Factors affecting elective cesarean section in women with multiple pregnancy in Caruban, Indonesia [version 3; peer review: 2 approved]

Muhammad Pradhiki Mahindra¹, Mahendra Tri Arif Sampurna², Muhammad Pradhika Mapindra³, Apriska Mega Sutowo Putri⁴,⁵, Aries Krisbyiantoro⁴,⁵, Rozi Aditya Aryananda⁶

¹Maternal-Fetal Medicine Department, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, WC1E 6AU, UK
²Department of Pediatrics, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
³Neonatology Department, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, WC1E 6AU, UK
⁴Faculty of Medicine, Sebelas Maret University, Surakarta, East Java, 57126, Indonesia
⁵Caruban General Hospital, Madiun, East Java, 63153, Indonesia
⁶Department of Obstetrics and Gynecology, Airlangga University, Subaya, East Java, 60115, Indonesia

Abstract

Background: Caesarean sections have become the most popular method for delivering twin babies because of the safety concerns associated with a natural birth. This study aims to identify the maternal characteristics and obstetric parameters that serve as risk factors influencing caesarean delivery in twin pregnancies by comparing women delivering via caesarean section and vaginal birth.

Methods: A retrospective chart review design was used to analyse 47 women with multiple pregnancies from the medical records at a primary referral hospital in East Java, Indonesia. Women delivering vaginally were then compared with women who underwent a caesarean section to identify any differences between the groups.

Results: In our study, more women delivered by caesarean section (n=35) than by vaginal birth (n=12). Women were more likely to undergo a caesarean section if they had a previous history of undergoing a caesarean section (OR 16.5; 95% CI 1.91-142.49; p=0.02). Similar to previous studies, we found that foetal malpresentation significantly increase the risk of caesarean delivery (OR 8.25; 95% CI 0.95-71.09; p=0.03), while labour augmentation decrease the likelihood of caesarean section (OR 0.20; 95% CI 0.49-0.81; p=0.03). There was also a significant older patients in the caesarean section groups (OR 1.26; 95% CI 1.09-1.45; p=0.00).
Conclusions: The percentage of multiple pregnancies delivered via caesarean section is quite high. Other larger cohort study are warranted, since many factors were involved in the decision of caesarean section.

Keywords
cesarean section, complication, multiple pregnancy, vaginal birth

Corresponding author: Mahendra Tri Arif Sampurna (mahendra.tri@fk.unair.ac.id)

Author roles: Mahindra MP: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Software, Writing – Original Draft Preparation, Writing – Review & Editing; Sampurna MTA: Funding Acquisition, Resources, Supervision, Validation, Writing – Review & Editing; Mapindra MP: Formal Analysis, Investigation, Methodology, Software, Writing – Original Draft Preparation, Writing – Review & Editing; Putri AMS: Data Curation, Investigation, Project Administration, Software, Writing – Original Draft Preparation, Writing – Review & Editing; Krisbiyantoro A: Data Curation, Investigation, Project Administration, Validation, Visualization; Aryananda RA: Supervision, Validation, Visualization

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2023 Mahindra MP et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Mahindra MP, Sampurna MTA, Mapindra MP et al. Factors affecting elective caesarean section in women with multiple pregnancy in Caruban, Indonesia [version 3; peer review: 2 approved] F1000Research 2023, 9:1481
https://doi.org/10.12688/f1000research.27292.3
First published: 18 Dec 2020, 9:1481 https://doi.org/10.12688/f1000research.27292.1
Introduction

Multiple pregnancies are currently much more common than in the past as a result of older maternal age and pregnancies resulting from assisted reproductive technologies. Multiple pregnancy accounts for 1% to 4% of total births, with a prevalence ranging from 0.9% to 1.4% in England and Wales and 0.9% to 2.4% in Brazil. The lowest incidence rate of multiple pregnancy is in East Asia (fewer than eight twin births in 1000). Multiple pregnancy is associated with higher maternal and perinatal risks than singleton pregnancy, including pre-eclampsia, hypertension, hyperemesis, postpartum haemorrhage, premature rupture of the membranes and anaemia. The rate of perinatal mortality is 2–3 times higher in multiple pregnancy than in singleton newborns. Multiple pregnancy can increase preterm birth, foetal growth restriction, low birth weight and intrapartum anoxia.

A case complicated by multiple pregnancy has the same delivery options as a singleton pregnancy: caesarean or vaginal delivery. This choice depends on multiple factors and remains controversial in numerous studies. Many important factors are involved when determining the delivery method, including women’s parity, foetal weight, foetal presentation, inter-twin weight discordance and maternal clinical conditions. Some studies have explained that if both foetuses are in a cephalic presentation, the vaginal mode is preferred. Vaginal delivery is possible if the foetus weighs more than 1500 grams. Caesarean delivery is the best choice when the first foetus is non-cephalic. Another large retrospective population study found that compared with caesarean delivery, increased neonatal morbidity and mortality were observed for the second twin when vaginal delivery was performed. That study also indicated that elective caesarean delivery is safer than vaginal delivery and results in the best maternal and perinatal outcomes. However, although evidence for the preference of an elective caesarean section for multiple pregnancy is lacking, the rates of elective caesarean section for multiple pregnancy have increased throughout the world. The main objective of this study was to evaluate and provide reliable information on the contributing risk factors such as maternal characteristics, obstetric histories and recorded pregnancy complications that influenced the decision to undertake a caesarean section or vaginal birth in multiple pregnancy cases.

Methods

Study settings

This retrospective chart review investigated secondary data that were obtained from written medical records at Caruban General Hospital in Caruban, East Java, which has become one of the main primary referral hospitals that receives many high-risk pregnancy cases from the primary health centres and antenatal clinics in the region of Madiun.

Study design and population

This analysis used a purposive sampling method from the records of pregnant women with multiple pregnancies in the hospital’s data registry from 1 December 2014, to 15 December 2019. We identified 95 medical records of pregnant women based on several criteria. We obtained the data of women who had experienced multiple pregnancy and undergone elective caesarean section or vaginal delivery in the Caruban and Madiun regions of East Java, Indonesia. The inclusion criteria were as follows: women older than 18 years without mental disorders and who were medically stable (oxygen level > 93%, heart rate 60–100 bpm). The exclusion criteria were as follows: emergency caesarean section, medically unstable (oxygen level < 93%, heart rate below 60 or above 100 bpm, women with altered mental status), death of the newborn and death of the mother. However, there were no cases of neonatal or maternal death or injury. Medical records with incomplete and unclear information on maternal characteristics were not included. The final sample consisted of 47 women.

Data collection and analysis

Using a data extraction form (see extended data), information on maternal characteristics including age, educational background and occupational status and information on obstetric histories such as previous history of caesarean section and parity status, were obtained. We decided to categorise educational background into graduates and unqualified degree. Occupational status was subcategorised into unemployed, civil servant, private employee and entrepreneur. Parity status was classified into nulliparous (never given birth), primiparous (one live birth) and multiparous (two or more live births) before present delivery. Data on perinatal events including foetal malpresentation, labour augmentation, prenatal haemoglobin levels and gestational hypertension were also recorded (see underlying data for the full dataset).

The analyses were performed using the Statistical Package for the Social Sciences (SPSS) version 16 for Windows. Quantitative data are presented as odds ratios (ORs) with confidence intervals (CIs) and means with the standard deviation. Chi-square tests were used to compare the caesarean and vaginal birth groups, and normal probability plots were generated to evaluate the data distribution. We then used an ANOVA for the normally-distributed data and the Kruskal–Wallis test for the non-normally-distributed data. A P-value of <0.05 was considered significant.

Ethics

This analysis was approved by the ethics committee of Caruban General Hospital (No. 800/ 4532/ 402.102.110/ 2020). The requirement to obtain informed consent was waived by the ethics committee of Caruban General Hospital before the study was conducted. The study was conducted according to the relevant guidelines. The patient data records were coded and...
Results
As shown in Table 11, among the 47 mothers who met our inclusion criteria, most of them were unemployed. Additionally, 12 women underwent a vaginal delivery whereas the other 35 women birthed their babies abdominally. Thus, more women underwent a caesarean section than gave birth vaginally. Figure 1 indicates that the main indication for a caesarean section in this study was a caesarean scar, followed by malpresentation and foetal distress. Perinatal complications were principally dominated by malposition of the foetuses, which were not in the vertex position. During the labour process, 18 of the 47 women suffered prolonged labour. Six women came to the hospital with a history of premature membrane rupture without uterine contractions. Gestational hypertension was also reported in 12 women and 11 women had Hb levels below 10 g/dL in their last recorded Hb examinations in late pregnancy.

Based on the analysis, we found that patient undergo caesarean section were older than vaginal delivery (p = 0.00). Other maternal characteristics including primiparous as the most common parity status (p = 0.73), educational status (p = 0.46) and being unemployed (p = 1.00) did not differ significantly between the two groups of women stratified by delivery method. Additionally, we evaluated the obstetric history of the included mothers. In total, 21 women had a history of previous caesarean section, which was found to significantly increase the likelihood of undergoing another caesarean section (OR = 16.5, 95\% CI = 1.91 to 142.29, p = 0.02). Women who suffered prolonged labour during their delivery were significantly less likely to undergo a caesarean delivery (OR = 0.20, 95\% CI = 0.49 to 0.81, p = 0.03). Women who experience malpresentation of their foetuses during pregnancy were more likely to undergo a caesarean delivery (OR = 8.25, 95\% CI = 0.95, 71.09, p = 0.03). However, in this study, premature rupture of the membrane, gestational hypertension and gestational anæmia did not significantly contribute to an increased likelihood of a caesarean section. Pregnancy term did not differ significantly between the women undergoing caesarean section and vaginal birth. Neonatal outcomes including 1-minute APGAR (appearance, pulse, grimace, activity, and respiration) scores and babies’ birth weights did not differ significantly for both the first and second babies between both groups of delivery methods (Table 21i). When comparing caesarean section and vaginal delivery, both first babies (p = 0.82) and second babies (p = 0.38) had APGAR scores ≥ 7 (Table 21i). The birth weight of first babies delivered after caesarean section vs vaginal birth did not differ significantly (2114 grams ± 469.37 vs 1938.33 grams ± 562.36, p = 0.29) (Table 21i). Similarly, the birth weight of second babies following caesarean section vs vaginal birth also did not differ significantly (2038 ± 478.75 vs 1878.33 ± 417.45, p = 0.31) (Table 21i).

Discussion
Based on the study results, a planned caesarean section appears preferable to a vaginal birth for women with multiple pregnancies when the mothers have a history of previous caesarean section and in cases of malpresentation of the foetus. The neonatal birth weight and 1-minute APGAR scores of the twin babies born by both methods of delivery in this study were similar. Adverse perinatal outcomes including perinatal mortality and transient tachypnea of the newborn, were not significantly different between groups. However, this is in contradictory to the previous study, where the second twin had a higher risk of adverse perinatal outcomes than the first following vaginal delivery22. Combined vaginal/caesarean delivery is another option. However, it may be complicated by a longer interval of prolonged rupture of membranes, leading to endometritis and sepsis in the second twin14. A large nationwide study of multiple pregnancy cases identified a greater risk of uterine rupture in women who delivered their babies via natural birth14. However, previous studies reported that there was no difference in the perinatal outcomes between caesarean section and vaginal birth in multiple pregnancy8,16. Conversely, maternal aspects are an important consideration when choosing the delivery mode in women with a twin pregnancy. However, some studies have reported that the use of forceps or vacuum extractions in vaginal birth could contribute to birth lacerations that may lead to gynaecologic morbidities17–20.

In this comparison study between planned caesarean section and vaginal delivery, we found that there was a significant difference in the maternal age between the two groups. This finding was supported by a previous study that showed a significantly increased trend of caesarean delivery with increased maternal age21. However, a study from Korea found there was no significant difference caesarean section rates in women with multiple pregnancies according to maternal age22. The other difference we identified was that women undergoing caesarean section were more likely to have undergone a previous caesarean section. A similar study comparing women having caesarean sections and vaginal births reported that caesarean section was significantly more likely to occur in women with previous caesarean histories21. Another report revealed that caesarean sections must not be considered mandatory for multiple pregnancies23. However, a study from Myles (2009) demonstrated that caesarean sections had a higher success rate and a lower probability of developing uterine rupture than vaginal delivery25.

This study found that women who underwent labour augmentation by using misoprostol or oxytocin did not have a higher probability of caesarean section. Supporting our finding, a study by Arulkumaran showed that approximately 78\% of women with a caesarean scar who were administered labour augmentation had safe vaginal births whereas the other women who had undergone second caesarean sections were suffering from cephalo-pelvic disproportion6. Furthermore, a prospective cohort study on 153 women with caesarean scars in Saudi Arabia suggested that labour induction to promote vaginal delivery did
Table 1. Demographic and obstetrical data.

Variables	Method of delivery	OR (95%CI)	P-Value	
	Section Cesarean	Vaginal Birth		
Parity Status, n (%)				
Nulliparous	6 (17.1%)	5 (41.7%)	0.29 (0.06, 1.22)	0.12
Primiparous	21 (60.0%)	6 (50.0%)	1.50 (0.40, 5.60)	0.73
Multiparous	8 (22.9%)	1 (8.3%)	3.25 (0.36, 29.23)	0.41
Age, median (min, max)				
	30 (20, 39)	20 (19, 37)	1.26 (1.09, 1.45)	**0.00**
Educational Status, n (%)				
Unqualified degree	9 (25.7 %)	5 (41.7%)	0.48 (0.12, 1.91)	0.46
Graduates	26 (74.3%)	7 (58.3%)	1	
Occupation, n (%)				
Unemployed	11 (31.4%)	3 (25.0%)	1.37 (0.31, 6.09)	1.00
Civil Servant	9 (25.7%)	4 (33.3%)	0.69 (0.16, 2.86)	0.71
Private employee	10 (28.6%)	4 (33.3%)	0.80 (0.19, 3.26)	0.73
Entrepreneur	5 (14.3%)	1 (8.3 %)	1.83 (0.19 17.48)	1.00
Previous History of Section, n (%)				
Yes	21 (60.0%)	1 (8.3%)	16.5 (1.91, 142.49)	**0.02**
No	14 (40.0%)	11 (91.7%)	1	
Foetal presentation, n (%)				
Malpresentation	15 (42.9 %)	1 (8.3%)	8.25 (0.95, 71.09)	**0.03**
Normal	20 (57.1%)	11 (91.7 %)	1	
Augmentation of Labor, n (%)				
Yes	10 (28.6%)	8 (66.7%)	0.20 (0.49, 0.81)	**0.03**
No	25 (71.4%)	4 (33.3%)	1	
Premature Rupture of the Membrane, n (%)				
Yes	6 (100 %)	0 (0.0 %)	0.82 (0.71, 0.96)	0.31
No	29 (70.7%)	12 (100 %)	1	
Gestational Hypertensive Disorders, n (%)				
Yes	11 (31.4%)	1 (8.3%)	5.04 (0.57, 44.06)	0.14
No	24 (68.6%)	11 (91.7%)	1	
Prenatal Hemoglobin Levels, mg/dl (Mean ± SD)	11.18 ± 1.69	10.80 ± 1.11	0.48	
Gestational Anemia, n (%)	9 (25.7%)	2 (16.7%)	1.73 (0.31, 9.44)	0.70
Non-anemia, n (%)	26 (74.3%)	10 (83.3%)	1	
Delivery at Gestational Age, weeks, Median (min, max)	37 (34, 37)	37 (31, 38)	0.55	
< 37 weeks, n (%)	14 (40.0%)	5 (41.7%)	1	1.00
37–42 weeks, n (%)	21 (60.0%)	7 (58.3 %)	0.93 (0.24, 3.53)	
not contribute to the increased likelihood of a second elective caesarean section or adverse effects on neonatal outcomes27. By contrast, a study in Sweden reported the increased likelihood of caesarean delivery after performing labour induction using oxytocin and cervical ripening in women with multiple pregnancy28. Another study also explained that labour induction or augmentation was safe for women to promote successful vaginal delivery in multiple pregnancy cases29.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Cesarean section indications.}
\end{figure}

\begin{table}
\centering
\caption{Comparison of neonatal parameters between women undergoing cesarean section and vaginal birth.}
\begin{tabular}{|l|c|c|c|}
\hline
\textbf{Parameters} & \textbf{Method of delivery} & \textbf{p-value} \\
 & \textbf{Cesarean Section} & \textbf{Vaginal Birth} & \\
 & 35 & 12 & \\
\hline
\textbf{Neonatal characteristics} & & & \\
\hline
Gender & & & \\
First Baby, n (\%) & & & \\
Male & 14 (40) & 8 (66.7) & 0.18 \\
Female & 21 (60) & 4 (33.3) & \\
\hline
Second Baby & & & \\
Male & 15 (42.9) & 7 (58.3) & 0.55 \\
Female & 20 (57.1) & 5 (41.7) & \\
\hline
1-minute APGAR score, median (min, max) & & & \\
First Baby & 8 (6, 8) & 7 (7, 8) & 0.82 \\
Second Baby & 7 (5, 8) & 7 (7, 8) & 0.38 \\
\hline
Birth Weight, (Mean ± SD) gram & & & \\
First Baby & 2114 ± 469.37 & 1938.33 ± 562.36 & 0.29 \\
Second Baby & 2038 ± 478.75 & 1878.33 ± 417.45 & 0.31 \\
\hline
\end{tabular}
\end{table}

\textit{APGAR: appearance, pulse, grimace, activity, and respiration}
In our study, we found that non-cephalic presentations did not significantly increase the likelihood of undergoing a caesarean section. Our results supported previous studies that reported relatively similar outcomes for women with non-cephalic presentations who delivered their babies abdominally and vaginally. Furthermore, a caesarean section in multiple pregnancies with non-cephalic presentations is likely to occur following external cephalic attempts. A report from France suggested that the type of presentation must not be considered the main consideration for caesarean section in multiple pregnancies.

Our findings demonstrate that women with multiple pregnancies had a higher tendency to deliver their babies abdominally via caesarean section. Maternal age and previous history of a caesarean section should be considered when determining whether to perform a caesarean delivery in women with multiple pregnancies. However, the supporting findings are still limited. This study also noted that labour augmentation decrease the likelihood of a caesarean section compared with vaginal delivery. However, this finding was rather weak due to the small size of the study population, and thus choosing between a caesarean section and vaginal delivery must be made after considering the patient’s preference and the risks and benefits.

Several others limitation exist in our study, due to small sample size, the data may not reach all others contributing factors. Therefore it is difficult to get a reliable insight from this retrospective study about the contributing risk factors for caesarean section in multiple pregnancy. Obstetricians have a variety of reasons for performing a caesarean section, which are not always linked to real risk factors for the woman or the fetus. There are may be some subjective reason in choosing the caesarean section. However, our findings can serve as a mirror for obstetricians to consider the clear objective justifications for performing a caesarean procedure in a twin pregnancy.

Data availability

Underlying data

Figshare: Underlying Data - Factors Affecting Elective Cesarean Section in Women with Multiple Pregnancy at a Primary Referral Hospital in Indonesia. https://doi.org/10.6084/m9.figshare.13166735.v1

This project contains the following the underlying data:
- Cesarean Section VS Vaginal Birth (Maternal Factors).sav
- Cesarean Section VS Vaginal Birth (Neonatal Factors).sav

Extended data

Figshare: Data Extraction Form - Factors Affecting Elective Cesarean Section in Women with Multiple Pregnancy at a Primary Referral Hospital in Indonesia. https://doi.org/10.6084/m9.figshare.13238534.v1

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgement

We would like to thank the director of Caruban Hospital, Dr. Djoko Santoso, for his encouragement in permitting us to collect the data for this study.

References

1. Lindroos L, Lilvin A, Ladfors L, et al.: The effect of twin-to-twin delivery time intervals on neonatal outcome for second twins. *BMJ Pregnancy Childbirth.* 2018; 18(1): 36. [Publisher Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1) [Free Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1)
2. Santana DS, Surita FG, Cecatti JG: Multiple Pregnancy: Epidemiology and Association with Maternal and Perinatal Morbidity. *Rev Bras Ginecol Obstet.* 2018; 40(9): 554–562. [Publisher Abstract | Publisher Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1) [Free Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1)
3. Smits J, Monden C: Twinning across the developing world. *PLoS One.* 2011; 6(9): e25239. [Publisher Abstract | Publisher Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1) [Free Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1)
4. Laine K, Muzarakanova G, Sole KB, et al.: Prevalence and risk of pre-eclampsia and gestational hypertension in twin pregnancies: A population-based register study. *BMJ Open.* 2019; 9(7): e029908. [Publisher Abstract](https://doi.org/10.6084/m9.figshare.13238534.v1) [Free Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1)
5. Obiechina N, Okolie V, Eleje G, et al.: Twin versus singleton pregnancies: The incidence, pregnancy complications, and obstetric outcomes in a Nigerian tertiary hospital. *Int J Womens Health.* 2011; 3(1): 227–30. [Publisher Abstract | Publisher Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1) [Free Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1)
6. Schachter-Safrai N, Karavani G, Haj-Yahya R, et al.: Risk factors for cesarean delivery and adverse neonatal outcome in twin pregnancies attempting vaginal delivery. *Acta Obstet Gynecol Scand.* 2018; 97(7): 845–851. [Publisher Abstract | Publisher Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1)
7. Felix Martins Santana E, Melo Correa V, Bottura L, et al.: Time and Mode of Delivery in Twin Pregnanacies. *Mult Pregnancy - New Challenges.* 2019. [Publisher Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1)
8. Schmitz T, Azria E, Cabrol D, et al.: L'accouchement par voie basse des grossesses gemellaires est-il encore une option raisonnable? Analyse des données de la littérature. *J Gynecol Obstet Biol Reprod.* 2009; 38(5): 367–376. [Publisher Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1) [Creative Commons Attribution 4.0 International license](https://doi.org/10.6084/m9.figshare.13238534.v1)
9. Barrett JFR, Hannah ME, Hutton EK, et al.: A randomized trial of planned cesarean or vaginal delivery for twin pregnancy. *N Engl J Med.* 2013; 369(14): 1295–305. [Publisher Abstract | Publisher Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1) [Free Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1)
10. Mahindra MP, Sampurna MTA, Mapindra MP, et al.: Data Extraction Form - Factors Affecting Elective Cesarean Section in Women with Multiple Pregnancy at a Primary Referral Hospital in Indonesia. *figshare.* Dataset. 2020. http://www.doi.org/10.6084/m9.figshare.13238534.v1
11. Mahindra MP, Sampurna MTA, Mapindra MP, et al.: Underlying Data - Factors Affecting Elective Cesarean Section in Women with Multiple Pregnancy at a Primary Referral Hospital in Indonesia. *figshare.* Dataset. 2020. http://www.doi.org/10.6084/m9.figshare.13166735.v1
12. Hofmeyr GJ, Barrett JF, Crowther CA: Planned caesarean section for women with a twin pregnancy. *Cochrane Database Syst Rev.* 2011; (12): CD006553. [Publisher Abstract](https://doi.org/10.6084/m9.figshare.13238534.v1) [Free Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1)
13. Alexander JM, Leveno KJ, Rouse D, et al.: Cesarean Delivery for the Second Twin. *Obstet Anesth Dig.* 2009; 29(3): 120–121. [Publisher Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1) [Creative Commons Attribution 4.0 International license](https://doi.org/10.6084/m9.figshare.13238534.v1)
14. Ford AAD, Bateman BT, Simpson LL, et al.: Vaginal birth after cesarean delivery in twin gestations: A large, nationwide sample of deliveries. *Am J Obstet Gynecol.* 2006; 195(4): 1138–42. [Publisher Abstract](https://doi.org/10.6084/m9.figshare.13238534.v1) [Publisher Full Text](https://doi.org/10.6084/m9.figshare.13238534.v1)
15. Henriksen TB, Sperling L, Hedegaard M, et al.: Cesarean section in twin...
pregnancies in two Danish counties with different cesarean section rates.
Acta Obstet Gynecol Scand. 1994; 73(2): 123–8.
PubMed Abstract | Publisher Full Text

16. Varner MW, Leindecker S, Spong CY, et al.: The Maternal-Fetal Medicine Unit cesarean registry: Trial of labor with a twin gestation. *Am J Obstet Gynecol.* 2002; 187(1): 135–40.
PubMed Abstract | Publisher Full Text

17. Meyer S, Schreyer A, De Grandi P, et al.: The effects of birth on urinary continence mechanisms and other pelvic-floor characteristics. *Obstet Gynecol.* 1998; 92(4 pt 1): 613–8.
PubMed Abstract | Publisher Full Text

18. Zetterstrom JP, Lopez A, Anzen B, et al.: Anal incontinence after vaginal delivery: A prospective study in primiparous women. *Br J Obstet Gynaecol.* 1999; 106(4): 324–30.
PubMed Abstract | Publisher Full Text

19. Wilson PD, Herbison RM, Herbison GP: Obstetric practice and the prevalence of urinary incontinence three months after delivery. *Br J Obstet Gynaecol.* 1996; 103(2): 154–61.
PubMed Abstract | Publisher Full Text

20. Fathallah N, Spindler L, Zeitoun J, et al.: Anal incontinence after childbirth. *Colon and Rectum.* 2018; 12(4): 235–42.

21. Londero AP, Rossetti E, Pittini C, et al.: Maternal age and the risk of adverse pregnancy outcomes: a retrospective cohort study. *BMC Pregnancy Childbirth.* 2019; 19(1): 261.
PubMed Abstract | Publisher Full Text | Free Full Text

22. Lee YJ, Kim MN, Kim YM, et al.: Perinatal outcome of twin pregnancies according to maternal age. *Obstet Gynecol Sci.* 2019; 62(2): 93–102.
PubMed Abstract | Publisher Full Text | Free Full Text

23. Sansregret A, Bujold E, Gauthier R: Twin delivery after a previous caesarean: a twelve-year experience. *J Obstet Gynaecol Can.* 2003; 25(4): 294–8.
PubMed Abstract | Publisher Full Text

24. Al-Obaidly S, Al-Ibrahim A, Khaldi HM, et al.: The impact of previous one caesarean section on obstetric decision in twin gestation. *Eur J Obstet Gynecol Reprod Biol.* 2016; 206: e5–e6.
Publisher Full Text

25. Anulkumar S, Ingemarsson I, Ratnam SS: Oxytocin augmentation in dysfunctional labour after previous caesarean section. *Br J Obstet Gynaecol.* 1989; 96(8): 939–41.
PubMed Abstract | Publisher Full Text | Free Full Text

26. Alsayegh AK, Roshy S, Akef AH, et al.: Induction of Labor with Prostaglandin E2 in Women with Previous Cesarean Section and Unfavorable Cervix. *Int J Health Sci (Qassim).* 2007; 1(2): 211–6.
PubMed Abstract | Free Full Text

27. Jonsson M: Induction of twin pregnancy and the risk of caesarean delivery: a cohort study. *BMC Pregnancy Childbirth.* 2015; 15(1): 136.
PubMed Abstract | Publisher Full Text | Free Full Text

28. Fausett MB, Barth WH, Yoder BA, et al.: Oxytocin labor stimulation of twin gestations: Effective and efficient. *Obstet Gynecol.* 1997; 90(2): 202–4.
PubMed Abstract | Publisher Full Text

29. Bisschop CNS, Vogelvang TE, May AM, et al.: Mode of delivery in non-cephalic presenting twins: A systematic review. *Arch Gynecol Obstet.* 2012; 286(1): 237–42.
PubMed Abstract | Publisher Full Text | Free Full Text

30. Gocke SE, Nageotte MP, Garite T, et al.: Management of the nonvertex second twin: Primary cesarean section, external version, or primary breech extraction. *Am J Obstet Gynecol.* 1989; 161(1): 111–4.
PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✅ ✅

Version 3

Reviewer Report 15 December 2023
https://doi.org/10.5256/f1000research.153085.r195442

© 2023 Liem K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✅ Kian Djien Liem
Department of Neonatology, Amalia Children's Hospital, Nijmegen, The Netherlands

The authors have satisfactorily improved the manuscript.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Neonatology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 24 August 2023
https://doi.org/10.5256/f1000research.153085.r195443

© 2023 Winarno G et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✅ Ayu Insafi Mulyantari
Department Obstetric and Gynecology, Universitas Padjadjaran, Bandung, West Java, Indonesia

Gatot Nyarumenteng Adhipurnawan Winarno
Department of Obstetrics and Gynecology, Dr. Hasan Sadikin Central General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia

The authors already addressing the items brought up during the prior round of review.

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Obstetrics and Gynecology

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 2

Reviewer Report 12 July 2023

https://doi.org/10.5256/f1000research.119919.r172973

© 2023 Winarno G et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Gatot Nyarumenteng Adhipurnawan Winarno
Department of Obstetrics and Gynecology, Dr. Hasan Sadikin Central General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia

Ayu Insafi Mulyantari
Department Obstetric and Gynecology, Universitas Padjadjaran, Bandung, West Java, Indonesia

Abstract:
I encourage the authors to add the exact numbers in the result section, such as p-value, OR etc

Method
In the method section, the author states that BP less than 80/60 was the inclusion criteria. How can this be? The patients should be in a shock state, which is not eligible as the study object.

Result
The author state that the "more than half were between 21 and 35 years old, and most had a low educational status and worked as private employees" Please revisit your table presentation. This data was not matched with the data you're presenting in Table 1. Both for age and occupation (the table presented that 11 study object was unemployed).

Table 1
Correct me if I am mistaken, the author presents the parity as nulliparous, primiparous, and multiparous. There are 21 study objects that are classified as primiparous. Meanwhile, there are 21 study objects which had the previous history of section. This might lead the ambiguity or mislead the reader. Thus, the classification for parity might be changing into primiparous (n=6) and multiparaous (n=29)

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Obstetrics and Gynecology

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.

Author Response 15 Jul 2023

Mahendra Tri Arif Sampurna

We are very thankful for your availability and willingness to help us to become our reviewer on our manuscript. We have revised our manuscript based on point-on-point revision as suggested.

1. Abstract: I encourage the authors to add the exact numbers in the result section, such as p-value, OR etc
 Response: Thank you for your suggestion, we are very much agreed with your suggestion and have put the exact number on the abstract.

2. Method: In the method section, the author states that BP less than 80/60 was the inclusion criteria. How can this be? The patients should be in a shock state, which is not eligible as the study object.
 Response: Thank you for your correction, we realize that there is an error information and have deleted it from the manuscript.

3. Result: The author state that the "more than half were between 21 and 35 years old, and most had a low educational status and worked as private employees" Please revisit your table presentation. This data was not matched with the data you’re presenting in Table 1. Both for age and occupation (the table presented that 11 study object was unemployed).
 Response: Thank you for your correction, we realize that there is an error information and have revised it.
4. Table 1: Correct me if I am mistaken, the author presents the parity as nulliparous, primiparous, and multiparous. There are 21 study objects that are classified as primiparous. Meanwhile, there are 21 study objects which had the previous history of section. This might lead the ambiguity or mislead the reader. Thus, the classification for parity might be changing into primiparous (n=6) and multiparaous (n=29).

Response: Thank you for your suggestion, we agreed that statement is ambiguous, but because of our aim to search for factors, we classified the parity by the condition before delivery (nulliparous : 0; primiparous : 1; multiparous > 2), we will add some explanation on the definition in the methods section to avoid ambiguity.

Competing Interests: No competing interests were disclosed.

Reviewer Report 26 July 2022

https://doi.org/10.5256/f1000research.119919.r127395

© 2022 Liem K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kian Djien Liem

Department of Neonatology, Amalia Children’s Hospital, Nijmegen, The Netherlands

The authors have satisfactorily corrected the conflicting data on fetal malpresentation. They have also mentioned the limitations of their study.

However, there are still a few points that need some clarification.

- In the abstract in the last sentence: "There was also a significant difference in maternal age between groups.". This is very vague. It is not clear which significant difference is found. This is also the case in the results. It is only mentioned: "the average age at delivery differed significantly between women who underwent caesarean and vaginal delivery (p = 0.00)". But for clarity it is desirable to indicate in what sense there is a difference.

- In the results, the last paragraph: "The first babies delivered after caesarean section vs vaginal birth did not differ significantly (2114 grams ± 469.37 vs 1938.33 grams ± 562.36, p = 0.29) (Table 2'). Similarly, the second babies following caesarean section vs vaginal birth also did not differ significantly (2038 ± 478.75 vs 1878.33 ± 417.45, p = 0.31) (Table 2')." It is not stated for which variable the difference is analyzed. Based on the results, it seems to be the birth weight. Therefore, for the clarity for the readers it is desirable to mention that it concerns birth weight.

- In the discussion, in the first paragraph the authors summarize their findings, but after the sentence: "Adverse perinatal outcomes including perinatal mortality and transient tachypnea of the newborn, were not significantly different between groups", they mentioned: "However, the second twin had a higher risk of suffer perinatal outcomes than the first following vaginal
In the results the authors didn't find a significant difference between the first and the second baby according to the neonatal outcome in both groups of delivery methods. Therefore it is better to mention: However, this is in contradictory to the previous study, where the second twin had a higher risk of adverse perinatal outcomes than the first following vaginal delivery and referring this to the reference no. 12.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Neonatology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 15 Jul 2023
Mahendra Tri Arif Sampurna

We are very thankful for your availability and willingness to help us to become our reviewer on our manuscript. We have revised our manuscript based on point-on-point revision as suggested.

1. In the abstract in the last sentence: "There was also a significant difference in maternal age between groups.". This is very vague. It is not clear which significant difference is found. This is also the case in the results. It is only mentioned: "the average age at delivery differed significantly between women who underwent caesarean and vaginal delivery (p = 0.00)". But for clarity it is desirable to indicate in what sense there is a difference.

Response: We are very thankful for your suggestion, we have revised this issue in the
2. In the results, the last paragraph: "The first babies delivered after caesarean section vs vaginal birth did not differ significantly (2114 grams ± 469.37 vs 1938.33 grams ± 562.36, p = 0.29) (Table 211). Similarly, the second babies following caesarean section vs vaginal birth also did not differ significantly (2038 ± 478.75 vs 1878.33 ± 417.45, p = 0.31) (Table 211)." It is not stated for which variable the difference is analyzed. Based on the results, it seems to be the birth weight. Therefore, for the clarity for the readers it is desirable to mention that it concerns birth weight.

Response: We are very thankful for your comments, we acknowledge that this is not clear enough, therefore we have mentioned the concern about birth weight.

3. In the discussion, in the first paragraph the authors summarize their findings, but after the sentence: "Adverse perinatal outcomes including perinatal mortality and transient tachypnea of the newborn, were not significantly different between groups", they mentioned: "However, the second twin had a higher risk of suffer perinatal outcomes than the first following vaginal delivery" and referring to reference no. 12. This might cause some confusion to the reader. In the results the authors didn't find a significant difference between the first and the second baby according to the neonatal outcome in both groups of delivery methods. Therefore it is better to mention: However, this is in contradictory to the previous study, where the second twin had a higher risk of adverse perinatal outcomes than the first following vaginal delivery and referring this to the reference no. 12.

Response: We are very thankful for your suggestion, we very much agreed and have revised it.

Competing Interests: No competing interests were disclosed.
insight from this retrospective study about the contributing risk factors for caesarian section in multiple pregnancy. There are many reasons of the obstetricians for choosing caesarean section, which are not always necessary correlated with some real risk factors for the mother or the foetus. Possibly that some of these reasons are subjectively determined. Therefore it is not surprising to find that fetal malpresentation is not more common in the caesarean section group as compared to the group of vaginal delivery. Nevertheless, the result of this retrospective study can be used as a mirror for the obstetricians in order to think about the clear objective indications for performing of caesarean section in twin pregnancy. The authors should make an obstetrical recommendation for a reliable protocol of caesarean section indication in twin pregnancy.

Specific comments:

Abstract:
○ No comment.

Introduction:
○ Line 6 from the second paragraph: what is meant by gestational weight? Is this maternal weight or estimated fetal weight? The authors must clarify this.

Methods:
○ No comment.

Results:
○ Table 1 - This part of the table is incorrect: Under vaginal birth is 1 of 12 never 66.7% and 11 of 12 is never 42.9%. The total percentage is more than 100%. Probably the OR and p-value has to be recalculated again.
○ Also in the text under the 3rd paragraph, the OR an p-value has to be checked also. I am wondering why fetal malpresentation didn't result in more cesarean section. Especially when some fetal malpresentation will result in difficult either impossible vaginal delivery.

Discussion:
○ In the first line the authors make the following statement: “Based on the study results, a planned caesarean section appears preferable to vaginal birth for women with multiple pregnancies when the mothers have a history of previous caesarean section and in cases of malpresentation of the fetus”. But this seems in contradiction with their results that women who did not experience malpresentation of their fetuses during pregnancy were more likely to undergo a caesarean delivery. The authors should clarify this contradiction.

○ In the first paragraph the authors write: “However the second twin had a higher risk of suffer perinatal outcomes than the first following vaginal delivery”. But this statement is not supported by the data of their results.

○ In this chapter a discussion about the limitation of this study is missed. The authors should make a reflection about the limitations of their study. See also general comment.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound? Yes

Are sufficient details of methods and analysis provided to allow replication by others? Yes

If applicable, is the statistical analysis and its interpretation appropriate? Partly

Are all the source data underlying the results available to ensure full reproducibility? Yes

Are the conclusions drawn adequately supported by the results? Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Neonatology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com