Research Article

Angiostrongylus costaricensis infection in Martinique, Lesser Antilles, from 2000 to 2017

Céline Dard2,3,a,*, Duc Nguyen4,5,a, Charline Miossec1, Katia de Meuron6, Dorothée Harrois7, Loïc Epelboin5,8, André Cabié4,9,10, and Nicole Desbois-Nogard1,*

1 Laboratoire de Parasitologie-Mycologie-Sérologies Bactériennes et Parasitaires, CHU de la Martinique, 97200 Fort-de-France, France
2 Laboratoire de Parasitologie-Mycologie, CHU Grenoble Alpes, 38700 Grenoble, France
3 Institute for Advanced Biosciences (IAB), INSERM U1209 – CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
4 Service de Maladies Infectieuses et Tropicales et Médecine Polyvalente, CHU de la Martinique, 97200 Fort-de-France, France
5 EA3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, 97306 Cayenne, France
6 Service de Pédiatrie, Maison de la Femme de la Mère et de l’Enfant, 97200 Fort-de-France, France
7 Laboratoire de Biologie Médicale, Centre Hospitalier de Basse-Terre, 97109 Basse-Terre, Guadeloupe, France
8 Unité des Maladies Infectieuses et Tropicales, Centre Hospitalier André Rosemon, 97306 Cayenne, France
9 CIC Antilles-Guyane, INSERM U1424, Centre Hospitalier André Rosemon, 97306 Cayenne, France
10 Université des Antilles, EA4537, 97200 Fort-de-France, France

Received 5 February 2018, Accepted 22 March 2018, Published online 10 April 2018

Abstract -- Human abdominal angiostrongyliasis (HAA) is a parasitic disease caused by the accidental ingestion of the nematode *Angiostrongylus costaricensis* in its larval form. Human infection can lead to severe ischemic and inflammatory intestinal lesions, sometimes complicated by life-threatening ileal perforations. Only one case had been reported in Martinique, an Island in the French Antilles, in 1988. We retrospectively reviewed the medical charts of patients diagnosed with abdominal angiostrongyliasis at the University Hospital of Martinique between 2000 and 2017. The objectives of this study were to evaluate the incidence and perform a descriptive analysis of the clinical, biological, radiological, and histopathological features of HAA in Martinique. Two confirmed cases and two probable cases were identified in patients aged from 1 to 21 years during the 18-year period, with an estimated incidence of 0.2 cases per year (0.003 case/year/100.000 inhabitants (IC95% = 0.00–0.05)). All patients presented with abdominal pain associated with high blood eosinophilia (median: 7.24 G/L [min 4.25; max 52.28 G/L]). Two developed ileal perforation and were managed by surgery, with diagnostic confirmation based on histopathological findings on surgical specimens. The other two cases were probable, with serum specimens reactive to *Angiostrongylus* sp. antigen in the absence of surgery. All cases improved without sequelae. The description of this case series highlights the need to increase awareness of this life-threatening disease in the medical community and to facilitate access to specific diagnostic tools in Martinique. Environmental and epidemiological studies are needed to broaden our knowledge of the burden of this disease.

Keywords: *Angiostrongylus costaricensis*, Abdominal angiostrongyliasis, helminth, intestinal parasitosis, eosinophilic ileocolitis, Martinique, French Antilles, Lesser Antilles, Caribbean

Résumé -- Infections par *Angiostrongylus costaricensis* à la Martinique, Antilles, de 2000 à 2017.

L’angiostrongylose abdominale humaine (AAH) est une maladie parasitaire causée par l’ingestion accidentelle du nématode *Angiostrongylus costaricensis* sous sa forme larvaire. L’infection humaine peut conduire à des lésions intestinales ischémiques et inflammatoires sévères, parfois compliquées par des perforations iléales menaçant le pronostic vital. Un seul cas avait été signalé en Martinique, une île des Antilles françaises, en 1988. Nous avons revu rétrospectivement les dossiers médicaux des patients ayant reçu un diagnostic...
Introduction

Human abdominal angiostrongyliasis (HAA) is a zoonotic disease caused by a nematode, *Angiostrongylus costaricensis* Morera & Céspedes, 1971 [44]. The definitive hosts are rodents of the Cricetidae, Heteromyidae, and Muridae families [19,40,60,62]. Adult nematodes reside in the mesenteric arterial system of wild rodents, in which females lay eggs that generate first-stage larvae (L1), which are shed in the rodents’ feces. Larval maturation to the third-stage (L3) occurs in intermediate hosts, mainly slugs from the families Veronicellidae and Limacidae [11,21,46,62]. Human infection is accidental and occurs by ingesting third-stage larvae (L3) from mollusks or vegetables contaminated with their slime [43]. Once ingested, the larvae invade intestinal tissues, reach sexual maturity, and release eggs in the ileo-cecal mesenteric arteries, causing eosinophilic enteritis in humans [66].

A. costaricensis was first discovered in the mesenteric arteries of humans in Costa Rica in 1967 [7,45], followed by the description of adult worms in the rodent *Sigmodon hispidus* in 1971 [44]. *A. costaricensis* is now found from Texas [64] southward to Argentina [52], including Honduras [27,58], Venezuela [23,69], Mexico [70], Brazil [71], Colombia [35], Nicaragua [12], El Salvador [68], Ecuador [30], Guatemala [28], Panama [63], Peru [60] and probably French Guiana [65]. The disease is a public health problem in South America, in particular in Costa Rica, where it affects 12/100,000 persons, with approximately 500 new cases each year [43]. Some sero-epidemiological studies in South America have shown strong seroprevalence rates in humans, i.e., from 29.8 to 66.0% in endemic areas of Southern Brazil. This implies numerous asymptomatic infections [17] and a far broader distribution of the parasite in the Americas than previously believed [34]. In contrast, HAA is rarely reported in the Antilles and only six sporadic cases have been described since 1974 (Table 2). Among them, one was reported in Martinique, an island in the French Antilles.

The main objective of this study was to evaluate the incidence of symptomatic HAA cases in Martinique. The secondary objective was to perform a descriptive analysis of the clinical, biological, radiological, and histopathological features of these cases.

Materials and Methods

Setting

Martinique is a French Overseas Department in the Antilles, with a population of 380,877 inhabitants as of January 1st, 2015 (INSEE census, www.insee.fr). It has a tropical climate, with a rainy season from June to November and a dry season from December to May.

Study design

A retrospective monocentric observational study was performed in the University Hospital of Martinique between January 1, 2000 and December 31, 2017. Data were extracted from the hospital data information system (PMSI), in which classification is based on the International Classification of Diseases, Tenth Revision (ICD-10). Hospital data codes for HAA (B813) were selected from the PMSI databases. Demographic data, abdominal imaging, biological results, clinical features, and outcomes were anonymously and retrospectively collected from the medical charts according to the legal and ethical guidelines of the French National Committee on Data Protection (CNIL). Serological assays to detect IgG against *Angiostrongylus* sp. were performed at the Swiss Tropical and Public Health Institute, Basel, Switzerland. Sera were first tested using the ELISA helminth screening test (detecting *Toxocara* sp., *Trichinella* sp., *Echinococcus* sp., *Fasciola* sp., *Filaria*, *Schistosoma* sp., and *Strongyloides* sp.) followed by a western blot using antigens derived from *A. cantonensis* adult worms [13].

Case definition

We defined a confirmed case as a patient with clinical symptoms and biological results consistent with HAA (fever, abdominal tenderness, and blood eosinophilia) and histopathological findings of HAA (identification of worms, eggs, or larvae in the intestinal wall). A probable
Table 1. Clinical characteristics of the four patients with confirmed (cases 1 and 2) and probable (cases 3 and 4) *Angiostrongylus costaricensis* infection in Martinique. *A. fulica*: *Achatina fulica*, CRP: C-reactive protein, CSF: Cerebrospinal fluid, CT scan: Computerized axial tomography, DX: x Days, EBV: Epstein-Barr virus, IV: intra-venous, *L. aurora*: *Limicolaria aurora*, ND: No Data.

Case	Year of diagnosis	Sex	Age	Area of residence (city, district)	Living conditions	Reported contact with mollusks	Duration of symptoms before admission	Extra-digestive symptoms	Loss of weight	Digestive symptoms	Laboratory results	Parasitological examination of feces	Abdominal imaging & surgery
1	2000	M	12 months	Le Lamentin	Residential area	None	1 month	Irritability, moderate fever (38.5°C) > 7 days	3.2% in 7 days (basal weight 9120g)	Anorexia, emesis, right iliac fossa pain, diarrhea, trails of blood in feces, dehydration	Blood, urine, CSF cultures: negative	Few altered embryonated eggs of helminths & numerous Charcot Leyden crystals (D4 after surgery).	Ultrasound: dilated ileum, peritoneal exudate in the right iliac fossa, X-rays: distended left colic flexure (Fig. 1)
2	2001	F	12 months	Saint-Esprit	Residential area	None	2 weeks	Decreased reactivity, fever (38.0°C)>14 days	6% in 15 days	Anorexia, right iliac fossa pain, watery diarrhea, emesis	None	None	CT scan: micronodular pulmonary pattern, peripheral lymphadenopathy.
3	2016	M	14 years	Le Robert	Residential area	None	1 month	Fever >14 days;	None	None	None	None	
4	2017	F	21 years	Fort-de-France	ND	ND	24 hours	Fever (39.0°C)	None	Severe right ilioc fossa pain, emesis	Blood and urine cultures: negative	None	
Case	Surgical procedure	Exploratory laparotomy/ laparoscopy	Histology of resected specimen	Diagnosis & Medical care									
------	--------------------	-------------------------------------	---------------------------------	--------------------------									
1	18 cm long ileal resection and anastomosis	Laparotomy (D3): ischemic and congestive ileum, necrotic areas, mesenteric lymph node enlargement	Rigid, ulcerated, and hemorrhagic pattern	Histology of resected ileal specimen (D3 after hospitalization)									
2	16 cm long ileal resection (distal ileum + ileo-cecal valve) with 3 cm of healthy surgical resection margins and anastomosis	Laparotomy (D50)	Surgical specimen agglutinated, necrotized, and covered with false membranes	Probable with positive A. cantonensis serology (D30 after hospitalization)									
3	None	None	Polymorphic granulomas & eosinophilic infiltration of the intestinal mucosa, 60 to 80 µm long and mostly embryonated ovoid eggs within the granulomas with macrophages and eosinophils, thrombotic phenomena in muscular arteries caused by degenerated 140 to 180-µm long A. costaricensis adults (Fig. 2A and 2B)	Probable with positive A. cantonensis serology (D30 after hospitalization)									
4	None	None	Ischemic intestinal wall, granulomas with giant cells, plasmocytes and eosinophilic cells, A. costaricensis eggs (Fig. 4A), larvae (Fig. 4B) and adults in the lumen of some vessels (Fig. 4C and 4D)	Probable with positive A. cantonensis serology (D30 after hospitalization)									

Histological examination of surgical specimen

- **Macroscopic aspect:** Rigid, ulcerated, and hemorrhagic pattern
- **Histological examination of surgical specimen:** Polymorphic granulomas & eosinophilic infiltration of the intestinal mucosa, 60 to 80 µm long and mostly embryonated ovoid eggs within the granulomas with macrophages and eosinophils, thrombotic phenomena in muscular arteries caused by degenerated 140 to 180-µm long A. costaricensis adults (Fig. 2A and 2B).

Diagnosis of angiostrongyliasis

- **Diagnosis of resected ileal specimen (D3 after hospitalization):** Histology
- **Diagnosis of resected ileal specimen (D50 after hospitalization):** Histology
- **Probable with positive A. cantonensis serology (D30 after hospitalization):** Probable

Concomitant infections

- **After surgery: blood transfusion, proper hydration, analgesia and nutrition, antibiotics (ceftriaxone, metronidazole):** None
- **IV antibiotics for urinary tract infection (cefotaxime, netilmicin):** None
- **After surgery: blood transfusion, parenteral rehydration, antipyretics, antibiotics (cefotaxime, amikacin, metronidazole):** Acetaminophen, domperidone

Symptomatic treatment and treatment for co-infections

- **Thiabendazole 75 mg/kg/day (10 days):** Thiabendazole empirical treatment (3 days) before diagnosis, thiabendazole 50 mg/kg/day (5 days) after diagnosis
- **Flubendazole (5 days):** Thiabendazole (5 days)
- **Ivermectin (18 mg in single dose):** Ivermectin

Length of hospitalization

- **25 days:** 2 hospitalizations
- **1st: 16 days:** 2nd: 37 days
- **7 days:** 10 days

Clinical improvement

- **3 weeks after surgery:** 3 weeks after surgery
- **2 weeks after anthelmintic treatment:** Regression of symptoms

Decline of eosinophilia

- **1.41 G/L D18 after hospitalization:** 1.17 G/L D71 after first hospitalization
- **0.40 G/L 10 months after hospitalization:** 2.0 G/L D80 after hospitalization

Sequelea & clinical outcome

- **Recovery:** Recovery
- **Recovery:** Recovery

Helminth ELISA screening test simultaneously detects seven different species of tissue helminths (Toxocara sp., Trichinella sp., Echinococcus sp., Fasciola sp., Filaria, Schistosoma sp. and Strongyloides sp.).
Table 2. Abdominal angiostrongyliasis in the Antilles. Literature review of the six HAA cases described in the Greater and Lesser Antilles before the description of the new confirmed and probable HAA cases in Martinique. ND: No Data.

Case		Background data										
	1	Island	2	Martinique, Lesser Antilles	3	Guadeloupe, Lesser Antilles	4	Dominican Republic, Greater Antilles	5	Puerto Rico, Greater Antilles	6	Dominica, Lesser Antilles
		Reference		[24]		[26]		[59]		[47]		[50]
	1	Year of diagnosis	2	1984	3	1987	4	1989	5	1989	6	1993
	1	Season	2	Rainy season	3	ND	4	ND	5	ND	6	ND
	1	Sex	2	M	3	M	4	M	5	M	6	M
	1	Age	2	16 months	3	20 months	4	5 years	5	41 years	6	42 years
	1	Area of residence (city)	2	Martinique (Sainte-Luce)	3	ND	4	ND	5	ND	6	Pennsylvania for 2 months, Puerto Rico the past 3 years
		Living conditions		Rural area, house without water or electricity		Rural & residential area, presence of rats, Wealthy family		Rural area, no water or electricity, presence of rats		ND		ND
		Travel outside of island of residence		No		ND		ND		ND		Yes, Puerto Rico 2 months before
		Medical history		None		None		None		ND		ND
		Reported contact with mollusks		ND								
		Duration of symptoms before admission		42 days		1 month		3 months		ND		ND
		Extra-digestive symptoms		Poor general condition, slight fever, constant crying, anorexia		ND		Poor general condition, behavioral disorders, prostration		ND		ND
		Digestive symptoms & bleeding		Vomiting, melena		Abdominal pain, intestinal occlusion, intermittent rectorrhagia		Intense abdominal pain, diarrhea, melena, rectorrhagia		Recurrent gastrointestinal bleeding		Severe right-lower quadrant abdominal pain
		Loss of weight		25%		ND		ND		ND		ND
		Laboratory results		Anemia (g/dL)		6		8.8		4.5		ND
				Mean corpuscular volume (MCV)		67		ND		88		ND
				Initial WBC (G/L)		20		19		26.3		ND
				Initial eosinophilia (G/L (%))		1.46 (7%)		0.38 (2%)		2.49 (9%)		ND
				Max. eosinophilia (G/L)		2.50		ND		8.41		ND
				Angiostrongylus serodiagnosis		ND		ND		ND		No
				Exploratory laparotomy		Yes		Yes		No		Yes
				Intestinal resection		5 cm		18 cm (ileum)		Appendix		12 cm (ileo-cecum + appendix)
				Abdominal imaging & surgery								
case was defined as a patient with clinical symptoms consistent with HAA and a serum specimen with IgG reactive to Angiostrongylus sp. antigen.

Ethics statement

The variables were secondarily anonymized and retrospectively collected from medical charts. The French National Committee on Data Protection (CNIL) authorizes the retrospective use of anonymous patient files on the site of patient care in a single hospital.

Results

During the 18-year period of the study, two confirmed and two probable cases of HAA were identified (male: female 50:50, median age: 7.5 years [min 1; max 21 years]). The annual incidence rate was 0.003 cases/100,000 inhabitants/year (95 CI% = 0.00–0.05). Most cases (75%) were diagnosed during the rainy season. All cases presented abdominal pain associated with high blood eosinophilia (median: 7.24 G/L [min 4.25; max 52.28 G/L]). The eosinophilia rate was not related to the severity of the disease. Cases 1 and 2, diagnosed in 12-month-old children, were particularly severe and required surgical procedures with diagnostic confirmation by histological findings. These cases were characterized by anemia, a marked loss of weight and the presence of Charcot–Leyden crystals in feces. Cases 3 and 4, probable, were diagnosed in a teenager and an adult with serum specimens reactive to Angiostrongylus sp. antigen. The length of hospitalization was variable (median 17.5 days [min 7; max 53 days]) and correlated with disease severity. All cases improved without sequelae. The clinical presentation along with the biological, imaging, histopathological, and epidemiological features are described in Table 1.

Discussion

Here, we report two confirmed and two probable cases of HAA in Martinique, thus bringing the total number of HAA cases to 10 in the entire Antilles. Indeed, only six sporadic cases of HAA have been reported in the Antilles over the last two decades. Two cases were diagnosed in travelers returning from the Greater Antilles, one from Puerto Rico [47], and the other from the Dominican Republic [59]. In the Lesser Antilles, one case was reported in Martinique in 1988 in a 16-month-old boy [24], followed by two cases in Guadeloupe in 1987 and 1989 in a 20-month-old and a five-year-old, respectively [26], and a presumed case in the Commonwealth of Dominica in a North-American student in 1997 [50]. Clinical and biological features of these cases are summarized in Table 2.

In our case series, the diagnosis of angiostrongyliasis was considered after admission to hospital because of the nonspecific clinical presentation of the disease [33]. Symptoms usually include abdominal pain in the right iliac fossa along with fever, anorexia, vomiting, and persistent eosinophilia (> 2 G/L). The disease is generally mild and self-limiting, but some cases can be complicated by intestinal infarction, pseudo-tumor, acute appendicitis, or digestive perforation, requiring emergency laparotomy and surgical care with an unpredictable prognosis [33]. Typically, diagnosis occurs unexpectedly when an exploratory laparotomy or laparoscopy is required with histological examination of unhealthy tissues. Definitive diagnosis is established when histological examination of resected specimens shows eggs, larvae, or adult parasitic forms in mesenteric arteries [19]. In the absence of parasites, histopathological findings can help the diagnosis when they show granulomatous reactions with massive eosinophilic and giant cell infiltration in the intestinal wall and regional lymph nodes and/or eosinophilic vasculitis of arteries, veins, and lymph vessels [19]. In subclinical forms not requiring laparotomy or surgery, diagnosis may be established when IgG anti-crude adult worm antigens are found by ELISA-based serological analysis, but such analyses are available in only a few laboratories worldwide [1,3,15,48,67]. Serodiagnosis of A. costaricensis is somewhat unsatisfactory because of cross-reactions with A. cantonensis, Strongyloides stercoralis, and Gnathostoma spinigerum [47]. Better specificity is observed when antigens are derived from A. costaricensis eggs or the reproductive organs of females [4,15]. New tools are now being used to improve the diagnosis in countries in which the disease is endemic, such as Brazil, particularly PCR on paraffin-embedded biopsy tissue or sera, which can lead to
a 20% increase in the rate of presumptive diagnoses [8,53]. Unfortunately, such biological tools are not yet available in the French territories.

In our study, the pediatric cases (cases 1 and 2) illustrate the severe and chronic form of the disease, with necrotizing intestinal inflammation, requiring laparotomy and partial intestinal resection. These two cases were characterized by weight loss, anemia, and a long hospital stay (Table 1), consistent with the results observed in the three reported pediatric cases in Martinique and Guadeloupe in the 1980’s [24,26]. In both of our pediatric cases, examination of the ileo-cecal surgical specimen unexpectedly led to the diagnosis of HAA through microscopic identification of *A. costaricensis* eggs and larvae in the context of a typical, intense ileo-cecal inflammatory, eosinophilic, and granulomatous reaction. Case 1 was particularly intriguing due to the presence of degenerated helminth eggs in the feces after surgery (Fig. 2). We could not confirm them as *A. costaricensis* eggs based solely on morphological observation and molecular investigation was not performed. Indeed, detection of *A. costaricensis* eggs in feces has rarely been described, since their elimination is prevented by the inflammatory reaction in the intestinal wall. However, in this case, surgery may have liberated the eggs in the digestive tract. Cases 3 and 4 illustrate the presumptive and probable diagnoses of less severe forms of HAA, based solely on abdominal symptoms and marked eosinophilia. The absence of histopathological examination of digestive specimens and specific *A. costaricensis* serological and PCR tests in the French territory hampered a definitive diagnosis. The main elements supporting the diagnosis of HAA were the positive results to *A. cantonensis* serological tests (which are often cross-reactive *A. costaricensis* antigens), combined with negative results for serological tests for other parasites. Several negative parasitological examinations of feces and the absence of headaches and neurological symptoms, respectively ruled out a possible differential diagnosis of strongyloidiasis and angiostrongyliasis due to *A. cantonensis*. All patients recovered without sequelae.

There is no consensus concerning the treatment of HAA [38]. It is mainly supportive, focusing on analgesia, hydration, and nutrition. Surgery can solve ischemia-related intestinal damage and perforation. Anthelmintic treatment using benzimidazole-derived compounds is debatable because their larvicidal effect aggravates the inflammatory response, leading to more severe lesions, and may favor the erratic migration of adult parasites and larvae [39]. Recent studies in mouse models showed that prophylactic enoxaparin treatment does not prevent tissue damage and mortality related to abdominal angiostrongyliasis [54,55]. The four patients in our case series were treated with an anthelmintic as standard treatment for cases of high eosinophilia before diagnostic confirmation.

The mode of transmission of HAA varies depending on the geographical area, generally through the slime of mollusks (*i.e.*, mollusks mouthed by young children or in poorly washed vegetables or aromatic plants) or the consumption of raw mollusks (*i.e.*, during atypical medicinal practices) [28]. The mode of transmission for the two confirmed cases is unclear, as no evident contact with mollusks was reported for either patient. However, environmental investigation in one case found the frequent presence of slugs (und. species) near the house, sometimes reaching the bathroom, and the frequent presence of *Achatina fulica* snails in their favorite strolling zone in the Morne-Rouge district. In the other case, the parents did not exclude contact between their child and mollusks, but no specific event was reported. The modest family house was in a district infested with slugs and snails during the rainy season, including *Limicolaria aurora* and *A. fulica*, and surrounded by brush and sugar cane fields with many rodents. These mollusks were not examined to ascertain the presence of *A. costaricensis*. Aside from the adult case diagnosed during the dry season in February 2017, all diagnoses in children were made during the rainy season, when slugs and snails are abundant. Environmental studies are needed to better understand the routes of HAA transmission and evaluate the infection rate and dissemination in mollusks and rodents in Martinique.

The only environmental investigation in the French Antilles was conducted on *Rattus rattus* and *Rattus norvegicus* in Guadeloupe (an island close to Martinique) in 1992 and showed that 7.5% of rats tested were naturally infected by *A. costaricensis* [25]. These rat species are also found in Martinique and may be the main definitive hosts there [49] (Table 3). Among the most common definitive hosts in South America, the rodent families Cricetidae and Heteromyidae are absent in Martinique [52,61,63]. Slugs, acting as intermediate hosts for *A. costaricensis* in South America, are also found in Martinique, including the Veronicellidae family (*Sarasinula plebeia*, *Diplosolenodes occidentalis*) and limacid slugs [10,62,63] (Table 3). The aquatic snails * Biomphalaria glabrata* and *B. straminea* could have been a potential intermediate host, but are now considered to have been eradicated in Martinique, following a control program on intestinal parasitosis initiated in 1978 [10,22] (Table 3). Finally, *A. fulica* snails are not considered to be major intermediate hosts in the wild, although they are capable of hosting *A. costaricensis* larvae in laboratory models [6]. This invasive species, first described in 1989 in Martinique, is responsible for the emergence of central nervous system angiostrongyliasis due to *Angiostrongylus cantonensis* in the Lesser Antilles [9].

HAA is an emerging parasitic disease in the neotropics, which is not critical in most cases, but nonetheless potentially life-threatening. In Martinique, this zoonosis is sporadic and rare, with an estimated incidence of 0.003 cases/100,000 habitants/year in this study. However, HAA can be misdiagnosed due to its nonspecific clinical presentation, paucysymptomatic cases, and the lack of awareness and information in the medical community concerning this disease [18]. Eosinophilia of undetermined origin is often treated using empirical anthelmintic
Figure 2. Microscopical aspects of the ileal specimen and parasitic stools examination of case No. 1. A. Longitudinal section of a mesenteric artery with an *A. costaricensis* adult inside arterioles (*dart*) (HES, 100x). B. Cross section of intra-mesenteric arterial adult nematodes (*darts*) with an eosinophilic inflammatory infiltrate in the surrounding tissues. One harbors a reproductive tube (RT) (HES, 100x). C. Impaired embryonated egg of nematode (maybe *A. costaricensis* (*dart*)) measuring 80 x 35 μm (MIF, 200x) found in stools collected four days after abdominal surgery.

Figure 3. Case No. 2 abdominal X-ray. Imagery was performed 49 days following hospitalization. A. Pneumoperitoneum under the right hypochondria (white arrow). B. Focus on the pneumoperitoneum (white arrow).
treatment (generally a combination of albendazole or flubendazole and ivermectin) to cover a broad range of parasitic disease etiologies known in Martinique, including ascariasis, enterobiasis, strongyloidiasis, trichuriasis, and ankylostomiasis [14]. The combination of abdominal pain and hypereosinophilia should suggest potential HAA disease as for other well-known intestinal helminthiases, and clinicians should then seek histological or biological

Family	Species Found in Martinique Countries & references
Cricetidae	*Sigmodon hispidus* No Costa Rica [42], Panama [63], United States [65]
Rodentia	*Oligoryzomys (=Oryzomys) fulvescens* No Panama [63]
	Sooretamys angouya (=Oryzomys raticeps) No Brazil [20]
	Oligoryzomys nigripes (=Oryzomys eliurus) No Brazil [20]
Muridae	*Rattus rattus* Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Rattus norvegicus Yes Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Sigmodon hispidus No Costa Rica [42], Panama [63], United States [65]
Carnivora	*Oligoryzomys nigripes (=Oryzomys eliurus)* No Brazil [20]
	Zygodontomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Oligoryzomys nigripes (=Oryzomys eliurus) No Brazil [20]
	Zygodontomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Oligoryzomys nigripes (=Oryzomys eliurus) No Brazil [20]
	Zygodontomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Oligoryzomys nigripes (=Oryzomys eliurus) No Brazil [20]
	Zygodontomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]
	Zygodontomys microtus No Panama [63]
	Oryzomys caliginosus No Colombia [35]
	Akodon montensis No Argentina [52]
	Rattus rattus Yes Costa Rica [42], Panama [63], Guadeloupe [25]

Table 3. *A. costaricensis* definitive and intermediate hosts described in the literature and comparison with the species found in Martinique. The definitive hosts of *A. costaricensis* in Martinique could be the rodent species *Rattus rattus* and *Rattus norvegicus*. The intermediate hosts could be *Sarasinula plebeia*, *Diplosolenodes occidentalis*, *Deroceras laeve*, and *Biomphalaria* spp.

a Achatina fulica snails are not considered to be major intermediate hosts in the wild.
evidence of HAA. Thus, efforts should aim to raise awareness in the medical community and facilitate access to diagnostic tools, including serodiagnosis and PCR-based methods. An epidemiological study focusing on intermediate hosts would lead to a better understanding of disease transmission in Martinique and help establish more efficient prophylactic measures.

Acknowledgments. We thank the team of the University Hospital of Martinique including biologists, anatomopathologists, technicians, pediatricians, and digestive surgeons for initial diagnosis of abdominal angiostrongyliasis. We thank the DRCI of the University Hospital of Martinique and the Laboratories of Basse-Terre, Pointe-à-Pitre, Cayenne, Grenoble Alpes Hospitals, and the Cire Antilles, in particular Dr. Didier Mattera, Dr. Muriel Nicolas, Prof. Magalie Demar, Prof. Hervé Pelloux, Mr. Lyderic Aubert and Mr. Régis Delannoye for their collaboration in the project “Angiostrongylus Research In French Antilles and Guiana”. We thank Dr. Beatrice Nickel and Dr. Hanzpeter Marti for performing serological analyses. We also thank Dr. Christopher Swale and Prof. Mathieu Nacher for reviewing the manuscript. The authors declare that they have no conflict of interest.

References

1. Abrahams-Sandi E, Mesén-Ramírez P, Suarez-Chacón D, Fernández-Quesada K. 2011. An indirect immunofluorescence antibody test employing whole eggs as the antigen for the diagnosis of abdominal angiostrongyliasis. Memórias do Instituto Oswaldo Cruz, 106, 390–393.

2. Banevicius NMS, Zanotti-Magalhães EM, Magalhães LA, Linhares AX. 2006. Behavior of Angiostrongylus costaricensis in planorbid. Brazilian Journal of Biology, 66, 199–204.

3. Ben R, Rodrigues R, Agostini AA, Graeff-Teixeira C. 2010. Use of heterologous antigens for the immunodiagnosis of abdominal angiostrongyliasis by an enzyme-linked immunosorbent assay. Memórias do Instituto Oswaldo Cruz, 105, 914–917.
4. Bender AL, Maurer RL, da Silva MCF, Ben R, Terraciano PB, da Silva ACA. 2003. Eggs and reproductive organs of female *Angiostrongylus costaricensis* are more intensely recognized by human sera from acute phase in abdominal angiostrongyliasis. Revista da Sociedade Brasileira de Medicina Tropical, 36, 449–454.

5. Caballero R, Thomé JW, Andrews KL, Rueda A. 1991. Babosas de Honduras (Soleolidida: Veronicellidae): biología, ecología, distribución, descripción, importancia económica, y claves para su identificación. Cebia, 32, 107–125.

6. Carvalho O dos S, Teles HM, Mota EM, Lafetá C, de Mendonça GF, Lenzi HL. 2003. Potentiality of *Achatina fulica* Bowdich, 1822 (Mollusca: Gastropoda) as intermediate host of *Angiostrongylus costaricensis* Morera & Céspedes 1971. Revista da Sociedade Brasileira de Medicina Tropical, 36, 743–745.

7. Cespede R, Salas J, Mekbel S, Troper L, Mullner F, Morera P. 1992. Granulomas entéricos y linfaticos con intensa eosinofilia tisular producidos por un estrigolídeo (Strongylata). Acta Médica Costarricense, 10, 235–255.

8. Da Silva ACA, Graeff-Teixeira C. 2001. Report on the occurrence of *Angiostrongylus costaricensis* in south Brazil. Memórias do Instituto Oswaldo Cruz, 96, 518–520.

9. Da Silva ACA, Graeff-Teixeira C, Zaha A. 2003. Diagnosis of abdominal angiostrongyliasis by PCR from sera of patients. Revista do Instituto de Medicina Tropical de São Paulo, 25, 295–297.

10. Dellanoye R, Charles L, Pointier J, Massemin D. 2015. Expansion of *Angiostrongylus costaricensis* in southern Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 32, 147–150.

11. Duarte Z, Morera, Cespedes, 1971. Revista da Sociedade Brasileira de Medicina Tropical, 36, 743–745.

12. Duarte Z, Morera P, Vuong PN. 1992. Abdominal angiostrongyliasis: the standardization of an immunoenzymatic assay and prevalence of antibodies in two localities in southern Brazil. Tropical Medicine & International Health, 2, 254–260.

13. Graeff-Teixeira C, Camillo-Coura L, Lenzi HL. 1987. Abdominal angiostrongyliasis – an under-diagnosed disease. Memórias do Instituto Oswaldo Cruz, 82, 353–354.

14. Graeff-Teixeira C, Camillo-Coura L, Lenzi HL. 1991. Histopathological criteria for the diagnosis of abdominal angiostrongyliasis. Parasitology Research, 77, 606–611.

15. Geiger SM, Laitano AC, Sievers-Tostes C, Agostini AA, Schultz-Key H, Graeff-Teixeira C. 2001. Detection of the *Angiostrongylus cantonensis* host of *Angiostrongylus cantonensis* in Guadeloupe, Lesser Antilles. American Journal of Tropical Medicine and Hygiene, 69, 692–697.

16. Graeff-Teixeira C. 2007. Expansion of *Angiostrongylus costaricensis* Morera & Céspedes 1971. Revista da Sociedade Brasileira de Medicina Tropical, 36, 743–745.

17. Graeff-Teixeira C, Agostini AA, Camillo-Coura L, Ferreira-da-Cruz MF. 1997. Seroepidemiology of abdominal angiostrongyliasis: the standardization of an immunoenzymatic assay and prevalence of antibodies in two localities in southern Brazil. Tropical Medicine & International Health, 2, 254–260.
33. Loria-Cortés R, Lobo-Sanahuja JF. 1980. Clinical abdomi-
nal angiostrongylosis. A study of 116 children with intesti-
nal eosinophilic granuloma caused by Angiostrongylus
costaricensis. American Journal of Tropical Medicine
and Hygiene, 29, 38–44.
34. Maldonado A, Simes R, Thiengo S. 2012. Angiostrongy-
liasis in the Americas, in Zoonosis, Editor. Lorenzo-Morales
J, Rijeka, Croatia. p. 303-320.
35. Malek EA. 1981. Presence of Angiostrongylus costaricen-
sis Morera and Céspedes 1971 in Colombia. American Journal
of Tropical Medicine and Hygiene, 30, 81–83.
36. Maurer RL, Graeff-Teixeira C, Thome JW, Chiariadía LA,
Sugaya H, Yoshimura K. 2002. Natural infection of
Deroecerus lavee (Mollusca: gastropoda) with metastron-
gylid larvae in a transmission focus of abdominal angio-
strongyliasis. Revista do Instituto de Medicina Tropical de
São Paulo, 44, 53–54
37. Mendonca CLGF, Carvalho OS, Lenzi HL. 2002. Angio-
strongylus costaricensis life cycle in the intermediate host
Sarasinula marginata Semper, 1885 (Mollusca: Soleolifera).
Revista da Sociedade Brasileira de Medicina Tropical, 35,
199–200
38. Mentz MB, Graeff-Teixeira C. 2003. Drug trials for

treatment of human angiostrongyliasis. Revista do Instituto
de Medicina Tropical de São Paulo, 45, 179–184.
39. Mentz MB, Graeff-Teixeira C, Garrido CT. 2004. Treat-
ment with mebendazole is not associated with distal
migration of adult Angiostrongylus costaricensis in the
murine experimental infection. Revista do Instituto de
Medicina Tropical de São Paulo, 46, 73–75.
40. Müller CL, Kinsella JM, Garner MM, Evans S, Gullett PA,
Schmidt RE. 2006. Endemic infections of Parastrongylus
(=Angiostrongylus) costaricensis in two species of nonhu-
mans primates, raccoons, and an opossum from Miami,
Florida. Journal of Parasitology, 92, 406–408.
41. Monge E, Arroyo R, Solano E. 1978. A new definitive
natural host of Angiostrongylus costaricensis (Morera and
Céspedes 1971). Journal of Parasitology, 64, 34.
42. Morera P. 1970. Studies of the de-

evelopment of Angiostrongyliasis. Memórias do Instituto
Oswaldo Cruz, 74, 133–189.
43. Morera P. 1973. Life history and redescription of
Angiostrongylus costaricensis (Morera and Céspedes, 1971).
Boletín Chileno de Parasitología, 25, 133–144.
44. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
45. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
46. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
47. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
48. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
49. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
50. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
51. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
52. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
53. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
54. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
55. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
56. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
57. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
58. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
59. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
60. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
61. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
62. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
63. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
64. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
65. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
66. Morera P. 1985. Abdominal angiostrongyliasis: a problem of

public health. Parasitology Today, 1, 173–175.
65. Vuong PN, Brama P, Bonete R, Houissa-Vuong S, Catanzano-Laroudie M, Baviera E. 2002. Necrotic eosinophilic angiitis with ileal perforation and peritonitis secondary to abdominal angiostrongyliasis. Presse Médicale, 31, 1700–1703.
66. Wang Q-P., Lai D-H., Zhu X-Q., Chen X-G., Lun Z-R. 2008. Review: Human angiostrongyliasis. Lancet Infectious diseases, 8, 621–630.
67. Wilkins PP, Qvarnstrom Y, Whelen AC, Saucier C, da Silva AJ, Eamsobhana P. 2013. The current status of laboratory diagnosis of Angiostrongylus cantonensis infections in humans using serologic and molecular methods. Hawaii Journal of Medicine & Public Health, 72, 55–57.
68. Wu SS, French SW, Turner JA. 1997. Eosinophilic ileitis with perforation caused by Angiostrongylus (Parastrongylus) costaricensis. A case study and review. Archives of Pathology & Laboratory Medicine, 121, 989–991.
69. Zambrano Z. 1973. Reoclitis pseudotumoral eosinofílica de origen parasitario. Revista Latinoamericana de Patología, 12, 43–50.
70. Zavala Velazquez J, Ramirez Baquedano W, Reyes Perez A, BatesFlores M. 1974. Angiostrongilosis costaricensis. Primeros casos mexicanos. Revista de Investigación Clínica, 26, 389–394.
71. Zilioto A, Kunzle J, Rus Fernandes L, Prates-Campos C, Britto-Costa R. 1975. Angiostrongilíase: apresentação de um provável caso. Revista do Instituto de Medicina Tropical de São Paulo, 17, 312–318.

Cite this article as: Dard C, Nguyen D, Miossec C, de Meuron K, Harrois D, Epelboin L, Cabié A, Desbois-Nogard N. 2018. Angiostrongylus costaricensis infection in Martinique, Lesser Antilles, from 2000 to 2017. Parasite 25, 22

Parasite (open-access) continues Parasite (print and online editions, 1994-2012) and Annales de Parasitologie Humaine et Comparée (1923-1993) and is the official journal of the Société Française de Parasitologie.

Editor-in-Chief:
Jean-Lou Justine, Paris