総説
REVIEW ARTICLE

歯科領域における半導体レーザーを用いた
Low-Reactive Level Laser Therapy による組織の治癒・再生の促進
—基礎及び臨床研究のレビュー—

三上 理沙子1, 水谷 幸嗣1, 青木 章1, 野田 昌宏1,2, 江尻 健一郎3, 和泉 雄一1,4,5

1東京医科歯科大学 大学院医歯学総合研究科 歯周病学分野
2津田沼オリーブ歯科
3エジ歯科クリニック
4東京医科歯科大学 名誉教授
5総合南東北病院オーラルケア・ペリオセンター

Promotion of Tissue Healing and Regeneration with
Low-Reactive Level Laser Therapy Using Diode Lasers in Dental Field:
Review of Basic and Clinical Research

Risako Mikami1, Koji Mizutani1, Akira Aoki1, Masahiro Noda1,2, Kenichiro Ejiri3, Yuichi Izumi1,4,5

1Department of Periodontology, Graduate School of Medical and Dental Sciences,
Tokyo Medical and Dental University (TMDU)
2Tsudanuma Olive Dental Clinic
3Eji Dental Clinic
4Professor emeritus, Tokyo Medical and Dental University (TMDU)
5Southern TOHOKU General Hospital

要旨
1960年代以降、低出力レーザ照射（Low-reactive level laser/light therapy: LLLT）による生体賦活作用について基礎研究および臨床応用が進められてきた。中でも組織浸透性が高い近赤外から赤外領域の半導体レーザーを用いた研究は数多くなされており、歯科領域においても in vitro では歯肉線維芽細胞、骨芽細胞、歯根膜細胞、間葉系幹細胞などにおいて増殖・遊走・分化などが促進されることが示されており、in vivo においても口腔内創傷治癒や骨形成を促進することが報告されている。現在、歯科治療においてより低侵襲で安全性の高い再生療法の術式が求められており、LLLT はその一助となることが期待されている。本総説ではこれまでに報告された半導体レーザーを用いた LLLT の基礎研究と臨床研究をレビューするとともに、口腔内創傷の治癒および再生への LLLT の応用の可能性について検討していく。

キーワード：再生療法、半導体レーザー、LLLT、創傷治癒、歯周組織、骨形成
Since the 1960's, basic and clinical research has been conducted regarding the biostimulative effects of photobiomodulation (PBM) by means of low-reactive level laser therapy (LLLT). A number of studies have used low-level diode lasers in near-infrared to infrared wavelengths because of their high degree of tissue penetration. In the dental field, it has been shown that LLLT enhances proliferation, migration, and differentiation of gingival fibroblasts, osteoblasts, periodontal ligament cells, as well as mesenchymal stem cells in vitro. Furthermore, LLLT promoted wound healing and bone formation in vivo. Currently, less invasive and safer procedures are desired for dental treatment, especially for regenerative therapy. It is expected that PBM by means of LLLT will contribute to attaining that goal. Consequently, we have reviewed basic and clinical studies using the diode laser for LLLT, and we discuss the potential of LLLT in promoting periodontal tissue healing and regeneration.

Key words: regenerative therapy, diode laser, low-reactive level laser therapy (LLLT), wound healing, periodontal tissue, osteogenesis

1. はじめに
レーザーを用いた創傷治癒促進について, ハンガリーのMesterによるルビーレーザーを用いたマウスの増毛実験およびHe-Neレーザーによる難治性潰瘍の治療報告1)を皮切りに, 1960年代より基礎検討および臨床応用が積極的に行われてきた. これらレーザーの組織賦活的な効果は, 低反応レーザー治療 (Low-reactive level laser/light therapy: LLLT) 2)あるいはPhotobiomodulation: PBM3,4)と呼ばれ, 現在歯科領域においても大きな注目を集めてい る.

超高齢社会を迎えている本邦において, 健康寿命延伸のために口腔内の健康を維持し, 全身の健康増進に寄与することが求められている. 歯科治療の際には, 掛歯や歯周外科治療, インプラント治療など外科的な処置が日常的に行われるため, 創傷治癒の促進が可能であればそのメリットは非常に大きいと考えられる. さらに高齢者では様々な全身疾患に罹患している患者も多く, より低侵襲な術式が求められており, LLLTへの期待は大きい.

そのような現状をふまえ, 本稿では半導体レーザーを用いたLLLTによる口腔組織の治癒および再生の促進効果について, 基礎研究を中心として概説していく.

2. 歯科医療における半導体レーザー
半導体レーザーとは, 半導体素子に電流を流してレーザ発振をさせるシステムで, 固体レーザーやガスレーザーなどに比べて小型・軽量であるという特徴がある. レーザー活性層材料はGaInN, AlGaInP, AlGaAs, InGaAs, InGaAsPなどがあり, 使用する基盤により波長は広範囲に渡る.

歯科領域において半導体レーザーは, 口内炎や歯髄炎などの鎮痛, 消炎を目的とする低出力のソフトレーザーとして1980年代に導入された. 高出力では軟組織の切開などに用いられている5)。医療応用されている半導体レーザーの波長は700–900 nmと近赤外領域にあり,組織透過性が高いため深部組織まで作用が到達するという特徴がある. そのため, 組織の賦活化を目的としたLLLTに関する多くの研究で半導体レーザーが用いられている.

3. In vitroでの基礎研究
3.1 半導体レーザーによるLLLTが細胞へ与える効果
歯周組織は歯肉, 歯根膜, セメント質, 歯槽質という性質の異なる組織から構成されており, 歯肉線維芽細胞, 歯根膜細胞, 骨芽細胞, セメント芽細胞, 未分化間葉系幹細胞など多くの細胞が関与している. 再生治療の目的としては, 1)歯槽骨や歯根膜を伴った細胞質という硬組織の再生治療と 2)軟組織である歯肉組織の再生療法の2つに大別される. 半導体レーザーを用いたLLLTが各組織の細胞組織へ与える影響について, 多くの基礎検討がなされている. LLLTは細胞増殖や接着能, 遊走能の促進に加え, 一定条件下では他の細胞への分化も促進させることや, 炎症反応を抑制することが知られている(Table 1).

骨芽細胞において, LLLTは細胞増殖と分化を促進することがいくつかの報告により示されている6-10). Rennoら6)はマウス頭蓋骨由来骨芽細胞株(MC3T3)とヒト骨肉腫細胞株(MG63)を用いて, 670, 780, 830 nmと3種の波長の半導体レーザーの単回照射の効果を検討している. その結果, MC3T3では830 nmの10 J/cm²照射において細胞増殖が有意に促進した一方で, 780 nmの1.5, 10 J/cm²では逆に減少し, MG63においては670 nmの5 J/cm², 780 nmの1.5, 10 J/cm²で細胞増殖は有意に亢進したが, 830 nmでは有意な変化はみられなかった. またMC3T3のALP活性は830 nmでの10 J/cm²照射で有意に上昇したが, MG63ではどの波長, エネルギー密度でも変化はなかった. 本研究により, 使用する細胞やレーザーの波長, 出力によりその反応は異なるものの, 半導体レーザーを用いたLLLTには骨芽細胞の増殖と分化を促進する効果があることが示された.

ヒト歯根膜線維芽細胞 (HPDLFs) およびヒト歯肉線維芽細胞 (HGFs)に対するLLLTの効果としては, 細胞増殖11-13)や遊走14)、一定条件下での骨髄細胞分化促進15), 炎症反応の抑制16-18)などが知られている. Almeida-Lopesら11)はヒト歯根膜線維芽細胞を用いて, 低栄養培養下ではLLLTの細胞増殖への効果が増強されることや, より短時間の照射の方が効果的であることを示した. また, LLLTによる細胞増殖促進効果は1–2日持続することができており,それ以上の期間培養を続ける際は, 単回照射よりも複数回照射の方が有効であることが示唆されている19,20). LLLTによる細胞増殖, 遊走促進作用に関わる因子としてはbFGF, IGF, VEGFなどの成長因子やタイプ1コラーゲンなどが報告されている21,22).

一方で, LPS添加や機械的ストレスなどにより炎症を惹起した状況でのLLLTは, Interleukin (IL)-β, 6, 8, Cyclooxygenase (COX)-2, cytotoxic phospholipase A (cPLA)
Table 1 *In vitro* studies on low-reactive level laser therapy (LLLT) using diode lasers

Cell Type	Year	Author	Irradiation Protocol	Criteria	Major Findings
HGFs	2000	Sakurai et al. (17)	830 nm, 0.95-4.32 J/cm², CW, 3-20 min	inflammatory markers	LLLT significantly inhibited PGE2 production in a dose-dependent manner through a reduction of COX-2 mRNA level
HGFs	2000	Takesma et al. (18)	830 nm, 7.90 J/cm², CW, 10 min	inflammatory markers	The cultured medium of HGFs showed a marked elevation in PA activity by LPS, which was significantly inhibited by the laser irradiation in a dose-dependent manner. This effect was involved in the reduction of IPA mRNA levels
HGFs	2001	Almeida-Lopes et al. (19)	670, 780, 692, 782 nm, 2.3 J/cm³	cell proliferation	The LLLT acts by improving the fibroblast proliferation and a smaller laser exposure time results in higher proliferation.
HGFs	2001	Nomura et al. (20)	830 nm, 3.95-7.90 J/cm², CW, 10 min	IL-1β production	The HGFs cultured medium showed a marked elevation of IL-1β production by LPS, which was significantly inhibited by laser irradiation in a dose-dependent manner. This inhibitory effect was involved in the reduction of IL-1 mRNA levels but not that of the IL-1β-converting enzyme.
HGFs	2004	Marques et al. (21)	904 nm, 3 J/cm³, 24 s	protein synthesis, ultrastructural morphology	LLLT causes ultrastructural changes in cytoplasmic organelles of fibroblast, especially mitochondria and rough endoplasmic reticulum.
HGECs	2013	Eiji et al. (22)	904 nm, 40-910 J/cm³, 5.7-56.7 J/cm³, 30 kHz, 1-10 min	cell proliferation and migration	LLLT promotes HGECs proliferation and migration in association with the activation of MAPK/ERK.
HPDL cells	1997	Ozawa et al. (23)	830 nm, 7.90 J/cm², CW, 10, 20 min	inflammatory markers	PA and PAI Assay, RT-PCR (IPA, PAI-1)
HPDLFs	2010	Mayahara et al. (24)	830 nm, 3.82 J/cm², CW, 10 min	inflammatory markers	LLLT significantly inhibited COX-2 and ePLA₂ mRNA expression, which was increased in response to the application of a compressive force.
HPDLFs cell line	2013	Wu et al. (25)	660 nm, 1, 2, 4 J/cm³, 66, 132, 264 s	cell proliferation, cytotoxicity, osteogenic differentiation	LLLT enhanced the proliferation (2 J/cm³) and osteogenic differentiation (2, 4 J/cm³) of HPDLFs via cAMP regulation.
Rat primary calvarial osteoblastic cells	1998	Nakamura et al. (26)	830 nm, 3.82 J/cm², CW, 10 min	cell proliferation, ALP activity, bone nodule formation	LLLT at early stages of culture significantly stimulated cellular proliferation, ALP activity, and osteocalcin gene expression bone nodules development.
Marine osteoblastic cell line (MCT33-E3)	2003	Hamajima et al. (27)	830 nm, 7.64 J/cm², CW, 20 min	bone formation	The increased expression of the osteoglycin gene by LLLT in the early proliferation stage of cultured osteoblastic cells may play an important role in the stimulation of bone formation in concert with matrix proteins and growth factors.
Rat osteoclast precursor cells	2006	Aihara et al. (28)	810 nm, 9.33, 27, 99, 55.98, 93.30 J/cm³, 1-3, 6, 10 min	osteoclast formation	LLLT induce differentiation and activation of osteoclasts via RANK expression.
Rat primary rat calvarial osteoblastic cells	2007	Shimizu et al. (29)	830 nm, 3.82 J/cm², CW, 10 min	bone nodule formation, IGF-I and PGE expression	LLLT have stimulatory effect on bone nodule formation, which is partly mediated by IGF-I expression.
Marine osteoblastic cell line (MCT33)	2007	Remo et al. (30)	830 nm, 0.5, 1, 3, 10 J/cm³, CW	cell proliferation and differentiation	Osteoblast proliferation increased significantly after 830-nm laser irradiation (830 nm, 10 J/cm³) but decreased after 780-nm laser irradiation (at 1, 5, and 10 J/cm³). ALP activity in the osteoblasts was increased after LLLT (830 nm, 10 J/cm³). Osteosarcoma cell proliferation increased significantly after 670-nm (at 5 J/cm³) and 780-nm laser irradiation (at 1, 5, and 10 J/cm³).
Osteosarcoma cell line (MG63)	2012	Huang et al. (31)	920 nm, 5, 10 J/cm², 50-60 Hz, 2.5, 5 s	cell attachment, cell viability, inflammatory markers	LLLT is able to promote HPDLFs adhesion, viability, and proliferation and to reduce the expression of the LPS-induced inflammatory markers, especially mitochondria and rough endoplasmic reticulum.
Marine osteoblastic cell line (MCT33)	2014	Migliorato et al. (32)	980 nm, 1.57, 7.87, 15.74, 78.75 J/cm³	cell proliferation, ROS generation	LLLT enhances cell proliferation via ROS production.
Marine osteoblastic cell line (MCT33-E3)	2017	Miki et al. (33)	405 nm, 1.9-10.92 J/cm², 80 MHz, 1 min	cell proliferation and differentiation, extracellular calcification	LLLT enhances extracellular calcification of osteoblasts by upregulating proliferation and differentiation via TRPV1.
Mouse cementoblasts	2017	Bozkurt et al. (34)	940 nm, 18 J/cm³, 60 s	cell proliferation and attachment, mineralization	LLLT modulates the behavior of cementoblasts inducing mineralized tissue-associated gene’s mRNA expressions and mineralization.
Human BMSCs	2012	Soleimani et al. (35)	810 nm, 0.95-2.3 J/cm³, CW, 12, 24, 18, 36 s	cell proliferation and differentiation (neurons, osteoblasts)	LLLT enhances BMSCs differentiation into neurons and osteoblasts, and at the same time increases BMSCs proliferation (except for 6 J/cm³).
Mouse BMSCs	2013	Giannelli et al. (36)	635 nm, 326 and 329 mJ/cm², CW, 10 s, 26 s	cell proliferation	LLLT stimulates the proliferative potential of MSCs, that is dependent on the activation of physiological processes, including membrane ion channel activity and Notch-1 up-regulation.
hMSCs and rMSCs from adipose tissues	2015	Oliveira et al. (37)	660 nm, 0.75, 2 J, 2 J, 5 J/cm², 25, 50, 100, 300 s	cell adhesion, cell proliferation	LLLT on human and rat MSCs might upregulate VEGF mRNA expression and modulate cell adhesion and proliferation distinctively, although hMSCs derived from human and rat showed different patterns of proliferation and adhesion in standard condition and nutritional deficiency on LLLT stimulation.

Notes:
- HGFs: human gingival fibroblast, CW: continuous wave, PGE₂: prostaglandin E₂, COX: cyclooxygenase, PA: plasminogen activator, PAI: PA inhibitor, LPS: lipopolysaccharide, IL: interleukin, HGEC: human gingival epithelial cell, MPK: mitogen-activated protein kinase, ERK: extracellular signal-regulated protein kinase, PDL: periodontal ligament, HPDL: human PDL, HPDLF: HPDL fibroblast, PL2: phospholipase A₂, cAMP: cyclic adenosine monophosphate, ALP: alkaline phosphatase, IGF: insulin-like growth factor, iNOS: inducible nitric oxide synthase, TNF: tumor necrosis factor, ERK: extracellular signal-regulated kinase, ROS: reactive oxygen species, TRPV: transient receptor potential vanilloid, BMSC: bone marrow-derived stem cell, MSC: mesenchymal stem cell, hMSC: human MSC, rMSC: rat MSC, VEGF: vascular endothelial growth factor.
2-α, Prostaglandin E2 (PGE2), Plasminogen activator (PA), Tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS) などの炎症マーカーの発現を減少させることが報告されている15,16,23。

近年では、生体内で培養した間葉系幹細胞（Mesenchymal stem cells: MSCs）や胚性幹細胞（embryonic stem cell: ES 細胞）、人工多能性幹細胞（induced pluripotent stem cells: iPS 細胞）などを被膜に移植し組織再生を期待する細胞治療の発達が目覚ましく、術後組織再生療法への応用も期待されている24-26。それに伴い、間葉系幹細胞（Mesenchymal stem cells: MSCs）に対するLLLTの効果に注目が集まっており、様々な検討が行われている。

自我も促進したことを報告した。また細胞治療の臨床応用射回数や照射時間、繰り返しパルス数など各研究で異なっており、細胞治療への応用が期待される。

3.2 高繰り返し半導体レーザーによる効果

半導体レーザーを用いたLLLTの研究の多くでは600-900 nmの近赤外および赤外領域波長の光が用いられてきたが、近年、セルにより波長の短い光源を用いたLLLTにも細胞賦活効果があることが示されてきている27。

われわれまでの研究では連続波（Continuous wave: CW）の光源が用いられることも多く、近年、短な波長の光源を用いたLLLTの研究では連続波（Continuous wave: CW）の光源が用いられることも示されている。LLLTが細胞に作用するメカニズムとしては、光子が細胞膜を通過し、ミトコンドリア内のチトクロームCオキシダーゼやラクタミンパクターなどに吸収され、ミトコンドリア内の呼吸鎖におけるシグナル伝達に作用し、細胞の増殖や分化に関する核内のmitochondrial DNAやRNAの転写に変化を引き起こすと考えられている30,31。しかし、その詳細はまだ不明な点が多く、今後の研究による解明が待たれる。

3.3 青色半導体レーザーによる骨芽細胞への効果

半導体レーザーを用いたLLLTの研究の多くでは600-900 nmの近赤外および赤外領域波長の光が用いられてきたが、近年、セルにより波長の短い光源を用いたLLLTにも細胞賦活効果があることが示されてきている27。

われわれまでの研究では連続波（Continuous wave: CW）の光源が用いられることも多く、近年、短な波長の光源を用いたLLLTの研究では連続波（Continuous wave: CW）の光源が用いられることも示されている。LLLTが細胞に作用するメカニズムとしては、光子が細胞膜を通過し、ミトコンドリア内のチトクロームCオキシダーゼやラクタミンパクターなどに吸収され、ミトコンドリア内の呼吸鎖におけるシグナル伝達に作用し、細胞の増殖や分化に関する核内のmitochondrial DNAやRNAの転写に変化を引き起こすと考えられている30,31。しかし、その詳細はまだ不明な点が多く、今後の研究による解明が待たれる。

3.2 高繰り返し半導体レーザーによる効果

半導体レーザーを用いたLLLTの研究の多くでは600-900 nmの近赤外および赤外領域波長の光が用いられてきたが、近年、セルにより波長の短い光源を用いたLLLTにも細胞賦活効果があることが示されてきている27。

われわれまでの研究では連続波（Continuous wave: CW）の光源が用いられることも多く、近年、短な波長の光源を用いたLLLTの研究では連続波（Continuous wave: CW）の光源が用いられることも示されている。LLLTが細胞に作用するメカニズムとしては、光子が細胞膜を通過し、ミトコンドリア内のチトクロームCオキシダーゼやラクタミンパクターなどに吸収され、ミトコンドリア内の呼吸鎖におけるシグナル伝達に作用し、細胞の増殖や分化に関する核内のmitochondrial DNAやRNAの転写に変化を引き起こすと考えられている30,31。しかし、その詳細はまだ不明な点が多く、今後の研究による解明が待たれる。

3.2 高繰り返し半導体レーザーによる効果

半導体レーザーを用いたLLLTの研究の多くでは600-900 nmの近赤外および赤外領域波長の光が用いられてきたが、近年、セルにより波長の短い光源を用いたLLLTにも細胞賦活効果があることが示されてきている27。

われわれまでの研究では連続波（Continuous wave: CW）の光源が用いられることも多く、近年、短な波長の光源を用いたLLLTの研究では連続波（Continuous wave: CW）の光源が用いられることも示されている。LLLTが細胞に作用するメカニズムとしては、光子が細胞膜を通過し、ミトコンドリア内のチトクロームCオキシダーゼやラクタミンパクターなどに吸収され、ミトコンドリア内の呼吸鎖におけるシグナル伝達に作用し、細胞の増殖や分化に関する核内のmitochondrial DNAやRNAの転写に変化を引き起こすと考えられている30,31。しかし、その詳細はまだ不明な点が多く、今後の研究による解明が待たれる。
Fig.1 Effect of high-frequency low-level diode laser irradiation on human gingival epithelium cells (HGECS).

(a) Laser irradiation (904–910 nm, 30 Hz) significantly enhanced cell proliferation in an irradiation-time-dependent manner from 1 to 10 min of irradiation (5.7–56.7 J/cm²). (b) Effect of high-frequency low-level diode laser irradiation on HGEC migration. A scratch “wound” was made by a silicone tip in the center of a confluent monolayer culture, 1 or 5 min of laser irradiation was applied, and cells were further incubated for 24 h. After incubation, cell layers were fixed and stained with crystal violet solution. Photomicrographs indicate accelerated migration of the cells from the border of the original scratched zone. (c) Measurement of wound widths indicates that wound closure was promoted in the irradiation-time-dependent manner, and 5 min irradiation (28.3 J/cm²) significantly accelerated in vitro wound healing. (d) Phosphorylation of the MAPK family after high-frequency low-level diode laser irradiation in HGECS. Phosphorylation of ERK was induced 5, 15, 60, and 120 min after irradiation, and p38 MAPK and JNK were not phosphorylated. M: molecular weight marker, NC: negative control, PC: positive control, C: nonirradiated control. Data are presented as the mean ± SD. *: P < 0.05 (Dunnett test). [Modified pictures and legend from Ejiri K. et al. High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells. Lasers Med Sci. 2014; 29: 1339-1347. © copyright (2014) Springer.]
Effect of low-level ultrahigh-frequency (UHF) and ultrashort-pulse (USP) blue laser irradiation on osteoblasts.

(a) Cell proliferation following low-level laser therapy (LLLT) with a 405nm UHF-USP blue laser at different energy densities. On day 3 following LLLT, significant energy-density dependent (up to 9.4 J/cm^2) enhancement of MC3T3-E1 cell proliferation was noted. Energy densities higher than this significantly inhibited proliferation. (b) ALP activity was significantly higher on day 7 following LLLT, and an energy density of 5.6 J/cm^2 had the largest effect. (c) Representative photography of ALP staining of control and LLLT-treated cells. (d) Osteoblast calcification following five successive sessions of LLLT with a 405 nm UHF-USP blue laser. Alizarin Red S was used to stain MC3T3-E1 cells 3 weeks after the final LLLT session. Representative photography of Alizarin Red S staining of control and LLLT-treated cells. Extracellular calcification was promoted by LLLT. (e) Effect of a TRPV1 inhibitor on LLLT-induced cell proliferation. WST-8 assay showed that capsazepine (CPZ) pretreatment significantly inhibited induction of cell proliferation by LLLT with a 405 nm UHF-USP blue laser at 9.4 J/cm^2. (f) Effect of a TRPV1 inhibitor on LLLT-induced alkaline ALP activity. CPZ pretreatment significantly inhibited the promotion of ALP activity induced by LLLT with a 405 nm UHF-USP blue laser at 5.6 J/cm^2. Data are presented as the mean ± SD. *: P < 0.05 and **: P < 0.01 (Tukey-Kramer test). [Modified pictures and legend from Mikami R. et al. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg Med. 2018; 50: 340-352. © copyright (2018) John Wiley & Sons A/S.]
ていた。さらに培養開始から2、4、6、9、11日目の計5回。それぞれ6.5 J/cm²の出力で照射を行った群では、照射後3週目において非照射群と比較して細胞外基質の石灰化が有意に促進されていることがアリザリン染色により示された（Fig.2d）。

一方、近年LLLTのシグナル伝達において、細胞膜上のイオンチャネルであるtransient receptor potential (TRP)に興味が集まっている。特にTRPV1とが知られている。今後はこのチャネルを介して細胞内の様々な反応を引き起こすことが示唆されている40,41。

そのため本研究では、LLLTによる生体刺激効果とTRPV1の関連を明らかにするべく、対照群と照射群でTRPV1発現に差がないことを確認した後、TRPV1選択的阻害薬であるcapsazepine (CPZ)を用いた阻害実験を行った。その結果、CPZの添加により促進された細胞増殖の抑制が観察され、セカンドメッセンジャーである細胞内カルシウム濃度の増加とともに骨形成量の増加が有意に促進されていることが示唆された。

4.1 半導体レーザーによるLLLTが骨再生に与える効果

半導体レーザーによるLLLTが組織再生に与える効果については、これまでにin vivoにおいても軟組織、硬組織問わず多くの研究がなされているが、本項では特に骨の再生に焦点をあてて概説する（Table 2）。

LLLTは骨代謝を促進することが知られており、Mezawaら42は2001年に頭蓋骨欠損モデルにおいて、830 nmの半導体レーザーによるLLLTが新生骨形成を促進したことを報告した。Fekrazadら43は810 nmの半導体レーザーによるLLLTと骨補填材およびMSCsを併用した再生療法について頭蓋骨骨欠損モデルを用いて検討した。MSCs注入群では、コントロール群と比較して炎症所見が有意に減少しており、インプラント埋入後の骨形成を促進することが示唆された。

4.2 半導体レーザーによるLLLTが抜歯窩の治癒に与える効果

Nodaら47は高齢及び仮小脳半導体レーザーによるLLLTをラット抜歯窩モデルに応用し、その創傷治癒促進効果について検討を行った。ラットの上顎左右側第一臼歯を抜歯し、側面をレーザー照射側、左側を非照射側（コントロール側）とした。主波長890 nmの半導体レーザーを用い、実験的に拡大させていくラット骨縦縫合部に35.3 J/sec/cm²で照射時間および照射間隔を変えてLLLTを行ったところ、非照射群と比較して照射群の骨形成量は、照射量依存的に有意に増大しており、特に拡大前期の複数回照射が有効であることを示した。

このような結果に骨再生における半導体レーザーを用いたLLLTの有効性が示されているが、至適波長や照射条件などの系統的な検証がなされていない。また成長因子や骨補填材などの既存の再生療法との相互作用について検討されている研究は現状では非常に少ないが、歯周外科治療やインプラント治療への臨床応用を考えると非常に興味深い分野であり、今後の検討が期待されている。
Table 2 *In vivo* studies on low-reactive level laser therapy (LLLT) using diode lasers

Animal, Model	Year	Author	Irradiation protocol	Grouping	Assessment	Major findings
Rat, calvarial defects	2001	Mezawa et al.	830 nm, 0.11, 0.28 W/sec, CW, daily for 1–6 weeks	1) Control 2) non-irradiation 3) LLLT (0.11 W/sec) 4) LLLT (0.28 W/sec)	histomorphometric analysis	LLLT groups showed significantly higher new bone formation compared to the control group.
Rat, cutaneous wound defects in the parietal induced DM models	2007	Liu et al.	830 nm, 40 J/cm², CW, 50 s, every other day for 15 days	1) LLLT 2) Control 3) Bone grafts + LLLT	radiographic measurements, evaluation of critical bone volume, histological analysis, measurements of BMD by micro-CT	The fractures in the LLLT group showed less callus thickness than those in control group 3 weeks after treatment. The average tibial volume of LLLT group was higher than control group. The BMD was ascertained using a grey scale showed darker coloration in the LLLT group than in the control group.
Rat, tooth movement	2008	Gerbi et al.	830 nm, 40 J/cm², CW, every other day for 15 days	1) Control 2) LLLT 3) Bone grafts + LLLT	histological analysis	The use of infrared laser light was effective for accelerating healing of bone defects filled with organic bone graft, as evidenced by increased collagen deposition, faster cortical repair, and earlier development of haversian systems.
Rat, calvarial defects	2012	Rosa et al.	780 nm, 120 J/cm², CW, single irradiation	1) LLLT 2) rhBMP-2 3) rhBMP-2 + LLLT 4) rhBMP-2 + monoolein gel 6) Control	histomorphometric analysis	LLLT + pure BMP-2 groups showed higher amounts of newly formed bone than LLLT alone or rhBMP-2 alone groups.
Rabbit, femoral osteotomy	2013	Barbosa et al.	660–690 nm/790–830 nm, 140 J/cm², CW, 50 s, 3 times/weeks for 7, 14, 21 days	1) Control 2) LLLT (660–690 nm) 3) LLLT (790–830 nm)	Optical densitometry	Optical density showed a significant increase in the degree of mineralization in both LLLT groups after 7 days. After 14 days, only the group treated with laser therapy in the infrared spectrum showed higher bone density. No differences were observed between groups after 21 days.
Rabbit, calvarial defects	2015	Fekrazad et al.	810 nm, 4 J/cm², CW, 20 s, every other day for 3 weeks	1) Control 2) LLLT 3) MSC/bone grafts + LLLT	histologic and histomorphometric evaluation	The histological evaluation showed a statistically significant increase in new bone formation of LLLT group relative to the control and the other two experimental groups.
Rat, tooth extraction (streptozotocin-induced DM models)	2012	Park et al.	980 nm, 13.95 J/cm², CW, 60 s, daily for 3, 5, and 14 days after extraction	1) Control (normal rat) 2) LLLT (normal rat) 3) Control (DM rat) 4) LLLT (DM rat)	mRNA expression and protein expression of osteogenic and growth factor	Laser irradiation for 5 min caused the highest expressions of osteogenic and growth factor genes and proteins. LLLT had positive effects on the early stages of bone healing of extraction sockets in rats, which were irradiation time-dependent.
Rat, tooth extraction	2015	Park et al.	980 nm, 13.95 J/cm², CW, 60 s, daily for 3, 5, and 14 days after extraction	1) Control 2) LLLT (1 min) 3) LLLT (2 min) 4) LLLT (5 min)	mRNA expression and protein expression of osteogenic and growth factor	LLLT significantly reduced the un-epithelialized areas of the extracted sites. BMC, BV and BMD of LLLT groups significantly increased. mRNA expression of osteogenic markers, immunohistochemistry.
Rat, tooth extraction	2016	Noda et al.	904–910 nm, 61.2 J/cm², 30 Hz, LLLT, 1 min, daily for 3, 7, and 14 days	1) Control 2) LLLT	measurements of BMC, BV and BMD by micro-CT, histomorphometric analysis, mRNA expression of osteoinductive, immunohistochemistry	LLLT significantly increased the bone density of the LLLT groups.
Rabbit, dental implant placement	2015	Massotti et al.	830 nm, 5, 10, 20 J/cm², CW, every 4 h for 13 days after the extraction	1) Control 2) LLLT (5 J/cm²) 3) LLLT (10 J/cm²) 4) LLLT (20 J/cm²)	histological analysis	Histomorphometric evaluation showed significantly higher bone-to-implant contact and significantly more collagen fibers in LLLT at 20 J/cm² group.
Rat, tooth movement	2000	Kawanski et al.	830 nm, 35.3 W/cm², CW, 3 min at 3 point daily for 12 days	1) Control 2) LLLT	measurement of tooth movement, cell proliferation identification of osteoclasts	In LLLT groups, the amount of tooth movement was significantly greater. The amount of bone formation and rate of cellular proliferation in the tension side and the number of osteoclasts in the pressure side were all significantly increased in the LLLT groups.
Rat, tooth movement	2010	Marquez-an et al.	6,000 J/cm², CW, 3 min at 3 points twice a week	1) Control 2) LLLT (2 times) 3) LLLT (7 times)	measurement of tooth movement, identification of osteoclasts and immature collagen	The tested LLLT protocols were unable to accelerate tooth movement. Even though the number of osteoclasts increased when LLLT was applied daily, the repair at the tension zone was inhibited.
Rat, rapid maxillary expansion	1997	Saito et al.	830 nm, 35.3 J/1/sec/cm², CW, 3 min at 3 point daily for 7 days	1) Control 2) LLLT (3 days) 3) LLLT (7-day) 4) LLLT (3-days) 5) LLLT (single irradiation)	histomorphometric and histologic evaluation	LLLT can accelerate bone regeneration in a midpalatal suture during rapid palatal expansion and that this effect is dependent not only on the total laser irradiation dosage but also on the timing and frequency of irradiation.
Mouse, cutaneous incisions, followed by an abdominal muscle incision and suture	2013	Fukuda et al.	780 nm, 10 J/cm², CW, 20 s, once, twice or three times (11, 36, 60 after surgery)	1) Control 2) Sham surgery 3) i) LLLT (once) ii) LLLT (twice) iii) LLLT (3 times)	evaluation the modulation of proinflammatory (IL-1α, TNF-α, IFN-γ) and anti-inflammatory cytokines (TGF-β1) by ELISA	The low-level laser application decreased the TNF-α and IFN-γ release in vivo of spleen mononuclear cells to mice, especially after two exposure sessions. However, there was no modulation of the IL-6 and TGF-β1 release.
Rat, cutaneous wound healing	2016	Gehrz et al.	635 nm, 1.3 J/cm², CW, 26.7 s, single irradiation	1) Control 2) LLLT (1 J/cm²) 3) LLLT (3 J/cm²)	biophysical impedance measurements, morphological and histological examinations	LLLT had more evidence specifically for the first days of healing process. On day 7, 3 J/cm² laser-irradiated tissues had significantly smaller wound areas compared to non-irradiated wounds.

CW: continuous wave, BMD: bone mineral density, BMP: bone morphogen protein, rhBMP: recombinant human BMP, MSC: mesenchymal stem cell, DM: diabetes mellitus, Ocn: osteocalcin, Runx2: runt-related transcription factor 2, Col 1: Collagen type 1, BMC: bone mineral content, BV: bone volume, PCNA: proliferating cell nuclear antigen, IL: interleukin, TNF: tumor necrosis factor, IFN: interferon, TGF: transforming growth factor, ELISA: enzyme-linked immune sorbent assay.
Effect of high-frequency pulsed low-level diode laser irradiation on tooth extraction socket in rats.

(a) Gross pathology of the high-frequency pulsed low-level laser-irradiated (904–910 nm, 30 Hz, 61.2 J/cm²) and unirradiated control tooth extraction sockets on days 0, 3, and 7 after extraction and (b) measurement of unepithelialized areas in the extraction sites. Advanced epithelialization was clearly observed on the irradiated extraction sockets via microscopic observation. Likewise, on day 7, images revealed faster wound closure in laser-treated sites than in control sites, and the areas in laser-treated sites were significantly smaller than those in control sites. (c) Representative 3D micro-CT images constructed by bone morphometric software in laser-irradiated sites (B, D) and unirradiated control sites (A, C) on day 7 after tooth extraction. The laser-irradiated socket shows higher density of new bone formation than the unirradiated control. (d) Bone morphometric analysis of bone mineral content (BMC), bone volumes (BV), and bone mineral density (BMD) using micro-CT in tooth extraction sockets in laser-treated sites and unirradiated control sites on day 7 after extraction. LLLT significantly improved both the quality and quantity of newly formed bone in laser sites compared with control sites. (e) mRNA expression of Col-1, Alp, Runx2, Ocn, and Bmp-2 genes measured by real-time PCR in the high-frequency pulsed low-level laser-irradiated and unirradiated control tooth extraction sockets on day 3 after extraction. On day 3, mRNA expression of Ocn in laser-treated sites was significantly higher than that in unirradiated control sites. The genes/Gapdh values were calculated, and the value of the control sites was set to 1. Data are presented as the mean ± SE. *: P < 0.05 (paired t-test). [Modified pictures and legend from Noda M. et al. High-frequency pulsed low-level diode laser therapy accelerates wound healing of tooth extraction socket: an in vivo study. Lasers Surg Med. 2016; 48: 955-964. © copyright (2016) John Wiley & Sons A/S.]}
し、Runx2, Alp の増加傾向が認められた（Fig.3e）。さら
に、抜歯後 3 日の抜歯窩内の細胞増殖について評価する
ため、抗 PCNA (Proliferating cell nuclear antigen) 抗体を
用いた免疫染色を行ったところ、単位面積当たりの PCNA
陽性細胞数は、レーザー照射側で有意に増加していた。

この研究により、高パルス発振の低出力半導体レーザー
照射が抜歯窩の創傷治癒において細胞の増殖および分化
を活性化することにより、上皮化および骨形成を促進し、
抜歯窩の早期創傷治癒を増進することが判明し、これら
の結果は、LLLT が周囲およびインプラント周囲再生治
療における骨形成促進のための有効なツールとなる可能
性を示唆している。

一方で、Park 47)は糖尿病モデルマウスの抜歯窩の治
癒に対する LLLT の効果を検討している。ラットを健常
群とストレプトゾトシン投与により誘導された糖尿病モ
デル群に分け、処理を行い、流速 980 mm の半導体レーザー
による LLLT を約 14 J/cm² のエネルギー密度で 1 日
1 回、14 日間行ったところ、どちらのマウスにおいても
LLLT 群では非照射群と比較して早期の新骨形成を認
め、骨代謝マーカー（Runx2, Col type I, Ocn）mRNA の
有意に高い発現を示した。

一般的に糖尿病患者は易感染性であり、創傷治癒も遅
延やすいことが知られているが、Park 47)の研究は糖尿
病モデルにおいても LLLT は骨代謝マーカーを増加さ
せ、抜歯窩の治癒を促進する可能性を示した。日常臨床
において糖尿病患者の抜歯を施行する際、抗菌薬の併用
や術前処置などの対策を行うが、LLLT のような非侵襲的な
手段により抜歯窩治癒を促進することができれば術後感染のリスクを減らすことができるだけ
でなく、不快症状も軽減されることができる、臨床的メリッ
トは大きいと考えられる。

5. 臨床研究
半導体レーザーによる LLLT が口腔内の軟組織および
硬組織の治癒に与える効果について、いくつかの臨床研
究が行われている（Table 3）。

軟組織に関して、Oczelik ら 49) は、歯肉切除術もしく
は歯肉整形術が必要な患者 20人を、デジタルマウスデ
ザインで術後に LLLT を行う群と行わない群に分けて比
較を行ったところ、術後 3、7、15 日において、
LLLT を行った群では上昇を示していない創面積が有意
に少なくかったことを報告した。また、歯周軟組織におけ
る程度の高い問題として、強いブラッシング圧や歯周治
療による歯の移動に伴う歯肉の退縮を起こすことがあり、
それに伴い知覚過敏や審美障害が問題となることが多
いため皮下部位から歯肉組織を採取し歯肉退縮部に移植
する術式（遊離歯肉移植術：Free gingival tissue graft
technique（FGG）あるいは結合組織移植術：Connective
tissue graft technique（CTG））がしばしば行われるが、そ
の際、歯肉組織採取を施行した部位（Donor site）の終末
治癒の遅延が問題となることがある。そこで Dias ら 49)や
Heidari ら 49,50) は、結合組織を採取後の骨蓋の Donor site
の創部へ LLLT を応用したところ、創部の上皮化が亢進
し創傷の治癒が促進したことを報告した。一方で
Fernandes-Dias ら 51) は、歯肉移植を行った Recipient site
への LLLT の効果を検討したところ、歯肉退縮量や角化
歯肉の厚みなどの臨床パラメーターに有意な差はなく、
その効果は限定的としながらも、完全被覆を達成した群
は LLLT 群で有意に多くしたことを報告した。

硬組織に対する応用では、Cepera ら 52) は、矯正治療時
に上顎義歯を装着した後、患者 27人を LLLT 併
用群と非併用群に分けて、前項で述べたマウスの実験
を応用し、照射群では非照射群と比較して有意に治
癒が促進され、さらに拡大後期の骨添加は LLLT 群の方が早い
傾向が見られ、LLLT より骨代謝が活性化されている
ことが示唆された。抜歯窩に対する LLLT の効果を検討
されており、Mozzati ら 53) は抜歯が必要な 10人の健常被
検者に対し非併用群で照射し LLLT 併用群を行った後、
術前と術後 7日に抜歯窩部の軟組織を採取し、炎
症性サイトカイン、成長因子、骨代謝関連マーカー
の定量を行った。その結果、非照射群では、術後7
と術後 7 ～ 14 日目の炎症性サイトカイン（IL-1b, IL-6,
IL-10, COX-2）の有意に上昇が観られたのに対して、照
射群ではそれぞれの有意な上昇は認めなかった。Romão
ら 54) は、抜歯が必要な 20 名を LLLT 群と非照射群にわ
け、抜歯後 40 日目の抜歯窩の骨添加をマイクロCT を用
いて評価したところ、LLLT 群の方が有意に骨量が多い
ことを明らかにした。

歯周組織再生療法への応用については、AboElsaad ら 55)
が検討を行っている。20人の患者に対し、垂直性骨欠損
への生体活性性ガラスを埋入し LLLT を併用したところ、
術後 3 ～ 4 週までにポケット深さが減少し、アタッチメントレベル、エッ
クス線像上での骨レベルが LLLT を行わなかった群と
比較して有意に改善したことを報告した。

このように口腔内の軟組織および硬組織の再生という
観点において、半導体レーザーによる LLLT は創傷治癒
の促進や炎症反応の抑制、骨代謝の促進などの効果をも
つことが示されつつあるが、使用するレーザーの波長や
出力、発振状態の観察を含め、どのようなスケジュール
で照射するかを含め、今後さらなる検討が必要である。

また、現在では歯周組織再生療法への有効性を評価し
tた研究がほとんど行われていないが、LLLT の臨床応用
への可能性を考えると、細胞治療における移植細胞の賦
活化を目的とした応用を含め、歯周組織再生療法の際の
補助療法としての応用が期待されるため、今後その適性
を検討する研究が待たれる。

6. 今後の展望
これまで見てきたように LLLT は非侵襲的で術式も簡
便でかつ口腔内の創傷の治癒能力を高め、治癒期間を
短縮し、不快症状を軽減させることができる非常に有用
な治療法と言える。しかし、LLLT が生体に対してどの
ようなるメカニズムで作用するのかという点については、
具体的なシグナル伝達経路を含めた分子生物学的な
研究が行われており、使用するレーザーの波長や
出力、照射時間、照射距離などに関するパラメーターが存在し、系
統的に比較検討することが難しいが、今後詳細な検討が行われる
ことにより、そのメカニズムがさらに解明されることが

日歯医誌 (JJSLSM) 第40巻 第1号 (2019)
期待される。また臨床応用に際しては、最適な照射プロトコルの確立が求められる。
さらに今後は、細胞療法を含めた医療機器再生療法の際の補助療法として応用されることで、既存の治療法よりもさらによい臨床成績を生み出す術式となる可能性が示唆されている。しかしこれまで十分な科学的根拠が不足しており、さらなる基礎研究および臨床研究が必要であり、LLLTの分野においてもトランスレーションサルリサーチが広く行われてゆくことが期待される。

謝辞
本研究にご協力を賜りました当分野の Walter H. Meinzer先生に感謝を申し上げます。

利益相反の開示
利益相反なし。

参考文献
1) Mester E, Spiry T, Szende B, Tota JG. Effect of laser rays on wound healing. Am J Surg. 1971; 122: 532-535.
2) Ohshiro T, Calderhead RG. Development of low reactive-level laser therapy and its present status. J Clin Laser Med. 1991; 9: 267-275.
3) Yu W, Chi LH, Naim JO, Lanzafame RJ. Improvement of host response to sepsis by photobiomodulation. Lasers Surg Med. 1997; 21: 262-268.
4) Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 1996; 14: 333-341.
5) Aoki K, Mizutani K, Schwarz F, Sculean A, Yokna RA, Takasaki AA, Romanos GE, Taniguchi Y, Sasaki KM, Zeredo JL, Koshy G, Coluzzi DJ, White JM, Abiko Y, Ishikawa I, Izumi Y. Periodontal and peri-implant wound healing following laser therapy. Periodontol. 2000. 2015; 68: 217-269.
6) Migliaro M, Pittarello P, Fanuli M, Rizzi M, Renò F. Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci. 2014; 29: 1463-1467.

7) Hamajima S, Hiratsuka K, Kiyama-Kishikawa M, Tagawa T, Kawahara M, Ohita M, Sasahara H, Abiko Y. Effect of low-level laser irradiation on osteogenic gene expression in osteoblasts. Lasers Med Sci. 2003; 18: 78-82.
8) Renno AC, McDonnell PA, Parizotto NA, Laakso EL. The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg. 2007; 25: 275-280.

9) Ozawa Y, Shimizu N, Kariya G, Abiko Y. Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone. 1998; 22: 347-354.
10) Shimizu N, Mayahara K, Igarashi Y, Yamaguchi A, Ozawa Y, Abiko Y. Low-intensity laser irradiation stimulates bone nodule formation via insulin-like growth factor-I expression in rat calvarial cells. Lasers Surg Med. 2007; 39: 551-559.

11) Almeida-Lopes L, Rigau J, Zângaro RA, Guidugli-Neto J, Jaeger MM. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med. 2001; 29: 179-184.
12) Wu H, Whitfield TW, Gordon JA, Dobson JR, Tai PW, van Wijnen JI, Stein JL, Stein GS, Lian JB. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biol. 2014; 15: R52.
13) Wu JY, Chen CH, Yeh LY, Yeh ML, Ting CC, Wang YH. Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci. 2013; 5: 85-91.

14) Basso FG, Pansani TN, Turrioni AP, Bagnato VS, Hebling J, de Souza Costa CA. In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent. 2012; 2012: 719452.
15) Mayahara K, Yamaguchi M, Sakaguchi M, Igarashi Y, Shimizu N. Effect of Ga-Al-As laser irradiation on COX-2 and cPLA2-alpha expression in compressed human periodontal ligament cells. Lasers Surg Med. 2010; 42: 489-493.
16) Nomura K, Yamaguchi M, Abiko Y. Inhibition of interleukin-1beta production and gene expression in human gingival fibroblasts by low-energy laser irradiation. Lasers Med Sci. 2001; 16: 218-223.
17) Sakurai Y, Yamaguchi M, Abiko Y. Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci. 2000; 108: 29-34.
18) Takama T, Yamaguchi M, Abiko Y. Reduction of Plasminogen Activator Activity Stimulated by Lipopolysaccharide from Periodontal Pathogen in Human Gingival Fibroblasts by Low-energy Laser Irradiation. Lasers Med Sci. 2000; 15: 35-42.
19) Kreisler M, Christoffers AB, Al-Haj H, Willershhausen B, d’Hoedt B. Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med. 2002; 30: 365-369.
20) Kreisler M, Christoffers AB, Willershhausen B, d’Hoedt B. Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol. 2003; 30: 353-358.
21) Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B. Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci. 2008; 23: 211-215.
22) Hakkii SS, Bozkurt SB. Effects of different setting of diode laser on the mRNA expression of growth factors and type I collagen of human gingival fibroblasts. Lasers Med Sci. 2012; 27: 325-331.
23) Ozawa Y, Shimizu N, Abiko Y. Low-energy diode laser irradiation reduced plasminogen activator activity in human periodontal ligament cells. Lasers Surg Med. 1997; 21: 456-463.
24) Lin Z, Rios HF, Cochran DL. Emerging regenerative approaches for periodontal reconstruction: a systematic review from the AAP Regeneration Workshop. J Periodontol. 2015; 86: S134-152.
25) Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ; Canadian Critical Care Trials Group. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012; 7: e47559.
26) Yamada Y, Nakamura S, Ito K, Umemura E, Hara K, Nagasaka T, Abe A, Baha S, Furuiichi Y, Izumi Y, Klein OD, Wakabayashi T. Injectable bone tissue engineering using expanded mesenchymal stem cells. Stem Cells. 2013; 31: 572-580.
27) Zitoun A, Benhammou H, Marques MN, Ginhoux F, Moroni E, Boccalini G, Thery M, Galiano H, Fauchereau M, et al. Photobiomodulation of Dermal Derived Mesenchymal Stem Cells: A Systematic Review. Photomed Laser Surg. 2016; 34: 500-508.
28) Soleimani M, Abbasnia E, Fathi M, Sahaeei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci. 2012; 27: 423-430.
29) de Oliveira TS, Serra AJ, Machini MT, Bassanez V, Krieger JE, de Tarso Camillo de Carvalho P, Antunes DE, Bocolini DS, Ferreira Tucci PJ, Silva JA Jr. Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers Med Sci. 2015; 30: 217-223.
30) Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol B. 1999; 49: 1-17.
31) Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol. 2008; 84: 1091-1099.
32) Ejiri K, Aoki A, Yamaguchi Y, Ohshima M, Izumi Y. High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells. Lasers Med Sci. 2014; 29: 1339-1347.

33) Saracino S, Mozzati M, Martinasso G, Pol R, Canuto RA, Muzio G. Superpulsed laser irradiation increases osteoblast activity via modulation of bone morphogenetic factors. Lasers Surg Med. 2009; 41: 298-304.

34) Mozzati M, Martinasso G, Cocero N, Pol R, Maggiora M, Muzio G, Canuto RA. Influence of superpulsed laser therapy on healing processes following tooth extraction. Photomed Laser Surg. 2011; 29: 565-571.

35) Mikami R, Mizutani K, Aoki A, Tamura Y, Aoki K, Izumi Y. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg Med. 2018; 50: 340-352.

36) Ninomiya T, Hosoya A, Nakamura H, Sano K, Nishisaka T, Ozawa H. Increase of bone volume by a nanosecond pulsed laser irradiation is caused by a decreased osteoclast number and an activated osteoblasts. Bone. 2007; 40: 140-148.

37) Noda M, Aoki A, Mizutani K, Lin T, Komaki M, Shibata S, Izumi Y. High-frequency pulsed low-level diode laser therapy accelerates wound healing of tooth extraction socket: An in vivo study. Lasers Surg Med. 2016; 48: 955-964.

38) Clary SF. Laser pulses and the generation of acoustic transients in biological materials. Wolbarsht ML. (ed.) Laser Applications in Medicine and Biology. Vol. 3. New York: Plenum; 1977. p. 175-219.

39) Kushibiki T, Awazu K. Blue laser irradiation enhances extracellular calcification of primary mesenchymal stem cells. Photomed Laser Surg. 2009; 27: 493-498.

40) Wang Y, Huang YY, Lyu P, Hamblin MR. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep. 2016; 6: 33719.

41) Wang Y, Huang YY, Lyu P, Hamblin MR. Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells. Sci Rep. 2017; 7: 7781.

42) Mezawa S, Yoshida K, Suguro H, Takeichi O, Komori M. In-vivo study of low-power laser irradiation on new bone formation of rat calvaria defects. —Influences of different power at laser irradiation—. J Jpn Soc Laser Dent. 2001; 12: 2-9. (in Japanese, English abstract)

43) Fekrazad R, Sadeghi Ghuchani M, Eslaminejad MB, Taghiyar L, Kalhori KA, Pedram MS, Shayan AM, Aghdami N, Abrahamse H. The effects of combined low level laser therapy and mesenchymal stem cells on bone regeneration in rabbit calvarial defects. J Photochem Photobiol B. 2015; 151: 180-185.

44) Liu X, Lyon R, Meier HT, Thometz J, Haworth ST. Effect of lower-level laser therapy on rabbit tibial fracture. Photomed Laser Surg. 2007; 25: 487-494.

45) Massotti F, Gomes FV, Mayer L, de Oliveira MG, Baraldi CE, Ponzoni D, Puricelli E. Histomorphometric assessment of the influence of low-level laser therapy on peri-implant tissue healing in the rabbit mandible. Photomed Laser Surg. 2015; 33: 123-128.

46) Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop. 1997; 111: 525-532.

47) Park JJ, Kang KL. Effect of 980-nm GaAlAs diode laser irradiation on healing of extraction sockets in streptozotocin-induced diabetic rats: a pilot study. Lasers Med Sci. 2012; 27: 223-230.

48) Ozcelik O, Cenk Haytac M, Kunin A, Seydaoglu G. Improved wound healing by low-level laser irradiation after gingivectomy operations: a controlled clinical pilot study. J Clin Periodontol. 2008; 35: 250-254.

49) Dias SB, Fonseca MV, Dos Santos NC, Mathias IF, Martinho FC, Junior MS, Jardini MA, Santamaria MP. Effect of GaAlAs low-level laser therapy on the healing of human palate mucosa after connective tissue graft harvesting: randomized clinical trial. Lasers Med Sci. 2015; 30: 1695-1702.

50) Heidari M, Paknejad M, Jamal R, Nokhbatafelaghahaei H, Fekrazad R, Moslemi N. Effect of laser photobiomodulation on wound healing and postoperative pain following free gingival graft: A split-mouth triple-blind randomized controlled clinical trial. J Photochem Photobiol B. 2017; 172: 109-114.

51) Fernandes-Dias SB, de Marco AC, Santamaria M, Kerbauy WD, Jardini MA, Santamaria MP. Connective tissue graft associated or not with low laser therapy to treat gingival recession: randomized clinical trial. J Clin Periodontol. 2015; 42: 54-61.

52) Cepera F, Torres FC, Scanavini MA, Paranhos LR, Capelozza Filho L, Cardoso MA, Siqueira DC, Siqueira DF. Effect of a low-level laser on bone regeneration after rapid maxillary expansion. Am J Orthod Dentofacial Orthop. 2012; 141: 444-450.

53) Romão MM, Marques MM, Cortes AR, Horliana AC, Moreira MS, Lascala CA. Micro-computed tomography and histomorphometric analysis of human alveolar bone repair induced by laser phototherapy: a pilot study. Int J Oral Maxillofac Surg. 2015; 44: 1521-1528.

54) AboElsaad NS, Soory M, Gaddalla LM, Ragab LI, Dunne S, Zalata KR, Looua C. Effect of soft laser and bioactive glass on bone regeneration in the treatment of infra-bony defects (a clinical study). Lasers Med Sci. 2009; 24: 387-395.

55) Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP. Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med. 2004; 34: 260-265.

56) Aihara N, Yamaguchi M, Kasai K. Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci. 2006; 21: 24-33.

57) Huang TH, Lu YC, Kao CT. Low-level diode laser therapy reduces lipopolysaccharide (LPS)-induced bone cell inflammation. Lasers Med Sci. 2012; 27: 621-627.

58) Bozkurt SB, Hakkı EE, Kayıs SA, Dundar N, Hakkı SS. Biostimulation with diode laser positively regulates cementoblast functions, in vitro. Lasers Med Sci. 2017; 32: 911-919.
Squecco R, Nosi D, Bani D, Zecchi-Orlandini S, Formigli L. Photovactivation of bone marrow mesenchymal stromal cells with diode laser: effects and mechanisms of action. J Cell Physiol. 2013; 228: 172-181.

60) Gerbi ME, Marques AM, Ramalho LM, Ponzi EA, Carvalho CM, Santos Rde C, Oliveira PC, Nóia M, Pinheiro AL. Infrared laser light further improves bone healing when associated with bone morphogenic proteins: an in vivo study in a rodent model. Photomed Laser Surg. 2008; 26: 55-60.

61) Rosa AP, de Sousa LG, Regalo SC, Issa JP, Barbosa AP, Pitol DL, de Oliveira RH, de Vasconcelos PB, Dias FJ, Chimello DT, Siéssere S. Effects of the combination of low-level laser irradiation and recombinant human bone morphogenetic protein-2 in bone repair. Lasers Med Sci. 2012; 27: 971-977.

62) Barbosa D, de Souza RA, Xavier M, da Silva FF, Arisawa EA, Villaverde AG. Effects of low-level laser therapy (LLLT) on bone repair in rats: optical densitometry analysis. Lasers Med Sci. 2013; 28: 651-656.

63) Park JB, Ahn SJ, Kang YG, Kim EC, Heo JS, Kang KL. Effects of increased low-level diode laser irradiation time on extraction socket healing in rats. Lasers Med Sci. 2015; 30: 719-726.

64) Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med. 2000; 26: 282-291.

65) Marquezan M, Bolognese AM, Araújo MT. Effects of two low-intensity laser therapy protocols on experimental tooth movement. Photomed Laser Surg. 2010; 28: 757-762.

66) Fukuda TY, Tanji MM, Silva SR, Sato MN, Plapler H. Infrared low-level diode laser on inflammatory process modulation in mice: pro- and anti-inflammatory cytokines. Lasers Med Sci. 2013; 28: 1305-1313.

67) Solmaz H, Dervisoglu S, Gulsoy M, Ulgen Y. Laser biostimulation of wound healing: bioimpedance measurements support histology. Lasers Med Sci. 2016; 31: 1547-1554.

68) Ozturan S, Durukan SA, Ozcelik O, Seydaoglu G, Haytac MC. Coronally advanced flap adjunct with low intensity laser therapy: a randomized controlled clinical pilot study. J Clin Periodontol. 2011; 38: 1055-1062.

69) Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthod Dentofacial Orthop. 2012; 141: 289-297.
和泉 雄一（Yuichi Izumi）
1979年東京医科歯科大学歯学部卒業,
1983年同・大学院歯学研究科修了歯学博士取得,
同・歯学部歯科保存学第2講座助手,
1987-89年ジュネーブ大学医学部歯学科講師,
1992年鹿児島大学歯学部歯科保存学講座(2)助教授,
1999年同・教授,
2003年同・歯学部附属病院副病院長,
同・大学院歯学総合研究科・歯周病態制御学分野教授,
2004年同・医学部・歯学部附属病院病院長補佐,
2007年東京医科歯科大学大学院医歯学総合研究科歯周病態制御学分野教授,
2008年同・歯学部附属病院病院長補佐,
2018年東京医科歯科大学名誉教授,
歯科博士,日本歯周病学会理事前理事長・名誉会員,
American Academy of Periodontology (AAP, International Member),
American Society of Microbiology (ASM, Active Member),
Asian Pacific Society of Periodontology (APSP, Treasurer),
日本歯周病学会歯周病専門医・指導医,
日本歯科保存学会保存治療専門医・指導医,
総合南東北病院オーラルケア・ペリオセンターセンター長.