Diabetes in African Caribbean, and Indo-Asian ethnic minority people

Mary L Burden RGN MPH, Senior Diabetes Specialist Nurse
Owen Woghiren MB MRCP, Research Fellow
A C 'Felix' Burden MD FRCP, Consultant Physician and Senior Lecturer
Diabetes Care, Leicester General Hospital
J R Coll Physicians Lond 2000;34:343–6

This article reviews diabetes in Indo-Asian (IA) people (who came, or whose forefathers came, from the Indian subcontinent), and African-Caribbean (AC) people (who came, or whose forefathers came, from the Caribbean).

Demography

In the 1991 census nearly 840,000 people described themselves as Indian, 500,000 as Black Caribbean and 477,000 as Pakistani, and less than half were born abroad. Compared with their white peers:

- the IA and AC populations were younger
- they were less likely to be in employment – if they had work, it was less well paid and with more arduous physical conditions
- more were poor
- fewer owned their own homes
- they were less able to benefit from social security.

Epidemiology of diabetes

Comparison with whites

Type 1 diabetes was initially uncommon in IA migrants, but the prevalence is now the same as in whites. There are no reliable data for AC people. Type 2 diabetes is commoner in IA, and occurs at an earlier age, with a lifetime risk of approximately one in three. AC have intermediate rates (Table 1).

As in all societies, the prevalence of diabetes increases with age, sedentary lifestyle and increase in body weight.

Importantly, the rates in the UK are not different from those recently reported from the Indian subcontinent and the Caribbean. No firm reason for the high rates of diabetes is yet available, but the thrifty gene or phenotype hypotheses are both potential explanations, Insulin resistance is marked in IA, which could explain the onset of diabetes at a young age. Insulin resistance also explains the rapid change from impaired glucose tolerance to overt diabetes and the rapid progression to insulin therapy in this population.

Other risk factors

Hypertension. Hypertension is common in AC and explains the high rate of stroke and renal disease. The rates of hypertension are low in vegetarian Gujeratis, but hypertension is common in Punjabi Sikhs.

Lipids. AC have lower total cholesterol and triglyceride, but higher high-density lipoprotein than whites or IA. This contributes to the lower rates of coronary heart disease (CHD) seen in AC.

Complications of diabetes

Comparisons here are made with whites as the reference population. Where possible, diabetes-specific prevalence or incidence data have been used.

Renal disease

Renal disease is commoner in IA and AC than in whites. In the former, there are increases in microalbuminuria.
proteinuria, creatinine (>200 μmol/l), and end-stage renal failure (>500 μmol/l or on dialysis). Once the process of renal damage has started, the rate of decline of renal function and mortality rates are the same as in whites (O Woghiren, ML Burden, AC Burden; personal observations).

Eye disease
Cataracts are commoner in IA, retinal vein occlusions are commoner in both IA and AC, while the prevalence of diabetic retinopathy is probably the same or less than in whites.

Vascular disease
Peripheral vascular disease is rare in IA, but as common in AC as in whites. In those with diabetes, the prevalence of CHD in IA and whites is identical, whereas the AC are relatively protected. Stroke is particularly common in AC.

Management of diabetes in ethnic minorities
Educational issues
In managing diabetes mellitus in ethnic groups, the educator has to be acutely aware of cultural differences and values, but must also avoid stereotyping. Individuals' needs can be met only by an individual assessment, which is then communicated to the team. Community

Table 1. Community prevalence of diabetes following screening programme.

Study (Ref)	Age (years)	Ethnic group	%	No.
6	20–79	White	3.6	1,710
		Indo-Asian	10	2,283
7	35–64	Bangladeshi	22.4	115
		Non-Asian	8.5	125
8	40–64	White	4.4	1,761
		Indo-Asian	19	1,712
		African Caribbean	14.6	209
9	35–70	White	6.3	1,997
		Indo-Asian	17.9	2,132

Written educational material is then available for those who prefer to read the educational message. This can be used as a script for audiotapes, video productions and other visual techniques.

Lifestyle
Prudent diets, increased exercise with smoking cessation programmes are effective primary and secondary interventions for CHD and diabetes. IA tend to be less active than whites, and culturally acceptable physical activity and exercise should be encouraged. 'Talk and walk' rather than 'sit and talk' may be a useful example.

Compliance with dietary advice is difficult if important social rules such as hospitality are ignored, or if food advice does not include what is actually eaten. In this regard, IA or AC are no different from their white peers, but may be less able to explain to their healthcare workers examples of the advice is inappropriate.

The pharmacological management of diabetes
Glycaemic control
The principles of glycaemic control are the same as for the white population, remembering the progressive needs for treatment. Protocol-driven studies aiming to keep haemoglobin A1c normal show equal glycaemic control, but in everyday practice treatment is often inadequate when compared with whites.

Cardiovascular risk reduction
There is no specific evidence for aspirin or statin therapy in either IA or AC. Therefore, it seems cogent to use the Joint British Societies' guidelines for all patients.

Oral hypoglycaemic agents
There is no definitive evidence on the drug of choice for IA or AC because the population in the UK Prospective Diabetes Study (UKPDS) was mainly

Journal of the Royal College of Physicians of London Vol. 34 No. 4 July/August 2000
white, but it did reflect the UK diabetic population as a whole. In the absence of any other evidence, the overall UKPDS findings should be applied to IA and AC. Metformin may be particularly advantageous in the overweight IA patients to reduce their cardiovascular risk. In the future, the thiazolidinediones may prove to be beneficial in IA, in whom insulin resistance is considerable.

Insulin therapy

Cultural sensitivity is required when prescribing insulin. Pork insulin (including modified pork as in Human Velosulin™) would be unacceptable to Muslim, Jewish or vegetarian patients. IA require insulin at an earlier age, and need larger amounts, than whites.

Travelling abroad

IA and AC frequently report that their diabetes gets better when visiting warm countries. This is presumably because more exercise is undertaken. The time changes involved with travel can cause problems but, with encouragement, appropriate changes can be made to medication. All patients on insulin should be reminded to carry it in hand luggage, carry identification for customs, be aware of different insulin concentrations, and know how to keep insulin cool (in an unglazed pot containing water in a shady place or in a special insulin carrier).

Fasts

Special advice and support are required during periods of fasting. Fasting occurs in most religions but is of particular concern to a Muslim who will allow nothing, including water, to enter his body during the daylight hours during Ramadan. Islam does not require people who are ill to fast, but many devout diabetic Muslims still do fast. With care, negotiation and co-operation, fasting can be achieved safely. The principle is to negotiate safety:

- If you feel hypoglycaemic, will you break your fast?

Key Points

- 18–22% of Indo-Asian (IA) people aged 35–70 years have diabetes
- IA people have marked insulin resistance, accounting for diabetes at an early age and rapid transition to insulin replacement
- In African Caribbean people, hypertension is a common avoidable cause of stroke and renal disease
- All stages of diabetic nephropathy are commoner in IA people than in whites
- Educational literature needs care in production and objective assessment
- Ethnicity used as a variable in audit ensures equity
- Glycaemic and cardiovascular risk reduction programmes should be protocol driven to ensure equity
- Fasting can be achieved safely by negotiation and co-operation

- Are you prepared to try fasting before Ramadan so that you can modify your treatment?

 Our usual advice is to reduce daytime insulin amounts, and consider using quick-acting insulin analogues such as insulin Lispro, and possibly Aspart, with the meal at the end of the fast, modifying the dose as a result of self testing.

Herb treatment

Karela, methi, garlic and bitters are frequently taken for their hypoglycaemic action, either real or imaginary. The key point is to encourage empiricism and compliance: the herb should be taken regularly, and the patient encouraged to observe its effects on blood glucose measurements and themselves.

Some caution is needed here:

- Karela is associated with an increased frequency of abortions, so its use should be discouraged in pregnancy
- Some alternative medicines contain heavy metals and arsenic.

Screening programmes for diabetes

IA and AC are at high risk of diabetes. Opportunistic screening should be done on individuals over the age of 30 years every 2–3 years: for example, if admitted to hospital or seen in outpatients for an illness unrelated to diabetes.

Equality of care and access to health services

The NHS proclaims equality of access to care. This should not be assumed, but measured by audit. An audit of the care of IA patients with CHD in Leicester revealed that IA were admitted more slowly, and were less likely to be thrombolysed, referred for an exercise stress test or for coronary angiography than their white peers. Several factors contributed to this, including reluctance to seek medical attention (particularly to dial '999'), language barriers, difficulties experienced by healthcare workers in interpreting symptoms, and unawareness of the availability of services. The audit showed us how to improve our care and the access to care, and the situation is now better.

Conclusion

The number of both IA and AC who will develop diabetes is considerable. Self management is a feasible technique to ensure adequate care. To achieve this, all healthcare workers have a responsibility to ensure appropriate and culturally sensitive education of the person with diabetes.
References

1 1991 census: local base statistics. London: Office of Population Censuses and Surveys, 1992.

2 Amin K, Oppenheim C. Poverty in black and white. London: Child Poverty Action Group/Runnymede Trust, 1992.

3 Smaje C (ed). In: Health race and ethnicity. London: King's Fund Institute, 1995: Ch 1.

4 Burden AC, Samanta A, Chaudhuri KR. The prevalence and incidence of insulin dependent diabetes in White (W) and Indian (I) children in Leicester city (UK). Diabetes Bull 1990; 10:8-10.

5 Gujral JS, McNally PG, Botha JL, Burden AC. Childhood-onset diabetes in the white and South Asian population in Leicester, UK. Diabet Med 1994; 11:570-2.

6 Simmons D, Williams DR, Powell M. Prevalence of diabetes in a preponderantly Asian community: preliminary findings of the Coventry diabetes study. Br Med J 1989; 298:18-21.

7 McKeighue P, Marmot M, Syndercrome Court Y, Cottier D, et al. Diabetes hyperinsulinaemia and coronary risk factors in Bangladeshis in East London. Br Heart J 1988; 60:390-6.

8 McKeighue P, Shah B, Marmot M. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet 1991; 337:382-6.

9 Davies MJ, Ammari F, Sherriff C, Burden ML, et al. Screening for type 2 diabetes mellitus in the UK Indo-Asian population. Diabetic Med 1999; 16:131-7.

10 Phillips DIW. Diabetes due to early nutritional deficiencies. Pract Diabetes Int 1995; 12(Suppl):8-10.

11 Sharp PS, Mohan V, Levy JC, Mather HM, et al. Insulin resistance in patients of Asian Indian and European origin with non-insulin dependent diabetes. Hormone Metab Res 1987; 19:84-5.

12 Burden AC. Blood pressure control and cardiovascular risk in patients of Indo-Asian and African-Caribbean descent. Int J Clin Pract 1990; 52:389-94.

13 Burden AC. Hypertension in Indo-Asian people. J Indian Med Soc (in press).

14 Shaukat N, Cruickshank JK. Coronary artery disease: impact upon black and ethnic minority people. In: Hopkins A, Bahl V (eds). Access to health care for people from black and ethnic minorities. London: Royal College of Physicians of London, 1993.

15 Allawi J, Rao PV, Gilbert R, Scott G, et al. Microalbuminuria in non insulin dependent diabetes, its prevalence in Indian compared with Europid patients. Br Med J 1988; 296:462-6.

16 Samanta A, Burden AC, Feehally J, Walls J. Diabetic renal disease: differences between Asian and white patients. Br Med J 1986; 293:366-7.

17 Gujral JS, Burden AC, Iqbal J, Raymond NT, et al. The prevalence of chronic renal failure in known diabetic and non-diabetic White Caucasians and South Asians. Pract Diabetes Int 1997; 14:71-4.

18 Burden AC, McNally PG, Feehally J, Walls J. Increased incidence of end-stage renal failure secondary to diabetes mellitus in Asian ethnic groups in the United Kingdom. Diabetic Med 1992; 9:641-5.

19 Koppiker N, Feehally J, Raymond N, Abrams KR, et al. Rate of decline in renal function in Indo-Asians and Whites with diabetic nephropathy. Diabetic Med 1998; 15:60-5.

20 Samanta A, Burden AC, Jagger C. A comparison of the clinical features and vascular complications of diabetes between migrant Asians and Caucasians in Leicester, U.K. Diabet Res Clin Pract 1991; 14:205-13.

21 Dodson PM, Kritzinger EE, Clough CG. Diabetes mellitus and retinal vein occlusion in patients of Asian, West Indian and White European origin. Eye 1992; 6:66-8.

22 Gujral JS, McNally PG, O'Malley BP, Burden AC. Ethnic differences in the incidence of lower extremity amputation secondary to diabetes mellitus. Diabetic Med 1993; 10:271-4.

23 Carter JS, Pugh JA, Monterossa A. Non insulin dependent diabetes mellitus in minorities in the United States. Ann Intern Med 1996; 125:221-32.

24 Hopkins A, Bahl V (eds). Access to health care for people from black and ethnic minorities. London: Royal College of Physicians of London, 1993.

25 Ramayya KL, Swal AB, McLarty DG, Alberti KG. Improvement in glucose tolerance after one year of follow-up in a Hindu community in Africa. Diabetes Res Clin Pract 1990; 10:245-55.

26 Samanta A. A study of diabetes in Asians. MD Thesis, University of Leicester, 1998.

27 Samanta A, Campbell JE, Spalding DL, Panja KK, et al. Dietary habits of Asian diabetics in a general practice clinic. Hum Nutr Appl Nutr 1987; 41:160-3.

28 Hawthorne K. Asian diabetics attending a British hospital clinic: a pilot study to evaluate their care. Br J Gen Pract 1990; 40:243-7.

29 Wood D, Durrington P, McNes G, Rees A, et al. Joint British recommendations on prevention of coronary heart disease in clinical practice. British Cardiac Society, British Hyperlipidaemia Association, British Hypertension Society, endorsed by the British Diabetic Association. Heart 1998; 80(Suppl 2).

30 Meyer LC, Manley SE, Frighi V, Burden F, et al. UK Prospective Diabetes Study XII: differences between Asian, Afro-Caribbean and White Caucasian type 2 diabetic patients at diagnosis of diabetes. Diabetic Med 1994; 11:670-7.

31 Burden ML, Burden AC. Management of diabetes mellitus during the holy month of Ramadan. Proceedings of an International Symposium, Cairo, Egypt. Pract Diabetes Int 1998; 15(Suppl).

32 Lear JT, Lawrence IG, Pohl JF, Burden AC. Myocardial infarction and thrombolysis: a comparison of the Indian and European population on a coronary care unit. J R Coll Physicians Lond 1994; 28:143-6.

Address for correspondence:
Dr A C Burden, Diabetes Care, Leicester General Hospital Site, Gwendolen Road, Leicester LE5 4PW.
E-mail: actefelix.burden@btinternet.com