Informativeness of Single Nucleotide Polymorphisms and Relationships among Onion Populations from Important World Production Regions

Michael J. Havey
USDA-ARS and Department of Horticulture, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706

Farhad Ghavami
Eurofins BioDiagnostics, 507 Highland Drive, River Falls, WI 54022

ABSTRACT. Single nucleotide polymorphisms (SNPs) were genotyped using a high-density array and DNAs from individual plants of important onion (Allium cepa L.) populations from major production regions and from the likely progenitor of onion, Allium vavilovii Popov et Vved. Genotypes at 1226 SNPs were used to estimate genetic relationships among these populations and revealed close associations among onions grown in Europe and those in North America, South America, and eastern Asia, supporting paths of introduction from Europe to the Americas and Asia. ‘Nasik Red’ is a population grown on the Indian subcontinent and was divergent from onions of European origin. Frequencies of SNPs among and within populations were used as a measure of informativeness, and 199 commonly polymorphic SNPs were identified distributed across the eight chromosomes of onion. These SNPs will be useful for estimations of relatedness among broader collections of onion populations, mapping of important phenotypes, fingerprinting of inbred lines and hybrids, and quality control of seed lots.

Onion is one of the world’s most widely grown and economically important vegetables. The likely progenitor of onion, A. vavilovii, grows wild in and around the Kopet Dag Mountains of Turkmenistan and Iran (Bradeen and Havey, 1995; Gurushidze et al., 2007; Hanelt, 1985; Havey, 1992; Van Raamsdonk et al., 1992). From this region, onion was introduced into the Mediterranean region. Onion cultivation subsequently spread throughout Europe; from Europe to North America, South America, Australia, sub-Saharan Africa, and New Zealand; and later from North America to Japan and eastern Asia (Goldman et al., 2001). During its worldwide dispersal, onion was selected for response to different daylength requirements for bulbing and flowering and became a biennial vegetable (Brewster, 1994). Although the length of night is important for bulbing and flowering, onion populations are classified based on the minimal daylength necessary to induce bulbing, such as short-day (≈12–13 h), intermediate-day (≈13–14 h), or long-day (>14 h) types. Production of short-day onion cultivars under longer days will produce small bulbs because of early maturation; conversely long-day cultivars grown under shorter days show little to no bulbing. Therefore, cultivars of different daylength responses may represent divergent germplasm pools within the cultivated onion.

Single nucleotide polymorphisms are robust, codominant genetic markers that commonly occur in the genomes of cultivated plants. In previous research, we completed transcriptome sequencing of onion inbreds and identified 2285 SNPs amenable for genotyping using the KASPar platform (Duangjit et al., 2013). Subsets of these SNPs were mapped in three segregating families (Damon and Havey, 2014; Duangjit et al., 2013). In this study, we genotyped 1692 of these SNPs using a high-density array and DNAs from random plants from A. vavilovii and 14 open-pollinated (OP) onion populations to determine how commonly polymorphisms exist in cultivated germplasm (informativeness) and to estimate relationships among the populations. We identified a set of commonly polymorphic SNPs and produced a consensus map of these SNPs across the eight chromosomes of onion.

Materials and Methods

Origins of onion populations are listed in Table 1. Doubled haploid (DH) CU066619 was included as a control to identify heterozygous SNPs (potentially from paralogous sequences) and its origin was reported by Hyde et al. (2012). DNAs were isolated using a midi-preparation (NucleoSpin Plant II kit; Macherey-Nagel, Düren, Germany) from five random plants from each of the 14 OP populations and two plants of A. vavilovii. DNA of DH CU066619 was isolated from pooled leaf tissue of ≈25 seedlings. DNA concentrations were determined spectrophotometrically and intactness by electrophoresis through 1% agarose gels.

Cytoplasm of at least 10 individual plants from each of the 14 onion populations were classified as normal (N) male-fertile or male-sterile (S) using an indel in the chloroplast accD gene.
Table 1. Origins, cytoplasms, and percent heterozygous loci for onion populations genotyped for 1226 single nucleotide polymorphisms (SNPs).

Population	Abbreviation	Source	Origin	Cytoplasm*	Het (%)**
Babosa	Bab	PI 257276	Spain	N	22.4
Cebolla Valenciana	Val	PI 261591	Spain	N	26.8
Nasik Red	NasR	PI 274781	India	N	17.5
Pukekohe Longkeeper	PLK	PI 478679	New Zealand	S	25.4
Red Creole	Rcre	PI 546180	United States	N + S	26.7
Red Pinoy	Rpin	East-West Seed Co.	Poland	N	22.5
Senshu-Ki Early	SenK	Shippo Seed Co.	Japan	N + S	30.1
Southport Yellow Globe	SYG	PI 546162	United States	N	24.3
Sweet Spanish Valencia	SSV	PI 546197	United States	N	17.8
Texas Early Grano	TEG	PI 546127	United States	N	15.5
Valcatorce	Valc	INTA	Argentina	N	19.1
White Creole	Wcre	PI 546128	United States	N + S	25.9
Wolska	Wol	PI 433343	Poland	N	27.4
Yellow Bermuda	YB	PI 546070	United States	N	26.3
Allium vavilovii	Avav	PI W6 19873	Turkmenistan	N	25.7

*Abbr = abbreviation.

**PI = PI from the USDA plant germplasm system; INTA = Instituto Nacional de Tecnología Agropecuaria and provided by C. Galmarini (Mendoza, Argentina); Shippo Seed Co. (Kagawa, Japan); East-West Seed Co. (Bangkok, Thailand).

+Cytoplasm of individual plants were classified as normal male-fertile (N) vs. male-sterile (S) as determined by the accD polymorphism (Von Kohn et al., 2013).

+Percent heterozygosity was calculated using SNPs genotyped across five random plants from each population and two plants of A. vavilovii.

described by Von Kohn et al. (2013). Twenty-microliter polymerase chain reactions used primers 5'-AGAATGAGGAG-CAGGAAA and 5'-AGTCGTGATTGTTAATCTCTT and conditions of 50 ng of DNA, 0.25 μM of each primer, and 5x HOT FIREPol DNA Polymerase EvaGreen HRM mix (Solis BioDyne, Tartu, Estonia). Differences in melt curves were visualized using high-resolution melting (LightCycler 480 II; Roche, Indianapolis, IN).

An Infinium array (Illumina, San Diego, CA) was constructed by Eurofins-BioDiagnostics (River Falls, WI) using 1692 SNPs (Supplemental Table 1) identified from the onion transcriptome (Duangjit et al., 2013). For array hybridizations, DNA concentrations were determined using Picogreen according to the manufacturer’s instructions (Molecular Probes, Eugene, OR) and adjusted to 50 ng·μL⁻¹. Four microliters of DNA was used for hybridization according to the Infinium HD Assay Ultra manual (Illumina). After scanning BeadChips, the raw data were analyzed using the Genome Studio genotyping module (version 2.0.3; Illumina) clustering algorithm. The auto clustering process was monitored manually and corrected when needed to produce the most accurate genotyping results. Clustering and genotype calls were proofed by a second person to eliminate any miscalling of the markers (standard protocol of Eurofins-BioDiagnostics).

Genetic distances among A. vavilovii and the OP onion populations were estimated using 1226 SNPs (Supplemental Table 2) and Nei’s 72 coefficient of genetic diversity, and a dendrogram was generated by the unweighted paired group method algorithm (UPGMA) using Numerical Taxonomy and Multivariate Analysis System (NTSYS version 2.2; Exeter Software, Setauket, NY). Commonly polymorphic SNPs across the eight onion chromosomes were identified from a consensus map created using the JoinMap software version 4.0 (Van Ooijen, 2006) and segregations from three onion families (Damon and Havey, 2014; Duangjit et al., 2013).

Results and Discussion

Five randomly selected plants from each of 14 OP onion populations and two plants from A. vavilovii, and pooled DNA from seedlings of DH CU066619 were genotyped for 1692 SNPs. For the OP populations, a sample size of five plants should reveal alleles with frequencies greater than 0.25 at the 95% confidence level (Mansur et al., 1990). Two SNPs were heterozygous in DH CU066619 and were eliminated from analyses because they cannot be allelic. Of the remaining 1690 SNPs, 378 were discarded because of frequently missing genotypes and 86 discarded because they were monomorphic across all DNAs. The remaining 1226 SNPs provided genotypes across all populations (Supplemental Table 2). Overall heterozygosity averaged across the 14 OP populations was relatively low at 23.5% (Table 1). Onion shows significant inbreeding depression (Jones and Davis, 1944) and populations are generally considered to be highly heterozygous. McCallum et al. (2008) genotyped simple sequence repeats (SSRs) using bulked DNA from onion populations and estimated median heterozygosity for OP onion populations at 70%. In contrast, Baldwin et al. (2012) isolated DNA from individual plants from diverse onion populations and reported relatively low heterozygosity at ≈22%. One explanation for the low heterozygosity revealed by this study could be the sample size of five plants per population. McCallum et al. (2008) estimated that a relatively rare allele would amplify and be detected if its frequency was greater than 5%; in our study, we would not confidently detect an allele if its frequency were less than 25%. Another explanation for the low heterozygosity observed in this study and that of Baldwin et al. (2012) may be that relatively few individuals were used during seed increases of these populations, and genetic drift may have reduced heterozygosity. However, the commercially grown cultivars Senshu-Ki Early and Red Pinoy had similar levels of estimated heterozygosity at 30.1% and 22.5%, respectively (Table 1). Allium vavilovii, the likely progenitor of onion (Fritsch et al., 2001; Gurushidze et al., 2007; Havey, 1992, 1997), possessed a similar level of heterozygosity at 25.7%. Allium vavilovii grows naturally in the Kopet Dag (Turkmen-Khorasan) mountainous region of Turkmenistan and Iran (Hanelt, 1985), and germplasm accessions may trace back to relatively few isolated plants, or bottlenecks may have occurred during seed increases of this wild species.

Plants from A. vavilovii and all but one of the OP populations possessed N cytoplasm as determined the accD polymorphism (Table 1). ‘Pukekohe Longkeeper’ (PLK) possessed only S cytoplasm as previously reported (Havey, 1993). ‘Red Creole’ and ‘White Creole’ are closely related OP populations and possessed both N and S cytoplasms. The Japanese OP population ‘Senshu-Ki Early’ possessed both N and S cytoplasms; this onion was likely introduced into Japan from North
America, and North American OP populations can possess both cytoplasms (Havey, 1993).

Onion populations were selected as representative of key production regions or as important founder populations, and relationships were estimated using Nei’s 72 coefficient of genetic diversity (Table 2) and UPGMA (Fig. 1). ‘Babosa’ and ‘Valencia’ are yellow onions originating from Spain (Goldman et al., 2001). ‘Babosa’ is a short-day onion producing yellow bulbs of relatively low pungency and ‘Valencia’ (potentially synonymous with ‘Cebolla Valenciana’) produces yellow bulbs with relatively good storage ability. In 1925, a population named ‘Valencia Grano 9452’ was introduced into the United States, initially was grown and selected in New Mexico, and eventually re-named as ‘Early Grano’ (Magruder et al., 1941) or ‘New Mexico Early Grano’ (Goldman et al., 2001). Uncertainty exists whether ‘Texas Early Grano’ (TEG) traces back to introduction(s) of ‘Early Grano’ (Ewart, 1945) or ‘Grano (Babosa)’ (Perry, 1949). Bulbs of TEG are top shaped (Magruder et al., 1941) and of lower pungency, more similar to ‘Babosa’ than ‘Valencia’ types. Genotyping of SNPs revealed a close relationship between TEG and ‘Babosa’ (Fig. 1), supporting ‘Babosa’ as the origin of TEG.

‘Sweet Spanish Valencia’ is representative of long-day onions grown in regions of northeastern United States that produce bulbs with relatively low pungency and good storage ability. ‘Sweet Spanish’ onions likely trace back to introduction(s) into California and Utah from Spain in the late 1800s and early 1900s (Goldman et al., 2001; Magruder et al., 1941). Consistent with this observation, ‘Sweet Spanish Valencia’ was placed close to the Spanish population ‘Cebolla Valenciana’. ‘Valcatorce’ is an important onion grown in Argentina and phenotypically similar to yellow storage onions from Spain; this OP population was placed closely to both ‘Cebolla Valenciana’ and ‘Sweet Spanish Valencia’.

‘Yellow Bermuda’ was introduced from Italy (Magruder et al., 1941) into Texas via the Canary Islands in 1898 (Perry, 1949) and is the source of the male-sterile parent for ‘Granex’ hybrids (Goldman et al., 2001; Havey and Bark, 1994). This onion has relatively flat bulbs of low pungency that are phenotypically different from the ‘Babosa’ and ‘Valencia’ types and grouped with onions of Spanish origin (Fig. 1).

Table 2. Genetic distances estimated among onion populations and Allium vavilovii using allele frequencies at 1226 single nucleotide polymorphisms and the Nei’s 72 coefficient of genetic diversity. Larger numbers indicate greater genetic distances. Abbreviations of population names are listed in Table 1.

Avav	Bab	NasR	PLK	Rere	Rpin	SenK	SSV	SYG	TEG	Valc	Valen	Were	Wol	
Bab	0.286	—												
NasR	0.262	0.251	—											
PLK	0.252	0.182	0.237	—										
Rere	0.238	0.184	0.216	0.184	—									
Rpin	0.234	0.153	0.208	0.178	0.055	—								
SenK	0.251	0.181	0.252	0.152	0.171	0.161	—							
SSV	0.257	0.083	0.232	0.178	0.161	0.144	0.169	—						
SYG	0.268	0.226	0.249	0.176	0.202	0.204	0.166	0.202	—					
TEG	0.286	0.071	0.266	0.200	0.202	0.174	0.189	0.101	0.239	—				
Valc	0.307	0.140	0.283	0.238	0.206	0.189	0.209	0.106	0.260	0.154	—			
Valen	0.252	0.100	0.247	0.186	0.182	0.167	0.168	0.091	0.215	0.112	0.131	—		
Wcre	0.248	0.205	0.221	0.197	0.049	0.063	0.182	0.181	0.207	0.215	0.228	0.194	—	
Wol	0.279	0.216	0.297	0.194	0.221	0.210	0.190	0.225	0.190	0.243	0.289	0.218	0.232	—
YB	0.268	0.150	0.241	0.195	0.177	0.175	0.198	0.148	0.227	0.142	0.195	0.160	0.204	0.236

![Fig. 1. Relationships among onion populations estimated using unweighted pair group method with arithmetic mean and allele frequencies at 1226 single nucleotide polymorphisms genotyped using DNA from individual plants of each population. Abbreviated population names are listed in Table 1.](image-url)
Table 3. Genetic map positions of single nucleotide polymorphisms (SNPs) and mean allelic frequencies across 14 onion populations and *Allium vavilovii*.

SNP	Chromosome	Genetic distance (cM)	Allele	Frequency
isotig37443_625	1	0.0	C	0.207
isotig34723_664	1	3.2	G	0.793
isotig37419_329	1	6.9	T	0.470
isotig39789_529	1	6.9	G	0.753
isotig32287_1090	1	13.2	A	0.247
isotig37348_328	1	15.5	G	0.560
isotig29661_1491	1	22.0	C	0.480
isotig43680_368	1	24.3	T	0.520
isotig37265_852	1	25.7	A	0.407
isotig39274_732	1	31.9	G	0.593
contig00172_269	1	36.8	A	0.607
isotig26470_847	1	45.0	G	0.393
isotig36938_811	1	47.6	T	0.510
isotig30950_933	1	48.4	C	0.490
isotig26446_844	1	51.6	T	0.518
isotig32512_171	1	61.2	A	0.360
isotig36337_305	1	63.6	G	0.640
isotig31226_709	1	69.5	A	0.687
isotig35370_364	1	69.8	G	0.313
isotig29462_1710	1	70.6	G	0.520
isotig29455_1102	1	70.6	A	0.900
isotig32775_1170	1	70.6	A	0.480
isotig31196_1500	1	71.3	G	0.590
isotig27537_659	1	74.4	A	0.713
isotig27517_440	1	78.0	G	0.287
isotig33340_1003	1	88.6	C	0.837
isotig32795_827	1	90.4	G	0.313
isotig26855_718	1	96.6	A	0.653
isotig21293_730	1	98.1	G	0.347

Continued next page
Table 3. Continued.

SNP	Chromosome	Genetic distance (cM)	Allele	Frequency
isotig30863_958	1	108.5	A	0.440
			G	0.827
isotig20159_957	1	110.0	C	0.067
			T	0.560
isotig33538_1298	2	0.0	C	0.673
			T	0.327
isotig30821_1151	2	5.3	A	0.380
			G	0.620
isotig33142_579	2	33.5	C	0.433
			T	0.567
isotig29186_1830	2	33.5	A	0.267
			G	0.733
isotig30715_1591	2	33.8	A	0.247
			G	0.753
isotig34671_610	2	34.8	A	0.460
			G	0.540
isotig33705_468	2	35.0	A	0.313
			T	0.687
isotig31346_1020	2	37.5	G	0.453
			T	0.547
isotig17237_4883	2	38.0	C	0.810
			T	0.190
isotig33533_568	2	40.0	C	0.430
			T	0.570
isotig28284_1005	2	40.4	C	0.353
			T	0.647
isotig19682_515	2	41.5	A	0.465
			G	0.535
isotig34382_910	2	54.5	C	0.393
			T	0.607
isotig15060_964	2	56.6	C	0.640
			T	0.360
isotig36775_363	2	61.4	C	0.167
			T	0.833
isotig34066_1226	2	65.6	A	0.807
			G	0.193
isotig28947_218	2	74.3	C	0.153
			T	0.847
isotig30946_1170	2	74.3	A	0.577
			G	0.423
isotig34894_810	2	75.6	A	0.303
			C	0.697
isotig33051_1252	2	75.6	C	0.560
			T	0.440
isotig32787_1241	2	85.4	A	0.187
			T	0.813
isotig36256_344	2	86.2	A	0.343
			C	0.657
isotig30461_1472	2	92.9	C	0.620
			T	0.380
isotig41662_224	2	94.3	C	0.480
			G	0.520
isotig38484_281	2	96.6	G	0.513
			T	0.487
isotig30687_1336	2	100.4	C	0.427
			T	0.573
Table 3. Continued.

SNP	Chromosome	Genetic distance (cM)	Allele	Frequency
isotig27567_733	2	103.3	A	0.853
isotig19136_223	2	104.5	A	0.927
isotig40509_271	2	106.3	C	0.567
isotig32390_1451	3	0.0	G	0.407
isotig20406_751	3	5.7	A	0.640
isotig32926_115	3	6.0	G	0.360
isotig33810_581	3	7.9	C	0.540
isotig18967_973	3	10.0	G	0.553
isotig22876_134	3	10.4	A	0.707
isotig28607_1011	3	10.7	G	0.393
isotig29415_721	3	11.4	A	0.420
isotig29570_2011	3	13.2	G	0.580
isotig26005_1583	3	16.3	A	0.490
isotig33232_1046	3	17.0	C	0.487
isotig35214_301	3	17.0	G	0.513
isotig27896_600	3	19.7	A	0.633
isotig37687_135	3	19.7	G	0.367
isotig43826_494	3	19.7	T	0.618
isotig29185_1241	3	20.2	A	0.553
isotig28422_1226	3	23.5	C	0.453
isotig34054_350	3	23.5	T	0.547
isotig35180_158	3	23.5	A	0.387
isotig29460_868	3	26.3	G	0.613
isotig21577_861	3	26.8	A	0.533
isotig36487_789	3	26.8	G	0.467
isotig42494_328	3	26.8	T	0.727
isotig35352_760	3	33.1	C	0.273
isotig30817_727	3	35.2	A	0.770
isotig33166_330	3	49.4	C	0.230

Continued next page
Table 3. Continued.

SNP	Chromosome	Genetic distance (cM)	Allele	Frequency
isotig32139_534	3	55.2	G	0.413
isotig32139_534	3	55.2	C	0.517
isotig32139_534	3	55.2	T	0.483
isotig31015_812	3	68.1	G	0.518
isotig28347_304	3	68.9	A	0.607
isotig28347_304	3	68.9	G	0.393
isotig33783_1096	3	81.1	A	0.357
isotig33783_1096	3	81.1	C	0.643
isotig30724_1666	3	81.2	C	0.457
isotig30724_1666	3	81.2	G	0.543
isotig30333_269	3	85.3	C	0.718
isotig30333_269	3	85.3	T	0.282
isotig29139_1024	3	86.8	A	0.400
isotig29139_1024	3	86.8	G	0.600
isotig33275_395	3	88.5	A	0.443
isotig33275_395	3	88.5	G	0.557
isotig33886_426	4	6.0	A	0.617
isotig33886_426	4	6.0	G	0.383
isotig32333_1322	4	6.0	C	0.737
isotig32333_1322	4	6.0	G	0.263
isotig40309_475	4	7.2	T	0.165
isotig40309_475	4	7.2	C	0.835
isotig16136_1083	4	7.2	A	0.733
isotig16136_1083	4	7.2	T	0.267
isotig45610_340	4	8.9	G	0.437
isotig45610_340	4	8.9	T	0.563
isotig36793_769	4	11.0	C	0.470
isotig36793_769	4	11.0	T	0.530
isotig28561_1513	4	15.2	C	0.060
isotig28561_1513	4	15.2	T	0.940
isotig37158_542	4	20.4	A	0.533
isotig37158_542	4	20.4	C	0.467
isotig36493_410	4	22.2	C	0.750
isotig36493_410	4	22.2	T	0.250
isotig38440_478	4	26.1	C	0.697
isotig38440_478	4	26.1	T	0.303
isotig09889_661	4	28.3	C	0.203
isotig09889_661	4	28.3	T	0.797
isotig26526_748	4	29.5	A	0.653
isotig26526_748	4	29.5	G	0.347
isotig35268_1082	4	31.2	C	0.780
isotig35268_1082	4	31.2	T	0.220
isotig26045_1046	4	33.1	C	0.537
isotig26045_1046	4	33.1	T	0.463
isotig35345_1067	4	34.0	C	0.747
isotig35345_1067	4	34.0	T	0.253
isotig34783_896	4	39.3	A	0.353
isotig34783_896	4	39.3	G	0.647
isotig29175_343	4	40.0	C	0.877
isotig29175_343	4	40.0	T	0.123
isotig37023_265	4	40.2	A	0.600
isotig37023_265	4	40.2	T	0.400
isotig33399_1211	4	40.4	A	0.603
isotig33399_1211	4	40.4	G	0.397
isotig19574_601	4	40.8	A	0.285
isotig19574_601	4	40.8	G	0.715

Continued next page
SNP	Chromosome	Genetic distance (cM)	Allele	Frequency
isotig32123_1465	4	42.8	A	0.380
			G	0.620
isotig28612_1057	4	45.8	A	0.173
			G	0.827
isotig37209_549	5	0.0	A	0.613
			G	0.387
isotig31278_1407	5	3.3	C	0.237
			G	0.763
isotig40014_661	5	4.6	C	0.677
			T	0.323
isotig31477_611	5	7.3	C	0.568
			T	0.432
isotig29284_408	5	7.6	A	0.203
			G	0.797
isotig28536_1567	5	30.0	A	0.087
			T	0.913
isotig28889_2528	5	31.3	C	0.673
			T	0.327
isotig33059_107	5	40.7	A	0.637
			G	0.363
isotig28803_1689	5	41.3	C	0.377
			T	0.623
isotig34069_110	5	43.3	C	0.313
			T	0.687
isotig14741_247	5	46.9	C	0.460
			T	0.540
isotig38424_376	5	50.6	A	0.160
			T	0.840
isotig34198_886	5	55.4	A	0.133
			C	0.867
isotig37670_180	5	60.0	A	0.553
			G	0.447
isotig33680_1027	5	68.3	C	0.360
			T	0.640
isotig29167_1843	5	68.4	C	0.383
			T	0.617
isotig31628_1166	5	69.1	C	0.717
			T	0.283
isotig29989_644	5	75.3	A	0.773
			G	0.227
contig00142_122	5	81.0	C	0.640
			G	0.778
isotig25097_2357	5	94.1	C	0.222
			T	0.670
isotig32307_1162	5	99.2	C	0.330
			T	0.330
isotig29293_1435	6	0.0	A	0.240
			T	0.760
isotig33019_124	6	3.0	A	0.573
			G	0.427
isotig34246_1009	6	4.2	A	0.423
			G	0.577
isotig36782_698	6	6.0	G	0.103
			T	0.897
isotig32739_152	6	6.0	C	0.247
			T	0.753
contig00298_108	6	10.4	A	0.282

Continued next page
SNP	Chromosome	Genetic distance (cM)	Allele	Frequency
isotig28330_2105	6	22.9	G	0.718
isotig28451_1808	6	29.2	C	0.903
isotig10023_2319	6	47.8	T	0.097
isotig40098_630	6	47.8	G	0.883
isotig31528_193	6	50.5	A	0.597
isotig31550_508	6	50.5	G	0.403
isotig30880_1388	6	51.8	C	0.213
isotig35291_456	6	51.8	A	0.657
isotig39121_540	6	70.2	G	0.343
isotig28812_2285	6	78.7	C	0.437
isotig30464_1503	6	80.8	A	0.290
isotig29703_1814	6	80.8	C	0.207
isotig31425_789	6	81.0	T	0.710
isotig45729_183	6	81.1	A	0.637
isotig33663_1163	6	82.7	G	0.363
isotig38248_370	7	0.0	A	0.557
isotig42387_377	7	23.5	G	0.267
isotig43668_1112	7	25.2	T	0.323
isotig26033_1589	7	28.6	C	0.443
isotig28365_1152	7	39.6	A	0.613
isotig28398_1732	7	40.9	G	0.437
isotig29530_152	7	52.0	T	0.677
isotig30010_835	7	56.5	A	0.400
isotig28488_2757	7	57.4	G	0.597
isotig26063_406	7	61.2	T	0.258
isotig40501_344	7	61.3	C	0.400
isotig34753_1109	7	65.8	A	0.427
isotig28716_113	7	66.1	G	0.503

Continued next page
Table 3. Continued.

SNP	Chromosome	Genetic distance (cM)	Allele	Frequency
isotig34313_545	7	66.2	C	0.837
isotig29209_2397	7	68.4	C	0.577
contig00293_452	7	68.5	A	0.478
isotig42645_520	7	70.6	T	0.845
isotig30655_190	7	71.1	T	0.283
isotig39918_357	7	73.0	C	0.717
isotig33031_559	7	75.4	C	0.747
isotig41937_218	7	75.5	G	0.687
isotig28367_2185	8	2.9	A	0.717
isotig30151_1442	8	2.9	G	0.283
isotig33645_542	8	12.3	C	0.477
isotig31608_1092	8	13.7	G	0.270
isotig41653_558	8	30.8	A	0.490
isotig30323_747	8	31.0	G	0.510
isotig33589_1176	8	31.0	C	0.637
isotig43294_202	8	31.7	T	0.363
isotig37010_277	8	31.7	A	0.497
isotig32346_843	8	32.1	T	0.393
isotig12913_342	8	32.8	C	0.693
isotig31683_1344	8	38.4	T	0.307
isotig20235_630	8	38.9	T	0.337
isotig20266_1040	8	41.1	A	0.710
isotig28911_1986	8	46.9	G	0.290
isotig38873_388	8	44.1	C	0.170
isotig30907_420	8	45.0	T	0.830
isotig30020_476	8	46.8	A	0.607
isotig22339_503	8	48.9	C	0.507
European origin. The average Nei’s 72 coefficient of genetic diversity averaged across onion populations was highest for ‘Nasik Red’ (0.246) and \textit{A. vavilovii} (0.263). Baldwin et al. (2012), Khar et al. (2011), and McCallum et al. (2008) used primarily SSRs to estimate relationships among onion populations and observed that onion population(s) from the Indian subcontinent were divergent relative to onions of European origin. Together, these studies indicate that Indian onions may trace back to an independent path of introduction from central Asia and a comprehensive evaluation of onion germplasm from south Asia should be undertaken to assess genetic diversity relative to onions from Europe and related populations in the Western Hemisphere and Asia.

Genetic maps built using wide crosses may possess polymorphisms that are relatively rare in elite germplasm. We generated a consensus map (Table 3) of 199 SNPs commonly polymorphic across onion populations using segregations from three families (Damon and Havey, 2014; Duangjit et al., 2013). These SNPs are distributed across the eight chromosomes of onion and should be useful for estimation of relatedness among broader collections of onion populations, mapping of important phenotypes, fingerprinting of inbred lines and hybrids, and quality control of seed lots.

\textbf{Literature Cited}

Baldwin, S., M. Pither-Joyce, K. Wright, L. Chen, and J. McCallum. 2012. Development of robust genomic simple sequence repeat markers for estimation of genetic diversity within and among bulb onion (\textit{Allium cepa} L.) populations. Mol. Breed. 30:1401–1411.

Bark, O.H. and M.J. Havey. 1995. Similarities and relationships among open-pollinated populations of the bulb onion as estimated by nuclear RFLPs. Theor. Appl. Genet. 90:607–614.

Bradeen, J.M. and M.J. Havey. 1995. Restriction fragment length polymorphisms reveal considerable nuclear divergence within a well defined maternal clade in \textit{Allium section Cepa} (Alliaceae). Amer. J. Bot. 82:1455–1462.

Brewster, J.L. 1994. Onions and other vegetable alliums. CAB Int. Univ. Press, Cambridge, UK.

Damon, S. and M.J. Havey. 2014. Quantitative trait loci controlling amounts and types of epicuticular waxes in onion. J. Amer. Soc. Hort. Sci. 139:597–602.

Duangjit, J., B. Bohanec, A.P. Chan, C.T. Town, and M.J. Havey. 2013. Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor. Appl. Genet. 126:2093–2101.

El-Shafie, M. and G. Davis. 1967. Inheritance of bulb color in \textit{Allium cepa}. Hilgardia 9:607–622.

Ewart, W.H. 1945. Texas, p. 29. In: Report of the National Onion Breeding Program. U.S. Dept. Agr., Beltsville, MD.

Fritsch, R.M., F. Matin, and M. Klaas. 2001. \textit{Allium vavilovii} M. Popov et Vved. and a new Iranian species are the closest known relatives of the common onion \textit{A. cepa} L. (Alliaceae). Genet. Resources Crop Evol. 48:401–408.

Goldman, I.L., G. Schroek, and M.J. Havey. 2001. History of public onion breeding programs and pedigree of public onion germplasm releases in the United States. Plant Breed. Rev. 20:67–103.

Gurushidze, M., S. Mashayekhi, F.R. Blattner, N. Friesen, and R.M. Fritsch. 2007. Phylogenetic relationships of wild and cultivated species of \textit{Allium section Cepa} inferred by nuclear rDNA ITS sequence analysis. Plant Syst. Evol. 269:259–269.

Hanelt, P. 1985. On taxonomy, chorology and ecology of the wild species of \textit{Allium L. sect. Cepa} (Mill.) Prokh. Flora 176:99–116.

Havey, M.J. 1992. Restriction enzyme analysis of the chloroplast and nuclear 45S ribosomal DNA of \textit{Allium sections Cepa} and \textit{Phyllocladon}. Plant Syst. Evol. 183:17–31.

Havey, M.J. 1993. A putative donor of S-cytoplasm and its distribution among open-pollinated populations of onion. Theor. Appl. Genet. 86:128–134.

Havey, M.J. 1997. On the origin and distribution of normal cytoplasm of onion. Genet. Resources Crop Evol. 44:307–313.

Havey, M.J. and O.H. Bark. 1994. Molecular confirmation that sterile cytoplasm has been introduced into open-pollinated Grano onion cultivars. J. Amer. Soc. Hort. Sci. 119:90–93.

Hyde, P.T., E.D. Earle, and M.A. Mutschler. 2012. Doubled haploid onion (\textit{Allium cepa} L.) lines and their impact on hybrid performance. HortScience 47:1690–1695.

Jones, H.A. and G. Davis. 1944. Inbreeding and heterosis and their relation to the development of new varieties of onions. U.S. Dept. Agr. Tech. Bul. 874.

Khar, A., K.E. Lawande, and K.S. Negi. 2011. Microsatellite marker based analysis of genetic diversity in short day tropical Indian onion and cross amplification in related \textit{Allium} spp. Genet. Resources Crop Evol. 58:741–752.

Magruder, R., R. Webster, H.A. Jones, T. Randall, G. Snyder, H. Brown, L. Hawthorn, and A. Wilson. 1941. Descriptions of types of principal American varieties of onions. U.S. Dept. Agr. Misc. Publ. 435.

Mansur, L.M., K.M. Hadder, and J.C. Suárez. 1990. A computer program for calculating the population size necessary to recover any number of individuals exhibiting a trait. J. Hered. 81:407–408.

McCallum, J.A., S. Thomson, M. Pither-Joyce, F. Kenel, A. Clarke, and M.J. Havey. 2008. Genetic diversity analysis and single-nucleotide-polymorphism marker development in cultivated bulb onion based on expressed sequence tag–simple sequence repeat markers. J. Amer. Soc. Hort. Sci. 133:810–818.

Perry, B.A. 1949. Texas, p. 62–69. In: Report of the National Onion Breeding Program. U.S. Dept. Agr., Beltsville, MD.

Van Ooijen, J.W. 2006. JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma, Wageningen, The Netherlands.

Van Raamsdonk, L.W.D., W.A. Wiestma, and J.N. De Vries. 1992. Crossing experiments in \textit{Allium L. section Cepa}. Bot. J. Linn. Soc. 109:193–303.

Von Kohn, C., A. Kielkowska, and M.J. Havey. 2013. Sequencing and annotation of the chloroplast DNAs of normal (N) male-fertile and male-sterile (S) cytoplasms of onion and single nucleotide polymorphisms distinguishing these cytoplasms. Genome 56:737–742.