The Role of Genetic and Epigenetic Changes in Pituitary Tumorigenesis

Hidenori FUKUOKA and Yutaka TAKAHASHI

1Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Hyogo; 2Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Hyogo

Abstract

Pituitary adenomas are one of the most common intracranial tumors. Despite their benign nature, dysregulation of hormone secretion causes systemic metabolic deterioration, resulting in high mortality and impaired quality of life. Tumorigenic pathogenesis of pituitary adenomas is mainly investigated by performing genetic analyses of somatic mutations in the tumor or germline mutations in patients. Genetically modified mouse models, which develop pituitary adenomas, are also used. Genetic analysis in rare familial pituitary adenomas, including multiple endocrine neoplasia type 1 and type 4, Carney complex, familial isolated pituitary adenomas, and succinate dehydrogenases (SDHs)-mediated paraganglioma syndrome, revealed several causal germline mutations and sporadic somatic mutations in these genes. The analysis of genetically modified mouse models exhibiting pituitary adenomas has revealed the underlying mechanisms, where cell cycle regulatory molecules, tumor suppressors, and growth factor signaling are involved in pituitary tumorigenesis. Furthermore, accumulating evidence suggests that epigenetic changes, including deoxyribonucleic acid (DNA) methylation, histone modification, micro ribonucleic acids (RNAs), and long noncoding RNAs play a pivotal role. The elucidation of precise mechanisms of pituitary tumorigenesis can contribute to the development of novel targeted therapy for pituitary adenomas.

Key words: pituitary adenoma, tumorigenesis, cyclic adenosine monophosphate, cell cycle, growth factor

Introduction

The pituitary gland is the central mediator for peripheral endocrine homeostasis regulation by secretion of tropic hormones, such as adrenocorticotropic hormone (ACTH), thyroid stimulating hormone (TSH), growth hormone (GH), prolactin, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Pituitary adenomas are common, with 5–10% prevalence rates found at autopsy in postmortem studies, accounting for 15% of all intracranial tumors. Most common among these are prolactin (PRL)-producing pituitary adenomas (29%) or clinically nonfunctioning pituitary adenomas (NFPAs), derived from all cell types of the adenohypophysis, though mostly gonadotrophs, particularly FSH-producing adenomas. The prevalence of GH-producing pituitary adenomas is 15% and that of ACTH-producing pituitary adenomas is 10%, while TSH-producing pituitary adenomas are rare. An epidemiological study of 9,519 Japanese patients with pituitary adenoma revealed that 46% were diagnosed with NFPAs, 25% with PRL-producing adenomas, 22% with GH-producing adenomas, and 6% with ACTH-producing adenomas. Despite the mostly benign nature of the tumor, hormonal dysregulation and local expansion cause either an excess or impaired secretion of pituitary hormones, causing disturbance in growth, reproductive function, and metabolism, resulting in various morbidities, impaired quality of life, and increased mortality.

Surgical resection is the first-line of treatment for pituitary adenomas, except for PRL-producing adenomas. Residual or recurrent tumors require re-operation, medical treatment, or radiation. An understanding of the physiological regulation and molecular mechanisms of pituitary hormone synthesis, secretion, and peripheral action has led to the development of targeted drugs such as dopamine agonists, somatostatin analogs, GH receptor antagonists, steroidogenic inhibitors, and glucocorticoid receptor antagonists. In this regard, a better understanding of pituitary tumorigenesis is crucial for the development of novel targeted drugs.
for pituitary adenomas. In this review, we discuss human pituitary adenomas and animal models, as well as the involvement of genetic and epigenetic changes in pituitary tumorigenesis.

Pathogenesis of Pituitary Adenomas

Pituitary adenomas are considered to be of monoclonal origin, based on X-chromosome inactivation studies, suggesting that these tumor cells arise from a single cell. Therefore, it has been hypothesized that a mutation in the cell might cause pituitary adenomas as well as other tumors. Indeed, mutations in the *GNAS* gene have been reported as a cause of GH-producing pituitary adenomas. Furthermore, the analysis of pituitary adenomas related to hereditary syndromes has revealed several causal germline mutations in pituitary adenomas. For example, multiple endocrine neoplasia type 1 (MEN1), Carney complex (CNC), familial isolated pituitary adenomas (FiPAs), and succinate dehydrogenases (SDHs)-related paraganglioma syndrome, shows germline mutations in *MEN1*, *PRKAR1A*, *CDKN1B*, and *SDHs* genes, respectively, and loss of heterozygosity (LOH) at the affected locus in the tumor is generally observed (Table 1). However, the frequency of familial pituitary adenomas is less than 5% in patients with pituitary adenomas, demonstrating that the cause of most tumors remains unknown.

On the other hand, somatic *GNAS1* mutations were found in 30–40% of GH-producing pituitary adenomas, indicating that mutations contribute to the development of pituitary tumors (Fig. 1).

Recently, epigenetic deregulation, including deoxyribonucleic acid (DNA) methylation, histone modification, nucleosomes remodeling, and ribonucleic acid (RNA) mediated targeting, have been shown to play a causative role in pituitary tumorigenesis. DNA methylation is a stable modification that leads to chromatin remodeling, resulting in transcriptional silencing without gene mutation. It occurs at cytosine residues in CpG islands, frequently located within the promoter region of the gene. This mechanism is regulated by DNA methyltransferases (DNMTs), namely DNMT1, DNMT3A, and DNMT3B.

Table 1 Genetic changes in human pituitary adenomas and modified mice models with pituitary adenomas

Locus	Germline mutations	Somatic mutations						
Human (pituitary tumors)	Mice (pituitary conditional)	Syndrome						
Mutations	LOH	Mutations	LOH	Mutations	LOH			
MEN1	11q13	+	+	+ (hetero)	+	+	–	MEN1
PRKAR1A	17q24.2	+	±	–	NA	–	+ (GHRH-R)	CNC
AIP	11q13.3	+	+	(hetero)	+	–	–	FIPA
CDKN1B (p27kip1)	12p13	+	±	+ (homo)	NA	Downregulated	+ (POMC)	MEN4
SDHs	*	+	+	–	NA	+	–	PGLs
CNC	20q13.3	–	NA	–	NA	Downregulated	+ (POMC)	MAS
Rb	13q14.2	–	NA	+ (hetero)	+	–	–	
SDHCN2C (P18nock)	1p32	–	NA	+ (homo)	NA	–	–	
PTTG1	5q35.1	–	NA	–	NA	Upregulated	+ (αGSU)	
HMGA1	6p21	–	NA	–	NA	–	–	
HMGA2	12q15	–	NA	+	NA	Upregulated	–	
Cyclin E	19q12	–	NA	–	NA	Upregulated	+ (POMC)	
TGFα	2p13	–	NA	–	NA	–	+ (PRL)	
FGFR4	5q35.2	–	NA	–	NA	Truncated variant	+ (PRL)	
D2R	11q23	–	NA	+ (homo)	NA	–	–	
PRLR	5p13.2	–	NA	+ (homo)	NA	–	–	

*: SDHA 5p15, SDHB 1p36.1p35, SDHC 1q23.3, SDHD 11q23, CDKN1B: cyclin-dependent kinase inhibitor 1B, CDKN2C: cyclin-dependent kinase inhibitor 2C, CNC: Carney complex, D2R: dopamine receptor type 2, FGFR: fibroblast growth factor receptor, FIPA: familial isolated pituitary adenoma, GHRH-R: growth hormone releasing hormone receptor, GNAS: GNAs complex locus, αGSU: glycoprotein hormone, alpha subunit, hetero: heterozygosity, HMGA: high mobility group A, homo: homozygosity, LOH: loss of heterozygosity, MAS: McCune-Albright syndrome, MEN1: multiple endocrine neoplasia type 1, NA: not applicable, PGL: paraganglioma, PGLs: SDH-related PGL syndrome, POMC: pro-opiomelanocortin, PRLR: prolactin receptor, PRKAR1A: protein kinase, cAMP-dependent, regulatory, type 1, alpha, PTTG1: pituitary tumor transforming 1, Rb: retinoblastoma, SDH: succinate dehydrogenase complex, TGFα: transforming growth factor alfa.
Pituitary Tumorigenesis

Although several animal models of pituitary tumors have helped to identify potentially causative genes, few mutations of these genes have been detected in human pituitary adenomas. For example, retinoblastoma (Rb)-associated protein gene, pituitary tumor transforming gene (PTTG), high mobility group A (HMGA), and cyclin E (CCNE1) reportedly play an important role in pituitary tumorigenesis in mice; however, there have been no mutations in these genes in humans, suggesting a possibility of misregulation of expression levels or post-transcriptional regulation of these genes. DNMT3B is highly expressed in human pituitary adenomas, including GH-, PRL-, and ACTH-producing pituitary adenomas, as well as NFPAps, compared to normal pituitary. Knockdown of DNMT3B in AtT20 mouse ACTH-producing pituitary adenoma cell line enhanced Rb expression. The promoter region of the Rb gene is frequently hypermethylated in pituitary adenomas. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that bind to 3'-untranslated regions (3'-UTRs) of target mRNAs, and thus regulate gene expression. Deregulated miRNAs have been reported to regulate genes associated with pituitary tumorigenesis. These findings demonstrate a crucial role of epigenetic deregulation in pituitary tumorigenesis.

I. Genetic changes

Many genetic changes related to pituitary tumor development in humans and mice have been reported. These genes are summarized in Table 1.

1. Evidence in humans

Pituitary adenomas are mostly observed in sporadic conditions, but some also arise in familial tumor syndromes, and both show clonal expansion from a single cell. LOH in the tumor is generally observed in familial syndromes, and somatic mutation occurs in most sporadic tumors.

Germline mutations: MEN1, located on chromosome 11q13, encodes the protein menin. Heterozygous mutation in MEN1 is responsible for MEN1, an autosomal dominant syndrome, first identified in 1997. Germline mutation of the gene represents tumor development in the parathyroid glands, anterior pituitary, and endocrine pancreas. Nonsense or frameshift mutations lead to inactivation of the tumor suppressor function of menin. The penetrance of pituitary adenomas in patients with MEN1 varies from 15–50% in different series. Estimated prevalence of MEN1-associated pituitary adenomas is 2.7% in all pituitary adenomas. All cell types of anterior pituitary adenomas, except the true gonadotropinoma, have been reported in this group. Pituitary adenomas in patients with MEN1 represent larger size, more aggressive behavior, and reduced response to treatment as compared to non-MEN1. Plurihormonal expression is more frequently observed in MEN1-associated pituitary adenomas. No specific histological difference in cellular and nuclear features or proliferative markers is observed between MEN1- and non-MEN1-associated pituitary tumors.

PRKAR1A, located on chromosome 17q24.2, encodes type 1 regulatory subunit of protein kinase A. Heterozygous loss of function mutations in PRKAR1A have been identified in about two-thirds of patients with CNC, an autosomal dominant disorder first reported in 1985. CNC is clinically characterized by spotty skin pigmentation, myxomas, endocrine tumors, which include pituitary adenomas, and schwannomas. The incidence of pituitary abnormality in patients with CNC was reported in 12% cases. CNC-associated pituitary adenomas can be multi-focal, and plurihormonal staining has identified dysregulation of several hormones, except...
for ACTH. GH-producing pituitary adenomas are most common, while abnormal PRL secretion or PRL-producing pituitary adenomas were also involved in CNC. In somatomammotroph hyperplasia, which appears to predate adenomas, loss of heterozygosity (LOH) of PRKAR1A has not been observed consistently.

AIP, located on chromosome 11q13.3, encodes the aryl-hydrocarbon receptor interacting protein (AIP). Heterozygous inactivating mutations of AIP were observed in 15–20% of patients with FIPAs. LOH of AIP was identified in the pituitary adenoma. The penetrance of pituitary adenomas in patients with AIP mutations is 40–50% in families with GH-producing adenomas or PRL-producing adenomas. In addition, GH-producing pituitary adenomas associated with AIP mutations are generally large and resistant to somatostatin analogs.

CDKN1B gene, located on chromosome 12p13, encodes cyclin dependent kinase inhibitor p27kip1, which negatively regulates the Cdk2/Cyclin E and Cdk2/Cyclin A protein complexes and prevents cell cycle progression. Heterozygous loss of function CDKN1B mutations have been identified in patients with MEN4, an autosomal dominant disorder characterized by parathyroid and pituitary tumors. Approximately 3% of patients with clinical MEN1 without MEN1 mutations have a mutation in this gene. CDKN1B mutation was recently identified in AIP mutation-negative patients with FIPA.

SDHx genes encode the subunits of SDH or mitochondrial complex II. A mutation in this gene is related to familial paraganglioma syndrome and several tumors including pituitary adenomas. LOH of SDHD has been reported in pituitary tumors, though the incidence of SDH mutation in pituitary adenomas may be rare. Somatic mutations: GNAS1, located on chromosome 20q13, encodes G protein α-subunit (Gα), which couples numerous hormonal signaling to adenylyl cyclase. Ligands that bind Gα-coupled receptors stimulates intracellular cyclic adenosine monophosphate (cAMP) production (Fig. 1). Activating mutations of the gene are identified as missense mutations, which lead to amino acid substitutions of either residue Arg201 or Gln227, resulting in decreased intrinsic GTPase activity and increased cAMP. Somatic mutations of GNAS are identified in 30–40% of GH-producing pituitary adenomas. In Japan, it has been reported that 53% of GH-producing adenomas exhibited somatic GNAS mutations. Somatic GNAS1 mutations occurring during early prenatal development lead to McCune-Albright syndrome (MAS), characterized by pigmented skin lesions, precocious puberty, fibrous dysplasia of bone, and endocrine hypersecretion. In pathological analysis, proliferation markers were unaltered in mutated GNAS pituitary tumors and non-mutated tumors, suggesting that GNAS1 mutant affect secretion rather than proliferation. In terms of other somatic mutations, MEN1 mutation has been detected in < 5% of pituitary adenomas, indicating that it is rare in sporadic cases.

PIK3CA, located on chromosome 3q26.3 encodes the catalytic subunit PIK3CA of class IA PI3-Kinase, which exists as a heterodimer of p110 catalytic- and p85 regulatory-subunits, upstream of the AKT signaling pathway. Activating somatic mutations in PIK3CA at exon 9 and 20 have been identified in pituitary adenomas, including ACTH-producing, PRL-producing, plurihormonal, and NFPAs. Interestingly, this mutation was seen in 8.8% of invasive adenomas.
pituitary tumors, while no mutations were detected in noninvasive tumors.88)

2. Animal models
Consistent with human genetic mutation analyses, several mouse models that develop pituitary adenomas and hyperplasia have been generated. Although these models show many phenotypes similar to human pituitary adenomas, several notable differences have also been observed.

Men1+ mice develop tumors in the endocrine pancreas and parathyroid within 9 months of age and pituitary tumors within 12 months.99,90) The tumors developed in Men1+ mice show LOH and Cdk4 is a critical downstream of Men1-dependent tumor suppression, while Cdk2 is dispensable91) (Fig. 2). Menin, encoded by Men1, interacts with double-stranded DNA and plays a crucial role in regulating cell proliferation by blocking the cell cycle.92,93) Menin reportedly attenuates the effect of activin on PRL and GH suppression in a Pit-1-dependent manner.94,95)

PRKAR1A+ mice are tumor-prone and tend to develop tumors in cAMP-responsive tissues and sarcomas.96,97) However, these mice do not show any pituitary tumors. Pituitary-specific knockout of PRKAR1A (Prkra1a-pitKO) mice, generated using the rat GHRH receptor promoter to drive Cre expression and crossing them to PRKAR1Alop mice, developed pituitary tumors that were multiple and positive for GH-, PRL-, TsH-, and Pit-1-specific strains. Serum GH levels revealed a 3-fold elevation as compared to controls.98) The PKA catalytic subunit has been shown to be downstream of the PKA pathway,99) and its constitutive active mutation in adrenocortical cells results in unilateral cortisol-producing adrenal adenomas, suggesting a common pathway in the tumorigenesis56) (Fig. 1).

Aip+ mice are phenotypically normal and fertile.100) The hypomorphic Aip mouse model, expressing 10% normal Aip, shows a patent ductus venosus. Similar phenotypes have been shown in hypomorphic aryl hydrocarbon receptor nuclear translocator (ARNT) mice,101) a well-known interactive partner of AIP,102) indicating the important role of AIP is mediated by its interaction with ARNT.103) No pituitary tumors develop in these animals. In contrast, heterozygous Aip mutations generated by insertion of a gene trap vector construct into an intronic region of genomic DNA between Aip exons 2 and 3 showed 100% of pituitary adenomas, particularly GH-secreting tumors.104) This difference may be due to different sub-strains used for inbreeding or the difference in the placement of the germline mutation to induce the inactivation of Aip.104) Ah receptor nuclear translocator 1 and 2 (ARNT1 and ARNT2) have been shown as possible mediators of AIP function.104) In addition, AIP protein interacts with several proteins including AhR, heat shock protein 90, cAMP, phosphodiesterases (PDE4a5 and PDE2A), epidermal growth factor receptor (EGFR), ret proto-oncogene (RET), and peroxisome proliferator-activated receptor gamma (PPARγ).25,71,102 suggesting a possible role in angiogenesis and cell proliferation.

p27-/- mice, exhibiting increased body weight and multi-organ hyperplasia, develop intermediate lobe pituitary tumors expressing ACTH.105,106) Deletion of p27 in the pituitary by POMC-Cre generates intermediate lobe pituitary tumors.107) MENX-affected rats, which display diminished expression of p27, due to a Cdkn1b mutation, develop multiple endocrine tumors including pituitary tumors.108) Recently, the deletion of S-phase kinase-associated protein 2 (Skp2)109) the third ubiquitin ligase for p27, has been shown to block co-deletion of Rb and Trp53 and induced pituitary tumorigenesis probably mediated by p27 accumulation in the nucleus.110) This suggests that p27 plays a key role as a tumor suppressor in pituitary tumorigenesis (Fig. 2).

Rb+ mice are not predisposed to retinoblastoma, but to high frequency of pituitary adenomas in an E2F-dependent manner.111,112) Rb is a key cell cycle regulator and tumor suppressor, which serves to inhibit the transcription of multiple genes required for entry into the S-phase. Inactivation of Rb function by several Cdkks including cyclin D1/Cdk4 induces tumorigenesis.113) Pituitary-specific deletion of Rb by using POMC-Cre results in development of intermediate lobe pituitary tumors, which are completely prevented by Skp2 deletion, demonstrating the essential role of Skp2 in the downstream of Rb pathway114) (Fig. 2).

Two families of Cdk inhibitors exist, namely the INK4a/ARF (p15, p16, p18) and Cip/Kip families (Fig. 2). The INK4a/ARF family inhibits cyclin D1/Cdk4, whereas the Cip/Kip family inhibits cyclin E/Cdk2. Both families of Cdk inhibitors normally act as tumor suppressors by preventing entry into the S phase in an Rb-mediated manner.1,113,115) Genetic deletion of Cdk inhibitors in mice has generated pituitary tumor animal models, demonstrating a pathogenic significance for cell cycle abnormality in pituitary tumorigenesis, at least in animal models. p18ink4c-deficient mice develop GH-producing pituitary adenomas with increasing body size and organomegaly. p27kip1-deficient mice demonstrate similar phenotypes.4,105,116) p18ink4c/ p27kip1 double-null mice exhibit more aggressive pituitary tumors than single knockout mice and
PTTG encodes pituitary tumor transforming gene 1 (PTTG1), the mammalian protein securin, which is a transcriptional activator119,120 (Fig. 2). PTTG1-null mice exhibit pituitary hypoplasia and when crossbred with Rbα mice, which develop high-penetration pituitary tumors, showed significant delay in developing pituitary tumors.121 This suggests that PTTG1 is downstream of Rb/E2F in pituitary tumorigenesis.122 Pituitary-specific PTTG1 overexpression in mice by using α-subunit of glycoprotein hormone (αGSU) promoter generates focal pituitary hyperplasia and pituitary tumors, inducing aneuploidy and chromosomal instability.35,123 POMC-Pttg overexpression in zebrafish generates ACTH-producing pituitary tumors and treatment with the Cyclin E inhibitor Roscovitine attenuates tumor growth and hormone secretion118 (Fig. 2).

PTTG encodes pituitary tumor transforming gene 1 (PTTG1), the mammalian protein securin, which is a transcriptional activator119,120 (Fig. 2). PTTG1-null mice exhibit pituitary hypoplasia and when crossbred with Rbα mice, which develop high-penetration pituitary tumors, showed significant delay in developing pituitary tumors.121 This suggests that PTTG1 is downstream of Rb/E2F in pituitary tumorigenesis.122 Pituitary-specific PTTG1 overexpression in mice by using α-subunit of glycoprotein hormone (αGSU) promoter generates focal pituitary hyperplasia and pituitary tumors, inducing aneuploidy and chromosomal instability.35,123 POMC-Pttg overexpression in zebrafish generates ACTH-producing pituitary tumors and treatment with the Cyclin E inhibitor Roscovitine attenuates tumor development.118

HMGA encode HMGa proteins that are known as architectural transcriptional factors, namely HMGa1a, HMGa1b, and HMGa1c from HMGa1 gene, and MHGA2 from HMGA2 gene. Both HMGa1 and HMGA2 transgenic mice develop mixed GH/PRL-secreting pituitary adenomas.134 Absence of E2F1 suppresses these pituitary tumors in HMGA2 transgenic mice, suggesting that the cell cycle is deregulated by HMGA2 in pituitary tumorigenesisα.127 (Fig. 2).

Overexpression of transforming growth factor (TGF)-α, an EGFR ligand, using PRL promoter in mice, generates PRL-producing pituitary adenomas,124 suggesting the involvement of EGFR in pituitary tumorigenesis. Additionally, inhibition of EGFR and its family of ErbB kinases has been shown to suppress hormone secretion and cell proliferation125–127 (Fig. 2). Fibroblastoma growth factor receptor 4 (FGFR4) is a member of the FGFR family, which includes FGFR-1 through 4. FGFR4 overexpression is associated with chemotherapy resistance and single nucleotide polymorphisms in the gene locus have been identified in breast cancer.128 FGFR4 kinase-containing, N-terminal truncated variant of FGFR4 has been identified as pituitary tumor-derived (ptd)-FGFR-4.129 Overexpression of ptd-FGFR4 in mice generates PRL-producing pituitary adenomas.130

Dopamine receptor type 2 (D2R), which encodes a predominant dopamine receptor subtype in the anterior pituitary, is the main suppressor of PRL secretion. Knockout of D2R in mice results in development of PRL-producing pituitary adenomas (Fig. 1), especially in females with increasing VEGF-A expression, indicating the physiological importance of dopamine signaling.131 PRL-receptor-deficient mice develop PRL-producing pituitary hyperplasia and adenomas, larger than those developed in D2R knockout mice, suggesting a presence of negative feedback mechanisms.132

II. Epigenetic changes

Despite aggressive, global, and genetic sequence analyses in human pituitary adenomas, pathogenesis in most tumors remains to be clarified. In this case, epigenetic changes including DNA methylation, histone modification, miRNAs, and long noncoding (Lnc) RNAs have been considered to be related to pathogenesis. The epigenetic changes may also explain some of the discrepancies between observations in humans and animal models.

DNA methylation: Methylation changes occurring within the CpG islands, present in approximately 70% of all mammalian promoters, are the best studied epigenetic alterations in cancer. CpG island methylation plays a key role in regulating transcription and is generally involved in malignant transformation.133

Low expression levels of Rb in pituitary adenomas have been shown to be due to hypermethylation of the Rb gene promoter.134 Methylation of the Cdkn1b promoter was observed in rat GH3 and mouse GHRH-CL1 pituitary tumor cell lines, but not in primary human pituitary adenomas.135 P16 expression is suppressed in pituitary adenomas, which is ascribed to p16 promoter methylation, especially in NFPAs.136 The FGFR2 promoter is hypermethylated in 45% of human pituitary adenomas and its low expression in tumors is reciprocally correlated to melanoma-associated antigen A3 (MAGE-3) expression, which is hypomethylated in tumors, suggesting that it is epigenetically regulated.137 DNA damage inducible gene 45γ (GADD45γ) is a p53-regulated gene identified as a pituitary-derived growth inhibitor. Promoter CpG island of GADD45γ is hypermethylated in pituitary adenomas, especially NFPAs.138 The smallest member of the Ras-association domain family (RASSF) and a new Ras effector, RASSF3, is a tumor suppressor gene.139 In somatotroph adenomas, hypermethylation of RASSF3 promoter has been identified.140 NNAT encodes Neuronatin, a tumor suppressor, is downregulated in pituitary adenomas.
tumors due to hypermethylation of its promoter.141 GNAS1 is an imprinting gene that is regulated by DNA methylation. GNAS1 activating mutation in GH-producing pituitary adenomas or MAS is present on the active maternal allele. This is different from normal pituitary, in that Gs\(\alpha\) expression has also been observed in the non-mutated paternal allele, demonstrating the impact of GNAS imprinting relaxation on pituitary tumorigenesis.142

Histone modification: Tail acetylation or methylation of histone lysine residues can lead to either activation or repression of gene transcription. Many of the histone modifications are misregulated in cancer.133

DNA methyltransferase 3B (DNMT3b), which encodes a protein that produces 5-methylcytosine by adding a methyl group to a cytosine base, was shown to be overexpressed in pituitary adenomas. Down-regulation of DNMT3b in AtT20 mouse corticotroph adenoma cells results in histone 3 acetylation and diminished histone methylation in Rb, p21, and p27.139 Jk6 is a dominant-negative isoform of the transcription factor Ikaros, a family of zinc-finger DNA-binding proteins. Jk6 has been identified in pituitary adenomas and has been shown to be epigenetically regulated through histone and DNA modifications.143,144

miRNAs: miRNAs are small, single-stranded, non-coding RNA molecules, which consist of approximately 22 nucleotides. miRNAs bind to sequences at 3′ untranslated regions of mRNAs, resulting in post-transcriptional silencing.145 It has been reported that miRNA dysregulation plays a crucial role in the progression of cancer.146 The analysis of expression profiles and functional properties in pituitary adenomas has revealed that miRNAs play a significant role in pituitary tumorigenesis144 (Table 2).

AIP was identified as a target for miR-107, which is overexpressed in pituitary adenomas,147 Bmi1 polycomb ring finger oncogene 1 is a target for miR-128, which is downregulated in GH-producing pituitary adenomas leading to phosphatase and tensin homolog (PTEN) suppression.148 E2F1 is the target for miR-326 and miR-603, while HMGA1/HMGA2 is the target for miR-15, miR-16, miR-26a, miR-34b, miR-548-3p, miR-196a2, and let-7a, which are downregulated in pituitary adenomas.140,150 miR-326, miR-432, and miR-570 are also downregulated in pituitary adenomas that target HMGA2.140 PRKCD, a serine/threonine kinase involved in proliferation, apoptosis and cell cycle regulation, is a direct target for miR-26a, which is overexpressed in ACTH-producing pituitary adenomas.151 PTEN, a suppressor of the PI3K/AKT signaling pathway, is identified as a direct target for miR-26b, which is overexpressed in GH-secreting pituitary adenomas.148 Arginyl-tRNA synthetase (RARS), a part of the aminoacyl-tRNA synthetase complex, is a target for miR-16-1, whose expression levels are low in pituitary adenomas.152 SMAD3 is a target for miR-135a, miR-140-5p, miR-582-3p, miR-582-5p, and miR-938, which are overexpressed in NFPAs, as compared to normal pituitaries.153 Vascular endothelial growth factor receptor 1 (VEGF-R1) is a target for miR-24-1, which is downregulated in

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
Target genes of miRNAs & Upregulated miRNAs & Downregulated miRNAs \\
\hline
AIP & miR-107 & miR-128 \\
BMi1 & & miR-326, miR-603 \\
E2F1 & & miR-15, miR-16, miR-26a, miR-34b, miR-548-3p, miR-196a2, let-7a \\
HMGA1 and HMGA2 & & miR-326, miR-432, miR-570 \\
HMGA2 & & \\
PRKCD & miR-26a & miR-16-1 \\
PTEN & miR-26b & \\
RARS & & \\
SMAD3 & miR-135a, miR-140-5p, miR-582-3p, miR-582-5p, miR-938 & miR24-1 \\
VEGF-R1 & miR-128a, miR-155, miR-516-3p & \\
Wee1 & & \\
ZAC1 & miR-26a & \\
\hline
\end{tabular}
\caption{Altered expression of microRNAs related to pituitary adenomas and their target genes}
\end{table}

AIP: aryl hydrocarbon receptor interacting protein, BMi1: BMi1 proto-oncogene, polycomb ring finger, E2F1: E2F transcription factor 1, HMGA: high mobility group A, PRKCD: protein kinase C delta, PTEN: phosphatase and tensin homolog, RARS: arginyl-tRNA synthetase, SMAD3: smad family member 3, VEGF-R1: soluble vascular endothelial growth factor receptor 1, Wee1: WEE1 G2 check point kinase, ZAC1: zinc finger regulator of apoptosis and cell cycle arrest.

Neurol Med Chir (Tokyo) 54, December, 2014
pituitary adenomas.154 \textit{Wee1}, an inhibitor for Cdk1, is identified as a target for miR-128a, miR-155, and miR-516-3p, which are overexpressed in pituitary adenomas.153 \textit{ZAC1}, also called as PLAG1, which is a downstream component of a particular signal pathway involving AIP, is a target for miR-26a, which is overexpressed in pituitary adenomas.155

\textbf{Lnc RNAs:} LncRNAs are non-protein coding transcripts, longer than 200 nucleotides. LncRNA are involved in the regulation of molecules related to the cell cycle, including CDK inhibitors, CDKs, Rb, and p53, in addition to functioning as epigenetic regulators, transcription factor regulators, post-transcription regulators, and protein scaffolds.156

Maternally expressed gene 3 (MEG3), located on chromosome 14q32, belongs to the \textit{DLK1-MEG3} imprinting locus, containing multiple maternally and paternally imprinted genes.157,158 MEG3 encodes lncRNA and is downregulated in pituitary adenomas, especially in NFPAs.159 MEG3 stimulates p53-dependent transcription and acts as a tumor suppressor gene.160

\section*{Future Directions and Conclusion}

Accumulating evidence suggests that not only genetic changes, but also epigenetic changes play an essential role in the development of pituitary adenomas. Both clinical data and the analysis of animal models are important; however, there are substantial differences between species. In this regard, it is important to establish a human tumor experimental model.

To develop novel therapeutic targeted drugs, it is essential to identify the pathway responsible for pituitary tumorigenesis. Somatostatin analogs are important targeted drugs, that inhibit the pathways essential for GH secretion in GH-producing pituitary adenoma.13 Recent findings suggest that ErbB receptors or Skp2, which is an upstream effector of CDK inhibitors, could be useful as a novel strategy for targeted therapy.114,126,161

In conclusion, human genetic analysis and establishment of animal models have revealed the mechanisms of pituitary tumorigenesis. Further clarification of underlying mechanisms can contribute to the development of novel targeted drugs for pituitary adenomas.

\section*{Acknowledgment}

This work was supported in part by a Grant-in-Aid for Scientific Research from Japanese Ministry of Education Science, Culture, Sports, Science, and Technology 24790945, 23659477, 23591354, and 22591012, Grants-in-Aid for Scientific Research (research on hypothalamic-hypophysal disorders) from the Ministry of Health, Labor, and Welfare, Japan, Novo Nordisk, Daiichi-Sankyo Foundation of Life Science, and the Naito Foundation.

\section*{Conflicts of Interest Disclosure}

There is no COI to be disclosed.

\section*{References}

1) Melmed S: Pathogenesis of pituitary tumors. \textit{Nat Rev Endocrinol} 7: 257–266, 2011
2) Buurman H, Saeger W: Subclinical adenomas in post-mortem pituitaries: classification and correlations to clinical data. \textit{Eur J Endocrinol} 154: 753–758, 2006
3) Teramoto A, Hikakawa K, Sanno N, Osamura Y: Incidental pituitary lesions in 1,000 unselected autopsy specimens. \textit{Radiology} 193: 161–164, 1994
4) Melmed S: Mechanisms for pituitary tumorigenesis: the plastic pituitary. \textit{J Clin Invest} 112: 1603–1618, 2003
5) Sano T: Use of ultrastructural immunohistochemistry in human pituitary pathology. \textit{Microsc Res Tech} 20: 152–161, 1992
6) Asa SL: Diseases of the pituitary. \textit{Neurosurg Clin N Am} 5: 71–95, 1994
7) Clayton RN: Sporadic pituitary tumours: from epidemiology to use of databases. \textit{Baillieres Best Pract Res Clin Endocrinol Metab} 13: 451–460, 1999
8) Horvath E, Kovacs K: Pathology of prolactin cell adenomas of the human pituitary. \textit{Semin Diagn Pathol} 3: 4–17, 1986
9) Kovacs K, Horvath E: Pathology of growth hormone-producing tumors of the human pituitary. \textit{Semin Diagn Pathol} 3: 18–33, 1986
10) Report of Brain Tumor Registry of Japan (1984–2000). \textit{Neurol Med Chir (Tokyo)} 49(Suppl): PS1–PS96, 2009
11) Anthony L, Freda PU: From somatostatin to octreotide LAR: evolution of a somatostatin analogue. \textit{Curr Med Res Opin} 25: 2989–2999, 2009
12) Ben-Jonathan N, Hnasko R: Dopamine as a prolactin (PRL) inhibitor. \textit{Endocr Rev} 22: 724–763, 2001
13) Ben-Shlomo A, Melmed S: Pituitary somatostatin receptor signaling. \textit{Trends Endocrinol Metab} 21: 123–133, 2010
14) Kohn DT, Kopchick JJ: Growth hormone receptor antagonists. \textit{Minerva Endocrinol} 27: 287–298, 2002
15) Morris D, Grossman A: The medical management of Cushing’s syndrome. \textit{Ann N Y Acad Sci} 970: 119–133, 2002
20) Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Valler L: GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenyl cyclase in human pituitary tumours. Nature 340: 692–696, 1989

21) Elston MS, McDonald KL, Clifton-Bligh RJ, Robinson BG: Familial pituitary tumour syndromes. Nat Rev Endocrinol 5: 453–461, 2009

22) Larsson C, Skogseid B, Oberg K, Nakamura Y, Nordenskjöld M: Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 332: 85–87, 1988

23) Zhou Y, Zhang X, Klubanski A: Genetic and epigenetic mutations of tumor suppressive genes in sporadic pituitary adenomas. Mol Cell Endocrinol 386: 16–33, 2014

24) Peverelli E, Mantovani G, Lania AG, Spada A: cAMP in the pituitary: an old messenger for multiple signals. J Mol Endocrinol 52: R67–R77, 2014

25) Yaqub-Usman K, Richardson A, Duong CV, Clayton RN, Farrell WE: The pituitary tumour epigenome: aberrations and prospects for targeted therapy. Nat Rev Endocrinol 8: 486–494, 2012

26) Jones PA, Baylin SB: The epigenomics of cancer. Cell 128: 683–692, 2007

27) Bird AP: CpG-rich islands and the function of DNA methylation. Nature 321: 209–213, 1986

28) Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T: DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 24: 88–91, 2000

29) Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T: The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278: 4035–4040, 2003

30) Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257, 1999

31) Okano M, Xie S, Li E: Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19: 219–220, 1998

32) Kouzarides T: Chromatin modifications and their function. Cell 128: 693–705, 2007

33) Cryns VL, Alexander JM, Klubanski A, Arnold A: The retinoblastoma gene in human pituitary tumors. J Clin Endocrinol Metab 77: 644–646, 1993

34) Vlotides G, Eigler T, Melmed S: Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr Rev 28: 165–186, 2007

35) Fedele M, Pentimalli F, Baldassarre G, Battista S, Klein-Szanto AJ, Kenyon L, Visone R, De Martino I, Ciarmiello A, Arra C, Viglietto G, Croce CM, Fusco A: Transgenic mice overexpressing the wild-type form of the HMGAI gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 24: 3427–3435, 2005

36) Fedele M, Visone R, De Martino I, Troncone G, Palmieri D, Battista S, Ciarmiello A, Pallante P, Arra C, Melillo RM, Helin K, Croce CM, Fusco A: HMGAI promotes pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 9: 459–471, 2006

37) Roussell-Gervais A, Bilodeau S, Vallette S, Berthelet F, Lacroix A, Figarella-Brangier D, Brue T, Drouin J: Cooperation between cyclin E and p27(Kip1) in pituitary tumorigenesis. Mol Endocrinol 24: 1835–1845, 2010

38) Zhu X, Mao X, Hurren R, Schimmer AD, Ezzat S, Asa SL: Deoxyribonucleic acid methyltransferase 3B promotes epigenetic silencing through histone 3 chromatin modifications in pituitary cells. J Clin Endocrinol Metab 93: 3610–3617, 2008

39) Ogino A, Yoshino A, Katayama Y, Watanabe T, Ota T, Komine C, Yokoyama T, Fukushima T: The p15(INK4b)/p16(INK4a)/RB1 pathway is frequently deregulated in human pituitary adenomas. J Neuro-pathol Exp Neurol 64: 398–403, 2005

40) Yoshino A, Katayama Y, Ogino A, Watanabe T, Yachi K, Ohta T, Komine C, Yokoyama T, Fukushima T: Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 83: 153–162, 2007

41) Hatzizpostolou M, Polytarchou C, Iliopoulos D: miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol Metab 24: 361–373, 2013

42) Jiang X, Zhang X: The molecular pathogenesis of pituitary adenomas: an update. Endocrinol Metab (Seoul) 28: 245–254, 2013

43) Sivapragasam M, Rotondo F, Lloyd RV, Scheithauer BW, Cusimano M, Syro LV, Kovacs K: MicroRNAs in the human pituitary. Endocr Pathol 22: 134–143, 2011

44) Tateno T, Zhu X, Asa SL, Ezzat S: Chromatin remodeling and histone modifications in pituitary tumors. Mol Cell Endocrinol 326: 66–70, 2010
46) Balogh K, Rácz K, Patócs A, Hunyady I: Menin and its interacting proteins: elucidation of menin function. *Trends Endocrinol Metab* 17: 357–364, 2006

47) Guru SC, Manickam P, Crabtree JS, Olufemi SE, Agarwal SK, Debelenko LV: Identification and characterization of the multiple endocrine neoplasia type 1 (MEN1) gene. *J Intern Med* 243: 433–439, 1998

48) Brandi ML, Gagel RF, Angeli a, Bilezikian JP, Beck-Peccoz P, Bordi C, Conte-Devolx B, Falchetti A, Gheri RG, Librio A, Lips CJ, Lombardi G, Mannelli M, Pacini F, Ponder BA, Raue F, Skogseid B, Tamburrano G, Thakker RV, Thompson NW, Tomassetti P, Tonelli F, Wells SA, Marx SJ: Guidelines for diagnosis and therapy of MEN type 1 and type 2. *J Clin Endocrinol Metab* 86: 5658–5671, 2001

49) Marx SJ, Simonds WF: Hereditary hormone excess: genes, molecular pathways, and syndromes. *Endocr Rev* 26: 615–661, 2005

50) Thakker RV, Newey PJ, Walls GV, Bilezikian JP, Beck-Peccoz P, Corbetta S, Pizzocaro A, Peracchi M, Beck-Peccoz P, Fassnacht M, Assié G, Calebiro D, Vergès B, Boureille F, Goudet P, Murat A, Beckers T, Sbiera S, Faucz FR, Schaak K, Schmittfull A, Mazucca M, Decullier E, Vergès B, Chabre O, Heymann MF, Figarella-Branger D, Patey M, Carney JA, Gordon H, Carpenter PC, Shenoy BV, Go VL: The complex of myxomas, spotty pigmentation, and endocrine overactivity. *Medicine (Baltimore)* 64: 270–283, 1985

51) Scheithauer BW, Laws ER, Kovacs K, Horvath E, Randall RV, Carney JA: Pituitary adenomas of the multiple endocrine neoplasia type 1 syndrome. *Semin Diagn Pathol* 4: 205–211, 1987

52) Corbetta S, Pizzocaro A, Peracchi M, Beck-Peccoz P, Faglia G, Spada A: Multiple endocrine neoplasia type 1 in patients with recognized pituitary tumours of different types. *Clin Endocrinol (Oxf)* 47: 507–512, 1997

53) Tanaka C, Yoshimoto K, Yamada S, Nishioka H, Hi S, Moritani M, Yamaoka T, Itakura M: Absence of germ-line mutations of the multiple endocrine neoplasia type 1 (MEN1) gene in familial pituitary adenoma in contrast to MEN1 in Japanese. *J Clin Endocrinol Metab* 83: 960–965, 1998

54) Vergès B, Bourriflle F, Goudet P, Murat A, Beckers A, Sassolas G, Cougard P, Chambé B, Montvernay C, Calender A: Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. *J Clin Endocrinol Metab* 87: 457–465, 2002

55) Trouillas J, Labat-Moleur F, Sturm N, Kujas M, Heymann MF, Figarella-Branger D, Patey M, Mazucca M, Decullier E, Vergès B, Chabre O, Calender A: Groupe d’études des Tumeurs Endocrines: Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case-control study in a series of 77 patients versus 2509 non-MEN1 patients. *Am J Surg Pathol* 32: 534–543, 2008

56) Beuschlein F, Fassnacht M, Assié G, Calebiro D, Stratakis CA, Osswald A, Ronchi CL, Wieland T, Schiera S, Faucl FR, Schaak K, Schmittfull A, Schwarzmayr T, Barreau O, Vezzosi D, Rizk-Rabin M, Zabel U, Szarek E, Salpea P, Forlino A, Vetro A, Zuffardi O, Kisker C, Diener S, Meitinger T, Lohse MJ, Reincke M, Bertherat J, Storm TM, Allolio B: Constitutive activation of PKA catalytic subunit in adrenocortical tumors of patients with the Carney complex. *N Engl J Med* 370: 1019–1028, 2014

57) Kirschner LS, Carney JA, Pack SD, Taymans SE, Giattzakis C, Cho YS, Cho-Chung YS, Stratakis CA: Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. *Nat Genet* 26: 89–92, 2000

58) Bertherat J, Horvath A, Groussin L, Grabar S, Boikos S, Cazabat L, Libe R, René-Coiraud F, Stergiopoulos S, Bourdeau I, Bei T, Clauser E, Calender A, Kirschner LS, Bertagna X, Carney JA, Stratakis CA: Mutations in regulatory subunit type 1A of cyclic adenosine 5-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. *J Clin Endocrinol Metab* 94: 2085–2091, 2009

59) Carney JA, Gordon H, Carpenter PC, Shenoy BV, Go VL: The complex of myxomas, spotty pigmentation, and endocrine overactivity. *Mayo Clin Proc* 61: 224–225, 1986

60) Bossis I, Voutetakis A, Matyakhina L, Pack S, Abu-Asab M, Bourdeau I, Griffin KJ, Courcoutsakis N, Stergiopoulos S, Batista D, Tsokos M, Stratakis CA: A pleiomorphic GH pituitary adenoma from a Carney complex patient displays universal allelic loss at the protein kinase A regulatory subunit 1A (PRKAR1A) locus. *J Med Genet* 41: 596–600, 2004

61) Michels VV: A new inherited syndrome with cardiac, cutaneous, and endocrine involvement. *Mayo Clin Proc* 61: 224–225, 1986

62) Kirschner LS: PRKAR1A and the evolution of pituitary tumors. *Mol Cell Endocrinol* 326: 3–7, 2010

63) Pack SD, Kirschner LS, Pak E, Zhuang Z, Carney JA, Stratakis CA: Genetic and histologic studies of somatomammotropituc pituitary tumors in patients with the “complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas” (Carney complex). *J Clin Endocrinol Metab* 85: 3860–3865, 2000

64) Stratakis CA: Genetics of adrenocortical tumors: Carney complex. *Ann Endocrinol (Paris)* 62: 180–184, 2001

65) Armstrong DK, Irvine AD, Handle J, Walsh MY, Hadden DR, Bingham EA: Carney complex: report of a kindred with predominantly cutaneous manifestations. *Br J Dermatol* 136: 578–582, 1997

Neurol Med Chir (Tokyo) 54, December, 2014
genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab 94: 1826–1834, 2009

75) Occhi G, Regazzo D, Trivellin G, Boaretto F, Ciato D, Bobisse S, Ferasin S, Cetani F, Pardi E, Korbonits M, Pellegata NS, Sidarovich V, Quattrone A, Opocher G, Mantero F, Scaroni C: A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet 9: e1003350, 2013

76) Thakker RV: Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 386: 2–15, 2014

77) Tichomirowa MA, Lee M, Barlier A, Daly AF, Marinoni I, Jaffrain-Rea ML, Naves LA, Rodien P, Rohmer V, Faucz FR, Caron P, Estour B, Lecomte P, Borson-Chazot F, Penfornis A, Yaneva M, Guettel M, Castermans E, Verhaege C, Wémeau JL, Tabarin A, Fajardo Montañana C, Delember B, Kerlan V, Sadoul JL, Cortet Rudelli C, Cachaerme F, Zacharieva S, Theodoropoulou M, Brue T, Enjalbert A, Bours V, Pellegata NS, Beckers A: Cyclin-dependent kinase inhibitor 1B (CDKN1B) gene variants in AIP mutation-negative familial isolated pituitary adenoma kindreds. Endocr Relat Cancer 19: 233–241, 2012

78) Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN, Richard CW, Comelisse C, Devilee P, Devlin B: Mutations in SDHX, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287: 848–851, 2000

79) Xekouki P, Stratakis CA: Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr Relat Cancer 19: C33–40, 2012

80) Gill AJ, Toon CW, Clarkson A, Sioson L, Chou A, Winship I, Robinson BG, Benn DE, Clifton-Bligh RJ, Dwight T: Succinate dehydrogenase deficiency is rare in pituitary adenomas. Am J Surg Pathol 38: 560–566, 2014

81) Weinstein LS, Liu J, Sakamoto A, Xie T, Chen M: Minireview: GNAs: normal and abnormal functions. Endocrinology 145: 5459–5464, 2004

82) Landis CA, Harsh G, Lyons J, Davis RL, McCormick PE, Rubinstein WS, Myers EN, Richard CW, Comelisse CJ, Devilee P, Devlin B: Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287: 848–851, 2000

83) Yasufuku-Takano J, Takano K, Morita K, Takakura K, Teramoto A, Fujita T: Does the prevalence of gsp mutations in GH-secreting pituitary adenomas differ geographically or racially? Prevalence of gsp mutations in Japanese patients revisited. Clin Endocrinol (Oxf) 64: 91–96, 2006

84) Schwindinger WF, Franchomano CA, Levine MA: Identification of a mutation in the gene encoding
the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc Natl Acad Sci USA 89: 5152–5156, 1992

Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM: Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 325: 1688–1695, 1991

Freda PU, Chung WK, Matsuoka N, Walsh JE, Kanibir N, Weinstein LS, Shenker A, Gejman PV, Merino MJ, Bertolino P, Tong WM, Galendo D, Wang ZQ, Zhang X, Shen Y, Li M, Ma H, Xing M, Lu Y, Lemos MC, Thakker RV: Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 29: 22–32, 2008

Lin Y, Jiang X, Shen Y, Li M, Ma H, Xing M, Lu Y: Frequent mutations and amplifications of the PIK3CA gene in pituitary tumors. Endocr Relat Cancer 16: 301–310, 2009

Bertolino P, Tong WM, Galendo D, Wang ZQ, Zhang CX: Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol Endocrinol 17: 1880–1892, 2003

Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA, Lorang D, Libutti SK, Chandrasekharappa SC, Marx SJ, Spiegel AM, Collins FS: A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 98: 1118–1123, 2001

Gillam MP, Nimbalkar D, Sun L, Christov K, Ray D, Kaldis P, Liu X, Kiyokawa H: MEN1 tumorigenesis in the pituitary and pancreatic islet requires Cdk4 but not Cdk2. Oncogene 2014. [Epub ahead of print]

Kaji H, Canaff L, Goltzman D, Hendy GN: Cell cycle regulation of menin expression. Cancer Res 59: 5097–5101, 1999

La P, Silva AC, Hou Z, Wang H, Schnepp RW, Yan N, Shi Y, Hua X: Direct binding of DNA by tumor suppressor menin. J Biol Chem 279: 49045–49054, 2004

Lacerte A, Lee EH, Reynaud R, Canaff L, De Guise C, Devost D, Ali S, Hendy GN, Lebrun JJ: Activin inhibits pituitary prolactin expression and cell growth through Smads, Pit-1 and menin. Mol Endocrinol 18: 1558–1569, 2004

Namihira H, Sato M, Murao K, Cao WM, Matsubara S, Imachi H, Niimi M, Dobashi H, Wong NC, Ishida T: The multiple endocrine neoplasia type 1 gene product, menin, inhibits the human prolactin promoter activity. J Mol Endocrinol 29: 297–304, 2002

Kirschner LS, Kusewitt DF, Matyakhina L, Towns WH, Carney JA, Westphal H, Stratakis CA: A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues. Cancer Res 65: 4506–4514, 2005

Veugelers M, Wilkes D, Burton K, McDermott DA, Song Y, Goldstein MM, La Perle K, Vaughan CJ, O’Hagan A, Bennett KR, Meyer BJ, Legius E, Kartunen M, Norio R, Kaarinainen H, Lavyne M, Neau JP, Richter G, Kirali K, Farnsworth A, Stapleton K, Morelli P, Takashani Y, Bamforth JS, Eitelberger F, Noszian I, Manfroi W, Powers J, Mochizuki Y, Imai T, Ko GT, Driscoll DA, Goldmuntz E, Edelberg JM, Collins A, Eccles D, Irvine AD, McKnight GS, Basson CT: Comparative PRKAR1A genotype-phenotype analyses in humans with Carney complex and prkar1a haploinsufficient mice. Proc Natl Acad Sci USA 101: 14222–14227, 2004

Yin Z, Williams-Simons L, Parlow AF, Asa S, Kirschner LS: Pituitary-specific knockout of the Carney complex gene Prkar1a leads to pituitary tumorigenesis. Mol Endocrinol 22: 380–387, 2008

Yin Z, Pringle DR, Jones GN, Kelly KM, Kirschner LS: Differential role of PKA catalytic subunits in mediating phenotypes caused by knockout of the Carney complex gene Prkar1a. Mol Endocrinol 25: 1786–1793, 2011

Lin BC, Sullivan R, Lee Y, Moran S, Glover E, Bradfield CA: Deletion of the aryl hydrocarbon receptor-associated protein 9 leads to cardiac malformation and embryonic lethality. J Biol Chem 282: 35924–35932, 2007

Walisser JA, Bunger MK, Glover E, Harstad EB, Bradfield CA: Patent duc tus venosus and dioxin resistance in mice harboring a hypomorphic Arnt allele. J Biol Chem 279: 16326–16331, 2004

Chahal HS, Chapelle JP, Frohman LA, Grossman AB, Korf nits M: Clinical, genetic and molecular characterization of patients with familial isolated pituitary adenomas (FIPA). Trends Endocrinol Metab 21: 419–427, 2010

Lin BC, Nguyen LP, Walisser JA, Bradfield CA: A hypomorphic allele of aryl hydrocarbon receptor-associated protein-9 produces a phenocopy of the AHR-null mouse. Mol Pharmacol 74: 1367–1371, 2008

Raitila A, Lehtonen HJ, Arola J, Heliovaara E, Ahlsten M, Georgitsi M, Jalanko A, Paetau A, Aaltonen LA, Karhu A: Mice with inactivation of aryl hydrocarbon receptor-interacting protein (Aip) display complete penetrance of pituitary adenomas with aberrant ARNT expression. Am J Pathol 177: 1969–1976, 2010

Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A: Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85: 721–732, 1996

Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K:
Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. *Cell* 85: 707–720, 1996

107) Chien WM, Rabin S, Macias E, Miliani de Marval PL, Garrison K, Orthel J, Rodriguez-Puebla M, Fero ML: Genetic mosaics reveal both cell-autonomous and cell-nonautonomous function of murine p27Kip1. *Proc Natl Acad Sci USA* 103: 4122–4126, 2006

108) Pellegrata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Höfler H, Fend F, Graw J, Atkinson MJ: Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. *Proc Natl Acad Sci USA* 103: 15558–15563, 2006

109) Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, Chan CH, Yang WL, Wang J, Egia A, Nakayama KI, Cordon-Cardo C, Teruya-Feldstein J, Pandolfi PP: Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. *Nature* 464: 374–379, 2010

110) Zhao H, Bauzon F, Fu H, Lu Z, Cui J, Nakayama K, Nakayama KI, Locker J, Zhu L: Skp2 deletion unMASKs a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. *Cancer Cell* 24: 645–659, 2013

111) Jucks T, Fazelii A, Schmitt EM, Bronst RT, Goodell MA, Weinberg RA: Effects of an Rb mutation in the mouse. *Nature* 359: 295–300, 1992

112) Lazzarini Denchi E, Attwooll C, Pasini D, Helin K: Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. *Mol Cell Biol* 25: 2660–2672, 2005

113) Knudsen ES, Knudsen KE: Tailoring to RB: tumour suppressor status and therapeutic response. *Nat Rev Cancer* 8: 714–724, 2008

114) Wang H, Bauzon F, Ji P, Xu X, Sun D, Locker J, Sellers RS, Nakayama K, Nakayama KI, Cobrinik D, Zhu L: Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+-/- mice. *Nat Genet* 42: 1895–1908, 2010

115) McAndrew J, Paterson AJ, Asa SL, McCarthy KJ, Kudlow JE: Targeting of transforming growth factor-alpha expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenosomas. *Endocrinology* 136: 4479–4488, 1995

116) Cooper O, Vlotides G, Fukuhoka H, Greene ML, Melmed S: Expression and function of ErbB receptors and ligands in the pituitary. *Endocr Relat Cancer* 18: R197–211, 2011

117) Fukuhoka H, Cooper O, Mizutani J, Tong Y, Ren SG, Bannykh S, Melmed S: HER2/ErbB2 receptor signaling in rat and human prolactinoma cells: strategy for targeted prolactinoma therapy. *Mol Endocrinol* 23: 92–103, 2009

118) Vlotides G, Cooper O, Chen YH, Ren SG, Greenman Y, Melmed S: Heregulin regulates prolactinoma gene expression. *Cancer Res* 69: 4209–4216, 2009

119) Tenhagen M, van Diest PJ, Ivanova IA, van der Wall E, van der Groep P: Fibroblast growth factor receptors in breast cancer: expression, downstream effects, and possible drug targets. *Endocr Relat Cancer* 19: R115–129, 2012

120) Yu S, Asa SL, Weigel RJ, Ezzat S: Pituitary tumor AP-2alpha recognizes a cryptic promoter in intron 4 of fibroblast growth factor receptor 4. *J Biol Chem* 278: 19597–19602, 2003

121) Ezzat S, Cheng L, Zhu XF, Wu GE, Asa SL: Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. *J Clin Invest* 109: 69–78, 2002

122) Cristina C, García-Tornadó I, Díaz-Torga G, Rubinstein M, Low MJ, Becú-Villalobos D: Dopaminergic D2 receptor knockout mouse: an animal model of prolactinoma. *Front Horm Res* 35: 50–63, 2006
132) Asa SL, Kelly MA, Grandy DK, Low MJ: Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. *Endocrinology* 140: 5348–5355, 1999

133) Dawson MA, Kouzarides T: Cancer epigenetics: from mechanism to therapy. *Cell* 150: 12–27, 2012

134) Simpson DJ, Hibberts NA, McNicol AM, Clayton RN, Farrell WE: Loss of pRB expression in pituitary adenomas is associated with methylation of the RB1 CpG island. *Cancer Res* 60: 1211–1216, 2000

135) Marinoni I, Pellegrata NS: p27kip1: a new multiple endocrine neoplasia gene? *Neuroendocrinology* 93: 19–28, 2011

136) Simpson DJ, Bicknell JE, McNicol AM, Clayton RN, Farrell WE: Hypermethylation of the p16/CDKN2A/MTSI gene and loss of protein expression is associated with nonfunctional pituitary adenomas but not somatotrophinomas. *Genes Chromosomes Cancer* 24: 328–336, 1999

137) Ezzat S: Epigenetic control in pituitary tumors. *Endocr J* 55: 951–957, 2008

138) Zhang X, Sun H, Danila DC, Johnson SR, Zhou Y, Swearingen B, Klibanski A: Loss of expression of neuronatin in somatotroph adenomas. *Endocr J* 55: 951–957, 2008

139) van der Weyden L, Adams DJ: The Ras-association domain family (RASSF) members and their role in human tumourigenesis. *Biochim Biophys Acta* 1776: 58–85, 2007.

140) Peng H, Liu H, Zhao S, Wu J, Fan J, Liao J: Sensing of RASSF3 by DNA hypermethylation is associated with tumorigenesis in somatotroph adenomas. *PLoS ONE* 8: e59024, 2013

141) Revill K, Dudley KJ, Clayton RN, McNicol AM, Farrell WE: Loss of neuronatin expression is associated with promoter hypermethylation in pituitary adenoma. *Endocr Relat Cancer* 16: 537–548, 2009

142) Mantovani G, Lania AG, Spada A: GNAS imprinting and pituitary tumors. *Mol Cell Endocrinol* 326: 15–18, 2010

143) Ezzat S, Zhu X, Loope S, Fischer S, Asa SL: Tumor-derived Ikars 6 acetylates the Bcl-XL promoter to up-regulate a survival signal in pituitary cells. *Mol Endocrinol* 20: 2976–2986, 2006

144) Zhu X, Asa SL, Ezzat S: Ikars is regulated through multiple histone modifications and deoxyribonucleic acid methylation in the pituitary. *Mol Endocrinol* 21: 1205–1215, 2007

145) Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell* 116: 281–297, 2004

146) Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. *Proc Natl Acad Sci USA* 101: 2999–3004, 2004

147) Trivellin G, Butz H, Delhove J, Igreja S, Chahal HS, Zivkovic V, McKay T, Patós C, Grossman AB, Korbonits M: MicroRNA miR-107 is overexpressed in pituitary adenomas and inhibits the expression of aryl hydrocarbon receptor-interacting protein in vitro. *Am J Physiol Endocrinol Metab* 303: E708–E719, 2012

148) Palumbo T, Fauz FR, Azevedo M, Xekouki P, Iliopoulos D, Stratakis CA: Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatotrophinomatous tumor growth through activation of the PTEN-akt pathway. *Oncogene* 32: 1651–1659, 2013

149) D’Angelo D, Palmieri D, Mussnich P, Roche M, Wierinckx A, Raveot G, Fedele M, Croce CM, Trouillas J, Fusco A: Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGa1, HMGa2, and E2F1. *J Clin Endocrinol Metab* 97: E1128–E1138, 2012

150) Palmieri D, D’Angelo D, Valentino T, De Martino I, Ferraro A, Wierinckx A, Fedele M, Trouillas J, Fusco A: Downregulation of HMGa-targeting microRNAs has a critical role in human pituitary tumorigenesis. *Oncogene* 31: 3857–3865, 2012

151) Gentilin E, Tagliati F, Filieri C, Molè D, Minoia M, Rosaria Ambrosio M, Degli Uberti EC, Zatelli MC: miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cδ. *Endocrinology* 154: 1690–1700, 2013

152) Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, Degli Uberti EC: miR-15a and miR-16-1 down-regulation in pituitary adenomas. *J Cell Physiol* 204: 280–285, 2005

153) Butz H, Likó I, Czirják S, Igaz P, Korbonits M, Rácz K, Patós C: MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. *Pituitary* 14: 112–124, 2011

154) Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC: Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. *J Cell Physiol* 210: 370–377, 2007

155) Butz H, Likó I, Czirják S, Igaz P, Khan MM, Zivkovic V, Bálint K, Korbonits M, Rácz K, Patós A: Downregulation of WEE1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. *J Clin Endocrinol Metab* 95: E181–E191, 2010

156) Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T: Cell cycle regulation by long non-coding RNAs. *Cell Mol Life Sci* 70: 4785–4794, 2013

157) Benetatos L, Hatziimichalis E, Londin E, Vartholomatos G, Loher P, Rigoutsos I, Briassoulis E: The microRNAs within the DLK1-DIO3 genomic region:
involvement in disease pathogenesis. Cell Mol Life Sci 70: 795–814, 2013

158) da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC: Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 24: 306–316, 2008

159) Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A: A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88: 5119–5126, 2003

160) Zhou Y, Zhang X, Klibanski A: MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48: R45–R53, 2012

161) Fukuoka H, Cooper O, Ben-Shlomo A, Mamelak A, Ren SG, Bruyette D, Melmed S: EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest 121: 4712–4721, 2011

Address reprint requests to: Hidenori Fukuoka, MD, PhD, Division of Diabetes and Endocrinology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.

e-mail: fukuokah@med.kobe-u.ac.jp