Investigation of NOx emissions for mitigating public health risk with Mercedes E Coupe

D L Băldean¹, L Andrei² and A I Borzan¹
¹ Automotive and Transportation Dep., Technical University of Cluj-N., Cluj, Muncii 103, Ro.
² Infectious Disease Hospital of Cluj-Napoca, Cluj, Iuliu Moldovan 23, Romania
doru.baldean@auto.utcluj.ro

Abstract. Investigation of NOx emissions is a worldwide concern in order to mitigate or to reduce the health risks that the pollutant poses for the public. It is known that the NOx are a combination of highly reactive odourless gases containing nitrogen and oxygen in different proportions. The main objective of the present paper is to show the applied investigation and its following results regarding NOx values and trendlines for the warm-up phase of a Mercedes E 350 CDI Cabrio-Coupe A/C/W207. The secondary objective of the investigation consists in dividing and comparing the results obtained before and after the threshold limit of 40°C in coolant temperature. The warm-up sequence is not the highest temperature stress regarding pollution and NOx formation. It is although very important due to at least two reasons. In the first place, many of the usual road traffic trips are not exceeding the warm-up duration, meaning that the travel is below 40 minutes long. Secondly, the operation below 60°C is the most stressful both physically and chemically for the engine (its systems) and the environment being defined by high wear and pollution levels. Temperature is a key factor.

1. Introduction
In the early 2020 the Corona virus pandemic brought both significant restrictions and research opportunities. Due to the risk of transmitting the deadly virus authorities worldwide have drastically limited the road traffic and other forms of transportation impacting the air quality and pollution levels. Some researchers took this opportunity to further the science and to gain valuable result by looking into the given problem as it was a great chance to understand the phenomena and to size the benefits [1, 15].

NOx is produced during the compression, combustion and evacuation strokes when air is compressed at high temperatures and fuel is injected in order to generate mechanical work. NOx leads to smog formation, acid rain, deterioration of water quality, greenhouse effect, and reduced visibility in urban areas [2, 3, 4]. Controlling the temperature is the key factor to impact engine performance [5]. Smart systems and comprehensive approaches allow the researchers to tackle both the operation and emission problems [6, 7, 8, 9, 10]. Climate emergency mandates the researchers to investigate furthermore the NOx control technologies and emission model implementation for different vehicles [11, 12, 13, 14, 15].

Because there are two ways of determining the NOx emissions in relation with the operating regime, the most common one is by taking into consideration the performance, as the power output – which coincides with the high engine speed and high temperatures. At high power output the hourly consumption is significantly high. In this first case the formation of NOx compounds is sustained by the high temperatures and fuel consumption. Increasing the demand upon the accelerator leads to higher fuel injected quantity, thus increasing the temperature inside the cylinder, increasing the engine speed, thus increasing the power output and NOx. In this stage, high engine loads lead to high NOx emissions.
This observation is valid only when we consider the warming up phase and acceleration process, with the precise consequence of increasing the power, the hourly fuel consumption, the engine speed and mixture temperature. Another way of looking into the problem is more practical and considers the fact of deceleration and engine brake when the temperature is already high. Depending on the environmental temperature level, the usual warm-up phase takes between 10 and 30 minutes. In the present case the first 5 to 7 minutes from engine start allowed the coolant to reach the 40˚C level and the following 5 minutes led to another increase in temperature from 40 to almost 63˚C.

Figure 1 shows the map with the recorded differences between the NO\textsubscript{2} emissions before and after the road traffic restrictions in New York. It highlights the fact that the lower road traffic will get the higher air quality will get. On global scale, after animal farming industry, the transportation is an important pollutant [14].

2. Applied research
Applied research is based on advanced computer aided investigation with models and methods used for taking measurements, calculating, predicting or estimating NO\textsubscript{x} levels in exhaust gas, as it is allowed by the Law 104/2011 [14], and upon a vehicle which has diesel engine with technical data given in table 1.

Figure 2 presents the vehicle 1, a Mercedes E Cabrio-Coupe A207, having a common platform with C207 and W207 models, used in the current research for NO\textsubscript{x} assessment. It has engine, clutch, gearbox and steering system placed on the front axle 2. The on-board data management system 3 records the vehicle performance in operation. Fuel tank 4 and traction 8 are disposed on the rear axle. Tail pipes 7 on the rear end allow the exhaust compounds 9 to affect the atmosphere and develop specific reaction 5 with oxygen. Rain 6 and NO\textsubscript{2} gas negatively impacts the environment 10 and public health [2, 3, 12].
In figures 3 to 12 are presented the results for NO\textsubscript{x} levels determined when operating the vehicle in the warm-up phase, by taking the reference the point of 40°C which is also indicated on board.

The NO\textsubscript{x} emissions were determined just for a limited period of time to reach 60°C in warm up process. The hourly NO\textsubscript{x} emissions versus the selected gear ratio are given in figures 13 and 14.
Most significant technical specifications regarding the vehicle’s power-train are presented in table 1.

Parameter	Mercedes-Benz E350 CDI/Bluetec (2013) Model W/A207
Engine	Diesel 350 CDI/Compression ignited/W207/2013
	3.0 L OM642 V6 turbo
Fuel supply	Common-Rail/6 injectors
Clutch	Dual
Transmission	7G-TRONIC 7-speed
Axle	Rear axle drive, Front axle steering
Wheelbase	2874 mm

NO\textsubscript{x} assessment based on air and fuel consumption makes use of the instant mixture as modeled below:

\[\text{NO}_x = 5 \cdot 10^{-2} I_{AFM}/6 = 5 \cdot 10^{-2}[(\text{F}_C + \text{A}_C) \cdot N_c]/6, \text{ [kg/h]} \]

where \(I_{AFM} \) is the instant air-fuel mixture introduced each operational cycle into the engine; \(\text{F}_C \) – fuel consumption, in kg/h; \(\text{A}_C \) - air consumption, in kg/h; \(N_c \) – number of working cycles.

3. Observations and conclusions

Outside environment temperature during the experimental test was 13°C. The Mercedes E-Class Cabrio under testing in this research has a complex transmission with 7 gear ratios for forward drive and one for reverse, with three optional gear change strategies (M-manual; S-sporty; E- automatic eco-mode). There have been written more than 300 lines of data code and a total of 3920 digital cells were created for the current investigation. Steering excessively leads to higher fuel consumption and less autonomy. In approximately ten to twelve minutes, the engine has been warmed up above 60°C due to traction load and operation in road conditions. Changing in temperature led to a significant improvement in fuel economy due to the reduction of fuel consumption. There are at least 2-3 seconds delay between actuating the accelerator of the car, increasing consequently the fuel injected quantity, and the following process of engine speed increase. After increasing the engine speed there are at least 1-2 seconds delay till the recorded vehicle speed is following up the engine crankshaft.

The average NO\textsubscript{x} value, during the first phase of the investigation, when the coolant temperatures increased from 13°C to 40°C, was 1.198 ppm. The same pollutant recorded an average of 1.326 ppm in the second part of investigation, when the engine coolant was between 40°C and 63°C. The NO\textsubscript{x} increase trend on average with approximately 10% is also validation proof of the research, showing the effect of a higher temperature upon the formation of nitrogen and oxygen compounds. Estimation allows us to foresee a significant increase in NO\textsubscript{x} levels when coolant temperatures are above 80°C and the vehicle operates in engine braking regime. These insights, to be proven and discussed, require further research.
References

[1] Andrei L et al 2019 *Applied Measurements and Instrumentation for Improving Diagnostic Devices and Systems in Metropolitan Polluted Environments with Nitric and Carbon Oxides* (6th International Conference on Advancements of Medicine and Health Care through Technology; 17–20 October 2018, Cluj-Napoca, Romania, Springer, pp. 45-49) DOI https://doi.org/10.1007/978-981-13-6207-1_8

[2] Andrei L et al 2018 *Contributions to the research of the relation between air pollution with nitric oxides and the impact upon environment and life environment pollution management and life health* (In Science and Engineering / Știință și Inginerie AGIR Press) eISSN 2359–828X DOI http://stiintasiinginerie.ro/34-68

[3] Andrei L et al 2017 *Contributions to the applied research of effects from surrounding environment pollution due to road traffic upon eyes’ anatomy and pathology development* (In Science and Engineering / Știință și Inginerie AGIR Press) eISSN 2359–828X DOI http://stiintasiinginerie.ro/32-85

[4] Borzan AI et al 2019 *Experimental design for Diesel supply control in order to improve fuel efficiency* (In IOP Conf. Series: Materials Science and Engineering, Vol. 568, Issue 1, 17 Sept. 2019) ISSN: 17578981, DOI: 10.1088/1757-899X/568/1/012038

[5] Botean AI 2019 *Influence of the temperature gradient on the speed of a Stirling gamma engine* (In Acta Technica Napocensis Series-Applied Mathematics Mechanics and Engineering, Vol. 61, 3, pp. 339-346, 2018) ISSN: 1221-5872, WOS:000468025900008

[6] Ferenti I et al 2019 *Analysis of Intelligent Control and Interface in Pressurized Liquid Injection Systems for Competitive Technical Solutions* (In Hidraulica, Issue 2, 43-48, 1 April 2018, Article number 327395077) ISSN: 1453 – 7303.

[7] Jovrea LD et al 2017 *Study of the semiologic aspects concerning the hydraulics of the injection system in diagnosing 1.8 TDCI engine from Ford Focus* (In Science and Engineering / Știință și Inginerie AGIR Press, ISSN 2067-7138, eISSN 2359–828X) DOI https://bit.do/828X

[8] Jovrea S et al 2018 *Researching on-board display of esential informations concerning technical conditions in operation and fuel-economy of a motor-vehicle in operation* (In Science and Engineering/Știință și Inginerie, Vol. 31, Issue 67, AGIR Press) eISSN 2359–828X

[9] Jurchiș BM et al 2019 *Research of Alternative Composite Solutions in Gas After-Treatment System for Diesel Cars* (In SIAR International Congress of Automotive and Transport Engineering: Science and Management of Automotive and Transportation Engineering, First Online 14 Oct. 2019, pp. 160-164) DOI: 10.1007/978-3-030-32564-0_19

[10] Jurchiș BM et al 2019 *Experimental research on Diesel Particle Filter (DPF) in relation to the fuel type* (In IOP Conference Series: Materials Science and Engineering, Volume 568, Issues 1, pp. 12-27) DOI: 10.1088/1757-899X/568/1/012027

[11] Komanoff C et al 2020 *What the coronavirus pandemic can teach us about the climate emergency* (In: The intercept, https://theintercept.com/2020/04/04/coronavirus-pandemic-climate-change-co2-emissions/) Online 4 April 2020

[12] Reșitoğlu IA 2018 *NOx Pollutants from Diesel Vehicles and Trends in the Control Technologies* (In Tech Open https://www.intechopen.com/books/diesel-and-gasoline-engines/no-sub-x-sub-pollutants-from-diesel-vehicles-and-trends-in-the-control-technologies)

[13] Wang X et al 2019 *A NOx Emission Model Incorporating Temperature for Heavy-Duty Diesel Vehicles with Urea-SCR Systems Based on Field Operating Modes* (In: Atmosphere 10, 00337, Publishing date 20 June 2019) DOI: doi:10.3390/atmos10060337

[14] *** 2020 *Air quality. Air quality assessment* (In: National Air Quality Monitoring Network) http://www.calitateaer.ro/public/assessment-page/assessment-page/?locale=en

[15] *** 2020 *What the Coronavirus Teaches Us About the Climate Crisis* (In: LIVEKINDLY individual mobility https://www.youtube.com/watch?v=LNVCRUWjYyU)