Urbanization minimizes the effects of plant traits on soil provisioned ecosystem services across climatic regions

D. Johan Kotze1 | Subhadip Ghosh2 | Nan Hui3 | Ari Jumpponen4 | Benjamin P. Y.-H. Lee5 | Changyi Lu1 | Shawn Lum6 | Richard Pouyat7 | Katalin Szlavecz8 | David A. Wardle6 | Ian Yesilonis9 | Bangxiao Zheng1 | Heikki Setälä1

Abstract

An increasingly urbanized world is one of the most prominent examples of global environmental change. Across the globe, urban parks are designed and managed in a similar way, resulting in visually pleasing expansions of lawn interspersed with individually planted trees of varying appearances and functional traits. These large urban greenspaces have the capacity to provide various ecosystem services, including those associated with soil physicochemical properties. Our aim was to explore whether soil properties in urban parks diverge underneath vegetation producing labile or recalcitrant litter, and whether the impact is affected by climatic zone (from a boreal to temperate to tropical city). We also compared these properties to those in (semi)natural forests outside the cities to assess the influence of urbanization on plant-trait effects. We showed that vegetation type affected percentage soil organic matter (OM), total carbon (C) and total nitrogen (N), but inconsistently across climatic zones. Plant-trait effects were particularly weak in old parks in the boreal and temperate zones, whereas in young parks in these zones, soils underneath the two tree types accumulated significantly more OM, C and N compared to lawns. Within climatic zones, anthropogenic drivers dominated natural ones, with consistently lower values of organic-matter-related soil properties under trees producing labile or recalcitrant litter in parks compared to forests. The dominating effect of urbanization is also reflected in its ability to homogenize soil properties in parks across the three cities, especially in lawn soils and soils under trees irrespective of functional trait. Our study demonstrates that soil functions that relate to carbon and nitrogen dynamics—even in old urban greenspaces where plant-soil interactions have a long history—clearly diverged from those in natural ecosystems, implying a long-lasting influence of anthropogenic drivers on soil ecosystem services.

Keywords

boreal, city, plant-soil interactions, temperate, total carbon, total nitrogen, tropical
1 | INTRODUCTION

Urbanization, representing one of the clearest examples of global change, is a large-scale, human-caused manipulation that serves as a ‘natural experiment’, which provides opportunities to investigate ecosystem processes and services (Niemelä, 1999; Pouyat et al., 2010). Across much of the globe, parks with their managed lawns and individually planted trees are a common component of urban greenspaces. In addition to their recreational and social values, urban parks and particularly their soils provide ecosystem services such as water purification, detoxification of harmful substances, storing organic matter (OM) and minimizing N leaching via N sequestration (Pouyat et al., 2010). These heavily managed soils are also influenced by plant community composition (Ossola et al., 2015; Pouyat, Pataki, et al., 2007; Vauramo & Setälä, 2010). Recent studies indicate that, given enough time, plant functional types (such as conifers, deciduous trees, grasses and herbs) in managed urban parks in the boreal biome differ in their ability to modify (i) soil physicochemical characteristics (Setälä et al., 2016); (ii) soil microbial communities (Francini et al., 2018; Hui et al., 2017); and (iii) storage of C, N and heavy metals (Setälä et al., 2016, 2017). These results support the hypothesis that, similar to natural systems (Wardle et al., 2004), plant–soil interactions in the urban milieu are sensitive to plant functional type and may impact an array of ecosystem services in human-modified urban soils. This is most easily seen in old parks (with trees >50 years old) where plant–soil interactions have been in place for long enough for plants to modify the soils beneath them, at least under boreal climatic conditions (see Setälä et al., 2016). The question remains as to whether the effects of various plant functional types on soil properties and functions are generalizable across the globe in other biomes with differing climates.

Vegetation is fundamental in controlling soil formation and the composition of soil food webs, as well as driving ecosystem processes and services carried out by the soil biota (Hobbie, 2015; Ponge, 1993, 2003; Wardle, 2002). Functional attributes (including functional types and traits, sensu Grime, 1974, 1998) of dominant plants fine-tune larger-scale vegetation effects and further modify the functioning of the plant–soil system (Wardle et al., 2004). For example, plant types that produce labile, easily decomposable litter affect the soil fungal to bacterial ratio differently than those that produce slowly decomposing, recalcitrant litter with resultant divergent carbon and nutrient dynamics in the system (Bardgett & Wardle, 2010; Wardle et al., 2004). Plant-driven effects on soil carbon and OM can be strong enough to regulate important soil-derived processes/ecosystem services to mitigate adverse effects of humans on their environment at local and global scales (Wall et al., 2015). In urban greenspace systems, anthropogenic drivers strongly influence natural plant–soil interactions, and their impact on ecosystem services may overcome natural constraints that occur in more natural systems (see Groffman et al., 2014, 2017; Pouyat, Pataki, et al., 2007; Pouyat et al., 2010). This is because intensive land-use caused by humans radically alters natural soil formation and communities, leading to biotic and ecological homogenization (Groffman et al., 2014; Jenny, 1941; McKinney & Lockwood, 1999). This, in turn, can lead to convergence (i.e. increased similarity) of functional responses not only within cities when compared to native systems but also across cities (McKinney, 2006; Pouyat et al., 2003). Whether homogenization of habitats and biota paves the way to convergence of soil characteristics and functions, and whether plant–soil interactions are disconnected from natural climatic factors and thus less dependent on plant control is not known. A better and global understanding of this aboveground–belowground relationship in the urban milieu will inform us if, and to what extent, anthropogenic drivers dominate natural ones and whether this control is climate dependent.

Ecosystem services, such as the ability of soils to accumulate N and retain nutrients, are generally controlled not only by plant type (Wardle et al., 2004) but also by the build-up of organo-mineral complexes (Cotrufo et al., 2013; Fry et al., 2018; Schmidt et al., 2011) in natural ecosystems. Recent evidence suggests that plant traits can control OM accumulation in urban greenspaces (Lu et al., 2021; Setälä et al., 2016), even when potential differences in organo-mineral complexes were not considered. In this study, we investigate the effects of vegetation that produce functionally dissimilar litters (recalcitrant vs. labile; hereafter referred to as vegetation type) on soil physicochemical characteristics across three locations that vary greatly in climate (i.e. in the boreal, temperate and tropical zones; referred to as climatic zone) and its vegetation. Our study system consists of young and old urban public parks that are strongly managed—but with no or negligible fertilizer addition or irrigation—and natural to semi-natural forest (as reference) within each of three cities (Lahti, Finland; Baltimore, USA; Singapore). In each of the three cities, we sampled soils from park lawns and at canopy edges of trees producing recalcitrant or labile litter, and from the same tree species in reference forests near the city (see Section 2). We divided our hypotheses into two groups (Figure 1a): those related to soil properties under vegetation types of varying ages in public urban parks across climatic zones (lower part of Figure 1a), and those comparing soils under vegetation types in old parks with reference sites (natural to semi-natural native forest in close proximity to the cities) across climatic zones (lower and upper parts of Figure 1a). These reference sites represent the original vegetation type of the region with minimal impacts of urbanization, including some management and climatic effects.

1.1 | Parks

First, we hypothesize that soils under trees producing recalcitrant litter (R; slow decomposition rate with higher accumulation of OM in the soil) will have higher concentrations of OM, carbon and nitrogen, compared to vegetation producing labile litter (L; faster decomposition) (see e.g. Cornwell et al., 2008; Figure 1a; R > L). However, we expect this controlling influence of vegetation type among climatic zones (Raich & Tufekciogul, 2000; Wisz et al., 2013) to diminish towards the tropics. This is because favourable climatic conditions in
The tropics result in faster decomposition and thus a rapid loss of organic material irrespective of resource/litter type (Swift et al., 1979). Second, we hypothesize that differences in soil parameters across vegetation types and climatic zones would be greater in old parks compared to young parks, since older vegetation in old parks has modified soils for decades compared to younger parks with recently planted trees and lawn.

1.2 Parks versus reference forests

Third, we hypothesize that concentrations of OM, carbon and nitrogen in the soil will be lower in urban parks compared to reference forests (Setälä et al., 2016). This is, for example, because management practices characteristic of urban parks, such as the raking of leaves, reduce OM inputs into these disturbed ecosystems. Furthermore, the difference in these parameters between these habitat types (parks vs. reference forests) will be climate dependent so that the difference is large in the boreal zone, less so in the temperate zone, and low or non-existent in the tropics (Figure 1a: native reference forest vs. urban parks, the slope and narrowing gap between the dotted and solid lines). Ecological theory suggests that plant–soil interactions independently of the biome (Grime, 2001; Wardle et al., 2004). However, the favourable abiotic conditions for decomposition in the tropics unlikely limit biological activity in the soil, thus minimizing the role of habitat and vegetation type in affecting soil properties and processes, compared to the boreal zone where decomposition is hindered by adverse abiotic conditions while habitat and vegetation type play a larger role (Setälä et al., 2016, 2017). Fourth, relative to natural/semi-natural native forest, we hypothesize a convergence of soil physicochemical properties in parks across these three climatic zones where anthropogenic drivers dominate natural ones (Groffman et al., 2017; Pouyat et al., 2015, 2017). Essentially, we expect that soils under lawns and trees in young urban parks are more similar (i.e. converge) across biomes than soils under these cover types in old parks. This is because age and local climate will gradually become more important in the development of plants, soils and plant–soil interactions in parks that are not irrigated or fertilized.

2 MATERIALS AND METHODS

This study was performed in three cities in three climatic zones: boreal (Lahti, Finland), temperate (Baltimore, USA) and tropical (Singapore), with a similar field design implemented in each city (see Table 1 for details). Throughout the manuscript, we used the terms boreal, temperate and topical zones or cities with the understanding that the cities investigated are situated in these climatic zones, but are not necessarily representations of the entire zone. Ideally, 10 similarly managed public parks, five young (10–20 years) and five old (>60 years, up to 200 years), were selected per zone, each park with representatives of three distinct vegetation types that are typical to that area and that differ in their functional types and traits. The three vegetation types—selected based on decomposability of the litter produced by the plants (Grime, 2001)—included (1) lawns dominated by highly labile grasses and forbs; (2) tree species producing labile litter and (3) tree species producing recalcitrant litter. In the boreal city, the labile tree was linden (Tilia vulgaris, C/N ratio = 31.6) and the recalcitrant tree was Norway spruce (Picea abies, C/N ratio = 72). In the temperate city, the labile tree was the tulip tree (Liriodendron tulipifera, C/N ratio = 43) and the recalcitrant tree was oak (Quercus spp., C/N ratio = 75.9). In the tropical city, the labile tree was tembusu (Cycrophyllum fragrans, C/N ratio = 69.4) and the recalcitrant tree was the rain tree (Samanea saman, C/N ratio = 20). The C/N ratio of senescent leaves was used to classify...
trees as either labile or recalcitrant (Taylor et al., 1989), and in the case of the rain tree in Singapore, also the exceptionally high poly-
phenolic content, which makes the leaves decompose slowly (Rita et al., 2018). All park plots were covered with lawn (C/N ratio of
grasses and herbs ~12–40, with the highest ratio in Singapore), in-
cluding plots sampled underneath the tree canopies. As a result, our
experimental design was, in essence, lawn with and without trees,
which either produce recalcitrant or labile litter. The parks selected
had little to no fertilization or irrigation, with leaves raked and re-
moved, and grass clippings left on site. Although C and N input to the
soil from leaves is minimal in these managed parks, there is ample
evidence that tree fine roots are large contributors to stable soil OM
formation (Cotrufo et al., 2013; Persson, 2012), especially at shallow
soil depths (Jackson et al., 2017; Jobbágy & Jackson, 2000). Our de-
sign also included five reference sites (semi-natural to natural native
forest) for each climatic zone, with no or minimal management and,
except in the tropics, with a well-developed leaf-litter layer. These
reference sites included the same mature labile and recalcitrant tree
species as in the parks with significant annual litter input, but with-
out lawn, and were either within the city limits or adjacent to the
city. Reference forests in the boreal city are protected with no dis-
turbance other than, in some cases, forest logging and/or thinning
more than ca. 100 years ago. Reference forests in the temperate city
have not been managed for at least 100 years. Reference forests in
the tropical city were between 60 and 150 years old, and developed
via natural processes after the cessation of various anthropogenic
activities, including dairy farming, tree crops or were part of botani-
cal gardens.

In 2019, we established 40 study plots per city (10 public-

TABLE 1 The locations (from Google Earth), climate, primary parent material, soil order and human population size (in 2020) of the three
cities investigated in the three climatic zones

Climatic zone	City	Location	Climate	Parent material	Soil order	Population
Boreal	Lahti, Finland	60°58′57.74″N 25°39′40.29″E	Boreal-hemiboreal granite/till	Spodosol	120,000	
Temperate	Baltimore, USA	39°17′24.73″N 76°36′43.89″W	Humid-subtropical igneous/metamorphic/ unconsolidated material	Alfisols and Ultisol	593,490	
Tropical	Singapore	1°21′7.47″N 103°49′11.40″E	Humid-tropical igneous/sedimentary	Ultisol and oxisol	5,703,600	

*Leitgeb E, Ghosh S, Dobbs M, Englisch M, Michel K 2019. Distribution of nutrients and trace elements in forest soils of Singapore. Chemosphere 222, 62–70.

soil properties, typical in deeper soil layers as a decoupling between
current vegetation and organic carbon pools, including root biomass
(Conant et al., 2001; Jackson et al., 2017; Jobbágy & Jackson, 2000; Yaling et al., 2010). Additionally, by focusing on the top 10 cm, we
minimized the influence of parent soil texture on these parameters
(Fry et al., 2018). Our previous work in Finland (Setälä et al., 2016)
concluded that the uppermost soil layer in urban parks and refer-
ence forests has the greatest concentration of OM, carbon and ni-
trogen, and is often the most responsive layer to vegetation type
(see Jobbágy & Jackson, 2000). The top 2 cm of turf and soil was
carefully removed from the corer and used as a cap to cover the hole
made once the soil sample was placed into a plastic bag. Three sub-
samples were collected per plot and mixed thoroughly in one plastic
bag, resulting in a homogenized sample of ca. 100 g per plot. All soils
were analysed at the University of Helsinki in Lahti. After passing the
soil through a 2 mm sieve to remove larger mineral particles, roots
and other organic debris, the following variables were measured; pH
(1:5 v/v, fresh soil/distilled water), bulk density (bulk density sam-
pling kit [Part # 400.80; AMS, Inc.] according to the manufacturer’s
instructions), percentage OM (% OM; loss on ignition, 5 h at 550°C
in a muffle furnace), total carbon (C), total nitrogen (N) and the C/N-
ratio. Total carbon and nitrogen were analysed by dry combustion at
1350°C using a LECO CNS-2000 Elemental Analyzer (0.07% C and
0.09% N detection limits).

All statistical analyses were performed in R ver. 3.6.3 (R Core
Team, 2020). Three analyses were performed, the first to com-
pare vegetation type in parks of different ages across climatic
zones (Parks), and the second and third to compare soils under
park trees with soils under trees in reference sites (no lawn samples included; Parks vs. reference). First, a linear mixed model was used to evaluate how soil variables under vegetation producing very labile litter (lawn), labile litter (labile tree) or recalcitrant litter (recalci

trant tree) change as parks age (young vs. old parks), and whether this relationship is influenced by climatic zone. The lme function in the lme4 library (Bates et al., 2015) in R was used to construct the following model: response (the soil variable measured)~climatic zone*park age*vegetation type. Climatic zone is a three-level factor including boreal, temperate and tropical; park age is a two-level factor including young and old parks; vegetation type is a three-level factor including labile lawn, labile tree and recalcitrant tree. Park identity was included as a random effect to account for multiple vegetation types per park. Models were simplified by removing the three-way interaction from all models since none were statistically significant (p < 0.05). Second, a linear mixed model was used to evaluate the hypothesis that the relationship between soil variables under trees producing labile or recalcitrant litter is either mediated by the biotic or abiotic environment (Parks vs. Reference). The following lmer model was constructed: response (the soil variable measured)~climatic zone*habitat type+climatic zone*vegetation type. Habitat type is a two-level factor including reference sites and old parks (young parks were excluded due to their recent management legacy, which presumably overrides vegetation effects); vegetation type is a two-level factor including labile tree, recalcitrant tree. Again, park identity was included as a random term. The two two-way interactions were included since we were primarily interested in the effects of the climatic zone on habitat type and on vegetation type, and not on the general effect of habitat type on vegetation type. Third, we determined whether soil physiochemical parameters of park trees producing labile and recalcitrant litter converged across climatic zones using the coefficient of variation (CV). This statistical metric is normalized by the mean allowing direct comparisons between soil parameters. A lower CV indicates higher similarity in parameters across climatic zones, thus permitting inferences about divergence/convergence among treatment. Soil parameters under different litter types (trees producing labile litter, trees producing recalcitrant litter) were compared between reference and park sites.

3 | RESULTS

3.1 | Vegetation type and park age affect soil physicochemical properties inconsistently in parks across climatic zones

Soil C and N concentrations decreased from the boreal to the temperate city (by ca. 20% for C, 20% for N) and from the boreal to the tropical city (by 55% for C, 46% for N; Figure 2; Table 2), with values generally higher in soil under trees than under lawns, and older parks having higher values than younger parks (by ca. 6% for C, 18% for N) except for the tropical city where older parks displayed lower values (by ca. 21% for C, 27% for N). Our results do not support the hypothesis that the difference in soil parameters under recalcitrant versus labile vegetation would be greatest in urban parks in the boreal zone and non-existent in the tropics (bars associated with the solid line in Figure 1a). Results only partly supported our hypotheses that vegetation type has a universal effect on the levels of C, N and OM in park soils, and that differences in these parameters would consistently be greater in old relative to young parks. We found high OM in the boreal city (ca. 9.6%), and lowest values in old parks under both labile and recalcitrant trees in the tropical city (5.9%). The soil C/N-ratio showed an inconsistent pattern but was higher in park soils under labile trees in the tropical and particularly the temperate city.

Variation in soil pH increased from boreal to temperate to tropical, with particularly high means under lawns in the tropics (Table 2; Figure 2). Soil pH was consistently low under old trees producing recalcitrant litter. Overall, older parks appeared to have lower soil pH than younger parks, but this depended on vegetation type. Soil bulk density (BD) was lower under trees and higher under lawns, particularly in the boreal and temperate cities. Furthermore, BD was generally higher in the tropics, especially in old parks.

3.2 | Soil physicochemical property differences between reference forests and old parks

Our hypothesis that the effects of habitat type on soils are greatest in the city in the boreal zone compared to the temperate and tropical cities (decreasing abiotic constraints) is supported, especially for % OM, C and N (Table 3; Figure 3, see the slope and gap between the dotted and solid lines in Figure 1a). In the boreal city, values for these three parameters were significantly higher in the reference sites compared to the old parks (by ca. 39% for OM, 46% for C, 32% for N). The same pattern was observed in the temperate (by ca. 12% for OM, 17% for C, 4% for N) and tropical cities (by ca. 33% for OM, 44% for C, 29% for N), with differences between reference and old park soils smallest in the temperate city. The influence of vegetation type (recalcitrant vs. labile) on % OM, C and N was more pronounced in the boreal city, less so in the temperate city and practically non-existent in the tropical city.

Soil pH, BD and the C/N-ratio did not follow the pattern we detected for % OM, C and N (Table 3; Figure 3). In both the boreal and temperate cities, pH was lower in soils under recalcitrant trees, but was higher under recalcitrant trees in tropical soils. BD increased from boreal to temperate to tropical soils (except for high values in boreal urban parks), with values lower for soils under recalcitrant trees compared to labile trees, but again, this pattern was reversed for tropical soils. The soil C/N-ratio showed no consistent pattern across zones: it was higher in soils under recalcitrant trees in the boreal city, but higher in soils under labile trees in both the temperate and tropical cities. The C/N-ratio was lower in park soils compared to reference soils.
3.3 | Soil properties convergence across climatic zones

Most of the soil properties measured (% OM, C, N, pH, BD), independent of vegetation type, converged across climatic zones as depicted by their CV (Figure 4), that is, variation was lower in urban parks than in the reference sites. Convergence was also evident for the C/N-ratio in soils under trees producing recalcitrant litter but not under trees with labile litter. In general, convergence was highest (low CV) in soils in young parks and lawns, and for % OM, C and N, while soils in old parks showed low convergence (high CV, thus higher variation) across biomes, similar to variation displayed by these parameters in reference sites.

4 | DISCUSSION

We explored whether the effects of urbanization on C and N dynamics in urban greenspace soils are similar in cities located in three climatic zones. More specifically, we studied the degree to which plant functional types modify the soils beneath them in public urban parks, and whether these changes take place independently of climatic region. We demonstrated that—as with natural ecosystems—vegetation trait (trees producing recalcitrant or labile litter, and lawn) plays a significant, yet variable role in influencing soil physicochemical characteristics in urban parks (Bardgett & Wardle, 2010; Pouyat et al., 2007; Setälä et al., 2016), and that the strength of this effect is modulated by climate and urbanization. Indeed, urbanization per se affected soil properties more than vegetation type, as demonstrated by the greater differences in soil parameters between reference forests versus urban parks than between soils under the plant functional types (Figures 1b and 3). In essence, our results support the notion that anthropogenic drivers, including park management, dominate natural constraints, such as plant-soil interactions, which is supported by differences observed in soil parameters between
Table 2 Linear mixed-effects model results, testing the effects of biome (boreal, temperate and tropical), vegetation type (lawns, labile trees and recalcitrant trees) park age (young and old) and their two-way interactions on six soil physicochemical properties

	Interce	Temp	Trop	Labile	Recalc	Old	Temp x Labile	Trop x Labile	Temp x Recalc	Trop x Recalc	Temp x Old	Trop x Old	Labile x Old	Recalc x Old
pH	1.837	0.069	0.142	0.057	0.014	-0.007	-0.049	-0.164	-0.020	-0.111	-0.053	-0.046	-0.055	-0.062
	(0.036)	(0.050)	(0.051)	(0.036)	(0.033)	(0.049)	(0.041)	(0.041)	(0.040)	(0.041)	(0.058)	(0.058)	(0.034)	(0.033)
	<0.001	0.169	0.005	0.115	0.669	0.887	0.231	-0.001	0.610	0.007	0.366	0.433	0.101	0.059
Bulk density	1.239	-0.040	-0.062	-0.181	-0.219	-0.016	0.038	0.121	0.136	0.239	-0.109	0.071	0.116	0.038
	(0.055)	(0.075)	(0.077)	(0.062)	(0.060)	(0.073)	(0.073)	(0.075)	(0.072)	(0.075)	(0.086)	(0.086)	(0.060)	(0.060)
	<0.001	0.591	0.425	0.004	<0.001	0.826	0.601	0.104	0.060	0.001	0.202	0.414	0.053	0.526
Organic matter	8.150	-1.606	1.475	2.292	1.566	1.831	-0.539	-2.838	0.053	0.015	0.834	-2.403	-2.598	-1.843
	(1.056)	(1.428)	(1.460)	(1.240)	(1.196)	(1.342)	(1.471)	(1.478)	(1.448)	(1.466)	(1.580)	(1.595)	(1.199)	(1.187)
	<0.001	0.261	0.312	0.065	0.190	0.173	0.714	0.055	0.971	0.049	0.598	0.132	0.030	0.121
Carbon	3.685	-0.818	-1.441	0.677	0.680	0.706	0.212	-0.603	-0.027	-0.997	-0.213	-0.804	-0.603	-0.442
	(0.444)	(0.617)	(0.629)	(0.440)	(0.407)	(0.607)	(0.505)	(0.487)	(0.499)	(0.719)	(0.718)	(0.410)	(0.401)	(0.401)
	<0.001	0.185	0.022	0.123	0.094	0.245	0.675	0.234	0.956	0.046	0.767	0.263	0.142	0.270
Nitrogen	0.227	-0.037	-0.045	0.045	0.057	0.085	-0.014	-0.043	-0.022	-0.081	-0.019	-0.046	-0.109	-0.023
	(0.024)	(0.033)	(0.034)	(0.027)	(0.026)	(0.031)	(0.032)	(0.032)	(0.032)	(0.037)	(0.037)	(0.026)	(0.026)	(0.026)
	<0.001	0.261	0.178	0.099	0.030	0.006	0.660	0.183	0.477	0.012	0.611	0.003	0.079	0.371
C/N-ratio	2.736	-0.074	-0.181	-0.002	-0.007	-0.091	0.170	0.033	0.060	-0.014	-0.023	0.095	0.018	-0.046
	(0.079)	(0.110)	(0.112)	(0.082)	(0.077)	(0.107)	(0.095)	(0.096)	(0.093)	(0.094)	(0.127)	(0.078)	(0.078)	(0.076)
	<0.001	0.501	0.107	0.976	0.927	0.393	0.075	0.734	0.516	0.884	0.854	0.456	0.817	0.544

Note: Values presented include the coefficient, the standard error (in parenthesis) and p value. Statistically significant effects (p < 0.1) are highlighted in bold.

Young lawns in the boreal biome is in the intercept.

Abbreviations: Interce, model intercept; Recalc, recalcitrant; Temp, temperate; Trop, tropical.
TABLE 3 Linear mixed-effects model results, testing the effects of biome (boreal, temperate and tropical), habitat age (old, reference), vegetation type (labile trees and recalcitrant trees) and their two-way interactions on six soil physicochemical properties

	Intercept	Temperate	Tropical	Reference	Recalcitant	Temp × Reference	Trop × Reference	Temp × Recalc	Trop × Recalc
pH	6.269 (0.308)	-0.208 (0.433)	-0.722 (0.455)	-0.806 (0.362)	-0.187 (0.259)	0.824 (0.484)	0.740 (0.488)	0.058 (0.366)	0.374 (0.405)
	< 0.001	0.630	0.113	0.026	0.470	0.089	0.129	0.874	0.356
Bulk density	1.116 (0.048)	-0.059 (0.068)	0.165 (0.070)	-0.304 (0.058)	-0.025 (0.049)	0.253 (0.079)	0.186 (0.079)	0.181	-0.026 (0.069)
	0.035	0.385	0.018	0.011	0.619	0.001	0.001	0.703	0.245
Organic matter	2.236 (0.119)	-0.138 (0.169)	-0.630 (0.173)	0.501 (0.140)	0.088 (0.126)	-0.372 (0.195)	-0.102 (0.196)	0.016 (0.179)	-0.050 (0.185)
	< 0.001	-0.414	0.004	< 0.001	0.486	0.057	0.601	0.931	0.785
Carbon	1.432 (0.129)	-0.260 (0.183)	-1.109 (0.190)	0.617 (0.153)	0.129 (0.126)	-0.437 (0.210)	-0.032 (0.211)	-0.025 (0.178)	-0.268 (0.190)
	< 0.001	0.155	< 0.001	0.003	0.305	0.038	0.881	0.887	0.159
Nitrogen	-1.165 (0.121)	-0.347 (0.171)	-1.100 (0.177)	0.378 (0.143)	0.071 (0.124)	-0.334 (0.198)	-0.031 (0.199)	0.080 (0.176)	-0.093 (0.185)
	< 0.001	0.042	0.008	< 0.001	0.008	0.092	0.877	0.648	0.615
C/N-ratio	2.611 (0.080)	0.089 (0.112)	-0.084 (0.118)	0.200 (0.093)	0.067 (0.065)	-0.103 (0.124)	0.097 (0.125)	-0.111 (0.092)	-0.140 (0.102)
	< 0.001	0.428	0.476	0.032	0.304	0.406	0.438	0.225	0.170

Note: Values presented include the coefficient, the standard error (in parenthesis) and the p value. Statistically significant effects (p < 0.1) are highlighted in bold.

Old labile tree plots in the boreal biome is in the intercept.

Abbreviations: Recalc, recalcitrant; Temp, temperate; Trop, tropical.
unresponsive to tree type and park age in both the boreal and temperate cities investigated, but decreased with park age in the tropical city. This latter result from the tropics contradicts results from parks in Helsinki and Lahti, Finland (Setälä et al., 2016), park-like golf courses in Melbourne (Livesley et al., 2016) and more natural forested ecosystems (Badalamenti et al., 2019; Lewis et al., 2014) where soil C increases with time. As was discussed above, the likely reasons for our result of no difference in soil properties under young versus old trees or those producing labile versus recalcitrant litter are related to management: these public parks receive little to no fertilization or irrigation after establishment and experience continuous and uniform maintenance in terms of mowing and the removal/raking of tree leaf litter (but not grass litter), preventing the accumulation of OM and C in their soils. Total N, however, increased from young to old park soils in the boreal and temperate cities but was only slightly higher under trees producing recalcitrant litter, but an opposite pattern was found in the tropical city. This lack of a clear litter type effect on N is not surprising given that differences in litter quality have only a small influence on N cycling within ecosystems as most of the N in plant litter is incorporated into soil OM after decomposition so that soil N cycling is primarily determined by OM decomposition (Knops et al., 2002). Additionally, OM\text{coll} was generally higher in young than in old park soils in the tropical city. This may be due to favourable climatic conditions in the tropics that result in rapid initial decomposition and C loss, disappearance over time of the OM in the initial soil used to establish the parks, and that the intensive leaf raking of parks limits the input of aboveground OM. These results suggest that, contrary to our hypotheses, surface soils under either young or old trees that produce recalcitrant litter do not accumulate OM or sequester C any better than trees producing labile litter because of management effects (Setälä et al., 2016).

Third, OM\text{coll} under lawn was lower than under labile and recalcitrant trees, but only for young parks in the boreal and temperate cities. Essentially, this pattern suggests that with time, OM\text{coll}...
does accumulate in these higher-latitude unfertilized park lawns, at least in the top 10 cm analysed here. Although lawns produce highly labile grass and herb litter that is rapidly mineralized to CO$_2$ (Lilly et al., 2015; Lu et al., 2021; Thomson & Kao-Kniffin, 2019), in old parks it may be that the continuous, long-term input of grass clippings (which are not removed) together with dead root input results in the accumulation of OM$_{coll}$ (see also Bae & Ryu, 2015; Golubiewski, 2006; Raciti et al., 2011). Note that these park lawns are not fertilized, yet accumulate OM$_{coll}$, in a similar manner to residential lawns that do receive considerable fertilization and irrigation (Trammell et al., 2020). Unexpectedly, in the tropical city, soil OM$_{coll}$ was higher under lawns compared to under the two tree types, especially in old parks. Interestingly, in these low-latitude parks, the concentration of OM$_{coll}$ was similar under young and old lawns, whereas OM$_{coll}$ decreased significantly under both labile and recalcitrant trees with park age. The increase in OM$_{coll}$ with time in the upper boreal and temperate lawn soils observed here is similar to that found in Helsinki and Lahti, Finland (Setälä et al., 2016), showing that with time, park lawns can provide an important ecosystem service in terms of C and N sequestration (Bae & Ryu, 2015; Pouyat et al., 2006; Raciti et al., 2011). It is noteworthy, that besides vegetation type—soil texture is also crucial in affecting soil OM content (Fry et al., 2018), suggesting that the influence of plant functional type on soils and the ecosystem services they provide can be conditional on soil type. However, the role of organo-mineral complexes in controlling decomposition rate is likely much stronger in the deeper soil layers than in the top soil where the input of new litter and fine roots continuously supply free particulate OM (Cotrufo et al., 2013; Jackson et al., 2017; Schmidt et al., 2011).

4.2 Habitat type (old parks versus reference forest) affects OM$_{coll}$ more than vegetation type

As depicted in Figure 1b, climate plays a significant role in influencing OM$_{coll}$ in the soils of both old urban parks and reference forests, with highest values in the boreal city and lowest in the tropical city. This is expected primarily because rates of photosynthesis, and thus net primary production, exceed microbial decomposition at higher latitudes (Averill et al., 2014; Crowther et al., 2019; Schlesinger, 1997).

Furthermore, our finding that OM$_{coll}$ was higher in reference forest soils compared to soils under trees in old urban parks, particularly in the boreal and tropical cities, is consistent with our hypothesis (Figure 1: native reference forest vs. urban parks, the narrowing gap between the green dotted line and the solid red line) and with our previous work in two boreal cities in Finland (Helsinki and Lahti; Setälä et al., 2016). These results suggest that the habitat effect (i.e. reference forests vs. old parks) on soil properties is universally strong and clearly exceeds vegetation type effects (i.e. labile vs. recalcitrant litter). Various non-competitive mechanisms may explain this pattern. First, more litter enters the system in natural environments compared to scattered trees in parks due to (i) the higher density of trees and other vegetation in natural environments; and (ii) management, that is, mowing, pruning and the raking of tree leaves in parks. Second, as with aboveground litter, fine root and exudate production, which is another important source of OM (Lin et al., 2020; Persson, 2012; Vesterdal et al., 2008) especially in the upper soil layers (Jobbágy & Jackson, 2000), is higher in reference forests compared to urban parks, at least in the boreal zone (Lu et al., 2021). For example, Clemmensen et al. (2013) estimate that as much as 70%
of stored C in boreal forest soils comes from roots and their associated organisms. Given that root-to-shoot ratios remain equal among biomes (Caíns et al., 1997) or tend to increase with latitude (Qi et al., 2019), it is likely that the contribution of roots in forming OM is also of significance in temperate and tropical climates, especially in semi-natural to natural reference forests compared to scattered trees in parks. Finally, as (micro)climate can control both NPP and decomposition rate (Knapp et al., 2014; Liski et al., 2003), its potential influences on differences in OM accumulation within biomes between the two habitat types cannot be ruled out.

We expected differences in soil properties between reference forests and old parks to be greatest in the boreal city where abiotic limitations on NPP and decomposition are the greatest (see Figure 1a), especially for soil properties directly affected by biogenic processes (here OM; Pouyat et al., 2015). These differences were expected to decrease towards the tropics with low or non-existent abiotic limitations on NPP and decomposition rate (Figure 1a). Contrary to expectation, OM concentrations in reference forests in the tropical city were double than that in urban park soils, similar to what we observed in the boreal zone (Figure 1b): note however that absolute OM differences between reference and park soils were greater in the boreal city compared to the tropical city. Although climate appears to have an overall effect on the reduction in soil OM with decreasing latitude, habitat type (reference vs. old parks; essentially urbanization) strongly affected soil properties within climatic zones. We can only speculate on why there was still a significant difference in OM between reference forests and old park soils in the tropical city, similar to what we observed in the boreal city, but not in the temperate city. For instance, in all climatic zones investigated, litter does not accumulate in parks due to active management, thus the observed lower OM values in old parks compared to reference forests across climatic zones. In boreal zone forests, limitations on NPP and decomposition (due to cold climate and a short growing season) result in the accumulation of OM on the forest floor. In the tropics, aboveground and belowground litter in reference forests enters the system continuously throughout the year, but here the decomposition of generally low-quality leaf litter is relatively slow enough to result in the accumulation of OM in the soil, see the so-called syndrome of poor litter quality (Hättenschwiler et al., 2011; Makkonen et al., 2012). These processes likely result in an elevated OM in tropical reference forests compared to old parks where aboveground tree litter is efficiently removed. In essence, both boreal and tropical zones experience resource limitation but via different mechanisms: resources, such as nutrients, are stored in the litter and humus layers in the cool boreal zone, while in the vegetation in the tropical zone, similar to the pattern observed for carbon stocks (see Crowther et al., 2019). In the temperate zone, differences in OM between reference forests and old parks were minimal (yet slightly higher in reference forests). That we found little evidence for our hypothesis that differences in soil parameters between reference forests and old parks would be greatest in the boreal city and non-existent in the tropical city (compare the solid and dashed lines in Figure 1), may not be surprising given that meta-analyses have concluded that resource quality in leaf litter can have stronger effects on litter decomposition than climate parameters (Cornwell et al., 2008; Zhang et al., 2008; see also Makkonen et al., 2012). Furthermore, evidence also suggests that composition of the microbial community can drive carbon storage. Averill et al. (2014) showed that—even after accounting for temperature and moisture effects in their decomposition model—ectomycorrhizal and ericoid mycorrhizal (EEM) fungal systems typical to the boreal zone store 1.7 times more carbon per unit soil than do arbucular mycorrhizal fungal systems that are prevalent in the tropics. This is in line with our results, both at the habitat type and plant functional type level: the highest soil OM concentrations were associated with trees having ectomycorrhizal associations, particularly in the reference forests.

In partial support of our hypothesis, we showed a vegetation type effect, but primarily in reference forests of the boreal and temperate cities where OM concentrations were consistently higher under trees producing recalcitrant litter compared to trees producing labile litter. This is in line with our previous findings in the boreal zone (Setälä et al., 2016). Recently, we showed that CO2 production under conifer trees in the boreal zone is lower than under labile trees (Lu et al., 2021), supporting our findings that OM accumulates more readily under trees producing recalcitrant litter. Vegetation type affects C and N accumulation rates in the soil (Edmonson et al., 2014; Livesley et al., 2016; Raciti et al., 2012), but, based on our results, it appears that these effects diminish towards the tropics. The reason for this decline remains open, but is likely because favourable climatic conditions in the tropics neutralizes plant-trait/litter quality effects on soil process rates. In old parks, however, the explanation that plant-trait structure should guide the outcomes of processes resulting from plant–soil interactions independently of the biome is unlikely, as was emphasized by the lack of difference in soil properties under trees producing recalcitrant or labile litter.

4.3 Convergence of soil properties across climatic zones

We hypothesized that soil physicochemical properties in urban parks should converge, that is, become more similar, across cities in the three climatic zones where anthropogenic drivers dominate natural ones. This hypothesis was supported by our data, primarily in young parks where the soils displayed low variation among climatic zones, that is, convergence in most soil properties (see also Groffman et al., 2014; Herrmann et al., 2020; Pouyat et al., 2015), both for soils under labile and recalcitrant trees. Soils in older parks under old vegetation showed higher variation (or divergence) in soil properties across climatic zones, similar to soils in reference sites. These results support, at least partly, the homogenization concept of a strong, large-scale global human influence on soil formation (Pouyat et al., 2015; Trammell et al., 2020), and add to the consensus that urban greenspaces, and in particular classical urban parks, are managed under similar guidelines globally and produces comparable
soil properties, even if the species planted in these parks, and their
traits, differ.

As parks age, however, those soil properties (such as OM, C and
N) that are directly influenced by plant resource inputs (see Pouyat
et al., 2015) start to diverge across climatic zones, demonstrating
the effects of climate and vegetation on the plant–soil process a few
decades after establishment. In old parks, even BD diverged, poten-
tially reflecting a difference in use under these large trees between
the climatic zones. For instance, the time spent, and thus trampling
intensity, by people under large trees in the summer in the boreal
zone is arguably less compared to the tropics where such trees pro-
vide shade throughout the year.

Our findings also show that convergence (and divergence) was
similar in soils under both tree types. This suggests that, even though
plant type can control soil properties at a local scale (Lu et al., 2021;
Setälä et al., 2016), human activity is an essential driver of soil de-
development in urban parks across the world. This view lends further
support from our finding that some soil physicochemical parameters
(pH, BD) that are less directly controlled by vegetation showed con-
vergence. However, the question arises whether divergence in soils
under old park trees, similarly to the pattern observed for reference
plots, can be interpreted as evidence that old park soil properties are
gradually escaping anthropogenic control and starting to resemble
those of soils in natural environments (reference sites), which can
take centuries and millennia to develop (Pouyat et al., 2015). This is,
however, not the case (Figure S1): when compared to young parks,
soil properties under both labile and recalcitrant trees in old parks
were not consistently more similar to those in reference sites, sug-
gest divergent soil development trajectories across the different
climatic zones as parks age. This is likely the result of an increasing
influence of natural processes, including vegetation type and cli-
mate, on soil development, and suggests that managed urban parks,
however old they are, are unlikely to develop soils that share the
same structure, function and ecosystem services as the adjacent
more natural ecosystems.

5 | CONCLUSIONS

We demonstrated that plant-phenotype effects on soil properties in urban
parks are not universal but influenced by the climatic zone in which
park resides. This may be due to the strong influence of frequent
human-induced disturbances in urban parks that overshadow
the plant functional type effects observed in natural ecosystems
(Bardgett & Wardle, 2010; Wardle et al., 2004). Supporting this, soil
%OM in reference forests was slightly but constantly higher under
trees producing recalcitrant litter than labile litter, and the same
holds for C and N in the cities in boreal and temperate climates.
In terms of urban parks, it is surprising that, unlike in young parks,
there were no differences in OM^coll in old park soils under lawns
producing labile litter) compared to soils under either tree type (la-
bile and recalcitrant litter). This suggests that, at least in these boreal
and temperate cities, lawns can be as valuable as trees in providing
soil-derived ecosystem services. Furthermore, the strong influ-
ence of anthropogenic drivers in controlling plant–soil interactions
in urban greenspaces is also reflected in the convergence of soil
properties in parks, irrespective of vegetation type. Although soils
in old parks across climatic zones showed less convergence when
compared to young parks, their soil properties were not compara-
tive to those in (semi)natural reference forests. This suggests that,
although old urban parks have the capacity to provide ecosystems
services in terms of sequestering C and N—and also in terms of rec-
creational services—their potential to provide services is limited when
compared to natural ecosystems, irrespective of climatic region. To
develop more sustainable cities, the reintroduction of semi(natural)
greenspace—here forests—to the city or their preservation in the
urban landscape is recommended as a nature-based solution to im-
prove, for example, the ability of urban greenspace to store C and
nutrients in these otherwise strongly disturbed systems.

ACKNOWLEDGEMENTS

This research was made possible by a grant from the Academy of
Finland (no. 315987) for the project entitled ‘Ecosystem services in
urban greenspaces across biomes: the influence of plant func-
tional types and soil biota on soil-derived ecosystem processes
(PARKTRAITS)’. We thank numerous people who have helped us in
the field, including YinHong Hu, Elliott Stratham, Mohamed Yusof,
John Allen, Janne Auranen, Peter Immonen and Allan Delesantro.
Comments from two reviewers have improved the manuscript
considerably.

DATA AVAILABILITY STATEMENT

At the moment, data will be made available upon request from the
appropriate author. We are currently collecting more data for this
project and the plan is to make all data available online once all data
have been collected and published.

ORCID

D. Johan Kotze https://orcid.org/0000-0003-4211-4420
Subhadip Ghosh https://orcid.org/0000-0002-9457-8545
Nan Hui https://orcid.org/0000-0001-8517-8454
Ari Jumpponen https://orcid.org/0000-0002-6770-2563
Benjamin P. Y.-H. Lee https://orcid.org/0000-0002-9952-1011
Changyi Lu https://orcid.org/0000-0002-4866-9315
Shawn Lum https://orcid.org/0000-0003-2098-6308
Katalin Szlavecz https://orcid.org/0000-0003-2504-0298
David A. Wardle https://orcid.org/0000-0002-0476-7335
Bangxiao Zheng https://orcid.org/0000-0003-3036-6495
Heikki Setälä https://orcid.org/0000-0002-5230-4001

REFERENCES

Averill, C., Turner, B. L., & Finzi, A. C. (2014). Mycorrhiza-mediated com-
petition between plants and decomposers drives soil carbon stor-
age. Nature, 505, 543–545. https://doi.org/10.1038/nature12901
Badalamenti, E., Battipaglia, G., Cristina, L., Novara, A., Rühl, J., Sala,
G., Sapienza, L., Valentini, R., & La Mantia, T. (2019). Carbon stock
dynamics. Landscape and Urban Planning, 97, 1-10. https://doi.org/10.1016/j.landurbplan.2010.04.004

Velasco, E., Segovia, E., Choong, A. M. F., Lim, B. K. Y., & Vargas, R. (2021). Carbon dioxide dynamics in a residential lawn of a tropical city. Journal of Environmental Management, 280, 111752. https://doi.org/10.1016/j.jenvman.2020.111752

Vesterdal, L., Schmidt, I. K., Callesen, I., Nilsson, L. O., & Gundersen, P. (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255, 35-48. https://doi.org/10.1016/j.foreco.2007.08.015

Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of earth’s ecosystems. Science, 277, 494-499. https://doi.org/10.1126/science.277.5325.494

Vogt, K. A., Vogt, D. J., Brown, S., Tilley, J. P., Edmonds, R. L., Silver, W. L., & Siccama, T. G. (1995). Dynamics of forest floor and soil organic matter accumulation in boreal, temperate, and tropical forests. Soil management and greenhouse effect (pp. 159-178). CRC, Lewis Publishers.

Wall, D. H., Nielsen, U. N., & Six, J. (2015). Soil biodiversity and human health. Nature, 528, 69-76. https://doi.org/10.1038/nature15744

Wardle, D. (2002). Communities and ecosystems: Linking the aboveground and belowground components. Monographs in population Biology (Vol. 34). Princeton University Press.

Wardle, D., Bardgett, R., Kilonromos, J., van Putten, W., Setäälä, H., & Wall, D. (2004). Ecological linkages between aboveground and belowground biota: Community- and ecosystem-level implications. Science, 304, 1629-1633. https://doi.org/10.1126/science.1094875

Wisz, M., Julien Pottier, W., Kissling, D., Pellissier, L., Damgaard, C. F., Dormann, C. F., Forchhammer, M. C., Grytnes, J.-A., Guisan, A., Heikkinen, R. K., Høye, T. T., Kühn, I., Luoto, M., Maiorano, L., Nilsson, M.-C., Normand, S., Öckinger, E., & Schmidt, N. M., Termansen, M., Timmermann, A., Wardle, D. A., Aastrup, P., & Svenning, J.-C. (2013). The role of biotic interactions in shaping spatial distributions and realised assemblages of species: Implications for species distribution modelling. Biological Reviews, 88, 15-30. https://doi.org/10.1111/j.1469-185X.2012.00235.x

Yaling, Q., Follett, R. F., & Kimble, J. M. (2010). Soil organic carbon input from urban turfgrasses. Soil Science Society of America Journal, 74, 366-371. https://doi.org/10.2136/sssaj2009.0075

Zhang, D., Hui, D., Luo, Y., & Zhou, G. (2008). Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. Journal of Plant Ecology, 1, 85-93. https://doi.org/10.1093/jpe/rtn002

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Kotze, D. J., Ghosh, S., Hui, N., Jumpponen, A., Lee, B. P. Y.-H., Lu, C., Lum, S., Pouyat, R., Szlavecz, K., Wardle, D. A., Yesilonis, I., Zheng, B., & Setäälä, H. (2021). Urbanization minimizes the effects of plant traits on soil provisioned ecosystem services across climatic regions. Global Change Biology, 00, 1-15. https://doi.org/10.1111/gcb.15717