Approximate Cross-validation: Guarantees for Model Assessment and Selection

Ashia Wilson
Microsoft Research

Maximilian Kasy
Harvard University

Lester Mackey
Microsoft Research

Abstract

Cross-validation (CV) is a popular approach for assessing and selecting predictive models. However, when the number of folds is large, CV suffers from the need to repeatedly refit a learning procedure on a large number of training datasets. Recent work in empirical risk minimization (ERM) approximates the expensive refitting with a single Newton step warm-started from the full training set optimizer. While this can greatly reduce runtime, several open questions remain including whether these approximations lead to faithful model selection and whether they are suitable for non-smooth objectives. We address these questions with three main contributions: (i) we provide uniform non-asymptotic, deterministic model assessment guarantees for approximate CV; (ii) we show that (roughly) the same conditions also guarantee model selection performance comparable to CV; (iii) we provide a proximal Newton extension of the approximate CV framework for non-smooth prediction problems and develop improved assessment guarantees for problems such as \(\ell_1 \)-regularized ERM.

1 Introduction

Two important concerns when fitting a predictive model are model assessment – estimating the expected performance of the model on a future dataset sampled from the same distribution – and model selection – choosing the model hyperparameters to minimize out-of-sample prediction error. Cross-validation (CV) [Geisser, 1975, Stone, 1974] is one of the most widely used techniques for assessment and selection, but it suffers from the need to repeatedly refit a learning procedure on different data subsets.

To reduce the computational burden of CV, recent work proposes to replace the expensive model refitting with an inexpensive surrogate. For example, in the context of regularized empirical risk minimization (ERM), two popular techniques both approximate leave-one-out CV by taking Newton steps from the full-data optimized objective [see, e.g., Beirami et al., 2017, Debruyne et al., 2008, Giordano et al., 2019b, Liu et al., 2014, Rad and Maleki, 2019]. The literature provides single-model guarantees for the assessment quality of these Newton approximations for certain classes of regularized ERM models. Two open questions are whether these approximations are suitable for model selection and whether they are suitable for non-smooth objectives, such as \(\ell_1 \)-penalized losses. As put by [Stephenson and Broderick, 2019], “understanding the uses and limitations of approximate CV for selecting \(\lambda \) is one of the most important directions for future work in this area.” We address these important open problems in this work.

Our principal contributions are three-fold.

- We provide uniform guarantees for model assessment using approximate CV. Specifically, we give conditions which guarantee that the difference between CV and approximate CV is uniformly bounded by a constant of order \(O(1/n^2) \), where \(n \) is the number of CV folds. In contrast to existing guarantees, our results are non-asymptotic, deterministic, and uniform in \(\lambda \); our results do not assume a bounded parameter space and provide a more precise convergence rate of \(O(1/n^2) \).

- We provide guarantees for model selection. We show that roughly the same conditions that guarantee uniform quality assessment results also guarantee that estimators based on parameters tuned by approximate cross-validation and by cross-validation are within \(O(1/n) \) distance of each other, so that the approximation error is negligible relative to the sampling variation.
We propose a generalization of approximate CV that works for general non-smooth penalties. This generalization is based on the proximal Newton method [Lee et al., 2014]. We provide strong model assessment guarantees for this generalization and demonstrate that past non-smooth extensions of ACV fail to satisfy these strong guarantees.

Notation

Let \([n] \triangleq \{1, \ldots, n\}\), \(I_d\) be the \(d \times d\) identity matrix, and \(\partial \varphi\) denote the subdifferential of a function \(\varphi\) [Rockafellar, 1970]. For any matrix or tensor \(H\), we define \(\|H\|_{\text{op}} \triangleq \sup_{v \neq 0 \in \mathbb{R}^d} \|H[v]\|_{\text{op}} / \|v\|_2\) where \(\|v\|_{\text{op}} \triangleq \|v\|_2\) is the Euclidean norm. For any Lipschitz vector, matrix, or tensor-valued function \(f\) with domain \(\text{dom}(f)\), we define the Lipschitz constant \(\text{Lip}(f) \triangleq \sup_{x \neq y \in \text{dom}(f)} \frac{\|f(x) - f(y)\|_{\text{op}}}{\|x - y\|_2}\).

2 Cross-validation for Regularized Empirical Risk Minimization

For a given datapoint \(z \in \mathcal{X}\) and candidate parameter vector \(\beta \in \mathbb{R}^d\), consider the objective function

\[m(z, \beta, \lambda) = \ell(z, \beta) + \lambda \pi(\beta) \]

comprised of a loss function \(\ell\), a regularizer \(\pi\), and a regularization parameter \(\lambda \in [0, \infty]\). Common examples of loss functions are the least squares loss for regression and the exponential and logistic losses for classification; common examples of regularizers are the \(\ell_2^2\) (ridge) and \(\ell_1\) (Lasso) penalties. Our interest is in assessing and selecting amongst estimators fit via regularized empirical risk minimization (ERM):

\[\hat{\beta}(\lambda) \triangleq \begin{cases} \arg \min_{\beta} \ell(P_n, \beta) + \lambda \pi(\beta) & \lambda \in [0, \infty) \\ \arg \min_{\beta} \pi(\beta) & \lambda = \infty. \end{cases} \]

Here, \(P_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{z_i}\) is an empirical distribution over a given training set with datapoints \(z_1, \ldots, z_n \in \mathcal{X}\), and we overload notation to write \(\ell(\mu, \beta) \triangleq \int \ell(z, \beta) d\mu(z)\) and \(m(\mu, \beta, \lambda) \triangleq \ell(\mu, \beta) + \lambda \pi(\beta)\) for any measure \(\mu\) on \(\mathcal{X}\) under which \(\ell\) is integrable.

A standard tool for both model assessment and model selection is the leave-one-out cross-validation (CV) estimate of risk [Geisser, 1975, Stone, 1974]

\[\text{CV}(\lambda) = \frac{1}{n} \sum_{i=1}^n \ell(z_i, \hat{\beta}_{-i}(\lambda)) \]

which is based on the leave-one-out estimators

\[\hat{\beta}_{-i}(\lambda) = \arg \min_{\beta} \ell(P_{n,-i}, \beta) + \lambda \pi(\beta) \]

\[= \arg \min_{\beta} \frac{1}{n} \sum_{j \neq i} \ell(z_j, \beta) + \lambda \pi(\beta) \]

for \(P_{n,-i} \triangleq \frac{1}{n} \sum_{j \neq i} \delta_{z_j}\). Unfortunately, performing leave-one-out CV entails solving an often expensive optimization problem \(n\) times for every value of \(\lambda\) evaluated; this makes model selection with leave-one-out CV especially burdensome.

3 Approximating Cross-validation

To provide a faithful estimate of CV while reducing its computational cost, Beirami et al. [2017] (see also [Rad and Maleki, 2019]) considered the following approximate cross-validation (ACV) error

\[\text{ACV}(\lambda) \triangleq \frac{1}{n} \sum_{i=1}^n \ell(z_i, \hat{\beta}_{-i}(\lambda)) \]

based on the approximate leave-one-out CV estimators

\[\tilde{\beta}_{-i}(\lambda) = \hat{\beta}(\lambda) + \nabla^2 m(P_{n,-i}, \hat{\beta}(\lambda), \lambda)^{-1} \nabla \ell(z_i, \hat{\beta}(\lambda)) \] (3)

In effect, ACV replaces the task of solving a leave-one-out optimization problem (1) with taking a single Newton step (3) and realizes computational speed-ups when the former is more expensive than the latter. This approximation requires that the objective be everywhere twice-differentiable and therefore does not directly apply to non-smooth ERM problems such as the Lasso. We revisit this issue in Sec. 4.

3.1 Optimizer Comparison

Each ACV estimator (3) can also be viewed as the optimizer of a second-order Taylor approximation to the leave-one-out objective (1), expanded around the full training sample estimate \(\hat{\beta}(\lambda)\):

\[\hat{\beta}_{-i}(\lambda) = \arg \min_{\beta} \tilde{m}_2(P_{n,-i}, \hat{\beta}(\lambda); \beta) \] for

\[\tilde{m}_2(P_{n,-i}, \beta, \lambda; \hat{\beta}(\lambda)) \triangleq \sum_{k=0}^2 \nabla^k m(P_{n,-i}, \hat{\beta}(\lambda), \lambda)[\beta - \hat{\beta}(\lambda)]^{\otimes k}. \]

This motivates our optimization perspective on analyzing ACV. To understand how well ACV approximates CV we need only understand how well the optimizers of two related optimization problems approximate one another. As a result, the workhorse of our analysis is the following key lemma, proved in App. A, which controls the difference between the optimizers of similar objective functions. In essence, two optimizers are close if their objectives (or objective gradients) are close and at least one objective has a sharp—that is, not flat—minimum.
Lemma 1 (Optimizer comparison). Suppose $x_{φ_1} \in \text{argmin}_x φ_1(x)$ and $x_{φ_2} \in \text{argmin}_x φ_2(x)$. If each $φ_i$ admits an $ν_{φ_i}$ error bound (5), defined in Definition 1 below, then

$$
ν_{φ_1}(∥x_{φ_1} - x_{φ_2}∥_2) + ν_{φ_2}(∥x_{φ_2} - x_{φ_1}∥_2)
≤ ν_{φ_2}(x_{φ_1} - φ_1(x_{φ_1}) - φ_2(x_{φ_2})) + φ_1(x_{φ_1} - φ_2(x_{φ_2}))
$$

(4)

If $φ_2 - φ_1$ is differentiable and $φ_2$ has $ν_{φ_2}$ gradient growth (6), defined in Definition 1 below, then

$$
ν_{φ_2}(∥x_{φ_1} - x_{φ_2}∥_2) \leq (x_{φ_1} - x_{φ_2}, ∇(φ_2 - φ_1)(x_{φ_1})).
$$

This result relies on two standard ways of measuring the sharpness of objective function minima:

Definition 1 (Error bound and gradient growth). Consider the generalized inverse $ν(φ) ≜ \inf \{s : ω(φ) ≥ r\}$ of any non-decreasing function $ω$ with $ω(0) = 0$. We say a function $φ$ admits an $ν$ error bound [Bolte et al., 2017] if

$$
ν(∥x - x^∗∥_2) ≤ φ(x) - φ(x^∗)
$$

(5)

for $x^∗ = \text{argmin}_φ φ(x')$ and all $x \in \mathbb{R}^d$. We say a function $φ$ has $ν$ gradient growth [Nesterov, 2008] if $φ$ is subdifferentiable and

$$
ν(∥x - y∥_2) ≤ ∥y - x, u - v∥
$$

(6)

for all $x, y \in \mathbb{R}^d$ and all $u \in \partial φ(y), v \in \partial φ(x)$.

Notably, if $φ$ is $μ$-strongly convex, then $φ$ admits an $ν_{φ}(r) \lesssim B^2_{φ} r^2$ error bound and $ν_{φ}(r) \lesssim μ^2 r^2$ gradient growth, but even non-strongly-convex functions can satisfy quadratic error bounds [Karimi et al., 2016].

3.2 Model Assessment

We now present a deterministic, non-asymptotic approximation error result for ACV when used to approximate CV for a collection of models indexed by $λ \in Λ$. Importantly for the model selection results that follow, Thm. 2 shows that the ACV error is an $O(1/n^2)$ approximation to CV error uniformly in $λ$:

Theorem 2 (ACV-CV assessment error). If Assumps. 1 to 3 below hold for some $Λ ⊆ [0, ∞]$ and each $(s, r) \in \{(0, 3), (1, 3), (1, 4)\}$, then, for each $λ \in Λ$,

$$
|ACV(λ) - CV(λ)| \leq \frac{κ_2}{n^2} B^4_{φ} \frac{1}{c^m} + \frac{κ_3}{n} B^4_{φ} \frac{1}{c^m} + \frac{κ_2}{n^2} B^4_{φ} \frac{1}{c^m},
$$

for $κ_2 ≜ \sup_{λ > 0} \frac{C_{λ, λ, 1 + 1} + C_{λ, 1 + 1}}{p(λ + λ_2 + 1) ∥x_0∥_2}$ and $κ_3 ≜ \max\{\frac{C_{λ, λ, 1 + 1}}{p(λ + λ_2 + 1) ∥x_0∥_2}, \frac{C_{λ, 1 + 1}}{p(λ + λ_2 + 1) ∥x_0∥_2}\}$.

This result, proved in App. B, relies on the following three assumptions:

Assumption 1 (Curvature of objective). For some $c_t, c_2, c_m > 0$ and $λ < ∞$, all $i \in [n]$, and all $λ, λ' \in \Lambda$ in a given $Λ \subseteq [0, ∞]$,

$$
ν(λ) = c_m r^2 \text{gradient growth and, for } c_n, \lambda ≜ c + λ c_n [λ ≥ λ_n],
$$

$$
∇^2_λ m(π_{n,i}, λ, λ') \geq c_n \lambda I_d.
$$

Assumption 2 (Bounded moments of loss derivatives). For given $s, r \geq 0$ and $Λ \subseteq [0, ∞)$, $B^s_{s, r} ≤ ∞$ where

$$
B^s_{s, r} ≜ \sup_{λ \in Λ} \frac{1}{n} \sum_{i=1}^n \text{Lip}(∇_λ \ell(z_i, ·))^s ∥∇_λ \ell(z_i, \hat{β}(λ))∥_2^2.
$$

Assumption 3 (Lipschitz Hessian of objective). For a given $Λ \subseteq [0, ∞]$ and some $C_{t, λ}, C_{π, λ} < ∞$,

$$
\text{Lip}(∇^2_λ m(π_{n,i}, λ)) \leq C_{t, λ} + λ C_{π, λ}, \forall λ \in Λ, i \in [n].
$$

Assump. 1 ensures the leave-one-out objectives have curvature near their minima, while Assump. 2 bounds the average discrepancy between the full-data and leave-one-out objectives. Together, Assumps. 1 and 2 ensure that the leave-one-out estimates $β_λ(λ)$ are not too far from the full-data estimate $β_λ(λ)$ on average. Meanwhile, Assump. 3 ensures that the leave-one-out objective is well-approximated by its second-order Taylor expansion and hence that the ACV estimates $β_λ(λ)$ are close to the CV estimates $β_λ(λ)$.

Thm. 2 most resembles the (fixed dimension) results obtained by Rad and Maleki [2019, Sec. A.9], who show $|ACV(λ) - CV(λ)| = o_p(1/n)$ under i.i.d. sampling of the datapoints z_i, mild regularity conditions, and the convergence assumptions $β(λ) \overset{P}{→} β^*(λ)$ and $β_λ(λ) \overset{P}{→} β^*(λ)$ for some deterministic $β^*(λ)$. Notably, their guarantees target only the linear prediction setting where $ℓ(z_i, β) = φ(y_i, (x_i, β))$, and the dependence of the constants in their bound on $λ$ is not discussed.

For each $λ$, Beirami et al. [2017, Thm. 1] provide an asymptotic, probabilistic analysis of the ACV estimators (3) under an assumption that $\hat{β}(λ) \overset{P}{→} β^*(λ)$ in interior(Θ) where Θ is compact. Specifically, for each value of $λ$, they guarantee that $∥\hat{β}_λ(λ) - β_λ(λ)∥ = O_p(C_λ/n^2)$ for a constant $C_λ$ depending on $λ$ in a way that is not discussed. Our Thm. 2 is a consequence of the following similar bound on the estimators employed by cross-validation (1) and approximate cross-validation (3) (see Thm. 14 in App. B):

$$
∥\hat{β}_λ(λ) - β_λ(λ)∥_2 \leq \frac{κ_2}{c^m n^2} ∥∇_λ \ell(z_i, \hat{β}(λ))∥_2^2.
$$

In comparison to both [Rad and Maleki, 2019] and [Beirami et al., 2017], our results are non-asymptotic, deterministic, and uniform in $λ$. They provide a more precise convergence rate than [Rad and Maleki, 2019, Sec. A.9], hold outside of the linear prediction setting, and require no compactness assumptions on the domain of $β$.

While [Beirami et al., 2017, Rad and Maleki, 2019] assume both a strongly convex objective and a bounded
parameter space, our analysis shows that a separate boundedness assumption on the parameter space is unnecessary; strong convexity alone ensures that $\hat{\beta}(\lambda)$ is uniformly bounded in λ even when the objective and its gradients are unbounded in β. Subsequently, our results apply both to strictly convex objectives (like unregularized logistic regression) when restricted to a compact set and to strongly convex objectives (like ridge-regularized logistic regression) without any domain restrictions.

Moreover, the assumptions underlying Thm. 2 and the other results in this work hold under standard, easily verified conditions on the objective:

Proposition 3 (Sufficient conditions for assumptions).

1. Assump. 3 holds for $\Lambda \subseteq [0, \infty]$ with $C_{\tau,3} = \text{Lip}(\nabla^2 \pi)$ and $C_{\tau,3} = \max_{e \in [n]} \text{Lip}(\nabla^2 \ell(P_{n,-i} \cdot))$.

2. If π admits an error bound (5) with increasing ν_π, and ℓ is nonnegative, then $\hat{\beta}(\lambda) \to \bar{\beta}(\infty)$ as $\lambda \to \infty$. (7)

3. Assump. 1 holds for $\Lambda \subseteq [0, \infty]$ if $m(P_{n,-i} \cdot, \lambda)$ is c_m-strongly convex $\forall \lambda \in \Lambda$ and $i \in [n]$, π is strongly convex on a neighborhood of $\bar{\beta}(\infty)$, and (7) holds.

4. Assump. 2 holds for $\Lambda \subseteq [0, \infty]$ and (s,r) with $B_{s,r}^\lambda \leq \frac{1}{n} \sum_{i=1}^n L_i'(|\nabla \beta \ell(z_i, \hat{\beta}(\infty))|) + \frac{n-1}{n} \frac{L}{c_m} (\text{Lip}(P_{n,-i} \cdot, \lambda)) (\text{Lip}(\nabla \beta \ell(z_i, \hat{\beta}(\infty)))^2)$ if $m(P_{n,-i} \cdot, \lambda)$ is c_m-strongly convex and $L_i \approx \text{Lip}(\nabla \beta \ell(z_i, \cdot)) < \infty$ for each $\lambda \in \Lambda$ and $i \in [n]$.

While this result, proved in Prop. C, is a deterministic statement, it has an immediate probabilistic corollary: if the datapoints z_1, \ldots, z_n are i.i.d. draws from a distribution \mathbb{P}, then, under the conditions of Prop. 3,

$$C_{\tau,3} \leq 3E_{Z \sim \mathbb{P}}[\text{Lip}(\nabla^2 \ell(Z, \cdot))^4]^{1/4}$$

and

$$B_{s,r}^\lambda \leq 2E_{Z \sim \mathbb{P}}[\text{Lip}(\nabla \beta \ell(Z, \cdot))^2]^{2} (\text{Lip}(\nabla \beta \ell(Z, \hat{\beta}(\infty)))^2) + \frac{L}{c_m} \text{Lip}(\nabla \beta \ell(Z, \cdot)) (\text{Lip}(\nabla \beta \ell(Z, \hat{\beta}(\infty)))^2)^{2r})^{1/2}$$

with high probability by Markov’s inequality. (2)

3.3 Infinitesimal Jackknife

Giordano et al. [2019b] (see also Debruyne et al., 2008, Liu et al., 2014) recently studied a second approximation to leave-one-out cross-validation,

$$\text{ACV}^{(3)}(\lambda) \triangleq \frac{1}{n} \sum_{i=1}^n \ell(z_i, \hat{\beta}^{(3)}(\lambda)),$$ (8)

based on the infinitesimal jackknife (IJ) [Efron, 1982, Jaeckel, 1972] estimate

$$\hat{\beta}^{(3)}(\lambda) \triangleq \hat{\beta}(\lambda) + \nabla^2 \pi m(P_{n,-i} \cdot, \hat{\beta}(\lambda))^{-1} \sum_{i=1}^n \ell(z_i, \hat{\beta}(\lambda)) / n,$$ (9)

where $\hat{\beta}(\infty) = \text{argmin}_{\beta} \pi(\beta)$ is data-independent.

A potential computational advantage of $\text{ACV}^{(3)}$ over ACV is that $\text{ACV}^{(3)}$ requires only a single Hessian inversion, while ACV performs n Hessian inversions. (3)

The following theorem, proved in App. D, shows that, under conditions similar to those of Thm. 2, ACV and $\text{ACV}^{(3)}$ are nearly the same.

Theorem 4 ($\text{ACV}^{(3)}$-ACV assessment error). If Assumps. 1 and 2 hold for some $\Lambda \subseteq [0, \infty]$ and each $(s,r) \in \{(1,2), (2,2), (3,2)\}$, then, for each $\lambda \in \Lambda$,

$$|\text{ACV}^{(3)}(\lambda) - \text{ACV}(\lambda)| \leq \frac{B_{s,r}^1}{c_{\lambda,2} n^2} + \frac{B_{s,r}^2}{2c_{\lambda,2} n^2}.$$

Thm. 4 ensures that all of the assessment and selection guarantees for ACV in this work also extend to $\text{ACV}^{(3)}$. In particular, Thms. 2 and 4 together imply $\sup_{\lambda \in \Lambda} |\text{ACV}^{(3)}(\lambda) - \text{CV}(\lambda)| = O(1/n^2)$. A similar $\text{ACV}^{(3)}$-CV comparison could be derived from the general infinitesimal jackknife analysis of Giordano et al. [2019b, Cor. 1], which gives $\|\hat{\beta}(\lambda) - \beta(\lambda)\|_2 \leq C_\lambda / n^2$. However, the constant C_λ in Giordano et al., 2019b, Cor. 1 is unbounded in λ for non-convex regularizers. Our results only demand curvature from π in the neighborhood of its minimizer and thereby establish $\sup_{\lambda \in \Lambda} |\text{ACV}^{(3)}(\lambda) - \text{CV}(\lambda)| = O(1/n^2)$ even for robust, non-convex strong regularizers like the pseudo-Huber penalty [Hartley and Zisserman, 2004, Sec. A6.8], $\pi_\delta(\beta) = \sum_{p=1}^\infty \delta^2 (\sqrt{1 + (\beta/p)^2} - 1)$. In addition, our analyses avoid the compact domain assumption of Giordano et al., 2019b, Cor. 1.

3.4 Higher-order Approximations to CV

The optimization perspective adopted in this paper naturally points towards generalizations of the estimators (3) and (9). In particular, stronger assessment guarantees can be provided for regularized higher-order Taylor approximations of the objective function. For example, for the regularized p-th order approximation,

$$\text{ACV}_p(\lambda) \triangleq \frac{1}{n} \sum_{i=1}^n \ell(z_i, \hat{\beta}_{\text{RHO}}(\lambda))$$

with $\hat{\beta}_{\text{RHO}}(\lambda) \triangleq \hat{\beta}(\lambda) + \hat{\beta}_{\text{RHO}}(\lambda)$ and

$$\text{ACV}_p(\lambda) \triangleq \frac{1}{n} \sum_{i=1}^n \ell(z_i, \hat{\beta}_{\text{RHO}}(\lambda))$$

with

$$\hat{\beta}_{\text{RHO}}(\lambda) \triangleq \argmin_{\beta} \hat{\beta}(\lambda) + \frac{\text{Lip}(\nabla \beta \ell(P_{n,-i} \cdot, \lambda, \beta))}{p+1} \lambda^p,$$

where $\hat{\beta}_{\text{RHO}}(\lambda) \triangleq \argmin_{\beta} \hat{\beta}(\lambda) + \frac{\text{Lip}(\nabla \beta \ell(P_{n,-i} \cdot, \lambda, \beta))}{p+1} \lambda^p,$

we obtain the following improved assessment guarantee, proved in App. B.

Theorem 5 (ACV_p-CV assessment error). If Assumps. 1b, 2, and 3b hold for some $\Lambda \subseteq [0, \infty]$ and

3Note however that for many losses the Hessians of (3) and (9) differ only by a rank-one update so that all n Hessians can be inverted in time comparable to inverting 1.
each \((s, r) \in \{(0, p + 1), (1, p + 1), (1, 2p)\}\), then, for \(\kappa_p\) defined in Thm. 2

\[
|\text{ACV}_p(\lambda) - \text{CV}(\lambda)| \leq \frac{2\kappa_p}{n^2} \left(B_{11}^{(p)} c_{x, X} + B_{12}^{(p)} + \frac{p_\beta B_{12}^{(p)} n}{n^2 c_{x, X}} \right).
\]

This result relies on the following curvature and smoothness assumptions, which replace Assumps. 1 and 3.

Assumption 1b (Curvature of objective). For some \(c_{x, X} > 0\) and \(\lambda_\infty < \infty\), all \(i \in [n]\), and all \(\lambda\) in a given \(\Lambda \subseteq [0, \infty]\), \(m(P_{n, i, \cdot})\) has \(\nu_m(r) = c_{\lambda, \lambda^2} r^2\) gradient growth for \(c_{x, X} \triangleq c_{x, X} + \lambda \|\lambda \geq \lambda_\infty\).

Assumption 3b (Lipschitz \(p\)-th derivative). For some \(C_{x, p+1}, C_{\lambda, p+1} < \infty\), a given \(\Lambda \subseteq [0, \infty]\), and \(\forall i \in [n]\)

\[
\text{Lip}(\nabla^p_{\beta} m(P_{n, i, \cdot}) \lambda) \leq C_{x, p+1} + C_{\lambda, p+1}, \quad \forall \lambda \in \Lambda.
\]

Unregularized higher-order IJ approximations to CV were considered in [Debruyne et al., 2008, Liu et al., 2014] and recently analyzed by [Giordano et al., 2019a].

A result similar to Thm. 5 could be derived from [Giordano et al., 2019a, Thm. 1], which controls the approximation error of an unregularized IJ version of \(\beta_{\text{RHO}}(\lambda)\), but that work additionally assumes bounded lower-order derivatives. More generally, the framework in App. B provides assessment results for objectives that satisfy weaker curvature conditions than Assump. 1.

3.5 Model Selection

Often, CV is used not only to assess a model but also to select a high-quality model for subsequent use. The technique requires training a model with many different values of \(\lambda\) and selecting the one with the lowest CV error. If ACV is to be used in its stead, we would like to guarantee that the model selected by ACV has test error comparable to that selected by CV.

When CV and ACV are uniformly close (as in Thm. 2), we know that any minimizer of CV nearly minimizes ACV as well, so it suffices to show that all near minimizers of CV have comparable test error. However, this task is made difficult by the potential multimodality of ACV and CV. As we see in Fig. 1a, even for a benign objective function like the ridge regression objective with quadratic error loss and quadratic penalty, ACV and CV can have multiple minimizers. Interestingly, our next result, proved in App. F, shows that any near minimizers of ACV must produce estimators that are \(O(1/\sqrt{n})\) close.

Theorem 6 (ACV-CV selection error). If Assumps. 1 to 3 hold for \(\Lambda \subseteq [0, \infty]\) and each \((s, r) \in \{(0, 3), (1, 2), (1, 3), (1, 4)\}\), then \(\forall \lambda, \lambda' \in \Lambda\) with \(\lambda' < \lambda\),

\[
\|\hat{\lambda}(\lambda) - \hat{\lambda}(\lambda')\|_2 \leq \frac{\Delta \text{ACV}}{c_{r, X}} \left(+ \frac{B_{11}^{(p)}}{c_{x, X}} + \frac{B_{12}^{(p)}}{n c_{x, X}}\right) \text{ and}
\]

\[
\|\hat{\lambda}(\text{ACV}) - \hat{\lambda}(\text{CV})\|_2 \leq \frac{\Delta \text{ACV}}{c_{r, X}} \left(+ \frac{A' c_{x, X} + B_{12}^{(p)}}{4 c_{x, X} n^2}\right)
\]

for \(\Delta \text{ACV} \triangleq \text{ACV}(\lambda) - \text{ACV}(\lambda')\), \(\lambda_{\text{ACV}} \in \text{argmin}_{\lambda \in \Lambda} \text{ACV}(\lambda), \lambda_{\text{CV}} \in \text{argmin}_{\lambda \in \Lambda} \text{CV}(\lambda), A' = 2(\kappa_2 B_{11}^{(p)} + B_{12}^{(p)} + B_{13}^{(p)} + B_{14}^{(p)}), \) and \(\kappa_p\) defined in Thm. 2.

In fact, Thm. 7, proved in App. F, implies the bound

\[
\|\hat{\lambda}(\lambda) - \hat{\lambda}(\lambda')\|_2 = O(\max(1/n, \sqrt{\Delta \text{ACV}})),
\]

for any values of \(\lambda'\) and \(\lambda'\), even if they are not near-minimizers of ACV. This result relies on the following additional assumption on the Hessian of the objective, which along with the identifiability condition \(\|\nabla \pi(\hat{\beta}(0))\|_2 > 0\) and the curvature of the loss, ensures that two penalty parameters \((\lambda, \lambda')\) are close whenever their estimators \((\hat{\lambda}(\lambda), \hat{\lambda}(\lambda'))\) are close.

Assumption 4 (Bounded Hessian of objective). For a given \(\Lambda \subseteq [0, \infty]\) and some \(C_{x, 2}, C_{\lambda, 2} < \infty\)

\[
\nabla^2 \pi(m(P_{n, \beta, \lambda}) \lesssim (C_{x, 2} + \lambda C_{\lambda, 2}) I_d, \quad \forall \lambda \in \Lambda, \beta \in \mathbb{R}^d.
\]
Thm. 7 further ensures that the models selected by CV and ACV have estimators within $O(1/n)$ of one another. Importantly, this approximation error is often negligible compared to the typical $O(1/\sqrt{n})$ statistical estimation error of regularized ERM.

3.6 Failure Modes

One might hope that our ACV results extend to objectives that do not meet all of our assumptions, such as the Lasso. For instance, by leveraging the extended definition of an influence function for non-smooth regularized empirical risk minimizers [Avella-Medina et al., 2017], we may define a non-smooth extension of ACVLJ that accommodates objectives with undefined Hessians. In the case of squared error loss with an ℓ_1 penalty, $m(\mathbb{P}, n, \beta, \lambda) = \frac{1}{n} \sum_{i=1}^{n} ||\beta - z_i||_2^2 + \lambda ||\beta||_1$, this amounts to using $\beta_2^J(\lambda) \not\equiv \beta(\lambda) - \frac{1}{\lambda} \nabla \beta_1(\lambda)$, if $\lambda^* = 0 (z_j - \hat{\beta}(\lambda)_{ij})_i^n$ in the definition (8) of ACVLJ. Analogous Lasso extensions of ACV and ACVLJ have been proposed and studied by [Obuchi and Kabashima, 2016, 2018, Rad and Maleki, 2019, Stephenson and Broderick, 2017, 2019, Wang et al., 2018]. However, as the following example proved in App. G demonstrates, these extensions do not satisfy the strong uniform assessment and selection guarantees of the prior sections.

Proposition 8. Suppose $\ell(z, \beta) = \frac{1}{2} (\beta - z)^2$ and $\pi(\beta) = ||\beta||_1$. Consider a dataset with $n/4$ datapoints taking each of the values in $\{\bar{z} - a, \bar{z} - b, \bar{z} + b, \bar{z} + a\}$ for $\bar{z} = \sqrt{2/n}$ and $a, b > 0$ satisfying $a^2 + b^2 = 2$ and $a + b = 2\sqrt{2/\pi}$. Then $\lambda = \bar{z}$ minimizes ACVLJ and ACVLJ(z) - CV(z) = \frac{n}{4(a^2 + b^2)} (1 - \frac{4}{\sqrt{n\pi}} + \frac{2}{\pi^2}).$

The example in Prop. 8 was constructed to have the same relevant moments as the normal distribution with variance 1 and mean $\sqrt{2/n}$. Notably this $O(1/n)$ assessment error occurs even in the simplest case of $d = 1$: higher-dimensional counterexamples are obtained straightforwardly by creating copies of this example for each dimension. The example demonstrates a failure of deterministic uniform assessment for the Lasso extension of ACVLJ, and similar counterexamples can be constructed for penalties with well-defined (but non-smooth) second derivatives, like the patched Lasso penalty $\pi(\beta) = \sum_j \min(||\beta_j||, \frac{\lambda^2}{2} + \frac{\beta^2}{2\pi})$, for which the standard ACVLJ is well-defined.

Proposition 9. Suppose $\ell(z, \beta) = \frac{1}{2} (\beta - z)^2$ and $\pi(\beta) = \min(||\beta||, \frac{\lambda^2}{2} + \frac{\beta^2}{2\pi})$. Consider a dataset with $n/4$ datapoints taking each of the values in $\{\bar{z} - a, \bar{z} - b, \bar{z} + b, \bar{z} + a\}$, where $\bar{z} = \sqrt{\frac{2}{n}}$ and $a, b > 0$ satisfy $a^2 + b^2 = 1$ and $a + b = 2\sqrt{2/\pi}$. Then ACVLJ(\delta) - CV(\delta) = \frac{\sqrt{2/\pi}}{n} \cdot \frac{1}{n} + o(\frac{1}{n}).$

The proof of Prop. 9 is contained in App. H. In the following section we propose a modification of ACV that addresses these problems.

4 Proximal ACV

Many objective functions involve non-smooth regularizers that violate the assumptions of the preceding section. Common examples are the ℓ_1-regularizer $\pi = ||\cdot||_1$, often used to engender sparsity for high-dimensional problems, and the elastic net [add me], SLOPE [Bogdan et al., 2013], and nuclear norm [Fazel et al., 2001] penalties. To accommodate non-smooth regularization when approximating CV, several works have proposed either approximating the penalty with a smoothed version [Liu et al., 2018, Rad and Maleki, 2019, Wang et al., 2018] or, for an ℓ_1 penalty, restricting the approximating CV techniques to the support of the full-data estimator [Obuchi and Kabashima, 2016, 2018, Stephenson and Broderick, 2019] as in Sec. 3.6. Experimental evidence with the ℓ_1 penalty suggests these techniques perform well when the support remains consistent across all leave-one-out estimators but can fail otherwise (see [Stephenson and Broderick, 2019, App. D] for an example of failure).

To address the potential inaccuracy of standard ACV when coupled with non-smooth regularizers, we recommend use of the proximal operator,

$$\text{prox}_H^\ell(v) \triangleq \arg\min_{\beta \in \mathbb{R}^d} \frac{1}{2} ||v - \beta||_H^2 + f(\beta),$$

(11) defined for any positive semidefinite matrix H and function f. Specifically, we propose the following proximal approximate CV error

$$\text{ProxACV}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \ell(z_i, \hat{\beta}_{\text{prox}}^\ell(\lambda))$$

(12) based on the approximate leave-one-out estimators,

$$\hat{\beta}_{\text{prox}}^\ell(i) = \text{prox}_{H_{\ell,i}}^\ell(\hat{\beta}(\lambda) - H_{\ell,i}^{-1} g_{\ell,i})$$

(13) $\triangleq \arg\min_{\beta \in \mathbb{R}^d} \frac{1}{2} ||\hat{\beta}(\lambda) - \beta||_{H_{\ell,i}}^2 + \beta^T g_{\ell,i} + \lambda(\beta)$$

with $H_{\ell,i} = \nabla^2 \ell(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda))$ and $g_{\ell,i} = \nabla \ell(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda))$. This estimator optimizes a second-order Taylor expansion of the loss about $\hat{\beta}(\lambda)$ plus the exact regularizer. For many standard objectives, the estimator (13) can be computed significantly more quickly than the exact leave-one-out estimator. Indeed, state-of-the-art solvers like glmnet [Friedman et al., 2010] for ℓ_1-penalized generalized linear models and QUIC [Hsieh et al., 2014] for sparse covariance matrix estimation use a sequence of proximal Newton steps like (13) to optimize their non-smooth objectives. Using ProxACV instead entails running these methods for only a single step instead of running them to convergence. In Sec. 5, we give an example of the speed-ups obtainable with this approach.
4.1 Model Assessment

A chief advantage of ProxACV is that it is $O(1/n^2)$ close to CV uniformly in λ even when the regularizer π lacks the smoothness or curvature previously assumed in Assumps. 1 and 3:

Theorem 10 (ProxACV-CV assessment error). If Assumps. 1c, 2, and 3c hold for $\Lambda \subseteq [0, \infty]$ with $0 \in \Lambda$ and each $(s, r) \in \{(0, 3), (1, 3), (1, 4), \}$, then $\forall \lambda \in \Lambda$,

$$\|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2^2 \leq \frac{2}{n \bar{c}_m} \left(\frac{4B_m^s}{\bar{c}_m^2} + \frac{B_m^s}{\bar{c}_m} + \lambda \frac{2}{\bar{c}_m} \Delta_{\text{ProxACV}} \right)$$

and

$$\|\hat{\beta}(\lambda_{\text{ACV}}) - \hat{\beta}(\lambda_{\text{CV}})\|_2^2 \leq \frac{2}{n \bar{c}_m} \left(\frac{4B_m^s}{\bar{c}_m^2} + \frac{B_m^s}{\bar{c}_m} + \Delta_{\text{ACV}} \right)$$

for $\lambda_{\text{CV}} \in \text{argmin}_{\lambda \in \Lambda} CV(\lambda)$, $\lambda_{\text{ACV}} \in \text{argmin}_{\lambda \in \Lambda} ACV(\lambda)$, and $\Delta_{\text{ProxACV}} \leq \frac{C_{\ell, 3}}{n^2} + \frac{B_m^s}{\bar{c}_m} + \frac{C_{\ell, 3}^s}{n^2 \bar{c}_m} + C_{\ell, 3}^s \frac{B_m^s}{\bar{c}_m^2}$.

This result, proved in App. I, relies on the following modifications of Assumps. 1 and 3:

Assumption 1c (Curvature of objective). For $c_m > 0$, all $i \in [n]$, and all λ in a given $\Lambda \subseteq [0, \infty]$, $m(P_{n, \lambda}, \lambda)$ has $\nu_m(r) = c_m r^2$ gradient growth, and π is convex.

Assumption 3c (Lipschitz Hessian of loss). For all $i \in [n]$, $\text{Lip}(\nabla^2_{\beta}(P_{n, \lambda}, \cdot)) \leq C_{\ell, 3} < \infty$.

Hence, ProxACV provides a faithful estimate of CV for the non-smooth Lasso, elastic net, SLOPE, and nuclear norm penalties whenever a strongly convex loss with Lipschitz Hessian is used.

4.1.1 Infinitesimal Jackknife

We also propose the following approximation to CV,

$$\text{ProxACV}^{\ell_1}(\lambda) = \frac{1}{n} \sum_{i=1}^n \ell(z_i, \beta^{\text{proxACV}}_{\ell_1}(\lambda)),$$

based on the infinitesimal jackknife-based estimators

$$\hat{\beta}^{\text{proxACV}}_{\ell_1}(\lambda) \triangleq \text{proxACV}_{\ell_1}(\lambda) - H_x^{-1} 1 \beta_{\ell_1}(\lambda)$$

with $H_x = \nabla^2_{\beta}(P_{n, \lambda}, \beta(\lambda))$. This approximation is sometimes computationally cheaper than (12) as the same Hessian is used for every estimator. The following result, proved in App. J, shows that ProxACV and ProxACV$^{\ell_1}$ are close under our usual assumptions.

Theorem 11 (ProxACV$^{\ell_1}$-ProxACV assessment error). If Assumps. 1c and 2 hold for $\Lambda \subseteq [0, \infty]$ and each $(s, r) \in \{(1, 2), (2, 2), (3, 2)\}$, then for each $\lambda \in \Lambda$,

$$\|\text{ProxACV}(\lambda) - \text{ProxACV}^{\ell_1}(\lambda)\|_2 \leq \frac{1}{n \bar{c}_m} B_m^s + \frac{1}{2n \bar{c}_m} B_m^s + \frac{1}{n \bar{c}_m} B_m^s.$$

Thms. 10 and 11 imply that $|\text{ProxACV}^{\ell_1}(\lambda) - CV(\lambda)| = O(1/n^2)$ for any $\lambda \in \Lambda$, and subsequently, all assessment and selection guarantees for ProxACV in this paper also extend to ProxACV$^{\ell_1}$.

4.2 Model Selection

The following theorem, proved in App. K, establishes a model selection guarantee for ProxACV.

Theorem 12 (ProxACV-CV selection error). If Assumps. 1c, 2, and 3c hold for $\Lambda \subseteq [0, \infty]$ and each $(s, r) \in \{(0, 3), (1, 2), (1, 3), (1, 4)\}$, then $\forall \lambda \in \Lambda$,

$$\|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2^2 \leq \frac{2}{n \bar{c}_m} \left(\frac{4B_m^s}{\bar{c}_m^2} + \frac{B_m^s}{\bar{c}_m} + \Delta_{\text{ProxACV}} \right)$$

and

$$\|\hat{\beta}(\lambda_{\text{ACV}}) - \hat{\beta}(\lambda_{\text{CV}})\|_2^2 \leq \frac{2}{n \bar{c}_m} \left(\frac{4B_m^s}{\bar{c}_m^2} + \frac{B_m^s}{\bar{c}_m} + \Delta_{\text{ACV}} \right)$$

for $\lambda_{\text{CV}} \in \text{argmin}_{\lambda \in \Lambda} CV(\lambda)$, $\lambda_{\text{ACV}} \in \text{argmin}_{\lambda \in \Lambda} ACV(\lambda)$, and $\Delta_{\text{ProxACV}} \leq \frac{C_{\ell, 3}}{n^2} + \frac{B_m^s}{\bar{c}_m} + \frac{C_{\ell, 3}^s}{n^2 \bar{c}_m} + C_{\ell, 3}^s \frac{B_m^s}{\bar{c}_m^2}$.

Notably and unlike the ACV selection results of Thms. 6 and 7, Thm. 12 demands no curvature or smoothness from the regularizer. Moreover, for ℓ_1-penalized problems, the $O(1/\sqrt{n})$ error bound is tight as the following example illustrates.

Proposition 13. Suppose $\ell(z, \beta) = \frac{1}{2}(\beta - z)^2$ and $\pi(\beta) = |\beta|$. Consider a dataset evenly split between the values $a = \sqrt{2}$ and $b = 2\sqrt{2n} - \sqrt{2}$ for $n \geq 4$. Then $\tilde{z} = \frac{1}{n} \sum_{i=1}^n z_i = \sqrt{2}/n$, and $\text{ProxACV}(0) - \text{ProxACV}(\tilde{z}) = \frac{\tilde{z} - 0}{\sqrt{2}/n}$, but $\hat{\beta}(0) - \hat{\beta}(\tilde{z}) = \tilde{z} = 0 = \sqrt{2}/n$.

The proof of this proposition is contained in App. L. At the heart of this counterexample is multimodality, which can occur for ℓ_1 penalized objectives, the modes of ACV and ProxACV can be $O(1/\sqrt{n})$ apart. While the proof prevents us from obtaining an $O(1/n)$ deterministic model selection bound for ProxACV in the worst case, it is possible that Thm. 12 can be generically strengthened (as in Thm. 7) when the maximizers of the loss and regularizer are sufficiently separated. In addition, the possibility of a strong probabilistic model selection bound is not precluded.

5 Experiments

We present two sets of experiments to illustrate the value of the newly proposed ProxACV procedure. The first compares the assessment quality of ProxACV and prior non-smooth ACV proposals. The second compares the speed of ProxACV to exact CV. See https://github.com/aswilson07/approximateCV for code reproducing all experiments.

5.1 ProxACV versus ACV and ACV$^{\ell_1}$

To compare ProxACV with prior non-smooth extensions of ACV and ACV$^{\ell_1}$, we adopt the code and the ℓ_1-regularized logistic regression experimental setup of Stephenson and Broderick [2019, App. F]. We use the $\beta \in \mathbb{R}^{151}$ setting, changing only the number of datapoints to $n = 150$ (see App. M for more details). For two ranges of λ values, we compare exact CV with...
the approximations provided by \texttt{ProxACV} (13) and the prior non-smooth extensions of \texttt{ACV} and \texttt{ACV}^{IJ} discussed in Sec. 3.6 and detailed in App. M. Fig. 2 (top) shows that for sufficiently large λ all three approximations closely match \texttt{CV}. However, as noted in [Stephenson and Broderick, 2019, App.F], the non-smooth extension of \texttt{ACV}^{IJ} provides an extremely poor approximation leading to grossly incorrect model selection as λ decreases. Moreover, the approximation provided by the non-smooth extension of \texttt{ACV} also deteriorates as λ decreases; this is especially evident in the small λ range of Fig. 2 (bottom), where the relative error of the \texttt{ACV} approximation exceeds 100%. Meanwhile, \texttt{ProxACV} provides a significantly more faithful approximation of \texttt{CV} across the range of large and small λ values.

![Figure 2: ProxACV vs. ACV and ACV^{IJ}: Fidelity of non-smooth CV approximations in the ℓ_1-regularized logistic regression setup of Sec. 5.1.](image)

5.2 ProxACV Speed-up

We next benchmark the speed-up of \texttt{ProxACV} over \texttt{CV} on the task of sparse inverse covariance estimation. Using three biological data sets preprocessed by Li and Toh [2010]: Arabidopsis ($p = 834$, $n = 118$), Leukemia ($p = 1,225$, $n = 72$), and Lymph ($p = 587$, $n = 148$). We employ the standard graphical Lasso objective for matrices $\beta \in \mathbb{R}^{p \times p}$ (see App. M for details) and compute our \texttt{CV} and full-data estimators using the released Matlab implementation of the state-of-the-art graphical Lasso solver, QUIC [Hsieh et al., 2014]. Since QUIC optimizes $m(\mathbb{P}_{\alpha,-,}^{\beta,},\lambda)$ using a proximal Newton algorithm, we compute our proximal ACV estimators by running QUIC for a single proximal Newton step instead of running it to convergence. We follow the exact experimental setup of [Hsieh et al., 2014, Fig. 2] which employs a penalty of $\lambda = 0.5$ for all datasets. The timing for each leave-one-out iteration of \texttt{CV} and \texttt{ProxACV} was computed using a single core on a 2.10 GHz Intel Xeon E5-4650 CPU. In Fig. 3, we display the average relative error, $1 - \text{ProxACV}(\lambda)/\text{CV}(\lambda)$, and running time ($\pm 1$ standard deviation) over 10 independent runs. We see that \texttt{ProxACV} delivers 14-27-fold average speed-ups over \texttt{CV} with relative errors below 0.02 in each case.

![Figure 3: ProxACV vs. CV: Speed-up and relative error of ProxACV over exact CV on three biological datasets using QUIC sparse inverse covariance estimation (see Sec. 5.2). ProxACV provides a faithful estimate of CV with significant computational gains.](image)

\textbf{Importance of curvature} Thm. 10 relies on the curvature c_m of the objective, and, in general, such a curvature assumption is necessary for \texttt{ProxACV} to provide a faithful approximation. The graphical Lasso objective is strictly but not strongly convex, but the default λ choice of [Hsieh et al., 2014] effectively limits the domain of m to a compact set with a sizable curvature. However, as λ decreases, the effective domain of m grows, and the curvature decays leading to a worse approximation. For example, when $\lambda = 0.25$ on the Arabidopsis dataset, we obtain a 97.43-fold average speed-up but with 0.137 mean relative error.

\textbf{Acknowledgments} We thank Kim-Chuan Toh, Matyas Sustik, and Cho-Jui Hsieh for sharing their covariance estimation data
and Will Stephenson for sharing his approximate cross-validation code. We also thank the anonymous reviewers for their role in improving this manuscript. Special thanks to Gary Chamberlain who inspired this project.

References

A. Airola, T. Pahikkala, W. Waegeman, B. D. Baets, and T. Salakoski. A comparison of auc estimators in small-sample studies. In S. Dzeroski, P. Guerts, and J. Rousu, editors, Proceedings of the third International Workshop on Machine Learning in Systems Biology, volume 8 of Proceedings of Machine Learning Research, pages 3–13, Ljubljana, Slovenia, 05–06 Sep 2009. PMLR. URL http://proceedings.mlr.press/v8/airola10a.html.

A. Airola, T. Pahikkala, W. Waegeman, B. D. Baets, and T. Salakoski. An experimental comparison of cross-validation techniques for estimating the area under the roc curve. Computational Statistics & Data Analysis, 55(4):1828 – 1844, 2011. ISSN 0167-9473. doi: https://doi.org/10.1016/j.csda.2010.11.018. URL http://www.sciencedirect.com/science/article/pii/S0167947310004469.

M. Avella-Medina et al. Influence functions for penalized m-estimators. Bernoulli, 23(4B):3178–3196, 2017.

A. Beirami, M. Razaviyayn, S. Shahrampour, and V. Tarokh. On optimal generalizability in parametric learning. In Advances in Neural Information Processing Systems, pages 3455–3465, 2017.

M. Bogdan, E. v. d. Berg, W. Su, and E. Candes. Statistical estimation and testing via the sorted l1 norm. arXiv preprint arXiv:1310.1969, 2013.

J. Bolte, T.-P. Nguyen, J. Peypouquet, and B. W. Suter. From error bounds to the complexity of first-order descent methods for convex functions. Mathematical Programming, 165(2):471507, 2017.

M. Debruyne, M. Hubert, and J. A. Suykens. Model selection in kernel based regression using the influence function. Journal of Machine Learning Research, 9 (Oct):2377–2400, 2008.

B. Efron. The jackknife, the bootstrap, and other resampling plans, volume 38. Siam, 1982.

M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum order system approximation. In Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148), volume 6, pages 4734–4739. IEEE, 2001.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL http://www.jstatsoft.org/v33/i01/.

S. Geisser. The predictive sample reuse method with applications. Journal of the American statistical Association, 70(350):320–328, 1975.

R. Giordano, M. I. Jordan, and T. Broderick. A higher-order swiss army infinitesimal jackknife. arXiv preprint arXiv:1907.12116, 2019a.

R. Giordano, W. Stephenson, R. Liu, M. Jordan, and T. Broderick. A swiss army infinitesimal jackknife. In K. Chaudhuri and M. Sugiyama, editors, Proceedings of Machine Learning Research, volume 89 of Proceedings of Machine Learning Research, pages 1139–1147, 16–18 Apr 2019b.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edition, 2004.

C. Hsieh, M. Sustik, I. Dhillon, and P. Ravikumar. Quic: Quadratic approximation for sparse inverse covariance estimation. Journal of Machine Learning Research, 15:2911–2947, 10 2014. ISSN 1532-4435.

J. Jaeckel. The infinitesimal jackknife, memorandum. Technical report, MM 72-1215-11, Bell Lab. Murray Hill, NJ, 1972.

H. Karimi, J. Nutini, and M. W. Schmidt. Linear convergence of gradient and proximal-gradient methods under the Polyak-Lojasiewicz condition. In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I, pages 795–811, 2016.

J. D. Lee, Y. Sun, and M. A. Saunders. Proximal newton-type methods for minimizing composite functions. SIAM Journal on Optimization, 24(3):1420–1443, 2014.

L. Li and K.-C. Toh. An inexact interior point method for l1-regularized sparse covariance selection. Mathematical Programming Computation, 2(3):471507, 2017.

M. Debruyne, M. Hubert, and J. A. Suykens. Model selection in kernel based regression using the influence function. Journal of Machine Learning Research, 9 (Oct):2377–2400, 2008.

B. Efron. The jackknife, the bootstrap, and other resampling plans, volume 38. Siam, 1982.

M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum order system approximation. In Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148), volume 6, pages 4734–4739. IEEE, 2001.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL http://www.jstatsoft.org/v33/i01/.
Y. Nesterov. Accelerating the cubic regularization of Newton’s method on convex problems. Mathematical Programming, 112(1):159–181, 2008. ISSN 0025-5610.

Y. Nesterov. Implementable tensor methods in unconstrained convex optimization. Mathematical Programming, pages 1–27, 2019.

T. Obuchi and Y. Kabashima. Cross validation in lasso and its acceleration. Journal of Statistical Mechanics, 2016.

T. Obuchi and Y. Kabashima. Accelerating cross-validation in multinomial logistic regression with l1-regularization. Journal of Machine Learning Research, 2018.

K. R. Rad and A. Maleki. A scalable estimate of the out-of-sample prediction error via approximate leave-one-out. arXiv preprint arXiv:1801.10243, 2019.

R. T. Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J., 1970.

W. T. Stephenson and T. Broderick. Sparse approximate cross-validation for high-dimensional glms. arXiv preprint arXiv:1905.13657, 2019.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B (Methodological), 36(2):111–147, 1974.

S. Wang, W. Zhou, H. Lu, A. Maleki, and V. Mirrokni. Approximate leave-one-out for fast parameter tuning in high dimensions. In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 5228–5237, Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR.
A Proof of Lemma 1: Optimizer comparison

The first claim (4) follows immediately from the definition of the error bound (5).

To establish the second claim, we note that our (sub)differentiability assumptions and the optimality of x_{φ_1} and x_{φ_2} imply that $0 \in \partial \varphi_2(x_{\varphi_2})$ and $0 = u + \nabla (\varphi_1 - \varphi_2)(x_{\varphi_1})$ for some $u \in \partial \varphi_2(x_{\varphi_1})$. Gradient growth (6) now implies

$$\nu_{\varphi_2}(\|x_{\varphi_1} - x_{\varphi_2}\|_2) \leq (x_{\varphi_1} - x_{\varphi_2}, u - 0) = (x_{\varphi_1} - x_{\varphi_2}, \nabla (\varphi_2 - \varphi_1)(x_{\varphi_1})).$$

B Proof of Thms. 2 and 5: ACV-CV and ACV$_p$-CV assessment error

Thms. 2 and 5 will follow from the following more detailed statement, proved in App. B.1. Consider the higher-order gradient estimator

$$\text{ACV}_p^\text{HO}(\lambda) \triangleq \frac{1}{N} \sum_{i=1}^N \ell(z_i, \tilde{\beta}_i, \hat{\beta}(\lambda)) \quad \text{with} \quad \tilde{\beta}_i = \arg\min_{\beta} \tilde{m}_p(P_{n,i}, \beta; \lambda, \hat{\beta}(\lambda)),$$

which recovers our approximate CV error (2) and estimate (3) when $p = 2$. We will make use of the following assumptions which generalize Assumps. 1 and 1b.

Assumption 1d (Curvature of objective). For some $q, c_m > 0, all \lambda \in [0, \infty], m(P_{n,i}, \beta; \lambda)$ has $\nu(r) = c_m r^q$ gradient growth

Assumption 1e (Curvature of Taylor approximation). For some $p, q, c_l, c_\pi > 0$ and $\lambda_\pi < \infty, all \lambda \in [0, \infty], m(P_{n,i}, \beta; \lambda)$ has $\nu(r) = c_l, c_\pi r^q$ gradient growth, where $c_l, c_\pi \triangleq c_l + \lambda c_\pi \|\lambda \geq \lambda_\pi\|$

Assumption 1f (Curvature of regularized Taylor approximation). For some $p, q, c_l, c_\pi > 0$ and $\lambda_\pi < \infty, all \lambda \in [0, \infty], m(P_{n,i}, \beta; \lambda)$ has $\nu(r) = c_l, c_\pi r^q$ gradient growth, where $c_l, c_\pi \triangleq c_l + \lambda c_\pi \|\lambda \geq \lambda_\pi\|

Theorem 14 (ACV$_p$-CV and ACV$_p^\text{HO}$-CV assessment error). If Assump. 1d holds for some $\Lambda \subseteq [0, \infty], then, for all $\lambda \in \Lambda$ and $i \in [n]$,

$$\|\hat{\beta}(\lambda) - \hat{\beta}_i(\lambda)\|_2^2 - \frac{1}{n} \sum_{i=1}^N \|\nabla \ell(z_i, \hat{\beta}(\lambda))\|_2.$$ (15)

If Assumps. 3b, 1d, and 1e hold for some $\Lambda \subseteq [0, \infty], then, for all $\lambda \in \Lambda$ and $i \in [n]$,

$$\|\hat{\beta}_i^\text{HO}(\lambda) - \hat{\beta}_i(\lambda)\|_2^2 - \frac{1}{n} \sum_{i=1}^N \|\nabla \ell(z_i, \hat{\beta}(\lambda))\|_2.$$ (16a)

for $\kappa_{p,\lambda}^\Lambda \triangleq \frac{C_{p+1} + c_m \lambda_{\pi+1}}{c_m}$.

If Assumps. 3b, 1d, and 1e hold for some $\Lambda \subseteq [0, \infty], then, for all $\lambda \in \Lambda$ and $i \in [n]$,

$$\|\hat{\beta}_i^\text{RHO}(\lambda) - \hat{\beta}_i(\lambda)\|_2^2 - \frac{1}{n} \sum_{i=1}^N \|\nabla \ell(z_i, \hat{\beta}(\lambda))\|_2.$$ (16b)

If Assumps. 2, 3b, 1d, and 1e hold for some $\Lambda \subseteq [0, \infty] and each $(s, r) \in \{(0, \frac{p+q(r)}{(q-1)r^2}), (1, \frac{2p}{(q-1)r^2}), (1, \frac{p+q(r)}{(q-1)r^2})\}$, then, for all $\lambda \in \Lambda$,

$$|\text{ACV}^\text{HO}_p(\lambda) - \text{CV}(\lambda)|$$

$$\leq \frac{1}{n} \sum_{i=1}^N \frac{(\kappa_{p,\lambda}^\Lambda)^{\frac{1}{p+1}}}{c_m} B_{r} \frac{(p+q(r))}{(q-1)r^2} + \frac{1}{n} \sum_{i=1}^N \frac{(\kappa_{p,\lambda}^\Lambda)^{\frac{1}{p+1}}}{c_m} B_{r} \frac{(p+q(r))}{(q-1)r^2} + \frac{1}{n} \sum_{i=1}^N \frac{(\kappa_{p,\lambda}^\Lambda)^{\frac{1}{p+1}}}{c_m} B_{r} \frac{(p+q(r))}{(q-1)r^2}$$ (17a)

If Assumps. 2, 3b, 1d, and 1e hold for some $\Lambda \subseteq [0, \infty] and each $(s, r) \in \{(0, \frac{p+q(r)}{(q-1)r^2}), (1, \frac{2p}{(q-1)r^2}), (1, \frac{p+q(r)}{(q-1)r^2})\}$, then, for all $\lambda \in \Lambda$,

$$|\text{ACV}_p(\lambda) - \text{CV}(\lambda)|$$

$$\leq \frac{1}{n} \sum_{i=1}^N \frac{(\kappa_{p,\lambda}^\Lambda)^{\frac{1}{p+1}}}{c_m} B_{r} \frac{(p+q(r))}{(q-1)r^2} + \frac{1}{n} \sum_{i=1}^N \frac{(\kappa_{p,\lambda}^\Lambda)^{\frac{1}{p+1}}}{c_m} B_{r} \frac{(p+q(r))}{(q-1)r^2} + \frac{1}{n} \sum_{i=1}^N \frac{(\kappa_{p,\lambda}^\Lambda)^{\frac{1}{p+1}}}{c_m} B_{r} \frac{(p+q(r))}{(q-1)r^2}.$$ (17b)
Thm. 2 follows from Thm. 14 with \(p = q = 2 \) since Assump. 1 implies \(\mu = \alpha + \lambda \) strong convexity and hence \(\nu(r) = \mu r^2 \) gradient growth for each \(\hat{m}_2(\hat{P}_{n,-i}, \cdot ; \beta(\lambda)) \).

Thm. 5 follows from Thm. 14 with \(q = 2 \) since Assumps. 1b and 3b and the following lemma imply that each \(m(\hat{P}_{n,-i}, \cdot ; \beta(\lambda)) \) and \(\hat{m}_2(\hat{P}_{n,-i}, \cdot ; \beta(\lambda)) \) has \(\mu = \alpha + \lambda \) strong convexity and hence \(\nu(r) = \mu r^2 \) gradient growth.

Lemma 15 (Curvature of regularized Taylor approximation). If \(\varphi \) is \(\mu \) strongly convex and \(\nabla^p \varphi \) is Lipschitz, then \(\Phi(x) \triangleq \varphi_\mu(x; w) + \frac{1}{(p+1)!} \| x - w \|_2^{p+1} \) is \(\mu \) strongly convex.

Proof This result is inspired by [Nesterov, 2019, Thm. 1]. In particular, by Taylor’s theorem with integral remainder, we can bound the residual between a function and its Taylor approximation as

\[
|\varphi(x) - \varphi_\mu(x; w)| \leq \frac{\text{Lip}(\nabla^p \varphi)}{(p+1)!} \| x - w \|_2^{p+1}
\]

Note also that for \(d(x) = \frac{1}{p} \| x \|_p \)

\[
\nabla^2 d(x) = (p - 2) \| x \|_p^{p-2} x \top + \| x \|_p^{p-2} I_d \geq \| x \|_p^{p-2} I_d.
\]

For \(p \geq 2 \), applying the same reasoning to \(\langle \nabla f(\cdot), h \rangle \) and \(\langle \nabla^2 f(\cdot) h, h \rangle \) we can similarly conclude:

\[
\| \nabla \varphi(x) - \nabla \varphi_\mu(x; w) \|_\text{op} \leq \frac{\text{Lip}(\nabla^p \varphi)}{p!} \| x - w \|_2^p
\]

\[
\| \nabla^2 \varphi(x) - \nabla^2 \varphi_\mu(x; w) \|_\text{op} \leq \frac{\text{Lip}(\nabla^p \varphi)}{(p-1)!} \| x - w \|_2^{p-1}.
\]

Subsequently, for any direction \(h \in \mathbb{R}^d \)

\[
\langle (\nabla^2 \varphi(x) - \nabla^2 \varphi_\mu(x; w); h) h, h \rangle \leq \| \nabla^2 \varphi(x) - \nabla^2 \varphi_\mu(x; w) \|_\text{op} \cdot \| h \|_2^2 \leq \frac{\text{Lip}(\nabla^p \varphi)}{(p-1)!} \| x - w \|_2^{p-1} \cdot \| h \|_2^2,
\]

and therefore,

\[
\nabla^2 \varphi(x) \lessapprox \nabla^2 \varphi_\mu(x; w) + \frac{\text{Lip}(\nabla^p \varphi)}{(p-1)!} \| x - w \|_2^{p-1} I_d \Rightarrow \nabla^2 \Phi(x).
\]

B.1 Proof of Thm. 14: ACV\(_p\)-CV and ACV\(_p\)\(_{HO}\)-CV assessment error

B.1.1 Proof of (15): Proximity of CV and full-data estimators

We begin with a lemma that translates the polynomial gradient growth of our objective into a bound on the difference between a full-data estimator \(\hat{\beta}(\lambda) \) and a leave-one-out estimator \(\hat{\beta}_{-i}(\lambda) \).

Lemma 16 (Proximity of CV and full-data estimators). Fix any \(\lambda \in [0, \infty) \) and \(i \in [n] \). If \(\ell(z_i, \cdot) \) is differentiable, and \(m(\hat{P}_{n,-i}, \cdot ; \beta(\lambda)) \) has \(\nu_m(r) = c_m r^q \) gradient growth (6) for \(c_m > 0 \) and \(q > 0 \), then

\[
\| \hat{\beta}(\lambda) - \hat{\beta}_{-i}(\lambda) \|_2^{q-1} \leq \frac{1}{c_m} \| \nabla \ell(z_i, \hat{\beta}(\lambda)) \|_2.
\]

Proof The result follows from the Optimizer Comparison Lemma 1 with \(\varphi_1(\beta) = m(\hat{P}_n, \beta, \lambda) \) and \(\varphi_2(\beta) = m(\hat{P}_{n,-i}, \beta, \lambda) \) and Cauchy-Schwarz, as

\[
c_m \| \hat{\beta}(\lambda) - \hat{\beta}_{-i}(\lambda) \|_2^q \leq \langle \hat{\beta}(\lambda) - \hat{\beta}_{-i}(\lambda), \nabla \beta m(\hat{P}_{n,-i}, \hat{\beta}(\lambda), \lambda) - \nabla \beta m(\hat{P}_n, \hat{\beta}(\lambda), \lambda) \rangle
\]

\[
= \frac{1}{n} \langle \hat{\beta}_{-i}(\lambda) - \hat{\beta}(\lambda), \nabla \beta \ell(z_i, \hat{\beta}(\lambda)) \rangle \leq \frac{1}{n} \| \hat{\beta}(\lambda) - \hat{\beta}_{-i}(\lambda) \|_2 \| \nabla \beta \ell(z_i, \hat{\beta}(\lambda)) \|_2.
\]

Now fix any \(\lambda \in \Lambda \) and \(i \in [n] \). If \(\lambda = \infty \), then \(\hat{\beta}(\lambda) = \hat{\beta}_{-i}(\lambda) \), ensuring the result (15). If \(\lambda \neq \infty \), then our assumptions and Lemma 16 immediately establish the result (15).
B.1.2 Proof of (16a): Proximity of ACV$_p$ and CV estimators

The result (16a) will follow from a general Taylor comparison lemma that bounds the optimizer error introduced by approximating part of an objective with its Taylor polynomial.

Lemma 17 (Taylor comparison). Suppose

\[x_\phi \in \arg\min_x \phi(x) + \phi_0(x) \quad \text{and} \quad x_\hat{\phi}_p \in \arg\min_x \hat{\phi}_p(x;w) + \phi_0(x). \]

for \(\hat{\phi}_p(x;w) \triangleq \sum_{i=0}^{p} \frac{1}{i!} \nabla^i \phi(w)[x-w|^i \) the p-th-order Taylor polynomial of \(\phi \) about a point \(w \). If \(\nabla^p \phi \) is Lipschitz and \(\hat{\phi}_p(\cdot;w) + \phi_0 \) has \(\nu(r) = \mu r^q \) gradient growth (6) for \(\mu > 0 \) and \(q > 0 \), then

\[\|x_\phi - x_\hat{\phi}_p\|_2^{q-1} \leq \frac{\text{Lip}(\nabla^p \phi)}{\mu} \|x_\phi - w\|_2^p. \]

Proof Define \(f(x) = (x_\phi - x_\hat{\phi}_p, \nabla \phi(x)) \). The result follows from the Optimizer Comparison Lemma 1 with \(\phi_1 = \phi + \phi_0 \) and \(\phi_2 = \hat{\phi}_p(\cdot;w) + \phi_0 \), Taylor’s theorem with integral remainder, and Cauchy-Schwarz as

\[\mu\|x_\phi - x_\hat{\phi}_p\|_2^2 \leq \|x_\phi - x_\hat{\phi}_p, \nabla \phi(x_\phi)\|_2 \leq \|x_\phi - x_\hat{\phi}_p\|_2 \|\nabla \phi(x_\phi)\|_2 \leq \text{Lip}(\nabla^p \phi) \|x_\phi - w\|_2^2 \leq \|x_\phi - x_\hat{\phi}_p\|_2 \text{Lip}(\nabla^p \phi) \|x_\phi - w\|_2^p. \]

To see this, fix any \(\lambda \in \Lambda \) and \(i \in [n] \), and consider the choices \(\varphi = m(P_{n-i}, \cdot, \lambda), \varphi_0 \equiv 0 \), and \(w = \hat{\beta}(\lambda) \). By Assum. 1e, \(\hat{\phi}_p(\cdot;w) + \phi_0 \) has \(\nu(r) = \mu r^q \) gradient growth for \(\mu = c_i + \lambda \|\lambda \geq \lambda \| \). Since \(\text{Lip}(\nabla^p \phi) \leq C_{t+1} + \lambda C_{t+1} \) by Assump. 3b, the desired result (16a) follows from Lemma 17.

B.1.3 Proof of (16b): Proximity of ACV$_p$ and CV estimators

The result (16b) will follow from a regularized Taylor comparison lemma that bounds the optimizer error introduced by approximating part of an objective with a regularized Taylor polynomial.

Lemma 18 (Regularized Taylor comparison). Suppose

\[x_\phi \in \arg\min_x \phi(x) + \phi_0(x) \quad \text{and} \quad x_\hat{\phi}_p \in \arg\min_x \hat{\phi}_p(x;w) + \frac{\text{Lip}(\nabla^p \phi)}{(p+1)!} \|x - w\|^{p+1}_2 + \phi_0(x). \]

for \(\hat{\phi}_p(x;w) \triangleq \sum_{i=0}^{p} \frac{1}{i!} \nabla^i \phi(w)[x-w|^i \) the p-th-order Taylor polynomial of \(\phi \) about a point \(w \). If \(\nabla^p \phi \) is Lipschitz and \(\hat{\phi}_p(\cdot;w) + \phi_0 \) has \(\nu(r) = \mu r^q \) gradient growth (6) for \(\mu > 0 \) and \(q > 0 \), then

\[\|x_\phi - x_\hat{\phi}_p\|_2^{q-1} \leq \frac{2\text{Lip}(\nabla^p \phi)}{\mu} \|x_\phi - w\|_2^p. \]

Proof Define \(f(x) = (x_\phi - x_\hat{\phi}_p, \nabla \phi(x)) \). The result follows from the Optimizer Comparison Lemma 1 with \(\phi_1 = \phi + \phi_0 \) and \(\phi_2 = \hat{\phi}_p(\cdot;w) + \phi_0 \), Taylor’s theorem with integral remainder, and Cauchy-Schwarz as

\[\mu\|x_\phi - x_\hat{\phi}_p\|_2^2 \leq \|x_\phi - x_\hat{\phi}_p, \nabla \phi(x_\phi)\|_2 \leq \|x_\phi - x_\hat{\phi}_p\|_2 \|\nabla \phi(x_\phi)\|_2 \leq \text{Lip}(\nabla^p \phi) \|x_\phi - w\|_2^2 \leq \|x_\phi - x_\hat{\phi}_p\|_2 \text{Lip}(\nabla^p \phi) \|x_\phi - w\|_2^p. \]

Fix any \(\lambda \in \Lambda \) and \(i \in [n] \), and consider the choices \(\varphi = m(P_{n-i}, \cdot, \lambda), \varphi_0 \equiv 0 \), and \(w = \hat{\beta}(\lambda) \). By Assum. 1f, \(\hat{\phi}_p(\cdot;w) + \frac{\text{Lip}(\nabla^p \phi)}{(p+1)!} \|x - w\|^{p+1}_2 + \phi_0 \) has \(\nu(r) = \mu r^q \) gradient growth for \(\mu = c_i + \lambda \|\lambda \geq \lambda \| \). Since \(\text{Lip}(\nabla^p \phi) \leq C_{t+1} + \lambda C_{t+1} \) by Assump. 3b, the desired result (16b) follows from Lemma 18.
B.1.4 Proof of (17a): Proximity of ACV^HO_p and CV

Fix any $\lambda \in \Lambda$. To control the discrepancy between $ACV^\text{HO}_p(\lambda)$ and $CV(\lambda)$, we first rewrite the difference using Taylor’s theorem with Lagrange remainder:

$$ACV^\text{HO}_p(\lambda) - CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \ell(z_i, \hat{\beta}_{i}^\text{HO}(\lambda)) - \ell(z_i, \hat{\beta}_{i}(\lambda))$$

$$= \frac{1}{n} \sum_{i=1}^{n} \langle \nabla_\beta \ell(z_i, \hat{\beta}_{i}(\lambda)), \hat{\beta}_{i}^\text{HO}(\lambda) - \hat{\beta}_{i}(\lambda) \rangle + \frac{1}{2} \| \nabla^2_\beta \ell(z_i, \hat{s}_i) \|_\text{op} \| \hat{\beta}^\text{HO}_i(\lambda) - \hat{\beta}_{i}(\lambda) \|^2$$

for some $\hat{s}_i \in \{t \hat{\beta}^\text{HO}_i + (1-t) \hat{\beta}_{i}(\lambda) : t \in [0, 1] \}$. We next use the mean-value theorem to expand each function $\langle \nabla_\beta \ell(z_i, \cdot), \hat{\beta}_{i}^\text{HO}(\lambda) - \hat{\beta}_{i}(\lambda) \rangle$ around the full-data estimator $\hat{\beta}(\lambda)$:

$$ACV^\text{HO}_p(\lambda) - CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \| \nabla_\beta \ell(z_i, \hat{\beta}(\lambda)) \|_2 \| \hat{\beta}_{i}^\text{HO}(\lambda) - \hat{\beta}_{i}(\lambda) \|_2 + \frac{1}{2} \| \nabla^2_\beta \ell(z_i, \hat{s}_i) \|_\text{op} \| \hat{\beta}^\text{HO}_i(\lambda) - \hat{\beta}_{i}(\lambda) \|^2$$

for some $\hat{s}_i \in \{t \hat{\beta}(\lambda) + (1-t) \hat{\beta}_{i}(\lambda) : t \in [0, 1] \}$. Finally, we invoke Cauchy-Schwarz, the definition of the operator norm, the estimator proximity results (15) and (16a), and Assump. 2 to obtain

$$|ACV^\text{HO}_p(\lambda) - CV(\lambda)| \leq \frac{1}{n} \sum_{i=1}^{n} \| \nabla_\beta \ell(z_i, \hat{\beta}(\lambda)) \|_2 \| \hat{\beta}_{i}^\text{HO}(\lambda) - \hat{\beta}_{i}(\lambda) \|_2 + \frac{1}{2} \| \nabla^2_\beta \ell(z_i, \hat{s}_i) \|_\text{op} \| \hat{\beta}^\text{HO}_i(\lambda) - \hat{\beta}_{i}(\lambda) \|^2$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \left(\kappa_{p,\lambda} \frac{1}{c_{(q-1)}{q-1}} \right) \| \nabla_\beta \ell(z_i, \hat{\beta}(\lambda)) \|_2 + \frac{1}{2} \| \nabla^2_\beta \ell(z_i, \hat{s}_i) \|_\text{op} \| \hat{\beta}^\text{HO}_i(\lambda) - \hat{\beta}_{i}(\lambda) \|^2$$

$$\leq \frac{1}{n} \left(\kappa_{p,\lambda} \frac{1}{c_{(q-1)}{q-1}} \right) \left(\sum_{i=1}^{n} \| \nabla_\beta \ell(z_i, \hat{\beta}(\lambda)) \|_2 \right)^{\frac{p+1}{p}} + \frac{1}{2} \left(\kappa_{p,\lambda} \frac{1}{c_{(q-1)}{q-1}} \right) \left(\sum_{i=1}^{n} \| \nabla^2_\beta \ell(z_i, \hat{s}_i) \|_\text{op} \| \hat{\beta}^\text{HO}_i(\lambda) - \hat{\beta}_{i}(\lambda) \|^2 \right)^{\frac{p+1}{p}}$$

B.1.5 Proof of (17b): Proximity of ACV_p and CV

The proof of the bound (17b) is identical to that of the bound (17a) once we substitute $2\kappa^\lambda_{p,\lambda}$ for $\kappa^\lambda_{p,\lambda}$ by invoking (16b) in place of (16a).

C Proof of Prop. 3: Sufficient conditions for assumptions

We prove each of the independent claims in turn.

Assump. 3 holds This first claim follows from the triangle inequality and the definition of the Lipschitz constant Lip.

$$\hat{\beta}(\lambda) \to \hat{\beta}(\infty)$$ For each $\lambda \in [0, \infty)$, by the Optimizer Comparison Lemma 1 with $\phi_2 = \pi$ and $\phi_1 = \frac{1}{m(\mathbb{P}, \cdot, \lambda)}$ and the nonnegativity of ℓ,

$$\nu_\pi(\| \hat{\beta}(\lambda) - \hat{\beta}(\infty) \|_2) \leq \frac{1}{\pi} (\ell_1(\mathbb{P}, \hat{\beta}(\infty)) - \ell_1(\mathbb{P}, \hat{\beta}(\lambda))) \leq \frac{1}{\pi} \ell_1(\mathbb{P}, \hat{\beta}(\infty)).$$

Therefore, $\nu_\pi(\| \hat{\beta}(\lambda) - \hat{\beta}(\infty) \|_2) \to 0$ as $\lambda \to \infty$. Now, since ν_π is increasing, its inverse ω_π is increasing with $\omega_\pi(0) = 0$, and hence we have $\| \hat{\beta}(\lambda) - \hat{\beta}(\infty) \|_2 \to 0$ as $\lambda \to \infty$.

Assump. 1 holds Fix any $\Lambda \subseteq [0, \infty]$, and let $\min\mathrm{eig}$ denote the minimum eigenvalue. The local strong convexity of π implies that there exist a neighborhood \mathcal{N} of $\hat{\beta}(\infty)$ and some $c_{\pi} > 0$ for which $\nabla^2 \pi(\beta) \succeq c_{\pi} \text{Id}$ for all $\beta \in \mathcal{N}$. Since $\hat{\beta}(\lambda) \to \hat{\beta}(\infty)$ as $\lambda \to \infty$, there exists $\lambda_{\pi} < \infty$ such that $\hat{\beta}(\lambda) \in \mathcal{N}$ for all $\lambda \geq \lambda_{\pi}$. Hence, for any $\lambda, \lambda' \in \Lambda$ and $i \in [n]$, we may use the c_m-strong convexity of $m(\mathbb{P}_{n,-i}, \lambda)$ and $m(\mathbb{P}_{n,-i}, 0) = \ell(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda))$ to conclude that

$$\min\mathrm{eig}(\nabla^2 \hat{\beta}(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda), \lambda')) = \min\mathrm{eig}(\nabla^2 \hat{\beta}(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda)) + \lambda' \nabla^2 \pi(\hat{\beta}(\lambda))) \geq \max(c_m, c_m + \lambda' c_{\pi}[\lambda \geq \lambda_{\pi}]).$$

Furthermore, the c_m-strong convexity and differentiability of $m(\mathbb{P}_{n,-i}, \lambda)$ imply that $m(\mathbb{P}_{n,-i}, \lambda)$ has $\nu_m(r) = c_m r^2$ gradient growth. Thus, Assump. 1 is satisfied for Λ.

Assump. 2 holds Fix any $\Lambda \subseteq [0, \infty]$ and $\lambda \in \Lambda$. For each $i \in [n]$, the triangle inequality and the definition of the Lipschitz constant imply

$$\|\nabla_\beta \ell(z_i, \hat{\beta}(\lambda))\|_2 \leq \|\nabla_\beta \ell(z_i, \hat{\beta}(\infty))\|_2 + \|\nabla_\beta \ell(z_i, \hat{\beta}(\lambda)) - \nabla_\beta \ell(z_i, \hat{\beta}(\infty))\|_2 \leq \|\nabla_\beta \ell(z_i, \hat{\beta}(\infty))\|_2 + L_i \|\beta - \hat{\beta}(\infty)\|_2.$$

Moreover, since $m(\mathbb{P}_{n,-i}, \lambda)$ is c_m-strongly convex and the minimum eigenvalue is a concave function, Jensen’s inequality gives for each β

$$\min\mathrm{eig}(m(\mathbb{P}_{n,-i}, \lambda)) = \min\mathrm{eig}(\frac{1}{n} \sum_{i=1}^n m(\mathbb{P}_{n,-i}, \lambda)) \geq \frac{1}{n} \sum_{i=1}^n \min\mathrm{eig}(m(\mathbb{P}_{n,-i}, \lambda)) \geq \frac{1}{n} c_m.$$

Hence $m(\mathbb{P}_{n,-i}, \lambda)$ has $\nu_m(r) = \frac{n}{n-1} c_m r^2$ gradient growth, and the Optimizer Comparison Lemma 1 with $\varphi_2 = \lambda \pi$ and $\varphi_1 = m(\mathbb{P}_{n,-i}, \lambda)$ and Cauchy-Schwarz imply

$$\frac{n}{n-1} c_m \|\beta - \hat{\beta}(\infty)\|_2 \leq \|\nabla_\beta \ell(\mathbb{P}_{n}, \hat{\beta}(\infty))\|_2.$$

Therefore,

$$B_{s,r}^\epsilon \leq \frac{1}{n} \sum_{i=1}^n L_i \|\nabla_\beta \ell(z_i, \hat{\beta}(\infty))\|_2 + \frac{n-1}{n} \frac{L_i}{c_m} \|\nabla_\beta \ell(\mathbb{P}_{n}, \hat{\beta}(\infty))\|_2 \nu < \infty.$$

D Proof of Thm. 4: ACV11-ACV assessment error

We will prove the following more detailed statement from which Thm. 4 immediately follows.

Theorem 19 (ACV11-ACV assessment error). If Assump. 1 holds for $\Lambda \subseteq [0, \infty]$, then, for each $\lambda \in \Lambda$,

$$\|\hat{\beta}_{i,i}(\lambda) - \hat{\beta}_{i,i}(\lambda')\|_2 \leq \frac{\|\nabla^2 \ell(z_i, \hat{\beta}(\lambda))\|_{op} \|\nabla_\beta \ell(z_i, \hat{\beta}(\lambda))\|_2}{c_{\lambda, \lambda} n^2}$$

where $c_{\lambda, \lambda} \triangleq c_{\ell} + \lambda c_{\pi}[\lambda \geq \lambda_{\pi}]$. If, in addition, Assump. 2 holds for Λ and each $(s, r) \in \{(1, 2), (2, 2), (3, 2)\}$, then

$$|\ACV^{11}(\lambda) - \ACV(\lambda)| \leq \frac{B_{1,2}^\epsilon}{c_{\lambda, \lambda} n^2} + \frac{B_{2,2}^\epsilon}{c_{\lambda, \lambda} n^2} + \frac{B_{3,2}^\epsilon}{2 c_{\lambda, \lambda} n^2}.$$

D.1 Proof of (19): Proximity of ACV and ACV11 estimators

We begin with a lemma that controls the discrepancy between two Newton (or, more generally, proximal Newton) estimators. Recall the definition of the proximal operator $\prox^\rho_H(\beta)$ (11).

Lemma 20 (Proximal Newton comparison). For any $\beta, g \in \mathbb{R}^d$, invertible $H, \tilde{H} \in \mathbb{R}^{d \times d}$, and convex φ_0, the proximal Newton estimators

$$\beta_H = \prox^\varphi_H(\beta - H^{-1} g) \quad \text{and} \quad \beta_{\tilde{H}} = \prox^\varphi_{\tilde{H}}(\beta - \tilde{H}^{-1} g)$$

satisfy

$$\|\beta_H - \beta_{\tilde{H}}\|_2 \leq \|H - \tilde{H}\|_{\text{op}} \|\beta_H - \beta_{\tilde{H}}\|_2 \leq \frac{\|H - \tilde{H}\|_{\text{op}} \|\beta_H - \beta_{\tilde{H}}\|_2}{\min\mathrm{eig}(H) \forall 0}.$$
Proof. If mineig(\hat{H}) ≤ 0, the claim is vacuous, so assume mineig(\hat{H}) > 0. Writing $\varphi_2(x) = \frac{1}{2}\|\beta - \hat{H}^{-1} x\|^2_2 + \varphi_0(x)$ and $\varphi_1(x) = \frac{1}{2}\|\beta - H^{-1} x\|^2_2 + \varphi_0(x)$, note that $\beta = \arg\min x \varphi_2(x)$ and $\beta_H = \arg\min x \varphi_1(x)$ by the definition of the proximal operator (11). Importantly, φ_2 is subdifferentiable and satisfies the gradient growth property with $\nu_{\varphi_2}(r) = \text{mineig}(\hat{H})r^2$. Invoking the Optimizer Comparison Lemma 1 and Cauchy-Schwarz, we have

$$\text{mineig}(\hat{H})\|\beta - \beta_H\|^2_2 \leq (\hat{H}(\beta - \beta_H) - g - H(\beta - \beta_H) + g, \beta_H - \beta_H) \leq \|\hat{H} - H\|_2\|\beta_H - \beta_H\|_2.$$

Rearranging both sides gives the first advertised inequality.

Now fix any $\lambda \in \Lambda$ and $i \in [n]$, and let

$$\hat{H} = \nabla^2_{\beta} m(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda), \lambda) \quad \text{and} \quad H = \nabla^2_{\beta} m(\mathbb{P}_n, \hat{\beta}(\lambda), \lambda) = \frac{1}{n} \sum_{j=1}^n \nabla^2_{\beta} m(\mathbb{P}_{n,-j}, \hat{\beta}(\lambda), \lambda).$$

By Assump. 1, mineig(\hat{H}) ≥ $c_{\lambda, \lambda}$. Moreover, Assump. 1, the concavity of the minimum eigenvalue, and Jensen’s inequality imply

$$\text{mineig}(H) \geq \frac{1}{n} \sum_{i=1}^n \text{mineig}(\nabla^2_{\beta} m(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda), \lambda)) \geq \frac{1}{n} c_{\lambda, \lambda} \geq c_{\lambda, \lambda}.$$

Hence, we may apply Lemma 20 with $\beta_H = \hat{\beta}_{i,1}(\lambda), \beta_H = \hat{\beta}_{i,1}(\lambda), \beta = \hat{\beta}(\lambda)$, and $\varphi_0 \equiv 0$ to find that

$$\|\hat{\beta}_{i,1}(\lambda) - \hat{\beta}_{i,1}(\lambda)\|_2 \leq \frac{1}{c_{\lambda, \lambda}} \|\nabla^2_{\beta} m(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda), \lambda) - \nabla^2_{\beta} m(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda), \lambda)\|_{\text{op}} \|\hat{\beta}_{i,1}(\lambda) - \hat{\beta}(\lambda)\|_2$$

$$= \frac{1}{n} \frac{1}{c_{\lambda, \lambda}} \|\nabla^2_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|_{\text{op}} \|\nabla^2_{\beta} m(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda), \lambda) - 1\|_{\text{op}} \|\beta\|_2.$$

for some $s_{i} \in \{\hat{\beta}_{i,1}(\lambda) + (1-t)\hat{\beta}_{i,1}(\lambda) : t \in [0, 1]\}$. We next use the mean-value theorem to expand each function $(\nabla_{\beta} \ell(z_i, \cdot), \hat{\beta}_{i,1}(\lambda) - \hat{\beta}_{i,1}(\lambda))$ around the full-data estimator $\hat{\beta}(\lambda)$:

$$\text{ACV}_{11}(\lambda) - \text{ACV}(\lambda) = \frac{1}{n} \sum_{i=1}^n \langle \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda)), \hat{\beta}_{i,1}(\lambda) - \hat{\beta}_{i,1}(\lambda) \rangle + \frac{1}{n} \sum_{i=1}^n \langle \nabla_{\beta} \ell(z_i, s_i), \hat{\beta}_{i,1}(\lambda) - \hat{\beta}_{i,1}(\lambda) \rangle$$

for some $s_i \in \{\hat{\beta}(\lambda) + (1-t)\hat{\beta}(\lambda) : t \in [0, 1]\}$. Now, by Assump. 1, we have

$$\|\hat{\beta}_{i,1}(\lambda) - \hat{\beta}(\lambda)\|_2 = \frac{1}{n} \|H_i^{-1} \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|_2 \leq \frac{1}{n c_{\lambda, \lambda}} \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|_2.$$

Combining these observations with Cauchy-Schwarz, the definition of the operator norm, the estimator proximity result (19), the definition of the Lipschitz constant $\text{Lip}(\nabla_{\beta} \ell(z_i, \cdot))$, and Assump. 2 we obtain

$$|\text{ACV}_{11}(\lambda) - \text{ACV}(\lambda)| \leq \frac{1}{n} \sum_{i=1}^n \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|_2 \|\hat{\beta}_{i,1}(\lambda) - \hat{\beta}_{i,1}(\lambda)\|_2 + \frac{1}{n} \|\nabla_{\beta} \ell(z_i, s_i)\|_{\text{op}} \|\hat{\beta}_{i,1}(\lambda) - \hat{\beta}_{i,1}(\lambda)\|_2$$

$$\leq \frac{1}{n c_{\lambda, \lambda}} \frac{1}{n} \sum_{i=1}^n \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|_{\text{op}} \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|_2$$

$$+ \frac{1}{n} \|\nabla_{\beta} \ell(z_i, s_i)\|_{\text{op}} \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|_{\text{op}} \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|_2$$

$$+ \frac{1}{n} \|\nabla_{\beta} \ell(z_i, s_i)\|_{\text{op}} \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|_{\text{op}} \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|_2$$

$$\leq \frac{1}{n} \left(B_{1,2}^1 + \frac{1}{2n} B_{1,2}^1 + \frac{1}{n} B_{2,2}^1 \right).$$
The first claim follows immediately from the following more detailed version of Thm. 6.

Theorem 21 (ACV proximity implies \(\hat{\beta} \) proximity). Suppose Assumps. 1 and 3 hold for some \(\Lambda \subseteq [0, \infty) \) and each \((s, r) \in \{(0, 2), (1, 2)\}\). Then, for all \(\lambda', \lambda \in \Lambda \) with \(\lambda' < \lambda \),

\[
\|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|^2 \leq C_{1, \lambda, \lambda'} \left(\frac{C_{2, \lambda, \lambda'}}{n} + \text{ACV}(\lambda) - \text{ACV}(\lambda') + \frac{C_{3, \lambda, \lambda'}}{n^2 \lambda} \right),
\]

for \(C_{1, \lambda, \lambda'} \) and \(C_{3, \lambda, \lambda'} \) defined in Thm. 7 and

\[
\tilde{C}_{2, \lambda, \lambda'} = \frac{3B_{0, 2}'}{c_{\epsilon} + \lambda c_{\epsilon} \lambda |\lambda - \lambda'|} + \frac{B_{0, 2}'}{c_{\epsilon} + \lambda' c_{\epsilon} \lambda' |\lambda' - \lambda'|}.
\]

Proof Fix any \(\lambda', \lambda \in \Lambda \) with \(\lambda' < \lambda \). We will proceed precisely as in the proof of Thm. 23, except we will provide alternative bounds for the quantities \(\Delta T_2 \) and \(\Delta T_3 \) in the loss decomposition (26). First, we apply Cauchy-Schwarz, the definition of the operator norm, the triangle inequality, and the arithmetic-geometric mean inequality in turn to find

\[
|\Delta T_2| = \frac{1}{n^2} \sum_{i=1}^{n} (\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda)) - \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda'))) \left(\nabla_{\beta} m(P_{n, i}, \hat{\beta}(\lambda), \lambda)^{-1} \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda)) \right)
\]

\[
\leq \frac{1}{n^2} \sum_{i=1}^{n} \| \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda)) \|_2 \| \nabla_{\beta} m(P_{n, i}, \hat{\beta}(\lambda), \lambda)^{-1} \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda)) \|_2
\]

\[
\leq \frac{1}{n^2} \sum_{i=1}^{n} \| \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda')) \|_2 \| \nabla_{\beta} m(P_{n, i}, \hat{\beta}(\lambda'), \lambda')^{-1} \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda')) \|_2
\]

\[
\leq \frac{1}{n^2} \sum_{i=1}^{n} \left(\frac{1}{2} \| \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda')) \|_2^2 + \frac{1}{2} \| \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda)) \|_2^2 \right) \| \nabla_{\beta} m(P_{n, i}, \hat{\beta}(\lambda'), \lambda')^{-1} \|_2
\]

\[
\leq \frac{1}{n} \left(\frac{B_{0, 2}'}{c_{\epsilon} + \lambda c_{\epsilon} |\lambda - \lambda'|} + \frac{B_{0, 2}'}{c_{\epsilon} + \lambda' c_{\epsilon} |\lambda' - \lambda'|} \right).
\]

(21)

where we have used Assump. 1 and Assump. 2 for \((s, r) = (0, 2)\) in the final line.

Next, we again apply the triangle inequality, the definition of the operator norm, the arithmetic-geometric mean inequality, Assump. 1, and Assump. 2 for \((s, r) = (0, 2)\) to obtain

\[
|\Delta T_3| = \left| \frac{1}{n^2} \sum_{i=1}^{n} (\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda)) - \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda'))) \left(\nabla_{\beta} m(P_{n, i}, \hat{\beta}(\lambda), \lambda)^{-1} \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda')) \right) \right|
\]

\[
\leq \frac{1}{n^2} \sum_{i=1}^{n} \| \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda)) \|_2 \| \nabla_{\beta} m(P_{n, i}, \hat{\beta}(\lambda), \lambda)^{-1} \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda')) \|_2
\]

\[
\leq \frac{1}{n^2} \sum_{i=1}^{n} \left(\frac{1}{2} \| \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda')) \|_2^2 + \frac{1}{2} \| \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda)) \|_2^2 \right) \| \nabla_{\beta} m(P_{n, i}, \hat{\beta}(\lambda'), \lambda')^{-1} \|_2
\]

\[
\leq \frac{1}{n^2} \left(\frac{B_{0, 2}'}{c_{\epsilon} + \lambda c_{\epsilon} |\lambda - \lambda'|} + \frac{B_{0, 2}'}{c_{\epsilon} + \lambda' c_{\epsilon} |\lambda' - \lambda'|} \right).
\]

(22)

Plugging the bounds (21) and (22) into the proof Thm. 23 yields the result.

The second claim (10) follows the first and the following bound on \(|\text{ACV}(\lambda_{\text{CV}}) - \text{ACV}(\lambda_{\text{ACV}})|\).

Lemma 22. Suppose Assumps. 1, 2, and 3 hold for some \(\Lambda \subseteq [0, \infty) \) and each \((s, r) \in \{(0, 3), (1, 3), (1, 4)\}\). If \(\lambda_{\text{ACV}} \in \text{argmin}_{\lambda \in \Lambda} \text{ACV}(\lambda) \) and \(\lambda_{\text{CV}} \in \text{argmin}_{\lambda \in \Lambda} \text{CV}(\lambda) \), then

\[
0 \leq \text{ACV}(\lambda_{\text{CV}}) - \text{ACV}(\lambda_{\text{ACV}}) \leq 2 \left(\frac{B_{0, 2}'}{n^2} \frac{B_{0, 2}'}{c_{\epsilon}} + \frac{B_{0, 3}'}{n^3} \frac{B_{0, 3}'}{c_{\epsilon}} + \frac{B_{0, 4}'}{n^4} \frac{B_{0, 4}'}{c_{\epsilon}} \right).
\]

Proof Since \(\lambda_{\text{CV}} \) minimizes \(\text{CV} \) and \(\lambda_{\text{ACV}} \) minimizes \(\text{ACV} \),

\[
0 \leq \text{ACV}(\lambda_{\text{CV}}) - \text{ACV}(\lambda_{\text{ACV}}) \leq \text{ACV}(\lambda_{\text{CV}}) - \text{ACV}(\lambda_{\text{ACV}}) + \text{CV}(\lambda_{\text{ACV}}) - \text{CV}(\lambda_{\text{CV}}).
\]

The result now follows from two applications of Thm. 2.
F Proof of Thm. 7: Strong ACV-CV selection error

The first claim follows immediately from the following more detailed version of Thm. 7, proved in App. F.1.

Theorem 23 (Strong ACV proximity implies ̂λ proximity). Suppose Assumps. 1, 2, 3, and 4 hold for some Λ ∈ [0, ∞] with 0 ∈ Λ and each (s, r) ∈ {(0, 2), (1, 1), (1, 2)}. Suppose also ∥∇π(̂λ(0))∥2 > 0. Then for all λ′, λ ∈ Λ with λ′ < λ,

\[
\|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|^2_2 \leq C_{1,\lambda,\lambda'} \left(C_{2,\lambda,\lambda'/n}^2 \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|^2_2 + ACV(\lambda) - ACV(\lambda') + C_{3,\lambda,\lambda'/\lambda^2} \right) \quad \text{and hence} \quad (23)
\]

\[
\|\|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|^2_2 - \frac{C_{2,\lambda,\lambda'/\lambda^2}^2}{2n} \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|^2_2 \leq \sqrt{\frac{C_{2,\lambda,\lambda'/\lambda^2}^2}{4n^2} + C_{1,\lambda,\lambda'} (ACV(\lambda) - ACV(\lambda')) + \frac{C_{3,\lambda,\lambda'/\lambda^2}}{n^2}}, \quad (24)
\]

where

\[
C_{1,\lambda,\lambda'} = \frac{2}{c_m} \frac{\lambda - \lambda'}{\lambda + \lambda'}, \\
C_{2,\lambda,\lambda'} = \frac{2B_1^2}{c_2 + \kappa_{\lambda,\lambda'} \lambda}, \\
C_{3,\lambda,\lambda'} = \frac{B_1^2}{c_m}
\]

for κ_{\lambda,\lambda'} defined in Thm. 14.

The second claim follows directly from the Thm. 23 bound (24) and Lemma 22.

F.1 Proof of Thm. 23

Fix any λ′, λ ∈ Λ with λ′ < λ. The statement (24) follows directly from (23) and the quadratic formula, so we will focus on establishing the bound (23). We begin by writing the difference in estimator training losses as a difference in ACV values plus a series of error terms:

\[
\ell(P_n, \hat{\beta}(\lambda)) - \ell(P_n, \hat{\beta}(\lambda')) = ACV(\lambda) - ACV(\lambda') + \Delta T_1 - \Delta T_2 - \Delta T_3 \quad (25)
\]

for

\[
\Delta T_1 \triangleq \overline{ACV}(\lambda) - \overline{ACV}(\lambda') + ACV(\lambda) - \overline{ACV}(\lambda'), \\
\overline{ACV}(\lambda) \triangleq \ell(P_n, \hat{\beta}(\lambda)) + \frac{1}{n} \sum_{i=1}^n \langle \nabla \beta \ell(z_i, \hat{\beta}(\lambda)), \hat{\beta}_i(\lambda) - \hat{\beta}(\lambda) \rangle, \\
\Delta T_2 \triangleq \frac{1}{n} \sum_{i=1}^n \langle \nabla \beta \ell(z_i, \hat{\beta}(\lambda)) - \nabla \beta \ell(z_i, \hat{\beta}(\lambda')), \hat{\beta}_i(\lambda) - \hat{\beta}(\lambda) \rangle, \quad \text{and} \\
\Delta T_3 \triangleq \frac{1}{n} \sum_{i=1}^n \langle \nabla \beta \ell(z_i, \hat{\beta}(\lambda')), \hat{\beta}_i(\lambda) - \hat{\beta}(\lambda) - (\hat{\beta}_i(\lambda') - \hat{\beta}(\lambda')) \rangle. \quad (26)
\]

Here, \(\overline{ACV}(\lambda)\) arises by first-order Taylor-expanding each \(\ell(P_n, \hat{\beta}_i(\lambda))\) about \(\hat{\beta}(\lambda)\) in the expression of \(ACV(\lambda)\). To complete the proof, we will bound \(\Delta T_1, \Delta T_2, \Delta T_3, \ell(P_n, \hat{\beta}(\lambda)) - \ell(P_n, \hat{\beta}(\lambda'))\) in turn.

F.1.1 Bounding \(\Delta T_1\)

To control \(\Delta T_1\), we will appeal to the following lemma which shows that \(\overline{ACV}\) provides an \(O(1/n^2)\) approximation to \(ACV\), uniformly in \(\lambda\). The proof can be found App. F.2.

Lemma 24 (ACV-\(\overline{ACV}\) approximation error). Suppose Assumps. 1 and 2 hold for some Λ ∈ [0, ∞] and (s, r) = (1, 2). Then, for each λ ∈ Λ,

\[
|ACV(\lambda) - \overline{ACV}(\lambda)| \leq \frac{1}{n^2} B_{1,2}^2. \quad (27)
\]

Applying Lemma 24 to \(\lambda\) and \(\lambda'\), we obtain

\[
|\Delta T_1| \leq \frac{1}{n^2} B_{1,2}^2. \quad (27)
\]
F.1.2 Bounding ΔT_2

We employ the mean value theorem, Cauchy-Schwarz, the definition of the operator norm, Assump. 1, and Assump. 2 for $(s, r) = (1, 1)$ to find that

$$
|\Delta T_2| = \frac{1}{n^2} \sum_{i=1}^n (\nabla \beta \ell(z_i, \hat{\beta}(\lambda)) - \nabla \beta \ell(z_i, \hat{\beta}(\lambda')), \nabla^2 \beta m(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda), \lambda)^{-1} \nabla \beta \ell(z_i, \hat{\beta}(\lambda))) |
$$

\[= \frac{1}{n} \frac{1}{n} \sum_{i=1}^n (\nabla^2 \beta \ell(z_i, s_{\lambda, \lambda'})(\hat{\beta}(\lambda) - \hat{\beta}(\lambda'))), \nabla^2 \beta m(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda), \lambda)^{-1} \nabla \beta \ell(z_i, \hat{\beta}(\lambda))) |
\]

\[\leq \frac{1}{n} \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2 \frac{1}{n} \sum_{i=1}^n \|\nabla^2 \beta m(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda), \lambda)^{-1}\|_{op} \|\nabla^2 \beta \ell(z_i, s_{\lambda, \lambda'})\|_{op} \|\nabla \beta \ell(z_i, \hat{\beta}(\lambda))\|_2
\]

\[\leq \frac{1}{n} \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2 \frac{B_{f,1}}{\epsilon_{n+\lambda\epsilon_n}[\lambda \geq \lambda_n]} \quad (28)
\]

for some convex combination $s_{\lambda, \lambda'}$ of $\hat{\beta}(\lambda)$ and $\hat{\beta}(\lambda')$.

F.1.3 Bounding ΔT_3

We next show that the double difference term ΔT_3 is controlled by estimator proximity $\|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2$ and regularization parameter proximity $|\lambda - \lambda'|$ times an extra factor of $1/n$. This result is proved in App. F.3.

Lemma 25. Suppose Assumps. 1, 2, 3, and 4 hold for some $\Lambda \subseteq [0, \infty]$ and each $(s, r) = \{(0, 2), (1, 1)\}$. Then, for all $\lambda, \lambda' \in \Lambda$,

$$
|\Delta T_3| \leq \frac{1}{n} \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2 \left(\frac{B_{f,1}}{\epsilon_{n+\lambda\epsilon_n}[\lambda \geq \lambda_n]} + \frac{2B_{f,2}}{\epsilon_{n+\lambda\epsilon_n}[\lambda \geq \lambda_n]} \right)
$$

\[+ \frac{1}{n} \|\lambda - \lambda'\|_2 \frac{B_{w,2}C_{\pi,2}}{c_{m}(\epsilon_{n+\lambda\epsilon_n}[\lambda \geq \lambda_n])}
\]

for ΔT_3 defined in (26) and $\kappa_{\lambda, \lambda'}$ defined in Thm. 14.

We combine (29) with the following bound on $|\lambda - \lambda'|$ proved in App. F.4:

Lemma 26 ($\hat{\beta}$ proximity implies λ proximity). Suppose Assumps. 1 and 4 hold for some $\Lambda \subseteq [0, \infty]$ with $0 \in \Lambda$. Then, for all $\lambda, \lambda' \in \Lambda$,

$$
|\lambda - \lambda'| \leq \frac{n-1}{n} \frac{(C_{n+2\lambda\epsilon_n}[\lambda \geq \lambda_n])}{C_{m}} \frac{1}{\|\nabla \pi(\hat{\beta}(0))\|_2} \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2
$$

\[\leq \frac{n-1}{n} \frac{(C_{n+2\lambda\epsilon_n}[\lambda \geq \lambda_n])}{C_{m}} \frac{1}{\|\nabla \pi(\hat{\beta}(0))\|_2} \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2
\]

(30)

Together, (29) and (30) imply

$$
|\Delta T_3| \leq \frac{1}{n} \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2 \left(\frac{B_{f,1}}{\epsilon_{n+\lambda\epsilon_n}[\lambda \geq \lambda_n]} + \frac{2B_{f,2}}{\epsilon_{n+\lambda\epsilon_n}[\lambda \geq \lambda_n]} + \frac{n-1}{n} \frac{B_{w,2}C_{\pi,2}}{\|\nabla \pi(\hat{\beta}(0))\|_2c_{m}} \right)
$$

\[+ \frac{1}{n} \|\lambda - \lambda'\|_2 \frac{1}{\epsilon_{n+\lambda\epsilon_n}[\lambda \geq \lambda_n]} \quad (31)
\]

F.1.4 Putting the pieces together

Our final lemma, proved in App. F.5, establishes that, due to the curvature of the loss, two estimators with similar training loss must also be close in Euclidean norm.

Lemma 27 (Loss curvature). Suppose that for some $c_{m} > 0$ and $0 \leq \lambda' < \lambda \leq \infty$ and all $i \in [n]$, $m(\mathbb{P}_{n,-i}, \cdot, \lambda)$ and $m(\mathbb{P}_{n,-i}, \cdot, \lambda')$ have $\nu_{m}(r) = c_{m}r^{2}$ gradient growth. Then

$$
\frac{c_{m}}{2} \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2^2 \leq \frac{1}{2} \sum_{i=1}^{n} (\ell(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda)) - \ell(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda')) = \frac{n-1}{n} (\ell(\mathbb{P}_{n}, \hat{\beta}(\lambda)) - \ell(\mathbb{P}_{n}, \hat{\beta}(\lambda'))).
$$

The advertised result (23) now follows by combining Lemma 27 with the loss difference decomposition (25) and the component bounds (27), (28), and (31).

F.2 Proof of Lemma 24: ACV-ACV approximation error

By Taylor’s theorem with Lagrange remainder,

$$
\text{ACV}(\lambda) - \bar{\text{ACV}}(\lambda) = \frac{1}{2n} \sum_{i=1}^{n} \nabla^2 \ell(z_i, \hat{\beta}(\lambda) - \hat{\beta}(\lambda))^2
$$
for some $s_i \in \mathcal{L}_i = \{t \hat{\beta}(\lambda) + (1 - t)\hat{\beta}_i(\lambda) : t \in [0, 1]\}$. Assump. 1 implies that $m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda)$ is c_m strongly convex and hence that $\nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda) \succ c_m I_d$. Therefore, we may apply the definition of the operator norm and Assump. 2 to find that

$$
|\tilde{\text{ACV}}(\lambda) - \hat{\text{ACV}}(\lambda)| \leq \frac{1}{n} \sum_{i=1}^{n} \|\nabla^2 \beta \ell(z_i, s_i)\|_{\text{op}} \|\hat{\beta}_i(\lambda) - \hat{\beta}(\lambda)\|_2^2 \\
= \frac{1}{n} \sum_{i=1}^{n} \|\nabla^2 \beta \ell(z_i, s_i)\|_{\text{op}} \frac{1}{m} \|m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda)^{-1}\| \nabla \ell(z_i, \hat{\beta}(\lambda)) \|_2^2 \\
\leq \frac{1}{n} \sum_{i=1}^{n} \|\nabla^2 \beta \ell(z_i, s_i)\|_{\text{op}} \frac{1}{m} \|\nabla \ell(z_i, \hat{\beta}(\lambda))\|_2^2 \\
\leq \frac{1}{n} \frac{B^t_{s_i, \lambda}}{2 + \frac{1}{n}}.
$$

F.3 Proof of Lemma 25: ΔT_3-bound

Fix any $\lambda, \lambda' \in \Lambda$. We first expand ΔT_3 into three terms:

$$
\Delta T_3 = \frac{1}{n} \sum_{i=1}^{n} \|\nabla \ell(z_i, \hat{\beta}(\lambda))\|_2^2 \|\nabla \ell(z_i, \hat{\beta}(\lambda'))\|_2^2 (\nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda)^{-1}(\nabla \ell(z_i, \hat{\beta}(\lambda)) - \nabla \ell(z_i, \hat{\beta}(\lambda'))) \\
+ \frac{1}{n} \sum_{i=1}^{n} \|\nabla \ell(z_i, \hat{\beta}(\lambda))\|_2^2 \|\nabla \ell(z_i, \hat{\beta}(\lambda'))\|_2^2 \nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda)^{-1} - \nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda'), \lambda)^{-1} \nabla \ell(z_i, \hat{\beta}(\lambda')) \\
+ \frac{1}{n} \sum_{i=1}^{n} \nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda)^{-1} \nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda'), \lambda)^{-1} \nabla \ell(z_i, \hat{\beta}(\lambda')) \\
\triangleq \Delta T_{31} + \Delta T_{32} + \Delta T_{33}.
$$

Precisely as in (28) we obtain

$$
|\Delta T_{31}| \leq \frac{1}{n} \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2 \frac{B^t_{i, \lambda}}{2 + \frac{1}{n}}.
$$

Furthermore, we may use Cauchy-Schwarz, the definition of the operator norm, Assumps. 1 and 3, and Assump. 2 with $(s, r) = (0, 2)$ to find

$$
|\Delta T_{32}| \leq \frac{1}{n} \sum_{i=1}^{n} \|\nabla \ell(z_i, \hat{\beta}(\lambda'))\|_2^2 \|\nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda)^{-1}\| \|\nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda'), \lambda)^{-1}\|_\text{op} \\
\cdot \|\nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda) - \nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda'), \lambda)||_\text{op} \\
\leq \frac{B^t_{i, \lambda}}{(s + \lambda \epsilon + \lambda' \epsilon) \Lambda \geq \lambda'} \frac{1}{n} \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2.
$$

Finally, Cauchy-Schwarz, the definition of the operator norm, Assumps. 1 and 4, and Assump. 2 with $(s, r) = (0, 2)$ yield

$$
|\Delta T_{33}| \leq \frac{1}{n} \|\nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda)^{-1}\| \|\nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda'), \lambda)^{-1}\|_\text{op} \\
\cdot \|\nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda) - \nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda'), \lambda)||_\text{op} \\
= \frac{1}{n} |\lambda - \lambda'| \|\nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda)^{-1}\|_\text{op} \frac{1}{n} \sum_{i=1}^{n} \|\nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda), \lambda)^{-1}\|_2 \|\nabla^2 \beta m(\mathbb{P}_{n,i}, \hat{\beta}(\lambda'), \lambda)^{-1}\|_2 \\
\leq \frac{1}{n} |\lambda - \lambda'| \frac{B^t_{i, \lambda}}{(s + \lambda \epsilon + \lambda' \epsilon), \Lambda \geq \lambda'} \frac{1}{n} \|\hat{\beta}(\lambda) - \hat{\beta}(\lambda')\|_2.
$$

We obtain the desired result by applying the triangle inequality and summing these three estimates.

F.4 Proof of Lemma 26: $|\lambda - \lambda'|$-bound

We begin with a lemma that allows us to rewrite a regularization parameter difference in terms of an estimator difference.

Lemma 28. Fix any $\lambda, \lambda' \in [0, \infty]$. If $\nabla m(\mathbb{P}_{n,i}, \cdot, \lambda')$ is absolutely continuous, then

$$
0 = (\lambda - \lambda') \nabla \beta \pi(\hat{\beta}(\lambda)) + \mathbb{E}[\nabla^2 \beta m(\mathbb{P}_{n}, S_{\lambda', \lambda'}, \lambda') (\hat{\beta}(\lambda) - \hat{\beta}(\lambda')) \\
= \frac{\lambda - \lambda'}{n} \nabla \ell(\mathbb{P}_{n}, \hat{\beta}(\lambda)) + \mathbb{E}[\nabla^2 \beta m(\mathbb{P}_{n}, S_{\lambda', \lambda'}, \lambda') (\hat{\beta}(\lambda) - \hat{\beta}(\lambda')).
$$

for $S_{\lambda', \lambda'}$ distributed uniformly on the set $\{t \hat{\beta}(\lambda) + (1 - t)\hat{\beta}(\lambda') : t \in [0, 1]\}$.

We write $\lambda \in \text{convex} \ [\text{Nesterov, 2008, Lem. 1}]$. Therefore, continuous by Assump. 4, we may apply Lemma 28 first to (λ', λ) and finally to $(0, \lambda)$ to obtain

$$
0 = \nabla_\beta m(P, \hat{\beta}(\lambda), \lambda, \lambda') = \nabla_\beta \ell(P, \hat{\beta}(\lambda)) + \lambda \nabla \pi(\hat{\beta}(\lambda))
$$

$$
= (\lambda - \lambda') \nabla_\beta \pi(\hat{\beta}(\lambda)) + \nabla_\beta m(P, \hat{\beta}(\lambda), \lambda')
$$

$$
= (\lambda - \lambda') \nabla_\beta \pi(\hat{\beta}(\lambda)) + (\nabla_\beta m(P, \hat{\beta}(\lambda), \lambda) - \nabla_\beta m(P, \hat{\beta}(\lambda'), \lambda'))
$$

$$
= (\lambda - \lambda') \nabla_\beta \pi(\hat{\beta}(\lambda)) + E[\nabla_\beta^2 m(P_n, S_{\lambda' \lambda}, \lambda')](\hat{\beta}(\lambda) - \hat{\beta}(\lambda'))
$$

$$
= \frac{\lambda - \lambda'}{\lambda} \nabla_\beta \ell(P, \hat{\beta}(\lambda)) + E[\nabla_\beta^2 m(P_n, S_{\lambda' \lambda}, \lambda')](\hat{\beta}(\lambda) - \hat{\beta}(\lambda'))
$$

by Taylor’s theorem with integral remainder.

Now fix any $\lambda, \lambda' \in \Lambda$. Since $\nabla_\beta m(P, \cdot, \cdot), \nabla_\beta m(P, \cdot, \cdot, 0)$, and $\nabla_\beta m(P, \cdot, \cdot, 0) = \nabla_\beta \ell(P, \cdot, \cdot)$ are absolutely continuous by Assump. 4, we may apply Lemma 28 first to (λ, λ'), then to $(\lambda, 0)$, and finally to $(0, \lambda)$ to obtain

$$
0 = \frac{\lambda - \lambda'}{\lambda} \nabla_\beta \ell(P, \hat{\beta}(\lambda)) + E[\nabla_\beta^2 m(P, S_{\lambda' \lambda}, \lambda')](\hat{\beta}(\lambda) - \hat{\beta}(\lambda'))
$$

$$
= \frac{\lambda - \lambda'}{\lambda} E[\nabla_\beta^2 \ell(P, S_{\lambda' \lambda}, 0)](\hat{\beta}(\lambda) - \hat{\beta}(0)) + E[\nabla_\beta^2 m(P, S_{\lambda' \lambda}, \lambda')](\hat{\beta}(\lambda) - \hat{\beta}(\lambda'))
$$

$$
= (\lambda - \lambda') E[\nabla_\beta^2 \ell(P, S_{\lambda' \lambda}, 0)] E[\nabla_\beta^2 m(P, S_{\lambda' \lambda}, \lambda')^{-1} \nabla_\beta \pi(\hat{\beta}(0))] + E[\nabla_\beta^2 m(P, S_{\lambda' \lambda}, \lambda')](\hat{\beta}(\lambda) - \hat{\beta}(\lambda'))
$$

where $S_{\lambda' \lambda}$ is distributed uniformly on the set $\{t \hat{\beta}(\lambda) + (1 - t) \hat{\beta}(\lambda') : t \in [0,1]\}$ and $S_{\lambda' \lambda}, S_{\lambda, \lambda'}$ are distributed uniformly on the set $\{\hat{\beta}(\lambda) + (1 - t) \hat{\beta}(0) : t \in [0,1]\}$. Rearranging and taking norms gives the identity

$$
|| \lambda - \lambda' || \nabla_\beta \pi(\hat{\beta}(0)) ||_2 = || E[\nabla_\beta^2 m(P, S_{\lambda, \lambda}, 0)] E[\nabla_\beta^2 \ell(P, S_{\lambda, \lambda}, 0)]^{-1} E[\nabla_\beta^2 m(P, S_{\lambda' \lambda}, \lambda')](\hat{\beta}(\lambda) - \hat{\beta}(\lambda')) ||_2.
$$

Our gradient growth assumption for the regularization parameter 0 implies that each $\ell(P, n, \cdot)$ is cm-strongly convex [Nesterov, 2008, Lem. 1]. Therefore,

$$
E[\nabla_\beta^2 \ell(P, S_{\lambda, \lambda}, 0)] = \frac{n}{n - 1} \frac{1}{n} \sum_{i=1}^{n} E[\nabla_\beta^2 \ell(P, n, S_{\lambda, \lambda}, i)] \succeq cm \frac{n}{n-1} I_d.
$$

Applying this inequality along with Cauchy Schwarz and Assump. 4 for λ and λ', we now conclude that

$$
|| \lambda - \lambda' || \leq \frac{n-1}{n} \frac{[C_{\gamma, 2} + \lambda C_{\gamma, 2} + (C_{\gamma, 2} + \lambda' C_{\gamma, 2})]}{cm} \frac{1}{\| \nabla \pi(\hat{\beta}(0)) \|_2} \| \hat{\beta}(\lambda) - \hat{\beta}(\lambda') \|_2.
$$

F.5 Proof of Lemma 27: Loss curvature

Fix any $\lambda, \lambda' \in \Lambda$ with $\lambda > \lambda'$ and $i \in [n]$, and consider the functions $\varphi_2 = m(P_n, \cdot, \cdot, \lambda')$ and $\varphi_1 = \frac{\lambda'}{\lambda} m(P_n, \cdot, \cdot, \lambda)$. The gradient growth condition in Assump. 1 implies that $m(P_n, \cdot, \cdot, \lambda')$ and $m(P_n, \cdot, \cdot, \cdot, \lambda)$ are cm-strongly convex. Hence, φ_2 admits a $\nu_{\varphi_2}(r) = \frac{2 \lambda}{\lambda'} r^2$ error bound, and φ_1 admits a $\nu_{\varphi_1}(r) = \frac{\lambda'}{\lambda} r^2$ error bound. The result now follows immediately from the optimizer comparison bound (4).

G Proof of Prop. 8

We write $E_n[z_i] \triangleq \frac{1}{n} \sum_{i=1}^{n} z_i$ to denote a sample average. Consider the Lasso estimator

$$
\hat{\beta}(\lambda) \triangleq \arg min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (\beta - z_i)^2 + \lambda |\beta| = \max(\bar{z} - \lambda, 0).
$$

Define $\epsilon_i = z_i - \bar{z}$. The leave-one-out mean $\bar{z}_{-i} = \frac{1}{n} \sum_{j \neq i} z_i$ is equal to $\bar{z} - \frac{\epsilon_i}{n}$. The IJ estimate $\hat{\beta}_{IJ}^{1}(\lambda)$ is given by

$$
\hat{\beta}_{IJ}^{1}(\lambda) = \begin{cases}
0 & \lambda \geq \bar{z} \\
\frac{\lambda}{\lambda' + \lambda} \bar{z} - \frac{\lambda}{\lambda' + \lambda} \lambda \geq \bar{z} \\
\lambda - \bar{z} & \text{else}.
\end{cases}
$$

The IJ approximate cross-validation estimate for this estimator is therefore given by

$$
2ACV^{IJ}(\lambda) = E_n[(z_i - \hat{\beta}_{IJ}^{1}(\lambda))^2] = \begin{cases}
\frac{\bar{z}^2 + 1}{(\lambda^2 + 1)(1 + \frac{1}{n})^2} & \lambda \geq \bar{z} \\
\frac{\lambda}{\lambda' + \lambda} \bar{z} - \frac{\lambda}{\lambda' + \lambda} \lambda \geq \bar{z} \\
\lambda - \bar{z} & \text{else}.
\end{cases}
$$
By construction of our dataset, \(\lambda \geq 0 > -\bar{z}_{\cdot i} \) for all \(i \). Now, the leave-one-out estimator of \(\beta \) is given by
\[
\hat{\beta}_{\cdot i}(\lambda) = \max \left(\bar{z} - \frac{n}{n-1} \lambda - \frac{1}{n-1} \epsilon_i, 0 \right),
\]
and the leave-one-out CV estimate is given by
\[
2\text{CV}(\lambda) = \mathbb{E}_n[(\bar{z} - z_i)^2] + (\bar{z} - \hat{\beta}(\lambda))^2
+ 2\mathbb{E}_n[(\hat{\beta}_{\cdot i}(\lambda) - \hat{\beta}(\lambda))z_i] + \mathbb{E}_n[(\hat{\beta}_{\cdot i}(\lambda) - \hat{\beta}(\lambda))^2]
= 1 + \min(\bar{z}, \lambda)^2
+ \mathbb{E}_n[\max\left(\bar{z} - \frac{n}{n-1} \lambda - \frac{1}{n-1} \epsilon_i, 0 \right) - (\max(\bar{z} - \lambda, 0)) \cdot (\bar{z} + \epsilon_i)]
+ \mathbb{E}_n[\max\left(\bar{z} - \frac{n}{n-1} \lambda - \frac{1}{n-1} \epsilon_i, 0 \right) - (\max(\bar{z} - \lambda, 0))^2].
\]
Evaluating these expressions at \(\lambda = \bar{z} \), we get \(\hat{\beta}_{\cdot i}(\bar{z}) = \max \left(-\frac{z_i}{n-\lambda}, 0 \right) \), so that
\[
2\text{ACV}^{1J}(\bar{z}) = \bar{z}^2 + 1,
2\text{CV}(\bar{z}) = 1 + \bar{z}^2 + \mathbb{E}_n[\max(-\frac{z_i}{n-\lambda}, 0) \cdot z_i]
+ \mathbb{E}_n[\max(-\frac{z_i}{n-\lambda}, 0)^2]
\]
and thus
\[
2(\text{ACV}^{1J}(\bar{z}) - \text{CV}(\bar{z}))
= \mathbb{E}_n[\max(-\frac{z_i}{n-\lambda}, 0) \cdot z_i] + \mathbb{E}_n[\max(-\frac{z_i}{n-\lambda}, 0)^2]
= \mathbb{E}_n[z_i^2 \cdot 1(z_i < 0)] \cdot \frac{n}{(n-1)^2}.
\]
Our dataset was constructed such that
\[
\mathbb{E}_n(\epsilon_i < 0) = 1/2
\mathbb{E}_n[\epsilon_i|\epsilon_i < 0] = \sqrt{2/\pi}
\mathbb{E}_n[\epsilon_i^2|\epsilon_i < 0] = 1
\mathbb{E}_n[z_i^2 \cdot 1(z_i < 0)] = \mathbb{E}_n[(\bar{z}^2 + 2\bar{z} \epsilon_i + \epsilon_i^2) \cdot 1(\epsilon_i < 0)]
= \frac{1}{2}(\bar{z}^2 - 2\bar{z} \sqrt{2/\pi} + 1),
\]
and thus
\[
\text{ACV}^{1J}(\bar{z}) - \text{CV}(\bar{z}) = \frac{n}{4(n-1)^2} \left(1 - 2\bar{z} \sqrt{2/\pi} + \bar{z}^2 \right).
\]
To make \(\lambda = \bar{z} \) the \(\text{ACV}^{1J} \) minimizing choice in this example (a condition we have not assumed thus far), it suffices to have \(\bar{z} \leq \sqrt{2/n} \). For the choice \(\bar{z} = \sqrt{2/n} \), we get
\[
\text{ACV}^{1J}(\bar{z}) - \text{CV}(\bar{z}) = \frac{n}{4(n-1)^2} \left(1 - \frac{4}{\sqrt{n\pi}} + \frac{2}{n} \right).
\]

H Proof of Prop. 9

We write \(\mathbb{E}_n[z_i] = \frac{1}{n} \sum_{i=1}^{n} z_i \) to denote a sample average. Consider the patched Lasso estimator
\[
\hat{\beta}(\lambda) \triangleq \arg\min_{\beta} \frac{1}{n} \sum_{i}(\beta - z_i)^2 + \lambda \min(\|\beta\| \frac{\delta}{2} + \|\beta\| \frac{\delta^2}{2\pi}) = \max\left(\bar{z} - \lambda, -\frac{\bar{z}}{1 + \lambda/\delta} \right).
\]
Define \(\epsilon_i = z_i - \bar{z} \). The leave-one-out mean is equal to \(\bar{z}_{-i} = \bar{z} - \frac{\epsilon_i}{n} \). For \(\epsilon_i/n > \bar{z} \), we have \(\hat{\beta}_{\cdot i}(\lambda) - \hat{\beta}(\lambda) = -\frac{\epsilon_i}{n-1} \) if \(\epsilon_i < 0 \) and \(\hat{\beta}_{\cdot i}(\lambda) - \hat{\beta}(\lambda) = -\frac{\epsilon_i}{n-1} \frac{1}{1 + \lambda/\delta} \) if \(\epsilon_i > 0 \). Considering left hand derivatives, we also have \(\frac{\partial}{\partial \lambda} \hat{\beta}_{\cdot i}(\lambda) - \hat{\beta}(\lambda) = -\frac{\epsilon_i}{n-1} \).
For $\lambda = \delta$ and $\varepsilon = 2\delta$, we get $\tilde{\beta}(\lambda) = \delta$, and thus, by our choice of dataset,

$$
\text{ACV}^{\text{L}}(\tilde{\varepsilon}) - \text{CV}(\tilde{\varepsilon}) = \frac{1}{n} \sum_{i=1}^{n} \left(\left(Z_i - \tilde{\beta}_{\lambda}^L(\lambda) \right)^2 - \left(Z_i - \tilde{\beta}_i(\lambda) \right)^2 \right)
= \frac{1}{n} \sum_{i=1}^{n} \left(2\delta + \epsilon_i - \delta + \frac{\epsilon_i}{n} \right)^2 \left(2\delta + \epsilon_i - \delta + \frac{\epsilon_i}{n} \right)^2 |\epsilon_i > 0
+ \frac{1}{n} \sum_{i=1}^{n} \left(2\delta + \epsilon_i - \delta + \frac{\epsilon_i}{n} \right)^2 \left(2\delta + \epsilon_i - \delta + \frac{\epsilon_i}{n} \right)^2 |\epsilon_i < 0
= \frac{1}{n} \sum_{i=1}^{n} \left(\delta + \epsilon_i \right)^2 \left(\delta + \epsilon_i \right)^2 \left(\delta + \epsilon_i \right)^2 |\epsilon_i > 0
+ O\left(\frac{1}{n^2} \right)
= \frac{\delta}{n} \sum_{i=1}^{n} (\epsilon_i |\epsilon_i > 0) \cdot \frac{1}{n} + O\left(\frac{1}{n^2} \right)
= \frac{\delta}{n} \sum_{i=1}^{n} (\epsilon_i |\epsilon_i > 0) \cdot \frac{1}{n} + O\left(\frac{1}{n^2} \right).
$$

I Proof of Thm. 10: ProxACV-CV assessment error

The optimization perspective adopted in this paper naturally points towards generalizations of the proximal estimator (13). In particular, stronger assessment guarantees can be provided for (regularized) higher-order Taylor approximations of the objective function. For example, for $p \geq 2$, we may define the p-th order approximation

$$
\text{ProxACV}^p_{\text{HO}}(\lambda) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell(z_i, \tilde{\beta}_{\lambda}^p(\lambda)) \quad \text{with} \quad \tilde{\beta}_{\lambda}^p(\lambda) \triangleq \arg\min_{\beta \in \mathbb{R}^d} \left\{ \ell_p(P_{n,i}, \beta; \tilde{\beta}(\lambda)) + \lambda \pi(\beta) \right\},
$$

which recovers ProxACV (12) and the ProxACV estimator (13) in the setting $p = 2$. We also define the regularized p-th order approximation

$$
\text{ProxACV}^p_{\text{RHO}}(\lambda) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell(z_i, \tilde{\beta}_{\lambda}^p(\lambda)) \quad \text{with} \quad \tilde{\beta}_{\lambda}^p(\lambda) \triangleq \arg\min_{\beta \in \mathbb{R}^d} \left\{ \ell_p(P_{n,i}, \beta; \tilde{\beta}(\lambda)) + \frac{\text{Lip} \left(\nabla^p \ell(P_{n,i}, \cdot) \right)}{p+1} \| \tilde{\beta}(\lambda) - \beta \|_2^{p+1} + \lambda \pi(\beta) \right\},
$$

where $\ell_p(P_{n,i}, \cdot; \tilde{\beta}(\lambda))$ is a p-th order Taylor expansion of the loss $\ell_p(P_{n,i}, \cdot)$ about $\tilde{\beta}(\lambda)$, that is, $\ell_p(\beta; \tilde{\beta}(\lambda)) \triangleq \sum_{k=0}^{p-1} \frac{1}{k!} \nabla^k f(\tilde{\beta}(\lambda))(\beta - \tilde{\beta}(\lambda))^{\otimes k}$. To analyze both, we will make use of the following assumptions which generalize Assump. 1c.

Assumption 1g (Curvature of proximal Taylor approximation). For some $p, q, c_m > 0$, all $i \in [n]$, and all λ in a given $\Lambda \subseteq [0, \infty]$, $\ell_p(P_{n,i}, \cdot; \lambda; \tilde{\beta}(\lambda)) + \lambda \pi(\beta)$ has $\pi(\lambda) = c_m r^q$ gradient growth.

Assumption 1h (Curvature of regularized proximal Taylor approximation). For some $p, q, c_m > 0$, all $i \in [n]$, and all λ in a given $\Lambda \subseteq [0, \infty]$, $\ell_p(P_{n,i}, \cdot; \lambda; \tilde{\beta}(\lambda)) + \frac{\text{Lip} \left(\nabla^p \ell(P_{n,i}, \cdot) \right)}{p+1} \| \tilde{\beta}(\lambda) - \beta \|_2^{p+1} + \lambda \pi(\beta)$ has $\pi(\lambda) = c_m r^q$ gradient growth.

Thm. 10 will then follow from the following more general statement, proved in App. I.1.

Theorem 29 (ProxACV$^p_{\text{HO}}$-CV and ProxACV$^p_{\text{RHO}}$-CV assessment error). If Assumps. 3c, 1d, and 1g hold for some $\Lambda \subseteq [0, \infty]$, then, for all $\lambda \in \Lambda$ and $i \in [n]$,

$$
\| \tilde{\beta}_{\lambda}^p(\lambda) - \tilde{\beta}_i(\lambda) \|_2^2 \leq \tilde{\kappa}_p \| \tilde{\beta}_i(\lambda) - \tilde{\beta}(\lambda) \|_2^2 \quad \text{with} \quad \tilde{\kappa}_p \triangleq \frac{C_{L\beta \lambda}^{p+1}}{p+1}. \quad (32a)
$$

If Assumps. 3c, 1d, and 1g hold for some $\Lambda \subseteq [0, \infty]$, then, for all $\lambda \in \Lambda$ and $i \in [n]$,

$$
\| \tilde{\beta}_{\lambda}^p(\lambda) - \tilde{\beta}_i(\lambda) \|_2^2 \leq 2\tilde{\kappa}_p \| \tilde{\beta}_i(\lambda) - \tilde{\beta}(\lambda) \|_2^2. \quad (32b)
$$

If Assumps. 2, 3c, 1d, and 1g hold for some $\Lambda \subseteq [0, \infty]$ and each $(s, r) \in \{(0, \frac{p+q-1}{(q-1)^2}), (1, \frac{2p}{(q-1)^2}), (1, \frac{p+q-1}{(q-1)^2})\}$, then, for all $\lambda \in \Lambda$,

$$
|\text{ProxACV}^p_{\text{HO}}(\lambda) - \text{CV}(\lambda)|
\leq \frac{1}{n} \frac{(\tilde{\kappa}_p)^2}{c_m q^2} \mathbf{B}^\ell \mathbf{I}_{\frac{p+q-1}{(q-1)^2}} + \frac{1}{2} \frac{(\tilde{\kappa}_p)^2}{c_m q^2} \mathbf{B}^\ell \mathbf{I}_{\frac{2p}{(q-1)^2}} + \frac{1}{n} \frac{(\tilde{\kappa}_p)^2}{c_m q^2} \mathbf{B}^\ell \mathbf{I}_{\frac{p+q-1}{(q-1)^2}} \quad \text{and} \quad (33a)
$$
If Assumps. 2, 3c, 1d, and 1h holds for Λ and each $(s,r) \in \{(0, \frac{r+q-1}{r+q-1}), (1, \frac{2p}{r+q-1}), (1, \frac{r+q-1}{r+q-1})\}$, then, for all $\lambda \in \Lambda$,

$$|\text{ProxACV}^RHO_p(\lambda) - \text{CV}(\lambda)| \leq \frac{1}{n} (\frac{1}{c_m-1})^2 B^2_{1,2} \frac{(2\kappa_p) r}{c_m-1} + \frac{1}{n} (\frac{1}{c_m-1})^2 B^2_{1,2} \frac{(2\kappa_p) r}{c_m-1} + \frac{1}{n} (\frac{1}{c_m-1})^2 B^2_{1,2} \frac{(2\kappa_p) r}{c_m-1}.$$

(33b)

Thm. 10 follows from Thm. 29 with $p = q = 2$ since Assump. 1c (with $0 \in \Lambda$) implies $\mu = c_m$ strong convexity for $\ell_2(\mathbb{P}_{n,-i}, \cdot; \beta(\lambda))$. Since π is convex, we further have μ strong convexity and hence $\nu(r) = \mu \nu^2$ gradient growth for $\ell_2(\mathbb{P}_{n,-i}, \cdot; \beta(\lambda)) + \lambda \pi(\cdot)$ for each $\lambda \in \Lambda$.

I.1 Proof of Thm. 29: ProxACVRHO-CV and ProxACVRHO-CV assessment error

I.1.1 Proof of (32a) and (32b): Proximity of ProxACVRHO, ProxACVRHO, and CV estimators

The proofs follow exactly as in Apps. B.1.2 and B.1.3 if we take $\varphi(x) = \ell(x)$, $\varphi_P(x; w) = \ell_P(x; w)$, $\varphi_0(x) = \pi(x)$, and $w = \beta(\lambda)$ and invoke Assumps. 3c, 1g, and 1h in place of Assumps. 3b, 1e, and 1f, respectively.

I.1.2 Proof of (33a) and (33b): Proximity of ProxACVRHO, ProxACVRHO, and CV

This proofs follow exactly as in follows directly from the proof contained in Apps. B.1.4 and B.1.5 if we substitute (32a) and (32b) for (16a) and (16b) respectively.

J Proof of Thm. 11: ProxACV$^{\text{LJ}}$-ProxACV assessment error

We will prove the following more detailed statement from which Thm. 11 immediately follows.

Theorem 30 (ProxACV$^{\text{LJ}}$-ProxACV assessment error). If Assump. 1c holds for $\Lambda \subseteq [0, \infty]$ with $0 \in \Lambda$, then, for each $\lambda \in \Lambda$,

$$\|\hat{\beta}_{i}^{\text{prox, LJ}}(\lambda) - \hat{\beta}_{i}^{\text{prox}}(\lambda)\|_2 \leq \frac{\|\nabla_\beta \ell(z_i, \hat{\beta}(\lambda))\|_{\text{op}} \|\nabla_\beta \ell(z_i, \hat{\beta}(\lambda))\|_2}{c_m \cdot n^2}$$

(34)

If, in addition, Assump. 2 holds for Λ and each $(s,r) \in \{(1,2), (2,2), (3,2)\}$, then

$$|\text{ProxACV}^{\text{LJ}}_p(\lambda) - \text{ProxACV}(\lambda)| \leq \frac{1}{n^2 \cdot c_m} B^2_{1,2} + \frac{1}{2n^2 \cdot c_m} B^2_{1,2} + \frac{1}{n \cdot c_m} B^2_{2,2}.$$

(35)

J.1 Proof of (34): Proximity of ProxACV$^{\text{LJ}}$ and ProxACV estimators

The concavity of the minimum eigenvalue, Jensen’s inequality, and Assump. 1c with $0 \in \Lambda$ imply that

$$\min\text{eig}(H_\ell) = \min\text{eig}(\frac{n}{1-n} \sum_{i=1}^n H_{\ell,i}) \geq \frac{n}{1-n} \min\text{eig}(H_{\ell,i}) \geq \frac{n}{1-n} c_m$$

for $H_\ell = \nabla^2_\beta \ell(\mathbb{P}_n, \hat{\beta}(\lambda))$ and $H_{\ell,i} = \nabla^2_\beta \ell(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda))$. Moreover, Assump. 1c with $0 \in \Lambda$ implies $\mu = c_m$ strong convexity for $\ell_2(\mathbb{P}_{n,-i}, \cdot; \beta(\lambda))$; since π is convex, we further have μ strong convexity and hence $\nu(r) = \mu \nu^2$ gradient growth for $\ell_2(\mathbb{P}_{n,-i}, \cdot; \beta(\lambda)) + \lambda \pi(\cdot)$ for each $\lambda \in \Lambda$. Hence, we may apply the Proximal Newton Comparison Lemma 20 to obtain

$$\|\hat{\beta}_{i}^{\text{prox, LJ}}(\lambda) - \hat{\beta}_{i}^{\text{prox}}(\lambda)\|_2 \leq \frac{1}{c_m} \|\nabla^2_\beta \ell(\mathbb{P}_n, \hat{\beta}(\lambda)) - \nabla^2_\beta \ell(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda))\|_{\text{op}} \|\hat{\beta}_{i}^{\text{prox}}(\lambda) - \hat{\beta}(\lambda)\|_2$$

(36)

To complete the bound, we note that $\hat{\beta}(\lambda) = \text{prox}_{H_{\ell,i}}(\hat{\beta}(\lambda) - H_{\ell,i}^{-1} \nabla_\beta \ell(\mathbb{P}_n, \hat{\beta}(\lambda)))$ and use the 1-Lipschitzness of the prox operator to conclude that

$$\|\hat{\beta}_{i}^{\text{prox}}(\lambda) - \hat{\beta}(\lambda)\|_2 \leq \|H_{\ell,i}^{-1} (\nabla_\beta \ell(\mathbb{P}_n, \hat{\beta}(\lambda)) - \nabla_\beta \ell(\mathbb{P}_{n,-i}, \hat{\beta}(\lambda)))\|_2 \leq \frac{1}{n \cdot c_m} \|\nabla_\beta \ell(z_i, \hat{\beta}(\lambda))\|_2.$$

(36)
J.2 Proof of (35): Proximity of ProxACV and ProxACV

Fix any $\lambda \in \Lambda$. To control the discrepancy between $\text{ProxACV}(\lambda)$ and $\text{ProxACV}^{IJ}(\lambda)$, we first rewrite the difference using Taylor’s theorem with Lagrange remainder:

$$
\text{ProxACV}(\lambda) - \text{ProxACV}^{IJ}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \ell(z_i, \hat{\beta}^\text{prox}(\lambda)) - \ell(z_i, \hat{\beta}^\text{prox,1}(\lambda)) \\
= \frac{1}{n} \sum_{i=1}^{n} \langle \nabla_\beta \ell(z_i, \hat{\beta}(\lambda)), \hat{\beta}^\text{prox}(\lambda) - \hat{\beta}^\text{prox,1}(\lambda) \rangle \\
+ \frac{1}{2} \nabla^2_\beta \ell(z_i, s_i) \left[\hat{\beta}^\text{prox}(\lambda) - \hat{\beta}^\text{prox,1}(\lambda) \right]_2^2
$$

for some $s_i \in \{t \hat{\beta}^\text{prox}(\lambda) + (1 - t) \hat{\beta}^\text{prox,1}(\lambda) : t \in [0, 1]\}$. We next use the mean-value theorem to expand each function $\langle \nabla_\beta \ell(z_i, \cdot), \hat{\beta}^\text{prox}(\lambda) - \hat{\beta}^\text{prox,1}(\lambda) \rangle$ around the full-data estimator $\hat{\beta}(\lambda)$:

$$
\text{ProxACV}(\lambda) - \text{ProxACV}^{IJ}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \langle \nabla_\beta \ell(z_i, \hat{\beta}(\lambda)), \hat{\beta}^\text{prox}(\lambda) - \hat{\beta}^\text{prox,1}(\lambda) \rangle \\
+ \frac{1}{2} \nabla^2_\beta \ell(z_i, s_i) \left[\hat{\beta}(\lambda) - \hat{\beta}^\text{prox,1}(\lambda) \right]_2^2
$$

for some $s_i \in \{t \hat{\beta}(\lambda) + (1 - t) \hat{\beta}^\text{prox,1}(\lambda) : t \in [0, 1]\}$. Finally, we invoke Cauchy-Schwarz, the definition of the operator norm, the estimator proximity results (15) and (34), and Assump. 2 to obtain

$$
|\text{ProxACV}(\lambda) - \text{ProxACV}^{IJ}(\lambda)| \leq \frac{1}{n} \sum_{i=1}^{n} \| \nabla_\beta \ell(z_i, \hat{\beta}(\lambda)) \|_2 \| \hat{\beta}^\text{prox}(\lambda) - \hat{\beta}^\text{prox,1}(\lambda) \|_2 \\
+ \frac{1}{2} \| \nabla^2_\beta \ell(z_i, s_i) \|_\text{op} \| \hat{\beta}(\lambda) - \hat{\beta}^\text{prox,1}(\lambda) \|_2
$$

K Proof of Thm. 12: ProxACV-CV selection error

The first claim follows immediately from the following more detailed version of Thm. 12.

Theorem 31 (Weak ProxACV proximity implies $\hat{\beta}$ proximity). Suppose Assumps. 1c and 3c hold for some $\Lambda \subseteq [0, \infty)$ and each $(s, r) \in \{(0, 2), (1, 2)\}$. Then, for all $\lambda', \lambda \in \Lambda$ with $\lambda' < \lambda$,

$$
\| \hat{\beta}(\lambda) - \hat{\beta}(\lambda') \|_2^2 \leq C_{1, \lambda, \lambda'} \left(\frac{4B_{\ell, 2}H_{\ell, 2}}{nC_m} + \frac{B_{\ell, 2}^2}{n^2C_m^2} + \text{ProxACV}(\lambda) - \text{ProxACV}(\lambda') \right),
$$

(37)

where $C_{1, \lambda, \lambda'} = \frac{2}{c_m \lambda - \lambda'} n^{-1} \frac{n-1}{n}$.

Proof Fix any $\lambda', \lambda \in \Lambda$ with $\lambda' < \lambda$. We begin by writing the difference in estimator training losses as a difference in ProxACV values plus a series of error terms:

$$
\ell(P_n, \hat{\beta}(\lambda)) - \ell(P_n, \hat{\beta}(\lambda')) = \text{ProxACV}(\lambda) - \text{ProxACV}(\lambda') + \Delta T_1 - \Delta T_2 - \Delta T_3
$$

(38)

for

$$
\Delta T_1 \triangleq \text{ProxACV}(\lambda) - \text{ProxACV}(\lambda') + \text{ProxACV}(\lambda') - \text{ProxACV}(\lambda)
$$

$$
\Delta T_2 \triangleq \frac{1}{n} \sum_{i=1}^{n} \langle \nabla_\beta \ell(z_i, \hat{\beta}(\lambda)), \hat{\beta}^\text{prox}(\lambda) - \hat{\beta}(\lambda) \rangle
$$

$$
\Delta T_3 \triangleq \frac{1}{n} \sum_{i=1}^{n} \langle \nabla_\beta \ell(z_i, \hat{\beta}(\lambda)), \hat{\beta}^\text{prox}(\lambda) - \hat{\beta}(\lambda) \rangle (\hat{\beta}(\lambda') - \hat{\beta}(\lambda))
$$

We will frequently use the bound (36) which follows from Assump. 1c and implies

$$
\| \hat{\beta}(\lambda) - \hat{\beta}^\text{prox}(\lambda) \|_2 \leq \frac{1}{n} \frac{1}{c_m} \| \nabla_\beta \ell(z_i, \hat{\beta}(\lambda)) \|_2
$$
for each $i \in [n]$.

To bound ΔT_1, we first employ Taylor’s Theorem with Lagrange remainder,

$$\text{ProxACV}(\lambda) - \hat{\text{ProxACV}}(\lambda) = \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\beta}^2 \ell(z_i, s_i) [\hat{\beta}_i^{\text{prox}}(\lambda) - \tilde{\beta}(\lambda)]^2$$

for some $s_i \in L_i = \{t \hat{\beta}(\lambda) + (1-t)\hat{\beta}_i(\lambda) : t \in [0, 1] \}$. Next we apply the definition of the operator norm, the bound (36), and Assump. 2 with $(s, r) = (1, 2)$

$$|\text{ProxACV}(\lambda) - \hat{\text{ProxACV}}(\lambda)| \leq \frac{1}{2n} \sum_{i=1}^{n} \|\nabla_{\beta}^2 \ell(z_i, s_i)\|_{\text{op}} \|\hat{\beta}_i^{\text{prox}}(\lambda) - \tilde{\beta}(\lambda)\|^2 \leq \frac{1}{2n} \sum_{i=1}^{n} \|\nabla_{\beta}^2 \ell(z_i, s_i)\|_{\text{op}} \left(\frac{1}{n^2} \|\nabla_{\beta} \ell(z_i, \tilde{\beta}(\lambda))\|^2 \right) \leq \frac{1}{n^2} \frac{1}{c_m} B^2_{1,2}$$

Since an identical bound holds for λ', we have

$$|\Delta T_1| \leq \frac{1}{n^2} \frac{1}{c_m} B^2_{1,2}.$$

To bound ΔT_2 and ΔT_3, we apply Cauchy-Schwarz, the triangle inequality, the bound (36), the arithmetic-geometric mean inequality, and Assump. 2 with $(s, r) = (0, 2)$ to find

$$|\Delta T_2| = \frac{1}{n} \frac{1}{n} \sum_{i=1}^{n} \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda)) - \nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda')) - \hat{\beta}_i^{\text{prox}}(\lambda) - \tilde{\beta}(\lambda)\| \leq \frac{1}{n} \sum_{i=1}^{n} \|\hat{\beta}_i^{\text{prox}}(\lambda) - \tilde{\beta}(\lambda)\| \leq \frac{1}{n} \sum_{i=1}^{n} \|\hat{\beta}_i^{\text{prox}}(\lambda) - \tilde{\beta}(\lambda)\|_2 \leq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{c_m} \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|^2 \leq \frac{1}{n} \frac{1}{c_m} B_{1,2}$$

and

$$|\Delta T_3| \leq \frac{1}{n} \sum_{i=1}^{n} \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda'))\|_2 \|\hat{\beta}_i^{\text{prox}}(\lambda) - \tilde{\beta}(\lambda)\|_2 \leq \frac{1}{n} \frac{1}{c_m} \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda))\|_2 \|\nabla_{\beta} \ell(z_i, \hat{\beta}(\lambda'))\|_2 \leq \frac{1}{n} \frac{1}{c_m} B_{1,2}.$$

The advertised result (37) now follows by combining Lemma 27 with the loss difference decomposition (38) and the component $\Delta T_1, \Delta T_2$, and ΔT_3 bounds. □

The second claim in Thm. 12 follows from Thm. 31 and the following lemma.

Lemma 32. If Assumps. 1c, 2, and 3c hold for some $\Lambda \subseteq [0, \infty)$ and each $(s, r) \in \{ (0, 3), (1, 3), (1, 4) \}$. If $\lambda_{\text{ProxACV}} \in \arg \min_{\lambda \in \Lambda} \text{ProxACV}(\lambda)$ and $\lambda_{\text{CV}} \in \arg \min_{\lambda \in \Lambda} \text{CV}(\lambda)$, then

$$0 \leq \text{ProxACV}(\lambda_{\text{CV}}) - \text{ProxACV}(\lambda_{\text{ACV}}) \leq \frac{C_{1,2} (1 - \frac{1}{\sqrt{n}})}{c_m} + \frac{B_{1,2} \sqrt{n}}{1 + 4n^2 c_m^2}.$$

Proof. Since λ_{CV} minimizes CV and λ_{ProxACV} minimizes ProxACV,

$$0 \leq \text{ProxACV}(\lambda_{\text{CV}}) - \text{ProxACV}(\lambda_{\text{ProxACV}}) \leq \| \text{ProxACV}(\lambda_{\text{CV}}) - \text{ProxACV}(\lambda_{\text{ProxACV}}) \|.$$
and a straightforward calculation shows
\[
\hat{\beta}(\lambda) = \begin{cases}
\bar{z} - \lambda & \text{if } \bar{z} > \lambda \\
\bar{z} + \lambda & \text{if } \bar{z} < -\lambda \\
0 & \text{otherwise}
\end{cases} \quad \text{and} \quad \hat{\beta}_i(\lambda) = \begin{cases}
\bar{z}_i - \lambda & \text{if } \bar{z}_i > \lambda \\
\bar{z}_i + \lambda & \text{if } \bar{z}_i < -\lambda \\
0 & \text{otherwise}
\end{cases}
\]
for each \(i \in [n] \). Hence, for each \(i \), \(\hat{\beta}_i(0) = \bar{z}_i \),
\[
\hat{\beta}_i(\bar{z}) = \begin{cases}
-\frac{1}{n} z_i & \text{if } 0 > z_i \\
\bar{z}_i + \bar{z} & \text{if } 2n\bar{z} < z_i, \quad \text{and} \quad \hat{\beta}_i(\bar{z}) - z_i = \begin{cases}
-\frac{n+1}{n} z_i & \text{if } 0 > z_i \\
\bar{z}_i - z_i + \bar{z} & \text{if } 2n\bar{z} < z_i.
\end{cases}
\end{cases}
\]

Let \(C_1 = \{ i \in [n] : z_i \leq 0 \} \), \(C_2 = \{ i \in [n] : z_i > 2\sqrt{2n} = 2n\bar{z} \} \) and \(C_3 = \{ i \in [n] : z_i \notin C_1 \cup C_2 \} \). We have selected our dataset so that \(C_2 \) is empty. Therefore
\[
2\text{ProxACV}(\bar{z}) = \frac{1}{n} \sum_{i \in C_1} (\frac{n+1}{n})^2 z_i^2 + \frac{1}{n} \sum_{i \in C_2} z_i^2 = \frac{(n+1)^2}{n} \frac{1}{n} \sum_{i=1}^n z_i^2 - \left(\frac{2}{n} + \frac{1}{n^2} \right) \frac{1}{n} \sum_{i \in C_3} z_i^2.
\]

Meanwhile,
\[
2\text{ProxACV}(0) = \frac{1}{n} \sum_{i=1}^n (\bar{z}_i - z_i)^2 \\
= \frac{1}{n} \sum_{i=1}^n (\bar{z} - (1 + 1/n)\bar{z})^2 + (1 + 1/n)^2 (\bar{z} - z_i)^2 \\
= \frac{1}{n^2} \bar{z}^2 + \frac{(n+1)^2}{n^2} \frac{1}{n} \sum_{i=1}^n z_i^2 - \frac{(n+1)^2}{n^2} \bar{z}^2 \\
= \frac{(n+1)^2}{n^2} \frac{1}{n} \sum_{i=1}^n z_i^2 - (1 + \frac{2}{n})\bar{z}^2.
\]

Hence,
\[
2\text{ProxACV}(0) - 2\text{ProxACV}(\bar{z}) = \left(\frac{2}{n} + \frac{1}{n^2} \right) \frac{1}{n} \sum_{i \in C_3} z_i^2 - (1 + \frac{2}{n})\bar{z}^2 = \left(\frac{2}{n} + \frac{1}{n^2} \right) \frac{\bar{z}^2}{2} - (1 + \frac{2}{n})\bar{z}^2 = \frac{5}{n} \bar{z}^2.
\]

M Additional Experiment Details

M.1 ProxACV versus ACV and ACVIL

This section provides additional experimental details for the experiment of Sec. 5.1. In this experiment, we use the exact experimental setup and code of [Stephenson and Broderick, 2019, App.F] with a modified number of datapoints \((n = 150)\). Specifically, we employ an \(\ell_1 \) regularized logistic regression objective with 150 feature coefficients plus an intercept coefficient. The data matrix of covariates is generated with i.i.d. \(N(0,1) \) entries, and binary labels for each datapoint are generated independently from a logistic regression model with ground truth \(\beta^* \) having its first five entries drawn i.i.d. \(N(0,1) \) and the rest set to zero. We solve the proximal Newton steps for \text{ProxACV} using FISTA ?.

We compare with the non-smooth ACV and ACVIL extensions studied by [Obuchi and Kabashima, 2016, 2018, Rad and Maleki, 2019, Stephenson and Broderick, 2019, Wang et al., 2018] and defined by restricting \(\hat{\beta}_i(\lambda) \) and \(\hat{\beta}^\text{IL}_i(\lambda) \) to have support only on \(\hat{S} = \text{support}(\hat{\beta}(\lambda)) \) and setting
\[
[\hat{\beta}_i(\lambda)]^S = [\hat{\beta}(\lambda)]^S + \frac{1}{n} [H_{i,1}^S, S]^{-1} [\nabla_{\beta \ell}(z_i, \hat{\beta}(\lambda))]^S
\]
\[
[\hat{\beta}^\text{IL}_i(\lambda)]^S = [\hat{\beta}(\lambda)]^S + \frac{1}{n} [H_{i,1}^S, S]^{-1} [\nabla_{\beta \ell}(z_i, \hat{\beta}(\lambda))]^S,
\]
where \(X^S \) denotes the submatrix of \(X \) with column indices in \(\hat{S} \), where \(H_{\ell} \) and \(H_{i,1} \) are given by (14) and (13), respectively.

M.2 ProxACV Speed-up

This section provides additional experimental details for the experiment of Sec. 5.2. For this experiment, we employed the standard graphical Lasso objective,
\[
m(P_n, \beta, \lambda) = -\log \det \beta + \text{tr}(\beta S) + \lambda \sum_{j,k=1}^p |\beta_{jk}|,
\]
\[
m(P_{n-1}, \beta, \lambda) = -\log \det \beta + \text{tr}(\beta S_{-1}) + \lambda \sum_{j,k=1}^p |\beta_{jk}|,
\]
where \(\beta \) is now a positive-definite matrix in \(\mathbb{R}^{p \times p} \),
\[
S = \frac{1}{n-1} \sum_{i=1}^{n} (z_i - \mu)(z_i - \mu)^T, \quad S_{-i} = \frac{1}{n-1} \sum_{j \neq i} (z_j - \mu_{-i})(z_j - \mu_{-i})^T,
\]
for \(\mu = \frac{1}{n} \sum_{i=1}^{n} z_i \), and \(\mu_{-i} = \frac{1}{n-1} \sum_{j \neq i} z_j \).