Supplementary Material

Frontostriatothalamic effective connectivity and dopaminergic function in the psychosis continuum

Kristina Sabaroedin1, Adeel Razi1,2,3, Sidhant Chopra1, Nancy Tran1, Andrii Pozaruk2, Zhaolin Chen2, Amy Finlay1, Barnaby Nelson4,5, Kelly Allott4,5, Mario Alvarez-Jimenez4,5, Jessica Graham4,5, Hok P Yuen4,5, Susy Harrigan8,9, Vanessa Cropley6, Sujit Sharma10, Bharat Saluja10, Robert Williams11, Christos Pantelis6,7, Stephen J. Wood4,5,12, Brian O’Donoghue4,5, Shona Francey4,5, Patrick McGorry4,5, Kevin Aquino1,2, & Alex Fornito1,2

1. Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia
2. Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
3. Wellcome Centre for Human Neuroimaging, University College London WC1N 3AR, United Kingdom
4. Orygen, Parkville, Victoria 3052, Australia
5. Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
6. Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Parkville, Victoria 3010, Australia
7. The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
8. Department of Social Work, Monash University, Victoria 3800, Australia
9. Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria 3010, Australia
10. Monash Health, Dandenong, Victoria, 3175, Australia
11. The University of Dandenong, Parkville, Victoria 3010, Australia
12. School of Psychology, University Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
Appendix. Supplementary Methods and Materials

Table S1. Summary of Connections Associated with Severity of Negative Symptoms in FEP ($n = 46$), FEP-SCZ ($n = 17$), and SCZ ($n = 26$) Patients

Figure S1. Parcellation of Dorsal and Ventral Striatal Regions of Interest in PET Quantification Presented on the MNI 2mm Template

Figure S2. Associations Between Severity of Negative Symptomatology and Effective Connectivity Parameters Across All Cohorts
Appendix. Supplementary Methods and Materials

Participant exclusion criteria

FEP. The initial sample size for this group was 61 patients and 27 controls. We excluded 5 patients with poor imaging data, 1 patient with high motion, 3 patients with DCM explaining <75% of the signal variance, and 6 patients with substance induced psychosis. This brought the final sample of patients included in the study to 46. A total of 17 FEP patients had a diagnosis of schizophrenia spectrum disorder (8 schizophrenia, 8 schizophreniform disorder and 1 schizoaffective disorders), making up a subset of FEP-SCZ patients. Other FEP patients were diagnosed with delusional disorder (n = 5), major depressive disorder with psychotic features (n = 10), psychotic disorder not otherwise specified (n = 13), and 1 patient had a missing diagnosis. For the control group, we excluded 3 individuals with high motion (criteria outlined below), and 1 with DCM explaining <75% of the signal variance, resulting in a final sample of 23.

Established schizophrenia (SCZ). We excluded 1 patient with poor imaging data, 9 patients with high motion, and 5 with DCM explaining <75% of the signal variance, resulting in a final sample of 36 patients. We excluded 6 controls with high motion and 15 with DCM explaining <75% of the signal variance, resulting in a final sample of 100 controls.

[^F]DOPA. Eight individuals did not complete the scanning protocol. We also excluded 3 participants with high motion and 5 participants with DCM explaining <75% of the signal variance. A total of 3 participants had unusable PET scans, bringing the final sample to 33 with both fMRI and PET data.
Spectral dynamic causal modelling

Dynamic causal modelling (DCM) is a Bayesian framework that infers the directed (causal) connectivity among the neuronal systems – referred to as effective connectivity. A DCM for resting state fMRI was proposed based upon a deterministic model that generates predicted cross spectra, referred to as spectral DCM. In order to model resting state activity — in the absence of external stimuli — a stochastic component capturing neural fluctuations is included in the model.

Mathematically, we can express the formulation of the stochastic generative model as a set of two equations. First is the neuronal state equation, namely

\[\dot{x}(t) = f(x(t), u(t), \theta) + v(t), \quad (S1) \]

and second is the observation equation, which is a static nonlinear mapping from the hidden physiological states in (1) to the observed BOLD activity, and is written as:

\[y(t) = h(x(t), \varphi) + e(t), \quad (S2) \]

where \(\dot{x}(t) \) is the rate of change of the neuronal states \(x(t) \), \(\theta \) are unknown parameters (i.e., the effective connectivity) and \(v(t) \) (resp. \(e(t) \)) is the stochastic process — called the state noise (resp. the measurement or observation noise) — modelling the random neuronal fluctuations that drive the resting state activity. In the observation equations, \(\varphi \) are the unknown parameters of the (haemodynamic) observation function and \(u(t) \) represents any exogenous (or experimental) inputs that drive the hidden states, which are usually absent in resting-state designs. Spectral DCM furnishes a constrained inversion of the stochastic model by parameterising the neuronal fluctuations \(v(t) \).
Spectral DCM simplifies the generative model by replacing the original timeseries with their second-order statistics (i.e., cross spectra). This means that, instead of estimating time varying hidden states, we are estimating their covariance, which is time invariant. Then we simply need to estimate the covariance of the random fluctuations, where a scale free (power law) form for the state noise (resp. observation noise) is used, motivated from previous work on neuronal activity, as follows:

\[
g_v(\omega, \theta) = \alpha_v \omega^{-\beta_v} \\
g_e(\omega, \theta) = \alpha_e \omega^{-\beta_e}
\]

(S3)

Here, \(\{\alpha, \beta\} \subset \theta \) are the parameters controlling the amplitudes and exponents of the spectral density of the neural fluctuations. The parameterisation of endogenous fluctuations means that the states are no longer probabilistic; hence the inversion scheme is significantly simpler, requiring estimation of only the parameters (and hyperparameters) of the model.

We used standard Bayesian model inversion to infer the parameters of the model in (1), (2) and (3), from the observed signal \(y(t) \). The description of the Bayesian model inversion procedures based on variational Laplace can be found elsewhere. Parametric Empirical Bayes

Empirical Bayes refers to the Bayesian inversion or fitting of hierarchical models. In hierarchical models, constraints on the posterior density over model parameters at any given level are provided by the level above. These constraints are called empirical priors because they are informed by empirical data. A hierarchical Parametric Empirical Bayes (PEB) model for DCM parameters has recently been introduced, which represents how individual (within-subject) connections derive from the subjects’ group membership. Mathematically, for
DCM studies with N subjects and M parameters per DCM, we have a hierarchical model, where the responses of the i-th subject and the distribution of the parameters over subjects can be modeled as:

$$y_i = \Gamma_i^{(1)}(\theta^{(1)}) + \epsilon_i^{(1)}$$

$$\theta^{(1)} = \Gamma^{(2)}(\theta^{(2)}) + \epsilon^{(2)}$$

$$\theta^{(2)} = \eta + \epsilon^{(3)}$$

where, y_i is the BOLD time series from i-th subject and $\Gamma_i^{(1)}$ is a nonlinear mapping from the parameters of a model to the predicted response y, which in this study was the model in Eq. S1 above. $\epsilon_i^{(1)}$ is independent and identically distributed (i.i.d.) observation noise (equivalent to $e(t)$ in Eq. S2). In this hierarchical form, empirical priors encoding second (between-subject) level effects place constraints on subject-specific parameters. The second level is a linear model where the random effects are parametrised in terms of their precision:

$$\Gamma^{(2)}(\theta^{(2)}) = (X \otimes W)\beta$$

where, $\beta \subset \theta$ are group means or effects encoded by a design matrix with between-subject, X, and within-subject, W, parts. The between-subject part encodes differences among subjects or covariates such as age, while the within-subject part specifies mixtures of parameters that show random effects. We assume that the first column of the design matrix is a constant term, modelling group means, and subsequent columns encode group differences.
References

1. Poldrack RA, Congdon E, Triplett W, et al. A phenome-wide examination of neural and cognitive function. *Sci Data*. 2016;3:1-12. doi:10.1038/sdata.2016.110

2. Dazzi F, Shafer A, Lauriola M. Meta-analysis of the Brief Psychiatric Rating Scale – Expanded (BPRS-E) structure and arguments for a new version. *J Psychiatr Res*. 2016;81:140-151. doi:10.1016/j.jpsychires.2016.07.001

3. Esteban O, Markiewicz CJ, Blair RW, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. *Nat Methods*. 2019;16(1):111-116. doi:10.1038/s41592-018-0235-4

4. Treiber JM, White NS, Steed TC, et al. Characterization and correction of geometric distortions in 814 Diffusion Weighted Images. *PLoS One*. 2016;11(3). doi:10.1371/journal.pone.0152472

5. Parkes L, Fulcher BD, Yücel M, Fornito A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. *Neuroimage*. 2018;171:415-436. doi:10.1016/j.neuroimage.2017.12.073

6. Friston KJ, Kahan J, Biswal B, Razi A. A DCM for resting state fMRI. *Neuroimage*. 2014;94(August 2014):396-407. doi:10.1016/j.neuroimage.2013.12.009

7. Razi A, Kahan J, Rees G, Friston KJ. Construct validation of a DCM for resting state fMRI. *Neuroimage*. 2015;106:1-14. doi:10.1016/j.neuroimage.2014.11.027

8. Aquino KM, Fulcher BD, Parkes L, Sabaroedin K, Fornito A. Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem. *Neuroimage*. 2020;212(February):116614. doi:10.1016/j.neuroimage.2020.116614

9. Glasser MF, Coalson TS, Bijsterbosch JD, et al. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data.
Hoffman JM, Meiega W, Hawk T, et al. The Effectsof Carbidopa Administration on Kinetics in Positron Emission Tomography. *J Nucl Med*. 1992;33(8):1472-1477. https://pubmed.ncbi.nlm.nih.gov/1634937/

Ruottinen HM, Rinne JO, Ruotsalainen UH, et al. Striatal [18F]fluorodopa utilization after COMT inhibition with entacapone studied with PET in advanced Parkinson’s disease. *J Neural Transm - Park Dis Dement Sect*. 1995;10(2-3):91-106. doi:10.1007/BF02251225

Burgos N, Cardoso MJ, Thielemans K, et al. Attenuation correction synthesis for hybrid PET-MR scanners: Application to brain studies. *IEEE Trans Med Imaging*. 2014;33(12):2332-2341. doi:10.1109/TMI.2014.2340135

Baran J, Chen Z, Sforazzini F, et al. Accurate hybrid template-based and MR-based attenuation correction using UTE images for simultaneous PET/MR brain imaging applications. *BMC Med Imaging*. 2018;18(1):1-16. doi:10.1186/s12880-018-0283-3

Chen Z, Sforazzini F, Baran J, Close T, Shah NJ, Egan GF. MR-PET head motion correction based on co-registration of multicontrast MR images. *Hum Brain Mapp*. 2019;(August 2018):1-11. doi:10.1002/hbm.24497

Jenkinson M, Bannister P, Brady M, Smith S. Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. 2002;841:825-841. doi:10.1006/nimg.2002.1132

López-González FJ, Paredes-Pacheco J, Thurnhofer-Hemsi K, et al. QModeling: a Multiplatform, Easy-to-Use and Open-Source Toolbox for PET Kinetic Analysis. *Neuroinformatics*. 2019;17(1):103-114. doi:10.1007/s12021-018-9384-y

Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants
from multiple-time uptake data. J Cereb Blood Flow Metab. 1985;5(4):584-590. doi:10.1038/jcbfm.1985.87

18. Moore RY, Whone AL, McGowan S, Brooks DJ. Monoamine neuron innervation of the normal human brain: An 18F-DOPA PET study. Brain Res. 2003;982(2):137-145. doi:10.1016/S0006-8993(03)02721-5

19. Sabaroedin K, Tiego J, Parkes L, et al. Functional connectivity of corticostriatal circuitry and psychosis-like experiences in the general community. Biol Psychiatry. 2019;86(1):16-24. doi:10.1016/j.biopsych.2019.02.013

20. Fornito A, Harrison BJ, Goodby E, et al. Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. JAMA psychiatry. 2013;70(11):1143-1151. doi:10.1001/jamapsychiatry.2013.1976

21. Dandash O, Harrison BJ, Adapa R, et al. Selective Augmentation of Striatal Functional Connectivity Following NMDA Receptor Antagonism: Implications for Psychosis. Neuropsychopharmacology. 2014;40(3):1-10. doi:10.1038/npp.2014.210

22. Di Martino A, Scheres A, Margulies DS, et al. Functional connectivity of human striatum: A resting state fMRI study. Cereb Cortex. 2008;18(12):2735-2747. doi:10.1093/cercor/bhn041

23. Postuma RB, Dagher A. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex. 2006;16(10):1508-1521. doi:10.1093/cercor/bhj088

24. Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: neurotechnique automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341-355. doi:10.1016/S0896-6273(02)00569-X

25. Small SA, Schobel SA, Buxton RB, Witter MP. A pathophysiological framework of
hippocampal dysfunction in ageing and disease. *Nat Rev Neurosci*. 2011;12(10):585-601. doi:10.1038/nrn3085

26. Zeidman P, Maguire EA. Anterior hippocampus: the anatomy of perception, imagination and episodic memory. *Nat Rev Neurosci*. 2017;17(3):173-182. doi:10.1038/nrn.2015.24

27. Murty VP, Shermohammed M, Smith D V., Carter RMK, Huettel SA, Adcock RA. Resting state networks distinguish human ventral tegmental area from substantia nigra. *Neuroimage*. 2014;100:580-589. doi:10.1016/j.neuroimage.2014.06.047

28. Friston KJ. Functional and effective connectivity in neuroimaging: A synthesis. *Hum Brain Mapp*. 1994;2(1-2):56-78. doi:10.1002/hbm.460020107

29. Shin CW, Kim S. Self-organized criticality and scale-free properties in emergent functional neural networks. *Phys Rev E - Stat Nonlinear, Soft Matter Phys*. 2006;74(4):1-4. doi:10.1103/PhysRevE.74.045101

30. Stam CJ, De Bruin EA. Scale-free dynamics of global functional connectivity in the human brain. *Hum Brain Mapp*. 2004;22(2):97-109. doi:10.1002/hbm.20016

31. Beggs JM, Plenz D. Neuronal Avalanches in Neocortical Circuits. *J Neurosci*. 2003;23(35):11167–11177. doi:10.13005/bbra/1928

32. Friston KJ, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W. Variational free energy and the Laplace approximation. *Neuroimage*. 2007;34(1):220-234. doi:10.1016/j.neuroimage.2006.08.035

33. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. *Neuroimage*. 2003;19(4):1273-1302. doi:10.1016/S1053-8119(03)00202-7

34. Razi A, Friston KJ. The connected brain: causality, models, and intrinsic dynamics. *IEEE Signal Process Mag*. 2016;33(3):14–35. doi:10.1126/science.342.6158.577

35. Friston KJ, Litvak V, Oswal A, et al. Bayesian model reduction and empirical Bayes
for group (DCM) studies. *Neuroimage*. 2016;128:413-431.

doi:10.1016/j.neuroimage.2015.11.015
Table S1. Summary of Connections Associated with Severity of Negative Symptoms in FEP (n = 46), FEP-SCZ (n = 17), and SCZ (n = 36) Patients

Connection	Positive (+) or negative (-) association	Effect size (Hz)	90% Posterior Confidence Interval (lower bound, upper bound)
FEP			
dlPFC → dlPFC	+	0.11	0.01, 0.21
Amyg → Thal	-	0.09	-0.19, 0.02
Amyg → Hipp	+	0.08	0.02, 0.19
Hipp → Hipp	+	0.12	0.02, 0.22
DC → VTA/SN	-	0.09	-0.20, 0.01
VTA/SN → Thal	-	0.13	-0.24, -0.03
FEP-SCZ			
vmPFC → Amyg	-	0.19	-0.32, -0.05
dlPFC → dlPFC	+	0.11	-0.02, 0.24
dlPFC → Thal	+	0.12	-0.01, 0.26
dlPFC → DC	+	0.09	-0.06, 0.24
Thal → Amyg	+	0.17	0.03, 0.30
Amyg → Amyg	+	0.14	0.00, 0.27
Amyg → Thal	-	0.11	-0.23, 0.02
Hipp → Hipp	+	0.14	0.01, 0.27
SCZ			
Thal → Thal	-	0.17	-0.28, -0.06
Thal → vmPFC	+	0.09	-0.02, 0.19
Amyg → Amyg	-	0.16	-0.27, -0.05
NAcc → NAcc	-	0.09	-0.20, 0.03
NAcc → Hipp	-	0.10	-0.22, 0.01
NAcc → VTA/SN	+	0.11	-0.01, 0.22
VTA/SN → VTA/SN	+	0.10	-0.01, 0.21
VTA/SN → Hipp	-	0.13	-0.24, -0.02
VTA/SN → dlPFC	-	0.11	-0.22, 0.00

FEP: first-episode psychosis group; FEP-SCZ: first-episode psychosis subgroup with a diagnosis of schizophrenia spectrum disorder; SCZ: schizophrenia group.

All connections have the posterior probability (free energy) value of 1.00.

All parameters for between region connections are in Hz. Self-connections are italicized, and values are log-transformed to ensure prior negativity (i.e., inhibitory) constraints on self-connections. A positive value for self-connection denotes increased inhibition, a negative value signifies reduced inhibition.

Negative symptoms measured with BPRS Negative subscale.
Figure S1. Parcellation of Dorsal and Ventral Striatal Regions of Interest in PET Quantification Presented on the MNI 2mm Template. The ventral striatum is in magenta and dorsal striatum is in blue. Striatal ROIs were registered to each person’s anatomical template. PET analysis was restricted to the left hemisphere.
Figure S1. Associations Between Severity of Negative Symptoms and Effective Connectivity Parameters Across All Cohorts. Panels depict associations in (A) FEP (n = 46), (B) FEP-SCZ (n = 17), and (C) SCZ (n = 17). Solid arrows: positive associations between effective connectivity parameters and negative PLEs/symptoms; sashed arrows: negative associations between effective connectivity parameters and negative PLEs/symptoms; gray arrows: associations that were not (significantly) different from the prior. Connections were thresholded at Pp > 0.95.