The Effect of Antioxidant activity, Total Phenols and Total Flavonoids on Arginase Inhibitory Activity on Plants of Genus Sterculia

Rini Prastiwi¹,*, Berna Elya², Muhammad Hanafi³,4, Ema Dewanti¹, Rani Sauriasari²

¹Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy and Science Muhammadiyah Prof. Dr. Hamka University, 1340 Jakarta, INDONESIA
²Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy Universitas Indonesia, Depok 16424, West Java, INDONESIA
³Research Centre for Chemistry - National Research and Innovation Agency (BRIN), INDONESIA

ABSTRACT
Background: The genus of Sterculia has the main compound of phenol and flavonoids. The secondary metabolites which have an arginase inhibitory activities were phenol and flavonoids. The aim of this study was to investigate the arginase inhibitory activity from genus Sterculia. The Plant of Sterculia: Sterculia rubiginosa Zoll. ex Miq., Sterculia comosa (Wall) Roxb., Sterculia parkinsonii F. Muell, Sterculia macrophylla Vent, Sterculia stipulata Korth. The simplisia were leaves and woods. Materials and Methods: The simplisia were extracted with n-hexane, ethyl acetate and methanol. The ethyl acetate and methanol extract determined the arginase inhibitory activity. The active extracts as an arginase inhibitory, determined the total flavonoids, total phenols and antioxidant activity, and the chemical content. Sterculia comosa (Wall) Roxb., Sterculia macrophylla Vent, Sterculia stipulata Korth., have arginase inhibitory activity. Results: The ethyl acetate extracts of Sterculia stipulata leaves is an active extract. The methanol extract which have an arginase inhibitory activity were Sterculia comosa (Wall) Roxb. wood and leaves, Sterculia macrophylla Vent, wood and leaves, Sterculia stipulata Korth., wood, and leaves. The methanol extract of Sterculia comosa (Wall) Roxb. Woods has the highest content of total phenols, antioxidant activity, and arginase inhibitory activity. The methanol extract of Sterculia macrophylla Vent, has the highest content of total flavonoids, but this extract as an arginase inhibitory activity more lower than Sterculia comosa. The active extract as an arginase inhibitory activity was methanol extract of Sterculia comosa (Wall) Roxb. Conclusion: The total phenols were more contributed for the response of the arginase inhibitory activity much more than antioxidant activity and total flavonoids.

Key words: Arginase, Antioxidant, Enzyme, Flavonoids, Phenols, Sterculia.

INTRODUCTION
The genus of Sterculia was included in the subfamily of Sterculioideae, the family of Malvaceae and right now becomes the family of Sterculiaeae.¹ Sterculia consists of 200 species. The stem, wood, leaves, fruit, and roots of the Sterculia have been used traditional medicine in many countries to treat various diseases, including digestive diseases, diabetes, respiratory diseases, and skin diseases. In addition, the genus Sterculia has been studied and has activities as antimicrobial, anti-inflammatory, antioxidant and anticancer² cytotoxic and immunomodulatory activities,³ anti-nociceptive and anti-inflammatory,⁴ sedative⁵ antibacterial⁶ and anti-TB.⁷ The genus Sterculia contains of compounds flavonoids and their derivatives, terpenoids mostly as triterpenoids, coumarins, alkaloids and other groups such as phenolic acid, phenyl propanoid, fatty acids, sugar and some steroids.⁸ The literature study confirms that the main content of the genus Sterculia was flavonoids which include flavones, C-glycoside flavones, flavonols, flavan, isoflavones, isoflavan and anthocyanins. Other phenolic compounds such as phenolic acid, propanoid phenyl, coumarin, lignans and lignin.⁹ Indonesia has plants of genus Sterculia: Sterculia macrophylla Vent. was found in Sumatra, Maluku and Papua. Sterculia rubiginosa Zoll. ex Miq. was found in Sumatra. Sterculia parkinsonii F. Muell. was found in Papua. Sterculia stipulata Korth and also sterculia comosa. Arginase was an enzyme responsible for converting L-arginine to L-ornithine and urea. The substrat was L-arginine. This substrat used for Arginase and nitric oxide synthase (NOS), they use same substrat, so arginase competes with NOS for arginine.¹⁰¹¹ Nitric oxide (NO) production has been correlated to arginase activity in vessels, such as in physiological and pathological conditions on hypertension,¹² diabetes,¹³,¹⁴ erectile dysfunction,¹⁵ atherosclerosis,¹⁶,¹⁷ and endothelial disfunction.¹⁸ Some secondary metabolites have arginase inhibitory activity such as phenol and flavonoids.¹⁹ It was interesting to find the relationship between total phenols, total flavonoids and antioxidant activity with the inhibitory enzyme arginase on Sterculia.

MATERIALS AND METHODS
Materials
The Sterculia genus used were: macrophylla Vent, Sterculia stipulata, Sterculia parkinsonii, Sterculia comosa and Sterculia rubiginosa. The part of the plant from Sterculia used were leaves and woods. The Plants collected from Botanical Garden of Bogor, Indonesia and determined in Botany Herbarium Research Institute, Cibinong, West Java. The solvents used were n-hexane, ethyl acetate and methanol from local suppliers. Nor-NOHA (N ω-hydroxy-L-arginine) standard (Cayman, USA). Arginase enzymes (Sigma, Singapore), maleic acid (Sigma, Singapore). DMSO (Dimethyl sulfoxide) (Merck, Germany) and L-arginine (Sigma, Singapore). Ethyl acetate pro-analysis (Merck, Germany).
methanol pro analysis (Merck, Germany), n-hexane pro analysis (Merck, Germany), manganese sulfate (Sigma, Singapore). Urea assay kits (Quantichrom® Bioassay, United States), DPPH (2,2-Diphenyl-1-picrylhydrazyl) (Merck, Germany), the chemical reagents for identification of the compound and determining the content phenols total and flavonoids total.

Extraction

The powder from woods and leaves of *Sterculia* plants (20 g) were extracted by using a solvent continuously with n-hexane, ethyl acetate and methanol. The ratio between powder and solvent was 1:10. Each extract was concentrated with a rotary evaporator at 50 °C, then continued using a waterbath at 50 °C. Ethyl acetate and methanol extracts were tested for their activity as an arginase inhibitor.

Arginase inhibitor activity

The method for determined the arginase inhibitor activity used the procedure from the Kit and has been slightly modified. This procedure has also been carried out in previous studies. In the preliminary research, the concentration of the extracts in the well was made 100 µg/ml. The extract (50 mg) was added with 400 µl DMSO to dissolve, added with aquabidestillata to 5 ml (stock 1). This solution was taken 1 ml and diluted with aquabidestillata to 2 ml (stock 2). From the stock 2, 90 µl was taken and diluted with aquabidestillata to 1 ml (stock 3). This solution (stock 3) would be tested for arginase inhibitory activity. Ten (10) µl extract solution (stock 3) were added to the well, 15 ml enzyme (1 U/ml), added 25 µl of L-arginine (570 mM) solution and shake for 5 sec. Incubated at 37 °C for 30 min. After incubation added with 100 µl urea kits A and B (1:1), shake for 5 s. Incubate for 1 h at room temperature. The absorbance was read at 430 nm. The concentration extract for this activity was 100 µg/ml in well. The nor-NOHA as a positive control was performed under the same conditions and determined the IC₅₀.

Antioxidant activity

The Antioxidant activity used the DPPH method from Bobo garcia (2015) with microplate as an instrument. For the antioxidant activity, the concentration of extracts were used 100 µg/ml. The extract (50 mg) was added with 400 µl DMSO to dissolve, added with Na₂CO₃ 7.5% to prepare the mixture added 80 µl of Na₂CO₃ 7.5%. The incubation was carried out for 2 h in a dark place at room temperature. The absorbance was read at 517 nm. The absorbance results was read at 517 nm. The absorbance was read at 430 nm. The absorbance results was read at 517 nm. The absorbance results was read at 517 nm.

The determination of total flavonoids content used the method from Farasat (2014) with microplate as an instrument. The concentration of the extract in the well was 100 µg/ml. Twenty (20) µl extracts in methanol (1200 µg/ml) were added in the well, 20 µl aluminum chloride 10%, Added 20 µl potassium acetate 1 M and 180 µl distilled water. The mixture was incubated for 30 min at room temperature. The absorbance was read at 415 nm. The standard curve was used quercetine (3; 6; 9; 12; 18; 24 µg/ml). Total flavonoids was calculated as quercetine equivalent (mg/g) dry extract (mg QE/g extract).

Biochemical screening and TLC chromatogram

The chemical compounds in the active extracts were determined by the method of Harborne and Indonesian pharmacopoeia. The content of the chemical compounds: tannins, alkaloids, flavonoids, phenols, saponins and anthraquinones. The active extracts were determined the profile of TLC chromatogram.

Statistical analysis

The multiple linear regression was used as a statistical analysis to find the relationship between antioxidant activity, total phenols and total flavonoids on arginase inhibitory activity. The total phenols, total flavonoids and antioxidant activity as independent variable, and dependent variable was arginase inhibitory activity.

RESULTS AND DISCUSSION

Arginase activity

Methanol extract was an active extract from plants in the genus *Sterculia*. This active extract in wood and leaves. The results showed in table 1 and table 2. The IC₅₀ for nor-NOHA as a positive control was 3.773 µg/ml. The result showed on table 2 and figure 1.

Antioxidant activity

The DPPH was method to determined the antioxidant activity. Quercetine was used as a positive control, the IC₅₀ of quercetine was 5.63 µg/ml. The result of antioxidant activity showed on table 1 and figure 2.

Determination of total flavonoids and total phenols

The determination of total flavonoids used the method from Quercetine as a standard. The result of linear regression was $\gamma = 0.0198x - 0.0215$ ($R^2 = 0.9964$). *Sterculia macrophylla* leaves extract had the highest of total flavonoids. The total flavonoids was 67.74 mg QE/gram. The determination of total phenol was used gallic acid as standard. The linear regression was: $\gamma = 0.026x + 0.3373$ ($R^2 = 0.996$). The highest phenol content was *Sterculia comosa* wood extract. The value was 709.39 mg GAE/gram. The result showed on table 2 and figure 2.

Phytochemical screening

The active extract as an arginase inhibitor was determined the chemical constituents. The results showed on table 6. The Chromatogram Profile of Active Extracts showed on table 7.

Statistical analysis

The multiple linear regression used for statistical analysis to find the effect of antioxidant activity, total phenols and total flavonoids to arginase inhibitory activity. The Significance value 0.000 (*P<0.05) it was meant that Ho was rejected. It can be said that total phenol, total flavonoids and antioxidant activity have an affect to the arginase inhibitory activity. The value of beta coefficient for total phenol was 0.891; the value of beta coefficient for total flavonoids was -0.053, it can be concluded that the total phenols more contributed
Prastiwi R, et al.: The Effect of Antioxidant activity, Total Phenols and Total Flavonoids on Arginase Inhibitory Activity on Plants of Genus Sterculia

Figure 1: The arginase inhibitor activity of nor-NOHA.

\[y = 5.4539x + 28.378 \]
\[R^2 = 0.9997 \]

Figure 2: Antioxidant activity of quercetine.

\[y = 8.0154x + 4.863 \]
\[R^2 = 0.998 \]

Table 1: Arginase inhibitor activity of methanol extracts.

Extract (100 µg/ml)	Average Inhibition (%)	Sd	kv
Leaves			
Sterculia comosa	61.66	7.07	11.46
Sterculia macrophylla	32.61	5.56	17.07
Sterculia parkinsonii	-92.75	13.71	-14.78
Sterculia rubiginosa	-121.80	5.89	-4.83
Sterculia stipulata	14.47	2.07	14.30
Woods			
Sterculia comosa	84.25	10.34	12.28
Sterculia macrophylla	92.54	5.90	6.38
Sterculia parkinsonii	-66.71	11.41	-17.11
Sterculia rubiginosa	-222.17	17.33	-7.80
Sterculia stipulata	17.80	3.00	16.84
Nor-NOHA (IC₅₀)	3.733 µg/ml	R²=0.9997	

Table 2: Arginase inhibitor activity of ethyl acetate extracts.

Extract (100 µg/mL)	Average Inhibition (%)	Sd	kv
Leaves			
Sterculia comosa	-35.57	6.63	-18.64
Sterculia macrophylla	-93.36	12.61	-13.51
Sterculia parkinsonii	-93.16	14.06	-15.10
Sterculia rubiginosa	-76.56	14.81	-19.34
Sterculia stipulata	-51.03	5.75	-11.27
Woods			
Sterculia comosa	-12.54	0.05	-0.42
Sterculia macrophylla	-8.31	1.35	-16.24
Sterculia parkinsonii	-64.90	11.48	-17.69
Sterculia rubiginosa	-2.96	0.55	-18.50
Sterculia stipulata	19.19	1.25	6.49
Nor-NOHA (IC₅₀)	3.733 µg/ml	R²=0.9997	
Table 3: Antioxidant activity of methanol extracts.

Extract (100 µg/ml)	The part of Plant	Antioxidant Activity (%)	sd	kv
Sterculia stipulata	Leaves	78.81	1.26	1.60
Sterculia macrophylla	Leaves	78.65	2.69	3.42
Sterculia stipulata	Woods	8.30	0.38	4.60
Sterculia macrophylla	Woods	77.20	2.53	3.28
Sterculia comosa	Woods	91.31	1.67	1.83
IC₅₀ Quercetine		5.63 µg / ml		

Table 4: Total phenols content of methanol extract.

Extract (100 µg/ml)	The Part of Plant	Total Phenols (mg GAE/g)	sd	kv
Sterculia stipulata	Leaves	141.62	10.54	7.44
Sterculia macrophylla	Leaves	316.29	35.66	11.27
Sterculia stipulata	Woods	50.00	5.15	10.30
Sterculia macrophylla	Woods	515.00	37.33	7.25
Sterculia comosa	Woods	709.39	35.47	5.00

Table 5: Total flavonoids content of methanol extract.

Extract (100 µg/ml)	The Part of Plant	Total Flavonoids (mg QE/g)	sd	kv
Sterculia stipulata	Leaves	41.45	5.84	14.08
Sterculia macrophylla	Leaves	67.74	6.50	9.60
Sterculia stipulata	Woods	27.99	0.62	2.22
Sterculia macrophylla	Woods	28.87	4.24	14.69
Sterculia comosa	Woods	33.27	3.74	11.24

Table 6: Phytochemical screening of the methanol extract.

Extract	Sterculia stipulata Leaves	Sterculia macrophylla Leaves	Sterculia comosa Woods	Sterculia macrophylla Woods	Sterculia stipulata Woods
Terpenoids/steroids	Terpenoids +	Terpenoids +	Steroids +	Steroids (+)	Terpenoids +
Alkaloids	+	+	+	+	+
- Dragendorff	+	+	+	+	+
- Mayer	+	+	+	+	+
Tannins	+	+	+	+	+
- FeCl₃	+	+	+	+	+
- Folin	+	+	+	+	+
- Gelatine	+	+	+	+	+
Flavonoids	+	+	+	+	+
Antraquinones	-	-	-	-	-
Saponins	+	+	+	+	+

Note: + = presence, - = Absence

Table 7: The chromatogram profile of active extracts.

No.	Mobile phase	Sterculia stipulata Woods (RF, UV365)	Sterculia stipulata Leaves (RF, UV365)	Sterculia macrophylla Leaves (RF, UV365)	Sterculia comosa Woods (RF, UV365)	Sterculia macrophylla Woods (RF, UV365)	
1	Hexan: Ethyl acetate: Methanol (11:4:2) Stationary phase: Silica Gel GF₂₅₄	0.76 (red)	0.76 (red)	0.38 (blue)	0.67 (black) spray with H₂SO₄, 10% becomes yellow 0.76 (red)	0.45 (blue)	0.76 (blue fluorescent) 0.91 (blue)
2	Ethyl acetate: Methanol (9:1) Stationary phase: Silica Gel GF₂₅₄	0.2 (blue)	0.15 (blue)	0.21 (black) spray with H₂SO₄, 10% becomes yellow 0.85 (red)	0.76 (blue fluorescent)	0.45 (light blue)	0.76 (blue fluorescent) 0.89 (blue)
3	Ethyl acetate : Formic acid (8:3:0,1) Stationary phase: Silica Gel GF₂₅₄	0.64(light yellow) 0.73 (light yellow)	0.64(light yellow) 0.73 (yellow)	0.55 (blue) 0.69 (black) spray with H₂SO₄, 10% becomes yellow 0.76 (yellow) 0.91(red)	0.55 (blue)	0.64 (blue)	0.91 (blue)
for the arginase activity than total flavonoids and antioxidant activity. The VIF (Variance Inflance Factor) values showed for total phenols 2.338, total flavonoids 1.444 and for antioxidant 2.430, from the three independent variables showed that there was no multicollinearity. The multiple linear regression with 3 independent variables as follow: Y = 28.289 + 0.128 X _1 - 0.497 X _2 - 0.069 X _3, X _1 = independent variable (total phenols), X _2 = independent variable (total flavonoids), X _3 = independent variable (antioxidant activity).

Endothel dysfunction was related to arginase activity, one of the disease was hypertension. L-arginine is a substrate that used by NOS and arginase. Under physiological conditions NOS maintains the health of blood vessels by producing NO. Arginase produces ornithine, which would be metabolized to polyamine for tissue growth and proline for collagen. Under pathological stimulation with the presence of RhoA/ROCK, arginase activity would be increase so that it would deplete the substrate NOS, L-arginine. When NOS does not have enough substrate, it will become unbound and produce more superoxide (O_2\(^{-}\)) than NO. Increased production of polyamines and proline can also cause pathological and vascular stiffness.\(^{23,24}\) Availability of NO will affect the regulation of vascular tone and maintenance of vascular integrity.\(^{2}\) The inhibition of arginase activities by phenol, flavonoids, among of them were chlorogenic acid, quercetin, epicatechin, wogonin, (2R, 4S)-4,5,6,7,8,8′-Hexamethoxylflavan, (2S), 7, dihydroxy-2′dimethoxyyl avanone, (2S)-5, 2,5′-Trihydroxy-7,8-dimethoxylavanone, naringenin, 7-Hydroxyxacinone, taxifolin, kaempferol, caffeic acid, Sauchinone, meso-Dihydroxyauric acid, apigenin, resveratrol, piceatannol, Guaiacian, Naringenin-5-O-β-D-glucopyrana, (2S) -5,5′-Dihydroxy-7,8 dimethoxylavanone-2′-O-β-D-glucopyranoside.\(^{23}\) Flavonoids such as luteolin, fisetin can inhibit the arginase enzyme.\(^{26}\) Our previous study showed that Sterculia macrophylla which has arginase activity also have high of antioxidant activity and total flavonoids.\(^{27}\) The woods of Sterculia more active than leaves. And the methanol extract more active than ethyl acetate extract for inhibit arginase. The recent study the stem bark of Caesalpinia turtosa have the arginase activity with the IC\(_50\) 11.58 µg/ml for methanol extract and 33.81 µg/ml for ethyl acetate extract.\(^{24}\) This result was same with our study. Sterculia contain phenol compounds and flavonoids as the abundant compound.\(^1\) Interesting to examine whether the arginase inhibitory activity of from the genus Sterculia was influenced by antioxidant activity, total phenol levels and total flavonoids. The analytical results by multilinear regression analysis showed that total phenol was more contributed for this activity than total flavonoids and antioxidant activity. Sterculia comosa and Sterculia macrophylla have a high inhibitory activity on arginase. It is need more research to know the chemical compound which was responsible for this activity.

CONCLUSION

The total phenols of the plant of Sterculia genus responsible for the arginase inhibitory activity. The most active plants was Sterculia comosa woods. Based on this study Sterculia comosa woods may be used for many diseases causes by endothelial dysfunction.

ACKNOWLEDGEMENT

The authors are very much thank full to Hibah Penelitian Pengembangan IPTEK (PPI) Universitas Muhammadiyah Prof. Dr. HAMKA.

CONFLICTS OF INTEREST

We declare that we have no conflicts of interest.

ABBREVIATIONS

S: Sterculia
TPTZ: 2,4,6-tripryridyl-s-triazine
FRAP: Ferric Reducing Antioxidant Power
AFS: Ammonium ferrous sulphate

REFERENCES

1. Willie PA. Phylogenetic Relationships within the Subfamily Sterculioideae (Malvaceae-Sterculioideae-Sterculieae) Using the Chloroplast Gene. 2006;31:160-170.
2. Saleh M. Asian Pacific Journal of Tropical Disease genera: A review. Asian Pacific J Trop Dis. 2016;6:492-501.
3. Fazie Rabbi AN, Zada A, Adhikari A, Jabeen A. Sterculia diversifolia bears anti-cancer and immunomodulatory activities. Bangladesh J Pharmacol. 2017;12;52-56.
4. Silva FV. Anti-Inflammatory and Antinociceptive Effects of Sterculia striata A St-Hil & Naudin (Malvaceae) in Rodents Franciliene. J Med Food. 2014;17(6):694-700.
5. Hossain F. In vivo sedative activity of methanolic extract of Sterculia villosa Roxb. leaves. BMC Complement. Altermed Med. 2016;16(1):10-13.
6. Braga AA, Rodrigues R. Antibacterial and Hemolytic Activity of a New Lentin Purified from the Seeds of Sterculia Foetida Del. Leaves (Sterculiae). Phyto J. 2012;7;17-23.
7. Babalola IT, Adelakun EA, Wang Y, Shode FO. Anti-TB Activity of Sterculia setigeria Del, Leaves (Sterculiae). Phyto J. 2012;1:17-23.
8. Shafique AA, Ahmad SDSZ. Protective Role of Arginase II in Cerebral Ischemia and Excitotoxicity. J Neurol Neurosci. 2016;7(2):1-11.
9. Bagnost T. Cardiovascular effects of arginase inhibition in spontaneously hypertensive rats with fully developed hypertension. Cardiovasc Res. 2010;87(3):569-577.
10. Gobert AP. Helicobacter pylori Induces Macrophage Apoptosis by Activation of Arginase II. J Immunol. 2002;168(9):4692-4700.
11. Akiyemi AJ, Oboh G, Ademiluyi AO, Boligön AA, Atheyade ML. Effect of Two Ginger Varieties on Arginase Activity in Hypercholesterolemic Rats. J Acupunct Meridian Stud. 2016;9(2):80-87.
12. Bhatta A. Molecular and Cellular Endocrinology Deregulation of arginase induces bone complications in high-fat / high- sucrose diet diabetic mouse model. Mol Cell Endocrinol. 2016;422;211-220.
13. El-bassossy HM, El-fawal R, Fahmy A. Mechanisms of Vascular Dysfunction in Diabetes Arginase inhibition alleviates hypertension associated with diabetes : Effect on endothelial dependent relaxation and NO production Mechanisms of Vascular Dysfunction in Diabetes. Vascualr Pharmacol. 2012;57(6-6):194-200.
14. Segal Roberte BTJ. Chronic Oral Administration of the Arginase Inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) Improves Erectile Function in Aged Rats. J od Androl. 2012;33(6):22-123.
15. Prati C, Bertholot A, Kantelip B, Wendling D, Demougeot C. Treatment with the arginase inhibitor Nw-hydroxy-nor-L-arginine restores endothelial function in rat adjuvant-induced arthritis. Arthritis Res Ther. 2012;14(3):130.
16. Ryoo S. A Novel Target for the Treatment of Atherosclerosis. Circ Res. 2008;2:923-932.
17. Steppan J, Nyhan D, Berkowitz DE. Development of novel arginase inhibitors for therapy of endothelial dysfunction. Front Immunol. 2013;4:278.
18. Woo A, Min B, Ryoo S. Piceatannol-3′-O-β-D-glucopyranoside as an active component of rhubarb activates endothelial nitric oxide synthase through inhibition of arginase activity. Exp Mol Med. 2010;42(7):524.
19. Bobo-garcia G, Davidov-pardo G, Arroqui C, Marin-arroyo MR. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts and comparison with conventional spectrophotometric methods. J Sci Food Agric. 2015;95(1):204-209.
Prastiwi R, et al.: The Effect of Antioxidant activity, Total Phenols and Total Flavonoids on Arginase Inhibitory Activity on Plants of Genus Sterculia

Pharmacognosy Journal, Vol 14, Issue 2, Mar-Apr, 2022

20. Farasat M, Khavari-nejad R. Antioxidant Activity, Total Phenolics and Flavonoid Contents of some Edible Green Seaweeds from Northern Coasts of the Persian Gulf. Iran. J Pharm Res. 2014;13(1):163-170.

21. Harborne J. A Guide to Modern Techniques of Plant Analysis. Phytochemical Methods. Chapman and Hall London. 1980;58.

22. Anonymous. Farmakope Herbal Indonesia. Ed I,. Departement Kesehatan Republik Indonesia (Department of Health of RI) Jakarta, Indonesia. 2008;1:123.

23. Caldwell RB, Toque HA, Narayanan SP, Caldwell RW. Arginase: an old enzyme with new tricks. Trends Pharmaco Sci. 2015;36(6):395-405.

24. Chandra S, Romero MJ, Shatanawi A, Alkilany AM, Caldwell RW. Oxidative species increase arginase activity in endothelial cells through the RhoA / Rho kinase. Br J Pharmacol. 2012;165(2):506-519.

25. Minozzo BR, Fernandes D, Beltrame FL. Phenolic Compounds as Arginase Inhibitors: New Insights Regarding Endothelial Dysfunction Treatment. Planta Med. 2018;84(5):277-295.

26. Correa L, Balduino M, Maquiaveli C, Santos-filho OA, Roberto E. Dietary flavonoids fisetin, luteolin and their derived compounds inhibit arginase, a central enzyme in Leishmania amazonensis infection. Food Chem. 2013;141(3):2253-2262.

27. Prastiwi R, Elya B, Sauriasari R, Hanafi M, Desmiaty Y. Arginase Inhibitory, Antioxidant Activity and Pharmacognosy Study of Sterculia macrophylla Vent. Leaves. Pharmacogn J. 2018;10:1109-1113.

28. Najid A, Elya B, Noviani A. Arginase Inhibitory Activity of Stem Bark Extracts of Caesalpinia Tortuosa Roxb. Int J Appl Pharm. 2018;10:130-132.

GRAPHICAL ABSTRACT
ABOUT AUTHORS

Rini Prastiwi: Lecture and researcher at Faculty Pharmacy and Sains of Universitas Muhammadiyah Prof. Dr. HAMKA, Indonesia.

Berna Elya: Lecture and researcher at Universitas Indonesia, Indonesia, also as a Professor Pharmacognosy and Phytochemistry.

Rani Sauriasari: Lecture and researcher at Universitas Indonesia, Indonesia.

Muhammad Hanafi: Lecture at Universitas Pancasila and also as a Professor at BRIN, Indonesia.

Ema Dewanti: Lecture and researcher at Faculty Pharmacy and Sains of Universitas Muhammadiyah Prof. Dr. HAMKA, Indonesia.

Cite this article: Prastiwi R, Elya B, Hanafi M, Dewanti E, Sauriasari R. The Effect of Antioxidant activity, Total Phenols and Total Flavonoids on Arginase Inhibitory Activity on Plants of Genus Sterculia. Pharmacogn J. 2022;14(2): 322-328.