Edge-aware Bidirectional Diffusion for Dense Depth Estimation from Light Fields

Numair Khan1
numair_khan@brown.edu

Min H. Kim2
minhkim@kaist.ac.kr

James Tompkin1
james_tompkin@brown.edu

1 Brown University
2 KAIST

Abstract

We present an algorithm to estimate fast and accurate depth maps from light fields via a sparse set of depth edges and gradients. Our proposed approach is based around the idea that true depth edges are more sensitive than texture edges to local constraints, and so they can be reliably disambiguated through a bidirectional diffusion process. First, we use epipolar-plane images to estimate sub-pixel disparity at a sparse set of pixels. To find sparse points efficiently, we propose an entropy-based refinement approach to a line estimate from a limited set of oriented filter banks. Next, to estimate the diffusion direction away from sparse points, we optimize constraints at these points via our bidirectional diffusion method. This resolves the ambiguity of which surface the edge belongs to and reliably separates depth from texture edges, allowing us to diffuse the sparse set in a depth-edge and occlusion-aware manner to obtain accurate dense depth maps. Project webpage: http://visual.cs.brown.edu/lightfielddepth

1 Introduction

Light fields record small view changes onto a scene. This allows them to store samples from both the spatial and angular distributions of light. The additional angular dimension allows imaging applications such as synthetic aperture photography and view interpolation [14, 32]. Most of these applications can be directly implemented in image space using image-based rendering (IBR) techniques [10, 20]. For applications such as light field editing and augmented reality, we require an explicit scene representation in the form of a point cloud, depth map, or derived 3D mesh, to allow occlusion-aware and view-consistent processing, editing, and rendering.

However, light field depth estimation is a difficult problem. Oftentimes, state-of-the-art methods strive for geometric accuracy without always considering occlusion edges, which are especially important for handling visibility in light field editing applications. Further, while the many views allow dense and accurate depth to be derived, the extra angular dimension carries large data costs that makes most depth estimation algorithms computationally inefficient [35]. Recent methods have sought to overcome this barrier by learning data-driven priors with deep learning. While this can be effective, it requires additional training data, and may overfit to scenes or capture scenarios [21].

We present a first-principles method for estimating occlusion-accurate depth maps from light fields with no learned priors and demonstrate its application in light field editing tasks. This is...
Figure 1: Light field editing requires high-accuracy depth edges. Middle: The dense depth estimated by Zhang et al. [35] illustrates the difficulty of extracting correct edges, with inserted content appearing at incorrect depths or with overhanging regions. Right: The accuracy of our depth edges allows effective occlusion handling when editing light fields. The inset shows our disparity map.

achieved by estimating disparity at a sparse set of pixels identified as most important for the final result. These estimates are then propagated to all pixels using occlusion-aware diffusion. Traditionally, diffusion pipelines for depth completion attempt to recover a complete description of depth maps via a sparse set of depth edges and gradients [8]. Commonly, techniques follow three steps [11, 34]:

1. Obtain sparse depth labels accurately and efficiently,
2. Determine diffusion gradient at each labeled point, and
3. Perform dense depth diffusion.

Step 1 is critical yet difficult: finding sparse depth labels via edges in EPIs requires robustness to noise and occlusion-awareness. For this, we identify unwanted edges by observing gradients along and just next to the edge. Second, using large filter banks for subpixel depth precision is expensive. Thus, from an initial depth estimate from a moderately-sized filter bank, we propose a novel entropy-based depth refinement using efficient random search to obtain a subpixel estimate.

Step 2 is also critical yet difficult: determining the diffusion direction requires us to know the depth at pixels around each label, but for efficiency we only have a sparse set of labeled points. Holynski and Kopf [11] deal with this by assuming that sparse labels do not lie on depth edges so that neighboring pixels have a similar label. Yucer et al. [34] handle labels on depth edges, but their method is designed for light fields with a large number (≈3000+) of views. Our novel contribution here is that we determine diffusion direction from other sparse labels within context via a bidirectional ‘backward-forward’ diffusion process. Together, improvements in these steps allow fast and accurate occlusion estimation for light fields.

2 Related Work

The information implicit within an EPI (Epipolar-Plane Image) is useful for depth or disparity estimation algorithms, and the regular structure of an EPI obviates the need for extensive angular regularization. Thus, many light field operations seek to exploit it [22]. Khan et al. [18] use a set of large Prewitt filters to reliably detect oriented lines in EPIs, then diffuses these across all light field views using occlusion-aware edges to guide a depth inpainting process [19]. However, their estimate of which edges are depth edges can be inaccurate, leading to errors in diffusion. Zhang et al.’s [35] spinning parallelogram operator works in a related fashion on EPIs, but has a larger support than a Prewitt filter. It provides accurate depth estimates, but is slow to execute. Their approach is similar to Tošić and Berkner’s [28] convolution with a set of specially adapted kernels to create light field scale-depth spaces. Wang et al. [29, 30] build on this by proposing a photo-consistency measure to address occlusion. Tao et al.’s [27] work considers higher dimensional representations of EPIs which allows them to use both correspondence and defocus to get depth.
Our goal is to estimate disparity at a sparse set of points such that their labels can be efficiently diffused to generate occlusion-accurate depth maps. Based on this requirement we populate our sparse set for diffusion by selecting points around light field edges (Section 3.1). However, while past work on image reconstruction has shown that edges are sufficient for recovering a perceptually accurate representation of the original image [B], labels at edges are poorly localized at the intersection of surfaces (Fig. 2). Hence, we use a bi-directional diffusion process to determine the propagation direction that generates the most accurate occlusion boundaries (Section 3.2).
3.1 Sparse Depth Labels from EPI Edges

An EPI (Epipolar-Plane Image) provides an angular slice through a 4D light field, and has a linear structure resulting from epipolar geometry constraints: points in world space become lines in an EPI, with the slope of each line corresponding to the depth of the point. The regularity of an EPI makes it easy to identify salient edges and their depth at the same time.

Noise & Occlusion Filtering. For each EPI I in the central cross-hair of views, we use large Prewitt filters \cite{18} to recover a set \mathcal{L} of parametric lines representing edge points in \mathbb{R}^4 space. This process, while fast, tends to generate many false-positives. To filter these out we use a gradient-based alignment scheme: each line $l \in \mathcal{L}$ is sampled at n locations to generate the set of samples $S_l = \{(x_i, y_i)\}$. The line l is considered a false-positive if the local image gradient of I does not align with the line direction at a minimum k number of samples:

$$\sum_{s \in S_l} \mathbb{1}\left(\frac{\nabla I(s)(\nabla l)^T}{\|\nabla I(s)\|\|\nabla l\|} > \cos(\tau_f)\right) < k,$$

where $\mathbb{1}(\cdot)$ is the indicator function that counts the set of aligned samples, ∇I is the first-order image gradient approximated using a 3×3 Sobel filter, and ∇l is perpendicular to the line. The parameters τ_f and k are constants with $\tau_f = \pi / 13$ and $k = (\text{EPI height}) / c$, with $1 \leq c \leq \text{EPI height}$. To determine the constant value c, we consider two factors: 1) the accuracy of EPI line fitting, and 2) the expected minimum number of views a point is visible in. In the case of perfect alignment between the line and EPI gradients, $c = 1$. This means that a line with even a single misaligned sample is rejected. However, if a point is occluded in some views, the corresponding EPI line will be hidden and misalignment of samples in those views is inevitable. If we set $c = 1$ we risk discarding such lines. We determine empirically that $c = 4$ provides good results across the synthetic and real world scenes, and across the narrow and wider baseline light fields that we evaluate on.

The parametric definition of EPI lines does not carry any visibility information for a point across light field views. We determine visibility $v(l)$ of a point $l \in \mathcal{L}$ in the central view as:

$$v(l) = \mathbb{1}\left(\frac{\nabla I(s_c)(\nabla l)^T}{\|\nabla I(s_c)\|\|\nabla l\|} > \cos(\tau_v)\right),$$

where s_c is the EPI sample corresponding to the central view and $\tau_v = \pi / 10$.

Figure 3: EPI edges provide both the location and disparity labels of a sparse point set \mathcal{P}. Thus, the first stage of our sparse labeling pipeline consists of EPI edge detection and line fitting. In the second stage, we compare the direction of each EPI line with underlying image gradients to remove noisy labels and points that are occluded in the central view. Finally, we improve the disparity estimates of the sparse set through an entropy-based random search.
Entropy-based Disparity Refinement. Notice that the number of discrete disparity values of points in \mathcal{L} is bounded by the number of large Prewitt filters used for EPI line fitting. Computational efficiency considerations prevent this number from becoming too large. Moreover, numerical precision and sampling errors result in the granularity of depth estimates plateauing beyond a certain number of filters. Thus, to enable the calculation of sub-pixel disparity values we fine-tune the initial estimates through random search and filtering. Let $\mathcal{L}_c = \{l \in \mathcal{L} \mid v(l) = 1\}$. Then for each $l \in \mathcal{L}_c$ and image samples $S_l = \{(x_i,y_i)\}$ along the line we minimize the energy function defined by the entropy of normalized intensity values:

$$E(l) = \sum_{s \in S_l} -P(I(s)) \log_2(P(I(s))),$$

where $I(s)$ is the intensity value at s and $P(s)$ is estimated from a histogram.

We minimize $E(l)$ by performing a random search in the 2D parameter space defined by the x-intercepts of l on the top and bottom edge of the EPI, $l = (x_l,x_b)$: at the jth iteration of the search we generate uniform random numbers $(o_l,o_b) \sim U(-1,1)(\alpha t^j)$, to generate a proposal $l_j = (x_l + o_l, x_b + o_b)$ (Fig. 3). This is accepted with probability one if $E(l_j) < E(l_{j-1})$. We use $t = 0.88$, $\alpha = 0.15$ and run the search for a maximum of 10 iterations.

The resulting disparity estimates are then refined by joint filtering in the spatial, disparity, and LAB color space. Let \mathcal{P} represent the spatial projection of \mathcal{L}_c into the central view, and let p_s, p_d, and p_c be the spatial position, disparity, and color of a point $p \in \mathcal{P}$. The filtered disparity estimate $f(p_d)$ is calculated via a spatial neighborhood S around p:

$$f(p_d) = \frac{1}{W} \sum_{q \in S} \mathcal{N}_{\sigma_s}(\|p_s - q_s\|) \mathcal{N}_{\sigma_d}(p_d - q_d) \mathcal{N}_{\sigma_c}(\|p_c - q_c\|) p_d,$$

where the normalization factor W is given by

$$W = \sum_{q \in S} \mathcal{N}_{\sigma_s}(\|p_s - q_s\|) \mathcal{N}_{\sigma_d}(p_d - q_d) \mathcal{N}_{\sigma_c}(\|p_c - q_c\|).$$

We found that the combination $\sigma_s = 10$, $\sigma_d = 0.1$ and $\sigma_c = 0.5$ works for all scenes.

3.2 Occlusion Edges via Diffusion Gradients

We want to diffuse the sparse set of disparity labels in \mathcal{P} to a dense grid of pixels \mathcal{D} such that $\nabla \mathcal{D}$ accurately represents all occlusion edges in the scene. However, this is a chicken-and-egg problem as we need the occlusion edges to determine the diffusion direction at each $p \in \mathcal{P}$. As Figure 2 shows, the disparity for a point lying on an EPI edge alone is not sufficient to determine the surface direction in which to perform diffusion. Directly propagating the sparse disparity estimates to generate a dense depth map results in significant errors around edges (supplemental Fig. 10).

As all potential occlusion edges are also depth edges, one way to determine diffusion direction is by distinguishing depth and texture edges. Yucer et al. [34] do this by comparing the variation in texture on both sides of an edge as the view changes: the background seen around a depth edge will change more rapidly than the foreground, leading to a larger variation in texture along one side of the edge. The correct diffusion direction is to the side with lower variation. This method works for light fields with thousands of views (3000+ images), but proves ineffective on datasets that are captured using a lenslet array or camera rig (Fig. 7). This is because the assumption fails to hold in cases where 1. the background lacks texture, and 2. the light field has a small baseline with relatively few views, which is common for handheld cameras. Here, occlusion is minimal and image intensity variation is caused more by sensor noise than by background texture variation.
Figure 4: (a) Given an edge point \(p \) with image gradient \(\nabla I(p) \) and depth label \(p_d \) we would like to determine which side of the edge to propagate \(p_d \). We generate images \(\hat{D}[\mathcal{P}_f] \) (b) and \(\hat{D}[\mathcal{P}_b] \) (c) by solving a Poisson optimization problem with diffusion direction \(p + \nabla I(p) \) and \(p - \nabla I(p) \) respectively. The correct diffusion direction (b) generates an intensity profile resembling a step function. In the example shown, \(p_d \) corresponds to the surface on the right of the edge as \(p + \nabla I(p) \) generates a profile more closely resembling a step function.

Our proposed solution to the depth edge identification problem works for light fields with few views (e.g., \(7 \times 7 \) from a Lytro). We use \(S[A] \) to represent the image created by splatting sparse points in a set \(A \) onto a \(w \times h \) raster grid, and \(D \) to be a dense \(w \times h \) disparity map. Diffusion is formulated as a constrained quadratic optimization problem:

\[
\hat{D}[A] = \arg \min_D \sum_{p \in A} E_d(p) + \sum_{(p,q) \in S} E_s(p,q),
\]

where \(\hat{D}[A] \) is the optimal disparity map given the sparsely labeled image \(S[A] \) and \(S \) is the set of all four-connected neighbors in \(D \). The data term \(E_d(p) \) and smoothness term \(E_s(p,q) \) are defined as:

\[
E_d(p) = \lambda_d(p) \| S[A](p) - D(p) \|, \quad \text{and} \quad E_s(p,q) = \lambda_s(p) \| D(p) - D(q) \|,
\]

with \(\lambda_d(\cdot) \) and \(\lambda_s(\cdot) \) being the spatially-varying data and smoothness weights.

Equation (5) represents a standard Poisson problem, and we solve it using an implementation of the LAHBPCG solver [22] by posing the constraints in the gradient domain as proposed by Bhat et al. [11]. We begin by defining two sets formed from opposite offset directions \(\nabla I(p) \) and \(-\nabla I(p) \):

\[
\mathcal{P}_f = \{ p + \nabla I(p) \mid \forall p \in \mathcal{P} \}, \quad \text{and} \quad \mathcal{P}_b = \{ p - \nabla I(p) \mid \forall p \in \mathcal{P} \},
\]

where \(\nabla I(p) \) is the gradient of the central light field view at point \(p \). Then, we solve Equation (5) for both offset directions \(\hat{D}[\mathcal{P}_f] \) and \(\hat{D}[\mathcal{P}_b] \) using data and smoothness weights:

\[
\lambda_d(p) = \begin{cases}
10^6 & \text{if } p \in A, \\
0 & \text{otherwise,}
\end{cases} \quad \text{and} \quad \lambda_s(p) = \frac{1}{\| \nabla I(p) \| + \epsilon}.
\]

Given both solutions, we compare the normalized depth profile around each point \(p \in P \) along \(\nabla I(p) \) in \(\hat{D}[\mathcal{P}_f] \) and \(\hat{D}[\mathcal{P}_b] \). Figure 4 shows that the profile for the correct offset direction (\(\nabla I(p) \) or \(-\nabla I(p) \)) more closely resembles a step function around \(p \) due to a strong depth gradient. This is because neighboring points in the correct offset direction will have a disparity value similar to \(p \). The high data term together with the global smoothness constraint results in a small gradient around \(p \) when the incorrect offset pushes it to the wrong side of the edge. We estimate the profile around \(p \) in \(\hat{D}[\mathcal{P}_f] \) and \(\hat{D}[\mathcal{P}_b] \) by convolving the normalized value of a set \(N_p \) of pixels around \(p \) with the step filter \(F = [-1 -1 1 1] \). We define:

\[
\lambda_e(p) = \max_{\{\hat{D}[\mathcal{P}_f],\hat{D}[\mathcal{P}_b]\}} \| N_p \otimes F \|.
\]
The bi-directional diffusion process allows us to identify depth edges by considering the mean gradient at each pixel across the backward-forward pass. Texture edge gradient remains low in both passes. For depth edges, the gradient is higher in one pass. For depth edges that are not meant to be sharp, the change in depth around that region from the bi-directional solve is small, and picking either offset leads to low error.

The final map $\hat{D}[Q]$ with the desired depth edges is generated using Equation (5) where $Q = \{p \pm \nabla I(p) \, \forall \, p \in \mathcal{P}\}$ is a sparse set of points offset in the diffusion direction determined above. The final data and smoothness weights are:

$$\lambda_d(p) = \omega \exp(a \lambda_e(p)), \quad \lambda_s(p) = \frac{1}{||\nabla I(p)|| ||\nabla \hat{D}[P_f] + \nabla \hat{D}[P_b]||},$$

where $\lambda_s(p)$ defines the depth edge confidence at every pixel (Fig. 5). The parameters in Equation (10) are set as $\omega = 1.5 \times 10^2$ and $a = 3$. These values work for all scenes.

4 Experiments

Occlusion Edge Accuracy. Qualitatively, our method produces sharper and more accurate occlusion edges than state-of-the-art light field depth estimation methods. We compare our results to three non-learning-based methods: the defocus and correspondence cues methods by Jeon et al. [15] and Wang et al. [30], and the spinning parallelogram operator of Zhang et al. [35]. We also compare with the learning-based methods of Jiang et al. [14], Shi et al. [24], and Li et al. [21]. We do not compare to Holynski and Kopf [11]: this uses COLMAP, which fails on typical skew-projected light field data. In Figure 6, we show results on light fields from the EPFL MMSPG Light-Field Dataset [23] (7×7) and the Stanford Light Field Archive [1] (17×17). The latter dataset is captured with a camera rig and has a wider baseline than the EPFL light fields, which come from a Lytro Illum camera.

In Figure 7, we visualize occlusion boundaries as depth gradients. While the learning-based methods of Shi et al. and Li et al. generating spurious boundaries in textureless regions, the approach of Yucer et al. [34] fails entirely in the absence of thousands of views. We also evaluate our edges quantitatively on four scenes from the synthetic HCI Light Field Dataset [12] via ground truth disparity maps for the central view (Fig. 8 and Tab. 1). Although our Q25 error is higher, our method has high boundary-recall precision, and a lower average mean-squared error than all baselines.

Diffusion Gradients as Self-supervised Loss. One way to think about bidirectional diffusion gradients is as a self-supervised loss function for depth edge localization. With this view, we compare its performance to multi-view reprojection error — a commonly used self-supervised loss in disparity optimization. We use the dense disparity maps $\hat{D}[P_f]$ and $\hat{D}[P_b]$ to warp all light field views onto the central view through an occlusion-aware inverse projection. A reprojection error map is calculated as the mean per-pixel L1 intensity error between the warped views and the central view. The offset direction at each point $p \in \mathcal{P}$ is then determined based on the disparity map that minimizes the reprojection error at the pixel location of p. Table 2 evaluates the result of calculating $Q = \{p \pm \nabla I(p) \, \forall \, p \in \mathcal{P}\}$ based on the reprojection error maps instead of our bidirectional diffusion gradients. Our method has consistently lower MSE, indicating better edge performance. This intuition is qualitatively confirmed by supplemental Figure 16.
Figure 6: Occlusion edges in disparity maps. Top: Stanford dataset light field captured with a camera rig. Bottom: EPFL light field from a Lytro Illum. Left to right: Jeon et al. [15], Zhang et al [35], Jiang et al. [16], Shi et al. [24], and ours.

Figure 7: Visualizing occlusion edges as gradients of disparity maps. Left to right: Shi et al. [24], Li et al [21], Yucer et al. [34], and ours. Bottom row, red circle: the learning-based methods hallucinate a strong depth edge on the plow even though it is in contact with the black ground cloth at the same depth (supplemental Sec. A.1). Yucer et al.’s method fails in the absence of many views.

Table 1: Quantitative comparison of our method and the baselines on the synthetic HCI light fields. The top three results are highlighted in gold, silver and bronze. MSE is the mean squared error; Q25 is the 25th percentile of the absolute error.
Table 2: Evaluating disparity maps with depth edges identified via reprojection error and via our approach of diffusion gradients on the synthetic HCI dataset. MSE is the mean squared error; Q25 is the 25th percentile of absolute error.

Light Field	MSE $\times 100$	Q25		
	Reproj	Ours	Reproj	Ours
Sideboard	1.39	1.03	1.20	1.22
Dino	0.64	0.45	0.81	0.85
Cotton	1.04	0.70	0.68	0.74
Boxes	9.32	7.52	1.65	1.41
Average	3.10	2.43	1.08	**1.05**

Figure 8: Average precision-recall curves of depth boundaries for all baseline algorithms (HCI dataset). Learning-based methods are shown as dotted lines. Our approach consistently outperforms traditional algorithms [15, 30, 35] and the learning-based method of Jiang et al. [16], while outperforming Shi et al. [24] and Li et al. [21] at medium-to-low recall rates.

5 Discussion

Light Field Editing. As our method generates accurate depth edges that allow visibility to be handled correctly, our depth allows simple object insertion with few artifacts (Figs. 1 and 9).

Errors. Our method has consistently lower mean squared error (MSE), but suffers a higher number of erroneous pixels (Q25). As Q25 measures the first quantile of absolute error, this indicates that baseline methods must have more outliers: the errors that they do have must be considerably large. This intuition is confirmed by visualizing the absolute error (supplemental Fig. 17) which shows regions of large error around occlusion boundaries for the baseline methods. We also observe evidence supporting our initial comment that supervised deep-learning-based methods can overfit. When tested on real-world light fields, methods trained only on the HCI dataset [21] produce artifacts along depth edges (Fig. 6). More varied training data or more sophisticated data augmentation methods could be employed here. Our method is not susceptible to these problems, producing comparable output on both synthetic and real-world light fields.

Conclusion. Estimating occlusion-accurate depth maps from light fields is useful for scene editing and AR applications. Our approach is based around a bidirectional diffusion process that can disambiguate depth from color edges and estimate a correct depth edge offset to provide accurate gradient information for diffusion. We also contribute a faster method to find sub-pixel disparity labels at a sparse set of points via an entropy-based depth refinement process. The effectiveness of this strategy is shown with results on synthetic and real world light fields, producing competitive or better mean squared error accuracy while being significantly faster than other non-learning-based methods.

Figure 9: Adding a BMVC’21 tarot card to the scene. *Left:* input scene. *Center:* Our editing results. *Right, clockwise from top-left:* Detail of the unmodified light field image, Zhang et al. [35]’s editing result, Shi et al. [24]’s editing result, and our result with fewer artifacts.
Acknowledgments

Numair acknowledges an Andy van Dam PhD Fellowship, and James acknowledges a gift from Cognex. Min H. Kim acknowledges the support of Korea NRF grant (2019R1A2C3007229)

References

[1] Andrew Adams, Vaibhav Vaish, Bennett Wilburn, Neel Joshi, and Marc Levoy. The New Stanford Light Field Archive, 2008. URL http://lightfield.stanford.edu/.

[2] A. Alperovich, O. Johannsen, and B. Goldluecke. Intrinsic light field decomposition and disparity estimation with a deep encoder-decoder network. In Proceedings of the 26th European Signal Processing Conference (EUSIPCO), 2018.

[3] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics (Proc. SIGGRAPH), 28(3), August 2009.

[4] Pravin Bhat, Larry Zitnick, Michael Cohen, and Brian Curless. Gradientshop: A gradient-domain optimization framework for image and video filtering. In ACM Transactions on Graphics (TOG), 2009.

[5] Jie Chen, Junhui Hou, Yun Ni, and Lap-Pui Chau. Accurate light field depth estimation with superpixel regularization over partially occluded regions. IEEE Transactions on Image Processing, 27(10):4889–4900, 2018.

[6] Xinjing Cheng, Peng Wang, and Ruigang Yang. Depth estimation via affinity learned with convolutional spatial propagation network. In Proceedings of the European Conference on Computer Vision (ECCV), pages 103–119, 2018.

[7] A. Chuchvara, A. Barsi, and A. Gotchev. Fast and accurate depth estimation from sparse light fields. IEEE Transactions on Image Processing, 29:2492–2506, 2020.

[8] James H Elder. Are edges incomplete? International Journal of Computer Vision, 34(2-3): 97–122, 1999.

[9] Abdelrahman Eldesokey, Michael Felsberg, and Fahad Shahbaz Khan. Confidence propagation through cnns for guided sparse depth regression. IEEE transactions on pattern analysis and machine intelligence, 42(10):2423–2436, 2019.

[10] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. The Lumigraph. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages 43–54. ACM, 1996.

[11] Aleksander Holynski and Johannes Kopf. Fast depth densification for occlusion-aware augmented reality. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 37(6), 2018.

[12] Katrin Honauer, Ole Johannsen, Daniel Kondermann, and Bastian Goldluecke. A dataset and evaluation methodology for depth estimation on 4d light fields. In Asian Conference on Computer Vision, pages 19–34. Springer, 2016.
[13] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra Ahuja, and Jia-Bin Huang. DeepMVS: Learning multi-view stereopsis. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 2821–2830, 2018.

[14] Aaron Isaksen, Leonard McMillan, and Steven J Gortler. Dynamically reparameterized light fields. In *Proceedings of the 27th annual conference on Computer graphics and interactive techniques*, pages 297–306, 2000.

[15] Hae-Gon Jeon, Jaesik Park, Gyeongmin Choe, Jinsun Park, Yunsu Bok, Yu-Wing Tai, and In So Kweon. Accurate depth map estimation from a lenslet light field camera. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1547–1555, 2015.

[16] Xiaoran Jiang, Mikaël Le Pendu, and Christine Guillemot. Depth estimation with occlusion handling from a sparse set of light field views. In *2018 25th IEEE International Conference on Image Processing (ICIP)*, pages 634–638. IEEE, 2018.

[17] Xiaoran Jiang, Jinglei Shi, and Christine Guillemot. A learning based depth estimation framework for 4d densely and sparsely sampled light fields. In *Proceedings of the 44th International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 2019.

[18] Numair Khan, Qian Zhang, Lucas Kasser, Henry Stone, Min Hyuk Kim, and James Tompkin. View-consistent 4d light field superpixel segmentation. In *International Conference on Computer Vision (ICCV) 2019*. IEEE, 2019.

[19] Numair Khan, Min H. Kim, and James Tompkin. View-consistent 4d light field depth estimation. *British Machine Vision Conference*, 2020.

[20] Marc Levoy and Pat Hanrahan. Light field rendering. In *Proceedings of the 23rd annual conference on Computer graphics and interactive techniques*, pages 31–42, 1996.

[21] Kunyuan Li, Jun Zhang, Rui Sun, Xudong Zhang, and Jun Gao. Epi-based oriented relation networks for light field depth estimation. *British Machine Vision Conference*, 2020.

[22] In Kyu Park, Kyoung Mu Lee, et al. Robust light field depth estimation using occlusion-noise aware data costs. *IEEE transactions on pattern analysis and machine intelligence*, 40(10): 2484–2497, 2017.

[23] Martin Rerabek and Touradj Ebrahimi. New light field image dataset. In *8th International Conference on Quality of Multimedia Experience (QoMEX)*, 2016.

[24] Jinglei Shi, Xiaoran Jiang, and Christine Guillemot. A framework for learning depth from a flexible subset of dense and sparse light field views. *IEEE Transactions on Image Processing*, 28(12):5867–5880, 2019.

[25] Changha Shin, Hae-Gon Jeon, Youngjin Yoon, In So Kweon, and Seon Joo Kim. Epinet: A fully-convolutional neural network using epipolar geometry for depth from light field images. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 4748–4757, 2018.

[26] Richard Szeliski. Locally adapted hierarchical basis preconditioning. In *ACM SIGGRAPH 2006 Papers*, pages 1135–1143. ACM, 2006.
[27] Michael W Tao, Sunil Hadap, Jitendra Malik, and Ravi Ramamoorthi. Depth from combining defocus and correspondence using light-field cameras. In Proceedings of the IEEE International Conference on Computer Vision, pages 673–680, 2013.

[28] Ivana Tosic and Kathrin Berkner. Light field scale-depth space transform for dense depth estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 435–442, 2014.

[29] Ting-Chun Wang, Alexei A Efros, and Ravi Ramamoorthi. Occlusion-aware depth estimation using light-field cameras. In Proceedings of the IEEE International Conference on Computer Vision, pages 3487–3495, 2015.

[30] Ting-Chun Wang, Alexei A Efros, and Ravi Ramamoorthi. Depth estimation with occlusion modeling using light-field cameras. IEEE transactions on pattern analysis and machine intelligence, 38(11):2170–2181, 2016.

[31] Tsun-Hsuan Wang, Fu-En Wang, Juan-Ting Lin, Yi-Hsuan Tsai, Wei-Chen Chiu, and Min Sun. Plug-and-play: Improve depth estimation via sparse data propagation. arXiv preprint arXiv:1812.08350, 2018.

[32] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez, Adam Barth, Andrew Adams, Mark Horowitz, and Marc Levoy. High performance imaging using large camera arrays. In ACM SIGGRAPH 2005 Papers, pages 765–776. ACM, 2005.

[33] Yan Xu, Xinge Zhu, Jianping Shi, Guofeng Zhang, Hujun Bao, and Hongsheng Li. Depth completion from sparse lidar data with depth-normal constraints. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2811–2820, 2019.

[34] Kaan Yucer, Changil Kim, Alexander Sorkine-Hornung, and Olga Sorkine-Hornung. Depth from gradients in dense light fields for object reconstruction. In 2016 Fourth International Conference on 3D Vision (3DV), pages 249–257. IEEE, 2016.

[35] Shuo Zhang, Hao Sheng, Chao Li, Jun Zhang, and Zhang Xiong. Robust depth estimation for light field via spinning parallelogram operator. Computer Vision and Image Understanding, 145:148–159, 2016.
A Supplemental Material

We include additional discussion covering the benefits over naive diffusion, consistency over views within the 4D light field, tolerance to depth label errors and edge blur, details of dataset preprocessing, and an example of textures within dark backgrounds in the Stanford dataset (Section A.1). Next, we present error maps comparing reprojection loss versus our bidirectional diffusion approach (Section A.3), and error maps versus ground truth for the HCI dataset (Section A.4). Finally, we show additional qualitative results on the Stanford dataset (Section A.2) and an additional editing example (Figure 19).

A.1 Additional Discussion

Naive Diffusion. In Figure 10, we demonstrate visually that naively diffusing disparity labels can be problematic because edge localization is ambiguous.

Figure 10: Left: Naively diffusing disparity labels causes artifacts around edges due to ambiguity in the localization of labels around edges. Right: Estimating the diffusion gradient removes this ambiguity and yields sharp depth edges.

Multi-view Depth and Error. As ground truth disparity is only provided for the central view of the HCI data set, and as the Stanford data set has no ground truth depth, we did not include quantitative error evaluation across ‘4D’ views. Qualitatively, our method tends to produce results that are consistent across views (Fig. 11).

Figure 11: (a) We visualize depth consistency for the highlighted epipolar line. (b) Our results are more consistent than Shi et al. [24] across views (EPIs are scaled vertically for clarity).
Disparity Noise and Blur Tolerance. To show our robustness, we evaluate our method on noisy disparity labels (Fig. 12) and low-gradient edges (Fig. 13). Our method provides greater robustness to disparity errors than naive diffusion, and provides greater robustness via MSE to low-gradient (or blurry) edges than two learning-based baselines.

Figure 12: Robustness of our method to noise in disparity labels (Dino light field; we compare with naive diffusion.).

Figure 13: Robustness of our method to low-gradient edges (Dino light field; we compare to the methods of Zhang et al. [35] and Jiang et al. [16] which have the best MSE and Q25 performance on this light field, respectively).
Lenslet Distortion and EPFL Lytro Dataset. The Lytro light fields in the EPFL dataset are provided decoded as MATLAB files. In general, while our method can handle small amounts of distortion, the EPI-based edge detection stage expectedly fails when EPI features are no longer linear. This is true for the edge views of Lytro light fields. As such, we only use the central 7×7 views of the EPFL scenes for all experiments.

Black Backgrounds and Stanford Dataset. Our EPI edge detector aggregates information from all three channels in CIE LAB color space, which allows it to detect even faint edges. Thus, it captures the subtle background texture on the black cloth in the Stanford dataset examples of single objects; typically, this detail is not visible to the naked eye. This feature of our work also explains why we do not incorrectly detect false edges in the Lego Technic Plow scene, as shown in Figure 7 of the main paper.

Figure 14: Top: On the Stanford Bunny scene, enhanced image contrast shows the texture of the cloth in the seemingly black background. Bottom: In EPI space (scaled vertically for clarity) the texture appears as sloped lines, providing background disparity to methods that can exploit this subtle information.

A.2 Expanded Results

We present qualitative results on the HCI dataset in Figure 15, and expanded results on the real-world light fields of the Stanford dataset in Figure 18. Our method produces stronger depth edges compared to the baselines, and our smoothness regularization (Equation 10, main paper) leads to fewer artifacts in textureless regions.

A.3 Diffusion Gradients as Self-supervised Loss

As in main paper Section 4, we compare our method to a reprojection error loss. In Figure 16, to complement the quantitative MSE numbers in the main paper, we demonstrate the qualitative improvement from our bidirectional diffusion gradient approach in comparison.
Figure 15: Results on the synthetic light fields of the HCI dataset. *Left to right:* Jeon et al. [15], Zhang et al. [35], Jiang et al. [16], Shi et al. [24], Li et al. [21], our method, and finally, the ground truth. Qualitatively, our results are comparable to the learning-based baselines [16, 21, 24] with fewer extreme errors around edges.

A.4 Error Maps

We visualize the absolute disparity error of all baselines and our method in Figure 17. The baseline methods produce larger errors around depth edges compared to our approach. This can be seen in the fewer regions of red for our method compared to the baselines. The corresponding dense disparity maps are shown in Figure 15. Qualitatively, our results are comparable to the learning-based baselines [16, 21, 24] with fewer extreme errors around edges.
Figure 16: Multiview reprojection error (center) as self-supervised loss for depth edge localization, compared to our bidirectional diffusion gradients (right). We show absolute disparity error. Our method has lower error around edges.
Figure 17: A visualization of the absolute disparity error for all baselines. Top to bottom: Jeon et al. [15], Zhang et al [35], Jiang et al. [16], Shi et al. [24], Li et al. [21], and our method.
Figure 18: Results on light fields from the Stanford dataset. Top to bottom: Jeon et al. [15], Zhang et al. [35], Jiang et al. [16], Shi et al. [24], Li et al. [21] and our method.

Figure 19: Additional light field editing result. Left: input scene. Center: Our editing results. Right, clockwise from top-left: Detail of the unmodified light field image, Zhang et al. [35]’s editing result, Shi et al. [24]’s editing result, and our result with fewer artifacts.