Public policies for Poverty Alleviation: A Case Study in Ivory Coast

KAMALAN, A. Eugene¹, PRAO, Y. Seraphin² & AKA, B. François³

Abstract

This paper aims to implement Basic Income Grant (BIG) as a development policy in poverty alleviation. We simulate an amount of FCFA12,000 (USD22.5) given monthly per individual to the whole population of Ivory Coast and we analyze the impacts of this policy in the terms of poverty alleviation on individuals and groups. The simulations are performed using the Ivory Coast's 2015 household survey data composed of 12,900 households. The results show that after allocating a BIG to the whole population in Ivory Coast, poverty drops from 53.1% to 14.7%. Poverty reduces more for female (-39%) than male (-38%), although it remain higher for female (15.15%) than male (14.33%); and it reduces more for population over 40 years old (-40%) than younger people (-31%). This allocation could be very beneficial in reducing female and youth poverty in Ivory Coast.

Keywords: Policy Development; Basic Income Grant; Poverty; Welfare;
JEL Classification: H55; I32; I38; D31; C68

Introduction

A salient fact in African countries is the mismatch between the growing GDP and the stagnant well-being, growing poverty and inequality and declining welfare, particularly in a country as Ivory Coast. When poverty and inequalities are growing in a country, politics are questioned to suggesting a solution. This situation requires the development of innovative public policies. One of the most innovative public policy mechanisms proposed for poverty alleviation the last decade is the Basic Income Grant (BIG).

The Basic Income (BI) is defined by Philippe van Parijs as “an income paid by a political community to all its members on an individual basis, without means test or work requirement” (Ackerman, Alstott, Van Parij, 2000). It is also called a “Citizen’s Income”. In contrast to conventional social assistance subject to means tests, the BI is paid to everyone irrespective of income. This however does not mean the introduction of a BI would make the rich become richer, because the BI must be funded somehow, and the rich would contribute more (relative to their numbers, not necessarily to their incomes) to its funding than the relatively poor, not only if the funding were through a progressive income tax but also under a flat tax or even a regressive indirect tax. All citizens are given a monthly stipend sufficiently high to provide them with a standard of living above the poverty line. This monthly income is universal and it is given automatically to all citizens regardless of their individual economic circumstances. Receiving the basic income does not depend upon performing any labour services or satisfying other conditions. In this way, basic income is like publicly-financed universal insurance. The unconditional and universal basic income takes the same stance about basic needs: as a matter of basic rights, no one should live in poverty.

¹Associate Professor, Department of Economics, Alassane Ouattara University, Bouaké, Ivory Coast, 28, BP 1694 Abidjan 28, Ivory Coast, Tel 0022508727237; eugenekamalan@gmail.com
²Associate Professor, Department of Economics, Alassane Ouattara University,katryhlinadja@gmail.com
³Professor, Department of Economics, Alassane Ouattara University, akbdia@yahoo.fr
In the case of Ivory Coast, the government has set up an experiment basic income granted to selected households identified as the poorest of the poor, located in selected regions of the country. This policy is made by the Ministry of Employment and Social Protection and called: Social Netting Project as an implementation of the National Strategy for Social Protection (SNPS).

The project is implemented in rural areas, because of the high poverty rate (58.6% against 35.9% in urban areas), specifically in the Centre, the North and the West parts of the country, according to the standard of living of households in 2008 and 2015. The project is to grant, free of charge, until 2020, a quarterly allowance of CFAF36,000 per trimester (i.e. CFAF12,000 per month) to 35,000 poor households, identified as the poorest of the poor. In addition to these cash transfers, the project provides for the selected households, accompanying measures to facilitate their social inclusion with awareness raising measures that enhance their quality of life and their empowerment by promoting productive inclusion.

In the theoretical views, one of the interesting issues raised in the researches of basic income concerns the distinction between distribution and redistribution. The expression: redistribution suggests that there is something called “distribution” which exists prior to political interventions and is then transformed by deliberate political action. This corresponds to the conventional rhetoric of economists and politicians: the income distribution generated by markets is the result of voluntary exchanges by freely acting individuals; this spontaneous distribution is then altered by acts of states which coercively take resources away from some people through taxes and transfer them to others. Redistribution reflects coercion; market-generated distribution reflects voluntary activity. This easily slides into the libertarian view that all redistribution is a violation of fundamental freedoms: taxation is theft; people have an absolute moral claim that whatever it is they can obtain from “voluntary exchange” in markets.

The real issue of the basic income is not about “Rethinking Redistribution” but it is a problem of “Redesigning Distribution.” Income and wealth distributions are the result of the simultaneous, joint operation of voluntary choices of interacting individuals and authoritative rule-making and enforcement by states. The problem is to figure what combination of voluntary choice and authoritative allocation generates the most desirable outcomes, both in terms of efficiency considerations and moral concerns.

Historically, the issue of the state’s positive role in shaping income distribution was at the centre of political debate in Europe and the United State in the 1970s. After the 2000’s and the end of stabilization programs in developing countries in Sub Saharan Africa, governments and international institutions such as World Bank and International Monetary Fund have been engaged in the belief that, it is important to engage in rigorous analysis of alternative visions of institutional change (Ackerman, Alstott, Van Parij, 2000).

In the following, section 2 of the paper presents the methodology and the data used in this study while section 3 presents the statistical results and policy experiments; finally section 4 gives a brief conclusion.

Methodology and Data

We present here the procedure to implement simulations on the micro impacts of the level of BIG, and the households’ survey data used in this study. In a first step we use expenditure vectors constructed from the household survey data (ENV2015 survey). We compute the income distribution indexes and then simulate the impact of the BIG on the income expenditure vector and then derive the distributional indexes which are compared to the base year.

Income distribution indexes

Prior to the study of poverty and inequality is the definition of welfare, or standard of living. The living standard for an individual is measured as his level of utility, obtained by maximization of his utility function for a given income and a price system. Given the difficulties for income measurement, surveys in developing countries rely on consumption criteria and expenditure per capita is therefore retained as welfare indicator. In Ivory Coast the use of per capita consumption allows identifying several poverty lines.

4 The Social Netting Project is made with the technical and financial support of the World Bank with a funding of 50 million USD.
The permanent household survey in 1985 made by the National Institute of Statistics and the World Bank has estimated the poverty line at CFAF75000 and the poverty index (the population who live below the poverty line) was about 10%. The DSA\(^5\) survey in 1993 has estimated the poverty line at CFAF101,340 and 32.3% of the population lived below this line. In 1995, poverty line was CFAF144,800 and 36.8% of the population was below this relative poverty line. In 1998, poverty line was CFAF162,800 and poverty index was 33.6%. In 2008, poverty line is CFAF241,145 and poverty index was 48.9%. Recently in 2015, poverty line is CFAF269,075 and 46.3% of the population was below this poverty line.

This approach arbitrarily determines the poverty line. A concept using the basic needs has been proposed by Sen (1976, 1981, 1985, 1987), but the utilitarian view is still the main basic approach in welfare analysis.

Measuring poverty

The determination of poverty line is controversial when studying income distribution, because of its important political implications, (Sen1976, 1981, Ravallion,1996). Two approaches are frequently used to determine the poverty line. The first uses the notion of living standard Equivalent Distributed Equally (EDE), while the second combines the living standard and poverty line in a poverty gap.

In a previous study (Aka, 2006), the poverty line was constructed for Ivory Coast based on the Constant Basic Needs (CBN) approach by Ravallion and Bidani (1994).

Using the ENV98 survey, he chooses a basket of 20 goods from the survey among the 37 items available. With the calories content of these goods (daily needs fixed at 2,400 calories) and their respective prices, he evaluated the food poverty line in Ivory Coast at CFAF292,030.04 per year (US$1.23 per day). Next, taking into account regional price index (RPI) for the five strata of the ENV98 survey, this poverty line has been evaluated to CFAF288,816.58 per year (US$1.21 per day). As he used weights in the survey to compute the poverty line, the poverty line was thus measured per adult equivalent. In this study we use the poverty line calculated by National Institute of Statistics (NIS) which is evaluated at CFAF269,075 per year.

When the poverty line has been determined, several indexes help to characterize poverty FGT index, Foster, Greer, and Thorbecke (1984), Watts’s index, Watts (1968), and Clark, Hemming and Ulph (CHU) index ; Clark, Hemming, and Ulph(1981). The FGT indexes in this study, as it is a more general index.

Given \(y_i \), the income for individuals of a population, the FGT index is:

\[
P(z; \alpha) = \int_{0}^{1} g(p, z) \, dp
\]

Where \(\alpha \geq 0 \) (Ravallion, 1996).

When \(\alpha = 0 \), the FGT index indicates the proportion \(P_0 \) of poor person whose expenditure level is under the poverty line, and it measures the incidence of poverty. When \(\alpha = 1 \), the index indicates the poverty gap index also known as depth or intensity of poverty i.e. the mean of the gap between poor people's living standard and the poverty line. When \(\alpha = 2 \) the index is the poverty severity index, which is sensitive to the distribution of living standard among the poor.

The FGT indexes are decomposable, and this help looking at the contributions of different groups of households to global poverty. The contribution of each socio economic group to global poverty is given by:

\[
C_j = K_j P_j / P_a
\]

Where \(P_j \) is the poverty index for group \(j \), \(K_j \) the proportion of the population in group \(j \). For inequality issues, the Atkinson and the Generalized Entropy inequality index are also decomposable in within group and between group inequalities(Atkinson, 1987). The knowledge of groups’ contributions in total poverty index could be useful for formulating more precise economic policy towards most vulnerable groups.

Estimating areas income distribution

To better capture the impact of the simulations on areas, we will classify regions according to the strata of the survey by identifying the two self-governing districts and according to region of the survey.

A classification based on the new thirty one regions in the country is also possible. These classifications will help to study poverty impacts at a much disaggregated level.

--

\(^5\) DSA (Priority Survey based on the Social Dimensions of Structural Adjustment)
The data

We use the data from the ENV2015 household survey conducted in 2015 for Ivory Coast which includes 12,900 households and 78,600 individuals organized in two (2) strata (self-governing district of Abidjan; self-governing district of Yamoussoukro) and thirty one regions.

Statistical Results

We keep the amount of the BIG equal to the allocation in test by the Ivorian government in selected regions and targeted individuals, i.e. CFAF12,000 per month (CFAF144,000 per year). Taking a total population of 21 millions in Ivory Coast in 2016, giving this minimum to all population will lead to CFAF3,024 billions representing 15.9% of year 2016 GDP, which is possible. For example for the France economy the computed BIG in 2014 represents 15% of GDP, (Bresson, 2014).

National poverty index dropping with Basic Income Grant in Ivory Coast

The results in Table 1 and Graph 1 show that after allocating a BIG to the whole population, global poverty drop from 53.1% to 14.7%.

Estimate	Base year	After BIG Simulation	Variation %
p0	.5310	.1472	-.38
p1	.2070	.0207	-.19
p2	.1074	.0043	-.10

Source: Authors’ calculations

Graph 1: Density curve of poverty alleviation in Ivory Coast

Poverty alleviation within regions

Table 2 shows that in the self-governing district of Abidjan, poverty is reduced by 22% after simulation. This reduction is much more at the level of all regions (44%) and in the self-governing district of Yamoussokro (40%) from the reference situation.

Note that only the pro-poor spending in the Ivorian budget represents 9.1% of the 2016 GDP.

\(P_0 = \) proportion of poor person whose expenditure level is under the poverty line and it measures the incidence of poverty.

\(P_1 = \) poverty gap, depth or intensity of poverty i.e. the mean of the gap between poor people’s standard living and the poverty line.

\(P_2 = \) the poverty severity index, which is sensitive to the distribution of standard living among the poor.
At a much more disaggregated level of the regions, the results in Table 3 indicate that poverty can be reduced by half. This is the case in regions as Bere (-53%), Bounkani (-54%), Folon (-51%), Iffou (-58%), Moronou (-52%), N’zi (-52%) and Poro (-50%).

Table 2: Poverty alleviation in the self-governing districts and all regions

Strata	Base year	After Simulation	BIG	Variation
p0	self-governing district of Abidjan	.2496	.0317	22
	self-governing district of Yamoussoukro	.4947	.0954	40
	All (31) regions	.6343	.1962	44
p1	self-governing district of Abidjan	.0693	.0033	7
	self-governing district of Yamoussoukro	.1688	.0101	16
	All (31) regions	.2621	.0281	23
p2	self-governing district of Abidjan	.0290	.0006	3
	self-governing district of Yamoussoukro	.0774	.0017	8
	All (31) regions	.1400	.0060	13

Source: Authors’ calculations

Table 3: Poverty alleviation within the thirty one regions of Ivory Coast

Regions	Base year	After Simulation	BIG	Variation
agnécby-tiassa	.5881	.1769	-41	
bafing	.7530	.3158	-44	
bagou	.8040	.4295	-37	
belier	.6949	.2012	-49	
bere	.6915	.1601	-53	
bounkani	.7559	.2138	-54	
cavally	.5300	.1821	-35	
folon	.7850	.2756	-51	
gbeke	.5969	.1585	-44	
gbokle	.5912	.1842	-41	
goh	.5886	.2620	-33	
gontougo	.5916	.1496	-44	
grands-pons	.5191	.2284	-29	
guemon	.5387	.1334	-41	
hambol	.6095	.1433	-47	
haut-sassandra	.6028	.1345	-47	
iffou	.7060	.1301	-58	
indenie-djuablin	.5340	.1361	-40	
kabadougou	.7785	.3480	-43	
la me	.6023	.2143	-39	
loh-djiboua	.5826	.1352	-45	
marahoue	.5806	.1752	-42	
moronou	.6384	.1179	-52	
nawa	.4937	.0732	-42	
n’zi	.6982	.1772	-52	
poro	.6429	.1453	-50	
san-pedro	.4578	.0987	-36	
sud-comoe	.5135	.0779	-44	
tchologo	.7556	.3449	-41	
tonkpi	.7309	.3322	-40	
worodougou	.7072	.2270	-48	
Mean All region	.6343	.1962	-44	

Source: Authors’ calculations
Gender approach of poverty alleviation after BIG simulation

Turning to the gender issue, the results in Table 4 indicate that after BIG simulation, poverty reduces more for female (-39%) than male (-38%), although it remains slightly higher for female (15.15%) than male (14.33%).

Table 4: Poverty alleviation per gender with BIG

Gender	Base year	After BIG Simulation	Variation %
p0			
male	.5216	.1433	-38
female	.5412	.1515	-39
p1			
male	.2027	.0205	-18
female	.2116	.0210	-19
p2			
male	.1052	.0044	-10
female	.1097	.0044	-11

Source: Authors’ calculations

Old people versus youth approach of poverty alleviation after BIG simulation

Analysing poverty situation by age in Table 5, the results indicate that after BIG simulation, poverty reduces more for population over 40 years old (-40%) than younger people (-31%), but poverty remains higher for population over 40 years old (16.75%) than younger people (8.32%). This allocation could be very beneficial in reducing youth poverty in Ivory Coast.

Table 5: Poverty alleviation per age with BIG

age	Base year	After BIG Simulation	Variation %
p0			
<25	.3964	.0832	-31
25-30	.4600	.1160	-34
30-40	.5323	.1423	-39
≥ 40	.5671	.1675	-40
p1			
<25	.1345	.0088	-13
25-30	.1713	.0152	-16
30-40	.2072	.0204	-19
≥ 40	.2262	.0240	-20
p2			
<25	.0634	.0016	-6
25-30	.0852	.0032	-8
30-40	.1070	.0043	-10
≥ 40	.1195	.0051	-11

Source: Authors’ calculations

We can notice with Table 6 that young female (<25 years) population poverty (-37%) reduces more that young male (<25 years) people (-28%) but the poverty level for youth remain quite similar (8.6% for female and 8.1% for male).

This situation is symmetric for people over 40 years old. Male population over 40 years old poverty reduces more (-40%) than female over 40 years old poverty (-39%) but their poverty levels remain quite similar (16.62% and 16.87% respectively) after BIG.
Table 6: Poverty alleviation per gender and age with BIG

Gender	Age	Base year	After BIG Simulation	Variation %
p0				
male	<25	.3621	.0813	-28%
male	25-30	.4393	.1166	-32%
male	30-40	.5256	.1371	-39%
male	≥ 40	.5710	.1662	-40%
female	<25	.4550	.0864	-37%
female	25-30	.4859	.1151	-37%
female	30-40	.5392	.1476	-39%
female	≥ 40	.5632	.1687	-39%
p1				
male	<25	.1235	.0092	-11%
male	25-30	.1658	.0158	-15%
male	30-40	.2038	.0199	-18%
male	≥ 40	.2268	.0243	-20%
female	<25	.1532	.0082	-14%
female	25-30	.1782	.0144	-16%
female	30-40	.2107	.0209	-19%
female	≥ 40	.2255	.0238	-20%
p2				
male	<25	.0594	.0018	-6%
male	25-30	.0838	.0033	-8%
male	30-40	.1050	.0042	-10%
male	≥ 40	.1198	.0052	-11%
female	<25	.0703	.0014	-7%
female	25-30	.0869	.0031	-8%
female	30-40	.1091	.0043	-10%
female	≥ 40	.1192	.0050	-11%

Source: Authors’ calculations

Conclusion

The goal of this paper was to propose the universal basic income grant (BIG) as an innovative development policy in poverty alleviation in Ivory Coast. We have simulated the amount of CFAF12000 (USD21.5) per month unconditionally given per individual to the whole population of the country. We analyzed the impacts of this policy on individuals and groups. The simulations are performed using the Ivory Coast’s 2015 household survey data composed of 12,900 households and 78,600 individuals. The results suggest that empowering the youth and women through the unconditional basic income grant drastically reduces regional, youth end gender-based poverty. These results suggest that universal basic income grant can be an innovative and incentive mechanism to promote social and financial inclusion in Ivory Coast. Future studies should address the impact of that mechanism on household’s behaviour in Ivory Coast in terms of consumption, saving and investment.

References

Ackerman, B., Alstott, A. and Van Parij, P. (2000). Basic Income: A Simple and Powerful Idea for the 21st Century, background paper for Basic Income European Network VIIIth International Congress Berlin, 6-7 October 2000.
Aka, B.F. (2006). “Poverty, Inequality and Welfare Effects of Trade Liberalisation: A CGE model for Ivory Coast”. *African Economic Research Consortium Nairobi AERC Research Paper No. 16*

Atkinson, A.B. (1987). “On the measurement of poverty”, *Econometrica* 55(4):749-764.

Bresson, Y. (2014). “Le Revenu d’Existence. L’urgence de son instauration” Lettre de liaison 80 – AIRE Printemps 2014.

Clark, S., Hemming, R., and Ulph, D. (1981). “On indices for measurement of poverty”. *Economic Journal* 91(362):515-526.

Foster, J., Greer, J., and Thorbecke, E. (1984). “A class of decomposable poverty measures”. *Econometrica, vol. 52(3):761-766*

Ravallion, M. (1996). “Comparaison de la pauvreté”. LSMS document de travail No. 122. Banquemondiale.

Ravallion, M., and Bidani, B. (1994). “How robust is a poverty profile?” *World Bank Economic Review* 8(1):75-102.

Sen, A. (1976). “Poverty: An ordinal approach to measurement”. *Econometrica* 44(2):219-231.

Sen, A. (1981). “*Poverty and Famines: An Essay on Entitlement and Deprivation*”. Oxford: Clarendon Press.

Sen, A. (1985). “A sociological approach to the measurement of poverty: Reply to Professor Townsend”. *Oxford Economic Paper, issue 37*:669-676.

Sen, A. (1987). “The Standard of Living”. Cambridge: Cambridge University Press.

Watts, H.W. (1968). “*An economic definition of poverty*”. In D.P. Moynihan ed. On Understanding Poverty. New York: Basic Books.