DIOPHANTINE PROBLEMS FOR q-ZETA VALUES¹

WADIM ZUDILIN (Moscow)

E-print math.NT/0206179

03 June 2002

Last revision: 06 July 2002

1. Introduction. As usual, quantities depending on a number q and becoming classical objects as $q \to 1$ (at least formally) are regarded as q-analogues or q-extensions. A possible way to q-extend the values of the Riemann zeta function reads as follows (here $q \in \mathbb{C}$, $|q| < 1$):

$$\zeta_q(k) = \sum_{n=0}^{\infty} \sigma_{k-1}(n) q^n = \sum_{\nu=0}^{\infty} \frac{\nu^{k-1} q^\nu}{1-q^\nu} = \sum_{\nu=0}^{\infty} \frac{q^\nu \rho_k(q^\nu)}{(1-q^\nu)^k}, \quad k = 1, 2, \ldots, \quad (1)$$

where $\sigma_{k-1}(n) = \sum d|n d^{k-1}$ is the sum of powers of the divisors and the polynomials $\rho_k(x) \in \mathbb{Z}[x]$ can be determined recursively by the formulae $\rho_1 = 1$ and $\rho_{k+1} = (1 + (k-1)x)\rho_k + x(1-x)\rho_k'$ for $k = 1, 2, \ldots$ (see [1, Part 8, Chapter 1, Section 8, Problem 75] for the case $k = 2$). Then the limit relations

$$\lim_{q \to 1; |q| < 1} (1-q)^k \zeta_q(k) = \rho_k(1) \cdot \zeta(k) = (k-1)! \cdot \zeta(k), \quad k = 2, 3, \ldots, \quad (2)$$

hold; the equality $\rho_k(1) = (k-1)!$ is proved in [2, formula (7)]. The above defined q-zeta values (1) present several new interesting problems in the theory of diophantine approximations and transcendental numbers; these problems are extensions of the corresponding problems for ordinary zeta values and we state some of them in Section 3 of this note. Our nearest aim is to demonstrate how some recent contributions to the arithmetic study of the numbers $\zeta(k), k = 2, 3, \ldots$, successfully work for q-zeta values. Namely, we mean the hypergeometric construction of linear forms (proposed in the works of E. M. Nikishin [3], L. A. Gutnik [4], Yu. V. Nesterenko [5]) and the arithmetic method (due to G. V. Chudnovsky [6], E. A. Rukhadze [7], M. Hata [8]) accompanied with the group-structure scheme (due to G. Rhin and C. Viola [9], [10]). The next section contains new irrationality measures of the numbers $\zeta_q(1)$ and $\zeta_q(2)$ for $q^{-1} = p \in \mathbb{Z} \setminus \{0, \pm 1\}$, and our starting point is the following table illustrating a connection of some objects and their q-extensions (here $\lfloor \cdot \rfloor$ denotes the integral part of a number and the notation ‘l.c.m.’ means the least common multiple). We refer the reader to the book [11] and the works [12]–[14], where a motivation and a ground are presented.

¹An extension of the talk given at the conference Problèmes Diophantiens (Luminy, CIRM, May 6–10, 2002).
 ordinary objects & \textbf{\textit{q}}-\textit{extensions, }p=1/q\in\mathbb{Z}\setminus\{0,\pm1\}\\
\hline
\text{numbers }n\in\mathbb{Z} & \text{‘numbers’ }[n]_p = \frac{p^n - 1}{p - 1} \in \mathbb{Z}[p] \\
\text{primes }l\in\{2,3,5,7,\ldots\} \in \mathbb{Z} & \text{irreducible reciprocal polynomials} \\
\text{Euler’s gamma function }\Gamma(t) & \text{Jackson’s }\textit{q}-\text{gamma function} \\
\text{the factorial }n! = \Gamma(n+1) & \text{the }q\text{-factorial }[n]_q! = \Gamma_q(n+1) \\
\text{ord }n! = \left\lfloor \frac{n}{l} \right\rfloor + \left\lfloor \frac{n}{l^2} \right\rfloor + \cdots & \text{ord}_{\Phi_l(p)}[n]_p! = \left\lfloor \frac{n}{l} \right\rfloor, \ l = 2,3,4,\ldots \\
\text{the prime number theorem } & \text{Mertens’ formula} \\
\text{lim}_{n\to\infty} \frac{\log D_n}{n} = 1 & \text{lim}_{n\to\infty} \frac{\log |D_n(p)|}{n^2 \log |p|} = \frac{3}{\pi^2} \\
\hline

If \(\psi(x)\) is the logarithmic derivative of Euler’s gamma function and \(\{x\} = x - \lfloor x\rfloor\) is the fractional part of a number \(x\), then, for each semi-interval \([u,v) \subset (0,1)\), Mertens’ formula yields the limit relation

\[
\lim_{n \to \infty} \frac{1}{n^2 \log |p|} \sum_{l \cdot \{n/l\} \in [u,v)} \log |\Phi_l(p)| = \frac{3}{\pi^2} \left(\psi'(u) - \psi'(v) \right) = \frac{3}{\pi^2} \int_u^v d(-\psi'(x))
\]

(3)

(see [15, Lemma 1]), which can be regarded as a \(\textit{q}\)-extension of the formula

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{\text{primes }l > \sqrt{n} \in [u,v)} \log l = \psi(v) - \psi(u) = \int_u^v \! d\psi(x)
\]

in the arithmetic method [6]–[10].

2. \textbf{Rational approximations to }\textit{q}-\textit{zeta values and basic transformations.} Let \(a_0, a_1, a_2,\) and \(b\) be positive integers satisfying the condition \(a_1 + a_2 \leq b\). Then, Heine’s series

\[
F(a,b) = \frac{\Gamma_q(b-a_2)}{(1-q)\Gamma_q(a_1)} \sum_{t=0}^{a_0} \frac{\Gamma_q(t+a_1) \Gamma_q(t+a_2)}{\Gamma_q(t+1) \Gamma_q(t+b)} q^{a_0 t}
\]

becomes a \(\mathbb{Q}(p)\)-linear form

\[
F(a,b) = A \zeta_q(1) - B
\]

with the property

\[
p^{-M} D_m(p) \cdot F(a,b) \in \mathbb{Z}[p] \zeta_q(1) + \mathbb{Z}[p];
\]

(4)

here \(M = M(a,b)\) is some (explicitly defined) integer and \(m\) is the maximum of the 6-element set

\[
c_{00} = a_0 + a_1 + a_2 - b - 1, \quad c_{01} = a_0 - 1, \quad c_{11} = a_1 - 1, \quad c_{21} = a_2 - 1,
\]

\[
c_{12} = b - a_1 - 1, \quad c_{22} = b - a_2 - 1.
\]
Taking $H(c) = F(a, b)$ and using the stability of the quantity

$$\frac{F(a_0, a_1, a_2, b)}{\Gamma_q(a_0) \Gamma_q(a_2) \Gamma_q(b - a_2)} = \frac{H(c)}{\Pi_q(c)},$$

where $\Pi_q(c) = [c_{01}]_q! [c_{21}]_q! [c_{22}]_q! = p^{-N(c)} \Pi_p(c)$,

under the action of the transformations

$$\tau = (c_{22} c_{21} c_{01} c_{12} c_{00}): (a_0, a_1, a_2, b) \mapsto (a_1, b - a_1, a_0, a_0 + a_2),$$

$$\sigma = (c_{11} c_{21})(c_{12} c_{22}): (a_0, a_1, a_2, b) \mapsto (a_0, a_2, a_1, b)$$

we arrive at the better than (4) inclusions

$$p^{-M} D_m(p) \Omega^{-1}(p) \cdot F(a, b) \in \mathbb{Z}[p] \zeta_q(1) + \mathbb{Z}[p]$$

(5)

with

$$\Omega(p) = \prod_{l=1}^m \Phi(p), \quad \nu_l = \max_{g \in \langle \tau^2, \sigma \rangle} \text{ord}_{g}(p) \frac{\Pi_p(c)}{\Pi_p(\infty)}.$$

(6)

In addition, trivial estimates for $F(a, b)$ and explicit formulae for the coefficient A imply that

$$|F(a, b)| = |p|^{O(b)}, \quad |A| \leq |p|^{(a_0 + a_1 + a_2)b - (a_1^2 + a_2^2 + b^2)/2 + O(b)}$$

(7)

with some absolute constant in $O(b)$.

Note that the non-trivial transformation τ of the quantity $H(c)/\Pi_q(c)$ has been obtained (in other notation) by E. Heine still in 1847. The transformation group $\mathfrak{G} = \langle \tau, \sigma \rangle$ of order 12 has no ordinary analogue since corresponding (in limit $q \to 1$) Gauß’s hypergeometric series are divergent. We use the group $\langle \tau^2, \sigma \rangle$ of order 6 instead of the total available group \mathfrak{G} to ensure the required condition $a_1 + a_2 \leq b$.

Now, choosing $a_0 = a_2 = 8n + 1$, $a_1 = 6n + 1$, and $b = 15n + 1$, and taking in mind (5), (7), and (3) we derive the following result.

Theorem 1. For each $q = 1/p$, $p \in \mathbb{Z} \setminus \{0, \pm 1\}$, the number $\zeta_q(1)$ is irrational and its irrationality exponent satisfies the estimate

$$\mu(\zeta_q(1)) \leq 2.42343562 \ldots .$$

(8)

A value $\mu = \mu(\alpha)$ is said to be the irrationality exponent of a real irrational number α if μ is the least possible exponent such that for any $\varepsilon > 0$ the inequality $|\alpha - a/b| \leq b^{-(\mu + \varepsilon)}$ has only finitely many solutions in integers a and b. The estimate (8) can be compared with the previous result $\mu(\zeta_q(1)) \leq 2\pi^2/(\pi^2 - 2) = 2.50828476 \ldots$ of P. Bundschuh and K. Väänänen in [12] corresponding to the choice $a_0 = a_1 = a_2 = n + 1$ and $b = 2n + 2$ in the above notation.

Similar arguments with a simpler group $\langle \sigma \rangle$ of order 2 can be put forward to improve W. Van Assche’s estimate $\mu(\log_q(2)) \leq 3.36295386 \ldots$ in [13] for the following q-extension of log(2):

$$\log_q(2) = \sum_{\nu=1}^{\infty} \frac{(-1)^{\nu-1} q^{\nu}}{1 - q^{\nu}} = \sum_{\nu=1}^{\infty} \frac{q^{\nu}}{1 + q^{\nu}}.$$

Namely, in [14] we obtain the inequality $\mu(\log_q(2)) \leq 3.29727451 \ldots$ for $q^{-1} = p \in \mathbb{Z} \setminus \{0, \pm 1\}$.
In the case of the numbers $\zeta_q(2)$, consider the positive integers $(a, b) = (a_1, a_2, a_3, b_2, b_3)$ satisfying the conditions $a_j < b_k$, $a_1 + a_2 + a_3 < b_2 + b_3$ and the q-basic hypergeometric series

$$\bar{F}(a, b) = \frac{\Gamma_q(b_2 - a_2) \Gamma_q(b_3 - a_3)}{(1 - q)^2 \Gamma_q(a_1)} \sum_{t=0}^{\infty} \frac{\Gamma_q(t + a_1) \Gamma_q(t + a_2) \Gamma_q(t + a_3)}{\Gamma_q(t + 1) \Gamma_q(t + b_2) \Gamma_q(t + b_3)} q^{b_2 + b_3 - a_2 - a_3} t$$

$$= \bar{A} \zeta_q(2) - \bar{B}.$$

Then $p^{-M} D_{m_1}(p) D_{m_2}(p) \cdot \bar{F}(a, b) \in \mathbb{Z}[p] \zeta_q(2) + \mathbb{Z}[p]$, where $m_1 \geq m_2$ are the two successive maxima of the 10-element set

$$c_{00} = (b_2 + b_3) - (a_1 + a_2 + a_3) - 1, \quad c_{jk} = \begin{cases} a_j - 1 & \text{if } k = 1, \\ b_k - a_j - 1 & \text{if } k = 2, 3, \end{cases} \quad j = 1, 2, 3,$$

and, in addition,

$$|\bar{F}(a, b)| = |p|^{O(\max\{b_2, b_3\})}, \quad |\bar{A}| \leq |p|^{b_2 b_3 - (a_1^2 + a_2^2 + a_3^2)/2 + O(\max\{b_2, b_3\})}.$$

The c-permutation group $\mathcal{G} \subset \mathcal{G}_{10}$ generated by all permutations of a_1, a_2, a_3, the permutation of b_2, b_3, and the permutation $(c_{00} c_{22})(c_{11} c_{33})(c_{13} c_{31})$ has order 120 and is known in connection with the Rhin–Viola proof [9] of the new irrationality measure for $\zeta(2)$ (see also [16, Section 6]). In notation $\bar{H}(c) = \bar{F}(a, b)$, the quantity

$$\bar{H}(c) = [c_{00}]q! [c_{21}]q! [c_{22}]q! [c_{33}]q! [c_{31}]q!$$

is stable under the action of the group \mathcal{G}. This \mathcal{G}-stability yields the inclusions

$$p^{-M} D_{m_1}(p) D_{m_2}(p) \bar{G}^{-1}(p) \cdot \bar{F}(a, b) \in \mathbb{Z}[p] \zeta_q(2) + \mathbb{Z}[p]$$

with a quantity $\bar{\Omega}(p)$ defined like in (6). Finally, choosing $a_1 = 5n + 1$, $a_2 = 6n + 1$, $a_3 = 7n + 1$, and $b_2 = 14n + 2$, $b_3 = 15n + 2$ we deduce the following result [17].

Theorem 2. For each $q = 1/p$, $p \in \mathbb{Z} \setminus \{0, \pm 1\}$, the number $\zeta_q(2)$ is irrational and its irrationality exponent satisfies the estimate

$$\mu(\zeta_q(2)) \leq 4.07869374 \ldots.$$

(9)

The quantitative estimates of type (9) for $\zeta_q(2)$ have been not known before, although the transcendence of $\zeta_q(2)$ for any algebraic number q with $0 < |q| < 1$ follows from Nesterenko’s theorem [18].

It is nice to mention that the simpler choice of the parameters $a_1 = a_2 = a_3 = n + 1$, $b_2 = b_3 = 2n + 2$ also proves the irrationality of $\zeta_q(2)$ for $q^{-1} \in \mathbb{Z} \setminus \{0, \pm 1\}$, and the limit $q \to 1$ produces Apéry’s original sequence [19] of rational approximations to $\zeta(2)$.

We would like to stress that using, like in [7]–[10], (multiple) q-integrals for the both series $F(a, b)$ and $\bar{F}(a, b)$ in study of arithmetic properties of the numbers $\zeta_q(1)$ and $\zeta_q(2)$ is in great difficulties. The reason of this is due to non-existence of a concept of changing the variable of q-integration (see [20] and [21, Section 2.2.4]).
3. General problems for \(q \)-zeta values. We start with mentioning that, for an even integer \(k \geq 2 \), the series \(E_k(q) = 1 - 2k \zeta_q(k)/B_k \), where \(B_k \in \mathbb{Q} \) are Bernoulli numbers, is known to be the Eisenstein series. Therefore the modular origin (with respect to the parameter \(\tau = \frac{\log q}{2\pi i} \)) of the functions \(E_4, E_6, E_8, \ldots \) gives the algebraic independence of the functions \(\zeta_q(2), \zeta_q(4), \zeta_q(6) \) over \(\mathbb{Q}[q] \), while all other even \(q \)-zeta values are polynomials in \(\zeta_q(4) \) and \(\zeta_q(6) \). In this sense, the consequence of Nesterenko’s theorem \([18]\) “the numbers \(\zeta_q(2), \zeta_q(4), \zeta_q(6) \) are algebraically independent over \(\mathbb{Q} \) for algebraic \(q, 0 < |q| < 1 \)” reads as a complete \(q \)-extension of the consequence of Lindemann’s theorem \([22]\) “\(\zeta(2) \) is transcendental”. Moreover, the transcendence of values of the function

\[
1 + 4 \sum_{\nu=0}^{\infty} \frac{(-1)^\nu q^{2\nu+1}}{1 - q^{2\nu+1}} = \left(1 + 2 \sum_{n=1}^{\infty} q^{n^2} \right)^2 \tag{10}
\]

at algebraic points \(q, 0 < |q| < 1 \), also follows from Nesterenko’s theorem (a proof of Jacobi’s identity (10) can be found, e.g., in \([23, \text{Theorem 2}]\)); the series on the left-hand-side of (10) is a \(q \)-analogue of the series

\[
4 \sum_{\nu=0}^{\infty} \frac{(-1)^\nu}{2\nu + 1} = \pi.
\]

The best known estimate for the irrationality exponent of (10) in the case \(q^{-1} \in \mathbb{Z} \setminus \{0, \pm1\} \) is obtained in \([24]\).

The limit relations (2) as well as the expected algebraic structure of the ordinary zeta values motivate the following questions (we also regard \(\zeta_q(1) \) to be an odd \(q \)-zeta value, although the corresponding ordinary harmonic series is divergent).

Problem 1. Prove that the \(q \)-zeta values \(\zeta_q(1), \zeta_q(2), \zeta_q(3), \ldots \) as functions of \(q \) are linearly independent over \(\mathbb{C}(q) \).

Problem 2. Prove that the \(q \)-functional set involving the three even \(q \)-zeta values \(\zeta_q(2), \zeta_q(4), \zeta_q(6) \) and all odd \(q \)-zeta values \(\zeta_q(1), \zeta_q(3), \zeta_q(5), \ldots \) consists of functions that are algebraically independent over \(\mathbb{C}(q) \).

The associated diophantine problems consist in proving the corresponding linear and algebraic independences over the algebraic closure of \(\mathbb{Q} \) for algebraic \(q \) with \(0 < |q| < 1 \). In this direction, even irrationality and \(\mathbb{Q} \)-linear independence results for \(q \)-zeta values at the point \(q \in \mathbb{Q} \) with \(q^{-1} \in \mathbb{Z} \setminus \{0, \pm1\} \) would be very interesting.

A problem of other type is to construct a model of multiple \(q \)-zeta values involving \(q \)-zeta values (1) and possessing similar properties with the model of multiple zeta values \([25]\).

References

1. G. Pólya and G. Szegö, *Problems and theorems in analysis*, vol. 2, Springer-Verlag, New York, 1976.
2. M. Kaneko, N. Kurokawa, and M. Wakayama, *A variation of Euler’s approach to values of the Riemann zeta function*, Preprint (June 2002), E-print [math.QA/0206171](http://arxiv.org/abs/math.QA/0206171).
3. E. M. Nikishin, *On irrationality of values of functions \(F(x, s) \)*, Mat. Sb. [Russian Acad. Sci. Sb. Math.] \textbf{109} (1979), no. 3, 410–417.
4. L. A. Gutnik, *On the irrationality of certain quantities involving \(\zeta(3) \)*, Acta Arith. \textbf{42} (1983), no. 3, 255–264.
5. Yu. V. Nesterenko, *A few remarks on \(\zeta(3) \)*, Mat. Zametki [Math. Notes] \textbf{59} (1996), no. 6, 865–880.
6. G. V. Chudnovsky, *On the method of Thue–Siegel*, Ann. of Math. (2) \textbf{117} (1983), no. 2, 325–382.
7. E. A. Rukhadze, A lower bound for the approximation of ln 2 by rational numbers, Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.] (1987), no. 6, 25–29.
8. M. Hata, Legendre type polynomials and irrationality measures, J. Reine Angew. Math. 407 (1990), no. 1, 99–125.
9. G. Rhin and C. Viola, On a permutation group related to $\zeta(2)$, Acta Arith. 77 (1996), no. 1, 23–56.
10. G. Rhin and C. Viola, The group structure for $\zeta(3)$, Acta Arith. 97 (2001), no. 3, 269–293.
11. G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge Univ. Press, Cambridge, 1990.
12. P. Bundschuh and K. Väänänen, Arithmetical investigations of a certain infinite product, Compositio Math. 91 (1994), 175–199.
13. W. Van Assche, Little q-Legendre polynomials and irrationality of certain Lambert series, The Ramanujan J. 5 (2001), no. 3, 295–310.
14. W. Zudilin, Remarks on irrationality of q-harmonic series, Manuscripta Math. 107 (2002), no. 4, 463–477.
15. E. Heine, Untersuchungen über die Reihe . . ., J. Reine Angew. Math. (Crelles J.) 34 (1847), 285–328.
16. W. Zudilin, Arithmetic of linear forms involving odd zeta values, Preprint (August 2001), E-print math.NT/0206175.
17. W. Zudilin, On the irrationality measure for q-analogue of $\zeta(2)$, Mat. Sb. [Russian Acad. Sci. Sb. Math.] 193 (2002), no. 8.
18. Yu. V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. [Russian Acad. Sci. Sb. Math.] 187 (1996), no. 9, 65–96.
19. R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque 61 (1979), 11–13.
20. R. Askey, The q-gamma and q-beta functions, Appl. Anal. 8 (1978), 125–141.
21. H. Exton, q-Hypergeometric functions and applications, Ellis Horwood Ser. Math. Appl., Ellis Horwood Ltd., Chichester, 1983.
22. F. Lindemann, Über die Zahlen π, Math. Annalen 20 (1882), 213–225.
23. G. E. Andrews, R. Lewis, and Z.-G. Liu, An identity relating a theta function to a sum of Lambert series, Bull. London Math. Soc. 33 (2001), 25–31.
24. T. Matala-aho and K. Väänänen, On approximation measures of q-logarithms, Bull. Austral. Math. Soc. 58 (1998), 15–31.
25. M. Waldschmidt, Valeurs zêta multiples: une introduction, J. Théorie Nombres Bordeaux 12 (2000), 581–595.

Moscow Lomonosov State University
Department of Mechanics and Mathematics
Vorobiovy Gory, GSP-2, 119992 Moscow, RUSSIA

URL: http://wain.mi.ras.ru/index.html
E-mail address: wadim@ips.ras.ru