Does Green Tea (Camellia sinensis) Powder Extract Contain Fluoride?

Ramya R. Iyer¹, Avinash Kumar Seth² and Ghanshyam Parmar³

¹Department of Public Health Dentistry, KM Shah Dental College and Hospital, Sumandeep Vidyapeeth (An Institution Deemed to be University), India.
²Department of Pharmacy, Sumandeep Vidyapeeth - An Institution Deemed to be University, Vadodara, India.
³Department of Pharmacy, Sumandeep Vidyapeeth, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i36A31929

Editor(s):
(1) Prof. Mohamed Fawzy Ramadan Hassanien, Zagazig University, Egypt.
(2) Reviewers:
(1) K. Meena Anand, Manipal University College Malaysia (MUCM), Malaysia.
(2) Garima Rawat, Dharamshila Narayana Superspeciality Hospital, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/70760

Received 01 May 2021
Accepted 06 July 2021
Published 09 July 2021

ABSTRACT

Background: Green tea being a rich source of fluoride, may provide anti-caries benefits when incorporated in toothpaste formulation.
Aim: To estimate the concentration of fluoride in dry green tea extract.
Methods: Prior to the estimation of fluoride in the sample, the dry green tea extract powder was tested for its physical characteristics, analytical characteristics, active ingredients and contaminants. Microbial assay was done for quantifying E. Coli, yeast and Salmonella. Fluoride estimation was done by IS 3025 P 60 method.
Results: Fluoride was not detected in the dry powder extract of green tea dry extract powder.
Conclusion: Green tea powder extract incorporated in herbal toothpastes cannot be read as a natural substitute of fluoride in toothpaste.

Keywords: Fluoride; herbal dentifrice; green tea.

*Corresponding author: E-mail: ramya83_r@rediffmail.com;
1. INTRODUCTION

Tea is the richest vegetarian source of fluoride [1]. It is considered as oral health-friendly because of the anti-caries benefits of its fluoride content. Green tea is increasingly consumed globally and is widely promoted as a wellness drink owing to its antioxidant and cancer-preventive effects [2]. Green tea (*Camellia sinensis*) is also reported to be rich in fluorides, ranging from 7 ppm- 25 ppm in one green tea brew, and with lesser concentration of tannins as compared to black tea, is more favourable for incorporation in oral pharmaceutical products [3]. But the release of fluoride from tea depends on various factors viz. hardness, acidity of the medium, method and duration of brewing etc. Majority of the pertinent studies in the literature have thrown light on fluoride released from tea as in beverage preparations. Concentration of fluoride released from powdered tea leaves have been reported only from studies where subsequently the dry powder was treated with artificial gastric acids and intestinal secretions [4].

Recently, the go-natural drive in oral health care products, has led to a surge in the availability of many non-fluoridated herbal toothpaste formulations containing green tea, with claims of cavity protection benefits. This might have left the consumers with the notion of green tea as a natural substitute for fluorides.

Hence, the authors conducted a study to estimate the concentration of fluoride in dry green tea extract, which is usually incorporated in the dentifrice-formulations.

2. METHODS

The present study is a laboratory-based investigation. The dry green tea extract used in the present study was procured from Arjuna Naturals Ltd., Kerala, India. The extract was analysed for purity at the same laboratory. Fluoride assessment was not done by the laboratory of Arjuna Naturals Ltd., as it was not included as part of their analysis protocol.

Hence, fluoride estimation was conducted at Met Chem Laboratory (A Government Recognized Laboratory), Vadodara, Gujarat, India. The sample was tested by IS 3025 P 60 method [5]. The principle behind the analysis is that the colour (red to yellow with increasing concentration of fluoride) obtained with zirconium alizarin reagent is matched against that produced with a series of standard fluoride solutions.

3. RESULTS

The details of analysis of purity of the green tea powder extract and fluoride estimation result are described in Table 1. The fluoride estimation test was negative, i.e. fluoride was not detected in the given sample of green tea powder extract.

4. DISCUSSION

Globally there has been a shift in consumer preferences from chemical-based products towards chemical-free products, powering the demand for herbal products, including toothpastes. Increased share of India in the Asia Pacific herbal products market, strengthening of the AYUSH at government and policy levels and positive forecast in consumer demand have propelled the increased availability of herbal toothpaste to the consumers. Key players in the herbal toothpaste market are Patanjali, Ayurved, Dabur India, VICCO, Colgate-Palmolive, Amway, Himalaya Wellness, Leverayush, Amorepacific, Glaxo-Smithkline plc and Procter&Gamble. These products do not contain fluoride from chemical source [6].

However, it has not been clear if inclusion of green tea as an ingredient in some of these formulations can additionally bestow anti-caries benefits, green tea being a rich source of fluoride. It was needed to clarify to the consumer, whether the anti-caries benefit claimed by the herbal toothpaste, be attributed to the presence of green tea. Hence, the present investigation was conducted to estimate the fluoride content of green tea powder (dry extract), the form in which it is incorporated in herbal toothpaste.

IS 3025 P 60 method used in this study for the estimation of fluoride is suitable for estimation of fluoride and can detect a minimum level of 0.05 mg/F in the sample [5].

In the present study, fluoride was not detected in the given dry powder sample for assay. Release of fluoride for topical effect is said to largely depend on physical and chemical treatments during the processing and preparation. Hence, the release of fluoride is maximum when consumed in beverage form, wherein the brewing or infusion time, method of brewing and hardness of water are considered as the most important factors [4,7].
Table 1. Analysis of green tea (Camellia sinensis) extract powder

Description	Specification	Result	Method
Physical Characteristics			
Colour	Pale green to brownish green	Complies	Visual
Appearance	Powder	Complies	Visual
Flavour	Bitter tea flavour	Complies	Organoleptic
Odour	Characteristic	Complies	Organoleptic
Analytical Characteristics			
Herb extract ratio	10:1	Complies	In- house specification
Solubility (in alcohol)	Soluble	Complies	IP
(in water)	Soluble with turbidity	Complies	IP
Moisture	NMT 5%	1.3%	USP 37<921>
Extraction solvent	Ethyl acetate/ alcohol	Complies	IP
Residual Solvent	NMT 5000 ppm	Complies	USP 37<467>
Tap Density (Gm/Ml)	>0.50	0.83	USP 37<616>
Bulk Density (Gm/Ml)	>0.30	0.58	USP 37<616>
Excipients	None	Complies	In- house specification
Carrier used	None	Complies	In- house specification
Particle size	100% thru 30#		USP 37<786>
Contaminants			
Heavy metals	NMT 10 ppm	Complies	ICP-MS
Lead	NMT 3 ppm	Complies	ICP-MS
Arsenic	NMT 1 ppm	Complies	ICP-MS
Cadmium	NMT 1 ppm	Complies	ICP-MS
Mercury	NMT 0.1 ppm	Complies	ICP-MS
Microbial assay			
Total plate count	NMT 10000 cfu/g	30 cfu/g	AOAC,BAM
Yeast and mould	NMT 1000 cfu/g	Complies	AOAC,BAM
Salmonella	Absent/ 25 g	Complies	AOAC,BAM
E. Coli	Absent/ 10 g	Complies	AOAC,BAM
Assay for Actives			
Total polyphenol	NLT 60%	63.7%	Spectrophotometer
EGCG Content	NLT 20%	26.4%	HPLC
Caffeine Content	NMT 10%	8.3%	HPLC
Fluoride Content	Not Detected	Not Detected	IS 3025 P 60

It is important to note that in the present study, the solvent used in the extract preparation process was ethyl alcohol/acetate as per the specifications of the vendor. In a previous research study, as well, it was reported that there was no significant fluoride content observed on both methanolic extract of green tea and ethyl acetate extract of green tea in all samples assayed by the investigators [8].

The fact that fluoride was not detected in the sample of green tea powder extract sample in the present study does not imply that green tea incorporated in the dentifrices have no anti-caries effects. Clinical study conducted by Prabakar J et al (2018) [9] have reported that there has been a reduction in S. mutans among patients using green tea containing dentifrices. The plausible anti caries mechanism of green tea has been explained as due to inhibition of glucosyltransferase and amylase enzymes by the active ingredients of green tea, and inhibition of S. mutans colonization by preventing microbial adhesion to enamel surface [10-12]. In a study conducted by Srinidhi PB et al (2014) [13], it was found that green tea increased salivary pH significantly more than black tea in both caries active and caries free individuals. This also supports that green tea has a caries protective effect.

5. CONCLUSION

In a nutshell, it can be concluded that in the present study, no fluoride was detected in green tea dry extract; however green tea incorporated in dentifrice should be considered beneficial to oral health irrespective of local release of fluoride, owing to its anti-oxidant properties, desirable influence on salivary pH and antibacterial effects. Use of green tea extract containing dentifrice may be effective in plaque control and conferring caries-protection.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our
area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

It is not applicable.

ETHICAL APPROVAL

Study was approved by the institutional ethics committee (Ref. SVIEC/ON/Dent/RP/18009).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Pain G. Green tea and its fluoride content, a major health hazard. Technical Report; 2018. DOI:10.13140/RG.2.2.28429.03044. Available:https://researchgate.net/publication/322924754. Accessed on 23rd July 2020.
2. Forester SC, Lambert JD. Antioxidant effects of green tea. Mol Nutr Food Res. 2011;55(6):844–854.
3. Lung SC, Hsiao PK, Chiang KM. Fluoride concentrations in three types of commercially packed tea drinks in Taiwan. Journal of Exposure Analysis and Environmental Epidemiology. 2003;13(1):66-73.
4. Maleki A, Abulmohammadi P, Teymouri P, Zandi S, Daaraei H, Mahvi AH, Sahaswari S. Effect of brewing time and water hardness on fluoride release from different Iranian teas. Fluoride. 2016;49(3):263-273. Available:https://archive.org/details/gov.law.is.3025.60,2008.
5. Herbal toothpaste market size, share and trends analysis report by distribution channel (General store, hypermarket and supermarket, pharmacy store, online retail) by region and segment forecasts, 2019-2025; 2019,Report ID:GVR-3-68038-342-3. AvailableURL:https://www.grandviewresearch.com/industry-analysis/herbal-toothpastemarket#:~:text=Top%20players %20operating%20in%20the,.,%3B%20and %20Procter%20%26%20Gamble. Accessed on 24th July 2020.
6. Kalyaci S, Somer G. Factors affecting the extraction of fluoride from tea: Application to three tea samples. Fluoride. 2003;36(4):267-70. Available:https://shodhganga.inflibnet.ac.in /jspui/bitstream/10603/99441/4/13_chapter 3.pdf.
7. Prabakar J, John J, Armugham IM, Kumar RP, Sakthi DS. Comparing the effectiveness of probiotic, green tea, and chlorhexidine- and fluoride - containing dentifrices on oral microbial flora: A double-blind, randomized clinical trial. Contemp Clin Dent. 2018;9:560-9.
8. Hamilton-Miller JM. Anti-cariogenic properties of tea (Camellia sinensis). J Med Microbiol. 2001;50:299-302.
9. Rasheed A, Haider M. Antibacterial activity of Camellia sinensis extracts against dental caries. Arch Pharm Res. 1998;21:348-52.
10. Smullen J, Koutsou GA, Foster HA, Zumbé A, Storey DM. The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Res. 2007;41:342-9.
11. Srinidhi PB, Basha S, Naveenkumar P, Prshant GM, Sushant VH, Imranulla M. Effect of two different commercially available tea products on salivary pH: A randomized double blinded concurrent parallel study. Dent Med Res. 2014;2:39-42.

© 2021 Iyer et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/70760

90