MAXIMAL OPERATORS OF T MEANS WITH RESPECT TO WALSH–KACZMARZ SYSTEM

Nata Gogolashvili and George Tephnadze*

Abstract. In this paper we prove and discuss some new (H_p, L_p, ∞) type inequalities of the maximal operators of T means with monotone coefficients with respect to Walsh-Kaczmarz system. It is also proved that these results are the best possible in a special sense. As applications, both some well-known and new results are pointed out. In particular, we apply these results to prove a.e. convergence of such T means.

Mathematics subject classification (2020): 42C10.
Keywords and phrases: Walsh-Kaczmarz system, T means, martingale Hardy space.

REFERENCES

[1] L. Baradidze, L. E. Persson, G. Tephnadze and P. Wall, Strong summability and Boundedness of Maximal operators of Vilenkin-Nörlund means with non-increasing coefficients, J. Inequal. Appl., 2016, doi:10.1186/s13660-016-1182-1.
[2] I. Blahota and K. Nagy, Approximation by Θ-means of Walsh-Fourier series, Anal. Math., 44, 1 (2018) 57–71.
[3] I. Blahota, K. Nagy and G. Tephnadze, Approximation by Marcinkiewicz Θ-means of double Walsh-Fourier series, Math. Inequal. Appl., 22, 3 (2019) 837–853.
[4] I. Blahota and G. Gát, Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups, Anal. Theory Appl., 24, 1 (2008), 1–17.
[5] I. Blahota and G. Tephnadze, On the (C, α)-means with respect to the Walsh system, Anal. Math., 40, (2014), 161–174.
[6] I. Blahota and G. Tephnadze, Strong convergence theorem for Vilenkin-Fejér means, Publ. Math. Debrecen, 85, (1–2) (2014), 181–196.
[7] I. Blahota, L. E. Persson and G. Tephnadze, On the Nörlund means of Vilenkin-Fourier series, Czechoslovak Math. J. 65, 4 (2015), 983–1002.
[8] I. Blahota, K. Nagy, L. E. Persson, G. Tephnadze, A sharp boundedness result concerning some maximal operators of partial sums with respect to Vilenkin systems, Georgian Math., J., 26, 3 (2019), 351–360.
[9] G. Gát, On $(C, 1)$ summability of integrable functions with respect to the Walsh-Kaczmarz system, Studia Math., 130, 2 (1998), 135–148.
[10] G. Gát and U. Gogina Vá, A weak type inequality for the maximal operator of (C, α)-means of Fourier series with respect to the Walsh-Kaczmarz system, Acta Math. Hungar., 125, 1–2 (2009), 65–83.
[11] U. Goginava, The maximal operator of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement, Publ. Math. Debrecen, 71, 1–2, (2007), 43–55.
[12] U. Goginava and K. Nagy, On the maximal operator of (C, α)-means of Walsh-Kaczmarz-Fourier series, Ukrainian Math. J., 62, 2 (2010), 175–185.
[13] N. Gogolashvili, K. Nagy and G. Tephnadze, Strong convergence theorem for Walsh-Kaczmarz-Fejér means, Mediterr. J. Math., 18, 2 (2021), doi:10.1007/s00009-020-01682-5.
[14] D. Lukkassen, L.-E. Persson, G. Tephnadze and G. Tutberidze, Some inequalities related to strong convergence of Riesz logarithmic means of Vilenkin-Fourier series, J. Inequal. Appl., 2020, https://doi.org/10.1186/s13660-020-02342-8.
[15] I. MARCINKIEWICZ AND A. ZYGMUND, On the summability of double Fourier series, Fund. Math. 32, (1939), 112–132.
[16] N. MEMIĆ, L. E. PERSSON AND G. TEPHNADZE, A note on the maximal operators of Vilenkin-Nörlund means with non-increasing coefficients, Stud. Sci. Math. Hung., 53, 4 (2016) 545–556.
[17] K. NAGY AND U. GOGINA, Maximal operators of Walsh-Kaczmarz logarithmic means, Complex Var. Elliptic Equ., 58, 9 (2013), 1173–1182.
[18] C. N. MOORE, Summable series and convergence factors, Dover Publications, Inc., New York 1966.
[19] F. MÓRICZ AND A. H. SIDDIQI, Approximation by Nörlund means of Walsh-Fourier series, J. Approx. Theory, 70, 3 (1992), 375–389.
[20] K. NAGY, Approximation by Cesàro means of negative order of Walsh-Kaczmarz-Fourier series, East J. Approx., 16, 3 (2010), 297–311.
[21] K. NAGY, Approximation by Nörlund means of quadratical partial sums of double Walsh-Fourier series, Anal. Math., 36, 4 (2010), 299–319.
[22] K. NAGY, Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions, Math. Inequal. Appl., 15, 2 (2012), 301–322.
[23] K. NAGY AND G. TEPHNADZE, Approximation by Walsh-Kaczmarz-Marcinkiewicz means on the Hardy space $H_{3/2}$, Bulletin of TICMI, 18, 1 (2014), 110–121.
[24] K. NAGY AND G. TEPHNADZE, On the Walsh-Marcinkiewicz means on the Hardy space, Cent. Eur. J. Math., 12, 8 (2014), 1214–1228.
[25] K. NAGY AND G. TEPHNADZE, Approximation by Walsh-Marcinkiewicz means on the Hardy space, Kyoto J. Math., 54, 3 (2014), 641–652.
[26] K. NAGY AND G. TEPHNADZE, Kaczmarz-Marcinkiewicz means and Hardy spaces, Acta math. Hung., 149, 2 (2016), 346–374.
[27] K. NAGY AND G. TEPHNADZE, Strong convergence theorem for Walsh-Marcinkiewicz means, Math. Inequal. Appl., 19, 1 (2016), 185–195.
[28] E. PERSSON, G. TEPHNADZE AND P. WALL, Maximal operators of Vilenkin-Nörlund means, J. Fourier Anal. Appl., 21, 1 (2015), 76–94.
[29] E. PERSSON, G. TEPHNADZE AND P. WALL, On the Nörlund logarithmic means with respect to Vilenkin system in the martingale Hardy space H_1, Acta math. Hung., 154, 2 (2018), 289–301.
[30] E. PERSSON, G. TEPHNADZE AND G. TUTBERIDZE, On the boundedness of subsequences of Vilenkin-Fejér means on the martingale Hardy spaces, Operators and matrices, 14, 1 (2020), 283–294.
[31] E. PERSSON, G. TEPHNADZE, G. TUTBERIDZE AND P. WALL, Strong summability result of Vilenkin-Fejér means on bounded Vilenkin groups, Ukr. Math. J., 73, 4 (2021), 544–555.
[32] F. SCHIPP, Pointwise convergence of expansions with respect to certain product systems, Anal. Math., 2, 1 (1976), 65–76.
[33] F. SCHIPP, W. R. WADE, P. SIMON AND J. PÁL, Walsh series. An introduction to dyadic harmonic analysis. With the collaboration of J. PáI, Adam Hilger, Ltd., Bristol, 1990.
[34] P. SIMON, On the Cesàro summability with respect to the Walsh-Kaczmarz system, J. Approx. Theory, 106, 2 (2000), 249–261.
[35] P. SIMON, Cesàro summability with respect to two-parameter Walsh systems, Monatsh. Math., 131, 4 (2000), 321–334.
[36] V. A. SKVORCOV, On Fourier series with respect to the Walsh-Kaczmarz system, Anal. Math., 7, 2 (1981), 141–150.
[37] A. SNEIDER, On series of Walsh functions with monotonic coefficients, (Russian) Izvestiya Akad. Nauk SSSR. Ser. Mat. 12, (1948) 179–192.
[38] G. TEPHNADZE, On the maximal operators of Kaczmarz-Nörlund means, Acta Math. Acad. Paed. Nyíregyh., 31, (2015), 259–271.
[39] G. TEPHNADZE, On the maximal operators of Walsh-Kaczmarz-Fejér means, Period. Math. Hungar., 67, 1 (2013), 33–45.
[40] G. TEPHNADZE, Approximation by Walsh-Kaczmarz-Fejér means on the Hardy space, Acta Math., Sci. Ser. B Engl. Ed., 34, 5 (2014) 1593–1602.
[41] G. TEPHNADZE, Fejér means of Vilenkin-Fourier series, Studia Sci. Math. Hungar., 49, 1 (2012), 79–90.
[42] G. TEPHNADZE, The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series, Acta Math. Acad. Paedagog. Nyíházi., (N. S.) 27, 2 (2011), 245–256.
[43] G. TEPHNADZE, On the maximal operators of Kaczmarz-N"orlund means, Acta Math. Acad. Paed. Nyireg., 31, (2015), 259–271.

[44] G. TEPHNADZE, G. Tutberidze, A note on the maximal operators of the N"orlund logarithmic means of Vilenkin-Fourier series, Transactions of A. Razmadze Math. Inst., 174, 1 (2020), 1070–112.

[45] G. TUTBERIDZE, Maximal operators of T means with respect to the Vilenkin system, Nonlinear Studies, 27, 4 (2020), 1–11.

[46] G. TUTBERIDZE, Modulus of continuity and boundedness of subsequences of Vilenkin-Fej"er means in the martingale Hardy spaces, Georgian Math. J., (to appear).

[47] W. S. YOUNG, On the a.e. convergence of Walsh-Kaczmarz-Fourier series, Proc. Amer. Math. Soc., 44, (1974), 353–358.

[48] F. WEISZ, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Mathematics, 1568, Springer-Verlag, Berlin, 1994.

[49] F. WEISZ, Summability of multi-dimensional Fourier series and Hardy spaces, Mathematics and its Applications, 541, Kluwer Academic Publishers, Dordrecht, 2002.

[50] F. WEISZ, θ-summability of Fourier series, Acta Math. Hungar., 103, 1–2 (2004), 139–175.

[51] F. WEISZ, θ-summation and Hardy spaces, J. Approx. Theory, 107, (2000) 121–142.

[52] F. WEISZ, Several dimensional θ-summability and Hardy spaces, Math. Nachr., 230, (2001) 159–180.

[53] F. WEISZ, Marcinkiewicz- θ-summability of double Fourier series, Annales Univ. Sci. Budapest., Sect. Comp., 24 (2004) 103–118.

[54] F. WEISZ, Marcinkiewicz- θ-summability of Fourier transforms, Acta Math. Hungar., 96, 1–2 (2002) 149–160.