Automation of non-SUSY two-loop RGEs with PyR@TE: latest developments

FLORIAN LYONNET

Southern Methodist University
Dallas, Texas, 75206, USA

In light of the conspicuous absence of SUSY in the energy range explored by the LHC during run I, non-supersymmetric BSM scenarios are becoming more and more attractive. One key ingredient in exploring such BSM physics are the renormalization group equations (RGEs) that are essential for extrapolating the theory to higher energy scales. Although the two-loop RGEs for a general quantum field theory have been known for some time, it is only recently that their automation has become available in the form of a Python program called PyR@TE. In this talk, I will present the features of PyR@TE as well as the latest developments of the code. In particular, the new ability to deal with sets of fields that have multiple ways of being contracted into a gauge singlet.

PRESENTED AT

DPF 2015
The Meeting of the American Physical Society
Division of Particles and Fields
Ann Arbor, Michigan, August 4–8, 2015
1 Introduction

The second run of the LHC is now ongoing and new data will soon allow us to shed more light on the physics living at the TeV scale. Even though SUSY is one of the best motivated candidates for this new physics, the absence of evidence for it so far has revived the interest in non-supersymmetric (SUSY) extensions of the Standard Model (SM).

In the SUSY context, there exist two Mathematica packages that allow for an automatic generation of all the β-functions at two-loop, SARAH \cite{1} and SUSYNO \cite{2}. PyR@TE \cite{3} bridges the gap with SUSY models and brings to the same level of automation the calculation of two-loop RGEs for non-SUSY extensions of the SM.

In this presentation, we review the capabilities of PyR@TE and present the latest developments of the code. In particular, we show how to deal with terms that have multiple gauge singlets. Finally, we provide an outlook on the upcoming release of PyR@TE 2 \cite{4}.

2 Renormalization group equations at two-loop with PyR@TE

PyR@TE \cite{3} is a Python program that automatically generates the full two-loop renormalization group equations for all the (dimensionless and dimensionful) parameters of a general gauge theory. The general RGEs for non-supersymmetric gauge theories have been known at two-loop accuracy for about 30 years \cite{5,6,7,8,9,10}. All known typos in the original series of papers by Machacek and Vaughn have been taken into account and the code has been extensively validated against the literature. In addition, independently of PyR@TE, Mathematica routines were developed and cross-checked against PyR@TE; these routines are now part of SARAH 4 \cite{1}.

The various inputs such as the gauge group and particle content can be specified by the user via simple text files. For instance, the Higgs quartic term of the SM Lagrangian would be defined by

```python
QuarticTerms: {
    '\lambda': {Fields : [H,H*,H,H*], Norm : 1/2}}
}
```

In which H, H^* represent the Higgs field and its conjugate respectively.

Once the RGEs have been calculated by PyR@TE, the results can be exported to LaTeX and Mathematica or stored in a Python data structure for further processing. In addition, it is possible to create a numerical Python function that can be used to solve the RGEs, e.g. using the provided Python tool box\footnote{Note that a Mathematica routine to solve the exported RGEs is also provided.}.
In terms of gauge groups, PyR@TE currently supports SU(n) groups\footnote{Higher SU(n) gauge groups can be added upon request.} up to SU(6) as well as U(1). For each one of these groups, the irreducible representations available range from dimension n to $n^2 - 1$ with the exception of SU(2) and SU(3) for which an extended database is available with representations up to dimension 8 and 10 respectively. Note that the kinetic mixing between multiple U(1) group factors is not yet taken into account, and we refer the reader to section\footnote{We refer the reader to \cite{3} for the definition.} for more details.

The code was designed to provide the user with maximum flexibility with regard to what to calculate. For example, one can select to calculate the β-function of only one of the terms defined in the potential or even to neglect a specific contribution to a particular RGE. The following command line would calculate the RGEs of the gauge couplings, $-g_c$, and quartic term, $-q_c$, of the SM at one-loop neglecting the contribution A_{abcd}\footnote{\texttt{--Skip/-sk ['CAabcd']}},

```
python pyR@TE.py -m SM.model -gc -qc -sk ['CAabcd']
```

These options are particularly useful for quick validations when developing a model or to avoid calculating terms that are time consuming and that will be neglected in the end. The full list of options can be found in Table 1 of \cite{3}.

The code and various tutorials are publicly available at \url{http://pyrate.hepforge.org}.

3 Latest Developments

The latest version of PyR@TE available is 1.2.1. It contains all the bug fixes introduced since the version 1.0.0 as well as a couple of new flags to steer the calculation such as for instance the \texttt{--Skip/-sk} flag described above. In addition, we recently added a significant new capability that we now describe.

The main motivation is to be able to enter terms that have multiple gauge singlets. Indeed, as seen above, each term in the Lagrangian is specified by a set of fields making it impossible to distinguish multiple singlets that could result from the contraction of the same set of fields. So far, the chosen combination was the one in which the quartic term can be factorized in

$$\left(\mathbf{a} \otimes \mathbf{b}\right) \otimes \left(\mathbf{c} \otimes \mathbf{d}\right),$$

in which \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} are the representations of the scalar fields involved. In general, assuming a set of n fields ϕ_i with dimensions D_i under an SU(n) gauge group, we will
denote the Clebsch-Gordan coefficients (CGCs) that gives the contraction of indices to an invariant combination as C, i.e.

$$C_{i_1i_2...i_n} \phi_i \phi_i ... \phi_i,$$

$$(2)$$

does not transform under $SU(n)$. Here, the i_x, $x = 1, \ldots, n$ are the charge indices with respect to the gauge group. As an example let us consider a complex triplet of $SU(2)$ written as a two-by-two matrix Δ; two quartic invariants are usually used in the literature

$$\text{Tr}(\Delta^\dagger \Delta \Delta^\dagger \Delta),$$

$$\text{Tr}(\Delta^\dagger \Delta) \text{Tr}(\Delta^\dagger \Delta).$$

$$(3)$$

$$(4)$$

Note that because a linear combination of CGCs is a valid singlet, there is an arbitrary choice to make in the basis of CGCs.

Our implementation can be decomposed in three steps: (i) Extend the database§ to include all the CGCs, (ii) make the database available to the user such that one can match one’s own definitions to the ones in PyR@TE, (iii) introduce a keyword, CGCs, to specify which one of the CGCs to use for a given term.

The database of PyR@TE is built on SUSYNO [2], and it is natural to solve (i) in the same context. The meaning of (iii) will be apparent when we discuss the example below and we now focus our discussion on (ii).

Querying the database

To let the user access the different group related information built in PyR@TE, we introduce a new mode to interactively query the database. This mode is started by specifying the `-idb` flag on the command line; the database is loaded and a prompt appear in which one can type any of the following command to access the corresponding information contained in the database:

- **Invariants** group irrep ⇒ CGCs of irrep of group,
- **Matrices** group irrep ⇒ matrix representation of irrep of group,
- **Casimir** group irrep ⇒ quadratic casimir of irrep of group,
- **Dynkin** group irrep ⇒ dynkin index of irrep of group,
- **DimR** group irrep ⇒ dimension of irrep of group,

§The CGCs are taken from SUSYNO [2], see [3] for more details.
A toy model: SM+complex triplet

As an example, let us consider the SM extended by a SU(2)_L-complex triplet, \(T \sim (3, 1) \). Writing the complex triplet as a two-by-two matrix, \(\Delta \), one can write the following potential

\[
V = \lambda_1 H^\dagger H H^\dagger H + \lambda_{\Delta_1} \text{Tr}(\Delta^\dagger \Delta) H^\dagger H + \lambda_{\Delta_2} \text{Tr}(\Delta^\dagger \Delta) \text{Tr}(\Delta^\dagger \Delta) \\
+ \lambda_2 H^\dagger \Delta^\dagger H + \lambda_3 \text{Tr}(\Delta^\dagger \Delta^\dagger \Delta),
\]

in which \(H \) denotes the Higgs field of the SM. To obtain the list of CGCs implemented in PyR@TE for the contraction of four arbitrary triplet fields of SU(2) (\(a, b, c, d \)) we can query the database

\[
\text{Invariants SU2 } [[2,\text{True}], [2], [2,\text{True}], [2]]
\]

which leads to three invariants, \(C^1, C^2, C^3 \), out of which one vanishes (\(C^3 \)) once the substitutions \(a, c \rightarrow T^\dagger \) and \(b, d \rightarrow T \) have been performed. Working the details of the matching between these invariants and Eqs. (3,4) one arrives at the following relations for the CGCs of the \(\lambda_{\Delta_2} \) term and \(\lambda_3 \) term, denoted \(C_{\lambda_{\Delta_2}} \) and \(C_{\lambda_3} \) respectively

\[
C_{\lambda_{\Delta_2}} \rightarrow C^1, C_{\lambda_3} \rightarrow \frac{1}{2} C^1 + \frac{1}{\sqrt{3}} C^2.
\]

This is input in the model file via the keyword \textit{CGCs} as follows

\[
\text{QuarticTerms: }
\]

\[
'\backslash\text{lambda}_{\Delta_2}' : \{\text{Fields : } [T*,T,T*,T], \text{ Norm : } 1, \text{CGCs: SU2L: } [1]\},
\]

\[
'\backslash\text{lambda}_3' : \{\text{Fields : } [[T*,T,T*,T],[T*,T,T*,T]], \text{ Norm : } [1/2,1/sqrt(3)], \text{CGCs: SU2L: } [1,2]\},
\]

Similar relations are obtained for the other couplings and one can then generate the RGEs for all the quartic couplings as well as the gauge couplings.

Fig. \ref{fig:1} upper panel shows the evolution with the energy scale of the various quartic couplings at two-loop**. All the quartic couplings are set to 0.1 at \(M_Z \) and then evolved according to the two-loop \(\beta \)-function. The lower panel of Fig. \ref{fig:1} shows the ratio of the two-loop running over the one-loop running and illustrates the size of the corrections that one might expect from the two-loop \(\beta \)-functions; in this toy model, the modifications reach up to 10% at the highest energy scales.

*Note that [2,\text{True}] denotes the conjugated representation 2.

**The details can be found at \url{http://pyrate.hepforge.org}

**Note that this is not intended to be a phenomenologically viable example but simply an illustration of the capabilities of the PyR@TE program.
Figure 1: Evolution of the quartic couplings in a model where the SM has been supplemented by a complex SU(2)_{L}-triplet scalar field. Upper panel: Quartic couplings at two-loop. Lower panel: Ratio of the two-loop over one-loop evolution; the effects are as large as 10%.

4 Outlook

The above latest developments as well as the features described in this section have been combined into a new version, PyR@TE 2 [4]. The main addition to this first version is the introduction of the kinetic mixing terms in the RGEs. Following [11], we have implemented all the effects of kinetic mixing at two-loop both in the gauge couplings and in the quartic, Yukawa, trilinear, fermion mass and scalar mass terms. This will constitute the first complete implementation of those terms. In addition, the RGEs for the fermion and scalar anomalous dimensions at two-loop have been added to the code. Finally, we wrote a new numerical output in C++ which significantly improves the speed to solve the coupled system of differential equation.

5 Conclusion

We have presented the Python program PyR@TE that allows for an easy generation of two-loop RGEs for an arbitrary gauge field theory. With PyR@TE, once the user has specified the gauge group and particle content of the model, the complete set of
two-loop β-functions is derived. Numerical routines are automatically produced by PyR@TE which allow for an easy and efficient way to solve the RGEs. The latest developments have been presented and in particular the new capability to deal with terms that have multiple gauge singlets. This was exemplified with the SM plus a complex triplet of SU(2) for which the complete set of two-loop β-functions has been obtained for the first time. Two-loop corrections in this toy model can reach up to 10%.

ACKNOWLEDGMENTS

I am grateful to Helena Kolešová and Ingo Schienbein for many useful discussions.

References

[1] F. Staub, “SARAH 4: A tool for (not only SUSY) model builders,” *Comput. Phys. Commun.* **185** (2014) 1773–1790, [1309.7223](https://arxiv.org/abs/1309.7223).

[2] R. M. Fonseca, “Calculating the renormalisation group equations of a SUSY model with Susyno,” *Comput.Phys.Commun.* **183** (2012) 2298–2306, [1106.5016](https://arxiv.org/abs/1106.5016).

[3] F. Lyonnet, I. Schienbein, F. Staub, and A. Wingerter, “PyR@TE: Renormalization Group Equations for General Gauge Theories,” *Comput. Phys. Commun.* **185** (2014) 1130–1152, [1309.7030](https://arxiv.org/abs/1309.7030).

[4] F. Lyonnet and I. Schienbein, “PyR@TE 2: RGEs with complete kinetic mixing at two-loop,” *in prep.*

[5] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization,” *Nucl. Phys.* **B222** (1983) 83.

[6] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings,” *Nucl. Phys.* **B236** (1984) 221.

[7] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings,” *Nucl. Phys.* **B249** (1985) 70.

[8] I. Jack and H. Osborn, “Two Loop Background Field Calculations for Arbitrary Background Fields,” *Nucl.Phys.* **B207** (1982) 474.
[9] I. Jack and H. Osborn, “General Two Loop Beta Functions for Gauge Theories With Arbitrary Scalar Fields,” *J.Phys.* A16 (1983) 1101.

[10] I. Jack and H. Osborn, “General Background Field Calculations With Fermion Fields,” *Nucl.Phys.* B249 (1985) 472.

[11] R. M. Fonseca, M. Malinsky, and F. Staub, “Renormalization group equations and matching in a general quantum field theory with kinetic mixing,” [1308.1674].