A probabilistic model to describe the dual phenomena of biochemical pathway damage and biochemical pathway repair.

Anirban Banerji
Bioinformatics Centre, University of Pune, Pune-411007,
Maharashtra, India.
E-mail address: anirbanab@gmail.com

Abstract

Biochemical pathways emerge from a series of Brownian collisions between various types of biological macromolecules within separate cellular compartments and in highly viscous cytosol. Functioning of biochemical networks suggests that such serendipitous collisions, as a whole, result into a perfect synchronous order. Nonetheless, owing to the very nature of Brownian collisions, a small yet non-trivial probability can always be associated with the events when such synchronizations fail to emerge consistently; which account for a damage of a biochemical pathway. The repair mechanism of the system then attempts to minimize the damage, in the pursuit to bring restore the appropriate level of synchronization between reactant concentrations. Present work presents a predictive probabilistic model that describes the various facets of this complicated and coupled process (damaging and repairing). By describing the cytosolic reality of Brownian collisions with Chapman-Kolmogorov equations, the model presents analytical answers to the questions, with what probability a fragment of any pathway may suffer damage within an arbitrary interval of time? and with what probability the damage to a pathway can be repaired within any arbitrary interval of time?

Biochemical pathways come to existence due to series of concentration-dependent collisions among various species of biological macromolecules that constitute a pathway. Traditionally, the time evolution of biochemical pathways is described by a set of coupled (first order) differential equations that stem from law of mass action and the information regarding concentrations of each species. Law of mass action is an empirical law that connects reaction rates with molecular component concentrations through a simple equation. Once provided with
the information of initial molecular concentrations, law of mass action presents a complete picture of the component concentrations at all future time points (Espenson, 1995). Although popular, this approach (based on law of mass action) assumes that process of initiating and sustaining the chemical reactions is continuous and deterministic (Cox, 1994). As one studies smaller and smaller systems, the validity of a continuous approach becomes ever more tenuous and it becomes clear that in reality, chemical reactions are innately stochastic (and not continuous) in nature. One also realizes that reactions occur as discrete events resulting from random (and not deterministic) molecular collisions (Gillespie, 1977; McAdams and Arkin, 1999; Gibson, 2000; Golightly and Wilkinson, 2006). The stochastic approach attempts to describe this inherent random nature of microscopic molecular collisions to construct a probabilistic model of the reaction kinetics (Resat et al., 2001; Qian and Elson, 2002). This approach is thus suited to the modeling of small, heterogenous environments typical of in-vivo conditions (Kuthan, 2001). Such intrinsically stochastic nature of biochemical reactions have profound implications in many spheres of biology. For example, in the paradigm of molecular binding and chemical modifi cations, stochastic collisions give rise to temporal fluctuations and cell-to-cell variations in the number of molecules of any given type; they mask genuine signals and responses and furthermore, contribute critically to the phenotypic diversity in a population of genetically identical individuals (Raser and O’Shea, 2004, Maamar et al. 2007).

Biochemical pathways are structures that depend crucially upon accurate synchronizations between concentration profiles. But stochastic collisions, by their very nature, are probabilistic (Calef and Deutch, 1983). Furthermore, at the molecular level, random fluctuations are inevitable; with their effect being most significant when molecules are at low numbers in the biochemical system (Turner et al., 2004). Therefore, the event of a biochemical pathway malfunctioning can well be attributed to a failure to ensure synchronization between various macromolecular concentrations (Magarkar et al., 2011); which in turn, can be attributed to the inherently probabilistic nature of the stochastic collisions. Although these (serendipitous) Brownian collisions account for the emergence of intricate and exquisite order in biochemical reactions in most of the cases, the probability of their failing to achieve the same is cannot merely be trivial. Pivotal important to stochastic modelling is the realization that molecular reactions are essentially random processes and therefore, it is impossible to predict with complete certainty the time instance at which the next reaction within any volume may take place (Turner et al., 2004). In macroscopic systems, in the presence of a large number of interacting molecules within the confinement of a cellular compartment, the randomness of this behaviour averages out; hence the gross macroscopic state of the system appears to be deterministic and predictable (Minton, 1993; Ahn et al., 1999; Ellis, 2001). However, while studying the same from bottom-up approach, one cannot resort to macroscopic determinism observed at the limiting case (high concentration of the interacting macromolecules, highly viscous cytoplasmic fluid, etc.)(Gillespie, 1977; Rao and Arkin, 2003). Thus, modeling biochemical reactions from bottom-up perspec-
tive needs to take into account the probability-driven nature of macromolecular interactions.

The present work assumes that owing to inherently probabilistic nature of the collisions amongst macromolecules, the adequate level of synchronization amongst interacting species (that is required to ensure the emergence of macroscopic deterministic profile) - will fail at times. We hypothesize that it is due to the failure to ensure the appropriate extent of synchronization that a (fragment or the entire) biochemical pathway will fail to function. A (fragment or the entire) pathway with such incorrect synchronization is referred to as 'damaged' pathway, in the present work. Though evolution has given rise to robustness of biochemical pathways, it is difficult to assume that any arbitrarily chosen pathway will always be functioning with exactly the expected level of optimality. Though this seems intuitive to appreciate, one will fail to find either a theoretical or an empirical answer to any of the two questions; one, how many times, within a given interval of time, a pathway (or any section of it) suffers from damage? Two, how soon will the damaged section of the damaged pathway be repaired? etc.. An easy approach to these simple questions may suggest that the answer to the aforementioned question will be, first: pathway-specific, two: time-interval specific, three: organism-specific. However, since evolution tends to reuse the tried-and-tested mechanisms, there is reason to expect that the answers to the aforementioned questions may not be case-specific but general. Therefore, from a general perspective, the present model attempts to quantify one: the probability with which a pathway (or a fragment of it) will malfunction within any arbitrarily chosen time interval, suitable to observe such event; and two: the probability with which the damaged pathway (or the damaged fragment of it) will be repaired within any arbitrarily chosen time interval, suitable to observe such event. Though attempts of probabilistic modeling of biochemical systems are not entirely commonplace, some previous attempts in the similar lines can be found in (Hume, 2000; Elowitz et al., 2002; Golightly and Wilkinson, 2006).

The present work studies two cases; first-case, when the damaged fragment of P is detected immediately and repairing of this fragment of P starts without any delay, second-case, when the damaged fragment of P is detected after a certain time lag and repairing of this fragment of P, accordingly, starts with a delay. Though no concrete piece of data either supports or contradicts the first case; the facts that, one: underlying mechanism of the pathway functioning is rooted in Brownian collisions and therefore is often unreliable, and two: even though a pathway functions due to series of favorable but essentially serendipitous collisions, we do not suffer from too many instances of pathway damage - suggests that probably, after the damage of a fragment of a pathway (when concentrations of consecutive species of macromolecules (that constitute this fragment) fail to ensure the appropriate coupling strength, whereby at least one reaction fails to occur optimally), the detection and subsequent repairment of that fragment (restoring back the adequate coupling strength between concentrations of consecutive species of macromolecules) - take place without any
appreciable passage of time. The second case, of course, does not discuss such idealistic scenario; instead, it attempts to model the case when damage to a part of a pathway is detected after an appreciable time-lag, whereby the repairing mechanism starts to work only after an appreciable passage of time.

Damage to a biochemical pathway though possible (as argued beforehand) are assumed to be not entirely common. Assuming that only rarely and accidentally does the synchronization among concentrations of interacting macromolecular species fail to satisfy the required optimality (and therefore cause the damage to the pathway), occurrences of such sub-optimal synchronization in any part of a biochemical pathway (P) are assumed to take place as a Poisson process, characterized by an elementary flow with intensity λ. For the first case, the lack of synchronization in any part of P is detected immediately and the process of repairment of it starts without a delay. Using similar logic as the aforementioned one, we assume that the time required to repair the damaged sub-pathway can be described with a distribution of exponential nature with a parameter μ, whence the recovery process can be described as:

\[
f(t) = \mu e^{-\mu t} (t > 0).
\]

\[\text{(1)}\]

Case - 1):

For the first case, the repairing process starts as soon as the detection of the damage takes place, which in turn, is assumed to take place immediately as the damage takes place. Hence, the variable t (viz. time) in eqn-1 begins from the point of detection of damage, which implies that recovery process is described strictly in time range ($t > 0$). Before this, viz. at the initial moment ($t = 0$), the biochemical pathway (P) is assumed to be functioning without problem. We attempt to find at first, the probability that at any arbitrarily chosen instance t, the pathway P is functioning properly and then, the probability that during any arbitrarily chosen time interval ($0, t$), P falters from its optimal functioning at least once; before attempting to evaluate the limiting probabilities of the states of P.

We denote the states of P as, (s_0), when it is functioning properly and (s_1), when at least one part of it is malfunctioning and is being repaired; correspondingly, the probabilities p_0 and p_1 are assigned respectively.

The Chapman-Kolmogorov equations (Sigman, hypertext link; Weisstein, hypertext link) for these states, viz. ($p_0 (t)$) and ($p_1 (t)$) can be constructed as:

\[
\frac{dp_0}{dt} = \mu p_1 - \lambda p_0
\]

\[\text{(2)}\]

and

\[
\frac{dp_1}{dt} = \lambda p_0 - \mu p_1
\]

\[\text{(3)}\]
However, since $p_0 + p_1 = 1$, the redundancy in description can be eliminated and by substituting $p_1 = 1 - p_0$ in eqn.-2, we describe P with respect to p_0 as:

$$\frac{dp_0}{dt} = \mu - (\lambda + \mu)p_0.$$ (4)

Solving eqn.-4 for the initial condition $p_0(0) = 1$, we obtain:

$$p_0(t) = \frac{\mu}{\lambda + \mu} \left[1 + \frac{\lambda}{\mu} e^{-(\lambda+\mu)t} \right]$$ (5)

and therefore,

$$p_1(t) = \frac{\lambda}{\lambda + \mu} \left[1 - e^{-(\lambda+\mu)t} \right]$$ (6)

To solve the next part of our query that is to find the probability $p^*(t)$ that during any arbitrarily chosen time interval $(0, t)$ at least one part of P malfunctions at least once, we describe P with a new set of states; viz. (s_0): when P never fails, and (s_1): when at least one part of P malfunctions at least once.

Here, solving the Chapman-Kolmogorov equation $\frac{dp_0}{dt} = -\lambda p_0^*$ for the initial condition $p_0^*(0) = 1$, we get $p_0^*(t) = e^{-\lambda t}$ we arrive at the probability that during the time interval $(0, t)$ P malfunctions at least once; which is given by: $p_1^*(t) = 1 - p_0^*(t) = 1 - e^{-\lambda t}$.

To find the limiting probabilities, we study eqn.-5 and eqn.-6 when $t \to \infty$; whereby we arrive at the limiting probabilities of the states, given by: $p_0 = \frac{\mu}{\lambda + \mu}$ and $p_1 = \frac{\lambda}{\lambda + \mu}$.

Case -2):
The idealistic framework described in case-1 may not always hold true because, the malfunction in any part of P may not be detected immediately but may take an interval of time. This non-trivial interval of time is assumed to be represented by an exponential distribution with some parameter θ. Solving the Chapman-Kolmogorov equations for the probabilities of the states for this case (along with the limiting probabilities), will therefore be describing the biological reality more realistically.

For case-2 analysis, P is described with a set of three-states; viz. (s_0): when P never fails and operates properly, (s_1): when at least one part of P malfunctions at least once but the malfunction is not detected, and (s_2): when at least one part of P is being repaired.
Denoting the corresponding probabilities for \((s_0), (s_1)\) and \((s_2)\) by \((p_0), (p_1)\) and \((p_2)\); the Chapman-Kolmogorov equations for the probabilities of states can be constructed as:

\[
\frac{dp_0}{dt} = \mu p_2 - \lambda p_0 \tag{7}
\]

\[
\frac{dp_1}{dt} = \lambda p_0 - \theta p_1 \tag{8}
\]

and

\[
\frac{dp_2}{dt} = \theta p_1 - \mu p_2 \tag{9}
\]

We convert the system of differential equations\[7,8,9\] to an algebraic one by using Laplace transform. With due regard to the initial conditions for transforms, say \(\pi_i\) for probabilities \(p_i\), \[7,8,9\] the transformed system of equations can be represented as \[10,11,12\]:

\[
s\pi_0 = \mu \pi_2 - \lambda \pi_0 + 1 \tag{10}
\]

\[
s\pi_1 = \lambda \pi_0 - \theta \pi_1 \tag{11}
\]

and

\[
s\pi_2 = \theta \pi_1 - \mu \pi_2 \tag{12}
\]

Solving \[10,11,12\] algebraically we obtain:

\[
\pi_1 = \frac{\lambda}{s+\theta} \pi_0 , \quad \pi_2 = \frac{\theta}{s+\mu} \pi_1 = \frac{\theta \lambda}{(s+\theta)(s+\mu)} \pi_0 \] and finally, \(\pi_0 = \frac{(s+\theta)(s+\mu)}{s(s^2+(\theta+\mu+\lambda)+(\theta+\mu+\lambda+\mu)} \)

We denote:

\[
a = \frac{\theta+\mu+\lambda}{2} + \sqrt{\frac{(\theta+\mu+\lambda)^2}{4} - \theta\lambda - \theta\mu - \lambda\mu} \]

and

\[
b = \frac{-\theta+\mu+\lambda}{2} - \sqrt{\frac{(\theta+\mu+\lambda)^2}{4} - \theta\lambda - \theta\mu - \lambda\mu} \]

Whwereby the calculated probabilities can be expressed in closed form as:

\[
p_0(t) = \frac{ae^{at} - be^{bt}}{a-b} + (\theta + \mu) \frac{e^{at} - e^{bt}}{a-b} + \mu \theta \left[\frac{1}{ab} + \frac{be^{at} - ae^{bt}}{ab(a-b)} \right] \tag{13}\]
\[p_1(t) = \lambda \frac{e^{at} - e^{bt}}{a - b} + \lambda \mu \left[\frac{1}{ab} + \frac{b e^{at} - a e^{bt}}{ab(a - b)} \right] \] (14)

and

\[p_2(t) = \theta \lambda \left[\frac{1}{ab} + \frac{b e^{at} - a e^{bt}}{ab(a - b)} \right] \] (15)

Advantage of such a scheme is that to evaluate the limiting probabilities we can resort to either the transforms or the probabilities themselves:

\[p_0 = \lim_{t \to \infty} p_0(t) = \lim_{s \to 0} \pi_0(s) = \frac{\mu \theta}{\lambda \mu + \lambda \theta + \theta \mu} \] (16)

\[p_1 = \frac{\lambda \mu}{\lambda \mu + \lambda \theta + \theta \mu} \] (17)

and finally

\[p_2 = 1 - p_0 - p_1 = \frac{\lambda \theta}{\lambda \mu + \lambda \theta + \theta \mu}. \] (18)

References:
Ahn, J., Kopelman, R., Argyrakis, P., 1999. Hierarchies of nonclassical reaction kinetics due to anisotropic confinements. J. Chem. Phys. 110, 2116-2121.
Calef, D.F., Deutch, J.M., 1983. Diffusion-controlled reactions. Ann. Rev. Phys. Chem. 34, 493-524.
Cox, B.G., 1994. Modern Liquid Phase Kinetics. Oxford University Press, Oxford.
Ellis, R.J., 2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597-604.
Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S., 2002. Stochastic gene expression in a single cell. Science 297, 1183-1186.
Espenson, J.H., 1995. Chemical Kinetics and Reaction Mechanisms. McGraw-Hill, Singapore.
Gibson M.A., 2000, Computational methods for stochastic biological systems, PhD Thesis, California Institute of Technology, Pasadena, California, 2000.
Gillespie D.T., 1977, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem, 81:2340-2361.
Golightly A, Wilkinson DJ., 2006, Bayesian sequential inference for stochastic
kinetic biochemical network models., J Comput Biol. 13(3):838-851.
Hume, D.A., 2000. Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96, 2323-2328.
Kuthan, H., 2001. Self-organisation and orderly processes by individual protein complexes in the bacterial cell. Prog. Biophys. Mol. Biol. 75, 1-17.
Maamar H, Raj A and Dubnau D 2007 Noise in gene expression determines cell fate in bacillus subtilis Science 317:526-529
McAdams, HH, Arkin, A., 1999, Its a noisy business: Genetic regulation at the nanomolar scale, Trends in Genetics 15,65-69.
Minton, A.P., 1993. Molecular crowding and molecular recognition. J. Mol. Recognit. 6, 211-214.
Qian, H., Elson, E.L., 2002. Single-molecule enzymology: stochastic Michaelis-Menten kinetics. Biophys. Chem. 101-102,565-576.
Rao C, Arkin A, 2003, Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J Chem Phys 118:4999.
Raser J. M., O'Shea E. K., 2004 Control of stochasticity in eukaryotic gene expression Science 304:1811-1814.
Resat, H., Wiley, H.S., Dixon, D.A., 2001, Probability-weighted dynamic Monte Carlo method for reaction kinetics simulations. J. Phys. Chem. B 105, 11026-11034.
Sigman K., Discrete-time Markov chains, hypertext link: http://www.columbia.edu/~ks20/stochastic-I/stochastic-I-MCI.pdf
Turner T.E., Schnell S., Burrage K., 2004, Stochastic approaches for modelling in vivo reactions; Comp. Biol. and Chem. 28:165-178.
Weisstein, Eric W. "Chapman-Kolmogorov Equation." From MathWorld–A Wolfram Web Resource.