Diagnostic relevance of spatial orientation for vascular dementia
A case study

Gillian Coughlan¹, Emma Flanagan¹, Stephen Jeffs¹, Maxime Bertoux¹, Hugo Spiers², Eneida Mioshi³, Michael Hornberger¹,4

ABSTRACT. Spatial orientation is emerging as an early and reliable cognitive biomarker of Alzheimer’s disease (AD) pathophysiology. However, no evidence exists as to whether spatial orientation is also affected in vascular dementia (VaD). Objective: To examine allocentric (map-based) and egocentric (viewpoint-based) spatial orientation in an early stage VaD case. Methods: A spatial test battery was administered following clinical and neuropsychological cognitive evaluation. Results: Despite the patient’s complaints, little evidence of episodic memory deficits were detected when cueing was provided to overcome executive dysfunction. Similarly, medial temporal lobe-mediated allocentric orientation was intact. By contrast, medial parietal-mediated egocentric orientation was impaired, despite normal performance on standard visuospatial tasks. Conclusion: To our knowledge, this is the first in-depth investigation of spatial orientation deficits in VaD. Isolated egocentric deficits were observed. This differs from AD orientation deficits which encompass both allocentric and egocentric orientation deficits. A combination of egocentric orientation and executive function tests could serve as a promising cognitive marker for VaD pathophysiology.

Key words: spatial orientation, egocentric, allocentric, vascular dementia, VaD, executive function, neurodegeneration.

DIAGNÓSTICA DE RELEVANCIA DA ORIENTAÇÃO ESPACIAL PARA O DIAGNÓSTICO DE DEMÊNCIA VASCULAR: UM ESTUDO DE CASO

RESUMO. A orientação espacial está emergindo como um biomarcador cognitivo precoce e confiável da fisiopatologia da doença de Alzheimer (DA). No entanto, não existe evidência de que a orientação espacial também seja afetada na demência vascular (DVs). Objetivo: Examinar a orientação espacial alocêntrica (baseada em mapas) e egocêntrica (baseada no ponto de vista) em um caso de DVa em fase inicial. Métodos: Uma bateria de testes espaciais foi administrada após avaliação clínica e neuropsicológica cognitiva. Resultados: Apesar das queixas do paciente, poucas evidências de déficits de memória episódica foram detectadas quando foram fornecidas pistas para superar a disfunção executiva. Da mesma forma, a orientação alocêntrica mediada pelo lobo temporal medial estava intacta. Em contrapartida, a orientação egocêntrica mediada pela região parietal medial estava comprometida, apesar do desempenho normal em tarefas visuoespaciais padrão. Conclusão: Pelo nosso conhecimento, esta é a primeira investigação aprofundada dos déficits de orientação espacial na DVa. Foram observados déficits egocêntricos isolados. Isso difere dos déficits de orientação da DA que abrangem déficits de orientação alocêntricos e egocêntricos. Uma combinação de orientação egocêntrica e testes de função executiva poderia servir como um marcador cognitivo promissor para a fisiopatologia de DVa.
Palavras-chave: orientação espacial, orientação egocêntrica, orientação alocêntrica, demência vascular, função executiva, neurodegeneração.

Deficits in spatial orientation are an emerging early marker for Alzheimer’s disease (AD) pathophysiology.1-5 They have been strongly linked to medial temporal and intra-parietal regional changes in incipient and present AD pathophysiology.6,7 However,
at this stage it is not clear if vascular dementia patients also display any spatial orientation deficits. Such a distinction is important as vascular dementia (VaD) is the second most common form of dementia and the diagnostic differentiation of both dementias is challenging with patients commonly complaining of generic memory complaints.8,9 Importantly, VaD patients often show intact medial temporal lobe function, while frontal and parietal regions are compromised due to white matter lesions in the superior frontal fasciculus.10,11 Therefore, apparent memory problems in VaD are more likely due to frontal executive and parietal visuospatial deficits than medial temporal memory mediated processes. In the current case study, we explored whether spatial orientation performance could help detect VaD and generate a different profile to AD. We hypothesised that if the case shows spatial orientation deficits, these should be limited to egocentric parietal orientation problems but that allocentric medial temporal processes should remain intact.

PARTICIPANT

We report the case of RK, a 65-year-old married man, with six years of secondary education, who worked as a truck driver and window cleaner. A diagnosis of VaD was made in March 2017, he then presented at our dementia research clinic with memory complaints. He reported a short history of behavioural and psychological symptoms including apathy, depression and agitation/aggression. His medical history also revealed hypercholestrol, stage 2 hypertension, a BMI of 30 and life-long cigarette smoking. There was a strong family history of hypercholestrol (both parents and siblings) and heart disease-related death in both parents.

Procedures

RK underwent clinical and cognitive assessments, including neuropsychological assessments (Table 1). Both RK and his carer reported memory problems, such as misplacing keys and forgetting appointment. These issues are most likely due to attentional and executive demands, as recent family events were recalled without difficulty. Problems related to executive function, such as misplacing medication and poor finance management, were also reported. Importantly, spatial orientation difficulties were a central concern for both RK and the carer, and included complaints of disorientation on previously familiar routes and when using public transport, which had led to significant safeguarding concerns by the family. Based on these concerns, an additional spatial test battery was administered. The spatial battery consisted of three spatial measures: The Supermarket task, The Statue task and the Clock test. The Supermarket task is an ecologically valid tool adopted to assess the integrity of egocentric and allocentric heading orientation and spatial memory in dementia. Participants are shown short video clips (7 seconds) of a virtual reality supermarket, whereby the person in the video is navigating from the entrance to a finishing location automatically (Figure 1). Once the video clip stops, participants are asked to indicate in real-life the direction of their starting point (egocentric

Figure 1. Screenshots from the Supermarket task, showing i) start viewpoint; ii) movement during an example video clip; iii) end location of an example video clip; iv) ‘onscreen instructions prompting the participant to indicate the direction of their starting point’; v) the supermarket map participants use to indicate their finishing location and their heading direction when the video clip ends.
Table 1. Physical and neuropsychological background.

Physical and neuropsychological background	Age	Nationality	Blood pressure	Heart rate	Height	Weight	Body Mass Index	Medication management	General Cognitive Ability Test	Visuospatial functioning	Episodic Memory	Language Ability	Executive Function / Mental Flexibility	Social Cognition Mini-SEA		
Age	69	British		55 bpm	175 cm	91 kg	30		Addenbrooke’s Cognitive Examination – III (ACE)							
Nationality									18	Visual Object and Space Perception Battery (WOSP)						
Blood pressure									18							
Heart rate									04*							
Height									26							
Weight									16							
Body Mass Index									82							
Medication management									Clopidogrel (75 mg)							
Medication management									Simvastatin (40 mg)							
Medication management									Losartan potassium (100 mg)							
Medication management									Bendroflumethiazide (2.5 mg)							
General Cognitive Ability Test									ACE attention							
General Cognitive Ability Test									ACE memory							
General Cognitive Ability Test									ACE fluency							
General Cognitive Ability Test									ACE language							
General Cognitive Ability Test									ACE visuospatial							
General Cognitive Ability Test									ACE total							
Visuospatial functioning									Dot counting							
Visuospatial functioning									Position							
Visuospatial functioning									Cube							
Visuospatial functioning									Rey Complex Figure (ROCF)							
Visuospatial functioning									Construction							
Visuospatial functioning									Reconstruction (3-minute delay)							
Episodic Memory									Free immediate recall							
Episodic Memory									Cued immediate recall							
Episodic Memory									Free delayed recall							
Episodic Memory									Cued delayed recall							
Language Ability									Naming							
Language Ability									Comprehension and repetition							
Language Ability									Semantic association							
Executive Function / Mental Flexibility									INECO Frontal Screening Test							
Executive Function / Mental Flexibility									Motor series							
Executive Function / Mental Flexibility									Interference sensitively							
Executive Function / Mental Flexibility									Inhibitory control							
Executive Function / Mental Flexibility									Digit backwards							
Executive Function / Mental Flexibility									Verbal working memory							
Executive Function / Mental Flexibility									Spatial working memory							
Executive Function / Mental Flexibility									Proverbs							
Executive Function / Mental Flexibility									Hayling test							
Executive Function / Mental Flexibility									Working memory index							
Executive Function / Mental Flexibility									Total							
Executive Function / Mental Flexibility									Trail Making Task							
Executive Function / Mental Flexibility									Part A	Time (sec)	79	117	2	2		
Executive Function / Mental Flexibility									Errors	0	2	2				
Executive Function / Mental Flexibility									Social Cognition Mini-SEA							
Executive Function / Mental Flexibility									Non-Faux-pas							
Executive Function / Mental Flexibility									Faux-pas (ToM)							
Executive Function / Mental Flexibility									All stories							
Executive Function / Mental Flexibility									Control							
Executive Function / Mental Flexibility									Facial Emotion Recognition							

*Significant differences. Standard mean score and standard deviation representing an aged-matched control group are in parenthesis. Note control scores were only available for the ACE-III and the ROCF test.
orientation). In a second step, participants are given a map of the Supermarket and are asked to indicate where they are on the map (allocentric orientation) and what direction they are facing in the supermarket (heading orientation). More details can be found here.1,2

The Statue Test requires participants to make spatial judgements for a room with 3 statues and a small stool (Figure 2). Participants are asked to indicate i) the statue closest to the wall (permanent landmark); ii) the statue is closest to the stool (transient landmark); iii) identify which statue moved its location after a delay. Each of these sub-tasks includes an easy, medium, and hard condition. The landmark decisions are thought to rely on intra-parietal lobes, whereas the memory condition is typically thought to rely on the medial temporal lobe.

The Clock test requires participants to imagine they are standing in the centre of a large clock facing, e.g., the number 12. Participants are asked to then point in real-life to different numbers on the clock face. For example, “Can you point to the number 9?” (Answer: pointing left). The questions increase in complexity across the test and require medial parietal mediated mental imagery, rotation and egocentric processes, with no episodic memory demand. The study was approved by the UK National Research Ethics Service (NRES: 16/LO/1366).

RESULTS

Analysis

We compared the case to a control sample (\(N = 13\)) with a mean age of 63 (SD = 4.8), who underwent similar testing. RK was contrasted against the controls via a modified paired sample t-test developed by Crawford and colleagues,12,13 resulting in a Z-case-control (\(z_c\)) score as an interval estimate of the effect size.

Neuropsychological evaluation (Table 1)

RK achieved a score of 82 on the ACE-III, and cognitive deficits on free recall (immediate and delayed), executive function (spatial working memory, digital backwards, proverb), social cognition and verbal fluency measures were observed. Importantly, on the FCSRT, his deficits were only present in free recall; once semantic cues were provided, RK could recall all verbal material, indicating executive dysfunction as the main contributor to the episodic memory deficits. Similarly, for visual episodic memory, the planning of the ROCF copy was disorganised due to executive deficits, which resulted in low recall score. RK’s performance on the theory of mind (ToM) subset of the mini-SEA further suggests a partial deficit in social cognition. Importantly, basic visuo-perception and spatial discrimination (VOSP) were in the normal range, indicating no basic visual problems. Language skills were also in the normal range.

Spatial orientation performance (Table 2)

On the Supermarket task, RK showed significant egocentric navigational impairments (\(t = -9.529, p < .000, z_c = -9.889\)), i.e. failing to point back to the starting point correctly. Similarly, heading orientation (correct judgement of facing direction after travel period) was also impaired, albeit less severely (\(t = -2.983, p = 0.01, z_c = -3.095\)). By contrast, allocentric information, i.e. indicating the place location in the supermarket test, was not significantly different from the control group (\(t = -1.537, p > 0.05, z_c = -0.206\)).

On the statue task, RK showed no significant differences for performance on the easy and hard versions of all conditions, due to ceiling and floor effect. However, in the medium condition, abnormal scores were detected on both the wall (\(t = -3.085, p = 0.01, z_c = -3.160\)) and stool (\(t = -2.590, p = 0.02, z_c = -2.687\)) condition only, showing deficits on visual judgements for permanent and transient objects. RK’s memory performance was comparable to healthy controls.

Finally, the patient’s clock test scores were significantly lower than those of controls (\(t = -2.965, p = 0.01, z_c = -3.077\)) reflecting poor higher visual (mental rotation) and egocentric processing abilities.

DISCUSSION

To our knowledge, this is the first description of human spatial orientation deficits in a VaD case. As predicted,
Table 2. Total scores, standard deviations (SD), Z-case-control (Zcc) scores and confidence intervals (CI) from a modified paired sample t-test for patient and control group on the spatial test battery.

Spatial measures	Condition	Patient score mean (N = 13)	Control sample (SD)	t–value	p value	Effect size (Zcc)	95% CI
Statue test	Wall Easy	4	4	0	NS	−0.00	−0.544 to 0.544
	Wall Medium	1	2.6	0.5	−3.085	0.01*	−3.160 to −1.789
	Wall Hard	0	0.3	0.6	−0.000	NS	−0.00 to −1.083
	Stool Easy	4	3.7	0.4	−0.723	NS	−0.750 to 0.119
	Stool Medium	0	2.2	0.8	−2.590	0.02*	−2.687 to −1.484
	Stool Hard	0	0.3	0.6	−0.482	NS	0.500 to 0.1088
	Memory Easy	4	3.9	0.2	−0.483	NS	0.500 to 0.1088
	Memory Medium	2	2.5	0.6	−0.623	NS	0.525 to 1.563
	Memory Hard	0	0.2	0.7	−0.321	NS	−0.886 to 0.233
Supermarket test	Ego-centric navigation	4	12.9	0.9	−9.529	<0.001**	−13.825 to −5.949
	Allocentric memory	1.5	8.1	3.2	−0.201	NS	−0.206 to −3.028
	Heading Direction	6	12.5	2.1	−2.983	0.01*	−3.095 to −1.746
The Clock test	Cardinal (Verbal Response)	1	3.9	0.9	−3.105	<0.01*	−3.222 to −1.829
	Right angle (pointing response)	1	3.6	0.6	−4.176	<0.001**	−6.120 to −2.532
	Lateral, behind, (mixed response)	1	3.9	1.7	−1.644	NS	−1.706 to −2.558
	Total Score	3	11	2.6	−2.965	0.01*	−3.077 to −1.736

Significant differences are marked bold. P value representing a two-tailed probability that case score differs from controls.
More generally, spatial testing has 17-21 These deficits are accompanied 14,15 25,26

diagnostic differentiation of AD from VaD. This suggestion in vascular cognitive impairment: a state-of-the-art review. BMC Medicine 2016;14(1):174.

Coughlan et al. 11. Schuff N, Matsumoto S, Knieck J, Studholm C, Du AT, Ezekiel F, et al. Cerebral Blood Flow in Ischemic Vascular Dementia and Alzheimer’s Disease By Arterial Spin Labeling MRI. Alzheimer’s Dementia. 2004;1(3):462-72.

Ahnergard et al. 17. Schneider JA, Brown SM, Wallace RB, Storandt M. Cerebral Blood Flow in Ischemic Vascular Dementia and Alzheimer’s Disease. Brain Cogn [Internet]. 1996;31(2):269-82.

Kertesz A, Clydesdale S. Neuropsychological deficits in vascular dementia vs. Alzheimer’s disease. Arch Neurol. 1994;51(12):1226-31.

Kertesz A, Clydesdale S. Neuropsychological deficits in vascular dementia vs. Alzheimer’s disease. Arch Neurol. 1994;51(12):1226-31.

Schneider JA, Brown SM, Wallace RB, Storandt M. Cerebral Blood Flow in Ischemic Vascular Dementia and Alzheimer’s Disease. Brain Cogn [Internet]. 1996;31(2):269-82.

Kertesz A, Clydesdale S. Neuropsychological deficits in vascular dementia vs. Alzheimer’s disease. Arch Neurol. 1994;51(12):1226-31.

Kertesz A, Clydesdale S. Neuropsychological deficits in vascular dementia vs. Alzheimer’s disease. Arch Neurol. 1994;51(12):1226-31.

Kertesz A, Clydesdale S. Neuropsychological deficits in vascular dementia vs. Alzheimer’s disease. Arch Neurol. 1994;51(12):1226-31.

Kertesz A, Clydesdale S. Neuropsychological deficits in vascular dementia vs. Alzheimer’s disease. Arch Neurol. 1994;51(12):1226-31.

Kertesz A, Clydesdale S. Neuropsychological deficits in vascular dementia vs. Alzheimer’s disease. Arch Neurol. 1994;51(12):1226-31.

Kertesz A, Clydesdale S. Neuropsychological deficits in vascular dementia vs. Alzheimer’s disease. Arch Neurol. 1994;51(12):1226-31.

Kertesz A, Clydesdale S. Neuropsychological deficits in vascular dementia vs. Alzheimer’s disease. Arch Neurol. 1994;51(12):1226-31.
the formation and use of cognitive maps. Behav Brain Res. 2009; 196(2):187-91.

21. Hartley T, Lever C, Burgess N, O’Keefe J. Space in the brain: how the hippocampal formation supports spatial cognition. Philos Trans R Soc B Biol Sci. 2013;368(1683):20120510.

22. Vann SD, Aggleton JP, Maguire EA. What does the retrosplenial cortex do? Nat Rev Neurosci [Internet]. Nature Publishing Group; 2009; 10(11):792-802.

23. Spiers HJ, Barry C. Neural systems supporting navigation. Current Curr Opin Behav Sci. 2015;1:47-55.

24. Weniger G, Ruhleder M, Lange C, Wolf S, Irl E. Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia. 2011;49(3):518-27.

25. Karantoula S, Galvin JE. Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurotherapy. 2012;11(11):1579-91.

26. Sachdev P, Kalaria R, O’Brien J, Skoog I, Alladi S, Black SE, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord. 2014;28(3):206-18.