The Significance of Soil in Watershed Management

Gy. Várallyay

Research Institute for Soil Science and Agricultural Chemistry (RISSAC) of the Hungarian Academy of Sciences, Herman Ottó út 15. H-1022 Budapest, Hungary, g.varallyay@rissac.hu

Abstract

According to forecasts the probability, frequency, duration and intensity of extreme hydrological events and soil moisture situations (flood, waterlogging, overmoistening versus droughts sometimes at the same time, in the same place) will be increasing in the future due to: high (and increasing) spatial and time variability, hardly predictable irregularity of atmospheric precipitation, frequency of heavy (intensive) rainfalls; changing rain:snow ratio and quick snowmelt; macro-, meso- and microrelief; changing land use and cropping pattern; soil characteristics.

Under such conditions, as in Hungary, situated in the deepest part of the hydrogeologically practically closed Carpathian Basin – it is an important fact that soil is the largest potential natural water reservoir and a great part of the atmospheric precipitation can be stored in the 0–100 cm layer of the soil. This potential water storage capacity may prevent or reduce the risk of the unfavourable economic/ecological/environmental consequences of climate (especially precipitation) extremes and hydrological events. In many cases, however this potential storage capacity cannot be used efficiently, because:

- infiltration is prevented or limited by full water saturation; frozen topsoil; or a compact, hardly permeable soil layer on or near to the soil surface;
- the infiltrated water is not stored because of low water retention.

The consequences of these cases are increasing surface runoff, evaporation and deep-filtration losses, and increasing hazard of extreme water events. Consequently, all efforts have to be made to help infiltration into the soil and the storage of water within the soil in plant available form. These operations are an unavoidable part of efficient soil moisture control, watershed management and environment protection.
Keywords
Drought sensitivity; extreme moisture regime; hydrophysical properties; soil databases; waterlogging hazard

I. Introduction

The rational use of natural resources – including water, soil and ecosystems, the geological strata–soil–water–biota–plant–near surface atmosphere continuum –, maintaining their favourable quality and desirable multifunctionality are important elements of sustainable development and efficient watershed management.

The natural conditions of the Carpathian Basin, especially the plains, are generally and relatively favourable for rainfed biomass production for food, fodder, industrial raw material and energy. These conditions, however, show extremely high, irregular, consequently hardly predictable spatial and temporal variability, often extremes, and sensitively react to various natural or human-induced stresses (Láng et al., 1983; Várallyay, 1985, 2004a,b, 2006a). The generally favourable agro-ecological potential is mainly limited by three soil factors:

1. **Soil degradation processes** (Várallyay, 2000, 2004b, 2006a).
2. **Extreme moisture regime**: simultaneous hazard of flood, waterlogging and drought sensitivity (Pálfi, 2000; Várallyay, 2005a).
3. **Unfavourable changes in the biogeochemical cycles of elements**, especially of plant nutrients and pollutants (Láng et al., 1983).

The prevention, elimination or at least moderation of these unfavourable processes are important tasks of social and agricultural development, watershed management and environment protection (Várallyay, 2006b).

II. Limited water resources, high variability

According to global assessments the availability of good-quality water will be one of the main conflict problems of sustainable development and the most important limitation to the extension of biomass production. The „quality of life” depends – to a great extent – on the rational use of limited sweetwater resources, becoming a strategic element of the environment in many parts of the World. Consequently, the increase of water use efficiency, including a proper watershed management, has particular significance.

It can be forecast with high probability that in future water will be the determining (hopefully not limiting) factor of food security and environmental safety in the Carpathian Basin (Somlyódy, 2000; Várallyay, 1988, 1989b). Consequently, the improvement of water use efficiency with rational watershed management will be one of the key issues of agricultural production, rural development and environment protection (Somlyódy, 2000).

Water resources are limited (Pálfi, 2000; Somlyódy, 2000; Várallyay, 2006a). The average 450–600 mm annual precipitation shows extremely high, irregular and hardly predictable territorial (Fig. 1) and temporal (Fig. 2) variability – even at micro-scale. And there is an increasing hazard of heavy, high intensity rains: Figure 3. Under such conditions a considerable part of the atmospheric precipitation is lost by surface runoff, deep downward filtration and evaporation.
Annual precipitation will not be more in the future and its unfavourable spatial and time distribution will even be less favourable. The risk, probability, frequency, duration and intensity of extreme weather and hydrological events and moisture situations is expected to increase (Várallyay, 2000, 2006b). The available quantity of surface waters (rivers) will not increase, particularly in the critical low-water periods (Somlyódy, 2005). A considerable part of the subsurface waters (especially in the lower parts of the Basin) cannot be used for irrigation because of their poor quality (salinity, alkalinity, sodicity) (Szabolcs et al., 1969; Várallyay, 1974; Várallyay & Rajkai, 1989). Another part is not utilisable because of environmental regulations. (E.g. preventing the sink of the water table and its unfavourable ecological consequences, like the serious „desertification symptoms” in the Danube–Tisza Interfluve sand plateau.

The annual water balance is negative in the lowland: 450–600 mm precipitation vs. 680–720 mm potential evapotranspiration. The negative water balance is equilibrated by horizontal inflow (on the
surface as runoff, in the unsaturated zone as seepage; and in the saturated zone as groundwater flow), which leads to the accumulation of soluble constituents. In addition to the hardly predictable atmospheric precipitation pattern, there are to other reasons of extreme soil moisture regime are:

- the heterogeneous microrelief of the „flat” lowland;
- the highly variable, sometimes mosaic-like soil cover and the unfavourable physical and hydrophysical properties of some soils (mainly due to heavy texture, high clay and swelling clay content, or high sodium saturation: ESP, Várallyay, 1985, 2005a).

III. Hydrophysical properties of soils

According to our comprehensive assessment (Várallyay, 1985; Várallyay et al., 1980) 43% of Hungarian soils can be characterized by unfavourable, 26% by moderately (un)favourable and 31% by favourable moisture regime, as illustrated by Figure 4, indicating the main reasons of various moisture regimes, as well.
The 9 main soil water categories are as follows: 1. Soils with very high infiltration rate (IR), permeability (P) and hydraulic conductivity (HC); low field capacity (FC); and very poor water retention (WR). 2. Soils with high IR, P and HC; medium PC; and poor WR. 3. Soils with good IR, P and HC; good FC; and good WR. 4. Soils with moderate IR, P and HC; high FC; and good WR. 5. Soils with moderate IR, poor P and HC; high PC and high WR. 6. Soils with unfavourable water management: low IR, extremely high WR. 7. Soils with extremely unfavourable water management: very low IR, extremely low P and HC; and very high WR. 8. Soils with good IR, P and HC; and very high FC. 9. Soils with extreme moisture regime due to shallow depth. The main profile variants: (1) texture becomes lighter with depth (soils formed on relatively light-textured parent material): 2/1, 3/1. (2) uniform texture within the profile: 1/1, 2/2, 3/2, 4/2, 5/2. (3) relative clay accumulation in the horizon B: 4/1, 5/1. Profile variants of category 6: 6/1: heavy-textured soils with poor structure and a compact layer formed under the influence of misguided soil management; 6/2: pseudogleys; 6/3: deep meadow solonetzes, solonetzes turning into steppe formation and solonetzi meadow soils (with an A horizon thicker than 15 cm); 6/4: soils with salinity/alkalinity in the deeper horizons; 6/5: peaty meadow soils.

In the last years a comprehensive soil survey–analysis–categorization–mapping–monitoring system was developed in Hungary. The most important elements of the system are as follows:
(a) Category system and 1:100 000 scale map of the *hydrophysical characteristics* of soils (Várallyay et al., 1980): Figure 5.
(b) Moisture regime types of Hungarian soils and their 1:100 000 scale map (Várallyay, 1985): Figure 6.
(c) Large-scale (1:10000–1:25000) mapping of hydrophysical properties and moisture regime of soils (Várallyay, 1989a).
IV. Soil as the largest potential natural water reservoir

Under the given environmental conditions it is an important fact that soil is the largest potential natural water reservoir (water storage capacity) of the Carpathian Basin and the Hungarian Plains (Várallyay, 2004a, 2005b, 2006a). The 0–100 cm soil layer may store about 25–30 km³ water, which is more than half of the average annual precipitation (500–600 mm ~ 50–55 km³/year). About 50% of it is „available moisture content“.

In many cases, however, this huge potential water storage capacity cannot be utilized because of following reasons:

- the soil pores are not „empty“, they are filled up to a certain extent by a previous water input (rain, melted snow, capillary transport from groundwater, irrigation etc.): “filled bottle effect”;
- the infiltration of water into the soil is prevented by the frozen topsoil: “frozen bottle effect”;
- the infiltration is prevented or reduced by a nearly impermeable soil layer on, or near to the soil surface: “closed bottle effect” (see cases in Fig. 7);
- the water retention of soil is poor and the infiltrated water is not stored in the soil, but only percolates through the soil profile: “leaking bottle effect.”
The Significance of Soil in Watershed Management

1. Limited infiltration, shallow wetting zone
 A) Impermeable layer (crust) on the soil surface

 \[\text{IR} = 0 \]
 \[K = 0 \]

 - a) cemented by salts
 - Na salts
 - gypsum
 - b) compacted by improper soil management
 - over-tillage, heavy machinery
 - improper irrigation methods

2. Cracking (swelling-shrinkage phenomena)

 \[\text{IR} \approx \infty \]
 \[\text{GW} \]
 \[\text{GW}_0 \]

 - Dry conditions (shrinkage, cracking)
 - filtration losses
 - rising water table
 - too wet conditions (over saturation, waterlogging)
 - secondary salinization/alkalization from the groundwater (in case of stagnant, saline or alkaline groundwater)
 - evaporation losses (drying of deep layers)

 - Wet conditions (swelling)
 - a) high amount of clay
 - b) high amount of expanding clay minerals
 - c) high ESP

 extreme water regime
 - oversaturation (aeration problems)
 - waterlogging problems
 - surface runoff – water erosion
 - drought sensitivity

3. Low water retention

 \[\text{IR}, K \gg FC \]
 \[\text{sands} \]

 Shallow soils on gravel on fragmented rocks
 \[\text{filtration losses} \]
 \[\text{drought sensitivity} \]

Fig. 7. Limiting factors of water storage in soil

The schematic map of these infiltration–water retention limitations is given in Figure 8. These limitations are responsible for the contradiction of the huge potential water storage capacity and the frequent extreme hydrological events, the simultaneous hazard of floods, waterlogging, over-moistening and drought sensitivity, sometimes on the same place, within the same year, is a characteristic feature of the Carpathian plains. Consequently: the moderation of this contradiction is an important task of rational and efficient watershed management.

V. Control of soil moisture regime in efficient watershed management

The flow chart, showing the stages of the planning and realization of successful watershed management (including soil moisture control) is presented in Figure 9.

Under the natural conditions of the Carpathian Plains, the rational watershed management, the risk reduction of extreme hydrological events (floods, waterlogging, over-moistening vs. Drought) requires an efficient soil moisture control. All efforts have to be made to establish a „two-way” („double face”) moisture regulation to: help water infiltration into the soil; help water storage within the soil in plant
available form; drain the surplus amount of water from the soil profile and from the area (vertical and horizontal drainage).

The main possibilities and methods of this moisture control are summarized in Table 1. Most of these „moisture management actions” are – at the same time – efficient environment control measures (Table 1) (Várallyay, 2004b, 2006a).

Fig. 8. Limited infiltration rate and water storage capacity of soils in Hungary

Fig. 9. Flowchart showing the stages of the realization of sustainable land use and soil management
VI. Conclusions

Sustainable watershed management, including an up-to-date soil moisture control requires continuous actions. This permanent control may prevent, eliminate or at least reduce undesirable soil processes and their harmful economical/ecological/environmental/social consequences; utilizing the unique soil characteristic, resilience, may satisfy the conditions for the „quality maintenance” of this „conditionally” renewable natural resource.

Control can be efficient only on the basis of comprehensive risk assessments, impact analyses and exact prognoses. These have to be the main research priorities!

The successful prevention, elimination or moderation of undesirable soil degradation processes and extreme moisture regimes can be efficient only in a well-coordinated multidisciplinary international cooperation in the Carpathian Basin. The realization of the sustainability concept in the rational land use and soil management gives reality for a better life: healthy, good quality food, clean water and pleasant environment.

References

Láng, I., Csete, L. & Harnos, Zs., 1983. Agro-ecological Potential of Hungarian agriculture. (In Hungarian) Mezőgazdasági Kiadó. Budapest.
Pálfi, I. (Ed.), 2000. The Role and Significance of Water in the Hungarian Plain. (In Hungarian) Nagyalföldi Alapítvány. Békéscsaba.
Somlyódy, L., 2000. Strategy of Hungarian Water Management. (In Hungarian) MTA Vízgazdálkodási Tudományos Kutatócsoportja, Budapest. 370 pp.
Szabolcs, I., Darab, K. & Várallyay, Gy., 1969. Methods for the prognosis of salinization and alkalization due to irrigation in the Hungarian Plain. Agrokémia és Talajtan. 18. Suppl. 351–376.

Várallyay, Gy., 1974. Hydrophysical aspects of salinization from the groundwater. Agrokémia és Talajtan. 23. Suppl. 29–44.

Várallyay, Gy., 1985. Main types of water regimes and substance regimes in Hungarian soils. (In Hungarian) Agrokémia és Talajtan. 34. 267–298.

Várallyay, Gy., 1988. Soil, as a factor of drought-sensitivity of biomass production. (In Hungarian) Vízügyi Közlemények. LXXX. (3) 46–68.

Várallyay, Gy., 1989a. Mapping of hydrophysical properties and moisture regime of soils. Agrokémia és Talajtan. 38. 800–817.

Várallyay, Gy., 1989b. Soil water problems in Hungary. Agrokémia és Talajtan. 38. 577–595.

Várallyay, Gy., 2000. Risk assessment and prevention of soil degradation processes in Hungary. In: Foresight and Precaution. (Eds.: Cottam, Harvey, Pape & Tait). 563–567. Balkema. Rotterdam.

Várallyay, Gy., 2004a. Agro-ecological aspects of water management of soils (In Hungarian). „AGRO-21” Füzetek. 2004; 37. szám: 50–70.

Várallyay, Gy., 2004b. Control of extreme moisture events and soil degradation processes as priority tasks of soil conservation in the Carpathian Basin. In: Proc. 4th Intern. Congress of ESSC, 25–29 May, 2004. Budapest. 148–152.

Várallyay, Gy., 2005a. Soil physical/hydrophysical characteristics and extreme moisture events in Hungary. In: Review of Current Problems in Agrophysics. (Eds.: Jozefaciuk, G., Slavinski, C., Walczak, R. T.) 323–329. Institute of Agrophysics. P.A.N. Lublin.

Várallyay, Gy., 2005b. Water storage capacity of Hungarian soils. (In Hungarian) Agrokémia és Talajtan. 54. 5–24.

Várallyay, Gy., 2006a. Soil degradation processes and extreme soil moisture regime as environmental problems in the Carpathian Basin. Agrokémia és Talajtan. 55. 9–18.

Várallyay, Gy., 2006b. Risk reduction of extreme hydrological events with sustainable land use and soil management. Ecohydrology and Hydrobiology. 6. (1-4) 143–151.

Várallyay, Gy. & Rajkai, K., 1989. Model for the estimation of water and solute transport from the groundwater to the overlying soil horizons. Agrokémia és Talajtan. 38. 641–656.

Várallyay, Gy., Szücs, L., Zilahy, P., Rajkai, K., Murányi, A., 1985. Soil factors determining the agroecological potential of Hungary. Agrokémia és Talajtan. 34. Suppl. 90–94.

Varga-Haszonits, Z., Varga, Z., Lantos, Zs., Enzsölné Gerencsér E., 2006. Climate changeability and agro-ecosystems. (In Hungarian) NyME Mezőgazd. És Élelmiszertud. És Élelmiszerüzleti. Kar, Mosonmagyaróvár.

Papers published by the author on the same topic:

Várallyay, Gy., 2006. Soil degradation processes and extreme soil moisture regime as environmental problems in the Carpathian Basin. Agrokémia és Talajtan. 55. (1–2) 9–18.

Várallyay, Gy., 2007. Risk of extreme soil moisture regime and possibilities of its control in the Carpathian Basin. In: „Environmental Management. Trends and Results”. (Eds.: 8.

Várallyay, Gy., 2009. Soil degradation processes and extreme soil moisture regime as environmental problems in the Carpathian Basin. In: Scientific and Social-Institutional Aspect of Central Europe and USA. Vol. XXXVIII-XXXIX. Pollution and Water Resources, Columbia University Seminars Proceedings. (Ed.: Halasi-Kun, G. J.) 181–208.

Várallyay Gy., 2010. Increasing importance of the water storage function of soils under climate change. Agrokémia és Talajtan. 59. (1) 7–18.
Várallyay, Gy., 2011. Water storage capacity of Hungarian soils. Agrokémia és Talajtan. 60. Supplementum (online) (ATON) 7–26.
Várallyay, Gy., 2014. Environmental aspects of soil management and moisture control. Proc. 6th International Scientific and Expert Conference TEAM 2014, Kecskemét, 10–11 Nov., 2014. 26–31.
Várallyay Gy., 2015. Soils as the most important natural resources in Hungary (potentialities and constraints). – A review. Agrokémia és Talajtan, 64(2): 321-338.