YUSUKE OKUYAMA

Abstract. We first obtain a locally uniform a priori bound of the dynamics of rational functions of degree > 1 on the Berkovich projective line over an algebraically closed and complete non-archimedean field of any characteristic, and an equidistribution result for moving targets towards the equilibrium (or canonical) measure, under the no potentially good reductions condition. This answers a question posed by Favre and Rivera-Letelier. We then establish a complex counterpart to the above a priori bound, on the dynamics of an endomorphism of degree > 1. As a special case, this yields a Diophantine-type estimate of the dynamics of f on its domaines singuliers (rotation domains).

1. Introduction

Let K be an algebraically closed field of any characteristic that is complete with respect to a non-trivial and non-archimedean absolute value $| \cdot |$. The Berkovich projective line $P^1 = P^1(K)$ compactly augments $\mathbb{P}^1 = \mathbb{P}^1(K)$ (see [8]) and is canonically regarded as a tree in the sense of Jonsson [25, Definition 2.2], the weak topology of which coincides with the Gelfand topology of P^1. In particular, the classical projective line \mathbb{P}^1 is dense in P^1 and is in the set of all end points of P^1. The action on \mathbb{P}^1 of a rational function $f ∈ K(z)$ of degree $d > 1$ canonically extends to that on P^1, which is continuous, open, surjective, and discrete. The local degree function $\text{deg}(f) : P^1 \rightarrow \{1, \ldots, d\}$ also canonically extends to an upper semicontinuous function P^1 satisfying in particular $\sum_{S ∈ P^1} \text{deg}_S(f) = d$ for every $S ∈ P^1$, and induces the pullback action f^* of f on the space of all Radon measures on P^1. By the seminal Baker–Rumely [3], Chambert-Loir [13], and Favre–Rivera-Letelier [19], for every $f ∈ K(z)$ of degree $d > 1$, we have the equilibrium (or canonical) measure $μ_f$ of f on P^1, which has no masses on polar subsets in P^1 and satisfies the f-balanced property $f^*μ_f = d · μ_f$ on P^1. Moreover, letting $δ_S$ be the Dirac measure on P^1 at each $S ∈ P^1$, the equidistribution

$$\lim_{n \to ∞} \frac{(f^n)^*δ_S}{d^n} = μ_f$$

holds for every $S ∈ P^1$ but the at most countable exceptional set $E(f) := \{a ∈ P^1 : \#(\bigcup_{n ∈ \mathbb{N} \cup \{0\}} f^{-n}(a)) < ∞\}$ of f (if char $K = 0$, then even $\#E(f) ≤ 2$). In particular, $μ_f$ is mixing under f.

Date: May 22, 2018.

2010 Mathematics Subject Classification. Primary 37P50; Secondary 11S82, 32H50.

Key words and phrases. a priori bound, domaine singulier, equidistribution, no potentially good reductions, Berkovich projective line, pluripotential theory.
Our first aim is to contribute to a locally uniform quantitative study and an equidistribution problem on the dynamics of f on \mathbb{P}^1. The equilibrium (or canonical) measure μ_f on \mathbb{P}^1 is a key tool.

1.1. An a priori bound of the dynamics of f. Recall (that the absolute value $|\cdot|$ is said to be non-trivial if $|K| \not\subset \{0, 1\}$ and) that the absolute value $|\cdot|$ is said to be non-archimedean if the strong triangle inequality

$$|z + w| \leq \max\{|z|, |w|\} \quad \text{for any } z, w \in K$$

holds. Then the chordal metric $[z, w]_{\mathbb{P}^1}$ on \mathbb{P}^1 (see (2.1) below, following the notation in Nevanlinna’s and Tsuji’s books [30, 33]) is written as

$$[z, w]_{\mathbb{P}^1} = \frac{|z - w|}{\max\{1, |z|\} \max\{1, |w|\}} \leq 1$$
on an affine chart $\cong K$ of \mathbb{P}^1.

Let $f \in K(z)$ be a rational function on \mathbb{P}^1 of degree $d > 1$. We say that f has no potentially good reductions if $\deg(h \circ f \circ h^{-1}) < \deg f$ for every $h \in \text{PGL}(2, K)$, where $h \circ f \circ h^{-1} \in k(z)$ (of the degree $\in \{1, \ldots, \deg f\}$ is the reduction of the minimal expression of $h \circ f \circ h^{-1}$ modulo the maximal ideal m_K of the ring \mathcal{O}_K of K-integers (cf. Kawaguchi–Silverman [26, Definition 2]) and $k = \mathcal{O}_K/m_K$ is the residue field of K (and we identify $\text{PGL}(2, K)$ with the projective transformations group on \mathbb{P}^1). This no potentially good reductions condition (on f) is equivalent to that the measure μ_f is supported by no singleton in $\mathbb{P}^1 \setminus \mathbb{P}^1$ (cf. [3 Corollary 9.27]).

Our first principal result is the following locally uniform a priori bound of the dynamics of f.

Theorem 1. Let K be an algebraically closed field of any characteristic that is complete with respect to a non-trivial and non-archimedean absolute value. Then for every rational function $f \in K(z)$ on \mathbb{P}^1 of degree $d > 1$ having no potentially good reductions, every rational function $g \in K(z)$ on \mathbb{P}^1 of degree > 0, and every non-empty open subset D in \mathbb{P}^1, we have

$$\lim_{n \to \infty} \sup_{w \in D} \frac{\log|f^n(w), g(w)|_{\mathbb{P}^1}}{d^n + \deg g} = 0. \quad (1.2)$$

1.2. Equidistribution towards μ_f for moving targets. For every $g \in K(z)$ of degree > 0 and every $n \in \mathbb{N}$, let $[f^n = g]$ be the effective divisor on \mathbb{P}^1 defined by the roots of the algebraic equation $f^n = g$ on \mathbb{P}^1, taking into account their multiplicities, which is regarded as a Radon measure on \mathbb{P}^1.

The following equidistribution theorem for moving targets under the no potentially good condition is an application of Theorem 1 and partly answers the question posed by Favre–Rivera-Letelier [19 après Théorème B].

Theorem 2. Let K be an algebraically closed field of any characteristic that is complete with respect to a non-trivial and non-archimedean absolute value. Then for every $f \in K(z)$ of degree $d > 1$ having no potentially good reductions and every $g \in K(z)$ of degree > 0, we have

$$\lim_{n \to \infty} \frac{|f^n = g|}{d^n + \deg g} = \mu_f \quad \text{weakly on } \mathbb{P}^1. \quad (1.3)$$
In [19 Théorème B], they established (1.3) in the char $K = 0$ case (even without the no potentially good reductions assumption), and asked about the situation in the char $K > 0$ case. In Theorem 2 in the char $K > 0$ case, the no potentially good reductions assumption can be relaxed but cannot be omitted (as pointed out in [19 après Théorème B]).

1.3. Complex counterpart. From now on, pick $k \in \mathbb{N}$. In [1.3, 1.4 and 1.5] we would work over \mathbb{C}, so denote \mathbb{CP}^k by \mathbb{P}^k for simplicity.

Let f be a holomorphic endomorphism of \mathbb{P}^k of algebraic degree $d > 1$ (so of topological degree d^k). By the seminal Fornæss–Sibony [20] (see also the survey [13]), there is a weak limit $\mu_f := \lim_{n \to \infty} (f^{*} \omega_{FS})^{\wedge k}/d^{kn}$ on \mathbb{P}^k, where ω_{FS} is the Fubini-Study Kähler form on \mathbb{P}^k normalized as $\omega_{FS}^{\wedge k}(\mathbb{P}^k) = 1$. Let us equip \mathbb{P}^k with the chordal metric $[x,y]_{\mathbb{P}^k}(\leq 1)$ (see (5.1) below), which is equivalent to the spherical metric on \mathbb{P}^k induced by ω_{FS}. The probability measure μ_f, which is called the equilibrium measure of f, has no masses on pluripolar subsets in \mathbb{P}^k, satisfies the f-balanced property $f^{*} \mu_f = d^k \cdot \mu_f$ on \mathbb{P}^k and is supported by $J(f)$, where $J(f)$ is the (first) Julia set of f, i.e., the set of all points in \mathbb{P}^k at each of which the family $\{f^n : n \in \mathbb{N}\}$ is not normal. Moreover, letting δ_x be the Dirac measure on \mathbb{P}^k at each $x \in \mathbb{P}^k$, for every $x \in \mathbb{P}^k$ but an at most pluripolar subset \mathcal{E}_f in \mathbb{P}^k,

$$\lim_{n \to \infty} (f^n)^{*} \delta_x/d^{kn} = \mu_f \quad \text{weakly on } \mathbb{P}^k,$$

so μ_f is mixing under f (by the further investigation [11, 15, 17] on (1.4), the pluripolar \mathcal{E}_f is in fact algebraic in \mathbb{P}^k).

Our second aim is to contribute to a locally uniform quantitative study of the dynamics of f, aiming at obtaining a Diophantine-type estimate on domaines singuliers (rotation domains) of the dynamics of f. The equilibrium measure μ_f on \mathbb{P}^k is a key tool.

1.4. The mass of μ_f on the boundary of a cyclic Fatou component.

The (first) Fatou set $F(f)$ of f is by definition $\mathbb{P}^k \setminus J(f)$, and each component of $F(f)$ is called a Fatou component of f. Both $J(f)$ and $F(f)$ are totally invariant under f, and f maps each Fatou component properly to a Fatou component, and the preimage of a Fatou component under f is the union of (at most d^k) Fatou components. A Fatou component W of f is said to be cyclic if W is invariant under f^p for some $p \in \mathbb{N}$ in that $f^p(W) = W$, and then we call the minimal such p the exact period of W under f.

For cyclic Fatou components W of f, since μ_f is ergodic under f, we have $\mu_f(\partial W) \in \{0,1\}$. The following answers the question on when $\mu_f(\partial W) = 1$.

Theorem 3. Let f be a holomorphic endomorphism of \mathbb{P}^k of degree > 1.

Then for every cyclic Fatou component W of f having the exact period $p \in \mathbb{N}$, we have $\mu_f(\partial W) \in \{0,1\}$, and W is totally invariant under f^p (in that $(f^p)^{-1}(W) = W$) if and only if $\mu_f(\partial W) = 1$. Moreover, if $\mu_f(\partial W) = 0$, then for every component U of $\bigcup_{n \in \mathbb{N} \cup \{0\}} f^{-n}(W)$, we have $\mu_f(\partial U) = 0$.

Following Fatou [18 Sec. 28], we call a cyclic Fatou component W of f having the exact period, say $p \in \mathbb{N}$, a domaine singulier (a singular domain, or a rotation domain) if $f^p : W \to W$ is biholomorphic (i.e., if le morphisme
holomorphic $f^p : W \to W$ est singulière). Theorem 3 yields $\mu_f(\partial W) = 0$ for every domaine singulier W of f. In the dimension $k = 1$ case (then $\text{supp}\mu_f = J(f)$ and a domaine singulier of f is either a Siegel disk or an Herman ring of f), this is equivalent to

\[
\partial W \subset J(f) \quad \text{for every domaine singulier } W \text{ of } f.
\]

This might be of independent interest. In the dimension $k = 1$ case, Theorem 3 (with Sullivan’s no wandering domain theorem, Fatou’s finiteness of the number of cyclic Fatou components, and Riemann-Hurwitz’s formula) also implies that if there are no cyclic Fatou components of f^2 totally invariant under f^2, then $J(f)$ is strictly larger than the union of the boundaries of all Fatou components of f. This corresponds to Abikoff [1] for Kleinian groups.

1.5. An a priori bound of the dynamics of f on \mathbb{P}^k. The following a priori bound of f is an application of Theorem 3.

Theorem 4 (an a priori bound). Let f be a holomorphic endomorphism of \mathbb{P}^k of algebraic degree $d > 1$. Then for every holomorphic endomorphism g of \mathbb{P}^k of degree > 0 and every non-empty open subset D in \mathbb{P}^k,

\[
\lim_{n \to \infty} \sup_{y \in D} \log\left[\frac{\left[f^n(y), g(y)\right]_{\mathbb{P}^k}}{d^n + \deg g}\right] = 0.
\]

The argument in the proof is similar to those in Buff–Gauthier [12] and Gauthier [22], using a domination principle (Bedford–Taylor [6]; see also Bedford–Smillie [31, Page 77]) from pluripotential theory. Theorem 4 improves [31, Theorem 1 when $K = \mathbb{C}$ and $\deg g > 0$, where “$= 0$” in (1.6) was “$> -\infty$” (but possibly $\deg g = 0$). In Theorem 4 the assumption that $\deg g > 0$ can be relaxed but cannot be omitted.

An immediate consequence of Theorem 4 for $g = \text{Id}_{\mathbb{P}^k}$ is that for every domaine singulier W of f having the exact period $p \in \mathbb{N}$ and every open subset D in \mathbb{P}^k contained in W,

\[
\lim_{n \to \infty} \frac{\log \sup_{y \in D} |f^{pn}(y), y|_{\mathbb{P}^k}}{d^{pn} + 1} = 0.
\]

This Diophantine-type estimate (1.7) of f^p on a domaine singulier W has been known in [31, Theorem 3] under the additional assumption that W is of maximal type in that, setting $q := \min\{j \in p\mathbb{N} : f^j|W \in G_0\}$, where G_0 is the component of the closed subgroup generated by $f^p|W$ in the biholomorphic automorphisms group $\text{Aut}(W)$ containing Id_W, there exists a Lie groups isomorphism $G_0 \to \mathbb{T}^k$ that maps $f^0|W$ to $(e^{2\pi i \alpha_1}, \ldots, e^{2\pi i \alpha_k})$ for some $\alpha_1, \ldots, \alpha_k \in (\mathbb{R} \setminus \mathbb{Q})/\mathbb{Z}$; in general, G_0 at least contains a torus \mathbb{T}^j for some $j \in \{1, \ldots, k\}$ (Ueda [37]). This is the reason why a domaine singulier is also called a rotation domain. However, it has been unclear whether \mathbb{T}^j is geometric, except for the maximal case $j = k$ (Barrett–Bedford–Dadok [4], see also Mihaiescu [29] in the case $k = 2$ and $j = 1$). Under the above maximal type assumption, also in terms of the notation there, the estimate (1.7) has been illustrated as

\[
\lim_{n \to \infty} \frac{\log \max_{j \in \{1, \ldots, k\}} |e^{nh^{2\pi i \alpha_j}} - 1|}{d^{pn} + 1} = 0
\]

(cf. Cremer [14, p157] in the case of $k = 1$).
1.6. Organization of the article. In Sections 2 and 3 we show Theorems 1 and 2 respectively. In Section 4 we show Theorem 3. In Section 5 we show Theorem 4 and conclude with a few remarks including a Nevanlinna-theoretic reformulation (1.6′ below) of Theorem 4.

2. Proof of Theorem 1

Let K be an algebraically closed field of any characteristic that is complete with respect to a non-trivial and non-archimedean absolute value $| \cdot |$.

For the potential theory on $P^1 = P^1(K)$ including the fully general study of harmonic analysis on P^1, i.e., subharmonic functions on open subsets in P^1, see Baker–Rumely and Thuillier, and also the study of the class of “δ_{can}”-subharmonic functions” $g : P^1 \to \mathbb{R}_{\leq 0} \cup \{-\infty\}$ such that $\Delta g + \delta_{\text{can}}$ are probability Radon measures on P^1, see Favre–Rivera-Letelier and Thuillier. Here $\mathcal{S}_{\text{can}} \in P^1 \setminus P^1$ ($P^1 = P^1(K)$) is the Gauss (or canonical) point in P^1 and $\Delta = \Delta_0$ is the Laplacian on P^1, and in subsection 2.2 the opposite sign convention on Δ is adopted. In the following, δ_{can} plays a role similar to that of the (spherical area element induced by) ω_F on \mathbb{CP}^1.

Let $f \in K(z)$ of degree $d > 1$. Recall that for every $\mathcal{S} \in P^1$, $f^* \delta_{\mathcal{S}} = \sum_{\nu \in f^{-1}(\mathcal{S})} (\deg_{\mathcal{S}}(f)) \delta_{\nu}$ on P^1, and that for every Radon measure ν on P^1, $f^* \nu = \int_{P^1} (f^* \delta_{\mathcal{S}}) d\nu(S)$ on P^1.

A lift of f is a pair $F = (F_0, F_1) \in (K[z_0, z_1] \cdot)^2$ of homogeneous polynomials of degree d in the indeterminants z_0, z_1, which is unique up to multiplication in K^*, such that $\pi \circ F = f \circ \pi$ on $K^2 \setminus \{0\}$ (and that $F^{-1}(0) = \{0\}$). Here the 0 of the K-linear space K^2 is the origin $(0, 0)$ of K^2, and we let $\pi : K^2 \setminus \{0\} \to \mathbb{P}^1$ be the canonical projection.

Let $\|(z_0, z_1)\| = \max\{|z_0|, |z_1|\}$ be the maximal norm on K^2. Noting that $K^2 \cong K^2$ and the chordal metric $[z, w] \in \mathbb{P}^1$ is defined as

\[(z, w)[P^1] := |Z \wedge W|/(||Z|| \cdot ||W||) \leq 1, \quad z, w \in \mathbb{P}^1,\]

where $Z \in \pi^{-1}(z)$ and $W \in \pi^{-1}(w)$. The function $-\log \max\{|1, | \cdot |\} = \log[1, \infty]$ on each affine chart $\cong K$ of P^1 extends continuously to $P^1 \setminus \{\infty\}$ (writing as $P^1 = K \cup \{\infty\}$) and moreover, extends to a function $P^1 \to \mathbb{R}_{\leq 0} \cup \{-\infty\}$ such that this extension (we still write it as $-\log \max\{|1, | \cdot |\}$ for simplicity) satisfies

\[\Delta(-\log \max\{|1, | \cdot |\}) = \delta_{\infty} - \delta_{\text{can}} \quad \text{on } P^1.\]

Fix a lift F of f. Then for every $n \in \mathbb{N}$, F^n is a lift of f^n and $\deg(f^n) = d^n$, and the function

\[T_{F^n} := \log ||F^n|| - d^n \cdot \log || \cdot ||\]

on $K^2 \setminus \{0\}$ descends to \mathbb{P}^1 and in turn extends continuously to P^1, satisfying

\[\Delta T_{F^n} = (f^n)^* \delta_{\text{can}} - d^n \cdot \delta_{\text{can}} \quad \text{on } P^1\]

(see, e.g., [22 Definition 2.8]). Moreover, there is the uniform limit

\[g_F := \lim_{n \to \infty} \frac{T_{F^n}}{d^n} \quad \text{on } P^1,\]
which is continuous on \mathbb{P}^1 and in fact satisfies
\[
\Delta g_F = \mu_f - \delta_{\text{can}} \quad \text{on } \mathbb{P}^1
\]
(see [31 §10], [19 §6.1]).

For every $g \in K(z)$ of degree > 0 and every $n \in \mathbb{N}$, the function $z \mapsto [f^n(z), g(z)]_{\mathbb{P}^1}$ on \mathbb{P}^1 extends continuously to a function
\[
S \mapsto [f^n, g]_{\text{can}}(S) : \mathbb{P}^1 \to [0, 1],
\]
which does not necessarily coincide with the evaluation $S \mapsto [S', S'']_{\text{can}}$, at $(S', S'') = (f^n(S), g(S)) \in (\mathbb{P}^1)^2$, on \mathbb{P}^1 but satisfies
\[
\Delta \log[f^n, g]_{\text{can}} = [f^n = g] - (f^n)^*\delta_{\text{can}} - g^*\delta_{\text{can}} \quad \text{on } \mathbb{P}^1
\]
([32 Proposition 2.9 and Remark 2.10]), recalling that $[f^n = g]$ is the effective divisor on \mathbb{P}^1 defined by the roots of the algebraic equation $f^n = g$ on \mathbb{P}^1, taking into account their multiplicities, and is regarded as a Radon measure on \mathbb{P}^1.

For the non-archimedean dynamics from the Fatou-Julia strategy, we refer to [33 4]. The Berkovich Julia set $J(f)$ of f is $\text{defined by supp } \mu_f$, and the Berkovich Fatou set $F(f)$ of f is by $\mathbb{P}^1 \setminus J(f)$. Then (the classical Fatou set) $F(f) \cap \mathbb{P}^1$ coincides with the region of equicontinuity of the family $\{f^n : (\mathbb{P}^1, [z, w]_{\mathbb{P}^1}) \to (\mathbb{P}^1, [z, w]_{\mathbb{P}^1}) : n \in \mathbb{N}\}$. A Berkovich Fatou component W of f is a component of $F(f)$. Both $J(f)$ and $F(f)$ are totally invariant under f, f maps a Berkovich Fatou component properly to a Berkovich Fatou component, and the preimage of a Berkovich Fatou component under f is the union of (at most d) Berkovich Fatou components. A Berkovich Fatou component W is said to be cyclic if $f^p(W) = W$ for some $p \in \mathbb{N}$, and then the minimal such $p \in \mathbb{N}$ is called the exact period of W under f.

A cyclic Berkovich Fatou component W of f having the exact period p is called a Berkovich domaine singulier of f if $f^p : W \to W$ is injective.

The former half in the following is a non-archimedean counterpart of ([15]), and follows from an observation of the Gelfand topology of \mathbb{P}^1.

Lemma 2.1. If f has no potentially good reductions, then for any Berkovich domaine singulier W of f, we have $\partial W \subseteq J(f)$. Moreover, for every component U of $\bigcup_{n \in \mathbb{N} \cup \{0\}} f^{-n}(W)$, we have $\mu_f(\partial U) = 0$.

Proof. Let us see the former half. Let W be a domaine singulier of f having the exact period $p \in \mathbb{N}$, and suppose that $\partial W = J(f)$. By deg $f > 1$ and the injectivity of $f^p : W \to W$, there is a component U of $f^{-1}(W) \setminus W$, and then $\partial U \setminus W \subset J(f) \setminus \partial W = \emptyset$. Then ∂W is not only a singleton but also in $\mathbb{P}^1 \setminus \mathbb{P}^1$, so that μ_f is supported by a singleton in $\mathbb{P}^1 \setminus \mathbb{P}^1$, and we are done.

Let us see the latter half. Suppose that f has no potentially good reductions, and fix a domaine singulier W of f. By the former half and the ergodicity of μ_f under f, we have $\mu_f(\partial W) = 0$ and, in turn, for every $n \in \mathbb{N}$ and every component U of $f^{-n}(W)$, by $f^* \mu_f = d \cdot \mu_f$ on \mathbb{P}^1, we compute as $0 \leq d^n \cdot \mu_f(\partial U) = ((f^n)^* \mu_f)(\partial U) = \int_{\mathbb{P}^1} ((f^n)^* \delta_v)(\partial U) d\mu_f(v) = \int_{\partial U} (f^n)^* \delta_v(\partial U) d\mu_f(v) \leq d^n \cdot \mu_f(\partial W) = 0$, so that $\mu_f(\partial U) = 0$ (since $d > 1 > 0$).

Suppose now that there are $g \in K(z)$ of degree > 0 and a non-empty open subset D in \mathbb{P}^1 such that ([12]) does not hold, or equivalently, replacing
D with some component of the minimal open subset in \(\mathbb{P}^1 \) containing the original \(D \) as the dense subset, there is a sequence \((n_j) \) in \(\mathbb{N} \) tending to \(\infty \) as \(j \to \infty \) such that

\[
\lim_{j \to \infty} \frac{\sup_{S \in D} \log|f^{n_j}|}{d^{n_j} + \deg g} < 0.
\]

Then \(D \subset F(f) \) (since \(F(f) \cap \mathbb{P}^1 \) is the region of equicontinuity of \(\{f^n : n \in \mathbb{N}\} \), and let \(U \) be the Berkovich Fatou component of \(f \) containing \(D \). Then since \(\deg g > 0 \), we have \(\lim_{j \to \infty} f^{n_j+1-n_j} = \text{Id}_{g(U) \cap \mathbb{P}^1} \) locally uniformly on \(g(U) \cap \mathbb{P}^1 \), and there exists \(N \in \mathbb{N} \) such that \(V := f^{n_N}(U) \cup g(U) \) is a cyclic Berkovich Fatou component of \(f \). By Rivera-Letelier’s counterpart of Fatou’s classification of cyclic (Berkovich) Fatou components ([19, Proposition 2.16] and its esquisse de démonstration, see also [4, Remark 7.10]), this \(V \) is a Berkovich domaine singular of \(f \).

We have not only the uniform bound \(\sup_{j \in \mathbb{N}} \sup_{s \in D} \log|f^{n_j}| \leq 0 \) from above but also, since \(V \neq \mathbb{P}^1 \), the bound \(\lim_{j \to \infty} \sup_{j \in \mathbb{N}} \sup_{s \in D} (\log|f^{n_j}|)/d^{n_j} \geq 0 > -\infty \) from below. Hence by (2.2), (2.3), (2.5), and a version of Hartogs’s lemma (cf. [19, Proposition 2.18], [3, Proposition 8.57]), taking a subsequence if necessary, there exists a function \(\phi : \mathbb{P}^1 \to \mathbb{R}_{\leq 0} \) such that the (pointwise, which corresponds to \(L^1_{\text{loc}} \) in the \(\mathbb{C} \) case) convergence

\[
\phi = \lim_{j \to \infty} \frac{\log|f^{n_j}|}{d^{n_j} + \deg g}
\]

holds and that \(\Delta(\phi + gF) + \delta_{S_{\text{can}}} \) is a probability Radon measure on \(\mathbb{P}^1 \) (cf. [19, §3.4]). Since

\[
\Delta(\phi + gF + \log \max\{1, |\cdot|\}) + \delta_{\infty} = \Delta(\phi + gF) + \delta_{S_{\text{can}}} \geq 0 \quad \text{on} \quad \mathbb{P}^1
\]

for each affine chart \(\cong K \) (and writing as \(\mathbb{P}^1 = K \cup \{\infty\} \), the function \(\phi \) is upper semicontinuous on \(\mathbb{P}^1 \), and the restriction \(\phi|U \) is subharmonic (by letting in addition \(\infty \in f^{-1}(U) \setminus U \), so that \(U \in \mathbb{P}^1 \setminus \{\infty\} \)). By (2.3) and (2.6), the open subset \(\{\phi < 0\} \) in \(\mathbb{P}^1 \) contains \(D \setminus \mathbb{P}^1 \neq \emptyset \), and in turn by the maximum principle applied to \(\phi|U \) (and \(\phi \leq 0 \)), we must have \(U \subset \{\phi < 0\} \).

On the other hand, by (2.1), the upper semicontinuity of \(\phi \), a version of Hartogs lemma already recalled in the above, and (1.1), we have \(\phi \equiv 0 \) on \(J(f) \) (so on \(\partial U \)). Define the function

\[
\psi := \begin{cases} \phi & \text{on} \ U \\ 0 & \text{on} \ \mathbb{P}^1 \setminus U \end{cases} \quad : \mathbb{P}^1 \to \mathbb{R}_{\leq 0} \cup \{-\infty\}.
\]

Pick such an affine chart \(\cong K \) of \(\mathbb{P}^1 \) that \(\infty \in f^{-1}(U) \setminus U \), writing as \(\mathbb{P}^1 = K \cup \{\infty\} \), so that \(U \in \mathbb{P}^1 \setminus \{\infty\} \). Then the function \(\psi + gF + \log \max\{1, |\cdot|\} \) is not only upper semicontinuous on \(\mathbb{P}^1 \setminus \{\infty\} \) (since \(\phi \leq 0 \)) but also subharmonic on \(U \) and \(\mathbb{P}^1 \setminus (\overline{U} \cup \{\infty\}) \), and is indeed subharmonic (or equivalently, domination subharmonic [3, §8.2, §7.3]) on \(\mathbb{P}^1 \setminus \{\infty\} \) (since so is \(\phi + gF + \log \max\{1, |\cdot|\} \), and \(\phi \leq 0 \)). In particular, we have the probability Radon measure

\[
\Delta(\psi + gF) + \delta_{S_{\text{can}}} = \Delta(\psi + gF + \log \max\{1, |\cdot|\}) + \delta_{\infty} \quad \text{on} \quad \mathbb{P}^1.
\]
Now suppose to the contrary that f has no potentially good reductions. We claim that $\Delta(\psi + g_F) + \delta_{S_{\text{can}}} = \mu_f$ on \mathbb{P}^1; for, under the no potentially good reductions assumption, by Lemma 2.1 we have $\mu_f(\partial U) = 0$. The definition of ψ with (2.4) yields $\Delta(\psi + g_F) + \delta_{S_{\text{can}}} = \Delta g_F + \delta_{S_{\text{can}}} = \mu_f$ on $\mathbb{P}^1 \setminus \overline{U}$ and, moreover, by $\text{supp} \mu_f = \{J(f)\}$ and the vanishing $\mu_f(\partial U) = 0$, we compute as

\[
(\Delta(\psi + g_F) + \delta_{S_{\text{can}}})(\overline{U}) = 1 - (\Delta(\psi + g_F) + \delta_{S_{\text{can}}})(\mathbb{P}^1 \setminus \overline{U}) \\
= 1 - \mu_f(\mathbb{P}^1 \setminus \overline{U}) = \mu_f(\overline{U}) = \mu_f(U) + \mu_f(\partial U) = 0.
\]

Hence the claim holds. Once this claim is at our disposal, also by (2.4), we must have $\phi \equiv 0$ on $U \setminus \mathbb{P}^1 \neq \emptyset$. This contradicts $U \setminus \mathbb{P}^1 \subset \{\phi < 0\} \setminus \mathbb{P}^1$.

3. Proof of Theorem 2

Let K be an algebraically closed field of any characteristic that is complete with respect to a non-trivial and non-archimedean absolute value $| \cdot |$. Let $f \in K(z)$ of degree $d > 1$ and $g \in K(z)$ of degree > 0, and fix a lift of f. We continue the discussion and to use the notation in Section 2. By (2.2), (2.3), (2.4), and (2.5), the equidistribution (1.3) follows from the (pointwise, which corresponds to L^1_{loc} in the \mathbb{C} case) convergence

\[
\lim_{n \to \infty} \frac{\log [f^n, g]_{\text{can}}}{d^n + \deg a} = 0 \quad \text{on } \mathbb{P}^1 \setminus \mathbb{P}^1.
\]

Unless (1.3) holds, by an argument similar to that in the previous section involving a version of Hartogs’s lemma (cf. [19] Proposition 2.18], [3] Proposition 8.57], there exist a sequence (n_j) in \mathbb{N} tending to ∞ as $j \to \infty$ and a function $\phi : \mathbb{P}^1 \to \mathbb{R}_{\geq 0} \cup \{-\infty\}$ such that the (pointwise, which corresponds to L^1_{loc} in the \mathbb{C} case) convergence

\[
\phi := \lim_{j \to \infty} \frac{\log [f^{n_j}, g]_{\text{can}}}{d^{n_j} + \deg g} \quad \text{on } \mathbb{P}^1 \setminus \mathbb{P}^1
\]

holds and that $\Delta(\phi + g_F) + \delta_{S_{\text{can}}}$ is a probability Radon measure on \mathbb{P}^1, that ϕ is upper semicontinuous on \mathbb{P}^1, and moreover that $\{\phi < 0\} \neq \emptyset$. Then fixing a non-empty open subset $D \subset \{\phi < 0\}$, we have $\sup_D \phi < 0$, and in turn by a version of Hartogs lemma already recalled, we have

\[
\limsup_{j \to \infty} \sup_{S \in D} \frac{\log [f^{n_j}, g]_{\text{can}}(S)}{d^{n_j} + \deg g} \leq \sup_D \phi < 0.
\]

This is impossible if f has no potentially good reductions, by Theorem 1.

Remark 3.1. The difference between the proof of Theorem 2 and Favre–Rivera-Letelier’s one of [19] Théorème B (in the char $K = 0$ case but even without the no potentially good reductions assumption) is that in the char $K > 0$ case, no (geometric) structure theorems on a (subset of a) domaine singulier (appearing as V in the proof of Theorem 1) have been known, like in the complex dimension > 1 case. In [19] §3.4. Démonstration du Théorème B), a structure theorem on quasiperiodicity domains (appearing as $g(U)$ in the proof of Theorem 1) was substantial.
4. Proof of Theorem \[3\]

Let \(f \) be a holomorphic endomorphism of \(\mathbb{P}^k = \mathbb{C} \mathbb{P}^k \) of algebraic degree \(d > 1 \). The critical set \(C(f) \) of \(f \) is the set of all points \(p \in \mathbb{P}^k \) at each of which \(f \) is not locally biholomorphic. Then not only \(C(f) \) but also \(f(C(f)) \) are proper algebraic subsets, so pluripolar, in \(\mathbb{P}^k \). Recall that for every \(x \in \mathbb{P}^k \), \(f^* \delta_x = \sum_{y \in f^{-1}(x)} (\deg f_y) \delta_y \) on \(\mathbb{P}^k \), where for each \(y \in \mathbb{P}^k \), \(\deg f_y \in \{1, \ldots, d^k \} \) is the local degree of \(f \) at \(y \), and that for every Radon measure \(\nu \) on \(\mathbb{P}^k \),

\[
(f^* \nu)(\partial U) \leq (\deg f : U \to V) \cdot \nu(\partial V).
\]

Proof. For every \(v \in (\partial V) \setminus f(C(f)) \), there is an open neighborhood \(D \) of \(v \) in \(\mathbb{P}^k \) such that each component of \(f^{-1}(D) \) is mapped by \(f \) biholomorphically onto \(D \). Then fixing a point \(v' \in D \cap V \), we have

\[
(f^* \delta_v)(\partial U) \leq \# \{ \text{components of } f^{-1}(D) \text{ intersecting } \partial U \} \\
\leq (f^* \delta_{v'}) f^{-1}(D) \cap U \leq \deg f : U \to V \\
= (\deg f : U \to V) \cdot \delta_v(\partial V \setminus f(C(f))).
\]

Hence for every positive Radon measure \(\nu \) on \(\mathbb{P}^1 \) having no mass on \(f(C(f)) \), we compute as

\[
(f^* \nu)(\partial U) = \int_{\mathbb{P}^k} (f^* \delta_v)(\partial U) \nu(v) = \int_{(\partial V) \setminus f(C(f))} (f^* \delta_{v'})(\partial U) \nu(v) \\
\leq (\deg f : U \to V) \cdot \nu(\partial V \setminus f(C(f))) = (\deg f : U \to V) \cdot \nu(\partial V),
\]

which completes the proof. \(\square \)

Pick a cyclic Fatou component \(W \) of \(f \) having the exact period \(p \in \mathbb{N} \). Since \(\mu_f \) has no masses on pluripolar subsets in \(\mathbb{P}^k \), by the balanced property of \(\mu_f \) under \(f \) and Lemma \[1.1\] we have

\[
d^{kp} : \mu_f(\partial W) = ((f^p)^* \mu_f)(\partial W) \leq (\deg(f^p : W \to W)) \cdot \mu_f(\partial W).
\]

Hence if \(\mu_f(\partial W) > 0 \), then \(\deg(f^p : W \to W) = d^{kp} \), i.e., \((f^p)^{-1}(W) = W \); and then \((f^p)^{-1}(\partial W) \subset \partial W \) and \(\partial W \not\subset \mathcal{E}_f \) (since \(\mu_f(\mathcal{E}_f) = 0 \)), so by \[1.3\], \(\mu_f(= \mu_{f^p}) \) is supported by \(\partial W \), i.e., \(\mu_f(\partial W) = 1 \). Conversely, if \((f^p)^{-1}(W) = W \), then we have \(\partial W \not\subset \mathcal{E}_f \) since \(\mathbb{P}^k \setminus \mathcal{E}_f \) is connected, \(J(f) := \text{supp } \mu_f \), and \(\mu_f(\mathcal{E}_f) = 0 \), and then we have \(\mu_f(\partial W) = 1 \) as already seen. Hence the former half of Theorem \[3\] holds.

The latter half can be seen by a computation similar to that in the proof of the latter half of Lemma \[2.1\]. \(\square \)
5. Proof of Theorem 4

Let f be a holomorphic endomorphism of $\mathbb{P}^k = \mathbb{C}P^k$ of algebraic degree $d > 1$.

A lift of f is a $(k+1)$-tuple $F = (F_0, F_1, \ldots, F_k) \in (\mathbb{C}[z_0, z_1, \ldots, z_k])^{k+1}$ of homogeneous polynomials of degree d in the $k+1$ indeterminates z_0, \ldots, z_{k+1}, which is unique up to multiplication in \mathbb{C}^*, such that $\pi \circ F = f \circ \pi$ on $\mathbb{C}^{k+1} \setminus \{0\}$ and if in addition F is normal for some sequence (d_n) of homogeneous polynomials of degree C which is unique up to multiplication in \mathbb{C}^*, then $\pi \circ F = f \circ \pi$ on $\mathbb{C}^{k+1} \setminus \{0\}$, and if in addition F is normal for some sequence (d_n) of homogeneous polynomials of degree C which is unique up to multiplication in \mathbb{C}^*, then $\pi \circ F = f \circ \pi$ on $\mathbb{C}^{k+1} \setminus \{0\}$. By Ueda [36, Theorem 2.2], the family (5.2) is normal in $\mathbb{C}^{k+1} \setminus \{0\}$, and we let $\pi : \mathbb{C}^{k+1} \setminus \{0\} \to \mathbb{P}^k$ be the canonical projection.

We say a function $H : \mathbb{C}^{k+1} \setminus \{0\} \to \mathbb{R} \cup \{-\infty\}$ satisfies the log-homogeneity (of order 1). By Ueda [36, Theorem 2.2], the family (5.2) is normal in $\mathbb{C}^{k+1} \setminus \{0\}$, and we let $\pi : \mathbb{C}^{k+1} \setminus \{0\} \to \mathbb{P}^k$ be the canonical projection.

Let $|| \cdot ||$ be the Euclidean norm on \mathbb{C}^{k+1}. Then the function log $|| \cdot ||$ on $\mathbb{C}^{k+1} \setminus \{0\}$ is continuous and plurisubharmonic and satisfies the log-homogeneity (of order 1). The complex Laplacian dd^\ast is normalized as usual, so in particular that $\pi^* \omega_{\mathbb{C}^*} = dd^\ast \log || \cdot ||$ on $\mathbb{C}^{k+1} \setminus \{0\}$. Set $\ell(k) := \binom{k+1}{2} \in \mathbb{N}$, and if in addition H is plurisubharmonic on $\mathbb{C}^{k+1} \setminus \{0\}$, also say H is a $\omega_{\mathbb{C}^*}$-plurisubharmonic function on \mathbb{P}^k.

Let $|| \cdot ||$ be the Euclidean norm on \mathbb{C}^{k+1}. Then the function log $|| \cdot ||$ on $\mathbb{C}^{k+1} \setminus \{0\}$ is continuous and plurisubharmonic and satisfies the log-homogeneity (of order 1). The complex Laplacian dd^\ast is normalized as usual, so in particular that $\pi^* \omega_{\mathbb{C}^*} = dd^\ast \log || \cdot ||$ on $\mathbb{C}^{k+1} \setminus \{0\}$. Set $\ell(k) := \binom{k+1}{2} \in \mathbb{N}$, and if in addition H is plurisubharmonic on $\mathbb{C}^{k+1} \setminus \{0\}$, also say H is a $\omega_{\mathbb{C}^*}$-plurisubharmonic function on \mathbb{P}^k.

The chordal metric on \mathbb{P}^k is

$$ (5.1) \quad [x, y]_{\pi k} := ||Z \wedge W||/(||Z|| \cdot ||W||) \leq 1, \quad x, y \in \mathbb{P}^k, $$

where $Z \in \pi^{-1}(x)$ and $W \in \pi^{-1}(y)$, and is equivalent to the spherical metric on \mathbb{P}^k induced by $\omega_{\mathbb{C}^*}$.

Fix a lift F of f. Then there exists the uniform limit

$$ (5.2) \quad G^F := \lim_{n \to \infty} \frac{1}{d^n} \log ||F^n|| : \mathbb{C}^{k+1} \setminus \{0\} \to \mathbb{R} $$

which is continuous (so locally bounded) and plurisubharmonic and satisfies the log-homogeneity (of order 1). By Ueda [36, Theorem 2.2], the region of plurisubharmonicity of G^F in $\mathbb{C}^{k+1} \setminus \{0\}$ coincides not only with $\pi^{-1}(F(f))$ but also with $\pi^{-1}(\hat{F}(f))$, where $\hat{F}(f)$ is the set of all points in \mathbb{P}^k at each of which the family $\{f^n_j : (\mathbb{P}^k, [x, y]_{\mathbb{P}^k}) \to (\mathbb{P}^k, [x, y]_{\mathbb{P}^k}) : j \in \mathbb{N}\}$ is normal for some sequence (n_j) in \mathbb{N} tending to ∞ as $j \to \infty$. Let us start the proof of Theorem 4. Suppose to the contrary that there are a holomorphic endomorphism g of \mathbb{P}^k of degree > 0 and a domain D in \mathbb{P}^k such that \mathbb{P}^k does not hold, and then there is a sequence (n_j) in \mathbb{N} tending to ∞ as $j \to \infty$ such that

$$ (5.3) \quad \lim_{j \to \infty} \sup_{g \in D} \log |f^{n_j}(y) - g(y)|_{\mathbb{P}^k} < 0. $$

Then $D \subset F(f)$, and let U be the Fatou component of f containing D. Then since $\deg g > 0$, we have $\lim_{j \to \infty} f^{n_j+1-n_j} = \text{Id}_{\mathbb{P}^k}$ locally uniformly on $g(D)$, and then there exists $N \in \mathbb{N} \cup \{0\}$ such that $V := f^N(U) = g(U)$ is a cyclic Fatou component of f having the exact period, say, $p \in \mathbb{N}$ and satisfies $\deg(g^p : V \to V) = 1 < d^p$. Hence by Theorem 4 we have $\mu_f(\partial U) = 0$.

Now fix a lift G of g. By (5.1) and (5.2), the family $\{\log |F^{n_j} \wedge G||/d^{n_j} : j \in \mathbb{N}\}$ is locally uniformly bounded from above on $\mathbb{C}^{k+1} \setminus \{0\}$. By (5.1), (5.2), and $J(f) \neq \emptyset$, we also have the bound $\lim \sup_{j \to \infty} \sup_{G \in \mathbb{C}^{k+1} \setminus \{0\}} (\log |F^{n_j} \wedge$
$G)/d^n\psi \geq 0 > -\infty$ from below. Hence by a version of Hartogs lemma for a sequence of plurisubharmonic functions (see [23, Theorem 4.1.9(a)] or [2, Theorem 1.1.1]), taking a subsequence if necessary, the plurisubharmonic function
\[
\phi := \lim_{j \to \infty} \frac{\log \| F^{n_j} \wedge G \|}{d^n \psi + \deg g} (\leq G^F) \quad \text{in } L^1_{\text{loc}}(\mathbb{C}^{k+1}, m_k)
\]
exists, where m_k is the Lebesgue measure on $\mathbb{C}^{k+1} \cong \mathbb{R}^{2(k+1)}$. The function ϕ also satisfies the log-homogeneity (of order 1). By the log-homogeneity of both G^F and ϕ, the function $\phi - G^F$ on $\mathbb{C}^{k+1} \setminus \{0\}$ descends to a function $\mathbb{F}^k \to \mathbb{R}_{\leq 0} \cup \{-\infty\}$, which is upper semicontinuous on \mathbb{F}^k and is plurisubharmonic on U. Then by (5.2) and (5.3), the open subset $\{\phi - G^F < 0\}$ in \mathbb{F}^k contains D, and in turn by the maximum principle applied to the plurisubharmonic function $(\phi - G^F)/U$ (and $\phi - G^F \leq 0$), we must have
\[
U \subset \{\phi - G^F < 0\}.
\]

On the other hand, by (5.1), the upper semicontinuity of $\phi - G^F$, and a version of Hartogs lemma for a sequence of plurisubharmonic functions (see [23, Theorem 4.1.9(b)]), we also have $\phi - G^F \equiv 0$ on $J(f)$, so that $\phi = G^F$ on $\pi^{-1}(J(f))$. Let us define the locally bounded function
\[
\psi := \begin{cases}
\max\{\phi, G^F - 1\} & \text{on } \pi^{-1}(U) \\
G^F & \text{on } (\mathbb{C}^{k+1} \setminus \{0\}) \setminus \pi^{-1}(U)
\end{cases}
\]
on $\mathbb{C}^{k+1} \setminus \{0\}$, which is still plurisubharmonic on $\mathbb{C}^{k+1} \setminus \{0\}$; for, it is upper semicontinuous on $\mathbb{C}^{k+1} \setminus \{0\}$ (since so is G^F) and plurisubharmonic on $(\mathbb{C}^{k+1} \setminus \{0\}) \setminus \pi^{-1}(\partial U)$, and satisfies the mean value inequality at each point in $\pi^{-1}(\partial U)$ on each complex line passing through it (since so does ϕ, and $\phi \leq G^F$). The function ψ also satisfies the log-homogeneity (of order 1). By the log-homogeneity of both G^F and ψ, the function $\psi - G^F$ also descends to a function on \mathbb{F}^k.

Following the manner in [9, §2.1] for ω_{FS}-plurisubharmonic functions on \mathbb{F}^k, let us also denote by $d^c\psi$ (resp. $d^c G^F$) the current on \mathbb{F}^k whose pull-back under $\pi : \mathbb{C}^{k+1} \setminus \{0\} \to \mathbb{F}^k$ coincides (the genuine) $d^c\psi$ (resp. the genuine $d^c G^F$) on $\mathbb{C}^{k+1} \setminus \{0\}$. Then the k-th Bedford–Taylor wedge products $(d^c\psi)^{\wedge k}$ and $(d^c G^F)^{\wedge k}$ on \mathbb{F}^k are probability measures on \mathbb{F}^k.

From the definition of G^F, the latter probability measure $(d^c G^F)^{\wedge k}$ on \mathbb{F}^k is nothing but the equilibrium measure μ_f of f. We claim that the former $(d^c\psi)^{\wedge k}$ also coincides with μ_f: for, the definition of ψ yields $(d^c\psi)^{\wedge k} = (d^c G^F)^{\wedge k} = \mu_f$ on $\mathbb{F}^k \setminus \overline{U}$ and, moreover, by supp $\mu_f \subset J(f)$ and the vanishing $\mu_f(\partial U) = 0$, we compute as $(d^c\psi)^{\wedge k}(\overline{U}) = 1 - (d^c\psi)^{\wedge k}(\mathbb{F}^k \setminus \overline{U}) = 1 - \mu_f(\mathbb{F}^k \setminus \overline{U}) = \mu_f(U) + \mu_f(\partial U) = 0$. Hence the claim holds.

Once this claim is at our disposal, we have $\psi - G^F \geq 0$ (indeed $= 0$) on $(d^c\psi)^{\wedge k}$-almost everywhere \mathbb{F}^k, and then by a classical domination principle ([10, Corollary 2.5]; for a summary on the properties of plurisubharmonic weights on big line bundles over complex compact manifolds, which applies to ω_{FS}-plurisubharmonic functions on \mathbb{F}^k, see [9, §2]), we have $\psi \geq G^F$ on $\mathbb{C}^{k} \setminus \{0\}$, so in particular $G^F \leq \psi = \phi$ on $\pi^{-1}(U)$. This contradicts $U \subset \{\phi - G^F < 0\}$. \[\square\]
Remark 5.1. From (1.6), an argument similar to that in the proof of Theorem 2 shows that \(\lim_{n \to \infty} (\log \| F_n \land G \|)/(d^n + \deg g) = G^F \) in \(L^1_{loc}(\mathbb{C}^{k+1}, m_k) \), or equivalently, that the vanishing of the Valiron deficiency
\[
(1.6) \quad \limsup_{n \to \infty} \frac{1}{d^n + \deg g} \int_{\mathbb{P}^k} \log \frac{1}{\| f^n(y), g(y) \|^{k+1}} d\omega_{FS}(y) = 0
\]
of the sequence \((f^n) \) with respect to \(g \); conversely, (1.6) implies (1.6).

Remark 5.2. In the \(k = 1 \) case, this (1.6) also gives the following.

Theorem 5.3. For every \(f \in \mathbb{C}(z) \) of degree \(d > 1 \) and every \(g \in \mathbb{C}(z) \) of degree \(> 0 \), we have
\[
(5.4) \quad \lim_{n \to \infty} \frac{[f^n = g]}{d^n + \deg g} = \mu_f \text{ weakly on } \mathbb{P}^1.
\]
Here \([f^n = g] \) is the effective divisor on \(\mathbb{P}^1 \) defined by the zeros of the algebraic equation \(f^n = g \) on \(\mathbb{P}^1 \) and regarded as the Radon measure on \(\mathbb{P}^1 \).

This equidistribution theorem for moving targets on \(\mathbb{P}^1 \) was shown in Lyubich’s seminal [28, Theorem 3] by a (purely) dynamical argument on \(\mathbb{P}^1 \). Here we mainly worked on \(\mathbb{C}^2 \setminus \{0\} \). We refer to a potential theoretic proof of (5.4) for \(g = \text{Id}_{\mathbb{P}^1} \) in Fornæss–Sibony [21, the proof of Theorem 6.1], which used the analytic irrational rotationization of Siegel disks or Herman rings. Our proof of (5.4) is similar to theirs but succeeds in bypassing this structure theorem on complex 1-dimensional domaines singuliers (appearing as \(V \) in the proof of Theorem 4), using pluripotential theory.

Acknowledgement. This research was partially supported by JSPS Grant-in-Aid for Scientific Research (C), 15K04924.

References

[1] Abikoff, W. The residual limit sets of Kleinian groups, Acta Math., 130, 1 (1973), 127–144.
[2] Azarin, V. S. Asymptotic behavior of subharmonic functions of finite order, Mat. Sb. (N.S.), 108(150), 2 (1979), 147–167, 303.
[3] Baker, M. and Rumely, R. Potential theory and dynamics on the Berkovich projective line, Vol. 159 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI (2010).
[4] Barrett, D. E., Bedford, E. and Dadok, J. \(T^n \)-actions on holomorphically separable complex manifolds, Math. Z., 202, 1 (1989), 65–82.
[5] Bedford, E. and Smillie, J. Polynomial diffeomorphisms of \(\mathbb{C}^2 \): currents, equilibrium measure and hyperbolicity, Invent. Math., 103, 1 (1991), 69–99.
[6] Bedford, E. and Taylor, B. A. Fine topology, \(\check{S} \)ilov boundary, and \((dd^c)^n \), J. Funct. Anal., 72, 2 (1987), 225–251.
[7] Benedetto, R. Non-archimedean dynamics in dimension one: lecture notes, Preprint. Available at http://math.arizona.edu/˜swc/aws/2010/ (2010).
[8] Berkovich, V. G. Spectral theory and analytic geometry over non-Archimedean fields, Vol. 33 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI (1990).
[9] Berman, R. and Boucksom, S. Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., 181, 2 (2010), 337–394.
[10] Boucksom, S., Eyssidieux, P., Guedj, V. and Zeriahi, A. Monge-\(\text{Ampère} \) equations in big cohomology classes, Acta Math., 205, 2 (2010), 199–262.
[11] Briend, J.-Y. and Duval, J. Deux caractérisations de la mesure d’équilibre d’un endomorphisme de \(\mathbb{P}^k(\mathbb{C}) \), Publ. Math. Inst. Hautes Études Sci., 93 (2001), 145–159.
AN A PRIORI BOUND OF RATIONAL FUNCTIONS 13

[12] **Buff, X. and Gauthier, T.** Quadratic polynomials, multipliers and equidistribution, *Proc. Amer. Math. Soc.*, **143**, 7 (2015), 3011–3017.

[13] **Chambert-Loir, A.** Mesures et équidistribution sur les espaces de Berkovich, *J. Reine Angew. Math.*, **595** (2006), 215–235.

[14] **Cremer, H.** Zum Zentrumproblem, *Math. Ann.*, **98**, 1 (1928), 151–163.

[15] **Dinh, T.-C. and Sibony, N.** Equidistribution towards the Green current for holomorphic maps, *Ann. Sci. Éc. Norm. Supér. (4)*, **41**, 2 (2008), 307–336.

[16] **Dinh, T.-C. and Sibony, N.** Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Holomorphic dynamical systems, Vol. 1998 of *Lecture Notes in Math.*, Springer, Berlin (2010), 165–294.

[17] **Dinh, T.-C. and Sibony, N.** Equidistribution speed for endomorphisms of projective spaces, *Math. Ann.*, **347**, 3 (2010), 613–626.

[18] **Fatou, P.** Sur les équations fonctionnelles, *Bull. Soc. Math. France*, **48** (1920), 33–94.

[19] **Favre, C. and Rivera-Letelier, J.** Théorie ergodique des fractions rationnelles sur un corps ultramétrique, *Proc. Lond. Math. Soc. (3)*, **100**, 1 (2010), 116–154.

[20] **Fornæss, J. E. and Sibony, N.** Complex dynamics in higher dimensions, Complex potential theory (Montreal, PQ, 1993), Vol. 439 of *NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.*, Kluwer Acad. Publ., Dordrecht (1994), 131–186, Notes partially written by Estela A. Gavosto.

[21] **Fornæss, J. E. and Sibony, N.** Complex dynamics in higher dimension. II, Modern methods in complex analysis (Princeton, NJ, 1992), Vol. 137 of *Ann. of Math. Stud.*, Princeton Univ. Press, Princeton, NJ (1995), 135–182.

[22] **Gauthier, T.** Equidistribution towards the bifurcation current I: multipliers and degree d polynomials, *Math. Ann.*, **366**, 1-2 (2016), 1–30.

[23] **Hörmander, L.** The analysis of linear partial differential operators. I, Vol. 7 of *Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*, 2nd ed., Springer-Verlag, Berlin (1983), Distribution theory and Fourier analysis.

[24] **Hubbard, J. H. and Papadopol, P.** Superattractive fixed points in \mathbb{C}^n, *Indiana Univ. Math. J.*, **43**, 1 (1994), 321–365.

[25] **Jonsson, M.** Dynamics on Berkovich spaces in low dimensions, Berkovich Spaces and Applications, Springer (2015), 205–266.

[26] **Kawaguchi, S. and Silverman, J. H.** Nonarchimedean Green functions and dynamics on projective space, *Math. Z.*, **262**, 1 (2009), 173–197.

[27] **Kobayashi, S.** Hyperbolic complex spaces, Vol. 318 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*, Springer-Verlag, Berlin (1998).

[28] **Ljubich, M. J.** Entropy properties of rational endomorphisms of the Riemann sphere, *Ergodic Theory Dynam. Systems*, **3**, 3 (1983), 351–385.

[29] **Mihailescu, E.** Periodic points for actions of tori in Stein manifolds, *Math. Ann.*, **314**, 1 (1999), 39–52.

[30] **Nevanlinna, R.** Analytic functions. Translated from the second German edition by Phillip Emig, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York (1970).

[31] **Okuyama, Y.** Nonlinearity of morphisms in non-Archimedean and complex dynamics, *Michigan Math. J.*, **59**, 3 (2010), 505–515.

[32] **Okuyama, Y.** Adelic equidistribution, characterization of equidistribution, and a general equidistribution theorem in non-archimedean dynamics, *Acta. Arith.*, **161**, 2 (2013), 101–125.

[33] **Rivera-Letelier, J.** Dynamique des fonctions rationnelles sur des corps locaux, *Astérisque*, 287 (2003), xx, 147–230, Geometric methods in dynamics. II.

[34] **Thuillier, A.** Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov, PhD thesis, Université Rennes 1 (2005).

[35] **Tsui, M.** *Potential theory in modern function theory*, Chelsea Publishing Co., New York (1975), Reprinting of the 1959 original.
[36] Ueda, T. Fatou sets in complex dynamics on projective spaces, *J. Math. Soc. Japan*, 46, 3 (1994), 545–555.

[37] Ueda, T. Critical orbits of holomorphic maps on projective spaces, *J. Geom. Anal.*, 8, 2 (1998), 319–334.

Division of Mathematics, Kyoto Institute of Technology, Sakyō-ku, Kyoto 606-8585 Japan

E-mail address: okuyama@kit.ac.jp