Primary decomposable subspaces of $k[t]$ and Right ideals of the first Weyl algebra $A_1(k)$ in characteristic zero

M. K. KOUAKOU
Université de Cocody
UFR-Mathématiques et Informatique
22 BP 582 Abidjan 22
Côte d’Ivoire

cw1kw5@yahoo.fr

A. TCHOUDJEM
Institut Camille Jordan
UMR 5208
Université Lyon 1
43 bd du 11 novembre 1918
69622 Villeurbanne cedex
France

tchoudjem@math.univ-lyon1.fr

January 13, 2010

In the classification of right ideals $A_1 := k[t, \partial]$ the first Weyl algebra over a field k, R. Cannings and M.P. Holland established in [3, Theorem 0.5] a bijective correspondence between primary decomposable subspaces of $R = k[t]$ and right ideals I of $A_1 := k[t, \partial]$ the first Weyl algebra over k which have non-trivial intersection with $k[t]$:

$$
\Gamma : V \mapsto \mathcal{D}(R, V) \ , \ \Gamma^{-1} : I \mapsto I \star 1
$$

This theorem is a very important step in this study, after Stafford’s theorem [1, Lemma 4.2]. However, the theorem had been established only when the field k is an algebraically closed and of characteristic zero.

In this paper we define notion of primary decomposable subspaces of $k[t]$ when k is any field of characteristic zero, particulary for \mathbb{Q}, \mathbb{R}, and we show that R. Cannings and M.P. Holland’s correspondence theorem holds. Thus right ideals of $A_1(\mathbb{Q}), A_1(\mathbb{R})\ldots$ are also described by this theorem.
1 Cannings and Holland’s theorem

1.1 Weyl algebra in characteristic zero and differential operators

Let k be a commutative field of characteristic zero and $A_1 := A_1(k) = k[t, \partial]$ where ∂, t are related by $\partial t - t \partial = 1$, be the first Weyl algebra over k.

A_1 contains the subring $R := k[t]$ and $S := k[\partial]$. It is well known that A_1 is an integral domain, two-sided noetherian and since the characteristic of k is zero, A_1 is hereditary (see [2]). In particular, A_1 has a quotient division ring, denoted by Q_1.

For any right (resp: left) submodule of Q_1, M^* the dual as A_1-module will be identified with the set $\{ u \in Q_1 : uM \subset A_1 \}$ (resp:$\{ u \in Q_1 : Mu \subset A_1 \}$) when M is finitely generated (see [1]).

Q_1 contains the subrings $D = k(t)[\partial]$ and $B = k(\partial)[t]$. The elements of D are k-linear endomorphisms of $k(t)$. Precisely, if $d = a_n \partial^n + \cdots + a_1 \partial + a_0$ where $a_i \in k(t)$ and $h \in k(t)$, then

$$d(h) := a_n h^{(n)} + \cdots + a_1 h^{(1)} + a_0 h$$

where $h^{(i)}$ denotes the i-th derivative of h and $a_i h^{(i)}$ is a product in $k(t)$. One checks that:

$$(dd')(h) = d(d'(h)) \text{ for } d, d' \in k(t)[\partial], \ h \in k(t)$$

For V and W two vector subspaces of $k(t)$, we set :

$$\mathcal{D}(V, W) := \{ d \in k(t)[\partial] : d(V) \subset W \}$$

$\mathcal{D}(V, W)$ is called the set of differential operators from V to W.

Notice that $\mathcal{D}(R, V)$ is an A_1 right submodule of Q_1 and $\mathcal{D}(V, R)$ is an A_1 left submodule of Q_1. If $V \subseteq R$, one notes that $\mathcal{D}(R, V)$ is a right ideal of A_1. When $V = R$, then $\mathcal{D}(R, R) = A_1$.

If I is a right ideal of A_1, we set

$$I \star 1 := \{ d(1), d \in I \}$$

Clearly, $I \star 1$ is a vector subspace of $k[t]$ and $I \subseteq \mathcal{D}(R, I \star 1)$.

Inclusion $A_1 \subset k(\partial)[t]$ and $A_1 \subset k(t)[\partial]$ show that it can be defined on A_1 two notions of degree: the degree associated to ”t” and the degree associated to ”∂”. Naturally, those degree notions extend to Q_1.

2
1.2 Stafford’s theorem

Let I be a non-zero right ideal of A_1. By J. T. Stafford in [1, Lemma 4.2], there exist $x, e \in Q_1$ such that:

(i) $xI \subset A_1$ and $xI \cap k[t] \neq \{0\}$, (ii) $eI \subset A_1$ and $eI \cap k[\partial] \neq \{0\}$

By (i) one sees that any non-zero right ideal I of A_1 is isomorphic to another ideal I' such that $I' \cap k[t] \neq \{0\}$, which means that I' has non-trivial intersection with $k[t]$. We denote \mathcal{I}_t the set of right ideals I of A_1 the first Weyl algebra over k such that $I \cap k[t] \neq \{0\}$

Stafford’s theorem is the first step in the classification of right ideals of the first Weyl algebra A_1.

1.3 The bijective correspondence theorem

Let c be an algebraically closed field of characteristic zero. Cannings and Holland have defined primary decomposable subspace V of $c[t]$ as finite intersections of primary subspaces which are vector subspaces of $c[t]$ containing a power of a maximal ideal m of $c[t]$. Since c is an algebraically closed field, maximal ideals of $c[t]$ are generated by one polynomial of degree one: $m = (t - \lambda)c[t]$. So, a vector subspace V of $c[t]$ is primary decomposable if:

$$V = \bigcap_{i=1}^{n} V_i$$

where each V_i contains a power of a maximal ideal m_i of $c[t]$.

They have established the nice well-known bijective correspondence between primary decomposable subspaces of $c[t]$ and \mathcal{I}_t by:

$$\Gamma : V \mapsto \mathcal{D}(R, V) \ , \ \Gamma^{-1} : I \mapsto I \ast 1$$

Since $V = \bigcap_{i=1}^{n} V_i$ and $m_i =< (t - \lambda_i)^{r_i}> \subseteq V_i$, one has $(t - \lambda_1)^{r_1} \cdot \cdot \cdot (t - \lambda_n)^{r_n}k[t] \subseteq V$. So, easily one sees that

$$(t - \lambda_1)^{r_1} \cdot \cdot \cdot (t - \lambda_n)^{r_n}k[t] \subseteq \mathcal{D}(R, V) \cap c[t]$$

However it is not clear that $I \ast 1$ must be a primary decomposable subspace of $c[t]$.

Cannings and Holland’s theorem use the following result, which holds even if the field is just of characteristic zero:

Lemma 1: Let $I \in \mathcal{I}$ and $V = I \star 1$. One has:

$I = \mathcal{D}(R, V)$ and $I^* = \mathcal{D}(V, R)$.

For the proof of Cannings and Holland’s theorem one can see [3].

We note that, since $< (t-\lambda_i)^{r_i} > \subseteq V_i$, for any s in the ring $c+(t-\lambda_i)^{r_i}c[t]$, one has:

$s \cdot V_i \subseteq V_i$

It is this remark which will allow us to give general definition of primary decomposable subspaces of $k[t]$ for any field k of characteristic zero, not necessarily algebraically closed.

2 Primary decomposable subspaces of $k[t]$

Here we give a general definition of primary decomposable subspaces of $k[t]$ when k is any field of characteristic zero not necessarily algebraically closed and we keep the bijective correspondence of Cannings and Holland.

2.1 Definitions and examples

- **Definitions**

Let $b, h \in R = k[t]$ and V a k-subspace of $k[t]$. We set:

$O(b) = \{a \in R : a' \in bR\}$ and $O(b, h) = \{a \in R : a' + ah \in bR\}$

where a' denotes the formal derivative of a.

$S(V) = \{a \in R : aV \subseteq V\}$ and $C(R, V) = \{a \in R : aR \subseteq V\}$

Clearly $O(b)$ and $S(V)$ are k-subalgebras of $k[t]$. If $b \neq 0$, the Krull dimension of $O(b)$ is $\dim_K(O(b)) = 1$. The set $C(R, V)$ is an ideal of R contained in both $S(V)$ and V.

- A k-vector subspace V of $k[t]$ is said to be primary decomposable if $S(V)$ contains a k-subalgebra $O(b)$, with $b \neq 0$.

• Examples
 ◦ Easily one sees that $O(b) \subseteq S(O(b, h))$ and $C(R, O(b, h)) = C(R, O(b))$, in particular $O(b, h)$ is a primary decomposable subspace when $b \neq 0$.

Following lemmas and corollary show that classical primary decomposable subspaces are primary decomposable in the new way.

Lemma 2:* Let k be a field of characteristic zero and $\lambda_1, .., \lambda_n$ finite distinct elements of k. Suppose that $V_1, .., V_n$ are k-vector subspaces $k[t]$, each V_i contains $(t - \lambda_i)^{r_i} k[t]$ for some $r_i \in \mathbb{N}^*$. Then

$$O((t - \lambda_1)^{r_1-1} \cdots (t - \lambda_n)^{r_n-1}) \subseteq S(\bigcap_{i=1}^n V_i)$$

Proof: One has $O((t - \lambda_i)^{r_i-1}) = k + (t - \lambda_i)^{r_i} k[t]$ and

$$O((t - \lambda_1)^{r_1-1} \cdots (t - \lambda_n)^{r_n-1}) = \bigcap_{i=1}^n O((t - \lambda_i)^{r_i-1})$$

An immediate consequence of this lemma is:

Corollary 3: In the above hypothesis of lemma 2, let

$$V = \bigcap_{i=1}^n V_i$$

If $q \in C(R, V)$, then $O(q) \subseteq S(V)$.

Proof: First one notes that if $q \in pk[t]$, then $O(q) \subseteq O(p)$. Let $b = (t - \lambda_1)^{r_1} \cdots (t - \lambda_n)^{r_n}$.

In the above hypothesis, one has

$$C(R, V) = \bigcap_{i=1}^n C(R, V_i) = \bigcap_{i=1}^n (t - \lambda_i)^{r_i} k[t] = (\prod_{i=1}^n (t - \lambda_i)^{r_i}) k[t] = bk[t]$$

Since $b \in (t - \lambda_1)^{r_1-1} \cdots (t - \lambda_n)^{r_n-1} k[t] = b_0 k[t]$, one has $O(b_0) V_i \subseteq V_i$ for all i, so

$$O(b_0) \subseteq S(V) \text{ and } O(q) \subseteq O(b) \subseteq O(b_0)$$

An opposite-example:

Suppose the field k is of characteristic zero and one can find $q \in k[t]$ such that: q is irreducible and $\deg(q) \geq 2$. Then the vector subspace $V = k + qk[t]$ is not primary decomposable.
2.2 Classical properties of primary decomposable subspaces

Here we prove that when the field k is algebraically closed of characteristic zero, those two definitions are the same.

Lemma 4: Let k be an algebraically closed field of characteristic zero and V be a k-vector subspace of $k[t]$ such that $S(V)$ contains a k-subalgebra $O(b)$ where $b \neq 0$. Then V is a finite intersections of subspaces which contains a power of a maximal ideal of $k[t]$.

Proof: Since k is algebraically closed field and $b \neq 0$, one can suppose $b = (t - \lambda_1)^{r_1} \cdots (t - \lambda_n)^{r_n}$. Let $b^* = (t - \lambda_1) \cdots (t - \lambda_n)$. One has

$$O(b) = \bigcap_{i=1}^{n} (k + (t - \lambda_i)^{r_i+1}R)$$

If we suppose that V is not contained in any ideal of R, one has $V.R = R$. Clearly

$$bb^*R = \prod_{i=1}^{n} (t - \lambda_i)^{r_i+1}R \subset O(b)$$

so $bb^*R = (bb^*)(RV) = (bb^*)V = bb^*R \subset V$ (1). One also has

$$O(b) \cap (t - \lambda_i)R \neq O(b) \cap (t - \lambda_j)R \text{ for all } i \neq j$$

in particular one has

$$O(b) = [O(b) \cap (t - \lambda_i)R]^{r_i+1} + [O(b) \cap (t - \lambda_j)R]^{r_j+1} \quad (2)$$

With (1) and (2) one gets inductively:

$$V = \bigcap_{i=1}^{n} (V + (t - \lambda_i)^{r_i+1}R) \quad \diamond$$

One also obtains usual properties of primary decomposable subspaces.

Lemma 5: Let k be a field of characteristic zero, V and W be primary decomposable subspaces of $k[t]$

(1) then $V + W$ and $V \cap W$ are primary decomposable subspaces.
(2) If \(q \in k(t) \) such that \(qV \subseteq k[t] \), then \(qV \) is a primary decomposable subspace.

Proof: One notes that \(O(ab) \subseteq O(a) \cap O(b) \) for all \(a, b \in k[t] \).

Let us recall basic properties on the subspace \(O(a, h) \).

Lemma 6:

1. \(O(a) \subseteq S(O(a, h)) \)
2. \(C(R, O(a)) = C(R, O(a, h)) \)
3. \(a^2k[t] \subseteq O(a) \cap O(a, h) \)
4. \(D(R, O(a, h)) = A_1 \cap (\partial + h)^{-1}aA_1 \)
5. the subspace \(O(a, h) \) is not contained in any proper ideal of \(R \).
6. For all \(q \in O(a, h) \) such that \(hcf(q, a) = 1 \), one has \(O(a, h) = qO(a) + C(R, O(a)) \)

Proof: One obtains (1), (2), (3), (4) by a straightforward calculation.

Suppose \(O(a, h) \subseteq gk[t] \). Then \(D(R, O(a, h)) \subseteq gA_1 \), and applying the \(k \)-automorphism \(\sigma \in Aut_k(A_1) \) such that \(\sigma(t) = t \) and \(\sigma(\partial) = \partial - h \), one obtains \(D(R, O(a)) \subseteq gA_1 \). Clearly the element \(f = \partial^{-1}a\partial^{m+1} \) where \(deg_t(a) = m \) belongs to \(D(R, O(a)) = A_1 \cap \partial^{-1}aA_1 \). When one writes \(f \) in extension, one gets exactly

\[
f = a\partial + a_{m-1}\partial^m + \cdots + a_1\partial + (-1)^m a!
\]

Since \(f \in gA_1 \), \((-1)^m a! \) must belong to \(gR \). Hence \(g \in k^* \) and one gets (5).

Let \(q \) be an element of \(O(a, h) \) such that \(hcf(q, a) = 1 \). One has also \(hcf(q, a^2) = 1 \), and by Bezout theorem there exist \(u, v \in k[t] \) such that:

\[
uq + va^2 = 1 \quad (\ast)
\]

The inclusion \(qO(a) + C(R, O(a)) \subseteq O(a, h) \) is clear since \(q \in O(a, h) \) and one has properties (1) and (2). Conversely let \(p \in O(a, h) \). Using (\(\ast \)), one gets

\[
p = (pu)q + a^2pv \quad (\ast\ast)
\]

One notes that \(p(uq) = p - pva^2 \in O(a, h) \), so \((p(uq))' + (p(uq))h \in aR \). One has \((p(uq))' + (p(uq))h = p'(uq) + p(uq)' + p(uq)h = p(uq)' + uq(p' + ph) \).
Since \(q \) is chosen in \(O(a,h) \), one has \(p' + ph \in aR \). Then \(q(\nu') \in aR \), and at the end, because of \(hcf(q,a) = 1 \), it follows that \((\nu') \in aR \). Now, \(\nu \in O(a) \) and (**) shows that \(p \in qO(a) + C(R,O(a)) \).

Proposition 7: Let \(k \) be a field of characteristic zero and \(V \) a \(k \)-vector subspace of \(k[t] \) such that \(S(V) \) contains a \(k \)-subalgebra \(O(b) \). Then

\[
D(R,V) \ast 1 = V
\]

Proof:

- Suppose \(V = O(b) \). One has \(D(R,O(b)) = A_1 \cap \partial^{-1}bA_1 \).

 Suppose \(b = \beta_0 + \beta_1 t + \cdots + \beta_m t^m \), \(\beta_m \neq 0 \). Then \(f = \partial^{-1}b\partial^{m+1} \in A_1 \cap \partial^{-1}bA_1 \). Let us show that \(f(R) = O(b) \). For an integer \(0 \leq p \leq m \), one has:

\[
\partial^{-1}t^p\partial^{m+1} = (t\partial - 1) \cdot (t\partial - 2) \cdots (t\partial - p)\partial^{m-p}
\]

and so

\[
f = \beta_0\partial^m + \sum_{p=1}^{m} \beta_p(t\partial - 1) \cdot (t\partial - 2) \cdots (t\partial - p)\partial^{m-p}
\]

In particular one sees that:

1. \(f(1) = \beta_m(1)m! \neq 0 \)
2. \(f(t^j) = 0 \) if \(1 \leq j < m \)
3. \(f(t^m) = \beta_0 m! \)
4. \(\deg(f(t^j)) = j \) when \(j \geq m + 1 \)

It follows that

\[
\dim \frac{R}{f(R)} = m = \dim \frac{R}{O(b)}
\]

and since \(f(R) \subseteq O(b) \), one gets \(f(R) = O(b) \)

- Suppose that \(O(b) \subseteq S(V) \). One has \(VO(b) = V \) and then

\[
[V \mathcal{D}(R,O(b))] \ast 1 = V[D(R,O(b)) \ast 1] = VO(b) = V
\]

By lemma 1 the equality \(V \mathcal{D}(R,O(b)) = D(R,V) \) holds, so

\[
\mathcal{D}(R,V) \ast 1 = V.
\]

Next theorem is the main result of this paper.

Theorem 8: Let \(k \) be a field of characteristic zero and \(V \) a \(k \)-vector subspace of \(k[t] \) such that: \(C(R,V) = qk[t] \) with \(q \neq 0 \) and \(\mathcal{D}(R,V) \ast 1 = V \). Then \(S(V) \) contains some \(k \)-subalgebra \(O(b) \) with \(b \neq 0 \).
Proof: One has $qk[t] \subseteq V$, and there exist v_0, v_1, \ldots, v_m in V such that

$$V = \langle v_0, v_1, \ldots, v_m \rangle \oplus qk[t]$$

where $\langle v_0, v_1, \ldots, v_m \rangle$ denotes the vector subspace of V generated by $\{v_0, v_1, \ldots, v_m\}$. For each v_i, there exist $f_i \in \mathcal{D}(R, V)$ such that $f_i(1) = v_i$. Let $r = \max\{\deg_\partial(f_i), 0 \leq i \leq m\}$, we prove that $O(q^r) \cdot V \subseteq V$.

Since the ideal $qk[t]$ of $R = k[t]$ is contained in V, we have only to prove that:

$$O(q^r) \cdot v_i \subseteq V \quad \forall 0 \leq i \leq m$$

We need the following lemma

Lemma 9: Let $d = a_p \partial^p + \cdots + a_1 \partial + a_0 \in A_1(k)$ where $p \in \mathbb{N}$, $b \in k[t]$ and $s \in O(b^p)$. Then $[d, s] = d \cdot s - s \cdot d \in bA_1$.

Proof: One has $[d, s] = [d_1 \partial, s] = [d_1, s] \partial + d_1[\partial, s]$, where $d_1 \in A_1$ and $d = d_1 \partial + a_0$. By induction on the ∂-degree of d, one has $[d_1, s] \partial \in bA_1$. Since $\deg_\partial(d_1) = p - 1$, it is also clear that $d_1 b^p \in bA_1$. Finally $[d, s] \in bA_1$.

By lemma 9 above, one has $f_i \cdot s \in \mathcal{D}(R, V)$ and $[f_i, s] \in qA_1$ for each i.

$$s \cdot v_i = s \cdot (f_i(1)) = (s \cdot f_i)(1) = (f_i \cdot s + [f_i, s])(1)$$

One has $(f \cdot s)(1) \in V$, $[f_i, s](1) \in qk[t]$, it follows that $s \cdot v_i \in V$ and that ends the proof of theorem 8.

Next lemma justify the definition we gave for primary decomposable subspaces.

Lemma 10: Let k be a field of characteristic zero and suppose there exist q an irreducible element of $k[t]$ with $\deg(q) \geq 2$. If $V = k + qk[t]$, then $\mathcal{D}(R, V) = qA_1$. In particular V is not primary decomposable subspace.

Proof: Since q is irreducible, one shows by a straightforward calculation that the right ideal qA_1 is maximal. Clearly one has $qA_1 \subseteq \mathcal{D}(R, V)$, and $\mathcal{D}(R, V) \neq A_1$ since $1 \notin \mathcal{D}(R, V)$. So one has $qA_1 = \mathcal{D}(R, V)$.

References

[1]- J. T. Stafford, " Endomorphisms of Right Ideals of The Weyl Algebra", Trans. Amer. Math. Soc, 299 (1987), 623-639.
[2]- S. P. Smith and J. T. Stafford, "Differential Operators on an affine Curves", Proc. London. Math. Soc, (3)56 (1988), 229-259.

[3]- R. C. Cannings and M. P. Holland, "Right Ideals of Rings of Differential Operators", J. Algebra, 1994, vol. 167, pp. 116-141.