Supplementary file

Nitric oxide-soluble guanylyl cyclase pathway
as a contributor to age-related memory impairment in *Drosophila*

Ayako Tonoki¹, Saki Nagai¹, Zhihua Yu¹, Tong Yue¹, Sizhe Lyu¹, Xue Hou¹, Kotomi Onuki¹,
Kaho Yabana¹, Hiroki Takahashi², Motoyuki Itoh¹

1. Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
2. Medical Mycology Research Center, Chiba University

Corresponding Author: Ayako Tonoki
Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
Tel: +81-43-226-2890
Fax: +81-43-226-2890
E-mail: tonoki@chiba-u.jp
Supplementary information

Figure S1. Neuron-specific knockdown of gycβ enhances intermediate-term memory
(Related to Figure 1).

(A, B) Venn diagrams showing the overlap between two different gene lists of RNA-sequencing data and genome-wide RNAi screen data: four genes are negative memory regulators with age-dependent upregulation of gene expression (A) and fifty-four genes are positive memory regulators with age-dependent downregulation of gene expression (B). (C) Each candidate gene was transiently knocked-down in neurons only after the flies were fed RU486 (RU) using Elav-GS. When 5-day-old flies were fed RU-containing food for 5 days, memory performance was tested at 3 hr after conditioning. Enhancements in 3-hr memory were observed in flies expressing cp190RNAi or gycβRNAi in neurons compared with control. (n = 18, 18, 18, 18, 10, 10, 10, 12, and 12 for control RU-, control RU+, cp190RNAi RU-, cp190RNAi RU+, GycβRNAi RU-, GycβRNAi RU+, amonRNAi RU-, amonRNAi RU+, SA RNAi RU-, and SA RNAi RU+ respectively. Two-way ANOVA $F_{(4, 127)} = 8.882, p < 0.0001$ for row factor and $F_{(4, 127)} = 10.13, p = 0.0018$ for column factor. post hoc Tukey’s multiple comparisons test, *$p < 0.05$, cp190RNAi RU- versus cp190RNAi RU+; **$p < 0.05$, control RU-/RU+ versus GycβRNAi RU+.)
Data are mean ± SEM for (C).

Figure S2. Neuron-specific knockdown of gycβ (Related to Figure 1).

(A) qPCR shows that the silencing efficiency of the knockdown of gycβ genes in neurons was approximately 50% in the flies expressing gycβ^{RNAi-HMJ22589} (gycβ^{RNAi}). (n = 3, 3, 3, and 2 for control RU-, control RU+, Gycβ^{RNAi} RU-, and Gycβ^{RNAi} RU+ respectively. Two-way ANOVA $F_{(1, 7)} = 16.57$, $p = 0.0047$, post hoc Tukey’s multiple comparisons test, *$p = 0.0320$, control RU+ versus RNAi RU+). (B) Shock avoidance test in gycβ knockdown flies. There was no significant difference between the experimental group and the control group in the avoidance of electric shock (n=10 for each data. $t_{(18)} = 0.2334$, $p = 0.8181$). (C) Odor avoidance test in gycβ knockdown flies. There was also no significant difference between the experimental group and the control group in the avoidance of odors, Oct and Benz (n=10 for each data. Two-way ANOVA $F_{(1, 36)} = 2.55$, $p = 0.1191$). (D) 3-hr memory after cold shock treatment given 2 hr after conditioning. Transient and neuron-specific knockdown of gycβ (Elav-GS> gycβ^{RNAi}) significantly enhanced 3-hr memory after cold shock compared to the control group (Two-way ANOVA followed by post hoc Tukey’s multiple comparisons test. n = 15, 14, 10, and 12 for control RU-, control RU+, RNAi RU-, and RNAi RU+ data respectively. Two-way ANOVA $F_{(1, 47)} = 10.14$, $p = 0.0026$, post hoc Tukey’s multiple comparisons test, *$p < 0.05,$
control RU+ versus RNAi RU+.

n.s.: not significant. Data are mean ± SEM for (B-D) and mean ± SD for (A).

Figure S3. Expression of gycβ in MB α’β’ neurons (Related to Figure 3).

(A) Fly brains expressing membrane-tethered GFP (UAS-mCD8::GFP) driven by Gycβ-Gal4^{M01568} (green) were colabeled with an anti-FasII antibody (magenta) to mark MB αβ neurons. Weak expression of gycβ in MB αβ neurons was observed. (B) Expression of Gycβ labeled with Gycβ-EGFP in flies carrying the Gycβ[MI08892-GFSTF.2] construct. Gycβ-EGFP signals are shown in the anterior and posterior confocal sections. Gycβ-EGFP signals in MB α’ and β’ neuron in control flies (left panels) were markedly reduced in flies with expression of gycβ^{RNAi} in MB α’β’ neurons (right panels). (C) Gycbeta-EGFP signals in the α’ and β’ were significantly reduced in flies expressing gycβ^{RNAi} in MB α’β’ neurons using c305a-Gal4 compared with that in the control group. (α lobe, n = 11 and 13 for control and gycβ^{RNAi}, <i>t</i>(22) = 0.2234, <i>p</i> = 0.8253; β lobe, n = 9 and 13 for control and gycβ^{RNAi}, <i>t</i>(20) = 1.995, <i>p</i> = 0.0599; α’ lobe, n = 11 and 14 for control and gycβ^{RNAi}, <i>t</i>(23) = 2.439, *<i>p</i> = 0.0228; β’ lobe, n = 11 and 14 for control and gycβ^{RNAi}, <i>t</i>(23) = 10.94, *<i>p</i> < 0.0001, unpaired <i>t</i> test).

Data are mean ± SD.
Figure S4. Expression of gycβ in MB α'β' neurons (Related to Figure 3).

(A) Gycβ-EGFP signals in the α' and β' were significantly reduced in flies expressing gycβRNAi in MB α'[β'] neurons using MB005B-Gal4 compared with that in the control group. (α lobe, n = 4 and 3 for control and gycβRNAi, t(5) = 1.482, p = 0.1984; β lobe, n = 4 and 3 for control and gycβRNAi, t(5) = 0.9719, p = 0.3757; α' lobe, n = 4 and 3 for control and gycβRNAi, t(5) = 2.572, *p = 0.0499; β' lobe, n = 4 and 3 for control and gycβRNAi, t(5) = 7.086, *p = 0.0009, unpaired t test). (B) MB α'β' neuron-specific knockdown of gycβ (MB005B>GycβRNAi) significantly enhanced 3-hr memory compared with that in the control (MB005B>GFP) (3 min, n = 7 for each data, t(12) = 2.178, p = 0.0501; 3 hr, n = 11 and 9 for control and gycβRNAi, t(18) = 2.536, *p = 0.0207, unpaired t test). (C) Shock avoidance test in gycβ knockdown flies. There was no significant difference between the experimental group and the control group in the avoidance of electric shock (n = 7 for each data, U = 24, p = 0.4418, Mann-Whitney U test). (D) Odor avoidance test in gycβ knocked-down flies. There was no significant difference between the experimental group and the control group in the avoidance of odors, Oct and Benz. (Oct, n = 8 and 7 for control and gycβRNAi, t(13) = 0.2384, p = 0.8153; Benz, n = 8 for each data, t(14) = 0.2496, p = 0.8065). (E) MB α'β' neuron-specific knockdown of gycβ (MB463B>GycβRNAi) significantly enhanced 3-min and 3-hr memory compared with control (MB463B>GFP) (3 min, n = 9 and 7 for control and gycβRNAi, t(14) = 7.1, *p < 0.0001; 3 hr, n
= 13 for each data, $t_{(24)} = 3.603$, $*p = 0.0014$, unpaired t test). (F) Shock avoidance test in
gycβ knockdown flies. There was no significant difference between the experimental group
and the control group in the avoidance of electric shock ($n = 6$ for each, $t_{(10)} = 0.05725$, $p =
0.9555$, unpaired t test). (G) Odor avoidance test in gycβ knocked-down flies. There was no
significant difference between the experimental group and the control group in the avoidance
of odors, Oct and Benz. (Oct: $n = 8$ for each, $t_{(14)} = 2.693$, $*p = 0.0175$; Benz, $n = 6$ for each
data, $t_{(10)} = 0.2811$, $p = 0.7844$).

n.s.: not significant. Data are mean ± SEM for all.

Figure S5. Overexpression of NOS in glia (Related to Figure 5).

qPCR shows that NOS was overexpressed by 20 times or more by RU feeding in Glia-
GS>NOS flies compared to control flies. (Two-way ANOVA followed by post hoc Tukey’s
multiple comparisons test. $n = 3$ for each data. Two-way ANOVA $F_{(1, 8)} = 375.4$, $p < 0.0001$.
post hoc Tukey’s multiple comparisons test, $*p < 0.0001$).

Data are mean ± SD.

Figure S6. Inhibition of NOS enhances intermediate-term memory in aged flies
(Related to Figure 6).
Olfactory memory assay in 20-day-old flies fed L-NAME. L-NAME administration at 100 µM concentration significantly improved 3-hr memory but did not affect 3-min memory (Two-way ANOVA followed by post hoc Tukey’s multiple comparisons test; 3min, n = 7 for each data; 3 hr, n = 11, 12, and 13 for control, 100 µM L-NAME, and 200 µM L-NAME, respectively. Two-way ANOVA $F_{(2, 51)} = 8.134, p = 0.0009$, post hoc Tukey’s multiple comparisons test, *$p=0.0406$, 3 hr-control versus 3 hr-100 µM L-NAME). Data are mean ± SEM.

Quantification of GFP signal in 10-day-old (10d) and 30-day-old (30d) flies expressing mCD8::GFP driven by Gycβ-Gal4. The GFP signals of MB α neurons and α' neurons were increased in aged flies compared with young flies (Two-way ANOVA followed by post hoc Tukey’s multiple comparisons test; n = 9 and 7 for 10d and 30d, respectively. Two-way ANOVA $F_{(1, 28)} = 23.62, p < 0.0001$, post hoc Tukey’s multiple comparisons test, *$p = 0.0393$, MB α' 10 d versus 30 d; *$p = 0.0021$, MB α 10 d versus 30 d; **$p < 0.0001$, MB α' 10 d versus MB α 10 d). Data are mean ± SD.
Figure. S1

A

“Up with age” 827

“KD promotes memory”

4

RNA-seq

RNAi screen

B

“Down with age” 1181

“KD inhibits memory”

54

RNA-seq

RNAi screen

C

3hr memory

Performance Index

RU-

RU+

* *

UAS-\text{cp190 RNAi}

UAS-\text{Gyc6 RNAi}

UAS-amon RNAi

UAS-SA RNAi

Elav-GS
Figure. S3

A

Gyc β	FasII (α / β)	Merge
![Image]	![Image]	![Image]

B

- **Gyc100B-EGFP[MI08892] + c305a-Gal4 control**
 - anti-GFP (GycB100B)
 - anti-GFP (GycB100B) nc82
- **Gyc100B-EGFP[MI08892] + c305a-Gal4>Gycβ-RNAi**
 - anti-GFP (GycB100B)
 - anti-GFP (GycB100B) nc82

C

- **Relative fluorescence intensity**
 - **Gycβ100B-GFP**
 - **lobes**
 - **α**
 - **β**
 - **α'**
 - **β'**

Legend:
- ○ c305a control
- □ c305a>Gycβ-RNAi

* Significant difference
Figure. S5

Relative Gene Expression

Glia-GS>GFP Glia-GS>NOS

RU- RU+

NOS

Figure. S6

A

Aged (20d)

Performance Index

3 min 3 hr

control

100µM L-NAME

200µM L-NAME

B

Gyc>mCD8::GFP

GFP (a.u.)

MBα' MBα

10d 30d
Table S1. List of genes that are negative-memory regulators with age-dependent upregulating gene expression

Gene ID	CG number	Gene Name	BaseMean	log2FoldChange	pvalue
FBgn0000283	CG6384	Cp190	4086.674094	0.345788762	4.86E-06
FBgn0013973	CG1470	Gycbeta100B	5417.554561	0.248444822	2.10E-07
FBgn0020616	CG3423	SA	1523.413465	0.220247667	0.001137266
FBgn0023179	CG6438	amon	13543.6522	0.277229669	5.25E-08
Table S2. List of genes that are positive-memory regulators with age-dependent downregulating gene expression

Gene ID	CG number	Gene Name	BaseMean	log2FoldChange	pvalue
FBgn0000422	CG10697	Ddc	10209.29924	-0.161249	0.009236328
FBgn0003423	CG1417	slgA	13788.04981	-0.212593	4.45E-06
FBgn0003475	CG10076	spir	7847.563597	-0.18385	1.68E-04
FBgn0004623	CG8770	Gbeta76C	17878.20036	-0.370805	2.09E-11
FBgn0004903	CG6354	Rb97D	2092.141754	-0.292246	9.59E-06
FBgn0005561	CG11049	sv	972.4737607	-0.72329	8.20E-10
FBgn0006075	CG16858	vkg	1642.218135	-0.363091	1.67E-07
FBgn0016075	CG3234	tim	37545.90429	-0.349188	6.18E-11
FBgn0016075	CG15771	CG15771	3226.250201	-0.221155	2.47E-05
FBgn0021979	CG3082	(2)k09913	6423.14735	-0.273099	6.30E-06
FBgn0024963	CG7535	GluClalpha	16440.20957	-0.164068	0.004641559
FBgn0025549	CG1659	unc-119	2733.079954	-0.186491	0.00488067
FBgn0029819	CG3016	Usp30	1284.807535	-0.211158	0.005081925
FBgn0029830	CG14447	Grip	249.8349895	-0.363879	0.00510487
FBgn0030087	CG7766	CG7766	6517.94836	-0.273341	1.01E-07
FBgn0030668	CG8128	CG8128	500.6648223	-0.341756	4.91E-04
FBgn0030670	CG9245	Pis	9257.448139	-0.315721	6.65E-07
FBgn0030895	CG7135	CG7135	2082.340104	-0.351498	1.21E-04
FBgn0031998	CG8451	SLC5A11	700.5792629	-0.618638	1.47E-08
FBgn0032021	CG7781	CG7781	7826.390416	-0.231729	2.72E-06
FBgn0032729	CG10639	L2HGDH	547.6830392	-0.339418	9.66E-04
FBgn0033434	CG1902	CG1902	1446.078606	-0.187497	0.004702246
FBgn0034051	CG8295	Milf	6958.798379	-0.237691	5.05E-04
FBgn0034576	CG9350	ND-B14.7	2431.818654	-0.29144	0.004488762
FBgn0034902	CG5532	CG5532	285.6281657	-0.388102	0.003379101
FBgn0035526	CG1316	CG1316	4604.477238	-0.216033	1.05E-05
FBgn0035695	CG10226	CG10226	2060.916751	-0.373209	9.76E-06
FBgn0036043	CG8177	Ae2	13322.09774	-0.446129	2.84E-15
FBgn0036428	CG9238	Gbs-70E	4244.302115	-0.732464	3.84E-11
FBgn0037138	CG7145	P5CDh1	13591.10786	-0.174893	2.94E-04
FBgn0037607	CG8036	CG8036	3863.597691	-0.467017	3.35E-05
GeneID	Cluster	GeneName	RankScore	RnkScore	SigScore
-----------	---------	----------	-----------	----------	----------
FBgn0037655	CG11984	Kcmf1	5879.36327	-0.138537	0.005413205
FBgn0038610	CG7675	CG7675	960.7764541	-0.444555	2.18E-06
FBgn0039132	CG5864	AP-1sigma	2364.048263	-0.176463	0.002752215
FBgn0039635	CG11876	Pdhb	3143.669328	-0.617765	1.41E-14
FBgn0039748	CG15529	CG15529	333.3041799	-0.519183	4.12E-06
FBgn0051005	CG31005	qless	772.5825998	-0.28746	0.001408794
FBgn0051352	CG31352	Unc-115a	2230.638195	-0.177975	0.0042323
FBgn0052000	CG32000	anne	22296.54772	-0.199862	0.00689574
FBgn0052672	CG32672	Atg8a	11275.86514	-0.249744	4.32E-06
FBgn0054974	CG34376	CG34376	1344.174565	-0.477632	7.53E-12
FBgn005673	CG13272	CG13272	42.24566195	-1.278612	3.91E-10
FBgn0259111	CG42253	Ndae1	4515.954776	-0.16187	0.003318863
FBgn0260743	CG18347	GC1	1836.300869	-0.244418	5.70E-05
FBgn0261477	CG5186	slim	2604.24922	-0.19727	6.26E-04
FBgn0261955	CG3861	kdn	12888.21548	-0.572736	4.44E-31
FBgn0262476	CG43066	CG43066	9067.295112	-0.383012	1.19E-12
FBgn0263199	CG5288	Galk	1208.850134	-0.647784	4.61E-07
FBgn0263776	CG43693	CG43693	1318.304619	-0.471205	2.65E-08
FBgn0264308	CG43778	CG43778	8208.064806	-0.314511	5.36E-05