Validity of Describing Resonant Viscosity and Mass Density Sensors by Linear 2nd Order Resonators

Martin Heinischa,*, Thomas Voglhuber-Brunnmaiera, Isabelle Dufourb, Bernhard Jakobya

aInstitute for Microelectronics and Microsensors, Johannes Kepler University, Linz, Austria
bLaboratoire IMS, Universit\'e de Bordeaux, Talence, France

Abstract

Resonant viscosity and mass density sensors are based on the determination of a mechanical oscillator’s frequency response at a characteristic resonant mode upon immersion in a liquid. In many cases the sensors’ characteristics and sensitivities are demonstrated by showing the dependence of their quality factor Q and resonance frequency f_r to viscosity η and mass density ρ. Commonly, the transfer function of a linear second order resonator is fit into the recorded frequency response to extract f_r and Q, which are then related to the liquid’s η and ρ. This approach is widespread in the field of resonant (viscosity and mass density) sensors and thus became a common procedure. However, as from a theoretic point of view, resonators which are interacting with a liquid do not yield linear second order functions, the applicability of this standard approach and its limits are investigated in this work.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Keywords: viscosity, mass density, resonator, quality factor, resonance frequency;

1. Introduction

Resonant viscosity and mass density sensors are very attractive devices for fluid characterization [1]. The high interest for such devices is not only remarkable due to the high number of reported principles during the past two decades rather than their ongoing and still increasing amount of publications. In most cases, the change of resonance frequency f_r and quality factor Q upon immersion in a liquid is determined and related to the liquid’s viscosity η and mass density ρ. Examples for such liquid loaded resonators (LLRs) for which data for Q and f_r, η and ρ are provided are, e.g., a Si-cantilever [2], a Si-platelet [3], a quartz tuning fork [4], a U-shaped wire [5] as well as steel tuning forks with circular and rectangular cross-sections and a spiral spring resonator, which can be found in these proceedings. We want to briefly describe this common approach and highlight possible breaches and associated limits of this standard procedure. We consider the resonant device (i.e. the viscosity and mass density sensor) being representable by a linear, mechanical oscillator, see Fig.1, with lumped...
mass m_0, damping coefficient c_0 and spring constant k_0, interacting with a liquid. The frequency response containing a characteristic resonance is recorded. Assuming the applicability of the transfer function of a second order resonator, f_r and Q are evaluated with an appropriate second order fitting algorithm e.g., [6]. With the knowledge of these two parameters, η and ρ can be determined with an associated model. For this approach it is assumed, that the force F_F induced by the fluid can be represented by a complex valued function in the frequency domain (with angular frequency ω). As the interaction will have a linear character for small vibration amplitudes F_F will be proportional to the velocity v such that the fluid force can be related to an acoustic impedance $Z(\omega)$ and thus, $F_F = Z(\omega) \cdot v$. (Note underlined variables denote complex quantities.)

The acoustic impedance can be split in a real and an imaginary part which suggests to write $F_F = (c_f + j \omega m_f) \cdot v$, where c_f and m_f are the fluid loading related added damping and mass parameter, respectively. In general c_f and m_f will be frequency dependent and thus, the description as a 2nd order system with constant parameters is an approximation. However, in the small captured bandwidth this frequency dependence might be negligible.

2. Liquid loaded resonator (LLR)

We assume that the resonance spectrum is ideally recorded, i.e. any background signals (including noise) can be perfectly subtracted, each measured point gives a steady state value and the measured signal is not subjected to non-linearity effects. A common approach for modeling a liquid loaded resonator is to model the effect of the liquid on the resonance characteristics, (i.e. f_r and Q) by taking an additional fluid related mass m_f and damping c_f into account. In [7] it was found that

$$m_f(\omega, \eta, \rho) = C_{m_1} \rho + C_{m_2} \frac{\eta \rho}{\omega} \quad \text{and}$$

$$c_f(\omega, \eta, \rho) = C_{c_1} \eta + C_{c_2} \sqrt{\omega \eta \rho}$$

where the factors C_j are given in Tab. 1 for the case of an in-plane oscillating plate, an oscillating sphere and a laterally oscillating cylinder. Substitution of $C_{m_2} = \sqrt{\omega_0} C_{m_1}$ and $C_{c_2} = \frac{A_s}{c_h}$ (where ω_0 is the angular resonance frequency) in Eq. 1

Plate	Sphere	Cylinder	
C_{m_1}	0	$\frac{2\pi}{3} r_s^3$	$\pi r_c^2 l_c$
C_{m_2}	$\frac{A_s}{\sqrt{\omega_0}}$	$\sqrt{2} \frac{3\pi}{2} r_s^2$	$\sqrt{2} 2 \pi r_c l_c$
C_{c_1}	0	$6 \pi r_s$	$2 \pi l_c$
C_{c_2}	$\frac{A_s}{\sqrt{\omega_0}}$	$\sqrt{2} \frac{3\pi}{2} r_s^2$	$\sqrt{2} 2 \pi r_c l_c$

Table 1: Coefficients in the apparent fluid mass and damping parameters Eq. 1 for the case of an in-plane oscillating plate, an out-of-plane oscillating sphere and cylinder. r_s: sphere radius, r_c: cylinder radius, l_c: cylinder length, A_s: surface of the platelet.
and assuming that the investigated frequency range around the resonance is small (i.e., $\omega \approx \omega_0$) it follows that

$$m_t(\eta, \rho) \approx C_{m_1} \rho + C_{m_2} \sqrt{\eta \rho} \quad \text{and} \quad c_l(\eta, \rho) \approx C_{c_1} \eta + C_{c_2} \sqrt{\eta \rho}. \tag{2}$$

With these expressions for m_t and c_l it follows for ω_0 and Q:

$$\frac{1}{\omega_0^2} = \frac{m}{k_0} \approx m_{0k} + m_{pk} \rho + m_{\eta k}^* \sqrt{\eta \rho}, \quad \text{and} \quad \frac{1}{Q} = \frac{c}{\sqrt{k_0 m}} \approx \sqrt{\frac{c_{0k} + c_{pk} \eta + c_{\eta k}^* \sqrt{\eta \rho}}{m_{0k} + m_{pk} \rho + m_{\eta k}^* \sqrt{\eta \rho}}} \approx D_0 + D_{\eta} \eta + D_{\eta \rho} \sqrt{\eta \rho}. \tag{3}$$

Although assumed to be almost constant at this point, in Sec. 4 the change of m_t and c_l in the investigated frequency range will be studied. The major advantages of such a model are its general applicability to many different resonator principles, (i.e. also principles other than in-plane oscillating plates, oscillating spheres and laterally oscillating cylinders), the intuitive descriptiveness of liquid loaded resonators and thus the possibility of comparing different types of viscosity and mass density sensors. Showing the characteristics of such sensors by plotting e.g. Q versus η might be misleading or giving the values in tabulated form does not allow an insightful description of the device, as η and ρ both have significant effects on f_r and Q. Furthermore, giving a sensitivity of the devices is difficult, as the sensitivities to η and ρ are not constant but strongly η and ρ dependent. With the knowledge of the parameters of this model, the sensors characteristics are usually very well described.

3. Examples of liquid loaded resonators

The model for $f_r = \frac{m}{k}$ and Q, Eq. 3, was applied to liquid loaded resonators which were found in a comprehensive literature review if sufficient data (i.e. f_r and Q with associated η and ρ in tabulated form) was provided. The resonators were selected such that operational frequencies in a range from 100s of Hertz to the Mega Hertz range and quality factors roughly between 1 and 500 in liquids can be investigated. With the data found in literature and from our own work, the parameters in the model (Eq. 3) were determined performing a first linear LSQ fit for determining the parameters $m_{0k}, m_{pk}, m_{\eta k}^*$ and a subsequent LSQ fit for determining the parameters $c_{0k}, c_{pk}, c_{\eta k}^*$. An overview of the characterized LLRs is shown in Fig. 2 on a double logarithmic scale for f_r and Q and associated η and ρ. There, the dots indicate the reported values and the solid lines are the results from the fitted model.

4. Estimation of the change of $m(\omega)$ and $c(\omega)$ in the investigated frequency range

To estimate the change of $m(\omega) = m_0 + m_t(\omega, \eta, \rho)$ and $c(\omega) = c_0 + c_l(\omega, \eta, \rho)$ in the investigated bandwidth $[\omega_0 - N_{\delta l} \cdot \delta, \omega_0 + N_{\delta r} \cdot \delta]$ (where $\delta = \omega_0/(2Q)$ and $N_{\delta l, r}$ are preset numbers for defining starting and ending frequencies) a
frequency dependence is re-introduced into the model by substituting $m^*_{\eta pk}$ by $m^*_{\eta pk} \sqrt{\omega_0}/\sqrt{\omega}$ and $c^*_{\eta pk}$ by $c^*_{\eta pk} \sqrt{\omega}/\sqrt{\omega_0}$, respectively yielding

$$
\frac{m(\omega)}{k_0} \approx m_{0k} + m_{pk} \rho + \sqrt{\omega_0} m^*_{\eta pk} \sqrt{\eta \rho}/\omega, \quad \text{and}
$$

$$
\frac{c(\omega)}{k_0} \approx c_{0k} + c_{\eta k} \eta + c^*_{\eta pk} \sqrt{\omega \eta \rho}.
$$

With this, the relative changes of mass and damping parameter δm_{ω} and δc_{ω}, respectively are calculated which become dependent on Q only, if $\delta = \omega_0/(2Q)$ is substituted. In Fig. 3 these relative changes are depicted for $N_3 = N_3 = 2$ for the examples of liquid loaded resonators shown in Fig. 2. There, it can be observed, that for quality factors $Q > 100$ the change of the liquid loaded parameters $m(\omega)$ and $c(\omega)$ is negligibly small, but for $Q < 10$ it can become larger than 10%.

5. Conclusion and Outlook

A generalized model for f_r and Q was applied to the data found in literature. With the knowledge of these fitted parameters a frequency dependence was re-introduced in this initially frequency-independent model. With this frequency dependent model the changes of the liquid loaded parameters $m(\omega)$ and $c(\omega)$ could be estimated. By this approach it could be estimated, that these changes can become larger than 10% for $Q < 10$. Regarding future work, this first investigation of the validity of describing LLRs with second order models will be extended, including the theory of deriving second order models from eigenmode functions of vibrating structures, a guideline for a measuring procedure ensuring linear and steady state deflections and an estimation of the error on η and ρ which results from the systematic error of fitting a second order transfer function into the frequency response of a LLR.

Acknowledgment

We are indebted to the Austrian COMET program (Austrian Centre of Competence in Mechatronics, ACCM) for the financial support.

References

[1] B. Jakoby, R. Beigelbeck, F. Keplinger, F. Lucklum, A. Niedermayer, E. K. Reichel, C. Riesch, T. Voglhuber-Brunnmaier, B. Weiss, Miniaturized sensors for the viscosity and density of liquids – performance and issues, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 57 (1) (2010) 111–120. doi:10.1109/TUFFC.2010.1386.

[2] S. Boskovic, J. W. M. Chon, P. Mulvaney, J. E. Sader, Rheological measurements using microcantilevers, Journal of Rheology 46 (4) (2002) 891–899.

[3] C. Riesch, E. K. Reichel, A. Jachimowicz, J. Schalko, P. Hudek, B. Jakoby, F. Keplinger, A suspended plate viscosity sensor featuring in-plane vibration and piezoresistive readout, J. Micromech. Microeng. 19. doi:10.1088/0960-1317/19/7/075010.

[4] J. Toledo, T. Manzaneque, J. Hernando-García, J. Vázquez, A. Ababneh, H. Seidel, M. Lapuerta, J. Sánchez-Rojas, Application of quartz tuning forks and extensional microresonators for viscosity and density measurements in oil/fuel mixtures, Microsystem Technologies (2014) 1–9.

[5] M. Heinisch, E. K. Reichel, I. Dufour, B. Jakoby, A u-shaped wire for viscosity and mass density sensing. Sens. Actuators A: Phys, 214 (2014) 245–251.

[6] A. O. Niedermayer, T. Voglhuber-Brunnmaier, J. Sell, B. Jakoby, Methods for the robust measurement of the resonant frequency and quality factor of significantly damped resonating devices, Measurement Science and Technology 23 (8).

[7] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel, I. Dufour, B. Jakoby, Reduced order models for resonant viscosity and mass density sensors, Submitted at Sens. Actuators A: Phys.