Research Article

Kamlesh Kumar Bhatt, Madhuri Kaushish Lily, Girdhar Joshi and Koushalya Dangwal*

Benzo(a)pyrene degradation pathway in Bacillus subtilis BMT4i (MTCC 9447)

Bacillus subtilis BMT4i’deki (MTCC 9447) Benzo(a)piren Bozunma Yolu

https://doi.org/10.1515/tjb-2017-0334
Received November 25, 2017; accepted March 13, 2018; previously published online May 15, 2018

Abstract

Background: Benzo(a)pyrene (BaP), a high molecular weight pentacyclic aromatic hydrocarbon, is a priority pollutant of extreme concern. *Bacillus subtilis* BMT4i (MTCC 9447) degrades BaP through chromosomally encoded pathway. Nevertheless, inadequate information is available on BaP degradation pathway in genus Bacillus despite its species being shown as potent BaP degrader. The objective of this study was to elucidate BaP degradation pathway in *B. subtilis* strain BMT4i by identifying metabolites through UHPLC-MS.

Materials and methods: Batch experiments were conducted to characterize metabolic pathway of BaP in the bacterium *B. subtilis* BMT4i. The metabolites were separated and characterized by UHPLC-MS.

Results: The major intermediates of BaP metabolism that had accumulated in the culture media after 15 days of incubation were benzo(a)pyrene-11,12-epoxide, 7,8,9,10-tetrahydrobenzo[pqr]tetraphene-7,8,9,10-tetraol, benzo(a)pyrene-cis-7,8-dihydrodiol, 8-carboxy-7-hydroxy pyrene, chrysene-4 or 5-carboxylic acid, cis-4-(8-hydroxypyrene-7yl)-2-oxobut-3-enolic acid, and dimethoxybenzo(a)pyrene and dimethoxybenzo(a)pyrene. Among above, 8-carboxy-7-hydroxy pyrene, chrysene-4 or 5-carboxylic acid, and cis-4-(8-hydroxypyrene-7yl)-2-oxobut-3-enolic acid are ring cleavage products of BaP.

Conclusion: The identified metabolites indicated that BMT4i initially oxidized BaP with monoxygenases and dioxygenases at C-11,12 or C-7,8 and C-9,10 positions, suggesting operation of multiple pathways for BaP degradation in *B. subtilis*. Further studies are essential to find out whether the entire biodegradation process in *B. subtilis* results into metabolic detoxification of BaP or not.

Keywords: Benzo(a)pyrene degradation; *Bacillus subtilis*; Benzo(a)pyrene-cis-7,8-dihydrodiol; Dioxygenase; Monooxygenase.

Özet

Amaç: Yüksek moleküler ağırlıklı beş halkali bir aromatik hidrokarbon olan benzo(a)piren (BaP), son derece ilgi çeken önemli bir kirletici madde olup, *Bacillus subtilis* BMT4i (MTCC 9447) BaP’ı kromozomal olarak kodlanmış yol ile bozar. Bununla birlikte, türleri güçlü BaP bozunducusu olarak gösterilmesine rağmen, *Bacillus* cinsinin BaP bozunma yolunda yetersiz bilgi mevcuttu. Bu çalışmanın amacı *B. subtilis* suşu BMT4i’de BaP yıkım yolunu, UHPLC-MS ile metabolitleri tamlayarak, aydınlatmaktır.

Gereç ve yöntem: *Bacillus subtilis* BMT4i bakterisinde BaP’nin metabolik yolunu karakterize etmek için bir grup deney yapılmı, Metabolitler UHPLC-MS ile aydınlatıldı ve karakterize edildi.

Bulgular: İğnin amaci *B. subtilis* BMT4i’de BaP’ın metabolik yolunu karakterize etme amaçlıdır. Metabolitler UHPLC-MS ile aydınlatıldı ve karakterize edildi.
asit, hidroksimetoksibenzo(a)piren ve demetoksibenzo(a)-piren. Yukardakiler arasında, 8-karboksil-7-hidroksi piren, chryseine-4 veya 5-karboksilik asit ve cis-4- (8-hidroksi-piren-7-il)-2-oksobut-3-en oksit BaP’nin halka bölünme ürünleridir.

Sonuç: Tanımlanan metabolitler BMT4’indeki tüm biyodegradasyon sürecinin BaP’nin metabolik detoksifikasyonuna yol açtığına inanarak ileri çalışmalar gereklidir. B. subtilis C-7,8 ve C-9,10 pozisyonlarından okside ettiği ve BaP’ı C-11,12’de monoksijenazlar ve dioksijenazlarla veya S. yanoikuyae JAR02 on BaP yielded benzo(a)pyrene-7,8-dihydrodiol ve benzo(a)pyrene-cis,9,10-dihydrodiol in addition to pyrene-8-hydroxy-7-carboxylic acid and pyrene-7-hydroxy-8-carboxylic acid as novel ring-cleavage metabolites [21]. These reports suggested involvement of dioxygenase and monooxygenase which incorporate two or one oxygen atom into the aromatic nucleus forming cis-dihydrodiols and trans-dihydrodiols, respectively as initial ring cleavage enzymes in BaP degradation pathway.

However, limited information is available on BaP degradation pathway in genus Bacillus despite of its species being shown as potent BaP degraders [19, 22, 23]. A bacterial consortium of Bacillus cereus and Bacillus vireti isolated from petrochemical soil has been reported to degrade BaP into cis-4-(8-hydroxy-pyren-7-yl)-2-oxobut-3-enolic acid, a ring cleavage product of 9,10-dihydrodiol [23]. We have shown previously that B. subtilis BMT4 (MTCC 9447) degrades BaP very efficiently up to 84.66% in 28 days via chromosomally encoded pathway [19, 22].

As an extension of previous study, the present work is performed to elucidate BaP degradation pathway in B. subtilis strain BMT4i by identifying metabolites through Ultra High Performance Liquid Chromatography-Mass Spectroscopy (UHPLC-MS). The present study reports the presence of eight different metabolites including ring cleavage products suggesting functioning of multiple degradation pathways involving dioxygenases and monooxygenase as the initial attacking enzymes.

Materials and methods

Chemicals and reagents

The BaP (99.9%) was purchased from Sigma-Aldrich Pvt. Ltd. Missouri, MO, USA. Metabolite standards for benz[a]pyrene-cis-4,5-dihydrodiol, benzo(a)pyrene-cis,7,8-dihydrodiol were acquired from the NCI Chemical Carcinogen Reference Standards Repository (Kansas, Missouri, MO, USA). HPLC-grade methanol, acetonitrile, dimethylformamide, formic acid were purchased from Merck Pvt. Ltd., Maharashtra, India. Nutrient Agar media and broth were purchased from Himedia Mumbai, Maharashtra, India. The general chemicals including constituents of basal salt mineral media (BSM) and solvents of analytical grade were purchased from Glaxo SmithKline Pvt. Ltd., Mumbai, Maharashtra, India and Merck Life Science Pvt. Ltd., Bengaluru, Karnataka, India.

Identification of metabolites of BaP degradation in Bacillus subtilis BMT4i

For the identification of BaP degradation metabolites, 100 mL BSM culture of B. subtilis BMT4i (10⁷ cells/mL)
containing BaP (50 μg/mL) in amber bottle was incubated at 30°C for 40 days in triplicate. At various time intervals (7, 15, and 40 days), 25 mL culture broth was withdrawn and 100 μL of the same was checked for BMT4i growth by CFU method [19]. Remaining withdrawn culture was acidified (pH 2.5) and processed for the recovery of products by ethyl acetate extraction [21]. The extracts were dried using rotary evaporator and dissolved in 5 mL of methanol. The organic extracts were analyzed using UHPLC-MS analysis on commercial basis from Sophisticated Analytical Instrument Facility (SAIF), India Institute of Technology, Mumbai, Maharashtra, India. Identification of metabolites was

Figure 1: Out of eight peaks, peak I was exclusively found in 15-day sample. UHPLC chromatograms showing benzo(a)pyrene and its metabolites after (A) 7 day (B) 15 day (C) 40 day.
done by comparing the mass spectral data of metabolites obtained with that of commercially available BaP metabolite standards and those reported in the literature [18, 21].

UHPLC-MS Analysis

Stock solutions of BaP and metabolite standards were prepared at concentration of 5 mg/mL in dimethylformamide since the compounds were readily soluble in dimethylformamide. In addition, working stock solution of the same was prepared in methanol at concentration of 0.2 mg/mL [19]. Furthermore, the standards and samples filtered through glass syringe using 0.2 μm filter and then analyzed in UHPLC (1290 Infinity Binary pump, Agilent Technologies, Santa Clara, CA, USA) coupled with 6550 i-Funnel Quadrupole time-of-flight (QTOF) mass spectrometer. The mobile phase was a gradient of 0.1% formic acid in water and 0.1% formic acid in acetonitrile at a flow rate of 0.3 mL/min for 30 min; the injection

![Figure 2](image-url)

Figure 2: Three metabolites namely 8-carboxy-7-hydroxy pyrene, chrysene-4 or 5-carboxylic acid and cis-4-(8-hydroxypyrene-7yl)-2-oxobut-3-enolic acid are the ring cleavage metabolites. Full scan mass spectra of BaP metabolites showing the abundance of (A) BaP standard as mass peak, (B) peak I (benzo(a)pyrene-11, 12 epoxide as M+Na adduct), (C) peak II (7,8,9,10-tetrahydrobenzo[qr]tetrathene-7,8,9,10-tetraol as M+H), (D) peak III (benzo(a)pyrene-cis-7,8-dihydrodiol as dimer M+H), (E) peak IV (8-carboxy-7-hydroxy pyrene as M+CH3CN+H), (F) peak V (chrysene-4 or 5-carboxylic acid as mass peak), (G) peak VI (cis-4-(8-hydroxypyrene-7yl)-2-oxobut-3-enolic acid as mass peak), (H) peak VII (hydroxymethoxybenzo(a)pyrene as M+H) and (I) peak VIII (dimethoxy-benzo(a)pyrene as M+H and benzo(a)pyrene as mass peak).
volume was 3 μL. The column used was Zorbax SB C18 Rapid Resolution HD, 2.1 × 100 mm, 1.8 μm, (Agilent Technologies, Santa Clara, CA, USA). The nitrogen gas flow was 13 mL/min at 25°C, and the sheath gas flow was 11 mL/min at 30°C with a nebulizer pressure at 35 psi. The capillary voltage was 3500 V with a nozzle voltage of 1000 V. Fragmentation energy was kept at 175 V. The analysis was done in both positive and negative ESI mode, the data was acquired in Agilent Masshunter Data Acquisition software (Version B.05.00) (Agilent Technologies, Santa Clara, CA, USA) and the data were analyzed in Agilent Masshunter Qualitative Software (Version B.06.00) (Agilent Technologies, Santa Clara, CA, USA).

Results and discussion

Identification of metabolites

Metabolic intermediates formed as a result of BaP degradation were recovered and subjected to UHPLC-MS analysis for identification. Firstly, the standards of commercially available metabolite were analyzed to identify the corresponding fragments. Each standard was injected separately, and its mass spectra and m/z values were obtained. The fragmentation pattern of individual metabolite standards and of a mixture of metabolite standards was obtained. Comparison of fragmentation pattern led to the confirmation of the presence of a particular metabolite. MS data (mass of recovered metabolites and their fragmentation pattern) of individual peaks were also compared with the MS data of metabolites of BaP biodegradation reported in the literature [18, 21].

UHPLC-MS analysis of 15-day sample revealed the presence of several peaks out of which eight peaks were identified (Figures 1A–C and Table 1). Peaks II–VIII were observed in 7-day sample in addition to 15-day. However, peak I was exclusively found in 15-day sample. Peaks III–VI were also observed in 7 and 40 day samples in addition to 15 day samples, and for peak I, (retention time 3.982 min) the characteristic mass fragment was m/z of 289.124 [M+Na]. The m/z of 289.124 [M+Na] of peak I compound was similar to the benzo(a)pyrene-11,12-epoxide (mol. wt. 266.29), an unstable intermediate formed due to action of cytochrome P450 on BaP which after subsequent hydrolysis converted into benzo(a)pyrene-trans-11,12-dihydrodiol in M. vanbaalenii PYR-1 [18]. Peak II eluted at 6.41 min. Mass fragment of peak II was m/z of 321.129 [M+H] which corresponded to compound 7,8,9,10-tetrahydrobenzo[pqr]-tetraphene-7,8,9,10-tetraol (mol. wt. 320.33) shown to be generated in filamentous fungi Cunninghamella elegans by cytochrome-P450 monooxygenase during BaP degradation [24]. Although this kind of compound has not yet
been reported in any bacterial species, however, Bacillus megaterium cytochrome-P450 BM3 monooxygenase has been reported to be a unique enzyme which can catalyze a wide range of similar reactions [25]. Peak III eluted at 9.396 min demonstrated mass fragment of m/z of 573.249 (dimer + H). The elution time and mass fragment of peak III was found to be identical with the elution time and mass fragment of the standard metabolite benzo(a)pyrene-cis-7,8-dihydrodiol (mol. wt. 286.32) dimer. Therefore, peak III was identified as benzo(a)pyrene-cis-7,8-dihydrodiol. Peak IV eluted at 10.768 showed mass fragment of m/z of 288.288 [M + H + CH$_3$CN]. Its base peak mass (mol. wt. 246.26) was identical to the mass of 8-carboxy-7-hydroxy pyrene (mol. wt. 246.26) which was shown to be a ring cleavage intermediate in BaP degradation pathway in S. yanoikuyae JAR02 [21]. Peak V eluted at 10.990 min showed mass peak fragment of m/z of 288.28 (Mass peak) corresponding to compound chrysene-4 or 5-carboxylic acid (mol. wt. 288.11). Peak VI eluted at 12.239 min and its m/z ratio was found to be 316.319 (M). On the basis of its m/z value, it was identified as cis-4-(8-hydroxy-7yl)-2-oxobut-3-enoic acid (mol. wt. 316.31) which was earlier found to be a ring cleavage product of benzo(a)pyrene-cis-9,10-dihydrodiol in M. vanbaalenii PYR-I [18]. Peak VII with elution time 12.733 showed mass fragment of m/z of 299.105 [M + H] corresponding to the hydroxymethoxybenzo(a)pyrene (mol. wt. 298.33) which was previously reported in B. cereus, B. vireti and M. vanbaalenii PYR-I [18, 23]. Peak VIII illustrated presence of two compounds on mass fragmentation. Mass fragment of m/z of 313.271 [M + H] with elution time of 17.615 min was found to be parallel to mass of the dimethoxy-benzo(a)-pyrene (mol. wt. 312.36), and mass fragment having m/z of 252.099 [M] with elution time of 17.704 min corresponded to the mass peak of benzo(a)pyrene standard itself (mol. wt. 252.32). The finding was in accordance with earlier reports on M. vanbaalenii PYR-I mediated BaP degradation [18].

Elucidation of BaP degradation pathway in Bacillus subtilis BMT4i

The identification of total eight metabolites produced during BaP degradation led to elucidation of BaP degradation pathway for the first time in B. subtilis BMT4i (Figure 3). Out of eight, three metabolites namely 8-carboxy-7-hydroxy pyrene, chrysene-4 or 5-carboxylic acid and cis-4-(8-hydroxy-7yl)-2-oxobut-3-enoic acid are the ring cleavage metabolites while others are the intermediates of the degradation pathway prior to ring cleavage. On the basis of identified metabolites, we have proposed BaP biodegradation pathway in B. subtilis BMT4i, which is in agreement with the pathways documented in the previous studies [14, 18, 21, 23]. The listed metabolites are known to be generated by various bacterial species such as Mycobacterium sp. Strain RJGII-135.
Kamlesh Kumar Bhatt et al.: Benzo(a)pyrene degradation pathway in *Bacillus subtilis* BMT4i (MTCC 9447)

Figure 3: Proposed pathways for degradation of BaP by *B. subtilis* BMT4i (MTCC 9447) which is in consonance to BaP degradation pathways proposed by Moody et al. [18]; Rentz et al. [21].

Peak I (benzo(a)pyrene-11, 12 epoxide), peak II (7,8,9,10-tetrahydrobenzo[pqr]tetraphene-7,8,9,10-tetraol), peak III (benzo(a)pyrene-cis-7,8-dihydrodiol), peak IV (8-carboxy-7-hydroxy pyrene), peak V (chrysene-4 or 5-carboxylic acid), peak VI (cis-4-(8-hydroxypyrene-7yl)-2-oxobut-3-enolic acid, peak VII (hydroxymethoxybenzo(a)pyrene), peak VIII (dimethoxy-benzo(a)pyrene). Metabolites within the box are hypothetical intermediates and have not been measured in this study.

[14], *M. vanbaalenii* PYR-1 [18], and *S. yanoikuyae* JAR02 [21], which suggested functioning of multiple pathways involving dioxygenases and monoxygenase as the initial attacking enzymes in *B. subtilis* BMT4i. Bacteria initially oxidize aromatic hydrocarbons to cis-dihydrodiols [16]. The oxidation of these compounds involves the enzymatic incorporation of atmospheric oxygen into the substrate. Characteristically, bacteria produce dioxygenases and mono-oxygenases, which incorporate two or one oxygen atoms into the aromatic nucleus forming cis-dihydrodiols and trans-dihydrodiols, respectively [16, 26]. The initial ring oxidation is usually the rate-limiting step in the biodegradation reaction of PAHs. Further oxidation of the cis-dihydrodiols leads to the formation of catechols which are substrates for other dioxygenases that bring about enzymatic cleavage of the aromatic ring.

As shown in proposed pathway of BaP degradation in Figure 3, benzo(a)pyrene-11, 12-epoxide is the precursor of benzo(a)pyrene-trans-11,12-dihydrodiol which is further converted to hydroxymethoxybenzo(a) pyrene subsequently leading to formation of dimethoxybenzo(a)pyrene. The dioxygenase mediated hydroxylation at 4, 5 or 11, 12 positions in BaP alternatively may generate benzo(a)pyrene-cis-4,5-dihydrodiol or benzo(a)pyrene-cis-11,12-dihydrodiol, respectively leading to hydroxymethoxybenzo(a)pyrene which is further metabolized to corresponding dimethoxy benzo(a)pyrene [18]. However, at this moment we cannot ascertain the positions of substitution due to lack of substantial data. Formation of tetrahydrobenzo[pqr]tetraphene-7,8,9,10-tetraol might be result of epoxidation of BaP by cytochrome–P450 monooxygenase [26].

Two other accumulated intermediates namely cis-4-(8-hydroxypyrene-7yl)-2-oxobut-3-enolic acid and 8-carboxy-7-hydroxy pyrene were considered as products of benzo(a)pyrene-cis-9,10-dihydrodiol and benzo(a)pyrene-cis-7,8-dihydrodiol generated by the action of dioxygenases at 9,10 and 7,8 positions, respectively in BaP [14, 18, 21]. Rentz et al. [21] demonstrated the presence of pyrene-7-hydroxy-8-carboxylic acid or pyrene-8-hydroxy-7-carboxylic acid which was hypothesized to be produced from transformation of 8-carboxy-7-hydroxy pyrene. Nevertheless, in our study, presence of 8-carboxy-7-hydroxy pyrene is detected, instead of pyrene-7-hydroxy-8-carboxylic
acid or pyrene-8-hydroxy-7-carboxylic acid. Formation of chrysene-4 or 5-carboxylic acid is presumed to be the end product of ortho cleavage ring fission product 4,5-chrysene dicarboxylic acid whose precursor is benzo(a)pyrene cis 4,5 dihydrodiol produced by reaction of dioxygenation of BaP in the K-region (4,5 positions) as reported in Mycobacterium vanbellenii PYR-1 [18].

To the best of our knowledge, the present study is the first one to report many metabolites of BaP degradation in genus Bacillus. In addition, a metabolic pathway of BaP has been elucidated in much greater detail for the first time in genus Bacillus. The results of this study on B. subtilis BMT4i (MTCC 9447), which is a potent BaP degrader (84.66% BaP degradation in 28 days) [19], could facilitate the elucidation of the biodegradation mechanism in Bacillus, which is currently not well explored. However, further studies are essential to find out whether the entire biodegradation process in B. subtilis results into the metabolic detoxification of BaP or not.

Acknowledgements: This work was supported in part by the Department of Science and Technology, New Delhi, India (DST No: SR/SO/BB-0068/2012) and Modern Institute of Technology (MIT), Rishikesh, Uttarakhand, India, that are gratefully acknowledged. We are thankful to Dr. Onkar S. Naylor, from the Modern Institute of Technology (MIT), Rishikesh, Uttarakhand for his help in interpretation of HPLC and MS data and identification of few BaP metabolites. We also thank Vice Chancellor, Uttarakhad Technical University (UTU), Dehradun, Uttarakhand, India for his support and suggestions.

Conflict of interest statement: Authors have no conflict of interest regarding this study.

References

1. California Environmental Protection Agency. Public health goal for Benzo[a]Pyrene in drinking water. Pesticide and Environmental Toxicology Section, Office of Environmental Health Hazard Assessment. Sacramento, California (CA): California Environmental Protection Agency, 1997;1–42.
2. Cerniglia CE, Heitkamp MA. Microbial degradation of polycyclic aromatic hydrocarbons in the aquatic environment. In: Varanasi U, editor. Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. Boca Raton, Florida: CRC Press Inc., 1989:42–64.
3. Freeman DJ, Cattell FC. Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol 1990;24:1581–5.
4. Heitkamp MA, Cerniglia CE. The effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystems. Environ Toxicol Chem 1987;6:535–46.
5. Kanaly RA, Harayama S. Advances in the field of high molecular weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 2010;3:136–64.
6. Shuttleworth KL, Cerniglia CE. Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol 1995;54:291–302.
7. Hsu GW, Huang X, Luneva NP, Geacintov NE, Beese LS. Structure of a high fidelity DNA polymerase bound to a benzo(a)pyrene adducts that blocks replication. J Biol Chem 2005;280:3764–70.
8. Kafi DF, Commenttijn T. Environment quality objectives for 10 polycyclic aromatic hydrocarbons. Ecotox Environ Safe 1997;36:89–97.
9. Miller RM, Singer GM, Rosen JD, Bartha R. Photolysis primes biodegradation of benzo(a)pyrene. Appl Environ Microbiol 1988;54:1724–30.
10. Habe H, Omori, T. Genetic of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 2003;67:225–43.
11. Sims RC, Overcash MR. Fate of Polynuclear Aromatic Compounds (PNAs) in soil-plant system. Residue Rev 1983;88:1–68.
12. Grosser RJ, Warshawsky D, Vestal JR. Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene and carbazole in soils. Appl Environ Microbiol 1991;57:3462–9.
13. Heitkamp MA, Cerniglia CE. Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol 1989;55:1968–73.
14. Schneider J, Grosser R, Jayasinhulu K, Xu W, Warshawsky D. Degradation of pyrene, benzo[a]anthracene and benzo(a)pyrene by Mycobacterium sp. strain RGI II -135, isolated from a former coal gasification site. Appl Environ Microbiol 1996;62:13–9.
15. Ye D, Siddiqi MA, Maccubbin AE, Kumar S, Sikka HC. Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 1996;30:136–42.
16. Juhasz AL, Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo(a)pyrene. Int Biodeterior Biodeg 2000;45:57–88.
17. Juhasz AL, Stanley GA, Britz ML. Metabolite repression inhibits degradation of benzo(a)pyrene and dibenzo[a,h]anthracene by Stenotrophomonas maltophilia VUN 10,003. J Ind Microbiol Biotechnol 2002;28:88–96.
18. Moody JD, Fu PP, Freeman JP, Cerniglia CE. Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 2004;70:13–9.
19. Lilly MK, Bahuguna A, Daygwal K, Garg V. Degradation of benzo[a]pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447). Braz J Microbiol 2009;40:884–92.
20. Gibson DT, Mahadevan V, Jerina DM, Yagi H, Yeh HJ. Oxidation of the carcinogens benzo(a)pyrene and benzo[a]anthracene to dihydrodiols by a bacterium. Science 1975;189:295–7.
21. Rentz JA, Alvarez PJ, Schnoor JL. Benzo(a)pyrene degradation by Sphingomonas yanoikuyae JAR02. Environ Poll 2008;151:669–77.
Bacillus vireti isolated from petrochemical industry. J Environ Biol 2012;33:985–9.

24. Cernigia CE, Gibson DT. Fungal oxidation of benzo[a]pyrene and (±)-trans-7,8-Dihydroxy-7,8-dihydrobenzo[a]pyrene. J Biol Chem 1980;255:5159–63.

25. Girvan HM, Munro AW. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Curr Opin Chem Biol 2016;31:136–45.

26. Munro AW, Lindsay JG. Bacterial cytochromes P-450. Mol Microbiol 1996;20:1115–25.