Draft Genome Sequence of “Candidatus Methylacidiphilum kamchatkense” Strain Kam1, a Thermoacidophilic Methanotrophic Verrucomicrobiun

Helge-André Erikstad,a, Nils-Kåre Birkelanda,b

Department of Biology, University of Bergen, Bergen, Norway; Centre for Geobiology, University of Bergen, Bergen, Norway

“Candidatus Methylacidiphilum kamchatkense” strain Kam1 is an aerobic methane-oxidizing thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. It was recovered from an acidic geothermal site in Uzon Caldera, Kamchatka, Russian Federation. Its genome possesses three complete pmoCA B gene clusters encoding particulate methane monooxygenase enzymes and a complete Calvin-Benson-Bassham cycle for carbon assimilation.

Received 19 January 2015 Accepted 28 January 2015 Published 5 March 2015

Citation Erikstad H-A, Birkeland N-K. 2015. Draft genome sequence of “Candidatus Methylacidiphilum kamchatkense” strain Kam1, a thermoacidophilic methanotrophic verrucomicrobiun. Genome Announc 3(2):e00065-15. doi:10.1128/genomeA.00065-15.

ACKNOWLEDGMENTS

This work was supported by the Research Council of Norway (grant 204797).

We are grateful to the Lifeportal at the University of Oslo for providing access to bioinformatics services.

REFERENCES

1. Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT. 2014. Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32:596–614. http://dx.doi.org/10.1016/j.biotechadv.2014.03.011.
2. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK. 2008. Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304. http://dx.doi.org/10.1073/pnas.0704162105.

3. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882. http://dx.doi.org/10.1038/nature06411.

4. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ. 2007. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878. http://dx.doi.org/10.1038/nature06222.

5. Op den Camp HJ, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MS, Birkeland NK, Pol A, Dunfield PF. 2009. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306. http://dx.doi.org/10.1111/j.1758-2229.2009.00022.x.

6. Anvar SY, Frank J, Pol A, Schmitz A, Kraaijeveld K, den Dunnen JT, Op den Camp HJ. 2014. The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genomics 15:914. http://dx.doi.org/10.1186/1471-2164-15-914.

7. Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M. 2008. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26. http://dx.doi.org/10.1186/1745-6150-3-26.

8. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. http://dx.doi.org/10.1099/ijs.0.64483-0.

9. Erikstad HA, Jensen S, Keen TJ, Birkeland NK. 2012. Differential expression of particulate methane monoxygenase genes in the verrucomicrobial methanotroph “Methylacidiphilum kamchatkense” Kam1. Extremophiles 16:405–409. http://dx.doi.org/10.1007/s00792-012-0439-y.

10. Khadem AF, Pol A, Wieczerzek A, Mohammadi SS, Francois KJ, Stunnenberg HG, Jetten MS, Op den Camp HJ. 2011. Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446. http://dx.doi.org/10.1128/JB.00407-11.