Computing 2-twinless blocks

Raed Jaberi

Abstract

Let \(G = (V, E) \) be a directed graph. A 2-twinless block in \(G \) is a maximal subset \(B \subseteq V \) of size at least 2 such that for each pair of distinct vertices \(x, y \in B \), and for each vertex \(w \in V \setminus \{x, y\} \), the vertices \(x, y \) are in the same twinless strongly connected component of \(G \setminus \{w\} \). In this paper we present algorithms for computing the 2-twinless blocks of a directed graph.

Keywords: Directed graphs, Connectivity, Graph algorithms, 2-blocks, Twinless strongly connected graphs

1. Introduction

Let \(G = (V, E) \) be a directed graph. \(G \) is twinless strongly connected if it contains a strongly connected spanning subgraph \((V, E^t)\) such that \(E^t \) does not contain any pair of antiparallel edges. A twinless strongly connected component of \(G \) is a maximal subset \(C_t \subseteq V \) such that the induced subgraph on \(C_t \) is twinless strongly connected. A strong articulation point of \(G \) is a vertex whose removal increases the number of strongly connected components of \(G \). A strong bridge of \(G \) is an edge whose deletion increases the number of strongly connected components of \(G \). A strongly connected graph is 2-vertex-connected if it has at least 3 vertices and it has no strong articulation points. A 2-vertex-connected component of \(G \) is a maximal vertex subset \(C_v \subseteq V \) such that the induced subgraph on \(C_v \) is 2-vertex-connected. A 2-directed block in \(G \) is a maximal vertex subset \(B^d \subseteq V \) with \(|B^d| > 1\) such that for any distinct vertices \(x, y \in B^d \), the graph \(G \) contains two vertex-disjoint paths from \(x \) to \(y \) and two vertex-disjoint paths from \(y \) to \(x \). A 2-edge block in \(G \) is a maximal subset \(B^{eb} \subseteq V \) with \(|B^{eb}| > 1\) such that for any distinct vertices \(v, w \in B^{eb} \), there are two edge-disjoint paths from \(v \) to \(w \) and two edge-disjoint paths from \(w \) to \(v \) in \(G \). A 2-strong block in \(G \) is a maximal vertex subset \(B^s \subseteq V \) with \(|B^s| > 1\) such that for each pair of distinct vertices \(x, y \in B^s \) and for every vertex \(u \in V \setminus \{x, y\} \), the vertices \(x \) and \(y \) are in the same strongly connected component of the graph \(G \setminus \{u\} \). A twinless articulation point of \(G \) is a vertex whose removal increases the number of twinless strongly connected components of \(G \). A 2-twinless block...
in G is a maximal vertex set $B \subseteq V$ of size at least 2 such that for each pair of distinct vertices $x, y \in B$, and for each vertex $w \in V \setminus \{x, y\}$, the vertices x, y are in the same twinless strongly connected component of $G \setminus \{w\}$. Notice that 2-strong blocks are not necessarily 2-twinless blocks (see Figure 1).

![Graph Image](image)

Figure 1: A strongly connected graph G, which contains two 2-strong blocks $C_1 = \{2, 7\}, C_2 = \{12, 13, 17, 19\}$, and one 2-twinless block $B = \{2, 7\}$. Notice that the vertices 12 and 17 do not belong to the same twinless strongly connected component of $G \setminus \{13\}$.

A twinless strongly connected graph G is said to be 2-vertex-twinless-connected if it has at least three vertices and it does not contain any twinless articulation point \cite{10}. A 2-vertex-twinless-connected component is a maximal subset $U^{2vt} \subseteq V$ such that the induced subgraph on U^{2vt} is 2-vertex-twinless-connected. While 2-vertex-twinless-connected components have at least linear number of edges, the subgraphs induced by 2-twinless blocks do not necessarily contain edges.

Strongly connected components can be found in linear time \cite{25}. In 2006, Raghavan \cite{22} showed that the twinless strongly connected component of a directed graph can be found in linear time. In 2010, Georgiadis \cite{7} presented an
algorithm to check whether a strongly connected graph is 2-vertex-connected in linear time. Italiano et al. [15] gave linear time algorithms for identifying all the strong articulation points and strong bridges of a directed graph. Their algorithms are based on dominators [3, 4, 1, 2, 6, 21]. In 2014, Jaberi [17] presented algorithms for computing the 2-vertex-connected components of directed graphs in $O(nm)$ time (published in [16]). Henzinger et al. [14] gave algorithms for calculating the 2-vertex-connected components in $O(n^2)$ time. Jaberi [18] presented algorithms for computing 2-blocks in directed graphs. Georgiadis et al. [9, 10] gave linear time algorithms for determining 2-edge blocks. Georgiadis et al. [11, 12] also gave linear time algorithms for calculating 2-directed blocks and 2-strong blocks. Georgiadis et al. [13] and Luigi et al. [20] performed experimental studies of recent algorithms that calculate 2-blocks and 2-connected components in directed graphs. In 2019, Jaberi [19] presented an algorithm for computing 2-vertex-twinless-connected components. Georgiadis and Kosinas [8] gave a linear time algorithm for calculating twinless articulation points.

In the following section we show that the 2-twinless blocks of a directed graph can be calculated in $O(n^3)$ time.

2. Algorithm for computing 2-twinless blocks

In this section we present an algorithm for computing the 2-twinless blocks of a twinless strongly connected graph. Since twinless strongly connected components do not share vertices of the same 2-twinless block, we consider only twinless strongly connected graphs. Let $G = (V, E)$ be a twinless strongly connected graph. We define a relation \sim_{2t} as follows. For any distinct vertices $x, y \in V$, we write $x \sim_{2t} y$ if for all vertices $w \in V \setminus \{x, y\}$, the vertices x, y are in the same twinless strongly connected component of $G \setminus \{w\}$. By definition, a 2-twinless block in G is a maximal subset $B_{2t} \subseteq V$ with $|B_{2t}| > 1$ such that for every two vertices $x, y \in B_{2t}$, we have $x \sim_{2t} y$.

The next lemma shows that 2-twinless blocks share at most one vertex.

Lemma 2.1. Let $G = (V, E)$ be a twinless strongly connected graph. Let B_{2t}^1, B_{2t}^2 be distinct 2-twinless blocks in G. Then $|B_{2t}^1 \cap B_{2t}^2| \leq 1$.

Proof. Suppose for the sake of contradiction that B_{2t}^1 and B_{2t}^2 have at least two vertices in common. Clearly, $B_{2t}^1 \cup B_{2t}^2$ is not a 2-twinless block in G. Let x and y be vertices belonging to B_{2t}^1 and B_{2t}^2, respectively, such that $x, y \notin B_{2t}^1 \cap B_{2t}^2$. Let z be any vertex in $V \setminus \{x, y\}$. Since $|B_{2t}^1 \cap B_{2t}^2| > 1$, there is a vertex v in $(B_{2t}^1 \cap B_{2t}^2) \setminus \{z\}$. Note that x, v are in the same twinless strongly connected component of $G \setminus \{z\}$ since $x, v \in B_{2t}^1$. Moreover, v and
y lie in the same twinless strongly connected component of $G \setminus \{z\}$. By [22], Lemma 1] x and y are in the same twinless strongly connected component of $G \setminus \{z\}$. Therefore, x, y belong to the same 2-twinless block. □

The following lemma shows an interesting property of the relation \leftrightarrow.

Lemma 2.2. Let $G = (V, E)$ be a twinless strongly connected graph and let $\{v_0, v_1, \ldots, v_l\}$ be set of vertices of G such that $v_i \leftrightarrow v_0$ and $v_{i-1} \leftrightarrow v_i$ for $i \in \{1, 2, \ldots, l\}$. Then $\{v_0, v_1, \ldots, v_l\}$ is a subset of a 2-twinless block in G.

Proof. Assume for the purpose of contradiction that there are two vertices v_r and v_q in G such that v_r and v_q are in distinct 2-twinless blocks of G and $r, q \in \{0, 1, \ldots, l\}$. Suppose without loss of generality that $r < q$. Then there is a vertex $z \in V \setminus \{v_r, v_q\}$ such that v_r and v_q are in distinct twinless strongly connected components of $G \setminus \{z\}$. We distinguish two cases.

1. $z \in \{v_{r+1}, v_{r+2}, \ldots, v_{q-1}\}$. In this case, the vertices v_{r-1}, v_i belong to the same twinless strongly connected component of $G \setminus \{z\}$ for each $i \in \{1, 2, \ldots, r\} \cup \{q + 1, q + 2, \ldots, l\}$. Moreover, the vertices v_0, v_l are in the same twinless strongly connected component of $G \setminus \{z\}$ because $v_0 \leftrightarrow v_l$. Therefore, the vertices v_r, v_q are in the same twinless strongly connected component of the graph $G \setminus \{z\}$, a contradiction.

2. $z \notin \{v_{r+1}, v_{r+2}, \ldots, v_{q-1}\}$. Then, for each $i \in \{r + 1, r + 2, \ldots, q\}$, the vertices v_{i-1}, v_i lie in the same twinless strongly connected component of $G \setminus \{z\}$. Consequently, the vertices v_r, v_q belong to the same twinless strongly connected component of the graph $G \setminus \{z\}$, a contradiction. □

Let $G = (V, E)$ be a twinless strongly connected graph. We construct the 2-twinless block graph $G^{2t} = (V^{2t}, E^{2t})$ of G as follows. For every 2-twinless block B_i, we add a vertex v_i to V^{2t}. Moreover, for each vertex $v \in V$, if v belongs to at least two distinct 2-twinless blocks, we add a vertex v to V^{2t}. For any distinct 2-twinless blocks B_i, B_j with $B_i \cap B_j = \{v\}$, we put two undirected edges $(v_i, v), (v, v_j)$ into E^{2t}.

Lemma 2.3. The 2-twinless block graph of a twinless strongly connected graph is a forest.

Proof. This follows from Lemma 2.2 and Lemma 2.1. □

Lemma 2.4. Let $G = (V, E)$ be a twinless strongly connected graph and let x, y be distinct vertices in G. Suppose that $v \in V \setminus \{x, y\}$ is not a twinless articulation point. Then x, y are in the same twinless strongly connected component of $G \setminus \{v\}$.
Algorithm 2.5.

Input: A twinless strongly connected graph $G = (V, E)$.

Output: The 2-twinless blocks of G.

1. if G is 2-vertex-twinless connected then
 2. Output V.
else
 4. Let S be an $n \times n$ matrix.
 5. Initialize S with 1s.
 6. determine the twinless articulation points of G.
 7. for each twinless articulation point z of G do
 8. Identify the twinless strongly connected components of $G \setminus \{z\}$.
 9. for each pair $(v, w) \in (V \setminus \{z\}) \times (V \setminus \{z\})$ do
 10. if v, w in different twinless strongly connected components of $G \setminus \{z\}$ then
 11. $S[v, w] \leftarrow 0$.
 12. $E^b \leftarrow \emptyset$.
 13. for each pair $(v, u) \in V \times V$ do
 14. if $S[v, u] = 1$ and $S[u, v] = 1$ then
 15. $E^b \leftarrow E^b \cup \{(v, u)\}$.
 16. calculate the blocks of size ≥ 2 of $G^b = (V, E^b)$ and output them.

The correctness of Algorithm 2.5 follows from the following lemma.

Lemma 2.6. A vertex subset $B \subseteq V$ is a 2-twinless block of G if and only if B is a block of the undirected graph $G^b = (V, E^b)$ which is constructed in lines 12–15 of Algorithm 2.5.

Proof. It follows from Lemma 2.2 and Lemma 2.4. □

Theorem 2.7. Algorithm 2.5 runs in $O(n^3)$ time.

Proof. Georgiadis and Kosinas [8] showed that the twinless articulation points can be computed in linear time. The initialization of matrix S takes $O(n^2)$ time. The number of iterations of the for-loop in lines 7–11 is at most n because the number of twinless articulation points is at most n. Consequently, lines 7–11 require $O(n^3)$. Furthermore, the blocks of an undirected graph can be found in linear time [25, 24]. □
Lemma 2.8. The graph G^b which is constructed in lines 12–15 of Algorithm 2.5 is chordal.

Proof. It follows from Lemma 2.2. □

By Lemma 2.8, one can calculate the maximal cliques of G^b instead of blocks. The maximal cliques of a chordal graph can be calculated in linear time [3, 23].

3. An improved version of Algorithm 2.5

In this section we present an improved version of Algorithm 2.5.

The following lemma shows a connection between 2-twinless blocks and 2-strong blocks.

Lemma 3.1. Let $G = (V, E)$ be a twinless strongly connected graph. Suppose that B_t is a 2-twinless block in G. Then B_t is a subset of a 2-strong block in G.

Proof. Let v and w be distinct vertices in B_t, and let $x \in V \setminus \{v, w\}$. By definition, the vertices v, w belong to the same twinless strongly connected component C of $G \setminus \{x\}$. Since C is a subset of a strongly connected component of G, the vertices v, w also lie in the strongly connected component of $G \setminus \{x\}$. Consequently, v, w are in the same 2-strong block in G. □

Algorithm 3.2 describes this improved version which is based on Lemma 3.1 and Lemma 2.2.

Theorem 3.3. The running time of Algorithm 3.2 is $O(t(\frac{s^2}{2} + n^2))$, where $s = |A|$ and t is the number of twinless articulation points of G.

Proof. The 2-strong blocks of a directed graph can be computed in linear time [11]. Furthermore, the twinless articulation points of a directed graph can be identified in linear time using the algorithm of Georgiadis and Kosinas [8]. Since the number of iterations of the for-loop in lines 16–20 is at most t, lines 16–20 take $O(t(\frac{s^2}{2} + m))$ time. □

Let $G = (V, E)$ be a twinless strongly connected graph. If the refine operation defined in [20] is used to refine the 2-strong blocks of G for all twinless articulation points, then the 2-twinless blocks of a directed graph $G = (V, E)$ can be computed in $O(tm)$ time, where t is the number of twinless articulation points of G.

We leave as open problem whether the 2-twinless blocks of a directed graph can be calculated in linear time.
Algorithm 3.2.
Input: A twinless strongly connected graph $G = (V, E)$.
Output: The 2-twinless blocks of G.
1 if G is 2-vertex-twinless connected then
2 Output V.
3 else
4 find the 2-strong blocks of G
5 Let S be an $n \times n$ matrix.
6 Initialize S with 0.
7 $A \leftarrow \emptyset$.
8 for each 2-strong block B of G do
9 for each pair of vertices $v, w \in B$ do
10 $S[v, w] \leftarrow 1$
11 $S[w, v] \leftarrow 1$
12 for each vertex $v \in B$ do
13 if $v \notin A$ then
14 add v to A
15 determine the twinless articulation points of G.
16 for each twinless articulation point z of G do
17 Identify the twinless strongly connected components of $G \setminus \{z\}$.
18 for each pair $(v, w) \in (A \setminus \{z\}) \times (A \setminus \{z\})$ do
19 if v, w in different twinless strongly connected components of $G \setminus \{z\}$ then
20 $S[v, w] \leftarrow 0$.
21 $E^b \leftarrow \emptyset$.
22 for each pair $(v, u) \in A \times A$ do
23 if $S[v, u] = 1$ and $S[u, v] = 1$ then
24 $E^b \leftarrow E^b \cup \{(v, u)\}$.
25 calculate the blocks of size ≥ 2 of $G^b = (A, E^b)$ and output them.

Acknowledgements.

The author would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

[1] S. Alstrup, D. Harel, P.W. Lauridsen, M. Thorup, Dominators in linear time, SIAM J. Comput. 28(6) (1999) 2117–2132.

[2] A.L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R.E. Tarjan,
J.R. Westbrook, Linear-time algorithms for dominators and other path-evaluation problems, SIAM J. Comput. 38(4) (2008) 1533–1573.

[3] D. Firmani, G.F. Italiano, L. Laura, A. Orlandi, F. Santaroni, Computing strong articulation points and strong bridges in large scale graphs, SEA, LNCS 7276, (2012) 195–207.

[4] D. Firmani, L. Georgiadis, G. F. Italiano, L. Laura, F. Santaroni, Strong Articulation Points and Strong Bridges in Large Scale Graphs. Algorithmica 74(3) : 1123–1147(2016)

[5] F. Gavril, Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph. SIAM J. Comput. 1(2) (1972) 180–187.

[6] Loukas Georgiadis, Robert Endre Tarjan, Renato Fonseca F. Werneck, Finding Dominators in Practice. J. Graph Algorithms Appl. 10(1) : 69–94(2006)

[7] L. Georgiadis, Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t paths in digraphs, In Proc. 37th ICALP, Part I, LNCS 6198 (2010) 738–749.

[8] L. Georgiadis, E. Kosinas, Linear-Time Algorithms for Computing Twinless Strong Articulation Points and Related Problems, ISAAC 2020 : 38 : 1–38 : 16

[9] L. Georgiadis, G.F. Italiano, L. Laura, N. Parotsidis, 2-Edge Connectivity in Directed Graphs, SODA (2015) 1988–2005.

[10] L. Georgiadis, G. F. Italiano, L. Laura, N. Parotsidis, 2-Edge Connectivity in Directed Graphs. ACM Trans. Algorithms 13(1) : 9 : 1–9 : 24(2016)

[11] L. Georgiadis, G.F. Italiano, L. Laura, N. Parotsidis, 2-Vertex Connectivity in Directed Graphs, ICALP (1)2015 : 605–616

[12] L. Georgiadis, G. F. Italiano, L. Laura, N. Parotsidis, 2-vertex connectivity in directed graphs. Inf. Comput. 261 : 248–264(2018)

[13] L. Georgiadis, G. F. Italiano, A. Karamasiou, N. Parotsidis, N. Paudel, Computing 2-Connected Components and Maximal 2-Connected Subgraphs in Directed Graphs: An Experimental Study. ALENEX 2018 : 169–183
[14] M. Henzinger, S. Krinninger, V. Loitzenbauer, Finding 2-Edge and 2-Vertex Strongly Connected Components in Quadratic Time. ICALP (1)2015 : 713–724

[15] G.F. Italiano, L. Laura, F. Santaroni, Finding strong bridges and strong articulation points in linear time, Theoretical Computer Science 447 (2012) 74–84.

[16] R. Jaberi, On computing the 2-vertex-connected components of directed graphs. Discrete Applied Mathematics 204: (2016)164–172

[17] R. Jaberi, On Computing the 2-vertex-connected components of directed graphs, (January, 2014) CoRR abs/1401.6000.

[18] R. Jaberi, Computing the 2-blocks of directed graphs. RAIRO - Theor. Inf. and Applic. 49(2)(2015)93–119

[19] R. Jaberi, Twinless articulation points and some related problems, 2019, arxiv, abs/1912.11799

[20] W. D. Luigi, L. Georgiadis, G. F. Italiano, L. Laura, N. Parotsidis, 2-Connectivity in Directed Graphs, An Experimental Study. ALENEX. (2015) 173–187.

[21] T. Lengauer, R.E. Tarjan, A fast algorithm for finding dominators in a flowgraph. ACM Trans. Program. Lang. Syst. 1(1) (1979) 121–141.

[22] S. Raghavan, Twinless Strongly Connected Components, Perspectives in Operations Research, (2006) 285–304.

[23] D.J. Rose, R.E. Tarjan, Algorithmic Aspects of Vertex Elimination. STOC (1975) 245–254.

[24] J. Schmidt, A Simple Test on 2-Vertex- and 2-Edge-Connectivity, Information Processing Letters, 113 (7) (2013) 241—244

[25] R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1(2) (1972) 146–160