Abel rings and super-strongly clean rings

Yinchun Qu · Junchao Wei

Received: 11.IV.2013 / Last revision: 10.XII.2013 / Accepted: 12.XII.2013

Abstract In this note, we first show that a ring R is Abel if and only if the 2×2 upper triangular matrix ring $(\begin{array}{cc} R & R \\ 0 & R \end{array})$ over R is quasi-normal. Next, we give the notion of super-strongly clean ring (that is, an Abel clean ring), which is inbetween uniquely clean rings and strongly clean rings. Some characterizations of super-strongly clean rings are given.

Keywords Abel rings · quasi-normal rings · clean rings · super-strongly clean rings · strongly exchange rings

Mathematics Subject Classification (2010) 16A30 · 16A50 · 16E50 · 16D30

All rings considered in this paper are associative rings with identity. Let R be a ring, write $E(R)$, $U(R)$, $J(R)$ and $Z(R)$ to denote the set of all idempotents, the set of units, the Jacobson radical and the center of R, respectively.

A ring R is called Abel if $E(R) \subseteq Z(R)$. The study of Abel rings seems to originate from [6]. In the next fifty-five years many scholars have studied Abel rings such as [1], [4], [5], [7], [9], [10] and [11]. A ring R is called quasi-normal if $eR(1-e)Re = 0$, for each $e \in E(R)$. Clearly, Abel rings are quasi-normal, but the converse is not true in general by [10].

According to [7], a ring R is called exchange if for each $a \in R$ there exists $e \in E(R)$ such that $e = ab$ and $1 - e = (1 - a)c$, for some $b, c \in R$ and R is said to be:

1. clean if, for each $a \in R$, $a = u + e$ for some $u \in U(R)$ and $e \in E(R)$;
2. uniquely clean if the representation of a in (1) is unique;

Yinchun Qu
Wuxi Institute of Technology,
Wuxi, 214073, P.R. China

Junchao Wei
School of Mathematics,
Yangzhou University,
Yangzhou, 225002, P.R. China
E-mail: jcweiyz@126.com
strongly clean if $ue = eu$ holds in the representation of a mentioned above (1). In [7], it is shown that clean rings are exchange, but the converse is not true unless R is Abel.

In this note we introduce two new members of the clean family, that is super-strongly clean rings and superclean rings, the relations among these rings are discussed.

1 Some characterizations of Abel rings

Theorem 1.1 A ring R is Abel if and only if $S_2(R) = \begin{pmatrix} R & R \\ 0 & R \end{pmatrix}$ is quasi-normal.

Proof. First, we assume that R is Abel and $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in E(S_2(R))$. Then

$$\begin{align*}
a^2 &= a, \\
c^2 &= c, \\
b &= ab + bc. \tag{1.3}
\end{align*}$$

Now, for any $B = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix}, C = \begin{pmatrix} u & v \\ 0 & w \end{pmatrix} \in S_2(R)$, one has

$$AB(1 - A)CA = \begin{pmatrix} ax(1-a)ua & ax(1-a)ub + ax(1-a)vc \\
0 & -axbwc + ay(1-c)wc + bz(1-c)wc \\
& cz(1-c)wc \end{pmatrix}. \tag{1.4}$$

Since R is Abel, (1.1), (1.2) and (1.3) imply $a, c \in Z(R)$. Hence

$$ax(1-a)ua = ax(1-a)ub = ax(1-a)vc = 0,$$

$$cz(1-c)wc = ag(1-c)wc = bz(1-c)wc = 0.$$

By (1.3), one gets

$$axbwc = ax(ab + bc)wc = axabwc + axbcwc = axbwc + axbwc \tag{1.5}$$

this gives

$$axbwc = 0.$$

Thus $AB(1 - A)CA = 0$ and so $S_2(R)$ is quasi-normal.

Conversely, assume that $S_2(R)$ is quasi-normal and $e \in E(R)$. Then $\begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix} \in E(S_2(R))$, so for each $x \in R$, one has

$$\begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -e \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix} = 0$$

that is, $\begin{pmatrix} 0 & ex(1-e) \\ 0 & 0 \end{pmatrix} = 0$. Thus $ex(1-e) = 0$, for each $x \in R$, it follows that $eR(1-e) = 0$, for each $e \in E(R)$. Using $1-e$ instead of e, one obtains that $(1-e)Re = 0$, this gives $ae = eae = ea$, for each $a \in R$. Hence R is Abel. \quad \square
Abel rings and super-strongly clean rings

[10, Theorem 2.9] implies that a ring \(R \) is quasi-normal if and only if \(T_2(R) = \{ \left(\begin{array}{cc} a & b \\ 0 & a \end{array} \right) | a, b \in R \} \) is quasi-normal. Hence, by Theorem 1.1, we have the following corollary.

Corollary 1.2 A ring \(R \) is Abel if and only if

\[
TW_4(R) = \left\{ \left(\begin{array}{ccc} a_1 & a_2 & a_4 \\ 0 & a_3 & a_6 \\ 0 & 0 & a_1 \\ 0 & 0 & 0 \end{array} \right) | a_1, a_2, a_3, a_4, a_5, a_6 \in R \right\}
\]

is quasi-normal.

Proposition 1.3 A ring \(R \) is Abel if and only if \(T_2(R) \) is Abel.

Proof. Let \(R \) be an Abel ring and \(A = \left(\begin{array}{cc} a & b \\ 0 & a \end{array} \right) \in E(T_2(R)) \). Then

\[a^2 = a\]

(1.6)

and

\[b = ab + ba.\]

(1.7)

Since \(R \) is Abel, (1.6) implies \(a \in Z(R) \). Hence, by (1.7), one gets \(b = ab + ba \) and \(ab = a^2b + a^2b = ab + ab \), this gives \(ab = 0 \) and so \(b = 0 \).

Now, for any \(B = \left(\begin{array}{cc} x & y \\ 0 & x \end{array} \right) \in T_2(R) \), one has

\[AB = \left(\begin{array}{cc} ax & ay \\ 0 & ax \end{array} \right) = \left(\begin{array}{cc} xa & ya \\ 0 & xa \end{array} \right) = \left(\begin{array}{cc} x & y \\ 0 & x \end{array} \right) \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right) = BA.
\]

Thus \(T_2(R) \) is Abel. The converse is clear. \(\square \)

Corollary 1.4 A ring \(R \) is Abel if and only if

\[
W_4(R) = \left\{ \left(\begin{array}{ccc} a_1 & a_2 & a_4 \\ 0 & a_1 & a_4 \\ 0 & 0 & a_3 \\ 0 & 0 & 0 \end{array} \right) | a_1, a_2, a_3, a_4, a_5, a_6 \in R \right\}
\]

is quasi-normal.

Proof. It follows from Corollary 1.4 and the fact that \(TW_4(R) \cong W_4(R) \). \(\square \)
2 Super-strongly clean rings

Let R be a ring and $a \in R$. Recall that a is said to be:

1. exchange if there exists $e \in E(R)$ such that $e \in aR$ and $1 - e \in (1-a)R$;
2. clean if $a = u + e$, for some $u \in U(R)$ and $e \in E(R)$;
3. uniquely clean if the representation of (2) is unique;
4. strongly clean if a has a representation as (2) such that $ea = e$;
5. strongly exchange if there exists $e \in E(R)$ such that $e = ab = ba$ and $1 - e = (1-a)c = c(1-a)$, for some $b, c \in R$.

A ring R has the property P if all elements of R have it, where P refers to exchange, clean, uniquely clean, strongly clean and strongly exchange.

An element a of R is called super-strongly clean if a is clean and $ea = e$ whenever $a = u + e$, for any $u \in U(R)$ and $e \in E(R)$. A ring R is called super-strongly clean if every element of R is super-strongly clean. Clearly, if R is a clean Abel ring, then R is super-strongly clean.

Lemma 2.1 The following conditions are equivalent for a ring R:

(i) R is Abel;
(ii) Every idempotent element of R is super-strongly clean.

Proof. For $e \in E(R)$, one has that $e = (2e - 1) + (1 - e)$, hence e is a clean. Thus (i) \implies (ii) is trivial.

(ii) \implies (i) Let $e \in E(R)$ and $a \in R$. Write $u = eae - ea + 1 - 2e$ and $g = ea - eae + e$, then $ue^2 = 1$, $g \in E(R)$ and $1 - e = u + g$. By (ii), one has $ug = gu$, this implies $ea = eae$, thus $e(1-e) = 0$, for each $a \in R$ and so R is Abel. \square

By Lemma 2.1, we have the following theorem.

Theorem 2.2 R is a super strongly clean ring if and only if R is an Abel clean ring.

By Theorem 2.2 and [8, Lemma 4], we have the following corollary.

Corollary 2.3 Uniquely clean rings are super-strongly clean.

The following example illustrates that the converse of Corollary 2.3 is not true in general.

Example 2.1 Let $R = \mathbb{Z}_5$. Then $U(R) = \{[1],[2],[3],[4]\}$ and $E(R) = \{[0],[1]\}$. Since $[0] = [4] + [1]; [1] = [1] + [0]; [2] = [1] + [1]; [3] = [2] + [1]; [4] = [3] + [1] = [4] + [0]$, R is a clean ring but not uniquely clean. Since R is a commutative ring, by Theorem 2.2, R is super-strongly clean.

Lemma 2.4 If R is an Abel exchange ring, then R is strongly exchange.

Proof. Let $a \in R$. Since R is an exchange ring, there exists $e \in E(R)$ such that $e = ax$ and $1 - e = (1-a)y$, for some $x, y \in R$. Let $b = xe$ and $c = y(1-e)$, then $e = ab$ and $1 - e = (1-a)c$. Clearly, $b = be = bab$. Write $g = ba$, then $g = g^2$ and $g = ba = (be)a$. Since R is Abel, $g = bae = ge$. Since $e = ee = a(ba)b = a(ba)b = gab = gab = ge$, $g = e$, that is $e = ab = ba$. Similarly, one can show that $1 - e = (1-a)c = c(1-a)$. Thus R is strongly exchange. \square
By Lemma 2.4, Theorem 2.2, [3] and [7] one has the following corollary.

Corollary 2.5 Super-strongly clean rings are strongly clean.

Recall that a ring R is π-regular (strongly π-regular [2]) if, for each $a \in R$, there exists $n = n(a) \geq 1$ such that $a^n \in a^nRa^n$ ($a^n \in a^{n+1}R$).

The following example illustrates that the converse of Corollary 2.5 is not true in general.

Example 2.2 Let F be a field and $R = \left(\begin{array}{cc} F & F \\ 0 & F \end{array} \right)$. Let $0 \neq A = \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \in R$.

Case 1. If $a = c = 0$, then $A^2 = 0 \in A^3R$.

Case 2. If $a \neq 0$ and $c = 0$, then $A = A^2B$, where

$$B = \left(\begin{array}{cc} a^{-1} & a^{-2}b - a^{-1}b \\ 0 & 1 \end{array} \right).$$

Case 3. If $a \neq 0$ and $c \neq 0$, then $A \notin U(R)$ and $A = A^2B$ where $B = \left(\begin{array}{cc} 1 & 1 \\ 0 & c^{-1} \end{array} \right)$.

Thus R is a strongly π-regular ring. By [2], R is strongly clean. Since R is not Abel, by Theorem 2.2, R is not super-strongly clean.

By Theorem 2.2 and [7], one has the following corollary.

Corollary 2.6 R is a super-strongly clean ring if and only if R is an Abel exchange ring.

A clean ring R is called superclean if R is also a quasi-normal ring. Clearly, super-strongly clean rings are superclean.

Lemma 2.7 R is a clean ring if and only if $S_2(R)$ is a clean ring.

Proof. First assume that R is clean and $A = \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \in S_2(R)$. Since R is clean, $a = u+f, c = v+g$ for some $u, v \in U(R)$ and $f, g \in E(R)$. Clearly, $A = \left(\begin{array}{cc} u & b \\ 0 & v \end{array} \right) + \left(\begin{array}{cc} f & 0 \\ 0 & g \end{array} \right)$,

where $\left(\begin{array}{cc} u & b \\ 0 & v \end{array} \right) \in U(S_2(R))$ and $\left(\begin{array}{cc} f & 0 \\ 0 & g \end{array} \right) \in E(S_2(R))$. Thus $S_2(R)$ is clean.

Next assume that $S_2(R)$ is clean and $a \in R$. Then

$$\left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array} \right) = \left(\begin{array}{cc} u & w \\ 0 & v \end{array} \right) + \left(\begin{array}{cc} f & h \\ 0 & g \end{array} \right),$$

where $\left(\begin{array}{cc} u & w \\ 0 & v \end{array} \right) \in U(S_2(R))$ and $\left(\begin{array}{cc} f & h \\ 0 & g \end{array} \right) \in E(S_2(R))$. By computing, one has $a = u + f$, where $u \in U(R)$ and $f \in E(R)$. Hence R is clean. □

By Theorem 1.1, Theorem 2.2 and Lemma 2.7, we have the following theorem.
Theorem 2.8
R is super-strongly clean if and only if $S_2(R)$ is superclean.

Remark 2.1
Clearly, for any ring R, $S_2(R)$ is not Abel, hence Theorem 2.2 and Theorem 2.8 imply that superclean rings need not be super-strongly clean. Therefore superclean rings are proper generalization of super-strongly clean rings.

A natural question is that: *Is any superclean ring also strongly clean?*

Proposition 2.9
Let F be a field. Then $R = \begin{pmatrix} F & F & F \\ F & F & 0 \\ 0 & 0 & F \end{pmatrix}$ is strongly π-regular and so R is strongly clean.

Proof. Let $0 \neq A = \begin{pmatrix} a & b & c \\ 0 & d & s \\ 0 & 0 & t \end{pmatrix} \in R$. We shall divide the following several cases to prove:

- **Case 1.** If $a = d = t = 0$, then $A^3 = 0$ and so $A^3 = A^4$.
- **Case 2.** If $a = d = 0$ and $t \neq 0$, then $A^2 = \begin{pmatrix} 0 & 0 & bs + ct \\ 0 & 0 & st \\ 0 & 0 & t^2 \end{pmatrix}$ and $A^3 = \begin{pmatrix} 0 & 0 & bst + ct^2 \\ 0 & 0 & st^2 \\ 0 & 0 & t^3 \end{pmatrix}$, hence $A^2 = A^3 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & t^{-1} \end{pmatrix}$.
- **Case 3.** If $a = t = 0$ and $d \neq 0$, then $A^2 = A^3 \begin{pmatrix} 0 & 0 & 0 \\ 0 & d^{-1} & 0 \\ 0 & 0 & d^{-1} \end{pmatrix}$.
- **Case 4.** If $a = 0$ and $dt \neq 0$, then $A = A^2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & d^{-1} & -d^{-1}st^{-1} \\ 0 & 0 & t^{-1} \end{pmatrix}$.
- **Case 5.** If $a \neq 0$ and $d = t = 0$, then $A^2 = A^3 \begin{pmatrix} a^{-1} & 0 & 0 \\ 0 & a^{-1} & 0 \\ 0 & 0 & a^{-1} \end{pmatrix}$.
- **Case 6.** If $ad \neq 0$ and $t = 0$, then
 \[
 A = A^2 \begin{pmatrix} a^{-1} & -a^{-1}bd^{-1} & -a^{-1}bd^{-1}s + a^{-2}c - a^{-2}bs \\ 0 & d^{-1} & d^{-2}s \\ 0 & 0 & 0 \end{pmatrix}.
 \]
- **Case 7.** If $at \neq 0$ and $d = 0$, then
 \[
 A = A^2 \begin{pmatrix} a^{-1} & -a^{-2}b - a^{-1}ct^{-1} - a^{-2}bst^{-1} \\ 0 & 0 & 0 \\ 0 & 0 & t^{-1} \end{pmatrix}.
 \]
- **Case 8.** If $adt \neq 0$, then $A \in U(R)$ and $A = A^2A^{-1}$.

Thus R is strongly π-regular. \Box
By [10, P1858], one knows that the ring appeared in Proposition 2.9 is not quasi-normal, hence it is not superclean. Thus there exists a strongly clean ring which is not superclean.

It is easy to show that a ring R is clean if and only if $T_2(R)$ is clean. Hence, by [10, Theorem 2.9], we have the following proposition.

Proposition 2.10 R is a superclean ring if and only if $T_2(R)$ is a superclean ring.

According to [10, Proposition 4.1], a quasi-normal ring R is clean if and only if R is exchange. Hence one has the following proposition.

Proposition 2.11 R is a superclean ring if and only if R is a quasi-normal exchange ring.

Proposition 2.12 If R is a superclean ring then $R/J(R)$ is super-strongly clean.

Proof. Since R is superclean, R is clean and quasi-normal, this implies idempotents can be lifted modulo $J(R)$. Let $\bar{a} \in E(R)$ where $\bar{R} = R/J(R)$. Then, there exists $e \in E(R)$ such that $e - a \in J(R)$. Since R is quasi-normal, $eR(1 - e)Re = 0$, this implies $aR(1 - a)Ra = 0$. Since R is semiprime, $aR(1 - a) = 0$, this gives \bar{R} is Abel. Hence $R/J(R) = \bar{R}$ is super-strongly clean because \bar{R} is clean. ☐

The following example illustrates the converse of Proposition 2.12 is not true in general.

Example 2.3 Let F be a field and $R = \begin{pmatrix} F & F & F \\ 0 & F & F \\ 0 & 0 & F \end{pmatrix}$. Clearly, $J(R) = \begin{pmatrix} 0 & F \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $R/J(R)$ is a super-strongly clean ring. Since R is not quasi-normal, R is not superclean by Proposition 2.12.

Finally, we give a characterization of local rings.

Proposition 2.13 R is a local ring if and only if R is a clean ring and $R/J(R)$ has no nonzero zero divisors.

Proof. The necessity is clear.

The sufficiency: let $e \in E(R)$, then in $\bar{R} = R/J(R)$, $e(1 - \bar{e}) = \bar{0}$, by hypothesis, $\bar{e} = 0$ or $1 - \bar{e} = 0$, this gives $e \in J(R)$ or $1 - e \in J(R)$, so $e = 0$ or $1 - e = 0$. Hence $E(R) = \{0, 1\}$. Now, let $a \in R$. If $a \notin J(R)$, then there exists $b \in R$ such that $1 - ab \notin U(R)$. Since R is clean, $1 - ab = u + e$ for some $u \in U(R)$ and $e \in E(R)$. Clearly $e = 1$, so $ab = -u$. Since $0 \neq -bu^{-1}a \in E(R)$, $-bu^{-1}a = 1$, this implies $a \in U(R)$. Thus R is local. ☐

Acknowledgements Project supported by the Foundation of Natural Science of China (11471282) and Natural Science Fund for Colleges and Universities in Jiangsu Province (11KJB110019). We would like to thank the referee for his/her helpful suggestions and comments.
References

1. Badawi, A. – On abelian \(\pi \)-regular rings, Comm. Algebra, 25 (1997), 1009–1021.
2. Burgess, W.D.; Menal, P. – On strongly \(\pi \)-regular rings and homomorphisms into them, Comm. Algebra, 16 (1988), 1701–1725.
3. Chen, W. – A question on strongly clean rings, Comm. Algebra, 34 (2006), 2347–2350.
4. Chin, A.Y.M.; Qua, K.T. – A note on weakly clean rings, Acta Math. Hungar., 132 (2011), 113–116.
5. Chin, A.Y.M. – Clean elements in abelian rings, Proc. Indian Acad. Sci. Math. Sci., 119 (2009), 145–148.
6. Drazin, M.P. – Rings with central idempotent or nilpotent elements, Proc. Edinburgh Math. Soc., 9 (1958), 157–165.
7. Nicholson, W.K. – Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269–278.
8. Nicholson, W.K.; Zhou, Y. – Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J., 46 (2004), 227–236.
9. Wei, J.-C. – Weakly-Abel rings and weakly exchange rings, Acta Math. Hungar., 137 (2012), 254–262.
10. Wei, J.; Li, L. – Quasi-normal rings, Comm. Algebra, 38 (2010), 1855–1868.
11. Yu, H.-P. – Stable range one for exchange rings, J. Pure Appl. Algebra, 98 (1995), 105–109.