Line junction in a quantum Hall system with two filling fractions

Diptiman Sen and Amit Agarwal
Center for High Energy Physics, Indian Institute of Science, Bangalore 560 012, India
(Dated: March 10, 2008)

We present a microscopic model for a line junction formed by counter or co-propagating single mode quantum Hall edges corresponding to different filling factors. The ends of the line junction can be described by two possible current splitting matrices which are dictated by the conditions of both lack of dissipation and the existence of a linear relation between the bosonic fields. Tunneling between the two edges of the line junction then leads to a microscopic understanding of a phenomenological description of line junctions introduced some time ago. The effect of density-density interactions between the two edges is considered, and renormalization group ideas are used to study how the tunneling parameter changes with the length scale. This leads to a power law variation of the conductance of the line junction with the temperature. Depending on the strength of the interactions the line junction can exhibit two quite different behaviors. Our results can be tested in bent quantum Hall systems fabricated recently.

PACS numbers: 73.43.-f, 73.43.Jn, 71.10.Pm, 73.23.-b

I. INTRODUCTION

The recent fabrication of quantum Hall (QH) systems which have a sharp bend of 90° provides a new arena for testing theories of quantum Hall edge states [1, 2]. By applying an appropriately tilted magnetic field, one can create a situation in which the two faces of the bent system are both in QH states but they have different filling fractions ν_1 and ν_2; this is because the filling fractions are governed by the components of the magnetic field perpendicular to the faces. If the magnetic field is sufficiently tilted, the two perpendicular components can even have opposite signs. Depending on whether ν_1 and ν_2 have the same sign or opposite signs, the edge states on the two sides of the line which separates the two QH states (called a line junction) propagate in opposite directions or in the same direction; these are called counter or co-propagating edge states respectively.

In a fractional QH system in which the two sides have the same filling fraction, the properties of a line junction (LJ) have been studied extensively [3, 4, 5, 6, 7, 8, 9, 10, 11]; they are known to provide a realization of a one-dimensional system of spinless interacting electrons with a tunable Luttinger parameter [12, 13, 14]. A LJ in such a system can be formed by creating a narrow barrier which divides a QH liquid such that there are chiral edge states flowing on the two sides of the barrier [15, 16, 17, 18, 19]. In general the edges interact with each other by a short-range (screened Coulomb) repulsion. A LJ is therefore similar to a non-chiral quantum wire; however, the physical separation between the two edges of the effective non-chiral wire can be controlled by a gate voltage which allows for a greater degree of control over the strength of the interaction between the edges.

It is known that a LJ can be disordered, so that the tunneling amplitude across the LJ can be taken to be a random variable. The disorder can drive a localization-delocalization transition [5]; the scaling dimension of the tunneling operator and therefore the occurrence of the transition generally depends on the strength of the density-density interaction.

Novel metallic and insulating states have been observed for a LJ in a bent QH system in which the filling fraction is the same on the two sides ν. The results of Ref. 5 have been used to understand these states. It would clearly be interesting to extend this analysis to the case in which the two sides of the LJ have different filling fractions for which experimental results are expected to be available in the near future.

In this paper, we develop a microscopic model for a LJ between two QH states with different filling fractions; our model will combine ideas from several earlier papers. For reasons discussed below, we will work in the regime where the thermal decoherence length L_T is much smaller than both the length L of the LJ and the scattering mean free path L_m. We consider simple quantum Hall states on the two sides of the LJ so that the edge consists of only one chiral mode; this will happen if the filling fractions on the two sides ν_1, ν_2 are given by the inverses of odd integers like 1, 3, 5, ···. In Sec. II, we discuss the idea of a current splitting matrix S for a system with two incoming and two outgoing edges. On general grounds, such a matrix is described by a single parameter t called the scattering coefficient; this parameter was phenomenologically introduced in Refs. 20, 21. The main aim of our work will be to provide a microscopic model for the origin of the parameter t, and then to understand how t varies with the length scale or the temperature. The microscopic model will be developed in two stages. First, in Sec. III, we introduce a current splitting matrix S at each end of the LJ (described by the points $x = 0$ and $x = L$). We show that the requirement that the current splitting matrix should not lead to any dissipation exactly at the end leads to only two possibilities for the matrix S; the forms of S depend on the values of ν_1, ν_2. It turns out, interestingly, that exactly the same two possibilities for S arise if we demand that the bosonic fields describing the chiral edge modes should be related to each other in a
linear way. Next, in Sec. IV, we introduce the possibility of tunneling from a point on one edge of the LJ to the corresponding point on the other edge; this is described by a tunneling conductance per unit length σ which can depend on the location of the tunneling point x. For $L_T \ll L_m$, a kinetic equation description [27] of tunneling leads to a combined current splitting matrix S_{LJ} for the LJ as a whole which depends on σ, L and the S matrices at the two ends of the LJ. We then turn to the temperature dependence of S_{LJ} in Sec. V. We consider density-density interactions between the two edges of the LJ and allow for tunneling with a random strength between the edges. We then use renormalization group (RG) ideas to study how σ varies with the temperature T. In a certain regime ($L_T \ll L_m \ll L$), the variation turns out to be given by a power law, where the power depends on the strength of the interaction between the two edges. Finally, the conductance of the LJ can be related to the matrix S_{LJ}. This combination of ideas thus gives a complete microscopic understanding of the conductance of the LJ, including its dependence on the temperature and length. In Sec. VI, we discuss how our results can be experimentally tested in QH systems with different filling fractions. We summarize our results and discuss possible extensions of our work in Sec. VII.

II. CURRENT SPLITTING MATRIX

The main aim of our work will be to develop a model for the current splitting matrix for a system with a line junction. To see what this matrix means, consider the systems shown in Fig. 1. In both the systems, the currents (voltages) in the two incoming edges are denoted as $I_1 (V_1)$ and $I_2 (V_2)$, while the currents (voltages) in the two outgoing edges are denoted as $I_3 (V_3)$ and $I_4 (V_4)$. Here 1 and 3 denote the edges of a QH system with filling fraction ν_1, while 2 and 4 denote the edges of a system with filling fraction ν_2. In the linear response regime and assuming equilibration, the currents and voltages on a QH edge are related as

$$I_i = \frac{e}{\hbar} \nu_i V_i. \quad (1)$$

We expect that the outgoing currents should be related to the incoming ones by a real matrix denoted as S_{LJ},

$$\begin{pmatrix} I_3 \\ I_4 \end{pmatrix} = S_{LJ} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix}. \quad (2)$$

This relation must be consistent with two general conditions:

(i) current conservation, which implies that each column of S should add up to 1, and

(ii) if the incoming voltages V_1 and V_2 are equal to each other, the outgoing voltages V_3 and V_4 should be equal to the same quantity.

Combined with Eq. (1), these two conditions allow a general current splitting matrix of the form

$$S_{LJ} = \begin{pmatrix} 1 - \frac{2t\nu_1}{\nu_1 + \nu_2} & \frac{2t\nu_2}{\nu_1 + \nu_2} \\ \frac{2t\nu_1}{\nu_1 + \nu_2} & 1 - \frac{2t\nu_2}{\nu_1 + \nu_2} \end{pmatrix}, \quad (3)$$

where the real parameter t is called the scattering coefficient [20, 21]; $t = 0$ represents minimum tunneling and $t = 1$ maximum tunneling between the two QH fluids.

Next, we consider the power dissipated by the system. This is given by the difference of the incoming and outgoing power, namely,

$$P = \frac{1}{2} [I_1 V_1 + I_2 V_2 - I_3 V_3 - I_4 V_4]$$

$$= \frac{e^2}{2\hbar} [\nu_1 V_1^2 + \nu_2 V_2^2 - \nu_1 V_3^2 - \nu_2 V_4^2]$$

$$= \frac{e^2}{\hbar} \frac{2\nu_1 \nu_2}{\nu_1 + \nu_2} t(1 - t) (V_1 - V_2)^2. \quad (4)$$

The condition that $P \geq 0$ requires that $0 \leq t \leq 1$; no power is dissipated if $t = 0$ or 1. For any value of ν_1, ν_2 and a given voltage difference $V_1 - V_2$, the maximum power is dissipated when $t = 1/2$. Curiously, we note that $\text{det}(S_{LJ}) = 1 - 2t$, and vanishes at $t = 1/2$.

Using Eq. (1), we can rewrite Eqs. (2,3) as

$$V_3 - V_1 = \frac{2t\nu_2}{\nu_1 + \nu_2} (V_1 - V_2), \quad (5)$$

$$V_4 - V_2 = \frac{2t\nu_1}{\nu_1 + \nu_2} (V_1 - V_2).$$

If $\nu_1 \neq \nu_2$ and t lies in the range $(\nu_1 + \nu_2)/(2\text{max}(\nu_1, \nu_2)) < t < 1$, we see that V_3 or V_4 can be higher than $\text{max}(V_1, V_2)$ or lower than $\text{min}(V_1, V_2)$. The system can therefore act as a dc step-up transformer [20, 21].

III. END OF A LINE JUNCTION

In this section, we will consider a current splitting matrix for each end of the LJ. We take each end to be a point where four edges meet, two of them incoming and

![Fig. 1: Schematic picture of a line junction with (a) counter propagating and (b) co-propagating modes.](image)
two outgoing. One incoming and one outgoing edge is associated with a filling fraction ν_1 and the other incoming and outgoing edge is associated with filling fraction ν_2 as shown in Fig. 2. For simple filling fractions ν_i given by the inverse of an odd integer, each edge is associated with a single chiral boson as follows. Taking the coordinate on an edge to go from $x = 0$ to $x = \infty$ ($-\infty$) for an outgoing (incoming) edge respectively, the Lagrangian is given by

$$L = \sum_{i=1}^{2} \left[\frac{1}{4\pi \nu_i} \int_{0}^{\infty} dx \partial_x \phi_{iO} \left(- \partial_t - v_i \partial_x \right) \phi_{iO} + \frac{1}{4\pi \nu_i} \int_{-\infty}^{0} dx \partial_x \phi_{iI} \left(- \partial_t - v_i \partial_x \right) \phi_{iI} \right],$$

(6)

where i labels the wire, v_i denotes the velocity, and the outgoing (incoming) fields are denoted as ϕ_{iO} (ϕ_{iI}) respectively.

Let us now decompose the fields at time $t = 0$ as

$$\phi_{iO} = \int_{0}^{\infty} \frac{dk}{k} \left[b_{iOk} e^{ikx} + b_{iOk}^\dagger e^{-ikx} \right],$$

and

$$\phi_{iI} = \int_{0}^{\infty} \frac{dk}{k} \left[b_{iIk} e^{ikx} + b_{iIk}^\dagger e^{-ikx} \right],$$

(9)

where the bosonic creation and annihilation operators must satisfy the commutation relations

$$[b_{iOk}, b_{jOk}^\dagger] = [b_{iIk}, b_{jIk}^\dagger] = \delta_{ij} \nu_i k \delta(k - k')$$

(10)
in order to satisfy Eq. (11). If we now demand that the commutation relation in Eq. (10) must be consistent with the relation in (8), we see that the matrix S must satisfy

$$S \begin{bmatrix} \nu_1 & 0 \\ 0 & \nu_2 \end{bmatrix} S^T = \begin{bmatrix} \nu_1 & 0 \\ 0 & \nu_2 \end{bmatrix}.$$

(11)

Using the condition of current conservation, namely, that the columns of S should add up to 1, we find that Eq. (11) implies that S can only take two possible values, namely,

$$S_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

and

$$S_1 = \frac{1}{\nu_1 + \nu_2} \begin{bmatrix} \nu_1 - \nu_2 & 2\nu_1 \\ 2\nu_2 & \nu_2 - \nu_1 \end{bmatrix}.$$

(12)

Note that both these matrices satisfy $S^2 = I$. For the special case of $\nu_1 = \nu_2$, the second matrix reduces to $S_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

The power dissipated at the point $x = 0$ is given by the difference of the incoming power $(1/2)(I_{1O} V_{1O} + I_{2I} V_{2I})$ and the outgoing power $(1/2)(I_{1O} V_{1O} + I_{2I} V_{2I})$. Using Eq. (13), we find that the condition that no power is dissipated at $x = 0$ is equivalent, in terms of the bosonic fields, to the relation $\sum_{i=1}^{2} [\phi_{iO}^2/\nu_i - \phi_{iI}^2/\nu_i] = 0$. This implies that

$$S^T \begin{bmatrix} 1/\nu_1 & 0 \\ 0 & 1/\nu_2 \end{bmatrix} S = \begin{bmatrix} 1/\nu_1 & 0 \\ 0 & 1/\nu_2 \end{bmatrix}.$$

(13)

This is the same condition as Eq. (11) since $S^2 = I$, and we therefore obtain the same solutions as in Eq. (12).

We thus see that the conditions of zero power dissipation and a linear relation between the bosonic fields at the point $x = 0$ are equivalent to each other; both of them imply that the variable t appearing in the current splitting matrix (Eq. (3)) at the point $x = 0$ must be equal to 0 or 1.

In the next section, we will consider a LJ with either counter or co-propagating edges as shown in Fig. 1. We will assume that each end of the LJ (i.e., the points at $x = 0$ and L) is associated with one of the matrices S_0 or S_1 given in Eq. (12); there are therefore four different possibilities for the two ends taken together. Whether one should introduce the matrix S_0 or S_1 at each end...
of the LJ depends on the physical situation at that end. If there is a large potential barrier there which widely separates the QEH fluids with filling fractions \(\nu_1 \) and \(\nu_2 \) (and therefore minimizes the possibility of tunneling), or equivalently, if the edges meet at the end with sharp boundaries, we should choose the matrix \(S_0 \). On the other hand, if the edges meet at a point with adiabatic (smooth) boundaries (with the two quantum Hall fluids having a greater degree of contact which allows for larger tunneling), then the matrix \(S_1 \) should be chosen \[21\].

IV. KINETIC EQUATION APPROACH

We now study what happens inside the LJ away from the ends. We will do this using a simple kinetic equation approach \[22\]. We assume that we are in a steady state and there is local equilibrium at each point \(x \) of the LJ. In a steady state, the density \(\rho(x) \) is independent of time at each point \(x \); here \(i = 1, 2 \) denotes the edges on the two sides of the LJ. By the equation of continuity, the currents on the two edges \(J_1(x) \) and \(J_2(x) \) can change with \(x \) only if there is a current flow from one edge to the other. If there is a tunneling conductance per unit length given by \(\sigma(x) \), the current flow from one edge to the other is given by \(\sigma(x) \) multiplied by the potential difference between the two edges at the point \(x \). Assuming local equilibrium, the potential at any point of a QH edge is related to the current as \(V(x) = (h/\nu e^2)J(x) \). We thus obtain a differential equation for the currents \(J_1(x) \) and \(J_2(x) \). To solve this equation, it is convenient to separately discuss the cases of LJ’s with counter and co-propagating modes shown in Figs. 1 (a) and (b) respectively.

A. Counter propagating modes

In the situation shown in Fig. 1 (a), we find that the currents \(J_i(x) \) satisfy the equations

\[\partial_x J_1 = \partial_x J_2 = \sigma \frac{h}{e^2} \left(\frac{J_2}{\nu_2} - \frac{J_1}{\nu_1} \right), \]

(14)

Note that \(J_1(x) - J_2(x) \) is constant along the LJ as one expects by current conservation. If we assume that \(\sigma \) is independent of \(x \), we can solve the above equations to obtain

\[\left[\begin{array}{c} J_1(x) \\ J_2(x) \end{array} \right] = \frac{1}{\nu_2 - \nu_1} \times \\
\left[\begin{array}{c} \nu_2 e^{-x/l_c} - \nu_1 \\ -\nu_2 (1 - e^{-x/l_c}) \end{array} \right] \left[\begin{array}{c} \nu_1 (1 - e^{-x/l_c}) \\ -\nu_1 e^{-x/l_c} \end{array} \right] \left[\begin{array}{c} J_1(0) \\ J_2(0) \end{array} \right], \]

(15)

where \(1/l_c = \frac{\alpha h}{\sigma^2 \left(\frac{1}{\nu_1} - \frac{1}{\nu_2} \right)} \). [If \(\sigma \) varies with \(x \), the term \(x/l_c \) appearing in the exponentials in Eq. (15) has to be replaced by \(\frac{h}{\sigma^2} \left(\frac{1}{\nu_1} - \frac{1}{\nu_2} \right) \int_0^x ds' \sigma(s') \).

Now \(J_1(0) \) and \(J_1(L) \) are related to the incoming and outgoing currents \(I_i \) by the current splitting matrices at the ends of the LJ at \(x = 0 \) and \(L \). Namely,

\[\left(\begin{array}{c} J_1(0) \\ I_4 \end{array} \right) = S(0) \left(\begin{array}{c} I_1 \\ J_2(0) \end{array} \right), \]

and

\[\left(\begin{array}{c} J_1(L) \\ I_4 \end{array} \right) = S(L) \left(\begin{array}{c} I_1 \\ I_2 \end{array} \right), \]

(16)

Using Eqs. (15-16), the outgoing currents can be expressed in terms of the incoming currents as

\[\left(\begin{array}{c} I_3 \\ I_4 \end{array} \right) = S_{LJ} \left(\begin{array}{c} I_1 \\ I_2 \end{array} \right), \]

(17)

where \(S_{LJ} = \left(\begin{array}{cc} 1 - \frac{2nu_1}{nu_2 + 2nu_2} & 2nu_1 \nu_2 \\
\nu_2 + 2nu_2 & 1 - \frac{2nu_1}{nu_2 + 2nu_2} \end{array} \right) \).

TABLE I: The scattering coefficient \(t \) for the four possible choices of \(S \) matrices at the ends of the LJ, for \(\nu_1 \neq \nu_2 \).

\(S(0) \)	\(S(L) \)	\(t \)	\(t(L/l_c \to 0) \)	\(t(L/l_c \to \infty) \)
\(S_0 \)	\(S_0 \)	\(1 - \frac{2nu_1}{nu_2 + 2nu_2} \)	\(\frac{nu_1}{nu_2 + 2nu_2} \)	0
	\(S_1 \)	\(\frac{nu_1}{nu_2 + 2nu_2} \)	1	\(\frac{nu_1}{nu_2 + 2nu_2} \)
\(S_1 \)	\(S_0 \)	\(\frac{nu_1}{nu_2 + 2nu_2} \)	\(\frac{nu_1}{nu_2 + 2nu_2} \)	1
\(S_1 \)	\(S_1 \)	\(\frac{nu_1}{nu_2 + 2nu_2} \)	\(\frac{nu_1}{nu_2 + 2nu_2} \)	0

For the four different choices of \(S(0) \) and \(S(L) \) in terms of the two possible current splitting matrices \(S_0 \) and \(S_1 \) in Eq. (12), we find that the scattering coefficient \(t \) is given by the expressions in Table I. We see that depending on the choice of the matrices at the ends of the LJ, \(t \) lies in one of the two ranges \([0, (\nu_1 + \nu_2)/(2\max(\nu_1, \nu_2))] \) and \([(\nu_1 + \nu_2)/(2\max(\nu_1, \nu_2)), 1] \). Note that we need to have the non-trivial current splitting matrix \(S_1 \) at one of the ends of the LJ in order to have \(t \) lie in the range \([(\nu_1 + \nu_2)/(2\max(\nu_1, \nu_2)), 1] \) where the system can act as a step-up transformer.

For the special case \(\nu_1 = \nu_2 = \nu \), we have to do a separate analysis of Eq. (14) since \(1/l_c = 0 \). Using the same procedure as described above, we find that the scattering coefficient is given by Table II.

TABLE II: The scattering coefficient \(t \) for the four possible choices of \(S \) matrices at the ends of the LJ, for \(\nu_1 = \nu_2 = \nu \).

\(S(0) \)	\(S(L) \)	\(t \)	\(t(L \to 0) \)	\(t(L \to \infty) \)
\(S_0 \)	\(S_0 \)	\(\frac{\nu_1}{\nu_1 + \nu_2} \)	0	1
\(S_0 \)	\(S_1 \)	1	1	
\(S_1 \)	\(S_0 \)	1	1	
\(S_1 \)	\(S_1 \)	1	1	
1 (a), let us consider a situation in which $V_2 = 0$ and therefore $I_2 = 0$. Eq. (17) then implies that the current along the LJ, $I_1 - I_4 = I_3$, is related to the potential difference across the LJ, $V_1 - V_2$, as

$$G_{LJ} \equiv \frac{I_1 - I_4}{V_1 - V_2} = \frac{e^2}{\hbar} \nu_1 \left(1 - \frac{2t\nu_1}{\nu_1 + \nu_2}\right). \quad (18)$$

Thus a measurement of the conductance of the LJ, G_{LJ}, gives the value of t. For the special case $\nu_1 = \nu_2 = \nu$, this reduces to the expression $G_{LJ} = (\nu e^2/\hbar)/(1 + \sigma L h/(\nu e^2))$, where we have used the first line of Table II; this agrees with the expression for the two-terminal G of the LJ. The Table remains valid for the special case of $\sigma h = 0$ and $L \to \infty$. For the co-propagating case, t begins at 0 (1) for $L \to 0$ and ends at $(\nu_1 + \nu_2)/(2\max(\nu_1, \nu_2)) = 2/3$ for $L \to \infty$. For the counter-propagating case, t begins at 0 (1) for $L \to 0$ and ends at 1/2 for $L \to \infty$. In this picture, we have ignored the temperature dependence of σ. In the next section, we will see how renormalization group ideas can be used to study the temperature dependence of σ and therefore of t.

B. Co-propagating modes

We can repeat the above analysis for the case in which the two edges of the LJ propagate in the same direction as shown in Fig. 2 (b). We now find that the currents satisfy the equations

$$\partial_x J_1 = - \partial_x J_2 = \frac{\sigma h}{e^2} \left(\frac{J_2}{\nu_2} - \frac{J_1}{\nu_1}\right). \quad (19)$$

Note that $J_1(x) + J_2(x)$ is constant along the edge. If we assume the tunneling conductance σ to be independent of x, we obtain

$$\begin{bmatrix} J_1(x) \\ J_2(x) \end{bmatrix} = \frac{1}{\nu_2 + \nu_1} \times \begin{bmatrix} \nu_2 e^{-x/l_c} + \nu_1 & \nu_1(1 - e^{-x/l_c}) \\ -\nu_2(1 - e^{-x/l_c}) & \nu_2 + \nu_1 e^{-x/l_c} \end{bmatrix} \begin{bmatrix} J_1(0) \\ J_2(0) \end{bmatrix}. \quad (20)$$

where $1/l_c = \frac{\sigma h}{e^2} \left(\frac{1}{\nu_1} + \frac{1}{\nu_2}\right)$.

As before, $J_1(0)$ and $J_1(L)$ are related to the incoming and outgoing currents I_1 by the current splitting matrices at $x = 0$ and L. We then find that the outgoing currents are again related to the incoming currents as in Eq. (17), where the scattering coefficient is given in Table III. The Table remains valid for the special case $\nu_1 = \nu_2$.

$S(0)$	$S(L)$	t	$t/(L/l_c \to 0)$	$t/(L/l_c \to \infty)$
S_0	S_0	$1 - e^{-x/l_c}$	0	1
S_0	S_1	$1 + e^{-x/l_c}$	0	1
S_1	S_0	$1 + e^{-x/l_c}$	0	1
S_1	S_1	$1 - e^{-x/l_c}$	0	1

TABLE III: The scattering coefficient t for the four possible choices of S matrices at the ends of the LJ.

The results given above are illustrated in Fig. 3 for the case $\nu_1 = 1$ and $\nu_2 = 1/3$. We have shown the dependence of the scattering coefficient t of the LJ on the dimensionless length $L \sigma h/e^2$ for two different choices of the current splitting matrices at the ends of the LJ, for the cases of counter and co-propagating edges. For the counter-propagating case, t begins at 0 (1) for $L \to 0$ and ends at $(\nu_1 + \nu_2)/(2\max(\nu_1, \nu_2)) = 2/3$ for $L \to \infty$. For the co-propagating case, t begins at 0 (1) for $L \to 0$ and ends at 1/2 for $L \to \infty$. In this picture, we have ignored the temperature dependence of σ. In the next section, we will see how renormalization group ideas can be used to study the temperature dependence of σ and therefore of t.

V. DISORDER AND RENORMALIZATION GROUP

In this section, we will study the tunneling conductance $\sigma(x)$ in more detail [23]. This arises from a tunneling amplitude $\xi(x)$ appearing in a Hamiltonian density

$$\mathcal{H}_{tun} = \xi(x) \psi_1^\dagger(x)\psi_2(x) + h.c., \quad (21)$$

where $\psi_1(x)$ denotes the electron annihilation operator at point x on edge i of the LJ. The tunneling conductance σ is then proportional to the tunneling probability $|\xi|^2$. It is believed that the presence of impurities near the LJ makes $\xi(x)$ a random complex variable; let us assume it to be a Gaussian variable with a variance W. The quantity W satisfies an RG equation; to lowest order (i.e., for small ξ), this equation is given by

$$\frac{dW}{d\ln l} = (3 - 2d_0)W, \quad (22)$$

where l denotes the length scale, and d_0 is the scaling dimension of the tunneling operator $\psi_1^\dagger\psi_2$ appearing in Eq. (21). (We will calculate d_0 below for both counter
and co-propagating cases). There is also an RG equation for the strength of the interaction between the electrons, but we can ignore that if W is small.

Let us first assume that the phase decoherence length $L_T = h v/(k_B T)$ (the length beyond which electrons lose phase coherence due to thermal smearing) is much smaller than the scattering mean free path L_m of the LJ. Successive backscattering events then become incoherent and quantum interference effects of disorder are absent. One can then show that σ scales with the temperature T as T^{2d_i-2} [3]. (We note that σ is inversely proportional to the conductivity along the LJ studied in Ref. [3]). It therefore seems that $\sigma L \to 0$ as $T \to 0$ if $d_i > 1$. However, it turns out that this is true only if $d_i > 3/2$, i.e., if W is an irrelevant variable according to Eq. [22]. If $d_i > 3/2$ (called the metallic phase), one can simultaneously have $L \gg L_T$ (this is necessary to justify cutting off the RG flow at L_T rather than at L_i), and $\sigma L \to 0$, i.e., $LT \gg 1$ and $LT^{2d_i-2} \to 0$, for some range of temperatures. Within this range, one can obtain the scattering coefficient t in Tables I - III by taking $L/l_c \sim \sigma L h/e^2 \to 0$. If $d_i < 3/2$ (W is a relevant variable), we have $L/L_T \sim LT \gg 1$ and $LT^{2d_i-3} \to \infty$; hence $\sigma L \sim LT^{2d_i-2} \to \infty$ (we call this the insulating phase). We can then obtain t in Tables I - III by taking $L/l_c \sim \to \infty$. We thus see that depending on whether $d_i > 3/2$ or $< 3/2$, the parameter t tends to quite different values as the temperature is decreased.

The above analysis breaks down if one goes to very low temperatures where $L_T \gg L$ or L_m, rather than L_T; hence σ and therefore the scattering coefficient t become independent of the temperature T.

In Fig. 4, we illustrate the temperature dependence of the scattering coefficient t for two choices of the current splitting matrices at the ends of the LJ, with $d_i = 0.8$ and 2, for $\nu_1 = 1$ and $\nu_2 = 1/3$. We have taken the conductance σ to scale as T^{2d_i-2} (specifically, $\sigma L h/e^2 = T^{2d_i-2}$, where T is in dimensionless units), and then substituted that to obtain t from the first two rows of Tables I and III for counter and co-propagating edges respectively. For $d_i < 0.8$ (Fig. 4 (a)), we see that t approaches 2/3 (1/2) as $T \to 0$ for the counter (co-propagating) cases respectively, for any choice of the current splitting matrices at the ends of the LJ. For $d_i = 2$ (Fig. 4 (b)), t approaches 0 (1) as $T \to 0$ depending on the choices of current splitting matrices at the ends of the LJ, regardless of whether the edges are counter or co-propagating. As mentioned above, these pictures become invalid when we go to very low temperatures where L_T is not much smaller than L or L_m.

We will now compute the scaling dimension d_i of the operator $\psi^\dagger \psi$ using the technique of bosonization. It is again convenient to discuss this for the cases of LJs with counter and co-propagating modes separately.

![FIG. 4: Scattering coefficient vs the dimensionless temperature for two choices of the current splitting matrices at the ends of the line junction, for the cases of counter (blue lines) and co-propagating edges (red lines), with (a) $d_i = 0.8$ and (b) $d_i = 2$, for $\nu_1 = 1$ and $\nu_2 = 1/3$.]

A. Counter propagating modes

For the LJ shown in Fig. 2 (a), the mode on one edge goes from $x = 0$ to $x = L$, while the mode on the other edge goes in the opposite direction; let us call the corresponding bosonic fields ϕ_1 and ϕ_2 respectively. In the absence of density-density interactions between these modes, the Lagrangian is given by

$$
\mathcal{L} = \frac{1}{4\pi\nu_1} \int_0^L dx \partial_x \phi_1 (-\partial_t - v_1 \partial_x) \phi_1 + \frac{1}{4\pi\nu_2} \int_0^L dx \partial_x \phi_2 (-\partial_t - v_2 \partial_x) \phi_2,
$$

where v_i denotes the velocity of mode i. The bosonic fields can be expanded at time $t = 0$ as

$$
\phi_1 = \int_0^\infty \frac{dk}{k} [b_1 e^{ikx} + b_1^\dagger e^{-ikx}],
$$

and

$$
\phi_2 = \int_0^\infty \frac{dk}{k} [b_2 e^{-ikx} + b_2^\dagger e^{ikx}],
$$

where the creation and annihilation operators satisfy the commutation relations

$$
[b_{ik}, b_{jk}^\dagger] = \delta_{ij} \nu_i k \delta(k-k').
$$

The electron annihilation operator on edge i is given by $\chi_i e^{i\phi_i/\nu_i}$, χ_i being the electron Klein factor. The tunneling operator between the edges, $\psi_i^\dagger \psi_j$, is therefore given by $\chi_1 \chi_2 e^{i(\phi_2/\nu_2 - \phi_1/\nu_1)}$.

(Since the edges belong to different QH systems, quasi-particles with fractional charge cannot tunnel between the two edges as that would change the charge of each QH system by a fractional amount).
We will again assume that $L_T \ll L_m \ll L$; therefore, two points on the LJ which are separated by a distance much larger than L_T are not related to each other in a phase coherent way. In particular, at all points deep inside the LJ, i.e., separated from the ends of the LJ at $x = 0$ and L by a distance much larger than L_T, the bosonic fields carry no information about the current splitting matrices S appearing at the ends. We can therefore assume that $\phi_1(x)$ and $\phi_2(x)$ are independent fields at all points x except points very close to the edges. For the same reason, we can replace the limits $\nu_1 = 0$ and $\nu_2 = \infty$ by $-\infty$ and ∞ since only fields lying within a distance of about L_T from a given point x will contribute to tunneling at that point. We can now read off the scaling dimension of the tunneling operator from the Lagrangian in (23); we find that $d_t = (1/2)(1/\nu_1 + 1/\nu_2)$. For instance, for a LJ lying between QH systems with ν_1, ν_2 equal to 1 and $1/3$, $d_t = 2$ which means that the disorder parameter W is irrelevant.

We will now consider the effect of a short-range density-density interaction between the two edges on the scaling dimension d_t. The densities for the two modes are given by $\rho_1 = (1/2\pi)\delta(x)$ and $\rho_2 = -(1/2\pi)\delta(x/\sqrt{2})$ respectively. Hence a repulsive interaction will correspond to a term in the Lagrangian of the form

$$L_{int} = \frac{\lambda}{4\pi V_1 V_2} \int_0^L dx \partial_x \phi_1 \partial_x \phi_2,$$

where λ is a positive number with the dimensions of velocity. The Hamiltonian corresponding to Eqs. (23) and (26) is then given by

$$H = \int_0^\infty dk \left[\frac{\nu_1}{\nu_1} b_{1k}^\dagger b_{1k} + \frac{\nu_2}{\nu_2} b_{2k}^\dagger b_{2k} \right.$$

$$\left. - \frac{\lambda}{2\sqrt{\nu_1 \nu_2}} (b_{2k}^\dagger b_{1k}^\dagger + b_{1k} b_{2k}) \right].$$

This can be diagonalized by a Bogoliubov transformation. We then obtain new bosonic fields $\tilde{\phi}_1$ and $\tilde{\phi}_2$ which have the velocities

$$\tilde{v}_1 = \frac{1}{2} \left[(v_1 + v_2)^2 - \lambda^2 + v_1 - v_2 \right],$$

and

$$\tilde{v}_2 = \frac{1}{2} \left[(v_1 + v_2)^2 - \lambda^2 + v_2 - v_1 \right].$$

The requirement of stability, $\tilde{v}_1, \tilde{v}_2 > 0$, means that we must have $4v_1v_2 > \lambda^2$. Finally, we can obtain the scaling dimension of the tunneling operator $e^{i(\tilde{\phi}_2^\dagger v_2 - \tilde{\phi}_1^\dagger v_1)}$ after re-writing ϕ_i in terms of the new fields $\tilde{\phi}_i$. We discover that

$$d_t = \frac{1}{4K} \left[(1 + K^2) \left(\frac{1}{\nu_1} + \frac{1}{\nu_2} \right) \right.$$\n
$$\left. - \frac{2(1 - K^2)}{\sqrt{\nu_1 \nu_2}} \right],$$

where $K = \sqrt{\frac{v_1 + v_2 - \lambda}{v_1 + v_2 + \lambda}}$.\n
For the special case $v_1 = v_2 = \nu$, Eq. (29) gives $d_t = K/\nu$ [5], while for $K = 1$, we get $d_t = 1/(2\nu) + 1/(2\nu)$. It is interesting to note that for a given value of ν_1 and ν_2, d_t has a non-monotonic dependence on K. When K is reduced from 1 by turning on a weak repulsive interaction (i.e., λ is small and positive), d_t starts decreasing; however, d_t reaches a minimum at $K = |\sqrt{\nu_1} - \sqrt{\nu_2}|/(\sqrt{\nu_1} + \sqrt{\nu_2})$, beyond which it starts increasing as K decreases further.

B. Co-propagating modes

For the LJ shown in Fig. 2 (b), the modes on both edges go from $x = 0$ to $x = L$. Hence both modes have a Lagrangian and an expansion similar to that of the field ϕ_1 given in Eqs. (23) and (24). In the presence of density-density interactions, the Hamiltonian is given by

$$H = \int_0^\infty dk \left[\frac{\nu_1}{\nu_1} b_{1k}^\dagger b_{1k} + \frac{\nu_2}{\nu_2} b_{2k}^\dagger b_{2k} \right.\n
\left. - \frac{\lambda}{2\sqrt{\nu_1 \nu_2}} (b_{2k}^\dagger b_{1k}^\dagger + b_{1k} b_{2k}) \right].$$

This can be diagonalized by a simple rotation. The new bosonic fields have the velocities

$$\tilde{v}_1 = \frac{1}{2} \left[v_1 + v_2 + \sqrt{(v_1 - v_2)^2 + \lambda^2} \right],$$

and

$$\tilde{v}_2 = \frac{1}{2} \left[v_1 + v_2 - \sqrt{(v_1 - v_2)^2 + \lambda^2} \right].$$

Once again stability, i.e., $\tilde{v}_2 > 0$, requires that $4v_1v_2 > \lambda^2$. Finally, the scaling dimension of the tunneling operator $e^{i(\tilde{\phi}_2^\dagger v_2 - \tilde{\phi}_1^\dagger v_1)}$ is found to be given by

$$d_t = \frac{1}{2v_1} + \frac{1}{2v_2}.$$
happens to lie in, as the temperature is lowered (provided that $L_T \ll L$). On the other hand, if $d_t < 3/2$, t will approach the value $(\nu_1 + \nu_2)/2 \max(\nu_1, \nu_2)$ from below or above, depending on which of the two ranges t lies in, as the temperature is lowered. Finally, the rate at which the various asymptotic values of t is approached depends on the value of d_t; this value is determined by ν_1, ν_2 and the interaction strength λ which can be controlled by the gate voltage.

For the case of co-propagating edges with any values of ν_1 and ν_2, the value of t always lies in one of two mutually exclusive ranges, $[0, 1/2]$ or $[1/2, 1]$; this can be seen in Table III. For $d_t > 3/2$, t will approach either 0 or 1, depending on which of the two ranges t happens to lie in, as the temperature is lowered. If $d_t < 3/2$, t will approach the value 1/2 from below or above as the temperature is lowered. Unlike the case of counter propagating edges, the rate at which the various asymptotic values of t are approached now depends on only ν_1 and ν_2, and not on the interaction strength or the gate voltage.

In the presence of interactions and disorder, L_m scales with temperature as T^{2-2d_t} and $L_T \sim T^{-1}$. Thus throughout the metallic phase ($d_t > 3/2$), $L_m \gg L_T$ as $T \to 0$. We note again that this is the regime of validity of our analysis.

VII. DISCUSSION

In this work we have developed a model for studying transport along a QH line junction with either counter and co-propagating modes, in the case of QH states for which each edge has a single chiral mode. Each end of the line junction is described by a current splitting matrix whose form is severely restricted by the requirement that the bosonic fields at those points should be linearly related to each other. We then consider the effect of tunneling across all points of the line junction and obtain expressions for the current splitting matrix S_{LJ} of the line junction in terms of the filling fractions, the tunneling conductance and the length of the line junction. Next, the tunneling conductance is taken to be a random variable; its temperature dependence is obtained using renormalization group ideas. The scaling dimension of the tunneling operator is found to depend on the strength of the interaction between the two edges of the line junction in the counter propagating case, but not in the co-propagating case. Depending on the scaling dimension, the system can exhibit two different behaviors as the temperature is decreased. For a line junction with counter propagating modes, one can change the behavior by applying a gate voltage placed above the line junction since such a voltage can change the effective width of the line junction and therefore the strength of the interactions. Our model provides a theoretical framework for analyzing experimental studies of the transport properties of line junctions in QH systems; we have discussed some experimental implications of our results.

It would be useful to extend the analysis presented in this paper to the regime of very low temperature where $L_T \lesssim L$ and L_m. There are several problems which need to be addressed in order to do this. First, the kinetic equation approach used in Sec. III needs to be modified in this regime since that approach implicitly assumes that the phase decoherence length is much smaller than the scattering mean free path of the LJ. Secondly, the bosonic fields on the two edges of the LJ are not independent of each other at low temperatures if the current splitting matrices at the ends of the LJ are taken to be of the form S_1, since such a matrix mixes the bosonic fields on all the incoming and outgoing edges if $\nu_1 \neq \nu_2$. Finally, we find that if the phase decoherence length is larger than the length of the LJ, the density-density interactions by themselves lead to a non-trivial current splitting matrix for the system, even if the tunneling conductance $\sigma = 0$; this is related to the Coulomb drag problem and will be discussed elsewhere.

Finally, we would like to mention studies of a QH system with a point-contact interface separating two different filling fractions $[22]$, and a QH system with an extended constriction with the same filling fraction on the two sides $[26]$. It may be possible to extend our analysis to these systems as well.

Acknowledgments

A.A. thanks A. D. Mirlin for useful discussions. A.A. thanks CSIR, India for financial support. We thank DST, India for financial support under the project SR/S2/CMP-27/2006.

[1] M. Grayson, D. Schuh, M. Bichler, M. Huber, G. Abstreiter, L. Hoeppe, J. Smet, and K. von Klitzing, Physica E 22, 181 (2004).
[2] M. Grayson, L. Steinke, D. Schuh, M. Bichler, L. Hoeppe, J. Smet, K. von Klitzing, D. K. Maude, and G. Abstreiter, Phys. Rev. B 76, 201304(R) (2007).
[3] S. R. Renn and D. P. Arovas, Phys. Rev. B 51, 16832 (1995).
[4] Y. Oreg and A. M. Finkel’stein, Phys. Rev. Lett. 74, 3668 (1995).
[5] C. L. Kane and M. P. A. Fisher, Phys. Rev. B 56, 15231 (1997).
[6] A. Mitra and S. M. Girvin, Phys. Rev. B 64, 041309(R) (2001).
[7] M. Kollar and S. Sachdev, Phys. Rev. B 65, 121304(R) (2002).
[8] E.-A. Kim and E. Fradkin, Phys. Rev. B 67, 045317 (2003).
[9] U. Zülicke and E. Shimshoni, Phys. Rev. Lett. 90, 026802 (2003), and Phys. Rev. B. 69, 085307 (2004).
[10] E. Papa and A. H. MacDonald, Phys. Rev. B 72, 045324 (2005), and Phys. Rev. Lett. 93, 126801 (2004).
[11] S. Das, S. Rao and D. Sen, Phys. Rev. B 74, 045322 (2006).
[12] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, Cambridge, 1998).
[13] T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2004).
[14] S. Rao and D. Sen, in Field Theories in Condensed Matter Physics, edited by S. Rao (Hindustan Book Agency, New Delhi, 2001).
[15] W. Kang, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Nature 403, 59 (2000).
[16] I. Yang, W. Kang, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 92, 056802 (2004).
[17] I. Yang, W. Kang, L. N. Pfeiffer, K. W. Baldwin, K. W. West, E.-A. Kim, and E. Fradkin, Phys. Rev. B 71, 113312 (2005).
[18] S. Roddaro, V. Pellegrini, F. Beltram, G. Biasiol, L. Sorba, R. Raimondi, and G. Vignale, Phys. Rev. Lett. 90, 046805 (2003).
[19] S. Roddaro, V. Pellegrini, F. Beltram, G. Biasiol, and L. Sorba, Phys. Rev. Lett. 93, 046801 (2004).
[20] X.-G. Wen, Phys. Rev. B 50, 5420 (1994).
[21] D. B. Chklovskii and B. I. Halperin, Phys. Rev. B 57, 3781 (1998).
[22] C. L. Kane and M. P. A. Fisher, Phys. Rev. B 52, 17393 (1995).
[23] T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325 (1988).
[24] C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).
[25] N. P. Sandler, C. de C. Chamon, and E. Fradkin, Phys. Rev. B 57, 12324 (1998).
[26] S. Lal, Phys. Rev. B 77, 035331 (2008).