New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges

Rúbia C. G. Corrêa, Rosane M. Peralta, Charles W. I. Haminiuk, Giselle Maria Maciel, Adelar Bracht & Isabel C. F. R. Ferreira

To cite this article: Rúbia C. G. Corrêa, Rosane M. Peralta, Charles W. I. Haminiuk, Giselle Maria Maciel, Adelar Bracht & Isabel C. F. R. Ferreira (2018) New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges, Critical Reviews in Food Science and Nutrition, 58:6, 942-957, DOI: 10.1080/10408398.2016.1233860

To link to this article: https://doi.org/10.1080/10408398.2016.1233860
New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges

Rúbia C. G. Corrêa, Rosane M. Peralta, Charles W. I. Haminiuk, Giselle Maria Maciel, Adelar Bracht, and Isabel C. F. R. Ferreira

ABSTRACT
Aging is an inevitable process influenced by genetic, lifestyle, and environmental factors. Indirect evidence shows that several phytochemicals can have anti-aging capabilities, although direct evidence in this field is still limited. This report aims to provide a critical review on aspects related to the use of novel phytochemicals as anti-aging agents, to discuss the obstacles found when performing most anti-aging study protocols in humans, and to analyze future perspectives. In addition to the extensively studied resveratrol, epicatechin, quercetin, and curcumin, new phytochemicals have been reported to act as anti-aging agents, such as the amino acid L-theanine isolated from green tea, and the lignans arctigenin and matairesinol isolated from Arctium lappa seeds. Furthermore, this review discusses the application of several new extracts rich in phytochemicals with potential use in anti-aging therapies. Finally, this review also discusses the most important biomarkers to test anti-aging interventions, the necessity of conducting epidemiological studies and the need of clinical trials with adequate study protocols for humans.

KEYWORDS
Underexplored phytochemicals; anti-aging interveners; anti-aging study protocols; aging biomarkers; bioavailability

Introduction
Aging is a complex biological process characterized by a gradual loss of physiological integrity, leading to the decline of almost all physiological functions and increased vulnerability to death (López-Otín et al., 2013; Lenart and Krejci, 2016). This progressive impairment constitutes the primary risk factor for important human pathologies, such as cancer, diabetes, cardiovascular disorders as well as neurodegenerative diseases (Corella and Ordovás, 2014).

It has been proposed that humans age in “spare parts” (in French: en pièces détachées), a process characterized by increases losses of vital functions, some occurring faster, as the elastic functions, and others relatively slowly, as the nervous conductivity (Labat-Robert and Robert, 2014). The rapid decline in elastic functions, such as accommodation, vascular and pulmonary elasticity, and, the most visible one, skin elasticity, involves major physiological functions. On the other hand, some aging mechanisms are not consequences of loss of function, but simply the repercussion of “illegal” chemistry in the body, for which no built in defenses exist, as it is the case of the nonenzymatic glycosylation (glycation) (Robert and Fulop, 2014).

Despite a century of research, no universally accepted theory regarding the molecular basis of aging has been postulated (Lenart and Krejci, 2016). In the past years, the aging research has experienced a groundbreaking advance, especially with the discovery that the rate of aging is controlled, at least partially, by genetic pathways and biochemical processes conserved in evolution. Hence, a central goal in aging research is to establish the molecular mechanisms that contribute to it. On the other hand, it is also known that the age-related processes determined by genetics can be strongly influenced by the environmental factors (Stephan et al., 2013).

In the past 30 years, the number of scientific articles regarding anti-aging interventions along with potential anti-aging compounds has exponentially increased, with an increment of more than fivefold in the total of scientific research/review articles in the last 10 years (Figure 1). The present report aims to provide a critical review on aspects related to the use of phytochemicals as anti-aging agents, to discuss the obstacles found when performing most anti-aging study protocols in humans, and to analyze future perspectives. Investigations regarding the theme have immensely accelerated during the last 10 years, what originated some recent review articles on anti-aging strategies involving natural dietary supplements (Rizvi and Jha, 2011), the anti-aging activities of natural compounds (Argyropoulou et al., 2013) and the possible mechanisms regarding the aging process (Manayi et al., 2014), so that only publications after 2006 have been considered.
Anti-aging phytochemicals

Leonov et al. (2015) recently defined phytochemicals as structurally diverse secondary metabolites produced by plants and by nonpathogenic endophytic microorganisms living within plants. These compounds help plants to survive to environmental stresses and to protect them from microbial infections and environmental pollutants. Phytochemicals can also provide plants with a defense against herbivorous organisms and attract natural predators of such organisms in addition to lure pollinators and other symbionts. Phytochemicals are present in a great variety of foods including fruits, vegetables, cereal grains, nuts, and cocoa/chocolate likewise as in beverages such as juice, tea, coffee, and wine (Si and Liu, 2014; Zhang et al., 2015).

Diet plays an essential role in daily human life, and dietary patterns and specific nutritional supplements may play a significant role in promoting human health and prolonging life. Current evidence suggests that eating a Mediterranean diet and supplementation with certain vitamins may decrease morbidity and mortality. Other strategies, such as caloric restriction (Sohal and Forster, 2014), rapamycin (Riera and Dillin, 2015) and resveratrol (RES) ingestion (Park and Pezzuto, 2015), have shown promising results in animal studies. However, despite some completed (Patel et al., 2011; Tomé-Carneiro et al., 2013; Ehninger et al., 2014) and ongoing clinical trials (available at the database http://clinicaltrials.gov/), data on the human responses are still incomplete (Adomaityte et al., 2014).

The knowledge that genetic mutations in diverse cellular pathways can boost lifespan has paved the idea that pharmacological inhibition of aging pathways could be the supreme tool to extend the lifespan and to slowdown the onset of age-related diseases. However, until the present, only a few compounds with such activities have been described and studied (Stephan et al., 2013).

In addition to the extensively studied RES, epicatechin, quercetin, curcumin as well as the green tea extract and its epicatechins, other phytochemicals have been reported to act as anti-aging agents, inclusively in studies using animal models. Tables 1 and 2 present compilations of some of these less-known phytochemicals (extracts or isolated compounds, respectively) that have presented anti-aging potential both in vitro and in vivo in the past decade.

Jung et al. (2010) reported that myricetin (Figure 2), a phytochemical present in berries and red wine among several food matrices, inhibited wrinkle formation in mouse skin induced by chronic UVB irradiation. Myricetin treatment reduced UVB-induced epidermal thickening of mouse skin and also suppressed UVB-induced matrix metalloproteinase-9 (MMP-9) protein expression and enzyme activity.

Kim et al. (2013) investigated whether caffeic acid, S-allyl cysteine, and uracil isolated from garlic (Figure 3) could modulate UVB-induced wrinkle formation and affect the expression of matrix metalloproteinase (MMP) and NF-κB signaling. They found that all three compounds significantly inhibited the degradation of type I procollagen and the expressions of MMPs in vivo. The compounds also attenuated the histological collagen fiber disorder and oxidative stress in vivo and decreased oxidative stress and inflammation by modulating the activities of NF-κB and AP-1.

In a very recent work, Ansel et al. (2016) investigated the anti-aging activity of Fitchia nutans Hook.f., an endemic plant previously used as a skin-care ingredient included in a sacred traditional monoi preparation in French Polynesia. An extract of leaves of F. nutans was submitted to anti-aging activity assays using ex vivo human skin tests which revealed its potential in stimulating collagens and elastin dermal growth. The main constituents of the F. nutans extract were identified: sesquiterpenoids (including 15-isovaleroyloxydihydrocostunolide, a new natural compound shown in Figure 2), phenylpropa-noids, and phenolic derivatives.

Anti-aging study protocols in humans

In the past years, eminent progress on the understanding of aging mechanisms has been achieved through the study of model organisms such as the yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse Mus musculus (Briga and Verhulst, 2015). However, there is a lack of human studies, including large-scale clinical trials.

Epidemiological studies have evidenced that diet plays a pivotal role in the pathogenesis of many age-associated chronic diseases as well as in the biology of aging itself (Pounis et al., 2013; Rizza et al., 2014). The Mediterranean diet, based on the consumption of olive oil and abundant in plant-derived foods like fruits, vegetables, legumes, nuts, and whole grains, has since long been recognized as one of the most salutary dietary patterns (Freitas-Simoes et al., 2016).

RES, reasonably present in the Mediterranean diet, has been proposed as one of the most important dietary constituents involved in vasculoprotection. Epidemiological data have linked moderate intake of RES-containing red wine with a significant decrease in the risk of coronary artery disease (Labskyy et al., 2006). Kasiotis et al. (2013) summarized the available evidence indicating that RES and its related stilbenes possess both anti-aging and anti-angiogenic properties. As stated by the authors, on one hand RES maintains vascular...
Table 1: Phytochemical extracts with proven anti-aging effects reported in the last decade, some still underexplored by science or little known, listed by alphabetic order of plant matrix.

Plant matrix	Extracts	In vitro assays or animal model	Novelty, main contribution	References
Aconitum carmichaelii Debeaux	Aqueous extract	Cell culture and rats	*A. carmichaelii* has presented protective effects on SH-SY5Y cells apoptosis induced by 1-methyl-4-phenylpyridinium. In addition, *A. carmichaelii* regulated the expression of genes related to the metabolism of sex hormones, facilitating thus the conversion of sex hormones, and reducing their inactivation.	Qiu et al. (2012); Wang et al. (2012)
Alchornea triplinervia (Spreng.) Müll. Arg., *Gaultheria erecta* (Vent.) Kuntze, *Rubus compactus* Utsch and *Ugni myricoides* (Kunth) O. Berg, among 35 Andean plants at different stages of growth	Methanolic extracts	Enzymatic assay	Among all extracts, fractions and subfractions tested, *G. erecta* and *U. myricoides* fruits showed the most interesting results for inhibitory activity against skin aging-related enzymes and antioxidant properties.	Bravo et al. (2016)
Citrus sunki Hort. ex Tanaka (Jingyul), *Citrus unshiu* Marcov, *Citrus sinensis* Osbeck, *Citrus reticulata* Blanco (Hallabong) and *Vitis vinifera* L. (white grape)	Citrus-based juice mixture (CBJM)	Cell culture and mice	The CBJM not only inhibited both H2O2-induced cell damage and intracellular ROS production in human dermal fibroblasts, but also increased the expression levels of antioxidant enzymes (namely glutathione reductase, catalase, and manganese superoxide dismutase). Furthermore, the oral administration of CBJM clearly diminished skin thickness and wrinkle formation while elevating collagen level in an ultraviolet light B-exposed hairless mouse model.	Kim et al. (2016)
Cuscuta chinensis Lam.	Ethanolic extract	Rats	*C. chinensis* showed a potential anti-aging effect in animals, as it significantly inhibited the nonenzymatic glycosylation reaction of aging mice after induction by D-galactose.	Li et al. (2013)
Elaeis guineensis Jacq.	Methanolic leaf extract	Antioxidant assays	The assessed extract showed promising antioxidant capacity, with an IC50 value of 814 µg/mL in the DPPH assay, 534.04 µg/mL for the nitric oxide-scavenging activity assay, 37.48 µg/mL for the xanthine oxidase inhibition assay and 1052.02 µg/mL for the hydrogen peroxide scavenging activity assay. Besides, it presented a high concentration of total phenolics (0.33 mg/g of dry extract).	Soundararajan and Sreenivasan (2012)
Emblica officinalis Gaertn (Indian fruit)	Ethanollic extract	Cell culture	The *E. officinalis* (EO) extract, at concentrations ranging from 10–40 µg/mL, was able to inhibit cellular proliferation and to protect procollagen 1 against UVB-induced depletion by inhibition of UVB-induced MMP-1. In addition, treatment with EO extract also prevented the UVB-disturbed cell cycle, thus decreasing UVB-induced photoaging in human skin fibroblasts by virtue of its strong ROS scavenging ability.	Adl et al. (2010)
Euterpe oleracea Mart. (Açai palm fruit)	Fruit pulp	*Drosophila melanogaster* (Drosophila melanogaster)	*Açai* raised the transcript levels of both I(2)eefl (a small heat-shock-related protein) and two detoxification genes, GstD1 and MtnA, at the same time it diminished the transcript level of phosphoenolpyruvate carboxykinase, a pivotal gene involved in gluconeogenesis.	Sun et al. (2010)
Fitchia nutans Hook.f. (Polinesian cosmetecutical ingredient)	Cyclohexane/ether (2:1) extract	Cell culture and ex vivo human skin tests	The *F. nutans* leaves extract was assessed for its anti-aging effects using ex vivo human skin tests, what evidenced its efficacy on stimulating collagens and elastin dermal growth. The main constituents of the plant extract were identified: sesquiterpenoids (among which 15-isovaleroyloxy-dihydrocostunolide, a novel natural compound), phenylpropanoids and phenolic derivatives (Figure 2).	Ansel et al. (2016)

(Continued on next page)
Plant matrix	Extracts	In vitro assays or animal model	Novelty, main contribution	References
Hedysarum austrosibiricum B.Fedtsch. and *Hedysarum polybotrys* Hand.-Mazz.	Aqueous extract and isolated polysaccharide	Aged rats and aging mice	The tested *H. austrosibiricum* extracts diminished the malondialdehyde content of both liver and brain tissues of D-galactose-induced aging rats. These extracts increased the activities of SOD and glutathion peroxidase, while decreased the activity of monoamine oxidase activity in the brain tissue. Thus *H. austrosibiricum* presented anti-aging effects both by eliminating free radicals and activating antioxidants. Likewise, a polysaccharide isolated from *H. polybotrys* have significantly improved SOD contents in the erythrocytes of aged rats, what also suggests an anti-aging effect via activation of antioxidases.	Dong et al. (2013)
Helichrysum niveum Graham	Methanolic extracts and isolated acylphloroglucinol derivatives	Enzymatic assay	Promising total antioxidant capacities, with low values of IC₅₀ obtained from oxygen radical absorbance capacity, ferric-ion reducing antioxidant power, trolox equivalent absorbance capacity, and inhibition of Fe²⁺-induced lipid peroxidation assays, were found for helinivenes 1 and 2. These two compounds also presented antityrosinase activities.	Popoola et al. (2015)
Labisia pumila (Blume) Mez (Malasian popular herb)	Aqueous extract	Cell culture	Treatment with *L. pumila* extract (LPE) clearly decreased both the proinflammatory cytokines production and the expression of cyclooxygenase. After LPE treatment the collagen, synthesis in human fibroblasts, negatively affected by UVB, was restored to normal levels.	Choi et al. (2010)
Picea mariana (Mill.) Britton, Stems & Poggenb, *Pinus banksania* Lamb., *Abies balsamea* (L.) Mill, *Betula alleghaniensis* Britton, *Populus tremuloides* Michx., and *Acer rubrum* L.	Hot water and ethanolic extracts	Enzymatic assay	Extracts from six Canadian forest species were assessed for their phenolic compounds contents, and their capacity to inhibit lipid peroxidation and to scavenge reactive species (nitric oxide and singlet oxygen) involved in inflammatory diseases and skin aging. The extracts were also tested over their capacities to inhibit tyrosinase and elastase. The results showed that all polyphenolic bark extracts, but especially those from *A. rubrum*, *P. banksania*, *B. alleghaniensis*, and *P. mariana*, present anti-aging potential.	Royer et al. (2013)
Portulaca oleracea L. (Asian herb)	Ethanolic extracts	Cell culture	The bioactivities of *P. oleracea* ethanolic extracts of were assessed under various conditions with NIH3T3, B16F10, and MCF-7 cell line model systems. The tested extracts promoted inhibition of tyrosinase, however were not effective in suppressing either the TYRF-1 or DCT expression in B16F10 cells. In addition, *P. oleracea* extracts presented anti-inflammatory effects on TNF-α-stimulated NIH3T3/NFκB-Luc cells and raised the synthesis of collagen on NIH3T3 cells. S. oleraceus extracts (at 5 mg/mL or above) significantly suppressed H₂O₂ stress-induced premature senescence, and the herein anti-aging effect was concentration-dependent. When compared to the corresponding ascorbic acid treatments, S. oleraceus extracts showed better or equivalent effects.	Zhang et al. (2009)
Sonchus oleraceus (L.) L	Methanolic extract of the leafs	Cell culture	S. oleraceus extracts (at 5 mg/mL or above) significantly suppressed H₂O₂ stress-induced premature senescence, and the herein anti-aging effect was concentration-dependent. When compared to the corresponding ascorbic acid treatments, S. oleraceus extracts showed better or equivalent effects.	Ou et al. (2015)
Vaccinium angustifolium Aiton (Blueberry)	Total phenolic compounds extract and a proanthocyanidin (PAC)-enriched fraction	Caenorhabditis elegans	The complex mixture of blueberry phenolic compounds increased lifespan and slowed down aging-related declines in *C. elegans*. Although blueberry treatment increased survival during acute heat stress, it did not protected against acute oxidative stress.	Wilson et al. (2006)
Table 2. Isolated phytochemicals with proven anti-aging effects reported in the last decade, some still underexplored by science or little known.

Compound category	Food/plant source	Isolated compounds	In vitro assays or animal model	Novelty, main contribution	References
Flavonoids	Epimedium koreanum Nakai	Flavonoids	Rat	With the progression of aging, the mean levels of phosphorylation of p65, IkBa, and IkBe: in rat spleen lymphocytes decreases. However, the intragastric administration of E. koreanum flavonoids strongly upregulated the expression of Rel/NF-κB family and increased the phosphorylation of p65, IkBa, and IkBe during aging.	Liu et al. (2008)
Flavonols	Red wine, onions, green tea, apples, and berries	Quercetin (purified compound)	Cell culture	The authors have identified quercetin and its derivative quercetin caprylate as proteasome activators with antioxidant properties capable of alter the cellular lifespan, survival and viability of HFL-1 primary human fibroblasts. A rejuvenating effect was inferred when these compounds were supplemented to already senescent fibroblasts.	Chondrogianni et al. (2010)
Flavonols	Berries and red wine	Myricetin (purified compound)	Mice	Myricetin treatment diminished UVB-induced epidermal thickening of mouse skin and suppressed UVB-induced matrix metalloproteinase-9 protein expression as well as enzyme activity. Myricetin apparently exerted its anti-aging effects via suppression of UVB-induced Raf kinase activity and subsequent attenuation of UVB-induced phosphorylation of mitogen-activated protein kinase kinase1 (MEK) and the extracellular signal-regulated kinase (ERK) in mouse skin.	Jung et al. (2010)
Flavones	Passiflora caerulea L. (blue passion flower), Oroxylum indicum (L.) kurz (Indian trumpet flower), and mushrooms	Chrysin (purified compound)	Mice	Chrysin significantly diminished the reactive species levels and attenuated the inhibition of superoxide dismutase, catalase, and glutathione peroxidase as well as the activity of Na+ and K+ -ATPase, of aged mice.	Souza et al. (2015b)
Stilbenoids	Blueberries and grapes	Pterostilbene (purified compound)	mice	The promising anticarcinogenic potential observed in this experiment was attributed to pterostilbene’s role in maintaining the skin antioxidant defenses (glutathione levels, catalase, superoxide, and glutathione peroxidase activities) close to control values as well as its capacity to inhibit UVB-induced oxidative damage.	Sirerol et al. (2015)
Lignans	Arctium lappa L.	Six lignans isolated from A. lappa seeds: arctigenin, matairesinol, arctiin, (iso) lappaol A, lappaol C, and lappaol F (Figure 3)	Caenorhabditis elegans	All tested lignans significantly extended the mean lifespan of C. elegans, inclusively under oxidative stress conditions. However, the strongest effect was observed with matairesinol, which at a concentration of 100 μM extended the life span of worms by 25%. A hypothetical underlying mechanism of the herein longevity-promoting activity of A. lappa lignans	Su and Wink (2015)

(Continued on next page)
Compound category	Food/plant source	Isolated compounds	In vitro assays or animal model	Novelty, main contribution	References
Terpenes	*Pinus densiflora* Siebold & Zucc., *Pinus sylvestris* L., and *Abies grandis* (Douglas ex D.Don) Lindl.	Dehydroabietic acid (DAA)	*Caenorhabditis elegans*	In vitro results showed that DAA involves the DAF-16-mediated signaling pathway and extends lifespan in *C. elegans*.	Kim et al. (2015)
Xantonoids	*Anemarrhena asphodeloides* Bunge	Mangiferin	Cell culture and mice	Mangiferin inhibited UVB-induced gelatinase B expression and enzyme activity, thus attenuating UVB-induced phosphorylation of MEK and ERK. In vivo, mangiferin diminished UVB-induced mean length and mean depth of skin wrinkles.	Kim et al. (2012)
Hydroxycinnamic acid, aminoacid and nitrogenous base	*Allium sativum* L. (garlic)	Caffeic acid, S-allyl cysteine and uracil (Figure 3)	Mice	The three compounds significantly inhibited the degradation of type I procollagen and the expression of matrix metalloproteinases in vivo, at the same time that ameliorated the histological collagen fiber disorder and oxidative stress in vivo, and decreased oxidative stress and inflammation via the modulation of NF-κB and AP-1 activities.	Kim et al. (2013)
Amino acids	Tree nuts and peanuts	L-arginine (purified agmatine)	Rats	L-arginine (40 mg/kg) supplemented intraperitoneally notably enhanced spatial working memory and object recognition memory in aged rats, eliminated age-related elevation in total nitric oxide synthase (NOS) activity, and repaired endothelial NOS protein to the normal level. However, L-arginine supplementation did not improve exploratory activity and spatial reference learning and memory in aged rats.	Rushaidhi et al. (2012)
Amino acids	*Camellia sinensis* (L.) Kuntze (green tea)	L-Theanine (Figure 2)	*Caenorhabditis elegans*	L-theanine improved survival of *C. elegans* in the presence of paraquat at a concentration of 1 μM, while extended *C. elegans* lifespan when applied at concentrations of 100 nM. Considering these findings, L-theanine may be worth testing in mammals and potentially humans concerning anti-aging effects.	Zarse et al. (2012)
Proteins	*Daucus carota* L. (carrot)	Carrot glycoprotein	Cell culture	Carrot glycoprotein neutralizes reactive oxygen species, protect cell membrane, and plays a role as anti-aging agent in the exposed solar ultraviolet light skin.	Lee et al. (2015)
Polysaccharides	*Lycium barbarum* L. (Chinese red-colored fruits)	Polysaccharides	Aged mice	*Lycium barbarum* polysaccharides and vitamin C were administrated to aged mice. The	Li et al. (2007)

(Continued on next page)
fitness through its antioxidant, anti-inflammatory, anticoagu-
lant, and fat-lowering activities, while on the other hand it can
inhibit angiogenesis, thus further potentiating its antitumoral
effects. According to Tomé-Carneiro et al. (2013), evidence
from experiments in humans has generally endorsed the cardi-
oprotective activity of RES through effects related to the
improvement of inflammatory markers, atherogenic profile,
glucose metabolism, and endothelial function. These same
authors, however, have commented on the incongruences
between in vitro studies and the evidence obtained in studies
conducted with humans with respect to the effects of RES.
Besides summarizing and discussing the (still scarce) evidence
obtained from randomized clinical trials they also provided a
critical outlook for further research on this molecule that is
evolving from a minor dietary compound to a possible multi-
target therapeutic drug.

Khan and Mukhtar (2013) reviewed the major epidemiologi-
cal and clinical studies on green tea (Camellia sinensis (L.) Kun-
tze) consumption and human cancer prevention in different
organs, cancer being the current major cause of mortality
throughout the world. The authors also presented evidence for
the association between tea drinking and a diminished occur-
rence of diabetes, arthritis, and disturbances in the neurological
system (all age-related diseases) in humans. However, Khan
and Mukhtar (2013) highlighted that results from human stud-
ies are not always positive, possibly, due to the fact that higher
doses of tea are used in animal studies than those consumed by
humans and that in animal studies the experimental conditions
are generally optimized for the evaluation of a protective effect.
Hence, they concluded that large-scale and well-controlled
human clinical trials are still needed to determine with exacti-
tude the health-promoting effects of tea consumption. Even so,
Khan and Mukhtar (2013) expressed the opinion that the cur-
rent findings authorize to recommend the consumption of
green tea to the aging population.

Epidemiological studies have shown an inverse relationship
between nut intake and chronic diseases such as cardiovascular
diseases and cancers. Yang (2009) have summarized various epi-
demiological, animal models and culture cell studies evidencing
that Brazilian nuts are abundant in dietary antioxidants, especially selenium (Se), an essential
element with antioxidant, proapoptotic, anticancer, and DNA
repair properties (Shankar et al., 2013). Brazil nuts also contain
phenolic acids and flavonoids in both free and bound forms and
are abundant in tocopherol, phytosterols, and squalene
(Figure 4). Phytochemical extracts from Brazil nuts exhibit anti-
oxidant and antiproliferative activities, and the majority of the
total antioxidant and antiproliferative activities arise from the
combined action of phytochemicals and selenium (Yang, 2009).

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disease, being directly related to aging. Several
mechanisms have been implicated in the pathogenesis of PD
including oxidative stress, mitochondrial dysfunction, protein
aggregation, and inflammation. Evidence from animal models
shows that various phytochemicals may alter the mechanisms
contributing to PD pathophysiology. In addition, epidemiologi-
cal studies have demonstrated a relationship between reduced
risk of PD and diet. In this context, Shah and Duda (2015)
have proposed that phytochemicals in plant-based foods may
contribute to neuroprotection in PD and that adopting a plant-
based diet may provide symptomatic improvement and alter
the progression of the disease.
Very recently, Julián-Ortiz et al. (2016) summarized clinical evidences on the advantages of using phytochemicals as adjuvant therapy along with conventional anticancer therapies. Their findings showed that the beneficial effects of phytochemicals are virtue of their direct anticarcinogenic activity, induction of relief in cancer complications as well as to their protective role against the side effects of the conventional chemotherapy agents. According to the authors, curcumin, ginsenosides, lycopene, homoharringtonine, aviscumin, and RES are amongst the phytochemicals with the most remarkable amount of clinical evidence indicating their direct anticancer activities in different types of cancer. However, Julián-Ortiz et al. (2016) highlighted the lack of evidence from clinical trials in the case of a large number of phytochemicals and recommended further human studies to confirm the role of plant metabolites in the management of cancer.

Difficulties in performing anti-aging study protocols

Despite the increasing amount of in vitro studies trying to unravel the mechanisms of action of phytochemicals, the research in this field is still deficient and fragmented. There are many unanswered
questions concerning particularly the transfer of the findings of the in vitro studies to the in vivo situation to ascertain the validity of the recommendation to consume phytochemicals-enriched food or phytochemical supplements, including anti-aging supplements. Furthermore, human epidemiological studies or clinical investigations are very few and nonsystematic.

Some important aspects should be carefully considered in human study protocols. A first point of attention is that phytochemicals are present in food matrices together with many other components, and it is possible that their in vivo activity may be the result of a synergism with other factors (Rossi et al., 2008). Another important issue is the bioavailability of antioxidant phytochemicals, as any systemic potential activity attributed to a dietary compound involves its absorption and delivery to the target tissue in its intact form or as an active metabolite (Larrosa et al., 2010). Most in vitro studies on the biological activity of polyphenolic compounds use the original molecule present in the plant, without taking into account that, in vivo, they are in fact transformed into derivatives. Hence, ideally, the in vitro studies should use the selected metabolites produced in vivo in order to accurately assess the authentic activity of phenolic compounds (Rossi et al., 2008).

Figure 4. Chemical structures of phytochemicals identified in Brazilian nuts (Bertholletia excelsa), namely, the hydrocarbon steroid precursor squalene, and the phytosterols β-sitosterol, campesterol, and stigmasterol; structures of different compounds with skin effects identified in olive by-products, including oleuropein; and also silibinin, a flavonolignan abundantly present in milk thistle (Silybum marianum) and artichoke (Cynara scolymus).
Erythrocytes and plasma: A viable model system to assess anti-aging effects of phytochemicals in humans

It is well known that eukaryotic cells display a plasma membrane redox system (PMRS) that transfers electrons from intracellular substrates to extracellular electron acceptors. About a decade ago, Rizvi et al. (2006) conducted studies to determine the activity of PMRS in human erythrocytes as a function of age and to correlate this activity to the total plasma antioxidant capacity as an effort to understand the role of PMRS in human aging. The study was carried out on 80 normal healthy subjects of both genders between the ages of 18 and 85 years. The activity of erythrocyte PMRS was estimated by following the reduction of ferricyanide. The total antioxidant capacity of the plasma was estimated in terms of the ferric -reducing ability of plasma (FRAP) values. The authors observed an age-dependent decrease in the total plasma antioxidant capacity measured in terms of FRAP values. A highly significant correlation was observed between PMRS activity and plasma FRAP values. Therefore, Rizvi et al. (2006) concluded that the increased PMRS in erythrocytes during aging correspond to a protective mechanism of the system for efficient extracellular DHA reduction and ascorbate recycling under the condition of increased oxidative stress.

After a few years, Pandey and Rizvi (2010) reviewed the aging process focusing on the importance of some reliable markers of oxidative stress, which could be applied as biomarkers of the aging process in human studies. In their review, the authors discussed that several parameters have been used to evaluate the extent of oxidative damage, but not all of them can be used as biomarkers of the aging process because many of them are influenced by several factors, including sex, types of tissue, diet, and also by their efficient repair mechanisms. Furthermore, some parameters are also dependent upon the methods used to measure them. Finally, the authors proposed the use of erythrocytes as model cells for the study of aging and age-related diseases, arguing that erythrocytes provide an array of biochemical parameters which have been successfully applied to assess aging-related changes in the redox status.

Evaluation of antioxidant effects of phytochemicals in human cells

Overproduction of oxidants, reactive oxygen species (ROS) and reactive nitrogen species, in human body can cause an imbalance and lead to oxidative damage to large biomolecules such as lipids, DNA, and proteins. This damage is responsible for the pathogenesis of several human diseases, including aging (Zhang et al., 2015). The antioxidant defense system includes endogenous and exogenous antioxidants. The main endogenous (enzymatic and nonenzymatic) antioxidants are superoxide dismutase, catalase, glutathione peroxidase, and glutathione (Pham-Huy et al., 2008). ROS can also activate enzymes such as the metalloproteinase collagenase, the serine-protease elastase, and the mucopolysaccharase hyaluronidase (all involved in degrading the extracellular matrix components), which results in visible skin aging. However, several in vitro scientific studies have shown that phytochemicals can reduce oxidant levels and thus inhibit collagenase, elastase, hyaluronidase, and tyrosinase enzymes (Bravo et al., 2016).

Exogenous antioxidants include vitamins, carotenoids, and polyphenols, with the diet being the main source. Martins et al. (2016) recently published a reference work on the aspects related to the in vivo antioxidant activity of phenolic extracts and compounds from plant origin. In this critical review, the biological functions in the human metabolism were discussed, comparing in vivo versus in vitro studies, as also focusing the conditioning factors for phenolic compounds bioavailability and bio efficacy. Furthermore, the authors provided an upcoming perspective about the use of phytochemicals as life expectancy promoters and anti-aging factors in human individuals. Antioxidants have the capacity to disarm ROS by functioning as reducing agents (Pham-Huy et al., 2008). This antioxidant activity capable of scavenging ROS is a property that may be primarily attributable to their phenolic hydroxyl groups, depending on their number and position as well as to their glycosylation patterns. Generally, thus, phytochemicals with more hydroxyl groups may have a stronger antioxidant capacity (Si and Liu, 2014). Endogenous and exogenous antioxidants act interactively (e.g., synergistically) to maintain or re-establish redox homeostasis (Bouayed and Bohn, 2010).

Evaluation of skin aging and the influence of phytochemicals used in anti-aging formulations

The impact of human aging is especially visible in the skin, where it originates several changes, including thinning, dryness, laxity, fragility, enlarged pores, fine lines, and wrinkles (Wang et al., 2015). Skin aging is also linked to physical disorders of the skin, being caused by both intrinsic and extrinsic factors (Farage et al., 2008), all leading to reduced structural integrity and loss of physiological function (Landau, 2007). Progerin, a truncated version of the lamin A protein, cooperates with telomers to trigger cellular senescence in normal human fibroblasts. Progerin accumulates over time as the skin ages and, thus, its expression is greater in older fibroblasts than in younger ones (Wang et al., 2015).

Tissue degeneration, inherently linked to aging, becomes more significant through the lack of tissue regeneration, which can be exemplified by the well-known loss of telomeric ends leading to cellular senescence (Kammeyer and Luiten, 2015). Kammeyer and Luiten (2015) believe that oxidative processes is the main cause of tissue deterioration or aging. For the authors, while senescence is a status quo for individual cells, oxidative degeneration is a progressive event and affects the entire tissue composition. It will fatally triumph, unless there is inexhaustible availability of antioxidants and substantial tissue regeneration, which will retard the aging process.

A gerontogen can be defined as an environmental stimulus, exposure, or toxicant that accelerates the rate of molecular aging (Sorrentino et al., 2014). Incident toxicants such as arsenic and benzenes (Zhang et al., 2013), ionizing radiation and UV light (Freund et al., 2011), cigarette smoke (Song et al., 2010), side effects of therapeutic treatments (cytotoxic chemotherapy and HIV therapy), psychological stress as well as alterations in diet and exercise (Sorrentino et al., 2014; Kim et al., 2016a,b), all correspond to gerontogen examples. Extrinsic aging is generated by injurious free radicals produced in response to various environmental factors, including sun...
exposure and smoking. These radicals induce damage to the skin by causing an inflammatory reaction.

According to Kammeyer and Luiten (2015), damaged protein and glycosaminoglycan structures that form the events for extracellular matrix degradation, such as that of collagen, are the pivotal structural components responsible for an aged skin appearance. As stated in their recent review, UV-induced damage of DNA can lead to mutations and consequential apoptosis or malignant transformations of cells, and UV-exposure can directly damage biomolecules, or indirectly via the generation of radicals. The injury to these structures generates cell death, degraded proteins, and inflammatory responses. Moreover, reactive intermediates, often radicals, can further denaturalize other biomolecules. In addition, Kammeyer and Luiten (2015) stated that these findings are frequently clearer from experiments in vitro than in vivo, by virtue of the tricky interpretation of the results obtained in vivo by the potential occurrence of adaptive responses (mitohormesis).

Rhodes et al. (2013) studied the effects of the supplementation of green tea catechin (GTC) metabolites in humans. The authors proved that GTC metabolites can be effectively incorporated into the human skin and reported its protective effects against cutaneous inflammation induced by UV radiation in association with reduced production of the proinflammatory eicosanoid 12-hydroxyeicosatetraenoic acid. However, Farrar et al. (2015) which performed a double-blind, randomized, placebo-controlled trial to examine whether GTCs protect against clinical, histologic, and biochemical indicators of UVR-induced inflammation, did not found such positive effects. These authors reported that the oral administration of GTC did not significantly ameliorate skin erythema, leukocyte infiltration, or eicosanoid response to UVR inflammatory process.

In the past decade, consumers became more suspicious about chemical ingredients. Hence, there is a trend of going back to fundamental or basic cosmetic products with an increasing request for natural and environmentally sustainable products, such as pharmaceutical herbal formulations (Wang et al., 2015).

Various anti-aging agents in cosmeceuticals are consumed orally, but these are also known to work topically in the elevation of skin health (Singh and Agarwal, 2009). Anti-aging herbal cosmetics may contain isolated bioactive compounds or crude phytoextracts. Currently, there are extensive research activities in progress involving development and characterization of extract-loaded formulations to concurrently achieve various goals such as anti-inflammatory and anti-aging effects (Jeon et al., 2009).

Jadoon et al. (2015) presented an extensive list of in vivo antioxidant studies on herbal creams loaded with phytoextracts. The botanicals studied for dermatologic use in cream form comprised: Acacia nilotica (L.) Del., Benincasa hispida (Thunb.) Cogn., Calthia officinalis (L.) Moench., Camellia sinensis, Nelumbo nucifera Gaertn., Capparis decidua (Forsk.) Edgew., Castanea sativa Mill., Coffea arabica var. angustifolia Cramer, Crocus sativus L., E. officinalis, Foeniculum vulgare Mill., Hippophae rhamnoides L., Lithospermum erythrorhizon Siebold & Zucc., Malus domestica Borkh., Matricaria chamomilla L., Morinda oleifera Lam., Morus alba L., Ocimum basilicum Linn., Oriza sativa L., Polygonum minus Huds., Punica granatum L., Tagetes erecta Linn., Terminalia chebula Retz., Trigonella foenumgraecum L., and Vitis vinifera. According to these authors, the observed anti-aging effect of cream formulations is probably an end result of a coordinated action of multiple components of the formula, being that, among several phytochemicals, the phenolic acids and flavonoids appear to be effective against UVR-induced damage. Jadoon et al. (2015), however, highlighted the importance of more evidence-based studies for their anti-aging effects.

Silymarin/silibinin, naturally occurring flavonolignans present in milk thistle (Silybum marianum (L.) Gaertn.) and artichoke (Cynara cardunculus (L.) subsp. scolymus Hayek) (Figure 4), can be found in some commercialized high-end moisturizers to prevent cutaneous oxidative damage and photaging. Their anti-aging potential is embayed by studies in the mouse skin model with silymarin/silibinin showing strong protective effects against environmental toxicants as well as UVB radiation (Singh and Agarwal, 2009).

Latest studies have evidenced a trend of using agroindustrial by-products as sources of phytochemicals for diverse applications, including anti-aging cosmetics. In a recent review Rodrigues et al. (2015) proposed the application of olive by-products, a proven source of antioxidant compounds like oleuropein (shown in Figure 4). These by-products also present interesting fatty acids and mineral profiles. Likewise, Chulasiri (2016) suggested the use of pigmented rice bran, rich in phytochemicals including gamma-oryzanol, tocopherols, tocochromans, and phenolic compounds, as a matrix for obtaining safe and efficient anti-aging cosmeceuticals.

Accordingly, the synergy of combining the topical use of anti-aging creams with oral food supplements seems to be an interesting approach for preventing and slowing down skin aging (Rodrigues et al., 2015).

The hallmarks of aging and potential anti-aging interventions using phytochemicals

In a landmark paper, López-Otín et al. (2013) have summarized the principal theories of aging, namely (1) genomic instability, (2) telomere attrition, (3) epigenetic alterations, (4) loss of proteostasis, (5) deregulated nutrient sensing, (6) mitochondrial dysfunction, (7) cellular senescence, (8) stem cell exhaustion, and (9) altered intercellular communication. These nine hallmarks of aging were classified by the authors into three categories: primary hallmarks, antagonistic hallmarks, and integrative hallmarks. According to the authors, primary hallmarks would be those decisively negative, what is the case of DNA damage, including chromosomal aneuploidies, mitochondrial DNA mutations and telomere loss, epigenetic drift, and defective proteostasis. Contrarily, the antagonistic hallmarks would be those hallmarks that present opposite effects depending on their intensity: at low levels, they mediate beneficial effects, though at high levels, they become deleterious. Senescence is included in this category, since it protects the organism from cancer but, in excess, can promote aging. Likewise ROS mediating cell signaling as well as optimal nutrient sensing and anabolism, which are all clearly important for survival but, in excess and with time, can promote negative effects like aging itself. The third category contains the integrative hallmarks (stem cell
Hallmarks of aging	Possible anti-aging interventions	Role of phytochemicals: Outstanding reviews or original contributions	References
Cellular senescence	Clearance of senescent cells	Sonchus oleraceus extracts protected cells against H₂O₂-induced senescence by mediating oxidative stress. Delaying senescence or even promoting death of accumulating apoptosis-resistant senescent cells are current strategies to prevent age-related diseases. Quercetin provenly displays senolytic effects in some primary senescent cells, likely because of its inhibitory effects on specific antiapoptotic genes (PI3K and other kinases). The recent review Pleiotropic effects of tocochromanols and quercetin on cellular senescence: Introducing the perspective of senolytic effects of phytochemicals discussed the role of quercetin as adjuvant in the therapy of cancer and preventive anti-aging strategies.	Ou et al. (2015) Malavolta et al. (2016)
Mitochondrial dysfunction	Mitohormetics, mitophagy	Ginkgo biloba L. extract (GBE) apparently possess direct protective effects on mitochondria. In an experiment with two age groups (three-week-old and 40-week-old) of a senescence-accelerated strain of mice, the responses of GBE on mitochondrial function in platelets and hippocampi were tested. The investigated mitochondrial functions, assessed as cytochrome c oxidase activity, mitochondrial adenosine-5'-triphosphate content and mitochondrial glutathione content, diminished with age. GBE inhibited mitochondrial dysfunction in platelets of both young and old mice, evidencing a peripheral effect of Ginkgo biloba in preventing and treating age-associated degeneration.	Shi et al. (2010)
Deregulated nutrient sensing	Dietary restriction (DR), IIS and m-TOR inhibition, AMPK and sirtuin activation	Seven sirtuins (SIRT) have been identified in mammals. One of them, SIRT-1 apparently mediates the beneficial effects on health and longevity of both caloric restriction and resveratrol. A review entitled Resveratrol, sirtuins, and the promise of a DR mimetic, explores the role of resveratrol as a mimic agent of DR. As such, resveratrol extends the lifespan of yeast, worms, flies, and of the short-living species of a fish. In rodents, resveratrol improves health, and prevents the early mortality associated with obesity, however its precise mechanism of action remains controversial, and extension of normal lifespan has not been found.	Markus and Morris (2008) Baur et al. (2006); Baur (2010)
Epigenetic alterations	Epigenetic drugs	Bioactive phytochemicals, which are abundantly available with minor toxic effects, have been assessed for their role in epigenetic modulatory activities in gene regulation for both cancer prevention and therapy. Favourably, several bioactive phytochemicals potentially interfered in expression of key tumor suppressor genes, tumor promoter genes, and oncogenes via modulation of DNA methylation and chromatin modification in cancer. These investigated phytochemicals, either alone or in combination with other bioactive phytochemicals, presented encouraging results against various cancers.	Shukla et al. (2014)
Stem cell exhaustion	Stem-cell-based therapies	N-acetyl-l-cysteine (NAC) is an altered form of the amino acid cysteine that in turn occurs in foods derived from plant sources like bananas, onion, garlic, and peppers. NAC, a precursor of glutathione and a direct ROS scavenger, apparently restores aged stem cell function by targeting toxic metabolites. NAC treatment clearly restored the quiescence and reconstitution capacity of ATM-null HSCs24, while also improved survival of a distinct population of myogenic stem cells in skeletal muscle, both in vitro and in vivo. However, it remains unclear whether NAC or other antioxidant treatments have a direct or indirect effect on age-dependent deficits in stem cells or stem cell function, and to elucidate these issues further investigations are required.	Cerny and Guntz-Dubini (2013) Oh et al. (2014)
Altered intercellular communication	Anti-inflammatory phytochemicals	Ilex paraguariensis A.St.-Hil. (yerba mate) ethanolic extracts showed a clear anti-inflammatory potential in culture cell tests as well as outstanding antioxidant and interesting antitumor properties. Likewise, hydromethanolic extracts of three different cultivars of globe amaranth (Gomphrena haageana Klotzsch, Gomphrena globosa var. albiflora Moq., and Gomphrena sp., respectively, red, white, and pink), all rich in quercetin-3-O-rutinoside, presented expressive anti-inflammatory potential and valuable properties related to oxidative stress.	Souza et al. (2015a) Liberal et al. (2016)
Loss of proteostasis	Activation of chaperones and proteolytic systems	Neurohormetic phytochemicals such as resveratrol, sulforaphanes, and curcumin might protect neurons against age-associated degradation.	Mattson and Cheng (2006) Pal et al. (2010)

(Continued on next page)
exhaustion and altered intercellular communication), which directly influence tissue homeostasis and function.

Critical questioning related with the large disparity of life-span between mice and humans, has been published recently (Margolick and Ferrucci, 2015). In fact, it cannot be simply assumed that mechanisms of aging found in mice will pertain equally to aging in humans. However, it is possible to find many similarities in phenotypes of aging across humans and other mammalian species, and definition of a standard phenotype of aging would allow the underlying mechanisms to be tested experimentally.

Table 3 presents how the phytochemicals could potentially be applied as possible interveners against aging markers, and the studies conducted both in vivo and in vitro that support this proposal. These phytochemicals were formerly known as antioxidants and are now being revisited due to their capabilities to change the epigenome (Christodoulou et al., 2014). In Table 3, efforts were done to correlate the terms phytochemicals, hallmarks of aging, and potential anti-aging interventions. Besides providing a broad compilation of both phytochemical extracts and isolated compounds from still underexplored plant/food sources, this article presents a critical review on phytochemicals as plausible interveners against the major hallmarks of aging, inclusively due to their epigenetic properties (Table 3). More importantly, this work proposes a discussion about the challenges and limitations in performing human study protocols and evidences the scarcity of well-designed epidemiological studies and clinical trials addressing the anti-aging effects of phytochemicals.

Considering not only the eminent research interest in validating phytochemicals as authentic interveners for delaying aging and associated conditions, but also the ultimate ambition of geroscience to discover strategies to boost natural defenses and prolong health span through better management of the threats posed to an individual’s cells and tissues, some future directions could be proposed:

1. The precise identification of specific molecules involved in the anti-aging activities of phytochemical extracts and phytochemical supplements is of major importance, in order to determine which is the genuine anti-aging component responsible for the attributed effects, without neglecting the synergistic interactions among the various compounds.
2. Several related variables should be adequately investigated in human trials, namely the bioavailability and bioefficacy of the anti-aging phytochemicals as well as drug-phytochemical interactions.

Conclusion, limitation, and future perspectives

The potential function of phytochemicals as human anti-aging compounds has been well endorsed by the studies described herein, suggesting their possible role either in preventing age-related diseases and in “slowing down” aging itself, even slightly. The impact of human aging on its more obvious manifestation, the skin aging, has also been herein contemplated.

Table 3. (Continued)

Hallmarks of aging	Possible anti-aging interventions	Role of phytochemicals: Outstanding reviews or original contributions	References
Genomic instability	Elimination of damaged cells	Pretreatment with cinnamic acid provides effective radioprotection of human lymphocytes against the deleterious effects of irradiation with X-rays. A recent review entitled Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression explores the potential of phytochemicals in inhibiting the evolution of carcinogenesis by activating both the apoptotic pathway and cell cycle arrest.	Cinkilic et al. (2014) Lee et al. (2013)
Telomere attrition	Telomerase reactivation	Due to the incomplete replication of linear chromosomes by DNA polymerase, telomeric repeats at the ends are lost with each cell division. Dysfunction of telomers is associated with the development of many age-related diseases. Telomere length and attrition of telomeric repeats can be altered by nutrition not only in human, but also animal models, as it is well established that many minerals, vitamins, and phytochemicals such as polyphenols of green tea and grape as well as curcumin, can be helpful in DNA repair and chromosome maintenance.	Paul (2011)
3. There is a clear need to devise novel accessible, predictive, and relevant biomarkers to test anti-aging interventions. Hence, the possibility of using the markers erythrocytes and plasma as a model system to assess anti-aging effects of phytochemicals in humans should be better explored.

4. Still on the issues involving human anti-aging study protocols, further investigations should consider whether a potential anti-aging phytochemical would be applicable to everyone, as it is already known that individuals age differently (Riera and Dillin, 2015).

5. Further large-scale and well-controlled human clinical trials are needed to determine the actual effects of both well-known and underexplored anti-aging phytochemicals. Only based on these findings, recommendations of consumption by the human population should be made.

Lastly, despite the past decade advances, our knowledge regarding the potential of phytochemicals as anti-aging agents is still restricted. Hopefully in future, with the required well-conducted epidemiological studies and clinical trials adopting adequate study protocols for humans, along with the promising novel epigenetics and nutrigenomics tools, and also taking into account the heterogeneity of aging, science can unravel the true significance of the phytochemicals as agents of human anti-aging compounds.

Acknowledgments

R.C.G. Correa thanks Coordenação de Aperfeiçoamento do Pessoal do Ensino Superior (CAPES) and Fundação Araucária for the financial support provided for her postgraduate studies in Federal Technological University of Paraná (contract 100/2014). R.M. Peralta (Project number 307944/2015-8), C.W.I. Haminiuk (Project number 303238/2013-5), and A. Bracht (Project number 302615/2011-3) are research grant recipients of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors are also grateful to (FCT, Portugal) and FEDER-COMPETE/QREN/EU for financial support through the research project PEst-OE/AGR/UI0690/2014.

ORCID

Isabel C. F. R. Ferreira http://orcid.org/0000-0003-4910-4882

References

Adil, M. D., Kaiser, P., Satti, N. K., Zargar, A. M., Vishwakarma, R. A. and Tasduq, S. A. (2010). Effect of Emblica officinalis fruit against UVB-induced photo-aging in human skin fibroblasts. J. Ethnopharmacol. 132:109–114.

Adomaityte, J., Mullin, G. E. and Dobs, A. S. (2014). Anti-aging diet and supplements: Fact or fiction? Nut. Clin. Prac. 29:846–846.

Ansel, J.-L., Ly, Q., Butaud, J.-F., Nicolas, M., Herbette, G., Peno-Mazzarino, L., et al. (2016). Anti-aging activity of Fitchia nutans extract, a cosmestecial ingredient of a Polynesian traditional monoï. Comptes Rendus Chimie. 19:1049–1055.

Argyropoulou, A., Aligiannis, N., Trougakos, I. P. and Skaltsounis, A. L. (2013). Natural compounds with anti-aging activity. Nat. Prod. Rep. 30:1412–1437.

Bair, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Len, C., Kalra, A., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342.

Baur, J. A. (2010). Resveratrol, sirtuins, and the promise of a DR mimetic. Mech. Ageing Dev. 131:261–269.

Bouayed, J. and Bohn, T. (2010). Exogenous antioxidants–Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Long. 3:228–237.

Bravo, K., Alzate, F. and Oсорio, E. (2016). Fruits of selected wild and cultivated Andean plants as sources of potential compounds with antioxidant and anti-aging activity. Indu. Crops Prod. 85:341–352.

Briga, M. and Verhulst, S. (2015). What can long-lived mutants tell us about mechanisms causing aging and lifespan variation in natural environments? Exp. Geront. 71:21–26.

Cerny, C. and Gunz-Dubini, R. (2013). Formation of cysteine-S-conjugates in the Maillard reaction of cysteine and xylose. Food Chem. 141:1078–1086.

Choi, H. K., Kim, D. H., Kim, J. W., N̄gadiran, S., Sarmidi, M. R. and Park, C. S. (2010). Labisia pumila extract protects skin cells from photoaging caused by UVB irradiation. J. Biosci. Bioeng. 109:291–296.

Chondrogianni, N., Kapeta, S., Chiniou, I., Vassilatou, K., Papassideri, I. and Gono, E. S. (2010). Anti-aging and rejuvenating effects of quercetin. Exp. Geront. 45:763–771.

Christodoulou, M. S., Thomas, A., Poulian, S., Vidakovic, M., Lahtela-Kakkonen, M., Matulis, M., et al. (2014). Can we use the epigenetic bioactivity of calorid restriction and phytochemicals to promote healthy aging? Medic. Chem. Comm. 5:1804–1820.

Chuulasiri, M. (2016). Antiaging cosmeceuticals from pigmented rice. Asian J. Pharma. Sci. 11:30.

Cinklic, N., Tüzün, E., Cetinbas, S. K., Vatan, O., Yılmaz, D., Çavuş, T., et al. (2014). Radio-protective effect of cinnamic acid, a phenolic phytochemical, on genomic instability induced by X-rays in human blood lymphocytes in vitro. Mutat. Res. 770:72–79.

Corella, D. and Ordovás, J. M. (2014). Aging and cardiovascular diseases: The role of gene–Diet interactions. Ageing Res. Rev. 18:53–73.

Dong, Y., Tang, D., Zhang, N., Li, Y., Zhang, C., Li, L., et al. (2013). Phytochemicals and biological studies of plants in genus Hedysarum. Chem. Cent. J. 7, 124.

Ehninger, D., Frauke, N. and Xie, K. (2014). Longevity, aging and ramapycin. Cellular Mole. Life Sci. 71:4325–4346.

Farage, M. A., Miller, K. W., Elsner, P. and Maibach, H. I. (2008). Intrinsic and extrinsic factors in skin aging: A review. Int. J. Cosm. Sci. 30:87–95.

Farrar, M. D., Nicolau, A., Clarke, K. A., Mason, S., Massey, K. A., Dew, T. P., et al. (2015). A randomized controlled trial of green tea catechins in protection against ultraviolet radiation–Induced cutaneous inflammation. Am. J. Clin. Nutr. 102:608–615.

Freitas-Simoes, T.-M., Rosa, E. and Sala-Vila, A. (2016). Nutrients, foods, dietary patterns and telomere Length: Update of epidemiological studies and randomized trials. Meta. Clin. Exper. 65:406–415.

Freund, A., Patil, C. K. and Campisi, J. (2011). p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. Euro. Mole. Bio. Organ. J. 30:1536–1548. http://clinicaltrials.gov/

Jadoon, S., Karim, S., Asad, M. H. B, Akram, M. R., Khan, A. K., Malik, A., et al. (2015). Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longevity. Oxid. Med. Cellular Lond. 2015, 17.

Jeon, H. Y., Kim, J. K., Kim, W. G. and Lee, S. J. (2009). Effects of oral epi-gallicathecine gallate supplementation on the minimal erythema dose and UV-induced skin damage. Skin Pharmac. Physi. 22:137–141.

Julian-Ortiz, J. V., Gozlubes, R., Besáí, E., Farraíei, M. H., Bahramsoaltani, R. and Rahimi, R. (2016). Phytochemicals as adjunctive with conventional anticancer therapies. Current Pharma. Des., in press.

Jung, S. K., Lee, K. W., Kim, H. Y., Oh, M. H., Byun, S., Lim, S. H., et al. (2010). Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf. Biochem. Pharma. 79:1455–1461.

Kammeyer, A. and Luiten, R. M. (2015). Oxidation events and skin aging. Ageing Res. Rev. 21:16–29.

Kasiotis, K. M., Pratsinis, H., Kletas, D. and Haroutounian, S. A. (2013). Resveratrol and related stilbenes: Their anti-aging and anti-angiogenic properties. Food Chem. Toxic. 61, 112–120.

Khan, N. and Mukhtar, H. (2013). Tea and health: Studies in humans. Current Pharma. Des. 19:6141–6147.
Kim, H. S., Song, J. H., Youn, U. J., Hyun, J. W., Jeong, W. S., Lee, M. Y., et al. (2012). Inhibition of UVB-induced wrinkle formation and MMP-9 expression by mangiferin isolated from Anemarrhena asphodeloides. *Euro. J. Pharma.* 689:38–44.

Kim, S. R., Jung, Y. R., An, H. J., Kim, D. H., Jang, E. J., Choi, Y. J., et al. (2013). Anti-wrinkle and anti-inflammatory effects of active garlic components and the inhibition of MMPs via NF-κB signaling. *PLoS One* 8:e73877.

Kim, J., Kang, Y.-G., Lee, J.-Y., Choi, D.-H., Cho, Y.-U., Shin, J.-M., et al. (2015). The natural phytochemical dehydroabiatic acid is an anti-inflammatory reagent that mediates the direct activation of SIRT. *Mole. Cellular Endocrin.* 412:216–225.

Kim, D.-B., Shin, G.-H., Kim, J.-M., Kim, Y.-H., Lee, J.-H., Lee, J.-S., et al. (2016a). Antioxidant and anti-ageing activities of citrus-based juice mixture. *Food Chem.* 194:920–927.

Kim, K. E., Cho, D. and Park, H. J. (2016b). Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. *Life Sci.* 152:126–134.

Labat-Robert, J. and Robert L. (2014). Longevity and aging. Role of free radicals and antioxidant. A review. *Pathol. Bio.* 62:61–66.

Labiskyny, N., Cuiszar, A., Veress, G., Stef, G., Pacher, P., Czori, G., et al. (2006). Vascular dysfunction in aging: Potential effects of resveratrol, an anti-inflammatory phytoestrogen. *Curr. Medi. Chem.* 13:989–996.

Landau, M. (2007). Exogenous factors in skin aging. *Curr. Prob. Dermat.* 35:1–3.

Larrosa, M., García-Conesa, M. T., Espin, J. C. and Tomás-Barberán, F. A. (2010). Ellagittannins, ellagic acid and vascular health. *Mole. Aspects Med.* 31:513–539.

Lee, J. H., Khor, T. O., Shu, L., Su, Z. Y., Fuentes, F. and Kong A. N. (2013). Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. *Pharma. Ther.* 137:153–171.

Lee, M.-J., Jeong, N.-H. and Jang, B.-S. (2015). Antioxidative activity and antiaging effect of carrot glycoprotein. *Mutat. Res./Funda. Mole. Mech. Mutag.* 739:1–9.

Margolick, J. B. and Ferrucci, L. (2007). Exogenous factors in skin aging. *Curr. Prob. Dermat.* 33:73–76.

Mattson M. P. and Cheng, A. (2006). Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. *Trends Neurosci.* 11:362–369.

Oh, J., Lee, Y. D. and Wagers, A. J. (2014). Stem cell aging: Mechanisms, regulators and therapeutic opportunities. *Nature Med.* 20:870–880.

Ou, Z.-Q., Rades T. and McDowell, A. (2015). Anti-ageing effects of *Sonchus oleraceus* L. (pshh) leaf extracts on H₂O₂-induced cell senescence. *Molecules* 20:4548–4564.

Pal, R., Cristian, E. A., Schmittker, K. and Narayan, M. (2010). Rescue of ER oxireductase function through polyphenolic phytochemical interventional: Implications for subcellular traffic and neurodegenerative disorders. *Biochem. Biophys. Res. Commun.* 392:567–571.

Pandey, K. B. and Rizvi, S. I. (2010). Markers of oxidative stress in erythrocytes and plasma during aging in humans. *Oxid. Med. Cellular Lond.* 3:2–12.

Park, E. J. and Pezzuto, J. M. (2015). The pharmacology of resveratrol in animals and humans. *Biochem. Biophys. Acta* 1852:1071–1113.

Patel, K. R., Scott, E., Brown, V. A., Gescher, A. J., Steward, W. P. and Brown, K. (2011). Clinical trials of resveratrol. *Ann. N. Y. Acad. Sci.* 1215:161–169.

Paul, L. (2011). Diet, nutrition and telomere length. *J. Nutr. Biochem.* 22:895–901.

Pham-Huy, L. A., He, H. and Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. *Int. J. Biomed. Sci.* 4:89–96.

Popoola, O. K., Marnewick, J. L., Rautenbach, F., Iwuoha, E. I. and Hussein, A. A. (2015). Acyphloroglucinol derivatives from the South African *Helichrysum nivium* and their biological activities. *Molecules* 20:17309–17324.

Pounis, G., Costanzo, S., di Giuseppe, R., de Lucia, F., Santimone, I., Sciarretta, A., et al. (2013). Consumption of healthy foods at different content of antioxidant vitamins and phytochemicals and metabolic risk factors for cardiovascular disease in men and women of the Moli-sani study. *Eur. J. Clin. Nutr.* 67:207–213.

Quo, L. J., Zhou, H. Z. and Yu, H. W. (2012). Comparative study on the nature of water extracts of *Aconitum carmichaeli*, *Scutellaria baicalensis* and *Andrographis paniculata* on SH-SYSY cells apoptosis induced by MPP+. *Chin. Pharm. Pharm.* 23:2888–2891.

Rhodes, L. E., Darby, G., Massey, K. A., Clarke, K. A., Dew, T. P., Farrar, M. D., et al. (2013). Oral green tea catechin metabolites are incorporated into human skin and protect against UV radiation-induced cutaneous inflammation in association with reduced production of pro-inflammatory eicosanoid 12-hydroxyicosatetraenoic acid. *Br. J. Nutr.* 110:891–890.

Riera, C. E. and Dillin, A. (2015). Can aging be 'drugged'? *Nature Med.* 21:1400–1405.

Rizvi, S. I., Jha, R. and Maurya, P. K. (2006). Erythrocyte plasma membrane redox system in human aging. *Rejuven. Res.* 9:470–474.

Rizvi, S. I. and Jha, R. (2011). Strategies for the discovery of anti-aging compounds. *Exper. Opin. Drug Disc.* 6:89–102.

Rizza, W., Veronese, N. and Fontana, L. (2014). What are the roles of calorie restriction and diet quality in promoting healthy longevity? *Aging Res. Rev.* 13:38–45.

Robert, L. and Fulop, T. (2014). Aging of cell communication: Loss of receptor function. *Interdisc. Topics Geront.* 39:142–162.

Rodrigues, F., Pimentel, F. B. and Oliveira, M. B. P. (2015). Olive by-products: Challenge application in cosmetic industry. *Induc. Crops Prod.* 70:116–124.

Rossi, L., Mazzitelli, S., Arciello, M., Capo, C. R. and Rotilio, G. (2008). Benefits from dietary polyphenols for brain aging and Alzheimer's disease. *Neurochem. Res.* 33:2390–2400.

Royer, M., Prado, M., García-Pérez, M. E., Díouf, P. N. and Stevanovic, T. (2013). Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. *Pharma. Nutr.* 1:158–167.

Rushaidhi, M., Collie, N. D., Zhang, H. and Liu, P. (2012). Agmatine selectively improves behavioural function in aged male Sprague-Dawley rats. *Neurosci. Lett.* 520:206–215.

Shah, S. P. and Duda, J. E. (2015). Dietary modifications in Parkinson's disease: A neuroprotective intervention? *Med. Hypoth.* 85:1002–1005.

Shankar, S., Kumar, D. and Srivastava, R. K. (2013). Epigenetic modifications by dietary phytochemicals: Implications for personalized nutrition. *Pharma. Ther.* 138:1–17.
Souza, A. H. P., Corra, L. P., Antunes, M. S., Filho, C. B., Fabbro, L. D., de Gomes, M. G., Goes, A. T. R., et al. (2015b). Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. *Pharma. Biochem. Behav.* 134:22–30.

Stephan, J., Franke, J. and Ehrenhofer-Murray, A. E. (2013). Chemical genetic screen in fission yeast reveals roles for vacuolar acidification, mitochondrial fission, and cellular GMP levels in lifespan extension. *Aging Cell* 12:574–583.

Su, S. and Wink, M. (2015). Natural lignans from *Arctium lappa* as antiaging agents in Caenorhabditis elegans. *Phytochemistry* 117:340–350.

Sun, X., Seeberger, J., Alberico, T., Wang, C., Wheeler, C. T., Schauss, A. G., et al. (2010). Acai palm fruit (*Euterpe oleracea* Mart.) pulp improves survival of flies on a high fat diet. *Exper. Geront. 45:*243–251.

Tomé-Carneiro, J., Larrosa, M., González-Sarrias, A., Tomás-Barberán, F. A., García-Conesa, M. T. and Espín, J. C. (2013). Resveratrol and clinical trials: The crossroad from *in vitro* studies to human evidence. *Curr. Pharma. Des.* 19:6064–6093.

Wang, S. J., Yu, H. Y., Ji, X. M., Wu, Z. C. and Han, B. B. (2012). The influence of aconite root on the expressions of genes related to the metabolism of oxygen free radicals and sex hormones. *Chin. J. Geront.* 32:961–963.

Wang, H.-M. D., Chen, C.-C., Huynh, P. and Chang, J.-S. (2015). Exploring the potential of using algae in cosmetics. *Biore. Technol.,* 184:355–362.

Wilson, M. A., Shukitt-Hale, B., Kalt, W., Ingram, D. K., Joseph, J. A. and Wolkow, C. A. (2006). Blueberry polyphenols increase lifespan and thermotolerance in *Caenorhabditis elegans*. Aging Cell 5:59–68.

Yang, J. (2009). Brazil nuts and associated health benefits: A review. *LWT—Food Sci. Technol.* 42:1573–1580.

Zarse, K., Jabin, S. and Ristow, M. (2012). L-Theanine extends lifespan of adult *Caenorhabditis elegans*. *Eur. J. Nutr.* 51:765–768.

Zhang, R., Lee, H. J., Yoon, Y. M., Kim, S. M., Kim, H. S., Li, S. H. and An, S. K. (2009). The melanin inhibition, anti-aging and anti-inflammation effects of *Portulaca oleracea* extracts on cells. *Kor. Soci. Biotechnol. Bioeng.* J. 4:397–402.

Zhang, X., Lin, S., Funk, W. E. and Hou, L. (2013). Environmental and occupational exposure to chemicals and telomere length in human studies. *Occup. Envr. Med.* 70:743–749.

Zhang, Y.-J., Gan, R.-Y., Li, S., Zhou, Y., Li, A.-N., Xu, D.-P., et al. (2015). Antioxidant phytochemicals for the prevention and treatment of chronic diseases. *Molecules* 20:21138–21156.