Asymmetric noise probed with a Josephson junction
Q. Le Masne, H. Pothier, Norman O. Birge, C. Urbina, Daniel Esteve

To cite this version:
Q. Le Masne, H. Pothier, Norman O. Birge, C. Urbina, Daniel Esteve. Asymmetric noise probed with a Josephson junction. Physical Review Letters, American Physical Society, 2009, 102 (6), pp.067002. <10.1103/PhysRevLett.102.067002>. <hal-00353883>

HAL Id: hal-00353883
https://hal.archives-ouvertes.fr/hal-00353883
Submitted on 16 Jan 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fluctuations of the current through a tunnel junction are measured using a Josephson junction. The current noise adds to the bias current of the Josephson junction and affects its switching out of the supercurrent branch. The experiment is carried out in a regime where switching is determined by thermal activation. The variance of the noise results in an elevated effective temperature, whereas the third cumulant, related to its asymmetric character, leads to a difference in the switching rates observed for opposite signs of the current through the tunnel junction. Measurements are compared quantitatively with recent theoretical predictions.

PACS numbers: 72.70.+m, 85.25.Cp, 73.23.-b, 74.50.+r
on the fictitious particle and is, in a simple model, given by the total resistance across the junction, including both $R$ and the resistance $R_N$ of the noise source. This expression indicates that the second cumulant of noise from the Josephson junction, $S_2$, simply adds to the Johnson-Nyquist noise of the rest of the circuit. The third cumulant gives rise to the additional term

$$B_3 = -S_3 \left( \frac{\phi_0}{k_B T_{\text{eff}}} \right)^3 \omega^2_0 j(s)$$  \hspace{1cm} (3)$$

with $j(s)$ a function of the tilt that depends on the quality factor $Q$ [14]. When reversing the sign of the average current $I_N$ through the noise source, $S_2$ remains unchanged whereas $S_3$ changes sign. Therefore, the departure from 1 of the rate ratio

$$R_T = \Gamma \left( +I_N \right) / \Gamma \left( -I_N \right) = \exp \left( 2 \left| B_3 \right| \right)$$  \hspace{1cm} (4)$$

is a measure of non-symmetric noise ($S_3 \neq 0$).

The experimental setup is shown schematically in Fig. 1. As it is well established that current noise through a tunnel junction is Poissonian ($S_2 = e^2 I_N$ and $S_3 = e^3 I_N$, with $e$ the electron charge), we use such a device (green double box) as a benchmark noise source. The detector JJ (orange crossed box) is coupled to it through capacitors $C_1$ and $C_2$. The finite frequency part $\delta N$ of the current through the tunnel junction $I_{N}(t)$ flows through the detector JJ, owing to the high-pass filter formed by $R_3$, $C_1$ and $C_2$ (3 dB point at 5 MHz). The switching of the JJ current-biased at $I_J$ is signaled by the appearance of a voltage $V_J$ across it. The low plasma frequency of 1.5 GHz guarantees $k_B T > h \omega_p / 2\pi$ even at the lowest temperature of our experiment (20 mK) [17]. In the relevant range of frequencies slightly below $\omega_p / 2\pi$, numerical simulations of the actual circuit indicate that the quality factor of the Josephson oscillations $Q$ is close to 5, insuring an underdamped dynamics, and no effect of retrapping as long as $s \gg 4 / \pi Q \approx 0.25$.

The sample was fabricated on a thermally oxidized high resistivity ($10^3$ to $10^4 \text{Ω cm}$) Si wafer. All on-chip resistors are 10 nm-thick Cr layers, with 215 Ω sheet resistance at 4 K, placed between mm-size pads. Capacitors were obtained from parallel aluminum films separated by 29 nm-thick sputtered silicon nitride as an insulator [13]. The tunnel junction and the detector JJ were fabricated at the same time by shadow evaporation of 20 nm and 80 nm-thick aluminum films. Their current-voltage characteristics are shown in Fig. 1. The tunnel junction has an area of 0.09 $\mu$m$^2$ and a tunnel resistance $R_N = 22.9 \text{ kΩ}$. It was biased at voltages larger than twice the superconducting gap $2\Delta/e = 0.4 \text{ mV}$ (which corresponds to $I_N = 0.02 \mu A$), so that it behaves as a normal metal junction, with Poissonian noise. The detector JJ, with area 1 $\mu$m$^2$, has a supercurrent $I_0 = 0.437 \mu A$. It was biased in series with a resistor $R_1 = 215 \Omega$ through a 50 Ω coaxial line equipped with attenuators. When switching occurs at a supercurrent $I_{sw}$, the voltage across the junction jumps to $(R_1 + 50 \Omega) I_{sw} < 2\Delta/e$, so that the current through it drops to zero and no quasiparticles are generated. Moreover, gold electrodes in good contact with the Al films were fabricated a few $\mu$m away from the junctions in order to act as traps for spurious quasiparticles [14] that could be excited by the high frequency noise. Apart from the Cr resistors and the Au traps, all conductors on the chip are superconducting aluminum films.

The sample was thermally anchored to the mixing chamber of a dilution refrigerator. The tunnel junction was biased by a floating voltage supply through two $1.5 \text{ MΩ}$ resistors. The on-chip capacitance $C_N = 190 \text{ pF}$ on the bias line is large enough to maintain the voltage across the tunnel junction at $V_N = R_N I_N$ for all relevant frequencies. Escape rates of the JJ were measured using $2 \times 10^5$ current pulses of duration $\tau = 0.53 \mu s$ with alternatively positive $(+I_J)$ and negative $(-I_J)$ amplitudes, separated by 9 $\mu s$. They were fed through a non-polarized capacitor $C_{in} = 200 \mu F$ placed at room temperature, which prevents DC thermoelectric currents from unbalancing the pulses. The switching rates $\Gamma_+$ and $\Gamma_-$ for the two signs of $I_J$ were deduced from the switching probability $P = 1 - e^{-\Gamma \tau}$ measured as the fraction of the
current pulses which led to a voltage pulse.

We first demonstrate that the switching of the detector junction is well described by the model of thermal activation whatever the current in the noise source. Figure 2(a) shows, for various currents $I_N > 0$, the $s$–dependence of $B^{2/3} = [-\ln (\Gamma/A)]^{2/3}$. Data fall on straight lines that extrapolate to 0 for $I_J = I_0$, as expected from Eq. (3). This allows us to extract an effective temperature $T_{\text{eff}}$, whose dependence on $T_N$ is shown in Fig. 2(b), with data taken at four different base temperatures $T$. We do find a linear dependence with correct extrapolations at $I_N = 0$ (values slightly above $T$ are attributed to imperfect filtering), as expected from Eq. (3) with $S_2 = eI$. Understanding the slope quantitatively requires an accurate model of the actual circuit at microwave frequencies: the RCSJ model assumes that the JJ is simply connected to a capacitor, a resistance $R_{\parallel}$ and a current source, in parallel. In the limit $Q \gg 1$, $R_{\parallel}$, which describes friction, has to be replaced with $R_{\parallel}(\omega_p) \equiv 1/\text{Re}(Y(\omega_p))$, with $Y$ the total admittance of the circuit across the JJ. Microwave simulations indicate that $R_{\parallel}(\omega_p)$ varies almost linearly from 63 $\Omega$ at 1 GHz to 36 $\Omega$ at 1.5 GHz, and that a current $I_X(\omega)$ through the tunnel junction leads to a current $\alpha(\omega)I_X(\omega)$ through the detector JJ, with a transfer function $\alpha(\omega)$ varying from 1.1 at 1 GHz to 1.27 at 1.5 GHz.

Since escape is determined essentially by the noise at $\omega_p$, we replace $S_2$ by $\alpha^2(\omega_p)eI_N$. Altogether, the prediction $T_{\text{eff}} \approx T + \alpha^2(\omega_p)R_{\parallel}(\omega_p)eI_N/2k_B$ is in agreement with the data (see dashed lines in Fig. 2; to fit the 20 mK-data, we used $T = 72$ mK), apart from the slight change in slope when varying $T$ which could be attributed to variations in the kinetic inductance of the superconducting electrodes.

We now discuss the effect of noise asymmetry. The $B^{2/3}$ plots for opposite signs of the current through $\omega_p$ are undistinguishable within the symbol size, demonstrating that the effect of the second cumulant $S_2$ is dominant. In the limit $eV_N \gg k_BT$, theory predicts that the effect of $S_0$ is to shift the curves by $\Delta I_J \sim 0.6B(\omega_p/Q)(S_3/S_2) = 0.6B e/C_J \sim 0.2 \times I_0$, which is difficult to measure reliably [26]. In our experiment, we measured directly the asymmetry ratio $R_\Gamma$ defined by Eq. (4), which varies by several % (see Fig. 3). We first set the amplitude $I_J$ of the current pulses at a value corresponding to a switching probability $P \sim 0.6$,
for which the statistical precision on the rates is good [21]. We then measured 100 times $\Gamma_+$ and $\Gamma_-$, with alternatively $+I_N$ and $-I_N$ through the noise source. This allows for two independent measurements of $R_T : R_T^\parallel = \Gamma_+(-I_N)/\Gamma_+ (+I_N)$ and $R_T^\perp = \Gamma_-(-I_N)/\Gamma_- (+I_N)$ [22]. In Fig. 3(a), we show with full and open symbols the corresponding measurements. The ratio rate $R_T$ differs from 1, a signature of asymmetric noise, as soon as $I_N \neq 0$. The statistical uncertainty on $R_T$ is smaller as the symbols. Small differences between $R_T^\parallel$ and $R_T^\perp$, in particular around $I_N = 2 \mu A$, are not understood. As for the comparison with theory, a difficulty arises because of the frequency dependence of the transfer function $\alpha(\omega)$, which results in a colored third cumulant at the detector $S_3(\omega_1, \omega_2) = \alpha(\omega_1)\alpha(\omega_2 - \omega_1)\alpha(-\omega_2)e^{2I_N}$. In the following, and in the absence of indication as to which frequencies are important, we compare however with the only existing theory, which assumes white noise ($S_3 = e^{2I_N}$). The corresponding predictions, Eqs. (3,4) with $j(s) \simeq 0.81(1-s)^{1.14}$ [23], are shown as solid lines in Fig. 3(a), scaled by a arbitrary factor 1.5. $R_T$ exhibits a maximum as a function of $I_N$ due to the opposite variations of $S_3$ and $T_{\text{eff}}$ with $I_N$. For $T_{\text{eff}}$, we used interpolations between the measured values shown in Fig. 2. When scaled up by 1.5, which might be due to frequency dependent transmission ($\alpha(\omega)$), theory accounts well for the experimental data. Feedback corrections due to the detector, described in [3] are neglected since $R_T^\parallel/R_T^\perp < 1$ [14]. Note that there is no feedback associated to the series resistance $R_j$ like in Ref. [3] because the current noise associated to $R_j$ does not flow through the noise source, but through the detector JJ. In Fig. 3(b), we also compare with theory the $s-$dependence of $R_T$. In order to perform this measurement, we used pulses of various durations ($0.53 \text{ to } 21 \mu s$), which allows to obtain the switching rates at different values of $s$. For the longest pulses, the rate asymmetry is as large as 16%. Here also, theory scaled by 1.5 accounts precisely for the data.

Qualitative agreement between experiment and theory gives confidence for the use of the JJ as a measuring device for $S_3$, even if the application to a wider range of systems requires some theory for colored noise. A limitation concerns situations with strong non-linearities in the voltage dependence of the cumulants, where feedback effects could become sizeable [24, 25]. For quantitative measurements of $S_3$ on other systems, it is not only important to tune the plasma frequency of the junction in the GHz range as done in this work, but also to improve the microwave design, in particular with more compact electrodes, so as to avoid frequency dependent factors in the analysis. Proposals to access the full counting statistics with a JJ embedded in more complex circuits [5] remain to be investigated.

Acknowledgments

We acknowledge technical support from Pascal Senat and Pief Orfila, and discussions with B. Huard, H. Grabert, B. Reulet, J. Ankerhold, and within the Quantronics group. Work supported by ANR contacts Electromeso and Chenanom, and Region Ile-de-France for the nanofabrication facility at SPEC. N.O.B. acknowledges support by NSF grant DMR-0705213.

[1] L. Levitov and G. Lesovik, JETP Lett. 55, 555 (1992).
[2] Y. Nazarov, Ann. Phys. (Leipzig) 16, 720 (2007).
[3] B. Reulet, J. Senzier and D.E. Prober, Phys. Rev. Lett. 91, 196601 (2003).
[4] Yu. Bonzate et al., Phys. Rev. Lett. 95, 176601 (2005).
[5] G. Gershon et al., Phys. Rev. Lett. 101, 016803 (2008).
[6] J. Tobiska and Yu.V. Nazarov, Phys. Rev. Lett. 93, 106801 (2004).
[7] A.V. Timofeev et al., Phys. Rev. Lett. 98, 207001 (2007).
[8] J.T. Peltonen et al., Physica E 40, 111 (2007).
[9] B. Huard et al., Ann. Phys. (Leipzig) 16, 736 (2007).
[10] V.I. Mel’nikov, Phys. Rep. 209, 1 (1991).
[11] In the regime of thermal activation, the predictions of this adiabatic model disagree by a factor 6 with those of the complete theories of Ref. [12, 13, 14].
[12] J. Ankerhold, Phys. Rev. Lett. 98, 036601 (2007); ibid., 99, 139901 (2007).
[13] E.V. Sukhorukov and A.N. Jordan, Phys. Rev. Lett. 98, 136803 (2007).
[14] H. Grabert, Phys. Rev. B 77, 205315 (2008). We corrected for a minus sign missing in Eqs. (78,92).
[15] A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).
[16] For a review, see J. Ankerhold, Quantum Tunneling in Complex Systems (Springer, Berlin, 2007).
[17] The asymmetry signal increases with the detection bandwidth determined by $\omega_\gamma$. However, it becomes more difficult to achieve a frequency-independent coupling.
[18] The results of the experiment described in Ref. [3] were presumably dominated by a leakage in capacitors.
[19] P. Joyez et al., Phys. Rev. Lett. 72, 2458 (1994).
[20] In Ref. [3], the effect of $S_3$ was detected as the shift $\Delta I_j$. According to theory and using the parameters given by the authors, the expected shift would have been much larger than observed, had the thermal activation regime been achieved.
[21] The expression for the uncertainty on $R_T$ in Ref. [3] should be divided by $\sqrt{2}$.
[22] The signs in front of $I_N$ account for the fact that in our setup, the noise current subtracts from the bias current.
[23] This analytical expression interpolates between the results of numerical calculations of $j(s)$ performed for $Q \sim 5$ and in the working interval $0.5 < s < 0.9$, along the lines of Ref. [3] (H. Grabert, private communication).
[24] In measurements with the noise source biased near $V = 2A/\epsilon$, where the $IV$ characteristic is very non-linear, we found strong asymmetries in the switching rates.
[25] D.F. Urban and H. Grabert, arXiv:0810.2938.