DENERVAÇÃO SIMPÁTICA RENAL PARA HIPERTENSÃO RESISTENTE: SITUAÇÃO DEPOIS DE MAIS DE UMA DÉCADA

Renal sympathetic denervation for resistant hypertension: where do we stand after more than a decade

Autores
Marco Antônio Peliky Fontes¹
Lucas Alexandre Santos Marzano²
Carina Cunha Silva¹
Ana Cristina Simões e Silva²

¹ Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Belo Horizonte, MG, Brasil.
² Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Pediatria, Belo Horizonte, Brasil.

DOI: 10.1590/2175-8239-JBN-2018-0213
Data de submissão: 24/10/2018.
Data de aprovação: 18/08/2019.

Correspondência para:
Ana Cristina Simões e Silva.
E-mail: acsnilva@hotmail.com

RESUMO
Em que pese a atual disponibilidade de medicamentos seguros e eficientes para o tratamento da hipertensão, um número significativo de pacientes sofre de hipertensão arterial resistente a tratamento medicamentoso. Em vista dessa condição, foi desenvolvida uma abordagem relativamente nova, denominada denervação renal por cateter. Dispomos atualmente de uma janela de tempo clinicamente relevante para analisar a eficácia da denervação renal no tratamento dessa modalidade de hipertensão. A presente revisão aborda a contribuição fisiológica dos nervos renais simpáticos no controle da pressão arterial e discute os prós e contras do procedimento de denervação renal no tratamento da hipertensão resistente.

PALAVRAS-CHAVE: Hipertensão; Sistema Nervoso Simpático; Simpatectomia; Denervação; Hipertensão renal.

ABSTRACT
Despite the current availability of safe and efficient drugs for treating hypertension, a substantial number of patients are drug-resistant hypertensives. Aiming this condition, a relatively new approach named catheter-based renal denervation was developed. We have now a clinically relevant time window to review the efficacy of renal denervation for treating this form of hypertension. This short review addresses the physiological contribution of renal sympathetic nerves for blood pressure control and discusses the pros and cons of renal denervation procedure for the treatment of resistant hypertension.

Keywords: Hypertension; Sympathetic nervous system; Sympathectomy; Denervation; Renal hypertension.

INTRODUÇÃO
Atualmente, a hipertensão é um problema global de saúde pública. A edição de 2017 do relatório Heart Disease and Stroke Statistics revela que nos Estados Unidos cerca de 85,7 milhões (34%) de adultos americanos são hipertensos¹. Na China, a prevalência ajustada de hipertensão chega a 29,6%². Trinta e seis milhões de brasileiros sofrem com a hipertensão, patologia com prevalência estimada em 32,5% que contribui direta ou indiretamente para 50% dos óbitos por doença cardiovascular³. Portanto, o desenvolvimento de novas estratégias farmacológicas ou não para o controle da pressão arterial é de suma importância.

A pressão arterial é controlada, em grande parte, pelos nervos simpáticos, que são tonicamente ativos e definem o tônus simpático no coração, vasculatura e rins⁴. A inativação de regiões específicas do sistema nervoso central resulta em queda imediata da atividade dos nervos renais simpáticos no controle da pressão arterial e discute os prós e contras do procedimento de denervação renal no tratamento da hipertensão resistente.
Vários medicamentos anti-hipertensivos eficazes, incluindo antiadrenérgicos, diuréticos, inibidores da ECA, bloqueadores dos receptores da angiotensina, bloqueadores do canal de cálcio e inibidores da renina, encontram-se atualmente disponíveis. Contudo, um número significativo de pacientes com hipertensão essencial apresenta resistência medicamentosa. Em outras palavras, eles são incapazes de atingir níveis desejados de pressão arterial mesmo quando tratados com três anti-hipertensivos diferentes na dosagem apropriada.

A necessidade de um tratamento alternativo para a hipertensão resistente levou ao desenvolvimento da denervação renal por radiofrequência. O procedimento consiste em aplicar radiofrequência no lúmen das artérias renais, levando à ruptura térmica dos nervos simpáticos pós-ganglionares que inervam os rins (Figura 1A).

Mais de uma década após o primeiro paciente ter sido tratado com o sistema de cateter de radiofrequência, a eficácia da denervação renal continua a ser analisada. Os achados publicados em ensaios clínicos variam bastante, indo de reduções médias de 20 mmHg na pressão arterial sistólica ambulatorial após seis meses de tratamento, conforme relatam estudos iniciais, a efeitos não significativos. Obviamente, as diferenças entre níveis de pressão arterial, medicamentos e procedimentos utilizados nos ensaios clínicos podem explicar as discrepâncias nos resultados. Contudo, o recente estudo de prova de conceito sobre denervação renal publicado por Raymond Townsend e colaboradores pode trazer maiores esclarecimentos a essa questão. Os modestos - porém consistentes - resultados relatados (redução de 5,5 mmHg na pressão arterial sistólica ambulatorial em três meses) corroboram a correlação entre redução do tônus simpático renal e redução da pressão arterial. É importante destacar, no entanto, que os estudos utilizam uma variedade de técnicas para denervação simpática renal e seus diferentes achados levam a conclusões diversas sobre o procedimento, o que eleva a importância da questão em pauta. Portanto, este é um momento propício para revisarmos alguns aspectos fisiológicos e clínicos do procedimento. A primeira

![Figura 1. A denervação renal (A) altera a interação simpática entre os rins e o sistema nervoso central, interrompendo a sinalização eferente e aferente (B e C). A) A energia de radiofrequência (representada pelos círculos pontilhados) é liberada na luz das artérias renais, levando à ruptura térmica dos nervos simpáticos pós-ganglionares direcionados aos rins. B) As setas/linhas representam os potenciais de ação que se deslocam ao longo das fibras eferentes e aferentes; essa sinalização é interrompida pela denervação renal. C) Aspectos funcionais da inervação renal tocantes à sinalização de fibras eferentes e aferentes intactas. A atividade eferente altera a função renal e a função renal alterada estimula sinais aferentes, levando à inibição da sinalização eferente. Veja o texto para detalhes. ANS = atividade nervosa simpática.](image)
TABELA 1 - ESTUDOS EXPERIMENTAIS E CLÍNICOS SOBRE DENERVAÇÃO SIMPÁTICA RENAL

Autores	Técnica/método	Espécie/Número	Resultado
Kandzari DE, Böhm M, Mahfoud F, et al, em nome dos pesquisadores do estudo SPYRAL HTN-ON MED	Denervação renal	Humanos/n=80	Este estudo mostrou diferenças significativas em favor da denervação renal relatada entre os grupos três meses após o procedimento avaliado por medições ambulatoriais de 24 horas. (Favorável)
Azizi M, Schmieder, RE, Mahfoud F, et al, em nome dos pesquisadores do RADIANCE-HTN MED	Denervação renal guiada por ultrassonografia endovascular	Humanos/n=146	O estudo concluiu que o procedimento foi capaz de reduzir significativamente a pressão arterial sistólica e diastólica entre os grupos dois meses após o procedimento avaliada por medições ambulatoriais de 24h. (Favorável)
Townsend RR, Mahfoud F, Kandzari DE, et al. em nome dos pesquisadores do SPYRAL HTN-OFF MED (2017)	Denervação renal	Humanos/n=80	Este estudo mostrou diferenças significativas em favor da denervação renal relatada entre os grupos em termos das alterações ocorridas três meses após o procedimento avaliadas por medições ambulatoriais de 24 horas. (Favorável)
Bhatt DL, M.D, MPH, et al. em nome dos pesquisadores do SYMPLICITY HTN-3 (2014)	Denervação da artéria renal	Humanos/n=535	Este estudo não demonstrou benefício da denervação da artéria renal na redução da PA ambulatorial de 24 horas ou nos períodos diurno ou noturno em comparação ao placebo (Contra)
Fink GD, Phelps JT. (2017)	Denervação renal bilateral	Ratos/n=15	Os dados deste experimento em animais não identificaram um modo clinicamente útil de prever a grandeza da queda da pressão arterial após a denervação renal. (Contra)
Salman IM, Hildreth CM, Phillips JK. (2017)	Estimulação vagal aferente	Ratos/n=63	Os dados deste estudo fornecem subsídios diretos sobre o papel do fluxo aferente vagal na regulação da função cardiovascular na doença renal crônica em machos e fêmeas (Favorável)
Goodwill VS, Terrill C, Hopewood I, Loewy AD, Knuepfer MM (2017)	Infusão de soro fisiológico isotônico ou hipertônico	Ratos/n=56	Esse experimento mostrou que a solução salina normal teve pouco efeito sobre a atividade nervosa aferente, enquanto a solução hipertônica provocou aumento na atividade do nervo renal aferente. (Favorável)
Zheng H, Patel KP (2017)	-	-	Este estudo mostra que estímulo renal aferente aumentado/alterado no núcleo paraventricular em condições patológicas como insuficiência cardíaca crônica e hipertensão pode estar imbricado na produção de atividade nervosa simpática elevada, comummente observada nesses estados patológicos. (Favorável)
Howden EJ, Esler JSLM, Levine BD (2017)	Treinamento de resistência	-	De acordo com esta revisão, o treinamento de resistência reduz claramente a atividade simpática em indivíduos com patologia simpático-excitatória. Também influencia muitos fatores que podem mediar a redução da atividade simpática. No entanto, a utilidade do treinamento de resistência como contramedida para alterar a atividade do nervo simpático em pacientes com DRC permanece indeterminada (Inconclusivo)
CONTINUAÇÃO TABELA 1.

Autor(es)	Descrição	Relevância
Olaf Grisk (2017)	Denervação renal bilateral	-
Nishihara M, Takesue K, Hirooka Y (2017)	Denervação renal bilateral e microinjeção de bicuculina	Camundongos/n=101
Yao Y, Davis G, Harrison JC, Walker RJ, Sammut IA (2017)	Indução do diabetes e denervação renal bilateral	Ratos/n=27
Veiga GL, Nishi EE, Estrela HF, Lincevicious GF, Gomes GN, Sato AYS, Campos RR, Bergamaschi CT (2017)	Indução de doença renal crônica e denervação renal total	Ratos/n=44

Segundo esta revisão, mesmo que novas técnicas tenham sido aplicadas para reduzir o grau de reinervação renal, as ações benéficas da denervação renal ainda podem ser reduzidas pela hipersensibilidade à denervação. (Contra)

Segundo este estudo, a denervação renal produz efeito anti-hipertensivo sustentado, elevando os níveis de excreção urinária de sódio na fase inicial e inibindo a ANS em associação com aumento da estimulação gabaérgica no núcleo paraventricular do hipotálamo na fase tardia em camundongos hipertensos com doença renal crônica. (Favorável)

Os achados deste estudo corroboram as conclusões de que o tônus simpático é importante no desenvolvimento fisiopatológico do dano renal hipertensivo no diabetes. (Favorável)

Os dados deste estudo sugerem que hipertensão, função renal reduzida e aumento da simpatotoxicidade em relação a outros alvos são, pelo menos parcialmente, motivados pela enervação renal na DRC. (Favorável)

parte desta breve revisão trata da contribuição funcional dos nervos simpáticos renais para o controle da pressão arterial. A segunda discute os prós e contras do procedimento de denervação renal para o tratamento da hipertensão resistente.

INERVAÇÃO SIMPÁTICA RENAL: PAPEL FISIOLOGICO DAS FIBRAS EFERENTES E AFERENTES

O fluxo simpático neural periférico é um processo diferenciado regionalmente. Isso significa que um estímulo pode aumentar a atividade simpática em um ou mais órgãos ou regiões e diminuir ou produzir nenhum efeito em outros. Os nervos renais contêm fibras nervosas eferentes e aferentes, também chamadas de nervos renais eferentes ou aferentes. Esses nervos situam-se adjacentemente à parede das artérias renais, mas não são distribuídos simetricamente. Com efeito, é necessário um profundo entendimento da microanatomia dos nervos renais para se conseguir elevar ao máximo os resultados cardiovasculares da denervação renal. Um estudo recente em seres humanos demonstrou que 1) a artéria renal direita apresenta inervação significativamente maior que a esquerda; 2) os quadrantes anterior e superior apresentam inervação maior que os quadrantes posterior e inferior; e 3) o terço distal das artérias renais é mais inervado que seus segmentos proximais. Portanto, a denervação eficiente elimina a hiperatividade simpática central, produzindo assim uma redução consistente e duradoura da pressão arterial.

As fibras eferentes transportam impulsos nervosos do sistema nervoso central em direção aos rins, influenciando a função renal. O principal neurotransmissor dos terminais eferentes simpáticos é a noradrenalina, que atua nas estruturas vasculares e néfrons. Por sua vez, as fibras aferentes ou sensoriais transportam os impulsos originados nos rins até o sistema nervoso central. A maioria das fibras sensoriais aferentes está localizada na parede pélvica renal. O tráfego de sinalização nervosa entre o sistema nervoso central e os rins é conhecido como atividade do nervo renal. O tráfego de sinalização nervosa entre o sistema nervoso central e os rins é conhecido como atividade do nervo renal.
rins para o cérebro (Figura 1B). A sinalização renal eferente e aferente pode ser identificada e medida experimentalmente em mamíferos23–27.

As fibras renais aferentes respondem a diferentes estímulos químicos (ex.: mediadores inflamatórios, mecânicos (ex.: aumento da pressão pélvica) e nociceptivos (ex.: cálculos renais). De forma geral, acredita-se que alguns sinais aferentes exerçam feedback negativo sobre os sinais simpáticos eferentes, constituindo um reflexo renorrrenal inibitório autonômico (Figura 1C). A elevação da pressão intrarrenal aumenta a descarga aferente e resulta em hipotensão mediada pela redução da atividade simpática eferente28. A ativação das fibras aferentes sensoriais renais deflagrada por dietas ricas em sódio diminui os sinais simpáticos eferentes, elevando assim a excreção urinária de sódio de forma a preservar a homeostase do sódio19. Experimentos em ratos demonstraram que o soro fisiológico teve pouco efeito na atividade do nervo aferente, enquanto o soluções hipertônicas de NaCl provocaram aumento na atividade do nervo aferente renal29. Por outro lado, evidências experimentais mostram que a sinalização aferente resultante de lesão renal aumenta a atividade simpática renal eferente, produzindo hipertensão30. A sinalização renal aferente aumentada ou alterada para o núcleo paraventricular em condições patológicas pode estar imbricada na elevação da atividade nervosa simpática31. Além disso, evidências indicam que a ablação funcional das fibras aferentes renais não afeta a regulação da pressão arterial em condições normais, mas pode desempenhar um papel no desenvolvimento da hipertensão sensível ao sal32.

Com efeito, a contribuição fisiológica da sinalização aferente recebeu pouca ou nenhuma atenção no decorrer da história da denervação simpática para o tratamento da hipertensão. Algumas questões importantes devem ser discutidas em relação à denervação simpática renal: o procedimento provou ser eficaz em animais e humanos? Em
que condições ele pode ajudar? Quais são os seus riscos? E quais são seus efeitos colaterais a curto ou longo prazo?

Efi ciência

Estudos pré-clínicos realizados com vários modelos animais de hipertensão relataram redução da pressão arterial após denervação simpática renal\(^4^4,4^5,4^6,4^7\). Por exemplo, estudos experimentais com camundongos idosos com pressão arterial sistólica elevada identificaram queda na pressão arterial após o procedimento e persistência do efeito em questão por várias semanas\(^4^4\). Por outro lado, em camundongos mais jovens a queda da pressão arterial após a denervação não se manteve\(^4^4\). Em diferentes modelos experimentais de hipertensão a redução da pressão arterial\(^4^8,4^5,4^6,4^7\) produzida pela denervação renal foi acompanhada por queda concomitante dos níveis plasmáticos de adrenalina, noradrenalina, atividade da renina, angiotensina II e aldosterona\(^4^9\). Além disso, estudos também indicam que a denervação renal melhora os mecanismos de outros órgãos-alvo, incluindo função ventricular esquerda\(^5^0\), biodisponibilidade endotelial de óxido nítrico\(^5^1\), metabolismo da glicose e sensibilidade à insulina\(^5^2,5^3\). Após a denervação renal, pacientes com insuflência cardíaca também apresentaram melhora nos sintomas e na capacidade de realizar exercícios\(^5^4\). Nesse sentido, Ukena e colaboradores relataram que a resposta cardiorrespiratória em pacientes submetidos a exercício não é afetada após a denervação renal\(^5^5\). Os benefícios da atividade física regular sobre a redução do risco cardiovascular são bem conhecidos\(^5^6\). Portanto, a melhora da função orgânica e a preservação da capacidade de realizar exercícios físicos após a denervação renal podem levar a melhor controle da hipertensão.

Contudo, a eficácia da denervação simpática renal não é ponto concordante entre os autores de ensaios clínicos com pacientes hipertensos. Alguns consideraram o procedimento eficaz, enquanto outros questionaram sua eficácia\(^5^7\). Os autores que criticam o tratamento se fundamentam nos resultados do estudo Symplicity HTN-3\(^1^2\). O estudo em questão não encontrou benefícios da denervação da artéria renal em termos de redução da pressão arterial (PA) ambulatorial de 24 horas ou nos períodos diurnos e noturnos em relação aos indivíduos incluídos no grupo de controle\(^1^3\). Contudo, a análise crítica de tal estudo revela algumas falhas em sua execução. De fato, a técnica de denervação utilizada no estudo foi inconsistente para determinar a eficácia do procedimento\(^1^2\). A análise retrospectiva dos registros angiográficos armazenados de todas as aplicações de radiofrequência revelou que em 74% dos pacientes a aplicação de energia não atingiu a circunferência completa da artéria renal, elemento obrigatório do protocolo, e que o procedimento deveria ter sido bilateral\(^1^2,5^8\). Por sua vez, o estudo SPYRAL HTN-OFF MED (n=38 no grupo de intervenção; n=42 no grupo de controle que recebeu cirurgia placebo) indicou que a denervação simpática renal foi eficaz no tratamento de pacientes com hipertensão de leve a moderada [pressão arterial sistólica (PAS) 24h -5 mm Hg (IC 95% -9,9 a -0,2; \(p=0,0414\); pressão arterial diastólica (PAD) 24h -4,4 mm Hg)]\(^5^9\). No entanto, a análise crítica desse estudo sugere que, após o tratamento, os pacientes ainda necessitariam de anti-hipertensivos orais para atingir níveis adequados de pressão arterial sistólica. Além disso, esse tratamento não é recomendado para pacientes com hipertensão de leve a moderada.

Mais recentemente, dois estudos - SPYRAL HTN-ON MED\(^6^0\) e RADIANCE-HTN SOLO\(^6^1\) "DOI": "10.1016/S0140-6736(18 - investigaram a eficácia da denervação renal.

Publicado em maio de 2018, o estudo randomizado de prova de conceito SPYRAL HTN-ON MED teve como objetivo avaliar a segurança e eficácia da denervação renal por cateter em comparação com indivíduos que receberam tratamento placebo para hipertensão não controlada\(^6^0\). Os pacientes foram submetidos a angiografia renal e alocados aleatoriamente nos grupos controle placebo ou denervação renal. O desfecho primário foi alteração da pressão arterial em relação aos valores iniciais, com base em medições ambulatoriais da pressão arterial realizadas seis meses após o tratamento. Foram utilizados um cateter de denervação renal multieletrônico Symplicity Spyral (Medtronic, Galway, Irlanda) e um gerador de RF para denervação renal Symplicity G3 (Medtronic, Minneapolis, MN, EUA) para produzir ablação por radiofrequência circunferencial em padrão espiral nos quatro quadrantes da artéria renal e de seus ramos com três a oito mm de diâmetro. O grupo controle foi submetido a um procedimento placebo. O estudo incluiu um número pequeno de indivíduos (38 no grupo de denervação renal e 42 no de controle) e não mediu a eficiência da ablação do nervo renal, embora o número de ablações por paciente e a técnica sejam
semelhantes às relatadas no estudo SPYRAL HTN-OFF MED. O estudo relatou uma mudança significativa na pressão arterial após seis meses do procedimento nas medidas de PAS e PAD de 24 horas. A PAS apresentou uma redução de 7,4 mmHg (IC 95% -12,5 a -2,3; p = 0,0051) e a PAD de 4,1 mmHg (IC 95% -7,8 a -0,4; p = 0,0292). Os resultados sugeriram efeito em pacientes aderentes e não aderentes a medicamentos anti-hipertensivos, mas devido ao pequeno tamanho da amostra, a diferença entre aderentes e não aderentes não pôde ser avaliada. Contudo, a adesão foi semelhante nos dois grupos, e as medidas ambulatoriais da PA foram obtidas apenas após a ingestão confirmada dos comprimidos por todos os pacientes. No entanto, assim como no estudo SPYRAL HTN-OFF-MED, o procedimento não resultou em níveis adequados de PAS, o que fez com que os pacientes continuassem em terapia anti-hipertensiva oral. O estudo em questão ainda está em andamento e será concluído em dezembro de 2022 (disponível em https://clinicaltrials.gov/ct2/show/NCT02439749).

O estudo RADIANCE-HTN SOLO, também publicado em 2018, utilizou um sistema de denervação renal guiada por ultrassonografia endovascular em pacientes com hipertensão não controlada e em sujeitos com hipertensão de leve a moderada. Os pacientes foram randomizados (1:1) para denervação renal com o sistema Paradise (ReCor Medical, Palo Alto, CA, EUA) ou procedimento placebo restrito a angiografia renal. A ablação da enervação renal foi realizada no sistema Paradise guiado por ultrassonografia, a mitra e sua função renal. Em resposta à hemorragia, a queda da pressão arterial média foi maior no grupo que sofreu a denervação do que no grupo intacto. O aumento da frequência cardíaca e da atividade plasmática de renina foram significativamente atenuados nos animais submetidos à denervação renal em comparação aos intactos.

Além disso, a técnica utilizada permite a reinervação simpática natural. A reinervação é uma condição preocupante e está associada a um fenômeno de escape, o que contribui para o retorno da hipertensão. Neoformação nervosa funcional também foi observada em ensaios com animais. Foi sugerido que a reinervação também ocorre no rim humano após transplantado renal. Em função do aumento da sensibilização de órgãos à adrenalina atribuída à regulação positiva dos receptores adrenérgicos, a reinervação após denervação produz um fenômeno de escape, uma vez que a pressão arterial se eleva a níveis superiores aos observados antes do procedimento cirúrgico.
ratos desenvolveram hipersensibilidade renal à noradrenalina e reinervação funcional após denervação renal perivascular. Essa é uma complicaçãocritica para pacientes com hipertensão resistente e doença renal crônica.

Observações finais

Embora estudos em animais frequentemente relatem efeitos benéficos da denervação simpática renal no controle da hipertensão, os resultados dos ensaios clínicos ainda são desanimadores. A eficácia da denervação renal em reduzir a pressão arterial de indivíduos com hipertensão resistente e medicamentos é atualmente inconclusiva, embora pareça funcionar em alguns pacientes. A principal limitação é que, mesmo após uma denervação renal aparentemente bem-sucedida, os pacientes ainda precisam recorrer a medicamentos anti-hipertensivos orais. Embora pareçam não ser relevantes, os efeitos colaterais relacionados ao procedimento devem ser levados em consideração.

Devemos mencionar, contudo, que há três ensaios clínicos em andamento. O Global Clinical Study of Renal Denervation With the Symplicity Spyral™ Multi-electrode Renal Denervation System in Patients With Uncontrolled Hypertension in the Absence of Antihypertensive Medications (SPYRAL PIVOTAL - SPYRAL HTN-OFF MED) teve início em junho de 2015 e será concluído em dezembro de 2022 (disponível em https://clinicaltrials.gov/ct2/show/NCT02439749). O objetivo do estudo é testar a hipótese de que a denervação renal diminui a pressão arterial e é segura na ausência de medicamentos anti-hipertensivos. Os desfechos primários incluem segurança da avaliação da incidência de eventos adversos relevantes do início do estudo até 30 dias após o procedimento e alterações na PAS ambulatorial diurna média entre o início do estudo e dois meses após o procedimento. O estudo começou em dezembro de 2018 e será concluído em outubro de 2024. Embora se debaurem apenas sobre efeitos de curto prazo, os estudos em andamento fornecerão mais dados sobre a eficácia e segurança da denervação renal.

Finalmente, o desenvolvimento de dispositivos ou procedimentos cirúrgicos para o tratamento da hipertensão que interferem no sistema nervoso simpático renovou o interesse em torno da importância da atividade do nervo simpático em relação ao controle cardiovascular humano. Nesse sentido, a American Physiological Society publicou recentemente um conjunto de diretrizes com o intuito de oferecer recomendações para a medição da atividade simpática em humanos e outros mamíferos. A medida ótima da atividade simpática em humanos via microneurografia pode evitar dados enganosos e conclusões incorretas relacionadas à eficácia do procedimento para um grupo específico de pacientes. Futuros ensaios clínicos que adotem protocolos padronizados para a medição da atividade simpática em pacientes submetidos a denervação simpática renal são necessários para o estabelecimento final do papel desse procedimento na hipertensão resistente e medicamentos.

Agradecimentos

Gostaríamos de agradecer às agências de apoio financeiro Conselho Nacional de Desenvolvimento
Científico e Tecnológico (M.A.P.F. PQ304388/2017-3; A.C.S.S. PQ301037/2016-7) e Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG CBB - APQ-01463-15; FAPEMIG CDS - APQ-02541-17 e CDS-APQ-04261-17).

Referências

1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017 Mar 7;135(10):e146-e603.

2. Wang J, Zhang L, Wang F, Liu L, Wang H. Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey. Am J Hypertens. 2014 Nov;27(11):1335-61.

3. Malachias MVB, Póvoa RMS, Nogueira AR, Souza D, Costa LS, Magalhães ME. 7th Brazilian Guideline of Arterial Hypertension: chapter 3-clinical and complementary assessment. Arq Bras Cardiol. 2016 Sep;107(3 Suppl 3):14-7.

4. Fontes MAP, Xavier CH, Marins FR, Limborcho-Filho M, Vaz GC, Ribeiro FCM, et al. Emotional stress and sympathetic activity: Contribution of dorsomedial hypothalamic to cardiac arrhythmias. Brain Res. 2014 Mar 20;1534:49-38.

5. Allen AM. Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension. 2002 Feb;39(2):275-80.

6. Silva AQ, Santos RA, Fontes MA. Blockade of endogenous angiotensin-(1-7) in the hypothalamic paraventricular nucleus reduces renal sympathetic tone. Hypertension. 2005 Aug;46(2):341-8.

7. Dibona GF. Sympathetic nervous system and the kidney in hypertension. Curr Opin Nephrol Hypertens. 2002 Mar;11(2):197-200.

8. Schlaich MP, Lambert E, Kaye DM, Krozowski Z, Campbell DJ, Mulder J, et al. Sympathetic Augmentation in Hypertension: New Aspects for Renal Denervation: Patterns of Renal Arterial Innervation. J Intervent Cardiol. 2016 Dec;29(6):594-600.

9. Bartus K, et al. Catheter-based renal sympathetic denervation: A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am J Physiol Regul Integr Comp Physiol. 2007 Aug;293(4):R1561-72.

10. Dibona GF. Sympathetic denervation system in resistant hypertension: the SPYRAL HTN-OFF MED: a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017 Nov 11;390(10108):2160-70.

11. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RE, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2018 Jun 26;137(25):e1058-1106.

12. Kopp UC. Sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2007 Aug 1;293(4):R1561-72.

13. Fishberg AM. Sympathectomy for essential hypertension. JAMA. 1948;137(8):670-673.

14. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension: results in 1,286 cases. J Am Med Assoc. 1953 Aug 15;152(16):1501-4.

15. DiBona GF. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2000 Nov;279(5):R1517-24.

16. Fitzhugh HT, Wormald MJ, Hordridge LE, Mellanby JG, Bower MD, et al. Effect of renal sympathectomy on blood pressure and renal sympathetic activity in dogs. J Pharmacol Exp Ther. 1958 Jun;122(3):157-62.

17. Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017 Mar 7;135(10):e146-e603.
37. Graciano ML, Nishiyama A, Jackson K, Seth DM, Ortiz RM, Prieto-Carrasquero MC, et al. Purinergic receptors contribute to early mesangial cell transformation and renal vessel hypertrophy during angiotensin II-induced hypertension. Am J Physiol Ren Physiol. 2008 Oct 14;294(1):F161-9.

38. Ellis JL, Burnstock G. Angiotensin neuromodulation of adrenergic and purinergic co-transmission in the guinea-pig vas deferens. Br J Pharmacol. 1989 Aug;97(4):1157-64.

39. Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Ryan RP, Cowley Junior AW, et al. Real-time electrochemical detection of ATP and H2O2 release in freshly isolated kidneys. Am J Physiol Ren Physiol. 2013 Jul 1;305(1):F134-41.

40. Nishi EE, Bergamaschi CT, Campos RR. The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation. Exp Physiol. 2015 Apr;100(4):479-84.

41. Thorp AA, Schlaich MP. Device-based approaches for renal nerve ablation for hypertension and beyond. Front Physiol. 2015 Jul 8;6:193.

42. Xiao L, Kirabo A, Wu J, Saleh MA, Zhu L, Wang F, et al. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ Res. 2015 Aug 28;117(6):547-57.

43. Weber MA, Kirtane A, Mauri L, Townsend RR, Kandzari DE, Leon MB. Renal denervation for the treatment of hypertension: making a new start, getting it right. J Clin Hypertens. 2015 Oct;17(10):743-50.

44. Fink GD, Phelps JT. Can we predict the blood pressure response to renal denervation?. Auton Neurosci. 2017 May;204:112-8.

45. O’Hagan KP, Thomas GD, Zambraski EJ. Renal denervation decreases blood pressure in DOCA-treated miniature swine with established hypertension. Am J Hypertens. 1990 Jan;3(1):62-4.

46. Alexander BT, Hendon AE, Ferril G, Dwyer TM. Renal Dener-vation Abolishes Hypertension in Low-Birth-Weight Offspring From Pregnant Rats With Reduced Uterine Perfusion. Hyper- tension. 2005 Apr 1;45(4):754-8.

47. Skrzypecki J, Gawlak M, Huc T, Szulczyk P, Ufnal M. Renal denervation decreases blood pressure and renal tyrosine hydroxylase but does not augment the effect of hypertensive drugs. Clin Exp Hypertens. 2017 Apr 3;39(3):290-4.

48. Oliveira VL, Irgoyen MC, Moreira ED, Strunz C, Krieger EM. Renal denervation normalizes pressure and baroreceptor reflex in high renin hypertension in conscious rats. Hypertension. 1992;19(2 Suppl):I17-21.

49. Li D, Wang Q, Zhang Y, Li D, Yang D, Wei S, et al. A Novel Swine Model of Spontaneous Hypertension With Sympathetic Hyperactivity Responds Well to Renal Denervation. Am J Hypertens. 2016 Jan;29(1):63-72.

50. Schirmer SH, Sayed MM, Reil JC, Ukenga C, Linz D, Kinder- mann M, et al. Improvements in left ventricular hypertrophy and diastolic function following renal denervation: effects beyond blood pressure and heart rate reduction. J Am Coll Cardiol. 2014 May 13;63(18):1916-23.

51. Polhemus DJ, Gao J, Scarborough AL, Trivedi R, McDonough KH, Goodchild TT, et al. Radiofrequency renal denervation protects the ischemic heart via inhibition of GRK2 and increased nitric oxide signaling. Circ Res. 2016 Jul 22;119(3):470-80.

52. Mahfoud F, Schlaich M, Kindermann I, Ukenga C, Cremers B, Brandt MC, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011 May 10;123(18):1940-6.

53. Winkowski A, Prejhiș A, Florczak E, Kądzija J, Śliwiński P, Bielicki J. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hyperten-sion. 2011;58(4):559-65.

54. Davies JE, Manistry CH, Petraco R, Barron AJ, Unsworth B, Mayer J, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013 Jan 20;162(1):189-92.

55. Ukenga C, Mahfoud F, Kindermann I, Barth C, Lenski M, Kindermann M, et al. Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2011 Sep 6;58(11):1176-82.

56. Warburton DE, Bredin SS. Reflections on physical activity and health: what should we recommend?. Can J Cardiol. 2016 Apr;32(4):495-504.

57. Fernández-Ruiz I. Hypertension: Proof of concept for renal denervation. Nat Rev Cardiol. 2017 Nov;14(11):634.

58. Kandzari DE, Bhar D, Cui H, Grotta C, Even CM, Kramer MS, et al. Predictors of blood pressure response in the SYMPLI-CITY HTN-3 trial. Eur Heart J. 2014 Jan 21;35(4):219-27.

59. Azizi M. Catheter-based renal denervation for treatment of hypertension. Lancet. 2017 Nov 11;390(10108):2124-6.

60. Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SYRURAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018 Jun 9;391(10137):2346-55.

61. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018 Jun 9;391(10137):2335-45.

62. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1999 Jan;79(1):75-197.

63. Phillips JK, Campos RR. Role of renal nerves in normal and pathophysiological conditions. Auton Neurosci. 2017 May;204:1-3.

64. Schiller AM, Pellegrino PR, Zucker IH. Eppur Si Muove: the dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves. Auton Neurosci. 2017 May;204:17-24.

65. Singh RR, Sajves V, Booth LC, McArdle Z, May CN, Head GA, et al. Catheter-based renal denervation exacerbates blood pressure fall during hemorrhage. J Am Coll Cardiol. 2017 Feb 28;69(8):951-64.

66. McBryde FD, Hart EC, Ramchandra R, Patron JF. Evaluating the carotid bodies and renal nerves as therapeutic targets for hypertension. Auton Neurosci. 2017 May;204:126-30.

67. Grisk O. Renal denervation and hypertension - The need to investigate unintended effects and neural control of the human kidney. Auton Neurosci. 2017 May;204:19-25.

68. Kline RL, Mercer PF. Functional reinnervation and development of supersensitivity to NE after renal denervation in rats. Am J Physiol 1990;259(6):R353-8.