Nanoscale photovoltage mapping in CZTSe/CuxSe heterostructure by using kelvin probe force microscopy

Manoj Vishwakarma, Deepak Varandani, Mylene Hendrickx, Joke Hadermann and B R Mehta
1 Thin Film Laboratory, Department of Physics, IIT Delhi, New Delhi-110016, India
2 EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Belgium
E-mail: brmehta@physics.iitd.ac.in
Keywords: Kesterite, secondary phases, KPFM, surface potential, interface, photovoltage
Supplementary material for this article is available online

Abstract
In the present work, kelvin probe force microscopy (KPFM) technique has been used to study the CZTSe/CuxSe bilayer interface prepared by multi-step deposition and selenization process of metal precursors. Transmission electron microscopy (TEM) confirmed the bilayer configuration of the CZTSe/CuxSe sample. Two configuration modes (surface mode and junction mode) in KPFM have been employed in order to measure the junction voltage under illumination conditions. The results show that CZTSe/CuxSe has small junction voltage of ∼21 mV and the presence of CuxSe secondary phase in the CZTSe grain boundaries changes the workfunction of the local grain boundaries region. The negligible photovoltage difference between grain and grain boundaries in photovoltage image indicates that CuxSe phase deteriorates the higher photovoltage at grain boundaries normally observed in CZTSe based device. These results can be important for understanding the role of secondary phases in CZTSe based junction device.

1. Introduction

Cu2ZnSnS4 (CZTS) is a potential absorber material for solar cell applications [1–5]. A slight deviation from the optimal growth conditions of the kesterite phase result in the evolution of several secondary phases, such as ZnS, Cu2SnS3, SnS and CuS [6, 7]. Cu2ZnSnSe4 (CZTSe) thin films synthesized by different methods like stacked deposited precursors followed by selenization [8], microwave assisted chemical synthesis [9], solvent-thermal reflux method, [10] and magnetron sputtering of multilayers [11] all have the CuxSe secondary phase, even when the composition of the overall absorber layer is stoichiometric. In the reaction sequence of CZTSe, the elemental metals (Cu, Zn, Sn and Se) first form CuSe and then Cu2SnSe3, which forms the Cu2ZnSnSe4 phase on reaction with ZnSe. At high temperature (>500 °C), the Cu2Se phase is formed due to a significant loss of SnSe2 [12]. The interfacial secondary phases in CZTSe based solar cells devices result in a high series resistance and can act as charge blocking layers [13]. The presence of secondary phases creates a discrepancy between the starting overall composition and the composition of the final CZTSe phase [14]. The phase inhomogeneity creates band gap fluctuations across the absorber layer and thus affects the performance of the device [15, 16]. The interface defects usually act as recombination centers in the space charge region, which reduce the open circuit voltage (VOC) and fill factor (FF) of the CZTSe/CdS device and therefore lead to low efficiency [17]. Secondary phases (e.g. Cu2Se, ZnSe) may also be present in the form of nanoscale features between CZTSe grains [18, 19]. The highest efficiency (>20%) for Cu(InGa)Se2 (CIGS) is attributed to the grain boundary structure of CIGS having a Cu-poor structure, which acts as a potential barrier for holes and attracts minority carrier electrons, thus making carrier separation faster [1, 20]. This local built-in potential on grain boundaries was investigated by scanning kelvin probe microscopy [21]. CZTS was found to have a grain boundary structure similar to that of CIGS, thus the band bending at CZTSe grain boundaries relative to intra-grain should lead to a solar cell conversion efficiency close to that of CIGS [20–22]. The presence of secondary phases on the grain boundaries can deteriorate this benign character of grain boundaries in CZTSe, and needs to be investigated. Secondary
phases growing preferentially along CZTSe grain boundaries may affect the electrical properties of the bulk and grain boundaries in different ways. However, the investigation of the interface between a secondary phase and CZTSe is a complicated task [23, 24]. In the present study, we investigate an intentionally formed CZTSe/CuxSe interface using nanoscale KPFM measurements and transmission electron microscopy. The KPFM technique works here as a potential measurement method in order to map the open circuit voltage directly at operating conditions within the material without full device processing [25]. None of the other measurements can directly map the photovoltage within the material except KPFM technique [25].

2. Experimental

Magnetron sputtering has been used to prepare CZTSe/CuxSe heterostructure sample. A CZTSe thin film was prepared by magnetron co-sputtering on Mo-coated glass substrates using the metal precursors Cu, Zn, and Sn (Atomic % ratio; Cu: Zn: Sn = 48: 17: 35), followed by a selenization process at ~520 °C for 10 min in a graphite box containing the sample and Se powder. Pure kesterite CZTSe and CuxSe films were prepared separately to compare the optical and structural properties of kesterite and CuxSe. To make the single phase films, the precursors (stoichiometric metal precursors Cu, Zn and Sn (Cu/Sn ~ 1.87, Zn/Sn ~ 1.30, Cu/(Zn + Sn) ~0.81) for CZTSe or Cu-metal for CuxSe) were deposited on Mo coated glass and bare glass substrates followed by a selenization process identical to that for the bilayer sample.

Further, the bilayer sample was prepared by using initial compositions in off-stoichiometric ratio. The starting Cu concentration in the CZT precursor thin film (figure 1(a)) was higher (Cu/(Zn + Sn) ~ 0.92, Zn/Sn ~ 0.48) than the stoichiometric compositions. The Cu-rich precursor thin film will form CuxSe secondary phase along with CZTSe in the sample upon selenization (figure 1(b)). The resulting CZTSe thin film is Zn-poor, therefore, to make the top CZTSe layer near stoichiometric, a thin layer of Zn (~60 nm) was deposited on top of the layer (figure 1(c)), followed by a similar selenization process as described above. The structural and optical characterization of the CZTSe and CuxSe samples after selenization were carried out by x-ray diffraction, Raman and UV-visible spectroscopic techniques. The synthesized bilayer sample is supposed to have both CZTSe and CuxSe phase layers and was characterized using cross-sectional TEM investigation, KPFM surface potential and photovoltage measurements. Prior to the imaging of the samples, the average work function of the Pt/Ir tip was calibrated as being ~5.3 eV using a highly ordered pyrolytic graphite (HOPG) sample with a known work function value. The AFM tip radius of curvature is around ~20 nm. The specimen for TEM study was prepared by focused ion beam (FIB) milling, on a gold support. A 40–50 nm carbon layer was deposited on the surface of the thin film to enhance the conductivity of the sample for lamella preparation and protect the top surface. The TEM study was performed at a FEI Tecnai Osiris operated at 200 kV equipped with a Super-X detector.

![Figure 1. Schematic diagram illustrating the procedure adopted for synthesis of CZTSe/CuxSe bilayer sample [(a)–(c)] and the arrangement utilized for carrying out KPFM measurements in surface and junction mode [(d)].](image-url)
3. Results and discussion

X-ray diffraction (XRD) patterns (figure 2(a)) and Raman spectra (figure 2(b)) of the CZTSe and Cu$_{2-x}$Se thin film samples can be completely indexed as the pure phases (JCPDS no. 52-0868 and 34-171 were used as reference for the XRD peaks) [18, 19]. The UV-visible spectroscopic measurements show band gaps of 1.12 eV (CZTSe) and 1.72 eV (Cu$_x$Se) as specified in supplementary information is available online at stacks.iop.org/MRX/7/016418/mmedia. The effect of the Cu$_x$Se secondary phase on the physical properties of CZTSe based photovoltaic devices could be due to inhomogeneities in their band gaps as the band gap value is highly sensitive to structural disorder and deviations in stoichiometry. Therefore, the structure and composition of the bilayer film were characterized by transmission electron microscopy.

The overview TEM image (figure 3) and STEM-EDX maps (figure 4) clearly show that the sample comprises of two different layers (labelled L1 and L2) along with a MoSe$_2$/Mo substrate layer. Compared to the targeted Cu$_2$ZnSnSe$_4$ composition, layer L1 has a Zn-poor, Cu-rich stoichiometry (Cu: Zn: Sn: Se = 36.9: 2.3: 11.9: 48.9) and a thickness of 0.8–1.0 μm. Despite the deviating composition, the SAED pattern corresponds to a kesterite structure (figure 5). The Cu enrichment of this layer is presumably due to the presence of small particles, as seen in figure 5(c). These small particles are embedded in a Cu-rich layer which makes it difficult to confirm their Cu-rich nature. However, the same particles were observed in the Mo and MoSe$_2$ layers, where we could determine their copper-rich nature (figure 6). Layer L2 has a thickness of 80–500 nm and consists of a homogeneous layer of SnO$_2$ and Cu$_{2-x}$Se (x ≈ 0) particles (Cu: Zn: Sn: Se: O = 43.8: 0.5: 15.4: 21.8: 17.6), which is confirmed by
the ED ring pattern of this layer (figure 5). The MoSe₂ and Mo substrate layers have thicknesses 100–340 nm and 330–400 nm, respectively. Layer L2 is firmly attached to L1 and no pores were seen at the interface between layers L1 and L2 (see supplementary information). The Cu₅Se phase exists as a buried phase in the active absorber layer CZTSe where the initial Cu-content might have influenced the formation of the secondary phase [26]. The presence of Cu₅Se phase in CZTSe thin film has also been reported in earlier studies [27].

For the same bilayer thin film, the surface potential (SP) was measured in two modes: by applying AC-DC bias voltage between the top surface CZTSe layer and KPFM tip (surface-mode), or between the bottom layer (Mo) contact and KPFM tip (junction-mode). The grain boundaries in the kesterite acts as channel for carrier
flow and these regions are dominated by thermally activated conduction mechanism [28–30]. The photovoltage at the interface was evaluated using point by point subtraction of the images obtained in the surface and junction modes under illuminated conditions. The work function of the top surface can be calculated by using equation 

$$\Phi_{\text{Sample}} = \Phi_{\text{tip}}(S.P.) - e(S.P.),$$

where $\Phi_{\text{Sample}}$, $\Phi_{\text{tip}}$, and $e$ are the work function of sample, tip, and electron charge, respectively. Initially, the SP of the Cu$_x$Se thin film was measured under dark condition. The SP image and corresponding work function histogram of Cu$_x$Se are shown in figures 7(b) and (c). Peak fitting in the SP histogram shows two peaks, one at 5.53 eV and a smaller peak at 5.50 eV, corresponding to grain and grain boundary (GB), respectively (figure 7(d)). In figure 7(d), line profiles along the height and SP images illustrate a lower work function at the GB (lower height) than at the grains (higher height) by about 30 meV and imply a downward band bending at GBs with respect to grains in the Cu$_x$Se layer. The morphology of the bilayer sample also confirms that the average grain size of CZTSe is in micron range (figure 7(e)). The SP variation of the CZTSe layer is shown in figure 7(g) in terms of work function and has been deconvoluted into two peaks (figures 7(f) and (g)). The line profile analysis of CZTSe along the grains and GBs establishes a higher work function at GBs in comparison to grains by about 50 meV, indicating upward band bending at GBs in the CZTSe layer. It is interesting to note that the band bending at GBs in CZTSe is opposite to that observed in the Cu$_x$Se layer.

The effect of Cu$_x$Se on the Cu$_x$Se/CZTSe sample was further investigated by carrying out measurements in surface and junction modes under light conditions. The average SP (work function) of the bilayer in surface mode is $\sim$110 mV ($\Phi \sim 5.19$ eV), in junction mode $\sim$90 mV ($\Phi \sim 5.21$ eV). The photovoltage map of the

Figure 6. (a) HAADF–STEM image of the Mo and MoSe$_2$ layers with the individual element map of (b) Cu and (c) the mixed {Cu, Se, Mo} map, given in counts. The observed particles are Cu-rich, which we assume to correspond to the observed particles in layer 1.

Figure 7. Cu$_x$Se: (a) Morphology, (b) Surface potential, (c) WF histogram and (d) Line profile of pristine Cu$_x$Se thin film. CZTSe: (e) Morphology, (b) Surface potential, (c) WF histogram and (d) Line profile of CZTSe thin film sample.
CZTSe/CuxSe junction is obtained by subtraction of surface potential images corresponding to surface and junction modes under illumination, as shown in figure 8(e). The average photovoltage in the bilayer sample is \( \sim 21 \) mV at the CZTSe/CuxSe interface. The photovoltage of the bilayer sample corresponds to the difference between the Fermi levels of the CZTSe and CuxSe thin films, i.e. quasi Fermi level under light conditions. The photovoltage histogram shows that the interface voltage is \( \sim 21 \) mV at both grain and GB within the resolution limit of the KPFM. In an earlier study, it was shown that the presence of CZTSe/Secondary phases interfaces at the junction (CZTSe/CdS) region results in narrowing of the band gap at the interface side which means higher recombination at the interface as the energy barrier for recombination is reduced [31].

Earlier reports using KPFM two configuration method (surface and junction) on a CZTSe/CdS solar cells showed a higher photovoltage at the GB and this higher photovoltage was attributed to the GB of CZTSe [32]. But the presence of the CuxSe phase apparently reduces this feature as there was no significant difference between the photovoltages at grain and GB in the present study. This KPFM method also allows to record the interface voltage by measuring SP on the surface of CZTSe/CuxSe heterostructure sample. This shows that the presence of the CZTSe/CuxSe interface reduces the benign character of CZTSe GBs, which are generally considered to have a positive charge due to Cu\(^{\text{+}}\) vacancies. The interface voltage between CZTSe/CuxSe is found to be \( \geq 21 \) eV, which can be responsible for the open circuit voltage deficit in the CZTSe based solar cell device. The suppression of grain boundaries feature in CZTSe thin film reduces the potential difference between grain and GB which will slow the charge carrier separation under illumination conditions. The higher the photovoltage between the CZTSe and CuxSe interface, the higher will be the VOC deficit in the CZTSe/CdS based photovoltaic device. CuxSe is found usually in CZTSe thin films due to Sn-loss during selenization which influences the Cu content, resulting in the formation of secondary phases. The impurity phase present on the top surface can be etched by a chemical process, but its presence across the cross-section can be a critical cause of a shunt path across the absorber of the CZTSe solar cell [18]. Improvement in the photovoltage directly depends on controlling the recombination in the GB of CZTSe and at the interfaces between CZTSe/secondary phases [27]. Since the GB barrier height is highly sensitive to Cu\( / [\text{Zn} + \text{Sn}] \), the performance of CZTSe solar cells can deteriorate because of the presence of secondary phases at the GB of the absorber layer [33]. Carrier separation at the GBs can be affected by the presence of CuxSe phase at the GB which can alter the surface charge and defects around the GB.
4. Conclusion

In conclusion, this study reports KPFM based investigation of a model Cu$_2$Se/CZTSe bilayer sample. The surface potential measurements in surface and junction modes indicates a photovoltage drop $\geq 21$ mV at CZTSe/Cu$_2$Se interface. The presence of Cu$_2$Se secondary phase in CZTSe can potentially invert the band bending at G.B. of kesterite absorber. The similar photovoltage value at grain and grain boundaries in Cu$_2$Se/CZTSe is quite different to the higher photovoltage observed at grain boundaries observed normally in CZTSe/CdS solar cell device [29]. This results may represent the deteriorating effect of Cu$_2$Se secondary phase in CZTSe solar cell device having Cu$_2$Se phase.

Acknowledgments

Authors acknowledges support provided DST in the forms of InSOL and Indo-Swiss projects. We also acknowledge Prof. B. Mehta acknowledges the support of the Schlumberger chair professorship. M V Manoj Vishwakarma acknowledges IIT Delhi for MHRD fellowship. Prof B R Mehta acknowledges the support of the Schummerler chair professorship. M V also acknowledges the support of DST–FIST Raman facility.

ORCID iDs

Manoj Vishwakarma @ https://orcid.org/0000-0003-0664-845X

B R Mehta @ https://orcid.org/0000-0002-2888-5897

References

[1] Chiril A et al 2013 Nat. Mater. 12 1107–11
[2] Paier J, Asahi R, Nagoya A and Kresse G 2009 Phys. Rev. B 79 115126
[3] Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H and Takeuchi A 2009 Thin Solid Films 517 2455–60
[4] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465
[5] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510–9
[6] Nagoya A and Asahi R 2010 Phys. Rev. B 81 113202
[7] Chen S, Yang J H, Gong X G, Walsh A and Wei S H 2010 Phys. Rev. B 81 245204
[8] Lai F L, Yang J F, Wei Y L and Kuo S Y 2017 Green Chem. 19 795–802
[9] Vallejo O R, Sánchez M, Pal M, Espinal R, Llorca J and Sebastian P J 2014 Mater. Res. Express 1 312007
[10] Wang C J, Shi E C and Chang S J 2016 J. Alloy Compd. 676 54–63
[11] Olger M A, Basol B M, Atasoy Y, Tomakin M, Aygun G, Ozuyer L and Bacaksa E 2017 Thin Solid Films 624 167–74
[12] Munir R, Jung G S, Ko Y M and Ahn B T 2013 Kor. J. Mater. Res. 23 183–9
[13] Tai K F, Gunawan O, Kuwahara M, Chen S, Mhaisalkar S G, Huan C H A and Mitzi D B 2018 Adv. Energy Mater. 6 1501609
[14] Schoppe P, Gurieva G, Giraldo S, Criado G M, Ronning C, Saucedo E, Schorr S and Schnoor C S 2017 Appl. Phys. Lett. 110 043901
[15] Rau U and Werner I 2004 Appl. Phys. Lett. 84 3735
[16] Chen S, Walsh A, Gong X G and Wei S H 2013 Adv. Mater. 25 1522–39
[17] Liu F, Yan C, Huang J, Sun K, Zhou F, Stride J A, Green M A and Hao X 2016 Adv. Energy Mater. 6 1600706
[18] Kim G Y, Kim J R, Lee J K, Kim J Y, Nguyen T T T and Yoon S 2017 Thin Solid Films 633 141–5
[19] Andres C, Haas S G, Romanyuk Y E and Tiwari A N 2017 Thin Solid Films 633 141–5
[20] Romero M J, Du H, Teeter G, Yan Y and Al-Jassim M M 2011 Phys. Rev. B 84 165324
[21] Jiang C S, Noufi R, Ramanathan K, Abu-Shama J A, Mountinho H R and Al-Jassim M M 2004 Appl. Phys. Lett. 85 2625–7
[22] Kim G Y, Jeong A K, Kim J R, Jo W, Son D H, Kim D H and Kang J K 2014 Sol. Energy Mater. Sol. Cells 127 129–35
[23] Ren Y, Richter M, Keller J, Redinger A, Unold T, Gargand O D, Scragg J J S and Bjorkman C P 2017 ACS Energy Lett. 2 2976–81
[24] Bao W and Ichimura M 2015 Int. J. Photoenergy 2015 592079
[25] Tennyson E M, Garrett J L, Frantz J A, Myers J D, Bekele R Y, Sanghara J S, Munday J N and Leite M S 2015 Adv. Energy Mater. 5 1501142
[26] Chen Q, Bernardi S and Zhang Y 2017 Phys. Rev. Appl. 8 034008
[27] Mainz R, Walker B C, Schmidt S S, Zander O, Weber A, Alvarez H R, Just J, Klaus M, Agrawal R and Unold T 2015 Phys. Chem. Chem. Phys. 15 18281–9
[28] Lj B, Chawla V and Clemens B M 2012 Adv. Mater. 24 7270–3
[29] Kosyak Y, Karmarkar and Scarpulla M A 2012 Appl. Phys. Lett. 100 263903
[30] Swami S K, Chaturvedi N, Kumar A and Dutta V 2015 Sol. Energy 122 508–16
[31] Crovetto A, Palagard M L N, Gunst T, Markusen T, Stokbro K, Brandbyge M and Hansen O 2017 Appl. Phys. Lett. 110 083903
[32] Vishwakarma M, Varandani D, Andres C, Romanyuk Y E, Haas S G, Tiwari A N and Mehta B R 2018 Sol. Energy Mater. Sol. Cells 183 34–40
[33] Sardashi K, Haight R, Gokmen T, Wang W, Chang L Y, Mitzi D B and Kummer C A 2015 Adv. Energy Mater. 5 1402180