Evaluating occurrence of contaminants of emerging concerns in MF/RO treatment of primary effluent for water reuse – Pilot study

Mojtaba Farrokh Shad, Graham J. G. Juby, Saied Delagah and Mohamadali Sharbatmaleki

ABSTRACT

This study experimented with the novel approach of using a microfiltration (MF) and reverse osmosis (RO) treatment train to treat the effluent of a primary settling tank at the Inland Empire Utility Agency in Chino, CA. The pilot used polyvinylidene fluoride hollow-fiber MF modules as pretreatment for an RO skid, which used Hydranautics ESPA2 membranes in a two-stage configuration with a feed capacity of 6 gallon per minute (gpm). In this pilot configuration, researchers monitored the removal of 38 most prevalent contaminants of emerging concerns (CECs) through the MF/RO process. To investigate how operating the RO process at two fixed recovery rates of 55% and 80% would affect the performance of the MF/RO membranes, researchers applied different fluxes (8, 10, 12, and 14 gal/d/ft² (gfd)) and evaluated the removal of CECs in 1-stage and 2-stage RO configurations.

The occurrence of CECs in the MF influent, MF effluent, RO permeate, and RO concentrate were analyzed and studied. In the first phase (1-stage the RO process), flux of 14 gfd showed a better rejection value of inorganics (95.2%) when compared with those of other fluxes. Meanwhile, in the second phase (2-stage RO process), flux of 12 gfd showed a better rejection of inorganics (93.7%) when compared with those of other fluxes. Although concentrations of CECs slightly decreased in the RO permeate as the flux has increased, statistical analysis showed no significant differences between different fluxes in terms of CEC rejection.

Key words | contaminants of emerging concern, microfiltration, reverse osmosis, wastewater treatment, water reuse

INTRODUCTION

The water industry is increasingly implementing recycled water projects to respond to current demands and challenges, such as water shortages, that the world faces today. To develop future water supplies that remain sustainable in dry years, water managers and their communities will heavily rely on reclamation plants and their abilities to make wastewater a viable source of potable water.

Several options exist to beneficially reuse water. Indirect potable reuse (IPR) is one method of creating high-purity product water with reduced energy inputs and economic costs (Rodriguez et al. 2009). In this process, municipal wastewater is treated through a conventional treatment train, including aerobic biological treatment, and processed through membrane technology, then discharged directly
into groundwater or surface water sources, which act as an environmental buffer (Leverenz et al. 2011).

Another method is direct potable reuse (DPR). This process entails full advanced treatment and can directly deliver water to a potable water treatment plant's supply without any environmental buffer. With that being said, regulations on implementing DPR are still in the premature stages of development.

Today, water managers are incorporating newly developed tertiary treatment processes to their IPR or DPR treatment trains to produce higher-quality water, especially as an opportunity for water reuse. However, whatever treatment method they select, these managers still face two distinct challenges that must be addressed: (1) contaminants of emerging concerns (CECs) in wastewater, especially in the concentrate stream that is disposed of to the environment and (2) the relatively high energy consumption per volume of product water of these advanced processes.

One of the key issues related to water reuse is the occurrence of CECs (Romeyn et al. 2016). Some contaminants, even at low concentrations, pose a threat to public health and safety, given the potential effects of long-term exposure. Prime examples of emerging contaminants include personal care products (PCPs), endocrine disrupting compounds, and pharmaceuticals; in particular, an expanding list of pharmaceuticals are now being found ubiquitously in the environment (Focazio et al. 2008; Loos et al. 2009; Silva et al. 2011; González et al. 2012; Osorio et al. 2012). Effluent of wastewater treatment plants (WWTPs) contains large concentrations of CECs that are usually naturally occurring in water bodies (Zorita et al. 2009; Jelic et al. 2011; Gracia-Lor et al. 2012). Recent innovations in water analysis methods, primarily in gas chromatography mass spectrometry (GC-MS) and liquid chromatography (LC-MS), have allowed the industry to develop a more comprehensive understanding of contaminants. At the least, CECs have been found to present potential risks to water supplies due to their physiochemical properties, such as poor degradability and high water solubility (Knepper et al. 1999). These properties allow CECs to pass through most common filtration steps including some membrane treatment processes.

Membrane processes are well used in water treatment, including IPR and DPR processes, given their ability to produce stable and excellent effluent quality (Reith & Birkenhead 1998; Alonso et al. 2001; Qin et al. 2004; Ravazzini et al. 2005). Membrane technologies such as microfiltration (MF) and reverse osmosis (RO) separate organic compounds, total dissolved solids, and microorganisms from the aqueous phase (Hofman et al. 1997; Rautenbach et al. 2000; Lee & Lueptow 2001; Radjenović et al. 2008; Shivajiraoo 2012).

MF technologies have been found to filter out only a few emerging organic contaminants (Yoon et al. 2006; Kowalska 2008; Sahar et al. 2011). However, RO has proved highly effective at removing a wide range of emerging contaminants and its resulting treated water can be used for more exigent purposes (Snyder et al. 2007; Calderón-Preciado et al. 2011; Huang et al. 2011). A treatment train of MF followed by RO offers a way to bypass secondary and tertiary treatment and potentially saves some energy for the treatment process.

As of yet, no comprehensive study has evaluated the occurrence of CECs in concentration streams produced by IPR and DPR-type treatment trains. Most research pertains to the water product produced by such systems since membranes are known to effectively remove most CECs; however, concerns remain about heightened exposure to CECs in the concentrate water that is disposed to the environment.

The objectives of this study are to (a) evaluate the occurrence of CECs in MF/RO treatment of a WWTP’s primary effluent and (b) demonstrate the effectiveness of MF/RO in treating primary effluent as a novel water recycling process.

MATERIALS AND METHODS

Contaminants of emerging concerns

A CEC list was created according to an exhaustive study that identified the most common CECs in the literature. The top 38 common CECs were carefully selected and categorized by type. Table 1 presents a summary of the CECs examined in this study and their properties. The list consists of chemicals with high frequencies of occurrence and health risks.

WWTP and the pilot project

The study was performed at the Carbon Canyon Water Recycling Facility (CCWRF) in Chino, CA. CCWRF provides...
Table 1 | Selected and examined CECs

Type	Compound	MW	Charge pH	pKa*	Log K_{ow}	Hydro class^b	Chemical formula	References
Analgesics/anti-inflammatories	Acetaminophen	151	0	9.46	0.34	HPI-N	C₅H₇NO₂	Yamamoto et al. (2009)
	Diclofenac	296	–1	4.0	4.5	HPO-I	C₁₂H₁₇Cl₃NO₂	Carballa et al. (2008)
	Ibuprofen	206	–1	4.85	3.5–4.91	HPO-I	C₁₃H₁₈O₂	Lin et al. (2006)
	Naproxen	230	0	4.19	3.2	HPO-N	C₁₇H₂₄O₃	Carballa et al. (2008)
	Salicylic acid	138			2.26	HPO	C₉H₈O₂	Moffat et al. (2011)
	Primidone	218	0	11.5	0.9	HPI-N	C₁₂H₁₉N₂O₂	Moffat et al. (2011)
Antibiotic	Amoxicillin	365	–0.33	3.23	0.87	HPI-I	C₁₆H₂₄N₃O₅S	Jones et al. (2002)
	Azithromycin	749	1.8	4.02		HPO-N	C₉₈H₂₉N₂O₁₂	McFarland et al. (1997)
	Ciprofloxacin	331			0.4	HPI	C₁₀H₁₄FN₃O₃	Wick et al. (2009)
	Sulfamethoxazole	253	–1	6.16	0.89	HPI-I	C₁₈H₂₁N₂O₅S	Carballa et al. (2008)
	Trimethoprim	290	0.6	7.16	0.91	HPI-N	C₁₄H₁₈N₃O₃	Moffat et al. (2011)
Beta-blockers	Atenolol	266	1	14.08	0.16	HPI-N	C₁₆H₂₂N₂O₅	Vieno et al. (2007)
	Propranolol	259		3.48		HPO	C₁₆H₂₆Ν₂O₂	–
Lipid regulators	Gemfibrozil	250	0	4.42	4.77	HPO-N	C₁₃H₂₂O₃	–
Psychiatric drugs	Carbamazepine	236	0	15.69	2.45	HPO-N	C₁₃H₁₈N₂O	Carballa et al. (2008)
	Diazepam	285	0	2.92	2.82	HPO-N	C₁₆H₁₃Cl₂N₂O	Sangster (1997)
	Fluoxetine	309	0	4.05		HPO-N	C₁₃H₁₄F₂NO	Moffat et al. (2011)
Hormones	Estrone	270	0	10.3	4.1	HPO-N	C₁₆H₂₄O₂	Carballa et al. (2008)
	Testosterone	288	0	3.32		HPO-N	C₁₃H₁₈O₂	Hansch et al. (1995)
	17-β-Estradiol	604	0	3.9–4.0		HPO-N	C₁₈H₂₀₂O₄	Carballa et al. (2008)
	Progesterone	314	0	3.87		HPO-N	C₂₁H₂₂O₂	Hansch et al. (1995)
Antiseptics	Triclosan	290	–0.14	7.68	4.8	HPO-I	C₁₂H₁₈Cl₃O₂	Moffat et al. (2011)
Contrast media	Iopronide	791	0	11.1	–2.33	HPI-N	C₁₆H₂₁I₃N₅O₈	–
Psychostimulants	Caffeine	194	0	–0.07		HPI-N	C₈H₁₇N₂O₂	Hansch et al. (1995)
Component of plastics	Bisphenol A	228	0	9.78	3.32	HPO-N	C₁₃H₁₆O₂	–
Drugs of abuse	Cotinine	176	0	0.07		HPI-N	C₁₀H₁₈N₂O	Li et al. (1992)
Pesticides	Diethyl toluamide (DEET)	191	0	2.2		HPO-N	C₁₂H₂₁NO	Moffat et al. (2011)
Industrial compound	1,4 Dioxane	88		–0.27		HPI	C₄H₈O₂	Hansch et al. (1995)
By-products (BPs)	N-Nitrosodimethylamine (NDMA)	74		–0.57	HPI	C₁₂H₂₆O	Hansch et al. (1995)	
	N-Nitrosothiophosphate	102		0.48		HPI	C₁₆H₂₄N₂O	Hansch et al. (1995)
	N-Nitrosomorpholine	116		–0.44		HPI	C₁₆H₂₄N₂O	Hansch et al. (1995)
Antianxiety	Meprobamate	218	0	0.7		HPI-N	C₁₃H₁₈N₂O₄	Hansch et al. (1995)
Flame retardant	TCEP	285	0	2.11		HPO-N	C₁₂H₁₂Cl₂O₃P	–
	TCP	327	0	2.59		HPO-N	C₈H₁₈Cl₃O₂P	Miti (1992)
	TDCPP	430	0	3.65		HPO-N	C₁₃H₁₈Cl₂O₃P	Miti (1992)
Statins	Atorvastatin	558		6.36		HPO	C₁₉H₃₂F₆N₂O₃	Moffat et al. (2011)
Opioid	Methadone	309		3.93		HPO	C₂₁H₂₈NO	Hansch et al. (1995)
Perfluorinated organic compounds	Perfluoroctane sulfonic acid (PFOS)	500		–1.08	HPI	C₃HF₇O₂S	Krop & Voogt (2008)	

*ACS 2015, ChemAxon 2015.

Hydrophobicity class: HPI, hydrophilic; HPO, hydrophobic; N, neutral; I, ionic charged.

primary treatment by preliminary screening and grit removal, secondary treatment by aeration basins and clarification, tertiary treatment by filtration and disinfection using chlorine, and finally dechlorination. The plant is designed to treat an annual average flow rate of 11.4 million gallon per day (mgd) (Inland Empire Utilities Agency 2014).
In collaboration with the Inland Empire Utility Agency (IEUA), this pilot project researched the effects of sending primary treated effluent directly to MF followed by RO, thus bypassing secondary and tertiary treatment. Figure 1 shows the schematic of the treatment train used in this study as well as the locations of sampling points for CECs.

The scope of the project involved demonstrating the feasibility of this innovative treatment train, especially in removing CECs, and displaying a mass balance of CECs between the feed, product, and concentrate streams. A future benefit of this treatment train would be decreased energy consumption for overall treatment, given that the most energy-intensive component of a conventional treatment train is associated with the secondary biological treatment processes (Raucher & Tchobanoglous 2014).

Raw wastewater

The pilot project used primary effluent wastewater from the CCWRF as feed to the MF and RO system. Table 2 shows the wastewater characteristics that the IEUA reported in 2012.

MF system

The MF pilot system was a fully automated membrane system designed and maintained by PALL Corporation. Its operational parameters were measured continuously at ten-minute intervals and automatically recorded. Total feed flow rate into the MF unit was 25 gpm. Average flux during the course of experiments was 13 gfd.

The pilot unit included a hot water heater and chemical pumps for automatic enhanced flux maintenance cleans that were carried out every 24 hours. The system was equipped with two new UNA-620A hollow-fiber MF modules, each...
of which contained 538 sq ft (49.98 sq m) of active membrane surface area and operated in outside-to-inside filtration mode. The membrane was a polyvinylidene fluoride (PVDF) hollow-fiber type with a nominal pore size of 0.1 μm. PVDF fibers are known for having high mechanical and chemical resistance.

Ferric chloride and chlorine (bleach) were injected directly into the feed stream (i.e., the WWTP’s primary effluent), which then fed the MF pilot skid at a target concentration of 20 ppm and 1.5 ppm, respectively. Bleach was added to create a chloramine residual to reduce microbial growth on the membranes. While further testing would be valuable to find the optimum dosage for the coagulant, the present configuration was adequate for demonstrating the benefit of adding ferric chloride to the process. The two membranes were operated in parallel to provide a suitable flow rate to the downstream RO pilot.

RO system

The RO pilot system was the Membrane Evaluation Research Unit 5 (MERU5) skid owned by the US Bureau of Reclamation. MERU5 has up to three stages; however, for this study, only 1-stage and 2-stage were used. 1-stage consisted of two 4-inch (10.16 cm) pressure vessels, each containing three RO ESPA2-4040 elements, while 2-stage consisted of two 2.5-inch (6.35 cm) pressure vessels, each containing three RO ESPA2-2540 elements.

The effluent from MF was used as feed water to the RO and contained inorganics, dissolved organics constituents, and a trace level of suspended materials that could potentially precipitate on the membrane surface. A 34-mm-thick feed spacer in the ESPA2 membrane was used to prevent colloidal fouling and increase the effectiveness of membrane cleaning. Furthermore, by using these membranes, precipitation and the costs of additional cleaning were minimized.

An antiscalant, Vitec 1400, was dosed into the RO feed stream at a concentration of approximately 3 mg/L to prevent inorganic scale from forming on the membrane’s surface.

Mass balance

The mass balance was calculated following the method used by Gao *et al.* (2012). The average mass flow of each compound was calculated by multiplying the sum of the CEC concentrations in the permeate and concentrate with corresponding average flows in the influent. The equations involved are as follows:

\[
M_f = Q_f \cdot C_f \quad (1)
\]

\[
M_c = Q_c \cdot C_c \quad (2)
\]

\[
M_p = Q_p \cdot C_p \quad (3)
\]

\[
M_f, M_p \text{ and } M_c \text{ (ng/min)} \text{ are the mass flux of CECs calculated in the influent, permeate and concentrate streams, respectively. } Q_f, Q_p \text{ and } Q_c \text{ (L/min)} \text{ represent feed, product and concentrate flows, respectively. } C_f, C_p \text{ and } C_c \text{ (ng/L)} \text{ are the average concentrations of CECs measured in the feed, permeate and concentrate flows, respectively.}
\]

The discrepancy in the mass balance of CECs compounds can be calculated and presented as \(M_{\text{discrepancy}} \). To estimate the mass of CECs that is lost due to the membranes’ capabilities, the following equation is used:

\[
M_{\text{disc}} = M_f - M_p - M_c \quad (4)
\]

The mass balance discrepancy, in percentage, is calculated as follows:

\[
R_{\text{disc}} = \frac{M_{\text{disc}}}{M_f} \times 100 \quad (5)
\]

Experimental procedure

The RO feed tank (500 gallons (1892.71 L)) was filled with MF permeate at a constant flow rate of 10 gpm. To start the RO process, the pressure of the feed water was gradually increased along with the pump speed. After the target pressure (i.e., 300 kPa) was achieved, the RO feed valve was gradually opened. At the same time, the concentrate valve and permeate valves were fully opened and initiated. By increasing and decreasing the pump rate and controlling the flow rate of the concentrate valve, the target flow rate in the permeate can be achieved. To achieve the target flux and recovery rate, permeate and concentrate flow rates were
calculated and set in the RO unit by changing the set points of the feed valve, concentrate valve and the feed's pump rate.

The experiments in this study were performed in two phases. In the first phase, only 1-stage RO was operated using 4-inch elements with a fixed recovery rate of 55%. This recovery rate was selected to evaluate whether recovery has any significant effect on the membranes’ ability to reject CECs. The total membrane surface area used in this phase was 510 ft² (47.39 m²). Four different fluxes of 8, 10, 12, and 14 gfd were selected and targeted under the constant recovery rate of 55%.

In the second phase of the study, 1-stage and 2-stage RO membranes were operated. Again, 1-stage RO used 4-inch elements, while 2-stage used 2.5-inch elements to achieve a recovery rate of 80%. Four different fluxes of 8, 10, 12, and 14 gfd were selected and targeted under the constant recovery rate of 80%. The total membrane surface area used in this set of experiments was 660 ft² (61.32 m²).

Antiscalant with a concentration of 3 mg/l was added to the RO feed stream before the high-pressure pumps. Ferric chloride (FeCl₃) and chlorine (HOCl) were injected directly into the primary effluent stream that fed the MF pilot skid at a target concentration of 20 ppm and 7 ppm, respectively.

Permeate and concentrate from the RO unit were collected for sampling, and the streams were blended and sent to the common drain line to the WWTP's headworks. The duration for each flux test ranged from three to five hours. After each test condition, the RO pilot was flushed with RO permeate and each test was done in a different day. Permeate and concentrate samples for each test run were collected no sooner than three hours after the start of testing to allow the RO system to stabilize. RO samples were taken when permeate and concentrate conductivity were constant for at least for an hour with no feed temperature variations.

The sample volume was 8 L for organic compounds analysis and 2.5 L for inorganic compounds analysis. Prepared amber glass (for organic compounds) and polynutrients and poly-metals (for inorganic compounds) bottles were used for sampling. Bottles contained sodium thiosulfate and ascorbic acid (for organic analysis) and phosphoric acid, sulfuric acid and nitric acid (for inorganic analysis) as preservatives. Samples were chilled to below 4 °C on ice or frozen gel packs and delivered to the local, certified laboratory on the same day. All CEC and inorganic analyses were performed at this location.

Due to limited resources, the MF feed (i.e., primary effluent) and MF product (i.e., RO feed) were sampled and analyzed for CECs only once during the study. According to CCWRF, water chemistry of raw sewage to the plant does not have significant variations over extended periods of time. However, a municipal WWTP can experience daily variations in its feed water’s water chemistry.

Analytical method

The collected samples were then shipped in the same day to the Weck Laboratories, Inc. in City of Industry, California. Methods 8270, 1694, and 1625 provided quantitative data on the suite of 38 CECs being investigated for this research. These methods involved online pre-concentration followed by liquid chromatograph separation and series mass spectrometry (LS-MS-MS) with electrospray ionization in positive and negative modes. Samples were pre-concentrated using a previously developed direct online extraction/analysis method (Haghani et al. 2009) to achieve low-ng/L method reporting limits (MRL). The utilized test methods MRL for the subject 38 CECs ranged from 1 to 2,500 ng/L.

RESULTS AND DISCUSSION

Occurrence and removal of inorganics in the MF

CECs originate from industrial and domestic products such as pesticides, PCPs, preservatives, surfactants, flame retardants and perfluorochemicals. These contaminants are also excreted by humans in the form of human waste that contains pharmaceutical residues or steroidal hormones. CECs also surface as chemicals formed during wastewater and drinking water treatment, known as disinfection by-products (DBPs).

Table 3 shows an analysis of the primary effluent (i.e., MF feed) and MF permeate (i.e., MF effluent) for inorganics compounds. The data in the ‘MF feed’ column was obtained from the reports provided by CCWRF (Inland Empire Utilities Agency 2014). As expected, the MF process does not remove dissolved inorganic constituents; however, it
is excellent at removing suspended materials, which reduces the concentration of certain organic compounds represented by BOD and TOC.

Considering the CECs' molecular weights (MWs) listed in Table 1, the MF process is unlikely to significantly or meaningfully remove CEC micropollutants from the primary effluent. After all, MF is generally used as pretreatment for particulate matter reduction and water stabilization and to avoid fouling of the RO membranes, which creates optimal operating conditions for the RO process.

Acetaminophen was the most abundant compound with a concentration of 130 μg/L in primary effluent (e.g. MF feed). Acetaminophen was followed by other analgesics, anti-inflammatories, lipid regulators gemfibrozil and bezafibrate, and the betablocker atenolol. High concentrations of acetaminophen and caffeine have also been reported in similar studies: Yang et al. (2011) reported acetaminophen and caffeine concentrations of about 100 μg/L in an advanced wastewater reclamation plant located in Gwinnett County, Georgia, USA. They found a high ibuprofen concentration of approximately 10 μg/L and carbamazepine concentration of approximately 1 μg/L, which are similar to the numbers that were observed in this study's MF feed analysis.

The presence of by-products (BPs), such as NDMA, is particularly important in places where a treatment plant’s effluent is used for IPR. Chlorinating wastewater leads to relatively high concentrations of BPs. In fact, NDMA formation can exceed 100 ng/L during the chlorination of secondary wastewater effluent (Najm & Trussell 2017), whereas chlorination of surface waters typically results in the formation of less than 10 ng/L of NDMA (Najm & Trussell 2017).

NDMA results from chlorination due to the slow reaction of monochloramine with dimethylamine, which ultimately forms an unsymmetrical dimethylhydrazine intermediate (Choi & Valentine 2002; Mitch & Sedlak 2002). There were no N-nitroso compounds found in the primary effluent. However, the MF process uses chloramines as a disinfectant, which is formed by adding chlorine bleach to naturally occurring ammonia in the primary effluent. Therefore, after the MF process, N-nitroso compounds were detected in the laboratory analysis. Other studies have shown that chlorination using hypochlorite results in approximately an order of magnitude less NDMA than what is formed through chlorination using monochloramine (Mitch & Sedlak 2002).

As for perfluorooctane sulfonate (PFOS), the compound was not detected in the MF feed but was found in the MF permeate. This result could be due to an inaccuracy in the laboratory analysis or a possible transformation of fluorosulfonamides, such as FOSE and FOSA, to PFOS. This observation has been reported in other studies as well (Schultz et al. 2006; Sinclair & Kannan 2006; Loganathan et al. 2007). However, in prior studies, the average PFOS concentration formed was 4 ng/L; in this study, the PFOS concentration was 270 ng/L.

In general, conventional wastewater treatment techniques, such as trickling filtration, activated sludge, anaerobic digestion, and chlorination, have been reported to have little effect on PFOS removal (Schultz et al. 2006; Sinclair & Kannan 2006), given that microbial communities cannot metabolize PFOS (Key et al. 1998; Hollingsworth et al. 2005). In some cases, PFOS concentrations were greater in the WWTP effluent as compared with those in the influent (Schultz et al. 2006; Sinclair & Kannan 2006). This suggests microbial transformation (Schultz et al. 2006;
Sinclair & Kannan 2006; Loganathan et al. 2007) of fluorosulfonamides (e.g. FOSE and FOSA) to PFOS (Tomy et al. 2004; Xu et al. 2004), the transformation of fluorotelomer alcohols to PFOA, or the release of residual PFOX from the solid phase. The RO process has been reported to be effective in removing PFOSs.

RO pilot operation data

As mentioned before, this study consisted of two phases: the first phase was an MF process followed by a 1-stage RO process using 4-inch ESPA2-4040 elements with a target recovery rate of 55%. The second phase was an MF process followed by a 2-stage RO process using 4-inch ESPA2-4040 and 2.5-inch ESPA-2540 elements with a recovery rate of 80%. For both phases, four different fluxes of 8, 10, 12 and 14 gfd were selected and targeted.

The RO pilot unit had a capacity of 19.5 L/min – 33.6 L/min of feed from the RO feed tank, and the pressure was variable between 470 kPa and 1,000 kPa to obtain the mentioned fluxes with 55% and 80% recoveries for phase one and phase two, respectively. Antiscalant with a concentration of 3.02 mg/L was added to the RO feed stream before the high-pressure pumps. Permeate and concentrate from the RO unit were collected for sampling, and the remainder of the streams was blended with the RO concentrate and directed to the plant’s headworks.

Recovery of the membranes was derived from the following equation:

\[
\text{Recovery} \ (%) = \frac{\text{volume of the permeate}}{\text{volume of the feed}} \times 100 \quad (6)
\]

Flux \((J)\) is the volume of permeate \((V)\) collected per unit membrane area \((A)\) per time \((t)\)

\[
J = \frac{V}{At} \quad (7)
\]

Removal of inorganics through the RO process

The RO system’s performance was evaluated in terms of the permeate’s pollutant concentrations and the membrane rejection. The rejection of the RO membrane was calculated as follows:

\[
\text{Rejection} \ (%) = \left(\frac{C_f - C_p}{C_f}\right) \times 100 \quad (8)
\]

where \(C_f\), mg/L, is the feed concentrations and \(C_p\), mg/L, is the permeate concentration.

Tables 4 and 5 show all removal rates at the different fluxes tested. For the first phase of this study, conductivity rejection was found to be 92.8%, 90.0%, 93.3% and 93.5% for fluxes of 8, 10, 12 and 14 gfd, respectively. For the second phase, conductivity rejection was 85.5%, 89.1%, 91% and 91.5% for fluxes of 8, 10, 12 and 14 gfd, respectively.

These findings matched expectations: increasing flux slightly decreases the salt concentration in the permeate. This is because the salt leakage across the membrane remains fairly constant. At higher flux rates, the mass of salt passing across the membrane is blended with more permeate than at lower flux rates, resulting in a lower conductivity product stream. The only exception to this condition was when applying flux of 8 gfd in the first phase. With that being said, this relatively high salt-removal rate could simply be an error since this was the first data point collected in this pilot study and the experiment was not mature enough for data collection.

For the first phase of this study, 94.1%, 90.0%, 93.4% and 93.5% of chloride rejections were achieved with fluxes of 8, 10, 12 and 14 gfd, respectively. For the second phase, 85.8%, 90.8%, 92.1% and 92.9% of chloride rejections were achieved with fluxes of 8, 10, 12 and 14 gfd, respectively. These results align with what was explained earlier about conductivity removal.

More than 98.2% of sulfate rejection was obtained with all fluxes in both phases. In addition, calcium removal was 97.7% with all fluxes for both phases, while average sodium removal was 89.4% for the first phase and 86.9% for the second phase with all fluxes.

Higher rejection of di- and multivalent ions could be explained by the size of multivalent ions, which is larger than monovalent ones, and by their charge effect, which is consistent with results reported in past literature. An increase in an anion charge leads to an increase of electrostatic interactions with membranes.
Compound	Unit	Primary effluent	MF permeate	Flux 8	Flux 10	Flux 12	Flux 14
1,4-Dioxane	μg/L	ND	0.7	1.9	ND	100	2.2
N-Nitrosodiethylamine	ng/L	ND	6	4	ND	100	23
N-Nitrosodimethylamine	ng/L	ND	8.1	15	7.6	6.2	18
N-Nitrosomorpholine	ng/L	ND	12	45	ND	100	14
Propranolol	ng/L	0.013	0.058	ND	0.0028	95.2	73°
Perfluorooctane sulfonate	ng/L	ND	270	300	7.8	97.1	590
17β-Estradiol	ng/L	43	51	80	ND	100	32
Estrone	ng/L	33	160°	180°	ND	100	78
Progesterone	ng/L	5.2	26	28	ND	100	93
Testosterone	ng/L	4.2	110	230°	ND	100	49
Bisphenol A	ng/L	310	170	360°	39	77.1	820
Diclofenac	ng/L	200	160°	220°	12	92.5	540
Gemfibrozil	ng/L	4,200°	3,900	12,000	82	97.9	6,100
Ibuprofen	ng/L	15,000°	12,000°	13,000	690°	94.3	3,400
Indomethic acid	ng/L	1,700°	1,300	3,600°	ND	100	ND
Naproxen	ng/L	19,000°	8,900°	8,800°	580°	93.5	12,000
Salicylic acid	ng/L	95,000°	54,000	880°	8,400°	84.4	240
Triclosan	ng/L	1,600°	120	280°	5.3	95.6	180°
Acetaminophen	ng/L	130,000°	27,000°	67,000	22,000	18.5	18,000
Amoxicillin	ng/L	6,400	2,400°	25°	41	98.3	ND
Atenolol	ng/L	3,500°	2,500°	4,600°	210°	91.6	4,400°
Atorvastatin	ng/L	280	470°	1,500°	14	97	820°
Azithromycin	ng/L	1,400	780	210°	ND	100	ND
Caffeine	ng/L	84,000°	26,000°	32,000°	4,500°	82.7	130,000°
Carbamazepine	ng/L	170	200°	43°	5.9	97.1	260°
Ciprofloxacin	ng/L	1,500	570°	15°	43	92.5	790°
Cotinine	ng/L	1,700°	1,300°	2,900°	51	96.1	340°
DEET	ng/L	2,100°	1,800°	6,300°	150°	91.7	3,800°
Diazepam	ng/L	6.4	12°	ND	100	10	ND
Fluoxetine	ng/L	62	8.6	ND	1	88.4	52°
Meprobamate	ng/L	72	19	47°	3.2	83.2	20
Methadone	ng/L	27	30	3.7°	ND	100	ND

(continued)
Phosphate rejection was more than 99.2% for all conditions in the first phase; but, in the second phase, phosphate was not efficiently rejected. This result cannot be explained when the removal is compared with other ions. Overall, in the first phase (i.e. 1-stage RO), the flux of 14 gfd showed better rejection values for most inorganic compounds compared with those of other fluxes. Similar results were found for the second phase, which ultimately means that increasing flux improves the permeate quality. However, results show that 1-stage RO with a 55% recovery rate had a better removal rate of CECs when compared with 2-stage RO with an 80% recovery rate. These results align with those of other studies. As the concentration gradient of contaminants increases across the membrane at higher recovery rates, the overall removal efficiency for various compounds decreases.

Removal of CECs through the RO process

CECs were studied in the permeate and concentrate streams at fluxes of 8, 10, 12 and 14 gfd, with recovery rates of 55% and 80%. Pressure-driven separation membranes are effective barriers in rejecting these pollutants (Gur-Reznik et al. 2014). In particular, studies have shown that RO is effective in removing compounds that have MWs of greater than approximately 200 g/mol (Sedlak & Pinkston 2011). The majority of the target CECs have MWs between 100 and 560 g/mol, except a few such as iopromide, azithromycin, NDMA and 1,4 dioxane, which have MWs of 791, 749, 74 and 88 g/mol, respectively. Compounds with lower MWs exhibited much lower removal by RO.

Figure 2 shows the effects of CECs' MW on their removal in the first and second phases of this study, as well as expected high removal rates.

Figure 2 shows that both phases experienced sharp drop-offs in removal efficiency for compounds with MWs of 300 g/mol or less.

Tables 4 and 5 shows the concentrations of CECs in the RO feed, permeate and concentrate for the first and second phases of this study, respectively. Correspondingly, Figure 3 presents average concentrations of different CECs in the RO permeate for all three of the mentioned analyses.

The data demonstrates the effectiveness of RO treatment in eliminating CECs in the RO permeate while operating at

Compound	Unit	PRIMARY EFFluent	Primary removal	PEERMEATE	Concentrate	Concentrate removal
Primidone	ng/L	200	93	18	38	6.4
Sulfamethoxazole	ng/L	1,800	92	37	920	43
TCEP	ng/L	280	93	37	260	97
TCPP	ng/L	920	94	37	820	98
TDCPP	ng/L	370	93	37	1,600	90
Trimethoprim	ng/L	680	94	37	1,000	91

ND, not detected. *The concentration indicated for this analyte is an estimated value above the calibration range.*

Table 4 | continued

Phosphate rejection was more than 99.2% for all conditions in the first phase; but, in the second phase, phosphate was not efficiently rejected. This result cannot be explained when the removal is compared with other ions.

Overall, in the first phase (i.e. 1-stage RO), the flux of 14 gfd showed better rejection values for most inorganic compounds compared with those of other fluxes. Similar results were found for the second phase, which ultimately means that increasing flux improves the permeate quality. However, results show that 1-stage RO with a 55% recovery rate had a better removal rate of CECs when compared with 2-stage RO with an 80% recovery rate. These results align with those of other studies. As the concentration gradient of contaminants increases across the membrane at higher recovery rates, the overall removal efficiency for various compounds decreases.

Removal of CECs through the RO process

CECs were studied in the permeate and concentrate streams at fluxes of 8, 10, 12 and 14 gfd, with recovery rates of 55% and 80%. Pressure-driven separation membranes are effective barriers in rejecting these pollutants (Gur-Reznik et al. 2014). In particular, studies have shown that RO is effective in removing compounds that have MWs of greater than approximately 200 g/mol (Sedlak & Pinkston 2011). The majority of the target CECs have MWs between 100 and 560 g/mol, except a few such as iopromide, azithromycin, NDMA and 1,4 dioxane, which have MWs of 791, 749, 74 and 88 g/mol, respectively. Compounds with lower MWs exhibited much lower removal by RO.

Figure 2 shows the effects of CECs’ MW on their removal in the first and second phases of this study, as well as expected high removal rates.

Figure 2 shows that both phases experienced sharp drop-offs in removal efficiency for compounds with MWs of 300 g/mol or less.

Tables 4 and 5 shows the concentrations of CECs in the RO feed, permeate and concentrate for the first and second phases of this study, respectively. Correspondingly, Figure 3 presents average concentrations of different CECs in the RO permeate for all three of the mentioned analyses.

The data demonstrates the effectiveness of RO treatment in eliminating CECs in the RO permeate while operating at
Compound	Unit	Flux 8	Flux 10	Flux 12	Flux 14										
		Permeate	Concentrate	Rem. %											
1,4-Dioxane	µg/L	ND	0.7	2.3	100.0	ND	4.4	100.0	ND	4.9	100.0	ND	4.5	100.0	
N-Nitrosodimethylamine	ng/L	ND	6	3.1	12	48.3	ND	ND	ND	100.0	ND	20	100.0	ND	11
(NDMA)															
N-Nitrososomorpholine	ng/L	ND	8.1	17	56	0.0	17	75	0.0	21	66	0.0	16	68	0.0
Propranolol	ng/L	ND	12	2.8	24	76.7	3.8	74	68.3	3	13	75.0	2.4	20	80.0
Perfluorooctane sulfonate	(PFOS)														
17-β-Estradiol	ng/L	43	31	ND	ND	100.0	ND	ND	ND	100.0	ND	ND	100.0		
Estrone	ng/L	33	160	ND	0.7	100.0	ND	ND	0.7	100.0	ND	2.3	100.0		
Testosterone	ng/L	5.2	26	ND	2.3	100.0	ND	ND	2.3	100.0	ND	2.9	100.0		
Bisphenol A	ng/L	4.2	110	2.8	5.7	97.5	2	10	98.2	1.4	5.7	98.7	1.6	6.3	98.5
Diclofenac	ng/L	310	170	43	1,100	74.7	27	1,100	84.1	19	1,200	88.8	13	660	92.4
Gemfibrozil	ng/L	200	160	8.8	1,100	94.5	10	1,800	93.8	6.3	1,500	96.1	5.3	1,300	96.7
Ibuprofen	ng/L	4,200	3,900	100	12,000	98.6	46	11,000	98.9	43	14,000	98.9			
Naproxen	ng/L	19,000	8,900	800	63,000	95.1	440	70,000	95.6	280	40,000	96.9	250	48,000	97.2
Salicylic acid	ng/L	95,000	54,000	3,000	190,000	95.9	2,200	11,000	95.6	1,600	21,000	97.0	1,400	20,000	97.4
Triclosan	ng/L	1,600	120	200	710	0.0	260	610	0.0	340	660	0.0	440	560	0.0
Acetaminophen	ng/L	130,000	27,000	15,000	86,000	44.4	16,000	42,000	40.7	14,000	140,000	48.1	14,000	420,000	48.1
Amoxicillin	ng/L	6,400	2,400	43	ND	98.2	31	ND	98.7	13	ND	99.5	14	ND	99.4
Atenolol	ng/L	3,500	2,500	270	7,000	89.2	150	6,100	94.0	200	8,000	92.0	130	12,000	94.8
Atorvastatin	ng/L	280	470	1.6	2,100	99.7	3.5	9,300	99.3	1.6	2,600	99.7	2.3	4,400	99.5
Caffeine	ng/L	1,400	780	180	ND	79.8	ND	769	79.8	ND	769	79.8	ND	769	79.8
Carbamazepine	ng/L	84,000	26,000	3,200	9,400	87.7	2,600	15,000	90.0	2,600	11,000	90.0	19,000	14,000	26.9
Ciproflouxacin	ng/L	170	207	12	250	94.0	7.6	80	96.2	6.7	120	96.7	6.3	92	96.9
Cotinine	ng/L	1,500	570	57	76	90.0	16	180	97.2	210	140	63.2	8.8	120	98.5
Cotinine	ng/L	1,700	1,300	42	2,900	96.8	47	1,500	96.4	31	1,200	97.6	34	3,200	97.4
DEET	ng/L	2,100	1,800	120	4,500	93.3	81	5,100	95.5	68	4,400	96.2	32	3,000	98.2
Diazepam	ng/L	ND	6.4	ND	8.1	100.0	ND	9.3	100.0	ND	13	100.0	ND	13	100.0
Fluoxetine	ng/L	62	8.6	1.5	ND	82.6	ND	ND	100.0	ND	ND	100.0	ND	ND	100.0
Meprobamate	ng/L	72	19	120	3,800	0.0	ND	18	100.0	150	3,000	0.0	7.5	100	60.5
Methadone	ng/L	27	30	1.9	ND	93.7	ND	ND	100.0	ND	ND	100.0	ND	ND	100.0

(continued)
different flux rates. For the first phase, the average removal rates for the analyzed CECs with fluxes of 8, 10, 12 and 14 gfd were 90.2%, 83.8%, 87.2% and 85.1%, respectively. For the second phase, the average removal rates at the same fluxes were 78%, 89.5%, 80.6% and 83%, respectively.

1-stage RO with a 55% recovery rate had an overall better removal rate of CECs when compared with 2-stage RO with an 80% recovery rate. This result aligns with those of past studies (Chellam & Taylor 2001). As mentioned earlier, when the concentration gradient of contaminants increases across the membrane at higher recovery rates, the overall removal effectiveness for various compounds decreases.

As can be seen in Figure 3, CECs with the lowest rejections were meprobamate, beta-blockers and BPs, which had 48.2%, 57.7% and 59.3% removal, respectively. CECs that were completely rejected were 1,4-dioxane and methadone. Similarly, more than 98% of hormones and gemfibrozil were rejected. Other CECs with high rejection rates were iopromide with 99.5% rejection and atorvastatin with 95.6% rejection. High rejection rates also occurred for some antibiotics such as amoxicillin, azithromycin, ciprofloxacin, sulfamethoxazole and trimethoprim. In addition, high removal efficiencies of 93% were observed for compounds such as caffeine, cotinine and DEET.

As mentioned before, NDMA was poorly removed in RO because of its low MW.

The concentration of 1,4 dioxane in the RO feed was lower than the notification level of 1 μg/L. And while 1,4 dioxane was not observed in the RO permeate, its concentration was higher than the notification level in the concentrate stream.

As expected, the compounds rejected during the RO treatment were concentrated to different degrees in the RO concentrate stream. In this study, the highest concentration in the concentrate was of acetaminophen at 130 μg/L at a flux of 8 gfd, and the lowest concentration was of NDMA at 2.7 ng/L at a flux of 14 gfd.

The concentration of each compound in the concentrate stream was found for every test condition in phase one (i.e., with 55% recovery), and the results were compared against one another. The highest concentrations of CECs were found at a flux of 8 gfd and 55% recovery. CECs with the highest concentrations were as follows: 1,4-dioxane,
17b-estradiol, estrone, gemfibrozil, iopromide, acetaminophen, atenolol, atorvastatin, azithromycin, cotinine, deet and trimethoprim. The reason for this could be the lower concentration gradient across the membrane in the low flux.

The main drawbacks of using RO membrane processes are the costly disposal or treatment of the resulting RO concentrate and the potential environmental risks to aquatic ecosystems that receive the said concentrate (Perez-Gonzalez et al. 2015). Acceptable methods of waste disposal typically include discharge to waste treatment facilities, natural waters or an evaporation pond. Other methods to reduce the organic pollutant load of RO concentrate include advanced oxidation processes such as ozonation, fenton processes, photocatalysis and photooxidation, sonolysis and electrochemical oxidation. However, the high cost of some of these technologies may limit their application (Perez-Gonzalez et al. 2015).

CECs and their associated degradates represent a challenge for regulators to establish human health-based criterion due to the limited scientific knowledge regarding acute and chronic health effects (Tchobanoglous et al. 2015). In recognition of the lack of human health based criterion related to reuse water supply, the National Water Research Institute (NWRI) convened an independent advisory panel (IAP) to develop a list of recommended CECs, based on collective knowledge, to be considered as performance monitoring protocol for DPR systems (NWRI 2015). The IAP suggested risk-based human health criterion for the control of 13 CECs in DPR applications and the maximum concentration of those 13 CECs in the RO permeate for two phases of testing in this study is provided in Table 6.

In the electrostatic repulsion mechanism, rejection relies on relative charge interactions and not just on molecule size. Rejection of organics, colloids and large molecules depends on the sieving parameter, solute and pore size; meanwhile, ionic components and lower MW organics are rejected due to charge interactions between membrane surfaces (Hilal et al. 2004).

Accordingly, CEC retention could be the result of both size exclusion and the charge repulsion mechanism. Specifically, negatively charged compounds studied by Verliefde et al. (2007a, 2007b) were rejected more effectively than neutral and positive compounds. Berg et al. (1997) obtained similar results: charged organics were rejected at higher rates than noncharged organics of the same MW. Kimura et al. (2003) investigated the rejection of organic CECs categorized as DBPs and pharmaceuticals using polyamide NF/RO membranes in bench-scale filtration experiments.

This study found that charged compounds could be rejected by more than 90%, regardless of other physicochemical properties. Although the charge of the CEC compounds was not analyzed in this study, CECs such as
diclofenac, ibuprofen, sulfamethoxazole and triclosan, which are negatively charged, were rejected by more than 90% in both phases. In contrast, the rejection of noncharged compounds such as acetaminophen was found to be influenced mainly by their size. To assess the percent rejection of charged/ionic CECs, frequency distributions were plotted for observed RO rejection. Figure 4 shows the frequency of observed rejection for neutral and ionic/charged CECs. With few exceptions, charged/ionic CECs were rejected (<90%) by the RO membrane.

A membrane surface gains negatively charged properties usually due to the presence of sulfonic and/or carboxylic acid groups, which are deprotonated at neutral pH (Bellona et al. 2004; Verliefde et al. 2007a). Different pH conditions will substantially change the membrane surface charge. Studies have revealed that increasing pH can also increase the negative surface charge of membranes; thus, higher rejections, especially for negatively charged compounds, can be expected (Childress & Elimelech 2000; Tanninen & Nyström 2002).
Mass balance of CECs in the RO process

Tables 7 and 8 show the summary of the mass balance analysis using Equations (4) and (5). In an ideal situation with zero lab-analysis error, all M_{disc} values would be zero. With that being said, when calculating the mass of discrepancy using mass balance analysis via Equations (4) and (5), a positive M_{disc} value equates to a possibility of CECs accumulating within the system and being adsorbed to the solid phase.

Positive and negative results for M_{disc} (e.g. azithromycin and estrone for positive and NDMA and propranolol for negative) occurred for the following potential reasons. First, variations may have existed in the feed quality (i.e. CEC concentration in feed). Because this study had limited resources to analyze CECs in the feed sample, it assumed that there were no feed chemistry variations and then analyzed one sample of primary effluent (i.e. MF feed) and one sample of MF permeate (i.e. RO feed), both of which were collected on the same day at the same time.
Compound	Flux 8	Flux 10	Flux 12	Flux 14
Methadone	0.8	1.1	1.2	1.5
Primidone	0.9	1.1	1.6	1.8
Iopromide	−7.5	45.7	53.8	32.3
Azithromycin	19.5	27.4	32.3	62.0
Perfluorooctane sulfonate (PFOS)	3.8	−0.3	0.1	12.3
Salicylic acid	1,380.8	90.5	2,231.8	2,543.2
Ciprofloxacin	15.2	7.0	6.2	25.9
Estrone	2.3	4.4	4.6	6.5
Amoxicillin	66.8	84.3	99.5	93.3
N-Nitrosodiethylamine	0.1	0.2	−0.2	0.2
Acetaminophen	−412.1	241.6	778.0	796.6
17b-Estradiol	0.5	1.3	1.9	1.5
Carbamazepine	5.0	2.7	6.7	4.6
Sulfamethoxazole	−11.5	−9.3	−28.8	17.1
Caffeine	269.3	−1,229.2	425.2	476.7
Atorvastatin	−5.4	3.3	−1.1	8.2
Gemfibrozil	−38.7	39.5	58.9	55.0
TCEP	4.8	−1.8	−3.8	2.9
Naproxen	134.0	87.7	118.5	83.4
Atenolol	10.7	13.8	39.3	23.1
Cotinine	0.3	37.8	21.3	8.1
Triclosan	−0.1	1.3	−0.9	0.7
Trimethoprim	1.4	3.9	4.9	3.5
Fluoxetine	0.2	−0.5	0.0	0.0
Testosterone	0.3	−0.3	1.2	0.5
Diazepam	0.0	0.1	0.0	0.0
DEET	−29.0	1.3	0.7	−14.7
Progesterone	0.4	−0.5	0.2	−0.4
1,4-Dioxane	−3.6	−6.8	−11.4	−12.3
Bisphenol A	−0.2	−7.3	−2.9	−3.0
Ibuprofen	168.2	−156.4	−150.1	−403.6
N-Nitrosomorpholine	−0.2	−0.4	0.2	−0.5
N-Nitrosodimethylamine (NDMA)	−0.1	−0.9	−0.2	−0.3
TCPP	6.0	−18.9	−2.3	−3.1
Diclofenac	1.6	−3.8	−4.9	−6.7
TDCPP	−14.5	−20.3	−43.9	−15.5
Meprobamate	−0.1	0.1	0.2	−7.6
Propranolol	0.0	−1.2	−0.1	−105.2878

Table 7 | Mass loss of CECs (M_{loss}) and percent of elimination due to sorption (R_{sor}) with 1-stage RO
Compound	Flux 8		Flux 10		Flux 12		Flux 14	
	M_{disc} (mg/d)	R_{disc} (%)						
17-b-Estradiol	1.2	100.0	1.6	100.0	1.9	100.0	2.2	100.0
Azithromycin	15.2	81.3	24.3	100.0	23.9	81.6	34.4	100.0
Methadone	0.7	94.9	0.9	100.0	1.1	100.0	1.3	100.0
Estrone	3.8	99.7	5.0	99.4	6.0	99.7	7.0	99.7
Amoxicillin	56.6	98.5	74.1	99.0	89.7	99.6	105.1	99.4
Progesterone	0.6	98.3	0.8	97.1	1.0	97.9	1.1	97.8
Testosterone	2.6	97.0	3.3	96.7	4.0	97.9	4.7	97.4
Perfluorooctane sulfonate (PFOS)	6.5	100.0	8.2	97.3	9.9	97.7	11.6	97.1
Ciprofloxacin	12.2	89.4	16.2	91.4	14.0	65.7	25.7	94.3
Salicylic acid	372.3	28.8	1,559.8	92.7	46.2	94.8	51.5	89.9
Carbamazepine	3.4	71.4	5.5	88.9	6.4	85.1	7.7	87.8
Primidone	0.5	55.7	1.1	88.9	1.0	72.7	1.3	80.2
Fluoxetine	0.2	85.9	0.3	100.0	0.3	100.0	0.3	77.7
DEET	20.3	47.2	22.2	39.5	31.9	47.3	52.0	65.5
N-Nitrosodiethylamine	0.0	20.2	0.2	100.0	0.1	32.2	0.2	64.1
Diazepam	0.1	76.0	0.1	70.8	0.1	58.7	0.2	60.2
Cotinine	17.1	55.1	30.0	73.9	38.7	79.3	28.1	49.1
N-Nitrosomorpholine	0.1	43.2	–0.2	–49.2	0.3	58.1	0.3	47.3
Trimethoprim	4.4	31.1	6.5	35.1	7.9	35.9	10.2	39.1
Gemfibrozil	37.0	39.6	38.8	31.9	61.1	41.8	49.0	28.5
TCPP	11.8	64.9	10.7	45.3	–6.7	–23.5	7.5	22.4
Caffeine	517.5	83.2	651.8	80.4	814.0	83.4	187.5	16.4
Bisphenol A	–1.8	–43.1	–2.3	–42.7	–3.3	–52.5	1.2	16.2
TDCPP	0.6	13.7	0.6	9.5	–5.5	–77.6	0.3	3.7
Atenolol	22.8	38.2	36.0	46.2	26.8	28.5	0.8	0.7
Naproxen	–88.3	–41.4	–172.0	–62.0	20.3	6.1	–33.6	–8.6
Sulfamethoxazole	–1.0	–4.6	–3.6	–12.4	3.4	9.8	–8.0	–19.6
1,4-Dioxane	6.5	37.7	–5.7	–26.3	–11.1	–42.4	–8.0	–26.1
Ibuprofen	–321.9	–112.1	–263.7	–70.5	–15.4	–5.4	–184.3	–34.9
Meprobamate	–19.1	–4,202.5	0.5	81.0	–26.7	–3,740.1	–0.4	–42.7
Diclofenac	–1.3	–34.8	–6.5	–131.0	–4.1	–68.4	–4.4	–62.6
Atorvastatin	1.7	15.0	–43.7	–298.2	–2.3	–12.8	–17.4	–84.1
Acetaminophen	–34.9	–5.4	180.1	21.4	–473.8	–46.8	–3,056.0	–256.9
N-Nitrosodimethylamine (NDMA)	–0.4	–201.1	–0.6	–253.7	–0.8	–272.2	–0.9	–262.1
Triclosan	–4.2	–147.2	–6.6	–175.3	–10.7	–237.6	–18.9	–358.2
TCEP	–10.3	–153.5	–5.7	–65.0	–66.6	–1,585.2	–92.3	–748.0
Propranolol	–0.1	–9,578.8	0.0	100.0	–0.2	–8,415.6	–0.1	–3,175.9
Another reason could be adsorption or desorption of CECs from the dissolved (i.e. aqueous) phase to the solid phase in the process. The solid phase in this study included the surface of the RO membrane, the concentrate and permeate stream piping, and, most importantly, suspended and deposited micro-particles on the concentrate side of the membrane. A negative value of M_{disc} in Tables 7 and 8 represents desorption, and a positive value of M_{disc} represents adsorption.

Furthermore, positive and negative M_{disc} values could be attributed to lab measurement errors. Tables 7 and 8 note varying laboratory procure such as ‘The concentration indicated for this analyte is an estimated value above the calibration range.’ Therefore, some level of error may have been introduced to the lab results. Measuring chemicals in the level of nanograms per liter can be a sensitive process that always comes with some uncertainties about quality control (i.e. result replicates).

Understanding the removal mechanism and relationships between controlling parameters in the RO system is key to optimizing CEC rejection. At the early stage of filtration in RO when the membrane is not ripe, the dominant mechanism for removal is the adsorption of nano-amounts of CECs into the membrane surface (Nghiem et al. 2004a, 2004b), until it reaches equilibrium. Preliminary removal could yield false results (Nghiem & Schäfer 2002). A cake develops on the surface of the membrane that decreases its pore size to below the nominal rating, thus improving removal (Nghiem et al. 2004a, 2004b; Xu et al. 2014), but later develops fouling. In addition to the pore size decreasing, this improvement in removal could also be due to the enhanced adoption capacity of the solid phase (e.g. fouling biofilm).

The adsorption mechanism correlates with solute–solid hydrophobic interactions (Nghiem & Schäfer 2002; Nghiem et al. 2002). Hydrophobic interaction between the solid phase, particularly the RO membrane, and solutes is one of RO’s important rejection mechanisms. A membrane’s hydrophobicity is typically characterized by its contact angle, whereas hydrophobicity of solutes can be correlated and quantified using the logarithm of the octanol-water partition ($\log K_{\text{ow}}$). Molecules with $\log K_{\text{ow}}$ greater than 2 are referred to as hydrophobic. Octanol and water partition coefficient values are determined as logs, the ratio of the concentration in the octanol phase against the concentration in the aqueous phase at adjusted pH, such that the predominant form of the compound is unionized. Figure 5 shows the effect of $\log K_{\text{ow}}$ on the removal examined CECs for phases of the test.

Hydrophobic properties have an influence on the sorption mechanisms. For instance, strong hydrophobic compounds such as aromatic pesticides, non-phenolic pesticides and alkyl-phthalates were highly rejected even by the lowest desalting membrane (Kiso et al. 2001). However, the
retention decreases as the membrane is saturated and its ability for sorption is reduced. As studied by Braeken et al. (2005), hydrophobic molecules are rejected better than hydrophilic molecules after long-term operation.

In this study, hormones such as estrone and 17-β-estradiol, azithromycin and methadone, which have values of $\log K_{ow} > 2$, adsorbed to the solid phase and potentially followed this pattern. See the mass balance calculation and the results in Tables 7 and 8.

__CONCLUSION__

The effect of CECs on the public health and the environment has urged water managers to more actively implement strategies that remove these compounds not only from drinking water but also from the wastewater treatment process. Primary treatment is currently unable to eliminate all substances; therefore, it is usually followed by secondary treatment.

However, the innovative MF/RO treatment train generates a water source without secondary treatment and can still remove many CECs. By analyzing the RO concentrate stream, this study showed the viability of eliminating secondary treatment and efficiently preparing wastewater for reuse through this novel treatment train.

This study investigated the removal of 38 different CECs in the pilot scale with different applied fluxes. In the first phase (1-stage RO), the flux of 14 gfd showed a better rejection value of 95.2% when compared with those of other fluxes. In the second phase (2-stage RO), the flux of 12 gfd showed a better rejection value of 93.7% when compared with those of other fluxes. Statistical analysis revealed that there is no significant difference between different fluxes.

The results showed that 1-stage RO with a 55% recovery rate had a better removal rate of CECs when compared with 2-stage RO with a 80% recovery rate. As the concentration gradient of contaminants increased across the membrane at the higher recovery rate, the overall removal rate decreased for various compounds.

Azithromycin, hormones, carbamazepine, diazepam, gemfibrozil, atorvastatin, methadone and iopromide were removed the most effectively by RO in both phases. All these compounds have MW > 200 g/mol and are also based on the $\log K_{ow}$. All those CECs also have hydrophobic characteristics; therefore, the RO process was able to remove them efficiently. In contrast, NDMA, propranolol, acetaminophen and meprobamate were the least effectively removed, given their low MW (less than 200 g/mol).

__ACKNOWLEDGEMENT__

This research was made possible by the financial support of the US Bureau of Reclamation (USBR), Agreement number R16AC00140, and continuous support from Carollo Engineers Inc. Additional support was provided by Inland Empire Utilities Agency (IEUA), particularly Mr. Brian Noh. The authors would also like to thank Pall Corporation for providing the microfiltration (MF) pilot unit. In addition, they would like to thank Mr. Luis Cruzado (USBR) and Mr. Scott Toomy (Pall Corporation).

__SUPPLEMENTARY DATA__

The Supplementary Data for this paper are available online at http://dx.doi.org/10.2166/wrd.2019.004.

__REFERENCES__

Alonso, E., Santos, A., Solis, G. J. & Riesco, P. 2001 On the feasibility of urban wastewater tertiary treatment by membranes: a comparative assessment. Desalination 141 (1), 39–51. https://doi.org/10.1016/S0011-9164(01)00387-3.

Bellona, C., Drewes, J. E., Xu, P. & Amy, G. 2004 Factors affecting the rejection of organic solutes during NF/RO treatment – a literature review. Water Research 38 (12), 2795–2809. https://doi.org/10.1016/j.watres.2004.03.034.

Berg, P., Hagmeyer, G. & Gimbel, R. 1997 Removal of pesticides and other micropollutants by nanofiltration. Desalination 113, 205–208. https://doi.org/10.1016/S0011-9164(97)00130-6.

Braeken, L., Ramaekers, R., Zhang, Y., Maes, G., Van Der Bruggen, B. & Vandecasteele, C. 2005 Influence of hydrophobicity on retention in nanofiltration of aqueous solutions containing organic compounds. Journal of Membrane Science 252 (1–2), 195–203. https://doi.org/10.1016/j.memsci.2004.12.017.

Calderón-Preciado, D., Jiménez-Cartagena, C., Matamoros, V. & Bayona, J. M. 2011 Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Research 45 (1), 221–231. https://doi.org/10.1016/j.watres.2010.07.050.
Contaminants of emerging concerns in a water recycling process

Carbulla, M., Fink, G., Omil, F., Lema, J. M. & Ternes, T. 2008 Determination of the solid-water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Research 42 (1–2), 287–295. https://doi.org/10.1016/j.watres.2007.07.012.

Chellam, S. & Taylor, J. S. 2001 Simplified analysis of contaminant rejection during ground- and surface water nanofiltration under the information collection rule. Water Research 35 (10), 2460–2474. https://doi.org/10.1016/S0043-1354(00)00541-8.

Childress, A. E. & Elimelech, M. 2000 Relating nanofiltration membrane performance to membrane charge (electrokinetic characteristics). Environmental Science and Technology 34 (17), 3710–3716. https://doi.org/10.1021/es0008620.

Choi, J. & Valentine, R. L. 2002 Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product. Water Research 36 (4), 817–824. https://doi.org/10.1016/S0043-1354(01)00303-7.

DWQ 2017 Groundwater Information Sheet ‘Perfluorooctanoic Acid (PFOA) & Related Compounds’. California State Water Resources Control Board Division of Water Quality. Updated 5/2017. https://www.waterboards.ca.gov/gama/docs/pfoa.pdf.

Focazio, M. J., Kolpin, D. W., Barnes, K. K., Furlong, E. T., Meyer, M. T., Zaugg, S. D. & Thurman, M. E. 2008 A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States – (II) untreated drinking water sources. Science of the Total Environment 402 (2–3), 201–216. https://doi.org/10.1016/j.scitotenv.2008.02.021.

Gao, P., Ding, Y., Li, H. & Xagorarakis, I. 2012 Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes. Chemosphere 88 (1), 17–24. https://doi.org/10.1016/j.chemosphere.2012.02.017.

González, S., López-Roldán, R. & Cortina, J. L. 2012 Presence and biological effects of emerging contaminants in Llobregat river basin: a review. Environmental Pollution 161, 83–92. https://doi.org/10.1016/j.envpol.2011.10.002.

Gracia-Lor, E., Sancho, J. V., Serrano, R. & Hernández, F. 2012 Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere 87 (5), 453–462. https://doi.org/10.1016/j.chemosphere.2011.12.025.

Gur-Reznik, S., Koren-Menashe, I., Heller-Grossman, L., Rufel, O. & Dosoretz, C. G. 2011 Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes. Desalination 277 (1–3), 250–256. https://doi.org/10.1016/j.desal.2011.04.029.

Haghighi, A. W., Eaton, A., Wan, J. & Cha, Y. Y. 2009 Multi-Residue Analysis for Emerging Contaminants Using Direct Online Injection. In: AWWA Research Symposium: Emerging Organic Contaminants, Austin, Texas.

Hansch, C., Leo, A., Hoekman, D. & Livingstone, D. J. 1995 Exploring QSAR: Hydrophobic, Electronic, and Steric Constants, Vol. 48. American Chemical Society, Washington, DC

Hilal, N., Al-Zoubi, H., Darwish, N. A., Mohammad, A. W. & Abu Arabi, M. 2004 A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy. Desalination 170 (3), 281–308. https://doi.org/10.1016/j.desal.2004.01.007.

Hofman, J. A. M. H., Beerendonk, E. F., Folmer, H. C. & Kruithof, J. C. 1997 Removal of pesticides and other micropollutants with cellulose-acetate, polyamide and ultra-low pressure reverse osmosis membranes. Desalination 115 (2–3), 209–214. https://doi.org/10.1016/S0011-9164(97)00131-8.

Hollingsworth, J., Sierra-Alvarez, R., Zhou, M., Ogden, K. L. & Field, J. A. 2005 Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere 59 (9), 1219–1228. https://doi.org/10.1016/j.chemosphere.2004.11.067.

Huang, H., Cho, H., Schwab, K. & Jacangelo, J. G. 2011 Effects of feedwater pretreatment on the removal of organic microcontaminants by a low fouling reverse osmosis membrane. Desalination 281 (1), 446–454. https://doi.org/10.1016/j.desal.2011.08.018.

Inland Empire Utilities Agency 2014 Carbon Canyon Water Recycling Facility Title 22 Engineering Report. Report (April).

Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M. & Barcelo, D. 2011 Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research 45 (3), 1165–1176. https://doi.org/10.1016/j.watres.2010.11.010.

Jones, O. A. H., Voulvoulis, N. & Lester, J. N. 2002 Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research 36 (20), 5013–5022. https://doi.org/10.1016/S0043-1354(02)00227-0.

Key, B. D., Howell, R. D. & Cridle, C. S. 1998 Delfluorination of organofluorine sulfur compounds by Pseudomonas sp. strain D2. Environmental Science and Technology 32 (15), 2283–2287. https://doi.org/10.1021/es9800129.

Kimura, K., Amy, G., Drewes, J. E., Heberer, T., Kim, T. U. & Watanabe, Y. 2003 Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. Journal of Membrane Science 227 (1–2), 113–121. https://doi.org/10.1016/j.memsci.2003.09.005.

Kiso, Y., Sugiura, Y., Kitao, T. & Nishimura, K. 2001 Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes. Journal of Membrane Science 192 (1–2), 1–10. https://doi.org/10.1016/S0376-7388(01)00411-2.

Knepper, T. P., Sacher, F., Lange, F. T., Brauch, H. J., Karrenbrock, F., Roerdink, O. & Lindner, K. 1999 Detection of polar organic substances relevant for drinking water. Waste Management 19 (2), 77–99. https://doi.org/10.1016/S0956-053X(99)00003-3.

Kowalska, I. 2008 Surfactant removal from water solutions by means of ultrafiltration and ion-exchange. Desalination 221 (1–3), 351–357. https://doi.org/10.1016/j.desal.2007.01.094.
Krop, H. & Voogt, P. d. 2008 Perforce 2 Task 1: Physicochemical Parameters and Source Markers of PFAS, 1–147. Retrieved from http://en.sciencedirect.com/47837112%5Cnfile://Users/Jerry/Documents/Library.papers3/Reports/2008/Krop/2008 Krop.pdf%5Cnpapers3://publication/uuid/96396A18-B4A4-4054-9766-6470884A5EFEB.

Lee, S. & Lueptow, R. M. 2001 Reverse osmosis filtration for space mission wastewater: membrane properties and operating conditions. *Journal of Membrane Science* 182 (1–2), 77–90. https://doi.org/10.1016/S0376-7388(00)00553-6.

Leverenz, H. L., Tchobanoglous, G. & Asano, T. 2001 Direct potable reuse: a future imperative. *Journal of Water and Desalination* 1 (1), 2. https://doi.org/10.2166/wrd.2011.000.

Li, N. Y., Li, Y. & Gorrod, J. W. 2003 Determination of partition coefficients and ionisation constants of(S)-nicotine and certain metabolites. *Medical Science Research* 20 (23).

Lin, A. Y.-C., Plumlee, M. H. & Reinhard, M. 2006 Natural attenuation of pharmaceuticals and alkylphenol polyethoxylate metabolites during river transport: photochemical and biological transformation. *Environmental Toxicology and Chemistry* 25 (6), 1458–1464. https://doi.org/10.1897/05-412R.1.

Loganathan, B. G., Saiwan, K. S., Sinclair, E., Senthil Kumar, K. & Kannan, K. 2007 Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. *Water Research* 41 (20), 4611–4620. https://doi.org/10.1016/j.watres.2007.06.045.

Loos, R., Gawlik, B. M., Locoro, G., Rimaviciute, E., Contini, S. & Bidoglio, G. 2009 EU-wide survey of polar organic persistent pollutants in European river waters. *Environmental Pollution* 157 (2), 561–568. https://doi.org/10.1016/j.envpol.2008.09.020.

McFarland, J. W., Berger, C. M., Froshauer, S. A., Hayashi, S. F., Hecker, S. J., Jaynes, B. H. & Reese, C. P. 1997 Quantitative structure – activity relationships among macrolide antibacterial agents: in vitro and in vivo potency against Pseudomonas multocida. *Journal of Medicinal Chemistry* 40 (9), 1340–1346.

Mitch, W. A. & Sedlak, D. L. 2002 Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. *Environmental Science and Technology* 36 (4), 588–595. https://doi.org/10.1021/es010684q.

Miti, J. 1992 Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSSC Japan. Edit CITI, Tokyo, Japan.

Moffat, A. C., Osselton, M. D., Widdop, B. & Watts, J. 2001 Clarke’s Analysis of Drugs and Poisons, Vol. 3. Pharmaceutical Press, London

Najm, I. & Trussell, R. R. 2017 N-nitrosodimethylamine ical for several decades. From the mid-1950s until April 1976, it was, 93 (2), 92–99.

Nghiem, L. D. & Schäfer, A. I. 2002 Adsorption and transport of trace contaminant Estrone in NF/RO membranes. *Environmental Engineering Science* 19 (6), 441–451. https://doi.org/10.1089/109287502S020963427.

Nghiem, L. D., Schäfer, A. I. & Waite, T. D. 2002 Adsorptive interactions between membranes and trace contaminants.

Desalination 147 (1–3), 269–274. https://doi.org/10.1016/S0011-9164(02)00550-7.

Nghiem, L. D., Manis, A., Soldenhoff, K. & Schäfer, A. I. 2004a Estrogenic hormone removal from wastewater using NF/RO membranes. *Journal of Membrane Science* 242 (1–2), 37–45. https://doi.org/10.1016/j.memsci.2003.12.034.

Nghiem, L. D., Schäfer, A. I. & Elimelech, M. 2004b Removal of natural hormones by nanofiltration membranes: measurement, modeling and mechanisms. *Environmental Science and Technology* 38 (6), 1888–1896. https://doi.org/10.1021/es034952r.

NWRI (National Water Research Institute) 2003 ‘Examining the Criteria for Direct PotableReuse.’ Independent Advisory Panel Final Report. *WaterReuse Research Foundation Project No. 11-02*. National Water Research Institute, Fountain Valley, CA.

Osorio, V., Marcé, R., Pérez, S., Ginebreda, A., Cortina, J. L. & Barceló, D. 2012 Occurrence and modeling of pharmaceuticals on a sewage-impacted Mediterranean river and their dynamics under different hydrological conditions. *Science of the Total Environment* 440, 3–13. https://doi.org/10.1016/j.scitotenv.2012.08.040.

Perez-Gonzalez, A., Urtiaga, A. M., Ibáñez, R. & Ortiz, I. 2012 State of the art and review of the treatment technologies of water reverse osmosis concentrates. *Water Research* 46 (2), 267–283. https://doi.org/10.1016/j.watres.2011.10.046.

Qin, J. J., Maung, H. O., Lee, H. & Kolkman, R. 2004 Dead-end ultrafiltration for pretreatment of RO in reclaimed municipal wastewater effluent. *Journal of Membrane Science* 243 (1–2), 107–113. https://doi.org/10.1016/j.memsci.2004.06.010.

Radjenović, J., Petrović, M., Ventura, F. & Barceló, D. 2008 Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. *Water Research* 42 (14), 3601–3610. https://doi.org/10.1016/j.watres.2008.05.020.

Raucher, R. S. & Tchobanoglous, G. 2014 The Opportunities and Economics of Direct Potable Reuse. Retrieved from http://www.santacruzwatersupply.com/sites/default/files/resource-files/Opps and Econs of DPR_WateReuse.pdf.

Rautenbach, R., Linn, T. & Eilers, L. 2000 Treatment of severely contaminated waste water by a combination of RO, high-pressure RO and NF – potential and limits of the process. *Journal of Membrane Science* 174 (2), 231–241. https://doi.org/10.1016/S0376-7388(00)00388-4.

Ravazzini, A. M., van Nieuwenhuijzen, A. F. & van der Graaf, J. H. M. J. 2005 Direct ultrafiltration of municipal wastewater: comparison between filtration of raw sewage and primary clarifier effluent. *Desalination* 178 (1–3 SPEC. ISS.), 51–62. https://doi.org/10.1016/j.desal.2004.11.028.

Reith, C. & Birkenhead, B. 1998 Membranes enabling the affordable and cost effective reuse of wastewater as an alternative water source. *Desalination* 117 (1–3), 203–210. https://doi.org/10.1016/S0011-9164(98)00097-6.

Rodriguez, D., Van Buynder, P., Lugg, R., Blair, P., Devine, B., Cook, A. & Weinstein, P. 2009 Indirect potable reuse: a sustainable water supply alternative. *International Journal of
Environmental Research and Public Health 6 (3), 1174–1209. https://doi.org/10.3390/ijerph6031174.

Romeyn, T. R., Harijanto, W., Sandoval, S., Delagah, S. & Sharbatmaleki, M. 2016 Contaminants of emerging concern in reverse osmosis brine concentrate from indirect/direct water reuse applications. Water Science and Technology 73 (2), 236–250.

Sahar, E., David, I., Gelman, Y., Chikurel, H., Aharoni, A., Messalem, R. & Brenner, A. 2017 The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 273 (1), 142–147. https://doi.org/10.1016/j.desal.2010.11.004.

Sangster, J. 1997 Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry (Vol. 1). John Wiley & Sons, Chichester, UK.

Schultz, M. M., Higgins, C. P., Hust, C. A., Luthy, R. G., Barofsky, D. F. & Field, J. A. 2006 Fluorochemical mass flows in a municipal wastewater treatment facility. Environmental Science and Technology 40 (23), 7550–7557. https://doi.org/10.1021/es061025m.

Sedlak, D. L. & Pinkston, K. E. 2011 Factors affecting the concentrations of pharmaceuticals released to the aquatic environment. Journal of Contemporary Water Research and Education 120 (1), 56–64.

Shivajirao, P. A. 2012 Treatment of distillery wastewater using membrane technology. International Journal of Advanced Engineering Research and Studies (III) 1, 275–283.

Silva, B. F. d., Jelic, A., López-Serna, R., Mozeto, A. A., Petrovic, M. & Barceló, D. 2011 Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere 85 (8), 1351–1359. https://doi.org/10.1016/j.chemosphere.2011.07.051.

Sinclair, E. & Kannan, K. 2006 Mass loading and fate of perfluorooalkyl surfactants in wastewater treatment plants. Environmental Science and Technology 40 (5), 1408–1414. https://doi.org/10.1021/es051798v.

Snyder, S. A., Adham, S., Redding, A. M., Cannon, F. S., DeCarolis, J., Oppenheimer, J. & Yoon, Y. 2007 Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202 (1–3), 156–181. https://doi.org/10.1016/j.desal.2005.12.052.

Tanninen, J. & Nyström, M. 2002 Separation of ions in acidic conditions using NF. Desalination 147 (1–3), 295–299. https://doi.org/10.1016/S0011-9164(02)00555-6.

Tchobanoglous, G., Cotruvo, J., Crook, J., McDonald, E., Olivieri, A., Salveson, A. & Trussell, S. 2013 Framework for Direct Potable Reuse. WateReuse Research Foundation, Alexandria, VA, USA.

Tomy, G. T., Tittlemier, S. A., Palace, V. P., Budakowski, W. R., Bracewell, E., Brinkworth, L. & Friesen, K. 2004 Biotransformation of N-Ethyl perfluorooctanesulfonamide by rainbow trout (Onchorhynchus mykiss) liver microsomes. Environmental Science and Technology 38 (3), 758–762. https://doi.org/10.1021/es034550j.

Verliefde, A., Cornelissen, E., Amy, G., Van der Bruggen, B. & van Dijk, H. 2007a Priority organic micropolllutants in water sources in Flanders and the Netherlands and assessment of removal possibilities with nanofiltration. Environmental Pollution 146 (1), 281–289. https://doi.org/10.1016/j.envpol.2006.01.051.

Verliefde, A. R. D., Heijman, S. G. J., Cornelissen, E. R., Amy, G., Van der Bruggen, B. & van Dijk, J. C. 2007b Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Water Research 41 (15), 3227–3240. https://doi.org/10.1016/j.watres.2007.05.022.

Vieno, N. M., Härkki, H., Tuukkanen, T. & Kronberg, L. 2007 Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environmental Science and Technology 41 (14), 5077–5084. https://doi.org/10.1021/es062720x.

Wick, A., Fink, G., Joss, A., Siegrist, H. & Ternes, T. A. 2009 Fate of beta blockers and psycho-active drugs in conventional wastewater treatment. Water Research 43 (4), 1060–1074. https://doi.org/10.1016/j.watres.2008.11.031.

Xu, L., Krenitsky, D. M., Seacat, A., Butenhoff, J. L. & Anderson, M. W. 2004 Biotransformation of N-Ethyl-N-(2-hydroxyethyl) perfluorooctanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes p450. Chemical Research in Toxicology 17 (6), 767–775. https://doi.org/10.1021/tr049222x.

Xu, P., Drewes, J. E., Bellona, C., Amy, G., Kim, T.-U., Marc, A. & Heberer, T. 2014 Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Water Environment Research 77 (1), 40–48. Retrieved from http://www.iwaponline.com/wer/25045856/seq=1&cid=pdf-reference% references_tab_contents.

Yamamoto, H., Nakamura, Y., Moriguchi, S., Nakamura, Y., Honda, Y., Tamura, I. & Sekizawa, J. 2009 Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Research 43 (2), 351–362. https://doi.org/10.1016/j.watres.2008.10.039.

Yang, X., Flowers, R. C., Weinberg, H. S. & Singer, P. C. 2011 Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Research 45 (16), 5218–5228. https://doi.org/10.1016/j.watres.2011.07.026.

Yoon, Y., Westerhoff, P., Snyder, S. A. & Wert, E. C. 2006 Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. Journal of Membrane Science 270 (1–2), 88–100. https://doi.org/10.1016/j.memsci.2005.06.045.

Zorita, S., Mårtensson, L. & Mathiasson, L. 2009 Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of the Total Environment 407 (8), 2760–2770. https://doi.org/10.1016/j.scitotenv.2008.12.030.

First received 4 February 2019; accepted in revised form 17 May 2019. Available online 17 July 2019.

Downloaded from https://waponline.com/jwrd/article-pdf/5/4/350/628814/jwrd0080350.pdf”/>