Associação do polimorfismo IL-6 -174G > C (rs1800795) com escoliose idiopática da adolescência: Evidências de um estudo de caso-controle e metanálise

Mohammad Reza Sobhan1 Masoud Mahdinezhad-Yazdi1 Seyed Alireza Dastgheib2 Hossein Ahrar3 Kazem Aghili3 Hossein Neamatzadeh4,5

1 Department of Orthopedics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
2 Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
3 Department of Radiology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
4 Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
5 Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Endereço para Correspondência Dr. Seyed Alireza Dastgheib, Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran (e-mail: dastgheibsa@gmail.com).

Rev Bras Ortop 2020;55(1):17–26.

Resumo

Estudos epidemiológicos recentes identificaram que o polimorfismo -174G > C (rs1800795) na região promotora do gene interleucina-6 (IL-6) está associado ao risco de desenvolver escoliose idiopática da adolescência (EIA), mas apresentaram resultados inconsistentes e controversos. Assim, realizamos um estudo de caso-controle e metanálise para obter uma estimativa mais precisa da relação entre o polimorfismo IL-6 -174G > C e o risco de desenvolver EIA. Um total de 80 pacientes com EIA e 80 controles saudáveis pareados foram genotipados usando o ensaio de reação em cadeia de polimerase de polimorfismos de comprimento de restrição (RCP-PCFR). Além disso, todos os estudos elegíveis publicados até junho de 2018 foram identificados por meio de uma pesquisa nas bases de dados PubMed, EMBASE, Google Scholar e China National Knowledge Infrastructure (CNKI). Calculamos as razões de probabilidades (RPs) e os intervalos de confiança de 95% (ICs95%) para avaliar a associação. Um total de 10 estudos elegíveis compreendendo 1.695 casos de EIA e 2.097 controles saudáveis foram incluídos na metanálise. Os dados agrupados sugeriram uma associação significativa entre o polimorfismo IL-6 -174G > C e a suscetibilidade a desenvolver EIA que foi demonstrada em quatro modelos genéticos, ou seja, alélico (C versus G; RP = 0,671; IC95%: 0,457–0,985; p = 0,042), heterozigótico (GC versus GG; RP = 0,734; IC95%: 0,554–0,973; p = 0,032), dominante (CC + GC versus GG; RP = 0,660; IC95%: 0,440–0,990; p = 0,044) e recessivo (CC versus CG + GG; RP = 0,506; IC95%:

recebido 04 de Setembro de 2018
aceito 27 de Novembro de 2018

DOI https://doi.org/10.1055/s-0039-1700813.
ISSN 0102-3616.
Introdução

A escoliose idiopática (EI) é o tipo mais comum de deformidade musculoesquelética, afetando cerca de 2% das crianças e adolescentes. A EI refere-se a desvio da coluna vertebral superior a 10 graus no plano coronal, que é mais frequentemente descoberto por meio de programas de triagem escolar ou pelos pais. A progressão da EI ocorre em três dimensões, com a coluna curvando-se simultaneamente em direção aos braços, e uma progressão de ≥ 10% para uma curva moderada ou grave. Existem várias variabilidades na manifestação clínica e no fenótipo de EI: ela pode surgir nas formas infantil (0–3 anos) e juvenil (4–9 anos), embora a maioria dos casos ocorra na população adolescente (≥ 10 anos) de crianças saudáveis no geral, com início entre (ou próximo) à puberdade e a maturidade esquelética.

A escoliose idiopática da adolescência (EIA) é prevalente em 1% a 3% dos adolescentes de 10 a 16 anos. O padrão de herança da EIA não é claro, porque muitos fatores, incluindo fatores genéticos, ambientais, o espossoma e suas interações combinadas, estão envolvidos. Estudos de associação genética de EIA que foram realizados nos últimos anos, particularmente estudos de ligação, estudos de associação genômica ampla (EAGA) e estudos epigenéticos, identificaram vários loci gênicos, como LBX1, GPR126 SR1, ESR2, MATN1, POC5, IGF1 e VDR, associados à suscetibilidade a desenvolver EIA. Ele demonstraram que alguns desses loci provavelmente contribuem para a suscetibilidade a desenvolver EIA, enquanto outros podem desempenhar um papel crítico na determinação da gravidade da curvatura da coluna vertebral e/ou para determinar se a curva é estável ou progressiva.

A interleucina-6 (IL-6) é uma citocina pró-inflamatória e uma miocina anti-inflamatória que é rápida e transitoriamente produzida em reações a respostas imunes, reações inflamatórias e hematopoiética. O gene humano IL-6 está localizado no cromossomo 7p21–24 com um promotor a montante contendo 303 bp, consistindo em 5 exons e com um comprimento de 5 kb. Recentemente, o polimorfismo do -174G > C (rs1800795) na região promotora do IL-6 tem sido investigado na patogênese da EIA, mas os resultados são controversos, o que pode ser devido ao pequeno tamanho das amostras e diferenças étnicas. Portanto, realizamos um estudo...
de caso-controle em pacientes lianinos com EIA, e uma meta-
análise para estimar melhor o risco geral de desenvolver EIA causado pelo polimorfismo do IL-6 -174G > C.

Materiais e Métodos

Estudo de Caso-Controle

População do Estudo

Todos os sujeitos forneceram consentimento livre e esclarecido antes do início do estudo, que foi aprovado pelo Comitê de Ética em Pesquisa Clínica do nosso instituto. No total, 80 pacientes consecutivos com EIA, que visitaram 7 clinicas ortopédicas em 6 cidades entre abril de 2014 e setembro de 2017, foram recrutados retrospectivamente para o presente estudo. Todos os pacientes foram submetidos a exames radiológicos usando radiografias posteroanteriores (PAs) em pé. Um total de 80 indivíduos saudáveis, pareados como grupo de controle, foram selecionados aleatoriamente a partir da população geral depois de confirmada a ausência de qualquer evidência de escoliose, curvatura da coluna vertebral, ou outras condições ortopédicas de acordo com critérios radiográficos.

Genotipagem

Para a análise de genótipo, amostras de sangue periférico de todos os pacientes e controles foram coletadas, e o DNA genômico de cada amostra foi obtido usando um kit comercial (Cinnagen, Tehran, Iran). O polimorfismo do IL-6 -174G > C (rs1800795) foi genotipado usando a técnica de reação em cadeia de polimerase de polimorfismos de comprimento de fragmentos de restrição (RCP-PCFR). Para investigar o polimorfismo do IL-6 -174G > C (rs1800795), usamos os primers 5'-TGACTTACGCTTACTCTTTGT-3' e reverso 5'-CTGATTGGAAACCTTATTAAG-3'. Os produtos da RCP foram digeridos com enzima de restrição Strepotococcus faecalis NDS47 (SfaNI) a 37°C até o dia seguinte, e depois, analisados por eletroforese em gel de agarose tingido a 2,0% com brometo de etidio. O produto digerido da RCP gerou os seguintes fragmentos: homozigoto tipo selvagem (GG), três fitas constituídas por 140 bp e 58 bp; genótipo heterozigoto (GC), 198 bp, 140 bp e 58 bp; e genótipo mutante homozigoto (CC), uma fita de 198 bp.

Análise Estatística

As diferenças na distribuição de genótipos e alelos para pacientes com EIA e indivíduos controle foram avaliadas com o teste do Qui-quadrado (χ^2). O equilíbrio de Hardy-Weinberg (EHW) foi computado com o teste qualidade de ajuste χ^2 em nosso grupo de controle. Todas as análises estatísticas foram feitas usando o programa International Business Machines Statistical Package for the Social Sciences (IBM SPSS, IBM Corp., Armonk, NY, EUA), versão 20.0. Valores de $p < 0,05$ foram bicaudais, e foram considerados sugestivos de associação.

Metanálise

Estratégia de Pesquisa

Para identificar todas as publicações que avaliaram a associação do polimorfismo IL-6 -174G > C (rs1800795) com a EIA, realizamos uma pesquisa eletrônica abrangente nos bancos de dados PubMed, EMBASE, China National Knowledge Infrastructure (CNKI) e outras bases de dados chinesas de biomedicina até 15 de junho de 2018. Foi usada uma combinação dos seguintes termos do sistema de metadados Medical Subject Headings (MeSH) e palavras-chave: \textit{adolescent idiopathic scoliosis} OU \textit{scoliosis} OU \textit{AIS} E (interleukin-6 \text{OU} IL-6 \text{OU} -174G > C \text{OU} rs1800795) E (SNPs \text{OU} polymorphism \text{OU} genotype \text{OU} allele \text{OU} variation). A pesquisa foi limitada aos estudos em humanos publicados. Além disso, a lista de referências de estudos de caso-controle elegíveis e as revisões relacionadas foram pesquisadas manualmente para encontrar mais fontes em potencial.

Critérios de Inclusão

Os seguintes critérios de inclusão foram utilizados para selecionar a literatura para a metanálise: 1) estudos de caso-controle ou coorte; 2) estudos que avaliavam a associação do polimorfismo do IL-6 -174G > C com a EIA; 3) estudos com dados suficientes para examinar uma razão de probabilidades (RP) com um intervalo de confiança de 95% (IC95%). Além disso, também foram utilizados os seguintes critérios de exclusão: 1) estudos que não eram de caso-controle ou de coorte; 2) estudos apenas com casos, sem controles; 3) estudos sem dados suficientes relatados; 4) resumos, comentários, relatos de casos, cartas, revisões, metanálises; e 5) duplicatas de publicações anteriores.

Extração de Dados

Dois autores extraíram, cuidadosamente e independentemente, os dados de todos os estudos elegíveis de acordo com os critérios de inclusão listados anteriormente. As discordâncias foram resolvidas por meio de discussão entre os dois investigadores, ou um terceiro investigador foi consultado para resolver a disputa, e uma decisão final foi tomada por maioria dos votos. Para cada estudo incluído, foram coletadas as seguintes informações: primeiro autor, ano de publicação, país, etnia, número de casos e controles, métodos de genotipagem e evidência de EHW.

Análise Estatística

A força da associação do polimorfismo do IL-6 -174G > C com a EIA foi avaliada usando a RP com o correspondente IC95%. A significância das RPs agrupadas foi testada pelo teste Z, no qual $p < 0,05$ foi considerado significativo. Os riscos (RPs) de desenvolver EIA associados ao polimorfismo do IL-6 -174G > C foram estimados para cada estudo por cinco modelos genéticos: o modelo alélico (C versus G), o modelo homozigótico (CC versus GG), o modelo heterozigótico (CC versus GC), o modelo dominante (CC + GC versus GG), e o modelo recessivo (CC versus GG + GC). As estatísticas Q e I^2 foram utilizadas para avaliar a heterogeneidade do estudo na metanálise. Além disso, usamos a estatística I^2 para quantificar a heterogeneidade entre os estudos, que varia de 0% a 100%, e representa a proporção da variabilidade entre os estudos atribuível à
heterogeneidade, em vez de ao acaso. Um valor de p menor do que 0,05 para a estatística Q indicou presença de heterogeneidade entre os estudos, de forma que a estima-tiva da RP agrupada de cada estudo foi calculada pelo modelo de efeitos aleatórios (o método de DerSimonian e Laird). Caso contrário, o modelo de efeitos fixos (o método de Mantel–Haenszel) foi usado. Para cada estudo, examinamos se a distribuição de genótipos nos grupos controle estava de acordo com o EHW usando o teste χ^2. A análise de sensibilidade unidirecional, pela qual um único estudo da metanálise foi omitido por vez para refletir a influência do conjunto de dados individuais para a RP agrupada, foi realizada para avaliar a estabilidade dos resultados. Para detectar a presença de possível viés de publicação, foram usados a inspeção visual de Begg da simetria do gráfico de funil e o teste de regressão linear de Egger. Todos os testes estatísticos foram realizados utilizando o programa Comprehensive Meta-Analysis (CMA, Biostat, Englewood, NJ, EUA), versão 2.0. Todos os valores de p na metanálise foram bilaterais, e valores menores do que 0,05 foram conside-rados significativos.

Resultados

Estudo de Caso-Controle

A → Tabela 1 apresenta a distribuição de frequências de alelos e genótipos do polimorfismo do IL-6 -174G > C em casos de EIA e em indivíduos do grupo de controle. As distribuições do genótipo do polimorfismo do IL-6 -174G > C no grupo de controle estavam dentro do EHW ($p = 0,818$). As frequências do genótipo do polimorfismo (GG, GC e CC) do IL-6 -174G > C foram 92,50%, 6,25% e 1,25% para pacientes com EIA, e de 95,0%, 5,0% e 0,0% para os indivíduos do grupo de controle, respectivamente. No presente estudo, não conseguimos encontrar associação está-tisticamente significativa entre o polimorfismo do IL-6 -174G > C e o risco de desenvolver EIA.

Metanálises

Estudos Elegíveis

Um fluxograma descrevendo o processo de seleção do estudo é apresentado na → Fig. 1. Após a exclusão de artigos duplicados e irrelevantes, um total de 10 estudos de caso-controle, incluindo 1.695 casos de EIA e 2.097 controles, foram selecionados para a metanálise. As características dos estudos elegíveis são apresentadas na → Tabela 2. Dos 10 estudos, 6 incluíram de populações asiáticas (1.331 casos de EIA e 1.324 controles), e 4 foram realizados em populações caucasianas (364 casos de EIA e 773 controles). Três técnicas de genotipagem foram aplicadas nos estudos de caso-controle incluídos: RCP-PCFR, TaqMan e sequenciamento direto (SD). Todos os estudos indicaram que a distribuição de genótipos entre os controles era consistente com o EHW, a não ser por dois estudos (→ Tabela 2).

Síntese Quantitativa de Dados

A → Tabela 3 resume os principais resultados da metanálise do polimorfismo IL-6 -174G > C e do teste de heterogenei-dade. Os dados agrupados sugeriram uma associação signi-ficativa entre o polimorfismo do IL-6 -174G > C e a suscetibilidade a desenvolver EIA por 4 modelos genéticos: alélico (C versus G: RP = 0,671; IC95%: 0,457–0,985; $p = 0,042$; → Fig. 2A), heterozigótico (CG versus GG: RP = 0,734; IC95%: 0,554–0,973; $p = 0,032$), dominante (CC versus CG versus GG: RP = 0,660; IC95%: 0,440–0,990; $p = 0,044$; → Fig. 2B) e recessivo (CC versus CG + GG: RP = 0,506; IC95%: 0,264–0,970; $p = 0,040$).

A → Tabela 3 também lista os resultados das análises estratificadas por etnia, nas quais uma associação significativa entre o polimorfismo do IL-6 -174G > C e o risco de desenvol-ver EIA foi encontrada entre caucasianos em 3 modelos genéticos: alélico (C versus G: RP = 0,552; IC95%: 0,318–0,959; $p = 0,035$), homozigótico (CC versus CG: RP = 0,329; IC95%: 0,211–0,499; $p = 0,001$) e dominante (CC versus CG + GG: RP = 0,644; IC95%: 0,438–0,927; $p = 0,021$).

Tabela 1 Distribuições de frequências de genótipos e alelos em casos de EIA e controles

	Casos (n = 80)	Controles (n = 80)	RP (IC95%)	Valore de p
IL-6 -174 G > C				
Genótipos				
GG	74 (92,50)	76 (95,0)	Referência	
CG	5 (6,25)	4 (5,0)	1,267(0,327–4,900)	0,732
CC	1 (1,25)	0 (0,00)	3,038(0,122–75,693)	0,498
Alole				
G	153 (95,62)	156 (97,50)	Referência	
C	7 (4,38)	4 (2,50)	1,784(0,512–6,219)	0,363
Modelos genéticos				
Dominante (CC + CG versus GG)	1,541(0,418–5,681)	0,516		
Reccessivo (CC versus CG + GG)	3,038(0,122–75,693)	0,498		

Abreviações: IC95%, intervalo de confiança de 95%; EIA, escoliose idiopática da adolescência; RP, razão de probabilidades.
0,114–0,951; p = 0,040), e recessivo (CC versus CG + GG: RP = 0,408; IC95%: 0,180–0,925; p = 0,032), mas não em populações asiáticas. Além disso, realizamos análises agrupadas entre a população chinesa. Entretanto, os resultados mostraram que não houve associação estatisticamente significativa entre o polimorfismo do IL-6 -174G > C e o risco de desenvolver EIA nessa população chinesa (Tabela 2).

Teste de Heterogeneidade
A Tabela 3 resume o resultado principal de heterogeneidade (H) entre os estudos. Houve uma heterogeneidade significativa entre os estudos detectada em quatro modelos genéticos: alélico (C versus G: I^2 = 73,65; p_H ≤ 0,001), heterozigótico (CG versus GG: I^2 = 77,57; p_H ≤ 0,001), dominante (CC + CG versus GG: I^2 = 61,46; p_H = 0,008) e recessivo (CC versus CG + GG: I^2 = 67,97; p_H = 0,008). Por isso, exploramos as possíveis fontes de heterogeneidade por análise estratificada por etnia. Os resultados mostraram que estudos em populações asiáticas foram fonte substancial de heterogeneidade. Além disso, a remoção dos estudos que desviavam do EHW não alterou significativamente a heterogeneidade significativa entre os estudos (dados não mostrados), indicando que os modelos eram robustos.

Análise de Sensibilidade
A análise de sensibilidade foi realizada para explorar o impacto de um estudo individual sobre as RPs agrupadas. Os resultados revelaram que nenhum estudo individual afetou significativamente as RPs agrupadas, indicando que nossos resultados eram estatisticamente robustos. Contudo, após excluir os dois estudos de caso-controle que não estavam de acordo com o EHW, tornando a amostra uma representação ruim, as RPs combinadas correspondentes foram materialmente alteradas em todos os modelos genéticos: alélico (C versus G: RP = 0,713; IC95%: 0,400–1,271; p = 0,251), heterozigótico (CG versus GG: RP = 0,745; IC95%: 0,553–1,005; p = 0,054), dominante (CC + CG versus GG: RP = 0,701; IC95%: 0,377–1,302; p = 0,261) e recessivo (CC versus CG + GG: RP = 0,490; IC95%: 0,170–1,409; p = 0,186).

Viés de Publicação
O gráfico de funil de Begg e o teste de Egger foram realizados para avaliar o viés de publicação dos estudos incluídos. As formas dos gráficos de funil não revelaram nenhuma evidência de assimetria óbvia nos cinco modelos genéticos: alélico (C versus G: p_Begg = 0,754 e p_Egger = 0,909; Fig. 3A), heterozigótico (CC versus GG: p_Begg = 1,000 e p_Egger = 0,792), heterozigótico (CG versus GG: p_Begg = 0,754 e p_Egger = 0,834).
Autor/Ano	Autor (ano)	País (Etnia)	Técnica de genotipagem	Casos/Controles	Casos	Controles	MFAs	EHW								
Aulisa et al¹⁴ (2007)	Aulisa et al¹⁴ (2007)	Itália (caucasiana)	RCP-PCFR	53/206	28	22	3	78	28	54	90	62	198	214	0,519	0,073
Lee et al¹⁶ (2010)	Lee et al¹⁶ (2010)	Coreia (asiática)	TaqMan	198/120	197	1	0	395	1	119	1	0	239	1	0,004	0,963
Liu et al¹⁷ (2010)	Liu et al¹⁷ (2010)	China (asiática)	RCP-PCFR	487/494	487	0	0	974	0	494	0	0	988	0	0,000	ND
Mórocz et al¹⁸ (2011)	Mórocz et al¹⁸ (2011)	Hungria (caucasiana)	RCP-PCFR	126/197	34	67	25	135	117	64	97	36	225	169	0,428	0,943
Nikolova et al¹⁹ (2015)	Nikolova et al¹⁹ (2015)	Bulgária (caucasiana)	RCP-PCFR	80/160	42	29	9	113	47	56	62	42	174	146	0,456	0,005
Nikolova et al²⁰ (2016)	Nikolova et al²⁰ (2016)	Bulgária (caucasiana)	RCP-PCFR	105/210	54	40	11	148	62	63	94	53	220	200	0,476	0,136
Sui et al²¹ (2017)	Sui et al²¹ (2017)	China (asiática)	RCP-PCFR	200/200	195	5	0	395	5	196	4	0	396	4	0,010	0,886
Lee et al²² (2018)	Lee et al²² (2018)	China (asiática)	SD	184/220	183	1	0	367	1	218	2	0	438	2	0,004	0,946
Gao et al²³ (2018)	Gao et al²³ (2018)	China (asiática)	RCP-PCFR	182/210	128	44	10	298	64	136	60	14	332	88	0,209	0,046
Present study	Present study	Irã (asiática)	RCP-PCFR	80/80	74	5	1	153	7	76	4	0	156	4	0,025	0,818

Abreviaturas: EHW, equilíbrio de Hardy-Weinberg; MFAs, menores frequências alélicas; ND, não disponível; RCP-PCFR, reação em cadeia de polimerase de polimorfismos de comprimento de fragmentos de restrição; SD, sequenciamento direto.
Vários estudos de associação investigaram a associação entre o polimorfoismo do IL-6 -174G > C e o risco de desenvolver EIA. Após reunir os dados de dez estudos elegíveis com 1.695 casos e 2.097 controles, descobrimos que a associação entre o polimorfoismo do IL-6 -174G > C e o risco de EIA é estatisticamente significativa na população em geral. Uma análise estratificada adicional por etnia demonstrou uma associação significativa entre o polimorfoismo do IL-6 -174G > C e o risco de desenvolver EIA entre caucasianos, mas não entre asiáticos. O resultado inconsistente entre os asiáticos na análise de subgrupos com as RPs gerais pode ser causado pela diversidade genética em diferentes etnias. Nosso resultados de metanálise foram consistentes com a metanálise anterior by Zhao et al, baseada em 5 estudos de caso-controle com 944 casos e 1.177 controles. Em 2016, Zhao et al realizaram uma metanálise para avaliar a associação entre o polimorfoismo do IL-6 -174G > C e o risco de desenvolver EIA. Seus resultados sugeriram que o polimorfoismo do IL-6 -174G > C não tem influência significativa na susceptibilidade individual a desenvolver EIA. No entanto, essa metanálise incluiu tempo de amostra menor, e não conseguiu confirmar uma associação significativa. Portanto, a presente metanálise, com uma amostra maior, forneceu um

Tabela 3 Resultados da associação do polimorfoismo do IL-6 -174 G > C com o risco de desenvolver EIA

Subgrupos	Modelo genético	Tipo de modelo	Heterogeneidade (H)	Razão de probabilidade (RP)	Viés de Publicação					
			I² (%)	P_h	OR	IC95%	Teste Z	p_OR	p_Begg	p_Egger
Geral	C versus G	Aleatório	73,65	< 0,001	0,671	0,457–0,985	-2,035	0,042	0,754	0,909
	CC versus GG	Aleatório	77,57	< 0,001	0,439	0,439–0,192	-1,951	0,051	1,000	0,792
	CG versus GG	Fixo	22,24	0,245	0,600	0,554–0,973	-2,150	0,032	0,754	0,834
	CC + CG versus GG	Aleatório	61,46	0,008	0,660	0,440–0,990	-2,010	0,044	1,000	0,786
	CC versus CG + GG	Aleatório	67,97	0,008	0,506	0,264–0,970	-2,052	0,040	1,000	0,727
Por etnia										
Asiática	C versus G	Fixo	0,00	0,816	0,865	0,624–1,201	-0,866	0,386	1,000	0,552
	CC versus GG	Fixo	0,00	0,409	0,831	0,366–1,885	-0,443	0,658	ND	ND
	CG versus GG	Fixo	0,00	0,915	0,840	0,562–1,256	-0,851	0,395	0,806	0,642
	CC + CG versus GG	Fixo	0,00	0,873	0,845	0,578–1,234	-0,872	0,383	1,000	0,571
	CC versus CG + GG	Fixo	0,00	0,437	0,885	0,394–1,989	-0,296	0,767	ND	ND
Caucasiana	C versus G	Aleatório	88,10	< 0,001	0,552	0,318–0,959	-2,110	0,035	0,308	0,173
	CC versus GG	Aleatório	84,71	< 0,001	0,329	0,114–0,951	-2,053	0,040	0,308	0,204
	CG versus GG	Aleatório	65,43	0,034	0,670	0,413–1,086	-1,626	0,104	1,000	0,519
	CC + CG versus GG	Aleatório	81,71	0,001	0,541	0,290–1,008	-1,935	0,053	0,734	0,490
	CC versus CG + GG	Aleatório	77,97	0,003	0,408	0,180–0,925	-2,146	0,032	0,308	0,114
Asiática (Chinesa)	C versus G	Fixo	0,00	0,790	0,824	0,585–1,160	-1,109	0,267	1,000	0,799
	CC versus GG	Fixo	0,00	1,000	0,759	0,325–1,770	-0,639	0,523	ND	ND
	CG versus GG	Fixo	0,00	0,775	0,811	0,530–1,243	-0,961	0,337	1,000	0,797
	CC + CG versus GG	Fixo	0,00	0,771	0,804	0,539–1,199	-1,069	0,285	1,000	0,780
	CC versus CG + GG	Fixo	0,00	1,000	0,814	0,352–1,880	-0,482	0,630	ND	ND

Abreviações: IC95%, intervalo de confiança de 95%; ND, não disponível.

dominante (CC + CG versus GG: \(p_{\text{Begg}} = 1.000 \) e \(p_{\text{Egger}} = 0.786 \), [Fig. 3B]) e recessivo (CC versus CG + GG: \(p_{\text{Begg}} = 1.000 \) e \(p_{\text{Egger}} = 0.727 \)). O teste de Egger também não mostrou evidência estatística significativa de viés de publicação, o que indicou baixo risco disso nesta meta-análise.

Menor Frequência Alélica

A menor frequência alélica (MFA) do polimorfoismo do IL-6 -174G > C nos controles saudáveis asiáticos e caucasianos é apresentada na - Tabela 2. As frequências geográficas do alelo IL-6 -174C foram de 10,45% (0,00–20,9%) entre asiáticos, e de 47,35% (42,80–51,90%) entre caucasianos, respectivamente (– Tabela 2).

Discussão

Acredita-se que fatores genéticos e epigenéticos tenham um papel importante na etiologia da EIA. No entanto, a relação entre os fatores de risco ambiental e a EIA pode ser altamente complicada, e uma extensa pesquisa é necessária para verificar como exatamente os fatores ambientais afetam a susceptibilidade individual a desenvolver EIA.

Rev Bras Ortop. 2020 Vol. 55 No. 12020
resultado preciso em relação à associação do polimorfismo do IL-6 -174G > C com o risco de desenvolver EIA.

A heterogeneidade é um problema potencial que deve ser abordado, pois pode afetar os resultados de uma metaanálise. As i g n i cativa heterogeneidade entre os estudos exibida pode ser atribuída a diferenças em vários fatores, como diferença de etnia, de tamanho da amostra, de técnicas de genotipagem, e diversidade no desenho e na execução dos estudos.

No entanto, apesar de o número de estudos incluídos na presente metaanálise ter sido pequeno, uma heterogeneidade relativamente grande foi observada em quatro modelos genéticos na população geral. Assim, realizamos uma análise de subgrupos por etnia para explorar as fontes de heterogeneidade. No entanto, após a estratificação por etnia, nenhuma heterogeneidade significativa foi observada na população asiática, mas a heterogeneidade ainda existia na população caucasiana. Portanto, pode-se presumir que a heterogeneidade relativamente grande resulta principalmente de origens étnicas.

Existem várias limitações em nossa metaanálise. Primeiro, dado que apenas estudos publicados em inglês e chinês foram incluídos, pode haver viés de publicação, embora nossos resultados não tenham mostrado significância. Segundo, como os estudos incluídos foram conduzidos entre asiáticos e caucasianos, os resultados devem ser interpretados cuidadosamente. Mais estudos sobre populações de outras áreas, como África e América do Norte, são necessários para diminuir os vieses produzidos pela variação étnica. Terceiro, as análises atuais foram baseadas em estimativas não ajustadas, porque a maioria dos estudos não forneceu dados ajustados. Análises mais precisas, incluindo dados individuais, fatores de estilo de vida e ambientais, devem

Autor e ano do estudo	Estatísticas para cada estudo	Razão de probabilidades (RP) e intervalo de confiança de 95% (IC95%)			
	Razão de probabilidade (RP)	Limite inferior	Limite Superior	Valor de Z	Valor de p
Aulisa et al (2007)	0.332	0.207	0.533	-4.567	0.000
Lee et al (2010)	0.605	0.038	9.719	-0.355	0.723
Mórocz et al (2011)	1.154	0.840	1.556	0.882	0.378
Nikolova et al (2015)	0.496	0.331	0.743	-3.395	0.001
Nikolova et al (2016)	0.461	0.324	0.656	-4.002	0.000
Sui et al (2017)	1.253	0.533	4.701	0.335	0.730
Lee et al (2018)	0.557	0.054	6.607	-0.421	0.670
Gao et al (2018)	0.805	0.563	1.151	-1.189	0.234
Sobhan et al (2018)	1.784	0.512	6.219	0.909	0.363

Autor e ano do estudo	Estatísticas para cada estudo	Razão de probabilidades (RP) e intervalo de confiança de 95% (IC95%)			
Razão de probabilidade (RP)	Limite inferior	Limite Superior	Valor de Z	Valor de p	
Aulisa et al (2007)	0.317	0.170	0.591	-3.616	0.000
Lee et al (2010)	0.604	0.037	9.748	-0.356	0.722
Mórocz et al (2011)	1.302	0.795	2.133	1.048	0.295
Nikolova et al (2015)	0.487	0.282	0.841	-2.582	0.010
Nikolova et al (2016)	0.405	0.250	0.656	-3.668	0.000
Sui et al (2017)	1.256	0.332	4.749	0.336	0.730
Lee et al (2018)	0.568	0.054	6.622	-0.422	0.672
Gao et al (2018)	0.775	0.506	1.187	0.171	0.241
Sobhan et al (2018)	1.541	0.418	5.681	0.649	0.516

Fig. 2 Gráficos de floresta do polimorfismo do IL-6 -174G > C com risco de desenvolvimento de EIA. (A) Modelo alélico (C versus G); (B) modelo dominante (CC + CG versus GG). Foi utilizado um modelo de efeitos aleatórios.
Finalmente, acredita-se que genética, meio ambiente e exposoma desempenham um papel importante na fisiopatologia da EIA, mas a presente meta-nálise não pôde avaliar as interações gene-gene e gene-ambiente devido às informações limitadas dos estudos incluídos.

Em resumo, os resultados desta meta-análise, que são inconsistentes com os da metanálise anterior by Zhao et al., indicam que o polimorfismo do IL-6 -174G>C está associado com o risco de desenvolver EIA, especialmente em caucasianos. Além disso, nosso estudo de caso-controle indicou que o polimorfismo do IL-6 -174G>C não estava associado com o risco de desenvolver EIA na população iraniana.

Conflito de Interesses
Os autores declararam não haver conflito de interesses.

Referências
1. Choudhry MN, Ahmad Z, Verma R. Adolescent Idiopathic Scoliosis. Open Orthop J 2016;10:143–154
2. Sobhan MR, Mahdinezhad-Yazdi M, Aghili K, et al. Association of TNF-α-308G>A and -238G>A polymorphisms with knee osteoarthritis risk: A case-control study and meta-analysis. J Orthop 2018;15(03):747–753
3. Beauséjour M, Goulet L, Parent S, et al. Members of the Quebec Scoliosis Society and of the Canadian Paediatric Spinal Deformities Study Group. The effectiveness of scoliosis screening programs: methods for systematic review and expert panel recommendations formulation. Scoliosis 2013;8(01):12
4. Illés T, Tunyogi-Csapó M, Somoskeöy S. Breakthrough in three-dimensional scoliosis diagnosis: significance of horizontal plane view and vertebra vectors. Eur Spine J 2011;20(01):112–117
5. Wu H, Ronsky JL, Cheriet F, Harder J, Küpper JC, Zernicke RF. Time series spinal radiographs as prognostic factors for scoliosis and progression of spinal deformities. Eur Spine J 2011;20(01):112–117
6. Daryabor A, Arazpour M, Sharifi G, Bani MA, Aboutorabi A, Golchin N. Gait and energy consumption in adolescent idiopathic scoliosis: A literature review. Ann Phys Rehabil Med 2017;60(02):107–116
7. Zheng X, Wang W, Qian B, et al. Accelerated endochondral growth in adolescents with idiopathic scoliosis: a preliminary histomorphometric study. BMC Musculoskelet Disord 2014;15(01):429
8. Paria N, Wise CA. Genetics of adolescent idiopathic scoliosis. Semin Spine Surg 2015;27(01):9–15
9. Ikegawa S. Genomic study of adolescent idiopathic scoliosis in Japan. Scoliosis Spinal Disord 2016;11(01):5
10. Dai J, Lv ZT, Huang JM, Cheng P, Fang H, Chen AM. Association between polymorphisms in vitamin D receptor gene and...
adolescent idiopathic scoliosis: a meta-analysis. Eur Spine J 2018; 27(09):2175–2183

11 Xu L, Sheng F, Xia C, et al. Common Variant of POC5 Is Associated With the Susceptibility of Adolescent Idiopathic Scoliosis. Spine 2018;43(12):E683–E688

12 Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014;6(10):a016295

13 Popko K, Gorska E, Demkow U. Influence of interleukin-6 and G174C polymorphism in IL-6 gene on obesity and energy balance. Eur J Med Res 2010;15(Suppl 2):123–127

14 Aulisa L, Papaleo P, Pola E, et al. Association between IL-6 and MMP-3 gene polymorphisms and adolescent idiopathic scoliosis: a case-control study. Spine 2007;32(24):2700–2702

15 Zhao J, Yang M, Li M. Association of IL-6 and MMP-3 gene polymorphisms with susceptibility to adolescent idiopathic scoliosis: a meta-analysis. J Genet 2016;95(03):573–579

16 Lee JS, Suh KT, Eun IS. Polymorphism in interleukin-6 gene is associated with bone mineral density in patients with adolescent idiopathic scoliosis. J Bone Joint Surg Br 2010;92(08):1118–1122

17 Liu Z, Tang NL, Cao XB, et al. Lack of association between the promoter polymorphisms of MMP-3 and IL-6 genes and adolescent idiopathic scoliosis: a case-control study in a Chinese Han population. Spine 2010;35(18):1701–1705

18 Mórocz M, Czibula A, Grózer ZB, et al. Association study of BMP4, IL6, Leptin, MMP3, and MTNR1B gene promoter polymorphisms and adolescent idiopathic scoliosis. Spine 2011;36(02):E123–E130

19 Nikolova S, Dikova M, Dikov D, et al. Role of the IL-6 gene in the etiopathogenesis of adolescent idiopathic scoliosis. Anal Cell Pathol (Amst) 2015;2015:621893

20 Nikolova ST, Yablanitski VT, Vlaev EN, et al. Association Between IL-6 and MMP3 Common Genetic Polymorphisms and Idiopathic Scoliosis in Bulgarian Patients: A Case-control Study. Spine 2016;41(09):785–791

21 Sui W, Yang J, Huang Z, Wang Q, Fan H, Deng Y. Polymorphisms in promoter regions of MMP-3 and IL-6 genes are not associated to adolescent idiopathic scoliosis (AIS) gender bias. J Back Musculoskeletal Rehabil 2017;30(03):559–563

22 Lee JS, Shin JK, Goh TS. Interleukin 6 gene polymorphism in patients with degenerative lumbar scoliosis: a cohort study. Eur Spine J 2018;27(03):607–612

23 Gao J, Zhang L, Liu Z, Yao S, Gao S. [Correlation analysis between interleukin 6 polymorphism and adolescent idiopathic scoliosis susceptibility and bracing effectiveness]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2018;32(06):678–684

24 Burwell RG, Dangerfield PH, Moulton A, Grivas TB. Adolescent idiopathic scoliosis (AIS), environment, exposure and epigenetics: a molecular perspective of postnatal normal spinal growth and the etiopathogenesis of AIS with consideration of a network approach and possible implications for medical therapy. Scoliosis 2011;6(01):26

25 Jafari Nedooshan J, Kargar S, Neamatzadeh H, Haghighi F, Dehghani Mohammad Abadi R, Seddighi N. Lack of Association of the Fat Mass and Obesity Associated (FTO) Gene rs9939609 Polymorphism with Breast Cancer Risk: a Systematic Review and Meta-Analysis Based on Case – Control Studies. Asian Pac J Cancer Prev 2017;18(04):1031–1037

26 Sadeghiyeh T, Hosseini Biouki F, Mazaheeri M, Zare-Shenhne M, Neamatzadeh H, Poursharif Z. Association between Catechol-O-Methyltransferase Val158Met (158G/A) Polymorphism and Suicide Susceptibility: A Meta-analysis. J Res Health Sci 2017;17(02):e00383

27 Abedinzadeh M, Zare-Shenhne M, Neamatzadeh H, Abedinzadeh M, Karami H. Association between MTHFR C677T polymorphism and risk of prostate cancer: Evidence from 22 studies with 10,832 cases and 11,993 controls. Asian Pac J Cancer Prev 2015;16(11):4525–4530

28 Yazdi MM, Jamalaldini MH, Sobhan MR, et al. Association of ESRα Gene Pvu II T>C, XbaI A>G and BtgI G>A Polymorphisms with Knee Osteoarthritis Susceptibility: A Systematic Review and Meta-Analysis Based on 22 Case-Control Studies. Arch Bone Jt Surg 2017;5(06):351–362

29 Kamali M, Hamadani S, Neamatzadeh H, et al. Association of XRCC2 rs3218536 polymorphism with susceptibility of breast and ovarian cancer: A systematic review and meta-analysis. Asian Pac J Cancer Prev 2017;18(07):1743–1749

30 Gohari M, Nešmatzadeh H, Jafari MA, Mazaheri M, Zare-Shenhne M, Abbasi-Shavazi E. Association between the p53 codon 72 polymorphism and primary open-angle glaucoma risk: Meta-analysis based on 11 case-control studies. Indian J Ophthalmol 2016;64(10):756–761