Human Peripheral Blood Lymphocytes as a Cell Model to Evaluate the Genotoxic Effect of Coal Tar Treatment

Sofia Pavanello and Angelo Gino Levis

Department of Biology, University of Padova, Padova, Italy

Peripheral blood lymphocytes (PBL) from psoriatic patients therapeutically exposed to polycyclic aromatic hydrocarbons (PAH) during coal tar (CT) treatment were used to evaluate the in vivo formation of benzo[a]pyrene diol epoxide (BaPDE)-DNA adducts by an ELISA technique and by the 32P-postlabeling method. Moreover, we controlled if the pretreatment with CT influences the formation of BaP-DNA adducts and the BaP metabolism in the PBL obtained from psoriatic patients, treated in vitro with BaP. Our data did not show any significant influence of the CT treatment on the levels of PAH-DNA adducts. Moreover, the use of PBL from psoriatic patients, treated in vitro with BaP, did not allow to detect significant modifications of the metabolic activation of BaP and of the ability of its metabolites to bind to DNA, before and after CT treatment. Thus, PBL do not seem to represent an useful cell model to evaluate the possible genotoxic effect of the exposure through the skin of psoriatic patients to the PAH contained in CT. —Environ Health Perspect 102(Suppl 9):95-99 (1994)

Key words: psoriatic patients, peripheral blood lymphocytes, coal tar, DNA adducts, ELISA, 32P-postlabeling

Introduction

Polycyclic aromatic hydrocarbons (PAH) are widely distributed in the environment and the exposure of humans to PAH is thought to be responsible, at least partly, for the higher lung cancer incidence in smokers than in nonsmokers, and in some groups of workers than in the general population (1,2). Epidemiological studies have also indicated an association between human occupational exposure to coal tar (CT), which is generally characterized by an high content of PAH, and skin cancer (3). Pharmaceutical grade CT solutions are also employed for therapeutic purposes, e.g., for the treatment of psoriasis, which is a common proliferative skin disease, not accompanied by malignant cell transformation, that affects 2 to 3% of the human population (4). The high exposure of psoriatic patients to genotoxic agents is documented by the exceptional levels of PAH metabolites and/or mutagenic compounds excreted in their urine, as well as by the significant levels of chromosomal damages detected in their lymphocytes (5).

PAH require metabolic activation to exert their carcinogenic activity. In particular, the metabolism of benzo[a]pyrene (BaP), which is the most widely studied carcinogenic PAH compounds, is highly stereoselective: over 30 different metabolites have been identified, among which the carcinogenic activity was related to the formation of BaP diol epoxide (BaPDE) intermediates (6).

Since the covalent binding of the reactive carcinogenic metabolites with DNA is believed to be the first step in the initiation of the carcinogenic process (7), the monitoring of PAH-DNA adducts has been included in studies of human exposures to carcinogens as a very sensitive molecular index providing the quantitative measurements of the biologically effective dose of the environmental carcinogens (8).

In experimental animals, DNA adduct levels in target tissues are related to the dose administered to the animal and the ultimate carcinogenic response (9). In human studies, target tissue samples can hardly be obtained. The relative ease with which peripheral human blood lymphocytes (PBL) can be collected prompted the use of PBL as a surrogate for the target tissues in order to detect the effects of human exposure to environmental mutagenic agents and to study the in vitro metabolism of such agents.

Materials and Methods

Subjects Analyzed

Male psoriatic patients, presenting cutaneous lesions involving 20 to 100% of the body surface, excluding the genital area and hands, were analyzed. The patients were hospitalized in the Dermatology Clinic of the University of Padova (Italy). For each patient data regarding the age, smoking habits, occupational or consistent environmental exposure to PAH, medical history, domiciliary treatments for psoriasis and drugs taken during the coal tar therapy, were collected, the most relevant of which are reported in Table 1. During hospitalization, some of the patients were treated with crude coal tar (CT) either alone or in association with a CT-based paste (TP) containing 50% coal tar, sometimes in association with UV-irradiation, or with a 2% coal tar ointment (TO). Controls were male healthy subjects, 25 to 50 years old, free from chronic illness, none subjected to medical prescription or exposures to ionizing radiation or industrial chemicals at work. Nonsmokers were selected as individuals who had never smoked and smokers those consuming 15 or more cigarettes per day at least three months prior to donating the blood.

Cell and DNA Isolation

Samples of peripheral blood (20–30 ml) were collected by venapuncture in heparinized plastic syringes. The purity of the DNA, isolated from cell lysates by cycles of phenol/chloroform extraction (10,11), was checked and quantified by UV spectrophotometry (the absorbance ratios of DNA at 260/230 nm and 260/280 nm were usually >2.3 and >1.8, respectively).
Table 1. Age, smoking habits, treatment protocol followed, and method of detection of BaPDE-DNA adducts in control human subjects and in psoriatic patients following therapy with coal tar.

Subject	Age	Smoking^a	Days of treatment	Type of treatment	% Body surface with lesions	Method of detection of BaPDE-DNA adducts
1	51	S	8	TP	75	ELISA
2	25	S	7	TP	80	-
3	37	S	6	CT, TP	80	-
4	56	NS	6	TP	65	-
5	58	NS	13	TP	35	-
6	47	NS	8	TP	80	-
7	NA	NA	6	CT, TP	40	-
8	NA	NA	13	CT, TP	20	-
9	23	S	7	TP	35	-
10	NA	NA	7	CT	60	-
11	24	NS	10	TP	20	-
12	58	NS	8	TP	30	-
13	60	NS	6	TP	70	-
14	16	NS	3	TP	75	-
15	48	S	17	CT, TP	20	-
16	60	S	9	TP	70	-
17	34	S	5	TP	70	-
18	45	S	11	CT, TP	30	-
19	58	NS	6	TP	80	-
20	31	NS	5	TP	60	-
21	52	S	10	TO	80	-
22	42	S	10	TO	80	-
23	40	S	10	TO	80	-

1	65	NS	8	TP	70	^32P NucleaseP1/butanol
2	38	S	8	TP	70	-
3	47	NS	8	TP	70	-
4	56	NS	8	TP	100	-
5	35	NS	8	TP	80	-
6	43	NS	8	TP	80	-
7	52	S	8	TP	100	-
8	34	S	8	TP	100	-
9	61	NS	8	TP	80	-
10	25	NS	-	-	-	^32P NucleaseP1
11	25	NS	-	-	-	-
12	27	S	-	-	-	-
13	30	S	-	-	-	-
14	30	NS	-	-	-	-
15	30	NS	-	-	-	-
16	25	NS	-	-	-	-
17	50	NS	-	-	-	-
1	49	S	4	TP	30	HPLC
2	50	NS	6	TP	90	-
3	43	S	4	TP	80	-
4	65	NS	4	TP	80	-
5	60	NS	4	TP	80	-
6	56	NS	10	TP	80	-
7	30	NS	4	TP	80	-
8	79	NS	8	TP	80	-
9	27	NS	6	TP	40	-
10	70	S	6	TP	80	-
11	25	S	-	-	-	-
12	26	NS	-	-	-	-
13	30	NS	-	-	-	-
14	32	S	-	-	-	-
15	26	NS	-	-	-	-

^aS, smoker; NS, non-smoker; NA, data not available. ^CT, pure coal tar; TP, coal tar based paste; TO, coal tar based ointment; UV, ultraviolet radiation.

Detection of BaPDE-DNA Adducts (ELISA and ^32P-postlabeling)

ELISA assays were performed as described elsewhere (10) using rabbit anti BaPDE-DNA polyclonal antiserum (F29). Human DNA samples were tested in two to six separate experiments (depending on the amount of DNA available). In addition each sample was assayed in triplicate or quadruplicate within each experiment. Different concentrations of ^3H-BaPDE-DNA standard were assayed in each experiment in quadruplicate. All assays were performed blindly by coding test samples.

DNA adducts were also detected by ^32P-postlabeling as described elsewhere (11). Five µg DNA for each sample were digested for 3 hr and 30 minutes at 37°C with 250 mU micrococcal nuclease and 8mU spleen phosphodiesterase. Samples were further digested for 30 minutes with 2 µg nuclease P1. After the addition of 0.5 mM Tris-base buffer, the digested DNA was labeled with 20 µCi of ^32P-ATP, 2.5 units of T4 polynucleotide kinase. After 30 minutes, the reaction was terminated by adding 40 mM potato apyrase. Purification and resolution of ^32P-labeled adducts were carried out on polyethyleneimine-cellulose TLC sheets.

The isolation of the DNA adducts was also obtained by twice subsequent butanol extractions of the digested DNA samples, essentially as described by Gupta (12).

The chromatograms were visualized by autoradiography at -80°C, using intensifying screens. Adduct levels were determined by excising the marked areas of the chromatograms, the radioactivity of which was measured by Cerenkov counting. Relative adduct labeling (RAL) was calculated on the basis of the amount of radioactivity on the chromatograms, the DNA amount, and the specific activity of the [^32P]-ATP used for the labeling (11). In each experiment a ^3H-BaPDE-DNA standard with a known modification level was included (recoveries of 80–100% were obtained).

The formation of BaPDE-DNA adducts in PBL treated in vitro for 24 hr with the BaP active metabolite, 2µ M (-)-BaP-7,8-dihydrodiol, was determined by quantifying by the HPLC technique the amounts of their hydrolisis products, the BaP-tetrols. To this purpose the (-)-BaP-7,8-dihydrodiol metabolites were extracted twice by adding to the culture medium an equal volume of ethyl acetate, saturated with Tris-HCl 10 mM pH 7.5 buffer, and separated by HPLC using a Resolve C18 column as previously described (13,14).

Results and Discussion

Detection of BaPDE-DNA Adducts in PBL from Psoriatic Patients by ELISA

The levels of BaPDE-DNA adducts were determined by an ELISA assay in the PBL of 23 psoriatic patients during CT treatment and 2 to 5 months later (Figure
nuclease P1 enrichment and the butanol extraction procedures. Figure 1B shows the levels of total- and anti-BaPDE-DNA adducts in the 26 PBL samples obtained from the nine psoriatic patients and in the PBL samples from the 8 healthy subjects, using the nuclease P1 enrichment procedure. No statistically significant difference was found among the mean total DNA-adduct level before clinical therapy with TP (0.46 ± 0.18 adducts/10^9 nucleotides), after 8 days of continuous TP application (0.54 ± 0.36 adducts/10^9 nucleotides), and 16 days after the end of TP treatment (0.53 ± 0.26 adducts/10^9 nucleotides). Moreover, in healthy subjects the mean level of adducts (0.32 ± 0.24 adducts/10^9 nucleotides) was not statistically different from the mean levels of adducts in psoriatic patients. The autoradiograms of DNA adducts in the analyzed PBL samples revealed the presence of radioactive spots mainly in a distinct diagonal radioactive zone (DRZ) which is typical for aromatic DNA adducts (15, 16). The same DRZ was found in 32P-postlabeling digests of DNA from human skin maintained in short-term organ culture after treatment with CT-ointments (17), in DNA from PBL and from lung cells of lung cancer patients (16), and was shown to consist of a multitude of DNA adducts containing aromatic hydrophobic moieties, as indicated by their chromatographic behaviour (15). It must be noticed that only in seven samples of DNA from psoriatic patients we were able to detect the specific spot corresponding to the anti-BaPDE-DNA adduct.

Figure 1C shows the levels of total-DNA adducts in the 18 PBL samples obtained from the nine psoriatic patients using the butanol extraction procedure. Also, in this case no statistically significant difference was found among the mean total DNA adduct level before clinical therapy with TP (0.74 ± 0.38 adducts/10^9 nucleotides), after 8 days of continuous TP application (0.68 ± 0.25 adducts/10^9 nucleotides) and 16 days after the end of TP treatment (0.79 ± 0.25 adducts/10^9 nucleotides).

Moreover, although the comparison between the mean total DNA-adduct levels detected by the nuclease P1 method (0.58 ± 0.31 adducts/10^9 nucleotides) and that detected by the butanol method (0.73 ± 0.30 adducts/10^9 nucleotides) did not reveal any significant difference, the autoradiograms of 18 DNA samples obtained by the butanol procedure revealed the presence of additional radioactive spots not detected by the nuclease P1 method.

Comparison between the Level of Aromatic-DNA Adducts Detected by the ELISA Method and the 32P-postlabeling Technique in the PBL from Psoriatic Patients

It must be noticed that the mean BaPDE-DNA-adduct level we detected by the ELISA method in the PBL of psoriatic patients is about 20 to 100 times higher than that we found by the 32P-postlabeling technique on the same cell system. Other authors (18, 19), using ELISA methods, found in the DNA from lung tissues of lung cancer patients BaPDE-DNA levels 5 to 10 times higher than those determined by the 32P-postlabeling technique. In other studies, the postlabeling values of DNA adducts were significantly (10–100 fold) lower than those obtained by ELISA (20). The discrepancy between the results obtained by the two methods can be explained by cross reactivity of the anti-serum against different DNA adducts, which enhances the responsiveness of the ELISA method as opposed to structurally related PAH adducts (19). The underestimation observed with postlabeling may also be due to some intrinsic proprieties such as poor efficiency of phosphorylation (20). Moreover, the nuclease P1 digestion of DNA, which is used in the present as well as in other studies to enhance the sensitivity of the 32P-postlabeling assay, may result in dephosphorylation of certain adducts, impeding their 32P-postlabeling, and may give an underestimation of the actual adduct level (20).

Benzo[a]pyrene Metabolism and DNA Adduct Formation in Cultured PBL of Psoriatic Patients

The topical application of CT solution to neonatal rats was shown to induce the aryl hydrocarbons hydroxylases AHH of skin and liver (21). The AHH in the skin of psoriatic patients have a lower activity and inducibility than in control subjects (22). Therefore, we evaluated the possibility that the treatment with CT influences the BaP activation and the binding of its metabolites to DNA. PBL samples, from five healthy subjects and 10 psoriatic patients, were analyzed after treatment in vitro with 2 μM (−)-7,8-dihydrolodiol for 24 hr. The metabolism of (−)-7,8-dihydrolodiol to syn- and antistereoisomers of BaPDE was determined by monitoring the formation of their corresponding tetrads: BaP-7,10,8,9 and BaP-7,9,8,10 for (+)-anti-BaPDE, and BaP-7,9,8,10 and BaP-7,9,10,8 for (−)-syn-BaPDE. As shown in Figure 2, anti-tetrols were the predominant isomers in all the
Figure 2. Ratio of anti/syn BaP-tetrols, formed in vitro by PBL of psoriatic patients and healthy subjects after treatment with (-)-BaP-7,8-dihydrodiol, and detected by HPLC. PBL were obtained from psoriatic patients before (I) or 4 to 10 days after the end of CT therapy (II), and from healthy subjects reanalyzed 2 to 3 times at distance of 10 days from one another (I, II).

examined PBL samples (mean ratio anti/syn-tetrols: 23.2 ± 10.83), but significant levels of syn-tetrols, which clearly derived from the hydrolysis of (-)-syn-BaPDE, were also present. The mean ratio of anti/syn-tetrols in healthy subjects (5.7 ± 0.35) was significantly lower than in psoriatic patients (32.1 ± 15.29) (p<0.001), whereas statistical comparison of this ratio in psoriatic patients, before and after treatment with CT, did not reveal any significant difference.

The analysis by HPLC of the DNA adducts, after incubation of lymphocytes with unlabelled 2 μM (-)-BaP-7,8-dihydrodiol for 24 hr (13), showed the formation of consistent amounts of (-)-syn-BaPDE-DNA adducts in the 15 PBL samples both from healthy subjects and psoriatic patients. The mean ratio of anti-BaPDE-DNA/syn-BaPDE-DNA adducts was 4.01 ± 3.27 pmol/μgDNA, and no significant difference in that ratio was found either between healthy subjects and psoriatic patients, or between psoriatic patients, before and after CT treatment (13).

Conclusion
The purpose of our study was to evaluate the genotoxic risk involved in the exposure of psoriatic patients to PAH by the detection of PAH-DNA adducts in their DNA isolated from PBL. Our data demonstrate no correlation between the levels of PAH-DNA adducts and the exposure to CT. With the lack of correlation between CT therapy and incidence of skin cancer in psoriatic patients (4), such data suggest that CT treatment of psoriasis should not be considered a potential genetic and carcinogenic risk for psoriatic patients. However, it may be noted that the DNA-adduct levels in nontarget tissues, like PBL, could not reflect the level of adducts in skin and lung cells, both of which have been shown to be the target tissues for DNA in human PAH exposures (14,23,29). Therefore, the lack of elevated DNA adducts in PBL, although representing a relevant information related to biomonitoring, does not allow to directly predict the skin cancer risk involved in CT therapies.

REFERENCES
1. Saracci R, Riboli E. Passive smoking and lung cancer: current evidence and ongoing studies at the International Agency for Research on Cancer. Mutat Res 222:117-127 (1988).
2. Gibbs GW. Mortality of aluminum reduction plant workers, 1950 through 1977. J Occup Med 27:761-770 (1985).
3. Searle CE, Teale OJ. Occupational carcinogens. In: Chemical Carcinogenesis and Mutagenesis, Vol 1, (Cooper CS, Grover PL, eds), New York: Raven Press, 1990:33-62.
4. Bridges BA, Graeves M, Polani PE, Wald N. Do treatments available for psoriasis patients carry a genetic or carcinogenic risk? Mutat Res 86:279-304 (1981).
5. Sarto F, Zordan M, Tomanin R, Mazzotti D, Canova A, Cardin EL, Bezza G, Levis AG. Chromosomal alterations in peripheral blood lymphocytes, urinary mutagenicity and excretion of polycyclic aromatic hydrocarbons in 6 psoriatic patients undergoing coal tar therapy. Carcinogenesis 10:329-334 (1989).
6. Gelboin HV. Benzo(a)pyrene metabolism, activation and carcinogenesis: role and regulation of mixed function oxidases and related enzymes, Physiol Rev 60:1107-1166 (1980).
7. Stowers SJ, Anderson MW. Formation and persistence of benzo(a)pyrene metabolite-DNA adducts. Environ Health Perspect 61:31-39 (1985).
8. Perera FP, Potier MC, Yuspa SH, Nakayama J, Jarezkki A, Curren MM, Knowles DM, Weinstein IB. A pilot project in molecular cancer epidemiology: determination of benzo(a)pyrene-DNA adducts in animal and human tissues by immunocytoassays. Carcinogenesis 3:1405-1410 (1982).
9. Randerath E, Agrawal HP, Warrer JA, Bordelon CB, Randerath K. 32P-postlabeling analysis of DNA adducts persisting for up to 42 weeks in the skin, epidermis and dermis of mice treated topically with 7, 12 dimethylben(a)anthracene. Carcinogenesis 6:1107-1126 (1985).
10. Paleologo M, Van Schooten FJ, Pavanello S, Kriek E, Zordan M, Clonfero E, Bezza G, Levis AG. Detection of benzo(a)-pyrene-diol-epoxide-DNA adducts in white blood cells of psoriatic patients treated with coal tar. Mutat Res 281:11-16 (1992).
11. Pavanello S, Levis AG. Formation and persistence of polycyclic aromatic hydrocarbon-DNA adducts in peripheral blood lymphocytes of psoriatic patients. In: Polycyclic Aromatic Compounds (Garrigues P, Lamotte M, eds). New York: Gordon and Breach Science Publ, 871-878 (1992).
12. Gupta RC. Enhanced sensitivity of 32P-postlabeling analysis of aromatic carcinogen-DNA adducts. Cancer Res 45:5656-5662 (1985).
13. Pavanello S, Zanesi N, Levis AG. BaP metabolism and DNA-adduct formation in cultured human lymphocytes treated in vitro with BaP and BaP-7,8-dihydrodiol. ATLA 20:126-137 (1992).
14. Pavanello S, Levis AG. Coal tar therapy does not influence benzo(a)pyrene metabolism and DNA adduct formation in peripheral blood lymphocytes of psoriatic patients. Carcinogenesis 13:1569-1573 (1992).
15. Phillips DH, Shoket B, Hewer A, Bailay E, Kostic S, Vincze I. Influence of cigarette smoking on the levels of DNA adducts in human bronchial epithelium and white blood cells. Int J Cancer 46:569-575 (1990).
16. Van Schooten FJ, Hillebrand MJX, Lutigerink JT, Van Leeuwen FE, Van Zandwijk N, Jansen HM, Kriek E. Polycyclic aromatic hydrocarbon-DNA adducts in lung tissue from lung cancer patients. Carcinogenesis 11:1677-1681 (1990).
17. Shoket B, Horkay I, Kosa A, Paldeak L, Hewer A, Grover PL, Phillips DH. Formation of DNA adducts in the skin of psoriasis patients, in human skin organ culture, and in mouse skin and lung following topical application of coal tar and juniper tar. J Invest Dermatol 94:241-246 (1990).
18. Poire MC, Weston A. DNA adduct determination in humans. In: New Horizons in Biological Dosimetry, 372 (Gledhill BL, Mauro F, eds). New York: Wiley-Liss Inc, 1991:205-218.
19. Van Schooten FJ, Kriek E, Steenwinkel MJST, Noteborn HPJM, Hillebrand MJX, Van Leeuwen FE. The binding efficiency of polyclonal and monoclonal antibodies to DNA modified with benzo(a)pyrene diol epoxide is dependent on the level of modification. Implications for quantitation of benzo(a)py-
rene-DNA adducts in vivo. Carcinogenesis 8:1263–1269 (1987).
20. Hemminki K, Szyfter K, Vodicka P, Koivisto P, Mustonen R, Reunanen A. Quantitative aspects of 32P-postlabeling. In: New Horizons in Biological Dosimetry, 372 (Gledhill BL, Mauro F, eds). New York: Wiley-Liss Inc, 1991;219–228
21. Bickers DR, Wroblewski D, Dutta-Choudhury T, Mukhtar H. Induction of neonatal rat skin and liver aryl hydrocarbon hydroxylase by coal tar and its constituents. J Invest Dermatol 78:227–229 (1982).
22. Chapman PH, Kersey PJ, Keys B, Shuster S, Rawlins MD. Generalized tissue abnormality of hydrocarbon hydroxylase in psoriasis. Br J Med 281:1315–1316 (1980).
23. Ross J, Nelson G, Kligerman A, Erexon G, Bryant M, Earley K, Gupta R, Nesnow S, Formation and persistence of novel benzo(a)pyrene adducts in rat lung, liver, and peripheral blood lymphocyte DNA. Cancer Res 50:5088–5094 (1990).
24. Mukhtar H, Asokan P, Santella RM, Bikers DR Benzo(a)pyrene diol epoxide-1-DNA adduct formation in epidermis and lung of Sencar mice following topical application of crude coal tar. Cancer Letter 7:51–59 (1986).