Amino acid analysis of a semi-finished meat-containing product for gerodietic nutrition

A A Nesterenko¹, I V Savinov¹, O A Anichkina², E Yu Bobkova² and L Yu Karpenko³

¹Kuban State Agrarian University, 13 Kalinina St., Krasnodar, Russian Federation
²K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, Russian Federation
³Saint Petersburg State University of Veterinary Medicine, Chernigovskaya st., 5, Saint-Petersburg, Russian Federation

E-mail: nesterenko-aa@mail.ru

Abstract. In the gerodietic nutrition production technology there are a lot of questions that today remain unanswered. The development of recipe compositions that are fully balanced in terms of amino acids, macro- and microelements and vitamins based solely on the internal reserves of raw materials is a difficult task. As a result of our research we suggest the cutlet recipe with vitamins for gerodietic nutrition. The recipe composition includes chickpea flour, vegetables and amino acid additives - Amur grape seed flour. The proposed product meets the established requirements for gerodietic products.

1. Introduction
Meat products are in high demand among the population [1–5], so the development of new types of meat products is actual [6–10]. The assessment of compliance with the requirements for quality and safety of meat products is carried out in accordance with international rules and regulations [11–15]. Gerodietic foods should provide a functional and balanced diet. Such products for special purposes are intended for nutrition of various population groups and oriented at people’s age and degree of physical activity.

When designing food products, the gerodietic direction adheres to five main rules [16–18]:

- maximally balanced foods for the elderly;
- products or their complex aimed at maximum correction of nutrition;
- use of corrective nutritional supplements, both in the daily diet and a single meal;
- use of biologically active components to enhance certain properties of the product;
- products with directed action used to treat or prevent disease in the elderly.

In old age, metabolism in people decreases, and therefore, macro- and micronutrients, vitamins, antioxidants are vital in their diet in addition to the main components – proteins, fats and carbohydrates. Given the deterioration in the digestibility of many components associated with the aging of the body, food should be in the most accessible form for the body of the elderly people [19–21].
To provide elderly people with full-fledged nutrition, it is necessary to develop special products that are additionally enriched with all the necessary nutrients and microelements [22–26].

The aim of this work is to develop a model mincemeat of chopped semi-finished product with the addition of plant components based on amino acid balance.

2. Materials and methods

As a model system, minced cutlet meat was chosen. The composition included: veal of the 1st category, pre-hydrated chickpea flour, pearl barley (pre-washed and dried), chopped white cabbage, carrots, salt, spices and spices. Grape seed flour introduced as an antioxidant supplement [19].

Laboratory studies were carried out in accordance with the methods specified in the publication [24].

Production was carried out under the conditions of the “Agrobiotech Processing Research” and production complex at the Faculty of Processing Technologies. The preparation of recipe ingredients and mincemeat was made in accordance with general technological requirements. Mincemeat was made in a cutter; meat and vegetable raw materials were preliminarily grinded on a spinning top with a lattice diameter of 3 mm. During the mixing process, hydrated chickpea flour in a ratio of 20% was introduced into the cutlet mass. At the second stage, pre-soaked and chopped pearl barley and vegetable ingredients in a ratio of 27% were introduced into the cutlet mass, then salt and spices were added [18].

3. Results and discussion

In accordance with the norms and requirements for the nutrition of older people, the optimal ratio of proteins, fats and carbohydrates in food should be 1 : 0,8 : 3,5 respectively. In the process of developing a new product for gerodiestic nutrition, the optimal ratio of meat raw materials, vegetable raw materials and chickpea flour is 39,75 : 20 : 21 respectively [20]. An antioxidant additive, Amur grape seed flour is added 2 g per 100 g of the finished product.

The model mincemeat is prepared by the following method.

At the first stage, veal meat is grinded on a spinning top with a diameter of 3 mm lattice holes and is sent to compile the model mincemeat. Water is supplied to the cutter to hydrate the flour at a temperature of 15–20 ºC. The chickpea flour is added to the cutter bowl and mixed together with the cutlet mass for 3–4 min. After that, we add to the cutlet mass the chopped pearl barley previously soaked and kept for 48 hours at a temperature of 14° C, and chopped white cabbage with carrots. At the last stage, an amino acid supplement is added – Amur grape seed flour. The cutlet mass is mixed for 4-6 minutes until a homogeneous consistency is obtained [21].

From the finished cutlet mass, cutlets 100 g are formed, breaded in crumbs and sent for freezing at temperatures from – 30 to – 35 ºC. After freezing, cutlets are packed and sent for sale.

In the proposed recipe composition, the main raw material is veal meat. This raw material is optimal in ratio of protein : fat [25, 26]. In basic amino acids, veal differs from the WHO/FAO scale (table 1), which necessitated the introduction of plant components in the product in order to correct the balance of amino acids in accordance with generally accepted standards [19].

| Table 1. Correspondence of the chemical and biochemical composition of veal scale WHO/FAO. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Index | Contained in veal | Scale WHO/FAO | | | |
| Tryptophan | 0,25 | 1,00 | | | |
| Phenylalanine | 0,79 | 6,00 | | | |
| Leucine | 1,48 | 7,00 | | | |

One of the promising plant components in the chopped semi-finished products recipes is chickpea flour. The analysis of chickpea flour showed that the content of essential amino acids in 100 g exceeds the standard indicators. These amino acids include leucine – 18%, valine – 10% and theonin – 4%.
Analysis of the chemical composition and nutritional value of chickpea flour has demonstrated the feasibility of introducing it into the composition of cutlets (figure 1).

Figure 1. Analysis of the biological value of chickpea flour.

Figure 2 shows the analysis of amino acids and plant components in the model mincemeat for gerodietic nutrition.

The analysis of the amino acid composition of the model mincemeat of the semi-finished products shown in Figure 2 showed a value very close value to the reference one. The predominant amino acids are methionine + cysteine – 164%, threonine – 153.33% and leucine – 144.71%.

Figure 3 shows the finished product in different shapes.
Figure 3. Semi-finished product shape options.

4. Conclusion
The addition of plant components helps to establish the amino acid composition balance in the finished product. The introduction of chickpea flour in a ratio of 1:0.5 in relation to raw meat, composed with vegetables and amino acid additives (Amur grape seed flour) makes the proposed cutlets a maximally balanced food meeting the established requirements for gerodietic nutrition.

References
[1] Rebezov M, Naumova N, Lukin A, Alkhamova G and Khayrullin M 2011 Food behavior of consumers (on example of Chelyabinsk) Voprosy Pitania 80(6) 23–26
[2] Abilmazhinova B, Rebezov M, Fedoseeva N, Belookov A, Belookova O, Mironova I, Nigmatyanov A and Gizatova N 2020 Study chemical and vitamin composition of horsemeat cutlets with addition of pumpkin International Journal of Psychosocial Rehabilitation 24(8) 7614–21 DOI: 10.37200/IJPR/V24I8/PR280773
[3] Okuskhanova E, Rebezov M, Yessimbekov Zh, Tazeddinova D, Shcherbakov P, Bezinhar T, Vagapova O, Shcherbakova T and Stuart M 2018 Rheological Properties of Low-calorie Red Deer Meat Pate Journal of Pharmaceutical Research International 23(1) 1–9 DOI: 10.9734/JPRI/2018/42317
[4] Zhumanova G, Rebezov M, Assenova B and Okuskhanova E 2018 Prospects of using Poultry by-products in the technology of chopped semi-finished products International Journal of Engineering and Technology (UAE) 7(3.34) 495–98 DOI: 10.14419/ijet.v7i3.34.19367
[5] Kassymov S, Rebezov M, Ikonnikova A, Fedin I, Rodionov I, Rukhadze S and Bokuchava O 2020 Using of pumpkin and carrot powder in production of meat cutlets: effect on chemical and sensory properties International Journal of Psychosocial Rehabilitation 24(4) 1663–70 DOI: 10.37200/IJPR/V24I4/PR201274
[6] Okuskhanova E, Smolnikova F, Kassymov S, Zinina O, Mustafayeva A, Rebezov M, Rebezov
Y, Tazeddinova D, Galieva Z and Maksimiuk N 2017 Development of mincemeat ball composition for population from the unfavorable ecological regions *Annual Research & Review in Biology* 13 (3) 1–9 DOI: 10.9734/ARRB/2017/33337

[7] Igenbayev A, Okuskhanova E, Nurgazezova A, Rebezov Ya, Kassymov S, Nurymkhan G, Tazeddinova D, Mironova I and Rebezov M 2019 Fatty Acid Composition of Female Turkey Muscles in Kazakhstan *Journal of World’s Poultry Research* 9 (2) 78–81 DOI: 10.36380/jwpr.2019.9

[8] Zinina O, Merenkova S, Tazeddinova D, Rebezov M, Stuart M, Okuskhanova E, Yessimbekov Zh and Baryshnikova N 2019 Enrichment of meat products with dietary fibers: a review *Agronomy Research* 17 (4) 1808-22 DOI: 10.15159/AR.19.163

[9] Kabulov B, Kassymov S, Moldabayeva Zh, Rebezov M, Zinina O, Chernyshenko Yu, Arduvanova F, Peshcherov G, Makarov S and Vasyukova A 2020 Developing the formulation and method of production of meat frankfurters with protein supplement from meat by-products *EurAsian Journal of BioSciences* 14 (1) 213-18 DOI: 10.31838/jcr.07.02.30

[10] Nesterenko A, Koshchaev A, Kenijz N, Akopyan K, Rebezov M and Okuskhanova E 2018 Biomodification Of Meat For Improving Functional-Technological Properties Of Mincemeat *Research Journal of Pharmaceutical, Biological and Chemical Sciences* 9 (6) 95–105 WOS:000449630700013

[11] Okuskhanova E, Rebezov M, Yessimbekov Zh, Suychinov A, Semenova N, Rebezov Y, Gorelik O and Zinina O 2017 Study of water binding capacity, ph, chemical composition and microstructure of livestock meat and poultry *Annual Research & Review in Biology* 14 (3) 1–7. DOI: 10.9734/ARRB/2017/34413

[12] Okuskhanova E, Assenova B, Rebezov M, Yessimbekov Zh, Kulushhtayeva B, Zinina O and Stuart 22 DOI: 10.3923/pjn.2016.217.222

[13] Akhmetova S, Suleimenova M and Rebezov M 2019 Mechanism of an improvement of business processes management system for food production: case of meat products enterprise *Entrepreneurship and sustainability issues* 7 (2) 1015–35 Doi 10.9770/jesi.2019.7.2(16)

[14] Kuramshina N, Rebezov M, Kuramshin E, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia *International Journal of Pharmaceutical Research* 11 (1) 1301–05 DOI: 10.21668/health.risk/2019.2.04.engl

[15] Varivoda A, Kenijz N, Rebezov M and Okuskhanova E 2018 Development Of Dietary Food With The Use Of Soy Protein *Research Journal of Pharmaceutical, Biological and Chemical Sciences* 9 (4) 1005-13 WOS:000438848100137

[16] Kulushhtayeva B, Okuskhanova E, Rebezov M, Burakovskaya N, Kenijz N, Fedoseeva N, Artemeva I, Saranova O and Pershina O 2020 Bread with sesame seeds for gerodietic nutrition *International Journal of Psychosocial Rehabilitation* 24 (7) 1661–65 DOI: 10.37200/IJPR/V24I7/PR270149

[17] Zaporizhzhya A, Zaporizhzhya S, Kvoltun T and Revenko M 2012 Prospects for scientific research in the field of development of products for gerodietic use *Food technology* 2–3 5–9 (in Russian)

[18] Sharipova TV and Mandro NM 2012 Development of recipes for chopped functional semi-finished products based on meat and vegetable raw materials *Vestnik KrasGAU* 8 (71) 187–190 (in Russian)

[19] Sharipova T, Reshetnik E and Maksimyuk V 2014 Development of recipes for meat and vegetable semi-finished products for gerodietic nutrition *The potential of modern science* 1 38–43 (in Russian)

[20] Kulushhtayeva B, Okuskhanova E, Rebezov M, Burakovskaya N, Kenijz N, Fedoseeva N,
Artemeva I, Saranova O and Pershina O 2020 Bread with sesame seeds for gerodietic nutrition *International Journal of Psychosocial Rehabilitation* **24** (7) 1661–65

[21] Sydykova M, Nurymkhan G, Gaptar S, Rebezov Y, Khayrullin M, Nesterenko A and Gazeev I 2019 Using of lactic-acid bacteria in the production of sausage products: modern conditions and perspectives *International Journal of Pharmaceutical Research* **11** (1) 1073–83

[22] Smolnikova F, Moldabayeva Z, Kenijz N, Burakovskaya N, Shadrin M, Bykov V, Mnatsakanian Ad, Sepiashvili E, Grunina A and Ponomareva L 2019 Effect of food additives on physical and chemical properties of dietary salt free bread *International Journal of Recent Technology and Engineering* **8** (3) 5939–41

[23] Smolnikova F, Tokhtarov Z, Kenijz N, Nelyubina E, Grigoryants I, Bobkova E, Orlovtsева O, Konobeeva A and Nikolaeva N 2019 Technological process of germination of wheat grain under the water tincture of aloe and its physical-chemical properties *International Journal of Innovative Technology and Exploring Engineering* **9** (1) pp 184–87

[24] Antipova LV, Glotova IA and Rogov IA 2001 Methods for the study of meat and meat products (Moscow: Kolos) p 376 (in Russian)

[25] Okuskhanova E, Rebezov Y, Khayrullin M, Nesterenko A, Mironova I, Gazeev I, Nigmatyanov A and Goncharov A 2019 Low-calorie meat food for obesity prevention *International journal of pharmaceutical research* **11** (1) 11589–92

[26] Assenova B, Nesterenko A, Gadzhiev M, Sultanov B, Zaitseva T, Lazareva O, Kuzmina D, Glebova S and Ostapenko A 2020 Studying the chemical and amino acid profile of specialty lamb product *International Journal of Pharmaceutical Research* **12** (2) 892–95