Optimization of taxation for business entities under the conditions of regional sustainable development

Larisa Bryantseva, Natalia Shishkina, Aleksandr Tolstykh and Olga Ukhina

1Voronezh State Agricultural University named after the Emperor Peter the Great, Russia
E-mail: blv2466@mail.ru

Abstract. One of the current problems of the Russian tax system is optimization of the level of tax burden on agricultural producers. Differentiated business conditions in agricultural production necessitate a review of the definition of the tax base and tax rates of the unified agricultural tax (UAT). The authors propose to calculate the average rate of UAT in the context of the subjects of the Russian Federation (regions) by the country's average level of climatic conditions, and the natural and climatic potential of the zone should be determined based on the soil fertility index taking into account soil bonitet values and bioclimatic potential. Thus, the results of calculations by regions of the Russian Federation illustrate the following. Regions with the least favorable climatic potential are located within the North-West Federal District - the Komi Republic, the Arkhangelsk Region, the Vologda Region, respectively, and tax rates there should be minimal.

Key words: optimization of taxation, tax system business, entities, region, sustainable development.

1 Introduction

The current state of the agricultural sector of Russia demonstrates the presence of high percentage of low-profitable enterprises in the industry [1]. At the same time, in such a situation, the tax burden ("tax endurance", "tax burden", "tax weight") for agricultural producers remains rather low compared with other sectors of the economy [2-5]. However, even the relatively low percentage of withdrawals is a significant burden for agrarian companies, comparable to the much larger withdrawal process in other industries [6-8].

Discussing the vectors for improving taxation in the agricultural sector, the key approach should be considered from the point of view of the stability of legislation in the area of agricultural taxation, which is extremely important for making financial and managerial decisions [9, 10].

For each manufacturer of agricultural products, clarity and perspicuity of the government position in the area of taxes and taxation is essential, since taxes, as the main source of revenue in a country's budget, have a significant impact on the investment attractiveness of the agricultural sector, can increase its profitability and, ultimately, contribute to solving the problem of food security at the micro and macro levels [11-13]. Foreign authors wrote about the principles and system of taxation [14-18]. There is a simulation of tax and economic processes [19-22].

2 Materials and methods

It is well known that the Tax Code of the Russian Federation prescribes the possibility for agricultural producers of using a special tax regime in the form of a unified agricultural tax. According to the tax statistics, the number of taxpayers under this special regime in 2014-2018 averaged about 100 thousand
units, most of which are individual entrepreneurs and peasant farms equated to them, that is, small business [14]. However, it should be borne in mind that all agricultural manufacturers are in different conditions to carry out their business activities and this circumstance, in our opinion, should be taken into account when considering the possibilities of improving the tax system for agricultural producers.

From our point of view, the conceptual approach to justifying the rate and the base of UAT is that the unified agricultural tax and the corresponding tax burden on agricultural producers should be significantly lower compared to the taxation of organizations of other industries, given the presence of price disparities [15-17]. Besides, in our opinion, the average rate of UAT should correspond to the country's average level of climatic conditions, and the climatic potential of the zone should be determined based on the soil fertility index, taking into account soil bonitet scores and bioclimatic potential, i.e. assessment of the combined effects of climate and soil on biological productivity [18-20].

We propose a method for calculating the differential rate of UAT in the context of the subjects of the Russian Federation (regions) according to the following formula:

$$C_{\text{diff}} = \frac{CP_{AV}}{CP} \times C_{UAT},$$

(1)

where C_{diff} – calculated differential rate of UAT for the region of the Russian Federation, % of the revenue;

CP – climatic potential of the zone where the region is located;

CP_{AV} – average climatic potential for the Russian Federation;

C_{UAT} – actual rate of the unified agricultural tax in the Russian Federation, 6%.

3 Results

The results of the calculations of the differential UAT rates (with the average rate of 6%) and their absolute values for the regions of the Russian Federation are demonstrated in table 1 and table 2.

Regions of the Russian Federation	CP (clim. potent.)	CP/CPav	Cdiff$_{UAT}$
Northwestern Federal District			
Komi Republic (south)	33.6	0.64	3.9%
Arkhangelsk Region (south)	33.6	0.64	3.9%
Vologda Region	37.7	0.72	4.3%
Vologda Region (north, east)	34.6	0.66	4.0%
Vologda Region (south, west)	40.8	0.78	4.7%
Kaliningrad Region	58.0	1.11	6.7%
Leningrad Region	41.8	0.80	4.8%
Leningrad Region (north, east)	39.2	0.75	4.5%
Leningrad Region (south, west)	44.4	0.85	5.1%
Novgorod Region	44.4	0.85	5.1%
Pskov Region	47.4	0.91	5.4%
Central Federal District			
Belgorod Region	71.8	1.37	8.2%
Bryansk Region	53.1	1.02	6.1%
Vladimir Region	45.6	0.87	5.2%
Voronezh Region	69.0	1.32	7.9%
Ivanovo Region	41.6	0.79	4.8%
Kaluga Region	50.4	0.96	5.8%
Kostroma Region	39.8	0.76	4.6%
Kursk Region	67.0	1.28	7.7%
The results of the performed calculations show that depending on the climatic potential of the region the maximum UAT rate is in Kabardino-Balkarian Republic – 10.9%; and the minimum rate is in Arkhangelsk Region and Komi Republic – 3.9%.
Thus, the results of calculations by regions of the Russian Federation illustrate the following. Regions with the least favorable climatic potential are located within the North-West Federal District - the Komi Republic, the Arkhangelsk Region, the Vologda Region, respectively, and tax rates there should be minimal. The largest range of differentiation at unified agricultural tax rates is presented by the Central Federal District – from 37.3 in the Yaroslavl natural and climatic zone to 71.8 in the Belgorod Region. In turn, the Volga Federal District is characterized by a minimal degree of differentiation from the point of view of the climatic potential in the context of the constituent entities of the Russian Federation. And, finally, the maximum value of the unified agricultural tax rate, which depends on the most favorable natural and climatic potential (84.0-95.0), is proposed for the North Caucasus Federal District.

4 Discussions
The absolute changes in the tax rates of the unified agricultural tax for the constituent entities of the Russian Federation convincingly demonstrate a maximum decrease of 2.1% within the borders of the North-Western Federal District, and a maximum increase of 4.9% in the North-Caucasian Federal District.

Regions of the Russian Federation	\(C_{\text{UAT,}} \)	\(\text{Cdif}_{\text{ECXH}} \)	UAT rate change
Northwestern Federal District			
Komi Republic (south) 6.0	3.9	-2.1	
Arkhangelsk Region (south) 6.0	3.9	-2.1	
Vologda Region 6.0	4.3	-1.7	
Kaliningrad Region 6.0	6.7	+0.7	
Leningrad Region 6.0	4.8	-1.2	
Novgorod Region 6.0	5.1	-0.9	
Pskov Region 6.0	5.4	-0.6	
Central Federal District			
Belgorod Region 6.0	8.2	+2.2	
Bryansk Region 6.0	6.1	+0.1	
Vladimir Region 6.0	5.2	-0.8	
Voronezh Region 6.0	7.9	+1.9	
Ivanovo Region 6.0	4.8	-1.2	
Kaluga Region 6.0	5.8	-0.2	
Kostroma Region 6.0	4.6	-1.4	
Kursk Region 6.0	7.7	+1.7	
Lipetsk Region 6.0	7.5	+1.5	
Orel Region 6.0	7.4	+1.4	
Moscow Region 6.0	4.6	-1.4	
Ryazan Region 6.0	6.2	+0.2	
Smolensk Region 6.0	4.7	-1.3	
Tambov Region 6.0	7.6	+1.6	
Tver Region 6.0	5.2	-0.8	
Tula Region 6.0	7.0	+1.0	
Yaroslavl Region 6.0	4.3	-1.7	
Volga Federal District			
Republic of Bashkortostan 6.0	6.1	+0.1	
Republic of Mari El 6.0	5.1	-0.9	

Table 2. The absolute changes of UAT rates for the regions of the Russian Federation.
Region	Index	Value	Change
Republic of Mordovia	6.0	6.8	+0.8
Republic of Tatarstan	6.0	6.1	+0.1
Chuvash Republic	6.0	6.7	+0.7
Udmurt Republic	6.0	4.7	-1.3
Perm Region	6.0	4.8	-1.2
Kirov Region	6.0	4.7	-1.3
Nizhniy Novgorod Region	6.0	5.6	-0.4
Orenburg Region	6.0	6.0	-0.0
Penza Region	6.0	6.9	+0.9
Samara Region	6.0	6.2	+0.2
Saratov Region	6.0	6.6	+0.6
Ulyanovsk Region	6.0	6.2	+0.2

Ural Federal District

Region	Index	Value	Change
Kurgan Region	6.0	5.8	-0.2
Sverdlovsk Region	6.0	4.5	-1.5
Tyumen Region	6.0	4.5	-1.5
Chelyabinsk Region	6.0	5.7	-0.3

Siberian Federal District

Region	Index	Value	Change
Altai Territory	6.0	6.0	+0.0
Krasnoyarsk Territory	6.0	4.5	-1.5
Irkutsk Region	6.0	4.1	-1.9
Kemerovo Region	6.0	5.4	-0.6
Novosibirsk Region	6.0	5.0	-1.0
Omsk Region	6.0	4.1	-1.9
Tomsk Region	6.0	4.0	-2.0

North Caucasian Federal District

Region	Index	Value	Change
Republic of Ingushetia	6.0	10.8	+4.8
Kabardino-Balkarian Republic	6.0	10.9	+4.9
Republic of North Ossetia-Alania	6.0	10.4	+4.4
Chechen Republic	6.0	10.8	+4.8
Stavropol Territory	6.0	9.6	+3.6

Southern Federal District

Region	Index	Value	Change
Krasnodar Territory	6.0	10.1	+4.1

As a result of the application of adjusted rates of the unified agricultural tax, taking into account the climatic factors and location conditions, the overall profitability of the activities of agricultural organizations will increase by 3.82 percentage points [20].

The application of the above procedure for setting the UAT rates will optimize the taxation of agricultural organizations, taking into account modern conditions and requirements, and guarantee the fulfillment of the fiscal, regulatory, redistributive and control functions of taxes.

Reference

[1] Zaporozhtseva L A, Sabetova T V, Fedulova I Yu 2019 Assessment of the uncertainty factors in computer modelling of an agricultural company operation *Journal of Physics: Conference Series* The proceedings International Conference "Information Technologies in Business and Industry" p 072029. doi: 10.1088/1742-6596/1333/7/072029

[2] Dogan Esra, Tekin Ahmet, Celikay Ferdi 2019 The Problematic Of The Power Of Judgement In Taxpayer's Perspectives: An Assessment On Spatial Difference *Journal Of Mehmet Akif Ersoy University Economics And Administrative Sciences Faculty*, vol. 6, iss. 3, pp 702-720.

[3] Leal Mariel, Garcia Arturo, Lee Sang-Ho 2019 Excess Burden of Taxation and Environmental
Policy Mix with a Consumer-Friendly Firm, *Japanese Economic Review*, vol. 70, iss. 4, pp 517-536. doi: 10.1111/jere.12221

[4] Vranceanu Radu, Sutan Angela, Dubart Delphine 2019 Discontent with Taxes and the Timing of Taxation: Experimental Evidence *Revue Economique*, vol. 70, iss. 6, pp 1227-1240. doi: 10.3917/reco.706.1227

[5] Arin K Peren, Braunfels Elias, Doppelhofer Gernot 2019 Revisiting the growth effects of fiscal policy: A Bayesian model averaging approach *Journal Of Macroeconomics*, vol. 62, art.# UNSP 103158. doi: 10.1016/j.jmacro.2019.103158

[6] Staehler Nikolai 2019 Who benefits from using property taxes to finance a labor tax wedge reduction? *Journal Of Housing Economics*, vol. 46, art.#101634. doi: 10.1016/j.jhe.2019.101634

[7] Sialm Clemens, Zhang Hanjiang 2019 Tax-Efficient Asset Management: Evidence from Equity Mutual Funds *Journal Of Finance*, early access. doi: 10.1111/jofi.12843

[8] Park Soonae, Park Min-Gean, Nam Kyung-Min 2019 Growth effects of fiscal decentralization with weak economic motivation: the case of South Korea *International Journal Of Central Banking*, vol. 15, iss. 5, pp 47-99. doi: 10.1007/s00168-019-00936-9

[9] Bezrukov T L, Bryantseva L V, Pozdeev V L, Orobinskaya I V, Kazmin A G, Bezrukov B A 2017 Conceptual aspects of tax system development in cyclic economy *Contributions to Economics* № 9783319454610 pp 287-303. doi: 10.1007/978-3-319-45462-7_31

[10] Korda N I, Bryantseva L V, Akhmedov A E 2015 Foreign investments: student’s guidebook, Moscow, Knorus, 120 p.

[11] Ohrn Eric The effect of tax incentives on US manufacturing: Evidence from state accelerated depreciation policies *Journal Of Public Economics*, vol. 180, art.# 104084. doi: 10.1016/j.jpubeco.2019.104084

[12] Zaporozhtseva L, Kleimenov D, Kuznetsova E, Orekhov A, Tkacheva Yu 2019 Transformation of socio-economic development scenarios of russian rural areas in the context of globalization *IOP Conference Series: Earth and Environmental Science* The proceedings of the conference AgroCON-2019. p 012029. doi: 10.1088/1755-1315/341/1/012029

[13] Epstein Gil S, Gang Ira N 2019 Taxation and social protection under governance decentralization *European Journal Of Political Economy*, vol. 60, art.#101743. doi: 10.1016/j.ejpe.2018.08.007

[14] https://www.nalog.ru

[15] Lee Kangoh 2019 Absentee ownership, land taxation and surcharge *Annals Of Regional Science*, vol. 62, iss. 1, pp 47-68. doi: 10.1007/s00168-018-0880-7

[16] Lafuile A-S, Denise G, Loreau M 2018 Sustainable Land-use Management Under Biodiversity Lag Effects *Ecological Economics*, vol. 154, pp 272-281. doi: 10.1016/j.ecolecon.2018.08.003

[17] Huet-Vaughn Emiliano, Robbett Andrea, Spitzer Matthew 2019 A taste for taxes: Minimizing distortions using political preferences *Journal Of Public Economics*, vol. 180, art. 104055. doi: 10.1016/j.jpubeco.2019.104055

[18] Scherf Robert, Weinzierl Matthew 2019 Underst(2019)anding Different Approaches to Benefit Based Taxation, *Fiscal Studies*, early access. doi: 10.1111/1475-5890.12204

[19] Duke Joshua M, Gao Tian Hang 2018 An Experimental Economics Investigation of the Land Value Tax: Efficiency, Acceptability, and Positional Goods *Land Economics*, Vol. 94, iss. 4, pp. 475-495. doi: 10.3368/le.94.4.475

[20] Slemrod Joel 2019 Tax Compliance and Enforcement *Journal Of Economic Literature*, vol. 57, iss. 4, pp 904-954. doi: 10.1257/jel.20181437

[21] Bannova A I, Aktaev N E 2019 Mathematical modelling of optimal tax trajectory within the framework of Cobb-Douglas model *Applied Economics Letters*, early access. doi: 10.1080/13504851.2019.1688240

[22] Romanova A I, Ilina E V, Dobroserdova E A, Shindina T A, Mironova M D 2015 The movement of capital in the field of information services *Journal of Internet Banking and Commerce* T. 20 № S1. 010 p. doi: 10.4172/1204-5357.S1-010