Lagrangian isotopies and symplectic function theory

Michael Entov1, Yaniv Ganor2, Cedric Membrez3

February 1, 2017

Abstract

We study two related invariants of Lagrangian submanifolds in symplectic manifolds. For a Lagrangian torus these invariants are functions on the first cohomology of the torus.

The first invariant is of topological nature and is related to the study of Lagrangian isotopies with a given Lagrangian flux. More specifically, it measures the length of straight paths in the first cohomology that can be realized as the Lagrangian flux of a Lagrangian isotopy.

The second invariant is of analytical nature and comes from symplectic function theory. It is defined for Lagrangian submanifolds admitting fibrations over a circle and has a dynamical interpretation.

We partially compute these invariants for certain Lagrangian tori.

1Partially supported by the Israel Science Foundation grant \# 1096/14.
2Partially supported by European Research Council Advanced grant 338809.
3Partially supported by the Swiss National Science Foundation grant 155540 and the European Research Council Advanced grant 338809.
Contents

1 Introduction 3

2 The main results 6
 2.1 Symplectic manifolds without weakly exact Lagrangian submanifolds 6
 2.2 Lagrangian tori in symplectic surfaces 7
 2.3 Toric orbits in symplectic toric manifolds 8
 2.4 Lagrangian tori in symplectic vector spaces 9
 2.5 Lagrangian tori in complex projective spaces 15
 2.6 Lagrangian tori in $\mathbb{S}^2 \times \mathbb{S}^2$ 16
 2.7 Discussion and open questions 17

3 The invariant b_{pL} and its properties 19
 3.1 Poisson bracket invariants 19
 3.2 The invariant b_{pL} for general Lagrangian submanifolds 20
 3.3 The invariant b_{pL} for Lagrangian tori 25
 3.4 General properties of b_{pL} and def_{L} 26

4 Lagrangian tori in symplectic surfaces – proofs 31

5 Toric orbits in symplectic toric manifolds – proofs 33

6 Lagrangian tori in \mathbb{C}^2 – proofs 35
 6.1 Proof of Theorem 2.5 35
 6.2 Proof of Theorem 2.8 37

7 Lagrangian tori in \mathbb{C}^n – proofs 41
 7.1 Basic properties of $b_{p_{x}}$, def_{x} for split Lagrangian tori in \mathbb{C}^n 41
 7.2 Proof of Theorem 2.9 42
 7.3 Proof of Theorem 2.10 44

8 Lagrangian tori in $\mathbb{C}P^n$ and $\mathbb{S}^2 \times \mathbb{S}^2$ – proofs 46
 8.1 Proof of Theorem 2.12 46
 8.2 Proof of Theorem 2.15 47
1 Introduction

In this paper we study two related invariants of Lagrangian submanifolds which are invariant under symplectomorphisms of the ambient symplectic manifolds.

Let \((M, \omega)\) be a symplectic manifold and \(L \subset (M, \omega)\) a closed Lagrangian submanifold. Let \(\iota : L \to M\) denote here and further on the natural inclusion of \(L\) in \(M\).

The first invariant of \(L\) comes from the consideration of Lagrangian isotopies of \(L\) with a given Lagrangian flux path in \(H^1(L; \mathbb{R})\). Namely, recall that if \(\psi := \{\psi_t : L \to M\}_{0 \leq t \leq T}, \psi_0 = \iota\), is a Lagrangian isotopy, one can associate to it a Lagrangian flux path

\[\{\text{Flux}(\psi)_t\}_{0 \leq t \leq T} \subset H^1(L; \mathbb{R}), \quad \text{Flux}(\psi)_0 = 0,\]

as follows: given a closed curve \(C \subset L\) and \(t \in [0, T]\), consider the trace of \(C\) under the Lagrangian isotopy \(\{\psi_t : L \to M\}_{0 \leq t \leq T}\) and integrate \(\omega\) over the resulting surface. The resulting (real) number depends only on the homology class of \(C\) in \(H_1(L)\) (see [28]). The numbers obtained for all \(C\) in this way are the periods of a uniquely defined Lagrangian flux class \(\text{Flux}(\psi)_t \in H^1(L; \mathbb{R})\).

The notion of Lagrangian flux immediately raises the following question.

Question 1.1. Which paths in \(H^1(L; \mathbb{R})\) based at 0 have the form \(\{\text{Flux}(\psi)_t\}\) for some Lagrangian isotopy \(\psi\) of \(L\)?

In general, this seems to be a very difficult question. In this paper we investigate its weaker version:

Question 1.2. Which straight paths in \(H^1(L; \mathbb{R})\) based at 0 have the form \(\{\text{Flux}(\psi)_t\}\) for some Lagrangian isotopy \(\psi\) of \(L\)?

The deformation invariant of \(L\) is a function \(\text{def}_L : H^1(L; \mathbb{R}) \to (0, +\infty]\) defined as follows. Given \(\alpha \in H^1(L; \mathbb{R})\), set

\[\text{def}_L(\alpha) := \sup T,\]

where we take the supremum over all \(T \in \mathbb{R}_{\geq 0}\) for which there exists a Lagrangian isotopy \(\psi = \{\psi_t : L \to M\}_{0 \leq t \leq T}, \psi_0 = \iota\), of \(L\) such that

\[\text{Flux}(\psi)_t = -t\alpha \quad \text{for all} \quad 0 \leq t \leq T, \quad (1)\]

or, in other words, the path \(\{-t\alpha\}_{0 \leq t \leq T}\) in \(H^1(L; \mathbb{R})\) is the path \(\{\text{Flux}(\psi)_t\}\) for some Lagrangian isotopy \(\psi\) of \(L\). It is easy to show that \(\text{def}_L(\alpha)\) is always non-zero – thus, \(\text{def}_L(\alpha)\) takes values in \((0, +\infty]\).
In case \((M, \omega = d\lambda)\) is an exact symplectic manifold the invariant \(\text{def}_L\) can be related to the notion of a symplectic shape studied in \([9, 27]\). Roughly speaking, the symplectic shape associated to \(L\) and \((M, d\lambda)\) is the subset of \(H^1(L; \mathbb{R})\) formed by the Liouville classes \([e^*\lambda] \in H^1(L; \mathbb{R})\) for all possible Lagrangian embeddings \(e: L \to (M, d\lambda)\). If \(L = \mathbb{T}^n\) and \(M = \mathbb{T}^n \times U \subset \mathbb{T}^n \times \mathbb{R}^n = T^*\mathbb{T}^n\), where \(U \subset \mathbb{R}^n\) is a connected open set and \(\lambda\) is the standard Liouville form, the Benci-Sikorav theorem \([27]\) (cf. \([9]\)) says that the shape of \((M, d\lambda)\) associated to \(L\) is \(U \subset \mathbb{R}^n \sim H^1(\mathbb{T}^n; \mathbb{R})\). Rephrasing this result in terms of the deformation invariant gives us the following theorem.

Theorem 1.3. With \(U\) and \((M = \mathbb{T}^n \times U, d\lambda)\) as above, let \(x \in U\) and let \(L := \mathbb{T}^n \times \{x\} \subset M\) be the corresponding Lagrangian submanifold. Then for all \(\alpha \in H^1(L; \mathbb{R})\) we have

\[
\text{def}_L(\alpha) = \sup \{ t > 0 \mid x - t\alpha \in U \}.
\]

To prove Theorem 1.3 note that in this setting \(\text{Flux}(\psi)_t\) can be represented as the difference of the Liouville classes of \(\psi_t(L)\) and \(L\):

\[
\text{Flux}(\psi)_t = \psi_t^* \lambda - \psi_0^* \lambda.
\]

Then the inequality \(\text{def}_L(\alpha) \geq \sup \{ t > 0 \mid x - t\alpha \in U \} \) follows from the existence of an obvious Lagrangian isotopy \(\psi_t(\mathbb{T}^n \times \{x\}) = \mathbb{T}^n \times \{x - t\alpha\}\), while the opposite inequality follows directly from the Benci-Sikorav theorem.

The function \(1/\text{def}_L\) is obviously non-negatively homogeneous. In the case when \(U\) is star-shaped with respect to \(x\), it is, by Theorem 1.3 the Minkowski functional associated to \(U\) – which in turn completely determines \(U\).

The study of \(\text{def}_L\) can also be viewed as a relative analogue of a deformation problem for symplectic forms on closed symplectic manifolds considered in \([23]\): how far can one deform a symplectic form \(\omega\) within a family of symplectic forms such that the cohomology class of the deformed form changes along a straight ray originating at \([\omega]\) and such that its restriction to a given \(\omega\)-symplectic submanifold remains symplectic? To see how a relative version of this question is related to \(\text{def}_L\) we denote by \([\omega]_L \in H^2(M, L; \mathbb{R})\) and \([\omega]_L^\psi \in H^2(M, \psi_t(L); \mathbb{R})\) the relative symplectic area cohomology classes of, respectively, \(L\) and \(\psi_t(L)\). The isotopy \(\psi\) defines a canonical isomorphism \(H^2(M, L; \mathbb{R}) \cong H^2(M, \psi_t(L); \mathbb{R})\) and thus \([\omega]_L^\psi\) can be viewed as an element of \(H^2(M, L; \mathbb{R})\). Let \(\partial: H^1(L; \mathbb{R}) \to H^2(M, L; \mathbb{R})\) be the connecting homomorphism and assume \(\partial \neq 0\). Then

\[
[\omega]_L^\psi = [\omega]_L + \partial \text{Flux}(\psi)_t
\]

To prove Theorem 1.3 note that in this setting \(\text{Flux}(\psi)_t\) can be represented as the difference of the Liouville classes of \(\psi_t(L)\) and \(L\):
and condition (1) becomes
\[
[\omega^\psi_t] = [\omega]_L - t\partial\alpha \in H^2(M, L; \mathbb{R}), \quad 0 \leq t \leq T. \tag{2}
\]

Therefore, as long as \(\partial\alpha \neq 0\), the number \(\text{def}_L(\alpha)\) measures how far one can deform \([\omega]_L\) in a Lagrangian isotopy \(\psi\) satisfying (2).

This viewpoint enables us to study \(\text{def}_L\) using methods of “hard” symplectic topology. Namely, the existence of pseudo-holomorphic curves with boundaries on \(\psi_t(L)\) for \(0 \leq t \leq T\) may yield constraints on the time-length \(T\) of the deformation, since \([\omega^\psi_t]\) evaluates positively on such curves. All the upper bounds on \(\text{def}_L(\alpha)\) known to us and appearing further in this paper are obtained in this way.

On the other hand, as we explain below, lower bounds on \(\text{def}_L\) can be obtained by “soft” constructions. These bounds come from the study of the second invariant of \(L\), called the Poisson-bracket invariant of \(L\). It is defined only for \(L\) admitting a fibration over \(S^1\): it is a function on the set of isotopy classes of smooth fibrations of \(L\) over \(S^1\). In the case when \(L\) is a Lagrangian torus with a choice of an isotopy class of its smooth parametrizations \(\mathbb{T}^n \to L\), we reduce this invariant to a function \(bp_L : H^1(L) \to (0, +\infty]\) until Section 3 we give a short and informal definition here.

Namely, assume \(L\) is a Lagrangian torus equipped with a parametrization \(\mathbb{T}^n \to L\) and \(a \in H^1(L), a \neq 0\) (for \(a = 0\) we set \(bp_L(0) := +\infty\)). Consider a fibration \(f : L \to S^1\) such that \(a\) is the pull-back under \(f\) of the standard generator of \(H^1(S^1)\) (the parametrization of \(L\) is used in the construction of \(f\) – see Section 3.3). Cut \(S^1\) into four consecutive arcs, denote their preimages under \(f\) by \(X_0, Y_1, X_1, Y_0\) (so that \(X_0 \cap X_1 = Y_0 \cap Y_1 = \emptyset, X_0 \cup Y_1 \cup X_1 \cup X_0 = L\)) and set \(bp_L(a) := 1/pb_4^+(X_0, X_1, Y_0, Y_1)\). Here \(pb_4^+\) is the Poisson-bracket invariant of a quadruple of sets defined in [11] – it is a refined version of the \(pb_4\)-invariant introduced in [3] and it admits a dynamical interpretation in terms of the existence of connecting trajectories of sufficiently small time-length between \(X_0\) and \(X_1\) for certain Hamiltonian flows – see Section 3 for details. The relation between \(bp_L\) and \(\text{def}_L\) is given by the following inequality (which will be proved in a stronger form in Theorem 3.4).

Theorem 1.4. \(bp_L \leq \text{def}_L\) on \(H^1(L)\).

This relation, albeit in a different language, was already exploited in [11], where upper bounds on \(\text{def}_L\) were obtained by symplectic rigidity methods in a setting where the Lagrangian isotopy class of a Lagrangian torus \(L\)
does not contain (weakly) exact Lagrangian tori. This was then used to prove the existence of connecting trajectories of Hamiltonian flows. In this paper we get upper bounds on $\def L{def L}$ in new cases by using several strong symplectic rigidity results, including some recent ones. Namely, Theorem 2.5 (whose proof belongs to E. Opshtein) and Theorem 2.9 rely on Gromov’s famous work [14], while Theorem 2.12 and Theorem 2.15 rely on the recent powerful rigidity results of, respectively, K. Cieliebak - K. Mohnke [6] and G. Dimitroglou Rizell - E. Goodman - A. Ivrii [8]. At the same time we use new soft dynamical constructions to get lower bounds on $bp L$, and hence on $\def L$, in many new settings.

In Section 2 we partially compute the functions $bp L$ and $\def L$ for several classes of Lagrangian tori. Section 2.7 is then devoted to a discussion of the results and further directions. In Section 3 we discuss in detail the definition of $bp L$. The sections following Section 3 contain the proofs of the results from Section 2.

2 The main results

We now present results about $\def L$ and $bp L$ for several examples of Lagrangian tori in symplectic manifolds. (For general properties of $\def L$ and $bp L$ see Section 3.4).

2.1 Symplectic manifolds without weakly exact Lagrangian submanifolds

Recall that a Lagrangian submanifold $L \subset (M, \omega)$ is called weakly exact, if $[\omega]_L \equiv 0$.

Theorem 2.1. Let $L \subset (M, \omega)$ be a closed Lagrangian submanifold. Assume that (M, ω) does not admit weakly exact Lagrangian submanifolds in the Lagrangian isotopy class of L. Assume also that

$$\partial \alpha = \frac{1}{C} [\omega]_L,$$

for some class $\alpha \in H^1(L; \mathbb{R})$ and some $C > 0$. Then $\def L(\alpha) \leq C$.

Proof. Let $\psi = \{\psi_t : L \to M\}, 0 \leq t \leq T$, be a Lagrangian isotopy of L such that

$$[\omega]^\psi_t = [\omega]_L - t \partial \alpha. \quad (3)$$
Since, by the hypothesis of the theorem, \(\partial \alpha = \frac{1}{C}[\omega]_L \), we get

\[
[\omega]^\psi_L = [\omega]_L(1 - t/C).
\]

Then \(t = C \) cannot lie in the interval \([0, T]\), because if it did we would have \([\omega]_C^\psi = 0\), implying that \(L_C \) is weakly exact, in contradiction with the hypothesis of the theorem. Hence \(T < C \). Since this is true for any Lagrangian isotopy of \(L \) satisfying (3), we get \(\text{def}_L(\alpha) \leq C \).

A similar result for a particular class of Lagrangian submanifolds and a particular \(\alpha \) was proved in the same way in [11].

Let us note that symplectic manifolds that do not admit weakly exact Lagrangian submanifolds at all or in a particular Lagrangian isotopy class are plentiful and include, in particular, symplectic vector spaces [14] and complex projective spaces.

2.2 Lagrangian tori in symplectic surfaces

Suppose \((M^2, \omega)\) is a connected symplectic surface (possibly with boundary) and \(L \subset (M, \omega) \) is a simple closed oriented curve (that is, a 1-dimensional Lagrangian torus) lying in the interior of \(M \). The orientation of \(L \) defines an isomorphism \(H^1(L) \cong \mathbb{Z} \). This allows to define \(bp_L \) on \(H^1(L) \) (see Section 3.3). Denote the positive generator of \(H^1(L) \) by \(e \).

We distinguish between two possibilities: when \(M \setminus L \) is disconnected and when \(M \setminus L \) is connected. We present precise statements in both cases.

In the first case \(L \) divides \(M \) into two connected components: \(M_+ \) and \(M_- \) of areas \(A_+, A_- \), where \(0 < A_\pm \leq +\infty \). The signs + and − here are determined by the usual orientation convention.

Theorem 2.2. For \(k \in \mathbb{N} \) we have

\[
bp_L(ke) = \text{def}_L(ke) = \frac{A_+}{k},
\]

\[
bp_L(-ke) = \text{def}_L(-ke) = \frac{A_-}{k},
\]

In the second case let \(L \subset (M, \omega) \) be a simple closed curve such that \(M \setminus L \) is connected.

Theorem 2.3. For \(k \in \mathbb{Z} \) we have

\[
bp_L(ke) = \text{def}_L(ke) = +\infty.
\]

The case \(k = 1 \) was proved in [25]. For the proofs of Theorems 2.2 and 2.3 see Section 4.
2.3 Toric orbits in symplectic toric manifolds

Let $\mathbb{T}^n := \mathbb{R}^n/\mathbb{Z}^n$. Denote by $\text{Lie}^* \mathbb{T}^n = (\mathbb{R}^n)^*$ its dual space. Denote by $(\mathbb{Z}^n)^*$ the integral lattice in $(\mathbb{R}^n)^*$.

Let (M^{2n}, ω) be a connected (not necessarily closed) symplectic manifold equipped with an effective Hamiltonian action of \mathbb{T}^n. Denote the moment map of the action by $\Phi : M \to (\mathbb{R}^n)^*$. Assume that Φ is proper, the fibers of Φ are exactly the orbits of the action and the image of Φ is a convex set Δ which is a closed (not necessarily compact) subset of $(\mathbb{R}^n)^*$ and whose interior points are exactly the regular values of Φ (by the Atiyah-Guillemin-Sternberg theorem \[1, 15\], these conditions are automatically satisfied if M is closed).

Given $x \in \Delta$, denote by $L_x := \Phi^{-1}(x)$ the corresponding fiber of Φ. If $x \in \text{Int} \Delta$, then L_x is a Lagrangian torus and the Hamiltonian \mathbb{T}^n-action on L_x gives us a preferred isotopy class of diffeomorphisms $\mathbb{T}^n \to L_x$. Thus the pair $H^1(L_x) \subset H^1(L_x; \mathbb{R})$ is naturally identified with the pair $(\mathbb{Z}^n)^* \subset (\mathbb{R}^n)^*$.

We denote by $bp_x := bp_{L_x} : (\mathbb{Z}^n)^* \longrightarrow \mathbb{R}$ the Poisson-bracket invariant of L_x.

Let $x \in \text{Int} \Delta$ and $\alpha \in H^1(L; \mathbb{R})$. Define $l_x(\alpha)$ as the largest $t > 0$ for which $x- t\alpha \in \Delta$ and let $I(x, \alpha)$ be the open segment of the open ray $x - t\alpha$, $t \in (0, +\infty)$, connecting x and $x - l_x(\alpha)\alpha$:

$I(x, \alpha) := \{x - t\alpha, \ 0 < t < l_x(\alpha)\}$.

If no such t exists, set $l_x(\alpha) := +\infty$ and let $I(x, \alpha)$ be the whole open ray. In other words, $I(x, \alpha)$ is the interior of the closed segment obtained by the intersection of the ray with Δ and $l_x(\alpha)$ is the ratio of the rational length of α and the rational length of this segment\[1\].

Theorem 2.4. Let $\alpha \in (\mathbb{Z}^n)^*$. Then

$l_x(\alpha) \leq bp_x(\alpha)$.

For the proof see Section \[5\].

\[1\]Recall that the rational length of a vector cv, $v \in \mathbb{Z}^n$, is defined as $|c|$.

8
2.4 Lagrangian tori in symplectic vector spaces

Let $M = \mathbb{C}^n$ be equipped with the standard symplectic structure and let z_1, \ldots, z_n be the complex coordinates on \mathbb{C}^n. Given $x_1, \ldots, x_n > 0$, set $\mathbf{x} := (x_1, \ldots, x_n)$. Define a split Lagrangian torus $T^n(\mathbf{x}) \subset \mathbb{C}^n$ by

$$T^n(\mathbf{x}) := \{ \pi |z_i|^2 = x_i, \; i = 1, \ldots, n \}.$$

The standard Hamiltonian \mathbb{T}^n-action gives us a preferred isotopy class of diffeomorphisms $\mathbb{T}^n \to T^n(\mathbf{x})$ and we naturally identify $H_1(L_\mathbf{x}) \subset H_1(L_\mathbf{x}; \mathbb{R})$ with $(\mathbb{Z}^n)^* \subset (\mathbb{R}^n)^*$.

Denote by $\text{def}_x := \text{def}_{T^n(\mathbf{x})} : (\mathbb{R}^n)^* \to \mathbb{R}$ and $\text{bp}_x := \text{bp}_{T^n(\mathbf{x})} : (\mathbb{Z}^n)^* \to \mathbb{R}$ the deformation and the Poisson-bracket invariants of $T^n(\mathbf{x})$. We first consider the case of Lagrangian tori in \mathbb{C}^2.

LAGRANGIAN TORI IN \mathbb{C}^2

We first present computations of def_L for general Lagrangian tori in \mathbb{C}^2. We then restrict to the cases of split and Chekanov tori.

Let $L \subset (\mathbb{C}^2, \omega)$ be a Lagrangian torus that satisfies the following: for a $k \geq 0$ assume there exists a basis $H_2(\mathbb{C}^2, L) \simeq \mathbb{Z} \langle A, B \rangle$ such that the Maslov indices satisfy $\mu(A) = 2$, $\mu(B) = 2k$ and the symplectic areas satisfy $0 < \omega(A) \leq \omega(B)/(1 + k)$. Furthermore we assume that for a choice of compatible almost complex structure J the class A is represented by a regular J-holomorphic disk.

Theorem 2.5 (E. Opshtein). With A, B and k as above, let $\alpha \in H^1(L; \mathbb{R})$ so that $\partial \alpha(A) := a > 0$ and $\partial \alpha(B) := b \leq (k + 1)a$. Then

$$\text{def}_L(\alpha) \leq \frac{\omega(A)}{a}.$$

For the proof see Section 6.1.

Theorem 2.5, together with Theorem 1.4 and Theorem 2.10 (this general statement for split Lagrangian tori in \mathbb{C}^n will appear later), yields the following corollary for computations of def_L and bp_L for split tori in \mathbb{C}^2. We state the result in the case $x_1 \leq x_2$ – the corresponding result in the case $x_1 > x_2$ can be deduced from it using the obvious symmetry of bp_x and def_x with respect to permutations of coordinates in \mathbf{x} (see (18) below).
Corollary 2.6. Assume $m, n \in \mathbb{Z}$, $x = (x_1, x_2)$, $0 < x_1 \leq x_2$. Under these assumptions the following claims are true:

(A) If $m, n \leq 0$, then
$$bp_x(m, n) = def_x(m, n) = +\infty.$$

(B) If $x_1 < x_2/l$ and $1 \leq n \leq l$, then
$$bp_x(0, n) = def_x(0, n) = +\infty.$$

(C) If $nx_1 - mx_2 \leq 0, m > 0$, then
$$x_1/m \leq bp_x(m, n) \leq def_x(m, n).$$

(D) If $nx_1 - mx_2 \geq 0, n > 0$, then
$$x_2/n \leq bp_x(m, n) \leq def_x(m, n).$$

(E) Assume for $x = (x_1, x_2)$ that $2x_1 \leq x_2$. If $m > 0, m - 2n \leq 0$, then
$$x_1/m = bp_x(m, n) = def_x(m, n).$$

\[\Box\]

Parts (A) - (D) of Corollary 2.6 follow directly from Theorems 1.4 and 2.10. Part (E) follows from the inequalities:

$$x_1/m \leq bp_x(m, n) \leq def_x(m, n) \leq x_1/m.$$

Here the first inequality follows from part (C) of Corollary 2.6, the second one from Theorem 1.4, and the third one from Theorem 2.5 with A, B being the standard basis of $H_2(C^2, T^2(x))$ (so that $\omega(A) = x_1$, $\omega(B) = x_2$), $\alpha = me_1 + ne_2$, $a = m$, $b = n$ and $k = 1$.

In the case of the split monotone Lagrangian torus in C^2 Corollary 2.6, together with the obvious homogeneity property of def_x, bp_x with respect to x (see part (B) of Proposition 7.1 below) and Theorem 2.1 (since C^2 does not admit weakly exact Lagrangian submanifolds by [14]), yields the following result.
\[\frac{x}{n} \leq bp_x(m, n) \leq def_x(m, n) \leq ? \]

\[\frac{x}{m} \leq bp_x(m, n) \leq def_x(m, n) \leq ? \]

Corollary 2.7. Assume \(m, n \in \mathbb{Z} \), \(x = (x, x) \), \(x > 0 \). Then

\[+\infty = bp_x(m, n) = def_x(m, n), \quad \text{if } m, n \leq 0, \]

\[\frac{x}{m} = bp_x(m, m) = def_x(m, m), \quad \text{if } m = n > 0, \]

\[\frac{x}{\max\{m, n\}} \leq bp_x(m, n) \leq def_x(m, n), \quad \text{if } m > 0 \text{ or } n > 0. \]

\[\square \]
\[\frac{x_1}{x_2} \leq b_{p_x}(m, n) \leq d_{e_x}(m, n) \leq ? \]

\[\frac{x_1}{x_2} = b_{p_x}(m, n) = d_{e_x}(m, n) \]

\[b_{p_x}(m, n) = d_{e_x}(m, n) = +\infty \]

Figure 2: Regions of validity in Corollary 2.6 for \(x_1 < x_2/l \) for \(l \geq 2 \).

Chekanov tori in \(\mathbb{C}^2 \)

Chekanov tori \(\Theta_a, \ a > 0, \) in \(\mathbb{C}^2 \) were originally introduced in [4] (cf. [10]). The torus \(\Theta_a \subset \mathbb{C}^2 = \mathbb{C} \times \mathbb{C} \) is defined as follows: let \(\eta \) be a simple closed counter-clockwise oriented curve in \(\mathbb{C} \) bounding a disk of area \(a \) that does not contain zero. Then

\[\Theta_a := \left\{ \frac{1}{\sqrt{2}} \left(e^{2\pi i s} \eta(t), e^{-2\pi i s} \eta(t) \right) \right\}. \]

Consider the basis \(\Gamma, \gamma \) of \(H_1(\Theta_a) \), where \(\Gamma, \gamma \) are, respectively, the homology classes of the curves \(t \mapsto \frac{1}{\sqrt{2}}(\eta(t), \eta(t)) \) and \(s \mapsto \frac{1}{\sqrt{2}}(e^{2\pi i s} \eta(0), e^{-2\pi i s} \eta(0)) \).
\[
\frac{x}{\max(m, n)} \leq \text{bp}_x(m, n) \leq \text{def}_x(m, n) \leq ? \\
\frac{x}{m} = \text{bp}_x(m, m) = \text{def}_x(m, m)
\]

Figure 3: Regions of validity in Corollary 2.7 for monotone Lagrangian tori.

in \(\Theta_a \). Let \(\hat{\Gamma}, \hat{\gamma} \) be the integral basis of \(H^1(\Theta_a) \) dual to \(\Gamma, \gamma \). Define the functions \(\text{def}_a : (\mathbb{Z}^2)^\ast \to (0, +\infty] \), \(\text{bp}_a : (\mathbb{Z}^2)^\ast \to (0, +\infty] \) by

\[
\text{def}_a(m, n) := \text{def}_{\Theta_a}(m\hat{\Gamma} + n\hat{\gamma}), \quad \text{bp}_a(m, n) := \text{bp}_{\Theta_a}(m\hat{\Gamma} + n\hat{\gamma}).
\]

Theorem 2.8. The following claims hold for Chekanov tori in \(\mathbb{C}^2 \):

(A) \(\text{bp}_a(m, n) \geq a/m \), if \(m > 0 \).

(B) \(\text{bp}_a(m, n) = \text{def}_a(m, n) = +\infty \) for \(m < 0 \).

For the proof see Section 6.2.

LAGRANGIAN TORI IN \(\mathbb{C}^n \) FOR GENERAL \(n \in \mathbb{N} \)
We first generalize the statement of Theorem 2.5 to Lagrangian tori in \(\mathbb{C}^n \) for \(n \geq 3 \).

Let \(L \subset (\mathbb{C}^n, \omega) \) be a Lagrangian torus and let \(H_2(\mathbb{C}^n, L) \simeq \mathbb{Z}\langle A_1, \ldots, A_n \rangle \) be a basis such that \(\mu(A_i) = 2 \) for all \(i = 1, \ldots, n \) and \(\omega(A_1) := a > 0 \) and \(\omega(A_2) = \ldots = \omega(A_n) := b > a \). We assume that

\[
a \leq \frac{2b}{n+2} \quad \text{if } n \text{ is even}, \quad a \leq \frac{2b}{n+1} \quad \text{if } n \text{ is odd}.
\]

Furthermore we assume that for a choice of compatible almost complex structure \(J \) the class \(A_1 \) is represented by a regular \(J \)-holomorphic disk.

Theorem 2.9. In the setting above let \(\alpha \in H^1(L; \mathbb{R}) \) so that \(\partial \alpha(A_1) = \sigma > 0 \) and \(\partial \alpha(A_i) = \rho \leq b\sigma/a \) for \(i = 2, \ldots, n \). Then

\[
def_L(\alpha) \leq \frac{\omega(A_1)}{\sigma} = \frac{a}{\sigma}.
\]

For the proof see Section 7.2.

The following results give partial information about the function \(bp_x \) for split Lagrangian tori. Set \(x_{\min} := \min \{x_1, \ldots, x_n\} \). Denote by \(e_1, \ldots, e_n \) the standard generators of \(H^1(T^n(x)) \cong (\mathbb{Z}^n)^* \).

Theorem 2.10.

(A) If \(m_i \leq 0 \) for all \(i = 1, \ldots, n \), then

\[
bp_x(m_1, \ldots, m_n) = \text{def}_x(m_1, \ldots, m_n) = +\infty.
\]

Otherwise

\[
\min_{i, m_i > 0} x_i/m_i \leq bp_x(m_1, \ldots, m_n).
\]

(B) If \(x_1 = \ldots = x_n =: x \) and \(k \in \mathbb{N} \), then

\[
bp_x(k, \ldots, k) = \text{def}_x(k, \ldots, k) = x/k.
\]

(C) Let \(l \in \mathbb{N} \) and assume \(x_{\min} < x_i/l \). Then for all \(k \in \mathbb{N} \) with \(k \leq l \),

\[
bp_x(ke_i) = \text{def}_x(ke_i) = +\infty.
\]

For the proof see Section 7.3. Combining Theorem 2.9 and Theorem 2.10 we obtain for certain split tori \(T^n(x) \) the following result.
Corollary 2.11. Assume $x_2 = \ldots = x_n =: y$ and let $0 < x_1 \leq 2y/(n + 2)$ if n is even and $0 < x_1 \leq 2y/(n + 1)$ if n is odd. For $m_1 \in \mathbb{N}$ let the integer $m_2 = \ldots = m_n \leq ym_1/x_1$. Then we have

$$bp_x(m_1, \ldots, m_n) = def_x(m_1, \ldots, m_n) = x_1/m_1.$$

In particular, for any $m_1 \in \mathbb{N}$

$$bp_x(m_1e_1) = def_x(m_1e_1) = x_1/m_1.$$

Furthermore assume for $l \in \mathbb{N}$ that $x_1 < y/l$. Then for all $1 \leq k \leq l$ and all $2 \leq i \leq n$ we have

$$bp_x(ke_i) = def_x(ke_i) = +\infty.$$

2.5 Lagrangian tori in complex projective spaces

Let $M = \mathbb{C}P^n$ and let ω be the standard Fubini-Study symplectic form on $\mathbb{C}P^n$ normalized so that $\int_{\mathbb{C}P^n} \omega = 1$.

Theorem 2.12. Let $L \subset (\mathbb{C}P^n, \omega)$ be a Lagrangian torus and $\alpha \in H^1(L)$. Consider $[\omega]_t := [\omega]_L - t\partial\alpha \in H^2(\mathbb{C}P^n, L; \mathbb{R})$ for $t \geq 0$. If there exists a $C > 0$ such that $[\omega]_C \in H^2(\mathbb{C}P^n, L; \frac{1}{n}\mathbb{Z})$, then

$$def_L(\alpha) \leq C.$$

For the proof see Section 8.1.

We provide a precise statement in the case of Lagrangian torus fibers. Consider the standard Hamiltonian \mathbb{T}^n-action on $\mathbb{C}P^n$ and denote its moment map by $\Phi : \mathbb{C}P^n \rightarrow (\mathbb{R}^n)^*$. Its image is the simplex

$$\Delta := \{(x_1, \ldots, x_n) \in (\mathbb{R}^n)^* \mid x_1, \ldots, x_n \geq 0, \ 0 \leq x_1 + \ldots + x_n \leq 1\}.$$

As in Section 2.3, for $x \in \text{Int} \Delta$ denote $L_x := \Phi^{-1}(x)$ the corresponding Lagrangian torus fiber of Φ and set

$$def_x(\alpha) := def_{L_x}(\alpha), \ bp_x(\alpha) := bp_{L_x}(\alpha)$$

for each $\alpha \in (\mathbb{Z}^n)^* \cong H^1(L_x)$.

By Theorem 2.4 for all $\alpha \in (\mathbb{Z}^n)^*$

$$l_x(\alpha) \leq bp_x(\alpha). \hspace{1cm} (4)$$

For certain $\alpha \in (\mathbb{Z}^n)^*$ and $x \in \text{Int} \Delta$ we obtain an upper bound on $def_x(\alpha)$ from Theorem 2.12.
Namely, define \(d_\mathbf{x}(\alpha) \) as the smallest \(t > 0 \) for which \(\mathbf{x} - t\alpha \in \frac{1}{n} \cdot (\mathbb{Z}^n)^* \) and let \(J(\mathbf{x}, \alpha) \) be the open segment of the same open ray \(\mathbf{x} - t\alpha, t \in (0, +\infty) \), as above connecting \(\mathbf{x} \) and \(\mathbf{x} - d_\mathbf{x}(\alpha)\alpha \):

\[
J(\mathbf{x}, \alpha) := \{ \mathbf{x} - t\alpha, \ 0 < t < d_\mathbf{x}(\alpha) \}.
\]

If no such \(t \) exists, set \(d_\mathbf{x}(\alpha) := +\infty \) and let \(J(\mathbf{x}, \alpha) \) be the whole open ray. In other words, \(J(\mathbf{x}, \alpha) \) is the open part of the segment of the ray connecting the origin \(\mathbf{x} \) of the ray to the closest point of the lattice \(\frac{1}{n} \cdot (\mathbb{Z}^n)^* \) on the ray.

Corollary 2.13. With the setup as above,

\[
def_\mathbf{x}(\alpha) \leq d_\mathbf{x}(\alpha).
\]

If \(l_\mathbf{x}(\alpha) = d_\mathbf{x}(\alpha) \) the lower and the upper bounds (4), (5) yield \(def_\mathbf{x}(\alpha) = d_\mathbf{x}(\alpha) = l_\mathbf{x}(\alpha) = bp_\mathbf{x}(\alpha) \). For instance, this happens when the intervals \(I(\mathbf{x}, \alpha) \) and \(J(\mathbf{x}, \alpha) \) coincide. Thus, we get the following corollary.

Corollary 2.14. Assume that \(\mathbf{x} = \kappa \alpha \) for some \(\kappa > 0 \), \(\alpha \in H^1(L_\mathbf{x}) \), and that the open interval \(\{ t\mathbf{x}, \ 0 < t < \kappa \} \), does not contain points of the lattice \(\frac{1}{n} \cdot (\mathbb{Z}^n)^* \).

Then this interval coincides with \(I(\mathbf{x}, \alpha) \) and \(J(\mathbf{x}, \alpha) \) and therefore

\[
def_\mathbf{x}(\alpha) = bp_\mathbf{x}(\alpha) = l_\mathbf{x}(\alpha) = d_\mathbf{x}(\alpha) = \kappa.
\]

\[\square\]

2.6 Lagrangian tori in \(\mathbb{S}^2 \times \mathbb{S}^2 \)

Let \((\mathbb{S}^2, \sigma) \) be the standard symplectic sphere with normalized symplectic area \(\int_{\mathbb{S}^2} \sigma = 1 \).

Theorem 2.15. Let \(L \subset (\mathbb{S}^2 \times \mathbb{S}^2, \sigma \oplus \sigma) \) be a Lagrangian torus and \(\alpha \in H^1(L) \). Consider \([\omega]_t := [\omega]_L - t\partial \alpha \in H^2(\mathbb{S}^2 \times \mathbb{S}^2, L; \mathbb{R}) \) for \(t \geq 0 \). If there exists a \(C > 0 \) such that \([\omega]_C \in H^2(\mathbb{S}^2 \times \mathbb{S}^2, L; \mathbb{Z}) \), then

\[
def_L(\alpha) \leq C.
\]
For the proof see Section 8.2.

We provide a precise statement in the case of Lagrangian torus fibers. Consider the standard Hamiltonian \mathbb{T}^2-action on $S^2 \times S^2$ and denote its moment map by $\Phi : S^2 \times S^2 \to (\mathbb{R}^2)^\ast$. Its image is given by $\Delta := [0,1] \times [0,1]$. As in Section 2.3, for $x \in \text{Int} \, \Delta$ denote $L_x := \Phi^{-1}(x)$ the corresponding Lagrangian torus fiber of Φ and set

$$def_x(\alpha) := def_{L_x}(\alpha), \quad bp_x(\alpha) := bp_{L_x}(\alpha)$$

for each $\alpha \in (\mathbb{Z}^2)^\ast \cong H^1(L_x)$.

By Theorem 2.4, for all $\alpha \in (\mathbb{Z}^2)^\ast$

$$l_x(\alpha) \leq bp_x(\alpha).$$

For certain $\alpha \in (\mathbb{Z}^2)^\ast$ and $x \in \text{Int} \, \Delta$ we obtain an upper bound on $def_x(\alpha)$ from Theorem 2.15.

Namely, define $\rho_x(\alpha)$ as the smallest $t > 0$ for which $x - t\alpha \in (\mathbb{Z}^2)^\ast$ and let $K(x, \alpha)$ be the open segment of the same open ray $x - t\alpha, t \in (0, +\infty)$, as above connecting x and $x - \rho_x(\alpha)\alpha$:

$$K(x, \alpha) := \{x - t\alpha, \ 0 < t < \rho_x(\alpha)\}.$$

If no such t exists, set $\rho_x(\alpha) := +\infty$ and let $K(x, \alpha)$ be the whole open ray. In other words, $K(x, \alpha)$ is the open part of the segment of the ray connecting the origin x of the ray to the closest point of the lattice $(\mathbb{Z}^2)^\ast$ on the ray.

Corollary 2.16. With the setup as above,

$$l_x(\alpha) \leq bp_x(\alpha) \leq def_x(\alpha) \leq \rho_x(\alpha).$$

In particular, if $K(x, \alpha)$ connects x to either of the four vertices of Δ, then $I(x, \alpha) = K(x, \alpha)$ then

$$l_x(\alpha) = bp_x(\alpha) = def_x(\alpha) = \rho_x(\alpha).$$

\[\square\]

2.7 Discussion and open questions

The results above reflect first steps in the study of the invariants bp_L and def_L. In this section we discuss the main difficulty in the current approach and a possible direction of further investigation of these invariants.
As we have already mentioned in the introduction, the lower bounds on \(bp_L \) come from “soft” constructions, while the upper bounds on \(def_L \) are based on “rigid” symplectic methods – foremost, on strong results yielding the existence of pseudo-holomorphic disks with boundary on Lagrangian submanifolds appearing in appropriate Lagrangian isotopies of \(L \). Unfortunately, it seems that these strong rigidity results are not strong enough to get upper bounds on \(def_L(\alpha) \) for many \(\alpha \) even for the basic examples of Lagrangian tori considered above. The (well-known) difficulty comes from the fact that the pseudo-holomorphic disks in a given relative homology class of \(L \) in \(M \) may not persist in a Lagrangian isotopy \(\psi = \{\psi_t : L \to M\} \) of \(L \) (since bubbling-off of pseudo-holomorphic disks is a codimension-1 phenomenon), which makes it very difficult to track, as \(t \) changes, the relative homology classes of \(\psi_t(L) \) carrying the disks and, accordingly, the symplectic areas of these disks. (As above, we use the Lagrangian isotopy to identify the relative homology groups of all \(\psi_t(L) \)). In our case the difficulty is compounded by the need to track the pseudo-holomorphic disks and their areas for an arbitrary Lagrangian isotopy \(\psi \) of \(L \) satisfying the cohomological condition \(\square \), with no a priori geometric information about it. Such a Lagrangian isotopy \(\psi \) typically involves non-monotone Lagrangians which limits even more the control over the disks and their areas.

Thus, the progress on upper bounds for \(def_L \) depends on getting more precise information on pseudo-holomorphic/symplectic disks with boundary on (possibly non-monotone) Lagrangian submanifolds Lagrangian isotopic to \(L \).

Here is an example of possible additional helpful information on the disks. We will present it in the case of Lagrangian tori in the standard symplectic \(\mathbb{C}^2 \).

Assume there is a way to associate to any non-monotone Lagrangian torus \(L \subset \mathbb{C}^2 \) an ordered integral basis \(B_L \) of \(H_2(\mathbb{C}^2, L) \) with the following properties:

(a) For any Lagrangian isotopy \(L_t \) of \(L \) among non-monotone Lagrangian tori the following conditions hold:

- the bases \(B_{L_t} \) for different \(t \) are all identified with each other under the isomorphisms between the groups \(H_2(\mathbb{C}^2, L_t) \) defined by the Lagrangian isotopy;

- the symplectic areas of the elements of \(B_{L_t} \) are positive and change continuously with \(t \).
(b) For $L = T^2(x_1, x_2)$, $x_1 < x_2$, the basis B_L is the standard basis of $H_2(\mathbb{C}^2, T^2(x_1, x_2))$.

If such bases exist, a rather straightforward argument would allow to strengthen Corollary 2.6 and show that if $0 < x_1 \leq x_2$ and $nx_1 - mx_2 \leq 0$, $m > 0$, then

$$x_1/m = bp_x(m, n) = \text{def}_x(m, n).$$

This, in turn, would allow to strengthen Corollary 2.7 and show that for a monotone split Lagrangian torus $T^2(x, x)$ one has

$$bp_x(m, n) = \text{def}_x(m, n) = \frac{x}{\max\{0, m, n\}}$$

for all $m, n \in \mathbb{Z}$.

The question about the existence of a basis B_L is motivated by the folklore conjecture that any non-monotone torus L in \mathbb{C}^2 is Hamiltonian isotopic to a split torus $T^2(x_1, x_2)$.

Indeed, assume the conjecture is true. Then, by a theorem of Y. Chekanov [4], the ordered pair (x_1, x_2) is uniquely determined by L, as long as we require $x_1 < x_2$. A Hamiltonian isotopy between L and $T^2(x_1, x_2)$ identifies the standard basis of $H_2(\mathbb{C}^2, T(x_1, x_2))$ with an integral basis B_L of $H_2(\mathbb{C}^2, L)$. The basis B_L does not depend on the choice of the Hamiltonian isotopy (since any Hamiltonian isotopy of \mathbb{C}^2 preserving $T^2(x_1, x_2)$ as a set acts trivially on the homology of $T^2(x_1, x_2)$, by a theorem of M.-L. Yau [30]). It is not hard to check that B_L satisfies (a) and (b).

The existence of bases B_L satisfying (a) and (b) is, of course, much weaker than the conjecture and, accordingly, might be easier to prove and to generalize to higher dimensions.

3 The invariant bp_L and its properties

The definition of bp_L is based on the following construction related to the Poisson bracket.

3.1 Poisson bracket invariants

Let (M^{2n}, ω) be a connected symplectic manifold. Our sign convention for the Poisson bracket on (M, ω) will be as follows. For $G \in C^\infty(M)$ define a vector field $\text{sgrad} G$ by $i_{\text{sgrad} G} \omega = -dG$. Given $F, G \in C^\infty(M)$, define the Poisson bracket $\{F, G\}$ by

$$\{F, G\} := \omega(\text{sgrad} G, \text{sgrad} F) = dF(\text{sgrad} G) = -dG(\text{sgrad} F) =$$
\[L_{\text{grad}}GF = -L_{\text{grad}}FG. \]

We say that sets \(X_0, X_1, Y_0, Y_1 \subset M \) form an admissible quadruple, if they are compact and \(X_0 \cap X_1 = Y_0 \cap Y_1 = \emptyset \).

Assume \(X_0, X_1, Y_0, Y_1 \subset M \) is an admissible quadruple. Recall from [11] (cf. [3]) the following definition:

\[
pb^+_4(X_0, X_1, Y_0, Y_1) := \inf_{(F,G) \in \mathcal{F}} \max_{M} \{F, G\},
\]

where \(\mathcal{F} = \mathcal{F}(X_0, X_1, Y_0, Y_1) \) is the set of all pairs \((F, G)\), \(F, G \in C^\infty_c(M) \), such that

\[
F|_{X_0} \leq 0, \quad F|_{X_1} \geq 1, \quad G|_{Y_0} \leq 0, \quad G|_{Y_1} \geq 1.
\]

One can show (see [11], [3]) that \(\mathcal{F} \) can be replaced in the definition of \(pb^+_4 \) by a smaller set \(\mathcal{F}' = \mathcal{F}'(X_0, X_1, Y_0, Y_1) \) of pairs \((F, G)\), \(F, G \in C^\infty_c(M) \), for which the inequalities in (6) are replaced by equalities on some open neighborhoods of the sets \(X_0, X_1, Y_0, Y_1 \).

If it is clear from the context what \(X_0, X_1, Y_0, Y_1 \) are meant, we will omit the corresponding indices and sets in the notation for \(pb^+_4 \), \(\mathcal{F} \), \(\mathcal{F}' \).

The number \(1/pb^+_4(X_0, X_1, Y_0, Y_1) \) has the following dynamical interpretation [11] (cf. [3]):

Consider the set \(\mathcal{G} \) of complete Hamiltonians \(G : M \to \mathbb{R} \) such that

\[
\Delta_G := \min_{Y_1} G - \max_{Y_0} G > 0.
\]

For each such \(G \) define \(T_G \in (0, +\infty] \) as the supremum of all \(t > 0 \) such that there is no trajectory of the Hamiltonian flow of \(G \) of time-length \(\leq t\Delta_G \) from \(X_0 \) to \(X_1 \) (such a trajectory is called a chord of \(G \)). Then

\[
\sup_{G \in \mathcal{G}} T_G = 1/pb^+_4(X_0, X_1, Y_0, Y_1).
\]

Thus, \(1/pb^+_4(X_0, X_1, Y_0, Y_1) = +\infty \) if and only if there exists a complete Hamiltonian \(G : M \to \mathbb{R} \) with \(\min_{Y_1} G - \max_{Y_0} G > 0 \) that has no chords from \(X_0 \) to \(X_1 \).

3.2 The invariant \(bp_L \) for general Lagrangian submanifolds

The \(pb^+_4 \)-invariant of admissible quadruples can be used to define a symplectic invariant of Lagrangian submanifolds fibered over the circle in the following way.
Let $L \subset (M, \omega)$ be a closed, connected Lagrangian submanifold admitting a fibration over \mathbb{S}^1. Let $\mathcal{I}'(L)$ denote the set of smooth fibrations $L \to \mathbb{S}^1$. The right action of $\text{Diff}_0(L)$ defines an equivalence relation on $\mathcal{I}'(L)$ and we denote the resulting quotient set by $\mathcal{I}(L)$. Now slice \mathbb{S}^1 into 4 consecutive closed arcs $\gamma_1, \gamma_2, \gamma_3, \gamma_4$ in the counterclockwise order. For a chosen smooth fibration $f : L \to \mathbb{S}^1$ representing a class $[f] \in \mathcal{I}(L)$ we define

$$X_0 := f^{-1}(\gamma_1), \quad X_1 := f^{-1}(\gamma_3), \quad Y_0 := f^{-1}(\gamma_4), \quad Y_1 := f^{-1}(\gamma_2).$$

Roughly speaking, we slice L into four parts along cuts parallel to a fiber of f—see Figure 4.

![Figure 4: The four sets X_0, X_1, Y_0, Y_1 arising from a fibration f](image)

One easily sees that $X_0, X_1, Y_0, Y_1 \subset M$ is an admissible quadruple and $X_0 \cup X_1 \cup Y_0 \cup Y_1 = L$. We call such a quadruple an admissible quadruple associated to f. We set

$$bp_L([f]) := 1/pb^+_4(X_0, X_1, Y_0, Y_1).$$

If $pb^+_4(X_0, X_1, Y_0, Y_1) = 0$, we set $bp_L([f]) := +\infty$. Thus, $bp_L([f])$ takes values in $(0, +\infty)$.

Equivalently, $bp_L([f])$ can be described as the infimum of all $T > 0$ such that for any complete Hamiltonian $G : M \to \mathbb{R}$ satisfying $G|_{Y_0} \leq 0$, $G|_{Y_1} \geq 1$, there exists a chord of G from X_0 to X_1 of time-length $\leq T$. If no such T exists, we set $bp_L([f]) := +\infty$. In applications we will often prove a lower bound $T \leq bp_L([f])$ by constructing for any $\varepsilon > 0$ a complete Hamiltonian G that satisfies $G|_{Y_0} \leq 0$, $G|_{Y_1} \geq 1$ and has no chords from X_0 to X_1 of time-length $< T - \varepsilon$.

Remark 3.1. The letters in the notation bp stand for the “Poisson bracket” and their inverse order (“b” before “p”) reflects the fact that in the definition of bp we take the inverse of the maximum of the Poisson bracket.
Proposition 3.2. $bp_L([f])$ is well-defined – i.e. it does not depend on the choice of representative of $[f] \in I(L)$ and the choice of division of \mathbb{S}^1 into 4 arcs.

Proof. Let $f : L \to \mathbb{S}^1$ be a smooth fibration. We first show that for $\varphi \in \text{Diff}_0(L)$ the bp_L-invariants of f and $f \circ \varphi$ are equal.

Note that any $\varphi \in \text{Diff}_0(L)$ is a time-1 flow of a time-dependent vector field on L. Denote this vector field on L by X_t and the corresponding flow by ϕ_t. Let $W \cong U \subset T^*L$ be a Weinstein neighborhood of L in M. Identify L with the 0-section in U. We can extend X_t in U to a Hamiltonian vector field as follows: in canonical coordinates (q,p) we define the Hamiltonian $H_t : U \to \mathbb{R}$ by setting $H_t(q,p) = p(X_t(q))$. A short calculation reveals that the Hamiltonian vector field $X_{H_t} \equiv X_t$ on the zero-section. By multiplying H_t with a suitable cut-off function one obtains a time-dependent Hamiltonian with compact support in W such that the induced flow on L coincides with the flow of ϕ_t. Therefore, by invariance of bp_L under symplectomorphism, bp_L does not depend on the choice of representative of a class in $I(L)$.

We now show independence of the choice of four arcs γ_i. Choose four other arcs γ'_i in the same fashion. Note there exists a $\varphi \in \text{Diff}_0(S^1)$ such that $\varphi(\gamma'_i) = \gamma_i$. Using the notation of Section 3.2 this implies that the image of $\varphi \circ f$ and f under g' lie in the same path-connected component of $N'(L)$. Using Proposition 3.3 we see that $\varphi \circ f$ and f represent the same equivalence class in $I(L)$. Hence our definition is independent of choice of arcs.

Clearly, the resulting function $bp_L : I(L) \to (0, +\infty]$ is a symplectic invariant of Lagrangian submanifolds fibered over the circle. We call this function the Poisson-bracket invariant of L.

We now relate $I(L)$ to the integral cohomology of L.

Consider the set $N'(L)$ of all non-singular (that is, non-vanishing) closed 1-forms on L representing non-zero integral classes in $H^1(L)$. It follows easily from Moser’s method [22] that the path-connected components of $N'(L)$ are exactly the orbits of the natural $\text{Diff}_0(L)$-action on $N'(L)$. Let $N(L) = N'(L)/\text{Diff}_0(L)$ be the set of the path-connected components of $N'(L)$.

Define a map $g' : I'(L) \to N'(L)$ as follows. Given an element $f \in I'(L)$, i.e. a fibration $f : L \to \mathbb{S}^1$, let $g'(f)$ be the non-singular 1-form $f^*d\theta$, where $d\theta$ is the standard angle 1-form on \mathbb{S}^1. Clearly, $g' : I'(L) \to N'(L)$ induces a map $g : I(L) \to N(L)$.

Proposition 3.3. The map $g : I(L) \to N(L)$ is invertible.
Proof. Define a map $\rho' : \mathcal{N}'(L) \to \mathcal{I}'(L)$ as follows. Fix a point $x_0 \in L$. Given a non-singular form $\alpha \in \mathcal{N}'(L)$, let $\rho'(\alpha)$ be the map $L \to S^1 = \mathbb{R}/\mathbb{Z}$ that sends each $x \in L$ to $\int_{x_0}^x \alpha \mod 1$. Here the integral is taken along any smooth path from x_0 to x in L (recall that L is assumed to be connected); a different choice of path changes the integral by an integral value, since the cohomology class of α is integral. One easily checks that $\rho'(\alpha)$ is a fibration of L over S^1 and thus ρ' is well-defined. Clearly, ρ' induces a map $\rho : \mathcal{N}(L) \to \mathcal{I}(L)$.

Note that $\varrho' \circ \rho' = 1d$ and for any fibration $f \in \mathcal{I}'(L)$ the fibration $\rho' \circ \varrho(f)$ lies in the $\text{Diff}_0(L)$-orbit of f. This shows that $\rho = \varrho^{-1}$. \hfill \square

Thus bp_L is also defined as a function $bp_L : \mathcal{N}(L) \to (0, +\infty]$.

Note that a path in $\mathcal{N}'(L)$ has to lie in the same cohomology class. This defines a map $\Upsilon : \mathcal{N}(L) \to H^1(L) \setminus 0$. For general L the map Υ does not have to be either surjective or injective – to check whether it is surjective for a particular L is, in general, a very non-trivial task, see \cite{12, 16, 17, 29}. However, if $\dim L \leq 3$, then Υ is injective – see e.g. \cite{19}. Using $\Upsilon : \mathcal{N}(L) \to H^1(L) \setminus 0$ we define a version bp_L of the invariant on the image of Υ in $H^1(L) \setminus 0$: for $\alpha \in \text{im}(\Upsilon) \subset H^1(L) \setminus 0$ we set

$$bp_L(\alpha) := \sup_{A \in \Upsilon^{-1}(\alpha)} bp_L(A),$$

and we extend bp_L to 0 via $bp_L(0) := +\infty$.

Theorem 3.4. Let $L \subset (M, \omega)$ be a closed Lagrangian submanifold admitting fibrations over S^1. Then for all $\alpha \in \text{im}(\Upsilon) \cup \{0\} \subset H^1(L)$ we have

$$bp_L(\alpha) \leq \text{def}_L(\alpha).$$

Proof. For $\alpha = 0$ we have $bp_L(\alpha) = \text{def}_L(\alpha) = +\infty$ verifying the claim.

Let us assume $\alpha \neq 0$. We will prove the inequality $bp_L(\alpha) \leq \text{def}_L(\alpha)$ by a method developed in \cite{3} (cf. \cite{11}). Namely, given $\alpha \in H^1(L)$, consider any smooth fibration $f : L \to S^1$ such that $\Upsilon \circ \varrho([f]) = \alpha$ (see Section 3.2 for the notation). Let X_0, X_1, Y_0, Y_1 be an admissible quadruple used in the definition of $bp_L([f]) = 1/pb^+_1(X_0, X_1, Y_0, Y_1)$. Let $(F, G) \in F'(X_0, X_1, Y_0, Y_1)$. Note that, since $L = X_0 \cup X_1 \cup Y_0 \cup Y_1$ and since F is constant on some neighborhoods of X_0 and X_1 and G is constant on some neighborhoods of Y_0 and Y_1,

$$dF \wedge dG \equiv 0 \text{ on a neighborhood of } L,$$

and thus $FdG|_L$ is a closed 1-form on L. An easy direct computation shows that

$$[FdG|_L] = -\alpha \in H^1(L).$$
Consider the deformation
\[\omega_t := \omega + tdF \wedge dG, \quad t \in \mathbb{R}_{\geq 0}. \]

A direct calculation shows that
\[dF \wedge dG \wedge \omega^{n-1} = -\frac{1}{n} \{ F, G \} \omega^n, \]
and thus
\[\omega^n_t = (1 - t \{ F, G \}) \omega^n. \]

Thus, \(\omega_t \) is symplectic for any \(t \in I_{(F,G)} \), where
\[I_{(F,G)} := \left[0, \frac{1}{\max_M \{ F, G \}} \right). \]

Fix an arbitrary \(t \in I_{(F,G)} \). Since \(F, G \) are compactly supported, the form \(\omega \) can be mapped (using Moser’s method \[22\]) to \(\omega_t \) by a compactly supported isotopy \(\vartheta_t : (M, \omega) \to (M, \omega) \). Since, by \[7\], \(L \) is Lagrangian with respect to \(\omega_t \), we get that \(L_t := \vartheta_t(L) \) is a Lagrangian submanifold of \((M, \omega)\) Lagrangian isotopic to \(L \).

Using \[8\] we readily see that, under the identification \(H^2(M, L; \mathbb{R}) \cong H^2(M, L_t; \mathbb{R}) \) induced by the isotopy, the class \([\omega]_{L_t}\) is identified with \(\omega - t \partial \alpha \). Since this is true for all \(t \in I_{(F,G)} \) we obtain
\[\frac{1}{\max_M \{ F, G \}} \leq \text{def}_L(\alpha). \]

Now the latter inequality holds for all \((F, G) \in \mathcal{F}^\prime(X_0, X_1, Y_0, Y_1)\), this gives us
\[\text{bp}_L([f]) := 1/pb^+_q(X_0, X_1, Y_0, Y_1) \leq \text{def}_L(\alpha). \]

This is true for any \([f]\) such that \(\Upsilon \circ g([f]) = \alpha \), hence
\[\text{bp}_L(\alpha) \leq \text{def}_L(\alpha). \]

\[\square \]

Question 3.5. Do there exist \(L \) and \(\alpha \in \text{im}(\Upsilon) \subset H^1(L) \setminus 0 \) for which \(\text{bp}_L(\alpha) \neq \text{def}_L(\alpha) \)?
3.3 The invariant bp_L for Lagrangian tori

Let us now assume that L is diffeomorphic to a torus \mathbb{T}^n. In this case the map Υ is clearly surjective. If $n \leq 3$, then, as mentioned above, Υ is injective and hence bijective. Thus $bp_L = bp_L$ coincide and by abuse of notation we write the invariant

$$bp_L : H^1(L) \rightarrow \mathbb{R}$$

in these cases (we extend bp_L to 0 via $bp_L(0) := +\infty$).

For a torus of dimension strictly greater than 3 the map Υ may not be injective – for instance, Υ is known to be not injective if $n > 5$, see [18, 26]. In any case, each isotopy class of diffeomorphisms $s : \mathbb{T}^n \rightarrow L$ defines a right inverse $\Psi_s : H^1(L) \setminus 0 \rightarrow \mathcal{N}(L)$ of Υ as follows: given $a \in H^1(L) \setminus 0$, represent $s^* a \in H^1(\mathbb{T}^n) \setminus 0$ by a linear form and let $\Psi_s(a)$ be the path-connected component of $\mathcal{N}'(L)$ containing the pull-back of this linear form under s^{-1}. Thus for any isotopy class of diffeomorphisms $s : \mathbb{T}^n \rightarrow L$ we can define

$$bp_L^s := bp_L \circ \Psi_s : H^1(L) \rightarrow \mathbb{R},$$

where we again extend bp_L to 0 via $bp_L^s(0) := +\infty$. Clearly,

$$bp_L^s \leq bp_L. \quad (9)$$

In case the class of parametrizations $s : \mathbb{T}^n \rightarrow L$ is clear we sometimes write bp_L^s by abuse of notation. For instance, if L is a regular fiber of a Hamiltonian \mathbb{T}^n-action there is an obvious preferred isotopy class of diffeomorphisms $\mathbb{T}^n \rightarrow L$.

Theorem 3.4 and (9) yield

$$bp_L \leq def_L. \quad (10)$$

Remark 3.6. The discussion above shows that for a Lagrangian torus L, a cohomology class $\alpha \in H^1(L) \setminus 0$ and an isotopy class s of diffeomorphisms $\mathbb{T}^n \rightarrow L$ we have

$$bp_L^s(\alpha) = 1/pb_L^s(X_0, X_1, Y_0, Y_1).$$

Here (X_0, X_1, Y_0, Y_1) is an admissible quadruple associated to a fibration $f_\alpha : L \rightarrow S^1$ such that the $\text{Diff}_0(L)$-orbit of the 1-form $f_\alpha^* d\theta$ on L (whose cohomology class is α) is $\Psi_s(\alpha) \in \mathcal{N}(L)$. By the same token,

$$bp_L^s(-\alpha) = 1/pb_L^s(X_0, X_1, Y_1, Y_0) = 1/pb_L^s(X_1, X_0, Y_0, Y_1).$$
Indeed, $f_{-\alpha}$ can be constructed by composing f_α with an orientation-reversing diffeomorphism of \mathbb{S}^1.

Now assume $k \in \mathbb{N}$ and $\alpha \in H^1(L)$ is a primitive class (that is, a class which is not a positive integral multiple of another class in $H^1(L)$). Then an admissible quadruple (X_0, X_1, Y_0, Y_1) associated to $f_k \alpha$ can be described in terms of f_α. Namely, divide \mathbb{S}^1 in consecutive closed arcs $\gamma_1, \ldots, \gamma_{4k}$ in the counterclockwise order. Set

$$X_0 := f_\alpha^{-1}\left(\bigcup_{i \equiv 1 \mod 4} \gamma_i \right), \quad X_1 := f_\alpha^{-1}\left(\bigcup_{i \equiv 3 \mod 4} \gamma_i \right),$$

$$Y_0 := f_\alpha^{-1}\left(\bigcup_{i \equiv 0 \mod 4} \gamma_i \right), \quad Y_1 := f_\alpha^{-1}\left(\bigcup_{i \equiv 2 \mod 4} \gamma_i \right).$$

Thus, if $k = 1$, then the sets X_0, X_1, Y_0, Y_1 are diffeomorphic to $\mathbb{T}^{n-1} \times [0, 1]$, while if $k > 1$ the sets are the unions of the same number of disjoint copies of $\mathbb{T}^{n-1} \times [0, 1]$.

3.4 General properties of bp_L and def_L

We list basic properties of bp_L and def_L that will be used further in the paper.

Homogeneity of def_L:

def_L is positively homogeneous of degree -1,

$$def_L(c \alpha) = def_L(\alpha)/c$$

for any $c > 0$ and $\alpha \in H^1(L; \mathbb{R})$.

Question 3.7. Is there an inequality/equality between $bp_L(k \alpha)$ and $k bp_L(\alpha)$ in case L is a Lagrangian torus and $k \in \mathbb{N}$?

Semi-continuity of def_L:

Let $L_j \subset (M, \omega)$, $j \in \mathbb{N}$, be a sequence of Lagrangian submanifolds Lagrangian isotopic to L and converging to $L \subset (M, \omega)$ in the C^1-topology. Then

$$def_L(\alpha) \leq \liminf_{j \to +\infty} def_{L_j}(\alpha) \quad \text{for any } \alpha \in H^1(L; \mathbb{R}). \quad (11)$$

(Here we use the canonical isomorphism $H^1(L_j; \mathbb{R}) \cong H^1(L; \mathbb{R})$). The inequality follows from a parametric version of the Weinstein neighborhood theorem.
Now let us consider the general properties of \(pb_4^+\). We will use the following notation: if \(U \subset M\) (possibly \(U = M\)) is an open set containing an admissible quadruple \(X_0, X_1, Y_0, Y_1\) we will denote by \(pb_4^{U,+}(X_0, X_1, Y_0, Y_1)\) the Poisson bracket invariant defined using functions supported in \(U\).

The following properties of \(pb_4^+\) and \(bp_L\) follow easily from the definitions.

MONOTONICITY OF \(pb_4^+\):

Assume \(U \subset W\) are opens sets in \(M\) and \(X_0', X_1', Y_0', Y_1' \subset U \subset W\) is an admissible quadruple. Let \(X_0, X_1, Y_0, Y_1\) be another admissible quadruple such that \(X_0 \subset X_0', X_1 \subset X_1', Y_0 \subset Y_0', Y_1 \subset Y_1'\). Then

\[
pb_4^{W,+}(X_0, X_1, Y_0, Y_1) \leq pb_4^{U,+}(X_0', X_1', Y_0', Y_1').
\] (12)

SEMI-CONTINUITY OF \(pb_4^+\) AND \(bp_L\):

Suppose that a sequence \(X_0^{(j)}, X_1^{(j)}, Y_0^{(j)}, Y_1^{(j)}, j \in \mathbb{N},\) of ordered collections converges (in the sense of the Hausdorff distance between sets) to a collection \(X_0, X_1, Y_0, Y_1\). Then

\[
\limsup_{j \to +\infty} pb_4^+(X_0^{(j)}, X_1^{(j)}, Y_0^{(j)}, Y_1^{(j)}) \leq pb_4^+(X_0, X_1, Y_0, Y_1).
\]

Accordingly, if \(L_j \subset (M, \omega), j \in \mathbb{N},\) is a sequence of Lagrangian submanifolds Lagrangian isotopic to \(L\) and converging to \(L \subset (M, \omega)\) in the \(C^1\)-topology. Then

\[
bp_L(\alpha) \leq \liminf_{j \to +\infty} bp_{L_j}(\alpha)\text{ for any } \alpha \in H^1(L; \mathbb{R}).
\] (13)

(Here we use the canonical isomorphism \(H^1(L_j; \mathbb{R}) \cong H^1(L; \mathbb{R})\)).

BEHAVIOR OF \(pb_4^+\) AND \(bp_L\) UNDER PRODUCTS:

Suppose that \(M\) and \(N\) are connected symplectic manifolds. Equip \(M \times N\) with the product symplectic form. Let \(K \subset N\) be a compact subset. Then for every collection \(X_0, X_1, Y_0, Y_1\) of compact subsets of \(M\)

\[
pb_4^{M \times N, +}(X_0 \times K, X_1 \times K, Y_0 \times K, Y_1 \times K) \leq pb_4^{M, +}(X_0, X_1, Y_0, Y_1).
\] (14)

The following product property of \(bp_L\) follows immediately from (14):

Proposition 3.8. Assume \(L_i \subset (M_i, \omega_i), i = 1, 2,\) are Lagrangian tori and \(\alpha \in H^1(L_1)\). Consider the Lagrangian submanifold \(L_1 \times L_2 \subset (M_1 \times M_2, \omega_1 \oplus \omega_2)\).
ω_2) and the cohomology class $\alpha \times g \in H^1(L_1 \times L_2)$, where g is a generator of $H^0(L_2)$. Let $s_i : \mathbb{T}^n \to L_i$ be two isotopy classes of diffeomorphisms. Then

$$bp^{s_1 \times s_2}_{L_1 \times L_2} (\alpha \times g) \geq bp^{s_1}_{L_1} (\alpha).$$

\[\square\]

Behavior of pb_i^+ under symplectic reduction:

The following property of pb_i^+ did not appear in [3], [11], but is proved similarly to (14).

Namely, let (M, ω) be a connected, not necessarily closed, symplectic manifold. Let $\Sigma \subset (M, \omega)$ be a coisotropic submanifold. We do not assume that Σ is a closed subset of M. Assume that the characteristic foliation of Σ defines a proper fibration $\pi : \Sigma \to (N, \eta)$ over a (not necessarily closed) symplectic manifold (N, η).

Let $X_0, X_1, Y_0, Y_1 \subset N$ be an admissible quadruple (in particular, the sets are compact). Assume

$$\tilde{X}_0 \subset \pi^{-1}(X_0), \tilde{X}_1 \subset \pi^{-1}(X_1), \tilde{Y}_0 \subset \pi^{-1}(Y_0), \tilde{Y}_1 \subset \pi^{-1}(Y_1)$$

are some compact sets in M. Then $\tilde{X}_0, \tilde{X}_1, \tilde{Y}_0, \tilde{Y}_1 \subset M$ is an admissible quadruple. Moreover,

$$pb^{M,+}_{i} (\tilde{X}_0, \tilde{X}_1, \tilde{Y}_0, \tilde{Y}_1) \leq pb^{N,+}_{i} (X_0, X_1, Y_0, Y_1).$$

(15)

Indeed, let F, G be functions on N such that $(F, G) \in \mathcal{F}_N(X_0, X_1, Y_0, Y_1)$. Consider the functions $F \circ \pi, G \circ \pi$ on Σ. Since $\pi : \Sigma \to N$ is proper and F, G are compactly supported, so are $F \circ \pi, G \circ \pi$. Now cut off the functions $F \circ \pi, G \circ \pi$ in the isotropic direction normal to Σ. As a result we get functions $\chi(r^2)(F \circ \pi), \chi(r^2)(G \circ \pi)$ with compact support lying in a tubular neighborhood U of Σ – here r is a radial function on the isotropic normal bundle to Σ with respect to a Riemannian metric on that bundle and $\chi : \mathbb{R} \to [0, 1]$ is a smooth function supported near 0 and satisfying $\chi(0) = 1$.

Extend the two functions from U to M by zero and denote the resulting functions on M by \tilde{F}, \tilde{G}. One easily checks that $(\tilde{F}, \tilde{G}) \in \mathcal{F}_M(\tilde{X}_0, \tilde{X}_1, \tilde{Y}_0, \tilde{Y}_1)$ and $\max_M \{\tilde{F}, \tilde{G}\} = \max_N \{F, G\}$, which yields (15).

In the case when Σ is a fiber of the moment map of a Hamiltonian action of a Lie group H on M the reduced space $N = \Sigma/H$ may not be a smooth symplectic manifold but a symplectic orbifold, which brings us to the following discussion.
The Poisson bracket invariant for symplectic orbifolds:

Recall (see e.g. [21]) that the notions of smooth functions, vector fields and differential forms can be extended to orbifolds. In particular, there is a well-defined notion of an orbifold symplectic form; an orbifold equipped with such a form is called a symplectic orbifold. Accordingly, there is a notion of the Poisson bracket of two smooth functions on a symplectic orbifold and the definition of pb^+_4 can be carried over literally to symplectic orbifolds.

It is easy to check that the proof of (15) goes through in the case when the reduced symplectic space \tilde{N} is an orbifold.

The proof of the lower bound for $k \in \mathbb{N}$,

$$A_\pm/k \leq b_pL(ke_\pm),$$

from Theorem 2.2 can also be modified for the orbifold case.

Indeed, for the proof of (16) one needs to find an appropriate pair of functions F,G on M such that $\max_M \{F,G\}$ is arbitrarily close to k/A_\pm. The singular points of a 2-dimensional symplectic orbifold M form a discrete subset $S \subset M$. One can cut out small disjoint closed topological disks around the points of S (denote their union by D) and instead glue in smooth disks of the same area (denote their union by D') to get a smooth symplectic surface $M' = (M \setminus D) \cup D'$ of the same area B. The construction in the proof of Theorem 2.2 (cf. [23] Thm. 7.5.3) can be easily adjusted to produce the required F,G on M' so that F,G are constant on a neighborhood of D', as long as D and D' are sufficiently small. Then F,G can be extended by constants from $M \setminus D = M' \setminus D'$ to M, yielding the needed smooth functions on the orbifold M.

Symplectic reduction and b_pL:

Let (M^{2n}, ω) be a connected, not necessarily closed, symplectic manifold. Let $\Sigma^{n+1} \subset (M, \omega)$ be a smooth coisotropic submanifold. We do not assume that Σ is a closed subset of M. Assume that the characteristic foliation of Σ defines a proper fibration $\pi : \Sigma \to (N, \eta)$ over a (not necessarily closed) 2-dimensional symplectic orbifold (N^2, η). Let $L \subset (M, \omega)$ be a Lagrangian torus lying in Σ and s an isotopy class of diffeomorphisms $\mathbb{T}^n \to L$. Assume that $\pi|_L : L \to \Gamma$ is a fiber bundle over a simple closed curve $\Gamma := \pi(L)$ lying in the non-singular part of N and dividing N into two domains of areas A_+ and A_-. Equip Γ with an orientation induced by the orientation of the domain of area A_+. The orientation of Γ defines a positive generator $e \in H^1(\Gamma) \cong \mathbb{Z}$.

29
Assume that $k \in \mathbb{N}$ and $\alpha \in H^1(L)$ is a primitive class. Assume that there exists an orientation-preserving diffeomorphism $S^1 \rightarrow \Gamma$ that identifies the fiber bundle $\pi|_L : L \rightarrow \Gamma$ with a fibration $f_\alpha : L \rightarrow S^1$ associated to s and α – see Remark 3.6. Then an admissible quadruple associated to a fibration $f_k\alpha$ can be described in terms of f_α as follows (see Remark 3.6).

Divide $S^1 \cong \Gamma$ in $4k$ consecutive closed arcs $\gamma_1, \ldots, \gamma_{4k}$ numbered in the counterclockwise order. Set
\[
X_0 := \bigcup_{i \equiv 1 \mod 4} \gamma_i, \quad X_1 := \bigcup_{i \equiv 3 \mod 4} \gamma_i,
\]
\[
Y_0 := \bigcup_{i \equiv 0 \mod 4} \gamma_i, \quad Y_1 := \bigcup_{i \equiv 2 \mod 4} \gamma_i,
\]
and furthermore
\[
\hat{X}_0 := \pi^{-1}(X_0) \cap L = f_\alpha^{-1}(X_0), \quad \hat{X}_1 := \pi^{-1}(X_1) \cap L = f_\alpha^{-1}(X_1),
\]
\[
\hat{Y}_0 := \pi^{-1}(Y_0) \cap L = f_\alpha^{-1}(Y_0), \quad \hat{Y}_1 := \pi^{-1}(Y_1) \cap L = f_\alpha^{-1}(Y_1).
\]
By Remark 3.6 $(\hat{X}_0, \hat{X}_1, \hat{Y}_0, \hat{Y}_1)$ is an admissible quadruple associated to $f_k\alpha$.

Combining this observation with (12) and (15) (in the orbifold case), we immediately get:
\[
bp_s^{k\alpha} = \frac{1}{pb_4^{M,+}}(\hat{X}_0, \hat{X}_1, \hat{Y}_0, \hat{Y}_1) \geq \frac{1}{pb_4^{N,+}}(X_0, X_1, Y_0, Y_1) = bp_\Gamma\Gamma\cdot ke).
\]
In view of
\[
bp_s^{\alpha}(-k\alpha) = \frac{1}{pb_4^{M,+}}(\hat{X}_0, \hat{X}_1, \hat{Y}_0, \hat{Y}_1)
\]
(see Remark 3.6) and (16) (in the orbifold case) this yields the following claim.

Proposition 3.9. With the setup as above, for any $k \in \mathbb{N}$ we have
\[
bp_s^{k\alpha}(k\alpha) \geq A_+/k
\]
and
\[
bp_s^{k\alpha}(-k\alpha) \geq A_-/k.
\]
4 Lagrangian tori in symplectic surfaces – proofs

Proof of Theorem 2.2.

The upper bound \(\text{def}_L(ke_\pm) \leq A_\pm/k \) follows from Theorem 2.1 (cf. the proof of [3, Thm. 1.20]). Since, by Theorem 3.4 \(\text{bp}_L(ke_\pm) \leq \text{def}_L(ke_\pm) \), it remains to prove that \(\text{bp}_L(ke_\pm) \geq A_\pm/k \).

We first consider a model situation. Let \(\varepsilon, A > 0 \) and denote by \((x, y) \in \mathbb{R}^2\) the coordinates and by \(\pi : \mathbb{R}^2 \rightarrow \mathbb{R} \) the projection onto the \(x \)-axis, \(\pi(x, y) = x \).

Define \(Q(A) := [0, A] \times [0, 1] \subset Q_\varepsilon(A) := (-\varepsilon, A + \varepsilon) \times (-\varepsilon, 1 + \varepsilon) \subset \mathbb{R}^2 \).

Label three sides of \(Q(A) \) as follows:

\(\hat{X}_0 = [0, A] \times \{0\}, \quad \hat{Y}_0 = \{0\} \times [0, 1], \quad \hat{Y}_1 = \{A\} \times [0, 1] \).

For the remaining side \([0, A] \times \{1\}\) we choose a partition into \(4k - 3 \) closed intervals \(\gamma_1, \ldots, \gamma_{4k-3} \), ordered from right to left, such that for \(i \equiv 0, 2, 3 \mod 4 \) the intervals \(\gamma_i \) have length \(\varepsilon \), the interval \(\gamma_1 \) has length \(\frac{A}{k} \) and the remaining intervals have length \(\frac{A}{k} - 3\varepsilon \). Set

\[
X_0 := \hat{X}_0 \cup \bigcup_{i \equiv 0 \mod 4} \gamma_i, \quad X_1 := \bigcup_{i \equiv 1 \mod 4} \gamma_i,
\]

\[
Y_0 := \hat{Y}_0 \cup \bigcup_{i \equiv 2 \mod 4} \gamma_i, \quad Y_1 := \hat{Y}_1 \cup \bigcup_{i \equiv 0 \mod 4} \gamma_i.
\]

Now choose a piecewise-linear function \(G_\varepsilon : Q_\varepsilon(A) \rightarrow [0, 1] \) that satisfies:

(i) \(G_\varepsilon|_{Y_0} = 0, \ G_\varepsilon|_{Y_1} = 1 \),

(ii) \(G_\varepsilon \) only depends on \(x \) in \(Q(A) \),

(iii) \(G_\varepsilon \) has compact support.

One can choose \(G_\varepsilon \) to satisfy \(\partial_x G_\varepsilon \leq 1/(\frac{A}{k} - 3\varepsilon) \) on \(\pi(X_1) \times [0, 1] \subset Q(A) \), see for example Figure 5. Therefore there exists a smooth approximation \(G \) that satisfies (i), (ii) and (iii) and has slope \(\partial_x G < 1/(\frac{A}{k} - 4\varepsilon) \) on \(\pi(X_1) \times [0, 1] \). This implies that all chords of \(G \) from \(X_0 \) to \(X_1 \) have time-length \(T > \frac{A}{k} - 4\varepsilon \). Since \(\varepsilon > 0 \) can be chosen arbitrarily small, by the dynamical characterization of \(\text{bp}_L \) in Section 3.2 we have \(1/\text{pb}_L^+(X_0, X_1, Y_0, Y_1) \geq \frac{A}{k} \).

We now construct a specific neighborhood of \(L \subset M \). We first treat the case where \(L \) is a boundary component of \(M_+ \). Note that the boundary orientation of \(L \) corresponds to \(e_+ \).

31
For a small $\delta > 0$ choose $A = A_+ - \delta$. Let $D_1, \ldots, D_n \subset \text{Int} \ Q(A)$ denote a non-intersecting finite union of closed and open disks of total symplectic area less than δ. Then for a sufficiently small $\varepsilon > 0$ and for an appropriate choice of disks D_i there exists an open neighborhood $U_+ \subset M$ of L that is symplectomorphic to $Q_\varepsilon(A) \setminus D_1 \cup \ldots \cup D_n$ and such that L with the orientation e_+ gets mapped arbitrarily close to $\partial Q(A)$ with the standard boundary orientation. If $\delta > 0$ is chosen small enough, one can choose the disks D_i to lie in the region $\pi(Y_0) \times [0, 1] \subset Q(A)$. Thus we can extend the function G from the model situation to the symplectic manifold M by 0. Then all chords of G from X_0 to X_1 have time-length $T > \frac{4}{k} - 4\varepsilon$. Since $\varepsilon, \delta > 0$ can be chosen arbitrarily small, together with the semi-continuity and symplectic invariance properties of pb^+_1 (see Section 3.4) this implies that $bp_L(ke_+) \geq A_+/k$.

When L with the orientation e_- is a boundary component of M_- a similar construction gives us the lower bound $bp_L(ke_-) \geq A_-/k$. This completes the proof. \hfill \square

Proof of Theorem 3.3.

The case $k = \pm 1$ was shown in [25]. We generalize this construction to
arbitrary $k \in \mathbb{Z}$.

By Remark 3.6 we see that an admissible quadruple associated to ke is given by dividing $L \cong S^1$ into $4k$ consecutive closed arcs and labeling them with $X_0, Y_1, \bar{X}_1, \bar{X}_1$ following the orientation of L in the case $k > 0$ and else following the opposite orientation in the case $k < 0$. Note that, by Proposition 3.2, $bp_L(ke)$ does not depend on the choice of subdivision as long as the order of the $4k$ arcs is preserved.

For $\varepsilon > 0$ consider the symplectic annulus,

$$(Z_\varepsilon = (-\varepsilon, \varepsilon) \times [-1, 1]/\sim, \ dx \wedge dy)$$

where we identify $(x, -1) \sim (x, 1)$. Partition the subset $(-\varepsilon, \varepsilon) \times \{0\}$ into $4k+1$ consecutive intervals $\gamma_1, \ldots, \gamma_{4k+1}$ respecting the standard orientation on $(-\varepsilon, \varepsilon)$. Set

$$\hat{X}_0 := \bigcup_{i \equiv 1 \text{ mod } 4} \gamma_i, \quad \hat{X}_1 := \bigcup_{i \equiv 3 \text{ mod } 4} \gamma_i,$$

$$\hat{Y}_0 := \bigcup_{i \equiv 0 \text{ mod } 4} \gamma_i, \quad \hat{Y}_1 := \bigcup_{i \equiv 2 \text{ mod } 4} \gamma_i.$$

One can easily construct functions $F, G : Z_\varepsilon \to [0, 1]$ such that $(F, G) \in F'(\hat{X}_0, \hat{X}_1, \hat{Y}_0, \hat{Y}_1)$ and $\{F, G\} \equiv 0$, namely choose F and G to only depend on the x-coordinate.

The Lagrangian $L \subset M$ is not a separating curve. Thus there exists an embedded loop $\gamma \subset M$ that intersects L exactly once. Furthermore one can find a tubular neighborhood N of γ that is symplectomorphic to Z_ε for $\varepsilon > 0$ small enough. The symplectomorphism can be chosen to map γ to $\{0\} \times [-1, 1]$ and $L \cap N$ to $(-\varepsilon, \varepsilon) \times \{0\}$.

We now make a specific choice of admissible quadruple X_0, X_1, Y_0, Y_1 on L. Namely choose $X_0 \subset L$ such that $L \setminus N \subset X_0$ and $X_0 \cap N = \hat{X}_0$, $X_1 \cap N = \hat{X}_1$, $Y_0 \cap N = \hat{Y}_0$ and $Y_1 \cap N = \hat{Y}_1$ (or, if the order requires, use the reflection of $\hat{X}_0, \hat{X}_1, \hat{Y}_0, \hat{Y}_1 \subset Z_\varepsilon$ along the y-axis). Since F, G have compact support in Z_ε, we may pull back the functions to M and obtain functions on M that satisfy (6), have compact support and Poisson-commute. This proves the theorem.

5 Toric orbits in symplectic toric manifolds – proofs

In this section we prove Theorem 2.4.
Set \(k\alpha := (m_1, \ldots, m_n) \in (\mathbb{Z}^n)^* = H^1(T^n) \), where \(\alpha \) is a primitive class and \(k \in \mathbb{N} \).

Complete \(\alpha \) to an integral basis \(\alpha_1, \ldots, \alpha_{n-1}, \alpha \) of \(H^1(T^n) = (\mathbb{Z}^n)^* \) and let \(\beta_1, \ldots, \beta_n \) be the dual integral basis of \(\mathbb{Z}^n \). Thus, we have a splitting

\[
\text{Lie}^* T^n = \text{Span}_\mathbb{R}\{\alpha_1, \ldots, \alpha_{n-1}\} \oplus \text{Span}_\mathbb{R}\{\alpha\}.
\]

Let \(\pi_1 : \text{Lie}^* T^n \to \text{Span}_\mathbb{R}\{\alpha_1, \ldots, \alpha_{n-1}\} \) and \(\pi_2 : \text{Lie}^* T^n \to \text{Span}_\mathbb{R}\{\alpha\} \) be the projections defined by the splitting.

Consider the \((n-1)\)-dimensional subtorus \(H \subset T^n \) whose Lie algebra is

\[
\text{Lie} H := \ker \alpha = \text{Span}_\mathbb{R}\{\beta_1, \ldots, \beta_{n-1}\} \subset \mathbb{R}^n = \text{Lie} T^n.
\]

The map \(\text{Lie}^* T^n \to \text{Lie}^* H \) dual to the inclusion \(\text{Lie} H \to \text{Lie} T^n \) can be identified with the projection \(\pi_1 \).

Since \(H \) is a subtorus of \(T^n \), there is a Hamiltonian action of \(H \) on \((M, \omega)\) whose moment map \(\Phi_H \) can be described as the composition of \(\Phi \) and \(\pi_1 \). Thus, \(L_x = \Phi^{-1}(x) \) lies in a fiber \(\Sigma_x \) of \(\Phi_H \) which is the union of the fibers \(\Phi^{-1}(y) \) for all \(y \in \Delta \) such that \(\pi_1(y) = \pi_1(x) \). The set \(\Sigma_x \) may be an orbifold, but its smooth part \(\Sigma_x \subset \Sigma'_x \), which is the union of the fibers \(\Phi^{-1}(y) \) for \(y \in \text{Int} \Delta \) with \(\pi_1(y) = \pi_1(x) \), is a smooth coisotropic \((n+1)\)-dimensional submanifold of \(M \).

The torus \(H \) acts on \(\Sigma_x \) and the reduced space \(\Sigma_x/H \) is a 2-dimensional symplectic orbifold \(N_x \). The natural projection \(\pi_H : \Sigma_x \to \Sigma_x/H \) is proper and its fibers are exactly the leaves of the characteristic foliation of \(\Sigma_x \). The 1-dimensional torus \(T^n/H \) acts in a Hamiltonian way on \(N_x \). In fact, the torus \(T^n/H \) can be identified with a subtorus of \(T^n \) whose Lie algebra is \(\text{Span}_\mathbb{R}\{\beta_n\} \subset \text{Lie} T^n \). Accordingly, \(\text{Lie}^* (T^n/H) \) is identified with \(\text{Span}_\mathbb{R}\{\alpha\} \subset \text{Lie}^* T^n \). Thus, the moment map \(\Phi_{T^n/H} \) of the \(T^n/H \)-action on \(N_x \) can be viewed as a map \(\Phi_{T^n/H} : N_x \to \text{Span}_\mathbb{R}\{\alpha\} \).

A well-known property of Hamiltonian group actions (the so-called “reduction in stages”, see e.g. [2 Exercise III.12]) implies that the orbits of the original \(T^n \)-action on \((M, \omega)\) lying in \(\Sigma_x \) project under \(\pi_H : \Sigma_x \to N_x \) to the orbits of the \(T^n/H \)-action on \(N_x \) and for any \(y \in \text{Lie}^* T^n \cap \Delta \) such that \(\pi_1(x) = \pi_1(y) \) we have

\[
\pi_2 \circ \Phi = \Phi_{T^n/H} \circ \pi_H \quad \text{on} \quad \Phi^{-1}(y).
\]

Therefore the image of the moment map \(\Phi_{T^n/H} \) can be identified with the image under \(\pi_2 \) of the intersection of the line \(x - t\alpha, \ t \in \mathbb{R} \), in the affine space \((\mathbb{R}^n)^* = \text{Lie}^* T^n \) with \(\Delta = \text{Im} \Phi \).
Another conclusion is that the torus $L_x \subset \Sigma_x$, which is an orbit of the \mathbb{T}^n-action on (M, ω), projects under $\pi_H : \Sigma_x \rightarrow \Sigma_x/H$ to a simple closed curve $\Gamma \subset N_x$ that lies in the non-singular part of the orbifold N_x. The curve Γ is an orbit of \mathbb{T}^n/H and as such can be identified with \mathbb{S}^1 – this identification is unique up to a rotation of \mathbb{S}^1. Moreover, under this identification the map

$$\pi_H|_{L_x} : L_x \rightarrow \Gamma$$

becomes a fibration $f_\alpha : L_x \rightarrow \mathbb{S}^1$ associated to α – see Remark 3.6 (Indeed, f_α can be viewed as the projection $L_x \rightarrow L_x/H = \mathbb{S}^1$).

The symplectic properties of Γ inside N_x are completely determined by the relative position of the point $\pi_2(x) = \Phi_{\mathbb{T}^n/H}(\Gamma)$ in the image of $\Phi_{\mathbb{T}^n/H}$ or, equivalently, by the position of x in the intersection of the line $x - t\alpha$, $t \in \mathbb{R}$, with Δ. Recall that $\mathcal{I}(x, \alpha)$ is defined as the open part of the intersection of the ray $x - t\alpha$, $0 < t < +\infty$, with Δ. By a basic version of the Delzant theorem [7], the oriented curve Γ (it is oriented as an orbit of \mathbb{T}^n/H) is the oriented boundary of a domain D in N_x whose area is the rational length of $\mathcal{I}(x, \alpha)$, if $\mathcal{I}(x, \alpha)$ is an interval, or $+\infty$, if $\mathcal{I}(x, \alpha)$ is an infinite ray.

Thus, we can apply Proposition 3.9 which implies that

$$bp_x(k\alpha) \geq l_x(\alpha)/k$$

for $k \in \mathbb{N}$. \hfill \Box

6 Lagrangian tori in \mathbb{C}^2 – proofs

6.1 Proof of Theorem 2.5

The proof below belongs to E. Opshtein.

We now prove that for certain Lagrangian tori $L \subset \mathbb{C}^2$ and specific cohomology classes $\alpha \in H^1(L; \mathbb{R})$ there are upper bounds for the associated Lagrangian isotopies.

Consider a Lagrangian isotopy

$$\psi = \{\psi_t : L \rightarrow \mathbb{C}^2\}, \ 0 \leq t \leq T, \ \psi_0 = \iota,$$

such that

$$[\omega]_t^\psi = [\omega]_L - t\partial x,$$

with $L \subset \mathbb{C}^2$ and α as in the statement of the theorem. By contradiction we assume $T \geq \omega(A)/a$.

35
For simplicity we now consider a dual picture. Namely, for $0 \leq t \leq T$ there exists a family of compactly supported diffeomorphisms $\varphi_t : \mathbb{C}^2 \to \mathbb{C}^2$, $\varphi_0 = \text{Id}$, such that $\varphi_t(L) = \psi_t(L)$. By pulling back our symplectic form $\varphi_t^* \omega =: \omega_t$ we may consider a fixed Lagrangian $L \subset (\mathbb{C}^2, \omega_t)$. We have $H_2(\mathbb{C}^2, L) \simeq \mathbb{Z} \langle A, B \rangle$ and $\omega_t(A) = \omega(A) - at$ and $\omega_t(B) = \omega(B) - bt$. By assumption, A is represented by a regular J-holomorphic disk, which we denote by u_0.

Consider now a generic family of almost complex structures J_t, $0 \leq t \leq T$, $J_0 = J$, that are compatible with ω_t. Let u_t, $t \geq 0$, be a family of J_t-holomorphic disks representing $A \in H_2(\mathbb{C}^2, L)$ – for a generic choice of the almost complex structures J_t such a family of J_t-holomorphic disks exists, by regularity, at least for sufficiently small t. Since we are in dimension 4, there exist no J_t-holomorphic disks of Maslov index < 0 for a generic family of almost complex structures J_t. Since L is orientable, the Maslov indices of the disks with boundary on L are all even. Therefore Gromov compactness, together with the regularity (that holds for a generic choice of the family J_t), states that, as long as $\omega_t(A) \geq 0$, the sequence u_t for $t \nearrow s \in (0, T]$ can either converge to a J_s-holomorphic disk representing A or to a bubbling configuration given by a Maslov-2 disk D_2 and a Maslov-0 disk D_0 with boundary on L and such that $A = D_2 + D_0$.

Now note that all J_s-holomorphic Maslov-0 disks with boundary on L have symplectic area equal to a positive number which is an integral multiple of $\omega_s(B - kA)$, since, by the hypothesis of the theorem, the relative homology classes of the Maslov-0 disks are exactly the integral multiples of $B - kA$. By the hypothesis of the theorem, $\omega(B) \geq (1 + k)\omega(A)$ and $(1 + k)a \geq b$, so we have

$$\omega_s(B - kA) - \omega_s(A) = \omega(B) - (1 + k)\omega(A) + ((1 + k)a - b)s \geq 0.$$

This implies that $\omega_s(B - kA) \geq \omega_s(A) > \omega_s(D_0)$, which is a contradiction. Thus no Maslov-0 disk can bubble off and the family u_t of J_t-holomorphic disks persists: it exists as long as $\omega_t(A) \geq 0$ – that is, for all $t \in [0, \omega(A)/a]$ (recall that we assumed that $\omega(A)/a \leq T$).

Now if $t \nearrow \omega(A)/a$ we have $\omega_t(A) \to 0$. Thus for $t \nearrow \omega(A)/a$ the family u_t converges by Gromov compactness to a $J_{\omega(A)/a}$-holomorphic disk of symplectic area 0, which is a constant map. Since u_t represents A, this is a contradiction. Therefore $T < \omega(A)/a$. \qed
6.2 Proof of Theorem 2.8

We calculate lower bounds for the bp-invariants of Chekanov tori Θ_a. The proofs of both parts rely on an increasing sequence of neighborhoods of Θ_a in C^2. We first explain this construction.

Proposition 6.1. For r ∈ R^>0 let D(r) ⊂ C be the open symplectic disk of area r and T^*_r S^1 ⊂ T^* S^1 be the subset of covectors of norm < r (here we choose the flat metric on S^1 = R/Z). Let λ be the standard Liouville form on T^* S^1. Then for every r > a there exists a neighborhood U(r) ⊂ C^2 of Θ_a such that U(r) is symplectomorphic to (D(r) × T^*_r S^1, dx ∧ dy + dλ) and Θ_a is identified with ∂D(a) × {0-section}.

Proof. Let η be the round simple closed curve in C used in the construction of the Chekanov torus Θ_a. It bounds a disk of area a. Let D ⊂ C be a concentric open symplectic disk that contains η but not the origin. The map Φ : S^1 × D → C^2 given by

\[\Phi(e^{2\pi i t}, z) = \frac{1}{\sqrt{2}}(e^{2\pi i t}z, e^{-2\pi i t}z) \]

is an embedding and its image contains Θ_a as well as the Chekanov tori Θ_{a'} for every 0 < a' ≤ a. Denote the image of Φ by N. We see that Φ preserves the symplectic structure on D and that N is a coisotropic submanifold with characteristic foliation generated by the S^1-action. By the neighborhood theorem for coisotropic submanifolds [13], there exists a neighborhood U of N in C^2 that is symplectomorphic to a neighborhood of the zero-section in E^*, where E ⊂ TN is the characteristic bundle of N. One sees that the characteristic bundle of N is trivial, hence E^* ≃ N × R ≃ D × S^1 × R. Since the disks D are symplectic, the neighborhood U is symplectomorphic to a neighborhood V of D × {0-section} in D × T^* S^1 with its standard split symplectic form dx ∧ dy + dλ. By choosing a smaller neighborhood U if necessary, we can assume that U is symplectomorphic to V = D × T^*_ε S^1 for an ε > 0. We see that Θ_a ⊂ U is identified with ∂D(a) × {0-section} ⊂ V.

For c > 0 the map \(\varphi_c : C^2 → C^2 \) given by \((z_1, z_2) → \sqrt{c}(z_1, z_2)\) is a conformal symplectomorphism. Recall that the neighborhood U contains all Chekanov tori Θ_{a'} for 0 < a' ≤ a. Now let 0 < a' < a and c = a/a', then the image \(\varphi_c(Θ_{a'}) \) is a Lagrangian torus that is Hamiltonian isotopic to Θ_a. The image of the neighborhood, \(\varphi_c(U) \), is then a neighborhood of \(\varphi_c(Θ_{a'}) \).

The neighborhood \(\varphi_c(U) \) is symplectomorphic to \(V' = D' × T^*_ε S^1 \), where \(dx ∧ dy(D') = c dx ∧ dy(D) \) and \(ε' = c ε \) (recall that S^1 = R/Z and λ = pdθ is the standard Liouville form).
We construct the neighborhoods \(U(r) \) for \(r > a \). Now for a given \(r > a \) we choose \(a' > 0 \) such that for \(c = a/a' \) we have \(cdx \wedge dy(D) > r \) and \(c \varepsilon > r \). Then \(D(r) \times T^*_r\mathbb{S}^1 \subset V' \) and this gives us a neighborhood \(U(r) \). Since \(a' > 0 \) can be chosen arbitrarily small, this provides us with a neighborhood \(U(r) \) for all \(r > a \). The statement follows from this.

We return to the proof of part (A). For the lower bound \(bp_n(m, n) \geq a/m \), following the dynamical characterization of \(bp_L \) in Section 3.2, we use a neighborhood that we obtain from Proposition 6.1 to construct for any \(\varepsilon > 0 \) a complete Hamiltonian \(H \) that has no chords from \(X_0 \) to \(X_1 \) of time-length \(\varepsilon \).

For \(m \geq 1 \) and \(n \in \mathbb{Z} \) fixed we choose \(k \in \mathbb{N} \) such that \(k > a \) and \(k > C := 4a|n| \). Now let \(U(k) \) be a neighborhood of \(\Theta_a \) as in Proposition 6.1 and we identify \(U(k) \simeq D(k) \times T^*_k\mathbb{S}^1 \). Recall that \(\Theta_a \) is mapped to \(\partial D(a) \times \{0 - \text{section}\} \) under this identification. Furthermore we identify \(C \simeq \mathbb{R}^2 \) and write the coordinates of \(D(k) \times T^*_k\mathbb{S}^1 \) as \((x, y, \theta, p) \).

First we define a partition of \(\partial D(a) \). Namely, partition \(\mathbb{S}^1 \) into \(4m \) closed arcs by setting

\[
\gamma_j := \left\{ e^{2\pi i \xi} \in \mathbb{S}^1 \mid \xi \in \left[\frac{j-1}{4m}, \frac{j}{4m} \right] \right\}, \quad j = 1, \ldots, 4m.
\]

Using the identification \(\partial D(a) \simeq \mathbb{S}^1 \) we consider the \(\gamma_j \) to be arcs of \(\partial D(a) \). For \(\theta \in \mathbb{R}/\mathbb{Z} \) denote by \(R(\theta) : \mathbb{R}^2 \to \mathbb{R}^2 \) the rotation by angle \(2\pi \theta \). In \(D(k) \times T^*_k\mathbb{S}^1 \) we define the four sets,

\[
X_0 = \bigcup_{j \equiv 1 \mod 4} \{(R(n\theta)(x, y), \theta, 0) \mid (x, y) \in \gamma_j, \ \theta \in \mathbb{R}/\mathbb{Z}\},
\]

\[
X_1 = \bigcup_{j \equiv 3 \mod 4} \{(R(n\theta)(x, y), \theta, 0) \mid (x, y) \in \gamma_j, \ \theta \in \mathbb{R}/\mathbb{Z}\},
\]

\[
Y_0 = \bigcup_{j \equiv 0 \mod 4} \{(R(n\theta)(x, y), \theta, 0) \mid (x, y) \in \gamma_j, \ \theta \in \mathbb{R}/\mathbb{Z}\},
\]

\[
Y_1 = \bigcup_{j \equiv 2 \mod 4} \{(R(n\theta)(x, y), \theta, 0) \mid (x, y) \in \gamma_j, \ \theta \in \mathbb{R}/\mathbb{Z}\},
\]

A brief calculation reveals that under the identification \(U(k) \simeq D(k) \times T^*_k\mathbb{S}^1 \) the quadruple is mapped to an admissible quadruple associated to the fibration \(f_\alpha : \Theta_a \to \mathbb{S}^1 \), where \(\alpha = m\tilde{\Gamma} - n\tilde{\gamma} \in H^1(\Theta_a) \).

Consider now the sector \(S \subset D(k) \) given by

\[
S := D(k) \cap \left\{ re^{2\pi i \xi} \mid r \geq 0, \ \xi \in \left[\frac{-1}{8m}, \frac{7}{8m} \right] \right\},
\]

38
The intersection $S \cap D(a)$ has area a/m and ∂S intersects $\partial D(a)$ in the arcs γ_4 and γ_{4m}. We consider a Hamiltonian $G : S \to \mathbb{R}$ that satisfies the following:

(i) G has compact support in $\text{Int}(S)$,

(ii) $G \equiv 0$ in a neighborhood of $(\gamma_{4m} \cup \gamma_4) \cap S$,

(iii) $G \equiv 1$ in a neighborhood of γ_2,

(iv) all chords of G from γ_1 to γ_3 have time-length $T > \frac{a}{m} - \varepsilon$,

(v) on $S \cap D(a)$ the Euclidean norm of the gradient of G is bounded, $|(\partial_x G, \partial_y G)| \leq \frac{4m}{\sqrt{a}}$.

The existence of such a Hamiltonian follows easily. See Figure 6 for an illustration. Namely, one can choose a piecewise-linear function that satisfies all conditions except (iv) and then find a smooth approximation that satisfies all conditions.

![Figure 6: Hamiltonian chord of G from γ_1 to γ_3 in S.](image)

Extend G to the whole disk $D(k)$ such that G is periodic under the rotation $R(1/m)$. Since G has support in $\text{Int}(S)$, this extension is smooth and has compact support. By abuse of notation we denote the extension by
G. Now choose a non-negative function $\beta : T^*_k S^1 \to \mathbb{R}$ that is constant equal to 1 for $|p| \leq C$ and has compact support in $T^*_k S^1$.

Define the Hamiltonian $H : D(k) \times T^*_k S^1 \to \mathbb{R}$ via

$$H(x, y, \theta, p) = G(R(n\theta)(x, y))\beta(p).$$

By construction H is complete and satisfies $H \equiv 0$ on Y_0 and $H \equiv 1$ on Y_1. Since $\beta(p)$ is constant in $\{|p| \leq C\}$, we see that $\partial_p H \equiv 0$ in this region. Thus all Hamiltonian chords of H starting on $\partial D(a) \times \{0 - \text{section}\}$ and contained in $\{|p| \leq C\}$ will project to the fibers.

Now for $\{|p| \leq C\}$ and $(x, y) \in D(a)$ we estimate the Euclidean norm of the differential,

$$|\partial_\theta H| \leq |(\partial_x G, \partial_y G) \cdot |n| \cdot |(x, y)| \leq \frac{4m|n|}{\sqrt{\pi}}.$$

This implies that all Hamiltonian chords of H starting in $\partial D(a) \times \{0 - \text{section}\}$ remain in the region $\{|p| \leq C\}$ for times $t \in [0, a/m]$ by our choice of C. Therefore any chord of time-length $t \leq a/m$ is contained in the fiber $\{\theta = \text{constant}\}$ and under the projection $D(k) \times T^*_k S^1 \to D(k)$ these chords project to rotated chords of G. This proves that any chord from X_0 to X_1 must have time-length $T > a/m - \varepsilon$. This completes the proof of part (A).

We prove part (B). We construct a sequence of Hamiltonians that have chords from X_0 to X_1 with time-length increasing to $+\infty$. We consider the admissible quadruple associated to the fibration $f_\alpha : \Theta_a \to S^1$, where $\alpha = m\tilde{\Gamma} - n\tilde{\gamma}$ with $m < 0$ and $n \in \mathbb{Z}$. Following Remark 3.6 we see that if (X_0, X_1, Y_0, Y_1) is an admissible quadruple for α, then (X_1, X_0, Y_0, Y_1) is an admissible quadruple for $-\alpha$. Thus we may take the admissible quadruple associated to $-m\tilde{\Gamma} + n\tilde{\gamma}$ as constructed in (17) and interchange X_0 and X_1 to obtain an admissible quadruple associated to $m\tilde{\Gamma} - n\tilde{\gamma}$.

Following the construction in part (A), we find a Hamiltonian $G : S \to \mathbb{R}$ that satisfies $G \equiv 0$ on $\gamma_{4m} \cup \gamma_4$ and $G \equiv 1$ on γ_2 and consider its chords from γ_3 to γ_1, see Figure 7. In our sequence of symplectic neighborhoods we have $dx \wedge dy(D(k)/D(a)) \to +\infty$. Hence we can choose for all $k > a$ a sequence of Hamiltonians G_k for which the time-length T of chords from γ_3 to γ_1 goes to $+\infty$. Repeating the construction as in part (A) then gives us a sequence of Hamiltonians H_k in C^2 with the desired properties. \qed
7 Lagrangian tori in \mathbb{C}^n – proofs

7.1 Basic properties of bp_x, def_x for split Lagrangian tori in \mathbb{C}^n

Proposition 7.1.

(A) **Permutation invariance:** Let $x_\sigma \in \mathbb{R}^n$, $\alpha_\sigma \in (\mathbb{R}^n)^*$ be the vectors obtained, respectively, from $x \in \mathbb{R}^n$, $\alpha \in (\mathbb{R}^n)^*$ by a permutation σ of the coordinates. Then for any α

$$def_{x_\sigma}(\alpha_\sigma) = def_x(\alpha), \quad bp_{x_\sigma}(\alpha_\sigma) = bp_x(\alpha).$$

(B) **Homogeneity in x:** for any $c > 0$

$$def_{cx} = \frac{1}{c} def_x, \quad bp_{cx} = \frac{1}{c} bp_x.$$

(C) **Semi-continuity with respect to x:**

$$\{x_i\} \to x \implies \forall \alpha \in (\mathbb{Z}^n)^* : bp_x(\alpha) \leq \liminf_{x_i} bp_{x_i}(\alpha),$$

$$\{x_i\} \to x \implies \forall \alpha \in (\mathbb{R}^n)^* : def_x(\alpha) \leq \liminf_{x_i} def_{x_i}(\alpha).$$
(D) The product property: For any α

$$\text{def}_{(x,x_{n+1},\ldots,x_N)}(\alpha,0,\ldots,0) \geq \text{def}_{x}(\alpha).$$

$$bp_{(x,x_{n+1},\ldots,x_N)}(\alpha,0,\ldots,0) \geq bp_{x}(\alpha).$$

Proof. Claim (A) holds, since any split torus obtained from $T^n(x) = T^1(x_1) \times \ldots \times T^1(x_n)$ by a permutation of the T^1-factors is Hamiltonian isotopic to $T^n(x)$.

Claim (B) follows easily from the fact that $(p,q) \mapsto \sqrt{c(p,q)}$, $c > 0$, is a conformal symplectomorphism.

Claim (C) follows from the semi-continuity property of bp_L (see (13)) and def_L (see (11)).

Claim (D) follows from the product property of pb_4^+ (see (14)).

7.2 Proof of Theorem 2.9

We now prove that for certain Lagrangian tori $L \subset \mathbb{C}^n$ and specific cohomology classes $\alpha \in H^1(L;\mathbb{R})$ there are upper bounds for the associated Lagrangian isotopies. This proof follows the same route as in the proof of Theorem 2.5. We indicate the changes here and refer the reader to the proof of Theorem 2.5 for the conclusion.

Consider a Lagrangian isotopy

$$\psi = \{\psi_t : L \to \mathbb{C}^n\}, \ 0 \leq t \leq T, \ \psi_0 = \iota,$

such that

$$[\omega]_{\psi}^t = [\omega]_L - t\partial \alpha,$$

with $L \subset \mathbb{C}^n$ and α as in the statement of the theorem. By contradiction we assume $T \geq \omega(A_1)/\sigma = a/\sigma$.

For simplicity we consider the dual picture. Namely, for $0 \leq t \leq T$ there exists a family of compactly supported diffeomorphisms $\varphi_t : \mathbb{C}^n \to \mathbb{C}^n$, $\varphi_0 = \text{Id}$, such that $\varphi_t(L) = \psi_t(L)$. By pulling back our symplectic form $\varphi^*_t \omega =: \omega_t$ we may consider a fixed Lagrangian $L \subset (\mathbb{C}^n, \omega_t)$. We have $H_2(\mathbb{C}^n,L) \simeq \mathbb{Z}\langle A_1,\ldots,A_n \rangle$ and $\omega_t(A_1) = a - \sigma t$ and $\omega_t(A_i) = b - pt$ for $i = 2,\ldots,n$. By the hypothesis of the theorem, A_1 is represented by a regular J-holomorphic disk, which we denote by u_0.

For $t \in [0,a/\sigma)$ and $l \in \mathbb{Z}$ non-negative let $D \in H_2(\mathbb{C}^n,L)$ be a disk such that $\mu(D) = -2l$ and D has positive symplectic area. We set $a(t) := a - \sigma t$.
and \(b(t) := b - \rho t \). A brief calculation reveals for the symplectic area of \(D \) that for each \(t \)

\[
\omega_t(D) \in \left\{ k(b(t) - a(t)) - lb(t) \mid k \in \mathbb{Z}, k > \frac{lb(t)}{b(t) - a(t)} \right\}.
\]

We now consider the cases \(n \) even and \(n \) odd separately. We start by considering the former, similar arguments then hold for \(n \) odd.

For \(n \) even let \(l \in P(n) := \{0, 1, \ldots, (n - 2)/2\} \). Then we have

\[
\omega_t(D) \geq (l + 1)(b(t) - a(t)) - lb(t) = b(t) - (l + 1)a(t) \geq a(t). \tag{19}
\]

Here the last inequality can be deduced from the assumptions \(l \in P(n) \), \(a \leq 2b/(n + 2) \) and \(\rho \leq b\sigma/a \). In particular, inequality (19) implies that for \(t \in [0, a/\sigma] \) there is no pseudoholomorphic disk with Maslov index equal to \(-2l\) for \(l \in P(n) \) and symplectic area less than \(a(t) \).

Consider now a generic family of almost complex structures \(\{J_t\}_{0 \leq t \leq T} \), \(J_0 = J \), that are compatible with \(\omega_t \). Let \(u_t, t \geq 0 \), be a family of \(J_t \)-holomorphic disks representing \(A_1 \in H_2(\mathbb{C}^n, L) \) – for a generic choice of \(\{J_t\} \) such a family of \(J_t \)-holomorphic disks exists, at least for small \(t \), by regularity. Following Gromov compactness we study the possible bubbling configurations that may appear in the limit of the sequence \(u_t \) for \(t \nearrow s \in (0, T] \), as long as \(\omega_s(A) \geq 0 \).

In general, for a generic family of almost complex structures \(J_t \), the moduli space of unparametrized simple \(J_t \)-holomorphic disks representing a class \(A \in H_2(\mathbb{C}^n, L) \) is given by \(n + \mu(A) - 3 \). Thus for a generic family \(J_t \) there exist no simple \(J_t \)-holomorphic disks of Maslov index \(\mu(A) < 2 - n \) with boundary on \(L \). Note that \(L \) is orientable and \(n \) is even. Therefore only configurations containing \(J_s \)-holomorphic disks with Maslov index equal to \(-2l\) for \(l \in P(n) \) may arise from the sequence \(u_t \) as \(t \nearrow s \).

The minimal areas of simple \(J_t \)-holomorphic disks on \(L \) with Maslov indices equal to \(-2l\) for \(l \in P(n) \) are all greater than or equal to \(a(t) \) for \(t \in [0, a/\sigma) \). This implies that no simple \(J_t \)-holomorphic disks with Maslov indices equal to \(-2l\) for \(l \in P(n) \) can bubble off for \(t \in [0, a/\sigma) \).

Since, by [20], all non-simple \(J_t \)-holomorphic disks can be decomposed into simple ones, we see that no non-simple disks can appear in the bubbling configuration either. Thus the family \(u_t \) of \(J_t \)-holomorphic disks representing \(A_1 \) persists: it exists as long as \(\omega_t(A) \geq 0 \) – that is, for all \(t \in [0, a/\sigma] \) (recall that we assumed that \(a/\sigma \leq T \)).

Following the same arguments as in the proof of Theorem 2.5 we obtain the assertion of the theorem. The case for \(n \) odd is similar. \(\square \)
Remark 7.2. We remark that the proof of Theorem 2.9 does not generalize to the settings where $\omega(A_i) \neq \omega(A_j)$ for some $2 \leq i, j \leq n$, $i \neq j$. The reason for this comes from the fact that if in the Lagrangian isotopy there exist two Maslov-0 disks with positive symplectic areas that are rationally independent (e.g. $A_2 - A_1$ and $A_3 - A_2$), then one can always find a Maslov-0 disk with positive symplectic area arbitrarily close to 0. Hence one can not exclude Maslov-0 disks from any bubbling configuration.

7.3 Proof of Theorem 2.10

Proof of part (A). The tori $T^n(x)$ are exactly the regular orbits of the standard Hamiltonian T^n-action on \mathbb{C}^n and the regular level sets of its moment map $\Phi : \mathbb{C}^n \to (\mathbb{R}^n)^*$ whose image is the non-negative quadrant $\Delta \subset (\mathbb{R}^n)^*$.

For $\alpha = (m_1, \ldots, m_n)$ one readily sees that $I(x, \alpha)$, which is the open part of the intersection of the ray $x - t\alpha$, $0 < t < +\infty$, and Δ, is an infinite ray if and only if all m_i are non-positive. Otherwise, $I(x, \alpha)$ is an interval and its rational length is given by $\min_{i, m_i > 0} x_i / m_i$. By Theorem 2.4, this proves part (A) of the theorem.

Proof of part (B). The upper bound $def_x(k, \ldots, k) \leq x/k$ for $k \in \mathbb{N}$ follows from Theorem 2.1, since \mathbb{C}^n does not admit weakly exact closed Lagrangian submanifolds by a famous result of Gromov [14].

The lower bound $bp_x(k, \ldots, k) \geq x/k$ follows immediately from part (A) of the theorem.

Proof of part (C). Let $p_1, \ldots, p_n, q_1, \ldots, q_n$ be the standard Darboux coordinates on $\mathbb{R}^{2n} = \mathbb{C}^n$ so that $z_j = p_j + iq_j$, $j = 1, \ldots, n$.

According to the assumption, $x_i / k > x_{\min}$, that is, $x_i / k > x_j$ for some $j \neq i$. By [15], we may assume without loss of generality, that $i = n, j = 1$, that is, $x_n / k > x_1$. Let us show that $bp_\Delta(k e_n) = +\infty$.

Observe that a circle bounding a round disk of a certain area in \mathbb{R}^2 can be mapped by an area-preserving map arbitrarily close to the boundary of a square of the same area. Together with the semi-continuity, product and symplectic invariance properties of pb^+_4 (see Section 3.4) this easily implies that it is enough to prove

$$pb^+_4(X_0, X_1, Y_0, Y_1) = 0,$$

where the admissible quadruple X_0, X_1, Y_0, Y_1 is defined as follows: for $i = 1, \ldots, n - 1$ denote by Π_i the boundary of the square $[0, \sqrt{x_i}] \times [0, \sqrt{x_i}] \subset \mathbb{R}^2$...
$(\mathbb{R}^2(p_i, q_i), dp_i \wedge dq_i)$. For $i = n$ consider the rectangle $[0, x_n] \times [0, 1] \subset (\mathbb{R}^2(p_n, q_n), dp_n \wedge dq_n)$. Now choose $\varepsilon > 0$ such that

$$\frac{x_n}{k} - 4\varepsilon > x_1. \quad (21)$$

As in the proof of Theorem 2.2 we choose a partition of $[0, x_n] \times \{1\}$ into $4k - 3$ intervals $\gamma_1, \ldots, \gamma_{4k-3}$, ordered from right to left, such that for $i \equiv 0, 2, 3 \mod 4$ the intervals γ_i have length ε, the interval γ_1 has length $\frac{x_n}{k}$ and the remaining intervals have length $\frac{x_n}{k} - 3\varepsilon$. Note that if $k = 1$ then $\gamma_1 = [0, x_n] \times \{1\}$. We define

$$\hat{X}_0 = [0, x_n] \times \{0\} \cup \bigcup_{i \equiv 3 \mod 4} \gamma_i, \quad \hat{X}_1 = \bigcup_{i \equiv 1 \mod 4} \gamma_i,$$

$$\hat{Y}_0 = [0, 1] \times \{0\} \cup \bigcup_{i \equiv 2 \mod 4} \gamma_i, \quad \hat{Y}_1 = [0, 1] \times \{x_n\} \cup \bigcup_{i \equiv 0 \mod 4} \gamma_i.$$

We then set

$$X_0 := \Pi_1 \times \ldots \times \Pi_{n-1} \times \hat{X}_0,$$
$$X_1 := \Pi_1 \times \ldots \times \Pi_{n-1} \times \hat{X}_1,$$
$$Y_0 := \Pi_1 \times \ldots \times \Pi_{n-1} \times \hat{Y}_0,$$
$$Y_1 := \Pi_1 \times \ldots \times \Pi_{n-1} \times \hat{Y}_1,$$

which gives us our admissible quadruple.

Now choose a constant C that satisfies

$$\left(\frac{x_n}{k} - 4\varepsilon\right) - \frac{1}{\sqrt{x_1}} > C > \sqrt{x_1}. \quad (22)$$

Such a constant exists by inequality (21). On $\mathbb{R}^2(p_n, q_n)$ we define a piecewise-linear function $G_\varepsilon : \mathbb{R}^2 \to \mathbb{R}$ that satisfies:

(i) $G_\varepsilon \equiv 0$ on \hat{Y}_0 and $G_\varepsilon \equiv C$ on \hat{Y}_1,

(ii) G_ε only depends on x.

One can choose G_ε to satisfy $\partial_x G_\varepsilon \leq C/(\frac{x_n}{k} - 3\varepsilon)$ on $\pi(\hat{X}_1) \times \mathbb{R}$, where $\pi(p_n, q_n) = p_n$ is the projection. Therefore there exists a smooth approximation $G : \mathbb{R}^2 \to \mathbb{R}$ that is complete, satisfies (i) and (ii) and has slope $\partial_x G < C/(\frac{x_n}{k} - 4\varepsilon)$ on $\pi(\hat{X}_1) \times \mathbb{R}$. This implies that all chords of G from \hat{X}_0 to \hat{X}_1 have time-length $T > (\frac{x_n}{k} - 4\varepsilon)/C$.

45
Now consider the Hamiltonian $H : \mathbb{R}^{2n} \to \mathbb{R}$ defined by

$$H(p, q) := p_1 + G(p_n, q_n).$$

H is complete and satisfies

$$\min_{Y_1} H = C, \quad \max_{Y_0} H = \sqrt{x_1},$$

and thus, by inequality (22),

$$\min_{Y_1} H - \max_{Y_0} H > 0.$$

Again by inequality (22) we have

$$\left(\frac{x_n}{k} - 4\varepsilon\right) \frac{1}{C} > \sqrt{x_1}.$$

Under the projection $\mathbb{R}^{2n} \to \mathbb{R}^2(p_n, q_n)$ the chords of H map to the chords of G. All chords of G from X_0 to X_1 have time-length $T > (\frac{x_n}{k} - 4\varepsilon)/C$. Now under the projection $\mathbb{R}^{2n} \to \mathbb{R}^2(p_1, q_1)$ the chords of H map to vertical lines. We see that for any $T > \sqrt{x_1}$ the image of $\Pi_1 \subset \mathbb{R}^2(p_1, q_1)$ under the Hamiltonian flow at time T does not intersect Π_1. Thus there are no chords of H from X_0 to X_1, which, by the dynamical characterization of $p b_1^+$, proves (20) and part (C).

8 Lagrangian tori in $\mathbb{C}P^n$ and $\mathbb{S}^2 \times \mathbb{S}^2$ — proofs

We now prove that for Lagrangian tori L in $\mathbb{C}P^n$ or $\mathbb{S}^2 \times \mathbb{S}^2$ and certain cohomology classes $\alpha \in H^1(L; \mathbb{R})$ there are upper bounds for $\text{def}_L(\alpha)$.

8.1 Proof of Theorem 2.12

Consider a Lagrangian isotopy

$$\psi = \{\psi_t : L \to \mathbb{C}P^n\}, \ 0 \leq t \leq T, \ \psi_0 = \iota,$$

such that

$$[\omega]_{\psi}^t = [\omega]_L - t\partial\alpha.$$

By contradiction assume $T > C$ and consider $L_C := \psi_C(L)$. By the assumption of the theorem, we have $[\omega]_{\psi}^C \in H^2(\mathbb{C}P^n, L; \frac{1}{n}\mathbb{Z})$ and therefore
\[\omega(H^2(\mathbb{CP}^n, L_C)) \subset \frac{1}{n} \mathbb{Z}. \] Since \(L \) is a torus the group \(\omega(H^2(\mathbb{CP}^n, L_C)) \) has \(n + 1 \) generators \(y_1, \ldots, y_n, 1 \). Denote by \(c \in [0, +\infty) \cap \frac{1}{n} \mathbb{Z} \) its positive generator. However, by a theorem of Cieliebak and Mohnke \[6\],
\[c \leq \frac{1}{n + 1}. \]
We obtain a contradiction and therefore \(T < C \).

8.2 Proof of Theorem 2.15
Consider a Lagrangian isotopy
\[\psi = \{ \psi_t : L \to S^2 \times S^2 \}, \ 0 \leq t \leq T, \ \psi_0 = \iota, \]
such that
\[[\omega]_{\psi_t} = [\omega]_L - t\partial \alpha. \]
By contradiction, assume \(T > C \) and consider \(L_C := \psi_C(L) \). By the assumption of the theorem we have \([\omega]_{L_C} \in H^2(S^2 \times S^2, L; \mathbb{Z}) \) and therefore \(\omega(H^2(S^2 \times S^2, L_C)) \subset \mathbb{Z} \). Therefore the group \(\omega(H^2(S^2 \times S^2, L_C)) \) is generated by 1. However, by a theorem of Dimitroglou Rizell, Goodmann and Ivrii (\[8\], Proposition 5.3), for any torus \(L \subset S^2 \times S^2 \) the positive generator \(c \) of \(\omega(H^2(S^2 \times S^2, L)) \) satisfies
\[c \leq \frac{1}{2}. \]
We obtain a contradiction and therefore \(T < C \). \(\square \)

Acknowledgments. We are very grateful to Leonid Polterovich for enlightening discussions, stimulating questions and crucial comments and corrections. We thank Emmanuel Opshtein for useful discussions and for the proof of Theorem 2.5. We also thank Paul Biran, Georgios Dimitroglou Rizell and Yakov Eliashberg for useful conversations and questions related to our work.

References

[1] Atiyah, M. F., Convexity and commuting Hamiltonians, Bull. LMS 14 (1982), no. 1, 1-15.
[2] Audin, M., *Torus actions on symplectic manifolds*, Second revised edition, Progress in Mathematics, 93. Birkhäuser Verlag, Basel, 2004.

[3] Buhovsky, L., Entov, M., Polterovich, L., *Poisson brackets and symplectic invariants*, Selecta Math. 18 (2012), 89-157.

[4] Chekanov, Y., *Lagrangian tori in a symplectic vector space and global symplectomorphisms*, Math. Z. 223 (1996), no. 4, 547-559.

[5] Chekanov, Y., Schlenk, F., *Notes on monotone Lagrangian twist tori*, Electron. Res. Announc. Math. Sci. 17 (2010), 104-121.

[6] Cieliebak, K., Mohnke, K., *Punctured holomorphic curves and Lagrangian embeddings*, preprint, arXiv:1411.1870, 2014.

[7] Delzant, T., *Hamiltoniens périodiques et images convexes de l’application moment*, Bull. Soc. Math. France 116 (1988), 315-339.

[8] Dimitroglou Rizell, G., Goodman E., Ivrii A., *Lagrangian isotopy of tori in S^2 × S^2 and CP^2*, preprint, arXiv:1602.08821 (2016).

[9] Eliashberg, Y., *New invariants of open symplectic and contact manifolds*, J. Amer. Math. Soc. 4 (1991), no. 3, 513-520.

[10] Eliashberg, Y., Polterovich, L., *The problem of Lagrangian knots in four-manifolds*, in *Geometric topology (Athens, GA, 1993)*, 313-327, AMS, Providence, RI, (1997).

[11] Entov, M., Polterovich, L., *Lagrangian tetragons and instabilities in Hamiltonian dynamics*, preprint, arXiv:1510.01748, 2015.

[12] Farrell, F. T., *The obstruction to fibering a manifold over a circle*, Indiana Univ. Math. J. 21 1971/1972, 315-346.

[13] Gotay, M.J., *On coisotropic imbeddings of presymplectic manifolds*, Proc. Amer. Math. Soc. 84 (1982), 111-114.

[14] Gromov, M., *Pseudoholomorphic curves in symplectic manifolds*, Invent. Math. 82 (1985), 307-347.

[15] Guillemin, V., Sternberg, S., *Convexity properties of the moment mapping*, Invent. Math. 67 (1982), 491-513.

[16] Kinsey, L.C., *Pseudoisotopies and submersions of a compact manifold to the circle*, Topology 26 (1987), 67-78.
[17] Latour, F., *Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham*, Inst. Hautes tudes Sci. Publ. Math. No. 80 (1994), 135-194 (1995).

[18] Laudenbach, F., *Submersions sur le cercle*, Bull. Soc. Math. France 104 (1976), 417-431.

[19] Laudenbach, F., Blank, S., *Isotopie de formes fermes en dimension trois*, Invent. Math. 54 (1979), 103-177.

[20] Lazzarini, L., *Relative frames on J-holomorphic curves*, J. Fixed Point Theory Appl. 9 (2011) 213-256.

[21] Lerman, E., Tolman, S., *Hamiltonian torus actions on symplectic orbifolds and toric varieties*, Trans. AMS 349 (1997), no. 10, 4201-4230.

[22] Moser, J., *On the volume elements on a manifold*, Trans. AMS 120 (1965), 286-294.

[23] Polterovich, L., *Precise measurements in symplectic topology*, European Congress of Mathematics, Vol. II (Budapest, 1996), 159-166, Progr. Math., 169, Birkhäuser, Basel, 1998.

[24] Polterovich, L., Rosen, D., *Function theory on symplectic manifolds*, AMS, Providence, RI, 2014.

[25] Samvelyan, K., *Rigidity versus flexibility of the Poisson bracket with respect to the L_p-norm*, preprint, arXiv:1610.00675, 2016.

[26] Sikorav, J.-C., *Formes différentielles fermées non singulières sur le tore*, Comment. Math. Helv. 57 (1982), no. 1, 79-106.

[27] Sikorav, J.-C., *Rigidité symplectique dans le cotangent de T^n*, Duke Math. J. 59 (1989), no. 3, 759-763.

[28] Solomon, J., *The Calabi homomorphism, Lagrangian paths and special Lagrangians*, Math. Ann. 357 (2013), 1389-1424.

[29] Thurston, W.P., *A norm for the homology of 3-manifolds*, Mem. Amer. Math. Soc. 59 (1986), no. 339, i-vi and 99-130.

[30] Yau, M.-L., *Monodromy and isotopy of monotone Lagrangian tori*, Math. Res. Lett. 16, (2009), 531-541.
Michael Entov
Department of Mathematics
Technion - Israel Institute of Technology
Haifa 32000, Israel
entov@math.technion.ac.il

Yaniv Ganor
School of Mathematical Sciences
Tel Aviv University
Tel Aviv 69978, Israel
yanivgan@post.tau.ac.il

Cedric Membrez
School of Mathematical Sciences
Tel Aviv University
Tel Aviv 69978, Israel
cmembrez@post.tau.ac.il