Measuring Asymmetry in Insect-Plant Networks

Cláudia P. T. Cruz\(^1\), Adriana M. de Almeida\(^2\) and Gilberto Corso\(^3\)

\(^1\) Programa de Pós-Graduação em Física, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitário, Lagoa Nova, CEP 59078 972, Natal, RN, Brazil.
\(^2\) Departamento de Botânica, Ecologia e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitário, Lagoa Nova, CEP 59078 972, Natal, RN, Brazil.
\(^3\) Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitário, Lagoa Nova, CEP 59078 972, Natal, RN, Brazil.

E-mail: claudia@dfte.ufrn.br, adrianam@ufrn.br and corso@cb.ufrn.br

Abstract. In this work we focus on interaction networks between insects and plants and in the characterization of insect plant asymmetry, an important issue in coevolution and evolutionary biology. We analyze in particular the asymmetry in the interaction matrix of animals (herbivorous insects) and plants (food resource for the insects). Instead of driving our attention to the interaction matrix itself we derive two networks associated to the bipartite network: the animal network, \(D_1 \), and the plant network, \(D_2 \). These networks are constructed according to the following recipe: two animal species are linked once if they interact with the same plant. In a similar way, in the plant network, two plants are linked if they interact with the same animal. To explore the asymmetry between \(D_2 \) and \(D_1 \) we test for a set of 23 networks from the ecologic literature networks: the difference in size, \(\Delta L \), clustering coefficient difference, \(\Delta C \), and mean connectivity difference, \(\Delta \langle k \rangle \). We used a nonparametric statistical test to check the differences in \(\Delta L \), \(\Delta C \) and \(\Delta \langle k \rangle \). Our results indicate that \(\Delta L \) and \(\Delta \langle k \rangle \) show a significative asymmetry.

1. INTRODUCTION

In ecology, networks are mainly used to visualize and describe food webs [1]. In the last two decades, scientists have shown a growing interest in networks in order to study other ecological interactions such as pollination, parasitism [2], seed dispersion or detrivory [3]. Plants and their pollinators or animals and their parasites are examples of interaction networks in community ecology. All these community ecology systems can be described by interaction matrices, or bipartite graphs. In pollinator networks, for example, the two functional groups are pollinators and flowering plants. The pollinators and flowering plants are the vertices of the bipartite network and observed interactions are drawn as links. In this context a species (pollinator or plant) that interacts with many species is called a generalist, while a species that have exclusive interactions or with few species is called specialist. In Ecology, the field data corresponding to the digraph is composed by two sets of species and the corresponding links (interactions) between them.

Some metrics over the interaction matrices have been used to characterize its order or structure, for instance, the modularity, the connectivity, the nestedness and the asymmetry [3].
The main objective of this manuscript is to explore the asymmetry of the interaction matrix using a new tool. Instead of driving our attention to the interaction matrix itself we focus the analysis on the two networks derived from the bipartite network: the animal network, D_1, and the plant network, D_2. These networks are built in the standard way in network analysis [4]. This work is organized as follows: in section 2 we outline the interaction matrix, where we show the mathematical background and presented the biological data set; in section 3 we present our results; finally in section 4 we discuss the results of the work.

2. INTERACTION MATRIX

2.1. MATHEMATICAL BACKGROUND

In order to fix the notation we call digraph an object D formed by two sets of vertices V_1 and V_2 and a set of links between these two sets. The digraph is completely described by the adjacency matrix, M, of order $L_1 \times L_2$, where L_1 and L_2 are the number of elements of V_1 and V_2, respectively. By definition:

$$M_{i,j} = \begin{cases}
0, & \text{if } i \text{ and } j \text{ are not linked.} \\
1, & \text{if there is a link between vertices } i \text{ of } V_1 \text{ and } j \text{ of } V_2
\end{cases} \quad (1)$$

![Figure 1](image1.png)

Figure 1. In (a) we have a example of an adjacency matrix, M, with zeros and ones sites; In (b) we have the representation of bipartite graph of the adjacency matrix, M, and, in (c) we have the two networks, D_1 and D_2, derived from the interaction network.

Moreover, the number of links of a vertex l is k_l and the distribution of links of D_1 and D_2 is P_{l_1} and P_{l_2} respectively. We define the occupancy number ρ as the fraction of ones in the adjacency matrix. For N, the total number of ones in M, we have

$$\rho = \frac{N}{L_1L_2} \quad (2)$$

We study the asymmetry of a bipartite graph M using the two associated networks of M: the animal network, D_1, and the plant network, D_2. These networks are constructed according to...
the following recipe: two animal species are linked once if they interact with the same plant. In a similar way, in the plant network, two plants are linked if they interact with the same animal. In figure 2.1 we show the formation of two associated networks from a source bipartite graph.

2.2. ECOLOGICAL DATA SET

In the present paper we select a set of 23 plant-insect matrices of herbivorous insects and its host plants, which is characterized as antagonist interactions [4]. All the analyzed matrices consist of insects observed feeding on vegetal tissues of host plants. We used this data set by convenience, but the same study conducted here could be performed with mutualistic interactions, as well as with other antagonist interactions. In table 1 we show the main characteristics of the 23 interaction matrices used in this work: the number of plants (flowering plants) D_2, the number of animals (insects) in the matrix D_1, the occupancy of the matrix ρ and the reference of the data in the literature.

Matrix	L_2	L_1	ρ	Reference
CJ	33	21	0.13	[5]
PO	13	12	0.44	[6]
AN	33	29	0.05	[7]
MG	53	92	0.02	[8]
AP	27	22	0.09	[9]
SR	15	8	0.49	[10]
CW	33	55	0.09	[11]
JM	54	24	0.13	[12]
RA	13	9	0.23	[13]
CP	18	15	0.16	[14]
BF	43	14	0.14	[15]
PD	55	43	0.04	[16]
FJ	107	104	0.01	[17]
FG	18	57	0.43	[18]
NE	46	22	0.06	[19]
BL	63	25	0.08	[15]
DW	10	18	0.11	[20]
CE	21	32	0.20	[21]
JS	51	27	0.05	[22]
PP	8	11	0.15	[23]
PN	11	11	0.35	[6]
BJ	30	34	0.08	[9]
JA	52	22	0.16	[24]
3. RESULTS

In this section we analyze asymmetry between plant and animal interaction network. To explore the asymmetry between D_2 and D_1 we test for the set of 23 antagonist networks the following quantities: the difference in size, ΔL, clustering coefficient difference, ΔC, and mean connectivity difference, $\Delta <k>$.

We start our analysis with the size difference to test for size bias. The clustering coefficient C quantifies how much the vertices connected with a given vertex are connected among them. Indeed, C counts the number of triangles in the network [4]. Finally $<k>$ measures the average number of connections of the vertices, $<k> = \frac{2L}{N}$.

Figures 2, 3 and 4 summarize the differences between animal and plant networks. In this set of figures we show in the horizontal axis the 23 matrices. In figure 2 we show size difference, $\Delta L = L_2 - L_1$. In figure 3 we show the clustering coefficient difference, $\Delta C = C_2 - C_1$ and, finally, in figure 4 we have the mean connectivity difference, $\Delta <k> = <k>_2 - <k>_1$.

Figure 2. Normalized size difference, $\Delta L = \frac{L_2 - L_1}{L_2 + L_1}$, for the 23 networks depicted in table 1. This figure reveals an asymmetry between the two sets, the size of the insect set is statistically larger than the plants. This visual result is supported by statistical inference in the text.

In figure 2 we ranked the networks according to size difference to better visualize the results. The figures 2, 3 and 4 have the studied quantities for the set of the 23 networks, in all these figures we plot the networks in the same order to compare the results. In the inset of figures 3 and 4 the same result ranked. The figure in the inset allows direct visual check for asymmetry while the main figure is useful to compare the differences among specific networks. A simple visual inspection of the figures reveals that the ΔL is not responsible for the behavior of ΔC or $\Delta <k>$. That means, a potential asymmetry in ΔC or $\Delta <k>$ is not due to the most obvious asymmetry in ΔL.

In figure 2 is possible to see that the size distribution is asymmetric. This result is not surprising considering that the number (abundance and diversity) of insect exceed the number of plants in nature, and that interaction networks usually present more animals than plants. Otherwise, there is a paper in the literature has found, for a set of mutualist interaction networks, that there is an asymmetry between animal and plant sizes [2]. In figure 3 is plotted the clustering coefficient difference, ΔC. A simple inspection in the data show an almost symmetric
Figure 3. Clustering coefficient difference, $\Delta C = L_2 - L_1$, for the 23 networks depicted in table 1. We use in this picture the same network order of figure 2. In the inset we show the same data, but ranked to visualize the asymmetry. Indeed, the statistical test reveals no significative difference between the sets, ΔC do not reveals asymmetry.

Figure 4. Mean connectivity difference, $\Delta \langle k \rangle = \langle k \rangle_2 - \langle k \rangle_1$, for the 23 networks depicted in table 1. We use in this picture the same network order of figure 2. In the inset we show the same data set, but ranked to highligth the asymmetry between the two sets. In the text we confirm the assymetry of the figure using a statistical test.

distribution of ΔC. This result indicates that ΔC is not an index appropriate to measure asymmetry in this class of bipartite networks. In the next section we discuss the possible use of the normalized clustering coefficient. In figure 4 is plotted the mean connectivity difference, $\Delta \langle k \rangle$. This result seems to indicate that the $\Delta \langle k \rangle$ is a good candidate to be used as an
asymmetry index in matrices networks.

We use the Wilcoxon test and the signal test to compare the difference between the properties of the two sets (plants and insects). The two tests produce the same result. For a significance level \(p < 0.05 \), we verified asymmetry for \(L(L_1 > L_2) \), \(<k> (\leq k \leq k_2) \) but not for \(C(C_1 < C_2) \).

4. CONCLUSION

In this work we developed a simple and effective way to measure the differences between two groups of ecological actors in a community context. We project the bipartite interaction network into two sets of vertices and construct two new networks. We use the difference between the indices of these new networks to characterize the asymmetry between these groups. We tested our technique in a set of 23 antagonist interaction networks insect and flowers. We observed for a significant level \((p < 0.05) \) difference between the groups for the network size \(\Delta L \) and the mean connectivity \(\Delta k \). The clustering coefficient \(C \) have not shown difference between the sets.

We have two perspectives in mind. The first is to use other network indices to evaluate the asymmetry. The second point is not related to asymmetry, but to apply the same technique of this work to characterize the difference between nested and modular interaction networks.

We have explored the clustering coefficient which shows a distribution almost symmetric for the studied group of matrices. In the network literature it is common to use the normalized clustering coefficient, \(C_{\text{norm}} = \frac{C}{C_{\text{rand}}} \), where \(C_{\text{rand}} = \frac{<k>}{N} \) is the clustering coefficient of an associated random network with number of vertices \(N \). This quantity is used when we compare a network with its random counterpart. This normalized index expresses directly how far a network is from the random model and it is used to measure the complexity of a network [4]. The quantity \(C_{\text{norm}} \) is as asymmetric as \(<k> \) (we have not shown this result in this paper), but its asymmetry comes from \(<k> \). Nevertheless, we point that our interaction matrix problem is asymmetric for \(C \), a common measure of network science.

In a future work we will explore other network indices in the search for asymmetry in community networks. Indeed, there is a large set of indices to test, we have not explored, for instance, neither any centrality or betweenness index, nor the degree distribution \(P(k) \) of the networks. There is an important study on the subject that claims that \(P(k) \) of animals and plants in mutualistic interaction networks follow power-law distributions, or truncated power-law [29]. This result was criticized by Okuyama, T. [30], that remark that \(P(k) \) of interaction networks are not easily classified into a single distribution class. The question we pose, otherwise, is other, we are not interested in \(P(k) \) of the interaction network, but of animal and plant networks, which is not the same. By construction the networks \(D_2 \) and \(D_1 \) present much higher \(<k> \) values than the interaction matrices, a fact that has deep consequences on \(P(k) \). Finally, the road to achieve a good index to quantify asymmetry in interaction networks is only at the beginning. What is clear in this project is that the understanding of asymmetry in mutualistic and antagonistic networks is a major challenge in communities ecology and evolutionary biology.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of CNPq (Conselho Nacional de Pesquisa, Brazil). We also thanks to Umberto Kubota, Graciela Valladares and Thomas Lewinsohn made unpublished data available. Most tables were gathered by A.M. Almeida during a postdoctoral fellowship with grant from FAPESP.
REFERENCES

[1] Odum E P 1983 Basic Ecology (CBS College Publishing)
[2] Vásquez D P, Bluthgen N, Cagnolo L and Chacoff N P 2009 Uniting pattern and process in plat-animal mutualistic networks: a review Ann. Bot. 103 pp 1445-57
[3] Bascompte J and Jordano P 2007 Plant - animal mutualistic networks: the architecture of biodiversity Annu. Rev. Ecol. Evol. Syst. 38 pp 567-93
[4] Réka Albert and Albert-László Barabási 2002 Statistical mechanics of complex networks Rev. Mod. Phys. 74 pp 47-97
[5] Almeid, A M 2001 Biogeografia de interações entre Eupatorieae (Asteraceae) e insetos endófagos de capítulos na Serra da Mantiqueira PhD Thesis
[6] Pielou E C 1974 Biogeographic range comparisons and evidence of geographic variation in host-parasite relations Ecology 55 pp 1359-67
[7] Valladares G Unpublished data
[8] Memmott J, Godfray H C J and Gauld I D 1994 The structure of a tropical host-parasitoid community J. An. Ecol. 63 pp 521-40
[9] Lewinsohn, T M Unpublished data
[10] Sheldon J K and Rogers L E 1978 Grasshopper food habitats within a shrub-steppe community Oecologia 32 pp 85-92
[11] Claridge M F and Wilson M R 1981 Host plant associations, diversity and species-area relationships of mesophyll-feeding leafhoppers of trees and shrubs in Britain Ecol. Ent. 6 pp 217-38
[12] Joern A 1979 Feeding patterns in grasshoppers (Orthoptera: Acrididae): factors influencing diet specialization Oecologia 38 pp 325-47
[13] Ratchke B J 1976 Competition and coexistence within a guild of herbivorous insects Ecology 57 pp 76-87
[14] Prado P I, Almeida A M, Lewinsohn T M, Norrbom A, Buys B D, Macedo A C and Lopes M B 2002 The Fauna of Tephritidae (Diptera) from Capitula of Asteraceae in Brazil Proc. Entomol. Soc. Wash. 104(4) pp 1006-27
[15] Buruga J H and Olembo R J 1971 Plant food preferences of some sympatric drosophilids of Tropical Africa Biotropica 3 pp 151-58
[16] Potluri A, Jermy T and Szentesi A 2001 On the leguminous host plants of seed predator weevils (Coleoptera: Apionidae, Curculionidae) in Hungary Acta Zool. Acad. Sci. Hung. 47 (4) pp 285-99
[17] Flowers R W and Janzen D 1997 Feeding records of Costa Rican leaf beetles (Coleoptera: Chrysomelidae) Florida Entomol. 80 pp 334-64
[18] Futuyama D J and Gould F 1979 Associations of plants and insects in a deciduous forest Ecol. Monog. pp 33-50
[19] Neck R W 1976 Lepidopteran foodplant records from Texas J. Res. Lep. 15 (2) pp 75-82
[20] Dawah H A, Hawkins B A and Claridge M F 1995 Structure of the parasitoid communities of grass-feeding chalcid wasps J. An. Ecol. 64 pp 708-20
[21] Kubota U 2003 Fenologia da comunidade de Asteraceae, variação temporal e determinantes locais de riqueza de insetos endófagos de capítulos M S Thesis Universidade de Campinas SP Brazil
[22] Jermy T and Szentesi A 2003 Evolutionary aspects of host plant specialisation - a study on bruchids (Coleoptera: Brichidae) Oikos 101 pp 196-204
[23] Pipkin S B, Rodriguez R L and Leon J 1966 Plant host specificity among flower-feeding neotropical drosophilae (Diptera: Drosophilidae) Am. Nat. 100 pp 135-56
[24] Joern A 1979 Feeding patterns in grasshoppers (Orthoptera: Acrididae): Factors influencing diet specialization Oecologia 38 pp 325-47
[25] Vásquez D P and Aizen M A 2004 Asymmetric specialization: a pervasive feature of plant-pollinator interactions Ecology 85 pp 1251-57
[26] Guimarães Jr, P R, Rico-Gray V, Reis S F and Thompson J N 2006 Asymmetries in specialization in ant-plant mutualistic networks Proc. R. Soc. B 273 pp 2041-47
[27] Bascompte J, Jordano P and Olesen J M 2006 Asymmetric coevolutionary networks facilitate biodiversity maintenance Science 312 pp 431-33
[28] Vásquez D P and Aizen M A 2003 Null model analyses of specialization in plant-pollinator interactions Ecology 84 pp 2493-2501
[29] Jordano P, Bascompte J and Olesen J M 2003 Invariant properties in coevolutionary networks of plant-animal interactions Ecol. Lett. 6 pp 69-81
[30] Okuyama T 2008 Do mutualistic networks follow power distributions? Ecological Complexity 5 pp 59-65