Introduction

Extended-spectrum β-lactamases (ESBLs) are the most influential mechanism for cephalosporin resistance in Enterobacteriaceae, particularly in Escherichia coli and Klebsiella pneumoniae. ESBLs confer resistance to penicillins, broad-spectrum cephalosporins with an oxyimino side chain (cefotaxime, ceftriaxone and ceftazidime) and the oxyimino-monobactam aztreonam, but can be inhibited by serine-type β-lactamase inhibitors as sulbactam, clavulanate and tazobactam (Philippon et al., 1989; Bradford, 2001). SHV-2 is the first ESBL, identified in a clinical isolate of Klebsiella ozaenae in Germany (Kliebe et al., 1985). To date, over 10 families have been documented to be associated with ESBLs, including CTX-M, SHV, TEM, PER, VEB, BES, GES, TLA, SFO and OXA (Paterson and Bonomo, 2005).

CTX-M enzymes, the plasmid-mediated acquired cefotaximases from a distinct phylogenetic lineage, constitute a rapidly growing family of extended-spectrum β-lactamases (ESBLs) with significant clinical impact. CTX-Ms are found in at least 26 bacterial species, particularly in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. At least 109 members in CTX-M family are identified and can be divided into seven clusters based on their phylogeny. CTX-M-15 and CTX-M-14 are the most dominant variants. Chromosome-encoded intrinsic cefotaximases in Kluyvera spp. are proposed to be the progenitors of CTX-Ms, while ISEcp1, ISCR1 and plasmid are closely associated with their mobilization and dissemination.

Keywords: CTX-M, cefotaximase, extended-spectrum β-lactamase (ESBL), ISEcp1, ISCR1, plasmid

Epidemiology of CTX-M ESBLs

Occurrence and bacterial hosts

A plasmid-mediated cefotaximase was identified from a clinical isolate of E. coli in Munich, Germany, and designated CTX-M in reference to its hydrolytic activity and the region where it was found (Bauernfeind et al., 1990). To date, the numbers of CTX-M variants and the recognized organisms harboring the genes have dramatically increased. At least 109 CTX-M variants, CTX-M-1 to CTX-M-124, have been identified (Table 1) and assigned in the Lahey database (Jacoby and Bush, 2012). The amino-acid sequences of CTX-M-14 and...
Table 1. CTX-M ESBLs and their bacterial hosts.

CTX-M (alternate name)	Bacterial host	GenBank accession no.	Reference
CTX-M-1 (MEN-1)	*Escherichia coli*	X92506	Bauernfeind et al., 1996
	Enterobacter cloacae		al Naiemi et al., 2006
	Klebsiella pneumoniae		Komatsu et al., 2001
	Proteus mirabilis		al Naiemi et al., 2006
	Pseudomonas aeruginosa		al Naiemi et al., 2006
	Salmonella enterica		Rodríguez et al., 2009
	Serratia marcescens		Choi et al., 2007
	Stenotrophomonas maltophilia		al Naiemi et al., 2006
CTX-M-2	*Salmonella enterica*	X92507	Bauernfeind et al., 1996
	Acinetobacter baumannii		Nagano et al., 2004
	Citrobacter koseri		al Naiemi et al., 2006
	Escherichia coli		Arduino et al., 2003
	Enterobacter cloacae		Arduino et al., 2003
	Klebsiella pneumoniae		Arduino et al., 2003
	Morganella morganii		Power et al., 2005
	Proteus mirabilis		Bonnet et al., 2000
	Providencia stuartii		Minarini et al. 2009
	Pseudomonas aeruginosa		Bonnet et al., 2003
	Serratia marcescens		Bonnet et al., 2003
	Vibrio cholerae		Soler Bistué et al., 2006
CTX-M-3	*Citrobacter freundii*	Y10278	Gniadkowski et al., 1998
	Aeromonas caviae		Ye et al., 2010
	Escherichia coli		Yan et al., 2000
	Enterobacter cloacae		De Champs et al., 2000
	Enterobacter aerogenes		Liu et al., 2009
	Klebsiella pneumoniae		Baraniak et al., 2002b
	Klebsiella oxytoca		Baraniak et al., 2002b
	Morganella morganii		Baraniak et al., 2002b
	Proteus mirabilis		Eckert et al., 2006
	Salmonella enterica		Gierczyński et al., 2003
	Serratia marcescens		Baraniak et al., 2002b
	Shigella flexneri		Galimand et al., 2005
	Shigella sonnei		Acikgoz et al., 2003
CTX-M-4	*Salmonella enterica*	Y14156	Gazouli et al., 1998b
CTX-M-5	*Salmonella enterica*	U95364	Bradford et al., 1998
CTX-M-6 (renumbered)	*Salmonella enterica*	AF462635	Gazouli et al., 1998a
CTX-M-7 (renumbered)	*Salmonella enterica*	AJ005044	Gazouli et al., 1998a
CTX-M-8	*Citrobacter amalonaticus*	AF188721	Bonnet et al., 2000
	Enterobacter cloacae		Bonnet et al., 2000
	Enterobacter aerogenes		Bonnet et al., 2000
	Escherichia coli		Minarini et al. 2009
CTX-M-9	*Escherichia coli*	AF174129	Sabaté et al., 2000
	Citrobacter freundii		Minarini et al. 2009
	Enterobacter aerogenes	EF441350	Chanaowong et al., 2002
	Enterobacter cloacae		Ho et al., 2005b
	Enterobacter hormaechei		Chanaowong et al., 2002
	Klebsiella pneumoniae		Alobwede et al., 2003
	Klebsiella oxytoca		García Fernández et al., 2007
	Salmonella enterica		Choi et al., 2007
	Serratia marcescens		
CTX-M-10	*Escherichia coli*	AF255298	Oliver et al., 2001
	Citrobacter freundii		Valverde et al., 2004
	Enterobacter cloacae		Cantón et al., 2002

(Continued)
Table 1. (Continued).

CTX-M (alternate name)	Bacterial host	GenBank accession no.	Reference
CTX-M-11	Klebsiella pneumoniae	AY005110	Cantón et al., 2002
CTX-M-12	Klebsiella pneumoniae	AF305837	Coque et al., 2002
CTX-M-13	Klebsiella pneumoniae	AF252623	Kariuki et al., 2001
CTX-M-14	Escherichia coli	DQ058147	Bae et al., 2006b
CTX-M-15 (UOE-1) *	Escherichia coli	AY044436	Song et al., 2011
CTX-M-16 *	Escherichia coli	AY029068	Ho et al., 2005b
CTX-M-17	Klebsiella pneumoniae	AY033516	Ho et al., 2005a
CTX-M-18s	Klebsiella pneumoniae	AF325133	Chanawong et al., 2002
CTX-M-19 *	Klebsiella pneumoniae	AF325134	Kanamori et al., 2011
CTX-M-20	Proteus mirabilis	AY080894	Kanamori et al., 2011
CTX-M-21	Escherichia coli	EU118595	Kanamori et al., 2011
CTX-M-22	Klebsiella pneumoniae	DQ350883	Kanamori et al., 2011
CTX-M-23 *	Escherichia coli	AY044436	Kim et al., 2005
CTX-M-24	Klebsiella pneumoniae	AY033516	Song et al., 2011
CTX-M-25	Proteus mirabilis	AY080894	Song et al., 2011
CTX-M-26	Enterobacter cloacae	EU118595	Chanawong et al., 2002
CTX-M-27	Serratia liquefaciens	DQ350883	Ho et al., 2005b
CTX-M-28	Shigella flexneri	AY033516	Ho et al., 2005a
CTX-M-29	Shigella sonnei	AY033516	Chanawong et al., 2002
CTX-M-30	Escherichia coli	AY033516	Kanamori et al., 2011
CTX-M-31	Klebsiella pneumoniae	AF325133	Kanamori et al., 2011
CTX-M-32	Proteus mirabilis	AY080894	Kanamori et al., 2011
CTX-M-33	Enterobacter cloacae	EU118595	Kanamori et al., 2011
CTX-M-34	Serratia liquefaciens	DQ350883	Kanamori et al., 2011
CTX-M-35	Shigella flexneri	AY033516	Kanamori et al., 2011
CTX-M-36	Shigella sonnei	AY033516	Kanamori et al., 2011
CTX-M-37	Escherichia coli	AY033516	Chanawong et al., 2002
CTX-M-38	Klebsiella pneumoniae	AY080894	Ho et al., 2005b
CTX-M-39	Proteus mirabilis	AY080894	Ho et al., 2005a
CTX-M-40	Enterobacter cloacae	EU118595	Chanawong et al., 2002
CTX-M-41	Serratia liquefaciens	DQ350883	Ho et al., 2005b
CTX-M-42	Shigella flexneri	AY033516	Ho et al., 2005a
CTX-M-43	Shigella sonnei	AY033516	Chanawong et al., 2002
CTX-M-44	Escherichia coli	AY033516	Ho et al., 2005b
CTX-M-45	Klebsiella pneumoniae	AY080894	Ho et al., 2005a
CTX-M-46	Proteus mirabilis	AY080894	Chanawong et al., 2002
CTX-M-47	Enterobacter cloacae	EU118595	Chanawong et al., 2002
CTX-M-48	Serratia liquefaciens	DQ350883	Chanawong et al., 2002
CTX-M-49	Shigella flexneri	AY033516	Chanawong et al., 2002
CTX-M-50	Shigella sonnei	AY033516	Chanawong et al., 2002
CTX-M-51	Escherichia coli	AY033516	Chanawong et al., 2002
CTX-M-52	Klebsiella pneumoniae	AY080894	Chanawong et al., 2002
CTX-M-53	Proteus mirabilis	AY080894	Chanawong et al., 2002
CTX-M-54	Enterobacter cloacae	EU118595	Chanawong et al., 2002
CTX-M-55	Serratia liquefaciens	DQ350883	Chanawong et al., 2002
CTX-M-56	Shigella flexneri	AY033516	Chanawong et al., 2002
CTX-M-57	Shigella sonnei	AY033516	Chanawong et al., 2002
CTX-M-58	Escherichia coli	AY033516	Chanawong et al., 2002
CTX-M-59	Klebsiella pneumoniae	AY080894	Chanawong et al., 2002
CTX-M-60	Proteus mirabilis	AY080894	Chanawong et al., 2002
CTX-M-61	Enterobacter cloacae	EU118595	Chanawong et al., 2002
CTX-M-62	Serratia liquefaciens	DQ350883	Chanawong et al., 2002
CTX-M-63	Shigella flexneri	AY033516	Chanawong et al., 2002
CTX-M-64	Shigella sonnei	AY033516	Chanawong et al., 2002

(Continued)
CTX-M (alternate name)	Bacterial host	GenBank accession no.	Reference
CTX-M-25 *	*		
CTX-M-26	*		
CTX-M-27 *	*		
CTX-M-28	*		
CTX-M-29	*		
CTX-M-30	*		
CTX-M-31	*		
CTX-M-32 *	*		
CTX-M-33	*		
CTX-M-34	*		
CTX-M-35 *	*		
CTX-M-36	*		
CTX-M-37 *	*		
CTX-M-38	*		
CTX-M-39	*		
CTX-M-40 *	*		
CTX-M-41	*		
CTX-M-42 *	*		
CTX-M-43	*		
CTX-M-44 (Toho-1)	*		
CTX-M-45 (Toho-2)	*		
CTX-M-46	*		
CTX-M-47	*		
CTX-M-48	*		
CTX-M-49	*		
CTX-M-50	*		
CTX-M-51	*		
CTX-M-52	*		
CTX-M-53 *	*		

(Continued)
Table 1. (Continued).

CTX-M (alternate name)	Bacterial host	GenBank accession no.	Reference
CTX-M-54 *	Klebsiella pneumoniae	DQ303459	Bae et al., 2006a
CTX-M-55 *	Escherichia coli	DQ885477	Kiratisin et al., 2007
	Klebsiella pneumoniae		Kiratisin et al., 2007
	Shigella sonnei		Zhang et al., 2011
CTX-M-56	Escherichia coli	EF374097	Pallecchi et al., 2007
CTX-M-57†	Salmonella enterica	DQ810789	Hopkins et al., 2008
	Shigella sonnei	EU086736	
CTX-M-58 *	Escherichia coli	EF210159	
CTX-M-59	Klebsiella pneumoniae	DQ408762	de Oliveira et al., 2008
CTX-M-60	Klebsiella pneumoniae	AM411407	
CTX-M-61	Salmonella enterica	EF219142	Brasme et al., 2007
	Klebsiella pneumoniae		Mendonça et al., 2009
CTX-M-62 *	Klebsiella pneumoniae	EF219134	Zong et al., 2008
CTX-M-63	Klebsiella pneumoniae	AB205197	
	Morganella morganii	EU660216	
	Salmonella enterica		
	Enterobacter cloacae	GQ300937	
CTX-M-64 *	Shigella sonnei	AB284167	Nagano et al., 2009
	Escherichia coli		Sun et al., 2010
CTX-M-65	Escherichia coli	EF418608	Doi et al. 2008
	Citrobacter freundii	EF394372	
	Salmonella enterica	FJ907380	
CTX-M-66	Proteus mirabilis	EF576988	Wu et al., 2008
CTX-M-67	Escherichia coli	EF581888	Oteo et al., 2008
CTX-M-68	Klebsiella pneumoniae	EU177100	Heffernan et al., 2009
CTX-M-69	Escherichia coli	EU402393	
CTX-M-70†	Assigned		
CTX-M-71	Klebsiella pneumoniae	FJ815436	Schneider et al., 2009
CTX-M-72	Klebsiella pneumoniae	AY847148	Cheng et al., 2009
CTX-M-73†	Assigned		
CTX-M-74	Enterobacter cloacae	GQ149243	Minarini et al., 2009
CTX-M-75	Providencia stuartii	GQ149244	Minarini et al., 2009
c-CTX-M-76 ¤	Kluyvera ascorbata	AM982520	
c-CTX-M-77 ¤	Kluyvera ascorbata	AM982521	
c-CTX-M-78 ¤	Kluyvera georgiana	AM982522	Rodriguez et al., 2010
CTX-M-79	Escherichia coli	EF426798	Tian et al., 2008
CTX-M-80	Klebsiella pneumoniae	EU202673	Cheng et al., 2010
CTX-M-81	Klebsiella pneumoniae	EU136031	Cheng et al., 2010
CTX-M-82 *	Escherichia coli	DQ256091	Liu et al., 2009
CTX-M-83	Salmonella enterica	FJ214366	Cui et al., 2009
CTX-M-84	Salmonella enterica	FJ214367	Cui et al., 2009
CTX-M-85	Salmonella enterica	FJ214368	Cui et al., 2009
CTX-M-86	Salmonella enterica	FJ214369	Cui et al., 2009
CTX-M-87 (renumbered)	Escherichia coli	EU545409	Yin et al., 2009
CTX-M-88	Salmonella enterica	FJ873739	Ranjarbar et al., 2010
CTX-M-89	Proteus mirabilis	FJ971899	McGettigan et al., 2009
	Enterobacter cloacae	FJ966096	
CTX-M-90	Salmonella enterica	FJ907381	
	Proteus mirabilis		
CTX-M-91	Proteus mirabilis	GQ870432	Song et al., 2011
CTX-M-92	Escherichia coli	GU127598	Sepuinee et al., 2010
	Klebsiella pneumoniae		Sepuinee et al., 2010
CTX-M-93 *	Escherichia coli	HQ166709	Djamdjian et al., 2011
CTX-M-94	Escherichia coli	HM167760	
c-CTX-M-95 ¤	Kluyvera ascorbata	FN813245	
CTX-M-18 and of CTX-M-55 and CTX-M-57 are identical, and CTX-M-118 has been withdrawn. There is no detailed information available for the assigned members CTX-M-70, -73, -74, -75, -76, -77, -78, -95, -98, -99, -100, -103, -106, -107, -108, -109, -112, -113, -114, -115, -116, -117, -118, -119, -120, and -124 so far. In addition, CTX-M-76, -77, -78 and -95 are chromosome-encoded intrinsic cefotaximases in *Kluyvera* spp., and therefore, they are not counted into the CTX-M family. CTX-M-2, -3 and -37 are plasmid-mediated enzymes but also found on chromosomes in *Kluyvera* spp. To clarify the differences, the term c-CTX-M is used for such chromosome-encoded CTX-Ms in this article. Of the studied CTX-Ms, at least 19 variants display the enhanced catalytic efficiencies against ceftazidime (Table 1).

CTX-M enzymes as the most prevalent ESBLs in *E. coli, K. pneumoniae* and *P. mirabilis*

The high prevalence of CTX-M ESBL genes in Enterobacteriaceae, particularly in *E. coli, K. pneumoniae* and *P. mirabilis*, has been documented worldwide (Bonnet, 2004; Cantón and Coque, 2006), while the CTX-Ms are not prominent in *P. aeruginosa* and *A. baumannii* (Zhao and Hu, 2010, 2012).

A study on the resistance of Enterobacteriaceae to third-generation cephalosporin was undertaken in 16 British hospitals over a 12-week period (Potz et al., 2006). Of 19,252 clinical isolates, CTX-M-producing strains accounted for 1.7%, higher than other ESBLs-producing strains (0.6%) and high-level AmpC-producing strains (0.4%). Particularly, of the resistance isolates of *E. coli* (*n* = 574) and *Klebsiella* spp. (*n* = 243), the CTX-M-producing strains accounted for 50.9% and 81.9%, respectively, by contrast with other ESBLs-producing strains (15.3% and 11.1%), high-level AmpC-producing strains (7.1% and 0.8%) and non-β-lactamase-producing strains (26.7% and 3.3%).

A rapid occurrence of CTX-M-producing strains in Enterobacteriaceae was documented by several longitudinal surveillances. Of 20,258 *E. coli* isolates studied in

Table 1. (Continued).

CTX-M (alternate name)	Bacterial host	GenBank accession no.	Reference
CTX-M-96 (CTX-M-12a)	*Klebsiella pneumoniae*	AJ704396	Zhang et al., 2011
CTX-M-97	*Escherichia coli*	HM776707	
CTX-M-98	*Escherichia coli*	HM755448	
CTX-M-99	*Klebsiella pneumoniae*	HM803271	
CTX-M-100	Assigned		
CTX-M-101	*Escherichia coli*	HQ398214	
CTX-M-102	*Escherichia coli*	HQ398215	
CTX-M-103	Assigned		
CTX-M-104	*Escherichia coli*	HQ833652	
CTX-M-105	*Escherichia coli*	HQ833651	
CTX-M-106	*Escherichia coli*	HQ913565	
CTX-M-107	*Shigella flexneri*	JF274244	
CTX-M-108	*Shigella flexneri*	JF274245	
CTX-M-109	*Shigella flexneri*	JF274248	
CTX-M-110	*Shigella sonnei*	JF274242	
CTX-M-111	*Shigella flexneri*	JF274243	
CTX-M-112	*Shigella sonnei*	JF274246	
CTX-M-113	*Shigella flexneri*	JF274247	
CTX-M-114	*Providencia rettgeri*	GQ351346	
CTX-M-115	Assigned		
CTX-M-116	*Proteus mirabilis*	JF966749	
CTX-M-117	*Escherichia coli*	JN227585	
CTX-M-118	Withdrawn		
CTX-M-119	Assigned		
CTX-M-120	Assigned		
CTX-M-121	*Escherichia coli*	JN790862	
CTX-M-122	*Escherichia coli*	JN790863	
CTX-M-123	*Escherichia coli*	JN790864	
CTX-M-124	Assigned		

*, with enhanced catalytic efficiencies against ceftazidime; †, have been assigned in the Lahey database (Jacoby and Bush 2012); ‡, chromosome-encoded intrinsic cefotaximase identified in *Kluyvera* spp.; §, CTX-M-18 and CTX-M-14, CTX-M-57 and CTX-M-55 are identical in their amino acid sequences.
Italy, the prevalence of ESBL-producing strains increased from 0.2% in 1999 to 1.6% in 2003, of which CTX-M-positive strains increased from 12.5% to 38.2% (Brigante et al., 2005). Of 1574 *P. mirabilis* clinical isolates collected in a Taiwanese hospital during 1999–2005, 44 CTX-M-producing strains were detected at a rate of 0.7% in 1999 and approximately 6% after 2002 (Wu et al., 2008). Of 11,407 *E. coli* isolates from urine samples of outpatients in the USA, 107 CTX-M-producing strains were detected at a rate of 0.07% in 2003 and 1.66% in 2008 (Qi et al., 2010).

CTX-M-producing strains widespread not only in human but also in animals and in environments. Of 240 *E. coli* isolates from health and sick pets during 2007–2008 in China, 97 strains (40.4%) harbored ESBL-encoding genes, of which 96 strains were confirmed to be carriers of *bla_{CTX-M}* genes (Sun et al., 2010). Of 16 multi-drug resistant *E. coli* isolates from river water during 2000–2001 in South Korea, 10 strains harbored CTX-M-14 gene (Kim et al., 2008). Of 79 food samples of animal origin in Tunisia, *bla_{CTX-M}* genes were identified in 34 food samples. Of 79 food samples of animal origin in Tunisia, 41% (34/83) were ESBL producers (288 isolates) (Damjanova et al., 2008). Of the CTX-M-15 producers derived from three genetically different, CTX-M-15 and CTX-M-14 are the most dominant variants detected worldwide in clinically important pathogens, followed by CTX-M-2, CTX-M-3 and CTX-M-1 (Table 1). Conjugative plasmid-mediated horizontal transfer and clonal spread contributed to the increased prevalence.

Of 171 CTX-M-producing *E. coli* isolates from 11 Canadian medical centers in 2007, the positive rates for CTX-M-15, CTX-M-14, CTX-M-3 and CTX-M-27 were 86.5%, 9.9%, 2.9% and 0.6%, respectively (Peirano et al., 2010). Of 202 CTX-M-producing *K. pneumoniae* isolates from 41 medical centers in Hungary in 2005, 97% were CTX-M-15 producers derived from three genetically distinct clones (Damjanova et al., 2008). Of the CTX-M-producing (288 *E. coli* and 142 *K. pneumoniae* isolates) collected from 6 provinces in China during 1998–2002, CTX-M-14 was predominantly detected in 77.4% and 52.8% of the isolates, respectively, followed by CTX-M-3 (18.4% and 29.6%), CTX-M-24 (5.6% and 14.1%) and CTX-M-15 (0.7% and 1.4%) (Yu et al., 2007). An outbreak of CTX-M-producing *S. enterica* infection occurred in a university hospital in Algeria during 2008–2009, and all of 200 isolates from 138 patients were CTX-M-15 producers, identified to be a single clone (Naas et al., 2011).

Of 44 clinical isolates of CTX-M-producing *P. mirabilis* from a Taiwanese hospital, CTX-M-14 and CTX-M-3 positive strains accounted for 50% and 49.9%, respectively (Wu et al., 2008). Of 71 CTX-M-producing *P. mirabilis* isolates collected from 132 geographically distant hospitals in Japan, however, 100% of the strains carried the *bla_{CTX-M-2}*-like genes (Shibata et al., 2006). CTX-M-2 was also predominant in *C. koseri*, accounting for 76.7% of ESBL-producing strains (*n* = 60) collected from 10 areas throughout Japan in a 5-month period between 2009 and 2010 (Kanamori et al., 2011).

Phylogeny, origin and evolution of CTX-M enzymes

Amino-acid identity and phylogeny

The deduced amino-acid sequences of CTX-Ms comprise 291 residues, with the exceptions of CTX-M-11 (282), CTX-M-107 and -108 (288), CTX-M-45 and -109 (289), CTX-M-40, -63 and -106 (290) and CTX-M-110 (292). Based on the phylogenetic tree of amino-acid sequences, CTX-M enzymes may be divided into seven clusters (Figure 1).

CTX-M-3 cluster includes 42 members, sharing 97.6–99.7% identity in amino-acid sequences. The other clusters are as follows: CTX-M-14 cluster, 38 members, 97.3–99.7% identity; CTX-M-2 cluster, 16 members, 95.2–99.7% identity; CTX-M-25 cluster, 7 members, 98.6–99.7% identity; CTX-M-8 cluster, 3 members, 97.9–99.7% identity; CTX-M-64 cluster, 2 members, 95.9% identity. There is only one member in CTX-M-45 cluster. Among CTX-M variants, CTX-M-4 and CTX-M-45 are most divergent with 91 amino-acid substitutions.

Variations of amino-acid sequences

Based on the central positions in phylogenetic tree (Figure 1), CTX-M-2, -3, -8, -14, -25, -45 and -64 are chosen as the representative enzymes in each cluster. The amino-acid sequences of the seven enzymes are aligned, and numbered according to the standard numbering scheme for the class A serine β-lactamases, giving the active site serine residue the Ambler number 70 (Ambler et al., 1991) (Figure 2). The sequences of CTX-M variants are then compared with their representative in each cluster (Table 2). In the CTX-M-3 cluster, for example, a single amino-acid is substituted between CTX-M-3 and CTX-M-15 (22), -22, -42, -54, -62, -66, -72 or -80, while 5 amino-acids are substituted between CTX-M-3 and CTX-M-58.

Origin of CTX-M family

In the family Enterobacteriaceae, the genus *Kluyvera* is a relatively new member, which has been isolated from various clinical specimens and regarded as a potentially virulent pathogen (Sarria et al., 2001). Some *Kluyvera* spp. harbor chromosome-encoded intrinsic genes of
Cefotaximases which are closely associated with CTX-Ms (Decousser et al., 2001; Humeniuk et al., 2002; Rodríguez et al., 2004). Generally, *Kluyvera* spp. are susceptible to cefotaxime in despite of the presence of naturally occurring cefotaximases. However, the recombinant clones of *E. coli* with *Kluyvera*-derived cefotaximase genes exhibited a significant increase in resistance to cefotaxime (Decousser et al., 2001; Humeniuk et al., 2002;
Figure 2. Comparison of amino-acid sequences of seven representative enzymes in the CTX-M family. Amino-acids are numbered according to the standard numbering scheme for the class A serine β-lactamases, giving the active site serine residue the Ambler number 70. Dots indicate identical amino-acids compared to CTX-M-2. Deletion mutations are expressed with short lines. The underlined amino-acids, 70SXXK73, 107P, 130SDN132, 143GG144, 166E and 234KXG236, represent the conserved residues in typical class A serine β-lactamases.

Table 2. Amino acid substitutions of CTX-M variants compared to their representative enzymes.

CTX-M Amino acid substitution	CTX-M Amino acid substitution
CTX-M-2	CTX-M-4
CTX-M-3	CTX-M-5
CTX-M-6	CTX-M-7
CTX-M-8	CTX-M-9
CTX-M-10	CTX-M-11
CTX-M-12	CTX-M-13
CTX-M-14	CTX-M-15
CTX-M-16	CTX-M-17
CTX-M-18	CTX-M-19
CTX-M-20	CTX-M-21
CTX-M-22	CTX-M-23
CTX-M-24	CTX-M-25
CTX-M-26	CTX-M-27
CTX-M-28	CTX-M-29
CTX-M-30	CTX-M-31
CTX-M-32	CTX-M-33
CTX-M-34	CTX-M-35
CTX-M-36	CTX-M-37
CTX-M-38	CTX-M-39
CTX-M-40	CTX-M-41
CTX-M-42	CTX-M-43
CTX-M-44	CTX-M-45

(Continued)
Rodríguez et al., 2004), suggesting that a proper genetic platform is necessary for the gene expression. The chromosome-encoded cefotaximases identified in *Kluyvera* spp. include KLUA, KLUG, KLUY, KLUC, c-CTX-M-2, c-CTX-M-3, c-CTX-M-7, c-CTX-M-28, c-CTX-M-79 and c-CTX-M-95. All of them comprise 291 amino-acid residues. An aspartate aminotransferase-encoding gene is found commonly upstream of these chromosomal *bla* genes, which is replaced by IS*ecp1* or IS*cr1* in the plasmid-harbored *bla*_{CTX-M} genes (see the details under next section).

KLIJA-1 to -5 and -8 to -12 (GenBank accession no. AJ272538, AJ251722, AJ427461, AJ427462, AJ427463, AJ427465, AJ427466, AJ427467, AJ427468, AJ427469) are a group of chromosomal cefotaximases identified in *K. ascorbata*, with minor variations (<5%) in their

Cluster 2	Cluster 3
CTX-M-75	P14S
CTX-M-92	A205T
CTX-M-97	R3G

Table 2. (Continued).

Cluster 14	vs. CTX-M-14
CTX-M-46	S27N, A47P
CTX-M-47	G42R
CTX-M-48	S27N
CTX-M-49	G42R, A47P

Cluster 25	vs. CTX-M-25
Cluster 64	vs. CTX-M-64

Critical Reviews in Microbiology
amino-acid sequences (Humeniuk et al., 2002). KLUA-2 shares 100% identity with plasmid-mediated CTX-M-5. CTX-M-2 and CTX-M-3 originally identified on plasmids were also found on the chromosomes of K. ascorbata (Rodríguez et al., 2004; Lartigue et al., 2006). The immediate upstream- and downstream-sequences of bla\textsubscript{KLUA-1} and plasmid-mediated bla genes in CTX-M-2 cluster (bla\textsubscript{CTX-M-2, -4, -5, -6, -7, -44}) share 85 to 100% identities (Di Conza et al., 2002; Humeniuk et al., 2002). The architectures of the flanking regions corresponding to c-CTX-M-3 and plasmid-mediated CTX-M-3 are identical, including a 128 bp immediate upstream region and the first 373 bp of the downstream region of the bla gene (Rodríguez et al., 2004). The c-CTX-M-76, -77 and -95 (AM982520, AM982521, FN813245) identified in K. ascorbata also share high identities with the enzymes in CTX-M-2 cluster.

KLUY-1 to -4 (AY623932, AY623935, AY623934, AY623933) are a group of chromosomal cefotaximases identified in K. Georgiana (Olson et al., 2005). They share high homology with the enzymes in CTX-M-14 cluster. Typically, KLUY-1 exhibits 100% amino-acid identity with CTX-M-14. The upstream- and downstream-sequences of bla\textsubscript{KLUY} and bla\textsubscript{CTX-M-9, -13, -14} also share consistent identity. A 42 bp upstream region of bla\textsubscript{CTX-M-14} is identical to the corresponding region of bla\textsubscript{KLUY} genes. A 347 bp downstream region of bla\textsubscript{CTX-M-9} and bla\textsubscript{CTX-M-13} shares 95.7–98.6% identities with the corresponding region of bla\textsubscript{KLUY} genes (Olson et al., 2005).

KLUG-1 (AF501233) and c-CTX-M-78 (AM982522) are the chromosomal cefotaximases identified in K. Georgiana. KLUG-1 shares 99% amino-acid identity with the plasmid-mediated CTX-M-8 (Poirel et al., 2002b). The c-CTX-M-78 possesses high homology with the known members of CTX-M-25 cluster, sharing 95.2–96.2% identities (Rodríguez et al., 2010).

CTX-M-37 was also found on the chromosome of K. cryocrescens (FN813246), suggesting the c-CTX-M-37 as an origin of CTX-M-3 cluster. KLUC-1 (AY026417) and KLUC-2 (EF057432), with a single amino-acid substitution, are two chromosome-encoded cefotaximases identified in K. cryocrescens (Decousser et al., 2001). KLUC-1 and -2 are diverse from the known CTX-Ms, sharing only 87.6% identity with CTX-M-3. Notably, KLUC-2 was also identified on a plasmid carried by a clinical isolate of E. cloacae, indicating the transfer of bla\textsubscript{KLUC} from chromosome to the plasmid (Petrella et al., 2008). We would like to suggest the plasmid-mediated KLUC-2 as a novel cluster or member of CTX-M family.

CTX-M-64 shows a chimeric sequence of both CTX-M-14 (central portion) and CTX-M-15 (N- and C-terminal moieties), suggesting an origination owing to homologous recombination between the bla\textsubscript{CTX-M-14} and bla\textsubscript{CTX-M-15} genes (Nagano et al., 2009).

Taken together, the origins of the acquired CTX-Ms in various clusters can be traced back to the intrinsic cefotaximase genes harbored by Kluyvera spp., of which the CTX-M-2 cluster appears to be derived from K. ascorbata, the CTX-M-14, CTX-M-8 and CTX-M-25 clusters from K. georgiana, while the CTX-M-3 cluster from both K. ascorbata and K. cryocrescens (Figure 3).

Genetic platforms of CTX-M enzymes

IS\textsubscript{Ecp1}

Insertion sequences (ISs) are the smallest transposable elements (<2.5 kb) capable of independent transposition in an organism, thereby causing insertion mutations and genome rearrangements (Mahillon and Chandler, 1998). ISs play three basic roles in bacteria: encoding a transposase which makes a genetic element mobile; providing promoters to activate silent genes or enhance expression of downstream determinants; moving IS-mobilized genes among integrons, transposons, plasmids and chromosomes, thereby greatly increasing the opportunity a resistance determinant becomes transferable.

Of the genetic platforms associated with CTX-Ms, IS\textsubscript{Ecp1} is one of the most important elements (Table 3). IS\textsubscript{Ecp1} was first identified on the plasmid pST01 in E. coli strain 79 (AJ242809), hence its name (Stapleton, 1999). IS\textsubscript{Ecp1} is composed of an orf encoding a transposase with 420 amino-acids and two imperfect and inverted
Table 3. Genetic platforms of CTX-M enzymes.

CTX-M	Genetic platform	Bacterial host	Reference/GenBank accession no.
CTX-M-1	ISEcp1-bla_{CTX-M-1}-orf477		
ISEcp1- Δ----I526-ISEcp1Δ-bla_{CTX-M-1}-orf477∆			
intI1-dfrA7-aadA5-qacE1-sul1-ISCR1-bla_{CTX-M-1}-orf3-IS3000-qacE1-sul1-like-orf5			
intI1-dfrA7-aadA5-qacE1-sul1-ORF1-bla_{CTX-M-1}-orf3-IS3000-qacE1-sul1-like-orf5			
intI1-dfrA7-aadA5-qacE1-sul1-ORF1-bla_{CTX-M-1}-orf3-IS3000-qacE1-sul1-like-orf5	E. coli		
K. pneumoniae			
E. coli			
E. coli	Eckert et al., 2006		
Diestra et al., 2009			
Cullik et al., 2010			
Su et al., 2008			
CTX-M-2	intI1-aacA4-bla_{CTX-M-2}-orfD-qacE1-sul1-ISCR1-bla_{CTX-M-2}-orf3-Δ-qacE1-sul1		
intI1-aacA4-bla_{CTX-M-2}-orfD-qacE1-sul1-ISCR1-bla_{CTX-M-2}-orf3-Δ-qacE1-sul1			
intI1-aacA4-bla_{CTX-M-2}-orfD-qacE1-sul1-ORF1-bla_{CTX-M-2}-orf3-Δ-qacE1-sul1			
intI1-aacA4-bla_{CTX-M-2}-orfD-qacE1-sul1-ORF1-bla_{CTX-M-2}-orf3-Δ-qacE1-sul1	P. mirabilis		
V. cholera			
S. enterica			
K. pneumoniae	Arduino et al., 2002		
Soler Bistué et al., 2006			
AI311891			
EU780013			
CTX-M-3	intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-3}-orf3A-qacE1	K. pneumoniae	EU622037
CTX-M-4	intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-4}-orf3A-qacE1	K. pneumoniae	EU622040
CTX-M-5	intI1-dfrA1-aadA2-qacE1-sul1-ORF1-bla_{CTX-M-5}-orf3A-qacE1-sul1		
intI1-dfrA1-aadA2-qacE1-sul1-ORF1-bla_{CTX-M-5}-orf3A-qacE1-sul1			
intI1-dfrA1-aadA2-qacE1-sul1-ORF1-bla_{CTX-M-5}-orf3A-qacE1-sul1			
intI1-dfrA1-aadA2-qacE1-sul1-ORF1-bla_{CTX-M-5}-orf3A-qacE1-sul1	E. coli		
S. enterica			
K. pneumoniae			
K. pneumoniae	Eckert et al., 2006		
EFS925750			
EFS925751			
EU622039			
CTX-M-6	intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-6}-orf3A-qacE1-sul1		
intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-6}-orf3A-qacE1-sul1	K. pneumoniae	EU622041	
CTX-M-7	intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-7}-orf3A-qacE1-sul1		
intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-7}-orf3A-qacE1-sul1	K. pneumoniae	EU622043	
CTX-M-8	intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-8}-orf3A-qacE1-sul1		
intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-8}-orf3A-qacE1-sul1	K. pneumoniae	EU622044	
CTX-M-9	intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-9}-orf3A-qacE1-sul1		
intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-9}-orf3A-qacE1-sul1	K. pneumoniae	EU622045	
CTX-M-10	intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-10}-orf3A-qacE1-sul1		
intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-10}-orf3A-qacE1-sul1	K. pneumoniae	EU622046	
CTX-M-11	intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-11}-orf3A-qacE1-sul1		
intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-11}-orf3A-qacE1-sul1	K. pneumoniae	EU622047	
CTX-M-12	intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-12}-orf3A-qacE1-sul1		
intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-12}-orf3A-qacE1-sul1	K. pneumoniae	EU622048	
CTX-M-13	intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-13}-orf3A-qacE1-sul1		
intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-13}-orf3A-qacE1-sul1	K. pneumoniae	EU622049	
CTX-M-14	intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-14}-orf3A-qacE1-sul1		
intI1-aacA1-qacE1-sul1-ORF1-bla_{CTX-M-14}-orf3A-qacE1-sul1 | K. pneumoniae | EU622050 |

(Continued)
Table 3. (Continued).

CTX-M	Genetic platform	Bacterial host	Reference/GenBank accession no.
CTX-M-15	IS{Ecp1–bla}_{CTX-M-15}–orf77	A. hydrophila	Gómez-Garcés et al., 2011
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3	E. coli	Eckert et al., 2006
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3	A. baumannii	JN788267
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Lartigue et al., 2004
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Eckert et al., 2006
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	S. enterica	Fabre et al., 2009
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Eckert et al., 2006
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Brasme et al., 2007
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	AM910790
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	K. pneumoniae	Cao et al., 2002
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	K. pneumoniae	Poirel et al., 2003
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	P. mirabilis	AJ16344
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	AJ16346
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	S. liquefaciens	HM470254
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Eckert et al., 2006
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	P. mirabilis	Wu et al., 2008
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	P. mirabilis	Navon-Venezia et al. 2008
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Munday et al. 2004
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	K. pneumoniae	Navon-Venezia et al. 2008
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	K. pneumoniae	Munday et al. 2004
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	S. enterica	Bouallègue-Godet et al., 2005
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Sun et al., 2010
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Fernández et al., 2007
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Diestra et al., 2009
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Navon-Venezia et al. 2008
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Navon-Venezia et al. 2008
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Hopkins et al., 2006
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	DQ061159
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	S. enterica	Doublet et al., 2009
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	K. pneumoniae	Bae et al., 2006a
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Sun et al., 2010
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	JN777127
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	P. mirabilis	EU622856
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	K. pneumoniae	Zong et al., 2010
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	S. sonnei	Nagano et al., 2009
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Sun et al., 2010
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	P. mirabilis	Wu et al., 2008
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. cloacae	Minarini et al. 2009
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	P. stuartii	Minarini et al. 2009
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	FI169498
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	GU477621
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. cloacae	FJ966096
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	P. mirabilis	Song et al., 2011
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	P. mirabilis	Song et al., 2011
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	Djamdjian et al., 2011
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	HM755448
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	HQ398214
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	HQ398215
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	HQ33652
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	HQ33651
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	P. mirabilis	JF966749
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	JN790862
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	JN790863
	IS{Ecp1–bla}_{CTX-M-15}–orf773–Tn3Δ	E. coli	JN790864

© 2013 Informa Healthcare USA, Inc.
ISecp1 can mobilize the downstream-located bla_{CTX-M} gene and provide a promoter for its expression (Karim et al., 2001; Cao et al., 2002; Poirel et al., 2003, 2005; Dhanji et al., 2011b).

Co-existence of ISeep1 and bla_{CTX-M} at a high rate in CTX-M-producing E. coli isolates is well documented. ISeep1 was identified upstream of bla_{CTX-M} genes in 86.9% of the isolates (93/107) recovered from health and sick pets in China, and no major clonal relatedness was observed (Sun et al., 2010). Similarly, ISeep1 was identified upstream of bla_{CTX-M}-14 in 91.4% of the clinical isolates (32/35) in Korea (Kim et al., 2011), and upstream of bla_{CTX-M}-1 in 69.2% of the isolates (9/13) from food samples in Tunisia (Ben Slama et al., 2010). In addition, variations of ISeep1 were also observed. ISeep1B, originally identified upstream of a bla_{CTX-M}-19 gene cassette (AF458080), differs from ISeep1 by three nucleotide substitutions (Poirel et al., 2003). Of the 174 ISeep1-like and bla_{CTX-M}-15 complex from E. coli isolates, the intact ISeep1, truncated ISeep1 with various lengths and a 24 bp remnant of ISeep1 accounted for 62%, 33.3% and 4.6%, respectively (Dhanji et al., 2011b). Notably, ISeep1 was also detected upstream of chromosomal bla_{CTX-M}-2 genes in 4 P. mirabilis isolates in Japan (Harada et al., 2012), highlighting the ISeep1-mediated movement of bla_{CTX-M} genes between plasmids and chromosomes.

ISeep1-bla_{CTX-M}-IS903 (Figure 4A) and ISeep1-bla_{CTX-M}-orf477 (Figure 4B) are two major genetic platforms. In some cases, ISeep1-mobilized bla_{CTX-M} is inserted in a class 1 integron (Figure 4C). IS903 (V00359) encodes a transposase with 307 amino-acids and was originally found on a kanamycin resistance transposon Tn903 (Oka et al., 1981). IS903 and IS903-like elements, such as IS903C and IS903D, are located downstream of bla_{CTX-M}-14 genes (Table 3), including bla_{CTX-M}-14-like genes (bla_{CTX-M}-14, -16, -17, -18, -24, -27, -65, -69, -93, -98, -102, -104, -105, -121, -122) and bla_{CTX-M}-1-like gene (bla_{CTX-M}-1). orf477 encodes a protein of 158 amino-acids with unknown function and the orf477 and orf477-like elements were found downstream of plasmid-harbored bla_{CTX-M}-3-like genes.

Figure 4. Typical genetic platforms of CTX-M enzymes. A & B: the bla_{CTX-M} gene cassettes bracketed upstream by ISeep1/ISeep1-like and downstream by IS903/IS903-like (A) or orf477/orf477-like (B); C: bla_{CTX-M} genes associated with class 1 integron-ISeep1; D & E: bla_{CTX-M} genes associated with class 1 integron-ISCR1 complex. CS, conserved segment; intI, integrase gene; qacEΔ1, quaternary ammonium resistance gene; sulI, sulphonamide resistance gene; 3′-CS2, the second copy of 3′-conserved segment.
The orf57 was also identified downstream of the chromosomal bla\textsubscript{CTX-M-93} in K. ascorbata, of the chromosomal bla\textsubscript{KLTV1}, -2, -3, -4, in K. georgiana, and of the chromosomal bla\textsubscript{CTX-M-37} (FN9813426) in K. cryocrescens (Rodriguez et al., 2004; Olson et al., 2005), footnoting the IS\textsubscript{ECp1}-mediated transfer of bla\textsubscript{CTX-M} genes together with the orf57 from the chromosomes of Kluyvera spp. to plasmids.

Class 1 integron-IS\textsubscript{CR1} complex

Integrons are defined as mobile DNA elements that can capture genes by site-specific recombination (Stokes and Hall, 1989). A typical class 1 integron consists of a 5′ conserved segment (5′-CS), a variable region and a 3′ conserved segment (3′-CS). The 5′-CS consists of the gene encoding integrase (intI1), the site adjacent to intI1 for the insertion of captured genes (attI), and a promoter region (Pc). The 3′-CS often consists of a partially deleted qac gene (qacEA1) fused to a sul1 gene, and confers resistance to antiseptics and sulfonamide, respectively. Class 1 integrons play a critical role in acquiring and spreading metallo-β-lactamases (Mazel, 2006; Zhao and Hu, 2011a,b). The role of integrons in CTX-M gene acquisition and dissemination, however, is still unclear. The physical link of some bla\textsubscript{CTX-M} genes with class 1 integron-IS\textsubscript{ECp1} complex (Figure 4C) and class 1 integron-IS\textsubscript{CR1} complex (Figure 4D, 4E) indicates a possible association among the three genetic elements.

IS\textsubscript{CR1} is another important element in the genetic platforms associated with the mobilization and dissemination of CTX-M genes (Rodriguez-Martinez et al. 2006; Toleman et al., 2006). Common region 1 (CR1) was first found as element associated with but distinct from class 1 integrons (Stokes et al., 1993). The CR1 element was renamed IS\textsubscript{CR1} because it possesses the key motifs of IS\textsubscript{91}-like element and accommodates orf513 gene which codes a putative transposase of 513 amino-acids (Toleman et al., 2006). IS\textsubscript{CR1} is particularly important for CTX-M-2 and CTX-M-9 genes (Table 3). In most instance, the IS\textsubscript{CR1}-bla\textsubscript{CTX-M-2} is located between a typical class 1 integron and a fuse type of orfβ3 and qacEA1/sul1 (Table 3, Figure 4D). Notably, the genes harbored by class 1 integrons in their variable regions, such as bla\textsubscript{OXA-23}, aacA4, cmlA and dfr, are also associated with bacterial resistance to β-lactam, aminoglycoside, chloramphenicol and trimethoprim, respectively.

Molecular epidemiological study performed in Argentina during 1993–2000 showed that class 1 integron-IS\textsubscript{CR1} complex was adjacent to bla\textsubscript{CTX-M-2} in all the CTX-M-2 producers (n = 35), including Acinetobacter spp., E. cloacae, E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa, S. enterica and S. marcescens, while only 1.5% of the bla\textsubscript{CTX-M-2-negative} isolates (n = 65) harbored IS\textsubscript{CR1} (Arduino et al., 2003). These data strongly implicate the association of IS\textsubscript{CR1} with the emergence and dissemination of bla\textsubscript{CTX-M-2} gene. In addition, IS\textsubscript{CR1} is also related to bla\textsubscript{CTX-M-89} (members of CTX-M-2 cluster) and bla\textsubscript{CTX-M-1, -9, -14} (Table 3).

Other IS and phage-related sequences

Besides IS\textsubscript{ECp1}, IS903 and IS\textsubscript{CR1} described above, IS1, IS5, IS10, IS26, IS504, IS1294, IS1326, IS3000, IS4321 and IS6100 were also found to be adjacent to bla\textsubscript{CTX-M} genes (Table 3). In some cases, several IS elements co-existed in a gene complex, for example, intI1-dfrA12-orfI-aadA2-qacEΔ1-sul1-IS\textsubscript{CR1}-IS\textsubscript{6100}-IS\textsubscript{ECp1}-bla\textsubscript{CTX-M-14}-IS903D (Ba et al., 2008). Such heterogeneity may be explained by a continuously recombinatorial exchange of gene cassettes, denoting the sophisticated genetic rearrangement strategies that organisms acquire and dispense resistance genes.

A 12.2-kb DNA fragment containing bla\textsubscript{CTX-M-10} gene in plasmid pRYCE21 was cloned from K. pneumoniae, and further detected in other bacterial species including E. coli, E. cloacae and E. gergoviae. Analysis of the sequence showed a phage-related 3.5-kb element immediately upstream of the bla\textsubscript{CTX-M-10} gene cassettes. This phage-related fragment corresponds to four orf, of which orf2, orfβ and orf4 display homology to the genes of conserved phage tail proteins (Oliver et al., 2005). Although there is a limited report on phage-related CTX-M genes, this finding indicates that phages may also function as a tool for bla\textsubscript{CTX-M} associated genetic elements to become transferable.

Plasmids

The movement of IS-mobilized genes between chromosomes and plasmids greatly increase the opportunity a resistance determinant becomes transferable. Particularly, conjugative plasmid is one of the most important mechanisms for intra-species, inter-species and inter-genus gene transfers.

Plasmids are usually classified on their incompatibility (Inc), defined as the inability of two plasmids to be propagated stably in the same bacterial strain; thus, only compatible plasmids can be rescued in transconjugants (Novick et al., 1976). At least 29 Inc groups have been recognized among plasmids of enteric bacteria, including IncFI, IncFII, IncFIII, IncFIV, IncFV, IncFVI, IncI, IncII, IncIIC, IncHI1, IncHI2, IncHI3, IncA/C, IncB, IncD, IncJ, IncK, IncLM, IncN, IncO, IncP, IncS, IncT, IncU, IncV, IncW, IncX, IncY and com9 (Novick et al., 1976; Couturier et al., 1988). The IncFI, IncA/C, IncLM, and IncI1 plasmids show the highest occurrence among the typied resistance plasmids (Carattoli, 2009).

Molecular epidemiological studies have revealed a close and significant linkage of bla\textsubscript{CTX-M} genes to plasmids, mainly belonged to IncF, IncI, IncN, IncHI2, IncLM and IncK groups (Table 4). The IncF group (FIA, FIB and FII) is the most prevalent in transmitting bla\textsubscript{CTX-M-1} genes while IncF and IncI1 are closely related to the widespread of bla\textsubscript{CTX-M-1} genes. In addition, the bla\textsubscript{CTX-M-1} gene is dominantly harbored by IncN and IncI1, bla\textsubscript{CTX-M-3} gene by IncLM and IncI1, and bla\textsubscript{CTX-M-9} gene by IncHI2.

Unlike the plasmids with broad host range, such as IncP, IncA/C and IncQ, IncF plasmids are limited by host range to the genera of Enterobacteriaceae (Toukdarian, 2003).
Table 4. Plasmids associated with the spread of CTX-M genes.

CTX-M gene (No. of isolates)	Inc group (No. of isolates)	Rate*	Resource	Reference
bla_{CTX-M-1} (119)	N (119)	100%	*E. coli* from bovine on a dairy farm with high consumption of cephalosporins in Czech Republic, 2008	Dolejska et al., 2011
bla_{CTX-M-1} (10)	I1 (10)	100%	*S. enterica* from poultry and humans in France, 2003–08	Cloeckaert et al., 2010
bla_{CTX-M-3} (14)	L/M (13)	92.9%	Enterobacteriaceae from Bulgaria, Poland and France	Galimand et al., 2005
bla_{CTX-M-9} (41)	HI2 (24), P1-α (10), FIB (4), HI2, FI (2), I1 (1)	58.5%, 9.8%, 4.9%, 2.4%	Enterobacteriaceae from a university hospital in Spain, 1996–03	Novais et al., 2006
bla_{CTX-M-14} (40)	K (27), I1 (11), HI2 (2)	67.5%, 27.5%, 2.4%	*E. coli* from patients and healthy volunteers in Spain, 2000–05	Valverde et al., 2009
bla_{CTX-M-14} (25)	F (8), I1 (5), E, I1 (3), N (1), Q (1)	32%, 20%, 12%, 4%, 4%	*E. coli* from 20 hospitals in 15 provinces in China, 2007–08	Cao et al., 2011
bla_{CTX-M-14} (23)	FII (13), I1-Iγ (4), FII, I1-Iγ (1), K (1)	56.5%, 17.4%, 4.3%, 4.3%	*E. coli* from outpatients in Hong Kong, 2002–04	Ho et al., 2011
bla_{CTX-M-14} (18)	FII (17), FI (1)	94.4%, 5.6%	*E. coli* from a hospital in Turkey, 2002–04	Gonullu et al., 2008
bla_{CTX-M-14} (36)	FI (36)	100%	*E. coli* from a university hospital in Germany, 2006–07	Mshana et al., 2009
bla_{CTX-M-15} (55)	FIIA (41), A/C (3), FIIA, A/C (4)	74.5%, 5.5%, 7.3%	*K. pneumoniae* from patients in 9 Asian countries, 2008–09	Lee et al., 2011
bla_{CTX-M-15} (11)	N (8), I1 (3)	72.7%, 27.3%	*E. coli* from different areas in France, 1997–02	Marcadé et al., 2009
bla_{CTX-M-15} (15)	F (9), K (2)	60%, 13.3%	*E. coli* and *K. pneumoniae* from 11 hospitals in Spain, 2004	Diestra et al., 2009
bla_{CTX-M-15} (19)	F (12), I1 (1), L/M (1), N (1)	63.2%, 5.3%, 5.3%, 5.3%	*E. coli* from a survey among 3193 healthy children in Peru & Bolivia, 2005	Pallecchi et al., 2007
bla_{CTX-M-15} (13)	K (12)	92.3%	*E. coli* from faeces of residents in 16 nursing homes in the UK, 2004–06	Dhanji et al., 2011a
bla_{CTX-M-15} (4)	F (4)	100%	*E. coli* from a survey among 3193 healthy children in Peru & Bolivia, 2005	Pallecchi et al., 2007
bla_{CTX-M-15} (3)	N (3)	100%	*E. coli* from faeces of residents in 16 nursing homes in the UK, 2004–06	Dhanji et al., 2011a

Rate = (No. in the 2nd column/No. in the 1st column) × 100%.
Pseudomonas. high prevalence and widespread of the CTX-M genes in new hosts, while the properties of plasmid incompatibility and the secondary chromosomal insertions of CTX-M bilis chromosomes (Song et al., 2011). The genes of bla were also found on the chromosomes of P. mirabilis (Navon-Venezia et al., 2008).

In addition, chromosomal integration of bla gene was reported in E. coli, K. pneumoniae and S. enterica (Coque et al., 2008; Coelho et al., 2010; Fabre et al., 2009). Chromosomal bla was observed in one strain of 30 E. coli isolates collected in Barcelona during 1996–1999 (García et al., 2005).

Conclusion
Plasmid-mediated CTX-M enzymes are the most prevalent ESBLs, particularly in E. coli, K. pneumoniae and P. mirabilis. At least 109 members in CTX-M family are identified and can be divided into seven clusters based on their phylogeny. CTX-M-15 and CTX-M-14 are the most dominant variants in the family, followed by CTX-M-2, CTX-M-3 and CTX-M-1.

The CTX-M genes can be traced back to the chromosome-encoded cefotaximases genes in Kluwyvera spp., strongly indicating that the plasmid-mediated CTX-M enzymes are originally from Kluwyvera. Multiple genetic elements, especially IScep1 and ISCR1, are involved in the mobilization of bla genes from the chromosomes to plasmids. Conjugative plasmids are responsible for the transfer of the bla genes to new hosts, while the properties of plasmid incompatibility and host range are closely associated with the high prevalence and widespread of the CTX-M genes in Enterobacteriaceae, but not in Acinetobacter and Pseudomonas.

Declaration of interest
This work was supported by a grant (No. 24591489) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and by a grant from Showa University Medical Foundation, Tokyo, Japan.

References
Abdalhamid B, Pitout JD, Moland ES, Hanson ND. (2004). Community-onset disease caused by Citrobacter freundii producing a novel CTX-M beta-lactamase, CTX-M-30, in Canada. Antimicrob Agents Chemother, 48, 4435–4437.
Achigko ZC, Gulay Z, Bicmen M, Gocer S, Gamberzade S. (2003). CTX-M-3 extended-spectrum beta-lactamase in a Shigella sonnei clinical isolate: first report from Turkey. Scand J Infect Dis, 35, 503–505.
Aibini I, Pfeifer Y, Peters F, Ogunsola F, Adenipekun E, Odugbemi T, Koenig W. (2012). Emergence of bla(CTX-M-2) and aac(6’)-Ib-cr resistance genes in Pantonea agglomerans and Enterobacter cloacae from Nigeria (sub-Saharan Africa). J Med Microbiol, 61, 165–167.
Alowede I, M’Zali FH, Livermore DM, Heritage J, Todd N, Hawkey PM. (2003). CTX-M extended-spectrum beta-lactamase arrives in the UK. J Antimicrob Chemother, 51, 470–471.
Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Joris B, Forsman M, Levesque RC, Tiraby G, Waley SG. (1991). A standard numbering scheme for the class A beta-lactamases. Biochem J, 276 (Pt 1), 269–270.
Arduino SM, Catalano M, Orman BE, Roy PH, Centron D. (2003). Molecular epidemiology of orf513-bearing class 1 integrons in multiresistant clinical isolates from Argentinean hospitals. Antimicrob Agents Chemother, 47, 3945–3949.
Arduino SM, Roy PH, Jacoby GA, Orman BE, Pineiro SA, Centron D. (2002). blaCTX-M-15 is located in an unusual class 1 integron (In35) which includes Orf513. Antimicrob Agents Chemother, 46, 2303–2306.
Bae IK, Lee BH, Hwang HY, Jeong SH, Hong SG, Chang CL, Kwak HS, Kim HJ, Youn H. (2008a). A novel cefazidime-hydrolysing extended-spectrum beta-lactamase, CTX-M-54, with a single amino acid substitution at position 167 in the omega loop. J Antimicrob Chemother, 58, 315–319.
Bae IK, Lee YH, Jeong HJ, Hong SG, Lee SH, Jeong SH. (2008). A novel bla(CTX-M-14) gene-harboring complex class 1 integron with an In4-like backbone structure from a clinical isolate of Escherichia coli. Diagn Microbiol Infect Dis, 62, 340–342.
Bae IK, Lee YN, Hwang HY, Jeong SH, Lee SJ, Kwak HS, Song W, Kim HJ, Youn H. (2006b). Emergence of CTX-M-12 extended-spectrum beta-lactamase-producing Escherichia coli in Korea. J Antimicrob Chemother, 58, 1257–1259.
Bae IK, Lee YN, Lee WG, Lee SH, Jeong SH. (2007). Novel complex class 1 integron bearing an ISCR1 element in an Escherichia coli isolate carrying the bla(CTX-M-14) gene. Antimicrob Agents Chemother, 51, 3017–3019.
Baraniak A, Fiett J, Hryniewicz W, Nordmann P, Gniadkowski M. (2002a). Cefazidime-hydrolysing CTX-M-15 extended-spectrum beta-lactamase (ESBL) in Poland. J Antimicrob Chemother, 50, 393–396.
Baraniak A, Fiett J, Sulikowska A, Hryniewicz W, Gniadkowski M. (2002b). Countrywide spread of CTX-M-3 extended-spectrum beta-lactamase-producing microorganisms of the family Enterobacteriaceae in Poland. Antimicrob Agents Chemother, 46, 151–159.
Bauermeister A, Grimm H, Schweighart S. (1990). A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection, 18, 294–298.
Bauermeister A, Stempler J, Jungwirth B, Ernst S, Casellas JM. (1996). Sequences of beta-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other beta-lactamases. Antimicrob Agents Chemother, 40, 509–513.
Ben Slama K, Journi A, Ben Sallem R, Somalo S, Sáenz Y, Estepa V, Roudabous A, Torres C. (2010). Prevalence of broad-spectrum beta-lactamase genes among Acinetobacter species in Tunisian hospital settings. J Antimicrob Chemother, 65(4), 770–776.
cephalosporin-resistant *Escherichia coli* isolates in food samples in Tunisia, and characterization of integrons and antimicrobial resistance mechanisms implicated. Int J Food Microbiol, 137, 281–286.

Billard-Pomares T, Tenaillon O, Le Nagard H, Rouy Z, Cruveiller S, Médigue C, Arlet G, Denamur E, Branger C. (2011). Complete nucleotide sequence of plasmid pTN48, encoding the CTX-M-14 extended-spectrum β-lactamase from an *Escherichia coli* strain. Antimicrob Agents Chemother, 55, 1270–1273.

Bonnet R, Dutour C, Sampaio JL, Chanal C, Siriot D, Labia R, De Champs C, Siriot J. (2001). Novel cefotaximase (CTX-M-16) with increased catalytic efficiency due to substitution Asp-240>Gly. Antimicrob Agents Chemother, 45, 2269–2275.

Bonnet R, Recule C, Baraduc R, Chanal C, Siriot D, De Champs, Siriot J. (2003). Effect of D240G substitution in a novel ESBL CTX-M-27. J Antimicrob Chemother, 52, 29–35.

Bonnet R, Sampaio JL, Labia R, De Champs C, Siriot D, Chanal C, Siriot J. (2000). A novel CTX-M beta-lactamase (CTX-M-8) in cefotaxime-resistant Enterobacteriaceae isolated in Brazil. Antimicrob Agents Chemother, 44, 1936–1942.

Bonnet R. (2004). Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother, 48, 1–14.

Bouallégue-Goetet O, Ben Salem Y, Fahre L, Demartin M, Grimont PA, Mzoughi R, Weill FX. (2005). Nosocomial outbreak caused by *Salmonella enterica* serotype Livingstone producing CTX-M-27 extended-spectrum beta-lactamase in a neonatal unit in Sousse, Tunisia. J Clin Microbiol, 43, 1037–1044.

Bradford PA, Yang Y, Sahin D, Grope I, Gardovska D, Storch G. (1998). Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. J Microbiol Rev, 14, 933–51, table of contents.

Brasme L, Nordmann P, Fidel F, Martigue MF, Bajolet O, Poirel L, Forte D, Vernet-Garnier V, Madous J, Reveil JC, Alba-Sauvait C, Baudinat I, Bineau P, Bouquigny-Saison C, Eloy C, Lafaurie C, Siméon D, Verquin JP, Noël F, Strady C, De Champs C. (2007). Incidence of class A extended-spectrum beta-lactamas in Champagne-Ardenne (France): a 1 year prospective study. J Antimicrob Chemother, 60, 956–964.

Brenwald NF, Jevons G, Andrews JM, Xiong JH, Hawkey PM, Wise R. (2000). An outbreak of a CTX-M-type beta-lactamase-producing *Klebsiella pneumoniae*: the importance of using cefpodoxime to detect extended-spectrum beta-lactamas. J Antimicrob Chemother, 52, 195–196.

Brigante L, Luzzaro F, Perilli M, Lombardi G, Coli A, Rossolini GM, Amicosante G, Tonoli A. (2005). Evolution of CTX-M-type beta-lactamas in isolates of *Escherichia coli* infecting hospital and community patients. Int J Antimicrob Agents, 25, 157–162.

Cantón R, Coque TM. (2006). The CTX-M beta-lactamase pandemic. Curr Opin Microbiol, 9, 466–475.

Cantón R, Oliver A, Coque TM, Varela Mdel C, Pérez-Díaz JC, Baquero F. (2002). Epidemiology of extended-spectrum beta-lactamase-producing *Enterobacter* isolates in a Spanish hospital during a 12-year period. J Clin Microbiol, 40, 1237–1243.

Cao V, Lambert T, Courvalin P. (2002). ColE1-like plasmid pPB43 of *Klebsiella pneumoniae* encoding extended-spectrum beta-lactamase CTX-M-17. Antimicrob Agents Chemother, 46, 1212–1217.

Cao X, Cavaco LM, Ly Y, Li Y, Zheng B, Wang P, Hasman H, Liu Y, Aarestrup FM. (2011). Molecular characterization and antimicrobial susceptibility testing of *Escherichia coli* isolates from patients with urinary tract infections in 20 Chinese hospitals. J Clin Microbiol, 49, 2496–2501.

Carattoli A. (2009). Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother, 53, 2227–2238.

Carattoli A. (2009). Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother, 55, 1270–1273.

Cao X, Cavaco LM, Ly Y, Li Y, Zheng B, Wang P, Hasman H, Liu Y, Aarestrup FM. (2011). Molecular characterization and antimicrobial susceptibility testing of *Escherichia coli* isolates from patients with urinary tract infections in 20 Chinese hospitals. J Clin Microbiol, 49, 2496–2501.

Carattoli A. (2009). Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother, 53, 2227–2238.
Damjanova I, Tóth A, Pászty J, Hajbel-Vekony G, Jakab M, Berta I, Milch H, Füzi M. (2008). Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type beta-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005—the new ‘MRSA’? J Antimicrob Chemother, 62, 978–985.

De Champs C, Sirot D, Chanal C, Bonnet R, Sirot J. (2000). A 1998 survey of extended-spectrum beta-lactamases in Enterobacteriaceae in France. The French Study Group. Antimicrobial Agents Chemother, 44, 3177–3179.

Decousser JW, Poirel L, Nordmann P. (2001). Characterization of a chromosomally encoded extended-spectrum class A beta-lactamase from Klyyera cryocrescens. Antimicrobial Agents Chemother, 45, 3595–3598.

Dhanji H, Doumith M, Rooney PJ, O’Leary MC, Loughrey AC, Hope R, Woodford N, Livermore DM. (2011a). Molecular epidemiology of fluoroquinolone-resistant ST131 Escherichia coli producing CTX-M extended-spectrum beta-lactamases in nursing homes in Belfast, UK. J Antimicrob Chemother, 66, 297–303.

Dhanji H, Patel R, Wall R, Doumith M, Patel B, Hope R, Livermore DM, Woodford N. (2011b). Variation in the genetic environments of blaCTX-M-15. In Escherichia coli from the faeces of travellers returning to the United Kingdom. J Antimicrob Chemother, 66, 1005–1012.

Di Conza J, Ayala JA, Power P, Mollerach M, Gutkind G. (2002). Novel class 1 integron (In521) carrying blaCTX-M-15 in Salmonella enterica serovar Infantis. Antimicrobial Agents Chemother, 46, 2257–2261.

Diestra K, Juan C, Curiao T, Moya B, Miró E, Oteo J, Coque TM, Pérez-Vázquez M, Campos J, Cantón R, Oliver A, Navarro F; Rod Española de Investigación en Patología Infecciosa (REIPI), Spain. (2009). Characterization of plasmids encoding blacTX-M1 and surrounding genes in Spanish clinical isolates of Escherichia coli and Klebsiella pneumoniae. J Antimicrobial Chemother, 63, 60–66.

Djamdjian L, Naas T, Tande D, Cuzon G, Hanrotel-Saliou C, Nordmann P. (2011). CTX-M-93, a CTX-M variant lacking penicillin hydrolytic activity. Antimicrobial Agents Chemother, 55, 1861–1866.

Doi Y, Adams-Haduch JM, Paterson DL. (2008). Escherichia coli isolate coproducing 16S rRNA Methylase and CTX-M-type extended-spectrum beta-lactamase isolated from an outpatient in the United States. Antimicrobial Agents Chemother, 52, 1204–1205.

Dolejska M, Juričickova Z, Literak I, Pkludova L, Buks J, Hera A, Kohoutova L, Smola J, Cizek A. (2011). IncN plasmids carrying blacTX-M-15. In Escherichia coli isolates on a dairy farm. Vet Microbiol, 149, 513–516.

Doublet B, Granier SA, Robin F, Bonnet R, Fabre L, Brisabois A, Cloeckaert A, Weill FX. (2009). Novel plasmid-encoded cefotaxime-hydrolyzing CTX-M-53 extended-spectrum beta-lactamase from Salmonella enterica serotypes Westhampton and Senftenberg. Antimicrobial Agents Chemother, 53, 1944–1951.

Eckert C, Gautier V, Arlet G. (2006). DNA sequence analysis of the genetic environment of various blacTX-M genes. J Antimicrobial Chemother, 57, 14–23.

Fabre L, Delauâne A, Espié E, Nygard K, Pardos M, Polomack L, Guesnier F, Galimand M, Lassen J, Weill FX. (2009). Chromosomal integration of the extended-spectrum beta-lactamase gene blacTX-M-15. In Salmonella enterica serotype Concord isolates from internationally adopted children. Antimicrobial Agents Chemother, 53, 1808–1816.

Fernández A, Gil E, Cartelle M, Pérez A, Beceiro A, Mallo S, Tomás MM, Pérez-Llárao FJ, Villanueva R, Bou G. (2007). Interspecies spread of CTX-M-32 extended-spectrum beta-lactamase and the role of the insertion sequence IS1 in down-regulating blacTX-M-15 gene expression. J Antimicrobial Chemother, 59, 841–847.

Galani I, Soulis M, Chryssoulou Z, Giamarellou H. (2007). Detection of CTX-M-15 and CTX-M-32 a novel variant of CTX-M-15, in clinical Escherichia coli isolates in Greece. Int J Antimicrobial Agents, 29, 598–600.

Galimand M, Sabetcheva S, Courvalin P, Lambert T. (2005). Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrobial Agents Chemother, 49, 2949–2953.

García A, Navarro F, Miró E, Mirelis B, Campoy S, Coll P. (2005). Characterization of the highly variable region surrounding the blacTX-M-15 gene in non-related Escherichia coli from Barcelona. J Antimicrobial Chemother, 56, 819–826.

García Fernández A, Cloeckaert A, Bertini A, Praud K, Doubet B, Weill FX, Carattoli A. (2007). Comparative analysis of IncHI2 plasmids carrying blacTX-M-2 or blacTX-M-3 from Escherichia coli and Salmonella enterica strains isolated from poultry and humans. Antimicrobial Agents Chemother, 51, 4177–4180.

Gazouli M, Tzelepí E, Markogiannakis A, Legakis N, Tzouvelekis L. (1998a). Two novel plasmid-mediated cephalosporin-hydrolyzing beta-lactamases (CTX-M-5 and CTX-M-6) from Salmonella Typhimurium. FEMS Microbiol Lett, 165, 289–293.

Gazouli M, Tzelepí E, Sidorenko SV, Tzouvelekis L. (1998b). Sequence of the gene encoding a plasmid-mediated cephalosporin-hydrolyzing class A beta-lactamase (CTX-M-4): involvement of serine 237 in cephalosporin hydrolysis. Antimicrobial Agents Chemother, 42, 1259–1262.

Gierczynski R, Szyh J, Cieslik A, Rastawicki W, Jagielski M. (2003). The occurrence of the first two CTX-M-3 and TEM-1 producing isolates of Salmonella enterica serovar Oranienburg in Poland. Int J Antimicrobial Agents, 21, 497–499.

Gniadkowski M, Schneider I, Palucha A, Jungwirth R, Mikiewicz B, Bauernfeind A. (1998). Cefotaxime-resistant Enterobacteriaceae isolates from a hospital in Warsaw, Poland: identification of a new CTX-M-3 cephalosporin-hydrolyzing beta-lactamase that is closely related to the CTX-M-1/TEM-1 enzyme. Antimicrobial Agents Chemother, 42, 827–832.

Gonullu N, Aktas Z, Kayacan CB, Salcioglu M, Carattoli A, Yong DE, Walsh TR. (2008). Dissemination of CTX-M-15 beta-lactamase genes carried on IncFI and FII plasmids among clinical isolates of Escherichia coli in a university hospital in Istanbul, Turkey. J Clin Microbiol, 46, 1110–1112.

Govinden U, Mocktar C, Moodley P, Sturm AW, Essack SY. (2006). CTX-M-37 in Salmonella enterica serotype Isangi from Durban, South Africa. Int J Antimicrobial Agents, 28, 288–291.

Gómez-Garcés JL, Saéz D, Almagro M, Fernández-Romero S, Merino F, Campos J, Oteo J. (2011). Osteomyelitis associated to CTX-M-15-producing Aeromonas hydrophila: first description in the literature. Diagn Microbiol Infect Dis, 70, 420–422.

Harada S, Ishii Y, Saga T, Koyuama Y, Tateda K, Yamaguchi K. (2012). Chromosomal integration and location on IncT plasmids of the blacTX-M-15 gene in Proteus mirabilis clinical isolates. Antimicrobial Agents Chemother, 56, 1093–1096.

Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM. (2005). beta-Lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J Antimicrobial Chemother, 56, 115–121.

Heffernan HM, Woodhouse RE, Pope CE, Blackmore TK. (2009). Prevalence and types of extended-spectrum beta-lactamases among urinary Escherichia coli and Klebsiella spp. in New Zealand. Int J Antimicrobial Agents, 34, 544–549.

Ho PL, Ho AY, Chow KH, Wong RC, Duan RS, Ho WL, Mak GC, Tsang KW, Yam WC, Yuen KY. (2005a). Occurrence and molecular analysis of extended-spectrum beta-lactamase-producing Proteus mirabilis in Hong Kong, 1999–2002. J Antimicrobial Chemother, 55, 840–845.

Ho PL, Lo WU, Wong RC, Yeung MK, Chow KH, Que TL, Tong AH, Bao JY, Lok S, Wong SS. (2011). Complete sequencing of the FII plasmid pHK01, encoding CTX-M-14, and molecular analysis of its variants among Escherichia coli from Hong Kong. J Antimicrobial Chemother, 66, 752–756.

Ho PL, Shek RH, Chow KH, Duan RS, Mak GC, Lai EL, Yam WC, Tsang KW, Lai WM. (2005b). Detection and characterization of extended-spectrum beta-lactamases among bloodstream isolates.
of Enterobacter spp. in Hong Kong, 2000–2002. J Antimicrob Chemother, 55, 326–332.

Hopkins KL, Deheer-Graham A, Threlfall EJ, Batchelor MJ, Liebana E. (2006). Novel plasmid-mediated CTX-M-8 subgroup extended-spectrum beta-lactamase (CTX-M-40) isolated in the UK. Int J Antimicrob Agents, 27, 572–575.

Hopkins KL, Threlfall EJ, Karisik E, Wardle JK. (2008). Identification of novel plasmid-mediated extended-spectrum beta-lactamase CTX-M-57 in Salmonella enterica serovar Typhimurium. Int J Antimicrob Agents, 31, 85–86.

Hrabak J, Empel J, Gniadkowski M, Halbhuber Z, Rébl K, Urbásková P. (2008). CTX-M-15-producing Shigella sonnei strain from a Czech patient who traveled in Asia. J Clin Microbiol, 46, 2147–2148.

Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A. (2002). Beta-lactamases of Klyuyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother, 46, 3045–3049.

Ishii Y, Ohno A, Taguchi H, Imajo S, Ishiguro M, Matsuzawa H. (1995). Cloning and sequence of the gene encoding a cepotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli. Antimicrob Agents Chemother, 39, 2269–2275.

Izumiya H, Mori K, Higashide M, Tamura K, Takai N, Hirose K, Terajima J, Watanabe H. (2005). Identification of CTX-M-14 beta-lactamase in a Salmonella enterica serovar Enteritidis isolate from Japan. Antimicrob Agents Chemother, 49, 2568–2570.

Jacoby G, Bush K. (2012). β-Lactamase classification and amino acid sequences for TEM, SHV and ββX extended-spectrum and inhibitor resistant enzymes. http://www.lahey.org/Studies/.

Accessed on 1 March, 2012.

Kanamori H, Yano H, Hirakata Y, Endo S, Arai K, Ogawara M, Shimojima K, Shimakawa K. (2001). Hospital outbreak of MEN-1-derived cephalosporins. Antimicrob Agents Chemother, 28, 302–307.

Kariuki S, Corkill JE, Revathi G, Musoke R, Hart CA. (2001). Molecular cloning and characterization of CTX-M-8 subgroup extended-spectrum beta-lactamase (CTX-M-15) from E. coli isolate in Kenya. J Antimicrob Chemother, 52, 315–316.

Kim J, Lim YM, Jeong YS, Seol SY. (2011). Characterization of CTX-M-22 and TEM-141 encoded by a single plasmid from a clinical isolate of Enterobacter cloacae in China. Jpn J Infect Dis, 60, 295–297.

Liu W, Chen L, Li H, Duan H, Zhang Y, Liang X, Li X, Zou M, Xu L, Hawkey PM. (2009). Novel CTX-M-5 beta-lactamase gene type and spread into multiple species of Enterobacteriaceae in Changsha, Southern China. J Antimicrob Chemother, 63, 895–900.

Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Ayala I, Coque TM, Kern-Zdanowicz L, Luzzaro F, Poirel L, Woodford N. (2007). CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother, 59, 165–174.

Ma L, Ishii Y, Ishiguro M, Matsuzawa H, Yamaguchi K. (1998). Cloning and sequencing of the gene encoding Toho-2, a class A beta-lactamase preferentially inhibited by tazobactam. Antimicrob Agents Chemother, 42, 1181–1186.

Mahillon J, Chandler M. (1998). Insertion sequences. Microbiol Mol Biol Rev., 62, 725–774.

Marcadé G, Deschamps C, Boyd A, Gautier V, Picard B, Branger C, Denamur E, Arlet G. (2009). Replicon typing of plasmids in Escherichia coli producing extended-spectrum beta-lactamases. J Antimicrob Chemother, 63, 67–71.

Mazel D. (2006). Integrons: agents of bacterial evolution. Nat Rev Microbiol, 4, 608–620.

McGettigan SE, Hu B, Andreacchio K, Nachamkin I, Edelstein PH. (2009). Prevalence of CTX-M beta-lactamases in Philadelphia, Pennsylvania. J Clin Microbiol, 47, 2970–2974.

Mendonça N, Ferreira E, Louro D, Caniça M; ARSIP Participants. (2009). Molecular epidemiology and antimicrobial susceptibility of extended-, extended- and broad-spectrum beta-lactamase-producing Klebsiella pneumoniae isolated in Portugal. Int J Antimicrob Agents, 34, 29–37.

Minarini LA, Poirel L, Trevisani NA, Darini AL, Nordmann P. (2009). Proliferation of CTX-M-type extended-spectrum beta-lactamase genes among enterobacterial isolates from outpatients in Brazil. Diagn Microbiol Infect Dis, 65, 202–206.

Miró E, Mirelis B, Navarro F, Rivera A, Mesa RJ, Gómez L, Coll P. (2005). Surveillance of extended-spectrum beta-lactamases from clinical samples and faecal carriers in Barcelona, Spain. J Antimicrob Chemother, 56, 1112–1115.

Moubareck C, Daoud Z, Hakimé N, Hamzé M, Mangeney N, Matta H, Mokhtat JE, Rohban R, Sarkis DK, Doucet-Populaire F. (2005). Countrywide spread of community- and hospital-acquired extended-spectrum beta-lactamase (CTX-M-15)-producing Enterobacteriaceae in Lebanon. J Clin Microbiol, 43, 3309–3313.

Mshana SE, Imizazloulou C, Hossain H, Hain T, Domann E, Chakraborty T. (2009). Conjugative IncF1 plasmids carrying CTX-M-15 among Enterobacteria coli EsBL producing isolates at a University hospital in Germany. BMC Infect Dis, 9, 97.

Monday CJ, Boyd DA, Brenwald N, Miller M, Andrews JM, Wise R, Mulvey MR, Hawkey PM. (2004). Molecular and kinetic comparison of the novel extended-spectrum beta-lactamases CTX-M-25 and CTX-M-26. Antimicrob Agents Chemother, 48, 4829–4834.

Naas T, Betchouala C, Cuzon G, Yuou S, Lezzaar A, Smati F, Nordmann P. (2011). Outbreak of Salmonella enterica serotype Infantis producing ArmA 165 RNA methylase and CTX-M-15 extended-spectrum β-lactamase in a neonatology ward in Constantine, Algeria. Int J Antimicrob Agents, 38, 135–139.
Nagano N, Nagano Y, Cordevant C, Shibata N, Arakawa Y. (2004). Nosocomial transmission of CTX-M-2 beta-lactamase-producing \textit{Acinetobacter baumannii} in a neurosurgery ward. \textit{J Clin Microbiol}, 42, 3978–3984.

Nagano Y, Nagano N, Wachino J, Ishikawa K, Arakawa Y. (2009). Novel chimeric beta-lactamase CTX-M-64, a hybrid of CTX-M-15-like and CTX-M-14 beta-lactamases, found in a \textit{Shigella sonnei} strain resistant to various oxyimino-cephalosporins, including ceftazidime. Antimicrob Agents Chemother, 53, 69–74.

Naseer U, Sundsfjord A. (2011). The CTX-M conundrum: dissemination of plasmids and \textit{Escherichia coli} clones. Microb Drug Resist, 17, 83–97.

Navarrete-Venezia S, Chmelinski Y, Leavitt A, Carmeli Y. (2008). Dissemination of the CTX-M-25 family beta-lactamases among \textit{Klebsiella pneumoniae}, \textit{Escherichia coli} and \textit{Enterobacter cloacae} and identification of the novel enzyme CTX-M-41 in \textit{Proteus mirabilis} in Israel. J Antimicrob Chemother, 62, 289–295.

Navarro, A, Cantón R, Valverde A, Machado E, Galán JC, Peixe L, Carattoli A, Baquero F, Coque TM. (2006). Dissemination and persistence of \textit{bla}\textsubscript{CTX-M-14} clones. Microb Drug Resist, 12, 243–250.

Nagano N, Nagano Y, Cordevant C, Mantella A, Di Maggio T, Gamboa Pallecchi L, Bartoloni A, Fiorelli C, Mantella A, Di Maggio T, Gamboa A, Baquero F, Coque TM. (2006). Dissemination and persistence of CTX-M-14 extended-spectrum beta-lactamase in clinical isolates of \textit{Klebsiella pneumoniae}, \textit{Escherichia coli}, and \textit{Enterobacter cloacae}. Antimicrob Agents Chemother, 50, 616–620.

Olson AB, Silverman M, Boyd DA, McGeer A, Willey BM, Pong-Porter Qi C, Pilla V, Yu JH, Reed K. (2010). Changing prevalence of \textit{Escherichia coli} with CTX-M-type extended-spectrum beta-lactamases in outpatient urinary \textit{E. coli} between 2003 and 2008. Diagn Microbiol Infect Dis, 67, 87–91.

Quinteros M, Radice M, Gardella N, Rodriguez MM, Costa N, Cordevant C, Mantella A, Di Maggio T, Gamboa

Pai H, Choi EH, Lee HJ, Hong JY, Jacoby GA. (2001). Identification of KPC-2 identified in an \textit{Escherichia coli} strain and an \textit{Enterobacter cloacae} strain isolated from the same patient in France. Antimicrob Agents Chemother, 52, 3725–3736.

Philippon A, Labinia R, Jacoby G. (1989). Extended-spectrum beta-lactamases. Antimicrob Agents Chemother, 33, 1131–1136.

Poirel L, Decousser JW, Nordmann P. (2003). Insertion sequence IS\text{Ecp}1B is involved in expression and mobilization of a \textit{bla}\textsubscript{CTX-M-15} beta-lactamase gene. Antimicrob Agents Chemother, 47, 2938–2945.

Poirel L, Gniadkowski M, Nordmann P. (2002a). Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J Antimicrob Chemother, 50, 1031–1034.

Potz NA, Hope R, Warner M, Johnson AP, Livermore DM; London & South East ESBL Project Group. (2006). Prevalence and mechanisms of cephalosporin resistance in \textit{Enterobacteriaceae} in London and South-East England. J Antimicrob Chemother, 58, 320–326.

Qi C, Pilla V, Yu JH, Reed K. (2010). Changing prevalence of \textit{Escherichia coli} with CTX-M-type extended-spectrum beta-lactamases in outpatient urinary \textit{E. coli} between 2003 and 2008. Diagn Microbiol Infect Dis, 67, 87–91.

Quinteros M, Radice M, Gardella N, Rodriguez MM, Costa N, Cordevant C, Mantella A, Di Maggio T, Gamboa

Peizrano G, Richardson D, Nigrin J, McGeer A, Loo V, Toye B, Alfa M, Pienaar C, Kibsey P, Pitout JD. (2010). High prevalence of ST131 isolates producing CTX-M-15 and CTX-M-14 among extended-spectrum-beta-lactamase-producing \textit{Escherichia coli} isolates from Canada. Antimicrob Agents Chemother, 54, 1327–1330.

Petrella S, Ziental-Gelus N, Mayer C, Renard M, Jarlier V, Sougakoff W. (2008). Genetic and structural insights into the dissemination potential of the extremely broad-spectrum class A beta-lactamase

© 2013 Informa Healthcare USA, Inc.
Sabaté M, Navarro F, Míró E, Campoy S, Mirelis B, Barbé J, Prats G. (2002). Novel complex sulI-type integron in Escherichia coli carrying blaCTX-M-9. Antimicrob Agents Chemother, 46, 2656–2661.

Sabaté M, Tarragó R, Navarro F, Míró E, Vergés C, Barbé J, Prats G. (2000). Cloning and sequence of the gene encoding a novel cefotaxime-hydrolyzing beta-lactamase (CTX-M-9) from Escherichia coli in Spain. Antimicrob Agents Chemother, 44, 1970–1973.

Saladin M, Cao VT, Lambert T, Donay JL, Herrmann JL, Olud-Hocine Z, Verdet C, Delisle F, Philippin A, Arlet G. (2002). Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett, 209, 161–168.

Sarria JC, Vidal AM, Kimbrough RC 3rd. (2001). Infections caused by Klyuyvera species in humans. Clin Infect Dis, 33, E69–E74.

Schneider I, Queenan AM, Markovska R, Markova B, Keuleyan E, Sarria JC, Vidal AM, Kimbrough RC 3rd. (2000). Ecp1. Novel insertion sequence, ISCR1. Plasmid, 44, 3–9.

Song W, Kim J, Bae IK, Jeong SH, Seo YH, Shin JH, Jang SJ, Uh Y, Shin H. (2008). The blaTX-M-2 and associated with a Tn21-like element. Antimicrob Agents Chemother, 50, 799–802.

Stokes HW, Hall RM. (1989). A novel family of potentially mobile (2010). High prevalence of CLSI beta-lactamase-producing Enterobacteriaceae during nonoutbreak situations in Spain. J Clin Microbiol, 42, 4769–4775.

Stokes HW, Tomaras C, Parsons Y, Hall RM. (1993). The partial 3’-conserved segment duplications in the integrons In6 from pSa and In7 from pDG0100 have a common origin. Plasmid, 30, 39–50.

Stürenburg E, Kühn A, Mack D, Laufs R. (2004). A novel extended-spectrum beta-lactamase CTX-M-23 with a P167T substitution in the active-site omega loop associated with cefazidime resistance. J Antimicrob Chemother, 52, 1297–1301.

Stokes HW, Hall RM. (1989). A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol, 3, 1669–1683.

Stokes HW, Tomaras C, Parsons Y, Hall RM. (1993). The partial 3’-conserved segment duplications in the integrons In6 from pSa and In7 from pDG0100 have a common origin. Plasmid, 30, 39–50.

Tian GB, Adams-Haduch JM, Qureshi ZA, Wang HN, Doi Y. (2010). CTX-M-35 extended-spectrum beta-lactamase conferring ceftazidime resistance in Citrobacter koseri. Int J Antimicrob Agents, 35, 412–413.

Tian SF, Chen BY, Chu YZ, Wang S. (2008). Prevalence of rectal carriage of extended-spectrum beta-lactamase-producing Escherichia coli among elderly people in community settings in China. Can J Microbiol, 54, 781–785.

Toleman MA, Bennett PM, Walsh TR. (2006). ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev, 70, 296–316.

Toukdrarian A. (2004). Plasmid strategies for broad-host-range replication in Gram-negative bacteria. In: Funnell B and Phillips G, ed. Plasmid Biology. Washington DC, ASM Press, 259–270.

Valverde A, Cantón R, Galán JC, Nordmann P, Baquero F, Coque TM. (2009). Spread of blaCTX-M-15 is driven mainly by In117, an unusual In0-like class 1 integron containing CR1 and blaCTX-M-9, and associated with a Tn21-like element. Antimicrob Agents Chemother, 50, 797–802.

Valverde A, Cantón R, García-Lancar BM, Novais A, Galán JC, Alvarado A, de la Cruz F, Baquero F, Coque TM. (2009). Ecp1. Novel insertion sequence, ISCR1. Plasmid, 44, 3–9.

Wu JJ, Chen HM, Ko WC, Wu HM, Tsai SH, Yan JJ. (2008). Prevalence of extended-spectrum beta-lactamases in Proteus mirabilis in Korea. Antimicrob Agents Chemother, 52, 1297–1301.

Yin J, Cheng J, Sun Z, Ye Y, Gao YF, Li JB, Zhang XJ. (2009). Emergence of CTX-M-3, TEM-1 and a new CMY-4. In Proteus mirabilis. In China. J Microbiol, 59, 1273–1276.

Ye Y, Xu XH, Li JB. (2010). Emergence of CTX-M-3, TEM-1 and a new plasmid-mediated MOX-4 AmpC in a multiresistant Aeromonas caviae isolate from a patient with pneumonia. J Med Microbiol, 59, 843–847.

Yin J, Cheng J, Sun Z, Ye Y, Gao YF, Li JB, Zhang XJ. (2009). Characterization of two plasmid-encoded ceftoxitamases found in clinical Escherichia coli isolates: CTX-M-64 and a novel enzyme, CTX-M-14. In Proteus mirabilis in a Taiwanese university hospital, 1999 to 2005: identification of a novel CTX-M enzyme (CTX-M-66). Diagn Microbiol Infect Dis, 60, 169–175.

Ye Y, Xu XH, Li JB. (2010). Emergence of CTX-M-3, TEM-1 and a new plasmid-mediated MOX-4 AmpC in a multiresistant Aeromonas caviae isolate from a patient with pneumonia. J Med Microbiol, 59, 843–847.

Yin J, Cheng J, Sun Z, Ye Y, Gao YF, Li JB, Zhang XJ. (2009). Characterization of two plasmid-encoded ceftoxitamases found in clinical Escherichia coli isolates: CTX-M-64 and a novel enzyme, CTX-M-14. In Proteus mirabilis in a Taiwanese university hospital, 1999 to 2005: identification of a novel CTX-M enzyme (CTX-M-66). Diagn Microbiol Infect Dis, 60, 169–175.

Yin J, Cheng J, Sun Z, Ye Y, Gao YF, Li JB, Zhang XJ. (2009). Characterization of two plasmid-encoded ceftoxitamases found in clinical Escherichia coli isolates: CTX-M-64 and a novel enzyme, CTX-M-14. In Proteus mirabilis in a Taiwanese university hospital, 1999 to 2005: identification of a novel CTX-M enzyme (CTX-M-66). Diagn Microbiol Infect Dis, 60, 169–175.

Zhang Y, Zhou H, Shen XQ, Shen P, Yu YS, Li LJ. (2008). Plasmid-borne blaTEM-1 extended-spectrum beta-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin Microbiol Infect, 16, 1475–1481.
Zhao WH, Hu ZQ. (2011b). Epidemiology and genetics of VIM-type metallo-
ß-lactamases in Gram-negative bacilli. Future Microbiol, 6, 317–333.
Zhao WH, Hu ZQ. (2012). Acinetobacter: a potential reservoir and
dispenser for ß-lactamases. Crit Rev Microbiol, 38, 30–51.
Zong Z, Partridge SR, Iredell JR. (2010). ISEcpt1-mediated transposition
and homologous recombination can explain the context of bla
CTX-M-62
linked to qnrB2. Antimicrob Agents Chemother, 54, 3039–3042.
Zong Z, Partridge SR, Thomas L, Iredell JR. (2008). Dominance of
bla
CTX-M
within an Australian extended-spectrum beta-lactamase
gene pool. Antimicrob Agents Chemother, 52, 4198–4202.

al Naiemi N, Bart A, de Jong MD, Vandenbroucke-Grauls CM, Rietra
Pi, Debets-Ossenkopp YJ, Wever PC, Spanjaard L, Bos AJ, Duim
B. (2006). Widely distributed and predominant CTX-M extended-
spectrum beta-lactamases in Amsterdam, The Netherlands. J Clin
Microbiol, 44, 3012–3014.
de Oliveira Garcia D, Doi Y, Szabo D, Adams-Haduch JM, Vaz TM, Leite D,
Padoveze MC, Freire MP, Silveira FP, Paterson DL. (2008). Multiclonal
outbreak of Klebsiella pneumoniae producing extended-spectrum beta-
lactamase CTX-M-2 and novel variant CTX-M-59 in a neonatal intensive
care unit in Brazil. Antimicrob Agents Chemother, 52, 1790–1793.