Alisha Akya¹, Farid Najafi², Nasrollah Sohrabi³*, Siavash Vaziri¹, Faizolah Mansouri¹, Mohsen Azizi⁴ and Farideh Akbarzadeh⁵

¹Nosocomial Infection Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
²Research Center for Environmental Determinations of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
³Department of Medical Laboratory Sciences, School of Paramedicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
⁴Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
⁵Central Library, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Authors’ contributions

This work was carried out in collaboration between all authors. Author SEA designed the study, wrote the protocol and interpreted the data. Author BA anchored the field study, gathered the initial data and performed preliminary data analysis. While authors OA and LEI managed the literature searches and produced the initial draft. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARRB/2015/12676

(1) George Perry, Dean and Professor of Biology, University of Texas at San Antonio, USA.
(2) Teresita Sainz Espuñes, Chief Researcher at Universidad Autonoma Metropolitana, Mexico City, Mexico.
(1) Toru Watanabe, Department of Pediatrics, Niigata City General Hospital, Japan.

Complete Peer review History: http://www.sciencedomain.org/review-history.php?id=799&id=32&aid=7621

Received 12th July 2014
Accepted 25th September 2014
Published 5th January 2015

ABSTRACT

Aims: Urinary tract infection (UTI) is one the most common bacterial infection and Escherichia coli (E. coli) has been isolated from the majority of UTI cases. On the other hand, the rate of UTIs caused by quinolones resistant E. coli is increasing worldwide. We aimed to perform a systematic review of quinolones resistance of E. coli isolated from urinary tract infections in Iran over last ten years.

*Corresponding author: E-mail: na.sohrabi@gmail.com;
1. INTRODUCTION

In medical references, *E. coli* is the most common agent of urinary tract infections (UTIs) in all parts of the world [1,2]. According to a study it is estimated that 130–175 million human UTIs occur every year in the world, with about 80% being caused by uropathogenic *E. coli* (EUPEC) strains [2]. Using new antibiotics for the treatment of bacterial infections, resistance to the drugs has emerged. Resistance to the new generations of antibiotics and subsequently the development of resistant strains has become prevalent not only among the hospital-acquired infections but also among community-acquired infections [3]. Consequently, the choice of empiric treatments for UTIs has now become challenging, since 20–50% of *E. coli* isolates are now resistant to the first-line of antibiotics [4]. Following the increased resistance to co-trimoxazole and ampicillin as the first line therapy, quinolones have been widely prescribed as an alternative for the treatment of UTIs [6-10]. These antibiotics have become some of the most frequently prescribed antimicrobial agents worldwide and have widely been used in the clinical treatment of various bacterial infections, including the UTIs caused by *E. coli*. However, many studies have reported the isolation of quinolone resistant strains of *E. coli* [3,4].

Resistant to quinolones may occurred as a consequence of point mutations in the genes encoding the targets gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE), or increased the levels of the multidrug efflux pump AcrAB (11-13), and the presence of plasmid-borne mechanisms including QnrA, QnrB, QnrS, and Aac(6)-Ib-cr [14-16].

Given this emerging problem, determining the resistant rate of isolates for quinolones is essential for the better treatment of UTIs.

In different parts of Iran, researchers have reported the prevalence of quinolone resistance for *E. coli* isolated from urinary tract infections [6-10]. However, a systematic review of comprehensive information of these studies has not been performed and subsequently the picture of emerging resistance of *E. coli* in Iran is not available. This study was conducted to determine a national picture of in vitro susceptibilities for ciprofloxacin, nalidixic acid, norfloxacin and ofloxacin among urine isolates of *E. coli*. Since studies used different methods of susceptibility testing with various antibiotics, samples and the isolates (community acquired and nosocomial origin), we systematically reviewed and did meta-analysis of the collected data of these studies.

2. METHODS

2.1 Literature Search

The literature search was performed during the period from 2001 until 2011. For the review process we followed the PRISMA recommendations (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Searched keywords were the MeSH (Medical Subject Headings) terms "Escherichia coli" OR "E. coli" AND "quinolone resistance" AND "antibiotic susceptibility pattern" AND "Iran" in several electronic databases and publishers. These included: PubMed, ScienceDirect, Scopus, Embase, Springer Link Contemporary,
Web of Knowledge (ISI), BioMed Central, BMJ Journals, Cochrane Library, Directory of Open Access Journals (DOAJ), Ebscohost, Emerald Journals, Google Scholar, MD Consult, Ovid SP, Oxford Journals, ProQuest, and Wiley Inter Science Journals. Moreover, Iranian databases of literatures including Iranian Database of Publication (Magiran), Scientific Information Database (SID), Iranian Research Institute for Information Science and Technology (IranDoc), Iranian Database of Medical Sciences Papers (IranMedex), Global Medical Articles Library (Medlib) and Regional Information Centre for Science and Technology (RICeST) were investigated. Additionally, abstract books of microbiology, bacteriology, antibiotic resistance and infectious diseases of Iranian Congresses during the period from 2001 until 2011 were also explored. Iranian medical universities’ websites were searched for relevant reports of congresses, research projects and theses as well.

2.2 Inclusion Criteria

Among all articles or abstracts found, those with the following features were included in the study:

1. *E. coli* samples were collected from Iranian inpatient and outpatient.
2. *E. coli* samples were isolated from urine specimens.
3. Antibiotic susceptibility pattern of *E. coli* isolates was determined by standards methods such as Disk Agar Diffusion (DAD), Minimum Inhibitory Concentration (MIC) and E-test.

2.3 Exclusion Criteria

Studies with at least one of the below criteria were excluded:

1. Case report studies.
2. Studies with low sample size (less than 20 cases).
3. Methods for determination of antibiotic susceptibility testing could not be found from study.
4. The origin of samples was not clear.
5. Duplicate publications both in English and Persian languages (the article published later and/or with more detailed results was chosen for analysis.)
6. Duplicate publications and congress abstracts.

2.4 Critical Appraisal and Selection of Studies

Eighty resources both English and Persian languages were reviewed by three groups namely microbiologists, epidemiologists and specialist of infectious diseases. From 96 studies, 43 were excluded because of one of the above mentioned reasons and 53 studies [6-10,17-64] were selected for data extraction and analysis (Fig. 1). The relevant data including urine sampling methods (mid-stream urinary, catheter and suprapubic aspiration), year and location of sampling, type of patients (inpatient and outpatient), methods for antibiotic susceptibility testing (DAD, MIC and E-test), types of antibiotics, the gender and age (average age) of patients was also recorded. All data were collected and were inserted into an Excel file.

2.5 Statistical Analysis

Statistical analysis of all data was performed using STATA11 software. For the purpose of this study we weighted each study using inverse of variance. In addition, random effect model was used to calculate pooled summary estimate of resistance. Heterogeneity among studies was tested using chi-squared. In order to find the reason for heterogeneity, the result of each antibiotic was pooled according to different variables such as urine sampling methods (mid-stream urinary, catheter and suprapubic aspiration), year and location of sampling, type of patients (inpatient and outpatient), methods for antibiotic susceptibility testing (DAD, MIC and E-test), types of antibiotics, the gender and age (average age) of patients using meta-regression. Antibiotic susceptibility pattern of *E. coli* isolates from UTIs in Iran was pooled by forest plot using the Meta-Analyst software. Statistical heterogeneity of the results was checked using Cochrane Q-test with significance set at $P<0.05$.

236
3. RESULTS

In this study, the data of 53 cross-sectional studies (15304 urine samples) from 2001 to 2011 on quinolones resistance of *E. coli* isolated from UTIs in 22 cities of Iran was collected. Of 53 studies, 44, 41, 8 and 6 of them tested ciprofloxacin, nalidixic acid, norfloxacin and ofloxacin, respectively. Moreover, 31, 12 and 10 of studies were done on out-patients, hospitalized patients and both, respectively. For testing the susceptibility of isolates, 49 and 4 of studies used disk diffusion and E test, respectively. The majority of studies (48 studies) were done on both men and women, while 3 and 2 studies tested only urine samples of women and men, respectively.

Most studies (75.4%) used patients with a wide range of age. But 11 (20.7%) and 2(3.8%) studies used patients under 18 year and adult, respectively. Forty six of studies (86.8%) used midstream sampling method, while the rest used varies methods for sampling including catheter, suprapubic and urine bag. Out of 53 studies, 42(79.2%) were original research, 9 were data collections and 2 were theses or abstract.
First, the data were analyzed for antibiotic resistance to find out resistance to quinolone (Figs. 2–5). Each graph shows the estimated vertical size of resistance in the study. Overall resistance for nalidixic acid, ciprofloxacin, norfloxacin and ofloxacin were 42.3%, 28.2%, 48.5% and 24.1%, respectively. For each antibiotic, the pooled percentage of resistance using random effect has been presented. The results of most studies were significantly heterogenic (P<0.001) (Table 1).

4. DISCUSSION

Urinary tract infections are the most common bacterial infections in human and account for significant morbidity and health care costs [1,2,65-67]. Among both outpatients and inpatients, E. coli is the principal pathogen in urinary tract infections, accounting for 75 to 90% of uncomplicated UTIs [65,67]. Therefore, physicians need to obtain information on local resistance rates by ongoing surveillance performed to monitor changes in the susceptibility of uropathogenic E. coli [68]. On the other hand, the increased prevalence of infections caused by quinolone resistant E. coli makes the empirical treatment of UTIs more difficult.

Our results showed resistance to quinolone drugs are significantly heterogenic among studies performed in Iran which indicated the data of susceptibility testing might be affected by factors such as the method of susceptibility testing, number of samples, age and gender of patients, inpatients or outpatients and so on. However given the large number of samples tested, in particular for nalidixic acid and ciprofloxacin, the results reflect the increased resistance to this group of antibiotics in Iran. A few studies have tested the resistance to norfloxacin and ofloxacin in Iran, however; the resistant rate to these antibiotics is quite considerable. The resistance rate to ciprofloxacin in E. coli isolates vary over the years and between countries, ranging from, 1% to 38% [69]. For example, Of 1,858 E. coli isolates from outpatient midstream urine specimens at 40 North American clinical laboratories in 2004 to 2005, 10.8% of isolates were resistant to ciprofloxacin [70]. This rate of resistance is much lower than the rate in Iran.

![Fig. 2. Meta-analysis of data for resistance to nalidixic acid](image-url)
Fig. 3. Meta-analysis of data for resistance to ciprofloxacin

Fig. 4. Meta-analysis of data for resistance to ofloxacin
This study also found quinolone resistant isolates of *E. coli* from urine were frequently multidrug resistant. The latter results are consistent with our results that point out the higher resistance rate of *E. coli* to quinolones in developing countries. One of the important factors contributing to these high resistance rates might be the high antibiotic use. Studies have also reported the risk factors for emerging of quinolone resistant *E. coli*. For instance, in patients with previous urinary tract infection, urinary catheterization and prior quinolone exposure are associated with a high risk of ciprofloxacin resistant *E. coli* which may cause treatment failure [71]. Moreover, a multivariate analysis also indicated that age over 50 was found to be associated with ciprofloxacin resistance [72]. This is consistent with our results for both ciprofloxacin and nalidixic acid which showed significantly higher resistant rate among older patients (P<0.05). This increased prevalence of resistance requires susceptibility testing of drugs used for treatment of UTIs. Research showed the ciprofloxacin resistant *E. coli* may arise *de novo* in poultry from susceptible progenitors and transmitted to humans via the food supply to cause potentially life-threatening infections [69]. Therefore the use of antibiotics should be supervised not only for humans but also for animal treatments.

5. CONCLUSION

In conclusion given the fact that resistance to quinolones has been increased in our country, rational use of this group of antibiotics is required. Given the lower resistant rate of ofloxacin, it is more effective for empirical therapy in Iran. Furthermore, the urine culture and antimicrobial susceptibility testing are essential in successful treatment of UTIs. Finally, the increasing pattern of resistance to quinolones requires ongoing surveillance to
identify further changes of resistance among uropathogenic E. coli.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Foxman B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Am J Med. 2002;113:5S-13S.
2. Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to *Escherichia coli*: Focus on an increasingly important endemic problem. Microbes Infect. 2003;5:449-456.
3. Cizman M, Orazem A, Krizan-Hergouth V, Kolman J. Correlation between increased consumption of fluoroquinolones in outpatients and resistance of *Escherichia coli* from urinary tract infections. J Antimicrob Chemother. 2001;47(4):502.
4. Sanchez GV, Master RN, Karlowsky JA, Bordon JM. *In vitro* antimicrobial resistance of urinary *Escherichia coli* isolates among U.S. outpatients from 2000 to 2010. Antimicrob Agents Chemother. 2012;56(4):2181-3.
5. Chenia HY, Pillay B, Pillay D. Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. J Antimicrob Chemother. 2006;58(6):1274-8.
6. Hadadi A, Rasoulinejad M, Maleki Z, Mojtahedzadeh M, Younesian M, Ahmadi SA. Antimicrobial resistance patterns among gram-Gram negative bacilli isolated from patient with nosocomial infection by E-test versus Disk diffusion test. Tehran Univ Med J. 2007;65(4):1-10.
7. Emamghorashi F, Farshad SH, Kalani M, Rajabi SH, Hoseini M. The prevalence of O-serogroups of *Escherichia coli* strains causing acute urinary tract infection children in Iran. Saudi J Did Transpl. 2011;22(3):597-601.
8. Tashakori M, Farokhnia M, Shaikhaleslami Z, Mirzaei T, Yosefi H, Mokhyari F, et al. Evaluation of Producing Extended Spectrum β-lactamase among Isolated *Escherichia coli* from Patients Suffering from Urinary Tract Infections. J Rafsanjan Univ Med Sci. 2011;10(1):62-68.
9. Saderi H, owlia P, Jalali Nodoushan M, Zaeri Zandieh E. Fetal A 3-year study of demographic characteristics of patients with urinary tract infection: Microbial etiology, and susceptibility of isolated bacteria to antibiotics in Shaheed Mostafa Khomeini Hospital Iran. Iran J Pathol. 2006;3(3):99-104.
10. Farajinia S, Alkhani MY, Ghotsaslou R, Naghili B, Nakhilband A. Causative agents and antimicrobial susceptibilities of urinary tract infections in the northwest of Iran. Int J Infect Dis. 2009;13(2):140-4.
11. Mazzariol A, Toke Y, Kanegawa TM, Cornaglia G, Nikaido H. High-level fluoroquinolone-resistant clinical isolates of *Escherichia coli* overproduce multidrug efflux protein acrA. Antimicrob Agents Chemother. 2000;44:3441-3443.
12. Wang H, Dzink-Fox JL, Chen M, Levy SB. Genetic characterization of highly fluoroquinolone-resistant clinical *Escherichia coli* strains from China: Role of acrR mutations. Antimicrob Agents Chemother. 2001;45:1515-1521.
13. Webber MA, Piddock LJ. Absence of mutations in marRAB or soxRS in acrB-overexpressing fluoroquinolone-resistant clinical and veterinary isolates of *Escherichia coli*. Antimicrob Agents Chemother. 2001;45:1550-1552.
14. Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, Hooper DC. qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob. Agents Chemother. 2006;50:1178-1182.
15. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC. Fluoroquinolone-modifying enzyme: A new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 2006;12:83-88.
16. Wang M, Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC. Plasmid-mediated quinolone resistance in clinical isolates of *Escherichia coli* from Shanghai, China. Antimicrob. Agents Chemother. 2003;47:2242-2248.
17. Farshad SH, Anvarinejad M, Mehrabi Tavana A, Japoni A, Hoseiny M, Shahidi M. Molecular epidemiology of *E. coli* strains isolated from urinary tract infections in Children. J Jahrom Univ Med Sci. 2009;6(3):60-61.
18. Ghadiri K, Ahmadi P, Abiri R, Saidzade SA, Babaee H, Salehi AA, et al. The mic study of antibiotics used in the treatment of children with urinary tract infections caused by *E. coli* using E-test and ts comparison
with disk diffusion. J Zanjan Univ Med Sci. 2009;17(67):89-98.

19. Ghorashi Z, Ghorashi S, Soltani Ahari H, Nazemi N. Demographic features and antibiotic resistance among children hospitalized for urinary tract infection in northwest Iran. Infect Drug Resist. 2011;4:25-8.

20. Sharifian M, Karimi A, Rafiee-Tabatabaei S. Microbial sensitivity pattern in urinary tract infections in children: A single center experience of 1177 urine cultures. Jpn J Infect Dis. 2006;59:380-82.

21. Mohebi R, Pakzad I, Sadeghfard N, Maleki A, Maleki H, Hematian A, et al. Study of antibiotic resistance pattern and plasmid profile of uropathogenic Escherichia coli isolated. J Illam Univ Med Sci. 2009;17(2):43-45.

22. Savadkoohi R, Sorkhi H, Pournasrollah M, Khalilian E, Mahdi poor E. Antibiotic resistance of bacteria causing urinary tract infections in hospitalized patients in the pediatric subspecialty Hospital of Amirkala, Babol, 2002-2005. Iran J Infect Dis Trop Med. 2007;39(12):25-8.

23. Jalalpoor Sh, Kasra Kermanshahi R, Nouhi AS, Esfahani Z. Comparative frequency of ESBLs and antibiotic resistant pattern in gram negative bacilli isolated of hospitalized and out-patients acquired urinary tract infection (Esfahan/2008-2009). 11th Iranian Microbiology Congress & 1 East Mediterranean Microbiology Congress Guilan University of Medical Sciences Iran; 2010.

24. Rostamzadeh Khameneh Z, Taghizadeh Afshar A. Antimicrobial susceptibility pattern of urinary tract pathogens. Saudi J Did Transpl. 2009;20(2):251-253.

25. Yousefi Mashouf R, Babalhavaeji H, Yousef J. Urinary tract infections: Bacteriology and antibiotic resistance patterns. Indian pediatrics. 2009;46;234-237.

26. Ghotaslou R, Abdoli Oskouei Sh, Mesri A. The in vitro activity of ciprofloxacin on isolated organism from urinary tract infection in a pediatric hospital. Pharmaceutical Sciences. joral of pharmacy. 2005;(2):32-39.

27. Sorkhi H, Jabbarian Amiri A, Askarian A. Escherichia coli and drug sensitivity in children with urinary tract infection. J Guilan Univ Med Sci. 2005;14(54):28-23.

28. Noroozi J, Kargar M, Pour Shahian F, Kamali M. Study on the prevalence of urinary tract infectin by Escherichia coli, antibiotic resistance and plasmid profile of isolated bacteria in Jahrom city. Urmia Med J. 2006;4(13):749-745.

29. Eghbalian F, Yousefi Mashouf R. Determining the frequency of the bacterial agents urinary tract infection in hospitalized patients under 18 years old in Ekbatan Hospital. Urmia Med J. 2005;3(11):639-635.

30. Naghavi KH, Jonaidi N, Karami A, Sorouri R, Khalil Pour A, Safiri Z, et al. Molecular survey nalidixic acid resistance E. coli isolated from patients with Urinary Tract in Baqiyatallah Hospital. J Milt Med. 2006;8(30):191-196.

31. Khorvash F, Zarefars, Moherizadeh S, Mostafavizadeh K. Antibiotic Susceptibility Pattern Causing Urinary Tract Infection in Spinal cord Injured patients with e test. Zahedan J Res Med Sci. 2004;4:305-312.

32. Milani M, Naheai MR, Lotfipour F, Yoosefee S. Antibiotic sensitivity of prevalent bacteria isolated from urinary tract infection during 1998-2005. Pharmaceutical Sciences journal of Faculty of pharmacy, 2008;4:47-53.

33. Mahdavi A, Naheai MR, Akhi MT, Naheai M, Akbari Dibavar M. Antibiotic Resistance pattern against Fluoroquinolones among Escherichia coli Isolated from ICU and out-patient clinic admitted patients with urinary tract infection. Med J Tabriz Univ Med Sci. 2009;31(3):91-96.

34. Kanani M, Madani SH, Khazaei S, Shahi M. The survey antibiotic resistance in gram negative bacilli isolated from urine culture specimens, Imam Reza hospital-kermanshah. Urmia Med J. 2010;21(1):75-81.

35. Nakhaee Moghadam M, Moshrefi Shila. Determining the antibiotic resistance pattern of urinary isolates of Escherichia coli and prevalence of Extended-spectrum β-lactamases (ESBLs) among them. J Sabzevar Univ Med Sci. 2010;16(4):228-233.

36. Barati L, Ghezelsofia F, Azarhoush R, Heidari F, Noora M. Antibiotic sensitivity of isolated E. coli from pregnant women urine. J Gorgan Univ Med Sci. 2011;13(3):101-107.

37. Tarhani F, Kazemi A. Evaluation of antibiotic resistance in patients with urinary tract infection, Khorramabad Madani hospital 2001-2002. Yazteh. 2004;5(2):39-46.
38. Klantar D, Mansouri Sh, Razavi M. Emergence of Imipenem resistance and presence of metallo-β-lactamases enzymes in multi drug resistant gram negative bacilli isolated from clinical samples in kerman, 2007-2008. J Kerman Univ Med Sci. 2010;17(3):208-214.

39. Hamid-Farahani R, Tajik A, Noorfard M, Keshavarz A, Taghipour N, Hessieni-Shokouh J. Antibiotic resistance pattern of E. coli isolated from urine culture in 660 Army clinical laboratory center in Tehran 2008. HBI-Journals. 2012;10(1):45-49.

40. Nakhjavani FA, Miresalehian A, Hamidian M, Kazemi B, Mirafshar SM, Jabalameli F. Antimicrobial Susceptibility Testing for E. coli Strains to Fluoroquinolones, in Urinary Tract Infections. Iran J Public Health. 2007;(1):23-27.

41. Borji A, Shahraki Zahedani Sh, Moradi A. Drug resistance of Escherichia coli isolated from urinary tract infections in Zahedan from 2000 to 2001. J Zanjan Univ Med. 2002;37:28-32.

42. Kashef N, Esmaeeli DGH, Shahbazi S. Antimicrobial susceptibility patterns of community-acquired uropathogens in Tehran, Iran. J Infect Dev Ctries. 2010;(4):202-206.

43. Madani H, Khazae S, Kanani M, Shahi M. Antibiotic resistance pattern of E. coli isolated from urine culture in Imam Reza Hospital Kermanshah-2006. Behbood J. 2008;12(3):287-95.

44. Miresalehian A, Nakhjavani F, Peymani A, Jabalameli F, Mirafshar SM, Hamidian M. Frequency of extended spectrum β-Lactamase producing Enterobacteriaceae in intensive care units. Tehran Univ Med J. 2007;65(1):33-38.

45. Mohajeri P, Izadi B, Naghsh N. Antibiotic sensitivity of Escherichia coli isolated from urinary tract infection referred to Kermanshah Central laboratory. Behbood J. 2011;15(1):51-56.

46. Klantar D, Mansouri Sh, Razavi M. Emergence of Imipenem resistance and presence of metallo-β-lactamases enzymes in multi drug resistant gram negative bacilli isolated from clinical samples in kerman, 2007-2008. J Kerman Univ Med Sci. 2010;17(3):208-214.

47. Amir Mozaffari N, Forouhesh Tehrani H, Tavaf Langeroodi Z, Abdullahi A. A survey of drug resistance due to Extended Spectrum Beta Lactamases (ESBLs) in Escherichia coli strains isolated from hospitalized patients. Razi J Med Sci. 2008;15(59):39-45.

48. Mohajeri P, Izadi B, Naghsh N. Antibiotic sensitivity of Escherichia coli isolated from urinary tract infection referred to Kermanshah Central laboratory. Behbood J. 2011;15(1):51-56.

49. Mokhtarian DH, Ghahramani M, Nourzad H. A study of antibiotic resistance of Escherichia coli isolated from urinary tract infection. Horizon Med Sci. 2006;12(3):5-10.

50. sefaddini A. Evaluation of medicinal resistance of E. coli from 6 kind common antibiotics. The 10th Iranian Congress of Microbiology, langerod, Iran; 2008.

51. Modanlo S. Drug resistance patterns of Escherichia coli isolated from urinary tract infection. The 5th Iranian Congress of Microbiology, Ahvaz, Iran; 2003.

52. Bahador M. Antibiotic sensitivity of E. coli isolated from urinary tract infection. The 3rd Iranian Congress of Microbiology, Hemedan, Iran; 2000.

53. Jamshidi AA, Mattbooei A. Drug resistance in UTI in patients who referred to Beheshti Hospital, Zanjan, Iran. The 10th Iranian Congress of Microbiology, langerod, Iran; 2008.

54. Nafisi MR, Karimi A, Drug resistance patterns of Escherichia coli isolated from urinary tract infection in shahrekord, 2008. The 10th Iranian Congress of Microbiology, Ahvaz, Iran; 2008.

55. Paivandi S. Survey of role of Escherichia coli in urinary tract infection and its drug resistance. The 5th Iranian Congress of Microbiology, Ahvaz, Iran; 2003.

56. Rafiei Tabatabaei R, Pourbakhsh A. The study of different methods of typing for diagnosis and differentiation of Escherichia coli isolated From urinary tract infection. Journal of Basic Sciences; 74: JSIAU. 2009;19(74):1-14.

57. Yazdi M, Nazemi A, Mirinargasi M, Khataminejad M, Sharifi S, Babai Kochkaksaraei M. Prevalence of SHV/CTX-M/TEM (ESBL) beta-lactamase resistance genes in Escherichia coli
isolated from urinary tract infections in Tehran, Iran. Med Lab J. 2010;4(1):48-54.

59. Yousefee S, Nahaei MR, Sharifi Y, Zareekar B. Isolation and antibiotic sensitivity of bacterial etiologic agents of urinary tract infection. The 7th Iranian Congress of Microbiology, Semnan, Iran; 2005.

60. Shirazi MH, Ranjbar R, Daneshyar E, Sadeghian S, Sadeghifard N. Urinary tract pathogens in asymptomatic bacteriuria and their antimicrobial resistance in pregnant women in Hamedan. Iran J Infect Dis Trop Med. 2007;12(36):53-58.

61. Sadeghi J, Nahaei MR, Asghar Zadeh M. Plasmid profile of Escherichia coli strains isolated from urinary tract infections of in-patients and out-patients. Med J Tabriz Univ Med Sci. 2005;27(2):58-51.

62. Saraj M, Mowla K, Ghorbani A, Etemadi A, Cheraghy M, Mahmoodlo A, et al. Identification of outpatient urinary pathogens and antibiotic susceptibility pattern in Ahwaz, Iran 2002-2003. Yafteh. 2005;6(4):41-47.

63. Amin M, Mehdinejad M, Pourandangi Z. Study of bacteria isolated from urinary tract infections and determination of their susceptibility to antibiotics. Jundishapur J Microbiol. 2011;2(3):118-23.

64. Siadati SM, Ranjbar R, Badami N, Mohammainsr E, Karami A. Prevalence of urinary tract infections in disabled with spinal cord disabilities and drug susceptibility of isolated agents. Iran J Infect Dis Trop Med. 2008;13(42):49-52.

65. Gupta K, Hooten TM, Stamm WE. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Ann Intern Med. 2001;135:41-50.

66. Stamm WE, Norrby SR. Urinary tract infections: Disease panorama and challenges. J Infect Dis. 2001;183(1):S1-S4.

67. Nicolle LE. Epidemiology of urinary tract infection. Infect Med. 2001;18:153-162.

68. Warren JW, Abrutyn E, Hebel JR, Johnson JR, Schaeffer AJ, Stamm WE. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin Infect Dis. 1999;29(4):745-58.

69. Talan DA, Stamm WE, Hooton TM, et al. Comparison of ciprofloxacin (7 days) and trimethoprim-sulfamethoxazole (14 days) for acute uncomplicated pyelonephritis in women: A randomized trial JAMA. 2000;283:1583–90.

70. Karlowsky JA, Hoban DJ, De Corby MR, Laing NM, Zhanel GG. Fluoroquinolone-resistant urinary isolates of Escherichia coli from outpatients are frequently multidrug resistant: Results from the North American urinary tract infection collaborative alliance-quinolone resistance study. Antimicrob Agents Chemother. 2006;50(6):2251-2254.

71. Siddiqi AA. Prevalence of quinolone-resistant urinary tract infections in Comanche County Memorial Hospital. J Okla State Med Assoc. 2008;101(9):210-2.

72. Arslan H, Azap OK, Ergönül O, Timurkaynak F. Urinary tract infection study group. Risk factors for ciprofloxacin resistance among Escherichia coli strains isolated from community-acquired urinary tract infections in Turkey. J Antimicrob Chemother. 2005;56:914–918.