The Investigation of Hybrid PEDOT:PSS/β-Ga₂O₃ Deep Ultraviolet Schottky Barrier Photodetectors

Tao Zhang¹,²†, Yixian Shen¹,²†, Qian Feng¹,²*, Xusheng Tian¹,², Yuncong Cai¹,², Zhuanghuang Hu¹,², Guangshuo Yan¹,², Zhaoqing Feng¹,², Yachao Zhang¹,², Jing Ning¹,², Yongkuan Xu³, Xiaozheng Lian³, Xiaojuan Sun⁴, Chunfu Zhang¹,², Hong Zhou¹,², Jincheng Zhang¹,²* and Yue Hao¹,²

Abstract

In this paper, the hybrid β-Ga₂O₃ Schottky diodes were fabricated with PEDOT:PSS as the anode. The electrical characteristics were investigated when the temperature changes from 298 K to 423 K. The barrier height φ_b increases, and the ideality factor n decreases as the temperature increases, indicating the presence of barrier height inhomogeneity between the polymer and β-Ga₂O₃ interface. The mean barrier height and the standard deviation are 1.57 eV and 0.212 eV, respectively, after taking the Gaussian barrier height distribution model into account. Moreover, a relatively fast response speed of less than 320 ms, high reponsivity of 0.6 A/W, and rejection ratio of $R_{254 \text{ nm}}/R_{400 \text{ nm}}$ up to 1.26 × 10³ are obtained, suggesting that the hybrid PEDOT:PSS/β-Ga₂O₃ Schottky barrier diodes can be used as deep ultraviolet (DUV) optical switches or photodetectors.

Keywords: β-Ga₂O₃, PEDOT:PSS, Hybrid Schottky diodes, Photodetector

Introduction

Many research groups have paid lots of attention to a new ultrawide bandgap semiconductor of β-Ga₂O₃ as a potential material for deep ultraviolet (DUV) photodetectors [1–7], high voltage, and high power devices for its wide band gap (4.8–4.9 eV), high breakdown electric field (8 MV/cm), and chemical stability [8–11]. In addition, it is simple to cleave β-Ga₂O₃ into nanomembranes or thin belts [12, 13] for its unique property of the large lattice constant along [100] direction. Various metals, such as Cu [14], Pd [15], Pt [11, 16–19], Au [15, 20], Ni [16, 21–23], and TiN [18], were used to investigate the electrical characteristics of β-Ga₂O₃ Schottky barrier diodes (SBD). However, the Schottky diodes fabricated with some polymer and the electrical characteristics have not been reported yet. Among all the organic materials, PEDOT:PSS is one of the transparent hole-conducting polymers, whose conductivity is up to 500 S/cm and work function is up to 5.0 ~ 5.3 eV, close to Au and Ni [23–25]. Furthermore, the PEDOT: PSS film can be formed only by spin-coating onto the substrate and subsequent baking in air. There are some investigations in regard to the transparent Schottky contact of PEDOT:PSS on ZnO single crystalline substrate and GaN epilayer, exhibiting rectifying good properties and photovoltaic characteristics [26–29].

In this work, the hybrid Schottky diode was fabricated with PEDOT:PSS polymer and the mechanically exfoliated β-Ga₂O₃ flakes from the high quality β-Ga₂O₃ substrate. The electrical characteristics of the diodes were investigated in the temperature region between 298 K and 423 K. Furthermore, the I–V measurements under the UV illumination were carried out, the responsivity was measured, and the transient behavior of the photocurrent was also analyzed.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Experimental Methods

The β-Ga$_2$O$_3$ flakes with the thicknesses of 15–25 μm were mechanically exfoliated from the (100) β-Ga$_2$O$_3$ substrate with the electron concentration of 7×10^{16} cm$^{-3}$. For the electron density is 2–3 orders of magnitude higher than that in the unintentionally doped Ga$_2$O$_3$ epilayer deposited on sapphire substrate in [30] and the highly conductive PEDOT:PSS films was used in this paper, so the pn heterojunction was formed in [30] while Schottky junction was formed in this paper [30]. Figure 1a shows the schematic diagram of the hybrid PEDOT:PSS/β-Ga$_2$O$_3$ Schottky diode. The β-Ga$_2$O$_3$ flakes were cleaned in acetone, ethanol, and deionized water with ultrasonic agitation and then immersed into the HF: H$_2$O (1:10) solution to remove surface oxides. Then, the deposition of Ti/Au(20 nm/100 nm) metal stack was carried out on the whole back side, and the rapid thermal processing at 470 °C under N$_2$ atmosphere was conducted for 60 s to decrease the ohmic contact resistance. After spin coated onto the surface of β-Ga$_2$O$_3$ flake for three times, PEDOT:PSS was baked on an electric hotplate at 150 °C, and the baking duration was 15 min. Subsequently, isolated devices with the area of 1 mm × 2 mm were obtained. From the HRTEM image of Fig. 1b, we can observe that the atoms are regularly arranged and few atomic column misalignments are present, indicating a high crystal quality of the β-Ga$_2$O$_3$ flake. As shown in Fig. 1c, d, the FWHM of HRXRD is about 35.3 arcsec, and the root mean square (RMS) is estimated to be 0.19 nm, illustrating the superior crystal quality and smooth surface.

Result and Discussion

I–V Characteristics and Barrier Height

As presented in Fig. 2a, the I–V characteristics of the hybrid PEDOT:PSS/β-Ga$_2$O$_3$ Schottky barrier diodes were investigated when the temperature changes from 298 K to 423 K. The current increases monotonously with the temperature and the semi-log I–V curves show the linear behavior as the forward voltage bias less than 1.5 V. As the forward bias voltage further increases, the slope of the semi-log I–V curves gradually reduces, and the forward current approaches 6×10^{-4} A, indicating that the series resistance causes the I–V curve deviating from the linearity. In addition, the reverse leakage current is less than 10^{-9} A at >3 V, and the I_{on}/I_{off} ratio is up to 10^6 at room temperature, illustrating a rectifying behavior as good as inorganic β-Ga$_2$O$_3$ Schottky diodes [11–15].

According to the equation $I = I_s \left\{ \exp \left(\frac{q(V - IR_s)}{nkT} \right) - 1 \right\}$ where V is the bias voltage, T and k are the absolute temperature and the Boltzmann constant, respectively. The ideality factor n and the reverse saturation current

![Fig. 1 Schematic diagram of the hybrid PEDOT:PSS/β-Ga$_2$O$_3$ Schottky diode (a), HRTEM image (b), HRXRD rocking curve of the (400) plane (c), AFM image of β-Ga$_2$O$_3$ flake obtained from β-Ga$_2$O$_3$ substrate by mechanically exfoliation, showing a high crystal quality and smooth surface (d).](image-url)
\(I_s \) can be extracted from the \(y \)-axis intercepts and the slopes of the linear extrapolation of the semi-log \(I-V \) curves at different temperatures. Although the ideality factor \(n \) of the ideal Schottky diode is equal to 1, it is always larger than 1 to some extent in actual device. The deviation of the thermal emission (TE) model becomes much greater as \(n \) increases. According to the expression \(\phi_b = \frac{kT}{q} \ln \left[\frac{AA^* T^2}{I_s} \right] \), we can obtain the Schottky barrier height \(\phi_b \) at different temperatures, as shown in Fig. 2b. The increase in temperature causes \(\phi_b \) to increase from 0.71 eV to 0.84, 0.87, 0.90, 0.93, and 0.96 eV while \(n \) to decrease from 4.27 to 3.42, 3.35, 3.29, 3.06, and 2.86. For \(n \) much larger than 1, suggesting other conducting mechanisms, such as field effect or thermal field effect, contributing to the current transport and resulting in the difference between pure TE model and the \(I-V \) characteristics, which has been illustrated in the wide bandgap SBDs, including GaN and SiC [31–34].

For \(\phi_b \) and \(n \) are temperature-dependent, the inhomogeneity of barrier height should be considered at PEDOT:PSS and \(\beta \)-Ga\textsubscript{2}O\textsubscript{3} interface. Considering the Gaussian distribution of the barrier height, the inhomogeneous barrier height may be described as \(\phi_b = \bar{\phi}_{b0}(T = 0) - \frac{q \sigma^2}{2kT} \) and the variation of \(n \) with \(T \) is given by (\(\frac{1}{n} - 1 \)) = \(\rho_2 - \frac{q \rho_3}{2kT} \), where \(\bar{\phi}_{b0} \) and \(\sigma \) are the mean barrier height and the standard deviation, respectively, \(\rho_2 \) and \(\rho_3 \) are the temperature-dependent voltage coefficients, and the voltage deformation of the Schottky barrier height (SBH) distribution was quantified by them (Fig. 3a). \(\bar{\phi}_{b0} \) and \(\sigma \) can be calculated from the intercept and the slope of the \(\phi_b \) versus \(q/2kT \) curve, about 1.57 eV and 0.212 eV, respectively. At the same time, \(\rho_2 \) and \(\rho_3 \) are evaluated to be 0.4 eV and 0.02 eV from the intercept and slope of the \((1/n - 1) \) versus \(q/2kT \) plot. Compared with \(\bar{\phi}_{b0}, \sigma \) is not small, illustrating the existence of barrier inhomogeneity at PEDOT:PSS/\(\beta \)-Ga\textsubscript{2}O\textsubscript{3} interface [35].

By considering the barrier height inhomogeneity, the relationship between the reverse saturation current \(I_s \) and the mean barrier height \(\bar{\phi}_{b0} \) can be modified as \(\ln(\frac{I_s}{T^2}) - (\frac{q \sigma^2}{2kT^2}) = \ln(AA^*) - \frac{\bar{\phi}_{b0}}{kT} \). It can be discerned from Fig. 3b that the plot of the \(\ln(I_s/T^2) \) versus \(1/kT \) is a straight line, from which we can extract the effective Richardson constant \(A^* \) of 3.8 A cm-2K-2, one order magnitude smaller than the theoretical Richardson constant of 40.8 A cm-2K-2 with the \(\beta \)-Ga\textsubscript{2}O\textsubscript{3} effective mass of \(m^* = 0.34 m_0 \) [36, 37]. Thus, the temperature-dependent \(\phi_b \) and \(n \), in other words, the Gaussian distribution of the barriers over SBHs can be used to explain the barrier inhomogeneity at the PEDOT:PSS/\(\beta \)-Ga\textsubscript{2}O\textsubscript{3} interface.

Characteristics of UV Photodetector

As described above, the hybrid \(\beta \)-Ga\textsubscript{2}O\textsubscript{3} Schottky diode exhibits a good rectifying characteristics; the ratio of \(I_{on}/I_{off} \) up to \(10^6 \) in dark state at room temperature. The lower dark current \(I_{dark} \) of 9.4 nA@\(V_{bias} = -4 \) V can be determined from Fig. 4a, indicating a lower noise characteristic. While under the normal incidence of 254 nm wavelength with the photodensity of 150 \(\mu \)W/cm2, the photocurrent \(I_{photo} \) reaches 112 nA@\(V_{bias} = -4 \) V. In addition, the photodetector shows a weak photovoltaic effect with a photocurrent of 0.45 nA at 0 V and an
open-circuit voltage (V_{oc}) of 0.15 V, much less than 0.9 V in reference [38], which may be attributed to the carrier density difference and the resulting Fermi level variation. Figure 4b represents the linear I_{photo} versus V_{bias} at various P_{light}. The device shows the dependence of I_{photo} on the P_{light} and the I_{photo} increases non-linearly with the P_{light}, in other words, at different V_{bias}, the plots of I_{photo} versus P_{light} demonstrate an obvious superlinear behavior, as shown in Fig. 4c. In order to elucidate the mechanism of the superlinear behavior, Fig. 4e presents the energy diagram of the PEDOT:PSS and β-Ga$_2$O$_3$ junction in this paper. Therefore, less carriers can be separated more effectively by the double built-in electric fields than the only one PEDOTT:PSS/Ga$_2$O$_3$ films or β-Ga$_2$O$_3$ flakes [35, 42, 43] but longer than the data in [31]. For the existence of double heterojunction in [31], PEDOT:PSS/Ga$_2$O$_3$ upper junction and Ga$_2$O$_3$/p-Si lower junction, the photogenerated carriers can be separated more effectively by the double built-in electric fields than the only one PEDOTT:PSS/Ga$_2$O$_3$ junction in this paper. Therefore, less carriers can be captured by the defects in [31], resulting in the shorter rise time and decay time. Furthermore, the overshooting feature can be observed from the shapes of photoresponse curves with a wedgy head at the lower P_{light} of 150 μW/cm2 than that occurred at the P_{light} of 600 μW/cm2 in [30] for the effective collection of photogenerated carriers under the reverse bias of -1.2 V rather than 0 V.

Figure 6 depicts the responsivity characteristics versus the illumination optical λ under the V_{bias} of -1.2 V. The maximum responsivity R_{max} of 0.62 A/W is achieved at a λ of 244 nm and the corresponding external quantum efficiency(EQE) of 3.16 \times 107% calculated by the expression $\text{EQE} = \frac{hcR_{max}/(e\lambda)}{\frac{1}{2}}$, much higher than that obtained in [30, 38] for the effective collection of photogenerated carriers, where R_{max} is the peak responsivity, and h is the Plank constant. e and λ are the electronic charge and the illumination wavelength, respectively. As the wavelength is longer than 290 nm, the photoresponsivity is lower than 1×10^{-3}, illustrating a much better spectral selectivity in the hybrid β-Ga$_2$O$_3$ devices. At the same time, the rejection ratio of $R_{254 \text{ nm}}/R_{400 \text{ nm}}$ is determined...
to be 1.26×10^3. Compared with the reported inorganic Ga$_2$O$_3$ photodetector [43–49], the hybrid device possesses a higher photoresponsivity, faster response speed and larger UV/visible rejection ratio, implying a promising solar blind photodetectors with high performance.

Conclusions

We have fabricated PEDOT:PSS/β-Ga$_2$O$_3$ hybrid Schottky barrier diode. The Schottky barrier height ϕ_b and ideality factor n are dependent on temperature, indicating that the Schottky barrier height was inhomogeneous at PEDOT:PSS/β-Ga$_2$O$_3$ interface. The mean
barrier height and standard deviation can be evaluated to be 1.57 eV and 0.212 eV, respectively, based on the Gaussian barrier height distribution model. Furthermore, the characteristics of PEDOT:PSS/β-Ga2O3 DUV Schottky barrier photodetectors were also investigated. A higher responsivity of 0.6 A/W, rejection ratio of $R_{254\text{ nm}}/R_{400\text{ nm}} = 1.26 \times 10^3$, EQE of $3.16 \times 10^4\%$ and a faster response speed of less than 320 ms are achieved, suggesting that the hybrid Schottky barrier diodes can be used as DUV optical switches or photodetectors.

Abbreviations
AFM: Atomic force microscope; DUV: Deep ultraviolet; EQE: External quantum efficiency; FWHM: Full-width half maximum; HRTEM: High-resolution transmission electron microscopy; LUMO: Lowest unoccupied molecular orbital; PDCR: Photo to dark current ratio; RMS: Root mean square; SBDs: Schottky barrier diodes; TE: Thermal emission

Acknowledgements
Not applicable.

Authors’ Contributions
TZ and YS conceived the experiment, performed syntheses, image, and date analysis, and wrote the manuscript. QF, ZH, and ZF gave some important suggestions and instrument. YC performed syntheses, XRD characterization, and AFM image. GY and XT performed electrical testing and optical testing. All authors agree with the document. All authors read and approved the final manuscript.

Funding
In this study, the National Natural Science Foundation of China (Grant Nos. 61774116, 61974112, and 61974115), the 111 Project 2.0 (Grant No. BP2018013), the National Key Research and Development Program of China (Grant No. 2018YFB0406500), and State Key Laboratory of Luminescence and Applications (Grant No. SKLA-2020-04) gave us adequate financial support.

Availability of Data and Materials
All data is available from the authors via a reasonable request.

Competing Interests
The authors declare that they have no competing interests.

Author details
1State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China. 2Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China. 3China Electronics Technology Group Corporation No. 46 Research Institute, Tianjin 300220, China. 4State Key Laboratory of Luminescence and Applications, Changchun Institute of Optoelectronics, Chinese Academy of Sciences, Changchun 130033, China.

Fig. 5 Multi-cycles (a) and single cycle (b) of time-dependent $I_{\text{ photocurrent}}$, the rise time and decay time are determined to be 319 ms and 270 ms, respectively.

Fig. 6 Responsivity versus wavelengths for the PEDOT:PSS/Ga2O3 hybrid photodetectors at $V_{\text{bias}} = -1.2\text{ V}$.
References

1. Yu FP, Ou SL, Wu DS (2015) Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors. Opt. Mater. Express 5(5):1240
2. Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L, Tang W (2014) Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt. Mater. Express 5(1):1067
3. Oh S, Jung Y, Mastro MA, Hite JK, Eddy CR, Kim J (2015) Development of solar-blind photodetectors based on Si-implanted β-Ga2O3. Opt. Express 23(2):28300
4. An YH, Zhi YS, Cui W, Zhao XL, Wu ZP, Guo DY, Li PG, Tang WH (2017) Thickness tuning photoelectric properties of β-Ga2O3 thin film based photodetectors. J Nanosci Nanotechnol 17(12):9091–9094
5. Li WH, Zhao XL, Zhi YS, Zhang XY, Chen ZW, Xu XL, Ang HU, Wu ZP, Tang WH (2018) Fabrication of cerium-doped β-Ga2O3 epitaxial thin films and deep ultraviolet photodetectors. Appl. Optics 57(3):538–543
6. Li S, Guo DY, Li PG, Wang X, Wang YH, Yan ZY, Liu Z, Zhi YS, Huang YQ, Wu ZP, Tang WH (2019) Ultrasonic superhigh signal-to-noise ratio self-powered solar-blind photodetector based on n-Ga2O3/Pt/CuScN core-shell microwire heterojunction. ACS Appl Mater Interfaces 11(83):35105–35114
7. Zhou H, Si M, Alghamdi S, Qiu G, Yang L, Ye PD (2017) High-performance β-Ga2O3 metal-semiconductor-field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Applied Physics Letters 100(1):013504
8. Armstrong AM, Crawford MH, Jayawarden a A, Ahly A, Dhar S (2016) Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes. J Appl Phys. 119(10):103102
9. Higashivaki M, Sasaki K, Kuramata A, Masai T, Yamakoshi S (2012) Gallium oxide (Ga2O3) metal-semiconductor-field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Applied Physics Letters 100(1):013504
10. Armstrong AM, Crawford MH, Jayawarden a A, Ahly A, Dhar S (2016) Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes. J Appl Phys. 119(10):103102
11. Sasaki K, Higashivaki M, Kuramata A, Masai T, Yamakoshi S (2013) Ga2O3 Schottky barrier diode fabricated by using single-crystal β-Ga2O3(010) substrates. IEEE Electron Device Letters 34:493
12. Zhou H, Si M, Alghamdi S, Qiu G, Yang L, Ye PD (2017) High-performance depletion/enhancement-mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600 mAm/mm. IEEE Electron Device Lett 38:103–106
13. Hu Z, Zhou H, Dang K, Cai Y, Feng Y, Gao Z, Gao F, Zhang J, Hao Y (2018) Lateral beta-Ga2O3 Schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV. IEEE J Electron Devices Soc 6(8):79
14. Splith D, Müller S, Schmidt F, Von Wenckstern H, van Rensburg JJ, Meyer WE, Grundmann M (2014) Determination of the mean and the inhomogeneous barrier height of Cu Schottky contacts on heteroepitaxial β-Ga2O3 thin films grown by pulsed laser deposition. Phys. Status Solidi A 211(1):40–47
15. Farzana E, Zhang Z, Paul PK, Arehart AR, Ringel SA (2017) Influence of metal contact on (010) β-Ga2O3 Schottky diode properties. Appl. Phys. Lett. 110(20):202102
16. Ahn S, Ren F, Yuan L, Pearton SJ, Hong CH, Suh EK (2011) Pulsed laser deposition of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74:195123
17. S. Li, Z. Y. Yan, Z. Liu, J. Chen,Y. S. Zhi, D. Y. Guo, P. G. Li, Z. P. Wu and W. H. Tang (2020) A self-powered solar-blind photodetector with large Voc enhancing performance based on the PEDOT:Ga2O3 organic-inorganic hybrid heterojunction (accepted).
18. Wang Z, Qi J, Yan X, Zhang Q, Wang Q, Lu S, Lin P, Liao Q, Zhang Z, Yang Y (2013) A self-powered strain sensor based on a ZnO/PEDOT:PSS hybrid structure. RSC Adv. 3(38):17011
19. Zhang T, Wang F, Zhang P, Wu YF, Chen H, Li J, Wu J, Chen L, Chen ZD, Li SB (2019) Low-temperature processed inorganic perovskites for flexible detectors with a broadband photoreponse. Nanoscale 11:2687–2877
20. Zhang T, Wu J, Zhang P, Ahmad W, Wang YF, Aqathani M, Chen H, Gao CM, Chen ZD, Wang ZM, Li SB (2018) High speed and stable solution – processed triple cation perovskite photodetectors. Advanced Optical Materials 6(13):1701341
21. Liu XG, Guo P, Sheng T, Qian LX, Zhang WL, Li YR (2016) β-Ga2O3 thin films on sapphire pre-seeded by homo-self-templated buffer layer for solar blind UV photodetector. Optical Materials 51:203–207
22. Pratyush AS, Krishnamoorthy S, Kumar S, Xia Z, Muralidharan R, Rajan S, Nath DN (2018) Demonstration of zero bias responsivity in MBE grown β-Ga2O3 lateral deep-UV photodetector. Jpn. J. Appl. Phys. 57:0603313
44. Feng W, Wang X, Zhang J, Wang L, Zhang W, Hu P, Cao W, Yang B (2014) Synthesis of two-dimensional β-Ga2O3 nanosheets for high-performance solar blind photodetectors. J. Mater. Chem 2(17):3254–3259
45. Hu GC, Shan CX, Zhang N, Jiang MM, Wang SP, Shen DZ (2015) High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process. Optics Express. 23(10):1354–13561
46. Pratyush AS, Xia Z, Kumar S, Zhang Y, Joshi C, Muralidharan R, Rajan S, Nath DN (2018) MBE-Grown β-Ga2O3-Based Schottky UV-C Photodetectors With Rectification Ratio ~10^7. IEEE Photonics Technol. Lett 30:2025
47. Chen YC, Lu YJ, Lin CN, Tian YZ, Gao CJ, Dong L, Shan CX (2018) Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J. Mater. Chem 6(21):5727
48. Wu Z, Jiao L, Wang X, Guo D, Li W, Li L, Huang F, Tang W (2017) A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction. J. Mater. Chem 5(34):8688
49. Bai Z, Liu J, Liu F, Zhang Y (2017) Enhanced photoresponse performance of self-powered UV–visible photodetectors based on ZnO/Cu2O/electrolyte heterojunctions via graphene incorporation. J. Alloys Compd 726:803

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.