Delta-Opioid Receptor Analgesia Is Independent of Microglial Activation in a Rat Model of Neuropathic Pain

Joanna Mika*, Katarzyna Popiolek-Barczyk*, Ewelina Rojewska, Wioletta Makuch, Katarzyna Starowicz, Barbara Przewlocka*

Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland

Abstract

The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, deltorphin II and SNC80 after chronic constriction injury (CCI) to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p.) over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t.) administered morphine (10–20 μg), DAMGO (1–2 μg) and U50,488H (25–50 μg) were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10–20 μg), deltorphin II (1.5–15 μg) and SNC80 (10–20 μg) administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR) and kappa-opioid receptors (KOR), further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.

Introduction

Neuropathic pain has been shown in clinical and animal studies to be resistant to alleviation by morphine [1,2,3,4,5], but the mechanism of this effect is unclear. The classical opioid system modulates nociception through three G-protein-coupled receptors: delta-opioid receptors (DOR) [6,7] kappa-opioid receptors (KOR) [8,9] and mu-opioid receptors (MOR) [8]. Opioid receptors do not necessarily function independently and can exist as heterodimers that modulate their pharmacology [10,11,12]. Several experimental studies have emphasised that the effects of DOR agonists are distinctively more potent than those of MOR and KOR receptors [13,14,15] in neuropathic pain. The field of DOR analgesia has been widely studied [16,17,18] and the DOR agonists seems to be a good drugs that would be effective in neuropathic pain, but still some of the aspects of DOR ligands interactions have to be clarified.

Reduction of morphine antinociceptive potency has been postulated to be a consequence of changes in the activity of opioid systems or opioid-specific signalling [3,19]. Although a reduction in the number of receptors may be a major factor in the reduced efficacy of opioids, it has become clear that many other factors affect the efficacy of morphine. Such factors include heterologous desensitisation between opioid and proinflammatory chemokine receptors via shared G-protein-coupled systems [20], down-regulation of glutamate transporters in glial cells [21] or release of such substances as NO, ATP, excitatory amino acids, prostaglandins, and proinflammatory cytokines from activated glia [22,23,24,25,26,27]. In a previous study, we used minocycline, which is a tetracycline derivative with pleiotropic biological effects, to clarify whether the analgesic opioid effect is associated with the activation of microglia. Minocycline is a potent inhibitor of the microglial activation [22,28,29,30] that impairs microglial viability and migration [31,32]. Minocycline also up-regulates a tissue inhibitors of matrix metalloproteinases (TIMPs) [33], inhibits MMP-9 [34] and has been shown in many studies to have neuroprotective effects [35,36]. Some authors have suggested that minocycline may also reduce pain by inhibiting Ca2+ and Na+ currents in sensory neurons in DRG [35,37]. It was shown that pain after nerve injury depended on activation of the p38 MAPK signalling pathway in the spinal cord and p38 MAPK was co-
localized with activated microglia [38,39]. It was shown [40,41,42] that the level of phospho-p38 MAPK in microglia was reduced after minocycline treatment, which suggests that this kinase is a minocycline target. Little is known about its influence on neurons, but some authors suggest its neuroprotective effects in dopaminergic and glutamatergic neurons [43,44]. We demonstrated in our previous study that chronic administration of minocycline attenuated the development of neuropathic pain and enhanced our previous study that chronic administration of minocycline [43,44]. We demonstrated in but some authors suggest its neuroprotective effects in dopaminergic neurons [43,44]. We demonstrated in but some authors suggest its neuroprotective effects in dopaminergic neurons [43,44]. We demonstrated in but some authors suggest its neuroprotective effects in dopaminergic neurons [43,44]. We demonstrated in but some authors suggest its neuroprotective effects in dopaminergic neurons [43,44]. We demonstrated in but some authors suggest its neuroprotective effects in dopaminergic neurons [43,44]. We demonstrated in but some authors suggest its neuroprotective effects in dopaminergic neurons [43,44]. We demonstrated in but some authors suggest its neuroprotective effects in dopaminergic neurons [43,44]. We demonstrated in but some authors suggest its neuroprotective effects in dopaminergic neurons [43,44]. We demonstrated in but some authors suggest its neuroprotective effects in dopaminergic neurons [43,44].
carried out after vehicle or opioid agonist administration (Figure 1).

Microglial cell cultures and treatments

Primary cultures of microglial cells were prepared from 1-day-old Wistar rat pups as has been previously described [54]. Briefly, cells were isolated from the rats’ cerebral cortices and were plated at a density of 3 \times 10^5 cells/cm^2 in a culture medium that consisted of DMEM/Glutamax/high glucose (Gibco, USA) supplemented with heat-inactivated 10% foetal bovine serum (Gibco, USA), 100 U/ml penicillin, and 0.1 mg/ml streptomycin (Gibco, USA) on poly-L-lysine coated 75 cm^2 culture flasks and were maintained at 37 °C and 5% CO_2. The culture medium was changed after 4 days. The loosely adherent microglial cells were recovered after 9 days by mild shaking and centrifugation. Microglial cells were suspended in a culture medium and plated at a final density of 2 \times 10^5 cells onto 24 well plates and 1.2 \times 10^6 cells onto 6 well plates. Adherent cells were incubated for 48 h in a culture medium before being used for the analyses. Cell specificity was determined using an antibody to OX-42 (microglial marker) in cultures of primary microglia. Levels of mRNA for C1q (a microglial marker) and GFAP (an astroglial marker) were also investigated. Cultured primary microglia were more than 95% positive for OX-42 and C1q.

We have also analyzed the level of MOR, DOR and KOR mRNA level after LPS-stimulation (data not shown). Cells were prepared as described above and then incubated for 6 h with LPS [100 ng/ml] [55] or vehicle (PBS). We have not observed any significant changes in expression of MOR and KOR transcripts in comparison with vehicle-treated cells. In the LPS-stimulated microglial cells the presence of DOR mRNA had not been detected. Lipopolysaccharides from Escherichia coli 0111:B4 (Sigma-Aldrich, USA).

qRT-PCR analysis of gene expression

Total RNA was extracted according to the method Chomczynski and Sacchi [56] using the TRizol reagent (Invitrogen) as previously described [57]. The RNA concentration was measured using a NanoDrop ND-1000 Spectrometer (NanoDrop Technologies). Reverse transcription was performed on 500 ng (from cell cultures) or 1000 ng (from tissue) of total RNA using Omniscript reverse transcriptase (Qiagen Inc.) at 37 °C for 60 min. cDNA was diluted 1:10 with H_2O. qRT-PCR was performed using Assay-On-Demand TaqMan probes according to the manufacturer’s protocol (Applied Biosystems) and run on a Real-Time PCR iCycler device (BioRad, Hercules, CA, USA). Rn00561699_m1 (Oprd1), Rn01430371_m1 (Oprm1), and Rn00567737_m1 (Oprk1) were used as TaqMan primers and probes. The expression of HPRT (a housekeeping gene) was quantified to control for variation in cDNA amounts. Cycle threshold values were calculated automatically by iCycler IQ 3.0 software with default parameters. Abundance of RNA was calculated as 2^-\Delta\Delta T.C.

Western blot analysis

Cell lysates were collected in a RIPA buffer with a protease inhibitor cocktail and cleared by centrifugation (14,000 g for 30 min, 4 °C). Samples containing 20 μg of protein were heated in a loading buffer (50 mM Tris–HCl, 2% SDS, 2% β-mercapto-ethanol, 4% glycerol and 0.1% bromophenol blue) for 5 min at 70 °C and resolved by SDS–PAGE on 12% polyacrylamide gels. Following gel electrophoresis, the proteins were electrophoretically transferred to Immune-Blot PVDF membranes (Bio-Rad). The blots were blocked for 30 min using 5% non-fat dry milk (Bio-Rad) in Tris-buffered saline with 0.1% Tween 20 (TBST). The blots were incubated with primary antibodies (rabbit polyclonal anti-MOR, 1:500 [58]; rabbit polyclonal anti-DOR, 1:500 [59]; rabbit polyclonal anti-KOR, 1:500, Abcam [58] that had been diluted in a SignalBoost Immunoreaction Enhancer Kit (Merck Millipore) for 24 h at 4 °C and then incubated with a goat polyclonal antibody that had been conjugated to horseradish peroxidase (goat anti-rabbit IgG, BioRad) at a dilution of 1:1000 for 1 h at room temperature. After four 5-minute washes in TBST, immunocomplexes were detected using a Lumi-Light Western Blotting Kit and visualised using a Fujifilm LAS-4000 fluorimager system. The blots were washed 4 times for 5 minutes each in TBST and reprobed with a mouse antibody against GAPDH (1:5000, Millipore) as a
loading control. The relative levels of immunoreactivity were quantified using Fujifilm Image Gauge software.

Immunocytochemical analysis

We used commercially available specific anti-MOR, anti-KOR and anti-OX/42 antibodies. Cells were fixed for 20 minutes in 4% paraformaldehyde in a 0.1 M phosphate buffer (pH 7.4) and incubated with primary antibodies (rabbit anti-MOR, 1:400 [60], rabbit anti-KOR, 1:400 [61], rabbit anti-DOR, 1:400, [62] Neuromics; mouse anti-OX/42, 1:500, Serotec) for 2 days at 4°C. After three washes in PB, double immunofluorescence was revealed by incubation for 2 h in the appropriate fluorochrome-conjugated secondary antibody, Alexa Fluor546 donkey anti-rabbit and Alexa Fluor488 donkey anti-mouse, diluted 1:500 in 5% NDS. Sections were then washed with PB and coverslipped with an Aquatex mounting medium (Merck, Darmstadt, Germany). Sections without primary antibodies were used as negative controls.

Data analysis

The behavioural data are presented as the mean ± S.E.M of 8–16 rats per group. The results of the experiments were statistically evaluated using one-way analysis of variance (ANOVA). All of the differences between the treatment groups were further analysed with Bonferroni’s post-hoc tests. Significant differences in comparisons with vehicle-treated CCI-exposed rats are indicated by *P (≤0.05), **P (≤0.01) and ***P (≤0.001). Significant differences between vehicle-treated CCI-exposed rats that had received a single dose of opioid receptor ligands and minocycline-treated CCI-exposed rats that had received a single dose of opioid receptor ligands are indicated by *P (≤0.05), **P (≤0.01) and ***P (≤0.001). The qRT-PCR analyses were performed in three groups: naïve, CCI-exposed and minocycline-treated CCI-exposed rats. The results are presented as fold changes compared with the naïve rats in the ipsilateral dorsal lumbar spinal cord and DRG. The qRT-PCR data are presented as the mean ± S.E.M and represent the normalised averages that were derived from the threshold qRT-PCR cycles from four to eight samples for each group. Intergroup differences were evaluated using ANOVA followed by Bonferroni’s multiple comparison tests. Significant differences resulting from comparison with naïve rats are indicated by *P (≤0.05), **P (≤0.01) and ***P (≤0.001). The data from 3 to 10 cell cultures are presented.

Results

Repeated administration of minocycline significantly diminished allodynia and hyperalgesia in neuropathic pain in rats

All vehicle-treated CCI rats exhibited neuropathic pain symptoms in the behavioral tests. The rats exhibited strong allodynia on the seventh day after ligation as measured by the von Frey test (11.6 g±0.6 vs. 25.8 g±0.2 for naïve rats) (Fig. 2A,C,E; 3A,C,E) and potent hyperalgesia as measured by the cold plate test (7.6±0.9 vs. 29.7±0.3 for naïve rats) (Fig. 2B,D,F; 3B,D,F). Repeated administration of minocycline (MC; 30 mg/kg; i.p.) attenuated allodynia (17.4 g±0.5 vs. 11.6 g±0.6 for the vehicle-treated CCI rats) (Fig. 2A,C,E; 3A,C,E) and also hyperalgesia (12.1±0.9 vs. 7.6±0.9 for the vehicle-treated CCI rats) (Fig. 2B,D,F; 3B,D,F) to a similar extent at both time points.

Repeated administration of minocycline significantly influenced the effects of morphine in neuropathic pain in rats

The doses of morphine effective in neuropathic pain (M; 20 and 40 µg; i.t.) were used. Morphine was injected one hour after the last morning dose of minocycline (30 mg/kg; i.p. repeatedly) or vehicle, and allodynia and hyperalgesia were measured (see Figure 1). Morphine at a dose of 20 µg significantly diminished allodynia 25 and 45 minutes after injection compared with vehicle-treated animals (18.60 g±0.4 vs. 11.6 g±0.6 and 17.57 g±0.39 vs. 11.9 g±0.5, respectively; Fig. 2A). In minocycline-treated animals, the antiallodynic effect of morphine at a dose of 20 µg was potentiated by minocycline at both times as shown in the von Frey test (25 minutes: 22.04 g±0.52 vs. 18.60 g±0.4 for morphine-treated rats, 45 minutes: 22.3 g±0.34 vs. 17.57 g±0.39 for morphine-treated rats; Fig. 2A). Morphine at a dose of 20 µg did not influence thermal hyperalgesia but in the group which was injected repeatedly with minocycline, the antihyperalgesic effect of morphine was demonstrated (30 minutes: 18.30±1.6 vs. 11.3 g±0.8 for morphine-treated rats, 50 minutes: 22.5±1.7 vs. 13.5±1.5 for morphine-treated rats; Fig. 2B). A higher dose of morphine (40 µg) was effective in reducing mechanical allodynia 25 and 45 minutes after injection compared with vehicle-treated animals (25 minutes: 21.1 g±0.48 vs. 11.6 g±0.6, 45 minutes: 23.9 g±0.6 vs. 11.9 g±0.5; Fig. 2A). In minocycline-treated rats, the antiallodynic effect of morphine at a dose of 40 µg was potentiated at both times (25 minutes: 24.84±0.27 vs. 21.1 g±0.48, 45 minutes: 23.98±0.51 vs. 20.25±0.6; Fig. 2A). In opposite to the lower dose, morphine at a dose of 40 µg showed antihyperalgesic effect at both time points (30 minutes: 16.5±1.9 vs. 7.6±0.9, 50 minutes: 19.1±2.2 vs. 8.2±0.8; Fig. 2B). The increased effect of morphine at a dose of 40 µg in minocycline-treated group was observed at both time points, however, this effect was more significant after 50 minutes (25.8±1.0 vs. 19.1±2.2; Fig. 2B).
Figure 2. The effects of morphine, DAMGO and U50,488H on vehicle- and minocycline-treated CCI-exposed rats. The response to morphine, DAMGO and U50,488H was measured 25 and 45 minutes after administration by the von Frey test (A, C, E) and 30 and 50 minutes after
administration by the cold plate test (B, D, F). Minocycline (MC, 30 mg/kg; i.p.) was administered intraperitoneally pre-emptively 16 h and 1 h before CCI, and then repeatedly twice daily for 7 days. Vehicle-treated and minocycline-treated rats received intrathecal morphine (M; 20; 40 µg/5 µl), DAMGO (1; 2 µg/5 µl) or U50,488H (25; 50 µg/5 µl) one hour after the last morning administration on day 7 after CCI. The data are presented as the mean response ± S.E.M. (8–16 rats per group). The results of the experiments were statistically evaluated using One-way Analyses of Variance (ANOVA). The differences between the treatment groups throughout the study were further analysed with Bonferroni’s post-hoc tests. *P<0.05, **P<0.01 and ***P<0.001 indicate significant differences compared with vehicle-treated CCI-exposed rats; #P<0.05, ##P<0.01 and ####P<0.001 indicate significant differences between vehicle-treated CCI-exposed rats that received a single dose of morphine and minocycline-treated CCI-exposed rats that received a single dose of morphine, DAMGO or U50,488H. Dotted line is a value for naïve animals (for von Frey test 25.8 g; for cold plate test 29.7 s).

doi:10.1371/journal.pone.0104420.g002

Repeated administration of minocycline did not influence the effects of DOR agonists (DPDPE, Deltorphin II and SNC80) in neuropathic pain in rats

DPDPE at a dose of 10 µg diminished allodynia 25 and 45 minutes after injection compared with vehicle-treated animals (25 min: 19.8 ±2.1 vs. 11.6 ±0.6, 45 min: 16.6 ±2.4 vs. 11.9 ±2.0; Fig. 3A) and minocycline treatment did not change this effect (Fig. 3A). Higher dose of DPDPE (20 µg) was effective in reducing mechanical allodynia only 25 minutes after injection compared with vehicle-treated animals (20.3 ±2.9 vs. 11.6 ±2.0; Fig. 3B). This dose of U50,488H slightly diminished hyperalgesia at 30 (12.7 ±2.9 vs. 7.6 ±0.9; Fig. 2F) and 50 (13.0 ±2.1 vs. 8.2 ±0.8; Fig. 2F) minutes after injection. Repeated minocycline administration did not change the action of U50,488H at a dose of 50 µg (Fig. 2F).

Repeated administration of minocycline did not influence hyperalgesia in CCI-exposed rats and minocycline also did not change this effect (Fig. 3D). As shown in the cold plate test, Deltorphin II at a dose of 1.5 µg did not influence thermal hyperalgesia only 50 minutes after injection (11.3 ±2.8 vs. 8.2 ±0.8; Fig. 3D) and minocycline did not change the antihyperalgesic action of the higher dose of Deltorphin II (Fig. 3D).

SNC80 at a dose of 10 µg slightly diminished allodynia 25 and 45 minutes after injection compared with vehicle-treated animals (25 min: 16.4 ±0.8 vs. 11.6 ±0.6, 45 min: 17.9 ±1.7 vs. 11.9 ±2.0; Fig. 3E). The higher dose of SNC80 (20 µg) was effective in reducing mechanical allodynia 25 (19.9 ±2.0 vs. 11.6 ±2.0; Fig. 3E) and 45 (19.0 ±1.2 vs. 11.9 ±2.0; Fig. 3E) minutes after injection compared with vehicle-treated animals. Repeated minocycline injection did not change the antiallodynic effect of both doses of SNC80 (Fig. 3E). As shown in the cold plate test, SNC80 at a dose of 10 µg influenced hyperalgesia in CCI-exposed rats (30 min: 19.5 ±2.8 vs. 7.6 ±0.9; 50 min: 13.0 ±2.3 vs. 8.2 ±0.8; Fig. 3F) SNC80 at a dose of 20 µg diminished thermal hyperalgesia 30 (24.2 ±2 ± vs. 7.6 ±0.9; Fig. 3F) and 50 (20.8 ±4.0 vs. 8.2 ±0.8; Fig. 3F) minutes after injection. Minocycline did not change the antihyperalgesic action of both doses of SNC80 (Fig. 3F).

Repeated administration of minocycline did not influence MOR, DOR and KOR mRNAs during neuropathic pain in rats

In the spinal cord the downregulation of MOR mRNA from 1.0 ±0.5 to 0.7 ±0.07 (Fig. 4A) and in the DRG from 1.0 ±0.3 to 0.5 ±0.6 (Fig. 4B) was observed compared to the naïve rats. Minocycline did not influence the level of MOR mRNA in the spinal cord and in the DRG (Fig. 4A and B, respectively).

In the spinal cord the downregulation of KOR mRNA from 1.0 ±0.6 to 0.8 ±0.05 (Fig. 4C) and in the DRG from 1.0 ±0.6 to 0.6 ±0.04 (Fig. 4D) was observed compared to the naïve rats. Minocycline did not influence the level of KOR mRNA in the spinal cord and in the DRG (Fig. 4C and D, respectively).

In the spinal cord the downregulation of DOR mRNA from 1.0 ±0.1 to 0.67 ±0.05 (Fig. 4E) and in the DRG from 1.0 ±0.1 to 0.3 ±0.07 (Fig. 4F) was observed compared to the naïve rats. Minocycline did not influence the level of KOR mRNA in the spinal cord and in the DRG (Fig. 4E and F, respectively).

Opioid receptor expression in primary microglial cell cultures

Using a reverse transcriptase-polymerase chain reaction, we found that mRNA for MOR and KOR, but not for DOR, is expressed in rat primary microglial cell cultures (Fig. 5A). In the Western blot analysis, we found that protein for MOR and KOR is present in microglia (Fig. 5B). The protein for DOR was undetectable (Fig. 5B). The expression of MOR and KOR, but not DOR, in microglial cells was confirmed by immunocytochemistry (Fig. 5C).
Figure 3. The effects of DPDPE, deltorphin II and SNC80 on vehicle- and minocycline-treated CCI-exposed rats. The response to DPDPE, deltorphin II and SNC80 was measured 25 and 45 minutes after administration by the von Frey test (A, C, E) and 30 and 50 minutes after administration by the cold plate test (B, D, F). Minocycline (MC; 30 mg/kg; i.p.) was administered intraperitoneally pre-emptively 16 h and 1 h before CCI and then repeatedly twice daily for 7 days. Vehicle-treated and minocycline-treated rats received intrathecal DPDPE (10; 20 μg/5 μl), deltorphin II (del II; 1.5; 15 μg/5 μl) or SNC80 (10; 20 μg/5 μl) one hour after the last morning administration on day 7 after CCI. The data are presented as the mean response ± S.E.M. (8–16 rats per group). The results of the experiments were statistically evaluated using ANOVAs. The differences between the treatment groups throughout the study were further analysed with Bonferroni’s post-hoc tests. *P<0.05, **P<0.01 and ***P<0.001 indicate significant differences compared with vehicle-treated CCI-exposed rats. Dotted line is a value for naïve animals (for von Frey test 25.8 g; for cold plate test 29.7 g).

doi:10.1371/journal.pone.0104420.g003

Discussion

Opioids are fundamental to the treatment of pain, but their efficacy is limited by side effects, including tolerance and hyperalgesia [63]. Some authors suggest that reduced sensitivity to opioids and the increases in their dosages that are necessary to obtain adequate analgesia heighten the risk of side effects [4,5,64]. It remains unclear why morphine is a less potent analgesic in clinical [65,66] and experimental [15,46,67] studies of neuropathic pain in contrast to inflammatory pain [15,67]. In many studies it was shown that selective DOR agonists do not lose their effectiveness in the treatment of neuropathic pain [13,15,68]. It has been suggested that the lesser effects of morphine on neuropathic pain are due to the reduced number of presynaptic opioid receptors that results from nerve damage-induced degeneration of primary afferent neurons [64,69] besides other effects, like upregulation of the anti-opioid system CCK, and the NMDA receptor-dependent central sensitization, between others. Obara et al. [15] used ED₅₀ analysis to demonstrate in 2009 that much higher doses of MOR and KOR agonists injected intraplantarly are required to produce antinoceception in neuropathic than in inflammatory pain. However, it remains unclear why the ED₅₀ of DOR agonists, but not those of MOR and KOR agonists, is comparable in both neuropathic and inflammatory pain [15]. Our study showed that the expression of all types of opioid receptor mRNA in the spinal cord and DRG was decreased in neuropathic pain. Also Stone et al. [70], using three animals models of peripheral nerve injury (CCI, SNL and SNT), observed decreases in spinal DOR expression at day 10 after operations at the side of injury. Herradon et al. [71] compared two strains of rats, Fischer 344 and Lewis rats, in neuropathic pain model and found significant down-regulation of DOR mRNA 28 days after CCI in the DRG of Lewis rats and the same trend was observed in F344 rats. Those data correspond well with our results obtained at day 7 after CCI in Wistar rats. In the study of Obara et al. [15] biochemical experiments were conducted at 3rd and 14th day (but not day 7th) after CCI and showed a non-significant, downward trend in the expression of mRNA for MOR, DOR and KOR at the spinal cord level. At the DRG level of neuropathic rats these authors observed down-regulation of mRNA level for MOR in L4–L5 DRGs (at day 3rd) and in L5 DRG (at day 14th), for DOR in L5 DRG (at both days) and for KOR in L4 and L5 DRGs (at day 3rd) and in L5 DRG (at day 14th) in comparison with naive animals. Those data correspond well with our results obtained at day 7th after CCI, however, in our experiments we pooled L4–L6 DRGs [15]. In the paper of Kabli and Cahill [68] the up-regulation of DOR protein was observed 14 days after sciatic nerve injury at the DRG level. The authors suggest that the increase in DOR protein is correlated with DOR trafficking to the site of injury, which may explain the lower level of mRNA as shown by our results. Should be noted, however, that in some papers no decrease in opioid receptor expression was observed [71,72]. Those discrepant data may result from different animal species used in experiments or time of the tissue collection after injury as it is shown in the mentioned works.

However, minocycline does not affect the reduced levels of all opioid receptor mRNAs, although it potentiates analgesia after such opioid agonists as morphine, DAMGO and U50,488H. Therefore, we should consider other mechanisms of weakened analgesia in neuropathic pain that can be restored by minocycline administration. These mechanisms may be important for sustained analgesia after administration of DOR ligands.

Several studies have suggested that the activation of glia and the enhancement of proinflammatory cytokine levels in the spinal cord and DRG are responsible for the development of both neuropathic pain and morphine tolerance [73,74,75]. We have previously observed an attenuation of the development of neuropathic pain when we administered minocycline, which is a substance that inhibits microglial activation in CCI-exposed rats [45,46]. Although minocycline can influence some neuronal functions, its ability to reduce microglial activation [76] as well as its selectivity of the action has been recently demonstrated [49]. We show in the present paper that the antiallodynic and antihyperalgesic effects of morphine, DAMGO and U50,488H, but not of DPDPE, deltorphin II or SNC80, were significantly potentiated with minocycline in CCI-subjected rats. In many studies we may found pharmacological evidence of distinct subtypes of DOR [77]. It is known that DOR₁ is activated by DPDPE, DOR₂ by deltorphin II and SNC80 is a a highly selective agonist for DOR. We had demonstrated in our previous studies the occurrence of strong antiallodynic and antihyperalgesic effects of DOR₁ and DOR₂ agonists after their acute and chronic i.t. administration in a rat neuropathic pain model [13]. Analgesic effects of i.t. injected SNC80 was also shown in many pain models [77,78,79]. In the present paper we have shown that the effectiveness of DPDPE, deltorphin II and SNC80 is not enhanced by minocycline treatment. Our results suggest that DOR analgesia is not dependent on injury-induced microglial activation. DORs are therefore a promising target for the development of analgesics. Indeed as previously reported by Holdridge et al. [80,81] the prolonged morphine treatment-induced incensement in microglial cell size was not functionally relevant in DOR analgesia, which confirms our research concerning the presence of DOR on microglia.

In the in vitro study, we used qRT-PCR, Western blot and immunocytochemistry assays to confirm the presence of MOR and KOR in microglia, and we have shown for the first time that those microglial cells do not express DOR. Our results are in agreement with other studies that have shown that microglia express MOR and KOR [82,83,84]. Chao et al. [85] first reported in 1996 that KOR was present in human microglia using qRT-PCR and a ligand-binding assay. The expression of KOR in microglial cells was also confirmed by the membrane binding of selective ligand [³H]U69,593. Additionally, Chao et al. 1997 [86] have shown that morphine and DAMGO suppressed human microglia chemotaxis in a dose-dependent fashion and this effect is significantly attenuated by β-funaltrexamine (a MOR selective...
Figure 4. MOR, DOR, KOR mRNAs in spinal cord and DRGs in vehicle- and minocycline-treated CCI-exposed rats. Minocycline (MC; 30 mg/kg; i.p.) was administered intraperitoneally pre-emptively 16 h and 1 h before CCI, and then repeatedly twice daily for 7 days. On the seventh day, spinal cords (L4–L6) and DRG were collected for the qRT-PCR analysis of MOR (A, B), KOR (C, D) and DOR (E, F) gene expression. The data are presented as the means ± SEM and represent the normalised averages derived from the threshold qRT-PCR cycles from four to eight samples for each group. Intergroup differences were analysed using ANOVAs followed by Bonferroni’s multiple comparison tests. *P<0.05; **P<0.01; ***P<0.001 indicate significant differences compared with naive rats.

doi:10.1371/journal.pone.0104420.g004
antagonist), which is consistent with our confirmation of the presence of MOR in microglial cells. The occurrence of DOR in microglial cells is still controversial. Our results strongly suggest that there is no DOR in rat primary microglial cells, although the studies of Turchan-Chlewo et al. [87] suggest their presence. However, Turchan-Chlewo et al. [87] used the PCR method (Sybr

Figure 5. The presence of opioid receptors on microglia cells - in vitro studies. We analysed the presence of opioid receptors in primary microglial cell cultures. Using reverse transcriptase-polymerase chain reaction, we found that mRNA for MOR and KOR, but not DOR, is expressed in rat primary microglial cells cultures (A). Western blot analysis (B) detected proteins for MOR and KOR, but not DOR, in microglia. The presence of MOR and KOR, but not DOR, were confirmed by immunocytochemistry (C), and we show the colocalisation of MOR (left panel) and KOR (middle panel) antibodies (red) with OX/42 antibodies (green). The scale bar for all microphotographs is 25 μm. The data from 3–10 cell cultures are presented. doi:10.1371/journal.pone.0104420.g005
Figure 6. The possible influence of minocycline on analgesia after opioid receptors ligands. In our opinion, activated spinal microglia are key factors in the development of neuropathic pain and play a major role in the antagonizing of some opioids effectiveness. The results of our paper show for the first time that that DOR, in contrast to MOR and KOR, is not present in microglial cells. This phenomenon might be responsible for the different analgesic effects of MOR, KOR and DOR ligands (Fig. 2 and 3). We provide evidence that minocycline (a potent inhibitor of microglial activation and proliferation) enhances the effects of selective MOR (DAMGO; Fig. 2C,D) and selective KOR (U50,488H; Fig. 2E,F) agonists by inhibition of microglial cell activation. The effectiveness of DOR agonists (DPDPE, deltorphin II and SNC80) is not changed by minocycline (Fig. 3A–F). Our results indicate that an important element of the effectiveness of opioid drugs in neuropathic pain is the activation of microglia. The lack of DOR receptors in these cells causes that DOR receptor-mediated analgesia is not weaker under neuropathic pain, in which there is a strong activation of microglia. Earlier inhibition of microglial activation by minocycline administration therefore did not influence the effect of DOR selective agonists. The above results indicate not only that minocycline potentiates analgesia after MOR and KOR agonists but also that DOR is a potentially important target in the search for new drugs that would be effective against neuropathic pain.

doi:10.1371/journal.pone.0104420.g006
Therefore, in cases where MOR and KOR agonists target to attenuate neuropathic pain and morphine tolerance [74,103]. Moreover studies by Turchan-Cholewo et al. [87] used commercial antibodies against DOR, which are no longer recommended for such studies. Due to the lack of selective DOR antibody a unique genetic mouse model was developed in order to investigate the distribution of DOR in the nervous system [16,89]. Opioid receptors have high degrees of homology, and antibodies may recognise other subtypes within the same family. DOR expression has also been observed on glial-like cells in the dentate gyrus [90] and rat cervical spinal cord [91], but none of these authors distinguished between astrocytes and microglia. Our results concerning the absence of DOR in microglia are consistent with recently published results of pharmacological studies that were conducted by Merighi et al. [84]. These authors have shown in primary microglia cell cultures that DPDPE, a DOR agonist, does not change the level of protein for PKC after LPS stimulation, while morphine and DAMGO up-regulate this kinase. The ineffectiveness of DPDPE in this study may be explained by the lack of DOR receptors in microglial cells. Horvath and DeLeo, [92] showed that selective agonists of DOR, DPDPE had no effect on microglial migration, which confirms our results that DOR, in contrast to MOR and KOR, is not present in microglial cells. DOR shows a functional profile that is distinct from that of MOR or KOR [93] and plays an important role in chronic pain, for example DOR knockout mice showed augmented neuropathic pain [94,95]. DOR agonists are poor analgesics in acute pain [96], but are highly effective following inflammatory or neuropathic pain [13,96,97,98,99].

Happel et al. [100] suggested in 2008 that morphine and DAMGO influence the immune system. For example, opioids alter macrophage functions and they modulate cytokine production and chemokine and chemokine receptor expression. Activation of proinflammatory chemokine receptors is known to down-regulate the analgesic functions of opioid receptors, and this enhances the perception of pain [101]. Horvath et al. [102] showed that morphine increases microglial migration by means of an interaction between MOR and P2X4 receptors. This interaction is dependent on PI3K/Akt pathway activation [102]. Under neuropathic pain, the phosphorylation of p38 MAPK in microglia results in increased synthesis of the proinflammatory cytokines IL-1β, IL-6, and TNF-α. Spinodal blockade of these cytokines is known to attenuate neuropathic pain and morphine tolerance [74,103]. Therefore, in cases where MOR and KOR agonists target microglial signalling by inhibiting the actions of chemokines (fractalkine, CCL2), ATP receptors (P2X4, P2X7), MMP-9, p38 MAPK, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) improve their effectiveness. However, this is not the case with DOR agonists. This difference deserves future exploration.

MOR agonists, especially morphine, still remain the drugs of choice for the treatment of neuropathic pain, despite the side effects and limited efficacy. It was shown that DOR agonists were effective in persistent pain [13,68,81,104,105] and the mechanisms underlying this analgesic action was probably linked with trafficking to the cell membrane or better receptor coupling to signalling effectors [104]. Nadal et al. [95] demonstrated that neuropathic pain was enhanced in delta-opioid receptor knockout mice. Some authors suggest a delta opioid agonists as a promising alternative to mu analgesics in the treatment of chronic pain [13,95,104,106]. Currently, research is being conducted on analgesic effects of new DOR ligands [107] and some of these substances are being tested in clinical trials [100].

The results of the present study document for the first time that DOR, in contrast to MOR and KOR, are not present in microglial cells (Figure 6). In conclusion, we provide evidence that minocycline not only diminishes neuropathic pain-related behaviour but also enhances the effectiveness of morphine and selective MOR and KOR opioid ligands under neuropathic pain conditions. Our findings lend support to the view that neuroimmunological changes in the spinal cord and DRG are important for opioid effectiveness in neuropathic pain. In our opinion, activated spinal microglia are key factors in not only the development of neuropathic pain but also in the different efficacies of opioid analgesics. Our results also suggest that DOR analgesia is not dependent on injury-induced microglial activation. We therefore suggest that DOR is an interesting target for the development of new drugs that would be effective against neuropathic pain.

Acknowledgments

This work was supported by MNiSW/NCN grant NN405375937, grant OPUS NCN 2011/03/B/ NZ4/00042, grant PRELUDIUM NCN 2012/ 07/N/NZ3/00379, grant MAESTRO NCN 2012/06/A/NZ4/00028 and statutory funds. Katarzyna Popiolek-Barczyk, is a Ph.D. student and has a scholarship from the KNOW sponsored by the Ministry of Science and Higher Education, Republic of Poland.

Author Contributions

Conceived and designed the experiments: JM KP-B ER KS BP. Performed the experiments: JM KP-B ER WM KS BP. Analyzed the data: JM KP-B ER KS BP. Contributed reagents/materials/analysis tools: JM KP-B ER KM KS BP. Wrote the paper: JM KP-B ER KS BP.

References

1. Hirsch SJ, Dickenson AH (2014) Morphine sensitivity of spinal neurons in the chronic constriction injury neuropathic rat pain model. Neurosci Lett 562: 97–101.
2. Przewlocki R, Przewlocka B (2001) Opioids in chronic pain. Eur J Pharmacol 429:79-91.
3. Przewlocki R, Przewlocka B (2005) Opioids in neuropathic pain. Curr Pharm Des 11: 3013–3025.
4. Eisenberg E, McNicol ED, Carr DB (2005) Efficacy and safety of opioid agonists in the treatment of neuropathic pain of non-malignant origin: Systematic review and meta-analysis of randomized controlled trials. JAMA; 293:3043–3052.
5. McQuay HJ, Barlow SI, Derry S, Kalso E, Moore RA, et al. (2000) Opioids for chronic pain: an overview and literature update. Pain; 86:357–385.
6. Eisenberg E, McNicol ED, Carr DB (2005) Efficacy and safety of opioid agonists in the treatment of neuropathic pain of non-malignant origin: Systematic review and meta-analysis of randomized controlled trials. JAMA; 293:3043–3052.
7. McQuay HJ, Barlow SI, Derry S, Kalso E, Moore RA, et al. (2000) Opioids for chronic pain: an overview and literature update. Pain; 86:357–385.
8. Chen Y, Mestek A, Liu J, Yu L (1993) Molecular cloning of a rat kappa opioid receptor reveals sequence similarities to the mu and delta opioid receptors. Biochem J 293: 625–638.
9. Minami M, Hosoi Y, Toya T, Katao Y, Maekawa K, et al. (1993) In situ hybridization study of kappa-opioid receptor mRNA in the rat brain. Neurosci Lett 162: 161–164.
10. Minami M, Hosoi Y, Toya T, Katao Y, Maekawa K, et al. (1993) In situ hybridization study of kappa-opioid receptor mRNA in the rat brain. Neurosci Lett 162: 161–164.
11. Minami M, Hosoi Y, Toya T, Katao Y, Maekawa K, et al. (1993) In situ hybridization study of kappa-opioid receptor mRNA in the rat brain. Neurosci Lett 162: 161–164.
12. Minami M, Hosoi Y, Toya T, Katao Y, Maekawa K, et al. (1993) In situ hybridization study of kappa-opioid receptor mRNA in the rat brain. Neurosci Lett 162: 161–164.
13. Minami M, Hosoi Y, Toya T, Katao Y, Maekawa K, et al. (1993) In situ hybridization study of kappa-opioid receptor mRNA in the rat brain. Neurosci Lett 162: 161–164.
40. Chang YW, Waxman SG (2010) Minocycline attenuates mechanical allodynia and hyperalgesia and potentiates the effects of morphine in rat and mouse models of neuropathic pain. Eur J Pharmacol 560: 142–149.

47. Zychowska M, Rojewska E, Kreiger N, Nalepa I, Przewlocka B, et al. (2013) Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 262: 35–45.

48. Filipovic R, Zecевич N (2008) Neuroprotective role of minocycline in cultures of human fetal neurons and microglia. Exp Neurol 211: 44–167.

49. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, et al. (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4: e325.

50. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. J Pain Res 11: 1146–1154.

51. Bennett GJ, Xie Y (1989) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33: 87–107.

52. Przewlocka B, Mika J, Makuch W, Przewlocka B (2005) Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 262: 35–45.

53. Zychowska M, Rojewska E, Kreiger N, Nalepa I, Przewlocka B, et al. (2013) Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 262: 35–45.

54. Zychowska M, Rojewska E, Kreiger N, Nalepa I, Przewlocka B, et al. (2013) Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 262: 35–45.

55. Przanowski P, Dabrowski M, Ellis-Miklaszewska A, Klos M, Mirekzow J, et al. (2014) The signal transducers Stat1 and Stat3 and their novel target Jmpf3 drive the expression of inflammatory genes in microglia. J Mol Med (Berl) 92: 239–254.

56. Chomczynski P, Sacchi N (1997) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Chem 64: 1537–1547.

57. Mika J, Obara I, Przewlocka B (2011) The role of nociceptin and dynorphin in chronic pain: implications of neuro-glial interaction. Neuroreptides 45: 247–261.

58. Keros C, Broch I, Soba B, Jauzac P, Alloche S (2010) Reduction of cell proliferation and potentiation of Fas-induced apoptosis by the selective kappa-opioid receptor agonist US5 488 in the multiple myeloma LP-1 cells. J Neuroimmunol 220: 69–78.

59. Abcam website. Available: http://www.abcam.com/delta-opioid-receptor-antibody-ab66317.html. Accessed 2014 May 20.

60. Neumics website. Available: http://www.neumics.com/ittrium/visit/A16x65dx1x1fx32x1x91x1y91x61x217x71x96x1x4fx1x32x1y1x30x1x7f.html. Accessed 2014 May 20.

61. Mansson E, Barre L, Yang D (1994) Isolation of a human kappa opioid receptor cDNA from placenta. Biochem Biophys Res Commun 202: 1431–1437.

62. Ko JL, Arvidsson U, Williams FG, Las PY, Edle R, et al. (1999) Visualization of dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 23: 4017–4022.

63. Liu X, Wu H, Chu TH, Guo A, Wu W (2015) Minocycline inhibited the pro-apoptotic effect of microglia on neural progenitor cells and protected their neuronal differentiation in vitro. Neurosci Lett 542: 30–36.

64. Garcia-Martinez EM, Sane-Blasco S, Karachitos A, Bande M, Fernandez-Gomez FJ, et al. (2010) Mitochondria and calcium flux as targets of neuroprotective action caused by minocycline in cerebellar granule cells. Biochem Pharmacol 79: 239–250.

65. Kim TH, Kim HI, Kim J, Park M, Song HJ (2011) Effects of minocycline on Na+ currents in rat dorsal root ganglion neurons. Brain Res 1370: 34–42.

66. Liu Z, Zhang ZY, Weng ZR, Zhang DR, Borsello T, Benny C, et al. (2006) A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. Pain 124: 353–365.

67. Mika J, Klos M, Przewlocka B (2008) Glutamate receptor ligands attenuate allostody and hyperalgesia and potentiate morphine effects in a mouse model of neuropathic pain. Pain 139: 117–126.

68. Yang D, Doherty H, Zucca M, Dixit V, Zhai J, et al. (2011) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4: e325.

69. Zychowska M, Rojewska E, Kreiger N, Nalepa I, Przewlocka B, et al. (2013) Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 262: 35–45.

70. Zychowska M, Rojewska E, Kreiger N, Nalepa I, Przewlocka B, et al. (2013) Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 262: 35–45.

71. Zychowska M, Rojewska E, Kreiger N, Nalepa I, Przewlocka B, et al. (2013) Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 262: 35–45.

72. Zychowska M, Rojewska E, Kreiger N, Nalepa I, Przewlocka B, et al. (2013) Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 262: 35–45.

73. Zychowska M, Rojewska E, Kreiger N, Nalepa I, Przewlocka B, et al. (2013) Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 262: 35–45.

74. Zychowska M, Rojewska E, Kreiger N, Nalepa I, Przewlocka B, et al. (2013) Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 262: 35–45.

75. Zychowska M, Rojewska E, Kreiger N, Nalepa I, Przewlocka B, et al. (2013) Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 262: 35–45.
Merighi S, Gessi S, Varani K, Fazzi D, Stefanelli A, et al. (2013) Morphine receptor expression in lumbar spinal cord of rats following nerve injury. Brain Res 795: 197–203.

Stone LS, Vuckanović L, Rieck MS, Williams FG, Wilkens GL, et al. (2004) Effects of peripheral nerve injury on delta opioid receptor (DOR) immunoreactivity in the rat spinal cord. Neurosci Lett 361: 208–211.

Herzog D, Enquerra L, Nguyen T, Wang C, Siso A, et al. (2008) Noradrenergic and opioidergic alterations in neuropathy in different rat strains. Neurosci Lett 438: 186–189.

Pol O, Muerta P, Caracuel L, Valverde O, Puig MM, et al. (2006) Expression of opioid receptors and c-fos in CBI knockout mice exposed to neuropathic pain. Neuropsychopharmacology 30: 123–132.

Raghavendra V, Tang F, Rutkowski MD, DeLeo JA (2003) Anti-hyperalgesic and morphine-sparking actions of propentofol following peripheral nerve injury in rats: mechanistic implications of spinal glial and proinflammatory cytokines. Pain 104: 653–664.

Raghavendra V, Rutkowski MD, DeLeo JA (2002) The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neurosci 22: 9980–9989.

Mika J, Kotoytski M, Kaminiski D, Wawrzkow-Bargjela A, Osiowicz M, et al. (2008) Interleukin-1beta has antialloodynic and anti-hyperalgesic activities in a rat neuropathic pain model. Pain 13: 587–597.

Cunningham CL, Martinez-Cerdeño V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33: 4216–4223.

Queck RM, Burkey TH, Varga E, Hosohata Y, Hosohata K, et al. (1999) The delta-opioid receptor: molecular pharmacology, signal transduction, and the determination of drug efficacy. Pharmacol Rev 51: 565–532.

Scherer G, Imamura N, Cao YQ, Contet C, Menenick F, et al. (2009) Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137: 1148–1159.

Shlika KA, Rohling J, Busey RA, Eikenberry SA, Wilker JM (2002) Chronic muscle pain induced by repeated acid Injection is reversed by spinally administered mus-delta, but not kappa, opioid receptor agonists. J Pharmacol Exp Ther 302: 1146–1150.

Holdridge SV, Cahill CM (2007a) Spinal administration of a delta opioid receptor agonist attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Eur J Pain 11: 685–693.

Holdridge SV, Armstrong SA, Taylor AM, Cahill CM (2007b) Behavioural and morphological evidence for the involvement of glial cell activation in delta opioid receptor function: implications for the development of opioid tolerance. Mol Pain 3: 7.

Chang AC, Chao CC, Takemori AE, Gekker G, Hu S, et al. (1996) Arylacetamide-derived fluorescent probes: synthesis, biological evaluation, and direct fluorescent labeling of kappa opioid receptors in mouse microglial cells. J Med Chem 39: 1729–1735.

Ed-Hage N, Dever SM, Podhaizer EM, Arnatt CK, Zhang Y, et al. (2013) A novel bivalent HIV-1 entry inhibitor reveals fundamental differences in CCR5- and CXCR4-tropic strains. J Virol 87: 2811–2821.

Merighi S, Gessi S, Varani K, Fazzi D, Stefanelli A, et al. (2013) Morphine mediates a proinflammatory phenotype via µ-opioid receptor-PKCalpha-AKT1/2 signaling pathway in activated microglial cells. Biochem Pharmacol 86: 487–496.

Chao CC, Gekker G, Hu S, Sheng WS, Shark KB, et al. (1996) Kappa opioid receptors in human microglia downregulate human immunodeficiency virus 1 expression. Proc Natl Acad Sci U S A 93: 8031–8036.

Chao CC, Hu S, Shark KB, Sheng WS, Gekker G, et al. (1997) Activation of mu opioid receptors inhibits microglial cell chemotaxis. J Pharmacol Exp Ther 281: 998–1004.

Turchan-Cholewko J, Dimayuga FO, Ding Q, Keller JN, Hauser KF, et al. (2000) Cell-specific actions of HIV-Tat and morphine on opioid receptor expression in glia. J Neurosci Res 68: 2100–2110.

Thorin T, Persson PA, Eriksson PS, Hansson E, Ronnback L (1999) Delta-opioid receptor immunoreactivity on astrocytes is upregulated during mitosis. Glia 25: 370–378.

Scherrer G, Trysen-Toth P, Filliol D, Matlás A, Lanuistt D, et al. (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci U S A 103: 9691–9696.

Commons KG, Milsner TA (1996) Cellular and subcellular localization of delta opioid receptor immunoreactivity in the rat dentate gyrus. Brain Res 738: 181–195.

Cheng PV, Liu-Chen LY, Pickel VM (1997) Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat spinal cord. Brain Res 738: 367–370.

Horvath RJ, DeLeo JA (2009) Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci 29: 998–1005.

Kieffer BL, Gavériaux-Ruff C (2002) Exploring the opioid system by gene knockout. Prog Neurobiol 66: 263–306.

Gavériaux-Ruff C, Karcheowski IA, Hever X, Matlas A, Kieffer BL (2008) Inflammatory pain is enhanced in delta opioid receptor-knockout mice. Eur J Neurosci 27: 2558–2567.

Nadal X, Baños JE, Kieffer BL, Maldonado R (2006) Neuropathic pain is enhanced in delta-opioid receptor knockout mice. Eur J Neurosci 23: 830–834.

Gallantin EL, Meert TF (2005) A comparison of the antinociceptive and adverse effects of the mu-opioid agonist morphine and the delta-opioid agonist SNC80. Basic Clin Pharmacol Toxicol 97: 39–51.

Cahill CM, Morinville A, Hoffert C, O'Donnell D, Beaudent A (2003) Up-regulation and trafficking of delta opioid receptor in a model of chronic inflammation: implications for pain control. Pain 101: 199–208.

Fraser GL, Gaudreau GA, Clarke PB, Menard DP, Perkins MN (2000) Antihyperalgesic effects of delta opioid agonists in a rat model of chronic inflammation. Br J Pharmacol 129: 1668–1672.

Harley RW, Hammond DL (2006) The analgesic effects of supraspinal and delta opioid receptor agonists are potentiated during persistent inflammation. J Neurosci 20: 1249–1259.

Happel G, Steele AD, Finley MJ, Kutzier MA, Rogers TJ (2008) DAMGO-induced expression of chemokines and chemokine receptors: the role of TGF-beta1. J Leukoc Biol 83: 956–963.

Szabo I, Chen XH, Xin L, Adler MW, Howard OM, et al. (2002) Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc Natl Acad Sci U S A 99: 10276–10281.

Prahlaw RJ, Romero-Sandoval EA, De Leo JA (2010b) Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and µ opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 150: 401–413.

Hutchinson MR, Coats BD, Lewis SS, Zhang Y, Sprunger DB, et al. (2008) Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun 22: 1178–1189.

Cahill CM, Holdridge SV, Morinville A (2007) Trafficking of delta-opioid receptors and other G protein-coupled receptors: implications for pain and analgesia. Trends Pharmacol Sci 28: 23–31.

Bie B, Pan ZZ (2007) Trafficking of central opioid receptors and descending pain inhibition. Mol Pain 3: 37.

Zhang X, Bao L, Guan JS (2006) Role of delivery and trafficking of delta-opioid peptide receptors in opioid analgesia and tolerance. Trends Pharmacol Sci 27: 324–329.

Pradhan AA, Belfort K, Nozaki C, Gavériaux-Ruff C, Kieffer BL (2011) The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci 32: 581–590.

Clinicaltrials website. Available: http://clinicaltrials.gov/ct2/results?term=delta+opioid&Search = Search. Accessed 2014 May 20.