A 39-year-old man with type 1 diabetes, who had a 4-year history of Graves' disease being treated with propylthiouracil (PTU), had developed sudden hearing loss. However, he showed no other clinical manifestations. Intratympanic administration with dexamethasone had failed, and his hearing had deteriorated. Magnetic resonance imaging showed the contrast effect on T1-weighted image in both cochleae, and the serum immunological analysis showed the high titers for anti-neutrophil cytoplasmic antibodies (ANCA). Therefore, his sudden hearing loss was presumed to be initial presentation of ANCA-associated vasculitis owing to PTU. His hearing was rapidly restored by a PTU withdrawal while no use of immunosuppressive agents, and he confirmed his hearing improvement in ordinary conversation. The patient's clinical course suggests that bilateral sensorineural hearing loss that occurs during treating hyperthyroidism could be initial presentation of ANCA-associated vasculitis, and discontinuing anti-thyroid drugs should be considered before treating with glucocorticoids.
hearing was not affected by 1.5 mg dexamethasone intermittent intratympanic administrations into each ear. After the initiation of steroid administration, despite multiple basal and bolus injections of insulin analogs with dose adjustments based on blood sugar levels, his glycaemia apparently worsened along with frequent fasting hypoglycemia. Then, he was referred to our department for investigation of potential systemic diseases underlying his steroid-refractory hearing loss. Whereas leucocytes, erythrocytes, inflammatory markers, complement factors and each subclass of immunoglobulin were all within normal limits (Table 1), he showed seropositivity for anti-neutrophil cytoplasmic antibodies (ANCA). The levels of ANCA against the proteinase 3 (PR3) and myeloperoxidase (MPO), being measured by chemiluminescent enzyme immunoassay, elevated to 31.2 U/ml and 159 U/ml, respectively, with both reference ranges of less than 3.5 U/mL (Table 1). At the same time, high titers of antibodies against cyclic citrullinated peptide (CCP) and glutamic acid decarboxylase (GAD) were also detected. However, this patient showed no other organ involvement related to either small vessel vasculitis or rheumatoid arthritis. He showed intact renal function with no evidence of proteinuria and urine occult blood (Tables 1 and 2), and computed tomography showed no paranasal sinuses and pulmonary involvements (Figure 3, A and B). However, nuclear magnetic resonance images revealed the contrast effect on T1-weighted images in both cochleae (Figure 4, A and B), although the structure of cochleae appeared to be maintained in T2-weighted images (Figure 4, C and D). Based on these findings, we deemed his bilateral sensorineural hearing loss to have been caused by local small vessel vasculitis associated with ANCA. At that

Figure 1. Progression of hearing impairment. The patients’ hearing levels were assessed by pure-tone audiometry at the diagnosis of 37 years old ages (A) and the admission of 39 years old (B). blue circle: air conduction (right), red cross: air conduction (left).

Figure 2. Computed tomography of inner ear. (A) right inner ear, (B) left inner ear.

COMPONENT	REFERENCE RANGE	RESULT
Creatinine	57–95 µmol/L	68
Blood urea nitrogen	2.9–7.1 mmol/L	5.7
eGFR	N.A./ml/min/1.73 m²	88.3
Erythrocyte sedimentation	N.A./mm	5
CRP	0.00–0.14 mg/L	0.01
White blood cell count	3.3 to 8.6 X 10⁹/L	4440
Neutrophils	41–64 %	53.4
Lymphocyte	30–46 %	35.2
Monocytes	4–10 %	7.3
Eosinophils	1.0–5.0 %	2.9
Basophils	0.0–2.0 %	1.2
Red blood cell count	435 to 555 X 10⁹/L	449
Hemoglobin	12.5–17.0 g/dL	14.1
Platelets	120 to 400 X 10⁹/L	23.4
IgG	861–1747 mg/dL	1084.6
IgM	93–393 mg/dL	275.1
IgA	33–183 mg/dL	164.9
PR3-ANCAa	0.0–3.5 U/mL	31.2
MPO-ANCAa	0.0–3.5 U/mL	159

Anti-nuclear antibody N.A. undetectable (continued on next page)
time, although increases in titers of antibodies against the TSH-receptor were still evident, his thyroid function remained normal with 600mg daily administration of PTU. We thus discontinued PTU. Approximately 2 weeks after the withdrawal of PTU, his hearing began to improve and, despite discontinuing dexamethasone administration, no fluctuations were noted. At 4 weeks after the PTU withdrawal, the audiogram showed bilateral hearing restoration at frequencies of 250Hz, 1000Hz and 4000Hz (Figure 5). He confirmed his hearing improvement in ordinary conversation. Two months after the withdrawal of PTU, a subtotal thyroidectomy was performed, after which his thyroid function was maintained with levothyroxine replacement. When seen at 24 weeks after the PTU withdrawal, our patient’s hearing was still improving without immunosuppressive agent administration (Figure 5), and he presented no involvements of other organs. The levels of PR3-ANCA and MPO-ANCA had decreased to 9.8 U/ml and 118.2 U/ml, respectively, at 24 weeks after the withdrawal (Figure 6). His glycemic control was stable with a hemoglobin A1c of 6.7%.

Written informed consent for this report was obtained from the patient.

3. Discussion

Sudden hearing loss is a rare initial presentation of ANCA-associated vasculitis, and it sole does not meet the diagnosis criteria. This raises concerns about disease progression because of delays in appropriate treatment. Indeed, our patient presented no other clinical features associated with otitis media that could be manifested with ANCA-associated vasculitis. This led to a delayed diagnosis for ATD-associated vasculitis, which may have caused a limited restoration of his hearing by a PTU withdrawal.

Our patient’s clinical course strongly suggests a pathological role of PTU in bilateral sensorineural hearing loss. Inner ear blood flow impairment from PTU-induced ANCA-associated vasculitis presumably caused cochlear dysfunction in our patient. There is increasing evidence that anti-thyroid drugs (ATD) cause ANCA-associated vasculitis. Among such drugs, thiouarcil derivatives are reportedly associated with a higher prevalence of ANCA positivity and clinical vasculitis [3, 4]. PTU-mediated actions involving neutrophils might provide pathological mechanisms underlying the induction of ANCA: alterations in the

Table 1. Urinalysis prior to the PTU withdrawal.

COMPONENT	REFERENCE RANGE	RESULT
Color	N.A.	Pale yellow
Clarity	N.A.	Clear
pH	N.A.	5.5
Specific gravity	N.A.	1.050
Glucose	Negative	4+
Blood	Negative to 1+	Negative
Protein	Negative	Negative
Nitrite	Negative	Negative
Urine microscopy		
White blood cells	0 to 5 per high-power filed	1.0
Red blood cells	0 to 4 per high-power field	0.20
Urinary casts	N.A. per low-power field	1.19

*PR3-ANCA, proteinase 3-anti-neutrophil cytoplasmic antibody
*MPO-ANCA, myeloperoxidase-anti-neutrophil cytoplasmic antibody
*CH50, total complement hemolytic activity
*CCP, cyclic citrullinated peptide
*GAD, glutamic acid decarboxylase

![Figure 3. Computed tomography of paranasal sinuses (A) and lung (B).](image)
Figure 4. MRI demonstrated the contrast effects in bilateral cochleae. (A) and (B): Horizontal sections of gadolinium enhanced T1-weighted image of cochleae, (C): Horizontal section of T2-weighted image of cochleae, (D): Coronal section of T2-weighted image of cochleae. Arrowheads indicate cochleae.
configuration of granules containing myeloperoxidase [5], direct binding to myeloperoxidase [6] and oxidization of PTU itself by myeloperoxidase [7]. To the best of our knowledge, our report is the first to show sudden hearing loss to be reversed in a patient with Graves’ disease solely by the withdrawal of PTU. Due to the presence of T1DM, systemic steroid administration was not an option in our present case. Indeed, even intermittent local dexamethasone administration made it difficult to manage our patient’s glycaemia. Because our case showed no involvement of other organs including the kidneys, lungs, airway, skin, joints and nervous system, we decided not to use other immunosuppressive agents. However, the PTU withdrawal was followed by rapid hearing improvement and a favorable clinical outcome. Although the incidence of sudden hearing loss in ATD-induced ANCA-associated vasculitis is low [3], in cases with sudden hearing loss that occurs during treating hyperthyroidism, it is prudent to test ANCA with a view to treating the vasculitis, avoiding unnecessary immunosuppressive therapy.

4. Conclusion

We report a case with bilateral sensorineural hearing loss induced by PTU. When sudden hearing loss occurs in patients with Graves’ disease, discontinuing ATD should be considered even with no other manifestations being presented.

Declarations

Author contribution statement

All authors listed have significantly contributed to the investigation, development and writing of this article.

Funding statement

This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (JSPS KAKENHI, grant number JP20K08887 to K. Tanabe, JP19H03710 to YT)

Data availability statement

Data will be made available on request.

Declaration of interests statement

The authors declare no conflict of interest.
Acknowledgements

The authors thank all staff members of the Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, and the Department of Otolaryngology, Yamaguchi University Graduate School of Medicine, for helpful discussion.

References

[1] S. Kobayashi, J.Y. Noh, K. Mukasa, Y. Kunii, N. Watanabe, M. Matsumoto, H. Ohye, M. Suzuki, A. Yoshihara, K. Iwaku, K. Sugino, K. Ito, Characteristics of agranulocytosis as an adverse effect of antithyroid drugs in the second or later course of treatment, Thyroid 24 (2014) 796–801.

[2] N. Suzuki, J.Y. Noh, M. Hiruma, A. Kawaguchi, M. Morisaki, et al., Analysis of antithyroid drug-induced severe liver injury in 18,558 newly diagnosed patients with Graves’ disease in Japan, Thyroid 29 (2019) 1390–1398 (2019).

[3] Y. Noh, S. Yanuda, S. Sato, M. Matsumoto, Y. Kunii, Y. Noguchi, K. Mukasa, K. Ito, K. Ito, O. Sugiyama, H. Kobayashi, S. Nihoujima, M. Okazaki, S. Yokoyama, Clinical characteristics of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis caused by antithyroid drugs, J. Clin. Endocrinol. Metab. 94 (2009) 2806–2811.

[4] A.S. Balavoine, D. Glinoer, S. Dubucquoi, J.L. Wéneau, Antineutrophil cytoplasmic antibody-positive small vessel vasculitis association with antithyroid drug therapy: how significant is the clinical problem? Thyroid 25 (2015) 1273–1281.

[5] E. Lee, M. Hirouchi, M. Hosokawa, H. Sayo, K. Kariya, Inactivation of peroxidases of rat bone marrow by repeated administration of propylthiouracil is accompanied by a change in the heme structure, Biochem. Pharmacol. 37 (1988) 2151–2153.

[6] T. Akamizu, S. Ozaki, H. Hiratani, H. Uesugi, J. Sobajim, Y. Hataya, N. Kanamoto, M. Saito, Y. Hattori, K. Moriyama, K. Ohmori, K. Nakao, Drug-induced neutropenia associated with anti-neutrophil cytoplasmic antibodies (ANCA): possible involvement of complement in granulocyte cytotoxicity, Clin. Exp. Immunol. 127 (2002) 92–98.

[7] L. Waldhauser, J. Uetrecht, Oxidation of propylthiouracil to reactive metabolites by activated neutrophils. Implications for agranulocytosis, Drug Metab. Dispos. 19 (1991) 354–359.