Perturbations of self-adjoint operators in semifinite von Neumann algebras: Kato-Rosenblum theorem

Qihui Li, Junhao Shen, Rui Shi, and Liguang Wang

Abstract. In the paper, we prove an analogue of the Kato-Rosenblum theorem in a semifinite von Neumann algebra. Let M be a countably decomposable, properly infinite, semifinite von Neumann algebra acting on a Hilbert space H and let τ be a faithful normal semifinite tracial weight of M. Suppose that H and H_1 are self-adjoint operators affiliated with M. We show that if $H - H_1$ is in $M \cap L^1(M, \tau)$, then the norm absolutely continuous parts of H and H_1 are unitarily equivalent. This implies that the real part of a non-normal hyponormal operator in M is not a perturbation by $M \cap L^p(M, \tau)$ of a diagonal operator. Meanwhile, for $n \geq 2$ and $1 \leq p < n$, by modifying Voiculescu’s invariant we give examples of commuting n-tuples of self-adjoint operators in M that are not arbitrarily small perturbations of commuting diagonal operators modulo $M \cap L^p(M, \tau)$.

1. Introduction

This paper is a continuation of the investigation, which we began in [11], of diagonalizations of self-adjoint operators modulo norm ideals in semifinite von Neumann algebras.

Let H_0 be a complex separable infinite dimensional Hilbert space. Denote by $B(H_0)$ the set of bounded linear operators on H_0. The Weyl-von Neumann theorem [32, 14] states that a self-adjoint operator in $B(H_0)$ is a sum of a diagonal operator and an arbitrarily small Hilbert-Schmidt operator. A result by Kuroda in [10] implies that a self-adjoint operator in $B(H_0)$ is a sum of a diagonal operator and an arbitrarily small Schatten p-class operator with $p > 1$. Berg and Sikonia independently showed in [3] and [19] that a normal operator in $B(H_0)$ is a compact perturbation of a diagonal operator. In [22], Voiculescu proved a surprising result by showing that a normal operator in $B(H_0)$ is a diagonal operator plus an arbitrarily small Hilbert-Schmidt operator. This result of Voiculescu has recently been generalized in [11] to semifinite von Neumann algebras with separable predual. It is worth noting that Kuroda’s result in [10] was also extended to countably decomposable, properly infinite, semifinite von Neumann algebras in [11].

In the case of perturbations by trace class operators, the influential Kato-Rosenblum theorem (see [6] and [18]) provides an obstruction to diagonalizations, modulo the trace class, of self-adjoint operators in $B(H_0)$. More specifically, if H and H_1 are densely defined self-adjoint operators on H_0 such that $H - H_1$ is in the trace class, then the Kato-Rosenblum theorem asserts that the absolutely continuous parts of H and H_1 are unitarily equivalent. Thus, if a self-adjoint operator H in $B(H_0)$ has a nonzero absolutely continuous spectrum, then H can not be a sum of a diagonal operator and a trace class operator.

2010 Mathematics Subject Classification. Primary: 47C15; Secondary: 47L60, 47L20.

Key words and phrases. The generalized wave operators, The Kato-Rosenblum theorem, Norm-ideal perturbations, von Neumann algebras.

The first author was partly supported by NSFC(Grant No.11671133).

The third author was partly supported by NSFC(Grant No.11401071) and the Fundamental Research Funds for the Central Universities (Grant No.DUT16RC(4)57).

The fourth author was partly supported by NSFC(Grant No.11371222 and No.11671133).
The purpose of this paper is to provide a version of the Kato-Rosenblum theorem in a semifinite von Neumann algebra. (For general knowledge about von Neumann algebras, the reader is referred to [4, 5].) Let \(\mathcal{H} \) be a complex infinite dimensional Hilbert space and let \(\mathcal{M} \subseteq \mathcal{B}(\mathcal{H}) \) be a countably decomposable, properly infinite von Neumann algebra with a faithful normal tracial weight \(\tau \). A quick example (see Example 2.4.2) shows the existence of a self-adjoint operator \(A \in \mathcal{M} \) satisfying that \(A \) has a nonzero absolutely continuous spectrum and \(A \) is also a sum of a diagonal operator and an arbitrarily small operator in \(\mathcal{M} \cap L^1(\mathcal{M}, \tau) \). Thus we should not expect that a direct generalization of the Kato-Rosenblum theorem still holds in a general semifinite von Neumann algebra \(\mathcal{M} \).

Before stating the results of the paper, we recall the following notation. Let \((\mathcal{X}, \| \cdot \|)\) be a Banach space. A mapping \(f : \mathbb{R} \to \mathcal{X} \) is locally absolutely continuous if, for all \(a < b \) and every \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that \(\sum_i \| f(b_i) - f(a_i) \| < \epsilon \) for every finite collection \(\{(a_i, b_i)\} \) of disjoint intervals in \([a, b]\) with \(\sum_i (b_i - a_i) < \delta \).

In this paper, we introduce a notion of norm absolutely continuous projections with respect to a self-adjoint operator \(H \) affiliated with \(\mathcal{M} \). Suppose \(\{E(\lambda)\}_{\lambda \in \mathbb{R}} \) is the spectral resolution of the identity for \(H \) in \(\mathcal{M} \). A projection \(P \) in \(\mathcal{M} \) is called a norm absolutely continuous projection with respect to \(H \) if the mapping \(\lambda \mapsto PE(\lambda)P \) from \(\mathbb{R} \) into \(\mathcal{M} \) is locally absolutely continuous (see Definition 5.2.1). It is shown in Proposition 5.3.4 that, in the case of \(\mathcal{M} = \mathcal{B}(\mathcal{H}) \), if \(x \in \mathcal{H} \) and \(x \otimes x \) is the rank one projection associated with \(x \), then \(x \otimes x \) is a norm absolutely continuous projection with respect to \(H \) if and only if the vector \(x \) is absolutely continuous with respect to \(H \).

For a self-adjoint operator \(H \) affiliated with \(\mathcal{M} \), we define the norm absolutely continuous support \(P_{ac}^\infty(H) \) of \(H \) to be the union of these norm absolutely continuous projections with respect to \(H \) (see Definition 5.2.1). When \(H \in \mathcal{M} \) is bounded, the following criterion gives a characterization of \(P_{ac}^\infty(H) \) in terms of hyponormal operators in \(\mathcal{M} \).

Corollary 5.3.2 \(H \) is a self-adjoint element in \(\mathcal{M} \) with \(P_{ac}^\infty(H) \neq 0 \) if and only if \(H \) is the real part of a non-normal hyponormal operator \(T \) in \(\mathcal{M} \).

Now we are ready to state our analogue of the Kato-Rosenblum theorem for a semifinite von Neumann algebra.

Theorem 5.2.5 Suppose \(H \) and \(H_1 \) are self-adjoint operators affiliated with \(\mathcal{M} \) such that \(H_1 - H \) is in \(\mathcal{M} \cap L^1(\mathcal{M}, \tau) \). Then

\[
W_+ \triangleq \operatorname{sot-lim}_{t \to \infty} e^{itH_1} e^{-itH} P_{ac}^\infty(H) \text{ exists in } \mathcal{M}.
\]

Moreover,

(i) \(W_+ W_+^* = P_{ac}^\infty(H) \) and \(W_+ W_+^* = P_{ac}^\infty(H_1) \);

(ii) \(W_+ HW_+^* = H_1 P_{ac}^\infty(H_1) \).

A direct consequence of Theorem 5.2.5 is the next result.

Proposition 5.3.4 If \(H \) is a self-adjoint element in \(\mathcal{M} \) such that \(P_{ac}^\infty(H) \neq 0 \), then there exists no self-adjoint diagonal operator \(K \) in \(\mathcal{M} \) satisfying \(H - K \in L^1(\mathcal{M}, \tau) \). In particular, if \(H \) is the real part of a non-normal hyponormal operator in \(\mathcal{M} \), then there exists no self-adjoint diagonal operator \(K \) in \(\mathcal{M} \) satisfying \(H - K \in L^1(\mathcal{M}, \tau) \).
We are also able to obtain an analogue of the Kuroda-Birman theorem for a semifinite von Neumann algebra as follows.

Theorem 5.4.2 Suppose H and H_1 are self-adjoint operators affiliated with \mathcal{M} such that
\[(H_1 + i)^{-1} - (H + i)^{-1} \in \mathcal{M} \cap L^1(\mathcal{M}, \tau).\]
Then
\[W_+ \triangleq \text{sot-}\lim_{t \to \infty} e^{itH_1}e^{-itH}P_{ac}^\infty(H) \text{ exists in } \mathcal{M}.

Moreover,
1. $W_+W_+^* = P_{ac}^\infty(H)$ and $W_+W_+^* = P_{ac}^\infty(H_1)$;
2. $W_+HW_+^* = H_1P_{ac}^\infty(H_1)$.

For a commuting n-tuple of self-adjoint operators in $\mathcal{B}(\mathcal{H}_0)$ as $n \geq 2$, the simultaneous diagonalization theory has been extensively investigated in [2, 3, 21-31, 33-37]. In this paper, we consider obstructions to simultaneous diagonalization of self-adjoint operators in a countably decomposable, proper infinite von Neumann algebra \mathcal{M} with a faithful normal tracial weight τ. By modifying Voiculescu’s invariant, in Example 6.2.2 we exhibit an example of an n-tuple of commuting self-adjoint operators in \mathcal{M} that is not an arbitrarily small perturbation of commuting diagonal operators modulo $\mathcal{M} \cap L^p(\mathcal{M}, \tau)$ for all $1 \leq p < n$.

The present paper has six sections. In section 2, we prepare related notation, definitions and lemmas. We recall the concept of absolutely continuous spectrum and give an example of a purely absolutely continuous self-adjoint operator in a semifinite von Neumann algebras that is an arbitrarily small max-$\{\| \cdot \|, \| \cdot \|_1\}$-norm perturbation of a diagonal operator. In section 3, we introduce a smooth condition for a densely defined self-adjoint operator. Under this condition, we are able to give the point-wise convergence of generalized wave operators. Norm absolutely continuous projections with respect to a self-adjoint operator H affiliated with \mathcal{M} are introduced in section 4. Section 5 is devoted to show an analogue of the Kato-Rosenblum Theorem in semifinite von Neumann algebras. We also provide an analogue of the Kuroda-Birman Theorem in a semifinite von Neumann algebra. Section 6 provides examples of n-tuple of self-adjoint operators in \mathcal{M} that can not be an arbitrary small perturbations of commuting diagonal operators modulo $\mathcal{M} \cap L^p(\mathcal{M}, \tau)$ for all $1 \leq p < n$.

2. Preliminaries and Notation

Let \mathcal{H} be a complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H}.

2.1. Semifinite von Neumann algebra. Let $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ be a countably decomposable, properly infinite von Neumann algebra with a faithful normal semifinite tracial weight τ (see Definition 7.5.1 in [5] for the details). Let
\[\mathcal{F}(\mathcal{M}, \tau) = \{AEB : E = E^* = E^2 \in \mathcal{M} \text{ with } \tau(E) < \infty \text{ and } A, B \in \mathcal{M}\}\]
be the set of finite rank operators in (\mathcal{M}, τ).

The following result is well-known. For the purpose of completeness, we include its proof here.
Lemma 2.1.1. Let $\mathcal{M} \subseteq \mathcal{B(H)}$ be a countably decomposable, properly infinite von Neumann algebra with a faithful normal semifinite tracial weight τ.

(i) There exists a sequence $\{P_n\}_{n \in \mathbb{N}}$ of orthogonal projections in \mathcal{M} such that $\tau(P_n) < \infty$ for each $n \in \mathbb{N}$ and $\sum_{n \in \mathbb{N}} P_n = I$ (convergence is in strong operator topology).

(ii) There exists a sequence $\{x_m\}_{m \in \mathbb{N}}$ of vectors in \mathcal{H} such that

$$\tau(X^*X) = \sum_{m} \langle X^*X_{xm}, x_m \rangle, \quad \forall X \in \mathcal{M}.$$

Moreover, the linear span of the set $\{A'x_m : A' \in \mathcal{M}'$ and $m \in \mathbb{N}\}$ is dense in \mathcal{H}, where \mathcal{M}' is the commutant of \mathcal{M} in $\mathcal{B(H)}$.

Proof. From Proposition 8.5.2 in [5], if P is a nonzero projection in \mathcal{M}, then there exists a sub-projection P_0 of P such that $0 < \tau(P_0) < \infty$. Now by Zorn’s lemma, there exists a family $\{P_\lambda\}_{\lambda \in \Lambda}$ of orthogonal projections in \mathcal{M} such that $\sum_{\lambda \in \Lambda} P_\lambda = I$ and $\tau(P_\lambda) < \infty$ for each $\lambda \in \Lambda$. From the fact that \mathcal{M} is countably decomposable, it follows that Λ is countable. This ends the proof of (i).

By (i), there exists a sequence $\{P_n\}_{n \in \mathbb{N}}$ of orthogonal projections in \mathcal{M} such that $\tau(P_n) < \infty$ for each $n \in \mathbb{N}$ and $\sum_{n} P_n = I$. Thus $\tau(A) = \sum_{n} \tau(AP_n)$, $\forall A \in \mathcal{M}^+$, where \mathcal{M}^+ is the positive part of \mathcal{M}. As the mapping $A \mapsto \tau(AP_n)$ is a normal positive functional on \mathcal{M}, the existence of $\{x_m\}_{m \in \mathbb{N}}$ follows from Theorem 7.1.12 in [5]. Moreover, let Q be the projection from \mathcal{H} onto \mathcal{H}_1, the closure of the linear span of the set $\{A'x_m : A' \in \mathcal{M}'$ and $m \in \mathbb{N}\}$ in \mathcal{H}. Then $Q \in \mathcal{M}$ and $(I - Q)x_m = 0$ for all $m \in \mathbb{N}$. Thus $\tau(I - Q) = \sum_{m} \langle (I - Q)x_m, x_m \rangle = 0$. As τ is faithful, we conclude that $I - Q = 0$, whence $\mathcal{H}_1 = \mathcal{H}$. \qed

2.2. Noncommutative $L^p(\mathcal{M}, \tau)$. Here, we will briefly review the definition of noncommutative L^p-spaces associated to a semifinite von Neumann algebra. For $1 \leq p < \infty$, the mapping

$$\| \cdot \|_p : \mathcal{F} (\mathcal{M}, \tau) \to [0, \infty)$$

is defined by

$$\| A \|_p = (\tau(|A|^p))^{1/p}, \quad \forall A \in \mathcal{F} (\mathcal{M}, \tau).$$

It is a highly non-trivial fact that $\| \cdot \|_p$ is a norm on $\mathcal{F} (\mathcal{M}, \tau)$. We let $L^p(\mathcal{M}, \tau)$ be the completion of $\mathcal{F} (\mathcal{M}, \tau)$ with respect to the norm $\| \cdot \|_p$ (see [16] for more details). When $p = \infty$, we let $\| A \|_\infty = \| A \|$ for all $A \in \mathcal{M}$ and let $L^\infty (\mathcal{M}, \tau) = \mathcal{M}$.

2.3. Spectral theory for self-adjoint operators. Recall a densely defined, closed operator A is affiliated with \mathcal{M} if $AU' = U'A$ for all unitary operator U' in \mathcal{M}', where \mathcal{M}' is the commutant of \mathcal{M} in $\mathcal{B(H)}$. Let $\mathcal{A} (\mathcal{M})$ be the set of all densely defined, closed operators that are affiliated with \mathcal{M}. Note that, from Theorem 5 in [13], $L^p(\mathcal{M}, \tau)$ can be identified as a subset of $\mathcal{A} (\mathcal{M})$ for each $1 \leq p \leq \infty$.

Let H be a self-adjoint element in $\mathcal{A} (\mathcal{M})$. Then there exists a family $\{E(\lambda)\}_{\lambda \in \mathbb{R}}$ of projections in \mathcal{M} that is the spectral resolution of the identity for H such that $H = \int_{-\infty}^{\infty} \lambda dE(\lambda)$. (In fact, each $E(\lambda)$ is a spectral projection of H corresponding to the interval $(-\infty, \lambda]$. See
Theorem 5.2.6 of [5] for more details.) If \(f \) is a bounded Borel function on \(\mathbb{R} \), then \(f(H) \) is an element in the von Neumann subalgebra generated by \(\{ E(\lambda) \}_{\lambda \in \mathbb{R}} \) in \(\mathcal{M} \), satisfying

\[
\langle f(H)x, y \rangle = \int_{-\infty}^{\infty} f(\lambda) \, d\langle E(\lambda)x, y \rangle, \quad \forall \, x, y \in \mathcal{H}. \tag{2.1}
\]

In particular, for each \(t \in \mathbb{R} \), we have

\[
\langle e^{-itH}x, y \rangle = \int_{-\infty}^{\infty} e^{-it\lambda} \, d\langle E(\lambda)x, y \rangle, \quad \forall \, x, y \in \mathcal{H}. \tag{2.2}
\]

2.4. Absolutely continuous spectrum. Let \(H \) be a self-adjoint element in \(\mathcal{A}(\mathcal{M}) \) and let \(\{ E(\lambda) \}_{\lambda \in \mathbb{R}} \) be the spectral resolution of the identity for \(H \) in \(\mathcal{M} \). We let \(\mathcal{H}_{ac}(H) \) be the set of all these vectors \(x \) in \(\mathcal{H} \) such that the mapping \(\lambda \mapsto \langle E(\lambda)x, x \rangle \), with \(\lambda \in \mathbb{R} \), is a (locally) absolutely continuous function on \(\mathbb{R} \) (see [9] for details of the definition). It is known that \(\mathcal{H}_{ac}(H) \) is a closed subspace of \(\mathcal{H} \) (see Theorem X.1.5 of [9]). Let \(P_{ac}(H) \) be the projection from \(\mathcal{H} \) onto \(\mathcal{H}_{ac}(H) \). Then \(P_{ac}(H) \) is in the von Neumann subalgebra generated by \(\{ E(\lambda) \}_{\lambda \in \mathbb{R}} \) in \(\mathcal{M} \) (see Theorem X.1.6 in [9]).

The following result can be found in the proof of Theorem X.4.4 of [9].

Lemma 2.4.1. Let \(x \in \mathcal{H}_{ac}(H) \). If \(\Delta \) is a Borel subset of \(\mathbb{R} \) and \(\chi_{\Delta} \) is the characteristic function of \(\Delta \), then \(\chi_{\Delta}(H)x \in \mathcal{H}_{ac}(H) \) and

\[
\frac{d\langle E(\lambda) \chi_{\Delta}(H)x, x \rangle}{d\lambda} = \chi_{\Delta}(\lambda) \frac{d\langle E(\lambda)x, x \rangle}{d\lambda}, \quad \text{for } \lambda \in \mathbb{R} \text{ a.e.}
\]

We end this subsection with an example of a self-adjoint operator \(A \) in a semifinite von Neumann algebra \(\mathcal{M} \) such that \(A \) has purely absolutely continuous spectrum and \(A \) is an arbitrarily small \(\max\{\| \cdot \|, \| \cdot \|_1\} \)-norm perturbation of a diagonal operator.

Example 2.4.2. Let \(\mathcal{N} \) be a diffuse finite von Neumann algebra with a faithful normal tracial state \(\tau_N \) and let \(\mathcal{H}_0 \) be an infinite dimensional separable Hilbert space. Then \(\mathcal{M} = \mathcal{N} \otimes \mathcal{B}(\mathcal{H}_0) \) is a semifinite von Neumann algebra with a faithful normal tracial weight \(\tau_M = \tau_N \otimes \text{Tr} \), where \(\text{Tr} \) is the canonical trace of \(\mathcal{B}(\mathcal{H}_0) \). We might further assume that \(\mathcal{M} \) acts naturally on the Hilbert space \(\mathcal{H} = L^2(\mathcal{N}, \tau_N) \otimes \mathcal{H}_0 \).

Let \(\{ E(\lambda) \}_{0 \leq \lambda \leq 1} \) be an increasing family of projections in \(\mathcal{N} \) such that \(\tau(E(\lambda)) = \lambda \) for \(0 \leq \lambda \leq 1 \). Let \(X = \int_0^1 \lambda dE(\lambda) \) and \(A = X \otimes I_{\mathcal{B}(\mathcal{H}_0)} \). Notice we can identify \(\mathcal{N} \) with a subset of \(L^2(\mathcal{N}, \tau_N) \). For any unitary element \(u \) in \(\mathcal{N} \subseteq L^2(\mathcal{N}, \tau_N) \) and any unit vector \(y \) in \(\mathcal{H}_0 \), we have

\[
\langle (E(\lambda) \otimes I_{\mathcal{B}(\mathcal{H}_0)})(u \otimes y), u \otimes y \rangle = \tau(u^*E(\lambda)u)\|y\|^2 = \lambda, \quad \text{for } 0 \leq \lambda \leq 1.
\]

Thus the vector \(u \otimes y \) is in \(\mathcal{H}_{ac}(A) \), which shows that \(\mathcal{H}_{ac}(A) = L^2(\mathcal{N}, \tau_N) \otimes \mathcal{H}_0 \).

On the other hand, there exist a family \(\{ p_n \}_{n \in \mathbb{N}} \) of orthogonal projections in \(\mathcal{B}(\mathcal{H}_0) \) such that \(\text{Tr}(p_n) = 1 \) for each \(n \in \mathbb{N} \) and \(\sum_n p_n = I_{\mathcal{B}(\mathcal{H}_0)} \). Then \(A = X \otimes I_{\mathcal{B}(\mathcal{H}_0)} = \sum_n X \otimes p_n \). Let \(\epsilon > 0 \) be given. For each \(n \in \mathbb{N} \), by spectral theory, there exists a self-adjoint diagonal operator \(Y_n \in \mathcal{N} \) such that \(\|X - Y_n\| \leq \epsilon/2^n \). Let \(Y = \sum_n Y_n \otimes p_n \). Then \(Y \) is a self-adjoint diagonal element in \(\mathcal{M} \) such that \(\|A - Y\|, \|A - Y\|_1 \leq \epsilon \).

Thus there is a self-adjoint element \(A \) in \(\mathcal{M} \) with purely absolutely continuous spectrum such that \(A \) is an arbitrarily small \(\max\{\| \cdot \|, \| \cdot \|_1\} \)-norm perturbation of a diagonal element in \(\mathcal{M} \).
2.5. Identification operator. For $H \in \mathcal{A}(\mathcal{M})$, we denote the domain of H in \mathcal{H} by $D(H)$.

Lemma 2.5.1. Assume that H_1 and H are self-adjoint elements in $\mathcal{A}(\mathcal{M})$. Let J be an element in \mathcal{M} such that $J^2 = D(H_1)$ and $H_1 J - J H$ extends to a bounded operator B in \mathcal{M}. Let

$$W(t) = e^{itH_1} J e^{-itH}, \quad \text{for } t \in \mathbb{R}.$$

Then, for all $x, y \in \mathcal{H}$ and $s, t \in \mathbb{R}, a > 0$,

(i) the mapping $\lambda \mapsto e^{i\lambda H_1} B e^{-i\lambda H} x$ from $[s, t]$ into \mathcal{H} is Bochner integrable with

$$(W(t) - W(s)) x = i \int_s^t e^{i\lambda H_1} B e^{-i\lambda H} x d\lambda,$$

(ii) $e^{i\lambda H_1} B e^{-i\lambda H} W(t) = e^{i\lambda H} W(t)$, and $e^{i\lambda H} W(t)$ is a partial isometry and $e^{i\lambda H} W(t)$ defines a bounded operator in \mathcal{H}. Then, for all $t, s \in \mathbb{R}$,

$$W(t) - W(s) \in \mathcal{M} \cap L^1(\mathcal{M}, \tau).$$

Proof. The proof can be found in Chapter X (3.21) and Chapter X (5.8) of [9] (also see [15]).

Proposition 2.5.2. Assume that H_1 and H are self-adjoint elements in $\mathcal{A}(\mathcal{M})$. Let J be an element in \mathcal{M} such that $J^2 = D(H_1)$ and $H_1 J - J H$ extends to a bounded operator B in $\mathcal{M} \cap L^1(\mathcal{M}, \tau)$. Let $W(t) = e^{itH_1} J e^{-itH}, \quad \text{for } t \in \mathbb{R}$. Then, for all $t, s \in \mathbb{R}$,

$$W(t) - W(s) \in \mathcal{M} \cap L^1(\mathcal{M}, \tau).$$

Proof. We need only to show that $W(t) - W(s) \in L^1(\mathcal{M}, \tau)$. By Lemma 2.1.1 there exists an increasing sequence $\{P_n\}_{n \in \mathbb{N}}$ of projections in \mathcal{M} such that $\tau(P_n) < \infty$ for each $n \in \mathbb{N}$ and $P_n \to I$ in strong operator topology. Fix an $n \in \mathbb{N}$. As the mapping $A \mapsto \tau(AP_n)$ defines a normal positive linear functional on \mathcal{M}, from Theorem 7.1.11 in [5], there exists an orthogonal family $\{y_m\}_{m \in \mathbb{N}}$ of vectors in \mathcal{H} such that

$$\sum_m \|y_m\|^2 < \infty \quad \text{and} \quad \tau(AP_n) = \sum_m \langle Ay_m, y_m \rangle, \quad \forall A \in \mathcal{M}.$$

Let $W(t) - W(s) = W|W(t) - W(s)|$ be the polar decomposition of $W(t) - W(s)$ in \mathcal{M}, where W is a partial isometry and $|W(t) - W(s)|$ is a positive operator in \mathcal{M}. Then, from Lemma 2.5.1 it induces that

$$\tau(|W(t) - W(s)| P_n) = \sum_m \langle |W(t) - W(s)| y_m, y_m \rangle = \sum_m \langle (W(t) - W(s)) y_m, W y_m \rangle$$

$$= i \sum_m \int_s^t \langle e^{i\lambda H_1} B e^{-i\lambda H} y_m, W y_m \rangle d\lambda. \quad (2.3)$$

Observe that

$$\sum_m \langle e^{i\lambda H_1} B e^{-i\lambda H} y_m, W y_m \rangle \leq \sum_m \langle B \|y_m\|^2 \rangle < \|B\| \cdot \sum_m \|y_m\|^2 < \infty. \quad (2.4)$$
Combining (2.3), (2.4) and applying the Lebesgue Dominating Theorem,
\[
\tau(|W(t) - W(s)|P_n) = i \int_s^t \sum_m \langle e^{i\lambda H} B e^{-i\lambda H} y_m, W y_m \rangle d\lambda \\
= i \int_s^t \sum_m \langle W e^{i\lambda H} B e^{-i\lambda H} y_m, y_m \rangle d\lambda \\
= i \int_s^t \tau(W e^{i\lambda H} B e^{-i\lambda H} P_n) d\lambda.
\]
This implies that, for all \(n \in \mathbb{N} \),
\[
|\tau(|W(t) - W(s)|P_n)| \leq \int_s^t |\tau(W e^{i\lambda H} B e^{-i\lambda H} P_n)| d\lambda \leq (t - s)\|B\|_1.
\]
Since \(\tau \) is a normal weight of \(\mathcal{M} \) and \(P_n \to I \) in strong operator topology, we conclude that
\[
\|W(t) - W(s)\|_1 = \tau(|W(t) - W(s)|) = \sup_n \tau(|W(t) - W(s)|P_n) \leq (t - s)\|B\|_1.
\]
This ends the proof of the proposition. \(\square \)

3. \(\mathcal{M} \)-\(H \)-smoothness in Semifinite von Neumann Algebras

Let \(\mathcal{H} \) be a complex Hilbert space. Let \(\mathcal{M} \) be a countably decomposable, properly infinite, semifinite von Neumann algebra acting on \(\mathcal{H} \) and \(\tau \) a faithful normal semifinite tracial weight of \(\mathcal{M} \). Let \(\mathcal{A}(\mathcal{M}) \) be the set of densely defined, closed operators that are affiliated with \(\mathcal{M} \).

3.1. A smooth condition. The following definition will be crucial when showing the existence of wave operators in semifinite von Neumann algebras.

Definition 3.1.1. Let \(H \) be a self-adjoint element in \(\mathcal{A}(\mathcal{M}) \). A pair \((A, x)\) is said to be \(\mathcal{M} \)-\(H \)-smooth if
\[
(i) \ A \in \mathcal{M} \cap L^2(\mathcal{M}, \tau) \text{ and } x \in \mathcal{H}; \\
(ii) \text{there exists a positive constant } c \text{ such that} \\
\int_{\mathbb{R}} \|ASe^{-i\lambda H}x\|^2 d\lambda \leq c^2 \|S\|^2, \quad \forall S \in \mathcal{M}.
\]

3.2. Point-wise convergence of wave operator.

Proposition 3.2.1. Let \(H \) be a self-adjoint element in \(\mathcal{A}(\mathcal{M}) \). Assume \(B \in \mathcal{M} \cap L^1(\mathcal{M}, \tau) \) and \(x \in \mathcal{H} \) such that \((|B|^{1/2}, x) \) is \(\mathcal{M} \)-\(H \)-smooth. Then there exists a positive constant \(c \) such that, for all \(s, t \in \mathbb{R}, a > 0 \) and \(S \in \mathcal{M} \),
\[
|\langle \int_0^a e^{i(\lambda+t)H} SBe^{-i(\lambda+s)H} x \ d\lambda, x \rangle| \leq c\|S\| \left(\int_s^t \|B|^{1/2} e^{-i\lambda H} x\|^2 d\lambda \right)^{1/2}
\]
and
\[
|\langle \int_0^a e^{i(\lambda+t)H} B^*Se^{-i(\lambda+s)H} x \ d\lambda, x \rangle| \leq c\|S\| \left(\int_s^t \|B|^{1/2} e^{-i\lambda H} x\|^2 d\lambda \right)^{1/2}.
\]
Proof. Let $s, t \in \mathbb{R}, a > 0$ be given. As $(|B|^{1/2}, x)$ is \mathcal{M}-H-smooth, there exists a positive constant c such that
\[
\int_{\mathbb{R}} \| |B|^{1/2} S e^{-i\lambda H} x \|^2 d\lambda \leq c^2 \| S \|^2, \quad \forall S \in \mathcal{M}.
\]
(3.1)
Assume that $B = W|B|$ is the polar decomposition of B in \mathcal{M}, where W is a partial isometry in \mathcal{M} and $|B|$ is a positive operator in \mathcal{M}. We have
\[
\left| \int_{0}^{a} \langle e^{i(\lambda + t)H} S B e^{-i(\lambda + t)H} x, x \rangle d\lambda \right|
\]
\[
\leq \int_{0}^{a} \left| \langle |B|^{1/2} e^{-i(\lambda + t)H} x, |B|^{1/2} W^* S^* e^{-i(\lambda + t)H} x \rangle \right| d\lambda
\]
\[
\leq \int_{0}^{a} \left\| |B|^{1/2} W^* S^* e^{-i(\lambda + t)H} x \right\| \left\| |B|^{1/2} e^{-i(\lambda + t)H} x \right\| d\lambda
\]
\[
\leq \left(\int_{0}^{a} \left\| |B|^{1/2} W^* S^* e^{-i(\lambda + t)H} x \right\|^2 d\lambda \right)^{1/2} \left(\int_{0}^{a} \left\| |B|^{1/2} e^{-i(\lambda + t)H} x \right\|^2 d\lambda \right)^{1/2}
\]
\[
= \left(\int_{t}^{a+t} \left\| |B|^{1/2} W^* S^* e^{-i\lambda H} x \right\|^2 d\lambda \right)^{1/2} \left(\int_{s}^{a+s} \left\| |B|^{1/2} e^{-i\lambda H} x \right\|^2 d\lambda \right)^{1/2}
\]
\[
\leq \left(\int_{s}^{\infty} \left\| |B|^{1/2} W^* S^* e^{-i\lambda H} x \right\|^2 d\lambda \right)^{1/2} \left(\int_{s}^{\infty} \left\| |B|^{1/2} e^{-i\lambda H} x \right\|^2 d\lambda \right)^{1/2}
\]
\[
\leq c \| S \| \left(\int_{s}^{\infty} \left\| |B|^{1/2} e^{-i\lambda H} x \right\|^2 d\lambda \right)^{1/2}. \quad \text{(by (3.1))}
\]
Similarly, we have
\[
\left| \int_{0}^{a} \langle e^{i(\lambda + t)H} B^* S e^{-i(\lambda + t)H} x, x \rangle d\lambda \right| \leq c \| S \| \left(\int_{t}^{\infty} \left\| |B|^{1/2} e^{-i\lambda H} x \right\|^2 d\lambda \right)^{1/2}.
\]

\[
\text{Lemma 3.2.2. Suppose H and H_1 are self-adjoint elements in $\mathcal{A}(\mathcal{M})$. Assume J is in \mathcal{M} such that $J \mathcal{D}(H) \subseteq \mathcal{D}(H_1)$ and the closure of $H_1 J - JH$ is in $\mathcal{M} \cap L^1(\mathcal{M}, \tau)$. Let $W(t) = e^{-it H_1} J e^{-it H}$ for each $t \in \mathbb{R}$.}
\]
If x is a vector in \mathcal{H} such that $(|H_1 J - JH|^{1/2}, x)$ is \mathcal{M}-H-smooth, then
\[
\lim_{a \to \infty} \|(W(t) - W(s)) e^{-ia H} x\| = 0, \quad \text{for all } t > s.
\]

Proof. Note that $(|H_1 J - JH|^{1/2}, x)$ is \mathcal{M}-H-smooth. There exists a positive number c such that
\[
\int_{\mathbb{R}} \left\| |H_1 J - JH|^{1/2} e^{-i\lambda H} x \right\|^2 d\lambda \leq c^2.
\]
(3.2)
From Lemma 2.5.1,

\[\left\| (W(t) - W(s)) e^{-iaH} x \right\| \leq \int_s^t \left\| e^{i\lambda H} (H_1 J - J H) e^{-i\lambda H} x \right\| d\lambda \]

\[\leq \int_s^t \left\| H_1 J - J H \right\|^{1/2} \left\| H_1 J - J H \right\|^{1/2} e^{-i\lambda H} x \right\| d\lambda \]

\[\leq \left\| H_1 J - J H \right\|^{1/2} \left(\int_s^t \left\| H_1 J - J H \right\|^{1/2} e^{-i\lambda H} x \right\|^2 d\lambda \]

\[\leq \left\| H_1 J - J H \right\| \left(\int_s^t \left\| H_1 J - J H \right\| e^{-i\lambda H} x \right\|^2 d\lambda \]

From (3.2) we have

\[\lim_{a \to \infty} \left\| (W(t) - W(s)) e^{-iaH} x \right\| = 0. \]

The proof of the next result follows a strategy by Pearson in [15].

Proposition 3.2.3. Suppose H and H_1 are self-adjoint elements in $\mathcal{A}(\mathcal{M})$. Assume J is in \mathcal{M} such that $J^* \mathcal{D}(H) \subseteq \mathcal{D}(H_1)$ and the closure of $H_1 J - J H$ is in $\mathcal{M} \cap L^1(\mathcal{M}, \tau)$. Let $W(t) = e^{iH_1 t} J e^{-itH}$ for each $t \in \mathbb{R}$.

If x is a vector in \mathcal{H} such that $\left(\left| H_1 J - J H \right|^{1/2}, x \right)$ is \mathcal{M}-H-smooth, then $W(t) x$ converges in \mathcal{H} as $t \to \infty$.

Proof. To prove the result, it suffices to show that for every $\epsilon > 0$ there exists an $N > 0$ such that, if $t > s > N$, then $\left\| (W(t) - W(s)) x \right\| < \epsilon$.

Denote by B the closure of $H_1 J - J H$. Thus B is in $\mathcal{M} \cap L^1(\mathcal{M}, \tau)$. Let $\epsilon > 0$ be given. From Lemma 2.5.1, for any $t, s, a > 0$, we have

\[\langle (W(t) - W(s)) e^{iaH} W(t)^* (W(t) - W(s) e^{-iaH}) x, x \rangle \]

\[= i \int_0^a \langle e^{i(\lambda + t)H} (B^* J - B e^{-i(s-t)H_1} J - J^* B + J^* e^{-i(t-s)H_1} B) e^{-i(\lambda + s)H} x, x \rangle d\lambda. \]

As $\left(\left| B \right|^{1/2}, x \right)$ is \mathcal{M}-H-smooth, by Proposition 3.2.1 there exists an $N_1 > 0$ such that for all $t, s > N_1$ and all $a > 0$, we have

\[\left\| \langle (W(t) - W(s)) e^{iaH} W(t)^* (W(t) - W(s) e^{-iaH}) x, x \rangle \right\| < \frac{\epsilon}{4}. \] (3.3)

For each $t, s > N_1$, from Lemma 3.2.2 it follows that

\[\left\| \langle (W(t) - W(s)) e^{-iaH} x, x \rangle \right\| < \frac{\epsilon}{4}, \quad \text{when } a \text{ is large enough.} \] (3.4)

Thus, from (3.3) and (3.4), we conclude that, for $t, s > N_1$,

\[\left\| \langle (W(t) - W(s)) x, x \rangle \right\| < \frac{\epsilon}{2}. \] (3.5)
Similarly, there exists an \(N_2 > 0 \) such that, when \(t, s > N_2 \), we have
\[
|(\langle W(s)(W(t) - W(s))x, x \rangle) < \frac{\epsilon}{2}.
\]
Now, (3.5) and (3.6) imply that, for all \(t, s > \max\{N_1, N_2\} \),
\[
\|(W(t) - W(s))x\| < \epsilon,
\]
which ends the proof of the proposition. \(\square \)

4. Norm Absolutely Continuous Projections in Semifinite von Neumann algebras

Let \(\mathcal{H} \) be a complex Hilbert space. Let \(\mathcal{M} \) be a countably decomposable, properly infinite, semifinite von Neumann algebra acting on \(\mathcal{H} \) and \(\tau \) a faithful normal semifinite tracial weight of \(\mathcal{M} \). Let \(\mathcal{A}(\mathcal{M}) \) be the set of densely defined, closed operators affiliated with \(\mathcal{M} \).

4.1. Norm absolutely continuous projections.

Definition 4.1.1. Let \(H \) be a self-adjoint element in \(\mathcal{A}(\mathcal{M}) \) and let \(\{E(\lambda)\}_{\lambda \in \mathbb{R}} \) be the spectral resolution of the identity for \(H \) in \(\mathcal{M} \). We define \(\mathcal{P}_{ac}^\infty(H) \) to be the collection of those projections \(P \) in \(\mathcal{M} \) such that

the mapping \(\lambda \mapsto PE(\lambda)P \) from \(\lambda \in \mathbb{R} \) into \(\mathcal{M} \) is locally absolutely continuous, i.e. for all \(a, b \in \mathbb{R} \) with \(a < b \) and every \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that \(\sum_i \|PE(b_i)P - PE(a_i)P\| < \epsilon \) for every finite collection \(\{(a_i, b_i)\} \) of disjoint intervals in \([a, b] \) with \(\sum_i (b_i - a_i) < \delta \).

A projection \(P \) in \(\mathcal{P}_{ac}^\infty(H) \) is called a norm absolutely continuous projection with respect to \(H \).

Remark 4.1.2. Definition 4.1.1 is closely related to the concept of \(H \)-smoothness introduced by Kato in [7] for \(\mathcal{B}(\mathcal{H}) \), where \(\mathcal{H} \) is a complex separable Hilbert space. From one of equivalent definitions of \(H \)-smoothness in Theorem 5.1 of [7], it is not hard to see that if a projection \(P \) is \(H \)-smooth, then \(P \in \mathcal{P}_{ac}^\infty(H) \).

In the case when \(\mathcal{M} = \mathcal{B}(\mathcal{H}) \), the following proposition relates \(\mathcal{P}_{ac}^\infty(H) \) to \(\mathcal{H}_{ac}(H) \).

Proposition 4.1.3. Let \(\mathcal{H} \) be a complex infinite dimensional separable Hilbert space and let \(\mathcal{B}(\mathcal{H}) \) be the set of all bounded linear operators on \(\mathcal{H} \). Assume \(H \) is a densely defined self-adjoint operator on \(\mathcal{H} \) (so \(H \in \mathcal{A}(\mathcal{B}(\mathcal{H})) \)). Then a vector \(x \) is in \(\mathcal{H}_{ac}(H) \) if and only if the rank one projection \(x \otimes x \) is in \(\mathcal{P}_{ac}^\infty(H) \), where \(x \otimes x \) is defined by \((x \otimes x)y = \langle y, x \rangle x \) for all \(y \in \mathcal{H} \).

Proof. Let \(\{E(\lambda)\}_{\lambda \in \mathbb{R}} \) be the spectral resolution of the identity for \(H \) in \(\mathcal{B}(\mathcal{H}) \). Let \(x \) be a vector in \(\mathcal{H} \). For all \(\lambda \in \mathbb{R} \), we have
\[
(x \otimes x)E(\lambda)(x \otimes x) = \langle E(\lambda)x, x \rangle (x \otimes x).
\]
Thus, \(x \) is in \(\mathcal{H}_{ac}(H) \) if and only if \(x \otimes x \) is in \(\mathcal{P}_{ac}^\infty(H) \). \(\square \)

Next example shows there exists self-adjoint operators in \(\mathcal{M} \) with nonzero norm absolutely continuous projections.
Example 4.1.4. Let \mathcal{N} be a diffuse finite von Neumann algebra with a faithful normal tracial state $\tau_\mathcal{N}$ and let \mathcal{H}_0 be an infinite dimensional separable Hilbert space. Then $\mathcal{M} = \mathcal{N} \otimes \mathcal{B}(\mathcal{H}_0)$ is a semifinite von Neumann algebra with a faithful normal tracial weight $\tau_\mathcal{M} = \tau_\mathcal{N} \otimes Tr$, where Tr is the canonical trace of $\mathcal{B}(\mathcal{H}_0)$. We might further assume that \mathcal{M} acts naturally on the Hilbert space $L^2(\mathcal{N}, \tau_\mathcal{N}) \otimes \mathcal{H}_0$.

Let X be a densely defined, self-adjoint operator with purely absolutely continuous spectrum on \mathcal{H}_0. Then $I_N \otimes X$ is a densely defined, self-adjoint operator affiliated with \mathcal{M}. For each vector $y \in \mathcal{H}_0$, denote by Q_y the rank one projection $y \otimes y$ in $\mathcal{B}(\mathcal{H}_0)$. We claim that $I_N \otimes Q_y \in \mathcal{P}_\infty(I_N \otimes X)$. In fact, if $\{E(\lambda)\}_{\lambda \in \mathbb{R}}$ is the spectral resolution of the identity for X in $\mathcal{B}(\mathcal{H}_0)$, then $\{I_N \otimes E(\lambda)\}_{\lambda \in \mathbb{R}}$ is the spectral resolution of the identity for $I_N \otimes X$ in $N \otimes \mathcal{B}(\mathcal{H}_0) = \mathcal{M}$. Note $\|(I_N \otimes Q_y)(I_N \otimes E(\lambda) - I_N \otimes E(\mu))(I_N \otimes Q_y)\| = \|Q_y(E(\lambda) - E(\mu))Q_y\| = \langle (E(\lambda) - E(\mu))y, y \rangle \|y\|^2$ for all $\lambda > \mu$. We have that $I_N \otimes Q_y \in \mathcal{P}_\infty(I \otimes X)$.

It is easy to see the following statement.

Lemma 4.1.5. Suppose H is a self-adjoint element in $\mathcal{A}(\mathcal{M})$. If $P \in \mathcal{P}_\infty(H)$, then $P \leq P_{ac}(H)$, where $P_{ac}(H)$ is the projection from \mathcal{H} onto $\mathcal{H}_{ac}(H)$.

Definition 4.1.6. Suppose that $P \in \mathcal{P}_\infty(H)$. For each interval $[a, b]$, we define

$$V_{[a,b]}(P) = \sup \left\{ \sum_{i=1}^m \|PE_{\lambda_i}P - PE_{\lambda_{i-1}}P\| : a = \lambda_0 < \lambda_1 < \cdots < \lambda_m = b \text{ is a partition of } [a, b] \right\}$$

and

$$\Psi(\lambda) = \begin{cases} V_{[0,\lambda]}(P) & \text{ if } \lambda \geq 0 \\ V_{[\lambda,0]}(P) & \text{ if } \lambda < 0 \end{cases}$$

Lemma 4.1.7. Ψ is locally absolutely continuous on \mathbb{R} and Ψ' exists almost everywhere.

Proof. It can be verified directly (also see Proposition 1.2.1 in [1]).

4.2. Cut-off function ω_n.

Definition 4.2.1. Suppose H is a self-adjoint element in $\mathcal{A}(\mathcal{M})$. Assume that $P \in \mathcal{P}_\infty(H)$ and Ψ are as in Definition 4.1.1 and Definition 4.1.6. For each $n \in \mathbb{N}$, we define,

$$\omega_n(\lambda) = \begin{cases} 1 & \text{ if } |\Psi'(\lambda)| \leq n \text{ and } |\lambda| \leq n \\ 0 & \text{ otherwise} \end{cases}$$

Lemma 4.2.2. Suppose H is a self-adjoint element in $\mathcal{A}(\mathcal{M})$. Assume $P \in \mathcal{P}_\infty(H)$ and $x \in \mathcal{H}$. For each $n \in \mathbb{N}$, let $\omega_n(\lambda)$ be as in Definition 4.2.1. Let

$$\omega_n(H) = \int \omega_n(\lambda)dE(\lambda).$$

Then

$$\omega_n(H) \to I \text{ in strong operator topology, as } n \to \infty.$$

Proof. Let $\Delta_n = \{ \lambda \in \mathbb{R} : \omega_n(\lambda) = 1 \}$. Observe that $\mathbb{R} \setminus (\cup_n \Delta_n)$ is a measure zero set. Thus $\omega_n(H) \to I$ in strong operator topology, as $n \to \infty$.

□
Lemma 4.2.3. Suppose H is a self-adjoint element in $\mathcal{A}(\mathcal{M})$. Assume $P \in \mathcal{P}_a(H)$ and $x \in \mathcal{H}$. For each $n \in \mathbb{N}$, let $\omega_n(\lambda)$ be as in Definition 4.2.1. The following statements are true.

(i) For real numbers a, b with $a < b$, the mapping $\lambda \mapsto P E(\lambda)\omega_n(H)x$ from $[a, b]$ into \mathcal{H} is absolutely continuous.

(ii) We have

$$\frac{d(P E(\lambda)\omega_n(H)x)}{d\lambda}$$

exists in \mathcal{H} for $\lambda \in \mathbb{R}$ a.e.

and the mapping

$$\lambda \mapsto \frac{d(P E(\lambda)\omega_n(H)x)}{d\lambda}$$

from \mathbb{R} into \mathcal{H} is locally Bochner integrable.

(iii) We have

$$\left\| \frac{d(P E(\lambda)\omega_n(H)x)}{d\lambda} \right\| \leq \omega_n(\lambda) \sqrt{n} \cdot \sqrt{\frac{d(E(\lambda)P_{ac}(H)x, P_{ac}(H)x)}{d\lambda}}$$

for $\lambda \in \mathbb{R}$ a.e.

(iv) We have

$$\int_{\mathbb{R}} \left\| \frac{d(P E(\lambda)\omega_n(H)x)}{d\lambda} \right\| d\lambda < \infty$$

and

$$\int_{\mathbb{R}} \left\| \frac{d(P E(\lambda)\omega_n(H)x)}{d\lambda} \right\|^2 d\lambda < n \|x\|^2.$$

(v) The mapping

$$\lambda \mapsto e^{-it\lambda} \frac{d(P E(\lambda)\omega_n(H)x)}{d\lambda}$$

is in $L^1(\mathbb{R}, \mathcal{H}) \cap L^2(\mathbb{R}, \mathcal{H})$ for each $t \in \mathbb{R}$, with

$$P e^{-iHt} \omega_n(H)x = \int_{\mathbb{R}} e^{-it\lambda} \frac{d(P E(\lambda)\omega_n(H)x)}{d\lambda} d\lambda.$$

(vi) We have

$$\int_{\mathbb{R}} \left\| P e^{-i\lambda H} \omega_n(H)x \right\|^2 d\lambda = \frac{1}{2\pi} \int_{\mathbb{R}} \left\| \frac{d(P E(\lambda)\omega_n(H)x)}{d\lambda} \right\|^2 d\lambda < \frac{n}{2\pi} \|x\|^2.$$

Proof. (i) Recall $P_{ac}(H)$ is the projection from \mathcal{H} onto $\mathcal{H}_{ac}(H)$. Notice that $P_{ac}(H)$ commutes with $E(\lambda)$. Moreover, from Lemma 4.1.5, $P = PP_{ac}(H)$. Assume that $\{(a_i, b_i)\}$ is a
finite family of disjoint intervals in $[a, b]$. Then

$$
\sum_i \|P(E(b_i) - E(a_i))\omega_n(H)x\| = \sum_i \|P(E(b_i) - E(a_i))P_{ac}(H)\omega_n(H)x\|
$$

$$
\leq \sum_i \|P(E(b_i) - E(a_i))\| \|(E(b_i) - E(a_i))P_{ac}(H)\omega_n(H)x\|
$$

$$
\leq \left(\sum_i \|P(E(b_i) - E(a_i))\|^2 \right)^{1/2} \left(\sum_i \|(E(b_i) - E(a_i))P_{ac}(H)\omega_n(H)x\|^2 \right)^{1/2}
$$

$$
= \left(\sum_i \|P(E(b_i) - E(a_i))P\| \right)^{1/2} \cdot \left(\sum_i \langle(E(b_i) - E(a_i))P_{ac}(H)\omega_n(H)x, (P_{ac}(H)\omega_n(H)x)\rangle \right)^{1/2}.
$$

Now the result follows from the fact that $P_{ac}(H)\omega_n(H)x \in H_{ac}(H)$ and $P \in P_{ac}^\infty(H).

(ii) The first statement follows from (i) and the Radon-Nikodym Property of the Hilbert space H (see Definition 1.2.5 in [1]). The second statement follows (i) and the first statement (see Proposition 1.2.3 in [1]).

(iii) We have, from (i),

$$
\left\| \frac{P(E(\lambda) - E(\mu))\omega_n(H)x}{\lambda - \mu} \right\| \leq \frac{\| (E(\lambda) - E(\mu))P_{ac}(H)\omega_n(H)x\| \|P(E(\lambda) - E(\mu))\|}{|\lambda - \mu|}
$$

$$
= \frac{\| (E(\lambda) - E(\mu))P_{ac}(H)\omega_n(H)x\| \|P(E(\lambda) - E(\mu))P\|}{\sqrt{|\lambda - \mu|}} \cdot \left\| \frac{P(E(\lambda) - E(\mu))P}{\lambda - \mu} \right\|^{1/2}
$$

$$
\leq \sqrt{\frac{\| (E(\lambda) - E(\mu))\omega_n(H)P_{ac}(H)x, P_{ac}(H)x\|}{\lambda - \mu}} \cdot \left\| \frac{\Psi(\lambda) - \Psi(\mu)}{\lambda - \mu} \right\|^{1/2}.
$$

Hence, by the definitions of ω_n and Ψ, we obtain

$$
\left\| \frac{d(P E(\lambda)\omega_n(H)x)}{d\lambda} \right\| \leq \sqrt{\frac{d(E(\lambda)\omega_n(H)P_{ac}(H)x, P_{ac}(H)x)}{d\lambda}} \cdot \sqrt{|\Psi'(\lambda)|} \quad \text{a.e.}
$$

$$
\leq \omega_n(\lambda) \sqrt{\frac{d(E(\lambda)P_{ac}(H)x, P_{ac}(H)x)}{d\lambda}} \cdot \sqrt{n} \quad \text{a.e.} \quad \text{(by Lemma 2.4.1)}
$$

(iv) We have

$$
\int_\mathbb{R} \left\| \frac{d(P E(\lambda)\omega_n(H)x)}{d\lambda} \right\|^2 \, d\lambda \leq \int_\mathbb{R} \omega_n(\lambda) \cdot \frac{d(E(\lambda)P_{ac}(H)x, P_{ac}(H)x)}{d\lambda} \cdot n \, d\lambda \quad \text{(by (iii))}
$$

$$
\leq n \|P_{ac}(H)x\|^2 \leq n\|x\|^2. \quad \text{(by (2.1))}
$$
Similarly,
\[
\int_{\mathbb{R}} \left\| \frac{d(PE(\lambda)\omega_n(H)x)}{d\lambda} \right\| d\lambda \leq \int_{\mathbb{R}} \omega_n(\lambda) \sqrt{\left| \frac{d(E(\lambda)P_{ac}(H)x, P_{ac}(H)x)}{d\lambda} \right|} \sqrt{n} d\lambda \quad \text{(by (iii))}
\]
\[
\leq \left(\int_{\mathbb{R}} \omega_n(\lambda) \cdot n d\lambda \right)^{1/2} \left(\int_{\mathbb{R}} \frac{d(E(\lambda)P_{ac}(H)x, P_{ac}(H)x)}{d\lambda} d\lambda \right)^{1/2}
\]
\[
< \infty
\]

(v) It follows from (i), (ii) and (iv) that the mapping
\[
\lambda \mapsto e^{-it\lambda} \frac{d(PE(\lambda)\omega_n(H)x)}{d\lambda}
\]
is in \(L^1(\mathbb{R}, \mathcal{H}) \cap L^2(\mathbb{R}, \mathcal{H})\) for each \(t \in \mathbb{R}\). Obviously, \(Pe^{-itH}\omega_n(H)x \in \mathcal{H}\). We need only to verify that, for all \(y \in \mathcal{H}\),
\[
\langle Pe^{-itH}\omega_n(H)x, y \rangle = \langle \left(\int_{\mathbb{R}} e^{-it\lambda} \frac{d(PE(\lambda)\omega_n(H)x)}{d\lambda} d\lambda \right), y \rangle.
\]
In fact,
\[
\langle \left(\int_{\mathbb{R}} e^{-it\lambda} \frac{d(PE(\lambda)\omega_n(H)x)}{d\lambda} d\lambda \right), y \rangle = \int_{\mathbb{R}} \langle e^{-it\lambda} \frac{d(PE(\lambda)\omega_n(H)x)}{d\lambda}, y \rangle d\lambda
\]
\[
= \int_{\mathbb{R}} e^{-it\lambda} \frac{d(E(\lambda)\omega_n(H)x, y)}{d\lambda} d\lambda
\]
\[
= \int_{\mathbb{R}} e^{-it\lambda} \frac{d(E(\lambda)\omega_n(H)x, Py)}{d\lambda} d\lambda
\]
\[
= \langle e^{-itH}\omega_n(H)x, Py \rangle
\]
\[
= \langle Pe^{-itH}\omega_n(H)x, y \rangle.
\]

Hence the result holds.

(vi) By Plancherel’s Theorem for Fourier transformation on Hilbert spaces (see Theorem 1.8.1 in [1]), we have
\[
\int_{\mathbb{R}} \|Pe^{-i\lambda H}\omega_n(H)x\|^2 d\lambda = \frac{1}{2\pi} \int_{\mathbb{R}} \left\| \frac{d(PE(\lambda)\omega_n(H)x)}{d\lambda} \right\|^2 d\lambda \leq \frac{n}{2\pi} \|x\|^2. \quad \text{(by (v) and (iv))}
\]

\[\Box\]

Proposition 4.2.4. Suppose \(H\) is a self-adjoint element in \(\mathcal{A}(\mathcal{M})\). Assume \(P \in \mathcal{P}_{ac}^\infty(H)\) and let \(\omega_n(\lambda)\) be as in Definition 4.2.1 for each \(n \in \mathbb{N}\).
If \(A \in \mathcal{M} \cap L^2(\mathcal{M}, \tau)\), then
\[
\int_{\mathbb{R}} \|Ae^{-i\lambda H}\omega_n(H)P\|^2 d\lambda \leq \frac{n}{2\pi} \|A\|^2.
\]
Proof. Note that $e^{-i\lambda H}$ commutes with $\omega_n(H)$. As
\[\|X\|_2^2 = \tau(X^*X) = \tau(XX^*) = \|X^*\|_2^2, \quad \forall \ X \in \mathcal{M},\]
it suffices to show that
\[\int_{\mathbb{R}} \|P e^{-i\lambda H} \omega_n(H) A\|_2^2 \, d\lambda \leq \frac{n}{2\pi} \|A\|_2^2.\]
By Lemma 2.1.1, there exists a sequence $\{x_m\}_{m \in \mathbb{N}}$ of vectors in \mathcal{H} such that
\[\|X\|_2^2 = \tau(X^*X) = \sum_m \langle X^* X x_m, x_m \rangle = \sum_m \|X x_m\|^2, \quad \forall \ X \in \mathcal{M}. \quad (4.1)\]
By Lemma 4.2.3 (vi), for all $m \in \mathbb{N}$,
\[\int_{\mathbb{R}} \|P e^{-i\lambda H} \omega_n(H) P x_m\|_2^2 \, d\lambda \leq \frac{n}{2\pi} \|A x_m\|^2. \quad (4.2)\]
By (4.1), we have
\[\int_{\mathbb{R}} \|P e^{-i\lambda H} \omega_n(H) A\|_2^2 \, d\lambda = \int_{\mathbb{R}} \sum_m \|P e^{-i\lambda H} \omega_n(H) A x_m\|_2^2 \, d\lambda \quad (by \ 4.1)\]
\[= \sum_m \int_{\mathbb{R}} \|P e^{-i\lambda H} \omega_n(H) A x_m\|_2^2 \, d\lambda \]
\[\leq \sum_m \frac{n}{2\pi} \|A x_m\|^2 \quad (by \ 4.2)\]
\[= \frac{n}{2\pi} \|A\|_2^2. \quad (by \ 4.1)\]
This ends the proof of the lemma. \qed

Corollary 4.2.5. Suppose H is a self-adjoint element in $\mathcal{A}(\mathcal{M})$. Let $P \in \mathcal{P}_\infty(H)$ and let $\omega_n(\lambda)$ be as in Definition 4.2.7 for each $n \in \mathbb{N}$. Assume $\{x_m\}_{m \in \mathbb{N}}$ is a family of vectors in \mathcal{H} such that
\[\|X\|_2^2 = \tau(X^*X) = \sum_n \langle X^* X x_m, x_m \rangle = \sum_m \|X x_m\|^2, \quad \forall \ X \in \mathcal{M}.\]
Then, for all $A \in \mathcal{M} \cap L^2(\mathcal{M}, \tau), \ S \in \mathcal{M}$ and $m, n \in \mathbb{N}$, we have
\[\int_{\mathbb{R}} \|A S e^{-i\lambda H} \omega_n(H) P x_m\|_2^2 \, d\lambda \leq \frac{n}{2\pi} \|A\|_2^2 \|S\|^2. \]
Proof. It follows from Proposition 4.2.4 and the choice of $\{x_m\}_{m \in \mathbb{N}}$ that
\[\int_{\mathbb{R}} \|A S e^{-i\lambda H} \omega_n(H) P x_m\|_2^2 \, d\lambda \leq \int_{\mathbb{R}} \|A S e^{-i\lambda H} \omega_n(H) P\|_2^2 \, d\lambda \leq \frac{n}{2\pi} \|A S\|_2^2 \leq \frac{n}{2\pi} \|A\|_2^2 \|S\|^2. \]
Now we are ready to state the main result of this section.
Proposition 4.2.6. Suppose H is a self-adjoint element in $\mathcal{A}(\mathcal{M})$. Let $P \in \mathcal{P}_ac(H)$. Assume $\{x_m\}_{m \in \mathbb{N}}$ is a family of vectors in \mathcal{H} such that
\[
\|X\|_2^2 = \tau(X^*X) = \sum_m \langle X^*X x_m, x_m \rangle = \sum_m \|X x_m\|^2, \quad \forall \ X \in \mathcal{M}.
\]
Then there exists an increasing sequence $\{Q_n\}_{n \in \mathbb{N}}$ of projections in \mathcal{M} such that
(i) Q_n converges to I in strong operator topology as $n \to \infty$.
(ii) If $A \in \mathcal{M} \cap L^2(\mathcal{M}, \tau)$ and $m, n \in \mathbb{N}$, then $(A, Q_n P x_m)$ is \mathcal{M}-H-smooth.

Proof. Let $Q_n = \omega_n(H)$ be as in Definition 4.2.1 for each $n \in \mathbb{N}$. Now the result follows from Lemma 4.2.2, Corollary 4.2.5 and Definition 3.1.1. \(\square\)

5. Existence of Generalized Wave Operator in Semifinite von Neumann Algebras

Let \mathcal{H} be a complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H}. Let $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ be a countably decomposable, properly infinite von Neumann algebra with a faithful normal semifinite tracial weight τ. Let $\mathcal{A}(\mathcal{M})$ be the set of densely defined, closed operators that are affiliated with \mathcal{M}. Let $\mathcal{P}_ac(H)$ be the set of norm absolutely continuous projections with respect to H in \mathcal{M}.

5.1. Generalized wave operators.

Theorem 5.1.1. Suppose H and H_1 are self-adjoint elements in $\mathcal{A}(\mathcal{M})$. Assume J is in \mathcal{M} such that $J\mathcal{D}(H) \subseteq \mathcal{D}(H_1)$ and the closure of $H_1J - JH$ is in $\mathcal{M} \cap L^1(\mathcal{M}, \tau)$. Let $W(t) = e^{itH_1}e^{-itH}$ for each $t \in \mathbb{R}$.

If $P \in \mathcal{P}_ac(H)$, then $W(t)P$ converges in strong operator topology in \mathcal{M} as $t \to \infty$.

Proof. By Lemma 2.1.1, there exists a family $\{x_m\}_{m \in \mathbb{N}}$ of vectors in \mathcal{H} such that
\[
\|X\|_2^2 = \tau(X^*X) = \sum_m \langle X^*X x_m, x_m \rangle = \sum_m \|X x_m\|^2, \quad \forall \ X \in \mathcal{M}.
\]
Note $P \in \mathcal{P}_ac(H)$. By Proposition 4.2.6, there exists an increasing sequence $\{Q_n\}_{n \in \mathbb{N}}$ of projections in \mathcal{M} such that (a) Q_n converges to I in strong operator topology as $n \to \infty$; and (b) $(A, Q_n P x_m)$ is \mathcal{M}-H-smooth for all $A \in \mathcal{M} \cap L^2(\mathcal{M}, \tau)$ and $m, n \in \mathbb{N}$. In particular, $(|H_1J - JH|^{1/2}, Q_n P x_m)$ is \mathcal{M}-H-smooth for all $m, n \in \mathbb{N}$. By Theorem 3.2.3, $W(t)Q_n P x_m$ converges in \mathcal{H} as $t \to \infty$. Since Q_n converges to I in strong operator topology and $W(t)$ is uniformly bounded, $W(t)P x_m$ converges in \mathcal{H} as $t \to \infty$. This further implies that $W(t)P A' x_m = A' W(t)P x_m$ converges in \mathcal{H}, as $t \to \infty$, for all $A' \in \mathcal{M}'$ and $m \in \mathbb{N}$. By Lemma 2.1.1, $W(t)P x$ converges in \mathcal{H} for all $x \in \mathcal{H}$, whence $W(t)P$ converges in strong operator topology in \mathcal{M} as $t \to \infty$. \(\square\)

Proposition 5.1.2. Let H and H_1 be self-adjoint elements in $\mathcal{A}(\mathcal{M})$. Suppose that $H_1 - H$ is in $\mathcal{M} \cap L^1(\mathcal{M}, \tau)$. If $P \in \mathcal{P}_ac(H)$, then $e^{itH_1}e^{-itH}P$ converges in strong operator topology in \mathcal{M} as $t \to \infty$.

Proof. The result is a special case of Theorem 5.1.1 when $J = I$. \(\square\)
5.2. Kato-Rosenblum Theorem in semifinite von Neumann algebras. Recall $\mathcal{P}_{ac}^\infty(H)$ is the set of norm absolutely continuous projections with respect to H in \mathcal{M} (see Definition 4.1.1).

Definition 5.2.1. Suppose H is a self-adjoint element in $\mathcal{A}(\mathcal{M})$. Define
\[P_{ac}^\infty(H) = \vee\{P : P \in \mathcal{P}_ac^\infty(H)\}. \]
Such $P_{ac}^\infty(H)$ is called the norm absolutely continuous support of H in \mathcal{M}.

Lemma 5.2.2. Suppose H is a self-adjoint element in $\mathcal{A}(\mathcal{M})$. Then $P_{ac}^\infty(H) \leq P_{ac}(H)$. Furthermore, if \mathcal{H} is separable and $\mathcal{M} = \mathcal{B}(\mathcal{H})$, then $P_{ac}^\infty(H) = P_{ac}(H)$.

Proof. The first statement follows from Lemma 4.1.5 and Definition 5.2.1. The second statement follows from a combination of the first statement and Proposition 4.1.3. □

Lemma 5.2.3. Suppose H is a self-adjoint element in $\mathcal{A}(\mathcal{M})$. Let $\{E(\lambda)\}_{\lambda \in \mathbb{R}}$ be the spectral resolution of the identity for H in \mathcal{M}. If $S \in \mathcal{M}$ satisfies that the mapping $\lambda \mapsto S^*E(\lambda)S$ from \mathbb{R} into \mathcal{M} is locally absolutely continuous, then $R(S)$, the range projection of S in \mathcal{M}, is a subprojection of $P_{ac}^\infty(H)$.

Proof. Let $S = |S^*|W$ be a polar decomposition of S in \mathcal{M} where W is a partial isometry and $|S^*|$ is a positive operator in \mathcal{M}. For each $n \in \mathbb{N}$, let $f_n : \mathbb{R} \to \mathbb{R}$ be a function such that $f_n(\lambda) = 1/\lambda$ when $1/n < \lambda < n$ and 0 otherwise. It is not hard to check that $|S^*| \cdot f_n(|S^*|)$ is a projection in \mathcal{M} satisfying the mapping $\lambda \mapsto |S^*|f_n(|S^*|)E(\lambda)|S^*|f_n(|S^*|) = f_n(|S^*|)WS^*E(\lambda)SW^*f_n(|S^*|)$ from \mathbb{R} into \mathcal{M} is locally absolutely continuous. Therefore, $|S^*|f_n(|S^*|) \in \mathcal{P}_ac^\infty(H)$ for each $n \in \mathbb{N}$. Notice, when $n \to \infty$, $|S^*| \cdot f_n(|S^*|) \to R(S)$ in strong operator topology. Now we conclude that $R(S)$ is a subprojection of $P_{ac}^\infty(H)$. □

Proposition 5.2.4. Suppose H is a self-adjoint element in $\mathcal{A}(\mathcal{M})$. If $\{E(\lambda)\}_{\lambda \in \mathbb{R}}$ is the spectral resolution of the identity for H in \mathcal{M} and A is the von Neumann subalgebra generated by $\{E(\lambda)\}_{\lambda \in \mathbb{R}}$ in \mathcal{M}, then $P_{ac}^\infty(H)$ is in $A' \cap \mathcal{M}$.

Proof. Let $P \in \mathcal{P}_ac^\infty(H)$. Let $a \in \mathbb{R}$. It is not hard to verify that the mapping $\lambda \mapsto PE(a)E(\lambda)E(a)P$ from \mathbb{R} into \mathcal{M} is locally absolutely continuous. Hence, from Lemma 5.2.3, $R(E(a)P)$, the range projection of $E(a)P$ in \mathcal{M}, is a subprojection of $P_{ac}^\infty(H)$. It follows that $E(a)P = P_{ac}^\infty(H)E(a)P$. This implies that $E(a)P_{ac}^\infty(H) = P_{ac}^\infty(H)E(a)P_{ac}^\infty(H)$, whence $E(a)P_{ac}^\infty(H) = P_{ac}^\infty(H)E(a)$. Therefore $P_{ac}^\infty(H)$ is in $A' \cap \mathcal{M}$. □

The following is an analogue of Kato-Rosenblum Theorem in semifinite von Neumann algebras.

Theorem 5.2.5. Suppose H and H_1 are self-adjoint elements in $\mathcal{A}(\mathcal{M})$ such that $H_1 - H$ is in $\mathcal{M} \cap L^1(\mathcal{M}, \tau)$. Then
\[W_+ \triangleq \text{sot- lim }_{t \to \infty} e^{itH_1} e^{-itH} P_{ac}^\infty(H) \text{ exists in } \mathcal{M}. \]
Moreover,
(i) $W*W_+ = P_{ac}^\infty(H) \leq P_{ac}(H)$ and $W_+W* = P_{ac}^\infty(H_1) \leq P_{ac}(H_1)$;
(ii) $W_+HW_+ = H_1 P_{ac}^\infty(H_1)$.

And it is not hard to check that \(W_+ \) is a partial isometry in \(\mathcal{M} \). Therefore
\[
W_+^* W_+ = P_{ac}^\infty(H) \leq P_{ac}(H).
\] (5.2)

Moreover, from Proposition 5.2.4 we have
\[
W_+ e^{-isH} = \left(\text{sot-lim}_{t \to \infty} e^{itH_1} e^{-itH} P_{ac}^\infty(H) \right) e^{-isH} = \text{sot-lim}_{t \to \infty} \left(e^{itH_1} e^{-itH} P_{ac}^\infty(H) \right) e^{-isH_1} \left(\text{sot-lim}_{t \to \infty} e^{i(t+s)H_1} e^{-i(t+s)H} P_{ac}^\infty(H) \right) = e^{-isH_1} W_+, \quad \forall \, s \in \mathbb{R}.
\] (5.3)

Let \(\{E(\lambda)\}_{\lambda \in \mathbb{R}} \) and \(\{F(\lambda)\}_{\lambda \in \mathbb{R}} \) be the spectral resolutions of the identity for \(H \) and \(H_1 \) respectively, in \(\mathcal{M} \). Then, for all \(x, y \in \mathcal{H} \) and \(s \in \mathbb{R} \),
\[
\langle W_+ e^{-isH} x, y \rangle = \langle e^{-isH} x, W_+^* y \rangle = \langle e^{-isH_1} W_+ x, y \rangle\quad \text{(by (5.3))}
\]
\[
= \int_{\mathbb{R}} e^{-is\lambda} d \langle E(\lambda)x, W_+^* y \rangle = \int_{\mathbb{R}} e^{-is\lambda} d \langle F(\lambda)W_+ x, y \rangle.\quad \text{(by (2.1))}
\]

By the uniqueness of Fourier-Stieltjes transform, we have
\[
\langle E(\lambda)x, W_+^* y \rangle = \langle F(\lambda)W_+ x, y \rangle, \quad \forall \, x, y \in \mathcal{H}, \forall \, \lambda \in \mathbb{R}.
\]

Thus
\[
W_+ E(\lambda) = F(\lambda)W_+, \quad \forall \, \lambda \in \mathbb{R}.
\] (5.4)

Let \(P \in \mathcal{P}_{ac}(H) \). Then
\[
(W_+ P)^* F(\lambda)(W_+ P) = PW_+^* F(\lambda)W_+ P = PW_+^* W_+ E(\lambda) P = P E(\lambda) P. \quad \text{(by (5.4) and (5.2))}
\]

This implies that the mapping \(\lambda \mapsto (W_+ P)^* F(\lambda)(W_+ P) \) from \(\mathbb{R} \) into \(\mathcal{M} \) is locally absolutely continuous. By Lemma 5.2.3 we get that \(R(W_+ P) \), the range projection of \(W_+ P \) in \(\mathcal{M} \), is a subprojection of \(P_{ac}^\infty(H_1) \). So, we obtain that \(R(W_+) \leq P_{ac}^\infty(H_1) \). Therefore,
\[
W_+ W_+^* \leq P_{ac}^\infty(H_1). \quad (5.5)
\]

Similarly, as \(H - H_1 \in \mathcal{M} \cap L^1(\mathcal{M}, \tau) \), we let \(V_+ = \text{sot-lim}_{t \to \infty} e^{itH} e^{-itH_1} P_{ac}^\infty(H_1) \). Then
\[
V_+^* V_+ = P_{ac}^\infty(H_1) \quad \text{and} \quad V_+ V_+^* \leq P_{ac}^\infty(H). \quad (5.6)
\]

We claim that
\[
\lim_{t \to \infty} \| (I - P_{ac}^\infty(H)) e^{-itH_1} P_{ac}^\infty(H_1) x \| = 0, \quad \forall \, x \in \mathcal{H}.
\] (5.7)
In fact, we have, for all $x \in \mathcal{H}$,
\begin{align*}
\lim_{t \to \infty} \| (I - P_{\text{ac}}^\infty(H)) e^{-itH} P_{\text{ac}}^\infty(H_1)x \| &= \lim_{t \to \infty} \| (I - P_{\text{ac}}^\infty(H)) e^{itH} e^{-itH} P_{\text{ac}}^\infty(H_1)x \| \\
&= \| (I - P_{\text{ac}}^\infty(H)) V_+x \| = 0. \quad \text{(by definition of } V_+ \text{ and } (5.6))
\end{align*}

Furthermore,
\begin{align*}
W_+ V_+ &= \left(\text{sot-} \lim_{t \to \infty} e^{itH} e^{-itH} P_{\text{ac}}^\infty(H) \right) \cdot \left(\text{sot-} \lim_{t \to \infty} e^{itH} e^{-itH} P_{\text{ac}}^\infty(H_1) \right) \\
&= \text{sot-} \lim_{t \to \infty} \left(e^{itH} P_{\text{ac}}^\infty(H) e^{-itH} P_{\text{ac}}^\infty(H_1) \right) \\
&= P_{\text{ac}}^\infty(H_1) + \text{sot-} \lim_{t \to \infty} \left(e^{itH} (I - P_{\text{ac}}^\infty(H)) e^{-itH} P_{\text{ac}}^\infty(H_1) \right) \\
&= P_{\text{ac}}^\infty(H_1). \quad \text{(by } (5.7))
\end{align*}

Thus $R(W_+) = P_{\text{ac}}^\infty(H_1)$, where $R(W_+)$ is the range projection of W_+ in \mathcal{M}. Combining with (5.5), we conclude that
\begin{equation}
W_+ W_+^* = P_{\text{ac}}^\infty(H_1) \leq P_{\text{ac}}(H_1). \tag{5.8}
\end{equation}

Now from (5.2), (5.3), and (5.8), it follows that
\begin{equation}
W_+ e^{itH} W_+^* = e^{itH} P_{\text{ac}}^\infty(H_1), \quad \forall t \in \mathbb{R}. \tag{5.9}
\end{equation}

By Stone’s Theorem (see Theorem 5.6.36 in [5]), we obtain from (5.9) that
\begin{equation}
W_+ H W_+^* = H_1 P_{\text{ac}}^\infty(H_1). \tag{5.10}
\end{equation}

The proof is now complete from (5.1), (5.2), (5.8), and (5.10). \qed

Remark 5.2.6. Similarly it can be shown that, if H and H_1 are self-adjoint elements in $\mathcal{A}(\mathcal{M})$ such that $H_1 - H \in \mathcal{M} \cap L^1(\mathcal{M}, \tau)$, then
\begin{equation*}
W_- \triangleq \text{sot-} \lim_{t \to -\infty} e^{itH} e^{-itH} P_{\text{ac}}^\infty(H) \quad \text{exists in } \mathcal{M},
\end{equation*}
and
\begin{equation*}
W_-^* W_- = P_{\text{ac}}^\infty(H) \leq P_{\text{ac}}(H) \quad \text{and} \quad W_- W_-^* = P_{\text{ac}}^\infty(H_1) \leq P_{\text{ac}}(H_1).
\end{equation*}

Remark 5.2.7. By Lemma $(5.2.3)$, Theorem $(5.2.8)$ and Remark $(5.2.6)$ imply the classical Kato-Rosenblum Theorem for self-adjoint operators in $\mathcal{B}(\mathcal{H})$ when \mathcal{H} is separable.

Example 5.2.8. Let \mathcal{N} be a finite von Neumann algebra with a faithful normal tracial state. Let $\mathcal{H}_0 = L^2(\mathbb{R}^3, \mu)$, where μ is the Lebesgue measure on \mathbb{R}^3. Let $\mathcal{M} = \mathcal{N} \otimes \mathcal{B}(\mathcal{H}_0)$, acting naturally on the Hilbert space $\mathcal{H} = L^2(\mathcal{N}, \tau) \otimes \mathcal{H}_0$, be a semifinite von Neumann algebra. Let Δ be the Laplacian operator on $L^2(\mathbb{R}^3, \mu)$. Then $-(I_{\mathcal{N}} \otimes \Delta)$ is a densely defined, self-adjoint operator in $\mathcal{A}(\mathcal{M})$. As $-\Delta$ is spectrally absolutely continuous on $L^2(\mathbb{R}^3, \mu)$ (see Section X.3.4 in [9]), Proposition $(4.1.3)$ shows that $P_{\text{ac}}^\infty(-(I_{\mathcal{N}} \otimes \Delta)) = I_\mathcal{M}$.

KATO-ROSENBLUM THEOREM IN SEMIFINITE VON NEUMANN ALGEBRAS 19
5.3. Real part of hyponormal operators. When H is bounded, the following analogue of Kato-Putnam criterion in [8] and [17] is sometimes useful to determine whether $P_{ac}^\infty(H)$ is zero or not.

Proposition 5.3.1. Assume that H is a self-adjoint element in \mathcal{M}. Then the following statements are equivalent.

(i) $P_{ac}^\infty(H) \neq 0$.
(ii) There exist a self-adjoint element $K \in \mathcal{M}$ and a nonzero positive element $L \in \mathcal{M}$ such that

$$i(HK - KH) = L.$$

Proof. (i)\Rightarrow(ii) As $P_{ac}^\infty(H) \neq 0$, there exists a nonzero projection $P \in \mathcal{P}_{ac}^\infty(H)$. Let $\omega_n(\cdot)$ be as in Definition 4.2.1. By Lemma 4.2.3 (vi),

$$\int_\mathbb{R} \|P e^{-i\lambda H} \omega_n(H)x\|^2 d\lambda \leq \frac{n}{2\pi} \|x\|^2,$$

for all $x \in \mathcal{H}$. Since $e^{-i\lambda H}$ and $\omega_n(H)$ commute, by Theorem 2.1 in [8],

$$\sup_{\lambda > \mu} \frac{\|P \omega_n(H) (E(\lambda) - E(\mu))\|^2}{\lambda - \mu} < \infty,$$

where $\{E(\lambda)\}_{\lambda \in \mathbb{R}}$ is the spectral resolution of the identity for H in \mathcal{M}. Hence

$$\sup_{\lambda > \mu} \frac{\|\omega_n(H) P \omega_n(H) (E(\lambda) - E(\mu))\|^2}{\lambda - \mu} \leq \sup_{\lambda > \mu} \frac{\|P \omega_n(H) (E(\lambda) - E(\mu))\|^2}{\lambda - \mu} < \infty.$$

By Lemma 4.2.2, we might assume that $\omega_n(H) P \omega_n(H) \neq 0$ for a large $n \in \mathbb{N}$. Again from Theorem 2.1 in [8], $\omega_n(H) P \omega_n(H)$ is a nonzero positive H-smooth operator in \mathcal{M}. Let

$$L = (\omega_n(H) P \omega_n(H))^2.$$

Theorem 3.2 of [8] shows that

$$K = -\int_0^{\infty} e^{i\lambda H} L e^{-i\lambda H} d\lambda \quad \text{(convergence is in strong operator topology)},$$

exists in \mathcal{M} and Lemma X.5.2 in [9] implies that $i(HK - KH) = L$.

(ii)\Rightarrow(i) Assume that K, L are elements in \mathcal{M} with desired properties. From Theorem 6.2 in [8], it follows that $L^{1/2}$ is H-smooth. Now Theorem 2.1 in [8] implies that the mapping $\lambda \mapsto L^{1/2} E(\lambda)L^{1/2}$ from \mathbb{R} into \mathcal{M} is Lipschitz continuous (so locally absolutely continuous). By Lemma 5.2.3, the range projection of $L^{1/2}$ is a nonzero subprojection of $P_{ac}^\infty(H)$. Therefore $P_{ac}^\infty(H) \neq 0$, which ends the proof of the proposition. \[\square\]

Recall that an operator T in $\mathcal{B}(\mathcal{H})$ is hyponormal if $T^* T - TT^*$ is positive. The following result could be compared to Corollary VI.3.3 in [12].

Corollary 5.3.2. H is a self-adjoint element in \mathcal{M} with $P_{ac}^\infty(H) \neq 0$ if and only if H is the real part of a non-normal hyponormal operator T in \mathcal{M}.

Proof. It is a direct consequence of Proposition 5.3.1. \[\square\]
Remark 5.3.3. Proposition 5.3.1 may be used to construct new examples of self-adjoint operators with nonzero norm absolutely continuous projections in \mathcal{M}. For example, let H, K and L be as above. Assume K_1 is a self-adjoint element in \mathcal{M} such that $K_1 K = K_1^2$. Then $i((H + K_1)K - K(H + K_1)) = L$. Hence, $H + K_1$ is a self-adjoint element in \mathcal{M} with nonzero norm absolutely continuous projections.

Proposition 5.3.4. If H is a self-adjoint element in \mathcal{M} such that $P_{\text{ac}}^\infty(H) \neq 0$, then there exists no self-adjoint diagonal operator K in \mathcal{M} satisfying $H - K \in L^1(\mathcal{M}, \tau)$. In particular, if H is the real part of a non-normal hyponormal operator in \mathcal{M}, then there exists no self-adjoint diagonal operator K in \mathcal{M} satisfying $H - K \in L^1(\mathcal{M}, \tau)$.

Proof. Note that, if K is a self-adjoint diagonal operator in \mathcal{M}, then $P_{\text{ac}}^\infty(K) \leq P_{\text{ac}}(K) = 0$. Now that result is a direct consequence of Theorem 5.2.5 and Corollary 5.3.2. □

5.4. Kuroda-Birman Theorem in semifinite von Neumann algebras.

Lemma 5.4.1. Suppose H is a self-adjoint operator in $\mathcal{A}(\mathcal{M})$.

(i) If $A \in \mathcal{M} \cap L^2(\mathcal{M}, \tau)$, then $\text{sot-} \lim_{t \to \infty} (A e^{-itH} P_{\text{ac}}^\infty(H)) = 0$.

(ii) If $B \in \mathcal{M} \cap L^1(\mathcal{M}, \tau)$, then $\text{sot-} \lim_{t \to \infty} (B e^{-itH} P_{\text{ac}}^\infty(H)) = 0$.

Proof. (i) Let $A \in \mathcal{M} \cap L^2(\mathcal{M}, \tau)$. If suffices to show that, if $P \in P_{\text{ac}}^\infty(H)$, then $\text{sot-} \lim_{t \to \infty} (A e^{-itH} P) = 0$.

By Lemma 2.1.1, there exists a family $\{x_m\}_{m \in \mathbb{N}}$ of vectors in \mathcal{H} such that
\[\|X\|_2^2 = \tau(X^* X) = \sum_m \langle X^* X x_m, x_m \rangle = \sum_m \|X x_m\|^2, \quad \forall X \in \mathcal{M}. \quad (5.11) \]

Assume $P \in P_{\text{ac}}^\infty(H)$. Let $\omega_n(\cdot)$ be as in Definition 4.2.1. By Lemma 4.2.3 (v) and the Riemann-Lebesgue Lemma (also see Theorem 1.8.1 of [1]),
\[\lim_{t \to \pm \infty} \|P e^{-itH} \omega_n(H) x\| = 0, \quad \text{for all } x \in \mathcal{H}. \]

From Lemma 4.2.2 it follows that
\[\lim_{t \to \pm \infty} \|P e^{-itH} x\| = 0, \quad \text{for all } x \in \mathcal{H}. \quad (5.12) \]

We claim that
\[\lim_{t \to \pm \infty} \|A e^{-itH} P\|_2 = \lim_{t \to \pm \infty} \|P e^{-itH} A^*\|_2 = 0. \quad (5.13) \]

In fact, by (5.11), we have
\[\|P e^{-itH} A^*\|_2^2 = \sum_m \|P e^{-itH} A^* x_m\|^2. \quad (5.14) \]

It induces from (5.12) that
\[\lim_{t \to \pm \infty} \|P e^{-itH} A^* x_m\| = 0, \quad \text{for all } m \in \mathbb{N}. \quad (5.15) \]
Note that
\[\| P e^{-itH} A^* x_m \| \leq \| A^* x_m \| \quad \text{and} \quad \sum_m \| P e^{-itH} A^* x_m \|^2 \leq \sum_m \| A^* x_m \|^2 = \| A^* \|^2 < \infty. \quad (5.16)\]

By Lebesgue Dominating Convergence Theorem, from (5.14), (5.15) and (5.16), we conclude that
\[\lim_{t \to \pm \infty} \| A e^{-itH} P \|_2 = \lim_{t \to \mp \infty} \| P e^{-itH} A^* \|_2 = 0.\]

I.e. (5.13) holds.

From (5.11) and (5.13), it follows that
\[\lim_{t \to \infty} \| A e^{-itH} P x_m \| \leq \lim_{t \to \infty} \| A e^{-itH} P \| = 0, \quad \forall \ m \in \mathbb{N}.\]

Furthermore,
\[\lim_{t \to \infty} \| A e^{-itH} P A' x_m \| = \lim_{t \to \infty} \| A'(A e^{-itH} P x_m) \| = 0, \quad \forall \ A' \in \mathcal{M}', \text{ and } \ m \in \mathbb{N}.\]

By Lemma 2.1.1,
\[\lim_{t \to \infty} \| A e^{-itH} P x \| = 0, \quad \forall \ x \in \mathcal{H},\]
i.e.
\[sot- \lim_{t \to \infty} (A e^{-itH} P) = 0.\]

This ends the proof of (i).

(ii) follows from the fact that \(M \cap L^1(\mathcal{M}, \tau) \subseteq M \cap L^2(\mathcal{M}, \tau). \)

The following is an analogue of Kuroda-Birman Theorem in a semifinite von Neumann algebra.

Theorem 5.4.2. Suppose \(H \) and \(H_1 \) are self-adjoint elements in \(\mathcal{A}(\mathcal{M}) \) such that
\[(H_1 + i)^{-1} - (H + i)^{-1} \in \mathcal{M} \cap L^1(\mathcal{M}, \tau).\]
Then
\[W_+ \triangleq sot- \lim_{t \to \infty} e^{itH_1} e^{-itH} P_{ac}^\infty (H) \quad \text{exists in} \ \mathcal{M}.\]

Moreover,
\[(i) \ W_+ W_+ = P_{ac}^\infty (H) \leq P_{ac} (H) \text{ and } W_+ W_+^* = P_{ac}^\infty (H_1) \leq P_{ac} (H_1).\]
\[(ii) \ W_+ H P_{ac}^\infty (H) W_+^* = H_1 P_{ac}^\infty (H_1).\]

Proof. Firstly, we will show that
\[W_+ \triangleq sot- \lim_{t \to \infty} e^{itH_1} e^{-itH} P_{ac}^\infty (H) \quad \text{exists in} \ \mathcal{M}.\]

In fact, we let \(J = (H_1 + i)^{-1} (H + i)^{-1} \) and \(B = -(H_1 + i)^{-1} + (H + i)^{-1}. \) Then \(J \mathcal{D}(H) \subseteq \mathcal{D}(H_1) \) and
\[H_1 J - J H = (H_1 + i - i) J - J (H + i - i) = B \in \mathcal{M} \cap L^1(\mathcal{M}, \tau).\]

By Theorem 5.1.1 and the definition of \(P_{ac}^\infty (H), \)
\[sot- \lim_{t \to \infty} e^{itH_1} J e^{-itH} P_{ac}^\infty (H) \quad \text{exists in} \ \mathcal{M}. \quad (5.17)\]
Proposition 5.2.4 implies that \((H + i)^{-1}\) commutes with \(P_{ac}^\infty(H)\). Combining with (5.17), we conclude
\[
\lim_{t \to \infty} e^{itH_1}(H + i)^{-1} e^{-itH} P_{ac}^\infty(H)x \quad \text{exists in } \mathcal{H} \text{ for all } x \in \mathcal{D}(H).
\]
Note that \(\mathcal{D}(H)\) is dense in \(\mathcal{H}\). We have
\[
\lim_{t \to \infty} e^{itH_1}(H + i)^{-1} e^{-itH} P_{ac}^\infty(H)x \quad \text{exists in } \mathcal{H} \text{ for all } x \in \mathcal{H}.
\]
(5.18)
Combining (5.18), Lemma 5.4.1 with the fact that \((H_1 + i)^{-1} = (H + i)^{-1} - B\), we get
\[
\lim_{t \to \infty} e^{itH_1}(H + i)^{-1} e^{-itH} P_{ac}^\infty(H)x = \lim_{t \to \infty} e^{itH_1} \left((H_1 + i)^{-1} + B\right) e^{-itH} P_{ac}^\infty(H)x
\]
\[
= \lim_{t \to \infty} e^{itH_1}(H_1 + i)^{-1} e^{-itH} P_{ac}^\infty(H)x \quad \text{exists in } \mathcal{H} \text{ for all } x \in \mathcal{H}.
\]
(5.19)
As \((H + i)^{-1}\) commutes with \(P_{ac}^\infty(H)\) and \(\mathcal{D}(H)\) is dense in \(\mathcal{H}\), it follows from (5.19) that
\[
\lim_{t \to \infty} e^{itH_1} e^{-itH} P_{ac}^\infty(H)x \quad \text{exists in } \mathcal{H} \text{ for all } x \in \mathcal{H},
\]
i.e.
\[
W_+ \triangleq \text{sot-} \lim_{t \to \infty} e^{itH_1} e^{-itH} P_{ac}^\infty(H) \quad \text{exists in } \mathcal{M}.
\]
Secondly, since the proof of \(W_+^*W_+ = P_{ac}^\infty(H), W_+W_+^* = P_{ac}^\infty(H_1)\) and \(W_+HW_+^* = H_1P_{ac}^\infty(H_1)\) is similar to the one in Theorem 5.2.5, it is skipped. □

Remark 5.4.3. Similarly it can be shown that, if \(H\) and \(H_1\) are densely defined, self-adjoint elements in \(\mathcal{A}(\mathcal{M})\) such that \((H_1 + i)^{-1} - (H + i)^{-1} \in \mathcal{M} \cap L^1(\mathcal{M}, \tau)\), then
\[
W_- \triangleq \text{sot-} \lim_{t \to -\infty} e^{itH_1} e^{-itH} P_{ac}^\infty(H) \quad \text{exists in } \mathcal{M},
\]
and
\[
W_-^*W_- = P_{ac}^\infty(H) \leq P_{ac}(H) \quad \text{and} \quad W_-W_-^* = P_{ac}^\infty(H_1) \leq P_{ac}(H_1).
\]

6. Small Perturbation of Bounded Self-adjoint Operators

Let \(\mathcal{M}\) be a countably decomposable, properly infinite, semifinite von Neumann algebra acting on a Hilbert space \(\mathcal{H}\). Let \(\tau\) be a faithful normal semifinite tracial weight of \(\mathcal{M}\).

6.1. Voiculescu’s constant. Let \(\mathcal{K}_\Phi(\mathcal{M}, \tau)\) be a norm ideal of \(\mathcal{M}\) (see Definition 2.1.1 in [11] for its definition). Recall \(\mathcal{F}(\mathcal{M}, \tau)\) is the set of finite rank operators in \((\mathcal{M}, \tau)\). Then \(\mathcal{K}_\Phi^0(\mathcal{M}, \tau)\) is the completion of \(\mathcal{F}(\mathcal{M}, \tau)\) with respect to the norm \(\Phi\) in \(\mathcal{K}_\Phi(\mathcal{M}, \tau)\). We further let \(\mathcal{K}_\Phi^0(\mathcal{M}, \tau)^+\) be the unit ball of positive elements in \(\mathcal{K}_\Phi^0(\mathcal{M}, \tau)\).

Following Voiculescu’s Definition in [24], we introduce the following concept.

Definition 6.1.1. Let \(n \in \mathbb{N}\) and \(X_1, \ldots, X_n\) be an \(n\)-tuple of elements in \(\mathcal{M}\). We define
\[
\mathcal{K}_\Phi(X_1, \ldots, X_n; \mathcal{M}, \tau) = \liminf_{A \in \mathcal{K}_\Phi^0(\mathcal{M}, \tau)^+} \left(\max_{1 \leq i \leq n} \Phi(AX_i - X_iA)\right),
\]
where the \(\liminf\)’s are taken with respect to the natural orders on \(\mathcal{K}_\Phi^0(\mathcal{M}, \tau)^+\).
When $\mathcal{K}_\Phi(M, \tau)$ is $M \cap L^p(M, \tau)$ with
\[\Phi(X) = \max\{\|X\|, \|X\|_p\}, \quad \forall X \in M, \]
for some $1 \leq p < \infty$, we will denote $\mathcal{K}_\Phi(X_1, \ldots, X_n; M, \tau)$, $\mathcal{K}_\Phi(M, \tau)$ by $\mathcal{K}_p(X_1, \ldots, X_n; M, \tau)$, $\mathcal{K}_p(M, \tau)$ respectively.

The next lemma is a direct consequence of preceding definition.

Lemma 6.1.2. Let M be a countably decomposable, properly infinite von Neumann algebra with a faithful normal semifinite tracial weight τ. Let $\mathcal{K}_\Phi(M, \tau)$ be a norm ideal of M. Let $n \in \mathbb{N}$ and X_1, \ldots, X_n be an n-tuple of elements in M.

If, for any $\epsilon > 0$, there exists a family of commuting diagonal operators D_1, \ldots, D_n in M such that $\max_{1 \leq i \leq n} \Phi(X_i - D_i) < \epsilon$, then $\mathcal{K}_\Phi(X_1, \ldots, X_n) = 0$.

6.2. An Example. If M_1 is a von Neumann subalgebra of M such that the restriction of τ to M_1 is semifinite, then there exists a faithful normal trace-preserving conditional expectation \mathcal{E} from M onto M_1 (see Definition IX.4.1 of [20]). For each $1 \leq p < \infty$, the conditional expectation \mathcal{E} induces a contraction, still denoted by \mathcal{E}, from $L^p(M, \tau)$ onto $L^p(M_1, \tau)$ satisfying $\mathcal{E}(AXB) = A\mathcal{E}(X)B$ for all $A, B \in M_1$ and $X \in L^p(M, \tau)$ (see [16]).

Proposition 6.2.1. Let M be a countably decomposable, properly infinite von Neumann algebra with a faithful normal semifinite tracial weight τ. Suppose M_1 is a von Neumann subalgebra of M such that the restriction of τ to M_1 is semifinite. If X_1, \ldots, X_n is an n-tuple of elements in M_1, then
\[\mathcal{K}_\Phi(X_1, \ldots, X_n; M_1, \tau) = \mathcal{K}_\Phi(X_1, \ldots, X_n; M, \tau), \quad \forall 1 \leq p < \infty. \]

Proof. Let $1 \leq p < \infty$. Let $\mathcal{K}_p(M, \tau) = M \cap L^p(M, \tau)$ be equipped with a $\max\{\|\cdot\|, \|\cdot\|_p\}$-norm. We should note that $\mathcal{K}_0^p(M, \tau) = \mathcal{K}_p(M, \tau)$ in this case.

It is obvious that
\[\mathcal{K}_p(X_1, \ldots, X_n; M_1, \tau) \geq \mathcal{K}_p(X_1, \ldots, X_n; M, \tau). \]

We need only to show that
\[\mathcal{K}_p(X_1, \ldots, X_n; M_1, \tau) \leq \mathcal{K}_p(X_1, \ldots, X_n; M, \tau). \]

Let $\epsilon > 0$ be given. By definition, there exists an increasing sequence $\{A_m\}_{m \in \mathbb{N}}$ in $\mathcal{K}_p(M, \tau)$ such that A_m converges to I in strong operator topology and
\[\max\{\|A_mX_i - X_iA_m\|, \|A_mX_i - X_iA_m\|_p\} < \mathcal{K}_p(X_1, \ldots, X_n; M, \tau) + \epsilon, \]
for all $1 \leq i \leq n$ and $m \in \mathbb{N}$.

As the restriction of τ to M_1 is semifinite, there exist a faithful normal trace-preserving conditional expectation \mathcal{E} from M onto M_1 and an induced contraction \mathcal{E} from $L^p(M, \tau)$ onto $L^p(M_1, \tau)$. Therefore, $\{\mathcal{E}(A_m)\}_{m \in \mathbb{N}}$ is an increasing sequence in M_1 such that $\{\mathcal{E}(A_m)\}_{m \in \mathbb{N}}$ converges to I in weak operator topology (so, in strong operator topology) and
\[\mathcal{K}_p(X_1, \ldots, X_n; M_1, \tau) + \epsilon > \max\{\|\mathcal{E}(A_mX_i - X_iA_m)\|, \|\mathcal{E}(A_mX_i - X_iA_m)\|_p\} \]
\[= \max\{\|\mathcal{E}(A_m)X_i - X_i\mathcal{E}(A_m)\|, \|\mathcal{E}(A_m)X_i - X_i\mathcal{E}(A_m)\|_p\}. \]
Note that $0 \leq \mathcal{E}(A_m) \leq I$ and $\|\mathcal{E}(A_m)\|_p \leq \|A_m\|_p < \infty$. Thus, $\mathcal{E}(A_m) \in \mathcal{K}_p(\mathcal{M}, \tau)^+$. By definition, we have

$$\mathcal{H}_p(X_1, \ldots, X_n; \mathcal{M}_1, \tau) \leq \lim inf_m \max \{\|A_mX_i - X_iA_m\|, \|A_mX_i - X_iA_m\|_p\}$$

$$\leq \mathcal{H}_p(X_1, \ldots, X_n; \mathcal{M}, \tau) + \epsilon.$$

As ϵ is arbitrary, we have

$$\mathcal{H}_p(X_1, \ldots, X_n; \mathcal{M}_1, \tau) \leq \mathcal{H}_p(X_1, \ldots, X_n; \mathcal{M}, \tau).$$

This completes the proof of the proposition. \hfill \Box

Example 6.2.2. Let \mathcal{N} be a finite von Neumann algebra with a faithful normal tracial state $\tau_\mathcal{N}$ and let \mathcal{H}_0 be an infinite dimensional separable Hilbert space. Then $\mathcal{M} = \mathcal{N} \otimes \mathcal{B}(\mathcal{H}_0)$ is a semifinite von Neumann algebra with a faithful normal tracial weight $\tau_\mathcal{M} = \tau_\mathcal{N} \otimes Tr$, where Tr is the canonical trace of $\mathcal{B}(\mathcal{H}_0)$. We might further assume that \mathcal{M} acts naturally on the Hilbert space $\mathcal{H} = L^2(\mathcal{N}, \tau_\mathcal{N}) \otimes \mathcal{H}_0$. Obviously, $I_\mathcal{N} \otimes \mathcal{B}(\mathcal{H}_0)$ is a von Neumann subalgebra of \mathcal{M} such that the restriction of $\tau_\mathcal{M}$ on $I_\mathcal{N} \otimes \mathcal{B}(\mathcal{H}_0)$ is semifinite.

Let $n \geq 2$ be a positive integer. By Proposition 4.1 in [22], there exists an n-tuple X_1, \ldots, X_n of commuting self-adjoint elements in $\mathcal{B}(\mathcal{H}_0)$ such that

$$k_p(X_1, \ldots, X_n) > 0, \quad \forall 1 \leq p < n,$$

where $k_p(X_1, \ldots, X_n)$ is a constant defined in section 1 of [22]. By Proposition 1.1 in [27] and Definition 6.1.2,

$$\mathcal{H}_p(X_1, \ldots, X_n; \mathcal{B}(\mathcal{H}_0), Tr) = k_p(X_1, \ldots, X_n), \quad \forall 1 \leq p < n.$$

By Proposition 6.2.1,

$$\mathcal{H}_p(I_\mathcal{N} \otimes X_1, \ldots, I_\mathcal{N} \otimes X_n; \mathcal{M}, \tau) = \mathcal{H}_p(I_\mathcal{N} \otimes X_1, \ldots, I_\mathcal{N} \otimes X_n; I_\mathcal{N} \otimes \mathcal{B}(\mathcal{H}_0), 1 \otimes Tr)$$

$$= \mathcal{H}_p(X_1, \ldots, X_n; \mathcal{B}(\mathcal{H}_0), Tr)$$

$$= k_p(X_1, \ldots, X_n)$$

$$> 0, \quad \forall 1 \leq p < n.$$

By Lemma 6.1.2, $I_\mathcal{N} \otimes X_1, \ldots, I_\mathcal{N} \otimes X_n$ is a family of commuting self-adjoint elements in \mathcal{M} that are not small perturbations of commuting diagonal operators modulo $\mathcal{M} \cap L^p(\mathcal{M}, \tau)$ for all $1 \leq p < n$.

References

[1] Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, Frank Neubrander. Vector-valued Laplace Transforms and Cauchy Problems (Second Edition), (Monographs in Mathematics 96), Birkhuser Basel (2011).

[2] Hari Bercovici and Dan Voiculescu. The analogue of Kuroda’s theorem for n-tuples. The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988), 57–60, Oper. Theory Adv. Appl., 41, Birkhäuser, Basel, 1989.

[3] David Berg. An extension of the Weyl-von Neumann theorem to normal operators. Trans. Amer. Math. Soc. 160 (1971), 365–371.

[4] Jacques Dixmier. von Neumann algebras. With a preface by E. C. Lance. Translated from the second French edition by F. Jellett. North-Holland Mathematical Library, 27. North-Holland Publishing Co., Amsterdam-New York, 1981.
[5] Richard Kadison and John Ringrose. *Fundamentals of the theory of operator algebras. Vol I. Elementary Theory and Vol. II. Advanced theory.* Corrected reprint of the 1986 original. Graduate Studies in Mathematics, 15 and 16. American Mathematical Society, Providence, RI, 1997.

[6] Tosio Kato. Perturbation of continuous spectra by trace class operators. *Proc. Japan Acad.* 33 (1957), 260–264.

[7] Tosio Kato. Wave operators and similarity for some non-selfadjoint operators. *Math. Ann.* 162 (1966), 258–279.

[8] Tosio Kato. Smooth operators and commutators. *Studia Mathematica.* T.XXXI. (1968), 535-546.

[9] Tosio Kato. Perturbation theory for linear operators. *Springer: Classics in mathematics seires,* 2ed, 1995 edition.

[10] Shige Toshi Kuroda. On a theorem of Weyl-von Neumann. *Proc. Japan Acad.* 34 (1958), 11–15.

[11] Qihui Li, Junhao Shen, Rui Shi. A generalization of the Voiculescu theorem for normal operators in semifinite von Neumann algebras, submitted.

[12] Mircea Martin and Mihai Putinar. *Lectures on hyponormal operators.* (Operator Theory; Vol. 39) Basel; Boston; Berlin; Birkhäuser, 1989.

[13] Edward Nelson. Notes on non-commutative integration. *J. Funct. Anal.* 15 (1974), 103–116.

[14] Jon von Neumann. Charakterisierung des Spektrums eines Integraloperators. *Actualits Sci. Indust.* 229, Hermann, Paris, 1935.

[15] D. B. Pearson. A generalization of Birman’s trace theorem. *J. Funct. Anal.* 28, 182-186 (1978).

[16] Gilles Pisier and Quanhua Xu. Non-commutative L^p-spaces, *Handbook of the geometry of Banach spaces,* North-Holland, Amsterdam, 2 (2003), 1459–1517.

[17] C. R. Putnam. *Commutation properties of Hilbert space operators and related topics.* Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag Berlin Heidelberg New York 1967.

[18] Marvin Rosenblum. Perturbation of the continuous spectrum and unitary equivalence. *Pacific J. Math.* 7 (1957), 997–1010.

[19] William Sikonia. Essential, singular, and absolutely continuous spectra. Thesis (Ph.D.)–University of Colorado at Boulder. 1970.

[20] Masamichi Takesaki. *Theory of operator algebras. I. Reprint of the first (1979) edition.* Encyclopaedia of Mathematical Sciences, 124. Operator Algebras and Non-commutative Geometry, 5. Springer-Verlag, Berlin, 2002.

[21] Dan Voiculescu. A non-commutative Weyl-von Neumann theorem. *Rev. Roumaine Math. Pures Appl.* 21 (1976), 97–113.

[22] Dan Voiculescu. Some results on norm-ideal perturbations of Hilbert space operators. *J. Operator Theory* 2 (1979), 3-37.

[23] Dan Voiculescu. A note on quasitriangularity and trace-class self-commutators. *Acta Sci. Math. (Szeged)* 42 (1980), 195–199.

[24] Dan Voiculescu. Some results on norm-ideal perturbations of Hilbert space operators. II. *J. Operator Theory* 5 (1981), 77–100.

[25] Dan Voiculescu. Remarks on Hilbert–Schmidt perturbations of almost normal operators. *Topics in Modern Operator Theory,* Birkhäuser, 1981, 311–318.

[26] Dan Voiculescu. Hilbert space operators modulo normed ideals. *Proceedings of the International Congress of Mathematicians,* Vol. 1, 2 (Warsaw, 1983), 1041–1047, PWN, Warsaw, 1984.

[27] Dan Voiculescu. On the existence of quasicentral approximate units relative to normed ideals. I. *J. Funct. Anal.* 91 (1990), 1–36.

[28] Dan Voiculescu. Perturbations of operators, connections with singular integrals, hyperbolicity and entropy. *Harmonic Analysis and Discrete Potential Theory (ed. M. A. Picardello)* Plenum Press, 1992, 181–191.

[29] Dan Voiculescu. Almost normal operators mod Hilbert-Schmidt and the K-theory of the Banach algebras $EA(\Omega)$. *J. Noncommut. Geom.* 8 (2014), no. 4, 1123–1145.

[30] Dan Voiculescu. Some C^*-algebras which are coronas of non-C^*-Banach algebras. *J. Geom. Phys.* 105 (2016), 123–129.
[31] J. Voigt, Perturbation theory for commutative m-tuples of self-adjoint operators, *J. Funct. Anal.* 25(1977), 317–334.

[32] Hermann Weyl. "Über beschränkte quadratische formen, deren differenz vollstetig ist." *Rend. Circ. Mat. Palermo* 27 (1) (1909), 373–392.

[33] Jingbo Xia. Diagonalization modulo norm ideals with Lipschitz estimates. *J. Funct. Anal.* 145 (1997), 491–526.

[34] Jingbo Xia. Diagonalization and unitary equivalence modulo Schatten p-classes. *J. Funct. Anal.* 175 (2000), 279–307.

[35] Jingbo Xia. Singular integral operators and norm ideals satisfying a quantitative variant of Kuroda’s condition. *J. Funct. Anal.* 228 (2005), 369–393.

[36] Jingbo Xia. Diagonalization modulo a class of Orlicz ideals, *J. Funct. Anal.* 239 (2006), 268–296.

[37] Jingbo Xia. A condition for diagonalization modulo arbitrary norm ideals. *J. Funct. Anal.* 255 (2008), 1039–1056.

Current address: School of Science, East China University of Science and Technology, Shanghai, 200237, P. R. China

E-mail address: qihui_li@126.com

Current address: Department of Mathematics & Statistics, University of New Hampshire, Durham, 03824, US

E-mail address: Junhao.Shen@unh.edu

Current address: School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, P. R. China

E-mail address: ruishi@dlut.edu.cn, ruishi.math@gmail.com

Current address: School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, P. R. China

E-mail address: wangliguang0510@163.com