Efficacy of premedication with activated Dimethicone or N-acetylcysteine in improving visibility during upper endoscopy

Seyed Mohammad Kazem Hosseini Asl, Gholam Reza Sivandzadeh

AIM: To assess the efficacy of N-acetylcysteine (NAC) and activated Dimethicone in improving endoscopic mucosal visibility.

METHODS: A total of 148 patients were randomly allocated into four groups to receive one of the following premedications: group A: 100 mL water alone; group B: activated Dimethicone plus water (up to 100 mL); group C: NAC plus water (up to 100 mL); and group D: activated Dimethicone and NAC plus water (up to 100 mL). A single endoscopist blinded to the patients group assessed the gastric mucosal visibility scores (range 1-4) at four sites. The sum of the scores from the four sites was considered as the total mucosal visibility score (TMVS).

RESULTS: The patients in group B showed a significantly lower TMVS than those of groups A and C ($P < 0.001$). The TMVS in patients of group D was significantly lower than that of groups A and C ($P < 0.001$). The TMVS did not significantly differ between groups B and D ($P > 0.05$). The difference between TMVS of groups C and A was not significant ($P > 0.05$).

CONCLUSION: Premedication with activated Dimethicone 20 min prior to the upper endoscopy leads to the best visibility. NAC does not improve visualization by itself.

© 2011 Baishideng. All rights reserved.

Key words: Dimethicone; N-acetylcysteine; Simethicone; Upper endoscopy

Peer reviewer: Dr. György M.Buzás, Department of Gastroenterology, Ferencváros Health Center, IX.District Policlinic, Mester u 45, 1095 Budapest, Hungary

Hosseini Asl MK, Sivandzadeh GhR. Efficacy of premedication with activated Dimethicone or N-acetylcysteine in improving visibility during upper endoscopy. World J Gastroenterol 2011; 17(37): 4213-4217 Available from: URL: http://www.wjgnet.com/1007-9327/full/v17/i37/4213.htm DOI: http://dx.doi.org/10.3748/wjg.v17.i37.4213

INTRODUCTION

Studies recently demonstrated a declining trend in gastric cancer incidence throughout the world; yet, it is still the second most common cause of mortality due to malignant diseases[1]. As detecting the cancer at the early stage has a great impact on its potential curability, mass screening programs are implementing in Japan with the highest rate of the disease. Although the real effect of this approach on mortality is said to be little by some, studies conducted in Japan favor endoscopic mass screening especially by the advent of new minimally invasive procedures such as endoscopic mucosal resection for cancers detected at early stages[2-8].

Foam, bubbles, and mucus accumulated in the upper gastrointestinal tract can interfere with clear mucosal visualization and pose potential risk of missing early or subtle lesions. That is why anti-foam and bubble-bursting...
agents are widely used in gastrointestinal endoscopic centers particularly in Japan where it is common. This is a routine practice neither in the country where this study was conducted nor in the West, probably in fear of some presumed risk of pulmonary aspiration[6]. Simethicone [Diethylpolyisiloxane (DMPS) or activated Dimethicone] was proved to be a good defoaming agent for pre-endoscopic usage to remove bubble and mucus[7,8]. Pronase, a proteolytic enzyme isolated in 1962 from the culture filtrate of Streptomyces griseus, is another agent whose efficiency as a premedication for improving the visual field of endoscopy devoid of foam and mucus has been investigated and is now being used routinely in Japan’s endoscopic centers. It is better to be used in combination with DMPS and bicarbonate to yield more improvement in visibility[9,10].

Other than upper endoscopy, Simethicone has been studied to be used in colonoscopy as an additive to other bowel preparations to eliminate bubbles[11,12], in capsule endoscopy as small bowel preparation for the same goal[13,14], and in endoscopic ultrasonography to reduce artefacts and increase the accuracy of the modality[15,16].

Currently, N-acetylcysteine (NAC), a mucolytic agent, in combination with DMPS has shown to be effective in elimination of gastric mucus and bubbles when used 20 min prior to endoscopy, improving visualization of the gastric mucosa[17]. Owing to the lack of any study surveying the efficiency of NAC independently, the present study aimed to compare the effect of this compound and activated Dimethicone (Simethicone) with placebo and together as premedications for gastroscopy.

MATERIALS AND METHODS

This double-blind, randomized, placebo-controlled study was carried out from April to August 2010. Amongst all the consecutive patients referred to our out-patient endoscopy clinic, 148 patients were enrolled in the study after giving a written informed consent. The patients with a history of upper gastrointestinal surgery, gastric cancer, gastrointestinal bleeding, caustic ingestion, pregnancy, diabetes mellitus, asthma, and allergic reactions were excluded from the study. This study was approved in the ethics committee of the local university.

The patients were randomly allocated into four different groups (using random blocks) with peculiar liquid premedication for each one: (1) group A, 100 mL water; (2) group B, 100 mg, 2.5 mL, activated Dimethicone (Dimetin, Tolid Daru co., Tehran, Iran) plus water up to 100 mL; (3) group C, 600 mg N-acetylcysteine (ACC, Hexal AG, Holzkirchen, Germany) in water up to 100 mL; and (4) group D, 100 mg, 2.5 mL, activated Dimethicone and 600 mg N-acetylcysteine plus water up to 100 mL.

All the liquid solutions were prepared in the same opaque bottles and taken about 20 min prior to endoscopic procedure under supervision of an informed attendant nurse. All patients were unaware of their groups and the type of liquid solutions. Then the patient awaited endoscopy in sitting position in the endoscopy waiting room.

All the endoscopic procedures were performed by a single, experienced endoscopist blinded to the patient’s group and premedication. The endoscopies were done at a relatively fixed period of time in a clinic affiliated with Shiraz University of Medical Sciences, using a video endoscope (EPK 1000 PENTAX, Japan).

During endoscopy, four distinct domains of the stomach including the antrum, the upper part of the greater curvature, the lower part of the greater curvature, and the gastric fundus were evaluated separately for mucosal visibility. Scoring from 1 to 4 for each domain, known as visibility score, was defined based on the modified form of Kuo et al[17] scoring system like the one used by Chang et al[18] as follows: (1) score 1, no adherent mucus on the gastric mucosa; (2) score 2, little amount of mucus on the gastric mucosa, but no obscuring vision; (3) score 3, large amount of mucus on the gastric mucosa, with less than 50 mL of water to clear; and (4) score 4, large amount of mucus on the gastric mucosa, with more than 50 mL of water to clear.

The sum of visibility scores of all four domains is considered as the TMVS for each patient.

Statistical analysis

The demographic characteristics were assessed using a \(\chi^2 \) test, ANOVA, or one-way analysis of variance. The visibility scores of all the four groups were analyzed using Kruskal-Wallis and Mann-Whitney pairwise comparisons. \(P \) value < 0.05 was considered statistically significant.

RESULTS

From a total of 148 patients enrolled in the study, 77 (52%) were male and 71 (48%) female. Then, 38, 37, 37 and 36 patients were randomly assigned to groups A, B, C and D, respectively. The mean (± SD) age was 42.2 ± 13.9 in group A, 44.3 ± 18 in group B, 44.6 ± 16.4 in group C, and 41.8 ± 17.5 in group D. The mean age in the whole study population was 43.2 ± 16.4. The most common reason for endoscopy in all the groups and also in the total population was dyspepsia (65.5% in total). Moreover, the second most common cause in all the patients was acid reflux (12.8%). All demographic data encompassing sex distribution per group and reason for endoscopy are shown in Table 1. There was no statistically significant difference \((P > 0.05) \) among groups regarding age and gender.

The mean of TMVS in group A was 9.50 ± 2.55, in group B 5.11 ± 1.28, in group C 8.41 ± 2.10, and in group D 5.39 ± 1.71. The total mean ranks in groups A, B, C and D were 109.96, 41.69, 98.39 and 46.24, respectively (the lower the rank, the better the visibility). The difference among the mean ranks was statistically significant \((P < 0.001) \). Group B showed the least visibility scores at different locations of the stomach and also the least
mean TMVS which were all significantly lower than those of groups A and C (P < 0.001). The patients in group D had significantly lower visibility scores for separate gastric domains (P < 0.05) and showed lower mean TMVS than group A and C too (P < 0.001). Groups B and D did not differ significantly in scores (P > 0.05). Despite the fact that patients in group C achieved lower scores than group A patients, the difference was not significant at all (P > 0.05). The mean rank, the mean mucosal visibility scores at separate sites, and the mean TMV scores in distinct groups are depicted in Table 2 and 3, respectively. No adverse reaction was detected during the study in any group.

DISCUSSION

Esophagogastroduodenoscopy or upper endoscopy re-

Table 1 Demographic characteristics of patients in each group

Group	A	B	C	D
Number	38	37	37	36
Age (yr; mean ± SD)	42.2 ± 13.9	44.3 ± 18.0	44.6 ± 16.4	41.8 ± 17.5
Female: Male (n)	18:20	19:18	16:21	18:18

Causes of endoscopy

Dyspepsia	25	28	21	23
Reflux	6	5	4	4
Screening for cancer	7	0	5	4
Others	0	4	7	5

No significant difference between each two groups regarding age and gender. Group A received water, group B received activated Dimethicone plus water, group C received N-acetylcysteine plus water, and group D received activated Dimethicone and N-acetylcysteine plus water.

Table 2 The mean rank\(^1\) of any group of patients in distinct domains of stomach

Group	A	B	C	D
Antrum	102.82	48.91	91.74	53.19
Lower part of the greater curvature	103.43	51.24	88.00	53.99
Upper part of the greater curvature	100.17	48.49	92.43	55.71
Fundus	102.21	51.43	90.96	52.04

\(^1\)The lower the mean rank, the better the visibility.

Table 3 Mean mucosal visibility score at different sites and total mean mucosal visibility scores in any group separately (mean ± SD)

Group	A	B	C	D
Antrum	2.39 ± 0.94	1.22 ± 0.53	2.05 ± 0.78	1.28 ± 0.51
Lower part of the greater curvature	2.26 ± 0.89	1.14 ± 0.34	1.89 ± 0.87	1.19 ± 0.46
Upper part of the greater curvature	2.47 ± 0.79	1.38 ± 0.54	2.35 ± 0.94	1.53 ± 0.69
Fundus	2.37 ± 0.75	1.38 ± 0.54	2.11 ± 0.65	1.39 ± 0.54
Total (TMVS)	9.50 ± 2.55	5.11 ± 1.28	8.41 ± 2.10	5.39 ± 1.71

\(^7\)P < 0.001 vs group A; \(^c\)P < 0.001 vs group C; \(^b\)P < 0.001 vs group B; \(^a\)P > 0.05 vs group C; a, b, c, d: Kruskal-Wallis and Mann-Whitney pairwise comparisons. TMVS: Total mucosal visibility score.

Simethicone (activated Dimethicone or activated Methyl polysiloxane), commonly used for relief of bloating and gas with no significant adverse reaction or interaction\(^{20}\), is a safe adjunct to endoscopic premedications. It works via decreasing the surface tension of bubbles of air and dispersing them without remarkable absorption in the gastrointestinal system\(^{21}\). The effectiveness of Simethicone has already been proved in some other trials as a defoaming agent\(^{18}\). Recently, Keeratchanont et al\(^{22}\), though using a different grading scale and including the esophagus and duodenum in their study, concluded that 133.3 mg (2 mL) of liquid Simethicone in 60 mL water 15-30 min prior to procedure could improve the visibility and reduce the number of flushings required for removing the mucus significantly. They also showed that using Simethicone prior to endoscopy would cut down the duration of the procedure and consequently lead to more satisfaction to both physician and patient. Similarly in our study, those patients in group B who received 100 mg activated Dimethicone in water showed better visualization compared to group A that received only simple water as placebo. The amount of water to be given with Simethicone prior to endoscopy would cut down the duration of the procedure and consequently lead to more satisfaction to both physician and patient. However, in two clinical trials it was shown that there was no significant difference in visibility between those who received Simethicone alone or with 100 mL water\(^{19}\).

Pronase is a proteolytic enzyme commonly used in Japan as a premedication in combination with bicarbonate and Gascon (Simethicone)\(^{20}\). Fujii et al\(^{20}\) came to the conclusion that the solution of 100 mL water, 20 000 units Pronase, 1 gm bicarbonate, and 80 mg DMPS was more effective than DMPS alone in improving visibility during conventional endoscopy and chromoendoscopy. They showed that this would decrease duration of endoscopy; Kou et al\(^{20}\) in a similar study proved that Pronase would
improve visualization much better than DMPS only when used in combination with bicarbonate and DMPS. They vividly concluded that Pronase without DMPS was of no use. Pronase is not routinely used in this country and was not the scope of the study.

NAC is a mucolytic and antioxidant agent acting via its free sulphhydryl group to lower the mucus viscosity.[21] Nor significant interaction neither adverse reaction has been reported with oral preparations. In this study, those patients with a history of asthma and Diabetes Mellitus were excluded. This study is the only one in which the effect of NAC alone has been investigated and compared to Dimethicone and placebo. The patients in group C who received 600 mg NAC in 100 mL water did not show any betterment in visibility scores (8.41 ± 2.10 vs 9.50 ± 2.55 in group A). Combination of NAC and Dimethicone in group D demonstrated better visualization than simple water in group A. But this combination was not superior to Dimethicone alone in group B. We supposed that this was the effect of Dimethicone appearing in group D as in group B and NAC had no effect. In contrast to our results, Chang et al.[17] concluded that the mixture of 400 mg NAC and 100 mg DMPS plus water up to 100 mL is more effective than DMPS alone or DMPS in water in a significant manner. They also recommended that NAC could be a substitute for Pronase where it was unavailable. In their study, the mean of the total visibility score in the patients who received NAC plus DMPS was 6.5 ± 2.2 (vs 5.39 ± 1.71 in this study) and in those receiving DMPS with water 7.6 ± 2.6 (vs 5.11 ± 1.28 in this study). The scoring system was exactly similar in the two studies though performed by different endoscopists. All these compounds were proved not to affect the result of rapid urease tests using Campylobacter-like organism test.[11]

In conclusion, regarding the lower cost of Dimethicone (activated) (one third that of NAC per patient herein) and lack of Pronase, we suggest the routine use of 100 mg activated Dimethicone in water up to 100 mL twenty min prior to upper endoscopy here and all other areas where Pronase is not available. To clarify the exact benefits of NAC requires further trials.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Nasrin Shokrpour at the Center for Development of Clinical Research of Nemazee Hospital for editorial assistance. The authors also thank Dr. Nader F for her suggestions in methodology, and Dr. Vosoughi M for the statistical interpretations

REFERENCES

1 Lalambert R, Guilloux A, Oshima A, Pompe-Kim V, Bray F, Parkin M, Ajiki W, Tsukuma H. Incidence and mortality from stomach cancer in Japan, Slovenia and the USA. Int J Cancer 2002; 97: 811-818
2 McColl KE. Screening for early gastric cancer. Gut 2005; 54: 740-742
3 Tashiro A, Sano M, Kinameri K, Fujita K, Takeuchi Y. Comparing mass screening techniques for gastric cancer in Japan. World J Gastroenterol 2006; 12: 4873-4874
4 Everett SM, Axon AT. Early gastric cancer: disease or pseudo-disease? Lancet 1998; 351: 1350-1352
5 Ono H, Kondo H, Gotoda T, Shirao K, Yamaguchi H, Saito D, Hosokawa K, Shimoda T, Yoshida S. Endoscopic mucosal resection for treatment of early gastric cancer. Gut 2001; 48: 225-229
6 Bhandari P, Green S, Hamanaka H, Nakajima T, Matsuda T, Saito Y, Oda I, Gotoda T. Use of Gascon and Pronase either as a pre-endoscopic drink or as targeted endoscopic flushes to improve visibility during gastroscopy: a prospective, randomised, controlled, blinded trial. Scand J Gastroenterol 2010; 45: 357-361
7 McDonald GB, O’Leary R, Stratton C. Pre-endoscopic use of oral simethicone. Gastrointest Endosc 1978; 24: 283
8 Banerjee B, Parker J, Waits W, Davis B. Effectiveness of pre-procedure simethicone drink in improving visibility during esophagegastrooduodenoscopy: a double-blind, randomized study. J Clin Gastroenterol 1992; 15: 264-265
9 Kuo CH, Sheu BS, Kao AW, Wu CH, Chuang CH. A defoaming agent should be used with pronase premedication to improve visibility in upper gastrointestinal endoscopy. Endoscopy 2002; 34: 531-534
10 Fujii T, Ishii T, Tatsuta M, Hirasawa R, Uedo N, Hifumi K, Omori M. Effectiveness of premedication with pronase for improving visibility during gastroendoscopy: a randomized controlled trial. Gastrointest Endosc 1998; 47: 382-387
11 McNally PR, Maydonovitch CL, Wong RK. The effectiveness of simethicone in improving visibility during colonoscopy: a double-blind randomized study. Gastrointest Endosc 1998; 47: 255-258
12 Tongprasert S, Sobhonslidsuk A, Rattanasiri S. Improving quality of colonoscopy by adding simethicone to sodium phosphate bowel preparation. World J Gastroenterol 2009; 15: 3032-3037
13 Albert J, Goblet CM, Leske J, Lotterer E, Niests H, Fleig WE. Simethicone for small bowel preparation for capsule endoscopy: a systematic, single-blinded, controlled study. Gastrointest Endosc 2004; 59: 487-491
14 Fang YH, Chen CX, Zhang BL. Effect of small bowel prepa-
ration with simethicone on capsule endoscopy. J Zhejiang Univ Sci B 2009; 10: 46-51
15 Yiengpruksawan A, Lightdale CJ, Gerdes H, Botet JF. Mucolytic-antifoam solution for reduction of artifacts during endoscopic ultrasonography: a randomized controlled trial. Gastrointest Endosc 1991; 37: 543-546
16 Sakai N, Tatsuta M, Iishi H, Nakaizumi A. Pre-medication with pronase reduces artefacts during endoscopic ultrasonography. Aliment Pharmacol Ther 2003; 18: 327-332
17 Chang CC, Chen SH, Lin CP, Hsieh CR, Lou HY, Suk FM, Pan S, Wu MS, Chen JN, Chen YF. Premedication with pronase or N-acetylcysteine improves visibility during gastroendoscopy: an endoscopist-blinded, prospective, randomized study. World J Gastroenterol 2007; 13: 444-447
18 Sue-Ling HM, Martin I, Griffith J, Ward DC, Quirke P, Dixon MF, Axon AT, McMahon MJ, Johnston D. Early gastric cancer: 46 cases treated in one surgical department. Gut 1992; 33: 1318-1322
19 Suvakovic Z, Bramble MG, Jones R, Wilson C, Idle N, Ryott J. Improving the detection rate of early gastric cancer requires more than open access gastroscopy: a five year study. Gut 1997; 41: 308-313
20 Simethicone: Drug information. Uptodate 18.2, 2010
21 N-acetylcysteine: Drug information. Uptodate 18.2, 2010
22 Keeratichananont S, Sobhonslidsuk A, Kitiyakara T, Achalanan N, Sonthornpun S. The role of liquid simethicone in enhancing endoscopic visibility prior to esophagastroduodenoscopy (EGD): A prospective, randomized, double-blinded, placebo-controlled trial. J Med Assoc Thai 2010; 93: 892-897