Association analysis for resistance to *Striga hermonthica* in diverse tropical maize inbred lines

A. E. Stanley¹,², A. Menkir²,³*, B. Ifie³, A. A. Paterne², N. N. Unachukwu⁴, S. Meseka⁵, W. A. Mengesha², B. Bossey², O. Kwadwo¹, P. B. Tongoona¹, O. Oladejo², C. Sneller⁶ & M. Gedil²

Striga hermonthica is a widespread, destructive parasitic plant that causes substantial yield loss to maize productivity in sub-Saharan Africa. Under severe *Striga* infestation, yield losses can range from 60 to 100% resulting in abandonment of farmers' lands. Diverse methods have been proposed for *Striga* management; however, host plant resistance is considered the most effective and affordable to small-scale farmers. Thus, conducting a genome-wide association study to identify quantitative trait nucleotides controlling *S. hermonthica* resistance and mining of relevant candidate genes will expedite the improvement of *Striga* resistance breeding through marker-assisted breeding. For this study, 150 diverse maize inbred lines were evaluated under *Striga* infested and non-infested conditions for two years and genotyped using the genotyping-by-sequencing platform. Heritability estimates of *Striga* damage ratings, emerged *Striga* plants and grain yield, hereafter referred to as *Striga* resistance-related traits, were high under *Striga* infested condition. The mixed linear model (MLM) identified thirty SNPs associated with the three *Striga* resistance-related traits based on the multi-locus approaches (mrMLM, FASTmrMLM, FASTmrEMMA and pLARmEB). These SNPs explained up to 14% of the total phenotypic variation. Under non-infested condition, four SNPs were associated with grain yield, and these SNPs explained up to 17% of the total phenotypic variation. Gene annotation of significant SNPs identified candidate genes (Leucine-rich repeats, putative disease resistance protein and VQ proteins) with functions related to plant growth, development, and defense mechanisms. The marker-effect prediction was able to identify alleles responsible for predicting high yield and low *Striga* damage rating in the breeding panel. This study provides valuable insight for marker validation and deployment for *Striga* resistance breeding in maize.

Maize (*Zea mays* L.) is an important cereal that plays a crucial role in alleviating food insecurity in sub-Saharan Africa (SSA) due to its high yield potential, ease in processing and low cost¹. However, its production is constantly hampered by a plethora of biotic stresses, including the parasitic weed *Striga*. Among the numerous *Striga* species endemic to Africa, *Striga hermonthica* (Del.) Benth is the most destructive and widespread, affecting cereals, including maize and sorghum (*Sorghum bicolor* L.)². Yield losses attributed to *Striga* infestation in maize range from 60 to 100% under severe field infestation, especially in marginal production areas where smallholder farmers cannot afford high inputs and other control measures³.

Striga hermonthica parasitism is characterized by chlorosis, firing of leaves around margins, wilting, stunting, poorly filled ears, and death under severe infestation⁴. *Striga* resistance is a complex quantitative trait controlled by multiple genes/polygenes, and it is highly affected by environmental factors⁵.

¹West Africa Centre for Crop Improvement, University of Ghana, Legon, Ghana. ²International Institute of Tropical Agriculture, Ibadan, Nigeria. ³Ohio Agriculture Research and Development Center, Ohio State University, Wooster, OH, USA. *email: a.menkir@cgiar.org
Several control methods have been proposed for *Striga* management, including host plant resistance, cultural, chemical and manual control options. However, integrated *Striga* management approach is considered the most economical and affordable for small-scale farmers who cannot afford high inputs control options. The approach involves the combination of two or more control options. Host plant resistance is considered a cost-effective, environmental feasible and affordable option for smallholder farmers. It is also an essential component of any successful integrated approach for controlling *Striga* parasitism. Several studies have shown progress in breeding for natural genetic resistance to *Striga* in maize. In addition, extensive research has been done to map quantitative trait loci (QTLs) for *Striga* resistance in maize using molecular markers. QTL mapping and genome-wide association study (GWAS) are two methods widely used to discover genetic loci controlling complex traits. Quantitative trait loci (QTLs) associated with *Striga hermonthica* have been identified in maize using QTL mapping approach. Badu-Apraku et al. identified 12 QTLs associated with four *Striga* resistance/tolerance traits in maize and these QTLs explained 3.2 to 34.9% of the phenotypic variation. However, the QTL mapping approach has several limitations, for example, it has limited allelic diversity, and limited mapping resolution due to limited recombination events. On the other hand, GWAS explores ancestral recombination in natural genetically diverse population to dissect complex traits. GWAS is an improvement over QTL mapping in that it improves the resolution of QTLs due to accumulated meiotic events and reduces the time taken in developing mapping populations. GWAS is a powerful tool for detecting QTLs associated with important complex quantitative traits, as well as predicting or identifying causative genes.

Many statistical models have been developed to improve the power of identifying QTNs with the GWAS approach. The single-locus mixed-linear model (MLM) is the most common method used for GWAS. The method uses several algorithms such as the compressed MLM, enriched MLM, however, all these models perform single dimensional genome scan and require multiple correction. These models also have major limitations in mapping QTNs with small effects. Wang et al. proposed a new model based on multi-locus random-SNP-effect MLM (mrMLM). The methods include polygenic-background control-based least angle regression plus empirical Bayes (pLARmEB), fast multi-locus random-SNP-effect efficient mixed model association (FASTmEMMA), iterative-sure independence screening expectation–maximization (EM)-Bayesian LASSO (ISS-EMBLASSO) and fast multi-locus random-SNP-effect mixed linear model (FASTmMLM). These methods can effectively detect small-effect QTNs and improve the efficiency and accuracy of GWAS. Recently, few studies have implemented the above GWAS methods to detect important loci controlling different traits in maize.

Genome-wide association study (GWAS) for *S. hermonthica* resistance has been conducted in maize. Adewale et al. identified 24 SNPs that were significantly associated with four *Striga* resistance-related traits in early maturing maize inbred lines using compressed MLM, these lines captured only the genetic variation existing in the extra early and early maturing maize germplasm developed with IITA. However, genomic regions governing *Striga* resistance in many intermediate and late-maturing maize inbred lines with consistent expression of polygenic resistance to *S. hermonthica* have not been identified. This germplasm offers an excellent resource for discovering functional genes underlying the genetic variation in the *Striga* resistance-related traits. This study was thus conducted; to evaluate diverse intermediate and late maturing maize inbred line for *Striga* resistance under *Striga* infested and non-infested conditions and identify genomic regions and candidate genes related to *Striga* resistance.

Results

Phenotypic diversity. In the combined analyses of variance (ANOVA), environments and lines had significant ($p < 0.001$) effects on the three *Striga* resistance-related traits under *Striga* infested conditions and for grain yield under non-infested condition (Tables 1 and 2). The line x environment interaction mean squares were also significant for most of the traits measured under the two conditions.

Further assessment of the line x environment interaction using rank correlation analyses between pairs of environments found highly significant ($p < 0.0001$) correlations for the *Striga* resistance-related traits (Supplementary Table S1). The broad-sense heritability estimates for the *Striga* resistance-related traits varied from 81 to 85% (Supplementary Table S2).
explained 4.13 to 11.60% of the phenotypic variation. Four SNPs (S1_284192573, S1_10576247, S2_99667127, Striga were associated with LOD values of the identified SNPs ranged from 6.06 (S4_160459526) to 11.80 (S10_68324912). Nine SNPs chromosomes and the proportion of phenotypic variation explained by each SNP ranged from 0.14 to 14.19%. The Admixture analysis using tenfold cross-validation from $k = 1$ to $k = 10$ showed a sharp elbow at $k = 3$, indicating the inbred lines can be grouped into three subgroups (Fig. 1A,B). The principal component analysis (PCA) also grouped the inbred lines into three subgroups and this is consistent with the Admixture results. A scree plot generated to visualize the fraction of variance represented by each of the ten principal components showed that two (PC1 and PC2) explained the largest proportion (42.3%) of the total variance (Fig. 1C). Furthermore, the phylogeny tree clustering also grouped the inbred lines into three distinct subgroups; 22, 27 and 101, derived from ZDIP, IWDS and Mixed groups, respectively (Fig. 1D). The assignment of the inbred lines into the three subgroup based on the phylogeny tree were in good agreement (98%) with those revealed by PCA. The inbred lines were grouped based on their genetic background/pedigree and maturity. The LD estimates (r^2) showed a slight increasing and then consistent pattern of LD decay was observed with an increase in the physical distance of SNP markers mapped on the 10 chromosomes (Supplementary Fig. S2). The average linkage disequilibrium decay varied from 2.73 kb on chromosome 1 to 3.68 kb on chromosome 8 (Supplementary Table S3).

Table 2. Mean squares from the combined ANOVA for traits recorded under non-infested conditions across four environments.*, **, *** Significant at $p \leq 0.05$, $p \leq 0.01$, $p \leq 0.001$ and 0.0001 levels, respectively, ns = not significant. Blk, Block; Env, Environment; Rep, Replication; CV, Coefficient of Variation; W AP, weeks after planting.

Source	DF	Yield (kg/ha)
Env (E)	3	175723422.13
Rep(Env)	4	2428705****
Blk(Rep*Env)	112	1281136.99
Lines (L)	149	3287995
L x E	446	732612.75
Error	483	470085
CV (%)	32.73	

Grain yield under *Striga* infestation varied from 13 to 3299 kg/ha with an average of 1580 kg/ha, while grain yield under non-infested condition varied from 706 to 4171 kg/ha with an average of 2098 kg/ha (Supplementary Table S2). Relative to the non-infested condition, the resistant benchmark (9450) suffered 46% yield loss, whereas the susceptible benchmark (5057) suffered 77% yield loss indicating the inbred lines used in this study were exposed to severe *Striga* infection. In addition, 86 maize inbred lines supported significantly fewer emerged *Striga* plants at 8 and 10 weeks after planting (WAP). These lines, on average, suffered 19% yield reduction relative to the non-infested conditions, produced significantly higher grain yields than the resistant benchmark (9450), and were categorized as resistant lines. In contrast, 44 inbred lines supported as many *Striga* plants as the susceptible benchmark (5057) but produced significantly higher grain yields than the susceptible line, and were categorized as tolerant. The remaining 20 inbred lines, supported as many *Striga* plants as the susceptible benchmark and did not differ significantly from the susceptible line in their grain yields, and were regarded as susceptible. All paired traits showed statistically significant differences at $p \text{-value} < 0.01$. A negative correlation was observed between grain yield and *Striga* damage rating and emerged *Striga* plants at 8 and 10 WAP. However, there was a positive correlation between *Striga* damage rating and emerged *Striga* plants at 8 and 10 WAP (Supplementary Fig. S1).

Genotyping. Population structure and linkage disequilibrium. For the genotypic analysis, 16,735 SNPs distributed across the ten maize chromosomes were identified after the quality control process. A minimum of 1208 SNPs (7.2%) were mapped on chromosome 10, whereas a maximum of 2532 SNPs (15.2%) were mapped on chromosome 1. The Admixture analysis using tenfold cross-validation from $k = 1$ to $k = 10$ showed a sharp elbow at $k = 3$, indicating the inbred lines can be grouped into three subgroups (Fig. 1A,B). The principal component analysis (PCA) also grouped the inbred lines into three subgroups and this is consistent with the Admixture results. A scree plot generated to visualize the fraction of variance represented by each of the ten principal components showed that two (PC1 and PC2) explained the largest proportion (42.3%) of the total variance (Fig. 1C). Furthermore, the phylogeny tree clustering also grouped the inbred lines into three distinct subgroups; 22, 27 and 101, derived from ZDIP, IWDS and Mixed groups, respectively (Fig. 1D). The assignment of the inbred lines into the three subgroup based on the phylogeny tree were in good agreement (98%) with those revealed by PCA. The inbred lines were grouped based on their genetic background/pedigree and maturity. The LD estimates (r^2) showed a slight increasing and then consistent pattern of LD decay was observed with an increase in the physical distance of SNP markers mapped on the 10 chromosomes (Supplementary Fig. S2). The average linkage disequilibrium decay varied from 2.73 kb on chromosome 1 to 3.68 kb on chromosome 8 (Supplementary Table S3).

Genome-wide association analysis. The GWAS multiple-locus models used in this study identified 30 significant SNPs that were significantly associated with the three *Striga* resistance-related traits. These SNPs were distributed on all maize chromosomes but chromosome 8. The highest number of SNPs was found on chromosome 1, and the least on chromosomes 3, 6 and 7 (Table 3). The results of the Manhattan plot and the quantile–quantile plots revealed reasonable data adjustment and a few significant SNPs above the interval of the expected values of the null hypothesis (Fig. 2). This study employed four multi-locus methods, mrMLM, FASTmrMLM, FASTmrEMMA, and pLARmEB to perform comprehensive GWA mapping in our diversity panel. Among the four methods mrMLM identified the most codetected SNPs among the four GWAS models used. Four SNPs were associated with grain yield under *Striga* infested condition. These SNPs are located on three chromosomes, and each SNP explained between 3.21 to 13.36% of the phenotypic variation. One of the SNPs (S4_164335765) associated with grain yield was detected by two GWAS multi-locus methods (FASTmrMLM and mrMLM) and they explained 6.7 and 13.4% of the phenotypic variation. The LOD score of the significant SNPs ranged from 7.18 (S4_164335765) to 7.39 (S10_1784894).

Eleven SNPs were associated with *Striga* damage rating at 8 WAP. These SNPs are located on seven chromosomes and the proportion of phenotypic variation explained by each SNP ranged from 0.14 to 14.19%. The LOD values of the identified SNPs ranged from 6.06 (S4_160459526) to 11.80 (S10_68324912). Nine SNPs were associated with *Striga* damage rating at 10 WAP. These SNPs were located on five chromosomes, and they explained 4.13 to 11.60% of the phenotypic variation. Four SNPs (S1_284192573, S1_10576247, S2_99667127, Striga...
and S7_10795659) associated with Striga damage rating at 10 W AP were detected by two or more of the GWAS multi-locus (mrMLM, and FASTmrMLM, and FASTmrEMMA) methods.

The LOD values of the identified SNPs ranged from 6.02 (S2_190557148) to 13.76 (S2_188120710). In general, two SNPs (S2_160791711 and S10_25285761) were simultaneously associated with Striga damage rating at 8 and 10 W AP.

Eight SNPs were associated with emerged Striga plants at 8 W AP. These SNPs are located on five chromosomes and the proportion of phenotypic variation explained by each SNP ranged from 5.03 to 13.58%. Five SNPs (S2_208978140, S2_135038935, S5_148751913, S9_7727167, and S10_90133328) associated with emerged Striga plants at 8 W AP were detected by two or more of the GWAS multi-locus (mrMLM, FASTmrMLM, FASTmrEMMA, and pLARmEB) methods. The LOD values of the identified SNPs ranged from 6.14 (S1_298950342) to 9.28 (S10_125571525). Four SNPs were associated with emerged Striga damage plants at 10 W AP. These SNPs are located on three chromosomes and the proportion of phenotypic variation explained by each SNP ranged from 6.33 to 12.21%. Three SNPs (S2_135038935, S5_148751913, and S5_204969099) associated with emerged Striga plants at 10 W AP were detected by two GWAS multi-locus (mrMLM, and FASTmrMLM) methods. The LOD values of the identified SNPs ranged from 6.83 (S2_135038935) to 8.65 (S5_148751913). In general, three SNPs (S2_135038935, S5_148751913, and S10_12557152) were simultaneously associated with emerged Striga plants at 8 and 10 WAP.

Under non-infested conditions, four SNPs were associated with grain yield (Table 4). These SNPs are located on three chromosomes and the proportion of phenotypic variation explained by each SNP ranged from 5.63 to 17.40%. Furthermore, one of the SNPs on chromosome 1 (S4_189154251) was detected by two of the GWAS multi-locus methods (mrMLM, and FASTmrMLM). The LOD score of these SNPs ranged from 6.52 (S1_26517984) to 9.72 (S4_189154251).

Markers effect prediction. The frequencies and marker prediction effects of various alleles associated with the three Striga resistance-related traits are presented in Table 5. Two of the SNPs (S4_164335765 and S9_1994432) associated with grain yield under Striga infestation displayed high segregation among the inbred lines. For SNPs on chromosome 4, alleles AA and CA were associated with genotypes with higher grain yield, while alleles CC were associated with lower grain yield. For the second SNP on chromosome 9, alleles GG were associated with genotypes with higher grain yield, while alleles AA were associated with lower grain yield (Fig. 3). For Striga damage ratings at 8 and 10 WAP, three SNPs (S1_284192573, S4_160459526, and S5_3623740) displayed high segregation among the inbred lines. For two of the SNPs on chromosomes 1 and 4, alleles TT and TG were asso-
associated with high Striga damage ratings, while alleles GG and CC were associated with low Striga damage rating. For the SNP on chromosome 5, alleles AA and AC were associated with high Striga damage ratings, while alleles CC were associated with low Striga damage ratings at 8 and 10 WAP (Fig. 3). For emerged Striga plants, four SNPs (S1_298950342, S3_74335447, and S5_204969099) displayed high segregation among the inbred lines. For the two SNPs on chromosomes 1 and 3, variants GG and AG supported the emergence of more Striga plants whereas, alleles AA supported little emerged Striga plants. For the SNP on chromosome 5, variants CC supported the emergence of more Striga plants, while alleles AA and AC supported little emerged Striga plants (Fig. 3).

Identifying putative genes. According to the genomic information of B73 Ref Gen_V4, thirty-one putative genes/proteins, including two uncharacterized proteins were found in the intervals adjacent to the significant SNPs detected for the three Striga hermonthica resistance-related traits (Table 6). Remarkably, most of the gene models identified encode transcription factors, disease resistance proteins, zinc-finger domain proteins, leucine-rich repeats protein kinase and some pathogenesis-related proteins. Most of the identified genes were located on chromosomes bins 1.10, 2.05, 2.06, 3.04, 6.01, 7.01, 9.01, 10.00, 10.01, and 10.03. Five gene models were identified around three SNPs associated with grain yield under Striga infestation. Two gene models each were found on chromosomes 4 and 9 and they encode adenylyltransferase, sulfurtransferase (MOCS3 2), U-box domain-containing protein 39, and NLR family CARD domain-containing protein 3. The

Trait name	SNP	Chr Position (bp)	LOD	PVE (%)	Favorable allele	Methods	
YLDIN_G	S4_164335765	4	164335765	7.18	13.36	A	1, 2
	S9_1994432	9	1994432	7.21	3.21	G	4
	S10_1784894	10	1784894	7.39	3.58	C	4
Striga damage rating at 8 WAP	S1_18512344	1	18512344	10.76	14.19	T	1
	S2_14081759	2	14081759	8.26	7.89	A	1
	S2_160791711	2	160791711	7.28	3.35	A	1
	S2_219240910	2	219240910	11.31	8.05	G	3
	S4_160459526	1	160459526	6.07	3.83	C	1
	S5_70442824	5	70442824	6.76	3.22	C	2
	S5_216138908	5	216138908	6.81	6.67	C	4
	S6_25428338	6	25428338	6.58	0.142	A	4
	S10_25285761	10	25285761	11.87	6.57	G	2
	S10_2743583	10	2743583	9.86	0.24	C	4
	S10_68324912	10	68324912	11.79	1.32	C	4
Striga damage rating at 10 WAP	S1_284192573	1	284192573	8.54	10.40	G	1, 2, 3
	S1_10576247	1	10576247	6.45	10.08	A	1, 2
	S2_190557148	2	190557148	6.02	4.13	T	1
	S2_99667127	2	99667127	7.82	4.82	A	1, 2
	S2_160791711	2	160791711	6.18	4.37	A	3
	S2_188120710	2	188120710	13.76	6.47	A	4
	S5_5623740	5	5623740	6.06	13.97	C	1
	S7_10795659	7	10795659	6.71	7.99	A	1, 2
	S10_25285761	10	25285761	6.56	5.04	C	3
Emerged Striga plants at 8 WAP	S1_298950342	1	298950342	6.15	6.58	A	1
	S2_135038935	2	135038935	6.67	6.66	G	3, 4
	S3_208978140	2	208978140	6.82	6.97	C	3, 4
	S3_74335447	3	74335447	6.21	5.54	A	1
	S5_148751913	5	148751913	6.41	6.21	A	3, 4
	S9_7727167	9	7727167	8.32	11.51	G	1, 2
	S10_125571525	10	125571525	9.28	13.08	G	1, 2, 4
	S10_90133328	10	90133328	7.75	13.58	T	1, 2, 4
Emerged Striga plants at 10 WAP	S2_135038935	2	135038935	6.83	12.22	G	1, 2
	S5_148751913	5	148751913	8.65	7.91	A	1, 2
	S5_204969099	5	204969099	6.93	10.22	T	1, 2
	S10_125571525	10	125571525	7.00	6.33	G	3

Table 3. Significant SNPs identified under Striga infested condition. Methods: Numbers 1 to 4 represents different GWAS methods: 1: mrMLM; 2: FASTmrMLM; 3: FASTmrEMMA; 4 pLARmEB Chr, Chromosome; YLDIN_G, Grain yield; WAP, weeks after planting.
remaining gene model on chromosome 10 encodes VQ proteins. These putative genes/proteins are mainly involved in developmental processes including responses to biotic and abiotic stress, seed development and photo-morphogenesis. The LD heat-map of significant SNPs (S9_1994432 and S10_1784894) identified on chromosomes 9 and 10 were highly correlated (0.5 to 0.8) with regions adjacent to the identified putative genes (U-box domain-containing protein 39, NLR family CARD domain-containing protein 3 and VQ proteins) (Supplementary Fig. S3).

Nineteen gene models were identified around seventeen SNPs associated with Striga damage ratings at 8 and 10 WAP. Two gene models each were associated with SNPs S10_25285761 and S10_2743583 located on chromosome 10. These gene models encode leucine-rich repeat extension-like protein, disease resistance protein RPM1, disease resistance RPP13-like protein1 and an uncharacterized protein. Other gene models associated with Striga damage ratings encode putative cytochrome P450 superfamily protein, xyloglucan endotransglycosylase, basic helix-loop-helix (bHLH7 and bHLH20) transcription factors, knotted related homeobox 5, ubiquitin-protein ligase, and zinc-finger domain proteins. Most of these genes/proteins identified are involved in different development and plant defense mechanism. Plant resistance genes allow plants recognize the presence of specific pathogens and initiate defense responses. The LD heat-map of significant SNPs (S5_70442824, S7_10795659 and S10_25285761) identified on chromosomes 5, 7 and 10 were highly correlated (0.5 to 0.8) with regions adjacent

Figure 2. Manhattan plot indicating SNPs associated with (A) Grain yield, (B) Striga damage score at 10 WAP (C) Emerged Striga plants at 10 WAP. The graph refers to the quantile–quantile (Q-Q) plot of the P-values observed and expected from the association analysis under Striga infestation.

Table 4. Significant SNPs identified under non-infested condition. Methods: Numbers 1 to 4 represents different GWAS methods: 1: mrMLM; 2: FASTmrMLM; 4 pLARmEB Chr = Chromosome, YLDIN_G = Grain yield, W AP = weeks after planting.

Trait name	SNP	Chr	Position (bp)	LOD score	PVE (%)	Favorable allele	Methods
YLDUN_G	S1_14334790	1	14334790	7.0841	10.2684	C	1
	S1_26517984	1	26517984	6.5272	5.6321	G	2
	S4_189154251	4	189154251	9.7264	17.4015	A	1, 2
	S8_17462112	8	17462112	6.5008	7.0482	G	4
Trait	Marker name	Allele1	Allele2	Sequence	Frequency	Adjusted probability	Adjusted significance
-----------------------	-----------------	---------	---------	----------	-----------	----------------------	-----------------------
Grain yield	S4_164335765	AA	AC	AAAC	0.34	4.19E-01	ns
		AA	CC	AACC	0.47	4.47E-07	**
		AC	CC	ACCC	0.21	1.52E-01	ns
	Chr9_1994432	AA	GG	AAGG	1.00	**	
Striga damage rating	Ch1_284192573	GG	GT	GGGT	0.42	2.46E-01	ns
		GG	TT	GGTT	0.48	1.23E-04	**
		GT	TT	GTTT	0.10	2.47E-01	ns
	Chr4_160459526	CC	TT	CCTT	1.00	**	
	Chr5_5623740	AA	AC	AAAC	0.12	1.68E-01	ns
		AA	CC	AACC	0.49	5.25E-04	**
		AC	CC	ACCC	0.39	7.20E-02	ns
Emerged Striga plants	Ch1_298950342	AA	AG	AAAG	0.23	7.50E-02	ns
		AA	GG	AAGG	0.46	1.62E-05	**
		AG	GG	AGGG	0.31	6.10E-01	ns
	Chr3_74335447	AA	AG	AAAG	0.06	7.10E-02	ns
		AA	GG	AAGG	0.45	2.00E-03	**
		AG	GG	AGGG	0.49	2.45E-07	ns
	Chr5_148751913	AA	AC	AAAC	0.36	3.29E-01	ns
		AA	CC	AACC	0.16	4.60E-02	*
		AC	CC	ACCC	0.48	4.60E-02	*
	Chr5_204969099	CC	CT	CCCT	0.13	7.04E-01	ns
		CC	TT	CCTT	0.48	4.56E-04	**
		TT	TC	TTTC	0.39	7.04E-01	ns

Table 5. Frequencies and marker prediction effects of various alleles associated with the Striga resistance-related traits.

Figure 3. Allelic effects of haplotype blocks associated with Grain yield (A,B) blue colour, Striga damage ratings (C–E) green colour, emerged Striga plants (F,G) gray colour under Striga infestation.
to the identified putative genes (putative cytochrome P450 superfamily protein, Transcription factor bHLH7, uncharacterized LOC100381459 and leucine-rich repeat extensin-like protein 3) (Supplementary Fig. S4). Nine gene models were identified around nine SNPs associated with emerged
\textit{Striga} plants at 8 and 10 WAP. These gene models encode Dof zinc finger protein, protein accelerated cell death 6, peroxidase 70, hapless, basic-domain leucine-zipper (bZIP46) and WRKY14 transcription factor. Transcription factors are usually involved in diverse plant processes including, growth, development and stress signaling. In addition, protein accelerated cell death is a positive regulator of programmed cell death and it is a mechanism used by plants for defense against pathogen infection. The LD heat-map of significant SNPs (S3_74335447 and S9_7727167) identified on chromosomes 3 and 9 were highly correlated (0.4 to 0.8) with regions adjacent to the putative genes (uncharacterized LOC100382572, bZIP transcription factor 46) (Supplementary Fig S5).

Table 6. Significant SNPs associated with the \textit{Striga} resistance-related traits and putative genes identified for the 150 maize inbred lines.

Trait	SNP	Position (bp)	Gene ID	Putative Gene
Grain yield	S4_164335765	164335765	GRMZM2G157836; GRMZM5G881641	adenylyltransferase and sulfortransferase (MOC532)
	S9_1994432	1994432	GRMZM2G460758; GRMZM2G110289	U-box domain-containing protein 39; NLR family CARD domain-containing protein 3
	S10_1784894	1784894	GRMZM2G180262	VQ
Striga damage score at 8 and 10 WAP	S1_1851234	1851234	GRMZM2G024099	Aspartyl protease AED3
	S1_284192573	284192573	GRMZM2G351582	ZPR1 zinc-finger domain protein (ua7c01h10)
	S1_10576247	10576247	GRMZM2G028521	citrate transporter family protein (pco091082)
	S1_14081759	14081759	GRMZM2G092128	E3 ubiquitin-protein ligase PUB23
	S1_160791711	160791711	GRMZM2G102242	mesotic nuclear division protein 1 homolog
	S2_190557148	190557148	GRMZM2G414252	bHLH transcription factor (bHLH10)
	S2_99667127	99667127	GRMZM2G171830	Protein TIFY 10B
	S2_219240109	219240109	GRMZM2G162781	putative leucine-rich repeat protein kinase family protein
	S4_160459926	160459926	GRMZM2G081285	RING-H2 finger protein ATL1R
	S5_5623740	5623740	GRMZM2G112548	transcription factor JUNGBRUNNEN 1
	S5_216138908	216138908	GRMZM2G113418	glutaredoxin 2
	S5_704428242	704428242	GRMZM2G035073	putative cytochrome P450 superfamily protein
	S5_25428338	25428338	GRMZM2G582409	knotted related homeobox 5 (Igdb)
	S7_10795659	10795659	GRMZM2G162382	transcription factor bHLH7
	S10_25285671	25285671	GRMZM2G300965; GRMZM2G300969	uncharacterized LOC100381459; leucine-rich repeat extensin-like protein 3
	S10_2743583	2743583	GRMZM5G873586; GRMZM2G356817	Disease resistance protein RPM1; putative disease resistance PPP1-like protein
	S10_68324912	68324912	GRMZM2G364748	Xyloglucan endo-transglycosylase (gpm554)
Emerged				
\textit{Striga} plants at 8 and 10 WAP	S1_298950342	298950342	GRMZM2G017470	Dof zinc finger protein
	S2_135038935	135038935	GRMZM2G080878	Protein ACCELERATED CELL DEATH 6
	S2_208971304	208971304	GRMZM2G179505	hydrolase/ protein serine/threonine phosphatase
	S3_74335447	74335447	GRMZM2G701566	uncharacterized LOC100382572
	S5_148751913	148751913	GRMZM2G129543	peroxidase 70
	S5_204969099	204969099	GRMZM5G823157	probable WRKY transcription factor 14
	S9_7727167	7727167	GRMZM2G033413	bZIP transcription factor 46
	S10_125571525	125571525	GRMZM2G060948	hapless 8
	S10_90133328	90133328	GRMZM2G063575	Pentatricopeptide repeat-containing protein

Table 7. Quantitative trait nucleotides (QTNs) associated with grain yield under non-infested condition and putative genes identified for the 150 maize inbred lines.

Trait	SNP	Position (bp)	Gene ID	Putative Gene
Grain yield	S1_14334790	14334790	GRMZM2G424020, GRMZM2G46436	IQ domain-containing protein IQM5, uncharacterized protein LOC100277288
	S4_189154251	189154251	GRMZM2G174834, GRMZM2G174938	WRK11 transcription factor 2, ENTH/VHS family protein
	S1_26517984	26517984	GRMZM2G098714	Replication protein A 70 kDa DNA-binding
	S8_17462112	17462112	GRMZM2G26015	Photosystem 1 reaction center subunit XI
Under non-infested conditions, six gene models were identified around four SNPs associated with grain yield (Table 7). Most of the identified genes were located on chromosomes bins 1.02, 4.08 and 8.02. These gene models encode IQ domain-containing protein IQM5, uncharacterized protein LOC100277298, WR1 transcription factor 2, ENTH/VHS family protein, Replication protein A 70 kDa DNA-binding and Photosystem I reaction center subunit XI. IQ-domain proteins are common in land plants and they are known for critical roles in host defense, cell shaping and drought resistance.

Discussion
The marked reduction in grain yield observed in the resistant and susceptible benchmark indicates the occurrence of severe parasite infestation across the test environments, elicitating significant differences in resistance or susceptibility reactions among the inbred lines. The diversity panel used in our study displayed considerable phenotypic variation for the three Striga resistance-related traits recorded under Striga infestation, and this is consistent with the findings in other studies. The significant line x environment interaction observed for traits measured under Striga infestation can be attributed to varying seasonal factors, soil pH, and nutrient levels. Also, the significant rank correlations among environments for the major Striga resistance-related traits indicates that the lines maintained consistent resistance or susceptibility reactions to Striga seeds collected from different locations and years. More than 55% of the lines evaluated in this study were resistant to S. hermonthica, and this is due to the severe selection pressure imposed by the breeders during the development of these inbred lines from diverse source populations.

Heritability estimates were high for the Striga resistance-related traits, indicating the predominant role of genetic factors for these traits. Traits with high heritability increase the power of detecting SNPs in an association panel and thus allow the identification of a true association between a marker and a putative gene. The high heritability estimates observed for Striga damage ratings and emerged Striga plants in this study is consistent with the results reported by Najar et al. and Shayanowako et al. These findings, however, differ from those of Badu-Apraku et al., who recorded low heritability estimates (h² < 50) for emerged Striga plants and Striga damage ratings.

The efficiency of association mapping largely depends on population size and population structure, which infers the ancestry of lines based on their genotypic information. The diversity panel used in this study are inbred lines derived from broad-based populations containing tropical and temperate germplasm, backcrosses containing Z. diploperennis adapted to tropical environments, and some lines that are tolerant to drought. The two complementary approach used to infer the population structure grouped the inbred lines into three subpopulations based on their genetic backgrounds/pedigree and maturity information. It is worth noting that there was high agreement in the assignment of the inbred lines into the three subgroups based on the two approaches (Admixture and PCA). The phylogeny tree also grouped the inbred lines into three subgroups.

LD is an important factor that determines the power of marker-trait association analysis. In this study, more than 60% of the SNP pairs across the genome exhibit LD at r² > 0.1. In addition, the high r² value observed on chromosomes 4 and 8 in this study can be attributed to fewer recombination events on these chromosomes; this is consistent with the findings of Thirunavukkarasu et al. and Dinesh et al., who reported high r² value on chromosome 4 and 8 of maize. Reports have shown that the effectiveness of recombination is limited by the high level of homozogosity. In this study, faster decay of LD with increasing distance between markers was observed, which agrees with Doa et al. and Dinesh et al.

Several studies have been conducted to dissect the genetic architecture of Striga resistance in maize, and many QTLs associated with Striga resistance have been detected using bi-parental populations. Badu-Apraku et al. identified 116 QTLs associated with four Striga resistance-related traits (grain yield, Striga damage ratings, ear aspect and emerged Striga plants) using bi-parental (F₂:3) population and derived from two early maturing maize lines. In another study, Badu-Apraku et al. identified 14 QTLs that were associated with three Striga resistance-related traits (grain yield, ears per plant and Striga damage rating at 10 WAP). However, QTL mapping only exploits only a small fraction of available genetic diversity and exhibits limited capacity to detect polygenic resistance. However, only a few GWAS has been conducted to identify genomic regions associated with Striga hermonthica resistance in maize. Genome-wide association study exhibits high mapping resolution and abundant genetic variation due to the high ancestral recombination events in natural populations. Thus, it has been identified as a useful tool for detecting QTNs associated with complex quantitative traits, as well as predicting or identifying causative genes.

Different statistical models have been used for GWAS, the multi-locus model exhibits a higher distinctive power and a lower false-positive rate for detecting QTNs compared with the single-locus GWAS model. The adjustments of single-locus GWAS model improves its detection accuracy to an extent, however, the multiple-testing correction (Bonferroni correction) of significance thresholds for single-locus model is too strict. This leads to the exclusion of important loci, especially when large experimental errors occur in field trials of crop genetics. To solve this problem, the application of multi-locus mQMLM is essential. Previous study on GWAS have used the single-locus model to identify quantitative trait nucleotides (QTNs) controlling Striga resistance in maize. Adewale et al. identified 24 SNPs associated with four Striga resistance-related traits in early maturing maize inbred lines using single-locus GWAS model. Further annotation analysis identified three putative genes that explained 9 to 42% of the phenotypic variation. The high phenotypic variation explained can be attributed to the single-locus GWAS model used. However, the genomic regions identified by Adewale et al. differs from those discovered in this study.

In this study, the four multi-locus GWAS models used identified thirty significant SNPs associated the three Striga resistance-related traits. This study is the first to use multi-locus GWAS model to identify SNPs associated with S. hermonthica resistance in maize. Comparing our GWAS results with previous studies on S. hermonthica...
resistance in maizea,11, there were no similar genomic regions detected, however, additional genomic regions associated with \textit{Striga hermonthica} resistance were identified. The annotation analysis identified gene models with potential involvement in plant growth, development, and defense mechanism. Intriguingly, some of the gene models identified encode transcription factors (TFs) including WRKY14, basic helix-loop-helix (bHLH), bHLH120, basic-domain leucine-zipper (bZIP46), JUNGBRUNNEN 1 and zinc finger proteins. Transcription factors (TFs) are critical regulators of gene expression in all living organisms. They are involved in plant development, cell signaling, and plant defense response.

Studies have shown that most WRKY TFs respond to pathogen attack and act as both positive and negative regulators in complex defense response network37. Studies have associated WRKY TFs with \textit{S. hermonthica} resistance mechanism in rice. Swarbrick et al.38 reported the up-regulation of genes encoding WRKY TFs in the roots of Nipponbare, a rice variety with resistance to \textit{S. hermonthica}. Also, Mutuku et al.39 reported the knockdown of WRKY45 (WRKY45-kd) by RNA interference in rice plants resulted in susceptibility to \textit{S. hermonthica} infestation. bHLH is another TF; they are commonly expressed in response to drought stress and they have been reported in rice40. The bHLH family TFs in Populus, PebHLH35 from \textit{Populus euphratica}, has been reported as an essential gene in response to drought by regulating stomatal development and photosynthesis in Arabidopsis41.

In addition, the Ring zinc-finger domain superfamily proteins are the most significant TFs known for their finger-like structure and ability to bind to zinc. These proteins have been reported in plants such as wheat (\textit{Triticum aestivum}), soybean (\textit{Glycine max}), and rice (\textit{Oryza sativa})42. Cao et al.43 indicated that Ring zinc-finger domain superfamily proteins are involved in resistance to blast fungus infection in rice. The DNA binding with one finger proteins (dofs) also regulate the expression of genes involved in plant development and defense processes44. In maize, \textit{ZmDof1} has been isolated and connected with \textit{C4 photosynthesis}45, which makes it thrive more than the \textit{C3} plants under warmer harsh climates because they are known to be drought resilient. In maize, there are no information on the roles of most of these TFs in \textit{S. hermonthica} resistance; thus, further transcriptomic study will give a better understanding on the role of these TFs in \textit{S. hermonthica} resistance in maize.

Plants generally lack specific cells to defend themselves against attack, but they possess the necessary components for detecting invasion and building up defense response. Xyloglucan endotransglucosylase/hydrolases (XTHs) are cell wall enzymes that are able to graft xyloglucan chains to oligosaccharides46. One of its functions in plants is defense reaction against parasitic plants47. In tomato, xyloglucan endotransglycosylase/hydrolase (XTH) plays a major role in defense reactions against plant parasitic \textit{Cuscuta reflexa}47.

Plants have evolved a series of mechanisms to resist pathogens infection. Most plant disease resistance (R) genes contain nucleotide-binding site (NBS) and leucine-rich repeat (RLR) domains. NBS domains could bind and hydrolyze ATP or GTP, while LRR domains are critical for the formation of protein–protein interactions48. NBS-LRR proteins have been suggested as the largest class of known R proteins that can either directly or indirectly recognize the presence of pathogens49. R gene proteins are involved in pathogen detection and disease resistance50. The Recognition of \textit{Peronospora Parasitica} 13-like (\textit{RPP13-like}) genes also play important roles in the resistance of various plant diseases including the downy mildew caused by \textit{Peronospora parasitica}. In Arabidopsis, the \textit{RPP13-Nd}, cloned from an ecotype (\textit{Niederlcz (Nd-1)}), was characterized to resist the infection of various isolates of \textit{P parasitica}51.

Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play vital roles in development and defense-related processes including cell proliferation, hormone perception, host-specific defense response, wounding response and symbiosis52. In Arabidopsis two LRR were identified to regulate cell death and innate immunity53. According to Yu et al.54 LRR-RLK can positively regulate plant biotic resistance but negatively regulate plant abiotic tolerance in Arabidopsis. Interestingly, several RLKs were found to possess dual or multiple roles during plant growth and development. For example, \textit{ERECTA} is involved in both plant development and pathogen defense responses55.

U-box proteins significantly contribute to the ability of plants to respond to diverse environmental stresses, due to plant immobility56. The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases plays important role in this pathway. In higher plants, U-box-ARM proteins are associated with regulation of cell death and defense57. In addition, VQ proteins regulate diverse developmental processes, including responses to biotic and abiotic stresses, seed development, and photomorphogenesis58. Members of the VQ family either play a positive or negative role in plant immune response. Plants with loss of function of \textit{VQ23} lack resistance to both \textit{Botrytis cinerea} and \textit{Pseudomonas syringae}. While lines, which overexpress \textit{VQ23}, showed reduced disease symptoms upon infection with either pathogen59.

Cytochrome P450 superfamily proteins were also associated with emerged \textit{Striga} plants, they are often involved in phytoalexin synthesis and the scavenging of toxins. Plants utilize a wide array of cytochrome P450 monooxygenases (P450s) in biosynthetic and detoxification pathways. Several genes encoding P450s were observed to be highly up-regulated during the resistance response to \textit{S. hermonthica} in rice56. From this study, it was observed that the genomic regions controlling grain yield under \textit{Striga} infestation differs from the genomic region controlling grain yield under non-infested condition. Genomic regions identified to be associated with plant defense mechanisms will be developed into competitive allele-specific PCR (KASP) genotyping assay and this will be validated in independent populations to improve \textit{Striga} resistance breeding in maize before deployment for use in marker-assisted selection. Identified SNPs will also help expedite the use of molecular markers in \textit{Striga} resistance improvement through the use of marker-assisted backcrossing (MABC) to advance the effectiveness of breeding for superior and desirable qualities but susceptible to \textit{Striga} infestation.

In conclusion, most of the significant SNPs discovered in this study encode genes associated with plant defense mechanism. Most of the QTLs identified have not been documented in maize, indicating they are novel and are addition to the already identified QTLs for \textit{Striga} resistance in maize from other studies. QTNs identified in this study can be potentially used to expedite the use of marker-assisted selection (MAS) in breeding for durable
Table 8. List of source populations for the 150 inbred lines used in this study.

Source population	Genetic backgrounds of inbred source population	No of lines evaluated
ZDIP	Inbred lines derived from a backcross (BC4) containing a Zea diploxenesis accession as a donor parent plus lines derived from bi-parental crosses involving one parent derived from the same BC4	39
TZLC	Lines derived from a late-maturing composite formed by crossing TZER with seven field resistant maize inbred lines against S. hermonthica plus lines derived from bi-parental crosses involving one parent derived from the same composite	44
TZEC	Lines developed from an early maturing composite formed by crossing TZESR-W C3 with eight field resistant maize inbred lines against S. hermonthica plus lines derived from bi-parental crosses involving one parent derived from the same composite	13
IWDS	Lines extracted from a synthetic formed from medium maturing white inbred lines and improved for resistance to Striga and drought plus lines derived from bi-parental crosses involving one parent derived from these synthetic source populations	30
MIXED	Lines derived from diverse source populations plus tolerant lines extensively used as donors of field resistance to form resistance source populations	24

resistance to S. hermonthica in maize. The chromosomal regions controlling the Striga resistance-related traits can also be exploited for selection and effective pyramiding of favorable alleles in Striga improvement. Since most of the maize lines used in this study were developed at IITA and have a diverse response to Striga infestation, this study will contribute to molecular-marker based transformation of Striga resistance breeding in maize.

Materials and methods

Genetic materials. A diversity panel of 150 maize inbred lines used in this study was developed by the Maize breeding program of the International Institute of Tropical Agriculture (IITA-Ibadan). The maize inbred lines in this panel were at S₉₉ stages of inbreeding and had varying reactions to S. hermonthica (Supplementary Table S4). Summaries of the genetic backgrounds of source populations of these inbred lines are provided in Table 8. Ten inbred lines with either known resistance (9450), tolerance (5012, 1393, 1368, 4001, 9030, 9071, KU1414-SR, and MMB90) and susceptibility (5057) reactions to S. hermonthica were included as benchmarks to assess the performance of the 150 lines.

Phenotypic evaluation and trait measurements. The inbred lines were evaluated under Striga infested and non-infested conditions at Abuja (9° 15' N, 7° 20' E; 490 m asl) and Mokwa (9° 21' N, 5° 10' E; 210 m asl) in Nigeria during the main rainy seasons of 2017 and 2018. The experiment was laid out in a 15 X 10 alpha lattice design with two replications planted in a crisscross arrangement. Each experimental unit was planted in adjacent infested and non-infested strips, located opposite each other and separated by a 1.5 m alley. An inbred line was planted within each strip in a 4 m long row, with 0.75 m inter-row spacing and 0.25 m intra-row spacing. Ethylene gas was sprayed two weeks before planting to induce suicidal germination of Striga seeds in the soil.

Two maize seeds were planted in a 6 cm deep hole inoculated with 8.5 g of sand mixed with Striga seeds. The sand-Striga mixture contains approximately 3000 germinable Striga seeds. The Striga seeds used in this study were collected from sorghum field from the previous planting season in Mokwa and Abuja with farmers’ consent before usage. Two weeks after planting, maize plants were thinned to one plant per hill to attain a population density of 53,333 plant/ha. Fertilizer was applied at the rate of 30 kg/ha of nitrogen, 60 kg/ha each of phosphorus and potassium at planting, and an additional 30 kg/ha nitrogen was applied four weeks later. Weeds other than Striga were removed from plots manually throughout the planting season. Data were taken under both infested and non-infested conditions, except for Striga damage score and Striga emergence, recorded only under Striga infestation. Data recorded under the two environments included plant height, ear aspect, and grain yield (Supplementary Table S5). Ears were collected separately from each line and shelled to estimate per cent moisture in the grain. Grain yield was then calculated from grain weight adjusted for 15% moisture. This study is geared towards improving IITA maize breeding, and it complies with the country’s local and national regulations.

Data analysis. Phenotypic analysis. Analysis of variance combined across the four year-location, which were hereafter referred to as environments, were computed for all traits measured under Striga infested and non-infested conditions based on a mixed-model analysis with restricted maximum likelihood procedure in SAS version 9.4. In this analysis, genotypes were considered fixed while all other factors were random. Separate analyses were conducted for traits measured under infested and non-infested conditions. The mixed model analysis generated the best linear unbiased estimates (BLUEs), the variance components and broad-sense heritability estimates. In addition, Spearman rank correlations between pairs of environments were computed for the Striga resistance-related traits using SAS version 9.4. Also, correlation analysis among the different traits was performed using R software, and results were displayed as heat map.

Genotyping and filtering. Genomic DNA was extracted from young leaf samples of the 150 maize inbred lines using the modified cetyltrimethylammonium bromide (CTAB) protocol. Purified DNA was sent to Elshire facility in New Zealand for genotyping-by-sequencing (GBS) protocol. Genomic DNA was digested with the restriction enzyme (ApeKI), and genotyping-by-sequencing (GBS) of the libraries were constructed in 96-plex and sequenced on Illumina HiSeq2500 following manufacturer’s protocol. Raw flow cell output was processed to genotype calls using the TASSEL-GBS pipeline. Reads and tags found in each sequencing result were aligned with the Zea mays L. genome reference, version AGPV3 (B73 Ref Gen v4 assembly). SNPs with minor allele
frequency (MAF) of < 0.05 and missing rate of > 10% were excluded from the genotyping dataset using PLINK 1.9 beta2.

Population structure and linkage disequilibrium. To explore the genetic relationship among the inbred lines, principal component analysis (PCA) was conducted using factorMiner package in R67. The pairwise genetic distance was calculated through identity-by-state (IBS), and the phylogenetic tree was generated using analysis of phylogenetics and evolution (ape) R package68. The population stratification among the inbred lines was assessed using Admixture software68. The method uses maximum likelihood estimation on data from many loci to estimate individual ancestries among the inbred lines. The analysis was performed using a cross-validation error (k) varying from 2 to 10. The most appropriate k-value selected exhibit low cross-validation error compared to other k-values. LD among markers was calculated using PLINK software. The window size for LD calculation was set based on the number of SNPs located in the genome. Pairwise linkage disequilibrium was measured using the squared allele frequency correlations, according to Weir66, and assessed by calculating r2 for pairs of SNP loci.

Marker-trait association analysis. All the phenotypic and genotypic information from the 150 diverse maize inbred lines were used to detect SNPs using four of the GWAS multi-locus models, multi-locus random-SNP-effect MLM (mrMLM), fast multi-locus random-SNP-effect mixed linear model (FASTmrMLM), fast multi-locus random-SNP-effect efficient mixed model association (FASTmEMMA) and polygenic-background-control-based least angle regression empirical Bayes (pLARmEB), implemented in mrMLM v4.0 (https://cran.r-project.org/web/packages/mrMLM/GUI/index.html). The unified parameter settings for the four methods were as follows; the Q + K model was used, where the population structure value Q was calculated by Admixture software65 and the kinship value K was analyzed by the “mrMLM” software package. The limit of detection (LOD) score was set to 6 for robust QTNs for all measured trait. The Manhattan and QQ plots for GWAS were displayed using the R package CMplot.

Gene annotation. SNPs detected for Striga hermonthica resistance-related traits by the four mrMLM methods were mapped to the maize reference genome B73 RefGen_V4 to identify associated candidate genes. The genes corresponding to each QTN was determined in MaizeGDB according to its physical position. The functional annotations of the candidate genes were predicted in NCBI. The Pairwise LD estimates in the region of interest for significantly associated markers were investigated using Haploview 4.2. Finally, LD plotting was done based on base pairs (bp) distance, using “ggplot2” package in R67.

Marker effect prediction and variants comparison. Variants (ref/alt) associated with significant SNPs were identified using rstatix package implemented in R, and their effect were compared using ANOVA p < 0.05. The nature of the SNP marker (favorable and unfavorable) was defined based on the direct contribution to the traits using rstatix and visualized using ggplot2.

Data availability
Phenotypic data presented are within this document and the genotypic data can be provided upon request.

Received: 2 July 2021; Accepted: 18 November 2021
Published online: 17 December 2021

References
1. Nyaga, C. et al. Genome-wide analyses and prediction of resistance to MLN in large tropical maize germplasm. Genes 11(1), 16. https://doi.org/10.3390genes11010016 (2020).
2. Menkir, A., Badu-Apraku, B., Yallou, C. G., Kamara, A. Y. & Ejeta, G. Breeding maize for broad-based resistance to Striga hermonthica. In Integrating new technologies for Striga control: Towards ending the witch-hunt, 99–114. https://doi.org/10.1142/9789812771506_0008 (2007).
3. Menkir, A., Chiroye, D. & Lum, F. Incorporating an herbicide resistance gene into tropical maize with inherent polycyclic resistance to control Striga hermonthica (Del) Benth. Plant Breed. 129(4), 385–392. https://doi.org/10.1111/j.1439-0523.2009.01687.x (2010).
4. Pageau, K., Simier, P., Naulet, N., Robins, R. & Fer, A. Carbon dependency of the hemiparasite Striga hermonthica on Sorghum bicolor determined by carbon isotopic and gas exchange analyses. Funct. Plant Biol. 25(6), 695–700. https://doi.org/10.1071/PP98047 (1998).
5. Rich, P. J. & Ejeta, G. Towards effective resistance to Striga in African maize. Plant Signal. Behav. 3(9), 618–621. https://doi.org/10.4161/psb.3.9.5750 (2008).
6. Gedil, M. & Menkir, A. An integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in Africa. Front. Plant Sci. 10, 1430. https://doi.org/10.3389/fpls.2019.01430 (2019).
7. Watling, J. R. & Press, M. C. Impacts of infection by parasitic angiosperms on host photosynthesis. Plant Biol. 3(3), 244–250. https://doi.org/10.1055/s-2001-15195 (2001).
8. Berner, D., Winslow, M., Awad, A., Cardwell, K., Raj, D. & Kim, S. Striga research methods: A manual (2001).
9. Amusan, I. O. Mechanisms and quantitative trait loci for Striga hermonthica resistance in maize (Zea mays L.) inbred line. PhD thesis at Prudue University (2010).
10. Badu-Apraku, B., Edewale, S., Paternen, A., Gedil, M. & Asiedu, R. Identification of QTLs controlling resistance/tolerance to Striga hermonthica in an extra-early maturing yellow maize population. Agronomy 10(8), 1168. https://doi.org/10.3390/agronomy10081168 (2020).
11. Badu-Apraku, B. et al. Identification of QTLs for grain yield and other traits in tropical maize under Striga infestation. PloS One 15(9), e0239205. https://doi.org/10.1371/journal.pone.0239205 (2020).
12. Kraakman, A. T., Nika, R. E., Van den Berg, P. M., Stam, P. & Van Eeuwijk, F. A. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168(1), 435–446 (2004).
13. Gómez, G., Álvarez, M. F. & Mosquera, T. Association mapping, a method to detect quantitative trait loci: statistical bases. *Agronomy Colombiana* 29(3), 367–376 (2011).
14. Darvishzadeh, R. Population structure, linkage disequilibrium and association mapping for morphological traits in sunflower (*Helianthus annuus L*). *Biotechnol. Biotechnol. Equip.* 30(2), 236–246 (2016).
15. Brachi, B., Morris, G. P. & Borevitz, J. O. Genome-wide association studies in plants: the missing heritability is in the field. *Genome Biol.* 12(10), 1–8. https://doi.org/10.1186/gb-2011-12-10-232 (2011).
16. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association studies. *Nat. Genet.* 42(4), 355–360. https://doi.org/10.1038/ng.546 (2010).
17. Li, M. et al. Enrichment of statistical power for genome-wide association studies. *BMC Biol.* 12(1), 1–10. https://doi.org/10.1186/s12915-014-0129-1 (2014).
18. Wang, S. B. et al. Evaluating power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. *Sci. Rep.* 6(1), 1–10. https://doi.org/10.1038/srep19444 (2016).
19. Tamba, C. L. & Zhang, Y. M. A fast mrMLM algorithm for multi-locus genome-wide association studies. *Bioinformatics* 19(4), 700–712. https://doi.org/10.1093/bib/bbw145 (2018).
20. Zhang, J. et al. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. *Brief. Bioinform.* 19(4), 700–712. https://doi.org/10.1093/bib/bbw145 (2018).
21. Wen, Y. J. et al. Genetic diversity of maize genotypes with variable resistance to Striga asiatica. *Bmc Genomics* 9, 1311 (2018).
22. Adewale, S. A. et al. Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines. *BMC Plant Biol.* 20, 1–16. https://doi.org/10.1186/s12870-020-02360-0 (2020).
23. Shayanowako, A. I. T., Shimelis, H., Laing, M. D. & Mwadzingeni, L. Genetic diversity of maize genotypes with variable resistance to Striga asiatica based on SSR markers. *Cereal Res. Commun.* 46(4), 668–678. https://doi.org/10.15666/0806.46.2018.044 (2018).
24. Segura, V. et al. Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. *BMC Plant Biol.* 11(1), 1–17. https://doi.org/10.1186/1471-2229-11-174 (2011).
25. Ersoz, E. S., Yu, J. & Buckler, E. S. Applications of linkage disequilibrium and association mapping in maize. *Biotechnol. Agric. For.* 63, 173–195 (2009).
26. Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. *Nat. Genet.* 44(7), 825–830. https://doi.org/10.1038/nature2314 (2012).
27. Chandran, N. K., Sriram, S., Prakash, T. & Budhwar, R. Transcriptome changes in resistant and susceptible rice in response to powdery mildew. *J. Phytopathol.* 169(9), 356–369 (2021).
28. Swarbrick, P. J. et al. Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the blast fungus Magnaporthe oryzae. *New Phytol.* 208(3), 1152–1163. https://doi.org/10.1111/1469-8137.13138 (2016).
29. Bittner-Eddy, P. D., Crute, I. R., Holub, E. B. & Beynon, J. L. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. *Plant J.* 21(2), 177–188 (2000).
30. Boyd, C. D., Narr, J. & Dangl, J. L. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. *Proc. Natl. Acad. Sci. U. S. A.* 95(26), 13489–13584 (1998).
31. Rairdan, G. J. & Moffett, P. Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. *Plant Cell* 18(8), 2082–2093 (2006).
32. Bittner-Eddy, P. D. et al. Genetic and physical mapping of the RPP13 locus, in Arabidopsis, responsible for specific recognition of several Peronospora parasitica (downy mildew) isolates. *Mol. Plant Microbe Interact.* 12(9), 792–802 (1999).
Acknowledgements
Stanley, Adekemi E. acknowledges funding from Deutscher Akademischer Austauschdienst (DAAD) and the Africa Centres of Excellence for Development Impact (ACE) to pursue PhD in Plant Breeding at WACCI, University of Ghana, Legon, Accra. This study was funded by the Bill and Melinda Gates Foundation through the AGG project (Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods; B&MGF Investment ID INV-003439), and the CGIAR Research Program MAIZE. The CGIAR Research Program MAIZE received AGG project (Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods; B&MGF Investment ID INV-003439), and the CGIAR Research Program MAIZE. W1&W2 support from the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Sweden, Switzerland, United Kingdom, and the United States, as well as the World Bank.

Author contributions
A.M., M.G., B.I., P.T., and K.O. designed the research presented here, S.M., W.M., A.S. executed the field research. P.A.A, N.U., S.C., O.O. and A.S. conducted the analyses. M.G., N.U., P.A.A. and A.S. managed the genotyping. A.M., M.G., B.I., P.T., and K.O. designed the research presented here, S.M., W.M., A.S. executed the field research. A.M. wrote the first draft and all authors read and edited the subsequent versions of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-03566-4.

Correspondence and requests for materials should be addressed to A.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021