Tuberculosis and pharmacological interactions: A narrative review

Nicolò Riccardi, a, b, Diana Canetti, a, c, Paola Rodari, b, Giorgio Besozzi, a, Laura Saderi, a, d, Marco Dettori, d, Luigi R. Codecasa, a, e, Giovanni Sotgiu, a, d, *

a StopTB Italia Onlus, Milan, Italy
b Department of Infectious - Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
c Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
d Regional TB Reference Centre, Villa Marelli Inst., Niguarda Hospital, Milan, Italy
e Institute, Milan, Italy

ABSTRACT

Keywords:
Tuberculosis
Drug-drug interactions
Clinical use
TB treatment

Even if major improvements in therapeutic regimens and treatment outcomes have been progressively achieved, tuberculosis (TB) remains the leading cause of death from a single infectious microorganism. To improve TB treatment success as well as patients' quality of life, drug-drug-interactions (DDIs) need to be wisely managed. Comprehensive knowledge of anti-TB drugs, pharmacokinetics and pharmacodynamic (PK/PD) parameters, potential patients' changes in absorption and distribution, possible side effects and interactions, is mandatory to built effective anti-TB regimens. Optimization of treatments and adherence to international guidelines can help bend the curve of TB-related mortality and, ultimately, decrease the likelihood of treatment failure and drop-out during anti-TB treatment. Aim of this paper is to describe the most relevant DDIs between anti-TB and other drugs used in daily clinical practice, providing an updated and “easy-to-use” guide to minimize adverse effects, drop-outs and, in the long run, increase treatment success.

1. Introduction

Even if major improvements in therapeutic regimens and treatment outcomes have been progressively achieved, tuberculosis (TB) remains the leading cause of death from a single infectious microorganism (World Health Organization, 2014, 2019). Since the introduction of rifampicin in the 70s’, an effective short-course regimen for drug-susceptible (DS) forms of TB has been saving millions of lives worldwide. A standardized regimen characterized by a 2-month intensive (bactericidal) phase with four drugs [isoniazid (H), rifampicin (R), ethambutol (E), and pyrazinamide (Z); 2HRZE] and a 4-month continuation (sterilizing) phase with HR is key to achieve microbiological and clinical cure, if taken correctly (World Health Organization, 2014, 2019). However, 10 million individuals are estimated to develop TB annually worldwide and treatment success is hampered by drug-resistant strains of Mycobacterium tuberculosis (Mtbc), comorbidities, scarce adherence to treatment, adverse events of anti-TB drugs, and drug-drug interactions (DDIs) (Villa et al., 2020; Riccardi et al., 2019; Bisson et al., 2020; Soanker et al., 2020). Optimization of treatments and adherence to international guidelines can help bend the curve of TB-related mortality, as well as decrease the likelihood of treatment failure and drop-out during anti-TB treatment (Nahid et al., 2019). New drugs have been added to the anti-TB armamentarium and new DDIs can occur (Berger et al., 2020; Dheda et al., 2019; Riccardi et al., 2018; Bigelow et al., 2020).

Aim of this paper is to describe the most relevant DDIs between anti-TB and other drugs used in daily clinical practice, providing an updated and “easy-to-use” guide to minimize adverse effects, drop-outs and, ultimately, increase treatment success.

2. Methods

For the first-line drugs HRZE and for every TB drugs enlisted in the World Health Organization guidelines for the management of DR-TB (WHO consolidated guidelines, 2019), the following information are described: i) pharmacokinetics and pharmacodynamic (PK/PD) parameters; ii) potential changes in absorption and distribution; ii) most prevalent DDIs; iv) therapeutic drug monitoring (TDM) when available.
2.1. Anti-TB drugs

2.1.1. Rifampicin

Rifampicin, which belongs to the ansamycins and was discovered in 1965 from the soil bacteria *Amycolatopsis rifamycinica* (Sensi, 1983), displays antibacterial activity against Gram-positive cocci and Gram-negative bacteria, as well as against mycobacteria (Rothstein, 2016). It can selectively inhibit the DNA-dependent RNA polymerase both by sterically blocking the path of the elongating RNA at the 5’ end and by decreasing the affinity of the RNA polymerase for short RNA transcripts (Campbell et al., 2001; Schulz and Zillig, 1981).

Rifampicin is an highly lipid-soluble drug with a PK profile that shares equal distribution in plasma and tissues, with a plasmatic half-life ranging between 2 and 5 h it strongly induces human P450 cytochrome oxidases, notably CYP3A4, CYP2A, CYP2B, CYP2C, and CYP3A, as well as the human P glycoprotein ABC transporter, thus leading to a number of remarkable DDIs (Riccardi et al., 2020a) (Table 1).

It is available both in oral (best adsorbed during fasting, avoiding food interactions) or intravenous formulations (Rothstein, 2016; Genbenacher and Kaufmann, 2012).

TDM of rifampicin should be ideally assessed 2 h post dose on empty stomach, with a desirable range of 8–15 mg/L, in order to ensure efficacy and avoid toxicity (Fernandes et al., 2017).

2.1.2. Isoniazid

Isoniazid, firstly discovered in 1920 and used as antimycobacterial compound in the 1950s, displays mycobactericidal action against replicating mycobacteria, whereas it is bacteriostatic against mycobacteria in the latent form (Harvey et al., 2006; Timmins and Deretic, 2006). Its efficacy relies on the destruction of the mycobacterial cell wall, acting as a produg activated by the mycobacterial enzyme KatG and generating reactive oxygen species (ROS) that interfere with the mycobacterial cell wall (Timmins and Deretic, 2006; Stehr et al., 2015).

Isoniazid can be administered orally, intramuscularly, or intravenously; it is promptly absorbed after oral administration and reaches the peak of serum concentrations after 0.5–2 h (Timmins and Deretic, 2006).

Isoniazid inhibits the cytochrome P450 system and i acts as a mild monoamine oxidase inhibitor (MAO-I) (Stehr et al., 2015) (Table 2).

TDM should be assessed 2 h post dose on empty stomach, with a desirable range of 3–6 mg/L (Fernandes et al., 2017).

2.1.3. Pyrazinamide

Pyrazinamide is a nicotinamide analog included in the anti-TB regimen in 1970 and characterized by sterilizing activity and efficacy against semi-dormant MTB strains. Moreover, it displays synergistic activity when added to rifampicin-containing regimens (Gopal et al., 2019; Jimenez del Cerro and Rivera Hernandez, 1992). In fact, it penetrates necrotic caseous tissue, where it is converted to the active form pyrazinoyl acid, killing non-growing, drug-tolerant tubercle bacilli through the inhibition of the coenzyme A biosynthesis (Jimenez del Cerro and Rivera Hernandez, 1992).

Pyrazinamide displays excellent oral absorption, without any food interferences (Jimenez del Cerro and Rivera Hernandez, 1992). It can increase blood ureic acid level, leading to acute gout. Liver is probably involved in its katabolism.

Concomitant administration of pyrazinamide with isoniazid and/or rifampicin is associated with an increased risk of hepatotoxicity due to an additive effect. Careful assessment is needed when it is prescribed with potentially hepatotoxic agents (e.g., pexidartinib, pretomanid, mipomersen).

A unique case of cyclosporine plasmatic level reduction after pyrazinamide association was reported (Peets et al., 1965).

TDM should be ideally assessed 2 h post dose on empty stomach, with a desirable range of 20–60 mg/L (Fernandes et al., 2017).

2.1.4. Ethambutol

Ethambutol, which was discovered in 1961, is a bacteriostatic against actively growing mycobacterial bacilli: it inhibits the enzymes arabinosyltransferases involved in the synthesis of mycobacterial cell wall (Lee and Nguyen, 2020).

Ethambutol can be administered orally or intravenously and is promptly absorbed after oral administration, reaching the peak of serum concentrations after 2 h (Lee and Nguyen, 2020); it undergoes partial hepatic metabolism.

Coadministration with aluminium salts should be avoided because it delays and reduces the absorption of ethambutol (Riccardi et al., 2020b). Other drugs potentially causing optic neuritis should be avoided (Riccardi et al., 2020b).

TDM should be ideally assessed between 2 and 6 h post dose on full or empty stomach, with a desirable range of 20–60 mg/L (Fernandes et al., 2017).

2.1.5. Linezolid

Linezolid is a synthetic oxazolidinone with bacteriostatic activity against mycobacteria and Gram-positive bacteria (Dryden, 2011). It binds to the 50S subunit of the prokaryotic ribosome, preventing formation of the initiation complex and inhibiting protein synthesis (Quinn and Stern, 2009). Linezolid, which is available both intravenously and orally with excellent bioavailability (fatty food can decrease its absorption) (Dryden, 2011), is metabolized to two inactive metabolites, an aminooxyacetic acid (metabolite A) and a hydroxethyl glycine (metabolite B), with a plasmatic elimination half-life of 3.4–7.4 h (Quinn and Stern, 2009). It is a reversible inhibitor of monoamine oxidases A and B and serotonin agonists should be carefully prescribed to avoid the occurrence of the serotonin syndrome (Ziganshina et al., 2013) (Table 3).

TDM of linezolid should be ideally assessed immediately before the administration, with a desirable range of 2–7 mg/L (Fernandes et al., 2017).

2.1.6. Fluoroquinolones (Levofoxacin and Moxifloxacin)

Fluoroquinolones, which can inhibit the DNA gyrase responsible for supercoiling of nucleic acid, show a broad-spectrum antimicrobial activity (Reynolds et al., 1996). Levofoxacin and moxifloxacin are recommended by the WHO for the treatment of multi-drug resistant (MDR)-TB (WHO consolidated guidelines, 2019). Moxifloxacin is available both orally and intravenously, whereas moxifloxacin can be administered only orally. Their prescription with or without other drugs was associated with the risk of cardiac arrhythmias, fungal or bacterial infections, psychosis, and convulsions (Gler et al., 2012) (Table 4).

TDM should be ideally assessed 2 h after their administration on full or empty stomach, with a desirable range of 8–12 mg/L and 3–5 mg/L for levofoxacin and moxifloxacin, respectively (Fernandes et al., 2017).

2.1.7. Delamanid

Delamanid is a dihydro-nitroimidazooxazole with early bactericidal activity for patients aged ≥3 years (WHO consolidated guidelines, 2019; Gupta et al., 2016; Gupta et al., 2015; Matsumoto et al., 2006). It was recently approved for the treatment of MDR-TB.

The pro-drug is activated by a deazaflavin dependent nitro-reductase into a metabolite which blocks the cell wall synthesis of methoxymycolic and ketomycolic acids, two components of mycobacterial (European Medicines Agency, 2014).

Delamanid administered orally has a three-fold increased bioavailability intake a high-fat meal (Diacon et al., 2011). Its maximum plasmatic concentration is reached 4–5 h after oral administration, its half-life lasts 38 h, with a steady-state achieved after 10–14 days (Paccaly et al., 2012).

Being a CYP3A4 substrate, its level is strongly reduced in case of co-administration with strong CYP3A4 enzyme inducers (e.g., rifampicin).
Table 1

Most common rifampicin DDIs.

Class of drug	Drug	Mediated protein or mechanism	Rifampicin PL	Drug PL	Other effects	References
Analgesics	Methadone	CYP3A4; CYP2B6; CYP2C9; CYP2C19; CYP2C9	↓		overdose if inducer discontinuation	Kreek et al. (1976)
	Morphine	CYP3A4; hepatic metabolism induction				Fromm et al. (1997)
	Oxycodone, fentanyl, codeine	CYP3A4				
Anesthetics	Alfentanil	CYP3A4	↓		hepatotoxicity, hepatic encephalopathy	Most and Markle (1974)
	Halothane					
Antacids	Aluminum hydroxy/magnesium hydroxide				increased gastric pH; chelation	
Anti-arrhythmics	Amiodarone	CYP3A4	↓		severe coagulation disorders	Zarembski et al. (1999)
	Disopyramide	–				Aitio et al. (1981)
	Propafenone	CYP3A4				
Antibiotics	Quinidine	CYP3A4	↑			
	Clarithromycin	CYP3A4	↓			
	Clindamycin	CYP3A4	↓			
	Cefazolin, other cephalosporins				hepatic metabolism induction	
	Chloramphenicol	CYP3A4	↓			
	Dapsone	CYP3A4; CYP2C9; CYP2C19; P glycoprotein	↓			
	Doxycycline	CYP3A4; CYP2E1				
	Linezolid	P glycoprotein				
	Moxifloxacin				glucuronidation; sulphation; P glycoprotein	
Anticoagulants	Warfarin	CYP3A4	↓			Cann (1996)
	Dabigatran	P glycoprotein				Product Information. Pradaxa (dabigatran).
	Apixaban	CYP3A4; P glycoprotein				Product Information. Eliquis (apixaban)
	Rivaroxaban	CYP3A4				Product Information. Xarelto (rivaroxaban)
	Edoxaban	P glycoprotein				Product Information. Savaysa (edoxaban)
Anticonvulsants	Phenytoin	CYP2C9; CYP2C19	↑			
	Lamotrigine	glucuronidation				
Antidepressants	Nortriptyline, amitriptyline	CYP450				Bechchuk and Stewart (1991)
Anti-diabetics	Chlorpropamide	CYP450				
	Rosiglitazone	CYP2C8				Niemi et al. (2004)
Antiepileptics	Ondansetron	CYP3A4; CYP1A2				Villikka et al. (1999)
Antifungals	Caspofungin	–				
	Fluconazole	CYP450				
	Itraconazole, ketoconazole	CYP3A4	↑			
	Posaconazole	CYP3A4; P glycoprotein; UGT1A1	↑			
Anthelmintics	Praziquantel	CYP450				Banerji et al. (2019); Ebert et al. (2000)
Antimalarials	Atovaquone	rifampicin enzyme-induction				
	Quinine	CYP3A4	↓			
Antipsychotics	Haloperidol	CYP3A4	↓			
Antituberculars	Isoniazid	additive hepatotoxicity				Aocella et al. (1972)
	Pyrazinamide	effect				MeNeill et al. (2005); CDC (2001)
	Delamanid	CYP3A4	↑			
Antivirals HCV	Daclatasvir, simeprevir, sofosbuvir, ledipasvir	CYP3A4; P glycoprotein	↓			
Anxiolytics/hypnotics	Zolpidem	CYP3A4; CYP1A2				
	Dizepam, triazolam	hepatic metabolism induction				
Bronchodilators	Theophylline	CYP3A4; CYP1A2	↓			
Cancer therapies	Cyclophosphamide					

(continued on next page)
Lopinavir/ritonavir increase plasmatic levels of delamanid and, then, the risk of toxicity (Riccardi et al., 2020c). It was recommended caution when prescribed with clofazimine (Yadav et al., 2016).

The risk of QTc prolongation is increased when administered with fluoroquinolones and in hypoalbuminemic patients. Currently, no standardized TDM range has been proposed.

2.1.8. Clofazimine

Clofazimine is a hydrophobic riminophenazine which presumably interferes with the mycobacterial respiratory chain and ion transporters (Riccardi et al., 2020c).

It is prescribed for non-tuberculous mycobacteria-related diseases, TB, and leprosy; its oral bioavailability is ~70%, improved by food for an

Table 1 (continued)

Class of drug	Drug	Mediated protein or mechanism	Rifampicin PL	Drug PL	Other effects	References	
Lipid lowering drugs							
Isoniazid							
Antidepressants	Desipramine						
Anticonvulsants	Valproate						
Antidiabetics	Glimepiride						
Antituberculars	Rifampicin						
Recreational drugs	Theophylline						
	Alcohol antagonists	Dusion	dopamine metabolism inhibition	CYP3A4; CYP2B6; CYP2C9			
	Acetaminophen	Acetaminophen	CYP2E1				
	Anticonvulsants	Valproate	CYP3A4				
	Antidiabetics	Glimepiride					
	Antituberculars	Rifampicin					
	Alcohol	Theophylline	CYP3A4; CYP1A2				

Abbreviations: DDI, drug-drug interactions; PL, plasmatic level; SOT, solid organ transplantation; NNRTI, Non-nucleoside reverse transcriptase inhibitors; PI, Protease inhibitors.

Lopinavir/ritonavir increase plasmatic levels of delamanid and, then, the risk of toxicity (Riccardi et al., 2020c). It was recommended caution when prescribed with clofazimine (Yadav et al., 2016).

The risk of QTc prolongation is increased when administered with fluoroquinolones and in hypoalbuminemic patients. Currently, no standardized TDM range has been proposed.

Table 2

Class of drug	Drug	Mediated protein or mechanism	Isoniazid PL	Drug PL	Other effects	References
Alcohol antagonists	Dusion	dopamine metabolism inhibition	CYP3A4; CYP2B6; CYP2C9			
Acetaminophen	Acetaminophen	CYP2E1				
Anticonvulsants	Valproate	CYP3A4				
Antidiabetics	Glimepiride					
Antituberculars	Rifampicin					
Alcohol	Theophylline					

Abbreviations: DDI, drug-drug interactions; PL, plasmatic level; NNRTI, Non-nucleoside reverse transcriptase inhibitors; PI, Protease inhibitors.
Table 3

Most common linezolid DDIs.

Class of drug	Drug	Mediated protein or mechanism	Linezolid PL	Drug PL	Other effects	References
Adrenergic agents	Pseudoephedrine	↑ sympathomimetic effect	systolic hypertension	Hendershot PE, 2001		
northern agents	Phenylpropanolamine					
Antibiotics/ antituberculars	Rifampin	P glycoprotein	↓	Trittler R, 2005; Egle H, 2005; Gebhart BC, 2007; Gandelman K, 2011		
Anticoagulants	Warfarin	MAO inhibitor	low grade ↓ INR seratonin syndrome	Saka Y, 2015; Boyer EW, 2005		
SSRI	Paroxetine					
SSRI	Fluvoxamine					
SSRI	Fluoxetine					
SSRI	Citalopram					
SSRI	Fluoxetine					
SSRI	Sertraline					
SSRI	Escitalopram					
SSRI	Vilazodone					
SNRI	Venlafaxine, desvelafaxina					
SNRI Anti-Parkinson	Duloxetine	MAO inhibitor	serotonin syndrome	Boyer EW, 2005; FDA Drug Safety Communication, 2011		
Morphine derivatives	Dextromethorphan	↑ sympathomimetic effect	serotonin syndrome	Hendershot PE, 2001		
Opioid analgesics	Meperidine					
Fentanyl						

Abbreviations: DDI, drug-drug interactions; PL, plasmatic level; SSRI, Selective Serotonin Reuptake Inhibitor; SNRI, Serotonin and Norepinephrine Reuptake Inhibitor; MAOi, monoamine oxidase inhibitor.

Table 4

Most common antitubercular fluoroquinolones DDIs.

Class of drug	Drug	Mediated protein or mechanism	Levo/moxi PL	Drug PL	Other effects	References	
Antacids	Aluminum/magnesium/ calcium salts	chelation	↓			(Nix et al., 1990)	
	Sucrallate						(Lehto et al., 1994)
Anti-arrhythmics	Quinidine, procainamide (IA class)	↑ QT interval	rare: arrhythmias, torsade de pointes	(Owens, 2001)			
	Amiodarone, sotalole (III class)		rare: arrhythmias, torsade de pointes	(Owens, 2001)			
Antibiotics/ antituberculars	Rifampin	glucuronidation; sulphation ↓ moxifloxacin	↑ INR	(Nijland et al., 2007)			
Anticoagulants	Warfarin	metabolism inhibition; vitamin K-producing intestinal bacteria inhibition	↑	Jones CB, 2002			
Anti-diabetes	Insulin	ATP-sensitive K channels	↑ glycemia	Gajjar DA, 2000			
	Oral hypoglycemics		↑ glycemia	Gajjar DA, 2000			
Bronchodilators	Theophylline	GABA?	SNC toxicity	Segev S, 1988			
	Bepridil	↑ QT interval	rare: arrhythmias, torsade de pointes	Segev S, 1988			
Calcium channel blockers	Osimertinib	↑ QT interval	rare: arrhythmias, torsade de pointes	Bian S, 2020			
Cancer therapies							
Immunosuppressants	Cyclosporine	low grade ↓ hepatic metabolism	↑	Federico S, 2006			
	Tacrolimus					Federico S, 2006	
	Diclofenac, others	GABA?	↑	CNS toxicity	Seguev S, 1988		
NSAIDs	Fenbufen		↑	CNS toxicity	Seguev S, 1988		
Retrovirals	Didanosine	chelation (AI or Mg-containing formulations)	↓	Sahai J, 1993			
Supplements	Calcium supplements	chelation	↓				
	Iron supplements						
	Zinc supplements						
Others	Cimetidine	low grade ↓ tubular secretion	↑				
	Probenecid						
	Vegetable charcoal	oral moxifloxacin ↓ absorption	↓				

Abbreviations: DDI, drug-drug interactions; PL, plasmatic level; Levo, levo moxifloxacin; Moxi, moxifloxacin; NSAIDs, Nonsteroidal anti-inflammatory drugs; SOT, solid organ transplantation; CNS, central nervous system; GABA, gamma-aminobutyric acid receptors.
increased absorption (Riccardi et al., 2020c).

Clofazimine can inhibit CYP3A4 in vitro, but also can weakly induce CYP3A4 (Riccardi et al., 2020c). It can prolong QTc interval and impair the liver function (Riccardi et al., 2020c).

TDM should be assessed 2 h after its administration on full or empty stomach, with a desirable range of 0.5–4 mg/L (Fernandes et al., 2017).

2.1.9. Bedaquiline

Bedaquiline is an oral diarylquinoline, approved for pulmonary MDR-TB in adults (Yadav et al., 2016; Andries et al., 2014). It blocks the proton pump (specifically, subunit c) for mycobacterial ATP synthase, critically reducing ATP level and, then, causing cell death (Hartkoorn et al., 2014). Synthesis of subunit c is encoded by the atpE gene and its mutation in Mycobacterium tuberculosis is directly associated to poor drug susceptibility (Centers for Disease Control). Furthermore, mutations of the drug genome sequencing (WGS) for bedaquiline should be performed to assess the susceptibility of the collected strains (Alffaenar et al., 2015). DDIs have been observed between bedaquiline and CYP3A4 inducers and inhibitors (Table 5). Bedaquiline can cause QT prolongation, leading to cardiac arrhythmia and/or death. Hence, patients should be monitored for symptoms of cardiac toxicity and by electrocardiogram during the follow-up. It should be interrupted in case of clinically significant ventricular arrhythmia or QTc >500 ms (Nguyen et al., 2018). Ongoing studies are evaluating the most accurate TDM values (Nguyen et al., 2018; Bolhuis et al., 2016).

2.1.10. Cycloserine/Terizidone

Cycloserine, which is similar to the amino acid D-alanine, can interrupt the inclusion of the D-alanine into the peptidoglycan of the cell wall (Cycloserine, 2008; http://www.tbdrugmonograph). It has an oral bioavailability when not administered with a high fat meal (http://www.tbdrugmonograph). It can show central nervous system (CNS) toxicity (careful administration in case of alcohol exposure, history of seizure, depression, suicidal behaviours, and mood instability) and can interfere with the absorption of isoniazid (http://www.tbdrugmonograph). Cycloserine should be used with extreme caution in patients with renal impairment and avoided when creatinine clearance of <50 ml/min (http://www.tbdrugmonograph). Terizidone, which is composed by two molecules of cycloserine, shares the same pharmacological features of cycloserine, but it can be administered in patients with a creatinine clearance <50 ml/min and in patients in dialysis with an appropriate dose adjustment (http://www.tbdrugmonograph). Terizidone also penetrates less in CNS being therefore more tolerable.

2.1.11. Meropenem/imipenem-cilastatin

Meropenem and imipenem-cilastatin are broad-spectrum carbapenems used with clavulanic acid in the treatment of MDR-TB. Meropenem with clavulanic acid has bactericidal activity and can sterile cultures within 2 weeks inhibiting the BiaC beta-lactamase (De Lorenzo et al., 2013). They are administered intravenously and may have neuro-toxicity (caution in patients with TB meningitis and when coadministered with ganciclovir and valproic acid). Renal function should be periodically checked due to their renal excretion (De Lorenzo et al., 2013).

TDM of meropenem has a desirable range of 8–12 mg/L (Fernandes et al., 2017).

2.1.12. Amikacin

The aminoglycoside amikacin can inhibit mycobacteria, Gram-negative bacteria, Nocardia spp., and Staphylococcus aureus, by blocking the 30S ribosomal subunit with the modification of the conformation of the A site, reducing proofreading capabilities of the ribosome and thus increasing mistranslation (Ramirez and Tolmasky, 2017).

It is mainly administered intravenously, intramuscularly, through nebulization, but it can be administered intrathecally or intraventricularly (Ramirez and Tolmasky, 2017). It shows a renal excretion, and can increase the risk of ototoxicity and nephrotoxicity, especially in case of long-term exposure. TDM can reduce the risk of adverse events (Ramirez and Tolmasky, 2017). DDIs can be relevant with other drugs associated with oto- and nephron-toxicity (e.g., diuretics, cephalosporins, ciclosporin, colistimethate sodium, and tacrolimus). There is increased risk of hypocalcaemia when prescribed with bisphosphonates.

TDM should be < 5 mg/L (trough, immediately before infusion) and 25–35 mg/L (peak, 1 h after intravenous administration) (http://www.tbdrugmonograph).

2.1.13. Ethionamide/Prothionamide

Ethionamide, which was discovered in 1959, is a prodrug undergoing hepatic metabolism. Its efficacy was proved for M. tuberculosis, M. bovis, M. Laepre, M. Avium, and M. smegmatis (Ethionamide, 2008; http://www.tbdrugmonograph). It disrupts the mycobacterial cell wall through the inhibition of the inhA gene product enoyl-ACP reductase. Ethionamide is available orally and can be administered both with and without food (Ethionamide, 2008). Neurotoxicity is linked to increased blood level of ethionamide. Alcohol exposure can favour psychotropic reactions. Prothionamide is a thioamide interchangeable with ethionamide (http://www.tbdrugmonograph).

It should be administered with caution in patients with liver failure. Moreover, it is structurally similar to methimazole and, then, thyroid function should be routinely checked to avoid the occurrence of hypothyroidism (http://www.tbdrugmonograph). In diabetic patients glucose blood level should be monitored for the risk of hypoglycaemia (http://www.tbdrugmonograph).

2.1.14. P-aminosalicylic acid (PAS)

PAS, discovered in 1944, is available in an oral formulation; it should be administered with acid food to increase its absorption (Abulfathi et al., 2020).

DDIs with dichlorphenamide may lead to increased levels of PAS by unknown mechanism. PAS may decrease blood level of rifampicin. Moreover, PAS decreases effects of benazepril by pharmacodynamic antagonism and increases adverse events of dapsone.

3. Discussion

The ambitious WHO goal of TB elimination can be achieved if a comprehensive strategy is implemented. The WHO TB Strategy, approved by the World Health Assembly in 2014, is built on three pillars (World Health Organization, 2014).

One of them, which can be found in the previous WHO strategy, is based on the improvement of the clinical management of individuals infected by Mycobacterium tuberculosis strains (World Health Organization, 2014).

The mismanagement of patients with TB disease can be associated to a poor prognosis, increased risk of transmission of Mtb to susceptible individuals, and emergence (and spread) of drug-resistant strains (Bisson et al., 2020; Nahid et al., 2019; Dheda et al., 2019).

The successful outcome of the TB patients depends on patient- and healthcare-related factors. The appropriate prescription of effective and safe drugs is the outcome of several variables: adherence to scientifically sound treatment guidelines, availability of quality-assured drugs, accurate assessment of the drug susceptibility testing for the collected Mtb isolates, and adequate follow-up (which depends on the efficiency of the national and regional healthcare infrastructure and of the national TB program).

However, patient's adherence to the prescribed regimens is key, especially for individuals infected by MDR MTB strains, where the duration of the therapy is longer (~24 months) and characterized by a high risk of drug-related adverse events (the currently available
Class of drug	Drug	Mediated protein or mechanism	Bedaquiline PL	Other drug PL	Other effects	References
Antidepressant	citalopram	QTc prolongation				
	escitalopram					
Antibiotic	clarithromycin	QTc prolongation				
	azithromycin					
	levofloxacin					
	moxifloxacin					
	lefamulin					
Antiparasitic	fexinidazole	QTc prolongation				
	piperazine					
	chloroquine					
	halofantrine					
	pentamidine					
Antifungal	posaconazole	QTc prolongation, inhibition of CYP3A4↑				
	voriconazole	QTc prolongation, inhibition of CYP3A4↑				
	fluconazole	QTc prolongation, inhibition of CYP3A4↑				
	itraconazole	inhibition of CYP3A4↑				
Antipsychotic	thioridazine	QTc prolongation				
	flupentixol					
	pimozide					
	amitriptyline					
	clomipramide					
	alopauridine					
	droperidol					
	olanzapine					
	risperidone	QTc prolongation				
Cancer drugs	nilotinib	QTc prolongation				
	entrectinib					
	ribociclib					
	vemurafenib					
	dacarboxil					
	encorafenib					
	enzalutamid					
	gilteritinib					
	midostaurin					
	mitotane					
	osimertinib	QTc prolongation, induction of CYP3A4↓				
	toremilene	induction of CYP3A4↓				
	dabrafenib	QTc prolongation, induction of CYP3A4↓				
	lorlatinib	induction of CYP3A4↓				
	pexidartinib	QTc prolongation				
Procyntetic/antiemetic	domperidon	QTc prolongation				
	ondansetron					
Anti-hyperlipidemic	probucol	QTc prolongation				
Anti-arrhythmics	amiodarone	QTc prolongation				
	dronedarone					
	flecainide					
	pilsicainide					
	propafenone					
	dofetilide					
	sotalol	QTc prolongation				
Antihistamine	astemizole	QTc prolongation				
Antituberculars	clofazimine	QTc prolongation				
	demetalid					
	rifampicin	induction of CYP3A4↓				Svensson 2015
	rifabutine	induction of CYP3A4↓				
	rifapentine	induction of CYP3A4↓				
Antihypertensive	lofexidine	QTc prolongation				
Antiretroviral	lopinavir	QTc prolongation				
	atazanavir	QTc prolongation				
	darunavir	QTc prolongation				
	cobicistat	QTc prolongation				
	ritonavir	QTc prolongation				
	efavirenz	QTc prolongation				
	etravirien	QTc prolongation				(Pandie et al., 2016)
Analgesic	methadone	QTc prolongation				
Pulmonary hypertension drug	bosentan	induction of CYP3A4↓				
Antiepileptic	cenobamate	induction of CYP3A4↓				
	carbamazepine	induction of CYP3A4↓				
	phenobarbital	induction of CYP3A4↓				
	phenytoin	induction of CYP3A4↓				
Antivirals anti-HCV	ombitasvir	inhibition of CYP3A4↑				
	paritaprevir	inhibition of CYP3A4↑				
	dasabuvir	inhibition of CYP3A4↑				

Abbreviations: DDI, drug-drug interactions; PL, plasmatic level.
therapeutic armamentarium is less effective, less safe, and more expensive if compared with that adopted for drug-susceptible TB (Nahid et al., 2019; Dheda et al., 2019).

The poor adherence and the risk of adverse events depend on the anti-TB drugs themselves and on their pharmacological interactions with other concomitant therapeutics.

Then, the clinical success inevitably passes through the prevention of DDIs and drug-adverse events to improve TB treatment adherence and, ultimately, the WHO outcome treatment success. Careful evaluation of possible DDIs before creating an anti-TB regimen is a key moment to ensure efficacy, safety, and ameliorate patients’ quality of life (19,57).

Up-to-date knowledge of anti-TB drugs PK/PD parameters coupled with TDM are helpful tools to guide physicians to tailored and effective treatments.

The aim of the present article was to give a concise summary that can aid physicians in their daily clinical practice.

However, several potential interactions are unknown because of some of them occurred in countries where an effective pharma-co-vigilance system is not in place. The low TB incidence countries characterized by a lower treatment prescription rate cannot assess some interactions which can occur where more TB patients are treated.

Furthermore, the evolving drug market has a marginal impact in low income countries where TB incidence is high. The combination of those epidemiological conditions does not help identifying the full pharmacological profile of the anti-TB drugs.

More information can be retrieved from the HIV/AIDS-related evidence: major efforts have been performed since the 90’s to better describe the characteristics of the anti-HIV drugs (Bisson et al., 2020).

The high incidence of TB/HIV co-infection has favoured the study of DDIs occurrence of DDIs-related adverse events should be kept into careful strength and the efficacy of the health-care system. In theory, those DDIs and drug-adverse events to improve TB treatment adherence and, ultimately, the WHO outcome treatment success. Careful evaluation of anti-TB drugs PK/PD parameters coupled with TDM are helpful tools to guide physicians to tailored and effective treatments.

More information can be retrieved from the HIV/AIDS-related evidence: major efforts have been performed since the 90’s to better describe the characteristics of the anti-HIV drugs (Bisson et al., 2020).

The aim of the present article was to give a concise summary that can aid physicians in their daily clinical practice.

However, several potential interactions are unknown because of some of them occurred in countries where an effective pharma-co-vigilance system is not in place. The low TB incidence countries characterized by a lower treatment prescription rate cannot assess some interactions which can occur where more TB patients are treated.

Furthermore, the evolving drug market has a marginal impact in low income countries where TB incidence is high. The combination of those epidemiological conditions does not help identifying the full pharmacological profile of the anti-TB drugs.

More information can be retrieved from the HIV/AIDS-related evidence: major efforts have been performed since the 90’s to better describe the characteristics of the anti-HIV drugs (Bisson et al., 2020).

The high incidence of TB/HIV co-infection has favoured the study of DDIs occurrence of DDIs-related adverse events should be kept into careful strength and the ef

CRediT authorship contribution statement

Niccolò Riccardi: Conceptualization, Validation, Writing - original draft, Writing - review & editing. Diana Canetti: Data curation, Methodology, Validation, Writing - original draft, Writing - review & editing. Paolo Rodari: Data curation, Methodology, Validation, Writing - original draft, Writing - review & editing. Giorgio Besozzi: Validation, Writing - review & editing. Laura Saderi: Data curation, Methodology, Validation, Writing - review & editing. Marco Dettori: Validation, Writing - original draft, Writing - review & editing. Luigi R. Codecasa: Supervision, Validation, Writing - review & editing. Giovanni Sotgiu: Conceptualization, Project administration, Supervision, Validation, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Abulalfah, A.A., Donald, P.R., Adams, K., Svensson, E.M., Diacon, A.H., Reuter, H., 2020 May 29. The pharmacokineti

Supervision, Validation, Writing - review & editing. Giovanni Sotgiu: Conceptualization, Project administration, Supervision, Validation, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Abulalfah, A.A., Donald, P.R., Adams, K., Svensson, E.M., Diacon, A.H., Reuter, H., 2020 May 29. The pharmacokineti
