Infantile amnesia reflects a developmental critical period for hippocampal learning

Alessio Travaglia¹, Reto Bisaz¹, Eric S Sweet²,³, Robert D Blitzer²,⁴ & Cristina M Alberini¹

Episodic memories formed during the first postnatal period are rapidly forgotten, a phenomenon known as ‘infantile amnesia’. In spite of this memory loss, early experiences influence adult behavior, raising the question of which mechanisms underlie infantile memories and amnesia. Here we show that in rats an experience learned during the infantile amnesia period is stored as a latent memory trace for a long time; indeed, a later reminder reinstates a robust, context-specific and long-lasting memory. The formation and storage of this latent memory requires the hippocampus, follows a sharp temporal boundary and occurs through mechanisms typical of developmental critical periods, including the expression switch of the NMDA receptor subunits from 2B to 2A, which is dependent on brain-derived neurotrophic factor (BDNF) and metabotropic glutamate receptor 5 (mGluR5). Activating BDNF or mGluR5 after training rescues the infantile amnesia. Thus, early episodic memories are not lost but remain stored long term. These data suggest that the hippocampus undergoes a developmental critical period to become functionally competent.

While salient, episodic memories formed in adulthood can be remembered for years, similar memories formed during early childhood appear to be easily and rapidly forgotten. This rapid forgetting and the inability to recall early life memories in adulthood is found in humans as well as in nonhuman animals, and is known as infantile or childhood amnesia. Although they apparently are rapidly forgotten, experiences during early life have been documented to profoundly affect brain functions and physiology later in life. For example, early threatening experiences predispose to psychopathologies like post-traumatic stress disorder and mood and anxiety disorders. This paradox raises the question of how early memories can influence adult life if they cannot actually be remembered.

Several hypotheses have been put forward to explain this paradox. One suggests that the amnesia is due to the immaturity of the infant brain. According to this idea, the neural substrates and cell circuitry composition of cortical, hippocampal or other areas processing episodic memories, or hippocampal-dependent memories in general, being still underdeveloped, lack functional competence. Recent studies suggest that the rapid forgetting is due to the increased rate of hippocampal neurogenesis during this stage of development, which would interfere with memory consolidation, the process that mediates long-term memory persistence and storage. In contrast, other authors propose that infantile amnesia results from impaired memory retrieval, providing an explanation for how the stored, nonexpressed memory traces affect behavior later in life. In support of this conclusion, studies in human and animal models report that reminders of an early experience can reinstate a memory acquired during infancy. However, because little is known about the mechanisms underlying acquisition and possibly storage of memory traces acquired during early life, the question is still unresolved.

Using inhibitory avoidance (IA) in rats, here we show that the acquisition and storage of an episodic threatening experience during the infantile amnesia period require hippocampal mechanisms. These mechanisms are typical of developmental critical periods, mature in response to experience and store hippocampal-dependent traces in a latent form for a long time. These memory traces can influence behavior later in life, as reminders comprising both context and threat restate a context-specific, long-lasting memory.

RESULTS
An early-life memory reinstates with later reminders

In agreement with previous studies done in animal models of contextual threat memories using multiple shocks, we show that a single footshock during IA training in rats at postnatal day (PN) 17, but not at PN24, recapitulates the phenomenon of infantile amnesia. Compared to acquisition, training at PN17 produced significant memory retention immediately after training, which, however, completely decayed by 1 d later (Fig. 1a). The latency of PN17 trained rats, although still significantly higher than that at acquisition, was already profoundly decreased 30 min after training (Fig. 1b). This memory was completely lost 1 d after training (Fig. 1b). Littermates left undisturbed in their home cage (naive group) or placed on a shock grid and immediately exposed to a footshock (shock-only group) never showed significant latency above that of acquisition, thus excluding the possibility that the retentions following training were the result of nonspecific responses (Fig. 1a–c). In contrast, training at PN24 elicited a strong and long-lasting associative memory at all time points tested, including immediately, 30 min, 1 d and 7 d after training (Fig. 1d–f); the levels of these retentions were comparable to those of adult rats (Supplementary Fig. 1).

1Center for Neural Science, New York University, New York, New York, USA. 2Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 3Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 4Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA. Correspondence and requests for materials should be addressed to C.M.A. (ca60@nyu.edu).

Received 27 May; accepted 24 June; published online 18 July 2016; corrected after print 29 August 2016; doi:10.1038/nn.4348
Figure 1. Latent infantile memories are rapidly forgotten but reinstate later in life with reminders. Experimental schedule is shown above each panel. Acquisition (Acq) and memory retention are expressed as mean latency ± s.e.m.

(a–c) Mean latency ± s.e.m. of naive, shock-only rats and rats trained (Tr, training) at PN17 and tested (T): (a) immediately (immediate test, I.T.; n = 5, 8; two-way ANOVA followed by Bonferroni post hoc test, condition F1,22 = 11.53, P = 0.0026; testing F1,22 = 10.71, P = 0.0035; interaction F1,22 = 9.209, P = 0.0061; 3 independent experiments); (b) 30 min; n = 9, 11; two-way ANOVA followed by Bonferroni post hoc test, condition F2,56 = 14.60, P < 0.001; testing F1,56 = 5.48, P = 0.023; interaction F2,56 = 2.73, P = 0.074; 3 independent experiments); (c–f) 1 d; and (c) 7 d after training (n = 8, 8, 8; two-way ANOVA followed by Bonferroni post hoc test, condition F2,42 = 2.437, P = 0.0997; testing F1,42 = 0.4311, P = 0.515; interaction F2,42 = 0.9929, P = 0.379; 3 independent experiments).

(d–f) Mean latency ± s.e.m. of naive, shock-only rats and rats trained at PN24 and tested: (d) immediately (n = 7, 10; two-way ANOVA followed by Bonferroni post hoc test, condition F1,30 = 153.6, P < 0.0001; testing F1,30 = 0.7410, P = 0.3962; interaction F1,30 = 0.6629, P = 0.4220; 3 independent experiments); (e) 30 min (n = 9, 5, 11; two-way ANOVA followed by Bonferroni post hoc test, condition F2,44 = 55.51, P < 0.001; testing F1,44 = 0.97, P = 0.33; interaction F2,44 = 1.72, P = 0.19; 3 independent experiments); (d–f) 1 d; and (f) 7 d after training (n = 8, 8, 8; two-way ANOVA followed by Bonferroni post hoc test, condition F2,42 = 183.8, P < 0.0001; testing F1,42 = 0.48, P = 0.489; interaction F2,42 = 0.5949, P = 0.5562; 3 independent experiments).

(g–i) Mean latency ± s.e.m. of naive, shock-only rats and rats trained at PN17 and tested 1 d, 7 d, 10 d and 16 d after training (n = 10, 9, 8; two-way ANOVA followed by Bonferroni post hoc test, condition F2,96 = 5.542, P = 0.0053; testing F3,96 = 0.9441, P = 0.4226; interaction F6,96 = 1.056, P = 0.3945; 3 independent experiments). (h) Mean latency ± s.e.m. of naive, shock-only rats and rats trained at PN17 and tested 1 and 7 d after training, and after a RS (red arrow) given 2 d thereafter in a different context (n = 11, 10, 12; two-way ANOVA followed by Bonferroni post hoc test, condition F2,138 = 43.48, P < 0.0001; testing F4,138 = 21.81, P < 0.0001; interaction F6,138 = 12.27, P < 0.0001; 3 independent experiments).

Four days after T4 the rats were tested in a novel context (NC). (i) Mean latency ± s.e.m. of naive, shock-only rats and rats trained at PN17 and given a RS 9 d after training and tested 1 d after training (T1) and again 6 d later (T2) (n = 8, 5, 6; two-way ANOVA followed by Bonferroni post hoc test, condition F2,32 = 0.8669, P = 0.4299; testing F1,32 = 0.0259, P = 0.8731; interaction F1,32 = 0.1791, P = 0.8368; 3 independent experiments). (j,k) Mean latency ± s.e.m. of naive, shock-only rats and rats trained at PN17 and tested: (j) 7 d (n = 12, 8, 12; two-way ANOVA followed by Bonferroni post hoc test, condition F2,116 = 24.0, P < 0.0001; testing F1,116 = 6.733, P = 0.0098; 3 independent experiments) or (k) 4 weeks after training (T1) (n = 6, 6, 9; two-way ANOVA followed by Bonferroni post hoc test, condition F2,31 = 13.18, P < 0.0001; testing F2,31 = 3.98, P < 0.011; interaction F3,31 = 3.54, P = 0.004; 3 independent experiments). A RS was given 2 d later, and the rats were tested 1 d (T2) and again 6 d later (T3). Four days after T3 the rats were tested in a NC. *P < 0.05, **P < 0.01, ***P < 0.001.

Furthermore, the first testing (immediately or 30 min after training) did not contribute to the amnesia seen 1 d after training, as PN17 trained rats tested only 1 d after training had no change in latency compared to their acquisition latency or to the latency of naive rats (Fig. 1c). This amnesia persisted 1 week after training (Fig. 1c).
Figure 2 The latent infantile memory trace is hippocampus dependent. Experimental schedule is shown above each panel. Memory retention is expressed as mean latency ± s.e.m. (a,b) Mean latency ± s.e.m. of rats injected (a) in the dorsal hippocampus with vehicle or muscimol 30 min before training (Tr) at PN17 (n = 8, 10; two-way ANOVA followed by Bonferroni post hoc test, treatment $F_{1,48} = 17.74, P = 0.0001$; testing $F_{2,48} = 32.02, P < 0.0001$; interaction $F_{2,48} = 17.43, P < 0.0001$; 3 independent experiments) or (b) PN24 (n = 8, 7; two-way ANOVA followed by Bonferroni post hoc test, treatment $F_{1,39} = 22.57, P < 0.0001$; testing $F_{2,39} = 16.65, P < 0.0001$; interaction $F_{2,39} = 5.108, P = 0.0107$; 3 independent experiments) and tested (T) at the indicated times.

At T2, upon entering the shock compartment, rats were trained again (Tr) and tested 1 d later. (c,d) Mean latency ± s.e.m. of rats trained at PN17 and injected (c) in the dorsal hippocampus with vehicle or muscimol 30 min before (c) T1, given 7 d after training (n = 11, 10; two-way ANOVA followed by Bonferroni post hoc test, treatment $F_{1,57} = 0.0013, P = 0.9719$; testing $F_{2,57} = 27.68, P < 0.0001$; interaction $F_{2,57} = 0.03027, P = 0.9702$; 3 independent experiments), or (d) a reminder shock (RS), given 2 d after T1 (n = 8, 7; two-way ANOVA followed by Bonferroni post hoc test, treatment $F_{1,39} = 0.4162, P = 0.5226$; testing $F_{2,39} = 60.59, P < 0.0001$; interaction $F_{2,39} = 0.1302, P = 0.8783$; 3 independent experiments). Rats were tested again 1 d after RS (T2).

* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$

The infantile amnesia was not caused by alterations in exploratory behavior, locomotor or nociceptive responses, as latencies to enter the dark compartment at training as well as escape latencies from a hotplate were undistinguishable between PN17 and PN24 rats (Supplementary Fig. 2). Moreover naive, shock-only and trained rats at PN17 or PN24 had comparable weight gain at 1 d and 7 d following training (Supplementary Fig. 3).

As previous studies suggested that infantile amnesia results from memory retrieval failure, rather than an inability to form long-term contextual memories, we tested whether contextual reminders could reinstate memory in PN17 trained rats. Contextual reminder provided by testing at 1, 7, 10 and 16 d after training (T1, T2, T3 and T4, respectively) produced no memory compared to naive and shock-only rats (Fig. 1g). However, when the rats were then presented with a reminder footshock (RS) delivered in a new context 2 d after the second test (T2), a robust and long-lasting IA latency emerged (Fig. 1h).

The reinstatement protocol per se did not establish any IA latency, as naive or shock-only control rats exposed to the reinstatement protocol had no latency above acquisition (Fig. 1i). Notably, the reinstated memory was context specific: following reinstatement, the rats tested in a different IA box showed no retention above acquisition (Fig. 1h). Furthermore, an unpaired presentation at PN17 of the context and, 1 h later, of the footshock failed to elicit IA memory (Supplementary Fig. 4), indicating that the latent memory trace is associative. Exposure to RS alone (i.e., without any testing) was also not sufficient to reinstate the memory (Fig. 1i). Furthermore, only a test given 7 d after training and followed by a RS given 2 d thereafter (T+RS) was sufficient to reinstate the memory (Fig. 1j).

This T+RS effectively reinstated the latent memory for a long time: significant latency was in fact elicited with T+RS given 4 weeks after training at PN17 (Fig. 1k).

To determine whether the time interval between testing (T) and RS is crucial for IA memory to emerge, the RS was delivered at 4 h, 1 d or 7 d following T. In all these cases T+RS were able to reinstate a long-lasting and context specific memory, suggesting that the time interval between T and RS is not strict (Supplementary Fig. 5).

Thus, a latent, long-term memory trace is acquired at training during the infantile amnesia period; later reactivation of the memory through exposure to both context and footshock, presented in a temporally unpaired manner (for example, 2 d apart), is necessary and sufficient to reinstate a strong, long-lasting and context-specific IA memory.

The latent infantile memory trace is hippocampus dependent

The hippocampus has a key role in the formation and consolidation of long-term episodic and contextual memories in adulthood, but its role is believed to emerge over time. Several studies in rats report that hippocampal-dependent learning and memory emerges not earlier than PN21, concluding that before PN21, the hippocampus is unable to support long-term memory formation. Although recently Foster and Burman provided evidence of hippocampal-dependent context pre-exposure learning facilitation in rats at PN17, Robinson-Drummond and Stanton failed to replicate the result.

Here, we asked whether the dorsal hippocampus (dHC) is involved in the acquisition of the IA infantile memory trace. PN24 rats were employed as controls. Compared to vehicle injection, a bilateral injection of the neural activity blocker GABA_A agonist muscimol in the dHC, 30 min before training at PN17, prevented memory reinstatement after the T+RS (Fig. 2a), without affecting the latency at training or at T1 (Fig. 2a). The muscimol-injected rats learned the IA task when retrained upon entering the shock compartment at T2, showing that muscimol had not damaged the hippocampus (Fig. 2a). As expected, compared to vehicle, the bilateral injection of muscimol in the dHC 30 min before training at PN24 significantly impaired long-term memory, confirming that, at this age as in adulthood, hippocampal activity is required to form IA memory (Fig. 2b). Muscimol-injected rats were able to acquire the IA task after retraining (Fig. 2b). Furthermore, dHC activity was not required for memory reinstatement. Compared to vehicle, bilateral dHC injection of muscimol 30 min before T, followed by RS 2 d later, did not affect memory reinstatement (Fig. 2c). Likewise, a bilateral injection of muscimol into the dHC 30 min before RS had no effect on memory reinstatement (Fig. 2d). Thus, the hippocampus plays a critical role in encoding and storing a latent IA memory trace at PN17 during the infantile amnesia period, but is not critical for later IA memory reinstatements.
Learning at PN17 induces pTrkB and GluN2B/GluN2A subunit switch

We then compared the hippocampal expression profiles of molecules known to play critical roles in the synaptic plasticity of PN17, PN24 and adult (PN80) rats, either in untrained conditions or following IA training. Because of their fundamental roles in plasticity and memory, including IA, as well as in development, we examined the levels of brain-derived neurotrophic factor (BDNF), the activation of the receptor TrkB (as indicated by levels of TrkB phosphorylated on Tyr816, pTrkB) and the levels of NMDA receptor (NMDAR) subunits 1 (GluN1), 2A (GluN2A) and 2B (GluN2B). Western blot analyses of dHC total extracts from rats trained in IA at PN17 or PN24, and euthanized 30 min, 9 h, 24 h, 48 h after training (n = 6–10 rats per group). To account for developmental differences, two groups of naive rats were used: PN17 (n = 8) and PN19 (n = 6) or PN24 (n = 8) and PN26 (n = 8). Data are expressed as mean percentage ± s.e.m. of adult naive rats (one-way ANOVA followed by Newman-Keuls multiple comparison test, pTrkB F2,21 = 3.342, P = 0.0549; BDNF F2,21 = 7.125, P = 0.0043; GluN2A F2,21 = 1.524, P = 0.2410; GluN2B F2,21 = 12.41, P = 0.0003; GluN2A/GluN2B ratio F2,21 = 17.68, P < 0.0001; 3 independent experiments). *P < 0.05, **P < 0.01, ***P < 0.001. (b,c) Examples and densitometric western blot analyses of dHC total extracts from rats trained in IA at PN17 or PN24, and euthanized 30 min, 9 h, 24 h, 48 h after training (n = 6–10 rats per group). To account for developmental differences, two groups of naive rats were used: PN17 (n = 8) and PN19 (n = 6) or PN24 (n = 8) and PN26 (n = 8). Data are expressed as mean percentage ± s.e.m. (b) PN17 naive rats (n = 8, 6, 10, 7, 6, 6, one-way ANOVA followed by Dunnett’s multiple comparison test, pTrkB = 10.29, P = 0.0001; BDNF F2,27 = 1.998, P = 0.1381; GluN2A F2,27 = 8.580, P = 0.0004; GluN2B F2,27 = 2.923, P = 0.0527; GluN2A/GluN2B F2,27 = 3.243, P = 0.0389; 3 independent experiments). (c) PN24 naive rats (n = 8, 6, 6, 7, 7, 8; one-way ANOVA followed by Dunnett’s multiple comparison test, pTrkB F2,23 = 4.489, P = 0.0128; BDNF F2,23 = 5.256, P = 0.0066; GluN2A F2,23 = 0.7538, P = 0.5314; GluN2B F2,23 = 0.8686, P = 0.9665; 3 independent experiments). Significance compared to PN17 or PN24 naive rats: *P < 0.05, **P < 0.01, ***P < 0.001; # symbol indicates significance levels comparing PN19 naive to 48 h trained groups (GluN2A, unpaired two-tailed Student’s t-test, t = 3.113; d.f. = 10, P = 0.0110). (d) Ifenprodil (3 μM) depressed the amplitude of NMDA EPSCs recorded at Vm = −40 mV in PN17 naive rats (n = 6 rats, 12 cells) when compared to PN24 animals (n = 10, 17; P < 0.05), but not in PN17 trained animals (n = 6, 10) (One-way ANOVA followed by Bonferroni’s post hoc test, F2,36 = 3.298, P = 0.0484). Representative sample traces from before (color) and 20 min after ifenprodil (gray) are shown on the right. Error bars, s.e.m. Scale bars, x-axis = 200 ms, y-axis = 10 pA (top), 40 pA (middle), and 25 pA (bottom). (e) Correlation of western blot (percentage of naive adult GluN2A/GluN2B ratio) and electrophysiology data (percentage of control peak). r, Pearson correlation. Full-length blots and gels are presented in Supplementary Figure 9.
switch their subunit expression levels during postnatal development, shifting from an elevated expression ratio in favor of GluN2B to predominately expressing GluN2A (Fig. 3a). The level of GluN1 did not change with development (Supplementary Fig. 6). Strong evidence in the visual system and neonatal hippocampal slices support the idea that the GluN2B/GluN2A subunit switch is driven by experience and neuronal activity during a developmental ‘critical period’, a temporally limited phase during which experience organizes normal functional development and permanently alters performance.27,28 Visual experience and deprivation rapidly and reversibly alter the NMDAR subunit composition in the visual cortex, modifying the duration of the critical period.29-31 Here, we tested whether training at PN17 or PN24 differentially regulates the activation of the BDNF–TrkB pathway and the levels of GluN1, GluN2B and GluN2A over time. Rats were euthanized at 30 min, 9 h, 24 h or 48 h after training. Controls consisted of naive rats euthanized at matched time points (to control for developmental changes independent of training), as well as rats exposed to shock-only or context-only (context exposure without footshock) and euthanized at matched time points (to control for changes induced by nonassociative experience). Compared to naive conditions, training at PN17 significantly increased pTrkB at 30 min after training. The significant increase persisted and peaked at 24 h after training (Fig. 3b). This profile of training-dependent increase in pTrkB was distinct from that found in rats trained at PN24 (Fig. 3c), in which the pTrkB augmentation peaked at 30 min after training and decayed thereafter. No significant changes were found in total TrkB levels at any of the time points after training at PN17 or at PN24 (Supplementary Fig. 6). Training at PN17 also increased the level of BDNF but not significantly over that of the developmental increase (Fig. 3b), whereas training at PN24 significantly augmented BDNF levels at 9 h and 24 h after training (Fig. 3c).

At PN17, training led to a pronounced and significant induction of GluN2A starting 9 h after training, which continued up to 48 h after training; GluN2B levels increased more slowly and reached significance only at 24 h after training, but not at the other time points (Fig. 3b). In contrast, training at PN24 did not change the levels of GluN2A and GluN2B (Fig. 3c). No significant changes were found in GluN1 levels throughout the temporal profiles of PN17 or PN24 rats (Supplementary Fig. 6). Thus, IA training significantly increases the GluN2A/GluN2B ratio in the hippocampus of PN17 but not of PN24 rats (Fig. 3b).

To investigate the functional consequences of training on synaptic NMDAR composition in the hippocampus, we compared excitatory postsynaptic currents (EPSCs) at synaptic inputs of the Schaffer collaterals to pyramidal neurons in the CA1 region in acute slices from PN17 and PN24 rats, either in untrained conditions or 24 h after IA training. The GluN2B component of the NMDAR EPSC was determined by sensitivity to ifenprodil, which selectively blocks receptors that contain GluN2B. Ifenprodil had a significantly stronger effect on EPSCs from naive PN17 rats (37.2 ± 6.4% inhibition, n = 12 cells; P = 0.04) compared to PN24 rats. In contrast, the ifenprodil sensitivity of EPSCs from trained PN17 rats did not differ significantly from that of PN24 rats (30.0 ± 6.1%, n = 10 cells; P = 0.38), consistent with training-induced conversion of a subset of NMDARs from GluN2A- to GluN2B-containing in PN17 animals.

Notably, the biochemical changes in NMDA receptor subunit composition found with development or with training strongly correlated

Figure 4 BDNF is required for the formation of the latent infantile memory and for the GluN2B/GluN2A switch. Experimental schedule is shown above each panel. (a,b) Mean latency ± s.e.m. of rats injected (T) in the dorsal hippocampus with (a) IgG or anti-BDNF (n = 9, 9, 1-way ANOVA followed by Bonferroni post hoc test, treatment F1,32 = 9.021, P = 0.0051; testing F1,32 = 21.72, P < 0.0001; interaction F1,32 = 8.234, P = 0.0072; 3 independent experiments) or (b) IgG or TrkB-Fc (n = 6, 6; two-way ANOVA followed by Bonferroni post hoc test, treatment F1,20 = 25.48, P < 0.0001; testing F1,20 = 59.34, P < 0.0001; interaction F1,20 = 33.81, P < 0.0001; 2 independent experiments) 30 min before training (Tr) at PN17. Rats were tested 7 d after training (T1), received a reminder shock (RS) 2 d later, and were tested again 1 d after that (T2). At T2, upon entering the shock compartment, rats were trained again (Tr) and tested 1 d later (T3). (c) Representative examples and densitometric western blot analyses of dorsal hippocampal extracts obtained from naive and trained rats given hippocampal injections of IgG or anti-BDNF 30 min before Tr at PN17 and euthanized 24 h after training. Data are expressed as mean percentage ± s.e.m. of naive rats injected with IgG and euthanized at the matched time point (i.e., PN18) (n = 8, 8; one-way ANOVA followed by Newman-Keuls multiple comparison test, pTrkB F2,15 = 8.858, P = 0.0029; GluN2A F2,21 = 6.864, P = 0.0051; GluN2B F2,21 = 6.731, P = 0.0055; GluN2A/GluN2B F2,21 = 7.632, P = 0.0032, 3 independent experiments). *P < 0.05, **P < 0.01. Full-length blots and gels are presented in Supplementary Figure 10.
with EPSC sensitivity to ifenprodil (Fig. 3e). All the significant training-induced changes were selective for the associative conditioning and were not found in the shock-only or context-only controls (Supplementary Fig. 7). No significant changes in pTrkB, GluN2A and GluN2B were found at 30 min or 24 h after Tr+RS, in line with our findings (Fig. 2c,d) that the hippocampus plays a critical role in encoding the latent IA memory trace at PN17 but not in reinstatement (Supplementary Fig. 8). We concluded that the latent memory trace acquired at PN17 was accompanied by an activation of TrkB (phosphorylation) and a significant switch in the GluN2A/GluN2B expression level ratio in the hippocampus that persisted for at least 24 h.

BDNF controls early memory formation and the GluN2B/GluN2A switch

Given the above results, and the fact that BDNF modulates the expression of NMDA receptors12, we then tested whether BDNF in the dHC of PN17 rats is required for the formation of the latent IA memory trace and/or the training-induced GluN2B/GluN2A switch. Hippocampal bilateral injection of either a function-blocking anti-BDNF antibody or its receptor scavenger TrkB-Fc, compared to control IgG, significantly disrupted memory reinstatement (Fig. 4a,b) without affecting general locomotor behavior during training or testing (Fig. 4a,b). Anti-BDNF- and TrkB-Fc-injected rats learned IA when retrained, showing that anti-BDNF and TrkB-Fc had no significant effect on latent IA memory trace formation but significantly disrupted memory reinstatement.

Figure 5 GluN2B- and mGluR5-dependent switch of GluN2B/GluN2A is required to form the latent infantile memory. Experimental schedule is shown above each panel. (a,b) Mean latency ± s.e.m. of rat injected (↑) in the dorsal hippocampus with vehicle, Ro 25-6981 or PEAXQ 30 min before training at (a) PN17 (n = 9, 10, 9, two-way ANOVA followed by Bonferroni post hoc test, treatment $F_{2.75} = 6.369, P = 0.0022$; testing $F_{2.75} = 58.35, P < 0.0001$; interaction $F_{4.75} = 6.496, P = 0.0022$; 3 independent experiments) or (b) PN24 (n = 9, 7, 9, two-way ANOVA followed by Bonferroni post hoc test, treatment $F_{2.66} = 43.55, P < 0.0001$; testing $F_{2.66} = 32.29, P < 0.0001$; interaction $F_{2.66} = 12.81, P < 0.0001$; 3 independent experiments). At T2, upon entering the shock compartment, rats were trained again (Tr) and tested 1 d later (T3). (c,d) Representative examples and densitometric western blot analyses of dorsal hippocampal total extracts obtained from (c) naive rats euthanized at PN17, PN24 or PN80 (adult; n = 8 rats per group, one-way ANOVA followed by Newman-Keuls multiple comparison test $F_{2.21} = 33.89, P < 0.0001$; 3 independent experiments); (d) naive and trained rats injected in the dorsal hippocampus with either vehicle or MTEP 30 min before Tr at PN17 and euthanized 24 h after training (n = 5, 4, 4, one-way ANOVA followed by Newman-Keuls multiple comparison test, GluN2A $F_{2.12} = 18.64, P = 0.0004$; GluN2B $F_{2.12} = 6.314, P = 0.0169$; GluN2A/GluN2B $F_{2.12} = 4.481, P = 0.0408$; 2 independent experiments). Data are expressed as mean percentage ± s.e.m. of (c) adult naive rats or (d) naive rats injected with vehicle and euthanized at the matched time point (i.e., PN18). **Mean latency ± s.e.m. of rats injected (↑) in the dorsal hippocampus with either vehicle or MTEP 30 min before training at (e) PN17 (n = 6, 6, two-way ANOVA followed by Bonferroni post hoc test, treatment $F_{1.30} = 41.18, P < 0.0001$; testing $F_{2.30} = 134.9, P < 0.0001$; interaction $F_{2.30} = 25.02 P < 0.0001$; 2 independent experiment) or (f) PN24 (n = 7, 8, two-way ANOVA followed by Bonferroni post hoc test, treatment $F_{1.39} = 0.03504, P < 0.9531$; testing $F_{2.39} = 19.68, P < 0.0001$; interaction $F_{2.39} = 0.05990, P = 0.9419$; 3 independent experiments). At T2, upon entering the shock compartment, rats were trained again (Tr) and tested 1 d later (T3). (g) Representative examples and densitometric western blot analyses of dorsal hippocampal total extracts obtained from naive and trained rats given hippocampal injections of vehicle or MTEP 30 min before Tr at PN17 and euthanized 24 h later (n = 7, 6, 6, one-way ANOVA followed by Newman-Keuls multiple comparison test, pTrkB $F_{2.18} = 9.162, P = 0.0022$; 3 independent experiments). Data are expressed as mean percentage ± s.e.m. of naive rats injected with vehicle and euthanized at the matched time point (i.e., PN18). ***P < 0.005, **P < 0.01, ***P < 0.001. Full-length blots and gels are presented in Supplementary Figure 10.
not damaged the hippocampus (Fig. 4a,b). Furthermore, anti-BDNF blocked the training-induced increase in pTrkB and the GluN2B/GluN2A switch at 24 h after training (Fig. 4c), a time point when the training-induced molecular changes peaked (Fig. 3b).

Thus, BDNF at training is necessary for the formation of latent infantile memory traces and training-induced NMDA receptor GluN2B/GluN2A expression switch.

mGlu5-dependent GluN2B/GluN2A switch rules early memory formation

We then asked whether the NMDAR subunits GluN2A and GluN2B are differentially recruited in the formation of the latent memory at PN17, and whether their contribution changes at PN24 when the system is functionally competent. GluN2A and GluN2B differentially contribute to the NMDAR current kinetics35, thus differentially regulating synaptic plasticity34. Bilateral injection of selective antagonists of GluN2A (NVP-AAM077, also known as PEAQX) or of GluN2B (Ro 25-6981) into the dHC 30 min before training at PN17 revealed that GluN2B, but not GluN2A, is required for IA memory formation (Fig. 5a), but does not affect acquisition or testing (Fig. 5a). All rats acquired the IA task after retraining, indicating that the treatments did not damage the hippocampus (Fig. 5a). In contrast, injection of either GluN2A or GluN2B antagonist 30 min before training at PN24 significantly disrupted memory retention both 1 d and 7 d after training (Fig. 5b). Notably, the memory loss caused by the GluN2A antagonist at PN24 was complete at both T1 and T2: the GluN2A antagonist-injected rats’ retention was not significantly different from acquisition (Fig. 5b). These results, in agreement with the relatively higher expression levels, suggest that GluN2A plays a major role in NMDAR-mediated memory formation at PN24; in contrast, GluN2A has no effect on the formation of latent memories at PN17.

Because the GluN2B/GluN2A switch has been shown to require the activation of metabotropic glutamate receptor 5 (mGluR5) in CA1 pyramidal neurons in acute hippocampal slices35, and this was confirmed by studies of mGluR5 knockout mice35, we tested whether blocking mGluR5 in the dHC affects the training-induced switch of GluN2B/GluN2A and memory formation at PN17 and/or PN24. Western blot analyses of dHC extracts of untrained rats revealed that mGluR5 levels were significantly higher at PN17 than at adult age, with PN24 showing intermediate values (Fig. 5c).

Hippocampal bilateral injection of the mGluR5 antagonist MTEP 30 min before training at PN17 blocked the training-induced GluN2B/GluN2A subunit switch 24 h after training (Fig. 5d). Furthermore, compared to vehicle, the same MTEP treatment significantly prevented memory reinstatement without affecting latency at training or at the 7 d test (Fig. 5e). The treatments did not damage the hippocampus as rats acquired IA when retrained (Fig. 5e). Conversely, at PN24, the same MTEP treatment had no effect on memory retention 1 d and 7 d after training (Fig. 5f).

In addition, hippocampal injections of MTEP 30 min before IA training at PN17 blocked the training-induced increase in TrkB phosphorylation 24 h after training, indicating that the mGluR5 and TrkB pathways are functionally linked (Fig. 5g).

We concluded that the formation and storage of the latent memory trace during the infantile amnesia period, but not of a normally expressed memory formed a few days later, require GluN2B and the mGluR5-mediated GluN2B/GluN2A subunit switch.
switch, and that the activation of mGluR5 is functionally linked to that of TrkB.

BDNF or mGluR5 activation closes the infantile amnesia period

Our data thus far indicate that mechanisms underlying the formation of a latent infantile memory trace are similar to those of development-dependent critical periods of sensory systems, including the experience-dependent GluN2B/GluN2A switch and the requirement of mGluR5 and BDNF. In the visual cortex, BDNF overexpression is sufficient to close the critical period by promoting structural maturation of cortical circuitry and precocious increase of visual acuity. Here we tested whether increasing hippocampal BDNF at the time of training would also be sufficient to promote functional competence, thus closing the critical period of the infantile amnesia. BDNF bilaterally injected into the dHC immediately after training at PN17 led to significant and persistent memory expression 1 d (T1) and 7 d (T2) after training (Fig. 6a). The memory was context specific (Fig. 6a). Furthermore, hippocampal BDNF injection, compared to vehicle, promoted a significant increase in the phosphorylation of TrkB (Fig. 6b) and the GluN2B/GluN2A switch (Fig. 6c).

As our previous data showed that mGluR5 is functionally linked to and upstream of TrkB activation (Fig. 5g), we tested whether the activation of mGluR5 in the hippocampus at the time of training is, like BDNF, sufficient to close the infantile amnesia period.

Dorsal hippocampus bilateral injection of the group I metabotropic glutamate receptor agonist DHPG, compared to vehicle, elicited a significant and persistent memory expression at 1 d (T1) and 7 d (T2) after training (Fig. 6d).

Thus, as for sensory system functions, an immature hippocampus employs critical-period-like mechanisms, which are regulated by experience, to mediate the formation of a latent memory trace during infantile amnesia. BDNF or activation of the upstream mGluR5 at the time of training can close the infantile amnesia period and induce functional competence.

DISCUSSION

Using a model of episodic contextual fear memory in rats, we found that learning occurring during the infantile amnesia period (PN17) produces a persistent, latent retention of that experience; in fact, reminders given later in life reactivate a strong, context-specific and long-lasting memory. These data extend and provide an explanation for previous knowledge that early life experiences—such as aversive, appetitive and spatial experiences—affect behavior throughout life. In our paradigm, presentation of both context and footshock (RS) later in life are required to reactivate context-specific memories, as exposure to either alone is not sufficient. We also found that once context exposure is experienced, the memory trace is accessible for a long time, as in fact it can form an association with RS given days later. However, as RS given before context does not reactivate the memory, we speculate that an associative reactivation is needed in order to reactivate the memory, which is presumably driven by conditioned stimulus (CS)-anticipatory responses. Possibly the reinstatement protocol reflects a facilitated conditioning that builds on the established latent memory trace. Conversely, at PN24 rats were fully competent in learning and expressing IA memory, as their retention after training was similar to that of adult rats. Thus, the infantile amnesia period for explicit memories appears to show a relatively sharp temporal boundary.

Although thus far it has been debated whether the memory learned at PN17 is forgotten, and whether any hippocampal-dependent contextual learning at PN17 in rats occurs at all, our data show that long-lasting changes through BDNF- and mGluR5-dependent mechanisms take place in the dorsal hippocampus with training to store a latent representation. These mechanisms are unique to PN17, and include a prolonged activation of the BDNF pathway, an mGluR5-dependent switch in the ratio of GluN2B/GluN2A expression, and a functional switch toward synaptic GluN2A engagement. These data indicate that the hippocampal system, like sensory systems, matures and develops in response to experience by switching the NMDAR subunit composition. In fact, while the latent memory formed at PN17 requires mGluR5 and GluN2B but not GluN2A, the strong memory formed by the functionally competent PN24 hippocampus requires GluN2A but not mGluR5. These data are in line with previous reports that an mGluR5-dependent GluN2B/GluN2A switch occurs in vitro in the developing hippocampus after acute activity, and parallels the mechanisms described in the developing visual cortex after visual stimuli. The GluN2B/GluN2A switch is classically known as a critical mechanism by which excitatory synapses rapidly mature in response to experience during sensory developmental critical periods and acquire integrative capacity. Our results, indicating that similar mechanisms occur in the developing hippocampal memory system, lead us to propose that infantile amnesia reflects the existence of a developmental critical period of the hippocampus, and that the functional maturation of the hippocampal system occurs through experience during the infantile amnesia period. Synaptic strength may also change as a result of IA training. These additional mechanisms as well as circuits important for infantile memories should be investigated in future studies.

In agreement to what has been reported for the visual or auditory system critical periods, we found that activating mGluR1/5 or increasing BDNF in the dHC accelerates hippocampal functional competence for memory formation and expression and anticipates the end of the critical period. It is possible that, as shown for sensory systems, BDNF regulates the balance of excitatory and inhibitory neurotransmission in the hippocampus during the developmental critical period, and further studies will likely address this issue. Our data also revealed that mGluR5 and BDNF are functionally linked in promoting hippocampal competence, as in fact the persistent activation of TrkB depends on mGluR5 activation. This link may represent an important node of dysregulation in neurodevelopmental disorders such as Fragile X syndrome.

In summary, we suggest that experience-driven, mGluR5- and BDNF-mediated GluN2B/GluN2A subunit switch during a developmental critical period not only is typical of sensory systems but also represents a ubiquitous process in the developing brain for acquiring mature, functional competences. This competence, for the hippocampus, includes the ability to form explicit, associative long-term memories. This would also explain how early experiences influence brain development and how experience deprivation in early development impacts learning abilities throughout life. We suggest that alteration of the experience-dependent critical-period mechanisms of the medial temporal lobe, and thus of related networks, may fundamentally contribute to the etiology of developmental learning disabilities, including autism spectrum disorder, mental retardation and neuropsychiatric disorders in general.

METHODS

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.
ACKNOWLEDGMENTS

We thank G. Pollonini for technical assistance. We thank P. Magistretti, F. Anserset, K. Weiss, P. Balsam, X. Ye, F. Fiumara and G. Phillips for discussions or comments on the manuscript. This work was supported by R01-MH074736 and an Agalma Foundation grant to C.M.A. and R01 NS072359 to R.D.B. A.T. was supported by a fellowship from Agalma Foundation. R.B. was supported by a fellowship from the Swiss National Science Foundation.

AUTHOR CONTRIBUTIONS

C.M.A. led the design and development of the study and the writing of the manuscript; R.D.B. designed the electrophysiology study; A.T., R.B., E.S.S., R.D.B and C.M.A. designed experiments and analyzed data; A.T. carried out behavioral experiments and the majority of molecular and pharmacological experiments; R.D.B. carried out behavioral experiments and contributed to molecular and pharmacological experiments; E.S.S. carried out electrophysiology experiments; and A.T., E.S.S., R.D.B. and C.M.A. wrote the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Campbell, B.A. & Spear, N.E. Ontogeny of memory. Psychol. Rev. 79, 215–236 (1972).
2. Hayne, H. Infant memory development: implications for childhood amnesia. Dev. Rev. 24, 33–73 (2004).
3. Rowe-Collier, C. The development of infant memory. Cur. Dir. Psychol. Sci. 8, 80–85 (1999).
4. Heim, C. & Nemeroff, C.B. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol psychiatry 49, 1023–1039 (2001).
5. Dumas, T.C. & Rudy, J.W. Development of the hippocampal memory system: creating networks and modifiable synapses. in Oxford Handbook of Developmental Behavioral Neuroscience (eds. Blumberg, M.S., Freeman, J.H. & Robinson, S.R.) (Oxford, 2010).
6. Nelson, C.A. Neural plasticity in human development: the role of early experience in sculpting memory systems. Dev. Sci. 3, 115–136 (2000).
7. Akers, K.G. et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344, 598–602 (2014).
8. Callaghan, B.L., Li, S. & Richardson, R. The elusive engraving: what can infantile amnesia tell us about memory? Trends Neurosci. 37, 47–53 (2014).
9. Kim, J.H., McNally, G. & Richardson, R. Recovery of fear memories in rats: role of gamma-aminobutyric acid (GABA) in infantile amnesia. Behav Neurosci. 120, 40–48 (2006).
10. Campbell, B.A. & Jaynes, J. Reinstatement. Psychol. Rev. 73, 478–480 (1966).
11. Spear, N.E. & Parsons, P.J. Analysis of a reactivation treatment: ontogenetic determinants of alleviated forgetting, in Processes in Animal Memory (eds. Medin, D.L., Roberts, W.A. & Davis, R.T.) 135–165 (Lawrence Erlbaum Associates, 1976).
12. Haroutunian, V. & Riccio, D.C. Effect of arousal conditions during reinstatement treatment upon learned fear in young rats. Dev. Psychobiol. 10, 25–32 (1977).
13. Davis, J.M. & Rowe-Collier, C.K. Alleviated forgetting of a learned contingency in 8-week-old infants. Dev. Psychobiol. 19, 353–365 (1983).
14. Campbell, B.A. & Campbell, E.H. Retention and extinction of learned fear in infant and adult rats. J. Comp. Physiol. Psychol. 55, 1–8 (1962).
15. Rudy, J.W. & Morledge, P. Ontogeny of contextual fear conditioning in rats: implications for consolidation, infantile amnesia, and hippocampal system function. Behav. Neurosci. 108, 227–234 (1994).
16. Squire, L.R., Wixted, J.T. & Clark, R.E. Recognition memory and the medial temporal lobe: a new perspective. Nat. Rev. Neurosci. 8, 872–883 (2007).
17. Chen, D.Y., Bambah-Mukku, D., Pollonini, G. & Alberini, C.M. Glucocorticoid receptors recruit the CaMKIIα-BDNF-CREB pathways to mediate memory consolidation. Nat. Neurosci. 15, 1707–1714 (2012).
18. Raineki, C. et al. Functional emergence of the hippocampus in context fear learning in infant rats. Hippocampus 20, 1037–1046 (2010).
19. Foster, J.A. & Burman, M.A. Evidence for hippocampus-dependent contextual learning at postnatal day 17 in the rat. Learn. Mem. 17, 259–266 (2010).
20. Robinson-Drummer, P.A. & Stanton, M.E. Using the context preexposure facilitation effect to study long-term context memory in preweanling, juvenile, adolescent, and adult rats. Physiol. Behav. 148, 22–28 (2015).
21. Miledi, L. Nrk signaling pathways in LTP and learning. Nat. Rev. Neurosci. 10, 850–860 (2009).
22. Morris, R.G., Anderson, E., Lynch, G.S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).
23. Tsien, J.Z., Huerta, P.T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).
24. Constantine-Paton, M., Cline, H.T. & Debski, E. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13, 129–154 (1990).
25. Sans, N. et al. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. Neurosci. 20, 1260–1271 (2000).
26. Paolelli, P., Belrose, C. & Zhou, G. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400 (2013).
27. Hensch, T.K. Critical period control in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).
28. Bellone, C. & Nicoll, R.A. Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55, 779–785 (2007).
29. Carmignotto, G. & Vicini, S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258, 1007–1011 (1992).
30. Quinlan, E.M., Philpott, B.D., Huganir, R.L. & Bear, M.F. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat. Neurosci. 2, 352–357 (1999).
31. Philpott, B.D., Tekbar, A.K., Shouval, H.Z. & Bear, M.F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157–169 (2001).
32. Caldeira, M.V. et al. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol. Cell. Neurosci. 35, 208–219 (2007).
33. Liu, L. et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304, 1021–1024 (2004).
34. Yashiro, K. & Philpott, B.D. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55, 1081–1094 (2008).
35. Matta, J.A., Ashby, M.C., Sanz-Clemente, A., Roche, K.W. & Isaac, J.T. mGluRs and NMDA receptors drive the experience- and activity-dependent NMDA receptor NR2B to NR2A subunit switch. Neuron 70, 339–351 (2011).
36. Huang, Z.J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).
37. Gianfranceschi, L. et al. Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc. Natl. Acad. Sci. USA 100, 12486–12491 (2003).
38. Schellenburg, C.J., Riccio, D.C. & Stiles, E.R. Acquisition and retention of a passive-avoidance response as a function of age in rats. J. Comp. Physiol. Psychol. 74, 75–83 (1971).
39. Balsam, P.D., Drew, M.R. & Gallistel, C.R. Time and associative learning. Comp. Cogn. Behav. Rev. 5, 1–22 (2010).
40. Cull-Candy, S., Brickley, S. & Farrant, M. NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11, 327–335 (2001).
41. Gambiril, A.C. & Barria, A. NMDA receptor subunit composition controls synapticogenesis and synapse stabilization. Proc. Natl. Acad. Sci. USA 108, 5855–5860 (2011).
42. Dumas, T.C. Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Prog. Neurol. 76, 189–211 (2005).
43. Berardi, N., Pizzorusso, T. & Maffei, L. Critical periods during sensory development. Curr. Opin. Neurobiol. 10, 138–145 (2000).
44. Castrén, M.L. & Castrén, E. BDNF in fragile X syndrome. Annu. Rev. Neurosci. 877–898 (2005).
ONLINE METHODS

Animals. Seventeen- and 24-day-old male and female rats were obtained from E10–E11 pregnant Long Evans female rats (Charles River Laboratories). Pre-weaning rats were housed with their littermates and mother in 30.80 cm × 40.60 cm × 22.23 cm plastic cages, containing ALPHA-dri® bedding, under a 12 h light/dark cycle (light on at 07:00 a.m.) with food and water ad libitum. All experiments were carried out during the light cycle. The birth date was considered PN0 and the litters were culled to 10–12 pups (6 males and 6 females, if applicable) on PN1 and only one male and/or female per litter was used in any experimental condition. After weaning (P21), rats were group-housed (2–5 per cage). All procedures complied with the US National Institute of Health Guide for the Care and Use of Laboratory Animals and were approved by the New York University Animals Care Committees.

Inhibitory avoidance. Inhibitory avoidance (IA) was carried out as previously described. The IA chamber (Med Associates Inc., St. Albans, VT) consisted of a rectangular Perspex box divided into a safe compartment and a shock compartment (each 20.3 cm × 15.9 cm × 21.3 cm). The safe compartment was white and illuminated and the shock compartment was black and dark. The apparatus was located in a sound-attenuated, nonilluminated room. During training sessions, each rat was placed in the safe compartment with its head facing away from the door. After 10 s, the door separating the compartments was automatically opened, allowing the rat to access the shock compartment. The door closed automatically when the rat entered the shock compartment with all four limbs, and a foot shock (2.5, 1 mA) was administered. Foot shocks were delivered to the grid floor of the shock chamber via a constant current scrambler circuit. Animal remained in the dark compartment for additional 10 s before it was returned to its home cages until testing for memory retention at designated time points. As controls, we used naïve animals (handled and remained in their home cage) and rat exposed to a footshock without the IA context experience (shock-only). Shock-only consisted in placing the rat onto grid of the shock compartment and, immediately after, delivering a footshock of the same duration and intensity used in IA training. This protocol does not induce any association between the context and the foot shock. Retention tests were done by placing the rat back in the safe compartment and measuring its latency to enter the dark compartment. Foot shocks were not administered during the retention tests (unless otherwise specified), and testing was terminated at 900 s. During retraining session, rats were tested for memory retention and received a footshock upon entering into the dark compartment. Locomotor activity was measured in the inhibitory avoidance chamber by automatically counting the number of times each rat crossed the invisible infrared light photosensor during training and testing. All behavioral tests were carried out blind to training and/or treatment conditions. For biochemical studies, rats were sacrificed in a novel, neutral chamber with transparent walls at identical duration (each 20.3 cm × 15.9 cm × 21.3 cm). The safe compartment was white and transparent chamber (each 20.3 cm × 15.9 cm × 21.3 cm). The safe compartment was white and transparent.

Hot-plate test for pain threshold. The hot-plate (HP) test for pain threshold was performed as previously described. The apparatus consists of a round white ceramic hot-plate surface (20 cm diameter) at room temperature. The test was performed with naïve PN17 and PN24 rats. Pain threshold was measured by the escape latency to withdrawal from the hot plate. The escape latency was averaged out of blind to training and/or treatment conditions. For biochemical studies, rats were sacrificed in a novel, neutral chamber with transparent walls at identical duration (each 20.3 cm × 15.9 cm × 21.3 cm). The safe compartment was white and transparent.

Hippocampal cannula implants and injections. On PN15 or PN22, pups were anesthetized with isoflurane mixed with oxygen. Stainless steel cannulas (26-gauge) were implanted bilaterally in the dorsal hippocampus (for PN15, 3.0 mm anterior, 2.2 mm lateral and 2.3 mm ventral from bregma; for PN22: 3.4 mm anterior, 2.2 mm lateral and 2.5 mm ventral from bregma) through holes drilled in the overlying skull. The cannulas were fixed to the skull with dental cement. After recovery from the surgery, pups were returned to the dam and littermates (for PN15) or their homecage (for PN22) for a 2-d recovery period until experimental manipulations. Hippocampal injections used a 33-gauge needle that extended 1 mm beyond the tip of the guide cannula and connected via polyethylene tubing to a Hamilton syringe. Injections were delivered at a rate of 0.1 µl min⁻¹ using an infusion pump on a total volume of 0.3 µl per side over 3 min. The injection needle was left in place for 2 min after the injection to allow complete diffusion of the solution. Muscimol (Sigma-Aldrich, St. Louis, MO, cat# M1523) was dissolved in physiological saline (0.9%) and injected at 0.1 µg per side. This dose of muscimol has been shown to disrupt long-term contextual fear conditioning when injected into the hippocampus. The body anti-BDNF (Millipore, cat# AB1513P) or control IgG (Sigma-Aldrich, cat# 15131) were dissolved in 1× PBS and injected at 0.5 µg per side. Recombinant human TrkB-Fc chimera (R&D Systems, cat# 688-TK) was dissolved in PBS and injected at 0.5 µg per side. The same dose of anti-BDNF and TrkB-Fc had been shown to disrupt long-term contextual fear memory consolidation when injected into the hippocampus. R-[R’(S’)]-α-(4-Hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidinepropanol hydrochloride hydrate (Ro 25-6981, Sigma-Aldrich, cat# R7150) and (((1S)-(1-(4-Bromophenyl)ethyl)amino) [1,2,3,4-tetrahydro-2,3-dioxo-5-quinoxalinyl]methyl) phosphonic acid tetrasodium hydrate (PEAQX or NVP-AAM077 tetrasodium hydrate, (Sigma-Aldrich, cat# P1999)) were dissolved in 1× PBS and injected at 0.5 µg per side. The same doses of the drugs have been shown to modulate LTP in vitro and to impair spatial and contextual memory when injected into hippocampal CA1 and anterior cingulate cortex and in vivo to attenuate the expression of morphine-associated contextual memory when injected into the nucleus accumbens. Recombinant BDNF (B PepTech, cat# 450-02) was dissolved in 1× PBS and injected at 0.25 µg per side. This dose has been shown to rescue memory impairment caused by inhibition of hippocampal protein synthesis and glucocorticoid receptor. The (S)-3,5-Di-hydroxphenylglycine (DHPG) (Sigma-Aldrich, cat# D3689) was dissolved in PBS and injected at 2 ng per side. This dose has been shown to enhance fear memory when injected into the basolateral amygdala. To verify proper placement of the cannula implants, rats were euthanized at the end of the behavioral experiments and their brains frozen in isopentane, sliced in 40 µm coronal sections in a −20 °C cryostat and examined under a light microscope for cannula placement. Rats with incorrect placement (6%) were discarded from the study.

Whole-cell patch electrophysiology. Western blot analysis. Western blot analysis was carried out as previously reported. Rats were euthanized and their brains were rapidly removed and frozen in isopentane. Dorsal hippocampus punches were obtained with a neuro punch (19 gauge; Fine Science Tools) from frozen brains mounted on a cryostat. Samples were homogenized in ice cold RIPA buffer (50 mM Tris base, 150 mM NaCl, 0.1% SDS, 0.5% sodium-deoxycholate, 1% NP-40) with protease and phosphatase inhibitors (0.5 mM PMSE, 2 mM DTT, 1 mM EGTA, 2 mM NaF, 1 µM microcystine, 1 mM benzamidine, 1 mM sodium orthovanadate and commercial protease and phosphatase inhibitor cocktails (Sigma Aldrich)). Protein concentrations were determined using the Bio-Rad protein assay (Bio-Rad Laboratories). Equal amounts of total protein (20 µg per lane) were resolved on denaturing SDS-PAGE gels and transferred to Immobilon-FL transfer membrane (Millipore) by electroblotting. Membranes were dried, reactivated in methanol and washed with water, before they were blocked in 5% (wt) milk and TBS for 1 h at room temperature (20–25 °C). Membranes were then incubated with primary antibody overnight at 4 °C in solution according manufacturer’s suggestion. Antibodies to TrkB (1:1,000, cat# 4603s) and NMDAR2B (1:1,000, cat# 5580) were purchased from Cell Signaling Technology, mGLUR5 (1:1,000, Abcam, cat# 76316), pTrkB (1:10,000, Abcam, cat# 2149-1 or 1:1,000, Millipore, cat# 1381), NMDAR2A (1:1,000, Millipore, cat# 07-632), anti-BDNF (1:200, Santa Cruz Biotechnology, cat# sc-546). The membranes were then washed TBS with 0.2% Tween20 (TBST) and incubated with a species-appropriate fluorescently conjugated secondary antibody (goat anti-mouse IRDye 680LT (1:10,000) or goat anti-rabbit IRDye 800CW (1:10,000) from LI-COR Bioscience) for 1 h at room temperature. Membranes were again washed in TBST and scanned using the Odyssey Infrared Imaging system (LI-COR Bioscience). Data were quantified using pixel intensities with the Odyssey software according to the protocols of the manufacturer (LI-Cor). Actin (1:20,000, Santa Cruz Biotechnology, cat# sc-47787) was used to co-stain all membranes and used as loading control for all markers.

NATURE NEUROSCIENCE
doi:10.1038/n.4348

© 2016 Nature America, Inc. All rights reserved.
ice-cold sucrose cutting solution (in mM: 1.25 Na$_2$HPO$_4$, 3 KCl, 25 NaHCO$_3$, 254 sucrose, 10 dextrose, 2 MgSO$_4$, 2 CaCl$_2$) on a vibratome (Leica VT1000). The slices recovered while submerged at 30 °C for 30 min in bubbled ACSF (in mM: 1.25 Na$_2$HPO$_4$, 3.5 KCl, 24 NaHCO$_3$, 118 NaCl, 1.3 MgSO$_4$, 2.5 CaCl$_2$, and 11 dextrose; pH = 7.4), followed by at least 30 min at room temperature. Recordings were obtained in submersion chambers superfused with room-temperature ACSF, using a Multiclamp 700B and Digidata 1440A (Molecular Devices). Area CA3 was dissected away immediately before recording to eliminate recurrent feedback contamination. Cells were visualized on an Olympus BX51W1 microscope with DIC-IR optics, and whole-cell recordings made from pyramidal cells in the CA1 region. Signals were filtered using a 2-kHz low pass filter and digitized at 20 kHz, and no adjustment was made for pipette junction potential. All recordings were made using pipettes filled with (in mM): 130 cesium-methanesulfonate, 10 HEPES, 0.5 EGTA, 8 NaCl, 5 TEA-Cl, 4 Mg-ATP, 0.4 Na-GTP, 10 sodium-phosphocreatine, 1 QX-314; 290–300 mOsM; pH = 7.3. All NMDA mediated currents were recorded at $V_{m} = +40$ mV in the presence of picrotoxin (50 µM) and NBQX (10 µM). Cells were washed in ifenprodil (3 µM) for 20 min prior obtaining recordings to measure ifenprodil sensitivity. NMDA EPSCs were evoked by a 100-µs monophasic stimuli delivered by a bipolar electrode at $V_{m} = +40$ mV, and EPSC amplitude was limited to ≤ 200 pA. Recordings at each age were taken from naive and trained animals in pairs to control for maternal rearing. All drugs were obtained from Tocris Bioscience.

Statistical analysis. Data were analyzed with the Prism 5 (GraphPad Software Inc.). No statistical methods were used to predetermined sample sizes, but our sample sizes are similar to those generally employed in the field. No randomization was used to collect all the data. Statistical analyses were designed using the assumption of normal distribution and similar variance among groups, but this was not formally tested. The data were analyzed by one- or two-way analyses of variance (ANOVA) followed by post hoc tests. One-way ANOVAs followed by Newman–Keuls post hoc tests were performed when comparing groups for which a pairwise post hoc analysis of each group was required. One-way ANOVAs followed by Dunnett’s post hoc tests were used when each group was compared with a single control group. One-way ANOVAs with Tukey’s multiple comparisons were used for electrophysiology experiments. Two-way ANOVAs followed by Bonferroni post hoc tests were used when two factors were compared (for example, treatment and testing). For paired comparisons, Student’s t-tests were used. All analyses are two-tailed. The significance of the results was accepted at $P < 0.05$.

A Supplementary Methods Checklist is available.

Data availability. The data that support the findings of this study are available from the corresponding author upon request.

47. Anand, K.J., Coskun, V., Thrivikraman, K.V., Nemeroff, C.B. & Plotsky, P.M. Long-term behavioral effects of repetitive pain in neonatal rat pups. *Physiol. Behav.* **66**, 627–637 (1999).
48. Zhao, M.G. et al. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. *Neuron* **47**, 859–872 (2005).
49. Qi, C. et al. mGluR5 in the nucleus accumbens shell regulates morphine-associated contextual memory through reactive oxygen species signaling. *Addict. Biol.* **20**, 927–940 (2015).
50. Rudy, J.W. & Matus-Amat, P. DHPG activation of group 1 mGluRs in BLA enhances fear conditioning. *Learn. Mem.* **16**, 421–425 (2009).
Erratum: Infantile amnesia reflects a developmental critical period for hippocampal learning

Alessio Travaglia, Reto Bisaz, Eric S Sweet, Robert D Blitzer & Cristina M Alberini
Nat. Neurosci. 19, 1225–1233 (2016); published online 18 July 2016; corrected after print 29 August 2016

In the version of this article initially published, y-axis labels in Figures 3a,b, 4c, 5d and 6c report the “GluN2B/GluN2A ratio”; this should be “GluN2A/GluN2B ratio.” The error has been corrected in the HTML and PDF versions of the article.