Redefining Industry 4.0 and Its Enabling Technologies

K Mubarok
Department of Industrial and Mechanical Engineering, University of Trunojoyo Madura, Indonesia

khamdi.mubarok@trunojoyo.ac.id

Abstract. Industry 4.0 currently became a buzzword that mentioned almost in every subject. Admitted as the new industrial revolution, research related to Industry 4.0 has gained excessive attention from academia, government, and industries. However, a formal academic definition of Industry 4.0 that reflected the current advancement is difficult to be found in the literature. The technologies that drive this new revolution also bias. Furthermore, the subject area that significantly contributed to the vision of Industry 4.0, even unknown. This research investigated publications in diverse literature databases to find the answers to those gaps. Based on that, we proposed a comprehensive definition of Industry 4.0 and determined 12 enabling technologies that driven Industry 4.0. In addition, we found manufacturing and computer science as the most contributed research subject.

1. Introduction

The term “Industry 4.0” or “Industrie 4.0” is firstly coined at the annual Hannover Messe trade fair, Germany, in 2011 [1]. This is a strategic initiative to create smart factories to secure the future of German manufacturing industries [2]. Industry 4.0 commonly defined as the forth-industrial revolution. When the forth was coming, then the precedence industry revolutions need to be defined. The federal government of Germany, as the initiator, together with industrial representatives and scientist, agreed on technologies as the main driver of the revolution. They defined mechanization (water and steam powers), electricity, computers and electronics, and cyber-physical systems as the main driver of Industry 1.0, Industry 2.0, Industry 3.0, and Industry 4.0 respectively [3] as shown in Figure 1.
Since then, the term was spreading in almost all human life sectors from engineering, natural science, social science, health science, commerce, and et cetera. Hence, an enormous number of research papers have been published in different scientific databases. However, only a small number of papers discussed the concept and basic understanding of Industry 4.0. In fact, a formal academic definition that comprehensively describe what Industry 4.0 actually means cannot be found. Furthermore, it is also essential to know what subject areas that most contributed to Industry 4.0 research. The main aim of this research is to provide an inclusive review of Industry 4.0 research. In this paper, we are addressing three research questions as follow:

1. What is the formal academic definition of Industry 4.0?
2. What are the enabling technologies that driven Industry 4.0?
3. What research areas are the most contributed to Industry 4.0?

To find the solutions, we performed a literature survey using four literature databases, i.e. Scopus, Web of Science, ScienceDirect and IEEEXplore. We also used analytical tools provided by Scopus and Web of Science to drive our findings. The original contributions of this paper are threefold. First, a comprehensive definition of Industry 4.0 based on recent literature. Second, determine a new list of Industry 4.0 technology enablers. Lastly, define a map of Industry 4.0 research areas. That new knowledge will be a foundation for further research.

The rest of the paper is structured as follows. Section 2 described detail methodology implemented in this research. Section 3 presented the result, and Section 4 discussed the findings. Subsection 4.1 reviewed the past definition of Industry 4.0 and proposed a new definition. Subsection 4.2 and 4.3 discussed various technologies driving Industry 4.0 and the main research areas respectively. Finally, Section 5 concluded the findings and research contributions, also defined further research direction.

2. Methodology
This research follows a literature survey method to retrieve information from academic databases. The process of this approach is shown in Figure 2. There are four main databases investigated, i.e. ScienceDirect, IEEEXplore, Scopus, and Web of Science. Since ScienceDirect does not provide the number of citation for each paper, also does not have search result analysis tools, it excluded for further steps.
3. Results

Based on the search on the databases using the term “Industry 4.0”, Scopus has the largest number of papers, following by ScienceDirect, Web of Science, and IEEEXplore. After the screening process based on the number of citation, we explored 19 papers in detail. Table 1 shows the list of the papers.

Table 1. Most cited papers.

Research Topic	Reference	Number of Citation (rank)	Scopus	Web of Science	IEEEXplore
CPS architecture	[4]	1019 (1)			
Concept	[5]	527 (2)	361 (1)		
Smart analytics	[6]	476 (3)	340 (2)		
Design principle	[7]	458 (4)			304 (1)
Smart factory	[8]	299 (5)	204 (4)		
Automation network	[9]	252 (6)	179 (5)	252 (2)	
Sustainable manufacturing	[10]	246 (7)	154 (6)		
Smart manufacturing	[11]	227 (8)	152 (7)		
Technologies	[12]	225 (9)	145 (9)		
CPS	[13]	204 (10)	151 (8)	143 (3)	
CPPS	[14]		290 (3)		
IIoT	[15]		142 (10)		
Technologies	[16]				120 (4)
Human-machine interaction	[17]				114 (5)
Fog computing	[18]			88 (6)	
Concept	[19]			64 (7)	
Concept	[20]			63 (8)	
IoT	[21]			56 (9)	
Standardization	[22]			51 (10)	

By using analytical tools provided by Web of Science and Scopus, the number of subject areas and the source of publications can be mapped. Figure 3 shows that engineering has dominated the research on Industry 4.0 followed by computer science and business economic. Going further in the engineering field, we found Procedia Manufacturing, which is a collection of conference proceedings organized by CIRP (the international academy for production engineering), has dominated the publication source. Another CIRP publication, Procedia CIRP, also placed as the third most Industry 4.0 publication source.

4. Discussion

This section analyses the results presented in Section 3 to address the research questions.

4.1. Industry 4.0 definition

The definition of Industry 4.0 could not be found on any of the papers listed on Table 1 rather than the 4th industrial revolution. However, each paper has emphasized some fundamental principles of the revolution. Those principles are interconnectivity between physical (hardware) and cyber (software and computational intelligence) [4][13][14], information transparency and decentralized decisions [7], and seamless human-robot collaboration [17]. Other values include the use of smart analytics [6], the
demonstration of smart factories [5][8] and smart manufacturing [11], and the creation of smart products and smart services [23][6].

Based on those principles and values, we propose a comprehensive definition of Industry 4.0 as follow.

“Industry 4.0 is a seamless collaboration of diverse advanced technologies integrating smart visualization and smart analytics of autonomous processes to grasp the vision of smart and intelligent factories as to produce smart connected products and provide smart services through real-time information transparency”.

Figure 3. Subject area and publication source

4.2. Enabling technologies

Industry 4.0 utilizes many kinds of advanced technologies as enablers to reach the vision of smart factories. In 2015, BCG outlined nine pillars of technological advancement that form the foundation of Industry 4.0. Those technologies are the Industrial Internet-of-Things, the cloud (cloud computing), Cybersecurity, Big data and analytics, horizontal and vertical system integration, advanced robotics, additive manufacturing, augmented reality, and simulation. After four years, some other technologies are gain traction. Those technologies have been introduced few years ago but gained considerable attention recently from academia and industry people. Therefore, based on our literature survey, we added three more advanced technologies, namely knowledge graph, blockchain, and digital-twin. Figure 4 shows the overall 12 technologies as enablers of the Industry 4.0.

Only those three new technologies discussed in this subsection. First, knowledge graph. Graph technology has a significant role in developing interoperability between different systems. Machine learning uses learning power to extract knowledge from data, whereas knowledge graph uses reasoning power to generate new knowledge from existing knowledge. Semantic web technology, ontology engineering, and linked data are the basis of knowledge graph development. Second, blockchain. Blockchain is a new data protection technology that uses peer-to-peer network validation
to maintain a growing list of data (blocks) [24]. Third, digital-twin. Digital-twin can be seen as the next generation of CPS. CPS take data from physical objects and use computational intelligence to optimize its operations. Digital-twin adding those functionalities by providing 3D modelling and 4D visualization of the physical object.

Figure 4. Advanced technologies driving Industry 4.0 vision

4.3. Research areas
One of our findings, as shown in Figure 3 and stated in Section 3, Procedia Manufacturing and Procedia CIRP, which both organized by CIRP, have dominated the publications in Industry 4.0 research. It is shown that production engineering or manufacturing becomes the main subject area of research related to Industry 4.0. However, manufacturing is not the only standing research since computer science also leading the research. An in-depth exploration of the literature has shown that computer science contributes on the fundamental research of new technologies or new tools. Subsequently manufacturing use those tools to renovate production processes to become more effective, lower cost, environmentally friendly, energy-efficient, and enhance productivity. This finding also confirms that the current development is still aligned with the initial vision of Industry 4.0 as to create smart factory of the future.

5. Conclusion and Future Work
To conclude this paper, we emphasize the main contributions. First, a comprehensive definition of Industry 4.0 in this paper encompasses the values and principles that stated in different literature. Second, 12 advanced technologies are determined as the enablers of Industry 4.0. Third, manufacturing and computer science are the two most leading research area contributed to Industry 4.0 development. This research only defines the technologies. For future research, we will study each technology and find how those technologies interconnected each other.

References
[1] Pfeiffer S 2017 The vision of ‘Industrie 4.0’ in the making—a case of future told, tamed, and traded Nanoethics vol 11 (1) pp 107–121 DOI: 10.1007/s11569-016-0280-3
[2] Kagermann H, Wolfgang W and Helbig J 2013 Securing the future of German manufacturing industry: Recommendations for implementing the strategic initiative INDUSTRIE 4.0 Final report of the Industrie 4.0 Working Group.

[3] Ahrens V 2012 Inflation of industrial revolution Product. Manag. vol 17 (5) pp 30–31

[4] Lee J, Bagheri B and Kao H A 2015 A cyber-physical systems architecture for industry 4.0-based manufacturing systems Manufacturing Leter vol 3 pp 18–23 DOI:10.1016/j.mfglet.2014.12.001

[5] Lasi H, Fettke P, Kemper H G, Feld T and Hoffmann M 2014 Industry 4.0 Bus. Inf. Syst. Eng. vol 6 (4) pp 239–242

[6] Lee J, Kao H A and Yang S 2014 Service innovation and smart analytics for industry 4.0 and big data environment Procedia CIRP vol 16 pp 3–8 DOI: 10.1016/j.procir.2014.02.001

[7] Hermann M, Pentek T, and Otto B 2016 Design principles for industrie 4.0 scenarios Proc. of the 49th Hawaii international conference on system sciences (HICSS) pp 3928–3937

[8] Wang S, Wan J, Zhang D, Li D and Zhang C 2016 Towards smart factory for industry 4.0: A self-organized multi-agent system with big data based feedback and coordination Comput. Networks vol 101 pp 158–168 DOI:10.1016/j.comnet.2015.12.017

[9] Wollschlaeger M, Sauter T, and Jasperneite J 2017 The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0 IEEE Ind. Electron. Mag. vol 11 (1) pp 17–27 DOI: 10.1109/MIE.2017.2649104 DOI: 10.1109/MIE.2017.2649104

[10] Stock T and Seliger G 2016 Opportunities of Sustainable Manufacturing in Industry 4.0 Procedia CIRP vol 40 pp 536–541 DOI:10.1016/j.procir.2016.01.129

[11] Kang H S, Lee J Y, Choi S, Kim H, Park J H, Son J Y, Kim B H and Do Noh S 2016 Smart manufacturing: Past research, present findings, and future directions Int. J. Precis. Eng. Manuf. - Green Technol. vol 3 (1) pp 111–128 DOI:10.1007/s40684-016-0015-5

[12] Lu Y 2017 Industry 4.0: A survey on technologies, applications and open research issues J. Ind. Inf. Integr. vol 6 pp 1–10 DOI: 10.1016/j.jiij.2017.04.005

[13] Jazdi N 2014 Cyber physical systems in the context of Industry 4.0 Proc. of the IEEE International conference on automation, quality and testing, robotics pp 1–4

[14] Monostori L 2014 Cyber-physical production systems: Roots, expectations and R&D challenges Procedia CIRP vol 17 pp 9–13

[15] Wan J, Tang S, Shu Z, Li D, Wang S, Imran M and Vasilakos A V 2016 Software-defined industrial internet of things in the context of industry 4.0 IEEE Sens. J. vol 16 (20) pp 7373–7380 DOI: 10.1109/JSEN.2016.2565621

[16] Posada J, Toro C, Barandiaran I, Oyarzun D, Stricker D, de Amicis R, Pinto E B, Eisert P, Döllner J and Vallarino I 2015 Visual computing as a key enabling technology for industrie 4.0 and industrial internet IEEE Comput. Graph. Appl. vol 35 (2) pp 26–40 DOI: 10.1109/MCG.2015.45

[17] Gorecky D, Schmitt M, Loskyl M and Zühlke D 2014 Human-machine-interaction in the industry 4.0 era Proc. of the 12th IEEE International Conference on Industrial Informatics pp 289–294 DOI: 10.1109/INDIN.2014.6945523

[18] Baccarelli E, Naranjo P G V, Scarpiniti M, Shojaraf M and Abawajy J H 2017 Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study IEEE access vol 5 pp 9882–9910 DOI: 10.1109/ACCESS.2017.2702013

[19] Vogel-Heuser B and Hess D 2016 Guest editorial Industry 4.0–prerequisites and visions IEEE Trans. Autom. Sci. Eng. vol 13 (2) pp 411–413 DOI: 10.1109/TASE.2016.2523639

[20] Zhou K, Liu T, and Zhou L 2015 Industry 4.0: Towards future industrial opportunities and challenges Proc. of the 12th International conference on fuzzy systems and knowledge discovery (FSKD) pp 2147–2152 DOI:10.1109/FSKD.2015.7382284

[21] Chen M, Miao Y, Hao Y, and Hwang K 2017 Narrow band internet of things IEEE Access vol 5 pp 20557–20577 DOI: 10.1109/ACCESS.2017.2751586

[22] Trappey A J C, Trappey C V, U. H. Govindarajan U H, J. J. Sun J, and Chuang A C 2016 A review of technology standards and patent portfolios for enabling cyber-physical systems in
advanced manufacturing *IEEE Access* vol 4 pp 7356–7382 DOI:10.1109/ACCESS.2016.2619360

[23] Rüßmann M, Lorenz M, Gerbert P, Waldner M, Justus J, Engel P and Harnisch M 2015 Industry 4.0: The future of productivity and growth in manufacturing industries. *Boston Consulting Group* 9 (1) pp 54-89 http://www.inovasyon.org/pdf/bcg.perspectives_Industry.4.0_2015.pdf

[24] Zyskind G and Nathan O 2015 Decentralizing privacy: Using blockchain to protect personal data *Proc. of the IEEE Security and Privacy Workshops* pp 180–184 DOI:10.1109/SPW.2015.27