Fibred torti-rational knots

Mikami Hirasawa
Department of Mathematics, Nagoya Institute of Technology, Nagoya Aichi 466-8555 Japan.
E-mail: hirasawa.mikami@nitech.ac.jp

Kunio Murasugi
Department of Mathematics, University of Toronto Toronto, ON M5S2E4 Canada.
E-mail: murasugi@math.toronto.edu

ABSTRACT
A torti-rational knot, denoted by $K(2\alpha, \beta|r)$, is a knot obtained from the 2-bridge link $B(2\alpha, \beta)$ by applying Dehn twists an arbitrary number of times, r, along one component of $B(2\alpha, \beta)$. We determine the genus of $K(2\alpha, \beta|r)$ and solve a question of when $K(2\alpha, \beta|r)$ is fibred. In most cases, the Alexander polynomials determine the genus and fibredness of these knots. We develop both algebraic and geometric techniques to describe the genus and fibredness by means of continued fraction expansions of $\beta/2\alpha$. Then, we explicitly construct minimal genus Seifert surfaces. As an application, we solve the same question for the satellite knots of tunnel number one.

Keywords: Fibred knot, 2-bridge knot, satellite knot, tunnel number of knots, genus of knots, Alexander polynomial

Mathematics Subject Classification 2000: 57M25, 57M27

1. Introduction
A torti-rational knot, denoted by $K(2\alpha, \beta|r)$, is a knot obtained from the 2-bridge link $B(2\alpha, \beta)$ by applying Dehn twists an arbitrary number of times, r, along one component of $B(2\alpha, \beta)$. (For the precise definition, see Section 2.)

Torti-rational knots have occasionally appeared in literatures of knot theory. For example, twist knots are torti-rational knots. By [15], we know when $K(2\alpha, \beta|r)$ is unknotted (see Proposition 6.6). A torti-rational knot is a $g1-b1$ knot (i.e., admits a genus-one bridge-one decomposition), and hence has tunnel number one. In 1991, Morimoto and Sakuma [17] proved that for a satellite knot of tunnel number one, the companion knot is a torus knot $T(p, q)$ and the pattern knot is a torti-rational knot $K(2\alpha, \beta|pq)$, for some p, q, and α, β. Then, Goda and Teragaito [8] determined which of such satellite knots of tunnel number one are of genus one.

In this paper, we study torti-rational knots systematically and completely determine the genus of any torti-rational knot and solve a question of when it is fibred.

This naming is due to Lee Rudolph.
fibred. In fact, we prove the following:

Theorem A. (Theorems 2.1 and 2.2) Let $B(2\alpha, \beta)$ be an oriented 2-bridge link, with linking number ℓ. Let $K = K(2\alpha, \beta|r)$ be a torti-rational knot. Suppose $\ell \neq 0$.

1. The genus of K is exactly half of the degree of the Alexander polynomial $\Delta_K(t)$.
2. K is fibred if (and only if) $\Delta_K(t)$ is monic (i.e., the leading coefficient is ± 1).

See Theorems 6.1 and 9.1 for a practical method for determination.

If $\ell = 0$, Theorem A does not hold true. For this case, the genus and the characterization of a fibred torti-rational knot are stated as follows:

Theorem B. (Theorems 2.3 and 2.4) Suppose $\ell = 0$, Let $[2c_1, 2c_2, \ldots, 2c_m]$ be the continued fraction of $\frac{\beta}{2\alpha}$.

1. For any $r \neq 0$, $g(K(2\alpha, \beta|r)) = \frac{1}{2} \sum_{i \text{ odd}} |c_i|$.
2. (a) If $|r| > 1$, then $K(2\alpha, \beta|r)$ is not fibred. (b) Suppose $r = \pm 1$. Then $K(2\alpha, \beta|1)$ is fibred if and only if $\frac{\beta}{2\alpha}$ has the continued fraction of the following special form: $\frac{\beta}{2\alpha} = \pm[2a_1, 2, 2a_2, 2, \ldots, 2a_p, \pm 2, -2a_1', -2, -2a_2', -2, \ldots, -2a_p']$, where $2\alpha > \beta > -2\alpha$, $a_i, a_i' > 0$ and $\sum_{i=1}^{p} a_i = \sum_{j=1}^{g} a_j'$.

See Section 2, for our convention of continued fractions.

To prove these theorems, we construct explicitly a minimal genus Seifert surface for K and determine whether or not it is a fibre surface for K. Proofs of these theorems will be given in Sections 10 and 11.

This work is a part of our project to determine the genus and fibredness of double torus knots (i.e., knots embedded in a standard closed surface of genus 2). See [10] for a relevant work. Double torus knots are classified into five types (Type $(1,1), (1,2), (1,3), (2,3)$ and $(3,3)$). In [10], we settled the problem for all double torus knots of type $(1,1)$. A $g1-b1$ knot can be presented as a double torus knot of type either $(1,2), (2,2)$ or $(2,3)$. In this paper, we settle the problem for the $g1-b1$ knots presented as of type $(1,2)$. As an application of our study, we determine the genus and the fibredness problem for the satellite knots of tunnel number one. In fact, we show that a similar theorem to Theorem A holds true for satellite knots in a slightly wider class. The precise statements can be found in Section 13.

Recently, Goda, Hayashi and Song [17] study torti-rational knots with a different motivation. Their approach is completely different from ours.

This paper is organized as follows. In Section 2, we give precise statements of our main theorems (Theorems 2.1 - 2.4). In Section 3, we first introduce several notions needed in this paper, such as graphs of continued fractions, dual graphs. Then we prove that for our study of $K(2\alpha, \beta|r)$, we may assume $\ell \geq 0$ and $r > 0$, where ℓ is the linking number of $B(2\alpha, \beta)$. This restriction simplifies considerably the proofs of our main theorems. At the end of Section 3, we construct a spanning disk of a nice form for one component of the 2-bridge link. In Sections 4 and 5, we study the Alexander polynomial of various knots: In Section 4, we determine the Alexander polynomials of $K(2\alpha, \beta|r)$. In Section 5, we prove one subtle property of
the (2-variable) Alexander polynomial of $B(2\alpha, \beta)$. The determination of the degree of the Alexander polynomials of $K(2\alpha, \beta|r)$ depends on this property. Sections 6 is devoted to characterizing the monic Alexander polynomial of a knot $K(2\alpha, \beta|r)$; First, we deal with knots $K(2\alpha, \beta|r)$ for the case $\ell > 0$, and characterize the monic Alexander polynomials in terms of a continued fraction of $\beta/2\alpha$ using the formulae given in Section 5. In particular, we give an equivalent algebraic condition for Theorem 2.2 (Theorem 6.1). However, for the case $\ell = 0$, the monic Alexander polynomials of $K(2\alpha, \beta|r)$ cannot be characterized by the continued fractions. This case is considered in the rest of Section 6, and the characterization will be done using a geometric interpretation of the Alexander polynomials of $K(2\alpha, \beta|r)$. In Section 7, we construct explicitly a Seifert surface for $K(2\alpha, \beta|r)$, which in most cases is of minimal genus. In Section 8, we prove Theorem 2.1 In this case, some of the surfaces constructed in Section 7 are not of minimal genus, but we obtain minimal genus surfaces after explicitly compressing them. In Section 9, we prove Theorem 2.2. In Sections 10 and 11, we prove Theorems 2.3 and 2.4. Various examples that illustrate our main theorems are discussed in Section 12. In section 13, we consider the satellite knot with fibred companion and $K(2\alpha, \beta|r)$, $r \neq 0$, as a pattern, and prove an analogous theorem to Theorem A. In the final section, Section 14, we determine the genus one knots in our family of knots $K(2\alpha, \beta|r)$. In particular, we find satellite knots among them, and hence give a negative answer to the problem posed in [1].

After is this paper was completed, D. Silver pointed out that Theorem 5.5 in this paper makes it possible to prove Theorem A algebraically using Brown’s graphs in [2] (without explicit construction of minimal genus Seifert surfaces). However, Brown’s method does not work for proving Theorem B.

2. Statements of main theorems

We begin with an (even) continued fraction of a rational number $\frac{\beta}{2\alpha}$, $0 < \beta < 2\alpha$, and gcd$(2\alpha, \beta) = 1$. The (unique) continued fraction of

$$\frac{\beta}{2\alpha} = \frac{1}{2c_1 - \frac{1}{2c_2 - \frac{1}{2c_3 - \cdots - \frac{1}{2c_{m-1} - \frac{1}{2c_m}}}}},$$

where $c_i \neq 0$, is denoted by $\frac{\beta}{2\alpha} = [2c_1, 2c_2, \cdots, 2c_m]$, or $[c_1, c_2, \cdots, c_m]$. Note that m is odd. Throughout this paper, we consider only even continued fraction expansions, and hence omit the word ‘even’. Now, using the continued fraction of $\frac{\beta}{2\alpha}$, we can obtain a diagram of an oriented 2-bridge link $B(2\alpha, \beta)$ as follows.
Fibred torti-rational knots

Let $\sigma_1 = \sigma_{2c_1} \sigma_{2c_2} \sigma_{2c_3} \cdots \sigma_{2c_m}$ and $\sigma_2 = \sigma_{2c_1} \sigma_{2c_2} \sigma_{2c_3} \cdots \sigma_{2c_m}$. Close γ by joining the first and second strings (at the both ends) and then join the top and bottom of the third string by a simple arc as in Figure 2.1. We give downward orientation to the second and third strings. Figure 2.1 shows the (oriented) 2-bridge link obtained from the continued fraction $\frac{34}{21} = [2, 2, -2, -2, 2] = [[1, 1, -1, -1, 1]]$.

Now an oriented 2-bridge link $B(2\alpha, \beta)$ consists of two unknotted knots K_1 and K_2, where K_2 is formed from the third and fourth strings.

Note. Our convention for the orientation of a 2-bridge link is not standard, but is used for the convenience in utilizing the 2-variable Alexander polynomials. (Usually we reverse the orientation of one component so that the 2-bridge link is fibred if and only if all the entries of the even continued fraction are ± 2.)

Since K_2 is unknotted, K_1 can be considered as a knot in an unknotted solid tour V and K_2 is a meridian of V. Then by applying Dehn twists along K_2 in an arbitrary number of times, say r, we obtain a new knot K from K_1. We denote this knot K by $K(2\alpha, \beta | r)$, or simply $K(r)$.

More precisely, one Dehn twist along K_2 is the operation that replaces the part of K_1 in a cylinder by the braid $(\sigma_1 \sigma_2 \cdots \sigma_{k-1})^k$, where k is the wrapping number. See Figure 2.2. (Since $B(2\alpha, \beta)$ is symmetric, K_1 and K_2 can be interchanged, and hence this notation is justified.)

We note that if $r = 0$, then $K(2\alpha, \beta | r)$ is unknotted for any α, β, and henceforth we assume $r \neq 0$ unless otherwise specified.

Now, given an oriented 2-bridge link $B(2\alpha, \beta)$, let $\ell = \ell k(K_1, K_2)$ be the linking number between K_1 and K_2 which, for simplicity, is denoted by $\ell k B(2\alpha, \beta)$.
Our main theorems in this paper are the following four theorems:

Theorem 2.1. Suppose $\ell \neq 0$. Then the genus of $K = K(2\alpha, \beta | r)$ is half of the degree of its Alexander polynomial $\Delta_K(t)$. Namely we have $g(K) = \frac{1}{2} \deg \Delta_K(t)$.

Theorem 2.2. Suppose $\ell \neq 0$. Then $K = K(2\alpha, \beta | r)$ is a fibred knot if (and only if) $\Delta_K(t)$ is monic, i.e., $\Delta_K(0) = \pm 1$.

Theorem 2.2 is divided into two parts: Theorem 6.1 is the algebraic part, where we determine when $\Delta_K(t)$ is monic in terms of continued fractions, and Theorem 9.1 is the geometric part, where we show the fibredness, by actually constructing fibre surfaces using the continued fractions.

Theorem 2.3. Suppose $\ell = 0$. Let $[2c_1, 2c_2, \ldots, 2c_m]$ be the continued fraction of $\frac{\beta}{2\alpha}$. Then for any $r \neq 0$, $g(K(2\alpha, \beta | r)) = \frac{1}{2} \sum_{i: \text{odd}} |c_i|$.

Theorem 2.4. Suppose $\ell = 0$. (a) If $|r| > 1$, then $K(2\alpha, \beta | r)$ is not fibred. (b) Suppose $r = \pm 1$. Then $K(2\alpha, \beta | r)$ is fibred if and only if $\frac{\beta}{2\alpha}$ has the continued fraction of the following special form: $\frac{\beta}{2\alpha} = \pm [2a_1, 2a_2, 2, \ldots, 2a_p, \pm 2, -2a_1', -2, -2a_2', -2, \ldots, -2a_q']$, where $2\alpha > \beta > -2\alpha$, $a_i, a_j' > 0$ and $\sum_{i=1}^p a_i = \sum_{j=1}^q a_j'$.

In Theorem 2.4, we have non-fibred knots K such that $\Delta_K(t)$ are monic and $\deg \Delta_K(t) = 2g(K)$.

3. Preliminaries

In this section, we first introduce two fundamental concepts, a **graph of a continued fraction** and the **dual graph**, which play a key role throughout this paper. Next, in Subsection 3.4, we show that we can assume $\ell kB(2\alpha, \beta) \geq 0$ and $r > 0$ without loss of generality. This assumption is very important to simplify the proof of our main theorem. In the last Subsection (Subsection 3.5), we introduce the concept of the primitive spanning disk for K_1, which is the first step of constructing a minimal genus Seifert surface for $K(2\alpha, \beta | r)$.

3.1. Modified continued fractions and their graphs.

Let $S = [c_1, c_2, \ldots, c_{2k+1}]$ be the continued fraction of $\frac{\beta}{2\alpha}$, where $-2\alpha < \beta < 2\alpha$ and gcd$(2\alpha, \beta) = 1$. The **length** of S is defined as $2k + 1$. To define the dual of S, we need to extend S slightly to S^*, called the modified form of S. We will see that S and S^* correspond to the same rational number.

Definition 3.1. Let $S = [c_1, c_2, \ldots, c_{2k+1}]$. Then we obtain a continued fraction S^* by thoroughly repeating the following and call it **modified form of S**.

1. If $c_{2i+1} > 1$, $0 \leq i \leq k$, then c_{2i+1} is replaced by the new sequence of length $2c_{2i+1} - 1$, $(1, 0, 1, 0, \ldots, 0, 1)$, and
(2) if \(c_{2i+1} < -1, 0 \leq i \leq k\), then \(c_{2i+1}\) is replaced by the new sequence of length
\[2|c_{i+1}| - 1, (-1,0,-1,0,...,0,-1).\] Note that the length of \(S^*\) is
\[
\sum_{i=0}^{k} (2|c_{2i+1}| - 2) + 2k + 1 = \sum_{i=0}^{k} 2|c_{2i+1}| - 1.
\]

The original continued fraction \(S\) may be called the standard continued fraction of \(\beta/2\alpha\), which does not contain entries 0.

The modified form of \(\beta/2\alpha\) is of the form:
\[
[2u_1, 2v_1, 2u_2, 2v_2, \ldots, 2u_d, 2v_d, 2u_{d+1}],
\]
where \(u_i = +1\) or \(-1\), for \(1 \leq i \leq d+1\), and \(v_i, (1 \leq i \leq d)\) are arbitrary, including 0.

Now, given the continued fraction \(S\) of \(\beta/2\alpha\), consider the modified form \(S^*\) for \(S\) of the form (3.1).

Definition 3.2. The graph \(G(S^*)\) of \(S^*\), (or the graph \(G(S)\) of \(S\)), is a plane graph in \(\mathbb{R}^2\), consisting of \(d + 2\) vertices \(V_0, V_1, \ldots, V_{d+1}\) and \(d + 1\) line segments
\(E_k, (1 \leq k \leq d + 1)\) joining two vertices \(V_{k-1}\) and \(V_k\), where \(V_0 = (0,0)\) and \(V_i = (i, \sum_{j=1}^{i} u_j)\), for \(1 \leq i \leq d + 1\). The graph is a weighted graph, when the weight of \(V_i, (1 \leq i \leq d)\) is defined as \(2v_i\). The weights of both \(V_0\) and \(V_{d+1}\) are 0.

Example 3.3. Let \(S^* = [2,0,2,-2,-2,0,-2]\). Then \(G(S^*)\) is depicted in Figure 3.1. The weight of \(V_i\) is denoted by \((m)\) near \(V_i\).

The following is immediate from the diagram of \(B(2\alpha,\beta)\) (Figure 2.1).

Proposition 3.4. The \(y\)-coordinate of the last vertex \(V_{d+1}\) gives the linking number
\[
\ell = \ell_B(2\alpha, \beta).\] Namely, \(\ell = \sum_{i=1}^{d+1} u_i\).

3.2. Dual graphs and dual continued fractions.

For a continued fraction \(S\), we define the dual \(\bar{S}\) to \(S\) and the dual graph \(\bar{G}\) to a graph \(G(S)\). Then we have the following theorem, proved in Subsection 3.5:

Theorem 3.5. Let \(S\) be the continued fraction of \(\beta/2\alpha\). Then the dual \(\bar{S}\) of \(S\) is the continued fraction of \((2\alpha - \beta)/2\alpha\) (resp. \((-2\alpha - \beta)/2\alpha\)), if \(\beta > 0\) (resp. \(\beta < 0\)).
Definition 3.6. The dual \tilde{G} to the graph $G(S)$ is defined as follows. The underlying graph of \tilde{G} is exactly the same as that of $G(S)$, but the weight $\tilde{w}(V_i)$ is given as follows;

(1) If V_i is a local maximal or local minimal vertex (including the ends of $G(S)$), then $\tilde{w}(V_i) = -w(V_i)$, and

(2) for the other vertices, $\tilde{w}(V_i) = 2\varepsilon_i - w(V_i)$, where ε_i is the sign of u_i, i.e., $\varepsilon_i = u_i/|u_i|$

The dual \tilde{S}^* to the modified form S^* is defined to be the modified form of the continued fraction represented by the dual graph \tilde{G}. The dual \tilde{S} of S is the standard continued fraction obtained from \tilde{S}^*.

Figure 3.2: The graphs for S^* and \tilde{S}^*

Example 3.7. Let $S = [[2, -1, -1, 1, -1]]$.

Then $S^* = [[1, 0, 1, -1, 1, -1]] = [4, -2, -2, 2, -2]$. Thus $\tilde{S}^* = [[1, 1, 1, 1, -1, 2, -1]] = [2, 2, 2, 2, -2, -4, -2] = \tilde{S}$.

In the following, we give an alternative formulation of \tilde{S}, the dual of S. Given the continued fraction of $\beta/2\alpha$,

$$[c_1, c_2, \ldots, c_{2d+1}], c_i \neq 0,$$ \hspace{1cm} (3.2)

consider the partial sequence of (3.2):

$$\{c_1, c_3, c_5, \ldots, c_{2d+1}\},$$ \hspace{1cm} (3.3)

consisting of only $c_{2i+1}, 0 \leq i \leq d$.

In this sequence, for convenience, write $-c_i$, where $c_i < 0$, so that we may assume that if i is odd, then c_i is always positive. Thus, the sequence (3.3) is divided into several 'positive' or 'negative' sub-sequences: Therefore we can write, $[c_1, c_2, \ldots, c_{2d+1}] = [[a_1, b_1, a_2, \ldots, a_p, b_p, -a_{p+1}, -b_{p+1}, \ldots, -a_r, b_r, a_{r+1}, b_{r+1}, \ldots]]$, where $a_i > 0$ for all i. Note that $a_i = c_{2i-1}$ or $-c_{2i-1}, i = 1, 2, \ldots$ and $b_j = c_{2j}, j = 1, 2, \ldots$

We call a sequence of the form $[[a_1, b_1, a_2, b_2, \ldots, a_k, b_k, a_{k+1}]]$ (or $[[a_1, b_1, a_2, b_2, \ldots, -a_k, -b_k, -a_{k+1}]]$) a positive (or negative) sequence, where $a_i > 0, 0 \leq i \leq k + 1$, but $b_j, (1 \leq j \leq k)$ are arbitrary ($\neq 0$). We denote by
Example 3.8.

\[
[[1, 1, 2, -1, 1, -1, -2, 1, -2, -1, 2, 1, 2, 1, -2, -1, -2]] \\
= [[1, 1, 2, -1, 1, -1, -2, -\underbrace{(-1) - 2}_{P_1}, 2, 1, 2, 1, -2, -1, -2]] \\
= [[P_1, -1, Q_1, -1, P_2, 1, Q_2]]
\]

Thus, the sequence (3.2) can be written as

\[
[[c_1, c_2, c_3, \ldots, c_{2d+1}]] = \{P_1, d_1, Q_1, e_1, P_2, d_2, Q_2, e_2, P_3, \ldots\}, \tag{3.4}
\]

where \(d_i, e_j\) are some \(c_{2k}\).

This form (3.4) is called the canonical decomposition of the continued fraction of \(\beta/2\alpha\).

Remark 3.9. If \(\beta > 0\), then the first entry \(c_1 > 0\), but if \(\beta < 0\), then \(c_1 < 0\), and hence, the canonical decomposition begins with \(Q_1\) (not a positive sequence \(P_1\) and \(d_1\) is missing). However, since this does not change our argument, we may assume in general that \(c_1 > 0\).

Now, the dual continued fraction of (3.2) is reformulated as follows.

Let \(S = \{P_1, d_1, Q_1, e_1, P_2, \ldots\}\) be the canonical decomposition of \([c_1, c_2, \ldots, c_{2d+1}]\).

First, the dual of a positive sequence \(P\) is obtained as follows.

Given \(P = [a_1, b_1, a_2, b_2, \ldots, a_m, b_m]\), where \(a_j > 0\), consider the modified form \(P^*\) of \(P\)

\[
P^* = [a_1^*, b_1^*, a_2^*, b_2^*, \ldots, a_k^*, b_k^*, a_k^*] \tag{3.5}
\]

where \(a_j^* = 1(1 \leq j \leq k + 1)\) and \(b_j^*\)'s \((1 \leq j \leq k)\) are arbitrary including 0.

Then the dual of \(P^*\), denoted by \(\bar{P}^*\), is \(\bar{P}^* = [\bar{a}_1^*, \bar{b}_1^*, \bar{a}_2^*, \bar{b}_2^*, \ldots, \bar{a}_{k+1}^*]\), where

\[
\bar{a}_j^* = a_j^* = 1, \text{ for } 1 \leq j \leq k + 1 \text{ and } \bar{b}_j^* = 1 - b_j^* \text{ for } 1 \leq j \leq k.
\]

The dual \(\bar{P}\) of \(P\) is the standard form obtained from \(\bar{P}^*\).

For the negative sequence \(Q\), apply the same operation for the positive sequence \(-Q\) to obtain the dual \(-\bar{Q}\) of \(-Q\). Then the dual \(\bar{Q}\) of \(Q\) is the negative sequence \((-\bar{Q})\).

Finally, the dual \(\bar{S}\) of \(S\) is \(\{\bar{P}_1, -d_1, \bar{Q}_1, -e_1, \bar{P}_2, -d_2, \bar{Q}_2, -e_2, \ldots\}\).

Example 3.8 (continued)

(1) Since \(P_1 = [[1, 1, 2, -1, 1]]\), \(P_1^* = [[1, 1, 1, 0, 1, -1, 1]]\), and hence \(\bar{P}_1 = [[2, 1, 1, 2, 1]]\).

(2) Since \(P_2 = [[2, 1, 2]]\), \(P_2^* = [[1, 0, 1, 0, 1, 0, 1]]\), and hence \(\bar{P}_2 = [[1, 1, 0, 1, 1, 1]]\).

(3) Since \(Q_1 = [[-2, 1, -2]]\), \(-Q_1 = [[2, -1, 2]]\) and hence \(-\bar{Q}_1 = [[1, 0, 1, -1, 1, 0, 1]]\), \(-Q_1^* = [[1, 1, 1, 0, 1, 0, 1]]\), \(-\bar{Q}_1 = [[1, 1, 1, 2, 1, 1, 1]] = -Q_1, \text{ so } \bar{Q}_1 = [[-1, -1, -1, -2, -1, -1, -1]]\).
(4) Since \(Q_2 = [[-2, -1, -2]], -Q_2 = [[2, 1, 2]] \) and hence
\[-Q_2^1 = [[1, 2, 1, 1]], \] so \(Q_2 = [[-1, -1, -2, -1, -1]] \). Thus, \(\tilde{S} = [[2, 1, 1, 2, 1, -1, -1, -2, -1, -1, -1, -1, -1, -2, -1, -1]] \).

3.3. Applications.

In this subsection, we study some of the invariants of a 2-bridge link \(B(2\alpha, \beta) \) deduced from \(S \) or its dual \(\tilde{S} \).

The following three propositions show that \(S \) or \(\tilde{S} \) determines the degree of the Alexander polynomial \(\Delta_{B(2\alpha, \beta)}(x, y) \) of \(B(2\alpha, \beta) \).

Let \(S = \{P_1, d_1, Q_1, e_1, P_2, \ldots, P_m, d_m, Q_m\} \) be the canonical decomposition of the continued fraction of \(\beta/2\alpha \). We write more precisely:

\[
P_i = [[a_{i,1}, b_{i,1}, a_{i,2}, b_{i,2}, \ldots, b_{i,s_i}, a_{i,s_i+1}]], \quad \text{and}
\]
\[
Q_j = [[-a_{j,1}', -b_{j,1}', -a_{j,2}', -b_{j,2}'', \ldots, -b_{j,q_j'}, -a_{j,q_j'+1}']].
\] \hspace{1cm} (3.6)

Definition 3.10. For \(1 \leq i, j \leq m \), define

\[
\rho_i = |\{b_{i,\ell} | b_{i,\ell} = 1, 1 \leq \ell \leq s_i\}|,
\]
\[
\rho_j' = |\{b_{j,\ell}' | b_{j,\ell}' = 1, 1 \leq \ell \leq q_j\}|, \quad \text{and}
\]
\[
\rho = \rho(\beta/2\alpha) = \sum_{i=1}^{m} \rho_i + \sum_{j=1}^{m} \rho_j'.
\] \hspace{1cm} (3.7)

We call this \(\rho \) the deficiency (see Theorem 5.5 and Sections 6 and 8).

Further, we define:

\[
\lambda_i = \sum_{\ell=1}^{s_i+1} a_{i,\ell}, 1 \leq i \leq m
\]
\[
\lambda_j' = \sum_{\ell=1}^{q_j'+1} a_{j,\ell}', 1 \leq j \leq m, \quad \text{and}
\]
\[
\lambda = \sum_{i=1}^{m} \lambda_i + \sum_{j=1}^{m} \lambda_j'.
\] \hspace{1cm} (3.8)

Note that \(\lambda \) equals the number of edges in \(G(S) \), which also equals the number of disks in Figure 3.4. This number is neatly evaluated by Kanenobu as follows:

Proposition 3.11. \(\square \) \hspace{1cm} (4.10) \hspace{1cm} Write

\[
\Delta_{B(2\alpha, \beta)}(x, y) = \sum_{0 \leq i,j} c_{i,j} x^i y^j \in \mathbb{Z}[x, y]
\]

such a way that \(\min y\text{-deg} \Delta_{B(2\alpha, \beta)}(x, y) = \min \{j | c_{i,j} \neq 0\} = 0. \) Then \(\max y\text{-deg} \Delta_{B(2\alpha, \beta)}(x, y) = \max \{j | c_{i,j} \neq 0\} = \lambda - 1. \)

The following proposition shows that \(\lambda \) and \(\rho \) are related to the dual of \(S \).

Proposition 3.12. Let \(\tilde{S} \) be the dual of \(S \). Then the length of \(\tilde{S} \) is \(2(\lambda - \rho) - 1. \)

Proof. First consider the positive sequence \(P_i. \)
Let \(P_t = [2a_{i,1}, 2b_{i,1}, 2a_{i,2}, \ldots, 2a_{i,s_i}, 2b_{i,s_i}, 2a_{i,s_i+1}] \). Then the length of \(P_t \) is \(2s_i + 1 \). Now to get the dual, consider the modified form \(P_t^* \) of \(P_t \) that is of the form:

\[
P_t^* = [2, 0, 2, \ldots, 0, 2b_{i,1}, 2, 0, 2, \ldots, 0, 2b_{i,2}, \ldots].
\]

Then to obtain \(\tilde{P}_t \), replace 0 in \(P_t^* \) by 2 and \(b_{i,r} \) by 1 - \(b_{i,r} \). Therefore, in \(\tilde{P}_t \), 0 occurs exactly \(\rho_i \) times. Since the length of \(P_t^* \) is

\[
\sum_{r=1}^{s_i+1} (2a_{i,r} - 1) + s_i = \sum_{r=1}^{s_i+1} 2a_{i,r} - (s_i + 1) + s_i - 2\rho_i = 2\lambda_i - 2\rho_i - 1.
\]

By the same reasoning, the length of the dual \(\tilde{Q}_j \) of \(Q_j \) is equal to \(2\lambda'_j - 2\rho'_j - 1 \). Therefore, the length of the dual \(\tilde{S} \) of \(S \) is

\[
\sum_{i=1}^{m} (2\lambda_i - 2\rho_i - 1) + \sum_{j=1}^{m} (2\lambda'_j - 2\rho'_j - 1) + (2m - 1) = 2\lambda - 2\rho - 1.
\]

Note that Proposition 3.12 holds if \(Q_m = \phi \) (and hence \(d_m \) is missing) or \(P_1 = \phi \) (and hence \(d_1 \) is missing).

Combining Proposition 2 in [13] with Proposition 3.12 and Proposition 3.17 (in the next subsection), we obtain:

Proposition 3.13. Let \(\Delta_{B(2\alpha,\beta)}(x,y) \) be the Alexander polynomial of a 2-bridge link \(B(2\alpha,\beta) \). Then \(\Delta_{B(2\alpha,\beta)}(t,t) \) is a polynomial of degree \(2(\lambda - \rho - 1) \).

Proof. Let \(\Delta_B(t) \) be the reduced Alexander polynomial of \(B(2\alpha,\beta) \). Then \(\Delta_B(t) = \Delta_{B(2\alpha,\beta)}(t,t)(1-t) \). Apply Proposition 2 in [13].

4.4. Reduction.

In this subsection, we justify the assumptions \(\ell \geq 0 \) and \(r > 0 \). This restriction drastically simplifies the proofs of the main theorems.

For a knot \(K \), we denote by \(\overline{K} \) the mirror image of \(K \).

Theorem 3.14. In studying the genus and fibredness of \(K(2\alpha,\beta|r) \) with \(r \neq 0 \), we may assume:

(1) \(-2\alpha < \beta < 2\alpha\), (2) \(\ell kB(2\alpha,\beta) \geq 0 \), and (3) \(r > 0 \).

More precisely, we have the following: Suppose \(0 < \beta < 2\alpha \). Then, for any \(r \neq 0 \)

(I) \(K(2\alpha,\beta|r) = K(2\alpha,-\beta| r) \).

(II) \(K(2\alpha,\beta|r) = K(2\alpha, 2\alpha - \beta | r) \) and \(K(2\alpha,-\beta | r) = K(2\alpha, -2\alpha + \beta | r) \).

We remark the following: (i) \(\ell kB(2\alpha,\beta) = -\ell kB(2\alpha,-\beta) \), (ii) \(\ell kB(2\alpha,\beta) = \ell kB(2\alpha,\pm2\alpha - \beta) \), (iii) if \(\ell kB(2\alpha,\beta) = 0 \), then we may assume \(r > 0 \) and \(\beta > 0 \).

Example 3.15.

1. \(K(4,-1|3) = K(4,1|-3) = K(4,3|3) \).
2. \(K(14,9|2) = K(14,-9|-2) = K(14,-5|2) \).
(3) $K(14, 9) - 2 = \overline{K(14, -9)2}$.
(4) $K(14, -9) - 2 = \overline{K(14, -5)2}$.

Note that $\ell_k B(4, -1) = -2$ and $\ell_k B(14, 9) = -1$. So, we first take the mirror image to make the linking numbers positive, at the expense of changing the sign of r.

Proof of Theorem 3.14. First, we prove the former part, namely we show:

Proposition 3.16. We may assume (1), (2) and (3) of Theorem 3.14.

Proof. Take a 2-bridge link $B(2\alpha, \beta) = K_1 \cup K_2$. Without loss of generality, we may assume $-2\alpha < \beta < 2\alpha$. If $\ell_k B(2\alpha, -\beta) > 0$, then $B(2\alpha, -\beta)$ corresponds to taking the mirror image of $B(2\alpha, \beta)$ while preserving the orientation of the components. Therefore, $\ell_k B(2\alpha, -\beta) > 0$, and hence, from now on, we assume 2-bridge links always have a non-negative linking number. Note that we still have $-2\alpha < -\beta < 2\alpha$. Take $K(2\alpha, \beta | r)$. Suppose $r < 0$. Let $B(2\alpha', \beta') = K_1' \cup K_2'$ be the link obtained by taking the mirror image of $B(2\alpha, \beta)$ while reversing the orientation of K_2. Now the linking number is preserved, i.e., $\ell_k B(2\alpha, \beta) = \ell_k B(2\alpha', \beta')$. Recall that $K(2\alpha, \beta | r)$ is obtained by twisting K_1 by K_2, r times. This does not depend on the orientation of K_2, and hence the knot obtained by twisting K_1 along K_2 r times is the mirror image of the knot obtained by twisting K_1' along K_2' $-r$ times. Therefore, we see $K(2\alpha, \beta | r) = K(2\alpha', \beta' | -r)$.

Next, we show the following to prove the latter half of Theorem 3.14.

Proposition 3.17. Let $L = B(2\alpha, \beta)$ be a 2-bridge link, where $-2\alpha < \beta < 2\alpha$. Let L' be obtained by taking the mirror image of L while reversing the orientation of one component. Then, we have: $L' = \begin{cases} B(2\alpha, 2\alpha - \beta) & \text{if } \beta > 0, \\ B(2\alpha, -2\alpha - \beta) & \text{if } \beta < 0. \end{cases}$

Proof. Since the other case is similar, we only deal with the case $\beta > 0$. Consider the Schubert normal form of $B(2\alpha, \beta)$. See Figure 3.3.

![Figure 3.3: Deformation from $B(2\alpha, \beta)$ to $B(2\alpha, 2\alpha - \beta)$, e.g. $B(8, 3)$ to $B(8, 5)$](image)

First, take the mirror image by changing all crossings simultaneously. Flip the figure by the horizontal axis. Now we have the Schubert normal form of $B(2\alpha, -\beta).$
Rotate the right over-bridge clockwise by π. Change the orientation of the component containing the right over-bridge. This gives the Schubert normal form of $B(2\alpha, 2\alpha - \beta)$.

By two propositions above, we have Theorem 3.14.

3.5. Primitive spanning disk for K_1.

In this subsection, we introduce the notion of primitive spanning disk for K_1, which locally look like Figure 3.5 (b). This surface is the first step to construct a minimal genus Seifert surface for $K(2\alpha, \beta|\gamma)$. Let D be a diagram obtained from the continued fraction S of $B(2\alpha, \beta)$ as in Figure 2.1. By a slight modification of D corresponding to the modification of S to S^*, as in Figure 3.4, construct a spanning disk for K_1, which consists of horizontal disks and vertical bands, whose interiors are mutually disjoint. In Figure 3.4, each box contains an even number of twists (including 0). Note that in Figure 3.4, all disks are showing the same side, though K_2 may penetrate them from various sides. The set of horizontal disks is divided into several families so that each member of a family meets K_2 from the same side as its neighbouring member(s). This corresponds to the canonical decomposition $\{P_1, d_1, Q_1, e_1, \ldots\}$ of S. For simplicity, the disks belonging to the family corresponding to P_i’s (resp. Q_i’s) are called positive disks (resp. negative disks), and a band connecting two positive (resp. negative) disks is called a positive (resp. negative) band. The other bands are called connecting bands.

Remark 3.18. Disks and bands in the spanning disk for K_1 correspond to edges and vertices, respectively, of the graph $G(S)$ of S as follows, except for the end vertices of $G(S)$.

1. Positive/negative disks correspond to edges with positive/negative slope.
2. Positive/negative bands correspond to vertices between positive/negative edges.
3. Connecting bands correspond to local maximal or minimal vertices.
4. The number of twists of a band corresponds to the weight of a vertex.

Definition 3.19. Slide each band so that both of its ends are attached to the front edge of each small disk as in Figure 3.5 (b). The primitive spanning disk for K_1 is the union of all the small disks together with all bands arranged this way. See Figures 7.2 (a) and 7.4.
We remark that in the process of sliding a band, another band may stand in the way. However, as shown in the following proposition, we can always arrange the bands so that each of them appears as in Figure 3.5 (b).

Proposition 3.20. A relative position of the bands in a primitive spanning disk can be arbitrary.

Proof. Examining the case locally suffices. See Figure 3.6, where disks, say D_1, D_2, D_3 and bands B_1, B_2, B_3 are depicted. To change from (a) to (b), fix D_2 and everything lying above D_2, and simultaneously turn around everything that hangs below D_2. Similarly we can change (b) to (c).

Figure 3.6: Sliding bands to change relative positions.

Now, we demonstrate the process of replacing $B(2\alpha, \beta) = K_1 \cup K_2$ by $B(2\alpha, 2\alpha - \beta)$, that is to take the mirror image and reverse (the orientation of) K_2: Since K_2 consecutively penetrates the disks transversely, we have a diagram of K_1 as in Figure 3.5: Deformation from $B(2\alpha, \beta)$ to $B(2\alpha, 2\alpha - \beta)$.
3.7, where (i) all the disks are concentric, (ii) the higher disk appears smaller and (iii) the only crossings are in the twists of bands. Figure 3.7 shows the process of taking the mirror image and reversing the mirror image of K_2.

![Figure 3.7: Reflect $K_1 \cup K_2$ and reverse K_2](image)

Then we notice that the effect of the process is simply replacing each of the bands in K_1 by its mirror image. Therefore, the process can be depicted as in Figure 3.5 (b) to (c). Now reversing the operation of (a) to (b), we obtain the standard diagram of the 2-bridge link $B(2\alpha, 2\alpha - \beta)$.

Finally, Theorem 3.5 is now almost immediate.

Proof of Theorem 3.5. It is easy to see that the final diagram Figure 3.5(d) is the primitive disk obtained from the dual \tilde{S} of S. Therefore Theorem 3.5 follows from Proposition 3.17.

4. Alexander polynomials (I)

In this section, we determine the Alexander polynomial $\Delta_{K(r)}(t)$ for $K(2\alpha, \beta|r)$. In fact, we prove the following

Proposition 4.1. Let $\Delta_{B(2\alpha, \beta)}(x, y)$ be the Alexander polynomial of an (oriented) 2-bridge link $B(2\alpha, \beta)$. Let $\Delta_{K(r)}(t)$ be the Alexander polynomial of $K(2\alpha, \beta|r), r > 0$.

1. If $\ell B(2\alpha, \beta) = \ell \neq 0$, then $\Delta_{K(r)}(t) = \frac{1 - t}{1 - t^\ell} \Delta_{B(2\alpha, \beta)}(t, t^\ell)$
2. If $\ell = 0$, then, for some $a = \pm 1$ and b,

$$\Delta_{K(r)}(t) = r \left[\frac{\Delta_{B(2\alpha, \beta)}(x, y)}{1 - y} \right]_{x=t,y=1} (1 - t) + at^b$$

In Subsection 6.2, we will give a geometric interpretation of $\Delta_{K(r)}(t)$ when $\ell = 0$. (See also [9] or [16])

Now Proposition 4.1 (1) follows from a general result due to Kidwell [14], and hence we omit the proof. However, part(2) was not proved in [14]. In this section, we prove the following more general result suggested by M. Kidwell.

Proposition 4.2. Let K_1 be an oriented knot embedded in an (unknotted) solid torus V. Suppose $\ell k(K_1, K_2) = 0$, where K_2 is an oriented meridian of ∂V. Denote by $K_1(r)$ the knot obtained from K_1 by applying Dehn twists r times along K_2
$(r > 0)$. Let $L = K_1 \cup K_2$. Then, for some $a = \pm 1$ and b, we have:

\[
\Delta L(r)(t) = r(1 - t) \left[\frac{\Delta L(x, y)}{1 - y} \right]_{y = 1} \Delta K_1(t). \tag{4.1}
\]

Proposition 4.1 (2) follows from Proposition 4.2 immediately, since $\Delta K_1(t) = 1$.

Proof of Proposition 4.2. First, consider the link $L = K_1 \cup K_2$. We add one trivial knot K_3 to L such that $\ell_k(K_1, K_3) = \ell_k(K_2, K_3) = 1$ as in Figure 4.1. Let $L = K_1 \cup K_2 \cup K_3$ be the 3-component link.

Using this diagram, we obtain the following Wirtinger presentation of the link group $G(\tilde{L})$ of \tilde{L}.

\[
G(\tilde{L}) = \langle x_1, x_2, \ldots, x_m, y, z_1, z_2 \mid r_1, \ldots, r_m, s, t_1, t_2 \rangle,
\]

where

\[
\begin{align*}
 r_1 &= z_1x_1z_1^{-1}x_2^{-1}, & s &= (x_{i_k}^{\varepsilon_k} \cdots x_{i_2}^{\varepsilon_2} x_{i_1}^{\varepsilon_1} y)(z_1^{-1} x_2^{-1} x_{i_2}^{-1} x_{i_1}^{-1})y^{-1}, \\
 r_2 &= yx_2y^{-1}x_1^{-1}, & t_1 &= yz_2y^{-1}z_2^{-1}, \\
 r_3 &= w_3x_3w_3^{-1}x_4^{-1}, & t_2 &= x_1z_2x_1^{-1}z_2^{-1}, \\
 & \vdots \\
 r_m &= w_mx_mw_m^{-1}x_1^{-1}.
\end{align*}
\]

Here, w_i is a word in x_i and/or y.

We note that $\varepsilon_k + \cdots + \varepsilon_2 + 1 = 0$, since $\ell_k(K_1, K_2) = 0$.

Now using t_1 and t_2, we can eliminate z_2 and obtain a new presentation. For simplicity, we write $z = z_1$. Then

\[
G(\tilde{L}) = \langle x_1, x_2, \ldots, x_m, y, z \mid r_1, \ldots, r_m, s, t' \rangle, \text{ where } t' = x_1yzy^{-1}x_1^{-1}z^{-1}.
\]

From this presentation, we obtain the Alexander matrix $M(\tilde{L})$ for \tilde{L}. The matrix $M(\tilde{L})$ is an $(m + 2) \times (m + 2)$ matrix. A simple calculation shows

\[
\begin{align*}
(1) \quad & \left(\frac{\partial r_i}{\partial y} \right)^\phi = \delta_i(1 - x), \text{ where } \delta_i = 0, 1 \text{ or } -y^{-1}, \\
(2) \quad & \left(\frac{\partial r_i}{\partial z} \right)^\phi = 1 - x, \left(\frac{\partial r_i}{\partial z} \right)^\phi = 0, \text{ for } i \neq 1.
\end{align*}
\]

Figure 4.1: A diagram of $\tilde{L} = K_1 \cup K_2 \cup K_3$.
where ∂ indicates Fox's free derivative and ϕ is the induced homomorphism from $G(\tilde{L})$ to the free abelian group $G(\tilde{L})/\{G(\tilde{L}), G(\tilde{L})\}$, where $x_i^\phi = x$, $y^\phi = y$ and $z^\phi = z$. Let $U = x_i^{\varepsilon_k} \cdots x_i^{\varepsilon_2}x_2z$. Then $s = UyU^{-1}y^{-1}$, and

$$
\left(\frac{\partial s}{\partial x_i}\right)^\phi = (1 - y)(\frac{\partial U}{\partial x_i})^\phi.
$$

(4.3)

Since U does not involve y and $\varepsilon_k + \cdots + \varepsilon_2 + 1 = 0$, we see

$$
(1) \left(\frac{\partial s}{\partial y}\right)^\phi = z - 1
$$

(2) \left(\frac{\partial s}{\partial z}\right)^\phi = 1 - y
$$

(4.4)

Furthermore, we have:

$$
(1) \left(\frac{\partial t'}{\partial x_1}\right)^\phi = 1 - z, \quad \left(\frac{\partial t'}{\partial x_i}\right)^\phi = 0, \text{for } i \neq 1,
$$

$$
(2) \left(\frac{\partial t'}{\partial y}\right)^\phi = x(1 - z),
$$

$$
(3) \left(\frac{\partial t'}{\partial z}\right)^\phi = xy - 1.
$$

(4.5)

Now, the Alexander polynomial $\Delta_L(x, y, z)$ of \tilde{L} is obtained as follows.

Denote by $\tilde{M}(\tilde{L})$ the $(m + 1) \times (m + 2)$ matrix obtained from $M(\tilde{L})$ by striking out the m^{th} row: \[\left(\frac{\partial r_m}{\partial x_1}, \cdots, \frac{\partial r_m}{\partial x_m}, \frac{\partial r_m}{\partial y}, \frac{\partial r_m}{\partial z}\right)^\phi\]

Further, $\tilde{M}(\tilde{L})_\nu$ denotes the $(m + 1) \times (m + 1)$ matrix obtained from $\tilde{M}(\tilde{L})$ by striking out the column corresponding to the generator ν. (For instance, to get $\tilde{M}(\tilde{L})_z$, eliminate the last column of $\tilde{M}(\tilde{L})$.) Then the following is known:

$$
\Delta_L(x, y, z) = \det \tilde{M}(\tilde{L})_z \left(\begin{array}{c}
\delta_i(1 - x) \\
1 \cdots 0
\end{array}\right).
$$

(4.6)

Since the last row of $\tilde{M}(\tilde{L})_z$ is divisible by $1 - z$, we have:

$$
\Delta_L(x, y, z) = \det \left(\begin{array}{cc}
\left(\frac{\partial r_i}{\partial x_j}\right)^\phi & \delta_i(1 - x) \\
(1 - y)\left(\frac{\partial U}{\partial x_j}\right)^\phi & z - 1 \\
1 \cdots 0 & x
\end{array}\right).
$$

(4.7)

Let $L(r)$ be the link obtained from $K_1 \cup K_3$ by applying Dehn twists $r(> 1)$ times along K_2.
Since \(\ell k(K_2, K_1) = 0 \) and \(\ell k(K_2, K_3) = 1 \), by Kidwell's theorem [14, Corollary 3.2] we have:

\[
\Delta b_L(x, z) = 1 - \det \begin{bmatrix}
\frac{\partial r_i}{\partial x_j} & \phi \\
(1 - z^r)(\frac{\partial U}{\partial x_j}) & z - 1 \\
1 & 0 & \cdots & 0 & x
\end{bmatrix}
\]

(4.8)

Further, our knot \(K_1(r) \) is obtained from \(\hat{L} \) by eliminating \(K_3 \), and hence, by Torres' Theorem [19], noting \(\ell k(K_3, K_1(r)) = 1 \), we have:

\[
\Delta K_1(x) = \Delta b_L(x, 1), \quad \text{and hence,}
\]

\[
\Delta K_1(x) = \det \begin{bmatrix}
\frac{\partial r_i}{\partial x_j} & \phi \\
r(\frac{\partial U}{\partial x_j}) & -1 \\
1 & 0 & \cdots & 0 & x
\end{bmatrix}_{y=z=1}
\]

(4.9)

We evaluate \(\Delta K_1(x) \) by expanding it along the last row, and hence

\[
\Delta K_1(x) = \det \begin{bmatrix}
\frac{\partial r_i}{\partial x_j} & \phi \\
r(\frac{\partial U}{\partial x_j}) & -1 \\
1 & 0 & \cdots & 0 & x
\end{bmatrix}_{y=z=1} + (-1)^m x \det \begin{bmatrix}
\frac{\partial r_i}{\partial x_j} & \phi \\
r(\frac{\partial U}{\partial x_j}) & -1 \\
1 & 0 & \cdots & 0 & x
\end{bmatrix}_{y=z=1}
\]

(4.10)

(4.11)

First we claim:

Lemma 4.3.

\[
\det \begin{bmatrix}
\frac{\partial r_i}{\partial x_j} & \phi \\
r(\frac{\partial U}{\partial x_j}) & -1 \\
1 & 0 & \cdots & 0 & x
\end{bmatrix}_{y=z=1} = 0
\]

Proof. Since \(y = 1 \) and \(\epsilon_k + \cdots + \epsilon_2 + 1 = 0 \), we have \(\sum_{j=1}^m (\frac{\partial r_i}{\partial x_j})_{y=1} = 0 \) and \(\sum_{j=1}^m (\frac{\partial U}{\partial x_j})_{y=1} = 0 \), and hence Lemma 4.3 follows.

Now we return to the proof of Proposition 4.2. From (4.11) and Lemma 4.3 we see the following:

\[
\Delta K_1(x) = \det \begin{bmatrix}
\frac{\partial r_i}{\partial x_j} & \phi \\
r(\frac{\partial U}{\partial x_j}) & -1 \\
1 & 0 & \cdots & 0 & x
\end{bmatrix}_{y=1}
\]

(4.12)
The determinant is decomposed into two terms as follows:

\[
\Delta_{K_1(r)}(x) \doteq \det \begin{bmatrix}
\left(\frac{\partial r_i}{\partial x_j} \right)_{i \geq 1, j \geq 2} & \delta_i(1-x) \\
\frac{r(\partial U)}{\partial x_j} & 0
\end{bmatrix}_{y=1} + \det \begin{bmatrix}
\left(\frac{\partial r_i}{\partial x_j} \right)_{i \geq 1, j \geq 2} & 0 \\
\frac{r(\partial U)}{\partial x_j} & -1
\end{bmatrix}_{y=1}
\] (4.13)

The second term is equivalent to

\[
\det \left[\left(\frac{\partial r_i}{\partial x_j} \right) \right]_{1 \leq i \leq m-1, 2 \leq j \leq m, y=1}
\] that is equal to \(\Delta_{K_1(x)}\) (up to \(\pm x^k\)). Therefore, the final step is to show that

\[
\det \begin{bmatrix}
\left(\frac{\partial r_i}{\partial x_j} \right)_{i \geq 1, j \geq 2} & \delta_i(1-x) \\
\frac{\partial U}{\partial x_j} & 0
\end{bmatrix}_{y=1} = \left[\frac{\Delta_{B(2n,\beta)}(x,y)}{1-y} \right]_{y=1}.
\] (4.14)

To show (4.14) we go back to \(M(\Lhat)\) and compute \(\Delta_{\Lhat}(x,y,z)\) in a different way. We use the following formula:

\[
\Delta_{\Lhat}(x,y,z) = \frac{\det M(\Lhat)_y}{1-y}
\] (4.15)

Then the row \(\left(\frac{\partial s}{\partial x_1}, \frac{\partial s}{\partial x_2}, \ldots, \frac{\partial s}{\partial x_m}, \frac{\partial s}{\partial z} \right)^\phi\) is divisible by \(1 - y\), and hence, we have:

\[
\Delta_{\Lhat}(x,y,z) = \det \begin{bmatrix}
\left(\frac{\partial r_i}{\partial x_j} \right)_{i \geq 1, j \geq 2} & 1-x \\
\left(\frac{\partial s}{\partial x_j} \right)_{j \geq 1} & 0 \\
\vdots & \vdots \\
\left(\frac{\partial U}{\partial x_j} \right)_{j \geq 1} & 1 \\
1-z & 0 \cdots 0 & xy - 1
\end{bmatrix}_{z=1}
\] (4.16)

Now we try to find \(\Delta_L(x,y)\) from \(\Delta_{\Lhat}(x,y,z)\).

To do this, we eliminate \(K_3\) from \(\Lhat = K_1 \cup K_2 \cup K_3\). Then, since \(\ell k(K_3,K_1) = \ell k(K_3,K_2) = 1\), Torres' Theorem \(19\) implies:

\[
\Delta_L(x,y) = \frac{\Delta_{\Lhat}(x,y,z)}{xy - 1},
\] (4.17)

that is, from (4.16),

\[
\Delta_L(x,y) = \det \begin{bmatrix}
\left(\frac{\partial r_i}{\partial x_j} \right)_{j \geq 1} \\
\left(\frac{\partial U}{\partial x_j} \right)_{j \geq 1}
\end{bmatrix}_{z=1} = N
\] (4.18)
We describe \(N \) precisely. First we note:

\[
\sum_{j=1}^{m} \frac{\partial r_i}{\partial x_j} = \begin{cases}
 y^\varepsilon - 1, & \text{if } r_i \text{ is of the from : } y^\varepsilon x_i y^{-\varepsilon} x_{i+1}^{-1}, \varepsilon = \pm 1 \\
 0, & \text{otherwise.}
\end{cases}
\]

(1)

\[
\sum_{j=1}^{m} \frac{\partial U}{\partial x_j} = 0.
\]

(4.19)

Therefore, if we add all columns of \(N \) to the first column to get \(N_1 \), then the first column of \(N_1 \) is divisible by \(1 - y \). Further,

\[
\sum_{j=1}^{m} \frac{\partial r_i}{\partial x_j} = \varepsilon y^{\varepsilon} (1 - y).
\]

(4.20)

Since \(\varepsilon y^{\varepsilon} = \delta_i \), we have:

\[
\sum_{j=1}^{m} \frac{\partial r_i}{\partial x_j} = \delta_i (1 - y).
\]

(4.21)

Evaluations of both polynomials at \(y = 1 \) give (4.14).

The proof of Proposition 4.2 is now completed.

\[\square\]

5. Alexander polynomials (II)

We have established some relationships between the Alexander polynomial of \(K(2\alpha, \beta| r) \) and that of the 2-bridge link \(B(2\alpha, \beta) \). However, these relations are not sufficient to our purpose. Therefore, in this section, we prove some subtle properties of \(\Delta_B(2\alpha, \beta)(x,y) \). These properties are indispensable to study the Alexander polynomial of our knot \(K(2\alpha, \beta| r) \). See Theorem 5.5

Let \(S = \{P_1, d_1, Q_1, e_1, P_2, \ldots, P_m, d_m, Q_m\} \) be the canonical decomposition of the continued fraction of \(\beta/2\alpha \). Let \(\rho_i, \rho_j, \rho, \lambda_i \) and \(\lambda \) be integers as defined in Definition 3.10. Now, by Proposition 3.11, we can write

\[
\Delta_B(2\alpha, \beta)(x,y) = f_{\lambda - 1}(x)y^{\lambda - 1} + f_{\lambda - 2}(x)y^{\lambda - 2} + \cdots + f_0(x),
\]

where \(f_i(x), 0 \leq i \leq \lambda - 1 \), are integer polynomials in \(x \) of degree at most \(\lambda - 1 \).

Our purpose is to determine these polynomials \(f_i(x) \), in particular, \(f_{\lambda - 1}(x) \).

5.1 Skein relation

Let \(\{[u_1, v_1, u_2, v_2, \ldots, u_s, v_s, u_{s+1}]\} \) be the continued fraction of \(\beta/2\alpha \). Then it is shown in [12, Theorem 2 (4.2)] that

\[
\Delta_B(2\alpha, \beta)(x,y) = v_s(x-1)(y-1)F_{u_{s+1}}(x,y)\Delta([u_1, v_1, \ldots, u_s]) - \Delta([u_1, v_1, \ldots, v_{s-1}, u_s + u_{s+1}]].
\]

(5.2)
where $\Delta[c_1, \ldots, c_k]$ is the Alexander polynomial of the 2-bridge link associated to the continued fraction $[[c_1, c_2, \ldots, c_k]]$, and $F_n(x, y)$ is defined below:

1. $F_0(x, y) = 0$.
2. For $n > 0$,

 (a) $F_n(x, y) = 1 + xy + \cdots + (xy)^{n-1} = \frac{(xy)^n - 1}{xy - 1},$

 (b) $F_{-n}(x, y) = -\{(xy)^{-1} + \cdots + (xy)^{-n}\} = \frac{-1}{(xy)^n}F_n(x, y).$ \hspace{2cm} (5.3)

Note that $F_c(x, y) = \Delta[[c]]$.

Formula (5.2) is obtained by applying crossing changes and smoothing at v_s, i.e., at the crossings corresponding to v_s.

We should note that (5.2) is slightly different from the original formula given in [12] (4.2), since we use a different notation.

By applying (5.2) on all $v_j, j = 1, 2, \ldots, s$, we obtain $\Delta_{B(2\alpha, \beta)}(x, y)$ in terms of various $\Delta[[c]]$, where c is written as the sum of u_i.

The following example illustrates a calculation.

Example 5.1. Write $\frac{\beta}{2\alpha} = [[u_1, v_1, u_2, v_2, u_3]]$. Then,

\[
\Delta_{B(2\alpha, \beta)}(x, y) = v_2(x - 1)(y - 1)F_{u_3}(x, y)\Delta[[u_1, v_1, u_2]] - \Delta[[u_1, v_1, u_2 + u_3]] \\
= v_2(x - 1)(y - 1)F_{u_3}(x, y)\{v_1(x - 1)(y - 1)F_{u_2}(x, y)F_{u_1}(x, y) - \Delta[[u_1 + u_2]]\} \\
- \{v_1(x - 1)(y - 1)F_{u_2+u_3}(x, y)\Delta[[u_1]] - \Delta[[u_1 + u_2 + u_3]]\} \\
= v_1v_2(x - 1)^2(y - 1)^2F_{u_1}F_{u_2}F_{u_3} - (x - 1)(y - 1)v_1F_{u_1}F_{u_2+u_3} + v_2F_{u_1+u_2}F_{u_3} \\
+ F_{u_1+u_2+u_3}
\]

As is illustrated in Example 5.1, we see that $\Delta_{B(2\alpha, \beta)}(x, y)$ is of the following form:

\[
\Delta_{B(2\alpha, \beta)}(x, y) = \sum_{0 \leq k \leq s} (-1)^k v_{i_1}v_{i_2} \cdots v_{i_k} (x - 1)^k (y - 1)^k F_{\mu_1}F_{\mu_2} \cdots F_{\mu_k},
\]

where the summation is taken over all indices i_j such that $1 \leq i_1 < i_2 < \cdots < i_k \leq s$, and μ_j is of the form: $\mu_j = u_{j_1} + u_{j_1+1} + \cdots + u_{j_1+p}$ and $\mu_1 + \mu_2 + \cdots + \mu_{k+1} = u_1 + u_2 + \cdots + u_{s+1}$.

For convenience, we denote by $\Lambda_{p, r}$ the set of all p indices i_1, \cdots, i_p such that $1 \leq i_1 < \cdots < i_p \leq r$. Since $F_c(x, y)$ is a rational function, we replace $F_c(x, y)$ by a polynomial $\tilde{F}_c(x, y)$ below.

For $n > 0$,

1. $\tilde{F}_n(x, y) = (xy - 1)F_n(x, y) = (xy)^n - 1$.
2. $\tilde{F}_{-n}(x, y) = (xy)^n(xy - 1)\tilde{F}_{-n}(x, y) = (-1)\tilde{F}_n(x, y) = (-1)((xy)^n - 1).$ \hspace{2cm} (5.5)
Using these polynomials, we obtain an integer polynomial $\widetilde{\Delta}_{B(2\alpha,\beta)}(x, y)$ from $\Delta_{B(2\alpha,\beta)}(x, y)$:

$$\widetilde{\Delta}_{B(2\alpha,\beta)}(x, y) = (xy)\sum_{i=1}^{m} \lambda_i (xy - 1)^{\sum_i (s_i + 1) + \sum_j (q_j + 1)} \Delta_{B(2\alpha,\beta)}(x, y).$$ (5.6)

Therefore we have:

1. $\max y \text{-} \deg \widetilde{\Delta}_{B(2\alpha,\beta)}(x, y) = \max y \text{-} \deg \Delta_{B(2\alpha,\beta)}(x, y) + \sum_{i=1}^{m} s_i + \sum_{j=1}^{m} q_j + 2m = \lambda + \sum_{i=1}^{m} s_i + \sum_{j=1}^{m} q_j + 2m - 1$,

2. $\min y \text{-} \deg \widetilde{\Delta}_{B(2\alpha,\beta)}(x, y) = 0.$ (5.7)

Now we can write

$$\widetilde{\Delta}_{B(2\alpha,\beta)}(x, y) = f_\nu(x)y^\nu + \cdots + f_0(x),$$

and

$$f_\nu(x) = f_{\lambda-1}(x)x^{\sum\lambda_i s_i + \sum\lambda_j q_j + 2m},$$ (5.8)

where $\nu = \lambda + \sum_{i=1}^{m} s_i + \sum_{j=1}^{m} q_j + 2m - 1$.

First we show

$$\deg f_\nu(x) = \lambda + \sum_{i=1}^{m} s_i + \sum_{j=1}^{m} q_j - \rho + 2m - 1.$$ (5.9)

5.2 Proof of (5.9) (I)

We consider two special cases.

Case 1. All $u_i > 0$.

Consider $\beta/2\alpha = [u_1, v_1, u_2, v_2, \ldots, u_s, v_s, u_{s+1}]$.

Then

$$\Delta_{B(2\alpha,\beta)}(x, y) = \sum_{\Lambda_{k,s}, 0 \leq k \leq s} (-1)^k v_1 v_2 \cdots v_{k}(x-1)^k (y-1)^k F_{\mu_1} F_{\mu_2} \cdots F_{\mu_{k+1}},$$

where $\mu_i > 0, 1 \leq i \leq k + 1$, and $\lambda = \sum_{i=1}^{k+1} \mu_i, \lambda' = 0$. Therefore,

$$\widetilde{\Delta}_{B(2\alpha,\beta)}(x, y) = (xy - 1)^{\lambda + 1} \Delta_{B(2\alpha,\beta)}(x, y)$$

$$= \sum_{\Lambda_{k,s}, 0 \leq k \leq s} (-1)^k v_1 v_2 \cdots v_{k}(x-1)^k (y-1)^k \tilde{F}_{\mu_1} \tilde{F}_{\mu_2} \cdots \tilde{F}_{\mu_{k+1}}(xy - 1)^{\lambda - k}. $$ (5.10)

Case 2. All $-u_i < 0$.

Consider $\beta/2\alpha = [-u_1, -v_1, -u_2, -v_2, \ldots, -u_s, -v_s, -u_{s+1}]$. Then

$$\Delta_{B(2\alpha,\beta)}(x, y) = (-1)^k (-v_1) (-v_2) \cdots (-v_{k})(x-1)^k (y-1)^k F_{-\mu_1} F_{-\mu_2} \cdots F_{-\mu_{k+1}},$$

Therefore, the proof of (5.9) is completed.
and hence $\lambda = u_1 + u_2 + \cdots + u_{q+1} = \mu_1 + \mu_2 + \cdots + \mu_{k+1}$. Therefore:

$$
\bar{\Delta}_{B(2\alpha, \beta)}(x, y) \\
= (xy)^{\lambda_1} (xy - 1)^{q+1} \Delta_{B(2\alpha, \beta)}(x, y) \\
= \sum_{\lambda_{k,q}, 0 \leq k \leq q} v_{i_1} v_{i_2} \cdots v_{i_k} (-1)^{k+1} (x-1)^{k}(y-1)^k F_{\mu_1} F_{\mu_2} \cdots F_{\mu_{k+1}} (xy - 1)^{q-k} \\
= - \sum_{\lambda_{k,q}, 0 \leq k \leq q} (-1)^k v_{i_1} v_{i_2} \cdots v_{i_k} (x-1)^{k}(y-1)^k F_{\mu_1} F_{\mu_2} \cdots F_{\mu_{k+1}} (xy - 1)^{q-k}.
$$

(5.11)

Note that (5.10) and (5.11) are of the same form.

Now consider the general case. Let \{P_1, Q_1, Q_2, P_2, \ldots, P_m, q_1, q_m\} be the canonical decomposition of the continued fraction of $\beta/2\alpha$.

Denote $P_i = \left[\left[a_i, 1, a_i, 2, a_i, s_i, b_i, s_i, a_i, s_i+1\right]\right]$, $1 \leq i \leq m$, and $Q_j = \left[\left[-a_j, 1, -a_j, 2, -a_j, s_j, -a_j, q_j, -a_j, q_j, -a_j, q_j+1\right]\right]$, $1 \leq j \leq m$, where $a_i, b_i > 0$ and a_j, q_j are arbitrary. Then by Proposition 3.11

$$\max y\deg \Delta_{B(2\alpha, \beta)}(x, y) = \sum_{i=1}^{m} \left(a_i + \sum_{k=1}^{m} a_i' \right) - 1 = \lambda - 1.
$$

First we try to find the term with the max y-degree in $\bar{\Delta}_{B(2\alpha, \beta)}(x, y)$.

Denote by $\Delta_{P_i}(x, y)$ (resp. $\Delta_{Q_j}(x, y)$) the Alexander polynomial of the 2-bridge link associated to P_i (resp. Q_j). Then, as we did above, we obtain

$$
\bar{\Delta}_{P_i}(x, y) \\
= (xy)^{\lambda_i} (xy - 1)^{s_i+1} \Delta_{P_i}(x, y) \\
= \sum_{\lambda_{k,s_i}, 0 \leq k \leq s_i} (-1)^k b_i b_{i, p_2} \cdots b_{i, p_k} (x-1)^{s_i+k}(y-1)^k F_{\mu_1} F_{\mu_2} \cdots F_{\mu_{k+1}},
$$

where $\mu_1 + \mu_2 + \cdots + \mu_{k+1} = \lambda_i$, and hence,

(5.12)

where $F_{\mu} = (xy)^{\mu} - 1, \mu > 0$.

On the other hand,

$$
\bar{\Delta}_{Q_j}(x, y) = \sum_{\lambda_{k,q_j}} (-1)^k b_{j, r_1} b_{j, r_2} \cdots b_{j, r_k} (x-1)^k(y-1)^k F_{-\mu'_1} F_{-\mu'_2} \cdots F_{-\mu'_{k+1}},
$$

and hence we have:

$$
\bar{\Delta}_{Q_j}(x, y) \\
= (xy)^{\lambda_j} (xy - 1)^{q_j+1} \Delta_{Q_j}(x, y) \\
= - \sum_{\lambda_{k,q_j}} (-1)^k b_{j, r_1} b_{j, r_2} \cdots b_{j, r_k} (x-1)^k(y-1)^k F_{-\mu'_1} F_{-\mu'_2} \cdots F_{-\mu'_{k+1}} (xy - 1)^{q_j-k}.
$$

(5.13)
5.3. Proof of (5.9) (II)

To evaluate $\Delta_B(x, y)$, we must split and smooth at various crossings. We classify these operations into two types.

Type 1. Split all crossings at every d_i and e_j.

Type 2. Smooth some crossings at some d_i and/or e_j.

From Type 1 operation, we obtain the following term in $\tilde{\Delta}_B(x, y)$:

$$A = (-1)^m d_1 \cdots d_m (-1)^{m-1} e_1 \cdots e_{m-1} (x-1)^{2m-1} (y-1)^{2m-1}$$

$$\times \prod_{i=1}^{m} \tilde{\Delta}_{P_i}(x, y) \prod_{j=1}^{m} \tilde{\Delta}_{Q_j}(x, y).$$

(5.14)

Terms in A with the max y-degree are obtained by

1. taking y^{2m-1} from $(y-1)^{2m-1}$,
2. taking y^k from $(y-1)^k$, $(xy)\mu$ from each $\tilde{\Delta}_{P_i}$, and $(xy)^{s_i-k}$ from $(xy-1)^{s_i-k}$, and
3. taking y^k from $(y-1)^k$, $(xy)\mu'$ from each $\tilde{\Delta}_{P_i'}$, and $(xy)^{q_j-k}$ from $(xy-1)^{q_j-k}$.

Therefore, the max y-degree in A is

$$2m - 1 + \sum_{i=1}^{m} (k + \mu_1 + \cdots + \mu_{k+1} + s_i - k) + \sum_{j=1}^{m} (k + \mu'_1 + \cdots + \mu'_{k+1} + q_j - k)$$

$$= 2m - 1 + \sum_{i=1}^{m} (s_i + \lambda_i) + \sum_{j=1}^{m} (q_j + \lambda'_j) = 2m - 1 + \sum_{i=1}^{m} s_i + \sum_{j=1}^{m} q_j + \lambda.$$

While, the min y-deg in A is obviously 0.

Since $\Delta_B(x, y) = (xy)^{\sum_{i=1}^{m} \lambda_i} (x-1)^{\sum_{i=1}^{m} (s_i+1)} + \sum_{j=1}^{m} (q_j+1) \Delta_B(x, y)$, the y-degree of $\Delta_B(x, y)$ is at least $2m - 1 + \sum s_i + \sum q_j + \lambda (\sum s_i + m + \sum q_j + m) = \lambda - 1$, that coincides with Proposition 3.11. Therefore, these terms are in fact the terms with maximal y-degree.

5.4. Proof of (5.9) (III)

Next we show that Type 2 operation does not yield a term with max y-degree in $\Delta_B(x, y)$. To see this, we can assume without loss of generality that we smooth only crossings at d_1, but not others. Namely, we split at other crossings d_i ($i \neq 1$) and e_j, $1 \leq j \leq m - 1$.

Case 1. Suppose $a_{1,s_1+1} > a'_{1,1}$.

By smoothing at d_1, we have a new canonical decomposition of the new continued fraction: $\tilde{S} = \{ \tilde{P}_1, \tilde{Q}_1, Q_1, P_2, d_2, Q_2, e_2, \cdots, P_m, d_m, Q_m \}$, where

$\tilde{P}_1 = [a_{1,1}, b_{1,1}, a_{1,2}, b_{1,2}, \cdots, a_{1,s_1}, b_{1,s_1}, a_{1,s_1+1} - a'_{1,1}], \tilde{Q}_1 = -b'_{1,1}$ and

$\tilde{Q} = [-a'_{1,2}, -b'_{1,2}, \cdots, -a'_{1,q_1}, -b'_{1,q_1}, -a'_{1,q_1+1}].$

Consider $\Delta_B(x, y) = (xy)^{\lambda} (x-1)^{\sum (s_i+1)} + \sum (q_j+1) \Delta_B(x, y)$. Using the previous argument, we can determine the terms of max y-degree of $\Delta(\tilde{S})$ in $\Delta_B(x, y)$. Since the terms of max y-degree are obtained as those in each P_i and Q_j, we will determine
these terms for \(\hat{P}_1 \) and \(\hat{Q}_1 \). For \(\hat{P}_1 \), the max \(y \)-degree is
\[
k + \mu_1 + \cdots + \mu_{k+1} + s_1 + 1 - (k + 1).
\]
(5.15)

Since \(\mu_1 + \cdots + \mu_{k+1} = a_{1,1} + a_{1,2} + \cdots + a_{1,s_1+1} - a_{1,1}' = \lambda_1 - a_{1,1}' \), it follows from (5.15) that the max \(y \)-degree is \(\lambda_1 - a_{1,1}' + s_1 \). For \(\hat{Q}_1 \), the maximal terms are contained in
\[
\sum_{r_1, \ldots, r_k} (-1)^k r_1 \cdots r_k (x-1)^k (y-1) F \hat{\mu}_1 \cdots F \hat{\mu}_{k+1} (xy-1)^{s_1} (xy-1),
\]
where the sum is taken over \(2 \leq r_1 < \cdots < r_k \leq q_1, k = 0, 1, \ldots, q_1 - 1 \).

Since the original multipliers \((xy)^{\lambda} \) cannot be cancelled out in this case, \((xy)^{a_{1,1}'}\) remains. Therefore, max \(y \)-degree in \(\hat{Q}_1 \) is \(k + q_1 - k - 1 + \mu_1' + \cdots + \mu_{k+1}' + a_{1,1}' + 1 = q_1 + \lambda_1' - a_{1,1}' = q_1 + \lambda_1' \), since \(\mu_1' + \cdots + \mu_{k+1}' = \lambda_1' - a_{1,1}' \), and hence, the max \(y \)-deg of \(\hat{D}_B(x,y) \) is \(2m-1 + (\lambda_1 - a_{1,1}') + s_1 + q_1 + \sum_{i=2}^{m} (s_i + \lambda_i) + \sum_{j=2}^{m} (q_j + \lambda_j) = 2m - 1 + \sum_{i=1}^{m} s_i + \sum_{j=1}^{m} q_j + \lambda - a_{1,1}' \). Since \(a_{1,1}' > 0 \), we cannot get a term of the max \(y \)-degree from \(\hat{D}(S) \).

Case 2. \(a_{1,s_1+1} < a_{1,1}' \) or \(a_{1,s_1+1} = a_{1,1}' \). A similar argument works, and hence omit the details. Therefore, to evaluate \(f_\nu(x) \), it suffices to consider \(\hat{D}(P_j) \), since the treatment for \(\hat{D}(Q_j) \) is similar to \(\hat{D}(P_j) \). In other words, we will show the following:

Proposition 5.2. Let \(S = [[u_1, \ldots, u_s, v_1, v_2, \ldots, u_{s+1}]] \), where \(u_i > 0, 1 \leq i \leq s + 1 \). Write \(\hat{D}_B(x,y) = f_{s+\lambda}(x)y^{s+\lambda} + \cdots + f_0(x) \), where \(\lambda = \sum_{i=1}^{s+1} u_i \). Then we can write as follows, using some integer \(\gamma_{s+\lambda-\rho} \neq 0 \).

\[
f_{s+\lambda}(x) = \gamma_{s+\lambda-\rho} x^{s+\lambda-\rho} + \cdots + \gamma_{\zeta} x^\zeta, \text{ for some } \zeta \geq 0, s + \lambda - \rho > \zeta.
\]
(5.16)

5.5. Auxiliary Lemmas

Before we proceed to the proof of Proposition 5.2, we show the following two lemmas.

Lemma 5.3. Assume \(n \geq k \geq 0 \) and \(n \geq m \geq 0 \). Then
\[
\binom{n}{k} - \binom{n-1}{k-1} \binom{m}{m-1} + \binom{n-2}{k-2} \binom{m}{m-2} - \cdots + (-1)^{\ell} \binom{n-\ell}{k-\ell} \binom{m}{m-\ell} + \cdots + (-1)^m \binom{n-m}{k-m} \binom{m}{0} = \binom{n-m}{k}
\]
(5.17)

Note. In (5.17) we assume that \(\binom{u}{k} = 0 \) if \(n \leq 0 \) or \(k \leq 0 \), and \(\binom{0}{0} = 1 \).

Proof. We prove (5.17) by induction on \(n, k \) and \(m \). Direct calculations prove the validity of the first step. Suppose (5.17) holds up to \(n, k \) and \(m - 1 \). Then we
see the following: The LHS of (5.17) is
\[
\binom{n}{k} - \left\{ \binom{n-1}{k-1} \binom{m-1}{1} + \binom{n-1}{k-1} \binom{m-1}{0} \right\} \\
+ \left\{ \binom{n-2}{k-2} \binom{m-1}{2} + \binom{n-2}{k-2} \binom{m-1}{1} \right\} - \cdots \\
+ (-1)^{m-1}\left\{ \binom{n-m+1}{k-m+1} \binom{m-1}{1} + \binom{n-m+1}{k-m+1} \binom{m-1}{m-2} \right\} \\
+ (-1)^{m}\left\{ \binom{n-m}{k-m} \binom{m-1}{m-1} \right\} \\
= \binom{n}{k} - \binom{n-1}{k-1} \binom{m-1}{1} + \binom{n-2}{k-2} \binom{m-1}{2} + \cdots \\
\text{by induction hypothesis.}
\]

\textbf{Lemma 5.4.} Let \(n \geq k \geq 0 \). Then the following equality holds among integer polynomials in \(n \) variables \(x_1, x_2, \cdots, x_n \):
\[
\binom{n}{k} x_1 \cdots x_n - \binom{n-1}{k} \sum_{\Lambda_{n-1}} x_{i_1} \cdots x_{i_{n-1}} \\
+ \binom{n-2}{k} \sum_{\Lambda_{n-2}} x_{i_1} \cdots x_{i_{n-2}} + \cdots + (-1)^{n-k} \binom{k}{k} \sum_{\Lambda_k} x_{i_1} \cdots x_{i_k} \\
= \binom{n}{k} (x_1 - 1) \cdots (x_n - 1) + \binom{n-1}{k-1} \sum_{\Lambda_{n-1}} (x_{i_1} - 1) \cdots (x_{i_{n-1}} - 1) \\
\text{where the summation is taken over the set } \Lambda_j \text{ consisting of all indices } i_1, \cdots, i_j \text{ such that } 1 \leq i_1 < \cdots < i_j \leq n. \text{ If } n-k = 0, \text{ then the last term on the right side is interpreted as } 1.\]
Proof. Since polynomials on both sides are symmetric polynomials over the symmetric group S_n, it is enough to compare the coefficients of $x_1x_2 \cdots x_m$, $1 \leq m \leq n$. For example, the constant term of the LHS is 0 if $k > 0$, while that of the RHS is

$$(-1)^n \frac{n}{k} + (-1)^{n-1} \frac{n-1}{k-1} \left(\frac{n}{n-1} \right) + \cdots + (-1)^{n-k} \frac{n-k}{0} \left(\frac{n}{n-k} \right)$$

$$= (-1)^n \sum_{i=0}^{k} (-1)^i \frac{n-i}{k-i} \left(\frac{n}{n-i} \right)$$

$$= (-1)^n \sum_{i=0}^{k} (-1)^i \frac{n}{i} \left(\frac{k}{k-i} \right)$$

$$= (-1)^n \frac{n}{k} \sum_{i=0}^{k} (-1)^i \frac{k}{i}$$

$$= 0$$

First, $x_1x_2 \cdots x_n$ appears $\frac{n}{k}$ times in both sides. Thus the formula is true for $x_1x_2 \cdots x_n$. Next, consider $x_1x_2 \cdots x_{n-1}$. This appears $-\frac{n-1}{k}$ times in the LHS, while it appears, in the RHS, $-\frac{n}{k} + \frac{n-1}{k-1} = -\frac{n-1}{k}$ times. Thus the formula is true. In general, $x_1x_2 \cdots x_{n-r}$, $r \geq 1$, appears $(-1)^r \left(\frac{n-r}{k} \right)$ times in the LHS, while in the RHS, it appears as many times as

$$(-1)^r \left\{ \frac{n}{k} - \frac{n-1}{k-1} \left(\frac{r}{r-1} \right) + \frac{n-2}{k-2} \left(\frac{r}{r-2} \right) - \cdots - (-1)^r \left(\frac{n-r}{k-r} \right) \right\}$$

$$= (-1)^r \left(\frac{n-r}{k} \right) \quad \text{(by Lemma 5.3)}.$$

5.6. Proof of Proposition 5.2

By (5.10), we can write

$$\tilde{\Delta}_B(x,y) = (xy - 1)^{s+1} \Delta_B(x,y)$$

$$= \sum_{p=0}^{s} \sum_{\Lambda \mu \nu} (-1)^{p}v_{i_1}v_{i_2} \cdots v_{i_p}(x-1)^p(y-1)^p \tilde{F}_{\mu_1} \tilde{F}_{\mu_2} \cdots \tilde{F}_{\mu_{p+1}}(xy-1)^{s-p},$$

(5.18)

where $\mu_1 + \cdots + \mu_{p+1} = \lambda = u_1 + u_2 + \cdots + u_{s+1}$.

In (5.18), terms with $y^{s+\lambda}$ are obtained as follows. Let B_k be the coefficient of the term $x^{s+\lambda-k}y^{s+\lambda}$.

(1) For $p = 0$, since we smooth all crossings at v_i, we have only one term $\tilde{F}_{\mu_1}(xy-1)^s$. Since $\mu_1 = \lambda$, we have one term $x^{\lambda+s}y^{\lambda+s}$.
(2) For $p = 1$, we have the following polynomial

$$(-1)^s \sum_{i=1}^s v_i (x - 1)(y - 1) \tilde{F}_{\mu_1} \tilde{F}_{\mu_2} (xy - 1)^{s-1}. $$

Thus the contribution to B_0 by these polynomials is $(-1) \sum_{i=1}^s v_i$.

(3) For general p, the contribution to B_0 by the polynomials in

$$(-1)^p \sum v_1 v_2 \cdots v_p (x - 1)^p (y - 1)^p \tilde{F}_{\mu_1} \tilde{F}_{\mu_2} \cdots \tilde{F}_{\mu_{p+1}} (xy - 1)^{s-p}$$

is

$$(-1)^p \sum_{1 \leq i_1 < \cdots < i_p \leq s} v_{i_1} v_{i_2} \cdots v_{i_p}. $$

Therefore, by letting $n = s$ and $k = 0$ in Lemma 5.4, we have:

$$B_0 = 1 - \sum_{i=1}^s v_i + \sum_{1 \leq i < j \leq s} v_i v_j + \cdots $$

$$+ (-1)^p \sum_{\Lambda_{p,s}} v_{i_1} v_{i_2} \cdots v_{i_p} + \cdots + (-1)^s v_1 v_2 \cdots v_s$$

$$= (-1)^s (v_1 - 1)(v_2 - 1) \cdots (v_s - 1). \quad (5.19) $$

If $\rho = 0$, i.e., $v_j \neq 1$ for any j, then $B_0 \neq 0$, i.e. $x^{s+s} y^{s+s}$ does exist. However, if $\rho > 0$, then $B_0 = 0$, and hence $x^{s+s} y^{s+s}$ does not exist. Next we consider B_1. The terms $x^{s+s-1} y^{s+s}$ are obtained as follows.

(1) If $p = 0$, we do not get the term $x^{s+s-1} y^{s+s}$.

(2) Suppose $p \geq 1$. Then in order to get $x^{s+s-1} y^{s+s}$, we must take every possible y-term of maximal degree. In other words, from each \tilde{F}_{μ_1}, take $(xy)^{\mu_1}$ and $(xy)^{s-p}$ from $(xy - 1)^{s-p}$ and y^p from $(y - 1)^p$. For the x-terms we take $(-1)^p \binom{p}{p-1} x^{p-1}$ from $(x - 1)^p$.

Therefore, we have, by Lemma 5.4

$$B_1 = (-1) \sum_{1 \leq i_1 \leq s} v_{i_1} (-1) \binom{1}{0} + (-1)^2 \sum_{\Lambda_{2,s}} v_{i_1} v_{i_2} (-1) \binom{2}{1}$$

$$+ (-1)^3 \sum_{\Lambda_{3,s}} v_{i_1} v_{i_2} v_{i_3} (-1) \binom{3}{2} + \cdots + (-1)^s v_1 \cdots v_s (-1) \binom{s}{s-1}$$

$$= (-1) \left\{ s(v_1 - 1) \cdots (v_s - 1) + \sum_{1 \leq i_1 < \cdots < i_{s-1} \leq s} (v_{i_1} - 1) \cdots (v_{i_{s-1}} - 1) \right\}. \quad (5.20) $$

If $\rho = 1$, then the first term in the RHS is 0, but one term in the second summation survives. Thus, $x^{s+s-1} y^{s+s}$ does exist, and

$$B_1 = -(v_1 - 1)(v_2 - 1) \cdots (v_{t-1} - 1)(v_{t+1} - 1) \cdots (v_s - 1)$$

for some t.

However, if $\rho \geq 2$, then $B_1 = 0$. By the same argument, we can show:

\[
B_r = (-1)^r \sum_{\Lambda_{r,s}} v_i \cdots v_r (-1)^r \left(\frac{r}{0} \right) + (-1)^{r+1} \sum_{\Lambda_{r+1,s}} v_i \cdots v_{r+1} (-1)^r \left(\frac{r+1}{1} \right) \\
+ (-1)^{r+2} \sum_{\Lambda_{r+2,s}} v_i \cdots v_{r+2} (-1)^r \left(\frac{r+2}{2} \right) + \cdots + (-1)^{s} v_1 \cdots v_s (-1)^r \left(\frac{s}{s-r} \right) \\
= (-1)^{s+r} \left\{ \left(\frac{s}{r} \right) v_1 \cdots v_s \right\} - \left(\frac{s-1}{r} \right) \sum_{\Lambda_{s-1,s}} v_i \cdots v_{s-1} \\
+ \left(\frac{s-2}{r} \right) \sum_{\Lambda_{s-2,s}} v_i \cdots v_{s-2} - \cdots \\
+ (-1)^{s-r-1} \left(\frac{r+1}{r} \right) \sum_{\Lambda_{s-1,s}} v_i \cdots v_{s+1} + (-1)^{s-r} \left(\frac{r}{r} \right) \sum_{\Lambda_{s-1,s}} v_i \cdots v_r \right\} \\
= (-1)^{s+r} \left\{ \left(\frac{s}{r} \right) (v_1 - 1) \cdots (v_s - 1) \right\} + \left(\frac{s-1}{r-1} \right) \sum_{\Lambda_{s-1,s}} (v_1 - 1) \cdots (v_{s-1} - 1) + \cdots \\
+ \left(\frac{s-r}{0} \right) \sum_{\Lambda_{s-r,s}} (v_1 - 1) \cdots (v_{s-r} - 1) \right\} \\
\tag{5.21}
\]

Thus, if $\rho \geq r + 1$, then $B_r = 0$. However, if $\rho = r$, say $v_1 = v_2 = \cdots = v_r = 1$, but $v_j \neq 1, j \geq r + 1$, then only the last summation contains one non-zero term: $(v_{r+1} - 1) \cdots (v_s - 1) \neq 0$. Therefore, if $\rho = r$, then $B_0 = B_1 = \cdots = B_{r-1} = 0$, but there exist $s - r$ integers $v_i, v_{i+1}, \cdots, v_{i+r}$, each of which is not 1, and

\[
B_r = (-1)^{s+r}(v_1 - 1)(v_2 - 1) \cdots (v_{s-r} - 1) \neq 0. \tag{5.22}
\]

This proves Proposition

\square

5.7. Precise form of $\Delta_B(x, y)$

Now we arrive at our final theorem of this section.

Theorem 5.5. Let $S = \{P_1, d_1, Q_1, e_1, P_2, d_2, Q_2, e_2, \cdots, P_m, d_m, Q_m\}$ be the canonical decomposition of the continued fraction of $\beta/2\alpha$. Let ρ and λ be the numbers defined in Definition 5.10. Write

\[
\Delta_B(2\alpha, \beta)(x, y) = f_{\lambda-1}(x)y^{\lambda-1} + \cdots + f_0(x),
\]

where $f_{\lambda-1}(x) \neq 0$ and $f_0(x) \neq 0$, and $f_i(x), 0 \leq i \leq \lambda - 1$, are integer polynomials.
Then we have:

1. \(f_i(x^{-1})x^{\lambda-1} = f_{\lambda-1-i}(x), \) \(0 \leq i \leq \lambda - 1, \)
2. \(f_{\lambda-1}(x) = \gamma_{\lambda-1,\lambda-1-\rho} x^{\lambda-1-\rho} + \cdots + \gamma_{\lambda-1,\epsilon} x^{\epsilon}, \)
 \(f_{\lambda-2}(x) = \gamma_{\lambda-2,\lambda-1-\rho+1} x^{\lambda-1-\rho+1} + \cdots, \)
 \(\cdots \)
 \(f_{\lambda-i-1}(x) = \gamma_{\lambda-i-1,\lambda-1-\rho+i} x^{\lambda-1-\rho+i} + \cdots \)
 \(\cdots \)
 \(f_{\lambda-1-\rho}(x) = \gamma_{\lambda-1-\rho,\lambda-1} x^{\lambda-1} + \cdots, \) where \(\gamma_{\lambda-1,\lambda-1-\rho} = \gamma_{\lambda-1-\rho,\lambda-1} \neq 0, \)
 and hence,
 \(\deg f_{\lambda-1}(x) = \lambda - 1 - \rho, \deg f_{\lambda-1-i}(x) \leq \lambda - 1 + i - \rho, \)
 \(1 \leq i \leq \rho - 1 \) and
 \(\deg f_{\lambda-1-\rho}(x) = \lambda - 1. \)

3. All non-zero leading coefficients of \(f_i(x) \) are of the same sign.

4. \(\prod_{i=1}^{m} d_i \prod_{j=1}^{m-1} e_j \) divides \(\gamma_{\lambda-1,\lambda-1-\rho} \) (and \(\gamma_{\lambda-1-\rho,\lambda-1} \))

5. \(\gamma_{\lambda-1,\lambda-1-\rho} \) (and \(\gamma_{\lambda-1-\rho,\lambda-1} \)) is equal to \(\pm 1 \) if and only if
 (i) all \(d_i = \pm 1, \) \(1 \leq i \leq m, \)
 (ii) all \(e_j = \pm 1, \) \(1 \leq j \leq m - 1, \)
 (iii) all \(b_{i,k}, \) \(1 \leq i \leq m, \)
 \(1 \leq k \leq s_i \)
 and all \(b'_{j,k}, \) \(1 \leq j \leq m, \)
 \(1 \leq k \leq q_j \) are either 1 or 2.

Proof. (1) Since a 2-bridge link \(B(2\alpha, \beta) \) is invertible, we have
\(\Delta_{B(2\alpha, \beta)}(x^{-1}, y^{-1})x^{\lambda-1}y^{\lambda-1} = \Delta_{B(2\alpha, \beta)}(x, y). \) This implies
\[
x^{\lambda-1}y^{\lambda-1}\left\{f_{\lambda-1}(x^{-1})y^{-(\lambda-1)} + f_{\lambda-2}(x^{-1})y^{-(\lambda-2)} + \cdots + f_0(x^{-1})\right\}
= f_{\lambda-1}(x^{-1})x^{\lambda-1} + f_{\lambda-2}(x^{-1})x^{\lambda-1}y + \cdots + f_0(x^{-1})x^{\lambda-1}y^{\lambda-1},
\]
and hence, we have (1).

(2) Proposition 5.2 shows that \(f_{\lambda-1}(x) \) is a required form. Since \(B(2\alpha, \beta) \) is
interchangeable, we see \(\Delta_B(x, y) = \Delta_B(y, x), \) and hence
\(\gamma_{\lambda-1,\lambda-1-\rho} = \gamma_{\lambda-1-\rho,\lambda-1}. \)

Next, to show that \(\deg f_{\lambda-1-i} \leq \lambda - 1 + i - \rho, \) \(1 \leq i \leq \rho - 1, \) we need the
following easy lemma.

Lemma 5.6. The number of terms of \(\Delta_{B(2\alpha, \beta)}(x, y) \) is exactly \(\alpha. \) In other words,
if we write \(\Delta_{B(2\alpha, \beta)}(x, y) = \sum_{0 \leq p, q} c_{p, q} x^p y^q, \) then \(\sum_{0 \leq p, q} |c_{p, q}| = \alpha. \)

Proof. The group of \(B(2\alpha, \beta) \) has the following Wirtinger presentation:
\(\pi_1(S^3 \setminus B(2\alpha, \beta)) = \langle x, y | R \rangle, \) where \(R = W x \bar{W}^{-1} x^{-1}, \)
and
\(W = y^{\varepsilon_1} x^{\varepsilon_2} y^{\varepsilon_3} \cdots y^{\varepsilon_{2\alpha-1}}, \) \(\varepsilon_i = \pm 1. \) Therefore, the Alexander matrix \(M \) is of the
form:
This contradicts Proposition 3.13. This proves (2).

\[M = \left[\frac{\partial W}{\partial x} \frac{\partial W}{\partial y} \right] = \left[\frac{\partial W}{\partial x} (1-x) + W - 1, \frac{\partial W}{\partial y} (1-x) \right] \]
and hence, \(\Delta_B(x, y) = \det \left[\frac{\partial W}{\partial y} \right] \).

Here \(\det \left[\frac{\partial W}{\partial y} \right] \) is the sum of \(\alpha \) terms, while \(|\Delta_B(2\alpha, \beta)(-1, -1)| = \alpha \), and hence no cancellation occurs among these \(\alpha \) terms.

Now we return to the proof of (2). Suppose \(\deg f_{\lambda-1-i}(x) > \lambda - 1 + i - \rho \). Then \(\deg f_{\lambda-1-i}(t) t^{\lambda-1-i} > 2(\lambda - 1) - \rho \).

Write \(f_{\lambda-1-i}(x) = \gamma_{\lambda-1,i,k} x^k + \cdots + \gamma_{\lambda-1,i,r} x^r \), where \(k > \lambda - 1 + i - \rho \), and \(k \geq r \). Then by (1),
\[f_j(x) = f_{\lambda-1-i}(x^{-1}) x^{\lambda-1} = \gamma_{\lambda-1-i,r} x^{\lambda-1-r} + \cdots + \gamma_{\lambda-1-i,k} x^{\lambda-1-k}. \]

Since \(\lambda - 1 - r \geq \lambda - 1 - k \), \(\Delta_B(t, t) \) contains the term with degree \(\lambda - 1 - k + i \).

Since no cancellation occurs when we set \(x = y = t \), we see
\[\deg \Delta_B(2\alpha, \beta)(t, t) > 2(\lambda - 1) - \rho - (\lambda - 1 - k + i) \]
\[= \lambda - 1 - i - \rho + k \]
\[> \lambda - 1 - i - \rho + \lambda - 1 + i - \rho \]
\[= 2\lambda - 2 - 2\rho. \]

This contradicts Proposition 3.13. This proves (2).

(3) follows also from the fact that no cancellations occur when we set \(x = y = t \) in \(\Delta_B(x, y) \). (4) follows from (5.14). (5) follows also from (5.14) and (5.22).

Theorem 5.5 is now proved.

\[\text{Remark 5.7. It is quite likely that} \]
\[\deg f_{\lambda-1-i}(x) = \lambda - 1 + i - \rho, 1 \leq i \leq \rho - 1. \quad (5.24) \]

6. Monic Alexander polynomials

In this section, we determine when the Alexander polynomial of \(K(2\alpha, \beta|r), r > 0 \), is monic. We use the results proved in the previous section. In Subsection 6.1, we deal with the case \(\ell k B(2\alpha, \beta) \neq 0 \), using the continued fraction of \(\beta/2\alpha \). However, if \(\ell k B(2\alpha, \beta) = 0 \), we cannot characterize \(K(2\alpha, \beta|r) \) with monic Alexander polynomials in terms of continued fractions. We then deal with this case in Subsection 6.2.

Let \(\{P_i, Q_i, \alpha_i, \beta_i, \cdot \cdot \cdot, P_m, \alpha_m, \beta_m\} \) be the canonical decomposition of the continued fraction of \(\beta/2\alpha \).

Write \(P_i = [a_{i,1}, b_{i,1}, a_{i,2}, b_{i,2}, \cdots, a_{i,s_i}, b_{i,s_i}, a_{i,s_i+1}] \), \(a_{i,j} > 0 \), and
\[Q_j = [\cdots, -a_{j,1}, -b_{j,1}, \cdots, -a_{j,q_j}, -b_{j,q_j}, -a_{j,q_j+1}, -b_{j,q_j+1}] \], \(a_{j,k} > 0 \).

6.1. The case \(\ell k B(2\alpha, \beta) > 0 \).

The purpose of this subsection is to state algebraic conditions equivalent to that in Theorem 2.2. Namely, we prove the following:
Theorem 6.1. Suppose \(\ell = \ell k B(2\alpha, \beta) \neq 0 \).

(1) Suppose \(\ell = r = 1 \). Then, \(\Delta_{K(2\alpha, \beta)(1)}(t) \) is monic if and only if, for any \(i, j, p, q \),

(a) \(d_i, e_j = \pm 1 \) and \(b_{i,k} = b'_{i,p} = 2 \),

(2) Suppose \(\ell \geq 2 \). Then for any \(r \geq 1 \), \(\Delta_{K(2\alpha, \beta)(r)}(t) \) is monic if and only if

(a) \(d_i, e_j = \pm 1 \) and \(b_{i,k} \) and \(b'_{j,p} \) are 1 or 2.

Let \(\Delta_{B(2\alpha, \beta)}(x, y) \) be the Alexander polynomial of \(B(2\alpha, \beta) \). Suppose \(\ell = \ell k B(2\alpha, \beta) > 0 \). Then by Proposition 4.1 and Theorem 5.5, the Alexander polynomial \(\Delta_K(t) \) of \(K = K(2\alpha, \beta)(r) \), \(r \geq 1 \), is given by

\[
\Delta_K(t) = \frac{1 - t}{1 - t^r} \{ f_{\lambda-1}(t)t^{(\lambda-1)\ell r} + f_{\lambda-2}(t)t^{(\lambda-2)\ell r} + \cdots + f_0(t) \},
\]

where \(\lambda - 1 \) is the maximal \(y \)-degree of \(\Delta_{B(2\alpha, \beta)}(x, y) \).

First we determine the degree of \(\Delta_{B(2\alpha, \beta)}(t, t^{\ell r}) \).

Proposition 6.2. (1) The highest degree of \(\Delta_{B(2\alpha, \beta)}(t, t^{\ell r}) \) is

\[
\lambda - 1 - \rho + (\lambda - 1)\ell r.
\]

(2) The lowest degree of \(\Delta_{B(2\alpha, \beta)}(t, t^{\ell r}) \) is \(\rho \).

Proof. (1) We write \(f_{\lambda-1}(x) = \gamma_{\lambda-1, \lambda-1-\rho} x^{\lambda-1-\rho} + \cdots + \gamma_{\lambda-1, \lambda-1} \), \(\gamma_{\lambda-1, \lambda-1-\rho} \neq 0 \). We show that if \(\ell r \geq 2 \), then \(\gamma_{\lambda-1, \lambda-1-\rho} t^{\ell r} \) is the only term with the highest degree in \(\Delta_{B(2\alpha, \beta)}(t, t^{\ell r}) \). In fact, by Theorem 5.5, we see that for \(1 \leq i \leq \rho - 1 \), \(\deg f_{\lambda-1-i}(x) \leq \lambda - 1 + i - \rho \), and hence, since \(\ell r \geq 1 \), for \(1 \leq i \leq \rho - 1 \) we have:

\[
\lambda - 1 - \rho + (\lambda - 1)\ell r \geq \lambda - 1 + i - \rho + (\lambda - 1 - i)\ell r.
\]

Moreover, obviously, \(\deg f_j(x) \leq \lambda - 1 \), for \(0 \leq j \leq \lambda - 2 - \rho \), and hence, if \(\ell r \geq 1 \), then for \(0 \leq j \leq \lambda - 2 - \rho \), we see

\[
\lambda - 1 - \rho + (\lambda - 1)\ell r \geq \lambda - 1 + j\ell r.
\]

Combining (6.3) and (6.4), we have (1). In particular, if \(\ell r \geq 2 \), the strict inequality holds in (6.3), and therefore, \(\gamma_{\lambda-1, \lambda-1-\rho} t^{(\lambda-1)\ell r} \) is the only term with the highest degree in \(\Delta_{B(2\alpha, \beta)}(t, t^{\ell r}) \). However, if \(\ell r = 1 \), then the equality holds in (6.3), and thus, the terms with the highest degree appear at least in \(f_{\lambda-1}(t)t^{(\lambda-1)\ell r} \) and \(f_{\lambda-1-\rho}(t)t^{(\lambda-1-\rho)\ell r} \).

(2) First we note from Proposition 3.13 that the lowest degree of \(\Delta_{B(2\alpha, \beta)}(t, t) \) is \(\rho \), since the highest degree of \(\Delta_{B(2\alpha, \beta)}(t, t) \) is \(2(\lambda - 1) - \rho \) by (1).

By Theorem 5.5, we see that \(\deg f_{\lambda-1-i}(x) \leq \lambda - 1 + i - \rho, 1 \leq i \leq \rho - 1 \) and, of course, \(\deg f_j \leq \lambda - 1 \), for \(0 \leq j \leq \lambda - 2 - \rho \).

Now, since \(f_0(x) = f_{\lambda-1}(x^{-1})x^{\lambda-1} \), it follows that the lowest degree of \(f_{\lambda-1}(t)t^{(\lambda-1)\ell r} \) is \(\zeta + (\lambda - 1)\ell r \), and that of \(f_0(t) \) is \(\rho \). Since \(\rho \leq \lambda - 1 \), \(\min(\zeta + (\lambda - 1)\ell r, \rho) = \rho \), and hence, if \(\ell r \geq 1 \), \(f_0(t) \) contains the term of degree \(\rho \). Furthermore, since the lowest degree of \(\Delta_{B(2\alpha, \beta)}(t, t) \) is \(\rho \), the degree of any term in \(\Delta_{B(2\alpha, \beta)}(t, t^{\ell r}) \) is at least \(\rho \). This proves (2).
Proposition 6.2 implies the following:

Proposition 6.3. If \(\ell r \geq 1 \), then \(\deg \Delta_{K(r)}(t) = (\lambda - 1)(\ell r + 1) - 2\rho - (\ell - 1) \). In particular, if \(\ell r = 1 \) (i.e. \(\ell = r = 1 \)), then \(\deg \Delta_{K(r)}(t) = 2(\lambda - \rho - 1) \).

Using the above results, we can characterize the monic Alexander polynomial.

First, we see that if \(\ell r \geq 2 \), then the leading coefficient of \(\Delta_{K(t)} \) is given by \(\gamma \lambda - 1, \lambda - 1 - \rho \). Therefore, \(\Delta_{K(t)} \) is monic if and only if \(\gamma \lambda - 1, \lambda - 1 - \rho \) is \(\pm 1 \), and hence Theorem 5.5(5) gives us immediately the following:

Proposition 6.4. Suppose \(\ell r \geq 2 \). Then \(\Delta_{K(t)} \) is monic if and only if the following conditions hold:

1. \(d_i, e_j = \pm 1 \) for any \(i, j \), and
2. \(b_{i,k} = 1 \) or \(2 \) and \(b_{j,p} = 1 \) or \(2 \), for any \(1 \leq i \leq m \), \(1 \leq k \leq s_i + 1 \), and \(1 \leq j \leq m \), \(1 \leq p \leq q_j + 1 \).

Note that \(a_{i,j} \) and \(a'_{j,k} \) are arbitrary.

If \(\ell r = 1 \), then the following proposition holds.

Proposition 6.5. Suppose \(\ell = r = 1 \). Then \(\Delta_{K(1)}(t) \) is monic if and only if

1. \(d_i, e_j = \pm 1 \) for any \(i, j \), and
2. \(b_{i,k} = b'_{j,p} = 2 \) for any \(i, k, j, p \). (In particular, \(\rho = 0 \).)

Proof. (1) Suppose that \(d_i \) or \(e_j \) is not \(\pm 1 \). Then \(\Delta_{K(1)}(t) \) is not monic by Theorem 5.5. (2) Suppose \(\rho \neq 0 \). Then \(\Delta_{K(1)}(t) \) contains at least two non-zero terms, \(\gamma_{\lambda - 1, \lambda - 1 - \rho} \lambda^{\lambda - 1 - \rho}y^{\lambda - 1} \) and \(\gamma_{\lambda - 1 - \rho, \lambda - 1}x^{\lambda - 1 - \rho}y^{\lambda - 1} \). Since \(\gamma_{\lambda - 1, \lambda - 1 - \rho} = \gamma_{\lambda - 1 - \rho, \lambda - 1} \) by Theorem 5.5(2), we see that \(\Delta_{K(2\alpha, \beta|1)}(t) \) is not monic. Further, as is proved in Subsection 5.6, we have all \(b_{i,k} = b'_{j,p} = 2 \). The converse follows from Theorem 5.5.

By these results above, we obtain Theorem 6.1.

Finally, we note that we can prove the following (c.f., [15, Theorem 4.2]) as a simple consequence of Proposition 6.3.

Proposition 6.6. Suppose \(\ell, r > 0 \). Then \(K(2\alpha, \beta|r) \) is unknotted if and only if \((2\alpha, \beta) = (4, 3) \) and \(r = 1 \), and hence \(\ell = 2 \).

Proof. Since the “if” part is obvious, we only consider the “only if” part. Suppose \(K(r) = K(2\alpha, \beta|r) \) is unknotted. Then, by Proposition 6.3, we have:

\[
(\lambda - 1)(\ell r + 1) - 2\rho - (\ell - 1) = 0.
\]

(6.5)

Rewrite the LHS of (6.5) as

\[
2(\lambda - 1 - \rho) + (\lambda - 1)(r - 1)\ell + (\lambda - 2)(\ell - 1) = 0.
\]

(6.6)

Since \(\lambda \geq 2 \) and \(\lambda - 1 \geq \rho \), it follows that each term of the LHS is non-negative, and hence, the equality holds only if we have: (i) \(\lambda - 1 = \rho, r = 1 \), and (ii) \(\lambda = 2 \) or
\(\ell = 1 \). Now, since \(\lambda - 1 = \rho \), we see that \((2\alpha, \beta) = (2\lambda, 2\lambda - 1) \) and \(\ell k B(2\alpha, \beta) = \lambda \). Since \(\lambda \geq 2 \), \(\ell \) cannot be 1, and hence the conclusion follows.

6.2. The case \(\ell k B(2\alpha, \beta) = 0 \).

In this subsection, we characterize the monic Alexander polynomial of \(K(r) \) when \(\ell k B(2\alpha, \beta) = 0 \). To do this, first, we give a geometric interpretation of \(\Delta_{K(r)}(t) \). We remind that the calculation of the Alexander polynomial of \(K(r) \) from \(\Delta_B(2\alpha, \beta)(x, y) \) is quite different for \(\ell k B(2\alpha, \beta) = 0 \), as is seen in Proposition 4.1. Let \(B(2\alpha, \beta) \) be a 2-bridge link consisting of \(K_1 \) and \(K_2 \). Suppose that \(\ell k(K_1, K_2) = 0 \). Consider the infinite cyclic cover \(M^3 \) of \(S^3 \setminus K_2 \). Since \(K_2 \) is unknotted, \(M^3 \) is an infinite cylinder \(D^2 \times \mathbb{R}^1 \). Let \(\bar{K}_m, m = 0, \pm 1, \pm 2, \ldots \) be the set of lifts of \(K_1 \) in \(M^3 \), where \(\bar{K}_j = \psi^j(\bar{K}_0) \) with the covering translation \(\psi \). Since \(\ell k(K_1, K_2) = 0 \), each lift \(\bar{K}_m \) is a knot in \(M^3 \) with orientation inherited from that of \(K_1 \). Denote \(c_j = \ell k(\bar{K}_0, \bar{K}_j), j \neq 0 \), and let

\[
\Gamma(t) = \sum_{-\infty < j < \infty} c_j t^j, \quad \text{where} \quad c_0 = - \sum_{-\infty < j < \infty} c_j. \tag{6.7}
\]

Note that \(c_0 \) is well defined, and also \(c_j = c_{-j} \) for any \(j \). Then it is proved in [10]

Proposition 6.7. \(\Gamma(t) \equiv (t - 1) \left[\frac{\Delta_B(x, y)}{1 - y} \right]_{x=t,y=1} \). We note that Gonzalez-Acuña also studied this polynomial \(\Gamma(t) \) in [9].

Using Proposition 6.7, we can estimate the maximal and minimal degree of \(\Delta_{K(2\alpha, \beta)}(t) \).

Let \(S = [[[u_1, v_1, u_2, v_2, \ldots, u_s, v_s, u_{s+1}]]] \) be the continued fraction of \(\beta/2\alpha \). Let \(G(S) \) be the graph of \(S \). This graph \(G(S) \) will be used to estimate the degree of \(\Delta_{K(2\alpha, \beta)}(t) \).

Proposition 6.8. Let \(h \) and \(q \) be the highest and lowest \(y \)-coordinates of \(G(S) \). Then \(\deg \Delta_{K(2\alpha, \beta)}(t) \leq 2 \max \{h, |q|\} \).

Note that \(h \geq 0 \) and \(q \leq 0 \).

Proof. We span \(K_2 \) by a disk \(D \) in such a way that \(K_1 \) intersects \(D \) transversally at \(\sum_{i=1}^{s+1} |u_i| \) points. Using \(D \), we construct \(M^3 \). Then it is easy to evaluate the linking number between \(\bar{K}_0 \) and \(\bar{K}_j \) for \(j \geq 1 \) using the primitive disk for \(K_1 \). See Example 2.2.1.

Also we can easily determine \(h \) and \(q \) from the graph \(G(S) \). In fact, \(h \) is the \(y \)-coordinate of the absolute maximal vertices of \(G(S) \), and \(q \) is the \(y \)-coordinate of the absolute minimal vertices. Let \(V_{i,1}, V_{i,2}, \ldots, V_{i,p} \) be the absolute maximal vertices and \(V_{j,1}, V_{j,2}, \ldots, V_{j,s} \) be the absolute minimal vertices of \(G(S) \).

Let \(w_{i,k} \) be the weight of \(V_{i,k}, k = 1, 2, \ldots, p \), and \(w_{j,n} \) the weight of \(V_{j,n}, n =
1, 2, \ldots, s. Then we have:

1. If $h > |q|$, then $\ell k(\tilde{K}_0, \tilde{K}_h) = \frac{1}{2} \sum_{k=1}^{p} w_{i,k}$.
2. If $h < |q|$, then $\ell k(\tilde{K}_0, \tilde{K}_q) = -\frac{1}{2} \sum_{n=1}^{s} w_{j,n}$.
3. If $h = |q|$, then $\ell k(\tilde{K}_0, \tilde{K}_q) = \frac{1}{2} \left\{ \sum_{k=1}^{p} w_{i,k} + \sum_{n=1}^{s} w_{j,n} \right\}$.
4. If $d > \max\{h, |q|\}$, then $\ell k(\tilde{K}_0, \tilde{K}_d) = 0$. \hfill (6.8)

Therefore, $\max \deg \Gamma(t) \leq \max\{h, |q|\}$, and $\min \deg \Gamma(t) \geq -\max\{h, |q|\}$, and hence, $\deg \Delta_{K(2\alpha, \beta)}(t) \leq 2\max\{h, |q|\}$.

Under the same notation used in the proof of Proposition 6.8, we have

Corollary 6.9. \[\left[\frac{\Delta_{K(2\alpha, \beta)}(x, y)}{1 - y} \right]_{y=1}^{x=t} \] is monic and its degree is equal to $2\max\{h, |q|\}$ if and only if

1. $\sum_{k=1}^{p} w_{i,k} = \pm 2$, when $h > |q|$,
2. $\sum_{n=1}^{s} w_{j,n} = \pm 2$, when $h < |q|$,\n3. $\sum_{k=1}^{p} w_{i,k} + \sum_{n=1}^{s} w_{j,n} = \pm 2$, when $h = |q|$.

Proposition 6.10. Suppose $\ell k B(2\alpha, \beta) = 0$. Then, for $r > 1$,

1. $\Delta_{K(2\alpha, \beta, r)}(t)$ is either non-monic or $\Delta_{K(2\alpha, \beta, r)}(t) = 1$.
2. $\Delta_{K(2\alpha, \beta, 1)}(t)$ is monic if and only if $\left[\frac{\Delta_{K(2\alpha, \beta)}(x, y)}{1 - y} \right]_{y=1}^{x=t}$ is monic.

This is an immediate consequence of Proposition 6.11.

The rest of this paper (except for the last three sections) will be devoted to the proofs of our main theorems.

7. Construction of a Seifert surface F_1 for K_1.

By Theorem 4.11, we assume $\ell k B(2\alpha, \beta) = \ell \geq 0, r > 0$. In section 3, we constructed a primitive spanning disk F_D for K_1, which consists of disks and bands corresponding to the edges and vertices in $G(S)$. Recall that F_D intersects K_2 as many times as the number of edges in $G(S)$, which is equal to λ. In this section, we construct a Seifert surface $F(r)$ for $K(2\alpha, \beta, r) = K(r)$. First, using $G(S)$, we construct a new Seifert surface F_1 for K_1 which intersects K_2 exactly $\ell \geq 0$ times. We call F_1 a canonical surface for K_1.

Let $S = \{P_1, d_1, Q_1, e_1, P_2, \ldots\}$ be the canonical decomposition of the continued fraction of $\beta/2\alpha$. Let $G(S)$ be the graph of S, which by definition is the graph $G(S^*)$ of the modified continued fraction S^* of S. We construct a new surface F_1
by induction on \(\nu(G(S)) \), the total number of local maximal and local minimal vertices, including the end vertices.

Case 1: \(\nu(G) = 2 \)
Since \(\ell \geq 0 \), \(G \) is an ascending line segment. See Figure 7.1 (a).

Case 2: \(\nu(G) = 3 \)
There are two cases. See Figure 7.1 (b1) and (b2). Note that the vertex \(B \) may be on the \(x \)-axis.
For the first case (b1), \(F_D \) consists of \(p \), say, positive disks \(D_1, D_2, \ldots, D_p \) followed by \(q \), say, negative disks \(D'_1, D'_2, \ldots, D'_{q}, p \geq q \), and \(p + q - 1 \) bands \(B_j, j = 1, 2, \ldots, p + q - 1 \), connecting these disks. See Figure 7.2 (a).

Then replace two disks \(D_{p} \) and \(D'_{1} \) by a cylinder \(R_1 \), where \(R_1 \cap F_D = \partial R_1 = \partial(D_{p} \cup D'_{1}) \). The orientation of \(R_1 \) is naturally induced from those of disks. Next we replace two disks \(D_{p-1} \) and \(D'_2 \) by a cylinder \(R_2 \) that is inside of \(R_1 \) and \(R_2 \cap F_D = \partial R_2 = \partial(D_{p-1} \cup D'_{2}) \). Repeat this operation for every pair of a positive disk.

Figure 7.2: Construction of a canonical surface

Then replace two disks \(D_{p} \) and \(D'_{1} \) by a cylinder \(R_1 \), where \(R_1 \cap F_D = \partial R_1 = \partial(D_{p} \cup D'_{1}) \). The orientation of \(R_1 \) is naturally induced from those of disks. Next we replace two disks \(D_{p-1} \) and \(D'_2 \) by a cylinder \(R_2 \) that is inside of \(R_1 \) and \(R_2 \cap F_D = \partial R_2 = \partial(D_{p-1} \cup D'_{2}) \). Repeat this operation for every pair of a positive disk.
D_{p-i+1} and a negative disk D'_i, $1 \leq i \leq q$, in the same manner, so that we have a sequence of cylinders. Positive disks and bands corresponding to the subgraph OB' are untouched as in Case 1. This untouched part of F_D and the cylinders and all bands form our new surface F_1. See Figure 7.2 (b). For the second case (b2), F_1 is constructed in the same manner, and it looks like a surface depicted in Figure 7.2 (c). We note that in this construction, all bands are untouched, and therefore, we are only concerned with disks.

Case 3: $\nu(G) \geq 4$.

Subcase (i): The origin O is local minimal.

Then a local maximal vertex A is followed by a local minimal vertex B. See Figure 7.3 (a1) and (a2).

Subcase (ii): The origin O is local maximal.

Then a local minimal vertex A is followed by a local maximal vertex B. See Figure 7.3 (b1) and (b2).

![Figure 7.3: Graph G for $\nu(G) \geq 4$, where O is a local minimal, or maximal](image)

In, Subcase (i) (a1), first, apply the argument used in Case 2 (b1) on the subgraph $OA \cup AB$ of $G(S)$, and replace pairs of disks corresponding to the edges on $B'A$ and AB by cylinders. Secondly, delete the subgraph $B'A \cup AB$ from G and then identify B' and B to obtain a new graph G'. Since $\nu(G') = \nu(G) - 2$, we can inductively construct a surface F'_1 in such a way that all cylinders in F'_1 are inside the cylinders we previously constructed. Our new surface F_1 is the union of cylinders firstly constructed and F'_1, (and all bands).

As an example, in Figure 7.4 below, we depict a sequence of modifications of G and corresponding surfaces. The last surface is the surface F_1 we sought.

In Subcase (i) (a2), apply the argument used in Case 2 (b1) on the subgraph $OA \cup AB'$, and replace pairs of disks by cylinders. Then delete the subgraph $OA \cup AB'$ from $G(S)$ and identify O and B' so that a new graph G' is obtained. Since $\nu(G') = \nu(G) - 1$, apply induction on G'.

In Subcase (ii) (b1) and (b2), apply the argument used in Case 2 (b2) and repeat similar arguments used in Subcase (i) (a1) and (a2).
Example 7.1. Figures 7.5 and 7.6 depict graphs and corresponding canonical surfaces.

To construct F_1, we start with a primitive spanning disk and the genus increases by 1 each time we replace a pair of small disks by a cylinder. We have $(\lambda - \ell)/2$ pairs of disks to replace. Therefore, we have the following:
Proposition 7.2. Let λ be the number of edges in $G(S)$. The number of disks in F_1 constructed above is $\ell = \ell kB(2\alpha, \beta)$, and the number of cylinders of F_1 is $\frac{1}{2}(\lambda - \ell)$, therefore, $g(F_1) = \frac{1}{2}(\lambda - \ell)$.

Now we twist F_1 by K_2. First, suppose $\ell = 0$. Then just by twisting, we obtain a Seifert surface $F(r)$ for $K(r)$. In Section 10, (10.1), we show that $g(K(r)) = g(F(r))$, which is equal to the number of cylinders, i.e., $\frac{(\lambda - \ell)}{2}$.

Next, suppose $\ell \neq 0$. F_1 consists of ℓ disks and $(\lambda - \ell)/2$ cylinders, connected by bands, and $g(F_1) = \frac{1}{2}(\lambda - \ell)$ (by Proposition 7.2). If we twist F_1, r times by K_2, we obtain a singular surface, in which cylinders penetrate the ℓ disks transversely. Remove ribbon singularities by smoothing intersections in the standard way. Then we obtain a Seifert surface $F(r)$ for $K(r)$. See Figure 7.7 for the case $r = 1$.

For a technical reason, we need more specific description (given at the end of this section) on the position of bands connecting disks and cylinders.

![Figure 7.7: A canonical surface $F(r)$, where $r = 1$.](image)

Each time we make a hole, the genus of the surface is increased by one. We see that there are exactly $\frac{1}{2}(\lambda - \ell)\ell r$ intersections. Furthermore, by twisting along K_2, the boundaries of ℓ disks form a torus link of type $(\ell, \ell r)$.

Therefore, we have:

\[
g(F(r)) = \frac{1}{2}(\lambda - \ell) + \frac{1}{2}(\lambda - \ell)\ell r + \frac{1}{2}(\ell - 1)\ell r
= \frac{1}{2}\{(\lambda - 1)(\ell r + 1) - (\ell - 1)\}.
\]

(7.1)

In the proof of Theorem 2.1 in the next section, we show (i) if $\rho = 0$, then $F(r)$ is a minimal genus Seifert surface for $K(r)$, and (ii) if $\rho > 0$, then $F(r)$ admits compressions ρ times and the result is a minimal genus Seifert surface for $K(r)$, where ρ is the deficiency (Definition 3.11).

Now we give a precise description of the relative position of bands connecting disks and cylinders. Proposition 3.20 also implies that, in F_1, we have a freedom of relative positions of the bands. However this freedom is lost when we have twisted F_1 to obtain $F(r)$.

A band B in F_1 is of one of the five types below. See Figure 7.8. Note that the
boundary of \((F_1 - \text{bands})\) consists of circles. In Figure 7.8, a circle with an arrow heading toward left (resp. right) corresponds to a rising (resp. falling) edge of \(G\). Each band corresponds to a vertex in \(G\).

Type I: \(B\) connects the boundary of an outermost cylinder.

Type II: \(B\) connects two stacked cylinders.

Type III: \(B\) connects two cylinders side by side (of the same sign or the opposite sign).

Type IV: \(B\) connects a disk and a cylinder. In this type, we have three subtypes as in Figure 7.8.3.

Type V: \(B\) connects two positive disks.

Note. In Figure 7.8.3 (c), there are no disks above the depicted cylinder by our construction of \(F_1\).

To obtain \(F(r)\), we place the bands of Type V as in Figure 7.8.4, so that they are placed close to the bands emerged by twisting. The bands of Types I, II and III should be arranged as in Figure 7.9, where the horizontal disk is the very top disk in \(F_1\), i.e., it corresponds to the edge in \(G\) that is the first rising edge after the last intersection of \(G\) and the \(x\)-axis. Bands of Type IV, where a positive cylinder
is connected (Figure 7.8.3 (a), (b)), should be arranged as in Figure 7.7. If \(r \geq 2 \), then the first band (resp. the second band, if any) is placed before (resp. after) the \(r \)-twists. A band of Type IV, where a negative cylinder is connected (Figure 7.8.3 (c)) is similarly done as Figure 7.8.3 (b). See Figure 8.5 for a local picture for this type of band after twisting by \(K_2 \).

Now we have constructed a Seifert surface for \(K(r) \).

Figure 7.9: Placement of the bands of Types I, II and III

8. **Proof of Theorem 2.1**

Let \(S = \{P_1, d_1, Q_1, e_1, P_2, d_2, Q_2, e_2, \ldots, P_m, d_m, Q_m\} \) be the canonical decomposition of the continued fraction of \(\beta/2\alpha \). Express each \(P_i \) and \(Q_j \) by modified continued fractions, and write,

\[
P_i = [1, b_{i,1}, 1, b_{i,2}, 1, \ldots, 1, b_{i,s_i}, 1], 1 \leq i \leq m,
\]

\[
Q_j = [-1, -b'_{j,1}, -1, -b'_{j,2}, -1, \ldots, -1, -b'_{j,q_j}, -1], 1 \leq j \leq m,
\]

where \(b_{i,k} \) and \(b'_{j,k} \) are arbitrary, and may be 0. Since \(\ell \neq 0 \), we see from Proposition 4.4

\[
\Delta_{K(\ell)}(t) = \frac{1-t}{1-t^\ell} \Delta_{B(2\alpha, \beta)}(t, t^{\ell r}),
\]

where \(\ell > 0 \) and \(r > 0 \). Then, by Proposition 6.3 we have:

\[
\text{deg} \Delta_{K(\ell)}(t) = (\lambda - 1)(\ell r + 1) - (\ell - 1) - 2\rho.
\]

Recall that in Section 7, (7.1), we constructed a Seifert surface \(F(r) \) for \(K(r) \) with \(g(F(r)) = \frac{1}{2} \{ (\lambda - 1)(\ell r + 1) - (\ell - 1) \} \).

If \(\rho = 0 \), then \(F(r) \) is a minimal genus Seifert surface for \(K(r) \), since \(g(F(r)) = \frac{1}{2} \text{deg} \Delta_{K(\ell)}(t) \). Therefore, to prove Theorem 2.1 it suffices to confirm that we can compress \(F(r) \) as many times as \(\rho \) (Definition 3.10). In Proposition 5.1 below, we demonstrate where to apply compression corresponding to each \(b_{i,k} = 1 \) and \(b'_{j,k} = 1 \) in \(S \). Since we need it in the proof of Theorem 2.2 we also show where we can deplumb twisted annuli from \(F(r) \). But first, we apply compressions.

Proposition 8.1. We can compress \(F(r) \) \(\rho \) times, where each compression corresponds to an occasion of \(b_{i,k} = 1 \) or \(b'_{j,k} = 1 \). Furthermore, we can deplumb
\[\sum_{i=1}^{m} s_i + \sum_{j=1}^{m} q_j + 2m - 1 - \rho \text{ unknoted, twisted annuli from } F(r), \text{ where each deplumbing corresponds to an occasion of } b_{i,k} \neq 1, b'_{j,k} \neq 1, d_i \text{ and } e_i. \]

Proof. At each band connecting disks and cylinders, we explicitly show how to apply either compression or deplumbing of an annulus. Each deplumbing corresponds to removing a band, and each compression corresponds to cutting the surface along a properly embedded arc.

If a band is of Type I, it is obvious that we can deplumb an unknotted annulus with \(d_i \) or \(e_j \) full twists. Compressions never occur for this type. For a band of Type II, the relevant part of \(F(r) \) is depicted in Figure 8.1. If \(b \neq 1 \) or \(b' \neq 1 \), then we can deplumb a twisted annulus and thus remove a band. See Figure 8.1 (a). In particular, if \(b \) or \(b' \) is either 0 or 2, then the annulus is a Hopf band. However, if \(b = 1 \) or \(b' = 1 \), then the annulus yields a compressing disk, so we do not deplumb a band, but apply compression (see Figure 8.1 (b)).

![Figure 8.1: Deplumbing and compression for Type II](image1)

Take a band \(B \) of Type III. If \(B \) connects two cylinders showing the same side (see Figure 8.2), we can deplumb a twisted annulus. In this case, compression never occurs. In particular we can deplume a Hopf band if \(d = \pm 1 \) or \(e = \pm 1 \). On the other hand, if \(B \) connects two cylinders showing the opposite sides (see Figure 8.3), then we can apply compression if \(b \) or \(b' \) equals 1, and otherwise deplumb a twisted annulus.

![Figure 8.2: Deplumbing an annulus for Type III (a)](image2)
Take a band B of Type IV (Figure 7.8.3). There are three subtypes according to the feature of the corresponding vertex v_B in G: (a) v_B, not on the x-axis is between two rising edges of G, (b) v_B is a local minimum, and (c) v_B, on the x-axis, is between two rising edges.

For (a), see Figure 8.4. If $b = 1$, then we can compress, and otherwise we can remove the band by deplumbing an annulus with $b - 1$ full twists. (See Figure 7.7.) For (b), we can deplumb a band with e full twists, and compression never occurs. For (c), see Figure 8.5.

For bands of Type V, deform $F(r)$ by isotopy as in Figure 8.6 so that each band of Type V is adjacent to a band emerged by twisting F_1. Then we can remove the band by deplumbing if $b \neq 1$, and otherwise cancel it with its neighbor, which corresponds to compressing $F(r)$. Note that since $r \geq 1$, even if we cancel all bands of Type V, still there are bands connecting each pair of adjacent disks.

By Proposition 8.1 the proof of Theorem 2.1 is now completed.
9. Proof of Theorem 2.2

By Theorem 3.14 we assume, \(\ell k B(2\alpha, \beta) = \ell \geq 0 \) and \(r > 0 \).

Let \(\beta/2\alpha = [c_1, c_2, \ldots, c_{2d+1}] \) be a continued fraction of \(\beta/2\alpha \), and \(S = \{P_1, d_1, Q_1, e_1, P_2, \ldots, P_m, d_m, Q_m\} \) be the canonical decomposition of \(S \). Write

\[
P_i = [a_{i,1}, b_{i,1}, a_{i,2}, b_{i,2}, \ldots, a_{i,s_i}, b_{i,s_i}, a_{i,s_i+1}], a_{i,j} > 0, \quad \text{and}
\]

\[
Q_j = [-a'_{j,1}, -b'_{j,1}, \ldots, -a'_{j,q_j}, -b'_{j,q_j}, -a'_{j,q_j+1}], a'_{j,k} > 0.
\]

9.1. Reformation of Theorem 2.2.

In Theorem 6.1, we have characterized \(K(2\alpha, \beta | r) \) with \(\ell > 0 \), \(r > 0 \) whose Alexander polynomial is monic. Hence now Theorem 2.2 is equivalent to Theorem 9.1 below.

Theorem 9.1. Fibredness of \(K(r) = K(2\alpha, \beta | r) \) with \(\ell = \ell k B(2\alpha, \beta) \neq 0 \) is determined as follows, where we assume \(\ell > 0 \) and \(r > 0 \) by Theorem 3.14. In each case below, \(a_{i,j} \) and \(a'_{i,j} \) are arbitrary.

Case 1. \(\ell = r = 1 \). \(K(1) \) is fibred if and only if

(a) \(d_i, e_j = \pm 1 \), for any \(i, j \), and

(b) in each \(P_i \) and \(Q_i \), \(b_{i,k} \) and \(b'_{j,p} \) are 2.

Case 2. \(\ell r \geq 2 \). \(K(r) \) is fibred if and only if

(a) \(d_i, e_j = \pm 1 \), for any \(i, j \), and

(b) in each \(P_i \) and \(Q_i \), \(b_{i,k} \) and \(b'_{j,p} \) are 1 or 2.

9.2. Proof of Theorem 9.1 Case 1.

We assume in this subsection

\[
\ell = \ell k B(2\alpha, \beta) = 1 \quad \text{and} \quad r = 1.
\]

(9.1)

First suppose \(K(r) \) is fibred. Then \(\Delta_{K(r)}(t) \) is monic, and hence, by Proposition 6.5

(a) \(d_i, e_j = \pm 1 \), and

(b) \(b_{i,k} = b'_{j,p} = 2 \) for any \(i, j, k, p \).

(9.2)

This proves the “only if” part of Case 1.

Conversely, suppose (9.2) is satisfied. Rewrite the continued fraction as the modified continued fraction. Then some of new \(b_{i,k}, b'_{j,p} \) may be zero, but still (9.2) implies the deficiency \(\rho = 0 \). Now, by Proposition 8.1 we see that (9.2) also implies the following: Let \(F^* \) be the surface obtained from \(F(r) \) (constructed in Section 7) by removing all the bands connecting the disks and cylinders. Then \(F^* \) is obtained from \(F(r) \) by deplumbing Hopf bands. Therefore, to prove that \(K(r) \) is fibred, it suffices to show that \(F^* \) is a fibre surface.

The following lemma shows that \(F^* \) is a fibre surface, and hence Theorem 2.2 Case 1 is proved.

Lemma 9.2. (Braided fibre surface) Let \(L_1 \) and \(L_2 \) be (naturally) oriented closed braids in a tubular neighbourhood \(N(L) \) of a Hopf link \(L \), where \(L_1 \) and \(L_2 \) are
embedded in different components of \(N(L) \). Suppose that \(L_1 \) is a positive closed braid. Then \(L_1 \) is a fibred link and a fibre surface \(S \) for \(L_1 \) is obtained by applying Seifert algorithm. Now replace each component \(L_{2,i} (i \leq i \leq \mu) \) of \(L_2 \) by an annulus \(B_i \) whose core is \(K_{2,i} \), but the number of twists of \(B_i \) is arbitrary. We assume that \(B_i \) intersects \(S \) transversally in ribbon singularities. By smoothing all the ribbon singularities, we obtain a Seifert surface \(F \) for \(L_1 \cup \partial B_1 \cup \cdots \cup \partial B_\mu \). Then \(F \) is a fibre surface.

Proof. The surface \(S \) consists of disks and bands connecting these disks. Since \(L_1 \) is a positive braid, each band has only a positive half twist. Since neighbouring two bands form a Hopf band, we can eliminate one of the bands by deplumbing. After all, we may assume that \(L_1 \) is a trivial knot, i.e. \(S \) consists of \(\nu \) disks and \(\nu - 1 \) bands, and it suffices to show that \(F \) constructed using this \(S \) is a fibre surface. See Figure 9.1.

\[\text{Figure 9.1: A braid penetrating a disk} \]

Denote by \(\mu \) the number of strings of the braid of \(L_2 \). Now consider a sutured manifold \(M = F \times I \). For the definition of sutured manifold and its decompositions, see [5, pp.8–10 and Appendix A] and [6, Section 1]. \(M \) is a solid ball with \(\nu \times \mu \) holes and \(\nu \times \mu \) 1-handles attached. Applying a series of \(C \)-product decompositions, first we fill these holes by 2-handles, and obtain a ball \(M' \) with \(\nu \times \mu \) 1-handles attached, where the suture on \(M' \) is the equator, and each 1-handle has exactly one suture, which is parallel to a co-core. Since each of the 1-handles connects the north hemisphere and the south hemisphere of \(M' \) without a local knotting, we can arrange the 1-handles by sliding their feet so that they are attached to \(M' \) trivially. Then, by a \(C \)-product decomposition, we can amalgamate a pair of 1-handles, and eventually, we have a solid torus whose sutures are two meridians. Applying one more \(C \)-product decomposition, we have a ball with a single suture. Therefore, the original surface \(F \) is a fibre surface.

9.3. Proof of Theorem 9.1 Case 2.

In this subsection, we assume that

\[\ell r \geq 2. \quad (9.3) \]

First, we note that Proposition 6.4 proves the “only if” part. Therefore, suppose
that the continued fraction of $\beta/2\alpha$ satisfies

\[(a) \quad d_i, e_j = \pm1 \quad \text{and} \quad (b) \quad b_{i,k} \text{ and } b'_{j,p} = 1 \text{ or } 2 \text{ for any } i, j, k, p. \quad (9.4)\]

Again rewrite the continued fraction as a modified continued fraction. Then in (9.4) (b) we have ‘0, 1 or 2’, in stead of ‘1 or 2’.

By Proposition 8.1, we can apply compressions corresponding to all $b_{i,k}, b'_{j,p} = 1$, and remove all bands with $d_i, e_j = \pm1$ and $b_{i,k} = b'_{j,p} = 0$ or 2 by deplumbing Hopf bands. Denote the resulting surface by \tilde{F}. To complete the proof, it suffices to show \tilde{F} is a fibre surface. Recall that in the proof of Proposition 8.1 each compression corresponds to cutting the surface along a properly embedded arc.

In the following, we depict how to undo each of the cuts by plumbing a Hopf band. To do this, the assumption that $\ell r \geq 2$ is essential. In fact, to undo the cuts, we use two consecutive holes that occur as intersections of a cylinder and the disk(s).

It suffices to consider each of Types II, III and IV in Proposition 8.1.

For Type II (resp. III), we plumb a band B along the curve depicted in Figure 9.2 (resp. 9.3). Then we can undo the cut by plumbing a Hopf band.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{plumbing_type_ii.png}
\caption{Plumbing a Hopf band for Type II}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{plumbing_type_iii.png}
\caption{Plumbing a Hopf band for Type III}
\end{figure}
Type IV is a bit complicated. Since the argument is similar, we only prove for the case where the band connects the positive disk and the positive cylinder (in Figure 7.8.3 (a)). The cut made by compression is in Figure 8.4. In Figure 9.4, the band B' gives a compressing disk so that the result of compression is as in Figure 8.4.

Figure 9.4: Plumbing a Hopf band for Type IV

To undo the cut, we consider three subcases: Let A be the annulus to which B' is connected. Subcase (i): There are some disks below A in \tilde{F} (Figure 9.4 (a)). Subcase (ii): There are more than one disk above A but no disks below A in \tilde{F} (Figure 9.4 (b)). Subcase (iii), There are only one disk above A and no disks below A in \tilde{F} (Figure 9.4 (c)). Note that in Subcase (iii), $r \geq 2$ by assumption that $\ell r > 1$.

In each subcase, using the arc depicted in Figure 9.4, we can add a band B by plumbing a Hopf band after compressing at B'. Then, by sliding B along A to the cite of compression, we can undo the cut. This fact is also understood by seeing that the bands B and B' cancel each other.

Now all cuts are undone by Hopf plumbings. Then as in Case 1, we can further deplumb Hopf bands and apply Lemma 9.2. This proves Theorem 9.1 Case 2. □

10. Proof of Theorem 2.3

In this section, we determine the genus of a knot $K(r)$ for the case $\ell k B(2\alpha, \beta) = \ell = 0$, and thus prove Theorem 2.3

In Section 7, we span K_1 by a canonical Seifert surface F_1. By applying Dehn twists on F_1 along K_2, we obtain a Seifert surface $F(r) = F$ for $K(r)$. We will show that F is of minimal genus. Since F and F_1 have the same genus, we show in fact that $g(K(r))$ is equal to the number of cylinders in F_1. However, $g(F)$ is much larger than one half of the degree of the Alexander polynomial of $K(r)$, c.f., Proposition 6.8. Therefore, in order to show that F is of minimal genus, we use geometry. First, deplumbing a twisted annulus from F does not hurt the genus-minimality by the additivity of genus under the Murasugi sum. So we remove all bands connecting the boundaries of the same cylinder. Then our main tool is the sutured manifold hierarchies. As a special case of general results of sutured manifold hierarchies, we
have the following (see [5, Corollary 1.29]):

Proposition 10.1. Let \((M, \gamma) = (F \times I, \partial F \times I)\) be the sutured manifold obtained from a Seifert surface \(F\). Apply complementary disk- (annulus-) decompositions to \((M, \gamma)\) and suppose we obtain \((V, \delta)\) where \(V\) is a standard solid torus and each suture is a loop running longitudinally once and meridionally non-zero times. Then \(F\) is of minimal genus.

Throughout the rest of this section, we omit the adjective ‘complementary’ for complementary sutured manifold decompositions, since we only deal with such decompositions and no confusions are expected.

Let \([2u_1, 2v_1, 2u_2, 2v_2, \ldots, 2u_m, 2v_m, 2u_{m+1}]\) be the continued fraction of \(\beta/2\alpha\). Suppose that \(\ell kB(2\alpha, \beta) = 0\). Then to prove Theorem 2.3, we show the following:

\[
g(K(r)) = \frac{1}{2} \sum_{i=1}^{m+1} |u_i| = \frac{\lambda}{2} (= \#\{\text{cylinders of } F_1\}). \tag{10.1}
\]

Note that since \(\ell kB(2\alpha, \beta) = 0, \sum_{i=1}^{m+1} |u_i| = \lambda = \#\{\text{edges of } G(S)\}\) is even.

Proof. We prove (10.1) by induction on \(\lambda\). If \(\lambda = 2\), then (10.1) is obvious since \(F(r)\) is a plumbing of two twisted annuli. Suppose \(\lambda \geq 4\). First we deplumb all bands corresponding to proper local maximal, or minimal vertices, i.e., those connecting the two boundaries of a cylinder. Denote by \(\hat{F}\) the resulting surface. We inductively reduce the graph \(G(S)\) and accordingly amalgamate the solid tori in \((\hat{F} \times I, \partial \hat{F} \times I)\) by disk- (annulus-) decompositions, until we have only one torus where each of the sutures run longitudinally once and meridionally non-zero times. After that, we will see that all such deplumbing and amalgamations commute with Dehn twists along \(K_2\), and hence by Proposition 10.1, we have (10.1).

![Figure 10.1: Reduction on the graph (I)](image)

Case 1: There is a vertex in \(G(S)\) incident to two consecutive rising edges and two consecutive falling edges, as in Figure 10.1 (a1) or (b1), where the white vertices may be a terminal vertex or a non-terminal vertex, and they may lie on the x-axes.

As in Figure 10.2, we amalgamate the top solid torus with the second top one. There are several cases according to the number of twists in the two bands connected.
Case 1.1. The two bands are twisted in the opposite directions: See Figure 10.2 (a). First apply a disk decomposition using the disk with shadow, then apply a product disk decomposition. Note that if the two bands are both only half-twisted, then the first disk decomposition is also a product disk decomposition.

Case 1.2. Two bands are twisted in the same direction: See Figure 10.2 (b) and (c). As before, we apply a disk decomposition and a product disk decomposition. Figure 10.2 (b) depicts the case where both bands are more than half-twisted. In this case, we have two extra sutures, but they do not affect the following inductive amalgamations. Figure 10.2 (c) depicts the case at least one of the bands is half-twisted. Note that if both bands are half-twisted, then the first disk decomposition is a product disk decomposition.

Case 2: There are no subgraph considered in Case 1, or all such subgraphs are removed. Now it suffices to find a subgraph as in Figure 10.3 or 10.4 and amalgamate a solid torus.

By construction, a rising edge above (resp. below) the x-axes is paired with the a falling edge on its right (resp. left) so that the pair corresponds to a cylinder in F_1. Sutured manifold decompositions amalgamate the solid tori as respectively depicted in Figures 10.5 and 10.6. In Figure 10.5, corresponding to Figure 10.3 (a1),
two cylinders showing the same side are connected by an even-twisted band. In Figure 10.6, corresponding to Figure 10.4, two cylinders showing the opposite sides are connected by an odd-twisted band. However, as seen in Figure 10.2, longitudinal sutures may have accumulated. In Figures 10.5 and 10.6, we first apply an annulus decomposition and then a disk decomposition. Now we have amalgamated all the tori into one and see that we may apply the Dehn twist along K_2 beforehand. Therefore, by Proposition 10.1, (10.1) is obtained.

The proof of Theorem 2.3 is now completed.
Let \{P_1, d_1, Q_1, e_1, P_2, d_2, Q_2, e_2, \ldots, P_m, d_m, Q_m\} be the canonical decomposition of \(\beta/2\alpha\). Using Theorem 2.3, first we prove the following.

Proposition 11.1.

Suppose \(\ell KB(2\alpha, \beta) = 0\). Then for any \(r \geq 1\), \(g(K(r)) = \frac{1}{2}\deg K(r)\) if and only if \(m = 1\), i.e. \(\{P_1, d_1, Q_1\}\) is the canonical decomposition of \(\beta/2\alpha\).

Proof. By Theorem 2.3, for any \(r \geq 1\), \(g(K(r)) = \frac{1}{2}\deg K(r)\). On the other hand, \(\deg K(r) \leq 2\max\{h, q\}\), where \(h\) (and \(q\)) is the y-coordinate of the absolute maximal (and minimal) vertices in \(G(S)\) (Proposition 6.5). Therefore, if there exist local minimal vertices (not end vertices), we see easily that \(2g(K(r)) > 2\max\{h, q\} \geq \deg K(r)\), and hence, there is only one local (and hence, absolute) maximal vertex, and therefore, \(m = 1\).

Proposition 11.2. Suppose \(\ell KB(2\alpha, \beta) = 0\). Suppose further, \(\{P_1, d_1, Q_1\}\) is the canonical decomposition of \(\beta/2\alpha\). Then \(\Delta_{K(1)}(t)\) is monic if and only if \(d_1 = \pm 1\).

Proof. This follows from Corollary 6.9.

Now we proceed to the proof of Theorem 2.3 b).

Proof of the “if” part. Suppose that the modified continued fraction of \(\beta/2\alpha\) is of the form \(S = [\lfloor 1, b_1, 1, b_2, \ldots, 1, b_p-1, 1, d_1, -1, -b'_p-1, -1, \ldots, -b'_1, -1\rfloor]\), where \(b_i\) and \(b'_i\), \(1 \leq i \leq p - 1\), are 0 or 1 and \(d_1 = \pm 1\). What is to show is that \(K(1) = K(2\alpha, \beta)[1]\) is fibred. Let \(F_1\) be the canonical Seifert surface for \(K_1\). (See Figure 7.6 (a).) By twisting \(F_1\) once by \(K_2\), we obtain a Seifert surface for \(K\). Since \(d_1 = \pm 1\), the band corresponding to the maximal vertex, is a Hopf band, and hence, we may remove it by deplumbing. Denote the resulting surface by \(\hat{F}\). Now, since \(b_i\) and \(b'_i\)\((1 \leq i \leq p - 1)\) are either 0 or 1, every band in \(\hat{F}\) is only half-twisted. Therefore, every disk decompositions employed in the proof of (10.1) Case 1 is in fact a product disk decomposition, and hence \(\hat{F}\) is a fibre surface by 6 Theorem 1.9, and \(K(1)\) is a fibred knot.

Proof of the “only if” part. Suppose \(K(1) = K(2\alpha, \beta)[1]\) is a fibred knot. Then by Proposition 11.1, the continued fraction \(S\) for \(\beta/2\alpha\) must be \(\{P_1, d_1, Q_1\}\). Therefore, the modified continued fraction is of the form:

\[\beta/2\alpha = [\lfloor 1, b_1, 1, b_2, \ldots, 1, b_p-1, 1, d_1, -1, -b'_p-1, -1, \ldots, -1, -b'_1, -1\rfloor].\]

Consider the canonical Seifert surface \(F_1\) for \(K_1\), as in Figure 7.6 (a). A Seifert surface \(F\) for \(K(1)\), consisting of \(p\) cylinders \(A_1, A_2, \ldots, A_p\) and \(2p - 1\) bands, is obtained from \(F_1\) by applying a Dehn twist once along \(K_2\). In Section 10, we have seen that \(F\) is of minimal genus, and hence a fiber surface for \(K(1)\). By Proposition 11.2, \(d_1 = \pm 1\) and hence we remove the band on the top annulus \(A_p\) by deplumbing a Hopf band, and denote by \(\hat{F}\) the resulting surface. Then the inclusion map below must be onto:

\[\phi: \pi_1(\hat{F}) \to \pi_1(S^3 - \hat{F}).\]
Now, we show that all \(b_j \) and \(b'_j \) are 0 or 1 and hence that if at least one of \(b_j \) and \(b'_j \) is neither 0 nor 1, then \(\phi \) is not onto and hence \(K(1) \) is not fibred.

If \(b_1 \) and \(b'_1 \) are 0 or 1, then we can ‘remove’ the bottom annulus \(A_1 \) by two product decompositions as in the proof of (10.1) Case 1. Therefore by [2, Lemma 2.2], we may assume without loss of generality that \(b'_1 \neq 0, 1 \), i.e., the band \(B'_1 \) is more than half-twisted. To show that \(\phi \) is not onto, we need explicit presentations of the groups \(\pi_1(\hat{F}) \) and \(\pi_1(S^3 - \hat{F}) \). To do that, we deform \(\hat{F} \) as depicted in Figure 11.1 (where \(p = 3 \)). Note that both \(\pi_1(\hat{F}) \) and \(\pi_1(S^3 - \hat{F}) \) are free of rank \(2p - 1 \).

Figure 11.1 also depicts a base point ** and the generators of \(\pi_1(S^3 - \hat{F}) \) denoted by \(x_1, x_2, \ldots, x_p \) and \(a_1, a_2, \ldots, a_{p-1} \). Take a base point \(* \) for \(\pi_1(\hat{F}) \) on \(A_1 \) as in Figure 11.1. The generators for \(\pi_1(\hat{F}) \) are denoted by \(\alpha_1, \alpha_2, \ldots, \alpha_p \) and \(\beta_1, \beta_2, \ldots, \beta_{p-1} \). A loop \(\alpha_i \) starts at \(* \) moving toward on \(A_i \) through bands \(B_1, \ldots, B_{i-1} \) and circle once around \(A_i \) counter-clockwise, and then return to \(* \) through \(B_{i-1}, \ldots, B_1 \). A loop \(\beta_i \) starts at \(* \) moving toward \(A_{i+1} \) through \(B_1, B_2, \ldots, B_i \) and returns to \(* \) passing through first \(B'_i \) and then \(B_{i-1}, B_{i-2}, \ldots, B_1 \).

![Figure 11.1: Generators of \(\pi_1(S^3 - \hat{F}) \) and \(\pi_1(\hat{F}) \)](image)

We must express \(\phi(\alpha_i), \phi(\beta_j) \) in terms of \(x_i, a_j \). Let \(D = x_1 x_2 \ldots x_p \). For simplicity, we use \(\alpha_i \) (or \(\beta_j \)) instead of \(\phi(\alpha_i) \) (or \(\phi(\beta_j) \)). Then we have the following:

\[
\begin{align*}
\alpha_1 &= a_1 D, \\
\alpha_2 &= u_1 a_2 D u_1^{-1}, \\
\alpha_3 &= u_1 u_2 a_3 D u_2^{-1} u_1^{-1}, \\
& \vdots \\
\alpha_{p-1} &= u_1 u_2 \cdots u_{p-2} a_{p-1} D u_{p-2}^{-1} \cdots u_1^{-1}, \\
\alpha_p &= u_1 u_2 \cdots u_{p-1} D u_{p-1}^{-1} \cdots u_1^{-1}. \\
\beta_1 &= u_1 w_1, \\
\beta_2 &= u_1 (u_2 w_2) u_1^{-1}, \\
\beta_3 &= u_1 u_2 (u_3 w_3) u_2^{-1} u_1^{-1}, \\
& \vdots \\
\beta_{p-1} &= u_1 u_2 \cdots u_{p-2} (u_{p-1} w_{p-1}) u_{p-2}^{-1} \cdots u_1^{-1}, \\
\beta_p &= u_1 u_2 \cdots u_{p-2} (u_{p-1} w_{p-1}) u_{p-2}^{-1} \cdots u_1^{-1}. \\
\end{align*}
\]

(11.2)

where \(u_i = a_i^{b_i} \) and \(w_i = x_i^{-1} (x_i^{-1} D x_1 \ldots x_{i-1} a_{i-1}^{-1}) b'_i \), \(1 \leq i \leq p - 1 \).
Denote \(h_i = x_i^{-1} \cdots x_1^{-1} D x_1 \cdots x_i D^{-1} a_i^{-1} \). By assumption, \(b'_i \neq 0,1 \). Let \(H = \text{Im} \phi \) and \(G = \pi_1(S^3 - \tilde{F}) \). We want to show that \(H \neq G \). First we may suppose that \(a_1 \in H \) and \(x_1x_2 \in H \). Otherwise, obviously, \(H \neq G \), and we are done. Now since \(a_1 \in H \), by \((11.2)\), we have \(D \in H \), and hence, \(a_2 \in H \), since \(H \ni a_2 = u_1 a_2 D u_1^{-1} \), and \(H \ni u_1 = a_1^b \) and \(H \ni D \). Repeat this process to obtain

\[
\alpha_1, \alpha_2, \ldots, \alpha_{p-1} \in H \text{ and } D \in H.
\]

Therefore, \(H \) is generated by

\[
\{ \alpha_1, \alpha_2, \ldots, \alpha_{p-1}, D, x_1x_2, \alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_{p-1} \}.
\]

However, since \(\alpha_i \) is written in terms of \(a_i \) and \(D \), we can eliminate these \(\alpha_i \) from the set of generators \((11.5)\), and hence \(H \) is generated by

\[
\{ \alpha_1, \alpha_2, \ldots, \alpha_{p-1}, D, x_1x_2, \beta_1, \ldots, \beta_{p-1} \}.
\]

Since \(u_i \in H, 1 \leq i \leq p - 1 \), we introduce new generators \(\gamma_j \), replacing \(\beta_j \), as

\[
\gamma_1 = w_1, \gamma_2 = w_2, \ldots, \gamma_{p-1} = w_{p-1}.
\]

Then \(H \) is generated by

\[
\{ \alpha_1, \alpha_2, \ldots, \alpha_{p-1}, D, x_1x_2, \gamma_1, \ldots, \gamma_{p-1} \}.
\]

Since \(h_2^{b'_2} = (x_2^{-1} a_2^{-1} D x_2 D^{-1} a_2^{-1})^{b'_2} \in H \) and \(H \ni \gamma_2 = x_3^{-1} h_2^{b'_2} \), it follows that \(x_3^{-1} \in H \). Similarly, using \(\gamma_3, \ldots, \gamma_{p-1} \), we have \(x_4^{-1}, \ldots, x_p^{-1} \in H \). Therefore, we can replace \(x_{i+1} \) by \(\gamma_i, i \geq 2 \), and we see that \(H \) is generated by

\[
\{ \alpha_1, \alpha_2, \ldots, \alpha_{p-1}, D, x_1x_2, x_3, \ldots, x_p, \gamma_1 \}.
\]

Since \(D = x_1x_2 \cdots x_p \), we can eliminate \(D \) from the set of generators of \(H \), and \(H \) is generated by \(2p - 1 \) elements

\[
\{ \alpha_1, \alpha_2, \ldots, \alpha_{p-1}, x_1x_2, x_3, \ldots, x_p, \gamma_1 \}.
\]

Since \(H \) is free of rank \(2p - 1 \), the above set is a set of free generators of \(H \).

On the other hand, \(G \) is freely generated by \(\{ \alpha_1, \alpha_2, \ldots, \alpha_{p-1}, x_1, x_2, x_3, \ldots, x_p \} \).

Now introduce a new generator \(z_2 = x_1x_2 \) and replace \(x_2 \) by \(z_2 \). Then we have:

1. \(G \) is generated (freely) by \(\{ \alpha_1, \alpha_2, \ldots, \alpha_{p-1}, x_1, z_2, x_3, \ldots, x_p \} \), and
2. \(H \) is generated (freely) by \(\{ \alpha_1, \alpha_2, \ldots, \alpha_{p-1}, z_2, x_3, \ldots, x_p, \gamma_1 \} \),

where \(\gamma_1 = w_1 = x_2^{-1}(x_1^{-1} D x_1 D^{-1} a_1^{-1})^{b'_i} \).

Therefore, if \(H = G \), then \(x_1 \in H \). In other words, \(x_1 \) can be written as a word on \(\alpha_i, 1 \leq i \leq p - 1, z_2, x_j, 3 \leq j \leq p \), and \(\gamma_1 \). (Note that \(H \) is a free group of rank \(2p - 1 \).)

Recall \(b'_1 \neq 0, 1 \).
Case 1: \(b'_1 > 0 \), i.e. \(b'_1 \geq 2 \). Then,

\[
\gamma_1 = x_2^{-1}(x_1^{-1}Dx_1D^{-1}a_1^{-1})(x_1^{-1}Dx_1D^{-1}a_1^{-1})^{b'_1-1} = z_2^{-1}Dx_1D^{-1}a_1^{-1}(x_1^{-1}Dx_1D^{-1}a_1^{-1})^{b'_1-1}.
\]

Since \(z_2^{-1} \), \(D \) and \(D^{-1}a_1^{-1} \) are in \(H \), we can replace \(\gamma_1 \) by

\[
\delta_1 = x_1(D^{-1}a_1^{-1})(x_1^{-1}Dx_1D^{-1}a_1^{-1})^{b'_1-2}(x_1^{-1}Dx_1).
\]

Since \(D = z_2x_1 \cdots x_p \), \(D \) does not involve \(x_1 \) and hence \(\delta_1 \) is of the form:

\[
\delta_1 = x_1W_1(x_1^{-1}W_2x_1)^{b'_1-2}(x_1^{-1}W_2x_1), \text{ where } W_1 = D^{-1}a_1^{-1} \text{ and } W_2 = D, \text{ none of which involves } x_1. \text{ Therefore, } \delta_1 \text{ is a reduced word. Since } b'_1 - 2 \geq 0, \delta_1 \text{ involves } x_1 \text{ at least three times, and } \delta_1 \text{ is of the form: } x_1Ux_1. \text{ Therefore, we cannot write } x_1 \text{ in terms of } a_i, 1 \leq i \leq p - 1, x_2, x_3, \ldots, x_p \text{ and } \delta_1.
\]

Case 2: \(b'_1 < 0 \). Write \(b'_1 = -q, q > 1 \). Then

\[
\gamma_1 = x_2^{-1}(a_1Dx_1^{-1}D^{-1}x_1)^q = z_2^{-1}x_1(a_1Dx_1^{-1}D^{-1}x_1)^q. \text{ Again, since } z_2 \in H, \text{ we can replace } \gamma_1 \text{ by } \delta'_1, \delta'_1 = x_1(a_1Dx_1^{-1}D^{-1}x_1)^q = x_1(W_1^{-1}x_1^{-1}W_2^{-1}x_1)^q.
\]

Since \(q > 0, \delta'_1 \) is a reduced word and \(\delta'_1 \) is of the form \(x_1Vx_1, \) and \(V \) contains \(x_1 \) at least once. Therefore \(x_1 \) cannot be written in terms of \(\delta'_1, a_i, 1 \leq i \leq p - 1, x_2, x_3, \ldots, x_p. \) It proves that \(H \neq G \), and hence \(\phi \) is not onto. Theorem \(2.4 \) is now completely proved. \(\square \)

12. Examples

In this section, we discuss several examples that illustrate our main theorems.

Example 12.1. All 2-bridge links in this example have linking number 0. Theorem \(2.3 \) determines \(g(K(2\alpha, \beta|r)) \) and the fibredness is checked by Theorem \(2.4 \).

(1) Consider \(K(48, 31|r) \). Since \(31/48 = [2, 2, -4, 2, 2] \), the genus is 2, and it is not fibred for any \(r > 0 \). The graph is given in Figure 12.1 (1). The lifts \(\{ \tilde{K}_j \} \) of \(K_1 \) in the infinite cyclic cover \(M^3 \) of \(S^3 \setminus K_2 \) are depicted in Figure 12.2 (1). From it, we see that \(\Delta_{K(48,31|1)}(t) \) is not monic. This can also be checked by evaluating \(\Delta_{B(48,31)}(x, y) \):

\[
\Delta_{B(48,31)}(x, y) = (1 - x)(1 - y)\{1 - (x + y) - xy(x + y) + x^2y^2\}, \text{ and hence, } \Delta_{K(48,31|1)}(t) = 2r(1 - t)^2 + t. \text{ Thus, we see that } \Delta_{K(48,31|1)}(t) \text{ is not monic.}
\]

(2) Consider \(K(64, 41|r) \). Since \(41/64 = [2, 2, -4, -2, 2] \), the genus is 2, and it is not fibred for any \(r > 0 \). See Figure 12.1 (2) for its graph. The lifts \(\{ \tilde{K}_j \} \) of \(K_1 \) in \(M^3 \) is depicted in Figure 12.2 (2). From it, we see that \(\Delta_{K(64,41|1)}(t) = 1. \) The same result is also obtained using \(\Delta_{B(64,41)}(x, y) \):

\[
\Delta_{B(64,41)}(x, y) = (1 - x)^2(1 - y)^2(1 + xy), \text{ and hence } \Delta_{K(64,41|1)}(t) = 1 \text{ for any } r > 0.
\]
Fibred tori-rational knots

Figure 12.1: The graphs for 2-bridge links with $\ell k = 0$

Figure 12.2: Lifts of K_1 in M^3

(3) Consider $K(40, 11| r)$. Since $11/40 = [4, -2, 2, -2, -2]$, the genus is 2 and it is fibred only for $r = 1$. See Figure 12.1(3) for its graph. The lifts are depicted in Figure 12.2(3). Also, we have: $\Delta_{B(40,11)}(x,y) = (1-x)(1-y)\{(x+y) + xy(x+y)\}$
and hence, $\Delta_{K(40,11| r)}(t) = r(1 - t - t^3 + t^4) + t^2$.

(4) Consider $K(112, 71| r)$. Since $71/112 = [2, 2, 2, 2, 2, 2, -2]$, the genus is 2 and it is not fibred for any $r > 0$. The lifts $\{\tilde{K}_j\}$ of K_1 are depicted in Figure 12.2(4). Also, we have: $\Delta_{B(112,71)}(x,y) = (1-x)(1-y)\{(1-2(x+y) + (x+y)^2 - 2xy(x+y) + x^2y^2\}$
and hence, $\Delta_{K(112,71| r)}(t) = 2r(1-t)^3 + t^2$.

Example 12.2. Each of the first two 2-bridge links has linking number 1, and the other two links have linking number 2. The graphs are depicted in Figure 12.3. We use Theorem 2.2, Proposition 6.3 and Theorem 6.1.

(1) Consider $K(18, 13| r)$. Since $13/18 = [2, 2, 2, -2, -2]$, we see $P_1 = [[1, 1, 1]], Q_1 = [1, 1]$ and $d_1 = 1$. Since $b_{11} = 1$, it follows from Theorem 6.1 that $\Delta_{K(18,13| r)}(t)$ is not monic for $r = 1$, but it is monic for $r > 1$, and hence $K(18, 13| r)$ is fibred for $r > 1$. Since $\lambda = 3$ and $\rho = 1$, the degree of $\Delta_{K(18,13| r)}(t)$ is $2r$, and hence, the genus is r by Proposition 6.3 and Theorem 2.2. These facts are also confirmed by evaluating $\Delta_{B(18,13)}(x,y)$: $\Delta_{B(18,13)}(x,y) = (x+y) - (x^2 + 3xy + y^2) + xy(x+y)$, and use Proposition 4.1 (1).

(2) Consider $K(482, 381| r)$. Since $381/482 = [2, 2, 2, -4, -2, -2, 2, 2]$, we see
that \(P_1 = [[1,1,1]], Q_1 = [[-2,-1,-1]], P_2 = [[1,1,1]], d_1 = 1 \) and \(e_1 = 1 \). Therefore, we see that \(\lambda = 7 \) and \(\rho = 3 \), and hence, by Proposition 6.3 the degree of \(\Delta_{K(182,381)}(t) = 6r \) and the genus is 3r. Further, it follows from Theorem 6.1(1) that it is not fibred for \(r = 1 \) but it is fibred for \(r > 1 \). These facts are also confirmed by evaluating the Alexander polynomial of \(B(182,381) \), and using Proposition 6.1(1). \(\Delta_{B(182,381)}(x,y) = (-x^3+2x^2-x)y^6+(-3x^4+8x^3-8x^2+4x-1)y^5+(-3x^5+12x^4-17x^3+14x^2-8x+2)y^4+(-x^6+8x^5-17x^4+21x^3-17x^2+8x-1)y^3+(2x^6-8x^5+14x^4-17x^3+12x^2-3x)y^2+(-x^6+4x^5-8x^4+8x^3-3x^2)y-x^3+2x^4-x^3. \)

(3) Consider \(K(60,47|\rho) \). Note that \(\ell K B(60,47) = 2 \). Since \(47/60 = [2,2,2,2,-2,-2,2] \), we see that the genus is 3r and \(\Delta_{K(60,47|\rho)}(t) \) is monic and hence is fibred for any \(r > 0 \). Note that \(\Delta_{B(60,47)}(x,y) = (x+y)-(2x^2+3xy+2y^2)+(x^3+5x^2y+5xy^2+y^3) - xy(2x^2+3xy+2y^2) + x^2y^2(x+y). \)

(4) Consider \(K(1732,-671) \). Since \(-671/1732 = [-2,2,2,2,-2,2,2,4,2] \), we see by Theorem 6.1(2) that \(\Delta_{K(r)}(t) \) is monic for \(r > 0 \) and hence \(K(r) \) is fibred for any \(r > 0 \). Also, since \(\lambda = 6 \) and \(\rho = 0 \), we have \(g(K(r)) = 5r + 2 \). Note that \(\Delta_{K(1732,-671)}(x,y) = (x^5-5x^4+9x^3-7x^2+2x)y^5-(5x^5-23x^4+44x^3-42x^2+18x-2)y^4+(9x^5-44x^4+87x^3-86x^2+42x-7)y^3-(7x^5-42x^4+86x^3-87x^2+44x-9)y^2+(25x^5-18x^4+42x^3-44x^2+23x-5)y+2x^4-7x^3+9x^2-5x+1. \)

![Figure 12.3: More graphs for 2-bridge links with \(\ell k \neq 0 \)](image)

13. Fibred satellite knots of tunnel number one

In this section, we determine the genera of the satellite knots of tunnel number one, and also solve the question of when it is fibred.

Let \(\tilde{K} \) be a satellite knot of tunnel number one. According to [17], the companion of \(\tilde{K} \) is a torus knot of type \((a,b)\), say, and \(|a|, |b| > 1\), and the pattern is the torti-rational knot \(K(2\alpha, \beta|ab) \) for \(|\alpha| > 1\). To be more precise, let \(B(2\alpha, \beta) = K_1 \cup K_2 \) be a 2-bridge link. Then by construction, a torti-rational knot, \(K(2\alpha, \beta|\rho) \) is a knot in the interior of a (unknotted) solid torus \(\tilde{V} \), where \(\tilde{V} \) is homeomorphic to \(S^3 \setminus N(K_2) \), \(N(K_2) \) being a tubular neighbourhood of \(K_2 \). Let \(m \) be a meridian of \(V \). Then the pattern is a pair \((V, K(2\alpha, \beta|\rho))\). Generally, if the pattern is \((V, K(2\alpha, \beta|\rho))\), then our technique can be applied on any satellite knot with fibred companion \(K_C \). Therefore, in this section we can prove slightly more general theorems as follows.

Theorem 13.1. Let \(K_C \) be a non-trivial fibred knot and \(\tilde{K} \) be the satellite knot with companion \(K_C \) and the pattern \((V, K(2\alpha, \beta|\rho)), \rho \neq 0\). Suppose \(\ell = lk(K_1, K_2) \neq 0 \).
Then the following hold:
(1) the genus of \(\hat{K} \) is exactly half of the degree of the Alexander polynomial of \(\hat{K} \).
(2) \(\hat{K} \) is fibred if (and only if) the Alexander polynomial of \(\hat{K} \) (and hence, that of \(K(2\alpha, \beta | r) \)) is monic.

Theorem 13.2. Under the same notation of Theorem 13.1, suppose \(r \neq 0 \) and \(\ell = 0 \). Then (1) \(\hat{K} \) is not fibred for any \(r \neq 0 \). [3, Proposition 4.15] (2) Let \([2c_1, 2c_2, \ldots, 2c_m] \) be the continued fraction of \(\beta/2\alpha \). Then \(g(\hat{K}) = \sum_{\text{odd } j} |c_j| \).

Proof of Theorem 13.1. (1) Let \(\phi \) be a faithful homeomorphism of a solid torus \(V \) in which \(K(2\alpha, \beta | r) \) is embedded to a tubular neighbourhood \(N(K_C) \) of \(K_C \) in \(S^3 \). The minimal genus Seifert surface \(F \) for \(K = K(2\alpha, \beta | r) \) we had in Section 9 intersects \(\partial V \) at \(\ell \) parallel longitudes, where \(\ell = \ell(K_1, K_2) > 0 \). Since the image of each longitude under \(\phi \) spans a fiber surface \(S_C \) of genus \(g(K_C) \) in \(S^3 - \phi(V) \), we can construct a Seifert surface \(\hat{F} \) for \(\hat{K} \) by capping off \(\phi(V \cap F) \) by \(\ell \) copies of \(S_C \). Hence we have \(g(\hat{K}) \leq g(K) + \ell g(K_C) \). Combining with Schubert’s inequality [3, Proposition 2.10], we have:
\[
g(\hat{K}) = g(K) + \ell g(K_C). \tag{13.1}
\]
However, since \(K_C \) is a fibred knot, we see:
\[
g(K_C) = \frac{1}{2} \deg \Delta_K(t). \tag{13.2}
\]
With the fact that \(g(K) = \frac{1}{2} \deg \Delta_K(t) \) and Seifert’s theorem [3, Proposition 8.23 (b)], we obtain
\[
2g(\hat{K}) = \deg \Delta_K(t) + \ell \deg \Delta_K(t) = \deg \Delta_{\hat{K}}(t). \tag{13.3}
\]
This proves (1).

Next, we prove (2). Suppose \(\Delta_{K(2\alpha, \beta | r)}(t) \) is monic. Then construct a fibre surface \(F \) for \(K = K(2\alpha, \beta | r) \) as in Section 9. As we did in the proof of (1), construct a minimal genus Seifert surface \(\tilde{F} \) for \(\tilde{K} \). If we needed compressions to obtain \(F \) from the surface \(\tilde{F}(r) \), then we undo the cuts in \(\tilde{F} \) caused by compressions by plumbing Hopf bands. Note this is possible since the plumbings of Hopf band in the proof of Theorem 9.1 can be locally done in \(V \). Denote by \(F' \) the resulting Seifert surface. To complete the proof, it suffices to show that \(F' \) is a fibre surface. Now \(F' \) looks like as in Figure 7.7, where horizontal parts are understood as parallel copies of \(S_C \). We can remove the bands by deplumbing Hopf bands as we did in the proof of Proposition 8.1 until we have a new Seifert surface \(F'' \) ‘consisting’ of the annuli, \(\ell \) copies of \(S_C \) and \(\ell - 1 \) half-twisted band, where each pair of adjacent copies of \(S_C \) is connected by a half-twisted band. We show that \(F'' \) is a fibre surface by using sutured manifolds. Let \((F'' \times I, \partial F'' \times I) \) be the sutured manifold obtained from \(F'' \). Apply a \(C \)-product disk decomposition corresponding to each site of ribbon holes arising from the intersection of the annuli and copies of \(S_C \). Then we have 1-handles each with a meridional suture. Actually, we have \(\ell(\lambda - \ell)/2 \) 1-handles. See Figure
13.1 (a). We can remove, by C-product decompositions, all such 1-handles coming from the annuli (Figure 13.1 (b)). Apply a C-product decomposition between a pair of parallel copies of S_C’s. Then the complementary sutured manifold is separated into two pieces: one of which is a product sutured manifold between two copies of S_C and hence we can disregard it (Figure 13.1 (c)). Repeating this, we have a sutured manifold obtained from S_C (Figure 13.1 (d)). Since S_C is a fibre surface, the complementary sutured manifold is a product sutured manifold. Therefore, F'' is a fibre surface. Theorem 13.1 (2) is now proved.

Figure 13.1: C-product decompositions

Proof of Theorem 13.2. For any $r > 0$ and any fibred companion K_C, we see $g(\hat{K}) \geq g(K(2\alpha, \beta|_r))$. However, since $\ell = 0$, from the construction of F_1 in Section 7, we have $g(\hat{K}) = g(K(2\alpha, \beta|_r))$, and hence (2) follows immediately from Theorem 2.3.

Remark 13.3. When $r = 0$, $K(2\alpha, \beta|_0)$ is a trivial knot. If we consider the satellite knot \hat{K} with $K(2\alpha, \beta|_0)$ as a pattern knot, this satellite knot gives rise to a very interesting problem. As is known to some specialists, even if the pattern and the companion of \hat{K} are both fibred, \hat{K} may not be fibred [4]. Therefore, the determination of the genus and fibredness of a satellite knot \hat{K} with a fibred companion and the pattern $K(2\alpha, \beta|_0)$ is not straightforward. We leave this problem untouched. To the reader who are interested in this problem, we refer to [11].

14. Genus one knots

In this final section, we determine torti-rational knots $K(2\alpha, \beta|r)$ of genus one (Theorem 14.2). Recall that torti-rational knots have tunnel number one. (We denote the tunnel number of K by $t(K)$.)

Recently Scharlemann [15] proved a conjecture by Goda and Teragaito which states that if a knot K has $g(K) = t(K) = 1$, then K is a 2-bridge knot or satellite knot. Before that, Goda and Teragaito [8] had classified satellite knots K with $g(K) = t(K) = 1$.

Proposition 14.1. [8 Proposition 18.1] Let K be a satellite knot with $g(K) = t(K) = 1$. Then the pattern knot is genus one 2-bridge knot. More precisely, the
pattern knot is the torti-rational knot \(K(8d, 4d + 1)pq \) and the companion knot is a torus knot \(T(p, q) \).

Note that \((4d + 1)/8d = [2, 2d, -2] \), and hence the pattern knot is a 2-bridge knot whose associated continued fraction is \([2d, 2pq] \). In Proposition \[14.1\], it is evident that the associated 2-bridge link has linking number zero, and that the pattern knot has genus one. Hence Proposition \[14.1\] immediately follows from Theorem \[14.2\] below.

In Theorem \[14.2\], we have a family of torti-rational knots \(K = K(2\alpha, \beta | r) \) with \(g(K) = t(K) = 1 \), which, at a glance, looked like counter-examples to the Goda-Teragaito conjecture (See Example \[14.6\]).

Theorem 14.2. A torti-rational knot \(K = K(2\alpha, \beta | r) \) with \(\ell = \ell kB(2\alpha, \beta) \geq 0, r > 0 \) has \(g(K) = 1 \) if and only if one of the following is satisfied:

- **Case A:** \(\ell = 0 \).
 - **A1:** \(\beta/2\alpha = \pm [2, 2d, -2], d \neq 0 \) and \(r \) is arbitrary.

- **Case B:** \(\ell > 0 \).
 - **B1:** \(\beta/2\alpha = [2, 2, 2], r = 2 \)
 - **B2:** \(\beta/2\alpha = [2, 2, 2, 2, 2], r = 1 \)
 - **B3:** \(\beta/2\alpha = [2, 2d, 2], d \neq 1, r = 1 \). Note possibly, \(d = 0 \).
 - **B4:** \(\beta/2\alpha = \pm [2, 2, \ldots, 2, 2b, -2, -2, \ldots, -2], \) or \(\pm [-2, -2, \ldots, -2, 2b, 2, 2, \ldots, 2], a \geq 1, b \neq 0, r = 1 \).

Remark 14.3. In Theorem \[14.2\] \(K = K(2\alpha, \beta | r) \) in A1, or in B4 with \(a = 1 \), is a 2-bridge knot. If \(K \) is in B1 or B2, then \(K \) is a trefoil knot. If \(K \) is in B3, then \(K \) is a twist knot. If \(K \) is in B4 with \(a \geq 2 \), then \(K \) is a satellite knot with its companion a torus knot \(T(a, a + 1) \) and the pattern knot \(B(4ab(a + 1) - 1, 2a(a + 1)) \), where the Alexander polynomial is \(\Delta_{K(1)}(t) = ab(a + 1)(t - 1)^2 + t \).

As a direct consequence, we have:

Corollary 14.4. A torti-rational knot \(K \) of genus one is a satellite knot if and only if \(K \) is in Case B4 with \(a \geq 2 \) of Theorem \[14.2\].

Remark 14.5. (1) Our knots in B4 with \(a \geq 2 \) has genus one and hence is prime and not a cable knot. Therefore, they are negative examples to the question posed in [1].

(2) We can also prove that if \(\beta/2\alpha = [4, \pm 2, \pm 4] \), or \([4, \pm 3, \pm 4] \), then \(K(2\alpha, \beta | \pm 1) \) cannot be a prime satellite knot (c.f. [7, Theorem 1.6 (2)])

Example 14.6. Consider a 2-bridge link \(B(46, 39) \), where \(39/46 = [2, 2, 2, 2, 2, -2, -2, -2] \). (This is the case \((a, b) = (2, 1) \) in Case B4). The diagram of \(K(r), r = 1 \), is depicted in Figure 14.1(a) together with a compressible Seifert surface \(F \).
Compressing F three times, we obtain a minimal genus Seifert surface F' of genus 1, isotopic to those depicted in Figures 14.1 (b), (c) and (d). Then we see that F' is a Seifert surface for the satellite knot with its companion $T(2,3)$ and the pattern knot a 2-bridge knot $B(23,12)$.

Figure 14.1: $g(K(46,39|1)) = 1$

Proof of Theorem 14.2

Case A: By (10.1), $g(K) = 1$ if and only if $\beta/2\alpha = \pm [2,2d,-2], d \neq 0$. Therefore, K is a 2-bridge knot associated to the continued fraction $[\pm 2d,2r]$.

Case B: By Proposition 6.3, we see

\begin{equation}
2(\lambda - 1 - \rho) + (\lambda - 1)(r - 1)\ell + (\lambda - 2)(\ell - 1) = 2.
\end{equation}

Since each term of the LHS in (14.1) is non-negative, we have two cases: (i) $\lambda-1-\rho = 0$ and (ii) $\lambda - 1 - \rho = 1$. For case (i), as is seen in the proof of Proposition 6.6, we have $(2\alpha, \beta) = (2\lambda, 2\lambda - 1)$ and $\lambda = \ell$, and hence, either (a) $\lambda = \ell = 2$ and $r = 2$, or (b) $\lambda = \ell = 3$ and $r = 1$. Therefore, we have either B1 or B2. For case (ii), we have either (c) $\lambda = 2$ and hence $r = 1$ and $\rho = 0$, or (d) $\lambda > 2$, $\ell = r = 1$ and hence $\rho = \lambda - 2$. Therefore, we have B3 or B4. This proves Theorem 14.2.

Acknowledgements. The first author is partially supported by MEXT, Grant-in-Aid for Young Scientists (B) 18740035, and the second author is partially supported by NSERC Grant A 4034. The authors express their appreciation to K.Morimoto, M.Sakuma, T.Kobayashi, T.Kanenobu, M.Kidwell and D. Silver for their invaluable comments.

References

[1] M. Ait-Nouh, D. Matignon and K. Motegi, Geometric types of twisted knots, Ann. Math. Blaise Pascal 13 (2006) 31–85.
[2] K.S. Brown, Trees, valuations, and the Bieri-Neumann-Strebel invariant, Invent. Math 90 (1987), 479–504.
[3] G. Burde and H. Zieschang, Knots (2nd edition), de Gruyter Studies in Math., 5, Walter de Gruyter. 2003
[4] D. Eisenbud and W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Math. Studies 110, Princeton Univ. Press, Princeton, NJ, 1985.
[5] D. Gabai, Genera of the arborescent links, Memoirs of AMS. 59 (1986), no. 339, i–viii and 1–98.
[6] , Detecting fibred links in S^3, Comment. Math. Helv., 61 (1986) 519–555.
[7] H. Goda, C. Hayashi and H.-J. Song, Dehn surgeries on 2-bridge links which yield reducible 3-manifolds, Preprint 2005, [math.GT/0512116].
[8] H. Goda and M. Teragaito, Tunnel number one genus one non-simple knots, Tokyo J. Math. 22 (1999), 99–103.
[9] F. González-Acuña, Dehn’s construction on knots, Bol. Soc. Mat Mexicana (2) 15 (1970) 58–79.
[10] M. Hirasawa and K. Murasugi, Fibered double torus knots which are band-sums of torus knots, Osaka J. Math. 44 (2007) 11–70.
[11] M. Hirasawa, K. Murasugi and D. Silver, When does a satellite knot fiber?, Hiroshima J. Math. (to appear)
[12] T. Kanenobu, Alexander polynomials of two-bridge links, J. Austral. Math. Soc. Ser. A 36 (1984) 59–68.
[13] T. Kanenobu and Y. Miyazawa, 2-bridge link projections, Kobe J. Math. 9 (1992) 171–182.
[14] M. Kidwell, Relations between the Alexander polynomial and summit power of a closed braid, Math. Sem. Notes Kobe Univ. 10 (1982) 387–409.
[15] M. Kouno, K. Motegi and T. Shibuya, Twisting and knot types, J. Math. Soc. Japan 44 (1992) 199–216.
[16] T. Maeda and K. Murasugi, Covering linkage invariants and Fox’s problem 13, Contemp. Math., 20 (1983) 271–283.
[17] K. Morimoto and M. Sakuma, On unknotting tunnels for knots, Math. Ann. 289 (1991) 143–169.
[18] M. Scharlemann, There are no unexpected tunnel number one knots of genus one, Trans. Amer. Math. Soc. 356 (2004), no. 4, 1385–1442.
[19] G. Torres, On the Alexander polynomial, Ann. of Math. (2) 57, (1953) 57–89.