Effect of Different Pre-sowing Seed Treatments for Improving Growth, Yield and Yield Attributes in Foxtail Millet [Setaria italica (L.) P. Beauv]

Rajaka Karthik Kumar*, Arun kumar Chaurasia, Nuthalapati karthik and M. Kavitha

Department of Genetics and Plant Breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India

*Corresponding author

A B S T R A C T

The experiment was conducted in post graduate Seed Testing Laboratory and field, Department of Genetics and Plant Breeding, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (U.P.) during Kharif season 2019-2020, in order to standardize the suitable fortified seed treatment of Foxtail millet Pre-sowing seed treatments with control (Unhardened) were evaluated by screening 12 hour viz., T₀ – Control, T₁ – CaCl₂ @ 1%, T₂ – CaCl₂ @ 3%, T₃ – KNO₃ @ 1%, T₄ – KNO₃ @ 3%, T₅ – GA₃ @ 50 ppm, T₆ – GA₃ @ 100 ppm, T₇ – IAA @ 50 ppm, T₈ – IAA @ 100 ppm, T₉ – CuSo₄ @ 50 ppm, T₁₀ – CuSo₄ @ 100 ppm, T₁₁ – ZnSo₄ @ 50 ppm and T₁₂ – ZnSo₄ @ 100 ppm. It was found that all the fortified seed treatments showed significance difference with the control and in laboratory condition highest germination per cent, seedling length, seedling fresh weight, seedling dry weight, vigour indices were observed for T₅ – GA₃ (50 ppm). In field lowest taken days to 50% flowering by T₇ – IAA @ 50 ppm and number of leaves per plant, number of seeds per plant, seed yield per plot, biological yield, harvest index were observed for T₅ – GA₃ @ 50 ppm. Observed highest germination, growth and yielding attributes in GA₃@ 50 ppm. Pre-sowing seed treatment with GA₃ enhance germinability, vigour and seedling character, its simplicity and no requirement for expensive equipment and chemical could be used as a simple method for overcoming related to a poor germination and seedling establishment.

K e y w o r d s
Foxtail millet, CaCl₂, KNO₃, GA₃, IAA, CuSo₄, ZnSo₄, Quality parameters

Introduction

Millets – The Miracle Grains are a group of highly variable small-seeded grasses, widely grown around the world as cereal crops or grains for fodder and human food. Millets are important crops in the semiarid tropics of Asia and Africa (especially in India, Mali, Nigeria, and Niger), with 97% of millet production in developing countries. Small millets are a group of grassy plants with short slender culm and small grains possessing remarkable ability to survive under adverse conditions like limited rainfall, poor soil fertility and land
terrain making them an attractive crop for marginal farming environments (Saleh et al., 2013). The crop is favored due to its productivity and short growing season under dry, high-temperature conditions.

The term millet is employed for several related genera, some used to produce grain, or forage or both. Millets are cereal species growing in an equally broad range of environments. The most widely cultivated millets are finger millet (Eleusine coracana), foxtail millet (Setaria italicca), pearl millet (Pennisetum typhoideum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa colona) etc. Millets are considered the least important of cereals, with annual production less than 2% of the world’s grain.

However, they are of great local importance as staples and as reserve crops in marginal areas. Millet contains an average of 10 - 12% protein. While its protein is superior to that of wheat or corn in terms of content of essential amino acids, and it contains less than half the amount of the essential amino acid lysine that is found in high quality protein sources such as meat. Millet lacks gluten, the wheat protein that makes dough prepared from wheat flour elastic; hence millet flour is not suitable for leavened breads. Millet flour is used in making flat cakes and breads (Robert Ronzio 2004).

Foxtail millet (Setaria italicca (L.) P. Beauv.) (Synonym Panicum italicum L.), family Paniceae/Poaceae, subfamily Panicoideae, tribe Chloridoideae, is diploid with nine chromosomes 2n =18. It is, however, closely related to tetraploid and polyploid species of Setaria (Benabdelmouna et al., 2001). It is an annual grass grown for human food. It is the second-most widely planted species of millet, and the most important in East Asia. It is the second-most cultivated millet (also known as “Korralu” in Andhra Pradesh and "Thinai" in Tamil Nadu and “Kang” or “Rala” in Maharashtra, “Kakum” in Hindi) in India (Lata et al., 2011).

Foxtail millet is a member of the Paniceae tribe (subfamily Panicoideae of the Poaceae) and came from green millet domestication in northern China about for 8000 years ago (Barton et al., 2009). Foxtail millet and its ancestor green foxtail (Setaria viridis) became more attractive to plant scientists as an alternative model plant because of several distinct characteristics, such as their short stature, rapid life cycle, sufficient seed production per plant, self-compatibility, true diploid nature, and small genome size (515 and 395 Mb, respectively) (Doust et al., 2009; Huang et al., 2016; Pant et al., 2016).

More importantly, foxtail millet and green foxtail are typical C₄ plants, similar to maize, sorghum and sugarcane, and therefore can be a valuable model plant for studies of C₄ photosynthesis (Pant et al., 2016; Huang et al., 2017; Yang et al., 2018). Cereal proteins including millets are limited in lysine and tryptophan content and vary with cultivar.

However, most cereals contain the essential amino acids as well as vitamins and minerals (Devi et al., 2011; FAO, 2009). Foxtail millet is extensively cultivated in the developing countries in semiarid and arid regions of Africa, Americas, Asia (Lata et al., 2013) because of its health benefits (a particular balance of nutrients, e.g., starch, protein, dietary fibers, fat, vitamins, and low-glycemic and hypolipidemic effects), good yield with minimal agricultural inputs, and adaptation to different biotic and abiotic stresses such as salinity (Lata et al., 2011), drought (Feldman et al., 2017), and fungal diseases (Xu et al., 2011). A healthy and environmentally friendly small crop of foxtail is an increasingly attractive alternative for crop production.
Foxtail millet contains a pertinent number of nutritional components, especially starch, protein, vitamins, and minerals. Nutritional constituents of foxtail millet per 100 g: protein (12.3 g.), carbohydrate (60.9 g.), fat (4.3 g.), crude fiber (8.0 g.), mineral matter (3.3 g.), energy (351 kcal) (Muthamilarasan et al., 2016). Morphologically, foxtail millet grains have layers of husk and bran, similar to other millet grains. The husk forms 13.5% (w/w) of the grain, and the bran and the germ only constitute 1.5–2% (w/w) (Dharmaraj et al., 2016). It has a short generation time of 5–8 weeks from planting to flowering, 8–15 weeks from planting to seed maturity, and can produce hundreds of seeds per inflorescence (Doust et al., 2009).

The use of millets not only provides farmers with a market for their products but also saves foreign exchange, which would otherwise be required to import cereals. Particularly in the developed countries, there is a growing demand for gluten-free foods and beverages from people with celiac disease and other intolerances to wheat that cannot eat products from wheat, barley, or rye.

Seed is a basic input in agriculture in which 25% yield increase can be achieved by quality seeds. Quality seed is the key for successful agriculture, which demands each and every seed should be readily germinable and produce a vigorous seedling ensuring higher yield. To provide higher quality seeds, many researchers have developed new technologies called “Seed Enhancement Techniques” (Talebian et al., 2008).

Seed fortification is a physiological method of seed invigoration that aids in improving the initial stamina of the seed that helps in improving the initial field establishment and that of the final yield. It is the impregnation of the needy substance into the seed through the imbibition’s phase enriching the endogenous level of needy bioactive substances. In seed fortification, seeds are partially hydrated to allow metabolic events to occur without actual germination, and then re-dried (near to their original weight) to permit routine handling. Such seeds germinate faster than non-fortified seeds. Hence, the utility of inorganic nutrients as seed fortification agents were evaluated for improving the germination and field emergence of maize, paddy and ragi (Goto et al., 1999).

Seed treated with halogens is one of the very important seed treatment technique apply with salt solution like as KCl, CaCl₂, NaCl, CaCl₂ and KNO₃ solution concentration. Seeds were soaked in salt solution, after dried and at room temperature and subjected to germination test, done at 25°C for 24 hrs. Germination percentage of primed seeds was greater than that of un-primed seeds (Bajehbaj, 2010).

The seed bio-priming is an effective seed treatment to increase the rate, rapid emergence, uniformity of emergence and crop establishment in most of the crops (Rawat et al., 2011). It integrates the biological and physiological aspects of enhancing growth, disease control and increase in yield, which involves coating the seed with biological agents and incubating the seed under warm, moist conditions.

Materials and Methods

The experiment was carried out to study the Effect of different pre-sowing seed treatments for improving growth, yield and seed quality parameters in Foxtail millet (Setaria italica (L.) P. Beauv.).

The experiment was carried out at the Laboratory and field of Seed Science and Technology at the Department of Genetics and Plant Breeding, SHUATS, Prayagraj UP. The seed treatments are T₀–control, T₁– Calcium
chloride 1%, T² - Calcium chloride 3%, T³ - Potassium nitrate 1%, T⁴ - Potassium nitrate 3%, T⁵ - Gibberellic acid 50 ppm, T⁶ - Gibberellic acid 100 ppm, T⁷ - Indole acetic acid 50 ppm, T⁸ - Indole acetic acid 100 ppm, T⁹ - Copper sulphate 50 ppm, T¹⁰ - Copper sulphate 100 ppm, T¹¹ - Zinc sulphate 50 ppm, T¹² - Zinc sulphate 100 ppm.

To carryout the experiment the seeds were sown in thirteen plots each in three replications with spacing of 22.5x10 cm using line sowing methods following Randomize Block Design.

Data collected of field emergence, it was expressed in percentage, Days to 50% flowering, Plant height of 60 and 90 days, it was expressed in centimeter, number of fingers per panicle, seed yield per plot expressed in grams, seed yield per plant expressed in grams, Biological yield and Harvesting index.

The data recorded from field were analysed statistically following the method of analysis of variance (Fisher, 1948).

Preparation of solution

For the preparation of salt solution, Ten gram CaCl₂ was taken in a beaker. The chemical were added in 1000 ml. of distilled water with constant stirring. The volume of solution will finally constitute to one litter, and then it became 1% stock solution of CaCl₂ chemical and so on. The flasks containing chemicals were covered with muslin cloth to avoid any contamination.

For the preparation of solution of the Plant growth regulators, to prepare 50 ppm solution of GA₃, 50 mg Gibberellic Acid were taken in a beaker and the chemical were added in 1000 ml. of distilled water with constant stirring. The volume of solution will finally constitute to one litter, and then it became 50 ppm stock solution of Gibberellic Acid chemical and so on. The flasks containing chemicals were covered with muslin cloth to avoid any contamination. For the preparation of solution of the Sulphate ions, to prepare 100 ppm solution of ZnSO₄, 100 mg Zinc sulphate were taken in a beaker and the chemical were added in 1000 ml. of distilled water with constant stirring. The volume of solution will finally constitute to one litter, and then it became 100 ppm stock solution of Zinc sulphate chemical and so on. The flasks containing chemicals were covered with muslin cloth to avoid any contamination.

Seeds soaking in the solution

After preparation of solution of CaCl₂, KNO₃, GA₃, IAA, CuSO₄ and ZnSO₄, foxtail millet seeds were soaked in required solution for 12 hours at 25°C temperature. Untreated seed is called as control. After 12 hours of soaking the solution were drained out from the beaker and dried 24 hours at 25°C temperature to original weight and then placed for germination in laboratory under controlled condition.

Results and Discussion

The field experiment was conducted to study the Effect of different pre-sowing seed treatments for improving growth, yield and yield attributes in Foxtail millet [Setaria italica (L.) P. Beauv.].

The mean performance of field emergence percent ranged from 77.67% to 87.33% with mean value of 82.38%. Significantly highest field emergence percentage (87.33%) was reported in the pre-sowing treatment with T⁵ - Gibberellic acid (GA₃) @ 50 ppm it was followed by T⁷ - (86.00%) with application of Indole 3 Acetic Acid (IAA) @ 50 ppm and T₃ - (85.00%) with application of Potassium.
nitrate (KNO₃) @ 1%. Minimum field emergence percentage was recorded by T₀- (77.67%) with control. Days to 50% flowering ranged from 47 to 56 with mean value of 51.08. Significantly lowest days to 50% flowering (47.00) was reported in pre-sowing treatment with T₇ - Indole 3 Acetic Acid (IAA) @ 50 ppm it was followed by T₅ - (48.00) with application of Gibberellic acid (GA₃) @ 50 ppm and T₄ - (49.00) with application of Potassium nitrate (KNO₃) @ 3%. Maximum days to 50% flowering was recorded by T₀ - (56.00) with control

Plant height at 45 DAS found to be highest (66.13 cm) in pre-sowing treatment with T₃- Gibberellic acid (GA₃)@50ppm it was followed by T₇-(65.60)cm with application of Indole 3 Acetic Acid (IAA) @ 50 ppm and T₄ - (64.70 cm) with application of Potassium nitrate (KNO₃) @ 3%. Minimum plant height at 45 DAS was recorded by T₀ - (56.57 cm) with control. Plant height at 90 DAS ranged from 78.80 cm to 90.50 cm with mean value of 84.78 cm. Plant height at 90 DAS found to be highest (90.50 cm) in pre-sowing treatment with T₇ - Indole 3 Acetic Acid (IAA) @ 50 ppm it was followed by T₅ - (89.10 cm) with application of Gibberellic acid (GA₃) @ 50 ppm and T₃ - (87.63 cm) with application of Potassium nitrate (KNO₃) @ 1%. Minimum plant height at 90 DAS was recorded by T₀ - (78.80 cm) with control.

Number of Leaves per plant ranged from 5.33 to 7.80 with mean value of 6.50. Significantly highest number of leaves per plant (7.80) was reported in the pre-sowing treatment with T₅ - Gibberellic acid (GA₃) @ 50 ppm it was followed by T₇ - (7.40) with application of Indole 3 Acetic Acid (IAA) @ 50 ppm and T₃ - (7.13) with application of Potassium nitrate (KNO₃) @ 1%. Minimum number of leaves per plant was recorded by T₀- (5.33) with control. Number of seeds per plant ranged from 663.67 to 1210.00 with mean value of 933.38. Significantly highest number of seeds per plant (1210.00) was reported in the pre-sowing treatment with T₃ - Gibberellic acid (GA₃) @ 50 ppm it was followed by T₇ - (1180.00) with application of Indole 3 Acetic Acid (IAA) @ 50 ppm and T₄ - (1130.00) with application of Potassium nitrate (KNO₃) @ 3%. Minimum number of seeds per plant was recorded by T₀ - (663.67) with control.

Seed yield per plant ranged from 1.45 gm to 3.82 gm with mean value of 2.58 gm. Significantly highest seed yield per plant (3.82 gm) was reported in the pre-sowing treatment with T₃ - Gibberellic acid (GA₃) @ 50 ppm it was followed by T₇ - (3.63 gm) with application of Indole 3 Acetic Acid (IAA) @ 50 ppm and T₄ - (3.37 gm) with application of Potassium nitrate (KNO₃) @ 3%. Minimum seed yield per plant was recorded by T₀- (1.45 gm) with control. Seed yield per plot ranged from 67.11 gm to 174.46 gm with mean value of 115.15 gm.

Biological yield ranged from 310.02 gm to 531.36 gm with mean value of 411.93 gm. Significantly highest biological yield (531.36 gm) was reported in the pre-sowing treatment with T₃ - Gibberellic acid (GA₃) @ 50 ppm it was followed by T₇ - (160.92 gm) with application of Indole 3 Acetic Acid (IAA) @ 50 ppm and T₄ - (153.71 gm) with application of Potassium nitrate (KNO₃) @ 3%. Minimum seed yield per plot was recorded by T₀ - (67.11 gm) with control. Biological yield ranged from 310.02 gm to 531.36 gm with mean value of 411.93 gm. Significantly highest biological yield (531.36 gm) was reported in the pre-sowing treatment with T₃ - Gibberellic acid (GA₃) @ 50 ppm it was followed by T₇ - (503.60 gm) with application of Indole 3 Acetic Acid (IAA) @ 50 ppm and T₄ - (493.73 gm) with application of Potassium nitrate (KNO₃) @ 3%. Minimum biological yield was recorded by T₀ - (310.02 gm) with control (Table 1).
Table 1 Mean performance of foxtail millet for ten growth and yield characters.

S.NO.	Treatments	Field emergence percentage	Days to 50% flowering	Plant height at 45 DAS (cm)	Plant height at 90 DAS (cm)	Number of leaves per plant	Number of seeds per plant (g)	Seed yield per plant (g)	Seed yield per plot (g)	Biological yield (g)	Harvest index (%)	
1	T0	77.67	53	56.57	78.80	5.33	663.66	1.45	67.11	310.02	21.68	
2	T1	83.00	50	63.03	86.20	6.60	924.00	2.69	114.66	401.22	28.60	
3	T2	81.67	51	62.03	83.80	6.27	873.67	2.43	105.13	412.09	25.54	
4	T3	85.00	49	63.90	87.63	7.13	1030.67	3.14	143.26	466.25	30.72	
5	T4	83.67	49	64.70	86.90	6.93	1130.00	3.37	153.71	493.73	31.12	
6	T5	87.33	48	66.13	89.10	7.80	1210.00	3.82	174.46	531.36	32.83	
7	T6	84.00	50	63.50	87.17	6.80	1020.00	2.73	118.86	394.44	30.14	
8	T7	86.60	47	65.60	90.50	7.40	1180.00	3.63	160.92	503.60	32.09	
9	T8	79.33	55	58.87	80.30	5.73	762.33	1.80	79.64	353.83	22.55	
10	T9	80.33	52	61.70	83.10	6.13	858.67	2.18	98.95	376.40	26.33	
11	T10	80.00	54	59.80	80.70	5.87	768.67	1.87	82.96	348.89	23.81	
12	T11	82.00	50	62.50	85.57	6.47	903.67	2.47	107.78	399.41	27.02	
13	T12	81.00	56	60.73	82.40	6.00	808.67	2.00	89.56	363.88	24.63	
	Grand Mean	82.38	51.08	62.24	84.78	6.50	933.38	2.58	115.15	411.93	27.47	
	C.D. (5%)	3.15	1.92	1.64	1.66	0.24	30.70	0.15	11.94	51.36	1.71	
	SE(m)	0.08	0.66	0.56	0.57	0.08	10.52	0.05	4.09	17.59	0.58	
	SE(d)	1.52	0.93	0.79	0.81	0.12	14.87	0.07	5.79	24.88	0.83	
	C.V.	2.27	2.23	1.56	1.16	2.24	1.95	3.48	6.15	7.40	3.69	
	Range	Max	87.33	56	66.13	90.50	7.80	1210.00	3.63	174.46	531.36	32.83
		Min	77.67	47	56.57	78.80	5.33	663.66	1.45	67.11	310.02	21.68
Harvest index ranged from 21.68% to 32.83% with mean value of 27.47%. Significantly highest harvest index (32.83%) was reported in pre-sowing treatment with T5 - Gibberellic acid (GA3) @ 50 ppm it was followed by T7 - (32.09%) with application of Indole 3 Acetic Acid (IAA) @ 50 ppm and T4 - (31.12%) with application of Potassium nitrate (KNO3) @ 3%. Minimum Harvest index was recorded by T0 - (21.68%) with control.

Pre-sowing is a physiological method of seed invigoration that aids in improving the initial stamina of the seed that helps in improving the initial field establishment and that of the final yield. It is the impregnation of the needy substance into the seed through the imbibition’s phase enriching the endogenous level of needy bioactive substances.

In pre-sowing treatment, seeds are partially hydrated to allow metabolic events to occur without actual germination, and then re-dried (near to their original weight) to permit routine handling. Such seeds germinate faster than non-pre sowed treatment seeds. Hence, the utility of inorganic nutrients as pre-sowing agents were evaluated for improving the germination and field emergence.

On the basis of results obtained from the present experiment following conclusions are drawn.

Pre-sowing seed treatment increases the germinability and vigour of foxtail millet seeds, significantly in field condition. Pre-sowing treatment with Gibberellic acid @ 50 ppm followed by Indole 3 Acetic Acid @ 50 ppm, Pre-sowing treatment with GA3 and IAA showed maximum increase in germinability and vigour of foxtail millet seeds and found to be lowest in control seeds. These conclusions are based on the results of six months investigation and therefore further investigation is needed to arrive at valid recommendations. The Pre-sowing seed treatment with GA3 are eco-friendly, enhancing planting value and economic in use.

References

Abdul Baki, A.A, and Anderson J.D. (1973). Vigor determination in soybean seed by multiple criteria. Crop. Science. 13: 630-633.

Aboutalebian, M.A., Ekbatani, G.Z. and Sepehri, A. (2012). Effects of on-farm seed priming with zinc sulfate and urea solutions on emergence properties, yield and yield components of three rainfed wheat cultivars. Annals of Bio. Res., 3(10): 4790-4796.

Aladjadjiyian, A. (2012). -Physical factors for plant growth stimulation improve food quality, in Food Production - Approaches, Challenges and Tasks, ed. A. Aladjadjiyan (Rijeka: InTech), 145–168.

Amin, R., Khan, A.Z., Muhammad, A., Khalil, S.K., Gul, H., Daraz, G., Akbar, H. and Ghoneim, A.M. (2016). Influence of seed hardening techniques on vigour, growth and yield of wheat under drought conditions. Journal of Agricultural Studies., 4 (3): 121-131.

Anburani, A. and Shakila, A. (2010). Influence of seed treatment on the enhancement of germination and seedling vigour of papaya. Acta Horticulturae., 851: 295-298.

Anitha, K.G. (2010). Enhancing seed germination of mono and dicotyledons through IAA production of PPFM. Trends Soils Sci. Plant Nutr.J., 1: 14-18.

Arif, M., Waqas, M., Nawab, K. and Shahid, M. (2007). Effect of seed priming in Zn solutions on chickpea and wheat. African Crop Science Journal., 8: 237-240.

Ashraf, M. and Foolad, M.R. (2005). Pre-
sowing seed treatment: a shot-gun approach to improve germination growth and crop yield under saline and non-saline conditions. *Advances in Agronomy.*, 88: 223–271.

Atia, A., Debez, A., Rabhi, M., Athar, H.U.R. and Abdelly, C. (2006). Alleviation of salt-induced seed dormancy in the perennial halophyte *Crithmum maritimum*. *Pak. J. Bot.*, 38(5): 1367-1372.

Bailly, C., Benamar, A., Corbineau, F. and Come, D. (2000). Antioxidant systems in sunflower (*Helianthus annuus* L.) seeds as affected by priming. *Seed Science Research.*, 10: 35-42.

Bajehbaj, A.A. (2010). The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. *African. J. Biotech.*, 9: 1764-1770.

Barton, L., Newsome, S.D., Chen, F.H., Wang, H., and Guilderson, T.P. (2009). Agricultural origins and the isotopic identity of domestication in northern China. *Proc. Natl. Acad. Sci. U.S.A.*, 106: 5523–5528.

Bassi, G.S. Sharma, B.S. and Gill. (2011). Pre-sowing seed treatment and quality invigoration in soybean (*Glycine max* (L) Merrill). *Seed Res.*, 31: 81-84.

Benabdelmouna, A., Abirached-Darmency, M., and Darmency, H. (2001). Phylogenetic and genomic relationships in *Setaria italica* and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. *TheorAppl Genet.*, 103: 668–677.

Biswa, J.K. (1994). Physiological aspects of seedling establishment of direct seeded rice under simulated lowland condition. *Ph.D. Thesis*, Central Luzon State Univ, Munoz, Nueva Ecija, Philippines, 186.

Capron, I., Corbineau, F., Dacher, F., Job, C., Come, D. and Job, D. (2000). Sugar beet seed priming: Effects of priming conditions on germination, Solubilization of 11-s globulin and accumulation of LEA proteins. *Seed Science and Research.*, 10: 243-254.

Channappagoudar, B.B., Hiremath, S., Bradar, N.R., Koti, R.V. and Bharamagoudar, T.D. (2008). Influence of Morpho-Physiological and biochemical traits on the productivity of barnyard millet. *Karnataka J. Agric. Sci.*, 20(3):477-480.

Chavoshinasab, S., Sharif Zadeh, F. and Abbasi, A. (2010). The effect of post-priming treatments on seed longevity of *Viciada sycrapa* and *V. ervil* primed seeds. The requirements for degree of Master of Science (M. Sc.) in Seed Science and Technology.

Conrath, U., Thulke, O., Katz, V., Schwindling S. and Kohler, A. (2002). Priming as a mechanism in induced systemic resistance of plants. *Europ. J. Plant Pathol.*, 107: 113-119.

Copeland, L.O., McDonald, M.B. (2001). Principles of seed science and technology. *Kluwer Academic Publishers*, Massachusetts, USA.

Cramer, G.R. Epstein, E. and Lauchli, (2011). Effect of sodium, potassium and calcium on salt stressed barley. 1. Growth analysis, *Plant Physiology.*, 80, 83–88.

Das, S., Dash, F.M., Nandi, A.K., Senapati, N., Sarkar, S. and Pandey, G. (2014). Seed quality index an estimate used to predict response of bottle gourd seeds (*Lagenaria siceraria* (Mol.) Standl) to hydro- and osmo-priming. *Advances in Applied Agricultural Science* Volume 02: 12, 01-10, 2383-4234.

Deb, P., Das, A., Ghosh, S.K. and Suresh, C.P. (2010). Improvement of seed germination and seedling growth of
papaya (*Carica papaya* L.) through different pre-sowing seed treatments. *Acta Horticulturae.*, 851: 313-316.

Demir, I., and Oztokar, C. (2003). Effect of salt priming on germination and seedling growth at low temperature in watermelon seed during development. *Seed science and technology.*, 31: 765-770.

Desai, S., Reddy, M.S. and Kloepper, J.W. (2002). Comprehensive testing of biological control agents. In S. Gnanamanickam (Ed) Biological control of crop diseases. New York: Marcel Dekker, Inc., pp. 387-420.

Desraj, (2002). Studies on viability and vigour in coriander (*Coriandrum sativum* L.). M. Sc. Thesis, submitted to Chaudhary Charan Singh Haryana Agricultural University, Hisar.

Devi, P.B., Vijayabharathi, R., Sathyabama, S., Malleshi, N. G. and Priyadarisini, V. B. (2011). Health benefits of finger millet (*Eleusine coracana* L.) polyphenols and dietary fiber: a review. *J. Food Sci. Technology*.

Dharmaraj, U., SathyendraRao, B.V., Sakhare, S.D. and Inamdar, A.A. (2016). Preparation of semolina from foxtail millet (*Setaria italica*) and evaluation of its quality characteristics. *J. Cereal Sci.*, 68, 1–7.

Dhorhan, V.S. and Gudadhe, S.P. (2012). Effect of plant growth regulators on seed germination and seedling vigour in *Asparagus sprengeri* Regelin. *International Research Journal of Biological Sciences*, 1, pp. 6-10.

Doust, A.N., Kellogg, E.A., Devos, K. M. and Bentsen, J. L. (2009). Foxtail millet: a sequence-driven grass model system. *Plant Physiol.*, 149: 137-141.

El-Keltawi, N.E. and Croteau, R. (2000). Influence of foliar applied cytokinins on growth and essential oil content of several members of the Lamiaceae, *Phytochemistry.*, 26: 891-895.

FAO, (2009). FAOSTAT. Food and Agriculture Organisation of the United Nations. FAOSTAT. http://faostat.fao.org/site/339/ default.aspx.

Farooq, M., Basra, S.M.A. and Hafeez, K. (2006). Seed invigoration by osmohardening in gram. *Seed Sci. Technol.*, 34: 181–187.

Farooq, M., Wahid, A. and Kadambot, H.M. (2012). Micronutrient application through ed treatments. A review. *Journal of Soil Sci Plant Nutri.*, 12: 125-142.

Feldman, M.J., Paul, R.E., Banan, D., Barrett, J.F. and Sebastian, J. (2017). Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass *setaria*. *PLoS Genet.*, 13:e1006841.

Finch-Savage, W.E., Dent, K.C. and Clark, L.J. (2004). Soak conditioned and temperature following sowing influence the response of Maize (*Zea mays* L.) seeds to on-farm priming (Pre sowing seed soak) Silsoe Research Institute, West park, Silsoe. Bedford MK 45. UK.

Fisher, R.A. (1936). The correlation between relative on the supposition of genotypes grown in Kumaun Himalaya, *Indian Journal Genetics.*, 66(1): 37-38.

Galhaut, L., Lespinay, A., Walker, D.J., Bernal, M.P., Correal, E. and Lutts, S. (2014). Seed priming of *Trifolium repens* L. improved germination and early seedling growth on heavy metal-contaminated soil. *Water Air Soil Pollution.*, 225: 1-15.

Ghassemi-Golezani, A., Aliloo, A., Valizadeh, M. and Moghaddam, M. (2008). Effects of hydro and osmo-priming on seed germination and field emergence of lentil (*Lens culinaris*
Int. J. Curr. Microbiol. App. Sci (2021) 10(02): 1791-1804

Medik.). Not. Bot. Hort. Agrobot. Cluj., 36(1):29-33.

Giba, Z., Grubisic, D. and Konjevi, R. (2006). Seeking the Role of NO in Breaking Seed Dormancy. Plant Cell Monographs., 5:91-111.

Golezani, K.G., Jafari, S.F. and Kolvanagh, J.S. (2011). Seeking the Role of NO in Breaking Seed Dormancy. Plant Cell Monographs., 5:91-111.

Giba, Z., Grubisic, D. and Konjevi, R. (2006). Seeking the Role of NO in Breaking Seed Dormancy. Plant Cell Monographs., 5:91-111.

Giba, Z., Grubisic, D. and Konjevi, R. (2006). Seeking the Role of NO in Breaking Seed Dormancy. Plant Cell Monographs., 5:91-111.

Giba, Z., Grubisic, D. and Konjevi, R. (2006). Seeking the Role of NO in Breaking Seed Dormancy. Plant Cell Monographs., 5:91-111.

Huang, P., Jiang, H., Zhu, C., Barry, K., and Jenkins, J. (2017). Sparse panicle is required for inflorescence development in Setaria viridis and maize. Nat. Plants., 3: 17054.

Huang, P., Shyu, C., Coelho, C.P., Cao, Y. and Brutnell, T.P. (2016). Setaria viridis as a model system to advance millet genetics and genomics. Front. Plant Sci.,7:1781.

ISTA (International Seed Testing Association). (1924). International Rules for Seed Testing. Seed Sci. and Tech., 4: 3-49.

ISTA, (1999). International rules for seed testing. Seed Sci., & Technol., Supplement Rules: 27-57.

Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R. (2007). Water deficit stress mitigation by calcium chloride in Catharanthus roseus: Effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids Surf B., 60: 110-116.

Jendrzejczak, E. and Smigerska, K. (2014). Impact of pre-sowing soaking of amaranth seeds in solutions of growth regulators part ii. Effect of treatments processing seed material on growth, development and yield of amaranth cv. Rawa L. ActaScientiarum Polonorum Agricultura., 13(4):53-64.

Kaur, H., Chawla, N., Bassi, G., Pathak, M. (2015). Effect of different seed priming treatments on germination of Okra (Abelmoschus esculentus L.). International Journal of Current Science., 15:51-58.

Kokila, M. (2014). Physiological, biochemical, molecular and histological basis of seed biopriming with biocontrol agent and liquid biofertilizers in rice hybrid CORH 4 and its parental lines. Ph.D
Koomeef, M., Bentsink, L. and Hilorst, H. (2002). Seed dormancy and germination. *Current Opinion of Plant Biology.*, 5: 33-36.

Korkmaz, A. (2005). Inclusion of Acetyl Salicylic Acid and Methyl Jasmonate into the Priming Solution Improves Low-temperature Germination and Emergence of Sweet Pepper. *Hort Science.*, 40(1): 197-200.

Kumar, V. (2010). Studies on seed viability and vigour in naturally aged seeds of coriander (*Coriandrum sativum* L.). M. Sc. Thesis submitted to Chaudhary Charan Singh Haryana Agricultural University, Hisar.

Kumar, V.A. and Sundareswaran, S. (2011). Effect of foliar application of chemicals and growth regulators on growth and seed yield in coriander (*Coriandrum sativum* L.). *Prog. Hort.*, 43:193-195.

Kunal, V., Jadhav, Kayande, N.V. and Wandhare, M.R. (2012). Effect of seed priming on yield and yield components of soybean *Int. J. Plant Sci.*, 6(4): 587-595.

Kurdikeri, M.B., Ashwataiah, B. and Rajendra Prasad, S. (2003). Seed quality of invigourated seeds of maize hybrid. *Mysore J Agril. Sci.*, 27: 237-242.

Lata, C., Gupta, S., and Prasad, M. (2013). Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. *Crit. Rev. Biotechnol.*, 33, 328–343.

Lata, C., Jha, S., Dixit, V., Sreenivasulu, N. and Prasad, M. (2011). Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [*Setaria italica*(L.)]. *Protoplasma*248, 817–828.

Maasoumeh Asadi Aghbolaghi and Mohannadsedghi. (2014). The effect of osmo and hormone priming on germination and seed reserve utilization of millet seeds under drought stress. *Journal of stress physiology & biochemistry.*, 10 (1):214-221.

Mahmoudi, H., Massoud, R.B., Baatour, O., Tarchoune, I., Salah, I.B., Nasri, N., Abidi, W., Kaddour, R., Hannoufa, A., Lachaal, M. and Ouerghi, Z. (2012). Influence of different seed priming methods for improving salt stress tolerance in lettuce plants. *Journal of Plant Nutrition* 35: 1910-1922.

Milosevic, M.M., Vujakovic, D. and Karagic, (2010). Vigour tests as indicators of seed viability. *Genetika.*, 42(1): 103-118.

Moghadam, A.K. and Mohammadi, K. (2013). Different priming treatments affected germination traits of safflower. *App Sci Rep.*, 2, 22-25.

Murungu, F.S., Chiduza, E., Nyamugafata, P., Clark, L.J., Whalley, W.R. and Finch-Savage, W.E. (2004). Effects “on-farm seed priming’ on consecutive daily sowing occasions on the emergence and growth of maize in semi-arid Zimbabwe, *Fields Crops Research.*, 89(1): 49-57.

Muthamilarasan, M. Dhaka, A. Yadav, R. Prasad, M. (2016). Exploration of millet models for developing nutrient rich graminaceous crops. *Plant Sci.*, 242, 89–97.

Nader Chaparzadesh, Minaish Ghodrati Chagharlou, (2008). Alleviation of adverse effect of metal on *Allium cepa* L. by exogenous Ascorbic acid Application *Journal of Plant Physiology and Breeding.*, 2014; 3(2):5168.

Nascimento, W. and West, S.H. (2000). Dry
of primed seed and its effect on seed germination and deterioration. *Seed Science and Technology.*, 28: 211-215.

Nautiyal, N. and Shukla, K. (2013). Evaluation of seed priming zinc treatments in chickpea for seeding establishment under zinc deficient condition. *Journal of Plant Nutrition.*, 36: 251-258.

Pallavi, M., Sudheerkumar, S., Dangi, K.S. and Reddy, A.V. (2003). Effect of seed aging on physiological, Biochemical ad yield attributes in sunflower (Helianthus annuus L.) cv. Modem. *Seed Research.*, 3: 161-168.

Panse, V.G. and Sukhatme, P.V. (1967). Statistical Methods for Agricultural Workers. *Indian Council of Agricultural Research*: 103-108.

Pant, S.R., Irigoyen, S., Doust, A.N., Scholthof, K.B. and Mandadi, K.K. (2016). *Setaria*: a food crop and translational research model for c4 grasses. *Front. Plant Sci.*, 7:1885.

Piri, M., Mahdieh, M.B., Olfati, J.A. and Peyvast, G. (2009). Germination and seedling development of cucumber are enhanced by priming at low temperature. *International Journal of Vegetable Science.*, 15(3):285-292.

Prabhu, T. and Kumar, P. S. (2018). Seed hardening with organics and inorganics on seedling, growth and yield characters in rice cv. ADT 37. *Plant Arch.*, 18(1): 693-696.

Prajapati, K.R., Patel, D.B., Patil, K. and Bhadane, R. S. (2017). Effect of seed hardening on morpho-physiological and yield parameters in black gram (Vigna mungo L.). *Int. J. Chem. Stud.*, 5(4): 439-441.

Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswam, Y. and Raja reddy, K. (2012). Effect of nano scale zincoxide particles on the germination, growth and yield of peanut. *Journal of Plant Nutrition.*, 35(6): 905-927.

Rahman, I.U., Ali, N., Rab, A. and Shah, Z. (2013). Role of pre storage seed priming in controlling seed deterioration during storage. *Sarhad J. Agric.*, 29: 379-386.

Raj, N.S., Shetty N.P. and Shetty, H.S. (2004). Seed biopriming with *Pseudomonas fluorescens* isolates enhances growth of pearl millet plants and induces resistance against downy mildew. *Int. J. Pest Mgt.*, 50(1): 41- 48.

Rajpar, I., Khanif, Y.M. and Memon, A.A. (2015). Effect of Seed Priming on Growth and Yield of Wheat (*Triticum aestivum* L.) Under Non-Saline Conditions. *Inter J Agri Res.*, 1: 259-64.

Ramamoorthy, K., Natarajan, N. and Lakshmanan, A. (2000). Seed biofortification with Azospirillum *spp*. For improvement of seedling vigour and productivity in rice (*Oryza sativa* L.). *Seed sci. & technol.*, 28: 809-815.

Rashid, A., Hallington, P.A, Harris, D. and Khan, P. (2006). On-farm seed priming for barley on normal, saline, saline-sodic soils in Northwest Frontier Province, Pakistan. *European J. Agron.*, 24: 276-281.

RashmiYadav and Vijay Kumar Yadav. (2011). Barnyard millet: Amazing crop for nutritional security in Himalayan region. *Indian Farming.*, 61(4):6-9.

Ravindran, G. (1991). Studies on millets: Proximate composition, mineral composition, and phytate and oxalate contents. *Food Chem.*, 39(1): 99-107.

Rawat, L., Singh, Y., Shukla, N., Kumar, J. (2011). Alleviation of the adverse effect of salinity stress in wheat (*Triticum aestivum* L.) by seed biopriming with salinity tolerant isolates of *Trichoderma harzianum*. *J Pl. soil.*, 34(1): 387-400.
Rinku, V., Patel, Krishna, Y., Pandya, R.T., Jasrai, and Nayana Brahmbhatt. (2017). Effect of hydropriming and biopriming on seed germination of brinjal and tomato seed. *Research journal of agriculture and forestry sciences.*, 5(6): 1-14.

Robert Ronzio. (2004). *The encyclopedia of nutrition and good health*, 2nd edition, viva books Pvt Ltd, New Delhi.

Saleh, A.S.M., Zhang, Q., Chen, J. & Shen, Q. (2013). Comprehensive Reviews in *Food Science and Food Safety.*, 12, 281-295.

Sandyarani, G.M. (2002). Influence of seed treatment with chemicals and botanical on storability and field performance of fresh and aged hybrid cotton seeds. M.Sc. (Agri.) Thesis. Univ. Agric. Sci, Dharwad.

Sarika, G., Basavaraju, G.V., Bhanuprakash, K., Chaanakeshava, V., Paramesh, R. and Radha, B.N. (2013). Investigation on seed viability and vigour of aged seed by priming in French bean. *Vegetable Science.*, 40: 169-173.

Sedghi, M., Nemati, A. and Esmaielpour, B. (2010). Effect of seed priming on germination and seedling growth of two medicinal plants under salinity. *Emirates Journal of Food and Agriculture.*, 22 (2): 130-139.

Sharma, A.D., Rathore, S.V.S., Srinivasan, K. and Tyagi, R.K. (2014). Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (*Abelmoschus esculentus* L. Moench). *Sci. Hortic.*, 165: 75-81.

Sivakalai, R. and Krishnaveni, K. (2017). Effect of bio-priming on seed yield and quality in pumpkin cv CO2. *International journal of current microbiology and applied science.*, 6(12): 85-90.

Vazirimehr, M.R., Ganjali, H.R., Rigi, K. and Sivasankaridevi, T., Shivaparaksh, M.K. and Maina, C.C. (2013). Efficacy of seed bio-priming enhancing vigour of cucumber (*Cucumis sativus* L.) under biotic stress conditions. *Mysore. J Agric. Sci.*, 47(1): 107-111.

Soubhagya Behera. (2016). A study on the effect of hormonal priming (GA3) on seed quality parameters of solanaceous vegetables. *International Journal of Agricultural Science and Research.*, 6(30):337-348.

Sridevi, R. and Manonmani, V. (2016). Seed priming effect on physiological traits of kodo millet and barnyard millet. *Int. J. Agric. Sci. Res.*, 6(2): 759-772.

Srivastava, A.K. and Bose, B. (2012). Effect of nitrate seed priming on phenology, growth rate and yield attributes in rice (*Oryza sativa* L.). *Vegetos.*, 25: 174-181.

Srivastava, J.P., Yadav, R.D.S., Kushwaha, A.P.G.D. (2011). Seed priming: eco-friendly approach for seed enhancement vis-a-vis nursery management. *Crop Research.*, 42: 223-226.

Talebian, M.A., Sharifzadeh, F., Jahansouz, M.R., Ahmadi, A. and Naghavi, M.R. (2008). Evaluation the effect of seed priming on germination, seedling stand and grain yield of wheat cultivars (*Triticum aestivum* L.) in three different regions in Iran. *Iranian J Crop Sc.* 39(1): 145-154.

Tiwari, D.K., Pandey, P., Giri, S.P. and Dwivedi, J.L. (2011). Effect of GA3 and other plant growth regulators on hybrid rice seed production. *Asian J. Plant Sci.*, 10:133-139.

Vasudeva, S. Vishwanathan, K.H. Aswathanarayana, K.N. and Swamy, Y.M.I. (2010). Hydration behaviour of food grains and modelling their moisture pick up as per Peleg’s equation: Part I. Cereals. *J. Food Sci. Technol.* 47, 34–41.
Keshtehgar, A. (2014). Effect of seed priming on quantitative traits corn. *International Journal of Plant Science.*, 4: 134-140.

Veena, S., Chimmad, B., Naik, V., R. K. and Shanthakumar, G. (2005). Physico-chemical and nutritional studies in barnyard millet. *Karnataka J. Agric. Sci.*, 18 (1): 101-105.

Venkatesh Babu, S.D., BalajiNayak and Sujathamma, P. (2018). Studies on seed priming on seedling vigour, crop growth and yield of groundnut (*Arachis hypogaea* L.) under rainfed conditions. *Int. J. Pure App. Biosci.*, 6(5): 238-242.

Wang, H., Miyazaki, S., Kawai, K., Deyholos, M., Glabraith, D.W. and Bohnert, H.J. (2003). Temporal progression of gene expression responses to salt shock in maize roots. *Plant Mol Biol.*, 52: 873-891.

Xu, W., Wei, L., Qu, W., Liang, Z. and Wang, J. (2011). A novel antifungal peptide from foxtail millet seeds. *J. Sci. Food Agric.* 91., 1630–1637.

Yadava, H.S. and Jain, A.K. (2006). Advances in Kodomillet Research (Indian Council of Agri. Research), India.

Yang, J., Thames, S., Best, N.B., Jiang, H. and Huang, P. (2018). Brassinosteroids modulate meristem fate and differentiation of unique inflorescence morphology in *Setaria viridis*. *Plant Cell.*, 30, 48–66.

Yang, L., Cui, X.T. and Shen, H.L. (2009). Effects of plant growth substances and temperature on seed germination of *Sorbuspohuashanensi* (Hance) Hedl. *Plant Physiology Communications.*, 45: 555–560.

Yari, L., Aghaalikani, M. and Khazaei, F. (2010). Effect of seed priming duration and temperature on seed germination behaviour of bread wheat (*Triticum aestivum* L.). *ARPN Journal of Agricultural and Biological Science.*, 5:1.

How to cite this article:

Rajaka Karthik Kumar, Arun kumar Chaurasia, Nuthalapati Karthik and Kavitha, M. 2021. Effect of different Pre-sowing Seed Treatments for Improving Growth, Yield and Yield Attributes in Foxtail Millet (*Setaria italica* (L.) P. Beauv). *Int.J.Curr.Microbiol.App.Sci.* 10(02): 1791-1804. doi: https://doi.org/10.20546/ijcmas.2021.1002.212