Bioconversion of cassava bagasse and sugarcane bagasse using cheap home-made enzymatic cocktails

Gabriela Verónica Díaz (gabrielavdiaz@live.com)
Universidad Nacional de Misiones Facultad de Ciencias Exactas Químicas y Naturales
https://orcid.org/0000-0001-7206-0852

Silvana Soledad Sawostjanik Afanasiuk
National University of Misiones: Universidad Nacional de Misiones

Romina Olga Coniglio
National University of Misiones: Universidad Nacional de Misiones

Juan Ernesto Velázquez
National University of Misiones: Universidad Nacional de Misiones

Pedro Darío Zapata
National University of Misiones: Universidad Nacional de Misiones

Laura Lidia Villalba
National University of Misiones: Universidad Nacional de Misiones

María Isabel Fonseca
National University of Misiones: Universidad Nacional de Misiones

Research Article

Keywords: agroindustrial wastes, Aspergillus niger, pretreatment, enzymatic hydrolysis, bioethanol simulation, cost-effective process

DOI: https://doi.org/10.21203/rs.3.rs-605152/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Bioconversion of cassava bagasse and sugarcane bagasse using cheap home-made enzymatic cocktails

Díaz Gabriela Verónica¹²*, Sawostjanik Afanasiuk Silvana Soledad¹, Coniglio Romina Olga¹², Juan Ernesto Velázquez¹², Zapata Pedro Darío¹², Villalba Laura Lidia¹, Fonseca María Isabel¹²

¹Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones. Ruta Nacional 12, km 7.5. CP 3304, Posadas, Misiones, Argentina.

²CONICET, Buenos Aires, Argentina.

* Correspondence: gabrielavdiaz@live.com
Abstract

The agricultural industries generate lignocellulosic wastes that can be modified by fungi to generate high value-added products. The aim of this work was to analyze the efficiency of the bioconversion of sugarcane bagasse and cassava bagasse using two cheap home-made enzymatic cocktails from Aspergillus niger LBM 134 (produced also from agroindustrial wastes) and compare the hydrolysis yield with that obtained from the bioconversion using commercial enzymes. Sugarcane bagasse and cassava bagasse were pretreated with a soft alkaline solution before the hydrolysis carried out with home-made enzymatic cocktails of A. niger LBM 134 and with commercial enzymes to compare their performances. Mono and polysaccharides were analyzed before and after the bioconversion of both bagasses as well as their microscopic structure. The maximal yield was the 80% of total glucans saccharified from cassava bagasse. The bioconversion of both bagasses were better when we used the home-made enzymatic cocktails than commercial enzymes. We obtained high added-value products from agroindustrial wastes, home-made enzymatic cocktails and hydrolysates rich in fermentable sugars. The importance of this work lays in the higher performance of the cheap home-made enzymatic cocktails over the hydrolytic performance of commercial
enzymes due to the cost of producing the home-made enzymatic cocktails were more
than 500 times lower than commercial enzymes.

Keywords: agroindustrial wastes, Aspergillus niger, pretreatment, enzymatic
hydrolysis, bioethanol simulation, cost-effective process

1. Introduction

Biomass is the core of the bioeconomy concept where the efficient and sustainable
use of this renewable resource constitutes the basis of bioeconomy development [1]. In
this context, biorefineries are a key pillar in the development of a future bioeconomy-
based society based on the development of biorefineries to produce biofuels and
bioproducts from renewable biomass sources and efficient bioprocesses to achieve
sustainable production [1]. Renewable feedstocks can be obtained from primary
biomass sources or wastes derived from household, industrial and agricultural activities.
Using wastes from agricultural activities adds value to the whole chain and those from
worldwide crops are an interesting resource.

Cassava (Manihot esculenta Cranz) and sugarcane (Saccharum sp.) are two of the
major tropical and subtropical agricultural crops [2]. The root of cassava is processed
to isolate the starch or to sell cassava as a pre-cooked meal [3]. The industry of cassava
generates CB as one of the solid by-products; this waste is a problem due to its high
percentage of water, which makes more expensive drying and transporting operations
[3]. Sugarcane is used for sugar and bioethanol 1G production and SCB is one of the
by-products of this industry. Both CB and SCB are generated in large quantities by their
respective industries [4]. The improper disposal of these material represents an
environmental problem increasing the pollution; however, these agroindustrial wastes
can be used for obtaining added-value products while reducing the environmental
pollution [5]. The starch, cellulose and hemicelluloses in CB and SCB can be converted
into monomeric sugars that can fermented into bioethanol [6, 7].

The conversion of hemicellulosic biomass to bioethanol involves a pretreatment to
open up the biomass structure following by an acid or enzymatic hydrolysis of the
complex carbohydrates into simple sugars and their fermentation into ethanol that must
be purified for its use as a fuel [5]. The enzymatic hydrolysis has advantages over the
acidic hydrolysis, the enzymatic hydrolysis requires less energy and milder
environmental conditions and does not require harsh conditions or high temperature
and pressure [5, 8]. Moreover, the use of enzymes, i.e., cellulases and hemicellulases is
the most promising method for hydrolysis of polysaccharides to monomer sugars due
to hemicellulases facilitate cellulose hydrolysis by exposing the cellulose fibers, thus making them more accessible and promoting the commercial production of lignocellulosic ethanol [9]. However, the cost of enzymes production is one of the most important factors that improve the total costs in the bioethanol production [10, 11]. Therefore, research have focused on reducing the costs of enzymes by improving the activity of enzymes or by proposing new low-cost enzymatic cocktails that can perform the conversion of polysaccharides to fermentable monosaccharides [12].

The current challenge on SCB and CB hydrolysis consist in using enzymatic cocktails instead of pure commercial enzymes due to many enzymatic classes are required to convert agroindustrial wastes such as SCB and CB into fermentable sugars [12, 13]. The home-made enzymatic cocktails of *A. niger* LBM 134 grown on SCB and CB were selected to carrying out the hydrolysis of these two agroindustrial wastes. The rationale for using these home-made cocktails was the saccharification potential they presented because the wide spectrum of enzymes they showed [14, 15].

In this context, the aims of this work were to analyze the efficiency of the conversion of two agroindustrial wastes, SCB and CB using two home-made enzymatic cocktails of *A. niger* LBM 134 grown on the respective agroindustrial wastes and to
compare these conversions with that carried out with commercial enzymes.

2. **Materials and methods**

2.1 *Fungal material*

The fungus *A. niger* LBM 134 was isolated from rotten wood of Misiones rainforest and deposited in the collection of the Molecular Biotechnology Laboratory (LBM, from Spanish *Laboratorio de Biotecnología Molecular*), of the Biotechnology Institute Misiones "María Ebe Reca", National University of Misiones. Stock cultures were maintained in 39 g L\(^{-1}\) potato dextrose agar medium (PDA) at 28 °C under static conditions until its mycelial development and conserved at 4 °C.

2.2 *Feedstock preparation and chemical composition analysis*

Two different types of agroindustrial wastes were used: sugarcane bagasse (SCB) and cassava bagasse (CB), both generated by the agroforestry industries of Misiones (Argentina). SCB was sampled from a sugarcane mill at San Javier locality and CB was donated by San Alberto Cooperative in Puerto Rico, Misiones. SCB and CB were dried at 60 °C overnight, respectively, and milled to produce material retained through a 40-mesh screen.

The chemical composition of raw material was determined according to the
laboratory analytical procedure (LAP) and biomass analysis of the National Renewable Energy Laboratory (NREL, https://www.nrel.gov). Carbohydrates were determined by high performance liquid chromatography (HPLC). Concentration of sugars and acetic acid (mg mL\(^{-1}\)) was calculated using standard curves of pure compounds (Sigma-Aldrich, USA): glucose, cellobiose, xylose, arabinose and acetic acid. All results are expressed on a dry wood basis (OD).

2.3 Fungal cultivation and preparation of home-made enzymatic cocktails

To obtain the two home-made enzymatic cocktails, \(A. \text{ niger}\) LBM 134 was grown in two optimized media containing SCB and CB as carbon sources and incubated under optimal conditions according to Diaz et al. [4]. Then, the culture broths were centrifuged at 10,000 g for 20 min at 4 °C and clarified and sterilized by Chromafil Xtra PET-20/25 (0.20 μm) filters (MachereyNagel; Düren, Germany) to obtain the cell-free enzymatic cocktails and finally concentrated using 3 kDa Amicon Ultra centrifugal filters (Merck KGaA; Darmstadt, Germany) to achieve the enzyme levels for carrying out the hydrolysis assays.

2.4 Effect of the bioprocess conditions on enzymatic stability activities

The effect of the optimal temperature (30 °C) and pH (5.0) of the hydrolysis process
was evaluated on the stability of endoxylanase (EX), β-xylosidase (BXL), filter paper
activity (FPase) and β-glucosidase (BGL) activities in both home-made enzymatic
cocktails. For that, the enzymatic cocktails were incubated at 30 °C and pH 5.0 at
different intervals (6, 12, 24, 48, 72 and 96 h). Residual activity of each enzyme was
determined and expressed as a percentage, taking the initial enzymatic activity as 100%.
The buffer solution used was 0.05 M sodium acetate buffer for achieving pH 5.0.

2.5 Determination of enzyme activities

EX activity was determined according to Bailey [16] and FPase activity, according
to Ghose & Bisaria [17] through the quantification of released reducing sugars using
beechwood xylan (Sigma-Aldrich, USA) and Whatman no. 1 filter paper as substrates,
respectively. Reducing sugars were measured by 1,3-dinitrosalicylic acid (DNS) assay
[18] using xylose and glucose as standard curve for EX and FPU activities, respectively.
Absorbance was measured at 540 nm. EX activity was expressed as international units
(U), defined as the amount enzyme needed to produce 1 µmol of xylose per min at
50 °C while FPase activity was expressed as filter paper unit (FPU), defined as the
amount of enzyme releasing 1 µmol of reducing sugar from filter paper per min at 50 °C.
BGL activity was determined according to Ghose & Bisaria [17] using ρ-nitrophenyl-
β-D-glucobioside (PNPG) as substrate; and BXL activity was determined according to Ghose and Bisaria [17] using ρ-nitrophenyl-β-D-xylobioside (PNPX) as substrate, through the quantification of ρ-nitrophenol method. Absorbance was measured at 410 nm. BGL and BXL activities were expressed as U, defined as the amount of enzyme releasing 1 μmol of ρ-nitrophenol per min at 50 °C.

2.6 Bioconversion of SCB and CB

SCB and CB were pretreated with an alkaline solution of NaOH 0.85% (w/v) to remove lignin and avoid the holocellulose hydrolysis. For that, 10 g of bagasse was mixed with 200 mL of the alkaline solution for a consistence of 5% (w/v) at 121 °C during 30 min. Then, the bagasses were washed with water and 0.5 M sodium acetate buffer pH 5.0 at 80 rpm, 25 °C for 12 h; bagasses were dried at 45 °C during 24 h. The enzymatic hydrolysis of both agroindustrial wastes were carried out by the home-made enzymatic cocktails of A. niger LBM 134 and by commercial enzymes for comparing their performance. Also, two controls of these enzymatic hydrolysis were carried out: 1) incubation of bagasses without enzymes for determining the reducing sugars previous the hydrolysis; 2) incubation of the home-made enzymatic cocktails without the bagasses enzymes for determining the reducing sugars of the cocktails. The home-
made enzymatic cocktail for carrying out the hydrolysis of SCB was obtained from *A. niger* LBM 134 grown on SCB and in the same way, the home-made enzymatic cocktail for the CB hydrolysis was obtained from the fungus grown on CB. For that, 1 g of pretreated bagasse was incubated with 25 mL of reaction solution consisting of 0.05 M sodium acetate buffer pH 5.0, 30 °C and the corresponding enzymatic cocktail containing (in Ug\(^{-1}\) of biomass): EX 300, FPU 10 and BGL 20. The commercial enzymes used were EX of Xylanase (Sigma-Aldrich, USA) 300 U g\(^{-1}\), FPU of Celluclast (Sigma-Aldrich, USA) 10 U g\(^{-1}\) and BGL of Viscozyme (Sigma-Aldrich, USA) 20 U g\(^{-1}\). All the enzymatic hydrolysis and the control assays were carried out at 30 °C, pH 5.0, 200 rpm during 24 h without the addition of any antibiotic for no increasing the cost of the bioprocess. After this period, the assays were vacuum filtered and centrifugated at 12,000 g during 20 min. The resulting supernatants were used to quantify reducing sugars with the DNS method [18] and to identify and quantify monomeric sugars by HPLC analysis.

The values were presented as the means of the triplicates ± the standard deviation.

2.7 *Hydrolysis yield*

Saccharification percentages were calculated using reducing sugars with the
following equation [17]:

\[
\% \text{ saccharification} = \frac{\text{reducing sugars (mg/mL)} \times 0.9 \times 100}{[S] \text{ (mg/mL)}}
\]

(Eq. 1)

where, [S] is substrate concentration.

While saccharification percentage may be an acceptable measure of the rate of enzyme activity for calculations of enzymatic synergy, it does not indicate whether monomer sugars suitable for bioethanol production are present [19]. For that, hydrolysis percentages were determined based on the monomer sugars released after the hydrolysis of bagasses using the following equation proposed by the NREL:

\[
\% \text{ Hydrolysis} = \frac{\text{glucose, cellobiose or xylose (mg/mL)} \times 100}{\text{polysaccharides in the substrate} \times FC}
\]

(Eq. 2)

where, FC corresponds to the conversion factor, that is 1.11 for glucose, 1.05 for cellobiose, and 1.13 for xylose.

2.8 Electron microscopic structure of SCB and CB before and after the hydrolysis

Bagasses were observed by scanning electron microscopy (SEM) to evaluate the changes in their microscopic structure during each step of the bioprocess: before and after of the alkaline pretreatment and after the hydrolysis with the home-made enzymatic cocktails and with the commercial enzymes. For that, 0.01 g of bagasses were fixed in each evaluated step with formaldehyde:alcohol:acid (FAA, 10:50:5).
Then, the samples were dehydrated with increasing concentrations of acetone solutions and dried by the method of critical point with CO$_2$. Finally, the samples were metalized with gold and observed with a scanner electron microscope (JEOL 5800LV).

2.9 Simulation model for bioethanol production from SCB and CB

Key parameters such as yield coefficients and rate constants used in the generic flowsheet were assessed, based on experimental and theoretical data. To establish a simulation model for potential yield of bioethanol production from a combined fermentation of glucose and xylose, experimental concentrations of these sugars reported by Kamoldeen et al. [20] were used (Supplementary table 1).

The apparent reaction rate constants for each component were obtained using the experimental concentration values of the components in a progressive reaction. A first order reaction model for glucose and xylose decomposition and conversion rates were proposed. These models were validated with experimental data from the work of Kamoldeen et al. [20]. These models were used to establish a simulation process of bioethanol production.

2.10 Statistical analysis

The experimental and theoretical results were analyzed and graphed with the software
GraphPad Prism 5.01 for Windows (GraphPad Software, San Diego, CA, USA).

3. Results and discussion

3.1 Characterization of SCB and CB

The bioprocesses carried out in this study as a strategy to convert both SCB and CB into enzymatic cocktails and fermentable sugars offered the possibility of obtaining these high added-value products from agroindustrial wastes. Firstly, to know the chemical composition of both SCB and CB for comparing then with monomeric sugars after the enzymatic hydrolysis, the main components of the raw bagasses were identified according to NREL analytical procedure (Table 1). SCB presented more quantities of extractives (fat, proteins, wax), hemicelluloses and lignin than CB. Conversely, CB had more glucans than SCB.

3.2 Characterization of the home-made enzymatic cocktails of A. niger LBM 134

The pH and thermostability of the key enzymes involved in the hydrolysis of lignocellulosic biomass was studied (FPase, BGL, EX and BXL) in the home-made enzymatic cocktails of A. niger LBM 134 due to the pH and the temperature are two main factors affecting the stability of the enzyme activity. The enzymes of both home-
made cocktails showed considerable stability, making them promising to be used in the bioconversion of SCB and CB.

The polysaccharide hydrolytic activities, FPU, BGL, EX and BXL, of the home-made enzymatic cocktails of *A. niger* LBM 134 were measured (Table 2) and the enzymatic levels demonstrated that these cocktails were suitable for carrying out the bioconversion of SCB and CB. Also, the effect of temperature (30 °C) and pH (5.0) on the stability of the enzyme activities were studied due to the importance of the enzymatic stability of in any bioprocess (Figure 1). Thermostability of enzymes was above 50% after 24 h (Figure 1a-b) and pH stability was above 50% after 24 h (Figure 1c-d). Therefore, the hydrolysis assays were carried out under these conditions: 30 °C and pH 5.0 for 24 h.

TABLE 2

FIGURE 1

3.3 Bioconversion of SCB and CB

Also, raw materials, SCB and CB, were extensively characterized hence the correct choice of any pretreatment strategy depends on knowing the fundamental biochemistry of the biomass and the desired products [21]. For that reasons, we employed a soft
alkaline pretreatment on SCB and CB guarantying a specific lignin removal and preserving the polysaccharides into the solid fraction, a fundamental feature required for the hydrolysis [22].

In addition to this effective pretreatment, we used the crude (home-made) enzymatic cocktails of A. niger LBM 134 instead of purified enzymes because there are clear indications that proteins with still unknown functions (present in the crude cocktails) may contribute to the hydrolysis of cellulose and hemicelluloses [19, 23]. Furthermore, the advantages of applying the home-made enzymatic cocktails of A. niger LBM 134 without purification step implies a reduction in the costs of the global biotechnological application. In addition, the home-made enzymatic cocktail of A. niger LBM 134 grown on SCB showed high levels of hemicellulases and cellulases and the enzymatic cocktail of the fungus grown on CB presented high levels of starch-degrading enzymes [4]. Therefore, these enzymatic cocktails were used for carrying out the bioconversion of SCB and CB. Both wastes are complex biomass; hence, their bioconversion require more than one or few enzymes. In this context, the co-action of different enzymatic activities of the home-made cocktails of A. niger LBM 134 makes the difference compared to the commercial enzymes that present only a few enzymatic
activities.

A soft alkaline pretreatment was applied on SCB and CB to remove the lignin content and make available the polysaccharides of the cell walls. This treatment was efficient to carry out the removal of the lignin content without affecting the carbohydrate fraction (no polysaccharides were detected in this fraction by DNS method). After the pretreatment, a liquid with lignin and a solid fraction with the carbohydrates were formed. The lignin was removed and discarded with the liquid fraction 88.39 ± 5.83% for SCB and 73.20 ± 0.23% for CB, from the total lignin content. The lignin removed was also evidenced by the change of colour of the solid fraction; SCB and CB were initially brown before the alkaline treatment and after that, SCB changed to light brown and CB, to yellow cream (data not shown). In addition, there was no polysaccharides loss after the pretreatment of both bagasses due to there were no sugars detected in the liquid fraction by the DNS assay.

The enzymatic hydrolysis of the pretreated bagasses was carried out with the home-made enzymatic cocktails of *A. niger* LBM 134. The reducing and monomeric sugars from both hydrolysates and controls were shown in Table 3. The main products of the hydrolysis of SCB were in (mg mL\(^{-1}\)) 4.51 ± 1.14 glucose and 3.66 ± 1.06 xylose,
achieving a 28% of conversion to glucose and 42% to xylose, respectively. These conversion percentages were similar to that obtained from the hydrolysis of pretreated SCB using commercial enzymes: 23% conversion to glucose and 42% to xylose. The hydrolysates from CB were rich in glucose, 5.12 ± 0.89 mg mL$^{-1}$; reaching a 16.5% of conversion, three times higher than that obtained using commercial enzymes. Reducing sugars were also determined to estimate the saccharification yield; hydrolyzed pretreated CB with the home-made enzymatic cocktails of *A. niger* LBM 134 showed the maximal saccharification yield, 80%.

TABLE 3

Changes in the structure of SCB and CB were analyzed through SEM (Figure 2). Electronic microscopic photographs were taken of typical features of both bagasses before any treatment; the SCB fibers were covered by lignin material (Figure 2a) and the CB surface was heterogenous and porous (Figure 2b). After the alkaline pretreatment, the parenchyma and conductive vessels of the SCB were altered and the fibers had less cohesion due to the lignin removal (Figure 2c). On the other side, starch granules could be distinguished in the pretreated CB (Figure 2d). Both bagasses were also microphotographed after the hydrolysis. After the hydrolysis of SCB with the
enzymatic cocktails of *A. niger* LBM 134, the fibers were amorphous and disorganized showing a large area exposed to the enzymatic action (Figure 2e). Regarding CB hydrolysis by the enzymatic cocktails of *A. niger* LBM 134, the surface was homogenous and no starch granules were shown (Figure 2f). Cellulose fibers of SCB hydrolyzed by commercial enzymes showed similar changes as SCB hydrolyzed by the enzymatic cocktails of *A. niger* LBM 134 (Figure 2g). CB hydrolyzed by commercial enzymes showed a heterogeneous surface and the presence of starch granules (Figure 2h).

The cost of having a more or less complete commercial cocktail of cellulases and xylanases is at least almost $900, more than 500 times the cost of producing the homemade enzymatic cocktails by *A. niger* LBM 134, $1.90 and $1.65 when the fungus grew with SCB and CB, respectively.

FIGURE 2

3.4. Simulation model for bioethanol production from hydrolyzed SCB and CB

Generic flowsheet model for bioethanol obtention was shown in Figure 3. This diagram contemplates feedstock preparation (Figure 3a) and their main component proportions; the enzymes production using the bagasses as carbon sources and the
fungus *A. niger* LBM 134 (Figure 3b) until the obtention of ethanol by a simulation model.

Glucose and xylose yields were used to simulate the fermentation and obtention of bioethanol curve-fitting model (Figure 3d). Firstly, the experimental concentrations of a glucose-xylose combined fermentation reported by Kamoldeen et al. [20] were used for simulating the bioethanol production model (Supplementary table 1). For a more complete utilization of all fermentable sugars released in the SCB hydrolysates, the yeast *Saccharomyces cerevisiae* could be used in addition to pentose-fermenting yeasts like *Scheffersomyces stipitis* ATCC 5837 as indicated Kamoldeen et al. [20].

To obtain the apparent reaction rate constants for each component, the traditional fermentation models were simplified as follows: glucose $>$ ethanol + CO$_2$ x 2 and 3 xylose $>$ ethanol + CO$_2$ x 5. Also, the experimental concentrations of glucose, xylose and ethanol from Kamoldeen et al. [20] work were expressed in mol L$^{-1}$ in a progressive reaction and a first order reaction model was suggested for glucose and xylose decomposition rates:

\[
-Ln\left(\frac{C_G}{C_{G0}}\right) = k_G t; \quad -Ln\left(\frac{C_X}{C_{X0}}\right) = k_X t
\]

(Eq. 3; 4)

Experimental data from Kamoldeen et al. [20] work were adjusted to both
logarithmic expressions and k_G and k_X constants were obtained, $k_G = 0.2631$ and $k_X = 0.0754$, considering the time lag between glucose and xylose consumption start. The conversion models for glucose and xylose were as follows:

$$C_G = C_{G0}e^{-0.2631t}; C_X = C_{X0}e^{-0.0754t}$$ (Eq. 5; 6)

where, G is glucose; X is xylose; t is time. These models were validated with experimental data and no statistical difference was found for $P < 0.05$ (Supplementary Table 2). The validated conversion models and the k_G and k_X constants were used to established the bioethanol production models (Supplementary Table 3):

$$C_{EG} = 2C_{G0}\left[1 - e^{(-0.2631t)}\right]; C_{EX} = 5/3C_{X0}\left[1 - e^{(-0.0754t)}\right]$$ (Eq. 7; 8)

where, EG is ethanol production from glucose; $G0$, glucose concentration at time 0; EX, ethanol production from xylose; $X0$, xylose concentration at time 0; t, time.

The validation of the models was carried out applying them to experimental and theoretical data and comparing with the experimentally produced bioethanol. The model fitted well with the experimental data, there was no significance difference for $P < 0.05$ (Supplementary Table 4). Once the ethanol production model was validated, the curve-fitting was employed for simulating the bioethanol yield from experimental data of the saccharification of SCB and CB, achieving 4.16 mg mL$^{-1}$ and 2.57 mg mL$^{-1}$. \[20\]
respectively (Figure 3e).

FIGURE 3

The successful bioconversion of both SCB and CB occurred due to the home-made enzymatic cocktails were produced using the respective bagasse as substrate for the fungus [8]. Moreover, as the hydrolysis was carried out using fungal enzymes, there was no need to detoxify the hydrolysates since there were no formation of inhibitors that can negatively influence on the fermenting microorganism [10].

Regarding the fermentation step, we used two yeasts enabled to simulate the metabolism of hexoses such as glucose and pentoses as xylose for a more complete utilization of all the sugars released during the hydrolysis of SCB [10]. On the other hand, the fermentation of the hydrolysates of CB was simulated only using the glucose-metabolizing yeast, *S. cerevisiae* because CB hydrolysates were mainly rich in glucose.

From the bioethanol model simulation, the SCB hydrolysates would reach a higher bioethanol yield than the CB hydrolysates; this behavior can be explained by xylose sugars present in the SCB hydrolysates. The importance of the xylose as a fermentable sugar for obtaining bioethanol in higher quantities is relevant since it has been identified that non or poor utilization of the xylose components of biomass is a principal factor
generally affecting the efficiency of lignocellulosic substrates as a renewable feedstock for bioethanol generation [20].

Although the bioconversion of both bagasses reached low values comparing with another works such as Fockink et al. [24] who yielded higher sugars values, the importance of this work is that the performance of the cheap home-made enzymatic cocktails of *A. niger* LBM 134 (produced from agroindustrial wastes) was higher than the hydrolytic performance of commercial enzymes. The conversion to glucose of pretreated SCB confirmed the good performance of cellulases, particularly BGL. This is a very interesting finding due to numerous studies have described a limited production of BGL for almost filamentous fungi including *Trichoderma reesei*, a well-known cellulase-producer, which cocktails must be added with exogenous BGL [8].

Regarding the hydrolysis of SCB with commercial enzymes, the conversion to glucose and xylose were similar to that obtained with the home-made enzymatic cocktails of *A. niger* LBM 134. That fact evidenced the good performance of the home-made enzymatic cocktails used in this work.

The bioconversion from glucans to glucoses in CB using the home-made enzymatic cocktails was three times higher than that obtained using commercial enzymes. This
behavior could be attributed to the action of amylases present in the home-made enzymatic cocktails of *A. niger* LBM 134 [15]. The conversion in reducing sugars of CB using the home-made enzymatic cocktail was two times higher than that obtained by [25] hydrolyzing CB with *Rhizopus oligosporus* (CCT 3762). Moreover, the results in this work are similar to the maximal saccharification percentage obtained by Bayitse et al. [2] hydrolyzing cassava peel with commercial enzymes. In this sense, it is important to highlight that this bioconversion was carried out by home-made enzymatic cocktails and no commercial enzymes. This fact translates into the reduction of costs by using home-made enzymatic cocktails produced from a fungus grown on wastes (SCB and CB). Also, we must set up the potential of CB in order to generate other added-value products, a field poorly explored [25]. The use of this waste as biomass in a biorefinery concept will contribute in countries on process of development and will have a great social and economic impact at regional level through maximizing this local resource to promote industry development and added-value product generation [1, 26].

4. **Conclusions**

The method proposed in this article links the use of predictive model of ethanol yield to conventional biochemical techniques. The complete bioconversion of SCB
and CB to bioethanol involved complex steps to transform the carbohydrate polymers into fermentable sugars. One of the main bottlenecks of the bioethanol process is the cost of producing enzymes to be used in the hydrolysis. Therefore, we used home-made enzymatic cocktails from a native fungus, *A. niger* LBM 134 grown on agroindustrial wastes, SCB and CB. We characterized and analyzed the cost of the home-made enzymatic cocktails we produced and compare the cost with two commercial cellulolytic enzyme mixtures and a commercial xylanase enzyme. We concluded that the bioconversion of SCB and CB carried out in this work by the home-made enzymatic cocktails of *A. niger* LBM 134 was better than the hydrolytic performance using commercial enzymes and thus converting this bioprocess in a cost-effective strategy. Also, we obtained two added-value products from non-use agroindustrial wastes: enzymatic cocktails and fermentable hydrolysates. For these reasons, we believe that this process can potentially applied and adopted on sugarcane mills and starch industry.

Declarations

Availability of data and materials
All data generated or analyzed during this study are available in this study.

Competing interests

The authors declare they have no competing interests.

Funding

This work was supported by Forest Competitiveness and Sustainability Program of the Ministry of Agriculture, Livestock and Fishing (Argentina) [PIA-14005, FONCYT PICT 2016-4695, 2016].

Authors' contributions

GVD and SSSA conceived the present idea, participated in performing experiments, statistical analysis and the design of figures; in addition, GVD designed the study and wrote the manuscript; ROC participated in performing experiments; JEV analysed part of the results; MIF supervised the project and participated in critical revision of the manuscript and PDZ and LLV supervised the project, contributed reagents and materials and participated in critical revision of the manuscript. All authors read, provided critical feedback, and approved the final manuscript.

Acknowledgements

Not applicable
References

1. H. Mamane, S. Altshuler, E. Sterenzon, and V. K. Vadivel, “ISSN 2300-5599 no. 37 December 2020,” *Acta Innov.*, no. 37, pp. 36–46, 2020, [Online]. Available: http://www.proakademia.eu/gfx/proakademia2014/userfiles/_public/acta_innovations/wydanie_37/2020.37.pdf#page=36.

2. R. Bayitse, X. Hou, A. B. Bjerre, and F. K. Saalia, “Optimisation of enzymatic hydrolysis of cassava peel to produce fermentable sugars,” *AMB Express*, vol. 5, no. 1, 2015, doi: 10.1186/s13568-015-0146-z.

3. A. L. M. P. Leite, C. D. Zanon, and F. C. Menegalli, “Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings,” *Carbohydr. Polym.*, vol. 157, pp. 962–970, 2017, doi: 10.1016/j.carbpol.2016.10.048.

4. G. V. Diaz, R. O. Coniglio, J. E. Velazquez, P. D. Zapata, L. Villalba, and M. I. Fonseca, “Adding value to lignocellulosic wastes via their use for endoxylanase
production by Aspergillus fungi,” *Mycologia*, vol. 111, no. 2, pp. 195–205, 2019, doi: 10.1080/00275514.2018.1556557.

5. N. A. Edama, A. Sulaiman, and S. N. Siti, “Enzymatic saccharification of Tapioca processing wastes into biosugars through immobilization technology,” *Biofuel Res. J.*, vol. 1, no. 1, pp. 2–6, 2014, doi: 10.18331/BRJ2015.1.1.3.

6. M. Zhang, L. Xie, Z. Yin, S. K. Khanal, and Q. Zhou, “Biorefinery approach for cassava-based industrial wastes: Current status and opportunities,” *Bioresour. Technol.*, vol. 215, pp. 50–62, 2016, doi: 10.1016/j.biortech.2016.04.026.

7. J. K. Saini, R. Saini, and L. Tewari, “Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments,” *3 Biotech*, vol. 5, no. 4, pp. 337–353, 2015, doi: 10.1007/s13205-014-0246-5.

8. A. M. Lopes, E. X. Ferreira Filho, and L. R. S. Moreira, “An update on enzymatic cocktails for lignocellulose breakdown,” *J. Appl. Microbiol.*, vol. 125, no. 3, pp. 632–645, 2018, doi: 10.1111/jam.13923.

9. F. M. Gírio, C. Fonseca, F. Carvalheiro, L. C. Duarte, S. Marques, and R. Bogel-Łukasik, “Hemicelluloses for fuel ethanol: A review,” *Bioresour. Technol.*, vol.
10. C. A. Cardona Alzate and O. J. Sánchez Toro, “Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass,” *Energy*, vol. 31, no. 13, pp. 2447–2459, 2006, doi: 10.1016/j.energy.2005.10.020.

11. R. O. Coniglio *et al.*, “Enzymatic hydrolysis of barley straw for biofuel industry using a novel strain of Trametes villosa from Paranaense rainforest,” *Prep. Biochem. Biotechnol.*, vol. 50, no. 8, pp. 753–762, 2020, doi: 10.1080/10826068.2020.1734941.

12. G. V. Díaz, P. D. Zapata, L. L. Villalba, and M. I. Fonseca, “Evaluation of new xylanolytic-producing isolates of Aspergillus from Misiones subtropical rainforest using sugarcane bagasse,” *Arab J. Basic Appl. Sci.*, vol. 26, no. 1, pp. 292–301, 2019, doi: 10.1080/25765299.2019.1622922.

13. B. C. Bussamra, S. Freitas, and A. C. da Costa, “Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail,” *Bioresour. Technol.*, vol. 187, pp. 173–181, 2015, doi: 10.1016/j.biortech.2015.03.117.

14. G. V. Diaz, R. O. Coniglio, C. I. Chungara, P. D. Zapata, L. L. Villalba, and M.
I. Fonseca, “Aspergillus niger LBM 134 isolated from rotten wood and its potential cellulytic ability,” *Mycology*, vol. 00, no. 00, pp. 1–14, 2020, doi: 10.1080/21501203.2020.1823509.

15. G. V. Díaz, R. O. Coniglio, A. E. Alvarenga, P. D. Zapata, L. L. Villalba, and M. I. Fonseca, “Secretomic analysis of cheap enzymatic cocktails of Aspergillus niger LBM 134 grown on cassava bagasse and sugarcane bagasse,” *Mycologia*, vol. 112, no. 4, pp. 663–676, 2020, doi: 10.1080/00275514.2020.1763707.

16. M. J. Bailey, P. Biely, and K. Poutanen, “Interlaboratory testing of methods for assay of xylanase activity,” *J. Biotechnol.*, vol. 23, no. 3, pp. 257–270, 1992, doi: 10.1016/0168-1656(92)90074-J.

17. T. Ghose and V. S. Bisaria, “International Union of Pure Commission on Biotechnology * Measurement of,” *Pure Appl. Chem.*, vol. 59, no. 2, pp. 257–268, 1987, doi: 10.1351/pac198759020257.

18. G. L. Miller, “Use of Dinitrosalicylic Acid Reagent miller1959.”

19. J. S. Van Dyk and B. I. Pletschke, “A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes- Factors affecting enzymes, conversion and synergy,” *Biotechnol. Adv.*, vol. 30,
no. 6, pp. 1458–1480, 2012, doi: 10.1016/j.biotechadv.2012.03.002.

20. A. A. Kamoldeen, C. K. Lee, W. N. Wan Abdullah, and C. P. Leh, “Enhanced ethanol production from mild alkali-treated oil-palm empty fruit bunches via co-fermentation of glucose and xylose,” *Renew. Energy*, vol. 107, pp. 113–123, 2017, doi: 10.1016/j.renene.2017.01.039.

21. F. D. Ramos and M. A. Villar, “¿Qué son los biocombustibles y qué lugar ocupan en el panorama energético argentino y mundial?,” *Univ. Nac. del Sur-Conicet*, vol. 25, pp. 69–73, 2016, [Online]. Available: http://ri.conicet.gov.ar/bitstream/handle/11336/25791/CONICET_Digital_Nro. cf291889-a370-4b7a-915b-4de3e1058e97_A.pdf?sequence=2&isAllowed=y.

22. D. Muñoz Muñoz, A. Pantoja Matta, and M. Cuatin Guarin, “Aprovechamiento de residuos agroindustriales como biocombustible y biorefinería,” *Ingresar a La Rev.*, vol. 12, no. 2, pp. 10–19, 2014.

23. R. O. Coniglio *et al.*, “Optimization of cellobiohydrolase production and secretome analysis of Trametes villosa LBM 033 suitable for lignocellulosic bioconversion,” *Arab J. Basic Appl. Sci.*, vol. 26, no. 1, pp. 182–192, 2019, doi: 10.1080/25765299.2019.1598107.
D. H. Fockink, A. R. C. Morais, L. P. Ramos, and R. M. Łukasik, “Insight into the high-pressure CO2 pre-treatment of sugarcane bagasse for a delivery of upgradable sugars,” *Energy*, vol. 151, pp. 536–544, 2018, doi: 10.1016/j.energy.2018.03.085.

B. Escaramboni, E. G. Fernández Núñez, A. F. A. Carvalho, and P. de Oliva Neto, “Ethanol biosynthesis by fast hydrolysis of cassava bagasse using fungal amylases produced in optimized conditions,” *Ind. Crops Prod.*, vol. 112, no. November 2017, pp. 368–377, 2018, doi: 10.1016/j.indcrop.2017.12.004.

D. Caccia, M. Dugo, M. Callari, and I. Bongarzone, “Bioinformatics tools for secretome analysis,” *Biochim. Biophys. Acta - Proteins Proteomics*, vol. 1834, no. 11, pp. 2442–2453, 2013, doi: 10.1016/j.bbapap.2013.01.039.

Table 1 Chemical composition of raw CB and SCB used for the bioconversion. The values represent the means of the triplicates ± standard deviation.

Components	Composition (%)	
	CB	SCB
Glucans	72.5 ± 0.59	43.72 ± 0.77
Hemicellulose	16.6 ± 1.66	24.99 ± 8.56
Soluble lignin	6.04 ± 0.15	16.49 ± 2.55
Insoluble lignin	3.29 ± 0.9	9.37 ± 1.33
Table 2 Enzyme activities of home-made cocktails of *A. niger* LBM 134 grown on SCB and CB. Activity levels represented by the means of biological triplicates ± standard deviation. The cocktails of the fungus grown on SCB and CB contained total proteins 100.46 ± 27.01 µg mL$^{-1}$ and 329.62 ± 1.17 µg mL$^{-1}$, respectively.

Enzyme activities (UmL$^{-1}$)	Crude enzymatic extracts	
SCB	CB	
Filter paper activity	0.35 ± 0.00	0.38 ± 0.00
β-glucosidase	0.17 ± 0.00	0.28 ± 0.00
Endoxylanase	106 ± 14.67	144 ± 5.65
Β-xylosidase	0.74 ± 0.05	0.18 ± 0.03

SCB: sugarcane bagasse; CB: cassava bagasse

Table 3 Released sugars from the enzymatic hydrolysis of SCB and CB. In this bioconversion, we used the home-made cocktails of *A. niger* LBM 134 and controls. The values represent the means (in mg mL$^{-1}$) of the biological triplicates ± standard deviation.

Assays	Reducing sugars	Cellobiose	Glucose	Xylose	Arabinose	Acetic acid
SCB						
Enzymatic hydrolysis of SCB with cocktails of \(A. niger\) LBM 134						

Control 1: enzymatic hydrolysis of SCB with commercial enzymes						
Control 2: SCB + buffer						
Control 3: enzymatic cocktails of \(A. niger\) LBM 134						
CB						

| SCB: sugarcane bagasse; CB: cassava bagasse | ND: not detected |

SCB	CB
22.09 ± 2.48 ± 5.18 ± 4.46 ± 0.55 ± 0.13 2.56 ±	22.81 ± 1.00 ± 5.12 ± 0.65 ± 0.11 ± 0.02 2.98 ±
1.26 0.53 1.14 1.06 0.55 ± 0.13 0.48	1.63 0.27 0.89 0.06 ND ND ND
17.41 ± 2.45 ± 4.34 ± 3.62 ± 0.07 ± 0.01 2.14 ±	14.73 ± 0.61 ± 2.33 ± ND 0.03 ± 0.00 2.37 ±
0.13 0.01 0.03 0.09 0.07 ± 0.01 0.02	2.01 0.02 0.14 ND ND ND
ND 0.01 ± 0.04 ± 0.04 ± ND ND ND 3.17 ±	ND 1.00 ± 0.63 ± ND ND ND ND
ND 0.00 0.00 0.00 ND	ND 0.01
ND 0.99 ± 0.38 ± ND ND ND ND	ND 0.00 0.00 ND ND ND
ND	ND

| Control 2: CB + buffer |
| Control 3: enzymatic cocktails of \(A. niger\) LBM 134 |

| ND | 1.10 ± 0.33 ± 0.21 ± 0.04 ± 0.00 3.22 ± |
| ND | 0.09 0.31 0.19 0.04 ± 0.00 0.28 |
| ND | ND ND ND ND

| ND | ND ND ND |

| ND | ND |

SCB: sugarcane bagasse; CB: cassava bagasse
ND: not detected
Figure 1. Enzymatic stability of the principal enzymes in *A. niger* LBM 134 enzymatic cocktails. Thermostability of FPase, BGL, EX and BXL of the fungus grown on SCB (a) and CB (b). pH stability of FPase, BGL, EX and BXL of the fungus grown on SCB (c) and CB (d). The 100% of each enzyme activity corresponded to the levels shown in Table 2. FPase, filter paper activity; BGL, β-glucosidase; EX, endoxylanase; BXL, β-xylosidase; SCB, sugarcane bagasse; CB, cassava bagasse.
Figure 2. Electronic microscopic photographs of SCB and CB a) Structure of raw SCB without any pretreatment. b) Structure of raw CB without any pretreatment. c) SCB pretreated with alkaline solution Na(OH) 0.85% (w/v). d) CB pretreated with alkaline
solution Na(OH) 0.85% (w/v). e) SCB after alkaline pretreatment and hydrolysis with home-made enzymatic extract of *A. niger* LBM 134 grown on SCB. f) CB after alkaline pretreatment hydrolysis with home-made enzymatic extract of *A. niger* LBM 134 grown on CB. g) SCB after alkaline pretreatment hydrolysis with commercial enzymes. h) CB after alkaline pretreatment hydrolysis with commercial enzymes. SCB, sugarcane bagsse; CB, cassava bagasse.

Figure 3. Bioprocess flowsheet of home-made enzymatic cocktails and bioethanol production from SCB and CB. a) Main components of raw SCB and CB: G, glucans; HM, hemicelluloses; L, lignin; A, ash; E, extractives. Both bagasses were prepared for
being used in the enzymatic cocktails production by *A. niger* LBM 134 (b) and in the pretreatment process (c) for removing lignin; the solid fraction, rich in polysaccharides, was selected for continuing the process. d) Hydrolysis of SCB and CB using the home-made enzymatic cocktails for obtaining the hydrolysates rich in monomeric sugars, GLU and XYL. e) Simulation model for bioethanol production from SCB and CB from the fermentable sugars obtained in this work. SCB, sugarcane bagasse; CB, cassava bagasse; GLU, glucose; XYL, xylose.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementarymaterial.docx