Proton-Dependent Gating and Proton Uptake by Wzx Support O-Antigen-Subunit Antipori Across the Bacterial Inner Membrane

Salim T. Islam, Paul D. W. Eckford, Michelle L. Jones, Timothy Nugent, Christine E. Bear, Christian Vogel, Joseph S. Lam

Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada; Molecular Structure & Function Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Bioinformatics Group, Department of Computer Science, University College London, London, United Kingdom; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; University of Rostock, Institute of Chemistry, Rostock, Germany

ABSTRACT Wzx flippases are crucial for bacterial cell surface polysaccharide assembly as they transport undecaprenyl pyrophosphate-linked sugar repeat units from the cytoplasmic to the periplasmic leaflets of the inner membrane (IM) for final assembly. Our recently reported three-dimensional (3D) model structure of Wzx from Pseudomonas aeruginosa PAO1 (WzxPa) displayed a cationic internal vestibule and functionally essential acidic amino acids within transmembrane segment bundles. Herein, we examined the intrinsic transport function of WzxPa following its purification and reconstitution in phospholipid liposomes. WzxPa was capable of mediating anion flux, consistent with its cationic interior. This flux was electrogenic and modified by extraliposomal pH. Mutation of the above-mentioned acidic residues (E61, D269, and D359) reduced proton (H+) modified anion flux, showing the role of these amino acid side chains in H+-dependent transport. Wzx also mediated acidification of the proteoliposome interior in the presence of an outward anion gradient. These results indicate H+-dependent gating and H+ uptake by WzxPa and allow for the first H+-dependent antiportion mechanism to be proposed for lipid-linked oligosaccharide translocation across the bacterial IM.

IMPORTANCE Many bacterial cell surface polysaccharides that are important for survival and virulence are synthesized at the periplasmic leaflet of the inner membrane (IM) using precursors produced in the cytoplasm. Wzx flippases are responsible for translocation of lipid-linked sugar repeat units across the IM and had been previously suggested to simply facilitate passive substrate diffusion. Through our characterization of purified Wzx in a reconstitution system described herein, we have observed protein-dependent intrinsic transport producing a change in the electrical potential of the system, with H+ identified as the coupling ion. These results provide the first evidence for coupled (i.e., secondary active) transport by these proteins and, in conjunction with structural data, allow for an antiportion mechanism to be proposed for the directed transport of lipid-linked sugar substrates across the IM. These findings bring our understanding of lipid-linked polysaccharide transporter proteins more in line with the efflux pumps to which they are evolutionarily related.

Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium and prevalent opportunistic pathogen of compromised individuals with conditions as diverse as cancer, burn wounds, AIDS, and cystic fibrosis (1). As with many infectious agents, its virulence is directly and indirectly modulated by cell surface glycans, such as lipopolysaccharide (LPS), in the outer membrane (OM) (2). LPS is composed of a proximal lipid A membrane anchor, a medial core oligosaccharide (OS) linker, and a distal O-antigen (O-Ag) polymer. Heteropolymorphic O-specific (B-band) O-Ag is the predominant surface antigen, the presence of which affects a range of virulence phenotypes, including motility, type III effector secretion, and the modulation of host complement (2).

B-band O-Ag is synthesized via the Wzx/Wzy-dependent assembly pathway (3, 4). Following trisaccharide O-Ag repeat (O-unit) synthesis on the lipid carrier undecaprenyl pyrophosphate (UndPP), O units are flipped from the cytoplasmic to the periplasmic leaflet of the inner membrane (IM) through the cationic lumen of Wzx (5–7) and polymerized by Wzy via a putative catch-and-release mechanism (8–10). O-Ag polymer length is regulated by Wzz1 and Wzz2 (10–12), followed by ligation to lipid A-core oligosaccharide by Waal (13, 14) to yield a complete LPS molecule, which is exported to the OM via the Lpt pathway (15).

Wzx proteins have been identified in a wide range of Gram-negative and Gram-positive bacteria and in the Archaea (3, 16). These flippases are part of the polysaccharide transporter (PST) family, which is a part of the multidrug/oligosaccharidyl-lipid polysaccharide (MOP) exporter superfamily. Also a part of the MOP superfamily and closely phylogenetically related to PST proteins are the multidrug and toxin extrusion (MATE) family of IM efflux pumps (16), which display ion-dependent antiportion activity (17).
RESULTS

Validation of a liposome reconstitution system for examining gating stimuli. Examination of ion coupling in MOP superfamily proteins has typically been carried out using whole cells or spheroplasts derived from wild-type and mutant strains (19–23); as such, any confounding effects from other integral IM transport proteins still present in the cellular or spheroplast membrane cannot be discounted. To characterize the mechanism of Wzx function in the absence of other transport proteins, Wzx \(\text{His}_8 \) was first overexpressed and purified as a tobacco etch virus (TEV) protease-cleavable fusion to green fluorescent protein (GFP)-His\(_8\) (Fig. 1A). GFP fluorescence was exploited to optimize overexpression and detergent solubilization conditions (24); it also facilitated tracking of the protein through in-gel fluorescence detection (Fig. 1B).

To create a defined environment, Wzx was reconstituted in proteoliposomes through a recently described procedure (25) used to characterize the bacterial OM protein AlgE, required for alginate secretion in \(P.\ aeruginosa \) (26). TEV protease digestion of intact and disrupted proteoliposomes followed by fluorescence detection of cleaved GFP-His\(_8\) (Fig. 1D) revealed that ~20% of particles were protected from digestion in intact proteoliposomes (Fig. 1E); this suggests that these particles are oriented with the periplasmic face of Wzx exposed on the surface of the proteoliposome (facing the bath solution) and the cytoplasmic face present within the interior (see Fig. S1 in the supplemental material). Based on the positively charged interior conduit identified in our homology model (6), we first tested the ability of liposome-reconstituted Wzx\(_{\text{His}_8}\) to mediate anion flux (Fig. 1F). Potassium iodide (K\(^+\)I\(^-\)) was trapped inside proteoliposomes during reconstitution, followed by gel filtration to remove the external I\(^-\) and introduce candidate transport-coupling ions. Flux of I\(^-\) was monitored over time with an I\(^-\)-sensitive electrode, first allowing for an "open" Wzx\(_{\text{His}_8}\) anion selective, thereby limiting its electrod-
infusion. In this case, addition of the K⁺ ionophore valinomycin would overcome this limitation, resulting in enhanced flux through an “open” Wzx_p. Upon valinomycin addition, a robust increase in the I⁻ flux rate was indeed observed (Fig. 1G), substantiating our claim that Wzx_p mediates anion-selective flux. Even after extended time post-valinomycin addition, detergent-lysed proteoliposomes contained an abundance of I⁻, indicating that intraliposomal I⁻ had not become limiting (Fig. 1G).

Wzx_p-mediated I⁻ flux is unaffected by Na⁺. Most experimentally characterized MATE proteins have been found to utilize Na⁺ as the coupling ion during extrusion of charged and hydrophobic toxic compounds from inside the cell via antiport (17); in these investigations, Na⁺ at 20 mM was shown to elicit optimal MATE protein activity (27–30). To test the role of Na⁺ in the Wzx_p transport function, we added sodium glutamate (Na⁺ Glu⁻⁻) to the bath containing Wzx_p proteoliposomes, while maintaining the conditions in the assay as described previously. However, upon valinomycin addition, no significant I⁻ flux was detected above background levels in the presence of Na⁺ for Wzx_p proteoliposomes (see Fig. S2 in the supplemental material).

H⁺ titer affects Wzx_p-mediated I⁻ flux. Antiport activity by a subset of MATE proteins has been shown to be coupled to H⁺ (17). To test the role of protons in Wzx_p-mediated anion flux, the external H⁺ concentration surrounding Wzx_p proteoliposomes was altered through gel filtration of proteoliposomes into morpholinepropanesulfonic acid (MOPS)-potassium glutamate (KGlù) buffer at pH 6.5, 7.5, or 8.5 to provide a 10-fold increase, unchanged, or 10-fold decrease in the H⁺ titer relative to the pH inside the proteoliposomes (pH 7.5), respectively. At external pH 6.5 (Fig. 2A and 2D), a significant I⁻ flux increase was observed (~200%) compared to results for external pH 7.5 (Fig. 2B and 2D). Conversely, when less H⁺ was present externally (pH 8.5) than in the proteoliposome interior, significantly less I⁻ release was detected (Fig. 2C and 2D). These results indicate that H⁺ is modifying halide flux through Wzx_p. Moreover, the I⁻ flux observed in response to valinomycin addition is consistent with the activity of Wzx_p as an electrogenic transporter/channel.

Anionic residue mutants of Wzx_p display compromised H⁺-dependent halide flux. Based on previous mutagenesis and complementation studies by our group, the single substitutions E61A, D269A, and D359A yielded defective Wzx_p variants unable to restore B-band O-Ag biosynthesis in a chromosomal wzx knockout mutant (6). From the tertiary structure homology model of Wzx_p (6), these side chain carboxylates were present in α-helical transmembrane segment (TMS) bundles (rather than being positioned to face the interior vestibule). To independently confirm these positions, the FILM3 modeling approach was employed to use peptide fragment alignment and correlated mutation analysis (31) to produce a de novo tertiary structure model of Wzx_p in the absence of the manual query template alignment biases potentially imposed during homology modeling (32). Comparison of the homology and FILM3 structures yielded analogous TMS packing and protein folds, with a template modeling (TM) score of 0.67296 calculated via the TM-align algorithm (a TM score of >0.5 indicates the same fold) (see Fig. S3 in the supplemental material) (33).

Equivalent positioning of the above-mentioned three residues in helical bundles was also observed (Fig. 3A). While the previously published Wzx_p structural homology model presented the protein in a periplasm-open apo-form state, the FILM3 model displays a more inverted conformation open to the cytoplasm. Since proteins that undergo conformational changes require different sets of contacts to stabilize each state, models built using predicted contacts are likely to adopt an “average” conformation; this is due to the objective function of the program attempting to simultaneously satisfy these different contact sets. This further supports the existence of a cytoplasm-open state for Wzx_p. Through positioning analogous to that of residues shown to bind the antiport coupling ion in NorMMr (D36, E255, and D371) and NorM from Neisseria gonorrhoeae (NorMMg: D41, E261, and D377) (34), similar roles were proposed for amino acids E61, D269, and D359 from Wzx_p (6). Upon comparison with wild-type Wzx_p via the I⁻ flux assay, each mutant displayed a signifi-
cant reduction in H⁺-dependent halide flux, confirming the roles of these residues in responsiveness to ion coupling (Fig. 3B and 3C).

Wzx_{Pa} mediates lumenal acidification of liposomes. Proteoliposomes were reconstituted in the presence of the membrane-impermeant pH-sensitive dye 5 (and 6-)carboxy-SNARF-1 (SNARF-1). Changes in pH result in a ratiometric shift in fluorescence intensities between the two emission peaks of the dye; higher acidity or alkalinity results in increased intensity of the 580-nm or 640-nm peak, respectively (35). To examine the utility of using SNARF-1 for monitoring internal changes in the proteoliposomal proton concentration, SNARF-1-loaded proteoliposomes were gel filtered into buffers at pH 6.5, 7.5, or 8.5 as previously described, followed by treatment with the protonophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP) to artificially reconstitute the pH 8.5, a net decrease in lumen acidity was observed; this is consistent with the second population of reconstituted proteins that have their periplasmic faces exposed on the proteoliposome interior (Fig. 4C and 4D). Given the requirement of valinomycin in the latter that would allow flux of a signal anion from the interior to the proteoliposome lumen (see Fig. S4 in the supplemental material).

Next, we assessed changes in proteoliposomal proton flux mediated by Wzx_{Pa}. Valinomycin was added to SNARF-1-loaded proteoliposomes (to enable continuous I⁻ flux), and changes in SNARF-1 fluorescence were monitored (see Fig. S5 in the supplemental material). With an inward-directed H⁺ gradient (at external pH 6.5), a considerable increase in lumen acidity was observed (Fig. 4A and 4D). Upon reversal of the H⁺ gradient (at external pH 8.5), a net decrease in lumen acidity was observed; this is consistent with the second population of reconstituted proteins (which have their periplasmic faces exposed on the proteoliposome interior) removing H⁺ from within the proteoliposome interior (Fig. 4C and 4D). Given the requirement of valinomycin in the I⁻ flux experiments to initiate halide flux in an electrogenic manner (Fig. 2), this would posit that H⁺ should be transported by Wzx_{Pa} even in the absence of an H⁺ gradient. Consequently, in the presence of an internal and external pH of 7.5, proteoliposome lumen acidification was still detected (Fig. 4B and 4D) (albeit at a lower rate than observed for external pH 6.5), indicating Wzx_{Pa}-mediated H⁺ uptake.

DISCUSSION

The PST and MATE protein families are ubiquitous in bacteria and are the two most closely related groups in the MOP exporter superfamily (16). However, while MATE proteins (e.g., NorM) have been well studied, PST proteins (e.g., Wzx) have remained poorly characterized. NorM and related proteins utilize antiport mechanisms in which two solutes are transported in opposite directions across the IM (36). While the majority of MATE proteins characterized have been shown to use Na⁺ as the coupling ion, a subset have demonstrated H⁺-dependent antiport (17), including NorM (i.e., PmpM) from *P. aeruginosa* PAO1 (NorM_{Pa}) (20), PIMATE from the archaean *Pyrococcus furiosus* (23), and eukaryotic hMATE1/2 from *Homo sapiens* (37, 38).

Recent X-ray crystallographic studies and molecular dynamics (MD) simulations of NorM_{Vc} and NorM_{Pa}, respectively, have revealed considerable internal TMS rearrangement upon coupling-ion binding, even in the absence of bound substrate, yielding a water-accessible pathway through the protein (18, 39, 40). Proton transport uncoupled from substrate transport has also been demonstrated for PIMATE (23). Given the structural and evolutionary analogies between these proteins and Wzx_{Pa} (3, 6, 16), we tested the ability of known MATE coupling ions to induce such changes in the latter that would allow flux of a signal anion from the interior of proteoliposomes. Use of a defined and established reconstitution system (25, 26) allowed us to examine these characteristics in isolation and avoid any effects of other proteins that could influence the flux phenotype (3, 22, 23). Wzx_{Pa} activity was found to respond to H⁺ (but not Na⁺), mirroring the phenotype observed for NorM_{Pa} and PIMATE (20, 23). Moreover, Wzx_{Pa} was shown to mediate H⁺ uptake even in the absence of a directed H⁺ gradient, further supporting its capacity to catalyze movement of H⁺. The need for valinomycin treatment to register anion flux points to the electrogenic nature of the flipase with a proton: anion stoichiometry that is not 1:1. In addition, the observation that H⁺ uptake still occurs with symmetric pH gradients but an outward anion gradient provides further evidence for an antiport mechanism (36).

The 3D structural context of the E61, D269, and D359 Wzx_{Pa} flipase functional groups suggested functional roles similar to those of the NorM_{Vc} residues D36, E255, and D371 (34, 41). Consistent with those in NorM_{Vc} (40), the functional defects of these Wzx_{Pa} residues corresponded to compromised coupling-ion responsiveness. The only other Wzx protein characterized via site-directed mutagenesis is that from *Escherichia coli* O157:H7.
(Wzx_{Pa}), for which the anionic residues D85 and D326 were shown to be functionally important (42). The use of *in silico* and *in vitro* techniques (43), a topological map of Wzx_{Ec} was also proposed (44). Comparison of the Wzx_{Ec} topology map and Wzx_{Pa} homology model (6) indicated putative positional equivalence of these Wzx_{Pa} residues. Comparison of the Wzx_{Ec} residue E61 and D269 from Wzx_{Pa} (3). While H⁺ is the coupling ion for Wzx_{Pa} and NorM_{Pa} (YdhE) from *E. coli* utilizes Na⁺ to drive antiport activity (45); as such, if Wzx_{Ec} were to display Na⁺-dependent gating, it might point to the conserved use of a particular coupling ion between related transport proteins in a given species.

Residues R59, T60, F139, R146, and K272 from Wzx_{Pa} are also functionally important. Putative substrate interaction roles for these residues have been highlighted, as follows: (i) the Wzx_{Pa} O-unit trisaccharide substrate has a net negative charge (2), (ii) aromatic side chains are often found in sugar- and carbohydrate-binding sites in proteins (46, 47), and (iii) most are in direct contact with the internal flipase cavity (6), similar to the case of substrate-binding D41, S61, F265, Q284, S288, D355, and D356 from NorM_{Pa} (39).

Taking into consideration knowledge derived from the latest data in the Wzx and NorM literature, including X-ray crystallography (23, 18, 39), mutagenesis (6, 23, 39, 41), modeling (6), biochemical studies (4), MD simulations (40), and phylogenetic analysis (16), as well as the proteoliposomal I[−] and H⁺ flux results obtained in this study, we have adapted the MATE efflux model described by Lu et al. (39) to propose the following model for the mechanism of O-unit flipping across the IM. In a periplasm-facing O-unit-bound Wzx_{Pa} (Fig. 5A; see also Fig. 5B in the supplemental material), H⁺ is bound by the D269–D359 (TMS8–TMS11) dyad via recruitment by E61 (TMS2) (Fig. 5B; see also Fig. 5F). Binding of the new O unit causes release to the cytoplasm. (H) Inverted O-unit-bound Wzx, lacking a coupling ion, transitions back to a periplasm-facing conformation, resulting in flipping of the UndPP-linked O unit between IM leaflets. Cylinder legend: blue, TMS1 and TMS2 combined; cyan, TMS4; yellow, TMS8 and TMS11 combined; orange, TMS10.

FIG 5 Proposed mechanism of Wzx function. (A) O-unit-bound Wzx lacking a coupling ion. (B to D) Binding of H⁺ (green triangle) induces movement of TMS8 and TMS11 away from the vestibule (B), disengaging retention interactions (C) and allowing for lateral diffusion of the flipped UndPP-linked O unit to the outer leaflet of the IM (D). (E and F) Wzx transitions to an inverted H⁺-bound structure open to the cytoplasm (E), allowing for loading of a new UndPP-linked O unit from the cytoplasmic leaflet of the IM (F). (G) O-unit binding triggers movement of TMS8 and TMS11 toward the vestibule, weakening dyad binding of H⁺ and resulting in H⁺ release to the cytoplasm. (H) Inverted O-unit-bound Wzx, lacking a coupling ion, transitions back to a periplasm-facing conformation, resulting in flipping of the UndPP-linked O unit between IM leaflets. Cylinder legend: blue, TMS1 and TMS2 combined; cyan, TMS4; yellow, TMS8 and TMS11 combined; orange, TMS10.

In conclusion, these findings provide the basis for interpreting the structure and function of Wzx flippases, a widespread yet poorly understood class of proteins.

MATERIALS AND METHODS

DNA manipulations. Site-directed mutagenesis, transformation, and plasmid recovery were carried out as previously described (6, 9) on the pWaldo-wzx-GFP plasmid encoding Wzx-GFP-His₆ (4) to obtain plasmids encoding E61A, D269A, and D359A mutant constructs using previously designed oligonucleotide primers (6). A tobacco etch virus (TEV) protease cleavage site is present between the terminus of Wzx and the start of GFP-His₆ (24).

Overexpression and purification of Wzx-GFP-His₆. *E. coli* BL21(DE3) was transformed with the wild-type (WT) and mutant pWaldo-wzx-GFP plasmid constructs via heat shock. Transformants were grown on lysogeny broth (LB) agar and in LB broth supplemented with kanamycin (50 μg/ml). Broth cultures were inoculated to an initial optical density at 600 nm (OD₆₀₀) of 0.01, and grown with shaking (220 rpm, 37°C) until an OD₆₀₀ of 0.25 to 0.35 was reached. Cultures were shifted to 30°C for 30 min and then induced by addition of 15% isopropyl-β-thiogalactopyranoside (IPTG) (Roche) for 5 to 7 h (30°C, 220 rpm) (24).

Cell pellets were resuspended in 25 mM MOPS and 75 mM potassium iodide (pH 7.5) (MOPS-KI buffer) with 1× Complete protease inhibitor lacking EDTA (Roche) and lysed via two passages (20,000 lb/in²) through an Emulsiflex C3 high-pressure homogenizer (Avestin). Unlysed cells and crude debris were sedimented at 12,000 x g (30 min, JA25.50 rotor) in a
Beckman superspeed centrifuge, followed by sedimentation at 120,000 × g (1.25 h, Ti70 rotor) in a Beckman ultracentrifuge to obtain the membrane pellet. This was resuspended in MOPS-KI with 1× Complete lacking EDTA, 0.2% lauryldimethylamine-N-oxide (LDAO) detergent, and 20 mM imidazole via three passages in a Dounce homogenizer. Samples were sedimented in an ultracentrifuge to obtain the solubilized membrane fraction.

Solubilized membrane samples were mixed with Talon affinity resin (Clontech) at a ratio of 5:1, incubated on a Nutator platform at 4°C (2 h), and then packed in a disposable purification column at 4°C (Bio-Rad). Samples were washed and eluted with increasing concentrations of imidazole in MOPS-KI buffer containing 0.1% LDAO. Elution fractions were pooled and concentrated in a 30-kDa cutoff Vivaspin column (Sartorius) in a Sorval centrifuge (3,000 × g). MOPS-KI (0.1% LDAO, no imidazole) was added and spun through the sample thrice. Protein concentrations of purified samples were measured using the detergent-compatible bicinchoninic acid kit (Thermo) in a 96-well plate using a BMG Fluostar Optima microplate reader. Purified proteins and proteoliposomes were heated in Laemmli buffer (37°C, 30 min) and resolved via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) along with ECL Plex fluorcent Rainbow marker (GE Healthcare). In-gel fluorescence scans were obtained with a Typhoon 9410 imager and ImageQuant TL software (GE Healthcare). The blue 2 (488), green (532), and red (633) excitation lasers and the 526SP, 580BP, and 670BP emission filters were used to detect GFP, Cy3, and Cy5 fluorescence, respectively.

Liposome reconstitution of WT and mutant Wzx-GFP-His₆ constructs. Egg phosphatidylcholine (PC) (200 µg) in chloroform (Avanti) was dried in a glass vial under argon gas. Dried egg PC was resuspended in MOPS-KI (0.1% LDAO) via vortex mixing (10 s) twice and sonication in a chilled bath (5 s) thrice. Protein sample volume was added to the resuspended lipid at a protein-to-lipid ratio of 1:400 by weight such that the final mixture volume remained 1 ml. Protein-lipid mixtures were extruded 15 times through an Eclipse 25 G × 1/2 in. needle (BD Biosciences) and incubated on ice for 1 h. Protein-lipid mixtures were passed down a detergent-removal spin column (Thermo), which had been prepared using MOPS-KI lacking detergent according to the manufacturer’s instructions. All reconstitutions were performed in pH 7.5 buffer unless otherwise specified, resulting in an internal proteoliposome pH of 7.5. For fluorimetry analysis of intraliposomal pH changes, the pH-sensitive dye SNARF-1 was excited at 514 nm, with emission from the acid-sensitive and base-sensitive peaks monitored at 580 nm and 640 nm, respectively, with real-time correction. Valinomycin (10 nM) or CCCP (20 µM) was added (t = −300 s) to the gel-filtered proteoliposomes, and after a final mix (t = 0 s) the run was monitored for an extended period to observe shifts in the relative intensities of the 580-nm and 640-nm emission peaks. At each time point, the 580-nm/640-nm fluorescence emission ratio was determined and used to calculate the internal proteoliposome pH. These data were fit to a linear regression line of the ratio plotted over time.

De novo structure modeling

A Wzx_{tyc} multiple sequence alignment (MSA) was generated using the software program jackhmmmer (50). Three search iterations were performed with an E value inclusion threshold of 10^{−6} against the UNIREF100 data bank (51), with duplicate rows and columns containing gaps in the target sequence removed, resulting in a final MSA of 22,241 aligned sequences. The program PSICOV (52) was then used to generate a list of predicted contacts from the MSA along with precision estimates for each contact. Secondary structure and TMS predictions were generated using the PSIPRED (53) and MEMSAT-SVM (54) programs were combined using a simple consensus scoring scheme ensuring that the predicted topology was enforced. Using the list of predicted contacts where estimated precision was >0.5 and the consensus secondary structure as inputs, 200 models were generated using the FILM3_{de novo} structure prediction method (31), 100 with z coordinate constraints derived from topology prediction and 100 without. The lowest-energy model was then identified using the standard FILM3 objective function, and the 100 lowest-energy models were fitted to it by rigid body superposition. The mean pairwise TM score (55) was calculated for all models in the resulting ensemble, producing a value of 0.23, which indicates good homogeneity among the candidate structures. In development of FILM3, this value showed a strong correlation with the observed TM score of the final model (Pearson’s r = 0.77), allowing the TM score of the Wzx model to be predicted using linear regression as 0.59, therefore indicating a model with high probability of a correct fold. The FILM3 combinatorial refinement protocol was applied to the ensemble, but the resulting model displayed an implausible topology. We therefore selected the lowest-energy structure as the final model, which we refined using the software program MODELLER (24) to produce reasonable loop and side chain conformations.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00678-13/-/DCSupplemental.

Figure S1, TIF file, 5.9 MB.

Figure S2, TIF file, 0.3 MB.

Figure S3, TIF file, 5.1 MB.
REFERENCES

1. Lyczak JB, Cannon CL, Pier GB. 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2:1051–1060.

2. Lam JS, Taylor VL, Islam ST, Hao Y, Kocincová D. 2011. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front. Microbiol. 2:1–25.

3. Islam ST, Lam JS. 2013. Wzx flipase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ. Microbiol. 15:1001–1015.

4. Islam ST, Taylor VL, Qi M, Lam JS. 2010. Membrane topology mapping of the O-antigen flipase (Wzx), polymerase (Wzy), and ligase (WaaL) from Pseudomonas aeruginosa PA01 reveals novel domain architectures. mBio 1(3):e00189-10. doi:10.1128/mBio.00189-10.

5. Burrows LL, Lam JS. 1999. Effect of wzx (rfbX) mutations on A-band and B-band lipopolysaccharide biosynthesis in Pseudomonas aeruginosa O5. J. Bacteriol. 181:973–980.

6. Islam ST, Fieldhouse RJ, Anderson EM, Taylor VL, Keates RA, Ford RC, Lam JS. 2012. A cationic lumen in the Wzx flipase mediates anionic O-antigen subunit translocation in Pseudomonas aeruginosa PA01. Mol. Microbiol. 84:1165–1176.

7. Liu D, Cole RA, Reeves PR. 1996. An O-antigen processing function for Wzx (RfB:X); a promising candidate for O-unit flipase. J. Bacteriol. 178:2102–2107.

8. de Kievit TR, Dasgupta T, Schweizer H, Lam JS. 1995. Molecular cloning and characterization of the rfc gene of Pseudomonas aeruginosa (serotype O5). Mol. Microbiol. 16:565–574.

9. Islam ST, Gold AC, Taylor VL, Anderson EM, Ford RC, Lam JS. 2011. Dual conserved periplasmic loops possess essential charge characteristics that support a catch-and-release mechanism of O-antigen polymerization by Wzy in Pseudomonas aeruginosa PA01. J. Biol. Chem. 286:20600–20605.

10. Woodward R, Yi W, Li L, Zhao G, Eguchi H, Srirhar PR, Guo H, Song JK, Motari E, Cai I, Kelleher P, Liu X, Han W, Zhang W, Ding Y, Li M, Wang PG. 2010. In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat. Chem. Biol. 6:418–423.

11. Burrows LL, Chow D, Lam JS. 1997. Pseudomonas aeruginosa B-band O-antigen chain length is modulated by Wzz (Rol1). J. Bacteriol. 179:1482–1489.

12. Daniels C, Griffiths C, Cowles B, Lam JS. 2002. Pseudomonas aeruginosa O-antigen chain length is determined before ligation to lipid A core. Environ. Microbiol. 4:868–897.

13. Abeyrathne PD, Daniels C, Poon KK, Matewish MJ, Lam JS. 2005. Functional characterization of WaaL, a ligase associated with O-antigen polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. J. Bacteriol. 187:3002–3012.

14. Abeyrathne PD, Lam JS. 2007. Waal of Pseudomonas aeruginosa utilizes ATP in an vitro ligation of O antigen onto lipid A-core. Mol. Microbiol. 65:1345–1359.

15. Silhavy TJ, Kahne D, Walker S. 2010. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2:a00414. doi:10.1101/cshperspect.a00414.

16. Hourop RN, Winnen B, Chang AB, Jiang Y, Zhou XF, Saier MH, Jr.. 2003. The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur. J. Biochem. 270:799–813.

17. Kuroda T, Tschiaya T. 2009. Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta 1794:763–768.

18. He X, Szweczyk P, Karyakin A, Evin M, Hong WX, Zhang Q, Chang G. 2010. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467:991–994.

19. Begum A, Rahman MM, Ogawa W, Mizushima T, Kuroda T, Tschiaya T. 2005. Gene cloning and characterization of four MATE family multidrug efflux pumps from Vibrio cholerae non-O1. Microbiol. Immunol. 49:949–957.

20. He GX, Kuroda T, Mima T, Morita Y, Mizushima T, Tschiaya T. 2004. An H+ -coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J. Bacteriol. 186:262–265.

21. Huda MN, Chen J, Morita Y, Kuroda T, Mizushima T, Tschiaya T. 2003. Gene cloning and characterization of VcrM, a Na+-coupled multidrug efflux pump, from Vibrio cholerae non-O1. Microbiol. Immunol. 47:419–427.

22. Rick PD, Barr K, Sankaran K, Kajimura J, Rush JS, Waechter CJ. 2003. Evidence that the wxe gene of Escherichia coli K-12 encodes a protein involved in the transbilayer movement of a trisaccharide-lipid intermediate in the assembly of enterobacterial common antigen. J. Bacteriol. 185:2102–2107.

23. Tanaka Y, Hiholico JT, Matura RA, Ito K, Kuroda Y, Higuchi T, Katoth T, Katoth H, Hattori M, Kuzamaki T, Tsukazaki T, Ishitani R, Suga H, Nureki O. 2013. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496:247–251.

24. Drew D, Lech M, Kunji E, Slotboom DJ, de Gier JW. 2006. Optimization of membrane protein overexpression and purification using GIP Fusions. Nat. Methods 3:303–313.

25. Eckford PD, Li C, Sankaran K, Kajimura J, Rush JS, Waechter CJ. 2003. Genetic and functional characterization of Wzy and Wzz. Nat. Chem. Biol. 883–897.

26. van Veen HW. 2000. Establishment of functional characterization of WaaL, a ligase associated with linking of O antigen onto lipid A-core. Environ. Microbiol. 2:1051–1060.

27. 2002. VmrA, a member of a novel class of Na+ -coupled multidrug efflux pumps from Vibrio parahaemolyticus. J. Bacteriol. 184:572–576.

28. Huda MN, Morita Y, Kuroda T, Mizushima T, Tschiaya T. 2001. Na+ -driven multidrug efflux pump VcmA from Vibrio cholerae non-O1, a non-halophilic bacterium. FEMS Microbiol. Lett. 203:235–239.

29. Long F, Rouquette-Loughlin C, Shafer WM, Yu EW. 2008. Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YhdE from Escherichia coli. Antimicrob. Agents Chemother. 52:3052–3060.

30. Morita Y, Kataoka A, Shiota S, Mizushima T, Tschiaya T. 2000. NorM of Vibrio parahaemolyticus is an Na+ -driven multidrug efflux pump. J. Bacteriol. 182:6694–6697.

31. Nugent T, Jones DT. 2012. Accurate de novo structure prediction of large transmembrane protein domains using fragment-assemble and related correlation analysis. Proc. Natl. Acad. Sci. U. S. A. 109:E1540–E1547. doi:10.1073/pnas.1120036109.

32. Ravna AW, Sylte I. 2012. Homology modeling of transporter proteins (carriers and ion channels), p 281–299. In Orry AJW, Abagyan R (ed), Homology modeling: methods and Protocols, vol 857. Humana Press, New York, NY.

33. Zhang Y, Skolnick J. 2005. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33:2302–2309.

34. van Veen HW. 2010. Structural biology: last of the multidrug transporters. Nature 467:926–927.

35. Whitaker JE, Haugland RP, Prendergast FG. 1991. Spectral and photo-physical studies of benz[c]xanthene dyes: dual emission pH sensors. Anal. Biochem. 194:330–344.

36. Forrest LR, Krämer R, Ziegelcr. 2011. The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta 1807:167–188.
Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, Ogawa O, Inui KJ. 2006. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J. Am. Soc. Nephrol. 17: 2127–2135.

Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. 2005. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. U. S. A. 102: 17923–17928.

Lu M, Symersky J, Radchenko M, Koide A, Guo Y, Nie R, Koide S. 2013. Structures of a Na+/H11001-coupled, substrate-bound MATE multidrug transporter. Proc. Natl. Acad. Sci. U. S. A. 110: 2099–2104.

Vanni S, Campomanes P, Marcia M, Rothlisberger U. 2012. Ion binding and internal hydration in the multidrug resistance secondary active transporter NorM investigated by molecular dynamics simulations. Biochemistry 51:1281–1287.

Otsuka M, Yasuda M, Morita Y, Otsuka C, Tsuchiya T, Omote H, Moriyama Y. 2005. Identification of essential amino acid residues of the NorM Na+/H11001-multidrug antiporter in Vibrio parahaemolyticus. J. Bacteriol. 187:1552–1558.

Marolda CI, Li B, Lung M, Yang M, Hanuszkiwicz A, Rosales AR, Valnaro MA. 2010. Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli. J. Bacteriol. 192:6160–6171.

Islam ST, Lam JS. 2013. Topological mapping methods for α-helical bacterial membrane proteins—an update and a guide. MicrobiologyOpen 2:350–364. doi:10.1002/mbo3.72.

Marolda CI, Li B, Lung M, Yang M, Hanuszkiwicz A, Rosales AR, Valnaro MA. 2011. Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli. J. Bacteriol. 193:1291–1292.

Xu XJ, Su XZ, Morita Y, Kuroda T, Mizushima T, Tsuchiya T. 2003. Molecular cloning and characterization of the HmrM multidrug efflux pump from Haemophilus influenzae Rd. Microbiol. Immunol. 47: 937–943.

Malik A, Ahmad S. 2007. Sequence and structural features of carbohydrate binding in proteins and assessment of predictability using a neural network. BMC Struct. Biol. 7:1. doi:10.1186/1472-6807-7-1.

Alkhouri B, Denning RA, Kim Chiaw P, Eckford PD, Yu W, Li C, Bogojesci JJ, Bear CE, Viirre RD. 2011. Synthesis and properties of molecular probes for the rescue site on mutant cystic fibrosis transmembrane conductance regulator. J. Med. Chem. 54:8693–8701.

Pasyk S, Li C, Ramjeeisingh M, Bear CE. 2009. Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease. Biochem. J. 418:185–190.

Eddy SR. 2011. Accelerated profile HMM searches. PLOS Comput. Biol. 7e1002195. http://dx.doi.org/10.1371/journal.pcbi.1002195.

Magrane M, UniProt. 2011. UniProt Knowledgebase: a hub of integrated protein data. Database 2011:bar009. http://dx.doi.org/10.1093/database/bar009.

Jones DT, Buchan DW, Cozzetto D, Pontil M. 2012. PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 28:184–190.

Buchan DW, Ward SM, Lobley AE, Nugent TC, Bryson K, Jones DT. 2010. Protein annotation and modelling servers at University College London. Nucleic Acids Res. 38:W563–W568. doi:10.1093/nar/gkq427.

Nugent T, Jones DT. 2012. Detecting pore-lining regions in transmembrane protein sequences. BMC Bioinformatics 13:169. doi:10.1186/1471-2105-13-169.

Xu J, Zhang Y. 2010. How significant is a protein structure similarity with TM-score ≈ 0.5? Bioinformatics 26:889–893.