Dual-Comb Spectrometer Based on Gain-Switched Semiconductor Lasers and a Low-Cost Software-Defined Radio

CLARA QUEVEDO-GALÁN, ANTONIO PÉREZ-SERRANO, IGNACIO E. LÓPEZ-DELGADO, JOSE MANUEL G. TIJERO, AND IGNACIO ESQUIVIAS
CEMDATIC-E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
Corresponding author: Clara Quevedo-Galán (clara.quevedo.galan@upm.es)

This work was supported in part by the Ministerio de Economía y Competitividad of Spain, LIDERA, under Grant RTI2018-094118-B-C21, in part by the Universidad Politécnica de Madrid/Comunidad de Madrid, MULTI-GAS-PIC, under Grant APOYO-JOYENES-KXHJ6C-16-VCKM78, and in part by the Comunidad de Madrid and FEDER Program under Grant SINFOTON2-CM (P2018/NMT-4326).

ABSTRACT Dual-comb spectroscopy has become a topic of growing interest in recent years due to the advantages it offers in terms of frequency resolution, accuracy, acquisition speed, and signal-to-noise ratio, with respect to other existing spectroscopic techniques. In addition, its characteristic of mapping the optical frequencies into radio-frequency ranges opens up the possibility of using non-demanding digitizers. In this paper, we show that a low-cost software defined radio platform can be used as a receiver to obtain such signals accurately using a dual-comb spectrometer based on gain-switched semiconductor lasers. We compare its performance with that of a real-time digital oscilloscope, finding similar results for both digitizers. We measure an absorption line of a H13C\textsubscript{14}N cell and obtain that for an integration time of 1 s, the deviation obtained between the experimental data and the Voigt profile fitted to these data is around 0.97% using the low-cost digitizer while it is around 0.84% when using the high-end digitizer. The use of both technologies, semiconductor lasers and low-cost software defined radio platforms, can pave the way towards the development of cost-efficient dual-comb spectrometers.

INDEX TERMS Dual-comb spectroscopy, optical frequency comb, semiconductor lasers, software defined radio.

I. INTRODUCTION Optical Frequency Combs (OFCs) have attracted a lot of attention during the last decades due to their vast number of applications in many different fields [1]. An OFC is a coherent optical spectrum generated by a laser source, consisting of equally spaced narrow spectral lines with a given repetition rate \(f_R\). OFCs have been found especially suitable for applications such as molecular spectroscopy [2], telecommunications [3], radio-frequency (RF) generation [4], and distance measurement [5]–[7] among others.

In the field of molecular spectroscopy, dual-comb spectroscopy (DCS) has become one of the most appealing techniques since it offers advantages over conventional spectrometers such as the absence of moving parts, the improvement of frequency resolution, accuracy, acquisition speed, and signal-to-noise ratio (SNR), as well as a great potential to be implemented in compact systems [8]. The basic concept of DCS, which is depicted in Fig. 1, consists in using two OFCs with slightly different repetition frequencies \(f_R\) and \(f_R + \Delta f_R\) that interact with an absorbent medium before interfering in a photodiode, where they generate an electrical RF comb [9]. Therefore, the result is a RF comb that maps the absorption that takes place in the optical frequency range into a down-converted electrical frequency range, thus making the measurements simpler.

In order to obtain cost-effective dual-comb spectrometers, semiconductor lasers are a suitable choice of light source due to their well-known intrinsic benefits in terms of compactness, integrability, electrical pumping, high efficiency, and low cost. Gain-switching (GS) of semiconductor lasers is a technique to generate high-quality OFCs featuring a great flexibility in the selection of the repetition rate as well as easy implementation, robustness, and stability [10].
This technique consists in modulating a laser with a superposition of two electrical signals: a DC bias current and a large amplitude AC current at a repetition rate f_R. Usually, a sinusoidal AC current is employed for repetition rates of the order of the laser relaxation oscillations, $f_R \sim 5 - 25$ GHz [11], [12]. To obtain OFCs at lower repetition rates, $f_R \sim 100 - 500$ MHz, GS is usually accompanied by optical injection (OI) from an external laser in a master-slave configuration, in order to lock the phases of both lasers and preserve the coherence of the generated pulse train [13], [14]. We have recently demonstrated that the use of pulsed electrical excitation, instead of sinusoidal AC current, improves the width and flatness of low-frequency OFCs [15]. Combining OI with the use of a pulse pattern generator (PPG) as switching source, we obtained OFCs with 866 tones within 10 dB at $f_R = 100$ MHz [15]. These combs have proven to be useful to perform high-resolution molecular spectroscopy using the DCS technique [16].

In the quest for cost-efficient field deployable DCS systems, the use of semiconductor lasers as well as the photonic integration of these devices [17] seems a rather natural choice. In addition, these systems should be based on low-cost electronics for generating the different required signals without compromising the robustness, resolution, and accuracy of the system. In this direction, the viability of using step-recovery diodes for producing OFCs has been recently demonstrated [18]. To complete the entire picture, on the detection side, the analysis of the received RF spectrum should be also optimized in terms of cost. It is in this respect where the possibility of using software-defined radio (SDR) platforms comes into the scene. In a SDR platform some blocks of analog steps performing RF signal processing are replaced by software, thus avoiding undesirable effects such as thermal noise or voltage drifts. The maturity and versatility of SDR systems has progressively increased at concurrently lower cost up to make them appealing tools for the acquisition and processing of RF signals at low cost. These flexible signal processing platforms have already proven to be very useful in the field of nuclear magnetic resonance (NMR) spectroscopy [19], [20], frequency modulation spectroscopy [21], heterodyne interferometry [22], and stabilization of OFCs [23].

In this paper, we report a dual-comb spectrometer with externally injected gain-switched semiconductor lasers as OFC generators and a low-cost (sub $\$ 20) SDR platform in the receiver end of the system. We demonstrate, for the first time to the best of our knowledge, that DCS systems can be based on SDR platforms by experimentally measuring the absorption spectrum of a H13C14N gas cell. Moreover, we compare the performance of the SDR platform with a high-quality oscilloscope as a digitization system. In this way, we prove that SDR platforms, besides reducing the cost of the system, are quite appropriate in terms of range of RF carrier and bandwidth to digitize the RF combs used in dual-comb applications.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 2, and a photograph of the optical and optoelectronic components is shown in Fig. 3. The OFCs are generated by GS two single longitudinal mode semiconductor lasers: a discrete mode laser (DML, Eblana Photonics EP1550-0-DM-H19-FM) and a distributed feedback (DFB) laser (Gooch & Housego AA0702-193414-010-SM900-FCA-50). The two of them act as slave lasers, denoted as SL1 and SL2, respectively. Each slave laser is driven with the superposition of a DC bias current I^{DC} and an AC pulse train generated by a PPG (Anritsu MU181020A) with peak-to-peak voltage amplitude V^{AC}, repetition rate f_R, repetition rate difference Δf_R, and pulse width t_{pulse}. A narrow linewidth tunable laser (Pure Photonics PPCL300) acts as the master laser, whose optical signal, after being attenuated, is injected into the slave lasers using optical circulators. Polarization controllers are used to maximize the coupling in the master-slave configuration and subsequently, the beating between the two OFCs. An acousto-optic modulator (AA Opto-Electronic MT80-IIR30-Fio-PM0) is used to shift the frequency of the OFC generated by SL2 a value $f_{\text{shift}} = 80$ MHz. The reason for this frequency shift is three-fold. Firstly, it minimizes the effects of the $1/f$ noise by shifting the heterodyne signal away from DC [24]. Secondly, it ensures that the beat notes produced at both sides of the spectrum around the injection can be unambiguously distinguished. And thirdly, it allows the use of a SDR platform by frequency shifting the signal into its tuning range.

After the acousto-optic modulator, both OFCs are coupled together in the same fiber and routed by two optical switches either to a reference path or through the gas cell. This system architecture is the so-called symmetric (collinear) configuration and it provides only the sample absorption [9]. The gas
FIGURE 2. Experimental setup of the dual-comb spectrometer based on a master laser (ML) and two slave lasers (SL1 and SL2) which are gain-switched at \(f_{R1} \) and \(f_{R2} \) repetition rates, respectively. The spectrometer is implemented in a symmetric configuration, i.e. both combs pass through the gas cell or through the reference path depending on the optical switches. The RF comb detected at the photodiode (PD) is measured either with a software-defined radio (SDR) platform or with a real-time digital oscilloscope. Att.: Attenuator; PC: Polarization controller; AOM: Acousto-optic modulator; EDFA: Erbium doped fiber amplifier.

FIGURE 3. Photograph of the experimental setup in which the optical components are shown. An inset showing the receiver end of the system, photodetector (PD) and software-defined radio (SDR), is included.

The resulting electrical signal, the RF comb, is measured either with a real time \(20 \) Gsamples/s 10-bit digital oscilloscope (Keysight MSOS804A) or with \(3.2 \) Msamples/s 8-bit SDR platform. In the case of the measurements performed with the oscilloscope, the acquisition is triggered using a trigger obtained by mixing the signals from the two PPGs with a RF mixer to get the frequency difference. In addition, a common 10 MHz reference is used for the coherence length of the master laser and therefore the coherent beating is preserved.

The communication between the SDR platform and the computer is performed using MATLAB and Simulink. A Simulink hardware support package [28] including an interface with the RTL-SDR receiver is used. This interface enables the configuration of parameters such as the RF center frequency, the sampling rate, the number of samples or the tuner gain. In contrast with the acquisition performed with the real-time oscilloscope, the SDR platform has no trigger input, so it is not synchronized with the PPG signals. Finally, the samples resulting from any of the two acquisition methods are post-processed by a computer running MATLAB.

III. RESULTS

The operation conditions of the three involved lasers are summarized in Table 1. The driving conditions of the two slave lasers are not identical because each laser is modulated by a different PPG. The PPG that generates the pulses that modulate SL1 delivers a maximum voltage of 2.5 V, while the PPG that modulates SL2 provides a maximum voltage of 1 V. This signal is subsequently amplified such that it shows
TABLE 1. Driving conditions of the lasers and devices.

Description	Symbol	Value
Master laser wavelength	λ_{ML}	1,549.57 nm
Master laser optical power after attenuator	P_{ML}	-11.5 dBm
SL1 DC bias current	$I_{DC,SL1}$	5.1 mA
SL1 AC peak-to-peak voltage	$V_{AC,SL1}$	2.5 V
SL1 AC pulse repetition rate	f_{R1}	100 MHz
SL2 DC bias current	$I_{DC,SL2}$	1.4 mA
SL2 AC peak-to-peak voltage	$V_{AC,SL2}$	3.1 V
SL2 AC pulse repetition rate	f_{R2}	100.01 MHz
AC signal pulse width	t_{pulse}	200 ps
EDFA current	I_{EDFA}	38 mA
Acousto-optic modulator driver frequency	f_{shift}	80 MHz

FIGURE 4. One of the two OFCs generated to perform DCS measured with a 10-MHz resolution optical spectrum analyzer. It is obtained by GS the optically-injected DFB laser using a train of pulses with a repetition frequency of 100 MHz. The higher peak, located at 1,549.57 nm, corresponds to the optical injection from the master laser. A 0.02 nm zoom of the absorption region is shown in b.

In the time domain, when the two combs beat in the photodetector, interference waveforms (i.e., interferograms) are obtained. Fig. 5 a shows the interferograms recorded by the oscilloscope while panel b shows the interferograms provided by the SDR platform in terms of the magnitude of the IQ data. The periodicity of the interferograms center-bursts is 100 μs (the inverse of $f_R = 10$ kHz), i.e. the compression factor ($f_R/\Delta f_R$) is 10,000. Therefore, the RF bandwidth of the SDR platform (3.2 MHz) fits an optical bandwidth of 32 GHz. This bandwidth is large enough to capture the absorption line and to correct the effects of the baseline.

In the time domain, when the two combs beat in the photodetector, interference waveforms (i.e., interferograms) are obtained. Fig. 5 a shows the interferograms recorded by the oscilloscope while panel b shows the interferograms provided by the SDR platform in terms of the magnitude of the IQ data. The periodicity of the interferograms center-bursts is 100 μs (the inverse of $f_R = 10$ kHz), i.e. the compression factor ($f_R/\Delta f_R$) is 10,000. Therefore, the RF bandwidth of the SDR platform (3.2 MHz) fits an optical bandwidth of 32 GHz. This bandwidth is large enough to capture the absorption line and to correct the effects of the baseline.
FIGURE 6. Down-converted RF comb spectra obtained from the temporal traces recorded with the oscilloscope (top row, black line graphs) and with the SDR platform (bottom row, blue line plots). The total integration time in both cases is 1 s, achieved averaging 500 spectra in the case of the oscilloscope measurements and 100 spectra in the case of the SDR. A zoom of the absorption line footprint is shown in c and f.

Fig. 6 shows the down-converted RF spectra obtained after performing the Fourier transform of the time-domain interferograms digitized with the oscilloscope (Fig. 5 a) and with the SDR platform (Fig. 5 b). In the case of the SDR platform, the complex IQ data are used for the Fourier transform. The spectra shown on the left panels (Fig. 6 a, d) are the reference ones. Next to them, the spectra obtained when the optical signal passes through the gas cell are depicted in panels b and e. For all these measurements, the total integration time is 1 s, corresponding to five hundred 2-ms-long single shots of the oscilloscope and to one hundred 10-ms-long traces in the SDR platform. In both cases the averaging is performed in the spectral domain. The RF spectra measured with the oscilloscope show the complete down-converted comb with around 640 lines in 10 dB and a good flatness for absorption measurements. The peak at 80 MHz corresponds to the master laser injection, as the acousto-optic modulator shifts by 80 MHz what was the common reference of both slave lasers. The feature of the absorption line at 82 MHz is clearly visible in Fig. 6 c, f. The previously commented instabilities at the injection wavelength give rise to the additional harmonics close to 80 MHz shown in Fig. 6 a, b. The origin of these harmonics has not been investigated.

The working principle of SDR platforms is very appropriate for this kind of measurements, as they shift the center frequency of the signal with a tunable analog local oscillator before digitizing [28], thus allowing the use of lower sampling rates than the required for directly sampling the signal. The local oscillator frequency is configured by the RF center frequency parameter, defined in the software interface. In this case, the RF center frequency is set to 82 MHz, and a 2 MHz bandwidth is more than enough to properly measure the absorption line (see Fig. 6 e). In these acquisition conditions, the resolution of the measurement is as high as 10 Hz and therefore, a proper characterization of the comb tones of 100 MHz is fully guaranteed. Fig. 6 f shows a zoom of panel e, where the individual lines are very well resolved and a carrier-to-noise ratio of around 20 dB can be observed, which is a very good value for this comb, indicating a very high degree of mutual coherence between the two optical combs. The transmission profile of the absorption line is obtained by normalizing the RF spectrum that contains the gas information with a reference measurement. A linear baseline correction is applied to the obtained transmission curve. In addition, a Voigt function is fitted to the line profile. The experimental profiles of the H13C14N P(10) line recorded with the oscilloscope and the SDR for three integration times are presented in Fig. 7. Panels a, b and c show the results obtained with the oscilloscope for integration times of 100 ms, 500 ms, and 1 s, respectively. The residuals from the Voigt fitting process can be observed in the bottom part of each figure. For the longest integration time, the absorption depth and the linewidth provided by the fit are $T = 0.54$ and FWHM $= 2.3$ GHz, respectively. These values are in good agreement with the transmission data provided by the NIST [29] and the linewidth information provided by the gas cell manufacturer. The standard deviation of the residuals (σ_{res}) calculated in a 15.6 GHz span is 0.84%. The transmission results obtained with the SDR platform, together with the corresponding residuals, are shown in Fig. 7 d, e and f for the same integration times as those of the oscilloscope measurements. For an integration time of 1 s, the minimum transmission measured from the fitting curve and the linewidth are 0.54 and 2.4 GHz, respectively, also very close to the expected values. In this case, the residuals are slightly higher, $\sigma_{\text{res}} = 0.97$%.
Our results demonstrate the advantages of using SDR platforms, instead of the usual digitizers, for recording and analyzing the RF spectra in DCS. It is worth noting that the usefulness of these receivers should not be restricted to the dual combs generated by these relatively narrow OFCs. For instance, using the same SDR and assuming the same mutual coherence leading to 10-Hz-narrow RF tones, a spectrum as wide as 32 THz could fit into the 3.2 MHz bandwidth of the SDR by using a compression factor 10^7 ($f_R = 100$ MHz, $\Delta f_R = 10$ Hz). Additionally, for acquiring a RF spectrum broader than 3.2 MHz using this SDR platform, the center frequency can be sequentially tuned in order to capture the different regions of the spectrum. Of course, this would be detrimental to the acquisition speed. Alternatively, other affordable SDR platforms offering higher bandwidths than the one discussed here could be used.

IV. CONCLUSION
We have demonstrated the performance as a receiver of a SDR platform in comparison with a high-end real-time oscilloscope in a DCS system based on GS semiconductor lasers. This demonstration points in the direction of the possibility of using low-cost SDR platforms in the receiver end of dual-comb spectrometers. This approach is a step forward in the quest for low-cost, field deployable dual-comb spectrometers. The cost-efficiency of our solution would be improved by replacing the EDFA and the high-bandwidth photodetector by a commercial photodetector with a transimpedance amplifier and a bandwidth adequate to this application (100 MHz). In combination with low-cost excitation sources such as step-recovery diodes and integrated optical sources, our approach could contribute to pave the way towards a good number of gas sensing and other applications of dual-comb architectures requiring an affordable technology.

ACKNOWLEDGMENT
Antonio Pérez-Serrano would like to thank J. M. García-Loygorri (ETSIST-UPM) for useful discussions about SDR platforms.

REFERENCES
[1] S. A. Diddams, K. Vahala, and T. Udem, “Optical frequency combs: Coherently uniting the electromagnetic spectrum,” Science, vol. 369, no. 6501, Jul. 2020, Art. no. eaay3676. [Online]. Available: https://science.sciencemag.org/content/369/6501/eaay3676
[2] I. Coddington, W. Swann, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett., vol. 100, no. 1, Jan. 2008, Art. no. 013902. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.100.013902
[3] M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, and L. Poti, “A survey of optical carrier generation techniques for terabit capacity elastic optical networks,” IEEE Commun. Surveys Tuts., vol. 20, no. 1, pp. 211–263, 1st Quart., 2018.
[4] M. Piccardo, M. Tamagnone, B. Schwarz, P. Chevalier, N. A. Rubin, Y. Wang, C. A. Wang, M. K. Connors, D. McNulty, A. Belyanin, and F. Capasso, “Radio frequency transmitter based on a laser frequency comb,” Proc. Nat. Acad. Sci. USA, vol. 116, no. 19, pp. 9181–9185, May 2019. [Online]. Available: https://www.pnas.org/content/116/19/9181
[5] Z. Zhu and G. Wu, “Dual-comb ranging,” Engineering, vol. 4, no. 6, pp. 772–778, Dec. 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2095809918303783
[6] X. Xu, Z. Zhang, H. Zhang, H. Zhao, W. Xia, M. He, J. Li, J. Zhai, and H. Wu, “Long distance measurement by dynamic optical frequency comb,” Opt. Exp., vol. 28, no. 4, pp. 4388–4411, Feb 2020. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-28-4-4398
[7] P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science, vol. 359, no. 6378, pp. 887–891, Feb. 2018. [Online]. Available: https://science.sciencemag.org/content/359/6378/887
