ABSTRACT

We use a new method to model fluctuations of the Lyman-Werner (LW) and Lyman-α radiation backgrounds at high redshift. At these early epochs the backgrounds are symptoms of a universe newly lit with its first stars. LW photons (11.5-13.6 eV) are of particular interest because they dissociate molecular hydrogen, the primary coolant in the first minihalos. By using a variation of the halo model, we efficiently generate power spectra for any choice of radiation background. We find that the LW power spectrum typically traces the matter power spectrum at large scales but turns over at the scale corresponding to the effective ‘horizon’ of LW photons (∼ 100 comoving Mpc), unless the sources are extremely rare. The series of horizons that characterize the Lyman-α flux profile shape the fluctuations of that background in a similar fashion, though those imprints are washed out once one considers fluctuations in the brightness temperature of the 21-cm signal. The Lyman-α background strongly affects the redshifted 21-cm signal at just about the time the LW background begins to dissociate H₂, so measuring that background’s properties will reveal important information about the transition from early Population III stars to more normal stars. Around this time we find that fluctuations in the LW background are weak; the fractional standard deviation is less than ∼ 0.5 on scales ∼ 10 cMpc, only rising to be of order unity on scales ≤ 1 cMpc. This should not lead to substantial spatial fluctuations in H₂ content, except at the earliest times. Even then, most halos form far from other sources, so the transition from star formation in low-mass to high-mass halos is rather homogeneous across the universe.

Key words: cosmology: theory – first stars – galaxies: haloes – galaxies: high-redshift – stars: Population III

1 INTRODUCTION

An important aspect of the cold dark matter (CDM) universe is that density fluctuations exist on small scales. These small scale perturbations are superimposed on larger scale perturbations; the density reaches its highest value over the smallest region. Consequently, structure forms via hierarchical buildup. An initially smooth density distribution eventually morphs into a web of sheets and filaments. It is the overdense junctions of these filaments that we call dark matter halos. Further structure development takes place inside these halos, commencing with the first (Population III) stars.

Population III (Pop III) stars illuminated our dark universe in its cold youth and from them developed the complex environment we live in today. According to hierarchical structure formation, these stars formed out of metal-free H/He gas contained in minihalos at redshifts $z \sim 20 - 30$ (Couchman & Rees 1986). The minihalos, with masses around $10^6 M_\odot$, have virial temperatures less than 10^4 K - below the threshold for atomic hydrogen cooling (Oh & Haiman 2002). Consequently, the halos have to rely primarily on H₂ for cooling (Haiman et al. 1995; Tegmark et al. 1997; Abel et al. 2002; Bromm et al. 2002). This cooling takes place via collisional excitation (mainly between H₂ molecules and energetic H atoms) and subsequent radiative decay of the rotational transitions of H₂.

In the classical view of Pop III star formation, molecular cooling produces a single, massive star from cold gas that becomes trapped in the dark matter potential well of one minihalo (Bromm et al. 2004). A dense core, or protostar, gradually emerges and grows into a massive star by accreting the surrounding gas. These first stars could theoretically grow to be several hundred solar masses (Bromm & Loeb 2004); most were probably ∼ 100M_\odot (Bromm & Larson 2004). But what would happen if the infalling gas became...
fragmented? Several studies show that a primordial protostellar cloud will most likely not violently fragment enough for a secondary clump to compete with the parent clump and form a second star [Abel et al. 2002; Yoshida et al. 2008]. However, very recent simulations suggest that if a gas cloud surrounding a protostellar core has an initial degree of angular momentum, it could collapse into a dense disk, cool, and fragment, resulting in a binary or even multiple Pop III star system [Stacy et al. 2010; Turk et al. 2009] consisting of two or more lighter stars as opposed to a single, massive star. These new studies could indicate that the formation of the first stars could be more complicated and varied than previously believed.

In these primordial star cookers, the ability to form new stars is dependent on the abundance of H$_2$. However, as the population of these luminous stars grows, the sites of star formation are increasingly irradiated by soft UV photons (the Lyman-Werner, or LW, bands: 11.2-13.6 eV) from existing stars. This LW radiation can photodissociate the H$_2$ molecules in the gas through the two-step Solomon process [Field et al. 1966; Stecher & Williams 1967].

$$H_2 + \gamma \rightarrow H^*_2 \rightarrow 2H,$$

(1)

in which an H$_2$ molecule hit by a LW photon bumps it up to an excited electronic state, H*_2. A fraction of decays from this excited state end up in the vibrational continuum of the ground state, dissociating the molecule. If the LW background becomes strong enough, it can prevent further collapse and consequently stall the further formation of primordial ionizing sources by terminating the minihalos’ primary cooling supply [Haiman et al. 1997]. As a result, the only halos able to cool (via atomic line cooling) and form new stars are those with $T_{vir} \gtrsim 10^4$ K, or masses above $\sim 10^8 M_\odot (1 + z_{vir})/10^{-3/2}$. Minihalos, with temperatures below the threshold for atomic cooling, will not be able to collapse past virialization without a sufficient supply of H$_2$.

Although these larger halos may still form metal-free stars, the thermodynamics of the cooling process is sufficiently different that we expect the resulting stars to differ substantially (especially in their characteristic mass). The two populations are sometimes described as Population III.1 and Population III.2 to emphasize this: both may be ‘primordial,’ but they have very different properties regulated by the LW (and other) radiation backgrounds (see, e.g., Bromm et al. 2009).

Most previous calculations of the LW background used a homogeneous approximation, in which they assumed a uniform distribution of sources [Haiman et al. 2004; Ricotti et al. 2002; Yoshida et al. 2003]. But the highly clustered, discrete sources responsible for the background radiation do not generate a uniform background. If these fluctuations are large enough, the transition from H$_2$ cooling to atomic line cooling would be very patchy, potentially allowing exotic star formation to persist for long periods even after the mean background reaches the threshold value for H$_2$ suppression. Dijkstra et al. (2008) were the first to consider the inhomogeneous LW background, but only in the context of close halo pairs (using a Monte Carlo model) and only when the background was already well above threshold. Ahn et al. (2009) were the first to consider the inhomogeneous background using a large-scale radiative transfer simulation of reionization.

These photons have other observable effects as well; most importantly, as they redshift into the Lyman-α transition they couple the excitation temperature of the 21-cm transition of hydrogen to the gas kinetic temperature via a radiative pumping mechanism known as the Wouthuysen-Field effect [Wouthuysen 1952; Field 1959]. This renders the 21-cm signal visible in emission or absorption. [Barkana & Loeb (2005a) showed that the fluctuations in this young Lyman-α background produced strong fluctuations in the 21-cm signal. Conversely, observing these fluctuations can reveal a wealth of information as to the properties of these first luminous sources. We will see that these photons begin to affect the 21-cm background at roughly the same background intensity at which they suppress H$_2$ cooling. Thus redshifted 21-cm measurements offer an excellent chance to study the transition from Population III.1 to III.2 stars as well as the inhomogeneities in the ultraviolet radiation field during the ‘cosmic dawn.’

In this paper, we present a new method with which to efficiently calculate the power spectrum of an arbitrary radiation field for any desired redshift and range in scale (in this paper we focus on the LW and Lyman-α backgrounds specifically; see Mesinger & Furlanetto 2009 for an earlier application specific to the ionizing background). Using the halo model to determine the spatial distribution of halos, we can build up the radiation background by superimposing a flux profile specific to that particular background on each halo. This profile effectively replaces the mass density profile traditionally used in the halo model to calculate fluctuations in the density field. We aim to study the importance of fluctuations in these backgrounds and complement the radiative transfer simulation of Ahn et al. (2009) with our simple, analytic model. Our method also takes a very different approach to calculating 21-cm fluctuations (due to perturbations in the Lyman-α radiation field) compared to existing work [Barkana & Loeb 2005a; Pritchard & Furlanetto 2008].

In this first exploration of the radiation background, we restrict our attention to the soft-UV background from a relatively simple model of first galaxy formation. In fact, many other physical factors contributed to the transition from Population III to Population II star formation. The most obvious is metal enrichment, which also affects the cooling and is highly inhomogeneous (see, e.g., Furlanetto & Loeb 2007). Also, X-rays emanating from the first sources can counteract H$_2$ destruction by increasing the free electron fraction and so catalyzing its formation [McDowell 1964; Haiman et al. 1996, 2000]. There has been considerable debate as to which of these backgrounds is more influential. For our simple model, we will follow Machacek et al. (2003) by assuming that the enhancement of the electron density due to the X-ray background occurs too slowly to compete with photodissociation and so neglect the X-ray background.

Recently, Tseliakhovich & Hirata (2010) pointed out that the residual relative velocities of the baryon fluid and underlying dark matter distribution, imprinted during the recombination era by the baryons’ close coupling to photons and now visible as baryon acoustic oscillations, may have important implications for star formation in these early, fragile halos. These large-scale velocities will suppress the accretion of gas onto small dark matter halos [Tseliakhovich & Hirata 2010; Tseliakhovich et al. 2010]. The actual implications
for star formation are as yet unclear; the first simulations show modest effects on the reionization era itself (Maio et al. 2010; Stacy et al. 2010), but the effect on the earlier epochs is important for the LW and Lyman-α backgrounds (Dalal & Pen 2010). Because the effects are as yet unclear, we will ignore these velocity corrections here, thus providing a baseline prediction for comparison with future work better incorporating them.

This paper is organized as follows: in Section 2 we describe our method for calculating the power spectrum of the LW and Lyman-α radiation background fluctuations using the halo model. In Sections 3 and 4 we calculate the flux profiles for the LW and Lyman-α backgrounds, respectively, and also present our results. We summarize our results and conclude in Section 5. We adopt a background cosmology \(\Omega_0, \Omega_\Lambda, \Omega_b, h, \sigma_8, n_s = (0.26, 0.74, 0.044, 0.74, 0.8, 0.95) \) consistent with the most recent measurements (Komatsu et al. 2011).

2 METHOD

We are interested in modeling the power spectrum of fluctuations in the LW and Lyman-α radiation backgrounds using the halo model. Unlike earlier treatments of the LW background, we are specifically interested in its large-scale inhomogeneities, complementing the high resolution, large-scale N-body radiative transfer simulation of Ahn et al. (2009) and the small-scale treatment of Dijkstra et al. (2008). Instead we will expand the model of Mesinger & Furlanetto (2009), who treated the inhomogeneous hydrogen-ionizing ultraviolet background using a halo model-like prescription.

The halo model, as described in Cooray & Sheth (2002), uses properties of virialized dark matter halos to calculate the effects of non-linear gravitational clustering, assuming that all mass in the universe is compartmentalized in such halos, whose properties can be parameterized purely by their mass \(m \). The three ingredients of the model are the (1) halo number density, \(n(m) \), (2) spatial distribution of the halos, and (3) distribution of mass within each halo, or halo density profile, \(\rho(r|m) \), (where \(r \) is the distance away from the center of a halo with mass \(m \)). Typically, a theoretically-motivated halo mass function for (1) (the classic choice being Press & Schechter 1974) allows one to calculate (2). The density profile for (3) can be calibrated by numerical simulations, such as the NFW (Navarro et al. 1999) or Moore et al. (1999) profiles. This model is very powerful in that it can efficiently determine the power and many other useful properties for any density field at an arbitrary epoch and scale.

Since we wish to quantify the radiation background rather than the mass density field, we simply replace the 'halo density profile' with the profile of the radiation field around each halo. This flux profile, \(\rho_{\text{rad}}(r|m) \), depends on the radiation background under consideration and will be discussed later. For a spherically symmetric profile, the normalized Fourier transform, \(u(k|m) \), can be written as:

\[
 u(k|m) = \frac{\int_0^{r_e} dr 4\pi r^2 \sin(kr) (kr) \rho_{\text{rad}}(r|m)}{\int_0^\infty dr 4\pi r^2 \rho_{\text{rad}}(r|m)},
\]

where \(r_e \) is the cutoff distance at which an observer can no longer see the radiation emanating from the source. For the case of the LW radiation, for example (described more fully in section [3.1]), this cutoff distance, or horizon, is given by \(r_{\text{Hor}} \sim 100 \) comoving Mpc (cMpc).

As described above, we are interested in modeling the fluctuations in a variety of radiation backgrounds (in this paper, the LW and Lyman-α backgrounds). We use the power spectrum, \(P(k) \), or the dimensionless quantity \(\Delta(k) \equiv k^3 P(k)/2\pi^2 \) to quantify these fluctuations. Following the halo model, we write the power as a sum of two terms: the first term, \(P^{1h}(k) \), describes the case for which radiation at two points comes from the same source \(\Omega \), while the second term, \(P^{2h}(k) \), describes the case for which the two points are illuminated by two sources:

\[
 P(k) = P^{1h}(k) + P^{2h}(k), \quad \text{where}
\]

\[
 P^{1h}(k) = \int_0^\infty d\ln m \left(\frac{m}{\langle \rho_{\text{coll}} \rangle} \right)^2 |u(k|m)|^2 \quad \text{(4)}
\]

\[
 P^{2h}(k) = \int_0^\infty d\ln m \left(\frac{m}{\langle \rho_{\text{coll}} \rangle} \right) u(k|m)b(m)^2 \quad \text{P}^{\text{lin}}(\mathbf{5})
\]

Here, \(\rho \) is the matter density, \(f_{\text{coll}} \) is the collapse fraction (fraction of mass in the universe contained in galaxies, or collapsed in a halo), \(b(m) \) denotes the halo bias (describing how strongly clustered the halos are; Mo & White 1999), and lastly \(P^{\text{lin}}(k) \) is the linear power spectrum. Here we have approximated the halo-halo power spectrum, for two halos with mass \(m_1 \) and \(m_2 \), as \(b(m_1)b(m_2)P^{\text{lin}}(k) \), which requires that the halo fluctuations remain linear on the appropriate scales (i.e., those on which \(P^{2h} \) dominates). While the density fluctuations themselves are very weak at the redshifts of interest to us, the halos are also highly biased, so nonlinear corrections will be important on sufficiently small scales. We use the Eisenstein & Hu (1999) fit to the transfer function to calculate \(P^{\text{lin}}(k) \) and the Sheth-Tormen mass function and collapse fraction (Sheth & Tormen 1999).

To model the density power spectrum one must include the entire halo population, over all masses. However, we are interested in the total radiation field and so should not include the low-mass halos unable to host stars. We assume that only halos more massive than a cutoff mass, \(M_{\text{min}} \), host stars and so contribute to the radiation background. To motivate our choices for \(M_{\text{min}} \), we first consider the 'filter mass,' \(M_{\text{filter}} \), the characteristic scale over which baryonic perturbations are smoothed in linear perturbation theory or the minimum mass of a halo to accrete baryons (Gnedin & Hui 1998; Naoz & Barkana 2007), as a lower limit (\(\sim 10^8M_\odot \) in our redshift regime). In linear theory, the real space balance between gravity and pressure can be characterized by the Jeans scale, \(M_J \); the corresponding Jeans scale is the minimum scale on which a small perturbation will grow due to gravity. \(M_J \) depends on the instantaneous value of the sound speed of the gas, consequently overestimating the characteristic mass scale by up to an order of magnitude (Gnedin 2000). In contrast, \(M_{\text{filter}} \), which takes into account the full thermal history of the gas, is a more accurate mass scale.

An upper limit would be the threshold for atomic
cooling, \(T_{\text{vir}} \sim 10^8 K \) (Oh & Haiman 2002). Since the \(H_2 \) fraction, \(f_{H_2} \), increases with halo mass (\(f_{H_2} \propto T_{\text{vir}}^{1.5} \)), the cutoff mass certainly lies somewhere between these two limits. The classical criterion that the cooling time be smaller than the dynamical time will set the redshift-dependent transition: in the absence of a LW background, these successful minihalos probably have \(f_{H_2} \sim 10^{-4} \) and \(M_{\text{halo}} \sim 10^8 M_\odot \) (Haiman et al. 1994; Tegmark et al. 1997). However, rather than try to model this in detail we will employ a variety of selections for \(M_{\text{min}} \) in order to remain most general.

3 THE LW BACKGROUND

In this section we will apply the above method to fluctuations in the LW radiation background, which determines if the sterilization of minihalos at high redshift (through the photodissociation of \(H_2 \)) was a patchy or homogeneous transition.

3.1 The Flux Profile

Our LW flux profile (shown in Figure 1 for \(z = 10 \) and 25) for a halo with mass, \(m \), located at an effective luminosity distance, \(r \), from the observer is given by:

\[
\rho_{\text{rad}}(r|m) \propto m \frac{f_{\text{mod}}(r)}{4\pi r^2}.
\]

Figure 1. The normalized LW flux profile, \(\rho_{\text{rad}}(r|m) \), shown for \(z = 10, 25 \) (right and left sets of curves, respectively). Each profile terminates at the horizon \(r_{\text{LW}} \), indicated by the vertical dashed lines. The dotted curves represent the corresponding time dependent versions of the flux profile using the timescale of typical halo growth, \(t_\ast \), for \(M_{\text{min}} = 10^8 M_\odot \).

where we assume for simplicity that the luminosity of each halo scales with its mass. Here we use the picket fence modulation factor, \(f_{\text{mod}}(r) \), from Ahn et al. (2000). This is the fraction of LW continuum radiation emitted by a source that is received by the observer without redshifting into a hydrogen Lyman series resonance line, where it will either be absorbed or scattered. An absorbed photon will either cascade to the \(2p \) level and produce a Lyman-\(\alpha \) photon or cascade to the metastable \(2s \) level and decay by two photon emission (Pritchard & Furlanetto 2006)– either way, the resulting photon will be below the LW range. On the other hand, the scattered photon will be reabsorbed until it, too, decays into a low-frequency photon (typically after just a few scatterings). So, for a given photon at observed frequency, \(\nu_{\text{obs}} \), we can define a maximum redshift, \(z_{\text{max},i} \), corresponding to the maximum distance within which photons from a source remain in the LW band without redshifting into the closest Lyman line from above (located at frequency \(\nu_i \)):

\[
\frac{1 + z_{\text{max},i}}{1 + z_{\text{obs}}} = \frac{\nu_i}{\nu_{\text{obs}}}. \tag{7}
\]

With each Lyman line associated with its own \(z_{\text{max},i} \) and the spacing between them decreasing with increasing \(\nu_i \), we are left with a transmission spectrum resembling a poor fashioned picket fence, illustrated in Figure 2 from Ahn et al. (2000). The modulation factor, \(f_{\text{mod}} \), is defined as the fraction of the LW frequency interval, 11.5-13.6 eV, that lies within the pickets, or that is successfully transmitted to the observer:

\[
f_{\text{mod}} = 1 - \sum_j \left(\frac{\Delta \nu_{\text{gap},j}}{2.1 \, \text{eV}} \right) \tag{8}
\]

where \(\Delta \nu_{\text{gap},j} \) is the frequency interval between each picket in which there is no transmission. The profile terminates at the ‘LW horizon,’ \(r_{\text{LW}} = 97.39 \, \text{cMpc} \), the distance at which a photon redshifts across the maximum picket spacing (between the pickets corresponding to the Ly\(\delta \) and Ly\(\gamma \) lines). The scaling factor, \(\alpha \), is defined as:

\[
\alpha = \left(\frac{h}{0.7} \right)^{-1} \left(\frac{\Omega_m}{0.27} \right)^{-1/2} \left(1 + \frac{z}{21} \right)^{-1/2}. \tag{9}
\]

While \(f_{\text{mod}} \) can be calculated numerically, Ahn et al. (2009) have devised a fitting formula:

\[
f_{\text{mod}}(r) = 1.7 \exp \left[-\left(\frac{r_{\text{cMpc}}/116.29a}{0.68}\right)^2\right] - 0.7
\]

if \(r_{\text{cMpc}}/\alpha \leq 97.39 \) and zero otherwise, where \(r_{\text{cMpc}} \) is the distance to the source in cMpc. We have successfully reproduced \(f_{\text{mod}} \) using the method described by Ahn et al. (2009) and have confirmed that the fitting formula is accurate to within 2 per cent error of the true numerical values.

3.1.1 The Light Cone

There is one difficulty with the halo model as usually constructed for our problem: it does not allow the sources to...
Fluctuations in High-Redshift Radiation Backgrounds

3.2 The Threshold Intensity

In order to determine when fluctuations are most important, we next compute the evolution of the LW intensity and hence the point at which H_2 cooling is suppressed – in some simple models of structure formation. This section is not meant to provide a detailed model of star formation, but it should provide some context for the fluctuations we will later examine. We can estimate the mean LW intensity, $\bar{J}_{\text{LW}}(z)$, with the following:

$$\bar{J}_{\text{LW}}(z) = \frac{(1+z)^2}{4\pi} \int_0^{z_{\text{coll}(z)}} \frac{dz'}{H(z')} \bar{\epsilon}(z') f_{\text{mod}}(z' - z),$$

(13)

where $f_{\text{mod}}(z' - z)$ is part of the LW flux profile (described more fully in §3.1) and the mean emissivity, $\bar{\epsilon}(z')$, is given by:

$$\bar{\epsilon}(z') = f_s n_b \frac{d}{dt} f_{\text{coll}}(z') \epsilon_s,$$

(14)

with f_s being the star formation efficiency (fraction of baryons that actually form stars), which we take to be 10% as a fiducial value, and n_b is the mean baryon number density.

We can approximate the spectral distribution function (defined as the number of photons per frequency ν emitted per baryon), $\epsilon_s(\nu)$, as its mean value $\bar{\epsilon}_s$ over the LW range (11.2–13.6 eV) for simplicity since we are looking at such a small range in frequency. We normalize $\epsilon_s(\nu)$ to produce 4800 photons per baryon between Lyman-α and the Lyman limit for very massive Population III.1 (zero-metallicity, $M \geq 100 M_\odot$) stars (Barkana & Loeb 2005a). Note that the light cone effect is inherent in this expression due to the redshift dependence of the mean emissivity.

Our results are summarized in Figure 2. The LW intensity is calculated in units of $J_{\text{LW}}(z) = \bar{J}_{\text{LW}}(z)/(10^{-21} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1} \text{ sr}^{-1})$. The solid curves represent the very massive Population III stars (Barkana & Loeb 2005a) boosts the intensities by a factor of ~ 2; the background reaches threshold earlier.
According to [Haiman et al. (2000)](Haiman et al. 2000), background intensities of $J_{\text{LW}, 21} \sim 10^{-2} - 1$ are needed to suppress H$_2$ cooling in all minihalos over a range of redshift from $z \sim 10 - 50$. The lower value describes H$_2$ suppression in halos near the $T_{\text{vir}} < 10^4$ K limit; below these low temperatures H$_2$ cooling is inefficient even in the absence of any photodissociating background, so no stars will form. Since f_{duty} increases with T_{vir}, it will be more difficult to terminate a more massive halo’s cooling supply. Thus, as the halo population evolves, becoming more numerous and more massive with time, the threshold intensity must increase, self-regulating star formation by shifting the minimum mass to higher values. Once halos reach $T_{\text{vir}} > 10^4$ K the value of the background intensity is once again irrelevant since these large halos are able to cool via atomic line cooling and no longer rely on their fragile H$_2$ supply. In further calculations, we will take $J_{\text{LW}, 21} = 0.1$ as our fiducial threshold intensity.

It is evident from Figure 2 that our models reach this threshold between redshifts $z \sim 15 - 35$. Of course, these models are extremely naive and ignore a host of complications (such as the evolving star formation efficiency and cooling threshold, as well as other feedback mechanisms). But they suffice to illustrate approximately when a given model reaches the H$_2$ photodissociation threshold, where the fluctuations which we will study are particularly interesting. Note that, because structure formation itself proceeds exponentially fast at high redshifts, uncertainties in the star formation parameters themselves are relatively unimportant. In any case, $J_{\text{LW}, 21} \propto f_{\text{duty}}$, so it is easy to read off the appropriate intensity for such a model.

We emphasize that the fluctuations will be most important near the threshold, because that is when the transition in cooling modes actually occurs. If fluctuations are small, the transition would occur uniformly over the entire Universe. If not, the Universe could contain isolated, sparsely populated patches in which H$_2$ cooling remains possible. If a minihalo inhabits one of these ‘safe’ patches, it could continue to form very massive stars via H$_2$ cooling even after the mean intensity reaches threshold. On the other hand, even well before an average IGM point reaches threshold, regions near existing sources will be well above it, and this could strongly affect the highly-clustered early sources. We will examine this phase in §3.3.

3.3 Power Spectrum

Results are depicted in Figures 3 and 4. In the former, we simultaneously vary M_{min} and redshift so that $J_{\text{LW}, 21} = 0.1$ is fixed, while in the latter we follow a single star formation model over redshift (varying $L_{\text{vir}, 21}$).

The normalized scenarios displayed in Figure 3 include:

- $M_{\text{min}} = 10^6 M_\odot$, $z = 30.15$ (bottom panel) and $M_{\text{min}} = 10^8 M_\odot$, $z = 20.5$ (top panel). The short-dashed curves represent the light cone versions for both scenarios, using equation (1) for the flux profile. It is evident that the inclusion of the light cone effect preserves the shape of the power but modestly boosts the amplitude (by a factor of ~2). We have also separately displayed the 1-halo and 2-halo terms (bottom-most, solid lines) for the $M_{\text{min}} = 10^6 M_\odot$ scenario so as to gain a sense of when these terms are dominant and to show how they work in tandem to determine the shape of $\Delta^2(k)$.

It is important to note that the above prescriptions assume that all halos above the mass threshold, M_{min}, form stars continuously. Of course, these stars have finite lifetimes, and in the classical Pop III scenario in which each halo undergoes only a short burst of star formation, not all of these stars are going to be ‘turned on’ when we take a snapshot of the fluctuations at a particular point in time. We can account for this simply by incorporating a duty cycle, f_{duty}, into our calculation. This addition exclusively affects the one-halo term in equation (5) since both $n(m)$ and the effective f_{coll} (which in this model gives the fraction of halos hosting active sources) are altered by a factor of f_{duty}, the two-halo term remains unchanged.

The two topmost, long-dashed curves in both panels of Figure 3 represent the $M_{\text{min}} = 10^6 M_\odot$ and $10^8 M_\odot$ scenarios including the light cone effect using two different values of f_{duty}. A reasonable estimate for f_{duty} would be the ratio between the average lifetime of a Pop III star, τ, and the Hubble time, t_H. The lifetime of these massive stars is believed to be a few million years (Myrs) (Barkana & Loeb 2001; Bromm & Larson 2004), though that remains to be directly measured. The topmost curve in both cases assumes an average lifetime of $\tau \sim 3$ Myrs ($f_{\text{duty}} = 0.02$ for $M_{\text{min}} = 10^6 M_\odot$ and 0.01 for $M_{\text{min}} = 10^8 M_\odot$) while the second curve assumes $\tau \sim 10$ Myrs ($f_{\text{duty}} = 0.06$ and 0.04 for $M_{\text{min}} = 10^6 M_\odot$ and $M_{\text{min}} = 10^8 M_\odot$, respectively).
and last of these. of the one-halo term and so boosts the fluctuations on scales
before fluctuations occur well is the first turnover located at
same model: \(z = 25.8, 23.35, 20.5, 17.0, \) and \(11.05 \) from top to bottom. We
display the time dependent versions (dashed curves) for the first
and last of these.

\(10^8 M_\odot \) (respectively). This greatly increases the importance
of the one-halo term and so boosts the fluctuations on scales
below the LW horizon. However, note that the mean back-
ground intensity also falls by a factor of \(f_{\text{duty}} \), so these strong
fluctuations occur well before threshold is reached.

The most striking feature common to all power spectra
is the first turnover located at \(k_{\text{LW}} \sim 0.06 \) \(\text{cMpc}^{-1} \). This
is a strong signature of the LW flux profile, which termi-
nates at \(r_{\text{LW}} \sim 100 \) \(\text{cMpc} \) (\(k_{\text{LW}} = 2\pi/r_{\text{LW}} \sim 0.06 \) \(\text{cMpc}^{-1} \)).
Power is smallest for the largest scales and then steadily
increases until it reaches \(k_{\text{LW}} \). In this regime, regions are
far outside the LW horizon of each source and so sample
independent patches in the radiation field. The total power
is therefore simply proportional to the matter power spec-
trum multiplied by a mean bias factor (squared). However,
when \(k_{\text{LW}} \), \(\Delta^2 \) turns over and begins to fall. This is because such
scales sample the variations within \(r_{\text{LW}} \); if the two points see
the same halo populations, their radiation amplitudes will
vary together and the fluctuations decrease. On the smallest
scales the power turns up and increases monotonically. This
indicates where the \(P_{1h}^1(k) \) term becomes dominant, which
occurs on larger scales (smaller \(k \)) for increasing choice of
\(M_{\text{min}} \) because the sources become more rare.

Note how the signature shifts to slightly higher \(\tilde{k} \) in the
light cone versions, because the damping scale \(r_{\ast} < r_{\text{LW}} \).
The turnover is also smoothed out as \(M_{\text{min}} \) increases and
the one-halo component begins to dominate at larger scales.
This signature is further smoothed by accounting for the
duty cycle. The shorter the stellar lifetime (and the smaller
the duty cycle), the more amplified the one-halo term will
be relative to the unchanged two-halo contribution.

Figure 4 shows the \(M_{\text{min}} = 10^8 M_\odot \) scenario at several
different redshifts. Curves are labeled according to their nor-
malized \(J_{\text{LW},21} \) values. The central curve (blue in the online
version) corresponds to the \(J_{\text{LW},21} \sim 0.1 \) normalized version
(\(z = 20.5 \)). Apparent in Figure 4 is the washing out of the
turnover at increasing \(z \); at high \(z \) halos are more rare and
the LW background patchier – consequently the 1-halo term
begins to dominate earlier on scales \(k < k_{\text{LW}} \), thus smooth-
ing out the key signature.

One important caveat for our model is the assumption
of linear bias when computing the 2-halo term in the power
spectrum. For example, consider the \(M_{\text{min}} = 10^8 M_\odot \) model,
which reaches threshold at \(z \sim 20 \). At that time, such a halo
has \(b \sim 10 \). Thus, even though the rms density fluctuation on
\(\sim 5 \) \(\text{Mpc} \) scales is \(\sim 0.04 \), the halo fluctuations are \(\sim \sigma_b \sim 0.4 \),
where nonlinear effects are becoming important. The
steep intensity profiles around these sources make cluster-
somewhat more important for the radiation background,
as found by Mesinger & Furlanetto (2009), and probably
enhance the fluctuations on moderately small scales by a
factor of a few. For example, Mesinger & Furlanetto (2009)
found from semi-numeric simulations that nonlinear cluster-
tends to smooth out the signature turnover in the power
spectrum of the ionizing background (where it is due to the
smaller attenuation length of high-z ionizing photons); see
also the discussion in §3 below.

As discussed in §3.2, we assumed \(f_r = 0.1 \) here. This
is likely to be an upper limit, and it could be much smaller
if, for example, the first star to form in each halo suppresses
the formation of any others. In this case the radiation field
would not reach threshold until later, when there are many
more halos and hence smaller fluctuations. Our scenarios
therefore provide upper limits to the fluctuation amplitude
at threshold.

Given the unusual shapes of these power spectra, we
next compute the real-space standard deviation in the
intensity to provide better intuition for the amplitude of these
fluctuations. We calculate the fractional standard deviation,
\(\sigma(R) \), in the following way:

\[
\sigma^2(R) = \int dk \frac{k^2}{2\pi^2} P(k) W_R^2(k), \tag{15}
\]

where \(W_R^2(k) \) is the ‘window function’ or smoothing window
over which we consider varying \(P(k) \). We employ a simple
Gaussian window for computational simplicity:

\[
W_R(k) = e^{-k^2 R^2 / 2}. \tag{16}
\]

We display \(\sigma(R) \) in Figure 5 for the choice of \(M_{\text{min}} = 10^8 M_\odot \). From top to bottom, the solid curve is normal-
ized to \(10^{-3} J_{\text{LW}} \) (\(z = 30.0 \)), while the others have \(J_{\text{LW},21} \sim 10^{-4}, 10^{-3}, 0.01, 0.1, \) and \(1 \).

The signature turnover at \(k_{\text{LW}} \) (see Figures 4 and 5)
has been lightly imprinted onto the shape of \(\sigma(R) \) in the form
of a gentle kink at \(R \sim 100 \) \(\text{cMpc} \). It is evident that at
intensity levels nearly approaching, at, and beyond the thresh-
old value, \(\sigma(R) \) is small (\(\lesssim 1 \)) down to very small scales
(\(\sim 1 \) \(\text{cMpc} \)), indicating a fairly uniform background. This
suggests that it is unlikely for isolated patches still harbor-
ing \(\text{H}_2 \) to exist and foster star-forming minihalos around the
threshold.

© 0000 RAS, MNRAS 000, 000-000
halos, $Q'_{\text{thres}}(z)$, assuming that these regions do not overlap:

$$Q'_{\text{thres}}(z) = \int_{M_{\text{min}}}^{\infty} \frac{m}{\bar{\rho}} \eta(m) n(m), \quad (17)$$

where $\eta(m)$ is the ratio of mass radiated within R_{thres} of a halo with mass m to that halo’s mass:

$$\eta(m) = \frac{4\pi \bar{\rho} R_{\text{thres}}^3}{m}. \quad (18)$$

For example, for a halo of mass $10^8 M_\odot$ at $z = 20$ with $M_{\text{min}} = 10^5 M_\odot$ and $f_\star = 0.1$, $R_{\text{thres}}\sim 3$ cMpc and $\eta \sim 5.5 \times 10^4$. The corresponding values for $z = 30$ are $R_{\text{thres}} \sim 8$ cMpc and $\eta \sim 9.7 \times 10^5$. If the flux profile were a pure $1/r^2$ power law, then $R_{\text{thres}} \propto L^{1/2}$, so $\eta \propto m^{1/2}$. In reality, the modulation factor steepens the flux profile, so η is closer to flat.

In the limit in which sources are truly isolated, Q'_{thres} would be the total filling factor of threshold regions. However, as more sources appear, their regions will begin to overlap and – because η is an increasing function of m – grow faster. Because we are only after a crude estimate of this effect, we do not worry about overlap here and use Q_{thres} as our fiducial estimate. A more sophisticated numerical or Monte Carlo model can easily incorporate this possibility (Dijkstra et al. 2008). The model will, of course, break down when sources become common enough to sit within each other’s R_{thres} (indeed, Q_{thres} is not limited to be less than unity). Fortunately, in this regime near threshold the halo model approach is perfectly adequate.

Since the newly forming halos are spatially biased and preferentially collapse near existing halos, this expression is not entirely correct. If we consider two halos, the first a

Figure 5. The fractional standard deviation, $\sigma(R)$, of the LW background depicted for $M_{\text{min}} = 10^8 M_\odot$. From top to bottom: the solid curve is normalized to $10^{-5} J_{21} (z = 30)$, the long-dashed curve to $10^{-4} J_{21} (z = 28)$, the dot-long-dashed curve to $10^{-3} J_{21} (z = 25.8)$, the short-dashed curve to $0.01 J_{21} (z = 23.4)$, the dot-short-dashed curve to $0.1 J_{21} (z = 20.5)$, and the dotted curve to $1.0 J_{21} (z = 17.0)$. We take $f_\star = 0.1$ in these scenarios.

Figure 6. The probability, Q_{thres}, of a new halo with R_{thres} of an existing halo, or within the region radiated by a local LW intensity above the threshold for H$_2$ suppression. Scenarios include $M_{\text{min}} = 10^8 M_\odot$ (rightmost, black curves) and $M_{\text{min}} = 10^9 M_\odot$ (leftmost, red curves). Also displayed is the mean LW intensity in units of the threshold level, J_{21}/J_{thres}, using $f_\star = 0.1$ and $J_{\text{thres}} = 0.1 J_{21}$.

3.4 Fluctuations in the Background at Early Phases

Nevertheless, Figure 5 shows that fluctuations in the background are large early on when J_{21} is well below threshold; $\sigma(8\text{ cMpc}) \sim 20$ for $M_{\text{min}} = 10^8 M_\odot$ at $z = 30$. On the flip side of asking whether or not scattered H$_2$ driven star formation could persist in epochs close to or at threshold, these large fluctuations could indicate that even in epochs for which the background is substantially below threshold there will be patches that are locally at threshold in which H$_2$ cooling is suppressed.

However, in this regime the fluctuations are not gaussian, so the standard deviation σ is not a good representation of the importance of the fluctuations. Moreover, because we primarily care about the radiation intensity at highly clustered sites of other halos – where star formation is trying to occur – simply taking a pure spatial average is not necessarily the proper approach (see also Dijkstra et al. 2008).

In order to delve into this new question, we follow the method presented in Furlanetto & Loeb (2005) with which they calculated the probability that a collapsing halo forms in a region already enriched by galactic winds at high redshift. In contrast, we are interested in calculating the probability that a collapsing halo forms in a region with a LW background above the dissociation threshold. If the sources are very rare, this corresponds to lying within a radius R_{thres} of a LW emitting halo. Within this radius, the ‘new’ halo – one that has passed the threshold to form stars – is irradiated by a local LW intensity above the threshold value for suppressing H$_2$ cooling. We can start by calculating the fraction of space contained within R_{thres} of all LW emitting halos, $Q_{\text{thres}}(z)$, assuming that these regions do not overlap:

$$Q_{\text{thres}}(z) = \int_{M_{\text{min}}}^{\infty} \frac{m}{\bar{\rho}} \eta(m) n(m),$$

where $\eta(m)$ is the ratio of mass radiated within R_{thres} of a halo with mass m to that halo’s mass:

$$\eta(m) = \frac{4\pi \bar{\rho} R_{\text{thres}}^3}{m}. \quad (18)$$

For example, for a halo of mass $10^8 M_\odot$ at $z = 20$ with $M_{\text{min}} = 10^5 M_\odot$ and $f_\star = 0.1$, $R_{\text{thres}}\sim 3$ cMpc and $\eta \sim 5.5 \times 10^4$. The corresponding values for $z = 30$ are $R_{\text{thres}} \sim 8$ cMpc and $\eta \sim 9.7 \times 10^5$. If the flux profile were a pure $1/r^2$ power law, then $R_{\text{thres}} \propto L^{1/2}$, so $\eta \propto m^{1/2}$. In reality, the modulation factor steepens the flux profile, so η is closer to flat.

In the limit in which sources are truly isolated, Q_{thres}' would be the total filling factor of threshold regions. However, as more sources appear, their regions will begin to overlap and – because η is an increasing function of m – grow faster. Because we are only after a crude estimate of this effect, we do not worry about overlap here and use Q_{thres} as our fiducial estimate. A more sophisticated numerical or Monte Carlo model can easily incorporate this possibility (Dijkstra et al. 2008). The model will, of course, break down when sources become common enough to sit within each other’s R_{thres} (indeed, Q_{thres} is not limited to be less than unity). Fortunately, in this regime near threshold the halo model approach is perfectly adequate.

Since the newly forming halos are spatially biased and preferentially collapse near existing halos, this expression is not entirely correct. If we consider two halos, the first a
newly formed halo and the second an established LW emitting halo, then the excess probability that the two halos live near each other is quantified by the correlation function, ξ_{gg}.

To linear order, the correlation function can be written as $\xi_{gg} = b_{\text{new}} b_{\text{thres}} \xi_{\delta \delta}$, where $b_{\text{new}} = b(M_{\text{min}})$ and b_{thres} are the biases of the newly collapsed and LW threshold region respectively and $\xi_{\delta \delta}$ is the dark matter correlation function. The mean bias of the LW threshold regions surrounding established halos can be written as:

$$b_{\text{thres}} = \frac{\int \delta \delta n(m) b(m) n(m)}{\int \delta \delta n(m) n(m)}. \quad (19)$$

With this in mind, we can approximate the corrected probability that a new halo lives within R_{thres} of an established halo as:

$$Q_{\text{thres}} = Q'_{\text{thres}} [1 + b_{\text{new}} b_{\text{thres}} \xi_{\delta \delta}(R_{\text{thres}})]. \quad (20)$$

We found that these corrections typically boost Q_{thres} by a factor of ~ 2 in our scenarios.

Figure 4 shows Q_{thres} for a choice of $M_{\text{min}} = 10^5 M_\odot$ (rightmost, solid black curves) and $M_{\text{min}} = 10^6 M_\odot$ (leftmost, solid red curves) with $f_*=0.1$. The dashed curves in Figure 4 represent the mean intensity relative to threshold, $J_{\text{LW, z1}}/J_{\text{thres}}$. Q_{thres} increases as redshift decreases and the LW background builds up and becomes more uniform in both scenarios. It is evident from Figure 4 that increasing the choice of M_{min} delays H$_2$ suppression; increasing M_{min} from $10^5 M_\odot$ to $10^6 M_\odot$ decreases Q_{thres}, for example, by a factor of ~ 33 at $z \sim 20$. By increasing the mass threshold one eliminates contributions from a host of less massive potential sources, requiring more time for the background to strengthen and boost Q_{thres}. Identical calculations using $f_*=0.01$ yield values of Q_{thres} that are up to factors of ~ 15 smaller.

Also, note that Q_{thres} increases roughly in proportion to J_{LW}: evidently the mean background provides a good estimate of the volume illuminated by a high intensity of LW radiation. However, note that the quantitative similarity of this filling factor and $J_{\text{LW}}/J_{\text{thres}}$ shown in Fig. 4 is coincidental and does not occur if we, e.g., change our choice of threshold value or f_*. Once $J_{\text{LW, z1}}$ reaches threshold, $Q_{\text{thres}} \sim 1.2$ (for $M_{\text{min}} = 10^5 M_\odot$ and $f_*=0.1$). At earlier times, the discrete nature of the sources does substantially increase the probability for a new halo to lie within a threshold region over and above what one might naively guess from Figure 4, for example, when $J_{\text{LW}} \sim 0.1 J_{\text{thres}} \sim 15\%$ of the halos lie in this regime, even though $\sigma \lesssim 1$ down to very small scales. Nevertheless, we still find that at early times there are relatively few patches above threshold.

3.5 Comparison to Other Work

There has been relatively little work on fluctuations in the LW background at high redshifts. The most salient comparison is to [Ahn et al. (2009)], who calculated the LW background power spectra using a large-scale radiative transfer simulation with size $R_{\text{box}} \sim 50$ cMpc. They resolved halos down to $10^5 M_\odot$ and implemented a simple two-population model for galaxies, in which halos with $M < 10^5 M_\odot$ had large ionizing efficiencies and larger halos had more modest efficiencies. By following the radiative transfer of ionizing photons, they also included the suppression of galaxy formation in halos with $M < 10^5 M_\odot$ following reionization, so this higher-efficiency population gradually disappeared. Although this simulation box should be sufficiently large to include a fair sample of the halo population, it is still much smaller than R_{thres}. [Ahn et al. (2009)] therefore used a periodic tiling in order to fill out the LW horizon. Unfortunately, this means that they cannot measure the turnover at k_{thres}, nor the regime in which the two-halo component dominates and approaches the straightforward limit $b^2 P_{\text{halo}}$, so interpreting their results is somewhat difficult.

We are unable to implement the self-regulated reionization model used by [Ahn et al. (2009)] in our simpler analytic model, but we have nevertheless made several test calculations to compare our results, choosing a reasonable minimum mass to match theirs at the different redshifts. Fortunately, [Ahn et al. (2009)] find that their simulation reaches threshold at $z \approx 16$, when the ionized fraction is less than a percent – thus we do not expect the self-regulation to be important in the regime of most interest. On the other hand, their box has only one radiation source at $z = 19$, so the pre-threshold regime probably suffers from their finite box size even more than expected.

Comparing to their Figure 12, we find less power, by an order of magnitude or so, in the $k \sim 0.3-20$ Mpc$^{-1}$ regime probed by their simulations, from $z \sim 16-8$. (They provide only an upper limit at higher redshifts because of the many fewer sources in the box.) However, our model does help to explain the shape of their power spectrum, which (when converted to Δ^2) shows relatively flat power over this range, especially at the lower redshifts. This is because it lies between the turnover at k_{LW} and the regime in which the one-halo term dominates (see, e.g., the lower-redshift curves in our Fig. 4). The flattening becomes more pronounced at lower redshifts as the one-halo term decreases in importance, thanks to the increased source density.

Nonlinear clustering is one likely explanation for the different amplitudes: the simulations can include the fully nonlinear clustering of these sources, while our model ignores them. [Mesinger & Furlanetto (2009)] did indeed find a boost of power on comparable scales comparing a halo-model implementation of radiation fluctuations to semi-numeric simulations (in this case, the ionizing background at $z \sim 6$). However, they found a much more modest boost (a factor ~ 2), followed by a steepening toward much smaller scales relative to the halo model prediction. Reconciling our results with those of [Ahn et al. (2009)] requires a much larger effect. One possible explanation is the amplitude of the source fluctuations, which is ~ 2 times larger in the [Ahn et al. (2009)] model at $z = 20$ than in the [Mesinger & Furlanetto (2009)] comparison, because the much higher bias of the higher-redshift halos compensates for the smaller fluctuations in the density field.

Another possible explanation is the finite source lifetimes imposed in the numerical simulations, which decreases the number of sources in the box and increases the importance of the one-halo term. [Ahn et al. (2009); Iliev et al.]

4 According to the methods of [Barkana & Loeb (2004)], the missing large-scale modes only suppress the halo population by a few percent.
Holzbauer & Furlanetto

2005), albeit in a non-uniform manner within the numerical simulation.

In any case, however, both the simulations and analytic models agree that, before the threshold is reached, fluctuations are relatively unimportant. The large-scale uniformity of the background seems robust, in the absence of large-scale modulation to the source population itself (as may be provided by relative velocities between baryons and dark matter; Tseliakhovich & Hirata 2010).

In principle, we can also compare our model with the detailed Monte Carlo simulations of Dijkstra et al. (2008). However, they focus exclusively on times far beyond threshold and very close halo pairs, where our crude approximation no longer applies.

4 THE LYMAN-α BACKGROUND

The Lyman-α background imprints fluctuations onto the 21-cm signal (Barkana & Loeb 2005a) by way of the Wouthuysen-Field effect (Wouthuysen 1952; Field 1958) in which the two hyperfine states of neutral hydrogen are mixed via the absorption and reemission of a Lyman-α photon. Once the first sources in the universe turn on and amalgamate into a Lyman-α background, this effect drives the spin temperature, T_S, to the gas temperature, T_K, resulting in a nonzero brightness temperature relative to the CMB, T_b, and allowing the 21-cm line to become visible. We can write T_b as (Furlanetto et al. 2006):

$$T_b(\nu) \approx 9z_{\text{HI}}(1+\delta)(1+z)^{1/2} \left[1 - \frac{T_\text{S}(z)}{T_\text{S}}\right] \left[\frac{H(z)/(1+z)}{d\nu/dr_\text{q}}\right] \text{mK}, \quad (21)$$

where z_{HI} is the neutral fraction, $(1+\delta)$ is the fractional overdensity of baryons, $T_\text{S}(z) = 2.73(1+z) \text{K}$ is the brightness temperature of the CMB, and $d\nu/dr_\text{q}$ is the gradient of the proper velocity along the line of sight. We can relate T_S/T_S to T_S/T_K with (Furlanetto et al. 2006):

$$\left[1 - \frac{T_\text{S}(z)}{T_\text{S}}\right] = \left[1 - \frac{T_\text{S}(z)}{T_K}\right] = \frac{x_c + x_\alpha}{1 + x_c + x_\alpha} \left[1 - \frac{T_\text{S}(z)}{T_K}\right], \quad (22)$$

where x_c and x_α are the collisional and Lyman-α scattering coupling coefficients.

Observing the 21-cm signal could provide us a window with which to investigate properties of the exotic sources that collectively shaped the nature of this background. This means that the Lyman-α background is a directly observable effect of (nearly) the same photons that make up the LW background. This allows us to measure that feedback process ν' (as the number of photons per baryon emitted at frequency ν per unit frequency) described by a power law $\epsilon_b(\nu) \propto \nu^{\alpha_b-1}$. We use the values for α_b presented in Barkana & Loeb (2005a) for massive Population III stars and Population II stars. A photon emanating from the source at emission frequency ν' is located at redshift z' is absorbed by level n at redshift z:

$$\nu'_n = \nu_n \frac{(1+z')}{(1+z)}. \quad (25)$$

We can also compare our model with the light cone versions displayed as dotted curves and the corresponding dashed vertical lines indicate the Lyman-α horizons. The $z = 10$ curve is displaced by a factor of 10 to make it more visible.

Figure 7. The Lyman-α flux profile shown for $z = 10$ (black, top curve) and 25 (red, bottom curve) with $M_{\text{min}} = 10^8 M_\odot$. The light cone versions are displayed as dotted curves and the corresponding dashed vertical lines indicate the Lyman-α horizons.

This imprints a set of horizons on the flux profile; horizons become smaller and smaller as you consider higher Ly levels. The series of horizons results in a step-like structure of the overall profile. We assume the flux from one halo takes the following form:

$$F_{\text{Ly}\alpha} \propto \frac{m}{4\pi r^2} \sum_n \epsilon_b(\nu'_n) f_{\text{recycle}}(n) \quad (24)$$

where $\epsilon_b(\nu)$ is the spectral distribution function (defined as the number of photons per baryon emitted at frequency ν per unit frequency) described by a power law $\epsilon_b(\nu) \propto \nu^{\alpha_b-1}$. We use the values for α_b presented in Barkana & Loeb (2005a) for massive Population III stars and Population II stars. A photon emanating from the source at emission frequency ν' (located at redshift z') is absorbed by level n at redshift z:

$$\nu'_n = \nu_n \frac{(1+z')}{(1+z)}. \quad (25)$$
4.2 The Mean 21-cm Background

We next estimate the redshifts for which the Lyman-α background fluctuations are important when observing the 21-cm signal. Following Furlanetto et al. (2006) we can write the fractional variation of the brightness temperature of the 21-cm line, δ_{21}, in the following way:

$$\delta_{21} = \beta_0 + \beta_\alpha \delta_\alpha - \delta_{\text{bevel}},$$

where δ_0 is the perturbation in the baryonic density, δ_α is that for the Lyman-α coupling coefficient x_α, and δ_{bevel} is that for the line of sight peculiar velocity gradient. The expansion coefficients, β_α, and their evolution over time determine the epochs for which the various perturbations influence the fluctuations in T_b. In particular,

$$\beta_\alpha = \frac{x_\alpha}{x_\text{tot}(1 + x_\text{tot})},$$

and

$$\delta_{\text{bevel}} = \frac{x_\alpha}{x_\text{tot}(1 + x_\text{tot})}.$$

β_α is basically the fractional contribution of the Wouthuysen-Field effect (Wouthuysen 1952; Field 1958) to the coupling, where $x_\text{tot} \equiv x_c + x_\alpha$ and x_c and x_α are the coupling coefficients for collisions and Lyman-α scattering. For simplicity in our calculations, and for easy comparison to earlier work (Barkana & Loeb 2005b; Pritchard & Furlanetto 2004), we ignore all fluctuations except for those due to density (β_0) and the Lyman-α background ($\beta_\alpha \delta_\alpha$). We neglect perturbations in the neutral fraction ($\beta_\nu \delta_\nu$) and the gas kinetic temperature, T_K ($\beta_T \delta_T$).

The collisional coupling coefficient was calculated as in Furlanetto (2006). The Lyman-α coupling coefficient can be written as

$$x_\alpha = S_\alpha \frac{J_\alpha}{J_{\alpha,\star}},$$

where S_α is a correction factor of order unity (Chen & Miralda-Escudé 2004; Hirata 2004; Pritchard & Furlanetto 2006) that we neglect in our simple model and J_α is the mean Lyman-α intensity. In a similar fashion to equation (15), S_α is given by:

$$J_\alpha(z) = \frac{1}{\pi} \int z_{\text{max}}(v) \, dv' \, f_{\text{recycle}}(n) \frac{(1+z')^2}{2} \frac{c}{H(z')} \epsilon(n', z').$$

The critical intensity, $J_{\alpha,\star} = 0.66(1+z)/20$ (in the units of J_{21}), corresponds to the threshold level of J_α for which T_S sticks to T_K (Furlanetto et al. 2006; Chen & Miralda-Escudé 2004). How does this threshold intensity compare to the LW intensity at which H$_2$ cooling is suppressed? We have displayed J_α in units of J_{21} as the dot-dashed line in Figure 2. The dashed curves in Figure 4 represent the calculated average Lyman-α intensities for scenarios with $M_{\text{min}} = M_{\text{filter}}(z)$, $10^5 M_\odot$, $10^7 M_\odot$, and $10^9 M_\odot$ and $f_\star = 0.1$. Notice how these intensities are larger than their LW counterparts (solid curves); the Lyman-α horizon distance is a factor of ~ 3 times larger than the LW horizon, which not only allows the Lyman-α background to build up more quickly but also allows for a more uniform background, as discussed in §4.1.

Around the time that the LW intensity reaches threshold for H$_2$ suppression, J_α is also somewhat higher than that, and hence very close to $J_{\alpha,\star}$. As a result, the 21-cm background is directly sensitive to the physics of cooling; around the time when T_S sticks to T_K numerous minihalos are shutting down stellar production as their H$_2$ supplies are wiped out. Conveniently, this makes the 21-cm background a nearly direct probe of this very interesting epoch in the history of galaxy formation.

We present $\beta_\alpha(z)$ in Figure 3 for $M_{\text{min}} = 10^8 M_\odot$ and $f_\star = 0.1$. We find that, for $M_{\text{min}} = 10^6 M_\odot$, β_α peaks at $z \sim 22$ and is significantly nonzero from $z \sim 15 - 30$; fluctuations in the Lyman-α background are important over this range. For this scenario, the mean LW background reaches threshold ($J_{LW,21} \sim 0.1$) by $z \sim 21$.

4.3 Results

Results for the Lyman-α radiation background power spectra are displayed in Figure 6. For ease in comparison to our LW results, we use the corresponding scenarios from Fig 3 normalized to reach $J_{LW,21} \sim 0.1$. Values for β_α in these scenarios are 0.89 for $M_{\text{min}} = 10^8 M_\odot$ at $z = 30.15$ (bottom panel) and 0.83 for $M_{\text{min}} = 10^6 M_\odot$ at $z = 20.5$ (top panel). The light cone versions are also shown (short-dashed curves; original versions are the solid curves). The two, long-dashed curves at the top of both panels represent fluctuations for these scenarios including the light cone effect and duty cycle. The topmost curve in both cases assumes an average lifetime of $\tau \sim 3$ Myrs ($f_{\text{duty}} = 0.02$ for $M_{\text{min}} = 10^8 M_\odot$ and 0.01 for $M_{\text{min}} = 10^6 M_\odot$) while the second curve assumes...
\[\tau \sim 10 \text{ Myrs} \quad (f_{\text{duty}} = 0.06 \text{ and } 0.04 \text{ for } M_{\text{min}} = 10^6 M_\odot \text{ and } 10^8 M_\odot \text{ respectively}). \]

As discussed in §4.2 the mean Lyman-\(\alpha\) intensity, \(J_\alpha\), is very nearly the critical intensity, \(J'_\alpha\), around the time that the LW intensity reaches the threshold level for H\(_2\) suppression (this can be seen in Figure 2). However, \(J_\alpha \propto f_{\text{duty}}\): stars are ‘turned on’ for a smaller fraction of the time and thus build the radiation background more slowly. Thus the duty cycle curves in this Figure are not at the coupling threshold. Obviously the fluctuations are boosted on small and mid-range scales (see Figure 9), but this is not surprising given that we are no longer probing the threshold epochs.

Present in the original models are a series of sequentially damped wiggles, in contrast to the smooth transition of the LW power. These result from the (Fourier transform of the) discontinuous horizon steps present in the Lyman-\(\alpha\) flux profile. Unfortunately, these signature wiggles are smoothed out once the light cone effect is applied to the models. As discussed earlier in §4.1, the light cone effect bevels out the horizon steps that give the flux profile its distinctive shape, resulting in a more featureless profile and producing a nearly featureless power spectrum.

The power turns over at roughly \(k_{\text{Lya}} \sim 2\pi/\tau_{\text{Lya}}\), where \(\tau_{\text{Lya}}\) is the Lyman-\(\alpha\) horizon distance (discussed above in §4.1), except for the light cone versions whose turnovers shift to somewhat higher \(k\). In addition, the amplitude of the light cone Lyman-\(\alpha\) power is roughly a factor of 2 smaller than the corresponding amplitudes for the LW background for scales of \(k \sim 0.1\) cMpc\(^{-1}\). This is likely a symptom of the larger Lyman-\(\alpha\) horizon distances, which are \(\sim 3 r_{\text{LW}}\) for these redshifts. Furthermore, the light cone effect on the Lyman-\(\alpha\) power is stronger than the corresponding effects on the LW fluctuations. The Lyman-\(\alpha\) models corrected for halo growth over time are boosted in amplitude by a factor of \(\sim 7\), while the LW models receive a boost by a factor of \(\sim 1.5\). The large Lyman-\(\alpha\) horizon allows points to ‘see’ more halos, bolstering the light cone effect on the most distant sources.

4.4 The 21-cm Signal

Finally, armed with the fluctuations in the radiation background and the fluctuations in the baryon density (computed with the linear power spectrum on these scales), we can estimate the 21-cm signal itself. Referring back to equation (29), we consider fluctuations in \(T_b\) sourced by perturbations in the matter density, Wouthuysen-Field coupling (or the Lyman-\(\alpha\) flux), and radial velocity gradient of the gas. All of these fluctuations are isotropic except for the velocity fluctuation, which introduces an anisotropy to the power spectrum and can be written as \(\delta_{\alpha}(k) = -\mu^2 \delta_b\) ([Bharadwaj & Alh 2004]), where \(\mu\) is the cosine of the angle between the wavenumber \(k\) of the Fourier mode and the line of sight. This enables the total power spectrum for \(T_b\) to be separated into powers of \(\mu\) ([Barkana & Loeb 2005b]):

\[
P_{\alpha} (k) = \mu^4 P_{\alpha | k} (k) + \mu^2 P_{\alpha \perp} (k) + P_{\alpha \parallel} (k). \tag{31}
\]

The \(\mu^2\) term, which can be written as ([Barkana & Loeb 2005b])

\[
P_{\alpha \perp} (k) = 2\mu^2 \left[\beta P_b (k) + \beta_{\alpha} P_{b-\alpha} (k) \right], \tag{32}
\]

contains contributions of density-induced fluctuations in

\[\copyright \text{ } 0000 \text{ RAS, MNRAS } 000, 000-000 \]
the Lyman-α flux, where $P_{δ-α}(k)$ is the cross-power spectrum for the matter density and Lyman-α radiation background. In our halo model, this is very easy to calculate (c.f., Cooray & Sheth 2002):

\begin{align}
P_{δ-α}(k) &= P_{δ-α}^{th}(k) + P_{δ-α}^{2h}(k), \\
P_{δ-α}^{th}(k) &= \int_{M_{min}}^{\infty} dm\left(\frac{m}{\rho_{coll}}\right)\left|u_δ(k|m)\right|^2 P(\rho_{f\|},x)P^{\rho}(k), \\
P_{δ-α}^{2h}(k) &= \left[\int_{0}^{\infty} dm\left(\frac{m}{\rho_{coll}}\right)u_δ(k|m)b(m)\right] \times \left[\int_{M_{min}}^{\infty} dm\left(\frac{m}{\rho_{coll}}\right)u_α(k|m)b(m)\right] P^{\rho}(k),
\end{align}

where $u_δ$ is the halo density profile that describes the distribution of mass within each halo.

Therefore, $P_{δ-α}(k)$ can easily be used to investigate fluctuations in the Lyman-α background at high redshift. We display $P_{δ-α}(k)$ in Figure 10 for $M_{min} = 10^5 M_⊙$ at redshifts $z = 11.05, 17.0, 20.5, 23.35,$ and 25.8 (from top to bottom) so as to correspond to the scenarios presented in Figure 4. We find that fluctuations in T_b increase with decreasing redshift and decrease with scale. The increase in amplitude levels off once J_0 reaches the critical intensity, J_{cr} (which, for the scenario in Figure 10 occurs around $z \approx 18$). At this point the Lyman-α coupling is saturated ($x_{tot} \gg 1$) and the 21 cm fluctuations become insensitive to the fluctuations in the Lyman-α background. One can also pick out the ‘one-halo’ term kicking in on small scales for these later epochs (the $z = 11.05$ curve in Figure 10).

The amplitude and overall shape of our power spectra are comparable to those presented in Pritchard & Furlanetto (2006), who used the same model to describe the Lyman-α flux but calculated $P_{δ-α}$ using a linear transfer function. The amplitudes from our model also agree with those from Barkana & Loeb (2005a), although the shape of the power differs because they neglected the effects of atomic cascading (by assuming $f_{recycle} = 1$) in their calculations.

Unfortunately, these power spectra do not display any sort of tell-tale signature feature such as the distinct LW turnover as can be seen in Figures 5 and 4 or the wiggles from the horizon steps, because the density-induced fluctuations wash them out. This agrees with previous work; recently, Vonlanthen et al. (2011) showed with a radiative transfer numerical simulation that the horizon steps present in the Lyman-α flux profile left imprints in the differential brightness temperature profile just after the first luminous sources turned on. However, as time progressed and more new sources began contributing to the Lyman-α background, the steps were effectively wiped out.

5 SUMMARY & CONCLUSIONS

In this paper, we have modeled fluctuations in the LW and Lyman-α radiation backgrounds using a variation of the halo model. First, we calculated the LW power spectrum and found that the power is characterized by an abrupt cut-off at the LW horizon distance, k_{LW}; the power turns over at the horizon wavenumber, k_{LW}, unless the sources are so rare that the one-halo term dominates (i.e., correlations are determined by the flux profiles of individual sources).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure10.png}
\caption{Power spectrum of T_b for the 21-cm transition, $|T_b(k)|/|P_{δ-α}(k)|^{1/2}$ (in mK), for scenarios with $M_{min} = 10^5 M_⊙$ for ease of comparison with Fig. 4. Scenarios include: $z = 11.05, 17.0, 20.5, 23.35,$ and 25.8 from top to bottom.}
\end{figure}

We found that the fluctuations in the background are weak and should not lead to substantial spatial fluctuations in H$_2$ content. Once a population of low-mass halos produces enough stars to generate a threshold LW background large enough to destroy their own H$_2$ reservoirs used for cooling, star formation can only proceed in larger halos with more substantial reservoirs. Our model predicts that, by the time this threshold is reached, fluctuations in the intensity field will be quite small, so this transition will be rather homogeneous across the entire Universe.

Though we found fluctuations in the background to be small around threshold, on the flip side we also found them to be large in those early epochs during which the background was approaching threshold. This could indicate the presence of patches of collapsing halos that are locally above threshold and H$_2$ suppressed. Taking into account the bias of sources, we crudely approximated the probability that a new halo lives in such a patch and found that even though source clustering substantially increases this probability, it is still relatively small. Thus, at this time, the majority of newly-forming halos can continue to cool via H$_2$, even in the presence of established galaxies (Dijkstra et al. 2008).

Eventually the first stars will build up the LW background by enough to suppress their own star formation; the process will terminate when only those halos above the atomic cooling threshold can form stars. However, the mode of star formation in these halos is very different from the minihalos that produce the first stars, so the transition to higher-mass halos has important consequences for the global star formation history (Oh & Haiman 2002). This transition from Population III to Population II star formation is of course extremely complex, and we have examined only a small part of it. The formation of very massive Population III stars requires two physical conditions: (1) metal-
free gas and (2) a reservoir of H$_2$ that allows the gas to cool (Bromm & Larson 2004). We have not examined the first condition, but the slow speed of galactic winds (compared to the speed of light) guarantees that metal enrichment will be very inhomogeneous, and pristine pockets of gas could persist until very low redshifts (Scannapieco et al. 2002; Furlanetto & Loeb 2005). In contrast, the LW background is spatially uniform and so will induce a rapid, homogeneous transformation in the fundamental processes of star formation, even when metal enrichment remains inhomogeneous. This will induce a shift from very massive Population III.1 stars to less massive – but still primordial – Population III.2 stars that require atomic cooling.

Next we considered the fluctuations in the Lyman-α background in a similar fashion. The Lyman-α flux profile imprints a series of wiggles on the shape of the power, corresponding to the series of horizon steps that characterize the profile. Unfortunately, unlike the LW case, these signature wiggles are washed out once we account for halo growth over the profile. We found that the amplitude of the Lyman-wiggles are washed out once we account for halo growth over the LW background in a similar fashion. The Lyman-α background could persist until very low redshifts (Scannapieco et al. 2002; Furlanetto & Loeb 2005). In contrast, the LW background is spatially uniform and so will induce a rapid, homogeneous transformation in the fundamental processes of star formation, even when metal enrichment remains inhomogeneous. This will induce a shift from very massive Population III.1 stars to less massive – but still primordial – Population III.2 stars that require atomic cooling.

We used our model for the fluctuations in the Lyman-α background to generate power spectra for the brightness temperature, T_b, of the 21-cm signal. We find our values to be in good agreement with previous estimates (Pritchard & Furlanetto 2006; Barkana & Loeb 2005a) that used a very different approach to estimate the radiation field fluctuations. We do not see a signature feature present in the power in contrast to the distinct LW turnover.

Our relatively simple model, though convenient and efficient, has a number of caveats that compromise accuracy. Most notably, we neglect nonlinear effects on the backgrounds by relying on a linear approximation for the halo-halo correlation function. Thus, our models are only good down to the scales for which this linear approximation still holds. In addition, we assumed a uniform star forming efficiency, f_*, for all minihalos in our calculations. As the halo population grows in size and complexity in the later epochs, variations in galactic properties – sourced partly by the suppression of H$_2$ cooling, but also due to a myriad of other factors – will complicate our simple treatment. After comparing our results to the previous simulation from Ahn et al. (2009) we find that the shapes can be well matched even with the limited dynamic range of the Ahn values (the signature turnover is not covered in their range). Although our amplitudes disagree by a factor of ~10 at the lower redshifts, we both find gentle fluctuations in the background around the time it reaches threshold, implying that ‘safe’ patches sheltering isolated sources of H$_2$ are rare by this epoch.

Furthermore, we have neglected the effects of X-rays in our models. If the first luminous sources had hard spectra that extended out to X-rays, these X-rays would have far reaching effects due to their large mean free paths – they could, by catalyzing the formation of new H$_2$, potentially counteract H$_2$ photodissociation by the growing UV background (McDowell 1961; Haiman et al. 1996, 2000). This could stall the transition of Population III to Population II stars by allowing minihalos to continue forming new stars, altering the make-up of the sources responsible for reionization.

Finally, Tseliakhovich & Hirata (2010) argue that a new nonlinear effect must be considered in structure formation: the supersonic relative velocity between dark matter and baryons can suppress the matter power spectrum near the baryonic Jeans scale, altering the abundance and clustering properties of the first dark matter halos. This effect could be accounted for in a future version of our simple model by introducing a modulation factor to the halo mass function. In fact, Dalal & Pen (2010) argue that the resulting fluctuations in the radiation background could strongly affect the 21-cm absorption power spectrum. However, they assume that the velocity exerts a very strong effect on galaxy formation, which may be at odds with more detailed numerical simulations (Mao et al. 2010; Stacy et al. 2010). In any case, such a large scale modulation will add more power to the radiation field and may have important implications for the homogeneity of the LW and Lyman-α backgrounds, since these acoustic features appear on comparable scales to the LW horizon (~100 Mpc).

This research was partially supported by the David and Lucile Packard Foundation, the Alfred P. Sloan Foundation, and by NASA through the LUNAR program. The LUNAR consortium (http://lunar.colorado.edu), headquartered at the University of Colorado, is funded by the NASA Lunar Science Institute (via Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the Moon.

REFERENCES

Abel T., Bryan G. L., Norman M. L., 2002, Science, 295, 93
Ahn K., Shapiro P. R., Iliev I. T., Mellema G., Pen U., 2009, ApJ, 695, 1430
Barkana R., Loeb A., 2001, PhysRep, 349, 125
Barkana R., Loeb A., 2004, ApJ, 609, 474
Barkana R., Loeb A., 2005a, ApJ, 626, 1
Barkana R., Loeb A., 2005b, ApJ, 624, L65
Bharadwaj S., Ali S. S., 2004, MNRAS, 352, 142
Bromm V., Coppi P. S., Larson R. B., 2002, ApJ, 564, 23
Bromm V., Larson R. B., 2004, ARA&A, 42, 79
Bromm V., Loeb A., 2004, NewA, 9, 353
Bromm V., Yoshida N., Hernquist L., McKee C. F., 2009, Nature, 459, 49
Chen X., Miralda-Escudé J., 2004, ApJ, 602, 1
Cooray A., Sheth R., 2002, PhysRep, 372, 1
Couchman H. M. P., Rees M. J., 1986, MNRAS, 221, 53
Dalal N., Pen U., 2010, JCAP, p. 007
Dijkstra M., Haiman Z., Mesinger A., Wyithe J. S. B., 2008, MNRAS, 391, 1961
Eisenstein D. J., Hu W., 1999, ApJ, 511, 5
Field G. B., 1958, Proc. IRE, 46, 240
Field G. B., 1959, ApJ, 129, 536
Field G. B., Somerville W. B., Dressler K., 1966, ARA&A, 4, 207
Furlanetto S. R., 2006, MNRAS, 371, 867
Furlanetto S. R., Loeb A., 2005, ApJ, 634, 1

© 0000 RAS, MNRAS 000, 000–000
Furlanetto S. R., Oh S. P., Briggs F. H., 2006, PhysRep, 433, 181
Gnedin N. Y., 2000, ApJ, 542, 535
Gnedin N. Y., Hui L., 1998, MNRAS, 296, 44
Haiman Z., Abel T., Rees M. J., 2000, ApJ, 534, 11
Haiman Z., Rees M. J., Loeb A., 1996, ApJ, 467, 522
Haiman Z., Rees M. J., Loeb A., 1997, ApJ, 476, 458
Haiman Z., Thoul A. A., Loeb A., 1996, ApJ, 464, 523
Hirata C. M., 2006, MNRAS, 367, 259
Iliev I. T., Mellema G., Shapiro P. R., Pen U.-L., 2007, MNRAS, 376, 534
Komatsu E., Smith K. M., Dunkley J., Bennett C. L., Gold B., Hinshaw G., Jarosik N., Larson D., Nolta M. R., Page L., Spergel D. N., Halpern M., Hill R. S., Kogut A., Limon M., Meyer S. S., Odegard N., Tucker G. S., Weiland J. L., Wollack E., Wright E. L., 2011, ApJS, 192
McDowell M. R. C., 1961, Observatory, 81, 240
Machacek M. E., Bryan G. L., Abel T., 2003, MNRAS, 338, 273
Mao U., Koopmans L. V. E., Ciardi B., 2010, ArXiv e-prints, 1011.4006
Mesinger A., Furlanetto S., 2009, MNRAS, 400, 1461
Mo H. J., White S. D. M., 1996, MNRAS, 282, 347
Moore B., Quinn T., Governato F., Stadel J., Lake G., 1999, MNRAS, 310, 1147
Naoz S., Barkana R., 2007, MNRAS, 377, 667
Navarro J., Frenk C., White S. D. M., 1996, ApJ, 462, 563
Oh S. P., Haiman Z., 2002, ApJ, 569, 558
Press W. H., Schechter P., 1974, ApJ, 187, 425
Pritchard J. R., Furlanetto S. R., 2006, MNRAS, 367, 1057
Ricotti M., Gnedin N. Y., Shull J. M., 2002, ApJ, 575, 49
Scannapieco E., Ferrara A., Madau P., 2002, ApJ, 574, 590
Sheth R. K., Tormen G., 1999, MNRAS, 308, 119
Stacy A., Bromm V., Loeb A., 2010, ArXiv e-prints, 1011.4512
Stacy A., Greif T. H., Bromm V., 2010, MNRAS, 403, 45
Stecher T. P., Williams D. A., 1967, ApJ, 149, L29
Tegmark M., Silk J., Rees M. J., Blanchard A., Abel T., Palla F., 1997, ApJ, 474, 1
Tseliakhovich D., Barkana R., Hirata C. M., 2010, ArXiv e-prints, 1012.2574
Tseliakhovich D., Hirata C. M., 2010, PhRvD, 82
Turk M. J., Abel T., O'Shea B., 2009, Science, 325, 601
Vonlanthen P., Semelin B., Baek S., Revaz Y., 2011, ArXiv e-prints, 1103.0439
Wouthuysen S. A., 1952, AJ, 57, 31
Yoshida N., Abel T., Hernquist L., Sugiyama N., 2003, ApJ, 592, 645
Yoshida N., Omukai K., Hernquist L., 2008, Science, 321, 669