Summations by parton showers of large logarithms in electron-positron annihilation

Zoltán Nagy
DESY, Notkestrasse 85, 22607 Hamburg, Germany

Davison E. Soper
Institute for Fundamental Science, University of Oregon, Eugene, OR 97403-5203, USA

(Dated: 13 November 2020)

In a companion publication, we have explored how to examine the summation of large logarithms in a parton shower. Here, we apply this general program to the thrust distribution in electron-positron annihilation, using several shower algorithms. The method is to work with an appropriate integral transform of the distribution for the observable of interest. Then, we reformulate the parton shower calculation so as to obtain the transformed distribution as an exponential for which we can compute the terms in the perturbative expansion of the exponent.

Keywords: perturbative QCD, parton shower

I. INTRODUCTION

A parton shower event generator can provide a QCD based approximation for a cross section \(\hat{\sigma}_J(v) \) for an observable \(J \) to take a value \(v \) in hadron-hadron, lepton-hadron, or electron-positron collisions. For example \(J \) could denote the transverse momentum distribution in the Drell-Yan process and \(v \) could be \(v = k_T \). Suppose that the observable \(J \) is infrared safe with a scale \(Q_J^2(v) \) substantially greater than \(1 \) GeV\(^2\). Then we can, at least in principle, omit a model for hadronization in the event generator. This leaves us with just an event generator based on a parton shower, which uses parton splitting functions based on the soft and collinear singularities of QCD. Running the parton shower event generator gives us an approximation \(\hat{\sigma}_J(v;\text{shower}) \) for the cross section \(\hat{\sigma}_J(v) \).

The QCD perturbative expansion for \(\hat{\sigma}_J(v) \) will contain logarithms, \(L = \log(\mu_0^2/Q_J^2(v)) \), where \(\mu_0^2 \) is the scale of the hardest interaction in the event. Typically one finds perturbative contributions to \(\hat{\sigma}_J(v) \) proportional to \(\alpha_s^n(\mu_0^2)L^{2n} \). If \(\mu_0^2 \) is close to \(Q_J^2(v) \), then we do not need the parton shower at all. Rather, we can use just fixed order perturbation theory. However, if \(1 \) GeV\(^2\) \(\ll Q_J^2(v) \ll \mu_0^2 \), and \(L^2 \sim 1/\alpha_s(\mu_0^2) \), then fixed order perturbation theory is not adequate. One must try to sum the contributions at each order of perturbation theory that have the most powers of \(L \). Since the splitting functions in a parton shower reflect the soft and collinear singularities of QCD and since it is these singularities that lead to the appearance of the logarithms \(L \), we may hope that a parton shower provides an adequate approximation to the cross section \(\hat{\sigma}_J(v) \).

We caution the reader that we do not expect that a given parton shower algorithm correctly sums the logarithms for all infrared safe observables that generate large logarithms in perturbation theory. Thus we would not speak of a next-to-leading-log parton shower, without specifying just what logs are correctly summed.

For some observables \(J \) one can derive an analytical approximation, \(\hat{\sigma}_J(v;\text{analyt}) \), to \(\hat{\sigma}_J(v) \) that sums the large logarithms in an appropriate sense. In some cases \([1, 2]\), it is also possible to find an analytical formula that well approximates the shower result \(\hat{\sigma}_J(v;\text{shower}) \). Then one can tell whether \(\hat{\sigma}_J(v;\text{shower}) \) agrees with \(\hat{\sigma}_J(v;\text{analyt}) \) to the accuracy with which \(\hat{\sigma}_J(v;\text{analyt}) \) sums the large logarithms. However, this is usually difficult.

Normally, the approximation \(\hat{\sigma}_J(v;\text{shower}) \) obtained with a parton shower is limited to a numerical result obtained by averaging over many generated events. In the limit of very large hard scattering scales \(\mu_h^2 \), \(\hat{\sigma}_J(v;\text{shower}) \) should match \(\hat{\sigma}_J(v;\text{analyt}) \). However, for \(\mu_h^2 \) in the kinematic range of experiments, \(\hat{\sigma}_J(v;\text{shower}) \) contains effects that are numerically important but are not included in \(\hat{\sigma}_J(v;\text{analyt}) \). Thus it is difficult to tell whether \(\hat{\sigma}_J(v;\text{shower}) \) agrees with \(\hat{\sigma}_J(v;\text{analyt}) \).

One approach to comparing \(\hat{\sigma}_J(v;\text{shower}) \) to \(\hat{\sigma}_J(v;\text{analytic}) \) is to directly calculate \(\hat{\sigma}_J(v;\text{shower}) \) for a sequence of very large hard scattering scales \(\mu_h^2 \) that are far from the range of experiments. This approach can work \([3]\), and in fact we use it to a limited extent in this paper. However, it is difficult to maintain the required numerical accuracy at very large values of \(\mu_h^2 \) in a practical parton shower event generator.

In an analytical approach, one typically starts by taking an appropriate integral transform of \(\hat{\sigma}_J(v) \). Then one calculates a cross section \(\sigma_J(r) \) depending on a variable or variables \(r \). The cross section \(\sigma_J(r) \) contains logarithms \(L(r) \) that are large when \(r \) approaches a limit. For instance, one might take the Fourier transform of the \(k_T \) distribution in the Drell-Yan process. Then \(r \) is the transverse position, usually called \(b \). The logarithm is \(L = \log(b^2/\mu_0^2) \), which is large when \(b^2 \to \infty \).

The aim of this paper is to redesign the calculation of the parton shower cross section so that it produces the
same result for $\sigma_J(\mathbf{r})$ as before but so that it produces a calculation of $\sigma_J(\mathbf{r})$ and not a cross section for other observables. The redesigned calculation gives $\sigma_J(\mathbf{r})$ as an exponential of a quantity that can be expanded in powers of the shower splitting operator. The leading order term in the exponent is simple and is the candidate for the summation of large logarithms produced by the shower. If the higher order contributions to the exponent are suitably small, then they do not interfere with the summation represented by the leading order terms.

We have presented a general formulation of this program in Ref. [4]. The general formulation applies to hadron-hadron collisions, lepton-hadron collisions, and electron-positron collisions and to a general infrared-safe observable J. In this paper, we apply the general formalism to a simple example. We examine the thrust distribution in electron-positron annihilation. In this case, the original variable r is $r = 1 - T$, where T is the thrust. We take the Laplace transform of the r distribution, so that the transformed variable r is the Laplace transform variable ν.

There is much to be learned from this example. In particular, we learn that the shower result for $\sigma_J(\nu)$ depends on some details of the parton shower algorithm that one might have thought are not important.

II. THE PARTON SHOWER FRAMEWORK

A parton shower can be described using operators on a vector space, the “statistical space,” that describes the momenta, flavors, colors, and spins for all of the partons created in a shower as the shower develops. We use this description in the parton shower event generator DEDUCTOR [5–12]. The general theory includes parton spins but DEDUCTOR simply averages over spins, so our explanation here will leave out parton spins. With m final state partons in electron-positron annihilation, the partons carry labels $1, 2, \ldots, m$. The partons have momenta $\{p_m\} = \{p_1, \ldots, p_m\}$ and flavors $\{f_m\}$. We take the partons to be massless: $p_i^2 = 0$. For color, there are ket color basis states $|c\rangle_m$ and bra color basis states $\langle c'|m\rangle$. We use the trace basis, as described in Ref. [5]. Color appears in the statistical space as the density matrix, with basis elements $|c\rangle_m\langle c'|m\rangle$. Then the m-parton basis states for the statistical space are denoted by $|p, f, c, c'\rangle_m$.

DEDUCTOR uses specific choices with respect to shower kinematics, the shower ordering variable, the parton splitting functions, and the treatment of color. In this section, we outline some of these choices that play a role in the analysis of this paper.

An exact color treatment is used in the general formalism. However the code of DEDUCTOR mostly uses only an approximation, the leading-color-plus (LC+) approximation [8]. The LC+ approximation consists of simply dropping some terms in the splitting functions. In this paper, we generally use full color but sometimes use the LC+ approximation.

In DEDUCTOR, the default is to order splittings according to decreasing values of a hardness parameter Λ^2. The hardness parameter is based on virtuality. For massless final state partons in electron-positron collisions, the definition is

$$\Lambda^2 = \frac{(\hat{p}_1 + \hat{p}_{m+1})^2}{2p_1 \cdot Q} Q^2. \quad (1)$$

Here the mother parton in a final state splitting has momentum p_1 and the daughters have momenta \hat{p}_1 and \hat{p}_{m+1}. Here Q is the total momentum Q of all of the final state partons, which remains the same throughout the shower. It proves convenient to use a dimensionless virtuality variable $y = \Lambda^2/Q^2$:

$$y = \frac{(\hat{p}_1 + \hat{p}_{m+1})^2}{2p_1 \cdot Q}. \quad (2)$$

Thus y decreases from one shower splitting to the next.

One could use a hardness parameter other than Λ to order the shower. We will consider also a shower ordered by the transverse momentum [13] in a splitting,

$$k_T^2 = z(1 - z)(\hat{p}_1 + \hat{p}_{m+1})^2 = z(1 - z)y Q^2/a_l, \quad (3)$$

where z is the momentum fraction in the splitting and

$$a_l = \frac{Q^2}{2p_1 \cdot Q}. \quad (4)$$

We denote the hardness scale of a splitting by μ^2. When we use the default ordering variable Λ for the shower, then $\mu^2 = \Lambda^2$. If we use k_T ordering, then $\mu^2 = k_T^2$.

To measure an infrared-safe observable O_J in electron-positron annihilation, we can use the notation

$$\sigma_J = \langle 1|O_J U(\mu^2, Q^2)|\rho_h\rangle. \quad (5)$$

Here $|\rho_h\rangle$ is the starting parton state for the hard scattering process. If we were to evaluate $|\rho_h\rangle$ beyond leading order, then it would contain appropriate subtractions to remove infrared singularities. In this paper, we evaluate $|\rho_h\rangle$ at lowest order so that it is simply a $q\bar{q}$ state. We associate a scale $\mu^2_h = Q^2$ with the hard scattering, where Q is the $q\bar{q}$ momentum. The operator $U(\mu^2, Q^2)$ expresses the evolution of the system from the scale Q^2 to a scale μ^2 of order 1 GeV2, at which the shower is turned off. After this evolution, we have a statistical state that can be expanded in the basis states $|p, f, c, c'\rangle_m$. This expansion is realized as an integral, which takes the form of a Monte Carlo integration that is obtained by generating many Monte Carlo events. We then apply an operator O_J that embodies the desired measurement. We still have a

1 In hadron-hadron collisions, Q in Eq. (1) is replaced by the momentum Q_0 of the final state partons at the start of the shower.
sum and integral of basis states. We take the product with the statistical bra state (1), which is defined by

\[\langle 1 \vert p, f, c, c' \rangle_m = \langle \{ c' \}_m \vert c \rangle_m. \] \tag{6} \]

This leaves us with the numerical result for \(\sigma_f \).

The shower operator \(\mathcal{U} \) takes the form

\[\mathcal{U}(\mu_2^2, \mu_1^2) = \mathbb{T} \exp \left(\int_{\mu_2^2}^{\mu_1^2} \frac{d^2 \mu}{\mu^2} \mathcal{S}(\mu^2) \right). \] \tag{7} \]

There is an instruction \(\mathbb{T} \) that indicates that if we expand the exponential, the operators \(\mathcal{S}(\mu^2) \) with the smallest values of \(\mu^2 \) belong on the left. This is simply a compact way of saying that \(\mathcal{U}(\mu_2^2, \mu_1^2) \) obeys the differential equation

\[\mu_1^2 \frac{\partial}{\partial \mu_1^2} \mathcal{U}(\mu_2^2, \mu_1^2) = \mathcal{U}(\mu_2^2, \mu_1^2) \mathcal{S}(\mu_1^2). \] \tag{8} \]

In general, the generator \(\mathcal{S}(\mu^2) \) is a sum of terms with approximations to \(n_r \) real emissions and \(n_v \) virtual exchanges,

\[\mathcal{S}(\mu^2) = \sum_{n_r, n_v=0}^{\infty} \mathcal{S}^{[n_r, n_v]}(\mu^2). \] \tag{9} \]

In existing parton shower event generators like DEDUCTOR, only the terms with \(n_r + n_v = 1 \) are implemented. This is also the case for other parton shower algorithms that we consider here. Thus in this paper we assume

\[\mathcal{S}(\mu^2) = \mathcal{S}^{[1,0]}(\mu^2) + \mathcal{S}^{[0,1]}(\mu^2). \] \tag{10} \]

The operator \(\mathcal{S}^{[1,0]}(\mu^2) \) creates a splitting, changing an \(m \) parton state to an \(m + 1 \) parton state. The operator \(\mathcal{S}^{[0,1]}(\mu^2) \) leaves the number of partons and their momenta and flavors unchanged, although in a full color treatment it modifies the parton color state. The operator \(\mathcal{S}^{[0,1]}(\mu^2) \) is related to the inclusive sum over splitting variables in \(\mathcal{S}^{[1,0]}(\mu^2) \) by \(\langle 1 \vert \mathcal{S}^{[0,1]}(\mu^2) \rangle = -\langle 1 \vert \mathcal{S}^{[1,0]}(\mu^2) \rangle \), so that

\[\langle 1 \vert \mathcal{S}(\mu^2) \rangle = 0. \] \tag{11} \]

If we had contributions to the shower generator with \(n_r + n_v > 1 \), we would still have \(\langle 1 \vert \mathcal{S}(\mu^2) \rangle = 0 \). \[14\]

The operator \(\mathcal{S}^{[1,0]}(yQ^2) \) in DEDUCTOR \[8, 13\] is not simple. However, in the cases for which we need an explicit expression in our analytical formulas here, we need only its form when \(y \ll 1 \) and \((1 - z) \ll 1 \). This is the limit in which \(\mathcal{S}^{[1,0]}(yQ^2) \) expresses the soft x-collinear double singularity of QCD. (However, our numerical results use the full \(\mathcal{S}^{[1,0]}(yQ^2) \). In this limit, we have

\[\mathcal{S}^{[1,0]}(yQ^2) \vert \{ p, f, c, c' \} \rangle_m \]

\[\approx - \sum_{l=1}^{m} \sum_{k=1}^{m} \left[T_l \otimes T_k + T_k \otimes T_l \right] \langle c, c' \rangle_m \]

\[\times \int \frac{d\phi}{2\pi} \int \frac{dz}{1 - z} \frac{\alpha_s(\lambda_R(1 - z)yQ^2/\alpha_l)}{2\pi} \theta \left(\frac{\alpha_l y}{\lambda_R(l, k)} < 1 - z < 1 \right) \]

\[\times \langle \{ p, f \} \rangle_m. \] \tag{12} \]

There is a sum over parton indices \(l \) and \(k \). We split parton \(l \) with dipole partner parton \(k \), creating a new parton \(m + 1 \), which we consider to be a gluon. The momenta \(\{ p \} \rangle_m \) of the partons after the splitting are functions of the momenta \(\{ p \} \rangle_m \) before the splitting and the splitting variables \(y, z, \phi \), as specified in Eqs. (92) and (97).

In Eq. (12), \([T_l \otimes T_k] \) and \([T_k \otimes T_l] \) are operators on the parton color space. The notation \((C_{\text{ket}} \otimes C_{\text{bra}}) \) for color operators represents the following. A color basis vector \(\{ c, c' \} \rangle_m \) in the statistical space represents the color density operator \([\{ c \} \rangle_m \vert \{ c' \rangle_m] \). Here \(\{ c \rangle_m \) and \(\{ c' \rangle_m \) are basis vectors for color amplitudes. Let \(C_{\text{ket}} \) and \(C_{\text{bra}} \) be operators on color amplitudes for \(m \) partons that yield color amplitudes \(\alpha_m \) with \(\alpha_m \geq m \). In the case of \(\mathcal{S}^{[1,0]}(yQ^2) \), \(\alpha_m = m + 1 \). The statistical space vector \((C_{\text{ket}} \otimes C_{\text{bra}}) \{ c, c' \} \rangle_m \) then represents the color density operator \(C_{\text{ket}} \{ c \} \rangle_m \vert \{ c' \rangle_m C_{\text{bra}} \). In the case of \([T_l \otimes T_k] \), the operator creates a new gluon with color index \(a \) by inserting a color generator matrix \(T^a \) on the color line for parton \(l \) in the ket state and inserting \(T^\alpha \) on the color line for parton \(k \) in the bra state.

The argument of \(\alpha_s \) in Eq. (12) contains the standard factor \[15\]

\[\lambda_R = \exp \left(-\frac{C_A(67 - 3\pi^2) - 10n_l}{3(11C_A - 2n_l)} \right). \] \tag{13} \]

The rest of the argument of \(\alpha_s \) is \(k_T^2 \). Eq. (3), except that we drop the factor \(z \) because we are interested only in small \(1 - z \). Although the operators \(\mathcal{S}^{[1,0]}(\mu^2) \) contain one power of \(\alpha_s \), this \(\alpha_s \) is evaluated at a scale that is not \(\mu^2 \). Thus if we expand \(\mathcal{S}(\mu^2) \) in powers of \(\alpha_s(\mu^2) \), all powers will appear.

The parameter \(\vartheta(l, k) \) is

\[\vartheta(l, k) = \frac{1}{2} \left[1 - \cos(\theta(l, k)) \right], \] \tag{14} \]

where \(\theta(l, k) \) is the angle between partons \(l \) and \(k \) in \(\{ p, f, c, c' \} \rangle_m \). With this definition, \(\vartheta \approx \theta^2/4 \) for small \(\theta \). The angle \(\theta(l, m + 1) \) between partons \(l \) and \(m + 1 \) after
a splitting is given by
\[
[1 - \cos \hat{\theta}(l, m+1)] = \frac{Q^2}{\hat{p}_l \cdot Q \hat{p}_{m+1} \cdot Q} \approx \frac{a_l y}{z(1 - z)} + O(y^2).
\]
For small \(y\) and small \((1 - z)\), this gives
\[
\hat{\theta}(l, m+1) \approx \frac{a_l y}{1 - z}.
\] (16)
Thus the lower limit on \((1 - z)\) is equivalent to an upper limit on the splitting angle, \(\hat{\theta}(l, m+1) < \hat{\theta}(l, k)\). The splitting angle should be smaller than the angle between the two partons \(l\) and \(k\). The restriction \((1 - z) < 1\) gives a lower limit on the splitting angle. The net range for the new splitting angle is
\[
a_l y < \hat{\theta}(l, m+1) < \hat{\theta}(l, k).
\] (17)

III. PREVIEW

In this paper, we propose a way to gain more direct access to the summation of large logarithms in a parton shower than by simply running the shower and examining the result numerically. The analysis adapts the general formulation of this program in Ref. [4] to the practical analysis of first order parton shower algorithms. Our example is the thrust distribution in electron-positron annihilation. Here is a brief preview.

- We are interested in the thrust distribution \(g(\tau)\) with \(\tau = 1 - T\), where \(T\) is the thrust.
- As in analytical approaches, we work with the Laplace transform \(\tilde{g}(\nu)\) of \(g(\tau)\).
- \(\tilde{g}(\nu)\) contains large logarithms, \(\alpha_s(\mu^2)\nu j \log^j(\nu)\) with \(j \leq 2n\).
- We suppose that we know the proper summation of the \(\log(\nu)\) factors in full QCD at a certain level of accuracy, but a leading order parton shower is not full QCD. We wish to know what result the parton shower gives.
- The result of simply running the shower and examining the result numerically can be expressed as in Eq. (5),
\[
\tilde{g}(\nu) = \frac{1}{\sigma_{\text{nn}}} (1|\mathcal{O}(\nu)\mathcal{U}(\mu^2, Q^2)\rho_n) .
\] (18)
Here \(\sigma_{\text{nn}}\) is the total hard scattering cross section and \((1)\cdots(\rho_n)\) indicates an ensemble average in the statistical state \(\rho_n\) representing the perturbative hard scattering. Then \(\mathcal{U}(\mu^2, Q^2)\) represents the operator on the statistical space that generates the shower. This gives us states consisting of tens of partons. We could measure any operator \(\mathcal{O}_J\) that we like in this many-parton state. We apply a simple operator \(\mathcal{O}(\nu)\) that measures the Laplace transformed thrust distribution on this state.

- In this paper, we rewrite \(\tilde{g}(\nu)\) in the form
\[
\tilde{g}(\nu) = \frac{1}{\sigma_{\text{nn}}} (1|\mathcal{T} \mathcal{O}(\nu)\rho_n) .
\] (19)
The notation \(\mathcal{T}\) indicates an ordering instruction for the exponential, as in Eq. (7) and later in Eq. (48). In the example used in this paper, the operator \(\mathcal{O}(\nu)\) applied to the hard state \(\rho_n\) simply gives an eigenvalue 1.

- With this form, we have expressed \(\tilde{g}(\nu)\) in terms of the exponential of an operator \(\mathcal{T}(\nu)\). This operator has an expansion
\[
\mathcal{T}(\nu) = \sum_{k=1}^{\infty} T^{[k]}(\nu) ,
\] (20)
where each term in \(T^{[k]}(\nu)\) contains \(k\) factors of the splitting operator \(S\).

- We can further expand in powers of \(\alpha_s\) evaluated at a fixed scale \(Q^2/\nu\):
\[
T^{[k]}(\nu) = \sum_{n=k}^{\infty} \left(\frac{\alpha_s(Q^2/\nu)}{2\pi}\right)^n T^{[k]}_n(\nu) .
\] (21)
- The most important feature of Eq. (19) is that the operators \(T^{[k]}(\nu)\) can be computed using two fairly simple recursion relations.
- The first order contribution, \(T^{[1]}(\nu)\), is obtained rather trivially from one power of the shower splitting operator \(S(\mu^2)\). This operator is then the obvious candidate for the exponentiation of \(\tilde{g}(\nu)\) generated by the shower. If \(S(\mu^2)\) is suitably defined, \(T^{[1]}(\nu)\) matches the exponentiation in full QCD.
- If \(T^{[1]}(\nu)\) generates the desired exponentiation, then \(T^{[k]}(\nu)\) for \(k \geq 2\) should be small, so as not to destroy the desired exponentiation.
- For next-to-leading-log summation (NLL), this implies that \(T^{[k]}_n(\nu)\) should not contain more than \(n - 1\) powers of \(\log(\nu)\).
- In one case examined in this paper, we can show analytically that \(T^{[k]}_n(\nu)\) does not contain more than \(n - 1\) powers of \(\log(\nu)\).
- The operator \(T^{[2]}_n(\nu)\) is of special interest. It should not contain more than one power of \(\log(\nu)\).

\[2\] In Ref. [4], we expanded operators in powers of \(\alpha_s(\mu^2)\) at a running scale \(\mu^2\) appropriate to the operator. Here, we expand operators in powers of the splitting operator \(S\) of the parton shower. This technique simplifies the analysis of a shower algorithm that is based on lowest order perturbation theory.
For some shower algorithms examined here, $\mathcal{I}^{(2)}(\nu)$ does not contain more than one power of $\log(\nu)$.

We can write the integral for $\mathcal{I}^{(n)}(\nu)$ and evaluate it numerically to see if it contains more than $n - 1$ powers of $\log(\nu)$.

For some shower algorithms examined here, $\mathcal{I}^{(2)}(\nu)$ passes this test. For one algorithm examined, it fails.

IV. THE THRUST DISTRIBUTION AND ITS LAPLACE TRANSFORM

We will examine the distribution of thrust, T, defined for parton momenta $\{p\}_m$ by [16, 17]

$$T = \max_{\vec{n}_t} \frac{1}{\sqrt{Q^2}} \sum_i \left| \vec{p}_i \cdot \vec{n}_t \right| = \frac{1}{\sqrt{Q^2}} \sum_i \left| \vec{p}_i \cdot \vec{n}_t \right|. \quad (22)$$

The axis defined by the unit vector \vec{n}_t that maximizes the sum is the thrust axis. We will be interested in the behavior of the thrust distribution for small values of $\tau = 1 - T$.

We can write τ in a useful form by defining sets R and L of partons by $\vec{p}_i \cdot \vec{n}_t > 0$ for $i \in R$ and $\vec{p}_i \cdot \vec{n}_t < 0$ for $i \in L$. Then,

$$\tau = \frac{1}{\sqrt{Q^2}} \left[\sum_{i \in R} (E_i - \vec{p}_i \cdot \vec{n}_t) + \sum_{i \in L} (E_i + \vec{p}_i \cdot \vec{n}_t) \right]. \quad (24)$$

Using the thrust axis, we define \pm components of vectors by

$$p^\pm = \left[p_i^0 \pm \vec{p}_i \cdot \vec{n}_t \right] / \sqrt{2}. \quad (25)$$

Then we can write

$$\tau = \tau_R + \tau_L, \quad (26)$$

where, using $Q^2 = 2Q^+Q^-$ with $Q^+ = Q^-,$

$$\tau_R = \sum_{i \in R} \frac{p_i^+}{Q^+}, \quad \tau_L = \sum_{i \in L} \frac{p_i^-}{Q^-}. \quad (27)$$

In order to use a parton shower to analyze the thrust distribution, we begin with the cross section

$$g(\tau) = \frac{1}{\sigma_n} \frac{d\sigma}{d\tau}, \quad (28)$$

where σ_n is the hard scattering cross section, equal to $d\sigma/d\tau$ integrated over τ. We wish to analyze the small τ behavior of $g(\tau)$. For this purpose, it is standard to work with the Laplace transform of $g(\tau)$,

$$\tilde{g}(\nu) = \int_0^\infty d\tau e^{-\nu \tau} g(\tau). \quad (29)$$

The coefficient of α^n_s in the perturbative expansion of $g(\tau)$ is not a normal function but is a distribution with $\log^{j-1}(\tau)/\tau$ singularities at $\tau = 0$. In order to work with normal functions, we define the integral of $g(\tau)$,

$$f(\tau) = \int_0^\tau d\tau \ g(\tau). \quad (30)$$

The coefficients in the perturbative expansion of $f(\tau)$ are functions with $\log^j(\tau)$ integrable singularities. The cross section $g(\tau)$ vanishes for $\tau > 1/2$, so $f(\tau) = 1$ for $\tau > 1/2$.

Consider the Laplace transform of $f(\tau)$:

$$\tilde{f}(\nu) = \int_0^\infty d\tau e^{-\nu \tau} f(\tau). \quad (31)$$

We have

$$\tilde{f}(\nu) = \int_0^\infty d\tau \ g(\tau) \int_\tau^\infty d\tau' \ e^{-\nu \tau'} \quad (32)$$

$$= \frac{1}{\nu} \int_0^\infty d\tau \ g(\tau) e^{-\nu \tau}. \quad (33)$$

Thus

$$\tilde{f}(\nu) = \frac{\tilde{g}(\nu)}{\nu}. \quad (34)$$

The function $f(\tau)$ is given by the inverse Laplace transform of $\tilde{f}(\nu)$:

$$f(\tau) = \frac{1}{2\pi i} \int_C d\nu \ e^{\nu \tau} \frac{\tilde{g}(\nu)}{\nu}. \quad (35)$$

The contour C runs from $\nu_0 - i\infty$ to $\nu_0 + i\infty$ parallel to the imaginary ν axis, where $\nu_0 > 0$ so that the contour is to the right of the singularity of $\tilde{g}(\nu)/\nu$ at $\nu = 0$.

We expect the coefficient of α^n_s in the perturbative expansion of $f(\tau)$ to contain terms proportional to $\log^j(\tau)$ for $\tau \to 0$. To see how this translates to $\tilde{g}(\nu)$, we can start by noting that

$$f(\tau) = \tau^A \implies \tilde{g}(\nu) = \Gamma(1 + A) \nu^{-A}. \quad (36)$$

Thus

$$f(\tau) = \sum_{j=0}^{\infty} A_j \log^j(\tau) \implies \tilde{g}(\nu) = \Gamma(1 + A) \sum_{j=0}^{\infty} \frac{(-A)^j}{j!} \log^j(\nu). \quad (37)$$

Matching powers of A, we learn that logarithms of τ for small τ translate into logarithms of ν for large ν.

We wish to use the parton shower formalism to find an analytical formula that sums the logarithms of ν in $\tilde{g}(\nu)$. We can then compare what we find to the standard
QCD formula that sums these logarithms. The final step needed to obtain something that can be compared to experiment would be to perform the inverse Laplace transform (34). This step is the same for the parton shower method or the normal analytical methods. We discuss this step only briefly in this paper.

V. THE MEASUREMENT OPERATOR

If we want to measure the thrust distribution, then we define, following Eq. (5),
\[g(\tau) = \frac{1}{\sigma_h} \langle 1 | \delta(\tau - \tau_{op}) U(\mu_1^2, \mu_2^2) | \rho_h \rangle , \tag{37} \]
where \(\tau \) is a real number times the unit operator on the statistical space and \(\tau_{op} \) is the operator defined by
\[\tau_{op} \{ \{ p, f, c, c' \}_m \} = \tau(\{ p \}_m) \{ \{ p, f, c, c' \}_m \} , \tag{38} \]
where \(\tau(\{ p \}_m) \) is \(1 - T \) for partons with momenta \(\{ p \}_m \), as defined in Eqs. (26) and (27). Here \(\sigma_h = \langle 1 | \rho_h \rangle \). This is the Born cross section for \(e^+ e^- \rightarrow q \bar{q} \) since, in this paper, we evaluate \(| \rho_h \rangle \) at lowest order.

Rather than measuring \(g(\tau) \), we wish to measure the Laplace transform \(\tilde{g}(\nu) \). For this we have, using Eq. (29) in Eq. (37),
\[\tilde{g}(\nu) = \frac{1}{\sigma_h} \langle 1 | O(\nu) U(\mu_1^2, Q^2) | \rho_h \rangle , \tag{39} \]
where
\[O(\nu) = e^{-\nu \tau_{op}} . \tag{40} \]
We will analyze \(\tilde{g}(\nu) \) in the subsequent sections. For this analysis, it is important that \(O(\nu) \) has an inverse
\[O(\nu)^{-1} = e^{\nu \tau_{op}} . \tag{41} \]

VI. SETTING UP THE SHOWER ANALYSIS

Eq. (39) allows us to calculate \(\tilde{g}(\nu) \) numerically using the shower evolution operator \(U(\mu_1^2, \mu_2^2) \). We would now like to reformulate the shower result so that it takes an analytical form if, indeed, the shower generates \(\tilde{g}(\nu) \) in a simple exponentiated form.

A. The operators \(\mathcal{Y} \) and \(S_{\mathcal{Y}} \)

We begin with an operator \(\mathcal{Y}(\mu^2, \nu) \), which is defined in Ref. [4] using the all-order formalism of Ref. [14] for describing parton shower algorithms. The operator \(\mathcal{Y}(\mu^2, \nu) \) is defined to have two properties. First, it does not change the number of partons or their momenta or flavors [4]. Second,
\[(1 | \mathcal{Y}(\mu^2, \nu) = (1 | O(\nu) U(\mu_1^2, \mu^2) O^{-1}(\nu) . \tag{42} \]
These properties apply either for electron-positron annihilation or for hadron-hadron collisions. In this paper, we consider only electron-positron annihilation. Although \(\mathcal{Y}(\mu^2, \nu) \) does not change the number of partons or their momenta or flavors [4], it can change the parton colors. There is some freedom to define what \(\mathcal{Y}(\mu^2, \nu) \) does to the parton color state. We will define the action of \(\mathcal{Y}(\mu^2, \nu) \) on states in the statistical space in Eqs. (73) and (74) below.

The property Eq. (42) can be written as
\[(1 | O(\nu) U(\mu_1^2, \mu^2) = (1 | \mathcal{Y}(\mu^2, \nu) O(\nu) . \tag{43} \]
This result allows us to rewrite \(\tilde{g}(\nu) \) as given by Eq. (39) as
\[\tilde{g}(\nu) = \frac{1}{\sigma_h} \langle 1 | \mathcal{Y}(Q^2, \nu) O(\nu) | \rho_h \rangle . \tag{44} \]
We see that instead of generating a complete parton shower as in Eq. (39) and then measuring \(O(\nu) \) for the resulting many parton state, we can measure \(O(\nu) \) just on the hard state and then apply the operator \(\mathcal{Y}(\mu^2, \nu) \) that depends on \(\nu \) but leaves the number of partons unchanged.

How can one evaluate \(\mathcal{Y}(\mu^2, \nu) \)? We note first from the form of Eq. (42), that \(\mathcal{Y}(\mu^2, \nu) \) has a perturbative expansion beginning with \(\mathcal{Y}(\mu^2, \nu) = 1 + O(\alpha_s) \) and at \(\mu^2 = \mu_1^2 \) it is exactly
\[\mathcal{Y}(\mu_1^2, \nu) = 1 . \tag{45} \]
We define an infinitesimal generator \(S_{\mathcal{Y}}(\mu^2, \nu) \) for \(\mathcal{Y}(\mu^2, \nu) \) by
\[\frac{1}{\mu^2} S_{\mathcal{Y}}(\mu^2, \nu) = \mathcal{Y}^{-1}(\mu^2, \nu) \frac{d}{d\mu^2} \mathcal{Y}(\mu^2, \nu) . \tag{46} \]
Then \(\mathcal{Y}(\mu^2, \nu) \) obeys the differential equation
\[\mu^2 \frac{d}{d\mu^2} \mathcal{Y}(\mu^2, \nu) = \mathcal{Y}(\mu^2, \nu) S_{\mathcal{Y}}(\mu^2, \nu) , \tag{47} \]
with boundary condition \(\mathcal{Y}(\mu_1^2, \nu) = 1 \). We can use the notation
\[\mathcal{Y}(\mu^2, \nu) = \mathcal{T} \exp\left(\int_{\mu_1^2}^{\mu^2} \frac{d\mu^2}{\mu^2} S_{\mathcal{Y}}(\mu^2, \nu) \right) \tag{48} \]
to indicate the solution to Eq. (47). The instruction \(\mathcal{T} \) indicates that the operators \(S_{\mathcal{Y}}(\mu^2, \nu) \) with the smallest values of \(\mu^2 \) belong on the left.

We will sometimes adopt the notation
\[\mathcal{I}(\nu) = \int_{\mu_1^2}^{Q^2} \frac{d\mu^2}{\mu^2} S_{\mathcal{Y}}(\mu^2, \nu) \tag{49} \]
when the upper integration limit is \(Q^2 \) and we do not need to explicitly display \(S_{\mathcal{Y}}(\mu^2, \nu) \).\(^3\)

\(^3\) This is a useful definition even though \(\mathcal{Y}(\mu^2, \nu) \) is not the exponential of \(\mathcal{I}(\nu) \) because of the \(\mathcal{T} \) instruction in Eq. (48).
B. Relation of S_Y to the shower generator S

We can relate $S_Y(\mu^2, \nu)$ to $S(\mu^2)$. From Eq. (8), we have

$$\mu^2 \frac{\partial}{\partial \mu^2} U(\mu^2, \mu^2) = U(\mu^2, \mu^2) S(\mu^2) .$$ \hspace{1cm} (50)$$

Using Eqs. (50) and (47) to differentiate Eq. (42), we have

$$\langle 1 | Y(\mu^2; \nu) S_Y(\mu^2; \nu) = \langle 1 | Y(\mu^2; \nu) O(\nu) S(\mu^2) O^{-1}(\nu) .$$ \hspace{1cm} (51)$$

Using Eq. (43), this becomes

$$\langle 1 | Y(\mu^2; \nu) S_Y(\mu^2; \nu) = \langle 1 | Y(\mu^2; \nu) \ O(\nu) S(\mu^2) O^{-1}(\nu) .$$ \hspace{1cm} (52)$$

We can also use Eq. (47), together with the boundary condition (45), to write an equation for $Y(\mu^2; \nu)$,

$$Y(\mu^2; \nu) = 1 + \int_{\mu^2}^{\mu^2} \frac{d\mu^2}{\mu^2} Y(\mu^2; \nu) S(\mu^2) .$$ \hspace{1cm} (53)$$

C. Operator mapping P

To use Eq. (52), we introduce some useful notation. Let A be an operator that increases the number of partons or leaves the number of partons unchanged and changes momenta, flavors, and colors. Let B be an operator on the statistical space that leaves the number m of partons and their momenta and flavors $\{p, f\}_m$ unchanged, although it can change the parton color state. \footnote{In Ref. [4], A is sometimes an operator that is defined in $d = 4 - 2\epsilon$ dimensions that contains poles $1/\epsilon$ and singularities when the momenta of partons created by A become soft or collinear. However, $\langle 1 | A \rangle$ is well defined in $d = 4$ dimensions. Then B is well defined in 4 dimensions.}

Let B be defined such that

$$\langle 1 | B = \langle 1 | A .$$ \hspace{1cm} (54)$$

We will define a linear relation $A \rightarrow B$ that realizes this relation. To represent this linear relation, we adopt the notation

$$B = [A]_P .$$ \hspace{1cm} (55)$$

The needed construction is straightforward. Suppose that A maps states with m partons into states with \hat{m} partons, with $\hat{m} \geq m$. Let A have the form

$$A = (C_{ket} \otimes C_{bra}^t) R ,$$ \hspace{1cm} (56)$$

where R acts on the momentum and flavor factor of the statistical space and $(C_{ket} \otimes C_{bra}^t)$ acts on the color factor.

Recall from Sec. II the meaning of the color operators $(C_{ket} \otimes C_{bra}^t)$. Letting $|c\rangle_m$ and $|c'\rangle_m$ be basis vectors for color amplitudes, a color basis vector $|\{c, c'\}\rangle_m$ in the statistical space represents the color density operator $|c\rangle_m\langle c'\rangle_m$. Then $(C_{ket} \otimes C_{bra}^t)|\{c, c'\}\rangle_m$ represents the color density operator $C_{ket}|c\rangle_m\langle c'\rangle_m C_{bra}^t$.

Let us evaluate $\langle 1 | A \{p, f, c, c'\}_m \rangle$ for an arbitrary m-parton basis state $|\{p, f, c, c'\}_m\rangle$. The inner product of (1) with a statistical basis state is given in Eq. (6). We insert a sum over the basis states $[5]$ with \hat{m} partons,

$$\langle 1 | A \{p, f, c, c'\}_m \rangle = \frac{1}{\hat{m}!} \int [d\{\hat{p}, \hat{f}\}_m] \sum_{\{c, c'\}_m} (1\{\hat{p}, \hat{f}, \hat{c}, \hat{c}'\}_m) \times (\{\hat{c}, \hat{c}'\}_m | C_{ket} \otimes C_{bra}^t | \{c, c'\}_m \rangle \langle \{p, f\}_m | R | \{p, f\}_m \rangle .$$ \hspace{1cm} (57)$$

For the color, this gives us the trace of the color density operator obtained by applying $C_{ket} \otimes C_{bra}^t$ to $|\{c, c'\}_m\rangle$, namely the trace of $C_{ket}|c\rangle_m\langle c'\rangle_m C_{bra}^t$. The result is

$$\langle \{\hat{c}, \hat{c}'\}_m | C_{ket}^t \rangle \langle \{\hat{c}, \hat{c}'\}_m | C_{bra} \rangle \langle \{p, f\}_m | R | \{p, f\}_m \rangle .$$ \hspace{1cm} (58)$$

We now need to define $B = [A]_P$ so that

$$\langle 1 | B = \langle 1 | A .$$ \hspace{1cm} (59)$$

We distinguish two cases. First, if $\hat{m} = m$ we leave the color operator in A unchanged,

$$\langle (C_{ket} \otimes C_{bra}^t) R | \{p, f, c, c'\}_m \rangle = (C_{ket} \otimes C_{bra}^t) | \{p, f, c, c'\}_m \rangle \times \frac{1}{m!} \int [d\{\hat{p}, \hat{f}\}_m] \langle \{\hat{p}, \hat{f}\}_m | R | \{p, f\}_m \rangle .$$ \hspace{1cm} (60)$$

Second, if $\hat{m} > m$ we define

$$\langle (C_{ket} \otimes C_{bra}^t) R | \{p, f, c, c'\}_m \rangle = \frac{1}{2} \left(C_{bra}^t C_{ket} \otimes 1 + 1 \otimes C_{bra}^t C_{ket} \right) | \{p, f, c, c'\}_m \rangle \times \frac{1}{m!} \int [d\{\hat{p}, \hat{f}\}_m] \langle \{\hat{p}, \hat{f}\}_m | R | \{p, f\}_m \rangle .$$ \hspace{1cm} (61)$$

In either case, this satisfies $\langle 1 | [A]_P = \langle 1 | A$.

There is a special case of some importance. Suppose that $\hat{m} = m$ and, in addition, A leaves the momenta and flavors of all partons unchanged. That is, $|\{p, f\}_m\rangle$ is an eigenvector of R:

$$R | \{p, f\}_m \rangle = r | \{p, f\}_m \rangle .$$ \hspace{1cm} (62)$$

Then A applied to $|\{p, f, c, c'\}_m\rangle$ takes the form

$$A | \{p, f, c, c'\}_m \rangle = (C_{ket} \otimes C_{bra}^t) r | \{p, f\}_m \rangle \times |\{p, f, c, c'\}_m\rangle .$$ \hspace{1cm} (63)$$
In this case, the definition (60) gives us
\[[A]_p = A. \] (64)

There is some freedom available in fixing the color part of \((C_{\text{bra}} \otimes C_{\text{bra}}^\dagger)R\), as discussed in Sec. VI D of Ref. [14]. We could add any operator \(A'\) to \([A]_p\) if \(A'\) has the property that \([1,A'] = 0\). The form in Eqs. (60) and (61) is recommended by its simplicity, so we will use it in this paper.

This defines the operator \([A]_p\) in general. However, when \([A]_p\) acts on the \(q \bar{q}\) initial hard scattering state in \(e^+e^-\) annihilation, the action of \([A]_p\) is simpler. The color space for \(\{|c,c'\}\) has \(\{c\} = \{c'\}\) and is one dimensional. Therefore, the color operator in either of Eqs. (60) and (61) acting on the \(\{|c,c'\}\) state can only return an eigenvalue. That is, we have
\[
(C_{\text{ket}} \otimes C_{\text{bra}}^\dagger)|\{c,c\}\rangle = \lambda_{\text{color}}|\{c,c\}\rangle
\]
(65)
or
\[
\frac{1}{2} (C_{\text{bra}}^\dagger C_{\text{ket}} \otimes 1 + 1 \otimes C_{\text{bra}}^\dagger C_{\text{ket}})|\{c,c\}\rangle = \lambda_{\text{color}}|\{c,c\}\rangle.
\] (66)

This tells us that \(|\{p,f,c,c\}\rangle\) is an eigenvector of \([A]_p\):
\[
[A]_p|\{p,f,c,c\}\rangle = \lambda_{A}|\{p,f,c,c\}\rangle,
\] (67)

where
\[
\lambda_{A} = \int [d\hat{p}] |\{\hat{p},f\}\rangle (\{\hat{p},f\}_{\text{2}}|\{p,f\}_{\text{2}}\rangle.
\] (68)

Using (1){\{p,f,c,c\}} = \langle{\{c\}}{\{c\}}\rangle and \langle{\{c\}}{\{c\}}{\{c\}}\rangle = 1 [5], we have a very simple result for the eigenvalue,
\[
\lambda_{A} = \int [d\hat{p}] |\{\hat{p},f\}\rangle ,
\] (69)

D. Recursive definition of \(S_Y\)

We can now define \(S_Y(\mu^2;\nu)\) so that it satisfies Eq. (52). Recall that \(Y(\mu^2;\nu) = 1 + O(\alpha_s)\). Because of this, it is possible to isolate \(S_Y(\mu^2;\nu)\) on the left hand side of Eq. (52):
\[
(1)S_Y(\mu^2;\nu) = (1)\{Y(\mu^2;\nu)O(\nu)S(\mu^2)O^{-1}(\nu) + [1 - Y(\mu^2;\nu)] S_Y(\mu^2;\nu)\}.
\] (70)

Using the operator mapping \([\cdots]_p\), this is
\[
S_Y(\mu^2;\nu) = \{Y(\mu^2;\nu)O(\nu)S(\mu^2)O^{-1}(\nu)\}_p + \{[1 - Y(\mu^2;\nu)] S_Y(\mu^2;\nu)\}_p.
\] (71)

Note that the operators \(Y(\mu^2;\nu)\) and \(S_Y(\mu^2;\nu)\) in the second line of Eq. (71) leave the number of partons, their momenta, and their flavors unchanged. Thus Eq. (64) applies and the \([\cdots]_p\) operation has no effect.

Equation (71) can be used to define \(S_Y(\mu^2;\nu)\) and \(Y(\mu^2;\nu)\) recursively. We can write \(S_Y(\mu^2;\nu)\), \(Y(\mu^2;\nu)\), and \(I(\nu)\) as expansions in powers of the shower evolution operator \(S\):
\[
S_Y(\mu^2;\nu) = \sum_{k=1}^{\infty} S_Y^{[k]}(\mu^2;\nu),
\] (72)
\[
Y(\mu^2;\nu) = 1 + \sum_{k=1}^{\infty} Y^{[k]}(\mu^2;\nu),
\] (73)
\[
I(\nu) = \sum_{k=1}^{\infty} I^{[k]}(\nu),
\]
where each of \(S_Y^{[k]}(\mu^2;\nu)\), \(Y^{[k]}(\mu^2;\nu)\), and \(I^{[k]}(\nu)\) contain \(k\) factors of \(S\). Then we can write Eq. (71) as
\[
Y^{[k]}(\mu^2;\nu) = \int_{\mu^2}^{\infty} d\mu^2 \; Y^{[k-j]}(\mu^2;\nu) S_Y^{[j]}(\mu^2;\nu).
\] (74)

Similarly, we can write Eq. (53) as
\[
Y^{[k]}(\mu^2;\nu) = \sum_{j=1}^{k} \int_{\mu^2}^{\infty} d\mu^2 \; Y^{[k-j]}(\mu^2;\nu) S_Y^{[j]}(\mu^2;\nu).
\] (75)

These equations apply for \(k = 1, 2, \ldots\) with \(Y^{[0]}(\mu^2;\nu) = 1\).

We now illustrate this for the first two orders. At order 1, Eq. (73) gives us
\[
S_Y^{[1]}(\mu^2;\nu) = [O(\nu) S(\mu^2) O^{-1}(\nu)]_p.
\] (76)

At order \(\alpha_s^2\), we have
\[
S_Y^{[2]}(\mu^2;\nu) = [Y^{[1]}(\mu^2;\nu)O(\nu)S(\mu^2)O^{-1}(\nu)]_p - Y^{[1]}(\mu^2;\nu) S_Y^{[1]}(\mu^2;\nu).
\] (77)

From Eq. (53) at first order, we have
\[
Y^{[1]}(\mu^2;\nu) = \int_{\mu^2}^{\infty} d\mu^2 \; S_Y^{[1]}(\mu^2;\nu).
\] (78)

For \(S_Y^{[1]}(\mu^2;\nu)\) we can use Eq. (75). This gives us
\[
S_Y^{[2]}(\mu^2;\nu) = \int_{\mu^2}^{\infty} d\mu^2 \; \left[[O(\nu)S(\mu^2)O^{-1}(\nu)]_p \times [O(\nu)S(\mu^2)O^{-1}(\nu)]_p \right]_p.
\] (79)

Here we use the abbreviation
\[
[A]_{1-p} = A - [A]_p.
\] (80)
The operator $S_Y(\mu^2; \nu)$ is a complicated operator in general. However, it is significant that, because of Eqs. (67) and (69), the initial $q\bar{q}$ state is an eigenvector of $S_Y(\mu^2; \nu)$:

$$S_Y(\mu^2; \nu)|\{p, f, c, c\}_2\rangle = \lambda_{S_Y}|\{p, f, c, c\}_2\rangle ,$$

where

$$\lambda_{S_Y} = (1|S_Y(\mu^2; \nu)|\{p, f, c, c\}_2\rangle .$$

VII. EVALUATION OF $S_Y^{[1]}(\mu^2; \nu)$

Let us see what we can say about $S_Y^{[1]}(\mu^2; \nu)$ as given in Eq. (75). In a first order shower, like DEDUCTOR, we divide $S(\mu^2)$ into its real emission and virtual parts as in Eq. (10). Then Eq. (75) gives us

$$S_Y^{[1]}(\mu^2; \nu) = \left[c \mu S_Y^{[1]}(\mu^2) \right] p .$$

The virtual operator $S_Y^{[0,1]}(\mu^2; 0)$ leaves the momentum and flavor state unchanged, so this is

$$S_Y^{[1]}(\mu^2; \nu) = \left[c \mu S_Y^{[1]}(\mu^2) \right] p .$$

Recall from Eq. (11) that $1|S_Y^{[1]}(\mu^2) = -(1|S_Y^{[1]}(\mu^2)$. This tells us that

$$\left[S_Y^{[1]}(\mu^2) \right] p = -\left[S_Y^{[1]}(\mu^2) \right] p .$$

Using Eq. (84), Eq. (83) becomes

$$S_Y^{[1]}(\mu^2; \nu) = \left[c \mu S_Y^{[1]}(\mu^2) \right] p .$$

This is a convenient form for calculations.

VIII. CHANGE IN τ INDUCED BY A SPLITTING

The operator $O(\nu) S_Y^{[1]}(\mu^2) \nu^{-1}$ appears in Eq. (85) for $S_Y^{[1]}(\mu^2; \nu)$. This operator is

$$O(\nu) S_Y^{[1]}(\mu^2) \nu^{-1} = e^{-\nu \tau_{op}} S_Y^{[1]}(\mu^2) e^{\nu \tau_{op}} .$$

The operator $S_Y^{[1]}(\mu^2)$ is a sum of operators,

$$S_Y^{[1]}(\mu^2) = \sum_{l=1}^{\infty} S_Y^{[1]}(\mu^2) ,$$

where l is the label of the parton that splits. When we apply $S_Y^{[1]}(\mu^2)$ to a state $|\{p, f, c, c\}_m\rangle$, the splitting operator creates a new state $|\{\hat{p}, f, c, c\}_{m+1}\rangle$ as long as $l \leq m$. For $l > m$, S_l just gives zero. The operators τ_{op} measure the values of τ before and after the splitting. Thus

$$\left| \{\hat{p}, f, c, c\}_{m+1} \right| O(\nu) S_Y^{[1]}(\mu^2) \nu^{-1} \left| \{p, f, c, c\}_m \right
angle = e^{-\nu(\hat{\tau} - \tau)} \left| \{\hat{p}, f, c, c\}_{m+1} \right| S_Y^{[1]}(\mu^2) \left| \{p, f, c, c\}_m \right
angle ,$$

where $\tau = \tau\{p\}_m$ and $\hat{\tau} = \tau\{\hat{p}\}_{m+1}$. Thus we need to know how τ changes in a splitting. We are looking for the leading contributions to logarithms of ν, so we can use the approximations that τ is small and that the splitting is nearly soft or collinear.

We start with momenta $|\{p\}_m\rangle$ and suppose that the parton that splits is in the right thrust hemisphere, $l \in R$. The splitting produces a new parton l and a parton $m + 1$. After the splitting, we have partons with momenta $|\{\hat{p}\}_{m+1}\rangle$.

The emission of a parton changes the thrust axis. However, in the case of a nearly soft or collinear splitting of a parton in a state with small τ, the thrust axis changes by very little. For this reason, we calculate $\tau\{\hat{p}\}_{m+1}$ for the new parton state using the thrust axis of the old parton state $|\{p\}_m\rangle$. We also assume that after the splitting partons l and $m + 1$ are still in the right thrust hemisphere.

Now we turn to the calculation of $\hat{\tau} - \tau$. We use the definition, Eqs. (26) and (27), to write

$$\hat{\tau} - \tau = \frac{\hat{p}_i^+ - p_{m+1}^+ - p_i^-}{Q^-} + \sum_{i \notin \{l, m+1\}} \frac{\hat{p}_i^- - p_i^-}{Q^-} + \sum_{i \in L} \frac{\hat{p}_i^+ - p_i^+}{Q^+} .$$

Now we need to evaluate $(\hat{p}_i^+ + p_{m+1}^+ - p_i^-)/Q^-$ and $(\hat{p}_i^+ - p_i^-)/Q^-$. Following the notation of Appendix B of Ref. [13], we define

$$h_{\pm} = (1 + y \pm \lambda)/2 ,$$

$$a_i = Q^2/2p_i \cdot Q ,$$

where y was defined in Eq. (2). We suppose that $y \ll 1$. We define a lightlike vector n_i by

$$n_i = \frac{2p_i \cdot Q}{Q^2} Q - p_i .$$

Note that n_i is independent of the normalization of Q. We write the momentum vectors for partons l and $m + 1$ after the splitting as

$$\hat{p}_l = h_{\pm} z p_i + h_{-} (1 - z) n_i + k_{\perp} ,$$

$$\hat{p}_{m+1} = h_{\pm} (1 - z) p_i + h_{+} z n_i - k_{\perp} ,$$

where $k_{\perp} \cdot p_i = k_{\perp} \cdot n_i = 0$. The splitting is specified by y, the momentum fraction z in Eq. (92), and the azimuthal
angle ϕ of k_\perp. The magnitude of k_\perp is determined by the condition $p_\perp^2 = 0$ or $p_{m+1}^2 = 0$:

$$- k_\perp^2 = z(1-z)y 2p_\perp \cdot Q . \quad (93)$$

Define

$$P_l = \hat{p}_l + \hat{p}_{m+1} = h_+ p_l + h_- n_l . \quad (94)$$

This gives us $P_l^2 = 2p_\perp \cdot Q y$. Using these results we obtain

$$(Q - p_l)^2 = (Q - P_l)^2 . \quad (95)$$

We require that momentum be conserved in the splitting, so that

$$Q - p_l = \sum_{i\neq l} p_i , \quad Q - P_l = \sum_{i\neq l} \hat{p}_i . \quad (96)$$

The relation (95) allows the \hat{p}_i for $i \notin \{l, m+1\}$ to be obtained from the p_i by a Lorentz transformation,

$$\hat{p}_i^\mu = \Lambda_\mu^\nu p_i^\nu , \quad i \notin \{l, m+1\} . \quad (97)$$

The needed Lorentz transformation can be a small boost in the p_l-Q plane. Let

$$p_i = \alpha_i p_l + \beta_i n_l + p_{i,\perp} , \quad (98)$$

where $p_{i,\perp} \cdot p_l = p_{i,\perp} \cdot n_l = 0$. Then define \hat{p}_i for $i \notin \{l, m+1\}$ by

$$\hat{p}_i = e^{\omega} \alpha_i p_l + e^{-\omega} \beta_i n_l + p_{i,\perp} . \quad (99)$$

The needed boost angle is small:

$$\omega = y + \mathcal{O}(y^2) . \quad (100)$$

Using Eq. (97) in Eq. (89), we have

$$\hat{\tau} - \tau = \frac{\hat{p}_l^\mu + \hat{p}_{m+1}^\mu - p_l^\mu}{Q^-}$$

$$+ \sum_{i \notin R \land i \neq l} (\Lambda_\nu^\mu - \delta_\nu^\mu) \frac{p_i^\nu}{Q^-} + \sum_{i \in L} (\Lambda_\nu^\mu - \delta_\nu^\mu) \frac{\hat{p}_i^\nu}{Q^{-}} . \quad (101)$$

We will see momentarily that $(\hat{p}_l^- + \hat{p}_{m+1}^- - p_l^-)/Q^-$ is small, of order y. This allows $\hat{\tau} - \tau$ to be of order y.

In the third term, for $i \in R$, $(\Lambda_\nu^\mu - \delta_\nu^\mu)$ is of order y. The thrust axis defines the \pm components of vectors in Eq. (101). If p_l were exactly aligned with the thrust axis, then the only nonvanishing index choice for Λ_ν^μ would be $\nu = -$. But $p_l^- / Q^- \ll 1$ for $i \in R$, since this quantity is of order τ and we suppose that $\tau \ll 1$. This restriction on the index choices is not exact. However, for $i \in R$, the components p_i^ν / Q^{-} for $\nu \in \{1, 2\}$ are of order $p_i^\nu / Q^\tau \sim |p_i^1 p_i^2|^{1/2}/Q^\tau$, which is at most of order $\sqrt{\tau}$. The component p_i^ν / Q^{-} for $\nu = +$ can be of order 1. However, $\Lambda_+^- = \Lambda_-^+$ is at most of order y^2 since $\Lambda = \exp(\omega u)$ where ω is given by Eq. (100) and the first order contribution to Λ^- vanishes because the generator matrix $w_{\mu\nu}$ is antisymmetric. Thus the second term in Eq. (101) is of order y times a small factor, either τ, $\sqrt{\tau}$, or y. The same reasoning applies to the third term.

We conclude that the only surviving term in Eq. (101) is the first:

$$\hat{\tau} - \tau \approx \frac{\hat{p}_l^- + \hat{p}_{m+1}^- - p_l^-}{Q^-} . \quad (102)$$

We have

$$\frac{\hat{p}_l^- + \hat{p}_{m+1}^- - p_l^-}{Q^-} \approx \frac{(1 - a_l) y p_l^- + a_l n_l^-}{Q^-} . \quad (103)$$

With our kinematical conventions,

$$\frac{p_l^-}{Q^-} = \frac{1 - \cos \theta(l, \bar{n}_T)}{2a_l} , \quad \frac{n_l^-}{Q^-} = \frac{1 + \cos \theta(l, \bar{n}_T)}{2a_l} , \quad (104)$$

where

$$\cos \theta(l, \bar{n}_T) = \frac{|\bar{p}_l \cdot \bar{n}_l|}{|\bar{p}_l|} . \quad (105)$$

This gives us

$$\frac{\hat{p}_l^- + \hat{p}_{m+1}^- - p_l^-}{Q^-} \approx \xi_l y , \quad (106)$$

where

$$\xi_l = 1 - \left(1 - \frac{1}{2a_l}\right)[1 - \cos(\theta(l, \bar{n}_T))] . \quad (107)$$

That is

$$\hat{\tau} - \tau \approx \xi_l y . \quad (108)$$

The same result holds for $l \in L$ if we change $1 - \cos(\theta(l, \bar{n}_T))$ to $1 + \cos(\theta(l, \bar{n}_T))$.

If we are splitting the quark or the antiquark in the two parton state created initially in $e^+ e^-$ annihilation, then $a_l = 1$ and $\theta(l, \bar{n}_T) = 0$. Then $\xi_l = 1$.

In the general case, $0 < 1 - \cos(\theta(l, \bar{n}_T)) < 1$ for $l \in R$ and $1/2 < (2a_l - 1)/(2a_l) < 1$, so

$$0 \ll \xi_l < 1 . \quad (109)$$

We get $\xi_l \rightarrow 0$ only when $\theta_l \rightarrow \pi/2$ and parton l is very soft, $1/a_l \rightarrow 0$. Notice that there is no singularity for $\theta_l \rightarrow \pi/2$, so there is no singularity for $\xi_l \rightarrow 0$. There is a singularity for $\theta(l, \bar{n}_T) \rightarrow 0$ for all partons l. This corresponds to $\xi_l \rightarrow 1$. Thus in the general case we can treat ξ_l as being close to 1. We will argue in Appendix A that for the purpose of finding next-to-leading logarithms of ω we can simply set ξ_l to 1.
We conclude that the effect of the operators $\mathcal{O}(\nu)$ in a splitting of parton l can be approximated by

$$
\mathcal{O}(\nu) S^{[1,0]}_l(\mu^2) \mathcal{O}^{-1}(\nu) \{p, f, c, c' \}_m
$$

where ξ_{lq}^{op} is an operator that, acting on a state $\{p, f, c, c' \}_m$, has eigenvalue ξ_l as defined in Eq. (107) as long as $l \leq m$. For $l > m$, we can simply define ξ_l to have eigenvalue 1. We recall that ξ_l is generally of order 1 and equals 1 exactly in the case of a splitting of one of the partons in a two parton state. Using this in Eq. (85) gives us

$$
S^{[1]}_y(\mu^2; \nu) \approx -\sum_l [S^{[1,0]}_l(\mu^2)]_p (1 - e^{-\nu \xi_l^{\text{op}}}) .
$$

IX. $S^{[1]}_y$ FOR A QUARK-ANTIQUARK STATE

For the $q\bar{q}$ state created initially in electron-positron annihilation, Eq. (111) simplifies considerably. First, the index l denoting the parton that splits can take only the values $l = 1$ (for the quark) and $l = 2$ (for the antiquark). Each choice gives the same result, so we can take $l = 1$ and multiply by two. Also, the color factors are trivial. In $\{S^{[1,0]}_l(\mu^2)]_p$ we encounter color operators $T_1 \cdot T_1$, $T_2 \cdot T_2$, and $T_1 \cdot T_2$, where $T_i = \sum T_i^a T_a$ and T_i^a inserts a color matrix T_i on parton line i. The operators $T_1 \cdot T_1$ and $T_2 \cdot T_2$ simply give an eigenvalue C_F times the unit color operator, while $T_1 \cdot T_2$ gives $-C_F$. This gives us a result of the form

$$
S^{[1]}_y(\mu^2; \nu) \{p, f, c, c' \}_2
$$

$$
\approx - (1 - e^{-\nu \lambda}) \lambda(\nu) \{p, f, c, c' \}_2 .
$$

The eigenvalue $\lambda(y)$ is obtained in a straightforward calculation from the $q \to q + g$ splitting functions used in Deductor [8]. There is an integral over the splitting variables z and ϕ. The ϕ integral is trivial and gives simply a factor 2π. The integration over the momentum fraction z remains,

$$
\lambda(y) = 2C_F \int_0^1 dz \left\{ \frac{\alpha_s(\lambda_R(1-z)yQ^2)}{2\pi} f_{\text{sing}}(z, y) + \frac{\alpha_s(\lambda_R yQ^2)}{2\pi} f_{\text{reg}}(z, y) \right\} .
$$

The argument of α_s contains the standard factor λ_R, Eq. (13), and, in the first term, a factor $1/(1-z)$, as in Eq. (12) with $a_1 = 1$. The functions $f_{\text{sing}}(z, y)$ and $f_{\text{reg}}(z, y)$ are taken directly from Deductor and are quite complicated. However, they are simple in the relevant limits, $y \to 0$ with fixed z and $y \to 0$ with fixed $z \propto y$. In these limits, they are

$$
f_{\text{sing}}(z, y) \approx \frac{2}{1-z+y} - 2 ,
$$

$$
f_{\text{reg}}(z, y) \approx 1 - z .
$$

Note that $f_{\text{sing}}(z, 0) + f_{\text{reg}}(z) = (1 + z^2)/(1 - z)$ is just the DGLAP splitting kernel for $q \to q + g$. However in $f_{\text{sing}}(z, y)$ the singularity at $(1-z) \to 0$ is regulated by adding y in the denominator.

We have written these results in the form used in Deductor. In $f_{\text{sing}}(z, y)$, we could recognize that the second term could have been transferred to $f_{\text{reg}}(z, y)$.

We would now like to compare this to the standard results for the summation of logs of τ in Ref. [18]. We begin by inserting Eq. (114) into Eq. (113):

$$
\lambda(y) \approx 2C_F \int_0^1 dz \left\{ \frac{\alpha_s(\lambda_R(1-z)yQ^2)}{2\pi} \frac{2}{1-z+y} - \frac{\alpha_s(\lambda_R(1-z)yQ^2)}{2\pi} \frac{2}{1-z} \right\} .
$$

We will want to evaluate this approximately for small y in such a way that if we expand the result in powers of $\alpha_s(yQ^2)$ we retain all terms proportional to $\alpha_s^2(yQ^2)\log^2(y)$ and $\alpha_s^3(yQ^2)\log^3(y)$. After integrating over $\nu^2 = yQ^2$ as in Eq. (48), this will give contributions $\alpha_s^2(yQ^2)\log^3(\nu)$ and $\alpha_s^3(yQ^2)\log^4(\nu)$. These are the leading log (LL) and next-to-leading log (NLL) terms. In $\lambda(y)$, we neglect contributions proportional to fewer powers of $\log(y)$ or to powers of y.

In order to carry out this approximate evaluation, we note first that we can use

$$
\alpha_s(\mu^2) = \alpha_s(\mu^2) - \beta_0 \log(A) \alpha_s^2(\mu^2) + \mathcal{O}(\alpha_s^3) ,
$$

where $\beta_0 = (11C_A - 2n_t)/(12\pi)$. Then we can omit the $\lambda_R(1-z)$ factor in the argument of α_s in the second term in Eq. (115) and the λ_R in the third term, since these terms do not have $1/(1-z + y)$ singularities that could produce $\log(y)$ factors after integration. In the first term, there is a $1/(1-z + y)$ singularity. For this term, we need to keep the α_s^2 contribution in Eq. (116). After performing the z integration in the last two terms, this gives us

$$
\lambda(y) \approx 4C_F \int_0^1 d(1-z) \frac{1}{1-z+y} \times \frac{\alpha_s((1-z)yQ^2) - \beta_0 \log(\lambda_R) \alpha_s^2((1-z)yQ^2)}{2\pi} - 3C_F \frac{\alpha_s(yQ^2)}{2\pi} .
$$

Now we note that the y in the denominator in the first term of Eq. (117) places an effective lower cutoff on $(1-z)$ at about $(1-z) = y$. This observation suggests that the
integration over \((1-z)\) can be written in a simpler form:

\[
\lambda(y) \approx 4C_F \int_y^1 \frac{d(1-z)}{1-z} \\
\times \frac{\alpha_s((1-z)yQ^2) - \beta_0 \log(\lambda_R) \alpha_s^2((1-z)yQ^2)}{2\pi} \\
- 3C_F \frac{\alpha_s(yQ^2)}{2\pi}.
\]

(118)

In fact, this correctly reproduces the \(\alpha_s^0 \log^n(y)\) terms and the \(\alpha_s^0 \log^{n-1}(y)\) terms in the expansion of the integral. To see this, one can approximately solve the renormalization group equation for \(\alpha_s\) in the form [19]

\[
\frac{1}{\alpha_s(A\mu^2)} = \frac{1 + \beta_0 \log(A) \alpha_s(\mu^2)}{\alpha_s(\mu^2)} \\
+ \frac{\beta_1}{\beta_0} \log(1 + \beta_0 \log(A) \alpha_s(\mu^2)) \\
+ \cdots,
\]

(119)

with \(\mu^2 = yQ^2\) and \(A = 1 - z\). Here \(\beta_1 = (17C_F^2 - 5C_A n_f - 3C_F n_f)/(24\pi^2)\). This yields \(\alpha_s(A\mu^2)\) as a series

\[
\alpha_s(A\mu^2) = \alpha_s(\mu^2) \left\{ 1 + \sum_{n=2}^{\infty} \alpha_s^2(\mu^2) [c_n \log^n(A) \\
+ d_n \log^{n-1}(A) + \cdots] \right\}.
\]

(120)

Then one can check that the integral (117) agrees with the integral (118) at the NLL level.

The current code in DEDUCTOR does not include the \(\beta_1\) contributions in evaluating the \(z\) dependence of \(\alpha_s((1-z)yQ^2)\). This appears to be not particularly significant numerically, but it is significant in principle because it means that some of the NLL contributions to \(S^{[1]}_Y(\mu^2;\nu)\) are absent.

We can now compare to Ref. [18] by changing the integration variable to \(q^2 = (1-z)yQ^2\):

\[
\lambda(y) \approx 4C_F \int_{y^2 Q^2}^{yQ^2} \frac{dq^2 \alpha_s(q^2) - \beta_0 \log(\lambda_R) \alpha_s(q^2)}{2\pi} \\
- 3C_F \frac{\alpha_s(yQ^2)}{2\pi}.
\]

(121)

This agrees with the result in Eq. (64) of Ref. [18] for the LL and NLL contributions to \(\lambda(y)\).

We have been seeking a formula for the summation of logarithms of \(\nu\) in the Laplace transform \(\tilde{g}(\nu)\) of the thrust distribution. We use Eq. (44) for \(\tilde{g}(\nu)\), choosing for \(|\rho_n\rangle\) the state with a quark and an antiquark with opposite momenta. The operator \(O(\nu)\) acting on this state is just 1. Then

\[
\tilde{g}(\nu) = \frac{1}{\sigma_n} (1|\mathcal{Y}(Q^2;\nu)|\rho_n)\]

(122)

We approximate \(\mathcal{Y}(Q^2;\nu)\), using Eq. (48), as the exponential of the integral of the first order generator \(\mathcal{S}^{[1]}_Y\), which we take from Eq. (112). This gives

\[
\tilde{g}(\nu) \approx \exp \left(- \frac{1}{\pi \sigma_0^2} \int_{\mu_0^2/Q^2}^{1} \frac{dy}{y} (1 - e^{-\nu y}) \lambda(y) \right).
\]

(123)

Here \(\lambda(y)\) can be either the exact function from DEDUCTOR, as in Eq. (113), or else the approximate function given in Eq. (118). The factor \((1 - e^{-\nu y})\) puts an effective lower cutoff on the \(y\) integration at \(y = 1/\nu\). Then a factor \(\log^2(y)\) in \(\lambda(y)\) produces a factor \(\log^{n+1}(\nu)\) in the exponent of Eq. (123).

We have seen that one can start with Eq. (39) for \(\tilde{g}(\nu)\) as given by a parton shower and rearrange the operators to express \(\tilde{g}(\nu)\) in the form Eq. (122). Then approximating \(S_Y(\mu^2;\nu)\) by \(S_Y^{[1]}(\mu^2;\nu)\) in \(\mathcal{Y}\) gives us a candidate result (123) for the summation of logarithms of \(\nu\) in \(\tilde{g}(\nu)\).

We do note that the shower splitting functions contain ingredients related to the argument of \(\alpha_s\) in the parton splitting function. These ingredients are somewhat ad hoc from the perspective of just representing the soft and collinear singularities of a single splitting. Their purpose was to build into the first order splitting functions some approximation to splitting functions beyond leading order so as to improve the effectiveness of a parton shower in summing large logarithms. We have seen the effect of these ingredients in giving us the standard summation of thrust logarithms at the NLL level.

Our analysis uses primarily the Laplace transform \(\tilde{g}(\nu)\) of the thrust distribution. One can take the inverse Laplace transform of \(\tilde{g}(\nu)\) to obtain the thrust distribution \(g(\tau)\), Eq. (28), itself. The function \(g(\tau)\) is the derivative of \(f(\tau)\), Eq. (30):

\[
g(\tau) = \frac{df(\tau)}{d\tau}.
\]

(124)

We can follow Ref. [18] to evaluate \(f(\tau)\) at NLL accuracy:

\[
f(\tau) = \exp \left(- \frac{C_F}{\pi \sigma_0^2} \left\{ \frac{f_1(\lambda)}{\alpha_s(Q^2)} + f_2(\lambda) \right\} \right) \\
\times \frac{1}{\Gamma(1 - \gamma(\lambda))}.
\]

(125)

Here

\[
\lambda = \beta_0 \alpha_s(Q^2) \log(1/\tau),
\]

(126)

the LL function \(f_1(\lambda)\) is

\[
f_1(\lambda) = (1 - 2\lambda) \log(1 - 2\lambda) - 2(1 - \lambda) \log(1 - \lambda),
\]

(127)
the NLL function $f_2(\lambda)$ is

$$
f_2(\lambda) = -\frac{\beta_1}{2\beta_0} 2 \log^2(1-\lambda) + \frac{\beta_1}{2\beta_0} \log^2(1-2\lambda)$$

$$+ 2\beta_0 \gamma_E \log \left(\frac{1-\lambda}{1-2\lambda}\right)$$

$$- \left(\frac{\beta_1}{\beta_0} + \beta_0 \log(\lambda_R)\right) \log \left(\frac{(1-\lambda)^2}{1-2\lambda}\right)$$

$$+ \frac{3\beta_0}{2} \log(1-\lambda) ,$$ (128)

where γ_E is Euler’s constant, and the function $\gamma(\lambda)$ is

$$\gamma(\lambda) = -\frac{2C_F}{\pi\beta_0} \log \left(\frac{1-\lambda}{1-2\lambda}\right) .$$ (129)

The logarithm of $f(\tau)$ contains LL contributions proportional to $\alpha_s(Q^2)^n \log^{n+1}(1/\tau)$ and NLL contributions proportional to $\alpha_s(Q^2)^n \log^2(1/\tau)$, but contributions proportional to $\alpha_s(Q^2)^n \log^j(1/\tau)$ with $j < n$ are dropped. Of course, a parton shower does not drop terms beyond NLL.

X. RESULT FROM THE PARTON SHOWER

We have manipulated the operators used in a parton shower to produce a candidate formula (123) for the summation of logarithms for the thrust distribution. We have seen that this formula reproduces the known result [18] for $\bar{g}(\nu)$ in QCD at the NLL level. We now ask what the result for $\bar{g}(\nu)$ is in a first order parton shower that uses the DEDUCTOR algorithm or another algorithm of interest. That is, what do we get from Eqs. (39) and (7),

$$\bar{g}(\nu) = \frac{1}{\sigma_H} \langle 1 | \mathcal{O}(\nu) T \exp \left(\int_{\mu_i^2}^{Q^2} d\mu^2 S(\mu^2) \right) | \rho_H \rangle ,$$ (130)

when the shower generator $S(\mu^2)$ represents a first order shower? This must be the same as the result of using Eq. (48) in Eq. (44),

$$\bar{g}(\nu) = \frac{1}{\sigma_H} \langle 1 | T \exp \left(\int_{\mu_i^2}^{Q^2} d\mu^2 \frac{1}{\mu^2} S_Y(\mu^2; \nu) \right) \mathcal{O}(\nu) | \rho_H \rangle .$$ (131)

Here we take $| \rho_H \rangle$ to be the initial $q\bar{q}$ state in e^+e^- annihilation (with massless quarks). Then there is some simplification because $\mathcal{O}(\nu)| \rho_H \rangle = | \rho_H \rangle$. There is a more significant simplification because $| \rho_H \rangle$ is an eigenvector of $S_Y(\mu^2; \nu)$. We use Eq. (80), Eq. (81), and $\langle 1 | \rho_H \rangle = \sigma_H$ to give

$$\bar{g}(\nu) = \exp \left(\int_{\mu_i^2}^{Q^2} d\mu^2 \left(1 \left| S_Y(\mu^2; \nu) \right\rangle | \{p, f, c, c\}_2 \right) \right) .$$ (132)

Here $| \{p, f, c, c\}_2 \rangle$ is a color singlet $q\bar{q}$ basis state with $p_1 + p_2 = Q$. The results are independent of the direction of $p_1 = -p_2$ and independent of the quark flavor $f_1 = -f_2$. There is only one possible color state. The basis state is normalized to $(1| \{p, f, c, c\}_2 \rangle = 1$ [5].

We use the operator $\mathcal{I}(\nu)$ defined in Eq. (49),

$$\mathcal{I}(\nu) = \int_{\mu_i^2}^{Q^2} \frac{d\mu^2}{\mu^2} S_Y(\mu^2; \nu) ,$$ (133)

to write Eq. (132) as

$$\bar{g}(\nu) = \exp \left[1 \left| \mathcal{I}(\nu) \right\rangle | \{p, f, c, c\}_2 \right] .$$ (134)

In Eq. (134), $\mathcal{I}(\nu)$ is obtained from just $S(\mu^2)$, not from any higher order splitting functions that might be present in a higher order shower algorithm. The result for $\bar{g}(\nu)$ in Eq. (134) could be very different from $\bar{g}(\nu)$ as given by Eq. (123) because a first order parton shower is not the same as full QCD.

Using Eq. (72), we expand $\mathcal{I}(\nu)$ as a series of terms $\mathcal{I}^{[k]}(\nu)$, where $\mathcal{I}^{[k]}(\nu)$ contains k powers of the shower splitting operator $S(\mu^2)$. Thus $\mathcal{I}^{[k]}(\nu)$ contains k powers of α_s evaluated at a running scale inside the integrations that give $\mathcal{I}^{[k]}(\nu)$. We can expand $\mathcal{I}^{[k]}(\nu)$ in powers of α_s evaluated at a fixed scale. A convenient choice is $\mu_{\text{fixed}}^2 = Q^2/\nu$. Thus we write

$$\mathcal{I}^{[k]}(\nu) = \sum_{n=k}^{\infty} \frac{\alpha_s(Q^2/\nu)}{2\pi} \left(\int \frac{d\mu^2}{\mu^2} S_Y(\mu^2; \nu) \right)^n .$$ (135)

In $\mathcal{I}^{[k]}(\nu)$ there are k integrations over scale variables ν and k integrations over momentum fractions z, so $\mathcal{I}^{[k]}(\nu)$ could contain $2k$ factors of $\log(\nu)$. Changing the scale in α_s can produce one more factor $\log(\nu)$ for each factor α_s, so that $\mathcal{I}^{[k]}_n(\nu)$ could contain $n + k$ factors of $\log(\nu)$. However the exponent in $\bar{g}(\nu)$ in Eq. (123) contains only contributions proportional to $\alpha_s^n(Q^2/\nu) \log^{n+1}(\nu)$ with $j \leq n + 1$. Thus a minimal expectation for the parton shower is that $\mathcal{I}^{[k]}_n(\nu)$ contains only j factors of $\log(\nu)$ with $j \leq n + 1$. If this is the case, we can say that the $\log(\nu)$ factors exponentiate.

If we expand the QCD result for the exponent in $\bar{g}(\nu)$ as given by Eq. (123) in powers of $\alpha_s(Q^2/\nu)$, the coefficients of $\alpha_s^n(Q^2/\nu) \log^{n+1}(\nu)$ and $\alpha_s^n(Q^2/\nu) \log^n(\nu)$ take particular values. These values are generated by $\mathcal{I}^{[k]}(\nu)$ using α_s with its argument suitably specified by the shower algorithm. Thus for $k \geq 2$, $\mathcal{I}^{[k]}_n(\nu)$ must not

\[\text{In Sec. IX, we used } \mu_{\text{fixed}}^2 = Q^2. \]
contain a factor $\log^{n+1}(\nu)$ if we are to maintain the logarithmic summation at LL level and additionally must not contain a factor $\log^n(\nu)$ if we are to maintain the logarithmic summation at NLL level.

We investigate how many powers of $\log(\nu)$ are contained in $\mathcal{I}^{[k]}(\nu)$ in the following two sections.

XI. PARTON SHOWER AT LEADING LOG

In this section we examine the operators $S^{[k]}_\gamma(\mu^2; \nu)$ with the aim of discovering the behavior of $\tilde{g}(\nu)$ as given by a leading order parton shower using the Λ-ordered DEDUCTOR algorithm. The Laplace transform of $\tilde{g}(\nu)$ can be represented according to Eq. (134) in terms of the integral $\mathcal{I}(\nu)$ of $S_\gamma(\mu^2; \nu)$ defined in Eq. (49). We write the definition in the form

$$\mathcal{I}(\nu) = \int_0^\nu \frac{dx}{x} S_\gamma(xQ^2/\nu; \nu) .$$

Here we have defined a standard scale Q^2/ν and a scale variable x that gives the ratio of μ^2 to this standard scale: $\mu^2 = xQ^2/\nu$. If we expand the exponential (not just the exponent) in Eq. (134) in powers of $\alpha_s(Q^2/\nu)$, we will find terms proportional to $\alpha^n_s(Q^2/\nu) \log^j(\nu)$ with $j \leq 2n$.

The simplest expectation would be that $\mathcal{I}(\nu)$ also has an expansion with terms $\alpha^n_s(Q^2/\nu) \log^j(\nu)$ with $j \leq 2n$. Such a representation would not be very useful, even if we knew all of the coefficients for $j = 2n$. It is much more useful if there are nonzero contributions $\alpha^n_s(Q^2/\nu) \log^j(\nu)$ only for $j \leq n$ and we knew the coefficients for terms with $j = n + 1$. Then we call the $j = n + 1$ terms the leading log, LL, terms.

In the notation of this paper, the operator $\mathcal{I}^{[k]}(\nu)$ is proportional to one photon of the shower splitting operator and thus to one power of a running α_s rather than the fixed $\alpha_s(Q^2/\nu)$. As we have seen, this operator generates a whole LL series $\alpha^n_s(Q^2/\nu) \log^j(\nu)$ with $j \leq n$. We may hope that this is all that survives at the LL level. That is, we may hope that $\mathcal{I}^{[k]}(\nu)$ for $k \geq 2$ generates only terms $\alpha^n_s(Q^2/\nu) \log^j(\nu)$ with $j \leq n$. If so, we will say that $\tilde{g}(\nu)$ as given by the leading order parton shower exponentiates at the LL level.

In this section, we demonstrate that $\tilde{g}(\nu)$ does exponentiate at the LL level in this sense. In the following section, we will turn our attention to the NLL level.

We will need a small preliminary analysis. We see from Eq. (78) that for $S^{[2]}_\gamma(xQ^2/\nu; \nu)$ we will need $\mathcal{O}(\nu) S(\mu^2) \mathcal{O}^{-1}(\nu)]_p$ and $\mathcal{O}(\nu) S(\mu^2) \mathcal{O}^{-1}(\nu)]_{1-P}$.

For $\mathcal{O}(\nu) S(\mu^2) \mathcal{O}^{-1}(\nu)]_p$, we briefly repeat the derivation that gave us Eq. (111). We use Eq. (10), then Eq. (84), then Eqs. (87) and (110):

$$\begin{align*}
\mathcal{O}(\nu) S(xQ^2/\nu) \mathcal{O}^{-1}(\nu)]_p &= \left[\mathcal{O}(\nu) S^{[1,0]}(xQ^2/\nu) \mathcal{O}^{-1}(\nu)]_p + \mathcal{S}^{[0,1]}(xQ^2/\nu) \right)_p \\
&= \left[\mathcal{O}(\nu) S^{[1,0]}(xQ^2/\nu) \mathcal{O}^{-1}(\nu)]_p - S^{[1,0]}(xQ^2/\nu) \right]_p \\
&= \sum_i \left[S^{[1,0]}_i(xQ^2/\nu) e^{-\xi^p \nu \bar{f}} - S^{[1,0]}(xQ^2/\nu) \right]_p \\
&= - \sum_i \left[S^{[1,0]}_i(xQ^2/\nu) \right]_p (1 - e^{-\xi^p \nu \bar{f}}) . \quad (137)
\end{align*}$$

For $\mathcal{O}(\nu) S(\mu^2) \mathcal{O}^{-1}(\nu)]_{1-P}$, we need a somewhat different argument. We use Eqs. (79) and (10). Then we note that $\mathcal{O}(\nu) S^{[0,1]}(xQ^2/\nu) \mathcal{O}^{-1}(\nu)]_{1-P} = \mathcal{S}^{[0,1]}(xQ^2/\nu) \mathcal{O}^{-1}(\nu)]_p$ according to Eq. (64) because $\mathcal{S}^{[0,1]}(xQ^2/\nu)$ leaves the parton momenta and flavors unchanged. Then we use Eqs. (87) and (110). Finally, we use the definition (79) again. This gives

$$\begin{align*}
\mathcal{O}(\nu) S(xQ^2/\nu) \mathcal{O}^{-1}(\nu)]_{1-P} &= \left\{ \mathcal{O}(\nu) S^{[1,0]}(xQ^2/\nu) \mathcal{O}^{-1}(\nu)]_p + \mathcal{S}^{[0,1]}(xQ^2/\nu) \right\}_p \\
&= \left\{ \mathcal{O}(\nu) S^{[1,0]}(xQ^2/\nu) \mathcal{O}^{-1}(\nu)]_p - \mathcal{S}^{[0,1]}(xQ^2/\nu) \right\}_p \\
&= \sum_i \left[S^{[1,0]}_i(xQ^2/\nu) e^{-\xi^p \nu \bar{f}} \right]_p \\
&= \sum_i \left[S^{[1,0]}_i(xQ^2/\nu) \right]_{1-P} e^{-\xi^p \nu \bar{f}} . \quad (138)
\end{align*}$$

Now we can start with $S_\gamma(xQ^2/\nu; \nu)$ at first order. Eq. (111) gives us the result on the right hand side of Eq. (137):

$$S^{[1]}_\gamma(xQ^2/\nu; \nu) \approx - \sum_i \left[S^{[1,0]}_i(xQ^2/\nu) \right]_p (1 - e^{-\xi^p \nu \bar{f}}) . \quad (139)$$

Recall that the eigenvalue ξ_0^α of ξ^α_{st}, given by Eq. (107), is of order 1. We will also need $\mathcal{Y}^{[1]}_\gamma(xQ^2/\nu; \nu)$. When we substitute Eq. (139) into Eq. (77), we obtain

$$\begin{align*}
\mathcal{Y}^{[1]}_\gamma(xQ^2/\nu; \nu) &= - \int_0^\nu \frac{d\bar{f}}{\bar{f}} \sum_i \left[S^{[1,0]}_i(\bar{f}Q^2/\nu) \right]_p (1 - e^{-\xi^p \nu \bar{f}}) . \quad (140)
\end{align*}$$

Here, and in the remainder of this section, we set the infrared cutoff μ^2 to zero. We notice that the factor $(1 - e^{-\xi \bar{f}})$ is small for $\bar{f} \ll 1$ and approaches zero like \bar{f} when $\bar{f} \to 0$. This provides an infrared cutoff for the \bar{f} integration.
Now look at $S_Y(xQ^2/\nu; \nu)$ at second order. We use Eq. (78):
\[
S_Y^{[2]}(xQ^2/\nu; \nu) = \int_0^x \frac{dx}{x} \left[\mathcal{O}(\nu) S(\bar{x}Q^2/\nu) \mathcal{O}^{-1}(\nu) \right]_P \times \left[\mathcal{O}(\nu) S(xQ^2/\nu) \mathcal{O}^{-1}(\nu) \right]_{1-\nu}_P .
\]

(141)

With the results (137) and (138), we obtain
\[
S_Y^{[2]}(xQ^2/\nu; \nu) = - \sum_{l,t} \int_0^x \frac{dx}{x} \left[S_l^{[1,0]}(\bar{x}Q^2/\nu) \right]_P (1 - e^{-\xi_{lt}x}) \times \left[S_l^{[1,0]}(xQ^2/\nu) \right]_{1-\nu} e^{-\xi_{lt}x} .
\]

(142)

We integrate this to form the contribution to \mathcal{I}, Eq. (49), with two powers of S:
\[
\mathcal{I}^{[2]}(\nu) = \int_0^\nu \frac{d\bar{x}}{\bar{x}} \left[S_Y^{[2]}(xQ^2/\nu; \nu) \right] .
\]

(143)

There are potentially two $\log(\nu)$ factors from the z integrations inside the two factors of $S_l^{[1,0]}$. After expanding the running couplings in $S_l^{[1,0]}$, at order $\alpha_s^2(Q^2/\nu)$ there could be a total of n factors of $\log(\nu)$. Then we integrate over x and \bar{x}. This could produce two more factors of $\log(\nu)$, giving $\log^{n+2}(\nu)$ at order $\alpha_s^2(Q^2/\nu)$. But what happens in the x and \bar{x} integrations that we find based on Eq. (142)? If $\bar{x} \ll 1$, the factor $(1 - e^{-\xi_{lt}x})$ is small, so that the \bar{x} integration is effectively limited to the range $1 \lesssim \bar{x}$. If $1 \ll x$, the factor $e^{-\xi_{lt}x}$ is small, so that the x integration is effectively limited to the range $x \lesssim 1$. We also have $\bar{x} < x$. Thus the net effective integration range is $1 \lesssim \bar{x} < x \lesssim 1$. This leaves only $\bar{x} \sim x \sim 1$. There are no $\log(\nu)$ factors from the \bar{x} and x integrations.

A contribution to $\mathcal{I}^{[2]}$ proportional to $\alpha_s^2(Q^2/\nu) \log^{n+1}(\nu)$ can be designated leading log. The result (142) shows that there is no LL contribution to $\mathcal{I}^{[2]}$. Rather, the LL contributions to the integral \mathcal{I} of S_Y come from $S_Y^{[1]}$ after we account for the argument of the strong coupling α_s in $S_Y^{[1]}$, Eq. (121). This leaves the possibility of an NLL, $\alpha_s^2(Q^2/\nu) \log^n(\nu)$, contribution to $\mathcal{I}^{[2]}$. We will investigate the NLL contribution in the following section by looking at the z integrations in $S_Y^{[2]}$.

We will also need some qualitative information about the behavior of $\mathcal{I}^{[2]}$. From Eq. (74) we have
\[
\mathcal{I}^{[2]}(xQ^2/\nu; \nu) = \int_0^x \frac{dx}{x} \left\{ S_Y^{[2]}(\bar{x}Q^2/\nu; \nu) + \mathcal{I}^{[1]}(\bar{x}Q^2/\nu; \nu) \right\} S_Y^{[1]}(\bar{x}Q^2/\nu; \nu) .
\]

Using Eqs. (142), (139), and (140),
\[
\mathcal{I}^{[2]}(xQ^2/\nu; \nu) = \sum_{l,t}^{1,2} \int_0^x \frac{dx_1}{x_1} \int_0^{x_1} \frac{dx_2}{x_2} \times \left\{ \left[S_l^{[1,0]}(xQ^2/\nu) \right]_P (1 - e^{-\xi_{lt}x_2}) \times \left[S_l^{[1,0]}(x_1Q^2/\nu) \right]_{1-\nu} e^{-\xi_{lt}x_1} \right. \right.
\]
\[
+ \left. \left. \left[S_l^{[1,0]}(x_2Q^2/\nu) \right]_P (1 - e^{-\xi_{lt}x_2}) \times \left[S_l^{[1,0]}(x_1Q^2/\nu) \right]_{1-\nu} e^{-\xi_{lt}x_1} \right\} .
\]

(145)

In both terms we have a factor $(1 - e^{-\xi_{lt}x_2})$ so there is an effective integration range $1 \lesssim x_2 < x_1 < x$. This implies that $\mathcal{I}^{[2]}(xQ^2/\nu; \nu) \to 0$ for $x \ll 1$. In the first term, there is a factor $e^{-\xi_{lt}x_1}$, so that the integrand is small for $1 \ll x_1$. However the second term contains no such factor. The operators $S_{[1,0]}(xQ^2/\nu)$ and $S_{[2,0]}(x_2Q^2/\nu)$ can give us logarithms of their arguments. For this reason, $\mathcal{I}^{[2]}(xQ^2/\nu; \nu)$ can grow slowly, like a power of $\log(x)$, for $1 \ll x$.

If we take $x = 1$ in Eq. (145), the effective integration range for x_1 and x_2 is $1 \lesssim x_2 < x_1 < 1$. Thus $x_2 \sim x_1 \sim 1$. Then there are no factors of $\log(\nu)$ produced by the integrations over x_1 and x_2. Each factor of $S_l^{[1,0]}(x_1Q^2/\nu)$ contains one factor of $\log(\nu)$. Thus $\mathcal{I}^{[2]}(Q^2/\nu; \nu)$ contains at most 2 factors of $\log(\nu)$.

We can generalize these observations to suggest induction hypotheses for $S_Y^{[k]}$ and $\mathcal{I}^{[k]}$ for $k \geq 2$:

1. The operator $S_Y^{[k]}(xQ^2/\nu; \nu)$ is suppressed by a factor x times logarithms for $x \to 0$ and by an exponential e^{-c_x} times logarithms for $x \to \infty$. Its only unsuppressed region is for $x \sim 1$.

2. The operator $\mathcal{I}^{[k]}(xQ^2/\nu; \nu)$ is suppressed by a factor x times logarithms for $x \to 0$ and grows at most logarithmically for $x \to \infty$.

3. The operators $S_Y^{[k]}(Q^2/\nu; \nu)$ and $\mathcal{I}^{[k]}(Q^2/\nu; \nu)$ each contain at most k factors of $\log(\nu)$ at order $\alpha_s^2(Q^2/\nu)$.

In property 3, we note that the operators $S_Y^{[k]}(Q^2/\nu; \nu)$ and $\mathcal{I}^{[k]}(Q^2/\nu; \nu)$ contain higher powers of $\alpha_s(Q^2/\nu)$ that arise from expanding the running couplings in their definitions in powers of $\alpha_s(Q^2/\nu)$. This expansion can yield one more power of $\log(\nu)$ per power of $\alpha_s(Q^2/\nu)$. Thus there are at most n powers of $\log(\nu)$ at order $\alpha_s^2(Q^2/\nu)$.

We have found that these properties hold at order $k = 2$. We now establish that they hold for any larger order by assuming that they hold at order k and showing that they hold at order $k + 1$.
Begin with $S_{Y}^{[k+1]}$. From Eq. (73) we have

$$
S_{Y}^{[k+1]}(x Q^2/\nu; \nu) = \left[\mathcal{Y}^{[k]}(x Q^2/\nu; \nu) \times \left\{ \mathcal{O}(\nu)S(x Q^2/\nu)O(\nu) - S_{Y}^{[1]}(x Q^2/\nu; \nu) \right\} \right]_{P} - \sum_{j=2}^{k-1} \left[\mathcal{Y}^{[k+1-j]}(x Q^2/\nu; \nu) S_{Y}^{[j]}(x Q^2/\nu; \nu) \right]_{P} + \left[\mathcal{Y}^{[k]}(x Q^2/\nu; \nu) S_{Y}^{[0]}(x Q^2/\nu; \nu) \right]_{P} .
$$

We use Eq. (75) to simplify the first term and Eqs. (77) and (75) to simplify the last term:

$$
S_{Y}^{[k+1]}(x Q^2/\nu; \nu) = \left[\mathcal{Y}^{[k]}(x Q^2/\nu; \nu) \mathcal{O}(\nu)S(x Q^2/\nu)O(\nu) \right]_{1-P} - \sum_{j=2}^{k-1} \left[\mathcal{Y}^{[k+1-j]}(x Q^2/\nu; \nu) S_{Y}^{[j]}(x Q^2/\nu; \nu) \right]_{P} + \left[\mathcal{Y}^{[k]}(x Q^2/\nu; \nu) S_{Y}^{[0]}(x Q^2/\nu; \nu) \right]_{P} .
$$

Now we can use Eq. (138) in the first term and Eq. (137) in the last term, giving us

$$
S_{Y}^{[k+1]}(x Q^2/\nu; \nu) = \sum_{l} \left[\mathcal{Y}^{[k]}(x Q^2/\nu; \nu) \left[S_{Y}^{[1,0]}(x Q^2/\nu) \right]_{1-P} e^{-\xi_{P}^{op} x} - \sum_{j=2}^{k-1} \left[\mathcal{Y}^{[k+1-j]}(x Q^2/\nu; \nu) S_{Y}^{[j]}(x Q^2/\nu; \nu) \right]_{P} + \sum_{l} \left[\int_{0}^{x} \frac{d\bar{x}}{\bar{x}} \left[S_{Y}^{[1,0]}(x Q^2/\nu) \right]_{P} (1 - e^{-\xi_{P}^{op} \bar{x}}) \right] S_{Y}^{[0]}(x Q^2/\nu; \nu) \right]_{P} .
$$

In the first term, property 2 for $\mathcal{Y}^{[k]}(x Q^2/\nu; \nu)$ implies that this term is unsuppressed only for $1 \lesssim x$, while the factor $\exp(-\xi_{P}^{op} x)$ implies that this term is unsuppressed only for $x \lesssim 1$. Thus this term is unsuppressed only for $x \sim 1$. In the second term, property 1 for $S_{Y}^{[j]}(x Q^2/\nu; \nu)$ implies that this term is unsuppressed only for $x \sim 1$. In the third term, property 1 for $S_{Y}^{[0]}(x Q^2/\nu; \nu)$ implies that this term is unsuppressed only for $x \sim 1$. This gives us property 1 for $S_{Y}^{[k+1]}(x Q^2/\nu; \nu)$.

Now set $x = 1$ in Eq. (148). There is an integration over \bar{x} in the third term, but, accounting for the factor $[1 - \exp(-\xi_{P}^{op} x)]$, the integration region is $1 \lesssim \bar{x} < 1$. That is, $\bar{x} \sim 1$. We can then use property 3 for the operators that appear in order to count the maximum possible number of factors of $\log(\nu)$ in each term. At order α_{s}^{k+1}, this gives the maximum number of factors of $\log(\nu)$ as $k + 1$, thus verifying property 3 for $S_{Y}^{[k+1]}(x Q^2/\nu; \nu)$.

Now we examine $\mathcal{Y}(x Q^2/\nu; \nu)$. We use Eq. (74) to write for $k \geq 1$,

$$
\mathcal{Y}^{[k+1]}(x Q^2/\nu; \nu) = \int_{0}^{x} \frac{d\bar{x}}{\bar{x}} \mathcal{Y}^{[k]}(\bar{x} Q^2/\nu; \nu) S_{Y}^{[1]}(\bar{x} Q^2/\nu; \nu) + \sum_{j=2}^{k} \int_{0}^{x} \frac{d\bar{x}}{\bar{x}} \mathcal{Y}^{[k+1-j]}(\bar{x} Q^2/\nu; \nu) S_{Y}^{[j]}(\bar{x} Q^2/\nu; \nu) + \int_{0}^{x} \frac{d\bar{x}}{\bar{x}} S_{Y}^{[k+1]}(\bar{x} Q^2/\nu; \nu) .
$$

We use Eq. (75) and (137) to simplify the first term:

$$
\mathcal{Y}^{[k+1]}(x Q^2/\nu; \nu) = -\sum_{l} \int_{0}^{x} \frac{d\bar{x}}{\bar{x}} \mathcal{Y}^{[k]}(x_1 Q^2/\nu; \nu) \left[S_{Y}^{[1,0]}(x_1 Q^2/\nu) \right]_{P} \times (1 - e^{-\xi_{P}^{op} x}) + \sum_{j=2}^{k} \int_{0}^{x} \frac{d\bar{x}}{\bar{x}} \mathcal{Y}^{[k+1-j]}(x_1 Q^2/\nu; \nu) S_{Y}^{[j]}(x_1 Q^2/\nu; \nu) S_{Y}^{[k+1]}(x_1 Q^2/\nu; \nu) .
$$

In each term, condition 2 for $\mathcal{Y}^{[k]}(x_1 Q^2/\nu; \nu)$ or $\mathcal{Y}^{[k+1-j]}(x_1 Q^2/\nu; \nu)$ or condition 1 for $S_{Y}^{[k+1]}(x_1 Q^2/\nu; \nu)$ implies that the integrand of the x_1 integration is unsuppressed only for $1 \lesssim x_1$. Since $x_1 < x$, $\mathcal{Y}^{[k+1]}(x Q^2/\nu; \nu)$ is unsuppressed only for $1 \lesssim x$. This establishes property 2 for $\mathcal{Y}^{[k+1]}(x Q^2/\nu; \nu)$.

Now set $x = 1$ in Eq. (150). There is an integration over x_1 in each term, but the integration region is $1 \lesssim x_1 < 1$. We can then use property 3 for the operators that appear in order to count the maximum possible number of factors of $\log(\nu)$ in each term. At order $\alpha_{s}^{k+1}(Q^2/\nu)$, this gives the maximum number of factors of $\log(\nu)$ as $k + 1$, thus verifying property 3 for $\mathcal{Y}^{[k+1]}(Q^2/\nu; \nu)$.

We call the properties 1, 2, and 3 above the LL exponentiation property of $S_{Y}(\mu^2; \nu)$, as discussed at the start of this section. In the following section we analyze the NLL contributions to $S_{Y}(\mu^2; \nu)$.

XII. PARTON SHOWER AT NEXT-TO-LEADING LOG

We have seen that $S_{Y}(\mu^2; \nu)$ has the proper perturbative structure to allow $\hat{g}(\nu)$ as given by a leading order parton shower using the Λ-ordered DEDUCTOR algorithm to exponentiate correctly at the leading log level.

First, the operator $S_{Y}^{[1]}(\mu^2; \nu)$ constructed from one power of the shower splitting operator $S(\mu^2)$ has the right structure to reproduce the known QCD result [18]...
at LL accuracy and even at NLL accuracy, provided that the argument of the running coupling α_s in $S(\mu^2)$ is properly defined. For $I^{[1]}(\nu)$, we can state this in terms of an expansion in powers of $\alpha_s(Q^2/\nu)$. We consider the integral $I^{[1]}(\nu)$ of $S^{[1]}(\mu^2;\nu)$ defined in Eq. (136). When the running α_s in $I^{[1]}(\nu)$ is expanded in powers of $\alpha_s(Q^2/\nu)$, the coefficients of $\alpha_s^n(Q^2/\nu)\log^{n+1}(\nu)$, that is the LL coefficients, are correct and the coefficients of $\alpha_s^n(Q^2/\nu)\log^n(\nu)$, the NLL coefficients, are also correct.

Second, each of the operators $S^{[k]}(\mu^2;\nu)$ for $k \geq 2$ has the right structure so that in the integral $I^{[k]}(\nu)$, the coefficient of $\alpha_s^n(Q^2/\nu)\log^{n+1}(\nu)$, which contributes to the exponent in $\tilde{g}(\nu)$ at LL accuracy, vanish. That is, the coefficient $I^{[k]}_n(\nu)$ of $\alpha_s^n(Q^2/\nu)$ in $I^{[k]}(\nu)$ contains at most n powers of $\log(\nu)$.

This LL exponentiation property arises from two features of $S^{[k]}(\mu^2;\nu)$. First, $S^{[k]}(\mu^2;\nu)$ is suppressed for $\mu^2 \gg Q^2/\nu$ and for $\mu^2 \ll Q^2/\nu$, so that only the integration region $\mu^2 \sim Q^2/\nu$ contributes to $I^{[k]}(\nu)$ and no factor of $\log(\nu)$ arises from integrating over μ^2 from Q^2/ν to Q^2. Second, $S^{[k]}(Q^2/\nu)$ at order $\alpha_s^n(Q^2/\nu)$ contains at most n factors of $\log(\nu)$.

Now, if the coefficients of $\alpha_s^n(Q^2/\nu)\log^{n}(\nu)$ in $I^{[k]}(\nu)$ were to vanish for $k \geq 2$, then $I^{[k]}(\nu)$ would not contribute to $\tilde{g}(\nu)$ at NLL level. Then the only NLL contributions to $\tilde{g}(\nu)$ would come from the expansion of the running coupling in $I^{[1]}(\nu)$. Since these contributions match the known QCD result [18], we would conclude that the first order parton shower according to the DEDUCTOR algorithm generates the known QCD result at NLL accuracy.

Remarkably, this is the case: in $I^{[k]}(\nu)$ for $k \geq 2$ the coefficients $I^{[k]}_n(\nu)$ of $\alpha_s^n(Q^2/\nu)$ contain at most $n - 1$ powers of $\log(\nu)$ for large ν. The proof of this result is somewhat involved, so we present it in Appendix A.

The proof in Appendix A requires that color be treated exactly. Although, in principle, the DEDUCTOR algorithm allows color to be treated with arbitrarily high accuracy [20, 21], high accuracy requires substantial computer resources. The use of a less exact version of color, the LC+ approximation [8], is more practical and is adequate for most purposes. With the LC+ approximation, some of the NLL contributions to the exponent in $\tilde{g}(\nu)$ will be incorrect at order $1/N_c^2$, where $N_c = 3$ is the number of colors.

XIII. NUMERICAL BEHAVIOR OF $I^{[2]}(\nu)$

We have considered analytically the coefficient $I^{[k]}_n(\nu)$ of $\alpha_s^n(Q^2/\nu)/(2\pi)^n$ in $I^{[k]}(\nu)$, Eq. (133). We have seen analytically in Secs. XI and XII and in Appendix A that $I^{[k]}_n(\nu)$ for $k \geq 2$ contains no more than $n - 1$ powers of $\log(\nu)$ for large ν.

The first nontrivial example of this is that $I^{[2]}_2(\nu)$, when calculated at large $\log(\nu)$, is proportional to $\log(\nu)$ plus a constant but has no $\log^2(\nu)$ contribution. Similarly, $I^{[2]}_3(\nu)$ has at most a $\log^2(\nu)$ contribution at large ν. We can check these results numerically.

We define the second order term in the exponent in $\tilde{g}(\nu)$, Eq. (134):

$$\langle I^{[2]}(\nu) \rangle = \int_0^{Q^2} \frac{d\mu^2}{\mu^2} \left(1 | S^{[2]}_S(\mu^2;\nu) | \{p, f, c, c\}_2 \right). \quad (151)$$

We expand $\langle I^{[2]}(\nu) \rangle$ in powers of $\alpha_s(Q^2/\nu)/(2\pi)$ and calculate numerically the first two coefficients, $\langle I^{[2]}_2(\nu) \rangle$ and $\langle I^{[2]}_3(\nu) \rangle$,

$$\langle I^{[2]}(\nu) \rangle = \langle I^{[2]}_2(\nu) \rangle \left(\frac{\alpha_s(Q^2/\nu)}{2\pi} \right)^2 \quad + \langle I^{[2]}_3(\nu) \rangle \left(\frac{\alpha_s(Q^2/\nu)}{2\pi} \right)^3 + \ldots. \quad (152)$$

The state $\{p, f, c, c\}_2$ in Eq. (151) is a color singlet, flavor singlet, $q\bar{q}$ state with $p_1 + p_2 = Q$. The results are the same with any quark flavor choice and there is only one possible color state. The state is normalized to $(1 | p, f, c, c\}_2 = 1$. The operator $S^{[2]}_S(\mu^2;\nu)$ is calculated using the exact DEDUCTOR splitting functions according to Eq. (78). We use the exact definition of thrust to calculate τ in $\mathcal{O}(\nu)$, Eq. (40). The calculation is performed with full color, not just leading color or the LC+ approximation. The integrals over scale in $\langle I^{[2]}_n(\nu) \rangle$ are infrared convergent so there is no need to impose a lower cutoff on the shower scale μ^2. Then the coefficients $\langle I^{[2]}_n(\nu) \rangle$ are independent of Q^2.

We plot $\langle I^{[2]}_2(\nu) \rangle$ versus $\log(\nu)$ as the solid red curve in Fig. 1. We first note that $\langle I^{[2]}_2(\nu) \rangle$ is small. For instance, $\log(\nu) = 8$ corresponds roughly to $\tau = e^{-8} \approx 3 \times 10^{-4}$ in the thrust distribution. For $\log(\nu) < 8$, we find $\langle I^{[2]}_2(\nu) \rangle \lesssim 1$. Then if we take $\alpha_s \approx 0.1$, we have $|\alpha_s/(2\pi)|^2 |\langle I^{[2]}_2(\nu) \rangle| \lesssim 0.0003$. The function $\langle I^{[2]}(\nu) \rangle$ appears in the exponent of the Laplace transform of the thrust distribution, but for such a small value of $\langle I^{[2]}(\nu) \rangle$, one would not have needed to exponentiate it.

Our primary concern is the behavior of $\langle I^{[2]}_2(\nu) \rangle$ for very large $\log(\nu)$. Our analytical results indicate that $\langle I^{[2]}_2(\nu) \rangle$ should be a straight line for large $\log(\nu)$. The numerical result supports this conclusion. We also evaluate the integrand for $d\langle I^{[2]}_2(\nu) \rangle/d\log(\nu)$ analytically and then integrate this expression numerically and display the result as the dashed blue curve in Fig. 1. The analytical

6 The function $\tau(p_{\mu})$ is a complicated function of the parton momenta. Evaluation of this function becomes numerically unstable for parton states p_{μ} that give very small τ. For this reason, in this and later figures, we limit $\log(\nu)$ to $\log(\nu) < 16$, although in some cases the numerical results appear to be reliable for larger values of $\log(\nu)$.
result implies that \(d\langle I_2^3(\nu)\rangle/d\log(\nu)\) should approach a constant for large \(\log(\nu)\) and the numerical result supports this conclusion.

In our analysis, we argued that \(\tilde{\tau} - \tau = y\) should be a good approximation in the second splitting for the purpose of determining how many powers of \(\log(\nu)\) can appear in \(\langle I_2^2(\nu)\rangle\). We tried calculating \(\langle I_2^2(\nu)\rangle\) with this approximation. The result is shown as the dotted red line in Fig. 1. This curve is, as expected, a straight line for large \(\log(\nu)\) and has the same slope as the curve for the exact \(\langle I_2^2(\nu)\rangle\). We were a bit surprised to find that \(\langle I_2^2(\nu)\rangle\) with the exact \(\tilde{\tau} - \tau\) differs by a noticeable amount from the result with the approximate thrust value. The difference is in the direction of making \(|\langle I_2^2(\nu)\rangle|\) smaller. We do not have an analytical explanation for this behavior.

We also calculated \(\langle I_2^3(\nu)\rangle\) as a numerical integral. We plot \(\langle I_2^3(\nu)\rangle\) versus \(\log(\nu)\) as the solid red curve in Fig. 2. We note first that \(\alpha_s/(2\pi)^3|\langle I_2^3(\nu)\rangle|\) is small for \(\log(\nu) < 8\) if we take \(\alpha_s \approx 0.1\). Our analytical results indicate that for large \(\nu\) the highest power of \(\log(\nu)\) in \(\langle I_2^3(\nu)\rangle\) should be \(\log^2(\nu)\). This implies that for large \(\nu\) the highest power of \(\log(\nu)\) in \(d\langle I_2^3(\nu)\rangle/d\log(\nu)\) should be \(\log^1(\nu)\). The numerical result, graphed as the dashed blue line in Fig. 2, supports this conclusion.

![FIG. 1. Plot of \(\langle I_2^3(\nu)\rangle\), Eqs. (151) and (152), versus \(\log(\nu)\) (solid red curve). For large \(\log(\nu)\) the graph is approximately a straight line, corresponding to only one factor of \(\log(\nu)\), indicating that the shower generates \(\langle I_2^3(\nu)\rangle\) at NLL accuracy. The dashed blue curve is \(d\langle I_2^3(\nu)\rangle/d\log(\nu)\). The dotted red curve shows an approximate version of \(\langle I_2^3(\nu)\rangle\) described in the text.](image1)

![FIG. 2. Plot of \(\langle I_2^3(\nu)\rangle\), Eqs. (151) and (152), versus \(\log(\nu)\) (solid red curve). The dashed blue curve is \(d\langle I_2^3(\nu)\rangle/d\log(\nu)\). For large \(\log(\nu)\) the graph of \(d\langle I_2^3(\nu)\rangle/d\log(\nu)\) is approximately a straight line, indicating that the shower generates \(\langle I_2^3(\nu)\rangle\) at NLL accuracy.](image2)

XIV. NUMERICAL BEHAVIOR OF THE THRUST DISTRIBUTION

We have seen that the operator \(S_Y(\mu^2; \nu)\) directly generates the Laplace transform \(\tilde{g}(\nu)\) of the thrust distribution according to Eq. (134). The first order term \(S_Y^{[1]}(\mu^2; \nu)\) in this operator is obtained from the shower splitting function for a first order \(\Lambda\)-ordered shower. We have further seen that this term generates the known [18] summation of logarithms of \(\tau\) at the NLL level as long as the shower splitting function is suitably defined. Furthermore, the higher order terms \(S_Y^{[k]}(\mu^2; \nu)\) obtained from this first order shower splitting function generate only contributions beyond the NLL level.

According to Eq. (130), same result for \(\tilde{g}(\nu)\) as in Eq. (134) is obtained by running the \(\Lambda\)-ordered shower and measuring the Laplace transform \(g(\tau)\) as in Eq. (37). Will this give the same result as the NLL analytical result listed in Eqs. (124) and (125)?

In this section, we try this experiment. It is not useful to set \(Q^2 = M_Z^2\), which would be relevant for LEP (Large Electron Positron) experiments because a parton shower needs an infrared cutoff. We can take the cutoffs on allowed shower splittings to be \(\Lambda > 1\ GeV\) and \(k_T > 1\ GeV\), but then there is not much range between
(1 GeV)2 and the starting scale Q^2 of the shower. The result is that there is not a wide range in τ in which we can examine the dependence of $g(\tau)$ on $\log(1/\tau)$ free of the effects of the infrared cutoffs. Instead, we retain $(1 \text{ GeV})^2$ cutoffs but set $Q^2 = (10 \text{ TeV})^2$. We then run the Λ-ordered DEDUCTOR shower with the LC+ approximation for color [8]. We turn off the top quark, so that the shower is based on 5-flavor QCD.

We examine the effects of missing NLL terms and of color in Fig. 4. Here the NLL curve is copied from Fig. 3 and the DEDUCTOR curve from Fig. 3 is displayed as a dashed (black) line. The remaining two curves are modified versions of the curves in Fig. 3.

We first address the fact that DEDUCTOR omits the β_1 term for evaluating the dependence of $\alpha_s((1-z)yQ^2)$ on $(1-z)$. This means that in the summation of logarithms of $\log(1/\tau)$, DEDUCTOR is missing the term $-(\beta_1/\beta_0)\log((1-\lambda^2)/(1-2\lambda))$ in $f_2(\lambda)$ in Eq. (128). In order to see the effect of this term, we calculate the ratio

$$r(\tau) = \frac{g_{\text{NLL}}(\tau)}{g_{\text{mod}}(\tau)}, \quad (153)$$

where $g_{\text{NLL}}(\tau)$ is obtained by omitting the term $-(\beta_1/\beta_0)\log((1-\lambda^2)/(1-2\lambda))$ in the calculation of $g(\tau)$. Then we correct the DEDUCTOR result for $g(\tau)$ by multiplying it by $r(\tau)$. We plot the corrected DEDUCTOR curve in Fig. 4. We see that the corrected DEDUCTOR curve is quite close to the uncorrected curve. However the difference is visible in Fig. 4 and acts in the direction of reducing the discrepancy between the analytical summation of logarithms and the numerical DEDUCTOR result.\footnote{In a future version of DEDUCTOR, we may add this contribution to the splitting kernel, although its practical effect is quite small.}

We next address the fact that in Fig. 3 we used the default color approximation in DEDUCTOR, the LC+ approximation [8]. This approximation is an improvement over the leading color approximation, but it is far from being exact. In the LC+ approximation, we replace the exact first order splitting function $S(\mu^2) = S^{[1,0]}(\mu^2) + S^{[0,1]}(\mu^2)$ by an approximate version $S_{\text{LC+}}(\mu^2) = S_{\text{LC+}}^{[1,0]}(\mu^2) + S_{\text{LC+}}^{[0,1]}(\mu^2)$. DEDUCTOR has the option of expanding in powers of $S(\mu^2) - S_{\text{LC+}}(\mu^2)$ and keeping terms up to and including $[S(\mu^2) - S_{\text{LC+}}(\mu^2)]^n$, where n can be chosen by the user [22]. In order to assess what difference a more exact treatment of color may make, we plot in Fig. 3 the result of calculating the thrust distribution at 10 TeV with $n = 2$. We have corrected this result using the factor $r(\tau)$ from Eq. (153). Of course, using $n = 2$ slows the calculation down, increasing the statistical errors. Within the statistical errors, we find that improving the color treatment makes no difference.

In summary, we have made a numerical comparison of the expected NLL result for the thrust distribution and a direct calculation using a Λ-ordered parton shower with a global momentum mapping, setting Q^2 to (10 TeV)2 so as to allow $\log(1/\tau)$ to be adequately large to provide a real test. We have found good agreement within the estimated errors.
A ordering, Deductor @ 10 TeV

\[\frac{\tau}{\sigma_0} \frac{d\sigma}{d\tau} \]

\[\text{Deductor} \quad \text{NLL} \]

\[\tau \quad 10^{-3} \quad 10^{-2} \quad 10^{-1} \]

\[0 \quad 0.05 \quad 0.1 \quad 0.15 \quad 0.2 \]

FIG. 3. Plot of \(\frac{\tau}{\sigma_0} \frac{d\sigma}{d\tau} \) according to Deductor with \(\Lambda \) ordering at \(Q^2 = (10 \text{ TeV})^2 \) compared to the NLL expectation, Eqs. (124) and (125). In Deductor, we use a cutoff for splittings: \(k_T > 1 \text{ GeV} \) and \(\Lambda > 1 \text{ GeV} \). The Deductor curve is higher than the NLL curve at \(\tau \approx 0.01 \) and lower for small \(\tau \).

k\(_T\) ordering, Deductor

\[\langle I^2_2(\nu) \rangle \]

\[d\langle I^2_2(\nu) \rangle/d\log(\nu) \]

\[\log(\nu) \quad 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14 \quad 16 \]

\[-12 \quad -10 \quad -8 \quad -6 \quad -4 \quad -2 \quad 0 \]

FIG. 5. Plot of \(\langle I^2_2(\nu) \rangle \) versus \(\log(\nu) \), as in Fig. 1, for the Deductor shower algorithm with \(k_T \) ordering. The blue dashed curve is \(d\langle I^2_2(\nu) \rangle/d\log(\nu) \).

XV. \(k_T \) ORDERING

The default ordering variable in Deductor is \(\Lambda \), Eq. (1). However, there is an option to use \(k_T \) ordering.\(^8\)

We can define \(I^2_2(\nu) \) with \(k_T \) ordering using Eqs. (78) and (151). We simply set the scale parameters to \(\mu^2 = k_T^2 \) for the first splitting and \(\bar{\mu}^2 = \bar{k}_T^2 \) for the second splitting. Then \(k_T \) ordering means that \(\bar{k}_T^2 < k_T^2 \) in Eq. (78).

With \(k_T \) ordering, the reasoning supporting NLL accuracy of the \(\Lambda \)-ordered shower from Sec. XI and Appendix A is lost. However, it appears that we can still get cancellation of \(\log(\nu) \) factors in \(I^2_2(\nu) \) at the NLL level. That is, the integral has contributions proportional to \(\log^4(\nu) \) at large \(\log(\nu) \), but after these contributions are summed, only terms proportional to \(\log^3(\nu) \) and \(\log^2(\nu) \) remain. The mechanism is that the contributions from the two terms specified by the \([\cdots]_{1-P} \) operation in the last line of Eq. (78), representing real emissions and virtual emissions, cancel each other. A complete proof is beyond the scope of this paper, but we present an argument that makes this conclusion plausible in Appendix B.

We can check the effect of the choice of ordering variable on the summation of \(\log(\nu) \) factors in the thrust distribution by calculating \(\langle I^2_2(\nu) \rangle \) numerically using the

\(^8\) For \(k_T \) ordering, \(k_T^2 = -k_{\perp}^2 \) where the vector \(k_{\perp} \) is orthogonal to the momentum \(p_l \) of the emitting parton and to \(Q \), rather than being orthogonal to \(p_l \) and the momentum \(p_k \) of the dipole partner parton.
DEDUCTOR shower algorithm with k_T ordering. The result is shown as the solid red curve in Fig. 5. We see that $\langle I_3^2(\nu) \rangle$ is quite small, $|\langle I_3^2(\nu) \rangle| < 2$ for $\log(\nu) < 8$. For NLL accuracy, this curve should be linear for large $\log(\nu)$. To quite good, but not perfect, accuracy, it is.

We have also checked the behavior of $\langle I_3^2(\nu) \rangle$ as a function of $\log(\nu)$. The results are shown in Fig. 6. For large ν the highest power of $\log(\nu)$ in $\langle I_3^2(\nu) \rangle$ should be $\log^2(\nu)$. This implies that for large ν the highest power of $\log(\nu)$ in $d\langle I_3^2(\nu) \rangle/d\log(\nu)$ should be $\log^1(\nu)$. The numerical result, graphed as the dashed blue line in Fig. 6, supports this conclusion.

We have investigated only $\langle I_3^2(\nu) \rangle$ and $\langle I_3^2(\nu) \rangle$. We have found results consistent with NLL accuracy for the DEDUCTOR shower with k_T ordering, but there could still be inconsistencies with NLL accuracy for $\langle I_n^k(\nu) \rangle$ for other values of k and n. A promising approach to investigating this issue would be to automate the calculation of $\langle I_n^k(\nu) \rangle$ so that these functions could be calculated numerically for any not-too-large values of k and n. We leave this approach for future work.

We can also look directly at $(\tau/\sigma_n)d\sigma/d\tau$ with $Q^2 = (10 \text{ TeV})^2$. We use either DEDUCTOR with its default Λ ordering or DEDUCTOR with k_T ordering. The result with Λ ordering, from Fig. 4, includes the correction factor $r(\tau)$ from Eq. (153). The result with k_T ordering needs no correction factor because k_T^2 in $\alpha_s(\Lambda_T k_T^2)$ in the DEDUCTOR splitting function is the same as the ordering variable. We do not include hadronization. Thus we examine only perturbative effects and the effects of the shower cutoff. With Λ ordering, the shower stops at $\Lambda = 1 \text{ GeV}$ and there is also a cut that prevents the k_T in any splitting from being smaller than 1 GeV. With k_T ordering, the shower stops at $k_T = 1 \text{ GeV}$. The result is shown in Fig. 7. We see that the shower ordering does make a difference. Although $(\tau/\sigma_n)d\sigma/d\tau$ calculated with k_T ordering is similar to the NLL expectation $\tau g(\tau)$ from Eqs. (124) and (125), the difference between these two results is greater than the expected uncertainties discussed for Λ ordering in Sec. XIV.

As an alternative, we can follow the method of Ref. [3] and calculate $(\tau/\sigma_n)d\sigma/d\tau$ for various values of Q^2, and thus for various values of $\alpha_s(Q^2)$. We choose $Q^2 = (1 \text{ TeV})^2$, $(10 \text{ TeV})^2$, and $(100 \text{ TeV})^2$, corresponding to $\alpha_s(Q^2) = 0.087, 0.069$, and 0.058. For each value of Q^2, we calculate the expected NLL function $\tau g(\tau)$, Eqs. (124) and (125). Then we plot the ratio

$$ R(\tau, Q^2) = \frac{(\tau/\sigma_n)d\sigma/d\tau}{\tau g(\tau)} \quad (154) $$

The results are displayed in Fig. 8. In the case $Q^2 = (100 \text{ TeV})^2$, there are typically around 100 partons produced in each event. This causes DEDUCTOR to operate

Ref. [3] considers $\alpha_s(Q^2)$ as small as 0.005, corresponding to $Q^2 \approx (10^{20} \text{ GeV})^2$ but DEDUCTOR is not capable of working with values of Q^2 as large as this.
This is consistent with the expectation that \(R_0(Q^2) \to 0 \) as \(\alpha_s(Q^2) \to 0 \). We tentatively conclude from these results that the \(k_T \)-ordered DEDUCTOR shower is correctly summing thrust logarithms at the NLL level, even though the difference between the shower result and the NLL analytical result is larger for \(k_T \) ordering than for \(\Lambda \) ordering.

\[R(\tau, Q^2) \approx R_0(Q^2) . \]
(155)

These values (\(R_0 = 1.190, 1.112, 1.070 \)) are shown as dashed lines in Fig. 8. Second, we note that \(R(\tau, Q^2) \) is fairly close to 1 and gets closer to 1 as \(Q^2 \) increases. In fact, to within about 10\%,

\[R_0(Q^2) - 1 \approx 23 \alpha_s^2(Q^2) . \]
(156)

This is consistent with the expectation that \(R_0(Q^2) \to 0 \) as \(\alpha_s(Q^2) \to 0 \). We tentatively conclude from these results that the \(k_T \)-ordered DEDUCTOR shower is correctly summing thrust logarithms at the NLL level, even though the difference between the shower result and the NLL analytical result is larger for \(k_T \) ordering than for \(\Lambda \) ordering.
A ordering, Deductor-Local

![Graph: Plot of $\langle I_2^{[2]}(\nu) \rangle$ and $d\langle I_2^{[2]}(\nu) \rangle/d\log(\nu)$](image)

FIG. 9. Plot of $\langle I_2^{[2]}(\nu) \rangle$, as in Fig. 1, for the Deductor splitting functions with the Catani-Seymour local momentum mapping [23]. $\langle I_2^{[2]}(\nu) \rangle$ is approximately quadratic in $\log(\nu)$, indicating that $I_2^{[2]}(\nu)$ that changes the NLL result.

i $\notin \{l, m+1\}$ in Eq. (158) and this is the same as parton k in Eq. (159). That is, the global and local mappings are the same for $S_Y^{[k]}(\mu^2; \nu)$ for $m = 2$. The operators $S_Y^{[k]}(\mu^2; \nu)$, with k real or virtual splittings, do depend on the choice of momentum mapping for $k \geq 2$.

The local momentum mapping has a feature for thrust that one might regard as peculiar. Suppose that parton l is in the right thrust hemisphere, $l \in R$. Then for a small angle splitting, the daughter partons l and $m+1$ will also be in the right hemisphere. In the case that $k \in R$, we split a dipole that is entirely in R. Then Eqs. (160) and (161) imply that both τ_R and τ_L in Eq. (27) are unchanged by the splitting, so that $\tau = \tau_R + \tau_L$ is unchanged. Since, in this class of choices for the dipole that splits, the thrust is not changed, the real-virtual cancellation between $S^{[1,0]}(\mu^2)$ and $S^{[0,1]}(\mu^2)$ simply removes contributions of these dipoles from the calculation of the thrust distribution.

With Λ ordering and a local momentum mapping, the argument in Sec. XI that the shower sums logarithms of thrust at LL level still works, but the argument in Appendix A for cancellations at the NLL level fails. Thus we cannot expect a Λ-ordered parton shower that uses a local momentum mapping following Eqs. (160) and (161) to properly sum the logarithms of ν at NLL accuracy.

We can check what happens numerically by calculating $\langle I_2^{[2]}(\nu) \rangle$, Eq. (151), using the Λ-ordered Deductor parton shower algorithm but with the Catani-Seymour momentum mapping substituted for the global momentum mapping. The result is shown as the solid red curve in Fig. 9. We note immediately that this result is completely different from the result in Fig. 1: in the range $\log(\nu) < 8$, $\langle I_2^{[2]}(\nu) \rangle$ with the global momentum mapping is less than 1 while with the local mapping it reaches values greater than 30. Leaving aside the magnitude of $\langle I_2^{[2]}(\nu) \rangle$, if the parton shower algorithm with a local momentum mapping produced NLL accuracy for summing $\log(\nu)$ factors, the graph of $\langle I_2^{[2]}(\nu) \rangle$ would be a straight line, but it is not. The dashed blue curve is $d\langle I_2^{[2]}(\nu) \rangle/d\log(\nu)$. This curve is not a constant but rather a straight line. This implies that at large $\log(\nu)$, $\langle I_2^{[2]}(\nu) \rangle$ has contributions up to $\log^2(\nu)$.

We conclude from the combination of the analytical argument and the numerical results that using a local momentum mapping destroys the NLL accuracy of the result from a Λ-ordered parton shower, although LL accuracy is maintained.

XVII. LOCAL MOMENTUM MAPPING WITH OTHER ORDERINGS

As we have seen in Sec. XVI, a parton shower algorithm needs to conserve momentum while accommodating the approximation that a parton that splits to two partons was on shell before the splitting. Deductor uses a global recoil strategy that spreads the needed momentum over all of the other partons in the event. With a local momentum mapping in the style of Catani-Seymour, Eq. (159), the recoil momentum is taken up by a single parton, possibly a very soft parton. For this reason the global recoil strategy seems less likely to lead to problems than the local recoil strategy.

Nevertheless, a local momentum mapping can certainly work. Indeed, we present an argument in Appendix B that $\langle I_2^{[2]}(\nu) \rangle$ in Deductor with k_T ordering is well behaved. In this construction, the local and global momentum mappings were equivalent in the limits considered. Thus $\langle I_2^{[2]}(\nu) \rangle$ with k_T ordering and a local momentum mapping should be well behaved.

We can investigate this issue by calculating $\langle I_2^{[2]}(\nu) \rangle$ using two shower algorithms with a local momentum mapping following Eq. (159). The algorithms we use follow closely the PanLocal shower of Ref. [3]. In the first algorithm that we use, the parameter β that defines the ordering variable in the PanLocal algorithm is set to $\beta = 0$. That corresponds to k_T ordering. In the second algorithm, we choose $\beta = 0.5$. Roughly, that is half way between k_T ordering and Λ ordering. Ref. [3] claims that these PanLocal showers sum the thrust distribution at NLL accuracy at leading color.

The results are shown in Figs. 10 and 11. In each case, in the range $\log(\nu) < 8$, $\langle I_2^{[2]}(\nu) \rangle$ reaches values greater than 10, while for Deductor with Λ ordering this same quantity is less than 1. Nevertheless, in each case, we
\[\log(\nu) \]

\[\langle I^2_2(\nu) \rangle \]

\[\beta = 0.0 \ (k_T) \text{ ordering, PANLOCAL} \]

\[\langle I^2_3(\nu) \rangle \]

\[\beta = 0.5 \ (k_T) \text{ ordering, PANLOCAL} \]

FIG. 10. Plot of \(\langle I^2_2(\nu) \rangle \), as in Fig. 1, for a shower with \(k_T \) \((\beta = 0.0) \) ordering and the Catani-Seymour local momentum mapping [23] according to an algorithm based on the PANLOCAL dipole shower of Ref. [3]. For large \(\log(\nu) \), \(\langle I^2_2(\nu) \rangle \) is approximately linear in \(\log(\nu) \), indicating that \(I^2_2(\nu) \) leaves the NLL result intact.

\[\log(\nu) \]

\[\langle I^2_3(\nu) \rangle \]

\[\beta = 0.5 \text{ ordering, PANLOCAL} \]

FIG. 11. Plot of \(\langle I^2_3(\nu) \rangle \), as in Fig. 1, versus \(\log(\nu) \), for a shower with \(\beta = 0.5 \) ordering and the Catani-Seymour local momentum mapping [23] according to an algorithm based on the PANLOCAL dipole shower of Ref. [3]. For large \(\log(\nu) \), \(\langle I^2_3(\nu) \rangle \) is approximately linear in \(\log(\nu) \), indicating that \(I^2_3(\nu) \) leaves the NLL result intact.

\[\log(\nu) \]

\[\langle I^2_3(\nu) \rangle \]

\[\beta = 0.0 \ (k_T) \text{ ordering, PANLOCAL} \]

FIG. 12. Plot of \(\langle I^2_3(\nu) \rangle \), as in Fig. 2, for a shower with \(k_T \) \((\beta = 0.0) \) ordering and the Catani-Seymour local momentum mapping [23] according to an algorithm based on the PANLOCAL dipole shower of Ref. [3].

\[\log(\nu) \]

\[\langle I^2_3(\nu) \rangle \]

\[\beta = 0.5 \text{ ordering, PANLOCAL} \]

FIG. 13. Plot of \(\langle I^2_3(\nu) \rangle \), as in Fig. 2, versus \(\log(\nu) \) for a shower with \(\beta = 0.5 \) ordering and the Catani-Seymour local momentum mapping [23] according to an algorithm based on the PANLOCAL dipole shower of Ref. [3].
see that \(\langle \mathcal{I}_2^{[2]}(\nu) \rangle \) is, to a good approximation, a linear function of \(\log(\nu) \) for large \(\log(\nu) \). This is consistent with NLL accuracy for summing logarithms of \(\nu \).

In Figs. 12 and 13, we plot \(\langle \mathcal{I}_2^{[2]}(\nu) \rangle \) for the two PANLOCAL shower algorithms. To be consistent with NLL accuracy \(\langle \mathcal{I}_3^{[3]}(\nu) \rangle \) at large \(\log(\nu) \) should not contain terms \(\log^j(\nu) \) for \(j = 3 \) or higher. The numerical results are consistent with this NLL expectation. In fact, in each case the highest power of \(\log(\nu) \) numerically is \(\log^1(\nu) \). The coefficient of \(\log^2(\nu) \) vanishes to a good approximation. This tells us that the average value of the scale of the coupling inside the integrations is about \(Q^2/\nu \).

XVIII. CONCLUSIONS

We have explored how to gain direct access to how a parton shower sums large logarithms, following the general program outlined in Ref. [4]. In this paper, we have limited ourselves to electron-positron annihilation and to just one observable, the thrust distribution. We have, however, looked at results for more than one shower algorithm.

The method that we propose works with the appropriate integral transform of the distribution of interest. In this case, we need the Laplace transform \(\hat{g}(\nu) \), Eq. (29), of the thrust distribution. We seek to find how \(\hat{g}(\nu) \) behaves for large \(\nu \).

We rearrange the cross section calculation so as to write \(\hat{g}(\nu) \) in the form from Eq. (134),

\[
\hat{g}(\nu) = \exp \left(\frac{1}{2} \mathcal{I}(\nu) \{p, f, c, c\} \right) .
\]

(164)

Here \(\{p, f, c, c\}_2 \) is a color and flavor singlet \(q\bar{q} \) basis state with \(p_1 + p_2 = Q \) and the operator \(\mathcal{I}(\nu) \) is an integral,

\[
\mathcal{I}(\nu) = \int_{n^2}^{Q^2} \frac{d\mu^2}{\mu^2} S_y(\mu^2; \nu) .
\]

(165)

We expand \(\mathcal{I}(\nu) \) in powers of the shower evolution operator \(S(\mu^2) \). Then the coefficients \(\mathcal{I}^{[k]}(\nu) \), proportional to \(k \) powers of \(S(\mu^2) \), can be further expanded as

\[
\mathcal{I}^{[k]}(\nu) = \sum_{n=1}^{\infty} \left[\frac{\alpha_s(Q^2/\nu)}{2\pi} \right]^{n} \mathcal{I}^{[k]}(\nu) ,
\]

(166)

in which the strong coupling is evaluated at a fixed scale \(Q^2/\nu \). Thus the shower result is quite directly expressed in exponentiated form in terms of an operator \(\mathcal{I}(\nu) \) with a known perturbative expansion.

For the DEDUCTOR shower algorithm with either \(\Lambda \) or \(k_T \) ordering, \(\mathcal{I}^{[1]}(\nu) \) provides the standard NLL summation of \(\log(\nu) \) factors.\(^{10}\) In order for the contributions \(\mathcal{I}^{[k]}(\nu) \) for \(k \geq 2 \) to not spoil the NLL summation, \(\mathcal{I}^{[k]}(\nu) \) should not contain more than \(n - 1 \) powers of \(\log(\nu) \).

For the DEDUCTOR shower algorithm with its default \(\Lambda \) ordering, we find analytically that \(\mathcal{I}^{[k]}(\nu) \) does not contain more than \(n - 1 \) powers of \(\log(\nu) \).

We have no such result for DEDUCTOR with \(k_T \) ordering, but we outline an argument in Appendix B that real-virtual cancellations in \(\mathcal{I}^{[2]}(\nu) \) reduce its large \(\nu \) behavior from \(\log^2(\nu) \) to \(\log^4(\nu) \).

We evaluate \(\mathcal{I}^{[2]}(\nu) \) numerically. In order not to spoil NLL summation, its large \(\nu \) behavior should be no more than \(\log^3(\nu) \). For the DEDUCTOR algorithm with \(\Lambda \) ordering but with a local momentum mapping instead of the global momentum mapping used in DEDUCTOR, we find \(\log^2(\nu) \) behavior, implying a failure of NLL accuracy (Fig. 9). In other cases, we find \(\log^4(\nu) \) behavior, consistently with NLL accuracy. These cases include DEDUCTOR-A (Fig. 1), DEDUCTOR-kT (Fig. 5), PANLOCAL-\((\beta=0) \) (Fig. 10), and PANLOCAL-\((\beta=0.5) \) (Fig. 11).

We also evaluate \(\mathcal{I}^{[3]}(\nu) \) numerically for the shower algorithms DEDUCTOR-A (Fig. 2), DEDUCTOR-kT (Fig. 6), PANLOCAL-\((\beta=0) \) (Fig. 12), and PANLOCAL-\((\beta=0.5) \) (Fig. 13). In each case, we find large \(\log(\nu) \) behavior with no more than 2 powers of \(\log(\nu) \), consistently with NLL accuracy.

We emphasize in this paper writing the appropriate integral transform of the distribution of interest, such as the thrust distribution, as an exponential and examining the exponent \(\mathcal{I}(\nu) \). However, it is also possible to simply look directly at the distribution of interest as it is generated by a given parton shower. For this, one needs to simulate collisions at large values of \(Q^2 \). We have not pushed this method to nearly as large a value of \(Q^2 \) as in Ref. [3]. However, we find that, at least for electron-positron annihilation, this direct method can be useful.

Specifically, we examine directly the thrust distribution \(T_g(\tau) \) for DEDUCTOR with \(\Lambda \) and \(k_T \) ordering, using \(Q^2 = (10 \text{ TeV})^2 \). With \(\Lambda \) ordering, this works well (Figs. 3 and 4). With \(k_T \) ordering (Fig. 7), the agreement with the analytic NLL expectation is not as good. However, when we compare \(T_g(\tau) \) to the NLL expectation at a sequence of values of \(Q^2 \), we find what appears to be convergence to the NLL result as \(Q^2 \) increases (Fig. 8).

There are several avenues available for future research that extends the results of this paper.

First, the method of this paper applies to several observables in electron-positron annihilation. We have tried variations on the shower algorithm examined, but have looked at only one observable, the thrust distribution. It is certainly worthwhile to see what patterns emerge if we look at other observables.

\(^{10}\) The current DEDUCTOR code with \(\Lambda \) ordering, as distinct from the algorithm that it is based on, lacks the term with coefficient \(\beta_1 \) needed to evaluate the dependence of \(\alpha_s((1-z)gQ^2) \) on \((1-z) \). This changes the DEDUCTOR result at the NLL level.
Second, the method developed in Ref. [4] applies to observables in hadron-hadron collisions as well as in electron-positron collisions. It is of interest to see how this method works in practice for some hadron-hadron observables, starting with the k_T distribution in the Drell-Yan process.

Third, we construct numerical implementations of $I_2^{[2]}(\nu)$ and $I_3^{[2]}(\nu)$ for the particular observable examined and for several shower algorithms. This allows one to test numerically if the large ν behaviors of $I_2^{[2]}(\nu)$ and $I_3^{[2]}(\nu)$ are consistent with NLL summation. When we find for a certain shower algorithm that NLL summation fails at the level of $I_2^{[2]}(\nu)$ or $I_3^{[2]}(\nu)$, then NLL summation fails for that shower algorithm and observable. However, if NLL summation is not spoiled by $I_2^{[2]}(\nu)$ or $I_3^{[2]}(\nu)$, it could still fail in $I_n^{[k]}(\nu)$ for some larger values of k and n. Thus it would be valuable to have numerical implementations of $I_n^{[k]}(\nu)$ for some larger values of k and n. Then one would have more stringent numerical tests of NLL summation for a given shower algorithm and a given observable.

Fourth, it would be helpful to have analytical insight into the behavior of the operators $I_n^{[k]}(\nu)$ for $k \geq 3$ in cases that are similar to the thrust distribution using a k_T-ordered shower.

We close with the observation that it is expected a lot to expect that a first order shower algorithm will sum logarithms at the LL or NLL level. If we had a parton shower based on splitting functions at order α_s^{N} [4, 14], then we could expect to correctly produce contributions to $I(\nu)$ of order $\alpha_s^n \log^j(\nu)$ with $n \leq N$, $j \leq n + 1$. We might not correctly produce contributions of order $\alpha_s^n \log^j(\nu)$ with $n > N$, $j \leq n + 1$ because we lack the order α_s^n contributions to the shower splitting functions. However, contributions of order $\alpha_s^n \log^j(\nu)$ with $j > n + 1$ should vanish because these contributions can never be provided by α_s^n contributions to the shower splitting functions. Currently, all that we have (in several variations) is a first order shower, $N = 1$. Thus we can expect to correctly produce contributions of order $\alpha_s^n \log^j(\nu)$ and $\alpha_s^n \log^j(\nu)$. We can also expect to obtain exponentsiation of logarithms of ν: contributions of order $\alpha_s^n \log^j(\nu)$ with $j > n + 1$ should vanish. With care, we can hope to have LL or NLL summation of $\log(\nu)$ factors, but this relies on incorporating the most important parts of higher order splitting operators into the first order operator S.

ACKNOWLEDGMENTS

This work was supported in part by the United States Department of Energy under grant DE-SC0011640. The work benefited from access to the University of Oregon high performance computer cluster, Talapas.

Appendix A: Structure of S_Y at NLL accuracy

We examine $S_Y^{[k]}(xQ^2/\mu)$ for x of order 1 and $k \geq 2$. We prove that this operator has at most $n - 1$ factors of $\log(\nu)$ at order $\alpha_s^n(Q^2/\nu)$.

Recall from Sec. XI that $Y^{[k]}(xQ^2/\mu)$ for x of order 1 and $k \geq 2$ has at most n factors of $\log(\nu)$ at order $\alpha_s^n(Q^2/\nu)$.

We also note that $S_Y^{[1,0]}(xQ^2/\nu)$ for x of order 1 has one power of $\log(\nu)$ at order $\alpha_s(Q^2/\nu)$, where the $\log(\nu)$ factor arises from an integration $d(1-z)/(1-z)$ down to a lower limit proportional to $1/\nu$, as in Eq. (118). Thus $S_Y^{[1,0]}(xQ^2/\nu)$ for x of order 1 has at most n powers of $\log(\nu)$ at order $\alpha_s^n(Q^2/\nu)$.

To proceed, we prove that $S_Y^{[k]}(xQ^2/\mu)$ with $k = 2$ contains at most $n - 1$ factors of $\log(\nu)$ at order $\alpha_s^n(Q^2/\nu)$ and we prove that if this property holds for $k = 2, 3, \ldots, N$, then it holds for $k = N + 1$.

Consider Eq. (148) for $S_Y^{[k+1]}(xQ^2/\nu)$ for $k \geq 2$. In the first term, at order $\alpha_s^{k+1}(Q^2/\nu)$, there are k powers of $\log(\nu)$ from $Y^{[k]}$ and one power from $S_Y^{[1,0]}$. In the second term (if $k \geq 3$) at order $\alpha_s^{k+1}(Q^2/\nu)$ there are there are $k + 1 - j$ powers of $\log(\nu)$ from $Y^{[k+1-j]}$ and $j - 1$ powers of $S_Y^{[1]}$, for a total of just k powers of $\log(\nu)$. That is, this contribution is NNLL. In the third term, at order $\alpha_s^{k+1}(Q^2/\nu)$ there is one power of $\log(\nu)$ from $S_Y^{[1,0]}$ and $k - 1$ powers of $\log(\nu)$ from $S_Y^{[k]}$, for a total of k powers of $\log(\nu)$. That is, this contribution is NLL. If we expand the NNLL contributions to higher order in $\alpha_s(Q^2/\nu)$, we add just one power of $\log(\nu)$ per α_s, so the contributions remain NLL. This gives us

$$S_Y^{[k+1]}(xQ^2/\nu) = \sum_l [Y^{[k]}(xQ^2/\nu; \nu)[S_Y^{[1,0]}(xQ^2/\nu)]_{l-1} e^{-\xi^{[1]} x} + \text{NLL} .$$

(A1)

This leaves us with an NLL contribution if the NLL contribution does not cancel. This result does not include $S_Y^{[2]}$. For $S_Y^{[2]}$, Eq. (142) gives us 2 powers of $\log(\nu)$ at order $\alpha_s^2(Q^2)$. This is an NLL contribution if the NLL contribution does not cancel.

If we use Eq. (A1), then we need information on $Y^{[k]}$. We can use Eq. (150) for $Y^{[k+1]}(xQ^2/\nu)$ for $k \geq 1$. In the first term at order $\alpha_s^{k+1}(Q^2/\nu)$ there are k powers of $\log(\nu)$ from $Y^{[k]}$ and one power of $\log(\nu)$ from $S_Y^{[1,0]}$, giving us a total of $k + 1$ powers of $\log(\nu)$. This is an NLL contribution. In the second term (for $k \geq 2$) at order $\alpha_s^{k+1}(Q^2/\nu)$ there are $k + 1 - j$ powers of $\log(\nu)$ from $Y^{[k+1-j]}$ and $j - 1$ powers of $\log(\nu)$ from $S_Y^{[j]}$, giving us a total of k powers of $\log(\nu)$. This is an NNLL contribution. In the third term at order $\alpha_s^{k+1}(Q^2/\nu)$ there are k powers of $\log(\nu)$ from $S_Y^{[k+1]}$. This is an NNLL contribution. Again, if we expand the NNLL contributions to higher order in $\alpha_s(Q^2/\nu)$, we add just one power of $\log(\nu)$ per
α s, so the contributions remain NNLL. This leaves us with
\[Y^{[k+1]}(xQ^2/\nu; \nu) = - \sum_{l} \int_{0}^{\pi} \frac{dx_l}{x_l} \int_{0}^{x_l} \frac{dx_1}{x_1} \int_{0}^{x_l} \frac{dx_2}{x_2} \cdots \int_{0}^{x_{k-1}} \frac{dx_k}{x_k} \times (1 - e^{-\xi_l^{op} x_l}) \times \{ S_l^{[1,0]}(x_l Q^2/\nu) \}_{P} \times \{ S_l^{[1,0]}(x_{l-1} Q^2/\nu) \}_{P} \times \cdots \times \{ S_l^{[1,0]}(x_{1} Q^2/\nu) \}_{P} \times (1 - e^{-\xi_1^{op} x_1}) + \text{NNLL} . \] (A2)

This derivation does not include \(Y^{[1]} \). For \(Y^{[1]} \) we can use Eq. (140), which gives us just Eq. (A2) with \(Y^{[0]} \) replaced by 1 and no NNLL additional contribution.

Eq. (A2) gives us a recursion relation that we can solve to NLL accuracy in the form
\[Y^{[k]}(xQ^2/\nu; \nu) = (-1)^k \sum_{l_0, \ldots, l_k} \int_{0}^{x_0} \frac{dx_0}{x_0} \int_{0}^{x_1} \frac{dx_1}{x_1} \int_{0}^{x_2} \frac{dx_2}{x_2} \cdots \int_{0}^{x_{k-1}} \frac{dx_k}{x_k} \times (1 - e^{-\xi_{l_0}^{op} x_0}) \times \{ S_{l_0}^{[1,0]}(x_0 Q^2/\nu) \}_{P} \times \{ S_{l_1}^{[1,0]}(x_1 Q^2/\nu) \}_{P} \times \cdots \times \{ S_{l_k}^{[1,0]}(x_k Q^2/\nu) \}_{P} \times (1 - e^{-\xi_{l_k}^{op} x_k}) \times (\nu/\nu_0)^{\alpha_s} \times \{ S_{l_0}^{[1,0]}(Q^2/\nu) \}_{P} \times \{ S_{l_1}^{[1,0]}(Q^2/\nu) \}_{P} \cdots \times \{ S_{l_k}^{[1,0]}(Q^2/\nu) \}_{P} + \text{NNLL} . \] (A3)

We can substitute this solution for \(Y^{[k]} \) into Eq. (A1) to give us
\[S_{Y}^{[k+1]}(x_0 Q^2/\nu; \nu) = (-1)^k \sum_{l_0, \ldots, l_k} \int_{0}^{x_0} \frac{dx_0}{x_0} \int_{0}^{x_1} \frac{dx_1}{x_1} \int_{0}^{x_2} \frac{dx_2}{x_2} \cdots \int_{0}^{x_{k-1}} \frac{dx_k}{x_k} \times (1 - e^{-\xi_{l_0}^{op} x_0}) \times \{ S_{l_0}^{[1,0]}(x_0 Q^2/\nu) \}_{P} \times \{ S_{l_1}^{[1,0]}(x_1 Q^2/\nu) \}_{P} \times \cdots \times \{ S_{l_k}^{[1,0]}(x_k Q^2/\nu) \}_{P} \times (1 - e^{-\xi_{l_k}^{op} x_k}) \times (\nu/\nu_0)^{\alpha_s} \times \{ S_{l_0}^{[1,0]}(Q^2/\nu) \}_{P} \times \{ S_{l_1}^{[1,0]}(Q^2/\nu) \}_{P} \cdots \times \{ S_{l_k}^{[1,0]}(Q^2/\nu) \}_{P} + \text{NNLL} . \] (A4)

The explicit exponential factors restrict the \(x_i \) integrations to \(x_i \) of order 1 (as we have already seen).

We now want to find how many factors of \(\log(\nu) \) are contained in the operators \(S_l^{[1,0]}(xQ^2/\nu) \). Since \(\log(x/\nu) \) is equivalent for this purpose to \(\log(1/\nu) \) when \(x \) is of order 1, we can replace all of the \(x_i \) factors in the arguments of \(S_l^{[1,0]}(xQ^2/\nu) \) by 1.

In Eq. (A4), we have factors \(\exp(-\xi_{l_i}^{op} x_i) \). The parameters \(\xi_{l_i} \) are defined in Eq. (107). They are close to 1: \(\xi_{l_i} - 1 \) is proportional to \([1 - \cos(\theta(l, \eta_T))] \). It is a good approximation to take the thrust axis \(\eta_T \) to be the direction of either the quark or the antiquark in the \(q\bar{q} \) state at the start of the shower. Then the angle between \(\vec{p}_T \) at a later stage of the shower and \(\vec{n} \) is determined by the emission angles at the intervening stages. But in order to accumulate the maximal number of \(\log(\nu) \) factors in these splittings, all of these emission angles must be small. That is, if we expand \(\exp(-\xi_{l_i} x_i) \) in powers of \([1 - \cos(\theta)] \), where \(\theta \) is one of the splitting angles, then a factor \([1 - \cos(\theta)] \) will eliminate a \(\log(\nu) \) factor in an integration \(d\cos(\theta)/[1 - \cos(\theta)] \) with limits analogous to the limits in Eq. (17). We conclude that for the purpose of our present NLL calculation we can set all of the \(\xi_{l_i}^{op} \) factors in Eqs. (A4) to 1.

These changes gives us
\[S_{Y}^{[k+1]}(x_0 Q^2/\nu; \nu) \{ p, f, c, c' \}_{m} \]
\[= (-1)^k \sum_{l_0, \ldots, l_k} \int_{0}^{x_0} \frac{dx_0}{x_0} \int_{0}^{x_1} \frac{dx_1}{x_1} \int_{0}^{x_2} \frac{dx_2}{x_2} \cdots \int_{0}^{x_{k-1}} \frac{dx_k}{x_k} \times \{ S_{l_0}^{[1,0]}(Q^2/\nu) \}_{P} \times (1 - e^{-\xi_{l_0}^{op} x_0}) \times \{ S_{l_1}^{[1,0]}(Q^2/\nu) \}_{P} \times (1 - e^{-\xi_{l_1}^{op} x_1}) \times \{ S_{l_2}^{[1,0]}(Q^2/\nu) \}_{P} \times (1 - e^{-\xi_{l_2}^{op} x_2}) \times \cdots \times \{ S_{l_k}^{[1,0]}(Q^2/\nu) \}_{P} \times (1 - \nu/\nu_0)^{\alpha_s} \times \{ S_{l_0}^{[1,0]}(Q^2/\nu) \}_{P} \times \{ S_{l_1}^{[1,0]}(Q^2/\nu) \}_{P} \cdots \times \{ S_{l_k}^{[1,0]}(Q^2/\nu) \}_{P} + \text{NNLL} . \] (A5)

The first \(S_{l_0}^{[1,0]}(Q^2/\nu) \) factor in Eq. (A5) is
\[[S_{l_0}^{[1,0]}(Q^2/\nu)]_{1-P} = [S_{l_0}^{[1,0]}(Q^2/\nu)]_{P} - [S_{l_0}^{[1,0]}(Q^2/\nu)]_{P} . \]

The contribution from \([S_{l_0}^{[1,0]}(Q^2/\nu)]_{P} \) is rather simple and we will consider it later.

We begin by considering the contribution from \(S_{l_0}^{[1,0]}(Q^2/\nu) \). This operator, acting on the state \(\{ p, f, c, c' \}_{m} \), produces a linear combination of states with \(m+1 \) partons, \(\{ \hat{p}, \hat{f}, \hat{c}, \hat{c}' \}_{m+1} \),
\[\sum_{l_0=1}^{m} S_{l_0}^{[1,0]}(Q^2/\nu) e^{-x_{l_0}} \{ p, f, c, c' \}_{m} \]
\[\approx - \sum_{l_0=1}^{m} \sum_{k_0=1}^{m} C_0(l_0, k_0) \{ c, c' \}_{m} \]
\[\times \int \frac{d\varphi_0}{2\pi} \int \frac{d\varphi_0}{2\pi} \alpha_s(\lambda_T(1 - z_0)Q^2/(\nu a_{l_0})) \]
\[\times \Theta\left(\frac{a_{l_0}}{\nu / \nu_0(l_0, k_0)} - 1 < z_0 < 1 \right) \]
\[\times e^{-x_{l_0}} \{ \hat{p}, \hat{f} \}_{m+1} . \] (A6)

Here we use the approximate form of \(S^{[1,0]}(Q^2/\nu) \) given in Eq. (12). We split parton \(l_0 \) with dipole partner parton \(k_0 \), creating a new parton \(m+1 \), which we consider to be a gluon. The color operator is
\[C_0(l_0, k_0) = T_{l_0} \otimes T_{k_0}^\dagger + T_{k_0} \otimes T_{l_0}^\dagger , \] (A7)
as defined below Eq. (12). We have specified a scale argument based on the transverse momentum for the splitting for \(\alpha_s \). The new momentum \(\mathbf{p}_{m+1} \) and the new momentum \(\mathbf{p}_i \) are given by the splitting variables \(y = 1/\nu, z_0 \) and \(\phi_0 \). The new momenta \(\mathbf{p}_i \) for \(i \neq l_0, m + 1 \) are slightly different from the starting momenta, as specified by the momentum mapping.

Let us consider what the one of the operators, \([S_{i}^{a[1,0]}(Q^2/\nu)]_{\mathcal{P}}\), in Eq. (A5) does to this state. We consider the quantity

\[
|A_i| = \sum_{l=1}^{m+1} \left[S_{i}^{a[1,0]}(Q^2/\nu) \right]_{\mathcal{P}} (1 - e^{-x_i}) |\{\mathbf{p}, \hat{f}, \hat{c}, \hat{c}'\}_{m+1}^{l}).
\]

(8)

Again, we use the approximate form of \(S^{a[1,0]}(Q^2/\nu) \) given in Eq. (12), so that

\[
|A_i| \approx - \sum_{l=1}^{m+1} \sum_{k=1}^{m+1} C(l, k) \\
\times \left\{ \frac{d\phi}{2\pi} \int \frac{dz}{1 - z} \alpha_s(1 - z)Q^2/(\nu^2) \right\} \\
\times \Theta \left(\frac{1}{\nu} \hat{\vartheta}(l, k) < \frac{1 - z}{\hat{a}_l} < \frac{1}{\hat{a}_l} \right) \\
\times (1 - e^{-x_i}) \{|\{\mathbf{p}, \hat{f}, \hat{c}, \hat{c}'\}_{m+1}^{l})\}.
\]

(A9)

Here the hats in \(\hat{\vartheta}(l, k) \) and \(\hat{a}_l \) indicate that these quantities are based on the momenta in \(|\{\mathbf{p}, \hat{f}\}_{m+1}^{l})\). In Eq. (A9), we split parton \(l \) with dipole partner parton \(k \), creating a new parton \(m + 2 \), which we consider to be a gluon.\(^{11}\) However, the \([\cdots]_{\mathcal{P}}\) operation, Eqs. (60) and (61), returns us to the starting momentum and flavor state \(|\{\mathbf{p}, \hat{f}\}_{m+1}^{l})\). With the \([\cdots]_{\mathcal{P}}\) operation, the color operator is

\[
C(l, k) = [T_l \otimes T_k^\dagger + T_k \otimes T_l^\dagger]_{\mathcal{P}} \\
= T_l \cdot T_k \otimes 1 + 1 \otimes T_l \cdot T_k.
\]

(A10)

In the first term in the second line, the operator \(T_l \cdot T_k \) operates on the ket color state and leaves the number of partons in the color state unchanged. The operator inserts a color matrix \(T^a \) with gluon color index \(a \) on line \(l \) and another \(T^a \) on line \(k \). The dot in \(T_l \cdot T_l \) indicates a sum over \(a \). In the second term, the same operator is applied to the bra state.

There is an integration over the splitting variables \(\phi \) and \(z \). It will prove helpful to define a function \(L(w, u) \) given by performing this integration,

\[
L(w, u) = \int_0^{2\pi} \frac{d\phi}{2\pi} \int_{1/w}^{1/u} dx \alpha_s(1 - z)Q^2/(\nu^2) 2\pi.
\]

(A11)

\(^{11}\) We omit splittings \(g \rightarrow q\bar{q} \) since these splittings lack a soft singularity. For a \(q \rightarrow q\bar{g} \) or \(q \rightarrow g\bar{q} \) splitting from an \(m + 1 \) parton state, the daughter gluon is labelled \(m + 2 \).

This function is to be expanded in powers of \(\alpha_s(Q^2/\nu) \). At lowest order, this integration gives simply \(\left[\alpha_s/(2\pi) \right] \log(w/u) \). At higher orders in an expansion in powers of \(\alpha_s(Q^2/\nu) \) the result is more complicated. With this notation,

\[
|A_i| \approx - \sum_{l=1}^{m+1} \sum_{k=1}^{m+1} C(l, k) L(\nu \hat{\vartheta}(l, k), \hat{a}_l) \\
\times (1 - e^{-x_i}) |\{\mathbf{p}, \hat{f}, \hat{c}, \hat{c}'\}_{m+1}^{l})\}.
\]

(A12)

We break up the sums in the form

\[
|A_i| \approx - \left\{ \sum_{l=1}^{m+1} \sum_{k=1}^{m+1} C(l, k) L(\nu \hat{\vartheta}(l, k), \hat{a}_l) \\
+ \sum_{k=1}^{m+1} C(l_0, k) L(\nu \hat{\vartheta}(l_0, m + 1), \hat{a}_l) \right\} \\
+ \sum_{l=1}^{m+1} C(m + 1, l) L(\nu \hat{\vartheta}(l_0, m + 1), \hat{a}_l) \\
+ \sum_{l=1}^{m+1} C(\nu \hat{\vartheta}(l_0, m + 1), \hat{a}_l) \}
\]

(A13)

Now, as long as neither \(l \) nor \(k \) equals \(m + 1 \), the angle variable \(\hat{\vartheta}(l, k) \) is very close to the corresponding angle variable \(\hat{\vartheta}(l, k) \) in the state \(|\{p, f, c', c\}_m\) before the first splitting. The angle variable \(\hat{\vartheta}(m + 1, k) \) for \(k \neq l_0 \) is very close to \(\hat{\vartheta}(l_0, k) \) in the state before the first splitting, since partons \(l_0 \) and \(m + 1 \) are nearly collinear in the integration region that can lead to a \(\log(\nu) \) factor in the first splitting. Thus we regard these angles as fixed when calculating \(\mathcal{S}_{\mathcal{P}}^{[k+1]}(x_0Q^2/\nu) |\{p, f, c', c\}_m\) on the other hand, \(\hat{\vartheta}(l_0, m + 1) \) is the angle variable for the first splitting and is thus an integration variable in this calculation. Integrating over this variable can produce a \(\log(\nu) \) factor. Thus we treat \(\hat{\vartheta}(l_0, m + 1) \) as potentially small in Eq. (A13), but we treat the other angle variables as being finite. For the purpose of finding \(\log(\nu) \) factors, we simply replace these finite angle variables by 1. These
substitutions give us

\[|A_i \rangle \approx - \left\{ \sum_{l=1}^{m} \sum_{k=1, k \neq l}^{m+1} C(l, k) L(\nu, \hat{a}_l) \right. \\
+ \sum_{k=1, k \neq l}^{m} C(l_0, k) L(\nu, \hat{a}_{l_0}) \\
+ \sum_{k=1, k \neq l}^{m} C(m+1, k) L(\nu, \hat{a}_{m+1}) \\
+ C(l_0, m+1) L(\nu \hat{\delta}(l_0, m+1), \hat{a}_{l_0}) \\
+ C(l_0, m+1) L(\nu \hat{\delta}(l_0, m+1), \hat{a}_{m+1}) \left\} \times (1 - e^{-x_1}) \{ \hat{p}, \hat{f}, \hat{c}, \hat{c}' \}_{m+1} \right. \]

(A14)

In two of the terms in Eq. (A14), the parameter \(\hat{a}_{m+1} \) appears. This parameter is large when the momentum fraction \(1 - z_0 \) of parton \(m + 1 \) in the first splitting is small:

\[\hat{a}_{m+1} \approx \frac{a_{l_0}}{1 - z_0}. \]

(A15)

We also note that the angle variable \(\hat{\delta}(l_0, m+1) \) is proportional to \(1/(1 - z_0) \) according to Eq. (16). We have

\[\hat{\delta}(l_0, m+1) \approx \frac{a_{l_0}}{\nu (1 - z_0)}. \]

(A16)

Combining these equations gives us

\[\hat{a}_{m+1} \approx \nu \hat{\delta}(l_0, m+1). \]

(A17)

With this replacement, the function \(L, \) Eq. (A11), in the last term in Eq. (A14) is approximately

\[L(\nu \hat{\delta}(l_0, m+1), \hat{a}_{m+1}) \approx L(\hat{a}_{m+1}, \hat{a}_{m+1}) = 0. \]

(A18)

In the fourth term in Eq. (A14), we use this replacement to eliminate \(\hat{\delta}(l_0, m+1) \) in favor of \(\hat{a}_{m+1} \). With these substitutions, we have

\[|A_i \rangle \approx - \left\{ \sum_{l=1}^{m} \sum_{k=1, k \neq l}^{m+1} C(l, k) L(\nu, \hat{a}_l) \right. \\
+ \sum_{k=1, k \neq l}^{m} C(l_0, k) L(\nu, \hat{a}_{l_0}) \\
+ \sum_{k=1, k \neq l}^{m} C(m+1, k) L(\nu, \hat{a}_{m+1}) \\
+ \sum_{k=1, k \neq l}^{m} C(l_0, m+1) L(\hat{a}_{m+1}, \hat{a}_{l_0}) \\
\times (1 - e^{-x_1}) \{ \hat{p}, \hat{f}, \hat{c}, \hat{c}' \}_{m+1} \right. \]

(A19)

Using the definition (A11) of \(L(w, u) \), this function in the last term can be written as

\[L(\hat{a}_{m+1}, \hat{a}_{l_0}) = -L(\nu, \hat{a}_{m+1}) + L(\nu, \hat{a}_{l_0}), \]

(A20)

In the sum in the second term in Eq. (A19) we can add and subtract a contribution from \(k = m+1 \). After adding this contribution, the sum includes \(k = m+1 \), so that this sum can be combined with the sums in the first term. Then in the first term we can include \(l = l_0 \) in the sum over \(r \). In the third term in Eq. (A19) we can add and subtract a contribution from \(k = l_0 \), so that after adding this contribution the sum includes \(k = l_0 \). With these changes, we have

\[|A_i \rangle \approx - \left\{ \sum_{l=1}^{m} \sum_{k=1, k \neq l}^{m+1} C(l, k) L(\nu, \hat{a}_l) \right. \\
+ \sum_{k=1}^{m} C(m+1, k) L(\nu, \hat{a}_{m+1}) \\
- 2C(l_0, m+1) L(\nu, \hat{a}_{m+1}) \left\} \times (1 - e^{-x_1}) \{ \hat{p}, \hat{f}, \hat{c}, \hat{c}' \}_{m+1} \right. \]

(A21)

In the first term in Eq. (A21), we can use color conservation to write

\[\sum_{k=1, k \neq l}^{m+1} C(l, k) = \sum_{k=1}^{m+1} \left[T_l \cdot T_k \otimes 1 + 1 \otimes T_l \cdot T_k \right] \]

(A22)

\[= - \left[T_l \cdot T_l \otimes 1 + 1 \otimes T_l \cdot T_l \right] \]

\[= -2C_l [1 \otimes 1], \]

where \(C_l = C_A \) if parton \(l \) is a gluon and \(C_l = C_F \) if parton \(l \) is a quark or antiquark. The same applies to the second term:

\[\sum_{k=1}^{m} C(m+1, k) = -2C_A [1 \otimes 1], \]

(A23)

where we have used \(C_{m+1} = C_A \) since parton \(m+1 \) must be a gluon in order to give a leading \(\log(\nu) \) contribution. These substitutions give us

\[|A_i \rangle \approx \left\{ \sum_{l=1}^{m} 2C_l [1 \otimes 1] L(\nu, \hat{a}_l) \right. \\
+ 2\left[C_A [1 \otimes 1] + C(l_0, m+1) \right] L(\nu, \hat{a}_{m+1}) \left\} \times (1 - e^{-x_1}) \{ \hat{p}, \hat{f}, \hat{c}, \hat{c}' \}_{m+1} \right. \]

(A24)

Consider now the term in Eq. (A24) that contains a color operator \(C(l_0, m+1), \) defined in Eq. (A10). We apply this operator after the color operator for the initial splitting, \(C_0(l_0, k_0), \) defined in Eq. (A7). This gives us an
There can be several factors of $[S^{[1,0]}_{l}\{xQ^2/\nu\}]_p$ in Eq. (A5) and in some of those factors we can select the $C(l_0, m+1)$ term in Eq. (A24). Finally, there is a $[\cdots]_p$ operation. This gives us a sum of color operators of the form

$$[C]_p = [(T_{l_0} \cdot T_{m+1})^{A} T_{l_0} \otimes T_{k_0}^\dagger (T_{l_0} \cdot T_{m+1})^{B}]_p$$

(A26)

Using Eq. (61), this becomes

$$[C]_p = [(T_{l_0} \cdot T_{m+1})^{A+B} T_{l_0} \otimes T_{k_0}^\dagger (T_{l_0} \cdot T_{m+1})^{A+B}]_p$$

(A27)

Now consider the color operator $T_{l_0} \cdot T_{m+1} T_{a}$. In diagrams, parton l_0 emits a gluon with label $m+1$, leaving parton l_0 in a new color state. Then a gluon is exchanged between partons l_0 and $m+1$. This gives us a color triangle diagram,

$$T_{l_0} \cdot T_{m+1} T_{a} \alpha = ifabc T_{l_0}^b T_{l_0}^c \cdot$$

(A28)

Then we can use

$$ifabc T_{l_0}^b T_{l_0}^c = \frac{1}{2} ifabc [T_{l_0}^b, T_{l_0}^c] = \frac{1}{2} ifabc \cdot$$

(A29)

Thus

$$T_{l_0} \cdot T_{m+1} T_{a} \alpha = - C_A \frac{a}{2} T_{l_0}^a \cdot$$

(A30)

This gives us

$$(T_{l_0} \cdot T_{m+1})^{A+B} T_{l_0} \otimes T_{k_0}^\dagger = \left[- \frac{C_A}{2} \right]^{A+B} T_{l_0} \otimes T_{k_0}^\dagger \cdot$$

(A31)

The second term in Eq. (A27) gives the same result, so that the net color operator defined in Eq. (A26) is

$$[C]_p = \left[- \frac{C_A}{2} \right]^{A+B} T_{l_0} \otimes T_{k_0}^\dagger + T_{k_0} \otimes T_{l_0}^\dagger \cdot$$

(A32)

We conclude that when $C(l_0, m+1)$ in Eq. (A24) is part of $S^{[k+1]}_{\gamma}(x_0Q^2/\nu; \nu)$ in Eq. (A5), we get the same result for $S^{[k+1]}_{\gamma}(x_0Q^2/\nu; \nu)$ by making the replacement

$$C(l_0, m+1) \rightarrow - C_A [1 \otimes 1] \cdot$$

(A33)

There is a factor 2 for each C_A here because there are two $T_{l_0} \otimes T_{k_0}^\dagger$ terms and two $T_{k_0} \otimes T_{l_0}^\dagger$ terms in Eq. (A25).

With this replacement, the terms in Eq. (A24) proportional to $L(\nu, \hat{a}_{m+1})$ cancel. Thus we get the same result for $S^{[k+1]}_{\gamma}(x_0Q^2/\nu; \nu)$ by making the replacement

$$|A_i \rangle \rightarrow |A_i^{eff} \rangle \cdot$$

(A34)

where

$$|A_i^{eff} \rangle \approx \sum_{l=1}^{m} 2C_l [1 \otimes 1] L(\nu, \hat{a}_l)$$

$$\times (1 - e^{-x_i}) \{|\hat{p}, \hat{f}, \hat{c}, \hat{c}' \rangle_{m+1} \rangle \cdot$$

(A35)

Note that $|A_i^{eff} \rangle$ is a number, which we may call λ_i, times the starting state vector,

$$|A_i^{eff} \rangle = \lambda_i |\hat{p}, \hat{f}, \hat{c}, \hat{c}' \rangle_{m+1} \rangle \cdot$$

(A36)

Return now to Eq. (A5) for $S^{[k+1]}_{\gamma}(x_0Q^2/\nu; \nu)$ applied to the starting state $|\{p, f, c, c' \rangle_m \rangle$. In the last factor, we have dealt with the operator $S^{[1,0]}_{\gamma}(Q^2/\nu)$, which creates a new parton with label $m+1$. Now we turn to the remaining operator, $- [S^{[1,0]}_{l_0}(Q^2/\nu)]_p$. This operator, acting on the state $|\{p, f, c, c' \rangle_m \rangle$, produces a linear combination of states with m partons, $|\{p, f, c, c' \rangle_m \rangle$. Here the momentum and flavors are the same as in the initial state, but the colors change. More precisely,

$$\sum_{l_0=1}^{m} [S^{[1,0]}_{l_0}(Q^2/\nu)]_p e^{-x_0} |\{p, f, c, c' \rangle_m \rangle$$

$$\approx - \sum_{l_0=1}^{m} \sum_{k_0=1}^{m} C(l_0, k_0) [1 \otimes 1] |\{p, f, c, c' \rangle_m \rangle$$

$$\times \int \frac{d\phi_0}{2\pi} \int \frac{dz_0}{1 - z_0}$$

$$\times \Theta \left(\frac{\alpha_0}{\nu \bar{\theta}(l_0, k_0)} < 1 - z_0 < 1 \right)$$

$$\times e^{-x_0} \cdot$$

(A37)

Let us consider what the one of the operators, $[S^{[1,0]}_{l_0}(Q^2/\nu)]_p$ in Eq. (A5) does to this state. We consider the quantity

$$|B_i \rangle = \sum_{l=1}^{m+1} [S^{[1,0]}_{l_0}(Q^2/\nu)]_p (1 - e^{-x_i}) |\{p, f, c, c' \rangle_{m+1} \rangle \cdot$$

(A38)

With an analysis similar to but simpler than our previous analysis, we obtain

$$|B_i \rangle \approx \sum_{l=1}^{m} 2C_l [1 \otimes 1] L(\nu, \hat{a}_l)$$

$$\times (1 - e^{-x_i}) |\{p, f, c, c' \rangle_{m+1} \rangle.$$

(A39)
This gives us

$$|B_i| = \lambda_i \{ p, f, c, c' \}_m ,$$

(A40)

where the eigenvalue λ_i is exactly the λ_i in Eq. (A36).

We can substitute Eqs. (A40) and (A36) into Eq. (A5) to obtain

$$S_y^{[k+1]}(x_0 Q^2/\nu; \nu) \{ p, f, c, c' \}_m$$

$$= (-1)^n \int_{x_0}^{x_0} \frac{dx_1}{x_1} \int_{x_1}^{x_2} \frac{dx_2}{x_2} \cdots \int_0^{x_k} \frac{dx_k}{x_k}$$

$$\times \lambda_0 \cdots \lambda_0 \lambda_1$$

$$\times \sum_t \left[\left(S_{10}^{[1]}(Q^2/\nu) \right)_1 \right]_p$$

$$\times e^{-x_0} \{ p, f, c, c' \}_m$$

$$+ \text{NNLL} .$$

(A41)

However

$$\left[\left(S_{10}^{[1]}(Q^2/\nu) \right)_1 \right]_p$$

$$= \left[c_{10}^{[1]}(Q^2/\nu) - c_{10}^{[1]}(Q^2/\nu) \right]_p$$

$$= 0 .$$

(A42)

Thus the NLL contributions to $S_y^{[k+1]}(x_0 Q^2/\nu; \nu)$ vanish:

$$S_y^{[k+1]}(x_0 Q^2/\nu; \nu) \{ p, f, c, c' \}_m \approx \text{NNLL} .$$

(A43)

Appendix B: Cancellation with k_T ordering

In this appendix, we explore the cancellation of large log(\nu) factors in $z_2^{[2]}(\nu)$ with k_T ordering. We can write (1)$z_2^{[2]}(\nu)$ in the form

$$\left(1 \right) z_2^{[2]}(\nu) \{ \tilde{p}, f, c, c' \}_2$$

$$= \int_0^{Q^2} \frac{dk_T}{2 \pi} \int d\eta \int d\phi \int d\eta \int d\phi$$

$$\times \Theta(k_T < \tilde{k_T}) (1 - e^{i(\phi - \tau)}) e^{-\eta_T}$$

$$\times \left(1 \right) \left(S_{10}^{[1]}(k_T, \eta, \phi) \right)$$

$$\times \left(S_{10}^{[1]}(k_T, \eta, \phi) \right)$$

$$\times \left(\{ \tilde{p}, f, c, c' \}_2 \right) .$$

We begin with a $q\bar{q}$ state with parton momenta \tilde{p}_1 and \tilde{p}_2 aligned along the + and $-z$ axis, respectively. Then one of these two partons splits, producing parton 3. We suppose that it is parton 1 that splits. After the splitting, we have partons with momenta p_1, p_2, p_2, and p_3. The value of 1 $- T$ in this state is τ and we suppose that $\tau \ll 1$. Then there is a second splitting, producing partons with momenta \tilde{p}_1, \tilde{p}_2, \tilde{p}_3, and \tilde{p}_4 with a thrust variable $\tilde{\tau} \ll 1$. We consider either the splitting of parton 3 with parton 2 as the dipole partner or the splitting of parton 2 with parton 3 as dipole partner. Other splitting possibilities are not as important and we omit consideration of them here. We limit our consideration to the leading color approximation.

We begin with the first splitting, which we describe with splitting variables k_T, η, ϕ that relate p_3 to \tilde{p}_1 and \tilde{p}_2:

$$p_3 = e^{\eta} \frac{k_T}{|Q|} \tilde{p}_1 + e^{-\eta} \frac{k_T}{|Q|} \tilde{p}_2 + \tilde{k}_\perp .$$

(B2)

Here $|Q| = [Q^2]^1/2 = [2\tilde{p}_1 \cdot \tilde{p}_2]^{1/2}$ and \tilde{k}_\perp is a vector that is orthogonal to \tilde{p}_1 and \tilde{p}_2:

$$\tilde{k}_\perp \cdot \tilde{p}_1 = \tilde{k}_\perp \cdot \tilde{p}_2 = 0 .$$

(B3)

We have defined the scalar \tilde{k}_T by

$$\tilde{k}_T = \left[-\tilde{k}_T^2 \right]^{1/2} .$$

(B4)

This definition gives $\tilde{k}_T^2 = 0$. The variable $\tilde{\eta}$ is the rapidity of p_3. We need one more splitting variable, the azimuthal angle ϕ of \tilde{k}_\perp.

For emission from parton 1, the splitting function is small for $\tilde{\eta} < 0$. There is a maximum value of $\tilde{\eta}$ for fixed k_T, set by the condition for a maximally collinear emission

$$e^{\tilde{\eta}} \frac{k_T}{|Q|} = 1 .$$

(B5)

When $\tilde{\eta}$ is close to this upper bound, the splitting function tends to zero. Thus we integrate over the splitting variables with measure $d\tilde{\eta} d\log(k_T/|Q|)$ over the range $0 \leq \tilde{\eta} \lesssim -\log(k_T/|Q|)$. In this range, as long as $\tilde{\eta}$ is not near either endpoint, the splitting function is approximately constant. For small k_T, this is a large range. The integration gives us a large logarithm, which comes from integrating over the interior of the range, omitting the regions near the endpoints:

$$0 \ll \tilde{\eta} \ll -\log(k_T/|Q|) .$$

(B6)

We will assume that $\tilde{\eta}$ lies in this range in the analysis that follows.

For an emission from parton 1, we define the momentum of parton 1 after the emission to be

$$p_1 = \left[1 - e^{\tilde{\eta}} \frac{k_T}{|Q|} \right] \tilde{p}_1 + \frac{\tilde{k}_T^2/|Q|^2}{1 - e^{\eta} k_T/|Q|} \tilde{p}_2 - \tilde{k}_\perp .$$

(B7)

With this definition, $p_2^2 = 0$ and $p_1 - \tilde{p}_1 + p_3$ lies entirely in the direction of \tilde{p}_2:

$$p_1 - \tilde{p}_1 + p_3 = \frac{e^{-\tilde{\eta}} k_T/|Q|}{1 - e^{\eta} k_T/|Q|} \tilde{p}_2 .$$

(B8)

Finally, we need to define the momentum p_2 of parton 2 after the splitting so that momentum is conserved: $p_1 +
Using Eq. (B8) we obtain \(p_2 \) by applying a small boost in the \(z \) direction to \(\hat{p}_2 \):

\[
p_2 = \left[1 - \frac{e^{-\eta k_T/|Q|}}{1 - e^{\eta k_T/|Q|}} \right] \hat{p}_2 .
\]

(B9)

This is the exact relation. In the integration range (B6), this relation becomes

\[
\tilde{p}_2 - p_2 \approx e^{-\eta} \frac{k_T}{|Q|} \hat{p}_2 .
\]

(B10)

We use Eqs. (26) and (27) to calculate the thrust for the state after the first splitting:

\[
\tau = \frac{1}{Q} \left(p_1^- + p_3^+ + p_2^+ \right) = \frac{1}{Q} \left(\tilde{p}_2 - \tilde{p}_2^- + \tilde{p}_1^- + p_2^+ \right) .
\]

(B11)

We can use \(\tilde{p}_1^- = p_2^+ = 0 \). Then we can use \(\tilde{p}_2^- = Q^- \) and Eq. (B10) for \(\tilde{p}_2 - \tilde{p}_2^+ \). This gives \(\tau \approx e^{-\eta} \frac{k_T}{|Q|} \) or \(\nu \tau \approx \nu e^{-\eta} \frac{k_T}{|Q|} \).

(B12)

This relation is significant because this emission is accompanied by a measurement function \(\exp(-\nu \tau) \). The measurement function is approximately 1 for \(\nu \tau < 1 \) but approximately zero for \(1 \ll \nu \tau \). Thus we effectively integrate over the range

\[
\nu \tau < 1 .
\]

(B13)

In the analysis that follows, we will need a relation between \(2 p_3 \cdot Q \) and the values of \(\eta \) and \(\tilde{k}_T \) for the splitting. We can use Eq. (B2) with \(\eta \gg 0 \) together with \(2 \hat{p}_1 \cdot Q = Q^2 \) to give

\[
\frac{2 p_3 \cdot Q}{Q^2} = e^{\eta} \frac{\tilde{k}_T}{|Q|} .
\]

(B14)

We now turn to the second splitting. We will describe the splitting using variables and a momentum mapping that are slightly different from what is used in DEDUCTOR with \(k_T \) ordering. In fact, we will use a local momentum mapping. However, in the kinematic limit of interest, the description used here reduces to the description used in DEDUCTOR. The splitting kinematics are illustrated in Fig. 14. We describe the second splitting with splitting variables \(k_T, \eta, \phi \) that relate \(\tilde{p}_4 \) to \(p_2 \) and \(p_3 \):

\[
\tilde{p}_4 = A_{32} e^{\eta} \frac{k_T}{|Q|} p_3 + A_{23} e^{-\eta} \frac{k_T}{|Q|} p_2 + k_\perp ,
\]

(B15)

where

\[
A_{32} = \left[\frac{Q^2}{2 p_2 \cdot p_3} \frac{p_2 \cdot Q}{p_3 \cdot Q} \right]^{1/2},
\]

(B16)

\[
A_{23} = \left[\frac{Q^2}{2 p_2 \cdot p_3} \frac{p_2 \cdot Q}{p_3 \cdot Q} \right]^{1/2}.
\]

As for the first splitting, we have defined the scalar \(k_T = \left[-k_T^2 \right]^{1/2} \). This definition gives \(\tilde{p}_4^2 = 0 \). The variable \(\eta \) describes the rapidity of \(\hat{p}_4 \) with respect to the emitting dipole, with a constant \(\log(p_2 \cdot Q/p_3 \cdot Q)/2 \) added [3]. We need one more splitting variable, the azimuthal angle \(\phi \) of \(k_\perp \) in the dipole c.m. frame.

There is a limit to how large \(\eta \) can be: \(\eta_{\text{min}} < \eta < \eta_{\text{max}} \). The limits are fixed by the requirements that the components of \(\hat{p}_4 \) along \(p_1 \) and \(p_2 \) cannot be larger than 1:

\[
\eta_{\text{max}} = -\log \left(\frac{k_T}{|Q|} \right) - \log(A_{32}) ,
\]

\[
\eta_{\text{min}} = \log \left(\frac{k_T}{|Q|} \right) + \log(A_{23}) .
\]

(B18)

The lines \(\eta = \eta_{\text{max}} \) and \(\eta = \eta_{\text{min}} \) are indicated in Fig. 14 as the lines labelled collinear. This is a large integration range. We will assume in what follows that \(\eta \) is not near to the endpoints of the integration range:

\[
\eta_{\text{min}} \ll \eta \ll \eta_{\text{max}} .
\]

(B19)

For emission from parton 3, we let the momentum of parton 3 after the emission be

\[
\hat{p}_3 \approx \left[1 - A_{32} e^{\eta} \frac{k_T}{|Q|} \right] p_3 + A_{23} e^{-\eta} \frac{k_T}{|Q|} p_2 + k_\perp ,
\]

(B20)

With this definition, \(\tilde{p}_3^2 = 0 \) and \(\hat{p}_3 - p_3 + \tilde{p}_4 \) lies entirely in the direction of \(p_2 \). Then we can maintain momentum conservation, \(\hat{p}_1 + \hat{p}_2 + \hat{p}_3 + \hat{p}_4 = p_1 + p_2 + p_3 \) by setting \(\hat{p}_1 = p_1 \) and obtaining \(\hat{p}_2 \) by performing a small boost on \(p_2 \):

\[
\hat{p}_2 = e^{-\nu} p_2 .
\]

(B21)
With a few algebraic steps, we find
\[e^{-\omega} = 1 - A_{23} e^{-\eta} \frac{k_T}{|Q|} \left[1 - A_{32} e^{\eta} \frac{k_T}{|Q|} \right]^{-1}. \] (B22)

These definitions have been exact for the kinematic variables and momentum mapping chosen. We can now make some approximations. Given our kinematic conditions (B6) for the first emission, the momentum \(p_3 \) has large rapidity. That is, it makes a small angle with the \(z \) axis. The transverse momentum vector defined in Eq. (B15) is orthogonal to \(p_3 \) and \(p_2 \) whereas the transverse momentum vector in DEDUCTOR is orthogonal to \(p_3 \) and \(Q \). However, since \(p_3 \) makes a small angle with the \(z \) axis, this is almost the same thing. In DEDUCTOR, momentum is conserved by applying a boost in the plane of \(p_3 \) and \(Q \). Since \(p_3 \) makes a small angle with the \(z \) axis, this boost is almost exactly along the \(z \) axis. The boost is applied to both \(p_2 \) and \(p_1 \), but this difference has only a tiny effect on the resulting thrust. Thus in the limit considered, the DEDUCTOR kinematics and the kinematics used here are equivalent.

We now examine the change in thrust produced by the emission of parton 4 from parton 3. We assume that \(p_4 \) is in the right thrust hemisphere. This is always the case when \(\eta \gg 0 \). There is a region near \(\eta \approx 0 \) in which this assumption fails. With the kinematics that we are using, the thrust axis is along \(-\hat{p}_2\). That is, it is the \(z \) axis. Then we have
\[\hat{\tau} - \tau = \frac{1}{Q^2} \left[\hat{p}_2 - \hat{p}_3 + \hat{p}_3 - p_2^2 - p_2^2 \right]. \] (B23)

We have \(p_2^2 = 0 \), \(\hat{p}_2 = e^{-\omega} p_2 \) from Eq. (B21), and \(p_2 / Q = 2p_2 \cdot Q / Q^2 \). This gives us
\[\hat{\tau} - \tau = 2 \frac{p_2 \cdot Q}{Q^2} \left[1 - e^{-\omega} \right]. \] (B24)

Now the condition \(\eta \ll \eta_{\text{max}} \) that we assume implies that \(A_{32} e^{\eta} k_T / |Q| \ll 1 \). Thus in Eq. (B22), we can replace the factor \(1 - A_{32} e^{\eta} k_T / |Q| \) in \(e^{-\omega} \) by just 1. Then
\[\hat{\tau} - \tau = 2 \frac{p_2 \cdot Q}{Q^2} A_{23} e^{-\eta} \frac{k_T}{|Q|}. \] (B25)

Since \(p_3 \) makes a small angle with the \(z \) axis, we obtain the approximations
\[2p_2 \cdot p_3 \approx 2p_2 \cdot Q 2p_3 \cdot Q / Q^2, \]
\[A_{32} \approx Q^2 / 2p_3 \cdot Q, \] (B26)
\[A_{23} \approx Q^2 / 2p_2 \cdot Q. \]

With these approximations, we have
\[\nu(\hat{\tau} - \tau) \approx \nu e^{-\eta} \frac{k_T}{|Q|}. \] (B27)

With the same approximations, we obtain for the change in thrust produced by an emission from parton 2 with the dipole partner being parton 3,
\[\nu(\hat{\tau} - \tau) \approx \nu e^{\eta} \frac{k_T}{|Q|}. \] (B28)

Again, this is for \(|\eta| \gg 0 \). For the soft emission region near \(\eta = 0 \), there is the possibility that \(p_2 \) is in the opposite thrust hemisphere from the parton that emitted it, so that the thrust calculation changes.

These relations are significant because the second emission is accompanied by a measurement function \(1 - \exp(-\nu(\hat{\tau} - \tau)) \). The measurement function is approximately 1 for \(1 < \nu(\hat{\tau} - \tau) \) but approximately zero for \(\nu(\hat{\tau} - \tau) \ll 1 \). Thus we effectively integrate over the range
\[\nu(\hat{\tau} - \tau) > 1. \] (B29)

The boundary of this integration region is indicated in Fig. 14 as straight lines with the labels \(\nu(\hat{\tau} - \tau) = 1 \).

There is one more restriction on the integration range for the second splitting. We are analyzing a \(k_T \) ordered shower, so
\[k_T < \hat{k}_T. \] (B30)

The line \(k_T = \hat{k}_T \) is indicated in Fig. 14.

To analyze Eq. (B30), we will need to know the value \(k_{\tau, \ast} \) of \(k_T \) at the point labelled with a star in Fig. 14. We first note that the line for \(\eta > 0 \) labelled collinear in Fig. 14 is given by \(\eta = \eta_{\text{max}} \) in Eq. (B18), \(e^{\eta} k_T / |Q| = 1 / A_{32} \). We can use Eqs. (B26) and (B14) for \(A_{32} \), giving
\[e^{\eta} \frac{k_T}{|Q|} \approx e^{\eta} \frac{\hat{k}_T}{|Q|}, \text{ collinear}. \] (B31)

Then using Eq. (B12) to eliminate \(\hat{\eta} \) and Eq. (B27) to eliminate \(\eta \) we have
\[\frac{k_T^2}{Q^2} \approx \frac{\nu(\hat{\tau} - \tau) \hat{k}_T^2}{Q^2}, \text{ collinear}. \] (B32)

The point labelled with a star in Fig. 14 is the intersection of the collinear line and the line \(\nu(\hat{\tau} - \tau) = 1 \). Thus,
\[\frac{k_{\tau, \ast}^2}{Q^2} \approx \frac{1}{\nu^2} \frac{\hat{k}_T^2}{Q^2}. \] (B33)

Since in the dominant integration region \(\nu r < 1 \), we conclude that \(k_{\tau, \ast} > k_T \). Thus the line \(k_T = \hat{k}_T \) lies below the point \((\eta_{\ast}, k_{\tau, \ast}) \) in Fig. 14. This implies that the effective integration region for the second splitting is the region shaded in yellow in Fig. 14. Inside this region, the integrand is approximately 1.

Now consider the case in which the first splitting is virtual. The corresponding contribution comes from the term \(\mathcal{S}[1,0](\hat{k}_T, \hat{\eta}, \hat{\phi}) e^{-\nu r} \rho \) in the last line of Eq. (B1).

We integrate over the splitting variables for the first splitting, including the measurement function \(e^{-\nu r} \), but we
start the second splitting from the $q\bar{q}$ state with just partons with momenta \tilde{p}_1 and \tilde{p}_2, but with the k_T ordering requirement $k_T < \tilde{k}_T$. Now the limits on η in Fig. 14, indicated by the lines labelled collinear, are expanded to the dotted lines in the figure. However, the effective integration region for the second splitting is the region shaded in yellow in Fig. 14. When we subtract the virtual contribution from the real contribution, we get zero within the approximations that we have used.

In Eq. (B33), we have equality, $\tilde{k}_T = k_{T,*}$, when the value of τ for the first splitting is given by $\nu \tau = 1$. The value of k_T in the first splitting can be less than $k_{T,*}$, but if \tilde{k}_T is too small then the integration region in Fig. 14 disappears. From Eq. (B27) at $\eta = 0$, $\nu(\tilde{\tau} - \tau) = 1$ and $\tilde{k}_T = k_T$, we see that this limits \tilde{k}_T to

$$\frac{\tilde{k}_T}{Q} > \frac{1}{\nu} . \quad (B34)$$

Our analysis above has assumed that the first emission is at large rapidity, $\tilde{\eta} \gg 0$. What happens when $\tilde{\eta} \approx 0$? The approximations that we have used are not adequate in this situation, so it might seem that there is nothing that we can say. However, we can examine what happens when $\tilde{\eta}$ is large enough that the approximations are still valid, but $\tilde{\eta}$ becomes smaller and smaller. Start with Eq. (B31) for the collinear line in Fig. 14 and use Eq. (B12) to eliminate \tilde{k}_T and Eq. (B27) to eliminate k_T, giving

$$e^{2\eta} \approx \frac{\nu \tau}{\nu(\tilde{\tau} - \tau)} e^{2\tilde{\eta}} , \quad \text{collinear} . \quad (B35)$$

The point labelled with a star in Fig. 14 is the intersection of the collinear line and the line $\nu(\tilde{\tau} - \tau) = 1$. Thus,

$$e^{2\eta} \approx \nu \tau e^{2\tilde{\eta}} . \quad (B36)$$

In the effective integration range for the first splitting, we have $\nu \tau < 1$. Thus

$$\eta_* < \tilde{\eta} . \quad (B37)$$

This tells us that when the rapidity of the first splitting becomes small, $\tilde{\eta} \to 0$, we have $\eta_* \to 0$. In this limit, the real-virtual cancellation in this region deteriorates, but this deterioration does not matter because the allowed integration region for the second splitting in Fig. 14 shrinks to zero.

The cancellation will fail on a certain surface in the integration region. On this surface, the splitting variables for the second emission are given by

$$(k_T, \eta) \approx (k_{T,*}, \eta_*) . \quad (B38)$$

In this region, the second emission is collinear rather than both soft and collinear, so that the emission probability does not match the constant that appears in the region in which the second emission is both soft and collinear. However in the virtual subtraction the second emission is both soft and collinear so that the emission probability is this constant. Thus the emission probabilities do not match between the real emission and the subtraction.

The surface of non-matching probabilities is specified as follows. If $k_T = k_{T,*}$, then the line $k_T = \tilde{k}_T$ in Fig. 14 must pass through $(k_{T,*}, \eta_*)$, so that $\tilde{k}_T = k_{T,*}$. Then Eq. (B33) implies that the value of τ for the first emission is given by $\nu \tau = 1$. Then Eq. (B12) gives

$$\tilde{\eta} \approx \log(\nu) + \log\left(\frac{\tilde{k}_T}{Q}\right) . \quad (B39)$$

The transverse momentum for the first emission varies in the range

$$- \log(\nu) \ll \log\left(\frac{\tilde{k}_T}{Q}\right) \ll - \frac{1}{2} \log(\nu) . \quad (B40)$$

Here the lower limit is from Eq. (B34) and the upper limit is from Eqs. (B6), (B12), and (B13). For the second emission, $(k_T, \eta) \approx (k_{T,*}, \eta_*)$:

$$\eta \approx \tilde{\eta} , \quad \log\left(\frac{k_T}{Q}\right) \approx \log\left(\frac{k_{T,*}}{Q}\right) . \quad (B41)$$

Thus the integration region inside which cancellation fails is one dimensional, so we are left with a contribution to $Z_2^{(2)}$ proportional to $\log^1(\nu)$.

[1] Z. Nagy and D. E. Soper, Final state dipole showers and the DGLAP equation, JHEP 05, 088 (2009) [arXiv:0909.2825 [hep-ph]]
[2] Z. Nagy and D. E. Soper, On the transverse momentum in Z-boson production in a virtually ordered parton shower, JHEP 1003 (2010) 097 [arXiv:0912.5084 [hep-ph]]
[3] M. Dasgupta, F. A. Dreyer, K. Hamilton, P. F. Monni, G. P. Salam and G. Soyez, Parton showers beyond leading logarithmic accuracy, Phys. Rev. Lett. 125, 052002 (2020) [arXiv:1912.09542 [hep-ph]]
[4] Z. Nagy and D. E. Soper, Summations of large logarithms by parton showers, arXiv:2011.04773 [hep-ph]
[5] Z. Nagy and D. E. Soper, Parton showers with quantum interference, JHEP 0709 (2007) 114 [arXiv:0705.2359 [hep-ph]]
[6] Z. Nagy and D. E. Soper, Parton showers with quantum interference: Leading color, spin averaged, JHEP 0803 (2008) 030 [arXiv:0712.2078 [hep-ph]]
[7] Z. Nagy and D. E. Soper, Parton showers with quantum interference: Leading color, with spin, JHEP 0807 (2008) 025 [arXiv:0802.2953 [hep-ph]]
[8] Z. Nagy and D. E. Soper, Parton shower evolution with subleading color, JHEP 1206 (2012) 044 [inSPIRE].
[9] Z. Nagy and D. E. Soper, A parton shower based on factorization of the quantum density matrix, JHEP 1406 (2014) 097 [inSPIRE].
[10] Z. Nagy and D. E. Soper, Ordering variable for parton showers, JHEP 1406 (2014) 178 [inSPIRE].
[11] Z. Nagy and D. E. Soper, Parton distribution functions in the context of parton showers, JHEP 1406 (2014) 179 [inSPIRE].
[12] Z. Nagy and D. E. Soper, Effects of subleading color in a parton shower, JHEP 1507 (2015) 119 [inSPIRE].
[13] Z. Nagy and D. E. Soper, Summing threshold logs in a parton shower, JHEP 1610 (2016) 019 [inSPIRE].
[14] Z. Nagy and D. E. Soper, What is a parton shower?, Phys. Rev. D 98, 014034 (2018) [inSPIRE].
[15] S. Catani, B. R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349, 635 (1991) [inSPIRE].
[16] S. Brandt, C. Peyrou, R. Sosnowski and A. Wróblewski, The Principal axis of jets. An Attempt to analyze high-energy collisions as two-body processes, Phys. Lett. 12, 57-61 (1964) [inSPIRE].
[17] E. Farhi, Quantum Chromodynamics Test for Jets, Phys. Rev. Lett. 39, 1587-1588 (1977) [inSPIRE].
[18] S. Catani, L. Trentadue, G. Turnock and B. Webber, Resummation of large logarithms in e+ e- event shape distributions, Nucl. Phys. B 407, 3 (1993) [inSPIRE].
[19] D. E. Soper and L. R. Surguladze, On the QCD perturbative expansion for e+e- → hadrons, Phys. Rev. D 54, 4566 (1996) [inSPIRE].
[20] Z. Nagy and D. E. Soper, Parton showers with more exact color evolution, Phys. Rev. D 99, 054009 (2019) [inSPIRE].
[21] Z. Nagy and D. E. Soper, Exponentiating virtual imaginary contributions in a parton shower, Phys. Rev. D 100, 074005 (2019) [inSPIRE].
[22] Z. Nagy and D. E. Soper, Parton showers with more exact color evolution, Phys. Rev. D 99, 054009 (2019) [inSPIRE].
[23] S. Catani and M. H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum-ibid. B 510 (1998) 503] [inSPIRE].
[24] T. Sjostrand and P. Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39, 129 (2005) [inSPIRE].