Supportivtherapie der medikamentösen Tumortherapie bei Kopf-Hals-Tumoren

Supportive Therapy in Medical Therapy of Head and Neck Tumors

Inhaltsverzeichnis

Zusammenfassung 151
1 Infektionen bei Neutropenie 152
1.1 Definitionen 152
2 Neutropenie (Granulozytopenie) 152
2.1 Risikozuordnung der Patienten nach erwarteter Neutropeniedauer und Risikofaktoren 152
2.2 Infektionen 152
2.2.1 Klinisch gesicherte Infektion 152
2.2.2 Mikrobiologisch gesicherte Infektion mit oder ohne Bakteriämie oder Fungämie 152
2.2.4 Lungeninfilrate 152
2.2.5 Abdominelle Infektionssymptome 153
2.2.6 Venenkathetherassoziierte Infektionen 153
3 Diagnostik 153
3.1 Klinische Diagnostik bei Therapiebeginn 153
3.1.1 Bildgebende und sonstige Untersuchungen, je nach Risiko und Symptomatik, siehe Checkliste C 153
3.1.2 Weitere mikrobiologische Diagnostik nur bei entsprechender Infektionssymptomatik siehe Checkliste D 153
4 Therapiestrategien 153
4.1 Empirische Therapie und Management 153
4.1.2 Definierte Therapie bei mikrobiologisch oder klinisch dokumentierter Infektion 154
4.1.3 Weitere Detailinformationen 154
4.1.4 Therapie dokumentierter Infektionen 154
5 Infektionsprophylaxe 155
5.1 G-CSF zur Prophylaxe und Therapie der Neutropenie 158
5.1.1 Infektionen bei Neutropenie 158
5.1.2 Risikofaktoren für febrile Neutropienien 158
5.1.3 Relative Dosisintensität der Chemotherapie 158
5.1.4 Wann ist bei Chemotherapie eine Prophylaxe der febrilen Neutropenie mit G-CSF indiziert? 158
5.1.5 Empfehlungen für G-CSF bei definierten Patientengruppen mit Neutropenie 159
5.1.6 Behandlung bei afebriler Neutropenie 159
5.1.7 Behandlung febriler Patienten mit Neutropenie 159
5.1.8 G-CSF: Dosierungen und Therapiedauer 159
7 Anämie bei Krebs 160
7.1 Definition und Einteilung von Anämien 160
7.2 Anämie bei chronischer Erkrankung 160
7.3 Funktioneller Eisenmangel bei Eisen-restrinigerter Hämatopeose 161
7.4 Diagnostik der Anämie 161
7.4.1 Laborbefunde der Anämie bei chronischer Erkrankung (ACD) 161
7.4.2 Therapie der Anämie 161
7.5 Indikation zur Transfusion von Erythrozytenkonzentraten 161
7.5.1 Risiken der Transfusion von Blutkomponenten 161
7.5.2 Therapie der Anämie bei chronischer Erkrankung (ACD) 162
7.5.3 Stimulierung der Erythropoese 162
7.6 Leitlinien zur Therapie mit Erythropoese stimulierenden Agentien – ESA 163
8.1 ESA bei Patienten mit Kopf-Hals Tumoren und Strahlentherapie 164
8.2 Erythropoetin-Rezeptoren und Tumorzellen – ihre mögliche klinische Relevanz 164
8.3 Funktioneller Eisenmangel bei Eisen-restrinigerter Hämatopeose 165
9.1 Eisentherapie bei Tumorpatienten und Therapie mit ESA 165
9.1.2 Intravenöse Eisentherapie bei funktionellem Eisenmangel 165
10.5 Schmerztherapie bei Tumorpatienten 166
10.1 Fazit für die Praxis 166
10.2 Voraussetzungen 166
10.2.1 Schmerzskala 166
10.2.2 Klinisch können folgende Schmerzarten unterschieden werden 166
10.2.3 Medikamentöse Schmerztherapie 166
10.4 Zusatzmedikation bei besonderen Schmerzen 167
11.1 Prophylaxe von Übelkeit und Erbrechen nach Chemotherapie 167
11.1.1 Antiemetische Therapiestategien 169
11.2 Antiemetische Medikamente 169
11.2.1 5-HT3-Rezeptor-Antagonisten (5-HT3-RA) 169
11.2.2 Steroide 169
11.2.3 Neurokinin-1-Rezeptor-Antagonisten – NK1-RA 169
11.2.4 Stellenwert von Aprepitant 170
11.2.5 Weitere Antiemetika 170
11.2.6 Autiemetische Prophylaxe, Leeline 171
12.1 Prävention und Behandlung der Diarrhö 171
12.2 Literatur 171

Referat

S151 - S175

Link H. Supportivtherapie der medikamentösen Tumortherapie... Laryngo-Rhino-Otol 2012; 91: S151–S175
Zusammenfassung

Fieber bei Neutropenie muss immer als lebensbedrohliche Infektion gewertet werden, die sofort standardisiert antibiotisch therapiert werden muss, bei Nichtansprechen ist eine Therapie-modifikation erforderlich. Die erforderliche Diagnostik darf die Therapie nicht verzögern. Wenn das Risiko der febrilen Neutropenie nach Chemotherapie ≥20% beträgt, dann ist immer eine prophylaktische Stimulation der Granuloopoese mit G-CSF erforderlich. Ebenso soll G-CSF verwendet werden bei einem Risiko der febrilen Neutropenie von 10–20% und patientenbezogenen Risikofaktoren wie z.B. Alter >65 Jahre, reduzierter Allgemeinzustand, offene Wunden, schwere Komorbidität. Die Anämie bei Krebs muss ätiologisch, auch präoperativ, abgeklärt werden. Transfusionen sind bei Hämoglobinwerten unter 7–8 g/dl indiziert. Erythropoese stimulierende Faktoren (ESA) sind nach Chemotherapie bei Anämiebeschwerden und Hb-Werten unter 11 g/dl angezeigt. Der Hb-wert darf nicht über 12 g/dl angehoben werden. Die antiemetische Prophylaxe muss entsprechend Schweregrade minimal, gering, moderat und hoch eingeteilt werden. Zytostatika bedingte Übelkeit und Erbrechen können in die 4 Abstände nach festen Uhrzeiten appliziert werden und den Schmerzen sollten Analgetika in pharmakologisch sinnvollen Dosen zugeführt werden.

2. Definitionen

2.1 Neutropenie (Granulozytopenie)
Neutrophile Granulozyten (Segment- und Stabkernige)<500/ mm³ oder <1000/mm³ mit erwartetem Abfall <500/mm³ innerhalb der nächsten 2 Tage.

2.1.1 Risikozuordnung der Patienten nach erwarteter Neutropeniedauer und Risikofaktoren
- Standardrisiko: Neutropeniedauer ≤7 Tage; ohne Ausschlussgrund (siehe Tab. 4, Checkliste A).
- Standardrisiko mit zusätzlichen Risikofaktoren: Neutropeniedauer >7 Tage (siehe Tab. 4, Checkliste A).
- Hochrisiko: Neutropeniedauer >7 Tage.

2.2 Infektionen

2.2.1 Fieber unklarer Genese bzw. unerklärtes Fieber
Als unerklärtes Fieber („fever of unknown origin“, FUO) wird neu aufgetretenes Fieber ohne richtungweisende klinische oder mikrobiologische Infektionsbefunde gewertet: Fieber 1-malig (oral), ohne erkennbare Ursache, von ≥38,5°C oder ≥38,0°C für mindestens eine Stunde anhaltend oder 2-mal innerhalb von 12 Stunden; dieses Fieber muss als Infektionszeichen gewertet werden.

2.2.2 Klinisch gesicherte Infektion
Fieber in Verbindung mit diagnostisch wegweisendem, lokalisierter Befund, z.B. Pneumonie, Haut-Bindegeewebe-Infektion u.a.

2.2.3 Mikrobiologisch gesicherte Infektion mit oder ohne Bakteriämie oder Fungämie
Erregernachweis zeitlich und mikrobiologisch plausibel neben lokalisierbarem Infektionsbefund oder Infektionserreger in der Blutkultur; bei Koagulase-negativen Staphylokokken und Corynebacterium Species ist der 2-malige Nachweis aus separat entnommenen Blutkulturen beweisend, bei 1-maligem Nachweis: V.a. Kontamination; Aspergillus-Galactomannan-Antigen im Serum: Positive, ansteigende Werte sind suggestiv und erfordern weitere Diagnostik (hochauflösende Thorax-CT).

2.2.4 Lungeninfiltrate
Mikrobiologisch gesichert, wenn folgende Erreger nachgewiesen werden:
Gramnegative Aerobier, Pneumokokken, Mycobacterium tuberculosis; Aspergillus spp.; Pneumocystis jiroveci aus bronchoskopisch gewonnenen Material oder Sputum; Cytomegalievirus (CMV) aus Schnellkultur oder Nachweis des CMV-„Immediate Early Antigens“; Nachweis von Pneumokokken, vergrößerten Streptokokken oder gramnegativen Aerobiern aus der Blutkultur; jeglicher Keimnachweis aus Biopsiematerial; Legionellen-Antigen im Urin; Hinweis auf invasive Aspergillus-Infektion: Aspergillus-Galactomannan-Antigen aus Blut.
Ätiologisch unbedeutende mikrobiologische Befunde für Lun- geninfiltrate, siehe Checkliste B, ☞ Tab. 4.

2.2.5 Abdominelle Infektionssymptome
Clostridium difficile mit Toxinnachweis aus der Stuhlprobe als Erregersicherung akzeptiert; andere potenziell pathogene Erreger in mindestens 2 konsekutiven Stuhlproben.

2.2.6 Venenkatheterassozierte Infektionen
Positive Blutkultur und gleicher Infektionserreger aus entferntem Kathetermaterial oder im Abstrich von entzündeter Einstichstelle.

Harnwegsinfektionen: Pathogene Erreger in signifikanter Keimzahl

Wundinfektionen: Keimnachweis aus Abstrich- oder Punktionsmaterial

3. Diagnostik

3.1 Klinische Diagnostik bei Therapiebeginn

Vor Beginn der antimikrobiellen Therapie ist eine sorgfältige klinische Untersuchung erforderlich und besonders zu beachten: Haut, Schleimhäute, Atemwege, Abdomen, Eintrittstellen zentraler oder peripherer Venenzugänge, Punktionstellen, Periaortalregion. Die klinische Untersuchung bei anhaltendem Fieber (mehrfach) täglich wiederholen.

3.1.1 Bildgebende und sonstige Untersuchungen, je nach Risiko und Symptomatik, siehe Checkliste C, ☞ Tab. 4

Mikrobiologische Initialdiagnostik

Mindestens 2 separate Paare venöser Blutkulturen aus peripherer Vene für die kulturelle Untersuchung (aerob/anaerob) sofort nach Fieberanstieg, d.h. unmittelbar vor Beginn der antibiotischen Therapie; bei liegendem zentralen Venenkatheter: ein Paar der Blutkulturen (aerob/anaerob) aus dem Katheter.

3.1.2 Weitere mikrobiologische Diagnostik nur bei entsprechender Infektionssymptomatik siehe Checkliste D ☞ Tab. 4

Klinisch-chemische Diagnostik

Mindeste Labor-Diagnostik vor und während der Therapie, mindestens 2 × wöchentlich: BB mit Differenzialblutbild, RoutineLabor mit CRP; bei Hinweisen auf Sepsis: Lakat, D-Dimere quantitativ, Quick, aPPT, Vollständige Initialdiagnostik bei persistierendem Fieber jeweils nach 72–96 Std. wiederholen; hochauflösendes Thorax-CT bei persistierender Neutopenie obligat!

4. Therapiestrategien

4.1 Empirische Therapie und Management

4.1.1 Indikation zur sofortigen antimikrobiellen Therapie

a) Neutropenie und Fieber

 Ausnahme: Nicht infektionsbedingtes Fieber

 – Neutropenie und mikrobiologisch dokumentierte Infektion

 – Neutropenie und klinisch oder radiologisch dokumentierte Infektion

b) Zeichen der Infektion (auch ohne Fieber) und neutrophile Granulozyten < 500/mm³ oder < 1000/mm³ mit erwartetem Abfall unter 500/mm³

 c) Patienten mit Symptomen oder Befunden einer Infektion oder klinischer Diagnose einer Sepsis

Der Beginn der Therapie ist empirisch bzw. kalkuliert, ein mikrobiologischer Infektionsnachweis kann nicht abgewartet werden. Die Therapie muss sofort beginnen, die Diagnostik darf den Therapiebeginn nicht verzögern!

Tab. 1 Standard-Risiko: erwartete Neutropenie-Dauer > 7 Tage ohne Risikofaktoren, (☞ Tab. 4).

Pat. für orale Therapie geeignet?	Nein ↓	Ja ↓
orale Therapie, eventuell ambulant:		
1. Ciprofloxacin+		
Amoxicillin/Clavulansäure oder 2. Levofloxacin+		
Amoxicillin/Clavulansäure ↓		
primär klinische Verschlechterung unter oraler Therapie?		
Nein		
orale Therapie für führen	→	
↓		
Fieber nach 72–96 h? → Diagnostik		
Nein		
Therapie beenden nach 3 fieberfreien Tagen	↓	→
keine dokumentierte Infektion		

Bei mikrobiologisch oder klinisch dokumentierter Infektion immer definierte Therapie

Bei Modifikationen der Therapie keine „Antibiotikapause“ zur Diagnose bei Neutopenie!

Tab. 2 Standard-Risiko: (erwartete Neutropenie-Dauer > 7 Tage mit Risikofaktoren, (☞ Tab. 4).

Monotherapie: 1. Piperacillin + Tazobactam o. 2. Ceftazidim o. Cefepim, o. 3. Imipenem/Cilastatin o. Meropenem
primär klinische Verschlechterung?
Nein
Fieber n. 72–96 h? → Diagnostik ↓
nach 1: zusätzlich Aminoglykosid
nach 1, 2: Imipenem/Cilastatin o. Meropenem;
Nein
↓
klinisch stabil ↓
keine dokum. Infektion
↓
klinisch nicht stabil
kein Antibiotikum

Bei mikrobiologisch oder klinisch dokumentierter Infektion immer definierte Therapie

Bei Modifikationen der Therapie keine „Antibiotikapause“ zur Diagnose bei Neutopenie!

Tab. 3 Standard-Risiko: erwartete Neutropenie-Dauer > 7 Tage mit Risikofaktoren, (☞ Tab. 4).

Gesamttherapie: 7 fieberfreie Tage; nach Anstieg der Granulozyten > 1000/µl, 2 fieberfreie Tage
primär klinische Verschlechterung?
Nein
Fieber nach weiteren 72–96 h? → Diagnostik ↓
keine Modifikation
↓
Antimykotika je nach Prophylaxe
↓
liposomales Amphotericin B o. Caspofungin o. Micafungin o. Itraconazol i. v. o. Voriconazol

Bei mikrobiologisch oder klinisch dokumentierter Infektion immer definierte Therapie

Bei Modifikationen der Therapie keine „Antibiotikapause“ zur Diagnose bei Neutopenie!

Link H. Supportivtherapie der medikamentösen Tumortherapie… Laryngo-Rhino-Otol 2012; 91: S151–S175
4.1.2 Definierte Therapie bei mikrobiologisch oder klinisch dokumentierter Infektion

Unverzügliche Konsultation von Hämatologen – internistischen Onkologen mit Erfahrung in der Management von Patienten mit Infektionen in der Neutropenie erforderlich [3–9].

4.1.3 Weitere Detailinformationen

Arbeitsgemeinschaft Infektionen in der Hämatologie und Onkologie (AGIHO), der Deutschen Gesellschaft für Hämatologie und Onkologie e.V. (DGHO) www.dgho-infektionen.de

Medikamente und normale Tagesdosierungen für Erwachsene, bei normaler Nierenfunktion, ◀ Tab. 5.

4.1.4 Therapie dokumentierter Infektionen

Standardmodifikationen oder Ergänzungen der empirischen Primärtherapie nach klinischem oder mikrobiologischem Befund bei Patienten mit Neutropenie und Fieber (◀ Tab. 6).

Ambulante Therapieprotokolle für Standardrisikopatienten, ◀ Tab. 1; Ausschlusskriterien siehe Checkliste A, ◀ Tab. 4.

Chinolon oral (Cipro- oder Levofloxacin) kombiniert mit Amoxicillin + Clavulansäure oral.

Beeinflussung aller anderen Patienten: Initialtherapie wie bei Standard-Risiko mit Risikofaktoren (s.u.). Sollte sich im Verlauf der Therapie eine höhere Risikokategorie für den Pat. ergeben, dann kann – falls erforderlich – die entsprechende Therapiestrategie (s.u. ◀ Tab. 2, 3) verfolgt werden [2, 3, 9].

Tab. 4 Checklisten.

\[A: \text{Risikofaktoren die gegen eine ambulante Therapie sprechen, bei Patienten der Standardrisikogruppe (Neutropeniedauer \(\leq 7\) Tage).}\]

- ECOC-Performance Score \(>2\)
- Definition ECOC-Leistungs-Index (Score) 3 oder 4; (Score 3: Nur begrenzte Selbstversorgung möglich, Patient ist 50 % oder mehr der Wachzeit an Bett oder Stuhl gebunden. Score 4: Völlig pflegebedürftig, keinerlei Selbstversorgung möglich, völlig an Bett oder Stuhl gebunden.
- Hinweise auf ZNS-Infektion, schwere Pneumonie, Venenkatheterinfektion
- Zeichen von Sepsis oder Schock
- Kontraindikationen gegen eine orale Therapie: Ausgeprägte abdominelle Beschwerden (Diarrhoe), intravenöse Supportivtherapie (z.B. Ernährung), Dehydratation, rezidivierendes Erbrechen
- Notwendigkeit der ständigen oder engmaschigen Überwachung (z.B. entgleister Diabetes mellitus, Hyperkalzämie)
- Orale Chinolonprophylaxe, -therapie innerhalb der letzten 4 (–7) Tage; dann kann – falls erforderlich – die entsprechende Therapiestra-""
Tab. 5 Antibiotska, alphabetische Listung; aktuelle Zulassung und Fachinformation beachten! *Gruppenzuordnung der Substanzen: Acylam – Acylaminopenicillin, AG – Aminoglykosid, BLI – β-Lactamase-Inhibitor, Ceph – Cephalosporin + Gruppe.*

Substanz	Gruppe*	Tagesdosis	Gabe	Anmerkung
Amikacin	AG*	15 mg/kg (maximal 1,5g täglich, maximal 10 Tage)	i.v.	Spiegelkontrollen, s.u.
Amoxicillin/Clavulansäure	Aminopenicillin/BLI	2 × 1 g	p.o.	
Cefalexin	Ceph Gr. 1	2 × 1 g	p.o.	
Cefepim	Ceph Gr. 4	2–3 × 2 g	i.v.	
Cefixim	Ceph Gr. 3	1 × 400 mg oder 2 × 200 mg	p.o.	
Cefotaxim	Ceph Gr. 3b	3 × 2 g	i.v.	
Cefotaxim	Ceph Gr. 3a	3 × 2 g	i.v.	
Cefuroxim-Axetil	Ceph Gr. 2	2 × 250–2 × 500 mg	p.o.	
Ceftriaxon	Ceph Gr. 3a	1 × 2 g	i.v.	
Ciprofloxacin	Chinolon	2 × 0,4 g	i.v.	
Cotrimoxazol (Sulfamethoxazol/Trimethoprim, feste Kombination)	Sulfonamid/Diaminopyrimidin	Sulfamethoxazol 100mg/kg; Trimethoprim 20mg/kg; in 3–4 i. v. Dosen; 2–3 Wochen	i.v.	bei Pneumocystis-Pneumonie (PcP)
Clindamycin	Lincosamid	mäßig schwere Infektionen: 1200 –1800mg; schwere Infektionen: 2400–2700mg in 2–4 gleichen Dosen	i.v.	normale Dosierung
Clindamycin	Lincosamid	3 × 600 mg	p.o.	nach i.v. Therapie
Gentamicin	AG*	3–6 mg/kg	i.v.	Spiegelkontrollen, s.u.
Imipenem/Cilastatin	Carbapenem	3 × 1 g bzw. 4 × 0,5 g	i.v.	
Levofloxacin	Chinolon	1 × 0,5 g	i.v.	
Mezlocillin	Acylam	3 × 4–5 g oder 2 × 10g	i.v.	
Metronidazol	Nitroimidazol	3 × 500 mg	i.v.	
Metronidazol	Nitroimidazol	3 × 400 mg	p.o.	
Mozlocillin	Acylam	3 × 4–5 g oder 2 × 10g	i.v.	
Netilmicin	AG*	4–7,5 mg/kg	i.v.	Spiegelkontrollen, s.u.
Pipercillin	Acylam	3–4 × 4 g	i.v.	
Pipercillin/Tazobactam	Acylam/BLI	3–4 × 4,5 g	i.v.	
Teicoplanin	Glykopeptid	1 × 400 mg, 1.Tag 2 × 400 mg	i.v.	
Tobramycin	AG*	3–5 mg/kg	i.v.	Spiegelkontrollen, s.u.
Vancomycin	Glykopeptid	2 × 1000mg	i.v.	Spiegelkontrollen, s.u.
Vancomycin	Glykopeptid	4 × 125 mg	p.o.	Ggf. bei Cl. difficile Colitis
Tab. 5 Fortsetzung

Substanz	Gruppe*	Tagesdosis	Gabe	Anmerkung
Spiegelbestimmungen von Aminoglykosiden und Vancomycin				
Amikacin Einmaldosierung	5–7	2–15	< 5	
Gentamicin Einmaldosierung	1–5		< 1	
Gentamicin alle 8 h	–		< 2	
Netilmicin Einmaldosierung	1–5		< 1	
Vancomycin	–		< 2	
Tobramycin Einmaldosierung	1,5–6		< 1	
Tobramycin alle 8 h	–		< 2	

Antimykotika

alphabetische Liste; aktuelle Zulassung und Fachinformationen beachten!

Substanz	Gruppe*	Tagesdosis	Gabe	Anmerkung
Amphotericin B-Natrium-Desoxycho-	Polyen	0,6–1,0 mg/kg	i. v.	sehr toxisch; für den Routine-Einsatz nicht mehr vertretbar
lat-Komplex (konventionell)				
Amphotericin B Lipid Complex	Polyen, Lipid-komplex	5 mg/kg	i. v.	
Amphotericin B, liposomal	Polyen, Liposomen	Start mit 3 mg/kg; dann Dosierung in Abhängigkeit von Grunderkrankung, klinischem Zustand und Alter des Patienten zwischen 1 mg und 3 mg/kg festlegen; 3 mg/kg bei Lungeninfiltraten; mindestens 5 mg/kg bei Zygomycosen	i. v.	
Caspofungin	Echinocandin	70 mg; bei Patienten < 80 kg ab 2. Tag 50 mg	i. v.	
Fluconazol	Triazol	400–800 mg	i. v.	
Itraconazol	Triazol	2 × 200 mg Tag 1 und 2. i. v., gefolgt von 1 × 200 mg bis mindestens Tag 5, danach kann auf orale Suspension mit 2 × 200 mg umgestellt werden	i. v.	orale Therapie: Spiegelkontrolle Tag 5, Talspiegel-Plasmaprobe: angestrebter Wert > 500 ng/ml
Posaconazol	Triazol	2 × 400 mg oder 4 × 200 mg	p. o.	
Voriconazol	Triazol	i. v.; 1. Tag 2 × 6 mg/kg, dann 2 × 4 mg/kg; oral: 1. Tag 2 × 400 mg/d, danach 2 × 200 mg	i. v.	

Virustatika

Substanz	Gruppe*	Tagesdosis	Gabe	Anmerkung
Aciclovir	Nukleosid-Analogon	3 × 10 mg/kg	i. v.	5–14 Tage, je nach Indikation
Ganciclovir	Nukleosid-Analogon	2 × 5 mg/kg	i. v.	Dauer nach klinischem Ansprechen
Tab. 6

Befund oder Symptom	Modifikation der Strategie
Persistierendes oder erneutes Fieber bei Regeneration der Neutrophilen oder Anstieg der Cholestaseparameter	V. a. hepatoliene Candidiasis: bei negativer Abdomensonografie mittels CT oder MRT Indikation zur antymykotischen Therapie klären (s. Candidämie)
Erregernachweis im Blut	
Kulturen vor Therapie	
grampositive Erreger, MSSA	zusätzlich Fluoxacillin nach Antibiotogramm; ggf. zusätzlich Vancomycin, Teicoplanin, ggf. Linezolid (Antibiogramm)
MRSA	
Koagulase-negative Staphylokokken; Bewertung siehe Diagnostik	Vancomycin, Teicoplanin
gramnegative Erreger	Therapie beibehalten, wenn Patient stabil und Erreger sensibel; ansonsten Therapie nach Antibiotogramm
Candida spp.	siehe unten
Erreger isoliert während Antibiotikatherapie	
grampositive Erreger	nach Antibiotogramm
gramnegative Erreger	nach Antibiotogramm
Candida spp.	Abhängig von Prophylaxe/Vortherapie/Erregerbefund/Antibiogramm (MHK-Bestimmung nicht abwarten)
a) Fluconazol-sensibel + klinisch stabil + keine Azol-Vortherapie	Fluconazol
b) ansonsten, insbesondere bei C. krusei oder bei C. glabrata	Caspofungin oder liposomales Ampho B; bei Ansprechen und Regeneration der Neutrophilen Wechsel auf Fluconazol oder Voriconazol oral, sofern nach Antibiogramm sinnvoll, Alternativ: liposomales Amphi B oder Amphi B-Lipid-Komplex Caspofungin oder Voriconazol, falls initial nicht gegeben
Sepsis, septischer Schock	siehe Empfehlungen ◁ Tab. 2, 3 sowie in ◁ Tab. 2; bzw. Therapie nach Antibiotogramm; entsprechend üblicher Sepsistherapie
Respirationstrakt	
Lungeninfiltrat bei Neutrophilenanstieg	strenge Überwachung, mögliche Entzündungsreaktion bei Neutrophilenanstieg (cave ARDS); gezielte bronchoalveolare Lavage falls nicht bereits erfolgt
interstitielle Pneumonie	Diagnostik: Falls induziertes Sputum oder bronchoalveolare Lavage nicht möglich: Hochdosiertes Trimethoprim-Sulfamethoxazol oder Pentamidin erwägen bei V. a. Pneumocystis Pneumonie; Herpes-Virus-Gruppe (Herpes simplex, Cytomegalie) und Legionellen bedenken
invasive Aspergillose	Abhängig von Prophylaxe/Vortherapie: Primär: Voriconazol (auch bei ZNS-Infektion zu bevorzugen); Alternativ: liposomales Amphi B Sekundär: Caspofungin oder liposomales Amphi B oder Amphi B-Lipid-Komplex oder Posaconazol oder Voriconazol
Kopf, Augen, Ohren, Nase, Rachen	
Nekrotisierende oder Randsaum-Gingivitis, Parodontitis, nekrotisierende Stomatitis	zusätzlich spezifische anaerobierwirksame Substanzen (Clindamycin, Metronidazol, Imipenem/Cilastatin oder Meropenem)
Bläschen oder Ulzera	V. a. Herpes-simplex-Infektion; eventuell Kultur anlegen, zusätzlich empirische Aciclovir-Therapie
Nasennebenhöhlenbefund oder nasale Ulzera	V. a. Pilzinfektion mit Aspergillus spp. oder Zygomycose, Biopsie bei Aspergillose s. o. bei Zygomycose: hochdosiert liposomales Amphotericin B oder Amphotericin B Lipid Complex; 5–10 mg/kg/d oder Posaconazol (falls Amphi B nicht möglich); ggf. chirurgische Sanierung erforderlich
Gastrointestinaltrakt	
Retrosternale Schmerzen	V. a. Candida- und/oder Herpes-simplex-Infektion oder beides; bakterielle Ösophagitis möglich; spätestens nach 48 h Endoskopie erwägen primär Candidatherapie: zusätzlich Antimykotika: Fluconazol, event. Caspofungin, Itraconazol oder Voriconazol
wenn erfolglos, dann bei V. a. Herpesinfektion auch Aciclovir	
akute abdominelle Schmerzen	V. a. Typhilitis, Appendizitis, zusätzlich anaerobierwirksame Substanzen (Metronidazol, Clindamycin, Imipenem/Cilastatin oder Meropenem); engmaschige Überwachung, mögliche OP-Indikation (!) bei akutem Abdomen!
Diarrhöhen	V. a. Kollitis durch Clostridium difficile: Toxinnachweis aus dem Stuhl; Metronidazol p.o (notfalls i. v.); bei Unwirksamkeit Vancomycin p. o.
Perianale Schmerzen	zusätzlich Anaerobier-wirksame Substanzen (s. o.), häufige engmaschige Überwachung wegen möglicher OP-Indikation, besonders bei Regeneration der Neutrophilen; Herpes-simplex-Virusinfektion ebenfalls möglich
Referat

Granulozyten-Konzentration (< 500/μl) prägte Komorbidität. Eine Routineprophylaxe mit Levo-

πen, frühere und bestehende Schleimhautschäden und ausge-

tceptionsrisiko sollte nicht die Neutropenie alleine für die Prophylaxe

Auch bei neutropenischen Patienten mit einem höheren Infek-

tionsrisiko sollte nicht die Neutropenie alleine für die Prophylaxe

5 Infektionsprophylaxe

Eine routinemäßige Infektionsprophylaxe mit Antibiotika wird

wegen des Risikos der Resistenzentwicklung nicht empfohlen. Ausnahmen sind Patienten mit Risikofaktoren für Infektionen, sowie Chemotherapie bei akuter Leukämie, Hochdosistherapie mit Stammzelltransplantation.

6. G-CSF zur Prophylaxe und Therapie der Neutropenie

6.1 Infektionen bei Neutropenie

1) Erreger nachweisen. Der sofortige Einsatz von Breitspektrum-

Antibiotika ist daher erforderlich, um der Weiterentwicklung zu
er einer einer potenziell lebensbedrohlichen Infektion vorzubeue-
gen bzw. sofort und effektiv zu behandeln[1–4].

6.2 Risikofaktoren für febrile Neutropenien

 Zu den wichtigsten Determinanten des FN-Risikos gehören der

Chemotherapie-Typ sowie die Dosisintensität. Kombinations-

Chemotherapien erhöhen das Risiko im Vergleich zu Monothe-

rapien, ebenso die Therapie mit stark myelotoxischen oder

schleimhauttoxischen Zytostatika. Als signifikante Prädiktoren

für schwere bzw. febrile Neutropien wurden hochdosiertes

Cyclophosphamid sowie hoch dosierte Anthrazykline (beim früh-

hen Mammarkarzinom) beschrieben [16].

Eine Übersicht über häufig eingesetzte Regime mit hohem

(≥20%) bzw. intermediärem (10–20%) und geringem (≤10%)

FN-Risiko gibt (Tab. 7).

6.3 Relative Dosisintensität der Chemotherapie

Viele Therapieprotokolle können nur dann die erforderliche re-

lativ Dosisintensität, d.h. die geplante erforderliche Menge an

Zytostatika in einem definierten Zeitintervall, erreichen, wenn

die Neutropenie und febrile Neutropenie vermieden bzw. in ei-

nem klinisch akzeptablen Bereich gehalten werden können [17].

Dies gilt insbesondere für dosisdichte Protokolle mit kurzen In-

tervennalen zwischen den Therapiezyklen und gesteigerter Do-

sisintensität [18,19] (Tab. 7).

Neben dem Chemotherapie-Typ beeinflussen Patienten-

bzw. tumorbezogene Faktoren das FN-Risiko (Tab. 8).

6.4 Wann ist bei Chemotherapie eine Prophylaxe der febrilen Neutropenie mit G-CSF indiziert?

Eine febrile Neutropenie führt häufig zu Dosisreduktionen der Chemotherapie und Zyklusverschiebungen. Durch eine febrile Neutropenie kann das Überleben der Patienten ernsthaft gefähr-
det werden [8].

Tab. 6 Fortsetzung

Befund oder Symptom	Modifikation der Strategie
Zentrale Venenkatheter	Therapieversuch; Rotation der i.v. Gabe bei Mehrlumenkatheter
Positive Kultur für Erreger aeroben Sporenbildnern (Bacillus sp.) oder Candida spp.	Katheter entfernen, Isoxazolpenicillin (Penicillinase-festes Penicillin) z. B. Flucloxacillin, mindestens 2 Wochen
Staphylococcus aureus (Methicillin/Oxacillin-empfindlich)	Katheter entfernen, Isoxazolpenicillin (Penicillinase-festes Penicillin) z. B. Flucloxacillin, mindestens 2 Wochen
Staphylococcus aureus (Methicillin/Oxacillin-resistent)	Katheter entfernen, Therapie nach Antibiogramm, mindestens 2 Wochen intravenös
Koagulase-negative Staphylokokken	nach Antibiogramm; Vancomycin oder Teicoplanin nur bei Methicillin/Oxacillin-Resistenz; bis 5–7 Tage Dauer
Enterokokken	Aminopenicillin plus Aminoglykosid; bei Ampicillin-Resistenz Vancomycin oder Teicoplanin plus Aminoglykosid; bei Vancomycinresistenz: Lineozolid; bis 5–7 Tage Dauer
Corynebakterien	nach Antibiogramm; Vancomycin oder Teicoplanin nur bei Resistenz gegen andere Antibiotika
positive Kultur mit Bacillus spp.	Katheter entfernen, gezielte Therapie
Escherichia coli, Klebsiella-Spezies und andere Enterobacteria-ceae	nach Antibiogramm mit wirksamem Antibiotikum: z. B. Cephalosporin Gruppe 3, Acyramidopenicillin, Imipenem/Cilastatin oder Meropenem, Chinolon
Pseudomonas aeruginosa	Kombination von β-Lactam-Antibiotikum mit Pseudomonas-Aktivität plus Aminoglykosid, mindestens 2 Wochen
Acinetobacter baumannii	nach Antibiogramm
Stenotrophomonas maltophilia	nach Antibiogramm (Cotrimoxazol!)
Candidämie	Katheter entfernen, Therapie siehe oben
klinische Infektion der Austrittsstelle	Vancomycin oder Teicoplanin
Tunnel- oder Tascheninfektion	Katheter entfernen, Vancomycin oder Teicoplanin
Die aktuellen NCCN-, ASCO-DgHO bzw. EORTC-Leitlinien empfehlen, G-CSF bereits bei einem Risiko der febrilen Neutropenie ≥ 20% einzusetzen, basierend auf randomisierten Studien. Diese Studien zeigen hinsichtlich der Rate febriler Neutropenie und der Rate tödlicher Infektionen, dass Patienten mit einem FN-Risiko über 20% von G-CSF signifikant profitieren [6, 26–29].

Wird eine Chemotherapie geplant, die ein moderates FN-Risiko (10–20%) induziert, empfehlen NCCN, ASCO und EORTC, vor jeder Chemotherapie-Zyklus das individuelle FN-Gesamtrisiko zu beurteilen und dabei Patienten- bzw. tumorbezogene Risikofaktoren zu berücksichtigen (Tab. 7, aus: EORTC guidelines 2010 [20], ASCO-guidelines 2006 [17] und NCCN [16], Auswahl nach Relevanz für HNO-Patienten). Die individuelle Entscheidung zur G-CSF-Prophylaxe sollte getroffen werden, wie in Abb. 1 vorgeschlagen.

6.5 Empfehlungen für G-CSF bei definierten Patientengruppen mit Neutropenie

6.5.1 Sekundärprophylaxe

Eine Sekundärprophylaxe (nach Auftreten neutropenischer Komplikationen in einem vorhergehenden Zyklus ohne Primärprophylaxe) wird empfohlen, sofern eine Dosisreduktion der Chemotherapie die Prognose verschlechtert würde [17].

6.5.2 Behandlung bei afebriler Neutropenie

Für die routinemäßige Behandlung der afebrilen Neutropenie gibt es keine Daten, die eine Empfehlung rechtfertigen würden [17].

6.5.3 Behandlung febriler Patienten mit Neutropenie

G-CSF sollte bei FN nicht routinemäßig zusätzlich zu Antibiotika eingesetzt werden. G-CSF ist aber bei Patienten indiziert, die nicht auf eine adäquate Antibiotikabehandlung ansprechen oder eine lebensbedrohliche Infektion entwickeln [20]. Nach den ASCO Empfehlungen [17] sollte G-CSF auch bei Patienten mit einem hohen Risiko infektionsassozierter Komplikationen bzw. ungünstigen prognostischen Faktoren – z. B. prolongierte (> 10 Tage) oder ausgeprägte (< 100/µl) Neutropenie, Alter > 65 Jahre, unkontrollierte Tumorkrankheit, Pneumonie, Hypotonie, Sepsis oder stationäre Behandlung – in Betracht gezogen werden.

6.6 G-CSF: Dosierungen und Therapiedauer

Folgende Dosierungen werden laut Zulassungstexten empfohlen (Präparate in alphabetischer Reihenfolge). Andere Therapieschemata werden nicht empfohlen.

- Filgrastim: 5 µg/kg Körpergewicht pro Tag s. c. oder i. v., innerhalb von 1-3 Tagen nach Chemotherapie;
- Lenograstim: 150 µg/m² Körperoberfläche pro Tag s. c. oder i. v. innerhalb von 1–3 Tagen nach Chemotherapie;
- Pegfilgrastim: ca. 24 Stunden nach Chemotherapie eine 1-malige Dosis von 6 mg s. c. pro Zyklus.

Einige Studien legen nahe, dass die Verwendung des langwirksamen Pegfilgrastim die optimale Dosierung von G-CSF ermöglicht und dadurch effektiver ist als die tägliche G-CSF Injektion [20]. Eine Metaanalyse in der Pegfilgrastim mit Filgrastim vergli-

Tab. 7 Häufig eingesetzte Regime mit hohem (> 20%), moderatem (10–20%) oder geringem (< 10%) FN-Risiko in Studien [aus: EORTC guidelines 2010 [20], ASCO-guidelines 2006 [17] und NCCN [16], Auswahl nach Relevanz für HNO-Patienten].

Tumor	FN-Risiko (%)	Regime
Kleinleukämie	> 20	AC; Topotecan; ICE
Lungenkarzinom	10–20	Etoposid/Carboplatin; Topotecan/Cisplatin
	< 10	Paclitaxel/Carboplatin
Nicht-kleinleukämie	> 20	Docetaxel/Carboplatin; Etoposid/Cisplatin
Lungenkarzinom	10–20	Paclitaxel/Cisplatin; Docetaxel/Cisplatin; Vinorelbis/Cisplatin
	< 10	Paclitaxel/Carboplatin; Gemcitabin/Cisplatin
Non-Hodgkin-	> 20	CHOP (Cyclophosphamid/Doxorubicin/Vincristin/Prednison)
Lymphom		DHAP (Cisplatin, HD-AraC, Dexamethason)
Kopf-Hals-Tumoren	> 20	R-CHOP (Rituximab-CHOP)

Die Angaben zur FN wurden direkt aus der Literatur übernommen; bei vielen Publikationen fehlen Angaben zu febrilen Neutropien.

Tab. 8 Risikofaktoren der febrilen Neutropenie (nach National Comprehensiv Cancer Network, [16]).

Chemotherapiebezogene Risikofaktoren	Patientenbezogene Risikofaktoren
Chemoth. Typ	Alter (> 65 Jahre)
schwere Neutropenie und Dosisreduktion	weibliches Geschlecht
vorbestehende Neutropenie (< 1000/μl)	reduzierter Allgemeinzustand (ECOG ≥ 2 „Eastern Cooperative Oncology Group“)
vorausgegangene extensive Chemotherapie	schlechter Ernährungsstatus
gleichzeitige oder vorherige Strahlenbehandlung mit Beteiligung des Knochenmarks	eingeschränkte Immunfunktion
mit erhöhtem Infektionsrisiko assoziierte Risikofaktoren	offene Wunde
	aktive Infektion
Komorbidität	chronisch obstruktive Lungenkrankheit
	kardiovaskuläre Krankheit
	Erkrankungen der Leber (erhöhtes Bilirubin, alkalische Phosphatase)
	Diabetes mellitus
	niedriger Hämoglobinspiegel bei Diagnose

Link H. Supportivtherapie der medikamentösen Tumortherapie... Laryngo-Rhino-Otol 2012; 91: S151–S175
7. Anämie bei Krebs

D iagnostik, Therapie, Transfusionen, Erythropoese stimuli ernde Agentien, Eisensubstitution.

7.1 Einleitung

Eine Anämie, die klinische Symptome hervorrufen kann, definiert als ein Hämoglobin-Abfall unter 12 g/dl, ist bei Patienten mit bösartiger Erkrankung sehr häufig [31,32]. Die Anämieinenzin det beträgt je nach Tumortyp und -stadium bereits bei Diagnose solider Tumoren ca. 50%, noch höher ist die Prävalenz bei Hämoglobinose. Im Verlauf einer Chemotherapie entwickeln 62,7% der primär nicht anämischen Patienten eine Anämie. Am häufigsten treten Anämien bei Patienten mit gynäkologischen Tu- moren (81,4 %) bzw. Bronchialkarzinom (77,0 %) auf [31]. Die Anämie sollte immer abgeklärt und falls erforderlich entsprechend ihrer Ursache behandelt werden.

7.2 Definition und Einteilung von Anämien

Unter Anämie (Blutarmut) versteht man eine Verminderung der Zahl der roten Blutkörperchen, die durch eine Erniedrigung der Hämoglobininkonzentration (Hb) oder des Hämatokrits (Hkt = Erythrozytenanzahl/MCV (mean corpuscular volume)) im peripheren Blut gekennzeichnet ist.

Der untere Referenzwert des Hämoglobins ist bei mitteleuropäischen Erwachsenen, abhängig vom Alter, bei Frauen mit 12 g/dl und bei Männern mit 13 g/dl definiert (WHO).

7.3 Anämie bei chronischer Erkrankung

Die zweithäufigste Anämieform, nach der Eisenmangelanämie, ist die durch Aktivierung des Immunsystems ausgelöste Anämie bei chronischer Erkrankung (ACD, anemia of chronic disease) [33]. Als Ursachen kommen neben akuten oder chronischen Infektionen, Autoimmunopathien, Entzündungen im Rahmen chronischer Nierenerkrankungen, insbesondere Tumorerkrankungen (sowohl hämatologische Neoplasien als auch solide Tumoren) in Betracht. Die Pathophysiologie der ACD ist multifaktoriell. Im Vordergrund stehen durch inflammatorische Zytokine (Tumor-Nekrose-Faktor-α, Interleukin-1-α und -β, Interleukin-6, Interferon-γ) vermittelte Störungen. Sie betreffen die Homöostase des Eisenstoffwechsels (verstärkte Aufnahme von Eis en in Zellen des retikuloendothelialen Systems (RES) und verminderte Freisetzung aus dem RES, die Proliferation der erythroiden Vorläuferzellen, die in Relation zur Anämie nicht ausreichend Synthese von und vermindertes Ansprechen auf Erythropoetin (EPO) sowie eine Verkürzung der Erythrozyten-überlebensdauer [33–35].

Hepcidin, ein in der Leber gebildetes Typ II akute-Phase-Pep tid, hemmt die intestinale Eisenresorption, die Eisenfreisetzung aus den Enterozyten, die Eisenmobilisation aus dem RES und vermindert die Proliferation der erythropoetischen Vorläuferzellen. Hepcidin spielt dadurch eine wesentliche Rolle in der Pathophysiologie der ACD [34,36,37]. Im Falle einer Anämie der chronischen Erkrankung findet aufgrund der Hochregulation des Hepcidins ein stark vermindelter Transfer des Eisens aus den Enterozyten in die Blutbahn statt (Abb. 2).

7.3.1 Funktioneller Eisenmangel bei Eisen-restringierter Hämatopoese

Die Stimulierung der Erythropoese führt zu einem erhöhten Bedarf an verfügbarem Eisen. Dieser Bedarf kann trotz ausreichender Eisenspeicher nicht gedeckt werden, weil das Eisen nicht aus den Speichern mobilisiert werden kann, sodass es für die Hämoglobin synthese nicht verfügbar ist. Diese Eisenrestriktion entsteht auch bei vielen chronischen Erkrankungen wie Infektionen oder Krebs, durch die Hochregulation des hepatisch synthetisierten Proteins Hepcidin (s.o.).

Für einen funktionellen Eisenmangel wird folgende Definition empfohlen: Transferinsättigung < 20%, hypochrome Erythrozyten > 5% und Zunahme der hypochromen Retikulozyten [38,39]. Die hypochromen Erythrozyten und Retikulozyten können mit modernen durchflusszytometrischen Laboranalysegeräten gemessen werden. CHr-Werte < 26 pg (Retikulozytenhämoglobin) sind beweisend für eine eisendefizitäre Erythropoese, ebenso ein Anteil hypochromer Erythrozyten > 5% bzw. der reifen (maturen) hypochromen Erythrozyten HYPOm > 6 % [40].

7.4 Diagnostik der Anämie

Die folgenden Parameter können zur Differenzialdiagnostik der Anämie gemessen werden, (Tab. 9).

7.4.1 Laborbefunde der Anämie bei chronischer Erkrankung (ACD)

Die ACD zeigt sich im peripheren Blut mit normochromen, normozytären oder hypochromen, mikrozytären Erythrozyten (MCV,

Tab. 9 Basisdiagnostik bei V. a. Anämie chronischer Erkrankung (Tumoranämie); Ausschluss zusätzlicher Ursachen der Anämie.

- Eisenmangel
- Blutung
- Vitamin B12 (Cobolamin)- und Folsäuremangel
- Hämolyse
- Nierenfunktionsstörung
- hämatologische Systemerkrankung

Labordiagnostik

- Blutbild mit MCV, MCH, quantitative Retikulozytenzahl
- Differenzialblutbild
- Routinelabor mit Leber- und Nierenfunktionsparametern: Bilirubin, Transaminasen, Albumin, Quick, Kreatinin, Harnstoff
- Eisenstatus: Ferritin, Transferrin, Transferrinsättigung
- hypochrome Erythrozyten
- Retikulozytenhämoglobin (CHr)
- Entzündungsparameter: BSG, Fibrinogen, CRP, Haptoglobin, LDH
- Holo-Trans-Cobalamin (Vitamin B12), Folsäure
- ggf. Erythropoetinspiegel
- Hämoccult-Test

Ergänzende Labordiagnostik

- löslicher Transferrinrezeptor
- Blutgruppe (für den Fall der Transfusion)
- Coombs-Test

MCH normal bis erniedrigt) mit Anisozytose und Poikilozytose, die Retikulozytenzahl kann normal oder vermindert sein; es kann eine Hypochromie der Retikulozyten vorliegen (Parameter CHr: mittlere Hämoglobingehalt des Retikulozyten, Referenzbereich 28–35 pg.). Die Retikulozyten zirkulieren nur 1–2 Tage im Blut, daher ist das CHr im Gegensatz zu der Bestimmung der hypochromen Erythrozyten ein früher Parameter einer eisendefizitären Erythropoese. Folgende Parameter sind erhöht:

- Ferritin, freie Transferrin-Eisenbindungskapazität (Transferrinsättigung vermindert), BSG, Fibrinogen, CRP und Haptoglobin.
- Das Serum Erythropoetinspiegel ist nicht ausreichend angestiegen.

Es besteht eine verminderte Hämoglobinsynthese bei Eisenüberladung des Organismus (sideroachrestische Anämie). Das nicht verwertete Eisen wird im RES und in parenchymatösen Organen eingelagert.

7.4.2 Therapie der Anämie

Die Indikation zur Korrektur der Anämie besteht bei Patienten mit Anämiebeschwerden. Dabei sind insbesondere auch das Alter und Begleitkrankheiten wie z.B. koronare Herzerkrankung zu beachten. Mehrere Studien haben gezeigt, dass die Lebensqualität der Krebspatienten mit Anämie vermindert ist [41–44].

7.5 Indikation zur Transfusion von Erythrozytenkonzentraten

Bei akutem Blutverlust und Patienten mit solidem Tumor oder Hämoblastose muss die Transfusionsindikation bei einem Hb < 8 g/dl individuell geprüft werden, ▶ Tab. 10. Bei chronischer Anämie werden zum Teil deutlich niedrigere Hb-Werte zwischen 6–8 g/dl ohne Symptome toleriert, deswegen besteht in diesen Fällen keine unbedingt zwingende Indikation zur Erythrozytentransfusion. Bei Patienten mit koronarer Herzkrankheit oder einer bestehenden Gefahr zerebraler Perfusionstörungen kann bereits ab einem Hb-Wert von 10 g/dl die Transfusion von Erythrozytenkonzentraten indiziert sein.

Bei vielen Krebspatienten tritt eine Anämie erst in weit fortgeschrittenen Stadien auf. Wegen ihrer oft kurzen Lebenserwartung werden diese Patienten durch langfristige Transfusionsrisiken (z. B. Übertragung von Infekionserreger, Alloimmunisierung, transfusionsassozierte Hämolyse) selten gefährdet. Eine Ausnahme sind Patienten mit chronischer transfusionsbedürftiger Anämie bei Knochenmarkerkrankungen, wie z. B. myelodysplastische Syndrome (MDS) mit niedrigem Risikoscore. Bei anderen Patienten ist die Anämie ein vorübergehendes therapieinduziertes Problem. Da diese Patienten meist keine oder nur sehr wenige Bluttransfusionen benötigen, ist das Risiko eines langfristigen Transfusionsschadens ebenfalls gering. Die Indikationsstellung zur Transfusion wird eher durch die klinische Symptomatik, Begleiterkrankungen und die Lebensqualität des Patienten beeinflusst.

Als Transfusionsindikation gilt – über Tumorerkrankungen hinaus – üblicherweise eine Hb-Konzentration unter 8 g/dl oder ein klinisch nicht tolerierter Hb-Wert unter 10 g/dl, insbesondere bei Patienten mit kardialen oder pulmonalen Begleiterkrankungen, ▶ Tab. 10. Im Fall eines septischen Verlaufs gilt auch die Empfehlung einer Stabilisierung des Hb-Wertes bei 10 g/dl.
Bei jedem Patienten mit einer akuten oder chronischen Anämie muss der Versuch unternommen werden, die Ursache der Anämie zu klären und gegebenenfalls eine kausale Therapie einzuleiten. Die Gabe von EK ist angezeigt, wenn Patienten ohne Transfusion durch eine anämisie Hypoxie aller Voraussicht nach einen gesundheitlichen Schaden erleiden würden und eine andere, zumindest gleichwertige Therapie nicht möglich ist. Eine restriktive Indikationsstellung zur Erythrozytentransfusion vermindert die Exposition mit hämolytischem Risiko und steigert die Überlebenszeit der Patienten, die Erythropoetin-therapie ist nicht mit einem erhöhten Mortalitätsrisiko einher.

Chronische Anämien

Die Indikation zur Erythrozytentransfusion ergibt sich aus der Beurteilung des klinischen Gesamtbildes und wird nicht allein anhand von Laborwerten (Hb, HK, Erythrozytenzahl) gestellt. Kommt es bei Patienten mit chronischer Anämie zu akuten Blutverlusten, so werden dieselben Kompensationsmechanismen wirksam wie bei Patienten ohne chronische Anämie. Eine vorbestehende chronische Anämie impliziert also nicht die bessere Toleranz noch niedrigerer Hämaglobinkonzentrationen. Patienten mit chronischer Anämie müssen daher bei einem zusätzlichen akuten Abfall der Hämaglobinkonzentration nach denselben Grundsätzen behandelt werden, wie Patienten ohne vorbestehende chronische Anämie. Bei chronisch anämischen Patienten ohne kardiovaskuläre Erkrankungen ist auch bei niedrigen Hämaglobinkonzentrationen bis zu 8,0–7,0 g/dl (HK 24–21% ≤ 5,0–4,3 mmol/l) eine Transfusion nicht indiziert, so lange keine auf die Anämie zurückzuführenden Symptome auftreten. Patienten mit einer chronischen Anämie infolge primärer oder sekundärer Knochenmarksinsuffizienz sollten grundsätzlich so wenig wie möglich transfundiert werden, insbesondere wenn eine später Knochenmark-Stammzelltransplantation infrage kommt. Bei schweren chronischen Erkrankungen und bei Patienten mit malignen Erkrankungen und Chemotherapie vermindert die Gabe von Erythropoetin den Transfusionsbedarf[46,47].

7.5.2 Therapie der Anämie bei chronischer Erkrankung (ACD)

Die Therapie kann bei Anämiesymptomatik und Hb<8 g/dl mit Erythrozytenkonzentraten erfolgen (Tab. 10), außerdem und bei Hb-Werten zwischen 9 und 11 g/dl mit Erythropoese stimulierende Agentien (ESA: Erythropoetin oder Darbepoetin), koinzidiert mit intravenösem Eisen.

7.5.3 Stimulation der Erythropoese

Die Therapie mit den Erythropoese stimulierenden Faktoren ist effektiv, steigert den Hb-Wert, reduziert die Transfusionsbedürftigkeit und verbessert die Lebensqualität der Patienten [41–44, 46, 47, 56–58]. Nachdem 8 Studien mit negativen Ergebnissen bei der Überlebenszeit der Patienten berichtet wurden, die ESAs erhielten [59,60], wurden diese Studien im Zusammenhang mit allen bis dahin publizierten Studien von der FDA, der EMEA und Fachgesellschaften kritisch bewertet [56,61,62]. Diese Studien haben jedoch alle erhebliche Mängel und Fehler im Studiendesign [62]. Einige der Studien untersuchten klinische Situationen und Hämaglobinwerte, die nicht durch die aktuellen Leitlinien der EORTC, DgHO, ASCO und ASH gedeckt werden.

7.5.1 Risiken der Transfusion von Blutkomponenten

Der Bluttransfusionsrisiko ist mit bestimmten Risiken verbunden, über die die Patienten aufgeklärt werden müssen. Wichtige Risiken sind in Tab. 11 dargestellt. Mehrere Studien zeigen, dass bereits eine milde präoperative Anämie das Risiko von Morbidität und Mortalität erhöht [50]. Bluttransfusionen erhöhen andererseits das Risiko des Tumorrezidivs [51] vergrößern die Rate der Todesfälle unabhängig von sonstigen Risikofaktoren [50,52] und können bei einer Lagerung über 14 Tage mehr Todesfälle nach sich ziehen [53]. Nach Bluttransfusionen scheint das Risiko eines späteren Non-Hodgkin-Lymphoms erhöht [54], Insofern sollten die Indikation zur Bluttransfusion streng gestellt werden und alternativ andere Therapieoptionen bedacht werden. Außerdem sollte ein aktives Management zur Vermeidung von Bluttransfusionen etabliert werden [55].

Tab. 10 Häufigkeiten unerwünschter Wirkungen bei der Transfusion von Blutkomponenten (aus [45,48,49]); EK: Erythrozytenkonzentrat; TK: Thrombozytenkonzentrat.

Unerwünschte Wirkung	Risiko je transfundierte Einheit
hämolytische Transfusionsreaktion vom Soforttyp	
– ohne tödlichen Ausgang	1:6000–1:80000
– mit tödlichem Ausgang	1:250000–1:600000
hämolytische Transfusionsreaktion vom verzögerten Typ	
– mit tödlichem Verlauf	1:100000
mit tödlichem Verlauf	1:800000
febrile, nicht-hämolytische Transfusionsreaktion	
– EK	<1:1200
– TK	<1:5
allergische Transfusionsreaktion	
– mit mildeem Verlauf	1:33–1:333
– mit schwerem Verlauf	1:200000–1:500000
posttransfusionelle Purpura	
– Einzelfälle	1:600000
transfusionsassozierte Graft-Ver-	
– Host-Krankheit (taGVHD)	1:400000–1:1200000
transfusionsassozierte akute Lun-	
– geninsuffizienz (TRALI)	1:50000–1:7200
– bakterielle Kontamination	<1:180000
transfusionsassozierte Virusinfek-	
– HIV	<1:10^6
– HBV	<1:10^6
– HCV	<1:10^6
– transfusionsassozierte Parasiten	<1:10^6
neue Variante der Creutzfeldt-Jakob- Krankheit	bis Mai 2011 4 Fälle beschrieben
Transfusions-Hämosiderose	ab 100 Erythrozytenkonzentraten

Tab. 11 Häufigkeiten unerwünschter Wirkungen bei der Transfusion von Blutkomponenten (aus [45,48,49]); EK: Erythrozytenkonzentrat; TK: Thrombozytenkonzentrat.
insgesamt 9353 Tumorpatienten, die eine ESA-Therapie erhielten, zeigte eine erhöhte Mortalität in der Gruppe mit einer ESA-Therapie (relative Risikozunahme 1,67; Konfidenzintervall 1,35–2,06) [64]. Eine weitere Metaanalyse mit 38 Phase III-Studien bei 8172 Tumorpatienten ermittelte ein höheres Risiko von Thromboembolien bei ESA-Therapie (7,5 % vs. 4,9 %, relative Risikozunahme 1,57, Konfidenzintervall 1,31–1,87) [60]. Eine dritte Metaanalyse von 12 randomisierten Studien mit insgesamt 2297 Patienten fand eine erhöhte Rate an Thromboembolien mit ESA gegenüber der Kontrollgruppe (7 % vs. 4 %). Die Mortalität, die mit den thromboembolischen Ereignissen assoziiert war, lag in beiden Gruppen bei 1 % [60].

Eine unfangreiche Metaanalyse der Originaldaten von 53 randomisierten Studien mit 13933 Patienten zeigte, dass die Behandlung von Krebspatienten mit Erythropoese stimulierenden Agentien (ESA) die Mortalität signifikant erhöht [65]. Bei den 10441 Patienten mit Chemotherapie ergab sich jedoch kein signifikanter Unterschied zur Gruppe ohne ESA-Therapie (Tab. 12). Obwohl es einige Studien mit Strahlentherapie und negativem Effekt gibt, konnte dies in der Metaanalyse nicht nachvollzogen werden.

Betrachtet man das große Konfidenzintervall dieser Subgruppe, dann ist daran erkennbar, dass die Zahl der Patienten für diese Frage nicht ausreicht. Es ist in diesem Falle besser, die Originalstudien zu Rate zu ziehen. Allerdings sind diese nach den heutigen Kriterien sehr fragwürdig, weil z. T. Patienten ohne Anämie behandelt wurden.

Die Suggestion, dass durch diese Metaanalyse die Aussagen der z. T. falsch konzipierten Originalstudien besser werden, sollte vermieden werden. Wissenschaftlich fragwürdige Studien bleiben weiterhin miserabile Studien, mit entsprechendem Einfluss auf die Qualität der Ergebnisse der Metaanalyse. Dementsprechend leidet auch die Qualität dieser Metaanalyse mit fragwürdigen Ergebnissen, aus denen keine validen Schlussfolgerungen gezogen werden können.

Wünschenswert wären Metaanalysen der gut konzipierten Studien, mit einem Basis-Hämoglobinwert von 10 g/dl und einem Ziel-Hb-Wert von 12 g/dl, so wie es den Leitlinien und der Zulassung der ESAs entspricht.

Als wichtigste Information gilt, dass die ESA nur innerhalb der zugelassenen Indikation bei Chemotherapie verwendet werden dürfen und nur bei anämischen Patienten (Hb-Wert unter 11 g/dl) mit Anämiesymptomen. Außerdem darf der Hb-Wert unter ESA-Therapie nicht über 12 g/dl angehoben werden [62]. Die Leitlinien wurden entsprechend aktualisiert und angepasst [61, 66, 67].

Tab. 12 Metaanalyse von 57 Studien mit ESA.

Mortalität während der aktiven Studienphase, bis 28 Tage danach	N	Hazard-Ratio (95 % Konfidenzintervall)	p-Wert
alle Krebspatienten	13933	1,17 (1,06–1,30)	0,002
Chemotherapie-Studien	10441	1,10 (0,98–1,24)	0,12

Gesamt-Überleben (während der längst möglichen Beobachtungszeit)	N	Hazard-Ratio (95 % Konfidenzintervall)	p-Wert
alle Krebspatienten	13933	1,06 (1,00–1,12)	0,05
Chemotherapie-Studien	10441	1,04 (0,97–1,11)	0,26

8. Leitlinien zur Therapie mit Erythropoese stimulierenden Agentien – ESA

Von der European Organisation for Research and Treatment of Cancer (EORTC) wurde eine unabhängige Task-Force eingerichtet, um systematisch die Literatur zu überprüfen und aktuelle,
Evidenz-basierte Richtlinien für den Einsatz Erythropoese-stimulierender Agentien bei anämischen Tumorpatienten in Europa zu publizieren [57]. Die American Society for Clinical Oncology (ASCO) und American Society for Hematology (ASH) [66], das National Comprehensive Cancer Network [68] und die Deutsche Gesellschaft für Hämatologie und Onkologie [67] haben ebenfalls aktuelle Leitlinien publiziert, die im Wesentlichen vergleichbare Aussagen treffen. Hervorzuheben ist, dass die Leitlinien der EORTC eine Verbesserung der Lebensqualität durch eine ESA Therapie feststellen, im Gegensatz zur ASCO/ASH Leitlinie. Zusammengefasst sind diese Leitlinien in Tab. 13.

Empfehlungen	Dosis	Orale Eisensubstitution: Unwirksam.	Intravenöse Eisensubstitution: Wirksam, Intravenöses Eisen bei Patienten mit absolutem oder funktionellem Eisenmangel (Transferrinsättigung <20%).
Die primäre Ziele sollen die Vermeidung von Transfusionen und die Verbesserung der Lebensqualität sein.	A		B
Eine Therapie mit Erythropoese-stimulierenden Agentien bei einem Hb-Wert von 12g/dl erreicht wird und eine symptomatische Besserung eintritt; bei Ansprechen Dosistitrierung empfohlen.	B		
Keine Empfehlung zur Therapie mit Erythropoese-stimulierenden Agentien bei normalen Hb und zur Prophylaxe bei Therapiebeginn.	A		
Erhöhtes Risiko thromboembolischer Erkrankungen mit Erythropoese-stimulierenden Agentien: 1,6 fach.	A		
Der Ziel Hb-Wert von 12g/dl sollte nicht überschritten.	B		
Eine Dosiserhöhung bei Nichtansprechen nach 4–8 Wochen wird nicht empfohlen.	B		
Eine Therapie mit Erythropoese-stimulierenden Agentien kann bei einem Hb von 8–11 g/dl, je nach Anämie-Symptomen begonnen werden.	B		
Eine Dosiserhöhung bei Nichtansprechen nach 4–8 Wochen wird nicht empfohlen.	A		
Keine Empfehlung zur Therapie mit Erythropoese-stimulierenden Agentien bei einer Vermeidung eines weiteren Hemoglobinabfalls.	A		
Eine Therapie mit Erythropoese-stimulierenden Agentien bei einem Hb-Wert unter 11g/dl zur Vermeidung eines weiteren Hemoglobinabfalls erwogen werden, nach individuellen Patienten: Art, Intensität, Dauer der Chemotherapie, Basis-Hb usw.	B		
Eine Therapie mit Erythropoese-stimulierenden Agentien bei einem Hb-Wert unter 8g/dl sollte die Indikation zu einer Bluttransfusion geklärt werden. Eine zusätzliche Gabe von EPO kann je nach klinischen Symptomen und Komorbidität erfolgen.	B		
Bei einer Tumoranämie ohne Chemotherapie kann eine Therapie mit Erythropoese-stimulierenden Agentien bei Hb von 8–10g/dl j e nach Anämie-Symptomen begonnen werden.	A		
Bei einer Tumoranämie ohne Chemotherapie kann eine Therapie mit Erythropoese-stimulierenden Agentien bei Hb von 8–10g/dl j e nach Anämie-Symptomen begonnen werden.	A		

8.2 Erythropoetin-Rezeptoren und Tumorzellen – ihre mögliche klinische Relevanz

In den vergangenen Jahren sind widersprüchliche Ergebnisse aus in vitro-Studien veröffentlicht worden, nach denen auf Tumorzellen der Erythropoetin-Rezeptor (EPO-R) nachzuweisen sein soll, und die Tumorzellen in Kultur auf Behandlung mit sehr hohen Dosen von EPO mit einer Proliferation reagieren haben sollen [76–78].

Es wurde der immunhistochemische Nachweis durch die fehlende Spezifität der hervorragend kommerziell verfügbarer Antikörper infrage gestellt [79]. Zudem stellte sich heraus, dass der in vielen Studien verwendete Antikörper mit einem allgemein unter Stress und besonders in Tumorzellen nachzuweisenden Chaperon-Protein, dem Heat-Shock-Protein 70, kreuzreaktiert [79]. Die fehlende Spezifität der für den Nachweis des EPO-R notwendigen Reagenzien erlaubt deshalb keine Aussage zu einer kausalen Verbindung zwischen EPO-behandelten Tumorpatienten und einem ungünstigen klinischen Verlauf verglichen mit einer Placebo-behandelten Kontrollgruppe. Zudem hat eine große Zahl tierexperimenteller Untersuchungen keine negative Auswirkung einer EPO-Therapie auf das Tumorwachstum zeigen können [78]. Neueren Studien mit spezifischen EPO-Rezeptor-Antikörpern zeigten keine Erhöhung in Tumorzellen unter Erythropoetinstimulierendem Einsatz von Erythropoetinsubstituten bei Tumorerkrankungen (Tab. 13).

8.1 ESA bei Patienten mit Kopf-Hals Tumoren und Strahlentherapie

Es gibt mehrere Studien, in denen die ESA-Therapie zusätzlich zur Strahlentherapie bei Patienten mit Kopf-Hals-Tumoren untersucht wurde [70–74]. Außerdem erfolgte eine Metaanalyse mit 5 Studien [75]. Die Patientengruppe mit zusätzlicher ESA-Therapie hatte eine signifikant höhere Rate an Todesfällen und ein schlechteres lokoregionär progressionsfreies Überleben als die Patienten mit Strahlentherapie alleine. Allerdings muss erwartet werden, dass u.a. bei der Studie von Henke, die Ziel-Hämoglobinwerte weit über den gültigen Grenzwert 12g/dl anstieg und z.T auch 17g/dl erreichten [70, 75]. Bei Strahlentherapie werden ESAs nicht empfohlen und sind auch nicht dafür zugelassen, ebenso wenig wie bei Hb-Werten über 12g/dl.

Link H. Supportivtherapie der medikamentösen Tumortherapie... Laryngo-Rhino-Otol 2012; 91: S151–S175
mulation ebenso wenig wie eine Zunahme von spezifischer mRNA [80–84].

8.3 Funktioneller Eisenmangel bei Eisen-restringierter Hämatopoese
Die Stimulation der Erythropoese mit ESAs führt zu einem erhöhten Bedarf an verfügbarem Eisen, der nicht durch Speichereisen gedeckt werden kann, dessen Freisetzung außerdem durch Hepcidin blockiert ist.

9. Intravenöse Eisentherapie bei funktionellem Eisenmangel
▼
Die parenterale Eisensubstitution ist bei Patienten mit funktionellem Eisenmangel sinnvoll [85,86]. Intravenöses Eisen wird direkt der Hämatopoese zur Verfügung gestellt. Eine mögliche Erklärung für die Wirksamkeit von intravenösem Eisen bei Eisen-restringierter Hämatopoese könnte sein, dass die Eisenfreisetzung aus den Makrophagen verändert wird.

9.1 Eisentherapie bei Tumoranämie und Therapie mit ESA
9.1.1 Orale Eisensubstitution
Bis vor kurzem wurde eine orale Eisentherapie zusätzlich zur Erythropoetin-Behandlung empfohlen [87] obwohl keine prospektiv randomisierte Studien existieren, die diese Empfehlung unterstützten. Die einzig bisher publizierte Studie, die orale Eisensubstitution mit einer unbehandelten Kontrollgruppe bei Patienten mit Chemotherapie-induzierter Anämie unter Erythropoetinbehandlung verglich, konnte keine signifikante Erhöhung der hämatologischen Ansprechrate unter oraler Eisensubstitution aufzeigen. Jedoch zeigte die behandelte Gruppe im Gegensatz zur unbehandelten Kontrollgruppe keine Verschlechterung der allgemeinen Lebensqualität und der Aktivität im Gegensatz zur letztgenannten Gruppe [39]. Die neuen Leitlinien der EORTC und ASCO hingegeben empfehlen die orale Eisentherapie wegen nachgewiesener Unwirksamkeit nicht mehr. Es wird vielmehr empfohlen intravenöses Eisen als Therapiekomponente bei Tumoranämie einzusetzen [56,61,88].

9.1.2 Intravenöse Eisensubstitution
Bevor 1989 Erythropoetin zur Therapie der dialyseassozierten Anämie routinemäßig eingesetzt wurde, gab es kaum Indikationen zur intravenösen Eisentherapie. Jedoch zeigte sich bald, dass die Effektivität der Erythropoetintherapie mit intravenösem Eisen gesteigert werden konnte, sodass diese Eisensubstitution bei Dialyse-Patienten mit Erythropoetintherapie Standard ist [89]. Die Wertigkeit einer parenteralen Eisentherapie zusätzlich zur Behandlung mit Erythropoetin bei Patienten mit Chemotherapie-assoziiert Anämie wurde bisher in 7 Studien untersucht [39,58,90–94]. 6 dieser 7 Studien zeigen, dass die intravenöse Eisentherapie bei onkologischen Patienten zu signifikant größeren Hämoglobin-Anstiegen führt als mit Erythropoetin-stimulierenden Agentien (ESA) alleine oder mit zusätzlichem oralem Eisen.

In den 6 positiven Studien war der klinische Effekt unabhängig von Eisenparametern bei Therapiebeginn. In der Studie von Bastit et al. wurden 396 Patienten mit nicht-myeloischen Malignomen und Chemotherapie untersucht, die einen Hb-Wert unter 10,5 g/dl, ein Ferritin über 10 ng/ml oder eine Transferrin-Sättigung (TSAT) über 15% aufwiesen [58]. Die Patienten erhielten 500 μg Darbepoetin-alpha (DA) alle 3 Wochen alleine oder zusätzlich 1- bzw. 2-wöchentlich intravenöses Eisen (Eisensucrose oder Eisengluconat). Mit intravenösem Eisen konnten statistisch signifikant der Hämoglobinwert, das hämatologische Ansprechen verbessert und der Ziel-Hb-Wert schneller erreicht werden. Allerdings hatten auch einige Patienten einen Eisenmangel. Diese Studie war dafür angelegt auch Unterschiede in der Transfusionsrate nachweisen zu können. So konnte mit intravenösem Eisen die Transfusionsrate von 20% auf 9% reduziert werden. Dies ist die größte Studie, die einen synergistischen Effekt von intravenösem Eisen und Erythropoetin stimulierenden Agentien zeigte. Die negative Studie von Steensma verwendete im Vergleich zu den anderen Studien eine zu geringe Eisendosis und ist deswegen kritisiert worden [94,95].
Eine Metaanalyse 10 relevanter Studien mit i. v. Eisentherapie ergab bei 1637 randomisierten Patienten einen signifikanten Anstieg der Patienten mit hämatologischem Ansprechen: (RR 1,31 [95 % CI 1,15; 1,49], 8 Studien; und eine signifikant geringere Anzahl transfundierter Patienten RR 0,77 [95 % CI 0,64; 0,94], 9 Studien [96].

Fazit für die Praxis ▼

Die Lebensqualität der Tumorpatienten wird durch eine Anämietherapie verbessert. Eine effektive Therapie der Anämie chronischer Erkrankung ist mit Erythrozytentransfusionen und bei Chemotherapie auch mit Erythropoese stimulierenden Agentien (ESA: Erythropoetin, Darbepoetin) möglich. Die EORTC und ASCO haben Leitlinien zur Anämietherapie mit ESA bei Tumorpatienten mit Chemotherapie entwickelt. Demnach können ESA bei chemotherapierten Patienten mit symptomatischer Anämie, einem Hb-Wert zwischen 8 und 11 g/dl eingesetzt werden. Ein Hb-Wert-Anstieg über 12 g/dl soll vermieden werden, um Komplikationen zu vermeiden. Aktuelle Studien belegen, dass die Wirksamkeit der ESA signifikant gesteigert werden kann, wenn eine zusätzliche intravenöse Eisensubstitution erfolgt.

10. Schmerztherapie bei Tumorpatienten ▼

Patienten mit Krebs haben häufig chronische aber auch akute Schmerzen, die sich in einigen Aspekten von nicht tumorbedingten Schmerzen unterscheiden. Neben Schmerzen treten in fortgeschrittenen Stadien weitere Symptome und Funktionseinschränkungen auf, wie z. B. Übelkeit, Erbrechen, Verstopfung, Durchfall, Atemnot, Müdigkeit, Appetitlosigkeit, Unruhe, Angst, Schwäche usw. Diese Symptome können durch die Gabe von Schmerzmitteln sowohl gebessert als auch verschlechtert werden. Außerdem verlangsamen diese Symptome oft eine zusätzliche Therapie, die mit der Analgesie koordiniert werden muss.

Viele Tumorpatienten geben an mehr als einer Körperstelle Schmerzen an, häufig auch unterschiedlicher Pathogenese (nозizeptiv, neuropathisch, gemischt). Intensität, Lokalisation und Art der Schmerzen können sich kurzfristig ändern, in Abhängigkeit von Tumorwachstum und Erfolg spezifischer Therapien.

10.1 Voraussetzungen

Zunächst ist eine ätiologische Abklärung der Schmerzsymptomatik erforderlich, wie tumorassoziert, therapiebedingt, vom Tumorleiden unabhängig, um eine kausale Therapie einleiten zu können. Der Schmerzanamnese und der klinische Untersuchungsbefund des Patient müssen gründlich erhoben werden. Folgende Minimalfragen sollten geklärt werden: Lokalisation, Intensität, Rhythmik, Charakter, Triggermechanismen.

Tab. 14 Medikamente (Auswahl) und Dosierungsintervalle.

Stufe 1, Nichtopioidanalgetika	Einzeldosis (mg)	Intervall (h)	Maximale Tagesdosis (mg)
Paracetamol	500–1 000	4–6	6 000
Diclofenac	25–50	4–8	200–300
Diclofenac retard	100	8–12	
Ibuprofen	300–600	4–8	2 400
Metamizol	500–1 000	4–6	6 000
Celecoxib	200	12–24	
Etoricoxib	60–90	24	

Stufe 2, schwach wirkendes Opioid + ggf. Nichtopioid + ggf. Koanalgetikum; Rechtzeitig zu Stufe III wechseln, ggf. Stufe II überspringen
Paracetamol + Codein Tbl.: 1–2
Diclofenac + Codeinphosphat Tbl.: 1–2
Dihydrocodein ret. 60–120
Tramadol 50–100
– Tropfen 50 mg/ml
– ret. 100–200
Tildin + Naloxon 50–100
– Tropfen 50 mg/ml
– ret. 50–150

Stufe 3, Tapentadol (Retardtabl.) 50–250	12	500
Buprenorphin 0,2–0,6	6–8	40
– Matrixpflaster* 35/52,5/70 μg/h	84	70 μg/h
Oxycodon/Naloxon 10/5–20/10 μg/h	8–12	Oxycodon 80/Naloxon 40
Morphinsulfat ret. Beginn 30	6–12	keine (BTM: 2 000)
Oxycodon ret. 10–40	8–12	keine
Hydromorphan ret. 4–24	8–12	keine
Hydromorphon ret. 24 h	8–64	keine
Fentanyl TTS* (Membranpfl.) 12,5–100 μg/h	72	keine

Stufe 4, Medikamente der Stufe 3 kontinuierlich (Pumpe/Infusion) intravenös, subkutan, peridural bzw. intrathekal, interventionelle Methoden, Rückenmarkstimulation, operative Eingriffe
*Pflastersysteme sind nur bei stabilen Schmerzsyndromen bzw. bei Schluckstörungen oder eingeschränkter gastrointestinaler Resorption sinnvoll. Eine Bedarfsmedikation bei Belastungs- und Durchbruchschmerzen sollte vorgesehen werden.
10.2 Klinisch können folgende Schmerzarten unterschieden werden

Nozizeptive Schmerzen: z.B. Knochen-, Weichteilschmerz (gut lokalisierbarer dumpfer bohrender Schmerz);
Viszeraler Schmerz: in der Tiefe empfundener drückender Schmerz, evtl. sind übertragene Schmerzsyndrome möglich; Beteiligung von Hohlorganen: kampftartiger, kolikartiger Schmerzcharakter;
Neuropathischer Schmerz: einschießender, stechender Schmerz verbunden mit Parästhesien bzw. Dysästhesien, Schmerzqualität auch heiß, brennend;
Psychosomatisch bedingter Schmerz: Ganzkörperschmerzsyndrom, wechselnde Lokalisationen des Schmerzes, keine genauen Angaben über Ort des Schmerzes möglich; quälender, vernichtender Schmerz:
Sympathisch unterhalter Schmerz: nicht segmental auftretend, häufig Temperaturmissempfindungen, brennender Schmerz, heißer Schmerz; bewegungsunabhängig, in voller Ausprägung mit trophischen Störungen der Haut verbunden.

10.2.1 Schmerzskaala

Die Angabe der Schmerzintensität durch den Patienten sollte nach etablierten Schemata erfolgen. Die subjektive Einschätzung der Schmerzstärke kann mit einfachen Skalierungssystemen erfolgen [97,98].

Die visuelle Analogskala (VAS), bei der der Patient wie auf einem Rechenschieber die Schmerzstärke einstellt, die auf der Rückseite einem Zahlenwert von 0 bis 100 oder von 0 bis 10 zugeordnet ist.

Numerische Ratingskalen: 0 = kein Schmerz, 1 = geringer Schmerz, 2 = mäßiger Schmerz, 3 = starker Schmerz, 4 = unerträglicher Schmerz.

10.3 Medikamentöse Schmerztherapie

Bei chronischen tumorassoziierten Schmerzen sollten Analgetika in pharmakologisch sinnvollen Abständen nach festen Uhrzeiten appliziert werden und den individuellen Bedürfnissen des Patienten angepasst werden. Der Patient sollte eine genaue schriftliche Anweisung mit eingetragenen Uhrzeiten zur Medikamenteneinnahme, einer analgetischen Bedarfsmedikation und der adjuvanten Medikation erhalten. Hilfreich ist auch die Verwendung eines Schmerztagebuches durch den Patienten, um die Wirksamkeit der Therapie erkennen zu können.

Die Medikation sollte entsprechend den WHO-Richtlinien unter Berücksichtigung Schmerzstärke, der Art und Dauer nach festen Zeiten, oral und einem Stufenplan erfolgen [97]. Allerdings ist das Management von Schmerzpatienten wesentlich komplexer, als diese 3-stufige bzw. 4-stufige Skala suggeriert [99,100].

Eine orale Applikation ist anzustreben. Bei Schluckstörungen, Erbrechen oder Diarrhö kann auch kontinuierlich parenteral behandelt werden. Dazu gibt es verschiedene Möglichkeiten wie Pumpe, Infusion, entweder subkutan, intravenöses, peridural, intrathekal oder als transfundale therapeutisches System (TT, z.B. Fentanyl-Pflaster) bzw. über PEG-Sonde.

Eine Opioid-Therapie soll immer mit Laxans kombiniert werden und zu Beginn auch mit Antiemetikum.

Die häufigsten Fehler bei Gabe von Nichtopioiden sind: zu langen Beharrungen auf einer Monotherapie, Unterdosierung (z.B. Paracetamol unter 4 g/Tag), zu lange Intervalle (z.B. Metamizol nur 3-mal täglich).

Belastungsschmerz: Schmerz bei Belastung, vorhersehbar, die Therapie erfolgt mit schnell wirksamen, nicht retardierten Opioiden (z.B. Hydromorphone, Morphinsulfat).

Durchbruchsschmerz: Unabhängig von Belastungen, nicht vorhersehbar, die Therapie wird mit sofort wirksamen nicht retardierten Opioiden (z.B. Fentanylcitrat) durchgeführt.

10.4 Zusatzmedikation bei besonderen Schmerzen [101]

Die Nebenwirkungen der Opiate sollten beachtet und prophylaktisch behandelt werden, Tab. 15.

11. Prophylaxe von Übelkeit und Erbrechen nach Chemotherapie

Die Supportivtherapie von Patienten mit antineoplastischer Therapie hat sich in den letzten 25 Jahren sehr stark verbessert.
Die Möglichkeit Übelkeit und Erbrechen nach Chemotherapie effektiv zu vermeiden, ist eines der wichtigsten Beispiele für diese Entwicklung [102,103]. Patienten bei denen eine Chemotherapie geplant ist, berichten Übelkeit und Erbrechen als eine ihrer größten Ängste [104].

Übelkeit und Erbrechen als Folge der Chemotherapie kommen bei vielen antineoplastischen Therapien vor, können sehr belastend sein und den Erfolg der Chemotherapie beeinträchtigen. Eine effiziente Prophylaxe ist Standard in der Onkologie und gehört zum Behandlungskonzept mit antineoplastischen Substanzen [102,103,105–107].

Die Ursachen von Nausea und Erbrechen entstehen durch noxische Stimulation einer oder mehrerer von 4 Stellen des Organismus [108]: Magen-Darmtrakt, Vestibularorgan, zentrales Nervensystem (ZNS) in der Chemorezeptor-Trigger Zone der Area postrema am Boden des 4. Ventrikels, höhere Zentren des ZNS. Die Chemorezeptor-Trigger Zone weist keine Blut-Hirn-Schranke auf, sodass dort Dopamin-Typ-2 Rezeptoren durch endogene und exogene Toxine aktiviert werden können. Efferente Stimuli der Chemorezeptor-Trigger Zone aktivieren dann das Brechzentrum, das aus dem Nucleus tractus solitarius und der Formatio reticularis der Medulla oblongata besteht. Das Brechzentrum wird über Histaamin Typ 1 (H1) oder muskarinische Acetylcholinrezeptoren Typ 1 aktiviert, was in Erbrechen resultiert. Neurokinin-1-(NK-1)-Rezeptoren, deren Ligand die Substanz P ist, kommen ebenfalls in der Chemorezeptor-Trigger Zone und im Brechzentrum vor und vermitteln Übelkeit und Erbrechen. Die 5-Hydroxytryptamin-Typ-3-Rezeptoren (5-HT-3) für Serotonin in der Chemorezeptor-Triggerzone und im Brechzentrum spielen an dieser Stelle keine besondere Rolle bei Nausea und Erbrechen. Anders ist das im Gastrointestinal-Trakt und Herz, wo 5-HT-3-Rezeptoren das Brechzentrum über Mechanorezeptoren oder Chemorezeptoren des N. glossopharyngeus oder N.vagus (Hirnnerven IX und X) aktivieren können oder durch Serotonin, freigesetzt aus enterochromaffinen Zellen des proximalen Dünndarms, das die 5-HT-3-Rezeptoren auf vagalen Afferenzen stimuliert. Außerdem sind an den terminalen vagalen Afferenzen die Rezeptoren für Cholecystokinin-1 und Neurokinin-1 vorhanden, die durch entsprechende lokale Mediatoren aktiviert werden können [102].

Das Vestibularorgan stimuliert das Brechzentrum durch Bewegung, Erkrankung (Labyrinthitis) oder selten durch medikamentöse Sensibilisierung wie durch Opioide. Die Histamin (H1) und muskarinischen Acetylcholin M1 Rezeptoren kommen wohl auch auf vestibulären Afferenzen vor. Höhere Zentren des ZNS können das Brechzentrum sowohl aktivieren als auch inhibieren [108].

Die Einteilung von Chemotherapie-induzierter Übelkeit und Erbrechen erfolgt in drei Formen nach zeitlichen Gesichtspunkten: 1. akutes Erbrechen/Übelkeit: Innerhalb der ersten 24 h nach Chemotherapie auftretend, ist hauptsächlich durch Serotonin-Freisetzungen aus enterochromaffinen Zellen vermittelt. 2. Verzögertes Erbrechen/Übelkeit: Nach 24 h bis 5 Tagen nach Chemotherapie auftretend, hauptsächlich durch Substanz-P-Vermittlung. 3. Antizipatorisches Erbrechen/Übelkeit: Auftreten erst nach erfolgter Chemotherapie, ist Folge klassischer Konditionierung nach vorausgegangener Übelkeit und Erbrechen. Im klinischen Alltag spielen das akute und verzögerte Erbrechen die Hauptrolle. Die Chemotherapie sollte nach ihrem emetogenen Risiko beurteilt werden, dabei hat sich eine 4-stufige Einteilung herauskristallisiert, entsprechend der Anzahl der betroffenen Patienten, soweit diese Daten aus den Publikationen zu entnehmen sind [103].

Tab. 17 Emetogenes Potenzial intravenös applizierter antineoplastischer Substanzen, ausgewählte Substanzen, die bei HNO-Patienten mit Tumor eine Rolle spielen können.

Substanz	Emesis Risiko ohne antiemetische Prophylaxe
Hoch	> 90%
Carbustin, BCNU	Cyclophosphamid (> 1500 mg/m²)
Cisplatin	Emetis Risiko ohne antiemetische Prophylaxe
Modera	30–90%
Cyclophosphamid (< 1500 mg/m²)	Epirubicin
Daunorubicin	Ifosfamid
Doxorubicin	Irinotecan
Gering	Emetis Risiko ohne antiemetische Prophylaxe
Cetuximab	10–30%
Docetaxel	Paclitaxel
Etoposid i.v	Panitumumab
5-Fluorouracil	Teniposid
Gemcitabin	Thiopeta
Methotrexat (> 100 mg/m²)	Topotecan
Minimal	Emetis Risiko ohne antiemetische Prophylaxe
Bleomycin	< 10%
Bevacizumab	Vinblastin
Methotrexat (< 100 mg/m²)	Vinorelbín

Tab. 18 Emetogenes Potenzial ausgewählter und oral applizierter antineoplastischer Substanzen.

Substanz	Emesis Risiko ohne antiemetische Prophylaxe
Moderat	30–90%
Cyclophosphamid	Vinorelbín
Gering	Emetis Risiko ohne antiemetische Prophylaxe
Capecitab	< 10%
Gefitin	Methotrexat
Erlotinib	

*Bei den oral applizierten Zytostatika kann die antiemetische Prophylaxe von dem in Tab. 22 angegebenen Schema abweichen und muss individuellisiert werden. Bei oralen und längerfristig applizierten Substanzen macht es keinen Sinn nach akuter und verzogter Nausea und Emesis zu differenzieren. Außerdem besteht ein erhöhtes Risiko für Erbrechen bei intravenöser Applikation, hoher Dosierung und schneller Applikationsgeschwindigkeit der Chemotherapie [106].

Neben dem emetogenen Potenzial der Chemotherapie beeinflussen auch patientenspezifische Risikofaktoren das Auftreten von Übelkeit und Erbrechen nach der Chemotherapie. Als Risikofaktoren gelten: regelmäßig geringer Alkoholgenuss Alter unter 35 Jahren weibliches Geschlecht Angst.
geringer Karnofsky-Index bekannte Reisekrankheit Schwangerschaftserbrechen und vorausgangene Chemotherapie sowie vorbestehende Übelkeit [110, 111]. Interessanterweise verringert regelmäßiger exzessiver Alkoholkonsum das Risiko für Übelkeit und Erbrechen nach der Chemotherapie [112].

11.1 Antiemetische Therapiestrategien
Durch die kombinierte antiemetische Prophylaxe mit modernen Antiemetika kann Erbrechen bei 70–90% der erwachsenen Tumorpatienten, die eine hoch oder moderat emetogene Chemotherapie erhalten, komplett verhindert werden.

Dies wird durch spezifische Antiemetika wie 5-HT3-Rezeptor-Antagonisten (5-HT3-RA) und Neurokinin-1-Rezeptor-Antagonisten (NK1-RA) ermöglicht, die je nach emetogenem Potenzial der Chemotherapie miteinander sowie zusätzlich mit Steroiden kombiniert werden. Es sollte immer eine leitliniengerechte antiemetische Prophylaxe erfolgen [103].

Im Wesentlichen orientieren sich die antiemetischen Prophylaxe-Empfehlungen an den aktualisierten „MASCC/ESMO-Leitlinien“ vom Juni 2009 (www.masc.org) und den kurzgefassten interdisziplinären Leitlinien der Deutschen Krebsgesellschaft (DKG) [103, 107]. Eine autorisierte Übersetzung der MASCC/ESMO-Leitlinien-Guidelines findet sich unter www.asors.de auf der Seite der ASORS (Arbeitsgemeinschaft Supportive Maßnahmen in der Onkologie, Rehabilitation und Sozialmedizin der Deutschen Krebsgesellschaft).

11.1.2 Neurokinin-1-Rezeptor-Antagonisten – NK1-RA
Die 5-HT3-RA haben die antiemetische Therapie zu Beginn der 1990er Jahre verbessert und sind für die Prophylaxe der akuten Erbrechen bei moderat und hoch emetogenen Chemotherapien als Standardtherapie indiziert (Erbrechen bei moderat und hoch emetogenen Chemotherapien [115]). Durch die Gabe von Palonosetron wurde die Wirksamkeit von Palonosetron in der verzögerten Phase erzielt und die verbesserte Wirksamkeit von Palonosetron in der verzögerten Phase erzielt [116].

11.2 Antiemetische Medikamente
Die wichtigsten antiemetisch wirksamen Substanzklassen sind die 5-HT3-RA, die NK1-RA und die Steroide. Die langjährig angewandten substituierten Benzamid, wie z.B. Metoclopramid, finden in den aktuellen internationalen Leitlinien in der „first-line-Prophylaxe“ des Erbrechens keine Berücksichtigung mehr [103, 113, 114].

11.2.1 5-HT3-Rezeptor-Antagonisten (5-HT3-RA)
Die 5-HT3-RA haben die antiemetische Therapie zu Beginn der 1990er Jahre verbessert und sind für die Prophylaxe des akuten Erbrechens bei moderat und hoch emetogenen Chemotherapien als Standardtherapie indiziert (Tab. 19). In der Prophylaxe des verzögerten Erbrechens ist ihre Stellwert mit Ausnahme von Palonosetron eher als gering einzuschätzen. Bei dem neueren 5-HT3-RA Palonosetron ist aufgrund seiner langen Halbwertszeit, stärkerer Rezeptoraffinität und anderer Bindungsmechanismen auch von einer Wirksamkeit in der Prophylaxe des verzögerten Erbrechens auszugehen [115].

Bei der Anwendung von 5-HT3-RA sollten wesentliche Prinzipien beachtet werden, um eine maximale Wirkung und optimale Kosten-Nutzen-Relation zu erzielen [103, 114, 116]. Die geringste wirksame Dosis ist ausreichend.

Tab. 19 5-HT3-Rezeptor-Antagonisten: Dosierungen.

5-HT3-Rezeptor-Antagonisten	intravenös	oral
Ondansetron	8 mg	16–24 mg
Granisetron	1 mg	2 mg
Palonosetron	0,25 mg	0,5 mg*
Tropisetron	5 mg	5 mg

* in Deutschland derzeit nur i.v. verfügbar

Die tägliche Einmalgabe ist ausreichend. Die orale Gabe ist der intravenösen Gabe unter Berücksichtigung der Bioverfügbarkeit ebenbürtig.

In den aktualisierten MASCC/ESMO Leitlinien wird Palonosetron als der zu bevorzugende 5-HT3-RA in der akuten Phase bei der moderat emetogenen Chemotherapie („andere“) empfohlen (Tab. 22). Grund dieser Empfehlung war die überlegene Wirksamkeit von Palonosetron gegenüber Ondansetron (akute komplette Kontrolle 81,0% vs. 68,8%; p = 0,0085) und Dolasetron (akute komplette Kontrolle 63,0% vs. 52,9%; p = 0,049 [117, 118]). Nur wenige Patienten erhielten prophylaktisch ein Steroid.

Die Wirksamkeit von Palonosetron in der verzögerten Phase bei hoch emetogener und AC basierter Chemotherapie wurde publiziert [115]. Durch die Gabe von Palonosetron wurde die Wirksamkeit von Palonosetron in der verzögerten Phase erzielt [116].

11.2.2 Steroide
Die antiemetische Wirksamkeit der Steroide wird unterschätzt, ihr antiemetischer Wirkmechanismus ist nicht genau bekannt. In den Leitlinien gelten die Steroide bei fehlenden Kontraindikationen als fester Bestandteil jeder antiemetischen Prophylaxe (Tab. 20). Steroide werden sowohl für die Prophylaxe der akuten, als auch der verzögerten Form des Erbrechens eingesetzt [119]. Das am häufigsten in der antiemetischen Therapie eingesetzte Steroid ist Dexamethason [102, 119]. Das Nebenwirkungspotenzial von Dexamethason ist bei der kurzen Therapiedauer als eher gering einzuschätzen.

Wenn Kortikosteroide zusammen mit dem moderaten Cytopharm-P 450 3A4 Inhibitor Aprepitant eingesetzt werden, dann sollte die Dosis um etwa 50% reduziert werden. Die einzige Ausnahme besteht bei Patienten, die Steroide als Teil der antineoplastischen Therapie erhalten, bei denen die Steroidosen nicht vermindert werden sollen. Auch die Steroide Prednison und Prednisolon wurden zu antiemetischen Prophylaxe verwendet. Es sollten dann Dexamethason-äquivalente Dosen der glucocorticoiden Potenz verwendet werden, d.h. 7-fach höhere Dosen.

Tab. 20 Dexamethason Dosierungen: bei hoch emetogener Chemotherapie sollte immer Aprepitant verwendet werden, sodass die 20 mg Dosierung eher historisch zu werten ist.

	akute Phase	verzögerte Phase
hoch mit Aprepitant	12 mg	8 mg
ohne Aprepitant	20 mg	8 mg
moderat/gering	8 mg	8 mg

11.2.3 Neurokinin-1-Rezeptor-Antagonisten – NK1-RA
Aprepitant ist aktuell der einzigen NK1-RA, der in Kombination mit 5-HT3-RA+Steroiden für die Prophylaxe der Emesis bei cisplatinhaltiger Chemotherapie und moderat emetogener Chemotherapie eingesetzt werden kann (Tab. 21). Aprepitant ist auch als intravenöse Applikationsform als Fosaprepitant verfügbar, mit äquivalenter Wirkung zur oralen Gabe. Durch die zusätzliche Gabe von Aprepitant in Kombination mit einem 5-HT3-RA und Steroid, kann ein bis zu 20% besseres Ansprechen besonders in der verzögerte Phase bei hoch emetogener Chemotherapie erzielt werden [120]. Aprepitant besitzt wie auch die 5-HT3-RA ein günstiges Nebenwirkungsprofil. Appetitlosigkeit ist das am häufigsten beschriebene Symptom. Gelegentlich kommt es...
zu Schluckauf (4–5%). Da Aprepitant ein moderater CYP3A4-Inhibitor ist, ist bei kombinierter Anwendung mit Dexamethason die Dosis von Dexamethason zu reduzieren (betrifft nur die 20mg Dosierung, (\(\text{Tab. 20}\)).

11.2.4 Stellenwert von Aprepitant
In den aktuellen MASCC/ESMO Leitlinien wird Aprepitant bei der hoch emetogenen und AC basierten Chemotherapie standardmäßig empfohlen [103]. Bei der moderat emetogenen Chemotherapie „andere“ (bezieht sich auf alle moderat emetogenen Chemotherapien außer der Kombination Anthrazyklin/Cyclophosphamid- (AC) basiert) wird derzeit der Einsatz von Aprepitant noch nicht empfohlen (\(\text{Tab. 22}\)). Die NCCN Leitlinien halten hingegen den Einsatz von Aprepitant bei „selektionierten“ Patienten bei dieser Indikation bereits für indiziert [121]. Bisher wurde eine positive Studie bei der moderat emetogenen Chemotherapie publiziert [112]. Eine Studie mit 150mg intravenösem Aprepitant vor der ersten Chemotherapie, kombiniert mit Ondansetron und Dexamethason zeigte eine gleiche Wirksamkeit wie eine orale Aprepitant-Prophylaxe über 3 Tage: Komplettes Ansprechen (i. v. vs. p.o) in der akuten Phase von 89% bzw. 88%, in der verzögerten Phase von 74,3 bzw. 74,2% [123].

11.2.5 Weitere Antiemetika
Dopaminantagonist Metoclopramid (MCP): Der First-line-Einsatz des substituierten Benzamids MCP zur Prophylaxe des akuten Erbrechens wird gemäß den aktuellen Leitlinien heute nicht mehr empfohlen. Die Indikation für MCP besteht nur noch als sogenannte „Rescue-Medikation“ bei Therapieversagern. In niedrigen Dosierungen wirkt Metoclopramid über eine \(D_2\)-Rezeptorblockade, in höheren Dosierungen tritt ein zusätzlicher \(5-HT_3\)-Rezeptorantagonismus auf. Die antiemetische Wirksamkeit von Metoclopramid ist jedoch wesentlich geringer als die der selektiven \(5-HT_3\)-Rezeptorantagonisten. Üblicherweise werden 3–4×tgl. 30–40 Tropfen (8–10 mg) Metoclopramid gegeben. Für die Prophylaxe des akuten Erbrechens, unabhängig vom emetogenen Potenzial, besteht definitiv keine Indikation mehr. Metoclopramid ist in dieser Indikation keine „preiswerte“ Alternative zu einem \(5-HT_3\)-RA. In der Prophylaxe des verzögerten Erbrechens bei der moderat emetogenen Chemotherapie ist Metoclopramid nach wie vor vertretbar.

Klassische Neuroleptika: Der antiematische Effekt der Neuroleptika (z. B. Haloperidol, Promethazin) ist wesentlich geringer ausgeprägt als bei Metoclopramid. Wie auch bei den Benzodiazepinen steht dabei eher die gewünschte psychische Distanzierung im Vordergrund dieser Therapie. Phenothiazine, die sogenannten niederpotenten Neuroleptika (Levopromazin, Promethazin, Triflupromazin) weisen einen stärkeren sedierenden Effekt als Butyrophenone (hochpotente Neuroleptika: Haloperidol, Droperidol) auf. Dafür sind die extrapyramidalen Nebenwirkungen (Parkinson-

Tab. 21 Neurokinin-1-Rezeptor-Antagonist: Dosierungen.
Neurokinin-1-Rezeptor-Antagonist

Aprepitant
Fosaprepitant

* bioäquivalent zu 125 mg Aprepitant oral

Tab. 22 Antiemetische Prophylaxe des Chemotherapie-induzierten Erbrechens, gemäß den interdisziplinären Leitlinien der DKG und aktualisierten MASCC/ESMO-Leitlinien [103, 107].
Emetogenes Potenzial
5-HT_3-RA
Hoch Steroid
Moderat 5-HT_3-RA, Palonosetron bevorzugt Dosis siehe oben
Gering Steroid
Minimal keine Routineprophylaxe

* Die Steroidgabe bei AC-basierter Chemotherapie in der verzögerten Phase ist aufgrund fehlender Studiendaten nicht Bestandteil der MASCC/ESMO-Leitlinien, wird aber von den Experten als sinnvoll erachtet

** Metoclopramid ist nicht Bestandteil der MASCC/ESMO-Leitlinien

Link H. Supportivtherapie der medikamentösen Tumortherapie... Laryngo-Rhino-Otol 2012; 91: S151–S175
noid) bei den Phenothiazinen wesentlich geringer ausgeprägt als bei den Butyrophenonen.

Antihistaminika: Für Antihistaminika ist grundsätzlich keine antiemetische Aktivität bei chemotherapie-bedingtem Erbrechen belegt. Sie sollten bei Erwachsenen nicht mit dieser Indikation verwendet werden.

11.2.6 Antiematische Prophylaxe, Leitlinie

In ☐ Tab. 22 sind die Empfehlungen der Perugia Consensus Conference on Antiemetic Therapy 2009 der MASCC/ESMO für die Chemotherapie zusammengefasst. Bei Kombinationschemotherapien zählt das Zytostatikum mit dem jeweils höchsten emetogenen Potenzial, da durch weitere Zytostatika kein additiver Effekt besteht. Eine Ausnahme besteht in der Kombination eines Anthrazyklins mit Cyclophosphamid, bei der durch eine Kombination eine höhere Emetonetät vorkommt [103].

Prophylaktisch werden die Antiemetika vor der Chemotherapie gegeben, entsprechend dem emetogenen Potenzial der Chemotherapie. Die orale Gabe der Antiemetika ist der intravenösen Gabe ebenbürtig und die 1-mal tägliche Gabe ausreichend. Die 5-HT3-Antagonisten der ersten Generation unterscheiden sich in Wirksamkeit oder Nebenwirkungsspektrum nicht wesentlich. Palonosetron ist ein 5-HT3-Rezeptorantagonist, der nur als i.v. Gabe geeignet ist. In Wirksamkeit oder Nebenwirkungsspektrum nicht wesentlich. Der Hb-Wert muss nicht immer niedriger als 12 g/dl sein. Anämie 3

12. Prävention und Behandlung der Diarrhö

Zur Prophylaxe der Chemotherapie- oder Radiotherapie-induzierten Diarrhö dient der Verzicht auf würzige, stark fetthaltige Speisen, alkoholfreie Getränke, Ballaststoffreiche Nahrungsmittel. Balla...
35 Miller CB, Jones RJ, Piantadosi S, Abolfe MD. Spivak JL. Decreased erythropoietin response in patients with the anemia of cancer. New England Journal of Medicine 1990; 322: 1698–1692
36 Dallalio G, Law E, Means RT Jr. Hecpind inhibits in vitro erythroid colony formation at reduced erythropoietin concentrations. Blood 2006; 107: 2702–2704 http://bloodjournal.hematologylibrary.org/content/107/7/2705.abs
37 Ganz T. Hecpind and iron regulation. 10 years later. Blood 2011; 117: 4425–4433 http://bloodjournal.hematologylibrary.org/content/117/17/4425.abstract
38 Kato-Sibiro E, Terpas E, Zerves K, Spletas M, Kapetanos D, Karraios C, Vernou E, Banti A, Effraimidou S, Christakis J. Hypochromic erythrocytes (%): a reliable marker for detecting iron-restricted erythropoiesis and predicting response to erythropoiesis in anemic patients with myeloma and lymphoma. Ann Hematol 2007; 86: 369–376 PM:17375302
39 Auerbach M, Ballard H, Trout JR, McIlwain M, Ackerman A, Bahrami H, Balan S, Barker L, Rana J. Intravenous iron optimizes the response to recombinant human erythropoietin in cancer patients with chemotherapy-related anemia: a multicenter, open-label, randomized trial. J Clin Oncol 2004; 22: 1301–1307 PM:15051778
40 Boyo C, Gathot A, Delaney P, Warling X, Kreszinski JM, Beguin Y. Mature erythrocyte parameters as new markers of functional iron deficiency in haemodilution: sensitivity and specificity. Nephrol Dial Transplant 2006; 21: 1156–1162 PM:1734791
41 Littlewood TJ, Bajetto E, Norwei JT, Verzemmen E, Rapoport B. Effects of epoetin alfa on hematologic parameters and quality of life in cancer patients receiving nonplatinum chemotherapy: results of a randomized, double-blind, placebo-controlled trial. J Clin Oncol 2001; 19: 2865–2874 PM:11387359
42 Hedenus M, Adressson M, San MJ, Hammer MA, Schipperus MR, Jovenen E, Taylor K, Belch A, Altes A, Martinelli G, Watson D, Matcham J, Rossi G, Littlewood TJ. Efficacy and safety of darbepoein alfa in anemic patients with lymphopenic maligantancies: a randomized, double-blind, placebo-controlled study. Br J Haematol 2003; 122: 394–403 PM:12877666
43 Chang J, Couture F, Young S, McWatters KI, Law C. Weekly epoetin alfa maintains hematopathy, improves quality of life, and reduces transfusion in breast cancer patients receiving chemotherapy. J Clin Oncol 2005; 23: 2597–2605 PM:15452188
44 Witzig TE, Silberstein PT, Loprinzi CL, Sloan JA, Novotny PJ, Mailliard JA, Rowland KM, Alberts SR, Krook JE, Levitt R, Morton RF. Phase III, randomized, double-blind study of epoetin alfa compared with placebo in anemic patients receiving chemotherapy. J Clin Oncol 2005; 23: 2606–2617 PM:15452187
45 Wissenschaftlicher Beirat der Bundesärztekammer. Querschnitts-Leitlinien (BAK) zur Therapie mit Blutzellkomponenten und Plasmaderivaten, Gesamtnovelle 2008; zuletzt geändert 10.1.2011. Bundesärztekammer.
46 Corwin JS, Tomich L, Venci M, Seneff S, Jelinek J, Gurney C, Young D. Weighing the hazards of erythropoiesis stimulation in patients with cancer. N Engl J Med 2007; 356: 2445–2448
47 Bennett CI, Silver SM, Djulbegovic B, Samaras AT, Blau CA, Clezzas KJ, Barnato SE, Eevelman KM, Courtney DM, McKay JM, Edwards BJ, Tigue CR, Hasliek DA, Baltins K, Solum L, West GP, Lai SY, Henke M. Venous thromboendoemolism and mortality associated with recombinant erythropoietin and darbepoein administration for the treatment of cancer-associated anemia. JAMA 2008; 299: 914–924 PM:18134434
48 Aapro M, Link H. Update on EORTC guidelines and anemia management with erythropoiesis stimulating agents (ESAs). The Oncologist 2008; 13 (Suppl 3): 33–56 PM:18458123
49 Aapro MS, Birgegard G, Bokemeyer C, Cornes P, Foubert J, Garson P, Glaspy J, Hellstrom-Lindberg E, Link H, Ludwig H, Oстерberg A, Repetto L, Soubeyran P. EORTC guidelines for the use of erythropoietic products in anemic patients with cancer: 2006 update. Eur J Cancer 2007; 43: 258–270
50 Bokemeyer C, Aapro MS, Courdi A, Foubert J, Link H, Oстерberg A, Repetto L, Soubeyran P. EORTC guidelines for the use of erythropoietic products in anemic patients with cancer: 2007 American Society of Hematology/American Society of Clinical Oncology clinical practice guideline update 2008; 111: 25–31 PM:18458123
51 Khuri FR. Weighing the hazards of erythropoiesis stimulation in patients with cancer. N Engl J Med 2007; 356: 2445–2448
52 Bennett CI, Silver SM, Djulbegovic B, Samaras AT, Blau CA, Clezzas KJ, Barnato SE, Eevelman KM, Courtney DM, McKay JM, Edwards BJ, Tigue CR, Hasliek DA, Baltins K, Solum L, West GP, Lai SY, Henke M. Venous thromboendoemolism and mortality associated with recombinant erythropoietin and darbepoein administration for the treatment of cancer-associated anemia. JAMA 2008; 299: 914–924 PM:18134434
53 Aapro M, Link H. Update on EORTC guidelines and anemia management with erythropoiesis stimulating agents (ESAs). The Oncologist 2008; 13 (Suppl 3): 33–56 PM:18458123
54 Aapro MS, Birgegard G, Bokemeyer C, Cornes P, Foubert J, Garson P, Glaspy J, Hellstrom-Lindberg E, Link H, Ludwig H, Oстерberg A, Repetto L, Soubeyran P. Erythropoietins should be used according to guidelines. Lancet Oncol 2008; 9: 412–413 PM:18458253
55 Bennett CI, Silver SM, Djulbegovic B, Aapro M, Ucberg AJ. Analyzing the efficacy of epoetin alfa and darbepoein alfa on survival, tumour progression and thromboembolic events in patients with cancer: an updated meta-analysis of 12 randomised controlled studies including 2301 patients. Br J Cancer 2008; 99: 14–22 PM:18420709
85 Goodnough LT, Skinek B, Brugnarà C. Erythropoietin, iron, and erythropoiesis. Blood 2000; 96: 823–833 PM:1091892
86 Coyne DW, Kapoian T, Saki W, Singh AK, Moran JE, Dahl NV, Rickula AR. Ferric gluconate is highly efficacious in anemic hemodialysis patients with high serum ferritin and low transferrin saturation: results of the Dialysis Patients’ Response to IV iron with Elevated Ferritin (DRIVE) Study J Am Soc Nephrol 2007; 18: 975–984 PM:12767740
87 Rizzo JD, Lichten AE, Woelf SH, Skelenfeld J, Bennett CL, Cella D, Djulbegovic B, Goode MJ, Rubovits L, Lee SJ, Miller CB, Barwick MU, Regan DH, Brownman GP, Gordon MS. Use of Epoetin in Patients with Cancer: Evidence-Based Clinical Practice Guidelines of the American Society of Clinical Oncology and the American Society of Hematology. J Clinical Oncology 2002; 20: 4083–4107 PM:1707002
88 Auersbach M. Should Intrasosseous Iron be the Standard of Care in Oncology? Journal of Clinical Oncology 2008; 26: 1579–1581 PM:1804220
89 Eschbach JW, Kelly MR, Haley NR, Abels RI, Adamson JW. Treatment of the anemia of progressive renal failure with recombinant human erythropoietin. New England Journal of Medicine 1989; 321: 158–163 PM:1657548
90 Overgaard J, Kaminski PH, Aarestrup A, Del Pepe S, Del Gaftez F, Ferrari D, Bianchessi C, Colucci C, Desaguas A, Gamucci T, Pappalardo A, Fornarini G, Pozzi P, Fabi A, Labianca R, Di Costanzo F, Secondino S, Crucita E, Apollofni L, Del Santo A, Siena E. Randomized Trial of Intravenous Iron Supplementation in Patients With Chemotherapy-Related Anemia Without Iron Deficiency Treated With Darbepoetin Alfa. Journal of Clinical Oncology 2008; 26: 1619–1625 PM:1804220
91 Heny DH, Dahl NV, Auersbach M, Tzekemedyian S, Laufman LR. Intravenous ferric gluconate significantly improves response to epoetin alfa versus oral iron or no iron in anemic patients with cancer receiving chemotherapy. The Oncologist 2007; 12: 231–242 PM:17269819
92 Hedenus M, Birgegard G, Nasman P, Ahlberg L, Karlsson T, Lauri B, Lundin J, Larsjar G, Osterberg A. Addition of intravenous iron to erythropoietin beta increases hemoglobin response and decreases epoetin dose requirement in anemic patients with lymphoproliferative malignancies: a randomized multicenter study. Leukemia 2007; 21: 627–632 PM:17252006
93 Auersbach M, Silberstein PS, Wobbi T, Averyanov S, Ciuleanu T, Cam L, Sheehan J, Lillie T. Darbepoetin alfa (da) 500mcg or 300mcg once every three weeks (q3w) with or without iron in patients (pts) with chemotherapy-induced anemia (CIA). Ann Oncol 2008 LBA9, Viil3
94 Steensma DP, Sloan JA, Dahlri SR, Dalton R, Kahanic SP, Prager DJ, Stella D, Rowland KF, Novotny JP, Loprinzi CL, Phase III, Randomized Study of the Effects of Parenteral Iron, Oral Iron, or No Iron Supplementation on the Erythropoietic Response to Darbepoetin Alfa for Patients With Chemotherapy-Associated Anemia. Journal of Clinical Oncology 2011; 29: 97–105 PM:1804220
95 Aapro M, Beguin Y,Birgegard G, Nasman P, Hedenus M, *ustberg A. Too-Low Iron Doses and Too Many Dropsouts in Negative Iron Trial Journal of Clinical Oncology 2011; 29: e525–e526 PM:1804220
96 Gafiter-Goval A, Rozen-Zvi B, Vidal I, Gafiter U, Vansteenkiste JF, Shpilberg I. Intravenous Iron Supplementation for the Treatment of Cancer-Related Anemia – Systematic Review and Meta-Analysis. ASH Annual Meeting Abstracts 2010; 116: 4249 http://abstracts.bloodjournal.org/cgi/content/abstract/ashmtg;116/21/4249
97 Schele HA, Kloke O, Schenk M, Schumaker S. Ditermening Treatment of Pain at Tumour-Site. Diener, Mai er, Herausgeber. Die Schmerztherapie. 3. Aufl. 231–250 München: Elsevier 2009
98 Wolf H. Sind Schmerzen messbar? Diener, Mai er, Herausgeber. Die Schmerztherapie. 3. Aufl. 267 München: Elsevier 2009
99 Sjörnsward J. WHO cancer pain relief programme. Cancer Surv 1991; 7: 195–208 PM:149090
100 Sjörnsward J, Colleau SM, Ventafrida V. The World Health Organization Cancer Pain and Palliative Care Program. Past, present, and future. J Pain Symptom Manage 1996; 12: 65–72 PM:8754982
101 Zimmer A, Meißner W. Medikamentöse Tumorschmerztherapie. Onkologie 2009; 13: 645–665
102 Heseket PJ. Chemotherapy-induced Nausea and Vomiting. New England Journal of Medicine 2008; 358: 2482–2494 http://dx.doi.org/10.1056/NEJMra0705647
103 Rola F, Herrstedt J, Aapro M, Gralla RJ, Einhorn LH, Ballatori E, Bria E, Clark-Snow RA, Esperens BT, Feyer P, Grunberg SM, Heseket PJ, Jordan K, Kris MG, Maranzano E, Molassiotis A, Morrow G, Oliver I, Rapoport BL, Rittenga C, Saito M, Tonnato R, Warr D. On behalf of the ESMO/MASC Guidelines Working Group, Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: results of the Perugia consensus conference. Annals of Oncology 2010; 21: v232–v243 http://annon. oxfordjournals.org/content/21/suppl_5/v232.short
104 de Boer-Dennert M, de WR, Schmitz PI, Djonjto J, Beurden V, Stoter G, Verweij J. Patientenperceptions of the side-effects of chemotherapy: the influence of 5HT3 antagonists. Br J Cancer 1997; 76: 1055–1061. PM:9376266

105 ASCO. 2006 Update of the ASCO Recommendations for Antiemetics in Oncology: Guideline Summary. Journal of Oncology Practice 2006; 2: 193–195. http://jop.ascpubs.org

106 Grunberg SM, Osoba D, Hesketh PJ, Gralla RJ, Borjeson S, Rapoport BL, du BA, Tonnato M. Evaluation of new antiemetic agents and definition of antineoplastic agent emetogenicity – an update. Support Care Cancer 2005; 13: 80–84 PM:15595601

107 Grunberg M, Grunberg K. Acoetogenicity and Therapie gemäß den MASCC und ASCO Guidelines. Deutsche Krebsgesellschaft, Herausgeber. Kurzgefasste interdisziplinäre Leitlinien 2008 der Deutschen Krebsgesellschaft. 348–354 München, W: Zuckschwerdt Verlag, 2008. http://www.krebsgesellschaft.de/wub_lkurz_2008,120883.html

108 Hesketh PJ, Grunberg SM, Gralla RJ, Zuckstherdt Verlag, 2008. http://www.krebsgesellschaft.de/wub_lkurz_2008,120883.html

109 Krukauer EL, Zhu AX, Bounds BC, Sahani D, McDonald KR, Brachtel EF. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 6-2005: A 58-year-old man with esophageal cancer and nausea, vomiting, and intractable hiccups 1. The New England Journal of Medicine 2005; 352: 817–825 PM:15728815

110 Krukauer EL, Zhu AX, Bounds BC, Sahani D, McDonald KR, Brachtel EF, Zuckstherdt Verlag, 2008. http://www.krebsgesellschaft.de/wub_lkurz_2008,120883.html

111 Rola F, Donati D, Tambieri S, Margutti G. Delayed emesis: incidence, pattern, prognostic factors and optimal treatment. Support Care Cancer 2002; 10 (88–95): PM:11862498

112 Rola F, Tonato M, Cognetti F, Cortesi E, Favalli G, Marangolo M, Amodori D, Bella MA, Gramazio V, Donati D. Prevention of cisplatin-induced emesis: a double-blind multicenter randomized crossover study comparing ondansetron and ondansetron plus dexamethasone. Journal of Clinical Oncology 1991; 9: 675–678 http://jco.ascpubs.org/content/9/4/675.abstract

113 Roila F, Donati D, Tambieri S, Margutti G. Delayed emesis: incidence, pattern, prognostic factors and optimal treatment. Support Care Cancer 2002; 10: 88–95: PM:11862498

114 Roila F, Tonato M, Cognetti F, Cortesi E, Favalli G, Marangolo M, Amodori D, Bella MA, Gramazio V, Donati D. Prevention of cisplatin-induced emesis: a double-blind multicenter randomized crossover study comparing ondansetron and ondansetron plus dexamethasone. Journal of Clinical Oncology 1991; 9: 675–678 http://jco.ascpubs.org/content/9/4/675.abstract

115 Roila F, Donati D, Tambieri S, Margutti G. Delayed emesis: incidence, pattern, prognostic factors and optimal treatment. Support Care Cancer 2002; 10: 88–95: PM:11862498

116 Hesketh PJ, Grunberg SM, Beck T, Hainsworth JD, Harker G, Aapro MS, Gandara D, Lindley CM. Proposal for classifying the acute emetogenicity of cancer chemotherapy. Journal of Clinical Oncology 1997; 15: 103–110. http://jco.ascpubs.org/content/15/1/103. abstract

117 Eisenberg P, Figueras-Vadillo J, Zamora R, Charu V, Hajdenberg J, Cattell M, Macciocchi A, Grunberg S. Improved prevention of moderately emetogenic chemotherapy-induced nausea and vomiting with palonosetron, a pharmacologically novel 5-HT3 receptor antagonist. Cancer 2003; 98: 2473–2482 http://dx.doi.org/10.1002/cncr.11817

118 Hesketh PJ, Lichinitser M, Van der Veget S, Skea B, Mezger J, Peschel C, Tonini G, Labianca R, Macciocchi A, Aapro M. Palonosetron improves prevention of chemotherapy-induced nausea and vomiting following moderately emetogenic chemotherapy: results of a double-blind randomized phase III trial comparing single doses of palonosetron with ondansetron. Annals of Oncology 2003; 14: 1570–1577 http://anncarcinologyjournals.org/content/14/10/1570.abstract

119 Grunberg SM. Antiemetic activity of corticosteroids in patients receiving cancer chemotherapy: dosing, efficacy, and tolerability analysis. Annals of Oncology 2007; 18: 233–240 http://annonc.oxfordjournals.org/content/18/2/233.abstract

120 Hesketh PJ, Grunberg SM, Gralla RJ, Wacht DG, Rola F, de Wit R, Chawla SP, Carides A, van Ijzen J, Elmer ME, Evans K, Beck K, Reines S, Horgan KJ. The Oral Neurokinin-1 Antagonist Aprepitant for the Prevention of Chemotherapy-Induced Nausea and Vomiting: A Multinational, Randomized, Double-Blind, Placebo-Controlled Trial in Patients Receiving High-Dose Cisplatin-üThe Aprepitant Protocol 052 Study Group. Journal of Clinical Oncology 2003; 21: 4112–4119 http://jco.ascpubs.org/content/21/22/4112.abstract

121 Ettinger DS et al. Antiemesis. NCCN, Clinical Practice Guidelines in Oncology. NCCN 2012 www.nccn.org

122 Rapoport B, Jordan K, Boice J, Taylor A, Brown C, Hardwick J, Carides A, Webb T, Schmoll HJ. Aprepitant for the prevention of chemotherapy-induced nausea and vomiting associated with a broad range of moderately emetogenic chemotherapies and tumor types: a randomized, double-blind study. Supportive Care in Cancer 2010; 18: 423–431 http://dx.doi.org/10.1007/s00520-009-0680-9

123 Grunberg S, Chua D, Muru A, Dinis J, DeVandry S, Boice JA, Hardwick JS, Beckford E, Taylor A, Carides A, Rola F, Herrstedt J. Single-dose fosaprepitant for the prevention of chemotherapy-induced nausea and vomiting associated with cisplatin therapy: randomized, double-blind study protocol – EASE 14. J Clin Oncol 2011; 29: 1495–1501. PM:21383291

124 Hartmann JT, Dörre W, Steinbracher M, Grütz KA. Schleimhauttoxizität, Oberer Gastrointestinaltrakt: Mundhöhle, Oropharynx und Speiseröhre. Deutsche Krebsgesellschaft, Herausgeber. Kurzgefasste interdisziplinäre Leitlinien 2008 der Deutschen Krebsgesellschaft. 381–384 München, W: Zuckschwerdt Verlag, 2008