Synthesis of Porous Hollow Spheres Co@TiO$_2$–x-Carbon Composites for Highly Efficient Lithium-Ion Batteries

Chunyong Liang1,2,5, Zhongliang Huang1†, Hongshui Wang2, Tai Yang2, Ning Liu2, Tingdi Liao1, Feng Wang1,3* and Xi Wang4*

Abstract
The hollow TiO$_2$ anode material has received great attention for next-generation LIBs because of its excellent stability, environmental friendliness, and low volume change during lithiation/delithiation. However, there are some problems associated with the current anatase TiO$_2$ anode materials in practical application owing to low lithium-ion diffusivity and poor reversible theoretical capacities. The introduction of defects has been turned out to be a significant and effective method to improve electronic conductivity, especially oxygen vacancies. In this paper, a facile hydrothermal reaction and subsequent chemical vapor deposition method were successfully used to fabricate Co@TiO$_2$–x-carbon hollow nanospheres. These results suggest that the synthesized product exhibits good rate performance and superior cycling stability.

Keywords: Lithium-ion batteries, Titanium dioxide, Oxygen vacancies, Chemical vapor deposition

Introduction
Lithium-ion battery has high energy storage and long cycle life, so it has a great research and application value secondary battery field [1, 2]. In general, graphite is used as the anode of the Lithium-ion battery. However, it has a relatively low theoretical gravimetric capacity, which cannot achieve the demand of LIBs industry for high theoretical capacity and energy density. Therefore, a variety of alternative anode materials have been widely studied [3–5]. Among all proposed candidates for the anode, TiO$_2$ shows the advantages of high theoretical capacity (335 mAh g$^{-1}$), excellent Li-ion storage performances and environmental friendliness. In addition, the hollow nanospheres structure of TiO$_2$ provided a sufficient amount of space to inhibit the volume change effectively during the lithiation/delithiation process. Therefore, TiO$_2$ has become promising alternative anode materials for high-safety LIBs. However, the poor conductivity of TiO$_2$ causes the large initial impedance of TiO$_2$ anode, which seriously affects its rate performance [6–9]. In order to solve the inherent defect, different methods have been tried in recent years, including reducing particle size, doping elements, carbon coating, designing nanostructure morphology and introducing defects [10, 11]. In these methods, the introduction of defects has been proved to be effective in improving electronic conductivity, especially in the production of OVs, which is self-modifying and easy to operate [12]. The methods of introducing OVs into TiO$_2$, including hot hydrogen, plasma, electrochemical and deoxidizer hydrothermal
reductions reactions [13, 14]. The introduction of nanostructures and conductive materials can also improve the electrochemical performance of TiO₂ anode [15, 16]. The high specific surface of the hollow nanospheres structure can fast highways for lithium ion (Li⁺) and improve the conductivity of LIBs. Moreover, the introduction of conductive materials can also improve the conductivity and buffer volume expansion during lithiation and delithiation. Both of them enhanced the electrochemical performances of the TiO₂ anode [17].

Inspired by this, we prepared Co@TiO₂−x-carbon hollow nanospheres by hydrothermal method and chemical vapor deposition (CVD) method to obtain excellent LIBs anode materials. Smooth conformal amorphous carbon with controllable thickness was deposited on the active material by CVD, which significantly improves the electrochemical performance of active materials. The optimized Co@TiO₂−x-carbon composite has porous, rich defects and carbon coating properties. Carbon coating, metal cobalt and oxygen vacancies can increase the electrical conductivity of the materials, thus improving the rate performance; porous hollow nanospheres can provide more lithium storage sites, shorter Li⁺ and electron diffusion path, at the same time, the appropriate internal cavity can inhibit the volume expansion during the cycle, so it has outstanding rate ability and cycling performance [18]. Consequently, the composite electrode presents a favorable rate performance with high current density (217 mAh g⁻¹ at 1 A g⁻¹). Even after 1000 long cycles, a high capacity of 173 mAh g⁻¹ at 1 A g⁻¹ can also be achieved, which shows an excellent cycle performance.

Materials and Methods

Material Preparation

Synthesis of TiO₂
The TiO₂ microspheres were prepared through hydrothermal method. Ti(SO₄)₂·9H₂O (0.81 g) was uniformly dissolved in anhydrous ethanol (75 mL) to form a homogeneous solution, denoted as solution A. Next, 6 mL H₂O₂ and 0.43 g NH₄Cl were added to the above solution to make clear solution with continuous stirring (solution B). The obtained solution B was transferred to an autoclave, followed by a hydrothermal treatment in an oven at 120 °C for 12 h. The white precipitated product was separated by centrifugation and washed with deionized water and absolute ethanol, subsequently dried in an oven.

Synthesis of Co@TiO₂−x-Carbon Composite
Firstly, 0.04 g Co(NO₃)₂·6H₂O materials were dissolved in the mixed solution B and then according to the above method, the CoOx@TiO₂ material was obtained. The Co@TiO₂−x-carbon composite was synthesized by a subsequent annealed treatment. The as-formed CoOx@TiO₂ composite was put in a ceramic boat and heated to 350 °C in the tube furnace under Ar atmosphere, and further heated to 560 °C under H₂ atmosphere; Finally, the powder is calcined at 560 °C for 30 min in C₂H₂ atmosphere. The synthesized sample was named as Co@TiO₂−x-Carbon. Figure1 illustrates the flowchart for the preparation of the composite material.

Material Preparation
Phase compositions of samples were determined by X-ray diffraction (XRD) using Bruker D8 Discover diffractometer. Scanning electron and transmission electron microscopies (SEM and TEM) images were obtained by using Hitachi S-4800 and JEM 2100F (JEOL) instruments, respectively. The elemental analysis was performed using the Axis Ultra DLD spectrometer. The nitrogen adsorption-desorption isotherms and Brunauer-Emmett-Teller (BET) surface area were determined by the V-Sorb 2800P instrument. X-ray photoelectron spectroscopy (XPS, K-Alpha XPS) and electron paramagnetic response (EPR, Bruker A300) were used to characterize chemical states of the samples.

Electrochemical Measurements
At room temperature, a coin cell (CR2032) was used to conduct the electrochemical test with as-prepared materials as an anode. The as-prepared material, conductive agent super P and polyvinylidene fluoride (PVDF) were mixed with NMP at the mass ratio of 8:1:1 to obtain the slurry. Subsequently, the slurry was coated on a copper foil with a scraper, and then dried in a vacuum to form the electrode plate. The anode was obtained by punching a circle with a diameter of 12 cm. Coin-type cells assembled in a glove box filled with Ar gas consisted of the prepared electrodes, a Celgard membrane as a separator, metallic Li foils as counter electrodes. The electrolyte is composed of 1.0 M LiPF₆ in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1 w/w). Cyclic voltammetry (CV) curves were recorded at 0.1 mV s⁻¹ between 0.01 and 3.0 V via an electrochemical workstation (CHI760E). The charge/discharge curves of electrode material at different rate test was conducted with the voltage range from 0.01 to 3.0 V.

Results
To verify the crystalline structure of the synthesized products, the XRD patterns are presented in Fig. 2. The characteristic peaks at 25.3°, 37.8° and 48° correspond to (101), (004) and (200) planes of TiO₂ (PDF#78-2486), respectively, indicating that the synthesized products have a high crystalline nature. The wide peak of Co@TiO₂−x-Carbon at about 26.7° indicates the success of carbon coating [19]. In the figure no other impurities
are detected, confirming that the as-prepared products have high purity. Therefore, XRD showed that Co@TiO$_{2-x}$-carbon and TiO$_2$ were successfully fabricated.

The characterization analysis about the basic morphological structure of Co@TiO$_{2-x}$-carbon nanoparticles was conducted by SEM. It is observed that the hollow composite possessed a nearly homogeneous spherical shape and a high dispersity. (Fig. 3a). The diameter of the nanospheres is about 800 nm. As shown in Fig. 3b, Ti, O, Co and C are uniformly dispersed on the nanospheres.

The SEM image reveals that the as-synthesized composite forms a hollow nanospheres structure in Fig. 4a. Meanwhile, the hollow morphology of the composite has been further described by the TEM images in Fig. 4f. The porous hollow spherical structure can provide more lithium storage sites, shorter lithium ion and electron diffusion paths. At the same time, the appropriate internal cavity can well adjust the structure and volume change of the electrode. The HRTEM of Fig. 4b shows the existence of cobalt metal and TiO$_2$. The existence of TiO$_2$ can be further clearly observed by FFT and inverse FFT transformation of Fig. 4c–e. The existence of Ti$^{3+}$ and oxygen vacancies can facilitate the migration of electron of the materials; thus, the composite electrode exhibits a superior rate performance. The linear scanning and corresponding element mapping of Fig. 4f show that TiO$_2$ and cobalt metal are uniformly distributed on the surface of hollow nanospheres.

A nitrogen adsorption experiment was used to test the pore characteristics of synthetic products, as shown in Fig. 5a. Compared with TiO$_2$ (67.4 m2 g$^{-1}$), the composite possesses a high specific surface area which was about 190.8 m2 g$^{-1}$. The N$_2$ adsorption-desorption isotherm curves of TiO$_2$ and Co@TiO$_{2-x}$-carbon belong to type-IV isotherm, indicating abundant mesopore structure (Fig. 5b). Co@TiO$_{2-x}$-carbon composite has a wide range of mesoporous size distribution, which
is conducive to the transport of lithium ions and can accommodate huge volume changes in the cycling process. Besides, the abundant mesoporous structure and large specific surface area provide more lithium insertion sites and voids to facilitate the storage of lithium and improve the rate ability and cycling performance of LIBs. EPR was employed to characterize the chemical states in TiO$_2$ and Co@TiO$_{2-x}$-carbon. The strong EPR signal obtained from Co@TiO$_{2-x}$-carbon with a g-value of 2.003 indicates the existence of oxygen vacancies, while only a trace amount of oxygen vacancies was observed for pristine TiO$_2$ (Fig. 5c). XPS spectra of Co@TiO$_{2-x}$-carbon composites were recorded and analyzed. These peaks correspond to Co 2p$_{3/2}$ and Co 2p$_{1/2}$, respectively, and suggest that the reduction in Co 2p in Co(NO$_3$)$_2$·6H$_2$O produced Co nanoparticles (Fig. 5d).

Electrochemical properties of the anode materials were further studied, as shown in Fig. 6, the lithium storage capacity was evaluated by half cells and prepared electrode. Due to the lithiation/delithiation effect of the carbon phase, the range (0.01–3 V) can lead to higher reversible capacity.

The lithium storage behaviors of the synthesized samples were investigated in half cells at a scanning rate of 0.1 mV s$^{-1}$ and in a scanning range of 0.01–3 V. The curves show the initial five cycles of the as-prepared products are shown in Fig. 6a, c. The first small reduction peak of the composite at 1.75 V during the first discharge can be attributed to the insertion of Li$^+$ into TiO$_2$ to form Li$_{0.5}$TiO$_2$ (The inset images in Fig. 6a). As we all known, due to the existence of TiO$_{2-x}$, the conductivity of Li$_x$TiO$_2$ formed in situ is also improved [20, 21]. Meanwhile, in subsequent cycles, the reduction/oxidation peak of 1.50/1.70 can be attributed to TiO$_2$ [22]. The CV curves of TiO$_2$ sample displays one
oxidation peak at approximately 2.10 V and a reduction peak at approximately 1.70 V, which are in agreement with anatase TiO$_2$ (Fig. 6c) [23].

Discharge/charge profiles of lithium-ion battery with two samples are exhibited in Fig. 6b, d at 0.2 A g$^{-1}$ under a voltage window of 0.01–3 V. The first discharge capacity of the composite electrode is 323 mAh g$^{-1}$, superior to TiO$_2$ electrode (214 mAh g$^{-1}$). Simultaneously, the result of the first cycle shows that the composite electrode exhibits low initial coulombic efficiency (ICE), which may be associated with the construction of a solid electrolyte interface (SEI) membrane [24]. Furthermore, the complex anode delivers a discharge specific capacity of 302 mAh g$^{-1}$ in the following cycle, whereas TiO$_2$ electrode in the same process only 209 mAh g$^{-1}$). Compared with TiO$_2$ electrode, the charge-discharge curve of the composite electrode shows a similar and clear potential platform and is stable, which reveals the prominent reversibility of electrochemical reactions for the composite anode [25].

As shown in Fig. 6e, Co@TiO$_2$$_{2-x}$-carbon provides the highest discharge specific capacity during the test at 0.2 A g$^{-1}$. After 100 cycles, the composite material delivers a higher reversible capacity of 242 mAh g$^{-1}$ than TiO$_2$ nanoparticles (139 mAh g$^{-1}$), demonstrating that the composite material possesses an outstanding reversibility [26]. The introduction of the carbon layer can increase the capacity of LIBs. In addition, the design of porous hollow nanospheres, the introduction of oxygen vacancies and metal cobalt can promote cycle stability.

The rate capability of the electrodes is further compared in Fig. 6f. Compared with TiO$_2$, the electrochemical performance of the composite electrode has a higher reversible capacity and better cycling performance at different current densities. The discharge capacities under the conditions of 0.1, 0.2, 0.5 and 1 A g$^{-1}$ were 379, 291, 253 and 217 mAh g$^{-1}$, respectively. Electron conductivity and diffusion path determine the rate performance of LIBs [27, 28]. The structure of hollow nanospheres of the Co@TiO$_2$$_{2-x}$-carbon shortens the diffusion path of Li$^+$ and electron, and the existence of VOs, carbon coating and cobalt metal improve the conductivity essentially.

It is worth noting that Co@TiO$_2$$_{2-x}$-carbon exhibits strong cycle stability (no significant capacity degradation and close to 100% coulombic efficiency) at a high current density at 1 A g$^{-1}$ and maintains 173 mAh g$^{-1}$ after
1000 cycles. Obviously, the composite electrode displays much better cycle performance than \(\text{TiO}_2 \), and the reversible specific capacity of the composite material is much higher than that of \(\text{TiO}_2 \) (42 mAh g\(^{-1}\) at the 1000th cycle) in Fig. 6g. Due to the specific hollow structure of the as-prepared product, which can inhibit the volume expansion during the cycling process and obtain excellent cycling performance.

Figure 6h shows the EIS of anode materials. The two Nyquist plots are both consisted of a compressed semicircle at the high-frequency region followed by a sloping line in the low frequency region. The low-frequency region represents the Warburg diffusion process which might be attributed to the diffusion of the lithium ions, and the semicircle at high frequency corresponds to the charge-transfer resistance [29]. Clearly, the composite has lower resistance and better conductivity than the \(\text{TiO}_2 \) sample, which are caused by the Li-ion insertion/extraction rates. Therefore, the composite product exhibits superior electrochemical reaction kinetics.

Conclusions

In summary, a simple hydrothermal and CVD method was used to synthesize \(\text{Co@TiO}_{2-x} \)-carbon hollow nanospheres. The addition of OVs, Co metal and carbon layer improves the electrical conductivity of the synthesis product to a certain extent, thus exhibiting a remarkable rate performance of the composite. Hollow nanospheres have rich pore size, provide more lithium storage sites, shorter lithium ion and electron diffusion path. At the same time, the appropriate cavity structure can better inhibit the volume change during the cycle, and significantly improve the cycle stability.
The results show that Co@TiO$_2$–$_x$-carbon hollow nanospheres are promising materials for advanced anode materials of LIBs.

Acknowledgments
Not applicable.

Author contributions
CL and ZH wrote the main manuscript text. NL, HW, TL, and TY prepared figures. NL, FW, and KW revised the manuscript and managed the project. All authors read and approved the final manuscript.

Funding
The Science and Technology Major Special Project of Fujian Province (2021H2021027), National Key R&D Program of China (No.2019YFC1908504), Changzhou Sci & Tech Program (No. CQ20200023).

Availability of Data and Materials
All of the material is owned by the authors and/or no permissions are required.

Declarations

Ethics Approval and Consent to Participate
Not applicable.

Consent for Publication
All authors of the manuscript agreed to publication.

Competing interests
The authors declare no competing interests.

Author details
1 Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Fujian Provincial Collaborative Innovation Center for Ultra-Precision Optical Engineering and Applications, Quanzhou Normal University, Quanzhou 362000, Fujian, China. 2 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China. 3 College of Physics and Information Engineering, Quanzhou Normal University, Quanzhou 362000, Fujian, China. 4 China Center for Information Industry and Engineering, Hebei University of Technology, Tianjin 300130, China. 5 Changzhou Blon Minimally Invasive Medical Devices Technology Co., Ltd., Changzhou 213100, Jiangsu, China.

Received: 4 April 2022 Accepted: 15 August 2022 Published online: 05 September 2022

References
1. Wang Y, Chen LJ, Pan D, Guo ZH, Xia SB (2020) Porous TiO$_2$–FeTiO$_3$@Carbon nanocomposites as anode for high-performance lithium-ion batteries. J Alloy Compd 858:157635
2. Zhang Y, Zhao Y, Bakenov Z, Tuyiyebayeva M, Konarov A, Chen P (2014) Synthesis of hierarchical porous sulfur/ polypropylene/multiwalled carbon nanotube composite cathode for lithium batteries. Electrochem Acta 143:49–55
3. Zhang P, Liu Y, Zhou M et al (2020) Rational designed C/Co$_{3}$S$_{2}$@SnS$_{2}$ nanocomposite as a highly efficient anode for lithium-ion batteries. Nanotechnology 31:395401
4. Jing W, Zhang PL, Liu JZ, Zhou CC, Guo SZ, Li S, Lei YC, Li K, Chen LY (2020) Control synthesis of N-doped carbon and TiO$_2$ double-shelled nanospheres with encapsulated multi-layer MoO$_3$ nanosheets as anode for reversible lithium storage. Dalton Trans 49:10928–10938
5. Han QJ, Sheng YL, Han ZW, Li X, Zhang WQ, Li Y, Zhang X (2020) Metallic Sb nanoparticles embedded into yolk-shell Sb$_2$O$_3$@TiO$_2$ composite as anode materials for lithium batteries. New J Chem 44:13430–13438
6. Zhen MM, Guo SQ, Li KF, Li HA, Shen BX (2020) Template-free construction of hollow TiO$_2$ microspheres for long-life and high-capacity lithium storage. J Alloy Compd 859:157761
7. Jiang WW, Liu QH, Peng JF, Jiang YH, Ding YH, Wei Q (2020) Co$_3$S$_2$ nanoparticles embedded into amorphous carbon as anode materials for lithium-ion batteries. Nanotechnology 31:235713
8. Bae J, Han H, Kim Y et al (2020) Surfactant-Controlled synthesis of polygonal-stacked Cu$_x$O for morphology effect on lithium-ion battery anode performance. J Phys Chem Solids 150:108949
9. Gong QH, Wang HQ, Song WH et al (2021) Front cover: tunable synthesis of hierarchical yolk/double-shelled SiO$_2$@TiO$_2$@C$_x$ nanospheres for high-performance lithium-ion batteries. Chem Eur J 7:2555–2555
10. Wang P, Zhang G, Cheng J, You Y, Li YK, Ding C, Gu JJ, Zheng XS, Zhang CF, Cao FF (2017) Facile synthesis of carbon-coated spinel Li$_x$Ti$_2$O$_4$/Rutile-TiO$_2$ composites as an improved anode material in full lithium-ion batteries with LiFePO$_4$/8N-doped carbon cathode. ACS Appl Mater Interfaces 9:1338–1643
11. Liu H, Li W, Shen DK, Zhao DY, Wang GX (2015) Graphitic carbon conformal coating of mesoporous TiO$_2$ hollow spheres for high-performance lithium-ion battery anodes. J Am Chem Soc 137:13161–13166
12. Zhang Y, Xing ZP, Liu XF, Li ZZ, Wu XY, Jiang JJ, Li M, Zhu Q, Zhou W (2016) Ti$_6$$^+$ Self-doped blue TiO$_2$(B) single-crystalline nanorods for efficient solar-driven photocatalytic performance. ACS Appl Mater Interfaces 8:26851–26859
13. Li J, Zhang M, Guan ZJ, Li QY, Yang JJ (2017) Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO$_2$ in the photo-catalytic reduction of CO$_2$. Appl Catal B Environ 206:300–307
14. Li Z, Ding YT, Kang WJ, Li C, Lin D, Wang XY, Chen ZW, Wu MH, Pan DY (2015) Reduction mechanism and capacitive properties of highly electrochemically reduced TiO$_2$ nanotube arrays. Electrochim Acta 161:40–47
15. Jung MH (2017) Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO$_2$, as an anode material for lithium-ion batteries. J Colloid Interface Sci 505:631–641
16. Tu ZM, Yang GZ, Song HW, Wang CX (2016) Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode. ACS Appl Mater Interfaces 9:44–446
17. Ashuri M, He Q, Shaw LL (2020) Improving cycle stability of Si anode through partially carbonized polydopamine coating. J Electroanal Chem 876:114738
18. Zhang Y, Zhao Y, Konarov A, Li Z, Chen P (2015) Effect of mesoporous carbon microtube prepared by carbonizing the polycratin on sulfur cathode performance in LiS batteries. J Alloy Compd 619:298–302
19. Tian Y, Zhao Y, Zhang Y, Ricardez-Sandoval L, Wang X, Li J (2019) Construction of oxygen-deficient La(OH)$_3$ nanorods wrapped by reduced graphene oxide for polysulfide trapping toward high-performance lithium/sulfur batteries. ACS Appl Mater Interfaces 11:23271–23279
20. Wu NT, Qiao XG, Shen JK, Liu GL, Sun T, Wu H, Hou HS, Liu SM, Zhang Y, Ji XB (2019) Anatase inverse opal TiO$_2$@_8N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochim Acta 299:540–548
21. Jeong G, Kim JG, Park MS, Hwang SM, Kim YU, Kim YJ, Kim JH, Dou SX (2014) Core-Shell structured silicon nanoparticles/TiO$_2$/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 8:2977
22. Hou JH, Xue YX, Zhang LF, Wang XF, Cheng YQ, Guo SW (2019) Hierarchical TiO$_2$@carbon architectures on Ti foils as binder-free anodes for hybrid Li-ion capacitors. J Colloid Interface Sci 555:791–800
23. Kang SH, Jo YN, Prasanna K, Santhoshkumar P, Joe YC, Vediappan K, Lee CW (2018) Bandgap tuned and oxygen vacant TiO$_2$ nanotube arrays. Electrochim Acta 161:40–47
24. Deng XL, Wei ZX, Cui CY, Liu QH, Wang CY, Ma JM (2018) Oxygen-deficient anatase TiO$_2$@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J Mater Chem A 6:4031–4022
25. Zhang J, Li G, Zhang Y, Zhang W, Wang X, Zhao Y, Li J, Chen Z (2019) Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries. Nano Energy 64:103905
26. Li H, Sun L, Zhang Y, Tan T, Wang G, Bakenov Z (2017) Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J Energy Chem 26:1276–1281
27. Zhao Y, Wang LP, Sougrati MT, Feng Z, Lecomte Y, Fisher A, Srinivasan M, Xu Z (2017) A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv Energy Mater 7:1601424
28. Deng MX, Li SJ, Hong WW, Liang YL, Xu W, Shuai HL, Zou GQ, Hu YC, Hou HS, Wang WL, Ji XB (2019) Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater Chem Phys 223:46–52
29. Li HP, Li Y, Zhang YG, Zhang CW (2015) Facile synthesis of carbon-coated Fe3O4 core–shell nanoparticles as anode materials for lithium-ion batteries. J Nanopart Res 17:370

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.