Control strategies and sensitivity analysis of anthroponotic visceral leishmaniasis model

Muhammad Zamira,b, Gul Zamanb and Ali Saleh Alshomranic

aDepartment of Mathematics, University of Science and Technology, Bannu, Pakistan; bDepartment of Mathematics, University of Malakand, Dir Lower, Pakistan; cDepartment of Mathematics, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia

ABSTRACT
This study proposes a mathematical model of Anthroponotic visceral leishmaniasis epidemic with saturated infection rate and recommends different control strategies to manage the spread of this disease in the community. To do this, first, a model formulation is presented to support these strategies, with quantifications of transmission and intervention parameters. To understand the nature of the initial transmission of the disease, the reproduction number R_0 is obtained by using the next-generation method. On the basis of sensitivity analysis of the reproduction number R_0, four different control strategies are proposed for managing disease transmission. For quantification of the prevalence period of the disease, a numerical simulation for each strategy is performed and a detailed summary is presented. Disease-free state is obtained with the help of control strategies. The threshold condition for globally asymptotic stability of the disease-free state is found, and it is ascertained that the state is globally stable. On the basis of sensitivity analysis of the reproduction number, it is shown that the disease can be eradicated by using the proposed strategies.

1. Introduction

Leishmaniasis is a family of infectious diseases. This disease is transmitted by different species of phlebotomize sandflies. Anthroponotic visceral leishmaniasis (AVL) is caused by Leishmania donovani and is transmitted by sandfly. Human is the main reservoir of the virus. The clinical symptoms of AVL include fatigue, prolonged fever, losing weight, bleeding tendency and enlargement of both spleen and liver. The average incubation period of visceral leishmaniasis (VL) is 2–6 months; however, longer and shorter periods (from 10 days to 1 year) \cite{1, 26}. The latency period of sandfly is assumed roughly to be 3–7 days \cite{21, 22}. Post-kala azar dermal leishmaniasis (PKDL) is the complication of VL in a patient who has recovered from VL. The interval between PKDL and VL is observed from 0 to

CONTACT Gul Zaman gzaman@uom.edu.pk; Muhammad Zamir zamirburqi@yahoo.com; Ali Saleh Alshomrani aszalshomrani@kau.edu.sa
© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
6 months in Sudan and from 2 to 3 years in India [27]. Somalia, Yemen, Saudi Arabia, Ethiopia, Kenya and Uganda are the countries highly suffering with AVL [14, 19]. For more details and related literature of Leishmaniasis, the readers can refer to [2, 3, 8, 16, 17, 25, 26].

In this paper, we consider the work of Stauch et al. [23] by incorporating some new biological features related to develop a mathematical model. To do this, we introduce the system of nonlinear differential equations to represent the dynamics of the disease. We show that the model is epidemiologically and mathematically well posed. To understand the nature of the initial transmission of the disease, the reproduction number R_0 is obtained by using the next-generation method. On the basis of sensitivity analysis of R_0, we propose control strategies for disease transmission. To understand the dynamical behaviour and stability analysis, we use the Routh–Hurwitz criteria and stability analysis theory of nonlinear systems of differential equations. The threshold condition for globally asymptotic stability of the disease-free state is presented and shown that this state is globally stable. Numerical simulations are carried out to justify the effect of control strategies on the prevalence period of AVL.

The paper is organized as follows. Some basic ideas of the related problem are presented in Section 2. A mathematical model of the interaction between the human and the vector is presented in Section 3. Section 4 presents stability and sensitivity analysis of the proposed model. Section 5 is concerned with numerical simulations of the control strategies, with quantifications of transmission and intervention parameters. Finally, we present our conclusion.

2. Preliminaries

In this section, we present some definitions related to the present work [5, 12, 23].

Definition 2.1: The matrix $M_{m \times m}$, for $m > 2$, is said to be irreducible if for any proper sub-set N of $\{1, 2, \ldots, m\}$. $\exists i \in N$ and $j \notin N$ such that $A_{ij} \neq 0$.

Irreducibility of the model means that none of the class of the model is isolated.

Definition 2.2: The matrix M is said to be the Metzler matrix if $A_{ij} \geq 0$ for $i \neq j$.

Definition 2.3: PCR (polymerase chain reaction): This test is used to determine whether the bacteria are present in DNA.

DAT (direct agglutination test): This test is used to determine the presence of antibodies to a specific antigen.

LST (leishmanin skin test): This test is used to measure the cellular immunity against VL.

Theorem 2.1 ([12]): *If the hypothesis H_1–H_5 are satisfied, then disease-free equilibrium is globally asymptotically stable for the system:

\[
\dot{X}_1 = A_1(X) \cdot (X - X^*_1) + A_{12}(X) \cdot X_2,
\]

\[
\dot{X}_2 = A_2(X) \cdot X_2,
\]

where
(H1) : The system is defined on a positively invariant set X of the nonnegative orthant. The system is dissipative on X. That X is the region, where the model has biological sense, well posed and all its trajectories are forward bounded.

(H2) : The sub-system $\dot{X}_1 = A_1(X_1,0)(X_1 - X^*_1)$ is globally asymptotically stable at the equilibrium X^*_1 on the canonical projection of Ω on R^{n1}. That is, when there is no disease, the whole population will be stable at diseases free equilibrium.

(H3) : The matrix $A_2(X)$ is Metzler and irreducible for any given $X \in \Omega$. That is, no block (compartment) of the model is isolated from others.

(H4) : There exists an upper bound matrix \bar{A}_2 for $M = \{A_2(X), X \in \Omega\}$ with the property that either $\bar{A}_2 \notin M$ or if $\bar{A}_2 \in M$ (i.e. $\bar{A}_2 = \max_{\Omega} M$), then for any $\bar{x} \in \Omega$ such that $\bar{A}_2 = A_2(\bar{x}), \bar{x} \in R^{n1} \times \{0\}$.

(H5) : $\alpha(\bar{A}_2) \leq 0$.

3. Mathematical formulation

Stauch et al. [23] studied the biological behaviour of the disease, while we present a mathematical formulation of the model. Our newly developed model represents the dynamics of visceral strains of Leishmania in two different populations, human population N_h and sandfly population N_v. The total population is distributed in 14 compartments:

- S_h : Susceptible human population, PCR, DAT and LST negative (P^-, D^-, L^-).
- E_1 : Early latent period VL in human population and is (P^+, D^-, L^-).
- E_2 : The Second stage of VL – latency in human population and is (P^+, D^+, L^-).
- I_1 : Early symptomatic and diagnosis stage of VL in human class and is (P^+, D^+, L^-).
- I_2 : The second stage of symptomatic kala azar, under first—line treatment and is (P^+, D^+, L^-).
- I_3 : The third stage of symptomatic kala azar, under second — line treatment and is (P^+, D^+, L^-).
- E_3 : The dormant period, before developing PKDL.
- I_4 : The human class with PKDL.
- R_1 : The human class recovered from the latent stage E_2 and is (P^-, D^+, L^-).
- R_2 : The human class recovered with immunity (P^-, D^-, L^+).
- R_3 : The human class recovered in response of first — line and second – line treatment and is (P^-, D^-, L^+).
- S_v : The susceptible sandfly population.
- E_v : The exposed sandfly population.
- I_V : The infectious sandfly population.

The total human population N_h is $N_h = S_h + E_1 + E_2 + I_1 + I_2 + E_3 + I_3 + I_4 + R_1 + R_2 + R_3.$
Total vector population $N_v(t)$ is, $N_v(t) = S_v(t) + E_v(t) + I_v(t)$.

The susceptible humans become latent at the rate λ_h, after contact with infected sand fly. After completing sojourn time, the patient develop second latent stage E_2, at the rate ξ_1. The fraction $\gamma_1 \xi_2$ of the patients at E_2 develops symptomatic Kala Azar, the fraction $\gamma_2 \xi_2$ enter the dormant period of PKDL and the fraction $\gamma_3 \xi_2$ recover and get PCR^-. The fraction α_3 of these recovered individuals become (P^-, D^-, L^+). Some of these recovered individuals lose their cellular immunity at the rate α_1, getting (P^-, D^-, L^-) and become susceptible again.

After diagnosis, the symptomatic infectious individuals at I_1 are put on first-line treatment at the rate ξ_3. After the first-line treatment, these infectious individuals can be divided into six subgroups:

- Fraction μ_k of these infectious human dies due to toxicity of medicines.
- Fraction μ_T dies due to VL-induced death.
- Fraction μ_h dies due to natural death.
- Fraction $p_1 \tau_1$ does not show +ve response to first-line treatment and is put on second-line treatment.
- Fraction $p_2 \tau_1$ enters the dormant period before the development of PKDL.
- Fraction $p_3 \tau_1$ is recovered.

After completing a sojourn time at R_3, the person further improves and become (P^-, D^-, L^+), and enters the class R_2. After second-line treatment, infectious individuals can be divided into three subgroups:

- A group passes away due to, toxicity of second-line treatment, μ_T, natural mortality μ_k and disease death μ_k.
- A group $p_5 \tau_2$ is recovered and enters the recovered class R_3.
- A group $p_4 \tau_2$ enters the dormancy period of PKDL.

After completing the sojourn period (dormancy period) α_2 at E_3, the victimized individuals develop PKDL, subject to their survival. Some of these individuals are recovered due to treatment (180 days = τ_3) and some recover naturally at the rates β_2 and β_1, getting (P^-, D^-, L^+). After completing the sojourn period α_4, these recovered individuals enter the recovered class R_2. A susceptible vector, after contact with a person in latent or infectious states, gets infected and enters the exposed class E_v at the rate λ_v. After completing the incubation period σ_v at E_v, the vector becomes infectious and enters the class I_v.

Figure 1 represents the flow of the disease in susceptible population. The dynamical system for human and vector population is given by

\[
\begin{align*}
\dot{S}_h &= \Gamma_h + \alpha_1 R_2 - \left(\frac{a \beta (1 - \nu_1) b I_v}{N_h}\right) S_h - (\mu_h) S_h, \\
\dot{E}_1 &= \left(\frac{a \beta (1 - \nu_1) b I_v}{N_h}\right) S_h - (\xi_1 + \mu_h) E_1, \\
\dot{E}_2 &= \xi_1 E_1 - ((\omega_1 + \omega_2 + \omega_3) \xi_2 + \mu_h) E_2,
\end{align*}
\]
Figure 1. Flow chart representing the dynamics of the disease. The blue lines represent the interaction between susceptible and infected populations.

Here, $\mu_1 = \mu_h + \mu_k$, $\mu_2 = \mu_h + \mu_k + \mu_T1$ and $\mu_3 = \mu_h + \mu_k + \mu_T2$. The description of the parameters is given in the following table:
Table of parameters

Notation	Parameter definition	Value	Resource
Γ_h	Humans' recruitment rate	0.0015875 day$^{-1}$	[9]
Γ_v	Sandflies' recruitment rate	0.299 day$^{-1}$	[13]
μ_h	Humans' natural mortality rate	0.00004 day$^{-1}$	[13]
μ_v	Sandflies' natural mortality rate	0.189 day$^{-1}$	[13]
δ_1	Inverse of sojourn period at E_1	0.0166666	[11]
δ_2	Inverse of sojourn period at I_2	0.0833333	[23]
δ_3	Inverse of sojourn period at I_3	1	[23]
r_1	Inverse of first-line treatment period	0.0333333 day$^{-1}$	[10]
r_2	Inverse of second-line treatment period	0.0333333 day$^{-1}$	[10]
r_3	Inverse of treatment period of PKDL	0.0055555 day$^{-1}$	[20]
α_2	Inverse of relapse period to PKDL	0.0015873 day$^{-1}$	[20, 27]
α_3	Inverse of sojourn period at R_1	0.013513	[23]
α_4	Inverse of sojourn period at R_2	0.003257	[23]
β_1	Inverse of sojourn period at R_3	0.003257	[23]
p_1	Fraction not responding to first-line treatment	0.05	[10]
p_2	Fraction developing PKDL after first-line treatment	0.03	[23]
p_3	Fraction of VL recovering with first-line treatment	0.92	[23]
p_4	Fraction developing PKDL after second-line treatment	0.03	[23]
p_5	Fraction recovering from VL with second-line treatment	0.97	[23]
σ_v	Inverse of incubation period at E_v	0.2	[22]
a	Sandflies biting rate	0.2856 day$^{-1}$	[7]
μ_{r_1}	Excess in mortality due to first-line treatment toxicity	0.00167	[23]
μ_{r_2}	Excess in mortality due to second-line treatment toxicity	0.00167	[23]
μ_k	VL-induced death rate	0.011 day$^{-1}$	[24]
ω_1	Fraction of E_2, E_3 entering state I_1	0.0033	[23]
ω_2	Fraction of E_2, E_3 entering state I_2	0.0001	[23]
ω_3	Fraction of E_2, E_3 entering state I_3	0.0066	[23]
β_1	Inverse of feeding cycle period of sandfly	0.25	[23]
β_2	Fraction recovering from PKDL due to treatment	0.981	[17]

4. Replace model analysis by model analysis

In this section, we discuss invariant region, the disease-free equilibrium point and reproduction number R_0 of the system (1).

4.1. Invariant region

The proposed model is concerned with living population; therefore the state variables are nonnegative. The dynamic of overall population is obtained by adding all the classes concerned with humans (N_h) and adding all the classes concerned with vector (N_v) and is given by the following differential equations:

$$\dot{N}_h = \Gamma_h - \mu_h N_h - \delta_1 I_1 - \delta_2 I_2 - \delta_3 I_3,$$

$$\dot{N}_v = \Gamma_v - \mu_v N_v,$$
where \(\delta_1 = \mu_k, \delta_2 = \mu_k + \mu T_1 \) and \(\delta_3 = \mu_k + \mu T_2 \). If the human population is disease-free, then \((N_h \rightarrow \Lambda_h / \mu_h, N_v \rightarrow \Lambda_v / \mu_v) \) as \(t \rightarrow \infty \). This shows that the biological feasible region \(\Psi \) is given by

\[
\Psi = \left((S_h, E_1, E_2, I_1, I_2, I_3, R_1, R_2, R_3, I_4, E_3, S_v, E_v, I_v) \in R_+^{14}, 0 \leq S_h, E_1, E_2, I_1, I_2, I_3, R_1, R_2, R_3, I_4, E_3, S_v, E_v, I_v; N_h \leq \frac{\Gamma_h}{\mu_h}; N_v \leq \frac{\Gamma_v}{\mu_v} \right),
\]

which is a positively invariant domain. The model is epidemiologically and mathematically well posed [6] and all the trajectories are forward bounded.

4.2. Disease-free equilibrium and reproduction number

For the disease-free equilibrium, we equate the right-hand sides of all the equations in Equation (1) to zero; also, we assume that initially, there is no infection. Then, the disease-free equilibrium of the model (1) is

\[
X_0 = \left(\frac{\Gamma_h}{\mu_h}, 0, 0, 0, 0, 0, 0, 0, 0, 0 \right).
\]

The number of secondary infections caused in completely susceptible population by introducing an infectious individual to the population is called reproduction number \(R_0 \) [4]. In order to find the basic reproduction number, we use the next-generation method [5]. \(R_0 = \rho(-FV^{-1}) \), where \(\rho \) is the spectral radius. Here

\[
R_0 = \left(\frac{m_1 m_2 \sigma_v}{a_1 a_1 a_1 \mu_v (1 + \nu_2)} + \frac{\xi_1 m_1 m_3 \sigma_v}{a_1 a_2 a_1 a_1 \mu_v (1 + \nu_2)} + \frac{a_8 a_2 \xi_1 m_1 m_7 \sigma_v}{a_1 a_2 a_1 a_1 a_1 a_1 \mu_v (1 + \nu_2)} \right)^{1/2},
\]

which can be written as

\[
R_0 = \sqrt{R_a + R_b + R_c},
\]

where

\[
\begin{align*}
m_1 &= a_1(1 - \nu_1)b, & m_2 &= \frac{a_1(1 - \nu_1)c_1 \Gamma_v \mu_h}{\mu_v (1 + \nu_2) \Gamma_h}, & m_3 &= \frac{a_1(1 - \nu_1)c_2 \Gamma_v \mu_h}{\mu_v (1 + \nu_2) \Gamma_h}, \\
m_4 &= \frac{a_1(1 - \nu_1)c_3 \Gamma_v \mu_h}{\mu_v (1 + \nu_2) \Gamma_h}, & m_5 &= \frac{a_1(1 - \nu_1)c_3 \Gamma_v \mu_h}{\mu_v (1 + \nu_2) \Gamma_h}, & m_6 &= \frac{a_1(1 - \nu_1)c_3 \Gamma_v \mu_h}{\mu_v (1 + \nu_2) \Gamma_h}, \\
m_7 &= \frac{a_1(1 - \nu_1)c_4 \Gamma_v \mu_h}{\mu_v (1 + \nu_2) \Gamma_h},
\end{align*}
\]

\[
\begin{align*}
a_1 &= \xi_1 + \mu_h, & a_2 &= (\omega_1 + \omega_2 + \omega_3) \xi_2 + \mu_h, & a_3 &= \omega_1 \xi_2, & a_4 &= \xi_3 + \mu_1, \\
a_5 &= p_1 \tau_1 + p_2 \tau_1 + p_3 \tau_1 + \mu_2, & a_6 &= p_1 \tau_1, & a_7 &= p_4 \tau_2 + p_5 \tau_2 + \mu_3, & a_8 &= \omega_2 \xi_2, \\
a_9 &= p_2 \tau_1, & a_{10} &= p_2 \tau_2, & a_{11} &= \alpha_2 + \mu_h, & a_{12} &= \beta_2 \tau_3 + \beta_1 + \mu_h, \\
a_{13} &= \sigma_v + \mu_v (1 + \nu_2)
\end{align*}
\]
and
\[
R_a = (ab)(ac_1) \left(\frac{\Gamma_v \mu_h \sigma_v (1 - v_1)^2}{(\mu_v)^2 \Gamma_h a_1 a_1 a_1 (1 + v_2)^2} \right),
\]
\[
R_b = (ab)(ac_2) \left(\frac{\Gamma_v \mu_h \xi_1 (1 - v_1)^2}{(\mu_v)^2 \Gamma_h a_1 a_2 a_1 a_1 (1 + v_2)^2} \right),
\]
\[
R_c = (ab)(ac_4) \left(\frac{a_8 a_2 \xi_1 \sigma_v \Gamma_v \mu_h (1 - v_1)^2}{(\mu_v)^2 \Gamma_h a_1 a_2 a_1 a_1 a_1 a_1 a_1 (1 + v_2)^2} \right).
\]

4.3. Biological interpretation and sensitivity of R_0

$R_a = (ab)(ac_1)(\beta^2 \Gamma_v \mu_h \sigma_v (1 - v_1)^2/(\mu_v)^2 \Gamma_h a_1 a_1 a_1 (1 + v_2)^2)$, where a is the sandfly biting rate, b is the transmission probability of VL infection to human from sandfly and c_1 is the transmission probability of VL infection to sandfly from human in state E_1. If human is susceptible and the sandfly is infected with VL, then the term ab confirms the transmission of VL infection from sandfly to human. If human is in the latency period, stage E_1 and the sandfly is susceptible, then ac_1 confirms the transmission of VL infection from human to sandfly. So, the term R_a denotes VL transmission, between human and sandfly.

$R_b = (ab)(ac_2)(\beta^2 \Gamma_v \mu_h \xi_1 (1 - v_1)^2/(\mu_v)^2 \Gamma_h a_1 a_2 a_1 a_1 (1 + v_2)^2)$, where c_2 is the transmission probability of VL infection to sandfly from human in state E_2. If human is susceptible and the sandfly is infected with VL, then the term ab confirms the transmission of VL infection from sandfly to human. If human is in the latency period, stage E_2 and the sandfly is susceptible, then ac_2 confirms the transmission of VL infection from human to sandfly. So, the term R_b denotes VL transmission, between human and sandfly. Similarly, the term R_c denotes VL transmission, with involvement of state I_4. Thus, R_0 is biologically meaningful.

4.3.1. Sensitivity analysis of R_0

Definition 4.1 ([18]): The normalized forward sensitivity index of a variable, x, that depends differentiably on a parameter y is defined as
\[
\gamma^x_y = \frac{\partial x}{\partial y}.
\]

To reduce the rate of disease transmission, it is important to know the role of different parameters involved in its transmission. Since initial disease transmission depends on basic reproduction number R_0. Therefore, we find the sensitivity indices of the parameters involved in reproduction number R_0. These indices allow us to measure the relative change in R_0 with the change in a parameter. With the help of these indices, we find the parameters that are highly effective in disease transmission, and need to be targeted by intervention strategies. Table 1 shows the sensitivity indices of the parameters involved in the initial disease transmission.

Sandfly biting rate a and duration of feeding cycle β have got highest sensitivity indices 1. This means that the decrease in biting rate by 10% would decrease R_0 by 10%. The second highest index -1 is that of sandfly’s mortality rate μ_v. That is, increasing μ_v by 10% will decrease R_0 by 10%. The fraction of exposed human in the class E_2 which
Table 1. The sensitivity indices of parameters.

Parameter	Index	Parameter	Index
a	+1	b	+0.5
c₁	+0.0000088	c₂	+0.499
c₄	+0.00002	σᵥ	+0.49
ξ₁	+0.00003	ξ₂	−0.997
ω₁	−0.65	ω₂	−0.004
ω₃	−0.334	µᵥ	0.0000006
β₂	−0.0000007	µᵥ	0.498
μᵥ	−1	Γᵥ	+0.5
Γₕ	−0.5	ν₁	−0.42
ν₂	−0.17	β	1

Develop symptomatic kala azar is denoted by $\omega_1 \cdot \omega_1$; has got a sensitivity index of $−0.65$. The transmission probabilities of infection between human and sandfly have got a sensitivity index of 0.5. The parameter Γ_v; birth rate of sandflies, have got a sensitivity index of 0.5. Decrease of 10% in the birth rate of sandflies will decrease R_0 by 5%. Γ_h have got a sensitivity index of $−0.5$. Increase in human’s birth rate causes a decrease in R_0. The sensitivity index of death rate of human μ_h is 0.49. Increase in treatment rate of human will cause a decrease in human’s death rate, which will reduce R_0. We develop four different control strategies which touch, directly or indirectly, the parameters effecting the initial transmission rate R_0 of ACL.

4.4. Stability of disease-free state

For global stability of the disease-free equilibrium, we proceed as follows:

Let

$$X = (S_h, R_1, R_2, R_3, S_v, E_1, E_2, I_1, I_2, I_3, I_4, E_v, I_v)^T.$$

$$X_s = (S_h, R_1, R_2, R_3, S_v)^T$$ and $$X_I = (E_1, E_2, I_1, I_2, I_3, I_4, E_v, I_v)^T.$$

Theorem 4.1: The sub-system $\dot{X_s} = A_s(X_s)(X_s) + E_s$ is globally asymptotically stable at $G = \{X \in \Psi; X_I = 0, X_s \neq 0\}$.

Proof: The above sub-system in accordance with Theorem 2.1 is equivalent to

$$\dot{X}_1 = A_1(X) \cdot (X - X_1^*) + A_{12}(X) \cdot X_2.$$

The system can be written as follows, on the domain $G = \{X \in \Psi; X_I = 0, X_s \neq 0\}$:

$$\dot{S}_h = \Gamma_h - \mu_h S_h,$$

$$\dot{R}_1 = -(\alpha_3 + \mu_h) R_1,$$

$$\dot{R}_2 = -(\alpha_1 + \mu_h) R_2,$$

$$\dot{R}_3 = -(\alpha_4 + \mu_h) R_3,$$

$$\dot{S}_v = \Gamma_v - (\mu_v) S_v.$$

The system (4) is a linear system. This system is globally asymptotically stable at the equilibrium $(\Gamma_h/\mu_h, 0, 0, 0, \Gamma_v/\mu_v)$, corresponding to the disease-free equilibrium where the hypotheses H_1 and H_2 are satisfied.
The sub-system $\dot{X}_2 = A_2(X)X_2$ can be written as

$$
\dot{E}_1 = \left(\frac{a\beta(1 - v_1)bI_v}{N_h} \right) S_h - (\xi_1 + \mu_h)E_1,
$$

$$
\dot{E}_2 = \xi_1 E_1 - ((\omega_1 + \omega_2 + \omega_3)\xi_2 + \mu_h)E_2,
$$

$$
\dot{I}_1 = (\omega_1\xi_2)E_2 - (\xi_3 + \mu_1)I_1,
$$

$$
\dot{I}_2 = \xi_3 I_1 - (p_1\tau_1 + p_2\tau_1 + p_3\tau_1 + \mu_2)I_2,
$$

$$
\dot{I}_3 = (p_1\tau_1)I_2 - (p_4\tau_2 + p_5\tau_2 - \mu_3)I_3,
$$

$$
\dot{E}_3 = (\omega_2\xi_2)E_2 + (p_2\tau_1)I_2 + (p_4\tau_2)I_3 - (\alpha_2 + \mu_h)E_3
$$

$$
\dot{I}_4 = \alpha_2E_3 - (\beta_2\tau_3 + \beta_1 + \mu_h)I_4,
$$

$$
\dot{E}_v = \left(\frac{a\beta(1 - v_1)(c_1E_1 + c_2E_2 + c_3(I_1 + I_2 + I_3) + c_4I_4)}{N_h} \right) S_v
$$

$$
- (\sigma_v + \mu_v(1 + v_2))E_v,
$$

$$
\dot{I}_v = \sigma_vE_v - \mu_v(1 + v_2)I_v.
$$

Theorem 4.2: For the sub-system (5), A_2 is Metzler and irreducible $\forall X \in \Psi$, and there exists a matrix \tilde{A}_2 such that

$$
A_2(X) \leq \tilde{A}_2 \quad \text{for } X \in \Psi,
$$

and

$$
\tilde{A}_2 \notin M = \{A_2(X), X \in \Psi\},
$$

$$
\alpha(\tilde{A}_2) \leq 0,
$$

where α is the stability modulus of \tilde{A}_2.

Proof: We can write the sub-system (5) as

$$
\dot{X}_2 = A_2(X)X_2.
$$

Here, $A_2(X)$ is given by the following matrix:

$$
\begin{pmatrix}
-a_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{a\beta(1 - v_1)bI_v}{N_h} \\
\xi_1 & -a_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_3 & -a_4 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \xi_3 & -a_5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_6 & -\alpha_7 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_9 & -a_11 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a_9 & -a_11 & 0 & 0 \\
\frac{a\beta(1 - v_1)c_1S_h}{N_h} & \frac{a\beta(1 - v_1)c_2S_h}{N_h} & \frac{a\beta(1 - v_1)c_3S_h}{N_h} & \frac{a\beta(1 - v_1)c_4S_h}{N_h} & 0 & 0 & 0 & \frac{a\beta(1 - v_1)c_4S_h}{N_h} & \frac{-a_{12}}{N_h} \\
\frac{a\beta(1 - v_1)c_2S_h}{N_h} & \frac{a\beta(1 - v_1)c_3S_h}{N_h} & \frac{a\beta(1 - v_1)c_4S_h}{N_h} & 0 & 0 & 0 & 0 & 0 & -\frac{a_{13}}{N_h} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \sigma_v & -\mu_v(1 + v_2)
\end{pmatrix}.
$$

All the off-diagonal entries of the matrix $A_2(X)$ are nonnegative, on the domain G. Hence, $A_2(X)$ is Metzler and irreducible $\forall X \in G$.
The upper bond matrix of the matrix $A_2(X)$ is denoted by \tilde{A}_2 and is given by

$$
\tilde{A}_2(X) = \begin{pmatrix}
-a_1 & 0 & 0 & 0 & 0 & 0 & 0 & ab \\
ξ_1 & -a_2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_3 & -a_4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & ξ_3 & -a_5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_6 & -a_7 & 0 & 0 & 0 \\
0 & a_8 & 0 & a_9 & a_{10} & -a_{11} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a_2 & -a_{12} & 0 \\
ac_1 & ac_2 & ac_3 & ac_3 & ac_3 & 0 & ac_4 & -a_{13} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & σ_v \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -μ_v
\end{pmatrix}.
$$

This upper bound is not attained in $Ψ$, and particularly not realized for the Jacobian at the disease-free equilibrium. Thus, we can have sufficient condition. So H_4 of Theorem 2.1 equivalent to Equations (6) and (7) holds.

Finally, we show that H_5 or Equation (8) holds; we state the following theorem.

Theorem 4.3: The Metzler matrix satisfy the axiom '$α(\tilde{A}_2) ≤ 0' if $Π < 1$, where $Π$ is the additional threshold number given by

$$
Π = \frac{a^2bc_1}{a_1a_3μ_v} + \frac{a^2bc_2ξ_1σ_v}{a_1d_1a_3μ_v} + \frac{a^2bc_4a_8k_2σ_vξ_1}{a_1d_1a_12d_13μ_v}.
$$

Proof: We decompose the matrix \tilde{A}_2 in four blocks, such that

$$
\tilde{A}_2 = \begin{pmatrix}
B & C \\
D & E
\end{pmatrix},
$$

where B, C, D and E are 7×7, 7×2, 2×7 and 2×2 sub-matrices, respectively. We know that the matrix \tilde{A}_2 is stable if and only if B and $E - DB^{-1}C$ are Metzler stable [12]. Here, B is Metzler stable because all its off-diagonal entries are nonnegative, and all the eigenvalues are negative. To show that $E - DB^{-1}C$ is stable, we proceed as follows:

Let

$$
Y = E - DB^{-1}C
$$

$$
⇒ \tilde{A}_2\text{is stable if } Y \text{ is stable.}
$$

From [15], $α(\tilde{A}_2) ≤ 0$ only if

$$
\left(\frac{n_1n_2σ_v}{a_1a_3μ_v} + \frac{ξ_1n_1n_3σ_v}{a_1d_1a_3μ_v} + \frac{a_8k_2ξ_1n_1n_7σ_v}{a_1d_1a_12d_13μ_v} - 1\right) < 0. \quad (9)
$$

Here $n_1 = ab$, $n_2 = ac_1$, $n_3 = ac_2$, $n_4 = ac_3$, $n_5 = ac_3$, $n_6 = ac_3$, $n_7 = ac_4$. By putting these values in Equation (9), we have

$$
\frac{a^2bc_1σ_v}{a_1a_3μ_v} + \frac{a^2bc_2ξ_1σ_v}{a_1d_1a_3μ_v} + \frac{a^2bc_4a_8k_2σ_vξ_1}{a_1d_1a_12d_13μ_v} < 1.
$$

We name this value as $Π$. Thus, H_5 or (8) holds, if $Π < 1$. ■
Thus, we have shown that axioms $H_1 \ldots H_5$ of Theorem 2.1 do hold. Now, we are in a position to claim the following result.

Theorem 4.4: If the parameters used in the model satisfy the condition $\alpha(\tilde{A}_2) \leq 0$, then the disease-free equilibrium of the system (1) is globally asymptotically stable.

5. Simulation results of the model

We use four different control strategies and generate numerical simulation for each, using Matlab software. In these strategies, we focus on treatment of human class and control of sandfly class. τ_1, τ_2, ξ_3 are interventions by treatment of human class, where v_1, v_2 are vector-related interventions (Table 2). The ratio of human and sandfly is taken as 100:527.

In the following numerical simulations, E_1 denotes early latent period of VL in human population, E_2 is the second stage of VL-latency in human population, E_3 is the dormant period before development of PKDL, I_1 is the early symptomatic and diagnosis stage of VL in human, I_2 is the second stage of symptomatic kala azar, I_3 is the third stage of symptomatic kala azar and I_4 denotes the human class with PKDL. E_f is the class of exposed

Strategy	τ_1	τ_2	τ_3	ξ_3	v_1	v_2	Π
1	30 days	30 days	180 days	5 days	0.09	0.06	0.0416965936
2	15 days	15 days	90 days	1 day	0.09	0.06	0.0416965936
3	30 days	30 days	180 days	5 days	0.5	0.3	0.00896962611
4	15 days	15 days	90 days	1 day	0.5	0.09	0.01204364265

Figure 2. The time spent in elimination of infectious classes, using control strategy No. 1.
Figure 3. The time spent in elimination of infectious classes, using control strategy No. 2.

Figure 4. The time spent in elimination of infectious classes, using control strategy No. 3.
sandflies and I_f denotes the infectious class of sandflies. We apply control strategies to these infectious classes to eliminate the disease. Figures 2–5 present the time spent in eradication of each infectious class.

In Table 3, we compile the summary of the results of the control strategies, obtained from numerical simulations. The table presents the time spent (TS) in elimination of each infectious class. (E_1, TS) means the time spent (unit days) in elimination of exposed class E_1.

Table 3. Results of control strategies.

Strategy	E_1, TS	E_2, TS	E_3, TS	I_2, TS	I_3, TS	I_4, TS	E_v, TS	
1	580	500	2400	200	130	2600	65	57
2	460	457	2400	130	70	2400	65	57
3	350	320	2700	180	130	2700	25	15
4	580	570	2400	180	140	2700	55	65

6. Discussion and conclusion

In this work, a mathematical model of Anthroponotic leishmania transmission was developed. On the basis of sensitivity analysis of the reproduction number, we presented four control strategies. For quantification of prevalence period of the disease, we performed numerical simulations. The results shown that the disease can be eradicated by using the proposed strategies. Control strategy 2 and strategy 3 take comparatively small time in the elimination of the disease. Since the prolonged prevalence of PKDL may cause the new outbreaks of VL, we recommend control strategy 2, where the prevalence period of PKDL
is comparatively low. The reproduction number of the model is most sensitive to a, sandfly biting rate; β, the feeding period of sandfly and μ_v, the mortality rate of sandfly. So along with treatment of human’s infectious classes, we need to focus control variables ν_1 and ν_2, using different measures to control phlebotomize sandflies and its biting rate. This includes residual spraying of dwellings, insecticide-treated nets and application of repellents/insecticides to skin. Sandfly is susceptible to all the major insecticidal groups. The main intervention for vector control is reduction in sandfly life expectancy, which lowers the size of vector population and hence reducing the biting pressure of vector on humans. By reducing sandfly life expectancy, the vector is less likely to survive long enough to bite twice – once to acquire infection and again to infect a host, and the vector spends small time as infected. The extinction of PKDL states, I_4 and E_3, takes comparatively a long time. Although, both, theorems and numerical simulations agree with the global stability of disease-free equilibrium yet the long prevalence of state I_4 in the population works as a reservoir and hence cannot be neglected.

Acknowledgments

All authors contributed to the formulation of the model, discussion of results, writing and approval of the paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] R. Badaro, T.C. Jones, E.M. Carvalho, D. Sampaio, S.G. Reed, A. Barral, R. Teixeira, and W.D. Teixeira Jr, New perspectives on a subclinical form of visceral leishmaniasis, J. Infect. Dis. 154(6) (1986), pp. 1003–1011.
[2] D. Bora, Epidemiology of visceral leishmaniasis in India, Natl. Med. J. India 12 (1999), pp. 62–68.
[3] F. Chappuis, S. Sunder, A. Hailu, H. Ghalib, S. Rigal, R. W. Peeling, J. Alvar, and M. Boelaert, Visceral leishmaniasis: What are the needs for diagnosis, treatment and control?, Nat. Rev. Microbiol. 5 (2007), pp. 873–882.
[4] O. Diekmann, J.A.P. Heesterbeek, and J. A.J. Metz, On the definition and computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), pp. 365–382.
[5] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48.
[6] I.M. Elmojtaba, J.Y.T. Mugisha, and M.H.A. Hashim, Modelling the role of cross-immunity between two different strains of leishmania, Nonlinear Anal.: Real World Appl. 11 (2010), pp. 2175–2189.
[7] R.F. Fialho and J.J. Schall, Thermal ecology of a malarial parasite and its insect vector: Consequences for the parasite’s transmission success, J. Animal Ecol. 64(5) (1995), pp. 553–562.
[8] G. Gasim, A.M. El Hassan, A. Kharazmi, E.A.G. Khalil, A. Ismail, and T.G. Theander, The development of post kala-azar dermal leishmaniasis (PKDL) is associated with acquisition of Leishmania reactivity by peripheral blood mononuclear cells (PBMC), Clin. Exp. Immunol. 119 (2000), pp. 523–529.
[9] A. Gemperli, P. Vounatsou, N. Sogoba, and T. Smith, Malaria mapping using transmission models: Application to survey data, Amer. J. Epidemiol. 163 (2006), pp. 289–297.
[10] J. van Griensven, M. Balasedaram, F. Meheus, J. Alvar, L. Lynen, and M. Boelaert, Combination therapy for visceral leishmaniasis, Lancet Infect. Dis. 10 (2010), pp. 184–194.
[11] A. Hailu, M. Gramiccia, and P.A. Kager, *Visceral leishmaniasis in Aba-Roba, south-western Ethiopia: Prevalence and incidence of active and subclinical infections*, Ann. Trop. Med. Parasitol. 103 (2009), pp. 659–670.
[12] J.C. Kamgang and G. Sallet, *Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)*, Math. Biosci. 213 (2008), pp. 1–12.
[13] O.E. Kasap and B. Alten, *Comparative demography of the sand fly Phlebotomus papatasi (Diptera: Psychodidae) at constant temperatures*, J. Vector Ecol. 31(2) (2006), pp. 378–385.
[14] J.H. Kolaczinski, A. Hope, J.A. Ruiz, J. Rumunu, M. Richer, and J. Seaman, *Kala-azar epidemiology and control, southern Sudan*, Emerg. Infect. Dis. 14 (2008), pp. 664–666.
[15] M.Y. Li and L. Wang, *A criterion for stability of matrices*, J. Math. Anal. Appl. 225 (1998), pp. 249–264.
[16] M. Lowth, *Leishmaniasis*, Patient.co.uk, 2381, v-23 (2014).
[17] J. Moreno and J. Alvar, *Canine leishmaniasis: Epidemiological risk and the experimental model*, Trends Parasitol. 18(9) (2002), pp. 399–405.
[18] F.N. Ngoteya and Y.N. Gyekye, *Sensitivity analysis of parameters in a competition model*, Appl. Comput. Math. 4(5) (2015), pp. 363–368.
[19] M.E. Raguenaud, A. Jansson, V. Vanlerberghe, S. Deborggraewe, J.C. Dujardin, G. Orfanos, T. Reid, and M. Boelaert, *Epidemiology and clinical features of patients with visceral leishmaniasis treated by an MSF clinic in Bakool region, Somalia, 2004–2006*, PLoS. Negl. Trop. Dis. 1 (2007), pp. e85.
[20] K.M. Rahman, S. Islam, M.W. Rahman, E. Kenah, C.M. Ghalib, M.M. Zahid, J. Maguire, M. Rahman, R. Haque, S.P. Luby, and C. Bern, *Increasing incidence of post-kala-azar dermal leishmaniasis in a population-based study in Bangladesh*, Clin. Infect. Dis. 50 (2010), pp. 73–76.
[21] D.L. Sacks and P.V. Perkins, *Identification of an infective stage of leishmania promastigotes*, Science 223 (1984), pp. 1417–1419.
[22] D.L. Sacks and P.V. Perkins, *Development of infective stage leishmania promastigotes within phlebotomine sand flies*, Amer. J. Trop. Med. Hyg. 34 (1985), pp. 456–459.
[23] A. Stauch, R. R. Sarkar, A. Picado, B. Ostyn, S. Sundar, S. Rijal, M. Boelaert, J.-C. Dujardin, and H.-P. Duerr, *Visceral leishmaniasis in the Indian subcontinent: Modelling epidemiology and control*, PLoS Negl. Trop. Dis. 5(11) (2011), pp. 1–12.
[24] S. Sundar, G. Agrawal, M. Rai, M.K. Makharia, and H.W. Murray, *Treatment of Indian visceral leishmaniasis with single or daily infusions of low dose liposomal amphotericin B: Randomised trial*, Br. Med. J. 323 (2001), pp. 419–422.
[25] R. K. Topno, V. N.R. Das, A. Ranjan, K. Pandey, D. Singh, N. Kuman, N.A. Siddiqui, V.P. Singh, S. Kesari, N. Kumar, S. Bimal, A. Jeya Kumar, C. Meena, R. Kumar, and P. Das, *Asymptomatic infection with visceral leishmaniasis in a disease-endemic area in Bihar, India*, Amer. J. Trop. Med. Hyg. 83(3) (2010), pp. 502–506.
[26] WHO, *Manual of visceral leishmaniasis control*, 1996.
[27] E. Zijlstra, A. Musa, E. Khalil, I. Elhassan, and A. El Hassan, *Post-kala-azar dermal leishmaniasis*, Lancet Infect. Dis. 3(2) (2003), pp. 87–98.