Isometric immersions with flat normal bundle between space forms

MARCOS DAJCZER, CHRISTOS-RAENT ONTI, AND THEODOROS VLACHOS

Abstract. We investigate the behavior of the second fundamental form of an isometric immersion of a space form with negative curvature into a space form so that the extrinsic curvature is negative. If the immersion has flat normal bundle, we prove that its second fundamental form grows exponentially.

Mathematics Subject Classification. 53C42.

Keywords. Isometric immersion, Hyperbolic space, Flat normal bundle.

It is a long-standing problem if the complete hyperbolic space \mathbb{H}^n can be isometrically immersed in the Euclidean space \mathbb{R}^{2n-1}. In fact, the non-existence of such an immersion has been frequently conjectured; see Yau [13], Moore [11], and Gromov [9]. A positive answer to the conjecture would be a natural generalization to higher dimensions of the classical result from 1901 by Hilbert for the hyperbolic plane. On the one hand, Cartan [4,5] in 1920 proved that \mathbb{H}^n, $n \geq 3$, cannot be isometrically immersed in \mathbb{R}^{2n-2} even locally. On the other hand, he showed that any local isometric immersion of \mathbb{H}^n into \mathbb{R}^{2n-1} has flat normal bundle and that there is an abundance of such submanifolds.

Nikolayevsky [12] proved that complete non-simply connected Riemannian manifolds of constant negative sectional curvature cannot be isometrically immersed into Euclidean space with flat normal bundle. Let Q^m_c denote a complete simply connected m-dimensional Riemannian manifold of constant sectional curvature c, that is, the Euclidean space \mathbb{R}^m, the Euclidean sphere S^m_c, or the hyperbolic space \mathbb{H}^m_c according to whether $c = 0$, $c > 0$, or $c < 0$, respectively. It was observed in [8] that the proof by Nikolayevsky gives, in fact, the following slightly more general result:

If there exists an isometric immersion $f: M^c_n \to Q^{n+p}_c$, $n \geq 2$ and $c < 0$, with flat normal bundle of a complete Riemannian manifold M^c_n of constant sectional curvature c with $c < \tilde{c}$, then $M^c_n = \mathbb{H}^n_c$.
In view of Nikolayevsky’s result, the following weaker version of the problem discussed above has already been considered by Brander [3].

Problem 1. Do isometric immersions with flat normal bundle of \mathbb{H}^n_c into $Q^{n+p}_\tilde{c}$ for $n \geq 2$ and $c < \tilde{c}$ exist?

In this paper, we analyze the behavior of the second fundamental form of a possible submanifold as in the problem above, and conclude that it must have exponential growth, as defined next.

Let $f : M^n \to Q^{n+p}_\tilde{c}$ be an isometric immersion of a complete non-compact Riemannian manifold M^n. It is said that the second fundamental form $\alpha_f : TM \times TM \to N_f M$ of f has **exponential growth** if there exist $x_0 \in M^n$ and positive constants $k, \ell \in \mathbb{R}$ such that

$$\max\{\|\alpha_f(x)\| : x \in D_r(x_0)\} \geq ke^{\ell r}$$

for any $r > r_0$ for some $r_0 > 0$, where $D_r(x_0)$ denotes the closed geodesic ball of M^n of radius r centered at x_0 and $\|\alpha_f\|$ is the norm of the second fundamental form given by

$$\|\alpha_f(x)\|^2 = \sum_{i,j} \|\alpha_f(X_i, X_j)(x)\|^2$$

where $X_1, \ldots, X_n \in T_x M$ is an orthonormal basis.

Theorem 2. If a complete n-dimensional Riemannian manifold M^n_c, $n \geq 2$ and $c < 0$, admits an isometric immersion $f : M^n_c \to Q^{n+p}_\tilde{c}$, $c < \tilde{c}$, with flat normal bundle, then $M^n_c = \mathbb{H}^n_c$ and the second fundamental form of f has exponential growth.

The above gives as corollary the result due to Bolotov [2] that there is no isometric immersion of \mathbb{H}^n_c into \mathbb{R}^{n+p} with mean curvature vector field of bounded length.

The conclusion of Theorem 2 does not hold if the assumption of having flat normal bundle is dropped. For instance, it was shown by Aminov [1] that the example constructed by Rozendorn of an isometric immersion of \mathbb{H}^2_2 in \mathbb{R}^5 has no flat normal bundle and that the norm of its second fundamental form is globally bounded.

The aforementioned result for codimension $p = n - 1$ due to Cartan has the following immediate consequence:

Corollary 3. If there exists an isometric immersion $f : \mathbb{H}^n_2 \to Q^{2n-1}_{\tilde{c}}$ with $c < \tilde{c}$, then the second fundamental form of f has exponential growth.

1. The proof. Let $f : M^n \to Q^{n+p}_\tilde{c}$ be an isometric immersion of a Riemannian manifold M^n into the space form $Q^{n+p}_\tilde{c}$. If the immersion f has flat normal bundle, that is, if at any point the curvature tensor of the normal connection vanishes, then it is a standard fact (cf. [8]) that at any point $x \in M^n$, there exists a set of unique pairwise distinct normal vectors $\eta_i(x) \in N_f M(x)$, $1 \leq i \leq s(x)$, called the **principal normals** of f at x, and an associate orthogonal splitting of the tangent space as

$$T_x M = E_{\eta_1}(x) \oplus \cdots \oplus E_{\eta_{s(x)}}(x),$$

for any $r > r_0$ for some $r_0 > 0$. The above gives as corollary the result due to Bolotov [2] that there is no isometric immersion of \mathbb{H}^n_2 into \mathbb{R}^{n+p} with mean curvature vector field of bounded length.

The conclusion of Theorem 2 does not hold if the assumption of having flat normal bundle is dropped. For instance, it was shown by Aminov [1] that the example constructed by Rozendorn of an isometric immersion of \mathbb{H}^2_2 in \mathbb{R}^5 has no flat normal bundle and that the norm of its second fundamental form is globally bounded.

The aforementioned result for codimension $p = n - 1$ due to Cartan has the following immediate consequence:

Corollary 3. If there exists an isometric immersion $f : \mathbb{H}^n_2 \to Q^{2n-1}_{\tilde{c}}$ with $c < \tilde{c}$, then the second fundamental form of f has exponential growth.

1. The proof. Let $f : M^n \to Q^{n+p}_\tilde{c}$ be an isometric immersion of a Riemannian manifold M^n into the space form $Q^{n+p}_\tilde{c}$. If the immersion f has flat normal bundle, that is, if at any point the curvature tensor of the normal connection vanishes, then it is a standard fact (cf. [8]) that at any point $x \in M^n$, there exists a set of unique pairwise distinct normal vectors $\eta_i(x) \in N_f M(x)$, $1 \leq i \leq s(x)$, called the **principal normals** of f at x, and an associate orthogonal splitting of the tangent space as

$$T_x M = E_{\eta_1}(x) \oplus \cdots \oplus E_{\eta_{s(x)}}(x),$$
Proof. The Codazzi equation is equivalent to an open subset U flat normal bundle. Since C Lemma 5.

The following holds: $\alpha_f(X,Y) = \langle X,Y \rangle \eta_i$ for all $Y \in T_x M$.

If $X_i \in \Gamma(E_{\eta_i})$, $1 \leq i \leq n$, is a unit local vector field, then the local orthonormal frame X_1, \ldots, X_n diagonalizes the second fundamental form of f, that is, $\alpha_f(X_i, X_j) = \delta_{ij} \eta_i$, $1 \leq i, j \leq n,$

where δ_{ij} is the Kronecker delta. Such a frame is called a principal frame.

Lemma 4. The following holds:

$$\nabla_{X_i} X_j = -\lambda_i X_j (1/\lambda_i) X_i, \ 1 \leq i \neq j \leq n,$$

where $\lambda_i = 1/\sqrt{\|\eta_i\|^2 + C}$.

Proof. The Codazzi equation is equivalent to

$$\nabla_{X_j} \eta_i = \langle \nabla X, X_i, X_j \rangle (\eta_i - \eta_j)$$

and

$$\langle \nabla X, X_j, X_i \rangle (\eta_i - \eta_j) = \langle \nabla X, X_j, X_i \rangle (\eta_i - \eta_{\ell})$$

for all $1 \leq i \neq j \neq \ell \neq i \leq n$.

The vectors $\eta_i - \eta_j$ and $\eta_i - \eta_{\ell}$, $1 \leq i \neq j \neq \ell \neq i \leq n$ are linearly independent. Suppose otherwise that $\eta_i - \eta_j = \mu (\eta_i - \eta_{\ell})$. Taking the inner product with η_i and using (1) gives $\|\eta_i\|^2 = C < 0$, a contradiction.

It now follows from (4) that

$$\nabla_{X_i} X_j = \Gamma_{ij}^i X_i + \Gamma_{ij}^j X_j, \ i \neq j,$$

where $\Gamma_{ij}^k = \langle \nabla X_i, X_j, X_k \rangle$. Since $\Gamma_{ij}^j = \langle \nabla X_i, X_j, X_j \rangle = 0$, it follows that

$$\nabla_{X_i} X_j = \Gamma_{ij}^i X_i = -\Gamma_{ji}^i X_i.$$

On the other hand, taking the inner product of (3) with η_i and using (1), it is easily seen that $\Gamma_{ii}^j = \lambda_i X_j (1/\lambda_i)$, as we wished.

Lemma 5. For each $x_0 \in M^n_{c}$, there exists a diffeomorphism $F: U \to V$ from an open subset $U \subset \mathbb{R}^n$ endowed with coordinates $\{u_1, \ldots, u_n\}$ onto an open neighborhood $V \subset M^n_{c}$ of x_0 such that the tangent frame

$$\sqrt{\|\eta_i\|^2 + CF_\ast (\partial/\partial u_1), \ldots, \sqrt{\|\eta_n\|^2 + CF_\ast (\partial/\partial u_n)}}$$

where $E_{\eta_i}(x) = \{ X \in T_x M : \alpha_f(X,Y) = \langle X,Y \rangle \eta_i$ for all $Y \in T_x M \}$. The multiplicity of a principal normal $\eta_i \in N_f M(x)$ of f at $x \in M^n$ is the dimension of the tangent subspace $E_{\eta_i}(x)$. If $s(x) = k$ is constant on M^n, then the maps $x \in M^n \mapsto \eta_i(x)$, $1 \leq i \leq k$, are smooth vector fields, called the principal normal vector fields of f. Moreover, also the distributions $x \in M^n \mapsto E_{\eta_i}(x)$, $1 \leq i \leq k$, are smooth.

In the sequel, let $f: M^n_{c} \to \mathbb{R}^{n+p}$, $c < \tilde{c}$, be an isometric immersion with flat normal bundle. Since $C = \tilde{c} - c > 0$, it follows from the Gauss equation that any principal normal has multiplicity one. Thus, there exist exactly n non-zero principal normal vector fields η_1, \ldots, η_n satisfying

$$\langle \eta_i, \eta_j \rangle = C, \ 1 \leq i \neq j \leq n.$$
is orthonormal and principal. Moreover, if \(M^n_c \) is complete and simply connected, then \(F: \mathbb{R}^n \to M^n_c \) is a diffeomorphism.

Proof. For the local existence, observe that Lemma 4 implies

\[
\{ \lambda_i X_i, \lambda_j X_j \} = 0, 1 \leq i \neq j \leq n.
\]

For the proof of the global part, we follow a similar argument as in the proof of [10, Theorem 3] or [8, Proposition 5.6]. Assume that \(M^n_c \) is complete and simply connected. Set \(Y_i = \lambda_i X_i \) and let \(\varphi_i(x,t), \ x \in M^n_c, \ t \in \mathbb{R}, \) be the one-parameter group of diffeomorphisms generated by \(Y_i \). Since the vector fields \(Y_i, \ 1 \leq i \leq n, \) have bounded lengths, it follows that \(\varphi_i(x,t) \) is defined for all values of \(x \) and \(t \). Thus, for any \(x \in M^n_c, \) the map \(t \mapsto \varphi_i(x,t) \) is the integral curve of \(Y_i \) with \(\varphi_i(x,0) = x \). Let \(x_0 \) be a fixed point in \(M^n_c \) and define a function \(F = F_{x_0}: \mathbb{R}^n \to M^n_c \) by

\[
F(t_1, t_2, \ldots, t_n) = \varphi_n(\varphi_{n-1}(\cdots \varphi_2(\varphi_1(x_0, t_1), t_2), \cdots), t_n).
\]

Since the Lie bracket \([Y_1, Y_j] \) vanishes, the parameter groups \(\varphi_i \) and \(\varphi_j \) commute. This implies that

\[
F_{x_0}(t + s) = \varphi_n(\varphi_{n-1}(\cdots \varphi_2(\varphi_1(F_{x_0}(s), t_1), t_2), \cdots), t_n) = F_{F_{x_0}(s)}(t) \quad (6)
\]

where \(t = (t_1, \ldots, t_n) \) and \(s = (s_1, \ldots, s_n) \). Thus

\[
F_{s}(s)\partial_i = \frac{d}{dt} |_{t=0} F(t_1, \ldots, s_i + t, \ldots, s_n) = \frac{d}{dt} |_{t=0} \varphi_i(F(s), t) = Y_i(F(s)).
\]

We claim that \(F \) is a covering map. Then this and that \(M^n_c \) is simply connected yield that \(F \) is a diffeomorphism, which gives the proof.

Given \(x \in M^n_c, \) let \(\tilde{B}_{2\varepsilon}(0) \) be an open ball of radius \(2\varepsilon \) centered at the origin such that \(F_\varepsilon|_{\tilde{B}_{2\varepsilon}(0)} \) is a diffeomorphism onto \(B_{2\varepsilon}(x) = F_{\varepsilon}(\tilde{B}_{2\varepsilon}(0)) \). Set \(\{ \tilde{x}_\alpha \}_{\alpha \in A} = F^{-1}(x) \) and denote by \(\tilde{B}_{2\varepsilon}(\tilde{x}_\alpha) \) the open ball of radius \(2\varepsilon \) centered at \(\tilde{x}_\alpha \). Define a map \(\phi_\alpha: B_{2\varepsilon}(x) \to \tilde{B}_{2\varepsilon}(\tilde{x}_\alpha) \) by

\[
\phi_\alpha(y) = \tilde{x}_\alpha + F^{-1}_\varepsilon(y).
\]

From (6), we obtain

\[
F_{x_0}(\phi_\alpha(y)) = F_{x_0}(\tilde{x}_\alpha + x^{-1}_\varepsilon(y)) = F_{F_{x_0}(\tilde{x}_\alpha)}(F^{-1}_\varepsilon(y)) = F_x(F^{-1}_\varepsilon(y)) = y
\]

for all \(y \in B_{2\varepsilon}(x) \). Thus \(F_{x_0} \) is a diffeomorphism from \(\tilde{B}_{2\varepsilon}(\tilde{x}_\alpha) \) onto \(B_{2\varepsilon}(x) \) having \(\phi_\alpha \) as its inverse. In particular, this implies that \(\tilde{B}_{2\varepsilon}(\tilde{x}_\alpha) \) and \(\tilde{B}_{2\varepsilon}(\tilde{x}_\beta) \) are disjoint if \(\alpha, \beta \in A \) are distinct indices. Finally, it remains to check that if \(\tilde{y} \in F^{-1}_{\varepsilon}(B_\varepsilon(x)), \) then \(\tilde{y} \in \tilde{B}_\varepsilon(\tilde{x}_\alpha) \) for some \(\alpha \in A \). This follows from the fact that

\[
F_{x_0}(\tilde{y} - F^{-1}_\varepsilon(F_{x_0}(\tilde{y}))) = F_{F_{x_0}(\tilde{y})}(-F^{-1}_\varepsilon(F_{x_0}(\tilde{y}))) = x.
\]

For the last equality, observe from (6) that for all \(x, y \in M^n_c, \) we have \(F_x(t) = y \) if and only if \(F_y(-t) = x \).

The third fundamental form \(\text{III}_f(x) \) of \(f \) at \(x \in M^n \) is given by

\[
\text{III}_f(X, Y)(x) = \text{tr} (\alpha_f(X, \cdot), \alpha_f(Y, \cdot)), \ X, Y \in T_x M.
\]

Since \(\alpha_f \) has no kernel (that is, positive index of relative nullity), \(\text{III}_f(x) \) is a positive definite inner product.
Lemma 6. The Riemannian metric $g^0 = Cg + III_f$ is flat where g is the metric of M^n_c. Moreover, the metric g^0 is complete if g is complete.

Proof. In terms of the system of principal coordinates $\{u_1, \ldots, u_n\}$ given by Lemma 5, we have

$$g^0_{ij} = Cg_{ij} + III_f(\partial/\partial u_i, \partial/\partial u_j) = \frac{C}{\|\eta_i\|^2 + C\delta_{ij}} + \frac{\|\eta_i\|^2}{\|\eta_i\|^2 + C}\delta_{ij} = \delta_{ij}.$$

Moreover, the metric g^0 is complete since $g^0_{ij} > Cg_{ij}$.

Proof of Theorem 2. By Nikolayevsky’s result, we have that $M^n_c = \mathbb{H}^n_c$. Let $F: \mathbb{R}^n \rightarrow \mathbb{H}^n_c$ be the global diffeomorphism given by Lemma 5. We endow \mathbb{R}^n with the pullbacks of the two metrics considered in Lemma 6 that are still denoted by g and g^0. Notice that (\mathbb{R}^n, g^0) is the standard flat Euclidean space.

Given a smooth curve $\gamma: [a, b] \subset \mathbb{R} \rightarrow \mathbb{R}^n$, set

$$\hat{S}(\gamma) = \max_{t \in [a, b]} \|\alpha_t\|^2(F(\gamma(t))).$$

We have from (5) that

$$g_{ij} = \frac{1}{\|\eta_i\|^2 + C}\delta_{ij} \geq \frac{1}{\hat{S}(\gamma) + C}\delta_{ij}.$$

Then the lengths of γ satisfy

$$L_{g^0}(\gamma) < (\hat{S}(\gamma) + C)^{1/2}L_g(\gamma).$$ \hspace{1cm} (7)

Let $\gamma: [a, b] \rightarrow \mathbb{R}^n$ and $\tilde{\gamma}: [a, b] \rightarrow \mathbb{R}^n$ be the unique Euclidean and hyperbolic geodesics, respectively, joining $\gamma(a) = \tilde{\gamma}(a)$ to $\gamma(b) = \tilde{\gamma}(b)$. From (7), we have

$$L_{g^0}(\gamma) \leq L_{g^0}(\tilde{\gamma}) < (\hat{S}(\tilde{\gamma}) + C)^{1/2}L_g(\tilde{\gamma}).$$

Thus, if $\gamma_{x,y}$ is the unique hyperbolic geodesic joining $x \neq y \in \mathbb{R}^n$, then the distances with respect to g^0 and g satisfy

$$d_{g^0}(x, y) < (\hat{S}(\gamma_{x,y}) + C)^{1/2}d_g(x, y).$$ \hspace{1cm} (8)

Fix $x_0 \in \mathbb{R}^n$ and let $D^g(x_0)$ and $D^0_r(x_0)$ be the closed geodesic balls of radius $r > 0$ centered at x_0 with respect to g and g^0, respectively.

It holds that

$$D^g_r(x_0) \subset \text{int}\left(D^0_{\psi(r)}(x_0)\right),$$ \hspace{1cm} (9)

where

$$\psi(r) = r(S(r) + C)^{1/2} \quad \text{and} \quad S(r) = \max_{x \in D^g_r(x_0)} \|\alpha_r\|^2(F(x)).$$

In fact, if $y \in D^g_r(x_0)$, we have, using (8), that

$$d_{g^0}(x_0, y) < (\hat{S}(\gamma_{x_0,y}) + C)^{1/2}d_g(x_0, y) \leq r(\hat{S}(\gamma_{x_0,y}) + C)^{1/2} \leq \psi(r).$$

Then we obtain, using (9), that the volumes of the geodesic balls satisfy
\[\text{Vol}_g(D^g_r(x_0)) \leq \text{Vol}_g(D^g_0(x_0)) \]
\[= \int_{D^g_0(x_0)} \prod_{i=1}^{n}(\|\eta_i\|^2 + C)^{-1/2} du_1 \wedge \cdots \wedge du_n \]
\[< \int_{D^g_0(x_0)} C^{-n/2} du_1 \wedge \cdots \wedge du_n = C^{-n/2} \text{Vol}_g(D^g_0(x_0)) \]
\[= r^n (1 + S(r)/C)^{n/2} \omega_n, \]
where \(\omega_n \) is the volume of the Euclidean unit \(n \)-ball. Since \(\text{Vol}_g(D^g_r(x_0)) \) is well known to grow exponentially with \(r \) (for instance, see [6]), it follows that also \(S(r) \) grows exponentially with \(r \), and thus the second fundamental form of \(f \) has exponential growth. \(\square \)

Remark 7. It is worth mentioning that it was shown in [7] that there is no isometric immersion with flat normal bundle of a complete Riemannian manifold \(M^n_c, c > 0, \) into \(\mathbb{Q}^{n+p}_{\tilde{c}} \) with \(c < \tilde{c} \). Notice that this follows using Lemma 5.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Aminov, Y.: Extrinsic geometric properties of the Rozendorn surface, which is an isometric immersion of the Lobachevski plane into \(E^5 \). Sb. Math. 200, 1575–1586 (2009)

[2] Bolotov, D.: On an isometric immersion with a flat normal connection of the Lobachevsky space \(L^n \) into the Euclidean space \(\mathbb{R}^{n+m} \). Math. Notes 82, 10–12 (2007)

[3] Brander, D.: Results related to generalizations of Hilbert’s non-immersibility theorem for the hyperbolic plane. Electron. Res. Announc. Math. Sci. 15, 8–16 (2008)

[4] Cartan, E.: Sur les variétés de courbure constante d’un espace euclidien ou non-euclidien. Bull. Soc. Math. France 47, 125–160 (1919)

[5] Cartan, E.: Sur les variétés de courbure constante d’un espace euclidien ou non-euclidien. Bull. Soc. Math. France 48, 132–208 (1920)

[6] Chavel, I.: Riemannian Geometry: A Modern Introduction. Cambridge University Press, Cambridge (1993)

[7] Dajczer, M., Tojeiro, R.: Isometric immersions and the generalized Laplace and elliptic sinh-Gordon equations. J. Reine Angew. Math. 467, 109–147 (1995)

[8] Dajczer, M., Tojeiro, R.: Submanifold Theory Beyond an Introduction. Universitext. Springer, Berlin (2019)

[9] Gromov, M.: Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems. Bull. Amer. Math. Soc. 54, 173–245 (2017)
[10] Moore, J.D.: Isometric immersions of space forms in space forms. Pacific J. Math. 40, 157–166 (1972)

[11] Moore, J.D.: Problems in the geometry of submanifolds. Mat. Fiz. Anal. Geom. 9, 648–662 (2002)

[12] Nikolayevsky, Y.: Non-immersion theorem for a class of hyperbolic manifolds. Differential Geom. Appl. 9, 239–242 (1998)

[13] Yau, S.-T.: Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 669–706. Princeton University Press, Princeton (1982)

MARCOS DAJCZER
IMPA–Estrada Dona Castorina, 110
22460-320 Rio de Janeiro
Brazil
e-mail: marcos@impa.br

CHRISTOS-RAENT ONTI
Department of Mathematics and Statistics
University of Cyprus
1678 Nicosia
Cyprus

THEODOROS VLACHOS
Department of Mathematics
University of Ioannina
Ioannina
Greece
e-mail: tvlachos@uoi.gr

Received: 14 August 2020

Accepted: 27 November 2020.