Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome.

Supplementary Material

METHODS

ITS1F-2 and 16S rRNA amplicon sequencing

To identify fungal communities, we amplified DNA for the ITS1F-2 rRNA gene using single index reverse primers and a modified protocol of Smith & Peay (1) and Nguyen et al. (2), as detailed in Griffiths et al. (3). We ran PCRs in duplicate using Solis BioDyne 5x HOT FIREPol® Blend Master Mix, 2μM primers and 1.5μl of sample DNA. Thermocycling conditions were 95 °C for 10 min, followed by 28 cycles of 95 °C for 30s, 52 °C for 20s and 72 °C for 30s, with a final extension of 72 °C for 8 minutes. We quality checked the PCR products using a 2200 TapeStation (Agilent, USA). We combined PCR replicates into a single PCR plate and cleaned products using HighPrep™ PCR clean up beads (MagBio, USA) according to the manufacturers’ instructions. To normalise the libraries, we combined 1ul of each sample and conducted a titration sequencing run with this pool using an Illumina v2 nano cartridge (paired end reads; 2 x 150bp) on the Illumina MiSeq at the University of Salford. Based on the percentage of reads sequenced per library, we calculated the volume required for the full sequencing run and pooled these accordingly. ITS rRNA amplicon sequencing was conducted using paired-end reads (2 x 250bp) using an Illumina v2 cartridge on the MiSeq platform at the University of Salford. We included negative controls (blank extractions) for six of the nine DNA extraction methods plus a blank consisting of PCR-grade water, as well as a fungal mock community as a positive control. We ran the same library twice to increase sequencing depth, and combined data within samples across these two runs in the data pre-processing stage.

To identify bacterial communities, we amplified DNA for the 16S rRNA V4 region using dual indexed forward and reverse primers according to Kozich et al. (4) and Griffiths et al. (5). We ran PCRs in duplicate as described above using thermocycling conditions of 95°C for 15 minutes, followed by 28 cycles of 95°C for 20s, 50°C for 60s and 72°C for 60s, and a final extension at 72°C for 10 minutes. After cleaning and quality checking (as above), we again sequenced an equivolume pool on an Illumina v2 nano cartridge as described above, then pooled samples according to read coverage and conducted a full paired-end sequencing run (2 x 250bp) using Illumina v2 chemistry. We included extraction blanks and a mock bacterial community as negative and positive controls, respectively.

Pre-processing of amplicon sequence data

We conducted all data processing and analysis in RStudio v1.2.1335 for R (6, 7). For 16S rRNA amplicon sequencing data, adapters and primers were automatically trimmed by the MiSeq BaseSpace software, but for ITS rRNA amplicon data we performed an additional trimming step in cutadapt (8) to remove these. We conducted amplicon sequence processing in DADA2 v1.5 (9) for both ITS rRNA and 16S rRNA amplicon data.

A total of 8,033,962 raw sequence reads from 934 samples (i.e. duplicate data for each sample from the two sequencing runs) were generated across the two ITS rRNA sequencing runs. Modal contig length was 225 bp (range 112-477 bp) once paired-end reads were merged. We did not conduct additional trimming based on sequence length as the ITS region is highly variable (10). We removed 29 amplicon sequence variants (ASVs) found in the negative controls and filtered out chimeras, and then assigned taxonomy using the UNITE v7.2 database (11). We combined sequence data for each sample across the two ITS rRNA
sequencing runs using the merge_samples function in phyloseq (12). After data processing, we obtained a median of 1425 reads per sample (range of 153 to 424,527). DADA2 identified 12 unique ASVs in the sequenced mock community sample comprising 12 fungal isolates.

A total of 6,657,351 raw sequence reads from 476 samples were generated during 16S rRNA sequencing. Modal contig length was 253 bp once paired-end reads were merged. We removed ASVs with length >260 bp (55 SVs; 0.004% of total sequences) along with chimeras and 17 SVs found in the negative controls. We assigned taxonomy using the SILVA v132 database (13, 14). We stripped out chloroplasts and mitochondria from samples, leaving a median of 3273 reads per sample (range of 153 to 425,179). DADA2 identified 20 unique ASVs in the sequenced mock community sample comprising 20 bacterial isolates.

Alpha Diversity Models

For model fitting, we filtered the data to only those samples with paired metrics of microbial richness for both kingdoms (201 observations from 42 species). For higher order taxonomic predictors and random effects, we binned all invertebrate classes into a single grouping to improve model performance, as otherwise invertebrate class and species were colinear. All vertebrate taxonomic groupings were equivalent to class (Mammalia, Aves etc). We fitted two models to these data. First, to quantify relative differences in richness between bacteria and fungi within a sample, we used GLMMs in the brms package, with i) Bernoulli errors and a logit link; ii) a binary response of ‘1’ if bacterial richness was higher than fungal richness, and ‘0’ otherwise; and iii) ‘Species’ nested within ‘Class’ as random intercepts. We did not include intermediate levels of taxonomy because replication at Order and Family levels was low relative to Class. We did not use a phylogenetic mixed model as not all species were represented in the TimeTree phylogeny. Second, to quantify absolute differences in microbial richness, we fitted a bivariate response LMM with both fungal and bacterial richness values as a two-column response with Class as a fixed effect, and Species as a random intercept. For all models, we used uninformative Cauchy priors for the random effects and Gaussian priors for fixed effects coefficients. We assessed model adequacy using visual inspection of chains to assess mixing and stationarity properties, as well as posterior predictive checks using the ‘pp_check’ function in brms.

Beta Diversity Analysis

To visualise differences in microbial community structure among samples, we i) plotted proportional abundance of microbial groups at the phylum level, aligned to the host phylogenetic tree, ii) agglomerated the data to class level and visualised the variation in CLR-transformed ratios for the five most abundant microbial classes in each kingdom for each species using jitter plots, and iii) conducted principal components analysis (PCA) using CLR-transformed abundance matrices for each kingdom.

Network Statistics

We calculated modularity of the class-level microbial networks comprising both positive and negative interactions using the modularity function after greedy clustering implemented in the igraph package and used bootstrap resampling to generate metrics of uncertainty around mean modularity measures. We used binomial GLM to test the hypothesis that the proportion of positive edges (correlations) varies by host class. We used permutations to randomise betweenness with
respect to microbial kingdom to test whether fungal nodes had higher or lower betweenness than expected by chance. We used permutation analysis to examine whether the frequency of the most abundant bacteria-fungal co-occurrences in each host class network were higher than expected by chance. Here, we shuffled the fungal phylum data for our class-specific data of positive co-occurrences to estimate a null distribution of the expected frequency of co-occurrences, and corrected p values for multiple testing using False Discovery Rate with the ‘p.adjust’ function.

Host Diet

To determine the effect of diet on bacterial and fungal community composition, we used only samples from the bird and mammal species and agglomerated the data for each host species using the merge_samples function in phyloseq. This gave us a representative microbiome for each host species, which we rarefied to the lowest number of reads for each combination of kingdom and host taxon (2,916 – 9,160 reads; bacterial read counts were low for lesser horseshoe bats and so this species was removed from this analysis) and extracted Euclidean distance matrices for each. We obtained dietary data for each host species from the EltonTraits database, which provides standardised and semi-quantitative diet data for host species based on descriptions from global handbooks and monographs. We extracted the Euclidean distances between host diets (birds and mammals separately) and correlated these with fungal and bacterial community distances using Mantel tests with Kendall rank correlations in the vegan package. We agglomerated the microbial data to class level and visualised the bacterial and fungal community compositions for mammals alongside pie charts displaying EltonTrait dietary data for each species. We also used a primary axis of the ordination of EltonTrait data to derive a 'dietary variation axis' which we used as a predictor for alpha diversity of birds and mammals.
TABLE S1: Details of host species and their origins, sex ratios, sample sizes and types, and storage and extraction methods for the study.

Class	Common name	Scientific name	N	Sex ratio (M: F: J: unknown: N/A)	Captive or Wild	Origin	Sample Type	Collection Year	Tissue Storage	Extraction Kit
Demospongia	Vase sponge	*Ircinia campana*	10	0: 0: 0: 10: 0	Wild	Long Key, Florida, USA	Tissue (choanosome)	2014	95% ethanol	Qiagen Blood and Tissue kit with proteinase K
Demospongia	Golfball sponge	*Cinachyrella sp.*	10	0: 0: 0: 10: 0	Wild	Long Key, Florida, USA	Tissue (choanosome)	2014	95% ethanol	Qiagen Blood and Tissue kit with proteinase K
Arachnida	Hard tick	*Amby loloma rotundatum*	10	0: 0: 10: 0: 0	Wild	Montserrat, Caribbean	Whole organism	2014	70% ethanol	Alkaline digest and ethanol precipitation
Malacostraca	Blue swimming crab	*Portunus segnis*	5	0: 0: 5: 0	Wild	Malta	Gut	2018	70% ethanol	Qiagen QIAmp Fast DNA Stool Mini kit
Malacostraca	Brown shrimp	*Cragon cragon*	10	0: 0: 10: 0: 0	Wild	Liverpool, Lancashire, England	Gut	2018	Buffer AE and frozen at -20°C	Qiagen Blood and Tissue kit with proteinase K
Insecta	Cockroach	*Diploptera punctata*	11	7: 1: 0: 3: 0	Captive	Manchester Metropolitan University, Manchester, UK	Gut	2018	Liquid nitrogen and frozen at -80°C	Qiagen Blood and Tissue kit with proteinase K and lysozyme
Insecta	Honey bee	*Apis mellifera*	10	0: 10: 0: 0: 0	Wild	North West of England, UK	Gut	2016	100% ethanol and frozen at -20°C	Qiagen Blood and Tissue kit with proteinase K and lysozyme
Insecta	Tsetse fly	*Glossina tuscipes*	9	2: 7: 0: 0: 0	Wild	Patira East, Uganda	Whole organism	2019	70% ethanol	Qiagen Blood and Tissue kit with proteinase K
Insecta	African palm weevil larvae	*Rhynchophorus phoenicis*	6	0: 0: 6: 0	Wild	Sapele Town, Delta State, Nigeria	Gut	2019	Frozen at -20°C	ZymoBIOMICS DNA mini kit
Actinopterygii	European eel	*Anguilla anguilla*	10	0: 0: 10: 0: 0	Wild	Cumbria, England	Gut	2009	Frozen at -20°C	Qiagen PowerSoil kit
Actinopterygii	Foureye butterflyfish	*Chaetodon capistratus*	10	0: 0: 10: 0: 0	Wild	Bocas del Toro, Bahia Almirante, Panama	Gut	2018	95% ethanol	Qiagen PowerSoil kit with proteinase K
Actinopterygii	Yellowhead wrasse	*Halichoeres garnot*	10	0: 0: 10: 0: 0	Wild	Caye Caulker, Belize	Gut	2015	95% ethanol	Qiagen PowerSoil kit with proteinase K
Actinopterygii	Barred hamlet	*Hypoplectrus puella*	12	0: 0: 12: 0: 0	Wild	Bocas del Toro, Bahia Almirante, Panama	Gut	2018	95% ethanol	Qiagen PowerSoil kit with proteinase K
Amphibia	Common midwife toad	*Alytes obstetricans*	11	0: 0: 11: 0: 0	Captive	London Zoo, London, UK	Skin swab	2015	Frozen at -20°C	Qiagen DNEasy kit
Amphibia	Phofung river frog	*Amieta hymenopus*	10	0: 0: 10: 0: 0	Wild	Drakensberg National Park, South Africa	Tadpole mouthparts	2015	95% ethanol	Qiagen Blood and Tissue kit with proteinase K
Amphibia	Common toad	*Bufo bufo*	10	0: 0: 10: 0: 0	Wild	Norway	Whole organism	2009	70% ethanol	Phenol chlorophorm
Kingdom	Scientific Name	Genus	Species	Sample Type	Localised Site	Year	Stabilisation	Franklin DNA Kit		
-------------	--------------------------------------	----------------	--------------------------------	-------------	------------------------------------	----------	---------------	------------------		
Mammalia	Great-crested newt	Triturus	cristatus	Wild	Lancashire, England	2015	70% ethanol	Phenol chlorophorm		
Aves	Reed warbler	Acrocephalus	scirpaceus	Wild	Lincolnshire, UK	2018/19	Frozen at -20°C	Qiagen PowerSoil Pro kit		
Aves	Light-bellied brent goose	Branta	bernicla	Wild	Iceland	2017	Frozen at -20°C	Qiagen PowerSoil kit		
Aves	Goldfinch	Carduelis	carduelis	Wild	Lincolnshire, UK	2018/19	Frozen at -20°C	Qiagen PowerSoil Pro kit		
Aves	Stock dove	Columba	oenas	Wild	East Anglia, UK	2014	Frozen at -20°C	Qiagen QiAamp Fast DNA Stool Mini kit		
Aves	Woodpigeon	Columba	palumbus	Wild	East Anglia, UK	2012	Frozen at -20°C	Qiagen QiAamp Fast DNA Stool Mini kit		
Aves	Carrion crow	Corvus	corone	Wild	Cumbria, UK	2019	Frozen at -20°C	Qiagen Microbiome kit		
Aves	Blue tit	Cyanistes	caeruleus	Wild	Lincolnshire, UK	2018	Frozen at -20°C	Qiagen PowerSoil Pro kit		
Aves	Yellowhammer	Emberiza	citrinella	Wild	Lincolnshire, UK	2018	Frozen at -20°C	Qiagen PowerSoil Pro kit		
Aves	Reed bunting	Emberiza	schoeniclus	Wild	Lincolnshire, UK	2018	Frozen at -20°C	Qiagen PowerSoil Pro kit		
Aves	Robin	Erithacus	rubecula	Wild	Lincolnshire, UK	2018	Frozen at -20°C	Qiagen PowerSoil Pro kit		
Aves	Great tit	Parus	major	Wild	Lincolnshire, UK	2018/19	Frozen at -20°C	Qiagen PowerSoil Pro kit		
Aves	Chiffchaff	Phylloscopus	collybita	Wild	Lincolnshire, UK	2018/19	Frozen at -20°C	Qiagen PowerSoil Pro kit		
Aves	Collared dove	Streptopelia	decacoto	Wild	East Anglia, UK	2014	Frozen at -20°C	Qiagen QiAamp Fast DNA Stool Mini kit		
Aves	Turtle dove	Streptopelia	turtur	Wild	East Anglia, UK	2014	Frozen at -20°C	Quigen QiAamp Fast DNA Stool Mini kit		
Aves	Blackcap	Sylvia	atricapilla	Wild	Lincolnshire, UK	2018	Frozen at -20°C	Qiagen PowerSoil Pro kit		
Aves	Song thrush	Turdus	philomelos	Wild	Lincolnshire, UK	2018	Frozen at -20°C	Qiagen PowerSoil Pro kit		
Mammalia	Striped field mouse	Apodemus	agrarius	Wild	Chernobyl Exclusion Zone, Ukraine	2017	100% ethanol and frozen at -20°C	Invitrogen Microbiome kit		
Mammalia	Yellow-necked mouse	Apodemus	flavicolis	Wild	Chernobyl Exclusion Zone, Ukraine	2017	100% ethanol and frozen at -20°C	Invitrogen Microbiome kit		
Mammalia	Wood mouse	Apodemus	sylvaticus	Wild	Chernobyl Exclusion Zone, Ukraine	2017	100% ethanol and frozen at -20°C	Invitrogen Microbiome kit		
Mammalia	Northern muriqui	Brachyteles	hypoxanthus	Wild	Caparao National Park, UK	2017/18	RNA Later and frozen at -20°C	Qiagen QiAamp Fast DNA Stool Mini kit		
Mammalia	Species	Genus	Stella	Genus	Country	Location	Year	Preparation	Vendors	
----------	-------------------------	----------------	--------	-------	------------------------------	-----------------------------------	------	--------------	-------------------	
Mammalia	Roe deer	Capreolus capreolus	7		Wild	Faeces	2019	Frozen at -20°C	Qiagen Microbiome kit	
Mammalia	Red deer	Cervus elaphus	10	0: 0: 10: 0	Wild	Faeces	2018	Frozen at -20°C	Qiagen QIAamp Fast DNA Stool Mini kit	
Mammalia	Greater white-toothed shrew	Crocidura russula	10	5: 5: 0: 0	Wild	Faeces	2018	Frozen at -20°C	Qiagen PowerSoil kit	
Mammalia	Eastern black rhino	Diceros bicornis michaeli	10	0: 10: 0: 0	Captive	Faeces	2011	Frozen at -20°C	Qiagen QIAamp Fast DNA Stool Mini kit	
Mammalia	Wild pony	Equus ferus caballus	10	5: 5: 0: 0	Wild	Faeces	2013	Frozen at -20°C	Qiagen QIAamp Fast DNA Stool Mini kit	
Mammalia	Hedgehog	Erinaceus europaeus	12	0: 0: 12: 0	Wild	Faeces	2019	Frozen at -20°C	Qiagen Microbiome kit	
Mammalia	Bank vole	Myodes glareolus	10	7: 3: 0: 0	Wild	Faeces	2017	100% ethanol and frozen at -20°C	Invitrogen Microbiome kit	
Mammalia	Lesser horseshoe bat	Rhinolophus hipposideros	10	3: 5: 2: 0	Wild	Faeces	2016	Frozen at -20°C	Zymo DNA Extraction kit	
Mammalia	Capuchin monkey	Sapajus libidinosus	10	0: 0: 10: 0	Wild	Faeces	2017	Frozen at -20°C	Qiagen QIAamp Fast DNA Stool Mini kit	
Mammalia	Grey squirrel	Sciurus carolinensis	12	0: 0: 12: 0	Wild	Faeces	2019	Frozen at -20°C	Qiagen Microbiome kit	
Mammalia	Red squirrel	Sciurus vulgaris	12	0: 0: 12: 0	Wild	Faeces	2019	Frozen at -20°C	Qiagen Microbiome kit	
Mammalia	Pygmy shrew	Sorex minutus	10	5: 5: 0: 0	Wild	Faeces	2018	100% ethanol and frozen at -20°C	Qiagen PowerSoil kit	
RESULTS

Alpha-diversity measures remained relatively stable within a host species whether data were rarefied to 500, 1000, or 2500 reads (Figures 1 main text, Fig S1 below). Patterns between kingdoms were similar for each host species whether data were rarefied to 500 or 1000 reads, with the exception of slight increases in fungal diversity relative to bacterial diversity for two host species (blue tit, light-bellied brent goose) when data were rarefied to 1000 reads (Figure S1). Cross-kingdom patterns for each host species were also similar whether data were rarefied to 500 or 2500 reads (Figure S2), although four host species (chiffchaff, greater white-toothed shrew, light-bellied brent goose, reed warbler) showed greater differences between bacterial and fungal diversity when 2500 reads were used, and one (common midwife toad) had reduced differences (Figures 1 and S2).
TABLE S2

Proportion of variation in microbial community structure with (left) and without (right) accounting for sample metadata and wet lab preparation confounds.

(a) FUNGI	Taxonomic Effects Only					
Predictor	df	R²	p value	df	R²	p value
Sample Type	7	0.05	0.001			
Tissue Storage	5	0.04	0.001			
Extraction Kit	7	0.07	0.001			
Class	2	0.02	0.001	6	0.05	0.001
Order	6	0.05	0.001	13	0.12	0.001
Species	18	0.09	0.001	26	0.14	0.001
Residuals	303	0.68		303	0.68	

(b) BACTERIA	Taxonomic Effects Only					
Predictor	df	R²	p value	df	R²	p value
Sample Type	6	0.06	0.001			
Tissue Storage	6	0.16	0.001			
Extraction Kit	7	0.12	0.001			
Class	2	0.02	0.001	6	0.09	0.001
Order	6	0.09	0.001	12	0.21	0.001
Species	18	0.12	0.001	27	0.27	0.001
Residuals	273	0.42		273	0.42	
TABLE S3: Network statistics from class-specific microbial networks in Figure 3 in the main manuscript. ‘Modularity’ and ‘Groups’ statistics are derived from the cluster_fast_greedy function applied to *igraph* network objects. ‘Components’ data were extracted directly from the networks. Modularity was positively correlated with both number of groups (cor = 0.76) and number of components (cor = 0.86).

Class	Modularity	Groups	Components
Mammalia	0.658	7	1
Aves	0.719	23	14
Insecta	0.781	10	6
Actinopterygii	0.806	16	11
Amphibia	0.923	35	35
TABLE S4
PERMANOVA results of variation in microbial community structure calculated from Bray-Curtis distances among libraries rarefied to 500 reads (see Table 1 main manuscript).

(A) FUNGI

Term	Df	F.Model	R2	Pr(>F)	Sig.
SampleType	7	2.91	0.06	0.001	***
TissueStorage	4	3.48	0.04	0.001	***
ExtractionKit	7	3.82	0.07	0.001	***
Class	2	3.51	0.02	0.001	***
Order	6	3.39	0.06	0.001	***
Species	18	1.90	0.10	0.001	***
Residuals	237		0.66		
Total	281				1

(B) BACTERIA

Term	Df	F.Model	R2	Pr(>F)	Sig.
SampleType	6	7.16	0.08	0.001	***
TissueStorage	6	10.57	0.12	0.001	***
ExtractionKit	7	9.05	0.12	0.001	***
Class	1	10.33	0.02	0.001	***
Order	6	7.69	0.09	0.001	***
Species	18	3.44	0.12	0.001	***
Residuals	241		0.46		
Total	285				1
FIGURE S1: Shannon Diversity statistics for microbial data when libraries were rarefied to (A) 1000 reads per sample and (B) 2500 reads per sample. Horizontal bars show the median, boxes are 25th and 75th percentiles, and whiskers are the largest value or 1.5x the interquartile range if some values extend beyond that. Only species with both bacterial and fungal data are shown.
FIGURE S2: Posterior distributions from a Binomial mixed effects model examining probability of bacterial Shannon diversity being higher than fungal diversity when conditioned on Class. Estimates are in logits. White points are posterior means, and bars extend to 95% intervals. Shaded areas show full density of posterior samples.
FIGURE S3. Patterns of phylogenetic signal in alpha diversity for (A) bacteria and (B) fungi. Replication of species differs across microbial datasets, reflected by differing host phylogenies.
FIGURE S4: Effect of PC2 (secondary axis of a principal components analysis of host diet, on microbial richness for bacteria and fungi in mammals. Positive PC2 values indicate more fruits and seeds in the diet. Only the main effect of PC2 was retained in the top model, indicating no support for differing slopes dependent on whether fungal or bacterial communities are being modelled.
FIGURE S5: Bacterial community composition (agglomerated to class level) of 15 mammal species compared with crude foraging data for each host species (see main text for methods and sources). The five most abundant classes of fungi across all host species were Dothideomycetes, Eurotiomycetes, Lecanoromycetes, Pezizomycetes and Sordariomycetes, for which Dothideomycetes and Eurotiomycetes showed the most variation between host species (Fig. S3). The five most abundant classes of bacteria were Actinobacteria, Alphaproteobacteria, Bacilli, Bacteroidia, and Gammaproteobacteria, which all varied considerably among host species.
FIGURE S6: Fungal community composition (agglomerated to class level) of 16 mammal species compared with crude foraging data for each host species (see main text for methods and sources).
FIGURE S7. Centred Log Ratio (CLR)-transformed abundance values from the five most abundant classes of (a) fungi and (b) bacteria identified across a range of host species. CLR-transformation is a normalisation method allowing comparison of abundance values across libraries of different sizes (read depths).
FIGURE S8

(A) Principal components analysis (PCA) of CLR-transformed microbial abundances for bacteria and fungi, with points coloured by host class. The first two axes of the ordination explained 19.4% and 8.84% of the variance in community structure for bacteria and fungi, respectively. PERMANOVA analysis revealed species ID to be the primary driver of variance in both taxa, accounting for 21.2% and 14.3% of the variance, respectively. However, there were also strong effects of sample handling and storage (see results). (B) PCA plots of bacterial (circles) and fungal (squares) community structure, faceted by host class, with points coloured by host order.
FIGURE S9: Microbial interaction networks for 40 species derived from cooccurrence analysis. Positive interactions (correlations) are shown in green, and negative interactions in red; blue nodes are bacteria and grey nodes and fungi. There was clear variation at the species level; for some host species, there were considerably more positive interactions (e.g., yellowhammers, pygmy shrews, greater white-toothed shrews, wood mouse, woodpigeon, yellow-necked mouse). In some species, there were slightly more negative interactions than positive (e.g., blackcap, goldfinch).
FIGURE S10: Number of positive (green) and negative (red) associations within bacterial-fungal co-occurrence networks for each host species.
FIGURE S1: Putative microbial interaction networks between bacterial (circles) and fungal (squares) taxa, coloured by microbial phylum. Networks were constructed using the R package SpiecEasi on CLR-transformed abundance values to detect non-random co-occurrence between groups of microbes.

FIGURE S11: Putative microbial interaction networks between bacterial (circles) and fungal (squares) taxa, coloured by microbial phylum. Networks were constructed using the R package SpiecEasi on CLR-transformed abundance values to detect non-random co-occurrence between groups of microbes.
FIGURE S12: Correlation between network modularity (A) and components (B) for each of 5 animal class networks. Both relationships are positive.
REFERENCES
1. D. P. Smith, K. G. Peay, Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. *PLoS One* 9, e90234 (2014).
2. N. H. Nguyen, D. Smith, K. Peay, P. Kennedy, Parsing ecological signal from noise in next generation amplicon sequencing (2014).
3. S. M. Griffiths, *et al*., Complex associations between cross-kingdom microbial endophytes and host genotype in ash dieback disease dynamics. *J. Ecol.*, 1–19 (2019).
4. J. J. Kozich, S. L. Westcott, N. T. Baxter, S. K. Highlander, P. D. Schloss, Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. *Appl. Environ. Microbiol.* 79, 5112–5120 (2013).
5. S. M. Griffiths, *et al*., Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian. *ISME J.* 12, 2506–2517 (2018).
6. RStudio Team, RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.c (2016).
7. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. URL https://www.R-project.org/. (2017).
8. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal*, 17:10-12. (2011).
9. B. J. Callahan, *et al*., DADA2: High-resolution sample inference from Illumina amplicon data. *Nat. Methods* 13, 581–583 (2016).
10. C. L. Schoch, *et al*., Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. *Proc. Natl. Acad. Sci.* 109, 6241–6246 (2012).
11. UNITE, UNITE general FASTA release. Version 01.12.2017. (2017).
12. P. J. McMurdie, S. Holmes, Phylloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. *PLoS One* 8, e61217 (2013).
13. C. Quast, *et al*., The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. *Nucleic Acids Res.* 41, 590–596 (2013).
14. P. Yilmaz, *et al*., The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. *Nucleic Acids Res.* 42, 643–648 (2014).