Rapid Nucleolytic Degradation of the Small Cytoplasmic Y RNAs during Apoptosis*

(Received for publication, April 23, 1999)

Saskia A. Rutjes, Annemarie van der Heijden, Paul J. Utz‡§, Walther J. van Venrooij, and Ger J. M. Pruijn¶

From the Department of Biochemistry, University of Nijmegen, P. O. Box 9101, NL-6500 HB Nijmegen, The Netherlands and the Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham & Women’s Hospital, Boston, Massachusetts 02115

We have investigated the fate of the RNA components of small ribonucleoprotein particles in apoptotic cells. We show that the cytoplasmic Ro ribonucleoprotein-associated Y RNAs are specifically and rapidly degraded during apoptosis via a caspase-dependent mechanism. This is the first study describing the selective degradation of a specific class of small structural RNA molecules in apoptotic cells. Cleavage and subsequent truncation of Y RNAs was observed upon exposure of cells to a variety of apoptotic stimuli and were found to be inhibited by Bel-2, zinc, and several caspase inhibitors. These results indicate that apoptotic degradation of Y RNAs is dependent on caspase activation, which suggests that the nucleolytic activity responsible for hY RNA degradation is activated downstream of the caspase cascade. The Y RNA degradation products remain bound by the Ro60 protein and in part also by the La protein, the only two proteins known to be stably associated with intact Ro ribonucleoprotein particles. The size of the Y RNA degradation products is consistent with the protection from degradation of the most highly conserved region of the Y RNAs by the bound Ro60 and La proteins. Our results indicate that the rapid abrogation of the yet unknown function of Y RNAs might be an early step in the systemic deactivation of the dying cell.

Apoptosis is a form of cell death characterized by distinct morphological and biochemical alterations. Morphologically, apoptotic cells are characterized by chromatin condensation, cell shrinkage, fragmentation of the nucleus, and partition of cytoplasm and nucleus into membrane bound-vesicles (apoptotic bodies) (1). During the last 5 years, many of the molecules that participate in the biochemical pathway mediating apoptosis have been identified. A major role in this pathway is played by caspases, cysteine proteases with aspartic acid substrate specificity (2). Proteins cleaved by caspases appear to be structural proteins essential for maintaining nuclear and cytoplasmic architecture and enzymes essential for repair of damaged cell components (reviewed in Ref. 3). A prominent nuclear event during apoptosis is internucleosomal cleavage of DNA, recognized as a “DNA ladder” on conventional agarose gel electrophoresis (4). The endonuclease activity responsible for apoptotic degradation of chromosomal DNA has recently been identified (5). The activity depends on two interacting proteins, one of which contains the endonuclease activity (caspase-activated deoxyribonuclease (CAD)1), which is retained in the cytoplasm in an inactive form due to its association with the second protein (inhibitor of CAD). Caspase activation in apoptotic cells leads to cleavage of the inhibitor of CAD, thereby releasing active CAD resulting in DNA fragmentation in the nuclei (5, 6).

Much less is known about cleavage and degradation of RNA in apoptotic cells. An increased rate of mRNA turnover has been suggested (7, 8) as well as mitochondrial 16 S ribosomal RNA degradation (9), but no nuclease associated with specific RNA cleavage has been described. Although an increasing number of protein components of ribonucleoprotein particles (RNP) have been reported to be modified during apoptosis, such as the U1-70K protein, which is a component of the U1 snRNP (10), the 72-kDa component of the signal recognition particle (11), and the La protein, which is associated with several RNPs including the Ro RNP,2 no data have been published on the fate of the RNA components of these particles during apoptosis. Therefore, we decided to examine the effects of apoptosis on the cytoplasmic Y RNAs and 7SL RNA, the RNA components of the Ro RNPs and the signal recognition particle, respectively.

Ro RNPs are a class of small cytoplasmic RNA-protein complexes of unknown function, which are present in cells of all species studied to date (reviewed in Ref. 12). In human cells, Ro RNPs consist of one of four small RNA molecules, termed hY1, hY3, hY4, and hY5 (13). All four human Y RNAs have been sequenced (14–16) and found to consist of 112, 101, 93, and 84 nucleotides, respectively, although some heterogeneity at their 3′-ends has been observed. The Y RNAs, which are transcribed by RNA polymerase III (13), are characterized by a conserved stem structure formed by extensive base pairing between the evolutionarily conserved 5′- and 3′-ends. In addition to Y RNAs, Ro RNPs contain at least two different proteins: the La protein and the 60-kDa Ro protein (Ro60), whereas the association of a third protein, the 52-kDa Ro protein (Ro52), is still a matter of debate (17–20). The La protein binds to the oligouridylic stretch at the 3′-end of the Y RNAs, whereas Ro60 interacts with the most highly conserved part of the stem structure (21, 22).

In this study, we observed an extensive, rapid, and selective

* This work was supported in part by the Netherlands Foundation for Chemical Research with financial aid from the Netherlands Organization for Scientific Research. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
‡ Supported by the Arthritis Foundation, the Scleroderma Foundation, Inc., National Institutes of Health Grant K08AI01521, the Arthritis National Research Foundation, and Harvard Skin Disease Research Center Grant AR42689.
¶ To whom correspondence should be addressed. Tel.: 31-24-361-6847; Fax: 31-24-354-0525; E-mail: G.Pruijn@bioch.kun.nl.

1 The abbreviations used are: CAD, caspase-activated DNase; RNP, ribonucleoprotein particle; sn, small nuclear.
2 S. A. Rutjes, P. J. Utz, A. van der Heijden, C. Broekhuis, W. J. van Venrooij, and G. J. M. Pruijn, submitted for publication.
nucleolytic degradation of small cytoplasmic RNAs, the Y RNAs, during apoptosis. This phenomenon was observed upon exposure of the cells to multiple apoptotic stimuli, and Y RNA degradation appeared to be inhibited by the apoptosis inhibitors Bcl-2 and zinc, as well as by the caspase inhibitors Ac-YVAD-CMK, Z-DEVD-FMK, and Z-IETD-FMK. The results of co-immunoprecipitation experiments and size determination of the apoptotic Y RNA degradation products suggest that the most divergent regions of the Y RNAs are degraded and that the association of Ro60 with the conserved regions is not disrupted, whereas the association with La is partially lost.

EXPERIMENTAL PROCEDURES

Cell Culture—Jurkat cells, with Bcl-2 (Jurkat/Bcl-2) or without Bcl-2 (Jurkat/Neo) overexpression, kindly provided by Dr. J. Reed (the Burnham Institute, La Jolla, CA) (23), were grown in RPMI (Life Technologies, Inc.) medium supplemented with 10% heat-inactivated fetal calf serum, 200 μg/ml G418 (Life Technologies, Inc.), 1 μg/ml β-mercaptoethanol, 1 mM sodium pyruvate, and penicillin and streptomycin. Mouse WR19L cells expressing human Fas (24) were grown in RPMI (Life Technologies, Inc.) medium supplemented with 10% heat-inactivated fetal calf serum, 200 μg/ml G418 (Life Technologies, Inc.), 1 μg/ml β-mercaptoethanol, 1 mM sodium pyruvate, and penicillin and streptomycin. HeLa cells and the HEp-2 cells were grown in medium supplemented with 10% heat-inactivated fetal calf serum and penicillin and streptomycin. Cells were cultured in 5% CO2 at 37 °C.

Apoptotic RNA Isolation and Preparation of Apoptotic Cell Extracts—Jurkat/Bcl-2 and Jurkat/Neo cells and WR19L cells expressing human Fas (24) were treated with an anti-Fas monoclonal antibody 7C11, a kind gift of Dr. M. Robertson (Indiana University, Bloomington, IN), and cells were incubated at 37 °C for the indicated time periods prior to harvesting. HeLa cells were treated with 10 μg/ml actinomycin D and HEp-2 cells with 10 μg/ml anisomycin. Total RNA was isolated by Trizol RNA reagent (Life Technologies, Inc.), according to the instructions of the manufacturer. In parallel, cell extracts were prepared by lysis in Nonidet P-40 lysis buffer (25 mM Tris, pH 7.5, 100 mM KCl, 0.25 mM dithioerythritol, 10 mM MgCl2, 1% Nonidet P-40). After rotating the coated beads with the extracts in TKED for 2 h at 4 °C, the beads were washed three times with TKED. RNA was isolated by phenol/chloroform (1:1) extraction and was precipitated by adding 4 volumes of ethanol and analyzed by 10% denaturing polyacrylamide gel electrophoresis. Radiolabeled RNA was subjected to autoradiography, whereas unlabeled RNA was analyzed by Northern blot hybridization.

RESULTS

hY RNAs Are Specifically Cleaved Early during Apoptosis—To study the effects of apoptosis on the hY RNAs and 7SL RNA, we used two stably transduced Jurkat cell lines, one overexpressing the apoptosis inhibitor Bcl-2 (Jurkat/Bcl-2) and the second a transfection vector control line (Jurkat/Neo). To induce apoptosis, the cells were treated with a monoclonal antibody reactive with Fas (7C11). Previous studies have demonstrated that these antibodies very effectively induce apoptosis in Jurkat cells (11, 28). Cells were harvested either immediately or at the indicated time points after anti-Fas addition. Total RNA was isolated from cell extracts and analyzed by Northern blot hybridization using 32P-labeled antisense hY1, hY3, hY4, hY5, and 7SL RNA probes. The induction of apoptosis was monitored by the analysis of U1-70K protein cleavage, which leads to the appearance of a characteristic 40-kDa product. Cleavage of U1-70K, which is one of the prototypical proteins known to be cleaved during apoptosis (10), was visualized by immunoblotting of cell extracts using a patient serum reactive with the U1-70K protein. Analysis of the hY RNAs revealed that during early stages of apoptosis, these RNAs were efficiently degraded in anti-Fas-treated Jurkat/Neo cells (Fig. 1A). Degradation products were already detectable 1.5 h after anti-Fas addition (lane 13), whereas a gradual decrease in the amount of intact hY RNAs was evident, with the majority of the hY RNAs being degraded within 4 h after anti-Fas addition (compare lane 18 with lane 11). Although all hY RNAs were degraded upon induction of apoptosis, slight differences were observed in the rate of degradation. The rate of degradation appeared to be related to the size of the hY RNA; hY1 was degraded most quickly. In contrast, no degradation of 7SL RNA was observed in these cells (Fig. 1A). The selectivity of degradation of hY RNAs in apoptotic cells was further substantiated by the lack of detectable degradation of several other small RNAs, including U snRNAs, tRNAs, and 5 S rRNA (data not shown).

Degradation of hY RNAs was inhibited in Jurkat cells overexpressing Bcl-2, because a slight decrease of the amount of hY
RNAs was only detectable 6 h after anti-Fas addition, whereas degradation products did not appear during the first 3 h (lanes 1–10). The delayed degradation of hY RNAs in Jurkat/Neo cells in comparison with the Jurkat/Bcl-2 cells reflected the different efficiencies of apoptosis induction in these cells, which was monitored by cleavage of the U1-70K protein (Fig. 1B) and by flow cytometry of annexin-V stained cells (results not shown). The kinetics of hY RNA degradation appeared to be very similar to that of U1-70K cleavage, which is known to be mediated by caspase-3, suggesting that hY RNA degradation might also be dependent on caspase activation.

To determine whether degradation of hY RNAs also occurs when apoptosis is triggered by other stimuli, and in cells derived from other species, we analyzed apoptotic cell extracts derived from human HeLa cells treated with actinomycin D (10 μM) (data not shown) or HEP-2 cells treated with anisomycin (10 μg/ml). Also, apoptotic cell extracts, derived from mouse WR19L cells expressing human Fas (24) and treated with anti-Fas monoclonal antibody, were analyzed. Total RNA was isolated and analyzed by Northern blot hybridization using a mixture of hY RNA probes. The positions of the hY RNAs are indicated. Note that in mouse cells, only mY1 and mY3 are present.
Fig. 2. Stability of hY RNAs in Jurkat cells and Ro RNP association of hY RNAs during apoptosis. Jurkat/Bcl-2 (Bcl-2) and Jurkat/Neo (Neo) cells were cultured in the presence of 32P-labeled orthophosphate (in phosphate-free medium) for 18 h at 37 °C. After replacing the labeling medium with complete medium, apoptosis was induced by anti-Fas addition, and cell extracts were prepared either immediately or after incubations for the indicated time periods (above the lanes). Total RNA isolated from the 0 and 8 h extracts (lanes 1–4) and hY RNAs isolated from Jurkat/Bcl-2 extracts (lanes 5–9) and Jurkat/Neo extracts (lanes 10–14) by immunoprecipitation with an anti-Ro60 monoclonal antibody (2G10) were analyzed by denaturing polyacrylamide gel electrophoresis and autoradiography. The positions of pre-tRNA, tRNA, 5 S rRNA, 5.8 S rRNA, and the hY RNAs are indicated. The amount of RNA electrophoresed in 1% of the amount of cell extracts used for hY RNA isolation.

Obtained by Northern blot analysis of total RNA (Fig. 1). Taken together, these results demonstrate that the disappearance of hY RNAs during apoptosis is indeed due to degradation and that hY RNAs remain in association with the Ro RNP in apoptotic cells until or even after the degradation process has been initiated.

The differences in RNA ranging in size approximately from 5 to 5.8 S RNA between total radiolabeled RNA isolated either immediately after anti-Fas addition (Fig. 2, lanes 1 and 3) or following 8 h of incubation (lanes 2 and 4) might be due to apoptotic degradation of ribosomal RNA and/or mRNA (7–9), resulting in higher background signals. Note that due to the low abundance of radiolabeled hY RNAs, relatively high background signals of much more abundant RNAs, such as 5 and 5.8 S rRNA (Fig. 2, lanes 1 and 3), were observed among the immunoprecipitated RNAs (lanes 5–14).

Effect of Caspase Inhibitors on Degradation of hY RNAs—

Caspases are not only involved in the activation of apoptotic proteases; also, caspase-dependent activation of a deoxyribonuclease has recently been reported (5). To study the role of caspases in the activation of the nuclelease activity responsible for hY RNA degradation during apoptosis, Jurkat cells were cultured in the presence of several caspase inhibitors, including zinc sulfate (29), the caspase-1 inhibitor Ac-YVAD-CMK, the caspase-3 inhibitor Z-DEVD-FMK, the caspase-8 inhibitor Z-LEHD-FMK, or the caspase-9 inhibitor Z-LEHD-FMK for 1 h prior to and during anti-Fas treatment. Cells were harvested either immediately or at 8 h after anti-Fas addition.

Total RNA was isolated and analyzed by Northern blotting using hY RNA probes and a 7SL RNA probe as a control. Fig. 3A demonstrates that hY RNA degradation was completely inhibited in Jurkat cells cultured in the presence of zinc sulfate (Fig. 3A, lanes 4–6). hY RNA degradation was also clearly inhibited by the addition of Ac-YVAD-CMK, Z-DEVD-FMK and Z-LEHD-FMK (Fig. 3B, lanes 3–8) in comparison with the control incubation with 2% Me2SO (Fig. 3B, lane 2). In contrast, the caspase-9 inhibitor Z-LEHD-FMK only poorly affected hYRNA degradation (Fig. 3B, lanes 9–10). As expected, the addition of these inhibitors had no effect on 7SL RNA signals (Fig. 3C, lower panels). As a control for the inhibitory activity of the tetrapeptide inhibitors, the cell extracts were also analyzed for U1-70K cleavage, which is known to be sensitive to Ac-DEVD-CHO (10, 28, 30).

Cleavage of the U1-70K protein was indeed inhibited by ZnSO4, and the caspase-1, caspase-3, and caspase-8 inhibitors and to a lesser extent by the caspase-9 inhibitor (data not shown). These results demonstrate that the apoptotic degradation of hY RNAs is dependent on caspase activation.

The Ro60 and La Proteins Remain Associated with the Apoptotic Degradation Products of hY RNAs—
The results described above indicate that hY RNAs remain associated with the Ro60 protein until or possibly even during the degradation process. Therefore, it was possible that at least some of the degradation products were still bound by either the Ro60 or the La protein, the two proteins that are directly bound to the hY RNAs in Ro RNP complexes. To investigate the potential interaction of these proteins with the apoptotic degradation products hY RNAs, immunoprecipitation experiments were performed with monoclonal anti-Ro60 (2G10) and anti-La (SW5) antibodies. Cell extracts were prepared at various time points after the addition of anti-Fas antibody and RNA was analyzed by Northern blot hybridization either directly isolated from cell extracts or following immunoprecipitation. Fig. 4A shows RNA isolated from cell extracts, corresponding with 10% of the cell extracts used for immunoprecipitation. As is shown in Fig. 4, B and C, both the full-length hY RNAs and at least part of the degradation products were co-immunoprecipitated with anti-

hY RNAs during apoptosis was induced by anti-Fas addition in complete medium, i.e. in the presence of an excess of unlabeled phosphate. Cells were lysed immediately or after incubation for the indicated time periods, and induction of apoptosis was monitored by cleavage of the U1-70K protein (data not shown). The results for the Jurkat/Bcl-2 cells illustrate the low turnover rate of hY RNAs (Fig. 2, lanes 5–11). Even at 8 h after replacement of radiolabeled phosphate with unlabeled phosphate, little or no decrease of radiolabeled hY RNAs was observed, which is indicative of the relatively long half-life of these molecules. This result confirms that the observed decrease in hY RNAs levels during apoptosis is due to a strongly increased degradation rate rather than the abrogation of hY RNA synthesis.

Because an immunoprecipitation step was required to isolate the low abundance hY RNAs from the total pool of radiolabeled RNAs, this experiment also provided information on the Ro RNP association of radiolabeled hY RNAs. Immunoprecipitation was performed with an anti-Ro60 monoclonal antibody (2G10), and co-precipitated RNAs were analyzed by denaturing polyacrylamide gel electrophoresis and autoradiography. The results in Fig. 2 show that co-immunoprecipitation of hY RNAs from apoptotic Jurkat/Neo cell extracts decreased during the first hours after anti-Fas addition and was hardly detectable at the 4 h time point (lanes 10–14). The decrease in hY RNA precipitation by anti-Ro60 antibodies is likely to be indeed caused by hY RNA degradation rather than by disruption of the interaction between hY RNAs and Ro60, because the analysis of Ro60 from apoptotic cells by Western blotting did not reveal detectable changes, such as proteolytic cleavage (Ref. 28 and data not shown). Moreover, the RNA binding capacity of Ro60 was not abolished in apoptotic Jurkat cells, as demonstrated by the co-precipitation of hY RNA degradation products (see below). It should also be noted that the disappearance of full-length hY RNAs isolated by immunoprecipitation from radiolabeled cell extracts resembles the decrease of hY RNA signals obtained by Northern blot analysis of total RNA (Fig. 1). Taken together, these results demonstrate that the disappearance of hY RNAs during apoptosis is indeed due to degradation and that hY RNAs remain in association with the Ro RNP in apoptotic cells until or even after the degradation process has been initiated.
Ro60 (Fig. 4B) and anti-La (Fig. 4C) antibodies. This strongly suggests that both proteins remain associated with the hY RNAs during the nucleolytic process and thus with the respective binding site containing degradation products of the hY RNAs. The anti-Ro60 antibody co-precipitated the degradation products much more efficiently than the anti-La antibody, which might indicate that although both antibodies seem to co-precipitate the same set of degradation products, the La binding site might be partially lost. A control immunoprecipitation was performed with a monoclonal antibody (9A9) to the U1A protein, a protein specifically associated with the U1 snRNP. As expected, U1 snRNA was not co-precipitated with anti-Ro60 and anti-La antibodies, and no hY RNAs were co-precipitated with the anti-U1A antibodies (Fig. 4D). In contrast, U1 snRNA was efficiently precipitated by the anti-U1A antibodies, substantiating the specificity of the immunoprecipitations.

Determination of the Length of the Apoptotic Degradation Products of hY RNAs—To determine the length of the apoptotic degradation products of the hY RNAs, 32P-labeled Jurkat/Neo cell extracts were used to isolate hY RNA degradation products by immunoprecipitation with anti-Ro60 monoclonal antibody 2G10. An anti-Ro60 antibody was used because the degradation products were efficiently co-precipitated by this antibody and because the pattern of degradation products precipitated by this antibody was indistinguishable from the pattern observed in total RNA (which was more evident when a longer exposure of Fig. 4A was compared with Fig. 4B, data not shown). Precipitated RNAs were analyzed by denaturing polyacrylamide gel electrophoresis and autoradiography (Fig. 5A). As RNA size marker 3′-end-labeled tRNAHis (27), either partially digested under denaturing conditions by RNase T1 (lane 1) or denatured at 94 °C in the presence of 10 mM MgCl2 (lane 2), was used. Consistent with the results shown in Figs. 1–4, 2 h after anti-Fas addition, a decrease in the amount of full-length hY RNAs was observed, with the simultaneous appearance of the degradation products (lane 5). The result showed that the apoptotic hY RNA degradation products range in size from 22 to 36 nucleotides. The heterogeneity in size of these fragments is at least in part due to (i) the fact that the fragments are derived from four distinct RNAs (hY1, hY3, hY4, and hY5), (ii) the known 3′-end heterogeneity of native hY RNAs, and (iii) the fact that both 5′-end and 3′-end fragments of these RNAs will be present in the immunoprecipitate, taking into account that the Ro60 binding site is composed of a hybrid of these fragments.

The apoptotic degradation products of hY RNAs were more efficiently precipitated by anti-Ro60 antibodies than by anti-La antibodies (Fig. 4, B and C), indicating that the La association and/or the La binding site might be partially lost. To study this in more detail, we also isolated hY RNA degradation products by immunoprecipitation with anti-La monoclonal antibody SW5 and compared these products with the degradation products immunoprecipitated with anti-Ro60 antibodies by denaturing gel electrophoresis (Fig. 5B). The results showed that in addition to the differences in efficiency of precipitation, the patterns of co-precipitated molecules were different. Most notably, the smallest apoptotic hY RNA degradation products immunoprecipitated with anti-Ro60 antibodies, ranging in size from 22 to 25 nucleotides, were not immunoprecipitated by anti-La antibodies (Fig. 5B), which strongly suggests that these degradation products have lost the 3′ oligouridine stretch. Although all the other bands (27–36 nucleotides), with the exception of the 31-nucleotide-long molecule), were detectable in the anti-La selected material, their relative intensities showed some variation, which is of course not surprising if we take into account that these bands also contain molecules corresponding to the 5′-end of the hY RNAs, which are not present in the anti-La precipitate when they are annealed with 3′-fragments from which the La binding site has been removed.

DISCUSSION

Previous studies have demonstrated that the Ro RNP-associated Ro proteins and La are clustered in two distinct populations of blebs at the surface of apoptotic cells (31). The Ro52 protein is present in small apoptotic blebs together with fragmented endoplasmic reticulum and ribosomes. The larger blebs, called apoptotic bodies, contain the La protein, the Ro60 protein, small nuclear ribonucleoproteins, and nucleosomal...
DNA (31, 32). A more detailed analysis of both Ro proteins as present in apoptotic cells by Western blotting did not show obvious changes, such as a proteolytic cleavage (33). However, we observed recently that the La protein is rapidly dephosphorylated during apoptosis, and in addition, a subset of the La molecules is cleaved. In this study, we have demonstrated that the RNA components of Ro RNPs, the Y RNAs, are efficiently degraded early during apoptosis, whereas several other small RNAs, including 7SL RNA, U snRNAs, tRNAs, and 5 S rRNA, are not detectably affected. Degradation of Y RNAs was observed in a variety of cell types and after induction of apoptosis by a variety of stimuli. Apoptotic Y RNA degradation was inhibited by the caspase-1 inhibitor Ac-YVAD-CMK, the caspase-3 inhibitor Z-DEVD-FMK, and the caspase-8 inhibitor Z-IETD-FMK after anti-Fas induced apoptosis, strongly suggesting that this process is dependent on caspase activation. Activation of effector caspases, such as caspase-3 and related proteases, can be mediated by the activation of initiator caspases, such as caspase-8 and -9. Caspase-8 is activated by signals from death receptors at the cell surface (e.g., the Fas receptor) (34), whereas caspase-9 is activated by Apaf1 in cells undergoing drug-induced apoptosis (34, 35). Y RNA degradation is observed in anti-Fas-treated cells as well as in cells treated with actinomycin D and anisomycin, indicating that activation of the nuclease involved can be induced by both pathways, consistent with the activation of the nucleolytic activity by a general effector caspase. Such a mechanism is supported by the inhibitory effect on hY RNA degradation of the caspase-1, -3, and -8 inhibitors in anti-Fas-treated cells. These results demonstrate that Fas-induced hY RNA degradation is
dependent on caspase-8 activation and suggest that a subsequently activated effector caspase, such as, e.g. caspase-1 or caspase-3, is involved in activation of the nucleolytic activity. As expected, hardly any inhibition of hY RNA degradation was observed by the caspase-9 inhibitor in anti-Fas induced apoptotic cells, in agreement with the fact that caspase-9 does not play a major role in this pathway (34). It should be stressed that the data obtained with the tetrapeptide caspase inhibitors should be interpreted with care, because the specificity of the inhibitors is not absolute (36, 37). For instance, the slight inhibition observed with the caspase-9 inhibitor might be due to cross-inhibition of another caspase. We conclude that apoptotic hY RNA degradation is caspase-dependent and that the ribonuclease(s) involved is most likely activated by the action of one or more effector caspases. The size and protein binding characteristics of the most stable apoptotic degradation products suggest that the central parts of the Y RNAs are cleaved by an endonuclease activity and that these regions are further degraded up to the region that is protected by the stably bound Ro60 and La proteins.

At present, little is known about degradation or cleavage of RNA in apoptotic cells. An increased rate of mRNA turnover has been reported (7, 8) as well as mitochondrial ribosomal RNA degradation (9), but so far no nuclease activity associated with specific RNA degradation has been described. The best characterized nuclease that is specifically activated in apoptotic cells is the DNase involved in internucleosomal cleavage of chromatin, resulting in the typical DNA ladder. In nonapoptotic cells, this CAD is located in the cytoplasm in a complex with the inhibitor of CAD. Upon induction of apoptosis, the inhibitor is cleaved by caspase-3, thereby releasing active CAD, which then is able to enter the nucleus (5). Human homologues for CAD and the inhibitor of CAD, which were initially characterized after purification from mouse cells, have been described recently and were designated CPAN and DFF45, respectively (38, 39). CAD and CPAN have no significant homology to known nuclease protein families and may, therefore, represent a new class of endonucleases (38). Because apoptotic degradation of Y RNAs is also dependent on caspase activation, it is tempting to speculate that the (endo)nuclease involved in apoptotic Y RNA degradation might be a member of this new class of endonucleases.

The secondary structure of Y RNAs is characterized by a pyrimidine-rich internal loop and a long stem structure formed by extensive base pairing between the highly conserved 5′- and 3′-ends (Fig. 6). Binding of the Ro60 protein to the Y RNAs has been extensively studied (21, 22, 40). The central part of the conserved stem structure, highlighted in Fig. 6 by the boxed areas, appears to be essential for binding the Ro60 protein (40). The binding of the Ro60 protein, possibly in combination with the La protein, protected the RNA against pancreatic ribonuclease digestion (22). Because the apoptotic degradation products of the hY RNAs are at least in part associated with Ro60 and the La protein, which binds to the oligouridylicate stretch at the 3′-end of the RNAs, it is likely that protection against the RNA degrading activity by these proteins also occurs in apoptotic cells.

The length of the Ro60-associated apoptotic degradation products, as determined in a denaturing gel system, ranges from approximately 22 to 36 nucleotides (Fig. 5A), whereas the length of the degradation products that remain associated with the La protein ranges from 27 to 36 nucleotides. The size
Early Degradation of Y RNAs during Apoptosis

Many caspase substrates are proteins involved in important cellular processes, such as cell cycle regulation, signaling, DNA repair, cell homeostasis, and cell survival, suggesting that proteolytic disabling of certain key proteins directly contributes to the irreversibility of the apoptotic process. In view of their rapid, specific, and efficient degradation during apoptosis, this might also be true for Y RNAs. Unfortunately, the function of Ro RNPs is still unknown, although recently, a role for Y RNAs in the translational control of ribosomal protein mRNAs, and possibly other 5’-terminal oligopyrimidine-containing mRNAs, has been suggested (42). The possible involvement in the systemic disassembly of the dying cell might give new clues to elucidate the function of Ro RNPs.

Acknowledgments—We thank Dr. K. Strub (University of Geneva, Switzerland) for providing the 7SL RNA clone, Dr. M. Robertson (Indiana University, Bloomington, IN) for providing the anti-La monoclonal antibody 7C11, Dr. J. Reed (Burnham Institute, La Jolla, CA) for the gift of the transfected Jurkat cells, and Dr. W. J. Hendriks (University of Nijmegen, The Netherlands) for providing the transfected WR19L cells.

REFERENCES
1. Cohen, J. J., Duke, R. C., Fadok, V. A., and Sellins, K. S. (1992) Annu. Rev. Immunol. 10, 267–293
2. Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W., and Yuan, J. (1996) Cell 87, 171
3. Cohen, G. M. (1997) Biochem. J. 326, 1–16
4. Wielie, A. H. (1993) Nature 364, 555–556
5. Enari, M., Sakairi, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998) Nature 391, 43–50
6. Sakairi, H., Enari, M., and Nagata, S. (1998) Nature 391, 96–99
7. Mondino, A., and Jenkins, M. K. (1995) J. Biol. Chem. 270, 26593–26601
8. Owens, G. P., and Cohen, J. J. (1992) Cancer Metastasis Rev. 11, 149–156
9. Crawford, D. R., Lauzon, B. J., Wang, Y., Mazurkiewicz, J. E., Schols, G. P., and Davies, K. J. (1997) Free Radical Biol. Med. 22, 1295–1300
10. Casiola-Rosen, L. A., Miller, D. K., Anhalt, G. J., and Rosen, A. (1994) J. Biol. Chem. 269, 267–293
11. Utz, P. J., Hietakangas, L., Le, T. M., Kim, S. J., Geiger, M. E., Van Venrooij, W. J., and Anderson, P. (1998) J. Biol. Chem. 273, 35362–35370
12. Prijn, G. J. M., Simons, F. H. M., and Van Venrooij, W. J. (1997) Eur. J. Cell Biol. 74, 123–132
13. Hendrick, J. P., Wolin, S. L., Rinke, J., Lerner, M. R., and Steitz, J. A. (1981) Mol. Cell. Biol. 1, 1138–1149
14. Kato, N., Hoshino, H., and Harada, F. (1982) Biochem. Biophys. Res. Commun. 106, 363–370
15. O’Brien, C. A., and Harley, J. B. (1990) EMBO J. 9, 3683–3689
16. Wolin, S. L., and Steitz, J. A. (1983) Cell 32, 735–744
17. Ben Chetrit, E., Chan, E. K., Sullivan, K. P., and Tan, E. M. (1998) J. Exp. Med. 187, 1560–1571
18. Boire, G., Gendron, M., Monast, N., Bastin, B., and Menard, H. A. (1995) Clin. Exp. Immunol. 100, 489–498
19. Prijn, G. J. M., and Van Venrooij, W. J. (1994) J. Immunol. 153, 4321–4329
20. Slobbe, R. L., Pluk, W., Van Venrooij, W. J., and Prijn, G. J. M. (1992) J. Mol. Biol. 227, 361–366
21. Prijn, G. J. M., Slobbe, R. L., and Van Venrooij, W. J. (1991) Nucleic Acids Res. 19, 5173–5180
22. Wolin, S. L., and Steitz, J. A. (1984) Proc. Natl. Acad. Sci. U. S. A. 81,
Early Degradation of Y RNAs during Apoptosis

24807

1996–2000

23. Torigoe, T., Millan, J. A., Takayama, S., Taichman, R., Miyashita, T., and Reed, J. C. (1994) Cancer Res. 54, 4851–4854
24. Cuppen, E., Nagata, S., Wieringa, B., and Hendriks, W. (1997) J. Biol. Chem. 272, 30215–30220
25. Strub, K., Moss, J., and Walter, P. (1991) Mol. Cell. Biol. 11, 3949–3952
26. Scherlty, D., Boelens, W., Van Venrooij, W. J., Daathan, N. A., Hamn, J., and Mattaj, I. W. (1989) EMBO J. 8, 4163–4170
27. Brouwer, R., Vree Egberts, W., Jengen, P. H., Van Engelen, B. G. M., and Van Venrooij, W. J. (1998) Arthritis Rheum. 41, 1428–1437
28. Casiano, C. A., Martin, S. J., Green, D. R., and Tan, E. M. (1996) J. Exp. Med. 184, 765–770
29. Takahashi, A., Alnemri, E. S., Lazebnik, Y. A., Fernandes-Alnemri, T., Litwack, G., Moir, R. D., Goldman, R. D., Purier, G. G., Kaufmann, S. H., and Earnshaw, W. C. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 8395–8400
30. Casciola Rosen, L., Nicholson, D. W., Chong, T., Rowan, K. R., Thornberry, N. A., Miller, D. K., and Rosen, A. (1998) J. Exp. Med. 183, 1957–1964
31. Casciola Rosen, L. A., Anhalt, G., and Rosen, A. (1994) J. Exp. Med. 179, 1317–1330
32. Rosen, A., and Casciola Rosen, L. (1999) Cell Death Differ. 6, 6–12
33. Porter, A. G., Ng, P., and Janicke, R. U. (1997) BioEssays 19, 501–507
34. Thornberry, N. A., and Lazebnik, Y. (1998) Science 281, 1312–1316
35. Cecconi, F., Alvarez Bolado, G., Meyer, B. I., Roth, K. A., and Gruss, P. (1998) Cell 84, 727–737
36. Garcia-Calvo, M., Peterson, E. P., Reitting, B., Ruel, R., Nicholson, D. W., and Thornberry, N. A. (1997) J. Biol. Chem. 273, 32608–32613
37. Thornberry, N. A., Rano, T. A., Peterson, E. P., Rasper, D. M., Timkey, T., Garcia-Calvo, M., Houtzager, V. M., Nordstrom, P. A., Roy, S., Vaillancourt, J. P., Chapman, K. T., and Nicholson, D. W. (1997) J. Biol. Chem. 272, 17907–17911
38. Halenbeck, R., MacDonald, H., Roulston, A., Chen, T. T., Conroy, L., and Williams, L. T. (1998) Curr. Biol. 8, 537–540
39. Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997) Cell 89, 175–184
40. Green, C. D., Long, K. S., Shi, H., and Wolin, S. L. (1998) RNA 4, 750–765
41. Pruijn, G. J. M., Wingens, P. A., Peters, S. L. M., Thijssen, J. P. H., and Van Venrooij, W. J. (1993) Biochim. Biophys. Acta 1216, 395–401
42. Pellizzoni, L., Lotti, F., Rutjes, S. A., and Pierandrei-Amaldi, P. (1998) J. Mol. Biol. 281, 593–608
43. Van Gelder, C. W., Thijssen, J. P., Klaassen, E. C., Sturchler, C., Krol, A., Van Venrooij, W. J., and Pruijn, G. J. M. (1994) Nucleic Acids Res. 22, 2498–2506