Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5–induced eosinophil development

Netali Ben Baruch-Morgenstern1,4, Dana Shik1,4, Itay Moshkovits1, Michal Itan1, Danielle Karo-Atar1, Carine Bouffi2, Patricia C Fulkerson2, Diana Rashkovan3, Steffen Jung3, Marc E Rothenberg2 & Ariel Munitz1

Eosinophilia is a hallmark characteristic of T helper type 2 (TH2) cell–associated diseases and is critically regulated by the central eosinophil growth factor interleukin 5 (IL-5). Here we demonstrate that IL-5 activity in eosinophils was regulated by paired immunoglobulin-like receptors PIR-A and PIR-B. Upon self-recognition of β2-microglobulin (β2M) molecules, PIR-B served as a permissive checkpoint for IL-5–induced development of eosinophils by suppressing the proapoptotic activities of PIR-A, which were mediated by the Grb2-Erk-Bim pathway. PIR-B–deficient bone marrow eosinophils underwent compartmentalized apoptosis, resulting in decreased blood eosinophilia in naive mice and in mice challenged with IL-5. Subsequently, Pirb−/− mice displayed impaired aeroallergen-induced lung eosinophilia and induction of lung TH2 cell responses. Collectively, these data uncover an intrinsic, self-limiting pathway regulating IL-5–induced expansion of eosinophils, which has broad implications for eosinophil-associated diseases.

Eosinophils are bone marrow (BM)-derived myeloid cells that differentiate under the control of the transcription factors GATA-1, PU.1, C/EBP, and the common β chain (βc)-signaling cytokines IL-5, IL-3 and GM-CSF1. IL-5 is the most potent and specific cytokine for eosinophil accumulation, from the BM into the peripheral blood (PB)3 and survival4 following a variety of triggers, typically TH2 cell stimuli. At baseline, eosinophils mainly reside in the gastrointestinal tract, fat pads, spleen, lymph nodes and thymus5,6 where they function to maintain homeostasis6–8. Yet in settings of allergic inflammation such as those found in asthma, eosinophils expand in the BM and infiltrate the lung, where their accumulation is a characteristic hallmark of disease 5,7. Whereas the extrinsic pathways (e.g., IL-5) that regulate eosinophil expansion are relatively well characterized, the presence of intrinsic, self-limiting, molecular checkpoints regulating IL-5–induced eosinophilia is largely unknown and remains to be defined.

A major checkpoint in curtailing cytotoxic T cells and natural killer (NK) cells is inhibitory signaling driven by major histocompatibility complex (MHC)-restricted self-recognition, mediated by receptors that can recognize self via binding of MHC class I molecules. The T cell receptor (TCR) enables positive and negative selection, which is critical for adaptive immunity and avoids autoimmunity9. NK cell inhibitory receptors (KIRs) govern cytotoxicity toward virally infected or transformed cells10.

An additional receptor system that mediates self-recognition by binding to classical and nonclassical MHC class I molecules has drawn considerably less attention. This receptor system is comprised of PIR-A and PIR-B11. Paired immunoglobulin-like receptors (PIRs) are predominantly expressed by myeloid cells, which endow them with the potential to discriminate self from non-self12. Comprehensive structural and biochemical analyses have shown that the amino acid sequences of the PIR-A and PIR-B ectodomains are over 92% identical and bind the same MHC class I ligands12,13. PIR-B is a type I transmembrane glycoprotein with six extracellular immunoglobulin-like domains, a hydrophobic transmembrane segment and an intracellular polypeptide with four immunoreceptor tyrosine–based inhibitory motifs (ITIM) or ITIM-like sequences12. In contrast, PIR-A lacks the extended intracellular motif and requires assistance of adaptor molecules, such as the γ-chain of Fc receptors for efficient expression and function11,14. Subsequent binding of MHC class I molecules by PIRs leads to the recruitment of cytosolic phosphatases by PIR-B, which ultimately results in inhibition of yet undefined signaling cascades triggered by PIR-A14,15. PIR-B can suppress cellular responses elicited by the βc signaling cytokines, IL-3 and GM-CSF16,17 as well as by Flt-3L (ref. 18), thus suggesting a role for PIR-B in myeloid cell hematopoiesis. The recent demonstration that eosinophils express PIRs19, together with the suggested hematopoietic functions of PIR-B, raised the hypothesis that PIR-B may regulate IL-5–induced responses in eosinophils.

In this study, we demonstrate a critical role for PIR-B and PIR-A in eosinophil development. PIR-B suppressed PIR-A–induced apoptosis of eosinophils, thereby counterbalancing survival and growth signals selectively driven by IL-5. Expression of PIR-A and PIR-B was...
regulated by IL-5 and increased during distinct eosinophil maturation stages. Eosinophils maintained a dominant expression of PIR-B over PIR-A under homeostatic conditions. Thus, despite abundant availability of MHC class I ligand, which may trigger PIR-A–induced apoptosis, development of eosinophils was intact because of inhibitory signals driven by PIR-B. Furthermore, we found that PIR-A bound the adaptor protein Grb2 and that apoptotic eosinophils displayed increased activation of Erk and expression of Bim. These data established a new model defining the intrinsic molecular pathways regulating IL-5–induced eosinophilia and highlight self-recognition via PIRs as a key molecular checkpoint in expansion of eosinophils.

RESULTS

PIR-B is required for differentiation of eosinophils in vitro

To begin to assess the function of PIR-B in eosinophils, we used the recently described BM-derived eosinophil cell culture system. Cells obtained from the low-density fraction of wild-type BM (LDBM) cells by day 14 displayed >95% eosinophils of uniform morphological appearance, including stereotypical bilobed nuclei (Fig. 1a). In contrast, starting from day 10, cultures of Pirb−/− LDBM cells showed the appearance of myeloid morphology and by day 14, the entire Pirb−/− culture was composed of large, often multinucleated cells lacking eosinophil morphology (Fig. 1a). Total cell counts obtained from the Pirb−/− LDBM cell culture were lower than those obtained from wild-type cultures (Fig. 1b). At day 14, cells retrieved from wild-type but not Pirb−/− cultures expressed CCR3 and major basic protein (MBP), both of which are classical markers of eosinophils (Fig. 1c,d). Pirb−/− cells exhibited distinct physical parameters (i.e., granularity and size; Fig. 1e) and had increased expression of myeloid-associated adhesion molecules and activation markers including CD11b, CD18, α5 integrin, CD103, CD62L and CD69 (Supplementary Fig. 1). Pirb−/− cells derived from LDBM cell culture displayed markedly decreased amount of mRNA encoding the eosinophil-associated transcription factors GATA-1 and GATA-2 (Fig. 1f,g), though expression of mRNAs encoding C/EBP, PU.1 and FOG-1 was comparable to that in wild-type controls (data not shown). By the end of the cell cultures, total eosinophil counts in Pirb−/− LDBM cell cultures were reduced by 97.3 ± 0.06% (Average ± s.e.m.) compared to wild-type cultures (Fig. 1h). Decreased eosinophil generation was not due to alterations in the numbers of eosinophil progenitors (defined as Sca1−CD34+Lin−c-Kit+IL-5Rα+; Fig. 1i,j) or alteration in IL-5Rα surface expression in eosinophil progenitors (Fig. 1k). The inability to generate mature eosinophils in vitro was an intrinsic defect of Pirb−/− cells because growing Pirb−/− cells in supernatants obtained from wild-type LDBM–derived eosinophil cultures did not render the Pirb−/− cells into eosinophils. Moreover, the generation of eosinophils was not impaired when we cultured cells in supernatants harvested from Pirb−/− cultures (data not shown). The requirement of PIR-B in eosinophil development was PIR-B–specific and eosinophil–specific because we could generate mature eosinophils from LDBM cells of mice deficient in other

![Figure 1](image-url)

Figure 1 Pirb−/− LDBM cells do not differentiate into mature eosinophils in vitro. (a,b) Micrographs (magnification, ×400) of LDBM cells obtained from wild-type (WT) and Pirb−/− mice and differentiated in vitro into eosinophils, showing stained cytopsins (a) and day 14 total cell counts (b). Solid and dashed arrows in a mark singly nucleated and multinucleated myeloid cells, respectively. (c–g) CCR3 surface expression (change in mean fluorescence intensity (MFI) of anti-CCR3 stain – isotype control; c), mRNA encoding eosinophil major basic protein (MbP, d), cell size (forward scatter, FSC) and granularity (side scatter, SSC) (e), and expression of Gata1 (f) and Gata2 (g) in LDBM WT and Pirb−/− cells. All quantitative PCR data were normalized to the expression of housekeeping gene Hprt. (h) Total eosinophil numbers as determined by CCR3+Siglec-F+ cells. (i–k) Assessment of CD45+CD34−Lin−Sca-1+c-Kit+IL-5Rα+ eosinophil progenitors (EoPs) (i) and IL-5 receptor α (IL-5Rα) expression in EoPs (k). NS, not significant; *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test). Data are representative of five independent cell cultures obtained from different mice (a,e,i), representative of three independent experiments (c), pooled from three cultures obtained from three different mice per genotype and conducted in triplicate (b,d,f–h, error bars, s.e.m.; n = 3 cell cultures) or pooled from two experiments with five mice per genotype (j,k; error bars s.e.m.; n = 10 mice).
PIR-B regulates eosinophil apoptosis during differentiation of LDBM eosinophils.

(a,b) Micrographs (magnification, ×400) of LDBM cells obtained from wild-type (WT) and Pirb^{−/−} mice and differentiated in vitro, showing apoptotic eosinophils (a) and engulfed eosinophils (b). Arrows indicate apoptotic eosinophils.

(c,d) Density plot analysis (c) and a summary of staining with annexin V and propidium iodide (PI) in cells (d). Numbers in quadrants indicate percentages of cells corresponding to this quadrant.

(e-i) Density plots of anti–Siglec-F– and annexin V (AnnV)–stained cells (e), and analysis of the percentage and total cell counts of Siglec-F^{−/−}AnnV⁺ cells and Siglec-F^{−/−}AnnV[−] cells (f-i). (j,l,m) Flow cytometry analyses of LDBM cells stained with anti–Siglec-F, annexin V and anti–active caspase 3 (j), anti-Bim (l) or anti-GATA-1 (m). (k) Quantitative PCR analysis of Bcl2111 (Bim) in cDNA from LDBM cells (normalized to expression of the housekeeping gene Hprt). *P < 0.05, **P < 0.01, ***P < 0.001 (Students t-test). Data are representative of five independent cell cultures obtained from different mice (a,c,e), pooled from three cultures obtained from three different mice per genotype, (d,f-i; error bars, s.e.m.; n = 3 cell cultures), representative of three independent experiments conducted in cell cultures obtained from different mice (j,l,m) and pooled from three cultures obtained from three different mice per genotype (k; error bars, s.e.m.; n = 3 cell cultures).

ITIM-bearing receptors (e.g., CMRF35-like molecule (CLM)-1; ref. 22) and Pirb^{−/−} BM yielded normal numbers of macrophages, dendritic cells (DCs), neutrophils and mast cells in the respective cytokine-driven cultures (data not shown and refs. 16,23,24). Collectively, these data indicate that PIR-B regulates an intrinsic pathway, which is specifically required for eosinophilopoiesis.

PIR-B regulates apoptosis of eosinophils

Impaired development of eosinophils in Pirb^{−/−} LDBM cell cultures could be either due to a decreased proliferative ability or to increased apoptosis. Assessment of cellular proliferation in response to a combination SCF plus Flt-3L during the first 2 d of LDBM cell culture revealed no difference between the proliferative activity of wild-type and Pirb^{−/−} eosinophil progenitors (Supplementary Fig. 2a). Because of the loss of the distinct eosinophil progenitor cell-surface markers (i.e., c-Kit and IL-5Rα) after 1–2 d in culture, we subsequently assessed cell proliferation in the general LDBM cell cultures and observed no proliferative difference between wild-type and Pirb^{−/−} cells (Supplementary Fig. 2b).

Morphological assessment of Pirb^{−/−} LDBM cell cultures revealed the presence of apoptotic eosinophils, as identified by nuclear fragmentation and cell blebbing (Fig. 2a). Moreover, apoptotic...
eosinophils and/or apoptotic bodies in Pirb−/− cultures were engulfed by the abundant mononuclear myeloid cells in these cultures (Fig. 2b). In accordance with these findings, assessment of early and late apoptosis using annexin V staining combined with propidium iodide (PI) staining, revealed that Pirb−/− LDBM cell cultures contained a prominent fraction of annexin V+PI− cells (Fig. 2c,d). Costaining for Siglec-F, a surface marker of early eosinophil development25, and annexin V demonstrated that starting at day 10 of the culture, nearly 20% of the Pirb−/− LDBM cells were Siglec-F−annexin V+ comprising approximately half of all Pirb−/− Siglec-F+ cells (Fig. 2e); in contrast, wild-type eosinophils showed good viability and exhibited only 3–5% Siglec-F−annexin V+ cells. The greater percentage of Siglec-F−annexin V+ cells in Pirb−/− cultures was reflected by a greater number of total dead eosinophils (Fig. 2f,g). Eventually, the numbers of total dead eosinophils declined because of the overall decrease in total cell counts, which we observed in the Pirb−/− LDBM cell culture (Fig. 1b). Analysis of the percentage and total Siglec-F−annexin V− cells demonstrated markedly increased percentage and total viable eosinophils in the wild-type cell cultures in comparison with the Pirb−/− cell cultures (Fig. 2h,i).

Consistent with their apoptotic appearance, Siglec-F−annexin V+ cells in Pirb−/− LDBM cell cultures expressed increased expression of active caspase 3 (Fig. 2j). Moreover, Pirb−/− LDBM cell cultures displayed increased expression of mRNA encoding the proapoptotic molecule Bcl-interacting molecule (Bim)26 in comparison with wild-type cells (Fig. 2k). We observed no differences in expression of mRNA encoding additional pro- or antiapoptotic molecules (Fig. 3). Pirb−/− Siglec-F−annexin V+ cells displayed substantially increased amounts of Bim compared with Siglec-F−annexin V− wild-type or Pirb−/− cells (Fig. 2l). Intracellular staining assessing GATA-1 abundance demonstrated that Pirb−/− Siglec-F−annexin V+ cells displayed less GATA-1 protein compared with Siglec-F−annexin V− wild-type or Pirb−/− cells (Fig. 2m). GATA-1 and Bim protein expression was similar between wild-type and mutant Siglec-F−annexin V− and Siglec-F−annexin V+ cells (Fig. 2n,2o). Thus, Pirb−/− cells do not mature into eosinophils in vitro likely owing to Bim-mediated apoptosis.

PIR-B is required for IL-5–induced colony formation

To assess the specificity of PIR-B to IL-5–induced differentiation of eosinophils, we subjected wild-type and Pirb−/− LDBM cells to colony forming unit (CFU) assays using IL-5, GM-CSF or IL-3. Pirb−/− cells displayed a specific decrease in CFUs induced by IL-5 but not by IL-3 and/or GM-CSF (Fig. 3). Assessment of the relative cell counts per colony demonstrated that the amount of cells per colony was lower in colonies from Pirb−/− CFUs induced by IL-5 (but not IL-3 or GM-CSF; Fig. 3). Furthermore, Pirb−/− CFUs displayed a twofold increase in Siglec-F−annexin V+ cells specifically in the IL-5–driven colonies (Fig. 3c). Thus, in response to IL-5 (specifically), Pirb−/− BM produced fewer colonies, which were smaller and displayed increased apoptosis in comparison with wild-type cells.

PIR-B regulates eosinophil apoptosis in vivo

The requirement for PIR-B in IL-5–induced development of eosinophils in vitro led us to assess eosinophil numbers in the BM of naive Pirb−/− mice. Flow cytometric analysis of BM eosinophils revealed two distinct eosinophil populations in the BM; namely a Siglec-F−CCR3+ population and a Siglec-F−CCR3int population (likely representing immature and mature eosinophils, respectively)25, both of which displayed eosinophil physical parameters (Fig. 4a,b), morphology and eosinophil granule proteins (for example, MBP; Supplementary Fig. 4). Both eosinophil populations retrieved from naive Pirb−/− mice displayed more annexin V staining, as compared to wild-type controls (Fig. 4b,c). Analysis of other BM-resident myeloid cell populations such as monocytes (gated as Ly6G−Ly6B.2+) or neutrophils (gated as Ly6G+Ly6B.2int) revealed that increased baseline apoptosis in Pirb−/− mice was specific to eosinophils (Fig. 4d). Assessment of PB of naive wild-type and mutant mice revealed that the Pirb deficiency resulted in 30% fewer blood eosinophils in the steady state (Fig. 4e,f). Eosinophil viability was similar between wild-type and PB Pirb−/− eosinophils (data not shown), suggesting that reduction is due to a compartmentalized apoptotic fate in the BM.

Previous studies using Il5−/− mice as well as anti–IL-5 neutralization in vivo revealed that under homeostatic conditions, BM eosinophils are only partially regulated by an IL-5–dependent pathway27,28. Rather, IL-5 is critical in eosinophil expansion under various disease settings29. To define whether PIR-B regulates in vivo steady-state eosinophilia in an IL-5–dependent fashion, we neutralized IL-5 in naive wild-type and Pirb−/− mice using the rat anti-mouse IL-5 antibody (clone TRFK5)30. IL-5 neutralization caused an evident (but not complete) decrease in BM and PB eosinophils of wild-type but not Pirb−/− mice (Fig. 4g–i). Moreover, treatment with anti–IL-5 caused a specific reduction in the expression of PIR-B but not PIR-A in mature BM eosinophils (i.e., Siglec-F−CCR3int but not PB eosinophils (Fig. 4j)). Collectively, these data demonstrate that PIR-B regulates the IL-5–dependent but not IL-5–independent baseline frequencies of eosinophils.

Consistently, increased apoptosis of Pirb−/− BM eosinophils persisted even when we artificially elevated availability of IL-5 by exogenous delivery of recombinant IL-5. Thus, although this regimen decreased the apoptotic fate of some Pirb−/− Siglec-F−CCR3int and Siglec-F−CCR3int cells, the frequencies of apoptotic eosinophils were still higher in Pirb−/− mice in comparison with wild-type controls (Fig. 4k,l).
The frequency of eosinophils in the blood of IL-5–treated wild-type mice increased 1.76 ± 0.025-fold increase (Fig. 4m). Moreover, treatment with IL-5 increased the expression of PIR-B in BM but not in PB eosinophils (Fig. 4n–p). These results establish an intricate relationship between IL-5 and PIR expression.

Self-recognition regulates eosinophil expansion

The β2 microglobulin (β2M) subunit of MHC class I molecules serves as a ligand for PIR-B11. Thus, we hypothesized that loss of β2M will result in similar eosinophil apoptosis as observed in Pirb−/− mice (Fig. 4m). Furthermore, assessment of relative cell counts per colony revealed more cells from the B2m−/− LDBM cells demonstrated increased numbers of colonies in response to IL-5 (Fig. 5a). Furthermore, assessment of relative cell counts per colony revealed more cells from the B2m−/− LDBM cells demonstrated increased numbers of colonies in response to IL-5 (Fig. 5a). Consistently, both Siglec-F−CCR3int and Siglec-F−CCR3hi BM eosinophils obtained from naive B2m−/− mice were less apoptotic than naive wild-type BM eosinophils (Fig. 5d,e). The finding that loss of MHC class I recognition resulted in decreased eosinophil apoptosis suggested the involvement of an additional receptor that can bind MHC class I molecules and is suppressed by PIR-B, such as PIR-A13.

Absence of PIR-B enables proapoptotic signals by PIR-A

To test the hypothesis that PIR-A delivers proapoptotic signaling in eosinophils, we first analyzed the expression of PIRs throughout the LDBM cell culture system. Both PIRs were progressively upregulated on the cultured cells (Fig. 6a). Expression of PIR-A preceded that of PIR-B by 2 d, with PIR-A expression increasing at day 5 (Fig. 6a). The induction of PIR-A (but not of PIR-B) expression thus correlated with the induction of the proapoptotic factor Bim (Supplementary Fig. 5). To assess whether PIR-A is responsible for the apoptotic phenotype that we observed in Pirb−/− LDBM eosinophil cell cultures, we neutralized PIR-A in the Pirb−/− LDBM eosinophil cell cultures using the anti-PIR-A/B antibody (clone 6C1), which recognizes both PIR-A and PIR-B. We chose this antibody because it recognizes ectodomain–recognizing ectodomains in PIRs31. Neutralization of PIR-A markedly attenuated the apoptotic phenotype, which we observed in Pirb−/− eosinophils (Fig. 6c,d) and noticeably increased the numbers of mature eosinophils (Fig. 6e,f). Pirb−/− cultures that received isotype control antibodies displayed a similar number of apoptotic cells and total eosinophils as untreated Pirb−/− cultures (Fig. 6e). Morphologically, neutralization of PIR-A partially restored the typical eosinophil granular appearance in Pirb−/− cell
To gain mechanistic insight into the functional activities driven by PIR-A, we used a mini-phosphoproteomics approach: we immunoprecipitated PIR-A from the surface of sorted viable Pirb−/− LDBM cells and incubated it with a membrane that had been precoated with antibodies against various signaling molecules (Supplementary Fig. 6a,b). After incubation, we blotted the membrane with antiphosphotyrosine to detect interactions between PIR-A and functional downstream signaling intermediates. Given the abundant availability of MHC class I ligands to PIR-A, we hypothesized that the kinases and/or adaptor molecules interacting with PIR-A will be active as well. We found that PIR-A was strongly associated with the adaptor Grb2 (Fig. 6g). Given the association between Grb2 and Erk activation18, we hypothesized that apoptotic Pirb−/− eosinophils will display increased Erk activation in viable cells. Assessment of phosphorylated Erk-1 and Erk-2, in Siglec-F−annexin V− and Siglec-F−annexin V+ cells revealed an evident increase in phosphorylation of Erk-1 and Erk-2 in Siglec-F−annexin V− cells in comparison with Siglec-F−annexin V+ cells (Fig. 6h,i). This effect was specific to Erk activation because activation of Jnk and p38 was not changed between viable and dead eosinophils (Supplementary Fig. 6).

Distinct expression for PIRs during eosinophil maturation

Given the proapoptotic role of PIR-A, we sought to understand why peripheral eosinophils survive in the presence of abundant MHC class I expression. To this end, we analyzed the relative expression of PIR-A and PIR-B in various eosinophil populations in the BM (i.e., eosinophil progenitors, Siglec-F+CCR3int cells and Siglec-F+CCR3hi cells), PB and tissue (i.e., peritoneal cavity). Eosinophil progenitors expressed very low and equivalent amounts of PIR-A and PIR-B (respectively, 1.11-fold ± 0.02-fold and 1.14-fold ± 0.04-fold increase (s.e.m.) over isotype control, P = 0.26, Student’s t-test). The expression of PIR-A and PIR-B gradually increased as eosinophils developed,

Figure 5 Increased eosinophil development and decreased apoptosis in the absence of MHC class I expression. (a–c) Total CFU counts (a) and relative cell counts per CFU (b) for IL-5–treated LDBM-derived cells of wild-type (WT) and B2m−/− mice. (c) Assessment of apoptosis in IL-5–induced colonies from WT and B2m−/− cell cultures by staining with anti–Siglec-F and annexin V. (d,e) BM cells from naive WT and B2m−/− mice stained with anti–Siglec-F, anti-CCR3 and annexin V, and then Siglec-F−CCR3int and Siglec-F−CCR3hi cells were gated and assessed for annexin V expression. *P < 0.05 (Student’s t-test). Data are pooled from three independent experiments using three cultures from three independent mice (a–c; error bars, s.e.m.; n = 3 DF assays) and pooled from one experiment using seven mice per genotype (d,e; error bars, s.e.m.; n = 7 mice).

Figure 6 Neutralization of PIR-A in Pirb−/− eosinophil cultures attenuates eosinophil apoptosis. (a) Expression of PIR-A throughout the LDBM-derived eosinophil culture at the indicated time points. MFI, mean fluorescence intensity. (b) Pearson correlation between PIR-A and Bim mRNA expression (r = 0.943, P = 0.0004). (c–e) Dot plots (c) and a summary of the flow cytometric analysis (d,e) of eosinophils, from LDBM-derived cell of wild-type (WT) and Pirb−/− mice, grown untreated (UT), in the presence of anti-PIR-A/B or isotype control antibodies (Iso), and analyzed for anti–Siglec-F and annexin V staining. (f) Micrographs (magnification, ×400) of indicated cells stained with modified Wright Giemsa stain. (g) Mini phosphoproteomic analysis of PIR-A: protein interactions in sorted viable (Siglec-F−annexin V+) Pirb−/− cells. (h,j) Flow cytometry histogram plot (h) and quantitative analysis of phospho-Erk 1/2 (p-Erk1/2) expression in Siglec-F−annexin V− and Siglec-F−annexin V+ cells from WT and Pirb−/− cells (i). (j) Expression of PIR-A and PIR-B on the surface of eosinophils from various in vivo sources. EOs, eosinophil progenitors; PC, peritoneal cavity. NS, not significant; **P < 0.01, ***P < 0.001 (Student’s t-test). Data are representative of three independent cell cultures obtained from different mice (a–f,g,i), representative of three independent experiments (h), pooled from five independent cell cultures obtained from different mice (d,e; error bars, s.e.m., n = 5 cultures) and pooled from two different experiments using three mice per genotype (i,j; error bars, s.e.m., n = 6 mice).
and eosinophils displayed higher amounts of PIR-B in comparison with PIR-A (Fig. 6). Therefore, although PIRs compete and bind the same ligands, proapoptotic signaling by PIR-A in eosinophils was constitutively balanced by inhibitory signals mediated by PIR-B, owing to its relatively higher expression.

PIR-B is required for allergic airway inflammation

Regulation of eosinophil development by PIRs suggested a role for PIRs in allergic eosinophilic airway inflammation. Therefore, we sensitized and exposed wild-type and Pirb−/− mice to extracts of the aeroallergens *A. fumigatus* or house dust mite. We chose these models because mucosal aeroallergen–challenged Pirb−/− mice displayed similar induction of IgE compared to wild-type mice (Supplementary Fig. 7a). In contrast, systemic chicken egg ovalbumin and alum sensitization of Pirb−/− mice resulted in increased total production of IgE, which is likely due to the dysregulation of DC functions (Supplementary Fig. 7a).

Mucosal aeroallergen challenge had no effect on the apoptotic frequency of wild-type BM eosinophils (Fig. 7b,c). However, it was not sufficient to fully rescue BM Pirb−/− eosinophils from apoptosis (Fig. 7b,c). Subsequently, aeroallergen–challenged Pirb−/− mice displayed a significant reduction in aeroallergen-induced PB eosinophils and had less eosinophilic infiltrates in bronchoalveolar lavage fluid (Fig. 7d–f). This phenotype was not due to increased local eosinophil cell death in the lungs as Pirb−/− mice displayed similar frequencies of annexin V+ eosinophils as wild-type mice (Fig. 7g). Decreased lung eosinophilia in aeroallergen-challenged Pirb−/− mice was also associated with a minor but significant decrease in accumulation of CD4+ T cells (P < 0.01, one-way ANOVA followed by Tukey post hoc test) and decreased expression of Tg12 cytokines and chemokines, including IL-4, IL-13 and CCL17 (Supplementary Fig. 7b–e). Decreased eosinophilia and Tg12 cell–associated allergic airway disease was not an allergen-specific phenomenon because Pirb−/− mice challenged with house dust mites also exhibited less lung eosinophil infiltration (Supplementary Fig. 7f,g).

As PIR-B is also expressed in myeloid cells other than eosinophils, impaired lung eosinophilia in aeroallergen-challenged Pirb−/− mice could result from deficiency in these cells. To specifically probe for the involvement of CD11c+ myeloid cells in the impaired response of the Pirb−/− mice to the aeroallergen challenge, we generated mice that harbor a specific PIR-B deficiency in their CD11c+ cell compartment (including lung DCs and alveolar macrophages). To this end, we generated mixed BM chimeras (Supplementary Fig. 7h–l). Taken together, these data demonstrate that decreased eosinophil accumulation and Tg12 cell–associated inflammation is not due to the expression of PIR-B in CD11c+ cells; rather it is likely an eosinophil-dependent phenomenon.

DISCUSSION

The ability to discriminate ‘self’ from ‘non-self’ via binding of MHC class I molecules is a major immunological concept leading to tolerance of cytotoxic T cells and NK cells. However, myeloid cells are also capable of self-recognition through PIR-A and PIR-B, which elicit activating and inhibitory signaling, respectively. In this study, we dissected the function of the MHC class I binding receptors PIR-A and PIR-B in eosinophil maturation and subsequent allergic airway responses, and demonstrated key roles for PIRs in IL-5–induced expansion of eosinophils.

IL-5 has an exclusive requirement for the rapid expansion of eosinophils especially in disease settings such as asthma. Our findings demonstrate that eosinophilia regulated by IL-5 is governed by a constant ‘tugging war’ with PIR-A. Tg12 settings (such as those observed in asthma) substantially increase the ability of IL-5 to induce eosinophilia by strengthening the ‘positive’ signals for eosinophil development. Eosinophils likely escape their apoptotic fate, which is regulated by the Ilgax promoter (CD11c-DTR) and Pirb−/− BM cells. This resulted in mice that, upon treatment with diphtheria toxin, retained a Pirb−/−-deficient DC and macrophage compartment, whereas other hematopoietic cell populations retained their mixed wild-type and Pirb−/− composition (Supplementary Fig. 7h–j). Restricted absence of PIR-B from CD11c+ myeloid cells did not affect the ability of the mice to respond to *A. fumigatus* as CD11c-DTR Pirb−/− chimeric mice displayed expression of IL-4 and CCL17 similar to that in CD11c-DTR–wild-type control chimeras (Supplementary Fig. 7k,l). Taken together, these data demonstrate that decreased eosinophil accumulation and Tg12 cell–associated inflammation is not due to the expression of PIR-B in CD11c+ cells; rather it is likely an eosinophil-dependent phenomenon.

As PIR-B is also expressed in myeloid cells other than eosinophils, impaired lung eosinophilia in aeroallergen-challenged Pirb−/− mice could result from deficiency in these cells. To specifically probe for the involvement of CD11c+ myeloid cells in the impaired response of the Pirb−/− mice to the aeroallergen challenge, we generated mice that harbor a specific PIR-B deficiency in their CD11c+ cell compartment (including lung DCs and alveolar macrophages). To this end, we generated mixed BM chimeras using BM obtained from mice expressing the diphtheria toxin receptor under the regulation of the Ilgax promoter (CD11c-DTR) and Pirb−/− BM cells. This resulted in mice that, upon treatment with diphtheria toxin, retained a Pirb−/−-deficient DC and macrophage compartment, whereas other hematopoietic cell populations retained their mixed wild-type and Pirb−/− composition (Supplementary Fig. 7h–j). Restricted absence of PIR-B from CD11c+ myeloid cells did not affect the ability of the mice to respond to *A. fumigatus* as CD11c-DTR Pirb−/− chimeric mice displayed expression of IL-4 and CCL17 similar to that in CD11c-DTR–wild-type control chimeras (Supplementary Fig. 7k,l). Taken together, these data demonstrate that decreased eosinophil accumulation and Tg12 cell–associated inflammation is not due to the expression of PIR-B in CD11c+ cells; rather it is likely an eosinophil-dependent phenomenon.

DISCUSSION

The ability to discriminate ‘self’ from ‘non-self’ via binding of MHC class I molecules is a major immunological concept leading to tolerance of cytotoxic T cells and NK cells. However, myeloid cells are also capable of self-recognition through PIR-A and PIR-B, which elicit activating and inhibitory signaling, respectively. In this study, we dissected the function of the MHC class I binding receptors PIR-A and PIR-B in eosinophil maturation and subsequent allergic airway responses, and demonstrated key roles for PIRs in IL-5–induced expansion of eosinophils.

IL-5 has an exclusive requirement for the rapid expansion of eosinophils especially in disease settings such as asthma. Our findings demonstrate that eosinophilia regulated by IL-5 is governed by a constant ‘tugging war’ with PIR-A. Tg12 settings (such as those observed in asthma) substantially increase the ability of IL-5 to induce eosinophilia by strengthening the ‘positive’ signals for eosinophil development. Eosinophils likely escape their apoptotic fate, which is regulated by the Ilgax promoter (CD11c-DTR) and Pirb−/− BM cells. This resulted in mice that, upon treatment with diphtheria toxin, retained a Pirb−/−-deficient DC and macrophage compartment, whereas other hematopoietic cell populations retained their mixed wild-type and Pirb−/− composition (Supplementary Fig. 7h–j). Restricted absence of PIR-B from CD11c+ myeloid cells did not affect the ability of the mice to respond to *A. fumigatus* as CD11c-DTR Pirb−/− chimeric mice displayed expression of IL-4 and CCL17 similar to that in CD11c-DTR–wild-type control chimeras (Supplementary Fig. 7k,l). Taken together, these data demonstrate that decreased eosinophil accumulation and Tg12 cell–associated inflammation is not due to the expression of PIR-B in CD11c+ cells; rather it is likely an eosinophil-dependent phenomenon.
receptors and CD47, which interacts with signal regulatory protein-α (SIRP-α, also known as CD172)37. Despite this, the requirement for self-recognition in eosinophil activities is unknown. Our data demonstrate that inhibitory signaling by PIR-B is dominant over PIR-A-induced eosinophil apoptosis and raises the question of how this can occur if they both bind similar ligands? One evident explanation for the relative dominance of PIR-B over PIR-A is the finding that eosinophils express higher amounts of PIR-B than PIR-A and therefore MHC class I binding will lead to more inhibitory signals than proapoptotic signaling, consequently maintaining a high eosinophil survival rate. IL-5 neutralization caused a specific decrease in expression of PIR-B and shifted the balance toward dominant expression of PIR-A relative to PIR-B. Conversely, administration of IL-5 resulted in a compartmentalized increase in expression of PIR-B (and to lesser extent PIR-A) in BM eosinophils. These data suggest that PIRs constitute an additional ‘fine-tuning’ mechanism that regulates IL-5–driven eosinophilia. Hence, increased amount of IL-5 will result in decreased apoptosis owing to increased prosurvival signals that are directly mediated by the IL-5 receptor and decreased apoptosis owing to increased expression of PIR-B, which suppresses PIR-A–induced apoptosis. Similarly, the absence of IL-5 renders eosinophils apoptotic owing to a lack of survival signals directly mediated by the IL-5 receptor and increased apoptotic signaling by PIR-A owing to decreased expression of PIR-B and hence lack of inhibition.

We have recently established that Pirb−/− mice display increased tissue eosinophilia in the gastrointestinal tract19 and adipose tissue (data not shown). Thus, despite increased apoptosis of eosinophils in the BM of Pirb−/− mice, steady-state eosinophil numbers in the gastrointestinal compartment are elevated. This is likely due to the fact that the regulation of eosinophil expansion by PIRs is restricted to the BM compartment. Once eosinophils ‘escape’ the developmental regulation by PIRs and enter the blood, PIR-B can suppress eosinophil CCR3 signaling and subsequent eosinophil migration19. Therefore, tissues that display a constant eotaxin gradient, such as the gastrointestinal tract and adipose tissue, will display heightened eosinophilia in the absence of PIR-B6,38. Indeed, intratracheal administration of IL-13 that generates a strong chemotactic gradient for eosinophil recruitment (but not IL-5–dependent generation of eosinophils in the BM) results in increased lung eosinophil accumulation in Pirb−/− mice19. In contrast to the case with administration of IL-13, under typical T H2 settings rapid IL-5–induced generation of eosinophils in the BM occurs, and PIR-B is required for eosinophil generation and subsequent lung infiltration. Although we cannot entirely exclude the involvement of additional mechanisms governed by PIR-B in T H2 settings, the finding that the expression of PIR-B in the CD11c+ myeloid cell compartment is dispensable for decreased T H2 cell–associated disease in Pirb−/− mice and the finding that mucosal sensitization was similar between wild-type and Pirb−/− mice strongly suggest that decreased CD4+ T cell accumulation and expression of T H2 cell–associated cytokines and chemokines is eosinophil-dependent. In support of this notion, numerous studies demonstrate a key contribution for eosinophils in the development of allergic asthma partially by their ability to regulate local lung responses of T H2 cells and DCs35,39–41.

Our data suggest that PIR-B does not regulate IL-5–induced expansion of eosinophils by direct interactions with IL-5 receptor signaling components (similar to the way PIR-B regulates GM-CSF and/or IL-3–induced responses16,17). This finding is of particular interest because it is different than the current reported interactions of other ITIM-bearing receptors with IL-5 receptor. For example, IL-5 primes the proapoptotic effects of Siglec-8 (ref. 42), and increased expression of IL-5 potentiates the suppression of IL-5–induced survival by CD300a43. The aforementioned data suggest direct biochemical interactions of Siglec-8 and CD300a with the IL-5 receptor. In addition, we demonstrated that PIR-A associated with the adaptor molecule Grb2, an upstream regulator of the Mek-Erk pathway9,22. This interaction is likely mediated via the γ-chain of Fc receptors, which is required for surface expression of PIR-A13, has been shown to interact with Grb2 (ref. 44) and can mediate proapoptotic signaling45. Similar to our findings that suggest a role for Erk in PIR-A–mediated apoptosis of eosinophils, Erk activation has been identified as critical in delivering proapoptotic signals via Siglec-8 in IL-5–activated eosinophils42.

In summary, we provided evidence that self-recognition of MHC class I molecules by PIRs has a critical role in development of eosinophils and consequent expansion in settings of allergic airway disease. These data led us to a new model of the molecular pathways regulating eosinophilia and have broad implications for eosinophilic diseases.

METHODS

Methods and any associated references are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

We thank H. Kubagawa (University of Alabama) for providing Pirb−/− mice, and S.P. Hogan, O. Mandelboim, I. Bachelet, N. Osherov and A. Ben-Baruch for critically reviewing this manuscript and helpful discussions. This work was performed in partial fulfillment of the requirements for the PhD degree of N.B.B.-M., and D.S. at Tel Aviv University. Supported by the FP7 Marie-Curie Reintegration grant (256311), the Israel Science Foundation (995/11 and 1708/11) the Israel Cancer Research Foundation Research Career Development Award and the Fritz Thyssen Foundation (to A.M.); the US-Israel Bi-national Science Foundation (2009222 to A.M. and M.E.R.); US National Institutes of Health NIAID (R01AI083450 and R37AI045898), Campaign Urging Research for Eosinophilic Disease (CURED) Foundation and Buckeye Foundation (to M.E.R.).

AUTHOR CONTRIBUTIONS

N.B.-B.-M., D.S., I.M., M.I., D.K.-A., C.B., P.C.F., D.R. and A.M. did in vitro and in vivo experiments and analyzed data. M.E.R and S.J. provided critical reagents and analyzed data. A.M. supervised the study, and wrote and edited the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Nishinakamura, R. et al. Mice deficient for the IL-3/GM-CSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, while beta IL3 receptor-deficient mice are normal. Immunity 2, 211–222 (1995).
2. Sanderson, C.J. Interleukin-5, eosinophils, and disease. Blood 79, 3101–3109 (1992).
3. Collins, P.D., Marleau, S., Griffiths Johnson, D.A., Jose, P.J. & Williams, T.J. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J. Exp. Med. 182, 1169–1174 (1995).
4. Rothenberg, M.E. et al. IL-5-dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J. Immunol. 143, 2311–2316 (1989).
5. Rothenberg, M.E. & Hogan, S.P. The eosinophil. Annu. Rev. Immunol. 24, 147–174 (2006).
6. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).
7. Rosenberg, H.F., Dyer, K.D. & Foster, P.S. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 13, 9–22 (2013).
8. Chu, V.T. et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 12, 151–159 (2011).
9. Starr, T.K., Jameson, S.C. & Hoggquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).
10. Ljunggren, H.G. & Karre, K. In search of the ‘missing self’: MHC molecules and NK cell recognition. *Immunol. Today* **11**, 237–244 (1990).

11. Takai, T. Paired immunoglobulin-like receptors and their MHC class I recognition. *Immunology* **115**, 433–440 (2005).

12. Kubagawa, H. et al. Biochemical nature and cellular distribution of the paired immunoglobulin-like receptor A (PIR-A) and PIR-B. *J. Exp. Med.* **189**, 309–318 (1999).

13. Nakamura, A., Kobayashi, E. & Takai, T. Excavated graft-versus-host disease in PIR-B null mice. *Nat. Immunol.* **5**, 623–629 (2004).

14. Maeda, A., Kurosaki, M. & Kurosaki, T. Paired immunoglobulin-like receptor (PIR)-A is involved in activating mast cells through its association with Fc receptor gamma chain. *Int. Immunol.* **10**, 15086–15090 (1999).

15. Blery, M. et al. The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. *Proc. Natl. Acad. Sci. USA* **95**, 2446–2451 (1998).

16. Ujike, A. et al. Impaired dendritic cell maturation and increased T(H)2 responses in PIR-B(−/−) mice. *Nat. Immunol.* **3**, 542–548 (2002).

17. Wheadon, H., Paling, N.R. & Welham, M.J. Molecular interactions of SHP1 and SHP2 in IL-3-signalling. *Cell. Signal.* **14**, 219–229 (2002).

18. Mitsuhashi, Y. et al. Regulation of plasmacytoid dendritic cell responses by PIR-B. *Blood* **120**, 3256–3259 (2012).

19. Munitz, A., McBride, M.L., Bernstein, J.S. & Rothenberg, M.E. A dual activation and inhibition role for the paired immunoglobulin-like receptor B in eosinophils. *Blood* **111**, 5694–5703 (2008).

20. Dyer, K.D. et al. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. *J. Immunol.* **181**, 4004–4009 (2008).

21. Iwasaki, H. et al. Identification of eosinophil lineage-committed progenitors in the bone marrow microenvironment. *J. Exp. Med.* **188**, 1991–1995 (1998).

22. Moshkovits, I. et al. CMRF35-like molecule 1 (CLM-1) regulates eosinophil homeostasis by suppressing cellular chemotaxis. *Mucosal Immunol.* doi:10.1038/mi.2013.47 (3 July 2013).

23. Uehara, T. et al. Inhibition of IgE-mediated mast cell activation by the paired Ig-like receptor PIR-B. *J. Clin. Invest.* **108**, 1041–1050 (2001).

24. Kao-Afari, D., Moshkovits, I., Eickelberg, O., Konigshoff, M. & Munitz, A. Paired immunoglobulin-like receptor-B inhibits pulmonary fibrosis by suppressing profibrogenic properties of alveolar macrophages. *Am. J. Respir. Cell Mol. Biol.* **48**, 456–464 (2013).

25. Vogeheringer, D., van Rooijen, N. & Locksley, R.M. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. *J. Leukoc. Biol.* **88**, 1434–1444 (2007).

26. Bouillet, P. & O’Reilly, L.A. CD95, BIM and T cell homeostasis. *Nat. Rev. Immunol.* **9**, 514–519 (2009).

27. Kopf, M. et al. IL-5-deficient mice have a developmental defect in CD5− B-1 cells and lack eosinophils but have normal antibody and cytotoxic T cell responses. *Immunity* **4**, 15–24 (1996).

28. Rennick, D.M. et al. In vivo administration of antibody to interleukin-5 inhibits increased generation of eosinophils and their progenitors in bone marrow of parasitized mice. *Blood* **76**, 312–316 (1990).

29. Rosenberg, H.F., Phipps, S. & Foster, P.S. Eosinophil trafficking in allergy and asthma. *J. Allergy Clin. Immunol.* **119**, 1303–1310 (2007).

30. Tomaki, M. et al. Eosinophilopoiesis in a murine model of allergic airway eosinophilia: involvement of bone marrow IL-5 and IL-5 receptor alpha. *J. Immunol.* **165**, 4040–4050 (2000).

31. Matsuhashi, H. et al. Differential but competitive binding of Nogo protein and class I major histocompatibility complex (MHC) to the PIR-B ectodomain provides an inhibition of cells. *J. Biol. Chem.* **286**, 25739–25747 (2011).

32. Kessels, H.W., Ward, A.C. & Schumacher, T.N. Specificity and affinity motifs for Gbr2 SH2-ligand interactions. *Proc. Natl. Acad. Sci. USA* **99**, 8524–8529 (2002).

33. van Rijt, L.S. et al. In vivo depletion of lung CD11c− dendritic cells during allergen challenge abrogates the characteristic features of asthma. *J. Exp. Med.* **201**, 981–991 (2005).

34. Lanier, L.L. NK cell recognition. *Annu. Rev. Immunol.* **23**, 225–274 (2005).

35. Kessels, H.W., Ward, A.C. & Schumacher, T.N. Specificity and affinity motifs for Gbr2 SH2-ligand interactions. *Proc. Natl. Acad. Sci. USA* **96**, 71–87 (2009).

36. van Rijt, L.S. et al. Identification of eosinophil lineage-committed progenitors in the bone marrow microenvironment. *J. Exp. Med.* **201**, 1891–1897 (2005).

37. van den Berg, T.K. & van der Schoot, C.E. Innate immune ‘self’ recognition: a role for CD47-SIRPalpha interactions in hematopoietic stem cell transplantation. *Trends Immunol.* **29**, 203–206 (2008).

38. Ahrens, R. et al. Intestinal macrophage epithelial cell-derived CCL11/eotaxin-1 mediates eosinophil recruitment and function in pediatric ulcerative colitis. *J. Immunol.* **181**, 7390–7399 (2008).

39. Yang, D. et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. *J. Exp. Med.* **205**, 79–90 (2008).

40. Lee, J.J., Jacobsen, E.A., McGarry, M.P., Schleimer, R.P. & Lee, N.A. Eosinophils in health and disease: the LIAR hypothesis. *Clin. Exp. Allergy* **40**, 563–575 (2010).

41. Bochner, B.S. Verdict in the case of therapies versus eosinophils: the jury is still out. *J. Allergy Clin. Immunol.* **113**, 3–9, quiz 10 (2004).

42. Kano, G., Alman, M., Bochner, B.S. & Zimmerman, N. Mechanism of Siglec-8-mediated cell death in IL-5-activated eosinophils: Role for reactive oxygen species-enhanced MEK/ERK activation. *J. Allergy Clin. Immunol.* **132**, 437–445 (2013).

43. Munitz, A. et al. The inhibitory receptor Irp60 (CD300a) suppresses the effects of IL-5, GM-CSF, and eotaxin on human peripheral blood eosinophils. *Blood* **107**, 1996–2003 (2006).

44. Chu, J., Liu, Y., Koretzky, G.A. & Durden, D.L. SLP-76-Cbl-Grb2-Shc interactions in FcgammaRII signaling. *Blood* **92**, 1697–1706 (1998).

45. Kanamaru, Y. et al. IgA Fc receptor I signals apoptosis through the FcRy ITAM and affects tumor growth. *Blood* **109**, 203–211 (2007).
Eosinophil bone marrow culture. Eosinophils were grown from the BM of WT and Pirb−/− mice with modifications based on a prior report20. Briefly, BM cells were harvested and loaded on a histopaque gradient (Sigma). LDBM cells were collected and cultured in the presence of SCF and Flt3L for 4 d. Thereafter, the medium was replaced with IL-3 for the rest of the culture (up to day 14). All cytokines were purchased from Peprotech.

Cell proliferation. Cell proliferation was assessed using the Click-iT Edu kit (Invitrogen) according to the manufacturer's instructions.

Allergen sensitization and challenge. Allergic eosinophilic airway inflammation was induced by challenging mice intranasally with either A. fumigatus or house dust mite (Bayer Pharmaceuticals), three times a week for 2–3 weeks (up to day 14). All cytokines were purchased from Peprotech.

Bone marrow–derived macrophage and dendritic cell generation. BM cells were harvested and loaded on a histopaque gradient (Sigma). LDBM cells were collected and cultured in the presence of M-CSF or GM-CSF (20 ng/ml, Peprotech), respectively, for 7–9 d.

Real-time quantitative PCR. RNA samples from the whole lung were subjected to reverse transcription analysis using SuperScript II reverse transcriptase (Invitrogen) according to manufacturer's instructions. Quantitative PCR analysis was performed using the CFX96 system (Bio-Rad Laboratories) in conjunction with the ready-to-use fast-start SYBR Green I Master reaction kit (Roche Diagnostic Systems). Results were normalized to Hprt cDNA as previously described24. The primers that were used in this study were: Il4 Fwd, AGCTGTGACCCTGATGGTGG and Rev, GGCGTCATCCTTC

Enzyme-linked immunosorbent assay. Bronchoalveolar lavage fluid CCL17, IL-4 and IL-13 were assessed using a commercial ELISA kit (R&D Systems Duet Set, Lower detection limits: 15.62, 3.91 and 62.5 pg/ml, respectively). Serum IgE was measured using a commercial kit purchased from BD Biosciences according to the manufacturer's instructions. Lower detection limit for IgE was 15 pg/ml.

Bone marrow–derived macrophage and dendritic cell generation. Macrophages and dendritic cells were grown from the BM of WT and Pirb−/− mice. Briefly, BM cells were harvested and cultured in the presence of M-CSF or GM-CSF (20 ng/ml, Peprotech), respectively, for 7–9 d.
Bone marrow chimera mice. Syngeneic BM chimeras were generated as described. Briefly, WT C57BL/6 mice were exposed to a single lethal total body irradiation of 950 rad. One day after irradiation, a 1:1 mixture of 5×10^6 BM cells obtained from CD11c-DTR mice (CD45.1+) and WT or Pirb−/− BM cells (CD45.2+) was injected into the irradiated mice, thus generating mixed BM chimeras. Thereafter, the mice were allowed to rest for 10 weeks, and engraftment was validated in PB samples using anti-CD45.1 and anti-CD45.2 staining. After confirmation of engraftment, the mice were challenged with *A. fumigatus* extract as described above. To deplete CD11c+ cells, diphtheria toxin (8 ng/g body weight) was injected (intraperitoneally) every other day starting 24 h before the initial allergen challenge. CD11c+ cell depletion was monitored by flow cytometry using anti-CD45.1 and anti-CD11c staining.

Statistical analysis. Data were analyzed by ANOVA followed by Tukey post hoc test using GraphPad Prism 4. Alternatively, several experiments were analyzed by Student’s t-test. Data are presented as mean ± s.e.m., and values of $P < 0.05$ were considered significant.

46. Zuo, L. *et al.* IL-13 induces esophageal remodeling and gene expression by an eosinophil-independent, IL-13R alpha 2-inhibited pathway. *J. Immunol.* **185**, 660–669 (2010).
47. Koller, B.H., Marrack, P., Kappler, J.W. & Smithies, O. Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells. *Science* **248**, 1227–1230 (1990).
48. Sapoznikov, A. & Jung, S. Probing in vivo dendritic cell functions by conditional cell ablation. *Immunol. Cell Biol.* **86**, 409–415 (2008).