Gravitational energy, local holography and non-equilibrium thermodynamics

Laurent Freidel

Perimeter Institute for Theoretical Physics, 31 Caroline St, N, Waterloo, ON N2L 2Y5, Canada

E-mail: freidel@perimeterinstitute.ca

Received 15 September 2014
Accepted for publication 16 December 2014
Published 3 February 2015

Abstract
We study the properties of gravitational systems in finite regions bounded by gravitational screens. We present a detailed construction of the total energy of such regions and of the energy and momentum balance equations due to the flow of matter and gravitational radiation through the screen. We establish that the gravitational screen possesses analogs of surface tension, internal energy, and viscous stress tensor, while the conservations are analogs of nonequilibrium balance equations for a viscous system. This gives a precise correspondence between gravity in finite regions and nonequilibrium thermodynamics.

Keywords: gravity, Hamiltonian, first law

(Some figures may appear in colour only in the online journal)

1. Introduction

Unlike any other interaction, gravity is fundamentally holographic. This fundamental property of Einstein gravity manifests itself more clearly when one tries to define a notion of energy for a gravitational system. It is well known that no local covariant notion of energy can be given in general relativity. The physical reason can be tracked to the equivalence principle. Illustrated in a heuristic manner, a free-falling point-like particle does not feel any gravitational field, so no gravitational energy density can be identified at spacetime points. A more radical way to witness the holographic nature of gravity comes from the fact that the Hamiltonian of general relativity, when coupled to any matter fields, exactly vanishes for any physical configuration of the fields. If one asks what the total energy of a closed gravitational system with no boundary is, the answer is that it is zero for any physical configurations. This is a
mathematical consequence of diffeomorphism invariance. It naively implies that the gravitational energy density vanishes.

A proper way to accommodate this is to recognize that a notion of energy can only be given once we introduce a bounded region of space together with a time evolution for the boundary of this region. The time evolution of this boundary spans a timelike world tube equipped with a time foliation. We will call the boundaries that are equipped with a timelike foliation, gravitational *screens*. They will be the subject of our study, which focuses on what happens to a gravitational system in a finite bounded region. In the presence of gravity, the total energy of the region inside the screen comes purely from a boundary screen contribution, and the bulk contribution vanishes. In that sense, energy cannot be localized, but it can be quasi-localized (i.e., expressed as a local surface integral on the screen).

The goal of this paper is two fold. First, we revisit the definition and key properties of the energy and momenta associated with regions bounded by screens. We focus first on the canonical energy associated with the Einstein–Hilbert Lagrangian. We want to stress that the screen energy density is given by a notion of surface acceleration. The other key point is that this energy is the sum of a translational energy and a boost energy. The boost energy is entirely due to the presence of boundary degrees of freedom associated with the presence of the screen. The translational energy, on the other hand, is due to the usual gravitational degrees of freedom. It is proportional to the screen radial acceleration and it is the gravitational analog of *Gibbs energy*. However, the boost energy density is proportional to the difference between the acceleration of screen observers with the Newtonian acceleration of Eulerian observers.

This allows us to show that the gravitational screen possesses a *surface tension*, \(\sigma \), that is proportional to its inward radial acceleration [1]. It also shows that the screen possesses a *Newtonian potential*, \(\phi \), whose gradient defines the acceleration of Newtonian (i.e., Eulerian) observers. We also study the dependence of the energy on the change-of-boundary Lagrangian and show that the Legendre transform of the canonical energy defines a notion of gravitational *internal energy*. The density of internal energy is found to be proportional to the radial expansion (i.e., the screen’s extrinsic curvature). To understand in a thermodynamical fashion all the elements entering the definition of energy and its variation, we develop in the core of the paper a description of a 2 + 2 decomposition of the gravitational field.

The second purpose of this paper is to establish the law of time evolution of the screen energy, together with the computation of the anomaly appearing in the Poisson constraint algebra. This anomaly is due to the presence of the screen. These constitute our main results.

For a general screen, the energy is not conserved in time. Gravitational and matter energy can flow in and out of the region bounded by the screen, and in the second part of this paper we focus on deriving the equation that governs this dissipative process. It is remarkable that the gravity equation of motion projects itself onto the screen as the equation of nonequilibrium thermodynamics for a continuous isotropic and nonelastic media, with one component (i.e., a general fluid). We will show that under this analogy, the screen possesses a *viscous stress tensor*, \(\tau \), that is proportional to the radial deformation tensor.

This implies that the gravitational screen is exactly described as a thermodynamical system out of equilibrium. Lets denote by \(U \) the total *internal energy* of the screen, defined as the integral of the radial expansion. The gravity equations holographically project themselves onto the screen as the first law of nonequilibrium thermodynamics, which reads

\[
dU = \sigma dA + \delta E_M + \delta E_N + \delta Q
\]
where \(A \) is the area of the screen. The first term is a work term due to the presence of surface tension, \(\sigma \), and it gives the energy cost of expanding the screen area. \(\delta E_M \) is the work due to
matter entering or leaving the region inside the screen, and δE_N is the Newtonian work. The Newtonian energy comes from the coupling of the Newtonian potential, ϕ, to the screen’s inertial mass, which appears to be given by the internal energy. So U acts as the inertial mass for the non relativistic system described by the screen. Finally, δQ represents the internal heat production of the screen due to viscous forces. It is proportional to the contraction of the viscous stress tensor with the velocity gradient (i.e., the time derivative of the screen’s metric). This term represents the dissipation of energy due to the gravitational wave production. It shows that gravitational wave energy is accounted for as heat dissipation. We have seen already that the total energy of a closed, isolated gravitational system is always zero. From the thermodynamical point of view, we can understand this cancellation as a balance between work that represents usable energy and heat. The workable energy is comprised of matter energy, Coulombic energy, and tension energy, while the heat is comprised of gravitational radiation. This equation is presented in section 5.1.

Our formalism is valid for an arbitrary timelike screen. The usual situations studied in the literature are often limiting situations obtained by specializing the screen to be either at infinity or along a black hole horizon. Black hole event horizons are surfaces that can be represented as a null limit of timelike screens. In this particular limit and under conditions of equilibrium, the first law presented here reduces to first laws established for black holes. However, the first law presented here is in many ways more general. First, it includes a Newtonian term, and more importantly it shows that general screens possess an internal energy. The variation of this quantity is usually set up to vanish in an equilibrium situation, but it will not vanish in a general nonequilibrium situation.

Also, it shows clearly that the surface gravity do not appear naturally in the first law as a temperature of the screen but as its pressure or negative surface tension. Whether the identification of surface tension and temperature, valid for the very particular case of a Killing bifurcated horizon surface [2, 3], extends for a more general screen is an open question beyond the scope of this paper. In 4d gravity, the screen is two-dimensional, and therefore the usual pressure work term $-p_\text{3d} \, dV$ reads $-\rho_\text{3d} \, dA = \sigma dA$. This term is often misinterpreted for an entropy production term but it is not in this general context; it is the usual work term due to change of the size of the system.

The viscous entropy production term in nonequilibrium thermodynamics [4] is due to the presence of a viscous stress tensor and is related to the production of heat and internal dissipation. In our case, we can clearly identify it with the production and transport of gravitational waves. So entropy production for the screen viewed as a thermodynamical system is the left over signature of dynamical gravity.

In this work, we also consider the equation governing the conservation of the screen momenta. We establish that the momenta density is proportional to the so-called normal connection, and we write explicitly the equation governing the non conservation of screen momenta. This equation confirms the thermodynamical interpretation given for the energy conservation. In particular, it confirms that the screen possesses a surface tension proportional to its radial acceleration and an internal energy that acts as an inertial mass for the Newtonian potential. One finds that the screen acceleration is due to several terms. Schematically,

$$\delta P = d\sigma + d \cdot \tau + F_M + F_N.$$

The first term is the ‘Marangoni’ force [5] due to the presence of surface tension gradients, and the second one is the viscous force due to the presence of the viscous stress tensor, τ (here proportional to the radial deformation tensor). We also have a Newtonian force, $F_N = -U d\phi$, due to the Newtonian potential, and finally a force, F_M, due to the transfer of momenta from the matter to the screen.
The goal of this paper is to give a self-contained presentation of the construction of the symplectic potential, gravitational energy, dependence on the boundary term, and the $2 + 2$ formalism, which is a key technique used here. These subjects have been all touched on and developed many times in the literature, but in a scattered manner that we try to unite here. We also want to give a unified presentation of the thermodynamical interpretation of the different form of energy that appear in the gravitational context.

The variational principle for gravity and construction of the symplectic potential has been developed in several instances by Regge, Teitelboim, and more recently Wald and Iyer, and Brown and York [6–8]. The notion of quasi-local energy has also been developed by many additional authors [9–16]. The two definitions that have attracted most of the attention are the definition of Brown and York [10], which corresponds to what we call the internal energy, and the definition of Iyer and Wald [7], which corresponds to our gravitational Gibbs energy. Both are canonical energies. These definitions have been extended to non orthogonal boundaries in [17–20]. The presence of boundary degrees of freedom has been introduced in the Lagrangian context as boundary terms needed to extend the Gibbons–Hawking prescription [17, 21]; it was appreciated first by Carlip and Teitelboim [22], in the Hamiltonian context, as introducing a new canonical pair. The notion of boost energy appears in recent works related to quantum gravity [23–25], even if its relevance to the total energy has not been precisely described in the past. In our presentation, we develop in great detail the $2 + 2$ formulation of gravity, emphasizing the importance of the foliations scalars and detailing the accelerations. Some, but not all, elements of this decomposition appear in [26–29].

Our work is deeply inspired by the membrane paradigm developed by Price, Thorne, [30, 31] and Damour [32], and can be viewed as a full extension of this program for a general timelike screen. The main idea of this program and of our work is that one can replace the gravitational degrees of freedom inside a screen by boundary degrees of freedom on the screen.

Our work is also inspired by the beautiful developments associated with trapping, isolated, dynamical, and slowly evolving horizons [33–38]. One key difference is that a dynamical horizon is a spacelike surface, and therefore cannot be understood as a physical membrane. The first law and the momenta conservation law that we write are nevertheless related to laws satisfied by these objects.

2. Hamiltonian analysis and energy

In this section, we present the construction of the symplectic potential for gravity, the presence of bulk and boundary degrees of freedom, the canonical Hamiltonian, and its thermodynamical interpretations.

2.1. Boundary variations and conventions

Our conventions are that the metric, g_{ab}, possesses a signature $(−+++).$. Its covariant derivative is denoted by V_a, and the curvature tensor is defined as $[V_a, V_b]v^c = R^c_{a b c}v^c$. In units where $8\pi G = 1$, the gravity Lagrangian is given by

$$L_G = \frac{1}{2} \sqrt{|g|} g^{a b} R_{a b}.$$

(3)
The convention for matter fields is as follows: The scalar field matter Lagrangian is given by
\[L_m = -\sqrt{|g|} \left(\frac{1}{2} \phi^\alpha \partial_\alpha \phi \partial_\beta \phi + V(\phi) \right), \] (4)
and its energy momentum tensor by
\[T_{\mu\nu} = -\frac{2}{\sqrt{|g|}} \delta S_m, \]
where \(S_m = \int L_m \).

In the following, we will use notations often used in the relativity literature (e.g. [39]) that allow us to limit the number of indices contractions. In these notations, a vector with components \(n^\mu \) is denoted by the bold face letter \(\mathbf{n} \equiv n^\mu \partial_\mu \); the corresponding vector form obtained by lowering the indices with the spacetime metric is denoted as \(\mathbf{n} = n_\mu dx^\mu \). Single contractions of vectors are denoted with a dot \(\cdot \); double contraction, with a double dot \(\cdot \cdot \). The Lie derivative along a vector, \(\mathbf{n} \), is denoted as \(\mathbf{L}_n \); the interior product of a vector with a one form is denoted as \(\mathbf{i}_n = \mathbf{i}_n \cdot \mathbf{\sigma} \).

Finally, let us recall that the Gauss law is given by
\[\int_M \sqrt{|g|} V_\mu V^\mu = \int_{\partial M} \nu^\mu e_\mu \]
where the surface element is given by \(e_\mu = \sigma \nu_\mu \sqrt{h} d^3x \) for spacelike or timelike boundary. Here, \(n_\mu \) is the outgoing unit normal to the boundary, \(\sigma \equiv n^\mu \nu_\mu \) is negative for a spacelike hyper surface and positive for a timelike hyper surface, and \(h_{\mu\nu} = g_{\mu\nu} - \sigma \nu_\mu \sigma_\nu \) is the induced metric on the boundary. In the following, we will also use the notation \(e \equiv \sqrt{|g|} d^4x \) for the top form. More details are given in appendix B.

2.2. The setting: observers, screens and foliation

The setting we are interested in is the study of a connected region of spacetime denoted by \(\Delta \), which possesses a global foliation and which also possesses timelike boundaries called screens. The screens are assumed to have the topology \(S^2 \times \mathbb{R} \). We also assume that there is one screen, \(\Sigma_0 \), which can be identified with the outer screen, while there a (possibly empty) set of interior screens, \(\Sigma_i \). This situation is pictured in figure 1. Our analysis is valid for a general set up of screens, but it will be convenient at times to restrict ourselves to the case where there is only one outer and one interior screen.

The leaves of the foliation are denoted by \(\Sigma_t \); they are the level set of a given spacetime time function, \(T(x) \), with value \(t \). The unit normal to \(\Sigma_t \) is denoted by \(\mathbf{n} \) and satisfies \(\mathbf{n} \cdot \mathbf{n} = -1 \). We denote by \((h_{\mu\nu}, D_\mu) \) the metric and covariant derivative on \(\Sigma_t \). They are related to the metric and connection on the slices to the spacetime ones by the use of the orthonormal projector
for a vector, \(v \), tangent to \(\Sigma \). The time evolution is characterized by a time flow vector, \(t = t^\mu \partial_\mu \), which can be decomposed in terms of a lapse and a shift

\[t = N n + M. \] (6)

This time flow vector is assumed to be parallel to the boundary screens. The characteristic property of this vector, \(t^\mu \partial_\mu T = 1 \), implies that the Lie derivative along \(t \) of any vector tangent to \(\Sigma \) is still tangent to \(\Sigma \). This means that

\[h_{\mu} = 0. \] (7)

An Eulerian observer [40] is a fiducial observer static with respect to the foliation, whose 4-velocity is given by \(n^\mu \). The previous identity implies that the acceleration of an Eulerian observer, is a vector tangent to \(\Sigma \) given by the space derivative of the lapse function:

\[V_n n_\mu = -\frac{D_n N}{N}. \] (8)

The foliation leaves \(\Sigma \) to intersect the screens along 2-spheres denoted by \(S_T = \Sigma \cap \Sigma \). The bulk foliation induces a foliation of the screens. We will call a screen with a specific time foliation a gravitational observer. The spacetime metric can be decomposed in term of the 2d metric, \(q \), on \(S_T \) as

\[q_{\alpha \beta} = g_{\alpha \beta} + s_\alpha s_\beta - n_\alpha n_\beta \]

where \(s_\alpha \) is a unit spacelike vector tangent to \(\Sigma \) but normal to \(S_T \) (see figure 2). We will always chose this vector to be directed outwardly, from the inner regions to the outer region. The time flow vector is then decomposed as

\[t = N n + M s + \phi \] (9)

where \(\phi \) is a 2d lapse vector tangent to \(S_T \). It will be convenient for us to introduce the normal time flow, \(t^\perp \equiv N n + M s \). This normal time flow is tangent to the screen and orthogonal to \(S_T \), and is therefore proportional to a unit timelike vector tangent to the screen and denoted by \(\tilde{n} \). It will also be useful for us to introduce the normal vector, \(t^\perp \equiv N s + M n \). This vector is proportional to \(\tilde{s} \) the unit normal to the screen going outwardly.

If we define \(N = \rho \cosh \beta \), then \(M = \rho \sinh \beta \), with \(\beta \) as the boost angle that relates the screen frame \((\tilde{n}, \tilde{s})\) to the time foliation frame \((n, s)\). We have

\[\tilde{n} = \cosh \beta n + \sinh \beta s, \quad \tilde{s} = \cosh \beta s + \sinh \beta n. \]
In the case where there is only one outer and one interior screen, we assume that there is an additional foliation by timelike surfaces, \(\Sigma_r \), which are the level surfaces, \(R(x) = r \), of a radial field that interpolates between the interior and outer screens.

2.3. Gravity symplectic potential

Given a Lagrangian, \(L \), its symplectic potential is defined to be given by the boundary variation of the action. We know that the bulk variation of the action defines the equation of motion, and therefore the on-shell the variation of the Lagrangian is a pure derivative. It is given by

\[
\delta S_M = \int_M \delta L \triangleq \int_{\partial M} \alpha, \tag{10}
\]

where \(\delta \) denotes variation on the space of fields and \(\triangleq \) denotes the on-shell evaluation. The symplectic potential, \(\alpha \), can be itself decomposed into a bulk variation, \(\alpha_B \), and a boundary variation, \(\alpha_b \). These boundary terms of the symplectic potential arise when the boundary of \(M \) possesses corners (i.e., co-dimension two manifolds \(S \), which separates two regions with different boundary conditions). If we decompose the boundary of \(M \) into co-dimension 1 components \(\Sigma_i \) and corners \(S_{ij} \), we can write the general on-shell variation of a Lagrangian on a manifold with corners as

\[
\int_M \delta L \triangleq \sum_i \int_{\Sigma_i} \alpha_B + \sum_j \int_{S_{ij}} \alpha_b. \tag{11}
\]

Then the Lagrangian uniquely determines the symplectic potential. Once the symplectic potential has been identified, we can uniquely construct given a Lagrangian density \(L \), whose corresponding canonical Hamiltonian is the canonical generator of time translation along \(t \). It is given by

\[
H_t \equiv \int_{\Sigma} (L_t \alpha - t_t L) \tag{12}
\]

where \(L_t \alpha \equiv L_{\alpha}^{\mu} \epsilon_{\mu} \) is the symplectic potential evaluated for time variations, \(L_t \delta \phi = \mathcal{L}_t \phi \). \(\epsilon_{\mu} \) denotes the interior product of the vector, \(t_t \), with the Lagrangian form, \(t_t \epsilon = t_{\nu} \epsilon_{\mu}. \)

The goal is now to explicitly evaluate the canonical Hamiltonian for gravity. We start by computing the gravity symplectic potential, using a fundamental identity for its evaluation. This calculation appears in some form in many references (see, e.g [7, 8, 17]); we present the calculation here for completeness and clarity, as this will set our notations and clarify the assumptions made in its construction.

2.4. A fundamental variational identity

From the definition of the Ricci tensor, and using the expression of the variation of the connection \(\delta \Gamma_{\alpha \beta}^{\mu} = \frac{1}{2} g^{\mu \nu} (\nabla_{\alpha} \delta g_{\beta \nu} + \nabla_{\beta} \delta g_{\alpha \nu} - \nabla_{\nu} \delta g_{\alpha \beta}) \), we obtain that the Ricci tensor variation is given by

\[
\delta R_{\alpha \beta} = \nabla_{\mu} \delta \Gamma_{\alpha \beta}^{\mu} - \nabla_{\mu} \delta \Gamma_{\mu \beta}^{\alpha}. \tag{13}
\]

Therefore, we conclude that

\[
\delta L = \frac{1}{2} \sqrt{|g|} G_{\alpha \beta} \delta g^{\alpha \beta} + \sqrt{|g|} \nabla_{\mu} \alpha^{\mu}, \tag{14}
\]
where \(G_{ab} \) denotes the Einstein tensor and the symplectic potential vector is

\[
\alpha^a = \frac{1}{2} \left(\delta \Gamma^a_{b;\gamma} - \delta \Gamma^a_{a;\gamma} \right) = \nabla_v \alpha^v, \quad \text{with} \quad \alpha^\mu = \frac{1}{2} \left(g^{\mu a} g^{\nu b} - g^{\mu b} g^{\nu a} \right) \delta \gamma^a_{\beta\gamma},
\]

(15)

while the symplectic potential is \(\alpha = \alpha e^\gamma_\gamma \).

To give an explicit expression for the symplectic potential, for a slice normal to the one form, \(n_\alpha \), let us introduce the induced metric tensor, \(h_{\alpha\beta} \equiv g_{\alpha\beta} - \sigma n_\alpha n_\beta \), where \(\sigma = n_\alpha n^\alpha \) is the signature. It is negative for a spacelike slice and positive for a timelike one.\(^1\) We also introduce the extrinsic curvature tensor, \(K_{\alpha\beta} \equiv \frac{1}{2} \mathcal{L}_n h_{\alpha\beta} = h^a_{a\alpha} h^b_{\beta\beta} (V_\alpha n_\beta) \), and denote its trace by \(K \equiv K_{\alpha\beta} h^{\alpha\beta} \). We finally introduce the acceleration vector, \(a_\nu \equiv -\sigma V_\nu n^\nu \). From the definition, it is easy to check that \(V_\alpha n_\beta = K_{\alpha\beta} \). From now on we also denote \(\alpha_\nu \equiv \alpha^a n_\mu \), so the symplectic potential reads \(\alpha = \sigma \sqrt{h} a_\mu \).

We now establish, using definition (15), that

\[
\delta \left(V_\alpha n^\alpha + V^\alpha n_\alpha \right) = V_\alpha \delta n^\alpha + V^\alpha \delta n_\alpha + \delta g^{\alpha\beta} V_\alpha n_\beta - 2 \alpha_\alpha.
\]

(16)

Using the identity \(V_\alpha (h_{\mu\nu} \delta n^\nu) = D\mu (h_{\mu\nu} \delta n^\nu) + a_{\mu\nu} \delta n^\nu \), where \(D\mu \) is the derivative on the slice compatible with the induced metric \(h \), we can expand the first two terms of the right-hand side as

\[
V_\alpha \delta n^\alpha + V^\alpha \delta n_\alpha = D\alpha \delta a_\alpha + a_{\alpha\beta} \delta n_\beta + a_\mu \delta n_\mu,
\]

where we have introduced \(\delta a_\mu \equiv (h_{\mu\nu} \delta n^\nu + h^\mu_{\mu\nu} \delta n_\nu) \). Finally, using the definition of \(K_{\alpha\beta} \) and the variational identity, \(\delta g^{\alpha\beta} n_\beta = \delta n_\alpha - g^{\alpha\beta} \bar{\delta} n_\beta \), we establish that

\[
\delta g^{\alpha\beta} V_\alpha n_\beta = \delta h^{\alpha\beta} K_{\alpha\beta\alpha} + a_{\alpha\beta} \delta n_\beta - a_{\alpha\mu} \delta n_\mu.
\]

(17)

This allows us to establish that after rearrangements, the fundamental identity:

\[
-\sqrt{h} a_\alpha = \delta \left(\sqrt{h} K_{\alpha\beta} \right) + \frac{\sqrt{h}}{2} \left(K_{\alpha\beta} - h_{\alpha\beta} K_{\alpha\beta} \right) \delta h_{\alpha\beta} - \sqrt{h} a_\mu \delta n_\mu - \frac{\sqrt{h}}{2} D_\alpha \delta a_\alpha.
\]

(18)

where \(\delta a_\mu \equiv (h_{\mu\nu} \delta n^\nu + h^\mu_{\mu\nu} \delta n_\nu) \). This is the expression we were looking for.

2.5. Bulk and boundary contributions

The first term in (18) is a total variation; therefore, it does not contribute to the symplectic structure, even if it does affect the symplectic potential. This term is the variation of the celebrated Gibbons–Hawking boundary term [41].

The second and third terms determine the bulk symplectic structure. First, it shows the well-known fact that

\[
\Pi^{\mu\nu} \equiv \sqrt{h} (K_{\mu\nu} - h_{\mu\nu} h^{\mu\nu})/2
\]

is the momentum conjugated to \(h_{\mu\nu} \). Since \(\Pi^{\mu\nu} h_{\mu\nu} = -\sqrt{h} K_{\mu\nu} \), we have that

\[
\delta \left(\sqrt{h} K_{\mu\nu} \right) + \Pi^{\mu\nu} \delta h_{\mu\nu} = -\delta \Pi^{\mu\nu} h_{\mu\nu}.
\]

(19)

The third term given by \(-\sqrt{h} a_\mu \delta n_\mu \) depends on the parameters labelling the foliation. Since \(n_\mu = -N \partial_\mu T \) and \(a_{\mu\nu} = D_\mu N/N \), this component of the symplectic potential can be written as

\(^1\) We are initially interested in the case of a timelike slice, but our formalism also works for a spacelike one. This will be needed in a later section.
This shows that the momentum conjugate to the foliation time, T, is given by

$$\Pi_T = -\sqrt{h} \left(D_\mu D^\mu N \right).$$

(20)

The lapse depends on T and the metric via $N(T) = \left(-\partial_\mu T g^\mu \partial T \right)^{-1/2}$. We can ignore this contribution to the symplectic potential when we consider hypersurface orthogonal deformations that modify the fields without changing the foliation—that is, deformation such that $h_n^\mu \delta n_\mu = 0$. On the other hand, for an arbitrary spacetime diffeomorphism, ξ, $h_a^\mu \mathcal{L}_\xi n_\mu$, doesn’t necessarily vanish. This means that not all diffeomorphisms can be represented as hypersurface orthogonal deformations, and therefore can be implemented canonically in terms of a symplectic structure that depends only on (h, K). The condition, $h_a^\mu \mathcal{L}_\xi n_\mu = 0$, is equivalent to $\xi^\mu n_\mu = 0(T)N$, where c is a function that depends only on T. Indeed,

$$h_a^\mu \mathcal{L}_\xi n_\mu = D_\mu \left(\xi \cdot n \right) - a_\alpha \left(\xi \cdot n \right) = N D_\mu c.$$

(21)

In summary, for a general variation, the bulk symplectic potential is given by

$$\Theta_\Sigma = \int_\Sigma \alpha^\mu \epsilon_\mu = -\int_\Sigma h_\mu \delta \Pi^\mu + \int_\Sigma \Pi_T \delta T.$$

(22)

The second term vanishes for surface orthogonal variations. In this case, the bulk canonical variables are therefore the usual pairs (Π^μ, s_μ), with $\Pi^\mu = \sqrt{h} (K^\mu - h^\mu K)$, if one restricts to foliation preserving variations. They also include (Π_T, T) for a general variation, with $\Pi_T = -\sqrt{h} \Lambda N$.

2.6. Boundary symplectic potential

What appears from this computation is that we also have boundary degrees of freedom that contribute to the symplectic potential. These arise since we are considering finite boundaries. We restrict to variations that do not change T on the screen. In this case, the boundary symplectic potential takes the form

$$\Theta_S = -\frac{1}{2} \int_S \sqrt{q} \delta, \quad \text{with} \quad \delta \equiv (s^\mu \delta n_\mu + s_\mu \delta n^\mu).$$

(23)

To understand the nature of this term, let us introduce both a time coordinate, T, that labels the slices, Σ, and a radial coordinate, R, that labels the position of the screen. Since n_μ is a one-form normal to the slice, it is proportional to dT, and its normal radial unit vector, s_μ, will be proportional to dR only if the slicing is orthogonal to the screen. But in general, it is given by a linear combination of dT and dR. We therefore need three foliation scalars to characterize the position of the screen and slicing; these are given by a time lapse, ρ, a space lapse, τ, and a boost angle, β. They are defined by:

$$n = -\rho \cosh \beta T, \quad s = \tau dR + \rho \sinh \beta dT,$$

(24)

where $\mathbf{n} \equiv n_a dx^a$. The boost angle, β, is the angle needed to rotate the slicing frame into the screen frame, since $\mathbf{s} \equiv \cosh \beta \mathbf{s} + \sinh \beta \mathbf{n} \propto dR$. The meaning of ρ, τ comes from the fact that $d\tau$ measures the proper time as it flows on the screen, while dR measures the proper radial distance on the slices, $T = cste$. The screen velocity is the velocity of the screen as seen by an Eulerian (static) observer. This observer is characterized by the fact that it doesn’t move on the slicing; hence $s_\mu \delta a = 0$, which implies that it posses a radial velocity $-v_R$, where
\[v_R = \frac{\rho}{\tau} \sinh \beta. \] \hspace{1cm} (25)

\(v_R \) is the velocity of the screen relative to static observers. The explicit calculation of \(\delta \) is given in the appendix, and also in section 3. The result is that

\[\delta = -\left(\delta \beta + \tanh \beta \left(\frac{\delta \rho}{\rho} - \frac{\delta \tau}{\tau} \right) \right) = -\tanh \beta \frac{\delta v_R}{v_R}. \] \hspace{1cm} (26)

So we see that for particular variations where the rate of change of the time lapse is equal to the rate of change of the space lapse (i.e., \(\delta \rho/\rho = \delta \tau/\tau \)), this is simply equal to the variation of the boost angle. In this case, the boundary symplectic structure is simply

\[\Theta_S = \frac{1}{2} \int_S \sqrt{q} \delta \beta. \] \hspace{1cm} (27)

This shows that the surface area element, \(\sqrt{q} \), and the boost angle, \(\beta \), are in this context conjugated variables. This was first recognized by Carlip and Teitelboim [22]. However, this statement is not generally true, as we just saw since \(\delta \beta \neq 0 \) in general. For a general variation, we get instead that the symplectic structure is of the form

\[\Theta_S = \frac{1}{2} \int_S \left(\frac{\tau \sqrt{q}}{\rho \cosh \beta} \right) \delta v_R, \] \hspace{1cm} (28)

so that \(v_R \) and the rescaled area element, \(\frac{\tau \sqrt{q}}{\rho \cosh \beta} \), are the boundary conjugate variables.

Even if \(\delta \) cannot be written as the variation of a boost angle, it is still of interest to introduce the notion of a boost angle associated with one particular variation. We naturally choose \(I \delta = \mathcal{L}_\eta \), so that \(\eta \) is defined by

\[\mathcal{L}_\eta \equiv (s^b \mathcal{L}_b n_\mu + s_\mu \mathcal{L}_\eta n^\mu) = I \delta. \] \hspace{1cm} (29)

As we will see, this angle naturally enters the definition of the total energy.

2.7. Canonical gravitational energy

The gravitational Hamiltonian, which is the canonical generator of time translation, is given by

\[H^G_t = \frac{1}{8\pi G} \int_{\Sigma} \left(I_t \alpha^\mu e_\mu - t_I L \right) = \frac{1}{8\pi G} \int_{\Sigma} \sqrt{h} \left(I_t \alpha n - \frac{(t \cdot n)}{2} \right), \] \hspace{1cm} (30)

where \(h \alpha^\mu \) is the symplectic potential vector evaluated for variations \(I_t \delta \phi = \mathcal{L}_t \phi \). Note that \(N = -t \cdot n \) is the lapse function given by \(\sqrt{h} = N \sqrt{\bar{h}} \). From the previous section, we know that

\[I_t \alpha n = \frac{1}{\sqrt{h}} h_{\alpha b} \mathcal{L}_t n^b \Pi^{ab} + \frac{1}{2} D_n \mathcal{L}_t n^\alpha, \] \hspace{1cm} (31)

where we have used \(h_{\alpha b} \mathcal{L}_t n^b = 0 \), since the time flow, \(t \), preserves the foliation. Thus, the bulk term depending on the foliation does not enter the definition of \(H_t \).
From the definition of Π and the Ricci–Codazzi identity (D.9) we have that

\[
I_t^{\mu} = \frac{1}{\sqrt{\det h}} \left(\mathcal{L}_t (h_{ab} \Pi^{ab}) - \left(\mathcal{L}_t h_{ab} \right) \Pi^{ab} \right) + \frac{1}{2} D_b \mathcal{L}_t n^a
\]

\[
= -\frac{1}{\sqrt{h}} \mathcal{L}_t \left(\sqrt{h} K \right) - \frac{1}{2} \left(D_b t_b + D_b t_a \right) \left(K^{ab} - h^{ab} K \right) + \frac{1}{2} D_a \mathcal{L}_t n^a
\]

\[
= - \left(\mathcal{L}_t (K) + K^{ab} D_a t_b \right) + \frac{1}{2} D_a \mathcal{L}_t n^a
\]

\[
= R_{\mu} - D_a \left(\mathcal{L}_t (n^a) - \frac{1}{2} \sqrt{h} n^a \right).
\]

Integrating by part and using that

\[
\int_{\Sigma} \sqrt{h} D_a \gamma^a = \int_{S_i} \sqrt{q} (v \cdot s) - \sum_{i} \int_{S_i} \sqrt{q} (v \cdot s) \equiv \int_{\partial \Sigma} \sqrt{q} (v \cdot s)
\]

where S_o denotes the outer sphere boundary and S_i the inner spheres, while s is a spacelike vector directed towards the outer boundary. This shows that the canonical gravity Hamiltonian is given by

\[
H^G_t \equiv -\frac{1}{8\pi G} \int_{\partial \Sigma} \sqrt{q} \kappa_t - \frac{1}{8\pi G} \int_{\Sigma} \sqrt{h} G_m.
\]

We see that this energy contains a surface contribution and the value of the surface energy density is $\kappa_t / 8\pi G$, where κ_t is defined to be

\[
\kappa_t \equiv s \cdot \nabla_t n - \frac{1}{2} \sqrt{h} \mathcal{L}_t n^a.
\]

Note that due to hyper surface orthogonality of the flow generated by t, we have that $n^a \mathcal{L}_t s_a = 0$; using the definition of the dihedral angle (29), we can write the surface energy density as

\[
\kappa_t \equiv s \cdot \nabla_t n - \frac{1}{2} \delta_t \text{ with } \delta_t \equiv \left(s_a \mathcal{L}_t n^a - n_a \mathcal{L}_t s^a \right) = \mathcal{L}_t \eta.
\]

As we will see in more detail later, the first term is the radial acceleration of the screen, while the second is a boost acceleration. The canonical energy of matter is given by \(^2\)

\[
H^M_t = \int_{\Sigma} \sqrt{h} T_m = \frac{1}{8\pi G} \int_{\Sigma} \sqrt{h} G_m.
\]

T_m represents the matter energy density, Σ, as measured by an observer following the world line, $\dot{x}^\mu = t^\mu$. This shows that the total energy is simply given by a boundary term:

\[
H_t = H^M_t + H^G_t \equiv \frac{1}{8\pi G} \int_{\partial \Sigma} \sqrt{q} \kappa_t.
\]

If we decompose $\partial \Sigma = S_o \cup S_i$ in terms of its outer boundary and inner boundaries, we can express this energy to be written in terms of the contribution for each boundary

\(^2\) The matter momentum vector associated with a slice is given by

\[
p_t = \int_{\Sigma} T^a \epsilon_a = -\int_{\Sigma} \sqrt{h} T_m.
\]

while the energy of a slice is given by $e = -p \cdot t$. The minus sign is due to the choice of signature cancel.
\[H_t = \frac{1}{8\pi G} \int_{S_t} \sqrt{h} \kappa_t. \] (40)

The outer boundary contributes positively and the inner one contributes negatively. \(\kappa_t \) is defined in (36), with \(s \) pointing in the outer direction.

Let us emphasize here that this energy formula presents two key features. First, it is quasi-local: it is nonvanishing only on the boundary of the region of observation. This is a consequence of diffeomorphism invariance, which implies that the bulk Hamiltonian vanishes. In this sense, gravity is naturally holographic.

Second, the energy depends on the choice of observer—that is, not only the choice of screens, but also the choice of foliation of the screens. This second feature is not that unusual. For instance, in special relativity, different boosted observers possess different energies. However, it is a feature that has led to a lot of resistance, since energy is usually associated with the study of stability and the usual point of view is that stability should be a property of a system, not a system and an observer. There have always been attempts to define a unique notion of energy. The Arnowitt–Deser–Misner (ADM) energy is one example of the energy associated with black hole horizons. In each case, it always amounts to choosing a special type of observer: infinity with the flat slicing or the Killing observer or the observer attached to a bifurcated surface. These are beautiful, and in the case of ADM lead to a result of positivity. But they do not apply for a general spacetime, and if we want observer independence we are left in an unsettling situation where special observers can be found only in special situations, while in others no notion of energy is available. Our point of view is that in the general case, we have to give up such attempts and embrace the fact that the notion of energy and momenta is observer-dependent. In this case, the canonical energy is uniquely defined and given by (40).

2.8. Decomposition of canonical energy

What is remarkable about the formula for the total energy is that can naturally have a thermodynamical interpretation. To see this, it is convenient to introduce a decomposition of the time flow vector into a boundary ‘normal-time’ vector, \(\hat{t} \), which is tangent to the screen \(\Sigma \), but normal to \(S \) and a ‘rotation’ vector, \(\phi \), which is tangential to \(S \). So we define

\[\hat{t} = - (t \cdot n)n + (t \cdot s)s, \quad \text{and} \quad t = \hat{t} + \phi. \] (41)

This decomposition is mirrored in the decomposition of the energy density, \(\kappa_t = \kappa_{\hat{t}} + \kappa_\phi \).

Using this decomposition, we can introduce the quasi-local mass and angular momenta\(^3\), \(S \), which are given by

\[M_t \equiv 2 \int_S \sqrt{q} \frac{\kappa_{\hat{t}}}{8\pi G}, \quad J_\phi \equiv - \int_S \sqrt{q} \frac{\kappa_\phi}{8\pi G}. \] (42)

As we will see in the next section, the normalization is chosen to reproduce Komar mass and angular momenta formulas [42] for spacetimes where \(t \) is a Killing field. It also reproduces the Newtonian expression for the Newtonian mass as a Gauss law. Finally, the formula for the mass also reproduces ADM mass formula if the screen is located at timelike infinity. It also reproduces Bondi energy [43] for a screen that is an asymptote at null infinity. We therefore see that for different choices of screen and time, the canonical mass formula reproduces Komar, ADM or Bondi.

\(^3\) Strictly speaking, it is truly an angular moment when the orbits of \(\phi \) are closed circles of length \(2\pi \) foliating the two spheres. In general, it should be understood as a momentum as we will see.
One of the key features of having finite boundary is the appearance of boundary degrees of freedom associated with the boundary symplectic potential, \(-\frac{1}{2} \int S_1 \sqrt{q} \delta_t\). These degrees of freedom are new degrees of freedom (\(\eta, \eta\)) that are not part of the usual gravitational degree of freedom (\(h_{ab}, K_{ab}\)); they are entirely due to the presence of the boundary. This dependence of the energy on the boundary degree of freedom shows up in the decomposition of the surface energy density as a sum of two terms:

\[\kappa_t = \frac{1}{2} \delta_t, \]

where

\[\gamma_t \equiv s V_t n, \quad \delta_t = \left(s_{\mu} L_t n^\mu + s^\mu L_t n_\mu \right). \tag{43} \]

This expression is written in terms of the foliation frame \(n, s\). Since the energy is associated to the screen and the time evolution is parallel to the screen, it is natural to look at this decomposition in the screen frame, \(\beta\), where

\[\gamma_t \equiv s \bar{V}_t \bar{n}, \quad \delta_t = \left(\bar{s}_{\mu} L_t \bar{n}^\mu + \bar{s}^\mu L_t \bar{n}_\mu \right). \tag{44} \]

Here, \(\gamma_t = \frac{1}{2} \bar{\gamma}_t + L_t \beta\) is the radial acceleration of the screen, while \(\delta_t\) is a boost acceleration measuring the relative radial acceleration of screen observers with respect to fiducial static observers.

Accordingly, the total energy, \(H_t\), decomposes in a screen contribution, \(G_t\), and a boundary contribution, \(h_t\). These are given by

\[G_t \equiv \int s \sqrt{q} \frac{\gamma_t}{8\pi G}, \quad h_t \equiv -\int s \sqrt{q} \frac{\delta_t}{16\pi G}. \tag{45} \]

As we are about to see, the screen energy, \(G_t\), is the gravitational analog of the Gibbs energy. The decomposition of \(t = \bar{V} + \phi\) implies a natural decomposition of Gibbs energy in terms of the screen surface tension, \(\sigma_t\), and the screen momenta density, \(\eta_p\). Explicitly,

\[G_t = -\int s \sqrt{q} \left(\phi_t + \eta_p \right), \]

with

\[\sigma_t \equiv \frac{\bar{V}_t \bar{n}}{8\pi G}, \quad \eta_p \equiv -\frac{\phi \bar{n}}{8\pi G}. \tag{46} \]

The understanding that \(\sigma_t\) is really the surface tension of the gravitational screen will be revealed when we establish the general first law. The surface tension can be positive, generally for inner screens, or negative, generally for outer screens. When negative, it is better understood as a two-dimensional pressure for the screen, as in usual fluid systems where negative tension is pressure.

The fact that the total energy is the sum of two different types of energy is unsettling at first. There is, however, a beautiful geometrical interpretation of this fact. The Gibbs energy, \(G_t\), appears to be the canonical generator of translation along the screen, and therefore it corresponds to the usual translational energy. The second contribution, \(h_t = \int s \sqrt{q} L_t \eta_t\), \(\eta\) appears to be the canonical generator of boost transformation at the screen. It doesn’t generate translation and correspond to a boost energy. This can be understood by the fact that the general motion of a foliation along a screen is characterized by translation and boost. We illustrate this in figure 3. It is usual to associate a notion of energy for the generator of translation. It is less common, however, to think of the generator of boost as an energy. There

4. Let us emphasize that this is a special feature of gravity that possesses a boundary symplectic structure. This will not be the case for the matter fields theory, with the notable exception of the theta term in Yang–Mills theory.

5. The justification for this denomination, which is given in the next section, comes from the fact that its variation involves only variation of the connections that are ‘intensive’ variables.
is one context where this appears naturally: the context where one computes entanglement
energy \[44–46\]. In this case, given a space region, \(R\), with boundary, \(S\), and a vacua state \(|0\rangle\), we associate to this data a density matrix, \(\rho \equiv \text{Tr}_R |0\rangle \langle 0|\), where the trace is over all states
that have support on the exterior of \(R\). This density matrix can be written in terms of an
operator, \(\rho \pi = -\exp (2K_R)\), where \(K_R\) is the entanglement energy associated with
the region, \(R\). This energy appears to be given by the boost energy, as is exemplified, for instance,
in the context of the Unruh effect.

2.9. Thermodynamical interpretation

Let us now discuss the thermodynamical interpretation of the canonical energy and its relation
to mass and angular momenta. Since the two-dimensional metric, \(q_{AB}\), is conformally
equivalent to the round sphere metric, we denote by \(\hat{\phi}\) a conformal Killing vector whose close
orbits have length \(\pi\), and we chose \(\phi\) to be equal to \(\Omega\hat{\phi}\), where the angular velocity \(\Omega\) is
chosen to be constant on \(S^2\). \(J_{\phi} \equiv J\) is the angular momenta of the screen, and therefore the
canonical energy is given by

\[
H_i = \frac{1}{2} M_i - \Omega J_{\phi}.
\]

(47)

This decomposition is puzzling at first because of the factor \(1/2\) and the minus sign. The factor
\(1/2\) seems anomalous, and there have been attempts in the literature to fix this by adding a
term that depends on a background structure \[47\]. Let us now explain that this factor is
instead welcome.

Let’s suppose for a moment that both \(\kappa_i\) and \(\Omega\) are constant on the horizon. In this case,
the previous relation can be written as

\[
\frac{1}{2} M_i = T_i S + \Omega J
\]

(48)

where \(S \equiv A/4G\), \(J \equiv J_{\phi}\) and \(T_i \equiv \kappa_i/2\pi\). Here, and in order to ease the reader, I use the
standard notations, valid in the black hole case, which refer to the surface density energy as
temperature and the area as entropy, even if it is not valid in the general context. This is now
naturally interpreted as a Gibbs–Duhem relation \[48\]. Indeed, let’s suppose we send a particle
of momenta, \(p_i\), inside the screen; its energy is given by \(e = -p \cdot \hat{t}\) and its angular momenta
by \(j \cdot \phi = p \cdot \phi\). A momentum is flowing out of the bulk region if \(0 \leq -p \cdot t = e - j \cdot \phi\). In
In this case, and as we will see in full generality later, under some equilibrium conditions\(^6\), we have that the energy-momenta flow can be registered on the screen by an increase in area:

\[0 \leq e - j \cdot \varphi = T \delta S. \] (49)

Thus the change in area is given by a first law,

\[\delta M = T \delta S + \Omega \delta J, \] (50)

where \(\delta M = e \delta J = j_\cdot \). \(M, S, \) and \(J \) are extensive variables homogeneous under rescaling of length. However, \(M \) is homogeneous of order 1 while \(A \) and \(J \) are homogeneous of order 2. Using this and assuming there is no residual contribution at zero size, we can easily integrate out (50) into the generalized Gibbs–Duhem relation (48). In other words, the factor \(1/2 \) entering the relationship between the mass and the canonical energy is not an anomaly, but the reflexion of the thermodynamical nature of the relationship.

2.10. Canonical energy: Gibbs energy versus internal energy

In the previous sections, we have constructed the canonical energy associated with the Einstein Lagrangian and decomposed this energy in terms of a screen and pure boundary terms. This energy is uniquely defined once we chose which Lagrangian to work with. We can, however, add a boundary term to the gravity Lagrangian, which will define a new type of energy. This should not be surprising, since it is also the case in thermodynamics that the energy depends on what is kept fixed, and different energies are related by canonical transformations. For instance, we can talk about the internal energy or the free energy or Gibbs energy. They are all related by Legendre transforms, which change which quantities remain fixed. The internal energy for a closed system \(U(S, V) \), is characterized by the fact that it depends on extensive quantities, \(dU = T dS - p dV \)—that is, quantities like \(V \) and \(S \) that scale with the size of the system. While on the other end of the spectra, the Gibbs energy, \(G(T, p) = U - TS + pV \), depends on intensive quantities, \(dG = V dp - SdT \), that do not scale with the size of the system.

We have seen that the on-shell variation of the Einstein Lagrangian leads to a boundary term, \(\nabla_\mu \alpha^\mu \), where \(\alpha^\mu \) is defined in terms of the variation of the connection, \(\delta \Gamma^{\mu\nu}_\alpha \), on the boundary. The connection coefficient is invariant under spacetime independent rescaling\(^7\), of the metric, \(\delta g^{\mu\nu} = \phi g^{\mu\nu} \). Thus, we can think of the component of the connection on the boundary as the intensive variables. This means that the canonical energy and its screen component, \(G_t \), that we have just defined are the gravitational analogs of the Gibbs energy.

On the other hand, the metric components on the boundary are analogous to extensive variables, since they rescale homogeneously. It is well known that the addition of the Gibbons–Hawking boundary term \([41]\) leads to an on-shell variation that is proportional to the variation of the boundary metric. The canonical energy derived from the Hawking–Gibbons modification of the Einstein Lagrangian is therefore the analog of the internal energy. We will see that this internal energy coincides with the Brown and York energy \([8]\).

Let’s now investigate what happens when we modify the Einstein Lagrangian by a boundary term

\(^6\) We will precisely identify these conditions as the preservation of the internal energy of the screen, together with the condition that the process does not generate any gravitational waves.

\(^7\) Since the Einstein tensor is invariant under such rescaling, we can consider that this variation is an on-shell variation, once we rescale the matter field appropriately.
\[\mathcal{L}' = \mathcal{L} + V_\mu V^\mu, \]

which corresponds to a modification of the action by boundary contribution

\[S' = S - \int_{\Sigma_f} \sqrt{h} V_a + \int_{\Sigma_i} \sqrt{h} V_a, \]

where \(\Sigma_f \) (reps. \(\Sigma_i \)) denotes the final (reps. initial) slices, \(\Sigma_o \) (reps. \(\Sigma_i \)) denotes the outer (reps. inner) boundaries, and \(\vec{n} \) is directed forward in time while \(\vec{s} \) is directed outward. The symplectic potential becomes

\[\alpha = \alpha_0 + \delta \mathcal{V}^\mu + \mathcal{V}_\alpha \frac{1}{2} g^{\alpha\beta} \delta g_{\alpha\beta}, \]

and thus the variation of the canonical energy is given by

\[\delta \mathcal{H} = \delta \mathcal{H}_t + \int_{\Sigma} \left(\mathcal{L}_t V_a + h^{\alpha\beta} \mathcal{V}_a t_{\beta} V_n - N V_a V^\mu \right) \sqrt{h} \]

where we have used \(h_{\alpha\beta} \mathcal{L}_t n_{\beta} = 0 \) and we denote \(V_n = V^\mu n_\mu \). Given the decomposition of the time vector as \(t = Nn + Ms + \varphi \), we can show that the additional term is a total derivative:\[D_t(Nh_{\mu\nu} V^\nu + (M \xi^\mu + \varphi^\mu) V_n). \]

We integrate by part and make use of \(N V_n + MV_\mu = \rho V_t \), where \(\rho \) is the boundary lapse and \(\vec{s} \) the spacelike vector normal to \(\Sigma \) directed towards the outer region. We get the canonical energy associated with the new Lagrangian to be:

\[H'_t = H_t - \int_{S_i} \sqrt{q} \rho V_t. \]

If the canonical energy of the Einstein Lagrangian is the Gibbs energy, the analog of the gravitational internal energy is the energy obtained by the Legendre transform of the canonical energy, \(H \). It is obtained by adding to the Einstein Lagrangian the Gibbons–Hawking boundary term:

\[V_{\beta gh} \equiv \frac{1}{8\pi G \cosh \beta} \left(\vec{n}^\mu \left(V_n n^\alpha \right) + s^\mu \left(V_s s^\alpha \right) \right). \]

This term is characterized by the property that \((8\pi G) V_{n gh} = -(V_n n^\alpha)\) and \((8\pi G) V_{s gh} = (V_s s^\alpha)\), where \(n \) is the timelike normal to the slice \(\Sigma \) and \(s \) is the spacelike normal to the screen, while \(K = (V_n n^\alpha) \) and \(H = (V_s s^\alpha) \) represent the trace of the extrinsic curvature of \(\Sigma \) and \(\Sigma_o \) respectively. The internal energy denoted \(U_t \) is therefore given by

\[U_t = G_t - \int_S \sqrt{q} \rho \left(V_s s^\alpha \right) \frac{1}{8\pi G}, \]

where \(\rho \equiv N/\cosh \beta \) is the boundary lapse introduced earlier. To evaluate this, we expand in terms of the 2d variables, both the addition term, \(V_n \vec{s} = \vec{s} \cdot V_n \vec{n} + \theta_t \), and the Gibbs energy term, \(\vec{g} = \rho \vec{s} \cdot V_n \vec{n} - (8\pi G) \theta_t \). Here, \(\theta_t \equiv (\mathcal{L}_t \sqrt{q})/\sqrt{q} \) is the two-dimensional extrinsic curvature of the screen. Thus

\[U_t = -\int_S \sqrt{q} \left(\frac{\theta_t}{8\pi G} + j_\rho \right) \]

where \(j_\rho \equiv -(\vec{t} \cdot n) s \cdot \vec{t} + (\vec{t} \cdot s) n \) is the radial vector normal to the screen and \(\vec{t} \). This shows that we can associate to the screen an internal energy density, given by

\[\epsilon \equiv -\frac{\theta_t}{8\pi G} \]

This accounts for the modification of the screen energy.

8 We note that \(\mathcal{L}_{\alpha\nu} V_\alpha + h^{\alpha\beta} V_\beta (N n_\beta) V_\alpha = N V_\alpha (n^\mu V^\nu) \) and that \(N V_\alpha (h^\mu, V^\nu) = D_t (Nh_{\mu\nu} V^\nu) \).
We can also perform a canonical transformation that affects the boundary Gibbs energy, h_t. To do so, we need to modify the actions at the corners, $S = \Sigma \cap \Sigma', \bar{S}$, of the boundary. Let’s suppose that the addition to the Lagrangian is of the form $V^\mu V_\mu$, where V is itself a boundary contribution:

$$V^\mu = \frac{1}{\cosh \beta} \left(\bar{h} D_a (\bar{v}_a^\mu) + s^\mu \bar{D}_a (\bar{v}_a^\mu) \right).$$

(57)

This corresponds to a modification of the Lagrangian at the two-sphere $S = \Sigma \cap \Sigma$, of the form

$$\delta S = \int_{\Sigma} \sqrt{h} D_a (v_a^\mu) + \int_{\Sigma} \sqrt{h} \bar{D}_a (\bar{v}_a^\mu) = \int_{S_{\delta}} \sqrt{q} (v_n - \bar{v}_n).$$

(58)

where $v_n \equiv s^\mu \delta_a^\mu$. On the other hand, for a closed surface, S, it modifies the Hamiltonian by a total time derivative 9

$$\delta H = \int_{S} \mathcal{L}_i (\sqrt{q} r_{nr}).$$

(60)

3. 2 + 2 decomposition

The system we are interested in is a two-sphere S that lies at the intersection of a timelike screen Σ and a spacelike surface Σ. We use n to denote the unit timelike vector normal to Σ, and we use s to denote the unit spacelike vector tangent to Σ, and normal to S. Similarly, we use \bar{s} to denote the unit spacelike normal to Σ and \bar{n} to denote the unit timelike vector tangent to Σ and normal to S. We are interested in a region of spacetime that extends to the future of S and outside of the screen, Σ. We assume that in the region of spacetime that we are interested in, there is a double foliation, where Σ_t are the spacelike leaves of a foliation given by $T = t$, while the screens Σ_r are the timelike leaves of a foliation given by $R = r$, and such that $S_{t,r} = \Sigma_t \cup \Sigma_r$ is a two-sphere. We assume that T increases in the future and that R increases when we move away from the screen.

As we have seen, this double foliation is characterized by three scalars ρ, τ, and β. The first scalar that characterizes the double foliation is the boost angle, β. This corresponds to the boost velocity that a screen observer following the tangent \bar{n} possesses, compared to an Eulerian observer n at rest with respect to the foliation, Σ_t:

$$\bar{n} = \cosh \beta n + \sinh \beta s, \quad \bar{s} = \cosh \beta s + \sinh \beta n.$$

(61)

For the other scalars, it is clear that dT is proportional to the one form, $n_\mu dx^\mu$, and that dR is proportional to the one form, $s_\mu dx^\mu$. ρ and τ characterize the proportionality coefficients

$$n = -\rho \cosh \beta \nabla T, \quad s = \tau \cosh \beta \nabla R.$$

(62)

The signs are chosen such that the vector, n^μ, is future-directed and s^μ is outwardly directed. The factors of $\cosh \beta$ are chosen such that if one defines

$$\rho D_a (\delta_+^a) = -\rho D_b (\bar{n}^\mu \delta_a^\mu) + \rho D_b (q^\mu \delta_+^a) = -\rho (\mathcal{E} + \delta_{ab}) \delta_{ab} + d \cdot (\rho q \cdot \delta_+)$$

(59)

together with $t = \rho \bar{n} + \mathcal{Q}$ and $\delta_{ab} = -\delta_{ba}$.
\(\hat{t} \equiv \rho \hat{n}, \quad \hat{r} \equiv \tau \hat{s} \)

(63)

then \(\hat{t} \) is an evolution vector tangent to the screen \(\Sigma \), which is Lie dragging \(\Sigma \) (i.e., \(\mathcal{L}_t T = 1 \)). Similarly, the displacement vector, \(\hat{r} \), is tangent to the initial data surface, \(\Sigma_\tau \), which is Lie dragging \(\Sigma_\tau \) (i.e., \(\mathcal{L}_r T = \mathcal{L}_r R = 1 \)). These vectors also preserve the double foliation since

\[
\mathcal{L}_t R = 0, \quad \mathcal{L}_r T = 0.
\]

(64)

We cannot in general represent these vectors as velocity vectors \(\frac{\partial}{\partial \mu} \), \(\frac{\partial}{\partial \rho} \), unless the two vector fields commute. The properties of hyper surface orthogonality (i.e., \(\omega = \rho \tau \beta \)) mean that

\[
\mathcal{L}_t n_\mu = 0, \quad \mathcal{L}_r \delta_\mu = 0.
\]

These vectors also preserve the double foliation since \(\omega = \rho \tau \beta \)

(65)

By Frobenius theorem, the vanishing of \(\omega \) implies that the normal two planes, \(TS^2 \), are integrable (i.e., they can be understood as the tangent vectors to a submanifold). In general, the vectors \(\hat{t}, \hat{r} \) do not commute, and this means that we need to define time flow vectors

\[
t \equiv \partial_\tau \quad \text{and} \quad \mathbf{r} \equiv \partial_\rho \quad \text{that Lie-commute:}
\]

\[
t \equiv \hat{t} + \mathbf{q}, \quad \mathbf{r} \equiv \hat{r} + \mathbf{p},
\]

(66)

where \(\mathbf{q} \) and \(\mathbf{p} \) are vectors tangent to \(S \) and \(\mathbf{q} \) is the angular velocity. These vectors Lie-commute if \(\mathbf{q} \) is chosen in order to satisfy

\[
\partial_\tau \mathbf{q} - \partial_\rho \mathbf{p} + [\mathbf{q}, \mathbf{p}] = (\rho \tau \cos \beta) \omega.
\]

By Frobenius theorem, the vanishing of \(\omega \) implies that the normal two planes, \(TS^2 \), are integrable (i.e., they can be understood as the tangent vectors to a submanifold). In general, the vectors \(\hat{t}, \hat{r} \) do not commute, and this means that we need to define time flow vectors

\[
t \equiv \partial_\tau \quad \text{and} \quad \mathbf{r} \equiv \partial_\rho \quad \text{that Lie-commute:}
\]

\[
t \equiv \hat{t} + \mathbf{q}, \quad \mathbf{r} \equiv \hat{r} + \mathbf{p},
\]

(66)

where \(\mathbf{q} \) and \(\mathbf{p} \) are vectors tangent to \(S \) and \(\mathbf{q} \) is the angular velocity. These vectors Lie-commute if \(\mathbf{q} \) is chosen in order to satisfy

\[
\partial_\tau \mathbf{q} - \partial_\rho \mathbf{p} + [\mathbf{q}, \mathbf{p}] = (\rho \tau \cos \beta) \omega.
\]

Note that we interpret \((\mathbf{q}, \mathbf{p}) \) to be a 2d gauge field valued into the algebra of 2d diffeomorphisms. The left-hand side of the previous equation is simply the curvature of this gauge field, since the commutator is given by the Lie bracket. The previous equality expresses that this curvature is proportional to the twist.

We can now express the spacetime metric and its inverse, in terms of the normal coordinates \((T, R)\), the sphere coordinates \((x^A)\), the foliation scalars \((\rho, \beta, \tau)\), and the velocity vectors \((\mathbf{q}, \mathbf{p})\) as follows

\[
d s^2 = \left(-\rho^2 \sinh^2 \beta \, dT^2 + 2 (\rho \tau \sinh \beta) dT dR + \tau^2 dR^2 \right) \\
+ (dx + \mathbf{q} dt + \mathbf{p} dR) \cdot (dx + \mathbf{q} dt + \mathbf{p} dR).
\]

(67)

This metric can be inverted and we can read the normal components of the inverse metric to be

\[
g^{TT} = \frac{1}{\rho^2 \cosh^2 \beta}, \quad g^{TR} = \frac{\sinh \beta}{\rho \tau \cosh \beta}, \quad g^{RR} = \frac{1}{\tau^2 \cosh^2 \beta}.
\]

(68)

This is in agreement with (62), since we can check that \(g(n, n) = -1 \), \(g(\mathbf{s}, \mathbf{s}) = 1 \) and \(g(\mathbf{s}, n) = \sinh \beta \). The off-diagonal components are

\[
g^{AT} = \tau \mathbf{q}^A - \rho \sinh \beta \mathbf{p}^A \rho^{-2} \tau \cosh^2 \beta, \quad g^{AR} = -\rho \mathbf{q}^A + \sinh \beta \tau \mathbf{p}^A \rho^{-2} \tau \cosh^2 \beta.
\]

(69)

while the tangential components are \(g^{AB} = \mathbf{q}^A + g^{TT} \mathbf{q}^A \mathbf{q}^B + 2 g^{TR} \mathbf{q}^A \mathbf{p}^B + g^{RR} \mathbf{p} A \mathbf{p} B \). If one restricts the spacetime metric to a spacelike or timelike slice, one sees that \((\rho, \mathbf{q})\) are the lapse and shift of the induced metric on the timelike screen \(\Sigma_\tau \), while \((\tau, \mathbf{p})\) is the
corresponding ‘spatial’ lapse and shift on the slice, Σ_s:
\[ds^2 = -\rho^2 dT^2 + (dx + \psi dT) \cdot q \cdot (dx + \psi dT), \]
\[ds^2 = \tau^2 dR^2 + (dx + \psi dR) \cdot q \cdot (dx + \psi dR). \]
(70)
(71)

Once we know the metrics on the timelike slices, Σ_t, and the spacelike slices, Σ_s, and assuming that their pullback agrees on S, we can reconstruct the spacetime metric provided we know the value of β.

3.1. Intrinsic and extrinsic geometry

The geometry of the embedding of the 2d sphere S in the spacetime is characterized by intrinsic and extrinsic geometry, and by the accelerations.

The intrinsic geometry is determined by the 2d metric, $g_{ab} = g_{ab} + n_a n_b - s_a s_b$. By construction, we have that $g_{ab} n^b = g_{ab} s^b = 0$. In the following, we will denote by uppercase indices the projection of spacetime vectors onto vectors tangent to S: $\equiv v^q v_A A$. The Levi-Civita connection associated with g is denoted by $\equiv \nabla_A A$. The extrinsic geometry of S is characterized by a deformation tensor, Θ^A_B, for any vector, ℓ, normal to S:
\[\Theta^A_B = \nabla_A \ell^B. \]
(72)

From this definition, it follows that Θ^A_B is a symmetric tensor and that it is linear in its argument: $\Theta^A_B = a \Theta^A_a + b \Theta^B_a$. We denote its trace, θ^A_a, and in the following we will also use the notation
\[\Theta^A_a = a \Theta^A_a + b \Theta^B_a. \]
(73)

Since we have two normal directions, the deformation tensor does not fully characterize the extrinsic geometry, and we also have the normal connection π, which is the projection along S of $g_{ab} n^a \cdot V_b$:
\[\pi_A = g_{ab} n^a V^b. \]
(74)

This form depends on the choice of a basis (n, s) of the normal direction space. If one chose the basis adapted to the screen instead, we have the relationship
\[\pi_A = s \cdot V_A n^B = n^B V_A \cdot s. \]
(75)

To summarize, the data $(\Theta^A_a, \Theta^B_a, \pi_A)$ characterize the extrinsic geometry.

The final data are associated with the accelerations. First, we have the normal accelerations
\[\gamma_n = s \cdot V_n n^B, \quad \gamma_s = -n \cdot V_s s^B. \]
(76)

The first one is the radial acceleration of Eulerian observers, static with respect to the foliation, Σ_f, together with their screens analog. The change of frame amounts to the gauge transformation:
\[\gamma \equiv \gamma_n + V_A \beta. \]

We also have the tangential accelerations, which are of different types. First, there are the timelike and spacelike accelerations:
\[a_n^A = q^A_n V_n n^B, \quad a_s^A = q^A_s V_s s^B. \]

a_n^A is the acceleration of the Eulerian observers at rest with respect to the foliation, while a_s^A is the acceleration observers following a radial evolution normal to the screens. We also
introduce the screens analog, denoted as \vec{a}_n, \vec{a}_s. These four accelerations are not independent since the total acceleration is independent of the frame, $a_n + a_s = \vec{a}_n + \vec{a}_s$. The three independent components can be written in a frame as the frame-independent total acceleration, $a_n + a_s$, and the two frame-dependent components, $a_n - a_s$ and $2b \equiv q \cdot (\nabla_n n + \nabla_s s)$.

The last data is the twist vector that we already have introduced; it is given by

$$\omega = \nabla_n s - \nabla_s n.$$

(77)

It is independent of the frame.

All the accelerations can be expressed in terms of the foliation scalars, \(\rho, \beta, \) and \(\tau\). The detail derivation of these relationships is given in appendix E; we just sketch this derivation here. One first expresses that the time flow vector, \(\dot{t} = \rho \vec{n}\), preserves the foliation \(\Sigma\), and the space translation vector, \(\dot{r} = \tau \vec{s}\), preserves the foliations \(\Sigma_r\), which implies that \(s^b L^i n_a = 0\) and \(n^b L^i s_a = 0\). These conditions entirely determine the normal accelerations in terms of the foliation scalars. One finds

$$\gamma_n = \frac{\nabla_n (\rho \cosh \beta)}{\rho \cosh \beta}, \quad \tilde{\gamma}_t = \frac{\nabla_t (\tau \cosh \beta)}{\tau \cosh \beta}. $$

(78)

Now using $n = \frac{\alpha}{\cosh \beta} + \tanh \beta s$, and $s = \frac{k}{\cosh \beta} - \tanh \beta n$ and that $\tilde{\gamma}_t = \gamma + \nabla_t \beta$, we can obtain the other components, such as

$$\gamma_\rho = \frac{\nabla_\rho \rho}{\rho} + \nabla_\rho \beta + \tanh \beta \left(\frac{\nabla_\rho \tau}{\tau} - \frac{\nabla_\rho \beta}{\rho} \right).$$

(79)

A detailed derivation is provided in the appendix.

We can also express the tangential accelerations in terms of the foliation scalars, using that the double foliation flow vectors, \dot{t}, \dot{r}, preserve the double foliation—that is, \(q_{ia} b L^i \tilde{n}_a = 0 = q_{ia} b L^i \tilde{s}_a\), while \(q_{ia} b L^i \tilde{\gamma}_a = 0 = q_{ia} b L^i n_a\). This implies that

$$a_s = \frac{d\tau}{\tau}, \quad a_n = \frac{d(\rho \cosh \beta)}{\rho \cosh \beta}, \quad 2b = d\beta + \tanh \beta \left(\frac{d\rho}{\rho} - \frac{d\tau}{\tau} \right).$$

(80)

where $b = \frac{1}{2}(\nabla_n n + \nabla_s s)$. The last object we need to determine is the twist vector, $\omega = (\nabla_n s - \nabla_s n)$, which depends on the normal form and the foliation scalars as

$$2\omega = -2\pi + d\beta + \tanh \beta \left(\frac{d\rho}{\rho} - \frac{d\tau}{\tau} \right).$$

(81)

In summary, we have shown that the double foliation is characterized by three scalars: the timelike lapse ρ, the spacelike lapse τ, and the boost parameters β, which determine the choice of foliation. The geometry of this foliation is given by the intrinsic 2d metric, q, the extrinsic deformation tensors (Θ_n, Θ_s), and the normal connection π. The hyper surface orthogonality allow, the expression, according to (78)–(80), of all the accelerations in terms of the foliation scalars. These data are independent of the choice of frame (n, s), except the normal connection since $\pi = \pi + d\beta$. Finally, the twist one form, ω, which determines to what extent the normal 2-planes are integrable is characterized by the normal connection and the foliation scalars.
3.2. The many faces of acceleration

According to section 2.7, the surface energy density is given by a sum of two terms,
\[\kappa_t = \gamma_t - \frac{1}{2} \delta_t, \]
where
\[\gamma_t \equiv s V_t n, \quad \delta_t = \left(s_\mu \mathcal{L}_t n^\mu + s^\mu \mathcal{L}_t n_\mu \right). \] (82)

To understand the nature of the two terms appearing in the definition of the surface energy density, let us remark that each term, \(\gamma_t \) and \(\kappa_t \), is antisymmetric in the exchange of \(n \) and \(s \).

They are not, however, individually invariant under boost transformations (or change of frame) defined by \(\delta_\beta n = \beta s, \ \delta_\beta s = \beta n \). Indeed, under such transformations, we have \(\delta_\beta \gamma_t = V_t \beta \), and \(\delta_\beta \delta_t = 2 V_t \beta \). This implies, however, that \(\kappa_t \) is invariant under boosts, and hence under change of frames.

This frame independence can be rendered manifest by expanding the Lie derivatives in the definition of \(\delta_t \). Using \(\delta \equiv + \mu \mu \nabla s n n n \), and \(\delta = - \mu \mu \nabla s n s n 0 \cdot \cdot \cdot \) we easily get
\[\kappa_t = \frac{1}{2} \left(s \cdot V_t n - n \cdot V_t t \right) = n_\mu s_\nu \nabla [\eta^\mu n^\nu]. \] (83)

This expression makes it manifest that it is boost-invariant; it doesn’t depend on the foliation, but only on the normal subspace to \(S \), spanned by the bivector, \(n \wedge s \). It is also clear from this expression that it coincides with the Komar expression, in the case where \(t \) is a Killing field [42].

Let us now use the decomposition of the time flow in terms of its normal and tangential components. We define
\[\hat{t} = \rho n, \quad \hat{n} \equiv \cosh \beta n + \sinh \beta s, \quad \text{and} \quad t = \hat{t} + \varphi. \] (84)

\(\varphi \) is the tangential component of \(t \), \(\rho^2 = -\hat{t} \cdot \hat{t} \) is the time lapse of the double foliation introduced earlier, and \(\beta \) is the boost angle between the screen and the foliation (i.e., \(\rho \sinh \beta \equiv t \cdot s \)). We also introduce
\[t^\perp \equiv \rho s, \quad s \equiv \cosh \beta s + \sinh \beta n, \] (85)
where \(s \) is a unit spacelike vector perpendicular to \(\hat{t} \) and to \(S \).

From definition (83) and the fact that \(\varphi \) is tangent to \(S \), we can establish that
\[\kappa_t = \kappa_t - \varphi \cdot \frac{1}{2} [n, s] = \kappa_t - \frac{1}{2} \varphi \cdot \omega, \] (86)
where \(\omega \) is the twist one form. In other words, we have that the total mass density and angular momenta density are given by \(\rho_t = \kappa_t / 4 \pi G \) and \(j_\varphi = -\kappa_\varphi / 8 \pi G \):
\[\rho_t \equiv \frac{s \cdot V_t \hat{t} - n \cdot V_s \hat{t}}{8 \pi G}, \quad j_\varphi = \frac{\varphi \cdot \omega}{16 \pi G}. \] (87)

As we have seen, these quantities can be decomposed in terms of a screen surface tension, \(\sigma_t \), and momenta, \(\pi_\varphi \), given by
\[\sigma_t = -\frac{\hat{t}}{8 \pi G}, \quad P_\varphi = \frac{\pi \cdot \varphi}{8 \pi G}, \] (88)
and a boundary contribution proportional to \(-\delta_\beta / (8 \pi G) = \mathcal{L}_t \eta \), which is interpreted as the boost energy. Indeed, we have that
These contributions depend not only on the screen, but also on the way the slicing is boosted relative to the screen. The expression for the boost energy can be given in terms of the foliation scalars as (see (26) and appendix E)

\[
\delta_t = \mathcal{L}_t \beta + \tanh \beta \left(\frac{\mathcal{L}_t \tau - \mathcal{L}_\mu \rho}{\rho} \right) \equiv \mathcal{L}_t \eta.
\]

(90)

To understand the meaning of the formula for the mass density, \(\rho_t \), and the surface tension, \(\sigma_t \), let us start to evaluate it for a particular bulk foliation orthogonal to the screen, where \(\mathbf{t} = \rho \mathbf{n} \). This expresses that the boundary observers on the screen are static with respect to the foliation. In other words, the boundary observers coincide with the fiducial observers. In this case, we have that \(\delta_t = 0 \), the boost energy vanishes, and \(\rho_t = -2 \sigma_t \). This expresses the fact that the observer is purely sliding along the screen. The energy surface density is then just equal to \(\rho_t = \mathbf{a}_t \cdot \mathbf{n} = 4\pi G \mathbf{a}_t \cdot \mathbf{n} \), which is the projection of the acceleration, \(\mathbf{a}_t = \mathcal{V}_t \mathbf{n} \), of the fiducial observers along the radial direction. So in this case, \(\rho_t \) is simply the radial acceleration in Planck units:

\[
\rho_t = \frac{\mathbf{a}_t \cdot \mathbf{s}}{4\pi G} = \frac{\mathcal{V}_t \mathcal{\Phi}}{4\pi G},
\]

(91)

where we have introduced the Newtonian potential, \(\mathcal{\Phi} \equiv \ln \rho \), associated with the foliation \(\Sigma \), and \(\mathcal{V}_t \mathcal{\Phi} = \mathcal{V}_t \rho \) corresponds to the acceleration of screen observers with respect to static fiducial observers. The equality (91) follows from the hyper surface orthogonality condition (78) or (79) when \(\beta = 0 \).

Far away from the sources of gravitation, \(\mathcal{\Phi} \) is the Newtonian potential, and therefore \(\rho_t \) is the acceleration needed for an observer to stay static. This is positive when the acceleration is directed toward the inside of the screen, meaning that it is positive for an outer screen. Similarly, the surface tension \(\sigma_t = -\rho_t/2 \) is generally positive for an inner screen.

It is illuminating to note that the formula for the mass that we have given is similar to the one we obtain in the Newtonian regime. Indeed, in Newtonian gravity, the Poisson equation gives us \(\Delta \mathcal{\Phi} = 4\pi G \rho \), where \(\rho \) is the matter energy density and \(\mathcal{\Phi} \) is the Newtonian potential. The total Newtonian mass in a volume, \(V \), can then be evaluated by a Gauss law formula as

\[
M_{\text{Newt}} = \int_S \sqrt{\mathcal{g}} \rho_{\text{Newt}} dS, \quad \rho_{\text{Newt}} = \frac{\mathcal{V}_t \mathcal{\Phi}}{4\pi G} = \frac{\mathbf{a}_t}{4\pi G},
\]

where \(\partial V = S \) and the last equality expresses that the radial inward acceleration, \(a_r \), is equal to \(\mathcal{V}_t \mathcal{\Phi} \) by Newton’s law. The formula for the mass we have is therefore a covariant generalization of the Newtonian Gauss law.

Let us now deal with the general case. The surface tension is always proportional to the inward radial acceleration. We need then to understand the meaning of the difference, \(\delta_t \).

10 In the case of a static Schwarzchild black hole, we have \(\mathcal{\Phi}(r) = -\frac{\ln \left(1 - \frac{2GM}{r} \right)}{\ln 16} \) which is indeed the Newtonian potential. Moreover we have \(t^t = \left(1 - \frac{2GM}{r} \right) a_t \); therefore, one gets that for a screen at a distance, \(R \), in a Schwarzchild spacetime the energy density is

\[
\rho_t = \left(1 - \frac{2GM}{R} \right) \delta_t \mathcal{\Phi}(R) = \frac{GM}{R^2}.
\]

The mass is then expressed as \(M = \frac{M_{\text{Newt}}}{4\pi R^2} \).
From (83), we have that
\[\kappa = \frac{1}{2}(\tilde{\gamma} + V_{\mu}\phi). \]
Since it is also equal to \(\tilde{\gamma} = \frac{1}{2}\tilde{\beta} \) by definition, we then get that
\[\delta_t = (\mathbf{s} \cdot \mathbf{a}_t - V_{\mu}\phi) \equiv \mathcal{L}_t \tilde{\gamma} \tag{92} \]
is the difference between the the screen and the Newtonian acceleration. This difference measures to what extent the foliation and the screen are boosted with respect to each other; it therefore represents the boost acceleration. Its expression in terms of the foliation scalars is given in (84).

When the foliation is not orthogonal, we can express the mass density and surface tension\(^{11}\) in terms of the Newtonian potentials, \(\rho \), and the boost angles, \(\eta \), as
\[\rho_t = \frac{V_{\mu}\phi}{4\pi G} + \frac{\mathcal{L}_t \tilde{\eta}}{8\pi G}, \quad \sigma_t = -\frac{V_{\mu}\phi}{8\pi G} - \frac{\mathcal{L}_t \tilde{\eta}}{8\pi G}. \tag{93} \]

This shows that by appropriately choosing the time dependence of the boost parameter, \(\tilde{\eta} \), we can always insure that the energy surface density or the surface tension are constant on the screen. The choice of \(\tilde{\eta} \) essentially amounts to appropriately choosing the boost parameter, \(\beta \). The choice of this parameter amounts to a particular choice of foliation; it can be reabsorbed into a diffeomorphism that does not move the screen.

4. Dissipation

We now want to study the evolution property of the canonical energy (39) that we have constructed. This energy describes \textit{a priori} the energy of an open system. Therefore, there is no reason that this energy should be conserved in time, and in general we will experience energy gain or energy loss. To calculate these energy gains or losses, which we call dissipation as a shorthand\(^{12}\), we express the main conservation equation (32) in a covariant form.

Let us first denote by \(I_t \alpha^\mu \) the symplectic current \(\alpha^\mu \) evaluated on a variation, \(\delta g_{\mu\nu} = \mathcal{L}_t g_{\mu\nu} \). From definition (15) of the symplectic current, we get
\[I_t \alpha^\mu = \left[V_{\nu}, V^\mu \right]_{\text{\small cov}} + V_{\nu} \left(V_{\nu} - i_{\nu} \right) \]
\[= R^\mu - V_{\nu} \kappa^{\nu\mu}, \tag{94} \]
where we have introduced the acceleration two-form, \(\kappa^{\nu\mu} \equiv V_{\nu} i_{\mu} \). It is interesting to write this equation in a more suggestive manner. Given a time flow vector, \(t \), we can define the matter momentum current to be\(^{13}\) \(-T^\mu = -G_\mu/8\pi G \) and the gravitational momentum current to be:
\[D^\mu = -I_t \alpha^\mu + \frac{\mu^\mu}{2} \]
The canonical gravitational energy associated with a slice, \(\Sigma \), is simply \(H^G_t = \frac{1}{8\pi G} \int_\Sigma \sqrt{h} D^\mu \). The conservation equation then simply reads
\[\text{By definition, they are related by } \rho_t + 2\sigma_t = \frac{\xi_t}{8\pi G}. \]
\[\text{As we will see, the changes in energy are due to dissipation and fluxes through the screen. Here we use dissipation as a shorthand for ‘energy gain or loss due to dissipation and fluxes’. We hope the reader will not get confused by this simplifying terminology.} \]
\[\text{The minus sign in the matter momentum is due to the signature. The energy associated with a slice, } \Sigma \text{, is given by } H^M_t = -\int_\Sigma T^\mu \epsilon^\mu = \int_\Sigma \sqrt{h} T^\mu. \]

\[23 \]
\[-D_t \mu = G_t \mu = V_\mu \left(\nabla_{\nu} \mu \right). \]

(96)

Specifically, this expresses that the total momentum form is closed, and it gives an explicit expression for its potential in terms of an acceleration tensor, \(\kappa_\mu^\nu = \nabla_{\nu} \mu \). This conservation equation simplifies when \(t \) is a Killing field. In this case, \(\alpha^\mu_\mu = 0 \) and the gravitational momentum one-form is simply \(D_t \mu = \mathcal{L}_R \).

It will be convenient to write this identity in the form language using the volume forms \(e, e_\mu, e_{\mu \nu} \) described in the appendix. We denote

\[\alpha \equiv \alpha e_\mu, \quad \kappa \equiv \kappa_\mu^\nu e_{\mu \nu}, \quad \mathbf{T}_t \equiv T_t^\mu e_\mu, \quad D_t \equiv D_t^\mu e_\mu. \]

(97)

With this notation, the total canonical energy is given by \(H_t^G = \frac{1}{8\pi G} \int_{S_t} \kappa_\mu \) and the main conservation equation can be written

\[\left[\kappa_\mu = -D_t - G_t \right] \]

(98)

The dissipation of the total canonical energy associated with a region, \(\Sigma \), is given by

\[\left(8\pi G \right) \mathcal{L}_t H_t = \int_{\partial \Sigma} \mathcal{L}_t \kappa_\mu = \int_{\Sigma} \mathcal{L}_t d \kappa_\mu = - \int_{\Sigma} \mathcal{L}_t \left(D_t + G_t \right) \]

\[= - \int_{\Sigma} d \left(t_\mu D_\mu + t_\mu G_\mu \right) = - \int_{\partial \Sigma} \left(t_\mu D_\mu + t_\mu G_\mu \right) \]

(99)

where we have used \(0 = dD_t + dG_\mu \), which follows from (98). This shows that the dissipation is purely a boundary term, as expected. Since gravity is a Hamiltonian system, we do not expect any loss of energy coming from the bulk. All the energy losses or gains comes from energy flux at the boundary two-spheres. We can evaluate the interior product when pulled back on the surface, \(S \), and given a one-form \(\alpha \), we have:

\[t_\mu \alpha = \alpha = \alpha e_\mu = \alpha e_\mu = \sqrt{g} \kappa_\mu^\nu \left(s_\mu n_\nu - s_\nu n_\mu \right) = - \sqrt{g} \alpha^\mu T_\mu = - \sqrt{g} \alpha^\mu \]

(100)

where \(t^\mu \) is a spatial vector normal to \(S \) and \(t \) and given by

\[t_\mu = n_\mu (s \cdot t) - s_\mu (n \cdot t), \quad t^4 = 0. \]

(101)

Thus, the dissipation is a sum associated with the presence of each boundary sphere, \(d\Sigma = S_o \cup S_i \),

\[\mathcal{L}_t H_t = - \frac{1}{8\pi G} \int_{S_o} \sqrt{g} t_\mu \alpha t^\mu + \int_{S_i} \sqrt{g} T_\mu^\mu \]

(102)

We have used the orthogonality of \(t \) and \(t^\mu \) to show that \(R_\mu T^\mu \mu = G_\mu^\mu = 8\pi G T_\mu^\mu ; T_\mu^\mu \) is the energy momentum tensor. Similarly, the orthogonality implies that \(D_\mu^\mu = -\alpha_\mu^\mu \).

To further understand this conservation equation, let’s suppose that the observers are at rest with respect to the foliation (i.e., \(t = N n \)). Then we see that \(t^4 = N s = r \) is going to \(\Sigma \) at the outer boundary. \(p_\mu \equiv -T_\mu^r \) is the matter momentum density in the direction \(r \), as measured by Eulerian observers. We see that if \(p_\mu \) is positive at the outer boundary, the momentum is directed outside the region \(\Sigma \), and therefore the total energy decreases. The term \(\int_{S_o} \sqrt{g} T_\mu^\mu = -\int_{S_i} \sqrt{g} p_\mu \) then describes the amount of energy dissipation due to matter crossing the surface, \(S_o \). Therefore, \(-\alpha_\mu^\mu / 8\pi G \) describes the gravitational energy dissipation, which is negative when there is energy loss due to gravitational energy leaving the system.

Note that in the derivation given here, we could also evaluate the variation of \(H_t \) with respect to another time flow vector, \(\xi \), on the screen. This is given by
\[
\mathcal{L}_\xi H_I = \frac{1}{8\pi G} \int_S \sqrt{\tilde{\gamma}} \left(\mathcal{L}_\xi \kappa_I + \theta \xi \kappa_I \right) \\
= -\frac{1}{8\pi G} \int_S \sqrt{\tilde{\gamma}} \left(l_\alpha \alpha^\perp - (\mathbf{t} \cdot \xi^\perp) R/2 \right) + \int_S \sqrt{\tilde{\gamma}} T_{\xi^\perp}. \tag{103}
\]

It is convenient to introduce a modified energy momentum tensor
\[
\tilde{T}_{\xi^\perp} \equiv T_{\xi^\perp} - \left(\frac{\mathbf{t} \cdot \xi}{2} \right) T
\]
so the full conservation equation reads
\[
\mathcal{L}_\xi H_I = \int_S \sqrt{\tilde{\gamma}} \left(-\frac{l_\alpha \alpha^\perp}{8\pi G} + \tilde{T}_{\xi^\perp} \right) \tag{105}
\]

It is interesting to note that for a nongravitational system, the previous flux equation would involve only \(T_{\xi^\perp}\). The contribution coming from gravity is therefore due to a 'gravitational dissipation tensor' \(D_{\xi^\perp}\) where
\[
D_{\xi^\perp} \equiv -\frac{l_\alpha \alpha^\perp}{8\pi G} - \left(\frac{\mathbf{t} \cdot \xi}{2} \right) T
\]
plays the role of a gravitational energy-momentum tensor in the conservation equation:
\[
\mathcal{L}_\xi H_I = \int_S \sqrt{\tilde{\gamma}} \left(D_{\xi^\perp} + T_{\xi^\perp} \right). \tag{106}
\]

The symmetric part of this tensor is related to the dissipation of energy, since it is determined by \(D_{\xi^\perp}\) for a general \(t\). Remarkably, its antisymmetric part is related to the Poisson bracket of two Hamiltonians.

4.1. Poisson bracket

We now want to show that the antisymmetric part of the dissipation tensor is the Poisson bracket of the gravity Hamiltonians. We use \(I\) to denote the operation of replacing a variation, \(\delta\), by \(\mathcal{L}_\xi\); for instance, \(I_\alpha \alpha = \alpha^\perp\), where \(\alpha = a^\perp e_\mu\). As a consequence, we can check that \((\delta I + I_\delta) \alpha = \mathcal{L}_\xi \alpha + I_\delta \alpha\) for any expression \(\alpha\) which is an \(n\)-form on spacetime and a form on field space. This expression simplifies if \(\delta \alpha = 0\). We also use \(\Omega\) to denote the gravitational symplectic structure, which is a two-form on the space of fields given by \(\Omega \equiv \int_S \sqrt{\tilde{\gamma}} \delta \alpha/8\pi G\).

Let’s finally recall that \(\alpha \equiv a^\perp e_\mu\) and \(t = t^\perp e_\mu = \sqrt{|g|} e\). Equipped with these definitions, we can now compute
\[
(8\pi G)\delta H_I^G = \int_S \delta I_\alpha I_\alpha - \frac{1}{2} \int_S \delta R_t \\
= -I_\alpha \int_S \delta \alpha + \int_S l_\alpha \alpha + \int_S \mathcal{L}_\alpha \alpha - \int_S \left(V_\alpha \alpha^\perp \right) t \\
- \frac{1}{2} \int_S \left(G_{\alpha \beta} \delta \gamma^\alpha \right) t - \frac{1}{2} \int_S R \delta t \\
= -I_\alpha \int_S \delta \alpha + \int_S \left(l_\alpha \alpha - \frac{R}{2} \delta \mathcal{H}_t \right) - \int_S \sqrt{\tilde{\gamma}} D_\alpha \left(Nh \alpha^\perp \alpha^\perp \right) + (8\pi G) \int_S l_\alpha \delta L^m \\
= (8\pi G) \left(-I_\alpha \Omega^G \right) - \int_S \sqrt{\tilde{\gamma}} \alpha^\perp + (8\pi G) \int_S l_\alpha \delta L^m \tag{107}
\]
where Ω^g denotes the gravitational part of the symplectic form, $\Delta S \equiv S_o - S_i$, and we have used $\delta L^m = -\frac{1}{2} \sqrt{g} T^{ab}_{\mu} \delta g^{ab}$. In the second line, we have used $\delta (\sqrt{g} R) = \sqrt{g} G_{ab} \delta g^{ab} + 2 \sqrt{g} V_\alpha \alpha^a$. In the third line, we also used $\sqrt{g} V_\alpha \alpha^a = L_{\alpha \beta} \alpha + L_{H H} D_\alpha (N h^a \alpha^b)$. This implies that given a form $\omega = \omega^a \varepsilon_a$, and denoting $\omega_n = \omega^a n_a$, we have that

$$\int_\Sigma \left(V_\alpha \omega^a \right) \eta = \int_\Sigma L_\alpha \omega + \int_{\partial \Sigma} \omega_n^a \sqrt{q}.$$ \hfill (108)

Let us assume for simplicity that we are in the context of pure gravity, so that $L^m = 0$ and $H^G \equiv H_t$. This shows in this context that the total Hamiltonian variation is

$$\left(H^G - \delta H_t \right) = I_t \Omega^g + \frac{1}{8\pi G} \int_{\Sigma} \sqrt{q} \alpha \mu.$$ \hfill (109)

Contracting this with I_ξ and using the definition $I_\xi \delta H = L_\xi H$ and the definition of the Poisson bracket, $I_\xi I_\mu \Omega^g = \{ H_t, H_t \}$, we get

$$H_{\xi, \xi} - L_\xi H_t = \{ H_t, H_t \} + \frac{1}{8\pi G} \int_{\Sigma} \sqrt{q} I_\xi \alpha \mu.$$ \hfill (110)

Taking the difference between this and (103) gives

$$\{ H_t, H_t \} = H_{\xi, \xi} + \frac{1}{8\pi G} \int_{\Sigma} \sqrt{q} \left(I_\xi \alpha \mu + I_\xi \alpha \mu \right).$$ \hfill (111)

Thus, we see that Poisson bracket algebra is now anomalous due to the presence of the boundary and that the combination, $(I_\xi \alpha \mu - I_\xi \alpha \mu)/8\pi G = -Dq^a + q_{\theta a}$ gives the anomaly in the context of pure gravity.

5. The thermodynamical balance equation

From the dissipation equation (102) and the on-shell evaluation, $H_t = \int_{\Sigma} \sqrt{q} \kappa_t$, we have

$$\mathcal{L}_t \left(\sqrt{q} \kappa_t \right) + I_t \alpha \mu = 8\pi G \sqrt{q} T^\mu_\nu.$$ \hfill (112)

The lhs is evaluated in the appendix for a vector field $t = \hat{t} + \varphi$, which is foliation-preserving. Here, $\hat{t} = \rho \hat{n}$ and φ is tangent to S. By separating the contribution that comes from \hat{t} from the contribution that comes from φ, we get equations (A.10) and (A.11). The first one is an energy balance equation, the second one is a momentum balance equation. As we will see, they have a natural thermodynamical interpretation and leads to what is a generalized first law and a generalized Cauchy momentum equation. We first look at the energy balance.

5.1. The energy balance

The energy balance equation is a consequence of (A.10), derived in the appendix. This equation reads:

$$\left(\mathcal{L}_t + \theta_\ell \right) \theta_\ell - \gamma_\ell \theta_\ell + \hat{\Theta}_\ell; \lambda + \left(8\pi G T^\mu_\nu - \theta_\ell \right) L_t \phi - \frac{1}{2} \delta \left(\eta \left[\hat{t}, t^2 \right] \right) = 0.$$ \hfill (113)

Here, $(\Theta_\ell, \Theta_\ell)$ are the extrinsic deformation tensors, $(\theta_\ell, \theta_\ell)$ denote their trace, $\phi = \ln \rho$ is the Newtonian potential, and γ_ℓ is the radial acceleration. The hat on Θ_ℓ means $\hat{\Theta}^a_{\ell b} \equiv \Theta^a_{\ell b} - q^{ab} \theta_\ell$. We can write this balance equation in terms of the thermodynamical quantities that we have introduced. First let us recall that the density of internal energy and the
The previous equation can therefore be written as an energy conservation:

$$\left(\mathcal{L}_\iota + \theta_\iota \right) e = \sigma_\iota \theta_\iota + \frac{\hat{\Theta}_\iota}{8\pi G} \cdot \Theta_\iota + T_{\iota\iota} + e\mathcal{L}_\iota \phi - \frac{1}{2} \frac{q}{16\pi G} \left(\hat{\iota}, \iota^4 \right) = 0. \quad (115)$$

Each term appearing in this equation has a natural thermodynamical interpretation. To see this, let’s integrate the previous equation over \(S \) and introduce several quantities: first, we define

$$\dot{E}_M \equiv \int_S \sqrt{q} T_{\iota\iota}. \quad (116)$$

This is the rate of matter energy flowing through the screen. It is positive if matter is leaving the external region and entering the screen. This corresponds to a work term due to the transport of matter.

Let’s also define the rate of gravitational dissipation due to gravitational radiation. It is given by

$$\dot{Q} \equiv \frac{1}{8\pi G} \int_S \sqrt{q} \left(\Theta_\iota \cdot \Theta_\iota \iota - \theta_\iota \theta_\iota \iota \right) = \int_S \sqrt{q} \tau \cdot \Theta_\iota. \quad (117)$$

This corresponds to an internal heat production term due to gravitational dissipation. It is analogous the the entropy production term \(T S \) in a fluid where \(\Theta_\iota \) plays the role of the rate of strain tensor and \(\tau \equiv \frac{1}{8\pi G} \hat{\Theta}_\iota \) plays the role of the viscous stress tensor [4, 49].

The internal energy is defined, as we have seen, to be proportional to the radial expansion:

$$U \equiv \int_S \sqrt{q} e, \text{ with } e = -\frac{\theta_\iota}{8\pi G}. \quad (118)$$

We also denote the element of area and its rate of change by

$$dA = \sqrt{q} d^3x, \quad (\mathcal{L}_\iota dA) = \theta_\iota dA. \quad (119)$$

The term \(\sigma_\iota (\mathcal{L}_\iota dA) \) is a work term due to the presence of surface tension.

The final term we want to analyze corresponds to the rate of change of the Newtonian energy of the screen. We define the Newtonian gravitational energy of the screen to be

$$E_N \equiv \int_S \sqrt{q} e \phi. \quad (120)$$

This means that \(e \), which is the internal energy density, also represents the inertial mass density. Therefore, we see that the change of the Newtonian energy due to the time variation of the potential is given by

$$\dot{E}_N = \int_S \sqrt{q} e \mathcal{L}_\iota \phi, \quad (121)$$

which is the term entering the balance equation.
Therefore, we can write the integrated balance equation as

\[L_i U = \dot{Q} + \int_{\Sigma} \sigma_i \mathcal{L}_i dA + \dot{E}_M + \dot{E}_N. \tag{122} \]

This is the generalized first law of thermodynamics for a general screen. By integrating it out over a small amount of time and assuming for simplicity that \(\sigma_i \) is constant, we get

\[dU = \delta Q + \sigma_i dA + \delta E_M + \delta E_N. \tag{123} \]

Here we differentiate between the total differential, \(d \), of the potential and the infinitesimal variation, \(\delta \), of a quantity that does not represent the state of the system. This formula justifies \textit{a posteriori} the identification of \(U \) as the internal energy. It expresses the variation of the internal energy, \(U \), in terms of the rate of work done on the system plus the rate of heat production—that is \(\delta U = \delta W + \delta Q \). Here the work terms are three-fold: first, there is a Newtonian work term due to the fact that the internal energy is also the inertial mass for the Newtonian potential. There is also a matter work term due to matter flowing in or out of the system, and there is finally a work term due to the change in size of the system. Since the system is two-dimensional and possesses surface tension, this work term reads \(\sigma dA \). When \(\sigma \) is negative (for outer screens, for instance) one should interpret it as a two-dimensional pressure, \(p_{2d} = -\sigma \), and the work term is the two-dimensional analog of \(-pV\). In this case, the surface tension acts as a 2d pressure term from the point of view of the screen.

Note that if one looks at transformations that do not produce any heat (i.e., \(\delta Q = 0 \), hence not gravity wave production) and transformations that do not change the internal energy, \(dU = 0 \), and the Newtonian energy, the previous relation can be written as

\[dE_M = p_{2d} dA. \]

This is the relation that has been interpreted in the literature as a Clausius relation, leading to the identification \(T dS = p_{2d} dA \). We see that this interpretation is valid only in a very restricted context. In general, the entropy production term for the two-dimensional thermodynamical system is proportional to \(\delta Q \), and hence measures the production of gravity waves. The presence of a term \(\sigma dA \) is interpreted as a work term due to the presence of a surface tension or two-dimensional pressure.

5.2. The momentum balance

In the appendix, we evaluate the local balance equation for the momentum, and we get:

\[\varpi^a (L_i + \theta) \tilde{\pi}_a = \varpi^a \left(\left(-d \tilde{\theta} + d \cdot \tilde{\Theta} \right)_a + \theta_\mu d_\mu \varphi - (8\pi G) T_{\mu\nu} \right) - (8\pi G) \mathcal{L}_a \tilde{\rho}^a \varphi \tag{124} \]

where \((8\pi G) \tilde{\rho}^a \varphi \equiv \varphi_{\eta} (\theta_\mu - \kappa_\mu) + \frac{1}{2} g^{\alpha\beta} (L_\mu \varphi_\beta) \). \(\varphi = \ln \rho \) is the Newtonian potential,

\(\tilde{\pi}_a = s \cdot V_A \tilde{n} \) is the normal one-form in the screen frame, \(\tilde{\theta} = \theta_\mu = q_\eta - q_{\eta} \) and \(\theta_\mu \) is the trace of the extrinsic tensor, \(\theta_\mu \). We can write this equation in terms of the thermodynamical quantities like the internal energy density, \(\epsilon \), the 2d surface tension, \(\sigma_i \), the viscous stress tensor, \(\tau \), and the momenta density, \(p \), where

\[\epsilon = -\frac{\theta_\mu}{8\pi G}, \quad \sigma_i = -\frac{\tilde{\eta}_i}{8\pi G}, \quad \tau = -\frac{\tilde{\Theta}_\mu}{8\pi G}, \quad p = \frac{\tilde{n}}{8\pi G}. \tag{125} \]
The momentum conservation equation reads

$$\varrho\left(\mathcal{L}_i + \Theta_i\right)\eta_0 = \varrho\left[\left(d\sigma_i + d\cdot\tau\right)_{A} + \epsilon d_v\phi - T_{a+a}\right] - d_\nu\varphi^\nu.$$ \hspace{1cm} (126)

We now look at the integrated version of this balance equation.

First, we define the total momenta and its time variation as

$$P_\varphi \equiv \int_S \sqrt{q} \varrho A p_A, \quad \dot{P}_\varphi \equiv \int_S \sqrt{q} \varrho A (\mathcal{L}_i + \Theta_i) p_A.$$ \hspace{1cm} (127)

We also define the force acting on the screen due to the flow of matter across the horizon

$$F_\varphi^M \equiv -\int_S \sqrt{q} T_{q\nu}.$$ \hspace{1cm} (128)

Indeed, let's integrate the conservation of the energy momentum tensor over a spacetime region, \(R\), bounded by the screen and an initial and final slice. The matter momenta on each slice is given by \(p_A = -\int_S \sqrt{h} T_{A\nu}\). Thanks to the conservation equation, \(V_{\nu}T^{\mu\nu} = 0\), and the Gauss law, we can evaluate the variation of momenta to be

$$\Delta p_A = -\int_L \sqrt{h} T_{A\nu} = -\int dT \left(\int_S \sqrt{q} T_{q\nu} \right).$$ \hspace{1cm} (129)

where \(\hat{h}\) is the induced metric on the screen. Therefore, the rate of change of momenta in the direction \(A\) per unit time, which gives the force acting on the system, is given by

$$F_\varphi^M = -\int_S \sqrt{q} T_{q\nu}.$$ \hspace{1cm} (130)

Next, we define the Newtonian force acting on the system to maintain the screen in place; it is given by

$$F_\varphi^N \equiv -\int_S \sqrt{q} \epsilon d_\nu\phi.$$ \hspace{1cm} (131)

Here, \(\epsilon = -\frac{\varrho_\nu}{8\pi G}\) is the internal energy density. It is also, as we have seen, the screen inertial mass density. Thus, \(-\epsilon d_\nu\phi\) is simply the usual Newtonian force acting on a system of inertial mass density, \(\epsilon\).

Finally, the first term in (126) is a 2d pressure force term, \(d\sigma = -d_\nu\rho p_{a\nu}\). It is the force term due within the presence of surface tension. It forces the fluid to flow in the direction of high surface tension. It is responsible for Marangoni flows. The second term is identical to a term of viscous force due to a stress tensor, \(\tau^{AB} = (\Theta^{AB} - \Theta^{q\nu}q)^AB / (8\pi G)\), confirming again this interpretation. These are the convection terms.

Integrating this equation on \(S\) and assuming that the vector, \(\varphi^A\), is conserved in time, we get

$$\dot{P}_\varphi = -\int_S \varrho A d_\nu\sigma_i + \int_S \varrho A d_\nu\tau^{AB} + F_\varphi^M + F_\varphi^N.$$ \hspace{1cm} (131)

This equation is identical to the conservation of momenta in a general nonequilibrium thermodynamical system. It confirms in particular the interpretation of \(\sigma_i\) as a surface tension and \(\tau\) as a viscous stress tensor.

6. Conclusion

In this work, we have studied in great detail the definition of energy for a gravitational system in the context of a 2 + 2 decomposition of spacetime. We have seen that a general gravitational screen possesses gravitational analogs of a surface tension, an internal energy, and a
viscous stress tensor. These data enter the conservation of energy and momenta described from the point of view of the screen, and they show that the gravitational equations project themselves on the screen as nonequilibrium conservation equations for the screen degrees of freedom. This analysis provides a first set of clues toward understanding gravitational systems as thermodynamical systems. The analogy presented here is purely classical and needs to be deepened [49]. It is one of the fundamental puzzles to elucidate concerns understanding the nature of the surface tension of gravitational screens.

The idea that gravity and thermodynamics are related subjects is not new. A thermodynamical interpretation of local null screens has been developed by Jacobson et al [50] and by Padmanabhan [51]. Also Verlinde [52] has proposed to derive gravity from entropic arguments and equipartition of energy associated with holographic screens. In these works, however, it is postulated that the surface tension is a local temperature, and hence it is assumed that the work term, σdA, is due to an entropy variation. Whereas this seems to be well established for bifurcated Killing horizons [53, 54], it is highly speculative at this point to generalize this interpretation beyond that very particular situation. Our analysis clearly shows that we can associate a surface tension to a general gravitational screen and that entropy production is due to gravity waves (see [55–58] for similar consideration on gravity waves and null screens). What it tells us about the entropy and temperatures of a general gravitational system is still an open problem. One direction of investigation that we intend to pursue in the future is to deepen the possible relationship between entanglement energy and the boost energy introduced here.

One should also mention that it will also be interesting to understand the relationship of our general screen approach with the gravity-fluid correspondence [59] developed in AdS/CFT. Although there, the nonrelativistic equations appears from a nonrelativistic expansion of solutions of general relativity, which is a very different setting.

Finally, the idea that nonequilibrium thermodynamics might be a key to a theory of quantum gravity constituents via a fluctuation-dissipation theorem, is a fascinating idea that has so far received little attention [60–62]. I hope that such an investigation could open a new avenue towards quantum gravity.

Acknowledgments

I am deeply grateful to E Bianchi for insightful exchanges and feedback, to D Minic for encouragement and feedback on the manuscript, and to Y Yokokura for endless discussions about this subject and detailed feedback on the manuscript. I have benefited from the insight, feedback, and encouragement of many colleagues. Many thanks to H Haggard, J Kowalski-Glikman, L Lehner and L Smolin for their input. This work started while I was a visitor at Yukawa Institute in Kyoto; I deeply thank N Sasakura for an inspiring stay in this magnificent city. This research was supported in part by the Perimeter Institute for Theoretical Physics. Research at the Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation. This research was also partly supported by grants from NSERC.
Appendix A. Dissipation: the derivation

From (110) and the on-shell evaluation, \(H_t = \int S \sqrt{q} \kappa_t \), we have that:

\[
\frac{1}{8\pi G} \int_S (\mathcal{L}_t(\sqrt{q} \kappa_t) + I_t \alpha_t) \approx \int_S \sqrt{q} T_{\alpha t}
\]

where \(\approx \) means that we evaluate the expression on-shell.

In this section, we want to evaluate the lhs of this expression. The main task comes from the evaluation of the dissipation tensor, \(I_t \alpha_t \). We start from the general expression (18) for the contraction of the symplectic potential in the normal direction, \(t^i = \rho \delta \).

One specialises this formula to variations, \(\delta \), that preserves the foliation (i.e., \(\delta \eta = \eta \delta \phi = 0 \)), we have that:

\[
\alpha \delta = \delta \mathcal{L}_t = K^a_{\alpha} \delta \eta^a - \delta \mathcal{L}_t = \delta \mathcal{H}_t \equiv \delta \mathcal{L}_t + \delta \mathcal{H}_t
\]

(2.2) where \(K^a_{\alpha} = q^a_{\alpha} - n_a n_\alpha \) is the metric on the timelike screen, \(K^a_{\alpha} = \overline{K}^a_{\alpha} + \delta \eta^a \delta \eta_\alpha \) is the extrinsic tensor for the spacelike normal, \(\delta \) is the projected variation. In practice, \(\delta = \mathcal{L}_t \) where \(t = \mathcal{I} + \phi \) is a foliation-preserving vector field — that is \(\mathcal{I} = \rho \delta \eta \) and \(\phi \) is a vector tangent to \(S \).

We decompose the extrinsic tensor in its space and time components

\[
K^a_{\alpha} = \gamma_n \delta_n^a n^\alpha + \rho n^a \delta n_\alpha + \rho \theta^a n^\alpha + \Theta^a_\alpha
\]

(3.3) where \(\gamma_n = \dot{\mathcal{I}} \cdot \mathcal{V} \delta \eta \) is the radial acceleration, \(\theta_n = q^a_{\alpha} s \cdot \mathcal{V}_b \delta \eta \) the normal connection, and \(\Theta_{\alpha}^a \) the extrinsic curvature tensor. This implies that \(K_{\alpha} = \gamma_n + \theta_n \), and

\[
\left(K^a_{\alpha} - \delta \eta^a \delta \eta_\alpha \right) = \theta_n^a n^\alpha + \rho n^a \delta n_\alpha + \Theta_{\alpha}^a - q^a_{\alpha} \delta \eta\
\]

(4.4) where \(\Theta_{\alpha}^a = q^a_{\alpha} - q^a_{\alpha} \delta \eta \). Then we consider variations that preserves the screen foliation (i.e., \(q^a_{\alpha} \delta \eta = 0 \)), for which we have

\[
\delta \eta^a \delta \eta_\alpha = -2 \frac{\delta \rho}{\rho} = -2 \delta \phi, \quad \delta n^a \delta n_\alpha = -\gamma_n \delta \eta^a
\]

(5.5) Here we have introduced the Newtonian potential, \(\phi \equiv \ln \rho \). Therefore, we get that

\[
\left(K^a_{\alpha} - \delta \eta^a \delta \eta_\alpha \right) = -2 \gamma_n \delta \phi + \Theta_{\alpha}^a + 2 \theta_n \delta \phi - 2 \gamma_n \delta \phi^{\alpha}
\]

(6.6) where we have introduced the notation \(q^{\alpha \beta} \delta q_{\alpha \beta} \equiv 2 \theta \). The other term to consider is

\[
\rho \delta \eta^a \delta \eta_\alpha = \rho \delta \eta^a \delta \eta_\alpha + d_n \left(\rho \delta \eta^a \right) = \left(\mathcal{L}_t + \theta_\alpha \right) \delta \eta^a + d_\alpha \delta \eta^a
\]

(7.7) where \(\delta \equiv \frac{1}{2} (s \delta n^a + s^2 \delta n_\alpha) \) is the normal component and \(\delta \eta^a = q^a_{\alpha} \delta \eta^\alpha = \rho q^a_{\alpha} \delta \eta^\alpha \) the tangential component. The last term entering the dissipation tensor is

\[
\delta \left(\sqrt{\eta} K_{\alpha} \right) = \delta \left(\sqrt{\eta} q_n + \theta_n \right)
\]

(8.8) Finally, we have to take into account the Hamiltonian variation. For \(t = \mathcal{I} + \phi \), we have \(\kappa_t = \rho (\gamma_n - \delta \eta) - \phi \mathcal{I} \cdot \delta \mathcal{I} \), where \(\mathcal{I} = s \cdot \mathcal{V} \delta \eta \) is the radial acceleration and \(\delta \eta = I_\alpha \delta \eta \). We can evaluate the lhs of (A.1), \(\delta \left(\sqrt{\eta} q_n + \theta_n \right) + \alpha t \) to be equal to:

14 The expression for \(n^a \delta \eta_n \) follows from the expression for the normal form and vector:

\[
\delta \eta_n = -\rho \delta T + \tau \sin \psi \delta R \quad \text{and} \quad \rho \delta n^a \delta \eta_a \delta \eta_\alpha = \delta \kappa_n - \phi^a \delta \eta_\alpha
\]

and then use that for a foliation-preserving variation, \(\delta \kappa_n = 0 \).
\[
\delta\left(\sqrt{\mathcal{g}}\left(\kappa_t - \rho K_\mathcal{G}\right)\right) = \sqrt{\mathcal{g}}\left(\frac{1}{2}\left(K_\mathcal{G}^{ab} - \mathcal{R}^{ab} K_\mathcal{G}\right)\delta h_{ab} + \sqrt{\mathcal{g}} D_a \delta_{t}^a\right) \\
\quad = -\delta\left(\sqrt{\mathcal{g}} \left[\rho(\theta_i + \delta_\alpha) + \varphi \cdot j\right]\right) - \sqrt{\mathcal{g}} \rho \left(-\theta_i \delta \phi - \tilde{\pi}_a \delta h^a\right) \\
\quad + \frac{1}{2} \left(\hat{\theta}_{t}^{ab} q_{\mathcal{G}}^{ab} \right) \delta q_{ab} - (L_\mathcal{G} + \theta_1) \delta \hat{\pi}_a + \sqrt{\mathcal{g}} \left[\rho \hat{\pi}_a\right] \\
\quad = -\sqrt{\mathcal{g}} \left(\delta + \theta_1\right) \left(\theta_1 + \varphi \cdot j + \delta_1\right) - \left(\mathcal{L}_\mathcal{G} + \theta_1\right) \delta - \delta_1 \theta \\
\quad + \frac{1}{2} \hat{\theta}_{t}^{ab} \delta q_{ab} - \theta_1 \delta \phi - \tilde{\pi}_a \delta h^a - d_a \left(\delta_{t}^a\right). \tag{A.9}
\]

We first specialize to the case where \(\varphi = 0\), and hence \(t = \tilde{t}\), and then we contract the previous expression with \(L_\mathcal{G}\) so that \(I_\mathcal{T} \delta \alpha = L_\mathcal{G} \alpha\) is a time diffeomorphism. The previous expression is on-shell equal to \((8\pi\mathcal{G}) \sqrt{\mathcal{g}} T_\mathcal{T}\), and therefore the energy balance equation simplifies to

\[
\left(L_\mathcal{G} + \theta_1\right) \left(\theta_1 + \varphi \cdot j + \delta_\alpha\right) + \Theta_{t}^{ab} \varphi_{ab} - \theta_1 \mathcal{L}_\mathcal{G} \varphi - \tilde{\pi}_a \left[\varphi, \tilde{t}\right] - \frac{1}{2} \left[\varphi, t^a\right] + T_{\alpha t^a} = 0. \tag{A.10}
\]

We have used that \(I_\mathcal{T} \delta_{t}^a = \frac{1}{2} q_{\mathcal{G}}^{ab} [I, t^a]^b = \rho \delta_j^a\), with \(j\) being the twist vector.

A.1. Momentum balance derivation

We now contract (A.9) with \(L_\mathcal{G} \varphi\) and subtract from it the contraction with \(L_\mathcal{G}\), which gave the previous equation. This difference is equal on-shell to \((8\pi\mathcal{G}) \sqrt{\mathcal{g}} T_\mathcal{T}\), and we get

\[
\left(L_\mathcal{G} + \theta_1\right) \left(\theta_1 + \varphi \cdot j + \delta_\alpha\right) + \left(\mathcal{L}_\varphi + d \cdot \varphi\right) \left(\theta_{1} + \varphi \cdot j + \delta_1\right) - \gamma_1 d \cdot \varphi \\
\quad + \hat{\theta}_{t}^{ab} V_a \varphi_{b} - \theta_1 \mathcal{L}_\varphi \varphi - \tilde{\pi}_a \left[\varphi, \tilde{t}\right] - \frac{1}{2} d_a \left[\varphi, t^a\right] + T_{\alpha t^a} = 0
\]

where we used \(\iota T_\varphi = \frac{1}{2} q_{\mathcal{G}}^{ab} \mathcal{L}_\varphi q_{ab} = q_{\mathcal{G}}^{ab} V_a \varphi_{b} = d_a \varphi^a\), and \(\delta \varphi = I_\varphi \delta \tilde{t}\). It is possible to greatly simplify this expression: First, one integrates by part \(-\gamma_1 d \cdot \varphi = -d(d_1 \varphi) + d \cdot d_1 \tilde{t}\) and we use that \((\mathcal{L}_\varphi + d \cdot \varphi) \alpha = d(\varphi \alpha)\) is a total derivative. This gives

\[
\left(L_\mathcal{G} + \theta_1\right) \left(\theta_1 + \varphi \cdot j + \delta_\alpha\right) + d \left[\varphi, \theta_{1} + \varphi \cdot j + \delta_1\right] \\
\quad + \varphi \cdot d_1 \tilde{t} + \hat{\theta}_{t}^{ab} V_a \varphi_{b} - \theta_1 \mathcal{L}_\varphi \varphi - \tilde{\pi}_a \left[\varphi, \tilde{t}\right] - \frac{1}{2} d_a \left[\varphi, t^a\right] + T_{\alpha t^a} = 0.
\]

One also integrates by part \(\hat{\theta}_{t}^{ab} \varphi_{ab} = d_a (\hat{\theta}_{t}^{ab} \varphi_{b}) - (d_1 \hat{\theta}_{t}^{ab} \varphi_{b})\), and then uses that

\[
\hat{\theta}_{t}^{ab} \varphi_{b} = \left[\varphi, t^a\right] = \frac{1}{2} \left(V_a t^a + \nabla t^a - V_a t^a + V_{a} \varphi t^a\right) = \frac{1}{2} q_{\mathcal{G}}^{ab} \mathcal{L}_\mathcal{G} \varphi_{b}.
\]

One also uses that \(\varphi \cdot j - \delta_\alpha = -\pi \cdot \varphi\), and that

\[-L_\mathcal{G} \pi \cdot \varphi - \tilde{\pi}_a \left[\varphi, \tilde{t}\right] = -\varphi \cdot (L_\mathcal{G} \pi).
\]

Finally, we use the definition of \(\kappa_t = \tilde{\gamma}_1 - \delta_1 - \varphi \cdot j\) to rewrite the previous equation as

\[
\varphi \cdot \left(L_\mathcal{G} + \theta_1\right) \pi + \varphi \cdot \left(d_1 \tilde{t} - d \cdot \hat{\theta}_{t}\right) - \theta_1 \mathcal{L}_\varphi \varphi \\
+ T_{\alpha t^a} + d \left[\varphi (\theta_{1} - \kappa_t)\right] + \frac{1}{2} d^2 (L_\mathcal{G} \varphi_{b}) = 0.
\]
Rearranging the terms this gives
\[
-\varphi^a \left((\mathcal{L}_t + \theta_t) \pi_a + \left(\frac{d\varphi}{-} - \frac{d}{\cdot} \theta_t \right) \pi_a - \theta_t \varphi d\varphi + \left(8\pi G \right) T_{a+} \right) \\
+ d\varphi (\theta_t \gamma - \kappa_t) + \frac{1}{2} \left(\mathcal{L}_t \varphi \right) = 0.
\]

(A.11)

Appendix B. Form identities

We denote the differential on \(M\) by \(d\) and the interior product of a form, \(\omega\), by a vector \(t\) by \(t \omega\). The Lie derivative is given by \(\mathcal{L}_t = dt + t \cdot d\). We introduce the following volume forms
\[
\epsilon \equiv \frac{1}{3!} \sqrt{|g|} \epsilon^{a\beta\gamma\delta} dx^a \wedge dx^\beta \wedge dx^\gamma \wedge dx^\delta \\
\epsilon_\mu \equiv t_\mu, \epsilon = \frac{1}{3!} \sqrt{|g|} \epsilon^{a\mu\beta\gamma} dx^a \wedge dx^\mu \wedge dx^\beta \wedge dx^\gamma \\
\epsilon_{\mu\nu} \equiv t_\mu, t_\nu, \epsilon = \frac{1}{2} \frac{1}{2!} \sqrt{|g|} \epsilon^{a\mu\nu\rho} dx^a \wedge dx^\mu \wedge dx^\nu \wedge dx^\rho.
\]

(B.1)
They satisfy
\[
d \left(V^{\mu\nu} \epsilon_{\mu\nu} \right) = 2 V_\nu V^{[\mu\nu]} \epsilon_\mu, \quad d \left(V_\mu \epsilon_\mu \right) = V_\nu V^{\nu} \epsilon
\]
and
\[
t_t \epsilon = t^a \epsilon_\mu, \quad t_t \left(V^{a\mu} \epsilon_{a\mu} \right) = V^{[a\mu]} \epsilon_{a\mu}.
\]

(B.3)
From this, we can show that their Lie derivative is given by
\[
\mathcal{L}_t \epsilon = \left(V_{a\mu} t^a \right) \epsilon_\mu, \quad \mathcal{L}_t \epsilon_{\mu\nu} = \left(V_{a\mu} t^a \right) \epsilon_{\mu\nu}.
\]

(B.4)

Appendix C. Boundary variation

Here, we want to compute the following variational terms entering the definition of the boundary symplectic potential (23)
\[
\delta \equiv s_\mu \delta n^a + s^a \delta n_\mu, \quad \delta \equiv \bar{s}_\mu \delta n^a + \bar{s}^a \delta n_\mu.
\]

(C.1)
Since \((\bar{n}, \bar{s}) = \cosh \beta (n, s) + \sinh \beta (s, n)\) it is clear that
\[
\bar{\delta} = \delta + 2\delta \beta.
\]

(C.2)
For this computation, one restricts to variations that preserves the double foliation \(\delta R = \delta T = c\text{o}st\). This translates into \(\delta n_a \propto n_a, \delta s_a \propto s_a\) which implies that:
\[
s^a \delta n_a = 0 = \bar{n}^a \delta s_a.
\]

(C.3)
To evaluate this variation, we need that
\[
n_a dx^a = -\rho \cosh \beta dT, \quad s_a dx^a = \tau dR + \rho \sinh \beta dT.
\]

(C.4)
while the corresponding vectors are
\[
\tau \partial_s = \partial_R - \psi^A \partial_A \equiv \partial_T, \quad \left(\rho \tau \cosh \beta \right) \partial_s = \tau \partial_T - \rho \sinh \beta \partial_R - \left(\psi^A - \sinh \beta \psi^A \right) \partial_A.
\]
for the slicing frame, and we can then evaluate these variations directly

\[
\delta = s_\mu \delta n^\mu = \frac{\sinh \beta}{\tau \cosh \beta} \delta \tau - \frac{1}{\rho \cosh \beta} \delta (\rho \sinh \beta)
\]

\[
= -\delta \beta + \tanh \beta \left(\frac{\delta \tau}{\tau} - \frac{\delta \rho}{\rho} \right).
\]

(C.5)

Using the relationship (C.2) between \(\delta \) and \(\delta^\# \), we get that

\[
\delta = -\delta \beta + \tanh \beta \left(\frac{\delta \tau}{\tau} - \frac{\delta \rho}{\rho} \right) = \tanh \beta \ln \left(\frac{\tau}{\rho} \sinh \beta \right).
\]

(C.6)

Appendix D. Codazzi and Ricci equation

We consider a spacetime, \(M \), endowed with a foliation. The leaves, \(\Sigma_t \), of this foliation are the level set of a given spacetime time function, \(T(x) \). We denote by \((g_{\mu\nu}, V^\mu)\) the spacetime metric and covariant derivative. We also denote by \((h_{\mu\nu}, D_\mu)\) the metric and covariant derivative on \(\Sigma_t \). The unit normal to \(\Sigma_t \) is denoted by \(n \) and satisfies \(n \cdot n = -1 \) where the dot means a contraction, \(n^\mu n_\mu \). We can therefore relate the metric and connection on the slices to the spacetime ones by using the orthonormal projector

\[
h^\mu_\nu = g^\mu_\nu + n_\mu n^\nu, \quad h^\mu_\nu V^\nu_\nu = D_\mu V^\nu_\nu
\]

(D.1)

for a vector, \(v \), tangent to \(\Sigma_t \). The time evolution is characterized by a time flow vector, \(t = t^\mu \partial_\mu \), which can be decomposed in terms of a lapse and a shift

\[
t = N n + M.
\]

(D.2)

The characteristic property of this vector is that the Lie derivative along \(t \) of any vector tangent to \(\Sigma_t \) is still tangent to \(\Sigma_t \). This means that

\[
h^\mu_\nu \mathcal{L}_t n_\mu = 0,
\]

(D.3)

and it implies that the acceleration, \(a_\mu \), of fiducial observers static with respect to the foliation and whose velocity is given by \(n^\mu \), is a vector tangent to \(\Sigma_t \) given by the space derivative of the lapse function:

\[
a_\mu \equiv V^\alpha_\mu n_\alpha = \frac{D_\mu N}{N}.
\]

(D.4)

If we denote by \(T \) the time function characterising the foliation, its property are that

\[
dT = -N n_\mu \, dx^\mu.
\]

We denote by \(g_{\mu\nu} \) the spacetime metric. From the definition of the Riemann tensor, we have that
To continue, we introduce the extrinsic tensor

\[K_{a\beta} \equiv D_a n_\beta \]

and the notation

\[D_{a\beta} t_\beta \equiv -NK_{a\beta} + D_a M_{\beta}. \]

The symmetrisation of this tensor is the time derivative of the metric

\[\mathcal{L}_t h_{a\beta} = D_{a\beta} t_\beta + D_{\beta} t_a. \]

We also introduce the important notion of the acceleration of the \(t \) observers, defined by

\[a^\mu_t \equiv \partial^\mu_t n^\nu = N a^\mu - K^\mu_{\nu} M_{\nu}. \]

Since the time flow preserves the foliation, we have \(h_{\alpha\beta} t t_{n\alpha} = V_t n_\alpha + n \cdot D_t t = 0 \), so we can equivalently write the \(t \)-observer acceleration as

\[a^\mu_t = -n \cdot D^\mu_t. \]

This means that \(h_{a\alpha} h_\beta t^\alpha = D_t t^\alpha + a^\alpha_t n^\beta \), and thus we get

\[h_{a\alpha} h_\beta \partial t^\alpha R_{a\beta} t_{\beta} n = -h_{a\alpha} h_\beta \partial t^\alpha V_t K_{a\beta} - K_{a\beta} D_t t^\alpha + D_t a_{\beta}. \]

Using the definition of the Lie derivative and the antisymmetry of \(R \) in the last two indices, we can write this equation as

\[h_{a\alpha} R_{a\beta} t_{\beta} n = -L_t K_{a\beta} + K_{a\beta} D_t t^\alpha + D_t a_{\beta}. \]

This is the combination of the Ricci and Codazzi equations. Taking the trace of this identity, we obtain

\[R_{\alpha\beta} = -L_t K - K_{a\beta} D_t t^\alpha + D_t V_t t^\alpha. \]

Appendix E. More on acceleration

Let us recall the definition of the accelerations in section 3.1. We have the normal accelerations

\[\gamma_n \equiv s V_n n, \quad \gamma_t \equiv s V_t n. \]

And the tangential accelerations

\[a_n = V_n n, \quad a_s = V_t n, \quad b + \frac{\omega}{2} = V_n \frac{s}{2}, \quad b - \frac{\omega}{2} = V_s n. \]

plus the normal one form \(\pi_s = a_n \frac{s}{2} \). These accelerations appear in the decomposition of the differential of \(n, s \):
\[dn = \gamma_n s \wedge n + a_n \wedge n + \left(\frac{\omega}{2} + \pi - b \right) \wedge s, \quad (E.3) \]
\[ds = \gamma_s s \wedge n + a_s \wedge s - \left(\frac{\omega}{2} + \pi + b \right) \wedge n. \quad (E.4) \]

The space time metric can be written in two different ways according to the time slicing or screen slicing:
\[
ds^2 = -\rho^2 \cosh^2 \beta dT^2 + \left(\tau dR + \rho \sinh \beta dT \right)^2
+ (dx + \varphi dT + \psi dR) \cdot q \cdot (dx + \varphi dT + \psi dR)
= \tau^2 \cosh^2 \beta dR^2 - \left(\rho dT - \rho \sinh \beta dR \right)^2
+ (dx + \varphi dT + \psi dR) \cdot q \cdot (dx + \varphi dT + \psi dR) \]

Let's start with the time-slicing frame \((n, s)\). In these coordinates the orthonormal slice frame is given by
\[
n_n dx^a = -\rho \cosh \beta dT, \quad s_n dx^a = \tau dR + \rho \sinh \beta dT \quad (E.5)\]
For the screen frame \((n, s) = \cosh \beta (n, s) + \sinh \beta (s, n)\), we have:
\[
\tilde{s}_s dx^a = \tau \cos \beta dR, \quad \tilde{n}_s dx^a = -\rho dT + \tau \sin \beta dR, \quad (E.6)\]
while the corresponding vectors are
\[
\tau \partial_t = \partial_R - \psi^A \partial_A \equiv \partial_t, \quad \left(\rho \tau \cos \beta \right) \partial_n = \tau \partial_T - \rho \sinh \beta \partial_R - \left(\psi^A - \sinh \beta \psi^A \right) \partial_A, \]
for the slicing frame and
\[
\rho \partial_n = \partial_T - \psi^A \partial_A \equiv \partial_t, \quad \left(\rho \tau \cos \beta \right) \partial_s = \rho \partial_R + \tau \sin \beta \partial_T - \left(\psi^A + \sinh \beta \psi^A \right) \partial_A \]
for the screen frame. By taking the differential of formula \((E.5)\) and using
\[
dT = -\frac{n}{\rho \cosh \beta}, \quad dR = \frac{1}{\tau} (s + \tanh \beta n) \]
we can express the accelerations in term of the foliation scalars. One obtains
\[
\frac{dn}{\rho \tau \cosh \beta} s \wedge n + \frac{d(\rho \cosh \beta)}{\rho \cosh \beta} \wedge n \]
\[
ds = \left(\frac{\partial_T - \partial_R (\rho \sinh \beta)}{\rho \tau \cosh \beta} \right) s \wedge n + \frac{d\tau}{\tau} \wedge s - \tanh \beta d\ln \left(\frac{\rho \sinh \beta}{\tau} \right) \wedge n. \quad (E.7)\]

From this we conclude that
\[
\gamma_n = \frac{\partial_t (\rho \cosh \beta)}{\rho \tau \cosh \beta}, \quad \gamma_s = \frac{\partial_T - \partial_R (\rho \sinh \beta)}{\rho \tau \cosh \beta} \quad (E.8)\]
while
\[
a_n = \frac{d(\rho \cosh \beta)}{\rho \cosh \beta}, \quad a_s = \frac{d\tau}{\tau}. \quad (E.9)\]
and
\[V_{n}n = \pi, \quad V_{n}s = -\pi + \tanh \beta \left(\frac{dp}{\rho} - \frac{d\tau}{\tau} \right) + d\beta. \] (E.10)

Thus, \(\omega = -2\pi + 2b \) with
\[2b = \tanh \beta \left(\frac{dp}{\rho} - \frac{d\tau}{\tau} \right) + d\beta. \] (E.11)

We can perform a similar computation in the screen frame
\[
\begin{align*}
\bar{d}n &= \frac{\partial t(\cosh \beta)}{\rho t \cosh \beta} \bar{s} \wedge \bar{n} + \frac{d(t \cosh \beta)}{t \cosh \beta} \wedge \bar{s} \\
\bar{d}s &= \left(\frac{\partial \rho \tau + \partial t(\tau \sinh \beta)}{\rho \tau \cosh \beta} \right) \wedge \bar{n} + \frac{\partial \rho}{\rho} \wedge \bar{n} + \tanh \beta d\ln \left(\frac{\tau \sinh \beta}{\rho} \right) \wedge \bar{n}.
\end{align*}
\] (E.12)

From this, we conclude that
\[\gamma_{t} = \frac{\partial t(\tau \cosh \eta)}{\rho \tau \cosh \eta}, \quad \gamma_{n} = \frac{\partial \rho \tau + \partial t(\tau \sinh \eta)}{\rho \tau \cosh \eta} \] (E.13)
while
\[\bar{a}_{n} = \frac{\partial \rho}{\rho}, \quad \bar{a}_{t} = \frac{d(t \cosh \beta)}{t \cosh \beta} = \frac{d\tau}{\tau} + \tanh \beta d\beta, \] (E.14)
and
\[V_{n}\bar{s} = -\bar{s}, \quad V_{n}\bar{s} = \bar{s} - \tanh \beta \left(\frac{d\tau}{\tau} - \frac{dp}{\rho} \right) - d\beta. \] (E.15)
Thus
\[-2b = d\beta + \tanh \eta \left(\frac{d\tau}{\tau} - \frac{dp}{\rho} \right) \] (E.16)

Note that we can rewrite the radial acceleration coefficient, which enters the definition of the surface tension as
\[\tilde{\gamma}_{t} = \partial_{t} \beta + \frac{\partial \rho \tau + \sinh \beta \partial t \tau}{\tau \cosh \beta}. \] (E.17)

Using the fact that \(\frac{\tau}{\cos \bar{p}} = \bar{s} - \tanh \beta \bar{n}, \) we can rewrite this expression as
\[\tilde{\gamma}_{t} = \partial_{t} \beta + \tanh \beta \left(\frac{\partial \tau t}{\tau} - \frac{\partial \rho}{\rho} \right) + \frac{\partial \tau \rho}{\rho} \] (E.18)
with \(\bar{i} = \rho \bar{n} \) and \(\bar{k} = \rho \bar{s}. \) Note that from section 3.2 and equation (83) we have that \(\kappa_{t} = \frac{1}{2} (\bar{\gamma}_{t} + V_{k} \rho) \) is the average of the screen acceleration and the Newtonian acceleration. On the other hand, from the original definition, we have that \(\kappa_{t} = \gamma_{t} - \frac{1}{2} \delta_{t}. \) Equating the two expressions therefore gives \(\delta_{t} = (\gamma_{t} - \partial \rho) \) as the difference between the radial and Newtonian accelerations, which is then equal to
\[\delta_i = \partial_i \beta + \tanh \beta \left(\frac{\partial \tau}{\tau} - \frac{\partial \rho}{\rho} \right) \]

(E.19)

In summary, this gives

\[\kappa_t = \nabla_t \rho + \frac{1}{2} \left(\partial_t \beta + \tanh \beta \left(\frac{\partial \tau}{\tau} - \frac{\partial \rho}{\rho} \right) \right). \]

(E.20)

Now we also have that

\[\kappa = -\vec{\kappa} + \frac{1}{2} \left(\partial \beta + \tanh \eta \left(\frac{d \tau}{\tau} - \frac{d \rho}{\rho} \right) \right) \]

(E.21)

so in total we get

\[\kappa_t = \nabla_t \phi - \varphi \cdot \vec{\kappa} + \frac{1}{2} \left(\partial_t \beta + \tanh \beta \left(\frac{\partial \tau}{\tau} - \frac{\partial \rho}{\rho} \right) \right) \]

(E.22)

and

\[\gamma = \nabla_t \phi - \varphi \cdot \vec{\gamma} + \partial_t \beta + \tanh \beta \left(\frac{\partial \tau}{\tau} - \frac{\partial \rho}{\rho} \right) \]

(E.23)

References

[1] de Gennes P-G, Brochard-Wyart F and Quere D 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Berlin: Springer)
[2] Hawking S W 1975 Particle creation by black holes Commun. Math. Phys. 43 199
[3] Hawking S W 1976 Particle creation by black holes Commun. Math. Phys. 46 206 (erratum)
[4] Unruh W G 1976 Notes on black hole evaporation Phys. Rev. D 14 870
[5] de Groot S R and Mazur P 1962 Non-Equilibrium Thermodynamics (Amsterdam: North-Holland)
[6] Velarde M G and Zeytounian R K 2002 Interfacial Phenomena and the Marangoni Effect (Berlin: Springer)
[7] Iyer V and Wald R M 1994 Some properties of Noether charge and a proposal for dynamical black hole entropy Phys. Rev. D 50 846 arXiv:gr-qc/9403028
[8] Brown J D, Lau S R and York J W Jr 2002 Action and energy of the gravitational field arXiv:gr-qc/0010024
[9] Penrose R 1982 Quasi local mass and angular momenta in general relativity Proc. R. Soc. London A 381 5363
[10] Brown J D and York J W Jr 1993 Quasilocal energy and conserved charges derived from the gravitational action Phys. Rev. D 47 1407 arXiv:gr-qc/9209012
[11] Hayward S A 1994 Quasilocal gravitational energy Phys. Rev. D 49 831 arXiv:gr-qc/9303030
[12] Hawking S W and Horowitz G T 1996 The gravitational Hamiltonian, action, entropy and surface terms Class. Quantum Grav. 13 1487 arXiv:gr-qc/9501014
[13] Iyer V and Wald R M 1995 A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes Phys. Rev. D 52 4430 arXiv:gr-qc/9503052
[14] Kijowski J 1997 A consistent canonical approach to gravitational energy Gen. Relativ. Gravit. 29 307
[15] Chen C-M and Nester J M 1999 Quasilocal quantities for GR and other gravity theories Class. Quantum Grav. 16 1279 arXiv:gr-qc/9809020
Chen C-M and Nester J M 2000 A symplectic Hamiltonian derivation of quasilocal energy momentum for GR Grav. Cosmol. 6 257 arXiv:gr-qc/0001088
[16] Szabados L B 2004 Quasi-local energy-momentum and angular momentum in GR: a review article Living Rev. Rel. 7 4

[17] Hawking S W and Hunter C J 1996 The gravitational Hamiltonian in the presence of nonorthogonal boundaries Class. Quantum Grav. 13 2735 arXiv:gr-qc/9603050

[18] Lau S R 1996 New variables, the gravitational action, and boosted quasilocal stress-energy-momentum Class Quantum Grav. 13 1509 arXiv:gr-qc/9504026

[19] Booth I S and Mann R B 1999 Moving observers, nonorthogonal boundaries, and quasilocal energy Phys. Rev. D 59 064021 arXiv:gr-qc/9810009

Booth I S N A quasilocal Hamiltonian for gravity with classical and quantum applications arXiv: gr-qc/0008030

[20] Francaviglia M and Raiteri M 2002 Hamiltonian, energy and entropy in general relativity with nonorthogonal boundaries Class. Quantum Grav. 19 237 arXiv:gr-qc/9504026

[21] Lau S R 1996 New variables, the gravitational action, and boosted quasilocal stress-energy-momentum Class Quantum Grav. 13 1509 arXiv:gr-qc/9504026

[22] Hawking S W and Hunter C J 1996 The gravitational Hamiltonian in the presence of non-orthogonal boundaries Class. Quantum Grav. 13 27352752 arXiv:gr-qc/9603050

[23] Carlip S and Teitelboim C 1995 The off-shell black hole Class. Quantum Grav. 12 1699 arXiv:gr-qc/9312002

[24] Massar S and Parentani R 2000 How the change in horizon area drives black hole evaporation Nucl. Phys. B 575 333 arXiv:gr-qc/9903027

[25] Bianchi E and Wieland W Horizon energy as the boost boundary term in general relativity and loop gravity arXiv:1205.5325 [gr-qc]

[26] Sachs R K 1962 J. Math. Phys. 3 908
d’Inverno R A and Stachel J 1978 J. Math. Phys. 19 2447
d’Inverno R A and Smallwood J 1980 Phys. Rev. D 22 1233

Torre C G 1986 Class. Quantum Grav. 3 773

[27] Hayward S A 1993 Dual—null dynamics Annales Poincare Phys. Theor. 59 399

[28] Cao L-M 2011 Deformation of codimension-2 surface and horizon thermodynamics J. High Energy Phys. JHEP03(2011)112 arXiv:1009.4540 [gr-qc]

[29] Gourgoulhon E and Jaramillo J L 2008 New theoretical approaches to black holes New Astron. Rev. 51 791 arXiv:0803.2944 [astro-ph]

[30] Price R H and Thorne K S 1986 Membrane viewpoint on black holes: properties and evolution of the stretched horizon Phys. Rev. D 33 915

[31] Thorne K S, Price R H and Macdonald D A (ed) 1986 Black Holes: The Membrane Paradigm (New Haven: Yale University Press) p 367

[32] Damour T 1979 These de doctorat detat (University of Paris VI) (un-published)

Damour T 1982 Proceedings of the Second Marcel Grossmann Meeting on General Relativity ed R Ruffini (Amsterdam: North-Holland) p 587

[33] asymptotically flat solutions of general relativity Phys. Rev. D 49 6467

[34] Ashtekar A, Beetle C and Fairhurst S 1999 Isolated horizons: a generalization of black hole mechanics Class. Quantum Grav. 16 L1

Ashtekar A, Fairhurst S and Krishnan B 2000 Isolated horizons: Hamiltonian evolution and the first law Phys. Rev. D 62 104025 arXiv:gr-qc/0005083

Ashtekar A and Krishnan B 2002 Dynamical horizons: energy, angular momentum, fluxes and balance laws Phys. Rev. Lett. 89 261101

Ashtekar A and Krishnan B 2003 Dynamical horizons and their properties Phys. Rev. D 68 104030

[35] Booth I and Fairhurst S 2004 The first law for slowly evolving horizons Phys. Rev. Lett. 92 011102 arXiv:gr-qc/0307087

Booth I Horizons in the near-equilibrium regime arXiv:1202.5789 [gr-qc]

[36] Gourgoulhon E and Jaramillo J L 2006 Area evolution, bulk viscosity and entropy principles for dynamical horizons Phys. Rev. D 74 087502 arXiv:gr-qc/0607050

Jaramillo J L 2011 An introduction to local black hole horizons in the 3 + 1 approach to general relativity Int. J. Mod. Phys. D 20 2169 arXiv:1108.2408 [gr-qc]

Gourgoulhon E 3 + 1 formalism and bases of numerical relativity arXiv:gr-qc/0703035 [GR-QC]
[41] Gibbons G W and Hawking S W 1977 Action integrals and partition functions in quantum gravity Phys. Rev. D 15 2752

[42] Komar A 1963 Positive-Definite energy density and global consequences for general relativity Phys. Rev. 129 1873–6

[43] Bondi H, van de Burg M G J and Metzner A W K 1962 Proc. R. Soc. London Ser. A 269 21–52

[44] Haag R 1992 Local Quantum Physics: Fields, Particles, Algebras (Berlin: Springer) (Texts and monographs in physics)

[45] Li H and Haldane F D M 2008 Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-abelian fractional quantum hall effect states Phys. Rev. Lett. 101 010504 arXiv:0805.0332 [cond-mat.mes-hall]

[46] Casini H, Huerta M and Myers R C 2011 Towards a derivation of holographic entanglement entropy J. High Energy Phys. JHEP05(2011)036

[47] Katz J 1985 A note on Komar’s anomalous factor Class. Quantum Grav. 2 423

[48] Gibbons G W, Perry M J and Pope C N 2005 The first law of thermodynamics for Kerr-anti-de Sitter black holes Class. Quantum Grav. 22 1503 arXiv:hep-th/0408217

[49] Freidel L and Yokokura Y Non-equilibrium thermodynamics of gravitational screens arXiv:1405.4881 [gr-qc]

[50] Jacobson T 1995 Thermodynamics of spacetime: the Einstein equation of state Phys. Rev. Lett. 75 1260 arXiv:gr-qc/9504004

Jacobson T On the nature of black hole entropy arXiv:gr-qc/9908031

Jacobson T and Parentani R 2003 Horizon entropy Found. Phys. 33 323–48 arXiv:gr-qc/0302099

[51] Padmanabhan T 2002 Is gravity an intrinsically quantum phenomenon? Dynamics of gravity from the entropy of spacetime and the principle of equivalence Mod. Phys. Lett. A 17 1147–58 arXiv:hep-th/0205278

Padmanabhan T 2005 Gravity and the thermodynamics of horizons Phys. Rept. 406 49–125 arXiv:gr-qc/0311036

Padmanabhan T 2005 A new perspective on gravity and the dynamics of spacetime Int. J. Mod. Phys. D 14 2263–70 arXiv:gr-qc/0510015

[52] Verlinde E P 2011 On the origin of gravity and the laws of newton J. High Energy Phys. JHEP04 (2011)029

[53] Bardeen J M, Carter B and Hawking S W 1973 The four laws of black hole mechanics Commun. Math. Phys. 31 161

[54] Wald R M 1993 Black hole entropy is the Noether charge Phys. Rev. D 48 3427 arXiv:gr-qc/9307038

[55] Eling C 2008 Hydrodynamics of spacetime and vacuum viscosity J. High Energy Phys. JHEP11 (2008)048

[56] Chirco G and Liberati S 2010 Non-equilibrium thermodynamics of spacetime: the role of gravitational dissipation Phys. Rev. D 81 024016 arXiv:0909.4194 [gr-qc]

[57] Yokokura Y 2012 Entropy balance equation of spacetime thermodynamics in f(R) gravity Int. J. Mod. Phys. A 27 1250160 arXiv:1106.3149 [hep-th]

[58] Shimada K, Okazawa S and Iso S 2012 The Einstein equation of state as the clausius relation with an entropy production Phys. Lett. B 718 193 arXiv:1206.1154 [gr-qc]

[59] Bhattacharyya S, Hubeny V E, Minwalla S and Rangamani M 2008 J. High Energy Phys. JHEP02 (2008)045

[60] Hawking S W and Hartle J B 1972 Energy and angular momentum flow into a black hole Commun. Math. Phys. 27 283

[61] Candelas P and Sciama D W 1977 Irreversible thermodynamics of black holes Phys. Rev. Lett. 38 1372

[62] Pranzetti D 2013 Dynamical evaporation of quantum horizons Class. Quantum Grav. 30 165004 arXiv:1211.2702 [gr-qc]