Actually, only few systems exist which deal with textual ellipsis in a dedicated way. For example, the PUNDIT system (Palmer et al. (1986)) provides a fairly restricted solution in that only direct conceptual links between the concept denoted by the antecedent and the elliptical expression are considered ("plausible" paths of length 1, in our terminology). A pattern-based approach to inferencing (including textual ellipsis) has also been put forward by Norvig (1989). The main difference to our work lies in the fact that these path patterns do not take the compositional properties of relations into account (e.g., transitive relations). Furthermore, numerical constraints like path length restrictions are posited without motivating their origin, whereas we state formal well-formedness and empirical criteria the evidence for which is derived from psycholinguistic studies. The abduction-based approach to inferencing underlying the TACITUS system (Hobbs et al. (1993)) also refers to weights and costs and, thus, shares some similarity with Norvig's proposal (Hobbs et al., 1993, p. 122). Moreover, the crucial problem still unsolved in this logically very principled framework concerns a proper choice methodology for fixing appropriate costs for specific assumptions on which, among other factors, textual ellipsis resolution is primarily based. The approach reported in this paper also extends our own previous work on textual ellipses (Hahn, 1989) by the incorporation of an elaborated model of functional preferences on C_F elements.

7 Conclusion

We have outlined a model of textual ellipsis resolution. It considers conceptual criteria to be of primary importance and provides linkage constraints for role paths in a terminological knowledge base in order to assess the plausibility of possible antecedents as proper bridges (Clark, 1975) to elliptical expressions. In addition, functional information structure constraints contribute further restrictions on proper elliptical antecedents. The particular advantage of our approach lies in the integrated treatment of textual ellipsis within a single coherent grammar format that integrates linguistic and conceptual criteria in terms of general constraints.

The ellipsis handler has been implemented in Smalltalk as part of a comprehensive text parser for German. Besides the information technology domain, experiments with our parser have also been successfully run on medical domain texts, thus indicating that the heuristics we have been developing are not bound to a particular domain. The current lexicon contains a hierarchy of approximately 100 word class specifications with nearly 3,000 lexical entries and corresponding concept descriptions available from the LOOM knowledge representation system (MacGregor & Bates, 1987) — 800 and 500 concept/role specifications for the information technology and medicine domain, respectively.

Acknowledgments. We would like to thank our colleagues in the CLIFF group for fruitful discussions. This work has been funded by LGFG Baden-Württemberg (M. Strube). Katja Markert is supported by a grant from DFG within the Freiburg University Graduate Program on "Human and Artificial Intelligence". We also gratefully acknowledge the provision of the LOOM system from USC/ISI.

References

Agha, G. & C. Hewitt (1987). Concurrent programming using actors. In A. Yonezawa & M. Tokoro (Eds.), Object-Oriented Concurrent Programming, pp. 37–53. Cambridge, Mass.: MIT Press.

Chaffin, R. (1992). The concept of semantic relations. In A. Lehrer & E. Kittay (Eds.), Frames, Fields and Contrasts, pp. 253–288. Hillsdale, N.J.: L. Erlbaum.

Clark, H. H. (1975). Bridging. In TINLAP-I, pp. 169–174.

Danes, F. (1974). Functional sentence perspective and the organization of the text. In F. Danes (Ed.), Papers on Functional Sentence Perspective, pp. 106–128.

Hahn, U. (1989). Making understanders out of parsers: Semantically driven parsing as a key concept for realistic text understanding applications. International Journal of Intelligent Systems, 4(3):345–393.

Hahn, U., K. Markert & M. Strube (1996). A conceptual reasoning approach to the resolution of textual ellipses. In Proc. of ECAI-96.

Hahn, U., S. Schacht & N. Brüker (1994). Concurrent, object-oriented dependency parsing: The ParseTalk model. International Journal of Human-Computer Studies, 41(1/2):179–222.

Hajicová, E., V. Kuboň & P. Kuboň (1992). Stock of shared knowledge: A tool for solving pronounal anaphora. In Proc. of COLING-92, Vol. 1, pp. 127–133.

Hobbs, J. R., M. E. Stickel, D. E. Appelt & P. Martin (1993). Interpretation as abduction. Artificial Intelligence, 63:69–142.

Kamp, H. & U. Reyle (1993). From Discourse to Logic. Dordrecht: Kluwer.

Lakoff, G. (1987). Women, Fire, and Dangerous Things. Chicago: Chicago University Press.

MacGregor, R. & R. Bates (1987). The LOOM Knowledge Representation Language. (ISI/RS-87-18) USC/ISI.

Norvig, P. (1989). Marker passing as a weak method for inferencing. Cognitive Science, 13(4):569–620.

Palmer, M. S., D. A. Dahl, R. J. Schiffman & L. Hirschman (1986). Recovering implicit information. In Proc. of ACL-86, pp. 10–19.

Strube, M. & U. Hahn (1995). ParseTalk about sentence- and text-level anaphora. In Proc. of EACL-95, pp. 237–244.

Strube, M. & U. Hahn (1996). Functional centering. In Proc. of ACL-96.

Wada, H. (1994). A treatment of functional definite descriptions. In Proc. of COLING-94, Vol. 2, pp. 789–795.

Woods, W. A. & J. G. Schmolze (1992). The KL-ONE family. Computers & Mathematics with Applications, 23(2-5):133–177.
and POWER, respectively, are searched. As only a single well-formed role chain from CLOCK-MHZ-PAIR to 316LT can be determined (viz. (clock-mhz-pair-of cpu-of motherboard-of central-unit-of)), ”316LT” is selected as the valid elliptic antecedent. Under these circumstances, conceptual linkage could not be established via a plausible path, but only via a metonymic path, corresponding to a whole-for-part metonymy. This is due to the fact that “Taktfrequenz” (clock frequency) (conceptualized as CLOCK-MHZ-PAIR) is a property of the CPU of COMPUTER-SYSTEM and, therefore, only a mediated property of computers as a whole (hence, the whole-for-part metonymy).

Evaluation. A small-scale evaluation experiment was conducted on a test set of 109 occurrences of textual ellipses in 5 different texts taken from our corpus. The evaluation used our knowledge base from the information technology domain, which consists of 449 concepts and 334 relations. Among 46 (42.2%) false negatives (no resolution triggered though textual ellipsis occurs), the ellipsis handler encountered 42 (38.5%) cases of lacking concept specifications (half of which were gaps that can easily be closed, the other half constituted by “soft” concepts (e.g., referring to spatial knowledge) which are hard to get hold of). In 4 of the 46 cases the conceptual model was adequate but the triggering conditions were inappropriate.

Among the 63 cases where the ellipsis handler started processing 60 were correctly analyzed (recall rate of 55.05%), 2 modelling bugs were encountered in the knowledge base, and one case was due to incorrect conceptual constraints. Considering the performance of the criteria we propose — disregarding effects that come from deficient knowledge engineering, i.e. restricting the evaluation to the 63 cases run by the ellipsis handler — the precision rate amounts to 95.2%.

With respect to accuracy, however, we still have to consider the actual number of textual ellipses processed including false positives, i.e., cases where the ellipsis resolution is carried out although no textual ellipsis actually occurs. Altogether, the ellipsis handler was triggered 82 times, thus it was incorrectly triggered in 19 cases (23.2%). 12 of these 19 false positives were due to insufficiencies of the parsing process (it failed to create suitable semantic/conceptual representations blocking the triggering of the ellipsis handler). In 4 cases the anaphora resolution process failed to resolve an anaphor, thus leading to an incorrect call of the ellipsis handler, and in the 3 remaining cases the triggering condition was not restrictive enough. This condition gives an overall accuracy score of 73.2%.

6 Comparison with Related Approaches

As far as text-level processing is concerned, the framework of DRT (Kamp & Reyle, 1993), at first sight, constitutes a particularly strong alternative to our approach. The machinery of DRT, however, might work well for (pro)nominal anaphora, but faces problems when elliptical text phenomena are to be interpreted (though Wada (1994) has recently made an attempt to deal with restricted forms of textual ellipsis in the DRT context). This shortcoming is simply due to the fact that DRT is basically a semantic theory, not a full-fledged model for text understanding. In particular, it lacks any systematic connection to well-developed reasoning systems accounting for conceptual domain knowledge. Actually, the sort of constraints we considered seem much more rooted in encyclopedic knowledge than are they of a primarily semantic nature anyway.

As far as proposals for the analysis of textual ellipsis are concerned, none of the standard grammar theories (e.g., HPSG, LFG, GB, CG, TAG) covers this issue. This is not at all surprising, as their advocates pay almost no attention to the text level of linguistic description (with the exception of several forms of anaphora) and also do not seriously take conceptual criteria beyond semantic features into account. Hence their indetermination with respect to conceptually driven inferencing in the context of text understanding.

Figure 1: Sample Parse for Text Ellipsis Resolution

(1b) Der Rechner wird durch diesen neuartigen Akku für 4 Stunden mit Strom versorgt. (1c) Darüberhinaus ist die Ladezeit mit 1,5 Stunden sehr kurz.

(1b) The computer is because of this new type of accumulator for 4 hours with power provided. (1c) Also, the charge time of 1.5 hours quite short.
The accumulator”
posed to the interpretation of its elliptified counterpart
charge time”
the creation of the
	ions
	lator

tic interpretation. Consequently, a
presentation of the utterance as a result of its seman-
tic interpretation of the current utterance. It will
subsume any word at the conceptual level in the pre-
ceeding text, the anaphora test fails; the definite noun
is only connected via certain types of relations (e.g., has-property, has-physical-part)² to referents denoted in the current utterance at the con-
ceptual level.

The protocol level of text analysis encompasses the procedural interpretation of the grammatical con-
straints from Section 4. We will illustrate the protocol for text ellipsis resolution (cf. Fig. 1), referring to the already introduced text fragment (1) which is repeated at the bottom line of Fig. 1.

(1c) contains the definite noun phrase “die Ladezeit”. Since “Ladezeit” (charge time) does not subsume any word at the conceptual level in the pre-
ceeding text, the anaphora test fails; the definite noun phrase “die Ladezeit” has also not been integrated in terms of a significant relation into the conceptual re-
presentation of the utterance as a result of its semantic interpretation. Consequently, a SearchTextEllip-
sisAntecedent message is created by the word actor for “Ladezeit”. Message passing consists of two phases:

1. In phase 1, the message is forwarded from its ini-
itator “Ladezeit” to the forward-looking centers of the previous sentence (an acquaintance of that sentence’s punctuation mark), where its state is set to phase 2.

2. In phase 2, the forward-looking centers of the previous sentence are tested for the predicate PreferredConceptualBridge.

In this case, the instance 316LT (the conceptual refer-
ent of the nominal anaphor “der Rechner” (the com-
puter), which has already been properly resolved) is related to CHARGE-TIME (the concept denoting “Ladezeit”) via a metonymic path, viz. (charge-
time-of accumulator-of) indicating a whole-for-part metonymy, while the concept ACCUMULATOR is re-
lated to CHARGE-TIME via a plausible path (viz. charge-time-of). As plausible paths are the strongest type of conceptual paths, only an element which is more highly ranked in the centering list and is linked via a plausible path to the elliptical expression could be preferred as the elliptic antecedent of “Ladezeit” (charge time) over “Akku” (accumulator) according to the constraint from Table 6. As this can be ex-
cluded the remaining concepts associated with the current forward-looking centers (namely, TIME-UNIT-PAIR and POWER) need no longer be considered. Hence, “Akku” is determined as the proper elliptical antecedent ³. As a consequence, a TextEllipsis-
AntecedentFound message is sent from “Akku” to the initiator of the SearchAntecedent message, viz. “Ladezeit”. An appropriate role filler update links the corresponding concepts via the role charge-time-of and, thus, local coherence is established at the conceptual level of the text knowledge base.

In order to illustrate our approach under slightly varying conditions, consider text fragment (2):

(2) a. Der 316LT geht sparsam mit Energie um.
(The 316LT uses – sparingly – energy.)

b. Netzunabhängig wird er für ca. 2 Stunden mit Strom versorgt.
(In a power supply-independent mode it is – for approximately 2 hours – with power – provided.)

c. Wenn die Taktfrequenz herabgesetzt wird, reicht die Energie sogar für 3 Stunden.
(When the clock frequency – is reduced – suffices – the power – even for 3 hours.)

²Associated with the set of conceptual roles is the set of their inverses. This distinction becomes crucial for already established relations like has-property (subsuming charge-
time, etc.) or has-physical-part (subsuming has-accumu-
lator, etc.). These relations do not block the triggering of the resolution procedure for textual ellipsis (e.g., ACCUMU-
LATOR – charge-time – CHARGE-TIME), whereas instanti-
ations of their inverses, we here refer to as POF-type rela-
tions, e.g., property-of (subsuming charge-time-of, etc.) and physical-part-of (subsuming accumulator-of, etc.), do (e.g., ACCUMULATOR – accumulator-of – 316LT). This is simply due to the fact that the semantic interpretation of a phrase like “the charge time of the accumulator” already leads to the creation of the POF-type relation the resolution mech-
nism for textual ellipsis is supposed to determine. This is op-
posed to the interpretation of its elliptified counterpart “the charge time” in sentence (1c), where the genitive object “[of the accumulator]” is zeroed and, thus, the role charge-time-
of remains uninstanitiated.

³Note that only nouns and pronouns are capable of re-
spinding to the SearchTextEllipsisAntecedent message and of being tested as to whether they fulfill the required criteria for an elliptical relation.
Finally, the preceding utterance. (cf. also Hajič et al. (1992)).

The resolution of textual ellipses is based on two major criteria, a conceptual and a structural one. The conceptual strength criterion for role chains is already specified in Table 2. The structural condition is embodied in the predicate isPotentialEllipticAntecedent (cf. Table 5). A quasi-anaphoric relation between two lexical items in terms of textual ellipsis is here restricted to pairs of nouns. The elliptical phrase which occurs in the n-th utterance is restricted to be a definite NP and the antecedent must be one of the forward-looking centers of the preceding utterance.

The constraints holding for the ranking on the C_f for German are summarized in Table 3. They are organized at three layers. At the top, “$>_t$” denotes the basic relation for the overall ranking of information structure (IS) patterns. The second relation, “$>_b$”, denotes preference relations dealing exclusively with multiple occurrences of bound elements in the preceding utterance. Finally, “$>_e$” covers the preference order for multiple occurrences of the same type of any information structure pattern, e.g., the occurrence of two anaphora or two unbound elements (all nominal heads in an utterance are ordered by linear precedence in terms of their text position). Given these basic relations, we may formulate the composite relation “$>_z$” (Table 4). It summarizes the criteria for the ordering of the items on the C_f (x and y denote lexical heads).

Table 3: Functional Ranking Constraints on the C_f

Table 4: Information Structure Relation

4 Predicates for Textual Ellipsis

The grammar formalism we use (for a survey, cf. Hahn et al. (1994)) is based on dependency relations between lexical heads and modifiers. The dependency specifications allow a tight integration of linguistic (grammar) and conceptual knowledge (domain model), thus making powerful terminological reasoning facilities directly available for the parsing process. The resolution of textual ellipses is based on two major criteria, a conceptual and a structural one. The conceptual strength criterion for role chains is already specified in Table 2. The structural condition is embodied in the predicate isPotentialEllipticAntecedent (cf. Table 5). A quasi-anaphoric relation between two lexical items in terms of textual ellipsis is here restricted to pairs of nouns. The elliptical phrase which occurs in the n-th utterance is restricted to be a definite NP and the antecedent must be one of the forward-looking centers of the preceding utterance.

The predicate PreferredConceptualBridge (cf. Table 6) combines both criteria. A lexical item y is determined as the proper antecedent of the elliptic expression x iff it is a potential antecedent and if there exists no alternative antecedent z whose conceptual strength relative to x exceeds that of y or, if their conceptual strength is equal, whose strength of preference under the IS relation is higher than that of y.

Table 5: Potential Elliptic Antecedent

Table 6: Preferred Conceptual Bridge

5 Resolution of Textual Ellipsis

The actor computation model (Agha & Hewitt, 1987) provides the background for the procedural interpretation of lexicalized grammar specifications, as those
This section provides a highly condensed exposition of the conceptual constraints underlying the resolution of textual ellipses. A much more detailed presentation is given by Hahn et al. (1996). The constraints we posit require a domain knowledge base to consist of concepts and conceptual roles linking these concepts. Concepts and roles are hierarchically ordered by subsumption (a terminological knowledge representation framework is assumed; cf. Woods & Schmolze (1992)).

In order to determine suitable conceptual links between an antecedent and an elliptic expression, we distinguish two modes of constraining the linkage between concepts via conceptual roles. In the process of path finding an extensive unidirectional search is performed in the domain knowledge base and formal well-formedness conditions holding for paths between two concepts are considered, viz. complete connectivity (compatibility of domains and ranges of the included relations), non-cyclicity (exclusion of inverses of relations) and non-redundancy (exclusion of including paths).

The mode of path evaluation incorporates empirically plausible criteria in order to select the strongest of the ensuing paths. Based on analyses of approximately 60 product reviews from the information technology domain and experimental evidences from several (psycho)linguistic studies (e.g., Chaffin (1992)), we state certain predefined path patterns. From those general path patterns and by virtue of the hierarchical organization of conceptual relations, concrete conceptual role chains can automatically be derived in a terminological reasoning system. As a consequence, we may distinguish between a subset of all types of well-formed paths, which is labeled “plausible”, another subset which is labeled “metonymic”, and all remaining paths which are labeled “implausible”. Examples of plausible paths are all paths of length 1 — they are explicitly encoded in the domain’s concept descriptions and are therefore “plausible”, by definition — or any series of transitive relations, e.g. has-physical-part relations. Following well-established typologies of metonymies (Lakoff, 1987) we include producer-for-product, part-for-whole, and whole-for-part patterns among the metonymic paths.

The computation of paths between an antecedent x and an elliptic expression y, however, may yield several types of well-formed paths, viz. “plausible”, “metonymic” or “implausible”. For proper selection we define a ranking on those path labels according to their intrinsic conceptual strength in terms of the relation “≥str” (conceptually stronger than) (cf. Table 1).

As a consequence of this ordering, “metonymic” paths will be excluded from a path list iff “plausible” paths already exist, while “implausible” paths will be excluded iff “plausible” or “metonymic” paths already exist. At the end of this selection process, only paths of the strongest type are retained in the final path list.

All conceptual paths which meet the above linkage criteria for two concepts, x and y, are contained in the final list denoted by CPx,y. As, in the case of textual ellipsis, we have to deal with paths leading from the elliptical expression to several alternative antecedents, we usually have to compare pairs of path lists CPx,y and CPx,z, where x, y, z are concepts. Obviously, the criterion which ranks conceptual paths according to their associated path markers is applicable as all paths in a single CP list have the same marker. A function, PathMarker(CP_x,y), yields either “plausible”, “metonymic” or “implausible” depending on the type of paths the list contains. Hence, the same ordering of path markers as in Table 1 can be applied to compare two CP lists (cf. Table 2).

Table 1: Path Labels Ordered by Conceptual Strength

Strength	Rank
Implausible	1
Metonymic	2
Plausible	3

Table 2: Path Lists Compared by Conceptual Strength

| StrongerThan (CP_x,y, CP_x,z) :\(\Leftrightarrow\) |
| PathMarker(CP_x,y, y/z) :\(\geq\) PathMarker(CP_x,z, y/z) |
| asStrongAs (CP_x,y, CP_x,z) :\(\Leftrightarrow\) |
| PathMarker(CP_x,y, y/z) = PathMarker(CP_x,z, y/z) |

3 Constraints on Centers

Conceptual criteria are of tremendous importance, but they are not sufficient for proper ellipsis resolution. Additional criteria have to be supplied in the case of equal strength of CP lists for alternative antecedents.

We therefore incorporate into our model criteria which relate to the functional information structure of utterances using the methodological framework of the well-known centering model (Grosz et al., 1995). According to Grosz and Copestake (1989), we distinguish each utterance’s backward-looking center \((C_x(U_n))\) and its forward-looking centers \((C_f(U_{n+1}))\). The ranking imposed on the elements of the \(C_f\) reflects the assumption that the most highly ranked element of \(C_f(U_{n+1})\) is the most preferred antecedent of an anaphoric (or elliptical) expression in \(U_{n+1}\), while the remaining elements are ordered by decreasing preference for establishing referential links.

The main difference between Grosz et al.’s work and our proposal (see Strube & Hahn (1996)) concerns the criteria for ranking the forward-looking centers. While Grosz et al. assume that grammatical roles are the major determinant for the ranking on the
Bridging Textual Ellipses

Udo Hahn Michael Strube Katja Markert
Freiburg University
Computational Linguistics Lab
Europaplatz 1, D-79085 Freiburg, Germany
{hahn,strube,markert}@coling.uni-freiburg.de

Abstract

We present a hybrid text understanding methodology for the resolution of textual ellipsis. It integrates language-independent conceptual criteria and language-dependent functional constraints. The methodological framework for text ellipsis resolution is the centering model that has been adapted to constraints reflecting the functional information structure within utterances, i.e., the distinction between context-bound and unbound discourse elements.

1 Introduction

Text phenomena, e.g., textual forms of ellipsis and anaphora are a challenging issue for the design of parsers for text understanding systems, since lacking recognition facilities either result in referentially incoherent or invalid text knowledge representations. At the conceptual level, textual ellipsis (also called functional anaphora) relates a quasi-anaphoric expression to its extrasentential antecedent by conceptual attributes (or roles) associated with that antecedent (see, e.g., the relation between “Ladezeit” (charge time) and “Akku” (accumulator) in (1c) and (1b)). Thus, it complements the phenomenon of nominal anaphora, where an anaphoric expression is related to its antecedent in terms of conceptual generalization (as, e.g., “Rechner” (computer) refers to “316LT”, a particular notebook, in (1b) and (1a)). The resolution of text-level nominal (and pronominal) anaphora contributes to the construction of referentially valid text knowledge bases, while the resolution of textual ellipsis yields referentially coherent text knowledge bases. Both phenomena tend to interact, as evidenced by the examples below. “Akku” (accumulator) in (1b) is a nominal anaphor referring to “Nickel-Metall-Hydride-Akku” (nickel-metal-hydride accumulator) in (1a), which, when resolved, provides the proper referent for relating “Ladezeit” (charge time) in (1c) to it.

In the case of textual ellipsis, the missing conceptual link between two discourse elements occurring in adjacent utterances must be inferred in order to establish the local coherence of the discourse (for an early statement of that idea, cf. Clark (1975)). In sentence (1c) the information is missing that “Ladezeit” (charge time) links up with “Akku” (accumulator). This relation can only be made explicit if conceptual knowledge about the domain, viz. the relation charge-time-of between the concepts CHARGE-TIME and ACCUMULATOR, is available.

The solution we propose is embedded within the centering model (Grosz et al., 1995). In this approach, discourse entities linking successive utterances in a discourse segment are organized in terms of centers. Local coherence in discourse is established whenever a center element of the previous utterance is associated with an expression that has a valid semantic interpretation (i.e., is realized) in the following utterance. Textual ellipsis has only been given insufficient treatment within the centering model in terms of rather sketchy realization conditions as opposed to the more elaborated constraints for (pro)nominal anaphora. The heuristics we propose include language-independent conceptual criteria and language-dependent information structure constraints reflecting the context-boundedness or unboundedness of discourse elements within the considered utterances.

(1) a. Der 316LT wird mit einem Nickel-Metall-Hydride-Akku bestückt.
(The 316LT is – with a nickel-metal-hydride accumulator – equipped.)

b. Der Rechner wird durch diesen neuartigen Akku für 4 Stunden mit Strom versorgt.
(The computer is – because of this new type of accumulator – for 4 hours – with power – provided.)

c. Darüberhinaus ist die Ladezeit mit 1.5 Stunden sehr kurz.
(Also – is – the charge time of 1.5 hours quite short.)

Abstract
We present a hybrid text understanding methodology for the resolution of textual ellipsis. It integrates language-independent conceptual criteria (based on the evaluation of the conceptual strength of role chains in a terminological knowledge base) and language-dependent functional constraints. The methodological framework for text ellipsis resolution is the centering model that has been adapted to constraints reflecting the functional information structure within utterances, i.e., the distinction between context-bound and unbound discourse elements. We state text-grammatical predicates for ellipsis and then turn to the procedural aspects of their evaluation within the framework of an actor-based implementation of a lexically distributed dependency parser.

Appeared in:
Proc. of the 16th Int. Conference on Computational Linguistics. Copenhagen, Denmark, August 1996
BRIDGING TEXTUAL ELLIPSIS.

Udo Hahn & Michael Strube & Katja Markert

April 1996