A Novel PDZ Protein Regulates the Activity of Guanylyl Cyclase C, the Heat-stable Enterotoxin Receptor*

Robert O. Scott‡, William R. Thelin, and Sharon L. Milgram§

From the Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599

Secretory diarrhea is the leading cause of infectious diarrhea in humans. Secretory diarrhea may be caused by binding of heat-stable enterotoxins to the intestinal receptor guanylyl cyclase C (GCC). Activation of GCC catalyzes the formation of cGMP, initiating a signaling cascade that opens the cystic fibrosis transmembrane conductance regulator chloride channel at the apical cell surface. To identify proteins that regulate the trafficking or function of GCC, we used the unique COOH terminus of GCC as the “bait” to screen a human intestinal yeast two-hybrid library. We identified a novel protein, IKEPP (intestinal and kidney-enriched PDZ protein) that associates with the COOH terminus of GCC in biochemical assays and by co-immunoprecipitation. IKEPP is expressed in the intestinal epithelium, where it is preferentially accumulated at the apical surface. The GCC-IKEPP interaction is not required for the efficient targeting of GCC to the apical cell surface. Rather, the association with IKEPP significantly inhibits heat-stable enterotoxin-mediated activation of GCC. Our findings are the first to identify a regulatory protein that associates with GCC to modulate the catalytic activity of the enzyme and provides new insights in mechanisms that regulate GCC activity in response to bacterial toxin.

Guanylyl cyclase C (GCC) is the receptor for heat-stable enterotoxins (STa)1 secreted by Escherichia coli and other enteric bacteria. STa binding to GCC increases intracellular cGMP and initiates a signaling cascade, leading to the phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) at the apical surface of gastrointestinal epithelial cells. Phosphorylation of CFTR opens the channel, resulting in the net efflux of ions and water into the intestinal lumen. The endogenous ligands for GCC include guanylin, uroguanylin, and lymphoguanylin, which are thought to regulate ion transport in epithelial tissues (1–3).

GCC is a member of a family of transmembrane proteins that includes receptors for natriuretic peptides and egg-activating peptides as well as several orphan receptors (4). All receptor GCs with a single transmembrane domain share a common topology. There is an NH2-terminal extracellular ligand-binding domain and a large cytosolic domain composed of a kinase homology domain and a catalytic domain. Following the catalytic domain, GCC contains an extended COOH terminus of 63 amino acids (COOH-terminal extension peptide (CTEP)) that is not found in the natriuretic peptide receptors (5). The CTEP is well conserved and contains a consensus protein kinase C phosphorylation site that potentiates cGMP-mediated signaling by phorbol esters (6). GCC proteins lacking the 63-amino acid CTEP lose the ability to respond to STa (6, 7), suggesting that this unique sequence plays a role in GCC activation. Since GCC is the only receptor guanylyl cyclase localized predominately at the apical membrane of epithelial cells, CTEP may also play a role targeting the receptor to the apical cell surface.

To determine whether the COOH terminus of GCC participates in protein-protein interactions that may regulate its targeting or function, we screened a human intestinal epithelial enriched yeast two-hybrid library using CTEP as “bait.” We found that GCC associates via its COOH terminus with a novel protein containing four PDZ domains. Based on its domain organization and restricted mRNA distribution, we named this protein IKEPP (intestinal and kidney enriched PDZ Protein). IKEPP is accumulated at the apical membrane of human intestinal epithelial cells and associates with GCC in a cellular context. Mutagenesis studies indicate that association with PDZ proteins is not required for efficient targeting of GCC to the apical surface. Rather, the interaction of IKEPP and GCC inhibits receptor activation by STa. Thus, GCC activity may be modulated by interaction with accessory proteins, thereby providing additional means to regulate signaling via guanylyl cyclase receptors.

EXPERIMENTAL PROCEDURES

cDNA Library Generation, Plasmid Construction, Two-hybrid Screens—All cDNA inserts were generated by PCR, cloned into complementary restriction endonuclease sites of the appropriate plasmids, and verified by sequencing; specific details are available upon request. A human intestinal epithelial enriched cDNA library was generated by cloning poly(dT)-primed cDNA into the HybriZAP bacteriophage λ vector followed by amplification and in vitro mass excision to generate a two-hybrid library in pAD-GAL4 (Stratagene). The yeast binding domain (BD) plasmid pPC86BD was generated by digesting the parental vectors, pPC97 (GAL4BD and LEU2) and pPC86 (GAL4AD and TRP1) (8), with AvaI and BamHI. These fragments were then ligated into the opposite backbone vector to give pPC86BD and pPC97AD. cDNA encoding full-length CTEP was amplified by PCR using

* This work was supported by National Institutes of Health Grants R29DK05744 and HL63755 (to S. L. M.) and the University of North Carolina Center for Gastrointestinal Biology and Disease (to S. L. M. and R. O. S.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The nucleotide sequence reported in this paper has been submitted to the DDBJ/GenBankTM/EBI Data Bank with accession number AY047359.

‡ A Ford Foundation Fellow and Merck/UNCF Scholar. Present address: Procter & Gamble Co., 8700 Mason Montgomery Rd., Mason, OH 45040.

§ To whom correspondence should be addressed. Dept. of Cell and Developmental Biology, University of North Carolina at Chapel Hill, CB# 7090, Chapel Hill, North Carolina 27599. Tel.: 919-966-9792; Fax: 919-966-1856; E-mail: milg@med.unc.edu.

1 The abbreviations used are: STa, heat-stable enterotoxin; CTEP, COOH-terminal extension peptide; PDZ, postsynaptic density-95, disks large, zonula occludens-1; BD, binding domain; HA, hemagglutinin; MDCK, Madin-Darby canine kidney; TRITC, tetramethylrhodamine isothiocyanate.
were fractionated by SDS-PAGE and transferred to Immobilon-P (Millipore) and protein concentrations were determined using the BCA protein assay kit (Pierce). Samples were grown to the appropriate cell density at 37 °C and transfected with cDNAs encoding IKEPP and HA-GCC or HA-GCC/H9004 with FuGENE6 (Roche Molecular Biochemicals). After 48 h, the cells were lysed in TBS (100 mM Tris-HCl, 150 mM NaCl, pH 7.5), 1% Triton X-100, and protease inhibitors. Mouse anti-HA or purified normal mouse IgG (2 μg/ml) was added to the cell lysate and incubated overnight at 4 °C. Immune complexes were collected on protein G-agarose and washed extensively in TBS buffer plus 0.1% Triton X-100. Bound proteins were resolved by SDS-PAGE and analyzed by Western blotting with HA or IKEPP antisera.

Confocal Microscopy—Stable MDCK type II cell lines expressing HA-GCC or HA-GCC4 were generated as described (10). MDCK or Caco2 cells were grown on Transwell filters (Costar) until confluent monolayers were observed, and transepithelial resistances, with filter subtraction, were greater than 1000 ohms cm² or 400 ohms cm²-untranslated region (nucleotides 1565–2120) as described (10).

Antisera Generation and Immunoblot Analysis—Rabbit antisera directed against the COOH terminus of human IKEPP were generated in rabbits using residues 484–505 of IKEPP coupled with keyhole limpet cyalin as immunogen. Rabbit polyclonal antisera were also generated using His-IKEPP fusion protein as immunogen. The pET-IKEPP plasmid was transformed into BL21(DE3, pLysS) Escherichia coli and grown to the appropriate cell density at 37 °C. IKEPP expression was induced by the addition of 1 mM isopropyl-1-thio-β-D-galactopyranoside for 3 h at 37 °C and purified from the insoluble fraction.

To prepare cell lysates, cultured cells were washed with ice-cold phosphate-buffered saline (50 mM NaPO4, 150 mM NaCl, pH 7.4) and isolated with ice-cold homogenization buffer containing 20 mM Hepes, pH 7.4, 150 mM NaCl, 2 mM phenylmethylsulfonyl fluoride, 1 μg/ml leupeptin. The homogenates were centrifuged at 100,000 × g for 1 h to generate soluble and particulate fractions. Protein concentrations were determined using the BCA protein assay kit (Pierce); samples were fractionated by SDS-PAGE and transferred to Immobilon-P (Millipore Corp.), and processed using the Vectastain Elite ABC kit described previously (12), stained with rabbit anti-IKEPP IgG (NC369; diluted 1:1500), and visualized with ECL.

Protein Interaction Assays—In vitro binding assays and co-immunoprecipitations were performed as described (11). For immunoprecipitation of overexpressed HA-GCC and IKEPP, COS7 cells were transfected with cDNAs encoding IKEPP and HA-GCC or HA-GCC4 with FuGENE6 (Roche Molecular Biochemicals). After 48 h, the cells were lysed in TBS (100 mM Tris-HCl, 150 mM NaCl, pH 7.5), 1% Triton X-100, and protease inhibitors. Mouse anti-HA or purified normal mouse IgG (2 μg/ml) was added to the cell lysate and incubated overnight at 4 °C. Immune complexes were collected on protein G-agarose and washed extensively in TBS buffer plus 0.1% Triton X-100. Bound proteins were resolved by SDS-PAGE and analyzed by Western blotting with HA or IKEPP antisera.
IKEPP, PDZK1, EBP50, and E3KARP contain the general consensus, Arg/Lys-X-X-Tyr/Phe-Gly-Phe, with the exception of IKEPP PDZ4, which possesses a Pro residue rather than the Arg/Lys (Fig. 1D). In the carboxylate-binding pocket, the Arg/Lys residue is responsible for ordering a water molecule that interacts with the terminal carboxylate of the ligand (17). Therefore, the C-terminal residue(s) of proteins that associate with IKEPP PDZ4 will probably differ from the ligands recognized by PDZK1, EBP50, E3KARP, and IKEPP PDZ domains 1–3.

The −2-position of the preferred peptide ligand is used to categorize the PDZ domains as class I (−2 Ser/Thr), class II (−2 hydrophobic), and a lesser defined class III, which deviate from class I and II (18–20). The specificity of the −2 interaction is coordinated by the first residue of the second α-helix of the PDZ domain (αB1) (18). At the αB1 position, class I PDZ domains contain a conserved His residue (17, 21), whereas class II domains possess a hydrophobic residue (22). To the best of our knowledge, all of the published binding partners of PDZK1, EBP50, and E3KARP, as well as the binding partners our laboratory has identified for IKEPP, lack the conserved His residue characteristic of class I PDZ domains. In the αB1 position, a Tyr residue (IKEPP PDZ1) has been shown to prefer ligands containing a −2 Asp residue, whereas an Asp residue (IKEPP PDZ4) interacts with peptides with a −2 Tyr (20, 23).

Localization and Distribution of IKEPP in Human Cells and Tissues—To evaluate the subcellular distribution of IKEPP, we generated rabbit polyclonal antisera directed against the COOH-terminal 15 amino acids of human IKEPP or the recombinant full-length protein. These antisera were first tested by Western blot analysis using full-length human IKEPP generated by coupled in vitro transcription/translation. Whereas preimmune sera did not detect proteins in the reticulocyte lysates, both antibodies reliably detected full-length IKEPP (Fig. 2A). We further tested the specificity of our IKEPP antisera by Western blot analysis of EBP50, E3KARP, and PDZK1 and found that both IKEPP antisera specifically recognize recombinant full-length protein. These antisera were first tested by Western blot analysis using full-length human IKEPP generated by coupled in vitro transcription/translation. Whereas preimmune sera did not detect proteins in the reticulocyte lysates, both antibodies reliably detected full-length IKEPP (Fig. 2A).

We first examined the expression of IKEPP in cultured human cell lines and found that the protein was expressed in whole cell lysates of two intestinal epithelial cell lines, T84 and Caco2 (Fig. 2B); much less protein was detected in an airway epithelial cell line (16HBE14o−) or in hEK293 cells. A significant

FIG. 1. Identification of a novel PDZ protein preferentially expressed in the intestine and kidney. A, a multiple tissue Northern blot (CLONTECH) was probed with a random primed 32P-labeled probe generated against the IKEPP 3′-untranslated region. The blot was stripped and incubated with a β-actin probe. Similar results were obtained in two separate blots. B, a multiple tissue array was probed with the same IKEPP probe used in A; all other tissues showed no signal and were deleted from the figure. C, schematic representation of IKEPP and related PDZ proteins. PDZ domains are numbered, and ezrin-radixin-moesin binding motifs are indicated by the letter E. The proteins are drawn to scale, and the amino acid numbers are as shown. D, the amino acid sequences of the individual PDZ domains of IKEPP, PDZK1, EBP50, and E3KARP were aligned using DNASTAR software. At each position, the most commonly conserved residues between sequences are shown in black boxes, whereas similarly charged residues are shaded in gray. The predicted secondary structures of the PDZ domains, based on the crystal structure of EBP50 PDZ1 are also shown.
fraction of the IKEPP protein was found in the particulate fraction of Caco2 and T84 cells (Fig. 2C). We next examined the localization of IKEPP in Caco2 cells grown to confluence on Transwell filters and found IKEPP preferentially accumulated in the subapical compartment and at the apical membrane (Fig. 3A); similar results were obtained with colonic T84 cells (data not shown). In normal human ileum and colon, IKEPP was preferentially accumulated at the apical surface and was visualized in cells of the crypt and villus (Fig. 3B). GCC is also expressed at the apical surface of intestinal epithelial cells (24). Thus, the distribution of IKEPP in human intestine is consistent with the possibility that the GCC and IKEPP associate in vivo.

Characterization of the IKEPP-GCC Interaction—We further characterized the interaction between GCC and IKEPP. Since GCC terminates with the amino acid sequence STYF, a type I PDZ binding motif, we tested whether the COOH-terminal four amino acids of CTEP mediated the interaction with IKEPP. We characterized the interaction between GCC and IKEPP in nonepithelial cells. COS7 cells were transiently transfected with cDNAs encoding IKEPP plus HA-GCC. HA-GCC associated with GST-CTEP on glutathione-agarose beads and tested whether radiolabeled PDZK1, EBP50, or E3KARP could associate with CTEP. We found that PDZK1, but not EBP50 or E3KARP, associates with GST-CTEP in pull-down assays (Fig. 4C).

To determine whether full-length IKEPP could associate with full-length GCC, we incubated GST or GST-IKEPP with whole cell lysates prepared from cells overexpressing HA-tagged GCC (HA-GCC). HA-GCC associated with GST-IKEPP but not with GST (Fig. 4D). GCC may be tightly associated with the subapical cytoskeleton in the intestinal epithelium (25) and is not easily solubilized from cell membranes in buffers compatible with maintaining protein-protein interactions. Therefore we used an overexpression strategy to study the association of GCC and IKEPP in nonepithelial cells. COS7 cells were transiently transfected with cDNAs encoding IKEPP plus HA-GCC or IKEPP plus HA-GCCΔ4. Cell lysates were prepared in buffers containing 1% Triton X-100, which is known to remove GCC from cell membranes in COS7 cells (5), and the cell lysates were incubated with control IgG or HA antibody. We found that IKEPP was not associated with control IgG but was easily detected in HA-GCC immunoprecipitates (Fig. 4E). Moreover, IKEPP was not found in HA immunoprecipitates.
Function of the GCC-IKEPP Interaction—Interaction with PDZ proteins may be involved in selectively targeting proteins to apical or basolateral cell surfaces in epithelial cells (26–28). Therefore, we tested whether the COOH-terminal STYF sequence in GCC was involved in targeting the receptor to the apical cell surface. We generated stable MDCK cell lines expressing HA-GCC or HA-GCCΔ4 proteins by transfecting GCC cDNA into MDCK cells (Fig. 5A). Likewise, HA-GCCΔ4 was preferentially accumulated at the apical cell surface of polarized MDCK cells (Fig. 5A). HA-GCC and HA-GCCΔ4 were visualized at the apical membrane in nonpermeabilized cells, further suggesting that the HA-GCC and HA-GCCΔ4 proteins were on the cell surface (data not shown). Thus, we conclude that interaction with apical membrane PDZ proteins does not play a significant role in the targeting of GCC to the apical cell surface in MDCK cells.

Bakre et al. recently compared the STa-induced desensitization of GCC in intestinal epithelial cells and in transfected fibroblasts and suggested that GCC catalytic activity might be regulated by interaction with proteins selectively expressed in epithelial cells (29). Therefore, we tested whether IKEPP modulated STa-mediated activation of GCC in transfected COS7 cells that do not express significant amounts of endogenous IKEPP. Treatment of COS7 cells expressing HA-GCC with 25 units/ml STa for 20 min significantly increased intracellular cGMP, whereas cGMP was undetected in mock-transfected cells (data not shown). In cells co-expressing GCC and IKEPP, 25 units/ml STa also increased intracellular cGMP above background. cGMP levels, however, were reduced by ~1.7-fold in cells co-expressing HA-GCC and IKEPP compared with cells transfected with HA-GCC and empty vector (Fig. 5B). In similar experiments, intracellular cGMP levels were decreased in COS7 cells expressing GCC and IKEPP by 1.5–2.5-fold compared with cells expressing HA-GCC and empty vector following incubation with 25 units/ml STa for 10–30 min (data not shown). This cannot be explained by changes in the expression of HA-GCC in the co-transfected cells, since the receptor was easily detected in membrane fractions prepared from these cells (Fig. 5B). Since the COOH terminus of GCC mediates the interaction with IKEPP, we tested whether IKEPP expression also inhibited STa-mediated activation of HA-GCCΔ4. We observed similar levels of STa-mediated cGMP in HA-GCCΔ4 cells in the absence or presence of co-expressed IKEPP (Fig. 5B). Therefore, we conclude that IKEPP binding may inhibit the catalytic activity of GCC and that the inhibition requires a physical interaction between the receptor and IKEPP. To begin to understand the mechanism of this inhibition, we transfected COS7 cells with HA-GCC with or without IKEPP and assayed cGMP accumulation over a range of STa concentrations. Appli-
We report the cloning and initial characterization of IKEPP, a novel PDZ protein expressed at the apical membrane of human intestinal epithelial cells. IKEPP directly associates with the COOH terminus of GCC, the heat-stable enterotoxin receptor found at the apical surface of intestinal epithelial cells. Our localization studies (Fig. 3) and co-immunoprecipitation assays (Fig. 4E) support the hypothesis that IKEPP and GCC may associate in cells. Furthermore, the association with IKEPP inhibits the catalytic function of GCC, resulting in a decreased responsiveness to STa (Fig. 5, B and C).

Sequence and structural analysis indicates that IKEPP is most closely related to human PDZK1 (Fig. 1, C and D), a protein identified in a yeast two-hybrid screen as a MAP17-associated protein. PDZK1 also associates with CMOAT, a multidrug resistance transporter (13). The mouse orthologue of PDZK1, named CAP70, was purified from kidney based on its ability to associate with CFTR and was shown to potentiate CFTR Cl\(^{-}\) channel activity (14). IKEPP and PDZK1 share significant identity with EBP50 and E3KARP (Fig. 1D). These proteins were first cloned as co-factors required for cAMP-mediated inhibition of Na\(^{+}/H\)^+ exchanger 3 (30, 31) and later shown to associate with ezrin, radixin, and moesin (15). EBP50 and E3KARP can interact with receptors, ion channels, transporters, signaling molecules, adaptor proteins, and proteins that regulate membrane trafficking (32–37). Interestingly, EBP50, E3KARP, and PDZK1 associate with CFTR (14, 32, 35), a downstream effector of GCC (33). Therefore, it will be important to test whether IKEPP compartmentalizes GCC and CFTR together in a multiprotein complex at the apical cell surface. It will also be important to compare the expression, subcellular distribution, and binding partners of IKEPP and PDZK1, since we find that CTEP can also bind PDZK1 in biochemical assays (Fig. 4C).

Despite the overall sequence similarity between IKEPP, PDZK1, EBP50, and E3KARP, PDZ1 and PDZ4 of IKEPP differ at critical residues responsible for determining the specificity of the interaction between the PDZ domain and COOH-termini ligand. Class I PDZ domains coordinate the interaction with a Ser/Thr residue at the −2-position of their peptide ligands through an ω1 His residue. IKEPP PDZ4, however, contains an ω1 Asp residue, which has been shown to preferentially interact with a −2 Tyr, rather than a Ser/Thr (20). In IKEPP PDZ1, the conserved His is replaced by a Tyr residue, which is predicted to result in the preferential binding of Asp at the −2-position (23). Interestingly, the COOH terminus of IKEPP ends in Ser-Asp-Leu-Leu, which we predict based on sequence analysis, to be a ligand for IKEPP PDZ1. Consequently, this interaction might regulate IKEPP PDZ1 interaction with other proteins via competitive inhibition or serve as the basis for potential IKEPP oligomerization and the formation of a larger signaling complex. Furthermore, the ω1 Tyr residue of IKEPP PDZ1 is predicted to be phosphorylated (by NetPhos analysis, available on the World Wide Web at www. cbs.dtu.dk/services/NetPhos), which would alter the binding specificity of the PDZ domain and may serve a regulatory mechanism for PDZ-ligand interaction. Our laboratory is currently examining these potential regulators of IKEPP function.

Interaction of IKEPP and GCC—Although there are few antibodies that reliably detect endogenous GCC in sections of intestine, functional studies, *in situ* hybridization, and receptor autoradiography indicate that GCC is expressed in epithelial cells of the gastrointestinal tract (39–41). Although a more complete analysis of IKEPP expression and distribution is needed, our localization studies suggest that GCC and IKEPP may be co-expressed and co-localized at the apical cell surface.
in intestinal epithelial cells (Fig. 3). Furthermore, GCC and IKEPP directly interact in biochemistry assays, and the interaction requires the COOH-terminal PDZ binding motif of GCC (Fig. 4). When co-expressed in COS7 cells, HA-GCC and IKEPP can be co-immunoprecipitated (Fig. 4E). Taken together, our data support the hypothesis that GCC and IKEPP associate in intestinal epithelial cells. However, consistent with previous reports (42), we were unable to extract significant amounts of overexpressed (MDCK cells) or endogenous GCC (T84 cells) from membranes to directly study the GCC-IKEPP interaction in epithelial cells. Therefore, definitive proof that IKEPP and GCC interact in intestinal epithelial cells will require dominant-negative approaches and functional assays.

IKEPP mRNA is also abundantly expressed in the kidney (Fig. 1, A and B). Ligand binding assays and functional studies suggest that GCC may be expressed in the kidney in some species (43, 44). Therefore, IKEPP and GCC may also associate in the kidney; however, renal IKEPP complexes will probably differ from those found in intestinal epithelial cells. Furthermore, proteins that associate with IKEPP may be differentially expressed in distinct regions of the kidney or gastrointestinal tract.

Functions of the GCC-IKEPP Interaction—The trafficking, regulation, and function of GCC are poorly understood, and there are many potential roles for the IKEPP-GCC interaction. In well differentiated cultured epithelial cells and in intestinal cell lysates, GCC is found in the detergent-insoluble fraction (45). The insolubility of GCC may be due to a direct or indirect association with cytoskeletal elements enriched at the apical membrane. We find that ~50% of the endogenous IKEPP in cultured intestinal cells is in the cytosolic fraction (Fig. 2C), and membrane-associated IKEPP is easily solubilized in buffers containing 1% Triton X-100 (Fig. 4E). Therefore, IKEPP does not mediate the association of GCC with the detergent-insoluble fraction of epithelial cells. GCC exists as a functional dimer or trimer (46–48), and it is known that interactions with PDZ proteins can stabilize protein oligomerization (14, 36, 49). However, the intracellular domains of GCC are not required for oligomer formation (48), suggesting that association with IKEPP is not likely to play an important role in this process. Harris et al. demonstrated that deletion of the PDZ interaction motif at the COOH terminus of the multidrug resistance-associated protein 2 (MRP2/cMOAT) disrupted apical targeting in transiently transfected MDCK cells (50). However, the constructs used in this study contained a COOH terminus green fluorescent protein tag blocking the PDZ interaction motif and interactions with PDZ proteins were not assessed. Moyer et al. also reported that the efficient apical trafficking of a green fluorescent protein-CFTR fusion protein required an intact CFTR COOH terminus and association with PDZ proteins (51). In contrast, Benharouga et al. find that CFTR proteins lacking the COOH-terminal PDZ binding motif are retained at the apical membrane in polarized MDCK II cells (52). Thus, it is not clear whether apical membrane proteins that bind to PDZ proteins, require the PDZ interaction for apical trafficking or localization. We find that GCC4 was efficiently targeted to the apical cell surface (Fig. 5A). Thus, GCC must contain apical targeting information in other regions of the protein, and interaction with PDZ proteins is not required for the efficient surface expression or apical targeting of GCC.

Previous mutagenesis studies indicate that the COOH terminus of GCC is required for catalytic function of the enzyme (4, 53). Since association with PDZ proteins has been shown to modulate activation and downstream signaling of other cellular receptors (36, 54), we tested the hypothesis that association with IKEPP regulated the catalytic activity of GCC. We found that co-expression of IKEPP with GCC significantly decreases STa-mediated accumulation of cGMP in transfected cells (Fig. 5B). If the GCC-IKEPP interaction occurs within an intracellular compartment, co-expression of IKEPP could decrease the number of receptors present on the cell surface. Our localization studies suggest that IKEPP is associated with the apical cell surface (Fig. 3), but we also observe significant amounts of IKEPP in the subapical compartment of Caco2 cells (Fig. 3A). However, the V_MAX of the receptor was not significantly different when IKEPP was co-expressed (Fig. 5C), indicating that the GCC-IKEPP interaction does not dramatically change the amount of receptor on the plasma membrane.

IKEPP-mediated inhibition of GCC is only observed in cells expressing full-length GCC and not GCC proteins lacking the PDZ binding motif (Fig. 5B). Thus, a physical interaction between IKEPP and GCC is required for modulation of receptor function. Co-expression of IKEPP and GCC would decrease STa-mediated cGMP accumulation if IKEPP decreases the affinity of the receptor for its ligand. Alternatively, it is possible that intra- or intermolecular interactions between CTEP and the GCC catalytic domain maintain the enzyme in the appropriate conformation for catalytic function. Binding of IKEPP to CTEP may compete for these intra- or intermolecular interactions to decrease the catalytic activity of GCC. Likewise, it is possible that co-expression of IKEPP competes for binding of a cytosolic factor that associates with GCC to stimulate its catalytic activity. It is also possible that IKEPP recruits an inhibitory protein to the GCC receptor complex. While the mechanism of the inhibition of GCC catalytic activity by IKEPP is unclear at this time, this interaction may have important implications for understanding the desensitization of GCC. Prolonged application of STa leads to desensitization of the endogenous receptor in T84 cells but not transfected receptors in COS7 or HEK293 cells, suggesting that the desensitization may require the presence of an accessory protein that is not expressed in these cells (29). Thus, it is intriguing to speculate that a regulated interaction with IKEPP or the recruitment of additional proteins to IKEPP-GCC multiprotein complexes is required for GCC receptor desensitization. GCC null mice are resistant to STa but have no obvious phenotype (55, 56), suggesting that we have much to learn regarding the physiological role of GCC and its endogenous ligands. We also have much to learn about mechanisms to control GCC activation and desensitization, since the acute secretory diarrhea caused by STa is a leading cause of pediatric death worldwide. The identification of other proteins in IKEPP-GCC complexes may help elucidate the role of GCC in normal physiology and may provide insights into strategies to control excessive GCC activation by STa.

Acknowledgments—We thank Dr. David Garbers (University of Texas Southwest Medical Center) for providing pBS.GCC and Dr. Chris Yun (The Johns Hopkins University) for providing pBS.E3KARP. We thank Dr. Jolanta Pucilowska for help with the immunohistochemistry and Dr. Michael Goy for contributions to the early stages of the project. In the Milgram laboratory, we thank Dr. Peter Mohler for advice, Mihir Patel and Cassandra Lambeth for technical assistance, and everyone else for excellent discussions.

REFERENCES

1. Currie, M. G., Fok, K. F., Kato, J., Moore, R. J., Hamra, F. K., Duffin, K. L., and Smith, C. E. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 947–951
2. Hamra, F. K., Forte, L. R., Eber, S. L., Pidhorodecky, N. V., Krause, W. J., Freeman, R. H., Chin, D. T., Tongkin, J. A., Fok, K. F., Smith, C. E., and et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 10464–10468
3. Forte, L. R., Eber, S. L., Fan, X., London, R. M., Wang, Y., Rowland, L. M., Chin, D. T., Freeman, R. H., and Krause, W. J. (1999) Endocrinology 140, 1800–1806
4. Wedel, B., and Garbers, D. L. (2001) Annu. Rev. Physiol. 63, 215–233
5. Schulz, S., Green, C. K., Yuen, P. S., and Garbers, D. L. (1990) Cell 63, 941–948
6. Wada, A., Hasegawa, M., Matsumoto, K., Niidome, T., Kawano, Y., Hidaka, Y., Padilla, P. I., Kurazono, H., Shimomishy, Y., and Hirayama, T. (1996) FEBS Lett. 384, 75–77
