Effect of benzyl amino purin (BAP) and gibberellin acid (GA3) to chlorophyll and antioxidant enzymes of soybean (Glycine max (L) Merill.) genotypes in response to inundation conditions

R I Damanik*, L D Lumbangaol, N Rahmawaty and R Sipayung

Department of Agrotechnology, Faculty of Agriculture, Universitas Sumatera Utara, 20155 Medan, Indonesia

E-mail: *revandy.iskandar@usu.ac.id

Abstract. Indonesia's climate change issues cause the significant potential for inundation to occur when rainfall is too high in the area of soybean cultivation, which can give an impact on soybean productivity. The objective of this research was to measure the effect of growth regulators which can respond to soybean plant adaptation to inundation stresses. The influence of Benzyl Amino Purin (BAP) and Gibberellin Acid (GA3), and their mixture on the chlorophyll and antioxidant defense system of three (Grobogan, Willis, and Detam-1) soybean genotypes has been conducted subjected to inundation condition in March 2018. The chlorophyll total by GA3 was significantly increased at Detam-1 soybean genotype, while no change in other two soybean genotypes in GA3, BAP, and the mixture compared to controls. Exogenous GA3 enhanced the activity of superoxide dismutase (SOD) in Grobogan and Detam-1 soybean genotypes in response to inundation (72 h). On the other hand, peroxidase (POD) activity was enhanced on Grobogan with GA3, and Detam-1 soybean genotypes with BAP applications when compared to control. Our result reveals that SOD together with POD activities was participate to protect Detam-1 soybean genotype from inundation condition.

1. Introduction

Food security is under severe dread because of the growing world residents. Response for crop production growth up to 100-110% was predicted from 2005 to 2050 [1]. Soybean is an important crop plant as the primary source for protein and oil, and to recover in assembly food-need in Indonesia. Soybeans are mostly cultivated in paddy fields after rice, and some are on dry land during the rainy season. In both planting systems, part of the growing phase of soybean plants will be faced with high soil moisture. The condition of moist growth media will inhibit plant growth which in turn reduce yield [2].

The low production of soybean in Indonesia is caused by several factors such as soil, climate, pests and diseases, as well as poor management practices. Soybean is regarded as a waterlogging-sensitive crop [3]. Soybeans are C3 plants that cannot withstand drought and waterlog. The ability to survive under low oxygen conditions is related to the activation of complex molecular and metabolic responses [4]. The good groundwater condition for soybean plants is groundwater in a field capacity since the plants grow to full pods, then dry condition before harvest [5]. The stagnant soil conditions (saturated water)
ranged between 15-25% at the age of 15-30 days (vegetative phase) could be more prominent reduced seed yield 50%. The condition of flooded soil for two weeks during the flowering phase (R2) of some soybean genotypes can significantly reduce floral bud numbers, and seed yields by at least 37%, also even caused plant death [6]. Therefore, the effective way for inundation tolerance in soybean is needed to make certain food production, although variation in sensitivity within and among their genotypes exists.

Plant growth regulators found in many types of plants. BAP is a synthetic compound cytokine type which also plays a role in root formation, cell division and sprout organ formation [7]. Several studies have shown that the use of a combination of NAA and BAP can increase orchid seed germination. Luan V.Q et al. [8] reported that the use of a combination of NAA 1 mg.l\(^{-1}\) and BAP 0.5 mg.l\(^{-1}\) is good for germination of *Dendrobium sp. in vitro*. The application of GA\(_3\) very effectively used in increasing seed yield, stem elongation, increase the number of panicles, accelerate flowering period in rice seeds. According to Susilawati et al. [9], exogenous GA\(_3\) 200 ppm can increase plant height, panicle number, flowering age and panicle length and production of rice. Bishnoi and Krishnamoorthy [10], in peanut plants which were submerged for 7 and 14 days could reduce leaf area, the amount of chlorophyll and photosynthesis rate but slightly reduce the potential of leaf water with the GA\(_3\) application.

Planting of soybeans on wet soil will inhibit germination and initial growth, due to lack of oxygen for seed growth and plant roots. Regarding those unfavourable conditions, affected growth and reduced photosynthetic activities of the plant. Beside of that, the antioxidant enzyme system has been known in plants producing numerous varieties of activated oxygen species, causing membrane lipids, protein and DNA damage, and photosynthetic pigments destruction [11]. In summarizing, superoxide dismutase (SOD) is primarily activated to change superoxide to oxygen and hydrogen peroxide, and together with another three responsible enzymes, namely catalase (CAT), glutathione peroxidase (GPx), and ascorbate peroxidase (APX) developed antioxidant defense system, in order to control hydrogen peroxide (H\(_2\)O\(_2\)), a dangerous oxygen-containing free radical in to water molecules [12]. H\(_2\)O\(_2\) has a role as a molecular signal in the plant. It is connected in the adjusting of various abiotic and biotic stresses and at high amount has a significant role in cell death and throughout the final stages of aging [13]. Peroxidases (EC.1.11.1.7.) are enzymes which catalyse redox reactions together with H\(_2\)O\(_2\) as an electron acceptor and a variety of substrates in which oxygen, water or both are released. They are steady heat enzymes and are found in plants and animals [14].

In our previous study, Grobogan soybean genotype is more responsive to growth when treated in waterlogging conditions during germination and growth of embryo genic callus in *vitro* hypoxic conditions [15]. Conversely, other reports showed no significant correlation between germination and seedling stages and yield in flood-tolerant soybeans [16]. This study was conducted to examine the influence of exogenous applications of GA\(_3\), BAP, and their mixture on chlorophyll content, and antioxidant enzyme activities in soybean genotypes (Grobogan, Willis, and Detam-1) under inundation conditions.

2. Materials and Methods

2.1. Plant material and treatments

The plant materials that were used in this study include soybean seeds namely Grobogan, Willis, and Detam-1, which were obtained from Research Centres for tubers and seeds (Balitkabi) Malang, Indonesia. The seeds of each genotype were surface sterilized with 40% (v/v) Sodium hypochlorite solution for 5 min and thoroughly washed with sterilized distilled water and were sown in a shallow container containing farm soil. Germinated seeds were placed into plastic polybags filled with 5 kg of the mixture of organic nutrient and soil, and grown in the field. Treatments were arranged in a factorial randomized block design consisting of three factors, with three replicates as follows:

- Factor I: Genotypes tested.
 - G\(_1\): Grobogan
 - G\(_2\): Willis
G_1: Detam-1

- Factor II: Growing Regulatory Substances
 - K_0: control
 - K_1: 30 ppm BAP
 - K_2: 150 ppm GA
 - K_3: 30 ppm BAP + 150 ppm GA

- Factor III: Inundation condition
 - I_0: control
 - I_1: Inundation (72 h)

All treated seedlings were transferred to a water pool (5 m x 2 m x 80 cm) filled with water until 5-10 cm above the soil surface for 72 h submerged when the control soybean plants reached the V_4 stage (perfectly opened leaf at the fourth node).

2.2. BAP and GA$_3$ application

BAP and GA$_3$ were applied with spraying system based on the concentration according to the treatment with 7-day intervals started at the second week after planting until the beginning of the flowering stage.

2.3. Response data collection

Chlorophyll contents were estimated according to the method described by Arnon, [17]. SOD activity was analysed according to the identifying of Steward and Bewley [18], using nitro blue tetrazolium (NBT), and POD activity was examined with a spectrophotometer with wavelength at 470 nm using guaiacol as a phenolic substrate with H$_2$O$_2$ [19].

3. Results and Discussion

3.1. Total chlorophyll

The chlorophyll total can be seen in Table 1.

Treatment	G_1^a	G_2^b	G_3^c
C^a	34.93	34.23	35.50
B^b	37.30	33.11	33.63
G^c	32.8	34.37	43.42
$B+G^d$	37.90	38.23	37.87

aGrobogan
bWillis
cDetam-1
dcontrol
eBAP
fGA$_3$
gMixture of BAP and GA$_3$

The total chlorophyll showed various profiles depending on the genotypes. Shortage of O$_2$ is often occurring during various plant developmental processes. The ability to live through low oxygen conditions is closely connected to the activation of fast and influence on molecular and metabolic responses [4]. Relative to the control, a marked promote in chlorophyll was observed in waterlogged
plants for Grobogan genotype added with BAP, also for Detam-1 genotype which added with GA$_3$. It was found that the application of mixtures (BAP and GA$_3$) showed a powerful physiological effect on chlorophyll content soybean in inundation condition (Table 1). This could be the role of BAP together with gibberellin signalling promote growth, due to the increase in photosynthesis responses to abiotic stress. Significantly, exogenous application of GA$_3$ and proline in stressed plants improve the endogenous proline content. Therefore, the changes of chlorophyll content positively correlated to the total of proline contents [20, 21].

3.2. Antioxidant enzymes
SOD and POD enzyme activities of soybean seedlings considerably were changed during inundation conditions after applying in exogenous BAP, GA$_3$, and mixture BAP and GA$_3$ (Table 2). SOD and POD enzyme activities in Grobogan and Detam-1 soybean genotypes leaves were promoted only by the sole application of either BAP or GA$_3$, whereas their mixture was similar to the respective control. In contrast, the tremendous reduction of both SOD and POD enzyme activities was recorded in Willis soybean genotype after pre-treatment with either BAP or GA$_3$, and their mixtures compared to control (Table 2). The antioxidant defense system gathered a non-enzymatic and an enzymatic system including superoxide dismutase (SOD) and Peroxidase (POD). A significant increased in SOD and POD activities in Grobogan and Detam-1 soybean genotypes, showed a key in response to inundation condition, it may have resulted due to the formation of O$_2^-$ and toxic levels of H$_2$O$_2$. There was an achieved performed action between SOD and POD in inundation condition, indicated existing at the same phase of the plant cells to protect opponent the stress [14, 22].

Table 2. Effect of foliar application of BAP and GA$_3$ on both SOD and POD enzyme activity

Treatment	SOD	POD				
	G$_1$	G$_2$	G$_3$	G$_1$	G$_2$	G$_3$
C	12.53	19.32	15.12	2.71	9.56	2.97
B	10.63	14.49	16.15	7.81	7.52	2.02
G	20.29	11.27	19.60	5.82	6.09	10.80
B+G	12.53	17.94	12.01	2.40	6.05	2.12

*a*Grobogan
*b*Willis
*c*Detam-1
*d*control
*e*BAP
*f*GA$_3$
#g*Mixture of BAP and GA$_3$

4. Conclusions
The present study showed enhancement of SOD and POD activities led to the proper protection of plants against inundation conditions for Grobogan and Detam-1 soybean genotypes

References
[1] Tilman D, Balzer C, Hill J and Befort B L 2011 Global food demand and the sustainable intensification of agriculture PNAS 108 50 pp 20260-4
[2] Cramer M D, Hawkins H J and Verboom G A 2009 The importance of nutritional regulation of plant water flux Oecologia 161 pp 15-24
[3] Munns R and Tester M 2008 Mechanisms of salinity tolerance *Ann. Rev. Plant Biol.* 59 pp 651-81

[4] Van Dongen J T and Licausi F 2015 Oxygen sensing and signalling *Ann. Rev. Plant Biol.* 66 pp 345-67

[5] Sumarno and Manshuri A G 2007 *Growing Requirements and soybean production areas in Indonesia* (In Indonesian) (Bogor, Food Crop Research and Development Center) p 512

[6] VanToai T, Cuc Hoa T, Ngoc Hue N T, Nguyen HT, Shannon J G and Rahman M A 2010 Flooding tolerance of soybean (*Glycine max* (L.) Merr.) germplasm from Southeast Asia under field and screen-house environments *The Open Agriculture Journal* 4 pp 38-46

[7] Lakitan B 1996 *Physiology of plant growth and development* (In Indonesian) (Jakarta: Grafindo Persada) p 217

[8] Luan VQ, Thien NQ, Khiem DV and Nhut DT 2006 In Vitro Germination Capacity and Plant Recovery of Some Native and Rare Orchids *Proceedings of International Workshop on Biotechnology in Agriculture Nong Lam University Ho Chi Minh City*

[9] Susilawati P N, Surahman M, Purwoko B S, Suharsi T K and Satoto 2014 Effect of Gibberellin acid applications (*GA_{3}* in hybrid rice seeds) (In Indonesian) (Bogor) pp 136-43

[10] Bishnoi N R and Krishnamoorthy H N 1992 Effect of waterlogging and Gibberellic Acid on leaf gas exchange in peanut (*Arachis hypogaea* L.) *Journal of Plant Physiology* 139 4 p 503

[11] Apel K and Hirt H 2004 Reactive Oxygen species, metabolism, oxidative stress, and signal transduction *Ann. Rev. Plant Biol.* 55 pp 373-99

[12] Bowler C, Montagu M V and InzeD 1992 Superoxide Dismutase and stress tolerance *Ann. Rev. Plant Physiol. Plant Mol. Biol.* 43 pp 83-116

[13] Anandan A and Arunachalam P 2012 Relative Proportion of antioxidative enzyme activity in locally grown Indian rice cultivars (*Oryza sativa* L.) under submergence condition *J. Plant Interact.* 7 pp 183-92

[14] Ankudey E G and Woode M Y 2014 Assessment and characterization of Peroxidase activity in locally grown bean varieties from Ghana *International J. of Sci. and Res. Publications* 4 pp 1-5

[15] Damanik R I, Manurung B H and Bayu E S 2018 Effects of Hypoxia Condition in embryogenic callus growth of soybean cell culture *IOP Conference Series Earth and Environmental Science* 122 pp 1-6

[16] Wu Y S and Yang C Y 2016 Physiological responses and expression Profile of NADPH oxidase in rice (*Oryza sativa*) seedlings under different levels of submergence *Rice* 9 2

[17] Arnon D J 1949 Copper enzymes in isolated chloroplasts polyphenoloxidase in *Beta vulgaris* *Plant Physiol.* 24 pp 1-15

[18] Stewart R C and Bewley J D 1980 Lipid peroxidation associated with accelerated aging of soybean axes *Plant Physiol.* 65 pp 245-24

[19] Diaz J, Bernal M A, Pomar F and Merino F 2001 Induction of shikimate dehydrogenase and peroxidase in pepper (*Capsicum annuum* L.) seedlings in response to copper stress and its relation to lignification *Plant Science* 161 1 pp 179-88

[20] Hasanuzzaman M, Alam M M, Rahman A, Hasanuzzaman M, Nahar K and Fujita M 2014 Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (*Oryza sativa* L.) varieties *Biomed Res Int* pp 1-17

[21] Xuan T D and Khang D T 2018 Effects of exogenous application of protocatechuic acid and vanillic acid to chlorophylls, phenolics and antioxidant enzymes of rice (*Oryza sativa* L.) in submergence *Molecules* 23 pp 1-14

[22] Costa H, Gallego S M and Tomaro M L 2002 Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons *Plant Science* 62 pp 939-45
Acknowledgments
This work was supported by project Higher education for basic research (Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT)), Ministry of Research, Technology and Higher Education Republic of Indonesia (Grant No.38/UN5.2.3.1/PPM/KP-DRPM/2018). Moreover, R.I.Damanik appreciations the Universitas Sumatera Utara, Medan, Indonesia for the support of scientific labs.