Synthesis of Distibiranes and Azadistibiranes by Cycloaddition Reactions of Distibenes with Diazomethanes and Azides

Hanns M. Weinert,† Christoph Wölper,† and Stephan Schulz*†#

†Institute for Inorganic Chemistry and #Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen, 45117 Essen, Germany
Content

A) Spectroscopic Characterization

Fig. S1-S3. 1H, 13C NMR and ATR-IR spectra of [L(Me2N)GaSb]2NPh 1.
Fig. S4-S7. 1H, 13C, 19F NMR and ATR-IR spectra of [L(Me2N)GaSb]2N-p-CF3-Ph 2.
Fig. S8-S10. 1H, 13C NMR and ATR-IR spectra of [L(Me2N)GaSb]2N(ada) 3.
Fig. S11-S14. 1H, 13C, 29Si NMR and ATR-IR spectra of [L(Me2N)GaSb]2N(SiMe3)Ga(NMe2)2L 4.
Fig. S15-S17. 1H, 13C NMR and ATR-IR spectra of [L(Me2N)GaSb]2N(Ph)Ga(NMe2)2L 5.
Fig. S18-S21. 1H, 13C, 19F NMR and ATR-IR spectra of [L(Me2N)GaSb]2N(SiMe2)Ga(NMe2)2L 6.
Fig. S22-S23. 1H NMR and ATR-IR spectra of [(L(PhN)Ga-κ-η3:3:1:Sb4)] 7.
Fig. S24-S27. 1H, 13C, 29Si NMR and ATR-IR spectra of [L(Me2N)GaSb]2N(SiMe2)Ga(N(H)SiMe3)2L 8.
Fig. S28-S30. 1H, 13C NMR and ATR-IR spectra of [L(Me2N)GaSb][L(Me2N)Ga(N(Ph)Sb)NPh 9.
Fig. S31-S33. 1H, 13C NMR and ATR-IR spectra of [L(Me2N)Ga(N(Ph)Sb)2] 10.
Fig. S34-S37. 1H, 13C, 29Si NMR and ATR-IR spectra of [L(Me2N)GaSb]2C(H)SiMe3 11.
Fig. S38-S41. 1H, 13C, 29Si NMR and ATR-IR spectra of [L(EtO)GaSb]2C(H)SiMe3 12.
Fig. S42-S45. 1H, 13C, 29Si NMR and ATR-IR spectra of [L(Cl)GaSb]2C(H)SiMe3 13.
Fig. S46. 1H NMR spectrum (300 MHz, C6D6, 25 °C) of the reaction of [L(Me2N)GaSb]2 with one equivalent Me3SiN3. Spectrum was recorded 5 min after the addition of Me3SiN3.
Fig. S47. 1H NMR spectra (300 MHz, thf-d8, -100 – +20 °C) of the reaction of [L(EtO)GaSb]2 with PhN3.
Fig. S48. 1H NMR spectra (300 MHz, C7D6, -100 – +20 °C) of the reaction of [L(EtO)GaSb]2 with 1.5 eq of Me3SiCH2N.
Fig. S49-S52. UV-vis spectra of 1–13.

B) Crystallographic Data

Table S1a-b. Crystallographic data of 1–13.
Fig. S53-S55. Molecular structure of 2, 3, 4, 6, 11, and 13 in their crystal.

C) Computational Details

Fig. S59. Section of the MO diagram of 4, 5 and 10.
Fig. S60-S62. UV-Vis spectrum of 4, 5 and 10 in toluene (black), calculated transition maxima (red) and depiction of the electron difference density of the ground and excited state for the dominant transitions.
Table S2. Overview of most intense calculated UV-Vis transitions by TD-DFT.
Table S3. Calculated X–Y bond lengths (r, Å) (exp.), X and Y NPA (AIM) atomic charges (q, |e|), Wiberg bond indices (WBI), occupation numbers (ON, |e|) of the σXY bonds according to NBO analysis, for the GaSb2 skeleton of [L(NMe2)GaSb]2,15 the N2Sb2 skeleton of 10 and the GaSbSbN2 skeleton for 4 and 5.
Table S4-5. Calculated X–Y bond lengths (r, Å), X and Y NPA (AIM) atomic charges (q, |e|), Wiberg bond indices (WBI), occupation numbers (ON, |e|) of the σXY bonds according to NBO analysis, and AIM parameters at the bond and ring critical points (p(rn), Δp(rn), V(rn)/G(rn), H(rn), atomic units) for the Sb2C(H)/N skeleton of 11 and 16.
Table S6-S11. Cartesian coordinates of structures [Å] for the optimized geometry used in the ring strain calculations.
Table S12-S26. Cartesian coordinates of N2, 14’, 14”, 14′′, 15’, 15’’, 15′′’, 1, 16, 11, 5, 4, 11 and 10 [Å] for the optimized geometry.
A) Spectroscopic Characterization

Fig. S1. 1H NMR spectrum (400 MHz, C_6D_6, 25 °C) of $[L(Me_2N)GaSb]_2N$-Ph (1).

Fig. S2. 13C NMR spectrum (150.9 MHz, C_6D_6, 25 °C) of $[L(Me_2N)GaSb]_2N$-Ph (1).
Fig. S3. ATR-IR spectrum of [L(Me$_2$N)GaSb]$_2$N-Ph (1).

Fig. S4. 1H NMR spectrum (400 MHz, C$_6$D$_6$, 25 °C) [L(Me$_2$N)GaSb]$_2$N-p-CF$_3$-Ph (2).
Fig. S5. 13C NMR spectrum (100.6 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)GaSb]$_2$N-p-CF$_3$-Ph (2).

Fig. S6. 19F NMR spectrum (376.5 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)GaSb]$_2$N-p-CF$_3$-Ph (2).

Fig. S7. ATR-IR spectrum of $[\text{L(Me}_2\text{N)GaSb}]_2\text{N-p-CF}_3\text{-Ph}$ (2).

Fig. S8. ^1H NMR spectrum (600 MHz, C_6D_6, 25 °C) of $[\text{L(Me}_2\text{N)GaSb}]_2\text{N-ada}$ (3).
Fig. S9. 13C NMR spectrum (150.9 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)GaSb]$_2$N-ada (3).

Fig. S10. ATR-IR spectrum of [L(Me$_2$N)GaSb]$_2$N-ada (3).
Fig. S11. 1H NMR spectrum (600 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)Ga]SbSb[N(SiMe$_3$)Ga(NMe$_2$)]L (4).

Fig. S12. 13C NMR spectrum (150.9 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)Ga]SbSb[N(SiMe$_3$)Ga(NMe$_2$)]L (4).
Fig. S13. DEPT ^{29}Si NMR spectrum (79.5 MHz, C_6D_6, 25 °C) of [L(Me$_2$N)Ga]SbSb[N(SiMe$_3$)Ga(NMe$_2$)]L (4).

Fig. S14. ATR-IR spectrum of [L(Me$_2$N)Ga]SbSb[N(SiMe$_3$)Ga(NMe$_2$)]L (4).
Fig. S15. 1H NMR spectrum (400 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)Ga]SbSb[N(Ph)Ga(NMe$_2$)L] (5).

Fig. S16. 13C NMR spectrum (100.6 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)Ga]SbSb[N(Ph)Ga(NMe$_2$)L] (5).
Fig. S17. ATR-IR spectrum of [L(Me$_2$N)Ga]SbSb[N(Ph)Ga(NMe$_2$)]L (5).

Fig. S18. 1H NMR spectrum (400 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)Ga]SbSb[N(p-CF$_3$-Ph)Ga(NMe$_2$)]L (6).
Fig. S19. ^{13}C NMR spectrum (100.6 MHz, C_6D_6, 25 °C) of [L(Me$_2$N)Ga]SbSb[N(p-CF$_3$-Ph)Ga(NMe$_2$)L] (6).

Fig. S20. ^{19}F NMR spectrum (282.4 MHz, C_6D_6, 25 °C) of [L(Me$_2$N)Ga]SbSb[N(p-CF$_3$-Ph)Ga(NMe$_2$)L] (6).
Fig. S21. ATR-IR spectrum of \([\text{L(Me}_2\text{N})\text{Ga}]\text{SbSb}[\text{N(p-CF}_3\text{-Ph})\text{Ga(NMe}_2\text{)}\text{L}]\) (6).

Fig. S22. \(^1\)H NMR spectrum (300 MHz, C\(_6\)D\(_6\), 70 °C) of \([((\text{L(PhN)Ga-κGa,κN)})_2-(\mu,\eta^{1:1:1:1:1}-\text{Sb}_4)]\) (7).
Fig. S23. ATR-IR spectrum of [(L(PhN)Ga-κGa,κN)2-(μ,η1:1:1:1-Sb4)] (7).

Fig. S24. 1H NMR spectrum (600 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)Ga]SbSb[N(SiMe$_3$)Ga(N(H)SiMe$_3$)]L] (8).
Fig. S25. 13C NMR spectrum (150.9 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)Ga]SbSb[N(SiMe$_3$)Ga(N(H)SiMe$_3$)L] (8).

Fig. S26. DEPT 29Si NMR spectrum (119.2 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)Ga]SbSb[N(SiMe$_3$)Ga(N(H)SiMe$_3$)L] (8).
Fig. S27. ATR-IR spectrum of \([\text{L(Me}_2\text{N})\text{Ga}]\text{SbSb[N(SiMe}_3\text{)Ga(N(H)SiMe}_3\text{)L}]\) (8).

Fig. S28. \(^1\)H NMR spectrum (600 MHz, \(\text{C}_6\text{D}_6\), 25 °C) of \([\text{L(Me}_2\text{N})\text{GaSb}]\text{[L(Me}_2\text{N})\text{GaN(Ph)Sb}]\text{NPh}\) (9).
Fig. S29. 13C NMR spectrum (150.9 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)GaSb][L(Me$_2$N)GaN(Ph)Sb]NPh (9).

Fig. S30. ATR-IR spectrum of [L(Me$_2$N)GaSb][L(Me$_2$N)GaN(Ph)Sb]NPh (9).
Fig. S31. 1H NMR spectrum (400 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)GaN(Ph)Sb]$_2$ (10).

Fig. S32. DEPTQ 13C NMR spectrum (150.9 MHz, C$_6$D$_6$, 25 °C) of [L(Me$_2$N)GaN(Ph)Sb]$_2$ (10).
Fig. S33. ATR-IR spectrum of [L(Me₂N)GaN(Ph)Sb]₂ (10).

Fig. S34. ¹H NMR spectrum (600 MHz, CD₆, 25 °C) of [L(Me₂N)GaSb]₂C(H)SiMe₃ (11).
Fig. S35. 13C NMR spectrum (150.9 MHz, C₆D₆, 25 °C) of [L(Me₂N)GaSb]₂C(H)SiMe₃ (11).

Fig. S36. 29Si NMR spectrum (79.5 MHz, C₆D₆, 25 °C) of [L(Me₂N)GaSb]₂C(H)SiMe₃ (11).
Fig. S37. ATR-IR spectrum of [L(Me₂N)GaSb]₂C(H)SiMe₃ (11).

Fig. S38. ¹H NMR spectrum (400 MHz, C₆D₆, 25 °C) of [L(EtO)GaSb]₂C(H)SiMe₃ (12).
Fig. S39. 13C NMR spectrum (100.6 MHz, C$_6$D$_6$, 25 °C) [L(EtO)GaSb]$_2$C(H)SiMe$_3$ (12).

Fig. S40. DEPT 29Si NMR spectrum (79.5 MHz, C$_6$D$_6$, 25 °C) of [L(EtO)GaSb]$_2$C(H)SiMe$_3$ (12).
Fig. S41. ATR-IR spectrum of [L(EtO)GaSb]$_2$C(H)SiMe$_3$ (12).

Fig. S42. 1H NMR spectrum (600 MHz, C$_6$D$_6$, 25 °C) of [L(Cl)GaSb]$_2$C(H)SiMe$_3$ (13).
Fig. S43. 13C NMR spectrum (150.9 MHz, C$_6$D$_6$, 25 °C) of [L(Cl)GaSb]$_2$C(H)SiMe$_3$ (13).

Fig. S44. DEPT 29Si NMR spectrum (79.5 MHz, C$_6$D$_6$, 25 °C) of [L(Cl)GaSb]$_2$C(H)SiMe$_3$ (13).
Fig. S45. ATR-IR spectrum of [L(Cl)GaSb₂C(H)SiMe₃] (13).

Fig. S46. ¹H NMR spectrum (300 MHz, C₆D₆, 25 °C) of the reaction of [L(Me₂N)GaSb]₂ with one equivalent Me₃SiN₃. Spektrum was recorded 5 min after addition of the azide.
Fig. S47. 1H NMR spectra (300 MHz, thf-d$_8$, –100 – +20 °C) of the reaction of [L(EtO)GaSb]$_2$ with PhN$_3$. Resonance marked with * and x are the N-C$_6$H$_5$ and L γ-H in 2 to 1 to 2 to 2 ratio, respectively. The low field shift of the ortho H of the phenyl ring was found to be characteristic of the azadistibiranes and having one resonance for the L(EtO)Ga excludes unsymmetrically species, i. e. imine or the [2+3] addition product.
Fig. S48. 1H NMR spectra (300 MHz, C$_7$D$_8$, –100 – +20 °C) of the reaction of [L(EtO)GaSb]$_2$ with 1.5 eq Me$_3$SiCHN$_2$.

Fig. S49. UV-vis spectra of azadistibirane 1–3 and 9 in toluene. Extinction coefficient is given in brackets, the wavelength refers to the inflection point.
Fig. S50. UV-vis spectra of distibenes 4–6, 8 and 10 in toluene. Extinction coefficient is given in brackets. The impurities with the highest concentration of 5 and 6 are 1 and 2 respectively. Due to their low adsorption in the visible region the spectra can be attributed almost purely to 5 and 6.

Fig. S51. UV-vis spectra of distibenes 4–6, 8 and 10 in thf. Extinction coefficient is given in brackets. The impurities with the highest concentration of 5 and 6 are 1 and 2 respectively. Due to their low adsorption in the visible region the spectra can be attributed almost purely to 5 and 6.
Fig. S52. UV-vis spectra of distibirane 11–13 in toluene. Extinction coefficient is given in brackets.

Wavelength [nm]	Absorbance
355 (33000)	
355 (44000)	
354 (46000)	
Crystallographic Details.

Crystals were mounted on nylon loops in inert oil. Data of were collected on a Bruker AXS D8 Kappa diffractometer (1–4, 8–12) with APEX2 detector (monochromated MoKα radiation, λ = 0.71073 Å) and on a Bruker AXS D8 Venture diffractometer (6, 7, 13) with Photon II detector (monochromated CuKα radiation, λ = 1.54178 Å, microfocus source) at 100(2) K. The structures were solved by Direct Methods (SHELXS-97)\(^1\) and refined anisotropically by full-matrix least-squares on F\(^2\) (SHELXL-2017)\(^2\). Absorption corrections were performed semi-empirically from equiv. reflections on basis of multi-scans (Bruker AXS APEX2). Hydrogen atoms were refined using a riding model or rigid methyl groups.

The structure of 1 contains a toluene molecule highly disordered over a centre of inversion. The final refinement was done with a solvent free dataset from a PLATON/SQUEEZE\(^3\) run. The molecule was included in the sum formula for completeness. In 2 one half of the molecule and the p–Ph–CF\(_3\) moiety are disordered over two positions. The corresponding bond lengths and angles of the i-Pr groups were restrained to be equal (SADI) as well as those of the p–Ph–CF\(_3\) unit. The displacement parameters of all disordered atoms were refined with RIGU restraints. Additional SIMU and ISOR restraints were required for the fluorine atoms. Their disorder is more diffuse than the one of the remaining moiety and consequently an extra alternate position was used to model the electron density. Still, the displacement ellipsoids suggest further disorder, however no other alternate positions could be identified. Disordered atoms in proximity to its alternate positions were refined with common displacement parameters (EADP). Finally, the Ga2–N6 bond length of both alternate positions were restrained to be equal (SADI). The solvent molecule is disordered over a centre of inversion. The local symmetry was ignored in the refinement (negative PART). All its corresponding bond lengths and angles were restrained to be equal (SADI) and its atoms were restrained to lie on a common plane (FLAT). RIGU restraints were applied to the atoms’ displacement parameters. During the refinement ice formed on the crystal and the resulting reflections and ring patterns restrained to be equal to 1.54 Å (DFIX) and its bond angles to be equal (SADI). RIGU, SIMU and ISOR restraints were applied to the anisotropic displacement parameters of the respective atoms. The structure contains a highly disordered acetonitrile molecule. The final refinement was done with a solvent free dataset from a PLATON/SQUEEZE\(^3\) run. The molecule was included in the sum formula for completeness. The benzene molecules in 11 are highly disordered and were modelled with two alternate positions. No further alternate positions could be found although the anisotropic displacement parameters suggest that this is just a crude model. This can also be concluded from the unrealistically short bond lengths. All bond lengths and angles were restrained to be equal (SADI) and the atoms were restrained to lie on a mutual plane (FLAT). DFIX restraints were not suitable to improve the unrealistic bond lengths. The displacement parameters of the benzenes’ atoms were restrained with RIGU and SIMU. Two i-Pr groups are disordered over two positions. Their atoms’ displacement parameters were restrained with RIGU in both cases and additionally with SIMU in one case. The CHSiMe\(_3\) group is disordered over two positions. All its corresponding bond lengths were restrained to be equal (SADI) and RIGU restraints were applied to the displacement parameters. In 8 two i-Pr groups are disordered over two positions. Their corresponding bond lengths and angles were restrained to be equal (SADI) and RIGU and SIMU restraints applied to the anisotropic displacement parameters of the respective atoms. The structure contains a highly disordered acetonitrile molecule. The final refinement was done with a solvent free dataset from a PLATON/SQUEEZE\(^3\) run. The molecule was included in the sum formula for completeness. The benzene molecules in 11 are highly disordered and were modelled with two alternate positions. No further alternate positions could be found although the anisotropic displacement parameters suggest that this is just a crude model. This can also be concluded from the unrealistically short bond lengths. All bond lengths and angles were restrained to be equal (SADI) and the atoms were restrained to lie on a mutual plane (FLAT). DFIX restraints were not suitable to improve the unrealistic bond lengths. The displacement parameters of the benzenes’ atoms were restrained with RIGU and SIMU. Two i-Pr groups are disordered over two positions. Their atoms’ displacement parameters were restrained with RIGU in both cases and additionally with SIMU in one case. The CHSiMe\(_3\) group is disordered over two positions. All its corresponding bond lengths were restrained to be equal (SADI) and RIGU restraints were applied to the displacement parameters. In 10 two i-Pr groups and the ipso-C atom of the phenyl ring common displacement parameters were used for both orientation (EADP). The model was refined as a two-component twin against HKLF5 data. The combination of twinning and a long axis led to serious problems with overlapping reflections and part of the frames could not be integrated successfully. Considering the low quality of the data, the twinning and the vast disorder quantitative results should not be discussed. The CHSiMe\(_3\) group and an i-Pr group of 13 are disordered over two positions. The corresponding bond lengths and angles of these groups were restrained to be equal (SADI) and RIGU restraints were applied to their atoms. For C12, C12’, C59 and C59’ additional SIMU restraints were used. Despite the rather large displacement ellipsoids no further alternate orientations could be identified. The solvent molecule is disordered over a centre of inversion and was crudely modelled with two alternate positions. Its bond lengths were restrained to be equal to 1.54 Å (DFIX) and its bond angles to be equal (SADI). RIGU, SIMU and ISOR restraints were applied to its displacement parameters. Due to their proximity C11_1 and C11_2 were refined with common displacement parameters (EADP). During the measurement ice formed on the crystal and the resulting reflections and ring patterns disturbed the integration leading to a rather high R\(_{int}\).

CCDC-2129215 (1 mw_124_1m_sq), -2129216 (2 mw_125_5), -2129217 (3 mw_097_3), -2129218 (4 mw_071_7), -2129219, (5 mw_130_4m_sq), -2129220, (6 mw_143_4), -2129221 (7 mw_130_1), -2129222 (8 mw_071_8m_sq), -2129223 (9 mw_145_1), -2129221 (10 mw_150_2), -2129212 (11 mw_089_1fs), -2129213 (12 mw_099_tw5), and -2129214 (13 mw_112_3f) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Table S1a. Crystallographic data of [L(MeN)GaSb]2NPh (1), [L(Me2N)GaSb]2N-p-CF3-Ph (2), [L(Me2N)GaSb]2N(ada) (3) and [L(Me2N)Ga]SbSb[N(SiMe3)Ga(NMe3)L] (4) [L(Me2N)Ga]SbSb[N(Ph)Ga]N(Me2)2L] (5), [L(Me2N)Ga]SbSb[N(p-CF3-Ph)Ga]N(Me2)2L] (6), and [(L(Ph)Ga-kGa,kN)2-(μ,N⎦)2-(μ-1)] (7).

	1	2	3	4	5	6	7
M	1443.54	1511.54	1547.73	1393.57	1530.66	1594.73	1530.66
Crystal size [mm]	0.276 × 0.203 × 0.134	0.392 × 0.197 × 0.126	0.409 × 0.235 × 0.160	0.271 × 0.263 × 0.131	0.407 × 0.211 × 0.150	0.186 × 0.064 × 0.063	0.407 × 0.211 × 0.150
T [K]	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)
Crystal system	monoclinic						
Space group	P21/c	P-1	P21	P21	P21/c	P21/c	P21/c
a [Å]	19.9634(10)	10.6581(5)	10.7967(11)	13.6969(16)	12.1758(10)	12.1758(10)	12.1758(10)
b [Å]	12.5667(7)	12.7136(6)	45.894(5)	21.163(3)	28.763(3)	28.763(3)	28.763(3)
c [Å]	29.4717(15)	27.5744(13)	15.2335(16)	15.164(2)	20.711(3)	24.248(2)	20.711(3)
α [°]	90	90	90	90	90	90	90
β [°]	109.0277(16)	92.993(2)	94.502(5)	96.979(3)	94.587(5)	99.805(3)	94.587(5)
γ [°]	90	90	90	90	90	90	90
V [Å³]	6989.7(6)	3595.4(3)	7643.8(13)	3439.2(9)	8133.4(17)	7916.1(11)	8133.4(17)
Z	4	4	4	4	4	4	4
Dcalc [g·cm⁻³]	1.372	1.396	1.345	1.346	1.250	1.338	1.250
μ(Mo-Kα) [mm⁻¹]	1.572	1.537	1.442	1.611	1.355	6.527	1.355
Transmissions	0.75/0.67	0.75/0.55	0.75/0.66	0.75/0.64	0.75/0.62	0.75/0.54	0.75/0.62
F(000)	2980	1554	3216	1440	3168	3308	3168
Index ranges	-33 ≤ h ≤ 33	-16 ≤ h ≤ 16	-16 ≤ h ≤ 16	-16 ≤ h ≤ 16	-15 ≤ h ≤ 14	-21 ≤ h ≤ 21	-21 ≤ h ≤ 21
	-20 ≤ k ≤ 20	-19 ≤ k ≤ 19	-70 ≤ k ≤ 70	-32 ≤ k ≤ 32	-44 ≤ k ≤ 44	-34 ≤ k ≤ 34	-44 ≤ k ≤ 44
	-49 ≤ l ≤ 49	-42 ≤ l ≤ 42	-23 ≤ l ≤ 23	-23 ≤ l ≤ 23	-32 ≤ l ≤ 32	-30 ≤ l ≤ 30	-32 ≤ l ≤ 32
θmax [°]	36.384	33.683	33.532	33.208	34.165	80.082	34.165
Refl. collected	369240	190515	368631	108278	285425	249345	285425
Independent ref	33974	28194	29384	26282	31986	17136	31986
Rint	0.0450	0.0415	0.0535	0.0441	0.0430	0.0710	0.0430
Reff [I > 2σ(I)]	0.0283	0.0457	0.0646	0.0323	0.0299	0.0322	0.0299
wR2 [all data]	0.0687	0.1266	0.1323	0.0689	0.0752	0.0893	0.0752
x(Flack)	-	-	0.131(7)	-	-	-	-
GooF	1.084	1.132	1.368	1.036	1.060	1.051	1.060
Δρfinal (max/min) [e·Å⁻³]	1.133/-0.634	2.725/-1.306	1.745/-3.007	1.095/-0.509	0.899/-0.545	1.063/-0.593	0.899/-0.545

S31
| Table S1b. Crystallographic data of [L(Me₂N)Ga]SbBr[N(SiMe₃)Ga(N(H)SiMe₃)L] (8), [L(Me₂N)GaSb][L(Me₂N)GaN(Ph)Sb]N-Ph (8), [L(Me₂N)GaN(Ph)Sb]₂ (9), [L(Me₂N)GaSb]-C(H)SiMe₃ (10) and [L(EtO)GaSb]₂C(H)SiMe₃ (11), and [L(Me₂N)GaSb]₂(C(H)SiMe₃) (13). |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Empirical formula | C₆₀H₁₁₆Ga₃N₃Sb₂Si₂ | C₆₁H₁₂₇Ga₃N₃Sb₂ | C₆₄H₁₆₃Ga₄N₅Sb₂ | C₆₉H₁₁₆Ga₅N₅Sb₂Si | C₆₈H₁₀₂Ga₅N₂O₂Sb₂Si | C₆₆₅H₈₈Cl₉Ga₃N₃Sb₂Si |
| M | 1478.75 | 1580.72 | 1488.59 | 1548.79 | 1394.54 | 1411.39 |
| Crystal size [mm] | 0.483 × 0.182 × 0.144 | 0.185 × 0.071 × 0.045 | 0.184 × 0.182 × 0.116 | 0.321 × 0.316 × 0.107 | 0.451 × 0.429 × 0.344 | 0.338 × 0.053 × 0.040 |
| T [K] | 100(2) | 100(2) | 100(2) | 100(2) | 100(2) | 100(2) |
| Crystal system | monoclinic | triclinic | triclinic | triclinic | monoclinic | monoclinic |
| Space group | P2₁/n | P-1 | P-1 | P-1 | C2/c | P2₁/c |
| a [Å] | 11.889(2) | 11.6222(9) | 10.4552(4) | 10.919(2) | 59.557(6) | 19.7547(17) |
| b [Å] | 18.460(4) | 17.8727(14) | 11.9732(4) | 14.343(3) | 11.8135(12) | 10.5843(9) |
| c [Å] | 33.366(7) | 19.5796(16) | 14.9227(5) | 26.014(6) | 21.011(2) | 3.512(3) |
| α [°] | 90 | 108.099(4) | 93.2189(14) | 83.994(15) | 90 | 90 |
| β [°] | 96.360(11) | 90.076(4) | 97.3354(14) | 78.718(10) | 108.078(3) | 96.970(4) |
| γ [°] | 90 | 93.8174(7) | 107.9954(14) | 88.053(10) | 90 | 90 |
| V [Å³] | 7278(2) | 3856.2(5) | 1753.06(11) | 3972.9(16) | 14053(3) | 6955.1(10) |
| Z | 4 | 2 | 1 | 2 | 8 | 4 |
| D₀ [g·cm⁻³] | 1.350 | 1.361 | 1.410 | 1.295 | 1.318 | 1.348 |
| μ(Mo-Kα) [mm⁻¹] | 1.543 | 1.431 | 1.569 | 1.401 | 1.578 | 8.131 |
| Transmissions | 0.75/0.58 | 0.75/0.68 | 0.75/0.65 | 0.75/0.59 | 0.75/0.46 | 0.75/0.48 |
| F(000) | 3064 | 1636 | 1168 | 1608 | 5760 | 2900 |
| Index ranges | -17 ≤ h ≤ 17 | -17 ≤ k ≤ 17 | -16 ≤ h ≤ 16 | -16 ≤ h ≤ 16 | -84 ≤ h ≤ 80 | -25 ≤ h ≤ 25 |
| | -26 ≤ k ≤ 26 | -27 ≤ k ≤ 27 | -18 ≤ k ≤ 18 | -22 ≤ k ≤ 22 | 0 ≤ k ≤ 16 | -13 ≤ k ≤ 11 |
| | -39 ≤ l ≤ 47 | -30 ≤ l ≤ 30 | -23 ≤ l ≤ 23 | -40 ≤ l ≤ 40 | 0 ≤ l ≤ 30 | -42 ≤ l ≤ 42 |
| θₘax [°] | 31.059 | 33.269 | 33.595 | 33.568 | 30.506 | 80.760 |
| Reflections collected | 119071 | 311665 | 139632 | 238703 | 151709 | 273985 |
| Independ. reflections | 22799 | 29569 | 13767 | 31007 | 25033 | 15129 |
| Rint | 0.0518 | 0.1010 | 0.0193 | 0.0652 | 0.0753 | 0.1275 |
| R₁ [I > 2σ(I)] | 0.0404 | 0.0393 | 0.0191 | 0.0402 | 0.0755 | 0.0359 |
| wR₂ [all data] | 0.0866 | 0.0856 | 0.0543 | 0.0942 | 0.1812 | 0.0902 |
| GoOF | 1.041 | 1.031 | 1.079 | 1.063 | 1.125 | 1.028 |
| Δρₘax (max/min) [e·Å⁻³] | 2.358/-1.236 | 1.203/-0.884 | 0.928/-0.313 | 3.087/-3.509 | 2.377/-1.587 | 1.844/-1.943 |
Fig. S53. Molecular structure of \([\text{L(Me}_2\text{N)}\text{GaSb}]_2\text{N-p-CF}_3\text{-Ph} \) (2) in the crystal. H atoms and are omitted for clarity and displacement ellipsoids are drawn at the 50% probability level. Only the major component for the disorder of the \(\text{L(Me}_2\text{N)}\text{GaSb} \) and \(\text{p-CF}_3\text{-Ph} \) unit is displayed.

Fig. S54. Molecular structure of \([\text{L(Me}_2\text{N)}\text{GaSb}]_2\text{N-ada} \) (3) in the crystal. H atoms and are omitted for clarity and displacement ellipsoids are drawn at the 50% probability level.
Fig. S55. Molecular structure of $[\text{L(Me}_2\text{N)}\text{Ga}]\text{SbSb}[\text{N(SiMe}_3\text{)}\text{Ga(NMe}_2\text{)}\text{L}]$ (4) in the crystal. H atoms and are omitted for clarity and displacement ellipsoids are drawn at the 50% probability level.

Fig. S56. Molecular structure of $[\text{L(Me}_2\text{N)}\text{Ga}]\text{SbSb}[\text{N(p-CF}_3\text{-Ph)}\text{Ga(NMe}_2\text{)}\text{L}]$ (6) in the crystal. H atoms and are omitted for clarity and displacement ellipsoids are drawn at the 50% probability level.
Fig. S57. Molecular structure of \([\text{L(Me}_2\text{N})\text{GaSb}]_2\text{C(H)SiMe}_3\) (11) in the crystal. H atoms and are omitted for clarity and displacement ellipsoids are drawn at the 50% probability level. Only the major component for the disorder of the CSiCMe\(_3\) unit is displayed.

Fig. S58. Molecular structure \([\text{L(Me}_2\text{N})\text{GaSb}]_2\text{C(H)SiMe}_3\) (13) in the crystal. H atoms and are omitted for clarity and displacement ellipsoids are drawn at the 50% probability level. Only the major component for the disorder of the CSiCMe\(_3\) unit is displayed.
C) Computational Details

The ORCA quantum chemistry package version (5.0.0)⁴ was used for the DFT calculations. The geometric parameters of the species were optimized in the gas phase employing the PBE0 density functional⁵ with the default "defgrid3" and "extremescf" with def2-SVP⁶ basis set on H, C, N, Si and def2-TZVP⁶ on Ga and Sb utilizing the atom-pairwise dispersion correction with Becke-Johnson damping scheme (D3BJ).⁷ Sill conversion to optimized structure was slow and 14”’ and 15”’ did not converge after the default number of steps (3 x number of atoms). In these cases, the optimization was restarted from the previous found minima and the maximum step size was reduced from 0.3 au (default) to 0.05 au in internal coordinates. A small effective core potential was employed on Sb.⁸ To accelerate the calculations the RIJCOSX⁹ (resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the ‘chain of spheres exchange’ (COSX) algorithm for the calculation of the exchange terms) approximation was utilized with the def-2J auxiliary basis sets.¹⁰ The structures used to estimate the ring strain (Table S3-8) were optimized analogous with def2-TZVP⁶ basis on H, C, N and def2-QZVP⁶ on Ga and Sb. Frequency calculations were carried out for all optimized structures. The Enthalpy and Gibbs free Energy derived from frequency calculation with the vibrational entropy being computed according to the quasi rigid-rotor-harmonic-oscillator approximation (QRRHO) of S. Grimme at 298 K in the standard manner by the ORCA quantum chemistry package version.¹¹ Single point calculations for the electron densities and frontier molecular orbitals were calculated with def2-TZVP⁶ basis set on H, C, N, Si and def2-QZVP⁶ on Ga and Sb. Electronic excitations were calculated analogous using the time-dependent DFT (TD-DFT) formalism taking solvent effects (toluene) into account utilizing the conductor-like polarized continuum model (CPCM).¹² Natural bond orbital analysis was performed using the NBO 7.0 program.¹³

In general, coordinated obtained from sc-XRD were used as the starting point for the geometry optimization, if possible. The imine structures ¹⁵ were obtained starting from the respective azadistibiranes by a rudimentary relaxed scan increasing the Sb-Sb-N angle. The starting point for the distibatriazoles were the imine structures adding a N₂ unit. Finally, for the closely related Me₃Si-N₃ and Me₃Si-CH-N₂ the starting point were the previously optimized structures replacing N with CH and vice versa.

Atoms in molecules (AIM)¹⁴ and electron localization function (ELF)¹⁵ computations were performed with the Multiwfn program 3.8¹⁶ replacing the inner-core density by a pseudo-potential.¹⁷ VMD was developed by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign (http://www.ks.uiuc.edu/Research/vmd/) and used to plot grid-data.¹⁸
Fig. S 59. Section of the MO diagram of \([\text{L(Me}_2\text{N})\text{Ga}\text{SbSb}[\text{N(SiMe}_3\text{)}\text{Ga(\text{NMe}_2\text{)L}}]\) (4) \([\text{L(Me}_2\text{N})\text{Ga}\text{SbSb}[\text{N(Ph)Ga(\text{NMe}_2\text{)L}}]\) (5) and \([\text{L(Me}_2\text{N})\text{GaN(Ph)Sb}]_2\) (10), isovalue 0.03.\(^{16}\)
Fig. S 60. UV-Vis spectrum of 4 in toluene (black), calculated transition maxima (red) and depiction of the electron difference density of the ground and excited state for the dominant transitions. 18

Fig. S 61. UV-Vis spectrum of 5 in toluene (black), calculated transition maxima (red) and depiction of the electron difference density of the ground and excited state for the dominant transitions. 18
Fig. S 62. UV-Vis spectrum of 10 in toluene (black), calculated transition maxima (red) and depiction of the electron difference density of the ground and excited state for the dominant transitions.\(^\text{18}\)
Table S2. Overview of most intense calculated UV-Vis transitions by TD-DFT for [L(Me₂N)GaSb]₂ (X)19 [L(Me₂N)Ga]SbSb[N(SiMe₃)Ga(NMe₂)L] (4) [L(Me₂N)Ga]SbSb[N(Ph)Ga(NMe₂)L] (5) and [L(Me₂N)Ga(N)Sb]₂ (10).

Excited State	Excitation energy E [cm⁻¹]	Wavelength λ [nm]	Oscillator strength $f_{(electric/velocity)}$	Transition orbital contribution (> 5%)
X	7	23852.4	419.2	0.149/0.200
				HOMO-4 → LUMO (7.1)
				HOMO-3 → LUMO (71.1)
	2	21815.7	458.4	0.043/0.044
				HOMO-1 → LUMO+1 (49.6)
				HOMO → LUMO+1 (42.5)
	3	23053.9	433.8	0.070/0.053
				HOMO-1 → LUMO+1 (12.1)
				HOMO-1 → LUMO+1 (25.7)
				HOMO → LUMO+1 (33.5)
				HOMO → LUMO+2 (22.9)
4	4	23776.9	420.6	0.042/0.019
				HOMO-1 → LUMO (44.9)
				HOMO → LUMO+2 (48.9)
	5	24045.1	415.9	0.031/0.027
				HOMO-1 → LUMO (37.4)
				HOMO-1 → LUMO+1 (18.8)
				HOMO → LUMO+1 (11.3)
				HOMO → LUMO+2 (26.6)
	3	21607.6	462.8	0.056/0.018
				HOMO-1 → LUMO+1 (85.3)
				HOMO → LUMO+1 (6.8)
5	4	21940.8	455.8	0.111/0.115
				HOMO-1 → LUMO+1 (6.5)
				HOMO → LUMO+1 (77.3)
10	1	17748.4	563.4	0.166/0.157
				HOMO-4 → LUMO (6.0)
				HOMO → LUMO (87.1)
Table S3. Calculated X–Y bond lengths (r, Å) (exp.), X and Y NPA atomic charges (q, |e|), Wiberg bond indices (WBI), occupation numbers (ON, |e|) of the σXY bonds according to NBO analysis, for the Ga$_2$Sb$_2$ skeleton of [L(NMe$_2$)GaSb]$_2$\cite{19} the N$_2$Sb$_2$ skeleton of 10 and the GaShSbN$_2$ skeleton for 4 and 5.

X-Y	r(X-Y)	q(X)/q(Y)	WBI	ON$[$a$]$
Ga$_2$Sb$_1$	2.60 (2.62)	1.36/ -0.16	0.97	1.96
Ga$_85$Sb$_84$	2.60 (2.62)	1.38/ -0.16	0.96	1.96
[L(Me$_2$N)GaSb]$_2$	2.62 (2.65)	-0.16/-0.16	1.82	0.501/0.499
Sb$_1$–Sb$_84$	2.62 (2.65)	-0.16/-0.16	1.82	0.501/0.499
Sb$_1$ lone-Sb$_84$ pair				
N$_6$-Sb$_1$	2.07 (2.07)	-1.37/ 0.63	0.59	1.91
N$_{101}$-Sb$_{96}$	2.07 (2.07)	-1.37/ 0.63	0.59	1.91
10				
Sb$_1$–Sb$_{96}$	2.66 (2.67)	0.63/ 0.63	1.66	0.500/0.500
Sb$_1$ lone-Sb$_{97}$ pair				
Ga$_4$-Sb$_2$	2.59 (2.58)	1.51/ -0.69	0.93	0.355/0.645
Ga$_3$				
Sb$_1$-Sb$_2$	2.65 (2.65)	1.08/-0.69	1.59	0.460/0.540
4				
Sb$_1$ lone-Sb$_2$ pair				
N$_{10(NMe_3)}$-Sb$_1$	2.08 (2.09)	-1.97/ 1.08	0.49	
N$_{11(NMe_2)}$-Sb$_1$	2.47 (2.47)	-0.96/ 1.08	0.22	
5				
Ga$_4$-Sb$_2$	2.60 (2.58)	1.51/-0.66	0.92	0.354/0.646
Ga$_3$				
Sb$_1$-Sb$_2$	2.65 (2.68)	1.05/-0.66	1.60	0.458/0.542
Sb$_1$ lone-Sb$_2$ pair				
N$_{11(NPb)}$-Sb$_1$	2.10 (2.10)	-1.38/ 1.05	0.49	0.299/0.711
N$_{9(NMe_2)}$-Sb$_1$	2.47 (2.40)	-0.96/ 1.05	0.21	

$[$a$]$: Squared polarization coefficients c$_X$ ($|c_X|^2$) of the σXY bond NBOs. The accepted Lewis structures of 4 and 5 consisted of multiple parts thus no ON could be given from the NBP analysis.
Table S 4. Calculated X–Y bond lengths (r, Å), X and Y NPA (AIM) atomic charges (q, |e|), Wiberg bond indices (WBI), occupation numbers (ON, |e|) of the σXY bonds according to NBO analysis, and AIM parameters at the bond (bcp) and ring (rcp) critical points (ρ(r_b), Δρ(r_b), |V(r_b)|/G(r_b), H(r_b), ε(r_b), atomic units) for the Sb2C skeleton of [L(Me_2N)GaSb]_2C(H)SiMe_3 11.

| X-Y | r(X-Y) | q(X) | q(Y) | WBI | ON^{[a]} | ρ(r_b) | Δρ(r_b) | |V(r_b)|/G(r_b) | H(r_b) | ε |
|-------|--------|-------|-------|------|----------|--------|---------|---------|--------|------|-----|
| Sb1-C4 | 2.18 | 0.08 | -1.39 | 0.86 | 1.96 | 0.100 | 0.067 | 1.711 | -0.043 | 0.182|
| Sb20-C4 | 2.19 | 0.05 | -1.39 | 0.86 | 1.95 | 0.098 | 0.065 | 1.721 | -0.042 | 0.184|
| Sb1-Sb20 | 2.78 | 0.08 | 0.05 | 0.92 | 1.92 | 0.056 | 0.020 | 1.773 | -0.017 | 1.766|
| rcp | | | | | | 0.056 | 0.042 | 1.596 | -0.016 | -3.556|

[a]: Squared polarization coefficients c_X (|c_X|^2) of the σXY bond NBOs.

Table S 5. Calculated X–Y bond lengths (r, Å), X and Y NPA (AIM) atomic charges (q, |e|), Wiberg bond indices (WBI), occupation numbers (ON, |e|) of the σXY bonds according to NBO analysis, and AIM parameters at the bond and ring critical points (ρ(r_b), Δρ(r_b), |V(r_b)|/G(r_b), H(r_b), ε(r_b), atomic units) for the Sb2N skeleton of [L(Me_2N)GaSb]_2NSiMe_3 16.

| X-Y | r(X-Y) | q(X) | q(Y) | WBI | ON^{[a]} | ρ(r_b) | Δρ(r_b) | |V(r_b)|/G(r_b) | H(r_b) | ε |
|-------|--------|-------|-------|------|----------|--------|---------|---------|--------|------|-----|
| Sb1-N12 | 2.09 | 0.26 | -1.66 | 0.67 | 1.96 | 0.108 | 0.215 | 1.451 | -0.044 | 0.045|
| Sb2-N12 | 2.08 | 0.33 | -1.66 | 0.62 | 1.96 | 0.109 | 0.228 | 1.435 | -0.044 | 0.059|
| Sb1-Sb2 | 2.75 | 0.26 | 0.33 | 0.94 | 1.92 | 0.057 | 0.016 | 1.818 | -0.018 | 0.876|
| rcp | | | | | | 0.056 | 0.056 | 1.525 | -0.016 | -2.570|

[a]: Squared polarization coefficients c_X (|c_X|^2) of the σXY bond NBOs.
Table S6. Cartesian coordinates of methane [Å] for the optimized geometry.

	Energy (PBE0/D3BJ/def2-T(Q)ZVP)	Zero-point correction (PBE0/D3BJ/def2-T(Q)ZVP)	Enthalpy (PBE0/D3BJ/def2-T(Q)ZVP)	Gibbs free energy (PBE0/D3BJ/def2-T(Q)ZVP)
C	-4.0507103396174	0.39299992642979	-40.47512126 Eh	-40.47512126 Eh
H	-2.9614749598233	0.39299562860743	-40.42658194 Eh	-40.42658194 Eh
H	-4.41389284390358	0.52846495896909	-40.48749999 Eh	-40.48749999 Eh

Table S7. Cartesian coordinates of cyclopropane [Å] for the optimized geometry.

	Energy (PBE0/D3BJ/def2-T(Q)ZVP)	Zero-point correction (PBE0/D3BJ/def2-T(Q)ZVP)	Enthalpy (PBE0/D3BJ/def2-T(Q)ZVP)	Gibbs free energy (PBE0/D3BJ/def2-T(Q)ZVP)
C	-3.81482060044059	0.24686865910214	-117.79442036 Eh	-117.79442036 Eh
C	-2.78481301377702	-0.83348007109233	-117.70855551 Eh	-117.70855551 Eh
C	-2.36498283820619	0.60348039642867	-117.73647728 Eh	-117.73647728 Eh
H	-2.7219398021147	-1.37888326726660	-117.70855551 Eh	-117.70855551 Eh
H	-2.57204563579027	-1.4283796367047	-117.73647728 Eh	-117.73647728 Eh
H	-3.40187712360603	0.3856433767511	-117.70855551 Eh	-117.70855551 Eh
H	-4.45101055526272	0.43568379061289	-117.73647728 Eh	-117.73647728 Eh
H	-2.01618399266598	1.03445265103731	-117.70855551 Eh	-117.70855551 Eh

Table S8. Cartesian coordinates of n-butane [Å] for the optimized geometry.

	Energy (PBE0/D3BJ/def2-T(Q)ZVP)	Zero-point correction (PBE0/D3BJ/def2-T(Q)ZVP)	Enthalpy (PBE0/D3BJ/def2-T(Q)ZVP)	Gibbs free energy (PBE0/D3BJ/def2-T(Q)ZVP)
C	-3.94910935878480	0.35834663911002	-158.31447698 Eh	-158.31447698 Eh
C	-2.98813612556477	-0.81823011388092	-158.17574760 Eh	-158.17574760 Eh
C	-1.52926568926165	-0.3973189668171	-158.21044423 Eh	-158.21044423 Eh
H	-3.18988524827818	-1.40291277911999	-158.17574760 Eh	-158.17574760 Eh
H	-3.19216626475811	-1.48870305973654	-158.21044423 Eh	-158.21044423 Eh
H	-1.29306385251641	0.24819401872831	-158.17574760 Eh	-158.17574760 Eh
H	-0.85991674777867	-1.25949321881538	-158.21044423 Eh	-158.21044423 Eh
C	-1.29531239752563	0.16147895447699	-158.17574760 Eh	-158.17574760 Eh
H	-5.40798082390052	-0.06255522503813	-158.17574760 Eh	-158.17574760 Eh
H	-3.74506577231902	1.02881293051581	-158.17574760 Eh	-158.17574760 Eh
H	-3.74736534369383	0.94301170707382	-158.17574760 Eh	-158.17574760 Eh
H	-5.64190569620737	-0.62140888147522	-158.17574760 Eh	-158.17574760 Eh
H	-6.07731903130752	0.79963028562176	-158.17574760 Eh	-158.17574760 Eh
H	-5.6442076409893	-0.70801228884333	-158.17574760 Eh	-158.17574760 Eh

Table S9. Cartesian coordinates of NMe₃ [Å] for the optimized geometry.

	Energy (PBE0/D3BJ/def2-T(Q)ZVP)	Zero-point correction (PBE0/D3BJ/def2-T(Q)ZVP)	Enthalpy (PBE0/D3BJ/def2-T(Q)ZVP)	Gibbs free energy (PBE0/D3BJ/def2-T(Q)ZVP)
C	-0.40651156977788	0.34330737478268	-174.32639160 Eh	-174.32639160 Eh
C	1.08884175363941	2.19270785397452	-174.19970764 Eh	-174.19970764 Eh
C	1.90765406684177	-0.0271682460786	-174.2341508 Eh	-174.2341508 Eh
N	0.78873913416882	0.86288726423214	-174.19970764 Eh	-174.19970764 Eh
H	-0.64159878111610	-0.64010281766533	-174.2341508 Eh	-174.2341508 Eh
H	-1.24941637949699	1.00776287820221	-174.19970764 Eh	-174.19970764 Eh
H	-0.31154829050054	0.23823432661460	-174.19970764 Eh	-174.19970764 Eh
H	0.24684154399438	2.8582436579066	-174.19970764 Eh	-174.19970764 Eh

S43
Table S10. Cartesian coordinates of [L'(Me2N)GaSb2]2NMe (L' = HC(CHMeNPh)) [Å] for the optimized geometry.

Element	X (Å)	Y (Å)	Z (Å)
Sb	5.27612699586911	7.47744378301105	6.71762333465927
Ga	4.82886198936814	6.73596018852156	2.9392960423595
C	7.00009236212254	8.69238578730382	3.12901113550598
N	3.02539207682472	9.12619842438155	5.4385628605086
N	3.83819809295255	5.54192885137228	2.58225099529264
N	4.75151308038372	7.34325676322830	1.04787065433530
N	6.50432560490392	10.4556325728173	9.0675117635406
N	6.79635143647703	7.57891180251978	10.05086378465813
N	3.30893368198196	5.67447382092783	3.17361905238855
N	8.81882797259454	8.74267885615243	7.9371131775985
N	4.43297908919681	9.17513803092984	5.7881191190446
C	6.78478261804768	5.15801905772599	1.38573032649994
C	6.24988724084546	5.67212658117689	0.19655708538678
H	6.62127067712407	5.22954232570343	-0.71862463361590
C	5.35769132835326	6.73573464092634	0.03807933517271
C	7.86022789997599	4.11802929629102	1.26828479301258
H	7.88642892026899	3.70452634766014	0.2617039666581
H	7.70182423083700	3.31423318210045	1.9892687881519
H	8.8390536593188	4.55187082035599	1.48555216448064
C	5.07673872971548	7.17040124329391	-1.37322441918292
C	5.23520193202061	6.33516081698837	-2.05426522399059
H	5.74754795450752	7.9768679725771	-1.6772279780713
H	4.0557780440964	7.53738637353922	-1.47993194010077
C	7.01733951500988	5.10100095913516	3.77077047474695
C	8.26147442727567	5.60012882573437	4.14517486499869
C	8.78553613619444	5.29951089355551	3.5966601677335
C	8.63743738902324	3.9990019379604	5.90325155305623
C	6.30101440446574	4.29234815431764	4.65420793895945
H	8.79158104357996	6.26315059125868	3.47054797452400
H	5.30044876775667	3.93011353797196	4.36503840965058
C	4.01161680968170	8.53257259397371	0.87728236403923
C	4.59834825629993	9.68670039669261	0.3615430719007
C	3.87543441780052	10.86574115662447	0.2889750227899
C	4.34506802520960	11.7569520481551	-0.1112851845577
C	2.56567803837215	10.91434258582677	0.74537242474425
H	2.00484110491324	11.83995613255776	0.69471620155113
C	1.98679725161858	9.77390453001974	1.28182511058993
H	0.96950520022791	9.8043111635316	1.65345006482542
C	2.7201006345384	8.58871445390679	1.3512153690261
C	5.97769408680996	10.64375918346334	10.26257607069753
C	5.79629183288960	9.61840830766669	11.1998642395479
C	5.32533490212999	9.90999738617343	12.12767701139170
C	6.21775612004862	8.28875878743543	11.1239099694092
C	5.53346212514693	12.01788454490274	10.67631100609854
H	5.15536185516419	12.58259748229503	9.82939215217175
Table S11. Cartesian coordinates of \([\text{L' (Me}_2\text{N)}\text{GaSb(NMe}_2)]_2\) \((\text{L'} = \text{HC}[\text{C(Me)NPh}_2]_2)\) [Å] for the optimized geometry.

Energy (PBE0/D3BJ/def2-T(Q)ZVP) = -6401.8136228 \(E_h\)

Zero-point correction (PBE0/D3BJ/def2-T(Q)ZVP) = 0.9289205 \(E_h\)
	Gibbs free energy (PBE0/D3BJ/def2-TQZVP)	Enthalphy (PBE0/D3BJ/def2-TQZVP)
Sb	-2.35105783269888	-6400.978976 E_h
Ga	-1.77068631048936	-6400.82470381 E_h
N	-2.9209110722581	0.23409846369268
N	-2.478219118727704	2.78873738723842
N	0.00858902771638	3.45474560015187
C	-3.64302941273823	4.10957457317875
C	-3.74347842555217	4.55387690837734
H	-4.31618361849783	5.37086462983685
C	-3.23707401964307	6.27856148928390
H	-3.79602083822695	4.98528448152905
H	-4.67807488346793	6.0371105654839
H	-5.30548712023007	4.39359163269589
C	-3.57571080311832	6.1791675558923
H	-4.39785442161123	5.83556560679715
H	-3.89783703537926	7.1050368805165
H	-2.72439038108684	6.36337467784742
C	-2.89991048018972	2.6015280158846
C	-4.00383395977115	1.8197140347016
C	-3.92450415660098	0.91285171990807
H	-4.78653627143278	0.3022872284984
C	-2.74403801442165	0.76751967162564
H	-2.68393328646948	0.05184305951652
C	-1.63935769377649	1.5351897318472
H	-0.71027160160942	1.42233159643209
C	-1.71371425794990	2.44750507570482
C	-2.11920635252631	3.88304079552790
C	-3.08091915604201	3.5583132810733
C	-2.7051456216375	3.278222264873
C	-3.46126364045739	3.0123362418206
C	-1.36693537332063	3.30829698405302
H	-1.07372321120844	0.30719935306547
H	-0.40723535597747	0.61938096880274
H	0.64198254914022	3.63228582137528
C	-0.77730379740739	3.90461633790901
C	0.98784201361591	2.32999984161726
H	1.15625118929498	2.38885935844011
H	0.68489491910041	1.30448862149328
H	1.9670426911108	2.49561337945367
C	0.35341481110822	4.62777687417986
C	1.31687436526927	6.9131065650520
H	-0.40495561376797	4.82146837216066
H	0.45131154677342	3.26620057711513
Sb	-1.6535250573210	-3.5893789875013
N	-2.2920421940357	5.85746085913385
N	-1.4503365149005	-3.07853301943663
C	-0.79237456146145	-4.74364296498614
H	-0.50401438431759	-5.4070997428051
C	-0.04886769836946	-6.3655463334357
C	-0.80388394975750	-4.9752831179837
H	-0.3169052182664	-5.41446448910740
H	-1.0271951832622	-5.26971800034398
H	-0.17489311746433	-6.48000253725294
H	0.63818455593270	-4.9961520603721
X	Y	Z
--------------------	--------------------	--------------------
6.41771073706669	-5.86060833081329	
7.18183789229279	-5.9756851926583	
6.91199203132807	-5.42346043875724	
6.03216488974410	-6.83917939713856	
1.50781550918671	-2.88537485657180	
0.85323117386695	-2.34978258541556	
-0.28361508515599	-1.5770997689577	
-0.78062499699620	-1.16043484730332	
-0.77358566767805	-1.31937588343117	
-1.65840864314515	-0.70766468698127	
-0.11730774468607	-1.8194257268338	
-0.48786077226728	-1.64198576767083	
1.01831951531824	-2.6195131164090	
6.95963903769726	-3.45714009826411	
9.6495464244931	-2.94551037057929	
8.96260629173320	-2.52870372677568	
9.48577034909005	-2.1135910406253	
9.5955505098160	-2.60974852139770	
10.61543709834151	-2.26225242048018	
8.90224688657946	-3.10110829574475	
9.38442305370205	-3.15248423024537	
7.58552235311303	-3.51757702545277	
3.84773486404491	-2.15083080708726	
2.80549479042416	-2.31227102665717	
3.91218661212570	-1.12267204024982	
4.47385037869324	-2.21447158705697	
4.16351117850824	-4.43970953975927	
4.77512433909757	-4.63502040753464	
4.5123507012914	-5.12438727941134	
3.13126274746029	-4.74139489802690	
7.02416273970567	-3.8766103973421	
9.41609727037509	-1.89300317558578	
12.10809174394092	3.04127613987365	
7.13752207404533	-2.84765877138504	
1.54413611162611	-3.02421457585715	
1.25897745438062	-2.52089432629688	
4.82041864471837	4.12769474314930	
3.76684123715269	3.5022356947431	
4.88528588200178	-0.35432096438214	
4.70776537869874	0.85291342709768	
3.65241939450560	1.07198777727648	
5.11782106093611	1.71666909486164	
5.24863684397108	0.75899664784817	
4.39243196365282	-1.49427839540707	
3.31576439132095	-1.44155125610425	
4.92285831460725	-1.56455418158587	
4.5722918658618	-2.4220795418070	
6.95769592128816	0.62589887130430	
7.30187965058136	-0.50963122533217	
5.91916374990055	1.43395805173085	
4.93582856709348	0.93400965131357	
5.79160135600345	2.35142871294651	
6.19042458600553	1.7174612103855	
8.16859554891977	-1.02502749772773	
7.57160849226416	-0.16684163345422	
6.49470691553545	-1.25074363264073	

Table S12. Cartesian coordinates of N$_2$ [Å] for the optimized geometry.
Energy (PBE0/D3BJ/def2-S(TZ)VP) = -109.31560762 \text{E}_h
Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) = 0.00576230 \text{E}_h
Enthalpy (PBE0/D3BJ/def2-S(TZ)VP) = -109.30654060 \text{E}_h
Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP) = -109.32893667 \text{E}_h

\begin{tabular}{ccc}
N & -1.45315231394315 & 1.04391077658411 \\
& 0.00000000000000 & 0.00000000000000
\end{tabular}

\begin{tabular}{ccc}
N & -0.35621768605685 & 1.00295922341589 \\
& 0.00000000000000 & 0.00000000000000
\end{tabular}

\textbf{Table S13.} Cartesian coordinates of [L(Me\textsubscript{2}N)GaSb\textsubscript{2}N\textsubscript{3}-Ph (14')] [Å] for the optimized geometry.

Energy (PBE0/D3BJ/def2-S(TZ)VP) = -7467.92091380 \text{E}_h
Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) = 1.55198463 \text{E}_h
Enthalpy (PBE0/D3BJ/def2-S(TZ)VP) = -7466.27390470 \text{E}_h
Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP) = -7466.48156992 \text{E}_h

\begin{tabular}{cccc}
Sb & -3.63075078361640 & 6.64557708400430 & 22.8168007525725 \\
& 4.72314938831901 & 24.75851742803625 \\
Ga & -1.37460782513996 & 5.17393094089000 & 25.9634002321803 \\
& 3.80367086672687 & 27.4070022071533 \\
N & -9.99336103540511 & 6.67834350696393 & 27.23188364865344 \\
& 0.29293871763483 & 6.72819525459886 & 22.14467080598133 \\
& -7.22736585539554 & 4.96966951321858 & 24.93787365511022 \\
& -2.75873422551918 & 7.90515598026993 & 24.34554491710905 \\
& -0.60845861538335 & 3.97386113598100 & 19.78414005148816 \\
C & -0.48368043146514 & 4.91218926632183 & 18.74439614504704 \\
& 0.01890603095403 & 4.58893775504958 & 17.84470413267658 \\
C & -1.04793050991395 & 6.1918181052929 & 18.66658049552877 \\
& -0.0505572155684 & 2.60132984525886 & 19.52054578341834 \\
H & -0.11695413919617 & 2.3413311104725 & 18.45674643863476 \\
& -0.54388679637928 & 1.82814451141219 & 20.12114216427624 \\
C & 1.01657972870001 & 2.60218373029336 & 19.7985441385280 \\
& -0.95249203898707 & 6.90896630418635 & 17.34517436563345 \\
H & -0.74919514298334 & 6.20486501211797 & 16.5294160319568 \\
& -0.12901147992055 & 7.63904168804837 & 17.38436491995091 \\
C & -1.86696460269988 & 7.47481638697250 & 17.1226374273104 \\
C & -1.56432066123192 & 3.19626039822619 & 21.83982645664982 \\
C & -0.75656991450412 & 2.79769753971669 & 22.92432430856692 \\
C & -1.22254602336111 & 1.77735168743613 & 23.76073318548351 \\
C & -0.60926286562618 & 1.46160174012545 & 24.60789368366285 \\
C & -2.4547791219729 & 1.17382749779606 & 23.5527258809663 \\
C & -2.80963741133036 & 0.39949667505617 & 24.2348414071255 \\
C & -3.24993551893155 & 1.58942234561806 & 24.9107756858979 \\
C & -4.22569016576080 & 1.12314771602554 & 22.33842446692248 \\
C & -2.82875642971464 & 2.60026664422004 & 21.6237353024400 \\
C & 0.59411556194278 & 3.42540157785751 & 23.203987331871 \\
H & 0.70282839636318 & 4.28764423377941 & 22.5308932839499 \\
C & 1.7145221701512 & 2.44397570442198 & 22.91713151105922 \\
H & 1.69087952671716 & 2.06232014499491 & 21.8865723918314 \\
H & 1.6864081288874 & 1.57423511822982 & 23.59249330377273 \\
H & 2.70890787120410 & 2.93042753220764 & 23.06226641985604 \\
C & 0.6828946983548 & 3.95389370685785 & 24.63456964821167 \\
H & 1.64899745781472 & 4.45400600114231 & 24.80039165161163
\end{tabular}
Table S14. Cartesian coordinates of $[\text{L(Me}_2\text{N)GaSb}_2\text{N}_3]^{-}\text{SiMe}_3$ (14") [Å] for the optimized geometry.

Atom	X (Å)	Y (Å)	Z (Å)
Sb	-6.4851833207110	9.2007969236816	5.74094143264128
Sb	4.51643084778682	7.34624099875682	5.3295592367486
Ga	4.8581469411502	6.46300015666474	2.84003170463874
Ga	7.3273830011510	9.0589953691670	8.2939749514373
Si	1.46871965996984	9.0231838434812	5.2434494171817

Energy (PBE0/D3BJ/def2-S(TZ)VP) = -7645.51002257 E_h

Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) = 1.57381343 E_h

Enthalpy (PBE0/D3BJ/def2-S(TZ)VP) = -7643.8304761 E_h

Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP) = -7644.05042820 E_h
Table S15. Cartesian coordinates of [L(Me₂N)GaSb]₂N₂C(H)SiMe₃ (14”) [Å] for the optimized geometry.

Atom	X	Y	Z	E (Eh)	ZPE (Eh)	E_h (Eh)	G (Eh)
Sb	6.943	6.562	-2.887	-7629.4892667	1.5833546	-7627.9064252	-7628.0200625
Si	4.543	7.371	0.127				
Ga	5.072	6.418	0.198				
Si	7.375	8.430	-2.887				
N	6.816	6.591	0.127				
N	4.042	7.124	0.198				
N	8.000	10.356	0.127				
N	6.021	8.364	0.127				
N	4.675	4.574	0.127				
N	8.714	7.162	0.127				
C	3.858	9.460	0.127				
C	6.840	6.307	0.127				
C	5.690	6.272	0.127				
C	5.846	5.948	0.127				
C	4.409	6.749	0.127				
C	8.139	5.992	0.127				
H	8.308	6.678	0.127				
Table S16. Cartesian coordinates of $[\text{L(Me}_2\text{N})\text{GaSb(N-Ph)}]_2[\text{L(Me}_2\text{N})\text{GaSb}]$ (15') [Å] for the optimized geometry.

Atom	X	Y	Z
C	2.7556288088215	9.8200994121532	7.4630679312495
H	1.89890028722717	10.0520921200944	8.11443114517974
H	3.5564181161638	10.548790258088	7.74058141695749
H	3.13592197593375	8.8247602058137	7.30330791858989
H	0.0462829362466	8.73902237252478	5.77598160940770
H	1.3316778363592	7.06056376388184	5.70069850005844
H	0.8375599241043	8.37080303879894	4.22166661044141
C	1.59833528194507	11.49658783159356	5.1255113317146
H	1.3087113779793	11.4746803469644	5.06510570030344
H	2.3634772590425	12.27626910517674	5.25978205781482
H	0.71010166738467	11.77391423167943	5.717585326392
N	4.77719430135732	10.51878452155114	4.9085098374475
N	5.88059323930625	10.48390683213074	5.39895681810169
H	3.45708135087122	9.52753953609951	3.59125790442251

Energy (PBE0/D3BJ/def2-S(TZ)VP) = -7358.5846717 E_h

Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) = 1.5415592 E_h

Enthalpy (PBE0/D3BJ/def2-S(TZ)VP) = -7356.9512666 E_h

Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP) = -7357.1568558 E_h
	x	y	z	
C	-3.025161	128588004	6.850732	28.7492452339783
C	-6.035853	28985828	9.217953	27.333960148361
H	-6.733541	17953325	8.373437	27.4281843260527
C	-6.408390	93652812	10.265163	28.38391776186527
H	-5.800340	6886418	11.176711	28.27245890149110
H	-6.262564	0456564	9.897992	29.41083257722951
H	-7.463028	9053257	10.562106	28.27021594923447
C	-1.986966	69728672	9.783003	25.92414062817680
H	-5.898402	26372334	9.039692	25.17529919508968
H	-5.568814	48420909	10.673421	25.77519341528012
H	-7.244034	46677106	10.078143	25.74161208170896
C	-2.737912	97283003	5.383211	28.1029276541719
H	-3.474490	45073192	4.814098	27.512816310352
C	-2.949457	74353635	5.021960	29.5740563567012
C	-3.980454	51458519	5.213316	29.90129372156853
H	-2.274676	02843793	5.605729	30.22058922427127
H	-2.741083	32416694	3.953680	29.74428262454295
C	-1.361006	59034085	4.942756	27.62892573682087
H	-1.210365	61313473	5.189817	26.56982599313616
H	-1.258195	946651856	3.852923	27.72952629441157
H	-0.550879	791743081	5.403005	28.21707813055788
C	1.090579	99558858	8.185876	20.9796123599333
H	1.126752	85716407	7.455048	20.1567482696971
H	2.019391	160542639	8.048408	21.57713795793074
H	1.159249	95928994	9.195918	20.5258392042735
C	-0.216686	20344123	9.003438	22.81794328628076
H	-0.333706	65804703	10.033100	22.42388901827968
H	0.673443	343094520	9.013246	23.47977172470151
H	-1.093644	428996644	8.807859	23.45213221520700
C	-8.304002	24536779	6.857675	25.6609856468463
H	-8.458953	96164130	7.956184	25.07827119530335
H	-8.337472	22439693	6.481122	26.6955059132465
H	-9.195238	28908636	6.444870	25.1362450868078
C	-6.973194	96292977	6.986066	23.67227232215615
H	-6.064816	60322577	6.596690	23.18902851347993
H	-6.914364	62040762	8.091888	23.61273457453347
H	-7.838438	40235263	6.677655	23.04897412711697
C	-3.712385	05113428	9.299012	23.37143776444445
C	-3.292183	17879629	10.501683	23.99474251265315
C	-3.369181	07164618	10.431201	25.0110867490498
C	-3.028947	38288896	12.626708	23.84620289142450
C	-3.882547	7175703	11.801493	22.0387208473417
C	-3.960063	47603805	12.765069	21.53040760675465
C	-4.299007	62106892	10.631296	21.40743877057969
H	-4.710710	64539199	10.669240	20.3968334549205
C	-4.202847	078416692	9.398758	22.0470187790423
H	-4.558752	25876911	8.493878	21.5447684181352

Table S17. Cartesian coordinates of $[L_{(Me_2N)}GaSb(N-SiMe_3)][L_{(Me_2N)}GaSb]$ (15°) [Å] for the optimized geometry.
Element	X-coordinates	Y-coordinates	Z-coordinates
Sb	4.91156149009091	9.84574570219467	6.83561413943616
Sb	4.53159257035483	8.13913904655557	4.88564679424705
Ga	5.03238511135948	6.36400806737875	2.93618228784587
Ga	7.09495698355508	9.21322344911904	8.18053021570157
Si	1.38104196260665	9.01076682832086	4.84243119967392
N	6.87362838077999	5.92784561600909	2.38765502541504
N	4.52069210732321	7.12268750062646	1.17644652130662
N	7.64048923273279	10.94226403608242	8.98741412519849
N	6.38000235870511	8.42087891469325	9.88520792197525
N	4.11346300272808	4.80181564090344	3.3142440238183
N	8.51287172319875	12.8547642118614	7.65847812312637
N	2.73754537959913	10.8908716023435	4.22461076275159
C	7.10177358671215	5.5597594272068	1.1227054082937
C	6.22421710751979	5.81469256145874	0.0651125400411
H	6.52969037910713	5.43900947829788	-0.90921232131906
C	5.09180345687933	6.65086174686439	0.07175991920449
C	8.38413969202979	4.84558639402378	0.78842355869088
H	8.38704644929399	4.52101718663823	-0.2589271127411
H	8.51942138552330	3.97165617922696	1.4418935827988
H	9.25474899117388	5.49393537835430	0.9616586651762
C	4.52691803247731	7.01895695071518	-1.27197003170178
H	5.20311263204770	6.70761010160820	-2.07648185084534
H	4.34718122485262	8.10039400976711	-1.34245624592071
H	3.55155686281806	6.53442657157518	-1.4221465032429
C	8.00670289712639	5.93546593140016	3.25930426040589
C	8.88183673397144	7.03974716919648	3.1942940851927
C	10.08399316696457	6.97816114743045	3.90339548365276
H	10.7799226628900	7.8189097482975	3.85062200952597
C	10.41047521051292	5.86514066236519	4.6692103933972
H	11.3593685447721	5.80366434469469	5.20974532563640
C	9.50997780809748	4.81241020516665	4.7714602130187
C	9.75309798011166	3.95545701365950	5.4040254728062
C	8.29436004274161	4.82725601034535	4.08191955715055
C	8.54813038959362	8.27980777064670	2.38589710485679
H	7.57654782670520	8.10682320898761	1.90129069489285
C	8.39177434330968	9.49365672885479	3.30002483753369
H	8.08168261506993	10.37818691547186	2.72358068728170
H	9.33642246413342	9.74628098454311	3.80657562195545
H	7.63589021012612	9.31590550553881	4.0804407601204
C	9.56752126642434	8.54763245452595	1.2797480149354
H	9.64935809727833	7.6971622198435	0.5866703340452
H	10.57003208705632	8.74233168500315	1.69258436849154
H	9.27408302092634	9.43036649159755	0.69082349755154
C	7.31756032247858	3.68303220075775	4.24778512041934
H	6.52293443800370	3.82188824813044	3.5024685564066
C	6.65834175595851	3.75516698744857	5.62561348536111
H	6.14600746789126	4.7175777294586	5.76797352233721
Table S18. Cartesian coordinates of [(L(Me$_2$N)GaSb(CH-SiMe$_3$))(L(Me$_2$N)GaSb)] (15°) [Å] for the optimized geometry.

Atoms	x	y	z
Sb	5.01246684345640	9.90786272574718	6.6642523410343
Sb	4.49215893976371	8.05012935860090	4.82446391686066
Ga	5.12428226472651	6.33596303202340	2.89694806200026
Ga	7.05671581885282	9.19159891209111	8.15096929621666
Si	1.21412271953200	9.20207788686499	5.06000169785456
N	6.96367206445657	5.95878495861922	2.32998015971334
N	4.55878495861922	7.05147031059117	1.12743107218236
N	7.63124156282582	10.93605289461678	8.93142181144798
N	6.32653347246095	8.45061310006711	9.87760202547678
N	4.19599066969192	4.75214840578697	3.19154732093398
N	8.48488349784351	8.07178865241099	7.69813835458515

Energy (PBE0/D3BJ/def2-S(TZ)VP) = -7520.15096407 E_h

Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) = 1.57324574 E_h

Enthalpy (PBE0/D3BJ/def2-S(TZ)VP) = -7518.48076201 E_h

Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP) = -7518.69231926 E_h
C	2.58133085843949	8.18431190053085	4.32372813992520
C	7.20522821586530	5.61271744809439	1.06017794652588
C	6.31687059201276	5.49192675251081	-0.97478476320935
C	5.14421298738070	6.19655300053468	0.01580065366152
C	8.52020480005333	4.97167913456817	0.71307022198899
C	8.51435370463419	6.11195629688626	-0.32218081231480
C	8.73424782125761	4.13488267665301	1.39249486347245
C	9.34944869391902	5.68304869958859	0.83412775295926
C	4.54752619733800	6.96549836033368	-1.31949103128568
C	5.24971646622864	7.64219492731041	-2.13107537769800
C	4.26063324249332	8.02483849509776	-1.36449183251996
C	3.62774808909927	6.38516361530805	-1.48337583117439
C	8.09261658182003	5.97852827879005	3.21090825306100
C	8.96587929414682	7.08628662334584	3.14478856290378
C	10.15717099578264	7.03572174381208	3.87157611586133
C	10.84983127175336	7.89745246302582	3.82300849369327
C	10.47606788805094	5.93166659966665	4.65412408959635
C	11.41727284245684	5.90554041408818	5.20773130614838
C	9.57572504097785	4.88012969878974	4.75832663163094
C	9.81124424968300	4.03187333443193	5.40573869394748
C	8.36708170673155	4.88509824431221	4.05532604387680
C	8.63452324551965	8.32421344604063	2.33106535390314
C	7.70066721121153	8.12508794371650	1.78582061217948
C	8.37946574601952	9.51622674144622	3.25298974420271
C	8.09030056561826	10.40361301529916	2.66982438432812
C	9.28008242757655	9.78018858190808	3.82913340343298
C	7.57545266859874	9.30937526198609	3.97615551615931
C	9.70605314913606	8.65407485800564	1.29312731208068
C	9.88295603317881	7.81427112492208	0.60460415065087
C	10.66726971395172	8.90607341368361	1.76813602832952
C	9.39954816795587	9.52214020479614	0.68905442269553
C	7.39940355313388	3.73181636886658	4.22378277068443
C	6.53982661406011	3.91828313667673	3.56900271343893
C	6.86686135884733	3.69222701524515	5.66074635485389
C	6.34994586530915	4.62788464951964	5.91983803501891
C	7.67749942066477	3.55017755860763	6.39297301327703
C	6.15211594635880	2.86484254254680	5.78708482236903
C	8.01373962232741	2.39119662676461	3.82769533123754
C	8.37942311126126	2.40435467137367	2.78954902835232
C	7.26659439254754	1.58649930570586	3.9097245549054
C	8.86280892990997	2.12199972460403	4.47587882042259
C	3.43764931447921	7.93224339208481	1.02304891290439
C	3.65518820969311	9.31637610567528	1.20039036790823
C	2.56359890225697	10.17816879910851	1.08024474634153
C	2.71026528753367	11.25061224205051	1.21353794474868
C	1.28918253713046	9.69344161271758	0.80876506888776
C	0.44744516347755	10.3845427493895	0.72340824831502
C	1.08758778860113	8.32750601610210	0.66937119363243
C	0.08013279035099	7.94870308599164	0.48175917095577
Table S19. Cartesian coordinates of [L(Me2N)GaSb]2N-Ph (1) [Å] for the optimized geometry.

Energy (PBE0/D3BJ/def2-S(TZ)VP) = \(-7358.62915134\) E_h

Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) = \(1.54217813\) E_h

Enthalpy (PBE0/D3BJ/def2-S(TZ)VP) = \(-7356.99388588\) E_h

Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP) = \(-7357.19764448\) E_h
C -1.50880610849780 0.15414505856949 22.53582260852182
H -0.91974725298792 -0.53578391757402 23.1456697154005
C -2.84380510505480 -0.12860015370101 22.28148532333418
H -3.30194636327848 -1.03278078740458 22.68944187950983
C -3.59473497552294 0.74443070004373 21.5009297254071
H -4.64217700838307 0.51553762492694 21.29849865379115
C -3.02858269922531 1.90180639669301 20.96118575456707
H -3.59473497552294 0.74443070004373 21.5009297254071
C -0.56135704330521 1.56469703563849 22.35849733407453
H -0.85366140029059 2.49834455624757 21.85632467792360
C -1.46473153769221 0.43698914387809 21.85632467792360
H -1.31883301704217 0.23661419604321 20.7857062060691
H -1.27103248940830 -0.50296132391752 20.96118575456707
H -2.52379454201548 0.69386347970271 22.0149269627231
C 0.76254307321181 1.78342790940186 23.85664562330885
H 1.80890648631538 2.05317961498084 24.0688155148453
H 0.53311410155709 0.87081856266841 24.4308652741539
H 0.12266315260831 2.59739339075345 24.21850227931828
C -3.83690908179381 2.79839364515483 20.04218603450410
C -3.48151708576333 3.82922785454030 20.20742019132157
C -3.56294988408563 2.46636714816129 18.57389228505386
H -4.15813434695162 3.11183704998291 17.91218299086540
C -3.83255459440050 1.41776048253327 18.35660546963287
H -2.56062549122997 2.60207248760026 18.31066385013751
C -5.33456776012310 2.76902629342619 20.3259818943670
H -8.84529525808230 3.54413288340959 19.73599112601603
H -5.55297176566607 2.95821036683078 21.38633040462184
H -5.78552757389898 1.80341238176326 20.04726087546813
C -1.73856847449818 7.53076823122568 20.2965289372757
C -1.41476027489148 8.56093577608755 21.20556027586638
C -2.07763159343956 9.78501069756064 21.08860800543306
H -1.84535144111713 10.58774938174521 21.78966437083288
C -3.03240705509375 10.00056223433231 20.10359941927662
C -3.54478436873515 10.96255498785051 20.0385085999492
C -3.36316477938432 8.97082539227795 19.23452472772026
C -4.14485000044946 9.12986043298681 18.48764840043049
C -2.74576006628717 7.72058775931260 19.32162499199308
C -0.32982151673726 8.38684709269695 22.2497122826344
C -0.27331593437877 7.31634802711367 22.50045252612995
H 1.0327073369296 8.78804783011591 21.6797571635966
H 1.30900985355394 8.17028839858327 20.8130988440238
C 1.02437188003579 9.84191905843033 21.3566385660472
C -0.62001753307662 10.23047529314231 23.4203708168434
H 0.09635694125801 8.84015779848125 24.3242681969247
H -1.63549250318911 8.9191638103399 23.9021026078790
C -2.32501218248410 7.60376014338885 18.4133509860256
C -2.55808926686665 5.74328739914854 18.52166528599775
H -3.5256613540160 6.99813036795913 16.9364094820503
C -3.51056954203498 6.13020976416464 16.30973558282085

S71
H -2.27964647990173 7.38358096859726 16.59820278435317
H -4.00123637141311 7.78036215588977 16.73568041297477
C -4.62566977700332 6.1414263602755 18.849243714030
H -5.35655124396530 6.96216061045598 18.77682763519675
H -4.6278967789831 5.79057456972980 19.89183178481817
H -4.98246417367742 5.31615004866802 18.2136983340362
C -5.84466555346225 4.36702512284511 28.66726717504190
C -6.4276842585766 5.43600805978291 29.36902349933839
H -6.9295879816134 5.1772038912860 30.00388565071899
C -6.32110128035376 6.81208709966241 29.09080209673361
C -5.97814031264932 2.99513962831495 29.2690564609986
H -6.944339755432 2.56890013755465 28.95281230051028
C -5.97505708216120 3.03452627551587 30.3659260931060
C -5.1895798669922 2.31653660731960 28.92154895326125
H -6.84300848952119 7.75349799050028 30.14118186463497
H -6.22908417323994 8.6609003901899 30.2161296562440
H -6.891603434980 7.2688310051273 31.12145838568112
C -7.8595481961696 8.0773624223443 29.87027157436518
C -4.36394896457019 3.53871319786538 26.93280909581084
C -4.85084559928423 2.62533246349635 25.97676903400263
C -3.93128239063738 1.8270243921806 25.2882112401422
C -4.28700624471375 1.13158186559541 24.52495047985233
C -2.5699531343820 1.91261555426160 25.54104151504301
C -1.87295821015705 1.29739872077473 24.9716150346418
C -2.10323689517113 2.8418626580428 26.51983501998570
C -1.03188506148703 2.943181297158 26.7214070365552
C -2.97891188020310 3.60648136918924 27.2328402109345
C -6.35010634774587 2.46148227790379 25.6954683916999
C -6.85819204568734 3.25571003282108 26.24177607053122
C -6.83221460354129 1.10864422684317 26.20614292346140
C -7.9217992487721 1.0224586283062 26.06895595769294
H -6.60892639351695 0.96170219525098 27.2725901621062
C -6.35963273471302 0.28025331092611 25.65426983663936
H -6.5486039227280 2.62893556085698 24.2148355271689
C -6.21252911230676 1.8203205333292 24.31161785158335
H -6.2692956928853 3.5842678750450 23.8446620614571
H -7.74333926213011 2.6069510724247 24.05090420957936
C -2.46008441761054 4.52187803564513 28.32856151202491
H -3.127668456193 5.39885460131774 28.3540067887152
C -2.55288755803227 3.84998923703302 29.7010217285330
H -3.5808551577939 3.56624311637086 29.95670249409195
C -2.1888554418096 4.52941646908991 30.4876516485916
C -1.93584884733940 2.93749541104001 29.72581816839396
C -1.0364858426845 5.01844756650288 28.0984258068828
H -0.91989403538699 5.49953649157728 27.11648593759791
H -0.30102784823068 4.20207920928188 28.1683088409224
H -0.76901905403812 5.7558723613825 28.87051684168363
C -5.59324490526283 8.70747011939021 27.81359786001328
C -6.6358876016639 9.55344475455524 27.38235659493581
C -6.36809348765333 10.91774174701251 27.22822629735656
Element	X-Coordinate	Y-Coordinate	Z-Coordinate
Sb	4.73859264137936	8.17882259457493	6.90543274303859
Sb	5.9170267341003	8.68946659715297	4.4686544320799
Ga	5.00495213864000	6.72921120694701	2.89864167057028
Ga	6.86537817205024	8.9353683424663	8.35180481774364
Si	2.77029569384425	10.15136545461158	5.12685612642757
N	4.48730571543042	7.18225805987951	0.99570721098138
N	6.96063783842453	10.72076038868592	9.17544219311848
N	6.49317352292845	7.94714471749921	10.08672952987910
N	3.82643938536892	5.37013474531412	3.3965352657427
N	8.52453119184184	8.35492780848017	7.69766844969542
N	4.41343184932305	9.68620337240397	5.50088363627071
C	6.8057741589125	5.2619397741988	1.10454519062922
C	5.9119161429375	5.4817976953018	0.0498661273641
H	6.09427219665737	4.90919848026194	-0.8594076082034
C	4.90837847582809	6.46450026873982	-0.03751636154590
C	7.91270985828306	4.26984734160403	0.86963294667607
H	7.9004758268707	3.90484965240992	-0.16680183776463
H	7.7922978056676	3.41357192146962	1.54753767266603
H	8.89952942657426	4.7001699342488	1.08569334279431
C	4.30143975480818	6.66532311092344	-1.40066719188463
H	5.03554193635205	6.44418735665499	-2.18561635019302
H	3.91539626971906	7.68311065103647	-1.5367833029124
H	3.45498670666732	5.97310059792767	-1.53046508660605
C	7.87881364618112	5.83215243291610	3.12555953395369
C	8.88884147762098	6.80586849980781	2.9424893742643
C	10.0750451964281	6.80658284379041	3.6700453105750
H	10.86850420048297	7.41832165274880	3.5305479086305
C	10.26696067077669	5.62951707295546	4.55940607142155
H	11.20524529421803	5.54152298776484	5.11034405609888
C	9.24232879197621	4.71629286300947	4.77364872952101
C	9.37738057657860	3.9187443621625	5.50834621062770
C	8.03223180282532	4.80580036777092	4.07945918943199
C	8.72147316884608	7.94106638061901	1.9479927514333
C	7.63866764606333	8.06678317467369	1.79238962800040
C	9.2731161532088	9.2664726421479	2.4667869083012
H	9.00975857392623	10.0808896689032	1.77470492210371
H	10.37130113743913	9.2540337867104	2.54561942375015
H	8.86146532505813	9.51446708941525	3.45651863199868
C	9.33336082996920	7.60295783392864	0.58661056901440

Table S20. Cartesian coordinates of [L(Me\(2\)N)GaSb]\(2\)N-SiMe\(3\) (16) [Å] for the optimized geometry.

Energy (PBE0/D3BJ/def2-S(TZ)VP) = -7536.24119054 \(E_h\)
Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) = 1.56269284 \(E_h\)
Enthalpy (PBE0/D3BJ/def2-S(TZ)VP) = -7534.58233655 \(E_h\)
Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP) = -7534.79231493 \(E_h\)
Energy (PBE0/D3BJ/def2-T(Q)ZVP) = -7539.1480564 \(E_h\)
Table S21. Cartesian coordinates of $\text{[L(Me}_2\text{N)GaSb]_2}$ (11) [Å] for the optimized geometry.

Element	X-Coordinate	Y-Coordinate	Z-Coordinate
Sb	5.66507803460978	6.06637369834588	10.98291520046017
H	11.01503967131364	7.74675204545337	10.519065809382
C	4.39843655326050	5.81522611265552	9.72650162662206
H	11.30200598843819	6.90017572205782	9.58007170070185
C	3.51344910205309	5.38359313798910	10.90012379648881
H	2.46180646741894	5.64385583475496	10.70266557293366
H	3.80779420638516	5.8506294796282	11.8401737044775
H	3.56397461291811	4.2920221490404	11.0414282405727
C	9.2161942369813	5.10581906175465	8.45870063649882
H	2.06822865321660	5.2395961684267	4.5789753851954
C	3.42549797100396	6.39537406016465	5.30485462309644
H	3.47056565614632	3.6511662793368	5.22870113741916
C	3.63151435585590	2.20580415118322	2.58335238268406
H	1.43006842325691	4.30537470566622	1.6074099165124
H	2.55074256973693	4.00495605057353	2.38641703359553
H	4.03228422267366	3.2818309133382	3.0520200317155
C	8.49659563929064	7.02450227742329	7.1469501335815
H	8.17243263879994	6.99137861452732	6.0873895800401
H	7.8224779343323	6.36231929047497	7.71759381990391
H	9.50055931230491	5.6573194160878	7.1809809092989
C	9.37795201652242	9.21238186773933	6.91855708193208
H	9.06539892803818	9.29386882368701	5.85393902673762
H	10.41672346850392	8.82316929056116	6.90666771535845
H	9.41665208297523	10.2308667186244	7.32881622790354
C	1.88334212984553	10.51357149916076	6.75211106145413
H	0.8799774021473	10.9263619883190	6.5583748922949
H	2.43828411709221	11.2377620701574	7.36726111902006
H	1.75767929035852	9.59275697569194	7.3441171220054
C	1.81876250331983	8.81132974655150	4.22244792755676
H	0.78551171128143	9.12344956433195	4.00217313129002
H	1.77732571507148	7.88719798389276	4.81877449851823
H	2.30143611767395	8.57568301025566	3.2628005963610
C	2.76769539303069	11.70649045479226	4.0665506469106
H	3.29837867843327	11.53279637722741	3.1198276375834
H	3.23739227704905	12.55968221856106	4.5781675203003
H	1.73185095798009	11.98548471753007	3.8137881165907

Energy (PBE0/D3BJ/def2-S(TZ)VP) $= -7520.22183531 \text{E}_h$

Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) $= 1.57348089 \text{E}_h$

Enthalpy (PBE0/D3BJ/def2-S(TZ)VP) $= -7518.55169516 \text{E}_h$

Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP) $= -7518.76217520 \text{E}_h$

Energy (PBE0/D3BJ/def2-T(Q)ZVP) $= -7523.09516169 \text{E}_h$
H 5.98201382286831 9.808589798393194 4.09991219809858
C 4.21257698848048 7.20521236284187 2.928094727537908
H 4.53077912093266 7.84462705049495 2.09144601213760
H 3.16336108792408 7.45680622681770 3.1490497742620
H 4.24602447021574 6.15779109415691 2.5868519228583
C 7.04122784797728 6.89258035649236 2.928094727537908
H 7.04159323683814 5.82895364649710 3.71989420929283
H 7.72549281217846 7.0083476875180 4.86041545666397
H 7.43844239641674 7.47420611966568 3.1624147028538
C 4.60051425273985 6.46667933731183 5.86007387139399
H 3.58215982210046 7.79689834692411 6.1106337451377
H 5.22481785116943 6.5626097671314 7.5820477309058
H 4.55391981535570 5.39780077061564 5.5999467118568
N 5.15487701635113 10.38634094841797 10.25511241736984
Ga 4.88441707910090 9.01793818301843 8.8196521553333
Sb 3.45070632784750 10.37741699024679 5.00609361569681
C 5.94954931273302 8.7082809032282 11.86492292987151
H 6.12964839643309 8.6205266578447 12.92674295201726
N 6.20269413297117 7.76034774283499 9.69366034329522
Ga 4.00848558118022 12.30739285331034 3.30903832393253
N 3.22347542909400 8.20940825000905 9.0674128076984
C 7.25825676627871 6.70176403136338 11.6456611827607
H 6.59865189780521 5.88658853222527 11.9782550592942
H 7.77882470364589 7.09111780092971 12.52950410762636
H 7.98907219526909 6.26740858694534 10.95223187641355
N 3.1281435229507 11.90820040837288 1.5468904399756
C 5.12873868171730 10.99458308479374 12.6298831204834
N 5.6536411711892 11.95670794036022 12.4753133072163
H 5.43199377058260 10.58020786724236 13.5986083399989
H 4.05116965604603 11.21593575103205 12.6573553873718
N 2.91697673590168 13.96232868970972 3.5616027413129
C 6.43743732725014 7.78608531387185 10.9994052514212
N 5.75581638637486 12.82944151369908 2.8957120395362
C 5.001054647219 11.7802016195089 9.9971628752877
C 4.79238602782893 14.55108923753320 9.7767563511336
C 4.7096456528663 15.63903825660948 9.72051195091990
C 6.04404170948130 13.94496435201765 9.75910611322321
H 6.94033989273057 14.56263808005447 9.6683687320006
C 6.1740741664935 12.55813997985200 9.8437780752452
C 3.64876444145766 13.76701962182145 9.3682994375518
C 2.6668112407316 14.2428955204503 9.80349801136504
C 3.7268241436295 12.37502822459214 9.9434485824747
C 7.5513541660078 11.91897008291939 9.79691008161544
H 7.3963819642079 10.8522733121337 9.5728596362762
C 8.41284052362252 12.5056789255196 8.68016651087440
H 7.8907688485755 12.47017345258086 7.7124343624622
H 9.35009436587551 11.3574810073273 8.8465233446487
H 8.69953604748468 13.55204167786117 8.8812433524839
C 8.28416924886223 11.9968634719948 11.1373804935280
H 9.28965441869047 11.5577723196505 11.05164067293832

78
H 3.27427739518564 12.30026850083192 -1.22418380284972
H 1.94144788565545 13.4883821707863 -1.16551483071518
H 1.66307871366116 11.7681478278960 -0.76006055549132
C 2.59096701034078 14.4486793276787 4.8624559667175
C 1.28562972580721 14.2292802914244 5.35748050660655
C 0.92759583428321 14.8099288974023 6.57670456794309
H -0.08504487688884 14.6634382368815 6.96138920712871
C 1.8371207973321 13.5732975659620 7.30301735535176
H 1.5310575171526 16.0363964667569 8.2455937897831
C 3.13051117720264 15.7304093931223 6.8312657722832
H 3.85082438526150 16.3067739428830 7.41569907149581
C 3.5380844341999 15.1693816964715 5.61781585055981
C 4.97234869356026 15.34936526698214 5.16145823597897
H 5.0856830870044 14.8248845496793 4.20199408765409
C 5.33393246462014 16.8184825627681 4.94528258924870
H 6.36542069258214 16.9079617955094 4.57032673060224
H 5.2704886888229 17.3940340176957 5.88281810305906
H 4.66929188540897 17.3028724778167 4.21389691398119
C 5.92938184557975 14.6910508872878 6.154620284919
H 6.5629627622004 13.6242168087588 6.2901293015174
H 5.87039050411850 15.1645094361027 7.1459053017384
H 6.9698069564562 14.7708756519251 5.8047833495778
C 3.05013411134664 10.5748535887701 1.03926473481354
C 1.89104994217219 9.81461167855951 1.3134271493720
C 1.7513475246712 8.5629967274380 0.69498060767556
H 0.85614640099740 7.9745187272507 0.88404272675751
H 2.73382755170970 8.06986525344012 -0.1516547014680
H 2.60262714672784 7.09648173811098 -0.6296573240647
C 3.89902363040133 8.7971895597966 -0.35455632891815
H 4.68937821646231 8.38359690912173 -0.9855372981233
C 4.088572446617385 10.0415398390959 0.23929082575287
C 0.80627225520408 10.33540188669206 2.23894181806525
H 1.30154121186198 11.0156341993397 2.9511091526519
H -0.24690712471316 11.1569852243720 1.4935182518005
H 0.18215417762693 12.05853781223580 1.0344969201227
H -1.03861562906299 11.48566430210728 2.18503510551670
H -0.72070489937097 10.55869378588003 0.69685730206250
C 0.14987281556188 9.2241606802070 3.05270572896349
H -0.47108643119811 8.5647283486647 2.42662467665518
H -0.50800972871395 9.65517380619364 3.8208061165570
H 0.90120736339785 8.60553439742698 3.56587700183815
C 2.7921666291002 7.7986840629083 10.37189930159890
H 2.00733826078927 8.46618172365786 10.79495483935265
H 3.62558319901649 7.7927059356155 11.09022456790814
H 2.3553349165531 6.77824341001564 10.36415662033761
C 2.16799544674993 8.1896854310838 8.09993194523942
H 2.50022394648482 8.6112146663604 7.13940245782003
H 1.28553620553597 8.7821424574074 8.42156967806163
H 1.79607294616375 7.1609108081453 7.9020566677910
C 6.04199380015522 13.78731184572709 1.8685565301987

80
Table S22. Cartesian coordinates of [(L(Me₂N)Ga)SbSb[N(Ph)Ga(NMe₂)L] (5) [Å] for the optimized geometry.

Element	X	Y	Z	
Sb	3.6291713181556	23.46636438542158	7.83175894299146	1.15642116885291
Sb	1.55861151087495	24.73029912510697	6.75653258423900	2.27627818367127
Ga	3.53806150068520	20.37905880974398	7.98758156297777	1.28069346158645
Ga	3.15578731072583	26.57989126828297	5.88135961648900	5.1461754323125
N	4.96355170865099	19.50931445878630	9.02284374279720	14.74728728566097
N	2.49042047844445	18.77100915215630	7.6908393877862	14.0329769233811
N	2.07153301035226	28.23225369868553	5.54648589874501	12.45993266245541
N	4.44795958680398	27.57753547563255	7.04980790488430	12.145614332125
N	3.95001269780010	21.45746396216916	6.42783938649810	12.86496799520976
N	4.13724653604107	26.2391763454259	4.30996735215322	12.08069346158645
N	2.76449961612884	21.84415995904685	8.83933773510100	12.08069346158645
C	4.70372642363798	18.3956911717204	9.70079293148613	17.62663109177645
C	3.53704707937108	17.62663109177645	9.53319179999785	17.89014534326435
H	3.44559984664022	16.76411437263904	10.19178488901184	17.75683248257922
C	5.67147951205650	17.89014534326435	10.73348652771932	17.75683248257922
H	5.76247481624411	16.79777254724036	10.6699064446872	16.79777254724036

Energy (PBE0/D3BJ/def2-S(TZ)VP) = -7358.65076302 E_h
Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) = 1.54393203 E_h
Enthalpy (PBE0/D3BJ/def2-S(TZ)VP) = -7357.01417187 E_h
Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP) = -7357.21762931 E_h

Energy (PBE0/D3BJ/def2-T(Q)ZVP) = -7361.55393990 E_h
Table S23. Cartesian coordinates of $[\text{L(Me}_2\text{N)}\text{Ga}]{\text{SbSb[NSiMe}_3\text{Ga(NMe}_2\text{L)]}}(4)$ [Å] for the optimized geometry.

		Energy (PBE0/D3BJ/def2-S(TZ)VP) = -7536.2767127 E_h	Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) = 1.56419145 E_h
		Enthalpy (PBE0/D3BJ/def2-S(TZ)VP) = -7534.61669845 E_h	Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP) = -7534.82585016 E_h
		Energy (PBE0/D3BJ/def2-T(Q)ZVP) = -7539.17537521 E_h	

Element	X-coordinate	Y-coordinate	Z-coordinate
Sb	7.14999785	11.45254977	245778
Sb	8.70623029	9.44238051	152256
Ga	7.81586330	10.95993159	585553
Ga	6.91662033	10.19670487	691733
Si	8.65349022	12.32948001	128059
N	7.56901989	9.62460675	899353
N	6.15604326	9.03576510	494803
N	6.30016274	11.87410412	524276
N	6.35477946	10.48717991	335248
N	8.86744678	10.37779263	630118
C	8.20673385	10.25006738	114927
C	7.47558249	12.41517865	493010
C	7.13018884	11.64165408	213554
C	7.30836763	10.06643382	367522
C	8.46514019	13.64847349	705129
H	9.16486238	14.34098333	227226
H	8.48010328	13.38279307	544325
H	7.50474485	14.16783254	489458
C	6.86095527	9.09697534	488587
H	6.13537906	8.37290363	337593
H	6.42660210	9.63448669	22182
C	7.71600863	8.50955165	04122
C	9.69169972	13.20673677	593916
C	11.02117324	12.96070950	596561
C	12.03347756	13.81064619	082977
H	13.06226950	13.63410289	097344
C	11.75938799	14.86761351	545762
H	12.56479144	15.51781671	801792
H	10.45218426	15.08946386	141345
C	10.23716873	15.91953892	043161
C	9.39910919	14.27780735	939906
Table S24. Cartesian coordinates of [L(Me$_2$N)Ga]SbSb[CH(SiMe$_3$)Ga(NMe$_2$)L] (17) [Å] for the optimized geometry.

Energy (PBE0/D3BJ/def2-S(TZ)VP) = -7520.21610791 \ E_h
Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) = 1.57459498 \ E_h
Element	Enthalpy (PBE0/D3BJ/def2-S(TZ)VP)	Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP)
Sb	-7518.54538584 E_h	-7518.75505712 E_h
Sb	7.03461884703783	11.46526160314096
Sb	5.8663793235097	9.43882944427222
Ga	7.7753129234760	10.9272926750987
Ga	6.9512353860020	10.19827714454319
Si	4.6601491046516	12.34681421202372
N	7.6303579249443	9.06536253223131
N	6.22534267807681	9.0406755150138
Sb	6.3003579249443	11.8727867592112
Ga	6.0966360184222	11.24191936335396
Ga	8.82453838036140	10.34867187125892
N	8.81790955098786	10.2887267015962
Sb	8.2258398468543	12.45051989312475
C	7.50590294752536	11.45835873322900
H	7.1736751214792	11.73171342742575
Sb	7.33907319168461	10.10412405989859
N	4.8909016210851	13.71066637847487
C	9.21186552646636	14.37221378122542
H	8.83918555231021	13.48150419291026
C	7.5355875422002	14.25042881804466
C	6.83992296319234	9.19242156734887
H	5.80078833771685	8.90129638686673
H	6.87255932932277	9.68756265141363
C	7.42089034339456	8.26153990249332
C	9.70810776015329	13.17410429230368
C	11.03301762309891	12.9088942031307
C	12.05988557264794	13.73813678494258
H	13.08495369552901	13.54814472429123
C	11.80592700087029	14.79027637798136
C	12.62258541808256	15.4244746082036
C	10.50479645988084	15.0252793241282
H	10.30665381626119	15.84809179465357
C	9.43821944573539	14.23523598242770
C	11.39090886169381	11.76499230709027
H	10.50624524737521	11.1800989011922
C	11.74981639536976	12.2661808052875
H	12.65154251797428	12.89586827425113
H	11.95533172247018	11.4193366826144
H	10.9429563380340	12.86291827735205
C	12.53438379273128	10.91922421309167
H	12.30076015876464	10.52600081974093
H	12.74084848062829	10.06738231675529
H	13.4671914943607	11.49771452641546
C	8.03496091075963	14.58411853733616
H	7.42168837552315	13.67088285119423
C	7.4197481415003	15.63621425864718
H	8.01118067307347	16.5623460090901
H	7.38373420520277	15.2972459125050

S89
Table S 25. Cartesian coordinates of [L(Me₂N)GaN(Ph)Sb]₂(10) [Å] for the optimized geometry.

Atom	x	y	z
Sb	1.99261000606432	5.6562084037422	6.3273258039876
Ga	1.71357695919004	4.0896309234678	3.4158775152125
N	0.75265332026892	2.77607646792375	2.292324694082163
N	0.84679496040734	5.66296476246967	2.57879320412835
N	3.52608931194215	4.08785091227173	2.9913400980580
N	1.30847803829523	4.02673806304107	5.25813470641101
C	0.35438022890024	3.10879519168155	1.0660861818995
C	0.29621061480472	4.42807561806157	0.58736092454075
H	-0.02497151592742	4.5423447508685	-0.4469256240467
C	0.42379635451976	5.62081807916181	1.32183335376879
C	-0.09531260497200	2.03040310811780	0.12017491915856

Energy (PBE0/D3BJ/def2-S(TZ)VP) = -7644.53075775 \ E_h
Zero-point correction (PBE0/D3BJ/def2-S(TZ)VP) = 1.63905760 \ E_h
Enthalpy (PBE0/D3BJ/def2-S(TZ)VP) = -7642.79257570 \ E_h
Gibbs free energy (PBE0/D3BJ/def2-S(TZ)VP) = -7643.00911482 \ E_h
Energy (PBE0/D3BJ/def2-T(Q)ZVP) = -7648.04917981 \ E_h
H	2.26530140884398	8.94460940462436	0.87807607674919
C	4.26081324616018	7.56232154973015	3.37930115179448
H	5.14924156809974	7.3498333228730	2.76443969987199
H	4.15108382213304	6.75965377326666	4.12134293179810
H	4.44780254846692	8.49866630415921	3.92784941775341
C	-1.5202629299157	5.98726244923116	4.1697686603118
H	-1.09822882222646	5.05619080566284	3.76585342819368
C	-2.64987707801179	6.4253616235865	3.23566323661398
H	-2.29761370700617	6.5506029462695	2.20152521972858
H	-3.07996264285120	7.38583454355000	3.56251267368539
H	-3.45857051236598	5.67807270799231	3.2244088986757
C	-2.04910074402419	5.67618753681035	5.56561204058427
H	-2.57631407733658	6.53324729284584	6.01295799274897
H	-1.22944386287979	5.38725130552328	6.23975868493274
H	-2.76536026655686	4.84193465229257	5.52313508844986
C	3.99791430011039	4.22247107656972	1.63902412953368
H	4.59274249746570	3.35884822746050	1.30330919851195
H	4.61396390297844	5.12322474753149	1.49096766840606
H	3.13128634943626	4.30771821574583	0.94012674450225
C	4.59042723734211	3.9888966588004	3.9465223810987
H	5.21709795505854	3.08233495486612	3.8017044126309
H	4.19843563860770	3.95629643929147	4.97495659753557
H	5.28575080813874	4.85229778364115	3.8948529917736
C	1.25998556447698	2.80002063412151	5.93507084250550
C	2.17697222644057	1.76369104777646	5.67684325654225
H	2.94710091671952	1.92092480535970	4.91975940670666
C	2.11173203503837	0.5505725266662	6.35902711037678
H	2.82948919317424	-0.2367681969418	6.11610804533031
C	1.14461599615789	0.34184747125141	7.33901478060891
H	1.09395847441504	-0.60855067642215	7.87512155966751
C	0.23515263822031	1.36323349274625	7.62035791757047
H	-0.53651912083599	1.2158309758212	8.38038094589343
C	0.28894484614870	2.56978349120481	6.93098832568750
H	-0.43094333303531	3.36201830522162	7.14623625322221
Sb	2.85949734636203	4.23080388228786	8.39687806539972
Ga	3.13731282932347	5.79798016631480	11.30822663449453
N	4.09790297153837	7.1117038321576	12.43182490193951
N	4.00368105469163	4.22475631711431	12.14601412079126
N	1.32464768450778	5.79973079233703	11.73211967558881
N	3.54323569028481	5.86044950108708	9.46613473823497
C	4.49576015758660	6.77922539993292	13.65829616522689
C	4.55365851975161	5.45934020101110	14.13714517484190
H	4.87436365106110	5.34597803399761	15.1715294306495
C	4.42620592190060	4.26714748443925	13.40311145678014
C	4.944945662849956	7.85783524408082	14.60419732862893
H	5.49040549093849	7.43179637061547	15.45427100820993
H	5.58075996208441	8.5947247932401	14.09527718249461
H	4.07240377534682	8.40462168398868	14.9907182052984
C	4.79203574023179	2.99147157124397	14.10879799824694
H	3.88011552372920	2.53600670469714	14.52639380777913
References
1 G. M. Sheldrick, Acta Cryst., 1990, A46, 467.
2 a) G. M. Sheldrick, SHELXL-2017, Program for the Refinement of Crystal Structures University of Göttingen, Göttingen (Germany) 2017. (see also: G. M. Sheldrick (2015) “Crystal structure refinement with SHELXL”, Acta Cryst., C71, 3-8); b) shelXle, A Qt GUI for SHELXL, C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Cryst., 2011, 44, 1281.
3 PLATON/SQUEEZE, P. van der Sluis and A. L. Spek, Acta Cryst., 1990, A46, 194.
4 a) F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73; b) F. Neese, WIREs Comput. Mol. Sci., 2018, 8, 1; c) F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys., 2020, 152, 224108.
5 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158.
6 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
7 a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104; b) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456;
8 B. Metz, H. Stoll and M. Dolg, J. Chem. Phys., 2000, 113, 2563.
9 a) F. Neese, F. Wennmohs, A. Hansen and U. Becker, Chem. Phys., 2009, 356, 98; b) R. Izsák and F. Neese, J. Chem. Phys., 2011, 135, 144105;
10 F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057.
11 S. Grimme, Chem.Eur. J., 2012, 18, 9955.
12 a) M. Garcia-Ratés and F. Neese, J. Comput. Chem., 2020, 41, 922; b) M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669; c) V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995;
13 NBO 7.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiologlou, C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI (2018).
14 a) C. Kalaiarasi, M. S. Pavan and P. Kumaradhas, Acta. Cryst. B, 2016, 72, 775; b) P. S. V. Kumar, V. Raghaven-dra and V. Subramanian, J. Chem. Sci., 2016, 128, 1527; c) R. F. W. Bader, Chem. Rev., 1991, 91, 893;
15 a) A. D. Becke and K. E. Edgecombe, J. Chem. Phys., 1990, 92, 5397; b) B. Silvi and A. Savin, Nature, 1994, 371, 683; c) T. Lu and F. Chen, Acta Phys. -Chim. Sin., 2011, 27, 2786;
16 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580.
17 W. Zou, Z. Cai, J. Wang and K. Xin, J. Comput. Chem., 2018, 39, 1697.
18 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33.
19 H. M. Weinert, C. Wölper, J. Haak, G. E. Cutsail and S. Schulz, Chem. Sci., 2021, 12, 14024.