Marriage à-la-MOND: Baryonic dark matter in galaxy clusters and the cooling flow puzzle

Mordehai Milgrom

Center for Astrophysics, Weizmann Institute

Abstract

I start with a brief introduction to MOND phenomenology and its possible roots in cosmology—a notion that may turn out to be the most far reaching aspect of MOND. Next I discuss the implications of MOND for the dark matter (DM) doctrine: MOND’s successes imply that baryons determine everything. For DM this would mean that the puny tail of leftover baryons in galaxies wags the hefty DM dog. This has to occur in many intricate ways, and despite the haphazard construction history of galaxies—a very tall order. I then concentrate on galaxy clusters in light of MOND, which still requires some yet undetected cluster dark matter, presumably in some baryonic form (CBDM). This CBDM might contribute to the heating of the x-ray emitting gas and thus alleviate the cooling-flow puzzle. MOND, qua theory of dynamics, does not directly enter the microphysics of the gas; however, it does force a new outlook on the role of DM in shaping the cluster gasdynamics: MOND tells us that the cluster DM is not cold dark matter, is not so abundant, and is not expected in galaxies; it is thus not subject to constraints on baryonic DM in galaxies. The mass in CBDM required in a whole cluster is, typically, similar to that in hot gas, but is rather more centrally concentrated, totally dominating the core. The CBDM contribution to the baryon budget in the universe is thus small. Its properties, deduced for isolated clusters, are consistent with the observations of the “bullet cluster”. Its kinetic-energy reservoir is much larger than that of the hot gas in the core, and would suffice to keep the gas hot for many cooling times. Heating can be effected in various ways depending on the exact nature of the CBDM, from very massive black holes to cool, compact gas clouds.

Key words: Galaxy Clusters, Cosmology, dark matter

1. introduction

Recent observations of the cores of galaxy clusters have undermined the long standing “cooling flow” paradigm. These observations do not detect the expected telltale signs of cooling, and thus point to some, still moot, mechanism that heats the core gas and keeps it at an elevated temperature despite its short cooling time (for recent reviews see, e.g., Bauer et al. 2005; Peterson and Fabian 2006; Sanderson et al. 2006). Several heating mechanism have been proposed. The most popular, at present, seems to be heating by central AGN activity (See, e.g., Peterson et al. 2003, Omma et al. 2004, and Nipoti and Binney 2005 for a discussion of its pros and cons). Dark matter (DM), in its presently favored variety of weakly interacting particles, is not deemed a factor in these considerations, as it does not affect the gasdynamics in the core (but see, e.g., Chuzhoy and Nusser 2006 for possible effects of more strongly interacting DM).

MOND was introduced as an alternative to Newtonian dynamics that seeks to explain the dynamics in galactic systems without DM. It, arguably, works very well for galaxies, galaxy groups, and super clusters, and has made considerable theoretical headway (for reviews see, e.g., Sanders and McGaugh 2002, Scarpa 2006, Bekenstein 2006, Milgrom 2008). But
in galaxy clusters MOND does not completely explain away the mass discrepancy. This is particularly so in the very cores of clusters where a large remaining discrepancy is found. So even with MOND one has to invoke yet undetected matter peculiar to clusters: presumably in some baryonic form, hereafter CBDM. Massive neutrinos with mass near the present experimental upper limit of 2 eV were also proposed (Sanders 2003, 2007).

MOND determines the overall potential field in the cluster, but does not directly affect the microphysics of the cooling flow and core gas. It does, however, shed new light on the possible role of DM in cluster gasdynamics: (i) Unlike the standard view according to which the DM constituents are weakly interacting particles, in the context of MOND the cluster DM is likely to be baryonic; so, it can possibly interact with the gas in ways relevant to the cooling puzzle. (ii) According to MOND, this CBDM is peculiar to clusters; so, it is not subject to the stringent constraints we have on ubiquitous baryonic DM candidates in galaxies (e.g., Carr and Sakellariadou 1999, Carr 2000, Kamaya and Silk 2002). (iii) Although in the inner parts of clusters, the required amount of CBDM is large compared with that observed in stars and gas, the total amount required for the cluster at large is comparable to the mass of the hot gas. This renders the baryonic option more palatable. It also greatly relaxes constraints on baryonic DM in clusters based on standard dynamics, which requires 5-10 times more DM. Such small quantities of a new baryonic component easily satisfy nucleosynthesis constraints.

I discuss the possibility that such a baryon component could keep the core gas from cooling precipitously, thus helping alleviate the “cooling flow” puzzle. The total kinetic energy budget of the CBDM is known, and is sufficient to supply heating for many Hubble times. The idea of heating the cluster gas with baryonic DM is not new (e.g., Walker 1999), but as explained above, it takes quite a different shape in the context of MOND.

I start by reviewing in section 2 the basic phenomenology of MOND, and its possible origin in cosmology; its significance and implications for the DM paradigm are discussed in section 3. In section 4 I summarize what MOND tells us about DM in clusters. In section 5 I list candidates for the CBDM and discuss heating mechanisms.

2. An overview of MOND phenomenology

MOND can be described as a modification of dynamics at low accelerations (Milgrom 1983a). More precisely, the MOND paradigm rests on the following premises: (i) There appears a new constant in dynamics, \(a_0 \), with the dimensions of acceleration. (ii) In the formal limit \(a_0 \to 0 \) classical (pre-MOND) dynamics is restored. (iii) For purely gravitational systems, in the deep-MOND limit, \(a_0 \to \infty \), the limiting equations can be brought to a form in which the constants \(a_0 \) and \(G \), and all masses in the problem, \(m_i \), appear only as \(m_i a_0 G \) (Milgrom 2005). This is a fiat that guarantees the required MOND phenomenology in purely gravitational systems.

These requirements can be incorporated in various MOND theories. For example, in the nonrelativistic regime one can modify the Poisson equation for the gravitational field (Bekenstein and Milgrom 1984), or one can modify the kinetic action of particles leading to modified inertia (Milgrom 1994a). It follows from the basic assumptions that any MOND theory must be nonlinear even in the nonrelativistic regime (see e.g., Milgrom 2008 for details). From the above MOND tenets (and the assumption that \(a_0 \) is the only new dimensioned constant) also follow some important scaling laws (under which \(a_0 G \) is invariant) for the deep MOND limit of purely gravitational systems in any MOND theory (see Milgrom 2008 for more details): The theory is invariant under scaling of the radii \(r \to \lambda r \), and times \(t \to \lambda t \) (masses are unscaled). (This is part of the conformal invariance, in space alone, of the deep MOND limit in a particular formulation of MOND–Milgrom 1997).

As a consequences of this scaling invariance we deduce that if \(\mathbf{r}(t) \) is a trajectory of a body in a configuration of masses \(m_i \) at positions \(\mathbf{r}_i(t) \), then \(\mathbf{\tilde{r}}(t) = \lambda \mathbf{r}(t/\lambda) \) is a trajectory for the configuration where \(m_i \) are at \(\lambda \mathbf{r}_i(t/\lambda) \), and the velocities on that trajectory are \(\mathbf{\tilde{v}}(t) = \mathbf{v}(t/\lambda) \). There is another scaling property: if we scale all the masses, all trajectory paths remain the same but the body traverses them with all velocities scaling as \(m^{1/4} \).

Ultimately, one would like to incorporate these principles in a relativistic extension of General Relativity. The state of the art of this effort is the TeVeS theory and its derivatives (Bekenstein 2004, and Bruneton and Esposito-Farese 2007). I shall not discuss theories here; for a recent review see Bekenstein (2006). The theories proposed so far involve a free function that essentially interpolates between
the above two limits.

Schematically, a_0 plays a similar role to c in relativity, or to \hbar in quantum theory. On one hand, they all mark the boundaries between the classical and the modified regimes; so formally pushing these boundaries to the appropriate limits ($c \to \infty$, $\hbar \to 0$, or $a_0 \to 0$) one restores the corresponding classical theory. On the other hand, these constants also feature prominently in the physics of the modified regime and appear in various phenomenological relations. Examples of such relations for \hbar are: the black body spectrum, the photoelectric effect, the Hydrogen atomic spectrum, the quantum Hall effect, etc.. For c we could mention the (relativistic) Doppler effect, the mass-velocity relation, the lifetime-velocity relation, and the radius of a black hole. These relations, in themselves, are independent in the sense that they do not follow from each other and are made related only through the underlying theory. The MOND paradigm similarly predicts a number of laws relating to galactic motions, some of which are qualitative, but many of which are quantitative and involve a_0; they may be likened to Kepler’s laws of planetary motion. More details of these predictions and how they follow in MOND can be found in Milgrom (2008). Here is a partial list of such laws.

1. The rotation curves for an isolated mass is asymptotically flat: $V(r) \to V_\infty$ (Milgrom 1983b). This follows for all MOND theories from the above mentioned scaling of length and time.

2. The mass-velocity relation (aka the baryonic TF relation) between the total mass of a body and its V_∞: $V_\infty = MG/a_0$ (Milgrom 1983b, see analysis in McGaugh 2005a, and Fig. 1 here). This also follows in all MOND theories from the above mentioned scaling of orbital velocities with mass in the deep MOND limit.

3. In disc galaxies with high central accelerations the mass discrepancy appears always around the transition radius, $r_t \equiv (MG/a_0)^{1/2}$, r_t plays a special role (somewhat akin to that of the Schwarzschild radius in General Relativity). For example, a shell of phantom DM may appear in the vicinity of r_t (Milgrom and Sanders 2007).

4. For a concentrated mass, M, well within its transition radius, $r_t \equiv (MG/a_0)^{1/2}$, r_t plays a special role (somewhat akin to that of the Schwarzschild radius in General Relativity). For example, a shell of phantom DM may appear in the vicinity of r_t (Milgrom and Sanders 2007).

5. Isothermal spheres have mean surface densities $\Sigma \lesssim a_0/G$ (Milgrom 1984) underlying the Fish law for quasi-isothermal stellar systems (see discussion in Sanders and McGaugh 2002).

6. A mass-velocity-dispersion relation $\sigma^4 \sim MGa_0$ underlying the Faber-Jackson relation for elliptical galaxies (Milgrom 1984, 1994b).

7. There is a difference in the stability properties of discs with mean surface density $\Sigma \lesssim a_0/G$ and with $a_0/G \lesssim \Sigma$ (Milgrom 1989a, Brada and Milgrom 1999b, Toret and Combes 2007).

8. The excess acceleration that MOND produces over Newtonian dynamics, for a given mass, cannot much exceed a_0 (Brada and Milgrom 1999a, as confirmed for a sample of disc galaxies by Milgrom and Sanders 2005).

9. An external acceleration field, g_e, affects the internal dynamics of a system imbedded in it. For example, if the system’s intrinsic acceleration is smaller than g_e, and both are smaller than a_0, the internal dynamics are quasi-Newtonian with an effective gravitational constant $\approx G a_0/g_e$ (Milgrom 1983a, 1986a, Bekenstein and Milgrom 1984, with applications in e.g., Brada and Milgrom 2000a,b, Angus and McGaugh 2007, and

1 The nominal Kepler laws were all discovered before the underlying theory of Newtonian dynamics was propounded. From this theory additional “Kepler’s laws” can be deduced, such as the dependence of the Kepler constant on the mass of the central star. MOND was constructed by assuming only one law—the asymptotic flatness of rotation curves—based on rather anecdotal evidence existing at the time, and it was helped by a rough constraint from the Tully-Fisher relation. MOND then elevated these two into absolute predictions (replacing the original, velocity-luminosity Tully-Fisher relation by one between velocity and total mass, and predicting the exact power in this relation, still moot at the time).
Wu et al. 2007). Some aspects of this prediction violate the strong equivalence principle, and thus conflict with the predictions of DM.

10. The thin lens approximation breaks down in MOND, which also conflicts with the prediction of DM.

11. Disc galaxies have a disc “DM” component in addition to a spheroidal one (Milgrom 2001). See confirming analysis in Milgrom (2001), Kalberla et al. (2007), and Sánchez-Salcedo, Saha, and Narayan (2007). This prediction conflicts with the expectation from CDM.

12. Negative density of “dark matter” is predicted in some locations (Milgrom 1986b). Again this conflicts with predictions of DM.

These predictions are all independent in the sense that one can construct galaxy models of baryons plus DM such that any subset of these relations are satisfied but not any of the others. Thus, in the context of DM they will each require its own separate explanation. In fact, as I indicated, some of these have implications that conflict with the predictions of CDM, and among them some that conflict with any form of DM.

But, the flagship of MOND phenomenology is the detailed prediction of the full rotation curves of individual disc galaxies from their observed baryonic mass alone. Its importance was evident from the outset (Milgrom 1983b); but, testing this prediction had to await the advent of extended rotation curves afforded by HI observations: Rotation curve analysis in MOND started only some five years after it appeared, with Kent (1987) and the rectifying sequel by Milgrom (1988). Some of the subsequent studies where by Begeman et al. (1991), Sanders and Verheijen (1998), de Blok and McGaugh (1998), Bottema et al. (2002), Gentile et al. (2004), Corbelli and Salucci (2007), Sanders and Noordermeer (2007), and Barnes et al. (2007). There are now of the order of 100 galaxies for which MOND has been tested in this way: one uses the observed baryonic mass in a disc galaxy to predict the observed rotation curve according to MOND (converting stellar light to mass using the M/L value—mass to light ratio—a free parameter). It is, of course, the complete failure of this procedure with Newtonian dynamics that leads to DM in galaxies. MOND is performing extremely well in this regard. I show examples in Fig. 2 for three galaxies of rather different properties: from the low mass, low acceleration, gas dominant NGC 1560, through the intermediate NGC 3657, to the high mass, high acceleration, stellar-mass-dominated NGC 2903. More examples are shown in Fig. 3. Not only are the full rotation curves well fit with the above single parameter, but in gas dominated galaxies even this parameter is almost immaterial, and MOND then practically predicts the rotation curve. When the M/L parameter is important, its values, obtained with the MOND 1-parameter fits, are in good agreement with theoretical, population-synthesis estimates (e.g., Sanders and Verheijen 1998).

2.1. a_0

The constant a_0 appears in several of the above MOND laws of galactic motions, and its value was initially determined, with consistent results, by appealing to them (Milgrom 1983b). However, the best leverage on a_0 comes now from rotation curve analysis. For example, the value found in Milgrom (1988) was $a_0 \approx 1.3 \times 10^{-8}\text{cm s}^{-2}$, and Begeman et al. (1991) found, with better data, $a_0 \approx 1.2 \times 10^{-8}\text{cm s}^{-2}$ (both with $H_0 = 75 \text{ km s}^{-1}\text{Mpc}^{-1}$). It was noted in Milgrom (1983a) that $a_0 \approx cH_0/2\pi$, and because of the still mysterious cosmic coincidence ($\Omega_\Lambda \sim 1$) we also have $a_0 \approx c(\Lambda/3)^{1/2}/2\pi$.

In the context of quantum theory, the Planck length and the Planck mass, constructed from h, G and c, tell us where we can expect combined effects of strong gravity and quantum physics. Similarly, a_0 defines a length scale, $l_0 \equiv c^2/a_0 \approx 10^{-38}\text{cm}$, and a mass, $M_0 \equiv c^3/a_0G \approx 6 \times 10^{43}\text{M}_\odot$, that tell us where to expect MOND effects combined with strong gravity. In view of the above coincidences of a_0 with cosmological acceleration parameters, l_0 and M_0 are of the order of the Hubble radius $\ell_0 \approx 2\pi l_H$, with $l_H \equiv cH^{-1} \approx c(\Lambda/3)^{-1/2}$, and the cosmological mass parameter (“the mass within the horizon”), $M_0 \approx 2\pi M_U$, with $M_U \equiv c^3 G^{-1}(\Lambda/3)^{-1/2} \approx c^3 G^{-1}H_0^{-1}$, respectively. This means that combined effects are expected only for the universe at large, and that there are no strongly MONDish black holes.

These coincidences may point to a connection between MOND and cosmology: either the same new physics explain MOND and the “dark energy” effects, or MOND is an expression in local physics of whatever agent is responsible for the observed cosmic acceleration (as embodied in Λ). If the param-
Fig. 2. The observed and MOND rotation curves (in solid lines) for NGC 3657 (left), NGC 1560 (center), and NGC 2903 (right). The first from Sanders (2006), the last two from Sanders and McGaugh (2002). Points are data, dashed and dotted lines for the last two galaxies are the Newtonian curves calculated for the stars and gas alone; the reverse for the first (they add in quadrature to give the full Newtonian curve).

Fig. 3. Additional MOND rotation curves from Sanders (1996) and de Blok & McGaugh (1998) (left) and from Sanders & Verheijen (1998) (right). (MOND curves in solid; stellar disc Newtonian curves in dotted; gas in dot-dash; and stellar bulge in long dashed.)

\[a_c = \frac{M_U}{\ell_H^2} = \frac{c H_0}{\Lambda} \approx c (\Lambda/3)^{1/2} \] is somehow felt by local physics, it may not be surprising that dynamics is different for acceleration above and below this value. But why is it that cosmology enters local physics through its characteristic acceleration and not, for example, through its characteristic mass or length? I discussed possible reasons in Milgrom (1999). Note that a similar thing happens in the way earth’s gravity enters the dynamics in experiments close to its surface: There, a “constant of nature”–the Galilei free-fall acceleration, \(g = M_\oplus G / R_\oplus^2 \), appears in the dynamics. If we know the escape speed, \(v_{esc} = (2 M_\oplus G / R_\oplus)^{1/2} \), or the orbital speed on a near earth orbit \(v_{orb} = (M_\oplus G / R_\oplus)^{1/2} \), which can serve as possible analogs of \(c \), we would note the relation between this, \(g \), and \(R_\oplus \), which is essentially the same as that between, \(c \), \(a_0 \), and \(\ell_H \). We would then probably deduce that the relation is a sign that
Galilean free fall is an effective law resulting from a deeper theory, which, of course, it is.

Its relation with cosmological parameters raises the possibility that a_0 varies with cosmic time (Milgrom 1989b, 2002). If it is always related to cH_0 in the same way, or if it is related to the density of “dark energy”, and this changes, then a_0 would follow suit. It is also possible, however, that Λ is a constant and so is a_0. The possibility of a variable a_0 opens up interesting possibilities. Such variations may, in turn, induce secular evolution in galactic systems; for example, the mass-velocity relations dictate that the velocities in a system of a given mass should decrease with the cosmological decrease in a_0 (like $a_0^{1/4}$ in the deep MOND regime), and this would be accompanied by changes in radius, since adiabatic invariants, such as possibly rv, have to stay fixed (Milgrom 1989b). Such variations in a_0 could also be in the basis of the cosmological coincidence $\Omega_\Lambda \sim 1$ via anthropic considerations (Milgrom 1989b, Sanders 2001). Also, the general connection of MOND with cosmology, and, in particular, the possibility of a_0 varying, may provide a mechanism for inducing a local arrow of time by the cosmological one. For example, if in an expanding universe a_0 decreases, this fact is felt by small local system, and can induce a preferred direction of evolution in them.

Analyzing the data of Genzel et al. (2006) on the rotation curve of a galaxy at $z = 2.38$, I find that they are consistent with MOND with the local value of a_0; but, the large error margins, and the fact that at the last measured point the galaxy is only marginally MONDish, still allow appreciable variations of a_0 with red-shift.

MOND, as it is formulated at present, does not, in my opinion, provide a clear-cut tool for treating cosmology (including the appearance of cosmological DM). It is possible that the understanding of cosmology within MOND will come together with the understanding of MOND within cosmology, in the sense alluded to above.

3. Significance for the DM paradigm

Can the successes of MOND simply reflect the workings of DM, which are, somehow, summarized by a very simple unifying formula? Can the ubiquitous appearance of the constant a_0 in seemingly independent galactic phenomena emerge, somehow, from the DM paradigm?

The Newtonian-dynamics-with-DM paradigm differs greatly from MOND as regards the origin and nature of mass discrepancies they predict in galactic systems. In MOND, these discrepancies are not real; the full dynamics in a given system, including the imaginary discrepancies, are predicted uniquely from the presently observed (baryonic) mass distribution. In particular, the pattern of these discrepancies is predicted, and is observed, to follow the well defined relations discussed in section 2. In the language of DM one can say that MOND predicts that the distribution of normal matter (baryons) fully determines all aspects of the DM distribution in each and every galactic system. In contrast, in the DM paradigm the expected distributions of the two components depend strongly on details of the particular history of the system, since the two are subject to different influences. The formation process of a given galactic system and its ensuing unknowable history of mergers, cannibalism, gas accretion, ejection of baryons by supernovae and/or ram pressure stripping, etc., all go into determining the present amount, and distribution, of baryons and of DM. A strong and direct evidence for such differentiation comes from the recent realization that the ratio of baryon mass to the DM mass required in galaxies is much smaller than the cosmic value, with which protogalaxies should have started their way (by an order of magnitude, typically). This evidence comes, for example, from probing large galactic radii with weak lensing; e.g. by Kleinheinrich et al. (2004), Mandelbaum et al. (2005), and by Parker et al. (2007) (see also McGaugh 2007 for evidence based on small radius data with CDM modeling). Even for galaxy clusters there is now some preliminary evidence that the observed baryon fraction is a few tens of percents smaller than the cosmic value (Afshordi et al. 2007 and references therein).

Another acute example of the large variety of baryon vs. DM properties expected in the DM paradigm is brought into focus by the recent observation of large mass discrepancies in three tidal-debris dwarf galaxies (Bournaud et al. 2007). In view of their specific formation scenario, hardly any CDM is predicted in them in the CDM paradigm. This is very different from what is expected in primordial dwarfs, and contrary to what is observed. These dwarfs conform nicely to the predictions of MOND, which are based only on their presently observed properties (Milgrom 2007, Gentile et al. 2007)

How, then, can the haphazard and small amount of leftover baryons in galaxies determine so many of
the properties of the dominant DM halo, with such accuracy as evinced by MOND? I deem it quite inconceivable that DM will ever explain MOND and the relations it predicts for individual systems. Achieving this within the complex scenario of galaxy formation in the DM paradigm would be akin to predicting the details of a planetary system–planet masses, radii, and orbits–from knowledge of only the properties of the central star.

Indeed, to my knowledge none of the MOND predictions listed in section 2 has been shown to follow in the DM paradigm even as just statistical correlations, to say nothing of actual predictions for individual systems. Even the Tully-Fisher-like relation that has been harnessed to follow from LCDM requires a strong assumption on the present day baryon fraction in galaxies and on how it varies among galaxies (originally the ratio was assumed to be universal and equal to the cosmic value); but the DM paradigm does not come close to predicting this ratio. Not only isn’t the general correlation predicted, but the processes that caused only a small fraction of the original baryons to show up in present day galaxies are likely to have produced a large scatter in this ratio, and hence in the predicted baryon-mass-velocity relation, unlike what is observed.

Note also, in the context of our very subject here, that recent comparisons of LCDM simulation with observations of galaxy clusters show a clear discrepancy: observed mass distributions in the cores are significantly more centrally concentrated than those predicted by LCDM (Hennawi et al. 2007, Broadhurst & Barkana 2008).

To recapitulate, the fact that the MOND laws are satisfied in nature speaks against the Newtonian-dynamics-plus-DM paradigm in two ways: First, because it supports MOND as a competing paradigm. Second, because in itself, and without reference to MOND, this fact directly disagrees with the expectations from the DM paradigm: A unique connection between the baryons and DM that holds galaxy by galaxy flies in the face of the haphazard baryon-DM relation expected in the DM paradigm.

4. Cluster dark matter in light of MOND

It was realized early on that MOND does not fully account for the mass discrepancy in galaxy clusters. At the advent of MOND, the baryonic budget of clusters was thought to consist of galaxies only: the large \(M/L \) values deduced for clusters—a few hundred \((M/L)_\odot\)—were thought to represent mass discrepancies of order 100. The MOND correction I found in Milgrom (1983c) reduced the \(M/L \) values substantially, but still left a significant discrepancy \((M/L)\) of a few to a few tens \((M/L)_\odot\).

I speculated there that the x-ray emission then known to emanate from clusters might bespeak the presence of large quantities of intra-cluster gas that may account for much of the remaining discrepancy. This has been largely borne out by the identification and weighing of the hot, x-ray emitting gas, which has reduced the cluster mass discrepancy (in standard physics and in MOND) by an order of magnitude. This, however, turned out to not quite suffice. Studies based on gas dynamics and on lensing have helped determine the remaining discrepancy, e.g. by The and White (1988), Gerbal et al. (1992), Sanders (1994,1999,2003), Aguirre et al. (2001), Pointecouteau and Silk (2005), Angus et al. (2007b), and by Takahashi and Chiba 2007. In the framework of MOND we have to attribute the remaining discrepancy to yet undetected matter. It is likely that this matter is baryonic in some form—and so I shall assume in this paper—although other possibilities have been raised, e.g., massive neutrinos (Sanders 2003, 2007).

The following rough picture emerges regarding the distribution of CBDM: The observed accelerations inside a few hundred kiloparsecs of the center are of the order of or a few times larger than \(a_0 \). Thus, MOND implies only a small correction there. So most of the discrepancy observed in the core must be due to CBDM. The ratio, \(l \), of accumulated CBDM to visible baryons there is around 10 to a few tens. The results of Sanders (1999) scaled to \(H_0 = 75 \text{ km s}^{-1}\text{Mpc}^{-1} \) correspond roughly to \(l = 2 \) at 1 Mpc. [Pointecouteau and Silk (2005) claim higher values. But after correcting for two oversights on their part their results are consistent with those of Sanders: for \(H_0 = 75 \text{ km s}^{-1}\text{Mpc}^{-1} \) they use the small value of \(a_0 \) appropriate for \(H_0 = 50 \text{ km s}^{-1}\text{Mpc}^{-1} \), and they took the mean radius in Sanders sample to be rather smaller than it is.] The value of \(l \) decrease continuously with radius, as seen, for example, in the small-sample study of Angus et al. (2007b). Since at the maximal radii in the analyses the gas mass is seen to increase faster than the MOND dynamical mass, we can extrapolate to even higher radii and conclude that for the cluster as a whole \(l \) is about 1 or even smaller. McGaugh (2007) reaches a similar conclusion based on extrapolating the mass-velocity relation from galaxies to clusters.
The contribution of the required CBDM to the total baryonic budget in the universe is rather small. Fukugita and Peebles (2004) estimate the total contribution of the hot gas in clusters to Ω to be about 0.002, some 5 percent of the nucleosynthesis value. It follows from the above that the contribution of the CBDM is similar.

If the CBDM is made of compact macroscopic objects—as is most likely—then like the galaxies, these must have sloshed through the hot gas for many dynamical times; this is implied by the CBDM distribution being still rather extended. So, when two clusters collide, the CBDM will follow the galaxies in going through the collision zone, and will not be greatly affected even in head-on collisions where the gas components of the two clusters coalesce. Clowe et al. (2006) have recently used weak lensing to map the mass distribution around a pair of colliding clusters and indeed found dark mass concentrations coincident with the galaxy concentrations to the sides of the gas agglomeration near the center of collision (See, however, Mahdavi et al. 2007). Such observations do not add a puzzle in the context of MOND; they are very much in line with what we already know about MOND dynamics of single clusters. Angus et al. (2007a) show this with a detailed analysis.

Another result of weak lensing analysis claimed to be a direct evidence for DM in clusters is the apparent ring of DM (Jee et al. 2007) in the galaxy cluster Cl 0024+17. It turns out, however, that this can be explained as a MOND effect (Milgrom and Sanders 2007); the ring might be a direct “image” of the MOND transition region analogous to the GR transition region as marked by the Schwarzschild horizon. The observations and the MOND predictions are shown in Fig. 4. Note also in this connection that gravitational lensing in MOND is more difficult to interpret since the thin-lens approximation fails completely, because of the nonlinearity of MOND; so, the structure along the line of sight enters strongly (law 10 above).

One may wonder why this CBDM appears in clusters but not in spiral galaxies. The answer may lie in the fact that the two types of objects differ greatly in appearance, baryonic content, and probably in their formation process. Most of the observed mass in clusters is in the form of hot, x-ray emitting gas, with only a small fraction in stars, while in spirals the situation is the opposite. Because the required total amount of CBDM is comparable with that of the hot gas, it is conceivable that in clusters a fraction of the baryons have somehow gone into forming the CBDM, while this has not happened in spirals. If this is connected with the appearance of much of the baryonic content as hot gas, it may also be important for elliptical galaxies and galaxy groups enshrouded in hot gas.

5. Heating by CBDM

5.1. Candidates and cooling mechanisms

Like CDM and neutrinos, some forms of CBDM are inherently ineffective in heating the gas. This would be the case, e.g., for brown dwarfs, planetary size objects, or too compact, cool gas clouds. On the other hand, black holes of different masses could accrete and radiate, or if they are massive enough they could lose kinetic energy to the gas by dynamical friction. CBDM in the form of cool dense gas clouds could convert their kinetic energy to thermal energy of the hot gas if they are large and massive enough to collide at a sufficient rate (e.g., Walker 1999). I shall concentrate on the CBDM kinetic energy as the source of heat: If the objects making up the CBDM move with the cluster virial speed, which is a reasonable assumption considering their distribution, the reservoir of their kinetic energy in the core alone is tens of times larger than the thermal energy of the gas there. If the CBDM bodies have more radial orbits the core can tap even a larger reservoir. Such a heating source is smoothly distributed in space and rather steady with time. The volume density of the heating rate scales like the product of two densities (CBDM-CBDM for cloud-cloud collisions, CBDM-gas for dynamical friction) so there is a chance that the balance of the cooling rate will extend over a range of radii. All these are considered to be expedient for solving the puzzle (see e.g. Peterson et al. 2003). Also, the resulting steady state temperature of the cooling gas has to be a fraction of the virial temperature and no overheating can occur.

I now discuss briefly one possible mechanism with the CBDM in the form of cool dense gas clouds.

5.2. Heating by dense gas clouds

Cold, dense gas clouds as DM have been discussed by Pfenniger et al. (1994), Walker and Wardle (1998), and in many succeeding papers by them and others (see, e.g., Kamaya and Silk 2002, and references therein). Notably, Walker (1999) discussed collisions between such clouds as a dominant source
of the x-ray emission from galaxy clusters. Walker, however, assumed that these clouds constitute the ubiquitous DM, and also that they are responsible for the so called extreme scattering events in the Galaxy. This determines the cloud parameters (mass and radius) quite stringently. As explained in the introduction, we are here totally free from such constraints, and can reconsider the process in a new light.

Ablation of the clouds by the hot gas is also at work, and contributes to the heating. The rate of heating by ablation, or collisions, is proportional to the mass flux a cloud sees in its rest frame. Since the mass flux in CBDM is rather larger than that in hot gas in the cluster core (by the ratio of their densities), one would estimate the relative contribution of ablation to be small. However, it can be made important if the cross section of the clouds to ablation is larger than that for collisions; e.g., if clouds have an extended magnetic field of such strength that it can drag the gas but hardly affect the more compact clouds that fly by. In what follows I’ll consider only collisions.

The processes occurring today regarding the cloud-gas system cannot really be understood in disjunction from the full system history. Because, typically, the total CBDM mass is comparable with that in hot gas it is possible that, in fact, much of the presently observed hot gas originated in cold clouds that collided and converted their kinetic energy to heat (as proposed by Walker 1999). The evolution of the cloud population is thus also an important aspect. The life time of a cloud against destruction by collisions depends on its size and its location, as well as on properties of the cloud population. So, the mass and size distribution of the clouds should be a function of location, with much mixing on the cluster crossing time scale. There is also redistribution of heat and gas on hydrodynamical time scale, with clouds from large radii (perhaps even from the very outskirts of the cluster) replenishing those at smaller radii where destruction is more effective.

To get a rough idea of the properties of the clouds that are today most efficient in heating, I assume that at present all clouds are identical in size and mass, and require that the rate of kinetic energy transfer due to cloud collisions balances cooling locally. I also assume that most of the energy released goes into heat, as opposed to being radiated away (see below). We can write the ratio of the heating rate, \dot{E}_H, to the cooling rate, \dot{E}_c in a uniform spherical volume, representing the cluster core, of radius $R = 100R_2$ kpc as:

$$\frac{\dot{E}_H}{\dot{E}_c} \sim \eta \frac{M_{DM}/M_{gas}}{(T_{DM}/T_{gas} - 1)(\tau_{cool}/\tau_{cross})(\Sigma_{DM}/\Sigma_{cl})},$$

(1)

where $M_{DM} = 10^{13} M_{DM,13} M_\odot$ and T_{DM} are the total mass and kinetic temperature of the CBDM in the core volume, while M_{gas} and T_{gas} are those of the gas; τ_{cool} and τ_{cross} are the cooling time and the crossing time ($= R/V$, V being the 1-D velocity), $\Sigma_{DM} = M_{DM}/\pi R^2$ is the mean surface density of the core CBDM, $\Sigma_{cl} = M_{cl}/\pi r^2$ is that of a single cloud (M_{cl} being its mass, and r its radius). The coefficient η is a geometrical factor taking into account a Gaussian velocity distribution of the clouds, angle of impact, and impact parameter distribution. Using results from Walker (1999) I find $\eta \approx 1.2$. We have direct knowledge of all the quantities appearing on
the right hand side, except for Σ_{cl}, which can thus be constrained by the requirement for heating to balance cooling at present. Substituting typical values for cooling cluster cores: $\tau_{c}/\tau_{cr} \sim 100$; $M_{B}/M_{g} \sim 50$ and $(T_{DM}/T_{\text{gas}}) \sim 3$

$$\Sigma_{cl} \sim 10^{4}\eta\Sigma_{DM} \sim 10^{3}\eta M_{DM,13} R_{2}^{-2} g cm^{-2}. \quad (2)$$

It is difficult to estimate the mass and size of the clouds separately. These may depend on how the clouds formed, which of them have already disappear, what supports them, etc.

The first rough equality in eq.2 tells us that the total sky cover factor of the clouds in the core is $\sim 10^{-4}$, which means that the cloud-cloud-collision life time of a single cloud is $\sim 10^{4}$ crossing times. This turns out to be of the order of the Hubble time, which may not be a mere coincidence, but a result of cloud evolution that culls out clouds with shorter life times. The small cloud sky cover factor is also in line with the observations of the bullet cluster as it means that the CBDM masses of two colliding clusters would go through each other practically intact.

The second rough equality in eq.2 tells us that the cloud’s optical depth is very large. In a collision, much of the kinetic energy is converted into thermal energy. Part of this is converted back into hydrodynamic energy of the gas debris expanding from the collision region; another part escapes as radiation. The photon escape time is typically $t_{es} \sim r\tau/c$, and is at least a few times longer in our case than the expansion time $t_{exp} \sim r/v$, where v is the post-collision expansion seed, which is of the order of the cluster virial speed. This means that only a fraction of the collision energy goes into radiation so the energy transfer to gas heating is efficient (it also means that the radiation comes out at lower frequencies). The collisional clouds will be much more diffused, and will readily deposit their energy in the gas. Calculations are needed to pinpoint the exact details of the collision to see if indeed all this can be made to work as required.

There are, in principle, at least two ways in which the effects of such CBDM clouds can be observed directly, and which have to be studied in more detail. The first is the direct observation of radiation flashes coming out of individual cloud collisions. The characteristics of the flash: its total energy, duration, typical photon energy, and frequency of occurrence depend strongly on the mass of individual clouds and on the details of the collision (which, as we saw, involves a very optically thick system).

The other means of direct detection is via microlensing of quasar images behind a cluster. Since the cloud surface density has to be much larger than 1gr cm$^{-2}$, they are well within their Einstein radius for lensing at cosmological distances, and should be effective microlenses. The sky cover factor of Einstein discs of the clouds, which is the probability for appreciable microlensing amplification is, of course, similar to the strong lensing probability by the cluster core, which is typically not much less than unity. Microlensing of quasar images have been identified (Fohlmeister 2006a,b). The expected microlensing duration by clouds depends on the masses of individual clouds. Some microlensing constraints on CBDM masses are mentioned by Carr (2000), but, as explained above should be relaxed for the CBDM quantities implied by MOND.

Acknowledgements I thank Bob Sanders for comments on the manuscript. This research was supported by a center of excellence grant from the Israel Science Foundation.

References

Afshordi, N., Lin, Y. -T., Nagai, D., Sanderson, A.J.R., 2007, MNRAS, 378, 293

Angus, G.W., McGaugh, S.S., 2007, arXiv:0704.0381

Angus, G.W., Shan, HY., Zhao HS., Famaey, B. 2007a, ApJ, 654, L13

Angus, G.W., Famaey, B., Buote, B.A., 2007b, arXiv:0709.0108

Aguirre, A., Schaye, J., Quataert, E., 2001, ApJ 561, 550

Barnes, E.I., Kosowsky, A., Sellwood, J.A. 2007, AJ, 133, 1698

Bauer, F.E. et al., 2005, MNRAS, 359, 1481

Begeman, K.G., Broeils, A.H., Sanders, R.H., 1991, MNRAS 249, 523

Bekenstein, J.D., 2004, Phys. Rev. D70, 083509

Bekenstein, J.D., 2006, Contemporary Physics, 47, 387

Bekenstein, J., Milgrom, M., 1984, ApJ, 286, 7

de Blok, W.J.G., McGaugh, S.S., 1998, ApJ, 508, 132

Bottema, R., Pesting, J. L. G., Rothberg, B., Sanders, R. H., 2002, AA, 393, 453
Walker, M., 1999, astro-ph/9908103
Walker, M., Wardle, M., 1998, ApJ, 498, L125
Wu, X. et al., 2007, ApJ, 665, L101