Supporting Information for

Mesoscale temporal wind variability biases global air-sea gas transfer velocity of CO₂ and other slightly soluble gases

Yuanyuan Gu1,2, Gabriel G. Katul3,4, Nicolas Cassar1,5

1Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, USA.
2College of Oceanography, Hohai University, Nanjing, China
3Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, USA
4Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
5CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280 Plouzané, France

Contents of this file
Text S1
Table S1 to S3
Figure S1 to S5

Text S1

In this analysis, it is assumed that a Weibull distribution can be fitted to the probability density function (PDF) of the 6-hour wind velocity data (U) and the best-fit parameters of the Weibull distribution (λ > 0 – scale parameter and β > 0 – shape parameter) are determined. In general,

\[f(U) = \frac{\beta}{\lambda} \left(\frac{U}{\lambda}\right)^{\beta-1} \exp\left[-\left(\frac{U}{\lambda}\right)^\beta\right]. \]

For a quadratic gas transfer velocity parameterization:

\[k = a U^2, \]

where \(a \) is a constant. What is sought is the mean \(k \) at large scales that are much longer than 1 hour (indicated by \(<> \)). Using standard averaging rules,

\[< k >= a< U^2 > \neq a<U^2>. \]
Approaches to correct for this inequality are expressed in the form:

\[< k >= a(U^2) = a(U)^2 C_2, \]

where, by definition,

\[C_2 = \frac{(U^2)}{(U)^2}. \]

If the PDF of \(U \) is known, then \(<U^2> \) can be linked to the Weibull parameters using

\[
(U^2) = \int_0^\infty U^2 f(U) dU = \int_0^\infty U^2 \frac{k}{\lambda} \left(\frac{U}{\lambda}\right)^{k-1} \exp \left[-\left(\frac{U}{\lambda}\right)^k\right] dU.
\]

After some algebra, it can be shown that

\[(U^2) = \lambda^2 \Gamma\left(\frac{2 + k}{k}\right), \]

where \(\Gamma(.) \) is the gamma function. The \(<U> \) can also be evaluated from

\[
(U) = \int_0^\infty U f(U) dU = \int_0^\infty U \frac{k}{\lambda} \left(\frac{U}{\lambda}\right)^{k-1} \exp \left[-\left(\frac{U}{\lambda}\right)^k\right] dU.
\]

After some algebra, it can be shown that

\[(U) = \lambda \Gamma\left(\frac{1 + k}{k}\right). \]

Hence,

\[C_2 = \frac{(U^2)}{(U)^2} = \frac{\Gamma\left(\frac{2+k}{k}\right)}{\left[\Gamma\left(\frac{1+k}{k}\right)\right]^2}, \]

and only varies with \(k \) not \(\lambda \). For a Rayleigh distribution \(k=2 \), the correction can be arranged as:

\[C_2 = \frac{(U^2)}{(U)^2} = \frac{\Gamma(2)}{\left[\Gamma(3/2)\right]^2} = 1.27. \]

Similar steps are taken for a cubic relation

\[k = a U^3. \]

For a Rayleigh distribution \(k=2 \), the correction can be arranged as:
\[C_3 = \frac{\langle U^3 \rangle}{\langle U \rangle^3} = \frac{\Gamma(5/2)}{[\Gamma(3/2)]^2} = 1.91. \]

Table S1

Estimates of gas transfer velocity for CO₂ using wind speeds at two temporal resolutions (6-hourly and monthly) and spatial resolutions (0.5°×0.5° and 5°×5°). Spatial bias of 6-hourly k (or monthly k) are the deviations of k in 5°×5° from k in the resolution of 0.5°×0.5°. Similarly, temporal bias of k at 0.5°×0.5° (or 5°×5°) are the deviations of monthly k from the 6-hourly k.

Serial NO	Reference	Relation	6-hourly k (cm h⁻¹)	monthly k (cm h⁻¹)	Temporal Bias
			0.5°×0.5° 5°×5° Spatial Bias	0.5°×0.5° 5°×5° Spatial Bias	0.5°×0.5° 5°×5°
1	Wanninkhof (1992)	Quadratic	18.88 19.02 0.74%	16.73 16.85 0.72%	-11.39% -11.41%
2	Wanninkhof and McGillis (1999)	Quadratic	18.37 18.55 0.98%	13.24 13.35 0.83%	-27.93% -28.03%
3	Nightingale et al. (2000)	Quadratic	18.76 19.14 0.70%	15.73 15.91 0.63%	-9.78% -9.84%
4	McGillis et al. (2001)	Cubic	21.98 22.36 0.86%	16.43 16.81 0.73%	-23.73% -23.83%
5	McGillis et al. (2004)	Cubic	21.46 21.84 0.67%	15.96 16.34 0.57%	-15.41% -15.49%
6	Weiss et al. (2007)	Quadratic	25.31 26.59 0.71%	22.78 23.26 0.66%	-10.00% -10.04%
7	Wanninkhof et al. (2009)	Cubic	14.41 14.52 0.76%	11.97 12.05 0.67%	-16.93% -17.01%
8	Prytherch et al. (2010)	Cubic	28.08 28.56 0.82%	24.52 24.94 0.73%	-22.98% -23.05%
9	Wanninkhof (2014)	Quadratic	15.29 15.4 0.72%	13.57 13.64 0.52%	-11.25% -11.43%

Table S2

Summary of corrected k for CO₂ derived by applying the 5 correction methodologies described in the text. The biases are evaluated when referring to k at the 6 hours resolution.

Serial NO	6-hourly k \((\sigma_{U} < U >^2 = 0.15) \)	Method 1 \((\sigma_{U} < U >^2 = 0.15) \)	Method 2 \((\sigma_{U} < U >^2 = 0.15) \)	Method 3 \((R_2 = 1.27, R_3 = 1.91) \)	Method 4 \((R_2 = 1.23, R_3 = 1.78) \)	Method 5 \((Zonal averaged R_2/R_3) \)
1	18.88	18.9 0.11%	19.24 1.91%	21.25 11.15%	20.58 9.00%	19.74 4.56%
2	18.37	18.26 -0.60%	19.19 4.46%	25.28 27.33%	23.56 28.25%	20.8 13.23%
3	15.75	15.77 0.13%	16.00 1.59%	17.45 9.74%	16.97 7.55%	16.36 3.87%
4	19.85	19.76 -0.45%	20.61 3.83%	26.20 24.24%	24.62 24.03%	22.08 11.23%
5	16.48	16.43 -0.30%	16.89 2.49%	19.90 17.19%	19.05 15.59%	17.69 7.34%
6	25.31	25.33 0.08%	25.74 1.70%	28.09 9.90%	27.31 7.90%	26.32 3.99%
7	14.41	14.38 -0.21%	14.81 2.78%	16.66 13.51%	15.99 10.96%	14.91 3.47%
8	26.85	26.72 -0.48%	27.84 3.69%	35.15 23.61%	33.18 23.58%	29.76 10.84%
9	15.29	15.3 0.07%	15.58 1.90%	17.20 11.10%	16.66 8.96%	15.98 4.51%
Figure S1. Spatial pattern of standard deviation of wind speed around the averaged wind speed within a month.

Figure S2. Relations for $f(U)$ and wind speed for the 9 parameterizations.
Figure S3. Spatial pattern of annual mean difference 6-hourly k and monthly k for the 9 k parameterizations listed in Table 1.

Figure S4. Spatial pattern of annual mean bias estimated from the new model for the 9 k parameterizations listed in Table 1.
Figure S5. Spatial pattern of mean bias in gas transfer velocity (k) for CO₂ estimated from the difference in term 1 and term 2 of Equ. (9) for the parameterizations presented in Table 1.