absent in *Plasmodium vivax* infection—a similar disease in their view—or in other disease states in which endothelial activation is prominent.

Cunnington et al suggest that acidosis might cause the observed microvascular changes in severe falciparum malaria, but this is very unlikely. Acidosis is a ubiquitous clinical occurrence, whereas the pathological finding of sequestration in falciparum malaria is unique. Patients with severe sepsis have lactic acidosis, but they have empty capillaries and increased red blood cell velocity when assessed with orthogonal polarizing spectroscopy (OPS), in complete contrast to the blocked capillaries and reduced erythrocyte velocity observed in the patients in this study [2–4].

Sequestration in falciparum malaria has been assessed in detail with electron microscopy and histopathology, and its molecular mechanisms have been characterized [5–7]. The degree of sequestration correlates with outcome, time to death, and the 3 independent predictors of outcome: cerebral malaria, metabolic acidosis, and acute kidney injury [3–5, 8]. The tissue ischemia that results from sequestration explains the high ratios of lactate to pyruvate seen in patients with falciparum malaria, which is, again, quite different from the pattern of acidosis in patients with sepsis. Cunnington et al correctly note that with the resolution afforded by OPS imaging we cannot see individual parasitized erythrocytes adhering to endothelial cells. However, when the OPS finding of blocked capillaries is identical to the findings described histologically, and when the correlation with disease severity and outcome is the same, we believe that the inference is reasonable.

Combining severe falciparum malaria and severe vivax malaria to create a single disease entity—"severe malaria"—is misleading. The 2 infections are vastly different, both clinically and pathologically. Multiple organ failure and death are much more prominent in falciparum malaria than in vivax malaria, in which coma incidence has been estimated as 1 in 29 000 cases [9–11]. Some complications such as acute lung injury could share pathological processes, but this cannot be generalized.

Sequestration is not the only pathological abnormality seen in falciparum malaria, but it is the primary one. Microvascular pathophysiology is undeniably multifactorial: endothelial dysfunction and changes in the adhesive and elastic properties of erythrocytes contribute significantly to disease manifestations [6], a point that we make quite clearly in the discussion of our article.

The belief that malaria is caused by "bad air" was disproven by assessing the available data rationally and objectively. Sequestration provides a simple, plausible, and obvious explanation for the unique pathology of severe falciparum malaria, which is supported by in vivo and post mortem studies involving adults and children in Asia and in Africa [3, 5, 6]. It is now time to accept that it is far more than a historical assumption.

Notes

Disclaimer. The Wellcome Trust played no role in the writing of this letter or in the decision to submit this letter for publication. The Wellcome Trust played no role in the design of the study discussed in this letter; in the collection, analysis, and interpretation of data from the study; in the writing of the report associated with the study; or in the decision to submit the report for publication.

Financial support. The work in the original study was supported by the Wellcome Trust.

Potential conflicts of interest. The Mahidol Oxford Research Unit (MORU) is a collaboration between Mahidol and Oxford Universities. The Unit receives core funding from the Wellcome Trust. All authors are affiliated with MORU.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Josh Hanson, 1 **Arjen M. Dondorp,** 12 **Nicholas P. Day,** 12 and **Nicholas J. White** 12

1.Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; and 2.Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom

References

1. Cunnington AJ, Riley EM, Walther M. Microvascular dysfunction in severe
Plasmodium falciparum malaria. J Infect Dis 2013; 207:369–70.
2. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 2002; 166:98–104.
3. Dondorp AM, Ince C, Charunwatthana P, et al. Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. J Infect Dis 2008; 197:79–84.
4. Hanson J, Lam SW, Mahanta KC, et al. Relative contributions of macrovascular and microvascular dysfunction to disease severity in falciparum malaria. J Infect Dis 2012; 206:571–9.
5. MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA. Human cerebral malaria: a quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 1985; 119:365–401.
6. Dondorp AM, Pongponratn E, White NJ. Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Trop 2004; 89:309–17.
7. Ho M, White NJ. Molecular mechanisms of cytoadherence in malaria. Am J Physiol 1999; 276(6 Pt 1):C1231–42.
8. Nguansangiam S, Day NP, Hien TT, et al. A quantitative ultrastructural study of renal pathology in fatal Plasmodium falciparum malaria. Trop Med Int Health 2007; 12:1037–50.
9. Lampah DA, Yeo TW, Hardianto SO, et al. Coma associated with microscopy-diagnosed Plasmodium vivax: a prospective study in Papua, Indonesia. PLoS Negl Trop Dis 2011; 5:e1032.
10. Dondorp A, Nosten F, Stepniewska K, Day N, White N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 2005; 366:717–25.
11. Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM. Vivax malaria: neglected and not benign. Am J Trop Med Hyg 2007; 77(6 Suppl):79–87.

Received and accepted 23 August 2012; electronically published 6 November 2012.
Correspondence: Josh Hanson, FRACP, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand (drjoshhanson@gmail.com).

The Journal of Infectious Diseases 2013;207:370–1
© The Author 2012. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
DOI: 10.1093/infdis/jis680