machado 1207 (SP)	
Puya chilensis	ex cult.	Chase 23824 (K)	
Fig. 1. A-U. Diversity of Orthophytum. A. O. argentum. B. O. leprosum. C. O. boudetianum. D. O. braunii. E. O. maracasense. F. O. albopictum. G. O. conquistense. H. O. humile. I. O. disjunctum. J. O. eddie-estevesi. K. O. foliosum. L. O. magalhæsi. M. O. glabrum. N. O. hatschbachii. O. O. ophiuroides. P. O. ulei. Q. O. graumogolense. R. O. grossiorum. S. O. horridum. T. O. sucrei. U. O. lanuginosum.
Fig 2. Phylogram of combined PHYC, trnL-trnF and psbA-trnH data. Numbers above the branches represent posterior probabilities (PP) and numbers below these branches are bootstrap values (BS).
Fig 3. Cladogram of *Lapanthus/Cryptanthus/Orthophytum* mapping the presence and absence of a peduncle.
Fig. 4. A–D. Inflorescence type of Orthophytum. A. Spikes of spikes, *Orthophytum lemei* (Louzada et al. 187). B–C. Spike of glomerules. B. *Orthophytum piranianum* (Martinelli et al. 11305). C. *Orthophytum foliosum* (Louzada 132). D. Spike, *Orthophytum saxicola* (Louzada et al. 122).
Capítulo 2

Restabelecimento de *Sincoraea* Ule (Bromeliaceae)*

*Manuscrito a ser submetido ao periódico Phytotaxa
Ilustração: *Orthophytum ophiuroides* (Foto R.B. Louzada).
Resumo
Com base em evidências morfológicas e moleculares, no presente estudo é apresentado o restabelecimento do gênero *Sincoraea*, tradicionalmente considerado um sinônimo de *Orthophytum*. Adicionalmente são apresentadas uma descrições para gênero, 10 combinações novas e um sinônimo novo.

Abstract
Based on morphological and molecular evidence in this study is shown the establishment of *Sincoraea*, traditionally considered a synonym of *Orthophytum*. In addition are presented a description of the genus, 10 new combinations and one new synonym.

Key Words: Chapada Diamantina, *Cryptanthopsis*, Espinhaço Range, *Orthophytum*
INTRODUÇÃO

O gênero Orthophytum Beer (1854: 347) foi descrito com base em um espécime coletado por Johann Emanuel Pohl, em 1820, na região mineira, conhecida atualmente como Médio Jequitinhonha. A espécie-tipo do gênero, Orthophytum glabrum (Mez) Mez (1896: 117) é caracterizada por ser uma planta rupícola, robusta, não formando roseta durante a antese e com um distinto pedúnculo floral.

Na ocasião da descrição do gênero, Beer (1854) não determinou um epíteto específico ao espécime analisado (Pohl 3636). Mez (1892), sem ter conhecimento de Orthophytum, descreveu Prantleia Mez (1892: 257), um novo gênero de Bromeliaceae, com duas espécies, P. glabra Mez (1892: 258), P. leprosa Mez (1892: 259), sendo que a primeira, foi descrita com base no mesmo espécime que Beer (1854) se baseou ao descrever Orthophytum. Posteriormente, Mez (1896), sinonimiza Prantleia em Orthophytum, apresentando as duas combinações sob o gênero Orthophytum.

No final do século XIX, o botânico Ernst Heinrich Georg Ule, ao realizar expedições ao estado da Bahia, e descreveu com base nos materiais coletados, dois novos gêneros para Bromeliaceae: Cryptanthopsis Ule (1908: 193) e Sincoraea Ule (1908: 191) (Louzada & Wanderley, 2010).

A espécie Cryptanthopsis saxicola Ule (1908: 193), foi descrita com base em um espécime de pequeno porte, portando um pedúnculo curto, porém evidente, crescendo sobre afloramentos graníticos em baixa elevação (máximo 200 m elev.). Em contraste, Sincoraea amoena Ule (1908: 191), é uma espécie rupícola, crescendo sobre afloramentos quartzíticos acima de 800 m de elevação, caracterizada principalmente pelo porte delicado e ausência de pedúnculo.

Cryptanthopsis e Sincoraea são dois gêneros morfologicamente distintos, especialmente pela presença ou ausência de um pedúnculo, respectivamente. Smith (1940), mesmo com as diferenças acima citadas, descreveu C. navioides Smith (1940: 31), uma espécie de inflorescência séssil, com a base das folhas vermelhas durante a antese, sendo essa espécie bem semelhante a Sincoraea amoena.

Posteriormente, Smith (1955) reconhecendo que os dois táxons acima mencionados pertencem a um mesmo gênero, propõe a sininimização das duas espécies sob Orthophytum. Com esta proposta, Orthophytum passa a ter dois grupos morfológicos distintos, um com a inflorescência séssil, e o outro com a inflorescência pedunculada (Smith & Downs, 1979; Wanderley, 1990; Leme, 2004; Wanderley & Conceição, 2006; Louzada & Wanderley, 2010).

Leme (2004a), com o objetivo de organizar as espécies de Orthophytum, para facilitar estudos futuros, denomina os grupos informais deste gênero em "complexo com inflorescência escapos" (=pedunculada; CIP) e "complexo com inflorescência séssil" (CIS). Este autor ainda subdividiu as espécies com inflorescência pedunculada nos subcomplexos “disjunctum”, “leprosum” e “mello-
barretoi” e as espécies com inflorescência séssil nos subcomplexos “amoenum”, “supthutii” e “vagans”.

Embora os grupos criados por Leme (2004) tenham como principal objetivo o auxílio nos estudos taxonômicos de Orthophytum, é importante ressaltar que a criação dos complexos e subcomplexos foi baseada exclusivamente em similaridades morfológicas, sem apresentar, evidências filogenéticas.

Durante a revisão das espécies de inflorescência séssil de Orthophytum (Louzada, 2008), foi levantada a questão sobre a segregação das espécies do subcomplexo supthutii em um novo gênero. Neste subcomplexo estão inseridos Orthophytum supthutii Gross & Barthlott (1990: 46) e O. itambensis Versieux & Leme (2007: 130) que se assemelham pela presença de apêndices petalíneos lanceolados diferentes dos apêndices petalíneos lacerados ou fimbriados das demais espécies de Orthophytum. Com base nos estudos realizados em Louzada & Versieux (2010) propõem a criação de Lapanthus Louzada & Versieux (2010: 497), para melhor abrigar essas espécies.

Louzada et al. (cap. 1) em uma análise filogenética do gênero Orthophytum, chegaram a conclusão que os complexos de espécies com inflorescência séssil e com inflorescência pedunculada não caracterizam grupos monofiléticos, sendo as espécies do subcomplexo “vagans” intimamente relacionadas às espécies do complexo de espécies com inflorescência pedunculada. Por outro lado Lapanthus e as espécies do subcomplexo “amoenum” emergem como grupos distintos e monofiléticos. Porém a relação entre os clados Lapanthus, subcomplexo “amoenum” e o restante das espécies do gênero Orthophytum que formam um clado fortemente sustentado, não é elucidada devido a falta de resolução na topologia.

Diante disso, com base nos caracteres morfológicos e no monofilétismo confirmado para as espécies que compõem o subcomplexo “amoenum”, o gênero Sincoraea é aqui estabelecido, sendo apresentada a descrição do gênero, combinações novas e uma sinonímização.

Sincoraea Ule (1908: 191). Tipo:—S. amoena Ule (1908: 191).

Ervas rupícolas, estoloníferas, caule inconspícuo, curto, coberto pelas bainhas foliares. Folhas em rosetas, patentes, arqueadas ou falcadas. Bainhas foliares imbricadas, triangulares, esverdeadas, lepidotas a glabras, margem serrada. Lâminas foliares coriáceas a subcoriáceas, linear-triangulares a estreitamente triangulares, planas ou côncavas, lepidotas a esparsamente lepidotas em ambas as faces, margem serrada, acúleos congestos ou laxos. Pedúnculos ausentes. Inflorescência séssil, simples ou compostas. Brácteas primárias foliáceas ou subfoliáceas. Brácteas florais vestigiais presentes ou ausentes. Brácteas florais verdes ou vermelhas, margens serradas a serruladas, ápice
pungente. Flores sésseis. Sépalas livres, eretas a suberetas, assimétricas ou raramente simétricas, ápice agudo, acuminado, mucronado ou mucronulado. Pétalas livres, alvas, espatuladas, com dois calos laterais aos estames, margem inteira, ápice obtuso. Apêndices petalíneos saciformes, lacerados ou digitados. Tubo epígino presente ou ausente. Estames não ultrapassando as pétalas. Filetes filiformes, primeiro verticilo livres e opostos às sépalas, segundo verticilo adnato às pétalas. Anteras obtusas. Estilete tricostado. Estigma simples-ereto. Frutos com sépalas persistentes, ovóides. Sementes ovóides e estriadas.

CHAVE DE IDENTIFICAÇÃO

1 Inflorescência composta .. 2
 - Inflorescência simples .. 3
2 Brácteas florais e sépalas róseas a vermelhas .. 6
 - Brácteas florais e sépalas verdes ... 9
3 Sépalas sem tricomas glandulares ... S. hatschbachii
 - Sépalas com tricomas glandulares ..
4 Lâminas foliares densamente lepidotadas; sépalas estreitamente triangulares; MG S. humilis
 - Lâminas foliares esparsamente lepidotadas; sépalas triangular-lanceoladas 5
5 Lâminas foliares 2–23 × 0,4–0,7 cm; pétalas c. 2,5 cm compr.; Jacobina-BA S. navioides
 - Lâminas foliares 2,5–7 × 0,3–0,4 cm; pétalas c. 2 cm compr.; Mucugê-BA S. mucugensis
6 Lâminas foliares com a face adaxial lepidota; não lustrosa .. 7
 - Lâminas foliares com a face adaxial esparsamente lepidota, lustrosa 8
7 Lâminas foliares adaxialmente glabras na base; ápice das pétalas subagudo S. burle-marxii
 - Lâminas foliares adaxialmente lepidotadas na base; ápice das pétalas obtuso S. Ulei
8 Lâminas foliares 0,5–1 cm larg., acúleos 1,5–3 mm compr.; brácteas florais c. 1,8 × 1 cm, anteras 3,2–3,5 mm compr. .. S. amoena
 - Lâminas foliares 0,2–0,4 cm compr.; acúleos 0,3–0,4 mm compr.; brácteas florais 0,9–1,2 × 0,7; anteras c. 2,5 cm compr. ... S. ophiurooides
9 Lâminas foliares com anel lanoso-lepidoto na base da face adaxial; alva S. albopicta
 - Lâminas foliares com a base da face adaxial glabra; verde ..
10 Lâminas foliares c. 1,5 cm larg., margem densamente serradas .. S. heleniceae
 - Lâminas foliares 0,4–0,7 cm larg., margem serrada .. S. rafaelii
Sincoraea albopicta (Philcox) Louzada & Wand., *comb. nov.*
Basionym: *Orthophytum albopictum* Philcox (1985: 357). Tipo:— Brasil. Bahia: near Cumbuca, about 3 km N of Mucugê on road N to Andaraí, *Storr 122* (holótipo CEPEC!, isótipo K!).

Sincoraea burle-marxii (L.B.Smith) Louzada & Wand. *comb. nov.*
Basionym: *Orthophytum burle-marxii* Smith & Read (1979: 164). Tipo:— Brasil. Bahia: *J. Bogner 1311* (holótipo US!).
Synonyms: *Orthophytum burle-marxii* L.B.Sm. & Read var. *seabrae* Rauh (1985: 79). Tipo:— Brasil. Bahia: Seabra, 6 Oct 1981, *Rauh 56 497a* (holótipo: HEID!).

Orthophytum roseum Leme (2010: 66). Tipo:— Brazil, Bahia, Chapada Diamantina, Palmeira, near Caeté-Açu, Riachinho, *R. Oliveira s. n.*, (fl. cult. Feb. 2008, E. Leme 3439) (holótipo: HB!; isótipo: RB!), *syn. nov.*

Comentários: *Orthophytum roseum* foi descrito como uma nova espécie morfológicamente relacionada a *O. burle-marxii*, diferindo pela dimensão de caracteres vegetativo e reprodutivos, no entanto, de acordo com Louzada & Wanderley (2010) essas dimensões se sobrepõem com as de *O. burle-marxii*, justificando a sinonimização de *O. roseum* em *O. burle-marxii*.

Sincoraea hatschbachii (Leme) Louzada & Wand., *comb. nov.*
Basionym: *Orthophytum hatschbachii* Leme (1995: 120). Tipo:—Brasil. Bahia: Rio de Contas, Mato Grosso 1300 m, 7 April 1992, *G. Hatschbach & Barbosa 56827* (holótipo: MBM!).

Sincoraea heleniceae (Leme) Louzada & Wand., *comb. nov.*
Basionym: *Orthophytum heleniceae* Leme (2004b: 67). Tipo:—Brasil. Bahia: field collection in Andaraí, Cachoeira da Garapa, 1300 m, *O. Ribeiro & H. Ribeiro s.n.* (holótipo: HB!).

Sincoraea humilis (L.B. Sm.) Louzada & Wand., *comb. nov.*
Basionym: *Orthophytum humile* Smith (1968: 75). Tipo:—Brasil. Minas Gerais: Grão Mogol, 18 August 1960, *B. Maguire, G.M. Magalhães & C.K. Maguire 49288* (holótipo: US!, isótipo: NY!).

Sincoraea mucugensis (Wand. & Conc.) Louzada & Wand., *comb. nov.*
Basionym: Orthophytum mucugense Wanderley & Conceição (2006: 4). Tipo:—Brasil. Bahia: Mucugê, Parque Municipal Sempre-viva, cachoeira do Rio Tiburtino, 12°59'83"S, 42°20'91"W, 17 January 2006, M.G.L. Wanderley, A. Conceição, R. Louzada, S. Martins 2540 (holótipo: SP!, isótipo: HUEFS!).

Sincoraea navioideae (L.B.Sm.) Louzada & Wand. *comb. nov.*
Basionym: Cryptanthopsis navioideae Smith (1940: 31). Tipo:—Brasil. Bahia: Jacobina, on perpendicular rocks above stream in isolated ravine, 500 m, 16 June 1939, M. Foster & R. Foster 90 (holótipo: GH, isótipo: R!, SP!).

Sincoraea ophiuroides (Louzada & Wand.) Louzada & Wand., *comb. nov.*
Basionym: Orthophytum ophiuroides Louzada & Wanderley (2008: 406). Tipo:—Brasil. Bahia: Lençóis, Rio Mandassaia, 15 January 2006, M.G.L. Wanderley, A.A. Conceição, S.E. Martins & R.B. Louzada. 2532 (holótipo: SP!, isótipo: HUEFS!).

Sincoraea rafaelii (Leme) Louzada & Wand. *comb. nov.*
Basionym: Orthophytum rafaelii Leme (2011: 21). Tipo:—Brasil. Bahia: Chapada Diamantina, Palmeira, Serra das Paridas, Cachoeira do Mosquito, Oliveira s.n., (fl. cult. May 2010 Leme 8152) (holótipo: RB).

Sincoraea ulei (Louzada & Wand.) Louzada & Wand., *comb. nov.*
Basionym: Orthophytum ulei Louzada & Wanderley (2010: 20). Tipo:—Brasil. Bahia: Mucugê road to Andaraí, 12°56’41.2”S, 41°17’28.5”W, ca. 867 m. 9 April 2008 (fl), R.B. Louzada & M.G.L. Wanderley 91 (holótipo: SP!, isótipo: HUEFS!).

REFERÊNCIAS BIBLIOGRÁFICAS
Beer, J.G. (1854) Versuch einer Eintheilung der Familie der Bromeliaceen nach ihrem Blüthenstande. Flora 37: 346–349.
Gross, E. and W. Barthlott. 1990. Orthophytum supithutii, a striking new bromeliad. *Journal of Bromeliad Society* 40: 217–219.
Leme, E.M.C. (1995) Miscellaneous new species of Brazilian Bromeliaceae. Selbyana 16: 110–122.
Leme, E.M.C. (2004a) Studies on Orthophytum, an endemic genus of Brazil — Part I. *Journal of the Bromeliad Society* 54: 36–43.
Leme, E.M.C. (2004b) Studies on Orthophytum — Part II: Two new scapeless species. *Journal of the Bromeliad Society* 54: 66–74.
Leme, E.M.C. & Fontana, A.P. (2010) Studies on Orthophytum – Part XI: Three new species from Bahia and Minas Gerais. *Journal of the Bromeliad Society* 60: 56–70.

Leme, E.M.C. & Kollmann, L.J.C. (2011) New species and a new combination of Brazilian Bromeliaceae. *Phytotaxa* 16: 1–36.

Louzada, R.B. (2008) *Taxonomia e citogenética das espécies de inflorescência séssil do gênero Orthophytum Beer (Bromeliaceae)*. Dissertação de Mestrado, Instituto de Botânica, São Paulo, 103 pp.

Louzada R.B. & Versieux L.M. (2010) *Lapanthus* (Bromeliaceae, Bromelioidae): a new genus from the southern Espinhaço Range, Brazil. *Systematic Botany* 35: 497–503.

Louzada, R.B. & Wanderley, M.G.L. (2008) Uma nova espécie de Orthophytum Beer (Bromeliaceae) relacionada a *Orthophytum navioides* (L.B. Sm.) L.B. Sm. *Hoehnea* 35: 405–410.

Louzada, R.B. & Wanderley, M.G.L. (2010) Revision of Orthophytum (Bromeliaceae): species with sessile inflorescences. *Phytotaxa* 13: 1–26.

Mez, C. (1892) Bromeliaceae. *In*: von Martius, C.P.F., Eichler, A.W. & Urban, I. (eds). *Flora brasiliensis* vol. 3. F. Fleischer, Leipzig, pp. 281–430.

Mez, C. (1896) Bromeliaceae. *In*: Candolle, A.L.P.P. de (ed.). *Monographie Phanerogamarum* vol. 9. Sumptibus Masson & Cia., Paris, pp. 1–990.

Philcox, D. (1985) Orthophytum albopictum (Bromeliaceae). *Kew Magazine* 2: 354–357.

Smith, L.B. (1940) Studies in the Bromeliaceae. *Contributions of the Gray Herbarium* 129: 31–34.

Smith, L.B. (1955) The Bromeliaceae of Brazil. *Smithsonian Miscellaneous Collection* 126: 1–290.

Smith, L.B. (1968) Notes on Bromeliaceae, XXVII. *Phytologia* 16: 62–87.

Smith, L.B. & Downs, R.J. (1979) Bromelioidae (Bromeliaceae). *Flora Neotropica Monograph* 14: 1493–2141. Hafner Press, New York.

Smith, L.B. & Read, R.W. (1979) Orthophytum burle-marxii. *Journal of the Bromeliad Society* 29: 164–165.

Ule, E. (1908) Beiträge zur Flora von Bahia. *Botanische Jahrbücher für Systematik, Pflanzengeographie und Pflanzenzüchtung* 42: 191–238.

Versieux, L.M. & Leme, E.M.C. (2007) A new lithophytic Orthophytum (Bromeliaceae) from the Espinhaço range, Minas Gerais, Brazil. *Novon* 17: 130–134.

Wanderley, M.G.L. (1990) Diversidade e distribuição geográfica das espécies de Orthophytum (Bromeliaceae). *Acta Botanica Brasilia* 4: 169–175.

Wanderley, M.G.L. & Conceição, A.A. (2006) Notas taxonômicas e uma nova espécie do gênero Orthophytum Beer (Bromeliaceae) da Chapada Diamantina, Bahia, Brasil. *Sitientibus Série Ciências Biológicas* 6: 3–8.
Capítulo 3

Uma nova combinação em *Lapanthus* (Bromeliaceae)*

*Manuscrito a ser submetido ao periódico Phytokeys
Ilustração: *Orthophytum vidaliorum* (Foto O.B.C. Ribeiro).
Abstract
A new combination, *Lapanthus vidaliorum* (O. Ribeiro & C.C. Paula) is proposed for *Orthophytum vidaliorum* O. Ribeiro & C.C. Paula. Besides, notes on taxonomy, geographic distribution and conservation are provided.

Resumo
Uma combinação nova, *Lapanthus vidaliorum* (O. Ribeiro & C.C. Paula) é proposta para *Orthophytum vidaliorum* O. Ribeiro & C.C. Paula. Além disso, são apresentadas notas sobre taxonomia, distribuição geográfica e conservação.

Key words: Bromelioidae, Endemics, Quadrilatero Ferrífero, *Orthophytum*
INTRODUCTION

Lapanthus Louzada & Versieux is a small genus comprising two species occurring in the southern portion of the Espinhaço Range in the Brazilian state of Minas Gerais. The species inhabit quartzitic rocky outcrops near waterfalls and gallery forests in rocky fields or in areas of transitional vegetation between semideciduous seasonal forests and rocky fields (Louzada and Versieux 2010).

Lapanthus was established to accommodate two species, one previously included in *Orthophytum* Beer and the other in *Cryptanthus* Otto & A. Dietr. (Louzada and Versieux 2010).

The two recognized species of *Lapanthus* (*L. duartei* (L.B. Sm.) Louzada & Versieux and *L. itambensis* (Versieux & Leme) Louzada & Versieux) were segregated from *Cryptanthus* and *Orthophytum* respectively due to the presence of characters apparently contradictory to the current circumscriptions of those genera which included, ciliate petals margins, presence of a pair of lanceolate petal appendages and free stamens (Louzada and Versieux 2010). The decision to describe a new genus to accommodate the species with these characters was also supported by a study on the molecular phylogeny of Bromelioideae (Schulte et al. 2009).

The phylogenetic relationship of the genus is further elucidated by a study on molecular phylogeny where *Lapanthus* arises as a monophyletic group, sister to a *Cryptanthus* clade (Louzada et al. in prep.) comprising species of the subg. *Cryptanthus*.

Recently, the new species *Orthophytum vidaliorum* O. Ribeiro & C.C. Paula, morphologically related to *Orthophytum itambense* (=*Lapanthus itambensis*) was described with the same combination of characters that Louzada and Versieux (2010) used to recognize *Lapanthus*. Therefore, based in the morphological evidences presented in the protologue and the analysis of the holotype, we present herein a new combination in *Lapanthus*. This note also provides comments, a table with diagnostic characters (Table 1), photos of the three species, and a distribution map.

Lapanthus vidaliorum (O. Ribeiro & C.C. Paula) Louzada & Wand. **comb. nov.** (Figs. 1, A–B, 2).

Basionym: *Orthophytum vidaliorum* O. Ribeiro & C.C. Paula. Brittonia 62(2): 145, f. 1. 2010. Type: Brazil. Minas Gerais: Santa Bárbara, Serra de Capanema, 20°11′29″S, 43°35′05.1″W, 1469 m elev., 19 Aug 2008, O.B.C. Ribeiro 208 (holotype: VIC!; isotype: HB).

Notes: When *Orthophytum vidaliorum* was described, Ribeiro and Paula (2010) discussed its morphological relationship with *O. itambensis*. It was emphasized that these species share similar habitat, plant size, leaves, inflorescence and flower structure. Moreover, they state that *O. vidaliorum* is also closely related to *O. supthutii* E. Gross & Barthlott. Both, *O. supthutii* and *O. itambensis* are now under *Lapanthus*. In the same article the authors also emphasize that *O. vidaliorum* could be included
in other genus as the not validly published genus *Lapa* proposed by Louzada (2008), which was later validly published by Louzada and Versieux (2010) under the name *Lapanthus*.

Distribution: *Lapanthus vidaliorum* occurs in the southernmost part of the Espinhaço Range, in a iron–rich region called Quadrilátero Ferrífero (Iron Quadrangle) in the Brazilian state of Minas Gerais. Although it occurs in an iron–rich area, *L. vidaliorum* was found inhabiting quartzitic–sandstone rocky outcrops. The present combination extends the genus distribution southward. (Fig. 3).

Conservation: *Lapanthus vidaliorum* is an endangered species, known only from the type–population, which is quite small in number of individuals, being about 3.5 kilometers from the iron mine Capanema and surrounded by an eucalyptus plantation.

REFERENCES

Louzada RB (2008) Taxonomia e cotogenética das espécies de inflorescência sessile do gênero *Orthophytum* Beer (Bromeliaceae). Master Thesis, Instituto de Botânica, Brasil.

Louzada RB, Versieux LM (2010) *Lapanthus* (Bromeliaceae, Bromelioideae): a new genus from the southern Espinhaço Range, Brazil. Systematic Botany 35(3): 497–503.

Ribeiro OBC, Paula CC (2010) A new species of *Orthophytum* (Bromeliaceae, Bromelioideae) from Minas Gerais, Brazil. Brittonia 62(2): 145–148.

Schulte K, Barfuss MHJ, Zizka G (2009) Phylogeny of Bromelioideae (Bromeliaceae) inferred from nuclear and plastid DNA loci reveals the evolution of the tank habit within the subfamily. Molecular Phylogenetics and Evolution 51: 327–339.
Table 1. Comparison of diagnostic characters in *Lapanthus* species.

Character	*Lapanthus vidaliorum*	*Lapanthus duartei*	*Lapanthus itambensis*
Leaf-blade indument	glabrous	lepidote	glabrous
Inflorescence	simple	compound	pseudo-simple
branching			
Petal length	2.5-2.6 mm	2.8-3.8 mm	4.1 mm
Petal color	greenish-yellow	orange	white
Petal appendages	obdeltoid	lanceolate	lanceolate
Elevation	ca. 1470 m	ca. 650 m	700-900 m

Fig. 1. A-B. *Lapanthus vidaliorum*. A. Habitat. B. Habit in the wild. C. *Lapanthus duartei* in the wild. D. *Lapanthus itambensis* in cultivation (Photo: A-B Otávio Ribeiro).
Fig. 2. Holotype of *Lepanthus vidaliorum*.
Fig. 3. Distribution map of *Lapantus vidaliorum* (●), *L. duartei* (▲) e *L. itambensis* (■).
Revisão taxonômica de *Orthophytum* Beer
(Bromeliaceae, Bromelioidae)
RESUMO

Orthophytum é um gênero restrito ao Brasil, ocorrendo nos estados de Ceará, Paraíba, Pernambuco, Alagoas, Sergipe, Bahia, Minas Gerais e Espírito Santo. Suas espécies são encontradas crescendo sobre afloramentos rochoso graníticos no domínio da Floresta Atlântica ou Caatinga e em afloramentos quartzíticos nos campos rupestres da Cadeia do Espinhaço. O presente trabalho apresenta a revisão taxonômica das 46 espécies reconhecidas para o gênero além de comentários taxonômicos e nomenclaturais, notas sobre habitat, distribuição geográfica e conservação bem como pranchas de desenhos esquemáticos, fotografias das espécies na natureza e/ou cultivo e mapas de distribuição geográfica.

ABSTRACT

Orthophytum is a brazilian restricted genus, occurring in the Brazilian states of Ceará, Paraíba, Pernambuco, Alagoas, Sergipe, Bahia, Minas Gerais e Espírito Santo. Its species can be found growing on top of granitic rocky outcrops in the Atlantic Forest and Caatinga, and on top of quartzitic rocky outcrops of the rocky field of Espinhaço Range. This study presents a taxonomic revision of the 46 recognized species of Orthophytum, besides taxonomic and nomenclatural comments, notes on habitat, distribution and conservation, as well as line draws figures, photos of the species in wild and/or cultivation and distribution maps.
INTRODUÇÃO

Bromeliaceae é a maior família de monocotiledôneas com distribuição exclusiva na região neotropical. Dois centros de diversidade são observados, sendo um no Escudo das Guinas e outro no leste do Brasil (Smith, 1955; Smith & Downs, 1974; Givnish et al., 2007).

Bromeliaceae apresenta 58 gêneros e cerca de 3200 espécies (Luther, 2008), distribuídas em oito subfamílias: Brocchinioideae, Lindmanioideae, Tillandsioideae, Hechtioideae, Naviioideae, Pitacirnioideae, Puyioideae e Bromeliideae que representa a última linhagem divergente e abriga o maior número de gêneros na família (Givnish et al. 2007, 2011).

Orthophytum Beer (1854: 347) pertence à subfamília Bromeliideae, com distribuição restrita ao leste do Brasil, ocorrendo nos estados do Ceará, Paraíba, Pernambuco, Alagoas, Sergipe, Bahia, Minas Gerais e Espírito Santo (Fig. 1). A maioria das espécies de Orthophytum cresce, sobre afloramentos rochosos graníticos no domínio da Floresta Atlântica e Caatinga, ou quartzíticos nos campos rupestres da Cadeia do Espinhaço (Louzada & Wanderley, 2010).

O gênero foi descrito por Beer (1854) com base em um material coletado por Johann Emmanuel Pohl, no entanto, o autor não atribui um epíteto específico à coleção (Pohl 3436). Quase quatro décadas depois, Mez (1892), na monumental Flora Brasiliensis, descreveu Prantleia Mez (1892: 257), um novo gênero de Bromeliaceae com duas espécies: P. glabra Mez (1892: 258) (baseada na coleção Pohl 3436) e P. leprosa Mez (1892: 259) (baseada nas coleções Pohl 5229 e Glaziou 14035). Entretanto, quatro anos mais tarde Mez (1896) sinonimizou Prantleia em Orthophytum, após perceber que a coleção Pohl 3436, fora utilizada por Beer (1854) na descrição de Orthophytum (Louzada & Wanderley, 2010).

Cryptanthopsis Ule (1908: 193) e Sincoraea Ule (1908: 191), dois gêneros monoespecíficos, foram posteriormente relacionados e sinonimizados em Orthophytum por Smith (1955), porém sem apresentar uma justificativa para essa decisão. Cryptanthopsis saxicola (1908: 193) é uma espécie rupícola, de pequeno porte apresentando um curto pedúnculo e S. amoena (1908: 191) é também delicada, contudo de inflorescência séssil.

Desde então Orthophytum vem sendo dividido em dois grupos informais de espécies, sendo caracterizados pela presença ou ausência de um pedúnculo durante a antese (Wanderley, 1990; Leme, 2004a; Louzada & Wanderley, 2010).

Leme (2004a), com o objetivo de facilitar o estudo do gênero, denominou um grupo de "Complexo com inflorescência séssil" e o outro de "Complexo com inflorescência escaposa". Além disso, ainda baseando-se em características morfológicas, subdividiu o complexo com inflorescência séssil nos subcomplexos "amoenum", "supthutii" e "vagans", e o complexo com inflorescência escaposa nos complexos "disjunctum", "mello-barretoi" e "leprosum".
Recentemente, Louzada et al. (cap. 1) realizaram um estudo filogenético de *Orthophytum*, incluindo espécies dos dois grupos informais de espécies, além dos gêneros *Lapanthus* Louzada & Versieux (2010) que foi recentemente descrito para abrigar as espécies do subcomplexo supthutii, e *Crypantanthus* Otto & Dietrich (1836: 298), historicamente considerado um gênero afim de *Orthophytum* (Ramirez-Morillo, 1996).

Os resultados apresentados por Louzada et al. (cap. 1), suportam *Lapanthus*, como um gênero monofilético, todavia os complexos de Leme (2004a) não formam grupos naturais, sendo necessária uma nova circunscrição do gênero. As espécies morfologicamente incluídas no subcomplexo vagans, que segundo Leme (2004a) fazem parte do complexo de espécies com inflorescência séssil, emergem na primeira linhagem divergente de *Orthophytum*, sendo mais relacionadas às espécies com inflorescência pedunculada do que com as espécies do subcomplexo amoenum.

Ainda em Louzada et al. (cap. 1), as espécies que compõem o subcomplexo amoenum, emergem como um grupo monofilético, fortemente sustentado, porém, sua relação com as outras espécies do gênero é incerta. Sendo assim, Louzada & Wanderley (cap. 3), apresentam uma proposta de restabelecimento do gênero *Sincoraea*, de forma a abrigar as espécies do subcomplexo amoenum.

Portanto, no presente estudo são revisadas as espécies de *Orthophytum* seguindo uma nova circunscrição para o gênero. Além das descrições morfológicas, o estudo conta com uma chave de identificação, ilustrações, mapas de distribuição geográfica e comentários gerais sobre as espécies.

MATERIAL E MÉTODOS

As análises morfológicas e confecção dos mapas de distribuição geográfica foram baseados no estudo dos espécimes coletados durante as expedições botânicas realizadas ao longo de toda a distribuição do gênero e nos espécimes depositados nos herbários ALCB, B, BHCB, CEPEC, CESJ, ESA, HB, HUEFS, IPA, JPB, K, MBM, MBML, NY, P, PAMG, R, RB, SP, SPF, UEC, UFP, US, VIC, W, WU (siglas de acordo com Thiers, B. [continuously updated]). Os espécimes coletados foram depositados no herbário SP e as duplicatas enviadas ao herbário SPF. Para identificação do material, foram utilizadas as obras originais das espécies, espécimes-tipo e material fotográfico de espécimes vivos e desidratados.

As espécies são apresentadas no texto de acordo com os principais clados apresentados por Louzada et al. (cap. 1) e em ordem alfabética dentro de cada grupo. As espécies que não foram amostradas em Louzada et al. (cap. 1) e incluídas no presente trabalho, são organizadas de acordo com a sua morfologia.
A terminologia para inflorescência foi adaptada para o gênero sendo:

a. Espiga: inflorescência simples, flores séssis.

b. Espiga de glomérulos: inflorescência composta, indeterminada, ramos laterais séssis com duas ou mais flores séssis, saindo do mesmo plano.

c. Espigas de espigas: inflorescência composta, indeterminada, ramos laterais séssis com três ou mais flores séssis, saindo de planos diferentes ao longo de um eixo muito curto, inconspícuo.

TRATAMENTO TAXONÔMICO

Orthophytum Beer, Flora 37: 347. 1854. Tipo: —Prantleia glabra Mez in Martius, Fl. bras. 3(3): 257. 1891. [nome aceito = Orthophytum glabrum (Mez) Mez in De Candolle, Monogr. Phan. 9: 117. 1896].

Prantleia Mez in Martius (1881: 257). Tipo:—Prantleia glabra Mez in Martius (1892: 258) [nome aceito = Orthophytum glabrum (Mez) Mez in De Candolle, Monogr. Phan. 9: 117. 1896].

Cryptanthopsis Ule (1908: 193). Tipo:— C. saxicola Ule Bot. Jahrb. Syst. 42: 193. 1908 [nome aceito = Orthophytum saxicola (Ule) L.B.Sm. Smithsonian Misc. Collect. 126: 34. 1955].

Ervas rupícolas, raramente terrícolas, curto ou longo caulescentes, propagando-se vegetativamente por estolões alongados ou brotações na base da roseta e nas axilas das folhas ou no ápice da inflorescência, sempre formando rosetas ou apenas antes do desenvolvimento do pedúnculo. Bainha inconspícuia, distintas ou indistintas das lâminas foliares. Láminas coriáceas a duro-coriáceas, planas a fortemente canaliculadas, linear-triangulares a oval-triangulares, verde-claras a verde-escuras, ou vermelho-pálidas a vináceas ou arroxeadas, ambas as faces glabras ou lepidotas a lanado-lepidotadas, indumento alvo ou cinéreo, escamas adpressas a não adpressas, margem laxamente serrada a densamente serrada, acúleos antrorsos a retrorsos, glabros a densamente lepidotos, ápice acuminado e/ou pungente. Pedúnculos ausentes, ou muito curtos a longos, eretos, glabros a densamente lanado-lepidotos, verdes a vináceos, entrenós curtos e inconspícuos a alongados e conspicuos. Brácteas do pedúnculo similares às folhas. Inflorescências em espigas simples, espigas de glomérulos ou espigas de espigas. Raques inconspícuas a conspicuamente alongadas, retas a levemente geniculadas, glabras a densamente lepidotadas ou densamente lanado-lepidotadas, verdes a
vináceas. Brácteas primárias coriáceas a duro-coriáceas, patentes a reflexas, tornando-se menores em direção ao ápice, linear-triangulares a oval-triangulares, laxamente serrada a densamente serrada, ápice acuminado e/ou pungente. Brácteas florais subcoriáceas a coriáceas, estreitamente triangulares a oval-triangulares, sem carenas a fortemente carenadas, margem serrada a densamente serrada, mais curtas que as sépalas a excedendo as sépalas, verdes a verde-amareladas ou vermelhas a vináceo-escuras, ápice mucronado, ou acuminado e/ou pungente. Flores séssis. Sépalas cartáceas, estreitamente triangulares a oval-triangulares, livres, verdes a verde-amareladas ou róseas a vináceo-escuras, as posteriores distintas, simétricas a assimétricas, carenadas, a anterior simétrica a assimétricas, sem carenas, margem inteira, ápice acuminado e/ou pungente. Corola tubular. Pétalas espatuladas, livres, alvas a verdes, ápice obtuso ou obtuso-cuculado. Apêndices petalíneos presentes. Estames inclusos. Filetes do primeiro verticilo oposto às sépalas, os do segundo adnatos às pétalas, alvos a verdes. Anteras dorsifixas ou sub-basifixas, elípticas. Ovário subtrígono a trígono, glabro a densamente lanado-lepidoto. Tubo epíginio presente ou ausente. Placentação axial. Óvulos elipsóides a ovóides. Estigma simples-creto. Frutos subglobosos a globosos. Sementes reniformes, estriadas.
Fig. 1. Mapa de distribuição geográfica de Orthophylum.