Analytical performances achieved by the 'Aria II' automatic system in an inter-laboratory survey for triiodothyronine and thyroxine assays

A. Pilo, G. C. Zucchelli, M. A. Piro and M. R. Chiesa
CNR Institute of Clinical Physiology, c/o Università di Pisa, Via Savi 8, I 56100 Pisa, Italy

Introduction
During the last decade radioimmunological techniques have become a very useful diagnostic tool and many assays are frequently performed in clinical laboratories; this widespread use has prompted numerous attempts to partially or completely automate radioimmunoassay (RIA). Recently, a fully automatic system (the Aria II*), developed by Becton-Dickinson [1], has become widely used in laboratories which assay triiodothyronine (T₃) and thyroxine (T₄).

Automatic RIA systems must be evaluated in terms of their practicability (speed, cost and technical skill requirements) and also, and most importantly, in terms of their reliability (accuracy and precision). Results produced in a single laboratory have been used to evaluate the Aria II system [2 and 3]; data gathered in inter-laboratory surveys can also provide a useful means of comparing the performances of different analytical systems [4 and 5]. This paper describes an inter-laboratory approach—the accuracy and precision of the Aria II system has been estimated using data collected during a national external quality control survey (EQCS) for T₃ and T₄, which has been operated by the authors since January 1980.†

Materials and methods

Main EQCS data
Details of the EQCS organization and data processing have been reported elsewhere [6]. The present analysis is based on the results of 63 samples sent in 14 monthly despatches during the period April 1980 to November 1981; 31 of these samples, prepared from eight pools, were sent as hidden replicates (three to five replicates from each pool) to the participants in order to estimate their precision. The number of laboratories participating in the EQCS ranged from 39 (April 1980) to 148 (November 1981); 17 laboratories were using the Aria II system during the period November 1980 to November 1981, only one laboratory was using it before November 1980.

Data analysis
The accuracy of the Aria II system was evaluated comparing the results obtained from laboratories using the automatic system with the consensus mean of the respective EQCS samples (taken as reference values). The precision of the Aria II was estimated from the results of hidden replicates.

A CV was computed from the results of samples prepared from the same pool and a mean CV was obtained pooling the CVs of all the pools considered.

Recovery tests: preparation of samples and results
The validity of the consensus mean as a reference value was checked by nine recovery experiments. These recovery tests were carried out by sending to participants either spiked and charcoal stripped sera. The 'free' serum was prepared by recycling for 24 h 100 ml serum on a 1.5 x 50 cm column filled with charcoal spheres (made by BAC [grade MU-LL]), Taiyo Kaken Co. Ltd, Tokyo, Japan). The stripping efficiency was monitored by adding labelled T₃ and T₄ to serum; in two experiments 98 to

*The Aria II is manufactured by Becton-Dickinson Immunodiagnostics, 180 West 2950 South, Salt Lake City, Utah 84115, USA.
†The external quality control survey is supported by the CNR Special Programme of Laboratory Medicine.

Figure 1. Regression analysis of 477 T₃ results from laboratories using the Aria II system against the respective consensus means taken as reference values. The mean values found in each EQCS sample are indicated by different symbols depending on the number of laboratories using the Aria II (●: 1–5; ○: 6–10; ▲: 11–17); regression and identity are depicted as full and dashed lines respectively. The inset table reports the mean readings by the Aria II system (computed from the regression line) corresponding to four assigned T₃ levels. Significance of the difference from the reference value (p<0.01%; indicated by an asterisk) was estimated from the confidence limits of the regression line.
Table 1. Results of recovery tests from ‘free serum’ added to T3 and T4.

Sample	T3 concentration in added samples (ng/ml)	Mean of Aria II results (ng/ml)	Recovery %	T4 concentration in added samples (µg/100ml)	Mean of Aria II results (µg/100ml)	Recovery %
C057	2.60	2.81	108	11.24	11.50	102.3
C059	3.90	4.08	104	16.86	16.54	98.1
C060	1.30	1.52	119	5.62	5.93	105.5

Samples: 63
Results: N = 533
y = 0.276 + 0.962x
r = 0.977

Figure 2. See figure 1.

99% of T3 and 95 to 96% of T4 could be removed. Stripped and spiked sera were added to T3 and T4 samples (purchased from Henning, Berlin, FR Germany) and measured by spectrophotometry. The results of the recovery experiments were 101.3% ± 4.3 SD and 101.8% ± 5.2 SD for T3 and T4 respectively; these findings strongly support the use of the consensus mean as reference value.

Results and discussion

Figures 1 and 2 compare all the results obtained using the Aria II with the consensus means of the EQCS samples for T3 and T4 respectively. It can be seen that T3 measurements produced by the automatic system are affected by a significant positive bias, which ranges from 17% in the low concentration values to 7% in the high values. As far as the T4 assay is concerned, the Aria II results appear to be slightly biased (from 3% to -3% in the low and in the high T4 values respectively). However, these small biases, even when statistically significant as mean values, are of low analytical relevance. The Aria II accuracy has been also directly evaluated from recovery tests; table 1 reports the mean results obtained by laboratories using the Aria II system in added samples, together with the spectrophotometrically measured concentrations of T3 and T4. These latter findings confirm that the automatic system overestimates T3 concentrations, but that it assays T4 without a significant bias.

The mean imprecision of the Aria II system achieved in the EQCS pools sent as hidden replicates during the whole period is shown in table 2; for comparison the table also shows the mean imprecision achieved by the six ‘kit’ methods more frequently used in the EQCS (by six to 20 participants). From these findings it is evident that the Aria II system attains a between-laboratory, between-batch precision which is similar, or better, than that obtained by the more precise method used in the EQCS. This good precision could, however, be expected if one considers the better standardization of an automatic analytical system compared with manual ones.

Table 2. Imprecision of the Aria II system and other methods.

Kit/method	Imprecision, T3	CV% T3	Imprecision, T4	CV% T4
Ames, T3, Seralute column separation	17.4	12.3	12.4	9.2
Becton-Dickinson Aria II system T4, Tetralute column separation-CPBA	11.9	12.9	17.3	12.7
Biodata, PEG separation	15.2	10.6	15.5	13.1
Byk-Mallinckrodt, Spac. coated tubes	15.9	12.7	15.3	11.3
Clinical assays, coated tubes	15.5	13.1	15.5	13.1
Diagn. Prod. Corp., Double antibody	15.5	13.1	15.5	13.1
Lepetit, Liso-phase, column separation	15.5	13.1	15.5	13.1

The pooled CVs computed from all hidden replicates are reported for the kit methods used by a substantial proportion of participating laboratories (there were at least 150 results for each kit method).

References

1. REESE, M. G. and JOHNSON, L. R., Clinical Chemistry, 24 (1978), 342.
2. CHEN, I. W., MAXON, H. R., HENINGER, L. A., ELLIS, K. S. and VALLE, C. P., Journal of Nuclear Medicine, 21 (1980), 1162.
3. PAX, G. D. and REESE, M. R., Journal of Solid-Phase Biochemistry, 4 (1979), 15.
4. WOOD, W. G., BAUER, M. and HORN, K. et al., Journal of Clinical Chemistry and Clinical Biochemistry, 18 (1980), 511.
5. Basic Ligand Assay Survey (College of American Pathologists, Skokie, Illinois, quarterly report).
6. PILO, A., ZUCCHIELLI, G. C. and PIRO, M. A., Journal of Nuclear Medicine and Allied Sciences, 25 (1981), 107.