An Overview of Recent Developments in Hetero-Catalytic Conversion of Cellulosic Biomass

Mohamed Rashid Ahmed-Haras 1, Nhol Kao 1,* , Md. Sakinul Islam 1, Liam Ward 1

1 Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.

ARTICLE INFO

Received: 13 February 2020
Received in revised form: 2 June 2020
Available Online: 9 June 2020

Keywords:
Nanocellulose materials
Cellulosic biomass
Acid hydrolysis
Heterogeneous-catalytic production

ABSTRACT

In recent years, research activities involved in the production of nanocellulosic materials have grown substantially, rapidly stimulating the development of innovative production techniques. These materials are chemically extracted by acid-catalyzed Hydrolysis of the renewable and widely available cellulosic biomass. In this regard, sulfuric acid-catalyzed Hydrolysis of cellulosic biomass is a commonly known method for the production of nanostructured cellulose. However, this method may result in many disadvantages, including short catalyst-lifetime, corrosive to the reactor materials and managing the spent sulfuric acid resulted from the production process. This dictates the implementation of an eco-industrial alternative for the catalytic production of nanocrystalline cellulose (NCC). A viable and practical alternative is the application of heterogeneous (solid acids) catalysts, which can be more conducive in providing favorable platforms for efficient cellulose hydrolysis. This review highlights the current production methods of nanocrystalline cellulose. Further, recent literature on the heterogeneous-catalytic conversion of cellulosic biomass is briefly discussed. The limitations and disadvantages of these techniques are also described.

*Corresponding author: Nhol Kao, Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia, E-mail: nhol.kao@rmit.edu.au Phone No.: +61 3 9925 3257, Fax No.: +61 3 9639 0138
1. Introduction

Nanostructured cellulose (nanocrystalline cellulose, NCC) has unique chemical, physical and optical characteristics, making it a beneficial and highly in-demand nanomaterial as a value-adding additive and reinforcing agent. These promising properties, together with its low cost and sustainability, have attracted growing interest and wide-opened its potential applicability as an effective nano-additive and nanofillers in cosmetics, polymer composites, functional materials and thermoplastic materials (Robles et al., 2017; Tan et al., 2019). The current NCC production are generally carried out by either chemical conversion, enzymatic conversion, or mechanical conversion, with the chemical conversion being the most widely used method (Thomas et al., 2018). Concentrated liquid acids mainly catalyse the recent chemical conversion of cellulose biomass. However, this process generates a large volume of spent liquid acid or acidic waste, which is corrosive to the reactor and may result in adverse environmental impact. Handling and recycling those acidic wastes may incur additional production costs and required energy consumption (Xiu et al., 2019). Some industrial pilot plants had applied ultrafiltration and purification processes for recycling the spent liquid acid, which may also significantly add to the costs of existing NCCs production. The introduction of heterogeneous acid catalysts might greatly minimize such negative aspects.

On the contrary, heterogeneous solid acid catalysts are in practical terms more beneficial compared to homogeneous liquid acid catalysts in accordance with better catalyst activity, longer catalyst-lifetime and efficient reusability (Guo et al., 2012). The solid acid catalysts are also more conducive for large scale production, economic viability. More preferably, such catalysts may minimize environmental risks associated with the production of micro and nanostructured cellulose materials. By definition, the solid acid catalyst is a solid substance that has acidic characteristics on its surface, allowing it to function as an acidic catalyst. Solid acids can be classified as either homogeneous or heterogeneous, based upon its solubility in any reaction medium. Homogeneous solid acids come in solid form, but they are soluble in the reaction medium, while the heterogeneous acids are mostly insoluble. Heterogeneous solid acids are industrially, economically and environmentally favorable for industrial-scale production in terms of processing residuals from cellulose depolymerization (Gaurav et al., 2016; Hara, 2010). Furthermore, many studies that have used heterogeneous acid catalysts for chemical hydrolysis of cellulose-based materials were focused more on bioenergy production (bioethanol and biodiesel). Such studies used cellulose multi-step degradation and often followed by enzymatic Hydrolysis, as highlighted in Table 2. This overview highlights the recent development in the heterogeneous catalysis of cellulose biomass. It also outlines the main aspects of utilizing the potentials of this technique for the potential production of NCC.

2. Cellulosic Biomass

Cellulosic biomass, a complex natural material that often exhibits structural heterogeneity, is present in cell walls of most woody and non-woody plants. This structural and compositional heterogeneity, in the cellular structure, can be attributed to the presence of carbohydrate biopolymers (cellulose and hemicellulose) and aromatic biopolymer lignin (Y. F. Huang et al., 2016). The carbohydrate biopolymers and lignin are bonded together to form the lignin-carbohydrate matrix, i.e., lignocellulose. Cellulosic biomass can be considered an abundant, inexpensive and renewable resource with an increasing trend in becoming the most promising feedstock essential for many modern industries (Anwar et al., 2014). In general, cellulosic biomass is widely acknowledged as a significant raw material for various applications such as eco-friendly biofuels, chemicals, biomaterials and many other value-added products (Watkins et al., 2015). This biomass is primarily generated as a waste during agricultural activities, or from the forest as forestry residues. Among these, agro-based waste quantities, rice husk (RH), or rice hull, which is produced in large quantities as a by-product of rice (paddy) plantations and processing. Another agro-based cellulosic biomass material is cotton linter, a by-product of the cotton and textile industry (Dhaliwal, 2019).

2.1 Rice husk

Rice is a cereal crop that is cultivated worldwide as an essential staple source of food. As one of the world's most consumable agriculture crops, rice is considered to play a significant role in globe's food security (Gross, 2013). The food and agricultural organization of the United Nations (FAO), have determined that the global rice plantation area covers 160.8 million hectares containing 496 million tons of milled rice (Wu Leung, 1962).

![Figure 1: Rice grain composition](image)

The Australian rice industry has the capacity to produce more than 1 million tonnes of rice per year (RAG, 2016). Moreover, Australia has one of the world's highest yields of rice per hectare (10 t/ha) (Mushtaq, 2016). Analysis of the composition of a rice grain, as shown in Figure 1, reveals that while the most significant proportion (70%) is associated with white rice (endosperm) (Gul et al., 2015), a substantial portion is by-products such as 20% rice husk, 8% rice bran and 2% rice germ (Van Hoed et al., 2006). Generally, the main components (Figure 2) of RH are cellulose (35%), hemicellulose (25%) and lignin (18%) (Gupta & Balomajumder, 2016; Shukla et al., 2013).
Cellulose consists of both cellulose and hemicellulose, which depends on the species. Besides, cellulose I is often found in woody biomass, which has cellulose content less than 50% compared to the woody biomass. In contrast, the CL cellulose content accounts for more than 90% of its total composition (Estevinho & Rocha, 2018). However, few researchers have investigated the feasibility of extracting microcrystalline cellulose (MCC) from RH and hence producing spherical nanocrystalline cellulose (SNCC) as the main product of RH processing.

2.2 Cotton linter
Cotton (Gossypium Hirsutum), more specifically its linter, is considered to be an important natural source of cellulosic raw material. By definition, Cotton linter (CL) is the resulting short fibres that generate as a by-product of the textile industry and separated from cotton seeds by delinting machines, during the ginning processes. The quantity of CL produced globally is around 2.5 million metric tons, considering the 42 million metric tons of lint produced in 2010, making it a widely available, low cost, renewable and biodegradable unique raw material for many manufacturing industries, for instance, carbon fiber (Bezerra et al., 2017; Dhaliwal, 2019; Zhou et al., 2016). In addition to lignocellulosic biomass, CL is considered to be an alternative cellulosic raw material. In contrast, the CL cellulose content accounts for more than 90% of its total composition (Estevinho & Rocha, 2018), compared to the woody biomass, which has cellulose content less than 50% (Bharimalla et al., 2017; Ververis et al., 2004).

Noteworthy, since CL consists principally of cellulose, and hence it has no hemicellulose and lignin present, which are usually associated with cellulose and working as binding and structural materials (Palme et al., 2016). Unlike the lignocellulosic biomass, which has considerable amounts of lignin and hemicellulose, CL does not require excessive delignification and bleaching processes. Thus, it may reduce the time and production costs associated with processing cellulosic materials containing large amounts of lignin and hemicellulose. CL is therefore has a promising cost-effective candidate for the production of cellulose-based materials such as alpha-cellulose, methylcellulose, cellulose acetate, microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC) and nanocrystalline cellulose (NCC). Together with RH as raw material, MCC generated from CL was another focus of this study, as a precursor for potential NCC production via hetero-catalytic approach.

3. Cellulose and Microcrystalline Cellulose
Cellulose is the most abundant biopolymer on earth and it is the major component of plant cell walls. As a lignocellulosic renewable material, the structure of cellulosic macromolecular consists of long chains of repeatedly linked glucose molecules [Figure 3; (Tang et al., 2014)] which are linked together by β-(1→4) glycosidic bonds (C. Zhang et al., 2013). Cellulose consists of both amorphous (non-crystalline) and crystalline regions (Vendula & Miloslav, 2013). Cellulose by nature, as illustrated in Figure 3, is associated with hemicellulose and attached in the lignin-carbohydrate matrix. In consequence, to effectively extract cellulose from lignocellulosic materials, lignin and hemicellulose have to be separated and removed by a two-stage chemical process, i.e., alkali extraction (delignification) and bleaching (whitening) (Synamani & Suryani, 2015). Once extracted, cellulose can be used as the precursor (intermediate material) for NCC production. The none crystalline cellulose regions can be transformed into semi-crystalline or crystalline regions. Upon the improvement of cellulose crystallinity, while converted to its micro/nanostructured materials (MCC, NFC and NCC), cellulose amorphous region can be decreased or removed by applying acidic or enzymatic Hydrolysis.

The polymorphism occurs in the cellulose crystalline structure, whereby it can exist at different crystalline forms such as cellulose I, II, III, and IV (Rongpipi et al., 2019; Sunday Samuel & Mathew Adefusika, 2019; Wada et al., 2004). The formation degree of these different cellulose crystal structures typically depends on the intermolecular interactions, molecular orientations and chain arrangements (George & Sabapathi, 2015). From these cellulose crystallographic forms, cellulose I and cellulose II are the most widely observed cellulosic crystalline forms, as shown in Figure 4 (Mukarakate et al., 2016; Nam et al., 2016). Besides, cellulose I is often referred to as native cellulose and it exists as a parallel-chain molecular structure. In contrast, cellulose II is more thermodynamically stable with an antiparallel-chain molecular arrangement. Correspondingly, cellulose II is mostly regenerated from cellulose I via alkaline mercerization or less often by ionic liquids biomass treatment (Xi et al., 2013). However, few researchers have mentioned the co-existence of cellulosic crystalline mixtures in the extracted cellulose and/or cellulose derivatives (Ahmed-Haras et al., 2020; Yue et al., 2015).
Another focus of this study is to investigate the development of MCC and NCC containing both cellulose I and cellulose II and porous microparticles, offering a novel class of cellulosic-based materials. The presence of these two different crystalline forms within the resultant structure may enhance thermal and mechanical properties and overall durability, widening their potential industrial applications. Besides, the development of porous microparticles has drawn great interest for their potential applications as drug carriers, absorbents, catalysts and biosensors (Cai et al., 2013; Gao et al., 2015). Developing MCC with structural porosity may potentially further improve its capability and functionality in many scientific and industrial sectors.

4. Nanocrystalline Cellulose

Nanocrystalline cellulose (NCC) is a term used when referring to nano-sized cellulose or cellulose on the nano-dimensional scale. Besides, NCC can be considered to be cellulose in its highest crystallinity form or its nanocrystalline domain, as shown in Figure 5.

NCC is classed as a renewable nanomaterial with unique properties compared with its cellulose counterpart that has great potential applications such as textiles, carbon nanotubes, nanocomposites, photonics, polymer nanocomposites, cosmetics, pharmaceuticals and in particular as value-added products for materials development (Peng et al., 2011). Nano-scaled cellulose has gained growing prominence along with rapidly increasing research interests, as it can be derived from bio-based inexhaustible raw materials.

The NCC is generally extracted from the widely available biopolymer (cellulose) via mechanical, biological, or chemical means (Isogai, 2013; Mishra et al., 2018). The extraction process involves isolating cellulose crystalline domains and removing most of the non-crystalline (amorphous) domains. Nano-cellulosic materials typically have much of cellulose yet with beneficial aspects over their basic material such as lightweight, high strength barrier characteristics and optical properties (Klemm et al., 2018; Sharma et al., 2019). Further benefits can be achieved through adjustment of the cellulose chains to form highly ordered domains, which can be subsequently extracted as nanoparticles, exhibiting unique characteristics due to their nano-scale size and large surface area (Foster et al., 2018; Shak et al., 2018).

The NCC individual nanoparticles can be produced with different morphological forms. The most commonly reported NCC shapes are needle-like or rod-like forms, where the nanostructured particles exhibit elongated shaped morphologies (Morais et al., 2013; Oun & Rhim, 2015; Theivasanthy et al., 2018). NCC can also exist as sphere-shaped nanocrystals (else known as elliptical nanocellulose), but to a lesser extent. As such, not many reported studies had been conducted on producing both monodispersed and polydispersed spherical nanocellulose form the wide spectrum of cellulosic-based starting materials. The monodisperse nanoparticles have a major advantage compared with the polydispersed...
nanoparticles, which may be attributable to the consistency and uniform properties of individual nanoparticles, making the property of whole nanoparticles controllable and essential for applications such as pharmacy and drug delivery (Hwang et al., 2012; Robertson et al., 2016). That being so, none of these research studies, including in the aforementioned studies, to the best of our knowledge, have reported in the production of spherical nano-sized cellulose (SNCC) from cotton linter-based MCC and rice husk-based MCC via a single-step heterogeneous catalysis process. The spherical morphology and structure of nanocelluloses may enhance their industrial applicabilities (Zheng et al., 2019), and thus making them excellent candidates as adsorbents for heavy metal removal from wastewater (Ram et al., 2018), nucleation agent for polymer nanocomposites (Lu et al., 2016), drug delivery (Evdokimova et al., 2018) and aerogels (X. Wang et al., 2018).

Figure 5 Structure of nanocrystalline cellulose, reproduced with permission (Börjesson & Westman, 2015)

5. Nanocrystalline Cellulose Production Methods

The increasing demands from today’s society for nano-scaled cellulosic materials over the last few decades has stimulated the development of both emerging and current production techniques. Thereon, cellulosic materials can be scaled-down into their nano-dimensional materials through one of three major production methods, namely acid-catalyzed Hydrolysis (chemical process), enzyme-catalyzed Hydrolysis (biological process) and using a high-pressure homogenization process (HPH). Table 1 shows the advantages and limitations of each of these methods from the reported literature. In particular, attention has focussed on the use of strong mineral (commonly sulphuric) acids for Hydrolysis of cellulose-based and cellulose-containing materials. However, concentrated mineral acids are responsible for corrosion issues associated with production equipment. In addition, their disposal has caused environmental concerns (Ji et al., 2019). While these problems can be negated through Enzymatic Hydrolysis of cellulosic materials, whereby enzymes break down the cellulose glycosidic and intermolecular bonds. Of major drawbacks are the lengthy hydrolysis times and low production yield (Y. Huang & Chen, 2013; Jeremic et al., 2019). Such hurdles might hinder potential commercialization and large scale production of nanocellulose derived using this process.

The major disadvantage of the HPH method is large energy consumption (Phanthong et al., 2018). Despite the problems associated with corrosion of the process equipment and environmental concerns, acid-catalyzed Hydrolysis is more preferable and therefore widely used for shorter operation times and less energy consumption. Notwithstanding, the introduction of less corrosive and recoverable acidic catalysts, in a solid form, may largely contribute to a further reduction in energy consumption and costs associated with equipment maintenance as well as enhancing environmental sustainability. Therefore, it would be desirable to investigate the feasibility of applying a recoverable heterogeneous acid catalyst for SNCC production.
6. Acid-Catalyzed Production of NCC

6.1 Homogeneous Acid-Catalyzed Production of NCC

Previous studies have, in large measure, focused on the conversion of cellulose into its nano-dimensional materials (NCC and NFC) by liquid acid-catalyzed (homogeneous catalyst) hydrolysis methods. A range of homogeneous liquid acids has been used such as sulphuric acid (Tonoli et al., 2012), hydrochloric acid (Yu et al., 2013), formic acid (Li et al., 2015) and phosphoric acid (Frost & Johan Foster, 2020). By way of contrast and irrespective of their effectiveness in the catalytic downsizing of cellulose, most of the homogeneous acids are irretrievable, circumscribed reusability and hence considered environmentally unsustainable (Chen et al., 2016; W. Liu et al., 2019; S. Wang & Tian, 2016). Other industrial concerns are mainly related to the reaction vessels, particularly; the high corrosion rates of processing equipment. The excessive amounts of the acid (above 50 wt %) required for the NCC production, but yet with short catalyst-life (Z. Zhang & Zhao, 2009). As a result, the current processes produced spent sulphuric acid in large quantities, which is corrosive to the reactor and led to a negative environmental impact once being disposed. Despite that, there are current industrial production of NCC by CelluForce, InnoTech Alberta, FPInnovations and USDA's Forest Products Lab (Klemm et al., 2018; Rudie, 2017). Most of NCC large scale production had conducted in both pilot plants and batch reactors, using sulfuric acid-catalyzed Hydrolysis of wood-based pulp. These industrial approaches had applied different membrane filtration and recycling processes for the avoidance of huge management problems, generated from the spent sulphuric acid (Rudie, 2017). Unfortunately, such approaches may significantly add to the processing time and costs of the existing NCCs production. In this respect, solid acids have numerous and remarkable advantages over liquid acids regarding catalyst activity, recovery, reusability, and catalyst lifetime (Guo et al., 2012).

6.2 Heterogeneous Acid-Catalyzed Hydrolysis of Cellulose

In recent years, there has been a substantial increase in research activities associated with cellulose hydrolytic conversion via heterogeneous solid acid catalysts, as summarized in Table 2. Certain aspects of these studies include catalytic Hydrolysis of cellulose into glucose and oligosaccharides using magnetic nanoparticulate (Fe$_3$O$_4$@SiO$_2$-SO$_4$H) solid acid catalyst, aimed to produce fermentable sugars (glucose and oligosaccharides) for biofuel production (Xiong et al., 2014). Additionally, a magnetic Fe$_3$O$_4$ core encapsulated in a sulfonated carbon shell (Fe$_3$O$_4$@C-SO$_3$H) showed good catalytic activity as a recyclable acidic catalyst for cellulose hydrolysis (C. Zhang et al., 2013). Carbon-Fe$_2$O$_3$SO$_4$ nanoparticles have used as a readily recoverable and reusable magnetic nanocatalyst for producing glucose from microcrystalline cellulose (Yamaguchi et al., 2016). A magnetic silica-supported solid acid catalyst (Fe$_3$O$_4$@SBA- SO$_4$H) has used for cellulose conversion into a 50% glucose production yield (Lai et al., 2011). Besides, in an aqueous medium and over a magnetic carbon-based solid acid (MMCSA) catalyst, corn cob has depolymerized in a one-step reaction into 71% xylose with cellulose retention of 91% in the residue (Qi et al., 2019). For these processes and irrespective to their efficient catalytic conversion of cellulose, the magnetism followed by sulfonation of a carbon-based material requires a long operating time and good handling of the spent sulfuric acid used in catalyst preparation.

Furthermore, cellulose has converted with high yield (69%) to levulinic acid using Amberlyst 70 (acidic resin) as a heterogeneous acid catalyst (Alonso et al., 2013). The conversion of cellulose into glucose using
another acidic resin (Amberlyst 15) has successfully carried out with a production yield of 75% (Ishida et al., 2014). Cellulose has also depolymerized using zirconium dioxide (ZrO$_2$) to produce levulinic acid with a 53% production yield (Joshi et al., 2014). Levulinic acid (LA) is generated from cellulose decomposition and it is considered as a potential precursor for the production of chemicals and biofuel (Serrano-Ruiz et al., 2016). Sulfated Zirconia has also used for the hydrolytic conversion of cellulosic materials into glucose, which was later utilized as a biofuel production feedstock (Kristiani et al., 2015). Additionally, sulfonated activated-carbon (AC-SO$_3$H) catalyst has used in the catalytic hydrothermal reaction of cellulosic material to produce glucose via heterogeneous Hydrolysis (Onda et al., 2009). The resin-activated carbon has also been used to hydrolyze cellulose into butyl levulinate with a 31% yield (Liang et al., 2019). The above-cited heterogeneous depolymerization and downgrading of cellulosic-based materials have mostly conducted using high processing temperature (120 °C or above) with uses of organic solvents and ionic liquids as reaction medium. However, these techniques may result in the disadvantages of higher energy consumption and insufficient separation of the final products.

Catalyst	Raw Material	Final Product	Production Yield (%)	Targeted Application	Reference
Fe₂O₃@SiO₂-SO₃H	Cellulose	Glucose	73	Biofuel	Xiong et al., 2014
Fe₂O₃@C-SO₃H	Cellulose	Glucose	51	Biofuel	C. Zhang et al., 2013
Carbon-Fe₂(SO₄)₃/γ-FeO₃	Cellulose	Glucose	18-20	Biofuel Chemicals	Yamaguchi et al., 2016
Fe₂O₃-SBA-SO₃H	Cellulose	Glucose	50	Biofuel	Lai et al., 2011
MMCSA	Cellulosic Materials	Xylose	71	Biofuel	Qi et al., 2019
Amberlyst 70	Cellulose	Levulinic Acid	69	Biofuel Chemicals	Alonso et al., 2013
Amberlyst-15	Cellulose	Glucose	75	Biofuel Chemicals	Ishida et al., 2014
Sulfated Zirconia	Cellulosic Materials	Glucose	53	Biofuel	Kristiania et al., 2015
Sulfonated Activated-Carbon	Cellulose	Glucose	40	Chemical Feedstock	Onda et al., 2009
Resin-Activated Carbon	Cellulose	Butyl Levulinate	31	Chemical Feedstock	Liang et al., 2019
ZrO₂	Cellulose	Levulinic Acid	53	Biofuel	Joshi et al., 2014
H₃PW₁₂O₄₀	Cellulose	Glucose	50	Biofuel	Tian et al., 2010
Cs₁H₃PW₁₂O₄₀	Cellulose	Glucose	83	Biofuel	Tian et al., 2011
H₃BW₁₂O₄₀	Cellulose	Glucose	77	Biofuel	Ogasawara et al., 2011
Nafion-SAC-13	Cellulose	Levulinic Acid	72	Biofuel	Potvin et al., 2011
Ru/HZSM-5	Cellulose	Hexitols	39	Biofuel	H. Wang et al., 2015
Bimodal-HZ-5	Microcrystalline Cellulose	5-Hydroxymethylfurural	46	Biofuel	Nandiwale et al., 2014
LiNbMoO₆	Cellulose	Hexanes	72	Biofuel	Y. Liu et al., 2015

Heteropoly acids (HPA) have applied as a solid acid catalyst for the hydrolytic conversion of cellulose. In detail, the heteropoly acid H₃PW₁₂O₄₀ has used as a catalyst for the Hydrolysis of cellulose to glucose with a 50% yield (Fu et al., 2015), although later studies revealed that the yield has increased to 83% (Tian et al., 2011). Similarly, highly negatively charged heteropoly acid (H₃BW₁₂O₄₀) hydrolytically catalyzed the conversion of cellulose to glucose with a 77% yield (Ogasawara et al., 2011). Furthermore, Nafion-SAC-13 has used for glucose production, which was further converted to levulinic acid (72% yield) using a carbohydrate-based hydrolytic
conversion process (Potvin et al., 2011). Hydrolytic hydrogenation of cellulose to hextols (39% yield) has efficiently catalyzed using Ruthenium (Ru) metal loaded on mesoporous zeolite (HZSM-5) catalyst (H. Wang et al., 2015). In addition, microcrystalline cellulose (microsized cellulose) was hydrolyzed over Bimodal-HZ-5 zeolite; the hydrolytic conversion resulted in a 46% yield of 5-Hydroxymethylfurfural (Nandiwale et al., 2014). Y. Liu et al. (2015) have used a layered compound such as LiNbMoO₄ in hydrolysis-hydrogenation of cellulose to form hexanes with 72% production yield. As already been stated, achieving an efficient separation and quantification of the liquid hydrolysis products might potentially have identified as time and energy-consuming techniques. Besides, most of these studies focused on the production of glucose for biofuel productions. Hence, none of those cited studies have reported a direct heterogeneous catalysis production of nanostructured cellulose materials.

6.3 Methods of Assisted Heterogeneous Catalytic Hydrolysis of Cellulose

Table 3 presents a summary of key papers on the use of heterogeneous catalysts, referred to as Catalytic-System 1, 2 and 3, for simplicity, for cellulose hydrolysis. All reported works had used heterogeneous catalysts assisted by methods that have already been efficiently proven for cellulose hydrolysis, to include; mineral acids, ultrasonication and hydrothermal conditions. However, by associating heterogeneous cellulose hydrolysis with the conventionally used methods, many shortcomings of the traditional methods possibly could have concurred.

The proposed approach describes the production of spherical NCC via the cellulose-microwaves Hydrolysis using heterogeneous acid alone and without applying any preparation methods of assistance, such as ultrasonication, hydrothermal reaction conditions, microwave radiation nor mineral acids. Furthermore, most of the catalysts reported in Table 3 are not commercially available, as they are laboratory synthesized. Consequently, this may limit their technical and economic feasibility for future large-scale cellulose hydrolysis.

The main advantage which makes this proposed approach better, faster, applicable and cheaper is that cellulose hydrolysis can be conducted in a single-step reaction using only one heterogeneous catalyst. This process could be carried out under mild reaction conditions, while multi-step reactions at high temperature and pressure (hydrothermal, high energy consumption) have been used in the previously reported studies.

Furthermore, their long production time, high energy consumption and commercially unavailable catalysts may negatively be reflected in the manufacturing costs. In addition, none of the studies reported the production of cellulose nanospheres as a final product. Thus, the proposed method presents the production of renewable, high yield and thermally stable cellulose nanocrystals.

Table 3: Summary of solid acid catalysts assisted by mineral acids for cellulose hydrolysis

Catalyst	Reaction Conditions	Final Product	Production Yield (%)	Targeted Application	Reference
Catalytic-System [1]: Ru/AC in the presence of mineral acid (hydrochloric acid; HCl)	Hydrothermal reaction at about 180 °C for 20 min.	Soluble sugars; Glucose (88%) then converted by hydrogenation in the presence of hydrogen gas to 90 % Sorbitol	Hydrolysis: 88 % glucose Hydrogenation: 90 % Sorbitol	Not Mentioned	Shrottri et al., 2018
Catalytic-System [2]: Zeolite beta modified with alkali earth metals in a reaction medium contained hydrochloric acid (HCl)	Hydrothermal microwave-assisted at 210 °C for 30 min	Levulinic acid (LA), Glucose (G), 5-(hydroxymethyl) furfural (5-HMF), acetic acid (AA)	LA: 22.3 % G: 12.1 % 5-HMF: 14.6 % AA: 15.2 %	Chemical Feedstock	González-Rivera et al., 2014
Catalytic-System [3]: Sulfonated activated carbon fibres derived from lignin-based activated carbon	Hydrothermal reaction at 150 °C for 24 h	Glucose (G) and Cellulose Nanofibrils (CNF)	G: 64 % CNF: 8 %	Biofuel	Hu et al., 2015
List of heterogeneous catalysts assisted either the presence of mineral acids or conducted under ultrasonication	Hydrothermal and Under ultrasonication treatments	Mostly glucose with only two studies reported the production of nanofibrillated cellulose	Varied	Chemical feedstock	Lee et al., 2014
7. Conclusions

The nanocellulosic materials have gained a growing prominence with rapidly increasing research interests. In addition, these materials are particularly derived from bio-based inexhaustible raw materials. Among these, NCC which is a renewable nanomaterial with unique properties such as adaptable surface chemistry, biocompatibility, nontoxic and physicochemical and mechanical properties. This making NCC possess great potentials for diverse applications such as polymer nanocomposites, 3D printing materials, carbon nanotubes, photoelectronics, membrane, cosmetics, pharmaceuticals and most notably as value-added products for materials development (Peng et al., 2011; Shankaran, 2018). Those unique properties increased global demands aimed at expanding and developing NCC productions.

The sulfuric acid-catalyzed Hydrolysis of cellulose-based materials is the most commonly used method of NCC production. As yet, this method has greatly disadvantaged from the used concentrated acid, and a large quantity of the spent acid resulted from the production process. Refining and reusing the process effluents may not be cost-effective as well as energy-efficient. Recent hydrolysis techniques of cellulose materials were involved in the application of heterogeneous catalysis with different types of heterogeneous acid catalysts. However, these techniques have mainly focused on biofuel and chemical productions, with major challenges and limitations are the time-consuming and insufficient separation of the final product. On the contrary, the introduction of heterogeneous solid acids, as an industrially viable green alternative, for the production of nanocellulosic materials may offer cost-effective production approaches.

References

[1] Ahmed-Haras, M. R., Kao, N., Ward, L., & Islam, M. S. (2020). Insights into the production and physicochemical properties of oxycellulose microcrystalline with coexisting crystalline forms. International Journal of Biological Macromolecules, 146, 150–161. https://doi.org/10.1016/j.ijbiomac.2019.12.083

[2] Alonso, D. M., Gallo, J. M. R., Mellmer, M. A., Wettstein, S. G., & Dumesic, J. A. (2013). Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catalysis Science and Technology, 3(4), 927–931. https://doi.org/10.1039/c2cy20689g

[3] Anwar, Z., Gulfras, M., & Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bioenergy: A brief review. Journal of Radiation Research and Applied Sciences, 7(2), 163–173. https://doi.org/10.1016/j.jrras.2014.02.003

[4] Benini, K. C. C. de C., Voorwald, H. J. C., Cioffi, M. O. H., Rezende, M. C., & Arantes, V. (2018). Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydrate Polymers, 192, 337–346. https://doi.org/10.1016/j.carbpol.2018.03.055

[5] Bezerra, E. B., França, D. C., De Souza Morais, D. D., De Freitas Rosa, M., Morais, J. P. S., Araújo, E. M., & Wellen, R. M. R. (2017). Processing and properties of PCL/Cotton linter compounds. Materials Research, 20(2), 317–325. https://doi.org/10.1590/1980-5373-MR-2016-0084

[6] Bharimala, A. K., Deshmukh, S. P., Patil, P. G., & Vigneshwaran, N. (2017). Micro/nano-fibrillated cellulose from cotton linters as strength additive in unbleached kraft paper: Experimental, semi-empirical, and mechanistic studies. BioResources, 12(3), 5682–5696. https://doi.org/10.15376/biores.12.3.5682-5696

[7] Bodie, A. R., Micciche, A. C., Atungulu, G. G., Rothrock, M. J., & Ricke, S. C. (2019). Current Trends of Rice Milling Byproducts for Agricultural Applications and Alternative Food Production Systems. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3339/fsufs.2019.00047

[8] Börjesson, M., & Westman, G. (2015). Crystalline nanocellulose—preparation, modification, and properties. Cellulose-Fundamental Aspects and Current Trends, 159–191.

[9] Cai, Y., Chen, Y., Hong, X., Liu, Z., & Yuan, W. (2013). Porous microsphere and its applications. International Journal of Nanomedicine, 8, 1111–1120. https://doi.org/10.2147/IJN.S41271

[10] Camacho, F., González-Tello, P., Jurado, E., & Robles, A. (1996). Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. Journal of Chemical Technology and Biotechnology, 67(4), 350–356. https://doi.org/10.1002/jctb.466019961267.4.350[;AI-D:CTB564-3.0.CO;2-9

[11] Chen, L., Zhu, Y. J., Baez, C., Ktín, P., & Elder, T. (2016). Highly thermal-stable and functional cellulose nanocrystals and nanoﬁlbers produced using fully recyclable organic acids. Green Chemistry, 18(13), 3835–3843. https://doi.org/10.1039/c6gc00687f

[12] Dhaliwal, J. S. (2019). Natural Fibers: Applications. In Generation, Development and Modifications of Natural Fibers. IntechOpen.

[13] Estevínho, B. N., & Rocha, F. (2018). Application of Biopolymers in Microencapsulation Processes. In Biopolymers for Food Design (pp. 191–222). Elsevier. https://doi.org/10.1016/B978-0-12-811449-0.00007-4

[14] Evdokimova, O. L., Svensson, F. G., Agafonov, A. V., Håkansson, S., Seisenbaeva, G. A., & Kessler, V. G. (2018). Hybrid drug delivery patches based on spherical cellulose nanocrystals and colloidal titania—synthesis and antibacterial properties. Nanomaterials, 8(4), 228. https://doi.org/10.3390/nano8040228

[15] Foster, E. J., Moon, R. J., Agarwal, U. P., Bortner, M. J., Bras, J., Camarero-Espinosa, S., Chan, K. J., Clift, M. J. D., Cranston, E. D., Eichhorn, S. J., Fox, D. M., Hamad, W. Y., Heux, L., Jean, B., Korey, M., Nieh, W., Ong, K. J., Reid, M. S., Renneckar, S., ... Youngblood, J. (2018). Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 47(8), 2609–2679. https://doi.org/10.1039/c6cs01089j

[16] Frost, B. A., & Johan Foster, E. (2020). Isolation of thermally stable cellulose nanocrystals from spent coffee grounds via phosphoric acid hydrolysis. Journal of Renewable Materials, 8(2), 197–203. https://doi.org/10.3362/firm.2020.07940

[17] Fu, S., Chu, J., Chen, X., Li, W., & Song, Y. F. (2015). Well-Dispersed H3PW12O40/H4SiW12O40 Nanoparticles on Mesoporous Polymer for Highly Efficient Acid-Catalyzed Reactions. Industrial and Engineering Chemistry Research, 54(46), 11534–11542. https://doi.org/10.1021/acs.iecr.5b03385

[18] Gao, Y., Bai, Y., Zhao, D., Chang, M. W., Ahmad, Z., & Li, J. S. (2015). Tuning microparticle porosity during single needle electrospraying synthesis via a non-solvent-based physicochemical approach. Polymers, 7(12), 2701–2710. https://doi.org/10.3390/polym7121531

[19] Gaurav, A., Ng, F. T. T., & Rempel, G. L. (2016). A new green process for biodiesel production from waste oils via catalytic distillation using a solid acid catalyst – Modeling, economic and environmental analysis. Green Energy and Environment, 1(1), 62–74. https://doi.org/10.1016/j.gene.2016.05.003
Carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid. Green Chemistry, 21(8), 1956–1964. https://doi.org/10.1039/c8gc03493a

Joshi, S. S., Zodge, A. D., Pandare, K. V., & Kulikarni, B. D. (2014). Efficient conversion of cellulose to levulinic acid by hydrothermal treatment using zirconium dioxide as a recyclable solid acid catalyst. Industrial and Engineering Chemistry Research, 53(49), 18796–18805. https://doi.org/10.1021/ie5011858

Klemm, D., Cranston, E. D., Fischer, D., Gama, M., Kedzior, S. A., Kralisch, D., Krämer, F., Kondo, T., Lindström, T., Nietzsche, S., Petzold-Welcke, K., & Rauchfuß, F. (2018). Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Materials Today, 21(7), 720–748. https://doi.org/10.1016/j.mattod.2018.02.001

Kristiani, A., Sembrin, K. C., Aulia, F., & Abimanyu, H. (2015). Sulfated Zirconia Catalyst for Hydrolysis of Palm Oil Lignocellulosic Wastes. Energy Procedia, 65, 8–13. https://doi.org/10.1016/j.egypro.2015.01.022

Lai, D. M., Deng, L., Guo, Q. X., & Fu, Y. (2011). Hydrolysis of biomass by magnetic solid acid. Energy and Environmental Science, 4(9), 3552–3557. https://doi.org/10.1039/c1ee01526e

Lee, H. V., Hamí, S. B. A., & Zain, S. K. (2014). Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. Scientific World Journal, 2014. https://doi.org/10.1155/2014/631013

Li, B., Wu, X., Kronlund, D., Määttänen, A., Liu, J., Smätt, J. H., Pelkonen, J., Willför, S., Mu, X., & Xu, C. (2015). Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydrate Polymers, 133, 605–612. https://doi.org/10.1016/j.carbpol.2015.07.033

Liang, C., Wang, Y., Hu, Y., Wu, L., & Zhang, W. (2019). Study of a New Process for the Preparation of Butyl Levulinate from Cellulose. ACS Omega, 4(6), 9828–9834. https://doi.org/10.1021/acsomega.9b00735

Liu, W., Tian, G. Q., Yang, D. G., Wu, G., Chen, S. C., & Wang, Y. Z. (2019). Heterogeneous catalysts based on built-in N-heterocyclic carbenes with high removability, recoverability and reusability for ring-opening polymerization of cyclic esters. Polymer Chemistry, 10(12), 1526–1536. https://doi.org/10.1039/c9py00111e

Liu, Y., Chen, L., Wang, T., Zhang, X., Long, J., Zhang, Q., & Ma, L. (2015). High yield of renewable hexanes by direct hydrolysis-hydrodeoxygenation of cellulose in an aqueous phase catalytic system. RSC Advances, 5(15), 11649–11657. https://doi.org/10.1039/c4ra14304c

Martelli-Tosi, M., Torricillas, M. D. S., Martins, M. A., Assis, O. G. H., & Tapia-Blázquez, D. R. (2016). Using Commercial Enzymes to Produce Cellulose Nanofibers from Soybean Straw. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/8106814

Mishra, R. K., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futuristic eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22(8), 949–978. https://doi.org/10.1016/j.jscs.2018.02.005

Morais, J. P. S., Rosa, M. D. F., De Souza Filho, M. D. S. M., Nascimento, L. D., & Cassales, A. R. (2013). Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydrate Polymers, 91(1), 229–235. https://doi.org/10.1016/j.carbpol.2012.08.010

Mukarathke, C., Mittal, A., Ciesielski, P. N., Budhi, S., Thompson, L., Isaka, K., Nimlos, M. R., & Donohoe, B. S. (2016). Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis. ACS Sustainable Chemistry and Engineering, 4(9).
sawdust in ethylene glycol catalyzed by acidic ionic liquid. BioResources, 12(2), 3766–3777. https://doi.org/10.15376/biores.12.2.3766-3777

[90.] Wu Leung, W. T. (1962). Food and Agricultural Organization of the United Nations. Journal of AOAC INTERNATIONAL. https://doi.org/10.1093/aoac/45.2.508a

[91.] Xi, J., Du, W., & Zhong, L. (2013). Probing the Interaction Between Cellulose and Cellulase with a Nanomechanical Sensor. In Cellulose - Medical, Pharmaceutical and Electronic Applications. IntechOpen. https://doi.org/10.5772/50285

[92.] Xiong, Y., Zhang, Z., Wang, X., Liu, B., & Lin, J. (2014). Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst. Chemical Engineering Journal, 235, 349–355. https://doi.org/10.1016/j.cej.2013.09.031

[93.] Xiu, H., Cheng, R., Li, J., Ma, F., Song, T., Yang, X., Feng, P., Zhang, X., Kozlik, E., & Ji, Y. (2019). Effects of acid hydrolysis waste liquid recycle on preparation of microcrystalline cellulose. Green Processing and Synthesis, 8(1), 348–354. https://doi.org/10.1015/gps-2019-00022

[94.] Yamaguchi, D., Watanabe, K., & Fukumi, S. (2016). Hydrolysis of Cellulose by a Mesoporous Carbon-Fe2O3(504)/γ-Fe2O3 Nanoparticle-Based Solid Acid Catalyst. Scientific Reports, 6(1), 1–7. https://doi.org/10.1038/srep20327

[95.] Yu, H., Qin, Z., Liang, B., Liu, N., Zhou, Z., & Chen, L. (2013). Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. Journal of Materials Chemistry A, 1(12), 3938–3944. https://doi.org/10.1039/c3ta01150j

[96.] Yue, Y., Han, J., Han, G., Zhang, Q., French, A. D., & Wu, Q. (2015). Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: Morphology, crystallinity and percentage estimation. Carbohydrate Polymers, 133, 438–447. https://doi.org/10.1016/j.carbpol.2015.07.058

[97.] Zhang, C., Wang, H., Liu, F., Wang, L., & He, H. (2013). Magnetic core-shell Fe3O4@C–S03H nanoparticle catalyst for hydrolysis of cellulose. Cellulose, 20(1), 127–134. https://doi.org/10.1007/s10570-012-9839-5

[98.] Zhang, Z., & Zhao, Z. K. (2009). Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydrate Research, 344(15), 2069–2072. https://doi.org/10.1016/j.carres.2009.07.011

[99.] Zhao, T., Chen, Z., Lin, X., Ren, Z., Li, B., & Zhang, Y. (2018). Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydrate Polymers, 184(4), 164–170. https://doi.org/10.1016/j.carbpol.2017.12.024

[100.] Zheng, D., Zhang, Y., Guo, Y., & Yue, J. (2019). Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans Regia L.) shell agricultural waste. Polymers, 11(7), 1130. https://doi.org/10.3390/polym11071130

[101.] Zhou, X., Wang, P., Zhang, Y., Zhang, X., & Jiang, Y. (2016). From Waste Cotton Linter: A Renewable Environment-Friendly Biomass Based Carbon Fibers Preparation. ACS Sustainable Chemistry and Engineering, 4(10), 5585–5593. https://doi.org/10.1021/acsuschemeng.6b01408