Bacterial community composition in oligosaline Lake Bosten: low overlap of Betaproteobacteria and Bacteroidetes with freshwater ecosystems

Xiangming Tang1, *, Guijuan Xie1, Keqiang Shao1, Jiangyu Dai1,2, Yuangao Chen1, Qiujin Xu3, Guang Gao1

1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
2 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
3 Chinese Research Academy of Environmental Sciences, Beijing 100012, China

* Corresponding author: xmtang@niglas.ac.cn; Tel. (+86) 25 86882213; Fax (+86) 25 57714759.
Supplemental Materials

Table S1 Typical freshwater clusters previously reported by Crump & Hobbie (8), Eiler & Bertilsson (12), Wu et al. (57), and Zwart et al. (61).

No.	Cluster name	Division	Source	
1	LD12	α-proteobacteria	Zwart et al. 2002	
2	Brevundimonas intermedia	α-proteobacteria	Zwart et al. 2002	
3	CR-FL11	α-proteobacteria	Zwart et al. 2002	
4	GOBB3-C201	α-proteobacteria	Zwart et al. 2002	
5	Novosphingobium subarctica	α-proteobacteria	Zwart et al. 2002	
6	LiUU-9-115.2	α-proteobacteria	Eiler & Bertilsson 2004	
7	A0904	α-proteobacteria	Eiler & Bertilsson 2004	
8	LiUU-9-283.2	α-proteobacteria	Eiler & Bertilsson 2004	
9	GKS59	α-proteobacteria	Wu et al. 2007	
10	alphaI	α-proteobacteria	Wu et al. 2007	
11	ML-7-85.2	α-proteobacteria	Wu et al. 2007	
12	Zymomonas group	α-proteobacteria	Wu et al. 2007	
13	Polynucleobacter necessarius	β-proteobacteria	Zwart et al. 2002	
14	LD28	β-proteobacteria	Zwart et al. 2002	
15	GKS98	β-proteobacteria	Zwart et al. 2002	
16	Ralstonia pickettii	β-proteobacteria	Zwart et al. 2002	
17	Rhodoferax sp. BAL47	β-proteobacteria	Zwart et al. 2002	
18	GKS16	β-proteobacteria	Eiler & Bertilsson 2004	
19	Rhodoferax fermentans	β-proteobacteria	Eiler & Bertilsson 2004	
20	LiUU-3-128	β-proteobacteria	Eiler & Bertilsson 2004	
21	LiUU-5-340.2	β-proteobacteria	Eiler & Bertilsson 2004	
22	LiUU-5-131	β-proteobacteria	Eiler & Bertilsson 2004	
23	LiUU-11-179.2	β-proteobacteria	Eiler & Bertilsson 2004	
24	LiUU-11-174.2	β-proteobacteria	Eiler & Bertilsson 2004	
25	Leptothrix	β-proteobacteria	Wu et al. 2007	
26	Ellin6095	β-proteobacteria	Wu et al. 2007	
27	Ellin6067	β-proteobacteria	Wu et al. 2007	
28	IRD18C08	β-proteobacteria	Crump & Hobbie 2005	
29	PRD18A09	β-proteobacteria	Crump & Hobbie 2005	
30	ACK-m1	Actinobacteria	Zwart et al. 2002	
31	STA2-30	Actinobacteria	Zwart et al. 2002	
32	MEDO-06	Actinobacteria	Zwart et al. 2002	
33	URK0-14	Actinobacteria	Zwart et al. 2002	
34	CL500-29	Actinobacteria	Zwart et al. 2002	
35	CL120-6	Actinobacteria	Eiler & Bertilsson 2004	
36	aclIV-B	Actinobacteria	Eiler & Bertilsson 2004	
37	ML-5-51.2	Actinobacteria	Wu et al. 2007	
38	aclII-A	Actinobacteria	Wu et al. 2007	
		Kingdom	Phylum	Class
---	---	------------------	-----------------	------------------
39	acII-B	*Actinobacteria*	Wu et al. 2007	
40	acII-D	*Actinobacteria*	Wu et al. 2007	
41	ML-9-87.2	*Actinobacteria*	Wu et al. 2007	
42	ML-7-116.2	*Actinobacteria*	Wu et al. 2007	
43	ML-9-55.2	*Actinobacteria*	Wu et al. 2007	
44	acI-C	*Actinobacteria*	Crump & Hobbie 2005	
45	LD2	*Bacteroidetes* (CFB)	Zwart et al. 2002	
46	FukuN47	*Bacteroidetes* (CFB)	Zwart et al. 2002	
47	PRD01a001B	*Bacteroidetes* (CFB)	Zwart et al. 2002	
48	CL500-6	*Bacteroidetes* (CFB)	Zwart et al. 2002	
49	GKS2-216	*Bacteroidetes* (CFB)	Zwart et al. 2002	
50	cfI	*Bacteroidetes* (CFB)	Wu et al. 2007	
51	cfII	*Bacteroidetes* (CFB)	Wu et al. 2007	
52	IRD18A11	*Bacteroidetes* (CFB)	Crump & Hobbie 2005	
53	IRD18C10	*Bacteroidetes* (CFB)	Crump & Hobbie 2005	
54	IRD18C04	*Bacteroidetes* (CFB)	Crump & Hobbie 2005	
55	Methyllobacter psychrophilus	γ-proteobacteria	Zwart et al. 2002	
56	LiUU-3-334.2	γ-proteobacteria	Eiler & Bertilsson 2004	
57	CL120-10	*Verrucomicrobia*	Zwart et al. 2002	
58	CL0-14	*Verrucomicrobia*	Zwart et al. 2002	
59	FukuN18	*Verrucomicrobia*	Zwart et al. 2002	
60	Sta2-35	*Verrucomicrobia*	Zwart et al. 2002	
61	LD19	*Verrucomicrobia*	Zwart et al. 2002	
62	LiUU-11-94	*Verrucomicrobia*	Eiler & Bertilsson 2004	
63	LiUU-9-243.2	*Verrucomicrobia*	Eiler & Bertilsson 2004	
64	Synechococcus 6b	Cyanobacteria	Zwart et al. 2002	
65	Planktothrix agardhii	Cyanobacteria	Zwart et al. 2002	
66	Aphanizomenon flos aquae	Cyanobacteria	Zwart et al. 2002	
67	Microcystis	Cyanobacteria	Zwart et al. 2002	
68	CL500-11	GNS	Zwart et al. 2002	
69	CLO-84	OP10	Zwart et al. 2002	
70	CL500-15	*Planctomycetes*	Zwart et al. 2002	
71	LiUU-9-218	*Planctomycetes*	Eiler & Bertilsson 2004	
72	LiUU-11-47	*Fibrobacteres*	Eiler & Bertilsson 2004	
Table S2. Chemical and biological parameters, DGGE bands, and Shannon diversity index (H') for the two sampling stations at different water depths in Lake Bosten. Abbreviations are defined in the text.

Sampling time	station	Depth (m)	TN (mg L$^{-1}$)	NH$_4$-N (mg L$^{-1}$)	NO$_3$-N (mg L$^{-1}$)	TP* (μg L$^{-1}$)	Cl$^-$ (mg L$^{-1}$)	SO$_4^{2-}$ (mg L$^{-1}$)	DOC (mg L$^{-1}$)	Chl a (μg L$^{-1}$)	Bacterial abundance (10^6 cells mL$^{-1}$)	DGGE bands	H'
2010-8-23	A	0.5	1.01	0.09	0.25	0	363	587	7.4	1.88	1.23	28	3.02
2010-8-23	A	4.0	0.89	0.11	0.26	0	385	622	8.6	2.65	2.35	25	2.91
2010-8-23	A	8.0	0.91	0.11	0.24	0	387	624	15.2	4.40	3.86	31	3.18
2010-8-23	A	12.0	1.02	0.11	0.26	0	404	652	9.0	5.99	3.01	27	2.95
2010-8-23	B	0.5	0.92	0.18	0.29	6	378	611	3.9	1.59	1.63	27	3.01
2010-8-23	B	4.0	0.84	0.19	0.29	0	377	611	11.7	2.65	2.25	24	2.91
2010-8-23	B	8.0	0.88	0.19	0.30	9	385	622	6.8	3.34	3.26	23	2.90
2010-8-23	B	12.0	1.00	0.18	0.29	0	442	708	7.6	3.29	2.84	21	2.75
2011-5-10	A	0.5	0.84	0.38	0.39	0	314	501	12.5	2.12	0.57	18	2.51
2011-5-10	A	4.0	0.88	0.32	0.41	0	208	521	11.6	2.00	1.12	20	2.75
2011-5-10	A	8.0	1.06	0.33	0.41	0	427	622	11.5	2.30	1.16	26	2.93
2011-5-10	A	12.0	1.01	0.37	0.43	7	484	714	13.2	4.80	0.49	19	2.58
2011-5-10	B	0.5	0.86	0.41	0.36	0	324	517	12.3	2.21	0.90	26	3.00
2011-5-10	B	4.0	0.96	0.38	0.43	12	430	623	12.6	3.50	0.93	30	3.17
2011-5-10	B	8.0	0.88	0.36	0.43	0	528	778	12.3	3.90	1.28	25	2.99
2011-5-10	B	12.0	1.01	0.32	0.43	10	486	721	13.2	4.30	1.26	34	3.23

*zero means below the detection limit.
Table S3. Libshuff comparisons of the homology and heterogeneity of the six libraries at different stations and at different water depths in Lake Bosten. Libraries were considered significantly different when the critical P-value <0.0017 (Singleton et al., 2001).

Sampling season	Sample	Comparison	P-value	Significantly different
August	Aug-A-0.5m vs. Aug-A-12m	XY	0.0502	no
		YX	0.5011	
	Aug-A-0.5m vs. Aug-B-0.5m	XY	0.1951	no
		YX	0.2863	
	Aug-A-12m vs. Aug-B-0.5m	XY	0.3097	no
		YX	0.3016	
	Aug-A-0.5m vs. Aug-B-12m	XY	<0.0001	yes
		YX	<0.0001	
	Aug-B-0.5m vs. Aug-B-12m	XY	<0.0001	yes
		YX	0.0578	
	Aug-A-12m vs. Aug-B-12m	XY	<0.0001	yes
		YX	0.2405	
August vs. May	Aug-A-0.5m vs. May-A-0.5m	XY	<0.0001	yes
		YX	<0.0001	
	Aug-A-0.5m vs. May-A-12m	XY	<0.0001	yes
		YX	<0.0001	
	Aug-A-12m vs. May-A-0.5m	XY	<0.0001	yes
		YX	<0.0001	
	Aug-A-12m vs. May-A-12m	XY	<0.0001	yes
		YX	<0.0001	
	Aug-B-0.5m vs. May-A-0.5m	XY	<0.0001	yes
		YX	<0.0001	
	Aug-B-0.5m vs. May-A-12m	XY	<0.0001	yes
		YX	<0.0001	
	Aug-B-12m vs. May-A-0.5m	XY	<0.0001	yes
		YX	<0.0001	
	Aug-B-12m vs. May-A-12m	XY	<0.0001	yes
		YX	<0.0001	
May	May-A-0.5m vs. May-A-12m	XY	0.5914	no
		YX	0.0108	
(C) Firmicutes

- **Aug-A-034 (JQ327188)**
 - Sporosarcina sp. NBRC 100704 (AB681231)
 - Deep seawater clone R2A3 (JQ975830)
 - Chryseomicrobiurn imtechense MW 10 (GQ927308)
 - Coaral marine sediment clone 2216 GV0508 11H4.2 3G1 (JQ032251)
 - Planococcus rifietoensis M8 (AJ493659)
- **Aug-A-12-006 (JQ327246) 3**
- **Aug-B-012 (JQ327445) 2**
- **Aug-A-12-082 (JQ327317) 25**
- **Aug-A-005 (JQ327164)**
 - Lake Xiariinur sediment Exiguobacterium sp. H-4 (GQ404469)
 - Aug-B-026 (JQ327362) 2
 - Aug-B-12-102 (JQ327530) 18
 - Coastal sea water Exiguobacterium sp. H1622 (JF346672)
 - Flocs in brackish water clone: Bac14 Flocs (AB491820)
- **Aug-B-048 (JQ327379)**
 - Wuiliangshai Lake clone C0003 (FJ820423)

Planococcaceae

- **Aug-A-12-087 (JQ327322)**
 - Qinghai Lake Planococcus sp. QHL17 (JQ860232)
 - Soil Planococcus sp. OL-12 (HQ232419)
 - Permafrost Planococcus sp. BLH-5F3 (JF694794)
- **Aug-A-12-025 (JQ327457)**
 - Stream water clone C-25 (HQ860628)
 - Aug-A-12-006 (JQ327246) 3
 - Aug-B-12-012 (JQ327445) 2
 - Mumbai harbor Desemzia incerta strain NMRLDB-5 (HQ336336)
 - Soil Desemzia incerta strain T-35 (HQ202856)

Carnobacteriaceae

- **Aug-B-048 (JQ327379)**
 - Wuiliangshai Lake clone C0003 (FJ820423)

Bacillales_Incertae Sedis XII

- **Aug-B-026 (JQ327362) 2**
 - Coastal sea water Exiguobacterium sp. H1622 (JF346672)
- **Aug-B-12-102 (JQ327530) 18**
 - Coastal sea water Exiguobacterium sp. H1622 (JF346672)
 - Flocs in brackish water clone: Bac14 Flocs (AB491820)
(D) Cyanobacteria

- **Radiocystis**
 - Freshwater reservoir *Radiocystis* sp. JJ30-12 (AM710388)
 - Freshwater reservoir *Radiocystis* sp. JJ30-3 (AM710389)

- **Microcystis**
 - *Microcystis aeruginosa* 0BB35S02 (AJ635430)
 - Lake clone sa0.8 (HQ904110)
 - Lake Taihu clone AW05 (JN866820)
 - Hypersaline Mat clone SBXZ 5358 (JN436508)

- **Synechococcus 6b**
 - *Synechococcus* sp. 0BB22S05 (AJ639898)
 - *Synechococcus* sp. CENA108 (EF088334)
 - Bantou freshwater reservoir clone B-40 (HQ661206)
 - Hubian freshwater reservoir clone H-48 (HQ661262)
(E) Other phyla

Phylum	Species/Origin	Accession Numbers
Actinobacteria	Kelike Lake clone SING994 (HM129555)	
	Limnoluna rubra strain MWH-EgelM2-3 (AM943659)	
	Aquiluna rubra MWH-Dar4 (AJ565416)	
	Aug-B-12-049 (JQ327480)	
	Aug-A-054 (JQ327204) 2	
	Wuliangshuai Lake clone H0050 (FJ820369)	
	Aug-B-037 (JQ327370)	
	Lake Xinxinjiang Microcella sp. clone XZXXH163 (EU703405)	
	Kelike Lake clone SING821 (HM129410)	
	Lake Taihu actinobacterium clone TH1-7 (AM690811)	
	Aug-B-12-002 (JQ327436)	
	Chesapeake Bay clone 3C003645 (EU802213)	
	Twin Valley Lake clone TW1-D9 (EU117981)	
	Aug-B-001 (JQ327342)	
	Lake Gatun clone 5C230821 (EU803274)	
	Aug-B-013 (JQ327353)	
	Lake Xingyunhu clone xyhfl1-45 (HM050932)	
	Drinking water pipe clone 98B-1 F06 T3 (HM998739)	
	Soil Deinococcus sp. HJ-30-11 (JQ511861)	
	May-A-12-031 (JQ327644) 6	
	Aug-B-115 (JQ327420)	
	Aug-A-060 (JQ327208)	
	Aug-A-12-049 (JQ327286)	
	Sillage Deinococcus sp. 37 (EU294411)	
	Aug-B-12-055 (JQ327486) 4	
	Deinococcus aquaticus PB314 (DQ017708)	
	Aug-A-010 (JQ327168)	
	Cotton rhizosphere clone 4y-102 (FJ444759)	
	Aug-B-055 (JQ327384)	
	Yellowstone Lake clone YL216 (HM856576)	
	LD19 (AF009974)	
	May-A-12-024 (JQ327637) 2	
	Saltwater lake Opitutus sp. clone sh-xjl (JF958122)	
	Lake Bosten clone BST22-5 (HQA36970)	
	May-A-020 (JQ327548) 4	
	May-A-12-012 (JQ327262)	
	May-A-12-026 (JQ327369)	
	Lake Bosten clone BST7-32 (HQA36975)	
	May-A-080 (JQ327599) 3	
	Groundwater clone NABC30V1065 (JN547160)	
	Hypersaline Mat clone SBYH 1325 (JN454515)	
	Aug-A-051 (JQ327281) 2	
	Aug-A-12-104 (JQ327338)	
	LiUU-9-218 (AY509499) Planctomycetes	
	MiYu reservoir clone MYX34 (GU365724)	
	Aug-A-12-026 (JQ327264)	
	Yard soil Planctomycetes sp. 1ol-3 (QJ889464)	
	Activated sludge clone mesophilic alkaline-58 (GU455173)	
	Aug-A-028 (JQ327183)	
	Aug-A-12-086 (JQ327321)	
	Lake Bosten clone BST15-87 (HQ436955)	
	Alpine Lake Joeri XIII clone C8 (AJ867920)	
	Lake Taihu clone JN91 (JN869008)	
	May-A-008 (JQ327537) 3	
	May-A-12-073 (JQ327682) 5	
Figure S1 Phylogenetic trees of *α*-proteobacteria (A), *γ*-proteobacteria (B), Firmicutes (C), Cyanobacteria (D), and other phyla (E) inferred by Maximum Likelihood analysis of partial 16S rRNA gene sequences from six clone libraries in Lake Bosten. A bootstrap test with 1000 replicates was conducted, and only bootstrap values $>50\%$ are shown near nodes. Phylogenetic analyses were conducted in MEGA v5.2. Bar: 10\% of estimated sequence divergence. Red clones were obtained in August 2010, and blue clones were obtained in May 2011. For each OTU, only one representative clone from each library is shown. The GenBank accession numbers are given in parentheses, followed by the number of clones within each representative clone. The most dominant 10 OTUs (Table 2) in the tree are shown in green. The open circles (○) before the clones represent surface water samples, and the dark filled circles (●) represent bottom water samples. Brackets following clone names indicate typical freshwater clusters previously reported by Crump & Hobbie (8), Eiler & Bertilsson (12), Wu et al. (57), and Zwart et al. (61). Names in brackets following the typical freshwater clusters were tribes or lineages named by Newton and coworkers (34).