When should a rare inherited connective tissue disorder be suspected in bicuspid aortic valve by primary-care internists and cardiologists? Proposal of a score

Guglielmina Pepe1,2,3 · Betti Giusti1,3,4 · Stefania Colonna5 · Maria Pia Fugazzaro6 · Elena Sticchi1,3,4 · Rosina De Cario1,3,4 · Ada Kura1,3,4 · Elisa Pratelli7 · Daniela Melchiorre8 · Stefano Nistri6

Received: 30 April 2020 / Accepted: 21 July 2020 / Published online: 19 September 2020 © The Author(s) 2020

Abstract
Size threshold for aortic surgery in bicuspid aortic valve (BAV) is debated. Connective tissue disorders (CTDs) are claimed as a clinical turning point, suggesting early surgery in BAV patients with CTD. Thus, we aimed at developing a score to detect high risk of carrying CTDs in consecutive BAVs from primary care. Ninety-eight BAVs without ectopia lentis or personal/family history of aortic dissection were studied at the Marfan syndrome Tuscany Referral Center. Findings were compared with those detected in 84 Marfan patients matched for sex and age. We selected traits with high statistical difference between MFS and BAV easily obtainable by cardiologists and primary-care internists: mitral valve prolapse, myopia ≥ 3DO, pectus carenatum, pes planus, wrist and thumb signs, and difference between aortic size at root and ascending aorta ≥ 4 mm. Clustering of ≥ 3 of these manifestations were more frequent in Marfan patients than in BAVs (71.4% vs 6.1%, \( p < 0.0001 \)) resulting into an Odds Ratio to be affected by MFS of 38.3 (95% confidence intervals 14.8–99.3, \( p < 0.0001 \)). We propose a score assembling simple clinical and echocardiographic variables resulting in an appropriate referral pattern of BAVs from a primary-care setting to a tertiary center to evaluate the presence of a potential, major CTD.

Keywords Aortopathy · Congenital heart disease · Connective tissue disorders · Bicuspid aortic valve · Marfan syndrome · Primary care

Introduction
Bicuspid aortic valve (BAV) is the most common congenital heart disease with a prevalence of 1–2% [1–3]. As such, BAV may be commonly evaluated by general practitioner in primary care, as well as internist in multiple settings. It is frequently associated to thoracic aortic aneurysm (TAA) [4–6]. Early studies on BAV reported structural abnormalities of thoracic aortic tissue resembling those detected in Marfan syndrome (MFS) [7]. More recently, a higher percentage of BAV has been reported in Marfan (MF) patients with respect to general population [8, 9], suggesting common pathogenetic mechanisms at least in some patients [3, 9]. Moreover, an absolute increased risk of aortic dissection (AD) has been reported in BAV patients [10, 11]. These issues lead to aggressive recommendations for elective aortic surgery for BAVs similar to those adopted in MF patients. Subsequently, however, long-term independent studies [12–14] produced evidences supporting new guidelines providing separate threshold for aortic surgery in MF and
BAV patients [12–14]. Indeed, a recent meta-analysis [15] indicates a low risk of rupture or dissection of moderately dilated aortas without evidence that those related to BAV perform more poorly than others. These data further support the recommended threshold of 55 mm for intervention in BAVs without risk factors [12–14]. Nonetheless, there is still dispute on this topic with some suggesting more aggressive surgical approach in BAV patients and others expanding the risk factors to specific phenotypes (i.e. the root phenotype [5, 16].

Reported clinical and genetic overlaps between MFS and BAV [3, 9, 17] suggesting that early detection of syndromic connective tissue disorders (CTDs), underlying aortic ectasia in BAVs, might be useful to address patients to distinct decision-making algorithms towards aortic surgery [17]. However, direct referring of each BAV patient with TAA for a clinico-genetic assessment looks largely unpractical and unsustainable, since BAV is prevalent and commonly associated to significant aortic dilatation.

Thus, we aimed at searching for an easily applicable clinical score supporting clinical cardiologists, general practitioners and internists to detect those BAVs with a high risk of significant CTDs, prompting their appropriate referral to a tertiary center for clinico-genetic assessment.

**Materials and methods**

**Patients**

Ninety-eight patients with BAV without ectopia lentis or personal/family history of AD and CTDs (i.e. Marfan syndrome, Loeys-Dietz syndromes, vascular Ehlers-Danlos) were consecutively referred by cardiologists of primary-care facilities to the MF Tuscany Referral Center for being evaluated by one clinical geneticist to investigate the presence of MFS or other syndromic CTDs [18]. According to Ghent2 criteria for the diagnosis of Marfan syndrome [19], most of patients with BAV presented neither two clinical signs nor a clinical and a genetic one. The 60/98 BAV patients which accepted to undergo FBN1 mutation analysis turned out do not carry any FBN1 mutation.

Eighty-four MF patients, diagnosed by new Ghent criteria [18, 19], similar for sex and age, were extracted from the clinical database of the Center for comparison.

**Transthoracic echocardiography**

Aortic size was assessed by 2D transthoracic echocardiography by leading edge-to-leading edge method in parasternal long-axis views, at end-diastole [8, 20]. Bicuspid valves are classified as type 1 (right–left coronary cusp fusion), type 2 (right-non-coronary cusp fusion), and type 3 (left-non-coronary cusp fusion). To take into account phenotypic differences of aortic dilatation in BAV and MF patients [6, 20], we analyzed the difference between aortic size at Valsalva sinuses and at proximal ascending aorta (aortic root—ascending aorta (AA) diameters = ΔAR-AA) and we categorized patients on the basis of a threshold value of 4 mm derived from 98 control subjects without family history of either BAV or MFS comparable for age and sex.

**Systemic features of Marfan syndrome**

Systemic features (SF) collected and reported in Table 1 were assessed by the Senior investigator (GP).

**Informed written consent**

All patients gave informed written consent to participate in the study approved by the ethic committee.

**Statistical analysis**

The results were expressed as median and range or interquartile range (IQR) for continuous variables or percentages for categorical variables. Medians were compared by Mann–Whitney test, and categorical variables were analysed by the chi-square test using SPSS package v19 (SPSS Inc., Chicago, IL, USA). Statistical significance was accepted at $p$ value < 0.05.

**Results**

**Demographic, echocardiographic and clinical characteristics of MF and BAV patients**

Demographic, echocardiographic and clinical characteristics of MF and BAV patients are reported in Table 1. BAV patients had type 1 morphology in 77/98 (78.6%), type 2 morphology in 20/98 (20.4%) and type 3 in 1/98 (1.0%) and were associated to moderate or severe aortic regurgitation in 29/98 patients (29.6%), moderate or severe aortic stenosis in 7/98 patients (7.1%), and moderate or severe calcification in 6/98 patients (6.1%). MF patients were taller, had larger aortic size at aortic root, while smaller ascending aorta, resulting in a significantly higher $\Delta$AR-AA 9.0 (6.0–12.0) mm vs − 0.6 (− 5.9 to 3.0) mm, respectively, $p < 0.0001$ (Fig. 1).

Indeed, only 19.4% of BAV patients had $\Delta$AR-AA exceeding the value of 4 mm, while 91.7% of MFs satisfied this criterion (Table 1). Among all clinical traits, we selected those with high statistical difference between MFs and BAV (in bold in Table 1) and readily obtainable by cardiologists in a non-referral setting, to develop a score to detect BAVs at high risk of carrying CTDs: mitral valve...
prolapse, myopia ≥ 3DO, pectus carinatum, pes planus, wrist and thumb signs, and ΔAR-AA ≥ 4 mm.

Patients with 3 or more of these manifestations were \(n=60 \) (71.4%) among MFs and \(n=6\) (6.1%) among BAVs \((p<0.0001)\). These 6 BAV patients were similar regarding age, sex and prevalence of moderate-to-severe aortic regurgitation and stenosis to BAVs with < 3 manifestations (data not shown), had smaller aortic size at the aortic root \([32.0 \ (28.0–40.0) \ mm, \ vs. \ 38.3 \ (25.6–53.0) \ mm, \ respectively, \ p=0.018]\) and at proximal ascending aorta \([31.0 \ (25.0–37.0) \ mm, \ vs. \ 38.5 \ (22.0–53.0) \ mm, \ respectively, \ p=0.006]\). ΔAR-AA was comparable between BAV patients with ≥ 3 \([2.0 \ (−2.1 \ to \ 4.7) \ mm]\) to the remaining BAVs \([−1.0 \ (−6.0 \ to \ 3.0) \ mm, \ p=0.257]\); moreover, prevalence of BAV patients with ΔAR-AA > 4 mm was not different between the two groups \([n=2 \ (33.3\%) \ vs \ n=17 (18.5\%), \ respectively, \ p=0.373]\). At logistic regression analysis, subjects with ≥ 3 of the six manifestations showed an Odds Ratio to be affected by MFS of 38.3 (95% confidence intervals 14.8–99.3), \(p<0.0001\).

**Discussion**

The issue of size threshold for aortic surgery in BAV is still debated [22, 23], though more recent guidelines lean towards a more conservative approach in BAV patients with isolated TAA [12–14]. Indeed, an important agreement has
been recently reached to indicate surgical repair when the aortic diameter is ≥ 5.5 cm in BAV patients without risk factor (i.e.: family history of aortic dissection or rapid increase in aortic size) or elastopathy, while a lower threshold was maintained for patients with Marfan syndrome”.

The presence of CTD has been suggested as a clinical turning point in this scenario, supporting more conservative attitude in BAV patients without CTD [17]. However, the idea of referring each and every BAV patient with TAA [24] to a tertiary Center is clearly non-realistic due to the prevalence of BAV itself and of BAV-related aortic dilatation [10]. Thus, we studied outpatients with BAV without ectopia lentis or family history of aortic dissection and CTDs (i.e.: clinical conditions supporting per se the need of a clinic-genetic evaluation), consecutively detected in primary care, aiming at identifying signs whose presence strongly suggests the prevalence of CTD. We demonstrate that the combination of three or more characteristics (among those included in our score) (Table 2) identify a very limited number of BAV individuals at real potential risk of CTD, thus deserving an appropriate referral to a tertiary Center specialized in CTDs. This score is specific for Marfan patients but it is not designed to exclude LDS or vEDS patients.

The herein proposed score is based on the combination of systemic traits (myopia > 3 dioptres, pectus carinatum, pes planus, wrist and thumb sign) easily detectable by clinical cardiologists and primary-care internists working in non-referral facility, and echocardiographic characteristics (mitral valve prolapse and ΔAR-AA). This score provides a tool to avoid an inappropriate, systematic referral of all BAVs with TAA to a tertiary center for a clinic-genetic assessment with consequent significant reduction of healthcare costs and patients’ discomfort.

Von Kodolitsch et al. set up a pre-test probability score of Marfan syndrome in a study population characterized by a high rate of positive family history and aortic complications requiring surgery (25). Although our findings display some overlapping features, our score cannot be compared to the previous score since the goal of our work required the choice of different manifestations. In fact, our aim prompted us to select features both with highest differences between BAV and MF patients and easily appliable by internists or clinical cardiologists, usually dealing with the majority of BAVs in a non-referral setting.

There are evidences that the so-called root phenotype [26] might represent a more severe form of aortopathy, as recently reviewed [6]. The root phenotype has been found associated with acute aortic events after isolated aortic valve replacement as well as with potentially aortopathy-related genetic variants [9, 27, 28]. Consistently, the root phenotype has been recently included among the adjunctive risk factors to consider when indicating earlier elective surgery for BAV aortopathy [29]. Considering this background, we

### Table 2

| Score | No | Yes |
|-------|----|-----|
| Mitral valve prolapse |   |     |
| Myopia ≥ 3DO |   |     |
| Pectus carinatum |   |     |
| Pes planus |   |     |
| Wrist and thumb signs |   |     |
| ΔAR-AA ≥ 4 mm |   |     |

The opportunity to refer the patient at a tertiary Center for MFS evaluation should be considered with a score ≥ 3

*Each feature corresponds to a score of 1. Patients with a total score ≥ 3 have an Odds Ratio to be affected by MFS of 38.3 (95% CI 14.8–99.3)*
whose connection with the risk of acute complications in fluid-dynamics-related risk markers, circulating biomarkers (i.e.: aortic shape, valve morphotypes and aortic phenotype, new parameters of risk stratification have been proposed is of particular importance in this moment in which several of the wide spectrum of BAV syndrome [9, 10, 30, 31]. This apparent mismatch should be interpreted as an expression either evaluation or intervention Thus, we believe that this performed in patients referred to cardiac surgery centers for primary-care setting, while the other studies [22, 26, 27] were study populations. Our study group was detected in a pri-

settings possibly resulting into relevant differences among should be seen cautiously, considering differences of clinical evaluation for a potential, major CTD.

In conclusion, we demonstrate that a simple, though accurate clinical and echocardiographic evaluation, when assembled in a score, results in more appropriate referral pattern of BAV outpatients studied in a primary-care setting to tertiary CTD centers. This finding suggests that internists and clinical cardiologists should further refine their clinical skills in evaluating BAVs, adding to a proper family and personal history taking [12–14], the search of systemic traits and peculiar echocardiographic findings which, when present in combination, strongly support the need of a clinic–genetic evaluation for a potential, major CTD.

**Funding** Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE Agreement.

**Compliance with ethical standards**

**Conflict of interest** The authors declare that they have no conflict of interest.

**Human and animal rights** All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

**Informed consent** All patients gave informed written consent to participate in the study approved by the Careggi Hospital ethic committee.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Nistri S, Basso C, Marzari C, Mormino P, Thiene G (2002) Frequency of bicuspid aortic valve in young male conscripts by echocardiography. Am J Cardiol 96:718–721
2. Verma S, Siu SC (2014) Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med 370:1920–1929
3. Giusti B, Sticchi E, De Cario R, Magi A, Nistri S, Pepe G (2017) Genetic bases of bicuspid aortic valve: the contribution of traditional and high-throughput sequencing approaches on research and diagnosis. Front Physiol. https://doi.org/10.3389/fphys.2017.00612
4. Nistri S, Sorbo MD, Basso C, Thiene G (2002) Bicuspid aortic valve: abnormal aortic elastic properties. J Heart Valve Dis 11:379–373 Discussion: 373–374
5. Cecconi M, Nistri S, Quarti A, Manfrin M, Colonna PL, Molini E, Perna GP (2006) Aortic dilatation in patients with bicuspid aortic valve. J Cardiovasc Med (Hagerstown) 7:11–20
6. Della Corte A, Michelena HI, Citarella A, Votta E, Piatti F, Lo Presti F, Ashurov R, Cipollaro M, Forte A (2019) Risk stratification in bicuspid aortic valve aortopathy: emerging evidence and future perspectives. Curr Probl Cardiol. https://doi.org/10.1016/j.cpcrd.2019.06.002
7. Yassine NM, Shahram JT, Body SC (2017) Pathogenic mechanisms of bicuspid aortic valve aortopathy. Front Physiol. https://doi.org/10.3389/fphys.2017.00687
8. Nistri S, Porciani MC, Attanasio M, Abbate R, Gensini GF, Pepe G (2012) Association of Marfan syndrome and bicuspid aortic valve: frequency and outcome. Int J Cardiol 155:324–325
9. Pepe G, Nistri S, Giusti B, Sticchi E, Attanasio M, Porciani C, Abbate R, Bonov RO, Yacoub M, Gensini GF (2014) Identification of fibrillin 1 gene mutations in patients with bicuspid aortic valve (BAV) without Marfan syndrome. BMC Med Genet 15:23–29
10. Michelena HI, Prakash SK, Corte AD, Bissell MM, Anavekar N, Mathieu P, Bossé Y, Limongelli G, Bossone E, Benson DW, Lancellotti P, Isselbacher EM, Enriquez-Sarano M, Sundt TM 3rd, Pibarot P, Evangelista A, Milewicz DM, Body SC, BAVCon Investigators (2014) Bicuspid aortic valve identifying knowledge gaps and rising to the challenge from the international bicuspid aortic valve consortium (BAVCON). Circulation 129:2691–2704
11. Mordi I, Tzemos N (2012) Bicuspid aortic valve disease: a comprehensive review. Cardiol Res Practice. https://doi.org/10.1155/2012/196037
12. Tzemos N, Therrien J, Yip J, Thanassoulis G, Tremblay S, Jamor- ski MT, Webb GD, Siu SC (2008) Outcomes in adults with bicus- pid aortic valves. JAMA 300:1317–1325
13. Michelena HI, Khanna AD, Mahoney D, Margaryan E, Topilsky Y, Suri RM, Eidem B, Edwards WD, Sundt TM 3rd, Enriquez- Sarano M (2011) Incidence of aortic complications in patients with bicuspid aortic valves. JAMA 306:1104–1112
14. Davies RR, Goldstein LJ, Coady MA, Tittle SL, Rizzo JA, Kopf GS, Eleftheriades JA (2002) Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann Thorac Surg 73:17–27
15. Guo MH, Appoo JJ, Szczykowski R, Smith HN, Ouzounian G, Gregory AJ, Herget EJ, Boodhwani M (2018) Association of morbidity and acute aortic events with ascending aortic aneurysm: a systematic review and meta-analysis. JAMA Netw Open. https://doi.org/10.1001/jamanetworkopen.2018.1281
16. Borger MA, Fedak PWM, Stephens EH, Gleason TG, Girdauskas E, Ikonomidis JS, Khoynezhad A, Siu SC, Verma S, Hope MD, Cameron DE, Hammer DF, Cosi J, Moon MR, Sundt TM, Barker AJ, Markl M, Della Corte A, Michelena HI, Eleftheriades JA (2018) The American association for thoracic surgery consensus guidelines on bicuspid aortic valve-related aortopathy: full online-only version. J Thorac Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2018.02.115
17. Kallenbach K, Sundt TM, Marwick TH (2013) Aortic surgery for ascending aortic aneurysms under 5.0 cm in diameter in the presence of bicuspid aortic valve. JACC Cardiovasc Imaging 6:1321–1326
18. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, Hilhorst-Hoestee Y, Jondeau G, Faire L, Milewicz DM, Pyeritz RE, Sponseller PD, Wordsworth P, De Paape AM (2010) The revised gene nology for the Marfan syndrome. J Med Genet 47:476–485
19. von Kodolitsch Y, De Backer J, Schiller H, Bannans P, Behzadi C, Bernhardt AM, Hillebrand M, Fustiing B, Sheikhzadeh S, Rybczynski M, Köböl T, Püschel K, Blankenberg S, Robinson PN (2015) Appl Clin Genet 16(8):137–155. https://doi.org/10.2147/ACG.S60472
20. Nistri S, Grande-Allen J, Noale M, Basso C, Siviero P, Maggi S, Crepaldi G, Thiene G (2008) Aortic elastic and size in bicuspid aortic valve syndrome. Eur Heart J 29:472–479
21. Detaing D, Michelena HI, Nkomo VT, Vahanian A, Jondeau G, Sarano ME (2014) Aortic dilatation patterns and rates in adults with bicuspid aortic valves: a comparative study with Marfan syndrome and degenerative aortopathy. Heart 100:126–134
22. Saeyeldin A, Zafar MA, Li Y, Tanweer M, Abdelbaky M, Gryaznov A, Brownstein AJ, Velasquez CA, Buntin J, Thombre K, Ma WG, Erben Y, Rizzo JA, Ziganshin BA, Eleftheriades JA (2019) Decision-making algorithm for ascending aortic aneurysm: effectiveness in clinical application? J Thorac Cardiovasc Surg 157:1733–1745
23. Sundt TMJ (2019) “Silent killer” or victim of mistaken identi- ty? Thorac Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2018.12.010
24. Hiratzka LF, Creager MA, Isselbacher EM, Svensson LG, Nishimura RA, Bonov RO, Guyton RA, Sundt TM 3rd (2016) Surgery for aortic dilatation in patients with bicuspid aortic valves: a statement of clarification from the American college of cardiology/American heart association task force on clinical practice guidelines. JACC 67:724–731
25. Sheikhzadeh S, Kusch ML, Rybczynski M, Kade C, Keyser B, Bernhardt AM, Hillebrand M, Mir TS, Fustiing B, Robinson PN, Berger J, Lorenzen V, Schmidtke J, Blankenberg S, von Kodolitsch Y (2012) A simple clinical model to estimate the probability of Marfan syndrome. QJM 105:527–535
26. Della Corte A, Bancone C, Buonocore M, Dialetto G, Covino FE, Manduca S, Scognamiglio G, De Feo DVM (2013) Pattern of ascending aortic dimensions predicts the growth rate of the aorta in patients with bicuspid aortic valve. JACC Cardiovasc Imaging 6:1301–1310
27. Girdauskas E, Disha K, Raisin HH, Seckns MA, Barger MA, Kunze T (2012) Risk of late aortic events after an isolated aor- tic valve replacement for bicuspid aortic valve stenosis with concomitant ascending aortic dilation. Eur J Cardiothorac Surg 42:832–837
28. Girdauskas E, Geist L, Disha K, Kazakhabaev Groß T, Schulz S, Ungelenk M, Kunze T, Reichenspurher H, Kurth I (2017) Genetic abnormalities in bicuspid aortic valve root phenotype: preliminary results. Eur J Cardiothorac Surg 52:156–162
29. Borger MA, Fedak PWM Stephens EH, Giedauskas E, Ikonomidis JS, Khoynozhad A, Siu SC, Verma S, Hope MD, Cameron DE, Hammer DF, Coselli JS, Moon MR, Sundt TM, Barker AJ, Markl M, Della Corte A, Michelena HI, Elefteriades JA (2018) The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve-related aortopathy: full online-only version J Thorac Cardiovasc Surg https://doi.org/10.1016/j.jtcvs.2018.02.115

30. De Cario R, Sticchi E, Giusti B, Abbate R, Gensini GF, Nistri S, Pepe G (2014) Bicuspid aortic valve syndrome and fibrillinopathies: potential impact on clinical approach. International Cardiovascular Forum (ICF) 1:163–202

31. Michelena HI, Khanna AD, Mahoney D, Margaryan E, Topilsky Y, Suri RM, Eidem B, Edwards WD, Sundt TM 3rd, Enriquez-Sarano M (2011) Incidence of aortic complications in patients with bicuspid aortic valves. JAM 306:1104–1112

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.