Interventions for Improving Outcomes in Patients With Multimorbidity in Primary Care and Community Setting: A Systematic Review

Susan Smith (✉ susansmith@rcsi.ie)
Professor of Primary Care Medicine, Department of General Practice, Royal College of Surgeons, 123 St Stephens Green, Dublin 2, Ireland https://orcid.org/0000-0001-6027-2727

Emma Wallace
RCSI: Royal College of Surgeons in Ireland

Barbara Clyne
RCSI: Royal College of Surgeons in Ireland

Fiona Boland
RCSI: Royal College of Surgeons in Ireland

Martin Fortin
University of Sherbrooke: Universite de Sherbrooke

Research

Keywords: Multimorbidity, health related quality of life, patient health behaviours

DOI: https://doi.org/10.21203/rs.3.rs-144669/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background
Multimorbidity, defined as the co-existence of two or more chronic conditions, presents significant challenges to patients, healthcare providers and health systems. Despite this, there is ongoing uncertainty about the most effective ways to manage patients with multimorbidity. This review aimed to determine the effectiveness of interventions designed to improve outcomes in people with multimorbidity in primary care and community settings, compared to usual care.

Methods
We searched eight databases and two trials registers up to 9th September 2019. Two review authors independently screened and selected studies, extracted data, evaluated study quality and judged the certainty of the evidence (GRADE). Interventions were grouped by their predominant focus into care-coordination/self-management support, self-management support and medicines management. Main outcomes were health related quality of life (HRQoL) and mental health. Meta-analyses were conducted, where possible, but the synthesis was predominantly narrative.

Results
We included 16 RCTs with 4,753 participants, the majority being older adults with at least three conditions. There were eight care-coordination/self-management support studies, four self-management support studies and four medicines management studies. There was little or no evidence of an effect on primary outcomes of HRQoL (MD 0.03, 95% CI -0.01 to 0.07, $I^2 = 39\%$) and mental health or on secondary outcomes with a small number of studies reporting that care coordination may improve patient experience of care and self-management support may improve patient health behaviours. Overall the certainty of the evidence was graded as low due to significant variation in study participants and interventions.

Conclusions
There are remaining uncertainties about the effectiveness of interventions for people with multimorbidity, despite the growing number of RCTs conducted in this area. Our findings suggest that future research should consider patient experience of care, optimising medicines management and targeted patient health behaviours such as exercise.

Background
There is now greater recognition of the impact of living with multiple chronic conditions, defined as multimorbidity and of the importance of improving outcomes for individuals affected$^{1-3}$. Individuals with multimorbidity are more likely to die prematurely, be admitted to hospital and have longer hospital stays4,5. They have poorer quality of life, loss of physical functioning, and are more likely to suffer from psychological stress$^{6-9}$. The negative impact of multimorbidity is higher in the most disadvantaged communities with earlier onset and more complex combinations of mental and physical health conditions10,11. Medicines management is often complex, resulting in polypharmacy with its attendant risks of drug interactions and adverse drug events12,13. Patients must also attend multiple appointments with different healthcare providers and adhere to lifestyle recommendations. This adds to complexity and can sometimes lead to confusion with multiple treatments and guidance adding to treatment burden for patients14. Fragmentation of care is a significant problem for this group, resulting from the involvement of both primary care and multiple specialists who may not be communicating with each other effectively15.
that address multimorbidity and related areas such as polypharmacy have emphasised the need for good quality
evidence from primary studies.13,16

Given the challenge of managing people with multimorbidity, potential interventions are likely to be complex and
multifaceted. The previous Cochrane review of interventions for multimorbidity17 incorporated studies targeting both
multimorbidity and comorbidity but as evidence evolves a distinction needs to be made between these two concepts.
Interventions for co-morbidity studies include specific groups of patients and can be designed to target the index and
co-morbid conditions, for example diabetes and co-morbid depression. On the other hand, interventions for
multimorbidity need to have a more generic focus that will work across a broad range of conditions. These
distinctions are important in the context of developing and evaluating effective interventions for multimorbidity and
considering their generalisability.18 This systematic review aims to determine the effectiveness of interventions
designed to improve outcomes in people with multimorbidity in primary care and community settings.

\textbf{Methods}

This systematic review is an update and adaptation of a previous Cochrane review, published in 2016 with searches
up to September 2015 and which had included both multimorbidity an comorbidity.17 The review is reported using the
\textit{Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)} guidelines for systematic reviews.19

\textit{Search Strategy}

We searched MEDLINE, EMBASE, CINAHL, and five other databases and two trials registers up to 9th September 2019.
We also searched grey literature and consulted experts in the field for completed or ongoing studies. Search strategies
are available in Appendix Search Strategy

\textit{Inclusion criteria}

Study designs eligible for inclusion were randomised controlled trials (RCTs), non-randomised clinical trials (nRCTs),
controlled before-after studies (CBAs), and interrupted time series analyses (ITS), meeting Cochrane Effective Practice
and Organisation of Care (EPOC) quality criteria.20 We included studies of adults with multimorbidity receiving care in
a primary or community care setting. We adopted the most widely used definition of multimorbidity, that is, the co-
existence of multiple chronic conditions in the same individual, usually defined as two or more conditions. We used
the WHO definition of chronic disease, which is "health problems that require ongoing management over a period of
years or decades".21 Studies in which inclusion was based on comorbidity with a specific index condition22 or only the
age of participants (e.g. older patients) were excluded. We also excluded professional educational interventions where
no care was delivered to an identified group of people with multimorbidity.

We included any type of intervention based in primary care and community settings that was specifically directed
towards a group of people defined as having multimorbidity. Primary health care was defined as providing "integrated,
easy to access, health care services by clinicians who are accountable for addressing a large majority of personal
health care needs, developing a sustained and continuous relationship with patients, and practising in the context of
family and community".23 We anticipated that all interventions would be multifaceted given the nature of
multimorbidity. We considered and reported complex interventions using the TIDIER checklist.24 We categorised
interventions based on their predominant intervention focus into the following groupings: i) care coordination plus
support for self-management; ii) support for self-management and, iii) medicines management. The comparison was
usual primary healthcare as provided in that setting.
Review processes

One author undertook an initial screen of abstracts to remove those clearly ineligible. Two authors (SS, EW) then independently screened remaining abstracts and identified full texts for screening, screened full-texts and selected studies for inclusion. Two authors (SS, EW) undertook data abstraction and cross-checked data abstraction forms. Disagreements about data abstraction were resolved by consensus between the authors. If data were missing, we contacted authors and have reported this where applicable. Two authors assessed and cross-checked the risk of bias in all included studies using Cochrane criteria (SMS and EW or BC), including: allocation (sequence generation and concealment); baseline characteristics; incomplete outcome data; contamination; blinding; selective outcome reporting and other potential sources of bias. We assessed the certainty of the evidence for the main outcomes using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria including risk of bias, consistency of effect, imprecision, indirectness and other potential criteria such as publication bias.25

Outcomes

We based our main outcomes for this review on the core outcome set for multimorbidity26 and these were health related quality of life (HRQoL) and mental health outcomes. Additional outcomes included clinical outcomes, other psychosocial outcomes such as self-efficacy, health behaviours, healthcare utilisation, medicines outcomes, provider behaviour, including quality of care, patient satisfaction, harms and economic outcomes.

Analysis

Due to the heterogeneity of participants and interventions the main synthesis of the results is narrative. We undertook meta-analysis where it was appropriate to combine studies in terms of participants, interventions or outcomes. Meta-analyses were undertaken for the main outcome HRQoL and for the additional outcome of self-efficacy using random-effects models with generic inverse variance.

Results

Results of the search

From a total of 38,489 original citations (after duplicates were removed)(Figure 1), 205 full texts were reviewed. Of these, 189 articles were excluded and a total of 16 RCTs were included. Sixteen studies contributed data for inclusion in the narrative synthesis and 7 provided data for meta-analyses.

Included studies and participants

A total of 16 RCTs with 4,753 participants were included. Eight had a parallel design,27-34 and eight had a cluster design,35-42 with one of these having a cluster stepped wedge design37. Intervention duration varied from six weeks to 18 months, with the majority lasting 6 to 12 months. Most studies collected follow up data at intervention completion. The studies were conducted in Germany (n=4), UK (n=3), USA (n=3), Canada (n=2), Ireland (n=2) and one study each in Spain and Australia. All studies were funded publicly by government agencies or through charitable or university foundations. The definition of multimorbidity varied across studies though all used some additional measure of complexity beyond the standard multimorbidity definition of 2 or more conditions. These included higher numbers of conditions or additional factors such as high health service use or polypharmacy. The mean number of conditions in patients in the 14 studies that reported this, ranged from 3 to 12.7 conditions (See Table 1), suggesting...
that included studies were targeting those with more complex multimorbidity. While six of the 16 studies targeted older patients, the mean age of included patients reported that the majority of included patients were older.

Description of interventions and comparators

The interventions were all multifaceted (Table 1). Few studies specifically reported patient involvement in intervention design though this was becoming more common in later studies. Studies were grouped into three broad groupings of care-coordination plus self-management support (CC/SMS), self-management support (SMS) and medicines management. Eight of the 16 included studies examined CC/SMS type interventions and involved multifaceted interventions that targeted the coordination of care, healthcare providers and also provided self-management support for patients.

Four studies reported on SMS interventions that did not have a clear link to the patients’ health care provision. Three of these were group based programmes based on the Chronic Disease Self-Management Support programme and the fourth involved health promoters working from community clinics to provide individual self-management support. Four studies focused primarily on medicines management but specifically targeted patients with multimorbidity. In the majority of included studies, the comparator was usual primary health care.

Risk of bias and certainty of the evidence

The studies were all RCTs and overall there was low or unclear risk of bias with only one study having a high risk of bias in two of the eight risk of bias domains (See Figure 2). The risk of bias for individual studies is presented in Appendix Figure 1.

Certainty of the evidence

In general, while all the included studies were RCTs, the main concerns related to inconsistency and imprecision. For all intervention types, we downgraded the evidence for all outcomes to low certainty due to serious concerns about inconsistency and imprecision (See Appendix: Grade Working Sheets). This reflects the heterogeneity of participants and interventions and the likelihood that future studies may change our review findings.

Effects of interventions

The effects of intervention on the main and additional outcomes are presented in Table 2.

Overall, the results suggest that all intervention types targeting patients with multimorbidity probably make little or no difference to the main outcomes of HRQoL (n=10) or mental health outcomes (n=6). Five of the 10 studies with HRQoL outcomes reported EQ-5D scores that could be included in a meta-analysis, with a mean difference of 0.03 (95% CI -0.01 to 0.07, $I^2 = 39\%$) (See Figure 3), consistent with the overall effect suggesting no difference in this outcome.

For additional outcomes, there was little or no effect on clinical outcomes (n=2) or on the majority of other psychosocial outcomes (n=11), including self-efficacy (n=4). A meta-analysis of studies with available data for self-efficacy (n=2) found a mean difference in self-efficacy scores of 0.92, 95% CI -0.04 to 1.88, $I^2 = 63\%$ (See Appendix Figure 2). There were mixed effects on function and activity (n=4) and patient health behaviours (n=2). There was little or no effect on healthcare utilisation (n=9), though numbers of hospital admissions in most studies were small. There was also little or no effect on medicines outcomes (n=9). Five of the care coordination/self-management support studies reported little or no effect on numbers of medicines or medication adherence. There were mixed
effects on medicines outcomes in the four studies with a medicines management type intervention, which reported mixed results in medication appropriateness and potentially inappropriate prescribing. There was some improvement in healthcare provider behaviours in two of the three care coordination/self-management support studies reporting these outcomes but mixed effects on patient satisfaction with services (n=3). Only one of the 16 included studies reported a potential adverse event relating to prescribing of analgesics but no other studies reported harms. Only two of the 16 studies reported full cost-effectiveness analyses to date with one reporting cost-effectiveness and the other reporting equivocal results.40

Discussion

We identified 16 RCTs eligible for inclusion with a low risk of bias overall. The majority of studies included older patients with at least three conditions. Interventions were complex and multifaceted and could be broadly categorised into three groups involving care coordination and /or self-management support and medicines management. However, the heterogeneous populations and interventions make comparison of intervention effects difficult. Overall, despite 16 RCTs examining interventions for multimorbidity, there is still no clear high quality evidence to guide healthcare delivery with little effect on the main outcomes of health related quality of life or mental health outcomes. There was no clear pattern of effect by type of intervention. Care coordination/self-management support type interventions may improve the patient experience of care though this is based on a small number of studies and is of low certainty. Self-management support interventions may be associated with minimal improvements in patient health behaviours. Medicines management interventions had mixed effects but in some studies there may have been minimal room for improvement. However, these conclusions are based on small numbers of studies and are of low certainty.

The results suggest that future research for multimorbidity should consider areas such as the patient experience of care, optimising medicines management and targeted patient health behaviours such as exercise though this is based on a small numbers of studies and low certainty evidence. Twelve of the 16 included studies aimed to improve self-management support in patients. Many self-management support interventions are based on the original Chronic Disease Self-management Support Programme and our results are consistent with the Cochrane Review on lay-led self-management support programmes, which concluded that while these interventions may have modest short-term effects on confidence to manage conditions, there is no clear evidence that these interventions improve psychological health, symptoms or health-related quality of life, or that they significantly alter healthcare use.43 Addressing functional difficulties has been identified as a patient priority, but we found mixed effects on function and disability. Economic outcomes tended to focus on simple cost analyses comparing direct costs for intervention and control participants.

This review includes one of the largest studies undertaken in multimorbidity, the 3D study, which showed no difference in its primary outcome (HRQoL), despite having an intervention carefully designed to address the known challenges and treatment burden of multimorbidity and focusing on dimensions of health, depression and drugs (3D).40 However, the 3D intervention did improve patient-centred care, which may well be a reasonable end-point in itself.44 One of the other larger multimorbidity studies, the Guided Care study, targeted high-risk older patients with multimorbidity, but found no overall effect on hospital admissions.35 However, a pre-planned sub-group analysis indicated improvements in one of the participating health care organisations (Kaiser-Permanente, an insurance based care system in the USA, n = 365, 43% of full sample). Boult et al postulated that this result may have been related to the fact that care was already more organised and structured in this system, so that the Guided Care intervention may
simply have extended the existing approaches used in that setting, whereas its implementation was more challenging in less organised systems.35

Even when interventions are targeted at a specific problem such as polypharmacy or potentially inappropriate prescribing, they may not be effective unless they target the right patients. For example, we found that, of the four studies with medicines management interventions, two included participants with minimal baseline prescribing problems making it difficult to improve outcomes. The Cochrane Review of interventions for enhancing medication adherence concluded that “current methods of improving adherence for chronic health problems are mostly complex and not very effective” and suggests further research is needed.45 Managing medicines is a key part of managing multimorbidity and features as a key element of existing clinical guidelines for multimorbidity with an emphasis on targeting those with more complex polypharmacy, i.e., on 15 or more regular medicines.13,15,16

The majority of the studies in this review included older people, even when younger adults were eligible for inclusion. It is important to address the needs of younger individuals as there are additional issues to consider relating to employability and absenteeism. Individuals in the poorest socioeconomic groups are more likely to develop multimorbidity at a younger age.10 This review includes a trial that specifically targeted socioeconomically disadvantaged people with multimorbidity.38 This CarePlus study had a multi-level intervention supporting practitioners and patients and reported a cost per quality-adjusted life year of GBP 12,000 which is well within the recommended funding threshold for effective healthcare interventions in the UK.

The most consistent intervention element across all included studies was the use of case managers, but even these varied in that some were clinical case managers and others were administrative managers. Systematic reviews of community-based case management in general have indicated uncertain effects with improvements in client and professional satisfaction with care and reductions in caregiver strain, but no impact on healthcare utilisation.46 An international group of multimorbidity researchers recently published a systematic review of clinical guidelines for multimorbidity and polypharmacy which also found variation in the eight clinical guidelines reviewed and a need for greater consensus on multimorbidity definitions and management approaches.16

The largely negative findings in this review likely relates to the challenges of multimorbidity in terms of heterogeneity of populations and potential interventions. While it could be argued that multimorbidity care may not offer any advantages over care for single chronic conditions, qualitative research with patients and practitioners highlights the challenges they face managing multiple conditions in medical systems that have largely been designed around single chronic condition care.47,48 The NICE Guidance on Multimorbidity calls for a re-orientation of care to address multimorbidity and highlights the importance of recognising and addressing treatment burden for patients.13,14

Strengths And Limitations Of The Review

Multimorbidity is a complex area because the characteristics of participants can vary depending on definitions used. This limits the potential to combine study results reasonably for meta-analysis. This clinical heterogeneity has led some to question whether defined interventions can be developed for this population. Despite this challenge, there are increasing numbers of interventions being developed and evaluated. The review was carried out using the updated *Cochrane Handbook for Systematic Reviews of Interventions*.49 Potential limitations in the search process for this review related to the lack of a MeSH term for multimorbidity, though this has now been addressed. This meant that we originally had to use broad search terms which led to a high yield of citations to be searched. However, the authors are active researchers in the field of multimorbidity and are unaware of any potentially eligible studies that were missed
by the search. We were also unable to retrieve some missing data from authors. However, as limited meta-analyses were undertaken this did not lead to any appreciable measurement bias. The usual limitations relating to publication bias apply, but we have searched the grey literature and contacted experts in the field to try to identify published and ongoing trials in this area.

The variation in definitions in the included studies included highlights the need for clear reporting of participant characteristics. Without these definitions the generalisability or applicability of studies for people with multimorbidity will be uncertain.\(^50\) When designing interventions, researchers need to be clear about the theoretical assumptions underlying the intervention, consider its individual components and the evidence base behind each, and then link these to outcomes. There is a specific framework to support the development of interventions for multimorbidity, which highlights the potential for other study designs, such as stepped-wedge designs that may be more suited to multimorbidity intervention initiatives and that can be undertaken within service/research partnerships.\(^51\) There is also room to improve patient and public participation (PPI) in multimorbidity trials with only a few of the more recent studies in this review incorporating PPI.\(^38,40\) People with multimorbidity are more likely to experience what is referred to as 'treatment burden', that is the effort needed to engage in the multiple treatments offered to them can actually make their lives more difficult.\(^14\) Only one study included a treatment burden measure and reported little or no difference in this outcome.\(^40\) Outcomes for this review were based on the core outcome set for multimorbidity, which can also inform outcome selection for future studies so that we can more easily compare interventions across different studies.\(^26\)

Conclusion

This review highlights the growing evidence underpinning interventions to improve outcomes for people with multimorbidity. Despite the number of randomised controlled trials, there are remaining uncertainties about the effectiveness of interventions for people with multimorbidity. Our findings suggest that future research for multimorbidity should consider areas such as the patient experience of care, optimising medicines management and targeting patient health behaviours such as exercise. There are significant numbers of ongoing multimorbidity studies, all of which will generate much needed further evidence to support the development of healthcare services to improve outcomes for patients with multimorbidity.

Declarations

Ethics approval and consent to participate

This is a secondary data analysis of published and anonymised data so not applicable

Consent for publication

Not applicable

Availability of data and materials

Data available for the authors

Competing interests:

None declared
Funding

Susan M Smith is the PI on the Health Research Board funded Collaborative Doctoral Award in Multimorbidity (HRB CRC-2014-1), which has supported her engagement in this work. This work was also supported by the Health Research Board Primary Care Research Centre (HRB CDA-2018-003). BC is supported by a HRB Emerging Investigator Award (HRB EIA-2019-09).

Authors’ contributions

Susan Smith (SS) conceived and designed the review. Emma Wallace (EW), Barbara Clyne (BC) and Susan Smith (SS) assessed studies for inclusion, and extracted data from included studies. Fiona Boland (FB) provided statistical support for the meta-analyses. All authors were involved in writing the review drafts.

Acknowledgements

None

References

1. Boyd CM, Fortin M. Future of Multimorbidity Research: How Should Understanding of Multimorbidity Inform Health System Design? *Future of Multimorbidity Research: How Should Understanding of Multimorbidity Inform Health System Design?* 2010; **32**: 451-74.

2. Fortin M, Soubhi H, Hudon C, Bayliss E, van den Akker M. Multimorbidity's many challenges. *BMJ* 2007; **334**(7602): 1016-7.

3. Tinetti ME, Green AR, Ouellet J, Rich MW, Boyd C. Caring for Patients With Multiple Chronic Conditions. *Ann Intern Med* 2019; **Jan 22**: doi: 10.7326/M18-doi: 10.7323269.

4. Menotti A, Mulder I, Nissinen A, Giampaoli S, Feskens EJ, Kromhout D. Prevalence of morbidity and multimorbidity in elderly male populations and their impact on 10-year all-cause mortality: The FINE study (Finland, Italy, Netherlands, Elderly). *Journal of Clinical Epidemiology* 2001; **54**(7): 680-6.

5. Payne RA, Abel GA, Guthrie B, Mercer SW. The effect of physical multimorbidity, mental health conditions and socioeconomic deprivation on unplanned admissions to hospital: a retrospective cohort study. *Canadian Medical Association Journal* 2013; **185**(5): E221-E8.

6. Bayliss E, Bayliss M, Ware J, Steiner J. Predicting declines in physical function in persons with multiple chronic medical conditions: what we can learn from the medical problem list. *Health and Quality of Life Outcomes* 2004; **2**(1): 47-.

7. Fortin M, Bravo G, Hudon C, Lapointe L, Dubois MF, Almirall J. Psychological distress and multimorbidity in primary care. *Annals of Family Medicine* 2006; **4**(5): 417-22.

8. Gunn JM, Ayton DR, Densley K, Pallant JF, Chondros P, Herrman HE. The association between chronic illness, multimorbidity and depressive symptoms in an Australian primary care cohort. *Social Psychiatry and Psychiatric Epidemiology* 2012; **47**(2): 175-84.

9. Ryan A, Wallace E, O’Hara P, Smith SM. Multimorbidity and functional decline in community-dwelling adults: a systematic review. *Health and Quality of Life Outcomes* 2015; **13**(168): doi:10.1186/s12955-doi:10.1015-0355-9.

10. Barnett K, Mercer S, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. *The Lancet* 2012; **380**: 37-43.
11. Mercer SW, Gunn J, Bower P, Wyke S, Guthrie B. Managing patients with mental and physical multimorbidity. *BMJ: British Medical Journal* 2012; 345: e5559.

12. Duerden M, Avery T, Payne R. Polypharmacy and medicines optimisation. http://www.kingsfund.org.uk/sites/files/kf/field/field_publication_file/polypharmacy-and-medicines-optimisation-kingsfund-nov13.pdf; 2015.

13. Guthrie B, et al. National Institute for Health and Care Excellence, NG56 Multimorbidity: clinical assessment and management. National Institute for Health and Care Excellence (NICE), UK; 2016.

14. May CR, Eton DT, Boehmer K, et al. Rethinking the patient: using Burden of Treatment Theory to understand the changing dynamics of illness. *BMC Health Services Research* 2014; 14(1): 281.

15. Wallace E, Salisbury C, Guthrie B, Lewis C, Fahey T, Smith SM. Managing patients with multimorbidity in primary care. *BMJ* 2015; 350: h176-h.

16. Muth, Christiane, Blom, et al. Evidence supporting the best clinical management of patients with multimorbidity and polypharmacy: a systematic guideline review and expert consensus. *J Intern Med* 2018; Oct: joim.12842-join.

17. Smith SM, Wallace E, O'Dowd T, Fortin M. Interventions for improving outcomes in patients with multimorbidity in primary care and community settings. *Cochrane Database of Systematic Reviews* 2016; (3).

18. Almirall J, Fortin M. The coexistence of terms to describe the presence of multiple concurrent diseases. *Journal of comorbidity* 2013; 3: 4-9.

19. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLOS Medicine* 2009; 6(7): e1000097.

20. Cochrane Effective P, Organisation of C. EPOC Resources for review authors, 2017. epoccochrane.org/resources/epoc-resources-review-authors (accessed 08 May 2020); 2017.

21. World Health Organization. Innovative care for chronic conditions: building blocks for action: global report. Global Report, Geneva; 2002.

22. Valderas J, Mercer S, Fortin M. Research on Patients with Multiple Health Conditions: Different Constructs, Different Views, One Voice', *Journal of Comorbidity*, pp. 1–3. doi: 10.15256/joc.2011.1.11. *Journal of Comorbidity* 2011; pp 1-3.

23. Vaneslow N, Donaldson M, Yordy K. A new definition of primary care. *Journal of American Medical Association* 1995; 272(3): 192-.

24. Hoffmann TC, Glasziou PP, Boutron I, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. *BMJ: British Medical Journal* 2014; 348: g1687.

25. Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schünemann HJ. GRADE Working Group. Rating quality of evidence and strength of recommendations: What is “quality of evidence” and why is it important to clinicians? *BMJ* 2008; 336(7651): 995-8.

26. Smith Susan M, Wallace Emma, Salisbury Chris, Sasseville Maxime, Bayliss Elizabeth, Fortin Martin. A Core Outcome Set for Multimorbidity Research (COSmm). *The Annals of Family Medicine* 2018; 16(2): 132-8.

27. Contant E, Loignon C, Bouhali T, Almirall J, Fortin M. A multidisciplinary self-management intervention among patients with multimorbidity and the impact of socioeconomic factors on results. *BMC Family Practice* 2019; 20(1): 53-.

28. Eakin EGB, Bull SS, Riley KM, Reeves MM, McLaghlin M, Gutierrez S. Resources for Health: A Primary-Care-Based Diet and Physical Activity Intervention Targeting Urban Latinos With Multiple Chronic Conditions. *Health Psychology* 2007; 26(4): 392-400.
29. Garvey J, Connolly D, Boland F, Smith SM. OPTIMAL, an occupational therapy led self-management support programme for people with multimorbidity in primary care: a randomized controlled trial. *BMC Family Practice* 2015; **16**: 59-.

30. Gonzalez-Ortega M, Gene-Badia J, Kostov B, Garcia-Valdecasas V, Perez-Martin C. Randomized trial to reduce emergency visits or hospital admissions using telephone coaching to complex patients. *Fam Pract* 2017; **34**(2): 219-26.

31. Hochhalter AK, Song J, Rush J, Sklar L, Stevens A. Making the Most of Your Healthcare intervention for older adults with multiple chronic illnesses. *Patient Education and Counselling* 2010; **81**(2): 207-13.

32. Krksa J, Cromarty JA, Arris F, et al. Pharmacist-led medication review in patients over 65: a randomized controlled trial in primary care. *Age and Ageing* 2001; **30**(3): 205-11.

33. O'Toole L, Connolly D, Boland F, Smith SM. OPTIMAL: Enhancing self-management of multimorbidity in primary care. *British Journal of General Practice* 2020; *in press*.

34. Reed RL, Roeger L, Howard S, et al. A self-management support program for older Australians with multiple chronic conditions: a randomised controlled trial. *Medical Journal of Australia* 2018; **208**(2): 69-74.

35. Boult C, Reider L, Frey K, et al. Early effects of "Guided Care" on the quality of healthcare for multimorbid older persons: A cluster randomized controlled trial. *The Journals of Gerontology* 2008; **63**(3): 321-7.

36. Jager C, Freund T, Steinhauser J, et al. Impact of a tailored program on the implementation of evidence-based recommendations for multimorbidity patients with polypharmacy in primary care practices-results of a cluster-randomized controlled trial. *Implementation Science* 2017; **12**(1): 8-.

37. Koberlein-Neu J, Mennemann H, Hamacher S, et al. Interprofessional Medication Management in Patients With Multiple Morbidities. *Deutsches Arzteblatt International* 2016; **113**(44): 741-8.

38. Mercer SW, Fitzpatrick B, Guthrie B, et al. The CARE Plus study - a whole-system intervention to improve quality of life of primary care patients with multimorbidity in areas of high socioeconomic deprivation: exploratory cluster randomised controlled trial and cost-utility analysis. *BMC Med* 2016; **14**(1): e017740-e.

39. Muth C, Uhlmann L, Haefeli WE, et al. Effectiveness of a complex intervention on Prioritising Multimedications (PRIMUM) in primary care: results of a pragmatic cluster randomised controlled trial. *BMJ Open* 2018; **8**(2): e017740-e.

40. Salisbury C, Man MS, Bower P, et al. Management of multimorbidity using a patient-centred care model: a pragmatic cluster-randomised trial of the 3D approach. *Lancet* 2018; **392**(10141): 41-50.

41. Schäfer I, Kaduszkiewicz H, Mellert C, et al. Narrative medicine-based intervention in primary care to reduce polypharmacy: results from the cluster-randomised controlled trial MultiCare AGENDA. *BMJ Open* 2018; **8**(2): e017653-e.

42. Sommers LS, Marton KI, Barbaccia JC, Randolph J. Physician, nurse and social worker collaboration in primary care for chronically ill seniors. *Archives Internal Medicine* 2000; **160**(12): 1825-33.

43. Foster G, Taylor SJC, Eldridge S, Ramsay J, Griffiths CJ. Self-management education programmes by lay leaders for people with chronic conditions. *Cochrane Database of Systematic Reviews* 2007; (4).

44. Dowrick Christopher. Patient-centred care for multimorbidity: an end in itself? *Lancet* 2018; **392**(10141): 4-9.

45. Nieuwlaat R, Wilczynski N, Navarro T, et al. Interventions for enhancing medication adherence. *Cochrane Database of Systematic Reviews* 2014; (11).

46. Challis D, Hughes J. Intensive care/case management, Expert Briefing Paper 1. Manchester: Personal Social Services Research Unit
47. Sinnott C, Mc Hugh S, Browne J, Bradley C. GPs’ perspectives on the management of patients with multimorbidity: systematic review and synthesis of qualitative research. *BMJ Open* 2013; 3.
48. Noël P, Parchman M, Williams JJ, et al. The challenges of multimorbidity from the patient perspective. *J Gen Intern Med* 2007; 22.
49. Higgins J, Thomas J, Chandler J, et al. Cochrane Handbook for Systematic Reviews of Interventions version 6.1. *Cochrane Database of Systematic Reviews* 2020: Available from www.training.cochrane.org/handbook.
50. Fortin M, Dionne J, Pinho G, Gignac J, Almirall J, Lapointe L. Randomized clinical trials: do they have external validity for patients with multiple comorbidities? *Annals of Family Medicine* 2006; 4(2): 104-8.
51. Smith SM, Bayliss E, Mercer S, et al. How to design and evaluate interventions to improve outcomes for patients with multimorbidity. *Journal of Comorbidity* 2013; 3(1): 10-7.

Tables

Table 1 Characteristics of included studies
Study ID	Design	Country	Study participants	Intervention aim, elements and comparison	Primary outcome
Boult 2011³⁵	RCT	USA	904 adults >65, multimorbid and high service use, mean age 77 and mean 4.3 conditions	Aim: to measure the effect of guided care teams on multimorbid older patients’ use of health services	Health service use
			Intervention 18 months, follow-up at six and 18 months	Guided Care (GC): Enhanced multidisciplinary team providing self-management support	
				Home assessments and coordination of care by GC nurses with monthly monitoring over 18 months	
				Patient care plans and educational materials	
				Providers: Eight primary care systems, 14 GC nurses, 49 primary care physicians and managing 50-60 patients, training of nurse managers	
				Comparison: Usual care	
Contant 2019²⁷	RCT (Fortin 2016)	Canada (secondary analysis of multimorbidity sub-group)	281 patients 18 to 75 years of age with at least 3 of the following chronic conditions diabetes, cardiovascular disease, COPD, asthma, tobacco smoking, obesity and hyperlipidemia, mean age 53.4 and mean 5.4 conditions	Aim: To analyze the effect of a multidisciplinary self-management intervention among patients with multimorbidity.	Self-management (Health Education Impact Questionnaire (heiQ))
			Intervention 3 months, follow-up immediately post intervention	PR1MaC: Initial nurse evaluation with design of individualised intervention plan in collaboration with the patient, based on their objectives; and adaptable over time.	
				Printed information and other educational material for patients	
At least 3 individual encounters with trained chronic disease prevention and management (CDPM) professionals over 3 months

Providers: Four primary care clinics with doctors working together in group practices. Could include encounters with 1 or more CDPM professionals in the following disciplines: nursing, physical activity, nutrition, respiratory therapy and smoking cessation therapy

Comparison: Usual care

Gonzalez Ortega 2017

Study Details	Description
Gonzalez Ortega 2017	161 adults with significant chronic disease in 3 or more organ systems; mean age 80.5, Mean 3.9 conditions, mean 8.4 medications.
RCT	Aim: To evaluate the impact that adding a telephone coaching intervention by a family physician to usual care has on reducing resource consumption and improving health status, caregiver burden and quality of life among complex chronic patients compared with usual care.
Spain	Intervention duration 6 months with immediate follow up at intervention completion
	Telephone coaching and support for self-management by an intervention primary care physician (PCP).
	Patients had initial face-to-face meeting in their home or in the clinic and were then phoned twice a month over 6 months. Calls addressed symptoms, medications, social contexts and support for self-management.
	The PCP also reviewed the patients record and added notes regarding the calls.
	Providers: Three Primary Care teams. One independent intervention PCP.
	Comparison: Usual care from own PCP

Hochhalter 2010

Study Details	Description				
Hochhalter 2010	79 adults aged >65, with ³ two of seven chronic conditions; Mean age 74 and mean 3.6 conditions				
RCT	Aim: to test the efficacy of a patient engagement intervention for older adults with multiple chronic illnesses.				
USA	Self-management (Patient activation measure)				
	Patient engagement intervention				
Mercer 2016³⁸	**Cluster RCT** (exploratory)	**Scotland**			
---	---	---			
Intervention three months, follow-up three months after intervention	Led by “coaches” with focus on making most of healthcare, supporting self-management. Checklists and protocols for coaches to follow during the workshop and calls.	Two hour workshop and two telephone calls a week before and a week after a medical appointment. Intervention was designed to prepare patients for appointments, to communicate effectively during appointments and follow through on care plans.			
Providers: Large Internal Medicine clinic. Coaches (professional qualifications and number coaches not reported)					
	Comparison: 1. Attention control: two-hour workshop on safety issues and calls before and after a naturally occurring medical encounter. 2. Usual care				
142 patients from 8 general practices in areas of deprivation, with 3 two long term conditions; mean of 4.9 conditions, and mean age 52	Aim: to evaluate a whole-system primary care-based complex intervention, called CARE Plus, to improve quality of life in multimorbid patients living in areas of very high deprivation.	Health-related quality of life (EQ-5D-5L) and well-being (WBQ12)			
Intervention duration 12 months with data collection at 6 months and at intervention completion	CarePlus: Primary care-based whole-system intervention				
	Structured extended GP consultations and relationship continuity				
	Practitioner support and training				
	Patient self-management support with patient support materials				
	Providers: Eight general practices in the most deprived parts of Glasgow				
	Comparison: Usual GP care				
Study	Cluster RCT	UK	1546 patients from 35 practice aged 18 years or older, with ≥3 chronic condition, based on 17 chronic conditions in Quality and Outcomes Framework; mean age 71 years, mean 3 conditions	Aim: The aim of this study was to implement and assess the effectiveness of a new approach to managing patients with multimorbidity in primary care.	Health-related quality of life (EQ-5D-5L)
-------	-----------	----	---------------------------------	---	---------------------------------
			Intervention duration 15 months and outcomes measured at 9 and 15 months	3D intervention based on patient-centred care with focus on continuity, coordination, and efficiency of care with 6-monthly comprehensive multidisciplinary review (nurse, pharmacist and physician/GP) with extended appointments if requested.	IT support to facilitate identification of patients, recall and 3D templates
				Printed care plans to support shared decision making	Practice training: 2 half-days
				Practice supports: nominated practice 3D champion, automated monthly feedback compared to peers and financial incentives for completed reviews (GBP 30 per review).	Providers: 33 general practices with named GP, practice nurse and pharmacists (who may or may not have worked with the practice previously)
				Comparison: Usual GP care	
Schafer	Cluster RCT	Germany	650 patients from 55 general practices with ≥3 conditions; mean age 73.5, mean 8.5 chronic conditions, mean 7 medications.	Aim: To determine if patient-centred communication leads to a reduction in the number of medications taken without reducing health-related quality of life.	Number medications and Health-related quality of life (EQ-5D)
2018			Intervention duration: 12 months with final data collection at intervention completion	Multicare AGENDA: Patient-centred communication	
				GP Training: 3 sessions lasting 4 hours on narrative based patient-doctor dialogues	
				Three 30 minute ‘talks’ between GP and patients over 12 months:	
				1. Focus on patient priorities (including non-medical)	
2. Medication review

3. Review previous goals and considered goal attainment at end of 12 months

Providers: 55 general practices

Comparison: Usual care with wait-list control

Study	Participants	Aim	Intervention	Comparison
Sommers 2000⁴²	543 adults aged >65 with at least two conditions; mean age 77.5, mean number conditions not reported	To examine the impact of an interdisciplinary, collaborative, practice intervention for community dwelling seniors with chronic illnesses	Senior Care Connections	
Enhanced multidisciplinary teams with 2 months immersion in primary care practice for the nurses and social workers before intervention commenced
Initial home assessment by the nurse or social worker to gather data on patient concerns
Team then met and drafted risk reduction care plans and support for self-management to discuss with patients and family members
Nurse or social worker monitored patients every 6 weeks between primary care physicians (PCP visits) either in home, in clinic or by phone
Monthly team meetings to discuss patient progress with training and ongoing support for nurses and social workers. | Health service use and Self Rated Health |

Providers: 18 PCPs working in 9 teams with a full-time nurse with geriatrics training and half-time social worker per team

Comparison: Usual care
Support for self-management

Eakin 2007²⁸	175 adults with ≥ 2 conditions (of 14 conditions listed), mean age 50; mean conditions not reported	Aims: To address multiple risk factors in patients targeting low-income, largely Spanish speaking patients with multiple chronic conditions	Dietary behaviour and physical activity
RCT	USA	Intervention 16 weeks, follow-up six months after intervention	Self-management support, diet, and exercise intervention based on chronic care model
(multimorbidity sub-group data from authors)		Patient education materials with three tailored newsletters and linkage to local services	
		Two structured visits (home or clinic) lasting 60-90 minutes and two follow-up telephone contacts over 16 weeks	
		Providers: An experienced bilingual health educator working in a community health centre providing primary healthcare services to low-income and medically underserved individuals	
		Comparison: usual care plus a guide to local services and three newsletters	

Garvey 2015²⁹	50 participants ≥ 2 chronic conditions and 4 repeat medications, median age 66, median 4.5 conditions	Aim: to address the challenges of living with multimorbidity in a primary care setting.	Activity participation (Frenchay Activities Index)		
RCT	Ireland	Intervention duration: 6 weeks with 2-week post intervention follow-up	OPTIMAL, occupational therapy (OT) led self-management support course		
			Focus on goal setting and prioritisation		
			Peer support through group meetings		
			Weekly meetings in local health centre over 6 weeks, meeting duration 2.5 hours		
		Providers: Three primary care centre. Primary care OTs in each centre led the programme with input from physiotherapist and pharmacist for one session each. Training and intervention manual for OT providers, provided by the research team.			
Study	Setting	Participant Details	Intervention Details	Comparison	Outcome Measures
---------------------	---------	---------------------	----------------------	------------	-----------------
O'Toole 2020³³	Ireland	149 patients aged over 18, ≥2 conditions and 4 regular medicines. Mean age 65 years, mean number 4.5 conditions and mean 9 repeat medicines	Aim: To evaluate the effectiveness of a group based, six-week, occupational therapy led self-management support programme (OPTIMAL) for patients with multimorbidity and test the sustainability of its effect over time. Intervention duration: 6 weeks with immediate post intervention (primary outcomes only) and 6 months follow up	Wait-list control. Received usual care while waiting.	OPTIMAL, occupational therapy (OT) led self-management support course. Focus on goal setting and prioritisation. Peer support through group meetings. Weekly meetings in local health centre over 6 weeks, meeting duration 2.5 hours. Providers: Eight Primary care Centres. Primary care OTs led the programme with one session each from physiotherapist and pharmacist. Training and intervention manual for OTs, provided by the research team.
Reed 2018³⁴	Australia	254 adults aged over 60 years with ≥2 conditions and neutral or poor self-rated health; mean age not reported, approx. 50% >75 years, mean 4.5 conditions	Aim: To determine whether a clinician-led chronic disease self-management support (CDSMS) program improves the overall self-rated health level of older Australians with multiple chronic health conditions. Intervention duration: 6 months with immediate follow up	Wait-list control. Received usual care while waiting.	Self Rated Health

Reed 2018: Clinician-led CDSMS Programme which included goal setting and the development of individualised care plans, based on the Flinders CDSMS programme. Delivered by nurses or psychologists in the patients home, 3 home visits with 4 follow up phone calls over 6 months, delivered independently of GP care. Mentoring of clinicians by trained accreditors.
Medicines management

Study	Patients	Aim	Summary score	Providers
Jager 2017³⁶ Cluster RCT Germany	273 patients from 22 practices, aged >50 years, with at least 3 chronic diseases, more than 4 drugs, and at high risk for medication-related events; mean age 72.2, mean conditions 5.7	Aim: to assess the effect of a tailored program to improve the implementation of three important processes of care for this patient group: (a) structured medication counselling including brown bag reviews, (b) the use of medication lists, and (c) structured medication reviews to reduce potentially inappropriate medication.	Summary score of 10 prescribing indicators	Providers: Trained nurses and psychologists, mentor supervising them
Koberlein Neu 2016³⁷	162 adults age ≥ 65 years, with ≥ 3 chronic disorders affecting	Aim: To evaluate the effectiveness of interprofessional medication		Comparison: Attention control - same number of visits to the study clinicians but did not receive the CDSMS programme

Note: The study by Jager et al. (2017) involved a Cluster Randomized Controlled Trial (Cluster RCT) in Germany involving 273 patients from 22 practices, aged >50 years, with at least 3 chronic diseases, more than 4 drugs, and at high risk for medication-related events; mean age 72.2, mean conditions 5.7. The aim was to assess the effect of a tailored medicines management program (PomP) on improving the implementation of three important processes of care: (a) structured medication counselling including brown bag reviews, (b) the use of medication lists, and (c) structured medication reviews to reduce potentially inappropriate medication. The intervention had a duration of 9 months with follow-up at intervention completion.

The study by Koberlein et al. (2016) involved 162 adults age ≥ 65 years, with ≥ 3 chronic disorders affecting. The aim was to evaluate the effectiveness of interprofessional medication management.
Study	Design	Setting	Eligibility Criteria	Intervention Duration	Outcome	Providers	Comparison
cRCT (stepped wedge design)	Germany	two different organ systems, at least one cardiovascular disease, at least one visit to the PCP in each of the preceding three-month intervals, five or more long-term medicines, mean age 76.8, mean number conditions 12.7, mean number medications 9.4	Intervention duration 15 months, variable intervention exposure based on stepped wedge design. Data extracted for first phase of 3 months when was intervention vs control and no variation in exposure	WESTGEM intervention: Comprehensive medication management	Medication management with primary care physicians (PCPs) who sent e-information to home care specialists. Care provided by home-care specialists using case management, conducting a home visit and assessment and communicating this to a pharmacist who undertook a medicines review and made recommendations. PCPs then responsible for delivering recommendations	Providers: 12 PCPs and attached home care specialists, pharmacist (number not reported)	Comparison: Usual care with their PCP
Krska 2001³²	RCT	UK	332 adults aged ≥65 with ≥2 conditions and on ≥4 medicines; mean age 75 and mean 3.9 conditions	Intervention three months, follow-up three months after drug review	Clinical pharmacist conducted a home visit with patients and created a pharmaceutical patient care plan, which was then entered in to the patient's record and implemented by practice team	Providers: Clinical pharmacist, General Practitioners (numbers not reported)	Comparison: Usual care with their PCP
Muth 2018¹⁶	Cluster RCT	Germany	505 cognitively intact patients from 20 general practices, ≥60 years, ≥3 chronic conditions, ≥5 long-term medicines, mean age 72, Charlson score 3.1; CIRS score 7.7	Aim: to improve the appropriateness of medication in older patients with multimorbidity in general practice. PRIMUM: Prioritising Multimedications in Multimorbidity	Medication Appropriateness Index (MAI)	Providers: 12 PCPs and attached home care specialists, pharmacist (number not reported)	Comparison: Usual care with their PCP
Intervention duration: Intervention delivered over two sessions (HCA and then GP) sessions, lasting 35-45 minutes each, follow up at 6 and 9 months

Pre-intervention training of 90-120 minutes for healthcare assistant (HCA) and GP.

HCA conducted a checklist-based interview with patients on medication-related problems and a brown bag review to reconcile their medications. HCA entered details into the computerised decision support system (CDSS)

GP undertook a review assisted by the CDSS and optimised medication, discussed it with patients and adjusted it accordingly.

Providers: 72 general practices and had to have HCA with access to internet

Comparison: Usual care but the control practice teams also received the GP guidelines for ambulatory geriatric care to harmonise usual care in both groups

Table 2: Outcomes and Results
Study ID

Primary outcomes: Results

Secondary outcomes: Results

Study ID	Primary outcomes: Results
Care-coordination/ Self-management support studies	
Boult 2011	**Primary outcome:** Health service use
Adjusted ratio of service use: hospital 30 day readmissions 1.01 (95% CI 0.83 to 1.23); hospital days 0.79 (0.53 to 1.16); skilled nursing facility admissions 1.00 (0.77 to 1.30); skilled nursing facilities days 0.92 (0.6 to 1.4); emergency department visits 0.84 (0.48 to 1.47); primary care visits 1.04 (0.81 to 1.34); speciality care visits 1.02 (0.91 to 1.14); home healthcare episodes 1.07 (0.93 to 1.23)	
PACIC score at 18 months adjusted mean difference (aMD) 0.2 95% CI 0.07 to 0.33, p= 0.002	
Satisfaction: no difference between groups	
Provider satisfaction with care mixed effects	
Contant 2019 (Fortin 2016)	**Primary outcome:** Self-management using the Health Education Impact Questionnaire (heiQ) 8 domains
The intervention group showed improvement in 4 of the 8 heiQ domains in multivariate analysis: These four domains were: health-directed behaviour: OR 1.98, 95% CI 1.07 to 3.66, p= 0.03; constructive attitudes and approaches: 3.92, 95% CI 1.73 to 8.89, p= 0.001; skill and technique acquisition OR 2.48, 95% CI 1.32 to 4.65, p= 0.005; health service navigation OR 2.73, 95% CI 1.2 to 6.22, p= 0.02.	
There were no significant improvements in positive and active engagement in life, emotional well-being, self-monitoring and insight and social integration and support.	
Secondary outcomes were not reported in this secondary data-analysis study of Fortin 2016	
Gonzalez Ortega 2017	**Primary outcome:** Emergency Admissions
After six months, urgent visits per patient decreased in intervention 1.27 baseline versus 0.89 follow-up, P = 0.091 and control 1.06 baseline versus 0.86 follow-up, P = 0.422, mean difference 0.18 [95% CI -0.48 to 0.84]	
HRQoL SF12 significant effect on physical component score (aMD -4.71, 95% CI-9.03 to -0.41, p= 0.02) but no effect on the mental component score (aMD 2.6, 95% CI -3.9 to 9.11, p=0.42)	
No significant effect on clinic visits; Charlson score; Function (Barthel); HRQoL; Cognitive status (Pfeiffer test); Pressure Ulcer risk (Norton scale); Social risk (Gijon Test); Caregiver Burden (Zarit test);	
Chronic treatment (Number of repeat medicines) or resource use (direct costs)	
Study	Design
-------	--------
Hochhalter 2010	RCT
Mercer 2016	Cluster RCT (exploratory)
Salisbury 2018	Cluster RCT
Study	Primary outcomes
----------------------------	------------------
Schafer 2018	
	Primary outcomes: Number medications and HRQoL (EQ-5D)
Sommers 2000	
	Primary outcome: Health service use

Self-management support studies

Study	Primary outcomes	Findings			
Eakin 2007		RCT USA			
	Primary outcome: Dietary behaviour, and physical activity	Support for healthy lifestyle (higher score better) 2.98 (0.06) v 2.68 (0.06), P<0.05			
		Adjusted means (SE):			
		dietary behaviour (lower score better) 2.20 (0.05) v 2.41 (0.05), P<0.5;			
		change minutes walking/week 8 (22) v -10 (27), P>0.5.			
Garvey 2015		RCT Ireland			
	Primary outcome: Activity participation	Significant improvements in perceptions of activity performance and satisfaction, self-efficacy, independence in daily activities and HRQoL (EQ-5D VAS scores only).			
		Frenchay Activities Index aMD at immediate follow up 4.22, 95% CI 1.59 to 6.85.	The intervention group demonstrated significantly higher levels of goal achievement, following the intervention.		
			No significant differences in anxiety, depression, HeiQ scores or healthcare utilisation.		
O’Toole 2019		RCT			
	Primary outcomes: HRQoL (EQ5D) and Activity Participation (FAI)	No significant difference in Activities of daily living (NEADL); Anxiety and depression (HADS); Self-efficacy and healthcare utilisation. One of the two occupational performance domains (COPM) showed a significant difference.			
		At six-month follow-up there were no differences in primary outcomes:			
Country	Authors	Study Design	Primary Outcome	Impact	Sub-group Analyses
---------	---------	--------------	-----------------	--------	-------------------
Ireland (data from authors)			FAI aMD = 1.20; 95% CI -0.89 to 3.29		There were two pre-planned sub-group analyses for the primary outcomes. There was no difference in effects by number of conditions but there was a significant improvement in the EQ5D VAS in those aged < 65 compared to those ≥ 65 years, a 23.13, 95% CI = 3.19 to 43.06, p = 0.0284.
Reed 2018 RCT Australia		Primary outcome: Self Rated Health	Intervention were more likely than control participants to report improved self-rated health at 6 months: Odds Ratio 2.50, 95% CI, 1.13 to 5.50, p = 0.023).	No significant differences in Fatigue; Pain; Health distress; Energy; Depression; Illness intrusiveness; Exercise; Medication adherence; Self-Efficacy; Health Education Impact (HEiQ); Healthcare utilization (GP visits, Emergency Department (ED) visits and admissions)	

Medicines management studies

Author	Study Design	Country	Primary Outcome	Impact	Harms
Jager 2017 Cluster RCT Germany	Primary outcome: Summary score of 10 prescribing indicators	The increase in the degree of implementation was 4.2 percentage points (95% CI -0.3 to 8.6) higher in the intervention group compared to the control group (p =0.1).	Harms were not expected or reported	No significant difference in Patient Activation Measure (PAM-13D); Medication Adherence Report Scale (MARS); Beliefs About Medicines Questionnaire (BMQ-D) and % Potentially Inappropriate Medicines (PIMs)	
Koberlein Neu cRCT 2016 (stepped wedge design) Germany	Primary outcome: Quality of medication therapy (mean MAI score)	Mean MAI score: Intervention phase 1 vs Control Phase, aMD -4.51, 95% CI -6.66 to -2.36	Mean reduction in drug related problems of -0.45, 95% CI -0.81 to -0.09	No significant difference in Number of drug-related problems (DRPs); Potentially inadequate medication (PIM); Number of prescribed medicines per patient; HRQoL (SF12); Function (Barthel Index); Instrumental Activities of Daily Living (IADL); Gait stability/risk of falling (Tinetti score)	
Krska 2001 RCT UK	Primary outcome: Pharmaceutical care issues. [outcome trial specific]	Pharmaceutical care issues (%) resolved after intervention: 82.7% v 41.2%, P<0.001	No significant differences in medicine costs, HRQoL (SF36 scores) and health service use		
Muth 2018 Cluster RCT Germany	Primary outcome: Medication Appropriateness Index (MAI) at 6 months	No significant effect on mean MAI sum scores with aMD of 0.7 (95% CI -0.2 to	Functional status (Vulnerable Elderly Survey-13) MD 0.4, 95% CI 0.0 to 0.8, p= 0.047		
No significant difference in all other secondary outcomes including MAI at 9 months; HRQoL EQ-5D (aMD 2.3; 95% CI -1.6 to 6.2, p=0.247); All-cause hospitalisation; Severity of chronic pain (von Korff Index); Satisfaction with shared decision-making (Man-Son-Hing Scale); Patient's future expectation, expected/desired lifetime duration; Years of Desired Life (YDL); Medication adherence: Observed adherence: drug score, dose score, regimen score; Self-reported adherence (Morisky); Patient Beliefs about Medicines Questionnaire (BMQ);

Medicines prescribed; Medication Regimen Complexity Index and number of prescriptions / single doses

Abbreviations in Table:
ADR aMD; BMQ; CI; COPM; FAI; HRQoL; PACIC; NEADL PAM; PIM; HADs; MAI; MTBQ; QALY; RR; SE; SF 12 SF36 VAS

Figures
Figure 1

Flow diagram of studies screened
Footnote: Estimates for all included cluster RCTs were adjusted for clustering.

Figure 3

Meta-analysis of Health Related Quality of Life (EQ-5D scores)