Binding of Fibronectin to α-Granule-deficient Platelets

MARK H. GINSBERG, JUNE D. WENCEL, JAMES G. WHITE,* and EDWARD F. PLOW
Department of Immunology and Rheumatology, Research Institute of Scripps Clinic, La Jolla, California 92037; and *Department of Pediatrics and Pathology, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55455

ABSTRACT Most of the proposed functions for fibronectin involve its interaction with cells, yet the molecular nature of cellular fibronectin binding site(s) has remained obscure. Thrombin induces saturable platelet binding sites for plasma fibronectin and concurrently stimulates surface expression of a number of platelet α-granule constituents including thrombospondin and fibrin which are known to interact with fibronectin. To test the hypothesis that these (or other α-granule proteins) mediate plasma fibronectin binding, we used platelets of patients with the Gray Platelet Syndrome. These cells were deficient in thrombospondin, β-thromboglobulin, platelet factor 4, fibronectin, and fibrinogen as measured in radioimmunoassay. They also had reduced von Willebrand factor content as judged by immunofluorescence. At plasma fibronectin inputs from 0.03 to 3 times the apparent kilodalton, these Gray platelets bound virtually identical quantities of fibronectin as normal cells. Thus, platelets containing 1,500 molecules of thrombospondin per platelet could bind more than 100,000 molecules of plasma fibronectin per cell following thrombin stimulation. These data preclude any simple model in which newly surface expressed thrombospondin (or other α-granule protein) functions as the major thrombin-stimulated plasma fibronectin receptor in this cell type.

Fibronectins have been implicated in a number of cellular interactions including adhesion to fibrin and to collagen, opsonization, and in the regulation of cell migration (1, 2). Each of these potential functions of fibronectin requires that it bind to cell surfaces. Although both glycolipids (3) and protein constituents (4) have been implicated as cellular fibronectin “receptors” the molecular identity of such “receptors” has remained obscure. We recently described inducible, specific, and saturable binding of soluble plasma fibronectin to thrombin-stimulated platelets. This interaction has an apparent dissociation constant of 3 × 10⁻⁷ M (5), approximately half the normal plasma fibronectin concentration (1), and 120,000 molecules per platelet are bound at saturation.

While thrombin supports this interaction, ADP and epinephrine, which do not induce secretion under our assay conditions, failed to support plasma fibronectin binding (5). In addition to secretion, thrombin also stimulates appearance of certain constituents of platelet α-granules on the cell surface (6–9). Thus, the possibility that a newly surface expressed α-granule constituent mediates plasma fibronectin attachment to thrombin-stimulated platelets merits consideration.

One candidate α-granule protein is platelet fibrinogen, or platelet fibrin, which is present at a level of approximately 100,000 molecules per platelet and is expressed on the cell surface following thrombin stimulation (8). Moreover, fibrinogen and fibrin interact with fibronectin, although the noncovalent interaction is of low affinity at 37°C (10). Nevertheless, platelet fibrinogen or fibrin appears unlikely to serve such a role, since we recently found that platelets from afibrinogenemic patients, containing <2% of the normal fibrinogen content, bind plasma fibronectin normally (11).

A second candidate, α-granule protein for such a function is thrombospondin (TSP). This protein, purified in native form by Lawler et al. (12), is a trimer of 150-kdalton subunits and approximately 40,000 molecules are present per platelet (13). Thus, 120,000 molecules of TSP subunit per platelet could accommodate fibronectin binding, in a 1:1 stoichiometry. TSP is expressed on the surface of thrombin-stimulated cells (6), and has been reported to bind both fibrinogen and fibronectin (14). Moreover, since TSP is synthesized by fibroblasts (15), endothelial cells (16, 17), and smooth muscle cells (15), and appears to be a matrix protein (15), it might support fibronectin interactions with cells other than platelets. Recent studies of Lahav et al. (18) have shown that when fibronectin derivatized with N-succinimidyl-3-[2-(nitro-4-azidophenyl)-2-aminoethylthio]proprionate is reacted with adherent platelets, photoactivation results in cross-linking to thrombospondin. Thus, TSP might serve as the newly expressed plasma fibronectin receptor on thrombin-stimulated platelets.

The Gray Platelet Syndrome is a mild bleeding diathesis in which platelets have a markedly reduced content of α-granules (19) and are deficient in a variety of α-granule proteins, including fibrinogen, platelet factor 4, β-thromboglobulin (19), fibronectin, and von Willebrand factor (20).
They also showed reduced staining of a band of the mobility of TSP on SDS PAGE (19). Our investigation's purpose was to test the potential role of TSP (or other α-granule proteins) in the binding of plasma fibronectin to thrombin-stimulated platelets by analysis of its interaction with platelets of patients with the Gray Platelet Syndrome.

MATERIALS AND METHODS

Patients: The two patients with Gray Platelet Syndrome are unrelated individuals who are followed at the University of Minnesota and have been extensively characterized in published literature (19). Their platelets have been reported to have <10% of the normal content of α-granules as assayed by morphometric techniques, and <10% of the normal content of platelet factor 4, β-thromboglobulin, and fibrinogen (19).

Platelet Isolation and Binding Assays: Anti-coagulated blood from the gray platelet patients and normals was simultaneously obtained in acid citrate dextrose anticoagulant at the University of Minnesota. Platelet-rich plasma was isolated by differential centrifugation as described (5), and the platelet-rich plasma was shipped Air Freight to San Diego, where washed platelets were prepared and studied within 10 h of venipuncture. The technique of platelet washing has been described in detail (5). Briefly, platelet pellets were centrifuged to obtain centrifugation of platelet-rich plasma, were resuspended in 2 ml of modified Tyrode's buffer, pH 6.5, containing 2 mM MgCl₂ and 0.1% BSA, and gel filtered on the column (2.5 x 10 cm) to Sepharose 2B equilibrated in the modified Tyrode's buffer at pH 7.4. In binding assays, 10⁶ platelets per milliliter were incubated in the presence of 2 μM purified human α-thrombin (gift of Dr. John Fenton, New York State Department of Health) and of various doses of ¹²⁵I-labeled fibronectin (purification and radiolabeling described in reference 5) for 30 min at 37°C, and triplicate 50-μl aliquots were layered onto 200 μl of 20% sucrose in modified Tyrode's buffer and centrifuged for 3 min in a Beckman microfuge. Tips were not reduced in the gray platelet patients, the comparative abundance of these proteins in gray platelet lysate may be due to plasma contamination. In any event, with respect to TSP, gray platelets were profoundly deficient in TSP, platelet factor 4, and β-thromboglobulin (content ~5% of normals) (Table I). Fibrinogen and fibronectin were also reduced but to a lesser degree (10% and 25% of normal, respectively). Since plasma fibrinogen (gray = 1,850 μg/ml; normal = 2,500 μg/ml) and fibronectin (gray = 418 μg/ml; normal = 418 μg/ml) were not reduced in the gray platelet patients, the comparative abundance of these proteins in gray platelet lysate may be due to plasma contamination. In any event, with respect to TSP, the gray platelets contained an average of 1,500 molecules per platelet, indicating reduced content of this protein.

We considered the possibility that TSP antigen (or other proteins) was destroyed in the gray platelets during lysis. To test this, we performed immunofluorescence analysis of the

Table I
Content of α-Granule Proteins in Normal and Gray Platelets

Normal platelet content (μg/10⁶ platelets)	Gray Platelet content (μg/10⁶ platelets)
TSP	24.6
Fibrinogen	88.3
Fibronectin	2.5
Platelet factor 4	9.5
β-TSP	18.0

1% Triton-X-100 lysates, derived from platelet suspensions containing 10⁶ platelets per milliliter, were assayed for each protein in radiimmunoassays as described in Materials and Methods. Results are the means of determinations on two different Gray Platelet patients and simultaneously prepared and assayed normal subjects.

RESULTS AND DISCUSSION

Reduction of α-Granule Constituents in Gray Platelets

To confirm that the platelets of the two patients studied were deficient in the relevant proteins at the time of study, lysates of their cells were analyzed by radioimmunoassay. The gray platelets were profoundly deficient in TSP, platelet factor 4, and β-thromboglobulin (content ~5% of normals) (Table I). Fibrinogen and fibronectin were also reduced but to a lesser degree (10% and 25% of normal, respectively). Since plasma fibrinogen (gray = 1,850 μg/ml; normal = 2,500 μg/ml) and fibronectin (gray = 418 μg/ml; normal = 418 μg/ml) were not reduced in the gray platelet patients, the comparative abundance of these proteins in gray platelet lysate may be due to plasma contamination. In any event, with respect to TSP, the gray platelets contained an average of 1,500 molecules per platelet, indicating reduced content of this protein.

We considered the possibility that TSP antigen (or other proteins) was destroyed in the gray platelets during lysis. To test this, we performed immunofluorescence analysis of the
unextracted cells and confirmed the deficiency of TSP and other α-granular proteins in the gray cells (not shown). In addition, the gray platelets did not stain for Factor VIII von Willebrand factor (Fig. 1).

Binding of Plasma Fibronectin to Thrombin-stimulated Gray Platelets

To evaluate their ability to bind plasma fibronectin, the gray platelets were incubated with various doses of 125I-fibronectin in the presence of 2 U of thrombin/ml, and bound ligand was separated from free by centrifugation through 20% sucrose. TSP-deficient platelets and normal platelets bound virtually identical quantities of fibronectin at input doses from 0.03 to 3 times the apparent kilodalton, 3 × 10⁻⁷ M (5) (Fig. 2).

Thus, platelets containing <5% of the normal TSP content bound plasma fibronectin as well as normal cells. This result suggests that if TSP participates in thrombin-stimulated plasma fibronectin binding, it is normally present in at least 20-fold excess of the quantity required for this function. Secondly, since platelets containing only 1,500 molecules of TSP per platelet could bind more than 100,000 molecules of plasma fibronectin per platelet, TSP must not be binding fibronectin to the platelet surface in a one-to-one stoichiometry. These data thus preclude any simple model in which surface expression of TSP accounts for plasma fibronectin binding to suspensions of thrombin-stimulated platelets.

We gratefully acknowledge the secretarial assistance of Ms. Betty Goddard.

Supported by National Institutes of Health grants HL-16411 and HL-28235. M. H. Ginsberg is recipient of RCDA AM-00720.

Received for publication 4 January 1983, and in revised form 28 March 1983.

REFERENCES

1. Mosher, D. F. 1980. Fibronectin. Progr. Hemostasis Thromb. 5:111-151.
2. Hynes, R. O., and K. Yamada. 1982. Fibronectins. Multifunctional modular glycoproteins. J. Cell Biol. 95:369-377.
3. Kleinman, H. K., G. R. Martin, and P. H. Fishman. 1979. Ganglioside inhibition of fibronectin mediated cell attachment. Proc. Natl. Acad. Sci. 76:3357-3371.
4. Gristinelli, F. 1980. Fibronectin receptor for cell-substratum adhesion: studies on the interaction of baby hamster kidney cells with latex beads coated by cold-insoluble globulin. J. Cell Biol. 86:104-112.
5. Plow, E. F., and M. H. Ginsberg. 1981. Specific and saturable binding of plasma fibronectin to thrombin-stimulated platelets. J. Biol. Chem. 256:9477-9482.
6. Ginsberg, M. H., R. G. Painter, J. Forsyth, C. Birdwell, and E. F. Plow. 1980. Thrombin increases expression of fibronectin antigen on the platelet surface. Proc. Natl. Acad. Sci. USA. 77:1049-1053.
7. George, J. N., R. Lyon, and R. K. Morgan. 1980. Membrane changes associated with platelet activation. J. Clin. Invest. 66:1-9.
8. Phillips, D. R., L. K. Jennings, and H. R. Prasanna. 1980. Ca²⁺-mediated association of glycoprotein G (thrombin-sensitive protein, thrombospondin) with human platelets. J. Biol. Chem. 255:1629-1632.
9. George, J. N., and A. R. Onofre. 1982. Human platelet surface binding of endogenous secreted factor VIII-von Willebrand Factor and Platelet Factor 4. Blood. 59:194-197.
10. Roussah, E., and A. Vakkeri. 1975. Interaction of soluble fibroblast surface antigen with fibrinogen and fibrin. J. Exp. Med. 141:497-501.
11. Ginsberg, M. H., J. Forsyth, A. Lightsey, J. Chediak, and E. F. Plow. 1983. Reduced surface expression and binding of fibronectin by thrombin-stimulated thrombasthenic platelets. J. Clin. Invest. In press.
12. Lawler, J. W., H. S. Slater, and J. E. Coligan. 1978. The isolation and characterization of a high molecular weight glycoprotein from human blood platelets. J. Biol. Chem. 253:8609-8616.
13. Saglio and H. S. Slater. 1982. Use of a radioimmunoassay to quantify thrombospondin. Blood. 59:162-166.
14. Leung, L., and R. Nachman. 1982. Complex formation of platelet thrombospondin with fibrinogen. J. Clin. Invest. 70:342-349.
15. Rauzi, G. S. Munro, D. A. Brown, and R. L. Bornstein. 1982. Thrombospondin: synthesis and secretion by cells in culture. J. Cell Biol. 93:351-354.
16. Mosher, D. F., M. J. Doyle, and E. A. Jaffe. 1982. Synthesis and secretion of thrombospondin by cultured human endothelial cells. J. Biol. Chem. 258:11072-11078.
17. McPherson, J., H. Sage, and P. Bornstein. 1981. Isolation and characterization of a glycoprotein secreted by aortic endothelial cells in culture. J. Biol. Chem. 256:11330-11336.
18. Lahav, J., M. A. Schwartz, and R. O. Hynes. 1982. Analysis of platelet adhesion with a radiolabeled cell-surface protein: interaction of thrombospondin with fibronectin and collagen. Cell. 31:253-262.
19. Gerrard, J. D., R. Phillips, G. M. Rao, E. F. Plow, D. A. Walz, R. Ross, L. Harker, and J. G. White. 1980. Biochemical studies of two patients with the gray platelet syndrome. J. Clin. Invest. 66:102-108.
20. Norden, A., T. J. Kuncicki, D. Dupuis, C. Sorra, and J. P. Caen. 1982. Specific protein and glycoprotein deficiencies in platelets isolated from 2 patients with the gray platelet syndrome. Blood. 59:709-718.
21. Ginsberg, M. H., R. Hoskin, P. Sigrist, and R. G. Painter. 1979. Purification of a heparin-neutralizing protein from rabbit platelets and its homology with human platelet factor 4. J. Biol. Chem. 254:13263-13271.
22. Plow, E. F., and T. S. Edgington. 1975. Unique immunological features and intracellular stability of platelet fibrinogen. J. Biol. Chem. 250:7229-7242.
23. Plow, E. F., C. Birdwell, and M. H. Ginsberg. 1979. The detection and quantitation of platelet-associated fibronectin antigen. J. Clin. Invest. 63:540-543.
24. Ginsberg, M. H., L. Taylor, and R. G. Painter. 1980. The mechanism of thrombin-induced platelet factor 4 secretion. Blood. 55:661-670.
25. Wescott, J., E. F. Plow, T. S. Zimmerman, and M. H. Ginsberg. 1982. Adhesive glycoproteins reach the platelet surface by a common mechanism. Circulation. 66:780a. (Abstr.)