Is it possible to stop nucleos(t)ide analogue treatment in chronic hepatitis B patients?

Elia Moreno-Cubero, Robert T Sánchez del Arco, Julia Peña-Asensio, Eduardo Sanz de Villalobos, Joaquín Míquel, Juan Ramón Larrubia

Abstract

Chronic hepatitis B (CHB) remains a challenging global health problem, with nearly one million related deaths per year. Nucleos(t)ide analogue (NA) treatment suppresses viral replication but does not provide complete cure of the hepatitis B virus (HBV) infection. The accepted endpoint for therapy is the loss of hepatitis B surface antigen (HBsAg), but this is hardly ever achieved. Therefore, indefinite treatment is usually required. Many different studies have evaluated NA therapy discontinuation after several years of NA treatment and before HBsAg loss. The results have indicated that the majority of patients can remain off therapy, with some even reaching HBsAg seroconversion. Fortunately, this strategy has proved to be safe, but it is essential to consider the risk of liver damage and other comorbidities and to ensure a work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Juan Ramón Larrubia, MD, MSc, PhD, Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara 19002, Spain. juan.larrubia@uah.es

Telephone: +34-949-209200
Fax: +34-949-909256

Received: April 1, 2018
Peer-review started: April 2, 2018
First decision: April 19, 2018
Revised: April 21, 2018
Accepted: April 23, 2018
Article in press: April 23, 2018
Published online: May 7, 2018
close follow-up of the candidates before considering this strategy. Unanswered questions remain, namely in which patients could this strategy be effective and what is the optimal time point at which to perform it. To solve this enigma, we should keep in mind that the outcome will ultimately depend on the equilibrium between HBV and the host’s immune system. Viral parameters that have been described as good predictors of response in HBeAg(+)-cases, have proven useless in HBeAg(-) ones. Since antiviral immunity plays an essential role in the control of HBV infection, we sought to review and explain potential immunological biomarkers to predict safe NA discontinuation in both groups.

Key words: CD8; Lamivudine; Nucleos(t)ide analogues; Tenofovir; Chronic hepatitis B; Entecavir; Hepatitis B virus; Treatment cessation

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Nucleos(t)ide analogue (NA) treatment efficiently suppress hepatitis B virus replication. However, hepatitis B surface antigen loss, the optimal endpoint of NA therapy, is rarely achieved. Thus, a major unmet need in the management of chronic hepatitis B is the definition of earlier and safer treatment stopping points. There is growing clinical evidence that the majority of patients can benefit from this strategy after long-term NA therapy; yet, no criteria that distinguish which cases can safely stop treatment is established. We review here different biomarkers that could serve as a prognostic tool to safely discontinue therapy, focusing on host antiviral immunity.

Moreno-Cubero E, Sánchez del Arco RT, Peña-Asensio J, Sanz de Villalobos E, Miquel J, Larrubia JR. Is it possible to stop nucleos(t)ide analogue treatment in chronic hepatitis B patients? World J Gastroenterol 2018; 24(17): 1825-1838 Available from: URL: http://www.wjgnet.com/1007-9327/full/v24/i17/1825.htm DOI: http://dx.doi.org/10.3748/wjg.v24.i17.1825

INTRODUCTION

According to recent data from the World Health Organization, about 257 million people suffer from chronic hepatitis B (CHB) worldwide. Hepatitis B virus (HBV) infection remains a major global health concern, as the disease itself and its complications, mainly hepatocellular carcinoma (HCC) and cirrhosis, caused 887000 deaths in 2015 alone. The estimated worldwide incidence of HCC in 2012 was 782000 cases, representing the fifth and the ninth most common cancer in males and females respectively. Moreover, HCC was the second cause of global cancer mortality, as it tends to have very poor prognosis with an overall ratio of mortality to incidence of 0.95.

Although the actual HBV vaccine is 95% effective, vaccination coverage is still suboptimal in many highly endemic areas. Besides, most of the current HBV-infected persons were born before the vaccine was widely accessible[2-4]. HBV infection chronification is not fully understood. The HBV genome assembly into a stable mini-chromosome, known as covalently closed circular (ccc)DNA, which can integrate into and persist in the hepatic cell nucleus. In addition, the immune response against HBV is profoundly impaired[5,6]. Both are, in fact, the main reasons why indefinite treatment is usually necessary.

Immune modulators were the first approach to CHB treatment. The first one, interferon (IFN)-α was approved in 1991, being afterwards substituted by its pegylated form (Peg-IFN-α) as the latter provides a safer profile. The principal mechanism of Peg-IFN-α therapy relies on the induction of long-term immune control, which occurs in almost half of the responders and with limited treatment duration. However, it poses significant drawbacks, including an adverse safety profile and a high response variableness, the reasons why a number of patients are ineligible, unsuitable or reluctant to partake in this treatment alternative[7,8].

At present, nucleos(t)ide analogues (NAs) constitute the lynchpin of CHB therapy, as they facilitate achievement of viral suppression in almost all adherent patients, while having an overall favourable safety profile[7-9]. The currently approved NAs for CHB treatment in the United States and Europe include lamivudine (LMV), telbivudine (TBV), adefover dipivoxil (ADV), tenofovir (disoproxil fumarate, TDF; alafenamide, TAF) and entecavir (ETV). The NA mechanism of action comprises viral polymerase inhibition, which leads to decreased virion assembly and ultimately a hypothetical cccDNA downturn that would only be appreciated after an extended period of treatment[10,11].

Nonetheless, NAs are not able to stop de novo cccDNA synthesis in recently infected hepatocytes; thus, lingering viremia could perpetuate the viral repository. That is the reason why “complete cure” is not a realistic endpoint of NAs to date. "Functional cure", understood as HBV DNA and hepatitis B surface antigen (HBsAg) seroclearance with or without seroconversion, constitutes a more plausible goal. However, it is achieved only in a small proportion of the treated patients. Lifelong NA therapy is usually necessary, especially in hepatitis B e antigen-negative [HBeAg(-)] cases[7,12,13].

Since indefinite treatment is mandatory, development of viral resistance is a paramount concern, especially with the first- and second-generation oral NAs such as LMV, TBV and ADV. Fortunately, that problem seems to have been overcome by the new agents TDF/TAF and ETV, as they present low resistance rates and high efficacy with a very favourable safety profile[14,15].

Combination therapy has also been proposed as a strategy for HBV eradication, but results are still under evaluation and intense debate. Its rationale
comprises attacking the virus in different parts of its life cycle, and follows practical successes observed in other infectious diseases, like hepatitis C virus and human immunodeficiency virus. Potential objectives regarding this approach include viral targeting (viral entry, cccDNA, RNA interference, encapsidation, DNA replication, etc) as well as innate and adaptive immunomodulation (IFN, Toll-like receptor/RIG-1 agonists; and checkpoint inhibitors, T cell modification and vaccination respectively).

Other trials that have evaluated the synergies between innate immunity potentiation and NAs have already shown promising results. A preclinical phase study that combined a woodchuck hepatitis virus DNA vaccine, a programmed cell death protein 1 (PD-1) inhibitor and ETV showed restoration of the cytolytic capacities of HBV-specific T cells and better control of viral replication. Another study that associated a DNA vaccine with any NA revealed no differences in relapse after NA cessation. A third study that blended an HBsAg vaccine with LMV did not find clinical differences.[21]

If theoretically attractive, current guidelines do not recommend combination therapy for clinical practice.[22,23] The ultimate and thus optimal target of HBV therapy for HBeAg(-) and HBeAg(+) patients comprises viral eradication. Such would involve HBsAg seroconversion or seroclearance and cccDNA elimination from hepatocytes.[24] Unfortunately, it is not a likely outcome, and recommended goals point towards sustained inhibition of replication and maintenance of alanine aminotransferase (ALT) enzyme levels within the normal range.[16,18,21] Achievement of these objectives has been shown to stop the inflammation cascade and fibrosis progression,[25,26] with consequent improvement in life-quality and survival.[26] The weight of the beneficial effects of the latest generation NAs over the risk of HCC are still controversial, as the latter develops even without treatment.[27,28]

It seems, then, reasonable to bear in mind that any strategy involving NA treatment withdrawal must guarantee the patient’s safety and, therefore, the maintenance of the aforementioned objectives.

CLINICAL EVIDENCE REGARDING NA TREATMENT CESSATION

There is a growing body of evidence that helped to elucidate whether NA therapy cessation is safe and effective. A relevant study by Hadziyannis et al.[29] must be pointed out as a point of inflexion regarding the NA cessation approach. It showed a significantly higher HBsAg clearance rate (almost reaching 40%) in the HBeAg(-) CHB patients that stopped after 5 years under ADV therapy, in comparison to that reported for their equals under NA. Since then, a set of investigations have attempted to clarify whether stopping treatment with NA may have an additional benefit in the loss of HBsAg, showing achievement of rates between 20%-24%.[30,31]

Some parameters have been pointed out as possible predictors of both sustained viral response and HBsAg loss. Among these, it is worth highlighting the decrease of quantitative (q)HBsAg. Other biomarkers that could permit identification of patients in which NA cessation will be safe will be reviewed broader, later on. The recent FINITE study[32] was the first randomized controlled trial that compared standard TDF therapy continuation against its interruption in HBeAg(-) patients that had been under treatment for at least 3.5 years. In line with the previous commented work, 13 out of 21 patients in the cessation arm remained off-therapy and 4 of them even achieved HBsAg seroclearance after 3 years of follow-up. No unexpected safety issues were reported. These and the other studies about NA interruption that have been published to date are summarised in Table 1.

Some of the current HBV management guidelines[33,34,35] have begun to consider treatment cessation in other selected populations of patients. The most accepted election criteria include cirrhosis absence, treatment for at least 2 or 3 years, sustained viral suppression and guaranteed patient monitoring (Table 2). Concerns regarding treatment cessation include virological and clinical relapse but also the possibility of dangerous complications, such as hepatic decompensation, liver failure and, ultimately, death. Serious complications are uncommon, and some meta-analyses have shown a decompensation rate of less than 1% in patients that presented baseline cirrhosis.[33,34] Therapy reestablishment proved to be effective in most cases, but also cases of death after liver failure have been reported.

A recent study provided alert to the risk of relapse and potentially fatal effects among Caucasian cirrhotic patients with HBeAg(+) HBV virus infection.[35] Two patients died of liver-related events: one after decompensation and sepsis, and the other one after developing a multicentric HCC 10 years after the NA treatment cessation. Nevertheless, both of those patients had presented with advanced fibrosis and cirrhosis, respectively, at the time of therapy discontinuation. Furthermore, although a few studies have claimed benefits of long-term treatment regarding HCC incidence, as previously stated, it is not doubtlessly prevented by NA therapy.[26,28,30,31,37]

Hence, considering that the treatment withdrawal could lead to severe flares and even death in a few cases it should be avoided in patients with advanced fibrosis or cirrhosis, and a close follow-up must always be guaranteed for the rest of the cases.[38] However, severe complications are rare, and research must continue to address the optimal NA cessation point. The identification of reliable factors capable of predicting clinical, virological and biochemical relapse, or the maintenance of the viral response, would be of vital
Table 1 Summary of relevant NA treatment discontinuation studies

Study	Patients off NA, n	HBeAg(+)	Cirrhosis	Age in year	Sex, male	Ethnicity	Treatment	Treatment duration in mo	Virologic response	Outcomes
Fung et al. (2004)	27	NR	NR	27	7	Asian	NR	26/32	26/28	NR
Fung et al. (2009)	22	NR	NR	22	7	Korean	NR	26/32	26/28	NR
Wang et al. (2010)	35	NR	NR	35	7	Asian	NR	26/32	26/28	NR
Kuo et al. (2009)	124	38	33	124	7	Asian	NR	26/32	26/28	NR
Cati et al. (2011)	16	NR	NR	16	7	Asian	NR	26/32	26/28	NR
Cati et al. (2011)	16	NR	NR	16	7	Asian	NR	26/32	26/28	NR
Han et al. (2011)	16	NR	NR	16	7	Asian	NR	26/32	26/28	NR
Jiang et al. (2012)	16	NR	NR	16	7	Asian	NR	26/32	26/28	NR
Fung et al. (2012)	35	NR	NR	35	7	Asian	NR	26/32	26/28	NR
Kwon et al. (2012)	12	NR	NR	12	7	Korean	NR	26/32	26/28	NR
Redondo et al. (2012)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Sohn et al. (2013)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Seto et al. (2013)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Huang et al. (2014)	35	NR	NR	35	7	Asian	NR	26/32	26/28	NR
Patwardhan et al. (2014)	35	NR	NR	35	7	Asian	NR	26/32	26/28	NR
Jang et al. (2014)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Chen et al. (2015)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Wang et al. (2015)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Sohn et al. (2016)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Liu et al. (2016)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Liu et al. (2016)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Park et al. (2017)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Li et al. (2017)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Geng et al. (2017)	12	NR	NR	12	7	Asian	NR	26/32	26/28	NR
Van Hoesen et al. (2018)	12	NR	NR	12	7	Caucasian	NR	26/32	26/28	NR
Rivas et al. (2017)	21	NR	NR	21	7	Caucasian	NR	26/32	26/28	NR
Rivas et al. (2018)	21	NR	NR	21	7	Caucasian	NR	26/32	26/28	NR

Virologic response is considered as defined in the original study. Results expressed as ETV/LMV; *Deaths not related with treatment discontinuation according to the authors.* Two follow-up durations in this study expressed as: Initial (6 mo)/Long-term (36 mo); Results obtained in two different cohorts expressed as: cohort 1/cohort 2. ADV: Adefovir; CLE: Clevudine; ETV: Entecavir; HBeAg: Hepatitis B e antigen; LMV: Lamivudine; NA: Nucleoside analog; Treatment: NR: Not reported; TDF: Tenofovir; TBV: Telbivudine; TDF/ADV: TDF Plus ADV; TDF/LMV: TDF Plus LMV; ETV/LMV: ETV Plus LMV; ETV/ADV: ETV Plus ADV; TDF/ETV/LMV: TDF Plus ETV Plus LMV; TDF/ETV/ADV: TDF Plus ETV Plus ADV; TDF/LMV/ADV: TDF Plus LMV Plus ADV; TDF/LMV/ADV or TDF/ADV/LMV: TDF Plus LMV Plus ADV or TDF Plus ADV Plus LMV; TDF/ADV/LMV: TDF Plus ADV Plus LMV; TDF/ADV or TDF/LMV: TDF Plus ADV or TDF Plus LMV; TDF/ADV/LMV or TDF/LMV/ADV: TDF Plus ADV Plus LMV or TDF Plus LMV Plus ADV.
importance for clinical practice.

WHY SHOULD NA TREATMENT CESSATION BE CONSIDERED?

Once the safety of NA treatment cessation has been addressed, and keeping in mind that severe complications are rare, the vast benefit may be considered. Notwithstanding that NA treatment has an overall positive safety profile in the general population, some issues arise.

Lifelong NA treatment is an unaffordable burden for healthcare systems. That is why a significant advantage of its cessation would be cost reduction\(^\text{[22,34]}\). However, increase in the incidence of some chronic conditions, such as metabolic syndrome, diabetes mellitus and renal failure, may limit NA applicability in the future. Furthermore, we are not aware of potential concerns of NA therapy in elder individuals and research must address this subject. There are some other potential concerns about long-term NA therapy\(^\text{[39]}\). The most common side effects involve nephrological and bone toxicity, which are associated with TDF, perhaps the most widely used drug. However, the new tenofovir formulation TAF seems to have a better safety profile regarding these points. Other side effects appear to be related to mitochondrion impairment derived from human DNA polymerase function alteration and resulting in bone, renal and neurologic toxicity.

NA treatment cessation recommendations in the current hepatitis B virus guidelines

Table 2

Society	HBeAg(+)	HBeAg(-)	Cirrhosis
EASL (2017)\(^\text{[9]}\)	HBsAg clearance (safest)	HBsAg clearance	Not recommended
	HBeAg seroconversion and HBV DNA undetectability with 6-12 mo of ensuing consolidation therapy	Selected patients with \(\geq 3\) yr virological suppression if guaranteed close postNA monitoring for at least 1 yr	
AASLD (2016)\(^\text{[20]}\)	HBsAg clearance	HBsAg clearance	Not recommended
	HBeAg seroconversion with at least 12 mo of persistently normal ALT levels and undetectable serum HBV DNA levels (close monitoring for at least 1 yr)		
APASL (2016)\(^\text{[22]}\)	HBeAg seroconversion with undetectable HBV DNA and persistently normal ALT levels with 1-3 yr of consolidation therapy	HBsAg clearance with antiHBs seroconversion	Could be considered in compensated cirrhosis with careful monitoring
		HBsAg loss with at least 12 mo of consolidation period After treatment for at least 2 yr with undetectable HBV DNA documented on 3 separate occasions, 6 mo apart	

AASLD: American Association for the Study of Liver Diseases; ALT: Alanine aminotransferase; APASL: Asian Pacific Association for the Study of the Liver; EASL: European Association for the study of the Liver; HBeAg: Hepatitis B e antigen; HBs: Hepatitis B surface protein; HBsAg: Hepatitis B surface antigen; HBV: Hepatitis B virus; NA: Nucleos(t)ide analogue treatment.

Moreno-Cubero E et al. NA cessation in CHB

POTENTIAL BIOMARKERS TO SAFELY STOP NA TREATMENT

Taking into account that CHB outcome relies on equilibrium between the virus and the host, in the next paragraphs it will be explained how different virological and immunological parameters could be considered or not as predictors to safely discontinue NA treatment.

Sex: Female sex was identified as an independent predictor for sustained virological response after NA discontinuation in HBeAg(-) patients\(^\text{[31]}\).

Age: Older age has been correlated to higher relapse rates\(^\text{[31,40,41]}\), possibly reflecting the enhanced immune response in younger individuals.

NA treatment duration: A more extended therapy time would mean more time for an exhausted immune system to recover its response efficacy. Logistic regression has revealed that sustained virologic remission is more likely in HBeAg(-) patients after long periods of treatment, at least over 2 years. Nevertheless, this
parameter has not proven to be useful in HBeAg(+)
CHB[33].

ALT: The predictive role of ALT is controverted. Although it was classically accepted that ALT flares
were associated with the virologic response after NA
treatment cessation[42], lower ALT baseline levels
have been correlated with higher rates of HBsAg loss[31]. Also, it has recently been demonstrated that patients who
do not flare upon treatment withdrawal are those who
remain off-therapy[43]. Given the observed disparities,
more research is needed to elucidate the role of ALT as
a biomarker.

DNA: Lower baseline HBV DNA titres were reported as
associated independently with lower relapse rates[46],
whereas elevated HBV DNA titres and its persistence
after NA interruption also seem to be useful for relapse
prediction[45].

Serum qHBsAg: Decrease in serum qHBsAg has been
correlated to HBsAg clearance and has been spotlighted
as a possible predictor of sustained response and flares
after NA withdrawal[46-48]. The interest in qHBsAg has
been limited, however, due to the low level required for
consideration of NA cessation (100-700 IU/mL)[31,49-51],
and which is rarely achieved. Taking into account that
these qHBsAg levels are not adequately good predictors
to safely discontinue NA therapy, because they would
only represent a small portion of cases, more research
has been performed to improve the prognostic accuracy.

Noncytopathic viruses, such as HBV, have developed
evolutionary mechanisms to remain hidden from the
immune system, which is an advantage for their persist-
ence. HBV virus is not highly infectious but produces
long-lasting disease that allows it to spread the infection
over time. The host/HBV relationship is a dynamic
process in which the virus tries to decrease its visibility,
whereas the host attempts to prevent and eradicate
infection with minimal collateral damage to itself[52].

Several viral markers have been proposed as
potential biomarkers for a safe NA discontinuation, and
they are discussed below.

Virological parameters

Serum HBV RNA reflects the transcriptional activity
of liver cccDNA, and its decline seems to be a good
predictor of HBeAg seroconversion[53]. Nevertheless, it is
commonly undetectable in HBeAg(-) cases[54], making
it useless as a biomarker for stoppage of NA treatment
in this increasing population. Moreover, improvement
of the HBV RNA assay to make it more sensitive and
reproducible, as well as studies in bigger cohorts, are
essential before considering it as a potential biomarker
for monitoring safe discontinuation of NA therapy in
HBeAg(-) patients.

Hepatitis B core (Hbc) is an inner nucleocapsid
surrounding the viral DNA and is the target of specific
T cell response against the virus. AntiHbc is the first
antibody to appear after HBV exposure and it represents
a classical serological marker for HBV infection[55]. The
role of antiHbc as a predictor of NA discontinuation,
however, has not been fully examined, but it was
recently reported that baseline antiHbc level is a strong
predictor for HBeAg seroconversion during PEG-IFN-α
or NA therapy[56]. Moreover, there was a trend for an
inverse association between antiHbc and clinical relapse
after long-term ETV treatment cessation in an Asiatic
CHB cohort[57]. AntiHbc, as a predictor, needs to be
further assessed and validated in non-Asiatic cohorts, to
verify if it could be useful.

HBV core-related antigen (HBcrAg) includes
HbcAg, HBeAg and a pre-core protein (p22cr), and its
quantification closely correlates with intrahepatic
cccDNA level[58,59]. In HBeAg(+) CHB patients,
the dynamics of HBcrAg accurately predict spontaneous
HBeAg seroconversion[60] and the combination of HBsAg
together with HBcrAg quantification help to predict
safe discontinuation after NA treatment cessation[61].
However, most of this research has been performed in
Japan with first-generation NAs, so further validation
with the currently available NAs and different areas of
study is lacking.

In summary, some virological markers could be
useful predictors of response in HBeAg(+) patients,
but improvement of the assays together with further
cohort validation is still needed for HBeAg(-) cases. The
other side of the balance is the host’s immune defence
against the virus, presented in the next section.

Immunological parameters

To achieve control of the HBV infection, a functional
adaptive immune response, in particular the cellular
immune response, is essential; meanwhile, whether
and how HBV triggers the components of the innate
immune system remain controversial topics. Even
though the humoral response is an effective line of
defence against reinfection, in the setting of CHB,
the virus persists despite high levels of HBV-specific
antibodies[62] due to antigen overload, and only hepatitis
B surface antibody is associated with disease resolution.

Primed HBV-specific CD4 T cells are crucial to allow
the adequate activation of HBV-specific CD8 T cells
by secretion of proinflammatory cytokines, including
IFN-α[63]. Afterwards, HBV-specific CD8 T cells play a
major role in the resolution of spontaneous infection
because they can specifically recognise the infected
hepatocytes. Moreover, they can clear the virus by
inducing apoptosis of the infected cell as well as by
proinflammatory cytokine production to eliminate the
virus without causing cell death[64].

CD4- and CD8-specific HBV responses are vigorous,
polyclonal and multispecific in acute-resolving cases,
whereas are profoundly impaired in chronically infected
patients[65-68]. During CHB, HBV-specific T cell responses
gradually lose their functionality and are finally deleted[69]
due to the high and persistent antigen exposure, in order to avoid host-induced tissue damage, in a process called T cell exhaustion. T cell exhaustion is characterised by high and sustained expression of several negative pathways (i.e., PD-1, immunoregulatory cytokines and so on)\(^{[76-79]}\).

The role of HBV-specific CD4 T cell features as a predictor for NA cessation has not been intensely studied. It could be explained mainly by two reasons. First, the frequency of these cells in the chronic setting of the disease is very low\(^{[76]}\). Second, due to the nature of CD4 responses, in vitro stimulation assays are difficult because these cells are only successfully stimulated by professional antigen-presenting cells. Even though a robust HBV-specific CD4 T cell response is observed in acute resolving cases, and they are essential to support HBV-specific CD8 T cells, the difficulty of assessment makes them less useful than HBV-specific CD8 T cells or other surrogates when trying to find an easy and reproducible immunological marker to stop NA therapy safely.

CHB is one of the best models to study CD8 T cell exhaustion. In the different stages of the natural history of HBV infection, there are different virus-host interactions, reflected by different immune features of HBV-specific CD8 T cells. Bearing in mind that several studies have shown that after long-term NA treatment interruption the majority of patients remain with a viral response after long follow-up\(^{[29,32]}\), we could infer that the host's immunity is controlling HBV replication.

After a long-term NA treatment cessation, HBV-specific CD8 T cells could be given a second chance to fight the virus. If these cells have been restored by the reduced viremia that had been induced by the antiviral therapy at that point, these cases would be able to control the infection in a similar way to chronic infection cases. Therefore, patients with viral control are likely to have a good immune response against the virus, whereas cases with virologic rebound may have a dysfunctional response.

Thus, changes in HBV-specific CD8 T cell phenotype may predict acquisition of antiviral control before HBsAg loss. Taking into account the vital role of HBV-specific CD8 T cells during the natural history of the disease, and its in-depth characterisation achieved over the last two decades, it is presumable that those different features according to viral control could give hints to answer one of the most critical questions regarding CHB management: What kind of patients could benefit from NA therapy interruption?

Boni et al\(^{[77]}\) have extensively studied several immune subsets in different groups of chronically infected patients, including those under NA therapy. In the LMV treated patients, they found an initial improvement of HBV-specific T cell effector capacities against different HBV epitopes (HBCAg, HBeAg) after DNA fall\(^{[77]}\), followed by a decline at 6 mo after the treatment has been stopped; this biphasic behaviour is irrespective of clinical outcome\(^{[78]}\). It appears that the first-generation NAs lack the potency needed for HBV-specific T cell restoration.

Succeeding experiments in larger cohorts under the first- and second-generation NA therapies demonstrated that HBV-specific CD8 T cell effector abilities were similar between patients after several years of antiviral treatment and acute resolving cases featured by a PD-1+ phenotype\(^{[79]}\) (Figure 1). PD-1 up-regulation arises on HBV-specific T cells following acute and chronic infection. In the setting of acute infection, PD-1 up-regulation is transient, returning to low levels after viral clearance. However, in chronic infection, PD-1 up-regulation is sustained, and the blockade of PD-1/PD-L1 interaction has shown promising results in restoring virus-specific T cell functionality\(^{[80-83]}\). Therefore, a PD-1+ phenotype could mean both activation before clearance or exhaustion after persistent and high antigenemia.

The most recent work studying HBV-specific T cell response as a biomarker for HBV therapy discontinuation demonstrated that the patients who did not relapse to NA stoppage featured, during NA treatment, an increased frequency of functional PD-1+ HBV-specific T cells directed against nucleocapsid and polymerase HBV proteins\(^{[84]}\) (Figure 1). The PD-1+ expression on functional HBV-specific T cells may reflect an activated, nonexhausted phenotype. Along these lines, patients with functional HBV-specific CD8 T cells, positive for PD-1, may no longer need NA treatment and should be considered for treatment cessation.

However, the current method is complicated to move from bench to bedside because it involves the study of rare populations by multicolour flow cytometry. Hence, the development of an assay to directly quantify PD-1+ HBV-specific CD8 T cells would be of great interest. Even though the final effectors to clear HBV are the HBV-specific CD8 T cells, it is essential to consider the interplay between them and other components of the immune system to fully understand immunity against HBV and their potential as surrogate biomarkers.

The natural enrichment of natural killer (NK) lymphocytes in the human liver underscores their potential importance in the control of hepatotropic viruses, such as HBV\(^{[85]}\). During CHB, NK cells express an inhibitory phenotype with altered functionality\(^{[85,86]}\) and have predilection for apoptosis of HBV-specific T cells, resulting in HBV-specific T cell deletion after death ligand-death receptor interaction\(^{[87]}\). Boni et al\(^{[88]}\) showed a low inflammatory profile of NKS after successful NA therapy, similar to healthy controls. In line with the previously commented work, this lower inflammatory status of NKS correlated with a better HBV-specific T cell response\(^{[89]}\) (Figure 1). Moreover, a partial restoration of blood NK cells was shown following long-term ETV, in terms of antiviral cytokine production compared to naïve CHB\(^{[89]}\).

So, why should study of NKS - instead of HBV-
specific CD8 T cells - be useful? The study of NK cell inflammation does not involve multimers nor intracellular cytokine staining, as used to assess HBV-specific CD8 T cell responses, resulting in more easily reproducible experiments. A low inflammatory profile of NK cells can be evaluated by surface staining and may reflect an HBV-specific T cell restoration and subsequent control without the need of therapy. Studies in bigger cohorts after stoppage of NA treatment are needed to address if successful NA discontinuation correlates with a lower inflammation phenotype of NK cells.

The third signal of T cell activation requires an adequate cytokine profile, and long-term NA therapy has been shown to modulate it. Successful viral repression leads to antiviral response stimulation by promoting proinflammatory cytokines such as IFN-γ\(^{[90,91]}\) and IL-2\(^{[92,93]}\), as well as by decreasing regulatory effectors such as IL-10\(^{[91,94]}\) and TGF-β\(^{[95]}\). At least theoretically, the measurement of these cytokines together with HBV-specific T cells or NK cells could also give us clues to establish a good cessation point for therapy (Figure 1).

Not only are the phenotype and functionality of the different immune subsets important components of an adequate milieu during CHB but also the trafficking of...
HBV-specific T cells to the infected liver. The migration of lymphocytes to the liver is a complicated process involving adhesion, rolling, triggering and transendothelial migration. Chemokines and their receptors play an essential role in this multistep pathway.\(^\text{[96,97]}\)

After the analysis of several plasma chemokines, the one that appears to be a promising surrogate of HBsAg loss under NA therapy is CXCL10 (IP-10)\(^\text{[47]}\). IP-10 is a small protein, secreted by hepatocytes in response to viruses and the subsequent recruitment of proinflammatory CD4 and CD8 T cells to the infected liver\(^\text{[97]}\) (Figure 1). It was previously reported that baseline serum IP-10 levels were higher in patients with HBsAg loss during NA therapy\(^\text{[98]}\) and, in line with those findings, another work examined the serum IP-10 kinetics during ETV therapy. Interestingly, they found that IP-10 levels started to significantly increase after the 3\(^\text{rd}\) year of treatment with ETV\(^{[99]}\), which is in line with the timing observed to be necessary to achieve a sustained virological response in the different stopping-treatment studies\(^{[29,32]}\).

It is likely that after a prolonged and effective viral replication suppression under NA treatment, the migration process to the liver is restored and HBV-specific T cells are functional and able to clear the remaining infected hepatocytes, thus reflecting the HBsAg decline.

CONCLUSION

The study of different immune features against HBV, especially HBV-specific CD8 T cells, is a promising strategy to characterise which patients could benefit from NA treatment cessation. Surveying HBV-specific CD8 T cells is complex, as it involves rare population assays. However, different, easier to perform surrogates of this response have been explored recently, providing a more suitable application for clinical use. NA withdrawal is still an active and attractive research field. Nevertheless, even if a considerable number of studies have tried to address this point, their methods have shown marked heterogeneity. Furthermore, although results of some randomised controlled trials are becoming available, more high-quality clinical evidence is needed. It is possible that in the future, therapies able to completely clear cccDNA will be accessible. In the meantime, advantages in the management of CHB may be achieved by using this strategy. Fortunately, the field of immunology shows how basic science can improve the health of our patients.

REFERENCES

1. Petruzzelli A. Epidemiology of Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) Related Hepatocellular Carcinoma. Open Viral J 2018; 12: 26-32 [PMID: 29541276 DOI: 10.2174/1874357011812010026]

2. Weinbaum CM, Williams I, Mast EE, Wang SA, Finelli L, Wasley A, Neitzel SM, Ward JW; Centers for Disease Control and Prevention (CDC). Recommendations for identification and public health management of persons with chronic hepatitis B virus infection. MMWR Recomm Rep 2008; 57: 1-20 [PMID: 18082412]

3. Williams WW, Lu PJ, O’Halloran A, Kim DK, Grohskopf LA, Pilishvili T, Skoff TH, Nelson NP, Harpaz R, Markowitz LE, Rodriguez-Lainz A, Fiebelkorn AP. Surveillance of Vaccination Coverage among Adult Populations - United States, 2015. MMWR Surveill Summ 2017; 66: 1-28 [PMID: 28472027 DOI: 10.15585/mmwr.ss6611a1]

4. Cohen C, Holmberg SD, McMahon BJ, Block JM, Brosclt CL, Gish RG, London WT, Block TM. Is chronic hepatitis B being undertreated in the United States? J Viral Hepat 2011; 18: 377-383 [PMID: 21143343 DOI: 10.1111/j.1365-2893.2010.01401.x]

5. Allweiss L, Dandri M. The Role of cccDNA in HBV Maintenance. Viruses 2017; 9: pii: E156 [PMID: 28635668 DOI: 10.3390/v9060156]
May 7, 2018

Fontaine H, Kahi S, Chazallon C, Bourigne M, Varaut A, Buffet C, Godon O, Meritet JF, Saidi Y, Michel ML, Scott-Algarra D, Abouikrit JP, Pol S; ANRS HB02 study group. Anti-HBV DNA vaccination does not prevent relapse after discontinuation of analogues in the treatment of chronic hepatitis B: a randomised trial—ANRS HB02 VAC-ADN. Gut 2015; 64: 139-147 [PMID: 24555996 DOI: 10.1136/gutjnl-2013-305707]

Vandepapelier P, Lau GK, Leroux-Roels G, Horsmans Y, Gane E, Tawandeet H, Merican M, Win KM, Trope C, Cooksley G, Wetterdorff M, Ferrari C; Therapeutic HBV Vaccine Group of Investigators. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: a randomised, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine 2007; 25: 8585-8597 [PMID: 18031872 DOI: 10.1016/j.vaccine.2007.09.072]

Terraut NA, Bzojwe NH, Chang KM, Hwang JP, Jonas MM, Murad MH; American Association for the Study of Liver Diseases. AASLD guidelines for treatment of chronic hepatitis C. Hepatology 2016; 63: 261-283 [PMID: 26566604 DOI: 10.1002/hep.28156]

Papatheodoridis GV, Hadziyannis SJ. Review article: current management of chronic hepatitis B. Aliment Pharmacol Ther 2004; 19: 25-37 [PMID: 14687164]

Sarín SK, Kumar M, Lau GK, Abbas Z, Chan HL, Chen CJ, Chen DS, Chen HL, Chen PJ, Chien RN, Dokmeki AK, Gane E, Hou JL, Jafri W, Jia J, Kim JH, Lai CL, Lee HC, Lim SG, Liu CJ, Locarnini S, Al Mahtab R, Mohamed R, Omata M, Park J, Piratvisuth T, Sharma BC, Sollano J, Wang WS, Wei L, Yuen MF, Zheng SS, Kao JH. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol Int 2016; 10: 1-98 [PMID: 26563120 DOI: 10.1111/hepi.12975-9675-4]

Chang TT, Lai CL, Kew Yoon S, Lee SS, Coelho HS, Carrilho FJ, Poordad F, Halota W, Horsmans Y, Tsai N, Zhang H, Tenney DJ, Tamerz R, Iloeje U. Entecavir treatment for up to 5 years in patients with hepatitis B e antigen-positive chronic hepatitis B. J Hepatol 2016; 65: 755-764 [PMID: 26499793 DOI: 10.1016/j.jhep.2015.01.002]

Papatheodoridis GV, Vlachogiannakos I, Chalongeas G, Wursthorn K, Thomadakis C, Touloumi G, Petersen J. Discontinuation of oral antivirals in chronic hepatitis B: a systematic review. Hepatology 2016; 63: 1481-1492 [PMID: 27100145 DOI: 10.1002/hep.28438]

Chang ML, Liaw YF, Hadziyannis SJ. Systematic review: cessation of long-term nucleos(t)ide analogue therapy in patients with hepatitis B e antigen-negative chronic hepatitis B. Aliment Pharmacol Ther 2015; 42: 243-257 [PMID: 26151841 DOI: 10.1111/apt.13272]

Van Hees S, Bourgeois S, Van Vlierberghe H, Sersté T, Francque S, Michielsen P, Sprengers D, Reynaert H, Henrion J, Negrin Dastis S, Delwaide J, Lasser L, Deceuster J, Orlent H, Janssens F, Robaey G, Colle I, Stärkel P, Moreno C, Nevens F, Vanswijghem T; Belgian NA Stop Study Group. Stopping nucleos(t)ide analogue treatment in Caucasian hepatitis B patients after HBsAg seroconversion is associated with high relapse rates and fatal outcomes. Aliment Pharmacol Ther 2018; 47: 1170-1180 [PMID: 29498078 DOI: 10.1111/apt.14560]

Papatheodoridis GV, Idlman R, Dalekos GN, Buti M, Chi H, van Boeckel FM, Carlela JL, Sypsa V, Gouils J, Manolakopoulos S, Loglio A, Siakavellas S, Keskin O, Gatselis N, Hansen BE, Lehtre M, de la Revilla J, Keskın O, Gatselis N, Hansen BE, Lehtre M, de la Revilla J, Savvidou S, Kourikou A, Vlachogiannakos I, Galanis K, Yurdaydin C, Berg T, Colombo M, Esteban R, Janssens HLA, Lampertico P. The risk of hepatocellular carcinoma decreases after the first 5 years of nucleos(t)ide analogues compensated HBV in Caucasian with chronic hepatitis B. Hepatology 2017; 66: 1444-1453 [PMID: 28622419 DOI: 10.1002/hep.29320]

Wei L, Kao JH. Benefits of long-term therapy with nucleos(t)ide analogues in treatment-naive patients with chronic hepatitis B. Curr Med Res Opin 2017; 33: 495-504 [PMID: 27882776 DOI: 10.1185/03007995.2016.1264932]

Lim SG, Wai CT, Rajakovu A, Kujii T, Guan R. Fatal hepatitis B reactivation following discontinuation of nucleoside analogues for chronic hepatitis B. Gut 2002; 51: 597-599 [PMID: 12235087]

Fung J, Seto WK, Lai CL, Yuen MF. Extrahepatic effects of nucleoside and nucleotide analogues in chronic hepatitis B treatment. J Gastroenterol Hepatol 2014; 29: 428-434 [PMID: 24372662 DOI: 10.1111/jgh.12499]

Liu F, Wang L, Li XY, Liu YD, Wang JB, Zhang ZH, Wang YZ. Poor durability of lamivudine effectiveness despite stringent cessation criteria: a prospective clinical study in hepatitis B e antigen-negative chronic hepatitis B patients. J Gastroenterol Hepatol 2011; 26: 456-460 [PMID: 21332542 DOI: 10.1111/j.1440-1746.2010.06492.x]

Ha M, Zhang G, Diao S, Lin M, Sun L, She H, Kuan C, Shen L, Huang C, Shen W, Huang Z. A prospective clinical study in hepatitis B e antigen-negative chronic hepatitis B patients with stringent cessation criteria for adefovir. Arch Virol 2012; 157: 285-290 [PMID: 22080196 DOI: 10.1007/s00705-011-1163-0]
May 7, 2018 | Volume 24 | Issue 17 | 1835

Moreno-Cubero E et al. NA cessation in CHB
Bengsch B, Martin B, Thimme R. Restoration of HBV-specific T-cell responses by PD-1 blockade in inactive carrier patients is linked to T-cell differentiation. J Hepatol 2014; 61: 1212-1219 [PMID: 25016223 DOI: 10.1016/j.jhep.2014.07.005].

Isogawa M, Chung J, Madejón A, Miquel J, Olveira A, González-Praetorius A, García-Mateo MC. Inhibitory phenotype of HBV-specific CD4+ T-cells is characterized by high PD-1 expression but absent coregulation of multiple inhibitory molecules. PLoS One 2014; 9: e015703 [PMID: 25144233 DOI: 10.1371/journal.pone.0157030].

Bengsch B, Martin B, Thimme R. Restoration of HBV-specific T-cell responses by PD-1 blockade in inactive carrier patients is linked to T-cell differentiation. J Hepatol 2014; 61: 1212-1219 [PMID: 25016223 DOI: 10.1016/j.jhep.2014.07.005].

Moreno-Cubero E, Subirá D, Sanz-de-Villalobos E, Parra-Cid T, Madéjon A, Miguel J, Olvera A, González-Pratueros A, Garcia-Samaniego J, Larrubia JR. According to Hepatitis C Virus (HCV) Infection Stage, Interleukin-7 Plus 4-IBB Triggering Alone or Combined with PD-1 Blockade Increases TRAF1+ HCV-Specific CD8+ T-cell Reactivity. J Virol 2018; 92: pii: e01443-17 [PMID: 29093082 DOI: 10.1128/JVI.01443-17].

Penna A, Pilli M, Zerbini A, Orlandini A, Mezzadri S, Sacchelli L, Missale G, Ferrari C. Inhibitory and functional restoration of HCV-specific CD8+ responses in chronic hepatitis C virus infection. Hepatology 2007; 45: 588-601 [PMID: 17326153 DOI: 10.1002/hep.21541].

Peng G, Li S, Wu W, Tan X, Chen Y, Chen Z. PD-1 upregulation is associated with HBV-specific T-cell dysfunction in chronic hepatitis B patients. Mol Immunol 2008; 45: 963-970 [PMID: 17868872 DOI: 10.1016/j.molimm.2007.07.038].

Fisicaro P, Valadatta C, Massari M, Loggi E, Biasini E, Sacchelli L, Cavalli MC, Silini EM, Andreone P, Missale G, Ferrari C. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 2010; 138: 682-693.e9 [PMID: 19808335 DOI: 10.1053/j.gastro.2009.09.052].

Maini MK, Peppa D. NK cells: a double-edged sword in chronic hepatitis B virus infection. Front Immunol 2013; 4: 57 [PMID: 23459859 DOI: 10.3389/fimmu.2013.00057].

Morishima C, Paschal DM, Wang CC, Yoshihara CS, Wood BL, Yeo AE, Emerson SS, Shihurt MC, Gretch DR. Decreased NK cell frequency in chronic hepatitis C does not affect ex vivo cytolytic killing. Hepatology 2006; 43: 573-580 [PMID: 16496327 DOI: 10.1002/hep.21073].

Lunemann S, Malone DF, Hengst J, Port K, Grabowski J, Deterding K, Markova A, Brenmer B, Schlaphoff V, Cornberg M, Manns MP, Sandberg JK, Ljunggren HG, Björkröm NK, Wedemeyer H. Compromised function of natural killer cells in acute and chronic viral hepatitis. J Infect Dis 2014; 209: 1362-1373 [PMID: 24154737 DOI: 10.1093/infdis/jit586].

Peppa D, Gill US, Reynolds G, Eason NJ, Pallett LJ, Schurich A, Micco L, Nebbia G, Singh HD, Adams DH, Kennedy PT, Maini MK. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J Exp Med 2013; 210: 99-114 [PMID: 23254287 DOI: 10.1084/jem.20121172].

Boni C, Lampertico P, Talamona L, Giuberti T, Invernizzi F, Barili V, Fisicaro P, Rossi M, Cavcolo MC, Vecchi A, Pedrazzi G, Alfieri A, Colombo M, Missale G, Ferrari C. Natural killer cell phenotype modulation and natural killer/T-cell interplay in nucleos(t)ide analogue-treated hepatitis C antigen-negative patients with chronic hepatitis B. Hepatology 2015; 62: 1607-1709 [PMID: 26361374 DOI: 10.1002/hep.28155].

Tjwa ET, van Oord GW, Hegmans JP, Janssen HL, Woltman AM. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol 2011; 54: 209-218 [PMID: 21095036 DOI: 10.1016/j.jhep.2010.07.009].

Meng N, Gao X, Yan W, Wang M, Liu P, Lu XD, Zhang SJ, Lu YQ, Tang WX. Efficacy of telbivudine in the treatment of chronic hepatitis B and liver cirrhosis and its effect on immunological responses. J Huazhong Univ Sci Technolog Med Sci 2015; 35: 230-234 [PMID: 25877357 DOI: 10.1016/j.jhems.2015.07.004].

Li C, Ji H, Cai Y, Ayana DA, Lv P, Liu M, Jiang Y. Serum interleukin-37 concentrations and HBV DNA seroconversion in chronic HBV patients during telbivudine treatment. J Interferon Cytokine Res 2013; 33: 612-618 [PMID: 23697556 DOI: 10.1089/jir.2013.0001].

Jiang Y, Ma Z, Xin G, Yan H, Li W, Xu H, Hao C, Niu J, Zhao P. Th1 and Th2 immune response in chronic hepatitis B patients during a long-term treatment with adefovir dipivoxil. Mediators Inflamm 2010; 2010: 143026 [PMID: 21127728 DOI: 10.1155/2010/143026].

van der Molen RG, Sprenger D, Biesta PJ, Kusters JG, Janssen HL. Favorable effect of adefovir on the number and functionality of myeloid dendritic cells of patients with chronic HBV. Hepatology 2006; 44: 907-914 [PMID: 17006907 DOI: 10.1002/hep.21340].

Zheng Y, Huang Z, Chen X, Tian Y, Tang J, Zhang Y, Xiang Z, Zhou J, Mao Q, Ni B, Wang Q, Wu Y. Effects of telbivudine treatment on the circulating CD4+ T-cell subpopulations in chronic hepatitis B patients. Mediators Inflamm 2012; 2012: 789859 [PMID: 22257012 DOI: 10.1155/2012/789859].

Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301-314 [PMID: 7507411].

Larrubia JR, Benito-Martínez S, Calvino M, Sanz-de-Villalobos E, Parra-Cid T. Role of chemokines and their receptors in viral persistence and liver damage during chronic hepatitis C virus infection. World J Gastroenterol 2008; 14: 7149-7159 [PMID: 1836
10.3748/wjg.v18.i43.6277

He D

10.3748/wjg.v18.i43.6277

Paik YH, Lee JS, Lee HW, Kim HJ. Durability of viral response of recurrent viremia after hepatitis B e antigen seroconversion and

Song MJ

[PMID: 22941429 DOI: 10.1097/MCG.0b013e31825ceed9

Marcellin P, Lau GK, Bonino F, Farci P, Hadziyaniss S, Jin R, Lu ZM, Pratvisuth T, Germanidis G, Yurdaydin C, Diago M, Gereau S, Lai CL, Yuen MF. The duration of lamivudine therapy for chronic hepatitis B in HBeAg-negative hepatitis patients. Clin Microbiol Infect 2015; 21: 277-284 [PMID: 12823594 DOI: 10.1111/j.1469-0691.2013.26174.x]

Lai CL, Hsu CW, Chen YC, Liaw YF. Withdrawal of lamivudine in HBsAg-positive chronic hepatitis B patients after achieving effective maintained virological suppression. J Clin Virol 2009; 45: 114-118 [PMID: 19451024 DOI: 10.1016/j.jcv.2009.04.006]

Luo G, Zeng SY, Chen CH, Wang FH, Liu Z, Chi ZW, Gao WQ, Su MH, Xie R, He SX, Chen YK. Viral response is not durable after adefovir discontinuation in lamivudine-resistant hepatitis B patients. J Viral Hepat 2010; 17: 399-407 [PMID: 19945510 DOI: 10.1111/j.1365-2893.2009.00985.x

Chang KT, Ha NB, Trinh GN, Garcia RT, Nguyen HA, Nguyen KC, Gao WQ, Su MH, Xie R, He SX, Chen YK. Viral response is not durable after adefovir discontinuation in lamivudine-resistant hepatitis B patients. J Viral Hepat 2010; 17: 399-407 [PMID: 19945510 DOI: 10.1111/j.1365-2893.2009.00985.x

DeHertogh D, Wilber R, Zink RC, Cross A, Colonno R, Fernandes L, Sohn HR, Min BY, Song JC, Seong MH, Lee SS, Jang ES, Shin CM, Park YS, Wang JH, Jeong SH, Kim N, Lee DH, Kim JW: 6277-6283 [PMID: 24012614 DOI: 10.1016/j.jcv.2013.08.023]

Fung SK, Fong W, Hussain M, Lok AS. Sustained response after a 2-year course of lamivudine treatment of hepatitis B e antigen-negative chronic hepatitis B. J Viral Hepat 2004; 11: 432-438 [PMID: 15357648 DOI: 10.1111/j.1365-2893.2004.0055x.e

Jung YK, Yeon JE, Lee KG, Jung ES, Kim KH, Kim JH, Seo YS, Yim HJ, Um SH, Ryu HS, Byun KS. Virologic response is not durable after adefovir discontinuation in lamivudine-resistant hepatitis B patients. J Viral Hepat 2010; 17: 298-304 [PMID: 19758278 DOI: 10.1111/j.1365-2893.2009.01178.x]

Kuo YH, Chen CH, Wang JH, Hung CH, Tseng PL, Lu SN, Changchien CS, Lee CT. Extended lamivudine consolidation therapy in hepatitis B e antigen-positive chronic hepatitis B patients improves sustained hepatitis B e antigen sercoreversion. Scand J Gastroenterol 2010; 45: 75-81 [PMID: 20030580 DOI: 10.1080/03002600902934550]

Cai W, Xie Q, An Bo, Wang H, Zhou X, Zhao G, Guo Q, Gu R, Bao S. On-treatment serum HBsAg level is predictive of sustained off-treatment virologic response to telbivudine in HBsAg-positive chronic hepatitis B patients. J Clin Virol 2010; 48: 22-26 [PMID: 20233672 DOI: 10.1016/j.jcv.2010.02.014]

Jung YK, Yeon JE, Lee KG, Jung ES, Kim KH, Kim JH, Seo YS, Yim HJ, Um SH, Ryu HS, Byun KS. Virologic response is not durable after adefovir discontinuation in lamivudine-resistant chronic hepatitis B patients. Korean J Hepatol 2011; 17: 261-267 [PMID: 22107090 DOI: 10.3350/kjhpe.2011.17.4.261]

Chaung KT, Ha NB, Trinh GN, Garcia RT, Nguyen HA, Nguyen KC, Gao WQ, Su MH, Xie R, He SX, Chen YK. Viral response is not durable after adefovir discontinuation in lamivudine-resistant chronic hepatitis B patients. Korean J Hepatol 2011; 17: 261-267 [PMID: 22107090 DOI: 10.3350/kjhpe.2011.17.4.261]
in chronic hepatitis B after discontinuation of anti-viral therapy. *Aliment Pharmacol Ther* 2011; 34: 344-352 [PMID: 21671967 DOI: 10.1111/j.1365-2036.2011.04738.x]

124 Jin YJ, Kim KM, Yoo DJ, Shim JH, Lee HC, Chung YH, Lee YS, Suh DJ. Clinical course of chronic hepatitis B patients who were off-treated after lamivudine treatment: analysis of 138 consecutive patients. *Virol J* 2012; 9: 239 [PMID: 23078793 DOI: 10.1186/1743-422X-9-239]

P-Reviewer: Sirin G, Zhong JH **S-Editor:** Gong ZM **L-Editor:** Huang Y
