Correlation of isocurvature perturbation and non-Gaussianity

Jinn-Ouk Gonga,b and Godfrey Leunga

aAsia Pacific Center for Theoretical Physics, Pohang 790-784, Korea
bDepartment of Physics, Postech, Pohang 790-784, Korea

E-mail: jinn-ouk.gong@apctp.org, godfrey.leung@apctp.org

Received April 22, 2015
Revised October 7, 2015
Accepted November 24, 2015
Published December 22, 2015

Abstract. We explore the correlations between primordial non-Gaussianity and isocurvature perturbation. We sketch the generic relation between the bispectrum of the curvature perturbation and the cross-correlation power spectrum in the presence of explicit couplings between the inflaton and another light field which gives rise to isocurvature perturbation. Using a concrete model of a Peccei-Quinn type field with generic gravitational couplings, we illustrate explicitly how the primordial bispectrum correlates with the cross-correlation power spectrum. Assuming the resulting $f_{\text{NL}} \sim O(1)$, we find that the form of the correlation depends mostly upon the inflation model but only weakly on the axion parameters, even though f_{NL} itself does depend heavily on the axion parameters.

Keywords: inflation, non-gaussianity, axions

ArXiv ePrint: 1504.01528
1 Introduction

Inflation [1–4] is widely considered as the best candidate to explain the origin of the primordial fluctuations in our universe, and has been well tested by cosmic microwave background (CMB) observations, most recently by the Planck mission [5]. The simplest scenario involves a single scalar field slowly rolling down a flat potential [4]. However, when embedded in ultraviolet complete theories such as string theory [6, 7], it is not likely that such a simple description of single field inflation remains legitimate throughout the whole inflationary epoch, as in general additional degrees of freedom become dynamically relevant during inflation.

It is illustrative to consider the field trajectory in the field space to see how these additional degrees of freedom affect the inflationary predictions. While in single field inflation we have only a single direction along which the inflaton moves straightly, in multi-field space we have more than one direction and thus the trajectory is in general curved. The component of field fluctuations along the trajectory is associated with the curvature perturbation, whereas those orthogonal to the trajectory are responsible for the isocurvature perturbations [8]. What is important here is that since the field trajectory is in general curved, the fluctuation along the trajectory at a moment receives contributions from those orthogonal to the trajectory shortly before. In other words, the curvature and isocurvature perturbations are correlated [8–10].

Thus, on general ground the existence of isocurvature perturbations can be interpreted as a proof of additional degrees of freedom in the early universe. Even if the isocurvature perturbations themselves are too small to be detected, their correlations to the curvature perturbation can lead to distinctive observational signatures. It is thus useful and important to study how observables are correlated with and sourced by isocurvature perturbations on completely general ground. In this article, we concentrate on the correlations between primordial non-Gaussianity and isocurvature perturbations due to interactions at horizon-crossing,
whereas previous studies focus on correlations due to non-linear evolution on super-horizon scales [11–14]. The primordial non-Gaussianity we are considering might not necessarily be that associated with the CMB scales, but also on smaller scales which are relevant for large scale structure for example. By studying the correlation structure, we can put further constraints on the model parameters compared to that coming from studying the observables individually.

This article is organised as follows: in section 2, we discuss the general structure of three-point interaction terms between the inflaton and an isocurvature field, and how the resulting bispectrum B_R correlates with the cross-correlation power spectrum P_C. We then illustrate this general feature using a concrete example involving a Peccei-Quinn (PQ) type field, which interacts with the inflaton via a gravitationally induced coupling in section 3. We subsequently conclude in section 4. Detailed derivations of the results are given in the appendices.

2 General structure of correlations

For simplicity, let us consider a generic two-field system, one being the inflaton ϕ and the other being a spectator field θ that survives after thermalisation and becomes responsible for the isocurvature perturbation in non-relativistic matter I at late times. We also assume the curvature perturbation R is purely sourced by the inflaton fluctuations. In such a system, the three-point correlation function of the curvature perturbation R may receive additional contributions from θ [15] via the quadratic interaction $H_I^2 \sim \theta \phi$ which is responsible for the cross-correlation power spectrum P_C. The resulting bispectrum of the curvature perturbation B_R is therefore correlated with P_C, giving additional constraints to the spectator field θ.

To see this explicitly, we decompose the cubic interaction Hamiltonian as

$$H_3 = H_3^{\text{(self1)}} + H_3^{\text{(cross1)}} + H_3^{\text{(cross2)}} + H_3^{\text{(self2)}},$$

(2.1)

where $H_3^{\text{(self1)}} \sim \phi^3$, $H_3^{\text{(cross1)}} \sim g_1 \theta \phi^2$, $H_3^{\text{(cross2)}} \sim g_2 \theta^2 \phi$ and $H_3^{\text{(self2)}} \sim g_3 \theta^3$ with g_i’s being the couplings. Note that these are schematic forms only, which could also include derivative interactions such as $(\nabla \theta)^2 \phi$ and $\dot{\theta}^3$. In standard slow-roll inflation $H_3^{\text{(self1)}}$ usually contributes to a slow-roll suppressed, negligible non-Gaussianity of $O(\epsilon)$ [16]. We therefore neglect $H_3^{\text{(self1)}}$ here. Through the transfer vertex H_I^2, each cubic interaction Hamiltonian term contributes to the primordial bispectrum B_R as

$$H_3^{\text{(cross1)}} \rightarrow B_R \sim g_1 P_R P_C,$$

$$H_3^{\text{(cross2)}} \rightarrow B_R \sim g_2 \sqrt{P_R P_C^2},$$

$$H_3^{\text{(self2)}} \rightarrow B_R \sim g_3 P_C^3.$$

(2.2)

Diagrammatic representation of each term is shown in figure 1. However, the detail of each contribution, such as the momentum-dependent shape and amplitude, depends on the coupling and derivative structure of the corresponding cubic interaction Hamiltonian. In the following section using a concrete example we will demonstrate that indeed the generic relation (2.2) is valid.

Before moving on to discuss a concrete example, let us comment on the relative size of the various bispectrum contributions above. Naively, one may think (2.2) somewhat suggests the above bispectrum contributions are small compared to that from the intrinsic
inflaton self-interaction $H_{3}^{(\text{self1})}$ since $H_{3}^{(\text{self1})} \rightarrow B_{R} \sim P_{R}^{2}$ if $P_{R} > P_{C}$. Besides, one might think there exists a hierarchy among the various contributions, with $B_{R}^{(\text{cross1})} > B_{R}^{(\text{cross2})} > B_{R}^{(\text{self2})}$. However, this is not necessarily the case. In general, the resulting contributions are momentum and shape dependent. Depending on the forms of $H_{3}^{(\text{cross1})}$, $H_{3}^{(\text{cross2})}$ and $H_{3}^{(\text{self2})}$, the various contributions might all have different momentum dependences and peak at different shapes. Furthermore, P_{C} and I also depend implicitly on the ratio of the energy density of the spectator field θ to that of total non-relativistic matter at late times, i.e. $\Omega_{\theta}/\Omega_{m}$, whereas the various bispectrum contributions above do not. If $\Omega_{\theta}/\Omega_{m} \ll 1$, it is possible to realise scenario where $P_{C} \ll P_{R}$ yet having $B_{R}^{(\text{cross1})}$, $B_{R}^{(\text{cross2})}$, $B_{R}^{(\text{self2})}$ unsuppressed.

3 Axion with gravitationally induced interactions

Having discussed concisely the generic correlation structure between the bispectrum of the curvature perturbation B_{R} and the cross-correlation power spectrum P_{C} in a generic two-field system, we now explicitly illustrate this generic behaviour using a concrete model. The model Lagrangian in the matter sector is [17]

$$L = \sqrt{-g} \left[-\frac{1}{2} (\partial_{\mu} \phi)^{2} - |\partial_{\mu} \Phi|^{2} - V_{\text{inf}}(\phi) - V_{\text{axion}}(\Phi) - V_{\text{int}}(\phi, \Phi) \right],$$

where ϕ is the inflaton field and $V_{\text{inf}}(\phi)$ is its potential. We do not envisage any specific form of $V_{\text{inf}}(\phi)$, as long as it can successfully support an inflationary epoch. The complex field Φ is a PQ type field [18, 19], which can be decomposed into real radial and angular components, r and θ respectively, as

$$\Phi = \frac{r e^{i\theta}}{\sqrt{2}}.$$

The corresponding potential is the standard symmetry-breaking type, $V_{\text{axion}}(\Phi) = \lambda (|\Phi|^{2} - f_{a}^{2}/2)^{2}$, so that the radial field is minimised at $r_{0} = f_{a}$ with f_{a} being the symmetry breaking scale, which is usually taken to be smaller than m_{Pl}. Assuming the radial field completely settles down at the minimum, we may identify the axion as the angular field $\tilde{a} \equiv f_{a} \theta$.

![Feynman diagrams for the contributions of H_{3} given by (2.1) to the inflaton three-point function. $H_{3}^{(\text{self1})}$ is the intrinsic three-point inflaton self-interaction, which is of $O(\epsilon)$ and is usually slow-roll suppressed [16]. $H_{3}^{(\text{cross1})}$, $H_{3}^{(\text{cross2})}$ and $H_{3}^{(\text{self2})}$ contribute via interactions with the isocurvature field.](image-url)
For concreteness, we consider a toy but generic dimension-5 interaction that can be gravitationally induced \cite{20},

\[V_{\text{int}}(\phi, \Phi) = g \frac{\phi \Phi^4}{m_{\text{Pl}}} + \text{h.c.} + c, \]

(3.3)

where h.c. stands for Hermitian conjugate and we have introduced a constant \(c \) such that the axion potential vanishes at the minimum. Additionally, overall we may add a cosmological constant to make the entire potential nearly vanishing at the global minimum. We shall associate the inflaton and axion fluctuations with the curvature and isocurvature perturbations respectively in the standard manner as

\[R \equiv -\frac{H}{\dot{\phi}_0} \quad \text{and} \quad I \equiv \left(\frac{\Omega_\theta}{\Omega_m} \right) \frac{2\theta}{\theta_0}. \]

(3.4)

Here the subscript 0 denotes the homogeneous background field values. To see where the definition of \(I \) comes from, it is useful to first introduce the fractional fluctuation in the number density of the \(i \)-th species divided by the entropy density \cite{21,22,23}

\[S_i \equiv \frac{\delta(n_i/s)}{n_i/s} = \frac{\delta n_i}{n_i} - 3 \frac{\delta T}{T}, \]

(3.5)

where we have used the fact \(s \propto T^3 \). For species with only adiabatic perturbations, \(S_i = 0 \) or \(\delta n_i/n_i = 3\delta T/T \). By definition, isocurvature perturbations induce zero fluctuations in the total energy density, i.e. \(\delta \rho_{\text{tot}} = \sum_i \rho_i + \rho_\text{a} + \rho_\gamma = 0 \). Assuming only the axion acquires isocurvature perturbations, one finds

\[\frac{\delta T}{T} \approx -\frac{\rho_\text{a}}{3\Sigma_i \rho_i + 4\rho_\gamma} \frac{\delta n_\text{a}}{n_\text{a}}. \]

(3.6)

At early times when the axion condensate is just formed, the axion induced temperature fluctuations are much smaller than the fractional fluctuation in the axion number density since \(\rho_\text{a} \ll \rho_{\text{total}} \). Thus we have \(S_\text{a} \approx \delta n_\text{a}/n_\text{a} \) at early times.

For small value of the axion field, the axion potential is approximately quadratic and harmonic, i.e. \(\sim \theta^2 \). In that case, the fractional fluctuation \(S_\text{a} \) may just be given by the fluctuations in the initial misalignment angle

\[S_\text{a} = \frac{(\theta_0 + \theta)^2 - (\theta_0)^2}{(\theta_0)^2} \approx \frac{2\theta}{\theta_0}. \]

(3.7)

Assuming \(S_\text{a} \) is approximately constant during super-horizon evolution, the temperature fluctuations induced by axion fluctuations at late times can then be related to \(S_\text{a} \) by

\[\frac{\delta T}{T} \sim \frac{\Omega_\theta}{\Omega_m} S_\text{a} \]

(3.8)

and thus we recover the definition (3.4). The factor \(\Omega_\theta/\Omega_m \) appears since we are interested in the isocurvature perturbation between the radiation and the total non-relativistic matter which includes not just the axion. In what follows we will take \(\Omega_\theta/\Omega_m \sim 1 \) as we are interested in the case where the isocurvature perturbations are large enough to be potentially observed in future experiments.
Given the Lagrangian, we can straightforwardly compute the correlation functions of the curvature and isocurvature perturbations using the in-in formalism [16, 24–28]. The leading order contributions to the interaction term in the matter sector, which at quadratic and cubic orders are

\[H_2^I = -a^3 \alpha \int d^3 x \phi \theta \quad \text{with} \quad \alpha \equiv 2g \frac{r_0^4}{m_{Pl}^2} \sin(4\theta_0), \]

\[H_3^{\text{self2}} = a^3 \beta \int d^3 x \theta^3 \quad \text{with} \quad \beta \equiv \frac{16}{3} g \frac{\phi_0}{m_{Pl}} r_0^4 \sin(4\theta_0), \]

\[H_3^{\text{cross2}} = -a^3 \gamma \int d^3 x \phi \theta^2 \quad \text{with} \quad \gamma \equiv 4g \frac{r_0^4}{m_{Pl}^2} \cos(4\theta_0). \]

The power spectra of the curvature and isocurvature perturbations, and their cross-correlation are

\[P_R(k) = \left(\frac{H}{2\pi} \right)^2 \left(\frac{H}{\phi_0} \right)^2 \left[2^{\nu_\phi - 3/2} \frac{\Gamma(\nu_\phi)}{\Gamma(3/2)} (-k\tau)^{3/2 - \nu_\phi} \right]^2, \]

\[P_I(k) = \left(\frac{H}{2\pi} \right)^2 \left(\frac{2}{\theta_0 r_0} \right)^2 \left[2^{\nu_\theta - 3/2} \frac{\Gamma(\nu_\theta)}{\Gamma(3/2)} (-k\tau)^{3/2 - \nu_\theta} \right]^2, \]

\[P_C(k) = -\frac{\pi \alpha}{2\tau_0 H^2} A \sqrt{P_R(k)P_I(k)}, \]

where the indices are defined as \(\nu_\phi \equiv \sqrt{9/4 - m_\phi^2/H^2} \) with \(m_\phi^2 \) being the mass of \(\phi \) and similarly for \(\nu_\theta \). Here \(\tau \) is the conformal time defined as \(dt = d\tau \), whereas \(H \) and \(\dot{\phi}_0 \) are evaluated at horizon-crossing. Current observations suggest that the power spectra of isocurvature perturbations and the cross-correlation are much smaller than that of curvature perturbation on CMB scales, i.e. \(P_R \gg P_C, P_I \) (see the following). Here \(A \) is an integral involving the Hankel functions, defined as \(A \equiv \Re \left[\int_0^\infty dx H^{(2)}_{\nu_\phi}(x)H^{(2)}_{\nu_\phi}(x) \right] \). If we naively perform this integral to leading order for \(\nu_\phi \approx 3/2 \) and \(\nu_\theta \approx 3/2 \) with a lower cutoff \(x_c \), \(A \sim \log x_c \) so it is logarithmically divergent. Taking into account the asymptotic behaviour of the curvature perturbation at later times, we may evaluate \(A \) at an arbitrary value of \(x_c \) as long as \(\exp[-1/O(\epsilon)] < x_c < 1 \) [29], giving \(A \sim -0.45 \). Detail of the calculation are given in appendix A.

Next we consider the primordial bispectrum of the curvature perturbation \(B_R \) that arises from the cubic interaction Hamiltonian. There are two contributions: one from the axion cubic self-interaction \(H_3^{\text{self2}} \sim \theta^3 \) and another from the cubic cross-interaction \(H_3^{\text{cross2}} \sim \theta^2 \phi \). We therefore expect the resulting bispectra scale as \(P_C^2 \) for the former interaction and \(P_C^2 \sqrt{P_R} \) for the latter one. After some calculations similar as in [30, 31], we find the resulting bispectra of the curvature perturbation are of the following form to leading order in the limit \(\nu_\phi \approx 3/2 \) and \(\nu_\theta \approx 3/2 \),

\[B_R^{\text{self2}}(k_1, k_2, k_3) = \frac{k_1^2 + k_2^2 + k_3^2}{(k_1 k_2 k_3)^3} P_C^2 \frac{64\pi^3 \theta_0^3 \beta}{3A^3 H^4}, \]

\[B_R^{\text{cross2}}(k_1, k_2, k_3) = -\frac{k_1^2 + k_2^2 + k_3^2}{(k_1 k_2 k_3)^3} P_C^4 \sqrt{P_R} \frac{16\pi^3 \theta_0^2 \gamma}{3A^2 H^3}. \]

Detailed derivations can be found in appendices C1 and C2 for (3.15) and (3.16) respectively. The above results of the two bispectrum contributions, \(P_C \) and \(P_R \) are evaluated on the
relevant scales when the gravitationally induced interaction (3.3) becomes important, which do not necessarily correspond to CMB scales, but possibly on some smaller scales.

From (3.15) and (3.16), we can also see that the resulting bispectra peak in the local shape as opposed to non-canonical single field models such as K-inflation, where the non-Gaussianity induced due to non-linear interactions at horizon-crossing (or equivalently reduced sound speed c_s) typically peaks in the equilateral shape [33, 34]. This is because the forms of non-linear interactions are completely different for our case and the non-canonical single field case. Another example where non-Gaussianity induced by non-linear interactions at horizon-crossing does not peak exactly in the equilateral shape is quasi-single field inflation [35].

The amplitude of the bispectrum is usually measured in terms of the non-linear parameter f_{NL} [32]. The current constraint on the local f_{NL} by Planck is $f_{NL}^{(local)} = 0.8 \pm 5.0$ at 68% confidence level [36] for $k = 0.05$ Mpc. Having in mind the local f_{NL}, we define a dimensionless shape function as

$$f_{NL}(k_1, k_2, k_3) \equiv \frac{10}{3} \frac{k_1 k_2 k_3}{k_1^3 + k_2^3 + k_3^3} \frac{(k_1 k_2 k_3)^2 B_R}{(2\pi)^4 P_R^2}.$$ \hspace{1cm} (3.17)

The corresponding shape functions for the bispectra $B_R^{(self2)}$ and $B_R^{(cross2)}$ are then

$$f_{NL}^{(self2)}(k_1, k_2, k_3) = \frac{40}{9\pi^3} \frac{\mathcal{P}_C}{A^2} \frac{\theta_0^3\beta}{H^4} \quad \text{and} \quad f_{NL}^{(cross2)}(k_1, k_2, k_3) = -\frac{10}{9\pi^3} \frac{\mathcal{P}_C}{A^2} \frac{\theta_0^3\gamma}{H^3},$$ \hspace{1cm} (3.18)

or purely in terms of the model parameters as

$$f_{NL}^{(self2)} \sim \frac{\dot{\phi}_0}{H} \left(\frac{\alpha}{r_0\gamma H^2}\right)^3 \frac{\beta}{\theta_0^3 H^2} \quad \text{and} \quad f_{NL}^{(cross2)} \sim -\left(\frac{\dot{\phi}_0}{H}\right) \left(\frac{\alpha}{r_0\gamma H^2}\right)^2 \left(\frac{\gamma}{\theta_0^3 H^2}\right),$$ \hspace{1cm} (3.19)

Again (3.18) might suggest $|f_{NL}^{(self2)}| < |f_{NL}^{(cross2)}|$ since $\mathcal{P}_C < P_R$. This is not necessarily the case though as both of the non-linear parameters depend upon the coefficients β and γ, which implicitly depend on the axion model parameters such as the misalignment angle θ_0, as seen in (3.19). It is possible to tune the axion model parameters such that $|f_{NL}^{(self2)}| > |f_{NL}^{(cross2)}|$ while having \mathcal{P}_C small.

In the following we give an estimate about the size of the two contributions to local f_{NL} on CMB scales in simple inflationary models. Assuming simple chaotic inflation with a quadratic potential, we have $\phi_0 = 15m_{Pl}$ and the Hubble parameter at horizon-exit $H \approx 10^{-4}m_{Pl}$. From (3.19) one then deduces

$$f_{NL}^{(self2)} \sim -\frac{1280}{27} g^4 \sin^4(4\theta_0)(\sqrt{2} \epsilon) \left(\frac{\phi_0}{m_{Pl}}\right)^2 \left(\frac{r_0}{H}\right)^8,$$

$$f_{NL}^{(cross2)} \sim 16g^2 \sin^2(4\theta_0) \cos(4\theta_0)(\sqrt{2} \epsilon) \left(\frac{r_0}{m_{Pl}}\right)^2 \left(\frac{r_0}{H}\right)^6,$$ \hspace{1cm} (3.20)

and $|f_{NL}^{(self2)} / f_{NL}^{(cross2)}| \sim g \tan(4\theta_0) \sin(4\theta_0)(\phi_0/m_{Pl})(r_0/H)^2$. Note that $r_0 > H$ here since we are considering scenario where spontaneous symmetry breaking happens at higher energy scales than H. Therefore we expect $|f_{NL}^{(self2)}| > |f_{NL}^{(cross2)}|$ in this simple example unless the coupling is very small, i.e. $g \lesssim 10^{-3}$. In theory the absolute value of $f_{NL}^{(self2)}$ could span a
wide range depending on the combination of r_0 and g. For instance, assuming the symmetry breaking scale is around the GUT scale such that $r_0 \sim 10^{-2} m_{Pl}$, then we find $f_{NL}^{(self2)} \sim O(1)$ for $g \sim O(10^{-3})$.

It is also convenient to express \mathcal{P}_I and \mathcal{P}_C in terms of fractions of the isocurvature perturbation and cross-correlation, defined as

$$\beta_I \equiv \frac{\mathcal{P}_I}{\mathcal{P}_R} \quad \text{and} \quad \beta_C \equiv \frac{\mathcal{P}_C}{\sqrt{\mathcal{P}_R \mathcal{P}_I}}. \quad (3.21)$$

For generic cold dark matter isocurvature perturbation, at $k = 0.002 \text{Mpc}^{-1}$ the upper bound from Planck TT, TE, EE + lowP + WP is $\beta_I \lesssim 0.021$ [5]. On the other hand, the constraint on β_C from Planck TT, TE, EE + lowP + WP is $-0.07 \lesssim \beta_C \lesssim 0.21$ [5]. Recent study has shown $|\beta_C|$ needs to be of $O(0.1)$ for forthcoming CMB experiments to be sensitive to the isocurvature cross-correlation [17]. With the definitions (3.21), we can see how the observables are correlated in general

$$f_{NL}^{(self2)} \sim \beta_C^2 \beta_I^2 \mathcal{P}_R^{5/2} \quad \text{and} \quad f_{NL}^{(cross2)} \sim \beta_C^2 \beta_I \mathcal{P}_R^{1/2}. \quad (3.22)$$

3.1 Consistency checks

There are implicit non-trivial constraints for the perturbation theory to remain valid, which also constrain the conditions for realising a large f_{NL} given by (3.19). In order to treat the transfer vertex H_I^2 as a small perturbation, the correction to the curvature perturbation power spectrum \mathcal{P}_R due to H_I^2 must be subleading compared to the leading piece (3.12). Explicitly, the correction is given by

$$\Delta \mathcal{P}_R(k) = \left(-\frac{\pi \alpha}{2r_0 H^2}\right)^2 \mathcal{D} \mathcal{P}_R(k), \quad (3.23)$$

where \mathcal{D} is an integral involving the Hankel functions defined as

$$\mathcal{D} \equiv \Re \left\{ \int_0^\infty \frac{dx_1}{x_1} \left[H_{\nu}^{(1)}(x_1) + H_{\nu}^{(2)}(x_1) \right] H_{\nu}^{(1)}(x) \int_0^\infty \frac{dx_2}{x_2} H_{\nu}^{(2)}(x_2) H_{\nu}^{(2)}(x_2) \right\} \sim \frac{(\log x_c)^2}{2!}, \quad (3.24)$$

with x_c being the lower cutoff, so that approximately $\mathcal{D} \sim A^2$. Thus for perturbative calculations to be valid, from (3.23) we require

$$\left| \frac{\pi \alpha}{2r_0 H^2} \right| \lesssim O(1). \quad (3.25)$$

Notice that this also means $\mathcal{P}_C \lesssim \sqrt{\mathcal{P}_R \mathcal{P}_I}$. For detailed derivations, see appendix B.

From (3.19), the non-linear parameter $f_{NL}^{(self2)}$ given in terms of the model parameter scales as $\alpha^2 \beta / (r_0 H^8)$. Since the coefficients α and β are in fact related by $\beta = (8\phi_0/3)\alpha$ in our model, by using (3.25) and taking $r_0 = f_a$, we can see

$$f_{NL}^{(self2)} \sim -\sqrt{2} \left(\frac{\alpha}{r_0 H^2} \right) \left(\frac{\phi_0 m_{Pl}}{f_a^3} \right) \quad \text{and} \quad f_{NL}^{(self2)} \sim O(1) \rightarrow \frac{\phi_0 m_{Pl}}{f_a^2} \gg 1. \quad (3.26)$$

\footnote{Note this definition of β_I is slightly different from β_{iso} used in [5]. They are related by $\beta_I = \beta_{iso} / (1 - \beta_{iso})$.}
This can be achieved by setting $\phi_0 \sim O(m_{\text{Pl}})$ and $f_a < O(m_{\text{Pl}})$. Similarly, the coupling γ is related to the mass of the PQ field m_{θ}. The massless axion limit, i.e. $m_{\theta}^2/H^2 \rightarrow 0,^2$ thus corresponds to
\[
\frac{\phi_0 \gamma}{r_0^2 H^2} \ll 1.
\] (3.27)

As a result, from (3.19) we can see
\[
f_{\text{NL}}^{(\text{cross2})} \sim -\sqrt{2} \left(\frac{\alpha}{r_0^2 H^2} \right)^2 \left(\frac{\phi_0 \gamma}{r_0^2 H^2} \right) \frac{m_{\text{Pl}}}{\phi_0} \quad \text{and} \quad f_{\text{NL}}^{(\text{cross2})} \sim O(1) \rightarrow \frac{m_{\text{Pl}}}{\phi_0} \gg 1,
\] (3.28)
i.e $f_{\text{NL}}^{(\text{cross2})} \sim O(1)$ is possible only if ϕ_0 is sub-Planckian. We can see the two conditions (3.26) and (3.28) are mutually exclusive in general. We therefore conclude only one of the bispectrum contributions can be made large and the resulting non-linear parameter f_{NL} either scales as P_ϕ^3 or $P_\phi^2 \sqrt{P_R}$. These results appear mainly due to the fact that the quadratic and cubic interaction Hamiltonians all arise from the same gravitationally induced interaction term (3.3).

Our results also apply to more general cases where the gravitationally induced interaction between the inflaton ϕ and the PQ field Φ is of the form
\[
g \frac{\phi^m \Phi^n}{m^{m-n+1}_\text{Pl}}.
\] (3.29)
For $m \geq 2$, the cross-interaction $\phi^2 \theta$ is also present, and contributes to a f_{NL} which is directly correlated with β_ϕ,
\[
f_{\text{NL}}^{(\text{cross1})} \sim \beta_\phi.
\] (3.30)
Whether or not this contribution can be comparable to $f_{\text{NL}}^{(\text{self2})}$ and/or $f_{\text{NL}}^{(\text{cross2})}$ is a model-dependent question, as its relative size to $f_{\text{NL}}^{(\text{self2})}$, $f_{\text{NL}}^{(\text{cross2})}$ depends upon both ϕ_0/m_{Pl} and the axion parameters, see appendix D.

4 Conclusions

In this article, we have studied the correlations between primordial non-Gaussianity and isocurvature perturbation due to horizon-crossing interactions on general ground. In the presence of explicit couplings between the inflaton and another light field that later produces isocurvature perturbation, the bispectrum of the curvature perturbation receives contributions from the conversion of isocurvature perturbation. These contributions can be written in terms of the cross-correlation power spectrum. Taking the gravitationally induced coupling of an axion-like field as an explicit example, we have shown that the primordial bispectrum correlates with the cross-correlation power spectrum as $B_R \sim P_\phi^3$ or $B_R \sim P_\phi^2 \sqrt{P_R}$, depending on the inflation model. If we do observe primordial non-Gaussianity on smaller than CMB scales in future experiments, we might be able to say something about or even put constraints on inflation models where the inflaton interacts with axion-like fields in the early universe.

Besides the standard cold inflation scenario we have considered here, isocurvature perturbations can also arise naturally in warm inflation models via warm baryogenesis [37]. In such scenario, one should consider an inflaton-fluid system instead. We hope to investigate the possible correlations between the resulting isocurvature perturbation and primordial non-Gaussianity in such scenario in the future.

\footnote{The axion mass m_{θ} is defined as in (A.5).}
Acknowledgments

We would like to thanks the referee for his/her valuable comments. We acknowledge the Max-Planck-Gesellschaft, the Korea Ministry of Education, Science and Technology, Gyeongsangbuk-Do and Pohang City for the support of the Independent Junior Research Group at the Asia Pacific Center for Theoretical Physics. This work is also supported in part by a Starting Grant through the Basic Science Research Program of the National Research Foundation of Korea (2013R1A1A1006701).

A Computation of the two-point statistics

Given the model Lagrangian (3.1), we can work out the corresponding Hamiltonian at appropriate order. At quadratic order, assuming slow-roll and the off-diagonal term of the mass matrix is small, we can take the free field Hamiltonian density, \(H_{\text{free}} \), and the interaction Hamiltonian density, \(H_I \), as

\[
H_{\text{free}} = \frac{a^3}{2} \dot{\phi}^2 + \frac{a}{2}(\nabla \phi)^2 + \frac{a^3 r_0^2}{2} (\nabla \theta)^2 + a^3 \delta V_{\text{inf}} - 8a^3 g \left(\frac{\phi_0 r_0^4}{m_{\text{Pl}}^2} \right) \cos(4\theta_0) \theta^2 ,
\]

\[
H_I = -2a^3 g \frac{r_0^4}{m_{\text{Pl}}} \sin(4\theta_0) \phi \theta - a^3 \alpha \phi \theta , \tag{A.1}
\]

where \(\alpha \) is defined as in (3.9). The equations of motion of the free fields \(\phi \) and \(\theta \) follow from \(H_{\text{free}} \).

To compute the two-point correlation functions, we first promote the fields to operators and decompose them into annihilation and creation operators in Fourier space

\[
\hat{\phi}_k = \hat{a}_k u_k + \hat{a}_k^\dagger u_k^*, \quad \hat{\theta}_k = \hat{b}_k v_k + \hat{b}_k^\dagger v_k^*, \tag{A.2}
\]

where \(\hat{a}_k \) and \(\hat{b}_k \) satisfying the commutation relations

\[
[\hat{a}_k, \hat{a}_k^\dagger] = [\hat{b}_k, \hat{b}_k^\dagger] = (2\pi)^3 \delta^{(3)}(k - k'), \tag{A.3}
\]

and zero otherwise. The mode functions \(u_k \) and \(v_k \) satisfy the following equations

\[
u''_k - \frac{2}{\tau} \nu'_k + \left(k^2 + \frac{m_\phi^2}{H^2 \tau^2} \right) u_k = 0 ,
\]

\[
u''_k - \frac{2}{\tau} \nu'_k + \left(k^2 + \frac{m_\theta^2}{H^2 \tau^2} \right) v_k = 0 , \tag{A.4}
\]

where

\[
\frac{m_\phi^2}{\phi} \equiv \frac{\partial^2 V_{\text{inf}}}{\partial \phi^2} \quad \text{and} \quad m_\theta^2 \equiv -8g \frac{\phi_0 r_0^2}{m_{\text{Pl}}^2} \cos(4\theta_0) . \tag{A.5}
\]

Assuming the last terms in (A.4) are small such that both fields behave as massless fields up to slow-roll approximation, we find the solutions of the mode functions as

\[
u_k(\tau) = -i \exp \left[i \left(\nu_\phi + \frac{1}{2} \right) \frac{\pi}{2} \sqrt{\frac{\pi}{2}} H(-\tau)^{3/2} H_{\nu_{\phi}}^{(1)}(-k\tau) \right] \tag{A.6}
\]

\[
u_k(\tau) = -i \frac{r_0}{r_0} \exp \left[i \left(\nu_\theta + \frac{1}{2} \right) \frac{\pi}{2} \sqrt{\frac{\pi}{2}} H(-\tau)^{3/2} H_{\nu_\theta}^{(1)}(-k\tau) \right] \tag{A.7}
\]
with \(\nu_\phi \equiv \sqrt{9/4 - m_\phi^2/H^2} \) and similarly for \(\nu_\theta \), for \(0 \leq \nu_j \leq 3/2 \). Here \(H^{(1)}_\nu \) is the Hankel function of the first kind.

The correlation functions can then be computed using the in-in formalism [24–27]. Using the commutator form, the expectation value of some operators \(\hat{O}(t) \) at time \(t \) is given by [28]

\[
\langle \hat{O}(t) \rangle = \left\langle 0 \right| \hat{O}(t) \left| 0 \right\rangle + i \int_{t_0}^{t} dt_1 \left\langle 0 \right| \left[H^{(1)}_{\nu_1}(t_1), \hat{O}(t) \right] \left| 0 \right\rangle + i^2 \int_{t_0}^{t} dt_1 \int_{t_0}^{t} dt_2 \left\langle 0 \right| \left[H^{(1)}_{\nu_1}(t_1), \left[H^{(1)}_{\nu_2}(t_2), \hat{O}(t) \right] \right] \left| 0 \right\rangle + O(H^3) \quad (A.8)
\]

where \(|0\rangle \) is the interaction vacuum at some initial time \(t_0 \). The resulting power spectra (3.12)–(3.14) can be found by inserting the interaction Hamiltonian (A.1) into (A.8) for \(\hat{O} = \{ \hat{\phi}_k, \hat{\phi}_k, \hat{\theta}_j, \hat{\theta}_j, \hat{\phi}_k, \hat{\phi}_k \} \). For instance, derivations of \(\mathcal{P}_C \) and \(\mathcal{A} \) can be found in [17].

B Computation of the correction to the leading order \(\mathcal{P}_R \)

In section 3.1, we argue that the condition (3.25) has to be satisfied for consistency in order to treat \(H^I_\nu \) as a small perturbation compared to \(H^0_{\text{free}} \). As stated in the section, this comes from the fact that the non-zero contribution to the inflaton power spectrum \(\mathcal{P}_R \), coming from \(H^I_\nu \) should be subleading compared to the free-field contribution (3.12).

To see this, we compute the correction to \(\mathcal{P}_R \) due to \(H^I_\nu \) using the commutator form of the in-in formalism (A.8) in a similar fashion as in [30, 31]. Labeling this correction by \(\Delta \mathcal{P}_R \), this is of order \(O[(H^I_\nu)^2] \) and is given by

\[
\Delta \mathcal{P}_R(k) = \int_{t_0}^{t} dt_1 \int_{t_0}^{t} dt_2 \left\langle 0 \right| \left[H^I_{\nu_1}(t_1) \hat{\phi}_k(t) \hat{\phi}_k(t) H^I_{\nu_2}(t_2) \right] \left| 0 \right\rangle - 2 \Re \left[\int_{t_0}^{t} dt_1 \int_{t_0}^{t} dt_2 \left\langle 0 \right| \hat{\phi}_k(t) \hat{\phi}_k(t) H^I_{\nu_1}(t_1) H^I_{\nu_2}(t_2) \left| 0 \right\rangle \right]. \quad (B.1)
\]

Assuming inflationary background such that \(a \sim (-1/H r) \) and \(H \approx \text{const.} \), and taking the large wavelength limit after horizon-exit, we finally arrive (3.23)

\[
\Delta \mathcal{P}_R(k) = |u_k(0)|^2 \frac{k^3}{2 \pi^2} \left(\frac{\alpha}{2r_0 H^2} \right)^2 D = \left(\frac{\alpha}{2r_0 H^2} \right)^2 D \mathcal{P}_R(k), \quad (B.2)
\]

where \(D \) is an integral involving the Hankel functions defined as

\[
D \equiv \Re \left\{ \int_{0}^{\infty} \frac{dx_1}{x_1} \left[H^{(1)}_{\nu_1}(x_1) + H^{(2)}_{\nu_2}(x_1) \right] H^{(1)}_{\nu_2}(x_1) \int_{x_1}^{\infty} \frac{dx_2}{x_2} H^{(2)}_{\nu_1}(x_2) H^{(2)}_{\nu_2}(x_2) \right\}. \quad (B.3)
\]

In the massless limit where \(\nu_\phi, \nu_\theta \approx 3/2 \), \(D \) reduces to

\[
D = \left(\frac{4}{\pi^2} \right) \Re \left\{ \int_{0}^{\infty} \frac{dx_1}{x_1} \left[(1 - i x_1) e^{ix_1} - \text{c.c.} \right] (1 - i x_1) e^{ix_1} \int_{x_1}^{\infty} \frac{dx_2}{x_2} (1 + i x_2)^2 e^{-2ix_2} \right\}, \quad (B.4)
\]

and is logarithmically divergent in the IR limit. Here c.c. stands for complex conjugate. To regularise this, we introduce a lower cut-off \(x_c \) in the above integral. Then we can see \(D \) approximately scale as

\[
D \sim \frac{(\log x_c)^2}{2!} \sim A^2. \quad (B.5)
\]

For the correction to be small such that \(\Delta \mathcal{P}_R(k)/\mathcal{P}_R(k) < O(1) \), we therefore generically require \(|\pi \alpha/2r_0 H^2| < O(1) \), i.e. the condition (3.25).
C Computation of the bispectrum

The resulting primordial bispectrum can be computed in a similar fashion as the two-point functions. Assuming slow-roll, at cubic order, the corresponding interaction Hamiltonian H_3 dominated by the contribution from the gravitationally induced interaction (3.3) and is given by

$$H_3 = \int d^3 x H_3 = a^3 \frac{g_{\alpha}^4}{m_{\phi}} (2\pi)^3 \delta^{(3)}(k_1 + k_2 + k_3) \int \frac{d^3 k_1}{(2\pi)^3} \int \frac{d^3 k_2}{(2\pi)^3} \int \frac{d^3 k_3}{(2\pi)^3} \times \left[\frac{16}{3} \phi_0 \cos(4\theta_0) \delta_{k_1} \delta_{k_2} \delta_{k_3} - \frac{4}{3} \sin(4\theta_0) \delta_{k_1} \delta_{k_2} \delta_{k_3} + \text{perm.} \right], \quad (C.1)$$

where perm. denotes permutation over momenta k_j of the second term in the square bracket. Splitting H_3 in terms of the form of the interaction, we therefore arrive at (3.10) and (3.11).

C.1 Contribution from H_3^{self2}

Expressed in the nested commutator form of the in-in formalism, the leading contribution to the fully connected inflaton three-point function $\langle \phi^3 \rangle$ from the axion self-interaction Hamiltonian H_3^{self2} is of cubic order in H_2^{I} and is given by

$$\langle \phi^3 \rangle^{\text{self2}} = \int t_1 \int t_2 \int t_3 \int t_4 \left[\left[H^I(t_4), \left[H^I(t_3), \left[H^I(t_2), \left[H^I(t_1), \phi_t(t) \right] \right] \right] \right] \right] \right], \quad (C.2)$$

where H^I corresponds to an interaction Hamiltonian, with one being H_3^{self2} and the others being H_2^{I}. The overall contribution is therefore [31]

$$\langle \phi^3 \rangle^{\text{self2}} = -12 \alpha^3 \beta [u_{k_1}(0)u_{k_2}(0)u_{k_3}(0)] \mathcal{R} \left[\int_{-\infty}^{0} dt_1 \int_{-\infty}^{t_1} dt_2 \int_{-\infty}^{t_2} dt_3 \int_{-\infty}^{t_3} dt_4 \prod_{i=1}^{4} a^4(\tau_i) \right] \times (A + B + C) \left[(2\pi)^3 \delta^{(3)} \sum_i k_i \right] + \text{perm.}, \quad (C.3)$$

where the terms A, B and C are

$$A = -[u_{k_1}(\tau_1) - \text{c.c.}] [v_{k_1}(\tau_1)v_{k_1}^*(\tau_2) - \text{c.c.}] [v_{k_2}(\tau_2)v_{k_2}^*(\tau_3)u_{k_3}(\tau_4)] - \text{c.c.} \right] v_{k_1}(\tau_1)v_{k_2}^*(\tau_2)v_{k_3}(\tau_4), \quad (C.4)$$

$$B = -[u_{k_1}(\tau_1) - \text{c.c.}] [u_{k_2}(\tau_2) - \text{c.c.}] [v_{k_1}^*(\tau_1)v_{k_2}(\tau_2)v_{k_3}(\tau_3)v_{k_3}(\tau_4) - \text{c.c.}] v_{k_1}(\tau_1)v_{k_2}^*(\tau_2)v_{k_3}(\tau_4), \quad (C.5)$$

$$C = [u_{k_1}(\tau_1) - \text{c.c.}] [u_{k_2}(\tau_2) - \text{c.c.}] [u_{k_3}(\tau_3) - \text{c.c.}] [v_{k_1}(\tau_1)v_{k_2}(\tau_2)v_{k_3}^*(\tau_3)v_{k_3}(\tau_4)] - \text{c.c.} \right] v_{k_1}(\tau_1)v_{k_2}(\tau_2)v_{k_3}(\tau_3)v_{k_3}(\tau_4), \quad (C.6)$$

corresponding to replacing $H^I(t_2)$, $H^I(t_3)$ or $H^I(t_4)$ with the axion self-interaction Hamiltonian H_3^{self2} respectively. Note that replacing $H^I(t_1)$ with H_3^{self2} gives zero contribution since $H_3^{\text{self2}} \propto \delta^4$, which does not contract with any of the external legs $\delta_{k_i}(t)$. Here we also have used the fact that $u_k(0)$ is real. Plugging in the solutions for the mode functions u and
shape dependent and independent parts, we have

$$A = - W (- \tau_1)^3 (- \tau_2)^{9/2} (- \tau_3)^3 (- \tau_4)^3 \Re \left[H_{\nu_\phi}^{(1)}(-k_1 \tau_1) \right] \Im \left[H_{\nu_\phi}^{(1)}(-k_1 \tau_1) H_{\nu_\phi}^{(2)}(-k_1 \tau_2) \right]$$

and

$$B = W (- \tau_1)^3 (- \tau_2)^3 (- \tau_3)^{9/2} (- \tau_4)^3 \Re \left[H_{\nu_\phi}^{(1)}(-k_1 \tau_1) \right] \Re \left[H_{\nu_\phi}^{(1)}(-k_2 \tau_2) \right]$$

and

$$C = - i W (- \tau_1)^3 (- \tau_2)^3 (- \tau_3)^3 (- \tau_4)^{9/2} \Re \left[H_{\nu_\phi}^{(1)}(-k_1 \tau_1) \right] \Re \left[H_{\nu_\phi}^{(1)}(-k_2 \tau_2) \right] \Re \left[H_{\nu_\phi}^{(1)}(-k_3 \tau_3) \right]$$

where we have defined $W \equiv 8/\tau_0^9 (H \sqrt{\pi}/2)^9$. Assuming \mathcal{R} is sourced purely by the inflaton fluctuations, the resulting curvature perturbation bispectrum is simply

$$\langle \mathcal{R}(k_1) \mathcal{R}(k_2) \mathcal{R}(k_3) \rangle = - \left(\frac{H}{\phi_0} \right)^3 \langle \phi(k_1) \phi(k_2) \phi(k_3) \rangle,$$

where the corresponding bispectrum $B_{\mathcal{R}}^{(self2)}(k_1, k_2, k_3)$ and the dimensionless shape function $f_{\mathcal{NL}}^{(self2)}(k_1, k_2, k_3)$ as defined in (3.17) are given by

$$\langle \mathcal{R}(k_1) \mathcal{R}(k_2) \mathcal{R}(k_3) \rangle = (2\pi)^3 \delta^{(3)} \left(\sum_i k_i \right) B_{\mathcal{R}}^{(self2)}(k_1, k_2, k_3)$$

and

$$= (2\pi)^3 \delta^{(3)} \left(\sum_i k_i \right) \left(\frac{3}{10} \right) f_{\mathcal{NL}}^{(self2)}(k_1, k_2, k_3) \frac{k_1^3 + k_2^3 + k_3^3}{(k_1 k_2 k_3)^3} (2\pi)^4 \mathcal{P}_\mathcal{R}^2.$$

Here H and $\dot{\phi}_0$ are evaluated at horizon exit. Factorising $f_{\mathcal{NL}}^{(self2)}(k_1, k_2, k_3)$ in terms of the shape dependent and independent parts, we have

$$f_{\mathcal{NL}}^{(self2)}(k_1, k_2, k_3) = \mathcal{F}^{(self2)} s^{(self2)}(k_1, k_2, k_3) \frac{(XYZ)^{3/2}}{X^3 + Y^3 + Z^3}.$$

For convenience, we have introduced a normalisation wavenumber K and have defined $x_i \equiv -K \tau_i$, $X \equiv k_1/K$, $X \equiv k_2/K$ and $Z \equiv k_3/K$ in the above expression. In the massless limit $\nu_0, \nu_\phi \approx 3/2$, $\mathcal{F}^{(self2)}$ is

$$\mathcal{F}^{(self2)} = \left(\frac{\dot{\phi}_0}{H} \right) \left(\frac{5 \alpha^3 \beta}{H^8 \phi_0^6} \right)^2 2^{-9/2} \pi^{9/2},$$

where α, β are the quadratic and cubic couplings, respectively.
and the dimensionless shape function \(s^{(\text{self}2)}(k_1, k_2, k_3) \) is

\[
\begin{align*}
\equiv & \Re \left\{ \int_0^\infty \frac{dz_1}{z_1} \int_0^\infty \frac{dz_2}{z_2} \int_0^\infty \frac{dz_3}{z_3} \int_0^\infty \frac{dz_4}{z_4} \Re \left[H_{\nu_\rho}^{(1)}(X x_1) \right] \right. \\
& \times \left[- (x_3)^{3/2} \Im \left[H_{\nu_\rho}^{(1)}(X x_1) H_{\nu_\rho}^{(2)}(X x_2) \right] \Re \left[H_{\nu_\rho}^{(1)}(X x_3) H_{\nu_\rho}^{(2)}(X x_4) \right] \right] \\
& \times H_{\nu_\rho}^{(1)}(Y x_2) H_{\nu_\rho}^{(2)}(Y x_3) H_{\nu_\rho}^{(2)}(Y x_4) \\
& + (x_3)^{3/2} \Re \left[H_{\nu_\rho}^{(1)}(X x_2) \right] \Im \left[H_{\nu_\rho}^{(1)}(X x_3) H_{\nu_\rho}^{(2)}(X x_4) \right] \\
& \times H_{\nu_\rho}^{(1)}(X x_3) H_{\nu_\rho}^{(2)}(X x_4) H_{\nu_\rho}^{(2)}(X x_2) \\
& - i (x_3)^{3/2} \Re \left[H_{\nu_\rho}^{(1)}(X x_2) \right] \Re \left[H_{\nu_\rho}^{(1)}(X x_3) \right] \\
& \times H_{\nu_\rho}^{(2)}(X x_1) H_{\nu_\rho}^{(2)}(X x_2) H_{\nu_\rho}^{(1)}(X x_3) H_{\nu_\rho}^{(1)}(X x_4) H_{\nu_\rho}^{(1)}(X x_4) H_{\nu_\rho}^{(1)}(X x_3) \right\} + 5 \text{ perm.} \\
\end{align*}
\]

(C.14)

Here \(s^{(\text{self}2)}(k_1, k_2, k_3) \) diverges in the IR in the massless limit. Introducing a lower cut-off \(x_c \) as before, one finds

\[
s^{(\text{self}2)}(k_1, k_2, k_3) \approx \left(\frac{44}{243} \right) \pi^{-9/2} (\log x_c)^4 X^3 + Y^3 + Z^3 (XYZ)^{3/2} ,
\]

(C.15)

to leading order. In the following, we briefly summarise how to compute the above result.

To compute the leading order term in the IR limit, we take the following asymptotic form of the Hankel function in the \(x \ll 1 \) limit

\[
H_{\nu_\rho}^{(1)}(x) \to - i \frac{2^{3/2} \Gamma(3/2)}{\pi} x^{-3/2} - i \frac{2^{-1/2} \Gamma(3/2)}{\pi(1/2)} x^{1/2} \\
+ \left(-i \frac{\cos(3\pi/2) \Gamma(-3/2)}{2^{3/2} \pi} + \frac{1}{2^{3/2} \Gamma(5/2)} \right) x^{3/2} + \ldots
\]

(C.16)

whereas that of \(H_{\nu_\rho}^{(2)}(x) \) is the complex conjugate of (C.16). Here we can see the real and the imaginary parts scale as \(\mathcal{O}(x^{3/2}) \) and \(\mathcal{O}(x^{-3/2}) \) respectively at leading order. Using this, we can see how the integrand in (C.14) scales with \(x_c \). For the second line in (C.14), at leading order in the IR limit, it scales as

\[
\prod_{i=1}^4 (x_i)^{-1} \Re \left[H_{\nu_\rho}^{(1)}(X x_1) \right] \to \prod_{i=1}^4 (x_i)^{-1} \left[\frac{1}{2^{3/2} \Gamma(5/2)} \right] (X x_1)^{3/2} + \ldots
\]

(C.17)

whereas for the third line, the leading order piece is

\[
- (x_3)^{3/2} \Im \left[H_{\nu_\rho}^{(1)}(X x_1) H_{\nu_\rho}^{(2)}(X x_2) \right] \Re \left[H_{\nu_\rho}^{(1)}(X x_3) H_{\nu_\rho}^{(2)}(X x_4) \right] \\
\to \left[\frac{\Gamma(3/2)}{\Gamma(5/2) \pi} \right] ^2 \frac{2^{3/2} \Gamma(3/2)}{\pi} \left(\frac{x_2}{x_1} \right)^{3/2} Z^{-3/2} + \ldots
\]

(C.18)

Here we have taken \(H_{\nu_\rho}^{(1)}(X x_1) \), \(H_{\nu_\rho}^{(1)}(X x_2) \) and either \(H_{\nu_\rho}^{(2)}(X x_3) \) or \(H_{\nu_\rho}^{(2)}(X x_4) \) to be imaginary. For the fourth line in (C.14), it must be real in order to keep the whole integrand real.
The leading order term scales as

\[H_{νφ}^{(1)}(Yx_2)H_{νφ}^{(2)}(Yx_3)H_{νφ}^{(2)}(Yx_3) \to 2 \left[\frac{Γ(3/2)}{Γ(5/2)\pi} \right] \left[\frac{2^{3/2}Γ(3/2)}{π} \right] (Yx_2)^{-3/2} + \ldots \quad (C.19) \]

Here we have taken \(H_{νφ}^{(1)}(Yx_2) \) and either \(H_{νφ}^{(2)}(Yx_3) \) or \(H_{νφ}^{(2)}(Yx_3) \) to be imaginary. Together the above leading order pieces in these three lines therefore give the following integrand

\[
\prod_{i=1}^{4}(x_i)^{-1} \left[\frac{Γ(3/2)}{Γ(5/2)\pi} \right] \left[\frac{Γ(3/2)2^{7/2}}{π} \right] \left(\frac{X}{YZ} \right)^{3/2}, \quad (C.20)
\]

and the corresponding contribution to \(s^{(sℓℓ2)}(k_1, k_2, k_3) \) scales as \((log x_c)^4\) in the IR limit. Taking other choices of the leading order pieces in the Hankel functions give subleading terms. For instance, taking \(H_{νφ}^{(1)}(Xx_1) \) to be real and \(H_{νφ}^{(2)}(Xx_2) \) to be imaginary instead in the third line, together with the above leading order terms in the second and fourth lines, the resulting integral scales at most as \((- log x_c)^3\).

Similarly, for the fifth line in \((C.14)\), the leading order piece is

\[
(x_3)^{3/2} \Re \left[H_{νφ}^{(1)}(Yx_2) \right] 3 \left[H_{νφ}^{(2)}(Xx_1)H_{νφ}^{(2)}(Yx_2)H_{νφ}^{(1)}(Xx_3)H_{νφ}^{(1)}(Yx_3) \right] \rightarrow (x_3)^{3/2} \left[\frac{Γ(3/2)}{Γ(5/2)\pi} \right] \left(\frac{3^{2/2}Γ(3/2)}{π} \right) (Xx_1)^{-3/2} \left[\left(\frac{X}{Y} \right)^{3/2} + \left(\frac{Y}{X} \right)^{3/2} \right] + \ldots \quad (C.21)
\]

Here we have taken \(H_{νφ}^{(2)}(Xx_1) \), \(H_{νφ}^{(2)}(Yx_2) \) and either \(H_{νφ}^{(1)}(Xx_3) \) or \(H_{νφ}^{(1)}(Yx_3) \) to be imaginary. In order for the overall contribution together with the second and fifth lines to the integral to be real, the leading order piece in the sixth line must be real and is given by

\[
H_{νφ}^{(1)}(Zx_3)H_{νφ}^{(2)}(Zx_4)H_{νφ}^{(2)}(Zx_4) \rightarrow \left[\frac{Γ(3/2)}{Γ(5/2)\pi} \right] \left(\frac{2^{5/2}Γ(3/2)}{π} \right) (Zx_3)^{-3/2} + \ldots \quad (C.22)
\]

Here we have taken \(H_{νφ}^{(1)}(Zx_3) \) and either \(H_{νφ}^{(2)}(Zx_4) \) or \(H_{νφ}^{(2)}(Zx_4) \) to be imaginary. Together the second, fifth and sixth lines in \((C.14)\) give the following leading order contribution to \(s^{(sℓℓ2)}(k_1, k_2, k_3) \) in the IR limit

\[
\prod_{i=1}^{4}(x_i)^{-1} \left[\frac{Γ(3/2)}{Γ(5/2)\pi} \right] \left[\frac{2^{5/2}Γ(3/2)}{π} \right] \left(\frac{X}{YZ} \right)^{3/2} + \left(\frac{Y}{X} \right)^{3/2} \] \quad (C.23)

Again similarly, the leading order term in the seventh line in \((C.14)\) is

\[
-i (x_4)^{3/2} \Re \left[H_{νφ}^{(1)}(Yx_2) \right] \Re \left[H_{νφ}^{(1)}(Zx_3) \right] \rightarrow -i (x_4)^{3/2} \left[\frac{1}{2^{5/2}Γ(5/2)} \right] (Yx_2)^{3/2}(Zx_3)^{3/2} + \ldots \quad (C.24)
\]

whereas for the eighth line, the leading order term must be imaginary in order to keep the overall contribution real and thus is given by

\[
H_{νφ}^{(2)}(Xx_1)H_{νφ}^{(2)}(Yx_2)H_{νφ}^{(2)}(Zx_3)H_{νφ}^{(1)}(Xx_4)H_{νφ}^{(1)}(Yx_4)H_{νφ}^{(1)}(Zx_4) \rightarrow \left[\frac{2^{3/2}Γ(3/2)}{π} \right] \left[\frac{Γ(3/2)}{Γ(5/2)π} \right] \left(XYZ \right)^{-3/2}(x_1x_2x_3)^{-3/2} \left[\left(\frac{X}{YZ} \right)^{3/2} + \left(\frac{Y}{X} \right)^{3/2} + \left(\frac{Z}{XY} \right)^{3/2} \right] \]

\[+ \ldots \quad (C.25)\]
where one of the contribution is given by cross-interaction H.

The corresponding leading order contribution to the inflaton bispectrum P_{ϕ^2} scales as $(X^3 + Y^3 + Z^3)/(XYZ)^{3/2}$ and thus $f_{NL}^{(self2)}(k_1, k_2, k_3)$ is approximately shape independent. Using the results of the cross-correlation spectrum P_C and expressing $f_{NL}^{(self2)}(k_1, k_2, k_3)$ in terms of P_C, we therefore arrive at (3.18).

C.2 Contribution from $H_3^{(cross2)}$

The corresponding leading order contribution to the inflaton bispectrum $\langle \phi^3 \rangle$ from the axion cross-interaction $H_3^{(cross2)}$ is of quadratic order in H_1. Expressed in commutator form, this contribution is given by

$$\langle \phi^3 \rangle^{(cross2)} = \int_{t_3}^{t_2} dt_1 \int_{t_1}^{t_2} dt_2 \int_{t_0}^{t_1} dt_3 \left\langle \left\{ H^I(t_3), \left[H^I(t_2), \left[H^I(t_1), \hat{\phi}_I(t)^3 \right] \right] \right\rangle \right.,$$

where one of the H^I is given by $H_3^{(cross2)}$. Expanding this, we get

$$\langle \phi^3 \rangle^{(cross2)} = -4 \alpha^2 \gamma \left(\prod_{i=1}^{3} u_{k_i}(0) \right) (2\pi)^3 \phi^{(3)}(k_1 + k_2 + k_3)$$

$$\times \Re \left[-i \int_{-\infty}^{0} d\tau_1 \int_{-\infty}^{\tau_1} d\tau_2 \int_{-\infty}^{\tau_2} d\tau_3 \prod_{i=1}^{3} a^4(\tau_i) (D + E + F) \right] + \text{perm.},$$

where D, E, and F correspond to contributions coming from replacing $H_I(t_1)$, $H_I(t_2)$ and $H_I(t_3)$ respectively with $H_3^{(cross2)}$:

\begin{align*}
D &= [u_{k_1}(\tau_1) - \text{c.c.}] [v_{k_2}^*(\tau_1) v_{k_2}(\tau_2) u_{k_2}(\tau_2) - \text{c.c.}] v_{k_3}(\tau_1) v_{k_3}^*(\tau_3) u_{k_3}(\tau_3), \quad (C.31) \\
E &= [u_{k_1}(\tau_1) - \text{c.c.}] [v_{k_1}^*(\tau_1) v_{k_1}(\tau_2) u_{k_2}(\tau_2) - \text{c.c.}] v_{k_3}(\tau_2) v_{k_3}^*(\tau_3) u_{k_3}(\tau_3), \quad (C.32) \\
F &= [u_{k_1}(\tau_1) - \text{c.c.}] [u_{k_2}(\tau_2) - \text{c.c.}] v_{k_1}(\tau_1) v_{k_2}(\tau_2) v_{k_2}^*(\tau_3) u_{k_3}(\tau_3) u_{k_3}^*(\tau_3). \quad (C.33)
\end{align*}
Here we have again used the fact that $u_k(0)$ is real. Written in terms of the Hankel functions, they are given by
\begin{align}
D &= i\mathcal{N}(-\tau_1)^{3/2}(-\tau_2)^3(-\tau_3)^3\Re[H^{(1)}_{\nu_\phi}(-k_1\tau_1)]\Re[H^{(2)}_{\nu_\phi}(-k_2\tau_1)H^{(1)}_{\nu_\phi}(-k_3\tau_2)H^{(1)}_{\nu_\phi}(-k_2\tau_3)]
\times H^{(1)}_{\nu_\phi}(-k_3\tau_1)H^{(2)}_{\nu_\phi}(-k_3\tau_3)H^{(2)}_{\nu_\phi}(-k_3\tau_3), \quad (C.34)
\end{align}
\begin{align}
E &= -i\mathcal{N}(-\tau_1)^{3}(-\tau_2)^{3/2}(-\tau_3)^3\Re[H^{(1)}_{\nu_\phi}(-k_1\tau_1)]\Re[H^{(2)}_{\nu_\phi}(-k_1\tau_1)H^{(1)}_{\nu_\phi}(-k_1\tau_2)H^{(1)}_{\nu_\phi}(-k_2\tau_2)]
\times H^{(2)}_{\nu_\phi}(-k_3\tau_2)H^{(1)}_{\nu_\phi}(-k_3\tau_3)H^{(1)}_{\nu_\phi}(-k_3\tau_3), \quad (C.35)
\end{align}
\begin{align}
F &= -i\mathcal{N}(-\tau_1)^{3}(-\tau_2)^{3}(-\tau_3)^{3/2}\Re[H^{(1)}_{\nu_\phi}(-k_1\tau_1)]\Re[H^{(1)}_{\nu_\phi}(-k_2\tau_2)]
\times H^{(2)}_{\nu_\phi}(-k_1\tau_1)H^{(2)}_{\nu_\phi}(-k_2\tau_2)H^{(1)}_{\nu_\phi}(-k_3\tau_3)H^{(1)}_{\nu_\phi}(-k_3\tau_3)H^{(1)}_{\nu_\phi}(-k_3\tau_3), \quad (C.36)
\end{align}
where $\mathcal{N} \equiv 4/\pi^2((H/\sqrt{\pi})/2)^7$. The resulting curvature bispectrum $B^{(\text{cross2})}_R(k_1,k_2,k_3)$ is simply given by multiplying (C.30) with $-\eta^2/\phi^3$. Similar to the $H_3^{(\text{self2})}$ case, we factorise the corresponding shape function $f^{(\text{cross2})}_{\text{NL}}(k_1,k_2,k_3)$ into shape independent and dependent parts as follows
\begin{align}
f^{(\text{cross2})}_{\text{NL}}(k_1,k_2,k_3) &= f^{(\text{cross2})}(k_1,k_2,k_3) s^{(\text{cross2})}(k_1,k_2,k_3) \frac{(XYZ)^{3/2}}{X^3+Y^3+Z^3}. \quad (C.37)
\end{align}
In the massless limit $\nu_\theta, \nu_\phi \approx 3/2$, $f^{(\text{cross2})}$ is given by
\begin{align}
f^{(\text{cross2})} = \frac{5}{3} \left(\frac{\dot{\phi}_0}{H} \right) \left(\frac{\alpha^2 \gamma}{H^3 \tau_0^2} \right) \left(\frac{\pi}{2} \right)^{7/2}, \quad (C.38)
\end{align}
whereas $s^{(\text{cross2})}(k_1,k_2,k_3)$ is
\begin{align}
s^{(\text{cross2})}(k_1,k_2,k_3) &= \Re\left\{ \int_0^{\infty} \frac{dx_1}{x_1} \int_x^{\infty} \frac{dx_2}{x_2} \int_0^{\infty} \frac{dx_3}{x_3} \Re[H^{(1)}_{\nu_\phi}(Xx_1)] \Re[H^{(2)}_{\nu_\phi}(Xx_1)H^{(1)}_{\nu_\phi}(Yx_2)H^{(1)}_{\nu_\phi}(Yx_3)]
\times H^{(1)}_{\nu_\phi}(Zx_1)H^{(2)}_{\nu_\phi}(Zx_3)H^{(2)}_{\nu_\phi}(Zx_3) - (x_2)^{3/2} \Re[H^{(2)}_{\nu_\phi}(Xx_1)H^{(1)}_{\nu_\phi}(Xx_2)H^{(1)}_{\nu_\phi}(Yx_3)]
\times H^{(2)}_{\nu_\phi}(Zx_2)H^{(1)}_{\nu_\phi}(Zx_3)H^{(1)}_{\nu_\phi}(Zx_3) - (x_3)^{3/2} \Re[H^{(1)}_{\nu_\phi}(Yx_2)H^{(2)}_{\nu_\phi}(Xx_1)H^{(1)}_{\nu_\phi}(Yx_3)]
\times H^{(1)}_{\nu_\phi}(Xx_3)H^{(1)}_{\nu_\phi}(Yx_3)H^{(1)}_{\nu_\phi}(Zx_3) \} + 5 \text{ perm.} \quad \end{align}
Here we have again defined $x_i \equiv -K\tau_i$, $X \equiv k_1/K$, $Y \equiv k_2/K$ and $Z \equiv k_3/K$. Similar to the $H_3^{(\text{self2})}$ case, $s^{(\text{cross2})}(k_1,k_2,k_3)$ diverges in the IR in the massless limit. Introducing a lower cut-off x_c and following similar approach as in the $H_3^{(\text{self2})}$ case, one finds
\begin{align}
s^{(\text{cross2})}(k_1,k_2,k_3) \rightarrow & - (XYZ)^{-3/2} \left[\Gamma(3/2) \right] \left[\Gamma(5/2) \pi \right]^{3} \left[\frac{2^{3/2} \Gamma(3/2)}{\pi} \right] \left[\frac{1}{3!} \right] \left[\log x_c \right]^{3} \\
& \left[4X^3 - 2 \left(X^3 + Y^3 \right) - \left(X^3 + Y^3 + Z^3 \right) \right] + 5 \text{ perm.}. \quad \end{align}
Summing over all permutations, it is not difficult to see $s^{(\text{cross2})}(k_1,k_2,k_3)$ also scales as $(X^3 + Y^3 + Z^3)/(XYZ)^{3/2}$ and thus $f^{(\text{cross2})}_{\text{NL}}(k_1,k_2,k_3)$ is approximately shape independent. Rewriting $f^{(\text{cross2})}_{\text{NL}}(k_1,k_2,k_3)$ in terms of \mathcal{P}_C, we therefore arrive at (3.18).
D Bispectrum for a general gravitational induced coupling

In this section we consider the case of a general gravitational induced coupling (3.29) where \(m \geq 2 \). Calculations of the leading order contributions to the inflaton bispectrum \(\langle \phi^3 \rangle \) due to the interactions \(H^3_{\text{self2}} \) and \(H^3_{\text{cross2}} \) are the same as in the last section, with the coefficients \(\alpha, \beta \) and \(\gamma \) now given by

\[
\alpha = \left(\frac{nm}{2^{n/2-1}} \right) g \frac{\phi^{m-1}r_0^n}{m_{\text{Pl}}^{n/4}} \sin(n\theta_0), \quad (D.1)
\]

\[
\beta = \frac{1}{3!} \left(\frac{n^3}{2^{n/2-1}} \right) g \frac{\phi^m r_0^n}{m_{\text{Pl}}^{n/4}} \sin(n\theta_0), \quad (D.2)
\]

\[
\gamma = \left(\frac{mn^2}{2^{n/2}} \right) g \frac{\phi^{m-1}r_0^n}{m_{\text{Pl}}^{n/4}} \cos(n\theta_0). \quad (D.3)
\]

The corresponding contributions to the non-linear parameter are of the same form (3.19) as in the case \(m = 1 \).

On the other hand, the corresponding leading order contribution to the inflaton bispectrum \(\langle \phi^3 \rangle \) from the axion cross-interaction \(H^3_{\text{cross1}} \) is of linear order in \(H^3 \). Expressed in commutator form, this contribution is given by

\[
\langle \phi^3 \rangle_{\text{(cross1)}} = \int dt_1 \int_{t_0}^{t_1} dt_2 \left\langle \left[H^I(t_2), \left[H^I(t_1), \phi_I(t)^3 \right] \right] \right\rangle, \quad (D.4)
\]

where one of the \(H^I \) is given by \(H^I_{\text{cross1}} \). Here the interaction Hamiltonian for the axion cross-interaction \(H^3_{\text{cross1}} \) is

\[
H^3_{\text{cross1}} = -a^3 \xi \int d^3 x \phi^2 \theta \quad \text{with} \quad \xi \equiv \left(\frac{nm(m-1)}{2^{n/2}} \right) g \frac{\phi^{m-2}r_0^n}{m_{\text{Pl}}^{n/4}} \sin(n\theta_0). \quad (D.5)
\]

Expanding (D.4), we get

\[
\langle \phi^3 \rangle_{\text{(cross1)}} = 2\alpha \xi \left(\prod_{i=1}^{3} u_{k_i}(0) \right) (2\pi)^3 \delta^{(3)}(k_1 + k_2 + k_3)
\]

\[
\times \Re \left[-\int_{-\infty}^{0} d\tau_1 \int_{-\infty}^{\tau_1} d\tau_2 \left(\frac{2}{2} \right)^{\frac{1}{2}} a^4(t_i) (G + J) \right] + 5 \text{ perm.}, \quad (D.6)
\]

where \(G \) and \(J \) correspond to contributions coming from replacing \(H^I(t_1) \), and \(H^I(t_3) \) respectively with \(H^3_{\text{cross1}} \):

\[
G = [u_{k_1}(\tau_1) u_{k_2}(\tau_1) - \text{c.c.}] v_{k_3}(\tau_2) v^{*}_{k_3}(\tau_1) u_{k_3}(\tau_2), \quad (D.7)
\]

\[
J = [u_{k_1}(\tau_1) - \text{c.c.}] v_{k_3}(\tau_2) v^{*}_{k_3}(\tau_1) u_{k_3}(\tau_2), \quad (D.8)
\]

Written in terms of the Hankel functions, these are given by

\[
G = iQ(-\tau_1)^{9/2}(-\tau_2)^{3/2} \left[H^{(1)}_{\nu_0}(-k_1 \tau_1) H^{(1)}_{\nu_0}(-k_2 \tau_1) \right] H^{(1)}_{\nu_0}(-k_3 \tau_1) H^{(2)}_{\nu_0}(-k_3 \tau_3) H^{(2)}_{\nu_0}(-k_3 \tau_3), \quad (D.9)
\]

\[
J = Q(-\tau_1)^{3}(-\tau_2)^{9/2} \Re \left[H^{(1)}_{\nu_0}(-k_1 \tau_1) \right] H^{(1)}_{\nu_0}(-k_3 \tau_2) H^{(2)}_{\nu_0}(-k_3 \tau_3) H^{(2)}_{\nu_0}(-k_3 \tau_3), \quad (D.10)
\]
where \(Q \equiv 2/r_0^2 (H \sqrt{\pi/2})^5 \). The resulting the curvature bispectrum \(B_{R(\text{cross1})}^{(cross1)}(k_1, k_2, k_3) \) is simply given by multiplying (D.6) with \(-\left(H/\dot{\phi}_0 \right)^3 \). Following similar approach as in the previous section, one finds the axion cross-interaction \(H_{3(\text{cross1})} \) gives the following contribution to the non-linear parameter in the local shape

\[
|f_{NL}^{(\text{cross1})}| \sim \left(\frac{\dot{\phi}_0}{H} \right) \left(\frac{\alpha}{r_0 H^2} \right) \left(\frac{\xi}{r_0 H^2} \right).
\]

(D.11)

Comparing this contribution with \(f_{NL}^{(\text{self2})} \) and \(f_{NL}^{(\text{cross2})} \), one finds

\[
\left| \frac{f_{NL}^{(\text{cross1})}}{f_{NL}^{(\text{self2})}} \right| \sim \left(\frac{m_{Pl}}{\phi_0} \right)^{2m} \left(\frac{m_{Pl}}{r_0} \right)^{2n-4} \left(\frac{H}{m_{Pl}} \right)^4 \sin^{-2}(n\theta_0),
\]

(D.12)

\[
\left| \frac{f_{NL}^{(\text{cross1})}}{f_{NL}^{(\text{cross2})}} \right| \sim \left(\frac{m_{Pl}}{\phi_0} \right)^{m} \left(\frac{m_{Pl}}{r_0} \right)^{n-2} \left(\frac{H}{m_{Pl}} \right)^2 \cos^{-1}(n\theta_0),
\]

(D.13)

and thus its relative size to these other two contributions depend upon both the inflation model and the axion parameter.

References

[1] A.H. Guth, *The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems*, Phys. Rev. D 23 (1981) 347 [hep-th/0601244] [SPIRE].

[2] S.W. Hawking and I.G. Moss, *Supercooled Phase Transitions in the Very Early Universe*, Phys. Lett. B 110 (1982) 35 [hep-ph/0601244] [SPIRE].

[3] A. Albrecht and P.J. Steinhardt, *Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking*, Phys. Rev. Lett. 48 (1982) 1220 [hep-ph/0601244] [SPIRE].

[4] A.D. Linde, *A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems*, Phys. Lett. B 108 (1982) 389 [hep-ph/0601244] [SPIRE].

[5] PLANCK collaboration, P.A.R. Ade et al., *Planck 2015 results. XX. Constraints on inflation*, arXiv:1502.02114 [SPIRE].

[6] D.H. Lyth and A. Riotto, *Particle physics models of inflation and the cosmological density perturbation*, Phys. Rept. 314 (1999) 1 [astro-ph/9807278] [SPIRE].

[7] L. McAllister and E. Silverstein, *String Cosmology: A Review*, Gen. Rel. Grav. 40 (2008) 565 [arXiv:0710.2951] [SPIRE].

[8] C. Gordon, D. Wands, B.A. Bassett and R. Maartens, *Adiabatic and entropy perturbations from inflation*, Phys. Rev. D 63 (2001) 023506 [astro-ph/0009131] [SPIRE].

[9] D. Langlois, *Correlated adiabatic and isocurvature perturbations from double inflation*, Phys. Rev. D 59 (1999) 123512 [astro-ph/9906080] [SPIRE].

[10] D. Langlois and A. Riazuelo, *Correlated mixtures of adiabatic and isocurvature cosmological perturbations*, Phys. Rev. D 62 (2000) 043504 [astro-ph/9912497] [SPIRE].

[11] M. Kawasaki, K. Nakayama, T. Sekiguchi, T. Suyama and F. Takahashi, *Non-Gaussianity from isocurvature perturbations*, JCAP 11 (2008) 019 [arXiv:0808.0009] [SPIRE].

[12] D. Langlois, F. Vernizzi and D. Wands, *Non-linear isocurvature perturbations and non-Gaussianities*, JCAP 12 (2008) 004 [arXiv:0809.4646] [SPIRE].
[13] D. Langlois and A. Lepidi, *General treatment of isocurvature perturbations and non-Gaussianities*, *JCAP* 01 (2011) 008 [arXiv:1007.5498] [inSPIRE].

[14] D. Langlois and T. Takahashi, *Primordial Trispectrum from Isocurvature Fluctuations*, *JCAP* 02 (2011) 020 [arXiv:1012.4885] [inSPIRE].

[15] N. Bartolo, S. Matarrese and A. Riotto, *NonGaussianity from inflation*, *Phys. Rev.* D 65 (2002) 103505 [hep-ph/0112261] [inSPIRE].

[16] J.M. Maldacena, *Non-Gaussian features of primordial fluctuations in single field inflationary models*, *JHEP* 05 (2003) 013 [astro-ph/0210603] [inSPIRE].

[17] N. Bartolo, S. Matarrese and A. Riotto, *NonGaussianity from inflation*, *Phys. Rev.* D 65 (2002) 103505 [hep-ph/0112261] [inSPIRE].

[18] J.M. Maldacena, *Non-Gaussian features of primordial fluctuations in single field inflationary models*, *JHEP* 05 (2003) 013 [astro-ph/0210603] [inSPIRE].

[19] K. Kadota, J.-O. Gong, K. Ichiki and T. Matsubara, *CMB probes on the correlated axion isocurvature perturbation*, *JCAP* 03 (2015) 026 [arXiv:1411.3974] [inSPIRE].

[20] R.D. Peccei and H.R. Quinn, *CP Conservation in the Presence of Instantons*, *Phys. Rev. Lett.* 38 (1977) 1440 [inSPIRE].

[21] R.D. Peccei and H.R. Quinn, *Constraints Imposed by CP Conservation in the Presence of Instantons*, *Phys. Rev.* D 16 (1977) 1791 [inSPIRE].

[22] M. Kamionkowski and J. March-Russell, *Planck scale physics and the Peccei-Quinn mechanism*, *Phys. Lett.* B 282 (1992) 137 [hep-th/9202003] [inSPIRE].

[23] P. Fox, A. Pierce and S.D. Thomas, *Probing a QCD string axion with precision cosmological measurements*, hep-th/0409059 [inSPIRE].

[24] M.P. Hertzberg, M. Tegmark and F. Wilczek, *Axion Cosmology and the Energy Scale of Inflation*, *Phys. Rev.* D 78 (2008) 083507 [arXiv:0807.1726] [inSPIRE].

[25] M. Kawasaki, N. Kitajima and F. Takahashi, *Relaxing Isocurvature Bounds on String Axion Dark Matter*, *Phys. Lett.* B 737 (2014) 178 [arXiv:1406.0660] [inSPIRE].

[26] J.S. Schwinger, *Brownian motion of a quantum oscillator*, *J. Math. Phys.* 2 (1961) 407 [inSPIRE].

[27] P.M. Bakshi and K.T. Mahanthappa, *Expectation value formalism in quantum field theory. 1.*, *J. Math. Phys.* 4 (1963) 1 [inSPIRE].

[28] L.V. Keldysh, *Diagram technique for nonequilibrium processes*, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [inSPIRE].

[29] E. Calzetta and B.L. Hu, *Closed Time Path Functional Formalism in Curved Space-Time: Application to Cosmological Back Reaction Problems*, *Phys. Rev.* D 35 (1987) 495 [inSPIRE].

[30] S. Weinberg, *Quantum contributions to cosmological correlations*, *Phys. Rev.* D 72 (2005) 043514 [hep-th/0506236] [inSPIRE].

[31] J.-O. Gong and E.D. Stewart, *The Density perturbation power spectrum to second order corrections in the slow roll expansion*, *Phys. Lett.* B 510 (2001) 1 [astro-ph/0101225] [inSPIRE].

[32] X. Gao, *On Cross-correlations between Curvature and Isocurvature Perturbations during Inflation*, *JCAP* 02 (2010) 019 [arXiv:0908.4035] [inSPIRE].

[33] X. Chen and Y. Wang, X. Chen and Y. Wang, *Quasi-Single Field Inflation and Non-Gaussianities*, *JCAP* 04 (2010) 027 [arXiv:0911.3380] [inSPIRE].

[34] E. Komatsu and D.N. Spergel, *Acoustic signatures in the primary microwave background bispectrum*, *Phys. Rev.* D 63 (2001) 063002 [astro-ph/0005036] [inSPIRE].

[35] X. Chen, M.-x. Huang, S. Kachru and G. Shiu, *Observational signatures and non-Gaussianities of general single field inflation*, *JCAP* 01 (2007) 002 [hep-th/0605045] [inSPIRE].
[34] L. Senatore, K.M. Smith and M. Zaldarriaga, Non-Gaussianities in Single Field Inflation and their Optimal Limits from the WMAP 5-year Data, *JCAP* 01 (2010) 028 [*arXiv:0905.3746*] [inSPIRE].

[35] X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation, *Phys. Rev.* D 81 (2010) 063511 [*arXiv:0909.0496*] [inSPIRE].

[36] PLANCK collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, [*arXiv:1502.01592*] [inSPIRE].

[37] M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Observational implications of mattergenesis during inflation, *JCAP* 10 (2014) 053 [*arXiv:1404.4976*] [inSPIRE].