Association between Ménière’s disease and thyroid diseases: a nested case–control study

So Young Kim, Young Shin Song, Jee Hye Wee, Chanyang Min, Dae Myoung Yoo & Hyo Geun Choi*

The association of thyroid disease and Ménière’s disease would suggest that both are autoimmune diseases. This study aimed to investigate the relation of goiter, hypothyroidism, thyroiditis, hyperthyroidism, and autoimmune thyroiditis with Ménière’s disease. The Korean National Health Insurance Service-Health Screening Cohort data from 2002 through 2015 were used. The 8183 adult patients with Ménière’s disease were 1:4 matched with the 32,732 individuals of the control group for age, sex, income, and region of residence. The previous histories of thyroid disorders including goiter, hypothyroidism, thyroiditis, and hyperthyroidism were investigated using conditional logistic regression analyses. Subgroup analyses were conducted, including for age and sex. Smoking, alcohol consumption, obesity, Charlson Comorbidity Index, histories of benign paroxysmal vertigo, vestibular neuritis, other peripheral vertigo, thyroid cancer, and levothyroxine medication were adjusted in the models. The histories of goiter, hypothyroidism, and hyperthyroidism were associated with Ménière’s disease (adjusted odds ratio (OR) = 1.19 [95% confidence interval (CI) = 1.04–1.36] for goiter, 1.21 [95% CI 1.02–1.44] for hypothyroidism, and 1.27 [95% CI 1.09–1.49] for hyperthyroidism, each of \(P < 0.05 \)). In subgroup analyses, hypothyroidism was associated with Ménière’s disease in < 65-year-old women. Hyperthyroidism was related with Ménière’s disease in women overall. Thyroid diseases of goiter, hypothyroidism, and hyperthyroidism were associated with Ménière’s disease.

The thyroid gland has crucial functions to regulate the endocrine systems through the hypothalamic-pituitary-thyroid axis and affect organ-specific or non-organ-specific metabolisms. Therefore, metabolic syndrome, obesity, and type 2 diabetes have shown an association with thyroid diseases. Autoimmune thyroid disease is thought to be associated with other organ-specific autoimmune diseases, such as Addison’s disease, type 1 diabetes mellitus, adrenocorticotropic hormone deficiency, and chronic active hepatitis, and non-organ-specific, such as rheumatoid arthritis, systemic sclerosis, and systemic lupus erythematosus. Shared genetic predispositions and pathophysiology are thought to influence the association between autoimmune thyroid disease and many other autoimmune diseases. The prevalence of autoimmune thyroid diseases, including Graves’ disease and chronic autoimmune thyroiditis or Hashimoto’s thyroiditis has been estimated about 1–5% in general population. Hashimoto’s thyroiditis is the most common etiology of hyperthyroidism (47%) and about 9.6% of hyperthyroidism occurs due to the medication for a previous hyperthyroidism. Although the abnormal thyroid function is primarily manifested as hyperthyroidism in Graves’ disease and hypothyroidism in Hashimoto’s thyroiditis, both diseases shared common pathophysiology of genetic and epigenetic causes resulting in thyroid autoimmunity. Thus, it could be theorized that both hyper- and hypo-thyroid function affect autoimmune diseases.

Ménière’s disease is clinically diagnosed by recurrent vertigo attacks combined with cochlear symptoms of primarily low- or mid-frequency sensorineural hearing loss, tinnitus, or ear fullness. The incidence of Ménière’s disease varies according to the ethnic population, which is estimated to be about 13–200 person-years. The peak age of onset of Ménière’s disease has been reported to be about 40–60 years. The sudden surge of

*Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea. 2Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea. 3Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Anyang, Korea. 4Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang, Korea. 5Graduate School of Public Health, Seoul National University, Seoul, Korea. Email: pupen@naver.com
endolymphatic flow, which shifts from the pars inferior (cochlea) to the pars superior (utricle and semicircular canals), stimulates the vestibular hair cells in the cristae of the semicircular canals and may induce vertigo attack in patients with Ménière's disease. However, the pathophysiologic causes for the increase of endolymphatic flow are not understood and are thought to be multifactorial, including abnormal immune response and metabolic endocrine dysfunctions, such as hypothyroidism. Previous studies have suggested the association of hypothyroidism with Ménière's disease. To our knowledge, there has been little research on thyroid diseases for a relationship with Ménière's disease.

The hypothesis of the present study was that other thyroid diseases, besides hypothyroidism, might have an impact on the occurrence of Ménière's disease, because of the autoimmunity and metabolic changes according to the abnormal thyroid function. To delineate the association of various thyroid diseases with Ménière's disease, the histories of goiter, hypothyroidism, thyroiditis, and hyperthyroidism were compared between Ménière's disease and control groups.

Materials and methods

Study population. The Ethics Committee of Hallym University (2019-10-023) approved this study. Requirement for written informed consent was waived by the Institutional Review Board of the Ethics Committee of Hallym University. All analyses adhered to the guidelines and regulations of the ethics committee of Hallym University. The detailed description of The Korean National Health Insurance Service-Health Screening Cohort data was described elsewhere.

Definition of Ménière's disease (dependent variable). If the participants were diagnosed with ICD-10 codes H810, we classified them as Ménière's disease. From that group, we selected participants who were treated for Ménière's disease ≥ 2 times and had an audiometric examination (claim code: E6931–E6937, F6341–F6348) as a previous study.

Levothyroxine medications users (independent variable). Levothyroxine medication users were selected if participants took levothyroxine medications for ≥ 3 months.

Definition of Goiter (independent variable). Goiter was defined if the participants were diagnosed with ICD-10 codes E04 (Other nontoxic goiter). Among them, we selected participants who were treated for goiter ≥ 2 times.

Definition of hypothyroidism (independent variable). Hypothyroidism was defined if the participants were diagnosed with ICD-10 codes E02 (Subclinical iodine-deficiency hypothyroidism) and E03 (Other hypothyroidism). Among them, we selected participants who underwent treatment ≥ 2 times.

Definition of thyroiditis (independent variable). Thyroiditis was defined if the participants were diagnosed with ICD-10 codes E06 (Thyroiditis). Among them, we selected the participants who treated for it ≥ 2 times.

Definition of hyperthyroidism (independent variable). Hyperthyroidism was defined if the participants were diagnosed with ICD-10 codes E05 (hyperthyroidism). Among them, we selected the participants who treated it ≥ 2 times.

Definition of autoimmune thyroiditis (independent variable). Autoimmune thyroiditis was defined if the participants were diagnosed with ICD-10 codes E063 (autoimmune thyroiditis). Among them, we selected the participants who treated ≥ 2 times.

Participant selection. Patients with Ménière's disease were selected from 514,866 participants with 615,488,428 medical claim codes from 2002 through 2015 (n = 9032). The control group was included if participants were not diagnosed with Ménière's disease from 2002 through 2015 (n = 505,834). To select a participant diagnosed with Ménière's disease for the first time, patients diagnosed with Ménière's disease in 2002 were excluded (washout periods, n = 476). Control participants were excluded if the participants were diagnosed with Ménière's disease once (n = 12,219). Participants who were treated for head trauma (ICD-10 codes: S00 to S09, diagnosed by neurologists, neurosurgeons, or emergency medicine doctors) ≥ 2 times with head and neck CT evaluations (Claim codes: HA401–HA416, HA441–HA443, HA451–HA453, HA461–HA463, or HA471–HA473) were excluded (n = 289 patients with Ménière's disease, n = 12,757 control participants). Participants who were treated for brain tumor (ICD-10 codes: C70 to C72) ≥ 2 times (n = 15 for Ménière's disease, n = 830 for control), disorders of the acoustic nerve (ICD-10 codes: H933) ≥ 2 times (n = 23 for Ménière's disease, n = 123 for control) and benign neoplasm of the cranial nerves (ICD-10 codes: D333) ≥ 2 times (n = 25 for Ménière's disease, n = 194 for control) were excluded. Patients with Ménière's disease were 1:4 matched with control participants for age, sex, income, and region of residence. To minimize the selection bias, the control participants were selected in a randomized order. The index date of each patient with Ménière's disease was set as the time of treatment of Ménière's disease. The index date of control participants was set as the index date of their matched patient with Ménière's disease. Therefore, each patient with Ménière's disease matched with control participants had the same index date. During the matching procedure, 21 patients with Ménière's disease and
446,979 control participants were excluded. Ultimately, 8,183 patients with Ménière’s disease were 1:4 matched with 32,732 control participants (Fig. 1).

Covariates. Age groups were divided into 5-year intervals: 40–44, 45–49, 50–54, and 85+ years old (Total of 10 age groups). Income groups were classified as 5 classes (class 1 [lowest income]–5 [highest income]). The region of residence was grouped into urban and rural areas following our previous study.

Tobacco smoking was categorized based on the participant’s current smoking status (nonsmoker, past smoker, and current smoker). Alcohol consumption was categorized based on the frequency of alcohol consumption (< 1 time a week and ≥ 1 time a week). Obesity was measured using body mass index (BMI, kg/m²). BMI was categorized as < 18.5 (underweight), ≥ 18.5 to < 23 (normal), ≥ 23 to < 25 (overweight), ≥ 25 to < 30 (obese I), and ≥ 30 (obese II) based on the Asia–Pacific criteria following the Western Pacific Regional Office (WPRO) 2000. Missing BMI (23/43,290 [0.053%]) was replaced by mean values of variable from final selected participants.

The Charlson Comorbidity Index (CCI) has been used widely to measure disease burden using 17 comorbidities. In our study, we excluded cancer and metastatic cancer from CCI score. CCI was measured as the continuous variable (0 [no comorbidities] through 29 [multiple comorbidities])

Regarding Ménière’s disease, benign paroxysmal vertigo (ICD-10 codes: H811), vestibular neuronitis (ICD-10 codes: H812), other peripheral vertigo (ICD-10 codes: H813), and thyroid cancer (ICD-10 codes: C73) were additionally assigned if participants were treated ≥ 2 times.

Statistical analyses. The general characteristics between the Ménière’s disease and control groups were compared using the Chi-square test.
To analyze the odds ratios (ORs) with 95% confidence intervals (CIs), the conditional logistic regression model for Ménière's disease in thyroid diseases was used. The crude model 1 (adjusted for obesity, smoking, alcohol consumption, benign paroxysmal vertigo, vestibular neuronitis, other peripheral vertigo, thyroid cancer and CCI scores), and model 2 (additionally adjusted for Synthroid, goiter, hypothyroidism, thyroiditis, and hyperthyroidism in model 1) were used. Because of levothyroxine medication, goiter, hypothyroidism, thyroiditis, and hyperthyroidism histories were closely related (S1 Table), we adjusted for them in model 2. The analyses were stratified by age, sex, income, and region of residence.

For the subgroup analyses, we divided participants by age and sex (<65 years old and ≥65 years old; men and women) and by income and region of residence (low and high; urban and rural) using crude, model 1, and model 2.

Two-tailed analyses were performed, and significance was defined as P values < 0.05. The SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) were used for statistical analyses.

Results

The rates of goiter, hypothyroidism, thyroiditis, and autoimmune thyroiditis were higher in the group with Ménière's disease than in the control group (5.7% vs. 4.2% for goiter, 4.7% vs. 3.6% for hypothyroidism, 2.1% vs. 1.6% for thyroiditis, 3.6% vs. 2.5% for hyperthyroidism, and 0.99% vs. 0.67% for autoimmune thyroiditis, Table 1). The rate of levothyroxine medication was 4.8% in the Ménière's disease group and 3.6% in the control group. Age, sex, income, and region of residence were exactly matched between the Ménière's disease and control groups (P = 1.000). The distributions of obesity, smoking status, alcohol consumption, CCI score, benign paroxysmal vertigo, vestibular neuronitis, and other peripheral vertigo were significantly different between the Ménière's disease and control groups (all P < 0.001).

The histories of goiter, hypothyroidism, and hyperthyroidism were related with the increased OR for Ménière's disease in model 2. The odds for Ménière's disease were highest in hyperthyroidism, followed by hypothyroidism and goiter (adjusted OR 1.19, 95% CI 1.04–1.36 for goiter; adjusted OR 1.21, 95% CI 1.02–1.44 for hypothyroidism, and adjusted OR 1.27, 95% CI 1.09–1.49 for hyperthyroidism, Table 2).

According to age and sex, hyperthyroidism was associated with the higher odds for Ménière's disease in the women's subgroups (adjusted OR 1.25, 95% CI 1.01–1.56 for the <65-year-old women group and adjusted OR 1.37, 95% CI 1.04–1.81 for the ≥65-year-old women group) (Fig. 2 and S2 Table). Hypothyroidism was associated with a 1.5-fold higher odds for Ménière's disease in the <65-year-old women subgroup (95% CI 1.18–1.89). According to income and region of residence, goiter was 1.43 times more likely to be associated with Ménière's disease in the low income, urban subgroup (95% CI 1.05–1.94, Fig. 3 and S3 Table). Hyperthyroidism was 1.35 times more likely associated with Ménière's disease in the low income, rural subgroup (95% CI 1.00–1.98). Hypothyroidism was 1.5 times more likely to be associated with Ménière's disease in the high income, urban subgroup (95% CI 1.07–2.08).

Discussion

Ménière's disease was positively related with the previous histories of goiter, hypothyroidism, and hyperthyroidism in the present study. Women showed a consistent association of Ménière's disease with hypothyroidism (<65 years old) and hyperthyroidism. This study adjusted for levothyroxine medication and other thyroid diseases, thereby separately analyzing the relation of each thyroid disease with Ménière's disease.

Previous studies described the relation of hypothyroidism with Ménière's disease. However, most prior studies were limited with a small sample size. In a case–control study, the rate of thyroid hormone medication was higher in patients with Ménière's disease than in the age- and sex-matched control group (32% [16/50] vs. 4% [2/50], P < 0.001). In another small case series, the thyroxin medication improved the symptoms of Ménière's disease, which was suggested that the abnormal metabolisms of patients with thyroid disease could induce the endolymphatic hydrops and Ménière's disease.

The inflammatory or metabolic changes in the patients with thyroid diseases could have an impact on the inner ear inflammation and homeostasis of endolymphatic flow. The association of inflammation with thyroid dysfunction has been acknowledged. For instance, inflammatory cytokines including tumor necrosis factor α and interleukin 1 and 6 reduced the expressions of sodium/iodine symporters, in that impeded the iodide uptake in the thyroid gland. Moreover, the association of thyroid diseases with the metabolic disease of obesity has been reported based on the inflammatory and metabolic etiology. The inflammatory or degenerative changes of the inner ear epithelia could increase the risk of Ménière's disease. Although the contribution of autoimmune response to the pathogenesis of Ménière's disease has been suggested, only the immune complexes were observed only in about 7% of patients with Ménière's disease and the biomarker for autoimmunity in Ménière's disease is still elusive. A few endotypes of Ménière's diseases were suggested with different etiologies inducing hypoplasia or inflammation or degeneration of the endolymphatic sac. The maintenance of ionic and non-ionic compositions of endolymph is crucial for transduction of acceleration in the vestibular labyrinth, which consists of a unique composition of low calcium levels of endolymph (280 μM) compared to perilymph (1 Mm). Thus, the perturbation of this composition due to altered metabolism could impact the vestibular function. Indeed, it was suggested that the abnormal metabolisms of patients with thyroid disease could induce the endolymphatic hydrops and Ménière's disease. Hypothyroidism supposedly changes the composition of endolymphatic fluid through the diffusion of thyroid autoantibody complexes in the endolymph. In addition, the common anion...
Characteristics	Total participants	Meniere's disease (n, %)	Control (n, %)	P value
Age (years old)				
40–44	123 (1.5)	492 (1.5)		
45–49	537 (6.6)	2148 (6.6)		
50–54	1199 (14.7)	4796 (14.7)		
55–59	1407 (17.2)	5628 (17.2)		
60–64	1349 (16.5)	5396 (16.5)		
65–69	1285 (15.7)	5140 (15.7)		
70–74	1151 (14.1)	4604 (14.1)		
75–79	736 (9.0)	2944 (9.0)		
80–84	316 (3.9)	1264 (3.9)		
85+	80 (1.0)	320 (1.0)		
Sex				1.000
Male	2885 (35.3)	11,540 (35.3)		
Female	5298 (64.7)	21,192 (64.7)		
Income				1.000
1 (lowest)	1397 (17.1)	5588 (17.1)		
2	1038 (12.7)	4152 (12.7)		
3	1259 (15.4)	5036 (15.4)		
4	1707 (20.9)	6828 (20.9)		
5 (highest)	2782 (34.0)	11,128 (34.0)		
Region of residence				1.000
Urban	3445 (42.1)	13,780 (42.1)		
Rural	4738 (57.9)	18,952 (57.9)		
Obesity*				<0.001*
Underweight	167 (2.0)	832 (2.5)		
Normal	2782 (34.0)	11,587 (35.4)		
Overweight	2290 (28.0)	8752 (26.7)		
Obese I	2694 (32.9)	10,442 (31.9)		
Obese II	250 (3.1)	1119 (3.4)		
Smoking status				
Nonsmoker	6640 (81.1)	25,851 (79.0)	<0.001*	
Past smoker	829 (10.1)	3017 (9.2)		
Current smoker	714 (8.7)	3864 (11.8)		
Alcohol consumption				<0.001*
<1 time a week	6209 (75.9)	23,867 (72.9)	<0.001*	
≥1 time a week	1974 (24.1)	8865 (27.1)		
CCI score				
0	5128 (62.7)	22,183 (67.8)	<0.001*	
1	1690 (20.7)	5447 (16.6)		
2	834 (10.2)	3071 (9.4)		
3	246 (3.0)	903 (2.8)		
≥4	285 (3.5)	1128 (3.5)		
Benign paroxysmal vertigo	2800 (34.2)	2170 (6.6)	<0.001*	
Vestibular neuronitis	900 (11.0)	467 (1.4)	<0.001*	
Other peripheral vertigo	1913 (23.4)	1517 (4.6)	<0.001*	
Thyroid cancer	81 (0.9)	296 (1.0)	0.469	
Period of taking levothyroxine				
<3 month	7793 (95.2)	31,557 (96.4)	<0.001*	
≥3 month	390 (4.8)	1175 (3.6)		
Goiter	462 (5.7)	1377 (4.2)	<0.001*	
Hypothyroidism	385 (4.7)	1168 (3.6)	<0.001*	
Thyroiditis	174 (2.1)	518 (1.6)	<0.001*	
Hyperthyroidism	292 (3.6)	805 (2.5)	<0.001*	
Autoimmune thyroiditis	81 (0.99)	219 (0.67)	0.002*	

Table 1. General characteristics of participants. CCI Charlson comorbidity index. *Chi-square test. Significance at P < 0.05. Obesity (BMI, body mass index, kg/m²) was categorized as < 18.5 (underweight), ≥ 18.5 to < 23 (normal), ≥ 23 to < 25 (overweight), ≥ 25 to < 30 (obese I), and ≥ 30 (obese II).
Table 2. Crude and adjusted odd ratios (95% confidence interval) for Meniere’s disease in levothyroxine, goiter, hypothyroidism, hyperthyroidism, and autoimmune thyroiditis. CCI Charlson Comorbidity Index. *Conditional logistic regression model, significance at P < 0.05. †Models stratified by age, sex, income, and region of residence. ‡Model 1 was adjusted for obesity, smoking, alcohol consumption, benign paroxysmal vertigo, vestibular neuronitis, other peripheral vertigo, thyroid cancer, and CCI scores. §Model 2 was adjusted for model 1 plus levothyroxine, goiter, hypothyroidism, thyroiditis, hyperthyroidism.

Characteristics	Odd ratios for Meniere’s disease	Crude†	P value	Model 1‡	P value	Model 2§	P value
Total participants (n = 40,915)	1.37 (1.09–1.50)	<0.001*	1.31 (0.94–1.81)	0.122			
Levothyroxine	1.27 (1.12–1.44)	<0.001*	1.28 (1.09–1.50)	0.003*	0.94 (0.76–1.16)	0.583	
Goiter	1.37 (1.23–1.53)	<0.001*	1.28 (1.13–1.45)	<0.001*	1.19 (1.04–1.36)	0.011*	
Hypothyroidism	1.34 (1.19–1.51)	<0.001*	1.34 (1.17–1.53)	<0.001*	1.21 (1.02–1.44)	0.030*	
Thyroiditis	1.35 (1.14–1.61)	<0.001*	1.23 (1.01–1.49)	0.041*	1.05 (0.85–1.29)	0.667	
Hyperthyroidism	1.47 (1.28–1.69)	<0.001*	1.37 (1.18–1.60)	<0.001*	1.27 (1.09–1.49)	0.003*	
Autoimmune thyroiditis	1.49 (1.15–1.92)	0.002*	1.26 (0.94–1.69)	0.122			

exchanger such as pendrin, which is encoded by Solute Carrier 26A4 (SLC26A4), could be defected in the patients with goiter and/or hypothyroidism. Therefore, altering the endolymph composition and endocochlear potential, as in the case of Pendred syndrome41.

Although autoimmune thyroiditis did not show a statistically significant association with Ménière’s disease in this study, the abnormal autoimmune responses in the patients with autoimmune thyroid disease could influence the inner ear autoimmune dysfunctions related with Ménière’s disease36–38. Patients with Ménière’s disease had a higher rate of thyroid autoantibodies of anti-thyroglobulin antibody, anti-TSH receptor antibody, anti-thyroidperoxidase antibody, anti-thyroglobulin antibody compared to control and acute unilateral peripheral vestibulopathy groups38. Ménière’s disease, especially in bilateral cases, has been reported to be related with autoimmune dysfunctions including allergy36,37,39,40. A prospective case–control study suggested the higher rate of positivity to cellular and humoral autoimmune tests in 10 bilateral patients with Ménière’s disease36. In addition, the prevalence of systemic autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and ankylosing spondylitis was higher in 690 patients with Ménière’s disease than in the general population41. In particular, familial cases of Ménière’s disease have been reported to harbor some genetic factors, such as certain human leukocyte antigens36,42. Therefore, it was presumed that Ménière’s disease could be included in the spectrum of autoimmune inner ear disease41. Autoimmune mechanism may have an influence on hypothyroidism, hyperthyroidism, and thyroiditis5. Therefore, the possible mediating role of autoimmunity with respect to thyroid diseases in Ménière’s disease cannot be excluded in this study.

Both hypo- and hyperthyroidism were related to Ménière’s disease in this study. These associations could have originated from the common pathophysiology among the thyroid diseases, such as autoimmune responses and inflammation6,5. In addition, the effects of treatment of abnormal thyroid function could influence the overlapping of thyroid diseases. For instance, the treatment of hypothyroidism could induce a status of hyperthyroidism. Thus, it was reported that the treatment of hypothyroidism accounted for approximately 9.6% of cases of hyperthyroidism4. Moreover, it was reported that about 14% of patients with Ménière’s disease showed a state of hyperthyroidism due to l-thyroxine therapy38.

The present study was based on a large, representative national cohort. The large study population guaranteed a sufficient number of control population matched for age, sex, income, and region of residence. In addition, potential confounders were comprehensively reviewed and adjusted for obesity; smoking; alcohol consumption; comorbidities using CCI score; other vestibular diseases of benign paroxysmal positional vertigo, vestibular neuronitis, and other peripheral vertigo; levothyroxine medication; and other thyroid diseases of goiter, hypothyroidism, thyroiditis, and hyperthyroidism. The use of the health claim data meant that the thyroid status could not be measured by thyroid function tests because there was a possibility that the thyroid status was heterogenous among participants. In addition, subclinical or untreated thyroid diseases could be misclassified. For Ménière’s disease, the vestibular function tests could not be assessed; thus the severity and management of Ménière’s disease might vary among participants. However, the correlation of vestibular function tests with the types and severity of Ménière’s disease could also be variable, and the clinical otovestibular symptoms assessed by the otologist might be more reliable for the diagnosis of Ménière’s disease. The endotypes of Ménière’s disease, including a degenerating distal endolymphatic sac and hypoplastic endolymphatic sac, could not be differentiated in the present study41. Although we could not access low- to medium frequency sensorineural hearing loss, which is accompanied in the definite Ménière’s disease, the participants who underwent pure tone audiometry were enrolled, thus, probable Ménière’s disease might be included in this study41.

Conclusion
Thyroid diseases of goiter, hypothyroidism, and hyperthyroidism were related with the increased risk of Ménière’s disease. The associations of hypo- and hyperthyroidism with Ménière’s disease were consistent in women.
Meniere’s disease according to age and sex

Characteristics	aOR (95% CI)
Age < 65 years old, men	
Levothyroxine	0.95 (0.38-2.34)
Goiter	1.29 (0.78-2.15)
Hypothyroidism	1.24 (0.58-2.65)
Thyroiditis	1.74 (0.76-4.02)
Hyperthyroidism	0.96 (0.53-1.73)
Age ≥ 65 years old, men	
Levothyroxine	0.83 (0.33-2.11)
Goiter	1.32 (0.79-2.20)
Hypothyroidism	1.00 (0.49-2.04)
Thyroiditis	1.37 (0.64-2.95)
Hyperthyroidism	1.41 (0.79-2.49)
Age < 65 years old, women	
Levothyroxine	0.81 (0.60-1.09)
Goiter	1.16 (0.96-1.39)
Hypothyroidism	1.50 (1.18-1.89)
Thyroiditis	1.06 (0.80-1.40)
Hyperthyroidism	1.25 (1.01-1.56)
Age ≥ 65 years old, women	
Levothyroxine	1.25 (0.89-1.75)
Goiter	1.23 (0.98-1.55)
Hypothyroidism	1.04 (0.78-1.38)
Thyroiditis	0.91 (0.63-1.31)
Hyperthyroidism	1.37 (1.04-1.81)

Figure 2. The odds ratios (95% confidence interval) of levothyroxine medication, goiter, hypothyroidism, thyroiditis, and hyperthyroidism for Meniere’s disease according to age and sex.
Data availability

Releasing of the data by the researcher is not allowed legally. All data are available from the database of the National Health Insurance Sharing Service (NHISS) https://nhiss.nhiss.or.kr/. NHISS allows data access, at a particular cost, for any researcher who promises to follow the research ethics. Data of this article can be downloaded from the website after promising to follow the research ethics.

Received: 4 August 2020; Accepted: 15 October 2020
Published online: 26 October 2020

References

1. Mullur, R., Liu, Y. Y. & Brent, G. A. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382. https://doi.org/10.1152/physrev.00030.2013 (2014).
2. Hoermann, R., Midgley, J. E., Larisch, R. & Dietrich, J. W. Homeostatic control of the thyroid-pituitary axis: perspectives for diagnosis and treatment. Front. Endocrinol. (Lausanne) 6, 177. https://doi.org/10.3389/fendo.2015.00177 (2015).
3. Mehran, L., Amouzegar, A. & Azizi, F. Thyroid disease and the metabolic syndrome. Curr. Opin. Endocrinol. Diabetes Obes. 26, 256–265. https://doi.org/10.1097/MED.0000000000000500 (2019).
4. Jenkins, R. C. & Weetman, A. P. Disease associations with autoimmune thyroid disease. *Thyroid* **12**, 977–988. https://doi.org/10.1080/10507252002908312 (2002).

5. Inoue, N. et al. Associations between autoimmune thyroid disease prognosis and functional polymorphisms of susceptibility genes, CTLA4, PTPN22, CD40, FCR3L, and ZFAT, previously revealed in genome-wide association studies. *J. Clin. Immunol.* **32**, 1243–1252. https://doi.org/10.1007/s10875-012-9721-0 (2012).

6. McLeod, D. S. & Cooper, D. S. The incidence and prevalence of thyroid autoimmunity. *Endocrine* **42**, 252–265. https://doi.org/10.1007/s12020-012-9703-2 (2013).

7. Dietz, J. J. Hypothyroidism in patients older than 55 years: an analysis of the etiology and assessment of the effectiveness of therapy. *J. Gerontol. A Biol. Sci. Med. Sci.* **57**, M315–320. https://doi.org/10.1093/gerona/57.5.m315 (2002).

8. Homer, Y. Mechanisms of autoimmune thyroid diseases: from genetics to epigenetics. *Annu. Rev. Pathol.** 9**, 147–156. https://doi.org/10.1146/annurev-pathol-012513-104713 (2014).

9. Goebel, J. A. 2015 Equilibrating committee amendment to the 1995 AAO-HNS guidelines for the definition of Meniere’s disease. *Otolaryngol. Head Neck Surg.* **154**, 403–404. https://doi.org/10.1177/1944909916628524 (2016).

10. Kim, C. H., Shin, J. E., Yoo, M. H. & Park, H. J. Direction-changing and direction-fixed positional nystagmus in patients with vestibular neuritis and meniere disease. *Clin. Exp. Otorhinolaryngol.** 12**, 255–260. https://doi.org/10.21053/ceo.2018.00038 (2019).

11. Bruderer, S. G., Bodmer, D., Stohler, N. A., Jick, S. S. & Meier, C. R. Population-based study on the epidemiology of Meniere’s disease. *Audiol. Neurootol.** 22**, 74–82. https://doi.org/10.1159/000475875 (2017).

12. Alexander, T. H. & Harris, J. P. Current epidemiology of Meniere’s syndrome. *Otolaryngol. Clin. North Am.* **43**, 965–970. https://doi.org/10.1016/j.otc.2010.05.001 (2010).

13. Gibson, W. P. R. Meniere’s disease. *Adv. Otorhinolaryngol.** 82**, 77–86. https://doi.org/10.1159/000490274 (2019).

14. Shambaugh, G. E. Jr. Endocrine aspects of Meniere’s disease. *Arch. Otolaryngol.* **73**, 227–230. https://doi.org/10.2105/ceo.2018.00038 (2019).

15. WHO/IASO/IOTR. The Asia-Pacific Perspective: Redefining Obesity and its Treatment. Health Communications Australia Pty Ltd (2005).

16. Santosh, U. P. & Rao, M. S. Incidence of hypothyroidism in Meniere’s disease. *Med. Hypotheses** 158**, 351–358. https://doi.org/10.1016/j.amehalt.2019.10.053 (2020).

17. Schumm-Draeger, P. M. Sodium iodide symporter gene and its regulation by cytokines found in autoimmunity. *Exp. Clin. Endocrinol. Diabetes** 351–358. https://doi.org/10.1677/joe.0.1580341 (1998).

18. Fontenelle, L. C. & Lopez-Escamez, J. A. Genetic architecture of Meniere’s disease. *Endocrine** 82**, 32–34. https://doi.org/10.1016/j.ejende.2018.04.003 (2019).

19. Gallego-Martinez, A. & Lopez-Escamez, J. A. Genetic architecture of Meniere’s disease. *Exp. Clin. Endocrinol. Diabetes** 351–358. https://doi.org/10.1677/joe.0.1580341 (1998).

20. Marcus, D. C. & Wangemann, P. Endotype-phenotype patterns in Meniere’s disease based on gadolinium-enhanced MRI of the vestibular aqueduct. *Front. Neurosci.** 10**, 303. https://doi.org/10.3389/fnene.2019.00303 (2019).

21. Bachinger, D. & Wangemann, P. Cochlear and Vestibular Function and Dysfunction. Physiology and Pathology of Chloride Transporters and Channels in the Nervous System—From molecules to diseases 421–433 (Elsevier, Amsterdam, 2009).

22. Udeshi, N. P. & Rao, M. S. Incidence of hypothyroidism in Meniere’s disease. *J. Clin. Diagn. Res.** 10**, MC01–MC03. https://doi.org/10.7860/JCDR/2016/17587.7759 (2016).

23. Aijan, R. A. et al. The sodium iodide symporter gene and its regulation by cytokines found in autoimmunity. *J. Endocrinol.** 158**, 351–358. https://doi.org/10.1677/joe.0.1580341 (1998).

24. Sato, N. & Gotoh, T. Possible association between thyroid autoimmunity and Meniere’s disease. *Clin. Exp. Immunol.** 22**, 74–82. https://doi.org/10.1159/000475875 (2017).

25. Kopp, P. B. & Bishanova, A. Clinical and molecular characteristics of Pendred syndrome. *Ann. Endocrinol. (Paris)** 72**, 88–94. https://doi.org/10.1016/j.anjo.2011.03.010 (2011).

26. Hughes, G. B., Kinney, S. E., Barna, B. P. & Calabrese, L. H. Autoimmune reactivity in Meniere’s disease: a preliminary report. *Laryngoscope** 93**, 410–417. https://doi.org/10.1002/lary.1983.93.8.1 (1983).

27. Fattori, B. et al. Possible association between thyroid autoimmunity and Meniere’s disease. *Clin. Exp. Immunol.** 152**, 28–32. https://doi.org/10.1111/cei.12968 (2013).

28. Kopp, P. B. & Bishanova, A. Clinical and molecular characteristics of Pendred syndrome. *Ann. Endocrinol. (Paris)** 72**, 88–94. https://doi.org/10.1016/j.anjo.2011.03.010 (2011).

29. Hughes, G. B., Kinney, S. E., Barna, B. P. & Calabrese, L. H. Autoimmune reactivity in Meniere’s disease: a preliminary report. *Laryngoscope** 93**, 410–417. https://doi.org/10.1002/lary.1983.93.8.1 (1983).

30. Suzuki, M. & Kitahara, M. Immunologic abnormality in Meniere’s disease. *Otolaryngol. Head Neck Surg.** 107**, 57–62. https://doi.org/10.1177/17012125890170009 (1992).

31. Weinrich, H. M. & Agrawal, Y. The link between allergy and Meniere’s disease. *Curr. Opin. Otolaryngol. Head Neck Surg.** 22**, 227–230. https://doi.org/10.1097/MOOG.0000000000000041 (2014).

32. Galvez, I. et al. High prevalence of systemic autoimmune diseases in patients with Meniere’s disease. *PLoS ONE** 6**, e26759. https://doi.org/10.1371/journal.pone.0026759 (2011).

33. Xenellis, J., Morrison, A. W., McCloskey, D. & Festenstein, H. HLA antigens in the pathogenesis of Meniere’s disease. *J. Laryngol. Otol.** 100**, 21–24. https://doi.org/10.1017/s0022215100098698 (1986).
43. Lopez-Escamez, J. A. et al. Diagnostic criteria for Meniere's disease. J. Vestib. Res. 25, 1–7. https://doi.org/10.3233/VES-150549 (2015).

Acknowledgements
We would like to thank Editage (www.editage.co.kr) for English language editing.

Author contributions
H.G.C. designed the study; J.H.W., C.M., and H.G.C. analyzed the data; S.Y.K. and H.G.C. drafted and revised the paper; J.H.W. draw figures; all authors approved the final version of the manuscript.

Funding
This work was supported in part by a research Grants (NRF-2018-R1D1A1A02085328 and 2020R1A2C4002594) from the National Research Foundation (NRF) of Korea.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-75404-y.

Correspondence and requests for materials should be addressed to H.G.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020