Novel DNA Variants and Mutation Frequencies of *hMLH1* and *hMSH2* Genes in Colorectal Cancer in the Northeast China Population

Fulan Hu1, Dandan Li1, Yibaina Wang1, Xiaoping Yao1, Wencui Zhang1, Jing Liang1, Chunqing Lin1, Jiaojiao Ren1, Lin Zhu1, Zhiwei Wu1, Shuying Li1, Ye Li1, Xiaojuan Zhao1, Binbin Cui2, Xinshu Dong3, Suli Tian3, Yashuang Zhao1*

1 Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, People’s Republic of China, 2 Department of Colorectal Surgery, Cancer Hospital of Harbin Medical University, Harbin, People’s Republic of China, 3 Department of Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, People’s Republic of China

Abstract

Research on *hMLH1* and *hMSH2* mutations tend to focus on Lynch syndrome (LS) and LS-like colorectal cancer (CRC). No studies to date have assessed the role of *hMLH1* and *hMSH2* genes in mass sporadic CRC (without preselection by MSI or early age of onset). We aimed to identify novel *hMLH1* and *hMSH2* DNA variants, to determine the mutation frequencies and sites in both sporadic and LS CRC and their relationships with clinicopathological characteristics of CRC in Northeast of China. 452 sporadic and 21 LS CRC patients were screened for germline and somatic mutations in *hMLH1* and *hMSH2* genes with PCR–SSCP sequencing. We identified 11 *hMLH1* and seven *hMSH2* DNA variants in our study cohort. Six of them were novel: four in *hMLH1* gene (IVS8-16 A>T, c.644 GAT>GTT, c.1529 CAG>CGG and c.1831 ATT>TGT) and two in *hMSH2* gene (−39 C>T, insertion AACACA at c.1127 and deletion AAG at c.1129). In sporadic CRC, germline and somatic mutation frequencies of *hMLH1/hMSH2* gene were 15.59% and 17.54%, respectively (*p = 0.052*). Germline mutations present in *hMLH1* and *hMSH2* genes were 5.28% and 10.78%, respectively (*p < 0.01*). Somatic mutations in *hMLH1* and *hMSH2* genes were 6.73% and 11.70%, respectively (*p = 0.02*). In LS CRC, both germline and somatic mutation frequencies of *hMLH1/hMSH2* gene were 28.57%. The most prevalent germline mutation site in *hMSH2* gene was c.1168 CTT>T (3.90%), a polymorphism. Somatic mutation frequency of *hMLH1/hMSH2* gene was significantly different in proximal, distal colon and rectal cancer (*p = 0.03*). Our findings elucidate the mutation spectrum and frequency of *hMLH1* and *hMSH2* genes in sporadic and LS CRC, and their relationships with clinicopathological characteristics of CRC.

Introduction

Colorectal cancer (CRC) is one of the most common malignancies globally, and ranks the fifth of all cancers in China. World Health Organization estimates that 220,000 new CRC cases occurred in China in 2008 (GLOBOCAN, 2008). The incidence of CRC has increased by 5.73% on a yearly basis between 1992 to 2005 (13.06 to 23.54/10,000) in Nangang District, Harbin, China [1].

One of the genetic pathways in the development of CRC is the failure of DNA mismatch repair (MMR) system [2], which contributes to the maintenance of genomic stability by recognizing and removing insertion/deletion mutations that occur during DNA replication [3]. The two main mismatch repair genes are *hMLH1* and *hMSH2*, which map to chromosomes 3p21.3–23 [4] and 2p21–22 [5], respectively.

Since the first report of *hMLH1* and *hMSH2* gene mutations in Lynch syndrome (LS) CRC [4,5], studies on *hMLH1* and *hMSH2* gene mutations have been published. However, the majority of the published papers focused on LS or LS-like CRC. In total, 30 small-sample size (n = 5–61, except for one of 315 patients) studies have been published that screened germline mutations in *hMLH1* and *hMSH2* genes in sporadic CRC. Pathological mutations of *hMLH1* and *hMSH2* genes were more likely to be present in younger patients [6], and in those with microsatellite instability (MSI). In our analysis of these 30 studies, MSI or early-age onset (under the age of 40, 45, 50 or 55 years) was used to preselect patients for *hMLH1* and *hMSH2* gene mutations in sporadic CRC. However, no study aimed to detect mutation frequencies of *hMLH1* and *hMSH2* genes in mass sporadic CRC without MSI or age preselection. In China, four studies (n = 26–58) screened germline or somatic mutations of *hMLH1* and *hMSH2* genes in sporadic CRC with preselection by MSI [7,8,9,10]. Whether high frequencies of *hMLH1* and *hMSH2* gene mutations occur in sporadic CRC in China has not been elucidated. Moreover, strong evidence suggests that...
rare mutations of severe effect are responsible for a substantial portion of complex human cancer [11]. We therefore conducted this study to identify novel hMLH1 and hMSH2 DNA variants, to determine both the mutation frequencies and sites in both sporadic and LS CRC, and to estimate the relationships between germline and somatic mutations of hMLH1/hMSH2 gene and clinicopathological characteristics of CRC in Northeast China.

Materials and Methods

Subjects

After obtaining informed consent from study subjects, and approval from Institutional Research Board of Harbin Medical University, we identified CRC patients who underwent surgery at the Cancer Hospital and the Second Affiliated Hospital of Harbin Medical University, without preselection and based on pathologic diagnosis alone. Patients with neuroendocrine carcinoma, malignant melanoma, non-Hodgkin’s lymphoma, gastrointestinal stromal tumors, and metastatic colorectal carcinoma were excluded from the analysis. From June 1, 2004 to May 15, 2005, and May 15, 2007 to January 1, 2008, 473 primary CRC patients (452 sporadic CRC; 21 LS CRC) were recruited. 457 blood samples and 356 tumor tissues were collected for molecular genetic analysis. From June 1, 2004 to May 15, 2005, and May 15, 2007 to January 1, 2008, 473 primary CRC patients (452 sporadic CRC; 21 LS CRC) were recruited. 457 blood samples and 356 tumor tissues were collected for molecular genetic analysis.

DNA Extraction

DNA was successfully extracted from all 457 blood samples (436 sporadic CRC and 21 LS CRC) and 356 tumor tissues (342 sporadic and 14 LS) using the classical phenol-chloroform procedure [12].

In the collection of blood and tissue samples and DNA extraction, we could not obtain the tumor tissue DNA of 117 CRC patients (110 sporadic and 7 LS) due to that the tumor
tissues were only big enough for pathology diagnosis or that we did not extract DNA successfully. Therefore, we only have their blood DNA. In the other 16 sporadic CRC patients, we obtained paired blood and tissue samples. However, in the DNA extraction, we did not extract DNA successfully from blood sample. Finally, 340 CRC patients (326 sporadic and 14 LS) have paired blood and tissue DNA.

Screening for Germline and Somatic Mutations of hMLH1 and hMSH2 Genes

PCR–SSCP sequencing analysis. The primers for 20 pairs of all 19 exons in the hMLH1 gene and 17 pairs of all 16 exons in the hMSH2 gene (Table 1), including exon-intron boundaries, were synthesized for genomic PCR. PCR amplifications were performed using the following protocol for 35 cycles: denaturation for 30 s at 95°C, annealing for 30 s at 54°C to 64°C, extension for 30 s at 72°C, followed by a final extension for 5 min at 72°C (ABI 9700). PCR products were identified by 1% agarose electrophoresis (Biowest Agarose, Gene Company Ltd).

PCR products were denatured at 98°C for 8 min and placed on ice. Electrophoresis was performed on 8% to 15% nondenaturing polyacrylamide gels. After electrophoresis, gels were stained with silver (Refined Chemical Plant, Shanghai, China). 15% of the samples were replicated in detecting mutations of every amplified PCR fragment in the PCR-SSCP analysis, with the concordance rate ranging from 99.1% to 100% for various amplified PCR fragments.

PCR products showing abnormal mobility under SSCP analysis were sent to sequence using ABI3730XL. Sequencing results were analyzed for gene mutations with Chromas 2.22 software (Technelysium Pty. Ltd., QLD, Australia).

Assessment of Mutation Pathogenicity

For previously reported mutations, results of function verification were used to determine pathogenicity. If no function verification was reported, function prediction by any two of the PolyPhen/SIFT/MAPP-MMR results was used to determine their pathogenicity.

For the novel DNA variants, the pathogenicity of base substitution in exons were predicted by PolyPhen program [13].

Figure 1. Four novel DNA variants in hMLH1 gene.
doi:10.1371/journal.pone.0060233.g001
Table 2. DNA variants found in hMLH1 and hMSH2 genes.

Mutation/location	Nucleotide change	Amino acid change	Mutation type	Polyphen	MAPP-MMR	Pathogeneity	Characteristics of patients carried novel DNA variant
Novel DNA variants							
hMLH1/Intron 8	IVS8-16 A>T	-		-	-	Uncertain	51 years, ulcerated adenocarcinoma, moderately differentiation, Dukes B, tumor size: 6.4*1 cm³
hMLH1/Exon 9	c.704 GAT>GTT	p.Asp235Val	Missense	0.052	6.710	Uncertain	56 years, protrude type adenocarcinoma, moderately differentiation, Dukes B, tumor size: 5.5*3 cm³
hMLH1/Exon 13	c.1529 CAG>GCG	p.Gln510Arg	Missense	0.002	1.380	No	71 years, ulcerated and infiltrating adenocarcinoma, poorly differentiation, Dukes B, tumor size: 7.8*9 cm³
hMLH1/Exon 16	c.1831 ATT>TGT	p.Ile611Phe	Missense	0.125	2.680	Uncertain	51 years, ulcerated adenocarcinoma, moderately differentiation, Dukes C, tumor size: 5.5*6 cm³
hMSH2/5'UTR	−39 C>T	-		-	-	Uncertain	
hMSH2/Exon 7*	c.1127 ins AACAACA, c.1129 del AAG	Out of frame insertion in codon376, In-frame deletion in codon377	Frameshift	-	-	Uncertain	protrude type myxo-adenocarcinoma, poorly-moderately differentiation, Dukes C, tumor size: 4.4*5 cm³
Previously reported mutations							
hMLH1/5'UTR	−28 A>G	-		-	-	Unknown [45,46]	-
hMLH1/Exon 11	c.927 CCC>CCG	p.Pro309Pro	Synonymous	-	-	Unknown [19]	-
hMLH1/Intron 13	IVS13+14 G>A	-		-	-	Unknown [45]	-
hMLH1/Intron 14	IVS14-19 A>G	-		-	-	Unknown [47,48]	-
hMLH1/Exon 16	c.1742 CCG>CCT	p.Pro581Leu	Missense	-	-	Reported pathogenicity [14,21]	-
hMLH1/Exon 16	c.1845_1847 del GAA	In-frame deletion in codon13,616	No change	-	-	Reported pathogenicity [10,49]	-
hMLH1/3' UTR	−35_37 del CTT	-		-	-	Unknown [18,50]	-
hMSH2/Exon 1	c.23 AGG>AGG	p.Thr8Met	Missense	-	-	No [14,51]	-
hMSH2/Exon 3	c.471 GCC>GGA	p.Gly157Gly	Synonymous	-	-	No [27]	-
hMSH2/Exon 3	c.505 ATA>GTA	p.Ile169Val	Missense	-	-	Reported [14,45]	-
hMSH2/Exon 7	c.1168 CTT>TGT	p.Leu390Phe	Missense	-	-	Unknown [8,14]	-
hMSH2/Exon 12	c.1886 CAA>CAG	p.Gln629Arg	Missense	-	-	No [8,45]	-

*DNA variant found in the relapse tumor of a LS CRC patient.
1The variants were detected in more than one patient, so we did not describe the characteristics of these patients.
2If PolyPhen score >2.0 then the AA substitution is predicted to affect protein function.
3If MAPP-MMR score >4.55 then the AA substitution is predicted to affect protein function.
doi:10.1371/journal.pone.0060233.t002
and MAPP-MMR [14]. Base insertion, deletion and substitution in promoter, introns or 3’UTR were assessed by criteria to determine potential pathogenicity [15]. We also detected the novel DNA variants in 100 healthy controls to determine potential pathogenicity.

Statistical Analysis

Category and continuous variables were tested by the chi-square test and *t*-test, respectively. All the statistical analyses were performed by SAS 9.1 (SAS Institute, Cary, NC, USA).

Results

Mutations

Mutations in hMLH1 gene. We identified 11 DNA variants in *hMLH1* gene. IVS8-16 A>T, c.1831 ATT>TGT and c.1845_1847 deletion GAA were somatic DNA variants, other eight DNA variants were both germline and somatic variants. Four (IVS8-16 A>T, c.704 GAT>GTT, c.1529 CAG>CGG, c.1831 ATT>TGT) were novel DNA variants identified in sporadic CRC patients (Figure 1 and Table 2). All the four novel DNA variants were not detected in 100 healthy controls. c.1529 CAG>CGG was predicted to have no pathogeneity, the pathogeneity of other three novel DNA variants were uncertain.

Seven mutations (–28 A>G, c.927 CCC>CCT, IVS13+14 G>A, IVS14-19 A>G, c.1742 CCG>CTG, c.1845_1847 deletion GAA and c.*35_*37 deletion CTT) were previously reported in the InSiGHT database [10,16,17,18,19,20,21]. c.1742 CCG>CTG and c.1845_1847 deletion GAA were reported to be pathologigic mutations [21,22]. We also identified two polymorphisms. c.655 ΔTC>GTC was reported to be a common polymorphism in Caucasians [23,24,25],
Mutation Frequency of hMLH1 and hMSH2 Genes in CRC

Mutation/location	Somatic mutation frequency	Germline mutation frequency		
hMLH1	Sporadic CRC	LS CRC	Sporadic CRC	LS CRC
hMLH1/5’UTR	0	7.14% (1/14)	0	4.76% (1/21)
hMLH1/Intron 8	0.29% (1/342)	–	0.23% (1/436)	0
hMLH1/Exon 9	0.29% (1/342)	0	0.69% (3/436)	0
hMLH1/Exon 11	0.88% (3/342)	0	1.38% (6/436)	0
hMLH1/Intron 13	1.46% (5/342)	0	2.52% (11/436)	0
hMLH1/Intron 14	2.63% (9/342)	0	5.28% (23/436)	4.76% (1/21)
hMLH1/Exon 16	0.88% (3/342)	0	0.23% (1/436)	0
hMLH1/3’UTR	0.29% (1/342)	0	0.23% (1/436)	0
Subtotal	6.73% (23/342)	7.14% (1/14)	5.28% (23/436)	4.76% (1/21)
hMSH2	Sporadic CRC	LS CRC	Sporadic CRC	LS CRC
hMSH2/5’UTR	0.58% (2/342)	0	0.46% (2/436)	0
hMSH2/Exon 1	2.63% (9/342)	0	1.38% (6/436)	0
hMSH2/Intron 3	1.75% (9/342)	7.14% (1/14)	2.06% (11/436)	4.76% (1/21)
hMSH2/Exon 7	4.39% (15/342)	7.14% (1/14)	3.90% (17/436)	14.29% (3/21)
hMSH2/Exon 12	1.46% (5/342)	7.14% (1/14)	2.52% (11/436)	4.76% (1/21)
Subtotal	11.70% (40/342)	21.43% (3/14)	10.78% (47/436)	23.81% (5/21)
Total	17.54% (60/342)	28.57% (4/14)	15.59% (68/436)	28.57% (6/21)

*The mutation was also found in another blood sample of LS relapsed CRC patient.
*One patient carried both –39 C>T and c.23 ACG>ATG.
*Three patients carried somatic mutations in both hMLH1 and hMSH2 genes; one patient carried germline mutations in both hMLH1 and hMSH2 genes.

doi:10.1371/journal.pone.0060233.t003

while c.1151 GTT>GAT was reported to be more common in Asian population [26]. Therefore, we did not categorize them as mutations in our study.

Mutations in hMSH2 gene. We identified seven hMSH2 DNA variants. Insertion AACAACA at c.1127 and deletion AAG at c.1129 was somatic DNA variants, other six DNA variants were both germline and somatic variants. Two DNA variants (−39 C>T insertion AACAACA at c.1127 and deletion AAG at c.1129) were newly detected in this study (Figure 2 and Table 2). In screening the two novel DNA variants in 100 healthy controls, no variants were detected. The pathogenicity of the two DNA variants was uncertain. Five other mutations (c.23 ACG>ATG, c.471 GGC>GGA, c.505 ATA>GTA, c.1168 CTT>TTT and c.1886 CAA>GGA) were previously reported in the InSiGHT database [14,27].

Two male patients carried somatic mutations in both hMLH1 and hMSH2 genes. Another male patient carried the c.1831 ATT>TTT mutation of the hMLH1 gene and the c.23 ACG>ATG mutation of the hMSH2 gene in both tumor tissues and blood.

Mutation Frequencies

Mutation frequencies in sporadic CRC patients. Among 436 sporadic CRC patients with available blood DNA, germline mutation frequencies of hMLH1 and hMSH2 genes were 5.28% (23/436) and 10.78% (47/436), respectively (*p*<0.01) (Table 3). Excluding the synonymous mutations (c.927 CCC>CCT in hMLH1 and c.471 GGC>GGA in hMSH2), the mutation frequencies in hMLH1 and hMSH2 genes were 4.59% (20/436) and 6.72% (38/436), respectively (*p* = 0.01). If the patient who carried two germline mutations was only counted once (one patient harbored both −39 C>T and c.23 ACG>ATG mutations in hMSH2 and the IVS13+14 G>A mutation of hMLH1; the other patient carried both c.1831 ATT>TTT mutation in hMLH1 and c.23 ACG>ATG in hMSH2), then 15.59% (68/436) patients exhibited germline mutations in hMLH1/hMSH2 gene. Pathologic mutation frequencies of hMLH1 and hMSH2 genes were 0.23% (1/436) and 0%, respectively.

Among 342 sporadic CRC patients with available DNA in tumor tissues, the somatic mutation frequencies in hMLH1 and hMSH2 genes were 6.73% (25/342) and 11.70% (40/342), respectively (*p* = 0.02) (Table 3). Excluding synonymous mutations (c.927 CCC>CCT in hMLH1 and c.471 GGC>GGA in hMSH2), mutation frequencies of hMLH1 and hMSH2 genes were 5.85% (20/342) and 9.94% (34/342), respectively (*p* = 0.03). If mutations were counted by patients instead of the actual number of mutations (three patients carried somatic mutations of both hMLH1 and hMSH2 genes), then 17.54% (60/342) patients exhibited somatic mutations of hMLH1/hMSH2 gene. Pathological mutation frequencies of hMLH1 and hMSH2 genes were 0.38% (2/342) and 0%, respectively.

Germline mutation frequency was not significantly different from that of somatic mutation frequency in hMLH1 and hMSH2 genes, respectively (*p* = 0.49 and *p* = 0.69, respectively).

Mutation frequencies in LS CRC patients. Among 21 blood DNA samples of LS CRC patients, one (4.76%) patient carried a germline mutation of hMLH1 and five (23.81%) patients carried germline mutations in hMSH2. Overall, six (28.57%) patients exhibited germline mutations of the hMLH1/hMSH2 gene.

Tumor tissues were only available in 14 LS CRC patients, one (7.14%) patient carried a somatic mutation in hMLH1 and three
Table 4. The relationships between germline mutation of hMLH1/hMSH2 gene and clinicopathological features of the 436 sporadic CRC patients.

	No. of patients 436 (%)	Germline mutated 56 (%)	Wild type 380 (%)	P value
Age(yr) at CRC diagnosis				
Mean	58.72 ± 11.30	58.55 ± 11.54	58.72 ± 11.27	0.59
<40	27 (6.0)	3 (5.4)	23 (6.1)	0.98
40–60	187 (43.0)	24 (42.9)	163 (43.0)	
≥60	222 (51.0)	29 (51.8)	193 (50.9)	
Gender				0.21
Male	262 (60.2)	38 (67.9)	224 (59.1)	
Female	173 (39.8)	18 (32.1)	155 (40.9)	
BMI				0.13
< =21	107 (25.5)	15 (27.8)	92 (25.2)	
>21 and < =25	182 (43.4)	17 (31.5)	165 (45.2)	
>25	130 (31.1)	22 (40.7)	108 (29.6)	
Location				0.09
Proximal colon cancer	81 (18.8)	14 (25.5)	67 (17.9)	
Distal colon cancer	73 (17.0)	13 (23.6)	60 (16.0)	
Rectal cancer	276 (64.2)	28 (50.9)	248 (66.1)	
Dukes stage				0.72
1	46 (10.6)	7 (12.5)	39 (10.3)	
2	190 (43.8)	23 (41.1)	167 (44.2)	
3	161 (37.1)	23 (41.1)	138 (36.5)	
4	37 (8.5)	3 (5.4)	34 (9.0)	
1+2	236 (54.4)	30 (53.6)	205 (54.5)	0.90
3+4	198 (45.6)	26 (46.4)	172 (45.5)	
Histotypes				0.52
Adenocarcinoma	332 (76.3)	46 (82.1)	286 (75.5)	
Mucinous adenocarcinoma	78 (17.9)	8 (14.3)	70 (18.5)	
Others	25 (5.7)	2 (3.6)	23 (6.1)	
Pathological types				0.83
Protrude type	273 (66.4)	33 (63.5)	240 (66.9)	
Ulceration type	30 (7.3)	4 (7.7)	26 (7.2)	
Ulceration+Infiltrating type	94 (22.9)	14 (26.9)	80 (22.3)	
Infiltrating type	14 (3.4)	1 (1.9)	13 (3.6)	
Differentiated degree				0.33
Poor	74 (17.9)	6 (18.9)	68 (18.9)	
Moderate	335 (81.1)	46 (86.8)	289 (80.3)	
Well	4 (1.0)	1 (1.9)	3 (0.8)	
Tumor size				0.38
< =50	186 (47.9)	21 (41.2)	165 (49.0)	
50< and < =200	141 (36.3)	23 (45.1)	118 (35.0)	
>200	61 (15.7)	7 (13.7)	54 (16.0)	

The Mutation Distribution in Different Exons

The highest germline mutation prevalence of hMSH2 in sporadic CRC was detected in exon 7 (3.90%), followed by exon 12 (2.52%), exon 1 (1.38%), and exon 3 (0.46%). Mutations in these four exons accounted for 76.6% of the (21.43%) patients carried a somatic mutation in hMSH2. In total, four (28.57%) patients exhibited somatic mutations in hMLH1/ hMSH2 gene.

No pathologic mutations were detected in LS CRC patients.
total mutations in hMSH2. As far as the hMLH1, mutation frequencies were generally lower than in hMSH2; the highest mutation prevalences were in exon 16, exon 9, exon 13, and exon 19 (0.23%) (Table 3).

The Relationships between Germline and Somatic Mutations of hMLH1/hMSH2 Gene and Clinicopathological Characteristics of CRC

Somatic mutation frequency of hMLH1/hMSH2 gene was 22.7% (15/66) in proximal colon cancer, 17.7% (11/62) in distal...
colon cancer and 10.5% (22/209) in rectal cancer ($p=0.03$). Whereas, germline mutation frequency of $hMLH1/hMSH2$ gene was not significantly different in proximal colon cancer (17.3%, 14/81), distal colon cancer (17.8%, 13/73) and rectal cancer (10.1%, 28/276) ($p=0.09$). (Table 4 and 5).

Germline and somatic mutation frequency of $hMLH1/hMSH2$ gene was not significantly different in other clinicopathological characteristics (age, gender, BMI, Dukes stage, Histotypes, Pathological types, Differentiated degree and tumor size) of CRC.

Because of less LS CRC patients, we did not analyze the relationships between germline and somatic $hMLH1/hMSH2$ gene mutations and clinicopathological characteristics of LS CRC.

Discussion

Under the supposed model of common disease-rare variant [28,29], we screened the rare variants of $hMLH1$ and $hMSH2$ genes in sporadic and LS CRC. We identified 18 types of DNA Variants in our study. Six were novel DNA variants and 12 have been previously reported. Of the six novel DNA variants, four were in $hMLH1$ and two in $hMSH2$.

Two of the four novel $hMLH1$ DNA variants, p.Asp235 Val (c.644 GAT \Rightarrow GTT) and p.Gln510 Arg (c.1529 CAG \Rightarrow CGG), both lead to amino acid polarity changes, which may affect the structure of the $hMSH2$ binding domain and $hPM2/hPMS2$ binding domain of the $hMLH1$ gene respectively and cause the dysfunction of DNA MMR system. Another DNA variant, p.Leu611 Phe (c.1831 ATT \Rightarrow TTT), lead to no amino acid polarity changes in the $hPMS2/hPMS1$ binding domain of the $hMLH1$ gene product, may have no effect on the function of DNA MMR system [30]. IVS8-16 A \Rightarrow T is predicted to have no effect on splicing in exon 9.

One of the two novel $hMSH2$ DNA variants, $\Delta$$39$ C \Rightarrow T, was a variance in 5'UTR, which may affect mRNA Transcription. The other variance, c.1127 ins AACAACG and c.1129 del AAG, was a frameshift mutation, which may affect the $hMSH6$ binding domain and $hMud$, homolog interaction of the $hMSH2$ gene product and cause the dysfunction in the DNA MMR system [30].

Although the failure of DNA MMR system is one of the genetic pathways in the development of CRC [2]. According to the criteria of mutation pathogeneity assessment, one novel DNA variant, c.1529 CAG \Rightarrow CGG, was predicted to have no pathogeneity, the pathogeneity of other five novel DNA variants were uncertain. Therefore, we cannot elucidate the role of these novel DNA variants of $hMLH1$ and $hMSH2$ genes in the occurrence and development of CRC.

c.1742 CGG \Rightarrow CTG of $hMLH1$ and c.1886 CGA \Rightarrow CAA of $hMSH2$ were founder mutations in the Asian population [31]. Three other mutations of $hMSH2$, c.23 ACG \Rightarrow AGT, c.505 ATG \Rightarrow GTA and c.1168 CTT \Rightarrow TTT, were of higher prevalence in Asians (2.44%, 1.74%, and 6.97%, respectively) compared with Caucasians (0.05%, 0.05%, and 0.53%, respectively) [31]. It may explain the racial difference of CRC patients. In addition, it may be more efficient to detect these mutations in Asian populations.

Since we detected a higher prevalence of c.1168 CTT \Rightarrow TTT of $hMSH2$ in both LS (14.29%, 3/21) and sporadic (5.90%, 7/116) CRC, we screened for the mutation in healthy controls. The mutation frequency in healthy controls was 4.16% (21/505), which was not significantly different comparing with CRC ($p=0.84$). This particular mutation was also reported as a polymorphism in Korea by Kim et al, who did not detect a significant difference between cases and controls [26].

Significant association was only observed between somatic $hMLH1/hMSH2$ gene mutations and tumor location of sporadic CRC ($p=0.03$). The somatic mutation frequency of $hMLH1/hMSH2$ gene was highest in rectal cancer, the following was in proximal colon cancer, and the lowest was in distal colon cancer.

The non-pathogeneity or uncertain pathogeneity may explain the non-significant association between $hMLH1/hMSH2$ gene mutations and other clinicopathological characteristics of sporadic CRC.

In our previous meta-analysis based on the germline mutations of $hMLH1$ and $hMSH2$ genes (paper accepted, 10.1371/journal.pone.0051240), the pooled pathologic mutation frequency of $hMLH1$ was 8.72% (95% CI: 6.12%–12.29%) in sporadic CRC. It was 10.28% (95% CI: 4.28–22.70%) in American studies, 7.47% (95% CI: 4.06–13.34%) in European studies, and 3.21% (95% CI: 0.88–11.03%) in Asian studies ($p=0.65$). In our cohort, it was only 0.23%. The pooled pathologic mutation frequency of $hMSH2$ was 7.28% (95% CI: 5.12%–10.26%) in sporadic CRC. It was 5.89% (95% CI: 2.08–15.61%) in American studies, 7.58% (95% CI: 4.05–13.76%) in European studies, and 3.64% (95% CI: 1.96–6.65%) in Asian studies ($p=0.85$). However, no pathologic mutation of $hMSH2$ was detected in our study.

Eight [7,9,32,33,35,36,37] and nine studies [7,9,32,33,35,36,37,38] in Asia detected somatic mutations of $hMLH1$ and $hMSH2$ genes in sporadic CRC. The pooled prevalence of pathologic mutations was 11.86% (95% CI: 7.62–18.01%) and 7.90% (95% CI: 4.72–12.94%) respectively upon meta-analysis, which is higher than that in our study (0.58% and 0%).

All the published studies detected germline or somatic mutations in sporadic CRC with preselection (MSI, early-onset age, or TGF-β RII mutation) [36], which could explain the higher mutation frequency in the published individual studies and meta-analyses of previously published studies. In addition, the small sample size in those published studies may also contribute to the inconsistent results.

Only one study in Asia detected somatic mutations of $hMLH1$ and $hMSH2$ genes in 31 sporadic CRC patients without preselection [37]. The largest study detecting germline mutations was of 315 European BG-CRC patients under the age of 55; the mutation frequency of $hMSH2$ was found to be 0.32% (1/325, uncertain pathogenicity), whereas no mutation in $hMLH1$ was detected [39].

In our previous meta-analysis, the pooled germline mutation frequencies of $hMLH1$ and $hMSH2$ genes were 28.55% (95% CI: 26.04%–31.19%) and 19.41% (95% CI: 15.88%–23.51%) in Amsterdam-criteria positive LS CRC. In Amsterdam-criteria negative LS CRC, these pooled mutation frequencies were 16.70% (95% CI: 14.53–19.13%) and 11.13% (95% CI: 9.49–13.42%) for $hMLH1$ and $hMSH2$ genes, respectively. In our study, no germline mutation in $hMLH1$ exons was found, similar to a study in Japan [40]. The germline mutation frequency of $hMSH2$ was 9.32% (2/21) (excluding the polymorphic mutation c.1168 CTT \Rightarrow TTT), which was relatively lower than that in the meta-analysis (11.13%, 95% CI: 9.49–13.42%).

Five Asian studies detected the somatic mutation of $hMLH1$ or $hMSH2$ in LS CRC [7,41,42,43,44]. The pooled somatic mutation frequencies in $hMLH1$ and $hMSH2$ genes were 9.57% (95% CI: 1.36–44.73%) and 25.65% (95% CI: 10.30–50.89%), respectively upon meta-analysis. In our study, the somatic mutation frequency of $hMSH2$ in LS CRC was 14.29% (2/14) (excluding the polymorphic mutation, c.1168 CTT \Rightarrow TTT). However, no somatic mutations in $hMLH1$ exons were found in LS CRC, similar to the two Japanese studies [41,43]. The somatic mutation frequency
of hMSH2 in LS CRC varied from 5.88% to 58.33% in the five Asian published studies. A small sample size may explain the variance of mutation frequency in LS CRC.

In conclusion, we identified six novel DNA variants (four in hMLH1 and two in hMSH2). In sporadic CRC, germline and somatic mutation frequencies of hMLH1/hMSH2 gene were 15.59% and 17.54%, respectively. The prevalence of germline mutations was 5.28% in hMLH1 and 10.78% in hMSH2. The somatic mutation frequencies in hMLH1 and hMSH2 genes were 6.43% and 11.70%, respectively. In LS CRC, both germline and somatic mutation frequencies of hMLH1/hMSH2 genes were 28.57%. The most prevalent germline mutation site in hMSH2 gene was c.1168 GTT→TTT (3.90%), a polymorphism. Somatic mutation frequency of hMLH1/hMSH2 gene was significantly different in proximal colon cancer, distal colon cancer and rectal cancer.

Our findings could help to elucidate the DNA variant spectrum and frequency of the hMLH1 and hMSH2 genes in CRC patients, especially sporadic CRC patients in China, and their relationships with clinicopathological characteristics of sporadic CRC. Functional studies to determine how these novel DNA variants affect protein function are required.

Acknowledgments

Thanks for the native editing of the International Science Editing.

Author Contributions

Revised the manuscript: YSZ. Collected the CRC samples: BBC XSD SLY. Conceived and designed the experiments: YSZ. Performed the experiments: FLH DDL BNWY XWCZ JL CQH JLR LZ ZWSW YL XJR. Analyzed the data: FLH. Wrote the paper: FLH.

References

1. Cui BB, Liu YL, He H, Wu SL, Sun XW, et al. (2007) Morbidity trends for colorectal cancer in the Nangang district of Harbin from 1992–2005. World Chinese Journal of Digestive Therapy 15: 2442–2446.
2. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 739–767.
3. Chung DC, Rustgi AK (2003) The hereditary nonpolyposis colorectal cancer syndrome: genetics and clinical implications. Ann Intern Med 130: 560–570.
4. Aaltonen LA, Peltomaki P (1994) Genes involved in hereditary nonpolyposis colorectal carcinoma. Anticancer Res 14: 1657–1660.
5. Fisher R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, et al. (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038.
6. McClellan JA, Baglietto L, Dowey JW, Van Vliet CM, Smith L, et al. (2006) Cancer risks for mismatch repair gene mutation carriers: a population-based early onset case-family study. Clin Gastroenterol Hepatol 4: 489–496.
7. Yuen ST, Chan TL, Ho JW, Chan AS, Chang LP, et al. (2002) Germ-line, somatic and epigenetic events underlying mismatch repair deficiency in colorectal and HNPCC-related cancers. Oncogene 21: 7365–7392.
8. Jin HY, Liu X, Li VK, Ding Y, Yang B, et al. (2008) Detection of mismatch repair gene germ-line mutation carrier among Chinese population with colorectal cancer. BMC Cancer 8: 44.
9. Huang YQ, Yuan Y, Ge WT, Hu HG, Zhang SZ, et al. (2010) Comparative features of colorectal and gastric cancers with microsatellite instability in Chinese patients. J Zhejiang Univ Sci B 11: 647–653.
10. Yan HL, Hao LQ, Jin HY, Xing QH, Xue G, et al. (2008) Clinical features and mismatch repair genes analyses of Chinese suspected hereditary non-polyposis colorectal cancer: a cost-effective screening strategy proposal. Cancer 99: 770–780.
11. McClellan J, King MC (2010) Genetic heterogeneity in human disease. Cell 141: 210–217.
12. Miyaki M, Seki S, Okamoto M, Yamanaka A, Maeda Y, et al. (1990) Genetic changes and histopathological types in colorectal tumors from patients with familial adenomatous polyposis. Cancer Res 50: 7166–7173.
13. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30: 3994–3990.
14. Chao EC, Velasquez JL, Witherspoon MS, Rozek LS, Peel D, et al. (2008) Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR). Hum Mutat 29: 852–860.
15. Cotton RG, Scrivier CR (1998) Proof of “disease causing” mutation. Hum Mutat 12: 1–3.
16. Isidro G, Matos S, Goncalves V, Cavaleiro C, Antunes O, et al. (2003) Novel MLH1 mutations and a novel MSHE2 polymorphism identified by SSCP and DHPLC in Portuguese HNPCC families. Hum Mutat 24: 419–420.
17. Kowalski LD, Mutch DG, Herzog TJ, Rader JS, Goodfellow PJ (1997) Germ-line mutations of hMSH2 and hMLH1 genes in young colon cancer patients and controls. Am J Hum Genet 63: 749–759.
18. Joshi AD, Corral R, Siegmund KD, Haile RW, Le Marchand L, et al. (2009) Red meat and poultry intake, polymorphisms in the nucleotide excision repair and mismatch repair pathways and colorectal cancer risk. Carcinogenesis 30: 472–479.
19. Raptis S, Mirkonen M, Green RC, Pethe VV, Monga N, et al. (2007) MLH1–93G>A: a promoter polymorphism and the risk of microsatellite-unstable colorectal cancer. J Natl Cancer Inst 99: 463–474.
20. Yu JH, Bigler J, Whitton J, Potter JD, Ulrich CM (2006) Mismatch repair polymorphisms and colorectal polypl: hMSH1–93G>A variant modifies risk associated with smoking. Am J Gastroenterol 101: 1313–1319.
21. Kim JC, Roh SA, Koo KH, Koo HI, Kim HC, et al. (2008) Genotyping possible polymorphic variants of human mismatch repair genes in healthy Korean individuals and sporadic colorectal cancer patients. Fam Cancer 3: 129–137.
22. Nomura S, Sugano K, Kashihara H, Taniguchi T, Fujiyama N, et al. (2000) Enhanced detection of deletions and other germ-line mutations of hMSH2 and hMLH1 in Japanese hereditary nonpolyposis colorectal cancer kindreds. Biochim Biophys Acta 1426: 129–129.
23. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11: 415–425.
24. Seton-Rogers S (2012) Cancer genomics: Finding a rare variant. Nat Rev Cancer 12: 1.
25. Jacob S, Praz F (2002) DNA mismatch repair defects: role in colorectal carcinogenesis. Biochimie 84: 27–47.
26. Wei W, Liu L, Chen J, Jin K, Jiang F, et al. (2010) Racial differences in MLH1 and MSH2 mutation: an analysis of yellow race and white race based on the InSiGHT database J. Biomed Comput 8 Suppl 1: 111–123.
27. Aye S, Masuda H (2000) Genomic alterations of sporadic colorectal cancer with microsatellite instability, especially characteristics of primary multiple colorectal cancers. J Surg Oncol 74: 256–258.
28. Jeong SY, Shin KH, Shin JH, Ku JH, Shin YK, et al. (2003) Microsatellite instability and mutations in DNA mismatch repair genes in sporadic colorectal cancer. Dis Colon Rectum 46: 1009–1077.
29. Senba S, Konishi F, Okamoto T, Kashihara H, Kanazawa K, et al. (1996) Clinicopathologic and genetic features of nonfamilial colorectal carcinomas with DNA replication errors. Cancer 82: 279–285.
30. Shiok H, Konishi F, Miyaki M, Iijima T, Furukawa T, et al. (2000) Pathogenesis of non-familial colorectal carcinomas with high microsatellite instability. J Clin Pathol 53: 941–945.
31. Akiyama Y, Inawaga R, Ishikawa T, Sakamoto K, Nishii K, et al. (1996) Mutations of the transforming growth factor-beta type II receptor gene are strongly related to sporadic proximal colon carcinomas with microsatellite instability. Cancer 78: 2478–2484.
32. Chakravarthihoichot P, Punyarit P, Perimun S (2007) Novel hMSH2, hMSH6 and hMLH1 gene mutations and microsatellite instability in sporadic colorectal cancer. J Cancer Res Clin Oncol 133: 65–70.
33. Yanaka K, Zhang X, Kanazawa S, Koike J, Tsuji K, et al. (2003) Oncogenic pathway of sporadic colorectal cancer with novel germine mismatch mutations in the hMSH2 gene. Oncol Rep 16: 859–866.
34. Bartram RA, Tenesa A, Farrington SM, Nicholl ID, Temarayk R, et al. (2006) Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Engl J Med 354: 2751–2763.
35. Bai QY, Akiyama Y, Nagashita H, Lu SL, Ara T, et al. (1999) Predominant germline mutation of the hMLH1 gene in Japanese hereditary non-polyposis colorectal cancer kindreds. Int J Cancer 82: 512–515.
36. Miyaki M, Konishi M, Murakoa M, Kikuchi-Yanoshita R, Tanaka K, et al. (1995) Germ line mutations of hMSH2 and hMLH1 genes in Japanese families.
with hereditary nonpolyposis colorectal cancer (HNPCC): usefulness of DNA analysis for screening and diagnosis of HNPCC patients. J Mol Med (Berl) 73: 515–520.
42. Lu SL, Akiyama Y, Nagasaki H, Nomizu T, Beda E, et al. (1996) Loss or somatic mutations of hMSH2 occur in hereditary nonpolyposis colorectal cancers with hMSH2 germline mutations. Jpn J Cancer Res 87: 279–287.
43. Konishi M, Kikuchi-Yanoshita R, Tanaka K, Muraoka M, Onda A, et al. (1996) Molecular nature of colon tumors in hereditary nonpolyposis colorectal cancer, familial polyposis, and sporadic colon cancer. Gastroenterology 111: 307–317.
44. Nakahara M, Yokozaki H, Yasui W, Doi K, Tahara E (1997) Identification of concurrent germ-line mutations in hMSH2 and/or hMLH1 in Japanese hereditary nonpolyposis colorectal cancer kindreds. Cancer Epidemiol Biomarkers Prev 6: 1057–1064.
45. Yap HL, Chieng WS, Lim JR, Lim RS, Soo R, et al. (2009) Recurring MLH1 deleterious mutations in unrelated Chinese Lynch syndrome families in Singapore. Fam Cancer 8: 85–94.
46. Nilbert M, Wikman FP, Hansen TV, Krarup HB, Orntoft TF, et al. (2009) Major contribution from recurrent alterations and MSH6 mutations in the Danish Lynch syndrome population. Fam Cancer 8: 73–83.
47. Rubio-Del-Campo A, Salinas-Sanchez AS, Sanchez-Sanchez F, Gimenez-Bachs JM, Donate-Moreno MJ, et al. (2008) Implications of mismatch repair genes hMLH1 and hMSH2 in patients with sporadic renal cell carcinoma. BJU Int 102: 504–509.
48. Christensen LL, Madsen BE, Wikman FP, Wiuf C, Koed K, et al. (2008) The association between genetic variants in hMLH1 and hMSH2 and the development of sporadic colorectal cancer in the Danish population. BMC Med Genet 9: 52.
49. Krayaara TE, Korhonen MK, Lohi H, Hampil H, Lynch E, et al. (2005) Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129: 357–349.
50. Tinat J, Baert-Desurmont S, Latouche JB, Vasseur S, Martin C, et al. (2008) The three nucleotide deletion within the 3'untranslated region of MLH1 resulting in gene expression reduction is not a causal alteration in Lynch syndrome. Fam Cancer 7: 339–340.
51. Sheng JQ, Fu L, Sun ZQ, Huang JS, Han M, et al. (2008) Mismatch repair gene mutations in Chinese HNPCC patients. Cytogenet Genome Res 122: 22–27.