Magnesium intake and colorectal cancer risk in the Netherlands Cohort Study

Citation for published version (APA):
van den Brandt, P. A., Smits, K. M., Goldbohm, R. A., & Weijenberg, M. P. (2007). Magnesium intake and colorectal cancer risk in the Netherlands Cohort Study. British Journal of Cancer, 96(3), 510-513. https://doi.org/10.1038/sj.bjc.6603577

Document status and date:
Published: 01/01/2007

DOI:
10.1038/sj.bjc.6603577

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at: repository@maastrichtuniversity.nl providing details and we will investigate your claim.

Download date: 27 Apr. 2021
Short Communication

Magnesium intake and colorectal cancer risk in the Netherlands Cohort Study

PA van den Brandt*,1, KM Smits1, RA Goldbohm2 and MP Weijenberg1
1Department of Epidemiology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; 2TNO Nutrition and Food Research, PO Box 360, 3700 AJ Zeist, The Netherlands

Energy-adjusted magnesium intake was nonsignificantly inversely related to risk of colorectal cancer (n = 2328) in the Netherlands Cohort Study on Diet and Cancer that started in 1986 (n = 58 279 men and 62 573 women). Statistically significant inverse trends in risk were observed in overweight subjects for colon and proximal colon cancer across increasing quintiles of magnesium uptake (P-trend, 0.05 and 0.02, respectively). Although an overall protective effect was not afforded, our results suggest an effect of magnesium in overweight subjects, possibly through decreasing insulin resistance.

Keywords: colorectal cancer; cohort studies; magnesium; BMI

MATERIALS AND METHODS

The NLCS started in 1986 and included 58 279 men and 62 573 women aged 55 – 69 years. At baseline, cohort members completed a mailed, self-administered questionnaire on dietary habits, anthropometry, and other risk factors for cancer (Van den Brandt et al, 1990a). Habitual consumption of food and beverages during the year preceding baseline was assessed using a 150-item semiquantitative food frequency questionnaire (Goldbohm et al, 1994). From this, nutrient intakes were calculated from the 150 food items using the computerized Dutch food composition table (Nevo-table, 1986). Nutrient intake was adjusted for energy intake by the residual method (Willett and Stampfer, 1986).

Data were processed and analysed using the case–cohort approach, enumerating the cases for the entire cohort, and estimating the person-years at risk from a subcohort of 5000 subjects, which was randomly sampled from the entire cohort immediately after the baseline measurement and followed up for vital status. Follow-up for cancer incidence is established by record linkage with the Netherlands Cancer Registry and PALGA, a nationwide pathology database (Van den Brandt et al, 1990b). After 13.3 years of follow-up, a total of 2679 incident colorectal cancer cases were reported. Cases and subcohort members were excluded if they reported cancer other than non-melanoma skin cancer, or had incomplete data for diet, anthropometry, or confounders. Finally, 4125 subcohort members and 2328 colorectal cancer cases were available for analysis.

Statistical analysis

Incidence rate ratios (RR) and 95% confidence intervals for colorectal cancer and subsites were estimated using Cox proportional hazards models (Cox, 1972), with Stata software (Cleves et al, 2002). Standard errors were estimated using the robust Huber–White sandwich estimator to account for additional variance introduced by sampling from the cohort (Schoenfeld, 1982). All RRs are adjusted for confounders that contributed significantly to the model or influenced the RR of magnesium more than 10% (age, sex, family history of colorectal cancer, body mass index (BMI), physical activity, energy-adjusted intakes of fat, fiber, calcium, folate, beta-carotene, vitamins E and B6, alcohol, and energy intake).

RESULTS

Mean (± s.d.) energy-adjusted magnesium intake was 332 (± 58) and 292 (± 48) mg day⁻¹ among subcohort men and women, respectively. Important sources of magnesium were wholewheat bread, dairy, pulses, coffee, tea, and peanuts/peanut butter. Magnesium supplements were used by only 0.2% of individuals. Baseline characteristics of the subcohort are presented in Supplementary Table. Magnesium intake was weakly inversely associated with colorectal and colon cancer risks in men and
women, but nonsignificantly (Table 1). Exclusion of the first 2 years of follow-up yielded similar results. Because men and women showed comparable results, we combined them in analyses stratified by BMI. Table 2 shows that the association with colorectal cancer and its subsites varied by BMI: for those with a BMI ≥ 25 kg m$^{-2}$, this was inverse (except rectum), with P-trend reaching significance for colon, and especially proximal colon cancer. The RRs of proximal colon cancer for increasing quintiles of magnesium were 1.0, 0.69, 0.65, 0.48, and 0.54, respectively (P-trend $= 0.02$). For those with BMI < 25 kg m$^{-2}$, there was no

Table 1 Relative rates (RRs) of colorectal cancer according to energy-adjusted magnesium intake, Netherlands Cohort Study 1986–1999

Quintiles of energy-adjusted magnesium intake (mg day$^{-1}$)	Q1	Q2	Q3	Q4	Q5	P-trend
Men Colorectal cancer Cases	275	281	297	264	263	0.57
Age-adjusted RR_a	1.0	1.00 (0.80–1.25)	1.04 (0.83–1.29)	0.95 (0.76–1.18)	0.96 (0.77–1.20)	0.57
Multivariate RR_b	1.0	0.96 (0.75–1.22)	0.96 (0.74–1.26)	0.87 (0.64–1.17)	0.91 (0.62–1.35)	0.50
Colon cancer Cases	192	180	185	167	159	0.13
Age-adjusted RR_a	1.0	0.92 (0.71–1.18)	0.92 (0.72–1.18)	0.86 (0.67–1.10)	0.83 (0.64–1.07)	0.13
Multivariate RR_b	1.0	0.89 (0.67–1.17)	0.87 (0.64–1.19)	0.82 (0.59–1.15)	0.85 (0.54–1.33)	0.41
Proximal colon cancer Cases	77	81	86	73	64	0.27
Age-adjusted RR_a	1.0	1.03 (0.73–1.45)	1.07 (0.76–1.50)	0.94 (0.66–1.33)	0.83 (0.58–1.20)	0.27
Multivariate RR_b	1.0	0.95 (0.65–1.38)	0.95 (0.63–1.43)	0.81 (0.51–1.28)	0.73 (0.39–1.36)	0.28
Distal colon cancer Cases	103	90	95	90	85	0.30
Age-adjusted RR_a	1.0	0.85 (0.62–1.17)	0.88 (0.65–1.21)	0.86 (0.63–1.18)	0.82 (0.60–1.14)	0.30
Multivariate RR_b	1.0	0.84 (0.59–1.19)	0.86 (0.58–1.27)	0.87 (0.57–1.31)	0.94 (0.53–1.64)	0.85
Rectum cancer^c Cases	83	101	112	97	104	0.27
Age-adjusted RR_a	1.0	1.19 (0.86–1.65)	1.29 (0.94–1.78)	1.15 (0.83–1.59)	1.25 (0.91–1.73)	0.27
Multivariate RR_b	1.0	1.12 (0.79–1.59)	1.18 (0.80–1.73)	0.99 (0.63–1.55)	1.07 (0.61–1.89)	0.94
Women Colorectal cancer Cases	217	185	172	186	188	0.42
Age-adjusted RR_a	1.0	0.84 (0.66–1.07)	0.79 (0.62–1.01)	0.88 (0.69–1.12)	0.88 (0.69–1.12)	0.42
Multivariate RR_b	1.0	0.83 (0.63–1.08)	0.78 (0.58–1.06)	0.89 (0.63–1.24)	0.89 (0.59–1.35)	0.77
Colon cancer Cases	159	136	127	135	138	0.45
Age-adjusted RR_a	1.0	0.94 (0.64–1.10)	0.80 (0.61–1.05)	0.87 (0.66–1.14)	0.88 (0.67–1.15)	0.45
Multivariate RR_b	1.0	0.83 (0.62–1.12)	0.79 (0.57–1.11)	0.89 (0.61–1.29)	0.89 (0.56–1.40)	0.77
Proximal colon cancer Cases	95	70	64	70	84	0.70
Age-adjusted RR_a	1.0	0.73 (0.52–1.03)	0.68 (0.48–0.97)	0.77 (0.54–1.08)	0.92 (0.66–1.28)	0.70
Multivariate RR_b	1.0	0.71 (0.49–1.03)	0.66 (0.44–1.01)	0.75 (0.47–1.20)	0.86 (0.49–1.52)	0.69
Distal colon cancer Cases	58	61	60	59	50	0.46
Age-adjusted RR_a	1.0	1.02 (0.69–1.50)	1.01 (0.69–1.49)	1.02 (0.69–1.51)	0.84 (0.56–1.26)	0.46
Multivariate RR_b	1.0	1.03 (0.67–1.59)	1.03 (0.63–1.67)	1.09 (0.64–1.88)	0.93 (0.47–1.84)	0.98
Rectum cancer^c Cases	58	49	45	51	50	0.67
Age-adjusted RR_a	1.0	0.83 (0.55–1.25)	0.78 (0.51–1.18)	0.90 (0.60–1.35)	0.87 (0.58–1.31)	0.67
Multivariate RR_b	1.0	0.81 (0.52–1.25)	0.76 (0.46–1.25)	0.89 (0.51–1.55)	0.91 (0.46–1.79)	0.90

Data presented as RR (95% confidence interval). †The model included age, family history of colorectal cancer, BMI, physical activity, energy-adjusted intakes of fat, fibre, calcium, folate, beta-carotene, vitamin E, vitamin B6, alcohol, and energy intake. ‡Includes rectosigmoid.
Table 2 Relative rates (RRs) of colorectal cancer according to magnesium intake and BMI in men and women combined, Netherlands Cohort Study 1986–1999

Quintiles of energy-adjusted magnesium intake (mg day⁻¹)	Q1	Q2	Q3	Q4	Q5	P-trend
Quintile cutoffs (mg day⁻¹)	<270	271–298	299–320	321–350	>350	
Median (mg day⁻¹)	248	286	309	335	375	
Person-years in subcohort	9707	9939	9956	9902	10077	
Colorectal cancer						
Cases	522	472	451	433	450	0.56
Multivariate RRa	1.0	0.91 (0.76–1.09)	0.89 (0.73–1.08)	0.88 (0.70–1.10)	0.93 (0.70–1.23)	
BMI < 25 kg m⁻²						0.51
Cases	257	250	217	229	235	
Multivariate RRa	1.0	1.05 (0.82–1.35)	0.99 (0.75–1.31)	1.14 (0.83–1.57)	1.11 (0.75–1.64)	
BMI ≥ 25 kg m⁻²						0.14
Cases	265	222	234	204	215	
Multivariate RRa	1.0	0.77 (0.59–1.01)	0.79 (0.59–1.05)	0.67 (0.48–0.93)	0.77 (0.50–1.18)	
Colon cancer						
Cases	365	327	298	290	298	0.48
Multivariate RRa	1.0	0.89 (0.73–1.09)	0.83 (0.67–1.05)	0.85 (0.66–1.10)	0.91 (0.66–1.25)	
BMI < 25 kg m⁻²						0.34
Cases	172	170	141	153	160	
Multivariate RRa	1.0	1.09 (0.82–1.44)	0.99 (0.72–1.37)	1.20 (0.84–1.72)	1.22 (0.79–1.91)	
BMI ≥ 25 kg m⁻²						0.05
Cases	193	157	157	137	138	
Multivariate RRa	1.0	0.72 (0.53–0.96)	0.69 (0.50–0.95)	0.60 (0.42–0.87)	0.67 (0.41–1.08)	
Proximal colon cancer						
Cases	169	167	145	134	149	0.18
Multivariate RRa	1.0	0.91 (0.70–1.18)	0.80 (0.59–1.07)	0.75 (0.54–1.04)	0.82 (0.54–1.25)	
BMI < 25 kg m⁻²						0.64
Cases	78	87	64	71	80	
Multivariate RRa	1.0	1.19 (0.82–1.72)	0.96 (0.62–1.47)	1.13 (0.71–1.81)	1.25 (0.70–2.22)	
BMI ≥ 25 kg m⁻²						0.02
Cases	91	80	81	63	69	
Multivariate RRa	1.0	0.69 (0.47–1.01)	0.65 (0.43–0.98)	0.48 (0.30–0.78)	0.54 (0.29–1.00)	
Distal colon cancer						
Cases	176	149	144	147	135	0.81
Multivariate RRa	1.0	0.89 (0.68–1.17)	0.90 (0.67–1.22)	1.00 (0.72–1.39)	0.99 (0.64–1.53)	
BMI < 25 kg m⁻²						0.26
Cases	81	77	70	76	71	
Multivariate RRa	1.0	1.10 (0.75–1.60)	1.11 (0.72–1.71)	1.39 (0.87–2.24)	1.29 (0.71–2.36)	
BMI ≥ 25 kg m⁻²						0.49
Cases	95	72	74	71	64	
Multivariate RRa	1.0	0.72 (0.49–1.07)	0.74 (0.48–1.13)	0.74 (0.46–1.18)	0.77 (0.40–1.49)	
Rectum cancerb						
Cases	157	145	153	143	152	0.98
Multivariate RRa	1.0	0.95 (0.72–1.25)	1.02 (0.75–1.38)	0.95 (0.67–1.35)	0.99 (0.64–1.52)	
BMI < 25 kg m⁻²						0.95
Cases	85	80	76	76	75	
Multivariate RRa	1.0	0.98 (0.67–1.43)	0.99 (0.65–1.52)	1.05 (0.64–1.72)	0.92 (0.50–1.71)	
BMI ≥ 25 kg m⁻²						0.98
Cases	72	65	77	67	77	
Multivariate RRa	1.0	0.91 (0.60–1.39)	1.07 (0.69–1.67)	0.85 (0.50–1.44)	1.06 (0.54–2.05)	

The model included age, sex, family history of colorectal cancer, BMI, physical activity, energy-adjusted intakes of fat, fibre, calcium, folate, beta-carotene, vitamin E, vitamin B6, alcohol, and energy intake. bIncludes rectosigmoid.
association with magnesium. Tests for interaction were nonsignificant. Results for men and women separately were essentially similar (data not shown).

DISCUSSION

An inverse association between magnesium intake and colorectal cancer risk in women was first reported in a Swedish cohort study (Larsson et al., 2005). In the Iowa Women’s Health Study, an inverse association was found only for colon cancer. We found weak inverse associations with risks of colorectal and colon cancer in men and women, which were generally nonsignificant. In both sexes, the inverse association was most evident for proximal colon cancer risk. When we stratified by BMI level, the inverse association was observed only in those with BMI \(\geq 25 \text{ kg m}^{-2} \). As overweight is related to decreased insulin sensitivity (Fung et al., 2003), this may suggest that magnesium is inversely associated with colorectal cancer risk through improved insulin sensitivity. Recently, magnesium intake was found to be associated with increased levels of adiponectin, which may improve insulin sensitivity (Qi et al., 2005); adiponectin was inversely associated with colorectal cancer risk among men (Wei et al., 2005).

Strengths of our study include large numbers of cases, scope for comparing the sexes, and the completeness of follow-up. We found weaker inverse associations between colorectal cancer and magnesium intake than in the Sweden (Larsson et al., 2005) and, to a lesser extent, Iowa studies (Folsom and Hong, 2006). It may be relevant that reported magnesium intake levels are lower in Sweden than in the Netherlands: median intakes in lowest and highest quintiles were 198 and 268 mg day\(^{-1}\) (Larsson et al., 2005), and 236 and 349 mg day\(^{-1}\) in Dutch women, respectively. Magnesium intake of up to 325 mg day\(^{-1}\) was recently found to be associated with insulin sensitivity, and intakes above this level might not provide further benefits; sex-specific data were not presented (Ma et al., 2006). We observed no further decrease in risk in our subsite-specific analyses (Table 2) in quintile 5 (> 350 mg day\(^{-1}\); median 375) compared to quintile 4 (321 – 350 mg day\(^{-1}\); median 313), which is in line with the threshold finding. The magnesium intake in Iowa women (Folsom and Hong, 2006) was comparable to our study, but Iowa women were generally heavier (Folsom and Hong, 2006) than Dutch women, which could explain the different findings given the modification by BMI.

In conclusion, our results provide no clear support for an overall protective effect of magnesium on colorectal cancer in men or women, but are compatible with an impact in the subgroup of overweight subjects, possibly through reduced insulin resistance. Further studies are needed to elucidate this relationship.

ACKNOWLEDGEMENTS

We are indebted to the participants of the study and further wish to thank the cancer registries (IKA, IKL, IKMN, IKN, IKO, IKR, IKST, IKW, IKZ, and VIKC) and the Netherlands nationwide registry of pathology (PALGA). We also thank Dr Arnold Kester for statistical advice; Sacha van de Crommert, Henny Brants, Jolanda Nelissen, Conny de Zwart, Marijke Moll, Nathalie Slangen, Willy van Dijk, and Annemiek Pisters for assistance; and Harry van Montfort, Ton van Moergastel, Linda van den Bosch, and Ruud Schmeitz for programming assistance.

Supplementary Information accompanies the paper on British Journal of Cancer website (http://www.nature.com/bjc)

REFERENCES

Cleves MA, Gould WW, Gutierrez RG (2002) An Introduction to Survival Analysis Using Stata. Texas: Stata Press

Cox DR (1972) Regression models and life-tables (with discussion). J R Stat Soc B 34: 187–220

Folsom AR, Hong CP (2006) Magnesium intake and reduced risk of colon cancer in a prospective study of women. Am J Epidemiol 163: 232–235

Fung TT, Manson JE, Solomon CG, Liu S, Willett WC, Hu FB (2003) The association between magnesium intake and fasting insulin concentration in healthy middle-aged women. J Am Coll Nutr 22: 533–538

Giovannucci E (1995) Insulin and colon cancer. Cancer Causes Control 6: 164–179

Goldbohm RA, van den Brandt PA, Brants HA, van’t Veer P, Al M, Sturmans F, Hermes RJ (1994) Validation of a dietary questionnaire used in a large-scale prospective cohort study on diet and cancer. Eur J Clin Nutr 48: 253–265

Hartwig A (2001) Role of magnesium in genomic stability. Mutat Res 475: 113–121

Larsson SC, Bergkvist L, Wolk A (2005) Magnesium intake in relation to risk of colorectal cancer in women. JAMA 293: 86–89

Ma B, Lawson AB, Liese AD, Bell RA, Mayer-Davis EJ (2006) Dairy, magnesium, and calcium intake in relation to insulin sensitivity: approaches to modeling a dose-dependent association. Am J Epidemiol 164: 449–458

Mori H, Morishita Y, Shinoda T, Tanaka T (1993) Preventive effect of magnesium hydroxide on carcinogen-induced large bowel carcinogenesis in rats. Basic Life Sci 61: 111–118

Nevo-table (1986) Dutch food composition table; Nederlands voedingsstoffenbestand 1986–1987. The Hague: Voortlichtingsbureau voor de Voeding