Effect of a Lactobacillus Species on Incidence of Diarrhea in Calves and Change of the Microflora Associated with Growth

Koji NAGASHIMA1#*, Daisuke YASOKAWA1#, Kentaro ABE2, Ryoji NAKAGAWA1#, Tooru KITAMURA3, Toshiharu MIURA2 and Shu KOGAWA2

1Hokkaido Food Processing Research Center, Ebetsu, Hokkaido 069-0836, Japan
#Present: Food Processing Research Center, Industrial Technology Institute Department, Hokkaido Research Organization
2Hokkaido Research Station of Snow Brand Seed Co., Ltd., Naganuma-cho, Hokkaido 069-1464, Japan
3Technical Research Institute of Snow Brand Seed Co., Ltd., Ebetsu, Hokkaido 069-0832, Japan

Received September 16, 2009; Accepted January 21, 2010

To evaluate the effect of Lactobacillus plantarum strain Hokkaido, which was isolated from a kind of Japanese pickle, on the incidence of diarrhea in calves and on the intestinal microflora, we performed feeding tests with a milk replacer containing Lactobacillus sp. In Experiment 1, thirty two male Holstein calves were divided into two groups, a control (C) group and LPH group. L. plantarum strain HOKKAIDO was orally administered to the LPH group for 35 days. The diarrhea score and the number of calves with watery or soft stool were significantly (p<0.05) smaller in the LPH group than in the C group. In Experiment 2, ten male Holstein calves were divided into three groups: a control group, LPH group and BOV group. BovactinTM was administered to the BOV group and the experimental protocol followed that of Experiment 1. No significant difference was observed in the incidence of diarrhea among the three test groups. However, when the data of Experiments 1 and 2 were pooled, the incidence of diarrhea in the LPH group was significantly (p<0.05) lower than that of the control group. These results indicate that L. plantarum strain Hokkaido reduces the incidence of diarrhea in calves. Analysis of the microflora and measurement of the stool type of the fecal samples that were collected 0, 15 and 28 days after the start of administration were performed using a T-RFLP method and visual analysis, respectively. The clustering of the T-RFLP profiles indicated that when the significance of the distributions of the samples among the clusters was tested, a significant difference (p<0.01) was observed only among the sampling-date groups. The average value of the pairwise Pearson r within each sampling-date group indicated that T-RFLP profiles varied considerably among the calves on day 0 and day 15, while the profiles of day 28 closely resembled each other. From these results, we infer that the intestinal microflora of calves are less settled in the early days of life, and this might partially explain the higher incidence of diarrhea in this period. Bacteria belonging to the class Clostridia were most predominant at all the sampling-date groups. The day 0 samples were characterized by a larger population of bifidobacteria and lactic acid bacteria (LAB). The day 15 samples were characterized by larger populations of LAB and the class Bacteroidia. The day 28 samples were characterized by a larger population of Bacteroides.

Key words: calf; diarrhea; microflora; probiotic; T-RFLP

INTRODUCTION

The dairy and livestock industries have recently been confronted with large problems including zoonoses such as bovine spongiform encephalopathy and avian influenza, and the spread of antibiotic-resistant bacteria through feeds containing antibiotics. In this context, the healthcare of livestock has become an important issue. Animals are hosts to many kinds of bacteria, and a large number of bacteria colonize in the intestinal tract, forming a community known as the intestinal microflora. The microflora affects the health of the host through their metabolites and immunomodulatory activities, while the microflora are affected by diet, medicine, stress and so on. In recent years, probiotics (7) or prebiotics (22) that improve the host microflora have received a lot of attention. In livestock, probiotic and prebiotic-supplemented feed have been evaluated and exploited for decreasing diarrheal disease, reducing odors, and improving growth (1, 12, 24, 29, 31). However, there seems to be no report describing the effect of probiotics on the microflora.

Conventionally, analysis of the intestinal microflora, which is necessary for evaluation of probiotics or
prebiotics, has been performed by the culture method. However, molecular tools targeting the 16S ribosomal RNA gene (6, 10, 14, 15, 27, 28, 35, 36) have recently been developed, since many species (70–80%) of environmental bacteria are difficult to culture or are unculturable. Of these molecular tools, terminal restriction fragment length polymorphism (T-RFLP) is known to have the advantages of reproducibility and higher throughput (20), therefore, it has been frequently used in the studies of individual differences, diversity and dynamics of microflora (9, 11, 21). We have developed a modified method of T-RFLP that makes it possible to presumptively identify phylogenetic bacterial groups from the size of terminal restriction fragments (T-RFs), and another method to confirm the bacterial groups by cloning and sequencing of T-RFs (16, 17).

Lactobacillus plantarum has been isolated from various kinds of fermented foods or silage (3, 19, 27, 28). Nagata et al. (18) reported the suppression of human allergic reaction by an oral intake of *L. plantarum* isolated from a pickled scallion. In addition, Jonganurakkun et al. (13) published data suggesting *L. plantarum* isolated from a pickled Japanese radish stimulated immune activities and allergenic inhibition.

We isolated a strain of *L. plantarum* named strain HOKKAIDO (abbreviated as strain Hokkaido) from a pickled celery and demonstrated that this strain inhibited the adhesion of *E. coli* O-157 to Caco-2 cells, a human intestinal epithelial cell line; initiated the production of IL-12, a Th1-inducible cytokine, from human primary cultured dendritic cells or mouse spleen cells (unpublished data); and could tolerate human gastric and intestinal juices to reach the bowels in a living state (19).

The incidence of diarrhea is high in the calf, especially in the first four weeks of life and seems to be closely associated with other major diseases and mortality. The causes of diarrhea are considered to be bacterial or viral infection due to immunocompetence or intestinal microflora being immature and various stresses like mother-infant separation, transportation, marketing and dietary change (29, 34).

The objective of the current study was to evaluate the effect of the administration of the strain HOKKAIDO on the incidence of diarrhea and analyze the change of the microflora during its administration using our T-RFLP method and an improved method for cloning and sequencing of T-RFs.

MATERIALS AND METHODS

Bacterial strain and culture

Lactobacillus plantarum strain HOKKAIDO was isolated from Japanese pickles produced in Hokkaido and identified by microscopic, physiological and biochemical tests, utilization tests of carbohydrates, 16S ribosomal RNA gene sequencing together with a *recA*-targetting multiplex PCR (30). This strain is deposited at the International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology, Japan (Deposit no. FEMR-P-19645).

The bacterial cells were cultured in GYP medium (1% glucose, 1% yeast extract, 0.5% polypeptide, 0.2% Na-acetate · 3H2O, 20 ppm MgSO4 · 7H2O, 1 ppm MnSO4 · 4H2O, 1 ppm FeSO4 · 7H2O, 1 ppm NaCl, pH 6.8) at 37°C for 16 hr, concentrated by centrifugation and freeze-dried with 10% skim milk.

Experiment 1 (Exp 1)

Thirty two male Holstein calves (aged from 21 to 55 days old, average age of 33.0 days old, mean body weight 62.5 kg) that were purchased from a livestock market were divided into two groups based on their appearance, weight and condition to avoid group bias. The control group (C group) were given 2 l of a milk replacer, which was produced by dissolving 500 g of chow (42% skimmed milk, 30% condensed whey proteins, 25% fats and 3% vitamin-mineral mix) in 4 l of warm water, two times a day. The second group (LPH group) were similarly given the milk replacer with addition of approximately 1 x 10⁹ CFU of the strain HOKKAIDO. In addition to the milk replacer, chow was continuously available throughout the test period. The calves were housed in 2 rooms (16 animals/room) and ingested the milk replacers for 35 days (Oct.–Nov. 2005). Measurements of body weights were performed on days 0, 7, 21 and 35, and observation of the fecal condition and measurement of the consumption of chow were performed every day. The stool properties, whose evaluation was visually performed, were scored as 2, 1 and 0 for watery, soft and normal stools, respectively.

Experiment 2 (Exp 2)

Ten male Holstein calves (aged from 8 to 27 days old, average age of 15.8 days old, mean body weight 53.6 kg) that were purchased from a livestock market were divided into three groups based on their appearance, weight and condition to avoid group bias. Four calves were allocated to the control group (C group). Three calves each were allocated to the second and third test groups, respectively. The second group (LPH group) received a daily dose of milk replacer containing approximately 2 x 10⁹ CFU of the strain HOKKAIDO, and the third group (BOV group) received a daily dose of milk replacer containing 20 g of
Bovactin™ (MIYARISAN Pharmaceutical Co., Ltd., Tokyo, Japan), consisting approximately 1×10^7, approximately 1×10^6 and approximately 1×10^5 CFU/g of Lactobacillus plantarum strain 220, Streptococcus faecium and Clostridium butyricum strain Miyari, respectively. Bovactin™ was selected from commercial materials containing viable bacteria which claim to regulate the functions of the intestines, because it contains L. plantarum. The calves were individually housed in calf-hutches for 35 days (Jun.–Jul. 2006) and were given 1 l of milk replacer 4 times a day during the period. The other conditions were the same as the design for Exp 1. The sampling of the feces for microflora analysis was performed on days 0, 15 and 28.

Fecal DNA extraction, PCR and T-RFLP analysis

Fecal DNA extraction and T-RFLP analysis were performed using a previously described method (16) with some modifications. Briefly, the fecal samples (approximately 0.1 g) were suspended in a solution containing 4 M guanidine thiocyanate, 100 mM Tris-HCl (pH 9.0) and 40 mM EDTA, and then beaten in the presence of zirconium beads using a bead beater (Micro Smash™ MS-100, Tomy Medico Ltd., Tokyo, Japan). Thereafter, DNA was extracted from the bead-treated suspension using a mixture of phenol:chloroform:isoamylalcohol (25:24:1) and purified using a GFX PCR DNA and Gel Band Purification Kit (GE Healthcare UK Ltd., Buckinghamshire, UK).

The PCR was performed using the fecal DNA and primers (0.1 μM each) of Hex-labeled 516f (5’-TGCCAGCAAGCCGGTGTA-3’; E. coli positions 516 to 532) and 1510r (5’-GGTTACCTTGTTACGACTT-3’; E. coli positions 1510 to 1492). The mixture containing the resulting 16S rDNA amplicons and 4 U of BslI (New England BioLabs Japan, Tokyo, Japan), in which internal standard DNAs were not contained, was incubated for 1 hr at 55°C and the BslI-digest was fractionated using an automated sequence analyzer (ABI PRISM 310 Genetic Analyzer, Life Technologies Japan Ltd., Tokyo, Japan) in GeneScan mode (the injection time was 20 sec and the run-time was 40 min).

T-RF cloning and sequencing

T-RF cloning and sequencing were performed using a previously described method (16) with some modifications, resulting in a higher efficiency. The PCR was performed as described above except that 0.4 μM of each of biotin-labeled NotI-516f (5’-TAGAGCCGGCCGCTGCCAGCAGCCGGGTA-3’) and 1510r was used as the primer set, and that an equal mixture of the fecal DNAs from 10 calves on the same sampling date was used as the template. The PCR products (100 μl) were purified using S-400HR MicroSpin Columns (GE Healthcare), mixed with 100 μl of MPG streptavidin (Takara Bio Inc., Otsu, Japan), suspended in 2 × B & W buffer (10 mM Tris-HCl [pH 7.5], 1 mM EDTA, 2.0 M NaCl), then incubated at a room temperature for 15 min. After washing twice with 100 μl of T10E0.1 (10 mM Tris-HCl [pH 7.5], 0.1 mM EDTA), the DNA-bead conjugate (100 μl) was treated for 3 hr with 50 U of BssII at 55°C. The DNA in the conjugate (20 μl) was blunted-ended using T4 DNA polymerase (Toyobo Co., Ltd. Osaka, Japan), washed three times with T10E0.1 and suspended in 50 μl of T10E0.1. Five microliters of the DNA solution were incubated with 1 pmole (1 μl) of EcoRI-NotI-BamHI Adaptor (Takara Bio) in 12 μl of ligation mixture (DNA Ligation Kit <Mighty Mix>, Takara Bio, Inc.) at 16°C for 30 min. After washing three times followed by suspension, the PCR was performed using 50 μl of the reaction mixture containing 5 μl of adaptor-ligated DNA solution, 2.5 U of Taq polymerase (Promega corporation, Madison, WI), 1 × PCR buffer (Promega), each dNTP at a concentration of 200 μM, 2.5 mM MgCl2, and each primer at a concentration of 0.4 μM. The primers used were 516f and NotI-BamHI primer (5’-CGGCGGGCCGCGGATCC-3’). The amplification program was as follows: preheating at 94°C for 1 min, followed by 10 cycles of denaturation at 94°C for 30 sec, annealing at 65°C for 30 sec, extension at 72°C for 1 min and finally, a terminal extension at 72°C for 7 min. The amplified products were subjected to electrophoresis through 2% agarose gel (Nippon Gene Co., LTD, Tokyo, Japan), followed by ethidium bromide staining. The DNA fragments were cut out from the gel, purified using the GFX PCR DNA and Gel Band Purification Kit (GE Healthcare), cloned into E. coli TOP10 using the TOPO TA Cloning Kit for Sequencing (Life Technologies Japan Ltd.). Insert DNA fragments (approximately 100 to 1,000 bp long) were recovered with the colony direct PCR method using T3 and T7 primers. Each DNA product was purified using the MultiScreen FB filter plate (Millipore Corporation, Billerica, MA) and sequenced using a BigDye Terminator Cycle Sequencing Kit (Life Technologies Japan Ltd.). Homology searches of the obtained sequences were performed with FASTA programs at the web site of the DNA Data Bank of Japan (DDBJ).

Statistical analysis

Statistical analysis of the data were performed using the Wilcoxon t-test, Friedman’s test or the Chi square test with...
Variation among individuals and alteration with growth of fecal microflora

To investigate the correlation between the stool types and intestinal microflora, the fecal samples in Exp 2 were collected before and, 15 and 28 days after the start of the ingestion of the milk replacers and their characters are summarized in Table 4. From these samples, DNA was extracted and used in the T-RFLP analysis. The pair-wise Pearson correlation coefficient (Pearson \(r \)) was calculated using the resulting T-RFLP data (see Appendix 1); then, the samples were clustered on the basis of the Pearson \(r \) by UPGMA, resulting in three clusters: I, II and III (Fig. 1). As shown in Table 5, when the significance of the distributions of the samples among the clusters was tested, no significant differences were observed among the feeding groups and the stool-type groups. On the other hand, a significant difference (\(p<0.01 \)) was observed among the sampling-date groups; the day 28 samples were clearly concentrated in Cluster I as shown in Fig. 1. To make clear the difference within the sampling-date group, the T-RFLP profiles were presented for the respective groups (Fig. 2, Appendix 1), and the average of pair-wise Pearson \(r \) within each group was calculated; it was 0.58 for the day 0 samples, and 0.40 and 0.89 for the day 15 and 28 samples, respectively. These values indicate that the day 0 and 15 samples had considerable variation in the T-RFLP profile among animals, while the day 28 samples closely resembled each other.

Table 1. Comparison of average weights of test groups by day

Day of measurement	Average weight (kg) of each test group		
	C	LPH	BOV
0 Exp 1	62.2 (7.8)	62.7 (6.7)	-
7 Exp 2	51.8 (9.4)	53.7 (3.8)	55.3 (4.0)
21 Exp 1	74.3 (10.1)	77.5 (7.4)	-
35 Exp 1	89.8 (12.1)	92.4 (8.4)	-
21 Exp 2	76.3 (11.8)	79.3 (17.4)	76.3 (5.9)

Figures in parentheses represent standard deviations.
Probiotic Effect of Lactobacillus in Calf and Analysis of Microflora

BP (T-RF clones were named p3-, p9- and p14- for days 0, 15 and 28, respectively), 400–500 bp (T-RF clones were named p4-, p10- and p15- for days 0, 15 and 28, respectively), 300–400 bp (T-RF clones were named p5-, p11- and p16- for days 0, 15 and 28, respectively) or 100–200 bp (T-RF clones were named p6- for day 0) in length, were generated by *Bsl*I-digestion of the 16S rDNA-amplicon mixtures derived from the 0-, 15-, or 28-day samples. We consider these results support the accuracy of the assumptive groupings of the microflora (Appendix 2). The microflora analysis of the calf feces, irrespective of the feeding group, suggested the following: (i) bifidobacteria were the relatively predominant intestinal bacteria in calves at the earlier days of life; (ii) the class *Bacteriodia* became more predominant with the growth of a calf; and (iii) the class *Clostridia* was most predominant in calf microflora.

Discussion

From the point of view of food safety, it is considered that probiotics should be more widely used as a tool for health control in the livestock industry. We isolated a *Lactobacillus* sp., *Lactobacillus plantarum* strain Hokkaido, from well-fermented Japanese pickles and have data which shows that the strain Hokkaido inhibited the adhesion of harmful pathogens to intestinal epithelial...
K. NAGASHIMA, et al.

cells and activated the cellular immunity (unpublished data). Thus we evaluated this strain as a diarrhea suppressant in calves and at the same time analyzed the change of the intestinal microflora during its

Table 3. Total number of calves with watery, soft or normal stool in the 35-day experiments

Feeding groups	Stool types			
	Watery	Soft	Normal	
Exp 1*1	C	13	29	518
LPH	5	13	542	
Exp 2*2	C	14	36	90
BOV	9	29	67	
LPH	8	23	74	
Exp 1 & 2*3	C	27	65	608
LPH	13	36	616	

*1 A significant difference (p=0.014) was indicated by the Chi square test
*2 No significant difference (p=0.910) was indicated by the Chi square test
*3 A significant difference (p=0.002) was indicated by the Chi square test

Table 4. Characteristics of stool samples used in T-RFLP analysis

Stool samples	Feeding groups	No. of individuals	Date of sample collection (days)	Stool types
C1-0-N	C	1	0	Normal
C2-0-D	C	2	Watery	
B3-0-D	BOV	3	Watery	
L4-0-S	LPH	4	Soft	
B5-0-S	BOV	5	Soft	
L6-0-N	LPH	6	Normal	
C8-0-S	C	8	Soft	
B10-0-S	BOV	10	Soft	
L11-0-S	LPH	11	Soft	
C12-0-S	C	12	Soft	
C1-15-N	C	1	15	Normal
C2-15-N	C	2	Normal	
B3-15-N	BOV	3	Watery	
L4-15-N	LPH	4	Normal	
B5-15-N	BOV	5	Normal	
L6-15-N	LPH	6	Normal	
C8-15-S	C	8	Soft	
B10-15-N	BOV	10	Normal	
L11-15-N	LPH	11	Normal	
C12-15-N	C	12	Normal	
C1-28-N	C	1	28	Normal
C2-28-N	C	2	Normal	
B3-28-N	BOV	3	Normal	
L4-28-N	LPH	4	Normal	
B5-28-D	BOV	5	Watery	
L6-28-S	LPH	6	Soft	
C8-28-N	C	8	Normal	
B10-28-N	BOV	10	Normal	
L11-28-N	LPH	11	Normal	
C12-28-N	C	12	Normal	

The ages of calves from which the samples of C1-0-N, C2-0-D, B3-0-D, L4-0-S, B5-0-S, L6-0-N, C8-0-S, B10-0-S, L11-0-S and C12-0-S were derived, were 21, 15, 16, 27, 22, 10, 8, 9 and 15 days old, respectively.

Table 5. Distribution of samples among clusters from clustering of T-RFLP profiles

Groups	Frequency (no. of samples)											
Clusters	I	II	III									
Date of sample collection (days)*1	0	1	3	6	15	2	4	4	28	10	0	0
Stool-types*2	Watery	1	0	2	Soft	1	2	5	Normal	11	5	3
Feeding groups*3	C	5	4	3	BOV	4	0	5	LPH	4	3	2

*1 A significant difference (p=0.005) was indicated by the Chi square test
*2 No significant difference (p=0.322) was indicated by the Chi square test
*3 No significant difference (p=0.651) was indicated by the Chi square test

Fig. 1. Clustering diagram of T-RFLP profiles from fecal samples on the basis of the Pearson r by UPGMA. For sample names, refer to Table 4.
administration.

Timmerman et al. (29) reported that 4 experiments with veal calves were conducted to assess the influence on growth and health indicators of a multispecies probiotic (MSPB) containing different probiotic species of human origin and a calf-specific probiotic (CSPB) containing 6 *Lactobacillus* strains, which were originally isolated from calf feces. They pooled the data for the 4 experiments with respect to the treatments by the two kinds of probiotics and calculated a general health score that was calculated using a defined formula, in which the incidence of diarrhea and therapeutic treatments for digestive, respiratory, or other diseases were weighted differently. The general health score was significantly (*p*<0.05) increased compared with the control. Moreover, the CSPB treatment significantly (*p*<0.05) reduced the incidence of diarrhea in one of the 4 experiments and the different results among the experiments were likely due to combinations of the origins of the calves, experimental conditions, and management systems which would have influenced the susceptibility to probiotics of the calves. In our experiments, the group administered lactobacilli (the LPH group) showed a significantly lower incidence of diarrhea than the control group in Exp 1. On the other hand, no differences were observed among the three feeding groups in Exp 2: the control, BOV and LPH groups. We consider that the conflicting results of the two experiments might be ascribable to the smaller number of animals in Exp 2 and the different physical conditions of the animals used in the two experiments. In fact, the diarrhea score in Exp 2 was several-fold higher than that in Exp 1. Other possible reasons may exist; however, when the data for the two experiments were pooled and the control and LPH groups were compared, the incidence of diarrhea in the latter group was significantly (*p*<0.05) lower than that of the control group during the
were observed in the T-RFLP profile, compared with that no characteristic changes of the intestinal microflora microbiological agent was administered to the calves, but have largely affected the microflora.

In our experiments, 10^9 CFU/animal/day of microbiological agent was administered to the calves, which was calculated by a pair-wise comparison of all the obtained T-RFLP profiles and the profiles were clustered on the basis of Pearson r. No significant differences were observed with respect to the distribution of the samples from not only the feeding groups but also the stool-type groups among Clusters I, II and III which were derived from the clustering of the T-RFLP profiles, while a significant difference was observed with respect to the distribution of samples by sampling-date groups. In our experiments, 10^9 CFU/animal/day of microbiological agent was administered to the calves, but no characteristic changes of the intestinal microflora were observed in the T-RFLP profile, compared with that of the control calves. Considering that there is 10^12 CFU/g of feces in the large intestine (2), the administration of the above-mentioned amount of microbes should not have largely affected the microflora.

Judging from the values of pair-wise Pearson r of the T-RFLP profiles within each sampling-date group, the intestinal microflora of the calf seems to be variable in the early days of its life, becoming more stable as it grows. On the other hand, the incidence of diarrhea appears to reduce as a calf grows (Table 2). It is likely that younger calves have lower tolerance to infection because of the instability of the microflora, and a higher incidence of diarrhea as a result. Probiotics may play some role in suppressing the injurious effects derived from the instability of microflora colonization, encouraging immunostimulation, and inhibiting epithelial and mucosal adherence and epithelial invasion by harmful pathogens such as enterotoxigenic Escherichia coli (2). To elucidate the mechanism of diarrhea suppression by probiotics, further investigations are necessary.

Some investigations of the diversity of LAB (3) or bifidobacteria (8, 28) and of microflora (5, 21, 32, 33) have been reported for cattle. Busconi et al. (3) demonstrated by colony isolation, clustering of AFLP banding patterns and 16S rDNA sequencing, that the most representative genera of LAB in the calf intestinal tract were Lactobacillus (54% of total) and Streptococcus (32% of total), while the most frequent species was L. mucosae (51% of the Lactobacillus spp.) which was characterized by high in vitro mucus-binding activity. We detected sequences of Lactobacillus and Streptococcus in a 3:1 ratio in the day 0 fecal sample and in a 1:1 ratio in the case of the day 15 fecal sample (Table 7). We also detected a sequence closely related to L. mucosae as 30% of all LAB related sequences in the day 0 sample. In addition, we detected sequences closely related to L. gasseri, L. johnsonii, L. salivarius, L. viridans, L. reuteri, Streptococcus bovis, S. agalactiae and Enterococcus cecorum in the day 0 or 15 samples (Appendix 2); L. salivarius, L. reuteri, S. bovis were also detected by Busconi et al. (3). LAB related sequence was not detected in the day 28 sample. Vlková et al. (28) has described that in the calf, bifidobacteria constituted a minor group 3 days after birth, increasing rapidly after 7 days and then decreasing slowly during the next 7 weeks of life, which seems to support our conclusion that bifidobacteria are the relatively predominant intestinal bacteria in the calf in the early days of its life. Ozutsumi et al. (21) reported the analysis of fecal microflora in three castrated Holstein cattle using the random cloning method targeting the 16S ribosomal RNA gene. They analyzed 284 sequences which were affiliated with Firmicutes (including clostridia, 81.3%), Bacteroidetes (14.4%), Actinobacteria (2.5%) and Proteobacteria (1.4%) and detected a number of unidentified bacteria. Dowd et al. (5) reported the analysis of the microbiome using the

OTU	Phylogenetic bacterial groups
106	Clostridium subcluster XIVa
110	Clostridium cluster IX, Megamonas
124	Bifidobacterium
168	Clostridium cluster IV
317	Prevotella
332	Lactobacillales
338	Clostridium cluster XI
370	Bacteroides, Clostridium cluster IV
423	Clostridium cluster XVIII
469	Bacteroides
494	Clostridium subcluster XIVa
505	Clostridium subcluster XIVa
517	Clostridium subcluster XIVa
520	Lactobacillales
643	NA
650	Clostridium cluster XVIII
657	Lactobacillales
749	Clostridium cluster IV
754	Clostridium subcluster XIVa
853	Bacteroides
919	Clostridium clusters XI, subcluster XIVa
940	Clostridium subcluster XIVa, Enterobacteriales
955	Clostridium subcluster XIVa
968	NA
990	Clostridium subcluster XIVa

The classification of the class Clostridia is based on Collins et al. (3). NA, not applicable.
TABLE 7. Classification of sequences harbored on T-RF clones

Phylogenetic bacterial groups	Number and percent of T-RF clones that harbor sequences homologous to that of the indicated bacterial group with respect to fecal samples that were collected on the indicated days after administration		
	0 day	15 days	28 days
	No. %	No. %	No. %
Gram-positive bacteria			
Firmicutes	(54) (75.0)	(41) (73.2)	(40) (69.0)
Clostridia	(35) (48.6)	(28) (50)	(34) (58.6)
Clostridium rRNA cluster IV	2 (2.8)	2 (3.6)	7 (12.1)
Clostridium rRNA cluster IX	6 (8.3)	0 (0.0)	0 (0.0)
Clostridium rRNA cluster XI	1 (1.4)	1 (1.8)	2 (3.4)
Clostridium rRNA subcluster XIVa	14 (19.4)	15 (26.8)	12 (20.7)
Clostridium rRNA cluster XVI	5 (6.9)	2 (3.6)	2 (3.4)
Others	7 (9.7)	7 (12.5)	11 (19.0)
Bacilli	(15) (20.8)	(10) (17.9)	(0) (0.0)
Enterococciaceae	2 (2.8)	0 (0.0)	0 (0.0)
Lactobacilliaceae	10 (13.9)	4 (7.1)	0 (0.0)
Streptococciaceae	3 (4.2)	4 (7.1)	0 (0.0)
Unknown	3 (4.2)	4 (7.1)	6 (10.3)
Actinobacteria	(8) (11.1)	(0) (0.0)	(0) (0.0)
Bifidobacteriaceae	8 (11.1)	0 (0.0)	0 (0.0)
Gram-negative bacteria			
Bacteroidetes	(7) (9.7)	(16) (28.6)	(16) (27.6)
Bacteroidia	(6) (8.3)	(9) (16.1)	(7) (12.1)
Bacteroidaceae	1 (1.4)	2 (3.6)	1 (1.7)
Prevotellaceae	5 (6.9)	6 (10.7)	5 (8.6)
Others	0 (0.0)	1 (1.8)	1 (1.7)
Unknown	1 (1.4)	7 (3.6)	9 (15.5)
Proteobacteria	(3) (4.2)	(1) (1.8)	(2) (3.4)
Gammaproteobacteria	(2) (2.7)	(1) (1.8)	(2) (3.4)
Enterobactriaceae	2 (2.8)	1 (1.8)	0 (0.0)
Others	0 (0.0)	0 (0.0)	2 (3.4)
Unknown	1 (1.4)	0 (0.0)	0 (0.0)
Unknown	1 (1.4)	0 (0.0)	0 (0.0)
Total clones	72	56	58

This table was prepared on the basis of Appendix 2 without distinction of the feeding groups, because no statistical difference of T-RFLP profile was observed among the groups.

The classification of the class *Clostridia* is based on Collins et al. (4). The sequences whose homology with the most closely related species were less than 90% are listed under “Unknown”.

feces of 20 adult lactating Holstein dairy cattle in 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing. They obtained 46,865 sequences in total and found 274 different species corresponding to 142 separate genera, in which *Clostridium, Bacteroides, Porphyromonas, Ruminococcus, Alistipes, Lachnospiraceae, Prevotella, Lachnospira, Bacteroidales, Akkermansia, and Enterococcus* spp. were predominant. At the level of phylum, *Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria* occupied on average 48.4, 45.4, 2.3 and 0% of the population across all cows, respectively. Taken together, the results of these reports are basically consistent with our present results, indicating that our methods for T-RFLP and the cloning and sequencing of T-RF are a useful set of tools for the analysis of microflora.

REFERENCES

(1) Alexopoulos C. Georgoulakis IE, Tzivara A, Kritas SK, Siochu A, Kyriakis SC. 2004. Field evaluation of the efficiency of a probiotic containing *Bacillus licheniformis* and *Bacillus subtilis* spores, on the health status and performance of sows and their litters. J Anim Physiol Anim Nutr 88: 381–392.

(2) Berg RD. 1966. The indigenous gastrointestinal microflora. Trends Microbiol 4: 430–435.

(3) Busconi M, Reggi S, Fogher C. 2008. Evaluation of biodiversity of lactic acid bacteria microflora in the calf intestinal tracts. Antonie Van Leeuwenhoek 94: 145–155.

(4) Collins MD, Lawson PA, Willems A, Cordoba JJ,
Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA. 1994. Phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44: 812–826.

(5) Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeenan T, Hagevoort RG, Edington TS. 2008. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8: 125–132.

(6) Franks AH, Hamsern HM, Raangs GC, Jansen GJ, Chut F, Welling GW. 1998. Variation of bacterial population in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64: 3336–3345.

(7) Fuller R. 1989. Probiotics in man and animals. J Appl Bacteriol 66: 365–378.

(8) Gavini F, Delcenserie V, Kopeining K, Pollinger S, Beerens H, Bonaparte C, Upmann M. 2006. Bifidobacterium species isolated from animal feces and beef and pork meat. J Food Prot 69: 871–877.

(9) Gong JR, Forster J, Yu H, Chambers JR, Sabour PM, Wheatcroft R, Chen S. 2002. Diversity and phylogenetic analysis of bacteria in mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol Lett 208: 1–7.

(10) Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klij N, Bindels JG, Welling GW. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30: 61–67.

(11) Hayashi H, Sakamoto M, Kitahara Y, Benno Y. 2003. Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol 47: 557–570.

(12) Kyriakis SC, Tsiloyiannis VK, Vlemmas J, Sarris K, Tsinas AC, Alexopoulos C, Janseger L. 1999. The effect of probiotic LSP 122 on the control of post-weaning diarrhea syndrome of piglets. Res Vet Sci 67: 223–228.

(13) Jongamurakkun B, Wang Q, Xu SH, Tada Y, Minamida K, Yasokawa D, Sug M, Hara H, Asano K. 2008. Pediococcus pentosaceus NB-17 for probiotic use. J Biosci Bioeng 106: 69–73.

(14) Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68: 673–690.

(15) Liu W-T, Marsh TL, Cheng H, Forney LJ. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of genes encoding 16S rRNA. Appl Environ Microbiol 63: 4516–4522.

(16) Nagashima K, Hisada T, Sato M, Mochizuki J. 2003. Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. Appl Environ Microbiol 69: 1251–1262.

(17) Nagashima K, Mochizuki J, Hisada T, Suzuki S, Shimomura K. 2006. Phylogenetic analysis of 16S rRNA gene sequences from human fecal microbiota and improved utility of T-RFLP profiling. Biosci Microflora 25: 99–107.

(18) Nagata Y, Kamiura Y, Saka T, Yoshida M, Saito M, Kudo H, Kunisaki N, Gomyo Y. 2008. Lactobacillus plantarum strain No. 14 suppresses human allergic reaction. J Jpn Soc Food Sci Technol 55: 625–631 (in Japanese).

(19) Nakagawa R, Noto Y, Yasokawa D, Nagashima K. 2005. Fermentation of Soybean Milk with Lactobacillus plantarum HOKKAIDO and its Health Function. J Jpn Soc Food Sci Technol 52: 140–143 (in Japanese).

(20) Osborn AM, Moore ER, Timmis KN. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2: 39–50.

(21) Ozutsumi Y, Hayashi H, Sakamoto M, Itabashi H, Benno Y. 2005. Culture independent analysis of fecal microbiota in cattle. Biosci Biotechnol Biochem 69: 1793–1797.

(22) Salminen S, Bouley C, Bouton-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I. 1998. Functional food science and gastrointestinal physiology and function. Br J Nutr (Suppl 1) 80: S147–171.

(23) Schütte UM, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ. 2008. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80: 365–380.

(24) Shu Q, Qu F, Gill HS. 2001. Probiotic treatment using Bifidobacterium lactis HN019 reduces weaning diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J Pediatr Gastroenterol Nutr 33: 171–177.

(25) Tanaka O, Mori K, Ohmomo S. 2000. Effect of Inoculation with Lactobacillus curvatus on Ensiling. Glassland Sci 46: 148–152 (in Japanese).

(26) Tanaka-Azuma Y, Matsumura A, Ohno K, Ishihata K, Yoneda Y, Yamada T. 2009. Hypocholesterolemic Activity in lactic acid bacteria isolated from Funazushi. J Jpn Soc Food Sci Technol 56: 177–183 (in Japanese).

(27) Simpson JM, McCracken VJ, White BA, Gaskins HR, Mackie RI. 1999. Application of denaturant gradient gel electroforesis for the analysis of the porcine
gastrointestinal microbiota. J Microbiol Methods 36: 167–179.

(28) Suau A, Bonnet R, Sutren M, Godon J, Gibson GR, Collins MD, Doré J. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65: 4799–4807.

(29) Timmerman HM, Mulder L Everts H, van Esman D, van der Wal E, Klaassen G, Rouwers SMG, Hartemink R, Rombouts FM, Beynen AC. 2005. Health and growth of veal calves fed milk replacers with or without probiotics. J Dairy Sci 88: 2154–2165.

(30) Torrani S, Felis GE, Dellaglio F. 2001. Differentiation of \textit{Lactobacillus plantarum}, \textit{L. pentosus}, and \textit{L. paraplantarum} by recA gene sequence analysis and multiplex PCR assay with recA gene derived primers. Appl Environ Microbiol 67: 3450–3454.

(31) Vasconcelos JT, Elam NA, Brashears MM, Galyean ML. 2009. Effect of increasing dose of live cultures of \textit{Lactobacillus acidophilus} (Strain NP 51) combined with a single dose of \textit{Propionibacterium freudenreichii} (Strain NP 24) on performance and carcass characteristics of finishing beef steers. J Anim Sci 86: 756–762.

(32) Vlková E, Trojanová I, Rada V. 2006. Distribution of bifidobacteria in the gastrointestinal tract of calves. Folia Microbiol 51: 325–328.

(33) Vlková E, Rada V, Trojanová I, Killer J, Martina Šmehilová M, Molatova Z. 2008. Occurrence of bifidobacteria in feces of calves fed milk or a combined diet. Arch Anim Nutr 62: 359–365.

(34) von Buenau R, Jaekel L, Schubotz E, Schwarz S Stoff T, Krueger M. 2005. Escherichia coli strain Nissle 1917: significant reduction of neonatal calf diarrhea. J Dairy Sci 88: 317–323.

(35) Zoetendal EG, Akkermans ADL, de Vos WM. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64: 3854–3859.

(36) Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR. 2004. Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134: 465–472.

Appendix 1. Data of T-RFLP analysis in Exp 2

Sample names (days)	110	124	168	317	332	338	370	469	494	505	517	643	650	749	754	853	919	940	956	989	990	X	
C1-0-N 21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
C2-0-D 15	2.5	4.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
B3-0-D 15	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
L4-0-S 16	0.0	0.0	0.0	8.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
B5-0-S 27	1.1	17.0	3.4	2.9	0.0	4.9	5.6	1.0	0.0	0.0	0.0	0.0	23.8	0.0	2.4	0.0	12.4	29.9	0.0	0.0	14.1	0.0	
L6-0-N 22	0.0	0.0	0.0	0.0	0.7	0.0	3.2	1.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
C8-0-S 10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
B10-0-S 8	0.0	5.3	0.0	0.0	11.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.6	33.9	0.0	2.7	0.0	8.0
L11-0-S 9	9.4	1.9	0.0	0.0	16.2	0.0	13.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.3	10.5	0.0	12.3	
C12-0-S 15	0.0	0.0	0.0	0.0	3.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	12.6	2.0	0.9	0.0	5.7	25.4	13.0	8.1	22.0	0.0

Refer to Table 4 for sample names.
Appendix 2. Results of cloning and sequencing of T-RFs

Clone names	Size (bases)	Most closely related species	Accession no.	homology (%)	Phylum
p1-08	1000	*Clostridium thermosuccinogenes*	Y18180	86.7	Firmicutes
p1-06	999	*Lactobacillus reuteri*	CP000705	89.9	Firmicutes
p1-13	974	*Enterococcus coli*	CP000243	89.0	Proteobacteria
p1-12	958	*Ruminococcus gnavus*	X94967	94.0	Firmicutes
p1-16	957	*Coprooccus comes*	AJ270484	95.0	Firmicutes
p1-04	955	*Eubacterium formicigenes*	L34619	96.4	Firmicutes
p1-03	939	*Ruminococcus torques*	L76604	97.3	Firmicutes
p4-13	939	*Dorea formicigenes*	L34619	98.5	Firmicutes
p1-13	938	*Rosebacter faeicæs*	AY804150	93.7	Firmicutes
p1-07	930	*Eubacterium bifforme*	M59230	88.1	Firmicutes
p1-05	926	*Eubacterium bifforme*	M59230	97.2	Firmicutes
p1-14	920	*Enterococcus cocorum*	Y365054	99.9	Firmicutes
p1-01	919	*Clostridium glycyrhizinaŭicum*	AB233029	93.3	Firmicutes
p1-02	918	*Enterococcus cecorum*	AF061009	99.7	Firmicutes
p2-01	755	*Ruminococcus gnavus*	X94967	99.5	Firmicutes
p2-04	755	*Ruminococcus gnavus*	X94967	99.5	Firmicutes
p2-06	755	*Lactobacillus salivarius*	CP000233	95.6	Firmicutes
p2-12	755	*Lactobacillus mucosae*	DQ471799	92.8	Firmicutes
p2-03	754	*Ruminococcus lactaris*	L76602	95.2	Firmicutes
p2-05	752	*Subulagranum variabile*	AJ351869	93.2	Firmicutes
p2-07	750	*Mogibacterium neglectum*	AB037875	93.8	Firmicutes
p2-10	749	*Subulagranum variabile*	AJ351869	98.8	Firmicutes
p2-08	748	*Fusobacterium prausnitzii*	AJ413954	92.5	Firmicutes
p4-12	571	*Ruminococcus productus*	AY196512	92.4	Firmicutes
p2-13	665	*Lactobacillus salivarius*	DQ901733	99.2	Firmicutes
p3-02	664	*Lactobacillus gasseri*	CP000413	99.5	Firmicutes
p3-10	664	*Lactobacillus mucosae*	AF126738	99.7	Firmicutes
p3-04	663	*Lactobacillus mucosae*	AF126738	99.1	Firmicutes
p3-12	663	*Lactobacillus gasseri*	AY360337	99.5	Firmicutes
p3-14	663	*Lactobacillus gasseri*	AY360337	95.6	Firmicutes
p3-09	662	*Lactobacillus johnsonii*	AE017198	93.6	Firmicutes
p3-13	662	*Ruminococcus productus*	AB196512	94.6	Firmicutes
p3-06	661	*Streptococcus bovis*	AF104109	99.8	Firmicutes
p3-05	655	*Clostridium ramosum*	M2373	92.1	Firmicutes
p3-01	654	*Clostridium ramosum*	M2373	93.2	Firmicutes
p3-07	654	*Clostridium ramosum*	M2373	93.4	Firmicutes
p3-08	654	*Ruminococcus sp.*	AY960567	91.0	Firmicutes
p3-11	654	*Clostridium saccharogamia*	DQ100445	93.7	Firmicutes
p4-03	521	*Lactobacillus vitulinus*	AB210825	93.2	Firmicutes
p4-07	514	*Bacillus subtilis*	CP000034	96.7	Firmicutes
p4-04	513	*Faecalibacterium prausnitzii*	X85022	98.0	Firmicutes
p4-06	490	*Orbacterium nervosum*	AY323228	94.0	Firmicutes
p4-09	490	*Ruminococcus obeum*	AY169491	98.3	Firmicutes
p2-02	488	*Coprooccus comes*	EF031542	99.6	Firmicutes
p4-10	488	*Clostridium nucile*	AY169415	97.3	Firmicutes
p4-02	485	*Eubacterium bifforme*	M59230	97.3	Firmicutes
p4-09	460	*Spiroplasma chinense*	AY189126	87.1	Tenericutes
p5-07	371	*Megasenas hypermegalae*	AJ420107	97.3	Bacteroidetes
p5-10	366	*Prevotella capri*	AB084923	99.2	Bacteroidetes
p5-11	366	*Prevotella ruminicola*	AB219152	96.4	Bacteroidetes
p5-05	365	*Prevotella albensis*	AB011683	89.6	Bacteroidetes
p5-12	337	*Escherichia sp.*	DQ629916	96.6	Proteobacteria
p5-06	335	*Clostridium difficile*	AM180355	95.2	Firmicutes
p5-04	329	*Streptococcus bovis*	AF104109	99.7	Firmicutes
p5-08	327	*Streptococcus bovis*	AJ014090	100	Firmicutes
p5-01	317	*Prevotella capri*	AB064923	98.7	Bacteroidetes
p5-03	316	*Prevotella capri*	AB064923	99.0	Bacteroidetes
p6-01	127	*Bifidobacterium longum*	AE014295	97.6	Actinobacteria
p6-02	127	*Bifidobacterium longum*	AE014295	99.2	Actinobacteria
p6-12	127	*Bifidobacterium pseudacatenulatum*	AB125917	100	Actinobacteria
p6-13	127	*Bifidobacterium pseudacatenulatum*	AB125917	99.2	Actinobacteria
p6-07	117	*Veillonella ratti*	AF186071	97.3	Firmicutes
p5-02	114	*Bifidobacterium longum*	AE014295	99.1	Actinobacteria
p6-03	114	*Pectinatus frisingensis*	AF373027	97.3	Firmicutes
p6-04	114	*Mitsuokella jalaludini*	AF479674	100	Firmicutes
p6-05	114	*Pectinatus cerevisiophilus*	AF373026	97.3	Firmicutes
p6-08	114	*Bifidobacterium choerinum*	D86186	100	Actinobacteria
p6-10	114	*Pectinatus cerevisiophilus*	AF373026	97.3	Firmicutes
p6-12	114	*Bifidobacterium dentium*	EF140738	99.1	Actinobacteria
Clone names	Size (bases)	Most closely related species	Accession no.	homology (%)	Phylum
-------------	-------------	------------------------------	---------------	--------------	----------------
p7-06	998	Ruminococcus obeum	AY169419	98.1	Firmicutes
p7-12	997	Ruminococcus obeum	AY169419	90.7	Firmicutes
p7-01	995	Eubacterium formigenerans	L34619	87.3	Firmicutes
p7-04	984	Prevotella multiformis	AY207061	87.4	Bacteroidetes
p7-13	982	Ruminococcus obeum	AY169419	93.6	Firmicutes
p7-14	982	Ruminococcus obeum	AY169419	93.6	Firmicutes
p7-10	967	Ruminococcus schinkii	X94964	93.5	Firmicutes
p7-05	956	Ruminococcus schinkii	X94965	95.6	Firmicutes
p7-09	940	Clostridium leptum	AJ262239	96.2	Firmicutes
p7-11	939	Dorea formigenerans	DQ279737	98.5	Firmicutes
p7-02	937	Eubacterium formigenerans	L34619	92.6	Firmicutes
p7-15	931	Subdoligranulum variabilis	AJ518869	93.7	Firmicutes
p7-08	926	Clostridium orbiscindens	Y18187	90.7	Firmicutes
p7-07	923	Clostridium celercrecens	AJ295659	93.8	Firmicutes
p8-04	956	Eubacterium halii	AY305318	95.5	Firmicutes
p8-06	955	Eubacterium halii	L34621	96.4	Firmicutes
p8-12	954	Ruminococcus gnavus	X94967	96.4	Firmicutes
p8-02	954	Escherichia coli	BA000007	98.8	Proteobacteria
p8-09	954	Ruminococcus obeum	AY169419	97.9	Firmicutes
p8-05	953	Papillibacter cinnamimovoran	AF167711	94.0	Firmicutes
p8-10	953	Papillibacter cinnamimovoran	AF167711	93.9	Firmicutes
p8-11	949	Subdoligranulum variabilis	AJ518869	98.8	Firmicutes
p8-07	947	Subdoligranulum variabilis	AJ518869	99.2	Firmicutes
p8-08	947	Subdoligranulum variabilis	AJ518869	99.2	Firmicutes
p8-03	946	Subdoligranulum variabilis	AJ518869	97.2	Firmicutes
p9-05	963	Lactobacillus johnsonii	AE017198	93.9	Firmicutes
p9-09	963	Lactobacillus johnsonii	AE017198	99.7	Firmicutes
p9-10	963	Lactobacillus reuteri	AY735406	99.8	Firmicutes
p9-01	962	Streptococcus bovis	AF104109	100	Firmicutes
p9-08	962	Streptococcus agalactiae	CP000114	93.9	Firmicutes
p9-02	965	Lactobacillus johnsonii	AE017198	83.6	Firmicutes
p9-03	965	Lactobacillus reuteri	CP000705	82.7	Firmicutes
p9-07	965	Lactobacillus vitulinus	AB210825	91.3	Firmicutes
p9-06	964	Eubacterium biiforme	M59230	97.8	Firmicutes
p9-04	963	Eubacterium halii	L34621	89.7	Firmicutes
p10-08	490	Clostridium nexile	AY169415	97.9	Firmicutes
p10-04	487	Eubacterium biiforme	M59230	97.3	Firmicutes
p10-05	470	Prevotella copri	AB244772	98.9	Bacteroidetes
p10-14	469	Prevotella ruminicola	AB219152	98.9	Bacteroidetes
p10-03	467	Prevotella copri	AB244772	98.9	Bacteroidetes
p10-09	467	Parabacteroides merdae	AB238929	97.2	Bacteroidetes
p10-10	467	Prolactibacter bellariavorns	AY918928	88.6	Bacteroidetes
p10-12	467	Bacteroides thetaiotaomicron	AE015928	88.2	Bacteroidetes
p10-15	467	Prolactibacter bellariavorns	AY918928	88.6	Bacteroidetes
p10-01	466	Prevotella stercorea	AB244774	98.1	Bacteroidetes
p10-07	466	Sphingobacterium multivorum	AB020205	88.8	Bacteroidetes
p11-07	370	Ruminococcus schinkii	X94964	93.5	Firmicutes
p11-06	369	Bacteroides capillosus	AY136666	95.9	Bacteroidetes
p11-01	369	Bacteroides coprophilus	AB064923	96.7	Bacteroidetes
p11-03	366	Bacteroides coprophilus	AB260025	92.8	Bacteroidetes
p11-09	365	Bacteroides intestinalis	AB214328	86.0	Bacteroidetes
p11-13	355	Bacteroides denticanum	DQ156990	83.6	Bacteroidetes
p11-10	335	Clostridium difficile	AM180355	95.8	Firmicutes
p11-11	331	Streptococcus bovis	DQ394708	99.1	Firmicutes
p11-08	328	Streptococcus bovis	AF104109	100	Firmicutes
p11-12	318	Prevotella copri	AB244770	99.4	Bacteroidetes
Clone names	Size (bases)	Most closely related species	Accession no.	homology (%)	Phylum
------------	-------------	---	---------------	--------------	-----------------
p12-09	995	Ruminococcus bromii	DQ882649	90.0	Firmicutes
p12-13	992	Ruminococcus flavefaciens	AY445599	92.7	Firmicutes
p12-14	991	Ruminococcus obeum	AY169419	89.7	Firmicutes
p12-06	967	Eubacterium formicigenicans	L34619	97.7	Firmicutes
p12-03	958	Ruminococcus schinkii	X94965	93.8	Firmicutes
p12-05	957	Clostridium indolis	AF028351	84.8	Firmicutes
p12-12	957	Bacteroides capillosus	AY136666	92.8	Bacteroides
p12-04	955	Clostridium leptum	AF262239	95.2	Firmicutes
p12-15	938	Eubacterium ruminantium	AB008552	93.5	Firmicutes
p12-01	936	Papillibacter cinnaminoformans	AF167711	93.1	Firmicutes
p12-02	936	Papillibacter cinnaminoformans	AF167711	93.4	Firmicutes
p12-07	936	Papillibacter cinnaminoformans	AF167711	94.2	Firmicutes
p12-08	929	Ruminococcus flavefaciens	AY445599	92.4	Firmicutes
p13-08	772	Ruminococcus bromii	X85099	91.4	Firmicutes
p13-02	759	Ruminococcus productus	AB196512	90.5	Firmicutes
p13-01	756	Clostridium thermocellum	CP000568	86.2	Firmicutes
p14-11	754	Succinivibrio dextrinosolvens	EF560776	91.7	Proteobacteria
p13-03	753	Papillibacter cinnaminoformans	AF167711	93.0	Firmicutes
p13-04	753	Faecalibacterium prausnitii	AJ413954	96.2	Firmicutes
p13-10	753	Succinivibrio dextrinosolvens	Y17600	97.1	Proteobacteria
p13-05	748	Eubacterium cylindroides	L34617	90.3	Firmicutes
p13-07	732	Papillibacter cinnaminoformans	AF167711	93.9	Firmicutes
p13-13	732	Papillibacter cinnaminoformans	AF167711	94.1	Firmicutes
p13-06	724	Papillibacter cinnaminoformans	AF167711	93.9	Firmicutes
p14-12	671	Ruminococcus productus	X94966	91.9	Firmicutes
p14-05	664	Clostridium leptum	AJ305238	85.8	Firmicutes
p14-09	664	Ruminococcus bromii	X85099	89.1	Firmicutes
p14-08	663	Butyribivibrio fibrisolvens	U77341	90.6	Firmicutes
p14-06	662	Ruminococcus productus	AB196512	90.3	Firmicutes
p14-07	662	Ruminococcus productus	AB196512	90.8	Firmicutes
p14-01	659	Anaerococcus prevotii	AF542232	98.3	Firmicutes
p14-10	656	Ruminococcus callidus	X85100	95.3	Firmicutes
p14-03	655	Eubacterium cylindroides	L34617	91.7	Firmicutes
p15-08	490	Ruminococcus schinkii	X94965	96.1	Firmicutes
p15-02	474	Prolixibacter bellariaformans	AY918928	88.1	Bacteroidetes
p15-10	472	Pseudoramibacter alactolyticus	AB036759	90.6	Firmicutes
p15-05	470	Parabacteroides distasonis	CP000140	85.5	Bacteroidetes
p15-07	470	Papillibacter cinnaminoformans	AF167711	90.8	Firmicutes
p15-14	469	Oscillibacter valericigenes	AB238598	96.1	Firmicutes
p15-01	467	Sphingobacterium multivorum	AB020205	88.6	Bacteroidetes
p15-12	467	Alistipes massiliensis	AY547271	89.2	Bacteroidetes
p15-13	467	Alistipes massiliensis	AY547271	90.5	Bacteroidetes
p15-06	466	Pedobacter koreensis	DQ680836	84.9	Bacteroidetes
p15-15	462	Pedobacter panaciterrae	EF195090	80.4	Bacteroidetes
p15-16	462	Eubacterium hallii	L34621	97.2	Firmicutes
p15-09	459	Prolixibacter bellariaformans	AY918928	88.4	Bacteroidetes
p15-04	442	Prevotella ruminicola	AF218619	91.1	Bacteroidetes
p16-10	370	Anaerophaga thermohalophilia	AJ418048	82.8	Bacteroidetes
p16-07	368	Clostridium xylanovorans	AF116920	87.7	Firmicutes
p16-01	367	Sporobacter termitidis	Z49863	93.2	Firmicutes
p16-05	366	Prevotella copri	AB064923	97.0	Bacteroidetes
p16-09	366	Prevotella ruminicola	AF218620	91.5	Bacteroidetes
p16-03	365	Clostridium clostridiformes	M59089	84.4	Firmicutes
p16-02	364	Prevotella copri	AB064923	90.6	Bacteroidetes
p16-08	335	Clostridium bififormans	AF320283	97.0	Firmicutes
p16-13	333	Clostridium bififormans	AF604562	95.5	Firmicutes
p16-12	331	Ruminococcus productus	AY937379	92.8	Firmicutes