Supporting Information

Discovery and identification of arsenolipids using a precursor-finder strategy and data-independent mass spectrometry

Qingqing Liu, Chengzhi Huang, Wenhui Li, Zhenzheng Fang, and X. Chris Le

Table of Contents

Table S1. ... 2
Table S2. ... 6
Table S3. ... 7
Table S4. ... 8
Table S5. ... 10
Table S6. ... 11
Table S7. ... 14
Table S8. ... 15
Table S9. .. 18
Table S10 .. 19
Table S11 .. 21
Figure S1 .. 22
Figure S2 .. 23
Figure S3 .. 24
Figure S4 .. 25
Figure S5 .. 26
Figure S6 .. 27
Figure S7 .. 28
Figure S8 .. 29
Figure S9 .. 30
Figure S10 ... 31
Figure S11 .. 32
References ... 33
User manual for Precursorfinder v1.0 .. 36
Table S1. The information of arsenolipids that have been reported in previous literatures.

Species	Name	Molecular Mass	Formula	Structure	Reference
	AsSugPL692	693.26	C_{27}H_{54}AsO_{13}P	![Structure](image)	[11]
	AsSugPL706	707.27	C_{28}H_{56}AsO_{13}P	![Structure](image)	[11]
	AsSugPL720	721.29	C_{29}H_{58}AsO_{13}P	![Structure](image)	[9],[11]
	AsSugPL734	735.31	C_{30}H_{60}AsO_{13}P	![Structure](image)	[11]
	AsSugPL742	743.27	C_{31}H_{62}AsO_{13}P	![Structure](image)	[11]
	AsSugPL746	747.31	C_{31}H_{60}AsO_{13}P	![Structure](image)	[11]
	AsSugPL748	749.32	C_{31}H_{62}AsO_{13}P	![Structure](image)	[11]
	AsSugPL776	777.35	C_{31}H_{60}AsO_{13}P	![Structure](image)	[11]
	AsSugPL930	931.49	C_{33}H_{66}AsO_{13}P	![Structure](image)	[11]
	AsSugPL944	945.50	C_{34}H_{68}AsO_{13}P	![Structure](image)	[11]
	AsSugPL956	957.50	C_{34}H_{68}AsO_{13}P	![Structure](image)	[11]
	AsSugPL958	959.52	C_{34}H_{70}AsO_{13}P	![Structure](image)	[3],[9],[11],[17],[27]
	AsSugPL972	973.54	C_{35}H_{72}AsO_{13}P	![Structure](image)	[17]
	AsSugPL982	983.52	C_{35}H_{72}AsO_{13}P	![Structure](image)	[13],[17],[27]
	AsSugPL984	985.54	C_{35}H_{72}AsO_{13}P	![Structure](image)	[13],[17],[27]
	AsSugPL986	987.55	C_{35}H_{72}AsO_{13}P	![Structure](image)	[3],[9],[17]
	AsSugPL100	1001.57	C_{36}H_{74}AsO_{13}P	![Structure](image)	[17]
	AsSugPL101	1013.57	C_{37}H_{76}AsO_{13}P	![Structure](image)	[33]
	AsSugPL101	1015.58	C_{38}H_{76}AsO_{13}P	![Structure](image)	[3],[9],[17]
	AsSugPL104	1043.61	C_{39}H_{78}AsO_{13}P	![Structure](image)	[3],[9],[33]
	AsSugPL107	1071.64	C_{40}H_{80}AsO_{13}P	![Structure](image)	[3],[9],[33]
AsHCs	AsHC164	165.03	C_{17}H_{35}AsO	![Structure](image)	[8]
	AsHC305	305.18	C_{18}H_{35}AsO	![Structure](image)	[5],[32]
	AsHC331	331.20	C_{19}H_{35}AsO	![Structure](image)	[5],[22]
Compound	Mass	Formula	References		
------------	--------	-----------	------------		
AsHC332	333.21	C_{17}H_{37}AsO	[1],[2],[3], [4],[5],[6],[7], [8],[9],[10],[11],[14],[15],[24]		
AsHC347	347.23	C_{18}H_{39}AsO	[5],[22]		
AsHC358	359.23	C_{19}H_{41}AsO	[5],[9]		
AsHC360	361.24	C_{19}H_{41}AsO	[1],[3],[4],[5],[6],[8],[9],[10],[14],[15],[26],[30]		
Thio-AsHC360	377.22	C_{19}H_{41}AsS	[10],[14], [20]		
AsHC374	375.26	C_{20}H_{40}AsO	[17]		
AsHC386	387.26	C_{21}H_{40}AsO	[24]		
AsHC388	389.28	C_{21}H_{40}AsO	[9],[17]		
Thio-AsHC388	397.29	C_{21}H_{40}AsS	[20]		
AsHC402	403.20	C_{23}H_{50}AsO	[28]		
AsHC404	405.21	C_{23}H_{50}AsO	[5],[6],[8],[15],[17],[20],[21],[29]		
AsHC440	441.31	C_{25}H_{52}AsO	[20]		
AsHC442	442.32	C_{25}H_{52}AsO	[20]		
AsHC444	445.34	C_{25}H_{52}AsO	[4],[14],[18],[25]		
Thio-AsHC444	453.35	C_{25}H_{52}AsS	[14],[20]		
AsHC542	543.35	C_{33}H_{83}AsO	[20]		
AsFA264	265.08	C_{10}H_{22}AsO	[28],[30]		
AsFA276	277.08	C_{11}H_{22}AsO	[28],[30]		
AsFA278	279.09	C_{11}H_{22}AsO	[7],[28]		
AsFA278	279.09	C_{11}H_{22}AsO	[7],[28]		
thio-AsFA278	295.06	C_{11}H_{22}AsO	[7]		
AsFA302	303.09	C_{13}H_{24}AsO	[28],[30]		
AsFA304	305.11	C_{13}H_{24}AsO	[30]		
AsFA306	307.12	C_{13}H_{24}AsO	[7]		
thio-AsFA306	323.10	C_{13}H_{24}AsO	[7]		
Compound	分子式	分子量	参考文献		
----------	--------	--------	---------		
AsFA316	C_{14}H_{26}AsO_{3}	[28],[30]			
AsFA328	C_{14}H_{26}AsO_{3}	[28],[30]			
AsFA334	C_{15}H_{31}AsO_{3}	[11],[17],[8],[10],[28],[32]			
thio-AsFA334	C_{14}H_{26}AsO_{3}S	[7]			
AsFA342	C_{16}H_{32}AsO_{3}	[28]			
AsFA348	C_{15}H_{30}AsO_{3}	[8],[24]			
AsFA356	C_{15}H_{32}AsO_{3}	[16],[30]			
AsFA362	C_{15}H_{32}AsO_{3}	[11],[4],[5],[6],[7],[8],[9],[10],[14],[16],[19]			
thio-AsFA362	C_{15}H_{32}AsO_{3}S	[7]			
AsFA374	C_{16}H_{32}AsO_{3}	[4],[14]			
AsFA376	C_{16}H_{32}AsO_{3}	[8],[24]			
AsFA382	C_{16}H_{32}AsO_{3}	[28]			
AsFA386	C_{16}H_{32}AsO_{3}	[22],[24]			
AsFA388	C_{16}H_{32}AsO_{3}	[4],[13],[18],[20],[21],[31]			
AsFA390	C_{16}H_{32}AsO_{3}	[11],[18],[9],[12],[16],[17],[20],[24]			
AsFA404	C_{20}H_{32}AsO_{3}	[8],[24],[30]			
AsFA408	C_{17}H_{34}AsO_{3}	[1]			
AsFA418	C_{21}H_{44}AsO_{3}	[4],[8],[14],[24]			
AsFA422	C_{22}H_{56}AsO_{3}	[28]			
Compound	Mass	Formula	References		
----------	-------	------------------	------------		
AsFA436	437.20	C$_{23}$H$_{40}$AsO$_3$	[1],[5],[6],[8],[12],[16],[20]		
AsFA446	447.28	C$_{23}$H$_{40}$AsO$_3$	[24]		
AsFA448	449.20	C$_{23}$H$_{40}$AsO$_3$	[1],[5],[6],[12],[21],[30]		
AsFA462	463.22	C$_{23}$H$_{40}$AsO$_3$	[28]		
AsFA474	475.31	C$_{23}$H$_{40}$AsO$_3$	[24]		
AsFA486	487.31	C$_{23}$H$_{40}$AsO$_3$	[24]		
AsFA502	503.34	C$_{23}$H$_{40}$AsO$_3$	[24]		
AsFA528	529.27	C$_{23}$H$_{40}$AsO$_3$	[15]		
AsPC885	886.50	C$_{45}$H$_{81}$O$_9$NAsP	[15]		
AsPC911	912.51	C$_{47}$H$_{83}$O$_9$NAsP	[15]		
AsPC939	940.54	C$_{49}$H$_{87}$O$_9$NAsP	[15]		
AsPC985	986.52	C$_{53}$H$_{85}$O$_9$NAsP	[11],[15]		
AsPC997	998.52	C$_{54}$H$_{85}$O$_9$NAsP	[15]		
AsPE1035	1036.54	C$_{57}$H$_{87}$O$_9$NAsP	[11],[15]		
TMAsFOH37	375.26	C$_{20}$H$_{44}$AsO	[5]		
TMAsFOH41	419.23	C$_{24}$H$_{46}$AsO	[5],[21],[23]		
AsOH375			[13]		
Table S2. The instrument parameters of ICP-MS a.

Parameter	Value
Radio frequency power	1500 W
Sample cone depth	7.0 mm
Carrier gas	0.9-1.0 L/min argon
Makeup gas	0 L/min argon
Spray chamber temperature (TEM)	-5 °C
Reaction cell He gas	3.0 mL/min

aThe same krill oil sample was analyzed by HPLC-ICPMS and HPLC-ESIMS twice. We used the same chromatographic system and same chromatographic conditions. Dimethylarsinic acid (DMA, naturally present in krill oil sample) was used as an internal standard. We adjusted the length of tubing between the HPLC and the mass spectrometers to ascertain that the retention times of DMA were identical in the two runs.
Table S3. The candidate precursor ions calculated by hierarchical clustering and wavelet coherence methods in each SWATH window in the untargeted analysis of 5 arsenic standards including iAsV, MMA, NAHAA, 3AHPAA, Rox in water using reversed phase chromatographic separation and SWATH acquisition in tripleToF MS. MS1 of SWATH acquisition covered ions with m/z from 100 to 300. The corresponding peak (peaks shown in Figure S1A) of each candidate precursor ion and the wavelet coherence of each candidate precursor ion with the summed signal of product ions (m/z 106.9120 and m/z 122.9069) were also present in this table.

Candidate precursor ions	SWATH window (m/z)	Hierarchical clustering (1)	Wavelet coherence(0.7)	Hierarchical clustering(1)	Wavelet coherence(0.7)		
	100-150	m/z	peak no. (coherence)	m/z	peak no. (coherence)	m/z	peak no. (coherence)
106.913	1	106.913	1(0.76)	204.967	3	213.951	3(0.87)
120.929	1	120.929	1(0.76)	213.951	3	216.917	3(0.80)
122.908	1	122.908	1(0.81)	231.961	3	222.892	3(0.77)
123.034	1	123.034	1(0.73)	234.979	3	231.961	3(0.86)
138.939	1	123.916	1(0.76)	218.897	4	213.951	4(0.78)
106.913	2	138.939	1(0.76)	224.872	4	216.917	4(0.74)
122.908	2	140.919	1(0.77)	230.889	4	222.892	4(0.71)
140.919	2	122.908	2(0.89)	234.979	4	231.961	4(0.77)
122.908	2	140.919	2(0.88)	243.925	5	215.094	5(0.77)
123.916	2					216.917	5(0.75)
138.939	2					228.950	5(0.70)
	200-250	m/z	peak no. (coherence)	m/z	peak no. (coherence)	m/z	peak no. (coherence)
255.961	6	261.935	6(0.99)				
256.957	6	262.937	6(0.99)				
273.972	6	275.951	6(0.99)				
275.977	6	257.105	7(0.70)				
287.988	6	261.935	7(1.00)				
295.954	6	262.937	7(0.99)				
261.935	7	275.951	7(1.00)				
262.937	7	283.918	7(0.83)				
275.951	7						
283.918	7						
287.988	7						
295.954	7						
	250-300	m/z	peak no. (coherence)	m/z	peak no. (coherence)	m/z	peak no. (coherence)
	m/z	peak no. (coherence)	m/z	peak no. (coherence)	m/z	peak no. (coherence)	
	255.961	6	261.935	6(0.99)			
	256.957	6	262.937	6(0.99)			
	273.972	6	275.951	6(0.99)			
	275.977	6	257.105	7(0.70)			
	287.988	6	261.935	7(1.00)			
	295.954	6	262.937	7(0.99)			
	261.935	7	275.951	7(1.00)			
	262.937	7	283.918	7(0.83)			
	275.951	7					
	283.918	7					
	287.988	7					
	295.954	7					
Table S4. The candidate precursor ions calculated by hierarchical clustering and wavelet coherence methods in each SWATH window in the untargeted analysis of arsenolipids in a krill oil sample using reversed phase chromatographic separation and SWATH acquisition in tripleToF MS. MS1 of SWATH acquisition covered ions with m/z from 270 to 500. The corresponding peak (peaks shown in Figure 2A) of each candidate precursor ion and the wavelet coherence of each candidate precursor ion with the summed signal of product ions (m/z 104.9685 and m/z 102.9529) were also present in this table.

SWATH window (m/z)	270-300	299-325					
Hierarchical clustering (1.5)	Wavelet coherence(0.6)	**Hierarchical clustering (1.5)**	Wavelet coherence(0.6)				
m/z	peak no.	m/z	peak no. (coherence)	m/z	peak no.	m/z	peak no. (coherence)
284.238	1	276.124	1(0.70)	301.643	3	301.643	3(0.98)
297.160	1	280.179	1(0.97)	302.146	3	302.146	3(0.63)
271.170	2	280.680	1(0.68)	306.222	3	306.222	3(0.96)
277.180	2	284.238	1(0.60)	310.180	3	310.180	3(0.77)

Candidate precursor ions
286.253
291.171
295.140
297.160
280.179
280.680
291.171
294.221
295.140
297.160

SWATH window (m/z)	350-375	374-400					
Hierarchical clustering (1.5)	Wavelet coherence(0.6)	**Hierarchical clustering (1.5)**	Wavelet coherence(0.6)				
m/z	peak no.	m/z	peak no. (coherence)	m/z	peak no.	m/z	peak no. (coherence)
358.252	5	351.217	5(0.64)	391.219	6	384.311	6(0.80)
363.188	5	358.252	5(0.67)	394.259	6	385.317	6(0.96)
373.099	5	362.196	5(0.94)	396.251	6	388.320	6(0.73)

Candidate precursor ions
363.188
363.265
367.152

SWATH window (m/z)	399-425	424-450		
Candidate precursor ions	Hierarchical clustering(1.5)	Wavelet coherence(0.6)	Hierarchical clustering(1.5)	Wavelet coherence(0.6)
--------------------------	-------------------------------	------------------------	-------------------------------	------------------------
m/z peak no.	m/z peak no. (coherence)	m/z peak no.	m/z peak no. (coherence)	
404.254 7	404.254 7(0.63)	437.224 9	425.168 9(0.63)	
399.214 8	408.214 7(0.73)	440.250 9	434.290 9(0.66)	
414.262 8	410.330 7(0.62)	440.336 9	437.224 9(0.75)	
415.212 8	418.295 7(0.63)	437.202 10	440.336 9(0.86)	
420.310 8	419.298 7(0.65)	439.208 10	445.341 9(0.83)	
422.320 8	420.310 7(0.85)	449.336 10	424.268 10(0.84)	
421.313 7	425.272 10(0.65)	433.316 10	10(0.79)	
399.214 8	408.214 7(0.73)	440.250 9	434.290 9(0.66)	
409.316 8	410.330 7(0.62)	440.336 9	437.224 9(0.75)	
412.246 8	418.295 7(0.63)	437.202 10	440.336 9(0.86)	
415.212 8	419.298 7(0.65)	439.208 10	445.341 9(0.83)	
420.310 8	421.313 7(0.76)	425.272 10	433.316 10(0.79)	
422.320 8	422.320 7(0.60)	436.301 10	437.202 10(0.80)	
409.316 8	412.246 8(0.72)	439.208 10	440.336 10(0.75)	
415.212 8	415.232 8(0.75)	445.341 10	448.245 10(0.76)	
418.315 8	420.310 8(0.93)	449.203 10	449.336 10(0.76)	
421.305 8	424.270 8(0.70)	449.336 10	10(0.76)	
424.270 8	492.331 11(0.75)	492.331 11	499.180 11(0.89)	
497.342 11	499.180 11(0.89)	485.190 12	486.194 12(0.61)	
499.180 11	485.190 12(0.61)	487.196 12	492.331 12(0.68)	

SWATH window (m/z) 485-500
Table S5. The candidate precursors ion summarized from Table S4 after being rounded up to one decimal place. All these candidate precursor ions were subjected to product ion scan for further confirmation. The underlined ions were confirmed to produce arsenic fragments.

SWATH window (m/z)	270-300	299-325	350-375	374-400	399-425	424-450	485-500
271.2	301.2	351.2	384.3	404.3	429.1	487.2	
276.1	301.6	358.3	385.3	408.2	433.3	492.3	
277.2	302.1	362.2	388.3	409.3	434.3	497.3	
280.2	302.2	363.2	391.2	412.2	436.3	499.2	
280.7	306.2	363.3	392.3	414.3	437.2		
281.2	307.2	367.2	394.3	415.2	439.2		

Candidate precursor ions

282.2	310.2	373.1	396.3	418.3	440.3
284.2	311.2		397.3	419.3	440.4
286.3	315.1	399.2	420.3	445.3	
287.2	318.2		421.3	446.3	
291.2	319.2			448.2	
294.2	319.3			449.2	
297.2	322.2				449.3
Table S6. The candidate precursor ions calculated by hierarchical clustering and wavelet coherence methods in each SWATH window in the untargeted analysis of arsenolipids in tuna extracts using reversed phase chromatographic separation and SWATH acquisition in tripleToF MS. MS1 of SWATH acquisition covered ions with m/z from 200 to 600. The corresponding peak (Figure S4A) of each candidate precursor ion and the wavelet coherence of each candidate precursor ion with the summed signal of product ions (m/z 104.9685 and m/z 102.9529) were also present in this table.

SWATH window (m/z)	324-350	349-375	
Hierarchical clustering (1.5)	Wavelet coherence (0.6)	Hierarchical clustering (1.5)	Wavelet coherence (0.6)
m/z peak no.	m/z peak no. (coherence)	m/z peak no.	m/z peak no. (coherence)
333.214 1	325.178 1(0.74)	363.183 2	359.221 2(0.61)
327.308 1(0.66)	305.663 3	365.247 4	374.203 2(0.67)
328.197 1(0.75)	370.387 4	374.203 2(0.67)	
332.293 1(0.63)	332.293 1(0.63)	352.322 4(0.62)	
333.146 1(0.87)	364.695 4(0.63)	369.807 4(0.70)	
333.214 1(1.00)	364.695 4(0.63)	373.326 4(0.64)	
337.236 1(0.68)	339.194 1(0.61)	340.208 1(0.63)	
339.253 1(0.77)	341.209 1(0.88)	341.305 1(0.67)	
340.208 1(0.63)	349.214 1(0.61)	349.215 1(0.61)	
377.230 5(0.89)	378.234 5(0.79)	381.204 5(0.86)	
384.105 5(0.86)	384.223 5(0.65)	384.223 5(0.65)	
388.342 5(0.79)	389.194 5(0.82)	389.230 5(0.68)	

SWATH window (m/z)	374-400	400-425			
Hierarchical clustering (1.5)	Wavelet coherence (0.6)	Hierarchical clustering (1.5)	Wavelet coherence (0.4)		
m/z peak no.	m/z peak no. (coherence)	m/z peak no.	m/z peak no. (coherence)		
391.210 5	374.203 5(0.89)	419.242 7	401.229 6(0.50)		
392.212 5	376.220 5(0.88)	423.214 7	403.235 6(0.42)		
397.230 5(0.88)	424.218 7	404.206 6(0.41)			
378.234 5(0.89)	403.233 8	405.226 6(0.48)			
381.204 5(0.86)	403.284 8	407.075 6(0.47)			
384.223 5(0.65)	419.276 8	408.178 6(0.44)			
388.342 5(0.79)	409.163 6(0.45)	409.163 6(0.45)			
389.194 5(0.82)	389.230 5(0.68)	410.254 6(0.43)			
m/z	peak no.	(coherence)	m/z	peak no.	(coherence)
-------	----------	-------------	-------	----------	-------------
390.197	5	0.66	411.171	6	0.48
391.210	5	0.85	413.266	6	0.42
392.291	5	0.67	417.225	6	0.57
396.311	5	0.92	420.244	6	0.42
397.198	5	0.90	421.190	6	0.48
398.202	5	0.90	400.342	7	0.87
398.342	5	0.65	401.327	7	0.95
399.214	5	0.90	405.214	7	0.85
405.261			407.277	7	0.66
407.313			407.313	7	0.65
419.242			419.276	7	0.62
420.280			420.280	7	0.61
421.329			423.214	7	0.67
424.218			424.218	7	0.69
400.342			401.286	8	0.89
401.326			401.326	8	0.95
405.214			405.214	8	0.89
405.261			405.261	8	0.67
407.277			407.277	8	0.73
407.313			407.313	8	0.67
419.276			419.276	8	0.61
420.280			420.280	8	0.60
421.329			421.329	8	0.72
423.310			423.310	8	0.70

SWATH window (m/z)

m/z	peak no.	(coherence)	m/z	peak no.	(coherence)
449.205	9	0.65	449.205	11	0.65
472.407	11	0.88	471.237	11	0.65
471.237	11	0.65	471.237	11	0.65
471.405	11	0.87	471.405	11	0.87
471.405	11	0.87	471.405	11	0.87

Candidate precursor ions

m/z	peak no.	(coherence)	m/z	peak no.	(coherence)
449.205	9	0.65	449.205	11	0.65
472.407	11	0.88	471.237	11	0.65
471.237	11	0.65	471.237	11	0.65
471.405	11	0.87	471.405	11	0.87
471.405	11	0.87	471.405	11	0.87
471.405	11	0.87	471.405	11	0.87
SWATH window (m/z)	Hierarchical clustering (1.5)	Wavelet coherence(0.6)			
-------------------	-------------------------------	-----------------------			
m/z	peak no.	m/z	peak no. (coherence)		
529.319	12	524.275	12(0.71)		
533.367	12	527.359	12(0.87)		
534.370	12	529.267	12(0.84)		
537.344	12	529.327	12(0.60)		
		531.362	12(0.61)		
		533.367	12(0.71)		
		538.291	12(0.80)		
		538.351	12(0.66)		
		539.354	12(0.71)		
		540.307	12(0.69)		
Table S7. The candidate precursors ion summarized from Table S6 after being rounded up to one decimal place. All these candidate precursor ions were subjected to product ion scan for further confirmation. The underlined ions were confirmed to produce arsenic fragments.

SWATH window (m/z)	324-350	349-375	374-400	400-425	425-450	449-475	524-550
325.2	305.7	374.2	400.3	425.3	449.2	524.3	
327.3	352.3	376.2	401.3	426.4	471.2	527.4	
328.2	359.2	377.2	403.2	427.4	471.4	529.3	
332.3	363.2	378.2	403.3	437.2	472.4	531.4	
333.1	364.7	381.2	405.2	442.3	474.3	533.4	
333.2	365.3	384.2	405.3	445.3	534.4		
337.2	369.8	388.3	407.3	445.4	537.3		
339.2	370.4	389.2	419.2	449.2	538.3		
339.3	373.3	390.2	419.3	449.3	538.4		
340.2	374.2	391.2	420.3			539.4	
341.2	392.2	421.2				540.3	
341.3	392.3	423.2					
349.2	396.3	423.3		397.2	424.2		
	398.2						
	398.3						
	399.2						
Table S8. The candidate precursor ions calculated by hierarchical clustering and wavelet coherence methods in each SWATH window in the untargeted analysis of arsenolipids in extracts of hairtail heads using reversed phase chromatographic separation and SWATH acquisition in tripleToF MS. MS1 of SWATH acquisition covered ions with m/z from 100 to 550. The corresponding peak (Figure S6A) of each candidate precursor ion and the wavelet coherence of each candidate precursor ion with the summed signal of product ions (m/z 104.9685 and m/z 102.9529) were also present in this table.

SWATH window (m/z)	149-175	324-350								
	Hierarchical clustering(1.5)	wavelet coherence(0.6)	Hierarchical clustering(1.5)	wavelet coherence(0.6)						
m/z	peak no.	m/z	coherence	peak no.	m/z	coherence	peak no.			
151.075	1	150.057	0.73	1	333.213	2	324.259	0.64	2	
152.971	1	150.112	0.83	1	347.228	2	331.263	0.78	2	
		151.144	0.79	1	341.224	2	332.267	0.75	2	
		151.148	0.70	1	333.213	2	333.213	0.83	2	
		152.056	0.94	1	341.194	2	341.194	0.67	2	
		152.147	0.79	1	332.267	2	341.224	0.61	2	
		152.971	0.99	1	342.373	2	331.263	0.78	2	
		153.040	0.88	1	346.274	2	347.228	0.87	2	
		153.149	0.69	1	347.277	2	347.277	0.87	2	
		154.059	0.76	1	347.277	2	347.277	0.87	2	
		156.032	0.74	1	348.261	2	348.261	0.64	2	
		156.102	0.84	1						
		156.138	0.84	1						
		159.028	0.94	1						
		161.029	0.85	1						
Candidate precursor ions		162.112	0.72	1						
		163.974	0.63	1						
		164.092	0.71	1						
		164.985	0.87	1						
		165.054	0.74	1						
		166.002	0.63	1						
		166.072	0.95	1						
		167.091	0.66	1						
		168.065	0.68	1						
		168.174	0.94	1						
		169.034	0.75	1						
		169.986	0.63	1						
		170.033	0.78	1						
		170.190	0.91	1						
		171.026	0.94	1						
		171.062	0.84	1						
		171.125	0.83	1						
		173.042	0.74	1						
Candidate precursor ions	m/z	peak no.	m/z	coherence	peak no.	m/z	peak no.	m/z	coherence	peak no.
--------------------------	-----	----------	-----	-----------	----------	-----	----------	-----	-----------	----------
351.287	4	363.186	0.66	3	391.219	5	384.223	0.68	5	
360.311	4	364.190	0.64	3	394.224	5	388.306	0.88	5	
361.245	4	358.274	0.92	4	391.219	0.97	5			
362.246	4	358.368	0.97	4	391.245	0.89	5			
371.262	4	360.375	0.60	4	391.340	0.74	5			
361.245	4	358.274	0.98	4	392.280	0.96	5			
362.246	4	358.368	0.65	4	394.224	0.78	5			
362.297	4	360.375	0.89	4	397.201	0.65	5			
363.230	4	399.216	0.92	4	399.216	0.72	5			
363.291	4	360.375	0.64	4	391.340	0.74	5			

Candidate precursor ions	m/z	peak no.	m/z	coherence	peak no.	m/z	peak no.	m/z	coherence	peak no.
403.198	7	410.327	0.45	7	435.176	13	429.227	0.85	11	
410.394	7	413.381	0.46	7	433.178	13	425.149	0.73	12	
415.151	7	415.321	0.51	7	433.178	14	436.306	0.87	12	
407.221	8	416.324	0.48	7	435.176	14	437.196	0.65	12	
414.335	8	418.389	0.64	7	441.235	14	439.215	0.92	12	
419.229	8	399.337	0.66	8	443.327	15	449.203	0.94	12	
424.342	8	407.221	0.96	8	444.406	15	427.306	0.61	13	
407.221	9	412.342	0.91	8	435.176	15	433.178	0.72	13	
407.229	9	414.333	0.88	8	441.235	15	434.384	0.76	13	
416.352	9	414.333	0.87	8	435.176	15	437.194	0.69	13	
424.342	9	415.321	0.51	8	437.194	0.69	13			
424.342	10	416.324	0.46	8	439.201	0.67	13			
410.251	10	419.229	0.62	8	439.247	0.69	13			
416.352	10	419.275	0.88	8	441.235	0.67	13			
424.342	10	421.282	0.57	8	432.240	0.67	15			
		422.317	0.58	8	447.279	0.64	15			
		422.399	0.51	8	424.342	0.69	8			
m/z	peak no.	m/z	coherence	peak no.						
-------	----------	-------	-----------	----------						
526.447	16	524.274	0.68	16						
529.266	16	524.314	0.76	16						

Candidate precursor ions
526.447 0.98 16
529.266 0.98 16
540.305 0.82 16
542.322 0.85 16
543.327 0.85 16
545.333 0.86 16

SWATH window (m/z)

524-550
Table S9. The candidate precursors ion summarized from Table S8 after being rounded up to one decimal place. All these candidate precursor ions were subjected to product ion scan for further confirmation. The underlined ions were confirmed to produce arsenic fragments.

SWATH window(m/z)	149-175	324-350	349-375	374-400	399-425	424-450	524-550
151.1	324.3	351.3	384.2	399.2	**425.2**	524.3	
150.1	331.3	358.3	388.3	400.3	427.3	526.4	
151.1	332.3	360.3	**391.2**	401.3	429.3	**529.3**	
152.1	333.2	**361.2**	392.3	402.3	**431.3**	540.3	
153.0	341.2	362.2	394.2	403.2	432.2	542.3	
154.1	342.4	**363.2**	397.2	**405.2**	433.2	543.3	
156.0	346.3	364.2	399.2	**407.2**	434.2	545.3	
159.0	347.2	371.3	408.2	435.2			
161.0	348.3			409.2	436.3		
162.1				410.3	437.2		
164.0				411.2	439.2		
165.0				412.3	**441.2**		
166.0				413.4	443.3		
167.1				414.3	444.4		
168.1				415.2	**447.3**		
169.0				416.3	**449.2**		
170.0							
171.0							
173.0							
174.0							

Candidate precursor ions
Table S10. The candidate precursor ions calculated by hierarchical clustering and wavelet coherence methods in each SWATH window in the untargeted analysis of arsenolipids in extracts of kelp using reversed phase chromatographic separation and SWATH acquisition in tripleToF MS. MS1 of SWATH acquisition covered ions with m/z from 100 to 550. The corresponding peak (Figure S10A) of each candidate precursor ion and the wavelet coherence of each candidate precursor ion with the summed signal of product ions (m/z 104.9685 and m/z 102.9529) were also present in this table.

SWATH window(m/z)	349-375	399-425							
Candidate precursor ions									
Hierarchical clustering(1.5)	**wavelet coherence(0.6)**	**Hierarchical clustering(1.5)**	**wavelet coherence(0.6)**						
m/z	peak no.	m/z	coherence	peak no.	m/z	peak no.	m/z	coherence	peak no.
357.218	1	351.289	0.91	1	402.337	2	399.216	0.61	2
361.243	1	353.295	0.90	1	406.331	2	400.218	0.71	2
355.224	0.62	1	413.197	3	404.316	0.70	2		
357.263	0.62	1	421.198	3	405.320	0.84	2		
357.264	0.62	1	425.203	3	406.353	0.89	2		
359.197	0.71	1	413.197	4	417.219	0.63	2		
359.198	0.75	1	421.198	4	423.187	0.90	2		
361.357	0.92	1	425.203	4	401.098	0.81	3		
362.305	0.70	1	402.337	0.78	3				
365.245	0.69	1	404.316	0.70	3				
365.302	0.66	1	405.320	0.84	3				
367.322	0.90	1	406.331	0.62	3				
367.326	0.64	1	419.108	0.76	3				
370.295	0.67	1	423.188	0.90	3				
371.326	0.68	1	425.203	0.99	3				
374.275	0.62	1	425.268	0.78	3				
			403.113	0.65	4				
			404.315	0.64	4				
			406.331	0.62	4				
			411.190	0.70	4				
			414.227	0.61	4				
			419.183	0.65	4				
			423.188	0.90	4				
			425.269	0.74	4				

SWATH window(m/z)	424-450	474-500							
Candidate precursor ions									
Hierarchical clustering(1.5)	**wavelet coherence(0.6)**	**Hierarchical clustering(1.5)**	**wavelet coherence(0.6)**						
m/z	peak no.	m/z	coherence	peak no.	m/z	peak no.	m/z	coherence	peak no.
425.203	5	425.203	0.99	5	476.265	7	474.285	0.83	7
425.268	5	425.268	0.78	5	479.262	7	476.265	0.85	7
426.207	5	427.114	0.66	5	481.220	7	479.262	0.80	7
437.194	5	432.297	0.78	5	486.306	7	481.220	0.92	7
439.201	5	437.194	0.67	5	496.340	7	486.306	0.87	7
425.203	6	439.201	0.67	5	499.240	7	494.253	0.86	7
----	------	------	------	------	------	------			
425.268	6	442.331	0.70	5	499.240	0.96	7		
425.269	6	445.124	0.62	5	499.240	0.96			
426.207	6	425.269	0.74	6					
442.288	6	426.207	0.97	6					
		433.177	0.64	6					
Table S11. The candidate precursors ion summarized from Table S10 after being rounded up to one decimal place. All these candidate precursor ions were subjected to product ion scan for further confirmation. The underlined ions were confirmed to produce arsenic fragments.

SWATH window(m/z)	345-375	399-425	424-450	474-500
351.3	399.2	**425.2**	474.3	
353.3	400.2	426.2	476.3	
355.2	401.1	427.1	479.3	
357.3	402.3	432.3	481.2	
359.2	403.1	433.2	486.3	
361.2	404.3	437.2	494.3	
362.3	405.3	439.2	496.3	
365.2	406.3	**442.3**	**499.2**	
367.3	411.2	445.1		
370.3	413.2			
371.3	414.2			
374.3	417.2			
419.1				
421.2				
423.2				
Figure S1. (A) The XICs of AsO$_2^-$ and AsO$_3^-$ in 3 SWATH windows obtained from RP HPLC-SWATH of 50 µg/L arsenic standards (iAsV, MMA, NAHAA, 3AHPAA, and Rox) in water. Seven peaks were detected in the windows of m/z 100-150, 200-250, and 250-300. (B) The XICs of iAsV, MMA, NAHAA, 3AHPAA, and Rox in the same SWATH analysis.
Figure S2. MS/MS spectrum and proposed structure of (a) AsFA362, (b) AsFA390, (c) AsFA436, and (d) AsFA 448 in krill oil.
Figure S3. The measured isotope patterns of (a) doubly-charged species (m/z 301.64) and (b) singly-charged species (m/z 499.18) of AslysoPC601.
Figure S4. (A) The XICs of As(CH$_2$)$_2^+$, As(CH$_3$)$_2^+$, and As(CH$_3$)$_2$OH$_2^+$ in 7 SWATH windows obtained from RP HPLC-SWATH of a tuna lipid extract. Twelve peaks were detected in the windows of m/z 324-350, 349-375, 374-400, 400-425, 424-450, 449-475, and 524-550. (B) The XICs of As(CH$_2$)$_2^+$ and As(CH$_3$)$_2^+$ in the product ion scan of precursor ions at m/z 333.214, 363.183, 359.221, 391.210, 405.214, 419.242, 421.329, 449.205, and 529.267.
Figure S5. MS/MS spectrum and proposed structure of (a) AsHC332, (b) AsFA362, (c) AsFA390, (d) AsHC404, (e) AsFA418, (f) AsFA448, and (g) AsFA528 in tuna fillets extracts.
Figure S6. (A) Sixteen peaks of As(CH$_2$)$_2^+$, As(CH$_3$)$_2^+$, and As(CH$_3$)$_2$OH$_2^+$ were detected in 7 SWATH windows obtained from the RP HPLC-SWATH of the lipid extract of hairtail heads. (B) The XICs of As(CH$_2$)$_2^+$ and As(CH$_3$)$_2^+$ in the product ion scan of precursor ions at m/z 152.971, 333.213, 361.245, 363.186, 391.219, 405.213, 407.229, 409.245, 419.250, 425.203, 431.250, 441.235, 447.279, 449.203, and 529.266.
Figure S7. MS/MS spectra and proposed structures of (A) AsHC332, (B) AsHC360, and (C) AsHC362 in the lipid extract of hairtail heads.
Figure S8. MS/MS spectra and proposed structures of (A) AsFA390, (B) AsHC404, and (C) AsFA418 in the lipid extract of hairtail heads.
Figure S9. MS/MS spectra and proposed structures of (A) AsFA446, (B) AsFA448, and (C) AsFA528 in the lipid extract of hairtail heads.
Figure S10. (A) Seven peaks of As(CH$_2$)$_2^+$, As(CH$_3$)$_2^+$, and As(CH$_3$)$_2$OH$_2^+$ were detected in 4 SWATH windows obtained from the RP HPLC-SWATH of the kelp lipid extract. (B) The XICs of As(CH$_2$)$_2^+$ and As(CH$_3$)$_2^+$ in the product ion scan of precursor ions at m/z 361.243, 423.187, 425.203, and 499.240.
Figure S11. MS/MS spectra and proposed structures of (A) AsHC360 and (B) AsFA422 in the lipid extract of kelp.
References

[1] Michael Stiboller, Georg Raber, Virissa Lentes, Elin Lovise Folven Gjengedal, Merete Eggesbø, and Kevin A. Francesconi. Arsenolipids Detected in the Milk of Nursing Mothers. Environmental Science & Technology Letters 2017, 4 (7), 273-279.

[2] Ann-Christin Niehoff, Jacqueline Schulz, Jens Soltwisch, Sören Meyer, Hans Kettling, Michael Sperling, Astrid Jeibmann, Klaus Dreisewerd, Kevin A. Francesconi, Tanja Schwerdtle, and Uwe Karst. Imaging by Elemental and Molecular Mass Spectrometry Reveals the Uptake of an Arsenolipid in the Brain of Drosophila melanogaster. Analytical Chemistry 2016, 88 (10), 5258-5263.

[3] Ronald A. Glabonjat, Georg Raber, Kenneth B. Jensen, Josef Ehgartner, and Kevin A. Francesconi. Quantification of Arsenolipids in the Certified Reference Material NMIJ 7405-a (Hijiki) using HPLC/Mass Spectrometry after Chemical Derivatization. Analytical Chemistry 2014, 86 (20), 10282-10287.

[4] Mojtaba S. Taleshi, Rune K. Seidler-Egdal, Kenneth B. Jensen, Tanja Schwerdtle, and Kevin A. Francesconi. Synthesis and Characterization of Arsenolipids: Naturally Occurring Arsenic Compounds in Fish and Algae. Organometallics 2014, 33 (6), 1397-1403.

[5] Kenneth O. Amayo, Andrea Raab, Eva M. Krupp, Helga Gunlaugsdottir, and Jörg Feldmann. Novel Identification of Arsenolipids Using Chemical Derivatizations in Conjunction with RP-HPLC-ICPMS/ESMS. Analytical Chemistry 2013, 85 (19), 9321-9327.

[6] Kenneth O. Amayo, Asta Petursdottir, Chris Newcombe, Helga Gunlaugsdottir, Andrea Raab, Eva M. Krupp, and Jörg Feldmann. Identification and Quantification of Arsenolipids Using Reversed-Phase HPLC Coupled Simultaneously to High-Resolution ICPMS and High-Resolution Electrospray MS without Species-Specific Standards. Analytical Chemistry 2011, 83 (9), 3589-3595.

[7] Julia Bornhorst, Franziska Ebert, Sören Meyer, Vanessa Ziemann, Chan Xiong, Nikolaus Guttenberger, Andrea Raab, Jessica Baesler, Michael Aschner, Jörg Feldmann, Kevin Francesconi, Georg Raber, Tanja Schwerdtle. Toxicity of three types of arsenolipids: species-specific effects in Caenorhabditis elegans. Metallomics 2020, 12 (5), 794-798.

[8] Michael Stiboller, Fabiana P. Freitas, Kevin A. Francesconi, Tanja Schwerdtle, António J. A. Nogueira, Georg Raber. Lipid-soluble arsenic species identified in the brain of the marine fish skipjack tuna (Katsuwonus pelamis) using a sequential extraction and HPLC/mass spectrometry. Journal of Analytical Atomic Spectrometry 2019, 34 (12), 2440-2450.

[9] Md Hasan Al Amin, Chan Xiong, Ronald A. Glabonjat, Kevin A. Francesconi, Tomoko Oguri, Jun Yoshinaga. Estimation of daily intake of arsenedolipids in Japan based on a market basket survey. Food and Chemical Toxicology 2018, 118, 245-251.

[10] S. M. Müller, H. Finke, F. Ebert, J. F. Kopp, F. Schumacher, B. Kleuser, K. A. Francesconi, G. Raber, T. Schwerdtle. Arsenic-containing hydrocarbons: effects on gene expression, epigenetics, and biotransformation in HepG2 cells. Archives of Toxicology 2018, 92 (5), 1751-1765.
[11] Xinwei Yu, Chan Xiong, Kenneth B. Jensen, Ronald A. Glabonjat, Michael Stiboller, Georg Raber, Kevin A. Francesconi. Mono-acyl arsenosugar phospholipids in the edible brown alga Kombu (Saccharina japonica). Food Chemistry 2018, 240, 817-821.

[12] Ásta H. Pétursdóttir, Jessica Rodrigues de Jesus, Helga Gunnlaugsdóttir, Jörg Feldmann. Quantification of labile and stable non-polar arsenolipids in commercial fish meals and edible seaweed samples. Journal of Analytical Atomic Spectrometry 2018, 33 (1), 102-110.

[13] Xi-Mei Xue, Yu Yan, Chan Xiong, Georg Raber, Kevin Francesconi, Ting Pan, Jun Ye, Yong-Guan Zhu. Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120. Environmental Pollution 2017, 228, 111-117.

[14] María Carmen Barciela-Alonso, Pilar Bermejo-Barrera, Jörg Feldmann, Andrea Raab, Helle R. Hansen, Katharina Bluemlein, Dirk Wallschláger, Michael Stiboller, Ronald A. Glabonjat, Georg Raber, Kenneth B. Jensen, Kevin A. Francesconi. Arsenic and As Species. Metallomics, 2016, 173-235.

[15] Sandra A. Viczek, Kenneth B. Jensen, Kevin A. Francesconi. Arsenic-Containing Phosphatidylcholines: A New Group of Arsenolipids Discovered in Herring Caviar. Angewandte Chemie 2016, 128 (17), 5345-5348.

[16] Uriel Arroyo-Abad, Matthias Pfeifer, Sibylle Mothes, Hans-Joachim Stärk, Christian Piechotta, Jürgen Mattusch, Thorsten Reemtsma. Determination of moderately polar arsenolipids and mercury speciation in freshwater fish of the River Elbe (Saxony, Germany). Environmental Pollution 2016, 208, 458-466.

[17] Ásta H. Pétursdóttir, Kyle Fletcher, Helga Gunnlaugsdóttir, Eva Krupp, Frithjof C. Küpper, Jörg Feldmann. Environmental effects on arsenosugars and arsenolipids in Ectocarpus (Phaeophyta). Environmental Chemistry 2016, 13 (1), 21.

[18] Sören Meyer, Georg Raber, Franziska Ebert, Mojtaba S Taleshi, Kevin A Francesconi, Tanja Schwerdtle. Arsenic-containing hydrocarbons and arsenic-containing fatty acids: Transfer across and presystemic metabolism in the Caco-2 intestinal barrier model. Molecular Nutrition & Food Research 2015, 59 (10), 2044-2056.

[19] Marianne Molin, Stine Marie Ulven, Helle Margrete Meltzer, Jan Alexander. Arsenic in the human food chain, biotransformation and toxicology – Review focusing on seafood arsenic. Journal of Trace Elements in Medicine and Biology 2015, 31, 249-259.

[20] Mojtaba S. Taleshi, Georg Raber, John S. Edmonds, Kenneth B. Jensen, Kevin A. Francesconi. Arsenolipids in oil from blue whiting Micromesistius poutassou – evidence for arsenic-containing esters. Scientific Reports 2015, 4 (1)

[21] Veronika Sele, Jens J. Sloth, Kåre Julshamn, Kasper Skov, Heidi Amlund. A study of lipid- and water-soluble arsenic species in liver of Northeast Arctic cod (Gadus morhua) containing high levels of total arsenic. Journal of Trace Elements in Medicine and Biology 2015, 30, 171-179.

[22] Kenneth O. Amayo, Andrea Raab, Eva M. Krupp, Talke Marschall, Michael Horsfall, Jörg Feldmann. Arsenolipids show different profiles in muscle tissues of four commercial fish species. Journal of Trace Elements in Medicine and Biology 2014, 28 (2), 131-137.
[23] Veronika Sele, Jens J. Sloth, Bjarte Holmelid, Stig Valdersnes, Kasper Skov, Heidi Amlund. Arsenic-containing fatty acids and hydrocarbons in marine oils – determination using reversed-phase HPLC–ICP-MS and HPLC–qTOF-MS. *Talanta* **2014**, *121*, 89-96.

[24] Kenneth O Amayo, Andrea Raab, Eva M Krupp, Jörg Feldmann. Identification of arsenolipids and their degradation products in cod-liver oil. *Talanta* **2014**, *118*, 217-223.

[25] S. Meyer, M. Matissek, S. M. Müller, M. S. Taleshi, F. Ebert, K. A. Francesconi, T. Schwerdtle. In vitro toxicological characterisation of three arsenic-containing hydrocarbons. *Metallomics* **2014**, *6* (5), 1023-1033.

[26] S. Meyer, J. Schulz, A. Jeibmann, M. S. Taleshi, F. Ebert, K. A. Francesconi, T. Schwerdtle. Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster. *Metallomics* **2014**, *6* (11), 2010-2014.

[27] Xi-Mei Xue, Georg Raber, Simon Foster, Song-Can Chen, Kevin A. Francesconi, Yong-Guan Zhu. Biosynthesis of arsenolipids by the cyanobacterium *Synechocystis* sp. PCC 6803. *Environmental Chemistry* **2014**, *11* (5), 506.

[28] Uriel Arroyo-Abad, Susanne Lischka, Christian Piechotta, Jürgen Mattusch, Thorsten Reemtsma. Determination and identification of hydrophilic and hydrophobic arsenic species in methanol extract of fresh cod liver by RP-HPLC with simultaneous ICP-MS and ESI-Q-TOF-MS detection. *Food Chemistry* **2013**, *141* (3), 3093-3102.

[29] Veronika Sele, Heidi Amlund, Marc H. G. Berntssen, Jannicke A. Berntsen, Kasper Skov, Jens J. Sloth. Detection of arsenic-containing hydrocarbons in a range of commercial fish oils by GC-ICPMS analysis. *Analytical and Bioanalytical Chemistry* **2013**, *405* (15), 5179-5190.

[30] S. Lischka, U. Arroyo-Abad, J. Mattusch, A. Köhn, Ch. Piechotta. The high diversity of arsenolipids in herring fillet (Clupea harengus). *Talanta* **2013**, *110*, 144-152.

[31] Veronika Sele, Jens J. Sloth, Anne-Katrine Lundebye, Erik H. Larsen, Marc H.G. Berntssen, Heidi Amlund. Arsenolipids in marine oils and fats: A review of occurrence, chemistry and future research needs. *Food Chemistry* **2012**, *133* (3), 618-630.

[32] M. Molin, S.M. Ulven, L. Dahl, V.H. Telle-Hansen, M. Holck, G. Skjegstad, O. Ledsaak, J.J. Sloth, W. Goessler, A. Oshaug, J. Alexander, D. Fliegel, T.A. Ydersbond, H.M. Meltzer. Humans seem to produce arsenobetaine and dimethylarsinate after a bolus dose of seafood. *Environmental Research* **2012**, *112*, 28-39.

[33] Sara García-Salgado, Georg Raber, Reingard Raml, Christoph Magnes, Kevin A. Francesconi. Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. *Environmental Chemistry* **2012**, *9* (1), 63.
User manual for Precursorfinder v1.0

1. Overview

Precursorfinder v1.0 is used for the analysis of data generated by SWATH (Sequential Windowed Acquisition of all Theoretical fragment ions) technology on high-resolution mass spectrometry. Because there is no relationship between parent ions and product ions in SWATH data, it is inconvenient to find the parent ions of specific product ions. Precursorfinder v1.0 provides a solution for finding the parent ions for the product ions in SWATH data. The software has six functions including "reading in SWATH data", "detecting the peaks of specific product ion", "generating possible precursor ions", "calculating wavelet coherence to filter candidate parent ions", "calculating hierarchical clustering to filter candidate parent ions", and "generating wavelet coherence plot and XICs of specific product ion and precursor ion". Users can adjust the parameters in each function to optimize the results. Graphical user interface (GUI) is used to make the software visually acceptable and convenient to use.

2. Developing and operating environment

2.1. Developing environment

Platform: MATLAB R2018a
Language: MATLAB

2.2. Operating environment

Operating system: Windows Server 2003 R2/ Windows Server 2008 R2 Service Pack 1/ Windows Server 2008 Service Pack 2/ Windows Server 2012/ Windows XP x64 Edition Service Pack 2/ Windows XP Service Pack 3/ Windows Vista Service Pack 2/ Windows 7 Service Pack 1/ Windows 8/ Windows 8.1/ Windows 10.

Memory: > 4 GB
Hard disk space: > 10 GB (3-4 GB for installation of MATLAB)
Software needed: 1) MATLAB R2018a

2) ProteoWizard MS Converter 3.0.10702 or later version

3) AB Sciex OS or AB Sciex Peakview (From AB Sciex)

3. Software design

3.1. Software structure

1. Data input and peak detection
 1) Importing SWATH data
 2) Importing the list of all precursor ions
 3) Detecting peaks of product ions

2. Selecting possible precursors based on retention time proximity with product ions

3. Selecting candidate precursors.
 1) Hierarchical clustering
 2) Wavelet coherence calculation

4. Plotting extracted ion chromatogram and wavelet coherence heat map

3.2. Graphic user interface (GUI)

GUI is shown as Figure 1. The functions of the four sections correspond to the four sections shown in 3.1.
4. Operation introduction

4.1. Preparation of data

There are two sets of data need to be prepared beforehand:

(1) The SWATH data after format conversion. Please download and install ProteoWizard MS Converter (http://proteowizard.sourceforge.net/downloads.shtml) suitable for your computer. After installation, import the source data (suffix .wiff or .wiff2) generated on the AB Sciex time-of-flight (TOF) mass spectrometer into MS Converter for format conversion. In the GUI of MS Converter, select: "Output format" as "text"; "Binary encoding precision" as "64bit" or "32bit"; "Filters" as "Peak picking", "Vender" and "MS Levels: 1-". Refer to Figure 2 for the selection of parameters.
(2) A list of all MS1 ions. Use the "Analytics" function on AB Sciex OS. Create a "Results" session and import the wiff2 data. When creating the processing method, select "Exhaustive" under "Non-targeted peaks". This step can find out all MS1 ions and their retention time. Or, use the "XIC Manager" function on AB Sciex Peakview. Create a new session, import the wiff data, select "Non-targeted Peak Finding" under "options", set "minimum intensity in counts", "approximate LC peak width", and "chemical noise intensity multiplier", and then click "run" to generate a list of all MS1 ions.

4.2. The installation of Precursorfinder v1.0

We put the source code of Precursorfinder v1.0 in the folder with the same name. Install MATLAB R2018a. Check Wavelet Toolbox and Bioinformatics Toolbox when installing. In the default path where the MATLAB workspace (suffix .mat) and methods (suffix .m) are stored, add in all source code files.

Enter "run precursorfinder5" or "precursorfinder5" in the MATLAB command window. The GUI (Figure 1) will appear. Use Section 1 to Section 4 in sequence. The
parameters of each section can be adjusted individually.

4.3. **SWATH data read-in**

Enter the parameters in the Section 1 to import SWATH data. This step converts the txt file obtained in 4.1 (1) into a specific format in MATLAB for subsequent use. The parameter "directory_data" is the storage path of the txt file. For example, if the txt file is stored at "D:\matlab\test\krillhex.txt", then enter "D:\matlab\test\krillhex" in "directory_data". The parameter "directory_output" is the storage path of the result. For example, if the result file is "D:\matlab\test\result.txt", then enter "D:\matlab\test\result" in "directory_output".

The parameter "swath window" is the SWATH window setting. For example, when sampling, the TOF acquisition range of MS1 is 350-450, and the range of MS/MS is m/z 350-375, 374 -400, 399-425, and 424-450. Then we need to enter the following sentence in "swath window":

```
[350 450;350 375;374 400;399 425;424 450]
```

Please keep this format, otherwise the program cannot be read.

The parameter "mz1rangemin" is the minimum m/z value of MS1. The parameter "mznrangemin" is the minimum m/z value of MS/MS.

One or two product ions can be set in the GUI in "first product ion" and "second product ion". Using two characteristic product ions to determine a parent ion can improve accuracy. Please refer to Figure 3 for all parameter settings.

![Figure 3. Section 1 parameter setting](image-url)
After entering the parameters, click the button "step1-wiff2 data read-in". The result will be displayed in the MATLAB workspace (Figure 4). The variables "Ionpool", "Timepool", "mainproductiondata", "secondproductiondata", and "sumiondata" are the results generated in this step. "Ionpool" contains all information of the original SWATH data. "Timepool" contains the time point information of each MS and MS/MS experiment. "Mainproductiondata" and "secondproductiondata" contain the data of the first and second product ions in all MS/MS experiments.

directory_data	'F:\wavelet project202
directory_output	'F:\wavelet project202
Ionpool	1x4 cell
mainproduction	106.9120
mainproductiondata	1x4 cell
mzlrangeemin	100
mzrangeimin	50
secondproduction	122.9069
secondproductiondata	1x4 cell
sumiondata	1x4 cell
swathnumber	3
swathwindow	[100, 300; 100, 150, 200, 2
Timepool	1x4 cell

Figure 4. Section 1 output.

4.4. Import the list of all precursor ions

In "step2", use the "Import" function of MATLAB to import the list generated in 4.1 (2). Import the numeric data in the two columns named "Retention time" and "Found at mass" to the MATLAB workspace in a numeric matrix format, and change the variable name to "PrecursorALL" (Note: Must change the variable name!).

4.5. Detecting the peaks of specified product ion

Click the button "Step-3 product ion peak detection" to perform peak detection. The program will automatically determine the number of incoming signals and call different functions. If two signals (two product ions) are imported, the user is required to select the detection mode: co-located peak "co" or superimposed peak "sup" (Figure
The co-located peaks are the peaks that the first and second product ions both have, while the superimposed peaks are the sum of all peaks of the first and second product ions.

Figure 5. Dialogue of detecting co-located peaks or superimposed peaks.

The extracted ion chromatograms (XICs) of the one/two product ion(s) in each SWATH window will be plotted, and the detected peaks will be marked on the XICs.

We provide users 9 peak detection modes. The 7 modes are composed of different value combinations of the following four parameters: number_of_decomposition, denoising_coefficient, peak_check_range, minpeakdistance.

number_of_decomposition: The number of wavelet decomposition layers. If the input signal is complex and has many peaks, it is recommended to use 6-layer wavelet decomposition. If the input signal is relatively simple and has fewer peaks, it is recommended to use 3-layer wavelet decomposition.

denoising_coefficient: If the input signal does not have a peak that deviates far from the other peaks (that is, the distribution of all peaks is relatively concentrated), it is recommended to use 0.1. If there are two peaks that are far apart from other peaks, it is recommended to use 0.01.

peak_check_range: Since the smoothed peak is often not at the same location as the original peak, it is generally necessary to set maximum detection range from the vicinity of the smoothed peak. peak_check_range is the size of the detection range.

minpeakdistance: The minimum distance between two local maximum.
Mode 1-3 are more suitable for simple spectra whereas Mode 4-8 are more suitable for complex spectra. In mode 9, users can type in values for the 4 parameters.

If users find one mode is not suitable for the peak detection when observing the XICs with naked eyes, please enter "0" in the dialogue (Figure 6), and the program will automatically go back to the previous step and ask the users to re-select the detection mode (Figure 7). Users can try different detection mode until they feel the peak detection is okay. The height of the superimposed peaks or the co-located peaks should be greater than a threshold, e.g., no less than 5% of the highest peak along the XIC. The threshold can be adjusted by the user. Users can also specifically pick out the peaks of interest from the superimposed peaks or the co-located peaks.

When okay, enter "1" to go to the next SWATH window.

Figure 6. Dialogue of determining if the peaks are correctly detected.

Figure 7. Dialogue of selecting peak detection mode.

After all SWATH window are processed, the MATLAB workspace displays the newly generated variables: "productpeaks". The retention time (unit: min) and peak width (unit: min) of peaks in each SWATH window are shown in each column of
'productpeaks". And *Precursorfinder* draws a figure containing the XICs of user-set product ions in all SWATH windows.

Figure 8. The XICs of two product ions in each SWATH window generated by Step 3 in Section 1.

4.6. Generation of possible precursor ions

Click on the "possible precursor pool" in Section 2 to filter possible precursor ions and generate their chromatographic data.

4.7. Calculate hierarchical clustering to screen candidate precursor ions

In Section 3, enter a cluster threshold in the parameter "cluster threshold", such as 1.5, and click the button "candidate generation1" to start the calculation. Under this clustering condition, the parent ion clustered with the product ion will be recorded in the variable "Candidate_cluster" in the MATLAB workspace. "Candidate_cluster" contains all candidate precursor ions for each peak in each SWATH window.

This threshold can be set as high as possible at the beginning to avoid underreport. If the threshold exceeds the range of the hierarchical clustering, MATLAB
will report an error in the command window. In this case, users can adjust the threshold to a lower value.

4.8. Calculate wavelet correlation to screen candidate precursor ions

Section 3 also calculates the wavelet coherence. Enter a correlation threshold (0 < coherence threshold < 1) in the parameter "coherence threshold", such as 0.7, and click the button "candidate generation2" to start the calculation. If the wavelet coherence of the possible precursor ion is greater than 0.7, this ion will be output to the "Candidate_coh" variable. The user can make the threshold as low as possible at the beginning to avoid underreport and adjust the threshold gradually to optimize the result.

The Candidate_coh variable contains the candidate precursor ions for each peak in each SWATH window. For each peak, the first column is the serial number of the precursor ion in the variable "PrecursorALL", the second column is the m/z of the precursor ion, the third column is the retention time of the peak (unit: min), and the fourth column is the wavelet coherence between the precursor ion and the product ion (Figure 9).

Candidate_coh[1, 2][1, 1]
1

1
2
3
4
5
6
7
8

Figure 9. Candidate_coh data structure.
4.9. Plot XICs and wavelet coherence coefficient

In order to make the results intuitive, Section 4 provides a function of drawing the XICs of parent ions, XICs of product ions, and their wavelet coherence coefficient heat map. Enter the serial number of the precursor ion in the parameter "precursor ion No.,” and click "precursor and product ion XIC & wavelet coherence plot” to draw the graph (Figure). The left plot is the XIC of the parent ion, the middle plot is the XIC of the summed signal of first and second product ions, and the right plot is the heat map of the wavelet coherence between them. From the wavelet coherence plot, we can see that throughout the whole analysis time, the parent ion has a high correlation with the product ion in the low frequency region. They also have a high correlation in the higher frequency region around peak retention time. However, the un-selected precursor ion will not have a continuous high wavelet coherence from low frequency to high frequency (not shown in this guide).

![Figure 10. The XIC of precursor ion(left), the XIC of product ions(middle), and the wavelet coherence coefficient heat map(right).](image-url)