Primary nonkeratinizing squamous cell carcinoma of the scapular bone: A case report

Yang Li, Jian-Lin Zuo, Jin-Shuo Tang, Xian-Yue Shen, Sheng-Hao Xu, Jian-Lin Xiao

ORCID number: Yang Li 0000-0002-2309-6637; Jian-Lin Zuo 0000-0003-3602-0911; Jin-Shuo Tang 0000-0001-7685-8642; Xian-Yue Shen 0000-0002-3623-201X; Sheng-Hao Xu 0000-0003-0224-7456; Jian-Lin Xiao 0000-0001-7175-2726.

Author contributions: Li Y, Tang JS, Shen XY, Xiao JL, and Zuo JL were the clinicians involved in the patient's diagnosis, management, therapy, and follow-up; Li Y reviewed the literature and contributed to drafting the manuscript; Xiao JL contributed to reviewing the literature and drafting the manuscript; Xiao JL and Zuo JL analyzed and interpreted the imaging findings; Xiao JL was responsible for the critical revision of the manuscript for relevant intellectual content; All authors approved the final version of the paper prior to submission.

Informed consent statement: The patient consented to the publication of this study.

Conflict-of-interest statement: The authors declare that there is no conflict of interest in this work.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Yang Li, Jian-Lin Zuo, Jin-Shuo Tang, Sheng-Hao Xu, Jian-Lin Xiao, Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China

Xian-Yue Shen, Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130033, Jilin Province, China

Corresponding author: Jian-Lin Xiao, MD, PhD, Chief Doctor, Postdoc, Department of Orthopedics, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin Province, China. xiaojianlin10@jlu.edu.cn

Abstract

BACKGROUND
Squamous cell carcinoma (SCC) of bone is usually caused by metastasis from the lungs, bladder, or other sites. Primary SCC of bone most frequently involves the skull bones, and primary involvement of other sites in the skeletal system is extremely rare. To date, only three such cases have been reported, which makes the diagnosis, treatment, and prognosis of this disease a challenge.

CASE SUMMARY
A 76-year-old Chinese man presented to our hospital with nonspecific pain and limited mobility in the right shoulder for 4 mo. He underwent three-dimensional computed tomography reconstruction and magnetic resonance imaging of the right shoulder, which revealed an osteolytic destructive lesion in the right scapula with invasion into the surrounding muscles and soft tissues. Ultrasound-guided core needle biopsy detected a malignant tumor, and immunohistochemical analysis revealed a poorly differentiated SCC. Wide excision of the right scapular bone was performed, and pathological examination of the surgical specimen confirmed the diagnosis. At the last follow-up examination within 2 years, the patient was doing well with the pain significantly relieved in the right shoulder.

CONCLUSION
Primary SCC of bone is extremely rare at sites other than the skull. Clinicians must exhaust all available means for the diagnosis of primary SCC of the bone, so greater attention can be paid to its timely and effective management. Regular and adequate follow-up is essential to help rule out metastasis and judge the prognosis.

Key Words: Primary squamous cell carcinoma; Keratin pearls; Scapular bone; Diagnosis;
Core Tip: To the best of our knowledge, the present case represents the fourth case of primary squamous cell carcinoma (SCC) of a bone outside the skull and the first case of primary nonkeratinizing SCC of the scapular bone. Our findings suggest the need to improve the techniques used for the diagnosis of primary SCC of bones outside the skull, so greater attention can be paid to timely and effective management. Moreover, it is necessary to rule out metastasis and judge the prognosis with regular and adequate follow-up.

INTRODUCTION

Squamous cell carcinoma (SCC) is the second most common non-melanoma skin cancer. Although SCC can metastasize to other organs such as the bones[1–4], primary SCC of the bone is rare due to the absence of native squamous epithelium in osseous tissue[5]. When primary SCC does affect the bones, the most common site of involvement is the skull. Indeed, only three cases of primary SCC at other sites in the skeletal system, namely, the iliac bone, distal tibia, and tarsal bone, have been reported in the English literature[5–7]. Herein, we report the fourth case of primary SCC of a non-skull bone, which is also the first case of primary nonkeratinizing SCC of the scapula.

CASE PRESENTATION

Chief complaints

A 76-year-old Chinese man experienced severe pain in the right shoulder for 4 mo, along with limitation of joint mobility.

History of present illness

The patient suffered pain and limited mobility in the right shoulder for 4 mo, without an obvious cause. Conservative treatment with oral analgesics and rest was taken by the patient; however, its effect was poor, and the pain in the right shoulder worsened. In October 2018, the patient was referred to our department for therapy.

History of past illness

The patient had a free previous medical history.

Personal and family history

The patient was a non-smoker, without relevant family history.

Physical examination

A physical examination revealed significant tenderness in the right scapula. The muscle strength of the right upper limb was grade II according to the manual muscle test classification. The range of motion of the right shoulder could not be assessed due to severe pain.

Imaging examinations

Three-dimensional computed tomography (CT) reconstruction (Figure 1) and magnetic resonance imaging revealed an osteolytic destructive lesion of the right scapula with invasion into the surrounding muscles and soft tissues (Figure 2).
Li Y et al. Primary nonkeratinizing SCC of scapular bone

Figure 1 Three-dimensional computed tomography reconstruction. A and B: Osteolytic destructive lesion in the right scapular bone.

Figure 2 Magnetic resonance imaging A (T2-tse) and B (pd-tse-fs) show an osteolytic destructive lesion in the right scapular bone, invading the surrounding muscles and soft tissues.

Further diagnostic work-up

After obtaining informed consent from the patient, we performed an ultrasound-guided core needle biopsy. Histopathological examination of the core biopsy specimen revealed that it consisted of purely malignant squamous cells along. However, no typical keratin pearls were seen, as the malignant squamous cells were poorly differentiated. Therefore, a diagnosis of nonkeratinizing SCC was made. Immunohistochemical analysis showed that the tumor cells were reactive to cytokeratin 5/6, p63, p40, and vimentin (Figure 3). Furthermore, CT scans of the lungs, skull, and abdomen, single-photon emission CT-CT, and positron-emission tomography-CT confirmed that there were no other lesions outside the right scapular bone, which indicated that this was a rare presentation of a primary SCC involving the scapular bone. Therefore, the final diagnosis was primary nonkeratinizing SCC of the right scapular bone.

FINAL DIAGNOSIS

Primary nonkeratinizing SCC of the right scapular bone.

TREATMENT

The patient underwent wide excision of the right scapular bone and reconstruction of the resulting defect with the right humeral head, right collarbone, and surrounding muscles. The whole gross specimen measured 7.0 cm × 6.5 cm × 5 cm. The lesion itself was a dark red ovoid mass that originated from the right scapular bone and appeared soft and creamy-white on cross section (Figure 4). No connection to the epidermis was identified. The histopathological examination and immunohistochemical analysis of the resected specimen confirmed that it is composed entirely of malignant squamous
Figure 3 Histological findings. A: Histopathological examination of the biopsy specimen shows malignant tumor cells in the trabecular bone space but no typical keratin pearls (hematoxylin and eosin stain; original magnification, 100 ×); B-D: Immunohistochemical labeling reveals that the tumor cells are reactive to cytokeratin 5/6, p63, and p40 (original magnification, 40 ×).

Figure 4 Primary nonkeratinizing squamous cell carcinoma of the right scapular bone. A: Surgically resected specimen shows a dark red ovoid mass originating from the right scapula that appears creamy-white and soft on cross section; B: The right humeral head, right collarbone, and surrounding muscle were used to reconstruct the resulting defect.

cells. Therefore, the diagnosis was primary nonkeratinizing SCC of the right scapular bone.

OUTCOME AND FOLLOW-UP

Regular follow-up was continued after surgery. The postoperative course was quite good. Neither recurrence nor metastasis was found during the last 2 years of follow-up. The severe pain in the right shoulder was significantly relieved, and the mobility and function of the right shoulder were improved.

DISCUSSION

SCC is a tumor of the epithelial tissue that typically originates from the epithelial linings of the skin, respiratory tract, digestive tract, and reproductive tract; thus, SCC can involve the head and neck, esophagus, lungs, cervix, and genital area. Epithelial
Primary SCC of bone is commonly seen in the head and neck region\(^{29-33}\), and it is rarely found elsewhere in the skeletal system. According to the literature, the present case is only the fourth case ever reported of primary SCC of a bone outside the skull and the first case of primary non-keratinizing SCC of the scapula (Table 1). It is not easy to make a diagnosis of primary SCC of a non-skull bone, as this depends not only on pathological and immunohistochemical examinations but also requires extensive workup to rule out metastasis. In addition to metastasis, the differential diagnosis of primary SCC should also include SCC caused by chronic osteomyelitis\(^ {20,24}\). Keratin pearls are the pathological features of highly differentiated SCCs, and their presence in histopathological sections of well-differentiated SCCs is a common phenomenon\(^ {20}\). Unlike the three cases of primary SCC of a non-skull bone reported previously, our case was unique in that it had no keratin pearls. This is because our patient had a poorly differentiated SCC, while the previous three patients had well-differentiated SCCs with keratin pearl formation. The immunohistochemical features of the previous three cases were also similar to those of our case\(^ {25}\), in that the tumor cells were reactive to cytokeratin 5/6, p63, and p40\(^ {20,22}\). However, in our case, the tumor cells were also reactive to vimentin, which may be related to the metastasis capability and invasiveness of the primary SCC\(^ {29}\). In our patient, the final diagnosis of a primary SCC of the bone was supported by the immunohistochemical findings, the extensive workup for the identification of a primary source, and the fact that the patient remained disease-free during a 2-year follow-up period.

For patients with primary SCC, the choice of treatment depends on the specific tumor characteristics, and an effective personalized treatment strategy must be devised. For most patients with primary SCC of the bone without metastasis, a negative tumor margin of at least 2 cm must be achieved during surgery\(^ {28}\). For patients with SCC of the temporal bone, this margin may be difficult to achieve, as many important structures are located nearby, and the anatomical structure of the temporal bone is complex\(^ {26}\); in such patients, adjuvant radiotherapy may help control minimal residual disease\(^ {29}\). In our patient, as the SCC originated from the relatively independent anatomical structure of the scapula\(^ {27}\), it was easier to achieve complete resection of the tumor. Surgical resection is the most important treatment method for this type of tumor, and postoperative adjuvant treatment can be individualized according to the immunohistochemical characteristics of the tumor. For example, cetuximab is a monoclonal antibody that targets the epidermal growth factor receptor, and compared with conventional radiotherapy, cetuximab combined with radiotherapy may help achieve good outcomes in some patients with SCC\(^ {29}\). In addition, cisplatin, 5-fluorouracil, and docetaxel is an effective combination chemotherapy regimen\(^ {29}\). These adjuvant treatments can improve local control and reduce the mortality of advanced head and neck cancers, but due to the paucity of reports of primary SCCs outside the head and neck, there is still a lack of effective clinical research evidence.

CONCLUSION

To the best of our knowledge, this report is the first to describe primary non-keratinizing SCC of the scapular bone. However, there is still no consensus on the standard treatment method or prognosis of primary SCC of non-skull bones because of its rarity, with only a few cases having been reported and followed up. Our findings demonstrate that clinicians must exhaust all available means for the diagnosis of primary SCC of bones, so greater attention can be paid to timely treatment and
effective management. Regular and adequate follow-up is essential to help rule out metastasis and judge the prognosis.

REFERENCES

1. Waldman A, Schults C. Cutaneous Squamous Cell Carcinoma. Hematol Oncol Clin North Am 2019; 33: 1-12 [PMID: 30497667 DOI: 10.1016/j.hoc.2018.08.001]

2. Suzuki A, Kashiwagi N, Doi H, Ishii K, Doi K, Kitano M, Kozuka T, Hyodo T, Tsurusaki M, Yagyu Y, Nakanishi K. Patterns of bone metastases from head and neck squamous cell carcinoma. Auris Nasus Larynx 2020; 47: 262-267 [PMID: 31445714 DOI: 10.1016/j.anl.2019.08.001]

3. Griffin LL, Ali FR, Lear JT. Non-melanoma skin cancer. Clin Med (Lond) 2016; 16: 62-65 [PMID: 26833519 DOI: 10.7861/clinmedicine.16-1-62]

4. Kallini JR, Hamed N, Khachemoune A. Squamous cell carcinoma of the skin: epidemiology, classification, management, and novel trends. Int J Dermatol 2015; 54: 130-140 [PMID: 25428226 DOI: 10.1111/ijd.12553]

5. Gaston CL, Vergel de Dios AM, Dela Rosa TL, Wang EH. Case report: Primary squamous cell carcinoma of a tarsal bone. Clin Orthop Relat Res 2009; 467: 3346-3350 [PMID: 19526272 DOI: 10.1007/s11999-009-0926-3]

6. Gangopadhyay S, Saha S. Primary squamous cell carcinoma of bone. J Indian Med Assoc 1997; 95: 521, 523 [PMID: 9529591]

7. Abbas A, Bromage JD, Stocks PJ, Al-Sarireh B. Case of the Conference: Primary squamous cell carcinoma in a long bone. J Bone Joint Surg Br 2005; 87 suppl 1: 6

8. Guan Y, Wang G, Fails D, Nagarajan P, Ge Y. Unraveling cancer lineage drivers in squamous cell carcinomas. Pharmacol Ther 2020; 206: 107448 [PMID: 31836455 DOI: 10.1016/j.pharmthera.2019.107448]

9. Sánchez-Danés A, Blampain C. Deciphering the cells of origin of squamous cell carcinomas. Nat Rev Cancer 2018; 18: 549-561 [PMID: 29849076 DOI: 10.1038/s41561-018-0024-5]

10. Blampain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009; 10: 207-217 [PMID: 19209183 DOI: 10.1038/nrm2636]

11. Bodner L, Manor E, Shear M, van der Waal I. Primary intraosseous squamous cell carcinoma arising in an odontogenic cyst: a clinicopathologic analysis of 116 reported cases. J Oral Pathol Med 2011; 40: 733-738 [PMID: 21689161 DOI: 10.1111/j.1600-0714.2011.01583.x]

12. Abdelkarim AZ, Elzayat AM, Syed AZ, Lozanoff S. Delayed diagnosis of a primary intraosseous squamous cell carcinoma: A case report. Imaging Sci Dent 2019; 49: 71-77 [PMID: 30941291 DOI: 10.5624/isd.2019.49.1.71]

13. Lovin BD, Gidley PW. Squamous cell carcinoma of the temporal bone: A current review. Laryngoscope Investig Otolaryngol 2019; 4: 684-692 [PMID: 31890889 DOI: 10.1002/ino.2330]

14. Kikuchi K, Ide F, Takizawa S, Suzuki S, Sakashita H, Li TJ, Kusama K. Initial-Stage Intraosseous Squamous Cell Carcinoma Derived from Odontogenic Keratocyst with Unusual Keratoameloblastomatous Change of the Maxilla: A Case Report and Literature Discussion. Case Rep Otolaryngol 2018; 2018: 7959230 [PMID: 29850338 DOI: 10.1155/2018/7959230]

15. Allanson BM, Low TH, Clark JR, Gupta R. Squamous Cell Carcinoma of the External Auditory Canal and Temporal Bone: An Update. Head Neck Pathol 2018; 12: 407-418 [PMID: 30069837 DOI: 10.1007/s12105-018-0908-4]

16. Akoh CC, Chang J, Buckwalter J, Marjolin's Ulcer of the Tibia With Pelvic Lymph Node Metastasis. Iowa Orthop J 2017; 37: 133-138 [PMID: 28852347]

17. Li Q, Cui H, Dong J, He Y, Zhou D, Zhang P, Liu P. Squamous cell carcinoma resulting from chronic osteomyelitis: a retrospective study of 8 cases. Int J Clin Exp Pathol 2015; 8: 10178-10184 [PMID: 26617725]
18 Alami M, Mahfoud M, El Bardouni A, Berrada MS, El Yaacoubi M. Squamous cell carcinoma arising from chronic osteomyelitis. *Acta Orthop Traumatol Turc* 2011; 45: 144-148 [PMID: 21765226 DOI: 10.3944/AOTT.2011.2537]

19 Sarode SC, Sarode GS, Sengupta N, Sharma NK, Patil S. Calcified keratin pearls in oral squamous cell carcinoma. *Oral Oncol* 2020; 109: 104681 [PMID: 32276815 DOI: 10.1016/j.oraloncology.2020.104681]

20 Martínez-Martínez M, Mosqueda-Taylor A, Delgado-Azañero W, Rumayor-Piña A, de Almeida OP. Primary intraosseous squamous cell carcinoma arising in an odontogenic keratocyst previously treated with marsupialization: case report and immunohistochemical study. *Oral Surg Oral Med Oral Pathol Oral Radiol* 2016; 121: e87-e95 [PMID: 26638715 DOI: 10.1016/j.oooo.2015.08.015]

21 Tatsumori T, Tsuta K, Masai K, Kinno T, Taniyama T, Yoshida A, Suzuki K, Tsuda H. p40 is the best marker for diagnosing pulmonary squamous cell carcinoma: comparison with p63, cytokeratin 5/6, desmocollin-3, and sox2. *Appl Immunohistochem Mol Morphol* 2014; 22: 377-382 [PMID: 24805133 DOI: 10.1097/PAI.0b013e3182980544]

22 Affandi KA, Tizen NMS, Mustangin M, Zin RRMRM. p40 Immunohistochemistry Is an Excellent Marker in Primary Lung Squamous Cell Carcinoma. *J Pathol Transl Med* 2018; 52: 283-289 [PMID: 30235512 DOI: 10.4132/jptm.2018.08.14]

23 Dong Y, Zheng Y, Wang C, Ding X, Du Y, Liu L, Zhang W, Zhang W, Zhong Y, Wu Y, Song X. MiR-876-5p modulates head and neck squamous cell carcinoma metastasis and invasion by targeting vimentin. *Cancer Cell Int* 2018; 18: 121 [PMID: 30181714 DOI: 10.1186/s12935-018-0619-7]

24 Caruso G, Gerace E, Lorusso V, Cultrera R, Morelli L, Massari L. Squamous cell carcinoma in chronic osteomyelitis: a case report and review of the literature. *J Med Case Rep* 2016; 10: 215 [PMID: 27491264 DOI: 10.1186/s13256-016-1002-8]

25 da Silva AP, Breda E, Monteiro E. Malignant tumors of the temporal bone - our experience. *Braz J Otorhinolaryngol* 2016; 82: 479-483 [PMID: 26832631 DOI: 10.1016/j.bjorl.2015.09.010]

26 Sun HY, Tsang RK. Squamous cell carcinoma of the temporal bone in 30 patients: Difference in presentation and treatment in de novo disease vs radiation associated disease. *Clin Otolaryngol* 2017; 42: 1414-1418 [PMID: 28636202 DOI: 10.1111/ota.12923]

27 Mimata Y, Nishida J, Nagai T, Tada H, Sato K, Doita M. Importance of latissimus dorsi muscle preservation for shoulder function after scapulectomy. *J Shoulder Elbow Surg* 2018; 27: 510-514 [PMID: 29269139 DOI: 10.1016/j.jse.2017.09.030]

28 Ebisumoto K, Okami K, Hamada M, Maki D, Sakai A, Saito K, Shimizu F, Kaneda S, Iida M. Cetuximab with radiotherapy as an alternative treatment for advanced squamous cell carcinoma of the temporal bone. *Auris Nasus Larynx* 2018; 45: 637-639 [PMID: 28867454 DOI: 10.1016/j.anl.2017.08.005]

29 Shinomiya H, Hasegawa S, Yamashita D, Ejima Y, Kenji Y, Otsuki N, Kiyota N, Sakakibara S, Nomura T, Hashikawa K, Kohmura E, Sasaki R, Nibu K. Concomitant chemoradiotherapy for advanced squamous cell carcinoma of the temporal bone. *Head Neck* 2016; 38 Suppl 1: E949-E953 [PMID: 25995093 DOI: 10.1002/hed.24133]
